TIME COMPLEXITY (MASTER'S THEOREM)

The Master Theorem applies to recurrences of the following form:

$$T(n) = aT(n/b) + f(n)$$

where $a \ge 1$ and b > 1 are constants and f(n) is an asymptotically positive function.

There are 3 cases:

1. If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.

2. If
$$f(n) = \Theta(n^{\log_b a} \log^k n)$$
 with $k \ge 0$, then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$.

3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ with $\epsilon > 0$, and f(n) satisfies the regularity condition, then $T(n) = \Theta(f(n))$. Regularity condition: $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n.

a)
$$T(n) = 3T(n/2) + n$$

Answer: $T(n) = \Theta(n^{1}g 3)$ (Case 1)

b)
$$T(n) = 64T(n/8) - n^2(\log n)$$

Answer: T(n) = Does not apply (f(n) is not positive)

c)
$$T(n) = 2nT(n/2) + n^n$$

Answer: T (n) = Does not apply (a is not constant)

d)
$$T(n) = 3T(n/3) + n/2$$

Answer: $T(n) = \Theta(n \log n)$ (Case 2)

e)
$$T(n) = 7T(n/3) + n^2$$

Answer: $T(n) = \Theta(n^2)$ (Case 3)