Lead Scoring Case Study

Yash Kharte

BUSINESS PROBLEM STATEMENT

An education company named X Education sells online courses to industry professionals. On any given day, many professionals who are interested in the courses land on their website and browse for courses.

The company markets its courses on several websites and search engines like Google. Once these people land on the website, they might browse the courses or fill up a form for the course or watch some videos. When these people fill up a form providing their email address or phone number, they are classified to be a lead. Moreover, the company also gets leads through past referrals. Once these leads are acquired, employees from the sales team start making calls, writing emails, etc. Through this process, some of the leads get converted while most do not. The typical lead conversion rate at X Education is around 30%.

BUSINESS OBJECTIVE

The company requires us to build a model wherein you need to assign a lead score to each of the leads such that the customers with higher lead scores have a higher conversion chance and the customers with lower lead scores have a lower conversion chance.

The CEO, in particular, has given a ballpark of the target lead conversion rate to be around 80%.

MODEL BUILDING

We can easily find insignificant columns in our csv.

Dep. Variable:	Converted	No. Observation	is: 635°	1				
Model:	GLM	Df Residual	ls: 626	5				
Model Family:	Binomial	Df Mode	el: 85	5				
Link Function:	Logit	Scal	le: 1.0000	0				
Method:	IRLS	Log-Likelihoo	d: nar	n				
Date:	Tue, 19 Nov 2024	Deviano	e: 71012	Ly				
Time:	22:47:39	Pearson chi	i2: 3.47e+18	8				
No. Iterations:	100	Pseudo R-squ. (CS	s): nar	n				
Covariance Type:	nonrobust							
			coef	std err	Z	P> z	[0.025	
		const	1.325e+15	7.53e+07	1.76e+07	0.000	1.32e+15	
		Do Not Email	-2.346e+14	4.45e+06	-5.27e+07	0.000	-2.35e+14	2

EVALUATE MODEL

After constructing the final model and generating predictions on the training dataset, an ROC curve was created to assess the model's performance and stability. The area under the curve (AUC) score was calculated as 0.95, indicating a very strong model.

Moreover, the ROC curve leans towards the top-left corner, signifying high accuracy and effective predictive capability.

FIND OPTIMAL CUT-OFF POINT

As seen in the figure, 0.2 is the optimal cut off point

CONCLUSION

In business terms, this model can adjust with the company's requirements very effectively.

Columns most relevant are:

- Total Time Spent on Website
- Lead Quality_Not Sure
- Tags_Will revert after reading the email

THANK YOU

