Задача 2. Работать с большими данными

Решение

В данном случае рассматривается дивергенция потока (divF) в зависимости от температуры и частоты.

- Температура: от 3000°K до 16000°K
- Частота: от 0.02 до 3.00 Гц (192 интервала)

Основные этапы:

- 1. Вычисление дивергенции потока методом диффузионного приближения заранее и сохранение этих данных в виде таблице divF(T, v).
- 2. Построение БД divF.
- 3. Для каждого графика температуры определяется частота и затем выполнение поиска в БД соответствующего графика дивергенции потока.
- 4. Получение divF по заданной температурой методом интерполяции (наилучший метод в отчёте №1)

Замечание:

- В первом этапе выпоняем 3 шага:
 - 1. Подбор краевого коэффициента m_{ν} в граничном условии третьего рода так, чтобы решение методом диффузионного приближения совпадается с точным решением.

$$\begin{cases}
F_{\nu}(z=0) = 0 \\
F_{\nu}(z=1) = \frac{cU_{\nu}}{2} \cdot m_{\nu}
\end{cases}$$
(1)

ightarrow Метод бинарного поиска.

	ı
1	0.343675661
2	0.334280089
3	0.339416295
4	0.38317214
5	0.402311988
6	0.388537514
7	0.339721243
8	0.402813469
9	0.425241768
10	0.415805954
11	0.340040707
12	0.390880136
13	0.416551015
14	0.398128773
15	0.338093611

 $Puc.\ 1.\ 3$ начения краевого коэффициента m_{ν} при заданном максимальной температуры $T_{high}=10000\ {
m K}$ для всех интервалов частот

2. Решение задачи методом диффузионного приближения с найденными краевых коэффициентов.

$$\begin{cases} F_{\nu} = -\frac{c}{3k_{\nu}} \nabla U_{\nu} \\ div F_{\nu} = ck_{\nu} (U_{\nu p} - U_{\nu}) \end{cases}$$
 (2)

Замечание: в случае отсутствия значения m_{ν} (бесконечно или не возможно вычислять) для некоторых интервалах частот будем использовать аналитический результат, т.е. $m_{\nu}=0.5$.

3. Вычисление и сохранение дивергенции потока divF(T, v).

Divergence

 $Puc.\ 2.\ \Gamma paфик дивергенции потока div F(T, v)$ в зависимости от температур и частот

- В третьем этапе для поиска соответствующего графики дивергенции потока выполняем 2 шага:
 - 1. Заранее построим дерево БД: 192 ветки интервалы частот и каждая ветка сохраняется соответствущий график температуры.
 - 2. Определяем нужную частоту методом бинарного поиска.
 - 3. Сохраняем полученный соответствующий график температуры.