Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question number	Scheme	Marks
[(a)	(i) small village souse census	Bi
	e.g. we electoral register or some other suitable list	B1.
	(ex a la company)	S (
	(ii) Sample survey eg. list of times and days when no of vehicles travelling through can be counted, (some suitable list of time periods)*	ß(4)
(1)	eg. X = no. of vehicles passing through in a 10min period	BI
(6)	X could have a <u>Poisson</u> distribution	ß (2)
:	* time period must be specified e.g. 10 mins, 1 hour, 7 an-7pm but < 1 day.	6
2. (a)	- U 1 A H X2Pa(0.9)	B1 cs.o.
(6)	Y = no. of accidents in next 6 months. Y~ Po(5.4)	BI
()	$P(Y = 2) = \frac{e^{-5.4}(5.4)^2}{2} = 0.06585$ or 0.0658/9	MI, AI (3)
(c)	M= no. of months with no accidents Identify correct binomial	BI (Their (a))
	$P(H=2) = {4 \choose 2} (0.407)^2 (0.593)^2 = 0.3495 (0.349 \sim 0.350)$) HI, AI (3)
·		3
		·

Stewart House 32 Russell Square London WC1B 5DN .

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question number	Scheme	Marks
3.	Ho: ρ= 4 ; H,: ρ ≠ 4	B1; B1
	X = no. of gold leads in sample of 20. Under Ho Xalle, &	
	Critical Region Probability P(x < 1) = 0.0243 E(x)=5 or	Mı
	P(X <8) = 0.9591 P(X <2) = 0.4913 2x P(X <2)	
	C.R. $\times 1$ $P(x)=1-0.8982$ = 2×0.0913 or $\times 9$ = 0.1826	A1 each value.
	or $\times > 9$ = $\frac{0.1826}{}$	π,
	Not significant (either x=2 notin C.R. or prob > 1070)	МІ
	Insufficient evidence of a change in proportion of gold leads	AIV
		7
4.	X = no. of letters marked 1st class X~B(10.0-20)	
(a)	P(x >, 3) = 1-P(x < 2), = 1-0.6778 = 0.3222 40.322	MI, A1 (2)
(6)	$P(X < 2) = P(X \le 1)$, = 0.3758 ~ 0.376	MI, AI (2)
(c)	l	MI (Normal approx)
	F = N(14, 11-2)	Al oro2
	$P(F \le 12) \approx P(2 \le \frac{12.5 - 14}{511.2})$ \$\text{tundardizing} \text{Stundardizing}	HI 5 MI
	$\frac{1}{11} \frac{1}{12} \frac{1}{13} = \rho(2 \le -0.4482) Awrt -0.45$	AI
	= 1-0-6736	
	-0.45 (AWRT 0.326~0327)	AI (7)
(4)	The 70 letters form a random sample or are representative	B1 (1)
	or letters are <u>independent</u>	(12)

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question	Scheme	Ma	nrks
number			
5.	X= no. of requests for bulbs in a week. X~Po(2)		· [
· (a)	$P(x=4) = e^{-2} \cdot 2^{4} \text{ar} \left[P(x \le 4) - P(x \le 3) \right]$	Hi ·	
	4! 0.4473 - 0.8571 = 0.090 or 0.09	Αι	(2)
		Hı, Al	(2)
(J(b)	$P(x>5) = 1 - P(x \le 5), = 1 - 0.9834 = 0.0166$		
(c)	Y=no. of requests in 3 weeks. Yn Po (6)	<u>6</u> 1	
	P(Y 5), = 0-4457	MI, AI	(3)
(d)		61781	
	R=no. of requests in 4 weeks. R~Po(8)	MI, AI	
1	P(R &3) = 0.0424 [C.R. &3 & prob (3 /0)]		
	there is evidence that the rate of requests has decreased	AIJ	(5)
6 (a)	$f(x) = d f(x) = \frac{1}{27} \left(-3x^2 + 12x \right)$ Attempt $\frac{d}{dx}$	MI	
	Q.A.	A2/110	-1 e.e.oo-
(W	$\frac{d[f(x)]=0}{dx}=-6x+12=0, \Rightarrow 2c=2 \text{ is mode}$	MI, AI	(2)
(,	F(x) 4	B1	
(0)	(1/2) z, f(x) axes maked	BI	(0)
	and at least 1, 4		(3)
(d)	$\mu = \int_{1}^{4} \left(\frac{4z^{2}-z^{3}}{q} \right) dz$ Attempt $\int_{1}^{\infty} f(x) dx$	lx Mi a	e inlegation Herpted
	$= \frac{1}{9} \left[\frac{4x^3}{3} - \frac{2x^4}{4} \right]_{-1}^{4} = \left(\frac{256}{27} - \frac{256}{36} \right) - \left(\frac{4}{27} - \frac{1}{36} \right)$ Use of the correct limits of the correct limits and the correct limits are correct limits.	of MI	
	= 1.25 0.9/4	Al	(3)
(e)	(4,007 0.51)	В	(1)
(+)	F(12) >0.5 => 12 > median	015	(from(e))
	$F(2) = \frac{1}{27} (-8 + 24 - 5) = \frac{1}{27} = 0.407 \implies mode < median$	ßι	(4) (2)

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question number	Scheme	Marks
	(a) $f(\tau(0.2)) = 0.2$	B1 (1)
7,	le facilities and the second of the second	ß1 (1)
	(b) $\mu = E(\tau) = 0.5$	нı¬
	(c) $E(\tau^2) = \int_0^1 kt^2 dt = \left[\frac{t^3}{3}\right]_0^1$	A1 dep
	$V\alpha(\tau) = (\frac{1}{3}) - (0) - \mu^2 = \frac{1}{12}$	AI (4)
	(d) X = no. of children with T<0.2 X 2B(20,0.2) binomial	1
	$P(x \leq 4) = 0.6296$	HI, AI (3)
	(e) Expect mean to still be close to 0.5 (or no change)	BI
	Expect variace to be <u>reduced</u>	B1 (2)
	(f) $f(T<0.2) = \int_0^{0.2} 4t dt$ Attempt $\int 4t dt$ between $0, 0.2$	MI
	$= \left[4t^{2}/2\right]_{0}^{0.2}$	
	$= 2 \times (0.2)^2 - 0 = 0.08 $	Al cs.o. (2)
	(g) Y= no. of players stopping star in under 2s.	M
	y~β(75, 0.08) ≈ f ₀ (6) λ=6	a 1
	$P(Y>7) = 1 - P(Y \le 7)$	N
	£ (- 0.7440	Ai (i.)
<u> </u>	= 0.256	(4)
		(7)
3.c.	Nomal Approx N(6,5.52) 16, √5.52 M1 } 15.2/4.	ત્રિક