

ENUNCIADO DE AVALIAÇÃO

MODELO PED.018.01

Curso	Licenciatura em Engenharia Informática			Ano letivo	2017/20	2017/2018	
Unidade curricular/Módulo	Probabilidades e Estatística						
Ano curricular	2°	Semestre	1° S	Data	20/02/2018	Duração	2 h

Recurso

(2,0) 1 Uma fábrica de produção de garrafas de água, utiliza três máquinas para a sua produção diária, sendo esta de 10000, 15000 e 20000 unidades, respetivamente. Pelo histórico das máquinas, sabe-se que cada máquina origina pequenos defeitos em 0,5%, 0,4% e 0,1% das garrafas, respetivamente. Encontrou-se uma garrafa com defeito. Qual a máquina que tem maior probabilidade de o ter originado?

Um saco tem 5 bolas, numeradas de 1 a 5. Extraem-se 2 bolas sem reposição. Seja X a variável aleatória que representa o menor valor observado.

(1,0) a) Determine a função probabilidade de X.

(1,5) b) Qual a probabilidade de o menor valor observado ser inferior a 3.

(1,5) c) Determine o valor esperado e a variância de X.

3 – Na linha de atendimento a clientes de um centro comercial recebem-se em média 4 chamadas de reclamações por dia.

(1,5) a) Calcule a percentagem de dias em que não há reclamações.

(1,5) b) Qual a probabilidade de num dia se receber de 3 a 6 queixas?

(1,5) c) Qual a probabilidade de numa semana (2ª a 6ª feira) se receberem mais de 15 reclamações?

(1,5) d) Qual a probabilidade de se receber pelo menos uma reclamação em todos os dias de uma semana?

$$\frac{1}{5} \times \frac{4}{1} + \frac{1}{5} \times \frac{4}{1}$$

3 (1,2)
4 (1,3) (2,3)
5 (1,4)
$$\frac{1}{5} \times \frac{3}{4} + \frac{3}{5} \times \frac{1}{4}$$

6 (1,6) (2,4)
8 (3,5)
9 (5,4)

ENUNCIADO DE AVALIAÇÃO

MODELO PED.018.01

4 – Uma empresa tenciona importar um grande lote de instrumentos de precisão a serem usados nos laboratórios de análise. Os fabricantes garantem que o respetivo peso médio é 100 gramas. Sendo, no entanto, o peso uma característica importante na qualidade do produto, resolveu-se testar a garantia do fabrico. Para tal, o departamento técnico da empresa importadora obteve uma amostra de 15 instrumentos, donde resultam os seguintes valores:

$$\sum_{i=1}^{15} X_i = 1344 \qquad \qquad \sum_{i=1}^{15} (X_i - \overline{X})^2 = 3150$$

- (2,0) a) Admitindo que o peso é normalmente distribuído diga qual a conclusão a tirar ao nível de significância de 5%.
- (1,5) b) Admita que podia colocar como hipótese alternativa do problema a de que o peso médio é de 95 gramas. Estude este caso retirando a devida conclusão para o nível de significância de 5%.
- (1,5) c) Considerando que a variabilidade máxima é traduzida por σ≤15 gr, utilize a amostra anterior para concluir se a especificação está a ser respeitada a um nível de significância de 1%.
- (3,0) 5 Um canal de televisão está interessado em avaliar se o tempo que as pessoas passam a ver televisão está ou não relacionado com a dimensão da cidade onde residem. Que conclusão retiraria se os resultados amostrais obtidos com 200 pessoas fossem os constantes no quadro seguinte?

	Dimensão da	Cidade (em número	de habitantes)
Nº de horas semanais □	Menos de 50 000	Entre 50 000 e 100	Mais de 100 000
a ver TV		000	
Menos de 10 horas	18	22	10
Entre 10 e 20 horas	62	26	22
Mais de 20 horas	20	12	8