日 特 玉

PATENT OFFICE JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載 いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office. 10/009815

出願年月日 Date of Application:

1999年 6月14日

願 Application Number:

平成11年特許願第167109号

出 顒 人 Applicant (s):

住友金属工業株式会社

REC'D 27 JUL 2000

WIPO PCT

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2000年 6月29日

特許庁長官 Commissioner. Patent Office

【書類名】 特許願

【整理番号】 1990461

【提出日】 平成11年 6月14日

【あて先】 特許庁長官殿

【国際特許分類】 C30B 29/54

3. 400 / BOID 9/02

【発明者】

【住所又は居所】 兵庫県尼崎市扶桑町1番8号 住友金属工業株式会社エ

レクトロニクス技術研究所内

【氏名】 秋岡 幸司

【発明者】

【住所又は居所】 兵庫県尼崎市扶桑町1番8号 住友金属工業株式会社エ

レクトロニクス技術研究所内

【氏名】 三城 明

【特許出願人】

【識別番号】 000002118

【住所又は居所】 大阪府大阪市中央区北浜4丁目5番33号

【氏名又は名称】 住友金属工業株式会社

【代理人】

【識別番号】 100064746

【弁理士】

【氏名又は名称】 深見 久郎

【手数料の表示】

【予納台帳番号】 008693

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9708996

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 有機分子の分離装置および分離方法ならびに有機分子の結晶作製方法

【特許請求の範囲】

【請求項1】 溶液中に含まれる帯電した有機分子を前記溶液から分離する ための装置であって、

金属、半導体およびそれらの化合物よりなる群から選ばれた互いに実質的に異なる材料からなる複数種の固体表面を備え、

前記複数種の固体表面は、同時に前記溶液に接触するよう配置されており、かつ

前記複数種の固体表面は、前記溶液と接触するとき、互いに異なる表面電位ま たはゼータ電位を有するものであり、それにより、

前記複数種の固体表面のいずれかに、前記有機分子をより強く静電的に吸着させるようになっていることを特徴とする、有機分子の分離装置。

【請求項2】 前記複数種の固体表面上で前記溶液を保持するための囲い壁を有することを特徴とする、請求項1に記載の装置。

【請求項3】 前記複数種の固体表面は、所定の領域において互いに隣合うよう配置され、かつ

前記所定の領域において、前記有機分子をより強く静電的に吸着させる固体表面が占める面積は、残りの固体表面が占める面積以下であることを特徴とする、 請求項1または2に記載の装置。

【請求項4】 前記複数種の固体表面は、同一の基板上に形成されていることを特徴とする、請求項1~3のいずれか1項に記載の装置。

【請求項5】 前記基板が半導体基板であることを特徴とする、請求項4に 記載の装置。

【請求項6】 前記複数種の固体表面は、同一の半導体基板上に形成されており、

前記複数種の固体表面は、当該半導体基板の表面または当該半導体基板表面に 形成された半導体化合物膜もしくは金属化合物膜の表面からなる第1の表面と、 前記第1の表面上の所定の領域に形成される半導体化合物のアイランドまたは金 属化合物のアイランドの表面からなる第2の表面とを含み、かつ

前記第1の表面および前記第2の表面は、前記溶液と接触するとき、互いに異なる表面電位またはゼータ電位を有するものであり、それにより、前記第2の表面に前記有機分子をより強く静電的に吸着させるようになっていることを特徴とする、請求項1~3のいずれか1項に記載の装置。

【請求項7】 前記半導体基板がシリコン基板であることを特徴とする、請求項5または6に記載の装置。

【請求項8】 前記有機分子を含む溶液のpHを測定するための手段をさら に備えることを特徴とする、請求項1~7のいずれか1項に記載の装置。

【請求項9】 前記 p H 測定手段は、

半導体層と、

前記半導体層上に形成される絶縁層と、

前記溶液を前記絶縁層上で保持するための囲い壁と、

前記溶液に接触するように前記囲い壁に設けられる金属電極とを備えることを 特徴とする、請求項8に記載の装置。

【請求項10】 前記複数種の固体表面および前記 p H測定手段は、同一の 半導体基板上に形成され、

前記 p H測定手段における前記半導体層は、前記半導体基板の一部であり、

前記複数種の固体表面は、当該半導体基板の表面または当該半導体基板表面に 形成された半導体化合物膜もしくは金属化合物膜の表面からなる第1の表面と、 前記第1の表面上の所定の領域に形成される半導体化合物のアイランドまたは金 属化合物のアイランドの表面からなる第2の表面とを含み、かつ

前記第1の表面および前記第2の表面は、前記溶液と接触するとき、互いに異なる表面電位またはゼータ電位を有するものであり、それにより、前記第2の表面に前記有機分子をより強く静電的に吸着させるようになっていることを特徴とする、請求項9に記載の装置。

【請求項11】 前記半導体がシリコンであることを特徴とする、請求項1 0に記載の装置。 【請求項12】 前記複数種の固体表面を与える材料は、積層構造を有し、 前記積層構造において、上層に位置する材料は、下層に位置する材料上の複数 の位置に、間隔をあけて設けられていることを特徴とする、請求項1~11のい ずれか1項に記載の装置。

【請求項13】 溶液中に含まれる帯電した有機分子を前記溶液から分離するための方法であって、

前記有機分子を含み、かつ前記有機分子の等電点以外のpHを有する溶液を、 請求項1~12のいずれか1項に記載される装置の前記複数種の固体表面に接触 させる工程を備えることを特徴とする、有機分子の分離方法。

【請求項14】 前記有機分子を含む溶液のpHは、前記複数の固体表面のうち少なくとも1つに前記有機分子と逆の極性の表面電位またはゼータ電位をもたらすものであり、かつ残りの固体表面に前記有機分子と同じ極性の表面電位またはゼータ電位をもたらすものであることを特徴とする、請求項13に記載の方法。

【請求項15】 溶液中に含まれる帯電した有機分子の結晶を作製する方法であって、

前記有機分子を含み、かつ前記有機分子の等電点以外のpHを有する溶液を、 請求項1~12のいずれか1項に記載される装置の前記複数種の固体表面に接触 させる工程と、

前記装置を沈殿剤と共に密封して、前記複数種の固体表面に前記溶液が接触している状態を所定時間維持する工程と

を備えることを特徴とする、有機分子の結晶作製方法。

【請求項16】 前記有機分子を含む溶液のpHは、前記複数種の固体表面のうち少なくとも1つに前記有機分子と逆の極性の表面電位またはゼータ電位をもたらすものであり、かつ残りの固体表面に前記有機分子と同じ極性の表面電位またはゼータ電位をもたらすものであることを特徴とする、請求項15に記載の方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、有機分子の分離装置および分離方法に関し、特に、タンパク質、酵素等の種々の生体高分子、およびそれらの複合体を含む有機高分子の結晶化に適用される分離装置および分離方法に関する。

[0002]

【従来の技術】

タンパク質等の生体高分子の結晶化は、通常の無機塩等の低分子量化合物の場合と同様、高分子を含む水または非水溶液から溶媒を奪う処理を施すことにより、過飽和状態にして、結晶を成長させるのが基本となっている。このための代表的な方法として、バッチ法、透析法および気液相間拡散法があり、これらは、試料の種類、量、性質等によって使い分けられている。

[0003]

図22(a)および図22(b)は、気液相間拡散法に含まれるハンギングドロップ法およびシッティングドロップ法を概略的に示す。図22(a)に示すハンギングドロップ法では、沈殿剤222を収容する密閉容器220内において、結晶化すべき生体高分子を含む母液221が垂下される。図22(b)に示すシッティングドロップ法では、密閉容器230内において、プレート233上に結晶化すべき生体高分子を含む母液221が置かれる。沈殿剤222は、密閉容器230内において、別の容器231に収容される。これらの方法では、沈殿剤および母液中の揮発成分の蒸発によって、緩やかに平衡が成立する。

[0004]

【発明が解決しようとする課題】

X線結晶構造解析により生体高分子の3次元構造を決定するためには、目的とする物質を抽出・精製後、結晶化することが必須となる。しかし、現在のところ、どの物質に対しても適用すれば必ず結晶化できるといった手法および装置がないため、勘と経験に頼ったトライアンドエラーを繰返しながら結晶化を進めているのが実状である。生体高分子の結晶を得るためには、非常に多くの実験条件による探索が必要であり、結晶成長がX線結晶解析の分野での最も大きなボトルネックとなっている。

[0005]

本発明の目的は、上述したように多様な特性を有するために試行錯誤を繰返しながら進められてきた従来の結晶化プロセスの欠点を技術的に解消することである。

[0006]

具体的には、本発明の目的は、種々の生体高分子および生体高分子から主として構成される生体組織の結晶化において、重力の影響による溶液内の対流の影響を低減し、核形成を制御する技術を提供することである。

[0007]

さらなる本発明の目的は、微結晶の大量生成を抑制または制御し、X線構造解析を可能にし得る大型の結晶を得ることができる技術を提供することである。

[0008]

さらなる本発明の目的は、少量の生体高分子溶液で、結晶化を可能にするため の技術を提供することである。

[0009]

さらに本発明の目的は、少量の溶液で結晶化を可能にするための方法および装置を提供することにある。

[0010]

【課題を解決するための手段】

本発明により、溶液中に含まれる帯電した有機分子を前記溶液から分離するための装置が提供され、この装置は、金属、半導体およびそれらの化合物よりなる群から選ばれた互いに実質的に異なる材料からなる複数種の固体表面を備える。この装置において、複数種の固体表面は、同時に溶液に接触するよう配置されており、かつ複数種の固体表面は、溶液と接触するとき、互いに異なる表面電位またはゼータ電位を有するものであり、それにより、複数種の固体表面のいずれかに、有機分子をより強く静電的に吸着させるようになっている。

[0011]

本発明による装置は、複数種の固体表面上で溶液を保持するための囲い壁を有することが好ましい。

[0012]

本発明による装置において、複数種の固体表面は、所定の領域において互いに 隣合うよう配置することができ、かつ当該所定の領域において、有機分子をより 強く静電的に吸着させる固体表面が占める面積は、残りの固体表面が占める面積 以下とすることができる。

[0013]

本発明による装置において、複数種の固体表面は、同一の半導体基板上に形成することができる。この場合、複数種の固体表面は、当該半導体基板の表面または当該半導体基板表面に形成された半導体化合物膜もしくは金属化合物膜の表面からなる第1の表面と、第1の表面上の所定の領域に形成される半導体化合物のアイランドまたは金属化合物のアイランドの表面からなる第2の表面とを含むことができる。第1の表面および第2の表面は、溶液と接触するとき、互いに異なる表面電位またはゼータ電位を有する。当該半導体をシリコンとすることができる。

[0014]

本発明による装置は、有機分子を含む溶液のpHを測定するための手段をさらに備えることが好ましい。このpH測定手段は、半導体層と、半導体層上に形成される絶縁層と、溶液を絶縁層上で保持するための囲い壁と、溶液に接触するように囲い壁に設けられる金属電極とを備えることができる。

[0015]

本発明による装置において、複数の固体表面および p H 測定手段は、同一の半 導体基板上に形成することができる。 p H 測定手段における半導体層は、半導体 基板の一部とすることができ、また、複数の固体表面は、当該半導体基板の表面 または当該半導体基板表面に形成された半導体化合物膜もしくは金属化合物膜の 表面からなる第1の表面と、第1の表面上の所定の領域に形成される半導体化合 物のアイランドまたは金属化合物のアイランドの表面からなる第2の表面とを含 むことができる。第1の表面および第2の表面は、溶液と接触するとき、互いに 異なる表面電位またはゼータ電位を有する。第1の表面はシリコンまたはシリコ ン酸化膜で形成することができる。

[0016]

本発明による装置において、複数の固体表面を与える材料は、積層構造を有してもよい。この積層構造において、上層に位置する材料は、下層に位置する材料 上の複数の位置に、間隔をあけて設けられていることが好ましい。

[0017]

本発明により、溶液中に含まれる帯電した有機分子を当該溶液から分離するための方法が提供され、この方法は、有機分子を含み、かつ有機分子の等電点以外のpHを有する溶液を、上述した装置の複数種の固体表面に接触させる工程を備える。有機分子を含む溶液のpHは、複数の固体表面のうち少なくとも1つに該有機分子と逆の極性の表面電位またはゼータ電位をもたらすものであることが好ましく、かつ残りの固体表面に該有機分子と同じ極性の表面電位またはゼータ電位をもたらすものであることが好ましい。

[0018]

本発明により、溶液中に含まれる帯電した有機分子の結晶を作製する方法が提供され、この方法は、有機分子を含み、かつ有機分子の等電点以外のpHを有する溶液を、上述した装置の複数種の固体表面に接触させる工程と、当該装置を沈殿剤と共に密封して、複数種の固体表面に溶液が接触している状態を所定時間維持する工程とを備える。有機分子を含む溶液のpHは、複数種の固体表面のうち少なくとも1つに有機分子と逆の極性の表面電位またはゼータ電位をもたらすものであり、かつ残りの固体表面に有機分子と同じ極性の表面電位またはゼータ電位をもたらすものであることが好ましい。

[0019]

【発明の実施の形態】

蛋白質を初めとする生体高分子のほとんどは、溶液内において幾何学的に特異的な構造および静電的な相互作用(静電斥力・引力、ファンデルワールス力)によって分子間同士の認識が行なわれている。静電的なエネルギに基づく分子間の相互作用においては、個々の分子最表面でのわずかな空間的な電荷分布の相違が、分子間の認識度合い、分子集合体の作りやすさに決定的な影響を及ぼすことが予想される。したがって、溶液内をブラウン運動しながら衝突を繰返している個

々の分子では、周期的かつ規則的な構造を有する分子集合体の核が非常に形成されにくいと考えられる。

[0020]

蛋白質分子の結晶生成に関しては、その核生成の初期過程が重要であるとの報告がなされている。結晶化の初期過程において核となる分子を2次元的に配列させる何らかの条件が整えば、その後の結晶化は、これを核としてエピタキシャル的に進行するものと考えられる。

[0021]

本発明による装置および方法は以下に説明するような作用機構に基づき、有機 分子の選択的吸着を行ない、その結果、特定の領域に結晶核が形成され、好まし い結晶成長をもたらすことができる。

[0022]

図1に示すように、本発明による装置10は、第1の表面11aを有する第1 の固体11、および第2の表面12aを有する第2の固体を有する。第1の固体 11と第2の固体は、実質的に異なる材料からなる。ここで、「実質的に異なる 」とは、固体を構成する主材料が異なっていることを意味する。固体を構成する 材料は、金属、半導体、またはそれらの化合物、たとえば酸化物、水酸化物、窒 化物等である。装置10は、タンパク質等の分離または結晶化すべき有機分子1 3を含む溶液14と接触させられる。タンパク質等の有機分子13の表面は、そ の分子の等電点以外のpHを有する溶液において、通常、正または負に帯電して いる。一方、本発明による装置において、上述した材料の固体表面11aおよび 1 2 a も、溶液 1 4 中で帯電する。このとき、固体表面についての電位の大きさ および極性は、固体の材質および溶液のpHに依存する。たとえば、あるpHの 溶液中で、固体表面11aは負に帯電し、固体表面12aは正に帯電する。一方 、有機分子13は、当該pHの溶液中で負に帯電する。この場合、溶液14中の 有機分子13は、有機分子13と逆の極性で帯電する固体表面12aに静電的な 引力に従って選択的に吸着される。有機分子13と同じ極性で帯電する固体表面 11 aへの吸着は、静電作用により阻害される。こうして、固体表面12 a上で の有機分子13の分離が進められ、好ましくは、有機分子13の結晶核が形成さ

れ、結晶化が進められる。このように、帯電した有機分子を含む溶液中に、表面 電位またはゼータ電位の異なる複数種の固体表面を設ければ、いずれかの固体表 面で、当該有機分子を選択的に吸着させることができ、その結果、当該固体表面 に結晶核が形成されて、選択的に結晶化を進めることができる。

[0023]

一般に、タンパク質分子、コロイド粒子、ならびに金属、半導体、およびそれ らの酸化物、水酸化物または窒化物などの化合物の表面は、水溶液中で、その溶 液のpH値によって定まる表面電位(一般にゼータ電位として測定できる)に帯 電する。この表面電位が見かけ上ゼロになるときの溶液のpH値が、等電点であ る。等電点は物質によって異なるが、この等電点より低いpHにおいて物質は正 に帯電し、等電点より高いpHにおいて物質は負に帯電する。本発明は、このよ うな物質の性質を利用して、有機分子の選択的分離を行なう。たとえば、図2に 示すような関係が複数の固体表面と分離すべきタンパク質との間に成立するとす る。曲線 S_1 は、第1の固体表面についての表面電位とp Hとの関係を表し、曲 線 S_2 は、第2の固体表面についての表面電位とpHとの関係を表し、曲線Pは 、タンパク質の表面電位とpHとの関係を表す。第1の固体表面の等電点は3、 タンパク質の等電点は6、第2の固体表面の等電点は9である。したがって、斜 線で示す領域のpH(タンパク質の等電点と第2の固体表面の等電点の間のpH)を有する溶液において、第1の固体表面およびタンパク質は負に帯電し、第2 の固体表面は正に帯電する。このpH領域において、タンパク質は、第2の固体 表面に静電引力により選択的に吸着または固定され、その結果、第2の固体表面 でタンパク質の結晶成長が促進され得る。一方、タンパク質と第1の固体表面と の間には、静電斥力が働く。一方、図3に示すような関係が成立するとする。こ の場合、第1の固体表面の等電点は9、タンパク質の等電点は6、第2の固体表 面の等電点は3である。そして、第2の固体表面の等電点とタンパク質の等電点 の間のpHを有する溶液において、第1の固体表面およびタンパク質は正に帯電 し、第2の固体表面は負に帯電する。したがって、斜線に示す領域のpHにおい て、静電引力により、タンパク質を第2の固体表面に選択的に吸着させることが できる。このように、分離または結晶化すべき分子を含む溶液(母液)に対し異

なる帯電特性を示す複数種の固体表面を設ければ、母液のpHを適当な値に設定することで、いずれかの固体表面に選択的に分子を静電吸着させ、その結果、その固体表面に結晶核を形成させて、分子の結晶成長を起こさせることができる。 【0024】

たとえば、酸化シリコン(SiO_2)の等電点は $1.8\sim2.8$ であり、したがって、それより低い p Hにおいて SiO_2 は正に帯電し、それより高い p Hにおいて負に帯電する。一方、アルミナ($\alpha-A1_2O_3$)の等電点は 9 付近である(なお、 $\gamma-A1_2O_3$ の等電点は $7.4\sim8.6$ 程度である)。また、ほとんどのタンパク質は $4\sim7$ の等電点を有する(たとえば、ヒト血清アルブミン $4.7\sim5.2$ 、ウシインスリン $5.3\sim5.8$ 、インターフェロン(二ワトリ胚) $7\sim8$ 、ヒト成長ホルモン $4.9\sim5.2$)。したがって、たとえば、図 1 に示す装置において、第 1 の固体 1 1 1 2 3 3 4 4 5 4 5 4 5 5 5 6 6 7 7 7 <math>8 8 8 8 $9 \sim 10$ $9 \sim$

[0025]

また、シリコン(Si)の等電点は添加されている不純物の種類や濃度によって異なるが、たとえば、一般的なn型Siの等電点は3.5~4程度であり、それより低いpHにおいてn型Si表面は正に帯電し、それより高いpHにおいて負に帯電する。また、一般的なp型Siの等電点は5~6程度である。したがって、図1に示す装置において、第1の固体11をn型Si基板とし、第2の固体12をSi基板上に形成されたアルミナとすれば、タンパク質を含み、かつ6~8のpH(タンパク質の等電点とアルミナの等電点の間の値)を有する溶液14中で、n型Siとタンパク質は負に、アルミナは正に帯電する。したがって、溶液中のタンパク質は、正に帯電するアルミナに選択的に吸着する一方で、負に帯電するSi上への吸着は阻害され得る。このように、シリコンとアルミナとの組

合わせも、タンパク質分子の選択的吸着に対し適当である。

[0026]

本発明による装置において、それぞれの固体表面は、金属、半導体、金属化合物、半導体化合物からなる。複数種の固体表面の組合わせは、任意であるが、分離すべき分子の等電点が、複数種の固体表面の等電点の間にくるよう、当該組合わせを選択することが望ましい。すなわち、図2および図3に示すように、分離すべき分子のpH-表面電位曲線が、複数種の固体表面のpH-表面電位曲線の間にくることが望ましい。好ましい半導体には、シリコン、ガリウム・ヒ素(GaAs)、ガリウム・リン(GaP)などがある。好ましい半導体化合物には、酸化シリコン、窒化シリコンなどがあり、好ましい金属化合物には、酸化アルミニウム(α -Al $_2$ O $_3$ 、 γ -Al $_2$ O $_3$)、酸化チタン、酸化銅などの金属酸化物や、窒化アルミニウム、窒化チタン、窒化タングステン、窒化タンタル、TaSiN、WSiNなどの金属窒化物や、水酸化アルミニウム、水酸化マグネシウムなどの金属水酸化物などがある。好ましい組合わせには、シリコンーアルミナ、酸化シリコンーアルミナ、窒化シリコン(等電点は4~5程度)ーアルミナ、酸化シリコンー酸化チタン(等電点は5~6.5程度)、シリコンー酸化チタン、酸化チタン-アルミナなどがある。

[0027]

このような複数種の固体表面は、同一の基板上に形成することが好ましく、半導体基板上に形成することがより好ましく、特に、シリコン基板上に形成することが好ましい。たとえば、シリコン基板表面の所定の領域にのみアルミナを形成することで、シリコンーアルミナの組合わせが形成できる。また、シリコン基板表面全体にシリコン酸化膜(SiO_2 膜)を形成し、その SiO_2 膜表面の所定の領域にのみアルミナを形成することで、酸化シリコンーアルミナの組合わせが形成できる。 SiO_2 膜に変えてシリコン窒化膜(Si_3N_4 膜)を形成すれば、同様に窒化シリコンーアルミナの組合わせが形成でき、アルミナの代わりに酸化チタンを形成すれば、シリコンー酸化チタンや酸化シリコンー酸化チタンの組合わせを形成できる。

[0028]

半導体基板、より好ましくはシリコン基板を用いることで、CVD、ホトリソグラフィー、エッチング等の通常の半導体集積回路の製造と同様な手法によって、容易に複数種の固体表面を有する装置を作製できる。すなわち、CVD技術を用いてシリコン基板上に所望の材料の膜を成膜し、必要に応じてその上に異なる材料の膜を成膜して多層構造とし、ホトリソグラフィー技術を用いて所望の形状のマスクを形成し、エッチング技術を用いてマスクを施した領域以外を除去して下地を露出させれば、各種の組合わせの複数種の固体表面を有する装置を作製できる。たとえば、シリコン基板の表面にアルミナ膜を成膜し、所定の領域のみを残して当該アルミナ膜をエッチングにより除去してシリコン基板の表面を露出させれば、シリコンーアルミナの組合わせが形成できる。また、シリコン基板表面にシリコン酸化膜を成膜し、さらにその上にアルミナ膜を成膜し、所定の領域のみを残してアルミナ膜をエッチングにより除去しシリコン酸化膜を露出させれば、酸化シリコンーアルミナの組合わせが形成できる。このように、シリコン基板上に成膜する膜の材料を変えれば、容易に各種の組合わせが形成できる。

[0029]

金属もしくは半導体の酸化物または水酸化物の表面は、水と接すると水和を起こし、水酸基を生成させる。この水酸基の解離により、酸化物または水酸化物の表面は、水溶液のpHに応じて表面電位(ゼータ電位)を生じさせる。たとえば、SiO₂では次のような解離が生じる。

固体表面-Si·OH+H⁺→固体表面-SiOH₂⁺+OH⁻ 固体表面-Si·OH+OH⁻→固体表面-SiO⁻+H₂O+H⁺

したがって、酸化物または水酸化物の表面は、低いpHで、プロトン付加により正の電位を帯び、高いpHで、OH基からのプロトンの引き抜きにより負の電位を帯びる。一般に、酸化物または水酸化物は、見かけ上の電位がゼロになる点(等電位点)を有し、この点より高いpHでは、負の表面電位を、この点より低いpHでは、正の表面電位を有する。したがって、異なる等電位点を有する酸化物または水酸化物の組合わせを選択し、本発明に好ましく用いることができる。

[0030]

本発明による装置において、複数種の固体表面の配置パターンは、任意である

。たとえば、図4(a)に示すように、第2の固体表面42aが第1の固体表面 41 aに囲まれるような配置は好ましく使用される。この場合、第1の固体表面 は、第2の固体表面より顕著に広い。第2の固体表面に有機分子を吸着させれば 、結晶核のランダムな生成を効果的に防ぎ、良好な結晶成長をもたらすことがで きる。すなわち、良好な結晶成長または大きな結晶の形成のためには、本発明に よる装置の所定の領域において、有機分子をより強く吸着させる固体表面は、他 の固体表面(有機分子の吸着を阻害し得る表面)より狭いことが好ましい。図4 (a) に示すもののほか、図4 (b) に示すように、第1の固体表面41bに対 し、所定の幅を有する複数の第2の固体表面42bを所定の間隔をあけて配置し てもよいし、図4 (c)に示すように、第1の固体表面41cに対し、所定の形 状および面積を有する複数の固体表面42cを、所定の間隔をあけてマトリクス 状に配置してもよい。複数種の固体表面の配置は、図5 (a) に示すように第1 の固体51a上に第2の固体52aが配置される積層構造とした方が半導体集積 回路の製造と同様の手法を用いて少ない工程で作製できるので好ましい。しかし 、図5(b)に示すように、所定の面に複数種の固体表面51bおよび52bが 同じレベルで設けられる構造を有してもよい。

[0031]

また、図6に示すように第1の固体表面61に対し、これと異なる複数種の第2の固体表面62および63を配置することができる。固体表面62および63は、所定のpHを有する溶液に対し、異なる電位を有する。たとえば、固体表面61は酸化シリコンとし、固体表面62はアルミナとし、固体表面63は酸化チタンとすることができる。分離すべき特定の有機分子は、固体表面62および63のいずれかにより強く吸着され得る。有機分子をより強く吸着させ得る固体表面(第2の固体表面)の最適な材料は、目的とする有機分子により異なることが考えられる。図6に示すように第2の固体表面を複数種形成することにより、1つの装置で各種の有機分子の分離、結晶化に利用できる装置を提供できる。図6の装置では、第2の固体表面は2種類であるが、3種以上形成することもできる。このような装置も同様に半導体集積回路の一般的な製造方法を用いて容易に作製可能である。たとえば、シリコン基板上にSiO2膜、TiO2膜、Al2O3膜

を順に成膜、積層して、固体表面 62 および 63 の領域を残して $A1_2O_3$ 膜を除去して下地の TiO_2 膜を露出させ、その後、露出した TiO_2 膜のうち固体表面 63 の領域を残して TiO_2 膜を除去して SiO_2 膜を露出させればよい。また、特定の有機分子の分離のため、図 7 に示すように、複数の装置を提供してもよい。装置 71、72 および 73 は、それぞれ、異なる固体表面 71 a、72 a および 73 a を有する。装置 $71\sim73$ のいずれかにおいて、分離または結晶化がより好ましく進行し得る。同時に使用される固体表面の種類を多くすることによって、より多くの有機分子の分離または結晶化に対応することができる。

[0032]

前述したように本発明による装置において、複数種の固体表面は、同一の基材 上に設けることが好ましい。図8(a)および図8(b)は、その一例を示す。 装置80において、シリコン基板81上に SiO_9 膜82が形成され、その上に $A \ 1_{\ 2} O_3$ のアイランド $8 \ 4$ が形成されている。アイランド $8 \ 4$ の周りでは、 $S \ i$ O₂膜82が露出している。基板81上には、SiO₂膜82上で溶液85を保持 するため、囲い壁86が設けられている。囲い壁86は、溶液85の流れを堰き とめるための部材である。囲い壁86により溶液を保持するための部分が形成さ れる。この装置は、上述した酸化シリコンーアルミナの組合わせを提供する。溶 液 8 5 が 7 \sim 8 の p H を有するとき、上述したように S i O $_2$ 膜 8 2 は負に帯電 し、アルミナのアイランド84は正に帯電する。一方、溶液85中に存在する分 離すべき有機分子が4~7の等電点を有する場合、当該分子は、通常、負に帯電 する。したがって、溶液85中の分子は、正に帯電するアイランド84に選択的 に吸着され、その結果、アイランド84で結晶成長が起こり得る。一方、有機分 子のSi〇₂膜82上への吸着は阻害される。このような装置は、結晶成長装置 として使用することができる。このような装置において、Si〇₂膜を設けずに シリコン基板上に直接アルミナのアイランドを形成し、シリコン基板そのものの 表面を吸着阻害用の表面として使用してもよい。このようにするとシリコン-ア ルミナの組合わせが提供される。また、アルミナの代わりに他の金属酸化物、金 属窒化物または金属水酸化物を使用してもよい。さらに、シリコン以外の半導体 、または金属の基板を使用してもよい。

図8に示す装置のアイランドは、たとえば図9(a)~図9(d)に示すような工程によって作製できる。まず、図9(a)に示すように、シリコン基板81上にSiO2膜82を形成する。次いで、図9(b)に示すようにSiO2膜82上にA12O3膜94を形成する。これらの膜は、蒸着、スパッタリング等によって形成できる。通常のホトリソグラフィーに従って、図9(c)に示すようなレジストパターン95を形成した後、レジストで覆われていない部分をエッチングすることにより、図9(d)に示すようなアイランド84が得られる。得られた構造物に囲い壁をもたらす部材を結合すれば、図8(a)および(b)に示すような装置が得られる。このとき、囲い壁は、溶液中の有機分子の吸着を阻害し得る材料、たとえば低い等電点を有するガラス等で形成することが望ましい。ただし、有機分子を吸着させる固体表面(アイランド)と囲い壁との距離が溶液中の有機分子の拡散距離(有機分子が溶液中で移動し得る距離)よりも十分に長い場合は、この限りではなく、他の材料で囲い壁を形成しても問題ない。また、上記工程において、シリコン基板上に形成する膜の材料を変えることにより、種々の組合わせの固体表面を有する装置を得ることができる。

[0034]

本発明による装置は、溶液のpHを測定するための手段を含むことができる。 上述したように固体表面および分離すべき有機分子の表面電位または実効表面電荷は、溶液のpHに左右されるため、分離または結晶化の操作において、溶液のpHをモニタすることは、有意義である。pH測定手段には、通常のpHメーター、イオン感応性電界効果型トランジスタ(ISFET)と基準電極を組合わせた従来型のpHセンサー等を用いることができる。

[0035]

一方、p H測定手段として、図1 O に示すような装置を用いてもよい。p H測定装置1 O O において、n型シリコン基板1 O 1 上にはS i O 2 膜1 O 2 が形成されている。基板1 O 1 上には溶液保持部1 1 O 1 といるの流れを堰きとめる囲い壁1 O 1 といるの流れを堰きとめる囲い壁1 O 1 といるの流れを堰きとめる囲い壁1 O 1 といるの流れを堰きとめる囲い壁1 O 1 には金属電極1 O 1 が設けられる。金属電極1 O 1

は、 SiO_2 膜102の方に延びていて、溶液保持部110内に保持される溶液と接触するように配置される。シリコン基板101の裏面(SiO_2 膜102が設けられた面と対向する面)には、端子電極108が設けられる。

[0036]

酸化物の表面は、上述したように水和反応を起こして、水酸基を生成させる。 その水酸基の解離によって酸化物表面に電荷が生じる。したがって、酸化物の表面には、溶液のpHに応じた表面電位が発生する。たとえば、SiO₂の場合、 以下のような解離がおこり、その表面電位はpHによって変化する。

Si·OH₂⁺+OH⁻⇔H⁺+Si·OH+OH⁻⇔Si·O⁻+H₂O+H⁺
低pH 等電点 高pH

他の酸化物でも同様な機構により表面電位が生じ、酸化物の種類に応じて等電点や発生する電位の値は異なる。なお、 SiO_2 の等電点はおよそ $1.8\sim2.8$ である。また、詳細な機構は分からないが、窒化物の表面にも酸化物と同様に水溶液中でその水溶液のp Hに応じた電位が発生する。たとえば、 Si_3N_4 の場合は等電点がおよそ $4\sim5$ 程度であって、それより低いp Hで正の表面電位を、それより高いp Hで負の表面電位を帯びる。このため、絶縁層として SiO_2 膜のかわりに Si_3N_4 膜等の窒化物膜を用いてもよい。

[0037]

したがって、図10に示す装置100において、Si〇₂膜102が露出した 溶液保持部110に水溶液を入れると、Si〇₂膜102の表面にその水溶液の pHに応じた電位が発生する。この電位によって、酸化膜を介して設けられるシ リコン基板表面のキャリア濃度が変化する。したがって、シリコン基板101の 溶液105に近い部分に形成される空乏層109の容量が変化する(空乏層の幅 が変化する)。したがって、MOS(MIS)に相当する構造を有する装置10 0において、金属電極107と端子電極108との間の容量電圧特性(高周波特 性)は、溶液105のpHに応じて変化する。この変化を、図11に示す。図1 1は、pHの異なる2種の溶液に関して容量電圧特性を示している。容量電圧特 性は、図に示すようにpHに応じて電圧軸方向に変化する。

[0038]

あらかじめ、図10に示す p H測定装置を用いて、測定周波数 1 MH z 程度で、p Hの分かっている種々の溶液の容量電圧特性を測定し、p H値とフラットバンド電位(V_{FB})との関係を得ることができる。p H値とフラットバンド電位(V_{FB})は、たとえば図12に示すような関係を有する。この関係に基づいて、未知の溶液の p Hが求められる。すなわち、p H測定装置100をC-V メーターおよびC-V レコーダーに接続する。次いで、溶液保持部110に測定すべき溶液を入れ、電極107と108との間のC-V 特性を測定し、 V_{FB} を求める。得られた V_{FB} と、予め得られた p H値とフラットバンド電位(V_{FB})との関係から、当該溶液の p Hが決定される。

[0039]

[0040]

この p H 測定装置は、極めて単純な構造 (MOS (MIS) 構造)を有し、通常の半導体加工技術 (リソグラフィー、CVD、エッチング等)を用いて簡単に製作できる。当該装置の溶液保持部にピペットなどで溶液を滴下し、数 μ 1 ~数 + μ 1 の微量の溶液について p H を測定できる。この装置は、シリコン基板上に作製することができ、したがって、本発明による分離装置と同じ基板上に作り込むことができる。そのような組み合わされた装置を以下の実施例に示す。

[0041]

【実施例】

図13および図14に示すような装置を作製した。装置130は、シリコン基板131を含む基台部141と、それに接合されたパイレックスガラス製の溶液保持プレート(囲い壁)142とを有する。基台部141のサイズは、15mm×15mmである。基台部141とプレート142とによって、2つの結晶成長

用セル132aおよび132b、1つの沈殿剤用セル133、ならびに1つのp Hモニター用セル134が形成される。プレート142のサイズは、12mm× 12mmであり、高さは0.5mmである。シリコン基板131の表面は、シリ コン酸化膜135で被覆されている。セル132a、132bおよび134は、 直径約4mmの円筒形または円錐台形であり、セル133は、5.5mm×5. 5 mmの角柱形である。結晶成長用セル132aおよび132b、ならびにpH モニター用セル134内には、シリコン酸化膜135上にアルミナのアイランド 136が複数形成されている。アイランド136は、図16(a)および図16 (b) に示すような線状であり、その幅は約100μm~200μmである。ま た、隣り合うアイランド間の距離は、約0.2mm~1mmである。セル内の場 所またはセルによって、このアイランド間の間隔は、異なっている。たとえば、 セル132aには、図16(a)に示すようなパターンのアイランドが形成され 、セル132bには、図16(b)に示すようなパターンのアイランドが形成さ れる。pHモニター用セル134を形成するプレート142a上には、電極14 4が形成され、シリコン基板131の裏面にも電極145が形成される。図15 に示すように電極144は、Ti層144aおよびPt層144bを有する二層 構造となっている。電極144上には、外部との接続用の端子146が設けられ る。シリコン基板131、シリコン酸化膜135、電極144、および電極14 5によりpHセンサー部が構成される。図13および14に示す装置において、 p Hモニター用セル134内のアイランド136は必ずしも必要でない。さらに 、シリコン基板131の裏面で結晶成長用セルに対向する位置には、必要に応じ てセル132aおよび132bを加熱するための発熱素子147が設けられる。 発熱素子は、溶液を加熱し、結晶の成長を制御する。

[0042]

図17は、好ましい発熱素子の一具体例を示す。発熱素子164において、基材161上には、パッド165aおよび165bが形成される。パッド165aと165bとの間には、コンパクトに折り畳まれた電熱線167が設けられる。パッド165aおよび165bならびに電熱線167は、基材161上に形成された薄膜である。基材161には、シリコン基板やガラス基板等を用いることが

できる。パッド165aおよび165bは、アルミニウム、銅等の良導体からな る薄膜であり、電熱線167は、Cr、Fe-Cr-Al系合金、Ni-Cr系 合金等の電熱材料からなる薄膜である。電熱線167の隣には、温度測定用の抵 抗線168が設けられる。抵抗線168の両端には、パッド165cおよび16 5dが設けられる。パッド165cおよび165dは、アルミニウム、銅などの 良導体からなる薄膜であり、抵抗線168は、Cr、銅マンガン合金、銅ニッケ ル合金などの抵抗材料からなる薄膜である。厳密な温度管理が必要な場合、図1 7に示すように電熱線の隣に温度測定用の抵抗線を設けることが好ましい。たと えば、電熱線167の厚みは、0. 1 μ m~1. 0 μ mであり、パッド165a ~165dの厚みは、0.5 μ m~2.0 μ mである。電熱線 167の幅は、た とえば 5 0 μ m ~ 1 0 0 μ m である。一方、発熱素子の温度を正確に測定するた め、抵抗線168の熱容量はできるだけ小さくすることが望ましい。したがって 、抵抗線168のサイズは、必要な範囲でできるだけ小さくすることが望ましい 。たとえば抵抗線168の幅は、10 μ m以下が好ましく、たとえば1 \sim 10 μ mである。抵抗線168の厚みは、0.3μm以下が好ましく、たとえば0.1 $\sim 0.3 \mu \text{ m}$ σ σ σ σ

[0043]

図13に示す装置の基台部は、半導体装置の一般的な製造プロセスを使用して、シリコンウェーハ上に一度に多数作製することができる。たとえば、図18(a)に示すように、まず、シリコンウェーハ181の表面に熱酸化によって約200nmの厚みのシリコン酸化膜182を形成する。次に、シリコン酸化膜182上に、スパッタリング、CVD等によりアルミナ膜を形成するか、スパッタリングまたは蒸着により形成したアルミニウム膜を酸化して、図18(b)に示すように、厚み約3~5μmのアルミナ膜184を形成する。次いで、図18(c)に示すように、通常のホトリソグラフィーに従ってアルミナ膜184上にレジストパターン185を形成する。通常用いられレジストをマスクとするエッチングにより、アイランド部のみを残してアルミナ膜を除去する。かくして、図18(d)に示すように、シリコン酸化膜182上にアルミナのアイランド184'が形成される。その後、シリコンウェーハを切断(スクライビング)し、得られ

たチップに電極185および必要に応じ発熱素子187を設けて、多数の基台部 を得る(図18(e))。

[0044]

溶液保持プレートも、一般的なエッチング技術およびスパッタリング技術を用いて、たとえば図19(a)~図19(f)に示すように作製される。まず、図19(a)に示すように、パイレックスガラス板191の表面に所定のパターンでレジストマスク192を形成する。次いで、フッ酸によるウェットエッチングまたはダイヤモンドブラスト法を行なって貫通孔193aおよび193bをガラス板191に形成する。次に、pHモニタ用セルとなるべき貫通孔193a以外の場所をSUS板のハードマスク194aで覆い、スパッタリングによってTi/Pt膜195を形成する(図19(c))。その後、必要な部分をハードマスク194bで覆い、スパッタリングにより接続用のAu端子196を形成する(図19(d))。かくして、図19(e)に示すような電極部197を有する溶液保持プレート198が得られる。得られたプレートを、図18(a)~(e)に示すプロセスにより得られた基台部に、陽極接合などにより結合し、図13に示す装置が得られる(図19(f))。

[0045]

図13に示す装置130において、次のような方法により、タンパク質の結晶を調製する。まず、結晶成長用セルとpHモニター用セルに、目的とするタンパク質が溶解した溶液(母液)をたとえば約30μ1滴下する。溶液中のタンパク質の濃度は10~50mg/m1程度である。最適な濃度は目的とするタンパク質の種類によって異なる。未知のタンパク質の結晶化を行なう場合、濃度を変えた複数種の溶液を調製し、それらについて、図13に示す装置を複数用意し、同時に結晶成長を行なえばよい。このとき、溶液のpHは、タンパク質およびシリコン酸化物の等電位点より高く、アルミナの等電位点よりも低くなるように調整する。溶液のpHの調整は、緩衝溶液の添加により行なう。シリコン酸化物の等電位点は約2であり、アルミナのそれは約9である。したがって、たとえば、目的とするタンパク質の等電位点が約7である場合、溶液のpHを約8に調整する。こうすれば、タンパク質およびシリコン酸化膜の表面電位は負となり、アルミ

ナの表面電位は正となる。溶液の最適な p H も、目的とするタンパク質により異なる。したがって、 p H を変えた複数種の溶液を調製し、これらについて同時に結晶化を行なうことが好ましい。また、沈殿剤用セルに沈殿剤を入れる。沈殿剤には、たとえば 1 M の N a C 1 溶液 2 m 1 と p H が 4 . 6 の標準緩衝溶液 2 m 1 とを混合したものを用いる。

[0046]

図20に示すように、装置130のセルを透明なガラスの蓋200で密封し、冷暗所に約100時間保管する。タンパク質分子は、静電的な引力により、アルミナのアイランド部に集められ、固定される。アイランド部でタンパク質の結晶核が形成され、結晶成長が進む。結晶成長の様子は、透明な蓋の上から顕微鏡により観察される。その際、図20に示すように、pHモニター用セルの電極にC-Vメーター201を接続し、X-Yレコーダー202でC-V特性を測定する。これにより、結晶成長中の溶液のpHがモニターされる。溶液のpHは、事前に調整してあるものの、結晶成長中に変化し得る。タンパク質の結晶性は、溶液のpHの微妙な変化に影響され得る。したがって、実際に結晶が成長していく過程においてpHの微妙な変化を把握することは重要である。

[0047]

本発明の装置を結晶成長用(結晶作製用)装置として適用する場合は、結晶成長用セルを少なくとも1つ有していればよい。沈殿剤は別の容器に入れて結晶成長用装置と並べて置けばよく、pHモニターも必ずしも必要ではない。ただし、同一の基板上に結晶成長用セル、pHモニター用セル、沈殿剤用セルを作製し、1チップとした方が、使い勝手がよく好ましい。このような1チップ化した装置は、前述にように半導体装置の一般的な製造プロセスを用いて容易に作製できる

[0048]

また、より多い数のセルを有する装置を用いれば、より多くの条件下(含有するタンパク質の濃度やpHなどの条件を変えた複数種の母液)で、同時に結晶化の実験を行なうことができる。たとえば、図21に示す装置は、この要求に答えることができる。装置210は、9つの結晶成長用セル211~219、1つの

pHモニター用セル221および2つの沈殿剤用セル231および232を有する。タンパク質の濃度を変えた複数種の母液を用いて、結晶化を行うような場合には、装置210のように複数の結晶成長用セルに対してpHモニター用セルは1つあればよいが、pHを変えた複数種の母液を用いる場合には、結晶成長用セルと同数のpHモニター用セルを有することができる。また、pHをモニターする必要がない場合は、沈殿剤用セルを除いて、すべてを結晶成長用セルにすることもできる。

[0049]

【発明の効果】

本発明によれば、特定の固体表面に選択的に有機分子を吸着させ、それによって、対流の有機分子への影響を低減し、有機分子の結晶核の形成を安定化させることができる。また本発明によれば、微結晶の大量生成を抑制または制御することができ、X線構造解析を可能にし得る大型の結晶を得ることができる。さらに本発明によれば、多数の固体表面を結晶化に用いることによって、あらゆる種類の有機分子の結晶化に対応することができる。また、本発明では、極微量の試料について結晶化を行なうことができる。

[0050]

本発明は、製薬産業や食品産業等において、種々の高分子化合物、特に高分子電解質を精製または結晶化するために用いることができる。本発明は特に、酵素および膜タンパク質等のタンパク質、ポリペプチド、ペプチド、ポリサッカライド、核酸、ならびにこれらの複合体および誘導体等を精製または結晶化させるため好ましく適用される。特に本発明は、生体高分子の精製または結晶化のため好ましく適用される。また本発明の装置は、生体高分子等を選択的に吸着および固定化することが可能なため、バイオセンサ、バイオセンサによる各種生体組織および生体物質の測定装置への応用等が可能である。

【図面の簡単な説明】

【図1】

本発明による装置の一具体例を示す概略断面図である。

【図2】

溶液中の2種の固体表面およびタンパク質の表面電荷が、溶液のpHによって変化する様子を示す図である。

【図3】

溶液中の2種の固体表面およびタンパク質の表面電荷が、溶液の p Hによって 変化する様子を示す図である。

【図4】

(a) ~ (c) は、本発明による装置において、複数の固体表面が配置される パターンの例を示す平面図である。

【図5】

(a) および(b) は、本発明による装置において、複数の固体表面が配置されるパターンの例を示す断面図である。

【図6】

本発明に従い、複数の好ましい吸着表面を有する装置の一例を示す平面図である。

【図7】

本発明に従い、複数の装置で条件の異なる結晶化を行なうことを示す図である

【図8】

本発明による装置のもう一つの例を示す(a)断面図および(b)平面図である。

【図9】

(a) ~ (d) は、図8 (a) および (b) に示す装置を製造する方法を説明する概略断面図である。

【図10】

本発明の装置に設けられるpHセンサーの一例を示す概略断面図である。

【図11】

図10に示すpHセンサーで測定される容量電圧特性の例を示す図である。

【図12】

図10に示すpHセンサーで測定される容量電圧特性から求められるフラッ

トバンド値と溶液のpHとの関係を示す図である。

【図13】

本発明による装置の他の例を示す斜視図である。

【図14】

図13に示す装置の断面図である。

【図15】

図13に示す装置における電極を拡大した断面図である。

【図16】

(a) および(b) は、図13に示す装置において結晶成長用セルに設けられるアイランドのパターンを拡大して示す平面図である。

【図17】

図13に示す装置が有する発熱素子の構造を拡大して示す斜視図である。

【図18】

 $(a) \sim (e)$ は、図13に示す装置の基台部を製造する方法を示す概略断面図である。

【図19】

 $(a) \sim (f)$ は、図13に示す装置の溶液保持プレートを製造する方法を示す概略断面図である。

【図20】

図13に示す装置においてpHを測定する流れを示す模式図である。

【図21】

本発明による装置のさらなる例を示す平面図である。

【図22】

(a) および (b) は、従来の結晶成長法を示す模式図である。

【符号の説明】

- 11 第1の固体
- 11a 第1の表面
- 12 第2の固体
- 12a 第2の表面

- 13 有機分子
- 14 溶液

図面

【図1】

【図2】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【図20】

【図21】

【図22】

【書類名】

要約書

【要約】

【課題】 タンパク質等の生体高分子の結晶化に有用な装置および方法を提供する。

【解決手段】 結晶成長用装置10は、シリコン酸化物からなる固体表面11a およびアルミナからなる固体表面12aを有する。この装置10において、これらの固体表面11aおよび12aは、同時に溶液14に接触するよう配置されている。これらの固体表面11aおよび12aは、溶液14と接触するとき、互いに異なる表面電位またはゼータ電位を有する。たとえば、固体表面11aは負に帯電し、固体表面12aは正に帯電する。したがって、溶液14中で負に帯電したタンパク質等の有機分子13は、正に帯電する固体表面12aに選択的に吸着される。

【選択図】

図 1

出願人履歴情報

識別番号

[000002118]

1. 変更年月日 1990年 8月16日

[変更理由] 新規登録

住 所 大阪府大阪市中央区北浜4丁目5番33号

氏 名 住友金属工業株式会社