

DEFINIZIONE

Sia x_0 appartenente a un sottoinsieme A di \mathbb{R} . x_0 è un **punto isolato** di A se esiste almeno un intorno I di x_0 che non contiene altri elementi di A diversi da x_0 .

SSEMPL.

1)
$$A = \{ x \in \mathbb{R} \mid x = \frac{1}{m}, m \in \mathbb{N}, m \neq 0 \}$$
 isolato di A

1) $A = \{ x \in \mathbb{R} \mid x = \frac{1}{m}, m \in \mathbb{N}, m \neq 0 \}$ isolato di A

1) $A = \{ x \in \mathbb{R} \mid x = \frac{1}{m}, m \in \mathbb{N}, m \neq 0 \}$ isolato di A

2) $A = \{ x \in \mathbb{R} \mid x = \frac{1}{m}, m \in \mathbb{N}, m \neq 0 \}$ isolato di A

2) $A = \{ x \in \mathbb{R} \mid x = \frac{1}{m}, m \in \mathbb{N}, m \neq 0 \}$

1) isolato di A

2) $A = \{ x \in \mathbb{R} \mid x = \frac{1}{m}, m \in \mathbb{N}, m \neq 0 \}$

1) isolato di A

2) $A = \{ x \in \mathbb{R} \mid x = \frac{1}{m}, m \in \mathbb{N}, m \neq 0 \}$

2) $A = \{ x \in \mathbb{R} \mid x = \frac{1}{m}, m \in \mathbb{N}, m \neq 0 \}$

2) $A = \{ x \in \mathbb{R} \mid x = \frac{1}{m}, m \in \mathbb{N}, m \neq 0 \}$

2) $A = \{ x \in \mathbb{R} \mid x = \frac{1}{m}, m \in \mathbb{N}, m \neq 0 \}$

2) $A = \{ x \in \mathbb{R} \mid x = \frac{1}{m}, m \in \mathbb{N}, m \neq 0 \}$

3) $A = \{ x \in \mathbb{R} \mid x = \frac{1}{m}, m \in \mathbb{N}, m \neq 0 \}$

2) $A = \{ x \in \mathbb{R} \mid x = \frac{1}{m}, m \in \mathbb{N}, m \neq 0 \}$

3) $A = \{ x \in \mathbb{R} \mid x = \frac{1}{m}, m \in \mathbb{N}, m \neq 0 \}$

2) $A = \{ x \in \mathbb{R} \mid x = \frac{1}{m}, m \in \mathbb{N}, m \neq 0 \}$

2) $A = \{ x \in \mathbb{R} \mid x = \frac{1}{m}, m \in \mathbb{N}, m \neq 0 \}$

3) $A = \{ x \in \mathbb{R} \mid x = \frac{1}{m}, m \in \mathbb{N}, m \neq 0 \}$

2) $A = \{ x \in \mathbb{R} \mid x = \frac{1}{m}, m \neq 0 \}$

3) $A = \{ x \in \mathbb{R} \mid x = \frac{1}{m}, m \neq 0 \}$

2) $A = \{ x \in \mathbb{R} \mid x = \frac{1}{m}, m \neq 0 \}$

2) $A = \{ x \in \mathbb{R} \mid x = \frac{1}{m}, m \neq 0 \}$

3) $A = \{ x \in \mathbb{R} \mid x = \frac{1}{m}, m \neq 0 \}$

2) $A = \{ x \in \mathbb{R} \mid x = \frac{1}{m}, m \neq 0 \}$

3) $A = \{ x \in \mathbb{R} \mid x = \frac{1}{m}, m \neq 0 \}$

3) $A = \{ x \in \mathbb{R} \mid x = \frac{1}{m}, m \neq 0 \}$

3) $A = \{ x \in \mathbb{R} \mid x = \frac{1}{m}, m \neq 0 \}$

4) $A = \{ x \in \mathbb{R} \mid x = \frac{1}{m}, m \neq 0 \}$

4) $A = \{ x \in \mathbb{R} \mid x = 1 \}$

4) $A = \{ x \in \mathbb{R} \mid x = 1 \}$

4) $A = \{ x \in \mathbb{R} \mid x = 1 \}$

4) $A = \{ x \in \mathbb{R} \mid x = 1 \}$

4) $A = \{ x \in \mathbb{R} \mid x = 1 \}$

4) $A = \{ x \in \mathbb{R} \mid x = 1 \}$

4) $A = \{ x \in \mathbb{R} \mid x = 1 \}$

4) $A = \{ x \in \mathbb{R} \mid x = 1 \}$

4) $A = \{ x \in \mathbb{R} \mid x = 1 \}$

4) $A = \{ x \in \mathbb{R} \mid x = 1 \}$

4) $A = \{ x \in \mathbb{R} \mid x = 1 \}$

4) $A = \{ x \in \mathbb{R} \mid x = 1 \}$

4) $A = \{ x \in \mathbb{R} \mid x = 1 \}$

4) $A = \{ x \in \mathbb{R} \mid x = 1 \}$

4) $A = \{ x \in \mathbb{R} \mid x = 1 \}$

4) $A = \{ x \in \mathbb{R} \mid x = 1 \}$

4) $A = \{ x \in \mathbb{R} \mid x = 1 \}$

4) $A = \{ x \in \mathbb{R} \mid x = 1 \}$

4) $A = \{ x \in \mathbb{R} \mid x$

DEFINIZIONE

Il numero reale x_0 è un **punto di accumulazione** di A, sottoinsieme di \mathbb{R} , se ogni intorno completo di x_0 contiene infiniti punti di A.

(ATTENZIONE, non necessarismente Xo dere apportence d A)

ESEMPL

codons dentes

O É PUNTO DI ACCUMULAZIONE PER A

Compagne Ma anche -1 é di occumulatione

-1 ai sons infiniti

punti di A dre ai infiniti punti di A

