

(Lecture 3 – Least Squares Estimation)

Dr. John L. Crassidis

University at Buffalo – State University of New York Department of Mechanical & Aerospace Engineering

Amherst, NY 14260-4400

johnc@buffalo.edu

http://www.buffalo.edu/~johnc

Introduction (i)

- Estimation combines many topics, as discussed before
 - Optimization (parameter), control theory (optimal control), stochastic processes (probability and statistics)
- Three quantities of interest
 - True value (truth, note: unknown!!)
 - Estimated value (our best estimate of truth)
 - Measured value (our sensed quantity)

Both x and v are unknown!

```
measured value = true value + measurement error \tilde{x} = x + v

measured value = estimated value + residual error \tilde{x} = \hat{x} + e
```

- Measured value is "modeled" by true value with some error
 - This is just a number that is obtained from a sensor
 - We never now the truth but we generally have some statistics on the measurement error through sensor calibration

- The least-squares method is usually credited to Carl Friedrich Gauss (1809), but it was actually first published by Adrien-Marie Legendre earlier (1805)
 - "Least squares" means that the overall solution minimizes the sum of the squares of the errors in the results of every single equation
 - Legendre demonstrated the new method by analyzing the same data as Laplace for the shape of the Earth
 - Gauss published his method of accurately calculating the orbits of celestial bodies
 - Predicted the future location of the newly discovered asteroid Ceres that was lost after 40 days of observations
 - Astronomer Franz Xaver von Zach relocated Ceres using Gauss' approach (note that Gauss was only 24 years old at the time!)
 - He went beyond Legendre and succeeded in connecting the method of least squares with the principles of probability and to the normal distribution

- Many practical applications
 - Determining the damping properties of a fluid-filled damper as a function of temperature
 - Identification of aircraft dynamic and static aerodynamic coefficients
 - Orbit and attitude determination
 - Position determination using triangulation
 - Modal identification of vibratory systems
 - Even modern control strategies, for instance certain adaptive controllers, use the least squares approximation to update model parameters in the control system
 - Many others
- Foundation for modern dynamic filters
 - The "Kalman filter" can be derived using a least squares approach
- In Gauss' original approach vectors and matrices were not used, but it's much easier to use them, which will be done here

- The most common application is in data fitting
 - The best fit in the least-squares sense minimizes the sum of squared residuals, a residual being the difference between an observed value and the fitted value provided by a model with unknown parameters
 - Over-deterministic case
 - Number of observations is greater than the number of unknowns
 - Under-deterministic case
 - Number of observations is less than the number of unknowns
 - No solution possible
 - Deterministic case
 - Number of observations is equal to the number of unknowns
 - Leads to a simple solution

Conic fitting a set of points using least-squares approximation

An "Experiment" (i)

Say we have a set of measurements

Time	0	1	2	3	4	5
\tilde{y}	0.01	0.087	0.173	0.263	0.346	0.440
\hat{x}	∞	4.98	4.95	5.03	4.96	5.05

- Given model: $\tilde{y} = x \sin t + v$
- Want to estimate x (remember v is unknown)
- Only one unknown, so why not estimate x at each time using

$$\hat{x} = \frac{\tilde{y}}{\sin t}$$

- What happened?
 - At t = 0 no estimate is possible
 - Different estimates at different times, which is due to the measurement errors

An "Experiment" (ii)

- This is clearly an over-deterministic case
 - More measurements than unknowns
- Why not average the estimates from each time to obtain the final estimate?
 - Ignore t=0 since the solution is ∞

$$\hat{x} = \frac{4.98 + 4.95 + 5.03 + 4.96 + 5.05}{5} = 4.994$$

- True value was 5
- Averaged value is "better" than the individual ones
- Is there a more mathematically rigorous way?
 - The answer is yes
 - Least squares estimation

Linear Least Squares (i)

Measurement equation , perm

$$\tilde{\mathbf{y}} = H\hat{\mathbf{x}} + \mathbf{e}_{\text{min}}$$

where

$$\tilde{\mathbf{y}} = \begin{bmatrix} \tilde{y}_1 & \tilde{y}_2 & \cdots & \tilde{y}_m \end{bmatrix}^T = measured y \text{-values}$$

$$\mathbf{e} = \begin{bmatrix} e_1 & e_2 & \cdots & e_m \end{bmatrix}^T = residual \ errors$$

$$\hat{\mathbf{x}} = \begin{bmatrix} \hat{x}_1 & \hat{x}_2 & \cdots & \hat{x}_n \end{bmatrix}^T = \textit{estimated x-values}$$
 ——This is what

 $H = \begin{bmatrix} h_1(t_1) & h_2(t_1) & \cdots & h_n(t_1) \\ h_1(t_2) & h_2(t_2) & \cdots & h_n(t_2) \\ \vdots & \vdots & & \vdots \\ h_1(t_m) & h_2(t_m) & \cdots & h_n(t_m) \end{bmatrix}$

Given from sensors

> we wish to find

——Chosen basis functions

proof to linearly

Independent

8

Linear Least Squares (ii)

Identical equation

$$\tilde{\mathbf{y}} = H\mathbf{x} + \mathbf{v}$$

$$\hat{\mathbf{y}} = H\hat{\mathbf{x}}$$

$$\tilde{\mathbf{y}} = \hat{\mathbf{y}} = H\hat{\mathbf{x}} + \mathbf{v} - H\hat{\mathbf{x}} = \tilde{\mathbf{y}} - H\hat{\mathbf{x}}$$

where

$$\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T = true \ x\text{-values}$$

$$\mathbf{v} = \begin{bmatrix} v_1 & v_2 & \cdots & v_m \end{bmatrix}^T = measurement \ errors$$

$$\hat{\mathbf{y}} = \begin{bmatrix} \hat{y}_1 & \hat{y}_2 & \cdots & \hat{y}_m \end{bmatrix}^T = estimated \ y\text{-values}$$

$$\tilde{\mathbf{y}} = \begin{bmatrix} \tilde{y}_1 & \tilde{y}_2 & \cdots & \tilde{y}_m \end{bmatrix}^T = measured \ y\text{-values}$$

Linear Least Squares

 Gauss selects, as an optimum choice for the unknown parameters, the particular $\hat{\mathbf{x}}$ that minimizes the sum square of the residual errors

$$J = \frac{1}{2} \mathbf{e}^T \mathbf{e}$$
 \longrightarrow ½ factor to be discussed later $\mathbf{e} = \tilde{\mathbf{y}} - \hat{\mathbf{y}} = \tilde{\mathbf{y}} - H \hat{\mathbf{x}}$

• Substituting for e gives $J = J(\hat{\mathbf{x}}) = \frac{1}{2}(\tilde{\mathbf{y}}^T \tilde{\mathbf{y}} - 2\tilde{\mathbf{y}}^T H \hat{\mathbf{x}} + \hat{\mathbf{x}}^T H^T H \hat{\mathbf{x}})$

necessary condition

tion
$$\nabla_{\hat{\mathbf{x}}} J \equiv \begin{bmatrix} \frac{\partial J}{\partial \hat{x}_1} \\ \vdots \\ \frac{\partial J}{\partial \hat{x}_n} \end{bmatrix} = \begin{bmatrix} \mathbf{Gauss'} \\ \mathbf{H}^T H \hat{\mathbf{x}} - H^T \tilde{\mathbf{y}} = \mathbf{0} \\ \mathbf{\hat{x}}_2 \end{bmatrix}$$

Surface

sufficient condition

$$\nabla^2_{\hat{\mathbf{x}}} J \equiv \frac{\partial^2 J}{\partial \hat{\mathbf{x}} \, \partial \hat{\mathbf{x}}^T} = H^T H \text{ must be positive definite } \nabla^2_{\hat{\mathbf{x}}} J \equiv \frac{\partial^2 J}{\partial \hat{\mathbf{x}} \, \partial \hat{\mathbf{x}}^T} = H^T H \text{ must be positive definite } \nabla^2_{\hat{\mathbf{x}}} J \equiv \frac{\partial^2 J}{\partial \hat{\mathbf{x}} \, \partial \hat{\mathbf{x}}^T} = H^T H \text{ must be positive definite } \nabla^2_{\hat{\mathbf{x}}} J \equiv \frac{\partial^2 J}{\partial \hat{\mathbf{x}} \, \partial \hat{\mathbf{x}}^T} = H^T H \text{ must be positive definite } \nabla^2_{\hat{\mathbf{x}}} J \equiv \frac{\partial^2 J}{\partial \hat{\mathbf{x}} \, \partial \hat{\mathbf{x}}^T} = H^T H \text{ must be positive definite } \nabla^2_{\hat{\mathbf{x}}} J \equiv \frac{\partial^2 J}{\partial \hat{\mathbf{x}} \, \partial \hat{\mathbf{x}}^T} = H^T H \text{ must be positive definite } \nabla^2_{\hat{\mathbf{x}}} J \equiv \frac{\partial^2 J}{\partial \hat{\mathbf{x}} \, \partial \hat{\mathbf{x}}^T} = H^T H \text{ must be positive definite } \nabla^2_{\hat{\mathbf{x}}} J \equiv \frac{\partial^2 J}{\partial \hat{\mathbf{x}} \, \partial \hat{\mathbf{x}}^T} = H^T H \text{ must be positive definite } \nabla^2_{\hat{\mathbf{x}}} J \equiv \frac{\partial^2 J}{\partial \hat{\mathbf{x}} \, \partial \hat{\mathbf{x}}^T} = H^T H \text{ must be positive definite } \nabla^2_{\hat{\mathbf{x}}} J \equiv \frac{\partial^2 J}{\partial \hat{\mathbf{x}} \, \partial \hat{\mathbf{x}}^T} = H^T H \text{ must be positive definite } \nabla^2_{\hat{\mathbf{x}}} J \equiv \frac{\partial^2 J}{\partial \hat{\mathbf{x}} \, \partial \hat{\mathbf{x}}^T} = \frac{\partial^2 J}{\partial \hat{\mathbf{x}} \, \partial \hat{\mathbf{x}}^T} =$$

由

Linear Least Squares

Least squares solution

$$\hat{\mathbf{x}} = (H^T H)^{-1} H^T \tilde{\mathbf{y}}$$

- Some observations
 - Matrix inverse is the same dimension as unknowns
 - Matrix inverse must exist: two conditions must be true
 - Number of unknowns must be less than or equal to myn number of measurements
 - Must have at least n independent basis functions $H \neq Costsin$
 - Note H^TH must be positive definite from sufficient condition, which covers these two conditions $\lambda>0$
 - For equal unknowns and equal measurements we simply have the following result $H^{T}H^{T}H^{T}=H^{T}$

$$\hat{\mathbf{x}} = H^{-1}\tilde{\mathbf{y}}$$

Linear Least Squares (iii)

Contour Plots for Observable and Unobservable Solutions

Observable

$$H_1 = \begin{bmatrix} \sin t & 2\cos t \end{bmatrix}$$

Unobservable

$$H_2 = \begin{bmatrix} \sin t & 2\sin t \end{bmatrix}$$

| inearly determine 12

Last Experiment

Measurements and model

$$H = \begin{bmatrix} \sin 0 & \sin 1 & \sin 2 & \sin 3 & \sin 4 & \sin 5 \end{bmatrix}^T$$

$$H^T H = \sin^2 0 + \sin^2 1 + \sin^2 2 + \sin^2 3 + \sin^2 4 + \sin^2 5 = 0.016724$$

$$H^T \tilde{\mathbf{y}} = 0.01 \sin 0 + 0.087 \sin 1 + 0.173 \sin 2 + 0.263 \sin 3 + 0.346 \sin 4 + 0.440 \sin 5$$

$$= 0.08380$$

$$\hat{\mathbf{x}} = (H^T H)^{-1} H^T \tilde{\mathbf{y}} = 59.79430758 \times 0.08380 = 5.011$$

- Not the same as the averaged approach result
- But no singularity for t = 0 (can use the first measurement)
 - More information used here than the averaged approach
- Note that we only need to take the inverse of a scalar here

Simple Example (i)

- Polynomial fitting problem
 - Say measurement is modeled by

$$\tilde{y}_i = 0.3\sin(t_i) + 0.5\cos(t_i) + 0.1t_i + v_i$$

- Generate measurements with time going from 0 to 10 seconds in 0.1 second intervals
 - Gives m = 101 total measurements
- Measurement noise is Gaussian with variance given by 0.001 = 0.001
- Assumed basis function matrix

$$H = \begin{bmatrix} \sin(t_0) & \cos(t_0) & t_0 & \cos(t_0)\sin(t_0) & t_0^2 \\ \sin(t_1) & \cos(t_1) & t_1 & \cos(t_1)\sin(t_1) & t_1^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \sin(t_m) & \cos(t_m) & t_m & \cos(t_m)\sin(t_m) & t_m^2 \end{bmatrix}$$

- Note we have two "extra" basis functions
 - Estimated coefficients for these should be near zero 14

% Estimated Output

Simple Example (ii)

```
% Generate Measurements
                                                            1.2
t=[0:0.1:10]';m=length(t);
r=0.001;
ym=0.3*sin(t)+0.5*cos(t)+0.1*t+sqrt(r)*randn(m,1);
                                                            0.8
                                                          Measurements and
% Form Basis Function Matrix
                                                            0.4
h=[\sin(t)\cos(t) t \cos(t).*\sin(t) t.^2];
                                                            0.2
% Least Squares Estimate
xe=inv(h'*h)*h'*ym
```


% Plot Results plot(t,ym,'*',t,ye) set(gca,'fontsize',12) legend('Measurements','Best Fit','Location','SouthEast') xlabel('Time (Sec)') ylabel('Measurements and Best Fit')

Least Squares Example

Estimate state parameters of simple linear system

excites all modes
$$y_{k+1} = \Phi y_k + \Gamma u_k$$

- Impulse input, 101 measurements with $\Delta t = 0.1$ sec
- Basis functions matrix given by

Noisy measurements are present here. Least squares is not really "optimum." Use **Total Least Squares** for optimum results.

$$H = \begin{bmatrix} \tilde{y}_1 & u_1 \\ \tilde{y}_2 & u_2 \\ \vdots & \vdots \\ \tilde{y}_{100} & u_{100} \end{bmatrix}$$

$$H = \begin{bmatrix} \tilde{y}_1 & u_1 \\ \tilde{y}_2 & u_2 \\ \vdots & \vdots \\ \tilde{y}_{100} & u_{100} \end{bmatrix}, \text{ so } \begin{bmatrix} \tilde{y}_2 \\ \tilde{y}_3 \\ \vdots \\ \tilde{y}_{101} \end{bmatrix} = H \begin{bmatrix} \hat{\Phi} \\ \hat{\Gamma} \end{bmatrix} + \begin{bmatrix} e_2 \\ e_3 \\ \vdots \\ e_{101} \end{bmatrix}$$

Results

$$\begin{bmatrix} \hat{\Phi} \\ \hat{\Gamma} \end{bmatrix} = \begin{bmatrix} 0.9048 \\ 0.0950 \end{bmatrix}, \quad \begin{bmatrix} \Phi \\ \Gamma \end{bmatrix} = \begin{bmatrix} 0.9048 \\ 0.0952 \end{bmatrix}$$

母

Another Example (i)

- Simple example $y = 3e^{-t}$
 - Choose e^{-t} as basis function
 - Measurements are

$$\tilde{y}_1(0) = 3$$
, $\tilde{y}_2(3) = 0.15$, with $v_1 = v_2 = 0$

Estimates

$$H = \begin{bmatrix} e^{-0} & e^{-3} \end{bmatrix}^T, \quad (H^T H)^{-1} = 0.9975, \quad H^T \tilde{\mathbf{y}} = 3.0075$$

$$\hat{x} = (0.9975)(3.0075) = 3$$

• Add measurement noise $v_1 = v_2 = 0.01$

$$H^T \tilde{\mathbf{y}} = 3.018, \quad \hat{x} = (0.9975)(3.018) = 3.01 \quad \text{some error}$$

- Say $v_1 = -0.0075$ and $v_2 = -0.15$ $H^T \tilde{\mathbf{y}} = 3.0075, \quad \hat{x} = (0.9975)(3.0075) = 3$
- Got the right answer even with noise! What happened?
 - We got lucky, the noise cancelled the errors out

Another Example (ii)

- Choose $v_1 = v_2 = 0$ but choose e^{-2t} as basis function
- Estimates

$$H = \begin{bmatrix} e^{-0} & e^{-6} \end{bmatrix}^T = \begin{bmatrix} 1 & 0.0025 \end{bmatrix}^T, \quad (H^T H)^{-1} = 1$$

 $\hat{x} = (1)(3.0075) = 3.0075, \quad \text{looks good, right?}$

Look at measurements and estimates at the two times

t	\widetilde{y}	\hat{y}
0	3	3.0075
3	0.15	0.00745

- First estimate is ok
- Second one is way off from the measurement though, even through there are no measurement errors
- This is due to the incorrect basis function
- But, it is still the best estimate given the basis function
- Obviously, basis functions are important

Want to fit a model to the data shown below

Assume two models

Model 1:
$$y_1(t) = c_1 t + c_2 \sin(t) + c_3 \cos(2t)$$

Model 2:
$$y_2(t) = d_1(t+2) + d_2t^2 + d_3t^3$$

 After applying least squares we find the following estimates for the coefficients of each model

$$(\hat{c}_1, \hat{c}_2, \hat{c}_3) = (0.9967, 0.9556, 2.0030)$$

 $(\hat{d}_1, \hat{d}_2, \hat{d}_3) = (0.6721, -0.1303, 0.0210)$

- How well did we do?
 - Check residuals $e_1(t)$ and $e_2(t)$ $\hat{y}_1(t) = \hat{c}_1 t + \hat{c}_2 \sin(t) + \hat{c}_3 \cos(2t)$ $e_1(t) = \tilde{y}_1(t) \hat{y}_1(t)$ $\tilde{y}_i = \tilde{y}_2$ $\hat{y}_2(t) = \hat{d}_1(t+2) + \hat{d}_2 t^2 + \hat{d}_3 t^3$ $e_2(t) = \tilde{y}_2(t) \hat{y}_2(t)$
 - Note that these residuals can always be computed (i.e., they are known)

Curve Fitting (ii)

- Model 1 is able to obtain the best fit with the determined coefficients
 - Model 1 sample mean is 1×10^{-5} and the sample standard deviation is 0.0921
 - Model 2 sample mean is 1×10^{-5} and the sample standard deviation is 1.3856
- Model 1's residual errors are "random" in appearance, while Model 2's best fit failed to predict significant trends in the data
 - Having no reason to suspect that systematic errors are present in the measurements or in Model 1, we conclude that Model 1 is better

Extrapolation

- A plot of Model 1's predictions superimposed on the measured data over a 12-month period is shown to the left
- What happened?
 - The extrapolation interval matched the data for a while but then diverges
 - The synthetic measurements were actually generated using

$$\tilde{y}(t) = t + \sin(t) + 2\cos(2t)$$

$$-\frac{0.4e^t}{1 \times 10^4} + v(t)$$

 Model used for least-squares fitting only included the first three terms

Weighted Least Squares (i)

- Suppose we wish to provide more "trust" in one measurement versus another
 - For example, for attitude determination, Sun sensor is more accurate than a three-axis magnetometer (TAM) so we wish to weight Sun sensor more than TAM
 - Use weighted least squares
 - Minimize the following

$$J = \frac{1}{2} \mathbf{e}^T W \mathbf{e}$$

where W is the $m \times m$ weighting matrix (does not need to be strictly diagonal, but it is symmetric in general)

- Note this weights each measurement
- Residual is again given by

$$\mathbf{e} = \tilde{\mathbf{y}} - \hat{\mathbf{y}} = \tilde{\mathbf{y}} - H\,\hat{\mathbf{x}}$$

Weighted Least Squares (ii)

- Necessary and sufficient conditions become
 - Note it is assumed here that W is symmetric

necessary condition

$$\nabla_{\hat{\mathbf{x}}} J = H^T W H \hat{\mathbf{x}} - H^T W \tilde{\mathbf{y}} = \mathbf{0}$$

sufficient condition

$$\nabla_{\hat{\mathbf{x}}}^2 J = H^T W H$$
 must be positive definite

Leads to weighted least squares solution

$$\hat{\mathbf{x}} = (H^T W H)^{-1} H^T W \tilde{\mathbf{y}}$$

- From sufficient condition we see that W must be positive definite, otherwise it violates the sufficient condition
- Optimal method to choose weight discussed later 23

• Employ a subset of 31 measurements from the 91 measurements shown below

- Here, the first three measurements are known to contain smaller measurement errors than the remaining measurements
- Toward this end, the structure of the weighting matrix now becomes

$$W = \operatorname{diag} \begin{bmatrix} w & w & w & 1 & \cdots & 1 \end{bmatrix}$$

- If w = 1 then the standard least squares solution is given
 - In fact any scalar times the identity matrix for W produces the same solution as standard (un-weighted) least squares

24

$\underline{\hspace{1cm}}$	$\hat{\mathbf{x}}$	constraint residual norm
$\frac{}{1\times10^{0}}$	(1.0278, 0.8750, 1.9884)	3.21×10^{-2}
1×10^1	(1.0388, 0.8675, 2.0018)	1.17×10^{-2}
1×10^2	(1.0258, 0.8923, 2.0049)	7.87×10^{-3}
1×10^5	(0.9047, 1.0949, 2.0000)	5.91×10^{-5}
1×10^7	(0.9060, 1.0943, 2.0000)	1.10×10^{-5}
1×10^{10}	(0.9932, 1.0068, 2.0000)	4.55×10^{-7}
1×10^{15}	(0.9970, 1.0030, 2.0000)	0.97×10^{-9}

- One can see that the residual constraint error (i.e., the computed norm of the measurements minus the estimates for the first three observations) decreases as more weight is used
 - However, this does not generally guarantee that the estimates are closer to their true values of 1, 1, and 2
 - The interaction of the basis function plays an important role
 - Still, if the weight is sufficiently large, the estimates are indeed closer to their true values, as expected
 - In this simulation, the first three measurements were obtained with no measurement errors

Constrained Least Squares (i)

 Suppose the original observations in partition naturally into the sub-systems

$$\begin{bmatrix} \tilde{\mathbf{y}}_1 \\ \dots \\ \tilde{\mathbf{y}}_2 \end{bmatrix} = \begin{bmatrix} H_1 \\ \dots \\ H_2 \end{bmatrix} \hat{\mathbf{x}} + \begin{bmatrix} \mathbf{e}_1 \\ \dots \\ \mathbf{0} \end{bmatrix} \quad \text{or} \quad \begin{aligned} \tilde{\mathbf{y}}_1 &= H_1 \hat{\mathbf{x}} + \mathbf{e}_1 \\ \tilde{\mathbf{y}}_2 &= H_2 \hat{\mathbf{x}} \end{aligned}$$

where

 $\tilde{\mathbf{y}}_1 = \text{an } m_1 \times 1 \text{ vector of measured } y\text{-values}$

 $H_1 = \text{an } m_1 \times n \text{ basis function matrix corresponding}$ with the measured y-values

 $\mathbf{e}_1 = \text{an } m_1 \times 1 \text{ vector of residual errors}$

 $\tilde{\mathbf{y}}_2 = \text{an } m_2 \times 1 \text{ vector of perfectly measured } y\text{-values}$

 $H_2 = \text{an } m_2 \times n \text{ basis function matrix corresponding}$ with the perfectly measured y-values

• Further assume that $n \ge m_2$ and $n \le m_1$

Constrained Least Squares (ii)

- The absence of the residual error matrix \mathbf{e}_2 reflects the fact that $H_2\mathbf{x}$ is required to equal the second measurement set exactly
- Thus, we can formulate the problem as a constrained minimization problem by minimizing (with an added weight matrix here)

$$J = \frac{1}{2} \mathbf{e}_1^T W_1 \mathbf{e}_1 = \frac{1}{2} (\tilde{\mathbf{y}}_1 - H_1 \hat{\mathbf{x}})^T W_1 (\tilde{\mathbf{y}}_1 - H_1 \hat{\mathbf{x}})$$

subject to

$$\tilde{\mathbf{y}}_2 - H_2 \hat{\mathbf{x}} = \mathbf{0}$$
 (constraint)

Use Lagrange multiplier approach to form augmented function

$$J = \frac{1}{2} \left[\tilde{\mathbf{y}}_1^T W_1 \tilde{\mathbf{y}}_1 - 2 \tilde{\mathbf{y}}_1^T W_1 H_1 \hat{\mathbf{x}} + \hat{\mathbf{x}}^T (H_1^T W_1 H_1) \hat{\mathbf{x}} \right] + \boldsymbol{\lambda}^T (\tilde{\mathbf{y}}_2 - H_2 \hat{\mathbf{x}})$$

27

Constrained Least Squares (iii)

Necessary conditions

$$\nabla_{\hat{\mathbf{x}}} J = -H_1^T W_1 \tilde{\mathbf{y}}_1 + (H_1^T W_1 H_1) \hat{\mathbf{x}} - H_2^T \boldsymbol{\lambda} = \mathbf{0}$$
(1)
$$\nabla_{\boldsymbol{\lambda}} J = \tilde{\mathbf{y}}_2 - H_2 \hat{\mathbf{x}} = \mathbf{0}, \quad \rightarrow \tilde{\mathbf{y}}_2 = H_2 \hat{\mathbf{x}}$$
(2)

Solving Eq. (1) for the estimate gives

$$\hat{\mathbf{x}} = (H_1^T W_1 H_1)^{-1} H_1^T W_1 \tilde{\mathbf{y}}_1 + (H_1^T W_1 H_1)^{-1} H_2^T \lambda$$

• Substituting this \hat{x} equation into Eq. (2) and solving for λ gives

$$\lambda = [H_2(H_1^T W_1 H_1)^{-1} H_2^T]^{-1} [\tilde{\mathbf{y}}_2 - H_2(H_1^T W_1 H_1)^{-1} H_1^T W_1 \tilde{\mathbf{y}}_1]$$

Substituting this equation into the estimate equation gives

$$\hat{\mathbf{x}} = \bar{\mathbf{x}} + K(\tilde{\mathbf{y}}_2 - H_2\bar{\mathbf{x}}) \tag{3}$$

where

$$K = (H_1^T W_1 H_1)^{-1} H_2^T \left[H_2 (H_1^T W_1 H_1)^{-1} H_2^T \right]^{-1}$$

$$\bar{\mathbf{x}} = (H_1^T W_1 H_1)^{-1} H_1^T W_1 \tilde{\mathbf{y}}_1 \qquad (4)$$
Unconstrained to the contrained of the

Constrained Least Squares (iv)

- Note that Eq. (4) is least squares estimate of \mathbf{x} in the absence of the constraint equations
- The second term in Eq. (3) is an additive correction in which the "gain matrix" K multiplies the constraint residual prior to the correction
 - This general "update form" in Eq. (3) is seen often in estimation theory and is therefore an important result
- Note that a weighted least squares approach with "large" weights on the perfect measurements can be used instead, which gives numerically the same solution as constrained least squares
- If $m_2 = n$ then H_2 is square, which leads directly to

$$K = H_2^{-1}$$
, and $\hat{\mathbf{x}} = H_2^{-1} \tilde{\mathbf{y}}_2$

- This shows that the solution is dependent on the perfectly measured values and H_2 only, which is the same result obtained using a square H matrix in the standard least squares solution
- Thus, the solution is unaffected by an arbitrary number of erroneous measurements (we don't need them, which makes sense)

29

Example (i)

- Employ a subset of 31 measurements from the previous weighted least squares example
 - Study three cases for various perfect measurement cases

case 1:
$$\tilde{\mathbf{y}}_1 = \begin{bmatrix} \tilde{y}_2 & \tilde{y}_3 & \cdots & \tilde{y}_{31} \end{bmatrix}^T$$
, $\tilde{\mathbf{y}}_2 = y_1$
case 2: $\tilde{\mathbf{y}}_1 = \begin{bmatrix} \tilde{y}_3 & \tilde{y}_4 & \cdots & \tilde{y}_{31} \end{bmatrix}^T$, $\tilde{\mathbf{y}}_2 = \begin{bmatrix} y_1 & y_2 \end{bmatrix}^T$
case 3: $\tilde{\mathbf{y}}_1 = \begin{bmatrix} \tilde{y}_4 & \tilde{y}_5 & \cdots & \tilde{y}_{31} \end{bmatrix}^T$, $\tilde{\mathbf{y}}_2 = \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix}^T$

Results are given below

case	$ar{\mathbf{x}}$	$\hat{\mathbf{x}}$
1	(1.0261, 0.8766, 1.9869)	(1.0406, 0.8629, 2.0000)
2	(1.0233, 0.8789, 1.9840)	(0.9039, 1.0901, 2.0000)
3	(1.0192, 0.8820, 1.9793)	(0.9970, 1.0030, 2.0000)

30

Example (ii)

- We see that when one perfect measurement is used (case 1), the solution is not substantially improved over conventional least squares since $\bar{\mathbf{x}} \approx \hat{\mathbf{x}}$
- However, when two perfect measurements are used (case 2), the estimates are closer to their true values
- When three perfect measurements are used (case 3), which implies that $m_2 = n$, the estimates are even closer to their true values
 - In fact, the estimates are identical within several significant digits to the case of $w=1\times 10^{15}$ in the weighted least squares example
 - Shows what we discussed before about using weighted least squares instead of constrained least squares to obtain nearly identical solutions
 - Note, were it not for the unaccounted error term $-0.4\,e^t/1\times10^4$ in the simulated measurements, these would be found to agree exactly with the true coefficients $(1,\,1,\,2)$