Retrospective clinical data harmonisation reporting

Jeremy Selva in

@JauntyJJS 🞧 🔀 💥 🚇

https://jeremy-selva.netlify.app@

For R/Medicine 2025 @

12th June 2025

whoami

Research Officer from National Heart Centre Singapore who collects, cleans and harmonises clinical data.

Taming the Data Beast from "Cleaning Medical Data with R" workshop by Shannon Pileggi, Crystal Lewis and Petter Higgins presented at R/Medicine 2023. Illustrated by Allison Horst.

Outline

Data harmonisation overview strategy

Counter small but annoying issues during retrospective data harmonisation.

Suggested reports and diagram to create for different clients.

About Data Harmonisation

Figure 1. The data harmonization process.

Study data variables collected from different sources need to be mapped to one another (step 1), classified into the generalized concepts they represent (step 2), and transformed into unified harmonized variables (step 3) for analysis.

Image from Mallya et al. Circ Cardiovasc Qual Outcomes. 2023 Nov; 16(11):e009938 doi: 10.1161/CIRCOUTCOMES.123.009938.

Tasks

Here is a summary of my task for an international study.

Why Retropective Data Harmonisation?

Collaborators may not have resources (time/funding) to match their data to your data dictionary and input template.

Data provided may have issues that needs relevant experience and may be hard to solve.

Fov from MonkeyUser.com

Issues

Limited resources on how to do data harmonisation and to make a report out of this.

R packages related to data harmonisation

- retroharmonize
- psHarmonize
- ltertools

Denvercoder9 from MonkeyUser.com

Issues

High risk of getting blame should things don't go well.

Businessman kneel on floor with pointing finger to him by Amonrat Rungreangfangsai Joy from MonkeyUser.com

Harmonisation Template

harmonisation 1.0.0.0 Reference

Search for

Data Harmonisation Project Template

Table of Content

- Motivation
- Acknowledgement
- File Structure
- Software Installation
- R Package Installation
- <u>Using renv</u>
- R Functions Management
- R Packages Used
- R Platform Information
- Data Harmonisation Report For Each Cohort
- Combined Data Harmonisation Report For All Cohort

Links

Browse source code

Report a bug

License

Full license

MIT + file LICENSE

Citation

Citing harmonisation

Developers

Jeremy Selva

Author, maintainer

Dev status

R-CMD-check.yaml passing

When reading files in batches or the same file but in a different version, is there an automated way to catch warnings/issues when reading csv?

```
1 cohort_data_csv <- vroom::vroom(
2  file = here::here("data-raw", "Cohort_csv",
3     "data_to_harmonise_age_issue.csv"),
4  delim = ",",
5  col_select = 1:2,
6  show_col_types = FALSE,
7  col_types = list(
8     ID = vroom::col_character(),
9     Age = vroom::col_integer()
10  )
11 )
12
13  head(cohort_data_csv, n = 3)</pre>
```

```
# A tibble: 3 * 2
Warning: One or more parsing issues, call `problems()` on your data frame for
details,
e.g.:
   dat <- vroom(...)
   problems(dat)

   ID    Age
   <chr>   <int>
1   B001    32
2   B002    52
3   B003    NA
```


If there are issues with the data, the output of vroom::problems will be a tibble.

To check for this in an automatically, we can use pointblank::expect_row_count_match.

```
1 cohort_data_csv |>
2    vroom::problems() |>
3    pointblank::expect_row_count_match(count = 0)

Error: Row counts for the two tables did not match.
The `expect_row_count_match()` validation failed beyond the absolute threshold level (1).
* failure level (1) >= failure threshold (1)
```

Here is a case with no issues.

```
# A tibble: 0 x 5
# i 5 variables: row <int>, col <int>, expected <chr>, actual <chr>, file <chr>
```

```
1 cohort_data_csv |>
2  vroom::problems() |>
3  pointblank::expect_row_count_match(count = 0)
```


Is there an automated way to catch warnings/issues when reading Excel?

Warning: Expecting numeric in B7 / R7C2: got 'missing'
Warning: Expecting numeric in B14 / R14C2: got 'missing'

We can read the Excel file with testthat::expect_no_condition.

```
1 testthat::expect_no_condition(
2 cohort_data_excel <- readxl::read_excel(
3 path = here::here("data-raw", "Cohort_Excel",
4 "data_to_harmonise_age_issue.xlsx"),
5 sheet = "Sheet1",
6 col_types = c("text", "numeric")
7 )
8 )</pre>
```

Error: Expected `... <- NULL` to run without any conditions. i Actually got a <simpleWarning> with text: Expecting numeric in B7 / R7C2: got 'missing'

X	B 9 - 0	^M ∨ ⊽ data	_to_harmo	nise_age_issue	.xlsx - E	ccel
ı	File Home	Insert Page	e Layout	Formulas	Data	Review
Y	18 🗸 :	$\times \checkmark f_x$				
	Α	В	С	D	Е	F
1	Serial Number	Age				
2	A001	26				
3	A002	55				
4	A003	37				
5	A004	74				
6	A005	26				
7	A006	missing				
8	A007	68				
9	A008	46				
10	A009	27				
11	A010	37				
12	A011	56				
13	A012	83				
14	A013	missing				
15	A014	63				

However, this method means that you will lose the pipe workflow.

```
1 testthat::expect no condition(
     cohort_data_excel <- readxl::read_excel(</pre>
       path = here::here("data-raw", "Cohort_Excel",
3
          "data to harmonise age issue fixed.xlsx"),
5
       sheet = "Sheet1",
       col_types = c("text", "numeric")
7
8
9
   cohort_data_excel <- cohort_data_excel |>
     # Check if Serial Number is unique
     pointblank::rows distinct(
13
       columns = "Serial Number",
14
```


We can use the tee pipe operator %T>%.

With Issues No Issues

```
Error: Expected `.` to run without any conditions.
i Actually got a <simpleWarning> with text:
Expecting numeric in B7 / R7C2: got 'missing'
```

110 133463

```
1 cohort_data_excel_2 <- readxl::read_excel(
2    path = here::here("data-raw", "Cohort_Excel",
3         "data_to_harmonise_age_issue_fixed.xlsx"),
4    sheet = "Sheet1",
5    col_types = c("text", "numeric")
6    ) %T>%
7    testthat::expect_no_condition() |>
8    # Check if Serial Number is unique
9    pointblank::rows_distinct(
10         columns = "Serial Number",
11    )
```


Let take this data set as an example.

```
cohort csv data <- vroom::vroom(</pre>
     file = here::here("data-raw",
3
                        "Cohort csv",
                        "data to harmonise.csv"),
4
5
     delim = ",",
     col select = 1:8,
7
      show_col_types = FALSE,
8
     col types = list(
9
       ID = vroom::col_character(),
10
       Age = vroom::col integer(),
       Sex = vroom::col character(),
11
       Height = vroom::col double(),
12
13
        Weight = vroom::col double(),
       `Smoke History` = vroom::col_character(),
14
15
        `Chest Pain Character` = vroom::col_character(),
16
       Dyspnea = vroom::col character()
17
18
     ) |>
     dplyr::rename(cohort unique id = "ID") |>
19
     # Remove rows when the ID value is NA
     dplyr::filter(!is.na(.data[["cohort unique id"]])) |>
21
     # Remove white spaces in column names
22
     dplyr::rename_all(stringr::str_trim) |>
     # Check if cohort id is unique
24
     pointblank::rows distinct(
25
       columns = "cohort unique id".
```


Let the reader know how the collaborator data Smoke History is going to be mapped.

Introduce mapping procedure

2.3 Smoking History smoke current is grouped as follows: Smoke History smoke_current non-smoker 0 0 past smoker current smoker smoke past is grouped as follows: **Smoke History** smoke_past 0 non-smoker 0 past smoker current smoker We do a check to ensure that we can only have these scenarios • smoke current as 1 and smoke past as 0 for current smokers • smoke current as 0 and smoke past as 1 for past smokers • smoke current as 0 and smoke past as 0 for non-smokers • smoke current as -1 and smoke past as -1 for unknown

Code to do mapping

```
1 smoking_data <- cohort_csv_data |>
     dplyr::select(c("cohort_unique_id",
3
                      "Smoke History")) |>
     dplyr::mutate(
       smoke current = dplyr::case when(
         is.na(.data[["Smoke History"]]) ~ "-1",
6
         .data[["Smoke History"]] == "non-smoker" ~ "0",
7
         .data[["Smoke History"]] == "past smoker" ~ "0",
8
         .data[["Smoke History"]] == "current smoker" ~ "1",
9
10
         .default = NA_character_
11
12
        smoke current = forcats::fct relevel(
13
         .data[["smoke current"]],
14
         c("0", "1")),
        smoke past = dplyr::case when(
15
16
         is.na(.data[["Smoke History"]]) ~ "-1",
         .data[["Smoke History"]] == "non-smoker" ~ "0",
17
         .data[["Smoke History"]] == "past smoker" ~ "1",
18
         .data[["Smoke History"]] == "current smoker" ~ "0",
19
20
         .default = NA character
21
22
        smoke_past = forcats::fct_relevel(
23
         .data[["smoke_past"]],
24
         c("0", "1")),
25
        `Smoke History` = forcats::fct(
26
          .data[["Smoke History"]]
```

2.3 Smoking History		
smoke_current is grouped as follo	ws:	
Smoke History	smoke_current	
non-smoker	0	
past smoker	0	
current smoker	1	
smoke_past is grouped as follows:		
Smoke History	smoke_past	
non-smoker	0	
past smoker	0	
current smoker	1	

Code to validate

We do a check to ensure that we can only have these scenarios

- smoke_current as 1 and smoke_past as 0 for current smokers
- smoke_current as 0 and smoke_past as 1 for past smokers
- smoke_current as 0 and smoke_past as 0 for non-smokers
- smoke_current as -1 and smoke_past as -1 for unknown

Reference: https://github.com/rstudio/pointblank/issues/578

Show examples that the code works

```
::: {.content-visible when-format="html"}
```{r}
| label: smoking data html
#| eval: !expr out_type == "html"
if (params$show_table && knitr::is_html_output()) {
 smoking_data |>
 harmonisation::reactable_with_download_csv_button()
. . .
```

#### **Html Output**

cohort_unique_id	Smoke History	smoke_current	smoke_past			
	All 🔻	All 🗸	All 🗸			
B001	non-smoker	0	0			
B002	current smoker	1	0			
B003	non-smoker	0	0			
B004	past smoker	0	1			
B005	current smoker	1	0			
1-5 of 20 rows		Previous	of 4 Next			
Download as CSV						

Lownload as CSV

## Show examples that the code works

#### **Pdf Output**

cohort_unique_id	Smoke History	$smoke\_current$	$smoke\_past$
B001	non-smoker	0	0
B002	current smoker	1	0
B004	past smoker	0	1
B017	NA	-1	-1

Clean up variables for merging

```
1 smoking_data <- smoking_data |>
2 dplyr::select(-c("Smoke History"))
```

cohort_unique_id	smoke_currer	nt	smoke_past
	All	<b>v</b>	All 🕶
B001	0		0
B002	1		0
B003	0		0
B004	0		1
B005	1		0
1-5 of 20 rows		Previous	1 of 4 Next
1 D			

▲ Download as CSV

Supposed we have completed harmonising a batch of clinical data.



How can we merge them without issues of missing rows or additional columns?

unmatched = "error" in dplyr::left\_join helps to avoid patients with no match.

```
join specification <- dplyr::join by("cohort unique id")</pre>
2
3 demo behave data <- cohort csv data |>
 dplyr::select(c("cohort unique id")) |>
 dplyr::left join(age gender data,
 by = join specification,
7
 unmatched = "error",
8
 relationship = "one-to-one") |>
9
 dplyr::left_join(body_measurement_data,
10
 by = join_specification,
 unmatched = "error",
11
12
 relationship = "one-to-one") |>
13
 dplyr::left_join(smoking_data,
14
 by = join specification,
15
 unmatched = "error",
16
 relationship = "one-to-one") |>
17
 dplyr::relocate(c("bsa_m2", "bmi"),
18
 .after = "sex")
```

```
three_penguins <- tibble::tribble(</pre>
 ~samp_id, ~species,
 ~island,
 "Adelie",
 "Torgersen",
 "Biscoe",
 "Gentoo",
 5
 "Chinstrap", "Dream"
 weight extra <- tibble::tribble(</pre>
 ~samp_id, ~body_mass_g,
10
 3220,
11
 4730,
12
 4725
13)
14
15 three_penguins |>
 dplyr::left_join(
17
 y = weight_extra,
18
 by = dplyr::join by("samp id"),
19
 unmatched = "error"
20)
```

```
Error in `dplyr::left_join()`:
! Each row of `y` must be matched by `x`.
i Row 3 of `y` was not matched.
```

Reference: https://www.tidyverse.org/blog/2023/08/teach-tidyverse-23/#improved-and-expanded-\_join-functionality

relationship = "one-to-one in dplyr::left\_join helps to avoid patients with multiple match.

```
join specification <- dplyr::join by("cohort unique id")</pre>
2
3 demo behave data <- cohort csv data |>
 dplyr::select(c("cohort unique id")) |>
 dplyr::left join(age gender data,
 by = join specification,
7
 unmatched = "error",
8
 relationship = "one-to-one") |>
9
 dplyr::left_join(body_measurement_data,
10
 by = join_specification,
 unmatched = "error",
11
12
 relationship = "one-to-one") |>
13
 dplyr::left_join(smoking_data,
14
 by = join specification,
15
 unmatched = "error",
16
 relationship = "one-to-one") |>
17
 dplyr::relocate(c("bsa_m2", "bmi"),
18
 .after = "sex")
```

```
three_penguins <- tibble::tribble(</pre>
 ~samp_id, ~species,
 ~island,
 "Adelie",
 "Torgersen",
 "Biscoe",
 "Gentoo",
 5
 "Chinstrap", "Dream"
 weight extra <- tibble::tribble(</pre>
 ~samp_id, ~body_mass_g,
10
 3220,
 4730.
11
12
 4725,
13
 4000
14)
15
16 three penguins |>
 dplyr::left_join(
18
 v = weight extra,
 by = dplyr::join by("samp id"),
 relationship = "one-to-one"
21
```

```
Error in `dplyr::left_join()`:
! Each row in `x` must match at most 1 row in `y`.
i Row 2 of `x` matches multiple rows in `y`.
```

Reference: https://www.tidyverse.org/blog/2023/08/teach-tidyverse-23/#improved-and-expanded-\_join-functionality

Use pointblank::has\_columns to ensure we also have harmonised variables.

```
testthat::expect false(
 pointblank::has_columns(
3
 demo behave data,
 columns = c(
5
 dplyr::ends with(".x"),
6
 dplyr::ends_with(".y")
7
8
9
10
 testthat::expect equal(
 ncol(demo behave data), 9
12
13
14
 testthat::expect_true(
15
16
 pointblank::has_columns(
17
 demo_behave_data,
18
 columns = c(
19
 "age_years", "sex",
 "height_cm", "weight_kg", "bsa_m2", "bmi",
20
 "smoke current", "smoke past"
21
22
23
24)
```

```
three penguins <- tibble::tribble(</pre>
 ~samp_id, ~species,
 ~island,
 "Adelie",
 "Torgersen",
 "Biscoe".
 "Gentoo",
 "Chinstrap", "Dream"
 5
 3,
 weight extra <- tibble::tribble(</pre>
 ~samp_id, ~island,
10
 "Torgersen",
 "Biscoe",
11
12
 3,
 "Dream"
13)
14
15 three_penguins <- three_penguins |>
 dplyr::left_join(
17
 y = weight_extra,
 by = dplyr::join by("samp id"),
 unmatched = "error",
 relationship = "one-to-one"
21
22
23 three_penguins |>
 pointblank::has_columns(
 columns = c(
 dplvr::ends with(".x").
```

```
[1] TRUE

1 colnames(three_penguins)

[1] "samp_id" "species" "island.x" "island.y"
```

# Automated Report Challenge

One variable mapping report takes at least one page.

On average, a clinical trial will have a few hundred variables.

- One hundred columns for clinical and demographics.
- Two hundred columns for medication.

Harmonisation report can have at least a few hundreds pages for each cohort.

There is a need to automate the creation of these reports.



Businessman in pile of documents asking for help by Amonrat Rungreangfangsai

## Automated Report Challenge

Collaborator wants different ways to report how data harmonisation is done.



The documentation system by Divio

## **Quarto Books**

To make a Quarto book or website, we need a \_quarto.yml and index.qmd file

```
_quarto.yml × | index.qmd ×
1 → project:
 type: book
 output-dir: reports/Cohort_B
 4
 5 - book:
 downloads: [pdf, docx]
 title: "Harmonisation Template for Cohort B"
 author: "My Name"
 navbar:
 9 +
 10 search: true
 sidebar:
 11 -
 collapse-level: 1
 12
 13
 14 -
 chapters:
 15

 index.amd

 - part: Cohort B Cleaning
 16 -
 chapters:
 codes/Cohort_B/00_R_Package_And_Environment.gmd
 18
 codes/Cohort_B/01_Read_Cohort_B_Data.qmd
 codes/Cohort_B/02_Extract_Demographic.qmd
 20
 codes/Cohort_B/03_Export_To_Excel.qmd
 21
 22
```

```
quarto.yml × 👂 index.gmd ×
 *@ • 17 8 → Run •
Render on Save 7 Render 0 •
Source Visual
 ≥ Outli
 1 - ---
 2 date: "2025-03-10"
 format:
 html:
 code-fold: true
 freeze: false
 params:
 show_table: TRUE
 9 . ---
 10
 11 + ' '{r}
 12 # | label: output type
 13 # echo: false
 14 # | warning: false
 15 # message: false
 16
 17 out_type <- knitr::opts_chunk$get("rmarkdown.pandoc.to")</pre>
 18 -
 19
 20 - # Preface {.unnumbered .unlisted}
 21
 22 Here is the documentation of the data harmonisation step generated using
 [Quarto](https://quarto.org/). To learn more about Quarto books visit
 https://quarto.org/docs/books>.
```

We create an index.qmd file for technical report generation.



We create a \_quarto.yml file and relevant Quarto files for each cohort.



Create an automated script to generate a technical report in pdf, word and html for each cohort

```
Copy the right index.qmd
 # file
 3
 index qmd file <- paste0(
 " index ",
 "report",
 ".qmd"
 8
 9
10
 fs::file copy(
 path = here::here(
11
 "templates",
12
13
 "index-qmd",
14
 index qmd file),
15
 new_path = here::here(
16
 "index.gmd"
17
),
18
 overwrite = TRUE
19
```



Create an automated script to generate a technical report in pdf, word and html for each cohort

```
copy and render <- function(</pre>
 2
 cohort
 3
 5
 # Copy quarto.yml file
 6
 # for each cohort
8
 quarto_yml_file <- paste0(</pre>
9
 "_quarto_",
10
 cohort,
 ".yml"
11
12
13
14
 fs::file copy(
15
 path = here::here(
16
 "templates",
17
 "quarto-yaml",
18
 quarto vml file),
19
 new path = here::here(" quarto.yml"),
20
 overwrite = TRUE
21
22
23
 # Render each cohort
24
 quarto::quarto render(
25
 as job = FALSE
26
```





## Automated Summary Report (How-to-Guide)

A similar method is done to create a summary report in word using flextable.

#### 2.4 Smoking History

smoke\_current is the harmonised data field to denote if the patient is a current smoker during the time of the CT scan. smoke\_past is the harmonised data field to denote if the patient is a past smoker during the time of the CT scan.

They hold the following values:

Table S6: Harmonised values of smoke\_current and smoke\_past.

Value	Description
0	no
1	yes
-1	unknown

They are harmonised as follows:

Table S7: Harmonised process of smoke\_current and smoke\_past.

Cohort ID	Original Response	Harmonisation Response		
	Column smoke_current_good with			
	O as no.			
	1 as yes.	smoke_current will take the		
Cohort A	-1 as unknown.	values of smoke_current_goo		
	Column smoke_past_good with	smoke_past will take the value of smoke_past_good.		
	O as no.			
	1 as yes.			
	-1 as unknown.			
	Column Smoke History with	Map the values of Smoke		
Cohort B	non-smoker as non-smoker.	History to smoke_current as follows:		

past smoker as a past smoker.	non-smoker and past smoker as 0.
current smoker as a current smoker.	current smoker as 1.
	Map the values of Smoke
	History to smoke_past as follows:
	non-smoker and current smoker as 0.
	past smoker as 1.

After harmonisation, we validate the values of *smoke\_current* and *smoke\_past* to ensure that there can only be the following cases:

Table S8: Valid values of smoke\_current and smoke\_past.

Description	smoke_current	smoke_past	
Non-smoker	0	0	
Past smoker	0	1	
Current smoker	1	0	
Unknown	-1	-1	

## Data Variable Justfication Report (Explanation)

Initially we have smoke\_history with values 0 (Non-smoker), 1 (past-smoker), 2 (current smoker) and -1 (Unknown).

However, in the early stage of the study, some collaborators could only provide if the patient has a smoking history but could not specify if the patient is a current or past smoker.

Patient	smoke_history	Problem
Non-smoker	0	No smoking history
Current smoker	1	Have smoking
Past smoker	2	history
Missing	-1	Missing

# Data Variable Justfication Report (Explanation)

To deal with this case, we have smoke\_history, smoke\_current and smoke\_past to hold values 1 (Yes), 0 (No)
and -1 (Unknown).

Patient	smoke_history	smoke_current	smoke_past
Current smoker	1	1	0
Past smoker	1	0	1
Non-smoker	0	0	0
Have smoking history	1	-1	-1
Missing	-1	-1	-1

## Overview Diagrams

Each cohort can provide how many variables?

How many variables can be harmonised?

```
demographic_list <- list(</pre>
 A = c("Age", "Sex",
 "Hypertension", "Dyslipidemia", "Family Hx CAD", "Diabetes",
 3
 "Smoke Current", "Smoke Past",
 "Have Chest Pain", "Chest Pain Character",
 5
 6
 "Dyspnea",
 "BMI", "Height", "Weight"),
7
8
 B = c("Age", "Sex",
 "Hypertension", "Dyslipidemia", "Family Hx CAD", "Diabetes",
9
10
 "Smoke Current", "Smoke Past",
11
 "Have Chest Pain", "Chest Pain Character",
12
 "Dyspnea",
13
 "HDL", "Total Cholesterol",
14
 "Triglyceride", "LDL"),
15
 C = c("Age", "Sex",
16
 "Hypertension", "Dyslipidemia", "Family Hx CAD", "Diabetes",
 "Smoke Current", "Smoke Past",
17
18
 "Have Chest Pain", "Chest Pain Character",
19
 "Dyspnea",
 "BMI", "Height", "Weight",
20
 "HDL", "Total Cholesterol",
21
22
 "Triglyceride", "LDL")
23
24
25 cohort_a_label_name <- "Cohort A\n(n=1000)"</pre>
26 cohort b label name <- "Cohort B\n(n=2000)"
```



But it does not work for many (> 10) cohorts.

## Overview Diagrams

Upset plots are too complicated for clinicians.

```
demographic venn <- tibble::tibble(</pre>
 column_name = c("Age", "Sex",
3
 "Hypertension", "Dyslipidemia", "Family Hx CAD", "Diabetes
 "Smoke Current", "Smoke Past",
 4
 5
 "Have Chest Pain", "Chest Pain Character",
 6
 "Dyspnea",
 "BMI", "Height", "Weight",
 8
 "HDL", "Total Cholesterol",
9
 "Triglyceride", "LDL"),
10
 `Cohort A` = c(1, 1,
11
 1, 1, 1, 1,
12
 1, 1,
13
 1, 1,
14
15
 1, 1, 1,
16
 Θ, Θ,
17
 0, 0),
18
 `Cohort B` = c(1, 1,
19
 1, 1, 1, 1,
20
 1, 1,
 1, 1,
21
22
 1,
23
 Θ, Θ, Θ,
24
 1, 1,
25
 1, 1),
 `Cohort C` = c(1. 1.
```



Cannot answer follow-up questions:

How many cohorts provide patient's blood lipid information and how many patients have this information?

# Overview Diagrams

Create a "heatmap" using Microsoft PowerPoint.

			%	11	4				
				Age					
		Sex							
				Hypertension					
				Dyslipidemia					
				Family Hx CAD					
				Diabetes					
				Smoke Current					
		Smoke Past			2	2	2		
		Have Chest Pain	1	1	Height	HDL	Triglyceride		
Country	Cohort	N	Variables	Chest Pain Character	Dyspnea	ВМІ	Weight	Total Cholesterol	LDL
Country A	Cohort A	1000	15	✓	✓	✓	1	×	×
Country A	Cohort B	2000	16	✓	✓	×	×	<b>✓</b>	✓
Country B	Cohort C	1500	18	✓	✓	✓	1	✓	✓
Country C	Cohort D	500	16	✓	×	✓	×	✓	✓
Country D	Cohort E	1000	16	✓	×	✓	1	✓	×
Country D	Cohort F	2500	14	✓	×	1	1		
Total				8500	4500	6500	6000	5000	4000

Variable Colour Legend		
	Age	
	Sex	
	Comorbidity	
	Smoking history	
	Symptoms	
	Obesity	
	Blood lipid	

Table	Table Legend	
✓	Available	
×	Not available	
	Pending arrival	

## Summary









Variable Colour Legend			
	Age		
	Sex		
	Comorbidity		
	Smoking history		
	Symptoms		
	Obesity		
	Blood lipid		

Table Legend	
<b>√</b>	Available
×	Not available
	Pending arrival