Homework Chapter 5

1.

Find the point on the line y = 2x + 1 that is closest to the point (5, 2).

2.

Find the distance from the point (1, 1, 1) to the plane 2x + 2y + z = 0.

3.

Find the distance from the point (2, -3, 4) to the plane

$$8(x-2) + 6(y+2) - (z-4) = 0$$

4.

For each of the following matrices, determine a basis for each of the subspaces $R(A^T)$, N(A), R(A), and $N(A^T)$.

(a)
$$A = \begin{bmatrix} 2 & 4 \\ -4 & -8 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 6 \end{bmatrix}$

(c)
$$A = \begin{bmatrix} 4 & 2 \\ -2 & 3 \\ 1 & 4 \\ 5 & 1 \end{bmatrix}$$
 (d) $A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 4 & 4 \\ 2 & 2 & 0 & 1 \\ 2 & 1 & 1 & 1 \end{bmatrix}$

5.

For each of the following systems $A\mathbf{x} = \mathbf{b}$, find all least squares solutions:

(a)
$$A = \begin{bmatrix} 3 & -6 \\ 2 & -4 \\ -3 & 6 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$

(b)
$$A = \begin{bmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ 2 & 6 & -2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

6.

- (a) Find the best least squares fit by a linear function to the data
- (b) Plot your linear function from part (a) along with the data on a coordinate system.

7.

Let $\mathbf{x} = (-1, -1, 1, 1)^T$ and $\mathbf{y} = (1, 1, 5, -3)^T$. Show that $\mathbf{x} \perp \mathbf{y}$. Calculate $\|\mathbf{x}\|_2$, $\|\mathbf{y}\|_2$, $\|\mathbf{x} + \mathbf{y}\|_2$ and verify that the Pythagorean law holds.

8.

Let $\mathbf{x} = (2,3,1)^T$ and $\mathbf{y} = (5,-6,2)^T$. Compute $\|\mathbf{x} - \mathbf{y}\|_1$, $\|\mathbf{x} - \mathbf{y}\|_2$, and $\|\mathbf{x} - \mathbf{y}\|_{\infty}$. Under which norm are the two vectors closest together? Under which norm are they farthest apart?

9.

Let $\{u_1, u_2, u_3\}$ be an orthonormal basis for an inner product space V and let

$$\mathbf{u} = \mathbf{u}_1 + 2\mathbf{u}_2 + 2\mathbf{u}_3$$
 and $\mathbf{v} = \mathbf{u}_1 + 7\mathbf{u}_3$

Determine the value of each of the following:

- (a) $\langle \mathbf{u}, \mathbf{v} \rangle$
- (b) ||u|| and ||v||
- (c) The angle θ between u and v

10.

Given the basis $\{(1, 2, -2)^T, (4, 3, 2)^T, (1, 2, 1)^T\}$ for \mathbb{R}^3 , use the Gram-Schmidt process to obtain an orthonormal basis.