Esercizio 68. Il tempo X (in minuti) che serve ad un assistente di laboratorio per preparare un esperimento è distribuito come una distribuzione esponenziale con media 30.

- a) Determinare la densità di probabilità di X e disegnare. Calcolare $E[X],\ V[X].$
- b) Qual è la probabilità che la preparazione richieda più di 33 minuti?
- c) Qual è la probabilità che la preparazione richieda entro 2 minuti dal valor medio?
- d) Se l'assistente non ha ancora concluso la preparazione dopo 20 minuti, qual è la probabilità che concluda nei prossimi 10?

(Risposta: a)
$$E[X] = 30$$
, $V[X] = 900$ - b) $e^{-1.1}$ - c) $e^{-\frac{28}{30}} - e^{-\frac{32}{30}}$ - d) $1 - e^{-\frac{10}{30}}$)

Esercizio 69. Abbiamo un sistema elettronico con quattro componenti come in figura Assumiamo che tutti i componenti abbiano tempi di vita indipendenti tutti con distribuzione esponenziale di media 5. Trovare il valore atteso di vita del sistema.

(Risposta: $\frac{25}{12}$)

Esercizio 70. Un consumatore deve scegliere tra due piani tariffari per il telefono. Il primo chiede 10 centesimi per ogni minuto di chiamata mentre il secondo chiede 1 euro per chiamate fino a 20 minuti e, successivamente, 5 centesimi per ogni minuto dopo i 20 (assumere che, per chiamate con una durata che non sia un numero intero, il costo sia proporzionale a quello di una chiamata con durata pari ad un intero). Supponiamo che la durata delle chiamate del consumatore sia distribuita secondo un'esponenziale di parametro λ . Quale piano è più economico se la durata media è 10 minuti? E se è di 30?

(Risposta:)

Esercizio 71. Abbiamo un sistema elettronico con due componenti in parallelo. Indichiamo con X_i il tempo di vita dell'i-esimo componente (indipendenti tra di loro ed entrambi distribuiti con distribuzione esponenziale di parametro 2) e T il tempo di vita del sistema. Trovare:

- a) P[T > t] per ogni t > 0;
- b) $P[T > 10|X_1 > 5, X_2 > 5];$
- c) P[T > 10|T > 5].

(Risposta: a) $2e^{-2t} - e^{-4t}$ - b) $2e^{-10} - e^{-20}$ - c) $\frac{2e^{-20} - e^{-40}}{2e^{-10} - e^{-20}}$)

Esercizio 72. La potenza W dissipata da un resistore è proporzionale alla differenza di potenziale agli estremi ($W = rV^2$, r costante). Supponendo r = 2 e V distribuito secondo una normale di media 8 e deviazione standard 1, calcolare:

- a) E[V];
- b) P[W > 200].

(Risposta: a) 130 - b) 0.023)

Esercizio 73. Una compagnia lattine di passata di pomodoro. Il peso esatto deve essere compreso tra 485 e 515 grammi. Supponendo che il peso delle lattine sia distribuito come una normale di media 495.5 grammi e deviazione standard 6.45 grammi, calcolare:

- a) la probabilità che il peso di una lattina sia superiore a 515 grammi;
- b) la probabilità che una lattina, che rispetta gli standard, pesi più di 495.5 grammi.
- c) Se la media fosse 500.24 grammi, calcolare la deviazione standard tale per cui la percentuale di lattine con un peso superiore a 515 grammi sia al più 2.5%

(Risposta: a) 0.0013 - b) 0.526 - c) 7.53)

Esercizio 74. Un grande magazzino riceve i prodotti da due fornitori F_1 e F_2 , in percentuale 70% e 30% rispettivamente. Un certo prodotto rispetta gli standard tecnici se ha una particolare caratteristica compresa tra 29.6 e 30.4. Supponiamo che, per entrambi i fornitori, la caratteristica del prodotto abbia una distribuzione normale con $\mu = 29.9$, $\sigma^2 = 0.09$ per F_1 e $\mu = 30$, $\sigma^2 = 0.12$ per F_2 . Trovare la percentuale di prodotti venduti dal grande magazzino che rispettano gli standard tecnici.

(Risposta: 77.8%)

Esercizio 75. Sia X_a distribuita uniformemente su [0, a+1]. Sia poi A distribuita secondo una distribuzione binomiale di parametri $n=2, p=\frac{1}{2}$. Sia infine Y la mistura della famiglia X_a rispetto al parametro casuale A. Trovare P[Y>1.5] e E[Y].

(Risposta: $P[Y > 1.5] = \frac{1}{4}, E[Y] = 1$)

Esercizio 76. Sia X con distribuzione esponenziale di parametro $\lambda=1$. Posto $Y=X^2+1$, descrivere la distribuzione di Y e il suo valore atteso.

(Risposta: $F_Y(t) = 1 - e^{-\lambda\sqrt{t-1}}\mathbb{1}_{[1,+\infty)}(t), \ E[Y] = \frac{2}{\lambda^2} + 1$)

Esercizio 77. Il numero di clienti che entrano in un negozio in un giorno è dato da Poisson(10). Quanto ogni cliente spende è invece dato da U(0, 100). Trovare media e varianza degli incassi Y del negozio in un giorno.

(Risposta: $E[Y] = 500, V[Y] = \frac{10^5}{3}$)

Esercizio 78. Due variabili aleatorie X ed Y sono i.i.d. con distribuzione $Exp(\frac{1}{Z})$, con $Z \sim U(0,1)$. Calcolare la distribuzione di X+Y.

(Risposta: $f_{X+Y}(t) = e^{-t}$)

Esercizio 79. Ogni ruota anteriore di un certo tipo di veicolo dovrebbe avere una pressione di 26 psi. Supponiamo che la vera pressione in ogni ruota sia una variabile aleatoria, X per la ruota destra e Y per la ruota sinistra, con distribuzione congiunta:

$$f_{(X,Y)}(x,y) = \begin{cases} K(x^2 + y^2) & x \in [20,30], \ y \in [20,30] \\ 0 & altrimenti \end{cases}$$

- a) Quanto vale K?
- b) Qual è la probabilità che entrambe le ruote siano sgonfie?
- c) Qual è la probabilità che la differenza di pressione tra le due ruote sia al più 2 psi?
- d) Determinare la distribuzione marginale della pressione nella ruota destra.
- e) X ed Y sono indipendenti?

(Risposta: a)
$$K = \frac{3}{20 \cdot (30^3 - 20^3)}$$
 - d) $f_X(x) = K \left(10x^2 + \frac{1}{3}(30^3 - 20^3)\right) \mathbb{1}_{[20,30]}(x)$

Esercizio 80. Due componenti di un minicomputer hanno la seguente distribuzione congiunta per i propri tempi di vita X e Y:

$$f_{(X,Y)}(x,y) = \begin{cases} xe^{-x(1+y)} & x \ge 0, \ y \ge 0\\ 0 & altrimenti \end{cases}$$

- a) Qual è la probabilità che il tempo di vita X del primo componenti superi 3? b) Quali sono le distribuzioni marginali di X e Y? I due tempi di vita sono
- c) Qual è la probabilità che il tempo di vita di almeno un componenti superi 3? (Risposta: a) e^{-3} b) $f_X(x)=e^{-x}$, $f_Y(y)=\frac{1}{(1+y)^2}$)

indipendenti?

Table entry for \boldsymbol{z} is the area under the standard normal curve to the left of \boldsymbol{z} .

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
8.0	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857