Instructions

- Clear the environment
- Open a new R Script where you will do the exercise and later save in the project directory.
- Add the purpose of the file and the author
- Here are the main activities
 - 1) Load the rio, lubridate and tidyverse package
 - 2) Load the data using the import
 - 3) Select variables
 - 4) Rename variables with spaces
 - 5) Filter the values of interest
 - 6) Mutate variables
 - 7) Mutate with if_else

Part 1 (You:-) will do this together)

1.1

- Load the rio, lubridate and tidyverse package
- Use the hospital_df and location_df object names; Load the line_hospital_data.csv and the line_hospitals_locations.xlsx data

```
# General format
hospital_df <- import("Data/line_hospital_data.csv")</pre>
```

- a) What is the structure of the data
- b) How many observations are in the data?
- c) What is the class of 'case id

1.2 For this part we use the hospital_df data

- Create a subset called sub1 of lab measurements, case_id and age data
- How many columns do you have now? add that as a comment in your code
- Hint: use select function

1.3 Rename variables with spaces

- Rename all the variables with a space and replace space with _
- Rename date_of_outcome to date_outcome

```
rename(.data, ...)
```

1.4 Filter data

- Create a data frame of all the participants who died: Hint use the outcome variable
- glimpse the data of the participant that died , how many rows and column, add that as a comment in your code
- $\bullet\,$ create a data set of males over 25 years

```
## example of female data set
female <- filter(hosp_data,gender=="f" )</pre>
```

- Use filter and select to show case id, hosp date and date onset of patients who recovered.
- How many rows and columns, add that as a comment in your code

- Create a data of participants who had cough and chills , then select only case_id,gender and age. Hint: try and use the pipe operator
- Filter participants that had cough AND chills OR aches OR their ct_blood IS GREATER than 20

1.5 mutate

- Create a BMI variable where BMI= weight_kg/height_meters * height_meters
 Hint: you have to create height in meters variables
- Create a variable short is YES if $ht_cm < 80$ otherwise NO
- Hint: use IF ELSE
- Create age group of 10 year gaps, i.e 0-10,10-20,20-30,30-40,40-50,0ver_50
- HINT use CASE WHEN

1.6 Merging

- Left join the hospital_df and location_df using case_id as the ID call the data merge1
- Inner join the hospital_df and location_df using case_id as the ID call the data merge2
- Full join the hospital_df and location_df using case_id as the ID call the data merge3
- Look at the glimpse of the 3 data sets above, what is the difference
- Export all the 3 files as .xlsx into the data folder]]

```
hosp_data <- import("Data/line_hospital.xlsx")
hospital_location <- import('data/line_hospital_sub.csv')
hosp_left_joined <- left_join(
    x = hosp_data,
    y = hospital_location,
    by = "case_id"
)</pre>
```

1.8 Create a pipe

Create a pipe chain which selects the male gender data

- 1. renames the variables with space
- 2. creates BMI
- 3. creates age group of 10
- 4. age of greater than 18

1.7 Extras

Run the following and create the year and month from the hospital date variable

```
hosp_data <- hosp_data %>%
mutate(date_onset=as_date(date_onset))
```

Hint to create year and month

```
mutate(hosp_year = year(date_onset) ,
    hosp_month = month(date_onset))
```

Use the hosp_data \$year to check the length and report $\,$