

16 ANEXO 4.I: RESUMEN Y COTIZACIONES DE SST

Precios con In:	stalación incluyen	conexión con cañería, tod	os precios en CLP y IVA incl.			
Instalación						
		Fuente		Porcentaje del c		
		"Grosse Solaranlag	en", p.387	10,7%		10,7%
		Isener		12,6%		13,1%
Thermosifo	n			11,7%		11,9%
Empresa	Fecha	Fuente	Estanque ca. 150 ltrs.	Est. ca. 300 ltrs.	Tipo	Marca/Modelo
Yolito	12.3.2009	según cotización	1.559.053	2.331.540	Termosifon	SK Ecología
Sodimac	16.3.2009	según cotización	1.124.190	1.709.090	Termosifon	Junkers
Isener	17.3.2009	según cotización	1.648.150	2.092.020	Termosifon	Chromagen
Junkers	18.3.2009	según cotización	962.327	1.521.548	Termosifon	Junkers
Thermosifo	n con Instalació	ón incl.				
Solfrio	11.3.2009	según cotización	1.750.000	2.390.000	Termosifon	Junkers
		según cotización	990.000	1.350.000	Termosifon	Shentai
Yolito		valor calculado	1.740.958	2.609.459	Termosifon	SK Ecología
Sodimac		valor calculado	1.255.357	1.912.813	Termosifon	Junkers
Isener	17.3.2009	según cotización	1.856.400	2.366.910	Termosifon	Chromagen
Junkers		valor calculado	1.074.608	1.702.916	Termosifon	Junkers
PRECIO PRO	MEDIO		1.444.554	2.055.350	_	

Valor de franquicia tributaría para viviendas unifamiliares según proyecto de ley, articulo 4º

Año	UF de fomento por vivienda	Valor CLP (UF=22.000 CLP)
2009	33,5	737.000
2010	32,5	715.000
2011	32	704.000
2012	31	682.000
2013	30	660.000

CMR Falabella | Banco Falabella | Falabella Pro | Viajes Falabella | Falabella.com | Supermercados Tottus

sodimac.com

₹ CARRO · MI CUENTA · MI COMPRA · REGISTRO · SERVICIO AL CLIENTE · CONTÁCTENOS

Muebles • Aire Libre • Línea Blanca • Electrodomésticos • Ventilación • Baño • Cocina y Aseo • Herramientas • Mat

Ferretería · Pisos · Puertas y Ventanas · Iluminación · Decohogar · Accesorios Vehículos · Electrónica y Comunicación · Seguri

buscar

Nuevos Productos | Oportunidades CMR | Producto a Pedido | Regalos | Tiendas | Catálo

Placas solares

Equipo solar termosifón, 1 panel, kit solar y acumulador 141484-4

\$ 1.124.190 x C/U CMR Puntos: 7.494

Cuota normal

1 cuotas de \$ 1.124.190

Precios y cuotas válidos sólo para Sodimac Internet y Venta telefónica.

.

Cantidad:

- Marca: Junkers
 Origen: Portugal
- Modelo: Comfort FKB-1
 Garantía (meses): 24
 Largo (cm): 236.5
- Ancho (cm): 115
- Alto (cm): 170.5
- Número personas estimado: 4
- · Capacidad en litros: 150
- Cacterísticas generales: Termosifón, sistema solar simple para calentamiento de agua sanitaria. Panel y kit solar, captador y acumulador de agua. Utiliza un líquido caloportador que recorre el circuito y transmite el calor hacia el acumulador de agua.
- · Estructura: Aluminio resistente y regulable que permite mayor captación de radiación según zona geográfica
- Panel captador: Plano, modelo Comfort FKB-1. Placa absorvente de radiación solar con parrilla de cobre.
 Tratamiento semi-selectivo en Laca Solar Negra. Cubierta de vidrio templado anti-impacto. Marco de fibra de vidrio.
 Aislación de lana mineral.
- Kit Solar: Sistema de válvulas inteligentes que accionadas por la temperatura del agua direccionan el caudal necesario al calefon o directo al sistema, para dar una temperatura de salida del agua de 45° aproximadamente
- Medidas del kit. (Frente-Alto-Fondo): 22,3 x 12,7 x 11,2 cm
- Número de paneles: 1
- Peso del sistema lleno (kilos): 300
- · Material conexiones: EPDM con Nylon
- · Protecciónes: Válvula de alivio. Vaso de expansión Ánodo de magnesio Líquido caloportador anticongelante
- · Díametro conexión canerías A.C.S.: 1/2
- Ubicación: Sobre techos planos 35° o inclinados regulable entre 15° a 45° que esten orientados al Norte
- Usos: Se adapta a cualquier equipo de agua caliente sanitaria, temperado de piscinas, apoyo a calefacción central. Ahorra hasta 70% de gas si se adapta al calefón.
- Observaciones: El valor indicado es el del equipo y no incluye instalación. El valor de la instalación será según el

Santiago, Marzo de 2009.

SEÑORES CLIENTES PRESENTE

Ref.: Presupuesto Sistema Solar JUNKERS para Agua Caliente Sanitaria.

Estimado cliente:

Nos es grato saludarle y presentar nuestro presupuesto por Instalación y Suministro de Sistema de Energía Solar Junkers para Agua Caliente Sanitaria.

Se ofrecen dos sistemas termosifón para su elección, adjunto catálogo.

Presupuesto sujeto a factibilidad en terreno

PRECIOS ENTREGA FUNCIONANDO IVA INCLUIDO:

Equipo Termosifón 150 Lts.

Equipo Termosifón 300 Lts.

\$ 1.750.000

\$ 2.390.000

Alternativa: Equipo marca Shentai, procedencia China, tubo al vacío más estanque de acumulación. Atmosférico, con bomba adicional.

Precios:

- Termosifón 150 Lts. \$ 990.000
- Termosifón 300 Lts. \$ 1.350.000

FORMA DE PAGO: Tres cuotas, documentado con la aceptación al día, 30 y 60.

FECHA: 16/03/2009

vonecastro@yolito.cl <ecastro@yolito.cl>

16. Marzo 2009 10:01 Cotizacion Yolito

YOLITO CENTRO FERRETERO

80.565.900-9 AVDA. LAS CONDES 7090, SANTIAGO

MESA CENTRAL: 7500600 FAX: 7500601

COCINAS Y BANOS FONO : 7500650 FAX : 7500651

COTIZACION #: 902013 FECHA COTIZACION: 12/03/2009

HORA COTIZACION: 15.28.50

CLIENTE : COTIZACION AT. : TELEFONO : FAX :

DIRECCION :

R.U.T. : 1.000.000-9/00

-----D E S C R I P C I O N------ CANTIDAD- -PREC.UNIT-

TERMOSIFON 160LT P/TECHO PLANO KIT ACS SOLAR 160 1,00 1310.128,57

TERMOSIFON 300LT P/TECHO PLANO KIT ACS SOLAR 300 1,00 1959.277,31

Fecha:17-03-09

Descripción	Codigo	Cant.	Valor unitario neto \$	Total neto en \$
Termosifón de 300 Litros para techo inclinado (especificar) Incluye: Kit Solar/ Estructura de soporte para cubierta plana	7717500328	1	\$ 1.278.611	\$ 1.278.611
Termosifón de 150 Litros para techo inclinado (especificar) Incluye: Kit Solar/ Estructura de soporte para cubierta plana.	7717500324	1	\$ 808.678	\$ 808.678
	ļ	To	otal Neto \$	\$ 2.087.290
			IVA	\$ 396.58 5
		Tota	l IVA Incluído	\$ 2.483.875

VALORES CON DESCUENTO ESPECIAL

Validez Cotización 30 días

Plazo de entrega A convenir

Puesto en Santiago

Contacto de venta

Gabriela De La Puente Especificadora Solar Robert Bosch S.A Junkers Chile 09-882313 56 2 7820200

17ANEXO 4.II: ESPECIFICACIONES DE SISTEMA SOLARES ESTÁNDARES "TIPO"

Sistemas Solares Térmicos para la simulación con el programa T-Sol

		Variante 1	Variante 2	Variante 3	Variante 4	
	Tipo de Colector	Jiangsu Sunrain Solar Energy TZ58-1800	Jiangsu Sunrain Solar Energy TZ58-1800	Junkers/BBT Thermotechnik GmbH FKB-1S	Junkers/BBT Thermotechnik GmbH FKB-1S	
	Cantidad / Superficie de Apertura	15 tubos / 1,4 m ²	30 tubos / 2,79 m ²	1 colector / 2,26 m ²	2 colectores / 4,52 m ²	
Carácteristica	Hidraulica / Superficie	tubo vacío heat pipe de vidrio borosilicato / ALN/SS-ALN/Cu	tubo vacío heat pipe de vidrio borosilicato / ALN/SS-ALN/Cu	Parilla de tubos de cobre / Tinta solar negra	Parilla de tubos de cobre / Tinta solar negra	
Colector	Potencia de colectores de sistema en kW	1,8 kW	3,43 kW	1,46 kW	2,91 kW	
	Efficiencia óptica etha 0 Coefficiente de	0,734	0,734	0,648	0,648	
	transmisión de calor "simple" U _{loss}	1,529	1,529	5,77	5,77	
	Coefficiente de transmisión de calor					
	"cuadrado"					
	Volumen en litros	150	300	150	300	
	Consumo litros/diario	120	240	120	240	
	Espesor del Aislamento en mm	100	100	100	100	
Carácteristica Acumulador	Coeficiente efectivo de la conductividad térmica en W/(m*K)	0,065	0,065	0,065	0,065	
	Intercambiador de calor: valor kS en W/K por litro	1	1	1	1	
Carácteristica	del depósito* Sistema Auxiliar	Caldera instantánea de gas - 9 kW	Caldera instantánea de gas - 9 kW	Caldera instantánea de gas - 9 kW	Caldera instantánea de gas - 9 kW	
Sistema Auxiliar	Intercambiador de calor: valor kS en W/K por litro	1	1	1	1	
	del depósito Certificación	EN 12975-1,2:2006	EN 12975-1,2:2006	EN 12975-1,2:2001	EN 12975-1,2:2001	

Fuente: T-Sol

^{*} kS es el producto de la conductividad térmica y la superficie del intercambiador. Este valor es igual al cociente de la potencia transmitida y la logarítmica diferencia térmica del intercambiador.

18 ANEXO 4.III: COMPARACIÓN PROGRAMAS DE CÁLCULO Y FUNCIONAMIENTO T-SOL

Ejemplo de Interfaz Gráfica de Solo2000:

No tiene Suficientes Variables para análisis de detalle

PROGRAMA T-SOL

Etapas a definir en T-Sol

Etapa 1: Definición de Equipo

Etapa 2: Ingreso de Datos

Etapa 3: Resultados

Interfaz de Ingreso de datos: Se ingresan los siguientes datos

Manualmente: Temperatura mínima externa

 Datos Importados desde base Meteonorm 6.1: Altitud / Diferencia de temperatura / Longitud / Latitud / Zona Horaria

Interfaz de datos de Agua y Consumo

Demanda de energía total según cálculo de cantidad y temperatura de ACS:

Influencia de viento:

 El viento está incorporado por la característica de los colectores que están descritos en las especificaciones técnicas.

<u>Influencia de altura / cielo:</u>

 Se incorporó la radiación atmosférica, por la contribución directa y difusa, considerando el "Clearness-Index"

La radiación solar está calculada con un Albedo de 5%.

19 ANEXO 4.IV: CÁLCULOS DE LOS SST ESTÁNDAR POR LUGAR (T-SOL PRO)

Todos los informes de cada simulación realizada, se entregarán formato digital. A continuación, se presenta un ejemplo de uno de los informes.

EcofysValgesta S.A.

SECOFYSVALGESTA

Antofagasta
Variante 1

Resultados de la simulación anual

Potencia de colectores instalada:	1,80 kW	
Potencia de colectores instalada (bruta):	2,57 m²	
Irradiación a la superficie colector:	2.748,88 kWh	1.958,59 kWh/m ²
Energía suministrada por los colectores:	1.972,11 kWh	1.405,14 kWh/m ²
Energía suministrada por los circuitos del colector:	1.408,05 kWh	1.003,24 kWh/m²
Suministro de energía para la producción del agua caliente:	1400,23 kWh	
Energía sistema solar para el ACS:	1033,57 kWh	
Energía suministrada por la calefacción auxiliar:	366,66 kWh	
Ahorro Gas natural H:		180,4 m³
Emisión de CO2 evitada:		381,37 kg
Fracción solar ACS:		73,8 %
Ahorro energético proporcional (EN 12976):		79,6 %
Grado de eficiencia del sistema:		37,6 %

T*SOL Pro 4.5 Página 2 07/04/2009

EcofysValgesta S.A.

Antofagasta Variante 1

Fracción de energía solar en el consumo energético

Los cálculos han sido realizados con el programa de simulación para instalaciones solares térmicas T*SOL Pro 4.5 .Los resultados han sido calculados mediante un modelo de cálculo matemático con un intervalo de tiempo variable de max. 6 minutos. Los resultados reales pueden mostrar variaciones debido a las variaciones meteorológicas, de consumo y por otras causas.El esquema de la instalación no substituye el dibujo técnico de la instalación solar térmica.

T*SOL Pro 4.5 Página 4 07/04/2009

20 ANEXO 4.V: COMPARACIÓN CALCULO PARA OBTENER TEMPERATURA DE AGUA DE RED

	remp	eratu	ıra d	e Agı	ua de	Rec	i										
	Antofagasta	Arica Chacalluta	Arica	Balmaceda	Calama	Castro	Chillán	Coihaique	Concepción	Copiapó	Huasco	Illapel	lquique	La Serena	Mamiña / Reg I	Osorno	Pelluhue
T Amb _{EXT}																	
Año	16,8	19,1	19,4	11,0	16,5	10,5	12,8	11,3	12,9	17,4	15,1	15,5	18,7	14,5	15,8	10,5	13,
*T Agua _{RED}	según	Europea	n simp	lified m	ethod												
Feb.	18,5	20,9	21,1	13,9	17,7	12,4	14,6	14,2	14,6	19,4	16,6	18,1	20,4	15,9	16,1	12,5	14
Ago.	15,6	17,7	18,3	8,7	15,6	9,4	11,4	9,0	11,6	15,6	14,1	13,4	17,7	13,7	15,3	9,1	12
Ago.	14,8	17,0	18,0	5,9	12,7	8,5	9,9	6,2	10,1	12,9	13,2	10,7				7,7	11
								0,2	10,1	. = , =		10,7	17,5	13,1	13,7	.,,	
	Puente Alto	Puerto Montt	Puerto Natales	Punta Arenas	Quilpué	Rancagua	San José de Maipo	Santiago	Saavedra	Sewell	Talca	Lemuco	Valdivia	Vallenar	Valparaíso	Valparaiso- Bellot	
T Amb _{ext}	Puente Alto	Puerto Montt	Puerto Natales	unta Arena	Quilpué	Rancagua	San José de Maipo			ewell	Talca						
	Puente A Ito	5,01 Puerto Montt	E.7. Puerto Natales	unta Arena	o,0	Rancagua 8,41	San José de Ö Maipo			ewell	Talca						
Año	13,6		7,3	9 Punta Arena	16,0	14,8	14,0	Santiago	Saavedra Saavedra	== × × × × × × × × × × × × × × × × × ×		Temuco	Valdivia	Vallenar	Valparaíso	Valparaiso- Bellot	
Año *T Agua _{RED} Feb.	13,6 según 16,7	10,5 Europea 12,4	7,3 n simp	6,6 Biffied m	16,0 ethod	14,8	14,0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12,1 14,2	8,4 11,7	13,5	11,7	11,4	72,3	Valparaíso 16,0	Valparaiso-	
Año *T Agua _{RED} Feb.	13,6 según	10,5 Europea	7,3 n simp	Bunta Arena	16,0 ethod	14,8	14,0	Santiago	Saavedra Saavedra	== × × × × × × × × × × × × × × × × × ×	13,5	00000000000000000000000000000000000000	Valdivia	Vallenar	Valparaíso	Valparaiso-	
Año *T Agua _{red} Feb. Ago.	13,6 según 16,7 10,9	10,5 Europea 12,4	7,3 n simp 9,1 6,0	6,6 lified m. 8,5 5,1	16,0 ethod 18,7 13,9	14,8 17,9 12,2	14,0 17,1 11,3	14,6 17,5 12,3	12,1 14,2 10,9	8,4 11,7	13,5	11,7	11,4	72,3	Valparaíso 16,0	Valparaiso-	
T Amb _{EXT} Año *T Agua _{RED} Feb. Ago. T Agua _{RED} Feb.	13,6 según 16,7 10,9	10,5 Europea 12,4 9,1	7,3 n simp 9,1 6,0	6,6 lified m. 8,5 5,1	16,0 ethod 18,7 13,9	14,8 17,9 12,2	14,0 17,1 11,3	14,6 17,5 12,3	12,1 14,2 10,9	8,4 11,7	13,5	11,7	11,4	72,3	Valparaíso 16,0	Valparaiso-	

21ANEXO 4.VI: CÁLCULO DE TEMPERATURA DE AGUA DE RED SEGÚN ESM2

Temperatura de Agua de Red según método EMS2* (European Simplified Method – DG XII) *Proceedings of the 1986 International Congress on Renewable Tagua = (Texterior mes+ Texterior media año) / 2 Energy SourcesEuropean validation of simplified methods for sola Con Tagua, la temperatura promedia del agua de la red mensual active space and water heatingInternational Congress on Renewable Texterior, la temperatura exterior promedia del mismo mes Energy Sources [18-23 Mayo 1986, Madrid] T Amb_{EXT} Ene. 19,9 Mar 19.7 22.4 18.2 15.0 14.6 15.1 20.3 17.8 17.1 16.3 12.8 15.6 Abr. 17.8 20.0 20.7 11.2 16.7 10.8 12.6 11.5 12.7 17.2 15.7 15.3 19.8 15.3 16.1 10.4 13.3 16,6 18,9 9,7 11,3 14,5 13,9 14,7 9,2 11,9 18,1 7,9 13,8 11,1 8,2 12,2 18,2 13,7 Mayo 15,8 17,8 Jun. Jul. 15.3 16,2 17,4 4,9 12.0 7,8 9,0 5.2 9.2 11,9 12,6 9,6 17.0 12.5 13,2 6,9 10.3 Ago 15.2 16.3 17.1 14.6 10,0 6.6 10.2 13.8 13.1 11.2 16.7 12.8 14.8 10.9 Sept. 14.8 16.6 16.7 8.0 16.0 8.1 10.6 8.3 10.8 15.7 13.1 12.9 16.2 12.5 16.0 8.3 10.8 15,4 17,5 18,4 18,3 16,7 17,3 Oct. 16,6 19,3 18,7 18,7 10,8 19,9 15,2 17,9 17,6 13,6 Dic. 18.3 21 2 20.6 15.6 19.3 12.5 15.8 15.8 15.9 21.3 16.6 20.1 19.8 15.6 17.6 13.3 15 4 Año 17.1 13.2 T Agua_{RED} Feb. 18,6 14,8 20,9 21,1 13,9 12,4 14,6 14,2 14,6 19,4 16,6 18,1 20,4 15,9 16,1 12,5 Ago Bellot T Amb_{EX1} Ene. 20,9 10,0 22,0 10,4 22,0 Feb. Mar. 17,5 12,6 20,0 18,7 17,9 18,5 11,9 16,3 14,3 13,9 14,7 20,0 16,8 Abr. 12.9 10.3 8.2 7.4 16.0 14.3 13.3 14.4 12.2 8,1 13.2 11.4 11.1 12.7 16.0 15.4 Mavo 9.3 9.3 5.9 4.9 12.5 10.7 9.7 10.8 10.7 4.3 11.1 9.9 9.6 10.9 12.5 13.8 10,7 7,7 10,0 Jun. 6,6 7,2 4,2 3,1 8,2 6,9 8,9 9,3 1,3 9,4 8,0 10,7 12,4 Jul. 9,3 10,0 Ago Sept. 10,5 8,3 5,2 4,5 12,9 11,7 10,9 11,7 9,5 4,9 11,1 9,3 9,0 10,5 12,8 12,9 14,3 10,9 11,2 11,0 11,7 15,6 10,1 6,5 6,0 15,6 15,3 14,8 14,6 8,8 13,3 14,3 Oct. 17,2 11,5 7,8 18,2 18,2 17,7 12,4 12,2 15,4 12,9 12,7 13,1 18,1 16,0 8,1 Dic. 19.6 13.1 9.1 20,4 20.6 20,0 19.7 17.3 20.4 17.1 14,9 T Agua_{REI} Feb. 16.7 12.4 9.1 8.5 18.7 17.9 17.1 17.5 14.2 11.7 15.7 14.0 13.7 13.9 18.7 16.4 10,9 6,0 13,9 12,2 11,3 12,3 10,9 5,4 11,8 10,2 9,9 11,1 9,1 13,9 13,7 Ago.

22 ANEXO 4.VII: LÍMITE SUPERIOR DE EXIGENCIA DE CONTRIBUCIÓN SOLAR

El dimensionado de un SST requiere encontrar un equilibro entre las épocas de mayor y menor demanda de ACS. Si se calcula un SST para cubrir el 100% de demanda de calor en invierno, resultaría una instalación exageradamente grande y que sólo sería aprovechada al 100% de su potencia durante uno o dos meses al año. Por contrario, en verano se produciría con un sobrecalentamiento del sistema.

El CTE dice al respecto "El dimensionado de la instalación estará limitado por el cumplimiento de la condición de que en ningún mes del año la energía producida por la instalación podrá superar el 110 % de la demanda energética y en no más de tres meses el 100 %..."

Para no exigir un sobrecalentamiento y también permitir una relación costo / beneficio razonable, se propone un límite de contribución mínima para rango superior de 75%.

Fracción de energía solar en el consumo energético

23 ANEXO 4.VIII: ESTADÍSTICA DE PROCESO DE ESTIMACIÓN REGRESIVO

Primer paso: Proceso Regresivo con todas las variables

Resumer

Estadísticas de la regresión	
Coeficiente de correlación múltiple	97,70%
Coeficiente de determinación R^2	95,46%
R^2 ajustado	94,19%
Error típico	3,24%
Observaciones	33

ANÁLISIS DE VARIANZA

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	7	0,552048388	0,078864055	75,09759795	3,37403E-15
Residuos	25	0,026253854	0,001050154		
Total	32	0,578302242			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95,0%	Superior 95,0%
Intercepción	-0,326584459	0,651933091	-0,500947817	0,620790068	-1,669265782	1,016096864	-1,669265782	1,016096864
Irradiación Solar	0,000379017	5,81478E-05	6,518157335	7,92738E-07	0,000259259	0,000498774	0,000259259	0,000498774
Latitud	-0,001654604	0,001933605	-0,855709404	0,400285837	-0,005636938	0,00232773	-0,005636938	0,00232773
T Red Agos	0,002040823	0,033803299	0,060373499	0,952338214	-0,067578374	0,07166002	-0,067578374	0,07166002
T Amb	-0,005945382	0,066282742	-0,089697281	0,92924253	-0,142457244	0,13056648	-0,142457244	0,13056648
T Red Feb	0,01444344	0,032736765	0,441199382	0,662860893	-0,052979189	0,08186607	-0,052979189	0,08186607
Longitud	-0,001765468	0,008347014	-0,211508892	0,834204974	-0,018956465	0,015425529	-0,018956465	0,015425529
Altitud	-2,60693E-05	1,62864E-05	-1,600678355	0,122010618	-5,96118E-05	7,47319E-06	-5,96118E-05	7,47319E-06

Segundo paso: Intervención en la selección de las variables, dejando sólo aquellas significativas en términos de su coeficiente de correlación individual

Se eliminan las dos variables con Correlación menor a 70%

Resumen

Estadísticas de la regresión	
Coeficiente de correlación múltiple	97,35%
Coeficiente de determinación R^2	94,77%
R^2 ajustado	94,02%
Error típico	3,29%
Observaciones	22

ANÁLISIS DE VARIANZA

	Grados de	Suma de	Promedio de	F	Valor critico
Regresión	4	0,548063132	0,137015783	126,8701964	1,62989E-17
Residuos	28	0,030239111	0,001079968		
Total	32	0,578302242			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95,0%	Superior 95,0%
Intercepción	-0,06198851	0,150715625	-0,411294517	0,683987767	-0,370715468	0,246738448	-0,370715468	0,246738448
Irradiación Solar	0,000292747	3,4819E-05	8,407699899	3,81767E-09	0,000221424	0,000364071	0,000221424	0,000364071
Latitud	-0,000792034	0,001877886	-0,42176919	0,676414171	-0,00463871	0,003054641	-0,00463871	0,003054641
T Red Agos	-0,001578386	0,008783423	-0,179700521	0,85868185	-0,019570412	0,01641364	-0,019570412	0,01641364
T Amb	0,015485493	0,009929886	1,559483413	0,13011461	-0,004854957	0,035825942	-0,004854957	0,035825942

Tercer paso: Correlación con las 3 variables de mayor correlación

Resumer

Estadísticas de la regresión	
Coeficiente de correlación múltiple	97,12%
Coeficiente de determinación R^2	94,32%
R^2 ajustado	93,73%
Error típico	3,37%
Observaciones	33

ANÁLISIS DE VARIANZA

	Grados de	Suma de	Promedio de	F	Valor crítico
Regresión	3	0,545436661	0,18181222	160,4278462	3,74765E-18
Residuos	29	0,032865581	0,001133296		
Total	32	0,578302242			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95,0%	Superior 95,0%
Intercepción	0,055845074	0,133587866	0,41804002	0,678997232	-0,217372785	0,329062934	-0,217372785	0,329062934
Irradiación Solar	0,000279642	3,46139E-05	8,078910287	6,56501E-09	0,000208849	0,000350436	0,000208849	0,000350436
Latitud	0,000253376	0,001796948	0,14100359	0,888842015	-0,003421794	0,003928546	-0,003421794	0,003928546
T Red Agos	0,010969334	0,003608595	3,03977934	0,004978325	0,003588928	0,01834974	0,003588928	0,01834974

Cuarto paso: Correlación con las 2 variables de mayor correlación

Resumer

Estadísticas de la regresión	
Coeficiente de correlación múltiple	96,18%
Coeficiente de determinación R^2	92,51%
R^2 ajustado	92,01%
Error típico	3,80%
Observaciones	33

ANÁLISIS DE VARIANZA

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	0,534964714	0,267482357	185,1621692	1,3202E-17
Residuos	30	0,043337528	0,001444584		
Total	32	0,578302242			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95,0%	Superior 95,0%
Intercepción	0,334174512	0,109822761	3,042852942	0,004837728	0,109886513	0,558462512	0,109886513	0,558462512
Irradiación Solar	0,000269934	3,89129E-05	6,936877194	1,05253E-07	0,000190463	0,000349404	0,000190463	0,000349404
Latitud	0,004073042	0,00145028	2,808452576	0,008671874	0,001111176	0,007034909	0,001111176	0,007034909

Quinto paso: Correlación con las 2 variables de mayor correlación

Resumen

Estadísticas de la regresión	
Coeficiente de correlación múltiple	95,15%
Coeficiente de determinación R^2	90,54%
R^2 ajustado	90,23%
Error típico	4,20%
Observaciones	33
Coeficiente de correlación múltiple Coeficiente de determinación R^2 R^2 ajustado Error típico	90,54% 90,23% 4,20%

ANÁLISIS DE VARIANZA

	Grados de	Suma de	Promedio de	F	Valor crítico
Regresión	1	0,523570692	0,523570692	296,5509157	2,0057E-17
Residuos	31	0,054731551	0,001765534		
Total	32	0,578302242			
		-			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95,0%	Superior 95,0%
Intercepción	0,039097153	0,035339295	1,106336528	0,277092694	-0,032977814	0,11117212	-0,032977814	0,11117212
Irradiación Solar	0,000365031	2,11973E-05	17,22065375	2,0057E-17	0,000321799	0,000408263	0,000321799	0,000408263

24ANEXO 4.IX: BASE DE DATOS METEOTEST SUIZA-RADIACIÓN POR COMUNA

Mayor		4										-								1				-												-1		-		-		,								1				1	#														1					
yor Mayor ib Sup						1	H			-	-	-1		-	-		-	-					٠.																																																			
Zona Irr Ma Med - hz DSTD	1	(<	(<	(<	(4	A	A	⋖	4 «	¦ ∢	4	A	٥	۷.	۷ ،	(<	(4	4	Ą	o	۷.	Ą ·	τ <	. #	· u	O	Α-	d i	t •	(2	t d	, u	Ą	#	t	÷	U	00	∢ ;	± ,	0 0		t	å	œ	o ;	÷ ÷		ن ،	ن	ڻ	± (ن د	ن د	ڻ	ė	± ;	±	åå	÷	+	۵	ن د	t t	5 å		å	÷	å	±	، ڻ	ა ლ	n m	
Zona r Irr d Máx	1	(<	< -	(<	(4	4	4	∢	۷ ۰	٠ <	4	4	∢	۷.	۷ ۰	(<	< -	4	4	4	4	٠.	< <	(4	Ą	۷	∢	∢.	ŧ.	(<	٤ ٥		4	4	۷	∢	∢ .	۷ .	⋖ .	å.	ŧ <		å	*	±	a a	t d		ن .	ė	ن	ن ر	ن د 	00									.	ځ د	5 &	. .	ن .	å	di	<u>.</u>	، ن	<u>ئ</u> د	. ±	
Cons Zons Irr Irr Min Mec	١	0 <	(α		(4	A- A	A	۷ ۷	4 <	4 4	A	C+ A	A	۷ ·	۷ ، ۷ ،	(<	(4	Α-	t t	ė O	A A	V .	t <	D+ 1	ن	D+ B	B+ A	o 0	ь « +5 «	(<	6 60	, di	B	D+ A-	D+ B	ŭ	D+ 8	D+ A-	t ;	÷ 6	ه ه	**	٥	<u>ش</u> ن	m m	ة ت ن ن	t d		ن ،	D+	ن	ن ر ځ ر	ن د د	, o			ن ۵						ه ه	5 2	5 č	. .	ė t	+0	٥	D+ C	، ن	ು ±	ء د ه ر	
Paso 9% CS (30-75) Irradiación Addia - DSTD		2 7 7 7	78%	2 X	75%	75%	75%	75%	986	75%	75%	75%	75%	75%	98	2 7 7 7	2,4%	75%	75%	21%	75%	75%	6 % 8 %	999	27%	27%	75%	% 1 1 1 1 1 1	e 10	2 7 X	899	57%	75%	%99	82%	48%	27%	%99	75%	%24	0000	%99	27%	%99	%99	27%	999	%99	27%	87%	57%	48%	878	27%	87%	%99	48%	48%	48%	48%	48%	48%	57%	40%	48%	48%	48%	48%	48%	48%	27%	57%	9699	
Paso 9% CS (30-75) rradiación Máxima N	1000	75.62	75%	25,4	75%	75%	75%	75%	867	75%	75%	75%	75%	75%	228	75.62	75%	75%	75%	75%	75%	75%	8,C/ 2,E/C	75%	75%	75%	75%	75%	20 10 10 10 10 10 10 10 10 10 10 10 10 10	2,45	75%	9699	75%	75%	75%	75%	75%	75%	75%	60/	7697	9699	9699	%99	9699	9699	9099	9699	8778	9699	57%	87.5 87.5	878	%99	9699	9699	57% 1	78%	48%	48%	87%	57%	9699	3778 48%	48%	48%	57%	48%	9699	%99	57%	57%	9699	
(30-75) (30-75) rradiación Media		75%	75%	25 X	75%	75%	75%	75%	%C/	75%	75%	75%	75%	75%	90	75%	75%	75%	75%	%99	75%	75%	%C/ %S/C	75%	27%	%99	75%	96%	000	75%	75%	9699	75%	75%	%99	27%	%99	75%	75%	9//0	0000	%99	%99	%99	%99	57%	900%	%99	27%	27%	27%	57% 17%	57%	27%	82%	%99	27%	48%	48%	48%	48%	48%	9699	48%	48%	48%	27%	48%	82%	87%	27%	57%	9999	
(30-75) (30-75) (Minima	-	75%	668	75.67	75%	75%	75%	75%	7076	75%	75%	57%	75%	75%	70%	7567	75%	75%	57%	57%	75%	57%	20070	48%	57%	48%	9699	9699	2/2	7079	9,00	48%	9699	48%	48%	48%	48%	48%	57%	48%	27.70	9699	57%	57%	9699	57%	9000	9699	57%	48%	57%	48%	878	48%	48%	57%	48%	4876	48%	48%	48%	48%	57%	46%	48%	48%	48%	48%	48%	48%	57%	57% 57%	9699	
Solar % con Irr Media		00,778	20'2V	28,7%	91.0%	84,1%	89,3%	88,2%	6/6/6/ 76 9F	82,4%	86,7%	81,3%	92,1%	84,2%	92,2%	80,00 75,00	93.7%	84.0%	75,5%	966,3%	84,3%	75,4%	80,08	73.5%	60,3%	62,5%	76,8%	68,6%	86,00	77 5%	73.0%	61.9%	37,77	72,2%	63,7%	55,0%	62,9%	%8'69	80,4%	20,7%	02,100	74.5%	65,1%	9,00%	71,8%	62,0%	74,5%	74.2%	59,5%	57,0%	59,5%	56,8%	59.5%	57,9%	57,4%	66,1%	56,9%	20,1% 56.3%	55.7%	55,3%	54,3%	52,9%	96,9%	56.3%	55.7%	55,4%	54,4%	56,1%	55,1%	54,4%	57,3%	57,3%	%5'69 69,5%	
ontribución solar % con rr Máxima		20,75	97.0%	97.0%	96.3%	96,3%	94,9%	96,3%	83,5%	92.9%	%9'26	98'98	95,7%	92'08	97,3%	750 08	97.6%	92.0%	86,7%	82,2%	87,7%	90,2%	24,47 20 00	95.7%	75,5%	81,9%	81,3%	80,6%	075,11	3/5'to	80.0%	72,0%	82,9%	81,3%	81,0%	79,7%	79,7%	86,1%	86,7%	77.7%	76 58	74.9%	74,6%	74,3%	74,6%	%9'99	74,5%	74.6%	%5'65	%9'99	%6'69	59,5%	39,2%	71,7%	%9'99	74,9%	57,9%	39,3%	56.4%	56,4%	%5'65	%6'69	74,6%	56.4%	56.4%	55,4%	%6'65	56,4%	%6'29	%9'99	57,3%	57,3%	72,0%	-
Contribución Co Solar % con Solar Media	100	02,470	91 4%	91 76%	92.8%	89,4%	92,6%	90,6%	79,6% 70,0%	86.6%	96'06	89,6%	93,2%	87,5%	93,9%	076,20	95.4%	90.1%	80,2%	68,1%	85,9%	79,0%	83,176 0.0 690	83,3%	64,3%	70,1%	350,67	71,8%	70,876	70 6%	76.0%	960.099	80,4%	76,1%	70,2%	63,6%	67,8%	3/1,77	83,1%	62,26	71 000	74.7%	71,1%	72,6%	73,6%	65,0%	74,570	74,3%	59,5%	62,1%	59,7%	58,6%	59,578	62,9%	62,4%	70,4%	57,4%	56,4%	56.2%	55,4%	55,9%	%6,4%	66,1%	56.4%	56.1%	55,4%	57,2%	56,2%	60,2%	58,0%	57,3%	57,3%	70,9%	-
Contribución C Solar % con s Irr Mín	100 00	790 00	7770	87 19%	86.1%	76,2%	84,8%	87,1%	76.2%	76.2%	81,3%	63,7%	91,2%	81,3%	90,2%	70 70	%6 68	75.5%	962,0%	61,1%	80,3%	60,8%	0/2/0/2	54.8%	27,6%	55,1%	74,3%	70,4%	070,C0	70 02	70.4%	55.7%	70,4%	55,7%	90'25	53,8%	54,8%	55,1%	960'59	25,7%	22,270	74.3%	29,5%	965'65	70,4%	59,5%	74,570	74,3%	965'65	56,4%	29,5%	55,4%	%C'6C	56,4%	55,4%	966'59	56,4%	56.0%	54.8%	55,4%	54,1%	54,1%	58,9%	56.0%	55.4%	55,4%	54,1%	26,0%	53,8%	54,8%	57,3%	57,3%	69,1%	
Hab/ Km2	ľ	0.55	2 1	0 23	946	0,31	1,73	0,41	151,30	1.17	0,27	0,53	60'0	0,35	9,30	5,473	6.40	11.70	6,53	4,07	6,79	2,26	577	8.97	4,97	1,81	5,48	17,20	200	2,00	7.46	143.28	2,02	11,88	108,34	10,07	31,05	0,94 0,94	3,46	3,95	0,40	81.80	36,18	66,83	34,32	68,28	64.06	418.05	68,87	.312,78	63,22	286,21	195.35	291,20	150,43	12,36	16,37	97,14 68.43	874.61	720,25	49,05	32,22	58,75	104 30	408.64	167,65	25,67	16'997	31,99	30,00	26,28	26,28	11,2%	
Cantidad de H Habitantes		1 3/13	1 592	1 381	1.053	3.232	15.488	1.647	85.042	16.126	3.474	10.779	251	4.214	8.367	21 021	148 078	360.743	47.091	15.026	4.839	12.953	13.830	158.081	8.025	5.879	12,484	8.805	10.518	21 086	25,633	206,094	4.481	31.375	205.015	18.727	110.141	3.923	26.228	8.6/3	30,736	14.342	13,165	23.379	11.043	15.800	7.508	75.412	18.495	125.275	25.397	86.160	15.427	155.318	44.526	16.988	8.799	12 135	73.543	53.944	15.692	5.411	72.661	10.468	201.760	25.054	6.918	14.034	37.162	28.443	4.781	4.781	74.284	
uperficie Ca (km2) H		3 3/15	3 917	5 890	2.269	10.452	8.973	3.993	2902	13.728	12.830	20.289	2.890	12.200	23.485	2.070	15.712	30.829	7.213	3.690	6.156	5.738	10 177	17.627	1.616	3.246	2.278	512	1 400	A 19A	3.434	1.438	2.219	2.641	1.892	1.859	3.548	4.178	7.585	761.7	1 461	175	364	350	322	231	133	180	569	95	402	301	e e	233	296	1.374	238	177	313	75	320	168	1.237	100	121	149	569	23	1.162	948	182	182	10	
Coeficiente de Variación		2 22%	2,000,2 5,699,2	3,63%	1.98%	6,18%	3,75%	2,78%	4,82%	4.99%	4,83%	9,67%	1,16%	3,99%	1,96%	7056 V	1 93%	7.16%	6,13%	12,23%	1,94%	4,80%	4,1770	12.42%	6,74%	11,41%	2,99%	4,59%	7,4570	2,007.5	4.06%	6.63%	3,56%	5,42%	9,87%	14,39%	7,78%	10,82%	3,47%	13,82%	0,0000	0.28%	9,03%	6,74%	2,54%	4,84%	0,000%	0.13%	%000'0	8,71%	0,28%	3,20%	20000	8,37%	8,46%	6,47%	0,95%	0,20%	0.95%	96.200	3,09%	3,99%	8,40%	1,40%	0.84%	9600'0	5,38%	0,31%	9,17%	6,68%	%00'0	0,00%	2,10%	
Desviación Estándar kvvh/m2/año)		26.0	136.4	87.1	48.3	144,8	91,0	66,1	6'66	113.1	115,3	227,0	28,3	91,4	48,4	2,10	48.5	169.2	128,1	215,2	43,7	98,6	105.2	270.2	111,5	206,8	61,6	85,3	130,2	1,4	80.2	112.8	74,7	107,2	179,3	235,1	136,4	218,8	75,3	231,9	1661	5.5	166,3	126,8	48,5	80,9	0,0	2,4	0'0	138,9	4,3	47,9	0'0	135,2	135,4	117,8	14,0	1/1	13.6	6'0	44,0	55,8	143,2	1.7	12.1	0'0	78,6	4,4	141,4	0'66	0,0	0,0	38,5	
Radiación Media Mínimo (kwh/m2)		3 365 00	1 805 00	2 278 00	2.251.00	1.980,00	2.216,00	2.278,00	1.980,00	1.980,00	2.120,00	1.638,00	2.391,00	2.120,00	2.365,00	2 067 00	2 356 00	1.962.00	1.673,00	1.568,00	2.094,00	1.559,00	3 004 00	1.393.00	1.472,00	1.402,00	1.927,00	1.822,00	1.0/3,00	1 866 00	1.822.00	1.419.00	1.822,00	1.419,00	1.454,00	1.367,00	1.393,00	1.402,00	1.673,00	1.419,00	1 633 00	1.927.00	1.524,00	1.524,00	1.822,00	1.524,00	1 977 00	1.927.00	1.524,00	1.437,00	1.524,00	1.410,00	1.524.00	1.437,00	1.410,00	1.699,00	1.437,00	1.437,00	1.393.00	1.410,00	1.375,00	1.375,00	1.507,00	1.428.00	1.410.00	1.410,00	1.375,00	1.428,00	1.367,00	1.393,00	1.463,00	1.463,00	1.787,00	
Radiación Máximo (kvh/m2)		2 5/49 00	2 549 00	2 5/19 00	2.532.00	2.532,00	2.575,00	2.532,00	2.181,00	2.575.00	2.567,00	2.593,00	2.514,00	2.567,00	2.558,00	2 220 00	2 567 00	2.549.00	2.269,00	2.146,00	2.295,00	2.365,00	2 504 00	2.514.00	1.962,00	2.137,00	2.120,00	2.102,00	00,610.2	2 164 00	2.085.00	1.866.00	2.164,00	2.120,00	2.111,00	2.076,00	2.076,00	2.251,00	2.269,00	2.015,00	1 963 00	1.945.00	1.936,00	1.927,00	1.936,00	1.717,00	1 936 00	1.936.00	1.524,00	1.717,00	1.533,00	1.524,00	1 524 00	1.857,00	1.717,00	1.945,00	1.480,00	1.524,00	1.437.00	1.437,00	1.524,00	1.533,00	1.936,00	1.324,00	1.437.00	1.410,00	1.533,00	1.437,00	1.752,00	1.717,00	1.463,00	1.463,00	1.866,00	
Radiación Media (kwh/m2)		2 440 12	2 396 15	2 396 24	2,435,40	2.342,80	2.428,87	2.375,24	2.072,65	2.263.95	2.383,96	2.346,74	2.445,31	2.291,05	2.466,14	2 200 52	2 507 46	2.361.94	2.089,30	1.759,21	2.246,19	2.055,84	2.352,90	2.175,61	1.654,93	1.812,35	2.057,27	1.858,74	1,855,00	2 074 74	1.974.02	1.701.54	2.096,51	1.977,54	1.816,27	1.634,29	1.751,56	2.022,50	2.169,98	1.6/8,65	1 061 03	1.938.83	1.842,01	1.882,06	1.908,85	1.673,06	1 977 65	1.927.71	1.524,00	1.594,28	1.527,02	1.497,94	1 524 00	1.615,50	1.601,51	1.821,66	1.465,02	1 436 77	1.432.26	1.410,03	1.423,77	1.398,10	1.704,76	1.436.84	1,429,53	1,410,00	1.461,02	1.433,31	1.542,44	1.482,67	1.463,00	1,463,00	1.835,44	
Comuna		anca apperal large	amaronas	Ulfra	amiña	luara	lica	colchane	VITO HOSPICIO	ozo Almonte	ierra gorda	altal	ollagüe	Aaria Elena	an Pedro de Atacama	rejuidles	alama	Antofagasta	/allenar	aldera	VIto del Carmen	hanaral	lerra Amarilla	Coplano	Huasco	reirina	combarbalá	andacollo	unitadui	Annta Datria	ialamanca	contimbo	No Hurtado	lapel	a Serena	os Vilos	ovalle	a Higuera	/lcuña	anela	abildo	anta María	atemu	Jaillay	alle Larga	Olmué	anduenue	an Felipe	Hjuelas	/IIIa Alemana	vogales	Quillota	a Critz	Julipué	imache	an Esteban	anto Domingo	Jarragena	Alparaíso	Concón	uchuncavi	apudo	os Andes	an Amonio	i tano	Quintero	apallar	I Quisco	a Ligua	asablanca	sla de Pascua	sla de Pascua	a Cisterna	
	ľ			T							0,				1					Ĭ									T		. 0			_		_					T	oncagua	oncagua	oncagua L			Ducagua	Sengeouc		_	_				Ī	U								1			N	- W	Ī		Ī	- Darragila	Ducagua	
Provincia		Parinarota	Arica	Darinarota	lauiane	Iquique	Iduidue	laniane	anbinbi	andinal	Antofagasta	Antofagasta	El loa	Tocopilla	El loa	Toconilla	Floa	Antofagasta	Huasco	Copiapo	Huasco	Chanaral	Copiapo	Coolabo	Huasco	Huasco	Limari	Eldui	nman.	limari	Choapa	Elaui	Umari	Choapa	Elqui	Choapa	Limari	Elqui	Elqui	cnoapa	Petolica	San Felipe de Acc	San Felipe de Acc	San Felipe de Aco	Los andes	Quillota	San Felipe de Acc	San Felipe de Acc		Valparaiso	Quillota	Quillota	Quillota	Valparaiso	Quillota	Los andes	San Antonio	San Antonio	Valoaraiso	Valparaiso	Valparaiso	Petorca	Los andes	San Antonio	Valparaiso	Valparaiso	Petorca	San Antonio	Petorca	Valparaiso	Isla de Pascua	Isla de Pascua	Santiago	
Región		arioacota	arinacota	alinacota							tta	ita	sta	sta	sta t	100	t t	ta .									00	00	9		0, 0	200	0.	0.	0.	0,	01	00	00	00			0	0	0			2	0	0	0			2		0				0	0	0						0	0	0			0	
		AV Begion de Arica y P	XV Región de Arica v D	XV Region de Arica y D	I Begión de Tarapacá	I Región de Tarapacá	I Región de Tarapacá	I Región de Tarapacá	Region de larapaca	I Región de Tarapacá	II Región de Antofagas	II Región de Antofagas	II Región de Antofagasta	II Región de Antofagasta	Il Region de Antotaga:	II begion de Antofaga	II Región de Antofaga	II Región de Antofagas	III Región de Atacama	III Región de Atacama	III Región de Atacama	III Region de Atacama	III Region de Atacama	III Región de Atacama	III Región de Atacama	III Región de Atacama	IV Región de Coquimb	IV Region de Coquimb	IV Region de Coquimo	IV Bagión de Coquimb	IV Región de Coquimbo	IV Región de Coguimb	IV Región de Coquimbo	IV Región de Coquimb	IV Región de Coquimbo	IV Región de Coquimb	IV Región de Coquimb	IV Región de Coquimbo	IV Región de Coquimb	IV Region de Coduimo	V Region de Valparairo	V Región de Valparaíso	V Región de Valparaíso	V Región de Valparais	V Región de Valparaís.	V Región de Valparaíso	V Region de Valparais.	V Región de Valparaíso	V Región de Valparaíso	V Región de Valparaiso	V Región de Valparaís.	V Región de Valparaís	V Región de Valparaís.	V Región de Valparaíso	V Región de Valparaiso	V Región de Valparaiso	V Región de Valparaís	V Region de Valparaiso	V Región de Valparaíso	V Región de Valparaíso	V Región de Valparaiso	V Región de Valparaíso	V Región de Valparais	V Región de Valparaíso	V Región de Valparaíso	V Región de Valparaiso	V Región de Valparaíso	V Región de Valparaíso	V Región de Valparaís.	V Región de Valparais	V Región de Valparaís	V Región de Valparais.	v Region de Valparaiso Región Metropolitana	

n Mayor DSTD																																																																				
yor Mayor ib Sup																																														_																						
ona Irr Mayor Ied - hab	±	-8	4	ڻ	n d	; ds	ڻ	ه ن	n d	ن د	ڻ	m (n d	- m	00	±	m (ė a		00	a ;	+ +		m	#	÷	+ 1	+ 1		<u> </u>	8	ن	m (0 4	- m		a	+	+ +	, , u		O	m (<u>.</u>		C 1	U (ט נ	O	U I	ں ر	U	U I	. .	· U	o	o c	ט ט	O	ا ن	o c	ڻ د		O	U,	ن ن) U	ن
Zons Zons Irr M Máx Dr	±	*	#	œ	t d							± °			00	#	± 6	bα		80	ω ;																		t #				œ c	n d	, 0	o	υ ι	ט נ	O	a	ں ر	O	υ,	<u> </u>	U	o	o (, _U	o	U i	t (ט כ	00	o	t () m	U
Zona Irr Med	÷	00	00	U	n d	, m	U	t :	o d	ن ه	ن	œ c	00 CC	0 00	00	÷	œ c	0 0	ω	00	o ;	÷ ;	. ±	œ	å	å	± i	t 1	, «	00	00	t	œ c	0 00	0 00	00	÷	± .	± ±	i di	00	t	co c	n (U	U	ں ر	ט נ	o	t i	ں ر	U	υ,	<u>ځ</u> د	U	o	U (ں ر	O	U	U	ט כ	ŵ	U	t ·	ں ر	t t	U
S Zons To Min	#	á	00	÷ a	s (· di	O	ا ن	٥ (å	÷0	ه ن	00 00	0 00	00	#	œ c	0 0	ω	60	α į	÷ 6	å	ω.	#	#	* i	t 6	, ec	60	80	ن	ه ن	0 00	0 00	00	00	± 1	å å	ن ز	ò	ن	ω () (· U	O	0 (ט נ	O	U	ں ر	U	U) (U	O	U (ڻ ر	ن	ا ن	ن (ن د	U	O	ن ن	ے ن	ن خ	ن
Paso 9% CS (30-75) Irradiación Media - DSTD	%99	%99	%99	57%	800%	999	27%	57%	800	57%	57%	%99	9699	%99	%99	9699	899	9999	%99	%99	9699	800	%99	%99	%99	%99	999	200	9698	%99	%99	57%	899	999	%99	%99	%99	%99	%99	57%	%99	57%	9699	82%	57%	27%	57%	57%	82.5	57%	57%	57%	57%	87.5	27%	27%	57%	57%	57%	57%	57%	57%	%99	27%	57%	57%	57%	21%
Paso 9% CS (30-75) Irradiación Máxima	%99	%99	9699	9699	9696 8686	9699	%99	9699	66%	57%	87%	899	9699	%99	%99	%99	999	8,000	%99	%99	9699	8699 8688	200 200 200 200 200 200 200 200 200 200	%99	%99	9699	999	0000	, , , , , , , , , , , , , , , , , , ,	%99	9699	9699	899	9099	%99	9699	9699	9699	9699	9699	%99	9699	899	%99 %99	57%	27%	87.8 8.78	57%	87%	999	57%	8778	57%	878	57%	27%	87%	57%	87%	57%	57% 37%	87%	%99	87%	57%	57% 87%	899	57%
Paso 9% CS (30-75) Irradiación Media	%99	%99	%99	57%	%99	9699	21%	57%	200	57%	87.8	%99	%99	%99	%99	9699	9698	900	%99	%99	9699	90% 90%	%99	%99	%99	%99	9698	200	966%	%99	%99	57%	999	9699	%99	%99	%99	%99	%99	999	%99	87%	%99	800%	57%	27%	57%	57%	27%	57%	57%	87.8	57%	57%	57%	21%	57%	57%	82%	57%	57%	87%	%99	87%	57%	57%	87%	21%
aso 9% CS (30-75) rradiación Minima	%99	%99	9699	48%	000% 57%	9699	27%	57%	57%	48%	48%	57%	669%	999	%99	9699	899	666%	9699	%99	9699	666%	, see 5	9699	%99	9699	999	0000	899	9699	9699	57%	57%	9000	999	9699	9699	9699	9099	57%	%99	57%	9699	878	57%	57%	57%	57%	57%	57%	57%	57%	57%	878	57%	57%	57%	27%	57%	57%	57%	57%	57%	57%	57%	57%	57%	57%
Contribución F Solar % con Irr Media	72,0%	98'2%	969,89	59,0%	70,136 74, 756	68,6%	59,8%	59,7%	67.4%	57,2%	58,9%	70,0%	69,1%	69,1%	961'69	72,0%	71,6%	60,078 60 166	69,1%	69,1%	69,1%	72,0%	72.0%	69,1%	72,0%	72,0%	72,0%	50,27 70,0%	69.9% 69.9%	69,4%	9,1%	59,7%	70,2%	68.6%	70,4%	70,0%	71,8%	72,0%	72,0%	62.9%	68,4%	968,09	69,1%	62.2%	60,5%	62,4%	60,3%	60,1%	62,4%	62,4%	60,4%	965,09	60,5%	60,6%	60,2%	99'19	960,6%	60,2%	966,3%	59,9%	60,4%	59,9%	66,2%	968'09	62,4%	59,8%	95,5%	29,9%
Contribución Sc Solar % con I Irr Máxima m	72,0%	72,0%	72,0%	69,1%	72,0%	70,4%	9,8,89	69,1%	64.1%	62,8%	%5'65	74,3%	69,1% 77,0%	69,1%	69,1%	72,0%	72,0%	72,070	69,1%	69,1%	69,1%	72,0%	72.0%	69,1%	72,0%	72,0%	72,0%	77,0%	72,0%	72,0%	69,1%	71,7%	77,17	27.7%	72,0%	74,6%	72,0%	72,0%	72.0%	72.0%	72,0%	72,0%	69,1%	68.8%	%5'09	62,4%	60,5%	62,4%	62,4%	69,1%	60,8%	965'09	%8'09	62.4%	62,4%	62,4%	%8709	%809	%5'09	960,5%	64,4%	60,2%	70,4%	%8'09	%6'59	60,5%	69,1%	%5'09
Contribución Cor Solar % con So Irr Media Irr	72,0%				70,8%				68.89%	39,0%	59,4%	72,0%	59,1%	59,1%	59,1%	72,0%	72,0%	50,070 59 1%	69,1%		69,1%											63,9%			71.5%		72,0%	72,0%	72,0%	57.9%	59,1%	64,6%	59,1%	52.4%	50,5%	52,4%	60,4%	50,7%	62,4%	64,9%	60,6%	965'09	%9'09	61,5%	%9'09	52,2%	60,7%	60,5%	962,09	50,2%	62,5%	60,1%	965'89	96,8%	54,3%	50,3%	64,5%	96,03%
Contribución Con Solar % con Sol Irr Min Irr	2,0%	%8%	9,1%	6,4%	0,4%	8,8%	0,5%	9,5%	3,470	7,0%	6,4%		69,1%								69,1%							27,0%				965'65			69,1%		69,1%		72,0%			9,66'8	9,1%	2,4%	965'0	2,4%	0,2%	0,5%	2,4%	2,4%	0,2%	965'0	%50	2,4%	0,5%	0,5%	95%	9,6,6	%6'6	%6'6	%6'6	9,9%	2,4%	%8'0	%6'8	9,2%	3,9%	8,9%
	8,05	2,85	3,16	2	g 8	18	92	£ .	9 5	g	20																															20	1,53	2 6	2 2	68	2 8	3 4	8	88 :	7 2	17	83	g 2	37	18,	. 28	. 8	10	E :	69 9	8 88	8	128	59 (32	78 28	88
Cantidad de Hab/ Km2 Habitantes	86.700 13.97	662 1.922,85	171.238 12.17	Т	30.893 162.99	Т	П	Т	74 844 596	Т	581 29,50	198 24,	395 10 737 14	94.744 14.548,78		81.169 8.279,27	Т	247 12 570 01	Т		48.272 604,30	Т	129.735 8.20	675 7.996,64		Т	Т	П	Т	Т		974 41,56	Т	Т	84.521 1.875,90	Т		П	691.742 7.83	Т	180 342	14.375 2,8		25.816 49,		833 932	77 10,	373	743 308	379 37,	35 11.		19.071 59,		Ι.	557 120	555 49,	261 92,	70 58,	110 113	384 67,	345 28,	309 43,03	119 37,	738 29,	11,32	243 13,	20,
, u	Н		14 171.		+	╁	6 4.6	+	+	H	3 11.	5 16.	113/	8	7 30,	0 81.	72.	100	7 67.7	25,	48.	136	129	1115.	3 100.942	36.	283.	244	171	53.921	0 770.	7 28.	0 60.	3 197	84.	3 107.	1 202	0 126.	398	24 103	2 72	83 14.	132.	2 6	0 23.0	0 242.	9.4.6	4 17.	5 13.	5 25.	5 7.6	3 15.	9 19.	20.00	3 46.071	4 13.	7 11.	2 36.1	6 8.4	0 17.	34.	9 13.1	6 12.	0 10,	20 71.	2 6.8	78 34.	6 14.
nte Superfici	9	5 157	71	1.3	190	8	84	2117	12 0	8	39	65			1.0	30	2 0	0 0	12	77	80	2 2	1 =	7	1	25	6	1 0	1	1	14	69 9	45	2 2	3 4	26	33	1 1	0 10	1.0	5 21	6.4.9	2 2	11 27	75	260	436	224	5 45	67	S 30	3 15	31	20 %	48	11.	23	3 8	146	15	8 8	479	78	78	2.4	8 8	2.5	69
ón Coeficie ir de iño) Varlaci	0,00%	1,25%	1,85%	4,46%	4 12%	1,149	4,169	6,10%	1 41%	3,289	1,02%	2,90%	0,00%	0.00%	6000	0000	0,578	T,07	0,00%	600'0	6000	9000	0.00%	0,00%	600'0	000%	0000	0000	1.95%	2,129	600'0	6,87%	1,489	1,219	1,629	1,739	0,32%	6000	0,00	7.849	1,059	6,31%	9000	2,355	0,00%	6000	0,25%	1.00%	6000	4,07%	0.37%	0,00%	0,249	1.659	0,739	1,05%	0,25%	0,54%	0,33%	0,58%	3,629	0,29%	3,499	0,00%	3,13%	0,88%	6,50%	0,659
Desviació Estándar (kv/h/m2/ai	0,0	22,5	33,5	70,4	71.6	20,4	66,5	99,4	25.0	49,4	15,5	54,0	0,0	0,0	0'0	0'0	10,6	100	0,0	0'0	0,0	0,0	0.0	0,0	0'0	0'0	0,0	0,0	35.9	38,8	0'0	112,8	27,3	21.7	30,0	32,0	6,0	0,0	0,0	137.4	18,8	105,0	0,0	5.0	0,0	0'0	3,9	15.6	0'0	62'9	5,7	0'0	3,7	26.0	11,4	16,8	3,8	8,4	5,2	0'6	58,1	4,4	61,8	0'0	51,8	13,6	107,9	10,0
Radiación Media Mínimo (kwh/m2)	1.866,00	1.778,00	1.787,00	1.437,00	1.822,00	1.778,00	1.551,00	1.524,00	1 612 00	1.454,00	1.437,00	1.524,00	1 787 00	1.787,00	1.787,00	1.866,00	1.787,00	1 787 00	1.787,00	1.787,00	1.787,00	1.866,00	1.866.00	1.787,00	1.866,00	1.866,00	1.866,00	1 966 00	1.787.00	1.787,00	1.787,00	1.524,00	1.524,00	1.787.00	1.787,00	1.822,00	1.787,00	1.866,00	1.866.00	1.507.00	1.778,00	1.507,00	1.787,00	1.603.00	1.551,00	1.603,00	1.542,00	1.551.00	1.603,00	1.603,00	1.542.00	1.551,00	1.551,00	1.551.00	1.551,00	1.551,00	1.551,00	1.533,00	1.533,00	1.533,00	1.533,00	1.533,00	1.603,00	1.559,00	1.507,00	1.515,00	1.507,00	1.507,00
adiación Máximo kv/h/m2)	.866,00	00'998"	866,00	787,00	778 00	.822,00	.778,00	.787,00	787.00	.612,00	524,00	927,00	866.00	787.00	.787,00	866,00	.866,00	787 00	.787,00	787,00	.787,00	00,998	866.00	787,00	.866,00	866,00	866,00	00,008.	866.00	.866,00	.787,00	857,00	.857,00	857.00	866,00	.936,00	866,00	866,00	00,008.	866.00	.866,00	.866,00	787,00	778.00	551,00	.603,00	551,00	.603,00	00'809'	.787,00	.559.00	.551,00	.559,00	603.00	.603,00	603,00	00'655	.559,00	551,00	.551,00	.656,00	542,00	.822,00	.559,00	00'669"	551,00	787,00	.551,00
Radiación R Media (kwh/m2) (1.866,00	1.791,07	1.805,51	1.579,90	1 736 91	1.791,77	1.596,42	1.627,64	1 776 86	1.508,40	1.521,13	1.864,55	1.787,00	1.787,00	1.787,00	1.866,00	1.864,55	1 787 00	1.787,00	1.787,00	1.787,00	1.866.00	1.866.00	1.787,00	1.866,00	1.866,00	1.866,00	1 966 00	1.842.92	1.833,82	1.787,00	1.642,31	1.844,36	1.794.53	1.851,63	1.842,18	1.865,54	1.866,00	1.866.00	1.753.40	1.785,61	1.663,36	1.787,00	1.603.14	1.551,00	1.603,00	1.548,68	1.556,17	1.603,00	1.669,75	1.552,24	1.551,00	1.553,37	1.578.35	1.553,62	1.596,82	1.556,15	1.551,32	1.549,36	1.542,47	1.604,69	1.538,28	1.768,61	1.559,00	1.654,16	1.544,83	1.658,61	1.544,96
e co		0													leu		1	POLICE		oBu	8			ıtral						icia												Maipo																			0				9			
Comuna	ın Ramón	in Bernard	posdne	elipilla	irque	line	hué	monte	lagante	n Pedro	aria Pinto	E	erro Navia	Prado	uinta Norn	ın Joaquin	n Miguel	Fenera	errillos	ilera de Ta	dre Hurta	tacura	scoleta	tacion Cer	acul	Reina	s Condes	unoa	ntlago	dependen	aipú	ıracavi	mpa	nilicina	nechuraba	olina	Pintana	Granja	Florida iente alto	Barneche	uir	an Jose de Maipo	auca	ostazal	s Cabras	ncagna	Estrella	oltanco	ivar	eduinoa	archigüe	omna	chidegua	obus de Tilcoco	n Vicente	alloa	almilla	inta Cruz	acilla	ancagna	imbarong	népica	odegua	eralillo	in Fernand	redones	achali	chilemu
	Sa	Sa	ѿ	Ž	2 2	8	A	<u></u>	1 5	S	M	= 6	3 8	3 3	ð	Sa	S C	2 2	Ü	రి	å :	Ž		8	W	S.	9 ×	ž	2	2	Σ	ŭ	3 6	1 0	ĴÍ	S	La	<u>s</u> .	ة 2	9	96	Sa	- Re	2 6	5 3	- R	5 2	5 5	ō	Re	3 8	Pe	ā	2 0	Sa	Σ	8 6	S S	īd	ž	5 .	3 5	ŏ	a B	S S	B :	W	ā
Provincia	oge	0	oße	allla	llera		ellia	ante	ante	illa	allla	aprico	980	360	380	980	ago		380	0	ante	ago	360	380	380	oge	ago	ago	200	980	oße	illa	aprico	360	360	onqı	3go	ago	ago	360		llera	ago	apoal	ipoal	poal	Cardenal Caro	lpodi	poal	apoal	ynal Caro	Cachapoal	leode	apoal	ipoal	leodi	agna	olchagua	Colchagua	agna	agna	agua	lpodi	enge	Colchagua	anal Caro	Cachapoal	enal Caro
	Santia	Maipo	Santiago	Melip	Talagante	Malpo	Melip	Talagante	Talage	Melip	Melipilla	Chaca	Santiago	Santiago	Santiago	Santiago	Santia	Santiago	Santiago	Maipo	Talagante	Santiago	Santiago	Santia	Santiago	Santiago	Santlago	Santie	Santiago	Santiago	Santia	Melipilla	Chacabu	Santiago	Santiago	Chacabuc	Santiago	Santiago	Cordillera	Santla	Maipo	Cordillera	Santlago			-	_	Cachapoal							Cachapoal		8	ں ر										
																																												O'Higgins O'Higgins	suggins	liggins	liggins	Heeins	Higgins	liggins	liggins	liggins	Higgins	liggins	Higgins	liggins	liggins	liggins	liggins	liggins	liggins	liggins	VI Región del Libertador General Bernardo O'Higgins	liggins	VI Región del Libertador General Bernardo O'Higgins	liggins	liggins	liggins
																																											1	Jardo O'F	nardo O'h	nardo O'F	ardo O'F	nardo O'F	nardo O'F	nardo O'F	ardo O'F	nardo O'F	nardo O'F	ardo O'	nardo O'F	nardo O'F	nardo O'F	ardo O'F	nardo O'F	nardo O'F	nardo O'F	nardo O'h	nardo O'F	nardo O'F	nardo O'h	nardo O'F	nardo O'h	nardo O'F
Region																																												eral Ber	eral Ber	eral Ber	eral Ber	eral Ber	eral Ber	eral Ber	eral Ber	eral Ber	eral Ber	eral Ber	eral Ber	eral Ber	eral Ber	eral Ber	eral Ber	eral Ber	eral Ber	eral Ber	eral Ber	eral Ber	eral Ber	eral Ber	eral Ber	eral Ber
æ	2	e e	E E	- BE	و اع	2 2	Ja Pa	اع	2 2	2	ا ا	2	و اع	9 9	19	PE.	g .		2	er.	g	2 .	9		Ja Pa	E E	Ja B	2 5	9 9	1a	Ja Ja	BE	g .	2 2	9 9	19	اءٍ	g.	2 2	2 2	19	<u>اء</u>	g .	ador Gen	dor Ger	ador Ger	ador Ger	3dor Ger	3dor Ger	ador Ger	dor Ger	ador Ger	ador Ger	ador Gen	ador Ger	3dor Ger	ador Ger	dor Ger	ador Ger	ador Ger	ador Ger	ador Gen	ador Ger	3dor Ger	ador Ger	ador Ger	ador Ger	ador Ger
	ropolitar	ropolita	ropolita	ropolita	ropolita	ropolitar	ropolita	ropolita	Topolitar	ropolitar	ropolitai	ropolitana	ropolita	ropolitar	ropolitar	ropolita	ropolita	opposite.	ropolitar	ropolita	ropolita	ropolita	Tonolitar	ropolitar	ropolita	ropolita	ropolita	ropolitar	Tonolitar	ropolitar	ropolitar	ropolitai	ropolitana	Tonolitar	ropolitar	ropolitar	ropolita	ropolita	ropolitar ropolitar	ropolitar	ropolitar	ropolita	ropolita	al libert.	el Libert	el Libert.	el Libert	el Libert	el Liberta	el Libert	al Libert	al Libert	el Libert	al Libert	el Libert	el Libert	el Libert	el Libert	el Libert	el Libert	el Libert	al Libert	el Liberta	el Libert.	el Libert	el Libert	al Libert	el Libert
	ión Metr	jón Mets	ión Met	ión Met	Region Metropolitana Región Metropolitana	Ión Met	Región Metropolitana	ión Met	Región Metropolitana	ión Metr	Región Metropolitana	Región Metr	Region Metropolitana	ión Metr	ión Meti	Región Metropolitana	ion Met	Región Metropolitana	Región Metr	Región Metropolitana	Región Metropolitana	ión Met	ión Met	Región Metropolitana	ión Met	ión Met	ion Met	Region Metropolitana	ión Met	Región Metropolitana	ión Meti	Región Metropolitana	Región Metr	Región Metropolitana	Región Metropolitana	Región Metropolitana	Región Metropolitana	ión Met	Region Metropolitana Región Metropolitana	ión Met	Región Metropolitana	ión Met	Región Metropolitana	Perion de	egión de	egión d	egión d	egión de	legión de	legión d	egión de	egión de	legión d	egion d.	egión de	egión de	legión d	egión de	egión de	tegión di	egión d	egión de	egión de	egión d	legión di	egion d	egión de	tegión di
	Reg	Reg	Reg	Reg	20 20	. E	Reg	all a	E S	1 %	Reg	Reg	a leg	S 2	Reg	Reg	Reg		Reg	Reg	Bell 1	Keg P	1 2	. B	Reg	Reg	ag l	200		Reg	Reg	Reg	Reg		Re la	Reg	Reg	Reg	a le	# B	Reg	Reg	Reg	N	×	N N	S S	×		2		N	N N	5 5	X	2	N .	N N		>	2 3		N N	N	N .	5 5	N N	N

p DSTD																																																																													
Mayor Ma hab St							,	4																																																																					
Zona Irr Med - DSTD	٠.																		ڻ	O	U	<u>.</u>	ن ن) ر	ر ر	, ,																									ڻ	ن د	ر ر	ب ر	ن	ڻ																<u>.</u>	ا ن	۵ ،	o c	. t	
Zona Zona Irr Irr Med Máx	ن	o o	0	ڻ	ڻ	ن	, ر	ن د	ڻ	U	ن	ا ن	ن د د	ی ر	ن ر) c	, ,	U	œ O	0	U	ф t	ه د	, (ه د	o č										-	-					-	-						ن	±	ڻ	ن ر ن ر	J (ن ر	0	ú	0	O O	ά t	t t	t i	5 G	; d	ن	ڻ	0	ŭ	ă *	ă t	ڻ	ڻ	ن ن	ن ن	<u></u>	ں ر	ف ر ڻ ن	
Zona Lrr Min	÷0	ن	ن	ن	ن	ان	ن د	ن د	ڻ	U	ن	ا ن	ن ن	ى د	ن د	ی ز	ن ر	ن	ن	O	ڻ	ن	ا ن	, ر	ه د	ن ر	ن	ن	U	ن	ن	ن	ن	ن	ن	ن	ن	ن	ن	ن	ن	ن	، ن	<u></u>	ن د	ن د	ن ر	÷	å	÷ a	ن	ن د	ی ر	ن د	ن	÷	ರ	O	ن	ن ه	U	5	åå	å	ن	ن	ن	±	å	ڻ	ن	ا ن	ن ن	å «	o c	ں ر	
Paso 9% CS (30-75) Irradiación Media - DSTD	57%	27%	57%	27%	27%	57%	200	57%	57%	27%	27%	57%	8/10	6 7 N	8 76 6	378	27%	57%	27%	87%	27%	27%	8 E	8/0	878	57%	27%	57%	57%	27%	82%	57%	27%	27%	57%	27%	27%	27%	27%	27%	27%	27%	27%	6	8/0	57%	57%	48%	57%	48%	27%	57%	8/n	57%	57%	57%	27%	57%	57%	57%	27.0	400,	48%	48%	57%	57%	57%	48%	48%	57%	27%	57%	57%	48%	57%	57%	
Paso 9% CS (30-75) Irradiación Máxima	57%	9699	57%	27%	27%	57%	8/0	278	57%	27%	27%	% i	8/s	8/6 8/1	8 76	37.5	87.8	57%	%99	87%	27%	9699	000	8 /c u	27.00	57%	27%	57%	57%	57%	57%	57%	27%	27%	87%	27%	27%	27%	27%	27%	27%	27%	57%	6	8 26	878	57%	27%	87%	48%	57%	86	g 2	878	57%	%99	27%	27%	%99	27%	87.5	6 10 P	5.7% X7.8	57%	27%	57%	57%	48%	48%	27%	27%	57%	57%	48%	87.8 87.8	9699	
Paso 9% CS (30-75) Irradiación Media	21%	21%	27%	27%	21%	27%	9//0	57%	87%	21%	21%	87%	%/c	67/0	07/C	57%	27%	57%	21%	27%	27%	27%	8776 1	8/C	2010	57%	21%	27%	57%	27%	27%	87%	27%	21%	27%	21%	21%	27%	21%	21%	27%	27%	27%	0//0	87.c	57%	57%	48%	82.5	48%	27%	57%	8/A	57%	57%	21%	21%	87%	27%	57%	57%	40%	48%	57%	27%	87%	27%	48%	48%	27%	27%	27%	57%	48%	57%	57%	
Paso 9% CS (30-75) Irradiación Minima	48%	27%	57%	27%	27%	57%	2/0	27%	57%	27%	57%	87%	8/6	8/6 3E	8 74	× × ×	2.1% 2.1%	57%	27%	87%	273%	27%	8/6	2 30	2 25	57.8	27%	57%	57%	27%	27%	57%	27%	27%	57%	27%	27%	57%	27%	27%	27%	27%	27%	48%	8 25	87%	57%	48%	48%	48%	27%	878	8/0	57%	57%	48%	57%	57%	57%	57%	27.9	600	78%	48%	27%	57%	57%	48%	48%	57%	27%	57%	57%	48%	57%	57%	
Solar % con Irr Media menos DSTD	57,3%	59,8%	96'65	59,6%	960'69	59,4%	87,78	59.1%	59,1%	969'09	58,2%	58,6%	28,7%	28,879	50,0%	60,8%	58.8%	59.0%	58,8%	969'09	60,1%	61,1%	59,2%	20,00	50 78C	61.1%	59.1%	59,2%	965'09	59,8%	57,6%	59,1%	59,1%	59,1%	57,5%	59,3%	58,8%	58,1%	58,2%	58,1%	57,9%	58,8%	59,7%	87'76	50,478	57.7%	58,0%	55,3%	57,8%	55,7%	59,7%	59,6%	86,00	55,576	%6'65	57,8%	59,7%	60,2%	62,1%	63,0%	62,6%	22,278	56.2%	57.0%	58,6%	60,4%	60,4%	55,8%	57,0%	57,4%	29,0%	61,3%	58,2%	53,8%	60,5%	63,4%	
Contribución Solar % con Irr Máxima	60,2%	%6'29	%5'09	60,2%	60,2%	61,1%	62,8%	61.1%	965'65	61,1%	98'88	59,5%	64,0%	67,570	20 30%	61 5%	65.9% 65.9%	62.8%	%6'29	61,1%	61,1%	%6'29	969,6%	02,4%	07,170	65.9%	96.5%	%5'09	965'09	95'09	%5'09	%5'09	60,2%	60,2%	965'09	63,4%	63,7%	%5'09	60,2%	%5'09	60,2%	63,7%	63,7%	01,5%	50,0%	61.5%	61,5%	61,5%	86'25	56,7%	%5'09	60,5%	61,5%	61.5%	61,5%	66,3%	%8'09	60,2%	66,3%	65,9%	64,7%	27,0%	87 9%	60.5%	95'09	61,5%	%6′59	22,0%	22,0%	965,09	61,5%	64,4%	61,1%	57,0%	60,5%	66,3%	- color
Contribución C Solar % con s Irr Media	58,8%	62,0%	60,3%	950'09	59,3%	29,9%	50,5%	20,00	59,3%	96'09	58,5%	59,0%	60,0%	60,476 E0 360	50,570	61 1%	61.0%	60.2%	61,8%	60,7%	60,2%	64,1%	62,1%	60,2%	67,00	63.2%	59,7%	59,8%	60,5%	60,3%	58,6%	59,5%	59,5%	969'69	58,7%	60,3%	59,8%	59,4%	58,9%	58,4%	58,6%	60,4%	61,4%	56,4%	50,0%	58.3%	58,6%	57,0%	57,9%	55,9%	59,9%	59,9%	60.05	60,0%	61,1%	60,2%	60,1%	60,2%	64,1%	64,5%	63,5%	20,278	56,000 56,3%	58.6%	59,1%	%6'09	62,1%	56,3%	57,0%	58,3%	59,8%	62,7%	58,6%	55,0%	60,5%	64,1%	
Contribución Co Solar % con Solar Min	27,0%	96'69	59,2%	59,2%	59,2%	28,9%	70,07	58.9%	58,9%	%5'09	58,3%	58,3%	58,3%	28,578	29,270	26,00	86.2%	59,2%	27,6%	%5'09	59,2%	%6'69	57,6%	00,000	22,50	58,3%	59,2%	59,2%	965'09	57,9%	84'29	59,2%	59,2%	59,2%	84,9%	59,2%	59,2%	96'25	58,3%	21,9%	27,9%	59,2%	59,2%	37,0%	50.0%	57.9%	57,9%	54,1%	96,098	55,7%	%6'69	59,2%	%5'09 50 30	29.6%	96'25	96'095	59,2%	60,2%	28,9%	59,9%	60,2%	03,070	54.1%	57.0%	58,9%	%6'85	%6'65	25,7%	9,00'25	27,9%	28,9%	59,2%	57,9%	54,1%	60,5%	62,8%	Owner
O Hab/ Km2 S	18,05	14,44	16,40	30,23	33,52	9,44	20,32	20.77	35,08	7,18	66'59	77,82	97,78	00,02	55,133	80 00	333	30.16	89'22	17,73	90'6	98'8	69'8	/1/02	2,00	6.27	11.49	52,05	17,81	20,10	16,20	11,50	50,72	13,50	044,78	17,74	16,12	26,708	14,74	76,04	28,49	22,15	14,83	50/7	16,16	27,22	11,97	21,07	57,43	8,25	17,72	67,90	50,03	12.97	28,55	14,81	58,52	38,44	3,31	2,26	1,91	11'/1	10.00	25.16	15,07	9,05	13,92	29'08	18,16	65,40	15,86	88'6	71,211	5,73	59,68 ans.se	4.76	
Cantidad de Ha	5.465	27.543	10.244	9.477	18.473	9.021	7.034	10.372	50.695	4.076	17.008	14.683	90.048	787.87	6 300	40 711	٦	13.032	12.022	9.603	Т	Т	38.919	Т	27 562	18.477	4.961	7.499	5.061	4.983	29.867	1 661.63	21.542	. 077.51	27.768 1.	11.830	9.120	15.366 1.	Т	21.934	Т	Т	13.442	Т	Т	Т	195.813	Π	8.933	5.188	10.051		11.851	Т	26.145	28.517	51.335	15.525	3.722	Т	3.774	Τ	11 153	07.508	15.461	5.173	24.714		48.045 4	Т	4.995	10.883	55.764	25.790	34.827	10.039	
perficie Cai	303	970	625	313	551	955	340	1.312	243	268	258	189	1.469	030	000	7010	1.626	432	1.518	542	1.079	1.605	4.480	2/2	1 240	2.946	432	277	284	248	609	262	425	363	218 2	299	999	72	+	232	722	823	906	20 10	1 1 1 2 2	+	1.749	993	156	629	292	+	060	+	916	1.926	877	404	1.123	1.548	1.973	030	949	253 1	343	572	1.775	1.093	115	113	315	1.101	497	264	9 5	2.109	-
Coeficiente Su de Variación	2,89%	3,86%	9,89,0	0,65%	9,05,0	9,88%	3,20%	1.50%	0,52%	0,51%	9,65'0	0,85%	4,04%	2,83%	0,77%	0.44%	3.73%	2.07%	5,34%	0,25%	0,18%	4,87%	4,96%	70770	7076	3.52%	1.14%	1,06%	%0000	%06'0	1,86%	0,63%	0,84%	0,84%	2,13%	1,85%	1,76%	2,31%	1,39%	9609'0	1,25%	2,78%	2,95%	2,18%	2,47%	1.12%	1,03%	3,21%	0,17%	0,31%	0,37%	0,58%	1 2007	0.81%	1,96%	4,35%	0,79%	%00'0	3,34%	2,38%	1,52%	1,7370 2 7007 c	2 13%	3.05%	0,82%	0,78%	3,04%	%86'0	9,000'0	1,65%	1,43%	2,35%	0,83%	2,36%	0,00%	1.16%	
Desvisción (Estándar vh/m2/año)	43,4	61,4	10,5	10,0	9'2	13,5	49,7	22.9	6'2	6'2	8,8	12,8	53,2	10.0	2.2	2.0	58.3	31.8	84,7	3,9	2,7	80,3	79,1	7'97	114.2	57.2	17.4	16,3	0,0	13,9	27,9	9'6	12,7	12,9	31,9	28,6	56,9	35,2	21,0	9,0	18,8	42,9	46,5	32,5	20 5	16.7	15,5	46,7	2,6	4,5	5,7	80, 60	8,8	12.6	30,7	67,2	12,2	0'0	55,2	39,4	24,8	0,00	30.6	45.8	12,3	12,1	48,5	14,0	0,0	24,6	21,9	37,7	12,5	33,1	0,0	19,2	wine
Media (k	.454,00	533,00	.515,00	.515,00	515,00	507,00	00,00	507.00	507,00	.551,00	.489,00	489,00	489,00	00,689,00	00,010	515.00	515.00	515.00	1.472,00	551,00	515,00	533,00	272,00	00,600	472.00	489.00	.515.00	515,00	551,00	.480,00	480,00	.515,00	1.515,00	515,00	480,00	.515,00	515,00	480,00	489,00	480,00	480,00	.515,00	.515,00	454,00	207.00	480.00	.480,00	1.375,00	.428,00	.419,00	533,00	215,00	00,155	533.00	.480,00	1.428,00	515,00	542,00	507,00	.533,00	.542,00	00,750	375.00	454.00	507,00	507,00	533,00	.419,00	.454,00	480,00	507,00	515,00	480,00	.375,00	551,00	612,00	- Champion
Radiación R Máximo cwh/m2)	542,00	752,00	551,00	542,00 1	542,00	568,00	612,00	568.00	524,00	568,00	507,00	524,00	600.00	00,660	200,000	577.00	699.00	612.00	752,00	568,00	568,00	752,00	00,717	00,500	752.00	699,00	551.00	551,00	551,00	551,00	551,00	551,00	542,00 1	542,00 1	551,00 1	629,00	638,00	551,00	542,00	551,00	542,00	638,00	638,00	00,776	621 00	577.00	577,00	577,00	480,00	445,00 1	551,00	551,00	00///5	577.00	577,00	708,00	559,00	542,00	708,00	00669	664,00	00,404	480 00	551.00	551,00	577,00	00'669	454,00	454,00	551,00	577,00	656,00	568,00	454,00	551,00	708,00	
Radiación Ra Media h (kwh/m2) (k	1.505,04	1.591,65 1	1.543,54 1	1.535,84 1	1.518,05 1	1.533,68 1	1.550,82	1.534.54	1.518,63 1	1.562,24 1	1,495,92 1	1.509,96	1.554,89 I	1 610 30 1	1 512 27 1	1 565 77 1	1.563.23 1	1.540.79	1.587,22 1	1.556,14 1	1.542,06 1	1.648,05 1	1.593,86 1	T CO'60C'T	1 615 74 1	1.623.92	1.528.40 1	1.530,65 1	1.551,00 1	1.543,64 1	1.497,83 1	1.522,48	1.524,00 1	1.524,40 1	1.500,00 1	1.545,98 1	1.530,57 1	1.520,21 1	1.507,81	1.492,48 1	1.498,51	1.546,45 1	1.574,26 1	1.491,73	1 550 74 1	1.490.05	1.497,73 1	1.453,33 1	1.479,87	1.424,59 1	1.535,05 1	1.533,69 1	1 657730	1.558.96	1.565,50 1	1.543,28 1	1.539,54 1	1.542,00 1	1.649,43 1	1.659,51	1.632,52	1 17/169-1	1 436 00 1	1.499.31	1.510,77 1	1.560,90 1	1.594,85 1	1.435,13 1	1.454,00 1	1.489,89 1	1.531,96 1	1.609,42 1	1.498,75 1	1.400,42 1	1.551,00 1	1.649,38	
Comuna	Navidad	Teno	Hualañé	Rauco	Sagrada Familia	Pencahue	Pelarco	San Javier	Maule	Empedrado	Yerbas Buenas	Villa Alegre	Linares	Longavi	San Bafaal	Canoniones	Parral	Rio Claro	Molina	Chanco	Curepto	Romeral	San Clemente	Penunue	Curicó	Colbún	Vichuauén	Licantén	Portezuelo	Ránguil	Florida	Chillán Viejo	Bulnes	San Ignacio	Concepción	El carmen	Pemuco	Chiguayante	Cabrero	Hualqui	Yumbel	Yungay	Tucapel	Santa Juana	Sari Rosendo	Quineco	Los Angeles	Curanilahue	Negrete	Contulmo	San Nicolás	Chillán	Quiringe	Nightie	Nacimiento	Mulchén	San Carlos	Quillón	Quilaco	San Fabian	Antuco	Irua	Arairo	Coronel	Coelemu	Cobquecura	Colhueco	Cañete	Lota	Penco	Treguaco	Pinto	Tomé	Lebu	San Pedro de la Paz Talcahijano	I alcahuanu Alto BioBio	2000
Provincia	ardenal Caro	Curico	Curico	urico	urico	Talca	alca I	nares	Talca	ilca	nares	nares	nares	nares	Unates	alidipoo	linares	Talca	urico	Cauquenes	alca	Curico	Talca	Cauquenes	rico	Linares	Curico	urico	Nuble	Nuble	onception	Nuble	uble	Nuble	oncepcion	uble	Nuble	oncepcion	Bio-Bio	oncepcion	Bio-Bio	nple	Bio-Bio	onception	BIO-BIO	o-Bio	Bio-Bio	Aranco	Bio-Bio	rauco	nple	Nuble	uble	uble	Bio-Bio	o-Bio	uble	Nuble	o-Bio	Nuble	0-810	auco	Arairo	Concepcion	Nuble	Nuble	uble	Arauco	Concepcion	oncepcion	uble	Nuble	oncepcion	Arauco	Conception	o-Bio	
Región	del Libertador General Bernardo O'Higgins	VII Región del Maule												VII Region del Maule						VII Región del Maule													n del Biobio N.			VIII Región del Biobío														VIII Región del Biobio								VIII Región del Biobío													n del Biobío N				VIII Región del Biobio		
	VI Región	VII Regiór	VII Regiór	VII Regiór	VII Regiór	VII Región	VII Kegioi	VII Región	VII Regiór	VII Regiór	VII Regiór	VII Region	VIII Region	VIII Bogion	VII Begion	VII Región	VIIRegión	VII Región	VII Región	VII Regiór	VII Regiór	VII Región	VII Region	VII Region	VII Bogión	VIIRegión	VII Región	VII Región	VIII Regió	VIII Regió.	VIII Regió	VIII Regió	VIII Regió	VIII Regió	VIII Regió	VIII Regió	VIII Regió	VIII Regió	VIII Regió	VIII Regió	VIII Regió	VIII Regió	VIII Regió	VIII Neglic	VIII Boaió	VIII Regió	VIII Regió	VIII Regió	VIII Regió	VIII Regió	VIII Regió	VIII Regio	VIII Regio	VIII Regió	VIII Regió	VIII Regió	VIII Regio	VIII Regic	VIII Regió	VIII Regió	VIII Regió	VIII Regió	VIII Regió	VIII Regió	VIII Regió	VIII Regió	VIII Regió	VIII Regió	VIII Regio	VIII Regió	VIII Regio	VIII Regió					

Region	Provincia	Comuna	Radiación Radiación Maximo (kwh/m2)	Radiación Media Mínimo (kwh/m2)	Desviación (Estándar cwh/m2/año)	Coeficiente Si de Variación	Superficie Can (km2) Hat	Cantidad de Hab	Contribución Hab/ Km2 Solar % con Irr Mín	Contribución Contribución Solar % con Solar % con Irr Min Irr Media	con Solar % con dia Irr Māxima	Contribución Solar % con Irr Media menos DSTD	ción Paso 9% CS con (30-75) Ila Irradiación STD Minima	CS Paso 9% CS (30-75)	Paso 9% CS (30-75) Irradiación Máxima	Paso 9% CS (30-75) Irradiación Media - DSTD	Zona Irr Min	Zona Zona Irr Irr Med Máx	Zona Irr Med- DSTD	Mayor Ma hab Si	Mayor Sup DSTD
VIII Región del Biobío	Bio-Bio	Santa Bárbara	1.638,00	1.507,00	38,6	2,43%	_	Т					8 57%	57%	57%	57%	ڻ	ڻ ن	ن		
VIII Región del Biobío	Concepcion	Hualpén	1.551,00 1.551,00	1.551,00	4,5	0,29%	9 8	86.176 1.4				60,4%		57%	57%	57%					
IX Región de la Arancanía	Malleco	Victoria	1 638 00	1 419 00	58.7	3 93%	+	Т	20,22	78, 58.0%	63.7%			27%	27%	40.0		ئ د			
IX Región de la Araucanía	Cautin	Galvarino	1.437,00	1.367,00	3,1	0.22%	+	Т					48%	48%	48%	48%					
IX Región de la Araucanía	Cautin	Perquenco	1.454,00	1.428,00	9,4	9,65%	Н						48%	48%	48%	48%	±				
IX Región de la Araucanía	Cautin	Lautaro	1.603,00	1.384,00	9'05	3,47%	911 3	35.451 31	38,93 54,4%	4% 57,1%	% 62,4%		_	27%	21%	48%		ن			
IX Región de la Araucanía	Cautin	Temuco	1.428,00	1.384,00	17,9	1,27%	-	\neg					6 48%	48%	48%	48%				1	
IX Región de la Araucanía	Cautin	Padre las Casas	1.393,00	1.384,00	3,8	0,27%	+	Т						48%	48%	48%		+ + 0 + 0			
IX Región de la Araucanía	Cautin	Cunco	1.603,00	1.384,00	44,8	3,09%	_	_						48%	57%	48%					
IX Region de la Araucania	Cautin	Preire	1 388,50 1.419,00	1.384,00	5,1	0,37%	2 826	27.610 2	29,77 54,476	4% 54,6%	% ,CC %	84,4% 84,2%	4870	48%	48%	48%	± ±	5	<u> </u>		
IX Región de la Araucanía	Cautin	Gorbea	1.393,00	1.384,00	4,5	0,32%	+	Т						48%	48%	48%					
IX Región de la Araucanía	Cautin	Villarrica	1.445,00	1.358,00	24,4	1,76%	H							48%	48%	48%					
IX Región de la Araucanía	Cautin	Loncoche		1.323,00	25,0	1,83%		22.191 2	22,42 52,2%					48%	48%	48%		+Q Q			
IX Región de la Araucanía	Malleco	Los Sauces	1.489,00	1.419,00	29,4	2,01%	+	\neg						57%	57%	48%	±				
IX Region de la Araucania	Malleco	Puren	1.489,00	1.419,00	12,7	%68%	+	Т						48%	57%	48%					
IX Region de la Araucania	Malleco	Ercilla	1.638,00	1.419,00	2'/5	3,24%	+	_			6 03,7%			8/6	9//c	48%			<u>.</u>		
IX Region de la Araucania IX Benión de la Araucanía	Malleco	Collipulli	1.537,18 1.538,00 1.419,00	1.419,00	79.0	3,25%	1.310 2	10 479	10,57 55,7% q 41 52.8%	7% 60,0% 8% 55 5%		5/,1% 5// /%	4870	9776	2/20	3/76		ئے ڈ ئے د			
IX Región de la Araicanía	Malleco	Renairo	1.441.72 1.577.00	1.428.00	35.8	2.48%	+	т						48%	32.5	48%					
IX Región de la Araucanía	Malleco	Angol	1.577,00	1.419,00	48,4	3,26%	+	Т						57%	57%	48%	± 4				
IX Región de la Araucanía	Cautin	Vilcún	1.458,31 1.603,00	1.384,00	62,7	4,30%	1.416 2	23.823	16,83 54,4%	4% 57,1%	6 62,4%	54,9%	48%	57%	57%	48%		ڻ	å		
IX Región de la Araucanía	Cautin	Pucón		1.358,00	54,1	3,70%	1.242 2	29.987 2						87%	21%	48%		ن د	å		
IX Región de la Araucanía	Malleco	Curacautín	1.708,00	1.454,00	48,8	+	+	Т						27%	%99	21%					
IX Región de la Araucanía	Malleco	Lonquimay	1.708,00	1.603,00	35,6	+	+	T						27%	%99	27%	v				
IX Región de la Araucania	Cautin	Melipeuco	1.664,00	1.445,00	53,5	3,39%	_	5.451 4						57%	57%	57%					
IX Region de la Araucania	Cautin	Samodra	1.400.76 1.462.00	1 275 00	13,0	0,98%	405	_	12,13 53,270	270 54,570	% 54,8%	%O'\$	9007	48%	46%	48%		+ +	<u> </u>		
IX Región de la Araucanía	Cautin	Carahue	1.463,00	1.367.00	27.3	1.97%	t	Τ						48%	57%	48%	. 0	5 d	۵ ۵		
IX Región de la Araucanía	Cautin	Curamehue	1.524,27 1.603,00	1.428,00	45,2	2,97%	1.160	7.540 6	6,50 56,0%	%9'65 %0		84.28	48%	57%	27%	27%		ن	ن		
IX Región de la Araucanía	Cautin	Teodoro Schmidt	1.385,84 1.393,00	1.375,00	8,7	%89'0	666 1	15.793 2	23,70 54,1%	1% 54,5%		54,2%	6 48%	48%	48%	48%		+Q +Q			
IX Región de la Araucanía	Cautin	Nueva Imperial	1.419,00	1.367,00	13,1	0,94%		32.109 4.	42,26 53,8%					48%	48%	48%					
IX Región de la Araucanía	Cautin	Cholchol		1.367,00	19,8	1,41%	+	$\overline{}$						48%	48%	48%		to to			
XIV Region de Los Rios	Valdivia	Lanco	1.345,61 1.358,00	1.323,00	16,7	1,24%	516	7 026	31,76 52,2%	2% 53,0%	% 53,5%	52,4%	48%	48%	48%	48%	ے د	0 0	۵ ۵		
XIV Región de Los Ríos	Valdivia	Paillaco	1.332,00	1.261,00	7,22	1,77%	+	Т						48%	48%	48%	۵ ۵		_		
XIV Región de Los Ríos	Valdivia	Los Lagos	1.402,00	1.261,00	45,3	3,44%	_	1.577	Ė				48%	48%	48%	48%	ò	+O O			
XIV Región de Los Ríos	Valdivia	Futrono	1.343,25 1.507,00	1.261,00	67,3	5,01%	2.088	15.755 7	7,54 49,9%	9% 52,9%	%6'85 %	20,5%	48%	48%	27%	48%	ò	٥	۵		
XIV Región de Los Ríos	Valdivia	Corral	1.463,00	1.314,00	28,0	2,08%	743	5.083 6	6,84 51,9%	%0,53,0%	% 57,3%	52,0%	6 48%	48%	57%	48%	O	٥	۵		
XIV Región de Los Ríos	Valdivia	Mariquina	1.340,34 1.393,00	1.323,00	16,2	1,21%	1.326 1	18.503	13,95 52,2%	2% 52,8%		52,2%	6 48%	48%	48%	48%	O	+O O			
XIV Región de Los Ríos	Valdivia	Panguipulli	1.542,00	1.279,00	67,3	4,75%	+	\neg					Ì	48%	27%	48%	٥	O+ C	٥		
XIV Región de Los Ríos	Valdivia	Lago Ranco	1.498,00	1.235,00	9'59	4,93%	+	\neg						48%	21%	48%			_		
XIV Región de Los Ríos	Valdivia	Valdivia	1.463,00	1.314,00	16,4	1,23%	+		_					48%	27%	48%			<u> </u>		
XIV Region de Los Rios	Valdivia	Rio Bueno	1.270,97 1.437,00	1.235,00	51,7	4,06%	2,222 3	31.690 1	14,26 49,0%	0% 50,3%	% 56,4%	48,4%	48%	48%	48%	48%	هٔ د	÷	<u>ه</u> د		
X Begion de Los Nios	Osomo	San Dablo	1 272 00	1 253 00	179	1 29%	+	Т						18%	78%	76.V	5 6		ء د		
X Región de los Lagos	Osorno	Osomo	1.314,00	1.235,00	24,5	1,93%	Н	Τ.,,						48%	48%	48%	D0	0 -0	6		
A Negion de los Lagos X Región de los Lagos	Osomo	Osomo	1.271,43 1.314,00	1.235,00	24,5	1,93%	+	$\overline{}$					0 \0	48%		48%	48% 48%	48% 48%	48% 48%	48% 48%	48% 48%

P.R.B. GA	Provincia	Comuna	Radiación R Media (kwh/m2)	Radiación Máximo (kwh/m2)	Radiación Media Mínimo (k	Desviación C Estándar cwh/m2/sño)	Coeficiente Su de Variación	Superficie Canti (km2) Habi	Cantidad de Hab/ Habitantes	Contribución Hab/ Km2 Solar % con Irr Mín	Lción Contribución rcon Solar % con ín Irr Media	n Contribución Solar % con Irr Máxima	Contribución Solar % con Irr Medía menos DSTD	Paso 9% CS (30-75) Irradiación Minima	Paso 9% CS (30-75) Irradiación I	Paso 9% CS (30-75) Irradiación Máxima	Paso 9% CS (30-75) Irradiación I	Zona Zona Irr Irr Min Med	Zona Irr Máx	Zona Irr Mi Med - h DSTD	Mayor Mayor hab Sup	Mayor DSTD
X Región de los Lagos	Osorno	Puerto octay	1.257,12	1.375,00	1.209,00	47,6	3,79%	1.796 9.	9.480 5,2	28 48,09	76 49,8%	54,1%	48,1%	48%	48%	48%	48%	1	å	۵		
	Llanquihue	Frutillar	1.211,21	1.235,00	1.209,00	7,3	%09'0	Н	17.756 22,	22,03 48,09	% 48,1%	49,0%	47,9%	48%	48%	48%	39%	0.0	۵	ф		
	Llanquihue	Llanquihue	\rightarrow	\rightarrow	1.209,00	0,0	%00′0	+	_			48,0%	48,0%	48%	48%	48%	48%		۵	Ġ		
	Osorno	Puyehue			1.235,00	69,2	2,30%	+				56,4%	49,0%	48%	48%	48%	48%		å	۵		
	Palena	Futaleufú			1.226,00	34,7	2,69%		Т			53,2%	49,8%	48%	48%	48%	48%		٥	۵		
	Chiloe	Quellén	\rightarrow		1.139,00	9'01	0,91%	+	Т	•		48,4%	45,9%	39%	39%	48%	39%		۵	±.		
	Chiloe	Quinchao			1.183,00	26,0	2,15%	\dashv	_	1		49,0%	47,0%	39%	39%	48%	39%	-	۵	ф		
	Llanduihue	Los Muermos		-	1.191,00	38,9	3,09%	+	$\overline{}$	•		51,9%	48,5%	39%	48%	48%	48%	_	٥	۵		
	Osorno	Purranque	1.258,41		1.209,00	23,6	+	+	Т			51,5%	49,0%	48%	48%	48%	48%	٥	٥	۵		
	Osorno	San Juan de la Costa			1.261,00	40,0	+	+	_			26,0%	20,8%	48%	48%	48%	48%		å	۵		
	Llanquihue	Puerto varas			1.191,00	80,3	+	+	T			56,4%	48,5%	39%	48%	48%	48%		å	۵		
	Palena	Palena			1.218,00	48,7	3,82%	+	_			57,3%	48,7%	48%	48%	27%	48%	<u>ه</u>	ڻ	۵		
X Región de los Lagos	Chiloe	Quellón	1.177,92	1.270,00	1.139,00	37,3	3,16%	3.373 30	30.964 9,1	9,18 45,5%	% 46,9%	50,3%	45,5%	39%	39%	48%	39%	.	۵	ф		
	Llanguihue	Calbuco	1.233,22		1.191,00	33,0	\dashv	\dashv				49,9%	47,7%	39%	48%	48%	39%		۵	±		
	Chiloe	Dalcahue			1.148,00	27,0	\dashv	+	_			48,7%	46,1%	39%	39%	48%	39%		۵	ф		
	Llanquihue	Fresia			1.209,00	34,8	+					51,5%	48,6%	48%	48%	48%	48%		٥	۵		
	Chiloe	Quemchi			1.183,00	16,8	1,41%	\dashv	_			49,0%	46,8%	39%	39%	48%	39%		۵	ш		
	Llanguihue	Puerto montt	1.213,80	1.261,00	1.191,00	15,4	1,27%	1.671 230	230.885 138	138,19 47,4%	48,2%	49,9%	47,7%	39%	48%	48%	39%	÷	۵	ф	1	
	Osorno	Río Negro	1.258,68	1.384,00	1.235,00	27,3	2,17%	1.266 13	13.425 10,	10,60 49,0%		54,4%	48,9%	48%	48%	48%	48%	O O	å	۵		
	Llanquihue	Cochamó	1.312,33 1.419,00	1.419,00	1.191,00	80,3	6,12%	4.130 4.	4.326 1,0	1,05 47,4%	% 51,8%	55,7%	48,9%	39%	48%	48%	48%	۵ ±	å	۵		
X Región de los Lagos	Chiloe	Puqueldón	1.169,66	1.183,00	1.148,00	16,0	1,37%	96 4.	4.097 42,	42,51 45,8%	% 46,6%	47,1%	46,0%	39%	39%	39%	39%		å	ф		
	Chiloe	Curaco de Velez			1.183,00	0,0	%00'0	-		48,86 47,1%	47,1%	47,1%	47,1%	39%	39%	39%	39%	±	å	±		
	Palena	Hualaihué	1.201,25	1.244,00	1.130,00	36,4	3,03%	2.876 8.	8.426 2,9	2,93 45,2%	47,8%	49,3%	46,4%	39%	39%	48%	39%	盐	۵	ф		
	Llanquihue	Maullin	1.223,34	1.314,00	1.191,00	34,1	2,79%	851 13	13.914 16,	16,35 47,4%	% 48,6%	51,9%	47,3%	39%	48%	48%	39%		٥	±		
	Chiloe	Ancud			1.165,00	25,6	\dashv		_			20,3%	46,5%	39%	39%	48%	39%		۵	ш.		
	Chiloe	Castro	1.161,68		1.148,00	24,4	+	+	_			48,4%	45,4%	39%	39%	48%	39%		۵	±		
	Chiloe	Chonchi			1.139,00	31,9	\dashv	-	_			48,4%	45,3%	39%	39%	48%	39%	ш ш	۵	ш		
X Región de los Lagos	Palena	Chaitén			1.086,00	49,7	+	+		•		20,3%	45,5%	39%	39%	48%	39%		۵	±.		
XI Región de Aisén del General Carlos Ibañez del Campo Coihaique	Coihaigue	Lago Verde	1.327,05		1.165,00	92,3	+	+	Т			60,5%	49,0%	39%	48%	57%	48%	<u>۵</u>	ن	Ġ		
XI Región de Aisén del General Carlos Ibañez del Campo General Carrera	General Carrera	Rio Ibañez			1.104,00	98'6	+	+	Т			26,0%	47,8%	39%	48%	48%	39%		å	±.		
XI Región de Aisén del General Carlos Ibañez del Campo Capitan Prat	Capitan Prat	Cochrane			972,00	93,5	+	_	Т			55,7%	44,1%	39%	39%	48%	39%		±	ш		
XI Región de Aisén del General Carlos Ibañez del Campo Aisen	Aisen	Guaitecas		-	1.191,00	10,0	+	+	$\overline{}$			49,0%	48,1%	39%	48%	48%	48%		۵	۵		
	Coihaigue	Coihaique		\rightarrow	1.104,00	112,0	+	+	Т			60,2%	48,9%	39%	48%	27%	48%	o w	U	Ġ		
XI Región de Aisén del General Carlos Ibañez del Campo	al Carrera	Chile Chico		1.463,00	946,00	94,9	+	+	Т			57,3%	47,4%	30%	48%	27%	39%		ა,	±		
XI Región de Alsén del General Carlos Ibañez del Campo Alsen		Aisén	1.126,95		946,00	67,5	+	+	Т			55,4%	42,6%	30%	39%	48%	39%		å	ш		
XI Región de Aisén del General Carlos Ibañez del Campo Aisen	Aisen	Cisnes			1.095,00	36,5	+	+				51,2%	45,5%	39%	39%	48%	39%	_	٥	±.		
	Capitan Prat	Tortel		1.148,00	894,00	48,9	+	4	Т			45,8%	39,7%	30%	39%	39%	39%	ů Ž	th.	ம்	-	
el Campo	Capitan Prat			1.323,00	876,00	115,9	+	+	Т			52,2%	39,9%	30%	39%	48%	39%	w u.	٥	ш		
	Ultima Esperanza	Torres del Paine			832,00	86,1	+	+				48,4%	38,6%	30%	39%	48%	30%	ŵ u.	۵	đ		-
	Magallanes	Laguna Blanca			1.034,00	11,1	+	4	Т			43,2%	42,0%	39%	39%	39%	39%	ш	w	ш		
	Magallanes	San Gregorio			1.042,00	10,5	+	4	Т	0,12 41,9%		44,2%	42,7%	39%	39%	39%	39%	w ŵ	w	ш		
	Tierra del Fuego	Primavera			1.034,00	14,1	+	+	Т			43,6%	45,4%	39%	39%	39%	39%	ш Ш	ш	ш		
	Tierra del Fuego	Porvenir		1.077,00	937,00	26,8	\dashv	+	_	,		43,2%	40,4%	30%	39%	39%	39%	ů ±	w	ம்		
	Magallanes	Punta Arenas	\neg	1.069,00	00'262	55,9	+	+	4			42,9%	33,8%	30%	30%	39%	30%	u.	ш	ш	7	
	Tierra del Fuego		$\overline{}$	1.042,00	771,00	9'99	+	+	\neg			41,9%	33,3%	30%	30%	39%	30%	u.	ம்	ш	1	
	Antartica chilena	Cabo de Hornos	_	00'066	788,00	32,6	+	4	_			40,0%	33,7%	30%	30%	39%	30%	u.	ш	ш	H	
	Ultima Esperanza	Natales		1.130,00	832,00	57,2	+	+	<u>"</u>	0,41 34,3%		45,2%	35,5%	30%	30%	39%	30%	± ,	.	ш.	н .	
XII Región de Magallanes y la Antártica Chilena	Magallanes	Río Verde	900,10	1.060,00	00'262	72,9	8,10%	9.315 3	365 0,0	33,0)	%8'98 %	42,6%	34,1%	30%	30%	39%	30%	± u	ш	u.	H	

25 ANEXO 8.I: DISCOS SOLARES

N 30 -30 60 -60 0 E -120 120 Inclinación -150 150 S 0.3 0.4 0.5 0.6 0.7 0.9 0.8

26 ANEXO 9.I: REVISIÓN Y ANÁLISIS REGLAMENTACIÓN INTERNACIONAL

A continuación, se presenta el análisis de la reglamentación internacional sobre el dimensionamiento de los SST, los incentivos económicos existentes para los mismos y la definición técnica de sus componentes, sus características y requisitos. Para tal fin, se han analizado las reglamentaciones existentes en cuatro (4) países, previo acuerdo con la Comisión Nacional de Energía (CNE). Los países analizados son: Israel, Alemania, España, y Canadá. Las principales características que sustentan la selección de dichos países son las siguientes:

- **Israel:** Primer país a nivel mundial que implementa una ley para la obligatoriedad de sistemas solares térmicos en viviendas.
- Alemania: País con altos estándares de calidad.
- **España:** País con reglamentación de implementación reciente.
- Canadá: País con alto soporte informativo por parte del Estado y estándares americanos.

En la Tabla A.1 se resumen los datos más relevantes obtenidos del análisis realizado para cada país en relación al método de cálculo para el dimensionamiento de los sistemas y a los incentivos económicos existentes.

Tabla A9.1: Resumen en relación al método de cálculo para el dimensionamiento e incentivos económicos

Criterio evaluado	Israel	Alemania	España	Canadá
Obligatoriedad de SST en nuevos edificios residenciales	Sí	Sí. También se permiten otras energías renovables	Sí. También se permiten otras energías renovables si no es posible la instalación de energía solar térmica	No
Obligatoriedad de SST en nuevos edificios no residenciales	No	Sí. También se permiten otras energías renovables	Sí. También se permiten otras energías renovables si no es posible la instalación de energía solar térmica	No
Procedimiento de dimensionamiento de SST estándar	Sí, demanda de ACS según número de dormitorias de la vivienda ó producción solar diaria por litro de ACS consumida para edificios no residenciales	Sí, determinada área de colector por metro cuadrado útil de superficie habitable	Sí, demanda de ACS y determinada contribución solar según zona climática	No
Fomento del uso de energía solar térmica a través de incentivos económicos en edificios residenciales	No	Sí	No	Sí, subvenciones a nivel regional
Fomento del uso de energía solar térmica a través de incentivos económicos en edificios no residenciales	Aún no se posee información	Aún no se posee información	Sí, líneas de préstamo para grandes SST.	Sí, subvenciones a nivel nacional, obtenidas según rendimiento energético mínimo de los colectores y a nivel provincial basadas en distintos métodos

La revisión internacional realizada se divide en dos partes:

- I. Métodos de cálculo existentes a nivel internacional para el dimensionamiento de los sistemas solares térmicos y existencia de incentivos (esta primera parte se detalla lo resumido en la tabla A.I)
- II. Definición técnica de los componentes de un SST, sus características y requisitos, de acuerdo a la normativa internacional analizada

A continuación se desarrolla cada una de las partes:

I) MÉTODOS DE CÁLCULO EXISTENTES A NIVEL INTERNACIONAL PARA EL DIMENSIONAMIENTO DE LOS SISTEMAS SOLARES TÉRMICOS Y EXISTENCIA DE INCENTIVOS.

En los siguientes apartados, se presenta el análisis detallado de cada país, en el siguiente orden:

- 1. Israel
- 2. Alemania
- 3. España
- 4. Canada

El análisis de cada país seleccionado contempla en primer lugar, el método de cálculo para el dimensionamiento de los SST y luego una revisión de los principales incentivos existentes.

1. ISRAEL

Israel fue el primer país en hacer obligatorio el uso de sistemas solares térmicos en edificios residenciales. Un reglamento publicado en 1980 obligó a la instalación de sistemas solares domésticos de agua caliente (DHWS) en cada nuevo edificio de viviendas no más alto de 27 m. En 1998, el gobierno israelí decidió incrementar el uso de tecnologías de energía renovables en edificios. El gobierno decidió establecer un comité interministerial (energía, medioambiente, y ciencia) para investigar las herramientas necesarias para implementar esta política.

El Ministerio de Infraestructuras Nacionales, con la ayuda de otros ministerios, actúa promoviendo la introducción de energías alternativas, mejorando los estándares de calidad del medioambiente y reduciendo la dependencia energética de las energías tradicionales.

Otra decisión gubernamental significativa (en el año 2002) estableció que en el año 2005 el 2% de la electricidad de Israel debía estar suministrada por medio de energías renovables. Sin embargo, los medios para implementar dicho logro no han sido proporcionados y el objetivo no se ha cumplido.

Esta regulación condujo a ampliar la capacidad instalada de colectores de agua, llegando en el año 2003 a un uso de colectores solares en Israel equivalente a 280 MW/año (MED-ENEC report 2006). En el 2007 con casi 600 kWth de capacidad solar térmica instalada por cada 1000 habitantes Israel era el segundo país a nivel mundial en uso de energía solar térmica (ESTIF report 2007).

Israel tiene 5 MW instalados de energía hidroeléctrica, la cual no se espera que aumente. La generación de electricidad mediante energía eólica es de 6 MW y se espera que crezca sustancialmente.

1.1 Método de cálculo para el dimensionamiento de SST

La cantidad diaria requerida de calor de salida del SST varia de acuerdo con el uso del edificio y con la clase de sistema solar instalados. Para edificios residenciales, la obligación se define en términos de producción diaria de energía solar por litro de capacidad del acumulador: 172 kJ para sistemas de circuito abierto y 192 kJ para

sistemas de circuito cerrado. La capacidad requerida del acumulador se determina de acuerdo con el número de habitaciones en cada unidad residencial: al menos 60 l para apartamentos de una habitación; 120 l para apartamentos de 2 o 3 habitaciones, y 150 l para departamentos de mayor tamaño.

Para hoteles, casas de huéspedes, residencias de ancianos, escuelas y similares, la obligación esta definida en términos de producción solar diaria por litro de agua caliente consumida: 126 kJ para sistemas abiertos y 142 para sistemas de circuito cerrado (ESTIF report 2007).

1.2 Incentivos

La obligatoriedad de la instalación de sistemas solares térmicos en edificios fue un éxito en Israel y ha hecho de los sistemas solares térmicos la principal tecnología en el mercado del calentamiento de agua sin ningún tipo de soporte financiero

En Israel, los SST han alcanzado la masa crítica de mercado para crear un crecimiento propio sostenible sin necesidad de subsidios. De hecho más del 90% del mercado solar térmico israelí esta en el segmento voluntario como instalación en edificios existentes o sistemas mayores que los requeridos por ley. Los sistemas solares térmicos son considerados elementos obvios de los edificios (ESTIF report 2007).

2. ALEMANIA

Alemania posee una larga trayectoria en el desarrollo de la energía solar térmica gracias la variedad de incentivos económicos otorgados para potenciar el mercado. Entre los años 1978 y 1983 fue lanzado el Programa de Inversión Futura (*Zukunftinvestitionprogramm – ZIP*). Posteriormente, se han desarrollado otros incentivos con el fin de generar efectos positivos para las grandes instalaciones solares térmicas: programas de subvenciones (*Solarthermie 2000*plus); programa para incentivar el mercado (*Marktanreizprogramm*) y créditos blandos otorgados por el Instituto de Crédito para la Reconstrucción (*Kreditanstalt für Wiederaufbau – KfW*).

A partir del año 2009, la energía solar térmica en Alemania tiene carácter obligatorio. Sin embargo, siguen existiendo iniciativas para fomentar el uso de esta energía. Estas serán presentadas posteriormente en el presente estudio.

2.1 Método de cálculo para el dimensionamiento de SST

La legislación alemana sobre el uso de energías renovables para la producción de calor Erneuerbare-Energien-Wärmegesetz (EEWärmeG) entró en vigor a partir del año 2009

y contempla las diferentes exigencias energéticas según se trate de edificios residenciales climatizados nuevos con superficie útil mayor a 50m², o bien, edificios no residenciales climatizados de nueva construcción

<u>Para los Edificios residenciales climatizados nuevos con una superficie útil mayor a</u> 50m², las exigencias son las siguientes:

La producción de calor debe realizarse parcialmente a través del uso de energías renovables. Para tal fin, se permite la combinación de las siguientes energías renovables:

- Energía solar térmica: mínimo 0,04m² de superficie de colector por cada m² de área útil en edificios de hasta dos viviendas. En edificios con más de dos viviendas, la superficie mínima de colectores a instalar es 0,03m² por cada m² de área útil o, en su defecto, cubrir el 15% de la demanda de calor del edificio.
- Biomasa (p. ej. pelets o madera troceada): Empleo de estufas o calderas con eficiencias de 86% de potencia menor a 50kW y 88% cuando la potencia sobrepase los 50kW. Además el cumplimiento de las exigencias relativas al uso de quemadores pequeños y medianos o, en su defecto, cubrir el 50% de la demanda de calor del edificio.
- **Geotermia y calor ecológico**: Uso de bombas de calor eficientes con coeficientes de eficiencia según el tipo (p. ej. 4 para bombas de calor geotérmicas o 3,8 si también se utiliza para la producción de ACS, 3,5 para bombas de calor de aire o 3,3 también se utiliza para la producción de ACS) o, en su defecto, cubrir el 50% de la demanda de calor del edificio.
- Biogás: Centrales de cogeneración para la producción simultánea de electricidad y calor.
- Aceite vegetal: Sólo permitido su empleo cuando la ordenanza de sostenibilidad lo estipule y con la mejor tecnología de calderas disponible para su combustión.

Además, se pueden también cubrir las exigencias con las siguientes medidas (combinadas también con energías renovables):

 Mejora de la calidad energética del edificio en un 15% por encima del actual estándar alemán para edificios (EnEV09).

- Suministro de calor o calor residual al edificio, proveniente de una central de cogeneración con un mínimo de 50%.
- Suministro de calor a través de una planta de calefacción de barrio, cuando la misma es producida esencialmente con energías renovables, calor residual o instalaciones KWK.

En casos específicos, pueden hacerse excepciones del cumplimiento de la normativa, mediante la demostración de imposibilidad de cumplir con la misma por razones técnicas.

Para los Edificios no residenciales climatizados de nueva construcción las exigencias son las siguientes:

Para los edificios no residenciales también se han estipulado exigencias con respecto al uso de energías renovables.

2.2 Incentivos

A continuación se presentan los principales programas de incentivos vigentes en Alemania:

a.- Programa Nacional de Incentivos de Energías Renovables (BAFA)

La siguiente tabla resume las principales características del programa:

Tabla A9.2 Programa Nacional de Incentivos de Energías Renovables - Subvención (BAFA)

	Medida	Subsidio Básico	Bonus por combinación de renovables	Bonus por eficiencia, nivel 1	Bonus por eficiencia, nivel 2	Bonus de circulación de bombas	Bonus de bomba solar
SOLAR TERMICA	Para agua doméstica caliente hasta 40 m² de area de colector	60 €/m² de área de collector, mínimo 410 €		-	-	200 € por sistema de calentamiento	50 € por bomba
	Agua doméstica caliente combinada con ayuda para calentamiento hasta 40 m² de area de colector, refrigeración solar o generación de calor de proceso	105 €/m² de área de colector. Colectores planos mín. 9 m², mín. 40 l/m² de depósito. Colectores tubulares: mín. 7 m², mín. 50 l/m² de depósito	750 €	52,50 €/m²	105 €/m²		
	Agua doméstica caliente combinada con ayuda para calentamiento con una o dos casas familiares con más de 40 m² de área de colectores y un depósito con un volumen mín. de 1001/m² de area de colector	105 €/m² de área de colector hasta 40 m² + 45 €/m² para más de 40 m²		52,50 €/m² (+ 22,50 €/m² mayor de 40 m²)	105 €/m² (+ 45 €/m² mayor de 40 m²)		
	Horno de pelets de aire controlado sobre 8 - 100 kW u horno de pelets con intercambiador de calor de agua 5 - 100 kW	36 €/kW, mín. 1000 €		18 €/kW, mín. 500 €	1000€		-
В	Caldera de pelets 5 - 100 kW	36 €/kW, mín. 2000 €		18 €/kW, mín. 1000 €	36 €/kW, mín. 2000 €		-
I O M A S A	Caldera de pelets 5 - 100 kW con un nuevo tanque de almacenamiento instalado con al menos 30 l/kW	36 €/kW, mín. 2500 €	750 €	18 €/kW, mín. 1250 €	36 €/kW, mín. 2500 €	200 € por sistema de calentamiento	-
	Sistema para la combustión de virutas de madera para 5 – 100 kW con un tanque de almacenamiento de al menos 30 l/kW.	1.000€		500 €	1.000€		-
	Caldera de madera troceada de 15 - 50 KW.	1.125 €		563 €	1.125€		-
BOMBA DE CALOR	Instalación de una bomba de calor de aire/agua	Instalación nueva: 5€/m² areá de suelo, máx. 850 €		-	-	-	-
	Instalación de una bomba de calor agua/agua o un fluido/agua	Instalación nueva: 10 €/m² areá de suelo, máx. 2000 €			-	-	-

<u>b.- Programa Nacional de Incentivos de Energías Renovables - Créditos a intereses reducidos (KfW)</u>

- Sistemas solares térmicos grandes >40m²:
 - Los sistemas tienen que cumplir especiales requerimientos de calidad o tienen que ser operados de forma altamente económica.
 - Los sistemas elegibles son: 1) Sistemas para la generación de agua doméstica caliente y/o para apoyar al calentamiento de edificios residenciales con al menos 3 viviendas o edificios no residenciales con al menos 500 m² de área efectiva y 2) Sistemas para refrigeración solar o generación de calor de proceso.
 - Los sistemas están subvencionados con un valor máximo del 30% de los costes netos de inversión
- Grandes reservas de calor para calefacción a partir de energías renovables, están subvencionadas:
 - Grandes reservas de calor con un volumen de almacenamiento de más de 20 m3 de volumen de agua.
 - La subvención es 250 Euros por m3 de volumen de reserva, esta limitado al 30% de los costes netos de inversión y su máximo es de 300.000 Euros.
 - Tipo de subvención: crédito a interés reducido

Subsidios Regionales: No hay otros subsidios disponibles a nivel regional.

3. ESPAÑA

El desarrollo de la energía solar térmica data del año 1999, cuando se elaboró la primera ordenanza solar en Barcelona. Desde entonces, más de 8000 municipios han elaborado sus propias ordenanzas, en gran medida, basadas en la Ordenanza solar de Barcelona. En el año 2006, entró en vigor el Código Técnico de la Edificación, que obliga al uso de energía solar térmica a nivel nacional, tanto en edificios residenciales como terciarios.

3.1 Método de cálculo para el dimensionamiento de SST

El método de cálculo de para el dimensionamiento básico de SST según el CTE se describe brevemente a continuación:

- En la memoria del proyecto se debe establecer el método de cálculo, especificando, al menos en base mensual, los valores medios diarios de la demanda de energía y de la contribución solar. Asimismo el método de cálculo incluirá las prestaciones globales anuales definidas por:
 - a) la demanda de energía térmica;
 - b) la energía solar térmica aportada;
 - c) las fracciones solares mensuales y anuales;
 - d) el rendimiento medio anual.
- Se debe comprobar si existe algún mes del año en el cual la energía producida teóricamente por la instalación solar supera la demanda correspondiente a la ocupación real o algún otro periodo de tiempo en el cual puedan darse las condiciones de sobrecalentamiento, tomándose en estos casos las medidas de protección de la instalación correspondientes. Durante ese periodo de tiempo se intensificarán los trabajos de vigilancia descritos en el apartado de mantenimiento. En una instalación de energía solar, el rendimiento del captador, independientemente de la aplicación y la tecnología usada, debe ser siempre igual o superior al 40%.
- Adicionalmente se deberá cumplir que el rendimiento medio dentro del periodo al año en el que se utilice la instalación, deberá ser mayor que el 20 %. En el caso de las ordenanzas, la demanda de ACS por usuario puede variar, así como la contribución solar mínima exigida.

3.2 Incentivos

Antes de la entrada en vigor del CTE, se utilizaron incentivos económicos para promover el uso de SST en edificios residenciales y terciarios. Sin embargo, dichos incentivos económicos fueron eliminados dado el carácter obligatorio del uso de tales sistemas según la legislación nacional. Actualmente, sólo existen líneas de préstamos para grandes sistemas.

4. CANADÁ

El departamento de energía del Ministerio de Recursos Naturales de Canadá está a cargo de la política energética del gobierno canadiense. Su objetivo es que los canadienses se beneficien económicamente, medioambientalmente y socialmente de la producción y uso seguro y sostenible de las reservas energéticas canadienses.

El uso de SST en Canadá no es obligatorio, sin embargo el Ministerio de Recursos Naturales de Canadá ha puesto en marcha una serie de programas e iniciativas a nivel nacional para fomentar el uso de energía renovables en Canadá, dentro de ellas el programa de *ecoENERGY for Renewable Heat* y *ecoENERGY Retrofit* que se describen en el apartado de incentivos promueven el uso de la energía solar térmica¹

Para poder optar a las distintas subvenciones normalmente los sistemas tienen que cumplir con los estándares canadienses o similares aplicables a dicho sistema.

4.1 Método de cálculo para el dimensionamiento de SST

Para el dimensionamiento de SST, la Asociación de Industrias Solares de Canadá (CanSIA) da una serie de recomendaciones.

Para la obtención de un pre-dimensionamiento se puede utilizar la herramienta informática RETScreen, que opera en Microsoft Excel y se puede descargar libre de costo en la página web del Ministerio de Recursos Naturales de Canadá. Así mismo para una primera aproximación del dimensionado del sistema, la Asociación de Industrias Solares de Canadá propone asumir, especialmente para sistemas pequeños, un volumen de agua caliente por día soleado por colector de entre 100 y 200 litros de agua caliente por colector solar de 3 m² de área por día soleado. No hay ningún código con respecto al tamaño del tanque pero una regla práctica a usar para aplicaciones residenciales es 45 litros de almacenamiento por m² de área de colector. En Canadá el rango de acumulador es entre 150 y 450 litros, también hay acumuladores construidos a petición de tamaños mayores.

¹ Ministerio de Recursos Naturales de Canadá: http://www.nrcan.gc.ca/eneene/renren/index-eng.php

Para el dimensionado de SST para instituciones, comercios y aplicaciones industriales el sistema debería de estar diseñado por un ingeniero profesional que probablemente usa una herramienta de simulación como el Watsun. El Watsun es un programa desarrollado por la Universidad de Waterloo para sistemas solares comerciales. El programa usa información meteorológica en base horaria desarrollado sobre tres años típico en una localidad particular. El programa supone un área de colector y calcula la contribución solar tal como la energía generada. El área del colector implica ciertos costos y la energía obtenida cierto ahorro. El costo y el ahorro permiten al diseñador analizar el potencial sistema solar. Esto es especialmente valioso para sistemas solares de gran tamaño.

4.2 Incentivos

El Gobierno Federal de Canadá ha puesto en marcha dos programas para incentivar el uso de los SST. El ecoENERGY for Renewable Heat que es aplicable básicamente a comercio, industria e instituciones y el ecoENERGY Retrofit para sistema domésticos en viviendas existentes.

Además existen también una serie de programas regionales y municipales para promover los sistemas solares de calentamiento de agua.

4.2.1 EcoENERGY for Renewable Heat

El programa ecoENERGY for Renewable Heat² (Ecoenergía para Calefacción renovable) es un programa de 4 años, del 1 de abril de 2007 al 31 de marzo de 2011, con una inversión de 35 millones de dólares que tiene como objetivos lo siguiente:

- Incrementar el uso de energía térmica renovable en la industria, el comercio y las instituciones.
- Aumentar la cantidad de energía térmica renovable creada por los anteriores sectores.
- Contribuir a la limpieza del aire ayudando a los negocios canadienses a usar menos combustible fósiles para calefacción y agua caliente sanitaria en edificios a lo largo del país.

EcoENERGY for Renewable Heat también ayudará a apoyar el crecimiento del mercado de energías renovables promoviendo los estándares y procesos de certificación, la inclusión de nuevas tecnologías en códigos de edificación y regulaciones provinciales y municipales, y entrenando diseñadores de sistemas, técnicos e instaladores.

Mediante este programa se ofrecen incentivos al sector industrial, comercial e institucional para instalar sistemas solares de aire o calentamiento de agua de alto rendimiento energético que utilicen colectores que cumplan el Estándar CSA F3878 o

² http://www.ecoaction.gc.ca/ECOENERGY-ECOENERGIE/heat-chauffage/index-eng.cfm

equivalentes (en la página web del programa se puede encontrar una lista de los colectores solares aceptados). También pueden acogerse a este programa edificios multi-residenciales que tienen una entrada común y tienen al menos cuatro pisos sobre el suelo o un área de piso de al menos 600 m² y edificios residenciales localizados en comunidades remotas en los que al menos el 50% del área del edificio se usa para propósitos comerciales, industriales o institucionales.

Para poder acceder a este programa los proyectos deben de ser completados y comisionada en 9 meses una vez se firme un acuerdo de contribución con el Ministerio de Recursos Naturales de Canadá (NRCan). Estimaciones preliminares sugieren que en el 2011, el programa habrá apoyado instalaciones en unos 700 edificios.

Cálculo de incentivos

Cinco de los métodos de incentivo más comunes fueron considerados por el programa ecoEnergy for Renewable Heat:

- Status Quo basado en porcentaje de costos
- Área de colector instalada los colectores cumplen con un mínimo de rendimiento energético (kWh/m²/día)
- Área de colector instalada basado en un factor de rendimiento energético
- Estimación de la energía solar producida
- Medición de la energía solar producida

Después de evaluar los métodos anteriores, el cálculo de los incentivos de este programa se definió de la siguiente manera:

Cantidad de incentivo anticipada = factor de rendimiento x tasa de incentivo x área del colector

Donde:

- El factor de rendimiento es un factor predeterminado por colector instalado. Este valor se puede encontrar en la lista de colectores solares aceptados
- La tasa de incentivo es el incentivo por m² por tipo de colector.
- Área del colector es el área total instalada en metros cuadrados. Este valor se puede calcular a partir de la áreas individuales que es encuentran en la lista de colectores aceptados.

La siguiente tabla da cuenta de la tasa de incentivo del programa EcoEnergy

Tabla A9.3: Tasa de incentivo en el programa ecoEnergy for Renewable Heat

	Tasa de Incentivo - CAN\$/m²		
	Regular	Comunidad Remota	
Aire solar (con o sin cubierta de vidrio)	\$ 70.00	\$ 112.00	
Agua Caliente Solar (con cubierta de vidrio)	\$ 275.00	\$ 440.00	
Agua Caliente Solar (sin cubierta de vidrio)	\$ 30.00	\$ 48.00	

El incentivo máximo es de 80.000 CAN\$ para instalaciones solares de aire, de 400.000 CAN\$ para instalaciones solares de agua caliente y de 2 millones de CAN\$ para instalaciones múltiples.

<u>Metodología</u>

La metodología para el cálculo del factor de rendimiento es como sigue:

El factor de rendimiento se calcula dividiendo el índice de energía de cada colector entre el índice de energía mayor de todos los colectores pertenecientes a un mismo grupo tecnológico. Se consideran cinco grupos colectores planos de agua con cubierta de vidrio, colectores de tubos de vacío de agua de vidrio, colectores de agua sin cubierta de vidrio, colectores de aire con y sin cubierta de vidrio.

La metodología para estimar el índice de energía se describe a continuación. Es importante considerar que el programa sólo acepta colectores solares que cumplen los estándares de la Asociación Canadiense de Estandarización o similares (tales como en USA o Europa). Para colectores que han sido aceptados por el programa de ecoENERGY for Renewable Heat basados en los test de eficiencia térmica europeos, las ecuaciones de eficiencia (que usan T_{media} – $T_{ambiental}$) han sido ajustadas a los estándares norteamericanos (que usan $T_{entrada}$ – $T_{ambiental}$) antes de que la siguiente metodología fuese aplicada.

El rendimiento energético de los colectores solares es medido y caracterizado bajo los estándares canadienses, estadounidenses y europeos en términos de ecuaciones lineales y de segundo orden que relacionan la eficiencia ($\eta_{COLECTOR}$) con un parámetro operacional que divide una diferencia de temperatura entre el colector y el aire ambiental (T_{C} - T_{A}), por el flujo de energía solar incidente (G). Un ejemplo de una versión lineal de la ecuación es:

$$\eta_{\it collector} = A - B \bigg(\frac{T_c - T_a}{G} \bigg)$$

En la ecuación superior, el parámetro A representa la eficiencia óptica, y el B el coeficiente de pérdida de calor, que son determinados durante las pruebas de certificación. Una medida representativa de rendimiento energético para cada tipo de colector de agua se determina como sigue:

- Colectores planos y de tubos de vacío de agua con cubierta de vidrio: la ecuación de eficiencia y los valores de modificación del ángulo de incidencia son determinados mediante los test estándares realizados al colector. Esta información es usada para calcular la energía producida por el colector cuando es operado en un "día estándar" según se define en el estándar canadiense CSA F379. La hoja de cálculo usada para realizar estos cálculos fue desarrollada por el personal del Instituto Nacional de Normas de Ensayo. Para colectores con cubierta de vidrio (tanto planos como tubulares) la energía generada por el colector (kWh/m²/d) a 20°C y 50°C de diferencia de temperaturas se toma como media para determinar el índice de energía de cada colector. La diferencia de 20°C representa la operación en verano y la de 50°C la operación en invierno.
- Colectores de agua caliente sin cubierta de vidrio: La ecuación de eficiencia y los valores de las modificaciones del ángulo de incidencia se determinan de acuerdo con los ensayos estándares para cada colector. Esta información se usa para calcular el índice de energía (kWh/m²/d) cuando se opera en un "día estándar) a 5°C de diferencia y a una velocidad de viento de 2.5 m/s representando condiciones típicas de operación en verano para calentamiento de piscinas.

4.2.2 EcoENERGY for Retrofit

EcoENERGY for Retrofit es un programa que proporciona ayuda a propietarios de viviendas, negocios de pequeño y mediano tamaño, instituciones públicas e industrias para implementar proyectos de ahorro de energía que reducen la emisión de gases de efecto invernadero y la polución del aire.

En referencia a los SST este programa da subvención fijas para la instalación de este tipo de sistemas de 1250 CAN\$ a dueños de viviendas ya existentes que hayan realizado una evaluación de eficiencia energética residencial por un certificado por el Ministerio de Recursos Naturales de Canadá. De los 300 CAN\$ que cuesta

normalmente esta evaluación se puede financiar la mitad mediante el programa Livesmart BC.

4.2.3 Otras subvenciones:

A nivel regional se dan también subvenciones para SST, las cuales se describen brevemente a continuación:

- En algunas provincias los sistemas solares están exentos totalmente de pagar impuestos como es el caso de Ontario y La Isla del Príncipe Eduardo. Las características de los SST y beneficiarios varían de una provincia a otra.
- En otras provincias se ofrece un descuento sobre el precio del sistema. Así por ejemplo en Nueva Escocia se da un descuento del 15% sobre el costo del sistema solar de calentamiento de agua cuando este se usa a lo largo de todo el año. Este descuento es para todo tipo de edificios (residenciales, institucionales, industriales y comerciales) en la provincia. Y el máximo descuento es de 20.000 CAN\$. En la provincia de Quebec en Mayo del año 2009 se va a lanzar también un programa de incentivos de estas características que ofrece un pago del 50% incluyendo instalación de sistemas prefabricados para viviendas de nueva construcción y existentes. En ambas provincias se requiere que los sistemas cumplan con los estándares canadienses.
- En la Colombia Británica por ejemplo además de exención de impuestos en equipos solares térmicos lo que se hace es otorgar 1.000 CAN\$ de descuento para SST en viviendas de nueva construcción y 1.625 CAN\$ en viviendas existentes para constructores o desarrolladores. Estos incentivos están disponibles a través de contratistas registrados SolarBC.

II) DEFINICIÓN TÉCNICA DE LOS COMPONENTES DE UN SST, SUS CARACTERÍSTICAS Y REQUISITOS

Con el fin de definir técnicamente los componentes de un sistema solar térmico se han revisado los estándares existentes en los cuatro países sujetos a análisis en el presente estudio. En caso de Israel y Canadá, no se dispone de suficiente información sobre los estándares vigentes. Se prevé, sin embargo, que éstos no serán más exigentes que la actual legislación europea (España y Alemania).

A continuación se presenta la información obtenida hasta la fecha para estos dos países.

1. ISRAEL

En lo referente a las características de los colectores, el cuerpo nacional de estandarización de Israel (Institución de Estándares de Israel - *SII*) ha publicado estándares para colectores solares y para acumuladores de almacenamiento de sistemas solares (SI 579). Estos estándares se convirtieron en obligatorios (estándares oficiales) por una orden del Ministerio de Industria y Comercio prohibiendo la producción, importación, venta y uso de colectores solares y acumuladores de almacenamiento a menos que cumpliesen los estándares oficiales. Además dicho Ministerio publicó otra orden prohibiendo la producción, venta, y uso de colectores solares y acumuladores de almacenamiento a menos que tengan la marca de conformidad (Marca de Estandarización) de la Institución de Estándares de Israel.

2. CANADÁ

Actualmente hay 3 estándares publicados por la Asociación Canadiense de Estandarización que hacen referencia directa a sistemas solares de calentamiento de agua, el CAN/CSA-F378 de colectores solares que producen calor, el CAN/CSA-F379 con los requerimientos de los sistemas domésticos solares de agua caliente prefabricados (transferencia de calor líquido a líquido) y el CAN/CSA-F383-8 para la instalación de sistemas domésticos solares de agua caliente prefabricados.

Todavía no hay ningún estándar para SST no prefabricados aunque la Asociación Canadiense de Estandarización está desarrollando un nuevo estándar titulado Diseño e Instalación de Sistemas Solares de Calentamiento de Agua no prefabricados. Mientras tanto, los SST personalizados residenciales y comerciales son aceptados en le Código Nacional de Fontanería (y los códigos de construcción provinciales relativos) en el marco de las disposiciones "equivalentes".

3. EUROPA (ESPAÑA Y ALEMANIA)

En Europa, existen los estándares EN 12975, EN 12976 y EN 12977 (borrador), los cuales regulan tanto la durabilidad, seguridad y rendimientos de colectores y sistemas solares térmicos como los procedimientos de métodos de ensayo para testar los mismos.

Estos estándares son traspuestos a nivel nacional en cada país de la Unión Europea, determinando niveles mínimos de calidad. Sin embargo, los países pueden en su legislación, aplicar criterios más estrictos o más definidos. Tal es el caso de España y de Alemania, en cierta medida.

En el caso de España, el CTE define de forma exhaustiva las características técnicas de los componentes de un SST. Tales criterios de diseño estaban, en gran medida, definidos en el Pliego de Condiciones Técnicas de Instalaciones de Baja Temperatura, documento publicado por el IDAE en 2002 (revisado en enero 2009), cuya finalidad era establecer las condiciones técnicas que deben tomarse en consideración en la convocatoria de Ayudas para Instalaciones Solares Térmicas en el ámbito del Plan de Fomento de Energías Renovables.

Alemania, por su parte, se regía por el estándar DIN 4757-1:1980-11. A partir de la entrada en vigor de la norma europea, las normas actuales DIN EN para colectores y sistemas solares térmicos contienen criterios de las normas europeas y de la antigua legislación alemana.

Debido a las leves diferencias de los estándares existentes en ambos países, se recopila en los próximos apartados las similitudes y diferencias entre el CTE, la norma europea EN y la trasposición de la misma en Alemania, bajo el nombre de DIN EN, cuando se ha considerado relevante.

3.1 Sistemas de Protección contra Heladas y Sobrecalentamientos

3.1.1 Protección contra heladas

CTE y EN

- El fabricante, suministrador final, instalador o diseñador del sistema deberá fijar la mínima temperatura permitida en el sistema. Todas las partes del sistema que estén expuestas al exterior deben ser capaces de soportar la temperatura especificada sin daños permanentes en el sistema.
- Cualquier componente que vaya a ser instalado en el interior de un recinto donde la temperatura pueda caer por debajo de los 0 °C, deberá estar protegido contra las heladas.

CTE

- La instalación estará protegida, con un producto químico no tóxico cuyo calor específico no será inferior a 3 kJ/kg K, en 5 °C por debajo de la mínima histórica registrada con objeto de no producir daños en el circuito primario de colectores por heladas. Adicionalmente este producto químico mantendrá todas sus propiedades físicas y químicas dentro de los intervalos mínimo y máximo de temperatura permitida por todos los componentes y materiales de la instalación.
- Se podrá utilizar otro sistema de protección contra heladas que, alcanzando los mismos niveles de protección, sea aprobado por la Administración Competente.

EN (Sistemas prefabricados y sistemas a medida)

- El fabricante debe describir el método de protección contra heladas usado por el sistema.
- La norma EN 12976-2:2006, punto 5.1, describe el procedimiento para testar el mecanismo de heladas.

3.1.2 Protección contra sobrecalentamientos

CTE y EN

Cuando el sistema disponga de la posibilidad de drenajes como protección ante sobrecalentamientos, la construcción deberá realizarse de tal forma que el agua caliente o vapor del drenaje no supongan ningún peligro para los habitantes y no se produzcan daños en el sistema, ni en ningún otro material en el edificio o vivienda.

CTE

- Se debe dotar a las instalaciones solares de dispositivos de control manuales o automáticos que eviten los sobrecalentamientos de la instalación que puedan dañar los materiales o equipos y penalicen la calidad del suministro energético. En el caso de dispositivos automáticos, se evitarán de manera especial las pérdidas de fluido anticongelante, el relleno con una conexión directa a la red y el control del sobrecalentamiento mediante el gasto excesivo de agua de red. Especial cuidado se tendrá con las instalaciones de uso estacional en las que en el periodo de no utilización se tomarán medidas que eviten el sobrecalentamiento por el no uso de la instalación.
- Cuando las aguas sean duras, es decir con una concentración en sales de calcio entre 100 y 200 g/l, se realizarán las previsiones necesarias para que la temperatura de trabajo de cualquier punto del circuito de consumo no sea

superior a 60 °C, sin perjuicio de la aplicación de los requerimientos necesarios contra la legionela. En cualquier caso, se dispondrán los medios necesarios para facilitar la limpieza de los circuitos.

EN (Sistemas prefabricados y sistemas a medida)

- La construcción del sistema debe garantizar que los habitantes no correrán peligro debido a fugas de vapor o agua caliente (4.6.2, relativo a la documentación técnica a suministrar por el fabricante para la instalación del SST).
- Cuando la protección contra sobrecalentamientos del sistema depende de suministro eléctrico y/o suministro de agua fría, tal hecho debe reflejarse en las instrucciones del sistema y en su etiquetado (4.6.3 y 4.7, relativo a la documentación técnica a suministrar por el fabricante sobre el uso del y etiquetado del SST).
- En el caso de sistemas drainback (circulación forzada con drenaje o vaciado del circuito primario), éstos deben ser testados de acuerdo al punto 5.1 de la norma EN 12976-2:2006.

3.2 Sistemas de Protección contra Quemaduras

CTE y EN

• En sistemas de Agua Caliente Sanitaria, donde la temperatura de agua caliente en los puntos de consumo pueda exceder de 60 °C debe instalarse un sistema automático de mezcla u otro sistema que limite la temperatura de suministro a 60 °C, aunque en la parte solar pueda alcanzar una temperatura superior para sufragar las pérdidas. Este sistema deberá ser capaz de soportar la máxima temperatura posible de extracción del sistema solar.

3.3 Sistemas de Protección de Materiales contra Altas Temperaturas

CTE y EN

 El sistema deberá ser calculado de tal forma que nunca se exceda la máxima temperatura permitida por todos los materiales y componentes.

EN (Sistemas a medida)

 Se debe tener especial cuidado en los casos en los que vapor o agua caliente puedan entrar en las tuberías del colector, sistema de distribución o en el intercambiador de calor, debido a condiciones de estancamiento.

3.4 Medidas Propuestas en el CTE para Evitar Sobrecalentamiento

CTE

- Con independencia del uso al que se destine la instalación, en el caso de que en algún mes del año la contribución solar real sobrepase el 110 % de la demanda energética o en más de tres meses seguidos el 100 %, se adoptarán cualquiera de las siguientes medidas:
- a) dotar a la instalación de la posibilidad de disipar dichos excedentes (a través de equipos específicos o mediante la circulación nocturna del circuito primario);
- b) tapado parcial del campo de colectores. En este caso el colector está aislado del calentamiento producido por la radiación solar y a su vez evacua los posibles excedentes térmicos residuales a través del fluido del circuito primario (que seguirá atravesando el colector);
- c) vaciado parcial del campo de colectores. Esta solución permite evitar el sobrecalentamiento, pero dada la pérdida de parte del fluido del circuito primario, debe ser repuesto por un fluido de características similares debiendo incluirse este trabajo en ese caso entre las labores del contrato de mantenimiento;
- d) desvío de los excedentes energéticos a otras aplicaciones existentes.
- En el caso de optarse por las soluciones b) y c), dentro del mantenimiento deben programarse las operaciones a realizar consistentes en el vaciado parcial o tapado parcial del campo de colectores y reposición de las condiciones iniciales. Estas operaciones se realizarán una antes y otra después de cada periodo de sobreproducción energética. No obstante se recomiendan estas soluciones solo en el caso que el edificio tenga un servicio de mantenimiento continuo.
- Cuando la instalación tenga uso de residencial vivienda y no sea posible la solución d) se recomienda la solución a).
- Adicionalmente, durante todo el año se vigilará la instalación con el objeto de prevenir los posibles daños ocasionados por los posibles sobrecalentamientos.
- La orientación e inclinación del sistema generador y las posibles sombras sobre el mismo serán tales que las pérdidas sean inferiores a los límites establecidos en el CTE.

3.5 Circuitos primarios y secundarios

CTE

- Las instalaciones se realizarán con un circuito primario y un circuito secundario independientes, con producto químico anticongelante, evitándose cualquier tipo de mezcla de los distintos fluidos que pueden operar en la instalación.
- En instalaciones que cuenten con más de 10 m² de captación correspondiendo a un solo circuito primario, éste será de circulación forzada.

3.6 Requisitos para agregar una circulación forzada

En los estándares internacionales no se establecen requisitos específicos, más sí se definen de forma indirecta, con las condiciones sobre bombas, sistemas de control, etc.

3.7 Materialidad de los componentes

EN (Sistemas prefabricados y sistemas a medida)

- Todas las partes del sistema instaladas en el exterior deben ser resistentes a los rayos UV y a otras inclemencias del clima durante los intervalos de mantenimiento prescritos. Si mantenimiento y reemplazo de piezas del sistema es requerido para el correcto funcionamiento del mismo durante un periodo de 10 años, debe describirse lo anterior en la documentación para el usuario.
- Todos los materiales utilizados en el circuito del colector deben cumplir con la norma ISO/TR 10217 para evitar corrosiones internas.

3.8 Características del fluido de trabajo y tratamiento del agua CTE y EN

 El fluido portador se seleccionará de acuerdo con las especificaciones del fabricante de los colectores.

CTE

- Pueden utilizarse como fluidos en el circuito primario agua de la red, agua desmineralizada o agua con aditivos, según las características climatológicas del lugar de instalación y de la calidad del agua empleada. En caso de utilización de otros fluidos térmicos se incluirán en el proyecto su composición y su calor especifico.
- El fluido de trabajo tendrá un pH a 20 °C entre 5 y 9, y un contenido en sales que se ajustará a los señalados en los puntos siguientes:
- la salinidad del agua del circuito primario no excederá de 500 mg/l totales de sales solubles. En el caso de no disponer de este valor se tomará el de conductividad como variable limitante, no sobrepasando los 650 μS/cm;

- el contenido en sales de calcio no excederá de 200 mg/l, expresados como contenido en carbonato cálcico;
- el límite de dióxido de carbono libre contenido en el agua no excederá de 50 mg/l.
- Fuera de estos valores, el agua deberá ser tratada.

EN (Sistemas prefabricados y sistemas a medida)

 Se deben tomar precauciones para evitar el deterioro del fluido anticongelante, como resultado de altas temperaturas. Tales precauciones deben regirse por el punto 5.2 de la norma EN 12976-2:2006.

Nota: En líneas generales, la temperatura mínima admitida del sistema es igual al punto de congelación del líquido anticongelante. Si la concentración de algunos líquidos anticongelantes – tales como glicoles – sobrepasa ciertos límites, tales líquidos pueden congelarse sin causar daños en el sistema. En este caso la temperatura puede ser menor que el punto de congelación del líquido anticongelante.

3.9 Calidad del agua

EN (Sistemas prefabricados y sistemas a medida)

 El sistema debe cumplir con la norma EN 806-1, parte 1, relativa a especificaciones de instalaciones en el interior de los edificios que transporten agua para el consumo humano.

3.10 Resistencia a presión

CTE y EN

- Los circuitos deben someterse a una prueba de presión de 1,5 veces el valor de la presión máxima de servicio. Se ensayará el sistema con esta presión durante al menos una hora no produciéndose daños permanentes ni fugas en los componentes del sistema y en sus interconexiones. Pasado este tiempo, la presión hidráulica no deberá caer más de un 10 % del valor medio medido al principio del ensayo.
- El circuito de consumo deberá soportar la máxima presión requerida por las regulaciones nacionales/europeas de agua potable para instalaciones de consumo de aguas abiertas o cerradas.
- En caso de sistemas de consumo abiertos con conexión a la red, se tendrá en cuenta la máxima presión de la misma para verificar que todos los componentes del circuito de consumo soportan dicha presión.

EN (Sistemas prefabricados)

- El sistema deberá estar diseñado de tal modo que la máxima presión permitida en los diferentes materiales del sistema no se exceda nunca.
- Todo circuito cerrado en el sistema deberá contener una válvula de seguridad. Esta válvula deberá soportar la mayor temperatura que pueda ser alcanzada en su localización y deberá cumplir con la norma EN 1489. Si se usan válvulas termostáticas tendrán que cumplir con la norma EN 1490.

EN (Sistemas a medida)

- El tanque de almacenamiento y los intercambiadores de calor en este tanque deberán de cumplir con los requerimientos dados en prEN³ 12897:1997. El colector deberá de cumplir con los requerimientos dados en EN 12975-1.
- Cualquiera de los componentes en los sistemas que no están cubiertos por prEN 12897:1997 o EN 12975-1 deberán soportar la más baja de las siguientes presiones
- a) 1,5 veces la máxima presión de trabajo establecida por el fabricante
- b) la presión máxima de testeo establecida por el fabricante para la parte del sistema en el cual ese componente es usado.

Nota 1: Además las baterías de colectores de sistemas a medida grandes deben ser diseñadas de modo que puedan soportar también picos cortos y de alta presión.

Nota 2: Si debido a estancamientos considerables cantidades de medio conductor de calor se evapora en la batería de colectores, picos de presión pueden ocurrir debido a altas velocidades de fllujo del vapor o líquido. Esto picos de presión pueden exceder significativamente la presión aliviada por la válvula de seguridad.

3.11 Prevención de flujo inverso

CTE y EN

 La instalación del sistema deberá asegurar que no se produzcan pérdidas energéticas relevantes debidas a flujos inversos no intencionados en ningún circuito hidráulico del sistema.

-

³ PrEN: Proyecto de norma europea

CTE

- La circulación natural que produce el flujo inverso se puede favorecer cuando el acumulador se encuentra por debajo del colector por lo que habrá que tomar, en esos casos, las precauciones oportunas para evitarlo.
- Para evitar flujos inversos es aconsejable la utilización de válvulas antirretorno, salvo que el equipo sea por circulación natural.

3.12 Conexiones entre los colectores solares térmicos

CTE y EN

 Se debe prestar especial atención en la estanqueidad y durabilidad de las conexiones del colector.

CTE

- Los colectores se dispondrán en filas constituidas, preferentemente, por el mismo número de elementos. Las filas de colectores se pueden conectar entre sí en paralelo, en serie ó en serieparalelo, debiéndose instalar válvulas de cierre, en la entrada y salida de las distintas baterías de colectores y entre las bombas, de manera que puedan utilizarse para aislamiento de estos componentes en labores de mantenimiento, sustitución, etc. Además se instalará una válvula de seguridad por fila con el fin de proteger la instalación.
- Dentro de cada fila los colectores se conectarán en serie ó en paralelo. El número de colectores que se pueden conectar en paralelo tendrá en cuenta las limitaciones del fabricante. En el caso de que la aplicación sea exclusivamente de ACS se podrán conectar en serie hasta 10 m² en las zonas climáticas I y II, hasta 8 m² en la zona climática III y hasta 6 m² en las zonas climáticas IV y V.
- La conexión entre colectores y entre filas se realizará de manera que el circuito resulte equilibrado hidráulicamente recomendándose el retorno invertido frente a la instalación de válvulas de equilibrado.

EN (Sistemas a medida)

Si las baterías de colectores incluye varias filas paralelas conectadas de colectores, la máxima disparidad de caudal másico por unidad de área de colector en cada fila no debe de exceder el 20% del caudal nominal por unidad de área de colector de la batería en su conjunto.

Nota: En general, un caudal de equilibrio puede alcanzarse mediante el ajuste hidráulico de colectores y tubos. Si esto no es posible, el flujo puede ser controlado mediante accesorios adecuados.

3.13 Estructura de soporte de los CST

CTE

- Se aplicará a la estructura soporte las exigencias del CTE en cuanto a seguridad.
- El cálculo y la construcción de la estructura y el sistema de fijación de colectores permitirá las necesarias dilataciones térmicas, sin transferir cargas que puedan afectar a la integridad de los colectores o al circuito hidráulico.
- Los puntos de sujeción del colector serán suficientes en número, teniendo el área de apoyo y posición relativa adecuada, de forma que no se produzcan flexiones en el colector, superiores a las permitidas por el fabricante.
- Los topes de sujeción de colectores y la propia estructura no arrojarán sombra sobre los colectores.
- En el caso de instalaciones integradas en cubierta que hagan las veces de la cubierta del edificio, la estructura y la estanqueidad entre colectores se ajustará a las exigencias indicadas en la parte correspondiente del CTE y demás normativa de aplicación.

EN (Sistemas prefabricados)

El fabricante deberá indicar la carga máxima posible para sus estructuras de soporte, de acuerdo con EN 1993-1-1 (acero) y prEN 1999-1-1 (aluminio). Esto deberá ser mencionado en los documentos para el instalador. Los permisos para la instalación del sistema depende de requerimientos nacionales. Se pueden encontrar directrices en los nuevos Eurocódigos para viento y cargas de nieve.

EN (Sistemas a medida)

Si parte del sistema se instala en una estructura exterior, la resistencia de la misma a nieve y viento de acuerdo con ENV 1991-2-3 y ENV 1991-2-4 deberá probarse haciendo los cálculos con referencia a las condiciones locales. El fabricante deberá especificar los máximos valores para carga de viento y para velocidad media de viento de acuerdo con ENV 1991-2-3 y ENV 1991-2-4. El sistema puede ser solamente instalado en localidades donde los valores de la carga de viento y la velocidad media de viento determinados de acuerdo con las anteriores normativas sean menores que los valores máximos especificados

por el fabricante. Esto deberá ser mencionado en los documentos para el instalador.

3.14 Sistema de acumulación solar

CTE

- El sistema solar se debe concebir en función de la energía que aporta a lo largo del día y no en función de la potencia del generador (colectores solares), por tanto se debe prever una acumulación acorde con la demanda al no ser ésta simultánea con la generación.
- Para la aplicación de ACS, el área total de los colectores tendrá un valor tal que se cumpla la condición:

$$50<\frac{V}{A}<180$$

- Siendo A la suma de las áreas de los colectores [m²];
- V el volumen del depósito de acumulación solar [litros].
- Preferentemente, el sistema de acumulación solar estará constituido por un solo depósito, será de configuración vertical y estará ubicado en zonas interiores. El volumen de acumulación podrá fraccionarse en dos o más depósitos, que se conectarán, preferentemente, en serie invertida en el circuito de consumo ó en paralelo con los circuitos primarios y secundarios equilibrados.
- Para instalaciones prefabricadas, a efectos de prevención de la legionelosis se alcanzarán los niveles térmicos necesarios según normativa mediante el no uso de la instalación. Para el resto de las instalaciones y únicamente con el fin y con la periodicidad que contemple la legislación vigente referente a la prevención y control de la legionelosis, es admisible prever un conexionado puntual entre el sistema auxiliar y el acumulador solar, de forma que se pueda calentar este último con el auxiliar. En ambos casos deberá ubicarse un termómetro cuya lectura sea fácilmente visible por el usuario. No obstante, se podrán realizar otros métodos de tratamiento antilegionela permitidos por la legislación vigente.
- Los acumuladores de los sistemas grandes a medida con un volumen mayor de 2 m³ deben llevar válvulas de corte u otros sistemas adecuados para cortar flujos al exterior del depósito no intencionados en caso de daños del sistema.

3.15 Situación de las conexiones

- Las conexiones de entrada y salida se situarán de forma que se eviten caminos preferentes de circulación del fluido y, además:
- a) la conexión de entrada de agua caliente procedente del intercambiador o de los colectores al interacumulador se realizará, preferentemente a una altura comprendida entre el 50% y el 75% de la altura total del mismo;
- b) la conexión de salida de agua fría del acumulador hacia el intercambiador o los colectores se realizará por la parte inferior de éste;
- c) la conexión de retorno de consumo al acumulador y agua fría de red se realizarán por la parte inferior;
- d) la extracción de agua caliente del acumulador se realizará por la parte superior.
- En los casos en los debidamente justificados en los que sea necesario instalar depósitos horizontales, la toma de agua caliente y fría estarán situadas en extremos diagonalmente opuestos.
- La conexión de los acumuladores permitirá la desconexión individual de los mismos sin interrumpir el funcionamiento de la instalación.
- No se permite la conexión de un sistema de generación auxiliar en el acumulador solar, ya que esto puede suponer una disminución de las posibilidades de la instalación solar para proporcionar las prestaciones energéticas que se pretenden obtener con este tipo de instalaciones. Para los equipos de instalaciones solares que vengan preparados de fábrica para albergar un sistema auxiliar eléctrico, se deberá anular esta posibilidad de forma permanente, mediante sellada irreversible u otro medio.

3.16 Características de los acumuladores

- Cuando el intercambiador esté incorporado al acumulador, la placa de identificación indicará además, los siguientes datos:
 - Superficie de intercambio térmico en m²;
 - o Presión máxima de trabajo, del circuito primario.
- Cada acumulador vendrá equipado de fábrica de los necesarios manguitos de acoplamiento, soldados antes del tratamiento de protección, para las siguientes funciones:
 - a) manguitos roscados para la entrada de agua fría y la salida de agua caliente;
 - b) registro embridado para inspección del interior del acumulador y eventual acoplamiento del serpentín;
 - c) manguitos roscados para la entrada y salida del fluido primario;
 - d) manguitos roscados para accesorios como termómetro y termostato;
 - e) manguito para el vaciado.

- En cualquier caso la placa característica del acumulador indicará la pérdida de carga del mismo.
- Los depósitos mayores de 750 I dispondrán de una boca de hombre con un diámetro mínimo de 400 mm, fácilmente accesible, situada en uno de los laterales del acumulador y cerca del suelo, que permita la entrada de una persona en el interior del depósito de modo sencillo, sin necesidad de desmontar tubos ni accesorios;
- El acumulador estará enteramente recubierto con material aislante y, es recomendable disponer una protección mecánica en chapa pintada al horno, PRFV, o lámina de material plástica.
- Podrán utilizarse acumuladores de las características y tratamientos descritos a continuación:
 - a) acumuladores de acero vitrificado con protección catódica;
 - b) acumuladores de acero con un tratamiento que asegure la resistencia a temperatura y corrosión con un sistema de protección catódica;
 - c) acumuladores de acero inoxidable adecuado al tipo de agua y temperatura de trabajo.
 - d) acumuladores de cobre;
 - e) acumuladores no metálicos que soporten la temperatura máxima del circuito y esté autorizada su utilización por las compañías de suministro de aqua potable;
 - f) acumuladores de acero negro (sólo en circuitos cerrados, cuando el agua de consumo pertenezca a un circuito terciario);
 - g) los acumuladores se ubicarán en lugares adecuados que permitan su sustitución por envejecimiento o averías.

EN (Sistemas prefabricados y a medida)

 Los depósitos para agua potable y partes de depósitos combinados que están en contacto con agua potable deberán de cumplir con los requerimientos en prEN 12897:1997.

EN (Sistemas a medida)

- Depósitos de pequeños sistemas a medida deben ser testados como se describe en ENV 12977-3.
- La tasa de pérdida de calor en stand-by (UA)S,a,sb de depósitos de pequeños sistemas a medida no debería de exceder el valor dado por la siguiente ecuación:

$$(UA)_{s.a.sb} = 0.16 \sqrt{V_s} \text{ in W/K}$$

• donde VS es le volumen nominal del depósito en litros.

- Nota: la ecuación anterior deriva de figuras especificadas en la regulación suiza e italiana para depósitos de agua cliente.
- No hay requerimientos en tasa de pérdida de calor para sistemas grandes a medida.

3.17 Sistemas de intercambio de calor

CTE

Para el caso de intercambiador independiente, la potencia mínima del intercambiador P, se determinará para las condiciones de trabajo en las horas centrales del día suponiendo una radiación solar de 1000 W/ m² y un rendimiento de la conversión de energía solar a calor del 50%, cumpliéndose la condición:

 $P \ge 500 \cdot A$

Siendo:

P: potencia mínima del intercambiador [W];

A: el área de colectores [m²].

- Para el caso de intercambiador incorporado al acumulador, la relación entre la superficie útil de intercambio y la superficie total de captación no será inferior a 0,15.
- En cada una de las tuberías de entrada y salida de agua del intercambiador de calor se instalará una válvula de cierre próxima al manguito correspondiente.
- Se puede utilizar el circuito de consumo con un segundo intercambiador (circuito terciario).

CTE y EN (para sistemas a medida)

- Cualquier intercambiador de calor existente entre el circuito de colectores y el sistema de suministro al consumo no debería reducir la eficiencia del colector debido a un incremento en la temperatura de funcionamiento de colectores.
- Si en una instalación a medida sólo se usa un intercambiador entre el circuito de colectores y el acumulador, la transferencia de calor del intercambiador de calor por unidad de área de colector no debería ser menor que 40 W/m²·K.

EN (Sistemas prefabricados y sistemas a medida)

 Si el sistema se pretende usar en áreas con agua de gran dureza y temperaturas sobre 60 °C, los intercambiadores de calor en contacto con agua

potable deberán ser diseñados en tal modo que el sarro sea prevenido o deberán ser posible su limpieza.

Nota: Gran diferencia de temperatura entre la superficie metálica del intercambiador de calor y el agua potable a su alrededor puede causar sarro. Esto puede ser evitado incrementando el área de intercambio de calor.

EN (Sistemas a medida)

Cualquier intercambiador de calor existente entre el circuito de colectores y el sistema de suministro al consumo no debería reducir la eficiencia del colector debido a un incremento en la temperatura de funcionamiento de colectores por más de lo que los siguientes criterios especifican: cuando la ganancia solar del colector ha alcanzado del más alto valor posible, la reducción de la eficiencia del colector inducido por el intercambiador de calor no debería exceder el 10% (absoluto). Si más de un intercambiador de calor es instalado, este valor no debería de ser tampoco excedido por la suma de las reducciones inducida por cado uno de ellos. Este criterio también aplica si un intercambiador de calor de carga lateral es parte del sistema.

3.18 Especificaciones del circuito hidráulico, bombas, tuberías y drenaje

Circuito hidráulico

- Debe concebirse inicialmente un circuito hidráulico de por sí equilibrado. Si no fuera posible, el flujo debe ser controlado por válvulas de equilibrado.
- El caudal del fluido portador se determinará de acuerdo con las especificaciones del fabricante como consecuencia del diseño de su producto. En su defecto su valor estará comprendido entre 1,2 l/s y 2 l/s por cada 100 m² de red de colectores. En las instalaciones en las que los colectores estén conectados en serie, el caudal de la instalación se obtendrá aplicando el criterio anterior y dividiendo el resultado por el número de colectores conectados en serie."

Tuberías

DIN EN (Sistemas prefabricados)

 Todos los circuitos de tuberías del sistema deben cumplir con la norma ISO/TR 10217 relativa al material de las mismas.

CTE y DIN EN (Sistemas a medida)

- El sistema de tuberías y sus materiales deben ser tales que no exista posibilidad de formación de obturaciones o depósitos de cal para las condiciones de trabajo.
- Con objeto de evitar pérdidas térmicas, la longitud de tuberías del sistema deberá ser tan corta como sea posible y evitar al máximo los codos y pérdidas de carga en general. Los tramos horizontales tendrán siempre una pendiente mínima del 1% en el sentido de la circulación (sólo CTE).
- El aislamiento de las tuberías de intemperie deberá llevar una protección externa que asegure la durabilidad ante las acciones climatológicas admitiéndose revestimientos con pinturas asfálticas, poliésteres reforzados con fibra de vidrio o pinturas acrílicas. El aislamiento no dejará zonas visibles de tuberías o accesorios, quedando únicamente al exterior los elementos que sean necesarios para el buen funcionamiento y operación de los componentes.

CTE

- En las tuberías del circuito primario podrán utilizarse como materiales el cobre y el acero inoxidable, con uniones roscadas, soldadas o embridadas y protección exterior con pintura anticorrosiva.
- En el circuito secundario o de servicio de agua caliente sanitaria, podrá utilizarse cobre y acero inoxidable. Podrán utilizarse materiales plásticos que soporten la temperatura máxima del circuito y que le sean de aplicación y esté autorizada su utilización por las compañías de suministro de agua potable.

DIN EN (para sistemas a medida)

Las tuberías de agua para consumo humano deben cumplir las exigencias de la norma prEN 806-1.

Bombas

CTE

- Si el circuito de colectores está dotado con una bomba de circulación, la caída de presión se debería mantener aceptablemente baja en todo el circuito.
- Siempre que sea posible, las bombas en línea se montarán en las zonas más frías del circuito, teniendo en cuenta que no se produzca ningún tipo de cavitación y siempre con el eje de rotación en posición horizontal.
- En instalaciones superiores a 50 m² se montarán dos bombas idénticas en paralelo, dejando una de reserva, tanto en el circuito primario como en el

- secundario. En este caso se preverá el funcionamiento alternativo de las mismas, de forma manual o automática.
- En instalaciones de climatización de piscinas la disposición de los elementos será la siguiente: el filtro ha de colocarse siempre entre la bomba y los colectores, y el sentido de la corriente ha de ser bomba-filtro-colectores; para evitar que la resistencia de este provoque una sobrepresión perjudicial para los colectores, prestando especial atención a su mantenimiento. La impulsión del agua caliente deberá hacerse por la parte inferior de la piscina, quedando la impulsión de agua filtrada en superficie.

DIN EN (Sistemas prefabricados y sistemas a medida)

Las bombas deben cumplir con las normas EN 809 y EN 1151.

Características de las bombas según CTE y DIN EN para sistemas a medida

- Los materiales de la bomba del circuito primario serán compatibles con las mezclas anticongelantes y en general con el fluido de trabajo utilizado.
- Cuando las conexiones de los colectores son en paralelo, el caudal nominal será el igual caudal unitario de diseño multiplicado por la superficie total de colectores en paralelo.
- La potencia eléctrica parásita para la bomba no debería exceder los valores dados en la siguiente tabla:

Tabla 1: Potencia eléctrica máxima de la bomba

Sistema	Potencia eléctrica de la bomba		
Sistema pequeño	50 W o 2% de la mayor potencia calorífica que pueda suministrar el grupo de		
	captadores		
Sistemas grandes	1 % de la mayor potencia calorífica que puede suministrar el grupo de captadores		

- La potencia máxima de la bomba especificada anteriormente excluye la potencia de las bombas de los sistemas de drenaje con recuperación, que sólo es necesaria para rellenar el sistema después de un drenaje.
- La bomba permitirá efectuar de forma simple la operación de desaireación o purga.

Vasos de expansión

 Los vasos de expansión preferentemente se conectarán en la aspiración de la bomba. La altura en la que se situarán los vasos de expansión abiertos será tal que asegure el no desbordamiento del fluido y la no introducción de aire en el circuito primario.

Vasos de expansión abiertos

CTE y EN (para sistemas a medida)

Los vasos de expansión abiertos, cuando se utilicen como sistemas de llenado o de rellenado, dispondrán de una línea de alimentación, mediante sistemas tipo flotador o similar.

Vasos de expansión cerrados

CTE y EN (para sistemas a medida)

- El dispositivo de expansión cerrada del circuito de colectores deberá estar dimensionado de tal forma que, incluso después de una interrupción del suministro de potencia a la bomba de circulación del circuito de colectores, justo cuando la radiación solar sea máxima, se pueda restablecer la operación automáticamente cuando la potencia esté disponible de nuevo.
- Cuando el medio de transferencia de calor pueda evaporarse bajo condiciones de estancamiento, hay que realizar un dimensionado especial del volumen de expansión: Además de dimensionarlo como es usual en sistemas de calefacción cerrados (la expansión del medio de transferencia de calor completo), el depósito de expansión deberá ser capaz de compensar el volumen del medio de transferencia de calor en todo el grupo de colectores completo incluyendo todas las tuberías de conexión entre colectores más un 10 %.
- El aislamiento no dejará zonas visibles de tuberías o accesorios, quedando únicamente al exterior los elementos que sean necesarios para el buen funcionamiento y operación de los componentes.
- Los aislamientos empleados serán resistentes a los efectos de la intemperie, pájaros y roedores.

Purga de aire

CTE y DIN EN (sistemas a medida)

- En los puntos altos de la salida de baterías de colectores y en todos aquellos puntos de la instalación donde pueda quedar aire acumulado, se colocarán sistemas de purga constituidos por botellines de des-aireación y purgador manual o automático.
- El volumen útil del botellín será superior a 100 cm3. Este volumen podrá disminuirse si se instala a la salida del circuito solar y antes del intercambiador un des-aireador con purgador automático (sólo en CTE).
- En el caso de utilizar purgadores automáticos, adicionalmente, se colocarán los dispositivos necesarios para la purga manual.
- Se evitará el uso de purgadores automáticos cuando se prevea la formación de vapor en el circuito.

CTE

Los purgadores automáticos deben soportar, al menos, la temperatura de estancamiento del colector y en cualquier caso hasta 130 °C en las zonas climáticas I, II y III, y de 150 °C en las zonas climáticas IV y V.

Drenaje

CTE

 Los conductos de drenaje de las baterías de colectores se diseñarán en lo posible de forma que no puedan congelarse.

3.19 Conexión al sistema convencional de calentamiento de ACS CTE

- Para asegurar la continuidad en el abastecimiento de la demanda térmica, las instalaciones de energía solar deben disponer de un sistema de energía convencional auxiliar.
- Queda prohibido el uso de sistemas de energía convencional auxiliar en el circuito primario de colectores.
- El sistema convencional auxiliar se diseñara para cubrir el servicio como si no se dispusiera del sistema solar. Sólo entrará en funcionamiento cuando sea estrictamente necesario y de forma que se aproveche lo máximo posible la energía extraída del campo de captación.
- El sistema de aporte de energía convencional auxiliar con acumulación o en línea, siempre dispondrá de un termostato de control sobre la temperatura de preparación que en condiciones normales de funcionamiento permitirá cumplir con la legislación vigente en cada momento referente a la prevención y control de la legionelosis.
- En el caso de que el sistema de energía convencional auxiliar no disponga de acumulación, es decir sea una fuente instantánea, el equipo será modulante, es decir, capaz de regular su potencia de forma que se obtenga la temperatura de manera permanente con independencia de cual sea la temperatura del agua de entrada al citado equipo.
- En el caso de climatización de piscinas, para el control de la temperatura del agua se dispondrá una sonda de temperatura en el retorno de agua al intercambiador de calor y un termostato de seguridad dotado de rearme manual en la impulsión que enclave el sistema de generación de calor. La temperatura de tarado del termostato de seguridad será, como máximo, 10 °C mayor que la temperatura máxima de impulsión.

3.20 Sistema de control

CTE

- El sistema de control asegurará el correcto funcionamiento de las instalaciones, procurando obtener un buen aprovechamiento de la energía solar captada y asegurando un uso adecuado de la energía auxiliar. El sistema de regulación y control comprenderá el control de funcionamiento de los circuitos y los sistemas de protección y seguridad contra sobrecalentamientos, heladas etc.
- En circulación forzada, el control de funcionamiento normal de las bombas del circuito de colectores, deberá ser siempre de tipo diferencial y, en caso de que exista depósito de acumulación solar, deberá actuar en función de la diferencia entre la temperatura del fluido portador en la salida de la batería de los colectores y la del depósito de acumulación. El sistema de control actuará y estará ajustado de manera que las bombas no estén en marcha cuando la diferencia de temperaturas sea menor de 2 °C y no estén paradas cuando la diferencia sea mayor de 7 °C. La diferencia de temperaturas entre los puntos de arranque y de parada de termostato diferencial no será menor que 2 °C.
- Las sondas de temperatura para el control diferencial se colocarán en la parte superior de los colectores de forma que representen la máxima temperatura del circuito de captación. El sensor de temperatura de la acumulación se colocará preferentemente en la parte inferior en una zona no influenciada por la circulación del circuito secundario o por el calentamiento del intercambiador si éste fuera incorporado.
- El sistema de control asegurará que en ningún caso se alcancen temperaturas superiores a las máximas soportadas por los materiales, componentes y tratamientos de los circuitos.
- El sistema de control asegurará que en ningún punto la temperatura del fluido de trabajo descienda por debajo de una temperatura tres grados superior a la de congelación del fluido.
- Alternativamente al control diferencial, se podrán usar sistemas de control accionados en función de la radiación solar.
- Las instalaciones con varias aplicaciones deberán ir dotadas con un sistema individual para seleccionar la puesta en marcha de cada una de ellas, complementado con otro que regule la aportación de energía a la misma. Esto se puede realizar por control de temperatura o caudal actuando sobre una válvula de reparto, de tres vías todo o nada, bombas de circulación, o por combinación de varios mecanismos.

3.21 Características del sistema eléctrico y de control CTE y EN

La localización e instalación de los sensores de temperatura deberá asegurar un buen contacto térmico con la parte en la cual hay que medir la temperatura, para conseguirlo en el caso de las de inmersión se instalarán en contra corriente con el fluido. Los sensores de temperatura deben estar aislados contra la influencia de las condiciones ambientales que le rodean.

CTE

- La ubicación de las sondas ha de realizarse de forma que éstas midan exactamente las temperaturas que se desean controlar, instalándose los sensores en el interior de vainas y evitándose las tuberías separadas de la salida de los colectores y las zonas de estancamiento en los depósitos.
- Preferentemente las sondas serán de inmersión. Se tendrá especial cuidado en asegurar una adecuada unión entre las sondas de contactos y la superficie metálica.

EN (Sistemas prefabricados)

- Cuando presente, el sensor de temperatura del colector deberá soportar las condiciones de estancamiento de acuerdo con lo especificado en prEN 12975-2 sin desviarse más de 1K.
- Cuando presente, el sensor de temperatura del depósito deberá resistir 100°C sin alterarse más de 1K.

Control

EN (Sistemas a medida)

- El control de un sistema a medida de pequeño tamaño debe ser testada según la norma ENV 12977-2:2001, punto 7.3.
- No hay requisitos para sistemas a medida de gran tamaño.

Sensores de temperatura

- El sensor del colector debe soportar condiciones de estancamiento según lo especificado en la norma EN 12975- 2 sin sufrir alteraciones de más de 1 K.
- El sensor del acumulador debe soportar 100 °C sin sufrir alteraciones de más de 1 K.

Sistema de medida en instalaciones mayores CTE

- Además de los aparatos de medida de presión y temperatura que permitan la correcta operación, para el caso de instalaciones mayores de 20 m² se deberá disponer al menos de un sistema analógico de medida local y registro de datos que indique como mínimo las siguientes variables:
 - a) temperatura de entrada agua fría de red;
 - b) temperatura de salida acumulador solar;
 - c) caudal de agua fría de red.
- El tratamiento de los datos proporcionará al menos la energía solar térmica acumulada a lo largo del tiempo.

27 ANEXO 10.I: RESUMEN ANÁLISIS DE COLECTORES REALIZADO POR SRCC

Para entender las tablas a continuación, se debe considerar lo siguiente:

- Y Intercept = eta0 (η_0)
- Slope (W/sq m-C) = U_{loss} (Métrico)
- Slope (Btu/hr-sq ft-C) = U_{loss} (pulgar)
- Clear C (MJDay) = Funcionamiento bajo condiciones estándar (en MJ)
- Clear C (kBtu/Day) = Funcionamiento bajo condiciones estándar (en kBtu)

Manufacturer	Model Number	Brand Name	Gross Area (m^2)	Gross Area (ft^2)	Absorber Coating	Y Intercept	Slope (W/m^2 -C)	Slope (Btu/hr- ft^2-F)	Clear C (MJ/Day)	Clear C (kBtu/Day)
ACR Solar International	10-01	Skyline	0.93	10.0	Selective Coating	0.602	-3.76	-0.663	9	8
ACR Solar International	20-01	Skyline	1.87	20.1	Selective Coating	0.604	-3.73	-0.657	18	17
Alternate Energy Technologies	AE-21	Alternate Energy	1.93	20.8	Selective Coating	0.706	-4.91	-0.865	22	21
Alternate Energy Technologies	AE-21E	American Energy	1.93	20.7	Moderately Selective Black Paint	0.660	-6.37	-1.123	20	19
Alternate Energy Technologies	AE-24	Alternate Energy	2.21	23.8	Selective Coating	0.706	-4.91	-0.865	25	24
Alternate Energy Technologies	AE-24E	American Energy	2.21	23.8	Moderately Selective Black Paint	0.655	-6.37	-1.123	23	21
Alternate Energy Technologies	AE-26	Alternate Energy	2.35	25.4	Selective Coating	0.706	-4.91	-0.865	27	25
Alternate Energy Technologies	AE-26E	American Energy	2.36	25.4	Moderately Selective Black Paint	0.655	-6.37	-1.123	24	23
Alternate Energy Technologies	AE-28	Alternate Energy	2.60	28.0	Selective Coating	0.706	-4.91	-0.865	29	28
Alternate Energy Technologies	AE-28E	American Energy	2.60	28.0	Moderately Selective Black Paint	0.655	-6.37	-1.123	26	25
Alternate Energy Technologies	AE-32	Alternate Energy	2.96	31.9	Selective Coating	0.706	-4.91	-0.865	33	32
Alternate Energy Technologies	AE-32E	American Energy	2.97	31.9	Moderately Selective Black Paint	0.655	-6.37	-1.123	30	29
Alternate Energy Technologies	AE-40	Alternate Energy	3.70	39.8	Selective Coating	0.706	-4.91	-0.865	42	40
Alternate Energy Technologies	AE-40E	American Energy	3.70	39.8	Moderately Selective Black Paint	0.655	-6.37	-1.123	38	36
Alternate Energy Technologies	AE-50	Alternate Energy	4.66	50.2	Selective Coating	0.706	-4.91	-0.865	53	50
Alternate Energy Technologies	AE-56	Alternate Energy	5.18	55.7	Selective Coating	0.706	-4.91	-0.865	58	55
Alternate Energy Technologies	MSC-21	Morning Star	2.00	21.5	Selective Coating	0.706	-4.91	-0.865	23	21
Alternate Energy Technologies	MSC-21E	Moming Star	2.00	21.5	Moderately Selective Black Paint	0.655	-6.37	-1.123	20	19
Alternate Energy Technologies	MSC-24	Morning Star	2.28	24.5	Selective Coating	0.706	-4.91	-0.865	26	24
Alternate Energy Technologies	MSC-24E	Morning Star	2.27	24.4	Moderately Selective Black Paint	0.655	-6.37	-1.123	23	22
Alternate Energy Technologies	MSC-26	Moming Star	2.42	26.0	Selective Coating	0.706	-4.91	-0.865	27	26
Alternate Energy Technologies	MSC-26E	Morning Star	2.41	25.9	Moderately Selective Black Paint	0.655	-6.37	-1.123	24	23
Alternate Energy Technologies	MSC-28	Morning Star	2.66	28.7	Selective Coating	0.706	-4.91	-0.865	30	29
Alternate Energy Technologies	MSC-28E	Morning Star	2.65	28.5	Moderately Selective Black Paint	0.655	-6.37	-1.123	27	26
Alternate Energy Technologies	MSC-32	Morning Star	3.03	32.7	Selective Coating	0.706	-4.91	-0.865	34	32
Alternate Energy Technologies	MSC-32E	Moming Star	3.02	32.5	Moderately Selective Black Paint	0.655	-6.37	-1.123	31	29
Alternate Energy Technologies	MSC-40	Morning Star	3.92	42.2	Selective Coating	0.706	-4.91	-0.865	44	42

Manufacturer	Model Number	Brand Name	Gross Area (m^2)	Gross Area (ft^2)	Absorber Coating	Y Intercept	Slope (W/m^2 -C)	Slope (Btu/hr- ft^2-F)	Clear C (MJ/Day)	Clear C (kBtu/Day)
Alternate Energy Technologies	MSC-40E	Morning Star	3.76	40.5	Moderately Selective Black Paint	0.655	-6.37	-1.123	38	36
Alternate Energy Technologies	ST-21E	Starfire	1.97	21.2	Moderately Selective Black Paint	0.674	-6.02	-1.061	20	19
Alternate Energy Technologies	ST-40E	Starfire	3.58	38.5	Moderately Selective Black Paint	0.674	-6.02	-1.061	36	35
American Solar Works Holdings	ASW52B	American Solar Works	2.86	30.8	Sputtered aluminium nitride	0.481	-1.65	-0.291	23	22
American Solar Works Holdings	ASW52B Stretch	American Solar Works	3.90	42.0	Sputtered aluminium nitride	0.481	-1.65	-0.291	31	29
American Solar Works Holdings	ASW-58A	American Solar Works	3.52	37.9	Aluminum Nitride	0.481	-1.33	-0.235	33	31
Apricus Solar Co., Ltd.	AP-10	Apricus	1.34	14.4	Sputtered aluminum nitride	0.418	-1.17	-0.206	12	12
Apricus Solar Co., Ltd.	AP-20	Apricus	2.71	29.2	Sputtered aluminum nitride	0.418	-1.17	-0.206	25	23
Apricus Solar Co., Ltd.	AP-22	Apricus	2.98	32.1	Sputtered aluminum nitride	0.418	-1.17	-0.206	27	26
Apricus Solar Co., Ltd.	AP-30	Apricus	4.05	43.6	Sputtered aluminum nitride	0.418	-1.17	-0.206	37	35
Beijing Sunda Solar Energy Technology Co Ltd	SEIDO 10- 10AS/AB	SUNDA	1.68	18.1	Sputtered aluminum nitrate	0.462	-1.57	-0.276	15	14
Beijing Sunda Solar Energy Technology Co Ltd	SEIDO 10- 20AS/AB	SUNDA	3.39	36.5	Sputtered aluminum nitrate	0.462	-1.57	-0.276	30	28
Beijing Sunda Solar Energy Technology Co Ltd	SEIDO 1- 16	SUNDA	3.99	43.0	Sputtered aluminium nitride	0.529	-1.70	-0.299	37	35
Beijing Sunda Solar Energy Technology Co Ltd	SEIDO 1-8	SUNDA	2.00	21.5	Sputtered aluminium nitride	0.529	-1.70	-0.299	19	18
Beijing Sunda Solar Energy Technology Co Ltd	SEIDO 2- 16	SUNDA	4.10	44.2	Sputtered Selective	0.628	-1.72	-0.303	51	48
Beijing Sunda Solar Energy Technology Co Ltd	SEIDO 2-8	SUNDA	2.03	21.9	Sputtered Selective	0.628	-1.72	-0.303	25	24
Beijing Sunda Solar Energy Technology Co Ltd	SEIDO 5- 16 AS/AB	SUNDA	4.10	44.1	Sputtered aluminium nitride	0.492	-1.92	-0.339	38	36
Beijing Sunda Solar Energy Technology Co Ltd	SEIDO 5-8 AS/AB	SUNDA	2.03	21.8	Sputtered aluminium nitride	0.492	-1.92	-0.339	19	18
Bosch Thermotechnology Corp.	FKB-1	Bosch	2.40	25.8	Moderately Selective Black Paint	0.703	-4.21	-0.742	28	27
Bosch Thermotechnology Corp.	FKC-1 s+w	Bosch	2.41	26.0	Black Chrome	0.723	-4.44	-0.782	29	27
Bosch Thermotechnology Corp.	SKN 3.0- s+w (Vert- Horiz)	Buderus	2.41	26.0	Black Chrome	0.723	-4.44	-0.782	29	27
Bosch Thermotechnology Corp.	SKS 4.0- s+w (Vert- Horiz)	Buderus	2.41	26.0	Selective Coating	0.715	-3.97	-0.700	30	28

Manufacturer	Model Number	Brand Name	Gross Area (m^2)	Gross Area (ft^2)	Absorber Coating	Y Intercept	Slope (W/m^2 -C)	Slope (Btu/hr- ft^2-F)	Clear C (MJ/Day)	Clear C (kBtu/Day)
BTF, Ltd.	SP-20	Solar Patriot	3.08	33.1	Sputtered aluminum nitride	0.345	-1.15	-0.203	25	23
Bubbling Springs Solar, Inc.	MS 29	Main Stream	2.92	31.5	Moderately Selective Black Paint	0.707	-5.12	-0.903	31	29
Bubbling Springs Solar, Inc.	MS 32	Main Stream	2.98	32.0	Moderately Selective Black Paint	0.708	-5.13	-0.904	31	30
Bubbling Springs Solar, Inc.	MS 40	Main Stream	3.71	39.9	Moderately Selective Black Paint	0.711	-5.14	-0.905	39	37
Caleffi Solar	NAS10406	SolarFlat	2.35	25.4	Selective Coating	0.706	-4.91	-0.865	27	25
Caleffi Solar	NAS10408	SolarFlat	2.96	31.9	Selective Coating	0.706	-4.91	-0.865	33	32
Caleffi Solar	NAS10410	SolarFlat	3.70	39.8	Selective Coating	0.706	-4.91	-0.865	42	40
Chromagen	CR-BC	Chromagen	2.05	22.1	Black Chrome	0.669	-4.32	-0.761	22	21
Chromagen	CR-P	Chromagen	2.05	22.1	Black Paint	0.686	-5.34	-0.941	22	21
Energy Conservation Products and Services	6000	Solarway	3.00	32.3	None	0.422	-6.01	-1.059	15	14
Energy Laboratories, Inc.	SE-21		2.03	21.9	Selective Coating	0.704	-4.49	-0.790	24	22
Energy Laboratories, Inc.	SE-24		2.31	24.9	Selective Coating	0.704	-4.49	-0.790	27	25
Energy Laboratories, Inc.	SE-28		2.51	27.0	Selective Coating	0.704	-4.49	-0.790	29	28
Energy Laboratories, Inc.	SE-32		2.87	30.9	Selective Coating	0.704	-4.49	-0.790	33	32
Energy Laboratories, Inc.	SE-40		3.58	38.6	Selective Coating	0.704	-4.49	-0.790	42	39
Enerworks, Inc.	COL-4X8- NL-SG1- SH10US	Commercia 1 Collector	2.87	30.9	Vapor Deposition Selective Coating	0.768	-4.03	-0.711	39	37
Enerworks, Inc.	COL-4x8- TL-SG1- SD10US	Residential Collector	2.87	30.9	Vapor Deposition Selective Coating	0.726	-5.11	-0.901	33	32
Environmental Solar Systems	SM-14	Sun Mate	1.74	18.7	Selective Coating	0.580	-5.14	-0.905	16	15
G.S. Inc.	EOS-S10	EOS Solar	1.58	17.0	Selective	0.273	-1.35	-0.237	9	9
G.S. Inc.	EOS-S20	EOS Solar	3.09	33.2	Selective	0.273	-1.35	-0.237	18	17
G.S. Inc.	EOS-S30	EOS Solar	4.65	50.0	Selective	0.273	-1.35	-0.237	27	26
General Solar Systems GmbH	SK500L	SK500	2.57	27.7	Selective Coating	0.686	-3.59	-0.633	30	28
General Solar Systems GmbH	SK500N	SK500	2.57	27.7	Selective Coating	0.686	-3.59	-0.633	30	28
Genersys PLC	1000-10	Genersys	2.04	21.9	Metallic Oxide	0.591	-3.99	-0.704	20	19
Heat Transfer Products	HP-30SC	HTP- Evacuated Tube	4.05	43.6	Sputtered aluminum nitride	0.418	-1.17	-0.206	37	35
Heliodyne, Inc.	336 001	Gobi	2.49	26.8	Sputtered Selective	0.731	-4.03	-0.710	30	28
Heliodyne, Inc.	336 013	Gobi	2.49	26.8	Black Chrome	0.708	-4.54	-0.801	28	26
Heliodyne, Inc.	404 001	Gobi	1.52	16.4	Sputtered Selective	0.718	-4.16	-0.733	18	17
Heliodyne, Inc.	406 001	Gobi	2.50	26.9	Sputtered Selective	0.732	-4.19	-0.739	30	28
Heliodyne, Inc.	406 002	Gobi	2.50	26.9	Black Paint	0.726	-6.08	-1.071	28	26
Heliodyne, Inc.	406 013	Gobi	2.50	26.9	Black Chrome	0.711	-4.56	-0.804	28	26
Heliodyne, Inc.	408 001	Gobi	2.99	32.2	Sputtered Selective	0.736	-4.21	-0.741	36	34
Heliodyne, Inc.	408 002	Gobi	3.00	32.3	Black Paint	0.726	-6.08	-1.071	34	32

Manufacturer	Model Number	Brand Name	Gross Area (m^2)	Gross Area (ft^2)	Absorber Coating	Y Intercept	Slope (W/m^2 -C)	Slope (Btu/hr- ft^2-F)	Clear C (MJ/Day)	Clear C (kBtu/Day)
Heliodyne, Inc.	408 013	Gobi	2.99	32.2	Black Chrome	0.715	-4.74	-0.835	33	32
Heliodyne, Inc.	410 001	Gobi	3.73	40.2	Sputtered Selective	0.739	-4.21	-0.742	45	43
Heliodyne, Inc.	410 002	Gobi	3.73	40.1	Black Paint	0.726	-6.08	-1.071	42	40
Heliodyne, Inc.	410 013	Gobi	3.73	40.2	Black Chrome	0.718	-4.75	-0.837	42	40
Integrated Solar, LLC	Radco 308C-HP		2.20	23.7	Black Chrome	0.778	-4.96	-0.875	28	26
Integrated Solar, LLC	Radco 308P-HP		2.20	23.7	Flat Black Paint	0.764	-7.51	-1.323	24	23
Integrated Solar, LLC	Radco 408C-HP		3.00	32.3	Black Chrome	0.779	-4.77	-0.841	38	36
Integrated Solar, LLC	Radco 408P-HP		3.00	32.3	Flat Black Paint	0.768	-7.24	-1.276	32	30
Integrated Solar, LLC	Radco 410C-HP		3.71	39.9	Black Chrome	0.779	-4.77	-0.841	47	45
Integrated Solar, LLC	Radco 410P-HP		3.71	39.9	Flat Black Paint	0.768	-7.24	-1.276	40	38
Integrated Solar, LLC	Radco 412C-HP		4.49	48.3	Black Chrome	0.779	-4.77	-0.841	57	54
Integrated Solar, LLC	Radco 412P-HP		4.49	48.3	Flat Black Paint	0.768	-7.24	-1.276	49	46
Marathon International	S-SPC 18	Baxi	1.92	20.6	Selective Coating	0.696	-4.46	-0.785	21	20
Mr. Sun Solar	AE-40	Sol-Reliant	3.70	39.8	Selective Coating	0.706	-4.91	-0.865	42	40
Mr. Sun Solar	AE-50	Sol-Reliant	4.66	50.2	Selective Coating	0.706	-4.91	-0.865	53	50
Mr. Sun Solar	AE-56	Sol-Reliant	5.18	55.7	Selective Coating	0.706	-4.91	-0.865	58	55
Oventrop Corporation	OV 10-10 AS/AB	Oventrop Solar	1.68	18.1	Sputtered aluminum nitrate	0.462	-1.57	-0.276	15	14
Oventrop Corporation	OV 10-20 AS/AB	Oventrop Solar	3.39	36.5	Sputtered aluminum nitrate	0.462	-1.57	-0.276	30	28
Oventrop Corporation	OV 5-16 AS/AB	Oventrop Solar	4.10	44.1	Sputtered aluminium nitride	0.492	-1.92	-0.339	38	36
Oventrop Corporation	OV 5-8 AS/AB	Oventrop Solar	2.03	21.8	Sputtered aluminium nitride	0.492	-1.92	-0.339	19	18
Pacific West Solar	FS410	Freeze Safe	3.88	41.8	Moderately Selective	0.616	-4.46	-0.785	36	34
Power Partners, Inc.	10-01	Skyline	0.93	10.0	Selective Coating	0.602	-3.76	-0.663	9	8
Power Partners, Inc.	20-01	Skyline	1.87	20.1	Selective Coating	0.604	-3.73	-0.657	18	17
PVT Solar, Inc.	CL-T-370	Cleanline- Thermal	34.49	371.3	Black Chrome	0.515	-6.36	-1.121	222	211
R&R Solar Supply	EPI- 308CU(3'x 7')	Copper Star 21	1.90	20.5	Moderately Selective Black Paint	0.708	-6.11	-1.077	21	20
R&R Solar Supply	EPI- 308CU(3'x 8')	Copper Star 24	2.17	23.3	Moderately Selective Black Paint	0.708	-6.11	-1.077	24	22
R&R Solar Supply	EPI- 308CU(4'x 8')	Copper Star 32	2.92	31.4	Moderately Selective Black Paint	0.708	-6.11	-1.077	32	30
R&R Solar Supply	EPI- 308SS(3'x7'	Sunlast 21	1.90	20.5	Moderately Selective Black Paint	0.708	-6.11	-1.077	21	20
R&R Solar Supply	EPI- 308SS(3'x8')	Sunlast 24	2.17	23.3	Moderately Selective Black Paint	0.708	-6.11	-1.077	24	22

Manufacturer	Model Number	Brand Name	Gross Area (m^2)	Gross Area (ft^2)	Absorber Coating	Y Intercept	Slope (W/m^2 -C)	Slope (Btu/hr- ft^2-F)	Clear C (MJ/Day)	Clear C (kBtu/Day)
R&R Solar Supply	EPI- 308SS(4'x8'	Sunlast 32	2.92	31.4	Moderately Selective Black Paint	0.708	-6.11	-1.077	32	30
R&R Solar Supply	Sunpro 21	Sunpro	1.90	20.5	Moderately Selective Black Paint	0.708	-6.11	-1.077	21	20
R&R Solar Supply	Sunpro 24	Sunpro	2.17	23.3	Moderately Selective Black Paint	0.708	-6.11	-1.077	24	23
R&R Solar Supply	Sunpro 32	Sunpro	2.92	31.4	Moderately Selective Black Paint	0.708	-6.11	-1.077	32	30
R&R Solar Supply	Sunpro 40	Sunpro	3.64	39.2	Moderately Selective Black Paint	0.708	-6.11	-1.077	40	38
Rheem Water Heaters	RS21-BC	Rheem	1.98	21.3	Black Chrome	0.759	-5.93	-1.045	24	23
Rheem Water Heaters	RS21-BP	Rheem	1.98	21.3	Polyester Flat Black Paint	0.772	-8.36	-1.473	23	22
Rheem Water Heaters	RS21-SC	Rheem	1.98	21.4	Titianium oxide	0.750	-4.87	-0.858	24	23
Schuco USA L.P.	Compact S	Compact	2.31	24.9	Sputtered cermet	0.715	-3.99	-0.704	28	27
Schuco USA L.P. Schuco USA L.P.	V, H, LA V, LA, Plus	Premium Slimline	2.70	29.1	Sputtered cermet	0.718	-4.28 -3.99	-0.754 -0.704	33	31 27
	FW-48	Simine			Sputtered cermet					
Sealed Air Corporation Silicon Solar Inc.	20EVT	SunMaxx	4.40 3.44	47.4 37.0	None Sputtered	0.739 0.376	-8.21 -1.32	-1.447 -0.233	44 30	42 28
Silicon Solar Inc.	20EV1	Suniviaxx	3.44	37.0	aluminium nitride	0.376	-1.32	-0.233	30	28
Solahart Industries	Bt	Solahart	1.98	21.4	Titianium oxide	0.750	-4.87	-0.858	24	23
Solahart Industries	J	Solahart	1.98	21.3	Polyester Flat Black Paint	0.772	-8.36	-1.473	23	22
Solahart Industries	Kf	Solahart	1.98	21.3	Black Chrome	0.759	-5.93	-1.045	24	23
Solahart Industries	L	Solahart	1.98	21.3	Polyester Flat Black Paint	0.625	-7.47	-1.316	16	15
Solahart Industries	M	Solahart	1.98	21.3	Black Chrome	0.625	-4.53	-0.798	20	19
Solaqua Power & Art	GM-10	Solaqua - Gomon	2.09	22.5	Titianium oxide	0.350	-1.65	-0.291	12	12
Solaqua Power & Art	GM-20	Solaqua - Gormon	4.22	45.4	Titianium oxide	0.350	-1.65	-0.291	25	24
Solar Development, Inc.	SD8-21	Solar Developme nt	1.93	20.8	Selective Coating	0.706	-4.91	-0.865	22	21
Solar Development, Inc.	SD8-26	Solar Developme nt	2.35	25.4	Selective Coating	0.706	-4.91	-0.865	27	25
Solar Development, Inc.	SD8-28	Solar Developme nt	2.60	28.0	Selective Coating	0.706	-4.91	-0.865	29	28
Solar Development, Inc.	SD8-32	Solar Developme nt	2.96	31.9	Selective Coating	0.706	-4.91	-0.865	33	32
Solar Development, Inc.	SD8-40	Solar Developme nt	3.70	39.8	Selective Coating	0.706	-4.91	-0.865	42	40
Solar Energy 4 U llc.	SK500L	Sonnenkraf t	2.57	27.7	Selective Coating	0.686	-3.59	-0.633	30	28
Solar Energy 4 U llc.	SK500N	Sonnenkraf t	2.57	27.7	Selective Coating	0.686	-3.59	-0.633	30	28
Solar Panels Plus	SPP-22	SPP	3.52	37.9	Aluminum Nitride	0.481	-1.33	-0.235	33	31
Solar Panels Plus	SPP-30	SPP	4.81	51.8	Aluminum Nitride	0.481	-1.33	-0.235	45	43
Solar Skies Mfg, LLC	NSC-21	North Star	2.00	21.5	Selective Coating	0.706	-4.91	-0.865	23	21

Manufacturer	Model Number	Brand Name	Gross Area (m^2)	Gross Area (ft^2)	Absorber Coating	Y Intercept	Slope (W/m^2 -C)	Slope (Btu/hr- ft^2-F)	Clear C (MJ/Day)	Clear C (kBtu/Day)
Solar Skies Mfg, LLC	NSC-24	North Star	2.28	24.5	Selective Coating	0.706	-4.91	-0.865	26	24
Solar Skies Mfg, LLC	NSC-26	North Star	2.42	26.0	Selective Coating	0.706	-4.91	-0.865	27	26
Solar Skies Mfg, LLC	NSC-28	North Star	2.66	28.7	Selective Coating	0.706	-4.91	-0.865	30	29
Solar Skies Mfg, LLC	NSC-32	North Star	3.03	32.7	Selective Coating	0.706	-4.91	-0.865	34	32
Solar Skies Mfg, LLC	NSC-40	North Star	3.92	42.2	Selective Coating	0.706	-4.91	-0.865	44	42
Solar Skies Mfg, LLC	SS-21	Solar Skies	1.93	20.8	Selective Coating	0.706	-4.91	-0.865	22	21
Solar Skies Mfg, LLC	SS-24	Solar Skies	2.21	23.8	Selective Coating	0.706	-4.91	-0.865	25	24
Solar Skies Mfg, LLC	SS-26	Solar Skies	2.35	25.4	Selective Coating	0.706	-4.91	-0.865	27	25
Solar Skies Mfg, LLC	SS-28	Solar Skies	2.60	28.0	Selective Coating	0.706	-4.91	-0.865	29	28
Solar Skies Mfg, LLC	SS-32	Solar Skies	2.96	31.9	Selective Coating	0.706	-4.91	-0.865	33	32
Solar Skies Mfg, LLC	SS-40	Solar Skies	3.70	39.8	Selective Coating	0.706	-4.91	-0.865	42	40
Solar Skies Mfg, LLC	SS-50	Solar Skies	4.66	50.2	Selective Coating	0.706	-4.91	-0.865	53	50
Solar Thermal Systems	STS 410BC	Solar Thermal Systems	3.80	40.9	Black Chrome	0.758	-4.13	-0.727	47	44
Solar Thermal Systems	STS 410BP	Solar Thermal Systems	3.80	40.9	Moderately Selective Black Paint	0.682	-4.54	-0.800	43	40
Solar Thermal Systems	STS 48BC	Solar Thermal Systems	3.05	32.8	Black Chrome	0.753	-4.11	-0.724	37	35
Solar Thermal Systems	STS 48BP	Solar Thermal Systems	3.05	32.8	Moderately Selective Black Paint	0.682	-4.54	-0.800	34	32
Solargenix Energy, LLC	WS0503	Winston Series CPC	2.24	24.1	Moderately Selective Black Paint	0.600	-5.68	-1.001	19	18
Solarhot	S-SC- 126P26	Solarhot	2.45	26.3	Vapor Deposition Selective Coating	0.684	-3.87	-0.682	27	26
Solarhot	S-SC- 126P32	Solarhot	2.97	32.0	Vapor Deposition Selective Coating	0.685	-3.86	-0.681	33	31
Solarhot	S-SC- 126P40	Solarhot	3.66	39.4	Vapor Deposition Selective Coating	0.688	-3.88	-0.683	41	38
Solarhot	S-SC- 126S26	Solarhot	2.45	26.4	Flat Black Paint	0.663	-6.53	-1.152	23	21
Solarhot	S-SC- 126S32	Solarhot	2.97	32.0	Flat Black Paint	0.665	-6.54	-1.152	27	26
Solar-Max Heating Systems, Inc.	MSM-101		2.95	31.7	Black Chrome	0.417	-6.30	-1.110	14	14
Solene	SLCO-30	Solene- Corona	2.28	24.5	Black Chrome	0.782	-4.60	-0.811	28	27
Solene	SLCO-32	Solene- Corona	2.95	31.8	Black Chrome	0.785	-4.60	-0.810	36	35
Solene	SLCO-32P	Solene- Corona	2.95	31.8	Flat Black Paint	0.679	-6.22	-1.096	28	27
Solene	SLCO-40	Solene- Corona	3.61	38.9	Black Chrome	0.787	-4.60	-0.810	45	42

Manufacturer	Model Number	Brand Name	Gross Area (m^2)	Gross Area (ft^2)	Absorber Coating	Y Intercept	Slope (W/m^2 -C)	Slope (Btu/hr- ft^2-F)	Clear C (MJ/Day)	Clear C (kBtu/Day
Solene	SLCO-40P	Solene- Corona	3.63	39.0	Flat Black Paint	0.672	-6.14	-1.081	34	32
Solene	SLCR-30	Solene/Chr omagen	2.81	30.3	Black Chrome	0.735	-5.37	-0.945	35	33
Solene	SLCR-32	Solene/Chr omagen	2.97	32.0	Black Chrome	0.735	-5.37	-0.945	37	35
Solene	SLCR-40	Solene/Chr omagen	3.72	40.1	Black Chrome	0.735	-5.37	-0.945	46	44
Stiebel Eltron	Sol 25 Plus	Stiebel Eltron	2.73	29.4	Sputtered titanium nitride	0.660	-4.29	-0.755	32	30
SunBank Solar	SB10	SunBank	0.93	10.0	Selective Coating	0.602	-3.76	-0.663	9	8
SunBank Solar	SB20	SunBank	1.87	20.1	Selective Coating	0.604	-3.73	-0.657	18	17
SunEarth, Inc.	EC-21	Empire	1.97	21.3	Black Chrome	0.735	-4.04	-0.712	24	22
SunEarth, Inc.	EC-24	Empire	2.30	24.7	Black Chrome	0.735	-4.04	-0.712	27	26
SunEarth, Inc.	EC-32	Empire	3.05	32.8	Black Chrome	0.753	-4.11	-0.724	37	35
SunEarth, Inc.	EC-32-1.5	Empire	3.05	32.8	Black Chrome	0.753	-4.11	-0.724	37	35
SunEarth, Inc.	EC-40	Empire	3.80	40.9	Black Chrome	0.758	-4.13	-0.727	47	44
SunEarth, Inc.	EC-40-1.5	Empire	3.80	40.9	Black Chrome	0.758	-4.13	-0.727	47	44
SunEarth, Inc.	EP-20	Empire	1.83	19.7	Moderately Selective Black Paint	0.682	-4.54	-0.800	21	19
SunEarth, Inc.	EP-21	Empire	1.97	21.2	Moderately Selective Black Paint	0.682	-4.54	-0.800	22	21
SunEarth, Inc.	EP-24	Empire	2.29	24.7	Moderately Selective Black Paint	0.682	-4.54	-0.800	26	24
SunEarth, Inc.	EP-32	Empire	3.05	32.8	Moderately Selective Black Paint	0.682	-4.54	-0.800	34	32
SunEarth, Inc.	EP-40	Empire	3.80	40.9	Moderately Selective Black Paint	0.682	-4.54	-0.800	43	40
SunEarth, Inc.	IC-24	Imperial	2.30	24.7	Black Chrome	0.735	-4.04	-0.712	27	26
SunEarth, Inc.	IC-32	Imperial	3.05	32.8	Black Chrome	0.753	-4.11	-0.724	37	35
SunEarth, Inc.	IC-40	Imperial	3.80	40.9	Black Chrome	0.758	-4.13	-0.727	47	44
SunEarth, Inc.	IP-24	Imperial	2.30	24.8	Moderately Selective Black Paint	0.682	-4.54	-0.800	26	24
SunEarth, Inc.	IP-32	Imperial	3.06	33.0	Moderately Selective Black Paint	0.682	-4.54	-0.800	34	33
SunEarth, Inc.	IP-40	Imperial	3.81	41.0	Moderately Selective Black Paint	0.682	-4.54	-0.800	43	41
SunEarth, Inc.	SB-24-0.75	SunBelt	2.29	24.7	Flat Black Paint	0.661	-6.58	-1.159	22	21
SunEarth, Inc.	SB-32-0.75	SunBelt	3.06	32.9	Flat Black Paint	0.673	-6.67	-1.176	30	28
SunEarth, Inc.	SB-40-0.75	SunBelt	3.80	40.9	Flat Black Paint	0.681	-6.74	-1.188	37	35
SunEarth, Inc.	SC-24	Sunwise	2.30	24.7	Black Chrome	0.735	-4.04	-0.712	27	26
SunEarth, Inc.	SC-32	Sunwise	3.05	32.8	Black Chrome	0.753	-4.11	-0.724	37	35
SunEarth, Inc.	SC-40	Sunwise	3.80	40.9	Black Chrome	0.758	-4.13	-0.727	47	44
SunEarth, Inc.	SP-24	Sunwise	2.29	24.7	Moderately	0.682	-4.13	-0.727	26	24
		Statiwisc			Selective Black Paint					
SunEarth, Inc.	SP-32	Sunwise	3.05	32.8	Moderately Selective Black Paint	0.682	-4.54	-0.800	34	32
SunEarth, Inc.	SP-40	Sunwise	3.80	40.9	Moderately Selective Black Paint	0.682	-4.54	-0.800	43	40
SunEarth, Inc.	SSC-21	SolarStar	1.97	21.3	Black Chrome	0.735	-4.04	-0.712	24	22
SunEarth, Inc.	SSC-24	SolarStar	2.30	24.7	Black Chrome	0.735	-4.04	-0.712	27	26
SunEarth, Inc.	SSC-32	SolarStar	3.05	32.8	Black Chrome	0.753	-4.11	-0.724	37	35

Manufacturer	Model Number	Brand Name	Gross Area (m^2)	Gross Area (ft^2)	Absorber Coating	Y Intercept	Slope (W/m^2 -C)	Slope (Btu/hr- ft^2-F)	Clear C (MJ/Day)	Clear C (kBtu/Day)
SunEarth, Inc.	SSC-40	SolarStar	3.80	40.9	Black Chrome	0.758	-4.13	-0.727	47	44
SunEarth, Inc.	SSP-21	SolarStar	1.86	20.0	Moderately Selective Black Paint	0.682	-4.54	-0.800	21	20
SunEarth, Inc.	SSP-24	SolarStar	2.16	23.2	Moderately Selective Black Paint	0.682	-4.54	-0.800	24	23
SunEarth, Inc.	SSP-32	SolarStar	2.91	31.3	Moderately Selective Black Paint	0.682	-4.54	-0.800	33	31
SunEarth, Inc.	SSP-40	SolarStar	3.63	39.1	Moderately Selective Black Paint	0.682	-4.54	-0.800	41	39
Sunsiaray Solar Manufacturing, Inc.	NC-32	Northern Comfort	3.18	34.2	Black Nickel	0.508	-4.84	-0.853	24	23
Synergy Solar	S19.78	Synergy	1.85	19.9	Moderately Selective Black Paint	0.626	-6.01	-1.060	17	16
Synergy Solar	S26.68	Synergy	2.48	26.7	Moderately Selective Black Paint	0.626	-6.01	-1.060	23	22
Synergy Solar	T19.78	Synergy	1.85	19.9	Sputtered aluminum nitride	0.647	-4.67	-0.822	19	18
Synergy Solar	T26.68	Synergy	2.48	26.7	Sputtered aluminum nitride	0.647	-4.67	-0.822	26	24
Synergy Solar	TC-19.78	Synergy	1.84	19.8	Sputtered aluminium nitride	0.686	-4.59	-0.809	20	19
Synergy Solar	TC-26.52	Synergy	2.48	26.7	Sputtered aluminum nitride	0.697	-4.57	-0.806	28	26
Thermo Dynamics, Ltd.	G32-P	Thermo Dynamics G Series	2.98	32.1	Moderately Selective Black Paint	0.700	-4.93	-0.870	30	29
Thermo Technologies	TMA-600- 20	Mazdon	3.06	32.9	Black Chrome	0.530	-1.42	-0.250	28	26
Thermo Technologies	TMA-600- 30	Mazdon	4.58	49.3	Black Chrome	0.530	-1.42	-0.250	42	40
Thermo Technologies	TMA-600- 50	Mazdon	7.64	82.3	Black Chrome	0.530	-1.42	-0.250	70	66
Thermo Technologies	TMA-600- 70	Mazdon	10.70	115.2	Black Chrome	0.530	-1.42	-0.250	97	92
Thermo Technologies	TMA-600- 80	Mazdon	12.22	131.6	Black Chrome	0.530	-1.42	-0.250	111	105
Thermomax Industries Ltd.	AST20	Solamax	2.85	30.7	Sputtered aluminum nitride	0.574	-3.05	-0.537	24	23
Thermomax Industries Ltd.	AST30	Solamax	4.28	46.1	Sputtered aluminum nitride	0.574	-3.05	-0.537	36	34
Thermomax Industries Ltd.	AST50	Solamax	7.13	76.7	Sputtered aluminum nitride	0.574	-3.05	-0.537	60	56
Thermomax Industries Ltd.	AST70	Solamax	9.98	107.4	Sputtered aluminum nitride	0.574	-3.05	-0.537	83	79
Thermomax Industries Ltd.	AST80	Solamax	11.41	122.8	Sputtered aluminum nitride	0.574	-3.05	-0.537	95	90
TrendSetter Solar Products, Inc.	TS-30-S	Trendsetter	4.02	43.3	Aluminum Nitride	0.362	-1.83	-0.323	29	28
VELUX America Inc.	CLI M08 4000	VELUX	1.16	12.5	Selective	0.639	-3.72	-0.655	13	12

Manufacturer	Model Number	Brand Name	Gross Area (m^2)	Gross Area (ft^2)	Absorber Coating	Y Intercept	Slope (W/m^2 -C)	Slope (Btu/hr- ft^2-F)	Clear C (MJ/Day)	Clear C (kBtu/Day)
VELUX America Inc.	CLI S06 4000	VELUX	1.42	15.3	Selective	0.661	-3.79	-0.668	16	15
VELUX America Inc.	CLI U12 4000	VELUX	2.51	27.1	Selective	0.696	-3.90	-0.687	30	29
Viessmann Manufacturing Company (US) Inc.	100F	Vitosol	2.49	26.8	Black Chrome	0.776	-4.43	-0.780	32	30
Viessmann Manufacturing Company (US) Inc.	300T-SP3 2m2	Vitosol	2.88	31.0	Sputtered cermet	0.509	-1.09	-0.193	28	26
Viessmann Manufacturing Company (US) Inc.	300T-SP3 3m2	Vitosol	4.29	46.2	Sputtered cermet	0.509	-1.09	-0.193	42	39
Viessmann Manufacturing Company (US) Inc.	SV2,SH2	Vitosol 200F	2.52	27.2	Sputtered cermet	0.720	-3.50	-0.616	31	30
Your Solar Home, Inc.	1000G	SolarSheat	1.20	13.0	Powder coating	0.490	-6.99	-1.232	6	6
Your Solar Home, Inc.	1000GS	SolarSheat	1.58	17.0	Powder coating	0.490	-6.99	-1.232	8	8
Your Solar Home, Inc.	1500G	SolarSheat	2.05	22.1	Powder coating	0.490	-6.99	-1.232	11	10
Your Solar Home, Inc.	1500GS	SolarSheat	2.43	26.1	Powder coating	0.490	-6.99	-1.232	14	14

*OG100 Glazed Collectors Column Headings:

Y Intercept Intercept of the first order collector performance equation.

Slope (W/sq m-C) Slope of the first order collector performance equation in SI units.

Slope (Btu/hr-sq ft-C) Slope of the first order collector performance equation in IP units.

Clear C (MJDay) Performance rating (SI Units) of the collector under clear conditions for rating category C.

Clear C (kBtu/Day) Performance rating (IP Units) of the collector under clear conditions for rating category C.

28ANEXO 10.II: DETALLE MÉTODO DE CÁLCULO F-CHART

El método de cálculo F-Chart o método de las curvas f, es un método simplificado que permite el dimensionamiento de las instalaciones de energía solar térmica a partir del cálculo de la cobertura solar obtenida de colectores y de su rendimiento. El método F-Chart es una correlación de los resultados de cientos de simulaciones de sistemas solares térmicos. Las condiciones de las correlaciones resultantes entregan la fracción de la carga de calentamiento mensual suministrada por la energía solar como función de dos variables adimensionales que incluyen las características del colector, las pérdidas de calor y el clima local. La ecuación utilizada en método F-Chart, es decir, la función detrás de las curvas f, se expresa de la siguiente forma:

$$f = 1,029 D1 - 0,065 D2 - 0,245 D1^2 + 0,0018 D2^2 + 0,0215 D1^3$$

Para aplicar dicha fórmula, se deben llevar a cabo los siguientes pasos:

- a. Cálculo de cargas caloríficas para el calentamiento de agua destinada a la producción de ACS o calefacción.
- b. Radiación solar incidente en la superficie inclinada del colector o colectores.
- c. Cálculo del parámetro D1.
- d. Cálculo del parámetro D2.
- e. Determinación de la gráfica f.
- f. Estimación de la cobertura solar mensual.
- g. Estimación de la cobertura solar anual y elaboración de tablas.

A continuación se detallan los pasos relevantes del proceso.

a. <u>Cálculo de cargas caloríficas para el calentamiento de agua</u> <u>destinada a la producción de ACS o calefacción</u>

Las cargas caloríficas determinan la cantidad mensual necesaria de calor para calentar el ACS. Se calculan mediante la siguiente expresión:

$$Qa = Ce * C * N * (tac - tr)$$

<u>Dónde:</u>

Qa = Carga calorífica mensual de calentamiento de ACS (J/mes)

Ce = Calor específico (Para agua: 4187 $J/(kg^{\circ}C)$)

C = Consumo diario de ACS (I/día)

tac = Temperatura del agua caliente de acumulación (°C)

tr = Temperatura del agua de red (°C)

N = Número de días del mes

b. Radiación solar incidente en la superficie inclinada del colector o colectores

La radiación solar incidente en la superficie de captación de los colectores se expresa por unidad de área (kJ/ m²) y se obtiene de la base de datos de radiación que se esté considerando para la realización de los cálculos.

c. Cálculo del parámetro D1

El parámetro *D*1 expresa la relación entre la energía absorbida por la placa del colector plano y la carga calorífica total de calentamiento durante un mes (de acuerdo a sub-punto **a.**), es decir:

D1 = Energía absorbida por el colector / Carga calorífica mensual

La energía absorbida por el colector viene dada por la siguiente expresión:

$$Ea = Sc * Fr'(\tau a) * R1 * N$$

Donde:

Sc = Superficie del colector (m^2)

R1 = Radiación diaria media mensual incidente sobre la superficie de captación por unidad de área (kJ/ m²)

N = Número de días del mes

 $Fr'(\tau a)$ = Factor adimensional, que viene dado por la siguiente expresión:

$$Fr'(\tau a) = Fr(\tau a)n * [(\tau a)/(\tau a)n] * (Fr'/Fr)$$

Donde:

 $Fr(\tau a)$ n = Factor de eficiencia óptica del colector, es decir, ordenada en el origen de la curva característica del colector (Eta0)

 $(\tau a) / (\tau a)$ n = Modificador del ángulo de incidencia⁴

FrN/ Fr = Factor de corrección del conjunto colector-intercambiador⁵

d. Cálculo del parámetro D2

⁵ Se recomienda usar un valor de 0,95.

_

⁴ El modificador del ángulo de incidencia se puede tomar como constante según: para superficie transparente sencilla usar 0,96, para superficie transparente doble usar 0,94.

El parámetro *D*2 expresa la relación entre las pérdidas de energía en el colector, para una determinada temperatura, y la carga calorífica de calentamiento durante un mes, es decir:

D2 = Energía perdida por el colector / Carga calorífica mensual

La energía perdida por el colector viene dada por la siguiente expresión:

$$Ep = Sc * Fr' UL * (100 - ta) \Delta t K1 K2$$

Donde:

Sc = Superficie del colector (m²)

Fr' UL = Fr UL (Fr'/Fr)

Donde:

 $Fr UL = Pendiente de la curva característica del colector (coeficiente global de pérdidas del colector = <math>U_{Loss}$)

ta = Temperatura media mensual del ambiente

 Δt = Período de tiempo considerado en segundos (s)

K1 = Factor de corrección por almacenamiento que se obtiene a partir de la siguiente ecuación:

$$K1 = [kg \ acumulación / (75 \ Sc)] - 0,25$$

Considerando que: 37,5 < (kg acumulación) / (m^2 colector) < 300

K2 = Factor de corrección, para ACS, que relaciona la temperatura mínima de ACS, la del agua de red y la temperatura media mensual ambiente, dado por la siguiente expresión:

$$K2 = 11,6 + 1,18 tac + 3,86 tr - 2,32 ta / (100 - ta)$$

<u>Dónde:</u>

tac = Temperatura mínima del ACS

tr = Temperatura del agua de red

ta = Temperatura media mensual del ambiente

e. Estimación de la cobertura solar mensual y annual (Pasos f y g)

Una vez obtenido *D*1 y *D*2, se aplica la ecuación inicial y se calcula la fracción de la carga calorífica mensual aportada por el sistema de energía solar en evaluación.

De esta forma, la energía útil captada cada mes, Qu, corresponde a :

$$Qu = f Qa$$

Dónde:

Qa = Carga calorífica mensual de ACS

Mediante igual proceso operativo que el desarrollado para un mes, se repite el proceso para todos los meses del año. La relación entre la suma de las coberturas mensuales y la suma de las cargas caloríficas, o necesidades mensuales de calor, determinará la cobertura anual del sistema, es decir:

$$\sum_{u=1}^{u=12} Q_u \sum_{a=1}^{a=12} Q_a$$
Cobertura solar anual= $\sum_{u=1}^{u=12} Q_u$ necesaria

29 ANEXO 10.III: ESTUDIOS QUE HAN USADO F-CHART

A continuación se presentan algunos de los estudios que han utilizado el Método F-Chart:

- Fanney, A.H., Liu, S.T. 1980. "Comparing experimental and computer-predicted performance for solar hot water systems". ASHRAE Journal, Vol. 22, pp. 34-38.
- Duffie, J.A., Mitchell, J.W. 1983. "F-Chart: Predictions and measurement".
 ASME J. Solar Energy Engineering, Vol. 105, pp. 3-9 (February).
- Fanney, A.H., Klein, S.A. 1983. Performance of solar domestic hot water systems at the National Bureau of Standards - Measurements and Predictions".
 ASME J. Solar Energy Engineering, Vol. 105, pp. 311-321 (August).
- Instituto para la Diversificación y Ahorro de la Energía (Enero 2009) "Instalaciones de Energía Solar Térmica - Pliego de Condiciones Técnicas de Instalaciones de Baja Temperatura". Se utilizó el F-Chart como método de cálculo.

30 ANEXO 10.IV: BASE DE DATOS AMPLIADA

			Superficie	Superficie de		
Tipo de			bruta por colector en	apertura por colector en	U _{loss} en	Eta 0
colector	Provedor	Modelo	m ²	m ²	W/m ² K	Lta U
Tubo vacío	AMK-Solak Systems	OPC 15 S	2,13	1,71	1,23	0,610
Tubo vacío	Augusta-solar	AS 100 DF 6	1,54	1,12	1,21	0,534
Tubo vacío	B. Schweizer Energie	Swisspipe 2	2,14	1,41	1,03	0,533
Tubo vacío	Beijing Sunda Solar Energy Technology	Seido 10-20	3,42	2,25	1,37	0,489
Tubo vacío Tubo vacío	Beijing Sunda Solar Energy Technology	SUNDA SEIDO 1-16	3,99	3,62	1,70	0,529
Tubo vacio	Beijing Sunda Solar Energy Technology BTF	SUNDA SEIDO 1-8 Solar Patriot SP-20	2,00 3,08	1,81 2,34	1,70 1,15	0,529 0,345
Tubo vacío	Collectra	OPC 15 H	2,13	1,70	1,65	0,619
Tubo vacío	Consolar	TUBO 11 CPC	1,16	0,97	1,04	0,542
Tubo vacío	De Dietrich Thermique	Dietrisol Power	1,29	0,80	1,10	0,482
Tubo vacío	Focus Technology (Apricus)	AP-20	2,89	1,88	1,18	0,397
Tubo vacío	Focus Technology (Apricus)	Apricus AP-10	1,34	1,17	1,17	0,418
Tubo vacío	Focus Technology (Apricus)	Apricus AP-20	2,71	2,38	1,17	0,418
Tubo vacío Tubo vacío	Focus Technology (Apricus)	Apricus AP-22 Apricus AP-30	2,98 4,05	2,62 3,80	1,17 1,17	0,418 0,418
Tubo vacío	Focus Technology (Apricus) Focus Technology (Apricus)	FSCB-20-SS	2,50	1,25	1,17	0,418
Tubo vacío	Hoval Herzog	Solamax	4,58	3,18	1,60	0,536
Tubo vacío	Hoval Herzog	Solkit Mazdon	4,44	3,17	1,13	0,527
Tubo vacío	Jacques Giordano Industries	Cortec-2	1,90	1,25	1,38	0,503
Tubo vacío	Oertli Rohleder	Sun 3000	1,29	0,80	1,10	0,482
Tubo vacío	Schott-Rohrglas	ETC 16	1,29	0,80	1,10	0,482
Tubo vacío	Solar Supplies UK	Consol DS-22-47-1500	2,62	1,36	1,35	0,322
Tubo vacio	Solarco	VCR-16	1,29	0,80	1,05	0,469
Tubo vacío	Thermomax	Mazdon 20 - TMA 600S	3,03	2,14	1,07	0,535
Tubo vacío Tubo vacío	Thermomax Thermomax	Mazdon 30 - TMA 600S Mazdon TMA-600-20	4,47 3,06	3,22	1,27 1,42	0,540 0,530
Tubo vacío	Thermomax	Mazdon TMA-600-20	4,58	2,25 3,38	1,42	0,530
Tubo vacío	Thermomax	MS 20 - TMO 500	2,78	2,14	1,05	0,578
Tubo vacío	Thermomax	MS 30 - TMO 500	4,16	3,20	1,63	0,591
Tubo vacío	Thermomax	Solamax AST20	2,85	2,50	3,05	0,574
Tubo vacío	Thermomax	Solamax AST30	4,28	3,75	3,05	0,574
Tubo vacío	Thermomax	Solamax AST50	7,13	6,25	3,05	0,574
Tubo vacío	Thermomax	Solarmax 20 - TDS 300	2,85	2,15	1,37	0,574
Tubo vacío	Thermomax	Solarmax 30 - TDS 300	4,28	3,23	1,44	0,563
Tubo vacío Tubo vacío	Thermomax Vaillant	TMO 600 VTK 550	2,76	2,15 0,80	1,65 1,10	0,592 0,482
Tubo vacío	Viessmann	VitoSol 200 D20	1,29 2,90	2,16	1,72	0,482
Tubo vacío	Viessmann	VitoSol 250	1,66	1,02	1,41	0,472
Tubo vacío	Viessmann	VitoSol 300	2,93	2,19	1,21	0,566
Tubo vacío	Vögelin Solartechnik	Xinox	1,54	1,12	1,21	0,534
Colector plano	ACR Solar International	Fireball Fireball 2001	1,87	1,72	3,73	0,604
	Agena SA énergies	Azur 6	2,26	2,06	4,28	0,735
	AKS Doma Solartechnik	AKS Doma Grossflaechenkollektor	6,38	5,36	4,08	0,658
	AKS Doma Solartechnik	XL-Alu	5,60	5,01	4,38	0,715
	Alternate Energy Technologies Alternate Energy Technologies	Alternate Energy AE-21 Alternate Energy AE-24	1,93 2,21	1,78 2,04	4,91 4,91	0,706 0,706
	Alternate Energy Technologies	Alternate Energy AE-26	2,36	2,20	4,91	0,706
	Alternate Energy Technologies	Alternate Energy AE-28	2,60	2,43	4,91	0,706
	Alternate Energy Technologies	Alternate Energy AE-32	2,97	2,78	4,91	0,706
	Alternate Energy Technologies	Alternate Energy AE-40	3,70	3,48	4,91	0,706
	Alternate Energy Technologies	Alternate Energy AE-56	5,18	4,90	4,91	0,706
	Alternate Energy Technologies	American Energy AE-21E	1,93	1,78	6,37	0,660
	Alternate Energy Technologies	American Energy AE-24E	2,21	2,04	6,37	0,655
	Alternate Energy Technologies	American Energy AE-26E	2,36	2,20	6,37	0,655
	Alternate Energy Technologies	American Energy AE-28E American Energy AE-32E	2,60 2,97	2,43	6,37 6,37	0,655 0,655
	Alternate Energy Technologies Alternate Energy Technologies	American Energy AE-32E American Energy AE-40E	3,70	2,78 3,48	6,37	0,655
	Alternate Energy Technologies	Morning Star MSC-21	2,00	1,76	4,91	0,706
	Alternate Energy Technologies	Morning Star MSC-21E	2,00	1,75	6,37	0,655
	Alternate Energy Technologies	Morning Star MSC-24	2,28	2,02	4,91	0,706
	Alternate Energy Technologies	Morning Star MSC-24E	2,27	2,00	6,37	0,655
	Alternate Energy Technologies	Morning Star MSC-26	2,42	2,17	4,91	0,706
	Alternate Energy Technologies	Morning Star MSC-26E	2,41	2,16	6,37	0,655
	Alternate Energy Technologies	Morning Star MSC-28	2,66	2,40	4,91	0,706
	Alternate Energy Technologies	Morning Star MSC-28E	2,65	2,39	6,37	0,655
	Alternate Energy Technologies Alternate Energy Technologies	Morning Star MSC-32 Morning Star MSC-32E	3,04 3,02	2,75 2,74	4,91 6,37	0,706 0,655
	Alternate Energy Technologies	Morning Star MSC-32E	3,92	3,58	4,91	0,033
	Alternate Energy Technologies	Morning Star MSC-40E	3,76	3,43	6,37	0,655
	Alternate Energy Technologies	Starfire ST-21E	1,97	1,88	6,02	0,674

Tipo de			Superficie bruta por colector en	Superficie de apertura por colector en	U _{loss} en	Eta 0
colector	Provedor	Modelo	m²	m²	W/m²K	
Colector plano	Altersol	Terza	2,53	2,32	3,97	0,693
Colector plano		Holz	4,84	4,13	4,33	0,648
Colector plano		FK 25 R	2,53	2,37	3,87	0,715
Colector plano		Sunlight 2500 R - T	2,53	2,40	4,15	0,725
	Avant Garde S.r.l	TECsol SR 020	2,04	1,89	4,04	0,669
	Baymak Mak. San. ve Tic. A.S.	Selective Prismatic Collector	2,04	1,82	4,34	0,671
Colector plano Colector plano		Logasol SKS 3.0 SKN 2.0	2,40	2,17	4,35 4,10	0,729 0,617
	Chromagen Solar Energy Systems	CC-A/F (CR-120)	2,41	2,59	4,10	0,817
	Chromagen Solar Energy Systems	CC-A/F blue	2,83	2,60	4,27	0,733
Colector plano		CS 200-4F	2,08	1,90	3,67	0,711
Colector plano		CS-100F	2,08	1,90	3,67	0,728
Colector plano		Dawn Solar 3004L	9,30	9,30	3,67	0,126
Colector plano		Heliotrop	2,00	1,84	4,24	0,713
	Ebner Energie Technik	P2	2,01	1,83	4,46	0,716
Colector plano	Edwards Hot Water PTY	ECO	1,97	1,81	4,78	0,713
Colector plano	Edwards Hot Water PTY	SV	1,97	1,81	7,20	0,679
	Edwards Hot Water PTY	SV 14	1,97	1,80	4,83	0,718
	Edwards Hot Water PTY	SV Maxorb	1,97	1,81	5,45	0,757
	Edwards Hot Water PTY	Titan Plus	1,97	1,81	4,91	0,729
	Emaru sp.z o.o.	Emaru Flachkollektor	1,94	1,72	4,56	0,668
	Energiebig Energie- und Umwelttechnik	ENZX 54	2,16	1,86	4,22	0,653
	Ernst Schweizer	AH 23-alanod	2,56	2,29	3,63	0,691
	Ernst Schweizer	AV 23	2,56	2,28	3,97	0,673
	Ernst Schweizer	MH 23 light	2,55	2,28	4,37	0,686
	Ernst Schweizer ESTEC EnergieSparTechnik	MV 23 light FK 6250 Prestige	2,56	2,28	4,06 3,87	0,668 0,715
	ESTEC EnergieSparTechnik	IDKM Integra	2,53	2,37 1,80	3,92	0,715
	Fercher Moderne Energietechnik	F3000	2,15	1,97	7,59	0,716
Colector plano		FS20	2,19	2,01	4,47	0,632
Colector plano		Friap 230	2,45	2,32	4,19	0,751
Colector plano		Terza	2,53	2,32	3,97	0,693
	Fritz Krebs + Co	Krebs + Co AG Einbaukollektor	5,78	4,84	3,62	0,586
Colector plano	Fritz Krebs + Co	Krebs + Co AG Flachkollektor	2,33	2,05	4,19	0,688
Colector plano	G.M.P. engineering S.A.S.	TC 125-20	2,05	1,73	7,84	0,626
Colector plano	Gasokol	gigaSol 6	6,06	5,54	4,04	0,671
Colector plano		gigaSol S6	6,06	5,51	4,03	0,686
Colector plano		GKEM	2,47	2,19	4,60	0,669
	GC Sanitär- und Heizungs-Handel-Contor	CosmoSol Bluetec 253	2,53	2,37	3,87	0,715
	Geo-Tec Solartechnik	GSE 2000/TIN	1,96	1,87	4,23	0,748
	Gloger + Birke GmbH Systemtechnik	Flachkol. 2.45	2,51	2,23	4,05	0,617
	H. Lenz AG Solar- und Wärmetechnik	Multisol 2000	2,25	2,00	4,38	0,704
	Hassler Alternative Energie	Omegasol S	3,05	2,76	4,06	0,692
	Heiwason Solaranlagen	Heiwason	1,70	1,36	3,98	0,582
Colector plano Colector plano		Chromagen CR-120 Chromagen CR-130	2,82	2,61 2,76	5,37 5,37	0,735 0,735
Colector plano		Chromagen CR-140	2,82	2,76	5,37	0,735
Colector plano		Heliodyne Gobi 308	2,82	2,04	4,74	0,733
Colector plano		Heliodyne Gobi 3366	2,49	2,30	4,68	0,734
Colector plano		Heliodyne Gobi 408	3,00	2,77	4,57	0,737
Colector plano		Heliodyne Gobi 410	3,74	3,56	4,57	0,737
Colector plano		Heliodyne Mojave 408	3,00	2,77	6,08	0,726
Colector plano		Heliodyne Mojave 410	3,73	3,56	6,08	0,726
Colector plano		KS 2000 S/P	2,10	1,83	4,03	0,658
Colector plano		KS-2000 S	2,08	1,83	4,28	0,653
	Holleis Solartechnik	IDK - Kranmodul	6,31	5,69	3,82	0,728
Colector plano		IDKM 200	2,03	1,80	3,92	0,716
Colector plano		Solkit	2,38	2,03	3,75	0,678
Colector plano		WK 251	2,55	2,21	3,69	0,669
	Hug Solarhausbau	Ra 4	8,39	7,29	3,61	0,624
	IDALTERMO SRL	Venere PC200	2,27	1,94	6,09	0,645
	IDM-Energiesysteme	GSE 2000/TIN IS-PRO 2000 Tinox	1,96	1,87	4,23	0,748
Colector plano	IMP Klimat d.d.		1,96	1,87	4,23 6,25	0,748
	Ing. Glatz Johann	SI-SOL 2.0-ST Geosolar GSE 2000	2,15 1,93	1,99 1,86	4,93	0,696 0,776
Colector plano		SchuecoSol.CH	2,70	2,51	4,93	0,776
	KAGO-Konzern	KAGO-Solar	2,70	2,51	4,54	0,736
colector highly		STA 23S	2,46	2,26	4,91	0,736
Colector plans						0,072
Colector plano Colector plano		STA 23T	2,74	2,41	3,79	0,661

Tipo de colector	Provedor	Modelo	Superficie bruta por colector en m ²	Superficie de apertura por colector en m ²	U _{loss} en W/m²K	Eta 0
Colector plano		BE Pro	2,13	1,90	3,88	0,722
	Nehs Produktions- & Vertriebs	Maxisum 2000E	1,96	1,87	4,23	0,748
	Neosol Energietechnik	SE 2000	1,96	1,88	4,55	0,778
	NET Neue Energie Technik	Korona	4,67	4.08	4,07	0,704
	P. Weissbacher	DW 580 Standart	2,01	1,40	3,31	0,504
	P. Weissbacher	DW 750 Select	2,01	1,40	3,60	0,598
	Polster Energietechnik	GPO-TEC 2000	1,96	1,87	4,23	0,748
	pro solar Energietechnik	Eco Star	2,06	1,92	4,27	0,670
	R&R Solar Supply	Copper Star 21 EPI-308CU(3'x7')	1,90	1,75	6,11	0,708
	R&R Solar Supply	Copper Star 24 EPI-308CU(3'x8')	2,17	2,00	6,11	0,708
	R&R Solar Supply	Copper Star 32 EPI-308CU(4'x8')	2,92	2,74	6,11	0,708
	R&R Solar Supply	Sunlast 21 EPI-308SS(3'x7')	1.90	1,75	6,11	0,708
	R&R Solar Supply	Sunlast 24 EPI-308SS(3'x8')	2,17	2,00	6,11	0,708
			2,17	2,74	6,11	0,708
	R&R Solar Supply	Sunlast 32 EPI-308SS(4'x8')				
	R&R Solar Supply	Sunpro Sunpro 21	1,90	1,75	6,11	0,708
	R&R Solar Supply	Sunpro Sunpro 24	2,17	2,00	6,11	0,708
	R&R Solar Supply	Sunpro Sunpro 32	2,92	2,74	6,11	0,708
	R&R Solar Supply	Sunpro Sunpro 40	3,64	3,43	6,11	0,708
	Radco Products	Radco 308C-HP	2,20	2,05	4,96	0,778
	Radco Products	Radco 308P-HP	2,20	2,05	7,51	0,764
	Radco Products	Radco 408C-HP	3,00	2,81	4,77	0,779
	Radco Products	Radco 408P-HP	3,00	2,81	7,24	0,768
	Radco Products	Radco 410C-HP	3,71	3,49	4,77	0,779
	Radco Products	Radco 410P-HP	3,71	3,49	7,24	0,768
	Radco Products	Radco 412C-HP	4,49	4,21	4,77	0,779
	Radco Products	Radco 412P-HP	4,49	4,21	7,24	0,768
	Rehau AG + CO	Solect FK	4,12	3,71	3,80	0,696
Colector plano	Rosskopf Solar-Sonnenkollektoren	OEKO 3000	6,52	5,46	3,87	0,628
Colector plano	Rotex Heating Systems	Solaris V26	2,60	2,33	4,04	0,690
Colector plano	Roto Frank Bauelemente	RSK	3,45	2,90	3,67	0,625
Colector plano	Sandler Energietechnik	S 03	2,12	1,94	4,52	0,750
Colector plano	Schenk Bruhin	SBC_Solar Varia II	2,71	2,28	4,46	0,678
Colector plano	Sealed Air Corporation	FW-48	4,40	4,10	8,21	0,739
Colector plano	Sebasol Selbstbau	EN93	3,76	3,00	4,08	0,537
Colector plano	SE-Consulting	Alfa	2,24	1,91	3,99	0,625
Colector plano	Senghas, Werner, Solarsysteme	Optimasol 2,1 Cu	2,11	1,88	4,02	0,707
Colector plano	Sesol	FK3.8	4,32	3,79	4,22	0,692
Colector plano		Quick ST 2.5 e	2,93	2,49	3,92	0,677
	SET Solar Energie Technik	A-GK 1150	11,43	10,66	4,11	0,718
	SET Solar Energie Technik	D2	2,00	1,83	4,14	0,692
	Siko Energiesysteme	Integral 06	6,37	5,35	3,89	0,653
	SOB & SUN Solarenergie	IDK	2,22	1,91	3,88	0,684
	Solahart Industries	M	1,99	1,86	4,69	0,650
	Solahart Industries	Oyster Ko	2,00	1.83	4,06	0,666
	Solahart Industries	Solahart Bt	1,98	1,87	4,87	0,750
	Solahart Industries	Solahart J	1,98	1,87	8,36	0,772
	Solahart Industries	Solahart KF	1,98	1,87	5,93	0,759
	Solahart Industries	Solahart L	1,98	1,87	7,47	0,625
	Solahart Industries	Solahart M	1,98	1,87	4,53	0,625
	Solar Capital Partners	Gluatmugl Typ A	10,70	9,52	3,88	0,630
Colector plano		SC 22	1,99	7,32	3,25	0,786
	Solarenergie Handels u. Montage	Kranmodulk. IDK	6,31	5,69	3,82	0,788
Colector plano		300 I RS2	2,11	1,91	4,22	0,728
Colector plano		Solarwerk 2.25	2,11	2,32	3,97	0,679
Colector plano		Solarwerk 2.60	2,93	2,69	3,90	0,682
Colector plano		Solarwerk Flachkollektor	2,45	2,32	4,19	0,751
Colector plano	Soited	Ligna	2,61	2,10	4,08	0,647

Tipo de			Superficie bruta por colector en	Superficie de apertura por colector en	U _{loss} en	Eta 0
colector	Provedor	Modelo	m²	m²	W/m²K	
Colector plano		Cobra 2.3 m2	2,31	2,05	3,95	0,709
	Soltop Schuppisser	Cobra 3.1 m2	3,11	2,74	3,78	0,696
Colector plano	Soltop Schuppisser	Cobra X	3,11	2,74	3,54	0,701
Colector plano	Soltop Schuppisser	Cobralino	3,11	2,74	3,80	0,688
Colector plano	Soltop Schuppisser	Cobralino X	3,11	2,74	3,78	0,709
Colector plano	Sonnenkraft Vertriebs Sonnenkraft Vertriebs	HSADK SK 500	2,53	2,40 2,31	4,08 3,85	0,688 0,686
	Sonnenkraft Vertriebs	SK 500 N Sunselect	2,57	2,31	3,63	0,676
Colector plano	Sonnenkraft Vertriebs	SK IMK	6,15	5,36	3,87	0,672
Colector plano	1 - 1 - 1 - 1 - 1 - 1	SOL 25 Plus	2,73	2,48	3,96	0,715
Colector plano		SunBox HFK-S	6,08	5,48	4,11	0,695
Colector plano		Empire EC-20	1,83	1,61	4,13	0,714
Colector plano		Empire EC-21	1,97	1,73	4,13	0,714
Colector plano	SunEarth	Empire EC-24	2,29	2,02	4,13	0,714
Colector plano	SunEarth	Empire EC-32	3,05	2,75	4,13	0,714
Colector plano	SunEarth	Empire EC-40	3,80	3,45	4,13	0,714
Colector plano		Empire EP-20	1,83	1,61	4,54	0,682
Colector plano		Empire EP-21	1,97	1,73	4,54	0,682
Colector plano		Empire EP-24	2,29	2,02	4,54	0,682
Colector plano		Empire EP-32	3,05	2,75	4,54	0,682
Colector plano		Empire EP-40	3,80	3,45	4,54	0,682
Colector plano		Imperial IC-24	2,30	2,02	4,13	0,714
Colector plano		Imperial IC-32	3,06	2,75	4,13	0,714
Colector plano		Imperial IC-40	3,81	3,45	4,13	0,714
Colector plano Colector plano		Imperial IP-24 Imperial IP-32	2,30 3,06	2,02 2,75	4,54 4,54	0,682 0,682
Colector plano		Imperial IP-32	3,81	3,45	4,54	0,682
Colector plano		SolarStar SSC-21	1,86	1,70	4,13	0,002
Colector plano		SolarStar SSC-24	2,16	1,99	4,13	0,714
Colector plano		SolarStar SSC-32	2,91	2,72	4,13	0,714
Colector plano		SolarStar SSC-40	3,63	3,42	4,13	0,714
Colector plano		SolarStar SSP-21	1,86	1,70	4,54	0,682
Colector plano		SolarStar SSP-24	2,16	1,99	4,54	0,682
Colector plano	SunEarth	SolarStar SSP-32	2,91	2,72	4,54	0,682
Colector plano	SunEarth	SolarStar SSP-40	3,63	3,42	4,54	0,682
Colector plano	SunEarth	Sunwise SC-24	2,29	2,02	4,13	0,714
Colector plano		Sunwise SC-32	3,05	2,75	4,13	0,714
Colector plano		Sunwise SC-40	3,80	3,45	4,13	0,714
Colector plano		Sunwise SP-24	2,29	2,02	4,54	0,682
Colector plano		Sunwise SP-32	3,05	2,75	4,54	0,682
Colector plano		Sunwise SP-40	3,80	3,45	4,54	0,682
Colector plano		Synox 9000 si	1,96 0,97	1,87	4,23	0,748
Colector plano	Swiss Solar Tech	C-R Panel MULTISOL M240	2,26	0,86	6,38 4,07	0,585
Colector plano		Swiss Collector	5,35	2,00 4,60	3,67	0,713 0,657
	Synergy Solar	Synergy S19.78	1,85	1,65	6,01	0,626
	Synergy Solar	Synergy S26.68	2,48	2,27	6,01	0,626
	Synergy Solar	Synergy T19.78	1,85	1,79	4,67	0,647
	Synergy Solar	Synergy T26.68	2,48	2,27	4,67	0,647
Colector plano		TSK 25 S	2,73	2,48	3,96	0,715
	Teufel u. Schwarz	Eurosol	6,02	5,51	3,88	0,750
	Thermo Dynamics	G32	2,96	2,78	5,25	0,738
	Thermo Dynamics	S32	2,96	2,78	4,65	0,642
	Thermo Dynamics	SE 26	2,46	2,19	4,29	0,627
	Thermo Dynamics	SE 26.2	2,46	2,19	3,67	0,678
Colector plano		Syenergie-Solar-MK	2,56	2,28	3,97	0,673
Colector plano		Thuesol 2.0	2,12	1,86	4,14	0,654
Colector plano		CLI U10 2000	2,22	1,87	4,18	0,682
Colector plano		Oertli SKF 225	2,53	2,32	3,97	0,693
Colector plano		VitoSol 100 5 m2 DI	5,26	4,92	4,16	0,723
Colector plano		VitoSol 100 S2.5	2,72	2,50	4,13	0,748
	Vögelin Solartechnik	Aldo 225	2,53	2,32	3,97	0,693
Colector plano		WTS-F	2,56	2,28	4,06	0,668
	Westfa Vertriebs- und Verwaltungs	ADK 25	2,57	2,20	3,63	0,676
	Winkler Selarsyctome Spanglerei	Wikosun 2002 - Ti	2,00	1,84	4,24	0,713
	Winkler Solarsysteme Spenglerei Winkler Solarsysteme Spenglerei	VarioSol A VarioSol A-antireflex	6,06	5,53	3,99	0,711
	Winkler Solarsysteme Spenglerei Winkler Solarsysteme Spenglerei	VarioSol A-antireflex VarioSol E	6,06	5,53	4,02	0,740
Colector plano		Format 100 F	8,07 2,08	7,32 1,90	3,95 3,67	0,686 0,728
Colector plano		Aparel Flachkollektor				0,728
colector highlo	L.I.I.L. Aparei	Aparel Flacilkollektol	1,94	1,72	4,56	0,000

31 ANEXO 12.I: CARACTERÍSTICAS DE ANTICONGELANTES

- Son tóxicos Debido a que llevan una sustancia que se conoce como inhibidores de la corrosión, a pesar de ser beneficiosos para los dispositivos de la instalación, se debe impedir que se mezclen con el agua de consumo. Por ejemplo, haciendo la presión del circuito secundario mayor que la del circuito primario, por prevención ante una posible rotura del intercambiador.
- Son muy viscosos Al ser más espesos, al líquido le cuesta más avanzar, aumentando la pérdida de carga, factor a tener en cuenta a la hora de elegir la electrobomba, la que suele ser de mayor potencia.
- **Dilata más que el agua cuando se calienta** Para evitar las sobre presiones se utiliza el vaso de expansión. Si se diseña el vaso como para que aguante una presión como si fuese sólo agua, la membrana del vaso llega un punto en el que no da más y se produciría una sobre presión en el circuito.
- Es inestable a más de 120°C Si alcanza más de esta temperatura, se degrada convirtiéndose en un ácido muy corrosivo que afectaría a la vida de los elementos de la instalación. Además pierde sus propiedades por lo que deja de evitar la congelación. Los hay que aguantan más temperatura pero son más caros.
- La temperatura de ebullición es mayor a la temperatura de ebullición del agua (100 °C) – Podría verse como una ventaja porque significa que absorbe más energía.
- La capacidad calorífica es mayor a la del agua Por absorber más energía, tarda también más en perderla o entregarla, por lo que la ventaja anterior se anula al no transferir todo el calor que ha ganado.