

Thermal Conductivity

Material	Thermal conductivity (cal/sec)/(cm ² C/cm)	Thermal conductivity (W/m K)*
Silver	1.01	406.0
Copper	0.99	385.0
Brass	...	109.0
Aluminum	0.50	205.0
Iron	0.163	...
Steel	...	50.2
Lead	0.083	34.7
Mercury	...	8.3
Ice	0.005	1.6
Glass, ordinary	0.0025	0.8
Concrete	0.002	0.8
Water at 20 C	0.0014	...
Asbestos	0.0004	...
Hydrogen at 0 C	0.0004	0.14
Helium at 0 C	0.0003	0.14
Oxygen	...	0.023
Snow (dry)	0.00026	...
Fiberglass	0.00015	0.04
Brick, insulating	...	0.15
Brick, red	...	0.6
Cork board	0.00011	0.04
Wool felt	0.0001	0.04
Rock wool	...	0.04
Styrofoam	...	0.01
Wood	0.0001	0.12-0.04
Air at 0 C	0.000057	0.024

*From Young, Hugh D., University Physics, 7th Ed. Table 15-5.

[Heat conduction discussion](#)

[Debye Temperature and Thermal Conductivity](#)

[Index](#)

[Tables](#)

Reference
Young
Ch 15.

Wiedemann-Franz Ratio

The ratio between thermal and electrical conductivities of metals can be expressed in terms of the ratio:

$$L = \frac{\kappa}{\sigma T} = \frac{\pi^2 k^2}{3e^2} = 2.45 \times 10^{-8} W\Omega/K^2$$

which may be called the Wiedemann-Franz Ratio or the Lorenz constant.

Metal	$k/\sigma T (10^{-8} W\Omega/K^2)$
Cu	2.23
Ag	2.31
Au	2.35
Zn	2.31
Cd	2.42
Sn	2.52
Mo	2.61
Pb	2.47
Pt	2.51
Heat conduction discussion	
Wiedemann-Franz Law	

[Index](#)
[Tables](#)
[Reference](#)
[Blatt](#)
[Section
13.2](#)

WOLFRAM RESEARCH scienceworld.wolfram.com

Search Site

ASTRONOMY BIOGRAPHY CHEMISTRY MATHEMATICS PHYSICS

ERIC WEISSTEIN'S WORLD OF PHYSICS

T

Thermal Conductivity

Thermal conductivity is defined by

$$k \equiv \rho c_P \kappa,$$

where c_P is the heat capacity and κ is the thermal diffusivity. In cgs, thermal conductivity is measured in erg cm⁻¹ K⁻¹ s⁻¹. For air (in MKS),

$$k_{\text{air}} = 0.03 \text{ W m}^{-1} \text{ K}^{-1}.$$

SEE ALSO: [Electrical Conductivity](#), [Thermal Diffusivity](#)

Eric W. Weisstein

ALPHABETICAL INDEX

- [ABOUT THIS SITE](#)
- [FAQs](#)
- [WHAT'S NEW](#)
- [RANDOM ENTRY](#)
- [BE A CONTRIBUTOR](#)
- [SIGN THE GUESTBOOK](#)
- [EMAIL COMMENTS](#)

ERIC'S OTHER SITES

Related Wolfram Research Products Include:

 [Mathematica](#) [CalculationCenter](#)