ECE365: Introduction to NLP

Spring 2021

Lecture 1

[Reading J&M 2.2, 2.3, 2.4]

Teaching Staff

```
Vyom Thakkar (vnt2@illinois.edu)
Office Hours
M, T, Th, Sa, Su: 11am to noon CT
W, Fr: 10am to 11am CT
```

Suma Bhat (spbhat2@illinois.edu)
Office Hours: By appointment

Logistics

Office hours, reading lists, assignment policies on website

Lab hours + TA office hours will occur virtually via Zoom

Natural Language

- Basic medium of human communication
- Language encoded as text
 - Permits broader use of language (in space and time)
 - NL = {Mandarin, Spanish, English,...}
- Mapping between symbols and ideas not always one-to-one
 - Inherent ambiguities (e.g., bank)

Why should machines understand language?

Human information needs (search, answer questions)

"Pick up the plate with a fork and leave in the sink"

What is Natural Language Processing?

- Making machines do what humans do with language
- In a way they process information
- Design and analysis of algorithms, representations for processing human language

How do machines understand language?

Timing is Right

- Rise of machine learning
- Increased computational capabilities
- Availability of large volumes of textual data
 - Electronic corpora (plural of corpus 'body of text')

Language Technologies Needed

Impressive Feats

Language Technologies

- Applications
 - Machine Translation
 - Information Retrieval
 - Question Answering
 - Dialogue Systems
 - Information Extraction
 - Summarization
 - Sentiment Analysis
 - ...

- Core technologies
 - Language modelling
 - Part-of-speech tagging
 - Syntactic parsing
 - Named-entity recognition
 - Coreference resolution
 - Word sense disambiguation
 - Semantic Role Labelling
 - ...

Why is NLP hard?

- 1. Ambiguities
- 2. Scale
- 3. Sparsity
- 4. Variation
- 5. Expressivity
- 6. Unknown representation

Ambiguities

Lexical Ambiguity

The presence of two or more possible meanings within a single word.

Syntactic Ambiguity

The presence of two or more possible meanings within a single sentence or sequence of words.

"I saw her <u>duck.</u>"

"The chicken is <u>ready to eat</u>."

Thought Co.

Ambiguities

Who has the knife?

Discourse Ambiguity

Alice invited Bailey for dinner, but she cooked her own food.

she = Alice or Bailey?

Alice invited Bailey for dinner, but she cooked her own food and brought it with her.

she = Alice or Bailey?

Alice invited Bailey for dinner, but she cooked her own food and ordered a pizza for her guest.

she = Alice or Bailey?

Dealing With Ambiguities

Humans rely on context, common sense

- How can we model ambiguity and choose the correct analysis in context?
 - Probabilistic and non-probabilistic methods
- Where do the models learn from?
 - Large text collections

Learning from Corpora

Statistical information

- Where do the models learn from?
 - Large text collections

Other Difficulties for NLP

non-standard English

Great job @justinbieber! Were SOO PROUD of what youve accomplished! U taught us 2 #neversaynever & you yourself should never give up either♥

segmentation issues

the New York-New Haven Railroad the New York-New Haven Railroad

idioms

dark horse get cold feet lose face throw in the towel

neologisms

unfriend Retweet bromance

world knowledge

Mary and Sue are sisters. Mary and Sue are mothers.

tricky entity names

Where is A Bug's Life playing ...

Let It Be was recorded ...

... a mutation on the for gene ...

all a

Course Goals

- Understand fundamentals of some sub-fields within NLP (Text classification, Part of speech tagging, Language modeling, vector models of meaning)
- Understand key theories and algorithms for statistical NLP
- Hands on experience building statistical models for language processing
- Same requirements as previous modules in the course

What this course is not

- We will not focus on deep-learning methods
- Will not work with plug-and-play NLP models

Text as Signal

- Text is discrete
 - Meaning created from groups of symbolic units
- What are units of text?

Words as Text Units

- I do uh main- mainly data analysis.
 - Filled pause, fragments
- Seuss's cat is different from other cats.

Lemma: same stem, part of speech, ~meaning cat and cats = same lemma (cat)

Word form: full inflected surface form cat and cats = different forms

Words as Text Units

- They enjoyed the food in New York city but not the stay.
 How many words?
 - Word type: an element of the vocabulary
 - Word token: an instance of the type in the text

	Tokens = N	Types = V
Switchboard phone conversations	2.4 million	20 thousand
Shakespeare	884,000	31 thousand
Google N-grams	1 trillion	13 million

Issues in Tokenization

- Tokenization is splitting running text into pieces
 - Friends, Romans, Countrymen, lend me your ears;

Friends

Romans

Countrymen

lend

me

your

ears

Issues with Tokenization

- Finland's capital Finlands Finland Finland's
- What're, I'm, isn't What are, I am, is not
- Lowercase lowercase or lower case
- San Francisco two tokens or one?
- m.p.h ??

Tokenization in Other Languages

French

• L'ensemble = Le ensemble, L ensemble, L'ensemble

Be able to match with un ensemble

German

Lebensversicherungsgesellschaftsangestellter "Life insurance company employee"

Need compound splitting

Tokenization in Other Languages

- Chinese
- 莎拉波娃现在居住在美国东南部的佛罗里达。
- 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达
- Sharapova now lives in US southeastern Florida

Tokenization in Other Languages

Japanese

Normalization

- Define equivalence classes of terms
 - Index and query terms need to have same form
 - U.S.A = USA

Case Folding

- Application dependent
 - IR Reduce to lower case, except when middle of sentence
 - Fed vs fed
 - Sentiment analysis, machine translation retain case
 - US vs us

Lemmatization

- Find the dictionary headword form
 - Reduce inflections to the base form
 - Am, are, is → be
 - Car, cars, car's, cars' → car

the girl's cars are of different colors ->

Stemming

- Reduce terms to their stems
 - word = stem (core meaning bearing unit) + affix (attached to stem for grammatical function)
 - Language dependent
 - chopping affix
 - Automate, automatic, automation → automat
 - Porter's Stemming algorithm for English

Summary

- Tokenization
- Normalization
- Stemming
- Lemmatization