Lab 11: Electron Acceleration and Deflection by Electrostatic Fields

Philip Kim

May 12, 2021

Table 1: Baseline Measurement					
Point Near Anode	$x_1 = ?$?	$y_1 = ?$?	
Point Near 10cm	$x_2 = ?$?	$y_2 = ?$?	
Fit to $y = ax + b$	a = ?	?	b = ?	?	

Table 2: Electron Deflection					
x_{obs}	y_{obs} (two values for two polarity method)	$y_{baseline}$	$y = y_{obs} - y_{baseline}$		

(a) Measure the distance between the plates s = ?

a

- (b) Graph $y\ vs.\ x^2,$ include error bars. Measure the slope of the graph, slope =? b
- (c) From the slope, calculate the correction factor $F_D=?$

 \mathbf{c}

Table 3: Thompson's Experiment					
$V_{PS}(kV)$	2.00	2.50	3.00	3.50	
I (A)					
B (T)					
e/m (C/kg)					

 Sketch the path of the beam:						

11.6 Questions

- 1. Calculate the speed of the electron for the maximum voltage available for acceleration, in meters per seconds.
- 2. What fraction of the speed of light is this?
- 3. According to the special theory of relativity, the mass m of an object that is moving with velocity v with respect to an observer is larger than its rest mass m_0 . The rest mass is the mass of the object when it is at rest. The equation that describes this phenomenon is

$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}},$$

where $c = 3.0 \times 10^8 m/s$ is the speed of light in vacuum. Evaluate the mass for the electrons in this experiment that are moving at v you calculated in 1. How much larger is this than m_0 ?

4. Compare your measured e/m from Thompsons Experiment to the known value, $1.76 \times 10^{11} C/kg$.