Partitioning of students into equitable groups using SolverStudio

Michael Fairley Oscar Dowson

Department of Engineering Science University of Auckland

2014 Joint NZSA+ORSNZ Conference

Outline

- Motivation
 - ENGGEN 403: Managing a Business
 - Previous Method
- Our Solution
 - Model
 - Implementation
 - Validation

The systems engineering group project

- All final year engineering students
- ~600 students divided into groups of 25
- One week

What is an equitable group?

Previous Method

- Manual
- Akin to sequential greedy algorithm
- Time consuming (~2 days)
- Difficult to train future course organisers

- Decision variables
 - binary, assign each student to a group
- Objective function
 - minimise spread of group mean GPA
 - minimise spread of group GPA variance
- Constraints
 - evenly distribute gender, discipline, ethnicity
 - calculate group mean GPA and variance
- Data
 - university held student records

- Decision variables
 - binary, assign each student to a group
- Objective function
 - minimise spread of group mean GPA
 - minimise spread of group GPA variance
- Constraints
 - evenly distribute gender, discipline, ethnicity
 - calculate group mean GPA and variance
- Data
 - university held student records

- Decision variables
 - binary, assign each student to a group
- Objective function
 - minimise spread of group mean GPA
 - minimise spread of group GPA variance
- Constraints
 - evenly distribute gender, discipline, ethnicity
 - calculate group mean GPA and variance
- Data
 - university held student records

- Decision variables
 - binary, assign each student to a group
- Objective function
 - minimise spread of group mean GPA
 - minimise spread of group GPA variance
- Constraints
 - evenly distribute gender, discipline, ethnicity
 - calculate group mean GPA and variance
- Data
 - university held student records

Microsoft Excel Spreadsheet

- SolverStudio plug-in
- PuLP modelling language
- COIN-OR CBC solver
- End user only needs existing Excel skills

Interface Screenshot

Visualisation Tools

Automatically generated charts

Solution compared with 2013 manual allocation

- Manual allocation in 2013 provided benchmark
- Optimisation mostly better than manual
- Difficult to compare solutions
- Optimisation much faster (2 min vs 2 days)

Optimisation markedly reduced GPA spread

Summary

- Model formulated to allocate students to groups
- Combination of Excel, SolverStudio and PuLP lead to quick implementation time and easy to use interface for end user
- From idea to real-world application only took 2 weeks
- Groups successfully allocated in 2014

Motivation Our Solution Summary

Questions?