25.12.03

REC'D 2 2 JAN 2004 WIPO PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年 2月13日

出 願 番 号 Application Number:

特願2003-034943

[ST. 10/C]:

[JP2003-034943]

出 願 人 Applicant(s):

日本電気株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年 8月12日

【整理番号】

34103756

特許願

【提出日】

【書類名】

平成15年 2月13日

【あて先】

特許庁長官

·殿

【国際特許分類】

GO1N 83/68

G06N 30/72

【発明者】

【住所又は居所】

東京都港区芝五丁目7番1号 日本電気株式会社内

【氏名】

宮崎 賢司

【発明者】

【住所又は居所】 東京都港区芝五丁目7番1号 日本電気株式会社内

【氏名】

次田 晧

【発明者】

【住所又は居所】 東京都港区芝五丁目7番1号 日本電気株式会社内

【氏名】

上條 憲一

【発明者】

【住所又は居所】 東京都港区芝五丁目7番1号 日本電気株式会社内

【氏名】

鳥居 宏在

【特許出願人】

【識別番号】

000004237

【氏名又は名称】 日本電気株式会社

【代理人】

【識別番号】

100088328

【弁理士】

【氏名又は名称】 金田 暢之

【電話番号】

03-3585-1882

【識別番号】

100106297

【弁理士】

【氏名又は名称】 伊藤 克博

【選任した代理人】

【識別番号】 100106138

【弁理士】

【氏名又は名称】 石橋 政幸

【先の出願に基づく優先権主張】

【出願番号】

特願2002-378050

【出願日】

平成14年12月26日

【手数料の表示】

【予納台帳番号】 089681

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9710078

【プルーフの要否】

要

【発明の名称】 質量分析法を利用するペプチドC末端アミノ酸配列解析方法 【特許請求の範囲】

【請求項1】 解析対象とするペプチドのC末端アミノ酸配列を、質量分析 法の利用により解析する方法であって、

対象とするペプチドより、化学的手段によりC末端アミノ酸を逐次的に分解して得られる一連の反応生成物を含む混合物を調製する工程と、

前記一連の反応生成物と、元となるペプチドとの分子量差を、質量分析法により 分析し、かかるC末端アミノ酸の逐次的分解に伴う分子量減少を測定する工程と

測定された一連の分子量減少量に基づき、逐次的分解された一連のアミノ酸を特定し、C末端より配列させて、C末端のアミノ酸配列情報を得る工程とを具え

前記C末端アミノ酸を逐次的に分解する工程は、

該ペプチドN末端のアミノ基ならびに、該ペプチドに含有されている可能性のあるリシン残基側鎖のアミノ基に対して、前記アルカン酸無水物由来のアシル基によるN-アシル化を施す、N-アシル化保護を施す前処理工程と、

前記N-アシル化保護済みの、対象とするペプチドの乾燥試料に対して、 触媒量のパーフルオロアルカン酸の存在下、アルカン酸無水物を作用させ、 ペプチドのC末端において、下記する一般式(III):

【化1】

$$N$$
 $R1$ $R2$ O O O (III)

(式中、

R1は、ペプチドのC末端アミノ酸の側鎖を表し、

R2は、前記C末端アミノ酸の直前に位置するアミノ酸残基の側鎖を表す)で表記される5-オキサゾロン構造を経て、該5-オキサゾロン環の開裂に伴いC末

端アミノ酸の分解を行う工程と、

前記C末端アミノ酸を逐次的に分解する工程で得られる一連の反応生成物を含 む混合物に対して、

残余する前記アルカン酸無水物とパーフルオロアルカン酸とを除去する後処理 を施し、

次いで、塩基性含窒素芳香環化合物または第三アミン化合物を触媒量共存させ た状態で、前記反応生成物ペプチドに水分子を作用させて、加水処理を施す加水 処理の工程とを、少なくとも含んでなり、

前記C末端アミノ酸の逐次的分解に伴う分子量減少を測定する工程では、

前記加水処理済みの一連の反応生成物を含む混合物に対して、

緩衝溶液中において、トリプシンを作用させ、該ペプチド鎖のトリプシン酵素 特異的な消化処理を施して、該ペプチド鎖中に存在するアルギニン残基のC末側 ペプチド結合の選択的な切断によるペプチド断片化を行い、

脱塩処理を施し、前記緩衝溶液成分を除去して、該トリプシン消化処理済みペ プチド断片を回収し、乾燥する工程を設け、

次いで、前記回収された該トリプシン消化処理済みペプチド断片を含む乾燥混 合物について、質量分析法を利用し、該イオン化処理で生じる陽イオン種による 分子量測定、ならびに陰イオン種による分子量測定を行い、

前記陽イオン種による分子量測定、ならびに陰イオン種による分子量測定にお いて測定される、対応するイオン種の質量分析スペクトルについて、

前記トリプシン消化処理で生成するC末端にアルギニン残基を有するペプチド 断片のピークは、

陽イオン種による分子量測定における強度は、陰イオン種による分子量測定にお ける強度と比較して、相対的に大きな強度を与えるピークと判定し、

前記トリプシン消化処理で生成する、元となるペプチドに由来するC末端のペ プチド断片ならびに、C末端アミノ酸を逐次的に分解して得られる一連の反応生 成物に由来するC末端のペプチド断片のピークは、

陰イオン種による分子量測定における強度は、陽イオン種による分子量測定にお ける強度と比較して、相対的に大きな強度を与えるピークと判定し、

該陰イオン種による分子量測定において、相対的に大きな強度を与える一連の ピークに基づき、C末端アミノ酸の逐次的分解に伴う分子量減少を測定する手法 を採用した上で、

該スペクトルの解析工程は、

該スペクトルの解析作業は、解析範囲をm/z値が4000以下に選択して、 (工程1) ペプチド断片化に利用する、トリプシン消化処理に付随して、ペプ チド断片を含む乾燥混合物中に混入する既知の分子量を有するトリプシンの自己 消化に由来するペプチド断片に関して、

陽イオン種による分子量測定結果中の、m/z値が4000以下500以上の 範囲において、トリプシンの自己消化に由来するペプチド断片による陽イオン種 ピークを特定し、

次いで、陰イオン種による分子量測定結果中の、m/z値が4000以下500 以上の範囲において、トリプシンの自己消化に起因するペプチド断片による対応 陰イオン種ピークを特定する、トリプシン由来の内部標準ピークの特定工程、

(工程2) 陽イオン種による分子量測定結果中、前記特定されるトリプシン由 来の陽イオン種ピークを除外し、m/z値が4000以下500以上の範囲にお いて、最大のピーク強度を有する最大陽イオン種ピークを特定し、該最大陽イオ ン種ビークのビーク強度を基準として、その1/40以上のピーク強度を有する 陽イオン種ピークを選別し、第一の陽イオン種ピーク群を形成し、

次いで、陰イオン種による分子量測定結果中、前記特定されるトリプシン由来の 陰イオン種ビークを除外し、m/z値が4000以下500以上の範囲において 、最大のピーク強度を有する最大陰イオン種ピークを特定し、該最大陰イオン種 ピークのピーク強度を基準として、その1/40以上のピーク強度を有する陰イ オン種ピークを選別し、第一の陰イオン種ピーク群を形成する、主要なイオン種 ピークの特定工程、

(工程3) 陰イオン種による分子量測定結果中において、前記第一の陽イオン 種ピーク群の各ピークに対応する陰イオン種に相当するピークを特定し、第二の 陰イオン種ピーク群を形成し、

次いで、陽イオン種による分子量測定結果中において、前記第一の陰イオン種ピ

ーク群の各ピークに対応する陽イオン種に相当するピークを特定し、第二の陽イオン種ピーク群を形成する、主要なイオン種ピークに対する対イオン種ピークの特定工程、

(工程4) 前記第一の陰イオン種ピーク群と第二の陰イオン種ピーク群との積集合を、第三の陰イオン種ピーク群とし、同時に、第一の陰イオン種ピーク群と 第二の陰イオン種ピーク群との和集合を、第四の陰イオン種ピーク群とし、

次いで、前記第一の陽イオン種ピーク群と第二の陽イオン種ピーク群との積集合を、第三の陽イオン種ピーク群とし、同時に、第一の陽イオン種ピーク群と第二の陽イオン種ピーク群との和集合を、第四の陽イオン種ピーク群とし、

前記第三の陰イオン種ピーク群の各ピークに対応する各陽イオン種ピークに関して、前記最大陽イオン種ピークのピーク強度を基準とする、相対ピーク強度を算定し、同時に、前記第三の陰イオン種ピーク群の各ピーク関して、前記最大陰イオン種ピークのピーク強度を基準とする、相対ピーク強度を算定し、相互に相対ピーク強度を比較した上で、

前記第三の陰イオン種ピーク群の各ピークに対して、対応する各陽イオン種ピークの相対ピーク強度が3/2以上となる陽イオン種ピークを特定し、第五の陽イオン種ピーク群を形成し、一方、

対応する各陽イオン種ピークに対して、前記第三の陰イオン種ピーク群各ピーク の相対ピーク強度が3/2以上となる陰イオン種ピークを特定し、第五の陰イオン種ピーク群を形成する、有意な対イオン種を有する主要なイオン種ピークの特 定工程、

(工程 5) 前記第四の陽イオン種ピーク群の各陽イオン種ピークのm/z値に基づき、隣接ピーク間のm/z値差を算定し、

同時に、前記第四の陰イオン種ピーク群の各陰イオン種ピークのm/z値に基づき、隣接ピーク間のm/z値差を算定し、

更に、第五の陽イオン種ピーク群の各ピークに関して、

(5 a - 1) 該ピークm/z値に対して、水分子の欠失に相当する分子量18小さいm/z値を有する陽イオン種ピークが、該第五の陽イオン種ピーク群中に存在するか、

(5a-3)該ピークm/z値に対して、前記N-アシル化保護に利用されるアシル基の式量分の余剰ならびに水分子の欠失に相当する分子量18の減少の組み合わせに相当する分子量の大きなm/z値を有する陽イオン種ピークが、該第五の陽イオン種ピーク群中に存在するか、

前記(5 a - 1)~(5 a - 3)のいずれかの要件を満足する陽イオン種ピークを特定し、第六の陽イオン種ピーク群を形成し、

一方、第五の陰イオン種ピーク群の各ピークに関して、

(5b-1) 該ピークm/z値に対して、水分子の欠失に相当する分子量18小さいm/z値を有する陰イオン種ピークが、該第五の陰イオン種ピーク群中に存在するか、

(5b-2) 該ピークm/z値に対して、前記N-アシル化保護に利用されるアシル基の式量分の余剰に相当する分子量大きなm/z値を有する陰イオン種ピークが、該第五の陰イオン種ピーク群中に存在するか、

(5b-3) 該ピークm/z値に対して、前記N-アシル化保護に利用されるアシル基の式量分の余剰ならびに水分子の欠失に相当する分子量18の減少の組み合わせに相当する分子量の大きなm/z値を有する陰イオン種ピークが、該第五の陰イオン種ピーク群中に存在するか、

前記(5b-1)~(5b-3)のいずれかの要件を満足する陰イオン種ピークを特定し、第六の陰イオン種ピーク群を形成し、

特定された第六の陽イオン種ピーク群は、当該解析対象とするペプチドに由来するペプチド断片に起因する陽イオン種ピークの群であり、同時に、特定された第六の陰イオン種ピーク群は、当該解析対象とするペプチドに由来するペプチド断片に起因する陰イオン種ピークの群であると判定する、解析対象とするペプチドに由来するペプチド断片に起因する主要なイオン種ピークの判定工程、

(工程6) 前記第六の陽イオン種ピーク群の各ピークに関して、

該ピークに対して、前記(5a-1)~(5a-3)のいずれかの要件を充足す

さらに、選別されたピークの群において、該群に含まれる他のピークに対して、相対ピーク強度が劣っている、前記(5 a - 1) ~ (5 a - 3) のいずれかの要件を充足する付随陽イオン種ピークとならないピークを選別し、第七の陽イオン種ピーク群を形成し、

一方、前記第六の陰イオン種ピーク群の各ピークに関して、

該ピークに対して、前記(5 b-1)~(5 b-3)のいずれかの要件を充足する付随陰イオン種ピークの相対ピーク強度との対比を行い、該ピークの相対ピーク強度が優っているピークを選別し、

さらに、選別されたピークの群において、該群に含まれる他のピークに対して、相対ピーク強度が劣っている、前記(5b-1)~(5b-3)のいずれかの要件を充足する付随陰イオン種ピークとならないピークを選別し、第七の陰イオン種ピーク群を形成し、

特定された第七の陽イオン種ピーク群は、当該解析対象とするペプチドに由来するペプチド断片自体の陽イオン種ピークの群であり、同時に、特定された第七の陰イオン種ピーク群は、当該解析対象とするペプチドに由来するペプチド断片自体の陰イオン種ピークの群であると判定する、解析対象とするペプチドに由来するペプチド断片自体のイオン種ピークの判定工程、

(工程7) 第四の陰イオン種ピーク群中に存在する、前記第七の陽イオン種ピーク群の各陽イオン種ピークに対応する陰イオン種ピークを選別し、第八の陰イオン種ピーク群を形成し、

該第八の陰イオン種ピーク群に含まれる各陰イオン種ピークに関して、該陰イオン種ピークのm/z値を基準として、上記工程5で算出される隣接ピーク間のm/z値差に基づき、ピーク間のm/z値差が200より小さな範囲に見出される、第四の陰イオン種ピーク群中に存在する陰イオン種ピークの群を選別し、

そのピーク間のm/z値差が、天然の鎖式α-アミノ酸残基:-NH-CH(R)-CO-(Rは、該アミノ酸残基の側鎖を示す)あるいは、該側鎖上のヒドロキシ基、アミノ基に対して、上記N-アシル化保護に利用されるアシル基が置換

してなるアシル化保護 α - アミノ酸残基の式量に相当するものが存在しないことを確認し、

該第八の陰イオン種ピーク群は、当該解析対象とするペプチドに由来するペプチド断片であって、トリプシン消化処理で生成する、そのペプチド鎖C末端にアルギニンを有するペプチド断片の陰イオン種ピーク群と判定する、トリプシン消化で生成するペプチド鎖C末端にアルギニンを有するペプチド断片の特定工程、

(工程8) 第七の陰イオン種ピーク群に含まれる各陰イオン種ピークに関して、該陰イオン種ピークのm/z値を基準として、上記工程5で算出される隣接ピーク間のm/z値差に基づき、ピーク間のm/z値差が200より小さな範囲に見出される、第四の陰イオン種ピーク群中に存在する陰イオン種ピークの群を選別し、

そのピーク間のm/z 値差が、天然の鎖式 $\alpha-r$ ミノ酸残基:-NH-CH(R) -CO-(R は、該r ミノ酸残基の側鎖を示す)あるいは、該側鎖上のヒドロキシ基、r ミノ基に対して、上記N-r シル化保護に利用されるr シル基が置換してなるr シル化保護 $\alpha-r$ ミノ酸残基の式量に相当するものが存在している、第七の陰イオン種ピーク群に含まれる陰イオン種を特定し、第九の陰イオン種ピーク群を形成し、

該第九の陰イオン種ピーク群の各陰イオン種ピークと、前記特定操作において、 ピーク間のm/z値差が、前記アミノ酸残基の式量に相当することが確認された 第四の陰イオン種ピーク群中に存在する陰イオン種ピークとの和集合を、第十の 陰イオン種ピーク群とし、

該第十の陰イオン種ピーク群中、m/z値が最大の陰イオン種ピークを選択し、該m/z値が最大の陰イオン種ピークが示すm/z値を基準として、各ピーク間のm/z値差が上記アミノ酸残基の式量に相当するm/z値差を示す、一連の陰イオン種ピークを該第十の陰イオン種ピーク群中より順次特定し、前記トリプシン消化処理で生成する、元となるペプチドに由来するC末端のペプチド断片ならびに、C末端アミノ酸を逐次的に分解して得られる一連の反応生成物に由来するC末端のペプチド断片の陰イオン種ピーク群と判定する、トリプシン消化で生成する解析対象ペプチドと一連の反応生成物のC末端側ペプチド断片群の特定工程

(工程9) 前記工程8において、特定される前記トリプシン消化処理で生成する、元となるペプチドに由来するC末端のペプチド断片ならびに、C末端アミノ酸を逐次的に分解して得られる一連の反応生成物に由来するC末端のペプチド断片の陰イオン種ピーク群に基づき、順次特定されている陰イオン種ピークの各ピーク間のm/z値差に相当する、上記アミノ酸残基の式量に従って、C末端より逐次的に分解されている部分アミノ酸配列を特定する、C末端アミノ酸配列の特定工程、

上記(工程1)~(工程9)を有することを特徴とする、質量分析法を利用するペプチドC末端アミノ酸配列解析方法。

【請求項2】 前記(工程1)のトリプシン由来の内部標準ピークの特定工程後、

陽イオン種による分子量測定結果中において特定される、トリプシンの自己消化に由来するペプチド断片による陽イオン種ピークについて、該ピークm/z値の決定と、その見かけの半値全幅を算定し、

前記算定される見かけの半値全幅を基準幅として、該基準幅の1/4以下の見かけ半値全幅を示すノイズ性ピークを除去する処理を、該陽イオン種による分子量 測定スペクトルに施し、

次いで、ノイズ除去処理済みスペクトルに対して、トリプシンの自己消化に由来するペプチド断片による陽イオン種ピークにおける、前記決定されたピークm/z値と、前記見かけの半値全幅の算定に用いた二つのm/z値に基づき、該ピーク形状の非対称性と、積分ピーク強度とを保持可能なスムージング処理を施し、

一方、陰イオン種による分子量測定結果中において特定される、トリプシンの 自己消化に由来するペプチド断片による陰イオン種ピークにおいて、該ピークm / z 値の決定と、その半値全幅を算定し、

前記算定される見かけの半値全幅を基準幅として、該基準幅の1/4以下の見かけ半値全幅を示すノイズ性ピークを除去する処理を、該陰イオン種による分子量 測定スペクトルに施し、

次いで、ノイズ除去処理済みスペクトルに対して、トリプシンの自己消化に由来

【請求項3】 前記(工程1)のトリプシン由来の内部標準ピークの特定工 程後、

陽イオン種による分子量測定結果中において特定される、トリプシンの自己消 化に由来するペプチド断片による陽イオン種ピークについて、該ペプチド断片の 既知の分子量に基づき該陽イオン種のm/z値を計算し、スペクトル上のピーク m/z値と比較し、その差異に基づき、陽イオン種による分子量測定スペクトル におけるm/z値に対する系統的誤差の補正を行い、

一方、陰イオン種による分子量測定結果中において特定される、トリプシンの 自己消化に由来するペプチド断片による陰イオン種ピークについて、該ペプチド 断片の既知の分子量に基づき該陰イオン種のm/z値を計算し、スペクトル上の ピークm/z値と比較し、その差異に基づき、陰イオン種による分子量測定スペ クトルにおけるm/z値に対する系統的誤差の補正を行う、

ピークm/z値に対する系統的な誤差補正の工程を設けることを特徴とする請求 項1または2に記載の解析方法。

【請求項4】 前記(工程9)のC末端アミノ酸配列の特定工程において、 特定されたC末端より逐次的に分解されている部分アミノ酸配列が、そのC末端 アミノ酸がアルギニンである場合、

該部分アミノ酸配列の特定における基準とする、第十の陰イオン種ピーク群中の m/ z 値が最大の陰イオン種ピークについて、陽イオン種による分子量測定結果 中における、その対応陽イオン種ピークに対して、

該陽イオン種ピークのm/z値を基準として、上記工程5で算出される隣接ピー ク間のm/z値差に基づき、該陽イオン種ピークのm/z値よりもm/z値が大 きく、m/z値差が200より小さな範囲に見出される、第四の陽イオン種ピー ク群中に存在する陽イオン種ピークの群を選別し、

そのピーク間のm/z 値差が、天然の鎖式 $\alpha-r$ ミノ酸残基:-NH-CH(R) -CO-(R は、該rミノ酸残基の側鎖を示す)あるいは、該側鎖上のヒドロキシ基、rミノ基に対して、上記N-rシル化保護に利用されるrシル基が置換してなるrシル化保護 $\alpha-r$ ミノ酸残基の式量に相当するものが存在しないことを確認する、ペプチド鎖C 末端にrルギニンを有するペプチド断片であることの再確認工程を更に設けることを特徴とする請求項 $1\sim3$ のいずれか一項に記載の解析方法。

【請求項5】 前記C末端アミノ酸の逐次的分解に伴う分子量減少を測定する際に利用する質量分析スペクトルは、

MALDI-TOF-MS法による前記陽イオン種による分子量測定、ならびに陰イオン種による分子量測定結果であることを特徴とする請求項 $1\sim4$ のいずれか一項に記載の解析方法。

【請求項6】 前記C末端アミノ酸を逐次的に分解する工程は、

対象とする前記ペプチドの乾燥試料に対して、乾燥雰囲気下、10℃~60℃ の範囲に選択される温度において、

アルカン酸無水物にアルカン酸を少量添加してなる混合物より供給される、蒸気状のアルカン酸無水物とアルカン酸とを作用させ、

該ペプチドN末端のアミノ基ならびに、該ペプチドに含有されている可能性のあるリシン残基側鎖のアミノ基に対して、前記アルカン酸無水物由来のアシル基によるN-アシル化を施す、N-アシル化保護を施す前処理工程と、

前記N-アシル化保護済みの、対象とするペプチドの乾燥試料に対して、乾燥雰囲気下、15℃~60℃の範囲に選択される温度において、

アルカン酸無水物にパーフルオロアルカン酸を少量添加してなる混合物より供給される、蒸気状のアルカン酸無水物とパーフルオロアルカン酸とを作用させ、

ペプチドのC末端において、下記する一般式(III):

【化2】

$$-N$$
 R_2
 O
 O
 O
 O
 O
 O
 O
 O

(式中、

R1は、ペプチドのC末端アミノ酸の側鎖を表し、

R2は、前記C末端アミノ酸の直前に位置するアミノ酸残基の側鎖を表す)で表記される5ーオキサゾロン構造を経て、該5ーオキサゾロン環の開裂に伴いC末端アミノ酸の分解を行う工程と、

前記C末端アミノ酸を逐次的に分解する工程で得られる一連の反応生成物を含む混合物に対して、

残余する前記アルカン酸無水物とパーフルオロアルカン酸とを乾燥状態において除去する後処理を施し、

次いで、塩基性含窒素芳香環化合物または第三アミン化合物を溶解する水溶液 を利用し、蒸気状の塩基性含窒素芳香環化合物または第三アミン化合物と水分子 を供給して、

前記塩基性の窒素含有有機化合物の共存下、前記反応生成物ペプチドに水分子 を作用させ、

前記の加水処理を施した後、かかる一連の反応生成物を含む混合物に残余する 、前記塩基性の窒素含有有機化合物と水分子を除去、乾燥する再乾燥後処理を行 うことからなる加水処理の工程とを、少なくとも含んでなり、

前記C末端アミノ酸の逐次的分解に伴う分子量減少を測定する工程では、 再乾燥後処理後、前記加水処理済みの一連の反応生成物を含む混合物に対して

緩衝溶液中において、トリプシンを作用させ、該ペプチド鎖のN末端のアミノ基ならびに、該ペプチド鎖に含有されている可能性のあるリシン残基側鎖のアミノ基に対する上記N-アシル化保護が保持されている、該ペプチド鎖のトリプシン酵素特異的な消化処理を施して、該ペプチド鎖中に存在するアルギニン残基の

C末側ペプチド結合の選択的な切断によるペプチド断片化を行い、

脱塩処理を施し、前記緩衝溶液成分を除去して、該トリプシン消化処理済みペ プチド断片を回収し、乾燥する工程を設け、

次いで、前記回収された該トリプシン消化処理済みペプチド断片を含む乾燥混合物について、MALDI-TOF-MS法を利用し、該イオン化処理で生じる陽イオン種による分子量測定、ならびに陰イオン種による分子量測定を行うことを特徴とする請求項5に記載の方法。

【請求項7】 前記C末端アミノ酸を逐次的に分解する工程は、

予めゲル電気泳動法による分離がなされ、該ゲル担体上に担持された状態の対象とするペプチド試料に対して、

前記ゲル担体中に含浸される水溶媒を、該ゲル状物質の溶解を引き起こさず、かつ、水に対して親和性を有する極性非プロトン性溶媒を用いて、希釈除去することにより、該ゲル担体の脱水処理を行う工程と、

前記脱水処理を施した後、該ゲル担体上に担持された状態の対象とするペプチ ド試料に対して、30℃~80℃の範囲に選択される温度において、

該ゲル状物質内に浸潤でき、膨潤状態に維持可能である、双極性非プロトン性溶媒中に、アルカン酸無水物を溶解してなる溶液を用いて、該アルカン酸無水物溶液中に該ゲル担体を浸漬することにより、担持された状態の対象とするペプチド試料にアルカン酸無水物を作用させ、対象とするペプチドのN末端のアミノ基ならびに、該ペプチド中に含有される可能性のあるリシン残基側鎖上のアミノ基に、予め、前記アルカン酸無水物を構成するアルカン酸に由来するアシル基によるN-アシル化保護を施し、

次いで、該ゲル状物質の溶解を引き起こさず、かつ、前記アルカン酸無水物、ならびに双極性非プロトン性溶媒に対して親和性を有する極性非プロトン性溶媒を用いて、希釈除去することにより、N-アシル化反応の停止と反応試薬の除去を行う前処理工程と、

前記N-アシル化保護の前処理を施した後、該ゲル担体上に担持された状態の対象とするペプチド試料に対して、30℃~80℃の範囲に選択される温度において、

ペプチドのC末端において、下記する一般式(III):

【化3】

$$N$$
 $R1$ $R2$ O O O (III)

(式中、

R1は、ペプチドのC末端アミノ酸の側鎖を表し、

R 2 は、前記C末端アミノ酸の直前に位置するアミノ酸残基の側鎖を表す)で表記される5-オキサゾロン構造を経て、該5-オキサゾロン環の開裂に伴いC末端アミノ酸の逐次的分解を行い、

前記C末端アミノ酸の逐次的分解反応に利用した混合溶液を、該ゲル状物質の溶解を引き起こさず、かつ、前記パーフルオロアルカン酸とアルカン酸無水物、ならびに双極性非プロトン性溶媒に対して親和性を有する極性非プロトン性溶媒を用いて、希釈除去することにより、分解反応の停止と反応試薬の除去を行う工程と、

さらに、前記C末端アミノ酸を逐次的に分解する反応で得られる一連の反応生成物を含む混合物に対して、該ゲル担体上に担持された状態のまま、

塩基性含窒素芳香環化合物または第三アミン化合物を溶解する水溶液を利用し、 該水溶液中にゲル担体を浸漬することにより、前記塩基性の窒素含有有機化合物 の共存下、前記反応生成物ペプチドに水分子を作用させ、加水処理を施し、

次いで、前記ゲル担体中に含浸される水溶液を、該ゲル状物質の溶解を引き起こさず、かつ、水に対して親和性を有する極性非プロトン性溶媒を用いて、希釈除去することにより、該ゲル担体の再脱水処理を施すことからなる、付加的な加

前記C末端アミノ酸の逐次的分解に伴う分子量減少を測定する工程では、

再脱水処理後、前記加水処理済みの一連の反応生成物を含む混合物に対して、

該ゲル担体上に担持された状態で、緩衝溶液中に溶解するトリプシンを作用させ、該ペプチド鎖のN末端のアミノ基ならびに、該ペプチド鎖に含有されている可能性のあるリシン残基側鎖のアミノ基に対する上記Nーアシル化保護が保持されている、該ペプチド鎖のトリプシン酵素特異的な消化処理を施して、該ペプチド鎖中に存在するアルギニン残基のC末側ペプチド結合の選択的な切断によるペプチド断片化を行って、

かかるゲル担体上から該ペプチド断片の遊離と、前記緩衝溶液中への溶出を行い、その後、脱塩処理を施し、前記緩衝溶液成分を除去して、該トリプシン消化 処理済みペプチド断片を回収し、乾燥する工程を設け、

次いで、前記回収された該トリプシン消化処理済みペプチド断片を含む乾燥混合物について、MALDI-TOF-MS法を利用し、該イオン化処理で生じる陽イオン種による分子量測定、ならびに陰イオン種による分子量測定を行うことを特徴とする請求項5に記載の方法。

【請求項8】 前記5ーオキサゾロン構造の形成と、引き続き、該5ーオキサゾロン環の開裂に伴いC末端アミノ酸の分解反応において使用する、前記パーフルオロアルカン酸とアルカン酸無水物の組み合わせにおいて、

該アルカン酸無水物として、炭素数2~4のアルカン酸の対称型酸無水物を用いることを特徴とする請求項6または7に記載の方法。

【請求項9】 前記炭素数2~4のアルカン酸の対称型酸無水物として、炭素数2~4の直鎖アルカン酸の対称型酸無水物を用いることを特徴とする請求項8に記載の方法。

【請求項10】 前記5ーオキサゾロン構造の形成と、引き続き、該5ーオキサゾロン環の開裂に伴いC末端アミノ酸の分解反応において使用する、前記パーフルオロアルカン酸とアルカン酸無水物の組み合わせにおいて、

該アルカン酸無水物として、無水酢酸を用いることを特徴とする請求項6または7に記載の方法。

該パーフルオロアルカン酸として、当該パーフルオロアルカン酸の示す p K a は 、 0 . 3 ~ 2 . 5 の範囲であるパーフルオロアルカン酸を用いることを特徴とする請求項項 6 または 7 に記載の方法。

【請求項12】 前記5ーオキサゾロン構造の形成と、引き続き、該5ーオキサゾロン環の開裂に伴いC末端アミノ酸の分解反応において使用する、前記パーフルオロアルカン酸とアルカン酸無水物の組み合わせにおいて、

該パーフルオロアルカン酸として、炭素数2~4のパーフルオロアルカン酸を用いることを特徴とする請求項項6または7に記載の方法。

【請求項13】 前記5ーオキサゾロン構造の形成と、引き続き、該5ーオキサゾロン環の開裂に伴いC末端アミノ酸の分解反応において使用する、前記パーフルオロアルカン酸とアルカン酸無水物の組み合わせにおいて、

アルカン酸無水物とパーフルオロアルカン酸との含有比率は、アルカン酸無水物 100容当たり、パーフルオロアルカン酸1~20容の範囲に選択することを特 徴とする請求項6または7に記載の方法。

【請求項14】 前記Nーアシル化保護を施す前処理において使用するアルカン酸無水物として、

炭素数2~4のアルカン酸の対称型酸無水物を用いることを特徴とする請求項6 または7に記載の方法。

【請求項15】 前記炭素数2~4のアルカン酸の対称型酸無水物として、 炭素数2~4の直鎖アルカン酸の対称型酸無水物を用いることを特徴とする請求 項14に記載の方法。

【請求項16】 前記N-アシル化保護を施す前処理において使用するアルカン酸無水物として、

無水酢酸を用いることを特徴とする請求項6または7に記載の方法。

【請求項17】 前記N-アシル化保護を施す前処理において使用するアルカン酸無水物と、

前記5-オキサゾロン構造の形成と、引き続き、該5-オキサゾロン環の開裂に伴いC末端アミノ酸の分解反応において使用する、前記パーフルオロアルカン酸とアルカン酸無水物の組み合わせにおけるアルカン酸無水物との、いずれにも無水酢酸を用いることを特徴とする請求項6または7に記載の方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、ペプチドのC末端アミノ酸配列を解析する方法に関し、より具体的には、ペプチド、例えば、タンパク質などのアミノ酸残基数の多いペプチドに関して、化学的方法により該ペプチドのC末端アミノ酸を逐次的に分解して、その反応産物の分子量を質量分析により決定し、逐次的に除去される一連のアミノ酸に起因する分子量減少に基づき、C末端アミノ酸配列を解明する方法に関する。特には、該ペプチドのC末端アミノ酸配列を解析する方法において、測定される質量分析スペクトルに基づき、逐次的に除去される一連のアミノ酸に起因する分子量減少を示す反応産物由来のイオン種ピークを特定し、C末端アミノ酸配列を解明する際に利用可能な、質量分析スペクトルの解析手法に関する。

[0002]

【従来の技術】

天然より採取されるペプチドやタンパク質に関して、そのアミノ酸配列の同定は、かかるペプチドやタンパク質の生物学的性質、機能を研究する際、不可欠な情報である。現在、ペプチドやタンパク質の全アミノ酸配列は、対応する遺伝子情報、すなわち、これらのペプチドをコードしているゲノム遺伝子やm-RNAより調製されたc-DNAの塩基配列に基づき、推断されるアミノ酸配列として決定されている。その際、該ペプチドをコードしているゲノム遺伝子やm-RNAより調製されたc-DNAを特定する上では、ペプチドの部分的なアミノ酸配列の知見は、依然として必要である。

[0003]

このペプチドの部分的なアミノ酸配列の知見としては、一般に、ペプチドのN 末端アミノ酸配列とC末端アミノ酸配列とが、特に有用とされている。具体的に

[0004]

ペプチドのN末端アミノ酸配列を解析する手法としては、従来から、エドマン 分解法を利用して、N末端アミノ酸を逐次的に分解しつつ、生成するアミノ酸誘 導体を同定する手法が利用されている。一方、ペプチドのC末端アミノ酸配列を 解析する手段として、化学的手法によりC末端アミノ酸を逐次的に分解し、その 反応産物として得られる短縮されたペプチドと元のペプチドとの分子量差から、 分解されたC末端アミノ酸を特定する方法が既に提案されている。例えば、化学 的手法によりC末端アミノ酸を逐次的に分解する手段として、90℃に加熱しつ つ、乾燥したペプチドにペンタフルオロプロパン酸(CF3CF2COOH)高濃 度水溶液、あるいは、ヘプタフルオロブタン酸(CF3CF2CF2COOH)高 濃度水溶液から発生した蒸気を作用させて、前記パーフルオロアルカン酸により 促進される、C末端アミノ酸の選択的な加水分解を行わせる方法が提案されてい る(Tsugita, A. et al., Eur. J. Bioche 206, 691-696 (1992))。加えて、前記パーフルオロ アルカン酸高濃度水溶液に代えて、無水ペンタフルオロプロパン酸((CF₃C $F_2CO)_2O)$ のアセトニトリル溶液、無水ヘプタフルオロブタン酸((CF_3 $CF_2CF_2CO)_2O)$ のアセトニトリル溶液を利用し、例えば、-18 Cに冷 却しつつ、この溶液から発生した蒸気を乾燥したペプチドに作用させて、前記パ ーフルオロアルカン酸無水物により促進される、C末端アミノ酸の選択的な分解 を行わせる方法が提案されている(Tsugita, A. et al., Chem. Lett. 1992, 235-238; Takamoto K. et al., Eur. J. Biochem. 228, 362

[0005]

前記の乾燥したペプチドに、蒸気として供給されるパーフルオロアルカン酸、 あるいは、パーフルオロアルカン酸無水物を作用させ、C末端アミノ酸の選択的 な分解を行う手法では、下記する反応式(I)で表記される脱水反応:

【化4】

[0007]

により、C末端アミノ酸から反応中間体として、オキサゾロン環構造が一端形成され、次いで、パーフルオロアルカン酸がこのオキサゾロン環に作用し、次に示す反応式(II)で表記される反応:

[0008]

【化5】

[0009]

が生じ、結果的に、C末端アミノ酸の選択的な分解反応が達成されると報告されている。

[0010]

上記のC末端アミノ酸の選択的な分解反応は逐次的に進み、所定の処理時間が

経過した時点で、元のペプチドに対して、1~10数アミノ酸残基がそのC末端からそれぞれ除去された一連の反応産物を含む混合物が得られる。この一連の反応産物を含む混合物に対して、質量分析法を適用して、各反応産物に由来するイオン種の質量を測定すると、C末端アミノ酸配列を反映した質量差を示す一連のピークが測定できる。具体的には、各反応産物は、元のペプチドから逐次的なC末端アミノ酸分解反応で生成される結果、例えば、元のペプチドから数アミノ酸残基が除去された反応産物までの、数種の一連の反応産物群に関して、質量分析法を利用することで、対応するイオン種の質量を一括して分析することができ、かかる数アミノ酸残基分のC末端アミノ酸配列を一括して決定できる。

[0011]

なお、例えば、核酸プローブやプライマーの作製に利用するC末端アミノ酸配列の情報は、通常、かかるアミノ酸配列をコードする塩基配列として、18塩基長~24塩基長程度、従って、6アミノ酸~8アミノ酸程度であってもよく、10数アミノ酸残基に達するC末端アミノ酸配列の解明を必要とするのは、極めて特殊な場合のみである。従って、上記のパーフルオロアルカン酸またはパーフルオロアルカン酸無水物の蒸気を気相から供給しつつ、乾燥したペプチドに作用させて、逐次的なC末端アミノ酸分解反応により、例えば、10アミノ酸残基の除去に達する一連の反応産物を同時に含有する処理試料を調製するこれらの手段は、前記の用途に適合したものである。

[0012]

【非特許文献 1】

Tsugita, A. et al., Eur. J. Bioch em. 206, 691-696 (1992)

【非特許文献2】

Tsugita, A. et al., Chem. Lett. 1 992, 235-238

【非特許文献3】

Takamoto K. et al., Eur. J. Bioch em. 228, 362-372 (1995)

【発明が解決しようとする課題】

一方、解析対象のペプチドが、例えば、タンパク質などのアミノ酸残基数の多 いペプチドである場合には、元のペプチド自体の分子量が、質量分析法の適用可 能な分子量範囲を超える、あるいは、元のペプチド自体の大きな分子量に対して 、1アミノ酸残基の式量変化が相対的に少なく、分子量差の測定精度の低下を起 こすため、下記の工夫が検討されている。具体的には、上記のC末端アミノ酸の 選択的な分解反応で得られる、元のペプチドに対して、1~10数アミノ酸残基 がそのC末端からそれぞれ除去された一連の反応産物を含む混合物に対して、特 定のアミノ酸部位において、選択的なペプチド鎖の切断が可能な、切断部位特異 性を有するプロテアーゼ、例えば、トリプシンを利用し、長いペプチド鎖の酵素 消化を施した上で、そのペプチド断片について、質量分析を行う形態を利用して いる。すなわち、かかる酵素消化を施して得られるペプチド断片の混合物中には 、元のペプチドに由来するC末側ペプチド断片と、それに対して、1~10数ア ミノ酸残基がそのC末端からそれぞれ除去された一連の反応産物に由来するC末 側ペプチド断片群が含まれており、この元のペプチド、ならびに一連の反応産物 に由来するC末側ペプチド断片群に対して、質量分析法を適用して、各反応産物 に由来するC末側ペプチド断片群イオン種の質量を測定すると、C末端アミノ酸 配列を反映した質量差を示す一連のピークを、十分な分子量分解能で測定できる

[0014]

それに対して、上述のパーフルオロアルカン酸またはパーフルオロアルカン酸無水物の蒸気を気相から供給しつつ、乾燥したペプチドに作用させる手法は、有用なC末端アミノ酸配列の解明手段ではあるものの、解析対象のペプチドが、例えば、タンパク質などのアミノ酸残基数の多いペプチドである場合に、汎用の手段として利用を進める際、以下に記載する幾つか実用上の課題を残すことが判明した。

[0015]

第一の課題としては、上述するパーフルオロアルカン酸高濃度水溶液を利用し

、例えば、90℃に加熱しつつ、乾燥したペプチドにパーフルオロアルカン酸蒸気を作用させる手法では、ペプチド中のセリン残基(一NH一CH(CH2OH)ーCO一)において、α位のアミノ基(一NHー)とβ位のヒドロキシ基(一OH)の間で、N,O一アシル転位反応も進行し、引き続き、加水分解が進行し、セリン残基のN末側でペプチドの切断が生じるという副反応が存在する。また、条件に依っては、β位にヒドロキシ基(一OH)が存在しているトレオニン残基(一NHーCH(CH(CH3)OH)一CO一)においても、同様の機構による加水分解が進行し、トレオニン残基のN末側でペプチドの切断が生じるという副反応が存在する。さらには、ペプチド中のアスパラギン酸残基(一NHーCH(CH2COOH)一CO一)において、C末のカルボキシ基からβ位のカルボキシ基へのペプチド結合の転位と、それに引き続く加水分解が進行し、アスパラギン酸残基のC末側でペプチドの切断が生じるという副反応が存在する。

[0016]

これら副次反応により、長いペプチド鎖の切断が生じると、そのN末側ペプチ ド断片に対しても、C末端アミノ酸の選択的な分解が同時に進行することになる 。これらの副次反応に由来する反応産物が共存すると、場合によっては、目的と する反応産物の質量分析に際して、その測定を阻害する要因ともなる。

[0017]

さらには、元のペプチド鎖の切断に至らなくとも、 β 位のヒドロキシ基(-OH)へN末側部分ペプチドが連結された分岐型ペプチドとなると、その部位では、アミド結合が失われており、オキサゾロン環構造の形成がなされず、C末端アミノ酸の選択的な分解反応がそれ以上進行しないものとなる。

[0018]

それに対して、上述するパーフルオロアルカン酸無水物のアセトニトリル溶液を利用し、例えば、-18℃に冷却しつつ、この溶液から発生したパーフルオロアルカン酸無水物蒸気を乾燥したペプチドに作用させる手法は、系内に溶液から蒸発する水分子を含まないので、前記の副次的反応の発生を有効に回避できる利点を有している。ただし、利用しているパーフルオロアルカン酸無水物の反応性が高く、処理温度が上昇すると、不要な副次的反応を効果的に抑制することが困

難となるため、処理温度を、例えば、−18℃のような低温に維持する必要がある。換言すれば、処理温度の調整が不十分であると、不要な副反応が進行する可能性が高く、その観点では、汎用性になお難点を残し、更なる改良の余地を有する手法ともいえる。加えて、冷却に伴って水分の結露を起こすと、かかる水分により、利用している試薬の劣化、すなわち、パーフルオロアルカン酸無水物の劣化が起こり、結果として、反応性の低下を引き起こすこともあり、実用上の問題になる懸念もある。

[0019]

第二の課題としては、解析対象のペプチドが、例えば、タンパク質などのアミ ノ酸残基数の多いペプチドである場合には、C末端アミノ酸の選択的な分解反応 を行った後、切断部位特異性を有するプロテアーゼを利用する酵素消化処理を付 加し、得られるC末側ペプチド断片の分子量測定を行う形態を採用することが検 討されているが、その際、かかる酵素消化で必然的に副生される、N末側のペプ チド断片複数も、測定される質量分析スペクトル上に、同時に観測されることに なる。すなわち、元のペプチド、ならびに一連の反応産物に由来するC末側ペプ チド断片群に起因するピークと、それ以外のN末側のペプチド断片複数に起因す るピークとを高い確度で分別した上で、目的とする、元のペプチド、ならびに一 連の反応産物に由来するC末側ペプチド断片群に起因するピークの各分子量をよ り精度よく決定可能な、測定手法の提案が待たれている。特には、測定される質 量分析スペクトル上において、酵素消化で生成するペプチド断片に由来するイオ ン種ピークを特定し、その後、N末側のペプチド断片複数に由来するイオン種ピ ーク群と、元のペプチド、ならびに一連の反応産物に由来するC末側ペプチド断 片群に由来するイオン種ピーク群とを高い確度で分別する上で、有効な質量分析 スペクトルの解析手法の提案が待たれている。

[0020]

本発明は前記の課題を解決するもので、本発明の目的は、上述する長いペプチ ド鎖のC末端アミノ酸を、オキサゾロン環構造の形成を経由する反応機構を利用 して、逐次的に分解する際、ペプチド鎖途中におけるペプチド結合の断裂などの 好ましくない副次反応を抑制でき、同時にかかる化学的な処理自体は、汎用性の

富む条件で実施することが可能な、逐次的C末端アミノ酸の分解反応手段を提供 するとともに、元のペプチド、ならびに調製される一連の反応産物を、切断部位 特異性を有するプロテアーゼを利用する酵素消化処理を行った後、これら酵素消 化ペプチド断片複数を質量分析する際、目的とする、元のペプチド、ならびに一 連の反応産物に由来するC末側ペプチド断片群に起因するピークと、その他の酵 素消化ペプチド断片複数に起因するピークとの弁別をより容易とするプロテアー ゼを利用する酵素消化処理と、前記逐次的C末端アミノ酸の分解反応手段とを組 み合わせて、長いペプチド鎖のC末端アミノ酸配列をより簡便に解析可能な方法 を提供することにある。さらには、前記C末端アミノ酸配列の解析に際し、測定 される質量分析スペクトル上において、酵素消化処理で生成するペプチド断片に 由来するイオン種ピークを特定し、その後、目的とする、元のペプチド、ならび に一連の反応産物に由来するC末側ペプチド断片群に起因するピークと、その他 の酵素消化ペプチド断片複数に起因するピークとの弁別を図る上で、かかる弁別 の確度を高めることを可能とする質量分析スペクトルの解析手法、ならびに、該 解析手法に基づき、一連の解析処理操作に利用可能な解析支援ソウトウエアを提 供することにある。

[0021]

【課題を解決するための手段】

水分子は存在しないものの、パーフルオロアルカン酸無水物自体の高い反応性に起因して、処理温度の上昇とともに、不要な副次的反応の頻度が急速に増すことが確認されている。

[0022]

以上の知見に基づき、本発明者らは、系内への水分子の供給源となる水溶媒を 使用することなく、また、パーフルオロアルカン酸無水物の如く、高い反応性を 示す試薬を使用することなく、C末端アミノ酸から反応中間体として、オキサゾ ロン環構造を形成し、引き続き、このオキサゾロン環の開裂に伴う、C末端アミ ノ酸の選択的な分解反応を行うことが可能な反応条件を探索したところ、少量の パーフルオロアルカン酸をアルカン酸無水物に添加した混合物を利用して、例え ば、気相から、この混合物から供給される、蒸気状のパーフルオロアルカン酸と アルカン酸無水物とを乾燥したペプチドに作用させると、例えば、60℃以下の 処理温度においても、オキサゾロン環構造の形成、引き続き、このオキサゾロン 環の開裂に伴う、C末端アミノ酸の選択的な分解反応が進行することを見出した 。加えて、アルカン酸無水物は、パーフルオロアルカン酸無水物と比較し、その 反応性は大幅に穏やかであり、パーフルオロアルカン酸共存下においても、ペプ チドの途中切断を引き起こすには至らないことをも見出した。具体的には、ペプ チド中のセリン残基(-NH-CH (CH₂OH) -CO-) やトレオニン残基 (-NH-CH (CH₃) OH) -CO-) に存在するヒドロキシ基に対 して、パーフルオロアルカン酸の共存下、アルカン酸無水物が作用して、O-ア シル化反応が優先的に進行し、N,O-アシル転位反応を競争的に阻害する。同 時に、N末端のアミノ基へのN-アシル化反応が進行し、また、リシン残基 (-NH-CH ($CH_2CH_2CH_2CH_2NH_2$) -CO-) の ϵ 位のアミノ基へのN -アシル化反応、チロシン残基(-NH-CH($CH_2-C_6H_4-OH$)-CO 一)のフェノール性ヒドロキシ基への〇ーアシル化反応なども進行することも判 明した。結果的に、ペプチドの途中切断を誘起する、N,〇一アシル転位反応等 の転位反応に関与する側鎖上のヒドロキシ基、アミノ基などの反応性官能基は、 保護・修飾を受けるため、不要な副次反応は回避しつつ、目的とするC末端アミ ノ酸から反応中間体として、オキサゾロン環構造を形成し、引き続き、このオキ

サゾロン環の開裂に伴う、C末端アミノ酸の分解反応のみが、例えば、60℃以下の処理温度において選択的に進行することを見出した。

[0023]

加えて、本発明者らは、上記のパーフルオロアルカン酸とアルカン酸無水物と を利用する、オキサゾロン環構造の形成、引き続き、このオキサゾロン環の開裂 に伴う、C末端アミノ酸の選択的な分解反応は、系内に水分子が存在しない状態 とし、双極性非プロトン性溶媒中にパーフルオロアルカン酸とアルカン酸無水物 とを溶解させて、対象となるペプチドに液相で作用させた場合も、例えば、40 ℃程度の処理温度においても、オキサゾロン環構造の形成、引き続き、このオキ サゾロン環の開裂に伴う、C末端アミノ酸の選択的な分解反応が進行することを 見出した。加えて、ヒドロキシ基に対して、パーフルオロアルカン酸の共存下、 アルカン酸無水物が作用して、O-アシル化反応が優先的に進行し、N, O-ア シル転位反応を競争的に阻害する効果、ならびに、アミノ基へのN-アシル化反 応、フェノール性ヒドロキシ基へのO-アシル化反応なども進行することも判明 した。結果的に、ペプチドの途中切断を誘起する、N, O-アシル転位反応等の 転位反応に関与する側鎖上のヒドロキシ基、アミノ基などの反応性官能基は、保 護・修飾を受けるため、不要な副次反応は回避しつつ、目的とするC末端アミノ 酸から反応中間体として、オキサゾロン環構造を形成し、引き続き、このオキサ ゾロン環の開裂に伴う、C末端アミノ酸の分解反応のみが、例えば、40℃以下 の処理温度においても、選択的に進行することを見出した。例えば、ゲル電気泳 動後、かかるゲル担体上に担持されているペプチドであっても、予め、ゲル担体 中に含浸される水分を十分に除去する脱水処理を施した後、双極性非プロトン性 溶媒中にパーフルオロアルカン酸とアルカン酸無水物とを溶解させてなる溶液を 、ゲル担体内に浸入させ、ゲルの膨潤を図ると、ゲル担体中においても、同等の 液相反応を達成できることを見出した。

[0024]

加えて、本発明者らは、ヒドロキシ基に対するO-アシル化、アミノ基へのN-アシル化による、ペプチドの途中切断を誘起する、N,O-アシル転位反応等の転位反応に関与する側鎖上のヒドロキシ基、アミノ基などの反応性官能基の保

護・修飾を予め施した後、上記のパーフルオロアルカン酸とアルカン酸無水物とを利用する、オキサゾロン環構造の形成、引き続き、このオキサゾロン環の開裂に伴う、C末端アミノ酸の選択的な分解反応を実施すると、不要な副次反応の回避には、より有効であることを確認した。具体的には、ペプチドの乾燥試料に対して、乾燥雰囲気下、10℃~60℃の範囲に選択される温度において、アルカン酸無水物にアルカン酸を少量添加してなる混合物より供給される、蒸気状のアルカン酸無水物とアルカン酸とを作用させると、該ペプチドN末端のアミノ基ならびに、該ペプチドに含有されている可能性のあるリシン残基側鎖のアミノ基に対して、前記アルカン酸無水物由来のアシル基によるNーアシル化、ならびに、側鎖上のヒドロキシ基に対するOーアシル化を予め施すことが可能であることを見出した。また、ゲル担体上に担持されているペプチドであっても、予め、ゲル担体中に含浸される水分を十分に除去する脱水処理を施した後、双極性非プロトン性溶媒中にアルカン酸無水物を溶解させてなる溶液を、ゲル担体内に浸入させ、ゲルの膨潤を図ると、ゲル担体中においても、同等の液相でのNーアシル化、Oーアシル化反応を行わせることが可能であることを見出した。

[0025]

また、本発明者らは、上述のC末端アミノ酸の分解反応を終えた時点では、オキサゾロン環構造の形成、引き続く、このオキサゾロン環の開裂に伴う反応性中間体も残留しており、これら反応性中間体に加水処理を施し、反応産物のC末端は、カルボキシ基の表出する形態に復することが、その後の質量分析を行う上で必要であり、例えば、塩基性含窒素芳香環化合物または第三アミン化合物を溶解する水溶液を利用し、反応産物をかかる水溶液に接触させることで、容易になされることが確認された。また、かかる有機塩基の触媒作用を利用する加水処理では、オキサゾロン環構造中の環状エステルへの加水反応に加えて、Oーアシル化保護されているヒドロキシ基におけるエステルへの加水反応、すなわち、ヒドロキシ基における脱保護も進行すること、一方、より安定なNーアシル化保護における脱保護の達成には至らないことも見出された。すなわち、かかる加水処理を施すと、元のペプチド鎖に対して、そのN末端のアミノ基、ならびに、ペプチド鎖に含有される可能性のあるリシン残基側鎖のアミノ基には、Nーアシル化保護

がなされたものとなる。また、C末端アミノ酸の分解反応で生成した反応産物のペプチド鎖も、同じく、そのN末端のアミノ基、ならびに、該ペプチド鎖に含有される可能性のあるリシン残基側鎖のアミノ基には、Nーアシル化保護がなされたものとなる。

[0026]

以上の知見に加えて、本発明者らは、前述するそのN末端のアミノ基、ならび に、ペプチド鎖に含有される可能性のあるリシン残基側鎖のアミノ基には、N-アシル化保護がなされた、長いペプチド鎖に対して、トリプシン消化処理を施す と、リシンまたアルギニン残基のC末端側ペプチド結合を開裂するトリプシンの 切断部位特異性のうち、リシン残基側鎖のアミノ基には、Nーアシル化保護がな されており、そのNーアシル化リシン残基では、ペプチド鎖の消化は起こらず、 得られるペプチド断片は、アルギニン残基における消化に因るものとなることを 確認した。より具体的には、かかるトリプシン消化処理を施すと、元のペプチド 鎖と、C末端アミノ酸の分解反応で生成した一連の反応産物のペプチド鎖との混 合物から、共通するペプチド断片として、C末端にアルギニン残基が一つ含まれ る部分アミノ酸配列を有するペプチド断片、ならびに、C末端側の部分アミノ酸 配列に由来し、アルギニン残基を含んでいない、元のペプチド鎖と一連の反応産 物のペプチド鎖に由来する一群のC末端側ペプチド断片が得られることになる。 その際、ペプチド鎖中に含有されるアルギニン残基の平均的な存在頻度を考慮す ると、例えば、200アミノ酸程度の長いペプチド鎖中には、少なくとも、4個 以上、多くとも、10個程度のアルギニン残基が存在するのみであり、前記のC 末端にアルギニン残基が一つ含まれる、共通するペプチド断片は、4~10個程 度、また、元のペプチド鎖に由来するC末端側ペプチド断片のアミノ酸数は、少 なくとも15アミノ酸以上、50アミノ酸以下の範囲となる確度が相当に高いこ とに、本発明者らは想到した。

[0027]

その上、本発明者らは、種々のペプチド断片について、質量分析法、例えば、MALDI-TOF-MS (Matrix Assisted Laser Desorption Ionization Time-of-Flight

Mass Spectrometry;マトリクス支援レーザー脱離イオン化飛 行時間型質量分析)法を利用し、該イオン化処理で生じる陽イオン種による分子 量測定、ならびに陰イオン種による分子量測定を行った際、C末端にカチオニッ クなアミノ酸残基、特には、アルギニン残基が存在する場合、陽イオン種による 分子量測定におけるピーク強度は、陰イオン種による分子量測定における対応ピ ーク強度よりも、有意にその相対強度は大きく、一方、C末端にカチオニックな アミノ酸残基が存在していない場合、陰イオン種による分子量測定におけるピー ク強度は、陽イオン種による分子量測定における対応ピーク強度よりも、有意に その相対強度は大きくなるという、一般的傾向が明確に存在することを、実験的 に再検証した。さらには、この実験的に再検証を行った一般的傾向を利用すると 、MALDI-TOF-MS法を利用し、該イオン化処理で生じる陽イオン種に よる分子量測定、ならびに陰イオン種による分子量測定を行った際、前記のC末 端にアルギニン残基が一つ含まれる、共通するペプチド断片と、C末端側の部分 アミノ酸配列に由来し、アルギニン残基を含んでいない、元のペプチド鎖と一連 の反応産物のペプチド鎖に由来する一群のC末端側ペプチド断片とを、合理的に 弁別することが可能であることを確認した。すなわち、トリプシン消化で得られ るC末端にアルギニン残基が一つ含まれる、共通するペプチド断片は、単一なピ ークとして、陽イオン種による分子量測定において、大きな相対強度で観測され 、同時に、陰イオン種による分子量測定において、かかる共通するペプチド断片 に対応するピークの強度は相対的に弱いものの、双方の測定結果を対比すること で、容易に特定できるため、逆に、陰イオン種による分子量測定において、大き な相対強度で観測されるピークのうち、C末端側の部分アミノ酸配列に由来し、 アルギニン残基を含んでいない、元のペプチド鎖と一連の反応産物のペプチド鎖 に由来する一群のC末端側ペプチド断片は、一連のピークを示すものとして、容 易に特定することが可能となる。

[0028]

本発明者らは、これらの一連の知見に基づき、

(1)対象とするペプチド鎖に対して、N-アシル化、O-アシル化による保護を施し、

- (2)対象とするペプチド鎖の存在状態に応じて、適正な選択された穏和な反応条件によって、C末端アミノ酸の選択的な分解反応を行い、
- (3) 前記分解反応後、穏和な条件で、オキサゾロン環構造中の環状エステルへの加水反応、ならびに、O-アシル化による保護の脱保護反応を行い、
- (4) N-アシル化保護は維持されている、元のペプチド鎖ならびに、C末端アミノ酸の選択的な分解反応で得られる一連の反応産物のペプチド鎖を含む混合物に対して、トリプシン消化処理を施して、C末端にアルギニン残基が一つ含まれる、それらに共通するペプチド断片、ならびに、C末端側の部分アミノ酸配列に由来し、アルギニン残基を含んでいない、元のペプチド鎖と一連の反応産物のペプチド鎖に由来する一群のC末端側ペプチド断片を調製し、
- (5) これらペプチド断片の混合物を、質量分析法、特には、MALDI-TOF-MS法を利用し、該イオン化処理で生じる陽イオン種による分子量測定、ならびに陰イオン種による分子量測定を行った上で、双方の測定結果を対比することによって、C末端にアルギニン残基が一つ含まれる、該共通するペプチド断片と、アルギニン残基を含んでいない、元のペプチド鎖と一連の反応産物のペプチド鎖に由来する一群のC末端側ペプチド断片との弁別を行い、
- (6)上記の手法で弁別される、元のペプチド鎖と一連の反応産物のペプチド鎖に由来する一群のC末端側ペプチド断片の分子量差に基づき、長いペプチド鎖のC末端アミノ酸配列を特定する、

かかる一連の工程を採用することで、種々のタンパク質などを構成する、長いペプチド鎖についても、そのC末端アミノ酸配列をより簡便に解析することが可能となることを見出し、また、その有用性を検証し、本発明を完成するに至った

[0029]

すなわち、本発明は、上記する技術的な思想上の共通性を有するものの、対象とするペプチド鎖の存在状態に由来して、具体的な形態に相違が生じている複数の形態を有しており、例えば、解析対象とするペプチドが、予め単離された乾燥試料である場合に適用する第一の形態、ならびに、解析対象とするペプチドが、予めゲル電気泳動法による分離がなされ、該ゲル担体上に担持された状態の試料

である場合に適用する第二の形態を有している。

[0030]

本発明の第一の形態にかかるペプチドのC末端アミノ酸配列解析方法は、

解析対象とするペプチドのC末端アミノ酸配列を解析する方法であって、

対象とするペプチドより、化学的手段によりC末端アミノ酸を逐次的に分解して得られる一連の反応生成物を含む混合物を調製する工程と、

前記一連の反応生成物と、元となるペプチドとの分子量差を、質量分析法により 分析し、かかるC末端アミノ酸の逐次的分解に伴う分子量減少を測定する工程と

測定された一連の分子量減少量に基づき、逐次的分解された一連のアミノ酸を特定し、C末端より配列させて、C末端のアミノ酸配列情報を得る工程とを具え

前記C末端アミノ酸を逐次的に分解する工程は、

対象とする前記ペプチドの乾燥試料に対して、乾燥雰囲気下、10℃~60℃ の範囲に選択される温度において、

アルカン酸無水物にアルカン酸を少量添加してなる混合物より供給される、蒸気状のアルカン酸無水物とアルカン酸とを作用させ、

該ペプチドN末端のアミノ基ならびに、該ペプチドに含有されている可能性のあるリシン残基側鎖のアミノ基に対して、前記アルカン酸無水物由来のアシル基によるN-アシル化を施す、N-アシル化保護を施す前処理工程と、

前記N-アシル化保護済みの、対象とするペプチドの乾燥試料に対して、乾燥雰囲気下、15℃~60℃の範囲に選択される温度において、

アルカン酸無水物にパーフルオロアルカン酸を少量添加してなる混合物より供給される、蒸気状のアルカン酸無水物とパーフルオロアルカン酸とを作用させ、

ペプチドのC末端において、下記する一般式(III):

[0031]

【化6】

[0032]

(式中、

R1は、ペプチドのC末端アミノ酸の側鎖を表し、

R2は、前記C末端アミノ酸の直前に位置するアミノ酸残基の側鎖を表す)で表記される5-オキサゾロン構造を経て、該5-オキサゾロン環の開裂に伴いC末端アミノ酸の分解を行う工程と、

前記C末端アミノ酸を逐次的に分解する工程で得られる一連の反応生成物を含む混合物に対して、

残余する前記アルカン酸無水物とパーフルオロアルカン酸とを乾燥状態において除去する後処理を施し、

次いで、塩基性含窒素芳香環化合物または第三アミン化合物を溶解する水溶液 を利用し、蒸気状の塩基性含窒素芳香環化合物または第三アミン化合物と水分子 を供給して、

前記塩基性の窒素含有有機化合物の共存下、前記反応生成物ペプチドに水分子を作用させ、

前記の加水処理を施した後、かかる一連の反応生成物を含む混合物に残余する 、前記塩基性の窒素含有有機化合物と水分子を除去、乾燥する再乾燥後処理を行 うことからなる加水処理の工程とを、少なくとも含んでなり、

前記C末端アミノ酸の逐次的分解に伴う分子量減少を測定する工程では、 再乾燥後処理後、前記加水処理済みの一連の反応生成物を含む混合物に対して

緩衝溶液中において、トリプシンを作用させ、該ペプチド鎖のN末端のアミノ基ならびに、該ペプチド鎖に含有されている可能性のあるリシン残基側鎖のアミノ基に対する上記Nーアシル化保護が保持されている、該ペプチド鎖のトリプシ

ン酵素特異的な消化処理を施して、該ペプチド鎖中に存在するアルギニン残基の C末側ペプチド結合の選択的な切断によるペプチド断片化を行い、

脱塩処理を施し、前記緩衝溶液成分を除去して、該トリプシン消化処理済みペ プチド断片を回収し、乾燥する工程を設け、

次いで、前記回収された該トリプシン消化処理済みペプチド断片を含む乾燥混合物について、MALDI-TOF-MS法を利用し、該イオン化処理で生じる陽イオン種による分子量測定、ならびに陰イオン種による分子量測定を行い、

前記陽イオン種による分子量測定、ならびに陰イオン種による分子量測定において測定される、対応するイオン種において、

前記トリプシン消化処理で生成するC末端にアルギニン残基を有するペプチド 断片のピークは、

陽イオン種による分子量測定における強度は、陰イオン種による分子量測定における強度と比較して、相対的に大きな強度を与えるピークと判定し、

前記トリプシン消化処理で生成する、元となるペプチドに由来するC末端のペプチド断片ならびに、C末端アミノ酸を逐次的に分解して得られる一連の反応生成物に由来するC末端のペプチド断片のピークは、

陰イオン種による分子量測定における強度は、陽イオン種による分子量測定における強度と比較して、相対的に大きな強度を与えるピークと判定し、

該陰イオン種による分子量測定において、相対的に大きな強度を与える一連のピークに基づき、C末端アミノ酸の逐次的分解に伴う分子量減少を測定する手法を採用することを特徴とするペプチドのC末端アミノ酸配列解析方法である。

[0033]

この本発明の第一の形態にかかる解析方法では、

前記アルカン酸無水物にパーフルオロアルカン酸を少量添加してなる混合物に含まれるアルカン酸無水物として、炭素数2~4のアルカン酸の対称型酸無水物を用いることが好ましい。その際、前記炭素数2~4のアルカン酸の対称型酸無水物として、炭素数2~4の直鎖アルカン酸の対称型酸無水物を用いることがより好ましい。例えば、前記アルカン酸無水物にパーフルオロアルカン酸を少量添加してなる混合物に含まれるアルカン酸無水物として、無水酢酸を用いることが

より好ましい。

[0034]

一方、前記アルカン酸無水物にパーフルオロアルカン酸を少量添加してなる混合物に含まれるパーフルオロアルカン酸として、当該パーフルオロアルカン酸の示すp K a は、0.3~2.5の範囲であるパーフルオロアルカン酸を用いることが好ましい。その際、前記アルカン酸無水物にパーフルオロアルカン酸を少量添加してなる混合物に含まれるパーフルオロアルカン酸として、炭素数2~4のパーフルオロアルカン酸を用いることがより好ましい。例えば、前記炭素数2~4のパーフルオロアルカン酸として、炭素数2~4の直鎖パーフルオロアルカン酸を用いることがより好ましい。

[0035]

さらには、前記アルカン酸無水物にパーフルオロアルカン酸を少量添加してなる混合物中における、パーフルオロアルカン酸の含有比率は、アルカン酸無水物とパーフルオロアルカン酸との合計体積に対して、1~20体積%の範囲に選択することが望ましい。また、前記アルカン酸無水物にパーフルオロアルカン酸を少量添加してなる混合物を利用する処理に際して、前記乾燥雰囲気は、水分に加えて、酸素も除去された状態であることが一層好ましい。例えば、前記乾燥雰囲気は、気密容器内において、その内部の大気を真空排気することで、達成されていることが好適である。なお、前記アルカン酸無水物にパーフルオロアルカン酸を少量添加してなる混合物を利用する処理に際して、その温度は、15℃~50℃の範囲に選択される温度とすることがより望ましい。

[0036]

一方、本発明の第二の形態にかかるペプチドのC末端アミノ酸配列解析方法は

解析対象とするペプチドのC末端アミノ酸配列を解析する方法であって、 対象とするペプチドより、化学的手段によりC末端アミノ酸を逐次的に分解し て得られる一連の反応生成物を含む混合物を調製する工程と、

前記一連の反応生成物と、元となるペプチドとの分子量差を、質量分析法により分析し、かかるC末端アミノ酸の逐次的分解に伴う分子量減少を測定する工程

と、

測定された一連の分子量減少量に基づき、逐次的分解された一連のアミノ酸を特定し、C末端より配列させて、C末端のアミノ酸配列情報を得る工程とを具え

前記C末端アミノ酸を逐次的に分解する工程は、

予めゲル電気泳動法による分離がなされ、該ゲル担体上に担持された状態の対象とするペプチド試料に対して、

前記ゲル担体中に含浸される水溶媒を、該ゲル状物質の溶解を引き起こさず、かつ、水に対して親和性を有する極性非プロトン性溶媒を用いて、希釈除去することにより、該ゲル担体の脱水処理を行う工程と、

前記脱水処理を施した後、該ゲル担体上に担持された状態の対象とするペプチ ド試料に対して、30℃~80℃の範囲に選択される温度において、

該ゲル状物質内に浸潤でき、膨潤状態に維持可能である、双極性非プロトン性溶媒中に、アルカン酸無水物を溶解してなる溶液を用いて、該アルカン酸無水物溶液中に該ゲル担体を浸漬することにより、担持された状態の対象とするペプチド試料にアルカン酸無水物を作用させ、対象とするペプチドのN末端のアミノ基ならびに、該ペプチド中に含有される可能性のあるリシン残基側鎖上のアミノ基に、予め、前記アルカン酸無水物を構成するアルカン酸に由来するアシル基によるNーアシル化保護を施し、

次いで、該ゲル状物質の溶解を引き起こさず、かつ、前記アルカン酸無水物、ならびに双極性非プロトン性溶媒に対して親和性を有する極性非プロトン性溶媒を用いて、希釈除去することにより、N-アシル化反応の停止と反応試薬の除去を行う前処理工程と、

前記N-アシル化保護の前処理を施した後、該ゲル担体上に担持された状態の対象とするペプチド試料に対して、30℃~80℃の範囲に選択される温度において、

該ゲル状物質内に浸潤でき、膨潤状態に維持可能である、双極性非プロトン性溶媒中に、パーフルオロアルカン酸をアルカン酸無水物に対して少量となる比率で溶解してなる混合溶液を用いて、該混合溶液中に該ゲル担体を浸漬することによ

ペプチドのC末端において、下記する一般式(III):

[0037]

【化7】

$$N$$
 $R1$ $R2$ O O (III)

[0038]

(式中、

R1は、ペプチドのC末端アミノ酸の側鎖を表し、

R2は、前記C末端アミノ酸の直前に位置するアミノ酸残基の側鎖を表す)で表記される5-オキサゾロン構造を経て、該5-オキサゾロン環の開裂に伴いC末端アミノ酸の逐次的分解を行い、

前記C末端アミノ酸の逐次的分解反応に利用した混合溶液を、該ゲル状物質の溶解を引き起こさず、かつ、前記パーフルオロアルカン酸とアルカン酸無水物、ならびに双極性非プロトン性溶媒に対して親和性を有する極性非プロトン性溶媒を用いて、希釈除去することにより、分解反応の停止と反応試薬の除去を行う工程と、

さらに、前記C末端アミノ酸を逐次的に分解する反応で得られる一連の反応生成物を含む混合物に対して、該ゲル担体上に担持された状態のまま、

塩基性含窒素芳香環化合物または第三アミン化合物を溶解する水溶液を利用し、 該水溶液中にゲル担体を浸漬することにより、前記塩基性の窒素含有有機化合物 の共存下、前記反応生成物ペプチドに水分子を作用させ、加水処理を施し、

次いで、前記ゲル担体中に含浸される水溶液を、該ゲル状物質の溶解を引き起こさず、かつ、水に対して親和性を有する極性非プロトン性溶媒を用いて、希釈除去することにより、該ゲル担体の再脱水処理を施すことからなる、付加的な加水処理と再脱水処理の工程とを有し、

前記C末端アミノ酸の逐次的分解に伴う分子量減少を測定する工程では、

再脱水処理後、前記加水処理済みの一連の反応生成物を含む混合物に対して、

該ゲル担体上に担持された状態で、緩衝溶液中に溶解するトリプシンを作用させ、該ペプチド鎖のN末端のアミノ基ならびに、該ペプチド鎖に含有されている可能性のあるリシン残基側鎖のアミノ基に対する上記Nーアシル化保護が保持されている、該ペプチド鎖のトリプシン酵素特異的な消化処理を施して、該ペプチド鎖中に存在するアルギニン残基のC末側ペプチド結合の選択的な切断によるペプチド断片化を行って、

かかるゲル担体上から該ペプチド断片の遊離と、前記緩衝溶液中への溶出を行い、その後、脱塩処理を施し、前記緩衝溶液成分を除去して、該トリプシン消化 処理済みペプチド断片を回収し、乾燥する工程を設け、

次いで、前記回収された該トリプシン消化処理済みペプチド断片を含む乾燥混合物について、MALDI-TOF-MS法を利用し、該イオン化処理で生じる陽イオン種による分子量測定、ならびに陰イオン種による分子量測定を行い、

前記陽イオン種による分子量測定、ならびに陰イオン種による分子量測定において測定される、対応するイオン種において、

前記トリプシン消化処理で生成するC末端にアルギニン残基を有するペプチド 断片のピークは、

陽イオン種による分子量測定における強度は、陰イオン種による分子量測定における強度と比較して、相対的に大きな強度を与えるピークと判定し、

前記トリプシン消化処理で生成する、元となるペプチドに由来するC末端のペプチド断片ならびに、C末端アミノ酸を逐次的に分解して得られる一連の反応生成物に由来するC末端のペプチド断片のピークは、

陰イオン種による分子量測定における強度は、陽イオン種による分子量測定にお ける強度と比較して、相対的に大きな強度を与えるピークと判定し、

該陰イオン種による分子量測定において、相対的に大きな強度を与える一連のピークに基づき、C末端アミノ酸の逐次的分解に伴う分子量減少を測定する手法を採用することを特徴とするペプチドのC末端アミノ酸配列解析方法である。

[0039]

この本発明の第二の形態にかかる解析方法では、

前記パーフルオロアルカン酸をアルカン酸無水物に対して少量となる比率で溶解してなる混合溶液に含まれるアルカン酸無水物として、炭素数2~4のアルカン酸の対称型酸無水物を用いることが好ましい。その際、前記炭素数2~4のアルカン酸の対称型酸無水物として、炭素数2~4の直鎖アルカン酸の対称型酸無水物を用いることがより好ましい。例えば、前記パーフルオロアルカン酸をアルカン酸無水物に対して少量となる比率で溶解してなる混合溶液に含まれるアルカン酸無水物として、無水酢酸を用いることがより好ましい。

[0040]

一方、前記パーフルオロアルカン酸をアルカン酸無水物に対して少量となる比率で溶解してなる混合溶液に含まれるパーフルオロアルカン酸として、当該パーフルオロアルカン酸の示す p K a は、0. $3\sim2$. 5 の範囲であるパーフルオロアルカン酸を用いることが好ましい。また、前記パーフルオロアルカン酸をアルカン酸無水物に対して少量となる比率で溶解してなる混合溶液に含まれるパーフルオロアルカン酸として、炭素数 $2\sim4$ のパーフルオロアルカン酸を用いることが好ましい。その際、前記炭素数 $2\sim4$ のパーフルオロアルカン酸として、炭素数 $2\sim4$ の直鎖パーフルオロアルカン酸を用いることがより好ましい。

[004.1]

なお、前記パーフルオロアルカン酸をアルカン酸無水物に対して少量となる比率で溶解してなる混合溶液中における、アルカン酸無水物とパーフルオロアルカン酸との含有比率は、アルカン酸無水物100容当たり、パーフルオロアルカン酸1~20容の範囲に選択することがより好ましい。

[0042]

加えて、本発明かかるペプチドのC末端アミノ酸配列解析方法、第一の形態と 第二の形態のいずれにおいても共通する、上述する(5)の過程:ペプチド断片 の混合物について、MALDI-TOF-MS法によって、該イオン化処理で生 じる陽イオン種による分子量測定、ならびに陰イオン種による分子量測定を行っ た上で、双方の測定結果を対比することによって、C末端にアルギニン残基が一 つ含まれる、該共通するペプチド断片と、アルギニン残基を含んでいない、元の ペプチド鎖と一連の反応産物のペプチド鎖に由来する一群のC末端側ペプチド断片との弁別を行う過程、ならびに、それに続く(6)の過程:弁別された、元のペプチド鎖と一連の反応産物のペプチド鎖に由来する一群のC末端側ペプチド断片の分子量差に基づき、長いペプチド鎖のC末端アミノ酸配列を特定する過程、において、測定されたMALDI-TOF-MS法による陽イオン種による分子量測定、ならびに陰イオン種による分子量測定スペクトルの解析処理は、共通した手法を選択できることを、本発明者らは見出した。

[0043]

より具体的には、測定されるペプチド断片の混合物中には、トリプシン消化処理で生成するペプチド断片に加えて、トリプシンの自己消化に起因するトリプシンに由来する自己消化ペプチド断片も含まれており、このトリプシンのペプチド断片に由来するイオン種ピークを除去した後、残るイオン種ピーク中、少なくとも、C末端にアルギニン残基が一つ含まれる、該共通するペプチド断片と、アルギニン残基を含んでいない、元のペプチド鎖のC末端側ペプチド断片とは、明確なピークとして識別可能であり、

さらには、これら明確に識別可能なイオン種ピークに関して、C末端アミノ酸の 逐次的分解に伴う、一連の反応産物のペプチド鎖に由来するイオン種ピークの有 無を判定することで、C末端にアルギニン残基が一つ含まれる、該共通するペプ チド断片と、アルギニン残基を含んでいない、元のペプチド鎖と一連の反応産物 のペプチド鎖に由来する一群のC末端側ペプチド断片との弁別を、高い合理性と 信頼性で実施できることを見出した。

[0044]

その際、対象とするペプチド鎖は、上述する(1)のNーアシル化、Oーアシル化による保護過程、(2)のC末端アミノ酸の選択的な分解反応過程、(3)のオキサゾロン環構造中の環状エステルへの加水処理、ならびに、Oーアシル化による保護の脱保護過程を経るため、例えば、余分にアシル基の置換がなされたもの、不要な脱水的反応が生じているものなど、同じペプチド鎖は保持するものの、付随的な修飾反応を受けた副次的なペプチド断片に由来するイオン種ピークが、本来のペプチド断片に由来するイオン種ピークに随伴することが多く、

[0045]

すなわち、本発明にかかる、質量分析法、特には、MALDI-TOF-MS 法による陽イオン種による分子量測定、ならびに陰イオン種による分子量測定スペクトルの解析方法は、

上述する本発明の第一の形態、または第二の形態にかかるペプチドのC末端アミノ酸配列解析方法において、C末端アミノ酸の逐次的分解に伴う分子量減少を測定する際に利用可能な質量分析法、特には、MALDI-TOF-MS法による前記陽イオン種による分子量測定、ならびに陰イオン種による分子量測定スペクトルの解析方法であって、

該スペクトルの解析作業は、解析範囲をm/z値が4000以下に選択して、 (工程1) ペプチド断片化に利用する、トリプシン消化処理に付随して、ペプチド断片を含む乾燥混合物中に混入する既知の分子量を有するトリプシンの自己 消化に由来するペプチド断片に関して、

陽イオン種による分子量測定結果中の、m/z値が4000以下500以上の 範囲において、トリプシンの自己消化に由来するペプチド断片による陽イオン種 ピークを特定し、

次いで、陰イオン種による分子量測定結果中の、m/z値が4000以下500以上の範囲において、トリプシンの自己消化に起因するペプチド断片による対応 陰イオン種ピークを特定する、トリプシン由来の内部標準ピークの特定工程、

(工程2) 陽イオン種による分子量測定結果中、前記特定されるトリプシン由来の陽イオン種ピークを除外し、m/z値が4000以下500以上の範囲において、最大のピーク強度を有する最大陽イオン種ピークを特定し、該最大陽イオン種ピークのピーク強度を基準として、その1/40以上のピーク強度を有する陽イオン種ピークを選別し、第一の陽イオン種ピーク群を形成し、

次いで、陰イオン種による分子量測定結果中、前記特定されるトリプシン由来の

(工程3) 陰イオン種による分子量測定結果中において、前記第一の陽イオン種ピーク群の各ピークに対応する陰イオン種に相当するピークを特定し、第二の陰イオン種ピーク群を形成し、

次いで、陽イオン種による分子量測定結果中において、前記第一の陰イオン種ピーク群の各ピークに対応する陽イオン種に相当するピークを特定し、第二の陽イオン種ピーク群を形成する、主要なイオン種ピークに対する対イオン種ピークの特定工程、

(工程4) 前記第一の陰イオン種ピーク群と第二の陰イオン種ピーク群との積集合を、第三の陰イオン種ピーク群とし、同時に、第一の陰イオン種ピーク群と第二の陰イオン種ピーク群との和集合を、第四の陰イオン種ピーク群とし、次いで、前記第一の陽イオン種ピーク群と第二の陽イオン種ピーク群との積集合

を、第三の陽イオン種ピーク群とし、同時に、第一の陽イオン種ピーク群と第二 の陽イオン種ピーク群との和集合を、第四の陽イオン種ピーク群とし、

前記第三の陰イオン種ピーク群の各ピークに対応する各陽イオン種ピークに関して、前記最大陽イオン種ピークのピーク強度を基準とする、相対ピーク強度を算定し、同時に、前記第三の陰イオン種ピーク群の各ピーク関して、前記最大陰イオン種ピークのピーク強度を基準とする、相対ピーク強度を算定し、相互に相対ピーク強度を比較した上で、

前記第三の陰イオン種ピーク群の各ピークに対して、対応する各陽イオン種ピークの相対ピーク強度が3/2以上となる陽イオン種ピークを特定し、第五の陽イオン種ピーク群を形成し、一方、

対応する各陽イオン種ピークに対して、前記第三の陰イオン種ピーク群各ピーク の相対ピーク強度が3/2以上となる陰イオン種ピークを特定し、第五の陰イオ ン種ピーク群を形成する、有意な対イオン種を有する主要なイオン種ピークの特 定工程、

(工程5) 前記第四の陽イオン種ピーク群の各陽イオン種ピークのm/z値に基づき、隣接ピーク間のm/z値差を算定し、

同時に、前記第四の陰イオン種ピーク群の各陰イオン種ピークのm/z値に基づき、隣接ピーク間のm/z値差を算定し、

更に、第五の陽イオン種ピーク群の各ピークに関して、

(5a-1) 該ピークm/z値に対して、水分子の欠失に相当する分子量18小さいm/z値を有する陽イオン種ピークが、該第五の陽イオン種ピーク群中に存在するか、

(5a-2) 該ピークm/z値に対して、前記N-アシル化保護に利用されるアシル基の式量分の余剰に相当する分子量大きなm/z値を有する陽イオン種ピークが、該第五の陽イオン種ピーク群中に存在するか、

(5a-3) 該ピークm/z値に対して、前記N-アシル化保護に利用されるアシル基の式量分の余剰ならびに水分子の欠失に相当する分子量18の減少の組み合わせに相当する分子量の大きなm/z値を有する陽イオン種ピークが、該第五の陽イオン種ピーク群中に存在するか、

前記 $(5a-1) \sim (5a-3)$ のいずれかの要件を満足する陽イオン種ピークを特定し、第六の陽イオン種ピーク群を形成し、

一方、第五の陰イオン種ピーク群の各ピークに関して、

(5b-1) 該ピークm/z値に対して、水分子の欠失に相当する分子量18小さいm/z値を有する陰イオン種ピークが、該第五の陰イオン種ピーク群中に存在するか、

(5b-2) 該ピークm/z値に対して、前記N-アシル化保護に利用されるアシル基の式量分の余剰に相当する分子量大きなm/z値を有する陰イオン種ピークが、該第五の陰イオン種ピーク群中に存在するか、

(5b-3) 該ピークm/z値に対して、前記N-アシル化保護に利用されるアシル基の式量分の余剰ならびに水分子の欠失に相当する分子量18の減少の組み合わせに相当する分子量の大きなm/z値を有する陰イオン種ピークが、該第五の陰イオン種ピーク群中に存在するか、

前記 $(5b-1) \sim (5b-3)$ のいずれかの要件を満足する陰イオン種ピークを特定し、第六の陰イオン種ピーク群を形成し、

特定された第六の陽イオン種ピーク群は、当該解析対象とするペプチドに由来するペプチド断片に起因する陽イオン種ピークの群であり、同時に、特定された第六の陰イオン種ピーク群は、当該解析対象とするペプチドに由来するペプチド断片に起因する陰イオン種ピークの群であると判定する、解析対象とするペプチドに由来するペプチドが上に起因する主要なイオン種ピークの判定工程、

(工程6) 前記第六の陽イオン種ピーク群の各ピークに関して、

該ピークに対して、前記(5 a - 1) ~ (5 a - 3) のいずれかの要件を充足する付随陽イオン種ピークの相対ピーク強度との対比を行い、該ピークの相対ピーク強度が優っているピークを選別し、

さらに、選別されたピークの群において、該群に含まれる他のピークに対して、相対ピーク強度が劣っている、前記(5a-1)~(5a-3)のいずれかの要件を充足する付随陽イオン種ピークとならないピークを選別し、第七の陽イオン種ピーク群を形成し、

一方、前記第六の陰イオン種ピーク群の各ピークに関して、

該ピークに対して、前記(5b-1)~(5b-3)のいずれかの要件を充足する付随陰イオン種ピークの相対ピーク強度との対比を行い、該ピークの相対ピーク強度が優っているピークを選別し、

さらに、選別されたピークの群において、該群に含まれる他のピークに対して、相対ピーク強度が劣っている、前記(5b-1)~(5b-3)のいずれかの要件を充足する付随陰イオン種ピークとならないピークを選別し、第七の陰イオン種ピーク群を形成し、

特定された第七の陽イオン種ピーク群は、当該解析対象とするペプチドに由来するペプチド断片自体の陽イオン種ピークの群であり、同時に、特定された第七の陰イオン種ピーク群は、当該解析対象とするペプチドに由来するペプチド断片自体の陰イオン種ピークの群であると判定する、解析対象とするペプチドに由来するペプチド断片自体のイオン種ピークの判定工程、

(工程7) 第四の陰イオン種ピーク群中に存在する、前記第七の陽イオン種ピ

該第八の陰イオン種ピーク群に含まれる各陰イオン種ピークに関して、該陰イオン種ピークのm/z値を基準として、上記工程 5 で算出される隣接ピーク間のm/z値差に基づき、ピーク間のm/z値差が 2 0 0 より小さな範囲に見出される、第四の陰イオン種ピーク群中に存在する陰イオン種ピークの群を選別し、

そのピーク間のm/z 値差が、天然の鎖式 $\alpha-r$ ミノ酸残基:-NH-CH(R) -CO-(R は、該rミノ酸残基の側鎖を示す)あるいは、該側鎖上のヒドロキシ基、rミノ基に対して、上記N-rシル化保護に利用されるrシル基が置換してなるrシル化保護 $\alpha-r$ ミノ酸残基の式量に相当するものが存在しないことを確認し、

該第八の陰イオン種ピーク群は、当該解析対象とするペプチドに由来するペプチド断片であって、トリプシン消化処理で生成する、そのペプチド鎖C末端にアルギニンを有するペプチド断片の陰イオン種ピーク群と判定する、トリプシン消化で生成するペプチド鎖C末端にアルギニンを有するペプチド断片の特定工程、

(工程 8) 第七の陰イオン種ピーク群に含まれる各陰イオン種ピークに関して、該陰イオン種ピークのm/z値を基準として、上記工程 5 で算出される隣接ピーク間のm/z値差に基づき、ピーク間のm/z値差が 2 0 0 より小さな範囲に見出される、第四の陰イオン種ピーク群中に存在する陰イオン種ピークの群を選別し、

そのピーク間のm/z 値差が、天然の鎖式 $\alpha-r$ ミノ酸残基:-NH-CH(R) -CO-(R は、該r ミノ酸残基の側鎖を示す)あるいは、該側鎖上のヒドロキシ基、r ミノ基に対して、上記N-r シル化保護に利用されるr シル基が置換してなるr シル化保護 $\alpha-r$ ミノ酸残基の式量に相当するものが存在している、第七の陰イオン種ピーク群に含まれる陰イオン種を特定し、第九の陰イオン種ピーク群を形成し、

該第九の陰イオン種ピーク群の各陰イオン種ピークと、前記特定操作において、 ピーク間のm/z値差が、前記アミノ酸残基の式量に相当することが確認された 第四の陰イオン種ピーク群中に存在する陰イオン種ピークとの和集合を、第十の 陰イオン種ピーク群とし、

該第十の陰イオン種ピーク群中、m/z値が最大の陰イオン種ピークを選択し、該m/z値が最大の陰イオン種ピークが示すm/z値を基準として、各ピーク間のm/z値差が上記アミノ酸残基の式量に相当するm/z値差を示す、一連の陰イオン種ピークを該第十の陰イオン種ピーク群中より順次特定し、前記トリプシン消化処理で生成する、元となるペプチドに由来するC末端のペプチド断片ならびに、C末端アミノ酸を逐次的に分解して得られる一連の反応生成物に由来するC末端のペプチド断片の陰イオン種ピーク群と判定する、トリプシン消化で生成する解析対象ペプチドと一連の反応生成物のC末端側ペプチド断片群の特定工程

(工程9) 前記工程8において、特定される前記トリプシン消化処理で生成する、元となるペプチドに由来するC末端のペプチド断片ならびに、C末端アミノ酸を逐次的に分解して得られる一連の反応生成物に由来するC末端のペプチド断片の陰イオン種ピーク群に基づき、順次特定されている陰イオン種ピークの各ピーク間のm/z値差に相当する、上記アミノ酸残基の式量に従って、C末端より逐次的に分解されている部分アミノ酸配列を特定する、C末端アミノ酸配列の特定工程、

上記(工程 1) \sim (工程 9) を有することを特徴とする、MALDI-TOF-MS法による陽イオン種による分子量測定、ならびに陰イオン種による分子量測定スペクトルの解析方法である。

[0046]

その際、前記(工程1)のトリプシン由来の内部標準ピークの特定工程後、

陽イオン種による分子量測定結果中において特定される、トリプシンの自己消化に由来するペプチド断片による陽イオン種ピークについて、該ピークm/z値の決定と、その見かけの半値全幅を算定し、

前記算定される見かけの半値全幅を基準幅として、該基準幅の1/4以下の見か け半値全幅を示すノイズ性ピークを除去する処理を、該陽イオン種による分子量 測定スペクトルに施し、

次いで、ノイズ除去処理済みスペクトルに対して、トリプシンの自己消化に由来

一方、陰イオン種による分子量測定結果中において特定される、トリプシンの 自己消化に由来するペプチド断片による陰イオン種ピークにおいて、該ピークm /z値の決定と、その半値全幅を算定し、

前記算定される見かけの半値全幅を基準幅として、該基準幅の1/4以下の見か け半値全幅を示すノイズ性ピークを除去する処理を、該陰イオン種による分子量 測定スペクトルに施し、

次いで、ノイズ除去処理済みスペクトルに対して、トリプシンの自己消化に由来 するペプチド断片による陽イオン種ピークにおける、前記決定されたピークm/ z値と、前記見かけの半値全幅の算定に用いた二つのm/z値に基づき、該ピー ク形状の非対称性と、積分ピーク強度とを保持可能なスムージング処理を施す、 ノイズ除去・スムージング処理工程を設けることが好ましい。

[0047]

また、前記(工程1)のトリプシン由来の内部標準ピークの特定工程後、

陽イオン種による分子量測定結果中において特定される、トリプシンの自己消化に由来するペプチド断片による陽イオン種ピークについて、該ペプチド断片の既知の分子量に基づき該陽イオン種のm/z値を計算し、スペクトル上のピークm/z値と比較し、その差異に基づき、陽イオン種による分子量測定スペクトルにおけるm/z値に対する系統的誤差の補正を行い、

一方、陰イオン種による分子量測定結果中において特定される、トリプシンの自己消化に由来するペプチド断片による陰イオン種ピークについて、該ペプチド断片の既知の分子量に基づき該陰イオン種のm/z値を計算し、スペクトル上のピークm/z値と比較し、その差異に基づき、陰イオン種による分子量測定スペクトルにおけるm/z値に対する系統的誤差の補正を行う、

ピークm/z値に対する系統的な誤差補正の工程を設けることが好ましい。

[0048]

加えて、前記(工程9)のC末端アミノ酸配列の特定工程において、

特定されたC末端より逐次的に分解されている部分アミノ酸配列が、そのC末端アミノ酸がアルギニンである場合、

該部分アミノ酸配列の特定における基準とする、第十の陰イオン種ピーク群中の m/z値が最大の陰イオン種ピークについて、陽イオン種による分子量測定結果 中における、その対応陽イオン種ピークに対して、

該陽イオン種ピークのm/z値を基準として、上記工程5で算出される隣接ピーク間のm/z値差に基づき、該陽イオン種ピークのm/z値よりもm/z値が大きく、m/z値差が200より小さな範囲に見出される、第四の陽イオン種ピーク群中に存在する陽イオン種ピークの群を選別し、

そのピーク間のm/z 値差が、天然の鎖式 $\alpha-r$ ミノ酸残基:-NH-CH(R) -CO-(R は、該rミノ酸残基の側鎖を示す)あるいは、該側鎖上のヒドロキシ基、rミノ基に対して、上記N-rシル化保護に利用されるrシル基が置換してなるrシル化保護 $\alpha-r$ ミノ酸残基の式量に相当するものが存在しないことを確認する、ペプチド鎖C 末端にrルギニンを有するペプチド断片であることの再確認工程を更に設けることがより好ましい。

[0049]

【発明の実施の形態】

以下に、本発明をより詳しく説明する。

[0050]

本発明にかかるペプチドのC末端アミノ酸配列解析方法は、基本的には、解析対象のペプチドに対して、そのペプチドのC末端アミノ酸を逐次的に分解除去して、ペプチドが短縮された一連の反応産物を作製し、さらに、この一連の反応産物と、元となるペプチドとをトリプシン消化して得られるペプチド断片のうち、該一連の反応産物に由来するC末端側ペプチド断片の分子量と、元となるペプチドに由来するC末端側ペプチド断片の分子量との差異に基づき、除去されたアミノ酸を特定する手法を採用している。より具体的には、かかるトリプシン消化して得られるC末端側ペプチド断片は、そのトリプシンに特異的な切断部位で切断されており、さらには、この一連の反応産物に由来するC末端側ペプチド断片の分子量と、元となるペプチドに由来するC末端側ペプチド断片の分子量の測定手

段として、MALDI-TOF-MS装置を利用するが、そのイオン化過程は、ペプチド断片にプロトン(H+)が付加された陽イオン種と、ペプチド断片からプロトン(H+)が離脱された陰イオン種とをそれぞれ測定することを可能としている。その際、C末端側ペプチド断片を構成するアミノ酸残基中にはアルギニン残基やリシン残基が含まれていないため、かかるアルギニン残基やリシン残基に由来する陽イオン種の安定化機構はなく、陽イオン種を測定した結果と、陰イオン種を測定した結果とを比較した際、アミノ酸残基中にはアルギニン残基やリシン残基が含まれている、トリプシン消化による他のペプチド断片とは、その相対強度は、異なる挙動を示す現象を、MALDI-TOF-MS装置によって測定される複数種のピーク中より、一連のC末端側ペプチド断片に起因するピークの特定・弁別に利用している。

[0051]

すなわち、本発明にかかる解析方法における最大の特徴は、

ペプチドのC末端アミノ酸を逐次的に分解除去する工程において、そのペプチド鎖の途中でのペプチド結合分断という副次的反応を効果的に回避することで、前記トリプシン消化処理後に得られるペプチド断片の混合物中に、元のペプチドをトリプシン消化した際に生じる、共通的なN末側のペプチド断片、ならびに目的とする一連の反応産物に由来するC末端側ペプチド断片以外に、副次的なペプチド結合分断反応に由来するペプチド断片が混入することを抑制する点にある。加えて、かかるペプチド鎖の途中でのペプチド結合分断という副次的反応を回避する上で、予め対象とするペプチド鎖に対して、Nーアシル化、Oーアシル化による保護を施して、この保護をも利用し、さらには、最終的なトリプシン消化の処理に先立ち、Oーアシル化による保護の脱保護は行うものの、リシン残基上のNーアシル化保護を保持する状態とすることで、トリプシン消化による断片化が、アルギニン残基のC末側ペプチド結合でのみ生じるようにし、不必要に細分化されたペプチド断片の生成を回避しつつ、目的とする一連の反応産物に由来するC末端側ペプチド断片は、MALDIーTOFーMS測定に適合する分子量範囲内とできる点も、本発明にかかる解析方法における大きな特徴である。

[0052]

その際、本発明に利用される、対象とするペプチドのC末端アミノ酸を逐次的に分解除去する反応では、水分を除去した環境とした上で、比較的に低い加熱条件において、

反応試薬として、アルカン酸無水物に、少量のパーフルオロアルカン酸を組み合わせたものを利用して、高いプロトン供与能を示すパーフルオロアルカン酸の触媒作用によって、アルカン酸無水物をペプチド鎖C末端のカルボキシ基の活性化試薬として作用させ、

ペプチドのC末端において、下記する一般式(III):

[0053]

【化8】

[0054]

(式中、

R1は、ペプチドのC末端アミノ酸の側鎖を表し、

R2は、前記C末端アミノ酸の直前に位置するアミノ酸残基の側鎖を表す)で表記される5-オキサゾロン構造を一旦形成し、該5-オキサゾロン環の開裂に伴いC末端アミノ酸の分解を行う方法を利用している。

[0055]

かかる5-オキサゾロン環形成の反応は、全体として見ると、反応式(I):

[0056]

【化9】

[0057]

として表記されるものの、本発明にかかるC末端アミノ酸の選択的な分解方法では、

先ず、下記する反応式(Ia):

[0058]

【化10】

で示されるケトーエノール互換異性化の過程を、少量存在しているパーフルオロ アルカン酸を乾燥したペプチドに対して、プロトン供与体として機能させること で、エノール型をとる比率を高めている。

[0060]

次いで、エノール型において、表出されているヒドロキシ基とC末端カルボキシ基の間で、分子内エステル結合を形成し、5-オキサゾロン環を完成させる。

[0061]

【化11】

[0062]

で例示されるような、非対称型酸無水物へと変換し、活性化されたC末端カルボキシ基が反応に関与するものとしている。その結果、かかる反応は、穏和な温度条件でも進行する。一方、系内には、水分が存在しない環境に維持するとともに、反応性の相対的に低いアルカン酸無水物を利用するため、ペプチド鎖の途中に存在するペプチド結合の開裂反応の進行は、かかる穏和な温度条件では抑制されている。また、本発明にかかるC末端アミノ酸の選択的な分解方法においては、一旦形成された5ーオキサゾロン環から、例えば、反応式(II')で表記される反応:

[0063]

【化12】

[0064]

等の反応を経て、C末端のアミノ酸の離脱と、次段の反応中間体の形成を進行して、逐次的なC末端アミノ酸の選択的な分解が進むと推断される。

[0065]

なお、ペプチド鎖中のセリン残基($-NH-CH(CH_2OH)-CO-$)、トレオニン残基($-NH-CH(CH_3)OH)-CO-$)では、その側

鎖上のヒドロキシ基(一〇H)に起因して、加熱環境下では、例えば、セリン残 基(一NHーCH(CH2〇H)-CO-)のα位のアミノ基(一NH-)とβ 位のヒドロキシ基(一〇H)の間で、N,〇ーアシル転位反応が生じると、引き 続き、生成するエステル結合の分解が進行し、セリン残基のN末側でペプチドの 切断が生じるという副反応、また、条件に依っては、β位にヒドロキシ基(一〇H)が存在しているトレオニン残基(一NH-CH(CH(CH3)OH)-CO-)においても、同様のN,〇ーアシル転位反応が契機となる反応機構によって、トレオニン残基のN末側でペプチドの切断が生じるという副反応が生じる可能性がある。また、リシン残基(一NH-CH((CH2)3一NH2)-CO-)でも、その側鎖上のアミノ基(一NH2)に起因して、加熱環境下では、リシン残基(一NH-CH(CH2CH2CH2OH)のα位のアミノ基(一NHー)とを位のアミノ基(一NH2)の間で、アミド結合の交換反応 が生じると、引き続き、生成するを位のアミド結合の分解が進行し、リシン残基のN末側でペプチドの切断が生じるという副反応が懸念される。

[0066]

本発明においては、逐次的なC末端アミノ酸の分解反応は、乾燥状態、穏和な温度条件で行われるものの、前記のセリン残基(-NH-CH(CH₂OH)-CO-)、トレオニン残基(-NH-CH(CH₃OH)-CO-)、リシン残基(-NH-CH(CH₂CH₂CH₂CH₂NH₂)-CO-)が関与する副反応をより確実に回避するため、逐次的なC末端アミノ酸の分解反応に先立ち、予め、N-アシル化、O-アシル化による保護を施す前処理工程を設けている。

[0067]

このN-アシル化、O-アシル化による保護を施す前処理工程は、本発明にかかる第一の形態では、対象とするペプチドの乾燥試料に対して、乾燥雰囲気下、10℃~60℃の範囲に選択される温度において、アルカン酸無水物にアルカン酸を少量添加してなる混合物より供給される、蒸気状のアルカン酸無水物とアルカン酸とを作用させることで、アルカン酸の有するプロトン供与能を利用して、アルカン酸無水物とアミノ基(-NH₂)、ヒドロキシ基(-OH)との反応を

促進して、Nーアシル化、Oーアシル化を達成している。その際、アルカン酸の有するプロトン供与能は、パーフルオロアルカン酸の示すプロトン供与能よりも劣るため、ペプチド鎖のC末端における5ーオキサゾロン環を形成する反応を進行させるには至らない。

[0068]

また、本発明にかかる第二の形態では、ゲル上に担持された状態のペプチド試料に対して、予めゲルの脱水処理を施した後、この前処理工程において、30℃~80℃の範囲に選択される温度において、該ゲル状物質内に浸潤でき、膨潤状態に維持可能である、双極性非プロトン性溶媒中に、アルカン酸無水物を溶解してなる溶液を用いて、該アルカン酸無水物溶液中に該ゲル担体を浸漬することにより、担持された状態の対象とするペプチド試料にアルカン酸無水物を作用させることで、Nーアシル化、Oーアシル化を達成している。この双極性非プロトン性溶媒中での液相反応は、プロトン供与能を有するアルカン酸の酸触媒作用を利用しなくとも、十分に進行する。また、かかる液相反応に付随して、系内で、アルカン酸の生成がなされ、その触媒作用も付加され、徐々に反応の促進がなされる。但し、系内で派生するアルカン酸の有するプロトン供与能は、パーフルオロアルカン酸の示すプロトン供与能よりも劣るため、ペプチド鎖のC末端における5ーオキサゾロン環を形成する反応を進行させるには至らない。

[0069]

加えて、本発明では、かかる前処理工程において、リシン残基(-NH-CH($CH_2CH_2CH_2CH_2NH_2$)-CO-)の ϵ 位のアミノ基($-NH_2$)に加えて、ペプチド鎖のN末端のアミノ基に対しても、N-アシル化が達成できる条件を選択することで、例えば、C末端アミノ酸の逐次的な分解反応において、そのC末端カルボキシ基の活性化がなされた際、誤って、隣接するペプチド鎖のN末端のアミノ基と反応を起こす事態を予め防止することもできている。さらには、後処理工程において、加水処理を施した際に、リシン残基(-NH-CH($CH_2CH_2CH_2CH_2NH_2$)-CO-)の ϵ 位のアミノ基($-NH_2$)ならびにペプチド鎖のN末端のアミノ基に対する、N-アシル化保護は、脱保護を生じない加水処理条件を選択する結果、最終的に、トリプシン消化処理を施す際、側鎖上の

[0070]

本発明では、このリシン残基側鎖上のアミノ基に対して、Nーアシル化保護がなされた状態で、最終的に、トリプシン消化処理を施す工程を実施することで、ペプチド鎖が、アルギニン残基とリシン残基の二種の切断部位で消化され、不必要に多くの断片化を受けることを回避し、同時に、ペプチド鎖中に適度な頻度で含有されるアルギニン残基におけるトリプシン消化によって、長いペプチド鎖は複数のペプチド断片に分割でき、結果として、得られるC末端側ペプチド断片の分子量は、MALDI-TOF-MS測定に適合する分子量範囲内とできる利点を積極的に利用している。

[0071]

加えて、本発明においては、トリプシン消化処理後、脱塩処理し、ペプチド断 片を回収し、乾燥した後、MALDI-TOF-MS装置を利用して、トリプシ ン消化処理を施して得られるペプチド断片の混合物に由来するイオン種の分子量 を測定する。なお、トリプシン消化処理後、脱塩処理を行うことで、回収、乾燥 されるペプチド断片は、各種の塩を形成するものではなく、本来のペプチド部分 単体とされている。そのイオン化過程では、各ペプチド断片に対して、プロトン (H+) が付加された陽イオン種と、プロトン (H+) が離脱された陰イオン種と が生成でき、測定モードを選択することにより、陽イオン種と陰イオン種とをそ れぞれ個別に測定する。本発明においては、トリプシン消化処理で生成するペプ チド断片として、元のペプチド鎖と、C末端アミノ酸の逐次的な分解反応で生成 する反応産物とで共通するN末側アミノ酸配列に由来する、一連のペプチド断片 群では、その断片C末端に、プロトン(H+)受容能に富むグアニジノ基を持つ アルギニン残基が存在しており、プロトン(H+)が付加された陽イオン種の安 定化が図られるが、一方、C末端側ペプチド断片では、かかるアルギニン残基は 存在しておらず、アルギニン残基に因るプロトン(H+)が付加された陽イオン 種の安定化は起こらない。前記する相違点に付随して、MALDI-TOF-M S装置で測定される、陽イオン種の質量分析スペクトル中では、その断片C末端にアルギニン残基を有する、共通するN末側アミノ酸配列に由来する、一連のペプチド断片群に起因するピーク強度が、相対的に強くなる。一方、アルギニン残基の存在してないC末端側ペプチド断片では、プロトン(H+)供与能を示すカルボキシ基(-COOH)がそのC末端に存在しており、MALDI-TOF-MS装置で測定される、陰イオン種の質量分析スペクトル中において、かかるC末端側ペプチド断片群に起因するピーク強度が、相対的に強くなる。

[0072]

本発明では、脱塩処理を施され、乾燥されたペプチド断片を、MALDI-TOF-MS装置での測定に供することに伴う、前記の陽イオン種の質量分析スペクトルと陰イオン種の質量分析スペクトルとを対比した際の、相対的強度の相違を利用して、その断片C末端にアルギニン残基を有する、共通するN末側アミノ酸配列に由来する、一連のペプチド断片群に起因するピークを弁別し、さらに、陰イオン種の質量分析スペクトル中において、元のペプチド鎖と、C末端アミノ酸の逐次的な分解反応で生成する反応産物とで共通するN末側アミノ酸配列に由来する、一連のC末端側ペプチド断片群に起因するピークを、容易に特定することができる。

[0073]

該陰イオン種による分子量測定において、相対的に大きな強度を与える一連のピークに基づき、C末端アミノ酸の逐次的分解に伴う分子量減少を測定し、対応する分子量変化を与えるアミノ酸種類の帰属を行う。なお、かかるアルギニン残基の存在してないC末端側ペプチド断片は、少なくとも、トリプシン消化処理によって、そのN末端アミノ酸残基のα位のアミノ基(-NH₂)を有しており、陽イオン種の質量分析スペクトル上でも、対応するピークを示すので、アミノ酸種類の帰属結果を、陽イオン種の質量分析スペクトルで観察される対応するピークの分子量を利用して、検証することもできる。

[0074]

以下に、本発明の第一の形態にかかるペプチドのC末端アミノ酸配列解析方法 、ならびに本発明の第二の形態にかかるペプチドのC末端アミノ酸配列解析方法

[0075]

先ず、本発明の第一の形態にかかるペプチドのC末端アミノ酸配列解析方法では、上述する本発明を特徴付ける(1)~(6)の工程中、(1)~(3)に相当する、対象とするペプチドより、化学的手段によりC末端アミノ酸を逐次的に分解して得られる一連の反応生成物を含む混合物を調製する工程では、予め単離処理されているペプチドの乾燥試料を対象として、下記する処理を行う。

[0076]

て末端アミノ酸を逐次的に分解する反応工程に先立って、予め、該ペプチドN末端のアミノ基ならびに、該ペプチドに含有されている可能性のあるリシン残基側鎖のアミノ基に対して、前記アルカン酸無水物由来のアシル基によるN-アシル化を施す、N-アシル化保護を施す前処理工程を実施する。この前処理工程において施される、リシン残基側鎖のアミノ基に対するN-アシル化保護は、上述する最終的に、トリプシン消化処理を行った際、リシン残基のC末側ペプチド結合での切断を防止する目的を有するため、後述する加水処理において、リシン残基側鎖上のN-アシル化保護では、脱保護が進行しないものの、同時になされるO-アシル化保護においては、脱保護が十分に進行するアシル基を選択することが望ましい。従って、本発明の第一の形態においては、ペプチドの乾燥試料に対して、気相から蒸気として供給して、N-アシル化、ならびにO-アシル化反応を行うことができる反応試薬として、求電子的なアシル化剤であるアルカン酸無水物と、そのプロトン供与能によって、該アシル化反応の促進を図る触媒として、アルカン酸との組み合わせを利用している。

[0077]

この前処理工程で使用される、アルカン酸無水物とアルカン酸は、乾燥雰囲気下、一定の分圧比において蒸気として供給して、ペプチド鎖に作用させるため、気密状態の反応容器内で、10 \mathbb{C} \mathbb{C} \mathbb{C} \mathbb{C} の範囲に選択される温度に反応容器全体を加熱、保温することで、アルカン酸無水物にアルカン酸を少量添加してなる混合物から蒸散させる形態とする。すなわち、10 \mathbb{C} \mathbb{C}

酸、ならびに、該炭素数2~4のアルカン酸由来の対称型酸無水物を利用することが好ましい。特には、炭素数2~4の直鎖アルカン酸、ならびに、該炭素数2~4の直鎖アルカン酸由来の対称型無水物を利用することがより好ましく、その際、対称型の前記アルカン酸無水物は、少量添加されるアルカン酸に由来する対称型無水物であることがさらに好ましい。すなわち、アルカン酸無水物と、少量添加されるアルカン酸とを同一種とすると、かかるNーアルカノイル化、Oーアルカノイル化反応の進行する間に、仮にアシル基交換反応が生じても、最終的に得られる、Nーアルカノイル化、Oーアルカノイル化保護に、異なるアルカノイル基が混在することは無い。従って、仮に、後述する加水処理において、Oーアルカノイル化保護の脱保護が達成されないものが、残留した場合にも、脱保護の達成されたものとの分子量差は、予め判明しており、かかる夾雑物に由来するピークの同定はより簡単なものとなる。このNーアシル化保護を施す前処理工程では、通常、無水酢酸と酢酸の組み合わせを利用することがより望ましい。

[0078]

具体的には、かかるNーアシル化保護を施す前処理反応も、アルカン酸無水物とアルカン酸とを蒸気として、ペプチドの乾燥試料に供給して、反応を進めるため、適正な蒸気圧を得る上では、その後に実施する前記C末端アミノ酸を逐次的に分解する工程で利用する前記アルカン酸無水物と、同じアルカン酸無水物は好適に利用できる。加えて、このアルカン酸無水物は、乾燥雰囲気下、10℃~60℃の範囲に選択される温度では、ペプチドの切断等の不要な副次反応を引き起こすには、その反応性は十分に低いので、かかる前処理においては、共存させるアルカン酸は、パーフルオロアルカン酸と比較して、その酸触媒作用は格段に劣るので、さらに、不要な副次反応を引き起こすことなく、Nーアシル化保護を施すことが可能となる。

[0079]

加えて、対象とする長いアミノ酸配列のペプチド、例えば、タンパク質など、 二次構造、三次構造を構成している場合には、予め、デフォールディング処理を 加えて、該多次構造を示さないペプチド鎖に変換しておくことで、そのN末端の アミノ基をN-アシル化保護する条件では、ペプチド中に存在する何れのリシン

残基側鎖のアミノ基に対しても、Nーアシル化保護が同時に進行する。さらには、ペプチド中に存在するセリン残基ならびにトレオニン残基側鎖のヒドロキシ基においてもOーアシル化反応が進み、その保護がなされる。その他、ペプチド中に存在するチロシン残基側鎖のフェノール性ヒドロキシ基も、その反応性は相違するものの、部分的にOーアシル化がなされる。これらの複数のアシル化保護もなされる前処理工程を設ける結果として、リシン残基側鎖のアミノ基、セリン残基のびにトレオニン残基側鎖のヒドロキシ基は、何れも保護修飾を受けたものとなり、最早不要な副次反応に関与できないものとなる。

[0080]

なお、この前処理工程で使用する、アルカン酸無水物とアルカン酸との組み合わせは、不要な副次反応、例えば、ペプチドの途中での切断を生じる懸念はほとんどないものであるが、その反応温度は、10 \mathbb{C} \sim 60 \mathbb{C} の範囲に選択される温度、より好ましくは、かかる反応温度は、室温付近、あるいは、室温より僅かに高い範囲内に選択することが好ましく、より具体的には、15 \mathbb{C} \sim 50 \mathbb{C} の範囲に選択することが好ましく、より具体的には、15 \mathbb{C} \sim 50 \mathbb{C} の範囲に選択することが好ましい。また、前記アルカン酸無水物にアルカン酸を少量添加してなる混合物中における、アルカン酸の添加比率は、アルカン酸無水物とアルカン酸との合計した体積に対して、2 \sim 10 \mathbb{C} \mathbb

[0081]

なお、この前処理工程におけるN-アシル化反応の反応速度は、利用されるアルカン酸無水物とアルカン酸の分圧(気相濃度)ならびに反応温度に依存するため、かかる前処理工程の反応時間は、主に反応温度に応じて、適宜選択することが望ましい。例えば、反応温度を50℃に選択する際には、反応時間を1時間以内、例えば、30分間に選択することで、ペプチドのN末端アミノ基に対するN-アシル化を完了することも可能である。その際、アルカン酸無水物とアルカン酸とによるアシル化反応を促進する目的で、触媒量のピリジン、例えば、アルカン酸無水物とアルカン酸の合計に対して、0.1~1.0体積%のピリジンを添加することがより好ましい。かかるピリジン塩基はプロトン受容体として機能するため、例えば、アミノ基へのアシル化に伴い離脱すべきプロトンの除去がより

[0082]

さらには、対象とするペプチドが、例えば、隣接するペプチドのシステインとの間で、酸化型の一S-S-結合を形成する、あるいは、同一分子内で一S-S-結合を形成しているシステインを含む場合には、予め常用の還元処理を施し、かかる架橋を解消し、還元型のシステインを含むペプチドに変換する。また、ペプチド中に存在する還元型のシステインに対しては、その側鎖のスルファニル基(ーSH)にカルボキシメチル化やピリジルエチル化などを施し、予めその保護を行う。より具体的には、対象とする長いアミノ酸配列のペプチド、例えば、タンパク質など、二次構造、三次構造を構成している場合には、予め、デフォールディング処理を加えて、該多次構造を示さないペプチド鎖に変換しておく処理をなす過程で、かかるタンパク質同一分子内で一S-S-結合を形成しているシステインを含む可能性を有する場合には、予め常用の還元処理を施し、かかる架橋を解消し、還元型のシステインを含むペプチドに変換する。加えて、該ペプチド中に存在する還元型のシステインに対しては、その側鎖のスルファニル基(ーSH)にカルボキシメチル化やピリジルエチル化などを施し、予めその保護を行う

[0083]

その他、かかる前処理工程における反応手順は、気密状態とできる反応容器内に、アルカン酸無水物にアルカン酸を少量添加した液状混合物を入れ、この液状混合物を一旦冷却して、蒸気圧を低下した状態で、反応容器内を排気し、密閉して、反応温度まで昇温し、容器内にアルカン酸無水物を蒸発させる手法が挙げられる。かかる手順を採用すると、反応容器内への水分の混入を防止できる利点もある。加えて、反応系内に酸素が残留しないように、真空排気を行うと、例えば、対象とするペプチドを構成するアミノ酸残基のうち、メチオニンに存在するイオウが、酸素により酸化を受け、その式量が変化することを防止でき、分子量の測定を基礎とする本発明の方法においては、かかる酸化を抑制することは、より高い確度を達成する上で、より好ましいものとなる。前処理工程の反応を終えた後、反応容器内に残余する反応試薬を除去した後、次のC末端アミノ酸を逐次的

に分解する反応工程に移行する。

[0084]

本発明の第一の形態では、このC末端アミノ酸を逐次的に分解する反応では、前処理工程に引き続き、N-アシル化保護済みのペプチドの乾燥試料に対して、乾燥雰囲気下、15 \mathbb{C} \sim 60 \mathbb{C} の範囲に選択される温度において、

アルカン酸無水物にパーフルオロアルカン酸を少量添加してなる混合物より供給される、蒸気状のアルカン酸無水物とパーフルオロアルカン酸とを作用させ、

ペプチドのC末端において、下記する一般式(III):

【化13】

$$N$$
 $R1$ $R2$ O O O (III)

[0086]

(式中、

R1は、ペプチドのC末端アミノ酸の側鎖を表し、

R2は、前記C末端アミノ酸の直前に位置するアミノ酸残基の側鎖を表す)で表記される5ーオキサゾロン構造を経て、該5ーオキサゾロン環の開裂に伴いC末端アミノ酸の分解を行う。

[0087]

かかる5-オキサゾロン環形成の反応では、乾燥雰囲気下、先ず、下記する反 応式(Ia):

[0088]

【化14】

[0089]

で示されるケトーエノール互換異性化の過程において、蒸気状のパーフルオロアルカン酸を乾燥したペプチドに対して、プロトン供与体として機能させることで、エノール型をとる比率を高めている。

[0090]

次いで、エノール型において、表出されているヒドロキシ基とC末端カルボキシ基の間で、分子内エステル結合を形成し、5ーオキサゾロン環を完成させる。その際、恐らくは、蒸気状のパーフルオロアルカン酸は、このエステル化反応においても、プロトン・ドナーとして作用し、酸触媒下におけるエステル化反応を誘起していると推定される。本発明の第一の形態では、C末端カルボキシ基の活性化を行い試薬として、アルカン酸無水物を利用し、例えば、下記の反応式(Ib):

[0091]

【化15】

[0092]

で例示されるような、非対称型酸無水物へと変換し、活性化されたC末端カルボキシ基が反応に関与するものとしている。その結果、かかる反応は、穏和な温度条件で進行でき、反応温度を15 \mathbb{C} \sim 60 \mathbb{C} の範囲に選択することが可能となっている。なお、かかる反応温度は、室温付近、あるいは、室温より僅かに高い範囲内に選択することが好ましく、より具体的には、15 \mathbb{C} \sim 50 \mathbb{C} の範囲に選択することがより好ましい。

[0093]

加えて、前記アルカン酸無水物にパーフルオロアルカン酸を少量添加してなる 混合物を利用する処理の間に、ペプチドのN末端のアミノ基に対して、前記アル カン酸無水物によって、Nーアシル化が通常起こるため、系内において、Nーア シル化保護がなされるものの、予め、Nーアシル化保護を目的とする前処理を施 す方がより望ましい。

[0094]

従って、本発明の第一の形態は、利用されるパーフルオロアルカン酸の高いプロトン供与能を利用するものであり、該パーフルオロアルカン酸の示す p K a は、0.3~2.5の範囲であるパーフルオロアルカン酸を用いることが好ましい。加えて、このパーフルオロアルカン酸は、蒸気状態として、乾燥ペプチド試料へ供給する必要があり、15℃~60℃の範囲に選択する前記温度において、所望の蒸気圧を得られる揮発性に優れたパーフルオロアルカン酸であることが望ましい。その観点からも、炭素数2~4のパーフルオロアルカン酸は、より適するものであり、さらには、直鎖状の炭素数2~4のパーフルオロアルカン酸が、より適するものであり、具体的には、トリフルオロ酢酸(CF3COOH)、ペンタフルオロプロパン酸(CF3CF2COOH)、ヘプタフルオロブタン酸(CF3CF2CF2COOH)を利用することがより望ましい。

[0095]

また、上記する活性化試薬として利用される、アルカン酸無水物は、反応に従って、消費されるため、蒸気状態として供給するアルカン酸無水物の蒸気圧を所定の範囲に維持しつつ反応を行うことが望ましい。例えば、その手段としては、反応を行う系を気密状態とし、系内に存在するアルカン酸無水物の蒸気圧を安定

化する方法が挙げられる。より具体的には、気密状態とできる反応容器内に、アルカン酸無水物にパーフルオロアルカン酸を少量添加した液状混合物を入れ、この液状混合物を一旦冷却して、蒸気圧を低下した状態で、反応容器内を排気し、密閉して、反応温度まで昇温し、容器内にアルカン酸無水物を蒸発させる手法が挙げられる。かかる手順を採用すると、反応容器内への水分の混入を防止できる利点もある。なお、反応系内に酸素が残留しないように、真空排気を行うと、例えば、対象とするペプチドを構成するアミノ酸残基のうち、メチオニンに存在するイオウが、酸素により酸化を受け、その式量が変化することを防止でき、分子量の測定を基礎とする本発明の方法においては、かかる酸化を抑制することは、より高い確度を達成する上で、より好ましいものとなる。

[0096]

一方、利用されるアルカン酸無水物は、反応温度まで昇温した際、適正な蒸気圧を生じる限り、種々のものが利用可能である。ただし、反応温度を前記する好適な範囲、例えば、15℃~50℃の範囲に選択する際に、十分な蒸気圧を与えるものが好ましく、従って、炭素数2~4のアルカン酸の対称型酸無水物を用いることが好ましい。なかでも、前記対称型酸無水物として、炭素数2~4の直鎖アルカン酸の対称型酸無水物を用いることがより好ましく、特には、炭素数2の直鎖アルカン酸の対称型酸無水物、すなわち、無水酢酸が好適に利用できる。かかるアルカン酸無水物は、C末端カルボキシ基の活性化に利用されるため、その際、立体障害を生じることの少ないものが好ましく、その点でも、前記例示の無水酢酸などがより好適である。

[0097]

この分解反応に利用される、アルカン酸無水物とパーフルオロアルカン酸とは、ともに蒸気状として、乾燥ペプチド試料に対して作用させ、一旦形成された5ーオキサゾロン環が、系外から進入した水分により、加水されて、元に戻ることを回避するため、反応は乾燥雰囲気下で行う。その観点から、一般に、密閉された反応容器内でかかる反応を行うことが望ましい。なお、反応容器内に当初供給される、アルカン酸無水物とパーフルオロアルカン酸との混合物は、室温では液状混合物とし、アルカン酸無水物とパーフルオロアルカン酸とが均一に混合され

た状態とする。このアルカン酸無水物にパーフルオロアルカン酸を少量添加してなる混合物は、触媒として利用するパーフルオロアルカン酸は、反応の間、原則的に消費されないので、少量とすることができる。より具体的には、気相中に蒸気として存在するパーフルオロアルカン酸は、同じく、蒸気として存在するアルカン酸無水物と対比して、相対的に低い濃度とすることができることを意味する。逆には、利用するアルカン酸無水物とパーフルオロアルカン酸の種類によって、例えば、反応温度における、その飽和蒸気圧に応じて、目的とする気相中の分圧比(気相濃度比)を達成できる混合比率の液状混合物を適宜利用する。例えば、前記アルカン酸無水物にパーフルオロアルカン酸を少量添加してなる混合物中における、パーフルオロアルカン酸の含有比率は、アルカン酸無水物とパーフルオロアルカン酸との合計体積に対して、1~20体積%の範囲、より好ましくは、3~10体積%の範囲に選択することが望ましい。

[0098]

また、本発明の第一の形態においては、一旦形成された5ーオキサゾロン環から、例えば、反応式(II')で表記される反応:

[0099]

【化16】

[0100]

等の反応を経て、C末端のアミノ酸の離脱と、次段の反応中間体の形成を進行して、逐次的なC末端アミノ酸の選択的な分解が進むと推断される。従って、かかる反応を終えた後、得られる反応産物は、上述する反応式(II)に示される、C 末端にカルボキシ基が表出されているもの以外に、中間産物である5ーオキサゾロン環構造に留まるもの、あるいは、反応中間体の一形態として、C末端が非対称型酸無水物に至ったものも混入したものとなる。

[0101]

かかる逐次的なC末端アミノ酸の選択的な分解処理工程における反応は、少な

くとも、反応式(Ib)で例示される5ーオキサゾロン環構造の形成過程と、反応式(II')で例示される5ーオキサゾロン環構造の開裂による末端アミノ酸の分離過程との二段階の素反応から構成される。そのため、全体の反応速度は、これら各過程の反応速度の双方に依存するものの、主に、利用するアルカン酸無水物とパーフルオロアルカン酸の蒸気分圧(気相濃度)ならびに反応温度に依存している。加えて、一連の反応産物は、逐次的な反応で形成されるため、得られる一連の反応産物において達成される、短縮されるC末端アミノ酸配列の最大長は、処理時間が長くなるとともに、延長される。従って、かかる逐次的なC末端アミノ酸の選択的な分解処理工程における処理時間は、主に、利用するアルカン酸無水物とパーフルオロアルカン酸の蒸気分圧(気相濃度)ならびに反応温度に応じて、また、解析すべきC末端アミノ酸配列の目標とするアミノ酸長をも考慮して、適宜選択するものである。

[0102]

また、逐次的なC末端アミノ酸の選択的な分解処理工程において生成される、 上記反応式(II')に例示されるC末端にカルボキシ基が表出されていない反応 中間体の形態をとるものをも、C末端にカルボキシ基が表出されている形態に復 する目的で、後処理工程として、加水処理の工程を設ける。すなわち、本発明の 第一の形態では、この加水処理の工程において、前記C末端アミノ酸を逐次的に 分解する工程で得られる一連の反応生成物を含む混合物に対して、残余するアル カン酸無水物とパーフルオロアルカン酸とを乾燥状態において除去する後処理を 施した上で、塩基性含窒素芳香環化合物または第三アミン化合物を溶解する水溶 液を利用し、蒸気状の塩基性含窒素芳香環化合物または第三アミン化合物と水分 子を供給して、これら塩基性の窒素含有有機化合物の共存下、前記反応生成物ペ プチドに水分子を作用させて、5-オキサゾロン環内のエステル結合、ならびに 、反応中間体の一形態である、C末端の非対称型酸無水物構造を加水処理して、 それぞれ、C末端のアミノ酸残基にカルボキシ基(-COOH)を再生させる。 さらに、塩基性の窒素含有有機化合物の共存下、水分子を作用させると、前処理 工程においてO-アシル化保護を施した、ペプチド鎖中に存在するセリン残基と トレオニン残基側鎖のヒドロキシ基、ならびにチロシン残基側鎖のフェノール性 ヒドロキシ基では、その脱保護も進行する。一方、リシン残基側鎖のアミノ基、ならびにペプチド鎖N末端のアミノ基に対するNーアシル化保護は、脱保護を受けず、残留される。この加水処理を施した後、かかる一連の反応生成物を含む混合物に残余する、前記塩基性の窒素含有有機化合物と水分子を除去、乾燥する再乾燥後処理を行う。この加水処理を施すことで、元のペプチドと一連の反応産物のペプチド鎖は、リシン残基側鎖のアミノ基は、Nーアシル化保護されており、C末端にカルボキシ基は表出した形態とした上で、後述するトリプシン消化処理に供される。

[0103]

かかる加水処理に利用する、蒸気状の塩基性含窒素芳香環化合物または第三アミン化合物は、例えば、残留しているC末端が非対称型酸無水物に至ったものと反応して、アミド結合を形成することがなく、また、水溶液とした際、均一な溶液とできるので、好ましいものである。利用可能な、塩基性含窒素芳香環化合物としては、適用な蒸気圧を与えることができる、単環式の含窒素芳香環化合物が好ましく、例えば、ピリジンはより好適に利用できる。また、利用可能な第三アミン化合物は、前記ピリジン塩基が示す比較的に弱い塩基性と同程度の塩基性を有するものが好ましく、例えば、DMAE((CH3)2N-CH2CH2OH)などが好適に利用できる。例えば、ピリジンを利用する際には、水溶液全体の体積に対して、ピリジンを、5~15体積%の範囲、より具体的には、10体積%に選択することが好ましい。また、(ジメチルアミノ)エタノール(DMAE)を利用する際には、水溶液全体の体積に対して、DMAEを、1~20体積%の範囲、より具体的には、10体積%に選択することが好ましい。

[0104]

これら単環式の含窒素芳香環化合物や第三アミン化合物は、水分子とともに、 蒸気として、上記反応産物を含む乾燥混合試料に作用させる。この後処理も、一 般に、密閉された反応容器内でかかる反応を行うことが望ましい。また、かかる 後処理では、水分子を利用するため、その蒸気圧を一定以上とすることが必要と なるので、例えば、60℃以上の温度、但し、反応容器内の機械的強度を考慮す ると、100℃以下の範囲に選択することは望ましい。速やかに、加水処理を完

[0105]

例えば、本発明の第一の形態にかかるC末端アミノ酸の選択的な分解方法では、前処理工程、C末端アミノ酸の選択的な分解反応工程、後処理工程を、同一の反応器内で連続した形態で実施することが、一層好ましいものである。かかる工程のフローの一例を、図1に例示する。各工程を終えた段階で、ペプチド試料に、その工程で利用した試薬の残留を回避するため、それぞれ、ドライ・アップ操作を設けている。このドライ・アップ操作は、減圧留去でなされるのが一般的であり、その際、反応により派生する分解された末端アミノ酸等の除去を同時に実施できる場合もある。図1に例示する工程フローでは、利用するアルカン酸無水物として、極めて高い純度のものが容易に入手可能な無水酢酸を利用する事例を示している。

[0106]

一方、図1に例示する工程フローでは、C末端アミノ酸の選択的な分解反応工程における処理時間は、かかる工程中に短縮されるC末端アミノ酸配列のアミノ酸長として、最長の場合、10数アミノ酸長、最小では、3アミノ酸長を目標とする際、利用する無水酢酸とフルオロアルカン酸の比率、ならびに処理温度に応じて、選択される処理時間の範囲を例示している。一般に、フルオロアルカン酸の比率を増し、かつ処理温度をより高く設定すると、反応速度は増し、より短い処理時間で、目標とする最長のアミノ酸配列短縮量を達成した一連の反応産物の調製が可能となる。

[0107]

また、前処理工程においては、蒸気状の無水酢酸と酢酸を利用して、ペプチドのN末端のアミノ基へのNーアセチル化を実施しているが、この無水酢酸と酢酸の組み合わせにおいても、場合によっては、極僅かでであるが、上記反応式(Ia)で表記されるC末端カルボキシ基の活性化反応、それに起因する副次反応が誘起されることが懸念される。この副次的な反応を抑制する目的で、少量のピリジン蒸気を共存させ、ペプチドのC末端カルボキシ基に対して、ピリジン塩基が

弱い付加塩を形成させることで、不要な副次反応に対する保護効果を持たせることが可能である。この付加塩型の保護は、かかる前処理工程を終える際、ドライ・アップ操作を設けて、減圧下、ピリジン塩基の留去を行うことで、簡便に脱保護され、次段のC末端アミノ酸の選択的な分解反応工程において、問題を生じることはない。これらの観点から、この付加塩型の保護には、ピリジン塩基など、減圧下に簡単に留去可能で、塩基性も弱い、含窒素複素芳香環化合物を少量添加することが好ましい。また、この付加塩型の保護は、アミノ酸側鎖のカルボキシ基に対する保護機能を有するため、アミノ酸側鎖のカルボキシ基に起因する、不要な副次反応をも同時に効果的に抑制することが可能となる。

[0108]

本発明の第一の形態では、上記のC末端アミノ酸の逐次的な除去により調製される一連の反応産物の分子量と、元のペプチドの分子量との差異を、質量分析法による測定結果を利用して決定し、その分子量差に相当するアミノ酸を特定する。従って、通常、かかる質量分析法による測定に供する混合物中に、元のペプチ、ドも、その分子量の特定が可能な程度残存する状態とすることが望ましい。

[0109]

具体的には、本発明の第一の形態にかかるペプチドのC末端アミノ酸配列解析方法は、C末端アミノ酸配列として、最大10数アミノ酸長程度までの解析に適用するが、その際、対応する最大10数種に及ぶ一連の反応産物の含有比率は、その最小の含有比率のものは、最大含有比率のものの、少なくとも、1/10程度を下回らない状態とすることが望ましい。また、元のペプチドの残存量も、最大含有比率の反応産物に対して、少なくとも、1/10程度を下回らない状態とすることが望ましい。一方、必要とするC末端アミノ酸配列情報は、10アミノ酸以内となることが多く、10アミノ酸程度の分解が進む程度に処理時間を選択すると、前記の含有比率に関する条件を満足することができる。

[0110]

次に、本発明の第一の形態における、上述する本発明を特徴付ける(1)~(6)の工程中、(4)~(6)に相当する、前記一連の反応生成物と、元となるペプチドとの分子量差を、質量分析法により分析し、かかるC末端アミノ酸の逐

[0111]

本発明では、分子量の測定に、MALDI-TOF-MS装置を利用することで、高分子量のペプチド鎖に関しても、その分子量を精度よく測定することを可能としている。但し、かかるペプチドなどの高分子量分子の測定に適する、MALDI-TOF-MS装置を利用しても、有効にイオン化を達成できる分子量には、自ずから上限があり、高い精度で測定可能なペプチドのアミノ酸長の最大は、30~50アミノ酸を超えないことが望ましい。加えて、分子量差に基づき、対応するアミノ酸の特定を行うので、例えば、AsnとAsp、GlnとGluの如く、式量の差異が1のアミノ酸残基相互の区別を高い精度で行う上では、基準となる、最長のペプチド、すなわち、C末端アミノ酸の除去がなされていないペプチドの分子量は、4000を超えない範囲、より好ましくは、3000を超えない範囲であることがより好ましい。これをアミノ酸長に換算すると、長くとも、40アミノ酸、より好ましくは、30アミノ酸を超えない範囲とすることが好ましい。

[0112]

本発明の第一の形態では、前記のアミノ酸長を遥かに超えるタンパク質などの長いアミノ酸長のペプチドへの適用を容易にするため、質量分析の実施に先立ち、切断アミノ酸配列部位の特異性を有し、かつ、その酵素反応効率に優れるプロテアーゼである、トリプシンを利用して、ペプチド鎖の特異的な分断処理を行い、得られるC末端ペプチド断片を利用して、C末端アミノ酸の逐次的な除去により調製される一連の反応産物の分子量と、元のペプチドの分子量との差異を測定する。

[0113]

このトリプシン消化処理は、再乾燥後処理後、前記加水処理済みの一連の反応 生成物を含む混合物に対して、緩衝溶液中において、トリプシンを作用させ、該 ペプチド鎖のN末端のアミノ基ならびに、該ペプチド鎖に含有されている可能性 のあるリシン残基側鎖のアミノ基に対するN-アシル化保護が保持されている、 該ペプチド鎖のトリプシン酵素特異的な消化処理を施している。その際、リシン 残基側鎖のアミノ基に対するN-アシル化保護が保持されているため、N-アシ ル化保護リシン残基のC末側ペプチド結合の切断は生じず、該ペプチド鎖中に存 在するアルギニン残基のC末側ペプチド結合の選択的な切断が起こる。

[0114]

例えば、リシン残基とアルギニン残基の双方で切断が起こると、得られるペプチド断片の総数は相当な数に達し、その結果、各断片の平均的なアミノ酸長は短くなり、狭い分子量範囲に、相当な数のペプチド断片に起因するピークが密集するした。その中から、目的とする一群のC末側ペプチド断片を特定する上で、障害となる場合もある。特に、C末端アミノ酸の逐次的な分解を施した、一連の反応産物に由来するC末側ペプチド断片は、除去されるアミノ酸数が多くなると、その含有比率は小さくなり、近接して、他のペプチド断片が存在すると、目的とするC末側ペプチド断片を特定する上で、大きな障害となる場合もある。本発明では、該ペプチド鎖中に存在するアルギニン残基のC末側ペプチド結合の選択的な切断を利用するので、得られるペプチド断片の総数は必要以上に多くなることを回避でき、同時に、目的とするC末側ペプチド断片のアミノ酸長は、上述するMALDI一TOF-MS装置を利用する際、適当とされるアミノ酸数の範囲内とすることが可能である。

[0115]

該トリプシン消化処理後、脱塩処理を施し、前記緩衝溶液成分を除去して、該トリプシン消化処理済みペプチド断片を回収し、乾燥した後、この回収された該トリプシン消化処理済みペプチド断片を含む乾燥混合物について、MALDI-TOF-MS法を利用し、該イオン化処理で生じる陽イオン種による分子量測定、ならびに陰イオン種による分子量測定を行う。

[0116]

既に説明したように、本発明では、MALDI-TOF-MS装置を利用することに伴い、その陽イオン種による分子量測定、ならびに陰イオン種による分子

トリプシン消化処理で生成するC末端にアルギニン残基を有するペプチド断片では、該アルギニン残基に起因して、その対応するイオン種のピークは、

陽イオン種による分子量測定における強度は、陰イオン種による分子量測定における強度と比較して、相対的に大きな強度を与えるピークと判定し、

トリプシン消化処理で生成する、元となるペプチドに由来するC末端のペプチ ド断片ならびに、C末端アミノ酸を逐次的に分解して得られる一連の反応生成物 に由来するC末端のペプチド断片にはアルギニン残基が存在しないので、その対 応するイオン種のピークは、

陰イオン種による分子量測定における強度は、陽イオン種による分子量測定における強度と比較して、相対的に大きな強度を与えるピークと判定し、

陰イオン種による分子量測定において、相対的に大きな強度を与える、一連の C末端ペプチド断片に対応する陰イオン種の分子量に基づき、C末端アミノ酸の 逐次的分解に伴う分子量減少を測定する手法を採用している。

[0117]

なお、本発明の第一の形態にかかるペプチドのC末端アミノ酸配列解析方法では、分子量の差異に基づき、逐次的に除去されたアミノ酸を特定するため、同一の式量を有する、ロイシン(Leu)残基とイソロイシン(Ile)残基とを弁別することは原理的に不可能であり、この点は、従来の質量分析法を利用するC末端アミノ酸配列解析手法と同様である。一方、グルタミン(Gln)残基とリシン(Lys)残基も同一の式量を有するものの、リシン(Lys)残基の側鎖にNーアルカノイル化を施すため、本発明では、両者の弁別が可能となっている。また、C末端アミノ酸を除去する反応では、反応式(Ib)に例示するように、アミド結合のエノール型への変換と、それに続く、5ーオキサゾロン環構造の形成が必須であり、アミド結合を構成するカルボニル基(C=O)とイミノ基(ーNHー)が存在しない環状アミノ酸プロリン(Pro)がC末端アミノ酸となった時点で、それ以上の分解反応は進行しない。逆には、処理時間を延長した際、それ以上のC末端アミノ酸の除去が起きないことを確認することで、その要因となるアミノ酸残基は、環状アミノ酸プロリン(Pro)と推定することが可能

である。

[0118]

一方、本発明において、ペプチドより化学的手段によりC末端アミノ酸を逐次 的に分解して、一連の反応生成物を得る反応では、アルカン酸無水物とパーフル オロアルカン酸を作用させるため、仮に、ペプチド中のセリン残基(-NH-C H (CH₂OH) - CO-) やトレオニン残基 (-NH-CH (CH₃) O H)-CO-)に存在するヒドロキシ基、N末端のアミノ基、リシン残基(-N $H-CH(CH_2CH_2CH_2CH_2NH_2)-CO-)$ の ϵ 位のアミノ基に対して 、予めOーアシル化、Nーアシル化保護を行う前処理工程を実施しなくとも、か かるC末端アミノ酸を逐次的に分解する反応条件では、これらOーアシル化、N ーアシル化反応も併行的に進行する。そのため、セリン残基(-NH-CH(C H₂OH) -CO-) やトレオニン残基 (-NH-CH (CH (CH₃) OH) -CO-) に存在するヒドロキシ基に起因する、N, O-アシル転位反応等の副次 反応に対する、競争的な阻害効果が達成される。しかしながら、本発明では、最 終的にペプチド断片の分子量を測定するため、ペプチド中のセリン残基(-NH -CH (CH₂OH) -CO-) やトレオニン残基 (-NH-CH (CH₃) 〇H) - C〇-) に存在するヒドロキシ基などに起因するペプチド鎖途中での 断裂をより確実に防止する必要があり、C末端アミノ酸を逐次的に分解する反応 工程に先立ち、予めO-アシル化、N-アシル化保護を行う前処理工程を実施す る構成を選択している。

[0119]

仮に、最終的に得られる反応産物において、セリン残基やトレオニン残基にアセチル化がなされたものが多数混入していると、かかる多アセチル化体と、脱アセチルがなされたものとの分子量差は、式量42の整数倍、具体的には、84、126、168は、セリン残基(-NH-CH(CH2OH)-CO-)の式量87、グルタミン残基(-NH-CH(CH2CH2-CONH2)-CO-)の式量128、グルタミン酸残基(-NH-CH(CH2CH2-COOH)-CO-)の式量129、N-アセチルリシン残基(-NH-CH(CH2CH2CH2 CH2NH-COCH3)-CO-)の式量170と類似しており、場合によって

は、多アセチル化体を主なビークと誤認し、脱アセチルがなされたものを、前記するアミノ酸の除去がなされたものとする懸念がある。本発明では、後処理工程における加水処理において、セリン残基やトレオニン残基における〇ーアシル化保護に対する脱保護が十分に進行する条件を選択することで、かかる懸念に対する十分な対策もなされている。加えて、ペプチド断片化を行った後、分子量の測定を行うことで、測定される分子量を、式量差が1であるグルタミン残基とグルタミン酸残基との弁別が可能な分析精度の測定がなされる範囲としており、上述する残留しているアセチル基数の差と、類似する式量を示すアミノ酸残基の間では、式量差が2~3であり、多くの場合、かかる誤認を生じる可能性は払拭している。

[0120]

なお、前記反応用の液状試薬、あるいはそのコンポーネント・キットの液状試薬それぞれを収納でき、前記試料容器中に保持されるペプチド試料に対して、前記反応用の液状試薬を一定量づつ加え、しかもそれらを直接接触しない状態を維持可能な液状試薬の保持機構を具え、前記試料容器をその内部に収納可能な反応容器は、その内部を真空排気でき、また、反応終了後、残余する反応用の液状試薬を、減圧下、留去することができ、反応時には、気密構造とできる形態とすることが好ましい。また、かかる反応容器内で、試薬の蒸気を発生する際、容器壁と反応を生じることのない材質とすることが必要である。従って、化学反応の反応容器に利用されるガラス材料を利用したものが好適である。また、密閉操作に利用されるコック類は、テフロンなどの材質のものが好適に利用される。

[0121]

引き続き、本発明の第二の形態にかかるペプチドのC末端アミノ酸配列解析方法について、より詳しく説明する。

[0122]

先ず、本発明の第二の形態は、上述する本発明の第一の形態が対象とする、予め単離処理されているペプチドの乾燥試料に代えて、予めゲル電気泳動法による分離がなされ、該ゲル担体上に担持された状態のペプチドを対象としている。従って、ゲル担体上に担持された状態のペプチドに対しては、C末端アミノ酸を逐

次的に分解する反応に際して、蒸気状の反応試薬を利用する固相における反応手法を有効に適用できないため、ゲル担体中に、相当する反応試薬を浸潤させ、液相反応を行わせる手法に変更している。その際、上述する本発明を特徴付ける(1)~(6)の工程中、(1)~(3)に相当する、対象とするペプチドより、化学的手段によりC末端アミノ酸を逐次的に分解して得られる一連の反応生成物を含む混合物を調製する工程では、対象とするペプチドを、ゲル担体から予め単離処理せず、該ゲル担体上に担持された状態のまま、ペプチド試料に対して、そのC末端アミノ酸を逐次的に分解する反応を可能としている。

[0123]

すなわち、本発明の第二の形態では、本発明を特徴付ける(1)~(6)の工程中、(1)~(3)に相当する工程として、かかるC末端アミノ酸を逐次的に分解する工程では、

予めゲル電気泳動法による分離がなされ、該ゲル担体上に担持された状態の対象とするペプチド試料に対して、次段のアシル化反応を行う前処理工程において、その障害となる水分を予め除去するため、ゲル担体中に含浸される水溶媒を、該ゲル状物質の溶解を引き起こさず、かつ、水に対して親和性を有する極性非プロトン性溶媒を用いて、希釈除去することにより、該ゲル担体の脱水処理を行う工程を設け、下記するアシル化保護を施す前処理工程、C末端アミノ酸の逐次的な分解工程、反応産物に対する加水処理を行う後処理工程を行う。

[0124]

なお、予めゲル電気泳動法による分離を行う際、利用されるゲル状物質は、特定の分子量範囲に相当する複数種のペプチドに関して、それぞれ個別な、分離されたスポット(又は、バンド)を示す条件、具体的には、ゲルを構成するポリアクリルアミドの含有比率を選択し、ゲル内部に形成される微細な穴構造内部の間隙サイズを調整する。その結果、分離されたスポット(又は、バンド)は、例えば、SDS-PAGE法では、それぞれペプチド鎖分子量、表面の電荷量の差異に起因する電気泳動速度の相違するペプチドが局在している。かかるペプチドは、ゲル中に形成される微細な穴構造内部に保持されており、ゲル状物質中に含浸される水を除去する際、該ゲル状物質の溶解を引き起こさず、かつ、水に対して

親和性を有する極性非プロトン性溶媒を用いて、水溶媒のみを該極性非プロトン性溶媒中に希釈・溶出する手法を利用すると、かかる脱水処理操作を終えた後も、目的とするペプチドは、分離されたスポット(又は、バンド)位置のゲル担体上に担持された状態に維持できる。すなわち、上述の脱水処理に利用する極性非プロトン性溶媒は、ゲルを構成するポリアクリルアミドなどのゲル状物質との親和性は、水溶媒より一般に劣っているため、ゲル状物質中の微細な穴構造の間隙サイズを維持していた、間隙表面に対して溶媒和している水溶媒の除去とともに、嵩体積の減少が進む。該脱水処理に利用する極性非プロトン性溶媒として、例えば、ポリアクリルアミド・ゲルを用いる際、好適な極性非プロトン性溶媒として、水に対して親和性に富む、アセトニトリル(CH3CN)などの炭素数4以下のニトリル類、アセトンなどの炭素数4以下のニトリル類、アセトンなどの炭素数4以下のニトリル類、アセトンなどの炭素数4以下のケトン類などを挙げることができる。また、これら脱水処理に利用する極性非プロトン性溶媒は、水よりも素散し易く、蒸散・乾固すると、嵩体積が減少し、収縮したゲル担体となる。

[0125]

は、前記脱水処理を施した後、該ゲル担体上に担持された状態の対象とするペプチド試料に対して、30℃~80℃の範囲に選択される温度において、該ゲル状物質内に浸潤でき、膨潤状態に維持可能である、双極性非プロトン性溶媒中に、アルカン酸無水物を溶解してなる溶液を用いて、該アルカン酸無水物溶液中に該ゲル担体を浸漬することにより、担持された状態の対象とするペプチド試料にアルカン酸無水物を作用させ、対象とするペプチドのN末端のアミノ基ならびに、該ペプチド中に含有される可能性のあるリシン残基側鎖上のアミノ基に、予め、前記アルカン酸無水物を構成するアルカン酸に由来するアシル基によるNーアシル化保護を施す。この前処理工程において施される、リシン残基側鎖のアミノ基に対するNーアシル化保護は、上述する最終的に、トリプシン消化処理を行った際、リシン残基のC末側ペプチド結合での切断を防止する目的を有するため、後述する加水処理において、リシン残基側鎖上のNーアシル化保護では、脱保護が進行しないものの、同時になされるOーアシル化保護においては、脱保

護が十分に進行するアシル基を選択することが望ましい。その際、本発明の第二

本発明の第二の形態においては、ペプチド鎖にアシル化保護を施す前処理工程

の形態においては、求電子的なアシル化剤であるアルカン酸無水物は、双極性非プロトン性溶媒中では、かかる溶媒に因る分子内の分極がなされ、ペプチドに対して作用させた際、アミノ基と、ヒドロキシ基に対して、Nーアシル化、ならびにOーアシル化反応が進行する。かかるNーアシル化、ならびにOーアシル化反応に付随して、該アルカン酸無水物由来のアルカン酸が副生すると、そのアルカン酸の示す触媒作用によって、Nーアシル化、ならびにOーアシル化反応の促進がなされる。つまり、本発明の第二の形態では、ゲル担体内で副生するアルカン酸の拡散・散逸は速やかには進まない点を利用し、ゲル担体中に留まっている、副生するアルカン酸を反応の促進を図る触媒として利用できるので、反応試薬として、アルカン酸無水物のみを使用している。

[0126]

この前処理工程で使用される、アルカン酸無水物は、30℃~80℃の範囲に選択される温度で、リシン残基側鎖のアミノ基に対するNーアシル化保護の反応が可能な反応性を示すもの、具体的には、炭素数2~4のアルカン酸由来の対称型酸無水物を利用することが好ましい。特には、炭素数2~4の直鎖アルカン酸由来の対称型無水物を利用することがより好ましい。すなわち、対称型のアルカン酸無水物を利用すると、副生するアルカン酸も同一種となるので、かかるNーアルカノイル化、〇一アルカノイル化反応の進行する間に、仮にアシル基交換反応が生じても、最終的に得られる、Nーアルカノイル化、〇一アルカノイル化保護に、異なるアルカノイル基が混在することは無い。従って、仮に、後述する加水処理において、〇一アルカノイル化保護の脱保護が達成されないものが、残留した場合にも、脱保護の達成されたものとの分子量差は、予め判明しており、かかる夾雑物に由来するピークの同定はより簡単なものとなる。このNーアシル化保護を施す前処理工程では、通常、無水酢酸を利用することがより望ましい。

[0127]

双極性非プロトン性溶媒中では、アルカン酸無水物の分子内分極が誘起され、 求電子反応試薬として、該ペプチドのアミノ基に作用する結果、30 \mathbb{C} 以上でも、十分にかかる \mathbb{N} -アシル化反応は進行する。通常、反応の促進を図るためには、反応温度を50 \mathbb{C} 以上に選択することが好ましいが、一般に、密閉された反応 容器内でかかる反応を行うため、反応容器内の機械的強度を考慮すると、100 で以下の範囲に選択することが望ましい。Nーアシル化反応に付随して、アルカン酸が生成するが、その量は僅かであり、かかるアルカン酸の示すプロトン供与能と、共存するアルカン酸無水物とに起因する副次的反応は、上述の温度範囲では、通常問題とはならない。より具体的には、系内に生成するアルカン酸は、例えば、パーフルオロアルカン酸と比較して、その酸触媒作用は格段に劣り、かつ、その存在量も少ないため、上述する温度条件では、パーフルオロアルカン酸とアルカン酸無水物とを利用するC末端アミノ酸を逐次的に分解する工程における主な反応、5ーオキサゾロン環構造の形成反応が副次的に起こるまでには至らない。更には、上述するパーフルオロアルカン酸とアルカン酸無水物とを利用するC末端アミノ酸を逐次的に分解する工程においてすら、抑制されている種々の副次反応、例えば、ペプチド主鎖アミド結合(一CONHー)の開裂は、かかるアルカン酸無水物のみを利用する前処理工程においては、なお一層の抑制がなされている。

一方、上記のゲルの再膨潤を起こさせる双極性非プロトン性溶媒は、該ゲル状物質内に浸潤でき、膨潤状態に維持可能である、比較的に分子サイズが小さく、かつ、ゲル状物質に対する親和性に優れた有機溶媒が好ましい。加えて、上述するN-アルカノイル化、O-アルカノイル化の反応過程において、アルカン酸無水物の分子内分極を誘起可能な、高い双極性を示すとともに、反応副生成物であるアルカン酸に対して、優れた溶媒であることが好ましい。なお、上記反応温度において、揮発・蒸散することの少ない双極性非プロトン性溶媒が、より好ましく、例えば、ホルムアミド(HCONH2)などは、ポリアクリルアミド・ゲルを用いる際、以上に述べた要件全てを十分に満足するものである。

[0128]

所定の反応時間が経過した時点で、ゲル担体中のアルカン酸無水物を除去して、反応を停止するため、該ゲル状物質の溶解を引き起こさず、かつ、アルカン酸無水物、ならびに双極性非プロトン性溶媒に対して親和性を有する極性非プロトン性溶媒を用いて、ゲル担体全体を洗浄する。すなわち、該極性非プロトン性溶媒による洗浄により、ゲル担体中に浸潤していたアルカン酸無水物、双極性非プ

ロトン性溶媒は、拡散によって、希釈、除去される。例えば、ポリアクリルアミド・ゲルを用いる際、上述する洗浄用途に適する要件を満足する極性非プロトン性溶媒としては、アセトニトリル(CH₃CN)などの炭素数4以下のニトリル類、アセトンなどの炭素数4以下のケトン類などを挙げることができる。通常、この希釈、洗浄に利用する極性非プロトン性溶媒として、上述する脱水処理工程で使用する極性非プロトン性溶媒を利用することが好ましい。また、これら洗浄処理に利用する極性非プロトン性溶媒は、水よりも蒸散し易く、蒸散・乾固すると、嵩体積が減少し、収縮したゲル担体となる。

[0129]

該ゲル状物質内に浸潤でき、膨潤状態に維持可能である、双極性非プロトン性溶媒中に、パーフルオロアルカン酸をアルカン酸無水物に対して少量となる比率で溶解してなる混合溶液を用いて、該混合溶液中に該ゲル担体を浸漬することにより、担持された状態の対象とするペプチド試料にアルカン酸無水物とパーフルオロアルカン酸とを作用させ、

ペプチドのC末端において、下記する一般式(III):

[0130]

【化17】

[0131]

(式中、

R1は、ペプチドのC末端アミノ酸の側鎖を表し、

R2は、前記C末端アミノ酸の直前に位置するアミノ酸残基の側鎖を表す)で表記される5-オキサゾロン構造を経て、該5-オキサゾロン環の開裂に伴いC末端アミノ酸の逐次的分解を行う。

[0132]

このパーフルオロアルカン酸とアルカン酸無水物とを利用する、5-オキサゾロン環形成の反応は、先ず、下記する反応式(Ia):

【化18】

[0134]

で示されるケトーエノール互換異性化の過程において、ゲル担体の穴中に担持されているペプチド鎖に、パーフルオロアルカン酸をプロトン供与体として機能させることで、エノール型をとる比率を高めている。

[0135]

次いで、このエノール型に対して、C末端カルボキシ基の活性化を行い試薬として、アルカン酸無水物を利用し、そのC末端カルボキシ基を、例えば、下記の反応式(Ib):

[0136]

【化19】

[0137]

で例示されるような、非対称型酸無水物へと変換し、活性化されたC末端カルボキシ基と、エノール型のヒドロキシ基との反応などが、5ーオキサゾロン環形成の促進に関与している。双極性非プロトン性溶媒中には、アルカン酸無水物は、パーフルオロアルカン酸と比較して、高い濃度で含有させておくことで、かかる反応は、穏和な温度条件で進行でき、反応温度を30℃~80℃の範囲に選択することが可能となっている。

[0138]

一方、本発明の第二の形態でも、パーフルオロアルカン酸の触媒作用は、そのプロトン供与能を利用するものであり、該パーフルオロアルカン酸の示すp K a は、0. $3\sim2$. 5 の範囲であるパーフルオロアルカン酸を用いることが好ましい。なお、前記の反応温度において、利用する双極性非プロトン性溶媒中に均一に溶解可能な、炭素数 $2\sim4$ のパーフルオロアルカン酸は、より適するものであり、さらには、直鎖状の炭素数 $2\sim4$ のパーフルオロアルカン酸が、より適するものであり、内体的には、トリフルオロ酢酸(CF_3COOH)、ペンタフルオロプロパン酸(CF_3CF_2COOH)、ペプタフルオロブタン酸($CF_3CF_2CF_2COOH$)を利用することがより望ましい。

[0139]

また、C末端カルボキシ基の活性化に利用されるアルカン酸無水物は、反応温度まで昇温した際、適正な反応性を与えるものが好ましく、従って、炭素数2~4のアルカン酸の対称型酸無水物を用いることが好ましい。なかでも、前記対称型酸無水物として、炭素数2~4の直鎖アルカン酸の対称型酸無水物を用いることがより好ましく、特には、炭素数2の直鎖アルカン酸の対称型酸無水物、すな

わち、無水酢酸が好適に利用できる。かかるアルカン酸無水物は、C末端カルボキシ基の活性化を図り、さらに、5ーオキサゾロン環形成に適する配置を採る上で、その配向における立体障害を生じることの少ないものが好ましく、その点でも、無水酢酸を利用するとより好適である。

[0140]

また、上記する活性化試薬として利用される、アルカン酸無水物は、反応に従 って、消費されるため、予め、ゲルの膨潤に利用する双極性非プロトン性溶媒中 に、ペプチドとの反応に消費される量に対して、大過剰量を溶解しておき、その 濃度低下を抑制することが望ましい。具体的には、ゲルの膨潤に用いる混合溶液 中において、アルカン酸無水物とパーフルオロアルカン酸との含有比率は、アル カン酸無水物100容当たり、パーフルオロアルカン酸1~20容の範囲に選択 し、その際、双極性非プロトン性溶媒中における、アルカン酸無水物の含有濃度 は、10~30%(体積%)の範囲に選択することがより望ましい。反応時間は 、反応温度、双極性非プロトン性溶媒中に含有されるアルカン酸無水物とパーフ ルオロアルカン酸の含有濃度に依存し、加えて、極性非プロトン性溶媒を利用す る脱水処理に伴って、収縮したゲル担体の膨潤に要する時間をも考慮して、適宜 選択することが望ましい。例えば、ポリアクリルアミド・ゲル(12.5質量%)に対して、上述のアセトニトリルを利用して脱水処理を施した後、後述のホル ムアミドなどの双極性非プロトン性溶媒中に浸漬して、ゲル担体の再膨潤を達成 するに要する時間は、例えば、40℃では、3時間程度であるため、全体の反応 時間は、かかるゲル担体の再膨潤を終えた後、所望のアミノ酸残基数、C末端ア ミノ酸の選択的な分解を達成するに要する時間を加えたものに選択する。

[0141]

一方、上記のゲルの再膨潤を起こさせる双極性非プロトン性溶媒は、該ゲル状物質内に浸潤でき、膨潤状態に維持可能である、比較的に分子サイズが小さく、かつ、ゲル状物質に対する親和性に優れた有機溶媒が好ましい。加えて、上述する式(Ia)のケトーエノール互換異性化の過程において、そのエノール体の比率を維持可能な、高い双極性を示すとともに、溶質分子のアルカン酸無水物、パーフルオロアルカン酸、ならびに、反応副生成物であるアルカン酸に対して、優

れた溶媒であることが好ましい。なお、上記反応温度において、揮発・蒸散することの少ない双極性非プロトン性溶媒が、より好ましく、例えば、ホルムアミド (HCONH₂) などは、ポリアクリルアミド・ゲルを用いる際、以上に述べた 要件全てを十分に満足するものである。

[0142]

なお、上述するアルカン酸無水物、パーフルオロアルカン酸、ならびに、反応 副生成物であるアルカン酸に対して、優れた溶解性をもたらす双極性非プロトン 性溶媒は、水分子をも容易に溶解することが可能である。従って、前記双極性非 プロトン性溶媒を用いる混合溶液中での反応処理に際して、前記反応系は、水分 を除去した、乾燥雰囲気下に保たれることが好ましい。すなわち、上記の式(I b)に示される反応中間体、非対称型酸無水物へと変換し、活性化されたC末端 カルボキシ基は、反応系内に水分子が混入すると、加水分解を受け、元の末端カ ルボキシ基へと戻ってしまう。かかる失活性化過程を回避するため、反応系は、 水分を除去した状態を維持することが好ましい。

[0143]

例えば、対象とするペプチドを構成するアミノ酸残基のうち、メチオニンに存在するイオウが、系内に混入する酸素により酸化を受け、その式量が変化することもある。この酸素による酸化を防止することは、分子量の測定を基礎とする本発明の方法においては、かかる酸化を抑制することは、より高い確度を達成する上で、より好ましいものとなる。

[0144]

例えば、反応系を、水分に加えて、酸素も除去された乾燥雰囲気下に保つ手段 としては、反応を行う系を気密状態とし、系外からの、水分、酸素の浸入を防止 するとともに、液の注入、排出操作も、乾燥処理した不活性気体、例えば、窒素 雰囲気下で行うことが望ましい。

[0145]

また、本発明の第二の形態においても、一旦形成された5ーオキサゾロン環から、例えば、反応式(II')で表記される反応:

[0146]

【化20】

[0147]

等の反応を経て、C末端のアミノ酸の離脱と、次段の反応中間体の形成を進行して、逐次的なC末端アミノ酸の選択的な分解が進むと推断される。従って、かかる反応を終えた後、得られる反応産物は、上述する反応式(II)に示される、C末端にカルボキシ基が表出されているもの以外に、中間産物である5ーオキサゾロン環構造に留まるもの、あるいは、反応中間体の一形態として、C末端が非対称型酸無水物に至ったものも混入したものとなる。

[0148]

かかる逐次的なC末端アミノ酸の分解反応は、少なくとも、反応式(Ib)で例示される5ーオキサゾロン環構造の形成過程と、反応式(II')で例示される5ーオキサゾロン環構造の開裂による末端アミノ酸の分離過程との二段階の素反応から構成される。そのため、全体の反応速度は、これら各過程の反応速度の双方に依存するものの、主に、利用するアルカン酸無水物とパーフルオロアルカン酸の濃度ならびに反応温度に依存している。加えて、一連の反応産物は、逐次的な反応で形成されるため、得られる一連の反応産物において達成される、短縮されるC末端アミノ酸配列の最大長は、処理時間が長くなるとともに、延長される。従って、かかる逐次的なC末端アミノ酸の選択的な分解処理工程における処理時間は、主に、利用するアルカン酸無水物とパーフルオロアルカン酸の濃度ならびに反応温度に応じて、また、解析すべきC末端アミノ酸配列の目標とするアミノ酸長をも考慮して、適宜選択するものである。

[0149]

逐次的なC末端アミノ酸の選択的な分解反応の停止は、反応系の温度を低下するとともに、ゲル担体中に浸潤している反応試薬、すなわち、パーフルオロアルカン酸とアルカン酸無水物を希釈・除去することで行う。具体的には、C末端ア

ミノ酸の逐次的分解反応に利用した混合溶液を、該ゲル状物質の溶解を引き起こさず、かつ、前記パーフルオロアルカン酸とアルカン酸無水物、ならびに双極性非プロトン性溶媒に対して親和性を有する極性非プロトン性溶媒を用いて、希釈除去することにより、分解反応の停止と反応試薬の除去を行う。なお、かかる反応試薬の希釈・除去に、混合溶液の調製に利用する双極性非プロトン性溶媒を利用することも可能であるが、反応式(Ib)で例示される5ーオキサゾロン環構造の形成過程を停止する上では、エノール型中間体の安定化に寄与の少ない極性非プロトン性溶媒を利用する、パーフルオロアルカン酸とアルカン酸無水物、ならびに双極性非プロトン性溶媒の除去工程とすることがより望ましい。少なくとも、反応試薬の希釈・除去工程の最終段では、極性非プロトン性溶媒を利用する希釈・除去の操作を設ける。例えば、ポリアクリルアミド・ゲルを用いる際、これらの条件を満足する極性非プロトン性溶媒としては、アセトニトリル(CH3CN)などの炭素数4以下のニトリル類、アセトンなどの炭素数4以下のケトン類などを挙げることができる。

[0150]

本発明の第二の形態では、前記C末端アミノ酸を逐次的に分解する反応で得られる一連の反応生成物に対する加水処理を行う、後処理工程も、これら一連の反応生成物を含むペプチド混合物を、該ゲル担体上に担持された状態としたまま、実施する。すなわち、C末端アミノ酸を逐次的に分解する反応で得られる一連の反応生成物を含む混合物に対して、該ゲル担体上に担持された状態のまま、塩基性含窒素芳香環化合物または第三アミン化合物を溶解する水溶液を利用し、該水溶液中にゲル担体を浸漬することにより、前記塩基性の窒素含有有機化合物の共存下、前記反応生成物ペプチドに水分子を作用させ、加水処理を施す。

[0151]

この加水処理において、塩基性含窒素芳香環化合物または第三アミン化合物は、反応式(II')に示される5ーオキサゾロン環構造、ならびに、次段の反応中間体(酸無水物体)の加水分解反応を触媒するものの、それ自体が、5ーオキサゾロン環構造または反応中間体(酸無水物体)と反応して、不要な副生物を生じることがなく、好適な塩基触媒として機能する。具体的には、反応式(II')に

示される5-オキサゾロン環構造、ならびに、次段の反応中間体(酸無水物体) の加水分解反応では、下記反応式(IV)に示すように、反応産物のペプチド鎖の C末端にカルボキシ基が表出する。

[0152]

【化21】

上記の加水処理に利用する、塩基性含窒素芳香環化合物または第三アミン化合物は、例えば、残留しているC末端が非対称型酸無水物に至ったものと反応して、アミド結合を形成することがなく、また、水溶液とした際、均一な溶液とできるので、好ましいものである。利用可能な、塩基性含窒素芳香環化合物としては、極性非プロトン性溶媒に高い溶解性を示す、単環式の含窒素芳香環化合物が好ましく、例えば、ピリジンはより好適に利用できる。また、利用可能な第三アミン化合物は、前記ピリジン塩基が示す比較的に弱い塩基性と同程度の塩基性を有するものが好ましく、例えば、DMAE((CH3)2N-CH2CH2OH)などが好適に利用できる。例えば、ピリジンを利用する際には、水溶液全体の体積に対して、ピリジンを、5~15体積%の範囲、より具体的には、10体積%に選択することが好ましい。また、(ジメチルアミノ)エタノール(DMAE)を利用する際には、水溶液全体の体積に対して、DMAEを、1~20体積%の範囲、より具体的には、10体積%に選択することが好ましい。

[0154]

これら単環式の含窒素芳香環化合物や第三アミン化合物は、水溶液として、上記反応産物を担持しているゲルに作用させる。この後処理においては、親水性に富むゲル状物質中に、かかる有機塩基を含有する水溶液は、速やかに浸潤する。

なお、速やかに加水反応を完了するためには、反応温度を60℃以上に選択することが好ましいが、一般に、密閉された反応容器内でかかる反応を行うため、反応容器内の機械的強度を考慮すると、100℃以下の範囲に選択することが望ましい。

[0155]

この有機塩基を含有する水溶液を用いた加水処理は、反応産物のペプチド鎖の C末端にカルボキシ基を表出させることを主な目的としているが、その条件は、 前処理工程でなされた〇ーアシル化保護の脱保護も同時に進行するが、一方、N 末端のアミノ基、ならびに、リシン残基側鎖上のアミノ基に対するNーアシル化 保護では、脱保護が進行しないように選択されている。

[0156]

なお、加水処理に利用する塩基性含窒素芳香環化合物または第三アミン化合物が残余すると、反応産物の表出したC末端にカルボキシ基に対して、かかる窒素塩基が付加塩を形成したものが混在する状態となるため、ゲル担体中に含浸される水溶液を、該ゲル状物質の溶解を引き起こさず、かつ、水に対して親和性を有する極性非プロトン性溶媒を用いて、希釈除去することにより、該ゲル担体の再脱水処理を施すとともに、加水処理に利用する塩基性含窒素芳香環化合物または第三アミン化合物を水とともに、希釈除去することが好ましい。従って、この再脱水処理の工程において利用する極性非プロトン性溶媒は、塩基性含窒素芳香環化合物または第三アミン化合物に対しても、高い溶解性を有するものがより好ましい。例えば、ポリアクリルアミド・ゲルを用いる際、これらの条件を満足する、再脱水処理工程用の極性非プロトン性溶媒としては、アセトニトリル(CH3CN)などの炭素数4以下のニトリル類、アセトンなどの炭素数4以下のケトン類などを挙げることができる。

[0157]

加えて、上述する加水処理は、C末端アミノ酸の逐次的分解反応の後、一旦、 反応試薬のアルカン酸無水物ならびにパーフルオロアルカン酸に対する、極性非 プロトン性溶媒を利用する希釈・除去の操作を終えた後に実施するだけでなく、 C末端アミノ酸の逐次的分解反応と該加水処理とを、連続して実施することも可 能である。具体的には、C末端アミノ酸の逐次的分解反応は、その反応温度を下げて、その反応停止を図りつつ、有機塩基を含有する水溶液を加えると、アルカン酸無水物とパーフルオロアルカン酸の組み合わせてなる反応試薬の失活、ゲル中からの溶出が生じ、C末端アミノ酸の逐次的分解反応の停止と、反応試薬の失活・除去がなされる。引き続き、反応産物に対する加水処理も行うことができ、最終的に、極性非プロトン性溶媒を利用する再脱水処理工程を施すことで、有機塩基を含有する水溶液とともに、アルカン酸無水物に対応するアルカン酸とパーフルオロアルカン酸、双極性非プロトン性溶媒の除去と、再脱水がなされるため、一旦極性非プロトン性溶媒を利用する洗浄・除去操作を中間に設ける際と、実質的に差異を持たないものとなる。

[0158]

既に説明した本発明の第一の形態と同じく、本発明の第二の形態においても、 C末端アミノ酸の逐次的分解に伴う分子量減少を測定する工程では、トリプシン 消化処理を施して、アミノ酸長の長いペプチド鎖を断片化して、回収された該ト リプシン消化処理済みペプチド断片を含む乾燥混合物について、MALDI-T OF-MS法を利用し、該イオン化処理で生じる陽イオン種による分子量測定、 ならびに陰イオン種による分子量測定を行う。

[0159]

その際、本発明の第二の形態における特徴の一つは、前記加水処理済みの一連の反応生成物を含む混合物に対して、再脱水処理後、該ゲル担体上に担持された状態で、かかるトリプシン消化処理の工程を行う点にある。具体的には、再脱水処理後、前記加水処理済みの一連の反応生成物を含む混合物に対して、

該ゲル担体上に担持された状態で、緩衝溶液中に溶解するトリプシンを作用させ、該ペプチド鎖のN末端のアミノ基ならびに、該ペプチド鎖に含有されている可能性のあるリシン残基側鎖のアミノ基に対する上記Nーアシル化保護が保持されている、該ペプチド鎖のトリプシン酵素特異的な消化処理を施して、該ペプチド鎖中に存在するアルギニン残基のC末側ペプチド結合の選択的な切断によるペプチド断片化を行っている。

[0160]

そもそも、二次元電気泳動法やSDS-PAGE法などの、ゲル電気泳動法による分子量分離に利用するゲル担体は、一定範囲以上のアミノ酸長を有するペプチド鎖は、そのゲル内の穴構造に保持する機能を有し、電気泳動速度に明確な差異を与えるものの、ペプチド鎖のアミノ酸長が、かかる閾値分子量より小さくなると、ゲル内の穴構造中に保持する機能は急速に失われる。本発明の第二の形態では、このゲル電気泳動に利用されるゲル担体の特異性を利用して、アミノ酸長の長いペプチド鎖を、そのゲル担体上に担持された状態を維持したまま、C末端アミノ酸を逐次的に分解除去し、一連の反応産物を調製する工程を行った後、トリプシン消化処理によってペプチドの断片化を行うことで、目的とする一群のC末端側ペプチド断片を、容易にゲル担体から溶出させ、回収することを可能としている。

[0161]

本発明の第二の形態でも、このトリプシン消化処理を行う際、前記加水処理済みの一連の反応生成物を含む混合物では、該ペプチド鎖のN末端のアミノ基ならびに、該ペプチド鎖に含有されている可能性のあるリシン残基側鎖のアミノ基に対するNーアシル化保護が保持されているので、Nーアシル化保護リシン残基のC末側ペプチド結合の切断は生じず、該ペプチド鎖中に存在するアルギニン残基のC末側ペプチド結合の選択的な切断が起こる。既に説明した通り、該ペプチド鎖中に存在するアルギニン残基のC末側ペプチド結合の選択的な切断を行うと、アミノ酸長の長いペプチド鎖から、複数個のペプチド断片が生成し、その際、目的とする一群のC末端側ペプチド断片は、通常、元のペプチド鎖の、数分の1のアミノ酸長となるため、ゲル担体から遊離し、トリプシン溶液中に溶出する。勿論、トリプシン溶液中には、その他のペプチド断片も、同じように溶出するが、緩衝溶液とゲル担体とを分離すると、遊離した種々のペプチド断片は、緩衝溶液中に回収される。その後、脱塩処理を施し、前記緩衝溶液成分を除去して、該トリプシン消化処理済みペプチド断片を回収し、乾燥する。

[0162]

これ以降の工程、すなわち、回収された該トリプシン消化処理済みペプチド断 片を含む乾燥混合物について、例えば、MALDI-TOF-MS法を利用して 、分子量測定、その測定結果に基づく、C末端アミノ酸配列の決定までの操作は、上述する本発明の第一の形態と同じである。

[0163]

すなわち、本発明の第二の形態にかかるペプチドのC末端アミノ酸配列解析方法は、多種のタンパク質を含む試料中から、例えば、二次元電気泳動法やSDSーPAGE法などの、ゲル電気泳動法によって分離されたタンパク質に関しては、そのおおよその分子量は推定できており、仮に、分離されたスポット(又は、バンド)からかかるタンパク質を単離回収しても、そのアミノ酸数が大きく、上述する、本発明の第一の形態にかかる手法を利用して、一群のC末端側ペプチド断片とした上で、分子量測定、その測定結果に基づく、C末端アミノ酸配列の決定までの操作を行う必要のある場合に、予め、分離されたスポット(又は、バンド)からかかるタンパク質を単離回収する代わりに、分離されたスポット(又は、バンド)からかかるタンパク質を単離回収する代わりに、分離されたスポット(又は、バンド)からかかるタンパク質を単離回収する操作を省くことができ、しかも、単離回収工程における回収収率に影響されることなく、同等の確度で、C末端アミノ酸配列の決定を実施することが可能である。

[0164]

なお、本発明の第二の形態にかかる方法を適用する際、対象とするペプチド試料は、鎖状ペプチドとし、予めゲル電気泳動法による分離を行い、該ゲル担体上に担持された状態の単一スポットとするが、該ゲル電気泳動法は、一次元方向に電気泳動をなす従来のSDS-PAGE法は勿論のこと、ゲル上で二次元的に泳動を行い、より高い分離を行う、二次元泳動法を適用したものでもよい。かかる二次元泳動法を適用して、分離されるペプチド試料は、夾雑物の混入がなく、より少ないサンプル量であっても、本発明の第二の形態にかかる方法によって、そのC末端アミノ酸配列決定が可能となる。また、予めゲル電気泳動法による分離を行う場合、対象とするペプチド中に、分子内におけるシステイン残基相互間でーS-S-結合を形成するものは、2-スルファニルエタノール(HS-C2H2-OH:2-メルカプトエタノール)、DTT(ジチオトレイトール:トレオー

1,4-ジスルファニルー2,3-ブタンジオール)などの還元性試薬を添加して、還元状態で電気泳動を行い、単一のスポット化を行うことが好ましい。あるいは、予め、分子内におけるシステイン残基相互間での一S-S-結合を還元し、さらには、還元型のシステインに対して、ヨード酢酸などを用いたカルボキシメチル化などの修飾を施し、単一のスポット化を行うことが好ましい。このように、分子内におけるシステイン残基相互間での一S-S-結合を形成してなく、鎖状ペプチドとすることで、トリプシン消化もより効率的になされる。

[0165]

次に、本発明にかかる質量分析法、なかでも、MALDI-TOF-MS法による陽イオン種による分子量測定、ならびに陰イオン種による分子量測定スペクトルの解析方法に関して、より詳しく説明する。

[0166]

本発明では、トリプシン消化処理で生成するペプチド断片に由来するイオン種の分子量、すなわち、m/z値の測定に、MALDI-TOF-MS装置を利用することで、高分子量のペプチド鎖に関しても、その分子量を精度よく測定することを可能としている。トリプシン消化処理を施す長いペプチド鎖は、そのN末端のアミノ基、ならびに、リシン残基側鎖のアミノ基は、上記N-アシル化保護処理で導入されるアルカノイル基が置換した状態とされているため、アルギニン残基のC末側ペプチド結合のみで選択的な切断を受ける。従って、解析対象の長いペプチド鎖は、含有されるアルギニン残基数と同じ個数の、C末端にアルギニン残基が一つ含まれるペプチド断片複数と、途中にアルギニン残基を含んでいない、元のペプチド鎖のC末端側ペプチド断片とに分割される。また、C末端にアルギニン残基が一つ含まれる、共通するペプチド断片複数と、アルギニン残基を含んでいない、そのペプチド鎖のC末端側ペプチド断片とに分割される。

[0167]

その他に、上述するN-アシル化保護処理の際、セリン残基やトレオニン残基などのヒドロキシ基におけるO-アシル化保護も進行し、加水処理において、そのO-アシル化に対する脱保護も十分に進行する条件を選択するものの、一部、

Oーアシル化に対する脱保護が達成されないものが、少量混入することが少なくない。さらには、C末端アミノ酸の逐次的な除去反応の際、アシル基交換反応等の副次的反応も僅かに存在し、利用するパーフルオロアルカン酸に由来するパーフルオロアルカノイル基が導入され、残留するものが、僅かな量混入することもある。

[0168]

すなわち、上述するトリプシン消化処理で生成するペプチド断片の混合物について、MALDI-TOF-MS法によって、該イオン化処理で生じる陽イオン種による分子量測定、ならびに陰イオン種による分子量測定を行った際、C末端にアルギニン残基が一つ含まれる、共通するペプチド断片複数、ならびに、途中にアルギニン残基を含んでいない、C末端アミノ酸の逐次的な除去を反映する一連のC末端側ペプチド断片群が、その主要なイオン種であるが、上述するアルカノイル基が余分に置換されている対応のペプチド断片に由来するイオン種も少量随伴することが少なくない。あるいは、場合によっては、アルカノイル基に代わり、上述するパーフルオロアルカノイル基が置換されている対応のペプチド断片に由来するイオン種も僅かな量随伴することもある。

[0169]

さらに、C末端アミノ酸の逐次的な除去反応において、例えば、下記式 (V)

[0170]

【化22】

$$O \longrightarrow \begin{matrix} \mathsf{NH}_2 \\ \mathsf{H} \end{matrix} \qquad \begin{matrix} \mathsf{H}_3\mathsf{C} \longrightarrow \begin{matrix} \mathsf{NH} \\ \mathsf{H} \end{matrix} \qquad \begin{matrix} \mathsf{NH} \\ \mathsf{H} \end{matrix} \qquad \begin{matrix} \mathsf{NH} \\ \mathsf{H} \end{matrix} \qquad \begin{matrix} \mathsf{CH}_3 \\ \mathsf{H} \end{matrix} \qquad \begin{matrix} \mathsf{C} \mathsf{NH} \\ \mathsf{N} \end{matrix} \qquad \begin{matrix} \mathsf{C} \mathsf{NH} \\ \mathsf{N} \end{matrix} \qquad \begin{matrix} \mathsf{C} \mathsf{NH} \\ \mathsf{N} \end{matrix} \qquad \begin{matrix} \mathsf{C} \mathsf{NH}_3 \\ \mathsf{N} \end{matrix} \qquad \begin{matrix} \mathsf{C} \mathsf{N} \end{matrix} \end{matrix} \qquad \begin{matrix} \mathsf{C} \mathsf{N} \end{matrix} \qquad \begin{matrix} \mathsf{C} \mathsf{N} \end{matrix} \qquad \begin{matrix} \mathsf{C} \mathsf{N} \end{matrix} \end{matrix} \qquad \begin{matrix} \mathsf{C} \mathsf{N} \end{matrix} \end{matrix} \qquad \begin{matrix} \mathsf{C} \mathsf{N} \end{matrix} \end{matrix} \qquad \begin{matrix}$$

で示される、側鎖上のカルバモイル基($-CO-NH_2$)からシアノ基(-CN)への変換反応や、下記式(VI):

[0172]

【化23】

$$O = CH_3$$

[0173]

で示される、側鎖上のアセチルオキシ基の脱離に由来する、セリン残基側鎖、トレオニン残基側鎖上での脱ヒドロキシ反応などの脱水が生じると、水分子の脱落に相当する分子量減少が起こる。この種の副次的な脱水反応も生じているペプチド断片に由来するイオン種も少量随伴することが少なくない。加えて、アルカノイル基の余分な置換と同時に、副次的な脱水反応も生じているペプチド断片に由来するイオン種も少量随伴することが少なくない。

[0174]

また、トリプシン消化処理を行う際、利用するトリプシンの自己消化産物、すなわち、他のトリプシンによって切断されたトリプシン由来のペプチド断片も、該ペプチド断片の混合物中に必然的に混入している。なお、トリプシンのアミノ酸配列は既知であるため、これらトリプシンの自己消化産物ペプチド断片に由来するイオン種は、いかなる分子量、m/z値で測定されるかは、予め判明している。勿論のことであるが、トリプシンの自己消化産物ペプチド断片に由来するイオン種は、上述するアルカノイル基が置換されているイオン種が随伴することはない。

[0175]

(VI)

[0176]

まず、C末端にアルギニン残基が一つ含まれる、共通するペプチド断片複数は、その断片C末端に、プロトン(H+)受容能に富むグアニジノ基を持つアルギニン残基が存在しており、プロトン(H+)が付加された陽イオン種の安定化が図られる結果、陽イオン種による分子量測定スペクトル上において、明確なピーク強度で観察される。同時に、C末端にアルギニン残基を有するものの、プロトン(H+)供与能を示すカルボキシ基(一COOH)がそのC末端に存在しており、陰イオン種による分子量測定スペクトル上においても、有意なピーク強度を有する陰イオン種ピークを与える。

[0177]

一方、途中にアルギニン残基を含んでいない、C末端アミノ酸の逐次的な除去を反映する一連のC末端側ペプチド断片群は、それら個々の量の総和は、前記C末端にアルギニン残基が一つ含まれる、共通する各ペプチド断片の量と等しいものの、一連のC末端側ペプチド断片群を構成する断片個々の量は、C末端アミノ酸の逐次的な除去反応の段数に応じて、相対的には少ないものとなる。これらのC末端側ペプチド断片群では、元のペプチド鎖自体のC末端側ペプチド断片は、偶々、C末端にアルギニン残基が存在することはあるものの、残る一連の反応産物由来のC末端側ペプチド断片群は、アルギニン残基を有することはない。また、これらC末端側ペプチド断片群のペプチドN末端には、プロトン(H+)受容能を有するアミノ基が、C末端には、プロトン(H+)使与能を示すカルボキシ基(-COOH)がそれぞれ存在しており、陰イオン種による分子量測定スペク

トル上において、有意なピーク強度を有する陰イオン種ピークを与え、同時に、 陽イオン種による分子量測定スペクトル上においても、有意なピーク強度を有す る陽イオン種ピークを与える。

[0178]

一方、上述する随伴するペプチド断片由来のイオン種、すなわち、余分なアルカノイル基に相当する分子量が増しているイオン種、水分子に相当する分子量の欠落を示すイオン種、ならびに、水分子の欠落と余分なアルカノイル基の付加に相当する分子量の増加を示すイオン種などは、一般に、前記主なペプチド断片由来のイオン種よりもそのピーク強度は有意に小さくなる。但し、これらの随伴するペプチド断片由来の陽イオン種が、陽イオン種による分子量測定スペクトル上において、有意なピーク強度を有する際には、陰イオン種による分子量測定スペクトル上でも、対応する陰イオン種のピークは、そのピーク強度は弱いとしても、精査すれば、その存在が確認されるはずである。同様に、これらの随伴するペプチド断片由来の陰イオン種が、陰イオン種による分子量測定スペクトル上において、有意なピーク強度を有する際には、陽イオン種による分子量測定スペクトル上において、有意なピーク強度を有する際には、陽イオン種による分子量測定スペクトル上において、有意なピーク強度を有する際には、陽イオン種による分子量測定スペクトル上でも、対応する陽イオン種のピークは、そのピーク強度は弱いとしても、精査すれば、その存在が確認されるはずである。

[0179]

加えて、本発明においては、トリプシン消化処理後、脱塩処理し、ペプチド断片を回収し、乾燥した後、MALDI-TOF-MS装置を利用して、トリプシン消化処理を施して得られるペプチド断片の混合物に由来するイオン種を測定している。このMALDI-TOF-MS法の特徴は、そのイオン化過程は、各ペプチド断片に対して、プロトン(H+)が付加された陽イオン種と、プロトン(H+)が離脱された陰イオン種とが生成されるものの、さらに、二次的なイオン化過程を引き起こし、親イオン種から大きなフラグメントが脱落した娘イオン種の生成は抑制されている。この特徴をも考慮すると、MALDI-TOF-MS装置を利用して、ペプチド断片の混合物について、測定モードを選択することにより、陽イオン種と陰イオン種とをそれぞれ個別に測定した際、C末端にアルギニン残基が一つ含まれる、共通するペプチド断片複数に関しては、各ペプチド断

片自体に由来するイオン種、ならびに、それと同じ部分アミノ酸配列を示す、上記の随伴するペプチド断片由来のイオン種以外に、例えば、親イオン種から大きなフラグメント(原子団)が脱落した娘イオン種が、有意なピーク強度を示すピークとして測定されることは回避される。つまり、各ペプチド断片自体に由来するイオン種に対して、アミノ酸残基一つ分の式量に相当する大きなフラグメント(原子団)が脱落した娘イオン種が、有意なピーク強度を示すピークとして測定される可能性は極めて低い。一方、途中にアルギニン残基を含んでいない、C末端アミノ酸の逐次的な除去を反映する一連のC末端側ペプチド断片群に関しては、これら一連のC末端側ペプチド断片自体に由来するイオン種は、そのピークのm/z値が、アミノ酸残基何れか一つ分の式量に相当するm/z値差で、順次配列されているピーク群として測定される。

[0180]

本発明では、トリプシン消化処理により断片化する際、その特異的な切断部位である、リシン残基とアルギニン残基のうち、リシン残基に関しては、その側鎖アミノ基をNーアルカノイル化保護した状態とすることで、トリプシン消化はアルギニン残基のみで生じる形態とされている。その結果、トリプシンを利用して、ペプチド鎖の特異的な分断処理を行った際に得られるC末端ペプチド断片は、長くとも、40アミノ酸、好ましくは、30アミノ酸を超えない範囲とされている。従って、目的とするC末端アミノ酸の逐次的な除去を反映する一連のC末端側ペプチド断片群に由来するイオン種を、測定されたMALDI-TOF-MS法による陽イオン種による分子量測定、ならびに陰イオン種による分子量測定スペクトルの解析処理により特定する際、その解析領域を、通常、4000を超えない範囲に限定することが可能である。

[0181]

また、C末端アミノ酸の逐次的な除去を反映する一連のC末端側ペプチド断片群に関して、少なくとも、C末端から3~4アミノ酸残基の部分配列を決定する場合、C末端アミノ酸の逐次的な除去がなされた最短の反応産物のC末端ペプチド断片は、少なくとも、5~6アミノ酸長とすることが望ましい。従って、一連のC末端側ペプチド断片群に由来するイオン種の少なくとも一つは、そのピーク

のm/z値が500以上の範囲に、明確なピーク強度で見出されることが望ましい。

[0182]

また、本発明にかかるMALDI-TOF-MS法による陽イオン種による分子量測定、ならびに陰イオン種による分子量測定スペクトルの解析方法は、上述する本発明の第一の形態、または第二の形態にかかるペプチドのC末端アミノ酸配列解析方法において、C末端アミノ酸の逐次的分解に伴う分子量減少を与える、一連のC末端側ペプチド断片群に由来するイオン種を、MALDI-TOF-MS法による陽イオン種による分子量測定スペクトル、ならびに陰イオン種による分子量測定スペクトルの双方を相互参照しつつ、解析することによって特定する方法である。その解析にあたって、上で説明した、C末端アミノ酸の逐次的な除去反応とトリプシン消化処理により断片化に起因する特徴点を利用している。

[0183]

先ず、ペプチド断片の混合物について、MALDI-TOF-MS装置でイオン種のm/z値を測定する際、C末端にアルギニン残基が一つ含まれる、共通するペプチド断片複数、ならびに目的とするC末端アミノ酸の逐次的な除去を反映する一連のC末端側ペプチド断片群は、各ペプチド断片に由来する、プロトン(H+)が付加された陽イオン種と、プロトン(H+)が離脱された陰イオン種とを生成するものの、陽イオン種と陰イオン種との生成比率は、それぞれ異なっており、陽イオン種による分子量測定スペクトル、または、陰イオン種による分子量測定スペクトル、または、陰イオン種による分子量測定スペクトルの一方のみを利用する解析では、明確なピーク強度を有するピークとして特定できない懸念があるため、本発明のスペクトルの解析方法では、双方を相互参照しつつ、解析を進める。その際、上に説明する理由から、該スペクトルの解析作業は、解析範囲をm/z値が4000以下に選択しても、通常問題とならない。

[0184]

まず、(工程1)では、測定されるMALDI-TOF-MS法による陽イオン種による分子量測定スペクトル、ならびに陰イオン種による分子量測定スペクトル中には、トリプシンの自己消化に由来するペプチド断片由来のイオン種ピー

クが混入するので、それらを特定する。トリプシンの自己消化に由来するペプチド断片は、そのC末端にリシン残基またはアルギニン残基を有しているN末側の断片群と、C末端側の断片であるが、その分子量は判明しており、その既知の分子量に基づき、m/z値が4000以下500以上の範囲において、各ペプチド断片に由来する、プロトン(H+)が付加された陽イオン種ピークと、プロトン(H+)が離脱された陰イオン種ピークとを特定する。

[0.185]

これらトリプシンに由来するイオン種ピークは、例えば、m/z値の系統的誤差の較正を行う上で、内部標準ピークとして利用することもできる。さらには、この内部標準ピークのピークm/z値と、半値全幅とを参照して、ノイズ性ピークを除去する上での基準に利用することもできる。

[0186]

次いで、(工程 2)の主要なイオン種ピークの特定工程では、トリプシン由来のイオン種ピークを除外した後、明確なピーク強度を示すイオン種ピークを選別する。具体的には、トリプシン由来のイオン種ピークを除外すると、残るイオン種ピーク中では、C末端にアルギニン残基が一つ含まれる、共通するペプチド断片複数、ならびに目的とするC末端アミノ酸の逐次的な除去を反映する一連のC末端側ペプチド断片群に由来するイオン種のいずれかが、陽イオン種による分子量測定スペクトル、ならびに陰イオン種による分子量測定スペクトルにおいて、最大のピーク強度を示すはずである。

[0187]

従って、トリプシン由来の陽イオン種ピークを除外した後、陽イオン種による 分子量測定結果中、最大のピーク強度を有する最大陽イオン種ピークを特定し、 該最大陽イオン種ピークのピーク強度を基準として、その1/40以上のピーク 強度を有する陽イオン種ピークを選別し、第一の陽イオン種ピーク群を形成する 。この第一の陽イオン種ピーク群は、少なくとも、C末端にアルギニン残基が一 つ含まれる、共通するペプチド断片複数に由来する陽イオン種ピーク群を含むも のとなる。

[0188]

一方、トリプシン由来の陰イオン種ピークを除外した後、陰イオン種による分子量測定結果中、最大のピーク強度を有する最大陰イオン種ピークを特定し、該最大陰イオン種ピークのピーク強度を基準として、その1/40以上のピーク強度を有する陰イオン種ピークを選別し、第一の陰イオン種ピーク群を形成する。例えば、C末端アミノ酸の逐次的な除去が、最大5アミノ酸残基となる反応条件、時間を選択すると、この5アミノ酸残基が除去された反応産物の含有比率は、1/50程度は超えるものとなり、従って、この第一の陰イオン種ピーク群は、通常、少なくとも、目的とするC末端アミノ酸の逐次的な除去を反映する一連のC末端側ペプチド断片群のうち、除去アミノ酸残基数が5以下のペプチド断片に由来する陰イオン種ピーク群を全て含むものとなる。

[0189]

(工程3)では、先ず、陽イオン種による分子量測定結果においては、明確なピーク強度を与えるものの、対応する陰イオン種の生成比率が低く、陰イオン種による分子量測定結果中では、明確なピーク強度を示さないものも存在する点を考慮して、明確なピーク強度を与える第一の陽イオン種ピーク群について、その対応する陰イオン種ピークを特定し、第二の陰イオン種ピーク群とする。

[0190]

C末端にアルギニン残基が一つ含まれる、共通するペプチド断片複数に由来する陽イオン種ピークに随伴している陽イオン種ピーク、すなわち、余分なアルカノイル基に相当する分子量が増している陽イオン種、水分子に相当する分子量の欠落を示す陽イオン種、ならびに、水分子の欠落と余分なアルカノイル基の付加に相当する分子量の増加を示す陽イオン種などは、一般に、前記主なペプチド断片由来の陽イオン種よりもそのピーク強度は有意に小さくなるものの、第一の陽イオン種ピーク群に属する場合であっても、これら随伴している陽イオン種ピークに対応する、随伴している陰イオン種ピークは、さらにピーク強度が小さく、第一の陰イオン種ピーク群に含まれていない場合も多い。これらの対応する、随伴している陰イオン種ピークは、この第二の陰イオン種ピーク群を特定する操作において、有意な陰イオン種ピークであることが確認される。

[0191]

次いで、陰イオン種による分子量測定結果においては、明確なピーク強度を与えるものの、対応する陽イオン種の生成比率が高くなく、陽イオン種による分子量測定結果中では、明確なピーク強度を示さないものも存在する点を考慮して、明確なピーク強度を与える第一の陰イオン種ピーク群について、その対応する陽イオン種ピークを特定し、第二の陽イオン種ピーク群とする。

[0192]

目的とするC末端アミノ酸の逐次的な除去を反映する一連のC末端側ペプチド断片群のうち、その存在比率が少ないものは、そのC末端側ペプチド断片に由来する陰イオン種ピークは、第一の陰イオン種ピーク群に属する場合であっても、対応する陽イオン種ピークは、さらにピーク強度が小さく、第一の陽イオン種ピーク群に含まれていない場合も多い。これら存在比率が少ないC末端側ペプチド断片の対応する陽イオン種ピークは、この第二の陽イオン種ピーク群を特定する操作において、有意な陰イオン種ピークであることが確認される。さらには、目的とするC末端アミノ酸の逐次的な除去を反映する一連のC末端側ペプチド断片群に由来する陰イオン種ピークに随伴している陰イオン種ピークは、一般に、前記主なペプチド断片由来の陰イオン種よりもそのピーク強度は有意に小さくなるものの、第一の陰イオン種ピーク群に属する場合であっても、これら随伴している陰イオン種ピークは、さらにピーク強度が小さく、第一の陽イオン種ピーク群に含まれていない場合も多い。これらの対応する、随伴している陽イオン種ピークは、この第二の陽イオン種ピーク群を特定する操作において、有意な陽イオン種ピークであることが確認される。

[0193]

(工程4)では、第一の陰イオン種ピーク群と第二の陰イオン種ピーク群との 積集合、すなわち、陰イオン種による分子量測定スペクトル上で明確なピーク強 度を示し、且つ、対応する陽イオン種も、陽イオン種による分子量測定スペクト ル上で明確なピーク強度で観測されている陰イオン種の群である、第三の陰イオ ン種ピーク群を設定する。通常、目的とするC末端アミノ酸の逐次的な除去を反 映する一連のC末端側ペプチド断片群のうち、その存在比率が大きなペプチド断 片に由来する陰イオン種は、この第三の陰イオン種ピーク群中に含まれる。

[0194]

同時に、第一の陰イオン種ピーク群と第二の陰イオン種ピーク群との和集合を、第四の陰イオン種ピーク群として設定する。この第四の陰イオン種ピーク群は、少なくとも、C末端にアルギニン残基が一つ含まれる、共通するペプチド断片複数、ならびに、目的とするC末端アミノ酸の逐次的な除去を反映する一連のC末端側ペプチド断片群に由来する陰イオン種ピークと、それらのペプチド断片に由来する陰イオン種ピークと、それらのペプチド断片に

[0195]

一方では、第一の陽イオン種ピーク群と第二の陽イオン種ピーク群との積集合、すなわち、陽イオン種による分子量測定スペクトル上で明確なピーク強度を示し、且つ、対応する陰イオン種も、陰イオン種による分子量測定スペクトル上で明確なピーク強度で観測されている陽イオン種の群である、第三の陽イオン種ピーク群を設定する。通常、C末端にアルギニン残基が一つ含まれる、共通するペプチド断片複数と、目的とするC末端アミノ酸の逐次的な除去を反映する一連のC末端側ペプチド断片群のうち、その存在比率が大きなペプチド断片に由来する陽イオン種は、この第三の陽イオン種ピーク群中に含まれる。

[0196]

同時に、第一の陽イオン種ピーク群と第二の陽イオン種ピーク群との和集合を、第四の陽イオン種ピーク群として設定する。この第四の陽イオン種ピーク群は、少なくとも、C末端にアルギニン残基が一つ含まれる、共通するペプチド断片複数、ならびに、目的とするC末端アミノ酸の逐次的な除去を反映する一連のC末端側ペプチド断片群に由来する陰イオン種ピークと、それらのペプチド断片に由来する陽イオン種ピークと、それらのペプチド断片に由来する陽イオン種ピークに随伴する陽イオン種ピークの多くを含むものとなる

[0197]

さらに、前記第三の陰イオン種ピーク群中に含まれる、各陰イオン種ピークについて、最大陰イオン種ピークのピーク強度を基準として、相対ピーク強度を算定し、また、対応する各陽イオン種ピークについて、最大陽イオン種ピークのピ

ーク強度を基準として、相対ピーク強度を算定する。そして、この相対ピーク強度を相互比較した際、対応する陽イオン種ピークが相対的により強いか、逆に、対応する陽イオン種ピークが相対的により強いかを検証する。

[0198]

上でも説明したように、C末端にアルギニン残基が一つ含まれるペプチド断片では、その断片C末端に、プロトン(H+)受容能に富むグアニジノ基を持つアルギニン残基が存在しており、プロトン(H+)が付加された陽イオン種の安定化が図られる結果、陽イオン種の生成比率は、対応する陰イオン種の生成比率よりも、明確に高いものとなる。一方、アルギニン残基を含まない、C末端側ペプチド断片群では、ペプチドN末端には、プロトン(H+)受容能を有するアミノ基が存在するものの、C末端には、プロトン(H+)供与能を示すカルボキシ基(一COOH)が存在しており、陰イオン種の生成比率は、対応する陽イオン種の生成比率よりも、有意に高いものとなる。

[0199]

この規範に従って、本発明では、第三の陰イオン種ピーク群の各ピークに対して、対応する各陽イオン種ピークの相対ピーク強度が3/2以上となる陽イオン種ピークを特定し、第五の陽イオン種ピーク群を形成し、一方、

対応する各陽イオン種ピークに対して、前記第三の陰イオン種ピーク群各ピーク の相対ピーク強度が3/2以上となる陰イオン種ピークを特定し、第五の陰イオ ン種ピーク群を形成する。

[0200]

この第五の陽イオン種ピーク群は、少なくとも、C末端にアルギニン残基が一つ含まれるペプチド断片自体に由来する陽イオン種ピークを含むものとなり、一方、第五の陰イオン種ピーク群は、少なくとも、アルギニン残基を含まない、一連のC末端側ペプチド断片群のうち、比較的に存在比率の高いC末端側ペプチド断片に由来する陰イオン種ピークを含むものとなる。また、前記の主要なペプチド断片自体に由来するイオン種ピークに加えて、その随伴しているイオン種ピークのうち、明確なピーク強度を示すものも含まれる。すなわち、かかる第五の陽イオン種ピーク群と、第五の陰イオン種ピーク群とは、有意な対イオン種を有す

る主要なイオン種ピークを特定したものとなる。

[0201]

次に、(工程5)では、第五の陽イオン種ピーク群と、第五の陰イオン種ピーク群とは、有意な対イオン種を有する主要なイオン種ピークを特定したものとなっているが、上述するように、その存在比率の高い、C末端にアルギニン残基が一つ含まれる共通のペプチド断片複数、ならびに、アルギニン残基を含まない、一連のC末端側ペプチド断片群のうち、比較的に存在比率の高いC末端側ペプチド断片においては、主要なペプチド断片自体に由来するイオン種ピークに加えて、その随伴しているイオン種ピークのうち、明確なピーク強度を示すものも含まれているので、それらに随伴しているイオン種ピークを除いて、存在比率の高い、C末端にアルギニン残基が一つ含まれる共通のペプチド断片複数、ならびに、アルギニン残基を含まない、一連のC末端側ペプチド断片群のうち、比較的に存在比率の高いC末端側ペプチド断片に由来するイオン種ピークのみを選別する。

具体的には、上記の随伴しているイオン種ピークは、さらに、このイオン種ピークに随伴しているイオン種ピーク、例えば、余剰なアルカノイル基が二つ残留しているイオン種ピークなどが存在しているとしても、これらの二次的な随伴イオン種ピークの強度は、一層小さく、第五の陽イオン種ピーク群と、第五の陰イオン種ピーク群とに含まれる可能性は、皆無に等しい。

[0202]

従って、第五の陽イオン種ピーク群のうちから、

(5a-1)該ピークm/z値に対して、水分子の欠失に相当する分子量18小 さいm/z値を有する陽イオン種ピーク、

(5a-2)該ピークm/z値に対して、前記N-アシル化保護に利用されるアシル基の式量分の余剰に相当する分子量大きなm/z値を有する陽イオン種ピーク、

(5a-3)該ピークm/z値に対して、前記N-アシル化保護に利用されるアシル基の式量分の余剰ならびに水分子の欠失に相当する分子量18の減少の組み合わせに相当する分子量の大きなm/z値を有する陽イオン種ピーク、

前記(5a-1)~(5a-3)の随伴する陽イオン種ピークのいずれかも、第

五の陽イオン種ピーク群中に存在する「親陽イオン種ピーク」を選別して、第六の陽イオン種ピーク群とする。この第六の陽イオン種ピーク群に含まれる陽イオン種ピークは、解析対象のペプチド鎖からトリプシン消化処理で生成され、かつ高い存在比率を示すペプチド断片に由来している。

[0203]

同様に、第五の陰イオン種ピーク群のうちから、

(5b-1) 該ピークm/z値の対して、水分子の欠失に相当する分子量18小さいm/z値を有する陰イオン種ピーク、

(5b-2)該ピークm/z値の対して、前記N-アシル化保護に利用されるアシル基の式量分の余剰に相当する分子量大きなm/z値を有する陰イオン種ピーク、

(5b-3) 該ピークm/z値の対して、前記N-アシル化保護に利用されるアシル基の式量分の余剰ならびに水分子の欠失に相当する分子量18の減少の組み合わせに相当する分子量の大きなm/z値を有する陰イオン種ピーク、

前記(5 b - 1)~(5 b - 3)の随伴する陰イオン種ピークのいずれかも、第 五の陰イオン種ピーク群中に存在する「親陰イオン種ピーク」を選別して、第六 の陰イオン種ピーク群とする。この第六の陰イオン種ピーク群に含まれる陰イオン種ピークは、解析対象のペプチド鎖からトリプシン消化処理で生成され、かつ 高い存在比率を示すペプチド断片に由来している。

[0204]

上記の判定を行うに先立ち、各イオン種ピーク相互のm/z値差を算定する上で、その基礎とする隣接ピーク間のm/z値差を算定する。その際、ピーク強度が小さく、そのイオン種ピークのm/z値自体の決定に不確実性を含むものを排除するとともに、解析対象のペプチド鎖からトリプシン消化処理で生成される、有意なペプチド断片に由来するイオン種ピークのみが、後述の解析作業で対象とするので、第四の陽イオン種ピーク群に関して、各陽イオン種ピークのm/z値に基づき、隣接ピーク間のm/z値差を算定し、また、第四の陰イオン種ピーク群に関して、各陰イオン種ピーク番に関して、各陰イオン種ピークを開して、各陰イオン種ピークのm/z値差を算定する。

[0205]

加えて、「親陽イオン種ピーク」とその随伴する陽イオン種ピークとを比較すると、一般に、「親陽イオン種ピーク」の相対ピーク強度は、残る随伴する陽イオン種ピークの相対ピーク強度よりも大きく、同様に、「親陰イオン種ピーク」とその随伴する陰イオン種ピークとを比較すると、一般に、「親陰イオン種ピーク」の相対ピーク強度は、残る随伴する陰イオン種ピークの相対ピーク強度よりも大きい。従って、(工程6)では、前記の相対ピーク強度の対比を行って、前記第六の陽イオン種ピーク群の各ピークについて、「親陽イオン種ピーク」に相当するものを選別し、第七の陽イオン種ピーク群とし、同様に、前記第六の陰イオン種ピーク群の各ピークについて、「親陰イオン種ピーク」に相当するものを選別し、第七の陰イオン種ピーク群とする。

[0206]

例えば、(5a-1)~(5a-3)の随伴する陽イオン種ピークのいずれもが、第五の陽イオン種ピーク群に含まれる場合、これら(5a-1)~(5a-3)の随伴する陽イオン種ピークも、第六の陽イオン種ピーク群に含まれることになる。しかしながら、上述する相対ピーク強度の対比を行うことで、(5a-1)~(5a-3)の随伴する陽イオン種ピークを除去して、「親陽イオン種ピーク」に相当するもののみ、すなわち、解析対象とするペプチドに由来するペプチド断片自体の陽イオン種ピークのみを選別することが可能となる。同じく、(5b-1)~(5b-3)の随伴する陰イオン種ピークのいずれもが、第五の陰イオン種ピーク群に含まれる場合、これら(5b-1)~(5b-3)の随伴する陰イオン種ピークを除去して、「我陰イオン種ピークも、第六の陰イオン種ピーク群に含まれることになる。しかしながら、上述する相対ピーク強度の対比を行うことで、(5b-1)~(5b-3)の随伴する陰イオン種ピークを除去して、「親陰イオン種ピーク」に相当するもののみ、すなわち、解析対象とするペプチドに由来するペプチド断片自体の陰イオン種ピークのみを選別することが可能となる。

[0207]

前記第七の陽イオン種ピーク群は、主に、C末端にアルギニン残基が一つ含まれ、かつ解析対象とするペプチド鎖に由来するペプチド断片自体の陽イオン種ピ

ークを含んでいる。その際、たまたま、解析対象とするペプチド鎖自体のC末端にアルギニン残基が存在する場合には、トリプシン消化によって生成する、C末端にアルギニン残基が一つ含まれるC末端側ペプチド断片に由来する陽イオン種ピークも、C末端にアルギニン残基が一つ含まれる他のペプチド断片に由来する陽イオン種ピークと同様に、該第七の陽イオン種ピーク群に含まれることになる。

[0208]

一方、かかるC末端にアルギニン残基が一つ含まれるC末端側ペプチド断片は、C末端アミノ酸の逐次的分解に伴う、一連の反応産物由来のC末端側ペプチド断片を伴っているが、トリプシン消化によって生成する他のペプチド断片は、C末端アミノ酸の逐次的分解を受けた反応産物由来のC末端側ペプチド断片を伴っていない。また、C末端アミノ酸の逐次的分解に伴う、一連の反応産物由来のC末端側ペプチド断片は、通常、対応する陰イオン種ピークの相対ピーク強度が優っており、陰イオン種による分子量測定スペクトル上に、かかる対応する陰イオン種ピークが見出されるはずである。

[0209]

その観点から、第四の陰イオン種ピーク群中に存在する、前記第七の陽イオン種ピーク群の各陽イオン種ピークに対応する陰イオン種ピークを選別し、第八の陰イオン種ピーク群を形成し、この対応する陰イオン種ピークが、C末端アミノ酸の逐次的分解に伴う、一連の反応産物由来のC末端側ペプチド断片に由来する陰イオン種ピークを伴っているか、否かを検討する。具体的には、第八の陰イオン種ピーク群に含まれる各陰イオン種ピークに対して、C末端アミノ酸の逐次的分解に起因して、天然の鎖式αーアミノ酸残基:-NH-CH(R)-CO-(Rは、該アミノ酸残基の側鎖を示す)あるいは、該側鎖上のヒドロキシ基、アミノ基に対して、上記N-アシル化保護に利用されるアシル基が置換してなるアシル化保護αーアミノ酸残基の式量に相当するm/z値差を示す、陰イオン種ピークが存在するか否かを検討する。この検討は、第八の陰イオン種ピーク群に含まれる各陰イオン種ピークに対して、ピーク間のm/z値差が200より小さな範囲に見出される、第四の陰イオン種ピーク群中に存在する陰イオン種ピークの群

ページ: 105/

を選別し、例えば、N-アシル化保護に利用されるアシル基が、アセチル基である場合には、下記表 <math>1に示す式量に相当する、ピーク間のm/z 値差を有する陰イオン種ピークの有無を検証する。

[0210]

【表1】

	一 二 二	
<u> </u>	式量	対応するアミノ酸残基
0	5 7	-Gly-
2	7 1	-Ala-
4	8 7	-Ser-
6	9 9	-Val-
7	101	-Thr-
8	103	-Cys-
9	113	-Leu-
10	1 1 3	- I l e -
1 1	114	-Asn-
1 2	115	-Asp-
1 3	128	-G1n-
1 4	129	-Gln-
1 7	131	-Met-
18	137	-H i s -
2 1	147	-Phe-
2 2	156	-Arg-
2 3	163	-Tyr-
2 4	170	-Lys (Ac) -
2 5	(179)	(-His (Ac) -)
2 6	186	-Trp-
2 7	(205)	(-Tyr (Ac) -)

[0211]

これらのアミノ酸残基の式量に相当するm/z値差を示す、陰イオン種ピークを伴っていないことを確認した上で、解析対象とするペプチドに由来するペプチド断片であって、トリプシン消化処理で生成する、そのペプチド鎖C末端にアルギニンを有するペプチド断片の陰イオン種ピーク群と判定する。

[0212]

なお、上記表 1 に示すアミノ酸残基の式量に相当するm/z 値差は、主要なC 末端側ペプチド断片に由来する陰イオン種ピークでは、本発明のC 末端アミノ酸

の逐次的分解過程では、N-アシル化保護過程において、セリン、トレオニンの 側鎖のヒドロキシ基に対しても、O-アシル化がなされているが、トリプシン消 化に先立つ、加水処理工程において、かかるセリン、トレオニンの側鎖のヒドロ キシ基に対する〇ーアシル化は、脱保護されるため、対応する〇一アシル化され たアミノ酸残基の式量に相当するm/z値差を示す陰イオン種ピークは、随伴す る陰イオン種ピークとして測定される結果、O-アシル化されたアミノ酸残基の 式量は含めていない。但し、ヒスチジン残基にN-アシル化されたもの、チロシ ン残基にOーアシル化されたものは、加水処理工程において、十分に脱保護を受 けず、主要なC末端側ペプチド断片に由来する陰イオン種ピークに相当量混入す る可能性を残すものではある。逆に、本発明では、加水処理工程において、リシ ン残基にNーアシル化保護されたものは、脱保護を受けない条件を選択し、加え て、仮に、N-アシル化保護の脱保護がなされたリシン残基においては、そのC 末側ペプチド結合において、トリプシン消化を受ける結果、通常、主要なC末端 側ペプチド断片に由来する陰イオン種ピーク相互で、そのm/z 値差がリシン残 基の式量に相当することはない。また、本発明のC末端アミノ酸の逐次的分解過 程では、プロリン残基の除去は本来生じないので、当然に、上記表1には、プロ リン残基の式量に相当するものは含まれない。

[0213]

一方、第七の陰イオン種ピーク群には、一般に、少なくとも、解析対象とするペプチド鎖に由来するC末端側ペプチド断片自体の陰イオン種ピークが含まれている。その際、解析対象とするペプチド鎖のC末端側ペプチド断片は、C末端アミノ酸の逐次的分解に伴う、一連の反応産物由来のC末端側ペプチド断片を伴っており、これらの陰イオン種ピークの主なものも、同様に該第七の陰イオン種ピーク群に含まれることになる。

[0214]

しかしながら、一連の反応産物に由来するC末端側ペプチド断片のうち、その存在比率が低いもの、例えば、C末端アミノ酸の逐次的分解段数が多いものは、かかるC末端側ペプチド断片に由来する陰イオン種ピークは観測されているものの、対応する陽イオン種ピークは、ノイズレベルであり、特定されていない場合

ページ: 107/

もある。

[0215]

(工程 8)では、第七の陰イオン種ピーク群の各陰イオン種ピークが、C末端アミノ酸の逐次的分解に伴う、一連の反応産物由来のC末端側ペプチド断片に由来する陰イオン種ピークを伴っているか、否かを検討する。この検討は、第七の陰イオン種ピーク群に含まれる各陰イオン種ピークに対して、ピーク間のm/z値差が200より小さな範囲に見出される、第四の陰イオン種ピーク群中に存在する陰イオン種ピークの群を選別し、例えば、Nーアシル化保護に利用されるアシル基が、アセチル基である場合には、上記表1に示す式量に相当する、ピーク間のm/z値差を有する陰イオン種ピークの有無を検証する。

[0216]

検証の結果、アミノ酸残基の式量に相当するm/z値差を示す、陰イオン種ピークを伴っていることを確認した上で、第九の陰イオン種ピーク群を形成する。その際、第七の陰イオン種ピーク群には含まれないが、一連の反応産物由来のC末端側ペプチド断片に由来する陰イオン種ピークと推定される、陰イオン種ピークと、前記第九の陰イオン種ピーク群との和集合を形成し、第十の陰イオン種ピーク群とする。この第十の陰イオン種ピーク群は、C末端アミノ酸の逐次的分解に伴う、一連の反応産物由来のC末端側ペプチド断片に由来する陰イオン種ピークの列を含有している。この一連の陰イオン種ピークの列では、m/z値が最大の陰イオン種ピークを選択し、引き続き、各ピーク間のm/z値差が上記アミノ酸残基の式量に相当するm/z値差を示す陰イオン種ピークの列を、該第十の陰イオン種ピーク群中より順次特定することができる。

[0217]

最終的に、(工程9)では、(工程8)において選択された一連の陰イオン種ピークの列に基づき、それらのピーク間のm/z 値差が、上記アミノ酸残基の式量に従っていること、つまり、C末端より逐次的に分解されている部分アミノ酸配列を反映することを再確認して、一連のスペクトル解析作業を終了する。

[0218]

上記のスペクトルの解析工程では、MALDI-TOF-MS法による陽イオ

ン種による分子量測定、ならびに陰イオン種による分子量測定スペクトルのピークm/z値と、ピーク強度を利用するが、このMALDI-TOF-MS装置では、一般に、検出器に入射するイオン数の積算(積分)を行い、対応するm/z値(積分微小区間)に対して、デジタル化プロットしている。従って、見かけのピーク強度、該ピークm/z値の決定と、その見かけの半値全幅を簡便に算定することができる。一方、スペクトル上には、スパイク状のノイズ信号が重畳されることも少なくない。解析に先立ち、かかるスパイク状のノイズ信号を除去することが望ましい。実際の信号ピークか、ノイズ性のピークかを判定する基準として、ノイズ性のピークでは、その見かけの半値全幅が、実際の信号ピークと比較して、極端に狭いことを利用することが可能である。例えば、前記(工程1)のトリプシン由来の内部標準ピークの特定工程後、トリプシンの自己消化に由来するペプチド断片によるイオン種ピークについて、見かけの半値全幅を算出し、この値を基準幅として、該基準幅と比較して、見かけの半値全幅が極端に狭いピークは、ノイズ性のピークと判定することも可能である。

[0219]

また、MALDI-TOF-MS装置の測定機構上、システマチックなピーク広がりを示すことが多い。トリプシンの自己消化に由来するペプチド断片によるイオン種ピークを利用して、システマチックなピーク広がりを評価し、該ピーク形状の非対称性と、積分ピーク強度とを保持可能なスムージング処理を施した上で、実際の信号ピークについて、そのピーク強度、該ピークm/z値の決定を行うことが好ましい。

[0220]

これらノイズ性ピークを除去する処理、スムージング処理は、MALDI-TOF-MS法による陽イオン種による分子量測定、ならびに陰イオン種による分子量測定スペクトルには、本発明ではトリプシン由来の内部標準ピークが存在しているので、これらを参照して、双方のスペクトルに対して、同等に行うことが可能である。

[0221]

加えて、MALDI-TOF-MS装置の測定機構上、システマチックなピー

ク広がりに加えて、ピークm/z値にも系統的誤差を有する場合もある。解析に 先立ち、かかるm/z値の系統的誤差の補正を施すことが望ましい。このm/z 値の系統的誤差の補正も、前記(工程1)のトリプシン由来の内部標準ピークの 特定工程後、トリプシンの自己消化に由来するペプチド断片によるイオン種ピー クを利用して行うことが可能である。

[0222]

本発明にかかるMALDI-TOF-MS法による陽イオン種による分子量測定、ならびに陰イオン種による分子量測定スペクトルの解析方法では、上述するように、C末端アミノ酸の逐次的分解に伴う、一連の反応産物由来のC末端側ペプチド断片に由来する主要な陰イオン種ピークの列を特定することを目的とするが、その解析過程で、これら主要な陰イオン種ピークに随伴する陰イオン種ピークをも特定している。具体的には、(工程5)において、「親陰イオン種ピークした対して、

(5 b − 1) 水分子の欠失に相当する分子量 1 8 小さいm/z 値を有する陰イオン種ピーク、

(5b-2) Nーアシル化保護に利用されるアシル基の式量分の余剰に相当する 分子量大きなm/z 値を有する陰イオン種ピーク、

(5b-3) N-アシル化保護に利用されるアシル基の式量分の余剰ならびに水分子の欠失に相当する分子量180減少の組み合わせに相当する分子量の大きなm/z 値を有する陰イオン種ピーク、

前記(5b-1)~(5b-3)の随伴する陰イオン種ピークの特定がなされている。従って、陰イオン種による分子量測定スペクトルに関して、C末端アミノ酸の逐次的分解に伴う、一連の反応産物由来のC末端側ペプチド断片に由来する主要な陰イオン種ピークの列に加えて、それらに随伴する陰イオン種ピークの帰属も同時に行われる。

[0223]

さらには、C末端アミノ酸の逐次的分解に伴う、一連の反応産物由来のC末端側ペプチド断片に由来する主要な陰イオン種ピークの列の特定に付随して、それ以外の、トリプシン消化で生成する主要な陰イオン種ピーク群、それに随伴する

陰イオン種ピークの帰属も可能となる。最終的には、陽イオン種による分子量測定スペクトルにおける、主要な陽イオン種ピークとの対応をも確認されており、MALDI-TOF-MS法による陽イオン種による分子量測定、ならびに陰イオン種による分子量測定スペクトルの双方の解析がなされたこととなる。

[0224]

質量分析スペクトルから、C末端のアミノ酸配列を決定する際に、解析対象となるペプチドに由来するピークの特定と、その帰属を進める手順の一例を示す。

下記する説明では、

ペプチドN末端のアミノ基ならびに、ペプチドに含有されている可能性のあるリシン残基側鎖のアミノ基に対して、アルカン酸無水物由来のアシル基によるNーアシル化を施す、Nーアシル化保護を施す前処理工程と、

穏和な条件で、アルカン酸無水物とパーフルオロアルカン酸少量とを組み合わせた反応試薬を利用し、下記する一般式 (III):

【化24】

$$\begin{array}{c|c}
-H & R1 \\
R2 & O & (III)
\end{array}$$

[0227]

(式中、

R1は、ペプチドのC末端アミノ酸の側鎖を表し、

R2は、前記C末端アミノ酸の直前に位置するアミノ酸残基の側鎖を表す)で表記される5-オキサゾロン構造を一旦形成し、該5-オキサゾロン環の開裂に伴いC末端アミノ酸の分解を行う工程と、

アルカン酸無水物とパーフルオロアルカン酸少量とを組み合わせた反応試薬を除去・不活性化後、残余する前記5ーオキサゾロン構造の開環によるC末カルボキシ基の再生を図る、加水処理を行う工程と、

加水処理後、トリプシン消化により、ペプチド鎖をアルギニン残基部位で選択的に断片化を行って、トリプシン消化済ペプチド断片を得る工程を施した後、例えば、MALDI-TOF-MS装置により測定される、陰イオン種検出モードで測定した質量分析スペクトル、ならびに、陽イオン種検出モードで測定した質量分析スペクトル上に出現する一価イオン種ピークのうち、対象のペプチド鎖に起因するイオン種ピークの帰属における判断基準と、その判断プロセスを示す。なお、具体的な条件として、N-アシル化保護を施す前処理工程ならびにC末端アミノ酸の分解を行う工程で利用するアルカン酸無水物は、共に、無水酢酸(CH3CO)2O)であり、パーフルオロアルカン酸は、トリフルオロ酢酸(CF3COOH)を利用する場合を想定して、説明を行う。

[0228]

上述する条件において理想的な処理が進むと、Nーアセチル化保護を施す前処理工程、C末端アミノ酸の分解を行う工程、その後の加水処理を行う工程が終了した時点では、N末端アミノ基とリシン残基側鎖のアミノ基とでは、Nーアセチル化が保持されており、それ以外の、セリン残基側鎖のヒドロキシ基、トレオニン残基側鎖のヒドロキシ基、チロシン残基側鎖上のフェノール性ヒドロキシ基等に対して、付随的に生じているOーアセチル化保護は、全て脱保護されており、同時に、C末端の5ーオキサゾロン構造からC末端カルボキシ基の再生がなされる。

[0229]

しかしながら、実際に得られるC末端アミノ酸の逐次的な分解産物中には、主に、C末端アミノ酸の分解を行う工程、その後の加水処理を行う工程における、 副次的な反応に由来する副産物が混入する。

[0230]

加水処理において、セリン残基側鎖のヒドロキシ基、トレオニン残基側鎖のヒドロキシ基に対して、付随的に生じているOーアセチル化保護の脱保護が不足すると、これらアミノ酸残基上に余剰のアセチル基置換を有する副産物となる。一方、加水処理に際して、C末端の5ーオキサゾロン構造からC末端カルボキシ基の再生が達成されないと、C末端に「脱水」がなされた状態の副産物となる。

[0231]

C末端アミノ酸の分解を行う工程においては、

例えば、下記式 (V):

[0232]

【化25】

$$O = \bigvee_{\substack{H_3C \\ -N_1 \\ 0}} H_3C - \bigvee_{\substack{N \\ 0 \\ -N_1 \\ 0}} \bigvee_{\substack{N \\ 0 \\ -N_1 \\ 0}} H O - \bigvee_{\substack{N \\ 0 \\ -N_1 \\ 0}} CH_3$$
 (V)

[0233]

で示される、側鎖上のカルバモイル基($-CO-NH_2$)からシアノ基(-CN)への変換反応に由来する、アスパラギン残基側鎖、グルタミン残基側鎖上での「脱水」;あるいは、下記式(VI):

[0234]

【化26】

$$O = \begin{pmatrix} CH_3 & & & \\ & & \\ & &$$

$$O = \begin{pmatrix} CH^3 & H^3C - \begin{pmatrix} O & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

[0235]

で示される、側鎖上のアセチルオキシ基の脱離に由来する、セリン残基側鎖、ト

[0236]

一方、N-アセチル化保護を施す前処理工程、C末端アミノ酸の分解を行う工程において、チロシン残基側鎖上のフェノール性ヒドロキシ基、ヒスチジン残基側鎖上のイミダゾール環上のイミノ窒素(-NH-)に対しても、アセチル化が進行すると、加水処理に際して、脱保護は十分には進まず、これらアミノ酸残基上に余剰のアセチル基置換を有する副産物となる。

[0237]

従って、実際の反応産物では、

- (i) 理想的な反応産物;に加えて、しばしば、
- (ii) 余剰なアセチル化を受けている付随的な産物;
- (iii) 「脱水」を受けている付随的な産物;
- (iv) 「脱水」を受け、更に、余剰なアセチル化を受けている付随的な産物;が付随的に生成している。

[0238]

その他、アセチル基に代えて、トリフルオロ酢酸に由来するトリフルオロアセチル基が導入されると、十分な脱保護がなされず、余剰なトリフルオロアセチル化を受けている付随的な産物も、僅かに共存する場合もある。従って、

- (v) 余剰なトリフルオロアセチル化を受けている付随的な産物;
- (vi) 「脱水」を受け、更に、余剰なトリフルオロアセチル化を受けている付随的な産物も僅かに共存する場合もある。

[0239]

なお、C末端アミノ酸の分解を行う工程においては、従来の反応条件では、Gly-Glyの間、AspのC末側、特には、Asp-Proの間、SerとThrのN末側の各部位などにおいて、ある頻度で開裂反応が進行するが、本発明では、このC末端アミノ酸の分解を行う工程に対して、ペプチド鎖の途中での開裂反応を有効に抑制する反応条件を設定するため、便宜上、反応産物中には、ペプチド鎖の途中での開裂反応が生じた後、更に、そのペプチド断片のC末端アミノ酸が逐次的な分解を受けた予定外の副産物は、以下の考慮からは除外する。

ページ: 114/

[0240]

本発明では、Nーアセチル化保護を施す前処理工程、C末端アミノ酸の分解を行う工程において、前記(v)ならびに(vi)の付随的な産物の生成を有効に回避する条件を選択するものの、(i)理想的な反応産物に加えて、(ii)~(iv)の付随的な産物に関しては、しばしばある程度の量が存在する。質量分析スペクトルの測定に先立ち、N末端アミノ基とリシン残基側鎖のアミノ基とは、Nーアセチル化が保持されている反応産物を、トリプシン消化により、ペプチド鎖をアルギニン残基部位で選択的に断片化を行う結果、N末側断片:N末アミノ基にアセチル化がなされ、C末のアミノ酸はアルギニンである断片;両端がトリプシン消化で生成される中間部の断片:N末アミノ基はアセチル化がなされてなく、C末のアミノ酸はアルギニンである断片;ならびに、C末側断片群:N末アミノ基はアセチル化がなされてなく、C末のアミノ酸配列は逐次的な分解を受けている一連の断片群とされている。

[0241]

本発明では、C末端アミノ酸の分解を行う工程においては、便宜上、ペプチド鎖の途中での開裂反応は考慮から除外すると、十分なトリプシン消化時間を設定すると、元のペプチドから得られるペプチド断片に関して、前述のC末側断片群の総和は、N末側断片、ならびに中間部の断片それぞれと、概ね同数となる。加えて、これらのペプチド断片は、上述するように、(i)理想的な反応産物に加えて、少なくとも、(ii)~(iv)の付随的な産物を伴っている可能性が高いものの、これら(i)~(iv)の四種の反応産物間の存在比率は、必ずしも一定しておらず、個々のペプチド断片毎、そのアミノ酸配列、反応条件に依存して変化する。例えば、余剰なアセチル化を受けることが可能なアミノ酸残基が存在しない場合には、(ii)ならびに(iv)の付随的な産物は、全く生成しないものとなる。加えて、例えば、MALDIーTOFーMS装置により測定する際、各ペプチド断片に由来する陰イオン種と陽イオン種の生成効率も、個々のペプチド断片のアミノ酸配列、アミノ酸残基に対する修飾の相違、イオン化条件などに依存しており、陰イオン種検出モードで測定した質量分析スペクトル、ならびに、陽イオン種検出モードで測定した質量分析スペクトル、ならびに、陽イオン種検出モードで測定した質量分析スペクトルとに出現する一価イオン種ピーク

ページ: 115/

において、(i)~(iv)の四種の反応産物に由来するイオン種のうち、有意な強度を有するピークとして観測されないものも存在する。例えば、そもそも、存在比率が低い上に、陽イオン種の生成効率が極端に大きい場合には、陰イオン種検出モードで測定した質量分析スペクトル上では、対応する陰イオン種は、有意な強度を有するピークとして観測されないものとなる。

[0242]

以下に、上述するような、場合によって起こる、種々な状況を可能な限り考慮に入れて、(i) ~(iv) の四種の反応産物に由来するイオン種のうち、その一部のみが観測にかかる場合であっても、より確実に、(i) ~(iv) の四種の反応産物に由来するイオン種のうち、有意な強度を有するピークの帰属を図る手順の一例を示す。

[0243]

(ステップ0) スペクトル上のピーク認識工程

測定された陰イオン種検出モードのスペクトル、ないしは、陽イオン種検出モードスペクトル上において、ピークを認識し、その見かけ上のピーク位置 (m/Z) ならびに、ピーク強度の読み取りを行う。

[0244]

なお、ペプチド由来のイオン種ピークは、一般に、構成原子の同位体、例えば、 12 Cに対して 13 Cを含む同位体ピークを伴っているが、その強度比率は、概ね一定である。具体的には、軽原子のみで構成されるイオン種の主なピークに対して、質量数が 13 Cの下然存在比率にほぼ比例して、質量数差が 12 Cに対する 13 Cの下然存在比率にほぼ比例して、質量数差が 12 Cに対する。と増すにつれ、等比級数的にその強度は減少する。

[0245]

認識される各ピークに関して、前記の仮定に基づき、質量数差が1、2、3と増す同位体ピークの強度を算出し、ピーク位置 (m/Z) が質量数1増す位置に、同位体ピークと重複して、他のイオン種に起因するピークが存在する際には、その見かけ上のピーク強度に対して、補正を施す。これらの補正を含め、認識される各ピークに関して、ピーク形状のフィット操作を施し、軽原子のみで構成さ

れるイオン種の認識、ピーク位置 (m/Z) ならびに、ピーク強度の読み取りを行う。

[0246]

軽原子のみで構成されるイオン種に起因する各ピークは、ピーク位置(m/Z)順に、 P_i と呼ぶことにする。

認識した全てのピークの集合: A $A = \{P_i \mid f \circ r \forall i\}$

[0247]

(ステップ1) トリプシン自己消化由来の断片イオン種ピークの除去

トリプシン消化の工程では、用いる酵素タンパク質トリプシンの自己消化に起因する、ペプチド断片も形成される。このトリプシン自己消化断片に由来するイオン種ピークのピーク位置は、予め判明しているので、ピーク集合Aから、トリプシン自己消化断片に由来するイオン種ピークの集合Atを除去し、ペプチド由来のイオン種ピークの集合Apとする。

トリプシン自己消化由来のピーク集合: At

ペプチド由来のイオン種ピークの集合:Ap≡A\A+

なお、トリプシン自己消化断片に由来するイオン種ピークのピーク位置は、図9にその一覧を示す。

[0248]

(ステップ2) ピーク間距離の算出

集合Apに含まれるピークについて、全てのピーク間の距離を計算する。

ピークP_iとP_jの間の距離 (Δm/Z):d_{ij}

なお、ステップ 0 において、ピーク位置(m/Z)順に、 P_i を並べてあり、 隣接するピーク間 P_i と P_{i+1} 間の距離: d_{ii+1} を算出した上で、 $d_{ij} = \{d_{ii+1} + \cdots + d_{i-1i}\}$ として、算出する手法を採用することが望ましい。

[0249]

(ステップ3) 解析対象のm/Z範囲の特定

[0250]

サブステップ3-1 ピーク強度が閾値以上の有意なピークの選択 解析の対象であるC末側断片群、N末側断片、ならびに中間部の断片のそれぞ れは、(i)~(iv)の四種の反応産物に由来するイオン種のうち、少なくとも一つは、スペクトル上で有意なピークを示すことが、後述の解析において必須な要件となる。

[0251]

ピークの集合 A_P において、最大のピーク強度を有するピークを選別し、そのピーク強度を I_{MAX} とする。この I_{MAX} を基準として、閾値ピーク強度 I_{th} を設定する。少なくとも、閾値ピーク強度 I_{th} を、 I_{MAX} の 1 / 4 0 以上に設定する。

[0252]

ピークの集合APにおいて、ピーク強度が、前記閾値 I_{th} 以上のピークを選別して、メインピーク集合Mを構成する。

i f ピーク P_i の強度 $I_i > I_{th} \Rightarrow P_i \in M$

[0253]

サブステップ3-2 解析対象のm/Z範囲の特定または再設定

C末端よりアミノ酸残基数として、7残基程度が逐次的に分解されているC末側断片群の解析を目標とする際、その間の質量数差は、通常、600~1200の範囲にあると推定される。

[0254]

この点を考慮して、メインピーク集合Mに含まれるピーク中、最大のピーク位置(m/Z)を有するピーク P_{Mmax} と、最少のピーク位置(m/Z)を有するピーク P_{Mmin} とを選択する。ピーク P_{Mmin} と間の距離($\Delta m/Z$)について、質量数差が、少なくとも 6 0 0 を超えていることを確認する。

[0255]

ピーク P_{Mmax} とピーク P_{Mmin} と間の距離(Δ m/Z)について、質量数差が前記の要件を満たさない場合は、サブステップ3-1における、閾値 I_{th} をより小さな値に設定して、メインピーク集合Mの選別をやり直し、かか要件を満足させる再設定を行う。

[0256]

最終的に解析対象のm/Z範囲は、ピーク P_{Mmax} のピーク位置(m_{max})より、質量数100大きなm/Zを上限とし、下限は、ピーク P_{Mmin} のピーク位置(

 m_{min})よりも質量数100小さなm/Z、あるいは、ピーク P_{Mmax} のピーク位置(m_{max})より、質量数1000小さなm/Zのいずれか小さな値に設定する。ピークの集合Apにおいて、ピーク位置が、ここで設定される解析対象のm/Zを囲に含まれるピークを選び出し、ピークの集合 S_0 を構成する。以下の解析では、メインピーク集合Mと、それを含む解析対象ピークの集合 S_0 の要素ピークを解析の対象とする。

[0257]

但し、メインピーク集合Mに含まれる、一価のイオン種ピーク;陽イオン種(m+1/1)や陰イオン種(m-1/1)に対応する、二価のイオン種ピーク;二価陽イオン種(m+2/2)や二価陰イオン種(m-2/2)は、 $m_{max}/2$ ~ $m_{min}/2$ の範囲に出現する可能性がある。前記解析対象ピークの集合 S_0 のうち、メインピーク集合Mに含まれる、一価のイオン種ピークに対応する、二価のイオン種ピークに相当するピークの有無を予め確認する。具体的には、一価のイオン種ピークに対応する、二価のイオン種ピークはその存在比率は、大幅に小さくなる、あるいは、二価のイオン種ピークは見出されないことも少なくないので、これを考慮の上で、二価のイオン種ピークに相当するピークの有無を予め確認する。

[0258]

(ステップ4) (i)~(iv)の四種の反応産物のトリプシン消化ペプチド 断片由来するイオン種ピークの分類と帰属

上述するように、実際の反応産物では、

- (i) 理想的な反応産物;に加えて、しばしば、
- (ii) 余剰なアセチル化を受けている付随的な産物;
- (iii) 「脱水」を受けている付随的な産物;
- (iv) 「脱水」を受け、更に、余剰なアセチル化を受けている付随的な産物;が付随的に生成していることが少なくない。但し、トリプシン消化を施して得られる、C末側断片群、N末側断片、ならびに中間部の断片を考慮すると、例えば、余剰なアセチル化を受けるアミノ酸残基は、N末側断片には存在するが、C末側断片群には、そもそも存在していないなど、

各ペプチド断片のアミノ酸配列に応じて、個々のペプチド断片においても、

- (i) 理想的な産物:余剰なアセチル化を受けているアミノ酸残基ならびに「脱水」を受けているアミノ酸残基を有していないペプチド断片;
 - (ii) 余剰なアセチル化を受けているアミノ酸残基を含むが、「脱水」を受けているアミノ酸残基を有していないペプチド断片;
 - (iii) 「脱水」を受けているアミノ酸残基を含むが、余剰なアセチル化を受けているアミノ酸残基を有していないペプチド断片;
 - (iv) 余剰なアセチル化を受けているアミノ酸残基ならびに「脱水」を受けているアミノ酸残基を有しているペプチド断片:

上記の四種のうち、その一部しか得られない場合もある。

[0259]

なお、上で説明したように、アセチル基に代えて、トリフルオロアセチル基が 導入されているペプチド断片も想定されるが、その存在頻度は、十分に低いと推 定されるので、ここでは、考慮から除外する。

[0260]

従って、トリプシン消化されたペプチド断片由来するイオン種ピーク中に、同一のアミノ酸配列からなる、前記四種の状態のペプチド断片に起因するイオン種ピークのいずれが出現しているか、分類と帰属を行う手順の一例を示す。

[0261]

上述する(i)~(iv)の四種の状態のペプチド断片に起因するイオン種ピークの集合を、それぞれ、

- S(0):(i)の状態のペプチド断片に起因するイオン種ピークの集合;
- S(+Ac): (ii) の状態のペプチド断片に起因するイオン種ピークの集合;
- S (-H₂O): (iii) の状態のペプチド断片に起因するイオン種ピークの集合:
- $S(+Ac, -H_2O)$: (iv) の状態のペプチド断片に起因するイオン種ピークの集合: と定義する。

[0262]

(i)~(iv)の四種の状態のペプチド断片に起因するイオン種ピークは、表

ページ: 120/

2に示すように、同一のアミノ酸配列からなり、互いに近接する、各一組のピー ク群を構成する可能性がある。

[0263]

【表2】

(i)~(iv)の四種の状態のペプチド断片に起因するイオン種ピーク副反応により生じる特異的なピークシフトの値

ピーク間距離 d	
60 (42+18)	(ii) - (iii) : アセチル化⇔脱水
42	(ii) - (i):アセチル化⇔副反応なし
	(iv) - (iii):アセチル化+脱水⇔脱水
24 (42-18)	(iv) - (i):アセチル化+脱水⇔副反応なし
18	(i)-(iii):副反応なし⇔脱水
	(ii) - (iv):アセチル化⇔アセチル化+脱水

[0264]

なお、上述する表1に示すC末アミノ酸の逐次的分解反応に付随する分子量減少には、これら18、24、42、60に相当するものは存在していない。

[0265]

スペクトル上に、前記(i)~(iv)の四種の状態のペプチド断片に起因するイオン種ピークのいずれが出現しているかを分類すると、下記の15に分類される。

- 1. (i) \sim (iv) の四種のピークが観測されている;
- 2. (i)、(ii)、(iii)の三種のピークが観測されている:余剰なアセチル化ならびに「脱水」の確率が低く、双方が生じている(i v)のピークは、測定限界以下の場合、あるいは、式(VI)のような「脱水」過程での、中間体に相当する余剰なアセチル化体と「脱水」体の双方が含まれている場合;を受けているアミノ酸残基を有している
- 3. (i)、(ii)、(iv)の三種のピークが観測されている:余剰なアセチル化体が主となっており、余剰なアセチル化体に「脱水」がなされたものは、観測にかかるが、元々少量しか残留していない理想的な断片に「脱水」がなされたものは、測定限界以下の場合;

- 4. (i)、(iii)、(iv)の三種のピークが観測されている:「脱水」体が主となっており、「脱水」体に余剰なアセチル化がなされたものは、観測にかかるが、元々少量しか残留していない理想的な断片に余剰なアセチル化がなされたものは、測定限界以下の場合;
- 5. (ii)、(iii)、(iv)の三種のピークが観測されている:「脱水」体と 余剰なアセチル化体がともに主となっており、これら副次的反応が生じていない 理想的な断片は、測定限界以下の場合;
- 6. (i)、(ii)の二種のピークが観測されている:余剰なアセチル化が生じるアミノ酸残基は存在するが、「脱水」が生じるアミノ酸残基は元々含まれていない場合;
- 7. (i)、(iii)の二種のピークが観測されている:「脱水」が生じるアミノ酸残基は存在するが、余剰なアセチル化が生じるアミノ酸残基は元々含まれていない場合、あるいは、余剰なアセチル化が生じるアミノ酸残基、「脱水」が生じるアミノ酸残基は存在していないが、C末端の5ーオキサゾロン構造の加水が完了していないものが残留している場合;
- 8. (ii)、(iv)の二種のピークが観測されている:余剰なアセチル化体が主 となっており、余剰なアセチル化体に「脱水」がなされたものは、観測にかかる が、理想的な断片、「脱水」体は、測定限界以下の場合;
- 9. (ii) 、(iii) の二種のピークが観測されている:余剰なアセチル化が生じるアミノ酸残基は存在していないものの、式(VI) のような「脱水」過程が高い頻度で進行しており、さらに、その中間体に相当する余剰なアセチル化体に対する加水処理が十分でなく、理想的な断片に再生されたものが極僅かで、測定限界以下の場合:
- 10. (i)、(iv)の二種のピークが観測されている:
- 11. (iii)、(iv)の二種のピークが観測されている:「脱水」体が主となっており、「脱水」体に余剰なアセチル化がなされたものは、観測にかかるが、理想的な断片、余剰なアセチル化体は、測定限界以下の場合:
- 12. (i)のピークのみが観測されている:元々、余剰なアセチル化が生じるアミノ酸残基、「脱水」が生じるアミノ酸残基が存在していない場合:

- 13. (ii) のピークのみが観測されている:「脱水」が生じるアミノ酸残基が存在していなく、余剰なアセチル化が極めて高い頻度で生じており、理想的な断片に再生されたものが極僅かで、測定限界以下の場合;
- 14. (iii) のピークのみが観測されている:余剰なアセチル化が生じるアミノ酸残基が存在していなく、式(VI) のような「脱水」が極めて高い頻度で生じており、残留する中間体や理想的な断片に再生されたものが極僅かで、測定限界以下の場合;
- 15. (iv) のピークのみが観測されている:「脱水」と、余剰なアセチル化とが過度に進行しており、その他のものは、極僅かで、測定限界以下の場合; 以上のように、それぞれ分類について、想定される状況(要因)の代表例を併せて示してある。

[0266]

サブステップ 4-1: (i) ~ (iv) の四種の状態のペプチド断片に起因するイオン種ピークの特定

先ず、含む解析対象ピークの集合 S_0 の要素ピークに関して、下記の各部分集合を構成する。

- (a) 距離42の関係にあるピークのペアのうち、高質量側にあるピークの集合をS(42), 低質量側にあるピークの集合をS(0,42)とする。
- (b) 距離 180 関係にあるピークのペアのうち、低質量側にあるピークの集合をS(-18). 高質量側にあるピークの集合をS(0.-18) とする。
- (c) 距離 24 の関係にあるピークのペアのうち、高質量側にあるピークの集合をS(24), 低質量側にあるピークの集合をS(0,24) とする。
- (d) 距離 60 の関係にあるピークのペアのうち、高質量側にあるピークの集合をS(60), 低質量側にあるピークの集合をS(0,60) とする。

[0267]

上述する分類1~11の分類においては、一組として観測されている2~4の本のピークは、前記(a)~(d)の部分集合を構成する過程で、いずれかの部分集合に含むものとして選択されている。

[0268]

ページ: 123/

具体的には、下記するようになる。

[0269]

<u>分類1. (i)~(iv)の四種のピークが観測されている</u>:

分類 1 の (ii) の ℓ ーク $\in \{S (60) \cap S (42) \cap S (0, 18)\} \equiv S (Ac)_1$

分類 1 の (iv) のピーク $\in \{S (42) \cap S (24) \cap S (18)\} \equiv S (A c-H_2O)_1$

分類1の (iii) のピーク∈ {S (18) ∩S (0, 60) ∩S (0, 24) } ≡ S (-H₂O) ₁

[0270]

<u>分類2. (i)、(ii)、(iii)の三種のピークが観測されている:</u>

分類2の(ii) のピーク∈ $\{[S(60) \cap S(42)] \setminus [S(60) \cap S(42)] \}$ $\equiv S(Ac)_2$

分類2の(i)のピーク∈ { [S(0, 42) ∩ S(0, 18)] \ [S(0

, $42) \cap S (0, 24) \cap S (0, 18)] | \equiv S (0)_2$

分類2の(iii)のピーク∈ { [S(0,60)∩S(0,18)] \ [S(

18) $\cap S$ (0, 60) $\cap S$ (0, 24)] $\} \equiv S$ ($-H_2O$) 2

[0271]

<u>分類3. (i)、(ii)、(iv)の三種のピークが</u>観測されている:

分類3の(ii)のピーク∈ {[S(42)∩S(0, 18)] \ [S(60)

 $\cap S (42) \cap S (0, 18)] \} \equiv S (Ac)_3$

分類3の (iv) のピーク∈ | [S (24) ∩ S (18)] \ [S (42) ∩ S

 $(24) \cap S (18)]$ $\equiv S (Ac-H₂O)₃$

分類3の(i)のピーク∈ { [S(0, 42) ∩ S(0, 24)] \ [S(0

, 42) \cap S (0, 24) \cap S (0, 18)]} \equiv S (0)₃

[0272]

分類4. (i)、(iii)、(iv)の三種のピークが観測されている:

分類4の (iv) のピークモ $\{[S(42) \cap S(24)] \setminus [S(42) \cap S(24)] \cap S(24) \cap S(18)]\} \equiv S(Ac-H₂O)₄$

分類4の(i)のピーク∈ { [S (0, 42) ∩ S (0, 18)] \ [S (0

, 42) \cap S (0, 24) \cap S (0, 18)]} \equiv S (0)₄

分類3の (iii) のピーク∈ ↓ [S (18) ∩ S (0, 42)] \ [S (18

) \cap S (0, 60) \cap S (0, 24)] | \equiv S (-H₂O) ₄

[0273]

分類 5. (ii)、(iii)、(iv)の三種のピークが観測されている:

分類5の (ii) のピーク∈ { [S (60) ∩ S (0, 18)] \ [S (60)

 $\cap S$ (42) $\cap S$ (0, 18)]} $\equiv S$ (Ac)₅

 $(24) \cap S (18)] \} \equiv S (Ac-H₂O) ₅$

分類5の (iii) のピーク∈ { [S (0, 60) ∩ S (0, 42)] \ [S (

18) \cap S (0, 60) \cap S (0, 24)] } \equiv S (-H₂O) ₅

[0274]

<u>分類9. (ii)、(iji)の二種のピークが観測されている:</u>

分類 9 の (ii) のピーク \in $\{S(60) \setminus [S(Ac)_1 \cup S(Ac)_2 \cup S(Ac)_5]\}$ = $\{S(Ac)_9\}$

分類 9 の (iii) のピークモ {S (0, 60) \ [S ($-H_2O$) $_1US$ ($-H_2O$) $_2US$ ($-H_2O$) $_5]$ { \equiv S ($-H_2O$) $_9$

[0275]

<u>分類10. (i)、(iv)の二種のピークが観測されている:</u>

分類 $1\ 0\ 0\ (iv)\ 0\ c$ - $0\ c$ - $1\ c$ $1\ c$

[0276]

分類 6. (i)、(ii)の二種のピークが観測されている:

[0277]

<u>分類11. (iii)、(iv) の二種のピークが観測されている</u>:

分類 6 の (i) のピーク、ないしは分類 1 1 の (iii) のピーク $\in \{S(0, 42) \setminus [S(0)_1 \cup S(0)_2 \cup S(0)_3 \cup S(-H_2O)_1 \cup S(-H_2O)_4 \cup S(-H_2O)_5] \} \equiv \{S(0)_6 \cup S(-H_2O)_{11}\} \Rightarrow S(0)_6$ なお、分類 1 1 において、「脱水」反応がほぼ完全に進行することは、本発明においては、極めて稀有である。一方、分類 6 のように、理想的な断片に、余剰

[0278]

<u>分類7.(i)、(iii)の二種のピークが観測されている:</u>

なアセチル化体が残留することは、十分な蓋然性で予想される。

[0279]

<u>分類 8. (ii) 、 (iv) の二種のピークが観測されている:</u>

分類 7 の(i i i)のピーク、ないしは分類 8 の(i v)のピーク $\in \{S (18) \setminus [S (-H_2O)_1 \cup S (-H_2O)_2 \cup S (-H_2O)_4 \cup S (A_c - H_2O)_1 \cup S (A_c - H_2O)_3 \cup S (A_c - H_2O)_5 \}$ $= \{S (-H_2O)_7 \cup S (A_c - H_2O)_8 \}$

分類7の(i)のピーク、ないしは分類8の(ii)のピーク∈ {S (0, 18) \ [S (0) 1US (0) 2US (0) 4US (Ac) 1US (Ac) 3US (Ac) 5] } ≡ {S (0) 7US (Ac) 8}

分類 7 のような、理想的な断片に起因する主なピークに、その「脱水」体に相当する付随的なピークが存在することは、十分な蓋然性で予想される。一方、余剰なアセチル化に加えて、「脱水」も高い頻度で生じている、分類 8 のような状態は、本発明においては、相当に稀有ではある。但し、 $S(-H_2O)_7 \cup S(A_c)_8 \cup S(-H_2O)_7 \cup S(A_c)_8 \cup$

[0280]

上述の分類では、下記する一連の集合演算の結果を利用している。

- (d) 距離 6 0 の関係にあるピークは、分類 1, 2, 5, 9 各における余剰なアセチル化ピークと脱水ピークである。
- $S (60) = S (Ac)_{1}US (Ac)_{2}US (Ac)_{5}US (Ac)_{9}$
- S (0, 60) = S (-H₂0) ₁US (-H₂O) ₂US (-H₂O) ₅US (-H₂O) ₉
- (c) 距離 2 4 の関係にあるピークは、分類 1, 3, 4, 1 0 各における余剰なアセチル化+脱水ピークと理想的なピークである。
- $S(0, 24) = S(0)_{1}US(0)_{3}US(0)_{4}US(0)_{10}$
- S (24) = S (Ac-H₂O) ₁US (Ac-H₂O) ₃US (Ac-H₂O) ₄U
- $S (Ac-H_2O)_{10}$
- (a) 距離 42 の関係にあるピークは、分類 1, 2, 3, 6 各におけるアセチル化ピークと理想的なピーク、ならびに、分類 1, 4, 5, 1 1 各におけるアセチル化+脱水ピークと脱水ピークである。
- $S (42) = {S (Ac)_{1}US (Ac)_{2}US (Ac)_{3}US (Ac)_{6}} U {S (Ac-H₂O)_{1}US (Ac-H₂O)_{4}US (Ac-H₂O)_{5}US (Ac-H₂O)_{11}}$
- S (0, 42) = $\{S(0)_1 \cup S(0)_2 \cup S(0)_3 \cup S(0)_6\} \cup \{S(-H_2O)_1 \cup S(-H_2O)_5 \cup S(-H_2O)_{11}\}$
- (b) 距離 180 関係にあるピークは、分類 1, 2, 4, 7 各における脱水ピークと理想的なピーク、ならびに、分類 1, 3, 5, 8 における余剰なアセチル化ピークと余剰なアセチル化+脱水ピークである。
- $S (18) = {S (-H₂O) ₁US (-H₂O) ₂US (-H₂O) ₄US (-H₂$
- O) 7 U S (A c -H₂O) $_1$ US (A c -H₂O) $_3$ US (A c -H₂O) $_5$ U
- S (Ac-H₂O) 8
- $S(0, 18) = \{S(0)_1 \cup S(0)_2 \cup S(0)_4 \cup S(0)_7\} \cup \{S(A)_4 \cup S(A)_7\} \cup \{S(A)_4 \cup S(A)_4 \cup$
- c) 1US (Ac) 3US (Ac) 5US (Ac) 8

積集合を調べると、次のようになる:

- (1) S(60) \cap S(42) = (S(Ac)₁:分類1の+Acピーク) U(S(Ac)₂:分類2の+Acピーク)
- (2) S(60)∩S(0, 18) = (S(Ac)₁:分類1の+Acピーク))∪(S(Ac)₅:分類5の+Acピーク)
- (3) $S(42) \cap S(24) = (S(Ac-H₂O)₁:分類1の+Ac-H₂Oピーク) U(S(Ac-H₂O)₄:分類4の+Ac-H₂Oピーク)$
- (4) $S(42) \cap S(18) = (S(Ac-H_2O)_1: 分類1の+Ac-H_2Oピーク) U(S(Ac-H_2O)_5: 分類5の+Ac-H_2Oピーク)$
- (5) $S(42) \cap S(0, 18) = (S(Ac)_1: 分類1の+Acピーク)$) $U(S(Ac)_3: 分類3の+Acピーク)$
- (6) S(24) \cap S(18) = (S(Ac-H₂O)₁:分類1の+Ac-H₂Oピーク) U(S(Ac-H₂O)₃:分類3の+Ac-H₂Oピーク) (7) S(18) \cap S(0,42) = (S(-H₂O)₁:分類1の-H₂Oピーク) U(S(-H₂O)₄:分類4の-H₂Oピーク)
- (8) $S(0, 60) \cap S(0, 42) = (S(-H₂O)₁:分類<math>1 \circ OH_2$ Oピーク) $U(S(-H₂O)₅:分類<math>5 \circ OH_2O$ ピーク)
- (9) $S(0, 60) \cap S(0, 18) = (S(-H₂O)₁:分類1の-H₂Oピーク) U(S(-H₂O)₂:分類2の-H₂Oピーク)$
- (10) S (0,42) \cap S $(0,24)=(S(0)_1: 分類 1$ の理想的なピーク) \cup ($S(0)_3: 分類 3$ の理想的なピーク)
- (11) S (0, 42) \cap S (0, 18) = $(S(0)_1: 分類1$ の理想的なピーク) $(S(0)_2: 分類2$ の理想的なピーク)
- (12) S(0, 24) \cap S(0, 18)=(S(0) $_1$:分類1の理想的なピーク)U(S(0) $_4$:分類4の理想的なピーク)
- (13) S(60) \cap S(42) \cap S(0, 18) = (S(Ac)₁:分類1 の+Acピーク)
- (14) S (42) \cap S (24) \cap S (18) = $(S(Ac-H_2O)_1$: 分類 $1\sigma+Ac-H_2O$ ピーク)

(15) S (0, 42) \cap S (0, 24) \cap S (0, 18) = (S (0) $_1$: 分類 $_1$ の理想的なピーク)

(16) S(18) \cap S(0,60) \cap S(0,24) = (S(-H₂O)₁: 分類1の-H₂Oピーク)

なお、これ以外の組み合わせによる積集合は、全て空集合となる

[0281]

分類1の各ピークは、(13)~(16)で与えられる。

分類2,3,4,5の各ピークを求める際には、

分類 2 の各ピークは、(1),(9),(11),(13)~(16)より、 それぞれ差集合として与えられる。

分類3の各ピークは、(5), (6), (10), (13) ~ (16) より、それぞれ差集合として与えられる。

分類4の各ピークは、(3), (7), (12), (13) ~ (16) より、それぞれ差集合として与えられる。

分類 5 の各ピークは、(2), (4), (8), (13)~(16)より、それぞれ差集合として与えられる。

分類9の各ピーク、分類10の各ピーク、

分類6、分類11の各ピーク、

分類7、分類8の各ピークに関しては、順次、差集合として、与えられる。

[0282]

なお、分類11の起こる頻度が、事実上無視できるとすれば、

 $S(Ac)_{6} \cup S(Ac-H_{2}O)_{11} = S(Ac)_{6}$

 $S(0)_{6} \cup S(-H_{2}O)_{11} = S(0)_{6}$ となる。

[0283]

勿論、残る分類12~15に関しては、いずれも単一のピークとして観測されるので、上述の(a)~(d)の部分集合を構成する過程で、いずれかの部分集合にも含まれないものとして、残される。但し、これら単一のピークが、分類12~15の何れに相当するかは、この段階では判定できない。

[0284]

以上、分類1~11のいずれかに分類された、付随的なピークを有するものを 、さらに、下記するように類別する。

[0285]

 $S(0)_P$: 付随的なピークを有する、(i) の状態のペプチド断片に起因するイオン種ピークの集合;

 $S (0) P \equiv S (0) 1 \cup S (0) 2 \cup S (0) 3 \cup S (0) 4 \cup S (0) 8 \cup S (0)$ $0 \cup S (0) 10 \cup [S (0) 7 \cup S (Ac) 8]$

[0286]

 $S(+Ac)_p$:付随的なピークを有する、(ii)の状態のペプチド断片に起因するイオン種ピークの集合;

 $S (+Ac) p \equiv S (Ac) _{1}US (Ac) _{2}US (Ac) _{3}US (Ac) _{5}US (Ac) _{6}US (Ac) _{9}U [S (0) _{7}US (Ac) _{8}]$

[0287]

 $S(-H_2O)_P$: 付随的なピークを有する、(iii) の状態のペプチド断片に起因するイオン種ピークの集合:

S $(-H_2O)_P \equiv S (-H_2O)_1 \cup S (-H_2O)_2 \cup S (-H_2O)_4 \cup S (-H_2O)_5 \cup S (-H_2O)_9 \cup [S (-H_2O)_7 \cup S (A_c - H_2O)_8]$

[0288]

 $S(+Ac, -H_2O)$ p:付随的なピークを有する、(iv) の状態のペプチド断片に起因するイオン種ピークの集合;

S (+Ac, -H₂O) $_P$ =S (Ac-H₂O) $_1$ US (Ac-H₂O) $_3$ US (Ac-H₂O) $_4$ US (Ac-H₂O) $_5$ US (Ac-H₂O) $_1$ OU [S (-H₂O) $_7$ US (Ac-H₂O) $_8$]

と定義する。

[0289]

なお、分類6と分類11に関しては、蓋然性を考慮の上、分類11ではなく、 分類6であるとして、類別する。一方、分類7と分類8に関しても、その蓋然性 を考慮すると、分類8ではなく、分類7の可能性が遥かに高いが、更なる判定は 行わず、 $S(0)_7 U S(Ac)_8$ に属するピークは、 $S(0)_P E S(+Ac)_P$ との双方に類別し、また、 $S(-H_2O)_7 U S(Ac-H_2O)_8$ に属するピークは、 $S(-H_2O)_P E S(+Ac,-H_2O)_P E O 双方に類別している。$

[0290]

上述の類別される部分集合の構成によって、解析対象のm/Z範囲において、 付随的なピークを有するものとして認識されるピークの帰属が完了する。

[0291]

次いで、メインピーク集合Mに含まれるピークのうち、前記の四種の類別部分 集合に含まれるものを選別する。

[0292]

- $S(0)_{PM}$:メインピーク集合M中、 $S(0)_{P}$ に類別される、(i) の状態のペプチド断片に起因するイオン種ピークの集合;
- $S (0)_{PM} = \{M \cap S (0)_{P}\}$

[0293]

- $S(+Ac)_{PM}$:メインピーク集合M中、 $S(+Ac)_{P}$ に類別される、 (ii) の状態のペプチド断片に起因するイオン種ピークの集合;
- $S (+Ac)_{PM} \equiv \{M \cap S (+Ac)_{P}\}$

[0294]

- $S(-H_2O)_{PM}$:メインピーク集合M中、 $S(-H_2O)_{P}$ に類別される、(iii) の状態のペプチド断片に起因するイオン種ピークの集合:
- $S (-H_2O)_{PM} \equiv \{M \cap S (-H_2O)_{P}\}$ [0295]
- $S(+Ac, -H_2O)_{PM}$:メインピーク集合M中、 $S(+Ac, -H_2O)_{P}$ に類別される、(iv) の状態のペプチド断片に起因するイオン種ピークの集合;
- $S (+Ac, -H₂O)_{PM} \equiv \{M \cap S (+Ac, -H₂O)_{P}\}$

[0296]

この類別される部分集合の構成によって、解析対象のm/Z範囲において、付随的なピークを有するものとして認識される「メインピーク」の帰属が完了する

[0297]

平均的なピーク強度の算出

各々の類別に含まれるピークの平均的なピーク強度を算出する。

- S(0) Pに属するピークの平均強度を I_0 とする。
- S(+Ac) pに属するピークの平均強度を I_{Ac} とする。
- S(-H₂O) pに属するピークの平均強度を $I_{-H₂O</sub>$ とする。
- S(+Ac,-H₂O) Pに属するピークの平均強度を $I_{Ac-H₂O}$ とする。

[0298]

上記の帰属作業において、帰属されずに残されている「単独のピーク」の集合には、付随的なピークを与える副反応が生じていない理想的な断片由来のピークなど、分類12~15の各ピークが含まれている。

[0299]

その他、これらについては、平均強度Ⅰが最大となる状態と推定する。

[0300]

(ステップ5) 解析対象とする主要なピークの選択

上記の分類と帰属を行った結果、トリプシン消化されたペプチド断片由来する イオン種ピーク中に、同一のアミノ酸配列からなる、前記四種の状態のペプチド 断片に起因するイオン種ピークの二以上が組となって出現している、分類1~1 1のいずれかに分類され、その状態の帰属がなされたものに関して、各組中の代 表的なピークを選別し、解析対象とする主要なピークとする。具体的には、各組 中の代表的なピークとして、そのピーク強度が最大のものを選択する。

[0301]

サブステップ 5-1. トリフルオロアセチル化がなされた付随ピークの特定と、解析対象からの排除

C末端アミノ酸の逐次的分解反応に付随して、副反応として、余剰のアセチル 化がなされている付随的なイオン種ピークを含む分類1、2、3、5、6、8、 9などでは、アセチル基に代えて、共存させているトリフルオロ酢酸に由来する トリフルオロアセチル化がなされた付随ピークが場合によっては、スペクトル上 に存在する可能性がある。すなわち、

- (v) 余剰なトリフルオロアセチル化を受けているアミノ酸残基を含むが、「脱水」を受けているアミノ酸残基を有していないペプチド断片;
- (vi) 余剰なトリフルオロアセチル化を受けているアミノ酸残基ならびに「脱水」を受けているアミノ酸残基を有しているペプチド断片;

に由来するイオン種ピークをさらに含む可能性を有する。

[0302]

前記ステップ4において、帰属できずに残っているピークについて、分類1、2、3、5、6、8、9などに分類された、(ii)の状態のペプチド断片(余剰なアセチル化体)に起因するイオン種ピークを基準に、前記(v)ないしは(vi)の状態のペプチド断片に起因するイオン種ピークの有無を判別する。その際、(ii)の状態のペプチド断片(余剰なアセチル化体)に起因するイオン種ピークのピーク強度と比較し、少なくとも、ピーク強度が低いことを確認した上で、有

[0303]

無を判別する。

仮に、前記(v)ないしは(vi)の状態のペプチド断片に起因するイオン種ピークが特定された際には、余剰なトリフルオロアセチル化を受けているピークの集合:S(CF)とし、一方、前記ステップ4において、帰属できずに残っているピークの集合から、除去して、以降の解析対象からの排除する。

[0304]

サプステップ5-2. 解析対象とする主要なピークの選択

分類1~11のいずれかに分類され、その状態の帰属がなされたものに関して、各組中の代表的なピークを選別し、解析対象とする主要なピークとする。具体的には、予め読み取られているピーク位置(ピークの中心値)の信頼度・精度は、通常、ピーク強度が大きいほど高くなるので、分解されたアミノ酸に起因する分子量差(ピーク位置の差異)の解析に利用する、各組中の代表的なピークとして、そのピーク強度が最大のものを選択する。

[0305]

選択されるピーク以外に存在している付随的なピークに関して、それらのピーク強度の寄与を含め、各組について、集積したピーク強度として、以後の解析に

利用する。具体的には、C末端より逐次的に脱離されるアミノ酸の探索のため、相互のピーク間距離の算出には、他の付随するピークを最もシグナルの大きなピークに集中させた上で、かかる探索を行う。

[0306]

そこで以下のように場合分けを行い、選択される代表的なピークに対して、他 の付随するピークを集中する操作の一例を示す。

[0307]

なお、(iv)余剰なアセチル化を受けているアミノ酸残基ならびに「脱水」を受けているアミノ酸残基を有しているペプチド断片に由来するイオン種ピークが、ピーク強度が最大のものとなる可能性は低く、ここでは考慮から外す。つまり、 $I_{Ac-H20}=M$ a x (I_{0} , I_{Ac} , I_{-H20} , I_{Ac-H20}) となる場合はないと仮定する。

[0308]

(a) (ii) 余剰なアセチル化を受けているアミノ酸残基を含むが、「脱水」を受けているアミノ酸残基を有していないペプチド断片に由来するイオン種ピークが顕著な場合:

if $I_{Ac}=Max(I_0,I_{Ac},I_{-H20},I_{Ac-H20})$ \Rightarrow 全てのペプチド断片のピークを、(ii) の余剰なアセチル化体ピークに重ね合わせる。

[0309]

この重ね合わせ操作は、それぞれ下記する手順でおこなう。

[0310]

a-1: (iii) の「脱水」化ピークならびに (iv) の「脱水」化と余剰なアセチル化を伴うピークについての重ね合わせ操作

距離18の関係にあるピークのペア(Pi, Pj): $d_{ij}=18$ の全てについて、集合S(-18) の低質量側にあるピークを、高質量側に18だけ平行移動して、集合S(0,-18) の高質量側にあるピークに重ね合わせる。この重ね合わせ操作により、(iii) の「脱水」化ピークならびに(iv) の「脱水」化と余剰なアセチル化を伴うピークの2種類のピークは、それぞれ「脱水」化を受け

ていない対応のピークへと重ね合わせがなされる。

[0311]

次に、集合S(-18)に含まれていない(iii)の「脱水」化ピークに対して、距離 60 の関係にあるピークのペア(Pi, Pj):dij=について、集合S(0, 60)の低質量側にあるピークを、高質量側に 60 だけ平行移動して、集合S(60)の高質量側にあるピーク(アセチル化体ピーク)に重ね合わせる。この操作では、集合S(0, 60)に含まれるが、集合S(-18)に含まれていない(iii)の「脱水」化ピークのみについて、重ね合わせ処理がなされる。

[0312]

a-2: (i) 理想的な産物:余剰なアセチル化を受けているアミノ酸残基ならびに「脱水」を受けているアミノ酸残基を有していないペプチド断片に由来するピークについての重ね合わせ操作

距離 42 の関係にあるピークのペア(Pi, Pj): $d_{ij}=42$ について、集合 S(0,42) の低質量側にあるピークを、高質量側に 42 だけ平行移動して、集合 S(42) の高質量側にあるピーク(アセチル化体ピーク)に重ね合わせる。この操作により、(i) の理想的なペプチド断片由来するピークが、(ii) のアセチル化体ピークに重ね合わせがなされる。

[0313]

a-3: (iv) の「脱水」化と余剰なアセチル化を伴うピークに関して 既に、a-1 の重ね合わせ操作において、(ii) のアセチル化体ピークに重ね合 わせがなされている。

[0314]

上述するa-1、a-2、a-3の順序で重ね合わせ操作を進めることで、(iii)の「脱水」化ピークの大半は、一旦、(i)の理想的なピークに重ね合わせ、さらに、(i)の理想的なピークとともに、(ii)のアセチル化体ピークに重ね合わせがなされる。結果として、代表となる、(ii)のアセチル化体ピークに対して、起こる付随的なピークが重ね合わされる。なお、平行移動操作が施されるピークは、解析対象のピーク集合 S_0 より順次除去する。最終的に、(ii)のアセチル化体ピークを有する分類では、その代表とする(ii)のアセチル化体ピークの

[0315]

(b) (iii) 「脱水」を受けているアミノ酸残基を含むが、余剰なアセチル化を受けているアミノ酸残基を有していないペプチド断片に由来するイオン種ピークが顕著な場合:

if I_H20=Max(I₀,I_{Ac},I_{-H20},I_{Ac-H20})
⇒全てのペプチド断片のピークを、(iii)の「脱水」化体ピークに重ね合わせる。

[0316]

この重ね合わせ操作は、それぞれ下記する手順でおこなう。

[0317]

b-1: (i) の理想的なピークならびに(ii) の余剰なアセチル化を伴うピークについての重ね合わせ操作

距離18の関係にあるピークのペア(Pi, Pj): $d_{ij}=18$ の全てについて、集合S(0, -18)の高質量側にあるピークを、低質量側に18だけ平行移動して、集合S(-18)の低質量側にあるピークに重ね合わせる。この重ね合わせ操作により、(i)の理想的なピークは、(ii)の「脱水」化ピークへ、(ii)の余剰なアセチル化を伴うピークは、(iv)の「脱水」化と余剰なアセチル化を伴うピークへと重ね合わせがなされる。

[0318]

b-2: (ii) の余剰なアセチル化を伴うピークならびに (iv) の「脱水」化と余剰なアセチル化を伴うピークについての重ね合わせ操作

距離 42の関係にあるピークのペア(Pi, Pj): $d_{ij}=42$ のうち、集合 S(42) の高質量側にあるピークを、低質量側に42だけ平行移動して、集合 S(0,42) の低質量側にあるピークに重ね合わせる。その結果、 (iv) の「脱水」化と余剰なアセチル化を伴うピークに前記のb-1で重ね合わされている (ii) の余剰なアセチル化を伴うピークと、 (iv) の「脱水」化と余剰なアセチル化を伴うピークと、 (iv) の「脱水」化と余剰なアセチル化を伴うピークと、 (iv) の「脱水」化と余剰なアセチ

なされる。

[0319]

なお、(iii)の「脱水」化ピークが存在しない分類では、(ii)の余剰なアセチル化を伴うピークが、(i)の理想的なピークへと重ね合わせがなされる。

[0320]

b-3:残る(iv)の「脱水」化と余剰なアセチル化を伴うピークについての 重ね合わせ操作

なお、(iii)の「脱水」化ピークが存在しない分類では、b-1、b-2の操作後も、まだ、(iv)の「脱水」化と余剰なアセチル化を伴うピークが残されている。

[0321]

距離24の関係にあるピークのペアのうち、集合S(24)の高質量側にあるピークを、低質量側に24だけ平行移動して、集合S(0,24)の低質量側にあるピークに重ね合わせる。従って、(iii)の「脱水」化ピークが存在しない分類では、(iv)の「脱水」化と余剰なアセチル化を伴うピークが、(i)の理想的なピークへと重ね合わせがなされる。

[0322]

上述するb-1、b-2、b-3の順序で重ね合わせ操作を進めることで、(iii)の「脱水」化ピークを有する分類では、結果として、代表となる、(iii)の「脱水」化ピークに対して、起こる付随的なピークが重ね合わされる。なお、平行移動操作が施されるピークは、解析対象のピーク集合 S_0 より順次除去する。最終的に、(iii)の「脱水」化ピークを有する分類では、その代表とする(iii)の「脱水」化ピークのみが、解析対象のピークとして選択される。その際、重ね合わせ操作に伴い、代表とする(iii)の「脱水」化ピークに対して、ピーク強度の集中がなされる。

[0323]

(c) (i) 理想的な産物:余剰なアセチル化を受けているアミノ酸残基ならびに「脱水」を受けているアミノ酸残基を有していないペプチド断片に由来するイオン種ピークが顕著な場合:

if $I_0 = Max$ (I_0 , I_{Ac} , I_{-H20} , I_{Ac-H20})

⇒全てのペプチド断片のピークを、(i)の理想的なピークに重ね合わせる

[0324]

c−1:(iii)の「脱水」化ピークならびに(iv)の「脱水」化と余剰なア セチル化を伴うピークについての重ね合わせ操作

距離18の関係にあるピークのペア(Pi, Pj): $d_{ij}=18$ の全てについて、ピーク集合S(-18)の低質量側にあるピークを、高質量側に18だけ平行移動して、集合S(0, -18)の高質量側にあるピークに重ね合わせる。この重ね合わせ操作により、(ii) の「脱水」化ピークは、(i) の理想的なピークに、(iv) の「脱水」化と余剰なアセチル化を伴うピークは、(ii) の余剰なアセチル化を伴うピークへと重ね合わせがなされる。

[0325]

c-2: (ii) の余剰なアセチル化を伴うピークについての重ね合わせ操作 距離 4 2 の関係にあるピークのペア(P i , P j): d i j = 4 2 のうち、集合 S (4 2) の高質量側にあるピークを、低質量側に4 2 だけ平行移動して、集合 S (0 , 4 2) の低質量側にあるピークに重ね合わせる。その結果、 (ii) の余剰なアセチル化を伴うピークに前記のb-1で重ね合わされている (iv) の「脱水」化と余剰なアセチル化を伴うピークと、 (i i) の余剰なアセチル化を伴うピークと、 (i i) の余剰なアセチル化を伴うピークと、 (i i) の余剰なアセチル化を伴う

[0326]

なお、(ii)の余剰なアセチル化を伴うピークが存在しない分類では、(iv)の「脱水」化と余剰なアセチル化を伴うピークは、前段階において、(iii)の「脱水」化ピークが既に重ねあわせで、排除を受けている結果、重ね合わせがなされない。

[0327]

c-3:残る(iv)の「脱水」化と余剰なアセチル化を伴うピークついての重ね合わせ操作

なお、(iii)の「脱水」化ピークが存在しない分類、あるいは、(ii)の余剰なアセチル化を伴うピークが存在しない分類では、c-1、c-2の操作後も

[0328]

距離24の関係にあるピークのペアのうち、集合S(24)の高質量側にあるピークを、低質量側に24だけ平行移動して、集合S(0,24)の低質量側にあるピークに重ね合わせる。従って、(iii)の「脱水」化ピークが存在しない分類、あるいは、(ii)の余剰なアセチル化を伴うピークが存在しない分類では、(iv)の「脱水」化と余剰なアセチル化を伴うピークが、この段階で、(i)の理想的なピークへと重ね合わせがなされる。

[0329]

上述するc-1、c-2、c-3の順序で重ね合わせ操作を進めることで、(i)の理想的なピークを有する分類では、結果として、代表となる、(i)の理想的なピークに対して、起こる付随的なピークが重ね合わされる。なお、平行移動操作が施されるピークは、解析対象のピーク集合 S_0 より順次除去する。最終的に、(i)の理想的なピークを有する分類では、その代表とする(i)の理想的なピークのみが、解析対象のピークとして選択される。その際、重ね合わせ操作に伴い、代表とする(i)の理想的なピークに対して、ピーク強度の集中がなされる。

[0330]

さらに、以上の重ね合わせ操作によって、ピーク集合 S_0 に対して、選択される代表的なピークを残し、平行移動操作施されるピークを除去して得られる、以降の解析に利用する、解析対象のピークの集合を、 S_1 とする。

[0331]

サブステップ5-3. 試料タンパク質に由来するピークの蓋然性の指標算出ピーク集合S₀ならびに、前述の重ね合わせ操作処理後の、解析対象のピーク集合S₁に含まれる各ピークについて、試料タンパク質に由来するピークである蓋然性の指標を以下のように算出する。

[0332]

上述のステップ4の分類・帰属の結果に基づき、選別される部分集合: $S(0)_{PM}$:メインピーク集合M中、 $S(0)_{P}$ に類別される、(i) の状態の

ページ: 139/

ペプチド断片に起因するイオン種ピークの集合:

- $S (0) pM \equiv \{M \cap S (0) p\}$
- $S(+Ac)_{PM}:$ メインピーク集合M中、 $S(+Ac)_{P}$ に類別される、 (ii) の状態のペプチド断片に起因するイオン種ピークの集合:
- $S (+Ac)_{PM} \equiv \{M \cap S (+Ac)_{P}\}$
- $S(-H_2O)_{PM}$:メインピーク集合M中、 $S(-H_2O)_{P}$ に類別される、 (iii) の状態のペプチド断片に起因するイオン種ピークの集合;
- $S (-H_2O)_{PM} \equiv \{M \cap S (-H_2O)_{P}\}$
- $S(+Ac, -H_2O)_{PM}$:メインピーク集合M中、 $S(+Ac, -H_2O)_{P}$ に類別される、(iv) の状態のペプチド断片に起因するイオン種ピークの集合;
- $S (+Ac, -H₂O) pM = \{M \cap S (+Ac, -H₂O) p\}$

のいずれかに含有されるピークPiについては、蓋然性の指標riを

if
$$P_i \in S(0) p_M \rightarrow r_i = 3$$

- i f $P_i \in S (+Ac)_{PM} \rightarrow r_i = 3$
- if $P_i \in S (-H_2O) p_M \rightarrow r_i = 3$
- if $P_i \in S$ (+Ac, -H₂O) $PM \rightarrow r_i = 3$ とする。

[0333]

また、前記(v)ないしは(vi)の状態のペプチド断片に起因するイオン種ピークと特定された、余剰なトリフルオロアセチル化を受けているピークの集合:

- S (CF) に含有されピーク P_i については、蓋然性の指標 r_i を
 - if $P_i \in S(CF) \rightarrow r_i = 2$ とする。

[0334]

なお、メインピーク集合Mには含まれないものの、

- $S(0)_P$: 付随的なピークを有する、(i) の状態のペプチド断片に起因するイオン種ピークの集合;
- $S(+Ac)_P$: 付随的なピークを有する、(ii) の状態のペプチド断片に起因するイオン種ピークの集合;

ページ: 140/

 $S(-H_2O)_P$: 付随的なピークを有する、(iii) の状態のペプチド断片に起因するイオン種ピークの集合;

 $S(+Ac, -H_2O)$ p:付随的なピークを有する、(iv) の状態のペプチド断片に起因するイオン種ピークの集合;

のいずれかに含有されるピークPiについては、蓋然性の指標riを

if
$$P_i \in S(0)_P \rightarrow r_i = 2$$

i f
$$P_i \in S (+Ac) p \rightarrow r_i = 2$$

i f
$$P_i \in S (-H_2O) P \rightarrow r_i = 2$$

i f
$$P_i \in S$$
 (+Ac, -H₂O) $P \rightarrow r_i = 2$
とする。

[0335]

さらには、上述のステップ4の分類・帰属では「単独のピーク」と認定されるものの、メインピーク集合Mには含まれているピーク P_i については、蓋然性の指標 r i ϵ 、

if
$$P_i \in M \rightarrow r_i = 1$$

とする。

[0336]

それ以外の場合、蓋然性の指標 r i を、 $r_i = 0$ とする。

[0337]

下記するステップ 6 において、解析対象のピーク集合 S_1 に含まれる各ピークについて、C 末端より逐次的に脱離されるアミノ酸の探索のため、相互のピーク間距離の算出する際、互いに対応する陽イオン種または陰イオン種と想定されるピークは、少なくとも、上述する蓋然性の指標 r i が 1 以上であることを確認できる範囲で解析を優先して進める。

[0338]

(ステップ6) C末端より逐次的に脱離されるアミノ酸の探索

[0339]

サブステップ6-1. トリプシン消化を施して得られる、N末側断片、ならびに中間部の断片に由来するピークの特定

トリプシン消化を施して得られる、N末側断片、ならびに中間部の断片は、アミノ酸の脱離は生じてなく、少なくとも、ポジティブ・モードで測定したスペクトル上、前述の重ね合わせ操作処理後の、解析対象のピーク集合 S_1 においては、メインピーク集合Mに含まれるピークとして観測される。すなわち、C 末端には、アルギニンを有するので、陽イオン種の生成比率は、対応する陰イオン種の生成比率よりも、通常、有意に高いので、ポジティブ・モードで測定したスペクトル上、ピーク集合 S_1 とメインピーク集合Mとの積集合 $\{S_1\cap M\}$ のうちに含まれる。

[0340]

ポジティブ・モードで測定したスペクトル上の積集合 $\{S_1\cap M\}$ の各ピークに関して、アミノ酸の脱離に相当する分子量差を有する、低質量側または高質量側のピークが、ピーク集合 S_1 中に見出されないピークを選別して、部分集合ポジ S_2 を作製する。次いで、ネガティブ・モードで測定したスペクトル上において、該部分集合ポジ S_2 の各ピークに対応する陰イオン種のピークを特定し、部分集合ネガ S_2 を作製する。かかる部分集合ネガ S_2 の各ピークに関して、アミノ酸の脱離に相当する分子量差(Δ A [i])を有する、低質量側または高質量側のピークが、ピーク集合 S_1 中には見出されないピークを選別して、さらなる部分集合ネガ S_3 を作製する。

[0341]

この部分集合ネガS3は、対応する陽イオン種、陰イオン種の双方とも、アミノ酸の脱離は生じた「娘断片」を持たず、また、ポジティブ・モードで測定したスペクトル上でメインピークとして観測されるという、トリプシン消化を施して得られる、N末側断片、ならびに中間部の断片に由来するピークの必要条件を満足するものである。従って、トリプシン消化を施して得られる、N末側断片、ならびに中間部の断片に由来するピークの集合と特定する。

[0342]

アミノ酸の脱離に相当する特異的なピークシフトの値

 ΔA [i]

0 G 57

ページ: 142/

```
S *
         69:「脱水」を受けたセリン残基
1
2
   Α
         7 1
   T *
         83:「脱水」を受けたトレオニン残基
3
   S
4
         8 7
(5
    P
         98):環状アミノ酸プリンの脱離は、本発明では起きない
0
         9 9
6
   V
7
   Τ
         1 0 1
8
   C
         1 0 3
9
   L
       1 1 3
1 0
  Ι
      1 1 3
1 1
   D
       1 1 5
1 2
   N
         1 1 6
1 3
  \mathbf{E}
         1 2 7
1 4
  K
         1 2 8
15 S-Ac 129:余剰なアセチル化がなされたセリン残基
1 6
   Q
     1 3 0
   M 131
1 7
1 8
   \mathbf{H}
     1 3 7
   H* 138:水素付加のヒスチジン残基
19
2 0
   T-Ac 143:余剰なアセチル化がなされたトレオニン残基
2 1
   F
          1 4 7
2 2
   Y
         1 4 8
2 3
   R
      156
24 K-Ac 170:側鎖のN-アセチル保護されたリシン
25 H-Ac 179:余剰なアセチル化がなされたヒスチジン残基
   W 186
2 6
27 Y-Ac 191:余剰なアセチル化がなされたチロシン残基
    [0343]
```

サプステップ6-2. C末側断片群に由来するピークの特定

ネガティブ・モードで測定したスペクトル上において、C末側断片群に由来するピークは、ピーク集合 S_1 から、前記部分集合ネガ S_3 を除いた差集合 $\{S_1 \setminus \hat{A}\}$ に含まれる。

[0344]

該差集合 $\{S_1 \setminus \lambda , \pi \}$ 中において、最大のピーク位置(m/2)を有するピークを、 P^-_{max} とする。かかる P^-_{max} を起点: P^- (0) として、 P^- 2)酸の脱離に相当する分子量差(ΔA [i])を有する、低質量側のピークの有無を、ピーク集合 S_1 中で探索する。すなわち、C 末端から P^- 2)酸が逐次的に分解されるC 末側断片群では、 P^- 2)での脱離に相当する分子量差(P^- 3)を示す、一連のピーク列が観測されていると仮定する。その際、 P^- 3)で、 P^- 4)での脱離に相当する分子量差(P^- 4)が200以下の範囲にある低質量側のピークについて、探索を順次進める。

[0345]

ピーク集合 S_1 中には、上述の分類・帰属がなされ、さらに、重ね合わせが施された「帰属済ピーク」と、重ね合わせが施されていない「単独ピーク」が含まれるが、「帰属済ピーク」相互のピーク位置差($\Delta m/Z$)の算出では、それぞれの帰属に基づく、余剰なアセチル化、「脱水」の有無を考慮の上、アミノ酸の脱離に相当する分子量差(ΔA [i])に相当するか否かを判定する。なお、「単独ピーク」は、分類 $12\sim15$ の可能性すべてについて、判定する。

[0346]

- (a) 起点ピークが (ii) の余剰なアセチル化体ピークの場合
- P(0) から距離 $\Delta A[i]$ (i=0,1,...,27) だけ低質量側に、ピーク集合 S_1 中のピークが存在していないか検索する。もし、存在していれば、それを P(1) とする。複数個見つかった場合には、先に定義した r_i の大きなピークを優先して、更なるアミノ酸の脱離が進むピーク列の探索を進める。その後、他の P(1) についても、同様にピーク列の探索を進める。

[0347]

最終的に、可能性のあるピーク列複数が得られた時点で、各ピーク列を構成する各ピークの蓋然性の指標 r i に加えて、アミノ酸の脱離が進む「娘断片」に由来するピークも、(ii)の余剰なアセチル化体ピークである蓋然性が高いなどの事項も考慮に入れ、より可能性の高いピーク列を選別する。

[0348]

a-0: (ii) の余剰なアセチル化体ピークしか、低質量側、ピーク位置差 ($\Delta m/Z$) が 200以下の範囲に存在していない場合

P(0) から距離 $\Delta A[i]$ (i=0, 1, ..., 27) だけ低質量側に、ピークが存在していないか検索する。

但し、見出される「娘断片」が「親断片」に対して、余剰なアセチル化がなされているアミノ酸の脱離が生じている場合、蓋然性が低い選択と判断できる。また、側鎖に「脱水」が生じているアミノ酸の脱離が生じている場合、蓋然性が低い選択と判断できる。なお、余剰なアセチル化、「脱水」が生じていないアミノ酸の脱離が生じている場合、より蓋然性が高いと判断される。

[0349]

a-1: (i) の理想的なピークしか、低質量側、ピーク位置差 ($\Delta m/Z$) が 2 0 0以下の範囲に存在していない場合

P(0) から距離 $\Delta A[i] + 42$ (i = 0, 1, ..., 27) だけ低質量側に、ピークが存在していないか検索する。

[0350]

但し、見出される「娘断片」が「親断片」に対して、余剰なアセチル化がなされているアミノ酸の脱離が生じている場合、蓋然性が高い選択と判断できる。一方、側鎖に「脱水」が生じているアミノ酸の脱離が生じている場合、蓋然性が低い選択と判断できる。また、余剰なアセチル化、「脱水」が生じていないアミノ酸の脱離が生じている場合、蓋然性が低いと判断される。

[0351]

a-2: (iii) の「脱水」化体のピークしか、低質量側、ピーク位置差 $(\Delta m/2)$ が 200以下の範囲に存在していない場合

P(0) から距離 ΔA[i] +60 (i=0, 1, …, 27) だけ低質量側

にピークが存在していないか検索する。

但し、見出される「娘断片」が「親断片」に対して、余剰なアセチル化がなされているアミノ酸の脱離が生じている場合、蓋然性はある選択と判断できる。一方、側鎖に「脱水」が生じているアミノ酸の脱離が生じている場合、より蓋然性が低い選択と判断できる。また、余剰なアセチル化、「脱水」が生じていないアミノ酸の脱離が生じている場合、蓋然性が低いと判断される。

[0352]

- (b) 起点ピークが(i) の理想的なピークの場合
- P(0) から距離 $\Delta A[i]$ (i=0, 1, …, 27) だけ低質量側に、ピーク集合 S_1 中のピークが存在していないか検索する。もし、存在していれば、それを P(1) とする。複数個見つかった場合には、先に定義した r_i の大きなピークを優先して、更なるアミノ酸の脱離が進むピーク列の探索を進める。その後、他の P(1) についても、同様にピーク列の探索を進める。

[0353]

最終的に、可能性のあるピーク列複数が得られた時点で、各ピーク列を構成する各ピークの蓋然性の指標 r i に加えて、アミノ酸の脱離が進む「娘断片」に由来するピークも、(i) の理想的なピークである蓋然性が高いなどの事項も考慮に入れ、より可能性の高いピーク列を選別する。

[0354]

- b-0: (i) の理想的なピークしか、低質量側、ピーク位置差 ($\Delta m/Z$) が 200 以下の範囲に存在していない場合
- P(0) から距離 $\Delta A[i]$ (i=0, 1, ..., 27) だけ低質量側に、ピークが存在していないか検索する。

但し、見出される「娘断片」が「親断片」に対して、余剰なアセチル化、「脱水」が生じていないアミノ酸の脱離が生じている場合、蓋然性が高い選択と判断できる。一方、側鎖に「脱水」が生じているアミノ酸の脱離が生じている場合、蓋然性が低い選択と判断できる。また、余剰なアセチル化がなされているアミノ酸の脱離が生じている場合、蓋然性が低いと判断される。

[0355]

- b-1: (iii) の「脱水」化体のピークしか、低質量側、ピーク位置差 $(\Delta m/Z)$ が 200以下の範囲に存在していない場合
- P(0) から距離 $\Delta A[i]+18$ (i=0, 1, …, 27) だけ低質量側にピークが存在していないか検索する。

但し、見出される「娘断片」が「親断片」に対して、余剰なアセチル化、「脱水」が生じていないアミノ酸の脱離が生じている場合、蓋然性はある選択と判断できる。一方、側鎖に「脱水」が生じているアミノ酸の脱離が生じている場合、より蓋然性が低い選択と判断できる。また、余剰なアセチル化がなされているアミノ酸の脱離が生じている場合、蓋然性が低いと判断される。

[0356]

- b-2: (ii) の余剰なアセチル化体ピークしか、低質量側、ピーク位置差 ($\Delta m/Z$) が 200 以下の範囲に存在していない場合
- P(0) から距離 $\Delta A[i]-42$ (i=0, 1, ..., 27) だけ低質量側に、ピークが存在していないか検索する。

[0357]

但し、見出される「娘断片」が「親断片」に対して、余剰なアセチル化、「脱水」が生じていないアミノ酸の脱離が生じている場合、蓋然性がある選択と判断できる。また、側鎖に「脱水」が生じているアミノ酸の脱離が生じている場合、蓋然性が低い選択と判断できる。なお、余剰なアセチル化がなされているアミノ酸の脱離が生じている場合、蓋然性が低いと判断される。

[0358]

- (c) 起点ピークが (iii) の「脱水」化体のピークの場合
- P(0) から距離 $\Delta A[i]$ (i=0, 1, …, 27) だけ低質量側に、ピーク集合 S_1 中のピークが存在していないか検索する。もし、存在していれば、それを P(1) とする。複数個見つかった場合には、先に定義した r_i の大きなピークを優先して、更なるアミノ酸の脱離が進むピーク列の探索を進める。その後、他の P(1) についても、同様にピーク列の探索を進める。

最終的に、可能性のあるピーク列複数が得られた時点で、各ピーク列を構成する各ピークの蓋然性の指標 r i に加えて、アミノ酸の脱離が進む「娘断片」に由

来するピークも、(iii)の「脱水」化体のピークである蓋然性が高いなどの事項も考慮に入れ、より可能性の高いピーク列を選別する。

[0359]

- c-0: (iii) の「脱水」化体のピークしか、低質量側、ピーク位置差 $(\Delta m/Z)$ が 200 以下の範囲に存在していない場合
- P(0) から距離 $\Delta A[i]$ (i=0,1,...,27) だけ低質量側にピークが存在していないか検索する。

[0360]

但し、見出される「娘断片」が「親断片」に対して、余剰なアセチル化、「脱水」が生じていないアミノ酸の脱離が生じている場合、蓋然性は高い選択と判断できる。一方、側鎖に「脱水」が生じているアミノ酸の脱離が生じている場合、蓋然性が低い選択と判断できる。また、余剰なアセチル化がなされているアミノ酸の脱離が生じている場合、より蓋然性が低いと判断される。

[0361]

- c-1: (i) の理想的なピークしか、低質量側、ピーク位置差 ($\Delta m/Z$) が 2 0 0 以下の範囲に存在していない場合
- P(0) から距離 $\Delta A[i]-18$ (i=0, 1, ..., 27) だけ低質量側に、ピークが存在していないか検索する。

但し、見出される「娘断片」が「親断片」に対して、側鎖に「脱水」が生じているアミノ酸の脱離が生じている場合、蓋然性が高い選択と判断できる。一方、余剰なアセチル化、「脱水」が生じていないアミノ酸の脱離が生じている場合、蓋然性がある選択と判断できる。また、余剰なアセチル化がなされているアミノ酸の脱離が生じている場合、蓋然性が低いと判断される。

[0362]

- c-2: (ii) の余剰なアセチル化体ピークしか、低質量側、ピーク位置差 ($\Delta m/Z$) が 200以下の範囲に存在していない場合
- P(0) から距離 $\Delta A[i]-60$ (i=0, 1, …, 27) だけ低質量側に、ピークが存在していないか検索する。

[0363]

但し、見出される「娘断片」が「親断片」に対して、側鎖に「脱水」が生じているアミノ酸の脱離が生じている場合、蓋然性がある選択と判断できる。また、余剰なアセチル化、「脱水」が生じていないアミノ酸の脱離が生じている場合、蓋然性が低い選択と判断できる。なお、余剰なアセチル化がなされているアミノ酸の脱離が生じている場合、より蓋然性が低いと判断される。

[0364]

なお、該差集合 $\{S_1 \setminus \lambda \pi S_3\}$ 中において、最大のピーク位置(m/Z)を有するピークを、 P^-_{max} とする。かかる P^-_{max} を起点: P^- (0)として、アミノ酸の脱離に相当する分子量差(ΔA [i])を有する、低質量側のピークの有無を、ピーク集合 S_1 中で探索して、P(1)に相当するものが見出されない場合、該差集合 $\{S_1 \setminus \lambda \pi S_3\}$ 中の、 P^-_{max} に次ぐ、ピーク位置(m/Z)を有するピークを起点: P^- (0)として、同様な探索を進める。

[0365]

一方、距離 ΔA [i] (i=0,1,…,27)だけ低質量側に、ピーク集合 S_1 中のピークが存在していないか検索する際、低質量側の「単独のピーク」に 対して判断を行う過程では、「単独のピーク」が分類 $12\sim15$ の全ての可能性 があり、それに伴い、ピーク位置差が、複数の解釈が可能な場合がある。この複数の解釈(縮退)について、以下に纏めて示す。

[0366]

【表3】

ピークシフトの縮退

Δm	(i)の理想的	(iii)の「脱水」	(ii)の余剰な	(iv)の「脱水」
	なピーク	化体のピーク	アセチル化体	化と余剰なアセ
			のピーク	チル化を有する
			-	ピーク
69	S*	S		
81		٧		G
83	T*	T		
95		I or L		A
98	(P)	N		
99	V		G	
111		S-Ac	S*	S
113	I or L	М		
125		T-Ac	T*	T
127	E			C
129	S-Ac	F	S	
130	Q	Y		
137	Н			I or L
138	H* .	R		
140			(P)	Ŋ
143	T-Ac		T	
152		K-Ac	-	K
161		H-Ac		
170	K-Ac		К	
172			Q	Y
173		Y-Ac	M	
179	H-Ac		Н	
180			H*	R

[0367]

上記の一例では、ステップ6において、トリプシン消化を施して得られる、N末側断片、ならびに中間部の断片と、C末端断片群との弁別に、N末側断片、ならびに中間部の断片では、その断片のC末端にアルギニンを持つので、スペクトルの測定の際、ポジモードとネガモードの双方を比較することで、その判別を進めている。

[0368]

別の方法としては、脱離反応の経時変化をトレースすることで、反応時間の差

異に起因する変化の顕著なピークは、C末端断片群のピークとして、これらの選択に利用するという方法もある。すなわち、反応時間を長くすると、より多くのアミノ酸数が分解されたC末端断片群のピークが得られるものの、そのアミノ酸配列の解析における起点となる、元のC末端断片自体の減少が起こる。従って、反応時間を比較的に短い段階の試料と、対比しつつ、より多くのアミノ酸数が分解されたC末端断片群のピークを特定することが容易となる。その際、N末側断片、ならびに中間部の断片は、双方のスペクトルに共通し、そのピーク強度比は、本質的に、反応時間の差異に依存しないものである。

[0369]

なお、C末端断片群のピークを特定し、逐次的に分解されるアミノ酸種の特定 を進める手順においては、下記するA~Eの各過程に基づき、一連の解析を実施 することが可能である。

[0370]

A. $C末端断片群のピーク間において観測されるピーク位置差(<math>\Delta\,m/Z$)の可能な値

上述する「ピークシフトの縮退」をも考慮に入れて、C 末端断片群のピークに基づき、C 末端アミノ酸配列をより高い確度で決定する解析手法の一例を示す。仮に、逐次的にアミノ酸が分解されるC 末端断片群が、いずれも(i)の理想的な断片のピークに加えて、(ii)の余剰なアセチル化体ピークと(iii)の「脱水」化体のピークを伴っている場合、それらのピーク間で観測されるピーク位置差(Δ m/Z)の可能な値は、下記する集合で示すことができる。

[0371]

具体的には、

アミノ酸の脱離に相当する特異的なピークシフトの値ΔA [i] に相当する:

$$D_0 = \{ \Delta A [i] : i = 0, 1, \dots, 27 \}$$

(i)の理想的な断片のピークと(iii)の「脱水」化体のピークとの間で観測 されるピーク位置差 $(\Delta m/Z)$ に由来する:

$$D_1^{(+)} \equiv \{ \Delta A \ [i] + 18 : i = 0, 1, \dots, 27 \}$$

 $D_1^{(-)} \equiv \{ \Delta A \ [i] - 18 : i = 0, 1, \dots, 27 \}$

(i)の理想的な断片のピークと(ii)の余剰なアセチル化体ピークとの間で観測されるピーク位置差($\Delta m/Z$)に由来する:

$$D_2^{(+)} \equiv \{ \Delta A \ [i] + 42 : i = 0, 1, \dots, 27 \}$$

 $D_2^{(-)} \equiv \{ \Delta A \ [i] - 42 : i = 0, 1, \dots, 27 \}$

(ii)の余剰なアセチル化体ピークと(iii)の「脱水」化体のピークとの間で 観測されるピーク位置差($\Delta m/Z$)に由来する:

$$D_3^{(+)} \equiv \{ \Delta A [i] + 60 : i = 0, 1, \dots, 27 \}$$

$$D_3^{(-)} \equiv \{ \Delta A [i] - 60 : i = 0, 1, \dots, 27 \}$$

また、前記7種の集合; D_0 、 D_1 ⁽⁺⁾、 D_1 ⁽⁻⁾、 D_2 ⁽⁺⁾、 D_2 ⁽⁻⁾、 D_3 ⁽⁺⁾、 D_3 ⁽⁻⁾の和集合として、

D
$$\equiv$$
 D₀ \cup (D₁(+) \cup D₁(-)) \cup (D₂(+) \cup D₂(-)) \cup (D₃(+) \cup D₃(-)) を定義する。

[0372]

- 一方、これら7種の集合の積集合を考慮してみると、
- (1) 5種以上の集合の積集合において、要素を有するものは無い。
- (2) 4種の集合の積集合において、要素を有するもの

$$F_1 = D_0 \cap D_1^{(-)} \cap D_2^{(+)} \cap D_3^{(+)} = \{1 \ 2 \ 9\}$$

$$F_2 \equiv D_0 \cap D_1^{(+)} \cap D_2^{(-)} \cap D_3^{(-)} = \{8,7\}$$

$$F_3 \equiv D_0 \cap D_1^{(+)} \cap D_3^{(-)} \cap D_3^{(+)} = \{1 \ 3 \ 1\}$$

(3) 3種の集合の積集合において、要素を有するもの

$$T_1 \equiv D_0 \cap D_1^{(-)} \cap D_2^{(+)} \setminus F_1 = \{1 \ 1 \ 3\}$$

$$T_2 \equiv D_0 \cap D_1^{(-)} \cap D_3^{(-)} = \{6.9, 8.3\}$$

$$T_3 \equiv D_0 \cap D_1^{(+)} \cap D_2^{(-)} \setminus F_2 = \{1 \ 0 \ 1\}$$

$$T_4 \equiv D_0 \cap D_1^{(+)} \cap D_3^{(+)} = \{1 \ 4 \ 7\}$$

$$T_5 \equiv D_0 \cap D_2^{(-)} \cap D_3^{(-)} = \{7\ 1\}$$

$$T_6 \equiv D_0 \cap D_2^{(+)} \cap D_3^{(+)} = \{1 \ 4 \ 3\}$$

$$T_7 \equiv D_1^{(-)} \cap D_1^{(+)} \cap D_3^{(-)} = \{1 \ 1 \ 9\}$$

$$T_8 \equiv D_1^{(-)} \cap D_1^{(+)} \cap D_3^{(+)} = \{1 \ 6 \ 1\}$$

$$T_9 \equiv D_1^{(-)} \cap D_2^{(+)} \cap D_3^{(+)} = \{1 \ 1 \ 9\}$$

(4) 2種の集合の積集合において、要素を有するもの

```
W_1 \equiv D_0 \cap D_1^{(-)} \setminus [T_1 \cup T_2 \cup F_1] = \{9.8, 1.3.0, 1.3.8\}
             W_2 \equiv D_0 \cap D_1^{(+)} \setminus [T_3 \cup T_4 \cup F_2 \cup F_3] = \{1 \ 1 \ 6, \ 1 \ 4 \ 8, \ 1 \ 5 \ 6\}
             W_3 \equiv D_0 \cap D_2^{(-)} \setminus [T_3 \cup T_5 \cup F_2] = \{5.5, 1.2.8, 1.3.7\}
             W_4 \equiv D_0 \cap D_2^{(+)} \setminus [T_1 \cup T_6 \cup F_1] = \{9, 1, 7, 0, 1, 7, 9\}
             W_5 \equiv D_0 \cap D_3^{(+)} \setminus [T_4 \cup T_6 \cup F_1 \cup F_3] = \{1 \ 9 \ 1\}
             W_6 \equiv D_1^{(-)} \cap D_2^{(-)} = \{85, 95\}
             W_7 \equiv D_1^{(-)} \cap D_2^{(+)} \setminus [T_9 \cup F_1] = \{1 \ 1 \ 1, \ 1 \ 2 \ 5\}
             W_8 \equiv D_1^{(-)} \cap D_3^{(-)} \setminus [T_2 \cup T_7] = \{3, 9, 5, 3, 1, 1, 0\}
            W_9 \equiv D_1^{(+)} \cap D_2^{(-)} \setminus [T_3 \cup F_2] = \{89, 105, 149\}
            W_{10} \equiv D_1^{(+)} \cap D_2^{(+)} = \{1 \ 4 \ 5, \ 1 \ 5 \ \}
            W_{11} \equiv D_1^{(+)} \cap D_3^{(+)} \setminus [T_4 \cup T_8 \cup F_3] = \{1 \ 1 \ 7, \ 1 \ 8 \ 8, \ 1 \ 9 \ 7\}
            W_{12} \equiv D_2^{(+)} \cap D_3^{(+)} \setminus [T_6 \cup T_9 \cup F_1] = \{151, 188, 190, 190\}
 198
             961
   (5) 「縮退」のないピークシフトの値
       Sh_0 = D_0 \setminus ([W_1 \cup W_2 \cup W_3 \cup W_4 \cup W_5] \cup [T_1 \cup T_2 \cup T_3 \cup T_4 \cup T_5]
\cup [F_1 \cup F_2 \cup F_3]) = \{103, 115, 127, 186\}
       Sh_1^{(+)} \equiv D_1^{(+)} \setminus ([W_2 \cup W_9 \cup W_{10} \cup W_{11}] \cup [T_3 \cup T_4 \cup T_7 \cup T_8] \cup [W_1 \cup W_1] \cup [T_3 \cup T_4 \cup T_7 \cup T_8] \cup [T_4 \cup T_7 \cup T_8
   [F_2 \cup F_3]) = {75, 121, 133, 134, 146, 165, 166,
 174, 204, 209}
       Sh_1^{(-)} \equiv D_1^{(-)} \setminus ([W_1 \cup W_6 \cup W_7 \cup W_8] \cup [T_1 \cup T_2 \cup T_7 \cup T_8 \cup T_9])
] \cup [F_1]) = \{51, 65, 80, 81, 97, 109, 112, 120,
 152, 168
       Sh_2^{(+)} \equiv D_2^{(+)} \setminus ([W_4 \cup W_7 \cup W_{10} \cup W_{12}] \cup [T_1 \cup T_6 \cup T_9] \cup [F_1]
]) = \{140, 141, 169, 171, 172, 180, 185, 212,
 221, 228, 233
       Sh_2^{(-)} \equiv D_2^{(-)} \setminus ([W_3 \cup W_6 \cup W_9 \cup W_{13}] \cup [T_3 \cup T_5] \cup [F_2]) =
```

 $\{15, 29, 59, 61, 73, 74, 86, 106, 114, 144\}$ $Sh_3^{(+)} \equiv D_3^{(+)} \setminus ([W_5 \cup W_{12}] \cup [T_4 \cup T_6 \cup T_8 \cup T_9] \cup [F_1 \cup F_3])$ $\{15, 29, 59, 61, 73, 74, 86, 106, 114, 144\}$ $\{15, 29, 59, 61, 73, 74, 86, 106, 114, 144\}$ $\{15, 29, 59, 61, 73, 74, 86, 106, 114, 144\}$ $\{15, 29, 59, 61, 73, 74, 86, 106, 114, 144\}$ $\{15, 29, 59, 61, 73, 74, 86, 106, 114, 144\}$ $\{15, 29, 59, 61, 73, 74, 86, 106, 114, 144\}$ $\{15, 29, 59, 61, 73, 74, 86, 106, 114, 144\}$ $\{15, 29, 163, 175, 176, 187, 203, 207, 208, 216, 230, 239, 251, 256\}$

 $Sh_3^{(-)}\equiv D_3^{(-)}\setminus ([W_8\cup W_{13}]\cup [T_2\cup T_5\cup T_7]\cup [F_2\cup F_3])=$ $\{(-3)$ 、9、11、23、38、67、68、70、77、78、126 $\}$ 以上の手順では、互いに共通する要素を含まないように、各部分集合は区分されている。

[0373]

以上に示すように、ピーク位置差(Δ m/Z)が、上述する和集合 D の要素 d ($d \in D$)の一つと一致する場合であっても、一義的には解釈できない。具体的には、和集合 D の要素 d ($d \in D$)に対して、

- (i) $d = \Delta A [k]$ となるkの値: k_0 (d)
- (i i) $d = \Delta A [k] + 18$ となるkの値: k_1 +·(d) $d = \Delta A [k] 18$ となるkの値: k_1 -·(d)
- (i i i) $d = \Delta A [k] + 42$ となるkの値: k_{2} +(d) $d = \Delta A [k] 42$ となるkの値: k_{2} -(d)
- (iv) $d = \Delta A [k] + 60$ となるkの値: k_3 +(d) $d = \Delta A [k] 60$ となるkの値: k_3 -(d)

の関係を満足する、 k_0 (d)、 k_1 + (d)、 k_1 - (d)、 k_2 + (d)、 k_2 - (d)、 k_3 + (d)、 k_3 - (d) のうち、2以上が存在する場合がある。すなわち、逐次的に分解除去を受けるアミノ酸の種類(Δ A [i]: i=0, 1, …, 27)に関して、単に、ピーク位置差(Δ m/Z)のみの情報に基づき解析を進めると、複数の解釈の可能性が残る場合がある。

[0374]

勿論、「縮退」のないピークシフトの値の部分集合に関しては、

- (1) d∈Sh₀に対して、k₀(d)
- (2) $d \in Sh_1^{(+)}$ に対して、 k_1^+ (d) $d \in Sh_1^{(-)}$ に対して、 k_1^- (d)

ページ: 154/

- (3) $d \in Sh_2^{(+)}$ に対して、 k_2^+ (d) $d \in Sh_2^{(-)}$ に対して、 k_2^- (d)
- (4) $d \in Sh_3^{(+)}$ に対して、 k_3^+ (d) $d \in Sh_3^{(-)}$ に対して、 k_3^- (d)

と、それぞれ単一のk値が対応している。それ以外の「積集合」として定義されている各部分集合に関しては、

- (5) $d \in W_1$ に対しては、 k_0 (d) k_1 (d)
- (6) $d \in W_2$ に対しては、 k_0 (d) k_1 + (d)
- (7) $d \in W_3$ に対しては、 k_0 (d) k_2 (d)
- (8) $d \in W_4$ に対しては、 k_0 (d) k_2 + (d)
- (9) $d \in W_5$ に対しては、 k_0 (d) k_3 + (d)
- (10) $d \in W_6$ に対しては、 k_1^- (d) $\geq k_2^-$ (d)
- (11) $d \in W_7$ に対しては、 k_1 -(d) k_2 +(d)
- (12) $d \in W_8$ に対しては、 k_1^- (d) $\geq k_3^-$ (d)
- (13) $d \in W_9$ に対しては、 k_1^+ (d) k_2^- (d)
- (14) $d \in W_{10}$ に対しては、 k_1 +(d) k_2 +(d)
- (15) $d \in W_{11}$ に対しては、 k_1 +(d) k_3 +(d)
- (16) $d \in W_{12}$ に対しては、 k_2 +(d) k_3 +(d)
- (17) $d \in W_{13}$ に対しては、 k_{2} -(d) と k_{3} -(d)
- (18) $d \in T_1$ に対しては、 k_0 (d)、 k_1 (d) $\geq k_2$ (d)
- (19) $d \in T_2$ に対しては、 k_0 (d)、 k_1 (d) k_2 (d)
- (20) $d \in T_3$ に対しては、 $k_0(d)$ 、 $k_1^+(d)$ と $k_2^-(d)$
- (21) $d \in T_4$ に対しては、 k_0 (d)、 k_1 + (d) $\geq k_3$ + (d)
- (22) $d \in T_5$ に対しては、 k_0 (d)、 k_2 (d) と k_3 (d)
- (23) $d \in T_6$ に対しては、 k_0 (d)、 k_2 + (d) と k_3 + (d)
- (24) $d \in T_7$ に対しては、 k_1^- (d)、 k_1^+ (d) と k_3^- (d)
- (25) $d \in T_8$ に対しては、 k_1^- (d)、 k_1^+ (d) と k_3^+ (d)
- (26) $d \in T_9$ に対しては、 $k_1^-(d)$ 、 $k_2^+(d)$ と $k_3^+(d)$
- (27) $d \in F_1$ に対しては、 k_0 (d)、 k_1 (d)、 k_2 (d) k_3 (

d)

- (28) $d \in F_2$ に対しては、 $k_0(d)$ 、 $k_1^+(d)$ 、 $k_2^-(d)$ と $k_3^-(d)$
- (29) $d \in F_3$ に対しては、 k_0 (d)、 k_1 (d)、 k_3 (d) k_3 (d) k_3 (d)
- 上記(5)~(29)に示す、復数種のk値が想定可能である。

[0375]

B. C末端断片群のピーク間において観測されるピーク・ペアの類型ペプチド由来のイオン種ピークの集合:Ap≡A\A_t

に含まれるピークについて、上述する手順に従ってトリプシン消化ペプチド断片 由来するイオン種ピークの分類と帰属を進めると、付随するピークの存在に基づ き、

- S(0) p:付随的なピークを有する、(i) 理想的な反応産物の状態のペプチド断片に起因するイオン種ピークの集合;
- S(+Ac)p:(ii)余剰なアセチル化を受けている付随的な産物の状態のペプチド断片に起因するイオン種ピークの集合:
- $S(-H_2O)_P$: (iii) 「脱水」を受けている付随的な産物の状態のペプチド 断片に起因するイオン種ピークの集合;
- $S(+Ac, -H_2O)$ P: (iv) 「脱水」を受け、更に、余剰なアセチル化を受けている付随的な産物の状態のペプチド断片に起因するイオン種ピークの集合;が特定される。その他に、付随的な産物に由来するピークを伴っていない「単独ピーク」を示すペプチド断片に起因するイオン種ピークの集合: S(single) が存在している。

[0376]

集合: A_P に含まれるピーク P_i が、これら5種の部分集合のいずれかに含まれる際、その帰属(類型)を示す指標 r_{itvoe} として、

- (1) $P_i \in S$ (0) $P \rightarrow r_{itype} = 0$
- (2) $P_i \in S (+Ac) p \rightarrow r_{itype} = 1$
- (3) $P_i \in S (-H_2O)_P \rightarrow r_{itype} = 2$

- (4) $P_i \in S$ (single) $p \rightarrow r_{itype} = 3$
- (5) $P_i \in S$ (+Ac, -H₂O) $P \rightarrow r_{itype} = 4$ によって、示すことにする。

[0377]

[0378]

具体的には、部分集合S(0) $_P$ 、S($_+$ Ac) $_P$ 、S($_-$ H2O) $_P$ 、S(sing le)のいずれかに属する二つのピーク $_P$ $_i$, $_P$ $_j$ の対に関して、その類型は以下の通りとなる。

[0379]

ピーク位置m/Zの高い側のピークを P_j とする際、ピーク・ペア(P_i , P_j)の類型を示す指標 R_{ij} を、

ピークPiの帰属(類型)を示す指標ritype

ピークPjの帰属(類型)を示す指標 rjtype

を利用して、R_{ij}≡ (r_{itype}, r_{jtype})と表記することにする。

(1)類型1のピーク・ペア

$$P_{i} \in S (0) P, P_{j} \in S (0) P \rightarrow R_{ij} = (0, 0)$$

(2)類型2のピーク・ペア

 $P_i \in S (+Ac)_P, P_j \in S (+Ac)_P \rightarrow R_{ij} = (1, 1)$

(3)類型3のピーク・ペア

$$P_i \in S (-H_2O) P, P_j \in S (-H_2O) P \rightarrow R_{ij} = (2, 2)$$

(4)類型4のピーク・ペア

$$P_i \in S$$
 (single), $P_j \in S$ (single) $\rightarrow R_{ij} = (3, 3)$

(5)類型5のピーク・ペア

$$P_i \in S (+Ac) p, P_j \in S (0) p \rightarrow R_{ij} = (1, 0)$$

(6)類型6のピーク・ペア

$$P_i \in S (0) P, P_j \in S (+Ac) P \rightarrow R_{ij} = (0, 1)$$

(7)類型7のピーク・ペア

$$P_{i} \in S (-H_{2}O) P, P_{j} \in S (0) P \rightarrow R_{ij} = (2, 0)$$

(8)類型8のピーク・ペア

$$P_{i} \in S (0) P, P_{j} \in S (-H_{2}O) P \rightarrow R_{ij} = (0, 2)$$

(9)類型9のピーク・ペア

$$P_i \in S \text{ (single)}, P_j \in S \text{ (0)} P \rightarrow R_{ij} = (3, 0)$$

(10)類型10のピーク・ペア

$$P_i \in S$$
 (0) $P_j \in S$ (single) $\rightarrow R_{ij} = (0, 3)$

(11)類型11のピーク・ペア

$$P_i \in S (-H_2O) P, P_j \in S (+Ac) P \rightarrow R_{ij} = (2, 1)$$

(12)類型12のピーク・ペア

$$P_i \in S (+Ac) P, P_j \in S (-H_2O) P \rightarrow R_{ij} = (1, 2)$$

(13)類型13のピーク・ペア

$$P_i \in S$$
 (single), $P_j \in S$ (+Ac) $P \rightarrow R_{ij} = (3, 1)$

(14)類型14のピーク・ペア

$$P_i \in S (+Ac) p, P_j \in S (single) \rightarrow R_{ij} = (1, 3)$$

(15)類型15のピーク・ペア

$$P_i \in S (-H_2O) P_j \in S (single) \rightarrow R_{ij} = (2, 3)$$

(16)類型16のピーク・ペア

$$P_i \in S \text{ (single)}, P_j \in S (-H_2O)_P \rightarrow R_{ij} = (3, 2)$$
[0380]

C. C末端断片群のピーク間において観測される、各類型のピーク・ペアにおいて生じ得る、一個のアミノ酸脱離に由来するピークシフトの値

次に、部分集合S(0) $_P$ 、S(+ $_A$ c) $_P$ 、S(- $_H_2$ O) $_P$ 、S(single) のいずれかに属する二つのピーク $_P$ i, $_H$ 0対に関して、その類型を考慮して、そ

のピーク位置差(Δ m/Z)が、一個のアミノ酸脱離に由来するピークシフトの値に該当するか否かを判定する。換言すれば、一個のアミノ酸脱離に由来するピークシフトの値に該当する可能性の無いピーク位置差(Δ m/Z)を示すピーク・ペア(P_i , P_i)を先ず排除する。

[0381]

上述する類型1~16のピーク・ペアにおいて、可能性のある、一個のアミノ酸脱離に由来するピークシフトの値dは、下記のピークシフトの部分集合のものとなる。

類型1のピーク・ペア	$d \in D_0$
類型2のピーク・ペア	$d \in D_0$
類型3のピーク・ペア	$d \in D_0$
類型4のピーク・ペア	d∈D(全ての可能性が残る)
類型5のピーク・ペア	$d \in D_2^{(-)}$
類型6のピーク・ペア	$d \in D_2^{(+)}$
類型7のピーク・ペア	$d \in D_1^{(+)}$
類型8のピーク・ペア	$d \in D_1^{(-)}$
類型9のピーク・ペア	$d \in D_0 \cup (D_1^{(+)} \cup D_2^{(-)})$
類型10のピーク・ペア	$d \in D_0 \cup (D_1^{(-)} \cup D_2^{(+)})$
類型11のピーク・ペア	$d \in D_3(+)$
類型12のピーク・ペア	$d \in D_3^{(-)}$
類型13のピーク・ペア	$d \in D_0 \cup (D_2^{(+)} \cup D_3^{(+)})$
類型14のピーク・ペア	$d \in D_0 \cup (D_2^{(-)} \cup D_3^{(-)})$
類型15のピーク・ペア	$d \in D_0 \cup (D_1^{(+)} \cup D_2^{(+)})$
類型16のピーク・ペア	$d \in D_0 \cup (D_1^{(-)} \cup D_2^{(-)})$
[0383]	

[0382]

実際には、C末端断片群のピーク間において観測されるピーク・ペアである可能性を有する、ピーク・ペアとして、部分集合S(0)P、S(+Ac)P、S(- H_2 O)P、S(single)のいずれかに属する二つのピーク P_i , P_j の対全てに関して、その類型毎に、上記の可能性のあるピークシフトの値 d の部分集合に、

ページ: 159/

そのピーク位置差(Δ m/Z)が含まれるもののみを選択し、以降の解析の対象とする、ピーク・ペア(P_i , P_i)の集合とする。

[0383]

D. 各類型のピーク・ペアにおいて生じ得る、一個のアミノ酸脱離に由来する ピークシフトの値に基づく、対応する脱離アミノ酸残基の種類の推定

前記の選択によって作製される、以降の解析の対象とする、ピーク・ペア(P_i , P_j)の集合に含まれる各ピーク・ペアに関して、そのピーク位置差($\Delta m / Z$)の起因となっている脱離アミノ酸残基の種類の推定を進める。その際、ピーク位置差($\Delta m / Z$)と該ピーク・ペアの類別に基づき、脱離アミノ酸残基の種類に相当する k 値は、下記する種類となる。

[0384]

まず、 $d \in D$ のピークシフトの値について、そのピークシフトの値 d を示す可能性を有するピーク・ペアの類型 P_{type} を、より細かに区分して示すと、以下のようになる。なお、ピーク・ペアの類型 4 は、形式的には、全ての可能性を有するので、下記の区分では、その記載を省いてある。

d∈Sh₀ の場合、P_{type}:1~3

d∈Sh₁(+) の場合、P_{type}:7

d∈Sh₁(-) の場合、P_{type}:8

d∈Sh2⁽⁺⁾ の場合、Ptype:6

d∈Sh₂(-) の場合、P_{type}:5

d∈Sh3⁽⁺⁾ の場合、P_{type}:11

d∈Sh3⁽⁻⁾ の場合、P_{type}:12

[0385]

 $d \in W_1$ の場合、

 $P_{\text{type}}: 1 \sim 3$, 8

9、13、14、15 (但し、d∈D₀の時)

10、16 (但し、d∈D₀∪D₁(-)の時)

d∈W₂ の場合、

 $P_{type}: 1 \sim 3$, 7

```
10、13、14、16 (但し、d∈D<sub>0</sub>の時)
```

9、15 (但し、d∈D₀∪D₁⁽⁺⁾の時)

d∈W3 の場合、

 $P_{\text{type}}: 1 \sim 3, 5$

10、13、15 (但し、d∈D₀の時)

9、14、16 (但し、d∈D₀UD₂(-)の時)

d∈W₄ の場合、

 $P_{type}: 1 \sim 3$, 6

9、14、16 (但し、d∈D₀の時)

10、15 (但し、 $d \in D_0 \cup D_2^{(+)}$ の時)

d∈W₅ の場合、

 $P_{type}: 1 \sim 3, 11$

9、10、14、15、16 (但し、d∈D₀の時)

13 (但し、d∈D₀∪D₃(+)の時)

d∈W₆ の場合、

P_{type}: 5, 8

10 (但し、d∈D₁(-)の時)

9、14 (但し、d∈D₂(-)の時)

10、15 (但し、d∈D₁(-)∪D₂(-)の時)

d∈W7 の場合、

P_{tvpe}: 6, 8

16 (但し、d∈D₁(-)の時)

13、15 (但し、d∈D₂(+)の時)

10 (但し、d∈D₁(-)∪D₂(+)の時)

d∈Wg の場合、

P_{type}: 8, 12

10、16 (但し、d∈D₁(-)の時)

14 (但し、d∈D₃(-)の時)

d∈Wg の場合、

```
P<sub>type</sub>: 5, 7
           15 (但し、d∈D<sub>1</sub>(+)の時)
           14、16 (但し、d∈D<sub>2</sub>(-)の時)
           9 (但し、d∈D<sub>1</sub>(+)∪D<sub>2</sub>(-)の時)
d∈W<sub>10</sub> の場合、
  P<sub>tvpe</sub>: 6, 7
           9 (但し、d∈D<sub>1</sub><sup>(+)</sup>の時)
           10、13 (但し、d∈D<sub>2</sub>(+)の時)
           15 (但し、d \in D_1^{(+)} \cup D_2^{(+)}の時)
d∈W<sub>11</sub> の場合、
  P<sub>type</sub>: 7, 11
           9、15 (但し、d∈D<sub>1</sub>(+)の時)
           13 (但し、d∈D<sub>3</sub>(+)の時)
d∈W<sub>12</sub> の場合、
  P<sub>tvpe</sub>: 6, 11
           10、15 (但し、d∈D<sub>2</sub>(+)の時)
           13 (但し、d \in D_2^{(+)} \cup D_3^{(+)}の時)
d∈W<sub>13</sub> の場合、
  P<sub>type</sub>: 5, 12
           9、16 (但し、d∈D<sub>2</sub>(-)の時)
           14 (但し、d∈D<sub>2</sub>(-)∪D<sub>3</sub>(-)の時)
     [0386]
d∈T<sub>1</sub> の場合、
  P_{type}: 1 \sim 3, 6, 8
           9、14 (但し、d∈D<sub>0</sub>の時)
           16 (但し、d∈D<sub>0</sub>∪D<sub>1</sub>(-)の時)
           13、15 (但し、d∈D<sub>0</sub>∪D<sub>2</sub>(+)の時)
           10 (但し、d∈D<sub>0</sub>∪D<sub>1</sub>(-)∪D<sub>2</sub>(+)の時)
d \in T_2 の場合、
```

 $P_{type}: 1 \sim 3.8.12$

9、13、15 (但し、d∈D₀の時)

10、16 (但し、d∈D₀∪D₁(-)の時)

14 (但し、d∈D₀∪D₃(+)の時)

 $d \in T_3$ の場合、

 $P_{type}: 1 \sim 3, 5, 7$

10、13 (但し、d∈D₀の時)

15 (但し、d∈D₀∪D₁(+)の時)

14、16 (但し、d∈D₀UD₂(-)の時)

9 (但し、d∈D₀∪D₁(+)∪D₂(-)の時)

d∈T₄ の場合、

 $P_{\text{type}}: 1 \sim 3$, 7, 11

10、14、16 (但し、d∈D₀の時)

9、15 (但し、d∈D₀UD₁⁽⁺⁾の時)

13 (但し、d∈D₀∪D₃⁽⁺⁾の時)

d∈T₅ の場合、

 $P_{type}: 1 \sim 3$, 5, 12

10、13、15 (但し、d∈D₀の時)

9、16 (但し、d∈D₀∪D₂(-)の時)

14 (但し、d∈D₀∪D₂(-)∪D₃(-)の時)

d∈T₆ の場合、

 $P_{type}: 1 \sim 3, 6, 11$

9、14、16 (但し、d∈D₀の時)

10、15 (但し、 $d \in D_0 \cup D_2^{(+)}$ の時)

13 (但し、 $d \in D_0 \cup D_2^{(+)} \cup D_3^{(+)}$ の時)

d∈T7 の場合、

P_{tvpe}: 7, 8, 12

10、16 (但し、d∈D₁(-)の時)

9、15 (但し、d∈D₁⁽⁺⁾の時)

ページ: 163/

14 (但し、d∈D₃(-)の時)

d∈Tg の場合、

P_{type}: 7, 8, 11

10、16 (但し、d∈D₁(-)の時)

9、15 (但し、d∈D₁(+)の時)

13 (但し、d∈D₃(+)の時)

d∈Tg の場合、

P_{tvpe}: 6, 8, 11

16 (但し、d∈D₁(-)の時)

15 (但し、d∈D₃(+)の時)

10 (但し、 $d \in D_1^{(-)} \cup D_2^{(+)}$ の時)

13 . (但し、d∈D₂(+)∪D₃(+)の時)

[0387]

d∈F₁ の場合、

 $P_{type}: 1 \sim 3, 6, 8, 11$

9、14 (但し、d∈D₀の時)

16 (但し、d∈D₀∪D₁(-)の時)

15 (但し、 $d \in D_0 \cup D_2^{(+)}$ の時)

10 (但し、 $d \in D_0 \cup D_1^{(-)} \cup D_3^{(+)}$ の時)

13 (但し、 $d \in D_0 \cup D_2^{(+)} \cup D_3^{(+)}$ の時)

d∈F₂ の場合、

 $P_{type}: 1 \sim 3, 5, 7, 11$

10 (但し、d∈D₀の時)

15 (但し、d∈D₀∪D₁(+)の時)

14、16 (但し、d∈D₀UD₂(-)の時)

9 (但し、d∈D₀∪D₁(+)∪D₂(-)の時)

13 (但し、d∈D₀∪D₃(-)の時)

d∈F₃ の場合、

 $P_{type}: 1 \sim 3$, 7, 11, 12

ページ: 164/

9、15 (但し、d∈D₀UD₁(+)の時)

13 (但し、d∈D₀∪D₃(+)の時)

14 (但し、d∈D₀∪D₃(-)の時)

[0388]

これら $d \in D$ のピークシフトの値について、そのピークシフトの値 d を示す可能性を有するピーク・ペアの類型 P_{type} を、細区分された部分集合に関して、まとめ直した結果と、上述する考察過程 A で既に示した、各細区分された部分集合において、可能性のある k の値とを関連付けて、ピークシフトの値と該ピーク・ペアの類別との各組み合わせに対して、可能性を有する脱離アミノ酸残基の種類に相当する k 値は、下記する種類として示すことができる。

$$d \in Sh_0$$
、 $P_{type}: 1 \sim 3$ 、4の場合、 k_0 (d)

$$d \in Sh_1^{(+)}$$
、 P_{type} : 7、4の場合、 k_1^+ (d)

[0389]

 $d \in W_1$ の場合、

$$P_{type}: 1 \sim 3$$
, 9, 13, 15 $\rightarrow k_0$ (d)

$$\rightarrow k_1^-(d)$$

$$10$$
、 16 、 4 $\rightarrow k_0(d) 又は k_1 -(d)$

 $d \in W_2$ の場合、

$$P_{\text{type}}: 1 \sim 3, 10, 13, 14, 16 \rightarrow k_0 (d)$$

$$7 \rightarrow k_1^+(d)$$

9、15、4
$$\rightarrow$$
 k₀(d) 又はk₁+(d)

d∈W₃ の場合、

$$P_{type}: 1 \sim 3, 10, 13, 15 \rightarrow k_0 (d)$$

```
5
                                                            \rightarrow k<sub>2</sub><sup>-</sup> (d)
                9, 14, 16, 4
                                                            \rightarrow k<sub>0</sub>(d)又はk<sub>2</sub>-(d)
d∈W<sub>4</sub> の場合、
   P_{type}: 1 \sim 3, 9, 14, 16
                                                            \rightarrow k<sub>0</sub> (d)
                   6
                                                            \rightarrow k<sub>2</sub>+ (d)
                10, 15
                                                            \rightarrow k<sub>0</sub>(d)又はk<sub>2</sub>+(d)
d∈W<sub>5</sub> の場合、
  P_{\text{type}}: 1 \sim 3, 9, 10, 14 \sim 16 \rightarrow k_0 (d)
                   1 1
                                                                \rightarrow k<sub>3</sub>+ (d)
                1 3
                                                                → k<sub>0</sub> (d) 又はk<sub>3</sub>+ (d)
d∈W<sub>6</sub> の場合、
  P<sub>type</sub>: 5, 10
                                                                \rightarrow k<sub>2</sub><sup>-</sup> (d)
                   8, 9, 14
                                                               \rightarrow k<sub>1</sub><sup>-</sup> (d)
                   16,4
                                                                \rightarrow k<sub>2</sub>-(d) 又はk<sub>1</sub>-(d)
d∈W7 の場合、
  P_{\text{type}}: 5, 13, 15
                                                               \rightarrow k<sub>2</sub>+ (d)
                   8, 16
                                                               \rightarrow k<sub>1</sub>-(d)
                   10,4
                                                                \rightarrow k<sub>2</sub>+(d) 又はk<sub>1</sub>-(d)
d∈W<sub>8</sub> の場合、
  P<sub>type</sub>: 8, 10, 16
                                                               \rightarrow k<sub>1</sub>-(d)
                   12,14
                                                               \rightarrow k<sub>3</sub>-(d)
                   4
                                                                \rightarrow k<sub>1</sub>-(d) 又はk<sub>3</sub>-(d)
d∈Wg の場合、
  P<sub>type</sub>: 5, 14, 16
                                                               \rightarrow k<sub>2</sub><sup>-</sup> (d)
                   7, 15
                                                               \rightarrow k<sub>1</sub>+(d)
                   9,4
                                                                \rightarrow k<sub>1</sub>+(d) 又はk<sub>2</sub>-(d)
d∈Wg の場合、
  P<sub>type</sub>: 5, 14, 16
                                                               \rightarrow k<sub>2</sub><sup>-</sup> (d)
                   7, 15
                                                                \rightarrow k<sub>1</sub><sup>+</sup> (d)
```

```
9,4
                                                           \rightarrow k<sub>1</sub>+(d)又はk<sub>2</sub>-(d)
d∈W<sub>10</sub> の場合、
  P<sub>type</sub>: 6, 10, 13
                                                           \rightarrow k<sub>2</sub>+ (d)
                 7, 9
                                                           \rightarrow k<sub>1</sub>+ (d)
                  15,4
                                                           \rightarrow k<sub>1</sub>+(d) 又はk<sub>2</sub>+(d)
d∈W<sub>11</sub> の場合、
  P_{type}: 7, 9, 15
                                                           \rightarrow k_1^+ (d)
                  11, 13
                                                           \rightarrow k<sub>3</sub>+ (d)
                  4
                                                           \rightarrow k<sub>1</sub>+(d) 又はk<sub>3</sub>+(d)
d∈W<sub>12</sub> の場合、
  P<sub>type</sub>: 6, 10, 15
                                                           \rightarrow k<sub>2</sub><sup>+</sup> (d)
                  1 1
                                                           \rightarrow k<sub>3</sub>+ (d)
                  13,4
                                                           → k<sub>2</sub>+(d) 又はk<sub>3</sub>+(d)
d∈W<sub>13</sub> の場合、
  P_{type}: 5, 9, 16
                                                           \rightarrow k<sub>2</sub><sup>-</sup> (d)
                  1 2
                                                           \rightarrow k<sub>3</sub>-(d)
                  14,4
                                                           \rightarrow k<sub>2</sub>-(d) 又はk<sub>3</sub>-(d)
       [0390]
d∈T<sub>1</sub> の場合、
  P_{type}: 1 \sim 3, 9, 14 \rightarrow k_0 (d)
        6
                                            \rightarrow k<sub>2</sub>+ (d)
        8
                                            \rightarrow k<sub>1</sub>-(d)
      1 6
                                            → k<sub>0</sub>(d)又はk<sub>1</sub>-(d)
      13, 15
                                            \rightarrow k<sub>0</sub>(d)又はk<sub>2</sub>+(d)
      10,4
                                            → k_0 (d), k_1-(d) \nabla k_2+(d)
d∈T<sub>2</sub> の場合、
  P_{\text{type}}: 1 \sim 3, 9, 13, 15 \rightarrow k_0 (d)
        8
                                            \rightarrow k<sub>1</sub>-(d)
      1 2
                                            \rightarrow k<sub>3</sub>-(d)
```

```
10, 16
                                          \rightarrow k<sub>0</sub>(d)又はk<sub>1</sub>-(d)
     1 4
                                          → k<sub>0</sub> (d) 又はk<sub>3</sub>- (d)
     4
                                                k_0(d)、k_1(d) 又はk_3(d)
d∈T3 の場合、
  P_{\text{type}}: 1 \sim 3, 10, 13
                                         \rightarrow k<sub>0</sub> (d)
        5
                                          \rightarrow k<sub>2</sub><sup>-</sup> (d)
        7
                                          \rightarrow k_1^+(d)
     1 5
                                          → k<sub>0</sub>(d)又はk<sub>1</sub>+(d)
     14, 16
                                          → k<sub>0</sub>(d) 又はk<sub>2</sub>-(d)
     9,4
                                          \rightarrow k<sub>0</sub>(d)、k<sub>1</sub>+(d) 又はk<sub>2</sub>-(d)
d∈T<sub>4</sub> の場合、
  P_{\text{tvpe}}: 1 \sim 3, 10, 14, 16 \rightarrow k_0 (d)
        7
                                          \rightarrow k<sub>1</sub>+(d)
     1 1
                                          \rightarrow kg<sup>+</sup> (d)
     9, 15
                                          → k<sub>0</sub>(d)又はk<sub>1</sub>+(d)
     1 3
                                          → k0 (d) 又はk3+ (d)
     4
                                          \rightarrow k<sub>0</sub>(d)、k<sub>1</sub>+(d) 又はk<sub>3</sub>+(d)
d∈T<sub>5</sub> の場合、
  P_{\text{type}}: 1 \sim 3, 10, 13, 15 \rightarrow k_0 (d)
        5
                                          \rightarrow k<sub>2</sub><sup>-</sup> (d)
     1 2
                                           \rightarrow k<sub>3</sub><sup>-</sup> (d)
     9, 16
                                          → k<sub>0</sub>(d) 又はk<sub>2</sub>-(d)
     14,4
                                          \rightarrow k<sub>0</sub>(d)、k<sub>2</sub>-(d)又はk<sub>3</sub>-(d)
d∈T<sub>6</sub> の場合、
  P_{\text{type}}: 1 \sim 3, 9, 14, 16 \rightarrow k_0 (d)
        6
                                           \rightarrow k<sub>2</sub>+ (d)
     1 1
                                                 k_3^+ (d)
     10, 15
                                          → k<sub>0</sub>(d) 又はk<sub>2</sub>+(d)
     13,4
                                          \rightarrow k<sub>0</sub>(d)、k<sub>2</sub>+(d) 又はk<sub>3</sub>+(d)
```

```
d∈T7 の場合、
  P_{\text{type}}: 7, 9, 15 \rightarrow k_1^+ (d)
              8, 10, 16 \rightarrow k_1^-(d)
           12, 14
                                       \rightarrow k<sub>3</sub>-(d)
           4
                                        → k_1^- (d) 、 k_1^+ (d) X l t k_3^- (d)
d∈Tg の場合、
  P<sub>type</sub>: 7, 9, 15
                                        \rightarrow k<sub>1</sub>+ (d)
              8, 10, 16
                                        \rightarrow k<sub>1</sub>-(d)
                                        \rightarrow k<sub>3</sub>+ (d)
           11, 13
                                        \rightarrow k_1^-(d)、k_1^+(d) 又はk_3^+(d)
           4
d∈Tg の場合、
  P<sub>tvpe</sub>: 6, 15
                                        \rightarrow k<sub>2</sub>+ (d)
              8, 16
                                        \rightarrow k<sub>1</sub>-(d)
           1 1
                                        \rightarrow k<sub>3</sub><sup>+</sup> (d)
                                        \rightarrow k_1^-(d) 又はk_2^+(d)
           10
                                        \rightarrow k<sub>2</sub>+(d) 又はk<sub>3</sub>+(d)
           1 3
           4
                                        \rightarrow k<sub>1</sub>-(d)、k<sub>2</sub>+(d) 又はk<sub>3</sub>-(d)
       [0391]
d∈F<sub>1</sub> の場合、
  P_{\text{type}}: 1 \sim 3, 9, 14
                                          \rightarrow k<sub>0</sub> (d)
        6
                                           \rightarrow k<sub>2</sub>+ (d)
         8
                                           \rightarrow k<sub>1</sub><sup>-</sup> (d)
      1 1
                                           \rightarrow k<sub>3</sub>+ (d)
      1 6
                                           \rightarrow k<sub>0</sub>(d)又はk<sub>1</sub>-(d)
                                           \rightarrow k<sub>0</sub>(d)又はk<sub>2</sub>+(d)
      1 5
      1 0
                                                 k_0(d)、k_1^-(d) 又はk_2^+(d)
                                           \rightarrow k<sub>0</sub>(d)、k<sub>2</sub>+(d) 又はk<sub>3</sub>+(d)
      1 3
```

4

 $d \in F_2$ の場合、

 \rightarrow k₀、k₂+、k₁-又はk₃+(d)

ページ: 169/

```
P_{type}: 1 \sim 3, 10
                                                    \rightarrow k<sub>0</sub> (d)
             5
                                                    \rightarrow k<sub>2</sub>-(d)
             7
                                                     \rightarrow k<sub>1</sub>+ (d)
          1 1
                                                    \rightarrow k<sub>3</sub>+ (d)
          1 5
                                                    \rightarrow k<sub>0</sub>(d)又はk<sub>1</sub>+(d)
          14, 16
                                                    → k<sub>0</sub> (d) 又はk<sub>2</sub>- (d)
          1 3
                                                    \rightarrow k<sub>0</sub>(d)又はk<sub>3</sub>+(d)
                                                    \rightarrow k<sub>0</sub>(d)、k<sub>1</sub>+(d) 又はk<sub>2</sub>-(d)
          9
          4
                                                    \rightarrow k<sub>0</sub>、k<sub>1</sub>+、k<sub>2</sub>-又はk<sub>3</sub>+(d)
d∈F<sub>3</sub> の場合、
      P_{type}: 1 \sim 3, 10, 16 \rightarrow k_0 (d)
                                                    \rightarrow k<sub>1</sub>+(d)
          1 1
                                                    \rightarrow k<sub>3</sub><sup>+</sup> (d)
          1 2
                                                    \rightarrow k<sub>3</sub>-(d)
         9, 15
                                                    → k<sub>0</sub>(d) 又はk<sub>1</sub>+(d)
          1 3
                                                    → k0(d)又はk3+(d)
          1 4
                                                    → k<sub>0</sub>(d)又はk<sub>3</sub>-(d)
         4
                                                    \rightarrow k<sub>0</sub>、k<sub>1</sub>+、k<sub>3</sub>-又はk<sub>3</sub>+(d)
           [0392]
```

 k値)を、特定できる、あるいは、限られた4種以内に限定ができる。

[0393]

E. 逐次的なアミノ酸分解に起因する、ピーク位置差 (Δm/Z) の減少を示す一連のピーク列群の抽出

上述する過程Cにおいて、部分集合S(0)P、S(+Ac)P、S($-H_2O$)P、S(single)のいずれかに属する二つのピーク P_i , P_j の対全ての中から、このピーク・ペア間のピーク位置差($\Delta m/Z$)が、 $-P_1$ の対象の分解に由来するピークシフトの値 d に該当しているものを既に選別している。次に、このピーク・ペア(P_i , P_j)の集合: $P_0 = \{(P_i, P_j): d_{ij} \in D, P_i, P_j \in (S(0)_P \cup S(+Ac)_P \cup S(-H_2O)_P) \cup S(single)\}$ のうちから、逐次的なアミノ酸分解を反映する、-連のピーク列の群を選別する。

[0394]

このピーク・ペア (P_i, P_i) の集合: P_D から、

各ペアのピーク位置の高い側のピーク P_j の集合: $S_{pair-h0} = \{P_j: (P_i, P_j) \in P_D\}$ と、

各ペアのピーク位置の低い側のピーク P_i の集合: $S_{pair-10} \equiv \{P_i: (P_i, P_i) \in P_D\}$ とを構成する。次に、集合: $S_{pair-h0}$ と集合: $S_{pair-10}$ との積集合: $C_0 \equiv S_{pair-h0} \cap S_{pair-10}$ を形成する。この積集合: C_0 は、一つのピーク・ペアにおいては、該ペアのピーク位置の高い側のピークであって、同時に、別のピーク・ペアにおいては、該ペアのピーク位置の低い側のピークであるピークの集合となっている。

[0395]

さらに、

差集合B₀を、B₀≡S_{pair-h0}\C₀ と、

差集合 F_0 を、 $F_0 \equiv S_{pair-10} \setminus C_0$ と、それぞれ構成する。

[0396]

この差集合B0に含まれるピークは、そのピークよりもピーク位置の高い側には、集合:PDに含まれるようなピーク・ペアを構成できるようなピークを有していないことを意味する。一方、差集合F0に含まれるピークは、そのピークよ

りもピーク位置の低い側には、集合: P_D に含まれるようなピーク・ペアを構成できるようなピークを有していないことを意味する。なお、積集合: C_0 に含まれるピークは、-アミノ酸の分解に由来するピークシフトの値 d に該当するピーク位置差($\Delta m/Z$)で、少なくとも、3 つ以上のピークからなる列の中間点となっているピークである。

[0397]

(E-2) 3つ以上のピークからなるピーク列とならないピーク・ペアの排除

先ず、ピーク位置の高い側のピークとして、差集合 B_0 に含まれるピークを、ピーク位置の低い側のピークとして、差集合 F_0 に含まれるピークを選択して、構成されるピーク・ペアの集合 P_{B0-F0} $\equiv \{(P_i, P_j): P_i \in F_0, P_j \in B_0\}$ を形成し、集合: P_D とこの集合 P_{B0-F0} との積集合: $P_D \cap P_{B0-F0}$ を作製する。その後、集合: P_D から、この積集合: $P_D \cap P_{B0-F0}$ を除去した、差集合: $P_D \cap P_D \cap P_{B0-F0}$)を作製する。この差集合 P_D は、逐次的なアミノ酸分解を反映する一連のピーク列を構成する可能性のないピーク・ペアは含まれないものとなっている。一方、前記積集合: $P_D \cap P_{B0-F0}$ は、ピーク列とならないピーク・ペアの集合に相当する。

[0398]

今一度、このピーク・ペア (P_i, P_j) の集合: P_{Dl} から、

各ペアのピーク位置の高い側のピーク P_j の集合: $S_{pair-hl} = \{P_j: (P_i, P_j) \in P_{Dl}\}$ と、

各ペアのピーク位置の低い側のピーク P_i の集合: $S_{pair-l1} = \{P_i: (P_i, P_i) \in P_{Dl}\}$ とを構成する。次に、集合: $S_{pair-h1}$ と集合: $S_{pair-l1}$ との積集合: $C_1 = S_{pair-h1} \cap S_{pair-l1}$ を形成する。この積集合: C_1 は、一つのピーク・ペアにおいては、該ペアのピーク位置の高い側のピークであって、同時に、別のピーク・ペアにおいては、該ペアのピーク位置の低い側のピークであるピークの集合となっている。

[0399]

また、

差集合 B_1 を、 $B_1 \equiv S_{pair-h1} \setminus C_1$ と、 差集合 F_1 を、 $F_1 \equiv S_{pair-l1} \setminus C_1$ と、それぞれ構成する。

[0400]

この差集合 B_1 に含まれるピークは、そのピークよりもピーク位置の高い側には、集合: P_{D1} に含まれるようなピーク・ペアを構成できるようなピークを有していないことを意味する。従って、-アミノ酸の分解に由来するピークシフトの値 dに該当するピーク位置差(Δ m/Z)で、少なくとも、3 つ以上のピークからなるピーク列における、最もピーク位置の高いピーク(始点ピーク)の集合に相当する。-方、差集合 F_1 に含まれるピークは、そのピークよりもピーク位置の低い側には、集合: P_{D1} に含まれるようなピーク・ペアを構成できるようなピークを有していないことを意味する。従って、-アミノ酸の分解に由来するピークシフトの値 d に該当するピーク位置差(Δ m/Z)で、少なくとも、3 つ以上のピークからなるピーク列における、最もピーク位置の低いピーク(終点ピークとを末端とする、-アミノ酸の分解に由来するピークとを末端とする、-アミノ酸の分解に由来するピークとを末端とする、-アミノ酸の分解に由来するピークシフトの値 d に該当するピーク位置差(Δ m/Z)で連なる、少なくとも、3 つ以上のピークからなるピーク列の中間点ピークの集合である。

[0401]

(E-2) 始点ピーク→中間点ピーク→終点ピークの、3つのピークからなるピーク列の特定

次に、ピーク位置の高い側のピークとして、差集合 B_1 に含まれるピークを、ピーク位置の低い側のピークとして、積集合 C_1 に含まれるピークを選択して、構成されるピーク・ペアの集合 $P_{B1-C1} = \{(P_i, P_j): P_i \in C_1, P_j \in B_1\}$ を形成し、集合: P_{D1} とこの集合 P_{B1-C1} との積集合: $P_{D1} \cap P_{B1-C1}$ を作製する。得られたピーク・ペア(P_i , P_j)の積集合 $P_{D1} \cap P_{B1-C1}$ から、各ペアのピーク位置の低い側のピーク P_i の集合: $S_{pair-12} = \{P_i: (P_i, P_j) \in P_D 1 \cap P_{B1-C1}\}$ とを構成する。すなわち、この集合 $S_{pair-12}$ は、差集合 $S_{pair-12}$ は、差集合 $S_{pair-12}$ は、差集合 $S_{pair-12}$ は、表集合 $S_{pair-12}$ とを構成する。すなわち、この集合 $S_{pair-12}$ は、差集合 $S_{pair-12}$ とを構成する。

[0402]

一方、ピーク位置の低い側のピークとして、差集合 F_1 に含まれるピークを、ピーク位置の高い側のピークとして、積集合 C_1 に含まれるピークを選択して、構成されるピーク・ペアの集合 P_{C1-F1} \equiv $\{(P_i, P_j): P_i \in F_1, P_j \in C_1\}$ を形成し、集合: P_{D1} とこの集合 P_{C1-F1} との積集合: $P_{D1} \cap P_{C1-F1}$ を作製する。得られたピーク・ペア(P_i, P_j)の積集合: $P_{D1} \cap P_{C1-F1}$ から、各ペアのピーク位置の高い側のピーク P_j の集合: $S_{pair-h2}$ \equiv $\{P_j: (P_i, P_j) \in P_{D1} \cap P_{C1-F1}\}$ を構成する。すなわち、この集合 $S_{pair-h2}$ は、差集合 F_1 に含まれるピークに対する、積集合 C_1 中の「リンク元」ピークの集合に相当している。

[0403]

次に、集合Spair-h2と集合Spair-l2との積集合:C2≡Spair-h2∩Spair-l 2を形成する。この積集合は、前記の始点ピークと終点ピークとを末端とする、 ーアミノ酸の分解に由来するピークシフトの値 d に該当するピーク位置差 (Δm /Z)で連なる、3つのピークからなるピーク列の中間点ピークの集合である。 さらに、ピーク位置の低い側のピークとして、差集合F1に含まれるピークを、 ピーク位置の高い側のピークとして、積集合C2に含まれるピークを選択して、 構成されるピーク・ペアの集合 $P_{C2-F1} = \{ (P_i, P_j) : P_i \in F_1, P_j \in C_2 \}$ ト を形成し、集合: PD1とこの集合 PC2-F1との積集合 PD1 ∩ PC2-F1を作製する 。得られたピーク・ペア(P_i , P_j)の積集合 $P_{D1} \cap P_{C2-F1}$ から、各ペアのピ ーク位置の低い側のピークPjの集合:Fc2≡ {Pi: (Pi, Pj) ∈ PD1∩Pc2 $_{-F1}$ を構成する。この集合 F_{C2} は、集合 C_2 に含まれるピークに対する、差集合 F₁中の「リンク先」ピークの集合に相当している。また、ピーク位置の高い側 のピークとして、差集合B1に含まれるピークを、ピーク位置の低い側のピーク として、積集合 C_2 に含まれるピークを選択して、構成されるピーク・ペアの集 合 P_{B1-C2} = $\{(P_i, P_j): P_i \in C_2, P_j \in F_1\}$ を形成し、集合: P_{D1} とこ の集合 P_{B1-C2} との積集合: $P_{D1} \cap P_{B1-C2}$ を作製する。得られたピーク・ペア (P_i , P_j) の積集合: $P_{D1} \cap P_{B1-C2}$ から、各ペアのピーク位置の高い側のピー ク P_j の集合: B_{C2} = $\{P_j$: $(P_i, P_j) \in P_{D1} \cap P_{B1-C2}\}$ を構成する。この

集合 B_{C2} は、集合 C_2 に含まれるピークに対する、差集合 B_1 中の「リンク元」ピークの集合に相当している。その結果、集合 B_{C2} 中の始点ピーク \to 集合 C_2 中の中間点ピーク \to 集合 F_{C2} 中の終点ピークからなる、3つのピークからなるピーク列が特定される。

[0404]

(E-3) 始点ピーク→第一の中間点ピーク→第二の中間点ピーク→終点ピ ークの、4つのピークからなるピーク列の特定

先ず、ピーク位置の高い側のピークとして、集合 $S_{pair-12}$ に含まれるピークを、ピーク位置の低い側のピークとして、積集合 C_1 に含まれるピークを選択して、構成されるピーク・ペアの集合 $P_{S12-C1} = \{(P_i, P_j): P_i \in C_1, P_j \in S_{pair-12}\}$ を形成し、集合: P_{D1} とこの集合 P_{S12-C1} との積集合 $P_{D1} \cap P_{S12-C1}$ で作製する。得られたピーク・ペア(P_i , P_j)の積集合 $P_{D1} \cap P_{S12-C1}$ がら、各ペアのピーク位置の低い側のピーク P_i の集合: $S_{pair-13} = \{P_i: (P_i, P_j) \in P_{D1} \cap P_{S12-C1}\}$ を構成する。すなわち、この集合 $S_{pair-13}$ は、集合 $S_{pair-12}$ に含まれるピークに対する、積集合 $S_{pair-12}$ に含まれるピークに対する、積集合 $S_{pair-14}$ との積集合: $S_{pair-15} \cap S_{pair-14}$ を形成する。

さらに、ピーク位置の低い側のピークとして、差集合 F_1 に含まれるピークを、ピーク位置の高い側のピークとして、積集合 $C_{3/2}$ に含まれるピークを選択して、構成されるピーク・ペアの集合 $P_{C3/2-F1} \equiv \{(P_i, P_j): P_i \in F_1, P_j \in C_{3/2}\}$ を形成し、集合: P_{D1} とこの集合 $P_{C3/2-F1}$ との積集合 $P_{D1} \cap P_{C3/2-F1}$ とを作製する。得られたピーク・ペア(P_i , P_j)の積集合 $P_{D1} \cap P_{C3/2-F1}$ から、各ペアのピーク位置の低い側のピーク P_i の集合: $F_{C3} \equiv \{P_i: (P_i, P_j) \in P_{D1} \cap P_{C3/2-F1}\}$ を構成する。この集合 F_{C3} は、集合 $F_{C3/2}$ に含まれるピークに対する、差集合 F_1 中の「リンク先」ピークの集合に相当している。

[0405]

一方、ピーク位置の低い側のピークとして、集合 $S_{pair-h2}$ に含まれるピークを、ピーク位置の高い側のピークとして、積集合 C_1 に含まれるピークを選択して、構成されるピーク・ペアの集合 $P_{C1-Sh2} = \{(P_i, P_j): P_i \in S_{pair-h2}\}$

、 $P_j \in C_1$ を形成し、集合: P_{D1} とこの集合 P_{C1-Sh2} との積集合 $P_{D1} \cap P_{C1-Sh2}$ h_2 を作製する。得られたピーク・ペア(P_i , P_j)の積集合 $P_{D1} \cap P_{C1-Sh2}$ から、各ペアのピーク位置の高い側のピーク P_j の集合: $S_{pair-h3} = \{P_j: (P_i, P_j) \in P_{D1} \cap P_{C1-Sh2}\}$ を構成する。すなわち、この集合 $S_{pair-h3}$ は、集合 $S_{pair-h2}$ に含まれるピークに対する、積集合 C_1 中の「リンク元」ピークの集合に相当している。さらに、集合 $S_{pair-h3}$ と集合 $S_{pair-12}$ との積集合: $C_{3/1} = S_p$ $air-h3 \cap S_{pair-12}$ を形成する。

[0406]

さらに、ピーク位置の高い側のピークとして、差集合 B_1 に含まれるピークを、ピーク位置の低い側のピークとして、積集合 $C_{3/1}$ に含まれるピークを選択して、構成されるピーク・ペアの集合 $P_{B1-C3/1} \equiv \{(P_i, P_j): P_i \in C_{3/1}, P_j \in F_1\}$ を形成し、集合: P_{D1} とこの集合 $P_{B1-C3/1}$ との積集合: $P_{D1} \cap P_{B1-C3/1}$ との有集合 $P_{D1} \cap P_{B1-C3/1}$ から、各ペアのピーク位置の高い側のピーク P_j の集合: P_j : (P_i , P_j) P_j : (P_i , P_j) $P_{D1} \cap P_{B1-C3/1}$ を構成する。この集合 $P_{D1} \cap P_{B1-C3/1}$ を構成する。

[0407]

結果として、集合 B_{C3} 中の始点ピーク \rightarrow 集合 $C_{3/1}$ 中の第一の中間点ピーク \rightarrow 集合 $C_{3/2}$ 中の第二の中間点ピーク \rightarrow 集合 F_{C3} 中の終点ピークからなる、4つのピークからなるピーク列が特定される。

[0408]

(E-4) 始点ピーク→第一の中間点ピーク→第二の中間点ピーク→第三の中間点ピーク→終点ピークの、5つのピークからなるピーク列の特定

, P_j) $\in P_{D1} \cap P_{S13-C1}$ を構成する。すなわち、この集合 $S_{pair-14}$ は、集合 $S_{pair-13}$ に含まれるピークに対する、積集合 C_1 中の「リンク先」ピークの集合 に相当している。さらに、集合 $S_{pair-14}$ と集合 $S_{pair-h2}$ との積集合: $C_{4/3}$ = $S_{pair-14} \cap S_{pair-h2}$ を形成する。

[0409]

さらに、ピーク位置の低い側のピークとして、差集合 F_1 に含まれるピークを、ピーク位置の高い側のピークとして、積集合 $C_{4/3}$ に含まれるピークを選択して、構成されるピーク・ペアの集合 $P_{C4/3-F1} \equiv \{(P_i, P_j): P_i \in F_1, P_j \in C_{4/3}\}$ を形成し、集合: P_{D1} とこの集合 $P_{C4/3-F1}$ との積集合 $P_{D1} \cap P_{C4/3-F1}$ 1を作製する。得られたピーク・ペア(P_i , P_j)の積集合 $P_{D1} \cap P_{C4/3-F1}$ から、各ペアのピーク位置の低い側のピーク P_i の集合: $F_{C4} \equiv \{P_i: (P_i, P_j) \in P_{D1} \cap P_{C4/3-F1}\}$ を構成する。この集合 F_{C4} は、集合 $F_{4/3}$ に含まれるピークに対する、差集合 F_{1} 中の「リンク先」ピークの集合に相当している。

[0410]

一方、ピーク位置の低い側のピークとして、集合 $S_{pair-h3}$ に含まれるピークを、ピーク位置の高い側のピークとして、積集合 C_1 に含まれるピークを選択して、構成されるピーク・ペアの集合 $P_{C1-Sh3} = \{(P_i, P_j): P_i \in S_{pair-h3}$ 、 $P_j \in C_1\}$ を形成し、集合: P_{D1} とこの集合 P_{C1-Sh3} との積集合 $P_{D1} \cap P_{C1-Sh3}$ から、各ペアのピーク位置の高い側のピーク P_j の集合: $S_{pair-h4} = \{P_j: (P_i, P_j) \in P_{D1} \cap P_{C1-Sh3}\}$ を構成する。すなわち、この集合 $S_{pair-h4}$ は、集合 $S_{pair-h3}$ に含まれるピークに対する、積集合 C_1 中の「リンク元」ピークの集合に相当している。さらに、集合 $S_{pair-h4}$ と集合 $S_{pair-h4} \cap S_{pair-h4} \cap S_{pair-h4}$

[0411]

さらに、ピーク位置の高い側のピークとして、差集合 B_1 に含まれるピークを、ピーク位置の低い側のピークとして、積集合 $C_{4/1}$ に含まれるピークを選択して、構成されるピーク・ペアの集合 $P_{B1-C4/1}$ \equiv $\{(P_i, P_j): P_i \in C_{4/1}, P_j \in F_1\}$ を形成し、集合: $P_{D1} \cap P_{B1-C4/1}$

C4/1を作製する。得られたピーク・ペア(P_i , P_j)の積集合 $P_{D1} \cap P_{B1-C3/1}$ から、各ペアのピーク位置の高い側のピーク P_j の集合: $B_{C4/1} \equiv \{P_j: (P_i, P_j) \in P_{D1} \cap P_{B1-C4/1} \}$ を構成する。この集合 B_{C4} は、集合 $C_{4/1}$ に含まれるピークに対する、差集合 B_1 中の「リンク元」ピークの集合に相当している。

[0412]

加えて、集合 $S_{pair-h3}$ と集合 $S_{pair-l3}$ との積集合: $C_{4/2} \equiv S_{pair-h3} \cap S_{pair-l3}$ を形成する。この積集合 $C_{4/2}$ に含まれるピークは、集合 $S_{pair-h2}$ に含まれるピークに対する、集合 $S_{pair-l3}$ 中の「リンク元」ピークであり、かつ、集合 $S_{pair-l2}$ に含まれるピークに対する、集合 $S_{pair-h3}$ 中の「リンク先」ピークである、中間点ピークの集合に相当する。

[0413]

結果として、集合 B_{C4} 中の始点ピーク \to 集合 $C_{4/1}$ 中の第一の中間点ピーク \to 集合 $C_{4/2}$ 中の第二の中間点ピーク \to 集合 $C_{4/3}$ 中の第三の中間点ピーク \to 集合 F_{C4} 中の終点ピークからなる、5つのピークからなるピーク列が特定される。

[0414]

(E-5) 6以上のピークからなるピーク列の特定

6以上のピークからなるピーク列に関しても、上述するE-3, E-4に記載する手順に準じて、順次、段数を増しつつ、複数段の中間点ピーク、対応する始点ピーク、終点ピークの各集合を特定することができる。最終的には、N段数目の増加(N+1個のピークからなるピーク列)に達した際、始点ピーク側から連結してきた、「リンク先」のピーク集合 $S_{pair-lN}$ は、ゼロ集合、また、終点ピーク側から連結してきた、「リンク元」のピーク集合 $S_{pair-hN}$ も、ゼロ集合となるので、その前段階、(N-1)段数目の増加(N-10のピークからなるピーク列)が、最長のピーク列を与えるものとなる。

[0415]

勿論、理想的なC末アミノ酸の逐次的な分解反応が達成されている場合には、上記ピーク・ペア(P_i , P_j)の集合 P_{D1} には、(N-1)段数からなる、C末端からの逐次的なアミノ酸分解に起因する、一連のC末断片ペプチドに由来するピーク・ペアしか含まれないので、上に記載するE-2, E-3, E-4の各過

渡的な段階では、N個のピークからなるピーク列ではないものは、原則的に見出されない。そして、(N-1)段数目の増加(N個のピークからなるピーク列) に際して、一義的なC末端からの逐次的なアミノ酸分解シリーズを反映するものが初めて選択される。

[0416]

但し、例えば、C末アミノ酸の逐次的な分解反応に際して、ヘプチド鎖の途中 での断裂が生じたものが副生すると、この副生されたペプチド断片より、そのC 末アミノ酸の逐次的な分解反応が進行した、一連のペプチド断片産物が副生する 。そのため、(N-1)段数からなる、一連のC末断片ペプチドに由来する主な ピーク列以外に、数段の段数からなる副次的なピーク列群も、特定される場合も ある。その場合、各ピーク列群について、既に、個々のピーク・ペアに関しては 、可能性を有する脱離アミノ酸残基の種類に相当するk値は、考察しており、そ の脱離アミノ酸残基の種類に相当するk値を利用して、始点ピーク→ (複数段の 中間点ピーク)→終点ピークに相当する、脱離アミノ酸残基シリーズを特定した 上で、そのC末端のアミノ酸の種類、ピーク強度をも参照して、副次的なピーク 列群を排除する。すなわち、ヘプチド鎖の途中での断裂は、ある程度の頻度で発 生はするものの、一般に、その種の副次反応に由来するペプチド断片の総量は、 主なペプチド断片の総量と比較すると、少なくなっており、観測されるピーク強 度も相対的に小さなものとなる。そのため、各段数の異なるピーク列群における 、観測される各ピーク強度に基づき、各段数の異なるピーク列群のピーク強度の 総和を算出し、その合計したピーク強度の相対比較を行い、より合計ピーク強度 の大きなピーク列群を選択する。

[0417]

(E-7)特定されたN個のピークからなるピーク列群における、個々のピーク列の特定

例えば、上述するE-4で特定された集合 B_{C4} 中の始点ピーク \to 集合 $C_{4/1}$ 中の第一の中間点ピーク \to 集合 $C_{4/2}$ 中の第二の中間点ピーク \to 集合 $C_{4/3}$ 中の第三の中間点ピーク \to 集合 F_{C4} 中の終点ピークからなる、5つのピークからなるピーク列群を例に採り、個々のピーク列の特定手順を示す。

[0418]

[0419]

次いで、ピーク位置の高い側のピークとして、集合 $C_{4/1}$ (P_{j0})に含まれる一つの第一の中間点ピーク $P_{jC4/1}$ (P_{j0})を、ピーク位置の低い側のピークとして、積集合 $C_{4/2}$ に含まれるピークを選択して、構成されるピーク・ペアの集合 $P_{C4/1-C4/2}$ ($P_{jC4/1}$) \equiv $\frac{1}{2}$ (P_{i} , $P_{jC4/1}$ (P_{i})): P_{i} \in $C_{4/2}$ 、 $P_{jC4/1}$ (P_{i})): P_{i} \in $C_{4/2}$ 、 $P_{jC4/1}$ (P_{i})) P_{i} \in P_{i}

[0420]

更に、ピーク位置の高い側のピークとして、集合 $C_{4/2}$ (P_{j0})に含まれる一つの第二の中間点ピーク $P_{jC4/2}$ (P_{j0})を、ピーク位置の低い側のピークとして、積集合 $C_{4/3}$ に含まれるピークを選択して、構成されるピーク・ペアの集合 $P_{C4/2-C4/3}$ ($P_{jC4/2}$) \equiv $\{(P_i, P_{jC4/2} (P_{j0})): P_i \in C_{4/3}, P_{jC4/2}$

 $(P_{j0}) \in C_{4/2} (P_{j0})$ | を形成し、集合: P_{D1} とこの集合 $P_{C4/2-C4/3} (P_{jC}4/2)$ との積集合 $P_{D1} \cap P_{C4/2-C4/3} (P_{jC4/2})$ を作製する。得られたピーク・ペア(P_{i} , $P_{jC4/2} (P_{j0})$)の積集合 $P_{D1} \cap P_{C4/2-C4/2} (P_{jC4/2})$ から、各ペアのピーク位置の低い側のピーク P_{i} の集合: $C_{4/3} (P_{j0}) \equiv \{P_{i}: (P_{i}, P_{jC4/2} (P_{j0})) \in P_{D1} \cap P_{C4/2-C4/3} (P_{jC4/2}) \}$ を構成する。すなわち、この集合 $C_{4/3} (P_{j0})$ は、集合 $C_{4/2} (P_{j0})$ に含まれる一つの第二中間点ピーク $P_{jC4/2} (P_{j0})$ に対する、第三の中間点ピーク集合 $C_{4/3} \cap P_{jC4/2} (P_{j0})$ に対する、第三の中間点ピーク集合 $C_{4/3} \cap P_{jC4/2} (P_{j0})$ に対する。

[0421]

最後に、ピーク位置の高い側のピークとして、集合 $C_{4/3}$ (P_{j0}) に含まれる一つの第三の中間点ピーク $P_{jC4/3}$ (P_{j0}) を、ピーク位置の低い側のピークとして、集合 F_{C4} に含まれるピークを選択して、構成されるピーク・ペアの集合 $P_{C4/3}$ - $P_{C4/3}$ (P_{j0}) P_{i0} $P_$

[0422]

以上に示す、「リンク先」ピークの特定操作を行った結果、5つのピークからなるピーク列群より、始点ピーク P_{j0} \in B_{C4} を始点とするピーク列群を特定できる。なお、始点ピーク P_{j0} \in B_{C4} に対して、付随するピークを始点ピークとしても、同様な中間点ピークを経由するピーク列群を特定できる。この始点ピークより、中間点ピークを経由し、終点ピークに到る、「リンク先」ピークの特定操作は、先に述べた、最もピーク位置の高いピークを起点(親ペプチド断片のピークとして、逐次的にアミノ酸の分解する反応産物に由来する「娘ペプチド断片の

ピーク」を特定する解析と等価である。

[0423]

一方、予め、集合 B_{C4} 中の始点ピーク \rightarrow 集合 $C_{4/1}$ 中の第一の中間点ピーク \rightarrow 集合 $C_{4/2}$ 中の第二の中間点ピーク \rightarrow 集合 F_{C4} の第三の中間点ピーク \rightarrow 集合 F_{C4} の終点ピークからなる、5つのピークからなるピーク列群の抽出がなされているので、対応する手順を採用して、集合 F_{C4} 中の終点ピークを起点として、中間点ピークを経由し、始点ピークに到る、「リンク元」ピークの特定操作とすることも可能である。勿論、この「リンク元」ピークの特定操作も、原理的には、「リンク先」ピークの特定操作と、同様の結果を与えることになる。

[0424]

いずれの操作を採用する場合も、一連のピーク列群中、付随的な産物に由来するピークを伴っていない「単独ピーク」に関しては、主には、(i)理想的な反応産物の状態のペプチド断片に起因するイオン種ピークと仮定して、解析を進めることが望ましい。一方、「単独ピーク」を、(ii)余剰なアセチル化を受けている付随的な産物の状態のペプチド断片に起因するイオン種ピーク、あるいは、(iii)「脱水」を受けている付随的な産物の状態のペプチド断片に起因するイオン種ピークと判断し、理想的な反応産物の状態のペプチド断片に起因するイオン種ピークと判断し、理想的な反応産物の状態のペプチド断片に起因するイオン種ピークは、観測下限以下のピーク強度であると推定する際には、例えば、その「リンク元」ピークにおいても、少なくとも、(i)理想的な反応産物由来のイオン種ピークと比較して、対応する(ii)余剰なアセチル化体に由来するイオン種ピークまたは(iii)「脱水」体に由来するイオン種ピークが、同様により大きなピーク強度を示すことを確認する必要がある。

[0425]

【実施例】

以下に、実施例を挙げて、本発明をより具体的に説明する。なお、かかる実施例は、本発明にかかる最良の実施形態の一例ではあるものの、本発明はかかる具体例の形態により限定を受けるものではない。

[0426]

(実施例1)

本発明の第一の形態にかかるペプチドのC末端アミノ酸配列解析方法の有用性を検証する目的で、153アミノ酸からなるヘムタンパク質、ウマ由来のミオグロビンについて、そのタンパク質部分グロビン・ペプチド鎖のC末端アミノ酸配列の解析を行った。

[0427]

本実施例で利用する、解析対象試料となるウマ・ミオグロビンのグロビン・ペプチド鎖が有するアミノ酸配列は既に判明しており、本発明にかかる解析方法で特定されるC末端アミノ酸配列の特定精度を検証した。図1に、本実施例1におけるC末端アミノ酸の逐次的な分解工程の工程フローを示す。

[0428]

(単離、乾燥ペプチド粉末試料の調製)

先ず、市販されているウマ・ミオグロビン標品について、1.0μg/μLの 濃度でグロビン・ペプチド鎖部分のみを含有するペプチド溶液を調製する。前記 ペプチド溶液を試験管に採り、凍結乾燥して、乾燥ペプチド粉末試料を調製する。

[0429]

(前処理操作)

次いで、この乾燥ペプチド試料を収納したバイアルを、テフロン製コックバルブ封止される真空排気用のポートを具えた、共栓付き気密試験管型のガラス製反応容器内に装着し、このガラス製反応容器内に別途、下記する液状試薬を所定量入れる。前処理用の試薬として、酢酸を5体積%添加した無水酢酸(300 μ L)を用い、前記ガラス製反応容器内に乾燥ペプチド試料を収納したバイアルを収納した後、冷却下、反応容器内を真空排気し、気密状態に封止する。

[0430]

この気密状態の反応容器全体を、50 $\mathbb C$ 、2 時間保温して、容器内の液状試薬から供給される、蒸気状の無水酢酸と酢酸を、乾燥ペプチド試料に作用させる。このアシル化試薬として、無水酢酸を酢酸共存下で、乾燥ペプチド試料に作用させることで、ペプチドのN 末端アミノ基に選択的なアセチル化反応が進行する。加えて、ペプチド鎖内に含有される、リシン残基(-NH-CH(CH_2CH_2C

 $H_2CH_2NH_2$) -CO-) の ϵ 位のアミノ基へのN-アセチル化、同時に、セリン残基(-NH-CH(CH_2OH)-CO-)やトレオニン残基(-NH-CH(CH_3)OH)-CO-)に存在するヒドロキシ基に対するO-アセチル化、チロシン残基(-NH-CH(CH_2- C $_6H_4-$ OH)-CO-)のフェノール性ヒドロキシ基へのO-アセチル化がなされる。

[0431]

かかる前処理を終えた後、反応容器内に残留する、未反応の無水酢酸や酢酸等を減圧留去するとともに、得られる保護・修飾されたグロビン・ペプチド鎖の乾燥を行う。

[0432]

(C末端アミノ酸分解除去反応の操作)

次いで、得られるアセチル基による修飾・保護を施したグロビン・ペプチド鎖 を保持しているバイアルを、同じく共栓付き気密試験管型のガラス製反応容器内 に装着した状態で、このガラス製反応容器内に別途、下記する液状試薬を所定量 入れる。

[0433]

このC末端アミノ酸の選択的分解反応用の液状試薬として、ヘプタフルオロブタン酸(HFBA:C3F7COOH)を1体積%添加した無水酢酸(300 μ L)を用い、前記ガラス製反応容器内に乾燥試料を収納したバイアルを収納した後、冷却下、反応容器内を真空排気し、気密状態に對止する。

[0434]

この気密状態の反応容器全体を、40 $\mathbb C$ 、3時間保温して、容器内の液状試薬から供給される、蒸気状の無水酢酸とHFBAを、乾燥ペプチド試料に作用させる。その間、ペプチド鎖 $\mathbb C$ 末端に対して、HFBAと無水酢酸とを前記加熱温度で作用させることで、上述する反応式(Ia)~(II')の反応経路を経て、ペプチド鎖の $\mathbb C$ 末端アミノ酸の逐次的分解反応が進行する。その際、かかる反応産物のペプチド鎖 $\mathbb C$ 末端は、上述する $\mathbb S$ $\mathbb S$ 一オキサゾロン環あるいは、カルボキシ基の活性化が図られた非対称型酸無水物の形態となっている。

[0435]

かかるC末端アミノ酸の選択的分解処理を終えた後、反応容器内に残留する、 未反応の無水酢酸やHFBA等を減圧留去するとともに、残余するアセチル化保 護・修飾されたグロビン・ペプチド鎖と得られる反応産物との混合物の乾燥を行 う。

[0436]

(後処理操作)

次いで、反応産物が含まれる混合物の乾燥試料を保持しているバイアルを、同じく共栓付き気密試験管型のガラス製反応容器内に装着した状態で、このガラス 製反応容器内に別途、下記する液状試薬を所定量入れる。

[0437]

この後処理は、主に、前記混合物中では、反応産物ペプチドのC末端は、カルボキシ基に変換されたもの以外に、5ーオキサゾロン構造に留まったもの、あるいは、非対称型酸無水物への変換まで進行したものも、含まれた混合物状態となっているため、これらに加水処理を施し、ペプチドのC末端は、カルボキシ基となった状態へと変換する処理である。すなわち、後処理用の液状試薬として、D MAEを10体積%溶解した水溶液(300 μ L)を用い、前記ガラス製反応容器内に乾燥試料を収納したバイアルを収納した後、冷却下、反応容器内を真空排気し、気密状態に封止する。

[0438]

この気密状態の反応容器全体を、60 ℃、1時間加熱して、容器内の液状試薬から供給される、蒸気状のDMAEと水分子を、乾燥試料に作用させる。非対称型酸無水物ならびに5-オキサゾロン構造は、有機塩基であるDMAEの共存下、水分子を作用することで、加水がなされ、上述する反応式(IV)に示すように、C末端にカルボキシ基を有する形状に変換される。加えて、アセチル基による修飾・保護を施したペプチド鎖上、セリン残基(-NH-CH(CH_2OH)-CO-)やトレオニン残基(-NH-CH(CH(CH_3) OH) -CO-)に存在するヒドロキシ基に対するO-アセチル化保護は加水分解され、脱保護がなされ、また、チロシン残基(-NH-CH($CH_2-C_6H_4-OH$) -CO-)のフェノール性ヒドロキシ基へOO-アセチル化保護の加水分解もほぼ全て進む

。但し、用いる有機塩基の塩基性は高くないため、Nーアセチル化保護の脱保護は進まず、最終的に後処理工程後には、より高い選択性を持って、N末端のアミノ基に対するNーアセチル化、リシン残基(一NH-CH(CH2CH2CH2CH2CH2NH2)-CO-)のを位のアミノ基へのNーアセチル化が残るものとなる。場合によっては、チロシン残基(一NH-CH(CH2-C6H4-OH)-CO-)のフェノール性ヒドロキシ基へのO-アセチル化が僅かに残るものとなる。かかる後処理を終えた後、反応容器内に残留する、残余している水分子やDMAE等を減圧留去するとともに、後処理済み反応産物の混合物の乾燥を行う。

[0439]

(トリプシン消化によるペプチド断片化)

ウマ・ミオグロビンのグロビン・ペプチド鎖は、153アミノ酸からなるため、質量分析における、適正な分子量範囲を逸脱しており、トリプシン消化によるペプチド断片化処理を行う。

[0440]

具体的には、前記後処理済み反応産物の混合物を乾燥した試料を容器内に入れ、トリプシン含有水性溶液を加え、ペプチド鎖の断片化を行う。前記トリプシン含有水性溶液は、3-ピリジン酢酸緩衝液(pH-7)中に、トリプシンを0. $1 \mu g / \mu L$ の濃度で含有しており、トリプシン消化は、37℃で、攪拌しつつ、8時間酵素反応を行う。

[0441]

なお、元のペプチド鎖、反応産物は、前記後処理工程における脱保護によっても、N末端のアミノ基に対するN-アセチル化、リシン残基(-NH-CH($CH_2CH_2CH_2NH_2$)-CO-)の ε 位のアミノ基へのN-アセチル化は保持された状態であり、トリプシン消化によっては、前記N-アセチル化リシン残基のC末側ペプチド結合の切断はなされず、アルギニン残基のC末側ペプチド結合切断のみが進行する。このウマ・ミオグロビンのグロビン・ペプチド鎖が有するアミノ酸配列は既に判明しており、図7に示す、153アミノ酸からなる元のペプチド鎖は、アルギニン残基におけるトリプシン消化を受けると、1-31、32-139、140-153 の各部分アミノ酸配列を含む断片が生じる。従

って、上述するC末端アミノ酸の逐次的分解処理で生成される一連の反応産物は、前記140-153アミノ酸の部分アミノ酸配列を含むC末断片とともに、各C末端アミノ酸に相当する分子量差を示す、一連の質量分析ピークを与える。

[0442]

トリプシン消化後、反応液は、ZipTipを利用して、脱塩処理、ならびに、ペプチド断片の分離・回収を行った後、これらペプチド断片の凍結乾燥を行う

[0443]

(後処理、トリプシン消化によるペプチド断片化済みの反応産物の特定)

以上の一連の処理を施して得られる、後処理、ペプチド断片化済みの反応産物とグロビン・ペプチド鎖のC末断片との混合物について、質量分析法により、含有される各ペプチド断片の分子量の測定を行う。

[0444]

本実施例では、乾燥したペプチド断片混合物試料に対して、MALDI-TOF-MS装置を利用し、各ペプチド断片の分子量を反映する主イオン種ピークの質量と、その相対的な信号強度の測定、比較を行う。なお、かかるMALDI-TOF-MS装置を利用する測定では、イオン種の分別は、負帯電イオン種を検出器へ導く、所謂ネガティブ・モードの測定と、正帯電イオン種を検出器へ導く、所謂ポジティブ・モードの測定との双方を行う。すなわち、各ペプチド断片の分子量を反映する主イオン種として、ポジティブ・モードの測定において、プロトン (H+) が付加された陽イオン種、ネガティブ・モードの測定において、プロトン (H+) が離脱さいた陰イオン種の、対応する二種のスペクトルを得る。

[0445]

図3に示すポジティブ・モードの測定と、図4に示すネガティブ・モードの測定とを対比すると、ウマ・ミオグロビンのグロビン・ペプチド鎖に由来するトリプシン消化断片に相当する主な二つのピークとして、1-31の部分アミノ酸配列、ならびに、140-153の部分アミノ酸配列を含む断片が、かかる分子量範囲に見出される。図3に示すポジティブ・モードの測定において、その強度は相対的に大きなピークは、C末端にアルギニン残基を有する1-31の部分アミ

ノ酸配列のN末側ペプチド断片に相当し、一方、図4に示すネガティブ・モードの測定において、その強度は相対的に大きなピークは、アルギニン残基を含まない140-153の部分アミノ酸配列のC末側ペプチド断片に相当すると判定される。加えて、32-139の部分アミノ酸配列中、N-アセチル基の離脱されたリシン残基における切断で派生する、78-102の部分アミノ酸配列に相当するペプチド断片も見出され、同じく、図3に示すポジティブ・モードの測定において、その強度は相対的に大きなピークを示している。その他、トリプシンの自己消化で生じるペプチド断片も、かかる分子量範囲で見出され、同じく、図3に示すポジティブ・モードの測定において、その強度は相対的に大きなピークを示している。

[0446]

該トリプシンの自己消化で生じるペプチド断片に由来するピークにおいて、その半値全幅は1.5程度を示しており、この値よりも極端に半値全幅が小さなスパイクは、スパイク状ノイズと判断して、下記の解析において、考慮から外している。加えて、最終的に測定される質量スペクトル情報は、デジタル化記録した上で、各ピークの中心値読み取りに先立ち、前記スパイク状ノイズの除去と、ピーク形状の整形処理を施している。その際、該トリプシン由来のピークにおける、ピーク形状、半値全幅を損なわない整形処理(スペクトル形状の関数近似化処理)を選択している。また、各ピークの中心値読み取り後、前記整形処理、あるいは、使用しているMALDI-TOF-MS装置に依存した、系統的読み取り誤差の有無判定、その較正は、該トリプシン由来のピークの既知中心値に基づき、自動的にプログラム処理を施す方式を採用している。

[0447]

図4に示すネガティブ・モードの測定では、140-153の部分アミノ酸配列のC末側ペプチド断片に加えて、C末端アミノ酸の逐次的分解処理を施した反応産物に由来する一連のC末側ペプチド断片も、その強度は相対的に大きく測定されている。表4に、図3と図4の測定結果に基づき、対応するイオン種ピークの特定を行った結果を示す。表5に、測定されたピークの質量値、元のグロビン・ペプチド鎖のC末断片に起因するピークの質量値との差異、ならびに、それか

ら特定される、各反応産物断片において除去されているアミノ酸、および、各反 応産物の形態を示す。

[0448]

【表4】

m/Z	相対ピーク強	m/Z	相対ピーク強	帰属
(M-H+)	度	(M+H-)	度	
		931.23	16.03	? M=930
		1123.21	23. 71	? M=1122
<u>1245.74</u>	4.30		Small peak	Mb C-term 140-149
1302.58	Тгасе			Mb C-term 140-150
		1388.13	15.14	
		1390.15	89. 62	? M=1389
		1391.15	76.71	+1 isotope
		1392.15	37. 31	+2 isotope
<u>1449.58</u>	11.22		Small peak	Mb C-term 140-151
1451.51	6.00			
1559.48	8. 76			
1577.56	90. 32			-1 (1578.55) ?
<u>1578.55</u>	100.00	1579.10	16.93	Mb C-term 140-152
1579.53	67. 34			+1 isotope
1616.59	10.91			
1634.61	44.41			-1 (1635.58) ?
<u>1635.58</u>	59.08		Small peak	Mb C-term 140-153
1636.55	42.72			+1 isotope
1658.63	27. 62			
1659.62	27. 39			
1664.37	3. 32			
		1741.11	15.68	
		2119.11	3.08	
2230. 44	2.44	2233. 15	14. 43	
		2250.18	4.16	
		2557. 20	4. 99	
2597.11	1.62	2599. 28	8. 66	·
2978. 09	9.36	2981.00	23. 21	
<u>2996. 18</u>	34.86	2999. 01	100.00	Mb 78-102
3026. 15	3.32	3028.96	19.02	
		3041.32	7. 10	+42 (2999) ?
		3071.77	3. 64	
		3372. 70	2.06	
3451.11	3.36			
3467.96	10.87	3470.72	16.10	-18 (3488) ?
<u>3485.48</u>	21.33	3488.60	56. 72	Mb N-term 1-31
3498.11	4.57	3501.15	10.50	
3514.96	3.44	3518.08	12.08	
		3530. 59	5.55	

ページ: 190/

[0449]

【表5】

m/Z	Δm	帰属	対応ペプチド構造
1636.58	_		NDI AAK (Ac) YK (Ac) ELGFQG
1578.55	58.03	-Gly	NDIAAK (Ac) YK (Ac) ELGFQ
1449.58	187.00	-Gln-Gly	NDI AAK (Ac) YK (Ac) ELGF
1302.58	334.00	-Phe-Gln-Gly	NDIAAK (Ac) YK (Ac) ELG
1245.74	390.84	-Gly-Phe-Gln-Gly	NDIAAK (Ac) YK (Ac) EL

[0450]

本実施例1の蒸気状の試薬を利用する処理法では、C末端アミノ酸の逐次的分 解処理により、C末端から4アミノ酸;グリシン、グルタミン、フェニルアラニ ン、グリシンの除去された一連の反応産物が得られている。なお、図4に示すネ ガティブ・モードの測定には、前記140-153アミノ酸の部分アミノ酸配列 を含むC末端ペプチド断片等のピーク以外に、トリプシン消化により派生するペ プチド断片、1-31アミノ酸部分、78-102アミノ酸部分に相当する、二 つのピーク(分子量:2996.18、3485.48)は観測されているが、 78-102アミノ酸部分に相当するもの以外には、リシン残基の脱保護に付随 して、トリプシン消化により副生したと判定可能なペプチド断片は、かかる分子 量範囲に見出されていない。従って、図3に示すポジティブ・モードの測定と、 図4に示すネガティブ・モードの測定とを対比することで、トリプシン消化によ り派生するC末端にアルギニン残基を有するペプチド断片と、N-アセチル化保 護の脱落したリシン残基をC末端に有するペプチド断片に対応しているイオン種 は容易に判別でき、加えて、リシン残基におけるトリプシン消化を受けたペプチ ド断片多種が、かかる分子量範囲に混在していないため、目的とするC末端ペプ チド断片と、付随するC末端アミノ酸の逐次的分解処理がなされている一連のC 末端ペプチド断片の弁別に際して、その作業はより容易となる。

[0451]

(実施例2)

本発明の第二の形態にかかるペプチドのC末端アミノ酸配列解析方法の有効性 を検証する目的で、ゲル担体上に担持されている153アミノ酸からなるヘムタ

[0452]

本実施例では、解析対象試料となるウマ・ミオグロビンを、ポリアクリルアミド・ゲルを利用して、SDS-PAGE法によりゲル電気泳動して、単一スポットとして、そのグロビン・ペプチド鎖を分離した後、本発明にかかる解析方法で特定されるC末端アミノ酸配列の特定精度を検証した。

[0453]

(ゲル電気泳動法による単離)

先ず、市販されているウマ・ミオグロビン標品について、 $0.2\mu g/\mu Lo$ 濃度でグロビン・ペプチド鎖部分のみを含有するペプチド溶液を調製する。なお、該、ウマ・ミオグロビンのグロビン・ペプチド鎖部分には、ヒト・ミオグロビンを異なり、システイン残基は存在しないが、仮に、ヒト・ミオグロビンなどのように、システイン残基を内在するペプチドに対しては、該システイン残基のスルファニル基(-SH)の酸化による、-S-S-結合の形成を回避するため、2-スルファニルエタノール($HS-C_2H_2-OH:2-$ メルカプトエタノール)、DTT(ジチオトレイトール:トレオー1,4-ジスルファニルー2,3-ブタンジオール)などの還元性試薬を添加するなどして、予め酸化防止処理を施す。

[0454]

このペプチド溶液を、ゲル濃度12.5質量%のポリアクリルアミド・ゲル上にスポットし、泳動処理後、クーマシー・染色により、目的とするグロビン・ペプチド鎖のバンドを特定する。本例では、かかる染色バンド部のゲルを切り出し、ゲル切片を以下の一連の操作に供する。

[0455]

(ゲルの脱水処理)

ゲル切片を、気密性を有するチューブ中に入れ、アセトニトリル 1mlを注入し、15分間攪拌する。その後、前記アセトニトリルを棄て、新たに、アセトニトリル 1mLを注入し、更に15分間攪拌する。このアセトニトリルを利用

[0456]

(前処理操作)

次いで、チューブ中で、脱水処理済みのゲル切片に、10体積%濃度の無水酢酸のホルムアミド溶液 1 mLを注入する。乾燥雰囲気下で、蜜栓したチューブを攪拌しつつ、該容器全体の温度を、50 \mathbb{C} に加熱し、かかる温度に、3 時間保持する。

[0457]

この加熱保持の間に、当初、体積収縮しているゲルは、溶媒ホルムアミドの浸潤に従って、再膨潤し、本来の体積に復する。この再膨潤したゲル中に担持されているグロビン・ペプチド鎖に対して、溶質の無水酢酸が、前記加熱温度で作用する結果、ペプチドのN末端アミノ基に選択的なアセチル化反応が進行する。加えて、ペプチド鎖内に含有される、リシン残基(-NH-CH($CH_2CH_2CH_2CH_2CH_2NH_2$)-CO-)の ε 位のアミノ基へのN-アセチル化、同時に、セリン残基(-NH-CH(CH_2OH)-CO-)やトレオニン残基(-NH-CH(CH_2OH)-CO-)やトレオニン残基(-NH-CH(-NH-CH0)に存在するヒドロキシ基に対する-NH-CH0)に存在するヒドロキシ基に対する-NH-CH0)にチル化、チロシン残基(-NH-CH1)に存在するヒドロキシ基に対する-NH-CH1)に

[0458]

上記のN末端アミノ基のNーアセチル化、ならびに、アミノ酸残基側鎖のNーアセチル化、Oーアセチル化による保護を施した後、無水酢酸のホルムアミド溶液を除去し、チューブ容器中にアセトニトリル 1 mLを注入し、15分間攪拌する。その後、前記アセトニトリルを棄て、新たに、アセトニトリル 1 mLを注入し、更に15分間攪拌する。このアセトニトリルを利用する、ゲル中に含浸するホルムアミド溶液の抽出処理を、合計3回行い、再膨潤ゲル中の脱溶媒(ホルムアミド)処理を行う。脱溶媒処理に伴い、ゲル体積の収縮が生じ、同時に、ゲルの脱水処理もなされる。

[0459]

次いで、図 2 に示す工程のように、前記脱水処理によって、収縮したゲルの再膨潤と、反応試薬のゲル内への浸潤を行う。具体的には、前処理操作を終えた後、得られるアセチル基による修飾・保護を施したグロビン・ペプチド鎖をゲル中に担持されている状態の、ゲル切片を入れた前記チューブ内に、ヘプタフルオロブタン酸(HFBA: C_3F_7COOH) 1 体積%、無水酢酸 1 の体積%のホルムアミド溶液 1 mLを注入する。乾燥雰囲気下で、蜜栓した容器を攪拌しつつ、該容器全体の温度を、4 0 ∞ に加熱し、かかる温度に、1 6 時間保持する。

[0460]

この加熱保持の間に、当初、体積収縮しているゲルは、溶媒ホルムアミドの浸潤に従って、再膨潤し、本来の体積に復する。この再膨潤したゲル中に担持されているペプチド鎖C末端に対して、HFBAと無水酢酸とを前記加熱温度で作用させることで、ペプチド鎖のC末端アミノ酸の選択的分解反応が進行する。具体的には、ペプチドのC末端において、上述する反応式(Ia)~(II')の反応経路を経て、5ーオキサゾロン環形成を介する、ペプチド鎖のC末端アミノ酸の逐次的分解反応が進行すると推定される。かかる逐次的分解の各反応過程は、双極性溶媒であるホルムアミド中において、プロトン・ドナーとして機能するHFBAの触媒作用によって、その反応の促進がなされている。

[0461]

このC末端アミノ酸の逐次的な分解反応が進行し、ゲル中には、段階的にC末端アミノ酸が除去された、一連の反応産物と、初段の5ーオキサゾロン構造への変換時点に留まっている、アセチル基による修飾・保護を施した元のペプチド鎖とが含まれた混合物が、ゲル担体に担持された状態で残される。かかるC末端アミノ酸の逐次的分解処理を終えた後、容器内に残留する、未反応の無水酢酸やHFBA等を含むホルムアミド溶液を除去し、容器中にアセトニトリル 1mLを注入し、15分間攪拌する。その後、前記アセトニトリルを棄て、新たに、アセトニトリル 1mLを注入し、更に15分間攪拌する。このアセトニトリルを利用する、ゲル中に含浸するホルムアミド溶液の抽出処理を、合計3回行い、再膨潤ゲル中の脱溶媒(ホルムアミド)処理を行う。脱溶媒処理に伴い、ゲル体積の

[0462]

(後処理操作)

次いで、反応産物が含まれる混合物が担持されている状態のゲル切片を入れた前記容器内に、DMAE((CH_3) $2N-CH_2CH_2OH$)10体積%濃度の水溶液 1 mLを注入する。蜜栓した該容器を攪拌しつつ、容器全体の温度を、60 Cに加熱し、かかる温度に、1 時間保持する。その際、脱水処理されていたゲルは、溶媒水の浸潤に従って、速やかに再膨潤し、本来の体積に復する。この再膨潤したゲル中に担持されているペプチド鎖、反応産物に対して、塩基性窒素含有有機化合物の存在下、水分子を前記加熱温度で作用させることで、加水処理が進行する。

[0463]

この後処理における加水処理は、主に、前記混合物中では、反応産物ペプチド のC末端は、カルボキシ基に変換されたもの以外に、5-オキサゾロン構造に留 まったもの、あるいは、非対称型酸無水物への変換まで進行したものも、含まれ た混合物状態となっているため、これらに加水処理を施し、ペプチドのC末端は 、カルボキシ基となった状態へと変換する処理である。加えて、塩基性窒素含有 有機化合物が塩基触媒として機能することに伴い、アセチル基による修飾・保護 を施したペプチド鎖上に、セリン残基 $(-NH-CH(CH_2OH)-CO-)$ やトレオニン残基(-NH-CH (CH (CH3) OH) -CO-) に存在する ヒドロキシ基に対する〇ーアセチル化保護は加水分解され、脱保護がなされる。 また、チロシン残基($-NH-CH(CH_2-C_6H_4-OH)-CO-$)のフェ ノール性ヒドロキシ基へのO-アセチル化保護の加水分解も、同様に進む。但し 、用いる有機塩基の塩基性は高くないため、Nーアセチル化保護の脱保護は進ま ず、最終的に後処理工程後には、より高い選択性を持って、N末端のアミノ基に 対するN-アセチル化、リシン残基(-NH-CH (CH2CH2CH2CH2NH 2) - CO-) のε位のアミノ基へのN-アセチル化が残るものとなる。場合に よっては、チロシン残基($-NH-CH(CH_2-C_6H_4-OH)-CO-$)の フェノール性ヒドロキシ基への〇ーアセチル化が、極く僅かに残るものとなる。

[0464]

(トリプシン消化によるペプチド断片化)

ウマ・ミオグロビンのグロビン・ペプチド鎖は、153アミノ酸からなるため、質量分析における、適正な分子量範囲を逸脱しており、トリプシン消化によるペプチド断片化処理を行う。

[0465]

具体的には、前記の後処理を施し、脱水処理済みのゲル切片を入れた容器内に、トリプシン含有水性溶液を加え、ゲル担体上に担持されている状態のまま、ペプチド鎖の断片化を行う。前記トリプシン含有水性溶液は、重炭酸アンモニウム緩衝液(pH 8)中に、トリプシンを 0. 0 6 7 μ g/μ L の濃度で含有しており、トリプシン消化は、37℃で、攪拌しつつ、4時間酵素反応を行う。その際、脱水処理されていたゲルは、溶媒水の浸潤に従って、速やかに再膨潤し、本来の体積に復する。この再膨潤したゲル中に担持されているペプチド鎖、反応産物に対して、前記緩衝液とともに、ゲル中に浸入するトリプシンを前記加熱温度で作用させることで、トリプシンに特異的な酵素消化が進行する。

[0466]

なお、ペプチド鎖、反応産物は、前記後処理工程における脱保護によっても、N末端のアミノ基に対するN-アセチル化、リシン残基(<math>-NH-CH(CH_2 $CH_2CH_2CH_2NH_2$)-CO-)の ε 位のアミノ基へのN-アセチル化は保持された状態であり、トリプシン消化によっては、前記N-アセチル化リシン残基のC末側ペプチド結合の切断はなされず、アルギニン残基のC末側ペプチド結合切断が進行する。このウマ・ミオグロビンのグロビン・ペプチド鎖が有するアミノ酸配列は既に判明しており、図7に示すようにアルギニン残基のC末側ペプチ

[0467]

トリプシン消化によって断片化されると、これらのペプチド断片は、ゲル担体から溶出を生じ易くなり、容器内のトリプシン溶液中に溶出する。なお、かかるトリプシン消化処理工程では、前記140−153アミノ酸の部分アミノ酸配列を含むC末断片とともに、上述するC末端アミノ酸の逐次的分解処理で生成される一連の反応産物に由来するC末断片も、容器内のトリプシン溶液中に溶出する。すなわち、該トリプシン消化処理は、長いアミノ酸長のペプチド鎖から、そのC末部分を、質量分析に適合する所望の分子量範囲のペプチド断片とするとともに、かかるペプチド断片を、ゲル中から高い収率で溶出、回収することを可能としている。

[0468]

かかるトリプシン消化処理工程を終えた後、ゲル中から容器内のトリプシン溶液中に溶出する断片化されたペプチドを回収する。回収されたペプチド断片の混合物を含む溶液について、脱塩処理を施した後、凍結乾燥処理を行う。

[0469]

(後処理、トリプシン消化によるペプチド断片化済みの反応産物の特定)

以上の一連の処理を施して得られる、後処理、ペプチド断片化済みの反応産物とグロビン・ペプチド鎖のC末断片との混合物について、質量分析法により、含有される各ペプチド断片の分子量の測定を行う。

[0470]

本実施例でも、脱塩処理を施し、上記乾燥処理を行ったペプチド断片混合物試料に対して、MALDI-TOF-MS装置を利用し、各ペプチド断片の分子量を反映する主イオン種ピークの質量と、その相対的な信号強度の測定、比較を行

[0471]

この実施例2でも、図5に示すポジティブ・モードの測定と、図6に示すネガ ティブ・モードの測定とを対比すると、ウマ・ミオグロビンのグロビン・ペプチ ド鎖に由来するトリプシン消化断片に相当する主な二つのピークとして、1-3 1の部分アミノ酸配列、ならびに、140-153の部分アミノ酸配列を含む断 片が、かかる分子量範囲に見出される。図5に示すポジティブ・モードの測定に おいて、その強度は相対的に大きなピークは、C末端にアルギニン残基を有する 1-31の部分アミノ酸配列のN末側ペプチド断片に相当し、一方、図 6 に示す ネガティブ・モードの測定において、その強度は相対的に大きなピークは、アル ギニン残基を含まない140-153の部分アミノ酸配列のC末側ペプチド断片 に相当すると判定される。加えて、32-139の部分アミノ酸配列中、N-ア セチル基の離脱されたリシン残基における切断で派生する、78-102の部分 アミノ酸配列に相当するペプチド断片も見出され、同じく、図5に示すポジティ ブ・モードの測定において、その強度は相対的に大きなピークを示している。そ の他、トリプシンの自己消化で生じるペプチド断片も、かかる分子量範囲で見出 され、同じく、図5に示すポジティブ・モードの測定において、その強度は相対 的に大きなピークを示している。

[0472]

図6に示すネガティブ・モードの測定では、140-153の部分アミノ酸配列のC末側ペプチド断片に加えて、C末端アミノ酸の逐次的分解処理を施した反応産物に由来する一連のC末側ペプチド断片も、その強度は相対的に大きく測定されている。表6に、測定されたピークの質量値、元のグロビン・ペプチド鎖の

[0473]

【表 6】

m/Z	Δm	帰属	対応ペプチド構造	
1636.55	_		NDI AAK (Ac) YK (Ac) ELGFQG	
1578. 49	58.06	-Gly	NDI AAK (Ac) YK (Ac) ELGFQ	
1450. 52	186.03	-Gln-Gly	NDI AAK (Ac) YK (Ac) ELGF	

[0474]

本実施例2の、ゲル中での、双極性非プロトン溶媒を用いた反応試薬溶液を利用する処理法でも、C末端アミノ酸の逐次的分解処理により、C末端から二つのアミノ酸、グリシンとグルタミンが逐次的に分解された反応産物に由来するピークが確認される。すなわち、解析対象である上述のゲル切片上のバンドとして分離されるペプチド鎖は、実際に、グロビン・ペプチド鎖であり、C末端アミノ酸の逐次的分解処理をゲル上に担持した状態で実施できることが、検証される。

[0475]

本発明の第二の形態にかかるペプチドのC末端アミノ酸配列解析方法を利用することで、解析対象のペプチド鎖をゲル中に担持した状態で、C末端アミノ酸の逐次的分解を進めた際にも、本質的に遜色のない解析確度が達成されていることが確認される。

[0476]

(参考例1)

本発明にかかるペプチドのC末端アミノ酸配列解析方法では、リシン残基側鎖をNーアシル化保護した状態で、ペプチド鎖をトリプシン消化することで、得られるN末側のアミノ酸配列に由来する共通のペプチド断片は、C末端にアルギニン残基を有するペプチド断片となることを利用して、C末端側ペプチド断片との区別に利用している。仮に、元々、解析対象試料となるペプチド鎖が、そのC末端にアルギニンを有する場合であっても、MALDI-TOF-MS装置を利用

[0477]

本参考例では、ペプチド鎖のN末アミノ基を、Nーアセチル化保護を施した、 14アミノ酸からなるペプチド、Nーアセチル化Glu¹ーFibrinoペプ チド断片について、そのC末端アミノ酸配列の解析を行った。

[0478]

(C末端アミノ酸分解除去反応の操作)

予め、N-アセチル化処理して得られる前記ペプチド試料(Ac-EGVND NEEGFFSAR)の乾燥試料を保持しているバイアルを、共栓付き気密試験管型のガラス製反応容器内に装着した状態で、このガラス製反応容器内に別途、下記する液状試薬を所定量入れる。

[0479]

このC末端アミノ酸の選択的分解反応用の液状試薬として、トリフルオロ酢酸を 5 体積%添加した無水酢酸(3 0 0 μL)を用い、前記ガラス製反応容器内に乾燥試料を収納したバイアルを収納した後、冷却下、反応容器内を真空排気し、気密状態に封止する。

[0480]

この気密状態の反応容器全体を、40℃、16時間保温して、容器内の液状試薬から供給される、蒸気状の無水酢酸とトリフルオロ酢酸を、乾燥試料に作用させる。

[0481]

なお、かかるC末端アミノ酸の選択的分解処理を終えた後、反応容器内に残留する、未反応の無水酢酸やトリフルオロ酢酸等を減圧留去するとともに、残余するN-アセチル化G1 u1-Fi br in oペプチド試料と得られる反応産物との混合物の乾燥を行う。

(後処理操作)

次いで、 $N-Pセチル化Glu^{1}-Fibrinoペプチド断片と得られる反応産物が含まれる混合物の乾燥試料を保持しているバイアルを、同じく共栓付き気密試験管型のガラス製反応容器内に装着した状態で、このガラス製反応容器内に別途、下記する液状試薬を所定量入れる。$

[0483]

本参考例1では、加水後処理の液状試薬として、ピリジンを10体積%溶解した水溶液(300µL)を用い、前記ガラス製反応容器内に乾燥試料を収納したバイアルを収納した後、冷却下、反応容器内を真空排気し、気密状態に封止する。

[0484]

この気密状態の反応容器全体を、100℃、30分間加熱して、容器内の液状 試薬から供給される、蒸気状のピリジンと水分子を、乾燥試料に作用させる。前 記の条件では、セリン残基の〇ーアセチル化保護の脱保護はなされるものの、N 末端のNーアセチル化保護のアミド結合に対する加水分解は起こらないため、得 られる後処理済みの反応産物は、ペプチドのN末端にアセチル基が修飾されたN ーアセチル化体となる。

[0485]

かかる後処理を終えた後、反応容器内に残留する、残余している水分子やピリジン等を減圧留去するとともに、N-rセチル化 $Glu^{1}-Fibrinoペプチド断片と得られる後処理済みの反応産物との混合物の乾燥を行う。$

[0486]

(後処理済みの反応産物の特定)

以上の一連の化学的処理を施して得られる、後処理済みの反応産物と元のペプチド断片との混合物について、MALDI-TOF-MS装置を利用し、各ペプチド断片の分子量を反映する主イオン種として、ポジティブ・モードの測定において、プロトン (H+) が付加された陽イオン種、ネガティブ・モードの測定において、プロトン (H+) が離脱さいた陰イオン種の、対応する二種のスペクト

ルを得る。

[0487]

図8に示す、二種のスペクトルを対比すると、ポジティブ・モードの測定において、1-14のアミノ酸配列を保持する元のペプチド断片は、その強度は相対的に大きく、アルギニン残基を含むことが確認される。加えて、ネガティブ・モードの測定において、この元のペプチド断片から、アルギニン残基が分解除去された分子量に相当するピークが観測されるものの、一方、ポジティブ・モードの測定においては、対応するピークは、明確には見出されない。従って、1-14のアミノ酸配列を保持する元のペプチド断片は、C末端にアルギニン残基を有しており、ポジティブ・モードの測定において、その強度は相対的に大きいものの、ネガティブ・モードの測定において、その強度は相対的に大きいものの、ネガティブ・モードの測定において、付随する一連の反応産物に起因するイオン種が見出され、かつ、アルギニン残基が分解除去された分子量に相当するピークの存在するので、C末端アミノ酸の逐次的な分解除去を受けていることが、確認される。表7に、測定されたピークの質量値、元のペプチド鎖に起因するピークの質量値との差異、ならびに、それから特定される、各反応産物断片において除去されているアミノ酸、および、各反応産物の形態を示す。

[0488]

【表7】

m/Z	Δm	帰属	対応ペプチド構造
1610.68		1-14	Ac — EGVNDNEEGFFSAR
1454.58	156.10	-Arg	Ac — EGVNDNEEGFFSA
1383.54	227. 14	-Ala-Arg	Ac — EGVNDNEEGFFS
1296.51	314.17	-Ser-Ala-Arg	Ac — EGVNDNEEGFF
1149.44	461.24	-Phe-Ser-Ala-Arg	Ac — EGVNDNEEGF

[0489]

すなわち、仮に、元のペプチド鎖のアミノ酸配列は、C末端にアルギニンを有する場合であっても、トリプシン消化で得られるC末側ペプチド断片に付随して、アルギニン残基の除去に相当する分子量減少を示すピークの有無を精査することで、C末側ペプチド断片であるか、その他のN末側のアミノ酸配列に由来するペプチド断片であるかを、高い確度で判定することが可能であることが検証され

[0490]

【発明の効果】

本発明にかかるペプチドのC末端アミノ酸配列解析方法は、ペプチドのC末端 アミノ酸を逐次的に分解除去する際、対象とするペプチド鎖に対して、予め、ペ プチド鎖のN末端アミノ基、ならびに、リシン残基側鎖のアミノ基に対して、N ーアシル化保護を行うことで、同時に、セリン残基(-NH-CH(CH2OH)-CO-)やトレオニン残基(-NH-CH(CH(CH3)OH)-CO-)に存在するヒドロキシ基に対しても、〇-アシル化保護がなされた状態で、乾 燥雰囲気下、穏和な加熱温度において、アルカン酸無水物に少量のパーフルオロ アルカン酸を組み合わせた反応試薬を作用させ、5-オキサゾロン構造を経て、 該5ーオキサゾロン環の開裂に伴いC末端アミノ酸の分解を行って、一連の反応 産物を調製する手法を採用している。かかる手法では、利用するアルカン酸無水 物自体、反応性が低いため、ペプチドの途中におけるアミド結合の分断等の不要 な副次反応を引き起こすことなく、穏和な加熱条件で、ペプチドのC末端アミノ 酸を逐次的に分解除去することが可能となる。付随して、ペプチドの途中におけ るアミド結合の分断が無いので、得られる反応産物中に、前記アミド結合の分断 により派生するペプチド断片、ならびに、そのペプチド断片を起源とする反応産 物が混入することも回避できる。さらには、かかる穏和な条件での反応を利用す ることで、得られる一連の反応産物に対して、後処理において、有機塩基性化合 物の存在下、加水処理を行うことで、C末端にカルボキシ基を有し、O-アシル 化保護は脱保護されるものの、ペプチド鎖のN末端アミノ基、ならびに、リシン 残基側鎖のアミノ基におけるNーアシル化保護を保持するものとする。最終的に 、トリプシン消化を施し、N-アシル化保護されているリシン残基のC末側での 切断を回避しつつ、アルギニン残基のC末側での切断を行って、アミノ酸長の長 いペプチド鎖より、MALDI-TOF-MS装置を利用する測定に適する分子 量範囲となる、C末端側ペプチド断片を調製した上で、該C末端側ペプチド断片 における一連の分子量減少に基づき、C末端アミノ酸の逐次的な分解除去を受け て、

[0491]

加えて、上述するC末端アミノ酸の逐次的な分解除去の化学的処理においては、そのペプチド鎖のアミノ酸長変化は、多くとも10アミノ酸程度であるので、対象とするペプチドを、予めゲル電気泳動法による分離を行った後、該ゲル担体上に担持された状態を維持したまま、これら化学的処理を進めることもできる。一方、トリプシン消化を施して、ペプチド断片化を行うと、アミノ酸長が格段に短いペプチド断片は、ゲル担体上に最早安定に保持できず、簡便にゲル担体上より溶出させ、回収することが可能となる。従って、このペプチドのC末端アミノ酸を逐次的に分解除去する際の優れた制御性、ならびに、穏和な反応条件、例えば、反応温度の許容される変動幅の広さの利点、さらには、アミノ酸長の長いペプチド鎖に対しても、そのC末端アミノ酸配列解析を高い精度で実施できることから、本発明にかかるペプチドのC末端アミノ酸配列解析方法は、より汎用性に富む解析方法となる。

【図面の簡単な説明】

【図1】

本発明の第一の形態にかかるペプチドからC末端アミノ酸を逐次的に分解する 処理における、ペプチド乾燥試料を対象とする際の詳細操作手順の一例を例示す る工程フローを示す図である。

【図2】

本発明の第二の形態にかかるペプチドからC末端アミノ酸を逐次的に分解する 処理における、ゲル上に担持されたペプチド試料を対象とする際の詳細操作手順 の一例を例示する工程フローを示す図である。

【図3】

本発明の第一の形態にかかるペプチドからC末端アミノ酸を逐次的に分解する処理方法に従って、ウマ・ミオグロビンの乾燥試料について、そのグロビン・ペプチド鎖のC末端アミノ酸を逐次的に分解して得られる反応産物混合物をトリプシン消化して得られるペプチド断片を、MALDI-TOF-MS装置において、陽イオン種検出モードで測定した質量分析スペクトルの一例を示す図である。

本発明の第一の形態にかかるペプチドからC末端アミノ酸を逐次的に分解する処理方法に従って、ウマ・ミオグロビンの乾燥試料について、そのグロビン・ペプチド鎖のC末端アミノ酸を逐次的に分解して得られる反応産物混合物をトリプシン消化して得られるペプチド断片を、MALDI-TOF-MS装置において、陰イオン種検出モードで測定した質量分析スペクトルの一例を示す図である。

【図5】

本発明の第二の形態にかかるペプチドからC末端アミノ酸を逐次的に分解する処理方法に従って、ゲル上に担持されたウマ・ミオグロビン試料について、そのグロビン・ペプチド鎖のC末端アミノ酸を逐次的に分解して得られる反応産物混合物をトリプシン消化して得られるペプチド断片を、MALDI-TOF-MS装置において、陽イオン種検出モードで測定した質量分析スペクトルの一例を示す図である。

【図6】

本発明の第二の形態にかかるペプチドからC末端アミノ酸を逐次的に分解する処理方法に従って、ゲル上に担持されたウマ・ミオグロビン試料について、そのグロビン・ペプチド鎖のC末端アミノ酸を逐次的に分解して得られる反応産物混合物をトリプシン消化して得られるペプチド断片を、MALDI-TOF-MS装置において、陰イオン種検出モードで測定した質量分析スペクトルの一例を示す図である。

【図7】

ウマ・ミオグロビンを構成する、グロビン・ペプチド鎖のアミノ酸配列中に含まれる、トリプシンによる、アルギニン残基のC末側ペプチド結合での切断部位、ならびに、Nーアセチル化保護を施した際、そのC末側ペプチド結合での切断が防止されるリシン残基を示す。

【図8】

アミノ酸を逐次的に分解して得られる反応産物混合物を、MALDI-TOF-MS装置において、陰イオン種検出モード(下)と陽イオン種検出モード(上)で測定した質量分析スペクトルの対比を示す図である。

図9】

トリプシンの自己消化によって生成する、断片に相当する陽イオン種の分子量 (M+H) の一覧を示す。

前処理

【図3】

MALDI-TOF MS on positive mode

MALDI-TOF MS on negative mode

Mb, 3h in test tube

【図5】

Mb tracation in gel on positive mode

myoglobin-horse

[1-153] mass = 17738.180 Cleavage at R

								ge on-	pol pol	ar: ar:			K S	(7) (19 (5) (17	9)		R	(13) (2) (7))		•	11) 15)		G	2(6) 5(1:	5)		F((7)		`	((2))	W(2)
								Sp	ec	ial:			С	(0))		P((4)			·	•			•			•	. ,			\ _,	,	***	-,
K[5 K[7 K[9	6] + 6] + 6] + 6] + 6] + 6] + 6] + 6] +	42.0 42.0 42.0 42.0 L S I f	14 14 1.04 3 D t	g g	h t	р v	K K Q e v	(156) (176) (196) (114) (14)	l t	- 42 - 42 + 42 + 42 + 42 + 42 + 42 + 42 + 42 +	2.0 2.0 2.0 42. N	4 4 4 04 V f	W d g	ķ	f 		K[7K[1] E h	2]- 9]- 02] 47] A 戦	k g	2.0 2.0 42. 42. 1 t	4 04 04 A e h	G a e	e a	m e	P P P Q R I	a	3] + 7] + 18] V s	- 4: - 4: + - L e	2.0 2.0 42. I d a	30 60					
121 151	g i	n f	g	а	ď	а	q	9	а	m	ť	ķ	а	Ī	e	Ì	f	ſ	N	D	Ì	A	Ā	ĸ	 Y	K	₽ E	L '	G	150	0				

(1) [1-31] = 3444.742

(2) [32-139] = 12692.649

(3)

[140-153] = 1636.809

C-terminal Truncation Reaction

Sample: N-acetyl-Glu¹-Fibrino peptide

トリプシンの自己消化物断片の分子量(M+H)表

758.4637	4860.3449
842.5100	4971.5791
906.5049	5152.3371
1006.4879	5228.5621
1045.5642	5501.8127
1469.7310	5618.6354
1736.8430	6039.8236
1768.7998	6139.8067
1869.0558	
2158.0313	
2211.1046	
2283.1807	
2457.2005	
2592,2914	
2624.3295	
2707.4168	
2950.5499	
3013.3243	
3145.5008	
3219.5124	
3309.7265	
3618.8372	
3900.8108	
4043.0040	
4133.2181	
4206.9820	
4475.2669	
4489.1168	
4596.2134	
4617.2117	
4732.2499	

注)さらに上のピークにリジンのメチル化に伴う+14、+28が伴うことがある。また、通常3500以上は瀕定対象外であるが2価、3価イオンとして3500以下のレンジで自己消化物のイオンが観測されることがあるので妻には加えておいた。

【書類名】

要約書

【要約】

【課題】 アミノ酸長の長いペプチドのC末端アミノ酸を逐次的に分解する際、ペプチド途中におけるペプチド結合の切断などの好ましくない副次反応を抑制でき、その処理を汎用性の富む条件で実施することが可能な、逐次的C末端アミノ酸の分解反応手段を利用したペプチドのC末端アミノ酸配列解析方法の提供。

【解決手段】 アミノ酸長の長いペプチドの乾燥試料に対して、予めNーアシル 化処理を施し、アルカン酸無水物とパーフルオロアルカン酸少量とを組み合わせ た反応試薬を利用し、穏和な条件でC末端アミノ酸の分解を行い、加水処理をした後、トリプシン消化により、アルギニン残基部位で選択的に断片化を行った後、MALDI-TOF-MS装置により、一連の反応産物に由来するC末側断片の分子量減少を測定し、C末端アミノ酸配列を特定する。

【選択図】 なし

出願人履歴情報

識別番号

[000004237]

1. 変更年月日 [変更理由] 住 所 氏 名 1990年 8月29日 新規登録 東京都港区芝五丁目7番1号 日本電気株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.