CS545 Spring, 2015

Homework Assignment #2
Due: Feb 26
Student: Shuo Yang

1. Algorithm

```
\begin{aligned} \textbf{Function} \ &FindClosePair(A[1:n]) \\ &distance := ComputeCloseDistance(A[1:n]) \\ &(x,y) := ComputeClosePair(A[1:n], distance) \end{aligned}
```

Function ComputeCloseDistance(A[1:n])

Linearly scan the input array A[1:n] from left to right, find the minimum and maximum numbers, put them into variables min and max respectively, and let

```
distance := |(max - min)/(n - 1)|.
```

Function ComputeClosePair(A[1:n], distance)

- (1) Linearly scan the input array A from left to right, find the minimum and maximum numbers, put them into variables min and max respectively.
 - (2) Divide the *n* elements into $\lfloor n/5 \rfloor$ groups of 5 elements, and ≤ 1 group of < 5 elements.
 - (3) Find the median of each group using selection sort.
 - (4) Recursively find the median med of the $\lfloor n/5 \rfloor$ medians found in step (3).
- (5) Partition the input array A around med from step (4) into two subarrays A_{low} and A_{high} such that A_{low} contains all elements $\leq med$ and A_{high} contains all elements $\geq med$.

```
(6) if med - min \leq distance
return \ (med, min)
if max - med \leq distance
return \ (max, med)
if n is odd
if max - med \geq med - min
(x, y) := ComputeClosePair(A_{low}, distance)
else
(x, y) := ComputeClosePair(A_{high}, distance)
else // n is even
if max - med - distance \geq med - min // med is lower median
(x, y) := ComputeClosePair(A_{low}, distance)
else
(x, y) := ComputeClosePair(A_{high}, distance)
```

Correctness

Lemma1: Given an unsorted array A of n distinct numbers, a close pair always exists.

Proof. Prove by contradiction, that is, no such a close pair exists, this means for any pair (x, y) where x > y, we have:

$$x - y > \frac{1}{n - 1}(max - min) \tag{1}$$

Suppose we order numbers in the array A in ascending order as a sequence: a_1, a_2, \dots, a_n where $a_i > a_j$ if i > j. Let $distance = \frac{1}{n-1}(max - min)$, according to the assumption, we have:

$$a_n - a_{n-1} > distance$$

$$a_{n-1} - a_{n-2} > distance$$

$$\cdots$$

$$a_3 - a_2 > distance$$

$$a_2 - a_1 > distance$$

$$(2)$$

Summing the above equations together produces:

$$a_n - a_1 > distance \times (n-1)$$

$$= \frac{1}{n-1} (max - min) \times (n-1)$$

$$= max - min$$
(3)

Since we have sorted the array A in ascending order, this means that $a_n = max$ and $a_1 = min$, therefore the above equation says that max - min > max - min, this is clearly a contradiction, thus the lemma1 must be true.

Lemma2: Given an unsorted array A of n distinct numbers partitioned around its median into two subarrys A_{low} and A_{high} . A_{low} contains all elements \leq median and A_{high} contains all elements \geq median. Let the maximum element be max, minimum element be min and median be med. A close pair must exist in A_{low} if $max - med \geq med - min$ (when n is odd) or $max - med - distance \geq med - min$ (when n is even), and in A_{high} otherwise.

Proof. Prove by contradition. If $max-med \ge med-min$ (when n is odd) or $max-med-distance \ge med-min$ (when n is even), assume that A_{low} does not contain any close pairs. There are two cases to consider:

(a) n is odd.

In this case, A_{low} contains $\frac{n-1}{2}+1=\frac{n+1}{2}$ elements, including the med itself. Applying the same method used in proving Lemma1, we sort A_{low} as: $a_0,a_1,\cdots,a_{(n+1)/2}$ in ascending order. According to the assumption, we must have,

$$a_{\frac{n+1}{2}} - a_{\frac{n+1}{2}-1} > distance$$

$$\vdots$$

$$a_3 - a_2 > distance$$

$$a_2 - a_1 > distance$$

$$(4)$$

Summing the above equations together produces:

$$a_{\frac{n+1}{2}} - a_1 > distance \times \left(\frac{n+1}{2} - 1\right)$$

$$= \frac{1}{n-1} (max - min) \times \left(\frac{n+1}{2} - 1\right)$$

$$= \frac{1}{n-1} (max - min) \times \frac{n-1}{2}$$

$$= \frac{max - min}{2}$$
(5)

Since A_{low} is sorted in ascending order, $a_{\frac{n+1}{2}} = med$ and $a_1 = min$. Thus,

$$med - min > \frac{max - min}{2}$$

$$med > \frac{max + min}{2}$$
(6)

And because $\max - med \ge med - min$, we have $med \le \frac{\max + min}{2}$. But we have just proved that $med > \frac{\max + min}{2}$, clearly it is a contradiction. Thus, there must exist a close pair in A_{low} .

(b) n is even.

In this case, there are two medians, left median and right median. Assume that we pick the low median. A_{low} contains $\frac{n}{2}$ elements, including the med itself. Applying the same method used in proving Lemma1, we sort A_{low} as: $a_1, a_2, \dots, a_{n/2}$ in ascending order. According to the assumption, we must have,

$$a_{\frac{n}{2}} - a_{\frac{n}{2}-1} > distance$$

$$\vdots$$

$$a_{3} - a_{2} > distance$$

$$a_{2} - a_{1} > distance$$

$$(7)$$

Summing the above equations together produces:

$$a_{\frac{n}{2}} - a_1 > distance \times (\frac{n}{2} - 1)$$

$$= \frac{1}{n-1} (max - min) \times (\frac{n}{2} - 1)$$

$$= \frac{max - min}{2} \times \frac{n-2}{n-1}$$
(8)

Since A_{low} is sorted in ascending order, $a_{\frac{n}{2}} = med$ and $a_1 = min$, we have:

$$med - min > \frac{max - min}{2} \times \frac{n - 2}{n - 1}$$

$$med > \frac{max + min}{2} - \frac{max - min}{2(n - 1)}$$

$$(9)$$

Substituting $\frac{max-min}{n-1}$ with distance, we have:

$$med > \frac{max + min}{2} - \frac{distance}{2}$$
 (10)

And because $max - med - distance \ge med - min$, we have $med \le \frac{max + min}{2} - \frac{distance}{2}$. But we have just proved that $med > \frac{max - min}{2} - \frac{distance}{2}$, clearly it is a contradiction. Thus, there must exist a close pair in A_{low} .

The proof for the case when max - med < med - min (when n is odd) or max - med - distance < med - min (when n is even) is symmetrical.

So combining Lemma1 and Lemma2, we can conclude that our algorithm can always find a pair of close elements.

Run time analysis

The sub-routine ComputeCloseDistance takes $\Theta(n)$ time. Let the total run time for ComputeClosePair be T(n) where n is the number of elements in the input array A. Step (1) takes $\Theta(n)$ time, step (2) takes $\Theta(n)$ time, step (3) takes $\Theta(n)$ time, step (4) takes $T(\lfloor (n/5) \rfloor)$ time, step (5) takes $\Theta(n)$ time, step (6) takes T(n/2) time because for each recursive call, we reduce the size of the input for the sub-problem into half, that is, either recurse on lower partition or higher partition. Thus, we have:

$$T(n) = T(n/5) + T(n/2) + \Theta(n)$$

$$= \Theta(n)$$
(11)

By the master theorem, the total run time for FindClosePair is $T(n) + \Theta(n) = \Theta(n)$.

2. Algorithm

The algorithm works as the following: (1) Compute the index of the median: $m = \lfloor n/2 \rfloor$.

- (2) Find the m_{th} smallest element *median*, which is also the median of the input array.
- (3) Partition the input array around median into lower subarray and higher array.
- (4) recursively call on the lower sub-arrays, find it $(k/2)_{th}$ quantiles, then output median, then recursively call on the lower sub-arrays, find it $(k/2)_{th}$ quantiles. Return when k == 1.

Correctness

The algorithm first finds the median of the input array, which is also the median of the k_{th} quantiles. Then partition the array around the median. So now we can solve two sub-problems recursively, each contains at most (k-1)/2 order statistics of the original input. Thus the recursion will eventually hit the base case where k == 1 and return back the k_{th} quantiles.

Run time analysis

Step (1) takes constant time, step (2) takes $\Theta(n)$ time, step (3) takes $\Theta(n)$ time. The recursion has the depth of $\log k$.

Thus the recurrence equation is:

$$T(n,k) = 2T(\frac{n}{2}, \frac{k}{2}) + \Theta(n)$$

$$\tag{12}$$

By the master theorem, the run time is $\Theta(n \log k)$.

3. Algorithm

```
Function FindSmallestInMerge(A[1:m], B[1:n], k)
i := \lfloor k/2 \rfloor
j := \lceil k/2 \rceil
if k == 1 // base case
return min(A[1], B[1])
if A[i] > b[j]
s_k := FindSmallestInMerge(A[1:i], B[j+1:n], i)
else if A[i] < b[j]
s_k := FindSmallestInMerge(A[i+1:m], B[1:j], j)
```

Correctness

If A[i] > B[j], where $i := \lfloor k/2 \rfloor$ and $j := \lceil k/2 \rceil$, then in the merged array, there can be at most k-2 elements that are < B[j], that is, A[1:i-1] and B[1:j-1]. So we must have the k_{th} smallest element $s_k > B[j]$. On the other hand, there are at least k-1 elements that are < A[i] in the merged array, that is, A[1:i-1] and B[1:j], thus we have $s_k \le A[i]$.

The above analysis shows that s_k can only appear in the subarray B[j+1:n] or A[1:i]. Moreover, we have thrown out j elements that $\langle s_k \rangle$, thus, the problem is reduced to finding the i_{th} smallest element in the merged array of B[j+1:n] and A[1:i].

In the case when A[i] < B[j], the argument is symmetric.

With the above argument, we can conclude that our algorithm can find the k_{th} smallest element in the merge of two sorted arrays.

Run time analysis

In each recursive call, we reduce the problem into half of its original size, and other operations executes in constant time, thus the recurrence equation is:

$$T(k) = T(\frac{k}{2}) + \Theta(1) \tag{13}$$

By the master theorem, the run time is $\Theta(\log k)$.

4. characterize the recursive structure of an optimal solution

For input string $S = s_1 s_2 \cdots s_n$, there are three ways an longest palindromic subsequence (LPS) could start or end:

Case 1: LPS starts at s_1 and ends at s_n . In this situation, $s_1 = s_n$. The optimal solution must be the LPS of substring $s_2 \cdots s_{n-1}$ prefixed with s_1 and postfixed with s_n . If not, prefixing s_1 and postfixing s_n to the LCS of $s_2 \cdots s_{n-1}$ would yield a longer solution, which is a contradiction.

Case 2: LPS does not start at s_1 . Then optimal solution must be LPS of $s_2 \cdots s_n$.

Case 3: LPS does not end at s_n . Then optimal solution must be LPS of $s_1 \cdots s_{n-1}$.

Derive a recurrence equation for the value of an optimal solution

The recursive subproblem that arises is one of computing an LPS over a substring of the input string S. Thus the subproblem can be specified by the start and end index of the substring.

So let,

$$L(i,j) :=$$
the length of LPS of substring $s_i \cdots s_j$ (14)

So, based on the three cases, the recurrence equation can be describe as:

$$L(i,j) := \begin{cases} \max \begin{cases} L(i+1,j-1) + 2 & // \text{ case } 1\\ L(i+1,j) & // \text{ case } 2\\ L(i,j-1) & // \text{ case } 3\\ & i \ge 1 \text{ and } j \ge 1 \text{ and } i < j\\ 1 & i = j\\ 0 & i > j \end{cases}$$

$$(15)$$

The solution value for the original problem is L(1, n).

Evaluate the recurrence bottom-up in a table

We evaluate L(i, j) in a table L[0: n, 0: n]. In general, the entry (i, j) depends on the three entries (i, j - 1), (i + 1, j - 1) and (i + 1, j). So we fill in the table in diagonal-major order: first all the entries where j - i = 0, then all the entries where j - i = 1, etc.

```
Function EvaluateLPS(S, L, n)
     // fill in values at diagonal
     for k := 1 to n
          L[k, k] := 1
     // fill in values that rely only on diagonal values
     for i := 1 to n - 1
          i := i + 1
          if S[i] == S[j]
               L[i, j] = 2
          else
               L[i, j] = max(L[i, j - 1], L[i + 1, j])
     // fill in remaining values
     for k := 2 \text{ to } n - 1
          for i := 1 to n - k
               j := i + k
               L[i, j] = max(L[i, j - 1], L[i + 1, j], L[i + 1, j - 1])
```

Run time analysis: First and second for loop both take $\Theta(n)$ time. The third loop takes $O(n^2)$ time. So the total run time is $O(n^2)$.

Recover an optimal solution from the table of solution values

The function Recover LPS recovers a LPS of input string S that starts at position i, ends at position j, given the precomputed table L.

```
Function Recover LPS(S,L,i,j)

if i>j

return

if i==j

output S[i]

return

if S[i] == S[j] and L[i,j] == L[i+1,j-1] + 2 // case 1

Recover LCS(S,L,i+1,j-1)

output S[i]

else if L[i,j] == L[i+1,j] // case 2

Recover LPS(S,L,i+1,j)

else L[i,j] == L[i,j-1] // case 3

Recover LPS(S,L,i,j-1)
```

Run time analysis: each call increments i or decrements j by 1 and spends $\Theta(1)$ time. Since we start with i = 1 and j = n, it takes total $\Theta(n)$ time.

5. characterize the recursive structure of an optimal solution

Let the maximum independent set be MIS. For a tree rooted at some node r, then there are two cases for MIS: case 1: r is in MIS. Then MIS cannot contain the children of r. MIS must be the

sum of the optimal solutions rooted at each of the grandchildren of r, together with r.

case 2: r is not in MIS. Then MIS must be the sum of optimal solutions root at each of the children of r.

Derive a recurrence equation for the value of an optimal solution

The recursive subproblem that arises is one of computing an MIS over a sub-tree of the input tree. Thus the problem can be specified by the node of the tree. Let,

$$L(v) := \text{total weights of the maximum independent set of the sub-tree rooted at } v$$
 (16)

Our goal is to compute L(r). So, based on the three cases, the recurrence equation can be described as:

$$L(v) := \begin{cases} max \begin{cases} \omega(v) + \sum\limits_{\text{grandchildren of } v} L(u) \\ \sum\limits_{\text{children of } v} L(u) \\ \omega(v) \qquad \text{v is a leaf} \end{cases}$$
 (17)

Evaluate the recurrence bottom-up in a table

Recover an optimal solution from the table of solution values