Binomial Distribution

Binomial random variables arise in experiments with the following properties:

- The experiment consists of a fixed number, n, of Bernoulli trials each with probability p of success.
- The trials are identical and independent. The probability of success p, remains the same from trial to trial.
- The random variable X denotes **the number of success obtained in the n trials**.

Let's take a look at a special case with n = 3:

The sample space is: $S = \{fff, sff, fsf, ffs, ssf, sfs, fss, sss\}$

Can you makeup an experiment that generates a binomial random variable?

X can take values from: $\{0,1,2,3\}$

$$f(0) = P[X = 0] = (1 - p)^{3}$$

$$f(1) = P[X = 1] = 3 \times (1 - p)^{2}p$$

$$f(2) = P[X = 2] = 3 \times (1 - p)p^{2}$$

$$f(3) = P[X = 3] = p^{3}$$

i.e.,
$$f(x) = {3 \choose x} p^x (1-p)^{3-x}, x = 0,1,2,3$$

Density Function of Binomial Distribution

A random variable X has a binomial distribution with parameters n and p if its density function is given by $f(x) = \binom{n}{x} p^x (1-p)^{n-x}$, 0 , <math>x = 0,1,2,3,...,n, where n is a positive integer.

Verify that this is a density function!

It is easy to verify that $f(x) \ge 0$.

Consider the binomial theorem:
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$
 e.g., $n=2$: $(a+b)^2 = a^2 + 2ab + b^2$ $n=3$: $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ $n=4$: $(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$ \vdots $n=n$: $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$

Then,

$$\sum_{x=0}^{n} f(x) = \sum_{x=0}^{n} {n \choose x} p^{x} (1-p)^{n-x} = [p+(1-p)]^{n} = 1$$

Binomial Distribution

In general, a random variable X has a binomial distribution with parameters n and p if its density function is given by:

$$f(x) = \binom{n}{x} p^x (1-p)^{n-x}, x = 0,1,2,...,n, 0$$

Guess the formula of E[X]

Binomial Distribution

In Class Assignment Problem #4:

The moment generating function of a binomial random variable X with parameter $p\ and\ n$ is

$$m_X(t) = (q + pe^t)^n, q = 1 - p$$

Find E[X] and Var X.

$$\frac{d}{dt}m_X(t) = npe^t(q + pe^t)^{n-1} \Rightarrow \frac{d}{dt}m_X(t)_{t=0} = np(q + p)^n = np = E[X]$$

$$\frac{d^2}{dt^2}m_X(t) = npe^t(q + pe^t)^n + n(n-1)(pe^t)^2(q + pe^t)^{n-2} \Rightarrow \frac{d^2}{dt^2}m_X(t)_{t=0} = np + n(n-1)p^2 = E[X^2]$$

$$VarX = E[X^2] - (E[X])^2 = np - np^2 = np(1-p)$$

Binomial Distribution Table

Table I gives the value of cumulative distribution

$$F(t) = P[X \le t] = \sum_{x=0}^{t} {n \choose x} p^{x} (1-p)^{n-x}$$

For selected values of n and p.

Example: Let X denote a binomial RV with n=9 and p=0.5. Find the probability $P[2 \le X \le 7]$ using Table I.

$$P[2 \le X \le 7] = P[X \le 7] - P[X < 2]$$

$$= P[X \le 7] - P[X \le 1]$$

$$= F(7) - F(1)$$

$$= 0.9805 - 0.0195 = 0.9610$$

TABLE I Cumulative binomial distribution

$$F_X(t) = P[X \le t] = \sum_{x \le t} \binom{n}{x} p^x (1-p)^{n-x}$$

							p					
n —	t	0.1	0.2	0.25	0.3	0.4	0.5	0.6	0.7	0.75	0.8	0.9
5	0	0.5905	0.3277	0.2373	0.1681	0.0778	3 0.031	2 0.010	2 0.002	4 0 001	0 0000	
	1	0.9185	0.7373	0.6328	0.5282							
	2	0.9914	0.9421	0.8965	0.8369							
	3	0.9995	0.9933	0.9844	0.9692							
	4	1.0000	0.9997	0.9990	0.9976							
	5	1.0000	1.0000	1.0000	1.0000							
								1.0000	0 1.0000	1.0000	1.0000	1.0000
6	0	0.5314	0.2621	0.1780	0.1176	0.0467	0.0156	0.0041	0.0007	0.0002	0.0001	0.0000
	1	0.8857	0.6554	0.5339	0.4202	0.2333	0.1094	0.0410	0.0109	0.0046	0.0016	
	2	0.9841	0.9011	0.8306	0.7443	0.5443	0.3437	0.1792	0.0705	0.0376		
	3	0.9987	0.9830	0.9624	0.9295	0.8208	0.6562	0.4557	0.2557	0.1694	0.0989	
	4	0.9999	0.9984	0.9954	0.9891	0.9590	0.8906	0.7667	0.5798	0.4661	0.3446	0.1143
	5	1.0000	0.9999	0.9998	0.9993	0.9959			0.8824	0.8220	0.7379	0.4686
	6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000			1.0000	1.0000	1.0000
7	0	0.4783	0.2097	0.1335	0.0824	0.0280	0.0078	0.0016	0.0002	0.0001	0.0000	0.0000
	1	0.8503	0.5767	0.4449	0.3294	0.1586	0.0625	0.0188	0.0038	0.0013	0.0004	0.0000
	2	0.9743	0.8520	0.7564	0.6471	0.4199	0.2266	0.0963	0.0288	0.0129	0.0047	0.0002
	3	0.9973	0.9667	0.9294	0.8740	0.7102	0.5000	0.2898	0.1260	0.0706	0.0333	0.0027
	4	0.9998	0.9953	0.9871	0.9712	0.9037	0.7734	0.5801	0.3529		0.1480	0.0257
	5	1.0000	0.9996	0.9987	0.9962	0.9812	0.9375	0.8414	0.6706		0.4233	0.1497
	6	1.0000	1.0000	0.9999	0.9998	0.9984	0.9922	0.9720	0.9176		0.7903	0.5217
	7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		1.0000	1.0000
0			0.1678	0.1001	0.0576	0.0168	0.0039	0.0007	0.0001		0.0000	0.0000
8	0	0.4305	0.5033	0.3671	0.2553	0.1064	0.0352	0.0085	0.0013		0.0001 0.0012	0.0000
	1	0.8131	0.7969	0.6785	0.5518	0.3154	0.1445	0.0498	0.0113			0.0004
	2	0.9619	0.9437	0.8862	0.8059	0.5941	0.3633	0.1737	0.0580			0.0050
	3	0.9950	0.9896	0.9727	0.9420	0.8263	0.6367	0.4059				0.0381
	4	0.9996	0.9988	0.9958	0.9887	0.9502	0.8555	0.6846				0.1869
	5	1.0000	0.9999	0.9996	0.9987	0.9915	0.9648	0.8936 0.9832				0.5695
	6	1.0000	1.0000	1.0000	0.9999	0.9993	0.9961	1.0000				1.0000
	7	1.0000 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000					0.0000
	8			0.0751	0.0404	0.0101	0.0020		0.00			0.0000
9	0	0.3874	0.1342	0.3003	0.1960	0.0705	0.0195	0.000				0.0000
8500	1	0.7748	0.4362	0.6007	0.4628	0.2318	0.0898					0.0001
	2	0.9470	0.7382 0.9144	0.8343	0.7297	0.4826	0.2539			0.0.		0.0009
	3	- 0001	0.9144	0.9511	0.9012	0.7334	0.5000		0.0988	0.0.0		0.0083
	4		0.9969	0.9900	0.9747	0.9006	0.7461		0.2703	0.100	.2618	0.0530
	5		0.9997	0.9987	0.9957	0.9750	0.9102			0.6997 0		.2252
	6		1.0000	0.9999	0.9996	0.9962	0.9805			0.9249 0		0.6126
											•	

Negative Binomial Distribution

Negative binomial random variables arise in experiments with the following properties:

- The experiment consists of a series of independent and identical Bernoulli trials each with probability p of success.
- The trials are observed until exactly r successes are obtained, where r is fixed.
- The random variable X denotes the number of trials needed to obtain the r successes.

```
Let's consider the case of r = 3. X takes values from \{3,4,5,...\}
Typical outcomes can be: \{sss, ssfs, ssffs, sfffss, ffffsss, ...\}
```

Each outcome must end with a successful trial;

The remaining x-1 trials must result in exactly two successes and x-3 failures in some order; Different outcomes can yield identical values for X. The number of outcomes that result in a given value x is $\binom{x-1}{2}$.

Therefore,
$$f(x) = P[X = x] = {x-1 \choose 2} (1-p)^{x-3} p^3, x = 3,4,5, ...$$

Eg, when
$$x = 4$$
, there exist three ,i.e., $\binom{3}{2}$, different outcomes: $\{fsss, sfss, ssfs\}$ when $x = 5$, there exist six, i.e., $\binom{4}{2}$, different outcomes: $\{fsss, fsfss, sffss, sffss, sffss, sffss\}$

Negative Binomial Distribution

A random variable is said to have negative binomial distribution with parameter p and r if its density function is given by:

$$f(x) = {x-1 \choose r-1} (1-p)^{x-r} p^r, \qquad r = 1,2,3,...; \ x = r,r+1,r+2,...$$

What is the relationship between geometric and negative binomial distribution?

What is the r value in the figure?
Can you guess the expected value of X?

Negative Binomial Distribution

Practice problem:

The moment generating function of a negative binomial random variable X with parameters p and r is

$$m_X(t) = \left(\frac{pe^t}{1 - qe^t}\right)^r$$
, $q = 1 - p$

Find E[X] and VarX

$$E[X] = \frac{r}{p}, VarX = \frac{r(1-p)}{p^2}$$

$$\frac{d}{dt}m_X(t) = r\left(\frac{pe^t}{1-qe^t}\right)^{r-1} \frac{pe^t}{(1-qe^t)^2} \Rightarrow \frac{d}{dt}m_X(t) \Big|_{t=0} = \frac{r}{p} = E[X]$$

$$\frac{d^2}{dt^2}m_X(t) = r(r-1)\left(\frac{pe^t}{1-qe^t}\right)^{r-2} \left[\frac{pe^t}{(1-qe^t)^2}\right]^2 + r\left(\frac{pe^t}{1-qe^t}\right)^{r-1} \frac{pe^t(1+qe^t)}{(1-qe^t)^3}$$

$$\Rightarrow \frac{d^2}{dt^2}m_X(t) \Big|_{t=0} = \frac{r(1+q)+r^2-r}{p^2} = E[X^2]$$

$$VarX = E[X^2] - (E[X])^2 = \frac{r(1-p)}{p^2}$$

Poisson random variables arise in experiments with the following properties:

- The experiment consists of counting events occur in an interval $(t, t + \tau)$.
- The interval can be of *time or space*
- The occurrences are independent.
- The events occur at a constant average rate, λ , also known as intensity.
- The number of events occur in the interval follows the Poisson distribution with the following density function:

$$f(x) = P[X = x] = \frac{e^{-\lambda \tau} (\lambda \tau)^x}{x!} = \frac{e^{-k} (k)^x}{x!}, \qquad k = \lambda \tau, x = 0,1,2,3,...$$

$$f(0) = P[X = 0] = e^{-k}$$

Prove that f(x) is a density function.

Examples of Poisson RVs:

- # of mails received in a day
- # of phone call received in an hour
- # of customers come to an ATM in an hour.
- # of vehicles passing a check point in a minute

Prove that

$$f(x) = P[X = x] = \frac{e^{-\lambda \tau} (\lambda \tau)^x}{x!} = \frac{e^{-k} (k)^x}{x!}, \qquad k = \lambda \tau, x = 0,1,2,3,$$

is a density function.

Proof:

- (1) It is easy to verify that $f(x) \ge 0$, x = 0,1,2,3,...
- (2) For x = 0,1,2,3,..., we have,

$$\sum_{x=0}^{\infty} f(x) = \sum_{x=0}^{\infty} \frac{e^{-k}(k)^x}{x!} = e^{-k} \sum_{x=0}^{\infty} \frac{(k)^x}{x!} = e^{-k} e^k = 1$$

Practice Example:

The moment generating function (m.g.f) $m_X(t)$ of a Poisson random variable X with parameter $k = \lambda \tau$ is $m_X(t) = e^{k(e^t - 1)}$. Use the m.g.f to calculate E[X] and VarX.

$$\frac{d}{dt}m_{x}(t) = ke^{t}e^{(ke^{t}-k)} = ke^{(ke^{t}+t-k)} \Rightarrow \frac{d}{dt}m_{x}(t)_{t=0} = k = E[X]$$

$$\frac{d^2}{dt^2}m_{\chi}(t) = (ke^t + 1)ke^{(ke^t + t - k)} \Rightarrow \frac{d^2}{dt^2}m_{\chi}(t)_{t=0} = k(k+1) = E[X^2]$$

$$VarX = E[X^2] - (E[X])^2 = k(k+1) - k^2 = k$$

$$E[X] = k, E[X^2] = k(k+1), VarX = k$$

Example: The white blood cell count of a healthy individual follows a Poisson distribution and can average as low as 6000 per cubic millimeter of blood. To detect a white-cell deficiency, a 0.001 cubic millimeter drop of blood is taken and the number of white cells *X* is found.

- (1) How many white blood cells are expected in a drop of blood from a healthy individual?
- (2) If at most two are found, is this evidence of a white cell deficiency?

Solution:

This experiment can be viewed as involving a Poisson process. The discrete event of interest is the occurrence of a white cell. The continuous space interval is a drop of blood.

Then,

$$\lambda = 6000; \tau = 0.001; k = \lambda \tau = 6; E[X] = k = 6$$

i.e., in a healthy individual, we would expect, on average, to see 6 white cells in a drop of blood

We want to find $P[X \leq 2]$:

$$P[X \le 2] = \sum_{x=0}^{2} f(x) = \sum_{x=0}^{2} \frac{e^{-6}6^x}{x!} = \frac{e^{-6}6^0}{0!} + \frac{e^{-6}6^1}{1!} + \frac{e^{-6}6^2}{2!} \approx 0.062$$

Since this is a small probability, it is reasonable to consider that this individual has a white cell deficiency!!!

Discrete Distributions

Distributions	Density function	Moment generating function
Geometric	$(1-p)^{x-1}p$	$\frac{pe^t}{1 - qe^t}$
Binomial	$\binom{n}{x}p^x(1-p)^{n-x}$	$(q+pe^t)^n$
Negative Binomial	$\binom{x-1}{r-1}(1-p)^{x-r}p^r$	$\left(\frac{pe^t}{1 - qe^t}\right)^r$
Poisson	$\frac{e^{-k}(k)^x}{x!}$, $k=\lambda au$	$e^{k(e^t-1)}$