

Aerodynamic Model

Aerodynamic Force F (N) and Moment M_G (N.m) are given by

$$F = \frac{1}{2}\rho V^2 S_{ref} \cdot C_F$$

$$F = \frac{1}{2}\rho V^2 S_{ref} \cdot C_F \qquad M_A = \frac{1}{2}\rho V^2 S_{ref} L_{ref} \cdot C_M$$

where

- $\frac{1}{2}\rho V^2$ is the dynamic pressure (N/m²)
- S_{ref} is the reference area (m²)
- L_{ref} is the reference length (m)
- C_E & C_M are non dimensional aerodynamic coefficients

S_{ref} / L_{ref} Definitions & Calculations

$$\frac{S_{ref}}{2} = \int l(y) \cdot dy$$

$$L_{ref} = \frac{2 \int l^{2}(y) \cdot dy}{S_{ref}}$$

$$x_{ref} = \frac{2 \int x(y) \cdot l(y) \cdot dy}{S_{ref}}$$

$$y_{ref} = \frac{2 \int y \cdot l(y) \cdot dy}{S_{ref}}$$

The L_{ref} is usually called the Mean Aerodynamic Chord, MAC

This corresponds to a segment of line which is perfectly determined on the 3 views plan, function of the wing chord l(y) variation wrt the y-span

S_{ref} / L_{ref} Definitions & Calculations

$$S_{ref} = b \cdot \frac{c_1 + c_2}{2}$$

$$L_{ref} = \frac{2c_1}{3} \cdot \frac{1 + \varepsilon + \varepsilon^2}{1 + \varepsilon}$$

$$y_{ref} = \frac{b}{6} \cdot \frac{1 + 2\varepsilon}{1 + \varepsilon}$$

$$\varepsilon = \frac{c_2}{c_1} = \text{taper ratio}$$

If the Lifting surface is a trapezoïdal, the L_{ref} / MAC is a real chord of the wing

Small x / Capital X : which one?

For the longitudinal G position, we use the X axis based on MAC (positive aft) X/L = 0% / 100% corresponds to MAC leading / trailing edge position

CG range is limited from $X_G/L \approx 15\%$ to 40%

Determination of Aerodynamic Coefficients

From the real aircraft, a scaled model is built and flown in Wind Tunnel. Then, measurements of Forces (N) and Moments (m.N) at a Reference point A are performed from which the different aerodynamic coefficients are computed.

$$C_F = \frac{F}{\frac{1}{2}\rho V^2 S_{ref}}$$

$$C_F = \frac{F}{\frac{1}{2}\rho V^2 S_{ref}} \qquad C_M = \frac{M_A}{\frac{1}{2}\rho V^2 S_{ref} L_{ref}}$$

Of course, the Reference Surface S and Reference Length L are computed for the scaled model. Then, we can apply these aerodynamic coefficients for the true aircraft using the true associated Reference Surface and Length.

Remark: Aerodynamic force and moment are produced by the aircraft Velocity with respect to the surrounding air, so V is actually $V_{ac/air}$ and C_F and C_M are function of the orientation of $\vec{V}_{ac/air}$ wrt the aircraft , so function of α and β

Remark: The Reference Aerodynamic Point A is usually taken at 25% of the Reference Length

Principal Aerodynamic coefficients

Aerodynamic forces & moments are defined relative to the Aerodynamic reference system $Gx_ay_az_a$ such that:

$$\vec{F} = \frac{1}{2}\rho V^2 \cdot S \cdot \begin{vmatrix} -Cx \\ Cy_a \\ -Cz \end{vmatrix}$$

$$\vec{F} = \frac{1}{2}\rho V^2 \cdot S \cdot \begin{vmatrix} -Cx \\ Cy_a \\ -Cz \end{vmatrix} \vec{M}_G = \frac{1}{2}\rho V^2 \cdot SL \cdot \begin{vmatrix} Cl_G^a \\ Cm_G^a \\ Cn_G^a \end{vmatrix}$$

The principal aerodynamic coefficients used are Cx & Cz which are the drag & lift coefficients, respectively

Pure Longitudinal Flight

Principal Aerodynamic coefficients

Aerodynamic forces & moments are defined relative to the aircraft reference system $Gx_hy_hz_h$ such that:

$$\vec{F} = \frac{1}{2}\rho V^2 \cdot S \cdot \begin{vmatrix} -Cx_b \\ Cy \\ -Cz_b \end{vmatrix} \vec{M}_G = \frac{1}{2}\rho V^2 \cdot SL \cdot \begin{vmatrix} Cl_G \\ Cm_G \\ Cn_G \end{vmatrix}$$

$$\vec{M}_G = \frac{1}{2}\rho V^2 \cdot SL \cdot \begin{vmatrix} Cl_G \\ Cm_G \\ Cn_G \end{vmatrix}$$

The principal aerodynamic coefficients used are Cy as lateral aerodynamic force coefficient and Cl_G,Cm_G,Cn_G as aerodynamic moment coefficients

Aerodynamic Coefficients

The Aerodynamic coefficients (Cx, Cy, Cz) and (Cl, Cm, Cn) depend on :

- Mach and Reynolds number
- Aircraft orientation with respect to $\vec{V}_{ac/air}: \alpha$, β
- Aircraft elementary rotations: p, q, r
- Control surfaces deflections : δl , δm , δn

We assume that the Aerodynamic coefficients can be linearized (except for the drag coefficient Cx)

This assumption is valid for a certain range of (α, β) , which covers already a wide range of the Flight Domain

Aerodynamic Coefficients: Cz, Cm

For pure Longitudinal Flight, (Cz, Cm_G) function of $(\alpha, q, \delta m)$

$$Cz = Cz_{\alpha} \cdot (\alpha - \alpha_0) + Cz_q \cdot \frac{qL}{V} + Cz_{\delta m} \cdot \delta m$$

$$Cm_G = Cm_0 + Cm_\alpha^G \cdot (\alpha - \alpha_0) + Cm_q \cdot \frac{qL}{V} + Cm_{\delta m} \cdot \delta m$$

Each aero coefficient has no dimension, but also each gradient

This explains the reason of the quantity qL/V:

- The gradient Cz_q has no dimension
- The quantity qL/V has no dimension
- The product $Cz_q \cdot qL/V$ has no dimension

Aerodynamic Coefficient: Cx

The coefficient e is function of the lift distribution along the span : e < 1 except for the elliptical spanwise lift distribution (Prandtl Linearised Theory) where e = 1

Why the wing produces lift?

When the wing is animated with a velocity $\vec{V}_{ac/air}$, both upper/lower streamlines splits at the leading edge. Due to the profile shape of the wing, they have a different behaviour:

- Below the wing, the velocity decreases along the streamline resulting in a air pressure increase
- Over the wing, the velocity increases along the streamline resulting in a air pressure decrease

This pressure differential across both sides of the wing produces the Lift force

Why the wing produces lift?

This phenomenon is amplified with the increase of the angle of attack, α

 \rightarrow Cz increases when α increases up to a certain point ...

The upper streamline has more and more difficulties to follow the wing profile: a flow separation occurs which expands all over the wing

- The pressure recovers the p_{∞} value, the pressure differential process ceases
- Stall is achieved with a Lift decrease

Wave Drag: Cx_w

When the Mach increases, the acceleration of the flowfield (particularly at extrados) creates a supersonic region terminated by a re-compression shock.

This creates a separation flowfield behind associated to a strong drag increase.

We define the Mach M_{div} when the drag increase achieves 20 drag count (*) Obviously, the Cruise Mach will be before M_{div}

For the present course, we will assume the Cx_w is negligible

Physics of Lift surface: α effect

$$Cz = Cz_{\alpha} \cdot (\alpha - \alpha_0)$$

 Cz_{α} is positive

The Lift coefficient Cz can be considered as a linear function versus α until Stall phenomenon appears . The Lift gradient Cz_{α} is mainly a function of the Wing aspect ratio $\lambda=b^2/S$

$$Cz_{\alpha} = \frac{2\pi\lambda}{2 + \sqrt{4 + (1 + \tan^{2}\varphi_{50} - M^{2})\lambda^{2}}}$$
Diederich formula

$$Cz_{\alpha} \to \frac{2\pi}{\sqrt{(1 + \tan^2 \varphi_{50} - M^2)}} \approx 2\pi$$
when $\lambda \to \infty$

- T

Physics of Lift surface: camber effect

positive camber $Cz(\alpha = 0^{\circ}) > 0$ $\Rightarrow \alpha_0 < 0^{\circ}$

The zero lift angle α_0 is driven by the camber of the profile: the more the wing is (positive) cambered, the more α_0 is negative

Physics of Lift surface : α effect

$$Cz = Cz_{\alpha} \cdot (\alpha - \alpha_0)$$

 Cz_{α} is positive

$$Cm_G = Cm_0 + Cm_\alpha^G \cdot (\alpha - \alpha_0)$$

 Cm_{α}^{G} is negative

The pitch coefficient Cm can be also considered as linear function versus α . The Lift gradient Cm_{α} is assumed to be negative (refers to Stability)

Physics of Lift surface: camber effect

positive camber
$$Cm(\alpha_0) = Cm_0 < 0$$

The $Cm_0 = Cm_G(\alpha_0)$ pitch coefficient is also driven by the camber of the profile: the more the wing is (positive) cambered, the more Cm_0 is negative

The state of the s

Physics of Lift surface: slat effect

The slot behind the extended slat lets pass more fast "fresh" moving air, speeding up the flow over the wing: the streamline can re-attach to the wing profile.

The stall process is delayed

Physics of Lift surface: flap effect

The flap deflection increases the (positive) camber of the profile: α_0 becomes more negative, the lift curve is translated up.

Notice that there is also a slot effect with a (small) delay of

the stall

High Lift Systems example

Single Slotted Flap

Double Slotted Flap

No.

High Lift Physics synthesis

Physics of Lift surface : δm effect

$$Cz = Cz_{\alpha} \cdot (\alpha - \alpha_0) + Cz_{\delta m} \cdot \delta m$$

$Cz_{\delta m}$ is positive

The elevator deflection produces the same result as a flap deflection with a global translation of the lift curve

 $Cm_{\delta m}$ is negative

Pitch rate on empennage: Cz_q & Cm_q

The Aircraft is rotating around G: an observer (fixed on R_0) sees:

- the air striking the empennage with a velocity \vec{V}_{air/R_0}
- the empennage moving down with a velocity \vec{V}_{htp/R_0}

Pitch rate on empennage: Cz_q & Cm_q

The Aircraft is rotating around G: an observer (fixed on the empennage) sees the air striking the empennage with a velocity $\vec{V}_{air/htp}$ such that

$$\vec{V}_{air/R_0} = \vec{V}_{air/htp} + \vec{V}_{htp/R_0}$$

The observer, fixed on the empennage, sees a relative velocity given by the speed composition

Pitch rate on empennage: Cz_q & Cm_q

The Aircraft is rotating around G: the observer (fixed on the empennage) sees the air striking the empennage with an angle of attack $\alpha_q > 0$. The empennage, as for any lifting surface, reacts by producing a lift force which gives a pitching moment at G

Notice that the q pitch rotation creates a pitch moment opposite to the q rotation

This phenomenon is called a damping process ...

Pitch rate on empennage: Cz_a & Cm_a

NOT in PROGRAM

The HTP reacts with a Lift Force:
$$S_{htp} \cdot Cz_{\alpha}^{htp} \alpha_q = S_{htp} \cdot Cz_{\alpha}^{htp} \cdot \frac{q\Delta L_{htp}}{V}$$

We identify this moment to :
$$S_{htp} \cdot Cz_{\alpha}^{htp} \cdot \frac{q\Delta L_{htp}}{V} = S \cdot Cz_{q} \cdot \frac{qL}{V} \Rightarrow Cz_{q} = Cz_{\alpha}^{htp} \cdot \frac{S_{htp}\Delta L_{htp}}{SL}$$

This Lift Force creates a pitch moment at G:
$$-S_{htp} \cdot Cz_{\alpha}^{htp} \alpha_q \cdot \Delta L_{htp} = -S_{htp} \Delta L_{htp} \cdot Cz_{\alpha}^{htp} \cdot \frac{q\Delta L_{htp}}{V}$$

We identify this moment to:

$$-S_{htp}\Delta L_{htp} \cdot Cz_{\alpha}^{htp} \cdot \frac{q\Delta L_{htp}}{V} = SL \cdot Cm_{q} \cdot \frac{qL}{V} \Rightarrow Cm_{q} = -Cz_{\alpha}^{htp} \cdot \frac{S_{htp}\Delta L_{htp}^{2}}{SL^{2}}$$

Longitudinal aerodynamic coefficients

	Positive when	Cz	Cm
Angle of attack α (°)	when flow field from downward	$Cz_{\alpha} > 0$	$\mathrm{Cm}_{\alpha} < 0$ longitudinal stability
Elevator deflection δm (°)	Elevator trailing edge down	$Cz_{\delta m} > 0$	Cm _{δm} < 0
Pitch angular rate q (rd/s)	according to pitch-up rotation	Cz _q > 0	Cm _q < 0 pitch damping