GROUPES SANGUINS

DEFINITION

- -Groupes d'antigènes érythrocytaires de surface, génétiquement transmis.
- La recherche : par des anticorps spécifiques

- Notions:

- Ag: substance responsable de l'apparition d'Ac
- Ag des GS: sont de surface, acquis génétiquement (loi de Mendel)
- Ac des GS: circulent dans le sérum. Existe 2 types: Naturels(Ac AntiA et Ac antiB) et Immuns(après une stimulation: allo-Ac)
- Réaction Ag- Ac
 - In vitro: la base de determination des Groupes sanguins
 - In vivo: Conflit Ac-Ag:= Hemolyse importante(Ex : erreur transfusionnelle.

PRATIQUE MEDICALE: Groupes sanguins ABO et système rhésus

SYSTEME ABO (ABH)

Découvert par Landstéiner en 1900.

Ag du système ABO:

- Expression non seulement sur les GR mais aussi dans les différentes secrétions (lait maternel, secrétions génitales, larmes etc...) et ce par le biais d'un gène sécréteur dit <u>Géne Se</u>(positionné sur le chromosome 19) et présent chez 80% des individus.
- Le gène ABO: Situé sur le chromosome 9.
- La production des gènes A et B est sous la dépendance d'un gène H.
- Le gène H: permet la transformation de la substance précursseur(SP) en substance H.
- La substance H: donne le pouvoir aux gènes A et B de produire l'Ag A et l'Ag B)
- -La présence de substance H sans gènes A et B définissent le groupe O.
- L'absence de gène H(phénotye hh):GR dit fantôme= Phénotype bombay.
- 1911: découverte de 2 sous groupes de l'Ag A: A1 et A2: donc les différents phénotypes: A1, A2, A1B, A2B, B et O. (sujets A1 représentent : 80%).

Sucres possibles à la surface de l'érythrocyte :

Chaque antigène est le sucre final d'une structure polysaccharidique qui est amené et fixé par l'enzyme correspondante (enzyme A pour l'antigène A, et enzyme B pour l'antigène B) sur la substance H initiale. C'est la présence de l'antigène qui définit le groupe.

Gène H: Chr.19

a 1-2 Fucosyltransférase (FUT1)

Gène ABO: Chr.9

Représentation schématique de l'expression des antigènes A, B et H

Phénotype bombay

Le terme Bombay correspond à un phénotype dans lequel les hématies n'expriment pas d'antigène H, et donc pas non plus d'antigène A ou B.

Ce phénotype extrêmement rare et extrêmement dangereux en transfusion, a été décrit pour la première fois en Inde.

Il correspond à un gène H non fonctionnel à l'état homozygote dans des familles consanguines.

Le groupage sanguin donne apparemment un groupe O, mais ces individus possèdent, en plus des anti-A et anti-B, un anticorps naturel anti-H et agglutinent donc toutes les hématies à l'exception des hématies Bombay elles-mêmes. Ils ne peuvent donc être transfusés qu'avec des hématies Bombay.

LES ANTICORPS DU SYSTEME ABO

- Anticorps Naturels et réguliers: anti-A et Anti-B
- Les anticorps sont de nature IgM
- L'Ac anti-A: présent chez le sujet qui ne possède pas de l'Ag A: Sujet groupe B
- Situation particulière: Hétéro immunisation (Grossesse, vaccination, infections): apparition d'Ac anti-A ou anti-B non naturels et à caractères immuns avec pouvoir hémolytique.
- La nature des Ac acquis : IgG ou IgA

Notion d'Anticorps anti-A et anti-B « naturels » « réguliers »

- Anticorps présents de façon naturelle (sans phénomène d'immunisation)
- Anticorps présents de façon constante
- IgM +++
- Spontanément agglutinants

Agglutinogènes et agglutinines des groupes sanguins ABO

Les agglutinines présentes dans le plasma ne correspondent jamais aux agglutinogènes présents sur les hématies

Description des agglutinines

Immunoglobulines pentamériques

Anticorps naturels

Ne traversent pas la barrière foetoplacentaire.

Agglutinent les hématies même à froid

Description des hémolysines

Immunoglobulines monomériques

Anticorps immuns (transfusion, grossesse...)

Traversent la barrière foeto-placentaire.

Lysent les hématies (pores) à 37°C

Agglutination des hématies par les IgM

LA DETERMINATION DU GROUPE SANGUIN

DETERMINATION DES GROUPES SANGUINS

Méthode BETH- Vincent: détermination des Ag de surface par Ac test anti(A, B, AB) Méthode de Simonin: Détermination des Ac circulants par des GR test.

Sérum test Beth- vincent	1ér Receveur	2é Receveur	3é Receveur	4é Receveur
Anti –A	+	-	+	-
Anti – B	-	+	+	-
Anti - AB	+	+	+	-
GR – Test Simonin				
GR Test A		+	-	+
GR Test B	+	•	-	+
Groupage	A	В	AB	0

SYSTEME RHESUS

- Système plus complexe, découvert en 1939 (LEVINE)
- 48 antigènes découverts mais seulement 5 leur recherche est systématique: D, C,c, E, e. Et leur détermination définissent le phénotypage.
- Les Ag sont codés par 2 gènes localisés sur le chromosome 1:
 RhD et RhCE.
- Convention universelle: Rhésus positif: désigne la présence de l'Ag D.
- -La recherche de l'AgD : par un sérum anti-D
- A la différence du système ABO: Système Rhésus pas d'Ac naturels. Si présent il est constamment acquis et irrégulier(Immun).

Système rhésus

- Antigène RH1 : ex RhD « positif »
 - 85 % des sujets en Europe
 - Très immunogènes
- Antigène RH2 : ex C : 70 %
 - antithétique de RH4
- Antigène RH3 : ex E : 30 %
 - antithétique de RH5
- Antigène RH4 : ex c : 80 %
- Antigène RH5 : ex e : 98 %

La protéine D

· Chromosome 1

Les phénotypes RH et les combinaisons génotypiques les plus fréquents

Phénotype	Génotype le + probable		Fréquence en France	
D+ C+ E- c+ e+	DCe/dce	34 %		
D+ C+ E- c- e+	DCe/Dce	20 %		
D+ C+ E+ c+ e+	DCe/DcE	13 %	Rhésus positifs ~ 85%	
D+ C- E+ c+ e+	DcE/dce	12 %		
Autres D+		6 %		
D- C- E- c+ e+	dce/dce	15 %	Rhésus négatifs ~ 15%	
Autres D-	\ = %	< 1 %		

Anticorps du système RH

- Absence d'anticorps naturels (irréguliers)
- Anticorps d'allo-immunisation :
 - Post-transfusionnelle
 - Incompatibilité fœto-maternelle
- IgG (IgG1)
- Se fixent à 37°C
- Non agglutinants

Allo-immunisation post-transfusionnelle

Poche: ARH 1 2 - 3 4 5

Transfusion

PATIENT: A RH -1 2 -3 4 5

<u>Secondairement</u>: production d'anticorps immuns (IgG) dirigés contre l'antigène RH 1

Incompatibilité foeto-maternelle

Phénotype paternel : RH 1

Phénotype maternel : RH - 1

Grossesse/
accouchement

1er enfant : RH 1

Le système immunitaire de la mère développe des anticorps anti-RH 1

PARTICULARITE

- Les sujets Rhésus négatifs en particulier les femmes peuvent être : Rhésus + faible(Variant D u faible).
- Rh D faible est due a la faible expression de l'AgD à la surface des GR.
- -La recherche est systématique chez les femmes jeunes, Par utilisation de sérum anti-D plus puissant et ce après lavage du sang.
- L'intérêt de la recherche : risque de maladie foetomaternelle chez les femmes Rhésus D négatif