## 第六章 时序电路 作业

6-2 分析题图 6-2 所示的同步时序电路, 画出状态图。



解: 各触发器的状态方程:

$$J_1=K_1=A$$
 ,  $J_2=Q_1^n$  ,  $K_2=1$  ,  $Q_2^{n+1}=Q_1^n\overline{Q_2^n}$  ,  $Q_1^{n+1}=A\oplus Q_1^n$  写出状态表,根据状态表画出状态图。





6-3 分析题图 6-3 所示的同步时序电路, 画出状态图和波形图。



解: 各触发器的状态方程:

$$\begin{split} J_1 &= K_1 = T_1 = 1 \text{ , } J_2 = K_2 = Q_1^n \overline{Q_3^n} = T_2 \text{ , } J_3 = Q_2^n Q_1^n \text{ , } K_3 = Q_1^n \\ Q_3^{n+1} &= J_3 \overline{Q_3^n} + \overline{K_3} Q_3^n = Q_2^n Q_1^n \overline{Q_3^n} + \overline{Q_1^n} Q_3^n \\ Q_2^{n+1} &= T_2 \oplus Q_2^n = Q_1^n \overline{Q_3^n} \oplus Q_2^n \\ Q_1^{n+1} &= T_1 \oplus Q_1^n = 1 \oplus Q_1^n = \overline{Q_1^n} \end{split}$$
 状态表

由状态表得到状态图



| $Q_3^n$ | $Q_2^n$ | $Q_1^n$ | $Q_3^{n+}$                                 | $Q_2^{n+1}$ | $^{1}Q_{\mathrm{l}}^{n+1}$ |
|---------|---------|---------|--------------------------------------------|-------------|----------------------------|
| 0       | 0       | 0       | 0                                          | 0           | 1                          |
| 0       | 0       | 1       | 0                                          | 1           | 0                          |
| 0       | 1       | 0       | 0                                          | 1           | 1                          |
| 0       | 1       | 1       | 1                                          | 0           | 0                          |
| 1       | 0       | 1       | $\begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}$ | 0           | 0                          |
| 1       | 1       | 0       |                                            | 1           | 1                          |
| 1       | 1       | 1       |                                            | 1           | 0                          |



- 6-8 设计一个七进制的加法器,规则是逢七进一,并产生一个进位。
- 解: 写出状态图。因需用 3 位二进制代码,选用 3 个 CLK 下降沿触发的 JK 触发器,分别用  $FF_0$ 、 $FF_1$ 、 $FF_2$ 表示。时钟方程是  $CLK_0 = CLK_1 = CLK_2 = CLK$



化简卡诺图得到:

$$\begin{cases} Q_0^{n+1} = \overline{Q}_2^n \overline{Q}_0^n + \overline{Q}_1^n \overline{Q}_0^n \\ = \overline{Q}_2^n \overline{Q}_1^n \overline{Q}_0^n + \overline{1} Q_0^n \\ Q_1^{n+1} = Q_0^n \overline{Q}_1^n + \overline{Q}_2^n \overline{Q}_0^n Q_1^n \\ Q_2^{n+1} = Q_1^n Q_0^n \overline{Q}_2^n + \overline{Q}_1^n Q_2^n \end{cases}$$

与 JK 触发器的特征方程比较得到:

$$Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$

$$\begin{cases} J_0 = \overline{Q_2^n Q_1^n} & K_0 = 1\\ J_1 = Q_0^n & K_1 = \overline{\overline{Q_2^n Q_0^n}}\\ J_2 = Q_1^n Q_0^n & K_2 = Q_1^n \end{cases}$$

## 将无效状态 111 带入状态方程计算:



可见 111 的次态是有效状态 000, 电路能够自启动。

**6.12** 试用 74LS161 分别用异步清零法和同步置数法实现模 12 加法计数器。解:



6.15 分析如题图 6.15 所示的各芯片功能,分别画出状态图。



题图 6.15

解:



**6.19** 请指出 74290 如题图 6.19 所示电路图的模值为多少?



题图 6.19

解: 模69