Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina

Departamento Acadêmico de Eletrônica

Eletrônica Analógica I

SANTA CATARINA

Fonte de Alimentação CC, Fonte Linear e Projeto da Disciplina

Prof. Joabel Moia

Florianópolis, outubro de 2024.

Bibliografia para esta aula

Introdução e capítulos iniciais das referências indicadas.

- 1. Malvino;
- 2. Cipelli;
- 3. Comer;
- 4. Boylestad.

Necessidade de Fontes de Tensão Contínua:

- Obtenção de tensões contínuas a partir de tensões alternadas, que é o tipo de tensão disponibilizada pelas concessionárias de energia.
- Normalmente são empregadas em circuitos eletrônicos.
- São utilizadas as mais diversos tipos de tecnologia para o processamento de energia de corrente alternada para corrente contínua.
- As tecnologias vão desde as mais simples (fontes lineares), até as mais complexas (chaveadas).

A importância da eletrônica - Aplicação:

- 1. Telecomunicações e entretenimento;
- 2. Computadores e calculadoras;
- 3. Sistemas de controle automático;
- 4. Instrumentação;
- 5. Eletrônica automotiva;
- 6. Geração e distribuição de energia;
- 7. Radar;
- 8. Circuitos integrados;
- 9. Entre outros

A eletrônica de potência:

- É a parte da eletrônica que estuda os circuitos responsáveis pelo processamento eletrônico da energia elétrica;
- Pode ser dividida em 4 grandes áreas:

Fontes de tensão lineares e chaveadas:

- As fontes lineares convertem a tensão alternada da rede em tensões contínuas, normalmente de baixa amplitude, sem o uso de componentes chaveados (comutados);
- Fontes chaveadas exercem a mesma função, mas utilizando componentes comutados (chaveados).

Introdução à eletrônica

Fontes de tensão lineares x chaveadas:

- Fontes lineares: são mais robustas, simples e fáceis de projetar, geralmente são mais baratas, são muito volumosas e pesadas. Menor eficiência
- Fontes chaveadas: não são tão robustas, mais difíceis de projetar e consertar, geralmente são mais caras, são pequenas e leves. Maior eficiência.

Fonte Linear – Menos Complexa:

Fonte Chaveada – Mais Complexa:

Transformador:

TRAFOS DE ENCAIXE NA PLACA

Retificador à diodo + Filtro capacitivo:

Diodos:

(c)

Capacitores:

Regulação da tensão usando transistor:

Encapsulamento de semicondutores:

Regulação de tensão usando CI:

Objetivos do projeto semestral na disciplina de Eletrônica Analógica I:

- Desenvolver nos estudantes o interesse e a curiosidade pela eletrônica;
- Permitir que os estudantes desenvolvam habilidades relacionadas com projetos;
- Fazer com que os estudantes relacionem a teoria com a prática;
- Desenvolver as habilidades de laboratório e documentação de projetos;
- Entre outras ...

Tema:

Fonte de tensão linear com uma ou mais saídas;

Projeto semestral – Estrutura do Projeto

tensão

de saída

Continua (CC ou DC)

Imagens obtidas do relatório Eletrônica Básica de Claudio R. Schmitz de 2007/1.

Semestre de 2021-2:

Desenvolvimento de uma fonte variável de 0 V até 9 V e 1A

E uma saída fixa de 5 V

Semestre de 2022-1:

Desenvolvimento de uma fonte fixa simétrica de -15 V até 15 V

e 0,5 A

Tabela de componentes utilizados			
Componente	Quantidade	Preço (R\$)	
Fusivel 1 (A)	1	0,4	
Transformador 220V/12V	1	29,9	
Varistor 14mm	1	2,5	
NTC 10R	1	0,8	
Fio paralelo 0,75mm	2	2,2	
Plug macho 2P	1	3	
Ponte de diodos (2w10)	1	2	
Capacitor eletrolítico 3300 uF	1	6,5	
Resistor 470Ω 1W	2	0,5	
LED azul 5mm	1	1,5	
LED vermelho 5mm	1	1,2	
Diodo zener 13V	1	0,6	
Potênciômetro 10KΩ	1	2,5	
resistor 1Ω 1/4 W	2	0,4	
resistor 10KΩ 1/4 W	1	0,15	
Diodo 1N4007	1	0,3	
Transistor TIP31C	4	7,2	
Capacitor 100 nF	2	2	
T-block 2p	6	6	
T-block 3p	1	1,5	
Fēmea banana	2	4	
Resistor 150Ω 1w	1	0,5	
Porta fusível cordão	1	2	
Total		77,65	

Tabela 1 - Orçamento do projeto.

Tabela de Gastos:

Componente	Quantidade	Preço (R\$)
Resistor 0,33R 2w	4	1,00
Resistor 100R 3w	1	0,29
Tip 41c	2	1,90
Borne 2 vias	2	1,50
Borne 3 vias	1	1,95
Diodo zener 18v 1W	1	0,60
Voltímetro e Amp.	1	30,00
Ponte de diodos KBU 808	1	4,50
NTC 10 Ohm / 250v	1	1,00
Varistor 14D621K 14mm /		
385v	1	2,50
Total		51,64

Os matérias que já tinha eram:

- ✓ Transformador 220V 17V 5A
- ✓ BC 548B
- ✓ LED Vermelho/Verde 5mm
- ✓ COOLER 1,6W
- ✓ Borne fêmea preto e vermelho
- ✓ Chave Liga/Desliga
- ✓ Dissipador

Projeto semestral – Em caso de volta presencial

Fonte de Tensão Linear. Requisitos mínimos:

- Se desejar, pode estar em um gabinete (não obrigatório);
- Tensão de saída até 24 V;
- Corrente de saída até 2 A;

Premissas:

- O funcionamento da fonte é determinante para uma boa nota do projeto;
- A fonte não será utilizada comercialmente, sendo apenas um trabalho acadêmico;
- O objetivo principal do projeto é a aprendizagem;
- Caso o resultado prático não seja obtido 100% conforme a teoria, o importante é saber o motivo pelo qual não foi possível atingir os resultados;
- Apresentar as restrições da fonte (se não tiver proteção de sobrecorrente, por exemplo).

Pesos de nota para o projeto semestral:

- 30% (ou 50%) para o desenvolvimento do projeto (pesquisa pela fonte, simulação, confecção da PCI, soldagem, montagem e testes);
- 50% para o funcionamento da fonte (a vazio, pouca carga e em plena carga - Teste de Carga);
- 20% para o trabalho escrito em forma de relatório (optativo).

Sucesso no Projeto Semestral depende de:

- Escolha do projeto adequado;
- Comprometimento dos membros da equipe;
- Dedicação nas aulas e extraclasse ao projeto;
- Integração da equipe;
- Organização da equipe e das tarefas;
- Seguir o cronograma à risca;
- Avaliar constantemente o andamento das atividades;
- Prever situações problemáticas;
- Tentar estar adiantado no cronograma;
- Entre outras ...

Projeto semestral – Estrutura do Projeto

Principais etapas:

- 1. Determinar (escolher) o circuito a ser estudado;
- 2. Verificar a viabilidade técnica e de fabricação do mesmo;
- 3. Iniciar o processo de aquisição dos componentes;
- 4. Estudar e entender o circuito escolhido;
- 5. Simular o circuito e entender o funcionamento da fonte;
- 6. Montagem da fonte em matriz de contatos;
- 7. Fazer aquisições durante funcionamento da fonte sem carga;
- 8. Desenhar a placa de circuito impresso;
- 9. Confeccionar a placa de circuito impresso;
- 10. Montar o circuito na placa;
- 11. Realizar todos os testes no circuito final;
- Fazer as aquisições para a documentação;
- 13. Acondicionar o protótipo no gabinete;
- 14. Documentar o projeto (aquisições, desenhos, fotos, datasheets, etc.);
- 15. Preparar a apresentação do projeto;
- 16. Apresentação pública.

Próxima aula

Diodo de Junção PN

O átomo de Silício e o processo de dopagem: https://youtu.be/EMGyXVHekAE

Junção p-n e o diodo de junção p-n: https://youtu.be/9Ge0mp8FFaQ

O Diodo - Introdução https://www.youtube.com/watch?v=NeoNq7vc_4k

