

c) A is countable if A~J. d) A is uncountable if A is neither finite nor countable. e) A is at most countable if A is finite, Example: A = {0,1,2,...} Then $A \sim X$. Just map every

number of the form 2k + 1, k = t = 1, 2, ...Lo K, and map every number of

the form 2k + 6 - K: O gets mapped Definition: A sequence is a function f(n) = xn, neJ

3	-
	Theorem: Every infinite subset of a countable set A is countable.
	set A is codentable.
	Proof: Arrange A as a sequence.
	X1, X2, X3,, Xn,
	Arrange ECA as a subsequence
	$X_{n_1}, X_{n_2}, \dots, X_{n_K}, \dots$
	$n_1 < n_2 < \dots < n_K < \dots$
	and here is our bijection!
	Il was 1/5/2 to be a converge of constable
	Theorem: let En ? be a sequence of countable sets, and put
	seis, and pai
	$S = \bigcup E_n$.
	N=1
	Then S is countable.
	De la Managa F in a convence 5 x 3 x 12
	Proof: Arrange En in a sequence { XNK }, K=1, 2,
	X11 X13 X13 X14 111
	X21 X22 X23 X24
	X31 X31 X33 X34

Hence S = J x J & S is infinite. Also, JxJ~J by the scheme above. It follows that S is countable. Corollary: Suppose A is at most countable, and,

for every $A \subset A$, B_A is at most countable.

Let $T = U B_A$. Then I is at most countable. $A \subset A$ Theorem: Let A = countable set, Bn = n-tuples

(a, an, ..., an), ax EA. Then Bn is countable. Proof: B_i is countable. Suppose that B_{p-1} is countable. $B_n = \frac{1}{2}(b_i, a) : b \in B_{p-1}, a \in A$ For every fixed b, the set of pairs is countable, so Bn is a union of countable.

Sets, hence countable. Proof complete by induction.

(5)	
	Corollary: The set of all rational numbers
	Corollary: The set of all rational numbers) is countable.
	Proof: Apply the previous result w/ n=2, since trationals are of the form 6
	Osince Crafionals are of the form 6,
	6, a integers. The set of pairs (a, 6) and
	therefore the set of fractions to is
	countable.
	County De
	200
	To every thing countable! No!
	Theorem: The set of sequences of 1's 8 0's is not countable.
	is not countables
	O of Congra official The Hora is a
	proof: Suppose OTKETWISE, THEN THETE IS a
	Proof: Suppose ofkerwise. Then there is a
	1: an an an
	2: G21 G22 G23 G20
(
(
(
K	: aklar - akn

