

# **Tutorium**

# Wahrscheinlichketstheorie und Frequentistische Inferenz

BSc Psychologie WiSe 2022/23

Belinda Fleischmann

(3) Elementare Wahrscheinlichkeiten

### Selbstkontrollfragen

- 1. Erläutern Sie die Frequentistische Interpretation der Wahrscheinlichkeit eines Ereignisses.
- 2. Erläutern Sie die Bayesianische Interpretation der Wahrscheinlichkeit eines Ereignisses.
- 3. Geben Sie die Definition der gemeinsamen Wahrscheinlichkeit zweier Ereignisse wieder.
- 4. Erläutern Sie die intuitive Bedeutung der gemeinsamen Wahrscheinlichkeit zweier Ereignisse.
- 5. Geben Sie das Theorem zu weiteren Eigenschaften von Wahrscheinlichkeiten wieder.
- 6. Geben Sie die Definition der Unabhängigkeit zweier Ereignisse wieder.
- Geben Sie die Definition der bedingten Wahrscheinlichkeit eines Ereignisses und der bedingten Wahrscheinlichkeit wieder.
- 8. Geben Sie das Theorem zur bedingten Wahrscheinlichkeit unter Unabhängigkeit wieder.
- Erläutern Sie den Begriff der stochastischen Unabhängigkeit vor dem Hintergrund des Theorems zur bedingten Wahrscheinlichkeit unter Unabhängigkeit.
- 10. Geben Sie das Theorem zu gemeinsamen und bedingten Wahrscheinlichkeiten wieder.
- 11. Geben Sie das Gesetz von der totalen Wahrscheinlichkeit wieder.
- 12. Geben Sie das Theorem von Bayes wieder.
- 13. Erläutern Sie das Theorem von Bayes im Rahmen der Bayesianischen Inferenz.
- 14. Beweisen Sie das Theorem von Bayes.

# Wahrscheinlichkeitstheorie - Wiederholung



# Wahrscheinlichkeitstheorie - Wiederholung

# Definition (Wahrscheinlichkeitsraum)

Ein Wahrscheinlichkeitsraum ist ein Triple  $(\Omega, \mathcal{A}, \mathbb{P})$ , wobei

- ullet  $\Omega$  eine beliebige nichtleere Menge von Ergebnissen  $\omega$  ist und Ergebnismenge heißt,
- A eine  $\sigma$ -Algebra auf  $\Omega$  ist und Ereignissystem heißt,
- ullet P eine Abbildung der Form  $\mathbb{P}:\mathcal{A} 
  ightarrow [0,1]$  mit den Eigenschaften
  - o Nicht-Negativität  $\mathbb{P}(A) \geq 0$  für alle  $A \in \mathcal{A}$ ,
  - o Normiertheit  $\mathbb{P}(\Omega)=1$  und
  - o  $\sigma$ -Additivität  $\mathbb{P}(\cup_{i=1}^\infty A_i) = \sum_{i=1}^\infty \mathbb{P}(A_i)$  für paarweise disjunkte  $A_i \in \mathcal{A}$

ist und Wahrscheinlichkeitsmaß heißt.

Das Tuple  $(\Omega, A)$  aus Ergebnismenge und Ereignissystem wird als Messraum bezeichnet.

# Verknüpfungen von Mengen - Wiederholung

## Definition (Mengenoperationen)

M und N seien zwei Mengen.

Die Vereinigung von M und N ist definiert als die Menge

$$M \cup N := \{x | x \in M \text{ oder } x \in N\},$$
 (1)

wobei oder im inklusiven Sinne als und/oder zu verstehen ist.

Der Durchschnitt von M und N ist definiert als die Menge

$$M \cap N := \{x | x \in M \text{ und } x \in N\}. \tag{2}$$

Die Differenz von M und N ist definiert als die Menge

$$M \setminus N := \{x | x \in M \text{ und } x \notin N\}. \tag{3}$$

Die symmetrische Differenz von M und N ist definiert als die Menge

$$M\Delta N := \{x | x \in M \text{ oder } x \in N, \text{ aber } x \notin M \cap N\},$$
 (4)

wobei oder hier also im exklusiven Sinne zu verstehen ist.

#### Definition (Komplementärmenge)

Es sei A eine Teilmenge von U. Dann heißt die Menge

$$A^c := U \setminus A = \{x \in U | x \notin A\}$$

Komplementärmenge von A.

### SKF 1. Frequentistische Interpretation

- 1. Erläutern Sie die Frequentistische Interpretation der Wahrscheinlichkeit eines Ereignisses.
  - Nach der Frequentistischen Interpretation ist P(A) die idealisierte relative Häufigkeit, mit der das Ereignis A
    unter den gleichen äußeren Bedingungen einzutreten pflegt.
  - Zum Beispiel ist die frequentistische Interpretation von P({6}) im Modell des Werfens eines Würfels "Wenn
    man einen Würfel unendlich oft werfen würde und die relative Häufigkeit des Elementareignisses {6}
    bestimmen würde, dann wäre diese relative Häufigkeit gleich P({6})."

### SKF 2. Bayesianische Interpretation

# 2. Erläutern Sie die Bayesianische Interpretation der Wahrscheinlichkeit eines Ereignisses.

- Nach der Bayesianischen Interpretation ist P(A) der Grad der Sicherheit, den eine Beobachter:in aufgrund ihrer subjektiven Einschätzung der Lage dem Eintreten des Ereignisses A zumisst.
- Zum Beispiel ist die Bayesianische Interpretation von  $\mathbb{P}(\{6\})$  im Modell des Werfen eines Würfels "Basierend auf meinen Erfahrungen mit dem Werfen eines Würfels bin ich mir zu  $\mathbb{P}(\{6\}) \cdot 100$  Prozent sicher, dass der Würfel beim nächsten Wurf eine 6 zeigt."

#### SKF 3. Gemeinsame Wahrscheinlichkeit.

3. Geben Sie die Definition der gemeinsamen Wahrscheinlichkeit zweier Ereignisse wieder.

# Definition (Gemeinsame Wahrscheinlichkeit)

 $(\Omega, \mathcal{A}, \mathbb{P})$  sei ein Wahrscheinlichkeitsraum und es seien  $A, B \in \mathcal{A}$ . Dann heißt

$$\mathbb{P}(A \cap B) \tag{5}$$

die gemeinsame Wahrscheinlichkeit von A und B.

# SKF 4. Intuition gemeinsame Wahrscheinlichkeit

- 4. Erläutern Sie die intuitive Bedeutung der gemeinsamen Wahrscheinlichkeit zweier Ereignisse.
  - Intuitiv entspricht  $\mathbb{P}(A \cap B)$  der Wahrscheinlichkeit, dass A und B gleichzeitig (gemeinsam) eintreten.
  - In der Mechanik des W-Raummodells ist  $\mathbb{P}(A \cap B)$  die Wahrscheinlichkeit, dass in einem Durchgang des Zufallsvorgang ein  $\omega$  mit sowohl  $\omega \in A$  als auch  $\omega \in B$  realisiert wird.

#### Visualisierung einer Schnittmenge



5. Geben Sie das Theorem zu weiteren Eigenschaften von Wahrscheinlichkeiten wieder.

# Theorem (Weitere Eigenschaften von Wahrscheinlichkeiten)

 $(\Omega, \mathcal{A}, \mathbb{P})$  sei ein Wahrscheinlichkeitsraum und es seien  $A, B \in \mathcal{A}$  Ereignisse. Dann gelten

- 1.  $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$ .
- 2.  $A \subset B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$ .
- 3.  $\mathbb{P}(A \cap B^c) = \mathbb{P}(A) \mathbb{P}(A \cap B)$
- 4.  $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$ .
- 5.  $A \cap B = \emptyset \Rightarrow \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ .



## 6. Geben Sie die Definition der Unabhängigkeit zweier Ereignisse wieder.

# Definition (Unabhängige Ereignisse)

Zwei Ereignisse  $A \in \mathcal{A}$  and  $B \in \mathcal{A}$  heißen (stochastisch) unabhängig, wenn

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B). \tag{6}$$

Eine Menge von Ereignissen  $\{A_i|i\in I\}\subset \mathcal{A}$  mit beliebiger Indexmenge I heißt (stochastisch) unabhängig, wenn für jede endliche Untermenge  $J\subseteq I$  gilt, dass

$$\mathbb{P}\left(\cap_{j\in J} A_j\right) = \prod_{j\in J} \mathbb{P}(A_j). \tag{7}$$

7. Geben Sie die Definition der bedingten Wahrscheinlichkeit eines Ereignisses und der bedingten Wahrscheinlichkeit wieder.

# Definition (Bedingte Wahrscheinlichkeit)

 $(\Omega, \mathcal{A}, \mathbb{P})$  sei ein Wahrscheinlichkeitsraum und  $A, B \in \mathcal{A}$  seien Ereignisse mit  $\mathbb{P}(B) > 0$ . Die bedingte Wahrscheinlichkeit des Ereignisses A gegeben das Ereignis B ist definiert als

$$\mathbb{P}(A|B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$
 (8)

Weiterhin heißt das für ein festes  $B \in \mathcal{A}$  mit  $\mathbb{P}(B) > 0$  definierte Wahrscheinlichkeitsmaß

$$\mathbb{P}(\ |B): \mathcal{A} \to [0, 1], A \mapsto \mathbb{P}(A|B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

$$\tag{9}$$

die bedingte Wahrscheinlichkeit gegeben Ereignis B.

# SKF 8. Bedingte Wahrscheinlichkeit unter Unabhängigkeit

8. Geben Sie das Theorem zur bedingten Wahrscheinlichkeit unter Unabhängigkeit wieder.

# Theorem (Bedingte Wahrscheinlichkeit unter Unabhängigkeit)

 $(\Omega,\mathcal{A},\mathbb{P})$  sei ein Wahrscheinlichkeitsraum und  $A,B\in\mathcal{A}$  seien unabhängige Ereignisse mit  $\mathbb{P}(B)>0$ . Dann gilt

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A)\mathbb{P}(B)}{\mathbb{P}(B)} = \mathbb{P}(A).$$
 (10)

- 9. Erläutern Sie den Begriff der stochastischen Unabhängigkeit vor dem Hintergrund des Theorems zur bedingten Wahrscheinlichkeit unter Unabhängigkeit.
  - Die stochastische Unabhängigkeit zweier Ereignisse bedeutet, dass das Wissen um das Eintreten eines der beiden Ereignisse die Wahrscheinlichkeit für das Eintreten des anderen Ereignisses nicht ändert.
  - So ist beispielsweise bei Unabhängigkeit der Ereignisse A und B die bedingte Wahrscheinlichkeit  $\mathbb{P}(A|B)$  gleich der Wahrscheinlichkeit  $\mathbb{P}(A)$ , weil bei Unabhängigkeit gilt, dass  $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$  (vgl. erste Gleichung) und  $\mathbb{P}(B)$ , das im Zähler und Nenner des Terms steht rausgekürzt werden kann (vgl. zweite Gleichung).

#### SKF 10. Gemeinsame und bedingte Wahrscheinlichkeiten

10. Geben Sie das Theorem zu gemeinsamen und bedingten Wahrscheinlichkeiten wieder.

# Theorem (Gemeinsame und bedingte Wahrscheinlichkeiten)

Es seien  $(\Omega, \mathcal{A}, \mathbb{P})$  ein W-Raum und  $A, B \in \mathcal{A}$  mit  $\mathbb{P}(\cdot | B) > 0$ . Dann gilt

$$\mathbb{P}(A \cap B) = \mathbb{P}(A|B)\mathbb{P}(B) = \mathbb{P}(B|A)\mathbb{P}(A). \tag{11}$$

#### SKF 11. Gesetz der totalen Wahrscheinlichkeit

#### 11. Geben Sie das Gesetz von der totalen Wahrscheinlichkeit wieder.

# Theorem (Gesetz der totalen Wahrscheinlichkeit)

 $(\Omega,\mathcal{A},\mathbb{P})$  sei ein Wahrscheinlichkeitsraum und  $A_1,...,A_k$  sei eine Partition von  $\Omega.$  Dann gilt für jedes  $B\in\mathcal{A}$ , dass

$$\mathbb{P}(B) = \sum_{i=1}^{\kappa} \mathbb{P}(B|A_i)\mathbb{P}(A_i). \tag{12}$$

### SKF 12. Theorem von Bayes

## 12. Geben Sie das Theorem von Bayes wieder.

# Theorem (Theorem von Bayes)

 $(\Omega,\mathcal{A},\mathbb{P})$  sei ein Wahrscheinlichkeitsraum und  $A_1,...,A_k$  sei eine Partition von  $\Omega$  mit  $\mathbb{P}(A_i)>0$  für alle i=1,...,k. Wenn  $\mathbb{P}(B)>0$  gilt, dann gilt für jedes i=1,...,k, dass

$$\mathbb{P}(A_i|B) = \frac{\mathbb{P}(B|A_i)\mathbb{P}(A_i)}{\sum_{i=1}^k \mathbb{P}(B|A_i)\mathbb{P}(A_i)}.$$
 (13)

#### SKF 13. Theorem von Bayes

# 13. Erläutern Sie das Theorem von Bayes im Rahmen der Bayesianischen Inferenz.

- Im Rahmen der Bayesianischen Inferenz ist das Theorem von Bayes zentral;
- hier wird  $\mathbb{P}(A_i)$  oft Prior Wahrscheinlichkeit und  $\mathbb{P}(A_i|B)$  oft Posterior Wahrscheinlichkeit des Ereignisses  $A_i$  genannt.
- Wie oben erläutert entspricht  $\mathbb{P}(A_i|B)$  dann der aktualisierten Wahrscheinlichkeit von  $A_i$ , wenn man um das Eintreten von B weiß.

#### SKF 14. Theorem von Bayes

#### 14. Beweisen Sie das Theorem von Bayes.

Mit der Definition der bedingten Wahrscheinlichkeit und dem Gesetz der totalen Wahrscheinlichkeit gilt

$$\mathbb{P}(A_i|B) = \frac{\mathbb{P}(A_i \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B|A_i)\mathbb{P}(A_i)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B|A_i)\mathbb{P}(A_i)}{\sum_{i=1}^k \mathbb{P}(B|A_i)\mathbb{P}(A_i)}.$$