Energy-efficient User-oriented Cloud Elasticity for Data-driven Applications

David GUYON
University of Rennes 1
david.guyon@irisa.fr

Anne-Cécile ORGERIE CNRS

Christine MORIN INRIA

December 12, 2015

Summary

- Context and Motivations
- Our Contributions
- 3 Experimentation and Results
- 4 Conclusion

Summary – Context and Motivations

- Context and Motivations
- Our Contributions
- 3 Experimentation and Results
- 4 Conclusion

Cloud Computing

- ► Infrastructure-as-a-Service
- ► CPU, RAM and disk resources
- ► Computer resources packed into Virtual Machines

The Cloud consumes an enormous amount of Energy

- ► The Cloud consumes around 2% of the worldwide total energy
- Quadruple by 2020 if the demand continues to go on

Turning off as many hosts as possible

► Consolidation

Limitations

- ▶ Do not take the user into consideration
- ► Complex to configure

Turning off as many hosts as possible

► Consolidation

Limitations

- ▶ Do not take the user into consideration
- ► Complex to configure

Turning off as many hosts as possible

► Consolidation

Limitations

- ▶ Do not take the user into consideration
- ► Complex to configure

Turning off as many hosts as possible

Consolidation

Limitations:

- ▶ Do not take the user into consideration
- ► Complex to configure

Our Objective

To reduce the electrical consumption of the Cloud by including the user in the optimization system

Summary – Our Contributions

- Context and Motivations
- Our Contributions
- 3 Experimentation and Results
- 4 Conclusion

Contributions

- 1. Easy-to-use interface to involve the user
- 2. Algo to select VM size depending on chosen execution mode
- 3. Algo for the VMs placement on the servers
- 4. Prototype for the evaluation of the benefits of our approach

Our Research Contribution

Give the user an easy-to-use parameter

- ► Choice between *energy efficiency* and *performance*
- lacktriangle Less performance ightarrow fewer resources ightarrow better consolidation

Our Research Contribution

Give the user an easy-to-use parameter

- ► Choice between energy efficiency and performance
- lacktriangle Less performance ightarrow fewer resources ightarrow better consolidation

User's Application

Data-intensive scientific workflow

User's Application

Data-intensive scientific workflow

Virtual Machine Selection depending on the trade-off

Each VM has a flavor type

Virtual Machine Selection depending on the trade-off

Each VM has a flavor type

Tiny 1 CPU 512 MB RAM 5 GB HDD	Small 1 CPU 2 GB RAM 20 GB HDD	Medium 2 CPU 4 GB RAM 40 GB HDD	Large 4 CPU 8 GB RAM 80 GB HDD	XLarge 8 CPU 16 GB RAM 160 GB HDD
	-1	0	+1	
-1	0	+1		
		-1	0	+1
-1 0	+1			
			-1	0 +1

System Architecture

System Architecture

System Architecture

 $1 \ \mathsf{unit} = \mathsf{tiny} \ \mathsf{flavor}$

blue triangle = Virtual Machine to create

 Δ calculation

 Δ calculation

 Δ calculation

all Δ are equal to 3

"number of Δ to 0" calculation

"number of Δ to 0" calculation

host 4 is the best suitable host

Summary – Experimentation and Results

- Context and Motivations
- Our Contributions
- Experimentation and Results
- 4 Conclusion

Experimentation

- ► Prototype with OpenStack and FRIEDA¹
- ► Grid'5000: *Taurus* cluster in Lyon, France
- ▶ Montage workflow

Experimentation

- ► Prototype with OpenStack and FRIEDA¹
- ► Grid'5000: Taurus cluster in Lyon, France
- ► Montage workflow

- ▶ 2 workflows executing in parallel
- ▶ 2 different execution conditions
- different amount of data
- different execution times

¹developed at Lawrence Berkeley National Laboratory ←□ → ←② → ←② → ←② → → ② → ○○○

Results

Average values after 5 experiments on each execution mode

Results

Average values after 5 experiments on each execution mode

Results

Average values after 5 experiments on each execution mode

Summary – Conclusion

- Context and Motivations
- Our Contributions
- Experimentation and Results
- 4 Conclusion

Conclusion

- ► A system that takes the user into consideration to save energy
- Promising preliminary results
- ▶ 25% less in energy consumption for 6% more in execution time

Future works:

- ► Experiments with many users with different profiles
- Design incentive model
 - carbon tax when using performance mode
 - green points when using energy-efficient mode

Conclusion

- ► A system that takes the user into consideration to save energy
- Promising preliminary results
- ▶ 25% less in energy consumption for 6% more in execution time

Future works:

- Experiments with many users with different profiles
- Design incentive model
 - carbon tax when using performance mode
 - green points when using energy-efficient mode

Experiment Graph in Normal mode

Experiment Graph in Performance mode

Experiment Graph in Energy Efficient mode

Power Simulation on the Taurus nodes

UML Diagram

Execution Diagram

