Fundamentos Teóricos da Computação

– Autômatos Finitos (Parte 03) –

Zenilton Kleber Gonçalves do Patrocínio Jr.

Ciência da Computação – PUC Minas Belo Horizonte, Brasil

2025

Sumário

- 1 Fechamento de Operações em LRs
 - Definição Fechamento de Operações
 - Fechamento sob Concatenação
 - Fechamento sob Fecho de Kleene
 - Aplicações de Fechamento
- 2 Lema do Bombeamento
 - Lema sobre Linguagens Infinitas
 - Lema do Bombeamento para LRs
- 3 Linguagens que não são LRs
 - Prova Usando o Lema do Bombeamento para LRs
 - Prova Usando Propriedades de Fechamento de LRs

O Que é Fechamento

Seja uma classe de linguagens $\mathcal L$ e uma operação sobre linguagens $\mathcal O$. Diz-se que $\mathcal L$ é **fechada sob** $\mathcal O$ se a aplicação de $\mathcal O$ a linguagens pertencentes a $\mathcal L$ sempre resulta em uma linguagem pertencente a $\mathcal L$.

Propriedades de Fechamento

Considere duas linguagens regulares L_1 e L_2 , então:

- $L_1 \cup L_2$ também é regular
- $L_1 \cap L_2$ também é regular
- L_1L_2 também é regular
- L₁* também é regular
- $\overline{L_1}$ também é regular

O Que é Fechamento

Seja uma classe de linguagens $\mathcal L$ e uma operação sobre linguagens $\mathcal O$. Diz-se que $\mathcal L$ **é fechada sob** $\mathcal O$ se a aplicação de $\mathcal O$ a linguagens pertencentes a $\mathcal L$ sempre resulta em uma linguagem pertencente a $\mathcal L$.

Propriedades de Fechamento

Considere duas linguagens regulares L_1 e L_2 , então:

- $L_1 \cup L_2$ também é regular
- $L_1 \cap L_2$ também é regular
- L₁L₂ também é regular
- L₁* também é regular
- $\overline{L_1}$ também é regular

Fechamento sob Concatenação - Esquema

Fechamento sob Concatenação

Sejam dois AFDs:

$$M_1 = (E_1, \Sigma_1, \delta_1, i_1, F_1)$$
 e $M_2 = (E_2, \Sigma_2, \delta_2, i_2, F_2), E_1 \cap E_2 = \emptyset$

O AFN- λ M_3 reconhece $L(M_1)L(M_2)$:

$$M_3 = (E_1 \cup E_2, \Sigma_1 \cup \Sigma_2, \delta_3, i_1, F_2)$$

em que δ_3 é dada por:

$$\bullet \ \, \delta_3(e,a) = \left\{ \begin{array}{l} \{\delta_1(e,a)\} \quad \text{, para todo } e \in E_1, a \in \Sigma_1 \\ \{\delta_2(e,a)\} \quad \text{, para todo } e \in E_2, a \in \Sigma_2 \end{array} \right.$$

Fechamento sob Fecho de Kleene - Esquema

Fechamento sob Fecho de Kleene

Seja um AFD $M = (E, \Sigma, \delta, i, F)$

O AFN- λ M' reconhece $L(M)^*$:

$$M' = (E \cup \{i'\}, \Sigma, \delta', i', F \cup \{i'\})$$

em que $i' \notin E$ e δ' é dada por:

- $\delta'(i', \lambda) = \{i\}$
- $\delta'(e, a) = \{\delta(e, a)\}$ para todo $e \in E, a \in \Sigma$

Aplicações das Propriedades de Fechamento

Três aplicações para as propriedades de fechamento das LRs:

- Provar que uma linguagem é regular
- 2 Facilitar a obtenção de AF para uma linguagem regular
- 3 Provar que uma linguagem não é regular

Exemplo de Aplicação do Tipo 1

Considere:

- $L_1 = \{ w \in \{0,1\}^* \mid w \text{ representa um número binário divisível por 6} \}$
- $L_2 = \{ w \in \{0,1\}^* \mid \text{o terceiro digito de } w, \text{ da direita para esquerda, } \notin 1 \}$

Prove que $L_1 - L_2$ é regular.

 L_1 e L_2 são linguagens regulares, pois é possível construir AFs para reconhecê-las

Como L_1-L_2 é equivalente a $L_1\cap\overline{L_2}$, então L_1-L_2 é linguagem regular, pois $\overline{L_2}$ é linguagem regular e a interseção de linguagens regulares, isto é $L_1\cap\overline{L_2}$, também resulta em linguagem regular.

Exemplo de Aplicação do Tipo 1

Considere:

- $L_1 = \{ w \in \{0,1\}^* \mid w \text{ representa um número binário divisível por 6} \}$
- ullet $L_2=\{w\in\{0,1\}^*\mid ext{o terceiro digito de }w ext{, da direita para esquerda, \'e }1\}$

Prove que $L_1 - L_2$ é regular.

 L_1 e L_2 são linguagens regulares, pois é possível construir AFs para reconhecê-las

Como $L_1 - L_2$ é equivalente a $L_1 \cap \overline{L_2}$, então $L_1 - L_2$ é linguagem regular, pois $\overline{L_2}$ é linguagem regular e a interseção de linguagens regulares, isto é $L_1 \cap \overline{L_2}$, também resulta em linguagem regular.

Exemplo de Aplicação do Tipo 1

Considere:

- $L_1 = \{ w \in \{0,1\}^* \mid w \text{ representa um número binário divisível por 6} \}$
- $L_2 = \{w \in \{0,1\}^* \mid \text{o terceiro digito de } w, \text{ da direita para esquerda, \'e } 1\}$

Prove que $L_1 - L_2$ é regular.

 L_1 e L_2 são linguagens regulares, pois é possível construir AFs para reconhecê-las.

Como L_1-L_2 é equivalente a $L_1\cap\overline{L_2}$, então L_1-L_2 é linguagem regular, pois $\overline{L_2}$ é linguagem regular e a interseção de linguagens regulares, isto é $L_1\cap\overline{L_2}$, também resulta em linguagem regular.

Exemplo de Aplicação do Tipo 2

Considere:

- $L_1 = \{ w \in \{0,1\}^* \mid w \text{ representa um número binário divisível por 6} \}$
- $L_2 = \{w \in \{0,1\}^* \mid \text{o terceiro digito de } w, \text{ da direita para esquerda, \'e 1} \}$

Construir um AFD para $L_1 - L_2$.

 L_1 e L_2 são linguagens regulares e é possível construir AFs para reconhecê-las. Para L_1 é possível se obter um AFD M com 6 estados que a reconhece, enquanto que para L_2 pode-se construir facilmente um AFN com 4 estados que a reconheca, que pode ser transformado em um AFD N equivalente.

Como L_1-L_2 é equivalente a $L_1\cap\overline{L_2}$, então basta obter um AFD K que reconheça $\overline{L_2}$ a partir do AFD N (complementando-se o conjunto de estados de aceitação de N). Em seguida, basta produzir um AFD para $L_1\cap\overline{L_2}$ por meio do produto cartesiano entre o AFD M e o AFD K.

Exemplo de Aplicação do Tipo 2

Considere:

- $L_1 = \{ w \in \{0,1\}^* \mid w \text{ representa um número binário divisível por 6} \}$
- $L_2 = \{w \in \{0,1\}^* \mid \text{o terceiro digito de } w, \text{ da direita para esquerda, \'e } 1\}$

Construir um AFD para $L_1 - L_2$.

 L_1 e L_2 são linguagens regulares e é possível construir AFs para reconhecê-las. Para L_1 é possível se obter um AFD M com 6 estados que a reconhece, enquanto que para L_2 pode-se construir facilmente um AFN com 4 estados que a reconheça, que pode ser transformado em um AFD N equivalente.

Como L_1-L_2 é equivalente a $L_1\cap\overline{L_2}$, então basta obter um AFD K que reconheça $\overline{L_2}$ a partir do AFD N (complementando-se o conjunto de estados de aceitação de N). Em seguida, basta produzir um AFD para $L_1\cap\overline{L_2}$ por meio do produto cartesiano entre o AFD M e o AFD K.

Exemplo de Aplicação do Tipo 2

Considere:

- $L_1 = \{ w \in \{0,1\}^* \mid w \text{ representa um número binário divisível por 6} \}$
- $L_2 = \{w \in \{0,1\}^* \mid \text{o terceiro digito de } w, \text{ da direita para esquerda, \'e 1}\}$

Construir um AFD para $L_1 - L_2$.

 L_1 e L_2 são linguagens regulares e é possível construir AFs para reconhecê-las. Para L_1 é possível se obter um AFD M com 6 estados que a reconhece, enquanto que para L_2 pode-se construir facilmente um AFN com 4 estados que a reconheça, que pode ser transformado em um AFD N equivalente.

Como $L_1-\underline{L}_2$ é equivalente a $L_1\cap\overline{L}_2$, então basta obter um AFD K que reconheça \overline{L}_2 a partir do AFD N (complementando-se o conjunto de estados de aceitação de N). Em seguida, basta produzir um AFD para $L_1\cap\overline{L}_2$ por meio do produto cartesiano entre o AFD M e o AFD K.

Exemplo de Aplicação do Tipo 3

Seja $L = \{a^k b^m c^n \mid k = m + n\}$. Prove que L não é linguagem regular.

Suponha que L seia uma linguagem regular.

Como a^*b^* é linguagem regular e a classe das linguagens regulares é fechada sob interseção, segue-se que $L \cap a^*b^*$ deve ser uma linguagem regular.

Exemplo de Aplicação do Tipo 3

Seja $L = \{a^k b^m c^n \mid k = m + n\}$. Prove que L não é linguagem regular.

Suponha que L seja uma linguagem regular.

Como a^*b^* é linguagem regular e a classe das linguagens regulares é fechada sob interseção, segue-se que $L \cap a^*b^*$ deve ser uma linguagem regular.

Exemplo de Aplicação do Tipo 3

Seja $L = \{a^k b^m c^n \mid k = m + n\}$. Prove que L não é linguagem regular.

Suponha que L seja uma linguagem regular.

Como a^*b^* é linguagem regular e a classe das linguagens regulares é fechada sob interseção, segue-se que $L \cap a^*b^*$ deve ser uma linguagem regular.

Exemplo de Aplicação do Tipo 3

Seja $L = \{a^k b^m c^n \mid k = m + n\}$. Prove que L não é linguagem regular.

Suponha que L seja uma linguagem regular.

Como a^*b^* é linguagem regular e a classe das linguagens regulares é fechada sob interseção, segue-se que $L \cap a^*b^*$ deve ser uma linguagem regular.

Lema

Seja M um AFD com k estados. Se M aceita uma sentença w tal que $|w| \geq k$, então existe pelo menos um ciclo no caminho de M no qual w é aceito.

Lema

Seja M um AFD com k estados. Se M aceita uma sentença w tal que $|w| \ge k$, então existe pelo menos um ciclo no caminho de M no qual w é aceito.

Lema

Seja M um AFD com k estados. Se M aceita uma sentença w tal que $|w| \ge k$, então existe pelo menos um ciclo no caminho de M no qual w é aceito.

⇒ Uma palavra de tamanho 1 deve ser reconhecida em caminho com 2 estados !

Lema

Seja M um AFD com k estados. Se M aceita uma sentença w tal que $|w| \ge k$, então existe pelo menos um ciclo no caminho de M no qual w é aceito.

⇒ Uma palavra de tamanho 2 deve ser reconhecida em caminho com 3 estados !

Lema

Seja M um AFD com k estados. Se M aceita uma sentença w tal que $|w| \ge k$, então existe pelo menos um ciclo no caminho de M no qual w é aceito.

⇒ Uma palavra de tamanho 3 deve ser reconhecida em caminho com 4 estados !

Lema

Seja M um AFD com k estados. Se M aceita uma sentença w tal que $|w| \ge k$, então existe pelo menos um ciclo no caminho de M no qual w é aceito.

⇒ Uma palavra de tamanho ...

Lema

Seja M um AFD com k estados. Se M aceita uma sentença w tal que $|w| \ge k$, então existe pelo menos um ciclo no caminho de M no qual w é aceito.

 \Rightarrow Uma palavra de tamanho 10 deve ser reconhecida em caminho com 11 estados !

Lema do Bombeamento para LRs

Lema do Bombeamento (Pumping lemma)

Seja L uma linguagem regular aceita por um autômato M de k>0 estados. Toda sentença w de L de tamanho maior ou igual a k pode ser escrita da forma w=uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L, \forall i = 0, 1, 2, ...$

Lema do Bombeamento para LRs

Lema do Bombeamento (Pumping lemma)

Seja L uma linguagem regular aceita por um autômato M de k>0 estados. Toda sentença w de L de tamanho maior ou igual a k pode ser escrita da forma w=uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L, \forall i = 0, 1, 2, ...$

1º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_1 = \{a^n b^n \mid n \geq 0\}$. Prove que L_1 não é linguagem regular

Prova

Suponha que L_1 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_1 .

1° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_1 = \{a^nb^n \mid n \geq 0\}$. Prove que L_1 não é linguagem regular.

Prova

Suponha que L_1 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_1 . Toda sentença $w \in L_1, |w| \ge k$, pode ser escrita da

|uv| ≤ k,

|v| > 0 (ou $v \neq \lambda$),

• $uv'x \in L_1, \forall i = 0, 1, 2, i = 0, 1, 2, \forall i = 0$

um s (no máximo k s) e nu

1º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_1 = \{a^n b^n \mid n \ge 0\}$. Prove que L_1 não é linguagem regular.

Prova

Suponha que L_1 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_1 . Toda sentença $w \in L_1$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_1, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^k \in L_1$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

1º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_1 = \{a^n b^n \mid n \ge 0\}$. Prove que L_1 não é linguagem regular.

Prova

Suponha que L_1 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_1 . Toda sentença $w \in L_1, |w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_1, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^k \in L_1$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

1º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_1 = \{a^n b^n \mid n \ge 0\}$. Prove que L_1 não é linguagem regular.

Prova

Suponha que L_1 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_1 . Toda sentença $w \in L_1, |w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_1, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^k \in L_1$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

1º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_1 = \{a^n b^n \mid n \ge 0\}$. Prove que L_1 não é linguagem regular.

Prova

Suponha que L_1 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_1 . Toda sentença $w \in L_1, |w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_1, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^k \in L_1$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

1º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_1 = \{a^n b^n \mid n \ge 0\}$. Prove que L_1 não é linguagem regular.

Prova

Suponha que L_1 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_1 . Toda sentença $w \in L_1, |w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_1, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^k \in L_1$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

1º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_1 = \{a^n b^n \mid n \ge 0\}$. Prove que L_1 não é linguagem regular.

Prova

Suponha que L_1 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_1 . Toda sentença $w \in L_1, |w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_1, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^k \in L_1$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

2º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_2 = \{a^m b^n \mid m \le n\}$. Prove que L_2 não é linguagem regular.

Prova

Suponha que L_2 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_2 .

2° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_2 = \{a^m b^n \mid m \le n\}$. Prove que L_2 não é linguagem regular.

Prova

Suponha que L_2 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_2 . Toda sentença $w \in L_2$, $|w| \ge k$, pode ser escrita de

- | uv| < k.
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_2, \forall i = 0, 1, 2$
- Considere $w_1 = a^k b^k \in L_2$. C

Zenilton Patrocínio Jr.

2º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_2 = \{a^m b^n \mid m \le n\}$. Prove que L_2 não é linguagem regular.

Prova

Suponha que L_2 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_2 . Toda sentença $w \in L_2$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- \bullet $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_2, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^k \in L_2$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

2º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_2 = \{a^m b^n \mid m \le n\}$. Prove que L_2 não é linguagem regular.

Prova

Suponha que L_2 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_2 . Toda sentença $w \in L_2, |w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_2, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^k \in L_2$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

2º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_2 = \{a^m b^n \mid m \le n\}$. Prove que L_2 não é linguagem regular.

Prova

Suponha que L_2 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_2 . Toda sentença $w \in L_2, |w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_2, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^k \in L_2$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

2º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_2 = \{a^m b^n \mid m \le n\}$. Prove que L_2 não é linguagem regular.

Prova

Suponha que L_2 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_2 . Toda sentença $w \in L_2$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_2, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^k \in L_2$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

2º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_2 = \{a^m b^n \mid m \le n\}$. Prove que L_2 não é linguagem regular.

Prova

Suponha que L_2 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_2 . Toda sentença $w \in L_2, |w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_2, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^k \in L_2$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

2º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_2 = \{a^m b^n \mid m \le n\}$. Prove que L_2 não é linguagem regular.

Prova

Suponha que L_2 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_2 . Toda sentença $w \in L_2, |w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_2, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^k \in L_2$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

3º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_3 = \{a^m b^n \mid m < n\}$. Prove que L_3 não é linguagem regular

Prova

Suponha que L_3 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_3 .

3° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_3 = \{a^m b^n \mid m < n\}$. Prove que L_3 não é linguagem regular.

Prov:

Suponha que L_3 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_3 . Toda sentença que L_4 uma pode ser escrita

- $|uv| \leq k$
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_3, \forall i = 0, 1, 2, ...$

3° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_3 = \{a^m b^n \mid m < n\}$. Prove que L_3 não é linguagem regular.

Prova

Suponha que L_3 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_3 . Toda sentença $w \in L_3$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_3, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^{k+1} \in L_3$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

3° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_3 = \{a^m b^n \mid m < n\}$. Prove que L_3 não é linguagem regular.

Prova

Suponha que L_3 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_3 . Toda sentença $w \in L_3$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_3, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^{k+1} \in L_3$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

3° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_3 = \{a^m b^n \mid m < n\}$. Prove que L_3 não é linguagem regular.

Prova

Suponha que L_3 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_3 . Toda sentença $w \in L_3$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_3, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^{k+1} \in L_3$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

3° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_3 = \{a^m b^n \mid m < n\}$. Prove que L_3 não é linguagem regular.

Prova

Suponha que L_3 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_3 . Toda sentença $w \in L_3$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_3, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^{k+1} \in L_3$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

3° Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_3 = \{a^m b^n \mid m < n\}$. Prove que L_3 não é linguagem regular.

Prova

Suponha que L_3 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_3 . Toda sentença $w \in L_3$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_3, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^{k+1} \in L_3$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

3º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_3 = \{a^m b^n \mid m < n\}$. Prove que L_3 não é linguagem regular.

Prova

Suponha que L_3 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_3 . Toda sentença $w \in L_3$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_3, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^{k+1} \in L_3$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

4º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_4 = \{a^m b^n \mid m \ge n\}$. Prove que L_4 não é linguagem regular

Prova

Suponha que L_4 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_4 .

4° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_4 = \{a^m b^n \mid m \ge n\}$. Prove que L_4 não é linguagem regular.

Prova

Suponha que L_4 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_4 . Toda sentença $w \in L_4$, $|w| \ge k$, pode ser escrita da

 \bullet |uv| < k

|v| > 0 (ou $v \neq \lambda$),

 $\mathbf{0}$ $\mathbf{u}\mathbf{v}'\mathbf{x} \in I$, $\forall i = 0, 1, 2$

Considere $w_k = a^k b^k \in I_k$. (Considere $w_k = a^k b^k \in I_k$.)

4º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_4 = \{a^m b^n \mid m \ge n\}$. Prove que L_4 não é linguagem regular.

Prova

Suponha que L_4 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_4 . Toda sentença $w \in L_4$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- \bullet $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_4, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^k \in L_4$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

4º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_4 = \{a^m b^n \mid m \ge n\}$. Prove que L_4 não é linguagem regular.

Prova

Suponha que L_4 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_4 . Toda sentença $w \in L_4$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_4, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^k \in L_4$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

4º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_4 = \{a^m b^n \mid m \ge n\}$. Prove que L_4 não é linguagem regular.

Prova

Suponha que L_4 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_4 . Toda sentença $w \in L_4$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_4, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^k \in L_4$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

4º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_4 = \{a^m b^n \mid m \ge n\}$. Prove que L_4 não é linguagem regular.

Prova

Suponha que L_4 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_4 . Toda sentença $w \in L_4$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_4, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^k \in L_4$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

4º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_4 = \{a^m b^n \mid m \ge n\}$. Prove que L_4 não é linguagem regular.

Prova

Suponha que L_4 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_4 . Toda sentença $w \in L_4, |w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_4, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^k \in L_4$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

4º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_4 = \{a^m b^n \mid m \ge n\}$. Prove que L_4 não é linguagem regular.

Prova

Suponha que L_4 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_4 . Toda sentença $w \in L_4$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_4, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^k \in L_4$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

5° Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_5 = \{a^m b^n \mid m > n\}$. Prove que L_5 não é linguagem regular

Prova

Suponha que L_5 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_5 .

5° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_5 = \{a^m b^n \mid m > n\}$. Prove que L_5 não é linguagem regular.

Prov:

Suponha que L_5 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_5 . Toda sentença que L_6 uma pode ser escrita

- |uv| ≤ k.
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_5, \forall i = 0, 1, 2, ...$

5° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_5 = \{a^m b^n \mid m > n\}$. Prove que L_5 não é linguagem regular.

Prova

Suponha que L_5 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_5 . Toda sentença $w \in L_5$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_5, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^{k+1}b^k \in L_5$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

5° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_5 = \{a^m b^n \mid m > n\}$. Prove que L_5 não é linguagem regular.

Prova

Suponha que L_5 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_5 . Toda sentença $w \in L_5$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_5, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^{k+1}b^k \in L_5$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

5° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_5 = \{a^m b^n \mid m > n\}$. Prove que L_5 não é linguagem regular.

Prova

Suponha que L_5 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_5 . Toda sentença $w \in L_5$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_5, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^{k+1}b^k \in L_5$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

5° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_5 = \{a^m b^n \mid m > n\}$. Prove que L_5 não é linguagem regular.

Prova

Suponha que L_5 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_5 . Toda sentença $w \in L_5$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_5, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^{k+1}b^k \in L_5$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

5° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_5 = \{a^m b^n \mid m > n\}$. Prove que L_5 não é linguagem regular.

Prova

Suponha que L_5 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_5 . Toda sentença $w \in L_5$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_5, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^{k+1}b^k \in L_5$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

5° Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_5 = \{a^m b^n \mid m > n\}$. Prove que L_5 não é linguagem regular.

Prova

Suponha que L_5 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_5 . Toda sentença $w \in L_5$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_5, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^{k+1}b^k \in L_5$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

6º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_6 = \{a^{n^2} \mid n \ge 0\}$. Prove que L_6 não é linguagem regular.

Prova

Suponha que L_6 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_6 .

6° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_6 = \{a^{n^2} \mid n \ge 0\}$. Prove que L_6 não é linguagem regular.

Prova

Suponha que L_6 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_6 . Toda sentença que L_6 uma sentença que L_6 pode ser escriba d

 $\bullet |uv| \leq k,$

 $\bullet |v| > 0 \text{ (ou } v \neq \lambda),$

• $uv^i \times \in L_6, \forall i = 0, 1, 2, ...$

6° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_6 = \{a^{n^2} \mid n \ge 0\}$. Prove que L_6 não é linguagem regular.

Prova

Suponha que L_6 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_6 . Toda sentença $w \in L_6$, $|w| \ge k$, pode ser escrita da forma w = uw, em que

- \bullet |uv| < k
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_6, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^{k^2} \in L_6$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a e no máximo k as

Contudo, $uv^2x = a^{k^2+|v|} \not\in L_6$, $k^2+1 \le k^2+|v| \le k^2+k$, pois número de as não é quadrado de um número natural, já que $(k+1)^2 = k^2+2k+1$. Isto é absurdo, logo L_6 não é uma linguagem regular.

6° Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_6 = \{a^{n^2} \mid n \ge 0\}$. Prove que L_6 não é linguagem regular.

Prova

Suponha que L_6 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_6 . Toda sentença $w \in L_6$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_6, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^{k^2} \in L_6$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a e no máximo k as

Contudo, $uv^2x = a^{k^2+|v|} \notin L_6$, $k^2+1 \le k^2+|v| \le k^2+k$, pois número de as não é quadrado de um número natural, já que $(k+1)^2 = k^2+2k+1$. Isto é absurdo, logo L_6 não é uma linguagem regular.

6º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_6 = \{a^{n^2} \mid n \ge 0\}$. Prove que L_6 não é linguagem regular.

Prova

Suponha que L_6 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_6 . Toda sentença $w \in L_6$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_6, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^{k^2} \in L_6$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a e no máximo k as.

Contudo, $uv^2x = a^{k^2+|v|} \notin L_6$, $k^2+1 \le k^2+|v| \le k^2+k$, pois número de as não é quadrado de um número natural, já que $(k+1)^2 = k^2+2k+1$. Isto é absurdo, logo L_6 não é uma linguagem regular.

6º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_6 = \{a^{n^2} \mid n \ge 0\}$. Prove que L_6 não é linguagem regular.

Prova

Suponha que L_6 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_6 . Toda sentença $w \in L_6$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_6, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^{k^2} \in L_6$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a e no máximo k as.

Contudo, $uv^2x = a^{k^2+|v|} \notin L_6$, $k^2+1 \le k^2+|v| \le k^2+k$, pois número de as não é quadrado de um número natural, já que $(k+1)^2 = k^2+2k+1$. Isto é absurdo, logo L_6 não é uma linguagem regular.

6º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_6 = \{a^{n^2} \mid n \ge 0\}$. Prove que L_6 não é linguagem regular.

Prova

Suponha que L_6 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_6 . Toda sentença $w \in L_6$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_6, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^{k^2} \in L_6$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a e no máximo k as.

Contudo, $uv^2x = a^{k^2+|v|} \not\in L_6$, $k^2+1 \le k^2+|v| \le k^2+k$, pois número de as não é quadrado de um número natural, já que $(k+1)^2 = k^2+2k+1$. Isto é absurdo, logo L_6 não é uma linguagem regular.

6° Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_6 = \{a^{n^2} \mid n \ge 0\}$. Prove que L_6 não é linguagem regular.

Prova

Suponha que L_6 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_6 . Toda sentença $w \in L_6$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_6, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^{k^2} \in L_6$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a e no máximo k as.

Contudo, $uv^2x = a^{k^2+|v|} \not\in L_6$, $k^2+1 \le k^2+|v| \le k^2+k$, pois número de as não é quadrado de um número natural, já que $(k+1)^2 = k^2+2k+1$. Isto é absurdo, logo L_6 não é uma linguagem regular.

7º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_7 = \{ww \mid w \in \{a, b\}^*\}$. Prove que L_7 não é linguagem regular

Prova

Suponha que L_7 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_7 .

7° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_7 = \{ww \mid w \in \{a, b\}^*\}$. Prove que L_7 não é linguagem regular.

Prova

Suponha que L_7 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_7 . Toda sentença que L_7 appearement a proposition de la companya del companya de la companya de la companya del companya de la companya del companya de la companya de la companya de la companya de la companya del companya de la companya del companya de la companya de la companya del companya de la companya de

- |uv| ≤ k,
- $|v| > 0 \text{ (ou } v \neq \lambda),$
- $uv'x \in L_7. \forall i = 0, 1, 2, ...$

7° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_7 = \{ww \mid w \in \{a, b\}^*\}$. Prove que L_7 não é linguagem regular.

Prova

Suponha que L_7 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_7 . Toda sentença $w \in L_7$, $|w| \ge k$, pode ser escrita da forma w = uw, em que:

- $|uv| \le k$
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_7, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b a^k b \in L_7$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

7° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_7 = \{ww \mid w \in \{a, b\}^*\}$. Prove que L_7 não é linguagem regular.

Prova

Suponha que L_7 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_7 . Toda sentença $w \in L_7, |w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_7, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b a^k b \in L_7$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

7° Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_7 = \{ww \mid w \in \{a, b\}^*\}$. Prove que L_7 não é linguagem regular.

Prova

Suponha que L_7 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_7 . Toda sentença $w \in L_7$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_7, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b a^k b \in L_7$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

7° Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_7 = \{ww \mid w \in \{a, b\}^*\}$. Prove que L_7 não é linguagem regular.

Prova

Suponha que L_7 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_7 . Toda sentença $w \in L_7$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_7, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b a^k b \in L_7$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

7° Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_7 = \{ww \mid w \in \{a, b\}^*\}$. Prove que L_7 não é linguagem regular.

Prova

Suponha que L_7 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_7 . Toda sentença $w \in L_7$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_7, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b a^k b \in L_7$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

7° Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_7 = \{ww \mid w \in \{a, b\}^*\}$. Prove que L_7 não é linguagem regular.

Prova

Suponha que L_7 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_7 . Toda sentença $w \in L_7, |w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_7, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b a^k b \in L_7$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

8º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_8 = \{a^n \mid n \text{ \'e primo}\}$. Prove que L_8 não é linguagem regular

Prova

Suponha que L_8 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_8 .

8° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_8 = \{a^n \mid n \text{ \'e primo}\}$. Prove que L_8 não é linguagem regular.

Prova

Suponha que L_8 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_8 . Toda semença well. I when k_1 pode ser escriba d

- |uv| ≤ k,
- |v| > 0 (ou $v \neq \lambda$),
- $uv'x \in L_8, \forall i = 0, 1, 2, ...$

8° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_8 = \{a^n \mid n \text{ \'e primo}\}$. Prove que L_8 não é linguagem regular.

Prova

Suponha que L_8 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_8 . Toda sentença $w \in L_8$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- \bullet |uv| < k
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_8, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^{k'} \in L_8, k' \ge k, k'$ primo. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a e no máximo k as.

Assim, para um i qualquer, $uv^ix=a^{k'+|v|(i-1)}$. Porém, para i=k'+1, tem-se k'+|v|(k'+1-1)=k'+|v|k'=k'(1+|v|), que não é primo (pois |v|>0). Logo $uv^{k'+1}x \not\in L_8$. Isto é absurdo, logo L_8 não é uma linguagem regular.

8° Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_8 = \{a^n \mid n \text{ \'e primo}\}$. Prove que L_8 não é linguagem regular.

Prova

Suponha que L_8 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_8 . Toda sentença $w \in L_8, |w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_8, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^{k'} \in L_8, k' \ge k, k'$ primo. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a e no máximo k as.

Assim, para um i qualquer, $uv^ix=a^{k'+|v|(i-1)}$. Porém, para i=k'+1, tem-se k'+|v|(k'+1-1)=k'+|v|k'=k'(1+|v|), que não é primo (pois |v|>0). Logo $uv^{k'+1}x \not\in L_8$. Isto é absurdo, logo L_8 não é uma linguagem regular.

8º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_8 = \{a^n \mid n \text{ \'e primo}\}$. Prove que L_8 não é linguagem regular.

Prova

Suponha que L_8 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_8 . Toda sentença $w \in L_8, |w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_8, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^{k'} \in L_8, k' \ge k, k'$ primo. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a e no máximo k as.

Assim, para um i qualquer, $uv^ix = a^{k'+|v|(i-1)}$. Porém, para i = k'+1, tem-se k'+|v|(k'+1-1) = k'+|v|k' = k'(1+|v|), que não é primo (pois |v| > 0). Logo $uv^{k'+1}x \notin L_8$. Isto é absurdo, logo L_8 não é uma linguagem regular.

8º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_8 = \{a^n \mid n \text{ \'e primo}\}$. Prove que L_8 não é linguagem regular.

Prova

Suponha que L_8 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_8 . Toda sentença $w \in L_8$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_8, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^{k'} \in L_8, k' \ge k, k'$ primo. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a e no máximo k as.

Assim, para um i qualquer, $uv^i \times = a^{k'+|v|(i-1)}$. Porém, para i = k'+1, tem-se k'+|v|(k'+1-1) = k'+|v|k' = k'(1+|v|), que não é primo (pois |v| > 0). Logo $uv^{k'+1} \times \notin L_8$. Isto é absurdo, logo L_8 não é uma linguagem regular.

8º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_8 = \{a^n \mid n \text{ \'e primo}\}$. Prove que L_8 não é linguagem regular.

Prova

Suponha que L_8 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_8 . Toda sentença $w \in L_8$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_8, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^{k'} \in L_8, k' \ge k, k'$ primo. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a e no máximo k as.

Assim, para um i qualquer, $uv^ix = a^{k'+|v|(i-1)}$. Porém, para i = k'+1, tem-se k'+|v|(k'+1-1) = k'+|v|k' = k'(1+|v|), que não é primo (pois |v| > 0). Logo $uv^{k'+1}x \notin L_8$. Isto é absurdo, logo L_8 não é uma linguagem regular.

8º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_8 = \{a^n \mid n \text{ \'e primo}\}$. Prove que L_8 não é linguagem regular.

Prova

Suponha que L_8 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_8 . Toda sentença $w \in L_8$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_8, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^{k'} \in L_8, k' \ge k, k'$ primo. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a e no máximo k as.

Assim, para um i qualquer, $uv^ix = a^{k'+|v|(i-1)}$. Porém, para i = k'+1, tem-se k'+|v|(k'+1-1) = k'+|v|k' = k'(1+|v|), que não é primo (pois |v| > 0).

(K' + |V|(K' + 1 - 1) = K' + |V|K' = K'(1 + |V|), que nao e primo (pois |V| > 0)

8º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_8 = \{a^n \mid n \text{ \'e primo}\}$. Prove que L_8 não é linguagem regular.

Prova

Suponha que L_8 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_8 . Toda sentença $w \in L_8$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_8, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^{k'} \in L_8, k' \ge k, k'$ primo. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a e no máximo k as.

Assim, para um i qualquer, $uv^ix = a^{k'+|v|(i-1)}$. Porém, para i = k'+1, tem-se k'+|v|(k'+1-1) = k'+|v|k' = k'(1+|v|), que não é primo (pois |v|>0). Logo $uv^{k'+1}x \notin L_8$. Isto é absurdo, logo L_8 não é uma linguagem regular.

8º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_8 = \{a^n \mid n \text{ \'e primo}\}$. Prove que L_8 não é linguagem regular.

Prova

Suponha que L_8 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_8 . Toda sentença $w \in L_8$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_8, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^{k'} \in L_8, k' \ge k, k'$ primo. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a e no máximo k as.

Assim, para um i qualquer, $uv^ix=a^{k'+|v|(i-1)}$. Porém, para i=k'+1, tem-se k'+|v|(k'+1-1)=k'+|v|k'=k'(1+|v|), que não é primo (pois |v|>0). Logo $uv^{k'+1}x \not\in L_8$. Isto é absurdo, logo L_8 não é uma linguagem regular.

9º Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_9 = \{a^m b^n \mid mdc(m, n) = 1\}$. Prove que L_9 não é linguagem regular

Prova

Suponha que L_0 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_0 .

9° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_9 = \{a^mb^n \mid mdc(m,n) = 1\}$. Prove que L_9 não é linguagem regular.

Prova

Suponha que L_9 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_9 . Toda sentença por la compara exercica de servica de s

- $|uv| \leq k$
- $|v| > 0 \text{ (ou } v \neq \lambda)$
- $uv^i x \in L_9, \forall i = 0, 1, 2, ...$

9° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_9 = \{a^m b^n \mid mdc(m, n) = 1\}$. Prove que L_9 não é linguagem regular.

Prova

Suponha que L_9 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_9 . Toda sentença $w \in L_9$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \le k$
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_9, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^p b^{(p-1)!} \in L_9, p-k \ge 2, p$ é primo. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

Para um i qualquer, $uv^ix=a^{p+|v|(i-1)}b^{(p-1)!}$. Porém, para i=0, tem-se $a^{p-|v|}b^{(p-1)!} \not\in L_9$, pois $\mathrm{mdc}(p-|v|,(p-1)!)=p-|v|\geq p-k\geq 2$. Isto é absurdo, logo L_9 não é uma linguagem regular.

9° Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_9 = \{a^m b^n \mid mdc(m, n) = 1\}$. Prove que L_9 não é linguagem regular.

Prova

Suponha que L_9 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_9 . Toda sentença $w \in L_9$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_9, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^p b^{(p-1)!} \in L_9, p-k \ge 2, p$ é primo. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

Para um i qualquer, $uv^ix=a^{p+|v|(i-1)}b^{(p-1)!}$. Porém, para i=0, tem-se $a^{p-|v|}b^{(p-1)!} \not\in L_9$, pois $\mathrm{mdc}(p-|v|,(p-1)!)=p-|v|\geq p-k\geq 2$. Isto é absurdo, logo L_9 não é uma linguagem regular.

9° Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_9 = \{a^m b^n \mid mdc(m, n) = 1\}$. Prove que L_9 não é linguagem regular.

Prova

Suponha que L_9 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_9 . Toda sentença $w \in L_9$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_9, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^p b^{(p-1)!} \in L_9, p-k \ge 2, p$ é primo. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

Para um i qualquer, $uv^ix=a^{p+|v|(i-1)}b^{(p-1)!}$. Porém, para i=0, tem-se $a^{p-|v|}b^{(p-1)!} \not\in L_9$, pois $\mathrm{mdc}(p-|v|,(p-1)!)=p-|v|\geq p-k\geq 2$. Isto é absurdo, logo L_9 não é uma linguagem regular.

9° Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_9 = \{a^m b^n \mid mdc(m, n) = 1\}$. Prove que L_9 não é linguagem regular.

Prova

Suponha que L_9 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_9 . Toda sentença $w \in L_9$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_9, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^p b^{(p-1)!} \in L_9, p-k \ge 2, p$ é primo. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

Para um i qualquer, $uv^i x = a^{p+|v|(i-1)}b^{(p-1)!}$. Porém, para i=0, tem-se $a^{p-|v|}b^{(p-1)!} \not\in L_9$, pois $mdc(p-|v|,(p-1)!)=p-|v| \geq p-k \geq 2$. Isto é absurdo, logo L_9 não é uma linguagem regular.

9° Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_9 = \{a^m b^n \mid mdc(m, n) = 1\}$. Prove que L_9 não é linguagem regular.

Prova

Suponha que L_9 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_9 . Toda sentença $w \in L_9$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_9, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^p b^{(p-1)!} \in L_9, p-k \ge 2, p$ é primo. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

Para um i qualquer, $uv^ix = a^{p+|v|(i-1)}b^{(p-1)!}$. Porém, para i=0, tem-se $a^{p-|v|}b^{(p-1)!} \notin L_9$, pois $mdc(p-|v|,(p-1)!) = p-|v| \ge p-k \ge 2$. Isto é absurdo, logo L_9 não é uma linguagem regular.

9° Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_9 = \{a^m b^n \mid mdc(m, n) = 1\}$. Prove que L_9 não é linguagem regular.

Prova

Suponha que L_9 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_9 . Toda sentença $w \in L_9$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_9, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^p b^{(p-1)!} \in L_9, p-k \ge 2, p$ é primo. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

Para um i qualquer, $uv^ix=a^{p+|v|(i-1)}b^{(p-1)!}$. Porém, para i=0, tem-se $a^{p-|v|}b^{(p-1)!} \notin L_9$, pois $mdc(p-|v|,(p-1)!)=p-|v| \geq p-k \geq 2$. Isto é absurdo, logo L_9 não é uma linguagem regular.

9° Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_9 = \{a^m b^n \mid mdc(m, n) = 1\}$. Prove que L_9 não é linguagem regular.

Prova

Suponha que L_9 seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_9 . Toda sentença $w \in L_9$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_9, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^p b^{(p-1)!} \in L_9, p-k \ge 2, p$ é primo. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

Para um i qualquer, $uv^ix = a^{p+|v|(i-1)}b^{(p-1)!}$. Porém, para i = 0, tem-se $a^{p-|v|}b^{(p-1)!} \not\in L_9$, pois $mdc(p-|v|,(p-1)!) = p-|v| \ge p-k \ge 2$. Isto é absurdo, logo L_9 não é uma linguagem regular.

10° Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_{10} = \{a^m b^n \mid m \neq n\}$. Prove que L_{10} não é linguagem regular

Prova

Suponha que L_{10} seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_{10} .

10° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_{10} = \{a^m b^n \mid m \neq n\}$. Prove que L_{10} não é linguagem regular.

Prova

Suponha que L_{10} seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_{10} . Toda sentença w el material de pode ser escritar

- $\bullet |uv| \leq k$
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_{10}, \forall i = 0, 1, 2, ...$

10° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_{10} = \{a^m b^n \mid m \neq n\}$. Prove que L_{10} não é linguagem regular.

Prova

Suponha que L_{10} seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_{10} . Toda sentença $w \in L_{10}$, $|w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_{10}, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^{k+k!} \in L_{10}$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

Para um *i* qualquer, $uv^i x = a^{k+|v|(i-1)}b^{k+k!}$. Porém, para i = (k!/|v|) + 1, tem-se k + |v| [(k!/|v|) + 1 - 1] = k + |v|(k!/|v|) = k + k!. Logo $uv^{(k!/|v|)+1}x \not\in L_{10}$. Isto é absurdo, logo L_{10} não é uma linguagem regular

10° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_{10} = \{a^m b^n \mid m \neq n\}$. Prove que L_{10} não é linguagem regular.

Prova

Suponha que L_{10} seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_{10} . Toda sentença $w \in L_{10}, |w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_{10}, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^{k+k!} \in L_{10}$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

Para um i qualquer, $uv^ix=a^{k+|v|(i-1)}b^{k+k!}$. Porém, para i=(k!/|v|)+1, tem-se $k+|v|\left[(k!/|v|)+1-1\right]=k+|v|(k!/|v|)=k+k!$. Logo $uv^{(k!/|v|)+1}x\not\in L_{10}$. Isto é absurdo, logo L_{10} não é uma linguagem regular

10° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_{10} = \{a^m b^n \mid m \neq n\}$. Prove que L_{10} não é linguagem regular.

Prova

Suponha que L_{10} seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_{10} . Toda sentença $w \in L_{10}, |w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_{10}, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^{k+k!} \in L_{10}$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

Para um i qualquer, $uv^ix=a^{k+|v|(i-1)}b^{k+k!}$. Porém, para i=(k!/|v|)+1, tem-se k+|v|[(k!/|v|)+1-1]=k+|v|(k!/|v|)=k+k!. Logo $uv^{(k!/|v|)+1}x\not\in L_{10}$. Isto é absurdo, logo L_{10} não é uma linguagem regular

10° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_{10} = \{a^m b^n \mid m \neq n\}$. Prove que L_{10} não é linguagem regular.

Prova

Suponha que L_{10} seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_{10} . Toda sentença $w \in L_{10}, |w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_{10}, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^{k+k!} \in L_{10}$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

Para um i qualquer, $uv^ix = a^{k+|v|(i-1)}b^{k+k!}$. Porém, para i = (k!/|v|) + 1, tem-se k + |v| [(k!/|v|) + 1 - 1] = k + |v|(k!/|v|) = k + k!. Logo $uv^{(k!/|v|)+1}x \not\in L_{10}$. Isto é absurdo, logo L_{10} não é uma linguagem regular

10° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_{10} = \{a^m b^n \mid m \neq n\}$. Prove que L_{10} não é linguagem regular.

Prova

Suponha que L_{10} seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_{10} . Toda sentença $w \in L_{10}, |w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_{10}, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^{k+k!} \in L_{10}$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

Para um i qualquer, $uv^ix = a^{k+|v|(i-1)}b^{k+k!}$. Porém, para i = (k!/|v|)+1, tem-se k+|v|[(k!/|v|)+1-1]=k+|v|(k!/|v|)=k+k!. Logo $uv^{(k!/|v|)+1}x \not\in L_{10}$. Isto é absurdo, logo L_{10} não é uma linguagem regular

10° Exemplo do Uso do Lema do Bombeamento para LRs Seja $L_{10} = \{a^m b^n \mid m \neq n\}$. Prove que L_{10} não é linguagem regular.

Prova

Suponha que L_{10} seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_{10} . Toda sentença $w \in L_{10}, |w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_{10}, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^{k+k!} \in L_{10}$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

Para um i qualquer, $uv^ix=a^{k+|v|(i-1)}b^{k+k!}$. Porém, para i=(k!/|v|)+1, tem-se k+|v|[(k!/|v|)+1-1]=k+|v|(k!/|v|)=k+k!. Logo $uv^{(k!/|v|)+1}x\not\in L_{10}$. Isto é absurdo, logo L_{10} não é uma linguagem regular.

10° Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_{10}=\{a^mb^n\mid m\neq n\}.$ Prove que L_{10} não é linguagem regular.

Prova

Suponha que L_{10} seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_{10} . Toda sentença $w \in L_{10}, |w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_{10}, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^{k+k!} \in L_{10}$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

Para um i qualquer, $uv^ix=a^{k+|v|(i-1)}b^{k+k!}$. Porém, para i=(k!/|v|)+1, tem-se k+|v| [(k!/|v|)+1-1]=k+|v|(k!/|v|)=k+k!. Logo $uv^{(k!/|v|)+1}x\not\in L_{10}$. Isto é absurdo, logo L_{10} não é uma linguagem regular.

10° Exemplo do Uso do Lema do Bombeamento para LRs

Seja $L_{10}=\{a^mb^n\mid m\neq n\}$. Prove que L_{10} não é linguagem regular.

Prova

Suponha que L_{10} seja uma linguagem regular, então existe AF com k(>0) estados que aceita L_{10} . Toda sentença $w \in L_{10}, |w| \ge k$, pode ser escrita da forma w = uvx, em que:

- $|uv| \leq k$,
- |v| > 0 (ou $v \neq \lambda$),
- $uv^i x \in L_{10}, \forall i = 0, 1, 2, ...$

Considere $w_1 = a^k b^{k+k!} \in L_{10}$. Como $|uv| \le k$ e $v \ne \lambda$, logo v possui pelo menos um a (no máximo k as) e nenhum b.

Para um i qualquer, $uv^ix=a^{k+|v|(i-1)}b^{k+k!}$. Porém, para i=(k!/|v|)+1, tem-se $k+|v|\left[(k!/|v|)+1-1\right]=k+|v|(k!/|v|)=k+k!$. Logo $uv^{(k!/|v|)+1}x\not\in L_{10}$. Isto é absurdo, logo L_{10} não é uma linguagem regular.

1º Exemplo do Uso de Propriedades de Fechamento de LRs

Seja $L_{10} = \{a^m b^n \mid m \neq n\}$. Prove que L_{10} não é linguagem regular

Prova

Suponha que L_{10} seja uma linguagem regular.

1° Exemplo do Uso de Propriedades de Fechamento de LRs Seja $L_{10} = \{a^m b^n \mid m \neq n\}$. Prove que L_{10} não é linguagem regular.

Prova

Suponha que L_{10} seja uma linguagem regular.

fechadas sob a operação de complementação).

1° Exemplo do Uso de Propriedades de Fechamento de LRs Seja $L_{10} = \{a^m b^n \mid m \neq n\}$. Prove que L_{10} não é linguagem regular.

Prova

Suponha que L_{10} seja uma linguagem regular.

Então, $\overline{L_{10}}$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de complementação).

Observe que
$$\overline{L_{10}} = \{a^m b^n \mid m = n\} \cup (a \cup b)^* ba(a \cup b)^*$$

Portanto, $\overline{L_{10}} \cap a^*b^*$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de interseção).

Porém, $\overline{L_{10}} \cap a^*b^* = \{a^mb^n \mid m=n\} = \{a^nb^n \mid n \ge 0\}$, que não é uma linguagem regular.

Isto é absurdo, logo L_{10} não é uma linguagem regular

1º Exemplo do Uso de Propriedades de Fechamento de LRs

Seja $L_{10} = \{a^m b^n \mid m \neq n\}$. Prove que L_{10} não é linguagem regular.

Prova

Suponha que L_{10} seja uma linguagem regular.

Então, $\overline{L_{10}}$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de complementação).

Observe que
$$\overline{L_{10}} = \{a^m b^n \mid m = n\} \cup (a \cup b)^* ba(a \cup b)^*$$

Portanto, $\overline{L_{10}} \cap a^*b^*$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de interseção).

Porém, $\overline{L_{10}} \cap a^*b^* = \{a^mb^n \mid m=n\} = \{a^nb^n \mid n \geq 0\}$, que não é uma linguagem regular.

Isto é absurdo, logo / 10 não é uma linguagem regular

1º Exemplo do Uso de Propriedades de Fechamento de LRs

Seja $L_{10} = \{a^m b^n \mid m \neq n\}$. Prove que L_{10} não é linguagem regular.

Prova

Suponha que L_{10} seja uma linguagem regular.

Então, $\overline{L_{10}}$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de complementação).

Observe que
$$\overline{L_{10}} = \{a^m b^n \mid m = n\} \cup (a \cup b)^* ba(a \cup b)^*.$$

Portanto, $\overline{L_{10}} \cap a^*b^*$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de interseção).

Porém, $\overline{L_{10}} \cap a^*b^* = \{a^mb^n \mid m=n\} = \{a^nb^n \mid n \geq 0\}$, que não é uma linguagem regular.

Isto é absurdo, logo / 10 não é uma linguagem regular

1º Exemplo do Uso de Propriedades de Fechamento de LRs

Seja $L_{10} = \{a^m b^n \mid m \neq n\}$. Prove que L_{10} não é linguagem regular.

Prova

Suponha que L_{10} seja uma linguagem regular.

Então, $\overline{L_{10}}$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de complementação).

Observe que
$$\overline{L_{10}} = \{a^m b^n \mid m = n\} \cup (a \cup b)^* ba(a \cup b)^*.$$

Portanto, $\overline{L_{10}} \cap a^*b^*$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de interseção).

Porém, $\overline{L_{10}} \cap a^*b^* = \{a^mb^n \mid m=n\} = \{a^nb^n \mid n \geq 0\}$, que não é uma linguagem regular.

Isto é absurdo, logo L_{10} não é uma linguagem regular

1º Exemplo do Uso de Propriedades de Fechamento de LRs

Seja $L_{10} = \{a^m b^n \mid m \neq n\}$. Prove que L_{10} não é linguagem regular.

Prova

Suponha que L_{10} seja uma linguagem regular.

Então, $\overline{L_{10}}$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de complementação).

Observe que
$$\overline{L_{10}} = \{a^m b^n \mid m = n\} \cup (a \cup b)^* ba(a \cup b)^*.$$

Portanto, $\overline{L_{10}} \cap a^*b^*$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de interseção).

Porém, $\overline{L_{10}} \cap a^*b^* = \{a^mb^n \mid m=n\} = \{a^nb^n \mid n \geq 0\}$, que não é uma linguagem regular.

Isto é absurdo, logo L_{10} não é uma linguagem regular

1º Exemplo do Uso de Propriedades de Fechamento de LRs

Seja $L_{10} = \{a^m b^n \mid m \neq n\}$. Prove que L_{10} não é linguagem regular.

Prova

Suponha que L_{10} seja uma linguagem regular.

Então, $\overline{L_{10}}$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de complementação).

Observe que
$$\overline{L_{10}} = \{a^m b^n \mid m = n\} \cup (a \cup b)^* ba(a \cup b)^*.$$

Portanto, $\overline{L_{10}} \cap a^*b^*$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de interseção).

Porém, $\overline{L_{10}} \cap a^*b^* = \{a^mb^n \mid m=n\} = \{a^nb^n \mid n \geq 0\}$, que não é uma linguagem regular.

Isto é absurdo, logo L_{10} não é uma linguagem regular.

2º Exemplo do Uso de Propriedades de Fechamento de LRs

Seja $L_{11} = \{a^m b^n c^k \mid m = n + k\}$. Prove que L_{11} não é linguagem regular.

Prova

Suponha que L_{11} seja uma linguagem regular.

Porém, $L_1\cap s^*b^*=\{s^nb^n\mid m=n\}=\{s^nb^n\mid n\geq 0\},$ que não é uma
 n

Isto é absurdo, logo L₁₁ não é uma linguagem regular.

2° Exemplo do Uso de Propriedades de Fechamento de LRs Seja $L_{11} = \{a^m b^n c^k \mid m = n + k\}$. Prove que L_{11} não é linguagem regular.

Prova

Suponha que / 11 seia uma linguagem regular

Então, $L_{11} \cap a^*b^*$ deve ser uma linguagem

é absurdo, logo $L_{\rm U}$ não é uma linguagem regular.

2° Exemplo do Uso de Propriedades de Fechamento de LRs

Seja $L_{11} = \{a^m b^n c^k \mid m = n + k\}$. Prove que L_{11} não é linguagem regular.

Prova

Suponha que L_{11} seja uma linguagem regular.

Então, $L_{11} \cap a^*b^*$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de interseção)

Porém, $L_{11} \cap a^*b^* = \{a^mb^n \mid m=n\} = \{a^nb^n \mid n \geq 0\}$, que não é uma linguagem regular.

Isto é absurdo, logo L_{11} não é uma linguagem regular.

2° Exemplo do Uso de Propriedades de Fechamento de LRs

Seja $L_{11} = \{a^m b^n c^k \mid m = n + k\}$. Prove que L_{11} não é linguagem regular.

Prova

Suponha que L_{11} seja uma linguagem regular.

Então, $L_{11} \cap a^*b^*$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de interseção).

Porém, $L_{11} \cap a^*b^* = \{a^mb^n \mid m=n\} = \{a^nb^n \mid n \geq 0\}$, que não é uma linguagem regular.

Isto é absurdo, logo / 11 não é uma linguagem regular

2º Exemplo do Uso de Propriedades de Fechamento de LRs

Seja $L_{11} = \{a^m b^n c^k \mid m = n + k\}$. Prove que L_{11} não é linguagem regular.

Prova

Suponha que L_{11} seja uma linguagem regular.

Então, $L_{11} \cap a^*b^*$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de interseção).

Porém, $L_{11} \cap a^*b^* = \{a^mb^n \mid m=n\} = \{a^nb^n \mid n \geq 0\}$, que não é uma linguagem regular.

Isto é absurdo, logo L_{11} não é uma linguagem regular

2º Exemplo do Uso de Propriedades de Fechamento de LRs

Seja $L_{11} = \{a^m b^n c^k \mid m = n + k\}$. Prove que L_{11} não é linguagem regular.

Prova

Suponha que L_{11} seja uma linguagem regular.

Então, $L_{11} \cap a^*b^*$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de interseção).

Porém, $L_{11} \cap a^*b^* = \{a^mb^n \mid m=n\} = \{a^nb^n \mid n \geq 0\}$, que não é uma linguagem regular.

Isto é absurdo, logo L_{11} não é uma linguagem regular.

3º Exemplo do Uso de Propriedades de Fechamento de LRs

Seja $L_{12} = \{a^n \mid n \text{ \'e composto}\}$. Prove que L_{12} não $\acute{\text{e}}$ linguagem regular

Prova

Suponha que L_{12} seja uma linguagem regular.

3^o Exemplo do Uso de Propriedades de Fechamento de LRs Seja $L_{12} = \{a^n \mid n \text{ \'e composto}\}$. Prove que L_{12} não é linguagem regular.

Prova

Suponha que L_{12} seja uma linguagem regular

Então, $\overline{L_{12}}$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de complementação).

3° Exemplo do Uso de Propriedades de Fechamento de LRs Seja $L_{12} = \{a^n \mid n \text{ \'e composto}\}$. Prove que L_{12} não é linguagem regular.

Prova

Suponha que L_{12} seja uma linguagem regular.

Então, \overline{L}_{12} deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de complementação).

Portanto, $\overline{L_{12}} \cap aaa^*$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de interseção).

Porém, $\overline{L_{12}} \cap aaa^* = \{a^n \mid n \text{ é primo}\}$, que não é uma linguagem regular

Isto é absurdo, logo L_{12} não é uma linguagem regular

3° Exemplo do Uso de Propriedades de Fechamento de LRs Seja $L_{12} = \{a^n \mid n \text{ \'e composto}\}$. Prove que L_{12} não é linguagem regular.

Prova

Suponha que L_{12} seja uma linguagem regular.

Então, $\overline{L_{12}}$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de complementação).

Portanto, $\overline{L_{12}} \cap aaa^*$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de interseção).

Porém. $\overline{L_{12}} \cap aaa^* = \{a^n \mid n \text{ é primo}\}$, que não é uma linguagem regular

Isto é absurdo, logo L_{12} não é uma linguagem regular

3° Exemplo do Uso de Propriedades de Fechamento de LRs Seja $L_{12} = \{a^n \mid n \text{ \'e composto}\}$. Prove que L_{12} não é linguagem regular.

Prova

Suponha que L_{12} seja uma linguagem regular.

Então, $\overline{L_{12}}$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de complementação).

Portanto, $\overline{L_{12}} \cap aaa^*$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de interseção).

Porém, $\overline{L_{12}} \cap aaa^* = \{a^n \mid n \text{ \'e primo}\}$, que não é uma linguagem regular

3° Exemplo do Uso de Propriedades de Fechamento de LRs

Seja $L_{12} = \{a^n \mid n \text{ \'e composto}\}$. Prove que L_{12} não é linguagem regular.

Prova

Suponha que L_{12} seja uma linguagem regular.

Então, $\overline{L_{12}}$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de complementação).

Portanto, $\overline{L_{12}} \cap aaa^*$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de interseção).

Porém, $\overline{L_{12}} \cap aaa^* = \{a^n \mid n \text{ é primo}\}$, que não é uma linguagem regular.

Isto é absurdo, logo L₁₂ não é uma linguagem regular

3º Exemplo do Uso de Propriedades de Fechamento de LRs

Seja $L_{12} = \{a^n \mid n \text{ \'e composto}\}$. Prove que L_{12} não é linguagem regular.

Prova

Suponha que L_{12} seja uma linguagem regular.

Então, $\overline{L_{12}}$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de complementação).

Portanto, $\overline{L_{12}} \cap aaa^*$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de interseção).

Porém, $\overline{L_{12}} \cap aaa^* = \{a^n \mid n \text{ é primo}\}$, que não é uma linguagem regular.

Isto é absurdo, logo L_{12} não é uma linguagem regular.

4º Exemplo do Uso de Propriedades de Fechamento de LRs

Seja $L_{13} = \{w \in \{a, b\}^* \mid n_a(w) = n_b(w)\}$. Prove que L_{13} não é linguagem regular.

Prova

Suponha que L_{13} seja uma linguagem regular.

4° Exemplo do Uso de Propriedades de Fechamento de LRs Seja $L_{13} = \{w \in \{a,b\}^* \mid n_a(w) = n_b(w)\}$. Prove que L_{13} não é linguagem regular.

Prova

Suponha que L_{13} seja uma linguagem regular.

Então, $L_{13} \cap a^*b^*$ deve ser uma linguagem regular (pois as linguagens regularessão fechadas sob a operação de interseção).

4° Exemplo do Uso de Propriedades de Fechamento de LRs Seja $L_{13} = \{w \in \{a,b\}^* \mid n_a(w) = n_b(w)\}$. Prove que L_{13} não é linguagem regular.

Prova

Suponha que L_{13} seja uma linguagem regular.

Então, $L_{13} \cap a^*b^*$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de interseção).

Porém, $L_{13} \cap a^*b^* = \{a^nb^n \mid n \ge 0\}$, que não é uma linguagem regular.

Isto é absurdo, logo L₁₃ não é uma linguagem regular

4º Exemplo do Uso de Propriedades de Fechamento de LRs

Seja $L_{13} = \{w \in \{a,b\}^* \mid n_a(w) = n_b(w)\}$. Prove que L_{13} não é linguagem regular.

Prova

Suponha que L_{13} seja uma linguagem regular.

Então, $L_{13} \cap a^*b^*$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de interseção).

Porém, $L_{13} \cap a^*b^* = \{a^nb^n \mid n \geq 0\}$, que não é uma linguagem regular

Isto é absurdo, logo / 13 não é uma linguagem regular

4º Exemplo do Uso de Propriedades de Fechamento de LRs

Seja $L_{13} = \{w \in \{a,b\}^* \mid n_a(w) = n_b(w)\}$. Prove que L_{13} não é linguagem regular.

Prova

Suponha que L_{13} seja uma linguagem regular.

Então, $L_{13} \cap a^*b^*$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de interseção).

Porém, $L_{13} \cap a^*b^* = \{a^nb^n \mid n \ge 0\}$, que não é uma linguagem regular.

Isto é absurdo, logo L₁₃ não é uma linguagem regular

4º Exemplo do Uso de Propriedades de Fechamento de LRs

Seja $L_{13} = \{w \in \{a,b\}^* \mid n_a(w) = n_b(w)\}$. Prove que L_{13} não é linguagem regular.

Prova

Suponha que L_{13} seja uma linguagem regular.

Então, $L_{13} \cap a^*b^*$ deve ser uma linguagem regular (pois as linguagens regulares são fechadas sob a operação de interseção).

Porém, $L_{13} \cap a^*b^* = \{a^nb^n \mid n \ge 0\}$, que não é uma linguagem regular.

Isto é absurdo, logo L_{13} não é uma linguagem regular.