Fundamentals of Solid State Physics

Magnetic Properties

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Applications of Magnetics

Compass

Hard Drive

Wind Turbine

ID ticket

MagLev 磁悬浮

MRI

Nobel Prizes in Magnetics

1902 Zeeman effect

1943 Magnetic moment of proton

1944 Magnetics of atomic nuclei

1952 Nuclear magnetic resonance (NMR)

1955 Magnetic moment of electron

1970 anti-ferromagnetism and ferri-magnetism

1972 BCS theory of superconductivity

2007 Giant magnetoresistance

Outline

Maxwell's Equations

- \blacksquare H, B, M, μ_r
- $lacksymbol{\square}$ Magnetic Susceptibility 磁化率 χ

Origin of magnetism

- spin of electrons, orbital angular momentum, external field
- nuclear magnetic momentum

Types of magnetism

- □ Diamagnetism 抗磁性
- □ Paramagnetism 顺磁性
- □ Ferromagnetism 铁磁性
- □ Antiferromagnetism 反铁磁性
- □ Ferrimagnetism 亚铁磁性

Maxwell's Equations

$$\nabla \cdot \mathbf{D} = \rho_{V}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$$

Constitutive Relations 本构关系

$$\mathbf{B} = \mu_0 \mu_r \mathbf{H}$$
$$\mathbf{D} = \varepsilon_0 \varepsilon_r \mathbf{E}$$

$$\varepsilon_0 \, \varepsilon_r$$
 - Permittivity (dielectric constant) $\varepsilon_r = 1$ for vacuum $\varepsilon_0 = 8.85^*10^{-12}$ F/m $\mu_0 \mu_r$ - Permeability $\mu_r = 1$ for vacuum $\mu_0 = 4\pi^*10^{-7}$ H/m

Maxwell's Equations

$$\nabla \cdot \mathbf{D} = \rho_V$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$$

Constitutive Relations 本构关系

$$\mathbf{B} = \mu_0 \mu_r \mathbf{H}$$
$$\mathbf{D} = \varepsilon_0 \varepsilon_r \mathbf{E}$$

For magnetic materials
$$\mu_r \neq 1$$

Maxwell's Equations

$$\nabla \cdot \mathbf{D} = \rho_V$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$$

Solenoid (螺线管)

Electromagnet: Magnetic field is produced by electric currents. (Ampere's law) 10

Maxwell's Equations

$$\nabla \cdot \mathbf{D} = \rho_V$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$$

Our earth is a big electromagnet

Maxwell's Equations

$$\nabla \cdot \mathbf{D} = \rho_V$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$$

How about magnetic materials?

Origin of Magnetism - Old Theory

- Ampere 安培, 1826
 - □ Molecular Currents 分子电流假说
 - "magnetism is electricity in motion"

Origin of Magnetism - Old Theory

However

- Classical mechanics give no magnet effects at all
- For a steady solid, all the magnetic moments cancel out

We can only understand magnetism with quantum mechanics

Origin of Magnetism - Modern Theory

Magnetic moment of atoms

- spin of electrons
- orbital angular momentum
- external magnetic field
- magnetic momentum of nuclei (10⁻³ times smaller than that from electrons)

Magnetic Properties

• For solids, $\mu_r \neq 1$

$$\mathbf{B} = \mu_0 \mu_r \mathbf{H} = \mu_0 (1 + \chi) \mathbf{H} = \mu_0 (\mathbf{H} + \mathbf{M})$$

$$\chi = \mu_r - 1$$

$$\mathbf{M} = \chi \mathbf{H}$$

- B Magnetic induction 磁感应强度
- *H* Magnetic field 磁场强度
- *M* Magnetization 磁化强度
- *χ* Magnetic Susceptibility 磁化率

Types of Magnetism

■ *χ* - Magnetic Susceptibility 磁化率

$$|\mathbf{M} = \chi \mathbf{H}|$$

- Diamagnetism 抗磁性
- Paramagnetism 顺磁性
- Ferromagnetism 铁磁性

$$\chi > 0$$
 10⁻⁴ ~10⁻⁵

$$\chi >> 0$$
 >10⁻²

Paramagnetism 顺磁性

- Originated from unpaired electrons
 - □ Sodium (Na) [1s² 2s² 2p6] 3s¹

Na
$$\uparrow \downarrow$$
 $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ 1s 2s 2p 3s

□ Aluminum (AI) [1s² 2s² 2p6] 3s² 3p¹

Paramagnetism 顺磁性

Originated from unpaired electrons

no H field

$$\mathbf{M} = \chi \mathbf{H}$$

Diamagnetism 抗磁性

Originated from paired electrons

□ He, Ne, Ar, ...

Detailed analysis requires quantum mechanics

 \Box H_2 , N_2 , ...

Diamagnetism 抗磁性

Originated from paired electrons

Silicon crystal

Diamagnetism 抗磁性

- Water (H₂O) is diamagnetic
 - \Box A frog is lifted by a strong magnetic field (H = 10 T)

A. Geim Nobel Prize in 2010 Ig Nobel Prize in 2001 (搞笑诺贝尔奖)

Paramagnetism vs. Diamagnetism

Paramagnetism vs. Diamagnetism

Magnetization Curve 磁化曲线

B vs. H

Magnetization Curve 磁化曲线

Magnetization Curve 磁化曲线

Ferromagnetism 铁磁性

- When *H* = 0, magnetic domains (磁畴) form with spontaneous magnetization (自发磁化)
- Magnetization remains when H is removed

Ferromagnetism 铁磁性

- Permanent Magnet (永磁体)
 - □ Fe, Co, Ni (铁, 钴, 镍)
 - □ Alloys: NdFeB (钕铁硼), SmCo (钐钴)

Ferromagnetism 铁磁性

■ B-H curve forms a hysteresis loop (磁滞回线)

Magnetic recording

Magnetic Tape 磁带

Evolution of Data Storage

Hard Drive 硬盘

> 1 TB Today

Ferromagnets can be Powerful

Be cautious!

Mini Magnetic Robot

Small-scale soft-bodied robot with multimodal locomotion

Wenqi Hu^{1*}, Guo Zhan Lum^{1*}, Massimo Mastrangeli¹ & Metin Sitti¹

Ferrofluid 铁磁流体

A liquid with ferromagnetic particles

https://link.springer.com/chapter/10.1007/978-3-319-94427-2 1

Temperature Effect

- Magnetization decreases with temperature, because of increased thermal fluctuation
- Ferromagnet becomes paramagnet above T_c (Curie Temperature 居里温度)

Antiferromagnetism and Ferrimagnetism

- Ferrimagnetism 亚铁磁性
- Antiferromagnetism 反铁磁性

Ferrimagnetic $\chi_2 < \chi_1$

Antiferromagnetic $\chi_3 << \chi_1$

Magnetic Properties of Nuclei

- Protons (质子) and Neutrons (中子) in the nuclei also have spins that generate magnetic moments
- Nuclei with odd numbers of protons and neutrons have a net magnetic moment
- Much smaller (< 10⁻³) than those of electrons

Magnetic Resonance Imaging (MRI) 核磁共振成像 detect ¹H atoms

Be cautious when doing MRI

Very strong magnetic field

Summary

Maxwell's Equations

- \blacksquare H, B, M, μ_r
- $lacksymbol{\square}$ Magnetic Susceptibility 磁化率 χ

Origin of magnetism

- spin of electrons, orbital angular momentum, external field
- nuclear magnetic momentum

Types of magnetism

- □ Diamagnetism 抗磁性
- □ Paramagnetism 顺磁性
- □ Ferromagnetism 铁磁性
- □ Antiferromagnetism 反铁磁性
- □ Ferrimagnetism 亚铁磁性

Thank you for your attention