Simulation of OFDM Communication System

Bohan Zhang, Xianjun Mao, Yu Liu

Introduction

1. Channel Modelling

- Channel Model
- b. Statistical Model

2. OFDM Communication system

- a. Communication system structure
- b. Channel Equalization
- c. Channel Estimation: FD and TD

3. Synchronization

- a. Frequency Synchronization
- b. Time shifting synchronization

4. SIMO

- a. Channel Modeling
- b. SIMO communication system

Channel Modeling

Narrowband - Wideband

The first steps to define a channel models are:

- Comunication Sencenario
- Slow fading or Fast fading
 - coherenc bandwidth symbol/frame duration
- Narrowband or wideband model
 - Coherence bandwidth system bandwidth
 - Frequency domain -> flat fading / selective fading
 - Time domain -> MPC distinguishable

Channel Modeling - Narrowband

Interactive Objects (IOs) Definition:

$$h(\vec{r}) = \sum_{i=1}^N a_i e^{j\phi_i} e^{-j\vec{eta_i}\vec{r}}$$

Statistical model

N-waves Model -> NLOS scenario -> Rayleigh distribution 1+N waves Model -> LOS scenario -> Rician distribution

K factor (Rician Distribution) = a_0^2 / Sum(a_i)^2 => relative power of the LOS component compared to the mean power of MPC => fading decrease

Interference pattern for N-waves*

Figure 2: LOS |h(t)| (dB) in XY plane

Figure 3: NLOS |h(t)| (dB) in XY plane

Wideband Channel Model

Frequency ⇔ Propagation Delay

Frequency Correlation ⇔ PDP(\tau)

$$h(f) = \sum_{i=1}^{N} a_i e^{j\Phi_i} e^{-j2\pi f \tau_i}$$

Reduce bandwidth to 20MHz

Applying Tuckey window instead of Rectangular window => Rect window -> causing discontinutiy in FD -> in TD (PDP) will show aliasing

Power Delay Profile

$$PDP(n) = \frac{1}{N} \sum_{i=1}^{N} |h_i(n)|^2$$

Results

Modes	LOS	NLOS 2.0681e-8	
$\sigma_{ au}$	1.4778e-8		
$\Delta f_c({ m Hz})$	11088386.9204	7695686.3627	

Table 1: the delay spread and coherence frequency for $200\mathrm{MHz}$

Modes	LOS(rec)	LOS(tuckey)	NLOS(rec)	NLOS(tuckey)	
$\sigma_{ au}$	1.411e-7	3.0183e-08	1.7334e-07	2.8560e-08	
$\Delta f_c(Hz)$	1127663.5984	5273077.7274	918154.0045	5572605.7692	

Table 2: the delay spread and coherence frequency for filtered signal

Taps	1	2	3	4	5	6
K	4.0055	2.8696	1.1078	1.9071	1.1713	1.3041

Table 4: the Rice factor K in wideband

SIMO Channel

Beamforming

Measuring the angular distribution in 3D

$$h_{i}(n) = \sum_{k} a_{k} e^{j(\phi_{k} - \vec{\beta}_{k} \vec{r}_{i})}$$

$$B_{i}(\theta, \varphi) = e^{-j\vec{\beta}_{(\theta, \varphi)} \vec{r}_{i}}$$

$$a_{n}(\theta, \varphi) = \frac{\sum_{i} h_{i}(n) B_{i}^{*}(\theta, \varphi)}{\sum_{i} |B_{i}(\theta, \varphi)|^{2}}$$

LOS and NLOS a(\theta, \phi)

Spatial Correlation

- Spatial Correlation and angular spectrum are a pair of FT transform
- In N-waves model,
 R(dz) ~ Bessel(lamda)
 - Clarke model: coherece distance ~ 0.5 lamda

Spatial correlation for narrowband model

OFDM Communicatin System

System Structure

Equalization----compensate ISI

Zero-forcing equalizer:

$$F_{ZF} = (H^H \cdot H)^{-1} \cdot H^H$$

Orthogonal Frequency Division Multiplexing (OFDM):

Periodic signal is needed.

Cyclic Prefix

Making the block periodic which ensures the orthogonality

Mitigation the channel memory corruption

Cyclic Prefix

Constellation with/without CP

The procedure of equlization

Channel Estimation - Freq Domain

Channel estimation:

$$\widehat{H}(k) = \frac{R'(k)}{S'(k)} = H(k) + \frac{W(k)}{S'(k)}$$

Accuracy assessment:

$$NMSE = \frac{\sum_{k} |\widehat{H}(k) - H(k)|^{2}}{\sum_{k} |H(k)|^{2}}$$

ZF estimator limitation

$$F_{ZF} = (H^H \cdot H)^{-1} \cdot H^H$$

$$\underline{R}_{\epsilon} = E \left[(\underline{I} - \hat{\underline{I}}_{ZF}) \cdot (\underline{I} - \hat{\underline{I}}_{ZF})^H \right]$$

$$= 2N_0 \left(\underline{H}^H \cdot \underline{H} \right)^{-1}$$

Amplifies the noise significantly at the frequencies where the channel attenuation is high

Channel Estimation - Freq Domain

NMSE vs EbN0

BER vs EbN0

Channel Estimation - Time Domain

$$\hat{h} = r \backslash s$$

$$s = egin{bmatrix} s_0 & \dots & s_{L-1} \ dots & \ddots & dots \ s_{N-1} & \dots & s_{N+L-1} \end{bmatrix}$$

Channel Estimation - Time Domain

NMSE vs EbN0

BER vs EbN0

Time domain channel estimation

When the channel is estimated in the frequency domain, Q channel coefficients are estimated independently based on the observation of a vector of size Q

However the channel frequency response is fully determined by the $L \ll Q$ time domain channel coefficients:

$$\underline{h}^F = \sqrt{Q} \, \underline{\underline{F}}_Q \cdot \underline{h}$$

Therefore it is more efficient to estimate directly the channel in the time domain because the corresponding system benefits from the redundancy in the received vector

Synchronization

Synchronization challenges

Frequency synchronization: phase shift, carrier frequency offset (CFO)

Time synchronization: sample clock offset (SCO), time shift

Frequency synchronization

$$r_{p} = \sum_{q=-Q/2}^{Q/2-1} I_{q}^{F} h_{q}^{f} \gamma_{q}^{0} \gamma_{p,q} + z_{p}^{F}$$

CFO acquisition based on preamble:

Rough estimation, $\left[-\frac{1}{2NT}, \frac{1}{2NT}\right]$

Phase tracking based on pilot sub-carriers:

4 pilot subcarrier {-21;-7;7;21}

Frequency synchronization

Time synchronization

$$r_{p} = \sum_{q=-Q/2}^{Q/2-1} I_{q}^{F} h_{q}^{f} \gamma_{q}^{0} \gamma_{p,q} + z_{p}^{F}$$

Auto-correlation:

$$\hat{n} = \max_{n} p(r_{n+N}|r_n, x_{n+N} = x_n)$$

is applied to estimate the time of arrival.

Time synchronization

Amplitude of auto-correlation

Modified Auto-correlation

Time synchronization

BER with/without time acquisition

NMSE vs EbN0

SIMO Communication System

SIMO System

Maxiumu Ration Combination:
$$\hat{\mathbf{s}}(q) = \sum_{i=1}^{N_{\text{rx}}} \frac{\mathbf{h}_i^{F*}(q) \mathbf{r}_i^F(q)}{\sum_{j=1}^{N_{\text{rx}}} |\mathbf{h}_j^F(q)|^2} \qquad q = 1, 2, ..., N$$

Notes:

- MRC is maximum the SNR compared with the equal weighted combination or simply pick the best SNR signal. (Proof (Cauchy-Schwarz) available on the report)
- CFO and TOA is the same for each received signal, since the receiver is synchronized by one local oscillator

Performance Comparison

END

Extra Slides