

infinitely divisible random variable

Canonical name InfinitelyDivisibleRandomVariable

Date of creation 2013-03-22 16:25:58 Last modified on 2013-03-22 16:25:58

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 8

Author CWoo (3771) Entry type Definition msc 60E07Defines n-decomposable Defines n-divisible

Defines infinitely divisible distribution

Defines infinitely divisible

Defines decomposable random variable

Let n be a positive integer. A real random variable X defined on a probability space (Ω, \mathcal{F}, P) is said to be

- 1. n-decomposable if there exist n independent random variables X_1, \ldots, X_n such that X is identically distributed as the sum $X_1 + \cdots + X_n$. A 2-decomposable random variable is also called a decomposable random variable;
- 2. n-divisible if X is n-decomposable and the X_i 's can be chosen so that they are identically distributed;
- 3. infinitely divisible if X is n-divisible for every positive integer n. In other words, X can be written as the sum of n iid random variables for any n.

A distribution function is said to be *infinitely divisible* if it is the distribution function of an infinitely divisible random variable.

Remark. Any stable random variable is infinitely divisible.

Some examples of infinitely divisible distribution functions, besides those that are stable, are the gamma distributions, negative binomial distributions, and compound Poisson distributions.