Mini-Curso de Minizinc (baseado em exemplos)

Claudio Cesar de Sá

Departamento de Ciência da Computação Centro de Ciências e Tecnológias Universidade do Estado de Santa Catarina

22 de agosto de 2016

Sumário

- Contextutalização
 - Problemas e Otimização
 - Otimização
 - Programação por Restrições
 - Histórico
 - Propósitos
 - Motivação
 - Paradigma Declarativo
 - Características do MiniZinc
 - Instalação e uso
 - Estrutura de um Modelo
 - Exemplo Inicial
- Elementos da Linguagem
 - Parâmetros e Variáveis
 - Alguns Operadores Lógicos
- Exemplos Introdutórios
 - Um Clássico da PO
 - Teoria dos Conjuntos

Notas

- Todos os códigos apresentados se encontram em: https://github.com/claudiosa/CCS/minizinc
- Metodologia: ensino da linguagem via exemplos

•

 Agradecimentos a todos da SBPO pela oportunidade em organizar este material e estudantes da UDESC por testarem parte dele.

Problemas × Otimização

Trocar esta figura futuramente

Problemas e Otimização

Complexidade ⇔ Encontrar soluções:

- Problemas complexos de interesse prático (e teórico): NPs ↑
- Tentativas de soluções: diversas direções (teoria) e muitos paradigmas computacionais (práticas)
- Seguem desde um modelo matemático existente a um modelo empírico a ser descoberto. Exemplificando:

Problemas e Otimização

Complexidade ⇔ Encontrar soluções:

- Problemas complexos de interesse prático (e teórico): NPs 🕆
- Tentativas de soluções: diversas direções (teoria) e muitos paradigmas computacionais (práticas)
- Seguem desde um modelo matemático existente a um modelo empírico a ser descoberto. Exemplificando:
 - Uma equação de regressão linear: $y = ax^2 + b$
 - ▶ …até …
 - Programação genética (evolução de um modelo)
- Problemas apresentam características comuns como: variáveis, domínios, restrições, espaços de estados (finitos e infinitos, contínuos e discretos) ...

Otimização

Complexidade ⇔ Otimização:

 A área de Otimização tem uma divisão: Discreta ou Combinatória e Contínua ou Numérica (funções deriváveis)

Otimização

Complexidade ⇔ Otimização:

 A área de Otimização tem uma divisão: Discreta ou Combinatória e Contínua ou Numérica (funções deriváveis)

Combinatória: Problemas definidos em um espaço de estados finitos (ou infinito mas enumerável)

Numérica: Definidos em subespaços infinitos e não enumeráveis, como os números reais e complexos

• Difícil: problemas que tenham uma ordem maior ou igual a $2^{O(n)}$ são exponenciais, consequentemente, difíceis!

Como atacar estes problemas?

Técnicas:

Combinatória: Busca Local

- Métodos Gulosos: busca tipo subida a encosta (hill-climbing), recozimento simulado (simulated annealing), busca tabu, etc.
- Programação Dinâmica
- Programação por Restrições (PR)
- Redes de Fluxo
- •

Numérica:

- Descida do Gradiente
- Gauss-Newton
- Lavemberg-Marquardt

Programação por Restrições (PR)

Figura: O mar de estados e a filtragem da PR

Onde o objetivo é:

Figura: Operando com regiões específicas ou reduzidas

Redução em sub-problemas:

Figura: Redução de P em outros sub-problemas equivalentes

Construção de modelos e implementações:

Ferramentas: linguagens, tradutores e solvers:

Figura: Linguagens, bibliotecas e solvers de propósitos diversos

Minizinc, tradutores e os solvers:

Figura: Há muitas conversores do MiniZinc para vários $solvers \Rightarrow uma$ proposta unificada

→ Em 2006 a comunidade de CP *Constraint Programming* discutiu a necessidade de uma linguagem unificada para seus modelos e pesquisas

- ➤ Em 2006 a comunidade de CP Constraint Programming discutiu a necessidade de uma linguagem unificada para seus modelos e pesquisas
- ► Inicialmente a linguagem ZINC foi criada pelo NICTA, Universidade de Melbourne e Universidade de Monash. Tudo na Austrália!

- ➤ Em 2006 a comunidade de CP Constraint Programming discutiu a necessidade de uma linguagem unificada para seus modelos e pesquisas
- ► Inicialmente a linguagem ZINC foi criada pelo NICTA, Universidade de Melbourne e Universidade de Monash. Tudo na Austrália!
- ➤ O MINZINC é um sub-conjunto do ZINC

- ➤ Em 2006 a comunidade de CP Constraint Programming discutiu a necessidade de uma linguagem unificada para seus modelos e pesquisas
- → Inicialmente a linguagem ZINC foi criada pelo NICTA, Universidade de Melbourne e Universidade de Monash. Tudo na Austrália!
- ➤ O MINZINC é um sub-conjunto do ZINC
- ➤ Linguagem de modelagem ⇒ paradigma lógico de programação

- ➤ Em 2006 a comunidade de CP Constraint Programming discutiu a necessidade de uma linguagem unificada para seus modelos e pesquisas
- → Inicialmente a linguagem ZINC foi criada pelo NICTA, Universidade de Melbourne e Universidade de Monash. Tudo na Austrália!
- ➤ O MINZINC é um sub-conjunto do ZINC
- ightharpoonup Linguagem de modelagem \Rightarrow paradigma lógico de programação
- ➤ Minizinc é compilado para o FlatZinc cujo código é traduzido há vários outros *solvers*

Propósitos

- → Objetivo: resolver problemas de otimização combinatória e PSR (Problemas de Satisfação de Restrições)
- ➤ O objetivo é descrever o problema: **declarar** no lugar de especificar o que o programa deve fazer
- → Paradigma de programação imperativo: como deve ser calculado!
- → Paradigma de programação declarativo: o que deve ser calculado!

Motivação

O que é um problema combinatório?

Figura: Problema da sequência de visitas

Complexidade × Combinatória

Figura: Contando combinações das variáveis: X e Y

$$Modelo + Dados = A_1 \wedge A_2 \wedge A_3 \wedge \wedge A_n$$

 $ightharpoonup A_i$: são assertivas declaradas (declarações de restrições) sobre o problema

$$Modelo + Dados = A_1 \wedge A_2 \wedge A_3 \wedge \wedge A_n$$

- $ightharpoonup A_i$: são assertivas declaradas (declarações de restrições) sobre o problema
- ightharpoonup Linguagem \Rightarrow construir modelos \Rightarrow problemas reais

$$Modelo + Dados = A_1 \wedge A_2 \wedge A_3 \wedge \wedge A_n$$

- $ightharpoonup A_i$: são assertivas declaradas (declarações de restrições) sobre o problema
- ightharpoonup Linguagem \Rightarrow construir modelos \Rightarrow problemas reais
- **➤ Modelos** ⇔ computáveis!

$$Modelo + Dados = A_1 \wedge A_2 \wedge A_3 \wedge \wedge A_n$$

- $ightharpoonup A_i$: são assertivas declaradas (declarações de restrições) sobre o problema
- ightharpoonup Linguagem ightharpoonup construir modelos ightharpoonup problemas reais
- ➤ Modelos ⇔ computáveis!
- >> Visão lógica: insatisfatível (sem respostas) ou consistente

Resumindo alguns livros e solvers

Figura: Ciclo entre a efetiva busca e a poda, na propagação das restrições

• Modelagem: imediata à abordagem matemática existente

- Modelagem: imediata à abordagem matemática existente
- Para isto, MUITOS recursos: operadores booleanos, aritméticos, constantes, variáveis, etc

- Modelagem: imediata à abordagem matemática existente
- Para isto, MUITOS recursos: operadores booleanos, aritméticos, constantes, variáveis, etc
- Fortemente tipada

- Modelagem: imediata à abordagem matemática existente
- Para isto, MUITOS recursos: operadores booleanos, aritméticos, constantes, variáveis, etc
- Fortemente tipada
- Dois tipos de dados: constantes e variáveis

• Constantes: são valores fixos – são conhecidos como parâmetros

- Constantes: são valores fixos são conhecidos como parâmetros
- Variáveis: assumem valores sobre um domínio (aqui é o ponto)

- Constantes: são valores fixos são conhecidos como parâmetros
- Variáveis: assumem valores sobre um domínio (aqui é o ponto)
- Logo: restringir estes domínios apenas para valores admissíveis

- Constantes: são valores fixos são conhecidos como parâmetros
- Variáveis: assumem valores sobre um domínio (aqui é o ponto)
- Logo: restringir estes domínios apenas para valores admissíveis
- Mas há muitos tipos de dados: int, bool, real, arrays, sets, etc

Continuando as características:

- Constantes: são valores fixos são conhecidos como parâmetros
- Variáveis: assumem valores sobre um domínio (aqui é o ponto)
- Logo: restringir estes domínios apenas para valores admissíveis
- Mas há muitos tipos de dados: int, bool, real, arrays, sets, etc
- Diferentemente da tipagem dinâmica aqui não existe!

Instalação e uso

Tem evoluído muito nestes últimos anos:

- Tudo tem sido simplificado
- ② Download e detalhes: http://www.minizinc.org/
- Basicamente: baixar o arquivo da arquitetura desejada, instalar, acertar variáveis de ambiente, path, e usar como:

Instalação e uso

Tem evoluído muito nestes últimos anos:

- Tudo tem sido simplificado
- Oownload e detalhes: http://www.minizinc.org/
- Basicamente: baixar o arquivo da arquitetura desejada, instalar, acertar variáveis de ambiente, path, e usar como:
 - Modo console (ou linha de comando) ou
 - Interface IDE

Resumindo

- ► Modo console: mzn2doc, mzn2fzn, mzn-g12fd, mzn-g12lazy, mzn-g12mip, mzn-gecode, ...
 - Edite o programa em um editor ASCII
 - Para compilar e executar: mzn-xxxx nome-do-programa.mzn ou escolher um outro solver
 - Exemplo como todas soluções: mzn-g12fd -all_solutions nome-do-programa.mzn
 - O Detalhes e opções: mzn-g12fd -help

Resumindo

- ► Modo console: mzn2doc, mzn2fzn, mzn-g12fd, mzn-g12lazy, mzn-g12mip, mzn-gecode, ...
 - Edite o programa em um editor ASCII
 - Para compilar e executar: mzn-xxxx nome-do-programa.mzn ou escolher um outro solver
 - Exemplo como todas soluções:
 mzn-g12fd -all_solutions nome-do-programa.mzn
 - O Detalhes e opções: mzn-g12fd -help
- ➤ Modo IDE: minizinc_IDE ou minizincIDE
- >> Na IDE dá para editar e alterar configurações

Estrutura de um Modelo

Includes, imports Seção de Constantes Seção de Variáveis Funções e Predicados Declara Restrições Heurística de Busca Formata as Saídas

Exemplo × Espaço de Estado (EE)

Figura: Obter os pontos do interior do retângulo

Exemplo

```
1 %% Declara constantes
2 int: UM = 1; int: DOIS = 2; int: CINCO = 5;
3 %% Declara variaveis
4 var UM .. 11 : X; %% segue o dominio 1..11
5 var UM 7 : Y;
7 %% As restricoes
8 constraint
  Y > DOIS /\ Y < CINCO :
11 constraint
              /\ X < 9;
12 X > 3
14 %%% A busca : MUITAS OPCOES ....
15 solve::int_search([X,Y],input_order,indomain_min,complete) satisfy;
16 %% SAIDAS
17 output [" X: ", show(X), " Y: ", show(Y), "\n"];
```

Saída

```
$ mzn-g12fd -a sbpo_xerek-ygor.mzn
  X: 4
      Y: 3
  X: 4 Y: 4
  X: 5 Y: 3
  X: 5 Y: 4
  X: 6 Y: 3
  X: 6 Y: 4
  X: 7 Y: 3
  X: 7 Y: 4
  X: 8
      Y: 3
  X: 8
         Y: 4
```

Existem basicamente dois tipos de variáveis em Minizinc:

Existem basicamente dois tipos de variáveis em Minizinc:

Parâmetros: quase igual às váriaveis de linguagens de programação comuns. Entretanto, só é permitido atribuir um valor a um parâmetro uma única vez.

Existem basicamente dois tipos de variáveis em Minizinc:

Parâmetros: quase igual às váriaveis de linguagens de programação comuns. Entretanto, só é permitido atribuir um valor a um parâmetro uma única vez.

Variáveis de Decisão: mais próximo ao conceito de incógnitas da matemática. O valor de uma váriavel de decisão é escolhido pelo Minizinc para atender todas as restrições estabelecidas.

Existem basicamente dois tipos de variáveis em Minizinc:

Parâmetros: quase igual às váriaveis de linguagens de programação comuns. Entretanto, só é permitido atribuir um valor a um parâmetro uma única vez.

Variáveis de Decisão: mais próximo ao conceito de incógnitas da matemática. O valor de uma váriavel de decisão é escolhido pelo Minizinc para atender todas as restrições estabelecidas.

Variáveis de Restrição: similar a anterior, exceto que o domínio é específico as respostas desejadas do problema

Existem basicamente dois tipos de variáveis em Minizinc:

Parâmetros: quase igual às váriaveis de linguagens de programação comuns. Entretanto, só é permitido atribuir um valor a um parâmetro uma única vez.

Variáveis de Decisão: mais próximo ao conceito de incógnitas da matemática. O valor de uma váriavel de decisão é escolhido pelo Minizinc para atender todas as restrições estabelecidas.

Variáveis de Restrição: similar a anterior, exceto que o domínio é específico as respostas desejadas do problema

Variáveis de Restrição: estas são descobertas dentro de um domínio de valores sob um conjunto de restrições que é o modelo a ser computado!

Exemplos de Variáveis

```
Exemplo de Parâmetro (variável fixa) em MINIZINC
```

```
1 int: parametro = 5;
```

Exemplo de Variável em MINIZINC

var 1..15: variavel;

Constraints (Restrições)

Restrições podem ser equações ou desigualdades sobre as váriaveis de decisão, de forma a restringir os possíveis valores que estas podem receber.

Constraints (Restrições)

Restrições podem ser equações ou desigualdades sobre as váriaveis de decisão, de forma a restringir os possíveis valores que estas podem receber.

Exemplos de Restrições

```
1 constraint x > 2;
2
3 constraint 3*y - x <= 17;
4
5 constraint x != y;
6
7 constraint x = 2*z;</pre>
```

Alguns Operadores Lógicos

Operadores Lógicos

Os operadores lógicos (and, or, not), que existem na maioria das linguagens de programação, também podem ser utilizados em MINIZINC nas restrições.

Alguns Operadores Lógicos

Operadores Lógicos

Os operadores lógicos (and, or, not), que existem na maioria das linguagens de programação, também podem ser utilizados em MINIZINC nas restrições.

Exemplo de Utilização (and)

```
Exemplo de Utilização (or)
```

```
constraint (p \/ q) = false;
```

```
Exemplo de Utilização (not)
```

```
1 constraint (not)p = true;
```

Quermesse da Nossa Escola

Exemplo

A escola local fará uma festa e esta precisa que façamos bolos para vender. Sabemos como fazer dois tipos de bolos. Eis a receita de cada um deles:

Quermesse da Nossa Escola

Exemplo

A escola local fará uma festa e esta precisa que façamos bolos para vender. Sabemos como fazer dois tipos de bolos. Eis a receita de cada um deles:

Bolo de Banana	Bolo de Chocolate		
- 250g de farinha	- 200g de farinha		
- 2 bananas	- 75g de cacau		
- 75g de açúcar	- 150g de açúcar		
- 100g de manteiga	- 150g de manteiga		

Tabela: Insumos de cada bolo

Continuando o enunciado ...

O preço de venda de um Bolo de Chocolate é de R\$4,50 e de um Bolo de Banana é de R\$4,00. Temos 4kg de farinha, 6 bananas, 2kg de açúcar, 500g de manteiga e 500g de cacau. Qual a quantidade de cada bolo que deve ser feita para maximizar o lucro das vendas para a escola?

 Basicamente temos que encontrar: N₁ (número de bolos de Chocolate) e N₂ (número de bolos de Banana);

- Basicamente temos que encontrar: N₁ (número de bolos de Chocolate) e N₂ (número de bolos de Banana);
- Tendo os valores N₁ e N₂, sabemos o nosso lucro máximo, dado o valor por bolo vendido;

- Basicamente temos que encontrar: N₁ (número de bolos de Chocolate) e N₂ (número de bolos de Banana);
- Tendo os valores N₁ e N₂, sabemos o nosso lucro máximo, dado o valor por bolo vendido;
- 3 Assim a equação a ser maximizada é: $4500.N_1 + 4000.N_2 = Lucro$

- Basicamente temos que encontrar: N₁ (número de bolos de Chocolate) e N₂ (número de bolos de Banana);
- 2 Tendo os valores N_1 e N_2 , sabemos o nosso lucro máximo, dado o valor por bolo vendido;
- **3** Assim a equação a ser maximizada é: $4500.N_1 + 4000.N_2 = Lucro$
- Sabe-se que UM bolo necessita de quantidades de insumos dado na tabela 1

- **1** Basicamente temos que encontrar: N_1 (número de bolos de Chocolate) e N_2 (número de bolos de Banana);
- 2 Tendo os valores N_1 e N_2 , sabemos o nosso lucro máximo, dado o valor por bolo vendido;
- Assim a equação a ser maximizada é: $4500.N_1 + 4000.N_2 = Lucro$
- Sabe-se que UM bolo necessita de quantidades de insumos dado na tabela 1
- Logo, se são N bolos por insumos e respeitando a disponibilidade de cada um, as restrições para ambos os bolos são do tipo: $N_1.qt_{manteiga_{chocolate}} + N_2.qt_{manteiga_{banana}} \leq Manteiga_{disponivel}$

- Basicamente temos que encontrar: N₁ (número de bolos de Chocolate) e N₂ (número de bolos de Banana);
- 2 Tendo os valores N_1 e N_2 , sabemos o nosso lucro máximo, dado o valor por bolo vendido;
- **3** Assim a equação a ser maximizada é: $4500.N_1 + 4000.N_2 = Lucro$
- Sabe-se que UM bolo necessita de quantidades de insumos dado na tabela 1
- **③** Logo, se são N bolos por insumos e respeitando a disponibilidade de cada um, as restrições para ambos os bolos são do tipo: $N_1.qt_{manteiga_{chocolate}} + N_2.qt_{manteiga_{banana}} ≤ Manteiga_{disponivel}$
- E estes valores são tomados da tabela 1.

Uma tabela conhecida tipo:

	farinha	cacau	bananas	açucar	manteiga	
N ₁ (Choco)	200	75	_	150	150	
N ₂ (Banana)	250	_	2	75	100	
Disponível	4000	500	6	2000	500	

Código desta solução:

```
1 var 0. 100: bc; %Bolo de chocolate: N1
2 var 0..100: bb; %Bolo de banana: N2
4 constraint 250*bb + 200*bc <= 4000;
5 constraint 2*bb <= 6:</pre>
6 constraint 75*bb + 150*bc <= 2000;
7 constraint 100*bb + 150*bc <= 500:
8 constraint 75*bc <= 500:</pre>
10 solve maximize (4500*bc + 4000*bb);
12 output[" Choc = ", show(bc), "\t Ban = ", show(bb)];
```

Saída

```
Compiling bolos.mzn
```

Running bolos.mzn

$$Choc = 0 \quad Ban = 0$$

$$Choc = 1 \quad Ban = 0$$

$$Choc = 2 \quad Ban = 0$$

$$Choc = 3 \quad Ban = 0$$

Choc =
$$2$$
 Ban = 2

=======

Finished in 36msec

Teoria dos Conjuntos

Há várias funções prontas:

 $A \cup B$, $A \cap B$, \overline{A} , etc

```
1 set of int: B = \{1,2,3\};
2 % OU set of int: B = 1 .. 3;
3 set of int: A = \{4,5\};
5 var set of 1 .. 5 : var uniao:
6 var set of 1 .. 5 : var_inters ;
8 constraint
  var_uniao = B union A;
9
11 constraint
var_inters = B intersect A;
13
14 solve satisfy;
16 output
       ["VAR_Uniao = " , show(var_uniao),"\n",
17
18
        "VAR_Inters = " , show(var_inters),"\n"];
```

Funções e Predicados. Exemplo: $y = x^3$

```
1 int: n = 3;
2 var int: z1;
3 var int: z2:
5 function var int: pot_3_F(var int: n) = n*n*n;
7 predicate pot_3_P(int: n, var int: res) =
8
            res = n*n*n:
10 constraint
     z1 = pot_3_F(n);
11
13 constraint
       pot_3_P(n,z2);
14
16 solve satisfy;
output ["n: ", show(n),"\n", "z1: ", show(z1), "\n",
        "z2: ", show(z2), "\n"];
```

Saída:

Finished in 400msec

Compiling funcao_01.mzn

Running funcao 01.mzn

n: 3

z1: 27

z2: 27

Finished in 54msec

Teste de paridade. Exemplo: $f_{paridade}(5) = false$, $f_{paridade}(6) = true$

```
1 int : X = 5 ; %% constantes
2 int : Y = 6;
3 var bool : var bool 01:
4 var bool : var_bool_02;
6 %%% Temos if - then - else - endif
7 function var bool : testa_paridade(int : N) =
       if((N mod 2) == 0)
8
          then
10
            true
11
          else
            false
12
       endif:
13
14
15 constraint
     var_bool_01 == testa_paridade(X);
16
18 constraint
     var_bool_02 == testa_paridade(Y);
19
21 /* OR var bool 01 == ((x mod 2) == 0):
         var_bool_02 == ((y mod 2) == 0); */
24 solve satisfy;
```

```
Continuando ...
solve satisfy;

output
   [" CTE_X = ", show(X), " CTE_Y = ", show(Y), "\n",
        " VAR_B01 = ", show( var_bool_01 ),
        " VAR_B02 = ", show( var_bool_02 ) ];
```

```
Continuando ...
   . . . . . . . . . . . . . . . . . . . .
solve satisfy;
output
       CTE_X = ", show(X), " CTE_Y = ", show(Y), "\n",
     " VAR B01 = ", show( var_bool_01 ),
       VAR_B02 = ", show( var_bool_02 ) ];
Saída:
$ mzn-g12fd -a minizinc/bool_function.mzn
  CTE X = 5 CTE Y = 6
  VAR_B01 = false VAR_B02 = true
========
```

Uso na Lógica Proposicional

Exemplos:

- Modus-Ponens: $x \land x \to y \vdash y$
- Modus-Tollens: $\sim y \land x \rightarrow y \vdash \sim x$

```
1 var bool : x;
var bool : y;
3 var bool : Phi01;
4 var bool : Phi02;
6 constraint
                           %% MODUS PONENS
  ((x /\
        (x \rightarrow y)) \rightarrow y
    <-> Phi01 ;
                                        %% MODUS TOLLENS
11 constraint
     ((not y /\
(x \rightarrow y)) \rightarrow not x
      <-> Phi02 ;
16 solve satisfy;
18 output
```

```
Saída:
$ mzn-g12fd -a minizinc/interp_log_MP.mzn
X: false Y: false MP:PhiO1: true
X: false Y: false MT:Phi02: true
X: true Y: false MP:Phi01: true
X: true Y: false MT:Phi02: true
X: false Y: true MP:PhiO1: true
X: false Y: true MT:Phi02: true
X: true Y: true MP:Phi01: true
X: true Y: true MT:Phi02: true
```

Interpretação na Lógica de Primeira-Ordem

Sejam as FPO abaixo:

- Exemplo 01: $\forall x \exists y \ (y < x)$
- Exemplo 02: $\exists x \ \forall y \ (x < y)$
- Exemplo 03: $\forall x \exists y \ (x^2 == y)$
- Exemplo 04: $\exists x \ \forall y \ (x^2! = y)$
- Avalie a validade para os domínios: $D_x = \{2, 3, 4\}$ e $D_y = \{3, 4, 5\}$

Interpretação na Lógica de Primeira-Ordem

1 %%Declarando dominio das variaveis

3 set of int: $X = \{2, 3, 4\};$

```
4 set of int: Y = \{3, 4, 5\};
6 function bool: exemplo_01(set of int: x, set of int: y) =
          (forall (i in x) (exists (j in y) (j < i)));
9 function bool: exemplo_02(set of int: x, set of int: y) =
          exists (i in x) (forall (j in y) (i < j));
10
12 function bool: exemplo_03(set of int: x, set of int: y) =
          forall (i in x) (exists (j in y) (pow(i,2) == j));
13
14
function bool: exemplo_04(set of int: x, set of int: y) =
          exists (i in x) (forall (j in y) (pow(i,2) != j));
16
18 solve satisfy;
output["\n Exemplo 01: "++ show(exemplo_01(X,Y))++
21
         "\n Exemplo 02: "++ show(exemplo_02(X,Y))++
         "\n Exemplo 03: "++ show(exemplo_03(X,Y))++
         "\n Exemplo 04: "++ show(exemplo_04(X,Y))];
  Claudio Cesar de Sá (UDESC)
                         Mini-Curso de Minizinc(baseado em exem
                                                     22 de agosto de 2016
                                                                      50 / 92
```

```
Saída:

$ mzn-g12fd -a minizinc/interp_fol_set.mzn

Exemplo 01: false
Exemplo 02: true
Exemplo 03: false
Exemplo 04: true
```

Vetores (ou Arrays) Unidimensional ou 1D

Vetor 1D: Soma dos subconjuntos (Subset Sum Problem)

Seja o conjunto de números $\{2,3,5,7\}$. Encontre um subconjunto que satisfaça uma soma para um dado valor. Exemplo: k=9

Subconjunto	Soma
{}	0
{2}	2
{2,3}	5
$\{2, 3, 5\}$	10
$\{2,3,5,7\}$	17

Complexidade: $2^n = 16$, onde n é o número de elementos do conjunto

Soma dos subconjuntos (Subset Sum Problem)

```
int: n = 7; % total de elementos do vetor
2 int: K = 15: %% Soma do sub-set
4 array[1..n] of var 0..1 : x_decision;
6 array[1..n] of int : v_valores;
7 \text{ v\_valores} = [3, 4, 5, 7, 9, 10, 1];
9 var int: total_VALOR;
10
11 constraint
total_VALOR = sum( i in 1..n ) (x_decision[i]* v_valores[i]);
13
14 constraint
total_VALOR == K;
16
17 % minimize or maximize something
18 solve satisfy;
20 output ["Total_VALOR: " ++ show(total_VALOR) ++"\n"++
        "Seleciona: " ++ show( x decision ) ++ "\n\t " .
          show(v_valores) 1:
```

Saída:

```
$mzn-g12fd -a sub_set_sum.mzn
Total_VALOR: 15
Seleciona: [1, 0, 1, 1, 0, 0, 0]
          [3, 4, 5, 7, 9, 10, 1]
Total_VALOR: 15
Seleciona: [0, 0, 1, 0, 0, 1, 0]
          [3, 4, 5, 7, 9, 10, 1]
Total VALOR: 15
Seleciona: [1, 1, 0, 1, 0, 0, 1]
          [3, 4, 5, 7, 9, 10, 1]
Total_VALOR: 15
Seleciona: [0, 0, 1, 0, 1, 0, 1]
          [3, 4, 5, 7, 9, 10, 1]
Total VALOR: 15
Seleciona: [0, 1, 0, 0, 0, 1, 1]
          [3, 4, 5, 7, 9, 10, 1]
```

Régua de Golomb

Vetor 1D: Régua de Golomb

```
1 include "globals.mzn";
2 %% GOLOMB mas n itens a serem escolhidos e repetidos
3 int: n = 3; %% NUM de PEDACOS
4 int: m = 6; %% TAMANHO 0 ... 6
6 array[1..n] of var 0..m : regua; %% TAMANHO dos PEDACOS
7 array[1..(n+1)] of var 0..m : regua_SAIDA; %% APENAS para OUT
9 constraint %% pedacos maior que 0
     forall(i in 1 .. n) ( regua[i] > 0 );
10
12 %% Diferentes e decrescente ... PEDACOS/medidas
13 constraint
14 alldifferent ( regua ); %% /\ decreasing( regua );
16 %% Diferentes medidas/PEDACOS entre TODOS os CORTES
17 constraint
      forall(i in 1 .. n-2) (
        forall(j in i+1 .. n) (regua[ i ] != regua[ j ]) );
19
21 constraint %% CRITERIO DE REGUA OTIMA
        sum([regua[i] | i in 1..n]) == m;
24 constraint %% formatando uma saida
```

```
Saída:
$ mzn-g12fd -a golomb_ruler.mzn
 Tamanho dos cortes: 1 | 3 | 2 | A REGUA: 0 | 1 | 4 | 6 |
 Tamanho dos cortes: 1 | 2 | 3 | A REGUA: 0 | 1 | 3 | 6 |
 _ _ _ _ _ _ _ _ _
 Tamanho dos cortes: 2 | 3 | 1 | A REGUA: 0 | 2 | 5 | 6 |
 Tamanho dos cortes: 2 | 1 | 3 | A REGUA: 0 | 2 | 3 | 6 |
 Tamanho dos cortes: 3 | 2 | 1 | A REGUA: 0 | 3 | 5 | 6 |
 Tamanho dos cortes: 3 | 1 | 2 | A REGUA: 0 | 3 | 4 | 6 |
```

=======

Criando funções, variáveis locais e escopo. Exemplo: y=soma(vetor 1D)

```
int: n = 7; %% total de elementos
2 int: m = 4; %% m itens a serem selecionados
4 array[1..n] of var {0,1} : x_decision;
6 %% OK e direto via sum( i in 1..n ) (vetor 1d[i]):
7 function var int: sum_array_1d(array[1..n] of var int: vetor_1d) =
8
  let{
        array[1..n] of var int : temp;
        constraint
                                       %%%% C_1
10
        temp[1] == vetor_1d[1];
        constraint
                                       %%%% C_2
12
       forall(i in 2..n)
13
        ( temp[i] == temp[i-1] + vetor_1d[i] );
       } in temp[n] %%% Valor acumulado aqui
16
18 %%% constraint m == sum( i in 1..n ) (x_decision[i]);
20 constraint
     m == sum_array_1d( x_decision );
21
23 solve satisfy;
```

```
Saída:
mzn-g12fd -a minizinc/function_sum_vetor_1D.mzn
x_decision: [0, 0, 0, 1, 1, 1, 1]
 x_decision: [0, 0, 1, 0, 1, 1, 1]
 x_decision: [1, 0, 0, 0, 1, 1, 1]
 x_decision: [1, 1, 0, 1, 1, 0, 0]
 x_decision: [1, 1, 1, 0, 1, 0, 0]
 x_decision: [1, 1, 1, 1, 0, 0, 0]
```

Vetores Bi-dimensionais ou 2D)

Motivação

- As matrizes são essenciais em alguns problemas. Exemplo: job-shop problem
- Bi-dimensional (tem nomes especiais)
- A rigor MiniZinc estende a idéia para vetores n-ários (n-dimensões)

Vetores Bi-dimensionais ou 2D

```
Representação
1 array[1..3, 1..2] of int : A;
2 A = [| 4, 5]
3 | 0, 9
4 | 5.8 | 1:
6 array[1..2, 1..3] of int : B;
7 B = array2d(1...2, 1...3,
             [9.8.-3.5.-5.71):
10 array[1..2, 1..3, 1..2] of int : C;
11 C = array3d(1...2, 1...3, 1...2,
               [9, -5, 3, 5, 6, 8,
               19. 12. -13. 17. -15. 18]):
15 solve satisfy;
output [show2d(A), "\n", show2d(B), "\n", show3d(C)];
```

Saída:

```
$ mzn-g12fd -a minizinc/sbpo_ilustra-2D.mzn
[| 4, 5 |
  0,9
  5,8 |]
[ | 9, 8, -3 |
   5, -5, 7 []
[| 9, -5 |
     3, 5 |
      6, 8 |,
    19, 12 |
    -13, 17
    -15, 18 | |]
```

Vetores 2D

Quadrado Mágico

- Um quadrado mágico é uma matriz $N \times N$ onde os somatórios das linhas, colunas e diagonais (principal e secundária) são todos iguais a um valor K. Além disso, os elementos da matriz devem ser diferentes entre si, com valores de 1 a N^2-1 .
- ullet Um quadrado mágico de ordem 4 (N=4) é dado por:

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

• Onde $K = \frac{N(N^2+1)}{2}$ (valor mágico), para N = 4 tem-se K = 34

Quadrado Mágico

```
1 int: N = 4;
2 float: Kte = ceil(N*(N*N +1 )/2); %% Coercao float -> int ou floor
3 set of int : Index = 1..N;
4 array [Index, Index] of var 1 .. (N*N)-1: mat;
6 constraint forall(i in Index) %% LINHAS
          (mat[i,1] + mat[i,2] + mat[i,3] + mat[i,4] = Kte);
8
9 constraint forall(j in Index) %% COLUNAS
          (mat[1,i] + mat[2,i] + mat[3,i] + mat[4,i] = Kte);
10
11
12 constraint % Diagonal 1...
     mat[1,1] + mat[2,2] + mat[3,3] + mat[4,4] = Kte;
13
14
15 constraint % Diagonal 2 ...
     mat[4,1] + mat[3,2] + mat[2,3] + mat[1,4] = Kte;
16
18 constraint %% alldifferent
19 forall(i in Index, j in Index, k in i..N, l in j..N)
(if (i!=k \ / j != 1) then mat[i,j] != mat[k,1] else
21
  true endif);
23 solve satisfy;
```

```
Saída:
```

Vetores 2D

Problema de Atribuição

Seja uma matriz de peso:

Mulheres Homens	M_1	<i>M</i> ₂	M ₃	M ₄	M_5
$\overline{H_1}$	1	11	13	7	3
H_2	6	5	2	8	10
	6	3	9	4	12
H_4	32	17	6	18	11
H_5	1	3	4	1	5

- Como obter pares (H_i, M_j) tal que cada mulher/homem tenham um único companheira(o) apenas!
- Estende-se a idéia para: máquinas \times trabalhadores, processos \times tarefas, tradutores \times linguagens, etc.

Vetores 2D: Problema de Atribuição

Problema de Atribuição

```
1 int: linhas = 4; int: cols = 5;
3 %%% m_PESO = MATRIZ DEFINIDA NO FINAL do arquivo
5 array[1..linhas, 1..cols] of int: m_PESO;
6 array[1..linhas, 1..cols] of var 0..1: x; %% x: MATRIZ DE DECISAO
7 var int: f_CUSTO:
9 constraint %% exatamente UMA escolha por linha
forall(i in 1..linhas) (
         sum(j in 1..cols) (x[i,j]) == 1 );
11
13 constraint %% exatamente 0 ou UMA escolha por coluna
14 forall(j in 1..cols) (
         sum(i in 1..linhas) (x[i,j]) <= 1 );</pre>
15
17 constraint %% Uma funcao CUSTO ou objetivo
f_CUST0 = sum(i in 1..linhas, j in 1..cols) (x[i,j]*m_PES0[i,j]);
19
solve maximize f_CUSTO;
22 output ["f_custo: ", show(f_CUSTO ), "\n", show2d(x)];
_{0.5} m PESO =
```

Saída: f_custo: 42 [| 0, 0, 0, 0, 1 |0, 1, 0, 0, 0 0, 0, 0, 1, 0 | 0, 0, 1, 0, 0 |] f custo: 43 [| 1, 0, 0, 0, 0 |0, 1, 0, 0, 0 | 0, 0, 0, 0, 1 | 0, 0, 0, 1, 0 |] f_custo: 44 [| 0, 0, 0, 0, 1 |

0, 1, 0, 0, 0 1, 0, 0, 0, 0 0, 0, 0, 1, 0 |]

Vetores 2D

Os Nadadores Americanos

	Time (seconds)					
Swimmer	Free	Breast	Fly	Back		
Gary Hall	54	54	51	53		
Mark Spitz	51	57	52	52		
Jim Montgomery	50	53	54	56		
Chet Jastremski	56	54	55	53		

Figura: Do livro do *Operations Research: Applications and Algorithms* – Wayne L. Winston

Problema de Atribuição: Nadadores

```
1 include "alldifferent.mzn";
2 int : N = 4;
3 array[1..N] of var 1..N: vetDecisao; %% VETOR Decisao 1D
4 var int: T_min:
6 array[1..N,1..N] of int: tempo_NADADORES;
8 tempo_NADADORES = array2d(1..N, 1..N,
                           [54,54,51,53,
                           51,57,52,52,
                           50.53.54.56.
                           56.54.55.531):
13
constraint alldifferent(vetDecisao);
15
16 constraint
    T_min = sum(i in 1..N)(tempo_NADADORES[i, vetDecisao[i]]);
19 solve minimize T_min;
20
output[" Menor tempo: ", show(T_min) ,"\n",
         " Atribuicao (vetDecisao): ", show(vetDecisao), "\n "] ++
22
23
   [show(i)++":"++show(vetDecisao[i])++"-> "++
    show(tempo_NADADORES[i, vetDecisao[i]])++ "\n " | i in 1..N];
24
```

Saída:

```
$ mzn-g12fd -a minizinc/sbpo_nadadores.mzn
 Menor tempo: 212
 Atribuicao (vetDecisao): [3, 1, 4, 2]
 1:3->51
 2:1->51
 3:4->56
 4:2-> 54
 Menor tempo: 207
 Atribuicao (vetDecisao): [3, 4, 1, 2]
 1:3->51
 2:4->52
 3:1->50
 4:2->54
```

Vetores 2D

Problema de Job-Shop-Schedulling

Tarefas	Tarefas (J_i)) Sequência			emp	o em	Мj
	1	M_1	M ₂	M ₃	3	3	3		
	2	M_1	<i>M</i> ₃	M_2	2	3	4		
	3	M_2	M_1	M_3	3	2	1		

Job-Shop-Schedulling

Figura: Uma solução!

Job-Shop-Schedulling

Ver código completo em:

https://github.com/claudiosa/CCS/minizinc/sbpo_job_shop.mzn

Partes do Código:

```
%% um limite para todos as tarefas tenham terminado
int: END_TIME =
    sum([job_time[j,k] | j in jobs, k in machines])+100;
%% A menor duracao eh o maior tempo de uma tarefa
var O..END TIME:
  min duration =
       max([job_end[j, k] | j in jobs, k in machines]);
% Evita inicializacoes com valores negativos
constraint
   forall(j in jobs, k in machines)
         (job_start[j,k] >= 0);
% Final de uma tarefa e o seu inicio + duracao
constraint
 forall(j in jobs, k in machines)
    (job_end[j,k] = job_start[j,k] + job_time[j,k]);
```

Partes do Código:

Partes do Código:

Saída:

```
$ mzn-g12fd -a sbpo_job_shop.mzn
job_start =
[ | 2, 5, 8 |
   0, 8, 2 |
   5, 0, 11 |]
job_end =
[| 5, 8, 11 |
   2, 11, 6
   8, 2, 12 |]
t end = 12 MUITAS RESPOSTAS COM ESTA COTA
SAIDA DETALHADA:
JOB 1: 2..5 5..8 8..11
JOB 2: 0..2 8..11 2..6
JOB 3 : 5..8 0..2 11..12
```

Vetor 2D - Grafos

Figura: Coloração de Mapas - Regiões da Itália

Coloração de Mapas

```
1 int: n=8; %% REGIOES
2 int: c=4; %% CORES
4 array [1..n, 1..n] of int : Adj; %% Matriz Adjacencia
5 array [1..n] of var 1..c : Col; %% Saida
7 constraint
   forall (i in 1...n, j in i+1...n)
8
       (if Adj[i,j] == 1 then Col[i] != Col[j] else true endif);
11 solve satisfy;
output [show(Col)];
15 Adj = [0,1,0,0,0,0,0,0]
       1,0,1,1,1,0,0,0
         0,1,0,1,0,0,0,0
         0,1,1,0,1,1,0,0
18
         0.1.0.1.0.1.1.0
         0,0,0,1,1,0,1,1
         10.0.0.0.1.1.0.0
         10.0.0.0.0.1.0.017:
23
24 %% Regioes da Italia
```

Saída:

\$ mzn-gecode sbpo_coloracao_mapas.mzn
[2, 1, 2, 3, 2, 1, 3, 2]
UMA SAIDA

Melhorando as Buscas

Práticas dos experimentos

- Usar restrições globais ⇒ tem muitas!
- Restrições complexas. Exemplo: restrições reifadas, restrições entubadas $(y = f(x) \Leftrightarrow x = g(x))$
- Comece com domínios reduzidos e vá aumentando gradativamente ao testar seus modelos ⇒ comece pequeno
- ullet Variar as estratégias de buscas (eis a PR!) \Rightarrow ponto de exploração

Variando as Buscas

Parâmetro search

```
Formato Geral:
int_search(Var_Exp, Sel_VAR, Sel_DOM, estrategia)
bool_search(Var_Exp, Sel_VAR, Sel_DOM, estrategia)
set_search(Var_Exp, Sel_VAR, Sel_DOM, estrategia)
```

Escolha da variável: input_order, first_fail, smallest, largest, dom_w_deg

- input_order: a ordem que vão aparecendo
- first_fail: variável com o menor tamanho de domínio
- anti_first_fail: oposto da anterior
- smallest: variável com o menor valor no domínio
- largest: variável com o maior valor no domínio

Variando as Buscas

Parâmetro: search

Escolha do valor no domínio: indomain_min, indomain_max, indomain_median, indomain_random, indomain_split, indomain_reverse_split.

Exemplificando, considere o domínio: $\{1, 3, 4, 18\}$

- indomain_min: 1, 3, ...
- indomain_max: 18, 4, ...
- indomain_median: 3,4, ...
- indomain_split: $x \le (1+18)/2$; x > (1+18)/2
- indomain_reverse_split: x > (1+18)/2; $x \le (1+18)/2$

Exemplo Search

```
1 include "globals.mzn";
3 array[1..4] of var 1..7: x;
5 constraint
       alldifferent(x) /\ increasing (x);
7 constraint
        sum(x) \le 13:
10 ann: Selec_VAR; %% Anotacao de CODIGO
11 ann: Selec_DOM;
solve :: int_search(x, Selec_VAR, Selec_DOM, complete)
           satisfy;
14
16 %%%% Vah modificando AQUI
17 Selec_VAR = dom_w_deg; %dom_w_deg, first_fail, largest
18 Selec_DOM = indomain_min;
```

- ann: cria um tipo de anotação no código
- Atenção: cuidar das compatibilidades entre o parâmetro search e o backend utilizado.

Saída:

```
$ time(mzn-g12fd -a sbpo_var_val_choice.mzn)
x = array1d(1..4, [1, 2, 3, 4]);
x = array1d(1..4, [1, 2, 3, 5]);
x = array1d(1..4, [1, 2, 3, 6]);
x = array1d(1..4, [1, 2, 3, 7]);
x = array1d(1..4, [1, 2, 4, 5]);
x = array1d(1..4, [1, 2, 4, 6]);
x = array1d(1..4, [1, 3, 4, 5]);
real 0m0.158s
user 0m0.076s
sys 0m0.012s
```

Claudio Cesar de Sá (UDESC)

Restrições Globais

include "globals.mzn"; muito úteis:

- Restrições de escalonamento: disjunctive, cumulative, alternative;
- Restrições de ordenamento: decreasing, increasing, sort, etc
- Restrições extensionais: regular, regular_nfa, table;
- Restrições de empacotamento: bin_packing, bin_packing_capa,
- Restrições de entubamento (channeling): int_set_channel, inverse, link_set_to_booleans, etc
- Restrições de genéricas—l: all_different, all_disjoint (uso em conjuntos), all_equal, nvalue, etc
- Restrições de genéricas—II: arg_max, arg_min, circuit, disjoint, maximum, member, minimum, network_flow, network_flow_cost, range, partition_set, sliding_sum, etc

String e Fix

```
1 set of int : Index = 1 .. 4:
3 array[Index] of string:
           Estacoes = ["Verao", "Outono", "Inverno", "Primavera"];
5 var Index : x:
7 constraint
  x >= 2;
10 solve satisfy;
output [ Estacoes[ fix (x) ], "\n", show(Estacoes) ];
```

Nota:

- Verifica se a variável está fixada e faz uma coerção de tipos
- Coerções possíveis: boo2int, int2float, set2array

```
Saída
```

```
$ mzn-gecode -a sbpo_string_fix.mzn
Outono
["Verao", "Outono", "Inverno", "Primavera"]
-----
Inverno
["Verao", "Outono", "Inverno", "Primavera"]
------
Primavera
["Verao", "Outono", "Inverno", "Primavera"]
-------
```

Conclusões

- $lue{1}$ Formulação matemática pprox código MiniZinc
- ② Declarativo ⇒ escrever "o que" e muito direto
- **(3)**
- 4
- Exemplos de mais códigos:
 - https://github.com/hakank/hakank/tree/master/minizinc
 - https://github.com/MiniZinc/(cuidado)