```
常用导数
积分补充
常用凑微分法
泰勒公式 (拉格朗日余项)
五个基本初等函数的麦克劳林公式(拉格朗日余项)
矩阵和、差、积的秩
各种分布
常见随机变量的数学期望和方差
\Gamma函数
  性质
切比雪夫不等式
大数定理
列维-林德伯格定理(独立同分布的中心极限定理)
棣莫弗-拉普拉斯定理 (二项分布以正态分布为其极限分布)
样本期望与方差
\chi^2分布
  定义
  分位点
  性质
t分布
  定义
  分位点
  性质
F分布
  定义
  分位点
  性质
样本方差
```

常用导数

编号	原函数	导函数
2	$y=n^x$	$y'=n^x \ln n$
3	$y=\ln x, \ln x $	$y'=rac{1}{x}$ (同定义域)
4	$y = x^n$	$y'=nx^{n-1}$
5	$y = \sin x$	$y' = \cos x$
6	$y = \cos x$	$y' = -\sin x$
7	$y = \tan x$	$y' = \frac{1}{\cos^2 x} = \sec^2 x$
8	$y = \cot x$	$y' = \frac{-1}{\sin^2 x} = -\csc^2 x$
9	$y = \sec x$	$y' = \sec x \tan x$
10	$y = \csc x$	$y' = -\csc x \cot x$
11	$y = \arcsin x$	$y' = \frac{1}{\sqrt{1 - x^2}}$
12	y=rccos x	$y' = -\frac{1}{\sqrt{1-x^2}}$
13	$y = \arctan x$	$y' = \frac{1}{1+x^2}$
14	$y = \operatorname{arccot} x$	$y' = -\frac{1}{1+x^2}$
15	$y = \operatorname{arcsec} x$	$y' = \frac{1}{x\sqrt{x^2 - 1}}$
16	$y = \operatorname{arccsc} x$	$y' = -\frac{1}{x\sqrt{x^2 - 1}}$
17	$y = \sinh x = \frac{e^x - e^{-x}}{2}$	$y' = \cosh x$
18	$y=\cosh x=rac{e^x+e^{-x}}{2}$	$y'=\sinh x$
19	$y = \tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$	$y' = \frac{1}{\cosh^2 x}$
20	$y = \operatorname{arsh} x = \ln(x + \sqrt{x^2 + 1})$	$y' = \frac{1}{\sqrt{x^2 + 1}}$
21	$y = \operatorname{arch} x = \ln(x + \sqrt{x^2 - 1})$	$y' = \frac{1}{\sqrt{x^2 - 1}}$
22	$y = \operatorname{arth} x = \frac{1}{2} \ln(\frac{1+x}{1-x})$	$y' = \frac{1}{1 - x^2}$

积分补充

编号	原函数	导函数
23	$\ln x+\sqrt{x^2\pm a^2} $ +C	$\frac{1}{\sqrt{x^2\pm a^2}}$
24	$rac{a^2}{2} rcsin rac{x}{a} + rac{x}{2} \sqrt{a^2 - x^2} + C$	$\sqrt{a^2-x^2}$
25	$rac{x}{2}\sqrt{x^2\pm a^2}\pmrac{a^2}{2}{ m ln}\left x+\sqrt{x^2\pm a^2} ight +C$	$\sqrt{x^2\pm a^2}$

常用凑微分法

序号	原式	变式
1	$\int f(ax+b) \mathrm{d}x$ ($a eq 0$)	$rac{1}{a}\int f(ax+b)\mathrm{d}ax+b$
2	$\int f(\sin x)\cos x \mathrm{d}x$	$\int f(\sin x) \mathrm{d}(\cos x)$
3	$\int f(\cos x)\sin x \mathrm{d}x$	$-\int f(\cos x)\mathrm{d}(\cos x)$
4	$\int f(\ln x) \frac{1}{x} dx$	$\int f(\ln x) \mathrm{d}(\ln x)$
5	$\int f(x^n) x^{n-1} \mathrm{d}x (n eq 0)$	$\frac{1}{n}\int f(x^n)\mathrm{d}(x^n)$
6	$\int f(rac{1}{x^n})rac{1}{x^{n+1}}\mathrm{d}x(n eq 0)$	$-\frac{1}{n}\int f(\frac{1}{x^n})\mathrm{d}(\frac{1}{x^n})$
7	$\int f(\tan x) \frac{\mathrm{d}x}{\cos^2 x}$	$\int f(\tan x) \mathrm{d}(\tan x)$
8	$\int f(\cot x) \frac{\mathrm{d}x}{\sin^2 x}$	$-\int f(\cot x)\mathrm{d}(\cot x)$
9	$\int f(\arcsin x) \frac{\mathrm{d}x}{\sqrt{1-x^2}}$	$\int f(\arcsin x) d(\arcsin x)$
10	$\int f(\arctan x) \frac{\mathrm{d}x}{1+x^2}$	$\int f(\arctan x) d(\arctan x)$
11	$\int \frac{f'(x)}{f(x)} \mathrm{d}x$	$\int rac{\mathrm{d}f(x)}{f(x)} = \ln f(x) + C$

泰勒公式 (拉格朗日余项)

$$egin{align} f(x) &= T_n(x) + R_n(x) \ T_n(x) &= \sum_{k=0}^n rac{f^{(n)}(x_0)}{k!} (x-x_0)^k \ R_n(x) &= rac{1}{(n+1)!} f^{(n+1)}(\xi) (x-x_0)^{n+1} \ (\xi = x_0 + heta(x-x_0)(0 < heta < 1)) \ \end{array}$$

五个基本初等函数的麦克劳林公式(拉格朗日余项)

$$x \in (-\infty, +\infty), \quad \theta \in (0,1)$$

(1)
$$e^x = \sum_{k=0}^n \frac{x^k}{k!} + \frac{1}{(n+1)!} e^{\theta x} x^{n+1}$$

(2)
$$\sin x = \sum_{k=1}^{n} (-1)^{k-1} \frac{x^{2k-1}}{(2k-1)!} + (-1)^n \frac{\cos \theta x}{(2n+1)!} x^{2n+1}$$

(3)
$$\cos x = \sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k)!} + (-1)^{n+1} \frac{\cos \theta x}{(2n+2)!} x^{2n+2}$$

$$(4) \quad (1+x)^{\alpha} = 1 + \sum_{k=1}^{n} \frac{\prod_{i=1}^{k} (\alpha+1-i) \Big| A_{\alpha}^{k}}{k!} x^{k} + \frac{\prod_{i=1}^{n+1} (\alpha+1-i)}{(n+1)!} (1+\theta x)^{\alpha-n-1} x^{n+1}$$

(5)
$$\ln(1+x) = \sum_{k=1}^{n} \frac{(-1)^{k-1}x^k}{k} + \frac{(-1)^n x^{n+1}}{(n+1)(1+\theta x)^{n+1}}$$

矩阵和、差、积的秩

$$R(A)-R(B) \leq R(A\pm B) \leq R(A)+R(B) \ R(A)+R(B)-n \leq R(AB) \leq \min\left\{R(A),R(B)
ight\} \ s imes n,n imes m$$

各种分布

分布	概率密度	分布函数
$X\sim (0-1)$		
$X \sim B(n,p)$		$P\{X=k\} = C_n^k p^k q^{n-k}$
$X \sim P(\lambda)$		$P\{X=k\}=rac{\lambda^k}{k!}e^{-\lambda}$
几何分布 $p(1-p)^{k-1}$		
$X \sim U(a,b)$	$\frac{1}{b-a}(a < x < b)$	$\frac{x-a}{b-a}$
$X \sim E(\lambda)$	$\lambda e^{-\lambda x}(x>0)$	$1 - e^{-\lambda x}$
$X \sim N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$	arPhi(x)

常见随机变量的数学期望和方差

分布	期望	方差
$X\sim (0-1)$	p	pq
$X \sim B(n,p)$	np	npq
$X \sim P(\lambda)$	λ	λ
几何分布 $p(1-p)^{k-1}$	$\frac{1}{p}$	$\frac{q}{p^2}$
$X \sim U(a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$X \sim E(\lambda)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$X \sim N(\mu, \sigma^2)$	μ	σ^2

Г函数

$$\Gamma(lpha) = \int_0^{+\infty} x^{lpha-1} e^{-x} \mathrm{d}x \ (lpha > 0)$$

性质

$$\Gamma(\alpha+1)=lpha\Gamma(lpha) \ \Gamma(1)=1 \ \Gamma(n+1)=n! \ \Gamma(rac{1}{2})=\sqrt{\pi}$$

切比雪夫不等式

$$m{P}\{|X-m{E}X|\geqarepsilon\}\leqrac{m{D}X}{arepsilon^2} \ m{P}\{|X-m{E}X|$$

大数定理

名称	条件	意义
切比雪夫	独立, $\exists EX_i, \exists DX_i < oxed{ ext{M}}$	$rac{1}{n}\sum_{i=1}^n (X_i - oldsymbol{E} X_i) ightarrow 0$
伯努利	$X_n \sim B(n,p)$	$rac{\mu_A}{n} o p$
辛钦	独立 <mark>同分布</mark> , $EX_i=\mu$	$rac{1}{n}\sum_{i=1}^n X_i o \mu$

列维-林德伯格定理(独立同分布的中心极限定理)

- 意义: $\sum X_i \stackrel{P}{\longrightarrow} \sim N(n\mu, n\sigma^2)$
- 条件:
- 1. <u>独立</u>
- 2. 同分布
- 3. 数学期望与方差存在

$$X_1, X_2, \cdots, X_n, \cdots, \ PX_iPX_j = P(X_i, X_j) = (PX_i)^2, \ EX_k = \mu, DX_k = \sigma^2 > 0(k \in \mathbb{N}^*) \ \lim_{n o \infty} oldsymbol{P} \left\{ rac{1}{\sigma \sqrt{n}} \left(\sum_{i=1}^n X_i - n \mu
ight) \leq x
ight\} = oldsymbol{arPhi}(x)$$

棣莫弗-拉普拉斯定理 (二项分布 以正态分布为其极限分布)

$$egin{aligned} Y_n &\sim B(n,p), orall x \ \lim_{n o\infty} oldsymbol{P} \left\{ rac{Y_n - np}{\sqrt{np(1-p)}} \leq x
ight\} = oldsymbol{arPhi}(x) \end{aligned}$$

样本期望与方差

$$oldsymbol{E} \overline{X} = oldsymbol{E} X = \mu \ oldsymbol{D} \overline{X} = rac{oldsymbol{D} X}{n} = rac{\sigma^2}{n} \ oldsymbol{E} S^2 = oldsymbol{D} X = \sigma^2$$

χ^2 分布

定义

$$X_i \sim N(0,1) \wedge P(X_i,X_j) = PX_iPX_j \ \chi^2 = \sum_{i=1}^n X_i^2
ightarrow \chi^2 \sim \chi^2(n)$$

分位点

$$m{P}\{\chi^2>\chi^2_lpha(n)\}=lpha$$

性质

1.
$$E(\chi^2(n)) = n, D(\chi^2(n)) = 2n$$

$$egin{aligned} 2. \quad \chi^2_{1,2} \sim \chi^2(n_{1,2}), F(\chi^2_1,\chi^2_2) &= F(\chi^2_1)F(\chi^2_2) \ & o \chi^2_1 + \chi^2_2 \sim \chi^2(n_1 + n_2) \end{aligned}$$

t分布

定义

$$X \sim N(0,1), Y \sim \chi^2(n), PXY = PXPY \
ightarrow t = rac{X}{\sqrt{Y/n}} \sim t(n)$$

分位点

$$P\{t > t_{\alpha}(n)\} = \alpha$$

性质

$$egin{aligned} &\lim_{n o\infty}f(t)=rac{1}{\sqrt{2\pi}}e^{-t^2/2}\ &t\sim t(n) o t^2\sim F(1,n) \end{aligned}$$

F分布

定义

$$egin{aligned} X \sim \chi^2(n_1), Y \sim \chi^2(n_2) \
ightarrow F = rac{X/n_1}{Y/n_2} \sim F(n_1,n_2) \end{aligned}$$

分位点

$$\mathbf{P}\{F > F_{\alpha}(n_1, n_2)\} = \alpha$$

性质

$$egin{split} F\sim F(n_1,n_2)&
ightarrowrac{1}{F}\sim F(n_2,n_1)\ F_{1-lpha}(n_1,n_2)&=rac{1}{F_lpha(n_2,n_1)} \end{split}$$

样本方差

$$rac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(rac{X_i - \overline{X}}{\sigma}
ight)^2 \sim \chi^2(n-1)^n$$

 \overline{X} 与 S^2 相互独立。