US Patent & Trademark Office Patent Public Search | Text View

United States Patent Application Publication 20250255987 Kind Code Α1 **Publication Date** August 14, 2025 Gao; Guangping et al. Inventor(s)

USE OF ENDOGENOUS ASPARTOACYLASE PROMOTER ELEMENTS FOR TISSUE-RESTRICTED EXPRESSION OF GENE **THERAPIES**

Abstract

Aspects of the disclosure relate to compositions (e.g., nucleic acids, rAAV vectors, rAAVs, etc.) and methods for treating neurological diseases including Canavan disease. The disclosure is based, in part, on nucleic acids encoding an aspartoacylase (ASPA) operably linked to a mouse ASPA (mAspa) promoter. Aspects of the disclosure also provide methods of treating neurological diseases including Canavan disease by administering the nucleic acids to a subject.

Gao; Guangping (Worcester, MA), Tai; Phillip (Worcester, MA), **Inventors:**

Leland; Thomas Bovard (Worcester, MA)

Applicant: University of Massachusetts (Westborough, MA)

Family ID: 1000008615484

Assignee: University of Massachusetts (Westborough, MA)

18/857527 Appl. No.:

Filed (or PCT

Filed):

April 17, 2023

PCT No.:

PCT/US2023/065842

Related U.S. Application Data

us-provisional-application US 63332077 20220418

Publication Classification

Int. Cl.: A61K48/00 (20060101); A61K9/00 (20060101); A61K38/50 (20060101); C12N15/86 (20060101)

U.S. Cl.:

CPC **A61K48/0058** (20130101); **A61K9/0019** (20130101); **A61K38/50** (20130101); **A61K48/0075** (20130101); **C12N15/86** (20130101); **C12Y305/01015** (20130101); C12N2750/14143 (20130101); C12N2830/007 (20130101)

Background/Summary

RELATED APPLICATIONS [0001] This application is a national stage filing under 35 U.S.C. § 371 of international PCT application PCT/US2023/065842, filed Apr. 17, 2023, which claims priority under 35 U.S.C. § 119 (e) to U.S. provisional patent application, U.S. Ser. No. 63/332,077, filed Apr. 18, 2022, the entire contents of each of which are incorporated by reference herein.

REFERENCE TO AN ELECTRONIC SEQUENCE LISTING

[0003] The contents of the electronic sequence listing (U012070174US01-SEQ-KZM.xml; Size: 69,060 bytes; and Date of Creation: Oct. 15, 2024) is herein incorporated by reference in its entirety.

BACKGROUND OF INVENTION

[0004] Current FDA-approved adeno-associated virus (AAV) therapies used for in vivo gene therapy utilize a CMV-CBA hybrid promoter. This promoter drives ubiquitous expression in all cell and tissue types that are transduced by the AAV vector. Thus, the distribution of the therapeutic gene product is predominantly defined by the tropism of the viral capsid and will not reflect native distribution patterns. However, to achieve therapeutic levels of transgene expression, treatments may necessitate high dose ranges, which have been shown to cause toxicity in clinical trials and in preclinical studies.

SUMMARY OF INVENTION

[0005] Aspects of the disclosure relate to compositions (e.g., nucleic acids, rAAV vectors, rAAVs, etc.) and methods for treating neurological diseases such as Canavan disease. The disclosure is based, in part, on nucleic acids encoding an aspartoacylase (ASPA) operably linked to a mouse ASPA (mAspa) promoter. The inventors have surprisingly discovered that a native mouse Aspa promoter is capable of driving physiological expression level of ASPA. Aspects of the disclosure also provide methods of treating neurological diseases including Canavan disease by administering the nucleic acids to a subject.

[0006] Accordingly, in some aspects, the disclosure provides an isolated nucleic acid comprising a mouse ASPA (mASPA) promoter comprising a nucleic acid sequence that is at least 70% identical to the nucleic acid sequence set forth in SEQ ID NO: 1.

[0007] In some embodiments, an mASPA promoter comprises a CNS enhancer region having the nucleic acid sequence set forth in SEQ ID NO: 3.

[0008] In some embodiments, an mASPA promoter comprises a peripheral tissue (PT) enhancer region having the nucleic acid sequence set forth in SEQ ID NO: 4.

[0009] In some embodiments, an mASPA promoter comprises one or more non-DNase hypersensitive sites (NDHS).

[0010] In some embodiments, an mASPA promoter lacks a CNS enhancer region, optionally wherein the CNS enhancer region comprises the sequence set forth in SEQ ID NO: 3.

[0011] In some embodiments, an mASPA promoter lacks a PT enhancer region, optionally wherein the PT enhancer region comprises the sequence set forth in SEQ ID NO: 4.

[0012] In some embodiments, an mASPA promoter comprises or consists of the sequence set forth in any one of SEQ ID NOs: 14, 16, 18, 20, or 22.

[0013] In some embodiments, an isolated nucleic acid further comprises a protein coding nucleic acid sequence operably linked to the mASPA promoter. In some embodiments, the protein coding nucleic acid encodes a therapeutic protein. In some embodiments, the therapeutic protein is aspartaocylase (ASPA).

[0014] In some embodiments, an isolated nucleic acid further comprises an interfering nucleic acid sequence operably linked to the mASPA promoter. In some embodiments, the interfering nucleic acid is a dsRNA, siRNA, shRNA, miRNA, artificial miRNA (ami-RNA), or RNA aptamer.

[0015] In some embodiments, an isolated nucleic acid further comprises a polyA region positioned 3' relative to the nucleic acid sequence encoding the protein or the interfering nucleic acid.

[0016] In some embodiments, an isolated nucleic acid further comprises adeno-associated virus (AAV) inverted terminal repeats (ITRs).

[0017] In some aspects, the disclosure provides vector comprising an isolated nucleic acid as described herein.

[0018] In some aspects, the disclosure provides a recombinant AAV (rAAV) comprising an isolated nucleic acid as described herein; and at least one AAV capsid protein.

[0019] In some embodiments, the isolated nucleic acid comprises or consists of the sequence set forth in any one of SEQ ID NOs: 14-23.

[0020] In some embodiments, at least one capsid protein has a serotype selected from an AAV2,

AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAVrh8, AAV9, AAV10, or AAVrh10 serotype.

[0021] In some embodiments, at least one capsid protein is an AAV9 capsid protein.

[0022] In some embodiments, an rAAV is a self-complementary AAV (scAAV).

[0023] In some embodiments, a protein coding nucleic acid sequence encodes a therapeutic protein. In some embodiments, a protein coding nucleic acid sequence encodes an aspartaocylase (ASPA) protein.

[0024] In some aspects, the disclosure provides a method of expressing a gene product in a subject, the method comprising administering an isolated nucleic acid or rAAV as described herein to the subject.

[0025] In some embodiments, a subject is a mammal. In some embodiments, a subject is a human. [0026] In some embodiments, adminstration to a subject comprises injection. In some embodiments, injection comprises direct injection to the CNS of the subject or systemic injection. [0027] In some embodiments, a gene product is a therapeutic protein encoded by an isolated nucleic acid or rAAV.

[0028] In some embodiments, administration of an isolated nucleic acid or rAAV results in expression of a gene product in CNS cells or peripheral nervous system (PNS) cells of a subject. In some embodiments, CNS cells comprise oligodendrocytes.

Description

BRIEF DESCRIPTION OF DRAWINGS

[0029] FIG. 1 depicts ENCODE (The Encyclopedia of DNA Elements) regulation tracks at the Aspa gene that reveal three distinct regulatory regions that show tissue specific differences. [0030] FIGS. 2A-2C show a characterization of mAspa-derived regulatory cassettes. FIG. 2A shows schematics of natively-derived mAspa regulatory cassettes. The chicken beta actin (CB6), full mAspa promoter, constructs with region 1 deleted mAspa-D1, and region 2 deleted (mAspa-D2) are shown. FIG. 2B shows GFP expression by cells transfected by plasmids carrying mASPA promoters. Transfected HEK293 cells, top row, and human oligodendrocytes (MO3.13), bottom row, were imaged 48 hours post transfection. FIG. 2C provides a graph showing relative

luminescence of cells transfected with expression constructs driven by the ubiquitous CB6 promoter and the full mAspa promoter. Values were normalized to an SV40 reference plasmid and scaled to CB6 values set to 100.

[0031] FIGS. **3**A-**3**C show that EGFP expression vectors driven by Aspa promoter derived regulatory cassettes confer tissue dependent activities. FIGS. **3**A-**3**B provides graphs showing the quantification of egfp transcripts detected in select tissues from mice treated with mASPA promoter constructs, four weeks post injection (FIG. **3**A). Relative egfp expression per vector genomes (vg) is also displayed to reflect promoter activities (FIG. **3**B). n.s., not significant, *, p<0.05, **, p<0.01, ****, p<0.001, *****, p<0.0001. sc, spinal cord; TA, tibialis anterior. FIG. **3**C shows representative images of tissue cross-sections from mice treated with expression vectors driven by the ubiquitous CB6 promoter (left panel, top to bottom) and the full mAspa promoter (right panel, top to bottom). Images C and D are results from the brain tissues. Images E and F are results from cardiac muscle. Images G and H are results from skeletal muscle (TA).

[0032] FIG. **4** shows representative relative luciferase activity comparisons of the 3.4-kb mouse Aspa promoter (mAspaP) in HEK293 (embryonic kidney), N2A (neuroblast), and MO3.13 (oligodendrocyte) cells.

[0033] FIG. **5** shows representative relative luciferase activity comparisons of mAspa promoter with region deletions.

DETAILED DESCRIPTION

[0034] Aspects of the disclosure relate to compositions and methods for delivery of certain gene products (e.g., proteins, nucleic acids, etc.) to the central nervous system (CNS) of a subject. The disclosure is based, in part, on expression cassettes (e.g., isolated nucleic acids) comprising a nucleic acid sequence operably linked to a native mouse ASPA (mAspa) promoter or a variant of a mAspa promoter, for example variants missing a CNS enhancer region or variants missing a peripheral tissue (PT) enhancer region. In some embodiments, a mouse Aspa promoter is capable of driving physiological expression level of ASPA in certain cells of a subject, for example CNS cells (e.g., oligodendrocytes) of a human subject. The mAspa promoters may be used as a portion of an isolated nucleic acid (e.g., DNA, plasmid vector, rAAV vector, etc.) or as a portion of a viral particle, for example a recombinant adeno-associated virus (rAAV) or recombinant lentiviral particle.

[0035] Aspects of the disclosure also provide methods for delivering a transgene (e.g., a gene product, for example a therapeutic protein and/or inhibitory nucleic acid) to a target tissue of a subject, such as CNS tissue. The disclosure is based, in part, on mAspa promoters that are truncated (e.g., shortened) relative to a native mAspa promoter and allow for efficient transgeen expression in certain cells (e.g., CNS cells of a subject) while reducing the promoter size. In some embodiments, reduced promoter size is useful for incorporating such promoters into vectors having limited transgene capacity, for example rAAV vectors. In some embodiments, delivery of a transgene (e.g., ASPA) to CNS cells of a subject is useful for treating neurological diseases, including Canavan disease.

Apsartaocylase (ASPA) Promoters

[0036] Aspects of the disclosure relate to nucleic acids and vectors, for example viral vectors, that comprise a mouse Aspa (mAspa) promoter or a variant of a mAspa promoter (e.g., as described in any one of SEQ ID NOs: 14, 16, 18, 20, or 22). A "promoter" refers to a DNA sequence recognized by the synthetic machinery of the cell, or introduced synthetic machinery, required to initiate the specific transcription of a gene. The phrases "operatively linked," "operatively positioned," "under control" or "under transcriptional control" means that the promoter is in the correct location and orientation in relation to the nucleic acid to control RNA polymerase initiation and expression of the gene.

[0037] In some embodiments, the promoter (e.g., mAspa promoter) impart tissue-specific gene expression capabilities. In some cases, the tissue-specific regulatory sequences bind tissue-specific

transcription factors that induce transcription in a tissue specific manner. Such tissue-specific regulatory sequences (e.g., promoters, enhancers, etc.) are well known in the art. [0038] In some embodiments, the mASPA promoter preferentially drives expression of a gene product encoded by a nucleic acid in certain tissues. In some embodiments, the disclosure provides a nucleic acid comprising a tissue-specific ASPA promoter (e.g., a mASPA promoter or an mASPA promoter variant) operably linked to a nucleic acid sequence (e.g., a transgene encoding a protein, such as a therapeutic protein, e.g., ASPA). As used herein, "tissue-specific promoter" refers to a promoter that preferentially regulates (e.g., drives or up-regulates) gene expression in a particular cell type relative to other cell types. A cell-type-specific promoter can be specific for any cell type, such as central nervous system (CNS) cells, liver cells (e.g., hepatocytes), heart cells, muscle cells, etc. In some embodiments, a tissue-specific promoter is a CNS-tissue-specific, PNS-tissue-specific, or cell-specific promoter. In some embodiments, the mASPA promoter (or mASPA variant promoter) is tissue-specific to, e.g., oligodendrocytes, astrocytes, glial cells, neurons, and/or

neuroblasts.

[0039] Aspects of the disclosure relate to isolated nucleic acids and rAAV vectors comprising a nucleic acid sequence encoding a gene product operably linked to its native promoter. In some embodiments a native promoter comprises a native ASPA promoter, or a variant thereof, such as a mASPA promoter (e.g., as described in any one of SEQ ID NOs: 14, 16, 18, 20, or 22). In some embodiments, a mouse ASPA promoter variant comprises a nucleic acid sequence that has at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity with the nucleic acid sequence set forth in SEQ ID NO: 1 or SEQ ID NO: 2. A native promoter may be preferred when it is desired that expression of the transgene should mimic the native expression (e.g., express physiological levels of a gene product, for example a therapeutic protein such as ASPA, expression in the appropriate cell types). The native promoter may be used when expression of the transgene must be regulated temporally or developmentally, or in a tissuespecific manner, or in response to specific transcriptional stimuli. Without wishing to be bound by any theory, use of a mouse ASPA promoter in isolated nucleic acids and rAAV vectors described herein regulates expression of gene products from the vectors, and reduces toxicity, for example cytotoxicity or hepatotoxicity, in a subject relative to expression of the gene products from isolated nucleic acids and rAAV vectors comprising other promoters, for example CMV promoter, chickenbeta actin (CBA) promoter, CB6 promoter, etc. In a further embodiment, other native expression control elements, such as enhancer elements, polyadenylation sites, and/or Kozak consensus sequences may also be used to mimic the native expression.

[0040] In some embodiments, the nucleic acid sequence encoding ASPA is operably linked to a mouse ASPA (mAspa) promoter. In certain embodiments, a native mouse Aspa promoter is configured to drive physiological expression level of a gene product (e.g., a therapeutic protein or an interfering RNA). In some embodiments, the mAspa promoter comprises one or more of: i) a central nervous system (CNS) enhancer having the sequence set forth in SEQ ID NO: 3; ii) a peripheral tissue (PT) enhancer having the sequence set forth in SEQ ID NO: 4; iii) a proximal promoter having the sequence set forth in SEQ ID NO: 5; and/or iv) an Exon 1 having the sequence set forth in SEQ ID NO: 6. In some embodiments, SEQ ID NO: 1 further comprises sequences that are set forth in SEQ ID NO: 7 or 8. In some embodiments, the mAspa promoter comprises the sequence set forth in any one of SEQ ID NO: 14, 16, 18, 20, or 22. In some embodiments, the mAspa promoter consists of the sequence set forth in any one of SEQ ID NO: 14, 16, 18, 20, or 22. In some embodiments, a mASPA promoter variant comprises one or more non-DNase hypersensitive site (NDHS), for example as set forth in SEQ ID NO: 7 or 8. In some embodiments, a mASPA promoter variant lacks one or more non-DNase hypersensitive site (NDHS), for example as set forth in SEQ ID NO: 7 or 8.

[0041] In some embodiments, the nucleic acid comprises the sequence set forth in SEQ ID NO: 1

or SEQ ID NO: 2. In some embodiments, the nucleic acid has a sequence having at least 10% sequence identity, at least 20% sequence identity, at least 30% sequence identity, at least 40% sequence identity, at least 50% sequence identity, at least 55% sequence identity, at least 60% sequence identity, at least 70% sequence identity, at least 75% sequence identity, at least 80% sequence identity, at least 85% sequence identity, at least 90% sequence identity, at least 95% sequence identity, at least 96% sequence identity, at least 97% sequence identity, at least 98% sequence identity, at least 99% sequence identity, or 100% sequence identity with any one of SEQ ID NOs: 1, 14, 16, 18, 20, or 22. In certain embodiments, the nucleic acid has a sequence having 100% sequence identity with any one of SEQ ID NOs: 1 14, 16, 18, 20, or 22. In certain embodiments, a mASPA promoter variant has unexpectedly beneficial performance (e.g., resulting in at least 10%, at least 50%, or at least 100% greater expression) in neuroblasts and/or oligodendrocytes relative to a nucleic acid having a sequence having 100% sequence identity with SEQ ID NO:1.

[0042] In some embodiments, the nucleic acid has a mASPA promoter variant sequence that is truncated relative to SEQ ID NO: 1 by at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more nucleotides. In some embodiments, the nucleic acid has a mASPA promoter variant sequence that is truncated relative to SEQ ID NO: 1 by at least 20, 50, 75, 100, 200, 500, 1000, or more nucleotides. [0043] The terms "percent identity," "sequence identity," "% identity," "% sequence identity," and % identical," as they may be interchangeably used herein, refer to a quantitative measurement of the similarity between two sequences (e.g., nucleic acid or amino acid).

[0044] Calculation of the percent identity of two nucleic acid sequences, for example, can be performed by aligning the two sequences for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and second nucleic acid sequence for optimal alignment and non-identical sequences can be disregarded for comparison purposes). In certain embodiments, the length of a sequence aligned for comparison purposes is at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 95%, or 100% of the length of the reference sequence. The nucleotides at corresponding nucleotide positions are then compared. When a position in the first sequence is occupied by the same nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which needs to be introduced for optimal alignment of the two sequences.

[0045] The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. For example, the percent identity between two nucleotide sequences can be determined using methods such as those described in Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; Computer Analysis of Sequence Data, Part I, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; and Sequence Analysis Primer, Gribskoy, M. and Devereux, J., eds., M Stockton Press, New York, 1991; each of which is incorporated herein by reference. For example, the percent identity between two nucleotide sequences can be determined using the algorithm of Meyers and Miller (CABIOS, 1989, 4:11-17), which has been incorporated into the ALIGN program (version 2.0) using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4. The percent identity between two nucleotide sequences can, alternatively, be determined using the GAP program in the GCG software package using an NWSgapdna.CMP matrix. Methods commonly employed to determine percent identity between sequences include, but are not limited to those disclosed in Carillo, H., and Lipman, D., SIAM J Applied Math., 48:1073 (1988); incorporated herein by reference. Techniques for determining identity are codified in publicly available computer programs. Exemplary computer software to determine homology between two sequences

include, but are not limited to, GCG program package, Devereux, J., et al., Nucleic Acids Research, 12 (1), 387 (1984)), BLASTP, BLASTN, and FASTA Atschul, S. F. et al., J. Molec. Biol., 215, 403 (1990)).

[0046] When a percent identity is stated, or a range thereof (e.g., at least, more than, etc.), unless otherwise specified, the endpoints shall be inclusive and the range (e.g., at least 70% identity) shall include all ranges within the cited range (e.g., at least 71%, at least 72%, at least 73%, at least 74%, at least 75%, at least 76%, at least 77%, at least 78%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 95%, at least 95%, at least 95%, at least 98%, at least 98.5%, at least 99.5%, at least 99.5%, at least 99.5%, at least 99.5%, at least 99.6%, at least 99.7%, at least 99.8%, at least 99.9% identity) and all increments thereof (e.g., tenths of a percent (e.g., 0.1%), hundredths of a percent (e.g., 0.01%), etc.).

Isolated Nucleic Acids

[0047] Aspects of the disclosure relate to nucleic acids, for example isolated nucleic acids. A "nucleic acid" sequence refers to a DNA or RNA sequence. In some embodiments, proteins and nucleic acids of the disclosure are isolated. As used herein, the term "isolated" means artificially produced. As used herein, with respect to nucleic acids, the term "isolated" means: (i) amplified in vitro by, for example, polymerase chain reaction (PCR); (ii) recombinantly produced by cloning; (iii) purified, as by cleavage and gel separation; or (iv) synthesized by, for example, chemical synthesis. An isolated nucleic acid is one which is readily manipulable by recombinant DNA techniques well known in the art. Thus, a nucleotide sequence contained in a vector in which 5' and 3' restriction sites are known or for which polymerase chain reaction (PCR) primer sequences have been disclosed is considered isolated but a nucleic acid sequence existing in its native state in its natural host is not. An isolated nucleic acid may be substantially purified, but need not be. For example, a nucleic acid that is isolated within a cloning or expression vector is not pure in that it may comprise only a tiny percentage of the material in the cell in which it resides. Such a nucleic acid is isolated, however, as the term is used herein because it is readily manipulable by standard techniques known to those of ordinary skill in the art. As used herein with respect to proteins or peptides, the term "isolated" refers to a protein or peptide that has been isolated from its natural environment or artificially produced (e.g., by chemical synthesis, by recombinant DNA technology, etc.).

[0048] The isolated nucleic acids of the disclosure may be recombinant adeno-associated virus (AAV) vectors (rAAV vectors). In some embodiments, an isolated nucleic acid as described by the disclosure comprises a region (e.g., a first region) comprising a first adeno-associated virus (AAV) inverted terminal repeat (ITR), or a variant thereof. The isolated nucleic acid (e.g., the recombinant AAV vector) may be packaged into a capsid protein and administered to a subject and/or delivered to a selected target cell. "Recombinant AAV (rAAV) vectors" are typically composed of, at a minimum, a transgene and its regulatory sequences, and 5' and 3' AAV inverted terminal repeats (ITRs). The transgene may comprise a region encoding, for example, a protein and/or an expression control sequence (e.g., a poly-A tail), as described elsewhere in the disclosure. [0049] Generally, ITR sequences are about 145 bp in length. Preferably, substantially the entire sequences encoding the ITRs are used in the molecule, although some degree of minor modification of these sequences is permissible. The ability to modify these ITR sequences is within the skill of the art. (See, e.g., texts such as Sambrook et al., "Molecular Cloning. A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory, New York (1989); and K. Fisher et al., J Virol., 70:520 532 (1996)). An example of such a molecule employed in the disclosure is a "cis-acting" plasmid containing the transgene, in which the selected transgene sequence and associated regulatory elements are flanked by the 5' and 3' AAV ITR sequences. The AAV ITR sequences may be obtained from any known AAV, including presently identified mammalian AAV types. In some

embodiments, the isolated nucleic acid further comprises a region (e.g., a second region, a third region, a fourth region, etc.) comprising a second AAV ITR. In some embodiments, an isolated nucleic acid encoding a transgene is flanked by AAV ITRs (e.g., in the orientation 5'-ITR-transgene-ITR-3'). In some embodiments, the AAV ITRs are AAV2 ITRs. In some embodiments, at least one AAV ITR is a truncated AAV ITR (e.g., a mutant ITR, also referred to as an mTR), for example a Δ ITR as described, for example by McCarty (2008) Molecular Therapy 16 (10): 1648-1656.

[0050] In addition to the major elements identified above for the recombinant AAV vector, the vector also includes conventional control elements which are operably linked with elements of the transgene in a manner that permits its transcription, translation and/or expression in a cell transfected with the vector or infected with the virus produced by the disclosure. As used herein, "operably linked" sequences include both expression control sequences that are contiguous with the gene of interest and expression control sequences that act in trans or at a distance to control the gene of interest. Expression control sequences include appropriate transcription initiation, termination, promoter and enhancer sequences; efficient RNA processing signals such as splicing and polyadenylation (polyA) signals; sequences that stabilize cytoplasmic mRNA; sequences that enhance translation efficiency (e.g., Kozak consensus sequence); sequences that enhance protein stability; and when desired, sequences that enhance secretion of the encoded product. A number of expression control sequences, including promoters which are native, constitutive, inducible and/or tissue-specific, are known in the art and may be utilized.

[0051] As used herein, a nucleic acid sequence (e.g., coding sequence) and regulatory sequences are said to be operably linked when they are covalently linked in such a way as to place the expression or transcription of the nucleic acid sequence under the influence or control of the regulatory sequences. If it is desired that the nucleic acid sequences be translated into a functional protein, two DNA sequences are said to be operably linked if induction of a promoter in the 5' regulatory sequences results in the transcription of the coding sequence and if the nature of the linkage between the two DNA sequences does not (1) result in the introduction of a frame-shift mutation, (2) interfere with the ability of the promoter region to direct the transcription of the coding sequences, or (3) interfere with the ability of the corresponding RNA transcript to be translated into a protein. Thus, a promoter region would be operably linked to a nucleic acid sequence if the promoter region were capable of effecting transcription of that DNA sequence such that the resulting transcript might be translated into the desired protein or polypeptide. Similarly, two or more coding regions are operably linked when they are linked in such a way that their transcription from a common promoter results in the expression of two or more proteins having been translated in frame. In some embodiments, operably linked coding sequences yield a fusion protein.

[0052] A region comprising a transgene (e.g., a transgene encoding a gene product, for example ASPA protein, etc.) may be positioned at any suitable location of the isolated nucleic acid that will enable expression of the at least one transgene, the selectable marker protein, or reporter protein. [0053] For nucleic acids encoding proteins, a polyadenylation sequence generally is inserted following the transgene sequences and before the 3' AAV ITR sequence. A rAAV construct useful in the disclosure may also contain an intron, desirably located between the promoter/enhancer sequence and the transgene. One possible intron sequence is derived from SV-40, and is referred to as the SV-40 T intron sequence. In some embodiments, an intron is a non-native intron or synthetic intron (e.g., a MBL intron). Another vector element that may be used is an internal ribosome entry site (IRES). An IRES sequence is used to produce more than one polypeptide from a single gene transcript. An IRES sequence would be used to produce a protein that contains more than one polypeptide chains. Selection of these and other common vector elements are conventional, and many such sequences are available [see, e.g., Sambrook et al., and references cited therein at, for example, pages 3.18 3.26 and 16.17 16.27 and Ausubel et al., Current Protocols in Molecular

Biology, John Wiley & Sons, New York, 1989]. In some embodiments, a Foot and Mouth Disease Virus 2A sequence is included in polyprotein; this is a small peptide (approximately 18 amino acids in length) that has been shown to mediate the cleavage of polyproteins (Ryan, M D et al., EMBO, 1994; 4:928-933; Mattion, N M et al., J Virology, November 1996; p. 8124-8127; Furler, S et al., Gene Therapy, 2001; 8:864-873; and Halpin, C et al., The Plant Journal, 1999; 4:453-459). The cleavage activity of the 2A sequence has previously been demonstrated in artificial systems including plasmids and gene therapy vectors (AAV and retroviruses) (Ryan, M D et al., EMBO, 1994; 4:928-933; Mattion, N M et al., J Virology, November 1996; p. 8124-8127; Furler, S et al., Gene Therapy, 2001; 8:864-873; and Halpin, C et al., The Plant Journal, 1999; 4:453-459; de Felipe, P et al., Gene Therapy, 1999; 6:198-208; de Felipe, P et al., Human Gene Therapy, 2000; 11:1921-1931.; and Klump, H et al., Gene Therapy, 2001; 8:811-817).

Gene Products

[0054] Aspects of the disclosure relate to isolated nucleic acids comprising a mASPA promoter or mASPA promoter variant operably linked to a nucleic acid sequence encoding a gene product. A gene product may be a peptide, protein, nucleic acid, or a combination thereof. In some embodiments, the nucleic acid gene product is a therapeutic functional RNA (e.g., an interfereing RNA, such as dsRNA, siRNA, miRNA, aritificial miRNA (ami-RNA), RNA aptamer, etc.). In some embodiments, a nucleic acid comprising an mASPA promoter or mASPA promoter variant operably linked to a nucleic acid sequence encoding a gene product is referred to as a transgene. In some embodiments, a transgene further comprises one or more additional regulatory sequences, such as an enhancer, polyA region, etc.

[0055] For example, one type of transgene sequence includes a reporter sequence, which upon expression produces a detectable signal. In another example, the transgene encodes a therapeutic protein or therapeutic functional RNA. In another example, the transgene encodes a transmembrane protein. In another example, the transgene encodes a secreted protein. In another example, the transgene encodes a protein or functional RNA that is intended to be used for research purposes, e.g., to create a somatic transgenic animal model harboring the transgene, e.g., to study the function of the transgene product. In another example, the transgene encodes a protein or functional RNA that is intended to be used to create an animal model of disease. Appropriate transgene coding sequences will be apparent to the skilled artisan.

[0056] Reporter sequences that may be provided in a transgene include, without limitation, DNA sequences encoding β -lactamase, β -galactosidase (LacZ), alkaline phosphatase, thymidine kinase, green fluorescent protein (GFP), chloramphenicol acetyltransferase (CAT), luciferase, Ovalbumin (OVA) and others well known in the art. When associated with regulatory elements which drive their expression, the reporter sequences, provide signals detectable by conventional means, including enzymatic, radiographic, colorimetric, fluorescence or other spectrographic assays, fluorescent activating cell sorting assays and immunological assays, including enzyme linked immunosorbent assay (ELISA), radioimmunoassay (RIA) and immunohistochemistry. For example, where the marker sequence is the LacZ gene, the presence of the vector carrying the signal is detected by assays for β-galactosidase activity. Where the transgene is green fluorescent protein or luciferase, the vector carrying the signal may be measured visually by color or light production in a luminometer. Such reporters can, for example, be useful in verifying the tissuespecific targeting capabilities and tissue specific promoter regulatory activity of an rAAV. [0057] In some aspects, the disclosure provides vectors (e.g., rAAV vectors, lentiviral (LV) vectors, adenoviral vectors, plasmids, cosmids, etc.) for use in methods of preventing or treating one or more genetic deficiencies or dysfunctions in a mammal, such as for example, a polypeptide deficiency or polypeptide excess in a mammal, and particularly for treating or reducing the severity or extent of deficiency in a human manifesting one or more of the disorders linked to a deficiency in such polypeptides in cells and tissues. The method involves administration of a vector that encodes one or more therapeutic peptides, polypeptides, siRNAs, microRNAs, antisense

nucleotides, etc. in a pharmaceutically-acceptable carrier to the subject in an amount and for a period of time sufficient to treat the deficiency or disorder in the subject suffering from such a disorder.

[0058] Thus, the disclosure embraces the delivery of vectors encoding one or more peptides, polypeptides, or proteins, which are useful for the treatment or prevention of disease states in a mammalian subject. Exemplary therapeutic proteins include one or more polypeptides selected from the group consisting of growth factors, interleukins, interferons, anti-apoptosis factors, cytokines, anti-diabetic factors, anti-apoptosis agents, coagulation factors, anti-tumor factors. Other non-limiting examples of therapeutic proteins include BDNF, CNTF, CSF, EGF, FGF, G-SCF, GM-CSF, gonadotropin, IFN, IFG-1, M-CSF, NGF, PDGF, PEDF, TGF, VEGF, TGF-B2, TNF, prolactin, somatotropin, XIAP1, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-10 (187A), viral IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16 IL-17, and IL-18. In some [0059] In some embodiments, therapeutic proteins include any polypeptide that is suitable for the purpose of delivering the vector and/or treating or preventing a disease. [0060] The vectors disclosed herein may comprise a transgene to be transferred to a subject to treat a disease associated with reduced expression, lack of expression or dysfunction of the native gene. Exemplary genes and associated disease states include, but are not limited to: glucose-6phosphatase, associated with glycogen storage deficiency type 1A; phosphoenolpyruvatecarboxykinase, associated with Pepck deficiency; galactose-1 phosphate uridyl transferase, associated with galactosemia; phenylalanine hydroxylase, associated with phenylketonuria; branched chain alpha-ketoacid dehydrogenase, associated with Maple syrup urine disease; fumarylacetoacetate hydrolase, associated with tyrosinemia type 1; methylmalonyl-CoA mutase, associated with methylmalonic acidemia; medium chain acyl CoA dehydrogenase, associated with medium chain acetyl CoA deficiency; omithine transcarbamylase, associated with omithine transcarbamylase deficiency; argininosuccinic acid synthetase, associated with citrullinemia; low density lipoprotein receptor protein, associated with familial hypercholesterolemia; UDPglucouronosyltransferase, associated with Crigler-Najjar disease; adenosine deaminase, associated with severe combined immunodeficiency disease; hypoxanthine guanine phosphoribosyl transferase, associated with Gout and Lesch-Nyan syndrome; biotinidase, associated with biotinidase deficiency; beta-glucocerebrosidase, associated with Gaucher disease; betaglucuronidase, associated with Sly syndrome; peroxisome membrane protein 70 kDa, associated with Zellweger syndrome; porphobilingen deaminase, associated with acute intermittent porphyria; alpha-1 antitrypsin for treatment of alpha-1 antitrypsin deficiency (emphysema); erythropoietin for treatment of anemia due to thalassemia or to renal failure; vascular endothelial growth factor, angiopoietin-1, and fibroblast growth factor for the treatment of ischemic diseases; thrombomodulin and tissue factor pathway inhibitor for the treatment of occluded blood vessels as seen in, for example, atherosclerosis, thrombosis, or embolisms; aromatic amino acid decarboxylase (AADC), and tyrosine hydroxylase (TH) for the treatment of Parkinson's disease; the beta adrenergic receptor, antisense to, or a mutant form of, phospholamban, the sarco (endo) plasmic reticulum adenosine triphosphatase-2 (SERCA2), and the cardiac adenylyl cyclase for the treatment of congestive heart failure; a tumor suppessor gene such as p53 for the treatment of various cancers; a cytokine such as one of the various interleukins for the treatment of inflammatory and immune disorders and cancers; dystrophin or minidystrophin and utrophin or miniutrophin for the treatment of muscular dystrophies; and, insulin for the treatment of diabetes. [0061] The following are further non-limiting examples of gene products (e.g., proteins) that may be encoded by transgenes of the vectors disclosed herein to treat a disease associated with reduced expression, lack of expression or dysfunction of the native gene: a-galactosidase, acid-glucosidase, adiopokines, adiponectin, alglucosidase alfa, anti-thrombin, ApoAV, ApoCII, apolipoprotein A-I (APOA1), arylsulfatase A, arylsulfatase B, ATP-binding cassette transporter A1 (ABCA1), ABCD1, CCR5 receptor, erythropoietin, Factor VIII, Factor VII, Factor IX, Factor V, fetal

hemoglobin, beta-globin, GPI-anchored HDL-binding protein (GPI-HBP) I, growth hormone, hepatocyte growth factor, imiglucerase, lecithin-cholesterol acyltransferase (LCAT), leptin, LDL receptor, lipase maturation factor (LMF) 1, lipoprotein lipase, lysozyme, nicotinamide dinucleotide phosphate (NADPH) oxidase, Rab escort protein-1 (REP-1), retinal degeneration slow (RDS), retinal pigment epithelium-specific 65 (RPE65), rhodopsin, T cell receptor alpha or beta chains, thrombopoeitin, tyrosine hydroxylase, VEGF, von heldebrant factor, von willebrand factor, and X-linked inhibitor of apoptosis (XIAP).

[0062] In some embodiments, the vectors may comprise a gene encoding an antigen-binding protein, such as an immunoglobulin heavy chain or light chain or fragment thereof, e.g., that may be used for therapeutic purposes. In some embodiments, the protein is a single chain Fv fragment or Fv-Fc fragment. Accordingly, in some embodiments, the vector can be used to infect cells are of target tissue (e.g., muscle tissue) to engineer cells of the tissue to express an antigen-binding protein, such as an antibody or fragment thereof. In some embodiments, to generate vectors that express the antibodies or antigen binding fragments, cDNAs engineered to express such proteins will be subcloned into an appropriate plasmid backbone and packaged into a viral vector, for example an rAAV.

[0063] The vector of the disclosure can be used to restore the expression of genes that are reduced in expression, silenced, or otherwise dysfunctional in a subject (e.g., a tumor suppressor that has been silenced in a subject having cancer). The vectors of the disclosure can also be used to knockdown the expression of genes that are aberrantly expressed in a subject (e.g., an oncogene that is expressed in a subject having cancer).

[0064] The skilled artisan will also realize that in the case of transgenes encoding proteins or polypeptides, that mutations that results in conservative amino acid substitutions may be made in a transgene to provide functionally equivalent variants, or homologs of a protein or polypeptide. In some aspects, the disclosure embraces sequence alterations that result in conservative amino acid substitution of a transgene. In some embodiments, the transgene comprises a gene having a dominant negative mutation. For example, a transgene may express a mutant protein that interacts with the same elements as a wild-type protein, and thereby blocks some aspect of the function of the wild-type protein.

[0065] In some embodiments, the cloning capacity of the recombinant RNA vector may be limited and a desired coding sequence may require the complete replacement of the virus's 4.8 kilobase genome. Large genes may, therefore, not be suitable for use in a standard recombinant AAV vector, in some cases. The skilled artisan will appreciate that options are available in the art for overcoming a limited coding capacity. For example, the AAV ITRs of two genomes can anneal to form head to tail concatamers, almost doubling the capacity of the vector. Insertion of splice sites allows for the removal of the ITRs from the transcript. Other options for overcoming a limited cloning capacity will be apparent to the skilled artisan.

[0066] It should be appreciated that in cases where a transgene encodes more than one gene product (e.g., a therapeutic protein, and another protein or interfering nucleic acid), each gene product may be positioned in any suitable location within the transgene. For example, a nucleic acid encoding a first polypeptide may be positioned in an intron of the transgene and a nucleic acid sequence encoding a second polypeptide may be positioned in another untranslated region (e.g., between the last codon of a protein coding sequence and the first base of the poly-A signal of the transgene).

[0067] Aspects of the disclosure relate to a nucleic acid comprising a nucleic acid sequence encoding an aspartoacylase (ASPA). Disturbance of N-acetylaspartate (NAA) metabolism or aspartoacylase (ASPA) deficiency may shift energy metabolism in the CNS away from glycolysis and toward beta oxidation (e.g., fatty acid metabolism) in subjects having white matter diseases (e.g., Canavan's disease), or other neurodegenerative disorders such as Alzheimer's disease and traumatic brain injury. Without wishing to be bound by any particular theory, methods and

compositions described herein identify and/or correct metabolic imbalances in the CNS of a subject having a neurodegenerative disease.

[0068] In some embodiments, the nucleic acid sequence encoding an ASPA protein comprises SEQ ID NO: 9 or 10. In some embodiments, the nucleic acid sequence encoding an ASPA has a sequence having at least 10% sequence identity, at least 20% sequence identity, at least 30% sequence identity, at least 40% sequence identity, at least 50% sequence identity, at least 55% sequence identity, at least 60% sequence identity, at least 70% sequence identity, at least 75% sequence identity, at least 80% sequence identity, at least 85% sequence identity, at least 90% sequence identity, at least 95% sequence identity, at least 96% sequence identity, at least 97% sequence identity, at least 98% sequence identity, at least 99% sequence identity, or 100% sequence identity with SEQ ID NO: 9 or 10. In certain embodiments, the nucleic acid sequence encoding an ASPA has a sequence having 100% sequence identity with SEQ ID NO: 9 or 10. In some embodiments, the nucleic acid encoding an ASPA protein has a sequence that is truncated relative to SEQ ID NO: 9 or 10 by at least 1 nucleotide and at most 5 nucleotides, at least 2 nucleotides and at most 10 nucleotides, at least 5 nucleotides and at most 20 nucleotides, up to 50% truncation, up to 60% truncation, up to 70% truncation, up to 80% truncation, or up to 90% truncation. [0069] In some aspects, the disclosure relates to isolated nucleic acids comprising a transgene encoding one or more miRNA binding sites. Without wishing to be bound by any particular theory, incorporation of miRNA binding sites into gene expression constructs allows for regulation of transgene expression (e.g., inhibition of transgene expression) in cells and tissues where the corresponding miRNA is expressed. In some embodiments, incorporation of one or more miRNA binding sites into a transgene allows for de-targeting of transgene expression in a cell-type specific manner. In some embodiments, one or more miRNA binding sites are positioned in a 3' untranslated region (3' UTR) of a transgene, for example between the last codon of a nucleic acid sequence encoding one or more complement control proteins as described herein, and a poly A sequence.

[0070] In some embodiments, vector described herein comprises a nucleic acid sequence at least 60%, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to any one of SEQ ID NOs: 13, 15, 17, 19, 21, or 23. In some embodiments, the vector comprises an mAspa promoter or a mASPA promoter variant described herein.

[0071] In some embodiments, transgene expression causes overexpression of the transgene in the liver, resulting in liver toxicity (see, e.g., Hinderer et al., Severe Toxicity in Nonhuman Primates and Piglets Following High-Dose Intravenous Administration of an Adeno-Associated Virus Vector Expressing Human SMN, Volume: 29 Issue 3, 285-298: Mar. 1, 2018). In some embodiments, in order to reduce liver toxicity, the AAV vector comprises a transgene comprising one or more (e.g., 1, 2, 3, 4, 5, or more) miRNA binding sites that de-target expression of a transgene from liver cells. For example, in some embodiments, a transgene comprises one or more miR-122 binding sites. In some embodiments, the rAAV vector described herein comprises one or more miR-122 binding sites.

[0072] In some embodiments, a transgene comprises one or more (e.g., 1, 2, 3, 4, 5, or more) miRNA binding sites that de-target expression of a transgene from immune cells (e.g., antigen presenting cells (APCs), such as macrophages, dendrites, etc.). Incorporation of miRNA binding sites for immune-associated miRNAs may de-target transgene (e.g., one or more inhibitory nucleic acids) expression from antigen presenting cells and thus reduce or eliminate immune responses (cellular and/or humoral) produced in the subject against products of the transgene, for example as described in US 2018/0066279, the entire contents of which are incorporated herein by reference. [0073] As used herein an "immune-associated miRNA" is an miRNA preferentially expressed in a cell of the immune system, such as an antigen presenting cell (APC). In some embodiments, an immune-associated miRNA is an miRNA expressed in immune cells that exhibits at least a 2-fold,

3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold higher level of expression in an immune cell compared with a non-immune cell (e.g., a control cell, such as a HeLa cell, HEK293 cell, mesenchymal cell, etc.). In some embodiments, the cell of the immune system (immune cell) in which the immune-associated miRNA is expressed is a B cell, T cell, Killer T cell, Helper T cell, y& T cell, dendritic cell, macrophage, monocyte, vascular endothelial cell, or other immune cell. In some embodiments, the cell of the immune system is a B cell expressing one or more of the following markers: B220, BLAST-2 (EBVCS), Bu-1, CD19, CD20 (L26), CD22, CD24, CD27, CD57, CD72, CD79a, CD79b, CD86, chB6, D8/17, FMC7, L26, M17, MUM-1, Pax-5 (BSAP), and PC47H. In some embodiments, the cell of the immune system is a T cell expressing one or more of the following markers: ART2, CDla, CD1d, CD11b (Mac-1), CD134 (OX40), CD150, CD2, CD25 (interleukin 2 receptor alpha), CD3, CD38, CD4, CD45RO, CD5, CD7, CD72, CD8, CRTAM, FOXP3, FT2, GPCA, HLA-DR, HML-1, HT23A, Leu-22, Ly-2, Ly-m22, MICG, MRC OX 8, MRC OX-22, OX40, PD-1 (Programmed death-1), RT6, TCR (T cell receptor), Thy-1 (CD90), and TSA-2 (Thymic shared Ag-2). In some embodiments, the immune-associated miRNA is selected from: miR-15a, miR-16-1, miR-17, miR-18a, miR-19a, miR-19b-1, miR-20a, miR-21, miR-29a/b/c, miR-30b, miR-31, miR-34a, miR-92a-1, miR-106a, miR-125a/b, miR-142-3p, miR-146a, miR-150, miR-155, miR-181a, miR-223 and miR-424, miR-221, miR-222, let-7i, miR-148, and miR-152. In some embodiments, a transgene described herein comprises one or more binding sites for miR-142.

Recombinant Adeno-Associated Viruses (rAAVs)

[0074] In some embodiments, an isolated nucleic acid as described herein is flanked by adenoassociated virus inverted terminal repeats (AAV ITRs).

[0075] The present disclosure provides a recombinant AAV (rAAV) comprising: (i) an isolated nucleic acid described herein and (ii) at least one AAV capsid protein. In some embodiments, the at least one capsid protein has a serotype selected from an AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAVrh8, AAV9, AAV10, or AAVrh10 serotype. In some embodiments, the at least one capsid protein is an AAV9 capsid protein. In some embodiments, the rAAV is a self-complementary AAV (scAAV).

[0076] In some aspects, the disclosure provides isolated adeno-associated viruses (AAVs). As used herein with respect to AAVs, the term "isolated" refers to an AAV that has been artificially produced or obtained. Isolated AAVs may be produced using recombinant methods. Such AAVs are referred to herein as "recombinant AAVs". Recombinant AAVs (rAAVs) preferably have tissue-specific targeting capabilities, such that a transgene of the rAAV will be delivered specifically to one or more predetermined tissue(s) (e.g., muscle tissues, ocular tissues, neurons, etc.). The AAV capsid is an important element in determining these tissue-specific targeting capabilities (e.g., tissue tropism). Thus, an rAAV having a capsid appropriate for the tissue being targeted can be selected.

[0077] In some embodiments, rAAVs of the disclosure comprise a nucleotide sequence as set forth in SEQ ID NO: 9, 10, 13, 15, 17, 19, 21, or 23, or encode a protein having an amino acid sequence as set forth in SEQ ID NO: 11 or 12. In some embodiments, rAAVs of the disclosure comprise a nucleotide sequence that is 99% identical, 95% identical, 90% identical, 85% identical, 80% identical, 75% identical, 70% identical, 65% identical, 60% identical, 55% identical, or 50% identical to a nucleotide sequence as set forth in SEQ ID NO: 9, 10, 13, 15, 17, 19, 21, or 23. [0078] In some aspects, the present disclosure provides a recombinant adeno-associated virus (rAAV) comprising: (a) a self-complementary rAAV genome comprising: (i) a 5′ ITR; (ii) a mAspa promoter comprising the nucleotide sequence of SEQ ID NO: 1; (iii) a codon optimized nucleic acid sequence encoding mAspa as set forth in SEQ ID NO: 10; (iv) a poly A tail; and (v) a 3′ ITR; and (b) a AAV9 capsid protein. In some embodiments, the poly A tail is a rabbit globin poly A or a BGH poly A tail. In some embodiments, the rAAV further comprises one or more miR-122 binding sites.

[0079] Methods for obtaining recombinant AAVs having a desired capsid protein are well known in the art. (See, for example, US 2003/0138772), the contents of which are incorporated herein by reference in their entirety). Typically the methods involve culturing a host cell which contains a nucleic acid sequence encoding an AAV capsid protein; a functional rep gene; a recombinant AAV vector composed of AAV inverted terminal repeats (ITRs) and a transgene; and sufficient helper functions to permit packaging of the recombinant AAV vector into the AAV capsid proteins. In some embodiments, capsid proteins are structural proteins encoded by the cap gene of an AAV. AAVs comprise three capsid proteins, virion proteins 1 to 3 (named VP1, VP2 and VP3), all of which are transcribed from a single cap gene via alternative splicing. In some embodiments, the molecular weights of VP1, VP2 and VP3 are respectively about 87 kDa, about 72 kDa and about 62 kDa. In some embodiments, upon translation, capsid proteins form a spherical 60-mer protein shell around the viral genome. In some embodiments, the functions of the capsid proteins are to protect the viral genome, deliver the genome and interact with the host. In some aspects, capsid proteins deliver the viral genome to a host in a tissue specific manner.

[0080] In some embodiments, an AAV capsid protein has a tropism for central nervous system (CNS) tissues. In some embodiments, an AAV capsid protein targets neuronal cell types, astrocytes, oligodendrocytes, glial cells, etc. In some embodiments, an AAV capsid protein is of an AAV serotype selected from the group consisting of AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAVrh8, AAV9, AAV10, AAVrh10, AAV.PHP-eB, AAVrh39, AAVrh43, and variants of any of the foregoing. In some embodiments, the rAAV comprises an AAV9 capsid protein. [0081] In some embodiments, an rAAV vector or rAAV particle comprises a mutant ITR that lacks a functional terminal resolution site (TRS). The term "lacking a terminal resolution site" can refer to an AAV ITR that comprises a mutation (e.g., a sense mutation such as a non-synonymous mutation, or missense mutation) that abrogates the function of the terminal resolution site (TRS) of the ITR, or to a truncated AAV ITR that lacks a nucleic acid sequence encoding a functional TRS (e.g., a Δ TRS ITR). Without wishing to be bound by any particular theory, a rAAV vector comprising an ITR lacking a functional TRS produces a self-complementary rAAV vector (scAAV or scrAAV vector), for example as described by McCarthy (2008) *Molecular Therapy* 16 (10): 1648-1656.

[0082] The components to be cultured in the host cell to package a rAAV vector in an AAV capsid may be provided to the host cell in trans. Alternatively, any one or more of the required components (e.g., recombinant AAV vector, rep sequences, cap sequences, and/or helper functions) may be provided by a stable host cell which has been engineered to contain one or more of the required components using methods known to those of skill in the art. Most suitably, such a stable host cell will contain the required component(s) under the control of an inducible promoter. However, the required component(s) may be under the control of a constitutive promoter. Examples of suitable inducible and constitutive promoters are provided herein, in the discussion of regulatory elements suitable for use with the transgene. In still another alternative, a selected stable host cell may contain selected component(s) under the control of a constitutive promoter and other selected component(s) under the control of one or more inducible promoters. For example, a stable host cell may be generated which is derived from 293 cells (which contain El helper functions under the control of a constitutive promoter), but which contain the rep and/or cap proteins under the control of inducible promoters. Still other stable host cells may be generated by one of skill in the art. [0083] In some embodiments, the disclosure relates to a host cell containing a nucleic acid that comprises a codon-optimized coding sequence encoding a transgene (e.g., a transgene encoding ASPA). A "host cell" refers to any cell that harbors, or is capable of harboring, a substance of interest. Often a host cell is a mammalian cell. In some embodiments, a host cell is a neuron. A host cell may be used as a recipient of an AAV helper construct, an AAV minigene plasmid, an accessory function vector, or other transfer DNA associated with the production of recombinant AAVs. The term includes the progeny of the original cell which has been transfected. Thus, a "host

cell" as used herein may refer to a cell which has been transfected with an exogenous DNA sequence. It is understood that the progeny of a single parental cell may not necessarily be completely identical in morphology or in genomic or total DNA complement as the original parent, due to natural, accidental, or deliberate mutation. In some embodiments, the host cell is a mammalian cell, a yeast cell, a bacterial cell, an insect cell, a plant cell, or a fungal cell. In some embodiments, the host cell is a central nervous system cell, for example a neuron or a glial cell. [0084] The recombinant AAV vector, rep sequences, cap sequences, and helper functions required for producing the rAAV of the disclosure may be delivered to the packaging host cell using any appropriate genetic element (vector). The selected genetic element may be delivered by any suitable method, including those described herein. The methods used to construct any embodiment of this disclosure are known to those with skill in nucleic acid manipulation and include genetic engineering, recombinant engineering, and synthetic techniques. See, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, N.Y. Similarly, methods of generating rAAV virions are well known and the selection of a suitable method is not a limitation on the disclosure. See, e.g., K. Fisher et al., J. Virol., 70:520-532 (1993) and U.S. Pat. No. 5,478,745.

[0085] In some embodiments, recombinant AAVs may be produced using the triple transfection method (described in detail in U.S. Pat. No. 6,001,650). Typically, the recombinant AAVs are produced by transfecting a host cell with an AAV vector (comprising a transgene flanked by ITR elements) to be packaged into AAV particles, an AAV helper function vector, and an accessory function vector. An AAV helper function vector encodes the "AAV helper function" sequences (e.g., rep and cap), which function in trans for productive AAV replication and encapsidation. Preferably, the AAV helper function vector supports efficient AAV vector production without generating any detectable wild-type AAV virions (e.g., AAV virions containing functional rep and cap genes). Non-limiting examples of vectors suitable for use with the disclosure include pHLP19, described in U.S. Pat. No. 6,001,650 and pRep6cap6 vector, described in U.S. Pat. No. 6,156,303, the entirety of both incorporated by reference herein. The accessory function vector encodes nucleotide sequences for non-AAV derived viral and/or cellular functions upon which AAV is dependent for replication (e.g., "accessory functions"). The accessory functions include those functions required for AAV replication, including, without limitation, those moieties involved in activation of AAV gene transcription, stage specific AAV mRNA splicing, AAV DNA replication, synthesis of cap expression products, and AAV capsid assembly. Viral-based accessory functions can be derived from any of the known helper viruses such as adenovirus, herpes virus (other than herpes simplex virus type-1), and vaccinia virus.

[0086] In some aspects, the disclosure provides transfected host cells. The term "transfection" is used to refer to the uptake of foreign DNA by a cell, and a cell has been "transfected" when exogenous DNA has been introduced inside the cell membrane. A number of transfection techniques are generally known in the art. See, e.g., Graham et al. (1973) Virology, 52:456, Sambrook et al. (1989) Molecular Cloning, a laboratory manual, Cold Spring Harbor Laboratories, New York, Davis et al. (1986) Basic Methods in Molecular Biology, Elsevier, and Chu et al. (1981) Gene 13:197. Such techniques can be used to introduce one or more exogenous nucleic acids, such as a nucleotide integration vector and other nucleic acid molecules, into suitable host cells. [0087] As used herein, the terms "recombinant cell" refers to a cell into which an exogenous DNA segment, such as DNA segment that leads to the transcription of a biologically-active polypeptide or production of a biologically active nucleic acid such as an RNA, has been introduced. [0088] As used herein, the term "vector" includes any genetic element, such as a plasmid, phage, transposon, cosmid, chromosome, artificial chromosome, virus, virion, etc., which is capable of replication when associated with the proper control elements and which can transfer gene sequences between cells. In some embodiments, a vector is a viral vector, such as an rAAV vector, a lentiviral vector, an adenoviral vector, a retroviral vector, etc. Thus, the term includes cloning and expression vehicles, as well as viral vectors. In some embodiments a vector comprises a baculovirus vector, which are useful for producing viral particles in certain insect cells (e.g., SF9 cells). In some embodiments, useful vectors are contemplated to be those vectors in which the nucleic acid segment to be transcribed is positioned under the transcriptional control of a promoter. Delivery of a Transgene to Tissue

[0089] Aspects of the disclosure relate to methods for delivering (e.g., expressing) a gene product in a target cell or tissue (e.g., a target cell or tissue of a subject). The disclosure is based, in part, on mASPA promoter variants that enhance expression of gene products in certain tisuses, for example CNS tissues and PNS tissues. In some embodiments, the promoters described herein enhance gene product expression in certain cell types, for example neuroblasts and/or oligodendrocytes. In some embodiments, the methods of delivery comprise administering a nucleic acid or an rAAV described herein to the subject.

[0090] In some embodiments, delivery of a transgene comprising an mASPA promoter to a target tissue, e.g., CNS tissue, results in increased expression of the gene product of the transgene relative to a transgene expressed from a different promoter (e.g., a full-length ASPA promoter, CB6 promoter, etc.) In some embodiments, expression of the gene product is increased by about 2-fold and 100-fold (e.g., at least 2-fold, at least 5-fold, at least 10-fold, at least 25-fold, at least 50-fold, or at least 100-fold) relative to expression of a gene product expressed under the control of a different promoter (e.g., a full-length ASPA promoter, a CB promoter, etc.). Techniques for measurement of gene product expression levels are known, for example Western blotting, qPCR, next-generation sequencing, relative fluorescence, etc.

[0091] The isolated nucleic acids, rAAVs, and compositions of the disclosure may be delivered to a subject in compositions according to any appropriate methods known in the art. For example, an rAAV, preferably suspended in a physiologically compatible carrier (e.g., in a composition), may be administered to a subject, i.e. host animal, such as a human, mouse, rat, cat, dog, sheep, rabbit, horse, cow, goat, pig, guinea pig, hamster, chicken, turkey, or a nonhuman primate (e.g., Macaque). In some embodiments a host animal does not include a human. In some embodiments, a subject is human. In some embodiments, the subject is a mammal. In some embodiments, the mammal is a human. In some embodiments, the subject has, is suspected of having, or is at risk of having, a neurological disorder. In some embodiments, the subject has, is suspected of having, or is at risk of having, a disease associated with the CNS, for example Canavan disease.

[0092] In some embodiments, the administration comprises systemic administration. In some embodiments, the systemic administration comprises intravenous injection.

[0093] Delivery of the rAAVs may be by, for example intramuscular injection or infusion into the muscle tissue or cells of a subject. As used herein, "muscle tissues" refers to any tissue derived from or contained in skeletal muscle, smooth muscle, or cardiac muscle of a subject. Non-limiting examples of muscle tissues include skeletal muscle, smooth muscle, cardiac muscle, myocytes, sarcomeres, myofibrils, etc.

[0094] Administration into the bloodstream may be by injection into a vein, an artery, or any other vascular conduit. In some embodiments, the rAAVs are administered into the bloodstream by way of isolated limb perfusion, a technique well known in the surgical arts, the method essentially enabling the artisan to isolate a limb from the systemic circulation prior to administration of the rAAV virions. A variant of the isolated limb perfusion technique, described in U.S. Pat. No. 6,177,403, can also be employed by the skilled artisan to administer the virions into the vasculature of an isolated limb to potentially enhance transduction into muscle cells or tissue.

[0095] Aspects of the instant disclosure relate to compositions comprising a nucleic acid encoding a transgene and a pharmaceutically acceptable carrier.

[0096] The compositions of the disclosure may comprise an isolated nucleic acid or vector alone, or in combination with one or more other components (e.g., a second isolated nucleic acid or vector encoding one or more different transgenes). In some embodiments, a composition comprises 1, 2,

3, 4, 5, 6, 7, 8, 9, 10, or more different isolated nucleic acids or vectors each having one or more different transgenes.

[0097] Suitable carriers may be readily selected by one of skill in the art in view of the indication for which the isolated nucleic acid or vector is directed. For example, one suitable carrier includes saline, which may be formulated with a variety of buffering solutions (e.g., phosphate buffered saline). Other exemplary carriers include sterile saline, lactose, sucrose, calcium phosphate, gelatin, dextran, agar, pectin, peanut oil, sesame oil, and water. The selection of the carrier is not a limitation of the disclosure.

[0098] Optionally, the compositions of the disclosure may contain, in addition to the isolated nucleic acid or vector, and carrier(s), other conventional pharmaceutical ingredients, such as preservatives, or chemical stabilizers. Suitable exemplary preservatives include chlorobutanol, potassium sorbate, sorbic acid, sulfur dioxide, propyl gallate, the parabens, ethyl vanillin, glycerin, phenol, parachlorophenol, and poloxamers (non-ionic surfactants) such as Pluronic® F-68. Suitable chemical stabilizers include gelatin and albumin.

[0099] The isolated nucleic acids or vectors are administered in sufficient amounts to transfect the cells of a desired tissue and to provide sufficient levels of gene transfer and expression without undue adverse effects. Conventional and pharmaceutically acceptable routes of administration include, but are not limited to, direct delivery to the selected organ (e.g., intraportal delivery to the liver), intraocular injection, subretinal injection, oral, inhalation (including intranasal and intratracheal delivery), intravenous, intramuscular, subcutaneous, intradermal, intratumoral, and other parental routes of administration. Routes of administration may be combined, if desired. [0100] The dose of isolated nucleic acid or vector (e.g., rAAV virions) required to achieve a particular "therapeutic effect," e.g., units of dose in genome copies/per kilogram of body weight (GC/kg), or mass/volume units of dose, will vary based on several factors including, but not limited to the route of rAAV virion administration, the level of gene or RNA expression required to achieve a therapeutic effect, the specific disease or disorder being treated, and the stability of the gene or RNA product. For example, one of skill in the art can readily determine a rAAV virion dose range to treat a patient having a particular disease or disorder based on the aforementioned factors, as well as other factors that are well known in the art. In some embodiments, an rAAV as described herein is administered to a subject in a dose ranging between about 1 ml to about 100 ml of solution containing from about 109 to 1016 genome copies. In some cases, a dosage between about 1011 to 1013 rAAV genome copies is administered.

[0101] An effective amount of an rAAV is an amount sufficient to target infect an animal, target a desired tissue. In some embodiments, an effective amount of an rAAV is administered to the subject during a pre-symptomatic stage of degenerative disease. In some embodiments, a subject is administered an rAAV or composition after exhibiting one or more signs or symptoms of degenerative disease.

[0102] An effective amount of an rAAV may also depend on the mode of administration. For example, targeting a muscle tissue (e.g., muscle cells) by intramuscular administration or subcutaneous injection may require different (e.g., higher or lower) doses, in some cases, than targeting muscle tissue by another method (e.g., systemic administration, topical administration, etc.). In some embodiments, intramuscular injection (IM) of rAAV having certain serotypes (e.g., AAV2, AAV6, AAV9, etc.) mediates efficient transduction of muscle cells. Thus, in some embodiments, the injection is intramuscular injection (IM). In some embodiments, the injection is systemic administration (e.g., intravenous injection). In some cases, multiple doses of a rAAV are administered. In some embodiments, the administration is systemic administration. In some embodiments, the systemic administration comprises intravenous administration. In some embodiments, the administration is local administration to the central nervous system, for example by intracerebral injection, intrathecal injection, intracranial injection, etc.

[0103] In some embodiments, rAAV compositions are formulated to reduce aggregation of AAV

particles in the composition, particularly where high rAAV concentrations are present (e.g., ~1013 GC/mL or more). Methods for reducing aggregation of rAAVs are well known in the art and, include, for example, addition of surfactants, pH adjustment, salt concentration adjustment, etc. (See, e.g., Wright F R, et al., Molecular Therapy (2005) 12, 171-178, the contents of which are incorporated herein by reference.)

[0104] Formulation of pharmaceutically-acceptable excipients and carrier solutions is well-known to those of skill in the art, as is the development of suitable dosing and treatment regimens for using the particular compositions described herein in a variety of treatment regimens. [0105] Typically, these formulations may contain at least about 0.1% of the active compound or more, although the percentage of the active ingredient(s) may, of course, be varied and may conveniently be between about 1 or 2% and about 70% or 80% or more of the weight or volume of the total formulation. Naturally, the amount of active compound in each therapeutically-useful composition may be prepared is such a way that a suitable dosage will be obtained in any given unit dose of the compound. Factors such as solubility, bioavailability, biological half-life, route of administration, product shelf life, as well as other pharmacological considerations will be contemplated by one skilled in the art of preparing such pharmaceutical formulations, and as such, a variety of dosages and treatment regimens may be desirable.

[0106] In certain circumstances it will be desirable to deliver the rAAV-based therapeutic constructs in suitably formulated pharmaceutical compositions disclosed herein either intraocularly, subretinally, subcutaneously, intraopancreatically, intranasally, parenterally, intravenously, intramuscularly, intrathecally, orally, intraperitoneally, or by inhalation. In some embodiments, the administration modalities as described in U.S. Pat. Nos. 5,543,158; 5,641,515 and 5,399,363 (each specifically incorporated herein by reference in its entirety) may be used to deliver rAA Vs. In some embodiments, a preferred mode of administration is by portal vein injection.

[0107] The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. Dispersions may also be prepared in glycerol, liquid polyethylene glycols, and

dispersions. Dispersions may also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms. In many cases the form is sterile and fluid to the extent that easy syringeability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and/or vegetable oils. Proper fluidity may be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.

[0108] For administration of an injectable aqueous solution, for example, the solution may be suitably buffered, if necessary, and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration. In this connection, a sterile aqueous medium that can be employed will be known to those of skill in the art. For example, one dosage may be dissolved in 1 mL of isotonic NaCl solution and either added to 1000 mL of hypodermoclysis fluid or injected at the proposed site of infusion, (see for example, "Remington's Pharmaceutical Sciences" 15th Edition, pages 1035-1038 and 1570-1580). Some variation in dosage will necessarily occur depending on the condition of the host. The person responsible for administration

will, in any event, determine the appropriate dose for the individual host.

such as injectable solutions, drug-release capsules, and the like.

[0109] Sterile injectable solutions are prepared by incorporating the active rAAV in the required amount in the appropriate solvent with various of the other ingredients enumerated herein, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof. [0110] The compositions disclosed herein may also be formulated in a neutral or salt form. Pharmaceutically-acceptable salts, include the acid addition salts (formed with the free amino groups of the protein) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like. Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and in such amount as is

[0111] As used herein, "carrier" includes any and all solvents, dispersion media, vehicles, coatings, diluents, antibacterial and antifungal agents, isotonic and absorption delaying agents, buffers, carrier solutions, suspensions, colloids, and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Supplementary active ingredients can also be incorporated into the compositions. The phrase "pharmaceutically-acceptable" refers to molecular entities and compositions that do not produce an allergic or similar untoward reaction when administered to a host.

therapeutically effective. The formulations are easily administered in a variety of dosage forms

[0112] Delivery vehicles such as liposomes, nanocapsules, microparticles, microspheres, lipid particles, vesicles, and the like, may be used for the introduction of the compositions of the disclosure into suitable host cells. In particular, the rAAV vector delivered transgenes may be formulated for delivery either encapsulated in a lipid particle, a liposome, a vesicle, a nanosphere, or a nanoparticle or the like.

[0113] Such formulations may be preferred for the introduction of pharmaceutically acceptable formulations of the nucleic acids or the rAAV constructs disclosed herein. The formation and use of liposomes is generally known to those of skill in the art. Recently, liposomes were developed with improved serum stability and circulation half-times (U.S. Pat. No. 5,741,516). Further, various methods of liposome and liposome like preparations as potential drug carriers have been described (U.S. Pat. Nos. 5,567,434; 5,552,157; 5,565,213; 5,738,868 and 5,795,587).

[0114] Liposomes have been used successfully with a number of cell types that are normally resistant to transfection by other procedures. In addition, liposomes are free of the DNA length constraints that are typical of viral-based delivery systems. Liposomes have been used effectively to introduce genes, drugs, radiotherapeutic agents, viruses, transcription factors and allosteric effectors into a variety of cultured cell lines and animals. In addition, several successful clinical trials examining the effectiveness of liposome-mediated drug delivery have been completed. [0115] Liposomes are formed from phospholipids that are dispersed in an aqueous medium and spontaneously form multilamellar concentric bilayer vesicles (also termed multilamellar vesicles (MLVs). MLVs generally have diameters of from 25 nm to 4 μ m. Sonication of MLVs results in the formation of small unilamellar vesicles (SUVs) with diameters in the range of 200 to 500 Å, containing an aqueous solution in the core.

[0116] Alternatively, nanocapsule formulations of the rAAV may be used. Nanocapsules can generally entrap substances in a stable and reproducible way. To avoid side effects due to

intracellular polymeric overloading, such ultrafine particles (sized around $0.1 \mu m$) should be designed using polymers able to be degraded in vivo. Biodegradable polyalkyl-cyanoacrylate nanoparticles that meet these requirements are contemplated for use.

[0117] In addition to the methods of delivery described above, the following techniques are also contemplated as alternative methods of delivering the rAAV compositions to a host. Sonophoresis (i.e., ultrasound) has been used and described in U.S. Pat. No. 5,656,016 as a device for enhancing the rate and efficacy of drug permeation into and through the circulatory system. Other drug delivery alternatives contemplated are intraosseous injection (U.S. Pat. No. 5,779,708), microchip devices (U.S. Pat. No. 5,797,898), ophthalmic formulations (Bourlais et al., 1998), transdermal matrices (U.S. Pat. Nos. 5,770,219 and 5,783,208) and feedback-controlled delivery (U.S. Pat. No. 5,697,899).

Therapeutic Methods

[0118] Aspects of the disclosure also provide methods of treating neurological diseases (e.g., of a subject in need thereof), e.g., Canavan disease. In some embodiments, the method comprises administering a nucleic acid or an rAAV described herein to a subject.

[0119] In some embodiments, the subject is a mammal. In some embodiments, the mammal is a human. In some embodiments, the subject has, is suspected of having, or is at risk of having, a neurological disorder. In some embodiments, the subject has, is suspected of having, or is at risk of having, Canavan disease. Other subjects are described elsewhere herein.

[0120] In some embodiments, the administration comprises systemic administration. In some embodiments, the systemic administration comprises intravenous injection. Other methods of administration are described elsewhere herein.

[0121] Methods for treating Canavan disease (CD) in a subject in need thereof are provided herein. A subject in need of a treatment for CD is a subject having or suspected of having CD. Canavan disease is caused by a defective ASPA gene which is responsible for the production of the enzyme aspartoacylase. This enzyme normally breaks down the concentrated brain molecule N-acetyl aspartate. Decreased aspartoacylase activity in subjects with CD prevents the normal breakdown of N-acetyl aspartate, and the lack of breakdown appears to interfere with growth of the myelin sheath of the nerve fibers in the brain. Symptoms of Canavan disease, which may appear in early infancy and progress rapidly, may include mental retardation, loss of previously acquired motor skills, feeding difficulties, abnormal muscle tone (i.e., floppiness or stiffness), poor head control, and megalocephaly (abnormally enlarged head). Paralysis, blindness, or seizures may also occur. Aspects of the invention improve one or more symptoms of CD in a subject by administering to the subject a recombinant AAV harboring a nucleic acid that expresses aspartoacylase (ASPA) that is operably linked to a mASPA promoter (e.g., a mASPA promoter variant). For example, a method for treating Canavan disease in a subject in need thereof may comprise administering an effective amount of a rAAV to CNS tissue of the subject by intravascular administration, wherein the rAAV comprises a nucleic acid comprising a mASAP promoter (e.g., a mASPA promoter variant) operably linked with a region encoding ASPA (e.g., a region having a sequence as set forth in SEQ ID NO: 9 or 10). A method for treating Canavan disease in a subject in need thereof may comprise administering an effective amount of a rAAV to CNS tissue of the subject by intrathecal administration, wherein the rAAV comprises a nucleic acid comprising a promoter (e.g., a mASPA promoter variant) operably linked with a region encoding ASPA. In some cases, methods for treating CD involve administering, to CNS tissue of the subject, an effective amount of a rAAV that comprises a capsid protein other than a capsid protein of AAV serotype 2 (e.g., other than a protein having an amino acid sequence as set forth in SEQ ID NO: 14) and a nucleic acid comprising a promoter (e.g., a mASPA promoter variant) operably linked with a region encoding ASPA. In another example, a method for treating Canavan disease in a subject in need thereof comprises administering an effective amount of a rAAV to CNS tissue of the subject by a route other than intracerebral administration, wherein the rAAV comprises a nucleic acid comprising a promoter

operably linked with a region encoding ASPA. In some embodiments, ASPA expressed in CNS tissue following administration of the rAAV results in a decrease in aspartoacylase activity and breakdown of N-acetyl aspartate in the CNS tissue. Thus, in some embodiments, a recombinant AAV vector is provided that comprises a nucleic acid encoding a sequence as set forth in SEQ ID NO: 9 or 10. In some embodiments, a recombinant AAV is provided that harbors a nucleic acid comprising a promoter (e.g., a mASPA promoter variant) operably linked with a region having a sequence as set forth in SEQ ID NO: 9 or 10. In some embodiments, a recombinant AAV is provided that harbors a nucleic acid comprising a promoter operably linked with a region encoding a protein having a sequence as set forth in SEQ ID NO: 11 or 12.

Kits and Related Compositions

[0122] The agents described herein may, in some embodiments, be assembled into pharmaceutical or diagnostic or research kits to facilitate their use in therapeutic, diagnostic or research applications. A kit may include one or more containers housing the components of the disclosure and instructions for use. Specifically, such kits may include one or more agents described herein, along with instructions describing the intended application and the proper use of these agents. In certain embodiments agents in a kit may be in a pharmaceutical formulation and dosage suitable for a particular application and for a method of administration of the agents. Kits for research purposes may contain the components in appropriate concentrations or quantities for running various experiments.

[0123] The kit may be designed to facilitate use of the methods described herein by researchers and can take many forms. Each of the compositions of the kit, where applicable, may be provided in liquid form (e.g., in solution), or in solid form, (e.g., a dry powder). In certain cases, some of the compositions may be constitutable or otherwise processable (e.g., to an active form), for example, by the addition of a suitable solvent or other species (for example, water or a cell culture medium), which may or may not be provided with the kit. As used herein, "instructions" can define a component of instruction and/or promotion, and typically involve written instructions on or associated with packaging of the disclosure. Instructions also can include any oral or electronic instructions provided in any manner such that a user will clearly recognize that the instructions are to be associated with the kit, for example, audiovisual (e.g., videotape, DVD, etc.), Internet, and/or web-based communications, etc. The written instructions may be in a form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which instructions can also reflect approval by the agency of manufacture, use or sale for animal administration.

[0124] The kit may contain any one or more of the components described herein in one or more containers. As an example, in one embodiment, the kit may include instructions for mixing one or more components of the kit and/or isolating and mixing a sample and applying to a subject. The kit may include a container housing agents described herein. The agents may be in the form of a liquid, gel or solid (powder). The agents may be prepared sterilely, packaged in syringe and shipped refrigerated. Alternatively, it may be housed in a vial or other container for storage. A second container may have other agents prepared sterilely. Alternatively, the kit may include the active agents premixed and shipped in a syringe, vial, tube, or other container. The kit may have one or more or all of the components required to administer the agents to an animal, such as a syringe, topical application devices, or intravenous needle tubing and bag, particularly in the case of the kits for producing specific somatic animal models.

[0125] The kit may have a variety of forms, such as a blister pouch, a shrink-wrapped pouch, a vacuum sealable pouch, a sealable thermoformed tray, or a similar pouch or tray form, with the accessories loosely packed within the pouch, one or more tubes, containers, a box or a bag. The kit may be sterilized after the accessories are added, thereby allowing the individual accessories in the container to be otherwise unwrapped. The kits can be sterilized using any appropriate sterilization techniques, such as radiation sterilization, heat sterilization, or other sterilization methods known in

the art. The kit may also include other components, depending on the specific application, for example, containers, cell media, salts, buffers, reagents, syringes, needles, a fabric, such as gauze, for applying or removing a disinfecting agent, disposable gloves, a support for the agents prior to administration etc.

[0126] The instructions included within the kit may involve methods for constructing an AAV vector as described herein. In addition, kits of the disclosure may include, instructions, a negative and/or positive control, containers, diluents and buffers for the sample, sample preparation tubes and a printed or electronic table of reference AAV sequence for sequence comparisons.

EXAMPLES

Example 1

[0127] This example describes use of endogenous aspartoacylase promoter elements for tissue-restricted expression of gene therapies. The design of regulatory cassettes to drive physiological expression of ASPA to treat Canavan disease, and other neurological diseases, based on epigenetic analyses of the native mouse Aspa (mAspa) promoter was described.

[0128] The mAspa promoter was analyzed using publicly available DNase hypersensitivity and histone modification datasets. Sequences that appeared to regulate mAspa in a tissue-specific manner were identified as shown in FIG. 1. The entire identified region was about 3.4 kb in length and spanned sequences predicted to harbor two separate enhancers that drove expression in the central nervous system (CNS) and peripheral tissues (PT), and a proximal promoter region. These sequences, which were cloned from mouse genomic DNA, where cloned into green fluorescent protein (EGFP) and firefly luciferase expression plasmids (FIG. 2A). Constructs that harbored deletions of sequences that were predicted to be dispensable for activity were also generated (FIG. 1, FIG. 2A).

[0129] The mAspaP-Egfp vectors were first tested in vitro. It was found that the full mAspa promoter conferred approximately 10- to 100-fold less activity than the CB6 promoter in HEK293 (human embryonic kidney), MO3.13 (human oligodendrocytes), and C2C12 (mouse myoblasts) (FIGS. 2B-2C). Importantly, it was observed that the full mAspa promoter conferred cell type-related activities that mimicked native Aspa levels (i.e., high in oligodendrocytes, intermediate in kidney, and low in muscles). In addition, regions 1 and 2 seemed to be dispensable for promoter activity (FIG. 2B).

[0130] The mAspaP-Egfp vectors were also tested in vivo. The mAspa promoter constructs were packaged into AAV9 capsids and compared against vectors carrying CB6 promoter constructs. Neonatal mice were injected by facial vein delivery to achieve systemic distribution of the vectors (4×10.sup.11 vg/mouse). After one month, the mice were euthanized and tissues were collected for transgene quantification by qPCR (egfp transcripts as shown in FIGS. 3A-3B) and fluorescence microscopy (EGFP protein as shown in FIG. 3C). The mAspa promoter constructs showed little to no activity in skeletal and cardiac muscles while retaining similar levels of expression in the kidney and brain.

[0131] Although the efficacy of the mAspa-derived promoters was shown in AAV vectors, their use is not restricted to these vectors. Without wishing to be bound by any theory, their designs may benefit any gene delivery approach that requires regulated gene expression including, but not restricted to, adenoviruses, retroviruses, nanoparticles, electroporation of DNA, and engineered cell-based methods.

Example 2

[0132] This example describes the examination of the 3.4-kb mouse Aspa promoter (mAspaP) construct in N2A (mouse neuroblasts).

[0133] Briefly, mAspaP was used to drive expression of luciferase in an expression construct that was transfected into mammalian cells. FIG. **4** shows relative luciferase activity comparisons of the full 3.4-kb mAspa promoter in HEK293, N2A (mouse neuroblasts), and MO3.13 (oligodendrocyte) cells. CB6 and the full 3.4-kb mAspa promoter constructs were generated and cloned upstream of

the firefly luciferase reporter gene. Plasmid constructs were then transiently co-transfected into HEK293, N2A, or MO3.13 cells with the CMV-RLuc reference plasmid. Cells were collected 48 hours post-transfection and assayed for luciferase activity (FLuc/RLuc). Data were scaled to the CB6 promoter, set to 1 for each cell type. (****, p<0.0001)

[0134] Data indicate the mAspaP was 10-fold less active than the CB6 promoter in MO3.13 cells (FIG. 4). In N2A cells, the mAspaP activity was 2% of what was conferred by the CB6 promoter (FIG. 4). The mAspaP construct in N2A cells was 1.4-fold and 4.7-fold less active than in HEK293 and MO3.13 cells, respectively.

[0135] To investigate the contributions of the identified regulatory regions within the 3.4-kb mouse Aspa promoter (mAspaP), a series of reporter constructs were generated wherein each region was truncated from the 5' end (FIG. 5). Five promoter constructs were made and cloned into a firefly luciferase (FLuc) reporter plasmid and transfected into HEK293 (embryonic kidney), N2A (neuroblast), and MO3.13 (oligodendrocyte) cell lines. After 48 hours, cells were collected and assayed for luciferase activity as a readout for promoter activity.

[0136] FIG. **5** shows relative luciferase activity comparisons of mAspa promoter with region deletions. Five promoter constructs (SEQ ID NOs: 14, 16, 18, 20, and 22) were generated and cloned upstream of the firefly luciferase reporter gene. Plasmid constructs were then transiently cotransfected into HEK293, N2A, or MO3.13 cells with the CMV-RLuc reference plasmid. Cells were collected 48 hours post-transfection and assayed for luciferase activity (FLuc/RLuc). Data were scaled to the full AspaP (3.4-kb) promoter, set to 100 for each cell type. *, p<0.05; **, p<0.01; and ****, p<0.0001.

[0137] In HEK293 cells, constructs with the PT-enhancer deleted showed a ≥50% reduction in promoter activity. This data indicates that the PT-enhancer may be important for maximum promoter activity in these cells. In N2A cells, deletion of the CNS-enhancer (2.7-kb promoter) did not lead to a significant change in promoter activity. However, when the construct was truncated up to the non-DNase hypersensitive site 1 (NDHS1) region (2.5-kb promoter), transcription was increased nearly two-fold. Surprisingly, the PT-enhancer positively contributed to transcriptional activity of the mAspaP in N2A cells (e.g., compare the PT-enh-PP construct (2.5 kb) with the 1.4kb construct and the proximal promoter (PP) construct (618 bp)). In addition, deletion of just the PT-enhancer (APT-enh (2.4 kb)) led to a ~40% reduction in transcriptional activity. This data indicates that the PT-enhancer positively contributes to transcription in neuroblasts. The data also indicates that the NDHS1 region harbors a negative regulator of transcription that is exclusive to neuroblasts. In MO3.13 cells, the APT-enh construct led to a ~50% decrease in transgene expression. The in vitro data indicate that the PT-enhancer may also be active in CNS-derived cells. TABLE-US-00001 REPRESENTATIVE SEQUENCES > mAspa promoter (SEQ ID NO:

AGGCCAGTCTGAGCTACATAAGAAGCTTGAAGCCAGCTTAAGCTATGCGGCAAGA CCCTGTCAAAACAATAACAAATAAAACCCTCAAAGTAACACTTTTTTAAAAGTGT TTTAATCAATAGATGATAACTAGGAATGATTTTATTCAATATGTTATCAATTCTT TGAACTCTCAAAAAATGAACTAAGAGTAGAAAGACTTTGCCAGGTGCTTTGGGAA AGAGAGTTGGTGCTTTGGGAAACCGGGAGTTAAAACTCTTGGAAGTTAACTTGGT ATAAGAGCGTGACCGCCTCTGTTGCCCCAGTTCTAAGCAAAAGCTTTCGTTTTCA AGTAAAGCTTCCTGCAGGAGACAAACTGTACACAGTAACAAGGTACGTATGCGAG CTGCGGCTGGTCATTAACTTCCCAGGGAGTTACTCACGTGGACTCATCGCAGAAA CTTGAGAAATGTGGAAGTGTACTTCAAAATGCTGACCTGTTAAAATTCCATAAAA CAAGCCTCAAAGTTCGAGTCATTGGTGCCTGCCATGAGTAAACTACTGAAGCAGC GTTTCCAGAGAGACTAGGGCAAAGGACAGAGCAAACCACAGGTCAGCAGGAAAGG AACAAAATACGTAGGGCAGGGTGGTAATAATTCACCAGAGTTCAGTAAAACCACG AGAGCAAGAGAACTGTCCTCTCTCTCATTTGCCTGTTTTCATCATTGTGAAGTG TTCAGTGCATGCTGAGGCAGAAAGAAAACCAAAGACTACAGGGACTTTGTCTTAG TATAATCTTTTAAAAAAAAAGGGATTGAGGCACTGGCTTATTAAATACTATGAA ACATTTTGAATTTTCACCATGTATTTGCTTTGTGTGTCTTGTGATTCTACATTG TGCTGGCTGTTTATGTGAGCTCTGAAAGAGCAAAATTAGAAGTTCAGAGGAATCC AAAAATAACAGAGTCACCCTGTTGTCCTGTAGTGAACACTGGCCTTAATGAGAAA CATGGCTCCTGGGCCTAGCTTTCTTTTATGTAACTGTGGAAACTTAATCGGGCTG AGTGCTTCCTTTATCCTTGGCAATAAATGTCTGCCCTTTATAAATCATAAA GTGAATTTATAAATAGAGTAAGCAGACATCTGTGGGGAAAAATTACATATAAGCC TACCCTTATGATAAATGATTGCTTTATTGTGTCCTTAGGAAACAACTTAGTATGG GAAAATATATATTTCCTGTACTTTAACATTCTTGGCTTTCTGAGTGATTGAG CTTGAAATCAAGTAAGATTTGGTTCAGAGTCATTTCTCCAACGCTATGTAATCAC CTTATCCTGGATTAGTTCCCCTAGTAAGACCCCCCACTTTAGGACAACACATTCC AGAAGAAAGTCTTTGATGCCAGTAAATGAGATCATGTCTGTATACCTCATACAAT GTGGTTAAAATATATGTAATATATGTAATATGCTTCTATGTCGTTTTTGTA TATATTATGTTGCAAAATATTTTCAGGTATTTAAGAGATTTGAATATTACTGGCA CCAAAAGCCTCATGAGACAAAAGTTAAAGATGTTTCAAAGTCACTTTTTAAAAAT ATTTTTTTAGCCGGGCATGGTGGCACATGCCTTTAATCCTAGCACTTGGGAGGCA TAATAATTTTTATTTCATTCATTATTTGCGTGTAAGAGACAGAAGAGAAAAGAGAG AGAACAGGTGCACATATGTGGCAGTCAGAGGACAACTTTCAGAAGTTGGTTCTCT CCTCAGGATTGAACTCAGCAACATTTTTGCCTGCTGCGTTTCTGCCATGCTCTAT GTCACCCACCCTATCATGACTGGGCTCTTGTGCCTCTGCTGTGGACAGCTATGCT CAAAGAAAGGAGCTGTGCTGTTCAAGAGGAGGTCAGAGACATCAATGCCTTCAGA TCAGCAAAAGTGCTTACTTTGGAAATGTTTTAAATGTCAGTGGGAACAAAAACAC TGAATAAACCATATTGTTATATTTGGGAGGATTGGGCTTAATGTGGTATTATTTT ATAAATAATCATTCTGAACAGAAGACAGGATTTTTATAGCAGGGGATGCTAGCAC AATTGTACTTCGATCTGACCATCTGAGTTAGAAGTTAACAGCTGCATCACGA GGAGTGTCCATAGAATAAACAGGCTGGGAAGTTGTGACAGAAACAGTTGTGAAGT CAGTTCTCAAGAGAGCTCTGTATTTTGCACTTCTCAATTAGATCTAAACTTGGAA ACTTTTCTCAGAAGTTAACTGTCCTTTGACCTCTTCTCTCTGAATTGCAGAAAT CAGACAGGATCTTGGTATTTGTTAAA > mAspa promoter with deletions of NDHS1 and NDHS2 (SEQ ID NO: 2)

```
GAGGGATAACCTGTACTGCGTCTGTAAAGAATGTAGACATGCGCCATATGGAATC
TTTGCTAGAAGTCTATGAACTCATATACTTTACCTGGCTCTGTTCTGGTTATCGT
TCATCTCCACCCAGACTGTCGCTCAAGATGGATGACAGCAATAGAGCCACAGAGA
AAGGATAGAGTTAGAGCTGTAATGATTGCCTGACTCCACATTATCTATAAGAACA
GGGAATCCTTTTTATCATCTGTCCTAGCTACTTTTAGCTGTCAGCCTGACACAGC
TGAGAATCGTCTGAGGGAGCCTCAGTTGAGGAACTGCCCAGATCCAATTGGCCTG
TAGCCATGTCTGAGAATAAATGTATTGATGTGGGAGGTCCCAGCCCACTGTGAAT
GGTACCAACCCTCCCTAGATGGGTGGATCTGGGCTACATAAGAACGCTAGCTGAG
CAGAGGCAGAAAGTGAATTAGCGGGTCTTTCTCCATGGGCTGTGCATGTTCCCGC
ATAAATTCCTGTCCTCACTTCCCACAAGGATGGATTAAGTTGCTTTTGGCCAGAG
TGCTACTCTATCACAGCAACAGAAAGCAAACTAGAATATCTCCTGACATGCTGTT
TCAGAAACAGCCTCAGCTTAATACCTCCAACAAAATTTCTGGCATTGACTCATTG
GATAGCCATTCTGTGAAGTCAAACTTTACTATGCCTTTGTTTTAAACTACATGAT
CACATTTAAGTGCTTTGGGAAAGAGAGTTGGTGCTTTTGGGAAACCGGGAGTTAAA
ACTCTTGGAAGTTAACTTGGTATAAGAGCGTGACCGCCTCTGTTGCCCCAGTTCT
AAGCAAAAGCTTTCGTTTTCAAGTAAAGCTTCCTGCAGGAGACAAACTGTACACA
GTAACAAGGTACGTATGCGAGCTGCGGCTGGTCATTAACTTCCCAGGGAGTTACT
CACGTGGACTCATCGCAGAAACTTGAGAAATGTGGAAGTGTACTTCAAAATGCTG
TGAGTAAACTACTGAAGCAGCGTTTCCAGAGAGACTAGGGCAAAGGACAGAGCAA
ACCACAGGTCAGCAGGAAAAGGAACAAAATACGTAGGGCAGGGTGGTAATAATTCA
ACTACAGGGACTTTGTCTTAGATTACAGCAGTAATTTCGAAGTGTAAGCATATTT
GACTTTGTTTTATTATACATTATAATCTTTTTAAAAAACAAAAGGGATTGAGGCA
CTGGCTTATTAAATACTATGAAACATTTTGAATTTTTCACCATGTATTTGCTTTG
TGTGTCTTGTGATTCTACATTGTGCTGGCTGTTTATGTGAGCTCTGAAAGAGCAA
AATTAGAAGTTCAGAGGAATCCAAAAATAACAGAGTCACCCTGTTGTCCTGTAGT
CTGTGGAAACTTAATCGGGCTGAGTGCTTCCTTCCTTTATCCTTGGCAATAAATG
TCTGCCCTTTATAAATCATAAAGTGAATTTATAAATAGAGTAAGCAGACATCTGT
GGGGAAAAATTACATATAAGCCTACCCTTATGATAAATGATTGCTTTATTGTGTC
CTTAGGAAACAACATTTTTGCCTGCTGCGTTTCTGCCATGCTCTATGTCACCCAC
GAGCTGTGCTGTTCAAGAGGAGGTCAGAGACATCAATGCCTTCAGATCAGCAAAA
GTGCTTACTTTGGAAATGTTTAAATGTCAGTGGGAACAAAAACACTGAATAAAC
CATTCTGAACAGAAGACAGGATTTTTATAGCAGGGGATGCTAGCACAATTGTACT
TCGATCTGCTGACCATCTGAGTTAGAAGTTAACAGCTGCATCACGATCCTTGATC
CTTGCATATTTTAATCCAAATATGGTCAAGGGAGGGGGTTACAGAAGGGAGTGTCC
ATAGAATAAACAGGCTGGGAAGTTGTGACAGAAACAGTTGTGAAGTCAGTTCTCA
AGAGAGCTCTGTATTTTGCACTTCTCAATTAGATCTAAACTTGGAAACTTTTCTC
AGAAGTTAACTGTCCTTTGACCTCTTCTCTTCTGAATTGCAGAAATCAGACAGGA
TCTTGGTATTTGTTAAA > Central nervous system (CNS) enhancer of mAspa
promoter (SEQ ID NO:
AAGAATGTAGACATGCGCCATATGGAATCTTTGCTAGAAGTCTATGAACTCATAT
ACTTTACCTGGCTCTGTTCTGGTTATCGTTCATCTCCACCCAGACTGTCGCTCAA
GATGGATGACAGCAATAGAGCCACAGAGAAAGGATAGAGTTAGAGCTGTAATGAT
TGCCTGACTCCACATTATCTATAAGAACAGGGAATCCTTTTTATCATCTGTCCTA
GCTACTTTTAGCTGTCAGCCTGACACAGCTGAGAATCGTCTGAGGGAGCCTCAGT
```

```
TGAGGAACTGCCCAGATCCAATTGGCCTGTAGCCATGTCTGAGAATAAATGTATT
ATCTGGGCTACATAAGAACGCTAGCTGAGCAGAGGCAGAAAGTGAATTAGCGGGT
CTTTCTCCATGGGCTGTGCATGTTCCCGCATAAATTCCTGTCCTCACTTCCCACA
AGGATGGATTAAGTTGCTTTTTGGCCAGAGTGCTACTCTATCACAGCAACAGAAAG
CAAACTAGAATATCTCCTGACATGCTGTTTCAGAAACAGCCTCAGCTTAATACCT
CCAACAAAATTTCTGGCATTGACTCATTGGATAGCCATTCTGTGAAGTCAAACTT
TACTATGCCTTTGTTTTAAACTACATGATCACATTTAA > Peripheral tissue (PT)
enhancer of mAspa promoter (SEQ ID NO: 4)
GTGCTTTGGGAAAGAGAGTTGGTGCTTTGGGAAACCGGGAGTTAAAACTCTTGGA
AGTTAACTTGGTATAAGAGCGTGACCGCCTCTGTTGCCCCAGTTCTAAGCAAAAG
CTTTCGTTTTCAAGTAAAGCTTCCTGCAGGAGACAAACTGTACACAGTAACAAGG
TACGTATGCGAGCTGCGCTGGTCATTAACTTCCCAGGGAGTTACTCACGTGGAC
TCATCGCAGAAACTTGAGAAATGTGGAAGTGTACTTCAAAATGCTGACCTGTTAA
TACTGAAGCAGCGTTTCCAGAGAGAGACTAGGGCAAAGGACAGAGCAAACCACAGGT
CAGCAGGAAAGGAACAAAATACGTAGGGCAGGGTGGTAATAATTCACCAGAGTTC
AGTAAAACCACGAGAGCAAGAGAACTGTCCTCTCTCTCATTTGCCTGTTTTCAT
CATTGTGAAGTGTTCAGTGCATGCTGAGGCAGAAAGAAAAACCAAAGACTACAGGG
ACTTTGTCTTAGATTACAGCAGTAATTTCGAAGTGTAAGCATATTTGACTTTGTT
TTATTTATACATTATAATCTTTTTAAAAAACAAAAGGGATTGAGGCACTGGCTTAT
TAAATACTATGAAACATTTTGAATTTTTCACCATGTATTTGCTTTGTGTGTCTTG
TGATTCTACATTGTGCTGGCTGTTTATGTGAGCTCTGAAAGAGCAAAATTAGAAG
TTCAGAGGAATCCAAAAATAACAGAGTCACCCTGTTGTCCTGTAGTGAACACTGG
CCTTAATGAGAAACATGGCTCCTGGGCCTAGCTTTCTTTTATGTAACTGTGGAAA
CTTAATCGGGCTGAGTGCTTCCTTCCTTTATCCTTGGCAATAAATGTCTGCCCTT
TATAAATCATAAAGTGAATTTATAAATAGAGTAAGCAGACATCTGTGGGGAAAAA
TTACATATAAGCCTACCCTTATGATAAATGATTGCTTTATTGTGTCCTTAGGAAA CAA
>Proximal promoter of mAspa promoter (SEQ ID NO: 5)
TCAAGAGGAGGTCAGAGACATCAATGCCTTCAGATCAGCAAAAGTGCTTACTTTG
GAAATGTTTAAATGTCAGTGGGAACAAAAACACTGAATAAACCATATTGTTATA
AAGACAGGATTTTTATAGCAGGGGATGCTAGCACAATTGTACTTCGATCTGCTGA
CCATCTGAGTTAGAAGTTAACAGCTGCATCACGATCCTTGATCCTTGCATATTTT
AATCCAAATATGGTCAAGGGAGGGGTTACAGAAGGGAGTGTCCATAGAATAAACA
GGCTGGGAAGTTGTGACAGAAACAGTTGTGAAGTCAGTTCTCAAGAGAGCTCTGT
ATTTTGCACTTCTCAATTAGATCTAAACTTGGAAACTTTTCTCAGAAGTTAACTG
TCCTTTGACCTCTTCTCTGAATTGCAGAAATCAGACAGGATCTTGGTATTTG TTAAA
>Exon 1 of mAspa promoter (SEQ ID NO: 6)
ATGACCTCTTGTGTTGCTAAAGAACCTATTAAGAAGATTGCCATCTTTGGAGGGA
CTCATGGAAATGAACTGACCGGAGTGTTTCTAGTTACTCACTGGCTAAGGAATGG
GCGGTGGAGAAGTGCACCAGATACATTGACTGTGACCTGAATCGTGTTTTTGACC
TTGAAAATCTTAG > NDHS1 of mAspa promoter (SEQ ID NO: 7)
AAAAAAAATAATAATCTCAAAACTCAGGAGGCTTACAGGAGGTTCAAGGCCAGTC
TGAGCTACATAAGAAGCTTGAAGCCAGCTTAAGCTATGCGGCAAGACCCTGTCAA
AACAATAACAAATAAAACCCTCAAAGTAACACTTTTTTAAAAAGTGTTTTAATCAA
TAGATGATAACTAGGAATGATTTTATTCAATATGTTATCAATTCTTTGAACTCTC
```

AAAAAATGAACTAAGAGTAGAAAGACTTTGCCAG > NDHS2 of mAspa promoter GTGTGTGTGAAAATATATATATTTCCTGTACTTTAACATTCTTGGCTTTCTG AGTGATTGAGCTTGAAATCAAGTAAGATTTGGTTCAGAGTCATTTCTCCAACGCT ATGTAATCACCTTATCCTGGATTAGTTCCCCTAGTAAGACCCCCCACTTTAGGAC AACACATTCCAGAAGAAAGTCTTTGATGCCAGTAAATGAGATCATGTCTGTATAC CTCATACAATGTGGTTAAAATATATGTAATATATGTAATATATGCTTCTATGT CGTTTTTGTATATATTATGTTGCAAAATATTTTCAGGTATTTAAGAGATTTGAAT CATAGAATTACCAAAAGCCTCATGAGACAAAAGTTAAAGATGTTTCAAAGTCACT TTTTAAAAATATTTTTTAGCCGGGCATGGTGGCACATGCCTTTAATCCTAGCAC TTGGGAGGCAAAGACAGGTGAATTTCTGAGTTCGAGGCCAGCCTGGTCTACAAAG ATAATAATAATAATTTTTTTTTTCATTCATTATTTGCGTGTAAGAGACAGAAG AGAAAGAGAGAGAACAGGTGCACATATGTGGCAGTCAGAGGACAACTTTCAGAAG TTGGTTCTCCTCAGGATTGAACTCAGCAA > gi | 189339201: 92-1033 Homo aspartoacylase (Canavan disease) (ASPA), transcript variant 2, mRNA (SEQ ID NO: 9) ATGACTTCTTGTCACATTGCTGAAGAACATATACAAAAGGTTGCTATCTTTGGAG GAACCCATGGGAATGAGCTAACCGGAGTATTTCTGGTTAAGCATTGGCTAGAGAA TGGCGCTGAGATTCAGAGAACAGGGCTGGAGGTAAAACCATTTATTACTAACCCC AGAGCAGTGAAGAAGTGTACCAGATATATTGACTGTGACCTGAATCGCATTTTTG ACCTTGAAAATCTTGGCAAAAAAATGTCAGAAGATTTGCCATATGAAGTGAGAAG GGCTCAAGAAATAAATCATTTATTTGGTCCAAAAGACAGTGAAGATTCCTATGAC ATTATTTTTGACCTTCACAACACCACCTCTAACATGGGGTGCACTCTTATTCTTG AGGATTCCAGGAATAACTTTTTAATTCAGATGTTTCATTACATTAAGACTTCTCT GGCTCCACTACCCTGCTACGTTTATCTGATTGAGCATCCTTCCCTCAAATATGCG ACCACTCGTTCCATAGCCAAGTATCCTGTGGGTATAGAAGTTGGTCCTCAGCCTC AAGGGGTTCTGAGAGCTGATATCTTGGATCAAATGAGAAAAATGATTAAACATGC TCTTGATTTTATACATCATTTCAATGAAGGAAAAGAATTTCCTCCCTGCGCCATT GAGGTCTATAAAATTATAGAGAAAGTTGATTACCCCCGGGATGAAAATGGAGAAA TTGCTGCTATCATCCATCCTAATCTGCAGGATCAAGACTGGAAACCACTGCATCC TGGGGATCCCATGTTTTTAACTCTTGATGGGAAGACGATCCCACTGGGCGGAGAC CTTTTGCAAAGACAACTAAACTAACGCTCAATGCAAAAAGTATTCGCTGCTGTTT ACATTAG >gi|142354273: 148-1086 Mus musculus aspartoacylase (Aspa), (SEQ ID NO: 10) ATGACCTCTTGTGTTGCTAAAGAACCTATTAAGAAGATTGCCATCTTTGGAGGGA CTCATGGAAATGAACTGACCGGAGTGTTTCTAGTTACTCACTGGCTAAGGAATGG GCGGTGGAGAAGTGCACCAGATACATTGACTGTGACCTGAATCGTGTTTTTGACC TTGAAAATCTTAGCAAAGAGATGTCTGAAGACTTGCCATATGAAGTGAGAAGGGC TCAAGAAATAAATCATTTATTTGGTCCAAAAAATAGTGATGATGCCTATGACCTT GTTTTTGACCTTCACAACACCACTTCTAACATGGGTTGCACTCTTATTCTTGAGG ATTCCAGGAATGACTTTTTAATTCAGATGTTTCACTATATTAAGACTTGCATGGC TCCATTACCCTGCTCTGTTTATCTCATTGAGCATCCTTCACTCAAATATGCAACC ACTCGTTCCATTGCCAAGTATCCTGTTGGTATAGAAGTTGGTCCTCAGCCTCACG GTGTCCTTAGAGCTGATATTTTAGACCAAATGAGAAAAAATGATAAAAACATGCTCT TGATTTTATACAGCATTTCAATGAAGGAAAAGAATTTCCTCCCTGTTCTATTGAC

```
GTCTATAAAATAATGGAGAAAGTTGATTATCCAAGGAATGAAAGTGGAGACATGG
CTGCTGTTATTCATCCTAATCTGCAGGATCAAGACTGGAAACCATTGCACCCTGG
AGATCCTGTGTTTGTGTCTCTTGATGGAAAAGTTATTCCACTGGGTGGAGACTGT
TTGCAAAGACAACAAACTAACACTCAGCGCAAAAAGCATCCGCTCCACTTTGCA
CTAA >gi|189339202|ref|NP_001121557.1| aspartoacylase [Homo sapiens] (SEQ ID
NO: 11) MTSCHIAEEHIQKVAIFGGTHGNELTGVFLVKHWLENGAEIQRTGLEVKPFITNP
RAVKKCTRYIDCDLNRIFDLENLGKKMSEDLPYEVRRAQEINHLFGPKDSEDSYD
IIFDLHNTTSNMGCTLILEDSRNNFLIQMFHYIKTSLAPLPCYVYLIEHPSLKYA
TTRSIAKYPVGIEVGPQPQGVLRADILDQMRKMIKHALDFIHHFNEGKEFPPCAI
EVYKIIEKVDYPRDENGEIAAIIHPNLQDQDWKPLHPGDPMFLTLDGKTIPLGGD
CTVYPVFVNEAAYYEKKEAFAKTTKLTLNAKSIRCCLH >gi|31560279|ref|NP_075602.2|
aspartoacylase [Mus Musculus] (SEQ ID NO: 12)
MTSCVAKEPIKKIAIFGGTHGNELTGVFLVTHWLRNGTEVHRAGLDVKPFITNPRA
VEKCTRYIDCDLNRVFDLENLSKEMSEDLPYEVRRAQEINHLFGPKNSDDAYDLV
EDLHNTTSNMGCTLILEDSRNDFLIQMFHYIKTCMAPLPCSVYLIEHPSLKYATT
RSIAKYPVGIEVGPQPHGVLRADILDQMRKMIKHALDFIQHFNEGKEFPPCSIDV
YKIMEKVDYPRNESGDMAAVIHPNLQDQDWKPLHPGDPVFVSLDGKVIPLGGDCT
VYPVFVNEAAYYEKKEAFAK >mAspa full length promoter reporter protein rAAV
(SEQ ID NO: 13) ctgcgcgctcgctcgctcactgaggccgcccgggcaaagcccgggcgtcgggcga
cctttggtcgcccggcctcagtgagcgagcgagcgcgcagagagggagtggccaa
ctccatcactaggggttccttgtagttaatgattaacccgccatgctacttatct
accaggg taatgggg at cct ctaga actatagct ag tcg at cGAGGATAACCTG\\
TACTGCGTCTGTAAAGAATGTAGACATGCGCCATATGGAATCTTTGCTAGAAGTC
TATGAACTCATATACTTTACCTGGCTCTGTTCTGGTTATCGTTCATCTCCACCCA
GACTGTCGCTCAAGATGGATGACAGCAATAGAGCCACAGAGAAAGGATAGAGTTA
GAGCTGTAATGATTGCCTGACTCCACATTATCTATAAGAACAGGGAATCCTTTTT
ATCATCTGTCCTAGCTACTTTTAGCTGTCAGCCTGACACAGCTGAGAATCGTCTG
AGGGAGCCTCAGTTGAGGAACTGCCCAGATCCAATTGGCCTGTAGCCATGTCTGA
GAATAAATGTATTGATGTGGGAGGTCCCAGCCCACTGTGAATGGTACCAACCCTC
CCTAGATGGGTGGATCTGGGCTACATAAGAACGCTAGCTGAGCAGAGGCAGAAAG
TGAATTAGCGGGTCTTTCTCCATGGGCTGTGCATGTTCCCGCATAAATTCCTGTC
CTCACTTCCCACAAGGATGGATTAAGTTGCTTTTGGCCAGAGTGCTACTCTATCA
CAGCAACAGAAAGCAAACTAGAATATCTCCTGACATGCTGTTTCAGAAACAGCCT
CAGCTTAATACCTCCAACAAAATTTCTGGCATTGACTCATTGGATAGCCATTCTG
TGAAGTCAAACTTTACTATGCCTTTGTTTTAAACTACATGATCACATTTAAAAAA
AAAATAATAATCTCAAAAACTCAGGAGGCTTACAGGAGGTTCAAGGCCAGTCTGAG
CTACATAAGAAGCTTGAAGCCAGCTTAAGCTATGCGGCAAGACCCTGTCAAAACA
ATAACAAATAAAACCCTCAAAGTAACACTTTTTTAAAAAGTGTTTTAATCAATAGA
TGATAACTAGGAATGATTTTATTCAATATGTTATCAATTCTTTGAACTCTCAAAA
AATGAACTAAGAGTAGAAAGACTTTGCCAGGTGCTTTGGGAAAGAGAGTTGGTGC
TTTGGGAAACCGGGAGTTAAAACTCTTGGAAGTTAACTTGGTATAAGAGCGTGAC
CGCCTCTGTTGCCCCAGTTCTAAGCAAAAGCTTTCGTTTTCAAGTAAAGCTTCCT
GCAGGAGACAAACTGTACACAGTAACAAGGTACGTATGCGAGCTGCGGCTGGTCA
TTAACTTCCCAGGGAGTTACTCACGTGGACTCATCGCAGAAACTTGAGAAATGTG
GAAGTGTACTTCAAAATGCTGACCTGTTAAAATTCCATAAAACAAGCCTCAAAGT
TCGAGTCATTGGTGCCTGCCATGAGTAAACTACTGAAGCAGCGTTTCCAGAGAGA
GGGCAGGGTGGTAATAATTCACCAGAGTTCAGTAAAACCACGAGAGCAAGAGAAC
TGTCCTCTCTCTCATTTGCCTGTTTTCATCATTGTGAAGTGTTCAGTGCATGCT
```

```
GAGGCAGAAAGAAAACCAAAGACTACAGGGACTTTGTCTTAGATTACAGCAGTAA
TTTCGAAGTGTAAGCATATTTGACTTTGTTTTATTATACATTATAATCTTTTTA
AAAACAAAAGGGATTGAGGCACTGGCTTATTAAATACTATGAAACATTTTGAATT
ATGTGAGCTCTGAAAGAGCAAAATTAGAAGTTCAGAGGAATCCAAAAATAACAGA
GTCACCCTGTTGTCCTGTAGTGAACACTGGCCTTAATGAGAAACATGGCTCCTGG
CTTTATCCTTGGCAATAAATGTCTGCCCTTTATAAATCATAAAGTGAATTTATAA
ATAGAGTAAGCAGACATCTGTGGGGAAAAATTACATATAAGCCTACCCTTATGAT
AAATGATTGCTTTATTGTGTCCTTAGGAAACAACTTAGTATGGTTTCATGTGGTG
TGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGAAAATATATAA
TATTTCCTGTACTTTAACATTCTTGGCTTTCTGAGTGATTGAGCTTGAAATCAAG
TAAGATTTGGTTCAGAGTCATTTCTCCAACGCTATGTAATCACCTTATCCTGGAT
TAGTTCCCCTAGTAAGACCCCCCACTTTAGGACAACACATTCCAGAAGAAAGTCT
TTGATGCCAGTAAATGAGATCATGTCTGTATACCTCATACAATGTGGTTAAAATA
TATGTAATATATATGTAATATGCTTCTATGTCGTTTTTGTATATATTATGTTG
CAAAATATTTCAGGTATTTAAGAGATTTGAATATTACTGGCAGCTGCTTTTCAT
TTGGTATTTAGACAACTTAAAAAAAAAAAGACATCATAGAATTACCAAAAGCCTCA
TGAGACAAAAGTTAAAGATGTTTCAAAGTCACTTTTTAAAAAATATTTTTTTAGCC
GGGCATGGTGGCACATGCCTTTAATCCTAGCACTTGGGAGGCAAAGACAGGTGAA
TTTCTGAGTTCGAGGCCAGCCTGGTCTACAAAGTGAGTGCCAGGACAGCCAGGGC
TATACAGAGAAACCCTGTCTCAAAAAAAAAAAAAATAATAATAATAATTTTTA
CATATGTGGCAGTCAGAGGACAACTTTCAGAAGTTGGTTCTCTCCTCAGGATTGA
CTGTGCTGTTCAAGAGGGGGCAGAGACATCAATGCCTTCAGATCAGCAAAAGTG
CTTACTTTGGAAATGTTTAAATGTCAGTGGGAACAAAAACACTGAATAAACCAT
TCTGAACAGAAGACAGGATTTTTATAGCAGGGGATGCTAGCACAATTGTACTTCG
ATCTGCTGACCATCTGAGTTAGAAGTTAACAGCTGCATCACGATCCTTGATCCTT
GCATATTTTAATCCAAATATGGTCAAGGGAGGGGTTACAGAAGGGAGTGTCCATA
GAATAAACAGGCTGGGAAGTTGTGACAGAAACAGTTGTGAAGTCAGTTCTCAAGA
GAGCTCTGTATTTTGCACTTCTCAATTAGATCTAAACTTGGAAACTTTTCTCAGA
AGTTAACTGTCCTTTGACCTCTTCTCTTCTGAATTGCAGAAATCAGACAGGATCT
TGGTATTTGTTAAAGATAAGGCTAGAGTACTTAATACGACTCACTATAGGCTAGC
ATGGAAGACGCCAAAAACATAAAGAAAGGCCCGGCGCCATTCTATCCGCTGGAAG
ATGGAACCGCTGGAGAGCAACTGCATAAGGCTATGAAGAGATACGCCCTGGTTCC
TGGAACAATTGCTTTTACAGATGCACATATCGAGGTGGACATCACTTACGCTGAG
TACTTCGAAATGTCCGTTCGGTTGGCAGAAGCTATGAAACGATATGGGCTGAATA
CAAATCACAGAATCGTCGTATGCAGTGAAAACTCTCTTCAATTCTTTATGCCGGT
GTTGGGCGCGTTATTTATCGGAGTTGCAGTTGCGCCCGCGAACGACATTTATAAT
GAACGTGAATTGCTCAACAGTATGGGCATTTCGCAGCCTACCGTGGTGTTCGTTT
CCAAAAAGGGGTTGCAAAAAATTTTGAACGTGCAAAAAAAGCTCCCAATCATCCA
AAAAATTATTATCATGGATTCTAAAACGGATTACCAGGGATTTCAGTCGATGTAC
ACGTTCGTCACATCTCATCTACCTCCCGGTTTTAATGAATACGATTTTGTGCCAG
AGTCCTTCGATAGGGACAAGACAATTGCACTGATCATGAACTCCTCTGGATCTAC
CATGCCAGAGATCCTATTTTTGGCAATCAAATCATTCCGGATACTGCGATTTTAA
GTGTTGTTCCATCCATCACGGTTTTGGAATGTTTACTACACTCGGATATTTGAT
```

ATGTGGATTTCGAGTCGTCTTAATGTATAGATTTGAAGAAGAGCTGTTTCTGAGG AGCCTTCAGGATTACAAGATTCAAAGTGCGCTGCTGGTGCCAACCCTATTCTCCT TCTTCGCCAAAAGCACTCTGATTGACAAATACGATTTATCTAATTTACACGAAAT TGCTTCTGGTGGCGCTCCCCTCTCTAAGGAAGTCGGGGAAGCGGTTGCCAAGAGG TTCCATCTGCCAGGTATCAGGCAAGGATATGGGCTCACTGAGACTACATCAGCTA ATTTTTTGAAGCGAAGGTTGTGGATCTGGATACCGGGAAAACGCTGGGCGTTAAT CAAAGAGGCGAACTGTGTGTGAGAGGTCCTATGATTATGTCCGGTTATGTAAACA CATAGCTTACTGGGACGAAGACGAACACTTCTTCATCGTTGACCGCCTGAAGTCT CTGATTAAGTACAAAGGCTATCAGGTGGCTCCCGCTGAATTGGAATCCATCTTGC TCCAACACCCCAACATCTTCGACGCAGGTGTCGCAGGTCTTCCCGACGATGACGC CGGTGAACTTCCCGCCGCCGTTGTTGTTTTTGGAGCACGGAAAGACGATGACGGAA AAAGAGATCGTGGATTACGTCGCCAGTCAAGTAACAACCGCGAAAAAGTTGCGCG GAGGAGTTGTGTGTGGACGAAGTACCGAAAGGTCTTACCGGAAAACTCGACGC AAGAAAAATCAGAGAGATCCTCATAAAGGCCAAGAAGGCGGGAAAGATCGCCGTG TAATTCTAGATTCCGAGATATCGGTAATGGGCCCTCTAGAGTCGAGGACGGGGTG AACTACGCCTGAGGATCCGATCTTTTTCCCTCTGCCAAAAATTATGGGGACATCA AATAGTGTGTTGGAATTTTTTGTGTCTCTCACTCGGAAGCAATTCGTTGATCTGA ATTTCGACCACCATAATACCCATTACCCTGGTAGATAAGTAGCATGGCGGGTTA ATCATTAACTACAAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCG CTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGC CCGGGCGCCTCAGTGAGCGAGCGAGCGCGCAG > 2.7 kb mAspa promoter sequence (SEO ID NO: 14) AAAAAAAAAATAATCTCAAAACTCAGGAGGCTTACAGGAGGTTCAAGGCCAGTC TGAGCTACATAAGAAGCTTGAAGCCAGCTTAAGCTATGCGGCAAGACCCTGTCAA AACAATAACAAATAAAACCCTCAAAGTAACACTTTTTTAAAAAGTGTTTTAATCAA TAGATGATAACTAGGAATGATTTTATTCAATATGTTATCAATTCTTTGAACTCTC AAAAAATGAACTAAGAGTAGAAAGACTTTGCCAGGTGCTTTGGGAAAGAGAGTTG GTGCTTTGGGAAACCGGGAGTTAAAACTCTTGGAAGTTAACTTGGTATAAGAGCG TGACCGCCTCTGTTGCCCCAGTTCTAAGCAAAAGCTTTCGTTTTCAAGTAAAGCT TCCTGCAGGAGACAAACTGTACACAGTAACAAGGTACGTATGCGAGCTGCGGCTG GTCATTAACTTCCCAGGGAGTTACTCACGTGGACTCATCGCAGAAACTTGAGAAA TGTGGAAGTGTACTTCAAAATGCTGACCTGTTAAAATTCCATAAAACAAGCCTCA AAGTTCGAGTCATTGGTGCCTGCCATGAGTAAACTACTGAAGCAGCGTTTCCAGA GAGACTAGGGCAAAGGACAGAGCAAACCACAGGTCAGCAGGAAAGGAACAAAATA CGTAGGGCAGGGTGGTAATAATTCACCAGAGTTCAGTAAAACCACGAGAGCAAGA GAACTGTCCTCTCTCATTTGCCTGTTTTCATCATTGTGAAGTGTTCAGTGCA TGCTGAGGCAGAAAGAAAACCAAAGACTACAGGGACTTTGTCTTAGATTACAGCA GTAATTTCGAAGTGTAAGCATATTTGACTTTGTTTTATTATACATTATAATCTT TTTAAAAACAAAAGGGATTGAGGCACTGGCTTATTAAATACTATGAAACATTTTG AATTTTTCACCATGTATTTGCTTTGTGTGTCTTGTGATTCTACATTGTGCTGGCT GTTTATGTGAGCTCTGAAAGAGCAAAATTAGAAGTTCAGAGGAATCCAAAAATAA CAGAGTCACCCTGTTGTCCTGTAGTGAACACTGGCCTTAATGAGAAACATGGCTC CTGGGCCTAGCTTTCTTTTATGTAACTGTGGAAACTTAATCGGGCTGAGTGCTTC CTTCCTTTATCCTTGGCAATAAATGTCTGCCCTTTATAAATCATAAAGTGAATTT ATAAATAGAGTAAGCAGACATCTGTGGGGAAAAATTACATATAAGCCTACCCTTA TGATAAATGATTGCTTTATTGTGTCCTTAGGAAACAACTTAGTATGGTTTCATGT

```
ATAATATTTCCTGTACTTTAACATTCTTGGCTTTCTGAGTGATTGAGCTTGAAAT
CAAGTAAGATTTGGTTCAGAGTCATTTCTCCAACGCTATGTAATCACCTTATCCT
GGATTAGTTCCCCTAGTAAGACCCCCCACTTTAGGACAACACACTTCCAGAAGAAA
GTCTTTGATGCCAGTAAATGAGATCATGTCTGTATACCTCATACAATGTGGTTAA
A ATATATGTA ATATATGTA ATATATGCTTCTATGTCGTTTTTGTATATATTAT
GTTGCAAAATATTTCAGGTATTTAAGAGATTTGAATATTACTGGCAGCTGCTTT
TCATTTGGTATTTAGACAACTTAAAAAAAAAAAGACATCATAGAATTACCAAAAGC
CTCATGAGACAAAAGTTAAAGATGTTTCAAAGTCACTTTTTAAAAAATATTTTTT
AGCCGGGCATGGTGGCACATGCCTTTAATCCTAGCACTTGGGAGGCAAAGACAGG
TGCACATATGTGGCAGTCAGAGGACAACTTTCAGAAGTTGGTTCTCTCCTCAGGA
TTGAACTCAGCAACATTTTTGCCTGCTGCGTTTCTGCCATGCTCTATGTCACCCA
CCCTATCATGACTGGGCTCTTGTGCCTCTGCTGTGGACAGCTATGCTCAAAGAAA
GGAGCTGTGCTGTTCAAGAGGAGGTCAGAGACATCAATGCCTTCAGATCAGCAAA
AGTGCTTACTTTGGAAATGTTTAAATGTCAGTGGGAACAAAAACACTGAATAAA
TCATTCTGAACAGAAGACAGGATTTTTATAGCAGGGGATGCTAGCACAATTGTAC
TTCGATCTGCTGACCATCTGAGTTAGAAGTTAACAGCTGCATCACGATCCTTGAT
CCTTGCATATTTTAATCCAAATATGGTCAAGGGAGGGGTTACAGAAGGGAGTGTC
CATAGAATAAACAGGCTGGGAAGTTGTGACAGAAACAGTTGTGAAGTCAGTTCTC
AAGAGAGCTCTGTATTTTGCACTTCTCAATTAGATCTAAACTTGGAAACTTTTCT
CAGAAGTTAACTGTCCTTTGACCTCTTCTCTTCTGAATTGCAGAAATCAGACAGG
ATCTTGGTATTTGTTAAAGA > 2.7 kb mAspa promoter reporter protein rAAV
(SEQ ID NO: 15) ctgcgcgctcgctcgctcactgaggccgcccgggcaaagcccgggcgtcgggcga
cctttggtcgcccggcctcagtgagcgagcgagcgcgcagagagggagtggccaa
ctccatcactaggggttccttgtagttaatgattaacccgccatgctacttatct
accagggtaatggGGATCCAAAAAAAAAAAATAATCTCAAAAACTCAGGAGGCTTAC\\
AGGAGGTTCAAGGCCAGTCTGAGCTACATAAGAAGCTTGAAGCCAGCTTAAGCTA
TGCGGCAAGACCCTGTCAAAACAATAACAAATAAAAACCCTCAAAGTAACACTTTT
TTAAAAGTGTTTTAATCAATAGATGATAACTAGGAATGATTTTATTCAATATGTT
ATCAATTCTTTGAACTCTCAAAAAATGAACTAAGAGTAGAAAGACTTTGCCAGGT
GCTTTGGGAAAGAGAGTTGGTGCTTTGGGAAACCGGGAGTTAAAACTCTTGGAAG
TTAACTTGGTATAAGAGCGTGACCGCCTCTGTTGCCCCAGTTCTAAGCAAAAGCT
TTCGTTTTCAAGTAAAGCTTCCTGCAGGAGACAAACTGTACACAGTAACAAGGTA
CGTATGCGAGCTGCGCTGGTCATTAACTTCCCAGGGAGTTACTCACGTGGACTC
ATCGCAGAAACTTGAGAAATGTGGAAGTGTACTTCAAAATGCTGACCTGTTAAAA
CTGAAGCAGCGTTTCCAGAGAGACTAGGGCAAAGGACAGAGCAAACCACAGGTCA
GCAGGAAAGGAACAAAATACGTAGGGCAGGGTGGTAATAATTCACCAGAGTTCAG
TAAAACCACGAGAGCAAGAGAACTGTCCTCTCTCTCATTTGCCTGTTTTCATCA
TTGTGAAGTGTTCAGTGCATGCTGAGGCAGAAAGAAAACCAAAGACTACAGGGAC
TTTGTCTTAGATTACAGCAGTAATTTCGAAGTGTAAGCATATTTGACTTTGTTTT
ATTTATACATTATAATCTTTTTAAAAACAAAAGGGATTGAGGCACTGGCTTATTA
AATACTATGAAACATTTTGAATTTTTCACCATGTATTTGCTTTGTGTGTCTTGTG
ATTCTACATTGTGCTGGCTGTTTATGTGAGGCTCTGAAAGAGCAAAATTAGAAGTT
CAGAGGAATCCAAAAATAACAGAGTCACCCTGTTGTCCTGTAGTGAACACTGGCC
TTAATGAGAAACATGGCTCCTGGGCCTAGCTTTCTTTTATGTAACTGTGGAAACT
TAATCGGGCTGAGTGCTTCCTTCCTTTATCCTTGGCAATAAATGTCTGCCCTTTA
```

TAAATCATAAAGTGAATTTATAAATAGAGTAAGCAGACATCTGTGGGGAAAAATT ACATATAAGCCTACCCTTATGATAAATGATTGCTTTATTGTGTCCTTAGGAAACA TGTGTGTGTGAAAATATATAATATTTCCTGTACTTTAACATTCTTGGCTTTCT GAGTGATTGAGCTTGAAATCAAGTAAGATTTGGTTCAGAGTCATTTCTCCAACGC TATGTAATCACCTTATCCTGGATTAGTTCCCCTAGTAAGACCCCCCACTTTAGGA CAACACATTCCAGAAGAAGTCTTTGATGCCAGTAAATGAGATCATGTCTGTATA CCTCATACAATGTGGTTAAAATATATGTAATATATGTAATATATGCTTCTATG TCGTTTTTGTATATATTATGTTGCAAAATATTTTCAGGTATTTAAGAGATTTGAA TCATAGAATTACCAAAAGCCTCATGAGACAAAAGTTAAAGATGTTTCAAAGTCAC TTTTTAAAAATATTTTTTTAGCCGGGCATGGTGGCACATGCCTTTAATCCTAGCA CTTGGGAGGCAAAGACAGGTGAATTTCTGAGTTCGAGGCCAGCCTGGTCTACAAA AATAATAATAATAATTTTTTTTTTCATTCATTATTTGCGTGTAAGAGACAGAA GAGAAAGAGAGAGAACAGGTGCACATATGTGGCAGTCAGAGGACAACTTTCAGAA GTTGGTTCTCTCAGGATTGAACTCAGCAACATTTTTGCCTGCTGCGTTTCTG CCATGCTCTATGTCACCCACCCTATCATGACTGGGCTCTTGTGCCTCTGCTGTGG ACAGCTATGCTCAAAGAAAGGAGCTGTGCTGTTCAAGAGGAGGTCAGAGACATCA ATGCCTTCAGATCAGCAAAAGTGCTTACTTTGGAAATGTTTAAATGTCAGTGGG AACAAAAACACTGAATAAACCATATTGTTATATTTGGGAGGATTGGGCTTAATGT GGTATTATTTATAAATAATCATTCTGAACAGAAGACAGGATTTTTATAGCAGGG GATGCTAGCACAATTGTACTTCGATCTGCTGACCATCTGAGTTAGAAGTTAACAG CTGCATCACGATCCTTGATCCTTGCATATTTTAATCCAAATATGGTCAAGGGAGG GGTTACAGAAGGGAGTGTCCATAGAATAAACAGGCTGGGAAGTTGTGACAGAAAC AGTTGTGAAGTCAGTTCTCAAGAGAGCTCTGTATTTTGCACTTCTCAATTAGATC TAAACTTGGAAACTTTTCTCAGAAGTTAACTGTCCTTTGACCTCTTCTCTGA ATTGCAGAAATCAGACAGGATCTTGGTATTTGTTAAAGATAAGGCTAGAGTACTT GGCGCCATTCTATCCGCTGGAAGATGGAACCGCTGGAGAGCAACTGCATAAGGCT ATGAAGAGATACGCCCTGGTTCCTGGAACAATTGCTTTTACAGATGCACATATCG AGGTGGACATCACTTACGCTGAGTACTTCGAAATGTCCGTTCGGTTGGCAGAAGC TATGAAACGATATGGGCTGAATACAAATCACAGAATCGTCGTATGCAGTGAAAAC CGCCCGCGAACGACATTTATAATGAACGTGAATTGCTCAACAGTATGGGCATTTC GCAGCCTACCGTGGTGTTCCGTTTCCAAAAAGGGGGTTGCAAAAAATTTTGAACGTG CAAAAAAGCTCCCAATCATCCAAAAAATTATTATCATGGATTCTAAAACGGATT ACCAGGGATTTCAGTCGATGTACACGTTCGTCACATCTCATCTACCTCCCGGTTT TAATGAATACGATTTTGTGCCAGAGTCCTTCGATAGGGACAAGACAATTGCACTG ATCATGAACTCCTCTGGATCTACTGGTCTGCCTAAAGGTGTCGCTCTGCCTCATA GAACTGCCTGCGTGAGATTCTCGCATGCCAGAGATCCTATTTTTGGCAATCAAAT TTTACTACACTCGGATATTTGATATGTGGATTTCGAGTCGTCTTAATGTATAGAT TTGAAGAAGAGCTGTTTCTGAGGAGCCTTCAGGATTACAAGATTCAAAGTGCGCT GCTGGTGCCAACCCTATTCTCCTTCTTCGCCAAAAGCACTCTGATTGACAAATAC GATTTATCTAATTTACACGAAATTGCTTCTGGTGGCGCTCCCCTCTCTAAGGAAG TCGGGGAAGCGGTTGCCAAGAGGTTCCATCTGCCAGGTATCAGGCAAGGATATGG GCTCACTGAGACTACATCAGCTATTCTGATTACACCCGAGGGGGATGATAAACCG GGCGCGGTCGGTAAAGTTGTTCCATTTTTTGAAGCGAAGGTTGTGGATCTGGATA

```
GATGGATGGCTACATTCTGGAGACATAGCTTACTGGGACGAAGACGAACACTTCT
TCATCGTTGACCGCCTGAAGTCTCTGATTAAGTACAAAGGCTATCAGGTGGCTCC
CGCTGAATTGGAATCCATCTTGCTCCAACACCCCAACATCTTCGACGCAGGTGTC
GCAGGTCTTCCCGACGATGACGCCGGTGAACTTCCCGCCGCCGTTGTTGTTTTGG
AGCACGGAAAGACGATGACGGAAAAAGAGATCGTGGATTACGTCGCCAGTCAAGT
AACAACCGCGAAAAAGTTGCGCGGAGGAGTTGTGTTTTGTGGACGAAGTACCGAAA
GGTCTTACCGGAAAACTCGACGCAAGAAAAATCAGAGAGATCCTCATAAAGGCCA
AGAAGGGCGGAAAGATCGCCGTGTAATTCTAGATTCCGAGATATCGGTAATGGGC
CCTCTAGAGTCGAGGACGGGGTGAACTACGCCTGAGGATCCGATCTTTTTCCCTC
TGCCAAAAATTATGGGGACATCATGAAGCCCCTTGAGCATCTGACTTCTGGCTAA
TAAAGGAAATTTATTTCATTGCAATAGTGTGTTTGGAATTTTTTTGTGTCTCTCAC
TCGGAAGCAATTCGTTGATCTGAATTTCGACCACCCATAATACCCATTACCCTGG
TAGATAAGTAGCATGGCGGGTTAATCATTAACTACAAGGAACCCCTAGTGATGGA
GTTGGCCACTCCCTCTCTGCGCGCTCGCTCACTGAGGCCGGGCGACCAAAG
2.5 kb mAspa promoter (SEQ ID NO: 16)
GTGCTTTGGGAAAGAGAGTTGGTGCTTTGGGAAACCGGGAGTTAAAACTCTTGGA
AGTTAACTTGGTATAAGAGCGTGACCGCCTCTGTTGCCCCAGTTCTAAGCAAAAG
CTTTCGTTTTCAAGTAAAGCTTCCTGCAGGAGACAAACTGTACACAGTAACAAGG
TACGTATGCGAGCTGCGCTGGTCATTAACTTCCCAGGGAGTTACTCACGTGGAC
TCATCGCAGAAACTTGAGAAATGTGGAAGTGTACTTCAAAATGCTGACCTGTTAA
TACTGAAGCAGCGTTTCCAGAGAGACTAGGGCAAAGGACAGAGCAAACCACAGGT
CAGCAGGAAAGGAACAAAATACGTAGGGCAGGGTGGTAATAATTCACCAGAGTTC
AGTAAAACCACGAGAGCAAGAGAACTGTCCTCTCTCTCATTTGCCTGTTTTCAT
CATTGTGAAGTGTTCAGTGCATGCTGAGGCAGAAAGAAAAACCAAAGACTACAGGG
ACTTTGTCTTAGATTACAGCAGTAATTTCGAAGTGTAAGCATATTTGACTTTGTT
TTATTTATACATTATAATCTTTTTAAAAAACAAAAGGGATTGAGGCACTGGCTTAT
TAAATACTATGAAACATTTTGAATTTTTCACCATGTATTTGCTTTGTGTGTCTTG
TGATTCTACATTGTGCTGGCTGTTTATGTGAGCTCTGAAAGAGCAAAATTAGAAG
TTCAGAGGAATCCAAAAATAACAGAGTCACCCTGTTGTCCTGTAGTGAACACTGG
CCTTAATGAGAAACATGGCTCCTGGGCCTAGCTTTCTTTTATGTAACTGTGGAAA
CTTAATCGGGCTGAGTGCTTCCTTCCTTTATCCTTGGCAATAAATGTCTGCCCTT
TATAAATCATAAAGTGAATTTATAAATAGAGTAAGCAGACATCTGTGGGGAAAAA
TTACATATAAGCCTACCCTTATGATAAATGATTGCTTTATTGTGTCCTTAGGAAA
TGTGTGTGTGTGAAAATATATAATATTTCCTGTACTTTAACATTCTTGGCTTT
CTGAGTGATTGAGCTTGAAATCAAGTAAGATTTGGTTCAGAGTCATTTCTCCAAC
GCTATGTAATCACCTTATCCTGGATTAGTTCCCCTAGTAAGACCCCCCACTTTAG
GACAACACATTCCAGAAGAAAGTCTTTGATGCCAGTAAATGAGATCATGTCTGTA
TACCTCATACAATGTGGTTAAAATATATGTAATATATGTAATATATGCTTCTA
TGTCGTTTTTGTATATATTATGTTGCAAAATATTTTCAGGTATTTAAGAGATTTG
CATCATAGAATTACCAAAAGCCTCATGAGACAAAAGTTAAAGATGTTTCAAAGTC
ACTTTTTAAAAATATTTTTTTAGCCGGGCATGGTGGCACATGCCTTTAATCCTAG
CACTTGGGAGGCAAAGACAGGTGAATTTCTGAGTTCGAGGCCAGCCTGGTCTACA
AAAATAATAATAATAATTTTTATTTCATTCATTATTTGCGTGTAAGAGACAG
AAGAGAAAGAGAGAGAACAGGTGCACATATGTGGCAGTCAGAGGACAACTTTCAG
```

```
AAGTTGGTTCTCCTCAGGATTGAACTCAGCAACATTTTTGCCTGCGTTTC
TGCCATGCTCTATGTCACCCACCCTATCATGACTGGGCTCTTGTGCCTCTGCTGT
GGACAGCTATGCTCAAAGAAAGGAGCTGTGCTGTTCAAGAGGAGGTCAGAGACAT
CAATGCCTTCAGATCAGCAAAAGTGCTTACTTTGGAAATGTTTAAATGTCAGTG
GGAACAAAAACACTGAATAAACCATATTGTTATATTTGGGAGGATTGGGCTTAAT
GTGGTATTATTATAAATAATCATTCTGAACAGAAGACAGGATTTTTATAGCAG
GGGATGCTAGCACAATTGTACTTCGATCTGCTGACCATCTGAGTTAGAAGTTAAC
AGCTGCATCACGATCCTTGATCCTTGCATATTTTAATCCAAATATGGTCAAGGGA
GGGGTTACAGAAGGGAGTGTCCATAGAATAAACAGGCTGGGAAGTTGTGACAGAA
ACAGTTGTGAAGTCAGTTCTCAAGAGAGCTCTGTATTTTGCACTTCTCAATTAGA
TCTAAACTTGGAAACTTTTCTCAGAAGTTAACTGTCCTTTGACCTCTTCTCTTCT
GAATTGCAGAAATCAGACAGGATCTTGGTATTTGTTAAAGA > 2.5 kb mAspa
promoter reporter protein rAAV (SEQ ID NO: 17)
ctgcgcgctcgctcactgaggccgcccgggcaaagcccgggcgtcgggcga
cctttggtcgcccggcctcagtgagcgagcgagcgcgcagagagggagtggccaa
ctccatcactaggggttccttgtagttaatgattaacccgccatgctacttatct
accaggg taatgg GGATCCGTGCTTTGGGAAAGAGAGAGTTGGTGCTTTGGGAAACC\\
GGGAGTTAAAACTCTTGGAAGTTAACTTGGTATAAGAGCGTGACCGCCTCTGTTG
CCCCAGTTCTAAGCAAAAGCTTTCGTTTTCAAGTAAAGCTTCCTGCAGGAGACAA
ACTGTACACAGTAACAAGGTACGTATGCGAGCTGCGGCTGGTCATTAACTTCCCA
GGGAGTTACTCACGTGGACTCATCGCAGAAACTTGAGAAATGTGGAAGTGTACTT
CAAAATGCTGACCTGTTAAAATTCCATAAAACAAGCCTCAAAGTTCGAGTCATTG
GTGCCTGCCATGAGTAAACTACTGAAGCAGCGTTTCCAGAGAGACTAGGGCAAAG
GACAGAGCAAACCACAGGTCAGCAGGAAAGGAACAAAATACGTAGGGCAGGGTGG
TAATAATTCACCAGAGTTCAGTAAAACCACGAGAGCAAGAGAACTGTCCTCTCTC
TTCATTTGCCTGTTTTCATCATTGTGAAGTGTTCAGTGCATGCTGAGGCAGAAAG
AAAACCAAAGACTACAGGGACTTTGTCTTAGATTACAGCAGTAATTTCGAAGTGT
AAGCATATTTGACTTTGTTTTATTTATACATTATAATCTTTTTAAAAAACAAAAGG
GATTGAGGCACTGGCTTATTAAATACTATGAAACATTTTGAATTTTTCACCATGT
ATTTGCTTTGTGTCTTGTGATTCTACATTGTGCTGGCTGTTTATGTGAGCTCT
GAAAGAGCAAAATTAGAAGTTCAGAGGAATCCAAAAATAACAGAGTCACCCTGTT
GTCCTGTAGTGAACACTGGCCTTAATGAGAAACATGGCTCCTGGGCCTAGCTTTC
GCAATAAATGTCTGCCCTTTATAAATCATAAAGTGAATTTATAAATAGAGTAAGC
AGACATCTGTGGGGAAAAATTACATATAAGCCTACCCTTATGATAAATGATTGCT
GTGTGTGTGTGTGTGTGTGTGTGTGAAAATATATAATATTTCCTGTA
CTTTAACATTCTTGGCTTTCTGAGTGATTGAGCTTGAAATCAAGTAAGATTTGGT
TCAGAGTCATTTCTCCAACGCTATGTAATCACCTTATCCTGGATTAGTTCCCCTA
GTAAGACCCCCCACTTTAGGACAACACATTCCAGAAGAAAGTCTTTGATGCCAGT
AAATGAGATCATGTCTGTATACCTCATACAATGTGGTTAAAAATATATGTAATATA
TATGTAATATGCTTCTATGTCGTTTTTGTATATATTATGTTGCAAAATATTTT
CAGGTATTTAAGAGATTTGAATATTACTGGCAGCTGCTTTTCATTTGGTATTTAG
ACAACTTAAAAAAAAAAGACATCATAGAATTACCAAAAGCCTCATGAGACAAAAG
TTAAAGATGTTTCAAAGTCACTTTTTAAAAATATTTTTTTAGCCGGGCATGGTGG
CACATGCCTTTAATCCTAGCACTTGGGAGGCAAAGACAGGTGAATTTCTGAGTTC
GAGGCCAGCCTGGTCTACAAAGTGAGTGCCAGGACAGCCAGGGCTATACAGAGAA
ATTTGCGTGTAAGAGACAGAAGAGAAAGAGAGAGAACAGGTGCACATATGTGGCA
GTCAGAGGACAACTTTCAGAAGTTGGTTCTCTCCTCAGGATTGAACTCAGCAACA
```

GCTCTTGTGCCTCTGCTGGACAGCTATGCTCAAAGAAAGGAGCTGTGCTGTTC AAGAGGAGGTCAGAGACATCAATGCCTTCAGATCAGCAAAAGTGCTTACTTTGGA AATGTTTTAAATGTCAGTGGGAACAAAAACACTGAATAAACCATATTGTTATATT GACAGGATTTTTATAGCAGGGGATGCTAGCACAATTGTACTTCGATCTGCTGACC ATCTGAGTTAGAAGTTAACAGCTGCATCACGATCCTTGATCCTTGCATATTTTAA TCCAAATATGGTCAAGGGAGGGGTTACAGAAGGGAGTGTCCATAGAATAAACAGG CTGGGAAGTTGTGACAGAAACAGTTGTGAAGTCAGTTCTCAAGAGAGCTCTGTAT TTTGCACTTCTCAATTAGATCTAAACTTGGAAACTTTTCTCAGAAGTTAACTGTC CTTTGACCTCTTCTCTGAATTGCAGAAATCAGACAGGATCTTGGTATTTGTT AAAGATAAGGCTAGAGTACTTAATACGACTCACTATAGGCTAGCATGGAAGACGC CAAAAACATAAAGAAAGGCCCGGCGCCATTCTATCCGCTGGAAGATGGAACCGCT GGAGAGCAACTGCATAAGGCTATGAAGAGATACGCCCTGGTTCCTGGAACAATTG CTTTTACAGATGCACATATCGAGGTGGACATCACTTACGCTGAGTACTTCGAAAT GTCCGTTCGGTTGGCAGAAGCTATGAAACGATATGGGCTGAATACAAATCACAGA ATCGTCGTATGCAGTGAAAACTCTCTTCAATTCTTTATGCCGGTGTTGGGCGCGT TATTTATCGGAGTTGCAGTTGCGCCCGCGAACGACATTTATAATGAACGTGAATT GCTCAACAGTATGGGCATTTCGCAGCCTACCGTGGTGTTCGTTTCCAAAAAGGGG TTGCAAAAATTTTGAACGTGCAAAAAAAGCTCCCAATCATCCAAAAAATTATTA TCATGGATTCTAAAACGGATTACCAGGGATTTCAGTCGATGTACACGTTCGTCAC ATCTCATCTACCTCCCGGTTTTAATGAATACGATTTTGTGCCAGAGTCCTTCGAT AGGGACAAGACAATTGCACTGATCATGAACTCCTCTGGATCTACTGGTCTGCCTA AAGGTGTCGCTCTCATAGAACTGCCTGCGTGAGATTCTCGCATGCCAGAGA TCCTATTTTTGGCAATCAAATCATTCCGGATACTGCGATTTTAAGTGTTGTTCCA TTCCATCACGGTTTTGGAATGTTTACTACACTCGGATATTTGATATGTGGATTTC GAGTCGTCTTAATGTATAGATTTGAAGAAGAGCTGTTTCTGAGGAGCCTTCAGGA TTACAAGATTCAAAGTGCGCTGCTGGTGCCAACCCTATTCTCCTTCTTCGCCAAA AGCACTCTGATTGACAAATACGATTTATCTAATTTACACGAAATTGCTTCTGGTG GCGCTCCCCTCTCAAGGAAGTCGGGGAAGCGGTTGCCAAGAGGTTCCATCTGCC AGGTATCAGGCAAGGATATGGGCTCACTGAGACTACATCAGCTATTCTGATTACA CCCGAGGGGATGATAAACCGGGCGCGGTCGGTAAAGTTGTTCCATTTTTTGAAG CGAAGGTTGTGGATCTGGATACCGGGAAAACGCTGGGCGTTAATCAAAGAGGCGA ACTGTGTGTGAGAGGTCCTATGATTATGTCCGGTTATGTAAACAATCCGGAAGCG ACCAACGCCTTGATTGACAAGGATGGATGGCTACATTCTGGAGACATAGCTTACT GGGACGAAGACGAACACTTCTTCATCGTTGACCGCCTGAAGTCTCTGATTAAGTA CAAAGGCTATCAGGTGGCTCCCGCTGAATTGGAATCCATCTTGCTCCAACACCCC AACATCTTCGACGCAGGTGTCGCAGGTCTTCCCGACGATGACGCCGGTGAACTTC CCGCCGCCGTTGTTGTTTTGGAGCACGGAAAGACGATGACGGAAAAAGAGATCGT GGATTACGTCGCCAGTCAAGTAACAACCGCGAAAAAGTTGCGCGGAGGAGTTGTG TTTGTGGACGAAGTACCGAAAGGTCTTACCGGAAAAACTCGACGCAAGAAAAATCA GAGAGATCCTCATAAAGGCCAAGAAGGCGGAAAGATCGCCGTGTAATTCTAGAT TCCGAGATATCGGTAATGGGCCCTCTAGAGTCGAGGACGGGGTGAACTACGCCTG AGGATCCGATCTTTTCCCTCTGCCAAAAATTATGGGGACATCATGAAGCCCCTT GAGCATCTGACTTCTGGCTAATAAAGGAAATTTATTTTCATTGCAATAGTGTGTT GGAATTTTTTGTGTCTCTCACTCGGAAGCAATTCGTTGATCTGAATTTCGACCAC CCATAATACCCATTACCCTGGTAGATAAGTAGCATGGCGGGTTAATCATTAACTA ACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCT CAGTGAGCGAGCGCGCAG > 2.4 kb mAspa promoter (SEQ ID NO:

```
AAGAATGTAGACATGCGCCATATGGAATCTTTGCTAGAAGTCTATGAACTCATAT
ACTTTACCTGGCTCTGTTCTGGTTATCGTTCATCTCCACCCAGACTGTCGCTCAA
GATGGATGACAGCAATAGAGCCACAGAGAAAGGATAGAGTTAGAGCTGTAATGAT
TGCCTGACTCCACATTATCTATAAGAACAGGGAATCCTTTTTATCATCTGTCCTA
GCTACTTTTAGCTGTCAGCCTGACACAGCTGAGAATCGTCTGAGGGAGCCTCAGT
TGAGGAACTGCCCAGATCCAATTGGCCTGTAGCCATGTCTGAGAATAAATGTATT
ATCTGGGCTACATAAGAACGCTAGCTGAGCAGAGGCAGAAAGTGAATTAGCGGGT
CTTTCTCCATGGGCTGTGCATGTTCCCGCATAAATTCCTGTCCTCACTTCCCACA
AGGATGGATTAAGTTGCTTTTGGCCAGAGTGCTACTCTATCACAGCAACAGAAAG
CAAACTAGAATATCTCCTGACATGCTGTTTCAGAAACAGCCTCAGCTTAATACCT
{\tt CCAACAAAATTTCTGGCATTGACTCATTGGATAGCCATTCTGTGAAGTCAAACTT}
CAAAACTCAGGAGGCTTACAGGAGGTTCAAGGCCAGTCTGAGCTACATAAGAAGC
TTGAAGCCAGCTTAAGCTATGCGGCAAGACCCTGTCAAAACAATAACAAATAAAA
CCCTCAAAGTAACACTTTTTTAAAAGTGTTTTAATCAATAGATGATAACTAGGAA
TGATTTATTCAATATGTTATCAATTCTTTGAACTCTCAAAAAAATGAACTAAGAG
TGTGTGTGTGTGTGTGTGTGTGAAAATATATAATATTTCCTGTACTTTA
ACATTCTTGGCTTTCTGAGTGATTGAGCTTGAAATCAAGTAAGATTTGGTTCAGA
GTCATTTCTCCAACGCTATGTAATCACCTTATCCTGGATTAGTTCCCCTAGTAAG
ACCCCCACTTTAGGACAACACATTCCAGAAGAAAGTCTTTGATGCCAGTAAATG
AGATCATGTCTGTATACCTCATACAATGTGGTTAAAATATATGTAATATATGT
AATATATGCTTCTATGTCGTTTTTGTATATATTATGTTGCAAAATATTTTCAGGT
ATTTAAGAGATTTGAATATTACTGGCAGCTGCTTTTCATTTGGTATTTAGACAAC
TTAAAAAAAAAAGACATCATAGAATTACCAAAAGCCTCATGAGACAAAAGTTAAA
GATGTTTCAAAGTCACTTTTTAAAAAATATTTTTTTAGCCGGGCATGGTGGCACAT
GCCTTTAATCCTAGCACTTGGGAGGCAAAGACAGGTGAATTTCTGAGTTCGAGGC
CAGCCTGGTCTACAAAGTGAGTGCCAGGACAGCCAGGGCTATACAGAGAAACCCT
CGTGTAAGAGACAGAAGAGAAAGAGAGAGAGACAGGTGCACATATGTGGCAGTCAG
AGGACAACTTTCAGAAGTTGGTTCTCTCCTCAGGATTGAACTCAGCAACATTTTT
GCCTGCTGCGTTTCTGCCATGCTCTATGTCACCCACCCTATCATGACTGGGCTCT
TGTGCCTCTGCTGTGGACAGCTATGCTCAAAGAAAGGAGCTGTGCTGTTCAAGAG
GAGGTCAGAGACATCAATGCCTTCAGATCAGCAAAAGTGCTTACTTTGGAAATGT
TTTAAATGTCAGTGGGAACAAAAACACTGAATAAACCATATTGTTATATTTGGGA
GGATTGGGCTTAATGTGGTATTATTTTATAAATAATCATTCTGAACAGAAGACAG
GATTTTTATAGCAGGGGATGCTAGCACAATTGTACTTCGATCTGCTGACCATCTG
AGTTAGAAGTTAACAGCTGCATCACGATCCTTGATCCTTGCATATTTTAATCCAA
ATATGGTCAAGGGAGGGGTTACAGAAGGGAGTGTCCATAGAATAAACAGGCTGGG
AAGTTGTGACAGAAACAGTTGTGAAGTCAGTTCTCAAGAGAGCTCTGTATTTTGC
ACTTCTCAATTAGATCTAAACTTGGAAACTTTTCTCAGAAGTTAACTGTCCTTTG
ACCTCTTCTCTGAATTGCAGAAATCAGACAGGATCTTGGTATTTGTTAAAGA >
2.4 kb mAspa promoter reporter protein rAAV (SEQ ID NO: 19)
ctgcgcgctcgctcactgaggccgcccgggcaaagcccgggcgtcgggcga
cctttggtcgcccggcctcagtgagcgagcgagcgcgcagagagggagtggccaa
ctccatcactaggggttccttgtagttaatgattaacccgccatgctacttatct\\
accagggtaatggggatcctctagaactatagctagtcgatcGAGGGATAACCTG
TACTGCGTCTGTAAAGAATGTAGACATGCGCCATATGGAATCTTTGCTAGAAGTC
TATGAACTCATATACTTTACCTGGCTCTGTTCTGGTTATCGTTCATCTCCACCCA
```

GACTGTCGCTCAAGATGGATGACAGCAATAGAGCCACAGAGAAAGGATAGAGTTA GAGCTGTAATGATTGCCTGACTCCACATTATCTATAAGAACAGGGAATCCTTTTT ATCATCTGTCCTAGCTACTTTTAGCTGTCAGCCTGACACAGCTGAGAATCGTCTG AGGGAGCCTCAGTTGAGGAACTGCCCAGATCCAATTGGCCTGTAGCCATGTCTGA GAATAAATGTATTGATGTGGGAGGTCCCAGCCCACTGTGAATGGTACCAACCCTC CCTAGATGGGTGGATCTGGGCTACATAAGAACGCTAGCTGAGCAGAGGCAGAAAG TGAATTAGCGGGTCTTTCTCCATGGGCTGTGCATGTTCCCGCATAAATTCCTGTC CTCACTTCCCACAAGGATGGATTAAGTTGCTTTTTGGCCAGAGTGCTACTCTATCA CAGCAACAGAAAGCAAACTAGAATATCTCCTGACATGCTGTTTCAGAAACAGCCT CAGCTTAATACCTCCAACAAAATTTCTGGCATTGACTCATTGGATAGCCATTCTG TGAAGTCAAACTTTACTATGCCTTTGTTTTAAACTACATGATCACATTTAAAAAA AAAATAATAATCTCAAAAACTCAGGAGGCTTACAGGAGGTTCAAGGCCAGTCTGAG CTACATAAGAAGCTTGAAGCCAGCTTAAGCTATGCGGCAAGACCCTGTCAAAACA ATAACAAATAAAACCCTCAAAGTAACACTTTTTTAAAAAGTGTTTTAATCAATAGA TGATAACTAGGAATGATTTTATTCAATATGTTATCAATTCTTTGAACTCTCAAAA AATGAACTAAGAGTAGAAAGACTTTGCCAGCTTAGTATGGTTTCATGTGGTGTGT TTCCTGTACTTTAACATTCTTGGCTTTCTGAGTGATTGAGCTTGAAATCAAGTAA GATTTGGTTCAGAGTCATTTCTCCAACGCTATGTAATCACCTTATCCTGGATTAG TTCCCCTAGTAAGACCCCCCACTTTAGGACAACACATTCCAGAAGAAAGTCTTTG ATGCCAGTAAATGAGATCATGTCTGTATACCTCATACAATGTGGTTAAAATATAT GTAATATATGTAATATGCTTCTATGTCGTTTTTGTATATATTATGTTGCAA AATATTTTCAGGTATTTAAGAGATTTGAATATTACTGGCAGCTGCTTTTCATTTG GTATTTAGACAACTTAAAAAAAAAAAGACATCATAGAATTACCAAAAGCCTCATGA GACAAAAGTTAAAGATGTTTCAAAGTCACTTTTTAAAAAATATTTTTTTAGCCGGG CATGGTGGCACATGCCTTTAATCCTAGCACTTGGGAGGCAAAGACAGGTGAATTT CTGAGTTCGAGGCCAGCCTGGTCTACAAAGTGAGTGCCAGGACAGCCAGGGCTAT ATGTGGCAGTCAGAGGACAACTTTCAGAAGTTGGTTCTCTCCTCAGGATTGAACT TGCTGTTCAAGAGGGGCCAGAGACATCAATGCCTTCAGATCAGCAAAAGTGCTT ACTTTGGAAATGTTTAAATGTCAGTGGGAACAAAAACACTGAATAAACCATATT GAACAGAAGACAGGATTTTTATAGCAGGGGATGCTAGCACAATTGTACTTCGATC TGCTGACCATCTGAGTTAGAAGTTAACAGCTGCATCACGATCCTTGATCCTTGCA TATTTTAATCCAAATATGGTCAAGGGAGGGGTTACAGAAGGGAGTGTCCATAGAA TAAACAGGCTGGGAAGTTGTGACAGAAACAGTTGTGAAGTCAGTTCTCAAGAGAG CTCTGTATTTTGCACTTCTCAATTAGATCTAAACTTGGAAACTTTTCTCAGAAGT TAACTGTCCTTTGACCTCTTCTCTGAATTGCAGAAATCAGACAGGATCTTGG TATTTGTTAAAGATAAGGCTAGAGTACTTAATACGACTCACTATAGGCTAGCATG GAAGACGCCAAAAACATAAAGAAAGGCCCGGCGCCATTCTATCCGCTGGAAGATG GAACCGCTGGAGAGCAACTGCATAAGGCTATGAAGAGATACGCCCTGGTTCCTGG AACAATTGCTTTTACAGATGCACATATCGAGGTGGACATCACTTACGCTGAGTAC TTCGAAATGTCCGTTCGGTTGGCAGAAGCTATGAAACGATATGGGCTGAATACAA ATCACAGAATCGTCGTATGCAGTGAAAACTCTCTTCAATTCTTTATGCCGGTGTT GGGCGCGTTATTTATCGGAGTTGCAGTTGCGCCCGCGAACGACATTTATAATGAA CGTGAATTGCTCAACAGTATGGGCATTTCGCAGCCTACCGTGGTGTTCGTTTCCA AAAAGGGGTTGCAAAAAATTTTGAACGTGCAAAAAAAGCTCCCAATCATCCAAAA

AATTATTATCATGGATTCTAAAACGGATTACCAGGGATTTCAGTCGATGTACACG TTCGTCACATCTCATCTACCTCCCGGTTTTAATGAATACGATTTTGTGCCAGAGT CCTTCGATAGGGACAAGACAATTGCACTGATCATGAACTCCTCTGGATCTACTGG GCCAGAGATCCTATTTTTGGCAATCAAATCATTCCGGATACTGCGATTTTAAGTG TTGTTCCATTCCATCACGGTTTTGGAATGTTTACTACACTCGGATATTTGATATG TGGATTTCGAGTCGTCTTAATGTATAGATTTGAAGAAGAGCTGTTTCTGAGGAGC CTTCAGGATTACAAGATTCAAAGTGCGCTGCTGGTGCCAACCCTATTCTCCTTCT TCGCCAAAAGCACTCTGATTGACAAATACGATTTATCTAATTTACACGAAATTGC TTCTGGTGGCGCTCCCCTCTCTAAGGAAGTCGGGGAAGCGGTTGCCAAGAGGTTC CATCTGCCAGGTATCAGGCAAGGATATGGGCTCACTGAGACTACATCAGCTATTC TTTTGAAGCGAAGGTTGTGGATCTGGATACCGGGAAAACGCTGGGCGTTAATCAA AGAGGCGAACTGTGTGAGAGGTCCTATGATTATGTCCGGTTATGTAAACAATC CGGAAGCGACCAACGCCTTGATTGACAAGGATGGATGGCTACATTCTGGAGACAT AGCTTACTGGGACGAAGACGAACACTTCTTCATCGTTGACCGCCTGAAGTCTCTG ATTAAGTACAAAGGCTATCAGGTGGCTCCCGCTGAATTGGAATCCATCTTGCTCC AACACCCCAACATCTTCGACGCAGGTGTCGCAGGTCTTCCCGACGATGACGCCGG TGAACTTCCCGCCGCCGTTGTTGTTTTTGGAGCACGGAAAGACGATGACGGAAAAA GAGATCGTGGATTACGTCGCCAGTCAAGTAACAACCGCGAAAAAGTTGCGCGGAG GAGTTGTGTTGTGGACGAAGTACCGAAAGGTCTTACCGGAAAACTCGACGCAAG AAAAATCAGAGAGATCCTCATAAAGGCCAAGAAGGCCGGAAAGATCGCCGTGTAA TTCTAGATTCCGAGATATCGGTAATGGGCCCTCTAGAGTCGAGGACGGGGTGAAC TACGCCTGAGGATCCGATCTTTTCCCTCTGCCAAAAATTATGGGGACATCATGA AGTGTGTTGGAATTTTTTGTGTCTCTCACTCGGAAGCAATTCGTTGATCTGAATT TCGACCACCCATAATACCCATTACCCTGGTAGATAAGTAGCATGGCGGGTTAATC ATTAACTACAAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTC GCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCG GGCGGCCTCAGTGAGCGAGCGAGCGCGCAG > 1.4 kb mAspa promoter (SEQ GTGTGTGTGAAAATATATATATTTCCTGTACTTTAACATTCTTGGCTTTCTG AGTGATTGAGCTTGAAATCAAGTAAGATTTGGTTCAGAGTCATTTCTCCAACGCT ATGTAATCACCTTATCCTGGATTAGTTCCCCTAGTAAGACCCCCCACTTTAGGAC AACACATTCCAGAAGAAAGTCTTTGATGCCAGTAAATGAGATCATGTCTGTATAC CTCATACAATGTGGTTAAAATATATGTAATATATGTAATATATGCTTCTATGT CGTTTTTGTATATATTATGTTGCAAAATATTTTCAGGTATTTAAGAGATTTGAAT CATAGAATTACCAAAAGCCTCATGAGACAAAAGTTAAAGATGTTTCAAAGTCACT TTTTAAAAATATTTTTTAGCCGGGCATGGTGGCACATGCCTTTAATCCTAGCAC TTGGGAGGCAAAGACAGGTGAATTTCTGAGTTCGAGGCCAGCCTGGTCTACAAAG ATAATAATAATAATTTTTTTTTTCATTCATTATTTGCGTGTAAGAGACAGAAG AGAAAGAGAGAGAACAGGTGCACATATGTGGCAGTCAGAGGACAACTTTCAGAAG TTGGTTCTCTCCTCAGGATTGAACTCAGCAACATTTTTGCCTGCTGCGTTTCTGC CATGCTCTATGTCACCCACCCTATCATGACTGGGCTCTTGTGCCTCTGCTGGA CAGCTATGCTCAAAGAAGGAGCTGTGCTGTTCAAGAGGAGGTCAGAGACATCAA TGCCTTCAGATCAGCAAAAGTGCTTACTTTGGAAATGTTTAAATGTCAGTGGGA

ACAAAAACACTGAATAAACCATATTGTTATATTTGGGAGGATTGGGCTTAATGTG

GTATTATTTATAAATAATCATTCTGAACAGAAGACAGGATTTTTATAGCAGGGG ATGCTAGCACAATTGTACTTCGATCTGCTGACCATCTGAGTTAGAAGTTAACAGC GTTACAGAAGGGAGTGTCCATAGAATAAACAGGCTGGGAAGTTGTGACAGAAACA GTTGTGAAGTCAGTTCTCAAGAGAGCTCTGTATTTTGCACTTCTCAATTAGATCT AAACTTGGAAACTTTTCTCAGAAGTTAACTGTCCTTTGACCTCTTCTCTGAA TTGCAGAAATCAGACAGGATCTTGGTATTTGTTAAAGA > 1.4 kb mAspa promoter reporter protein rAAV (SEQ ID NO: 21) ctgcgcgctcgctcactgaggccgcccgggcaaagcccgggcgtcgggcga cctttggtcgcccggcctcagtgagcgagcgagcgcgcagagagggagtggccaa ctccatcactaggggttccttgtagttaatgattaacccgccatgctacttatct TGTGTGTGTGTGTGTGTGTGTGTGAAAATATATAATATTTCCTGTACTT TAACATTCTTGGCTTTCTGAGTGATTGAGCTTGAAATCAAGTAAGATTTGGTTCA GAGTCATTTCTCCAACGCTATGTAATCACCTTATCCTGGATTAGTTCCCCTAGTA AGACCCCCACTTTAGGACAACACATTCCAGAAGAAAGTCTTTGATGCCAGTAAA GTAATATATGCTTCTATGTCGTTTTTGTATATATTATGTTGCAAAATATTTTCAG GTATTTAAGAGATTTGAATATTACTGGCAGCTGCTTTTCATTTGGTATTTAGACA ACTTAAAAAAAAAAGACATCATAGAATTACCAAAAGCCTCATGAGACAAAAGTTA AAGATGTTTCAAAGTCACTTTTTAAAAATATTTTTTTAGCCGGGCATGGTGGCAC ATGCCTTTAATCCTAGCACTTGGGAGGCAAAGACAGGTGAATTTCTGAGTTCGAG GCCAGCCTGGTCTACAAAGTGAGTGCCAGGACAGCCAGGGCTATACAGAGAAACC TGCGTGTAAGAGACAGAAGAGAAAGAGAGAGAGACAGGTGCACATATGTGGCAGTC AGAGGACAACTTTCAGAAGTTGGTTCTCTCCTCAGGATTGAACTCAGCAACATTT TTGCCTGCTGTTTCTGCCATGCTCTATGTCACCCACCCTATCATGACTGGGCT CTTGTGCCTCTGCTGGACAGCTATGCTCAAAGAAAGGAGCTGTGCTGTTCAAG AGGAGGTCAGAGACATCAATGCCTTCAGATCAGCAAAAGTGCTTACTTTGGAAAT GTTTTAAATGTCAGTGGGAACAAAAACACTGAATAAACCATATTGTTATATTTGG GAGGATTGGGCTTAATGTGGTATTATTTTATAAATAATCATTCTGAACAGAAGAC AGGATTTTTATAGCAGGGGATGCTAGCACAATTGTACTTCGATCTGCTGACCATC TGAGTTAGAAGTTAACAGCTGCATCACGATCCTTGATCCTTGCATATTTTAATCC AAATATGGTCAAGGGAGGGGTTACAGAAGGGAGTGTCCATAGAATAAACAGGCTG GGAAGTIGTGACAGAAACAGTTGTGAAGTCAGTTCTCAAGAGAGCTCTGTATTTT GCACTTCTCAATTAGATCTAAACTTGGAAACTTTTCTCAGAAGTTAACTGTCCTT TGACCTCTTCTCTGAATTGCAGAAATCAGACAGGATCTTGGTATTTGTTAAA GATAAGGCTAGAGTACTTAATACGACTCACTATAGGCTAGCATGGAAGACGCCAA AAACATAAAGAAAGGCCCGGCGCCATTCTATCCGCTGGAAGATGGAACCGCTGGA GAGCAACTGCATAAGGCTATGAAGAGATACGCCCTGGTTCCTGGAACAATTGCTT TTACAGATGCACATATCGAGGTGGACATCACTTACGCTGAGTACTTCGAAATGTC CGTTCGGTTGGCAGAAGCTATGAAACGATATGGGCTGAATACAAATCACAGAATC GTCGTATGCAGTGAAAACTCTCTTCAATTCTTTATGCCGGTGTTGGGCGCGTTAT TTATCGGAGTTGCAGTTGCGCCCGCGAACGACATTTATAATGAACGTGAATTGCT CAACAGTATGGGCATTTCGCAGCCTACCGTGGTGTTCGTTTCCAAAAAGGGGGTTG CAAAAAATTTTGAACGTGCAAAAAAAGCTCCCAATCATCCAAAAAATTATTATCA TGGATTCTAAAACGGATTACCAGGGATTTCAGTCGATGTACACGTTCGTCACATC TCATCTACCTCCCGGTTTTAATGAATACGATTTTGTGCCAGAGTCCTTCGATAGG GACAAGACAATTGCACTGATCATGAACTCCTCTGGATCTACTGGTCTGCCTAAAG GTGTCGCTCTGCCTCATAGAACTGCCTGCGTGAGATTCTCGCATGCCAGAGATCC

```
TATTTTTGGCAATCAAATCATTCCGGATACTGCGATTTTAAGTGTTGTTCCATTC
CATCACGGTTTTGGAATGTTTACTACACTCGGATATTTGATATGTGGATTTCGAG
TCGTCTTAATGTATAGATTTGAAGAAGAGCTGTTTCTGAGGAGCCTTCAGGATTA
CAAGATTCAAAGTGCGCTGCTGGTGCCAACCCTATTCTCCTTCTTCGCCAAAAGC
ACTCTGATTGACAAATACGATTTATCTAATTTACACGAAATTGCTTCTGGTGGCG
CTCCCCTCTCTAAGGAAGTCGGGGAAGCGGTTGCCAAGAGGTTCCATCTGCCAGG
TATCAGGCAAGGATATGGGCTCACTGAGACTACATCAGCTATTCTGATTACACCC
GAGGGGGATGATAAACCGGGCGCGCGGTCAAAGTTGTTCCATTTTTTGAAGCGA
AGGTTGTGGATCTGGATACCGGGAAAACGCTGGGCGTTAATCAAAGAGGCGAACT
GTGTGTGAGAGGTCCTATGATTATGTCCGGTTATGTAAACAATCCGGAAGCGACC
AACGCCTTGATTGACAAGGATGGATGGCTACATTCTGGAGACATAGCTTACTGGG
ACGAAGACGAACACTTCTTCATCGTTGACCGCCTGAAGTCTCTGATTAAGTACAA
AGGCTATCAGGTGGCTCCCGCTGAATTGGAATCCATCTTGCTCCAACACCCCAAC
ATCTTCGACGCAGGTGTCGCAGGTCTTCCCGACGATGACGCCGGTGAACTTCCCG
CCGCCGTTGTTGTTTTGGAGCACGGAAAGACGATGACGGAAAAAGAGATCGTGGA
TTACGTCGCCAGTCAAGTAACAACCGCGAAAAAGTTGCGCGGAGGAGTTGTGTTT
GTGGACGAAGTACCGAAAGGTCTTACCGGAAAAACTCGACGCAAGAAAAATCAGAG
AGATCCTCATAAAGGCCAAGAAGGGCGGAAAGATCGCCGTGTAATTCTAGATTCC
GAGATATCGGTAATGGGCCCTCTAGAGTCGAGGACGGGGTGAACTACGCCTGAGG
ATCCGATCTTTTCCCTCTGCCAAAAATTATGGGGACATCATGAAGCCCCTTGAG
CATCTGACTTCTGGCTAATAAAGGAAATTTATTTTCATTGCAATAGTGTGTTGGA
ATTTTTTGTGTCTCTCACTCGGAAGCAATTCGTTGATCTGAATTTCGACCACCCA
TAATACCCATTACCCTGGTAGATAAGTAGCATGGCGGGTTAATCATTAACTACAA
GAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCCGCCTCAG
TGAGCGAGCGCGCAG > 612bp mAspa promoter (SEQ ID NO: 22)
TCAAGAGGAGGTCAGAGACATCAATGCCTTCAGATCAGCAAAAGTGCTTACTTTG
GAAATGTTTAAATGTCAGTGGGAACAAAAACACTGAATAAACCATATTGTTATA
AAGACAGGATTTTTATAGCAGGGGATGCTAGCACAATTGTACTTCGATCTGCTGA
CCATCTGAGTTAGAAGTTAACAGCTGCATCACGATCCTTGATCCTTGCATATTTT
AATCCAAATATGGTCAAGGGAGGGGTTACAGAAGGGAGTGTCCATAGAATAAACA
GGCTGGGAAGTTGTGACAGAAACAGTIGTGAAGTCAGTTCTCAAGAGAGCTCTGT
ATTTTGCACTTCTCAATTAGATCTAAACTTGGAAACTTTTCTCAGAAGTTAACTG
TCCTTTGACCTCTTCTCTGAATTGCAGAAATCAGACAGGATCTTGGTATTTG
TTAAAGA > 612bp mAspa promoter reporter protein rAAV (SEQ ID NO:
                                                  23)
ctgcgcgctcgctcactgaggccgcccgggcaaagcccgggcgtcgggcga
cctttggtcgcccggcctcagtgagcgagcgagcgcgcagagagggagtggccaa
ctccatcactaggggttccttgtagttaatgattaacccgccatgctacttatct
accaggg taatgg GATCCCATTTTTGCCTGCTGCGTTTCTGCCATGCTCTATGT\\
CACCCACCCTATCATGACTGGGCTCTTGTGCCTCTGCTGTGGACAGCTATGCTCA
AAGAAAGGAGCTGTGCTGTTCAAGAGGAGGTCAGAGACATCAATGCCTTCAGATC
AGCAAAAGTGCTTACTTTGGAAATGTTTTAAATGTCAGTGGGAACAAAAACACTG
AAATAATCATTCTGAACAGAAGACAGGATTTTTATAGCAGGGGATGCTAGCACAA
TTGTACTTCGATCTGACCATCTGAGTTAGAAGTTAACAGCTGCATCACGATC
AGTGTCCATAGAATAAACAGGCTGGGAAGTTGTGACAGAAACAGTTGTGAAGTCA
```

GTTCTCAAGAGAGCTCTGTATTTTGCACTTCTCAATTAGATCTAAACTTGGAAAC TTTTCTCAGAAGTTAACTGTCCTTTGACCTCTTCTCTCTGAATTGCAGAAATCA GACAGGATCTTGGTATTTGTTAAAGATAAGGCTAGAGTACTTAATACGACTCACT ATAGGCTAGCATGGAAGACGCCAAAAACATAAAGAAAGGCCCGGCGCCATTCTAT CCGCTGGAAGATGGAACCGCTGGAGAGCAACTGCATAAGGCTATGAAGAGATACG CCCTGGTTCCTGGAACAATTGCTTTTACAGATGCACATATCGAGGTGGACATCAC TTACGCTGAGTACTTCGAAATGTCCGTTCGGTTGGCAGAAGCTATGAAACGATAT GGGCTGAATACAAATCACAGAATCGTCGTATGCAGTGAAAACTCTCTTCAATTCT TTATGCCGGTGTTGGGCGCGTTATTTATCGGAGTTGCAGTTGCGCCCGCGAACGA CATTTATAATGAACGTGAATTGCTCAACAGTATGGGCATTTCGCAGCCTACCGTG GTGTTCGTTTCCAAAAAGGGGTTGCAAAAAATTTTGAACGTGCAAAAAAAGCTCC CAATCATCCAAAAAATTATTATCATGGATTCTAAAAACGGATTACCAGGGATTTCA GTCGATGTACACGTTCGTCACATCTCATCTACCTCCCGGTTTTAATGAATACGAT TTTGTGCCAGAGTCCTTCGATAGGGACAAGACAATTGCACTGATCATGAACTCCT GAGATTCTCGCATGCCAGAGATCCTATTTTTGGCAATCAAATCATTCCGGATACT GCGATTTTAAGTGTTGCTCCATTCCATCACGGTTTTGGAATGTTTACTACACTCG GATATTTGATATGTGGATTTCGAGTCGTCTTAATGTATAGATTTGAAGAAGAGCT GTTTCTGAGGAGCCTTCAGGATTACAAGATTCAAAGTGCGCTGCTGGTGCCAACC CTATTCTCCTTCTTCGCCAAAAGCACTCTGATTGACAAATACGATTTATCTAATT TACACGAAATTGCTTCTGGTGGCGCTCCCCTCTCTAAGGAAGTCGGGGAAGCGGT TGCCAAGAGGTTCCATCTGCCAGGTATCAGGCAAGGATATGGGCTCACTGAGACT ACATCAGCTATTCTGATTACACCCGAGGGGGATGATAAACCGGGCGCGCTCGGTA AAGTTGTTCCATTTTTTGAAGCGAAGGTTGTGGATCTGGATACCGGGAAAACGCT GGGCGTTAATCAAAGAGGCGAACTGTGTGTGAGAGGTCCTATGATTATGTCCGGT ATTCTGGAGACATAGCTTACTGGGACGAAGACGAACACTTCTTCATCGTTGACCG CCTGAAGTCTCTGATTAAGTACAAAGGCTATCAGGTGGCTCCCGCTGAATTGGAA TCCATCTTGCTCCAACACCCCAACATCTTCGACGCAGGTGTCGCAGGTCTTCCCG ACGATGACGCCGGTGAACTTCCCGCCGCCGTTGTTGTTTTGGAGCACGGAAAGAC GATGACGGAAAAAGAGATCGTGGATTACGTCGCCAGTCAAGTAACAACCGCGAAA AAGTTGCGCGGAGGAGTTGTGTTTGTGGACGAAGTACCGAAAGGTCTTACCGGAA AACTCGACGCAAGAAAAATCAGAGAGATCCTCATAAAGGCCAAGAAGGGCGGAAA GATCGCCGTGTAATTCTAGATTCCGAGATATCGGTAATGGGCCCTCTAGAGTCGA GGACGGGGTGAACTACGCCTGAGGATCCGATCTTTTTCCCTCTGCCAAAAATTAT GGGGACATCATGAAGCCCCTTGAGCATCTGACTTCTGGCTAATAAAGGAAATTTA TTTTCATTGCAATAGTGTGTTGGAATTTTTTGTGTCTCTCACTCGGAAGCAATTC GTTGATCTGAATTTCGACCACCCATAATACCCATTACCCTGGTAGATAAGTAGCA TGGCGGGTTAATCATTAACTACAAGGAACCCCTAGTGATGGAGTTGGCCACTCCC TCTCTGCGCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCC CGGGCTTTGCCCGGGCGCGCCTCAGTGAGCGAGCGAGCGCGCAG **EQUIVALENTS**

[0138] While several embodiments of the present invention have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the functions and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the present invention. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the teachings of the present

invention is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, the invention may be practiced otherwise than as specifically described and claimed. The present invention is directed to each individual feature, system, article, material, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, and/or methods, if such features, systems, articles, materials, and/or methods are not mutually inconsistent, is included within the scope of the present invention.

[0139] The indefinite articles "a" and "an," as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean "at least one." [0140] The phrase "and/or," as used herein in the specification and in the claims, should be understood to mean "either or both" of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Other elements may optionally be present other than the elements specifically identified by the "and/or" clause, whether related or unrelated to those elements specifically identified unless clearly indicated to the contrary. Thus, as a non-limiting example, a reference to "A and/or B," when used in conjunction with openended language such as "comprising" can refer, in one embodiment, to A without B (optionally including elements other than B); in another embodiment, to B without A (optionally including elements); in yet another embodiment, to both A and B (optionally including other elements); etc.

[0141] As used herein in the specification and in the claims, "or" should be understood to have the same meaning as "and/or" as defined above. For example, when separating items in a list, "or" or "and/or" shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as "only one of" or "exactly one of," or, when used in the claims, "consisting of," will refer to the inclusion of exactly one element of a number or list of elements. In general, the term "or" as used herein shall only be interpreted as indicating exclusive alternatives (i.e. "one or the other but not both") when preceded by terms of exclusivity, such as "either," "one of," "only one of," or "exactly one of." "Consisting essentially of," when used in the claims, shall have its ordinary meaning as used in the field of patent law.

[0142] As used herein in the specification and in the claims, the phrase "at least one," in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase "at least one" refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, "at least one of A and B" (or, equivalently, "at least one of A or B," or, equivalently "at least one of A and/or B") can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, B (and optionally including other elements); etc.

[0143] In the claims, as well as in the specification above, all transitional phrases such as "comprising," "including," "carrying," "having," "containing," "involving," "holding," and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases "consisting of" and "consisting essentially of" shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent

Examining Procedures, Section 2111.03.

[0144] Use of ordinal terms such as "first," "second," "third," etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish the claim elements.

Claims

- **1**. An isolated nucleic acid comprising a mouse ASPA (mASPA) promoter comprising a nucleic acid sequence that is at least 70% identical to the nucleic acid sequence set forth in SEQ ID NO: 1.
- **2**. The isolated nucleic acid of claim 1, wherein the mASPA promoter comprises a CNS enhancer region having the nucleic acid sequence set forth in SEQ ID NO: 3.
- **3.** The isolated nucleic acid of claim 1, wherein the mASPA promoter comprises a peripheral tissue (PT) enhancer region having the nucleic acid sequence set forth in SEQ ID NO: 4.
- **4.** The isolated nucleic acid of claim 1, wherein the mASPA promoter comprises one or more non-DNase hypersensitive sites (NDHS).
- **5.** The isolated nucleic acid of claim 1, wherein the mASPA promoter lacks a CNS enhancer region, optionally wherein the CNS enhancer region comprises the sequence set forth in SEQ ID NO: 3.
- **6.** The isolated nucleic acid of claim 1, wherein the mASPA promoter lacks a PT enhancer region, optionally wherein the PT enhancer region comprises the sequence set forth in SEQ ID NO: 4.
- **7**. The isolated nucleic acid of claim 1, further comprising a protein coding nucleic acid sequence operably linked to the mASPA promoter.
- **8.** The isolated nucleic acid of claim 1, further comprising an interfering nucleic acid sequence operably linked to the mASPA promoter.
- **9.** The isolated nucleic acid of claim 8, wherein the interfering nucleic acid is a dsRNA, siRNA, shRNA, miRNA, artificial miRNA (ami-RNA), or RNA aptamer.
- **10.** The isolated nucleic acid of claim 7, further comprising a polyA region positioned 3' relative to the nucleic acid sequence encoding the protein or the interfering nucleic acid.
- **11**. The isolated nucleic acid of claim 1, further comprising adeno-associated virus (AAV) inverted terminal repeats (ITRs).
- **12**. A vector comprising the isolated nucleic acid of claim 1.
- **13**. A recombinant AAV (rAAV) comprising: (i) the isolated nucleic acid of claim 1; and (ii) at least one AAV capsid protein.
- **14**. The rAAV of claim 13, wherein the at least one capsid protein has a serotype selected from an AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAVrh8, AAV9, AAV10, or AAVrh10.
- **15.** The rAAV of claim 14, wherein the at least one capsid protein is an AAV9 capsid protein.
- **16**. The rAAV of claim 13, wherein the rAAV is a self-complementary AAV (scAAV).
- **17**. The rAAV of claim 13, wherein the protein coding nucleic acid sequence encodes an aspartocylase (ASPA) protein.
- **18**. A method of expressing a gene product in a subject, the method comprising administering the isolated nucleic acid of claim 1.
- **19**. The method of claim 18, wherein the subject is a mammal.
- **20-25**. (canceled)
- **26**. An isolated nucleic acid comprising the sequence set forth in any one of SEQ ID NOs: 14 to 23.