Herbst 14 Themennummer 2 Aufgabe 1 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Welche der folgenden Aussagen sind wahr bzw. falsch? Begründen Sie Ihre Antwort.

- i) Es sei $f:[0,1] \to \mathbb{R}$ stetig differenzierbar mit f(0) = 0, f(1) = 1. Dann gibt es ein $t \in (0,1)$ mit f'(t) = 1.
- ii) Ist $A \subset \mathbb{R}^2$ abgeschlossen und $f: A \to \mathbb{R}$ stetig, so ist f beschränkt.
- iii) Es sei $f: \mathbb{R} \to \mathbb{R}$ stetig differenzierbar und nicht konstant, sowie $U \subset \mathbb{R}$ offen. Dann ist f(U) offen.
- iv) Es sei $f: \mathbb{C} \to \mathbb{C}$ komplex differenzierbar und nicht konstant, sowie $U \subset \mathbb{C}$ offen. Dann ist f(U) offen.
- v) Es gibt eine bijektive holomorphe Funktion $f: \mathbb{C} \to \{z \in \mathbb{C} : |z| < 1\}$.
- vi) Es gibt eine holomorphe Funktion $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ mit $f'(z) = \frac{1}{z}$ für alle $z \in \mathbb{C}$.

Lösungsvorschlag:

- i) Wahr. Dies folgt aus dem Mittelwertsatz wegen $\frac{f(1)-f(0)}{1-0}=1$.
- ii) Falsch. $A = \mathbb{R}^2$ ist abgeschlossen, f(x, y) = x ist stetig auf \mathbb{R}^2 , aber unbeschränkt, da $f(n,0) \to \infty$ für $n \to \infty$ gilt.
- iii) Falsch. $U = \mathbb{R}$ ist offen und $f(x) = \cos(x)$ ist stetig differenzierbar und nicht konstant. Aber f(U) = [-1,1] ist nicht offen in \mathbb{R} .
- iv) Wahr. Dies folgt aus dem Satz von der offenen Abbildung.
- v) Falsch. So eine Funktion wäre beschränkt und daher nach dem Satz von Liouville konstant, also sicher nicht bijektiv.
- vi) Falsch. Für z=0 ist weder f'(z) noch $\frac{1}{z}$ definiert. Selbst für alle $z\in\mathbb{C}\setminus\{0\}$ kann dies aber nicht erfüllt sein, für $\gamma:[0,2\pi]\to\mathbb{C},\ t\mapsto e^{it}$ ist nämlich $\int_{\gamma}\frac{1}{z}\mathrm{d}z=2\pi i\neq 0$. Wäre nun $f'(z)=\frac{1}{z}$ für ein holomorphes f, so wäre $2\pi i=\int_{\gamma}\frac{1}{z}\mathrm{d}z=\int_{\gamma}f'(z)\mathrm{d}z=f(\gamma(2\pi))-f(\gamma(0))=0$, weil γ geschlossen ist. Ein Widerspruch.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$