## Martin Kleinsteuber: Computer Vision

## Kap. 1 – Wissenswertes über Bilder

## 1. Darstellung von Bildern





#### Vom Farbbild zum Intensitätsbild



Farbbilder bestehen aus mehreren Kanälen

In diesem Kurs ausschließlich Graustufenbilder

#### Kontinuierliche und diskrete Darstellung

 Kontinuierliche Darstellung als Funktion zweier Veränderlicher (zum Herleiten von Algorithmen)

$$I: \mathbb{R}^2 \supset \Omega \to \mathbb{R}, \quad (x,y) \mapsto I(x,y)$$

- Häufige Annahmen
  - I differenzierbar
  - lacksquare  $\Omega$  einfach zusammenhängend und beschränkt

- **Diskrete** Darstellung als Matrix  $I \in \mathbb{R}^{m \times n}$ Eintrag  $I_{k,l}$  entspricht dem Intensitätswert
- Skalierung typischerweise zwischen[0, 255] oder [0, 1]

VGA: 480 x 640 Pixel (ca. 0.3 Megapixel)

HD: 720 x 1280 Pixel (ca. 1.0 Megapixel)

FHD: 1080 x 1920 Pixel (ca. 2.1 Megapixel)

#### **Graph einer Funktion**



#### **Graph eines Fotos**



#### **Diskretes Abtasten**

Abtasten eines eindimensionalen Signals

$$S\{f(x)\} = (\dots, f(x-1), f(x), f(x+1), \dots)$$

Abtasten eines Bildes

$$S\{I(x,y)\} = \begin{bmatrix} \ddots & \vdots & \vdots & \vdots & \vdots \\ \dots & I(x-1,y-1) & I(x-1,y) & I(x-1,y+1) & \dots \\ \dots & I(x,y-1) & I(x,y) & I(x,y+1) & \dots \\ \dots & I(x+1,y-1) & I(x+1,y) & I(x+1,y+1) & \dots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

# Darstellung von Bildern Diskrete Darstellung/Matrixdarstellung

- Annahme: Ursprung links oben
- Matrixeintrag ist

$$I_{k,l} = S\{I(0,0)\}_{kl}$$





### Zusammenfassung

- Bilder in Grautönen
- Bilder als Matrizen
- Bilder als glatte Funktionen