

Técnicas Tradicionais de Classificação de Imagens

Classificação: KNN e

Deploy: API

Prof. Manoela Kohler

prof.manoela@ica.ele.puc-rio.br

www.linkedin.com/in/manoelakohler

Recapitulação

Projeto de Visão Computacional

- Desbalanceamento
- Visualização
- Medidas resumo: características
- Metadados de captura
- Metadados técnicos
- Redução de Dimensionalidade (tópico visto em maior profundidade na aula passada com o Leonardo)
- Redimensionamento x Patches x Crop
- Análise de Variância
- Data Augmentation (ainda a ser muito estudado e praticado)
- Histogram Matching vs Histogram Equalization

Treinamento/Inferência

Machine Learning

Supervisionado

Classificação Regressão Previsão de séries temporais

Não Supervisionado

Agrupamento Associação

Aprendizado Supervisionado

Aprendizado Não Supervisionado

SVM – Support Vector Machine

SVM

SVM

Dados que são linearmente separáveis (mesmo com algum ruído) funcionam bem:

Mas e se a base de dados for mais complexa que isso?

• E se mapearmos os dados para uma dimensão maior?

SVM - Regularização

- **C**: custo das violações
- Balanceamento entre uma fronteira de decisão suave e uma fronteira que classifique corretamente todos os pontos.

Gamma: raio de influência.

Valores baixos: influência longe → separação mais suave Valore altos: influência perto → separador que valorize classificação correta

Hiperparâmetros

Valores baixos: separação mais suave Valore altos: classificação correta

Compromisso Viés Variância

Viés (bias): incapacidade do modelo de ML de capturar o verdadeiro relacionamento entre os dados.

Variância: diferença no resultado do modelo de ML para diferentes datasets.

Para modelos de *Machine Learning* em geral!

Classificação - Estudo de Caso SVM

Digitos de 0 a 9 escritos à mão

Curiosidades:

- Yann LeCun foi um dos criadores do dataset
- Motivação:
 - benchmark para reconhecimento de dígitos
 - processamento
 automático de cheques

Classificação - Estudo de Caso SVM

Importância de se fazer Data Augmentation:
 Generalização do Modelo!

 Usamos os próprios pixels como input, mas não seria melhor, intuitivamente pensando no algoritmo, passarmos features das imagens?

Classificação - Estudo de Caso

SVM

KNN

Passos do KNN

- 1. Determinar o valor de K, ou número de vizinhos
- 2. Calcular a distância entre cada par de registros
- 3. Determinar quais são os K registros (vizinhos) mais próximos do novo registro
- 4. Dentre esses K vizinhos, contar o número de vizinhos em cada classe
- 5. O novo registro vai ser da classe majoritária entre os vizinhos mais próximos

Passo 1: Determinar o valor de K, ou número de vizinhos

$$K = 5$$

Classificação KNN

Passo 2: Calcular a distância entre cada par de registros

Passo 4: Dentre os 5 vizinhos, contar o número de vizinhos em cada classe

Passo 5: O novo registro vai ser da classe majoritária entre os vizinhos mais próximos

Passo 5: O novo registro vai ser da classe majoritária entre os vizinhos mais próximos

Classificação KNN

A classe do novo padrão é igual ao da K maioria mais próxima.

Pendências:

- Qual tipo de distância usar?
- Qual valor de K?
- Como Desempatar?

KNN

- A classe do novo padrão é igual ao da K maioria mais Próxima.
- Pendências:
 - Qual tipo de distância usar?
 - Qual valor de K?
 - o Como Desempatar?

Escolha experimental

KNN

- A classe do novo padrão é igual ao da K maioria mais Próxima.
- Pendências:
 - Qual tipo de distância usar?
 - Qual valor de K?
 - Como Desempatar?

Escolha aletória Escolha aletória ponderada Classe mais próxima

KNN

Supondo K = 4

Escolha Aleatória:

"Jogue uma moeda honesta": caso saia cara, escolha a classe vermelha, caso saia coroa, escolha a classe azul.

KNN

Supondo K = 4

Escolha Aleatória Ponderada:

"Jogue uma moeda desonesta": Dê mais chance à classe que está relacionada a classe que possua mais padrões.

KNN

Supondo K = 4

Classe mais próxima:

Selecione a classe cuja distância é menor.

Estudo de Caso

Classificação - Estudo de Caso KNN

- Fashion-MNIST
 - 60k imagens de treino
 - 10k imagens de teste
 - 10 classes
 - 28x28
 - o 8 bits
 - Grayscale

Curiosidades:

 Introdução de uma base de imagens 28 x28 (8 bits) grayscale com um pouco mais de complexidade que o dataset original Mnist.

Deploy com API

Deploy API

Deploy

API

- Queremos criar uma API (rodando localmente) usando o framework FastAPI com documentação e utilização através do OpenAPI (Swagger).
- Mais pra frente faremos Deploy no Heroku ou na Oracle!

Obrigada!

Prof. Manoela Kohler

prof.Manoela@ica.ele.puc-rio.br

www.linkedin.com/in/manoelakohler

