Name:

## Murky decision problem

5. (8 points) Consider the following Markov decision process:



Assume:

- Reward is 0 in all states, except +10 in s6 and +5 in s5; the reward is received when exiting the state.
- Transitions out of s0 are deterministic, and depend on the choice of action (A or B).
- (a) Assume in this part that all transitions are deterministic, following the arrows indicated with probability 1. When horizon = 3 and discount factor  $\gamma = 1$ , provide values for:

i. 
$$Q(s_0, A)$$
 \_\_\_\_\_

ii. 
$$Q(s_0, B)$$
 5

(b) Still assuming that all transitions are deterministic, but letting horizon = 5 and discount factor  $\gamma = 1$ , provide values for:

i. 
$$Q(s_0, A)$$
 **10**

ii. 
$$Q(s_0, B)$$
\_\_\_\_\_\_5

(c) Now, assume that transitions out of  $s_0$  are deterministic, but that all other transitions follow the arrows indicated with probability 0.9 and stay in the current state with probability 0.1.

For policy  $\pi(s_0) = B$ , write a system of equations that can be solved in order to compute  $V_{\pi}(s_0)$  when the horizon is infinite and  $\gamma = 0.8$ .

Do not solve the equations!

## **Solution:**

$$v_0 = 0.8v_4$$

$$v_4 = 0.8(0.1v_4 + 0.9v_5)$$

$$v_5 = 5 + 0.8(0.1v_5 + 0.9v_0)$$