

LVT

Comparison with RVT model(s)

Please use the bookmark to navigate

General information on EG DK1.2_RF_mmW models

- Maximum supply voltage is 1.8 V.
- Validity domain is defined as follows:
 - ✓ Drawn gate length varies from 150nm to 10um.
 - ✓ Drawn transistor width varies from 0.16um to 10um.
 - ✓ Device temperature varies from -40 °C to 125 °C.

Output parameters definitions

- Model(s): eglvtnfet_acc, eglvtpfet_acc
 - ✓ Vt_lin: Threshold voltage defined as Vgs value for which drain current is ivt*M*1*W/(1*L+0+1*p_la) at Vds = 0.05V.
 - ✓ Ig_on: Gate current at Vds = 0V and Vgs = 1.8V.
 - ✓ Gm_c: Drain transconductance at Vgs = Vt_lin + 0.2, Vds = Vdd/2V, f = 100kHz.
 - ✓ Gd_c: Drain conductance at Vgs = Vt_lin + 0.2, Vds = Vdd/2V, f = 100kHz.
 - ✓ Ig_off: Gate current at Vds = VddV, Vgs = 0V.
 - ✓ Logioff : log10(Ioffsat).
 - ✓ Gain_c : Voltage gain defined as Gm_c / Gd_c.
 - ✓ Ieff: Average drain current (Ilow + Ihigh) / 2.
 - ✓ Ilin : Drain current at Vgs = 1.8V, Vds = 0.05V.
 - ✓ Dibl: Vt_lin Vt_sat.
 - ✓ Ioff_s : Source current at Vgs = 0V, Vds = vds_satV.
 - ✓ Ioffsat : Drain current at Vgs = 0V, Vds = vds_satV.
 - ✓ Ioff_g : Gate current at Vgs = 0V, Vds = vds_satV.
 - ✓ Vt_sat: Threshold voltage defined as Vgs value for which drain current is ivt*M*1*W/(1*L+0+1*p_la) at Vds = vds_satV.
 - ✓ Cgg_inv: Total gate capacitance at Vgs = 1.8V, Vds = 0V, f = 100kHz.
 - ✓ Isat : Drain current at Vgs = 1.8V, Vds = VddV.
 - ✓ Cgd_0v: Gate-to-Drain capacitance at Vgs = 0V, Vds = 0V, f = 100kHz.
 - ✓ Vtgmmax : Threshold voltage at Vds = 0.05 derived from Gm max method.

ST Confidential

eglvtnfet_acc Electrical characteristics per geometry

eglvtnfet_acc wrt egnfet_acc @ w=2e-06, l=1.5e-07, swshe=0, pre_layout_local=1, sa=1.86e-6, sb=1.86e-6, devtype=PT, as=3.72e-12, ad=3.72e-12, ps=7.72e-06, pd=7.72e-06, vbs=0, vdd=1.8, temp=25.0

LVT wrt RVT

	SSF	SS	TT	FF	FFF
Vt_lin [mV]	425.9 -172.7mV	421.6 -158.7mV	376.2 -143.4mV	334.1 -125.4mV	327.2 -115.6mV
Vt_sat [mV]	403.8 -172.9mV	400.1 -159.6mV	355 -143.9mV	312.9 -125.8mV	306.6 -116.3mV
Isat [mA]	1.24 17.9%	1.27 16.3%	1.36 14.4%	1.43 11.7%	1.48 11.4%
Ilin [μA]	159.2 14.4%	168.2 7.2 %	182.1 9.1%	194.9 <mark>10.9%</mark>	204.5 7.1%
Gm_c [µS]	603.4 0.5%	634.1 -2.3%	679.7 -0.3%	722.2 1.0%	760 0.2%
Gd_c [µS]	4.41 -7.8%	4.63 -9.6%	5.29 -9.0%	5.98 -7.8%	6.22 -7.9%
Gain_c []	136.8 9.0%	137 8.1%	128.5 9.5%	120.8 9.5%	122.2 8.8%
VtGmmax [mV]	404 -167.8mV	401.9 -157.1mV	359.1 -141.0mV	318.9 -122.4mV	314.4 -113.8mV
Cgd_0v [aF]	438 -0.4%	460.4 -0.8%	458.2 -1.4%	449.9 -1.6%	478.2 -2.1%
Cgg_inv [fF]	3.23 0.5%	3.33 0.4%	3.34 0.5%	3.35 0.5%	3.46 -0.3%
Ieff [μA]	754.6 <mark>28.9%</mark>	777.1 25.4 %	854.2 22.4 %	925.5 <mark>18.5%</mark>	960.5 17.1%
Ig_on [fA]	0.37 -20.4%	3.12 155.4%	3.23 -25.9%	3.65 -86.2%	34.54 -31.1%
Ioffsat [pA]	14.16 2357.1%	15.6 1485.7%	56.25 1139.5%	200.9 606.2%	229.7 362.3%
Ioff_g [aA]	-7.4 4121.1%	-19.11 4118.5%	-62.89 4116.5%	-221.2 4114.4%	-545.8 4115.1%
Ioff_s [pA]	-14.16 2357.1%	-15.6 1485.7 %	-56.25 1139.5 %	-200.9 606.2%	-229.7 <mark>362.3%</mark>

eglvtnfet_acc wrt egnfet_acc @ w=2e-06, l=2.0e-06, swshe=0, pre_layout_local=1, sa=2.26e-6, sb=2.26e-6, devtype=PT, as=4.52e-12, ad=4.52e-12, ps=8.52e-06, pd=8.52e-06, vbs=0, vdd=1.8, temp=25.0

LVT wrt RVT

	SSF	SS	TT	FF	FFF
Vt_lin [mV]	431.3 -172.3mV	433.7 -158.4mV	392.7 -139.6mV	354.7 -118.3mV	352.6 -108.0mV
Vt_sat [mV]	420.3 -172.9mV	422.8 -159.2mV	382.4 -139.9mV	344.9 -118.3mV	342.8 -108.2mV
Isat [μA]	237.2 <mark>23.4</mark> %	234.5 16.7%	264.2 17.2%	292.6 16.4%	293.5 12.2%
Ilin [μA]	19.16 9.6 %	18.75 3.4 %	20.46 5.8%	21.98 7.5%	21.73 3.2%
Gm_c [µS]	54.8 -5.3%	54.69 - <mark>8.5</mark> %	58.68 -4.9 %	62.42 -2.0%	62.48 -4.6%
Gd_c [nS]	45.05 45.8%	45.35 42.6%	51.69 49.2%	58.17 56.6%	58.3 53.4 %
Gain_c []	1217 -35.1 %	1206 - <mark>35.9</mark> %	1135 -36.3 %	1073 -37.4%	1072 -37.8%
VtGmmax [mV]	438 -169.8mV	438.7 -158.9mV	400.1 -139.3mV	364.1 -117.3mV	361.4 -108.6mV
Cgd_0v [aF]	438.1 -0.3%	460.4 -0.8%	458.3 -1.3%	450.3 -1.4%	478.7 -1.9%
Cgg_inv [fF]	30.82 1.2%	31.6 1.2%	32.15 1.2%	32.8 1.1%	33.6 1.1%
Ieff [μA]	127.3 <mark>26.5%</mark>	125.5 19.0%	142.3 18.9%	158.7 17.7%	158.7 12.7%
Ig_on [fA]	4.24 -8.0%	33.28 181.7%	32.85 -22.4%	35.04 -86.5 %	315.9 -34.2%
Ioffsat [pA]	0.75 343.9%	0.92 219.4%	1.98 57.1%	5.11 -33.4%	5.22 -61.9%
Ioff_g [fA]	-8.95e-02 4121.1%	-0.23 4118.6%	-0.76 4116.4%	-2.68 4114.4%	-6.6 4115.2%
Ioff_s [pA]	-0.75 <mark>343.8</mark> %	-0.92 <mark>219.3%</mark>	-1.98 <mark>57.1%</mark>	-5.11 -33.5 %	-5.21 -61.9 %

eglvtpfet_acc Electrical characteristics per geometry

eglvtpfet_acc wrt egpfet_acc @ w=2e-06, l=2.0e-06, swshe=0, pre_layout_local=1, sa=2.26e-6, sb=2.26e-6, devtype=PT, as=4.52e-12, ad=4.52e-12, ps=8.52e-06, pd=8.52e-06, vdd=1.8, temp=25.0 **sd=1.4e-07** wrt vbs=0

LVT wrt RVT

	SSF	SS	TT	FF	FFF
Vt_lin [mV]	325 -279.8mV	294.8 -291.7mV	287.9 -196.7mV	281.9 -107.1mV	249.8 -118.0mV
Vt_sat [mV]	315.3 -268.9mV	285 -281.4mV	278.3 -186.8mV	272.5 -97.3mV	240.3 -108.5mV
Isat [μA]	87.69 108.6%	89.92 103.5 %	94.98 83.9%	99.56 <mark>69.5</mark> %	102.4 67.1%
Ilin [μA]	6.23 53.9%	6.18 48.7%	6.47 46.4 %	6.72 44.4%	6.69 40.2%
Gm_c [µS]	15.89 72.3%	15.74 66.8%	16.42 72.5 %	17.04 80.0%	16.86 76.1%
Gd_c [nS]	18.29 167.2%	18.56 171.6%	21.07 208.1%	23.68 257.4%	23.88 268.2%
Gain_c []	868.9 -35.5%	848.1 -38.6%	779.4 -44.0%	719.3 -49.6%	705.8 -52.2%
VtGmmax [mV]	375.2 -315.0mV	346.4 -324.4mV	342.4 -225.5mV	339.1 -135.5mV	309.1 -145.8mV
Cgd_0v [aF]	363.9 -32.9%	381.7 -33.3 %	381.5 - <mark>32.6</mark> %	377.4 -31.9%	403 -32.1%
Cgg_inv [fF]	29.33 -0.8%	30.06 -0.9%	30.54 -1.6%	31.1 -2.1%	31.85 -2.1%
Ieff [μA]	46.88 117.9%	48.2 112.9%	50.92 91.0%	53.38 <mark>75.0%</mark>	55.02 72.7%
Ig_on [fA]	1.06e-02 -27.0 %	4.29e-02 -29.4%	0.11 -51.6%	0.32 -67.0%	1.12 -68.2%
Ioffsat [pA]	3.87 114.9%	7.68 92.8 %	10.12 -30.0%	14.11 -74.5%	28.46 -76.8%
Ioff_g [fA]	-1.42 -1.6%	-4.3 -1.6%	-11.13 -1.6%	-32.14 -1.7%	-87.09 -1.7%
Ioff_s [pA]	-3.87 115.0%	-7.67 <mark>92.9%</mark>	-10.1 -30.1 %	-14.08 -74.6 %	-28.37 -76.8%

eglvtnfet_acc Electrical characteristics scaling

Scaling versus Length (W=2e-6,Temp=25)

eglvtnfet_acc, Vt_lin [mV] vs L [m]

eglvtnfet_acc, Ilin*L/W [A/sq] vs L [m]

eglvtnfet_acc, VtGmmax [mV] vs L [m]

eglvtnfet_acc, DIBL [mV] vs L [m]

eglvtnfet_acc, Vt_sat [mV] vs L [m]

Temp==25 and w==2e-6 and l>0.1e-6 and devType=="PCELLwoWPE"

L[m]

eglvtnfet_acc, Isat*L/W [A/sq] vs L [m]

eglvtnfet_acc, Ioffsat [A] vs L [m]

eglvtnfet_acc, LogIoff [A] vs L [m]

eglvtnfet_acc, Ig_on/(L*W) [A/m2] vs L [m]

eglvtnfet_acc, Ig_off/(W) [A/m] vs L [m]

eglvtnfet_acc, Gd_c*L/W [s/sq] vs L [m]

eglvtnfet_acc, Gm_c*L/W [s/sq] vs L [m]

eglvtnfet_acc, Gain_c [] vs L [m]

eglvtnfet_acc, Cgd_0v/W [F/m] vs L [m]

eglvtnfet_acc, Cgg_inv/(L*W) [F/m2] vs L [m]

Scaling versus Width (L=0.15e-6,Temp=25)

eglvtnfet_acc, Vt_lin [mV] vs W [m]

eglvtnfet_acc, Ilin/W [A/m] vs W [m]

eglvtnfet_acc, VtGmmax [mV] vs W [m]

eglvtnfet_acc, DIBL [mV] vs W [m]

eglvtnfet_acc, Vt_sat [mV] vs W [m]

eglvtnfet_acc, Isat/W [A/m] vs W [m]

eglvtnfet_acc, Ioffsat [A] vs W [m]

eglvtnfet_acc, LogIoff [A] vs W [m]

eglvtnfet_acc, Ig_on/(L*W) [A/m2] vs W [m]

eglvtnfet_acc, Ig_off/(W) [A/m] vs W [m]

eglvtnfet_acc, Gd_c/W [s/m] vs W [m]

eglvtnfet_acc, Gm_c/W [s/m] vs W [m]

eglvtnfet_acc, Gain_c [] vs W [m]

eglvtnfet_acc, Cgd_0v/W [F/m] vs W [m]

eglvtnfet_acc, Cgg_inv/(L*W) [F/m2] vs W [m]

Scaling versus Temp, L=0.15u, W=2u

eglvtnfet_acc, Vt_lin [mV] vs Temp [degC]

eglvtnfet_acc, Ilin/W [A/m] vs Temp [degC]

eglvtnfet_acc, VtGmmax [mV] vs Temp [degC]

eglvtnfet_acc, DIBL [mV] vs Temp [degC]

eglvtnfet_acc, Vt_sat [mV] vs Temp [degC]

eglvtnfet_acc, Isat/W [A/m] vs Temp [degC]

eglvtnfet_acc, Ioffsat [A] vs Temp [degC]

eglvtnfet_acc, LogIoff [A] vs Temp [degC]

l==0.15e-6 and w==2e-6 and devType=="PCELLwoWPE"

dormieub

eglvtnfet_acc, Ig_on/(L*W) [A/m2] vs Temp [degC]

eglvtnfet_acc, Ig_off/(W) [A/m] vs Temp [degC]

l==0.15e-6 and w==2e-6 and devType=="PCELLwoWPE"

dormieub

eglvtnfet_acc, Gd_c/W [s/m] vs Temp [degC]

eglvtnfet_acc, Gm_c/W [s/m] vs Temp [degC]

eglvtnfet_acc, Gain_c [] vs Temp [degC]

eglvtnfet_acc, Cgd_0v/W [F/m] vs Temp [degC]

eglvtnfet_acc, Cgg_inv/(L*W) [F/m2] vs Temp [degC]

l==0.15e-6 and w==2e-6 and devType=="PCELLwoWPE"

Temp [degC]

Scaling versus Temp, L=0.15u, W=2u

dormieub

eglvtnfet_acc, Vt_lin [mV] vs Temp [degC]

eglvtnfet_acc, Ilin/W [%] vs Temp [degC]

eglvtnfet_acc, VtGmmax [mV] vs Temp [degC]

eglvtnfet_acc, DIBL [mV] vs Temp [degC]

eglvtnfet_acc, Vt_sat [mV] vs Temp [degC]

eglvtnfet_acc, Isat/W [%] vs Temp [degC]

eglvtnfet_acc, Ioffsat [%] vs Temp [degC]

eglvtnfet_acc, LogIoff [log(A)] vs Temp [degC]

eglvtnfet_acc, Ig_on/(L*W) [%] vs Temp [degC]

eglvtnfet_acc, Ig_off/(W) [A/m] vs Temp [degC]

eglvtnfet_acc, Gd_c/W [%] vs Temp [degC]

eglvtnfet_acc, Gm_c/W [%] vs Temp [degC]

eglvtnfet_acc, Gain_c [] vs Temp [degC]

eglvtnfet_acc, Cgd_0v/W [%] vs Temp [degC]

eglvtnfet_acc, Cgg_inv/(L*W) [%] vs Temp [degC]

Scaling versus Temp @ L=2u, W=2u

eglvtnfet_acc, Vt_lin [mV] vs Temp [degC]

eglvtnfet_acc, Ilin/W [A/m] vs Temp [degC]

eglvtnfet_acc, VtGmmax [mV] vs Temp [degC]

eglvtnfet_acc, DIBL [mV] vs Temp [degC]

eglvtnfet_acc, Vt_sat [mV] vs Temp [degC]

eglvtnfet_acc, Isat/W [A/m] vs Temp [degC]

eglvtnfet_acc, Ioffsat [A] vs Temp [degC]

eglvtnfet_acc, LogIoff [A] vs Temp [degC]

eglvtnfet_acc, Ig_on/(L*W) [A/m2] vs Temp [degC]

eglvtnfet_acc, Ig_off/(W) [A/m] vs Temp [degC]

eglvtnfet_acc, Gd_c/W [s/m] vs Temp [degC]

eglvtnfet_acc, Gm_c/W [s/m] vs Temp [degC]

eglvtnfet_acc, Gain_c [] vs Temp [degC]

eglvtnfet_acc, Cgd_0v/W [F/m] vs Temp [degC]

eglvtnfet_acc, Cgg_inv/(L*W) [F/m2] vs Temp [degC]

Normalized scaling versus Temp @ L=2u, W=2u

dormieub

eglvtnfet_acc, Vt_lin [mV] vs Temp [degC]

eglvtnfet_acc, Ilin/W [%] vs Temp [degC]

eglvtnfet_acc, VtGmmax [mV] vs Temp [degC]

eglvtnfet_acc, DIBL [mV] vs Temp [degC]

eglvtnfet_acc, Vt_sat [mV] vs Temp [degC]

eglvtnfet_acc, Isat/W [%] vs Temp [degC]

eglvtnfet_acc, Ioffsat [%] vs Temp [degC]

eglvtnfet_acc, LogIoff [log(A)] vs Temp [degC]

eglvtnfet_acc, Ig_on/(L*W) [%] vs Temp [degC]

l==2e-6 and w==2e-6 and devType=="PCELLwoWPE"

dormieub

eglvtnfet_acc, Ig_off/(W) [A/m] vs Temp [degC]

eglvtnfet_acc, Gd_c/W [%] vs Temp [degC]

eglvtnfet_acc, Gm_c/W [%] vs Temp [degC]

eglvtnfet_acc, Gain_c [] vs Temp [degC]

eglvtnfet_acc, Cgd_0v/W [%] vs Temp [degC]

eglvtnfet_acc, Cgg_inv/(L*W) [%] vs Temp [degC]

eglvtpfet_acc Electrical characteristics scaling

Scaling versus Length (W=2e-6,Temp=25)

dormieub

eglvtpfet_acc, Vt_lin [mV] vs L [m]

eglvtpfet_acc, Ilin*L/W [A/sq] vs L [m]

eglvtpfet_acc, VtGmmax [mV] vs L [m]

eglvtpfet_acc, DIBL [mV] vs L [m]

eglvtpfet_acc, Vt_sat [mV] vs L [m]

eglvtpfet_acc, Isat*L/W [A/sq] vs L [m]

eglvtpfet_acc, Ioffsat [A] vs L [m]

eglvtpfet_acc, LogIoff [A] vs L [m]

eglvtpfet_acc, Ig_on/(L*W) [A/m2] vs L [m]

eglvtpfet_acc, Ig_off/(W) [A/m] vs L [m]

eglvtpfet_acc, Gd_c*L/W [s/sq] vs L [m]

eglvtpfet_acc, Gm_c*L/W [s/sq] vs L [m]

eglvtpfet_acc, Gain_c [] vs L [m]

eglvtpfet_acc, Cgd_0v/W [F/m] vs L [m]

eglvtpfet_acc, Cgg_inv/(L*W) [F/m2] vs L [m]

Scaling versus Width (L=0.15e-6,Temp=25)

dormieub

eglvtpfet_acc, Vt_lin [mV] vs W [m]

eglvtpfet_acc, Ilin/W [A/m] vs W [m]

eglvtpfet_acc, VtGmmax [mV] vs W [m]

eglvtpfet_acc, DIBL [mV] vs W [m]

eglvtpfet_acc, Vt_sat [mV] vs W [m]

eglvtpfet_acc, Isat/W [A/m] vs W [m]

eglvtpfet_acc, Ioffsat [A] vs W [m]

eglvtpfet_acc, LogIoff [A] vs W [m]

eglvtpfet_acc, Ig_on/(L*W) [A/m2] vs W [m]

eglvtpfet_acc, Ig_off/(W) [A/m] vs W [m]

eglvtpfet_acc, Gd_c/W [s/m] vs W [m]

eglvtpfet_acc, Gm_c/W [s/m] vs W [m]

eglvtpfet_acc, Gain_c [] vs W [m]

eglvtpfet_acc, Cgd_0v/W [F/m] vs W [m]

eglvtpfet_acc, Cgg_inv/(L*W) [F/m2] vs W [m]

Scaling versus Temp, L=0.15u, W=2u

dormieub

eglvtpfet_acc, Vt_lin [mV] vs Temp [degC]

eglvtpfet_acc, Ilin/W [A/m] vs Temp [degC]

eglvtpfet_acc, VtGmmax [mV] vs Temp [degC]

eglvtpfet_acc, DIBL [mV] vs Temp [degC]

eglvtpfet_acc, Vt_sat [mV] vs Temp [degC]

eglvtpfet_acc, Isat/W [A/m] vs Temp [degC]

eglvtpfet_acc, Ioffsat [A] vs Temp [degC]

eglvtpfet_acc, LogIoff [A] vs Temp [degC]

eglvtpfet_acc, Ig_on/(L*W) [A/m2] vs Temp [degC]

eglvtpfet_acc, Ig_off/(W) [A/m] vs Temp [degC]

eglvtpfet_acc, Gd_c/W [s/m] vs Temp [degC]

eglvtpfet_acc, Gm_c/W [s/m] vs Temp [degC]

eglvtpfet_acc, Gain_c [] vs Temp [degC]

eglvtpfet_acc, Cgd_0v/W [F/m] vs Temp [degC]

eglvtpfet_acc, Cgg_inv/(L*W) [F/m2] vs Temp [degC]

Scaling versus Temp, L=0.15u, W=2u

eglvtpfet_acc, Vt_lin [mV] vs Temp [degC]

eglvtpfet_acc, Ilin/W [%] vs Temp [degC]

eglvtpfet_acc, VtGmmax [mV] vs Temp [degC]

eglvtpfet_acc, DIBL [mV] vs Temp [degC]

eglvtpfet_acc, Vt_sat [mV] vs Temp [degC]

eglvtpfet_acc, Isat/W [%] vs Temp [degC]

eglvtpfet_acc, Ioffsat [%] vs Temp [degC]

eglvtpfet_acc, LogIoff [log(A)] vs Temp [degC]

eglvtpfet_acc, Ig_on/(L*W) [%] vs Temp [degC]

eglvtpfet_acc, Ig_off/(W) [A/m] vs Temp [degC]

eglvtpfet_acc, Gd_c/W [%] vs Temp [degC]

eglvtpfet_acc, Gm_c/W [%] vs Temp [degC]

eglvtpfet_acc, Gain_c [] vs Temp [degC]

eglvtpfet_acc, Cgd_0v/W [%] vs Temp [degC]

eglvtpfet_acc, Cgg_inv/(L*W) [%] vs Temp [degC]

Scaling versus Temp @ L=2u, W=2u

eglvtpfet_acc, Vt_lin [mV] vs Temp [degC]

eglvtpfet_acc, Ilin/W [A/m] vs Temp [degC]

eglvtpfet_acc, VtGmmax [mV] vs Temp [degC]

eglvtpfet_acc, DIBL [mV] vs Temp [degC]

eglvtpfet_acc, Vt_sat [mV] vs Temp [degC]

eglvtpfet_acc, Isat/W [A/m] vs Temp [degC]

eglvtpfet_acc, Ioffsat [A] vs Temp [degC]

eglvtpfet_acc, LogIoff [A] vs Temp [degC]

eglvtpfet_acc, Ig_on/(L*W) [A/m2] vs Temp [degC]

eglvtpfet_acc, Ig_off/(W) [A/m] vs Temp [degC]

eglvtpfet_acc, Gd_c/W [s/m] vs Temp [degC]

eglvtpfet_acc, Gm_c/W [s/m] vs Temp [degC]

eglvtpfet_acc, Gain_c [] vs Temp [degC]

eglvtpfet_acc, Cgd_0v/W [F/m] vs Temp [degC]

l==2e-6 and w==2e-6 and devType=="PCELLwoWPE"

Temp [degC]

eglvtpfet_acc, Cgg_inv/(L*W) [F/m2] vs Temp [degC]

Normalized scaling versus Temp @ L=2u, W=2u

dormieub

eglvtpfet_acc, Vt_lin [mV] vs Temp [degC]

eglvtpfet_acc, Ilin/W [%] vs Temp [degC]

eglvtpfet_acc, VtGmmax [mV] vs Temp [degC]

eglvtpfet_acc, DIBL [mV] vs Temp [degC]

eglvtpfet_acc, Vt_sat [mV] vs Temp [degC]

eglvtpfet_acc, Isat/W [%] vs Temp [degC]

eglvtpfet_acc, Ioffsat [%] vs Temp [degC]

eglvtpfet_acc, LogIoff [log(A)] vs Temp [degC]

eglvtpfet_acc, Ig_on/(L*W) [%] vs Temp [degC]

eglvtpfet_acc, Ig_off/(W) [A/m] vs Temp [degC]

eglvtpfet_acc, Gd_c/W [%] vs Temp [degC]

eglvtpfet_acc, Gm_c/W [%] vs Temp [degC]

eglvtpfet_acc, Gain_c [] vs Temp [degC]

eglvtpfet_acc, Cgd_0v/W [%] vs Temp [degC]

eglvtpfet_acc, Cgg_inv/(L*W) [%] vs Temp [degC]

Annex

Conditions of simulations

The simulations were done with SBenchLSF Alpha using Eldo simulator 2018.2.

- Model eglvtnfet_acc (LVT)
 - ✓ Input Parameters
 - **x** vds_off = vds_sat V
 - \times vds_cgd = 0 V
 - \times vds_cgg = 0 V
 - \times mc_sens = 0
 - \times vds lin = 0.05 V
 - \times ivt = 300e-9 A
 - **✗** model_version = 1.2.d
 - **x** ams_release = 2018.2
 - \times vgs_stop = vdd V
 - **✗** dlshrink_ivt = 0
 - **✗** sbenchlsf_release = Alpha
 - \times vds_sat = Vdd V
 - **x** mc_nsigma = 3
 - **x** shrink_ivt = 1

Sep 27, 2018

- **✗** dlshrink_tinv = 0
- \times vgs_start = -0.5 V
- **x** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- \times vds_cbd = 0 V
- \mathbf{x} vddmax = vdd
- \times voffset = 0.2 V
- \times mc runs = 1000
- \mathbf{X} vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- \star f_ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1.8 V
- \star shrink_tinv = 0.9
- X vds_gmgd = Vdd/2 V
- ✓ Sweep Parameters
 - **x** temp = -40.0, 0.0, 25.0, 85.0, 125.0
- ✓ Extra parameters
 - \mathbf{x} eglvt_dev = 0
 - **✗** gflag_noisedev_eglvt_cmos028fdsoi = 0
- Model eglvtpfet_acc (LVT)
 - ✓ Input Parameters
 - **x** vds_off = vds_sat V
 - \times vds_cgd = 0 V

- \times vds_cgg = 0 V
- \mathbf{x} mc sens = 0
- \times vds_lin = 0.05 V
- **x** ivt = 70e-9 A
- **✗** model_version = 1.2.d
- **x** ams_release = 2018.2
- \times vgs_stop = vdd V
- **✗** dlshrink_ivt = 0
- **x** sbenchlsf_release = Alpha
- \times vds_sat = Vdd V
- **x** mc_nsigma = 3
- **x** shrink_ivt = 1
- **✗** dlshrink_tinv = 0
- \times vgs_start = -0.5 V
- **x** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- \times vds_cbd = 0 V
- \mathbf{x} vddmax = vdd
- \times voffset = 0.2 V
- **x** mc_runs = 1000
- \mathbf{X} vstep_ivt = 0.005 V
- \times vgs_off = 0 V
- \times temp = 25 °C
- \mathbf{X} f ext = 100k Hz
- **x** vbs = 1.8 V

- \times vdd = 1.8 V
- \star shrink tinv = 0.9
- \times vds_gmgd = Vdd/2 V
- ✓ Sweep Parameters
 - **x** temp = -40.0, 0.0, 25.0, 85.0, 125.0
- ✓ Extra parameters
 - \mathbf{x} eglvt_dev = 0
 - **✗** gflag_noisedev_eglvt_cmos028fdsoi = 0
- Model egnfet_acc (RVT)
 - ✓ Input Parameters
 - **x** vds_off = vds_sat V
 - \times vds_cgd = 0 V
 - \times vds_cgg = 0 V
 - \times mc_sens = 0
 - \times vds lin = 0.05 V
 - \times ivt = 300e-9 A
 - **✗** model_version = 1.2.c
 - \mathbf{x} ams_release = 2018.3
 - x vgs_stop = vdd V
 - **✗** dlshrink_ivt = 0
 - **x** sbenchlsf_release = Alpha
 - \times vds_sat = Vdd V
 - **x** mc_nsigma = 3
 - **✗** shrink_ivt = 1
 - **✗** dlshrink_tinv = 0

- \times vgs_start = -0.5 V
- **x** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- \times vds_cbd = 0 V
- \mathbf{X} vddmax = vdd
- \times voffset = 0.2 V
- \times mc runs = 1000
- \mathbf{X} vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- **x** temp = $25 \, ^{\circ}$ C
- \star f_ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1.8 V
- \star shrink_tinv = 0.9
- \times vds_gmgd = Vdd/2 V
- ✓ Sweep Parameters
 - \times temp = -40.0, 0.0, 25.0, 85.0, 125.0
- ✓ Extra parameters
 - \angle eg_dev = 0
 - \mathbf{x} eglvt_dev = 0
 - **✗** gflag_noisedev_eg_cmos028fdsoi = 0
 - **✗** gflag__noisedev__eglvt__cmos028fdsoi = 0
- Model egpfet_acc (RVT)
 - ✓ Input Parameters
 - **x** vds_off = vds_sat V

- \times vds_cgd = 0 V
- \times vds_cgg = 0 V
- \mathbf{x} mc sens = 0
- \times vds_lin = 0.05 V
- **X** ivt = 70e-9 A
- **✗** model_version = 1.2.c
- \mathbf{x} ams_release = 2018.3
- \mathbf{x} vgs_stop = vdd V
- **✗** dlshrink_ivt = 0
- **x** sbenchlsf_release = Alpha
- \times vds sat = Vdd V
- **x** mc_nsigma = 3
- **x** shrink_ivt = 1
- **✗** dlshrink_tinv = 0
- \times vgs_start = -0.5 V
- **✗** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- \times vds_cbd = 0 V
- \mathbf{X} vddmax = vdd
- \times voffset = 0.2 V
- **x** mc_runs = 1000
- \times vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- \star f_ext = 100k Hz

- \mathbf{x} vbs = 0 V
- \times vdd = 1.8 V
- \star shrink_tinv = 0.9
- \times vds_gmgd = Vdd/2 V
- ✓ Sweep Parameters
 - **x** temp = -40.0, 0.0, 25.0, 85.0, 125.0
- ✓ Extra parameters
 - \mathbf{x} eg_dev = 0
 - \mathbf{x} eglvt_dev = 0
 - **✗** gflag_noisedev_eg_cmos028fdsoi = 0
 - **✗** gflag__noisedev__eglvt__cmos028fdsoi = 0