PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2002255646 A

(43) Date of publication of application: 11.09.02

(51) Int. CI

C04B 35/495

H01B 3/12

H01L 41/083

H01L 41/107

H01L 41/187

H01L 41/22

H01L 41/24

(21) Application number: 2001364641

(22) Date of filing: 29.11.01

(30) Priority:

28.12.00 JP 2000399948

(71) Applicant:

NIPPON SOKEN INC. DENSO

CORP

(72) Inventor:

SUMIYA ATSUHIRO **FUJII AKIRA** YASUDA ETSURO SHINDO HITOSHI YAMAMOTO TAKASHI KATAOKA TAKUMI

NAGAYA TOSHIATSU

(54) DIELECTRIC CERAMIC FIRED AT LOW TEMPERATURE, MULTILAYER TYPE DIELECTRIC ELEMENT, METHOD OF PRODUCING THE DIELECTRIC CERAMIC AND **AUXILIARY OXIDE**

the calcined powder, form a liquid phase at a desired temperature and accelerate firing, thereby it becomes possible to fire at a low temperature.

COPYRIGHT: (C)2002,JPO

(57) Abstract:

PROBLEM TO BE SOLVED: To fire a PZT-based dielectric ceramic at a desired low temperature and to prevent lowering of the performance of a base material.

SOLUTION: The dielectric ceramic is obtained by providing a mixture or a calcined material of raw materials for the dielectric ceramic containing, as a main component, a composition having a dielectric ceramic composition of ABO3-type, wherein, when B site is defined as 1, A site is Pb contained in a molar ratio ≊0.9, then adding, as auxiliary PbOx+(WO₃y+MoO₃ Z) (wherein, x+v+z=1: 0.005<y+z<0.4; and y, z_{\approx} 0) in an total amount of 0.05 to 20 mol.% to the mixture or the calcined material above, mixing, forming and firing the formed body. The total amount of tungsten and molybdenum in the fired body is lower than 0.098 moles when the molar amount of Pb is set to be 1, and the density of the fired body is \$7.5 g/cm3. The auxiliary oxides are dispersed in

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-255646 (P2002-255646A)

(43)公開日 平成14年9月11日(2002.9.11)

爱知県西尾市下羽角町岩谷14番地 株式会

社日本自動車部品総合研究所内

(51) Int.Cl.7	識別記号	FΙ	テーマコード(参考)	
-•	495	H 0 1 B	3/12 3 0 1 4 G 0 3 0	
	12 3 0 1	C04B 3	35/00 J 5G3O3	
H01L 41/	083	H01L 4	11/18 1 0 1 D	
41/	107	4	11/08 A	
41/	187		· S	
		審查請求 未請求 請求項	質の数10 OL (全 13 頁) 最終頁に総	
(21)出顧番号	特願2001-364641(P2001-36	64641) (71)出願人	000004695	
(22)出願日	平成13年11月29日(2001.11.2	- ·	株式会社日本自動車部品総合研究所 愛知県西尾市下羽角町岩谷14番地	
(31)優先権主張番	号 特顏2000-399948 (P2000-39	(71)出願人	000004260	
(32)優先日	平成12年12月28日(2000.12.2	1	株式会社デンソー	
(33)優先権主張国		(72)発明者	愛知県刈谷市昭和町1丁目1番地 角谷 徳 宏	

(72) 発明者 角谷 篤宏

100067596

弁理士 伊藤 求馬

(74)代理人

最終買に続く

(54) 【発明の名称】 低温焼成化誘電体セラミックス、積層型誘電体案子、誘電体セラミックスの製造方法および助剤 酸化物

(57)【要約】

PZT系誘電体セラミックスを所望の低温で 焼成可能とし、かつ母材の性能が損なわれることを防止 する。

【解決手段】 A B O 。型の誘電体セラミックス組成を有 し、Bサイトを1とした時に、AサイトにO.9モル比 以上の鉛を含有する組成物を主成分とする誘電体セラミ ックスの原料混合物または仮焼物に、助剤酸化物とし て、

 $PbOx + (WO_3 y + MoO_3 z)$ ただし、x + y + z = 1、0.005<y + z < 0. $4 \cdot y, z \ge 0$

を 0. 05 モル%~20 モル%の割合で添加配合し、混 合、成形、焼成する。焼成体中のタングステンとモリブ デンの合計の含有量は、鉛を1とした時に0.098モ ル比より小さく、焼成後の密度は7.5g/cm³以上 となる。助剤酸化物は仮焼成粉中に分散して、所望の温 度で液相を形成して焼成を促進し、低温焼成を可能にす る。

【特許請求の範囲】

【請求項1】 ABO: 型の誘電体セラミックス組成を 有し、Bサイトを1とした時に、AサイトにO.9モル 比以上の鉛を含有する組成物を主成分とするとともに、 タングステンおよびモリブデンのうち少なくとも 1 種を 含有し、焼成後の密度が7.5g/cm。以上で、かつ タングステンとモリブデンの合計の含有量が、鉛を1と した時に0.37モル比より小さいことを特徴とする低 温焼成化誘電体セラミックス。

【請求項2】 タングステンおよびモリブデンが、誘電 体セラミックスの粒内よりも粒界において高濃度に配置 されている請求項1記載の低温焼成化誘電体セラミック ス。

【請求項3】 上記請求項1または2のいずれか記載の 低温焼成化誘電体セラミックスの層間に、銅を主成分と する融点が1083℃以下の電極層、または、銀ないし 銀とパラジウムを主成分とする電極層を介在させた積層 構造を有する積層型誘電体素子。

上記請求項1または2のいずれか記載の 【請求項4】 低温焼成化誘電体セラミックスを製造する方法であっ て、鉛酸化物に、タングステンおよびモリブデンのうち 少なくとも 1 種の酸化物を下記の配合比率で配合した助 剤酸化物を用い、

 $PbOx + (WO_3 y + MoO_3 z)$ ただし、x + y + z = 1、0.005<y + z < 0. $4 \cdot y, z \ge 0$

ABO: 型の誘電体セラミックス組成を有し、Bサイト を1とした時に、Aサイトに0.9モル比以上の鉛を含 有する組成物を主成分とする誘電体セラミックスの原料 混合物または仮焼物に、上記助剤酸化物を0.05モル %~20モル%の割合で添加配合し、混合、成形、焼成 することを特徴とする誘電体セラミックスの製造方法。

【請求項5】 上記助割酸化物を、鉛酸化物にタングス テンおよびモリブデンのうち少なくとも 1 種の酸化物を 乾式または湿式混合するか、あるいは、乾式または湿式 混合し、仮焼成した後、粉砕することにより得る請求項 4 記載の誘電体セラミックスの製造方法。

【請求項6】 上記誘電体セラミックスの原料混合物を 調合する工程において、上記原料混合物中の鉛原料の量 を、上記助剤酸化物の酸化鉛からの供給分を減じた量と する請求項4または5記載の誘電体セラミックスの製造 方法。

【請求項7】 上記誘電体セラミックスの自己収縮率3 %となる温度から収縮完了温度までの間に融点を有する 上記助剤酸化物を用いる請求項4ないし6のいずれか記 載の誘電体セラミックスの製造方法。

【請求項8】 上記誘電体セラミックスをシート状に成 形する際、原料粉または原料粉を仮焼した仮焼成粉に上 記助剤酸化物を添加したシートを用いて、これに電極層 を印刷、積層し、同時焼成する請求項5ないし7のいず 50 れか記載の誘電体セラミックスの製造方法。

【請求項9】 セラミックスを焼結する際の助剤として 用いられる助剤酸化物であって、鉛酸化物に、タングス テンおよびモリブデンのうち少なくとも1種の酸化物を 配合してなり、タングステンおよびモリブデンの合計含 有量が0.5モル%より大きく40モル%より小さいこ とを特徴とする助剤酸化物。

【請求項10】 セラミックスを焼結する際の助剤とし て用いられる助剤酸化物であって、鉛酸化物に、タング ステンおよびモリブデンのうち少なくとも 1種の酸化物 を配合した混合物を仮焼してなり、タングステンおよび モリブデンの合計含有量が0.5モル%より大きく40 モル%より小さいことを特徴とする助剤酸化物。

【発明の詳細な説明】

[000.1]

【発明の属する技術分野】本発明は、鉛を組成中に含む 誘電体セラミックス、特に低温焼結が可能な誘電体セラ ミックスとその製造方法、および低温焼結を可能とする ための助剤酸化物に関する。

20 [0002]

40

【従来の技術】PZT (チタン酸ジルコン酸鉛) 系の誘 電体セラミックスは、圧電トランス、圧電アクチュエー タ等の材料として有用であるが、焼成温度が高温である と、酸化鉛(PbO)が蒸発して所望の焼結体組成が得 られないおそれがある、内部電極材料として高価な白金 (Pt)等の高融点金属を使用する必要がありコスト高 となる、といった不具合がある。このため、誘電体セラ ミックスを低温焼結させる技術が、従来より、種々検討 されており、大きく下記の3つの方法が知られている。 ①ガラスを添加する方法

- ❷誘電体の仮焼成粉を微粒化する方法
- ③誘電体の液相生成酸化物を低融点化する方法

【0003】このうち、誘電体材料に低融点のガラス質 を添加して焼結温度を低下させる①の方法は、焼結温度 を低くする効果は高いが、誘電体組成にガラスを添加す ることによって誘電率が低くなる。また、強度の弱いガ ラス質が混在すると、製品強度が低下するといった問題 点がある。

【0004】②の方法は、誘電体の仮焼成粉を媒体搬拌 ミル等で微粒化することにより、粒子の反応性を向上さ せ、低温での焼成を可能にする方法で、例えば、特開平 7-277822号公報、特開平8-104568号公 報、特開平9-278535号公報に記載がある。しか しながら、一般にPZT系材料の焼成温度は1200~ 1100℃程度であり、②の方法により低温化できる温 度の幅は、高々100℃程度である。例えば、安価な銀 (Ag単体)を電極材料として使用するには、焼成温度 が950℃以下であることが必要であり、また、Pdを 含むAgの場合にも980℃以下が必要である。従っ

て、②の方法では、焼成温度を低温化する効果が十分で

はない。

【0005】 ②の方法は、誘電体の焼成時に液相を形成する液相生成酸化物を低融点化する方法である。 P2Tを例に挙げると、仮焼成後の組成は、チタン酸鉛(PbTiOs)とチタン酸ジルコン酸鉛(Pb(Tios) Zros) O,の混合物となっており、仮焼成時に PbTiOsとPbZrOsの生成反応に与かれなかった僅かな PbOが、焼成工程で液相を形成する。この液相が順次 PbTiOsとPbZrO,に接触、反応して、 Pb(TiosZros) O,の焼成が進むと考えられ、原料粉末の調合段階で、 PbOを低融点化する酸化物を添加し、より低温で液相を形成することにより、低温焼結を可能にしている。

[0006]

【発明が解決しようとする課題】しかしながら、③の方 法では、液相生成酸化物、すなわちPbTiO。とPb Z r O₃ の生成反応に与かれなかった P b O の量を制御 できない。このため、僅かな製造条件の変化で焼結温度 が変化するという問題が生じる。また、焼成時のPb〇 20 と低融点酸化物の比によって液相生成温度が変化する が、この比の制御ができないために、誘電体の焼結を効 果的に促進する温度に制御できない。さらに、添加する 酸化物が焼成後に誘電体組成と関係のない粒界にあれば よいが、誘電体組成に入り込む可能性があり、焼成体へ の残留量が多いと性能の低下が問題となる懸念がある。 【0007】本発明者等は、上記問題点に着目し、従来 より低温での焼成が可能な誘電体セラミックスを得るこ と、かつ、液相の生成量等を制御して誘電体の焼結温度 を制御可能とし、しかも焼成後の誘電体組織に添加物が 30 入り込んで誘電体の性能が損なわれるのを防止すること を目的とする。また、このような誘電体セラミックスを 得るための助剤酸化物を実現し、そして、この助剤酸化 物を用いて制御性よく高性能の誘電体を製造することを 目的とする。

[0008]

【課題を解決するための手段】本発明による請求項1の発明は、ABO、型の誘電体セラミックス組成を有し、Bサイトを1とした時に、AサイトにO. 9モル比以上の鉛を含有する組成物を主成分とする低温焼成化誘電体セラミックスで、タングステンおよびモリブデンのうち少なくとも1種を含有する。その焼成後の密度は7. 5 g/cm^3 以上であり、かつタングステンとモリブデンの合計の含有量が、鉛を1とした時にO. 37モル比より小さいことを特徴とする。

【0009】本発明の低温焼成化誘電体セラミックスにおいて、タングステンとモリブデンは、助剤酸化物として添加される。誘電体セラミックスの焼成を行うと、これら助剤酸化物が730℃から980℃前後で融点に達し、セラミックス組成中に液相を形成する。液相はセラ

ミックス粒子間の物質移動の経路を提供し、粒子間の反応、粒子成長を促進して、低温での焼結を可能にする。タングステンとモリブデンは、誘電体セラミックスに含まれる鉛と酸化物の状態で互いに共晶関係にあり、これらの混合物からなる助剤酸化物を用いると、その配合割合によって液相生成温度を、また、その添加量によって液相生成量を制御することができるので、焼結温度の制御が容易になる。また、液相は粒子成長とともに粒界へ押し出されて、別の粒子間に移動し、セラミックスの焼結が進んで焼結体表面に達すると取り除かれる。

【0010】よって、従来より低温での焼結を実現し、かつ焼成後の密度を7.5g/cm³以上と高くできる。鉛は蒸発しやすいので、焼成後の組成変化の問題があるが、焼結温度を低くして組成変化を防止する効果が得られ、助剤酸化物に鉛を添加すれば、鉛の供給源としても有用である。また、鉛に対するタングステンとモリブデンの合計の含有量を0.37モル比以下に規定することで、助剤酸化物の残留等によるセラミックス性能の低下を抑制することができる。さらに、980℃以下での収縮完了は、AgーPdや、Ag単体、Cu合金等の低融点の内層電極の使用を可能とし、コストが低減できる。

【0011】請求項2の発明において、タングステンおよびモリブデンは、誘電体セラミックスの粒内よりも粒界において高濃度に配置される。タングステンおよびモリブデンは助剤酸化物として添加されて、粒界により多く存在するため、誘電体性能への影響を小さくできる。【0012】請求項3は積層型誘電体素子の発明で、上記低温焼成化誘電体セラミックスの層間に、銅を主成分とする融点が1083℃以下の電極層、または、銀とパラジウムを主成分とする電極層を介在させた積層構造を有する。上記請求項1~3の誘電体セラミックスを用いることでは、これら低融点の電極層との同時焼結が可能になり、素子の製造コストを大きく低減できる。

【0013】請求項4の発明は、上記低温焼成化誘電体セラミックスを製造する方法であって、鉛酸化物に、タングステンおよびモリブデンのうち少なくとも1種の酸化物を下記の配合比率で配合した助剤酸化物を用いる。 PbOx+(WO,y+MoO,z) ただし、x+y+z=1、0.005< y+z<0.4、 $y,z \ge 0$ この助剤酸化物を、ABO,型の誘電体セラミックス組成を有し、Bサイトを1とした時に、Aサイトに0.9 モル比以上の鉛を含有する組成物を主成分とする誘電体

成を有し、Bサイトを1とした時に、Aサイトに0.9 モル比以上の鉛を含有する組成物を主成分とする誘電体セラミックスの原料混合物または仮焼物に、0.05モル%~20モル%の割合で添加配合し、混合、成形、焼成する。

【0014】焼成工程において、上記配合の助剤酸化物は、730℃から980℃前後で融点に達し、セラミッ

50

クス組成中に液相を形成する。液相はセラミックス粒子間の物質移動の経路を提供し、粒子間の反応、粒子成長を促進して、低温での焼結を可能にする。本発明の助剤酸化物は、PbOと(WO、+MoO」)の配合割合を上記範囲とすることによって液相生成温度を低くし、また、上記添加量範囲とすることによって液相生成量を制御して、低温での焼結を可能とする。液相は粒子成長とともに粒界へ押し出されて、別の粒子間に移動し、セラミックスの焼結が進んで焼結体表面に達すると取り除かれる。

【0015】上記助剤酸化物を添加して焼成した誘電体セラミックスは、酸化鉛が蒸発しない低温で焼結され、かつ助剤酸化物が粒内にほとんど残留しないので、所望の誘電特性が得られる。特に、添加量が0.05~20 モル%の範囲で、誘電特性や強度を保持しつつ焼結温度を低くする効果が得られる。また、仮焼成後の仮焼成粉に対して上記助剤酸化物を添加すると、仮焼成粉に対する助剤酸化物の量の制御等が容易になり、PbOとWO、を所定比とした助剤酸化物を仮焼成粉に均一に分散させ、所望の温度で液相を生成させて、より制御性よく焼20成を行うことができる。

【0016】請求項5の方法は、上記助剤酸化物を、鉛酸化物にタングステンおよびモリブデンのうち少なくとも1種の酸化物を乾式または湿式混合するか、あるいは、乾式または湿式混合し、仮焼成した後、粉砕することにより得る。PbOとWO」、MoO」は各粉末を混合しただけでもよいが、仮焼して固溶体とするとより安定した制御が可能になる。

【0017】請求項6の方法では、上記誘電体セラミックスの原料混合物を調合する工程において、上記原料混合物中の鉛原料の量を、上記助剤酸化物の酸化鉛からの供給分を減じた量とする。助剤酸化物が誘電体セラミックスを構成する酸化鉛を含んでいるので、原料の調合時に助剤酸化物から供給される分を適量減じて秤量すれば、酸化鉛が焼結体に過剰に残らず、原料コストも低減できる。

【0018】請求項7の方法は、上記誘電体セラミックスの自己収縮率3%となる温度から収縮完了温度までの間に融点を有する上記助剤酸化物を用いる。内部電極等を形成した成形体を焼成する場合、母材となる誘電体セラミックスの自己収縮率が小さい段階で、助剤酸化物による液相が生成すると、電極材に応力が加わって剥離が生じてしまう。これを防止するには、自己収縮率3%となる温度以上の融点を持つ助剤酸化物を用いるのがよく、かつ収縮完了温度までに液相を形成させることで、効果的に焼成を行うことができる。

【0019】請求項8の方法は、上記誘電体セラミックスをシート状に成形する際、原料粉または原料粉を仮焼した仮焼成粉に上記助剤酸化物を添加したシートを用いて、これに電極層を印刷、積層し、同時焼成する。導体

材料に上記助剤酸化物を共材として添加すると、液相生成により、電極材に応力が加わって剥離が生じるのを防止する効果が高まる。

【0020】請求項9の発明は、セラミックスを焼結する際の助剤として用いられる助剤酸化物で、鉛酸化物に、タングステンおよびモリブデンのうち少なくとも1種の酸化物を配合してなり、タングステンおよびモリブデンの合計含有量が0.5モル%より大きく40モル%より小さいものである。

10 【0021】PbOと(WO,+MoO,)を上記割合で配合した助剤酸化物は、誘電体セラミックスに添加されて、液相生成温度を低くし、低温での焼結を可能とする。また、添加量によって液相生成量を制御できるので、焼成温度の制御が容易で、誘電体性能を損なうこともない。

【0022】請求項10の助剤酸化物は、鉛酸化物に、タングステンおよびモリブデンのうち少なくとも1種の酸化物を配合した混合物を仮焼してなり、タングステンおよびモリブデンの合計含有量が0.5モル%より大きく40モル%より小さいものである。請求項12の助剤酸化物は、仮焼成によりPbOと(WO;+MoO;)が固溶体を形成しており、組成がより均一であるので、セラミックス組成中に分散して所望の温度で液相を形成し、より効果的に焼結を進めることができる。

[0023]

【発明の実施の形態】以下、本発明を詳細に説明する。 本発明の低温焼成化誘電体セラミックスは、ABO、型 の誘電体セラミックス組成を有し、Bサイトを1とした 時に、AサイトにO.9モル比以上の鉛を含有する組成 物を主成分とするとともに、タングステンおよびモリブ デンのうち少なくとも 1 種を含有する。主成分となる組 成物は、具体的にはPb(Ti,Zr)O, や、その一 部をSr、Mn、Y、Nb等の元素と置換したPZT系 セラミックスが好適に用いられ、優れた誘電特性を示 す。置換元素や各成分元素の配合割合等、具体的な組成 は必要な特性に応じて適宜選択することができる。な お、ABO。型の誘電体セラミックスは、通常、A: B: O=1:1:3のモル比となるように配合される が、鉛を含むAサイトの成分の合計が、Bサイトを1と した時に、1.00モル比以上となるように、Aサイト に鉛を過剰に含有させることもできる。これは、低融点 の鉛を過剰にすることで低温での液相の形成を容易にす る、また、鉛が蒸発しやすいことから焼成後の組成の変 動を防ぐためである。

【0024】本発明では、PZT系セラミックス等の鉛を含有する誘電体セラミックスを、タングステンおよびモリブデンのうち少なくとも1種を含有する助剤酸化物を用いて焼結することにより、低温焼成を可能にし、焼成後の密度を7.5g/cm³以上とする。低温焼成化の効果を得、かつ優れた誘電特性を維持するには、互い

に酸化物の状態で鉛と共晶関係にあるタングステンおよびモリブデンの量を適切に設定する必要があり、具体的には、焼成後の誘電体セラミックス中に含有されるタングステンおよびモリブデンの合計の含有量が、鉛を1とした時に0.37モル比より小さくなるように、好をましくは、0.30モル比以下となるようにする。タングステンおよびモリブデンは、焼成時に液相を形成して粒子成長を促し、粒子成長に伴い粒界に押し出されるため、焼成後の組成においては、誘電体セラミックスの粒内よりも粒界において高濃度に配置されている。

【0025】助剤酸化物は、誘電体セラミックスを焼結する際の助剤として用いられるもので、酸化鉛(PbO)に酸化タングステン(WO,)および酸化モリブデン(MoO,)のうち少なくとも 1種を配合してなる。WO」とMoO,の両方を添加してももちろんよい。助剤酸化物中のWO,とMoO,の合計の含有量は、0.5 モル%より大きく 4 0 モル%より小さい範囲であり、以下の式で表される。

PbOx+ (WO, y+MoO, z) tillibrial tillibria

WO, とMoO, の合計の含有量が、これ以外の範囲では低融点相の融点が980℃以上であり、母材の焼結温度を低下させる効果が得られない。

【0026】助剤酸化物の調製は、PbOと(WO」+ MoO₃)の配合割合が上記範囲となるように、これら の粉末をそれぞれ秤量し、混合すればよい。混合は乾式 混合でもよいが、水等に分散させて行う湿式混合がより 望ましい。混合後は、通常、反応性を高めるために、ボ ールミルや媒体攪拌ミル等を用いて粉砕し、混合粉の粒 径を微粒化することが望ましいが、粉砕工程は必ずしも 必要ではない。好ましくは、粉砕後に、270~730 ℃で仮焼成を行い、その一部を反応させた仮焼成粉を得 て、助剤酸化物とする。仮焼成を行うことで、所望温度 で溶融する助剤酸化物固溶体を得、液相析出温度を安定 化する効果が得られる。助剤酸化物の仮焼成粉は、さら にボールミルや媒体攪拌ミル等を用いて粉砕し、所望の 粒径とする。なお、助剤酸化物は、誘電体セラミックス と混合後、焼成中に仮焼成が進行するため、必ずしも調 製段階での仮焼成は行わなくてもよい。

【0027】本発明では、P2T系セラミックス等の鉛を含有する誘電体セラミックスの、低温での焼成を促進するために、上記助剤酸化物を添加配合する。図1は誘電体セラミックスの製造工程図で、助剤酸化物は、

(1)の工程で誘電体セラミックスの原料化合物を秤量した後、(2)の工程で混合する際に、同時に添加、混合してもよいが、(3)の混合粉を仮焼成する工程の後に添加すると、仮焼成粉に対する助剤酸化物の量の制御等が容易になるので、より好ましい。誘電体セラミックスの仮焼成は、通常、500~900℃で行い、(4)

の工程で得られた仮焼成粉を水、バインダー、分散剤等に分散させ、助剤酸化物の粉砕粉を添加して、混合、粉砕する。助剤酸化物の添加量は、得られた仮焼成粉に対して0.05~20モル%の範囲とし、添加量が0.05モル%未満では、焼結温度を低くする効果が得られず、20モル%を越えると密度が低下する。0.05モル%以上で添加量が多いほど焼結温度を低くすることができるが、6モル%を越えると、強度が低下する傾向にあり、必要な特性を得るために焼成時間が長くなることがら、好適には、0.05~6モル%の範囲とすることが好ましい。なお、この添加量は、助剤酸化物を誘電体セラミックスの原料粉に添加する場合も、仮焼成後の組成物に対する割合を基準とする。

【0028】誘電体セラミックスの仮焼成粉と助剤酸化物を混合後、(5)の工程において、通常の方法で造粒を行い、乾燥した後、(6)、(7)の工程で成形、焼成を行う。助剤酸化物の添加は、(4)の誘電体セラミックスの仮焼成粉の粉砕工程中の他、(5)の造粒工程中に行うこともできる。焼成温度は、助剤酸化物中のPb〇/(W〇、+Mo〇、)比と、助剤酸化物の添加量によるが、通常、大気中で、730~1100℃の範囲で行うことが望ましい。また、この時、成形体の周囲に酸化ジルコニウム($Z r O_z$)、ジルコン酸鉛($P b Z r O_z$))等の粉末を配置しておくことが望ましく、焼結後に表面に出てきた液相生成物を反応により除去することができる。

【0029】本発明では、PbOに(WO:+Mo O₃)を所定の割合で配合した助剤酸化物を、PZT系 誘電体セラミックスの仮焼成時に添加することで、PZ T組成中に所望の低融点液相核が分散する状態とするこ とができる。この誘電体仮焼成粉と助剤酸化物の混合物 を空気中で焼成すると、730℃以上の所定の温度にて 助剤酸化物が融点を迎え、多量の誘電体仮焼成粉の中に 液相が微量に存在する状態となる。液相は粒子間で物質 移動の経路を提供するものであり、相互に反応して誘電 体を生成する。さらに液相は誘電体の粒子成長の促進を し、粒子成長とともに粒界へ押し出されて、別の粒子間 に移動する。図2は、PbO-WO。系の状態図で、P b O とWO。の配合割合に応じた融点を有し、WO。が 16.5モル%の時に融点が最も低くなる (730℃) ことがわかる。WO、をMoO、に代えた場合にも同様 の傾向が見られる。

【0030】このように、液相が誘電体粒子と接触、反応、粒子成長、移動を繰り返して全体に焼結が進み、P $b0/(W0_1+M00_1)$ 比や添加量を調整することで、Pb0の蒸発が生じない所望の低温でPZT系誘電体セラミックスを焼結させることができる。一方、液相は焼結体の表面に達すると、Zr0と反応して焼結体より取り除かれ、焼結体組成中にほとんど残留しないので、誘電特性への影響が小さい。また、誘電体組成に含

50

· 40

まれるPbが助剤酸化物から過剰に供給されるため、誘電体原料の秤量工程で、予め、その供給分に相当するPbOを適量減じて調合すれば、PbOが過剰に焼結体に残らず、原料コストも抑制されるので有利である。主成分となる誘電体がPbを過剰に含む場合には、逆に、PbOを適量増量する。

【0031】上記のようにして得られる誘電体を圧電トランス等に用いる場合には、助剤酸化物と誘電体の混合粉を所定の形状に成形し、得られた成形体表面に内部電極となる導体材料を印刷形成して、複数積層した後、焼成する。この時、誘電体組成や、助剤酸化物のPbO/(WO,+MoO,)比、添加量を適宜調整することで、980℃以下の低温焼結が可能であり、導体材料として安価な銀(Ag単体)や銀ーパラジウム、銅または銅を主成分とする融点が1083℃以下の銅合金等を使用することができるので、製造コストが低減できる。

【0032】なお、このように、内部導体を有する積層体を同時焼成する場合、使用する助剤酸化物によっては、焼成後に層間剥離が生じることがある。これは、誘電体の自己収縮率が3%となる前に、液相核が発生する場合に起こりやすく、不均一な液相核形成によって収縮にムラができ、これが内部導体面に応力を引き起こすためと考えられる。そこで、助剤酸化物を選択する際には、融点が、母材となる誘電体の3%の自己収縮が完了する温度から収縮完了点となる温度までの間にあるような組成を選ぶとよく、剥離の発生を防止することができる。また、同じ組成の助剤酸化物を、内部導体材料に共材として添加することもでき、剥離の防止効果を高めることができる。

[0033]

【実施例】助剤酸化物の原料として酸化鉛と酸化タングステンの高純度粉末を用い、配合割合がPbO83.5 モル%:WO,16.5モル%となるように秤量した。これらを乾式混合した後、大気中、500℃で2時間仮焼成することで、PbOとWO,の一部を反応させた助剤酸化物仮焼粉(化学式:Pboss WO

0.165 O1.39)を得た。この助剤酸化物仮焼粉を、次に 媒体攪拌ミルにより微粒化、乾燥して反応性を高めた助 剤酸化物粉を得た。

【0034】一方、誘電体セラミックスとしては、最終 40 組成が(Pbo.91 Sro.00) {Zro.532 Ti O.552 (Yo.5 Nbo.5) o.01 } O. +0.5 a t m% Mn.2 O. となるように、原料となる酸化鉛、酸化ストロンチウム、酸化ジルコニウム、酸化チタン、酸化イットリウム、酸化ニオブ、酸化マンガン等の高純度粉末を秤量した。これら粉末をを乾式混合した後、大気中、850℃で7時間仮焼成することで、誘電体仮焼成粉を得た。次に、水2.5リットルと分散剤(誘電体仮焼成粉に対して2.5重量%)を予め混合しておき、この混合物中に、誘電体仮焼成粉 4.7 kgを徐々に混合して誘 50

電体仮焼粉スラリーを得た。この誘電体仮焼粉スラリー を媒体攪拌ミルであるパールミル装置を用いて、混合、 粉砕し、粒子径を0.2μm以下に制御した。

【0035】媒体機拌ミルで粉砕中の誘電体仮焼粉スラリーに対して、バインダを誘電体仮焼成粉の重量に対して4重量%、離型剤を誘電体仮焼成粉の重量に対して1.9重量%と、上記のようにした得た助剤酸化物を、誘導体仮焼成粉の重量1600gに対して13.5g(PbOo.ss WOo.ss Or.ss:0.5モル%)を混合し、3時間攪拌を行った後、スプレードライヤで乾燥して、誘電体仮焼物の造粒粉を得た。得られた造粒粉を成形装置を用いて、直径20mm、厚み1mmに、荷重3.27g/cm²で成形することにより、成形体を得た。

【0037】得られた誘電体セラミックスは、密度が7.62(g/cm³)であり、圧電定数 dn は1.5 1×10¹⁰ (m/V)であった。助剤酸化物を添加しない母材では、焼成温度1050℃で、密度が7.62(g/cm³)、圧電定数 dn は1.62×10¹⁰ (m/V)であるので、高い焼結密度と圧電特性を保持しつつ、低温焼成が可能になることがわかる。また、誘電体セラミックス中の、タングステンの含有量を調べたところ、Pb:W=1:0.0004~0.0009(モル比)であった。測定方法は、

【0038】また、助剤酸化物の原料としてWO,の代わりにMoO。を用いた以外は、同様の方法で助剤酸化物粉(化学式:Pboss MoOoms Oma)を得た。この助剤酸化物を、同一組成の誘導体仮焼成粉の重量1600gに対して13.5g(0.5モル%)を混合し、同様の方法で成形、焼成し、電極焼き付けを行った後、分極して、誘電体を得た(試料2)。

【0039】得られた誘電体セラミックスは、密度が 7. $64(g/cm^3)$ であり、圧電定数 dm は 1. 49×10^{10} (m/V) であった。また、誘電体セラミックス中の、モリブデンの含有量を調べたところ、 $Pb: Mo=1:0.0005\sim0.0015$ (モル比) であった。以上より、酸化タングステンに代えて酸化モリブデンを採用した場合も、低融点の相を形成して低温焼結を促進する同様の作用・効果が得られることを確認した。

) 【0040】次に、助剤酸化物のPb0とW0,の配合

割合を表 1 に示す範囲で変更し、助剤酸化物の添加量を 3 モル%とした以外は、上記試料 1 と同様の方法で焼成を行って、配合割合と焼結温度の関係を調べて、結果を表 1 に記載した。焼結温度の測定は 1 T M A 分析器によって行った。表 1 に見られるように、WO、の配合量が増すにつれて焼結温度が低くなり、1 P b O 1 WO、が 1 8 3 1 7 付近で最も低温となる。WO、の配合割合がこれより多くなると再び焼結温度が上昇する。助剤酸化物の添加によって母材の焼成温度(1 1 0 1 5 1 0

[0041]

【表1】

誘電体+3mol%[(PbO)1-x+(WO3)x] の焼結温度

	11.00/11 02/00/12
X	焼結温度(℃)
0	1050
0.005	1050
0.01	1010
0.03	990
0.17	920
0.25	1010
0.3	1030
0.4	1040
0.5	1100
0.665	970

【0042】また、助剤酸化物のPbOとWO,の配合 30割合をPbO:83.5モル%、WO,:16.5モル%で一定とし、誘電体組成への添加量を表2のように変更して、上記試料1と同様の方法で焼成を行い、母材

(添加量0モル%)と同等の焼結密度が得られる焼成温度と、圧電特性を測定して表 2、表 3に示した。表 2に明らかなように、助剤酸化物を0. 02モル%添加すれば、母材より焼成温度を低くする効果が見られ、0. 05モル%の添加で 1000℃以下、0. 2モル%の添加で 950℃以下での焼成が可能になる。ここで、添加量の増加に伴い焼成温度が低くなるが、表 3より 20モル%を越えると焼結密度が7. 50 (g/cm²) を下回り大きく低下するので、添加量は 0. 05~20モル%の範囲とするとよいことがわかる。

【0043】また、助剤酸化物の誘電体組成への添加量が20モル%の試料(試料3)と、25モル%の試料(試料4)について、それぞれ誘電体組成中の鉛とタングステンの比を測定したところ、試料3はPb:W=1:0.24~0.30モル比、試料4はPb:W=1:0.37~0.40モル比であった。

【0044】以上より、本発明の効果を得るためには、

鉛を1とした時のタングステンとモリブデンの合計のモル比が0.37より小さいことが必要であり、好ましくは、タングステンとモリブデンの合計のモル比が0.3 0以下であるとよい。

12

【0045】なお、表3より添加量の増加によって圧電定数が低下する傾向にあるが、これは、母材よりも焼成温度が低く粒子成長速度が低下するためと考えられる。このような場合には、焼成時間を長くして粒子成長を促進することができ、例えば、0.5モル%の添加量の場合、表4に示すように、焼成時間を6時間または8時間と長くすることで、母材と同等ないしそれ以上の圧電特性が得られる。

[0046]

【表2】

20

誘電体+Ymol%[(PbO)0.835+(WO3)0.165]の特性

		11 01/01/00] 05 15 12
Υ	密度 (g/cm³) 4H 焼成時	焼結温度(℃)
0	7.62	1050
0.02	7.6	1020
0.05	7.6	1000
0.1	7.58	960
0.2	7.61	950°
0.5	7.62	920
1	7.61	910
1.5	7.56	910
3	7.61	910
6	7.52	910
12	7.52	910
18	7.52	910
20	7.50	910
25	7.47	910

【0047】 【表3】

13 誘電体+Ymol%((PbO)0.835+(WO3)0.1651の特件

D3-E3+++1110170[(1 00)0.633+(4403)0.163] 073引注					
Υ	密度 (g/cm³) 4H 焼成時	圧電定数d31 ×10 ¹⁰ (m/V)			
0	7.62	1.62	母材		
0.02	7.6	1.62			
0.05	7.6	1.6			
0.1	7.58	1.58			
0.2	7.61	1.55			
0.5	7.62	1.51			
1	7.61	1.47			
1.5	7.56	. 1.38			
3	7.61	1.12			
6	7.52	0.64			

*【0048】 【表4】

10

*							
焼成時間 (H)	密度 (g/cm³)	焼結温度 (°C)	圧電定数d31 ×10 ¹⁰ (m/V)				
6	7.62	950	1.61				
8	7.62	950	1.81				

【0049】さらに、上記試料1と同じ方法で誘電休仮 焼成粉を調製し、その造粒粉に助剤酸化物を添加して、 成形装置を用いて成形することにより、図4(a)に示 すように、直径20mm、厚み1mmの円形の成形体シ ート2を4ピースと、直径20mm、厚み4mmの円形 の成形体シート3を1ピース準備し、これらを用いて積 層型圧電素子1を製作した。その手順を以下に説明す る。まず、図4(b)に示すように、4ピースの成形体 シート2の上表面に、2つの印刷パターン4A、4Bか らなる内部電極を形成して、これらを交互に積層し、圧 着した。内部電極材料としてはAgペーストを用い、印 刷パターン4Aを形成したものを成形体2A、印刷パタ ーン4Bを形成したものを成形体2Bとして示した。圧 着は、通常の成形プレスにて行った。この積層体を大気 中、950℃にて 時間焼成した後、図4(a)に示す ように、外部電極5A、5B、5CをAgペーストを用 いて形成して、積層型圧電素子1を得た。その後、図示 しないリード線を付与して分極を施し、圧電トランスと して利用できる。

【0050】また、別の用途として、図5 (a) に示す 圧電アクチュエータとしても用いることができる。これ は、図5 (c) に示す矩形の成形体シート 11、12を、図5 (d) の如く積層してなり、113はダミー 部、112はバッファー部、111を駆動部としてい る。矩形の成形体シート 11表面には、帯状部 119を 除いて印刷パターンの異なる電極層 41または電極層 42が印刷形成してある。電気的接続は、図5 (b) に示 す通り、電気的並列かつ機械的直列となっている。これに、図5(a)、(b)に示されるように、側面電極51、52を塗布し、図示しないリード線を取付け、圧電アクチュエータとして作用させる。

【0051】ここで、造粒粉に添加した助剤酸化物の配 合を種々変化させた時の、焼成後の層間剥離の有無を表 5に示した。この際、造粒粉の一次粒子径を2種類準備 して、それぞれの粒子径での層間剥離の有無を示した。 また、各粒子径における収縮率曲線を図3に示した。表 5のように、剥離は助剤酸化物の融点が低いほど、さら に粒子径が大きく低温での収縮率が小さいほど、起きや すくなっている。図3から、焼成時には、助剤酸化物に よる液相核発生前に、誘電体の自己収縮が発生するが、 3%の自己収縮が完了する前に液相が発生すると、不均 一な液相核形成(温度分布による)によって収縮に急激 なところと緩やかなところが発生し、これが内部導体面 に応力を引き起こして剥離を生じさせるといえる。よっ て、剥離なく焼成するには、図3の収縮率曲線におい て、誘電体の3%の自己収縮が完了する温度から収縮完 了点となる温度までの範囲に、融点を有する助剤酸化物 組成を、図2に示す状態図を基に選択するとよい。内層 導体にAg-Pd導体を使用した場合、一般的に焼成温 度は980℃程度であり、従って、この場合の助剤酸化 物の選択範囲は、980℃以下、つまり、0.5モル% から40モル%となっている。

[0052]

【表5】

10					
	助剤酸化物 融点(℃)	830	730	800	900
原料 粒径(μm)	組成 PbO/WO3	90/10	83.5/16.5	78/22	70/30
0.54	ハクリの有無	Δ	×	\triangle	0
	溶融開始時の 自己収縮率(%)	2.5	0	1.6	6.2
	ハクリの有無	0	×	0	0
	溶融開始時の 自己収縮率(%)	3.8	1.4	3.2	8.2

20

○:ハクリなし △:ハクリ5%以下 ×:ハクリ5%以上

【0053】このように、適切な助剤酸化物を選択することにより、母材性能を低下させることなく、低温焼成を可能にし、しかも積層体の層間剥離を防止して、高性能の誘電体素子を得ることができる。さらに、同じ組成の助剤酸化物を、内部導体材料に添加して、同様の積層型圧電素子1を製作したところ、剥離の発生率をより低くすることができた。

15

【0054】なお、上記実施例では、内部導体にAgを 使用したが、Сиを主成分とする導体を用いることもで き、同様の効果が得られる。Сиを内部導体として、同 様の積層型圧電素子1を製作した実施例を以下に示す。 【0055】まず、上記試料1と同様の方法で、誘電体 セラミックスに添加される助剤酸化物粉を調製した (化 学式:P b o.iss W O 0.165 〇1.33)。同様に、誘電体 セラミックスとして、最終組成が(Pbos Sroc) {Z r 0.538 T i 0.452 $(Y_{0.5} \ Nb_{0.5})_{0.01} \} O_3$ +0.5atm%Mn2O2となるように、原料粉末を 混合、仮焼成して誘電体仮焼成粉を得、これをスラリー 化した誘電体仮焼粉スラリーに対して、上記助剤酸化物 を 0. 5 モル%添加、混合した (誘電体仮焼成粉 160 0gに対して13.5g)後、スプレードライヤで乾燥 して、誘電体仮焼物の造粒粉を得た。

【0056】得られた造粒粉に、溶媒、バインダ、分散 剤等を添加して、一昼夜ボールミル装置にて、微粒化、混合した後、真空脱泡した。その後、ドクタープレード 装置により、ブレード間隔125μmでグリーンシート に成形した。グリーンシートは80℃で乾燥した後、シ 40ートカッターで100mm×150mmに切断し、同一形状の所定枚数のグリーンシートを得た。

【0057】次いで、CuOペースト(CuO含有量50重量%、CuO比表面積10m²/g)1800gに対して三井金属(株)製(1050YP)Cu粉:1.1gおよび共粉:0.09gを添加した後、遠心力攪拌脱泡装置により混合して、電極ペーストを調製した。共粉は、誘電体材料と同じ組成か、誘電体材料の成分の一部からなる粉体で同じ組成の粉体で、電極層と誘電体層の接着強度を向上する目的および電極層と誘電体層と 50

の収縮を合わせ込む目的に添加される。

【0058】この電極ペーストを、スクリーン印刷装置により、各グリーンシートの上表面に $5\sim 8~\mu$ mの厚みで、所定の印刷パターンにて印刷した後、130℃で1時間乾燥した。さらに、電極印刷したグリーンシートを20枚(および上下3層づつダミー用シートとして電極印刷していないグリーンシートを積層)積層して、シート加圧用治具に固定し、120℃で10分間、80 kg/m²で熱圧着してマザーブロックを得た。熱圧着したマザーブロックは、シートカッターで9 mm×9 mmに切断した。

【0059】なお、本実施例では、マザーブロックを9 mm $\times 9$ mmに切断したが、2 mm $\times 2$ mm以上であれば、本発明を適用して効果を得ることが可能である。また、積層枚数を20 枚としたが、枚数は任意とすることができる。

【0060】次に、ラミネート装置にて、120℃で10分間、160kg/m²で再び熱圧着して、図6(a)に示す誘電体シート61と内部電極層7の積層体ユニット62を得た。ここで、内部電極層7は、右側面に電極が露出する印刷パターンの電極層71と、左側面に電極が露出する印刷パターンの電極層72が交互に位置するように配置される。この積層体ユニット62を20個積層し、ラミネート装置にて、80℃で10分間、500kg/m²で再び熱圧着することにより、図6(b)に示す誘電体シート61と内部電極層7の積層体6を得た。

【0062】脱脂した積層体6は、図8の還元処理パターンに従い、還元処理を行った。この時、Ar-H2(1%)5000mlおよびO2(pure)6.5~6mlを含む雰囲気中で、還元時酸素分圧を、炉外

酸素分圧で管理して、 $1 \times 10^{2.35}$ atmとなるように制御した。また、処理温度(最高温度)は約350 とし、この温度で12時間保持した。また、上記脱脂工程と同様に、積層体1の上下にMg0板81を配置して、こう鉢に入れて還元処理を行った。

【0063】なお、還元処理時の雰囲気は、炉外酸素分圧で 1×10^{-11} $\sim1\times10^{-12}$ atmを実現できれば、ガスの濃度および処理量はその限りではない(この時、炉内に投入する実質的な H_2 $\geq 0_2$ の比は、 H_2 : $0_2=50:50\sim50:5.5$)。処理温度は、 $305\sim400$ ℃、保持時間は、 $0.25\sim16$ 時間の間であればよい。

【0064】還元処理を行った積層体6を、MgOこう鉢中に入れ、還元雰囲気で焼成した。この際の治具構成は、図9(a)、(b)に示すようにし、積層体6の上下に、MgO板 $81(15\times15$ mm $\times1$ mm) およびスペーサとしてコージェライトハニカム体83をそれぞれ配置し、最上部には、MgO重り $82(1\sim10g)$ を設置した。MgO重り82の外形は、MgO板81とほぼ同じとした。さらに、Ø9(c)のように、高温時 20に積層体6からPbOが蒸発して組成が変動するのを防止するため、こう鉢の底面外周部にジルコン酸鉛(Pb2rO3)84を適量(合計で32g)配置した。

【0065】上記のように積層体6を配置したこう鉢 を、図10に示すような、還元雰囲気で焼成可能な炉に 入れ、図11に示す温度・雰囲気パターンに従って還元 焼成を行った。図10のように、炉室には、COz(p ure)、Ar−CO (10%) およびO₂ (pur e)を導入するための配管が接続されており、それぞれ マスフローコントローラで流量調整可能となっている。 【0066】図11(a)に示す温度・雰囲気パターン で昇温して、焼成温度約950℃、炉内酸素分圧1×1 0 atmで、約4時間保持して、誘電体焼結体を得 た。このようにして、還元焼成を行った時のプロファイ ルは、図11(b)に示すようになり、温度・酸素分圧 一定時において、目標値xに対して10'($y = x \pm$ 0. 3) a t m以内の安定した雰囲気が実現できた。 【0067】なお、図11(a)の温度・雰囲気パター ンに限らず、500℃以上では、図11(c)に示す温 度-分圧範囲内で還元焼成を行うこともでき、図のよう*40

*に、PbOが還元されず、Cuが酸化されない酸素分圧 範囲を、焼成温度に応じて設定することで、同様の効果 が得られる。この時、CO、:CO: O = 5000: $500\sim0$: $20\sim0$ の比で炉中に投入されることが望ましい。また、昇温速度については、 $300\sim20$ C/ 時間の範囲とすることが望ましい。

18

【図面の簡単な説明】

【図1】誘電体セラミックスの製造工程図である。

【図2】PbO-WO, 二元系状態図である。

【図3】誘電体の焼成時の収縮率曲線を示す図である。

【図4】(a)は本発明の誘電体を用いた積層型圧電素子の概略構成図、(b)は(a)の分解斜視図である。

【図5】(a)は本発明の誘電体を用いた圧電アクチュエータの全体斜視図、(b)は圧電アクチュエータの電気的接続を示す概略構成図、(c)は圧電アクチュエータを構成するシートの正面図、(d)は圧電アクチュエータの分解斜視図である。

【図6】(a)は積層体ユニット、(b)は積層体ユニットを重ねて得た積層体の概略構成を示す斜視図である。

【図7】(a)は脱脂工程における治具構成を示す展開 斜視図、(b)は脱脂処理温度パターンを示す図である。

【図8】 還元処理温度パターンを示す図である。

【図9】(a)は焼成工程における治具構成を示す斜視図、(b)、(c)は(a)の展開斜視図、側面図である。

【図10】焼成工程における焼成炉構成と配管系統を示す図である。

【図11】(a)は目標とする温度・酸素分圧パターンを示す図、(b)は実際の温度・酸素分圧パターンを示す図、(c)はCuの酸化およびPbOの還元が生じる温度-酸素分圧の関係を示す図である。

【符号の説明】

1 積層型圧電素子

2、2A、2B 成形体シート

3 成形体シート

4 A 、4 B 印刷パターン

5 A、5 B、5 C 外部電極

[図1]

....

【図8】

【図10】

【図7】

【図9】

[図11]

フロントページの続き

(51) Int.C1. H O 1 L	F-7/3 3 H L 3	
(72)発明者	藤井 章	
	愛知県刈谷市昭和町1丁目1番地	株式会
	社デンソー内	
(72)発明者		
	愛知県西尾市下羽角町岩谷14番地	株式会
	社日本自動車部品総合研究所内	
(72)発明者.		H
	愛知県西尾市下羽角町岩谷14番地	株式会
(7つ) 変わる。	社日本自動車部品総合研究所内	
(72)発明者	山本 孝史	

社デンソー内

愛知県刈谷市昭和町1丁目1番地 株式会

F I				7	ィーマコート	、(参考)	
HO1L 41	/22			Α			
				Z			
(72)発明者 月	 計岡 拓実	∆r €		ार-			•
·	欧 知県西尾	市下	羽角町	岩谷	14番地	2 株式会	:
· *	t日本自動)車部。	品総合	研究	听内		
(72)発明者 县	屋 年厚	Ţ			•		
3	经 知県刈谷	市昭	和町 1	丁目	1 番地	! 株式会	:
†	tデンソー	·内 ·					
Fターム(参考) 4CO3O	AA23	AA24	AA40	BA09	CA03	
		CAO8	GA27				
	5G3O3	AA10	AB15	BA12	CA01	CB18	
		CB21	CB25	CB32	CB35	CB37	
		CB39	CB40	CB43	CC03	CDO1	

CDO4 DAO5