Лабораторная работа 2.1.3 Определение показателя адиабаты по скорости звука в газе Выполнил Жданов Елисей Б01-205

1 Цель работы:

- 1) Измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу.
- 2) Определение показателя адиабаты с помощью уравнения состояния идеального газа.

2 Оборудование:

Звуковой генератор ГЗ

Электронный осциллограф ЭО

Микрофон М

Телефон Т

Теплоизолированная труба, обогреваемая водой из термостата

3 Теоретическая справка

Один из наиболее точных методов измерения показателя адиабаты γ основан на зависимости от него скорости распространения звуковой волны в газе. Последняя в газах определяется формулой $c=\sqrt{\frac{\gamma RT}{\mu}}$, откуда

$$\gamma = \frac{\mu}{RT}c^2,$$

где T — температура газа, μ — его молярная масса, а R — газовая постоянная. Скорость звука связана с его частотой и длиной волны соотношением $c=\lambda f$.

С волнами в трубке удобнее всего работать при резонансе. Условие резонанса выглядит как

$$L=n\frac{\lambda}{2},$$

где L — длина трубки, λ — длина волны, n — целое число.

В данной работе при постоянной длине трубки изменяется частота звуковых колебаний f, а с ней и длина звуковой волны λ . Для последовательных резонансов можно записать:

$$L = n \frac{\lambda_1}{2} = (n+1) \frac{\lambda_2}{2} = \dots = (n+k) \frac{\lambda_{k+1}}{2}$$

В результате имеем

$$f_{t+1} = \frac{c}{\lambda_{t+1}} = f_1 + \frac{c}{2L}t \ (t = 0, 1, ..., k)$$

Таким образом, c/2L можно найти как угловой коэффициент графика зависимости частоты от номера резонанса.

4 Установка

Схема установки, используемой в работе приведена на рисунке

Звуковые колебания в трубе возбуждаются телефоном Т и улавливаются микрофоном М. Возникающий в микрофоне сигнал возникает на экране осциллографа ЭО.

Установка содерджит теплоизолированную трубу постоянной длины. Воздух в трубке нагревается водой из термостата. Температура газа принимается равной температуре омывающей трубу воды.

5 Измерения

1) Включу все оборудование и убежусь в его работоспособности

Также проверю, что напряжение на генераторе позволяет возбуждать синусоидальный сигнал на осциллографе.

2) Произведу предварительные замеры:

Эффективная длина трубки $L = (740 \pm 1)$ мм

Комнатная температура $T = 22.6^{\circ}C = 295.8K$

3) Резонансную частоту буду определять максимальной амплитудой синусоидального сигнала на осциллографе

Приведу таблицу частот резонансов различных порядков от температуры

	Τ, Κ; ν, Гц			
N	295.8	313.2	328.2	338.2
1	250	255	260	265
2	475	489	500	509
3	700	725	740	750
4	930	955	980	995
5	1158	1190	1220	1240
6	1388	1430	1465	1490
7	1618	1670	1705	1730

6 Обработка

Построю графики зависимости частоты резонанса от их номера

Найду угловые коэффициенты прямых для каждой температуры по МНК.

$$a = \frac{n \sum_{i=1}^{n} N_{i} v_{i} - \left(\sum_{i=1}^{n} N_{i}\right) \left(\sum_{i=1}^{n} v_{i}\right)}{n \sum_{i=1}^{n} N_{i}^{2} - \left(\sum_{i=1}^{n} N_{i}\right)^{2}}$$
$$b = \frac{\sum_{i=1}^{n} v_{i} - a \sum_{i=1}^{n} N_{i}}{n}$$

Также рассчитаю их погрешности

$$S_a^2 = \frac{\sum_{i=1}^n N_i^2}{n \sum_{i=1}^n N_i^2 - \left(\sum_{i=1}^n N_i\right)^2} \cdot \frac{\sum_{i=1}^n \left(v_i - b - a \cdot N_i\right)^2}{n-2}$$

T, K	а, Гц
295.8	(228.14 ± 0.45)
313.2	(235.43 ± 0.69)
328.2	(240.89 ± 0.31)
338.2	(244.54 ± 0.48)

Запишу итоговую связь для показателя адиабаты

$$\gamma = \frac{4\mu L^2 a^2}{RT}$$

Его погрешность составит

$$\varepsilon_{\gamma} = \varepsilon_T + 2\varepsilon_a + 2\varepsilon_L$$

И, наконец, составлю таблицу

T, K	γ
295.8	(1.344 ± 0.009)
313.2	(1.352 ± 0.012)
328.2	(1.351 ± 0.008)
338.2	(1.351 ± 0.009)

Наконец найду среднее значение показателя адиабаты

Его погрешность состоит из случайной погрешности выборки и погрешности каждого её элемента

$$\Delta_{\gamma} = \sqrt{\Delta_{\text{приб}}^2 + \Delta_{\text{случ}}^2}$$

$$\gamma_0 = (1.350 \pm 0.011)$$

7 Вывод

В данной лабораторной работе был проверен метод нахождения показателя адиабаты воздуха, основанный на теоретических сведениях о его связи со скоростью звука. Хорошее совпадение показателя адиабаты с табличным значением подтверждает работоспособность экспериментальной установки, основанной на возбуждении стоячих волн в воздухе при разной температуре.

Также эксперимент подтверждает малую зависимость(в пределах погрешности) показателя от температуры, при её значениях, близких к комнатным.