Let's revisit Experimental Design!

Kanan Saikai

"Randomization"

6 treatment

"Replication" to obtain an estimate of error variation

"Blocking" = reduces unexpected error

"Repetition" = increase precision and confidence.

What is Complete Randomized Design (CRD)

Treatments = 6

4 replications

Units within a block are alike.

Units between blocks are different.

All treatments appear once in a block

So why RCBD over CRD?

Door

Fan

What is **Split-plot Design**

Idealy...

But reality is often this.

But reality is often this.

Split-plot design eases the implementation of trials.

RCBD vs. Split plot design

RCBD

 $Y = \mu$ + Chemicals + Cultivar + Chem.*Cultiv. + Block + error

Split plot design

Y = μ + Cultivars + WP error + Block + Chemical + Chem.*Cultiv. + SP error

RCBD

Source of Variation	DF	Actual DF
Block (Rep)	b-1	3-1=2
Cultivar	c-1	2-1=1
Chemical	f-1	4-1=3
Cultivar x Chemical	(c-1)(f-1)	1*3 = 3
Error	(b-1)[(c-1)+(f-1)+(c-1)(f-1)]	2*(1+3+3) = 14
Total		23

Split plot design

More difficult to find difference in the whole-plot.
Less affected in the Sub-plot.

Source of Variation	DF	
Block (Rep)	b-1	3-1=2
Cultivar	c-1	2-1=1
WP Error	(b-1)(c-1)	2*1 = 2
Chemical	f-1	4-1=3
Cultivar x Chemical	(c-1)(f-1)	1*3 = 3
SP Error	(b-1)[(f-1)+(c-1)(f-1)]	2*(3+3) = 12
Total		23

Designing is everything.

A wrong design can ruin any otherwise good experiments.

Let's spend more time to think about your experimental desgin before you start your trials.

Announcement: the NemAfrica website is launched, and need your help for contents!

Click here!