Exercice 1 - (Séries numériques)

Soit (u_n) une série de réels positifs et (v_n) la suite telle que $v_n = u_{2n} + u_{2n+1}$.

- 1. Montrer que si $\sum u_n$ converge, alors $\sum \sqrt{u_n u_{n+1}}$ converge.
- 2. Montrer que $\sum u_n$ converge ssi $\sum v_n$ converge.

Exercice 2 – (Convergence de la série d'une suite récurrente)

Soit u la suite définie par $u_0 \in]0, \frac{\pi}{2}]$ et $\forall n \in \mathbb{N}, u_{n+1} = sin(u_n)$.

- 1. Etudier la convergence.
- 2. Déterminer un réel α tel que la suite $v_n = u_{n+1}^{\alpha} u_n^{\alpha}$ ait une limite réelle non nulle.
- 3. Trouver un équivalent de u_n . En déduire la nature de la STG u_n .

Exercice 3 - (Limite d'une suite)

Soit a>0 et (u_n) une suite décroissante de réels positifs. On suppose que la série $\sum n^{\alpha}u_n$ converge.

Montrer que $\lim_{n\to\infty} n^{\alpha+1} u_n = 0$.

Exercice 4 - (Convergences de séries)

- 1. Nature de $\sum_{n>1} \frac{(-1)^n \sqrt{n}}{n + (-1)^n \sqrt{n}}$
- 2. Nature de $\sum_{n>1} \frac{(-1)^n \sin(n)}{n + (-1)^n \sin(n)}$.

Exercice 5 - (Limite)

Déterminer $\lim_{a \to \infty} \sum_{n > 1} \frac{a}{n^2 + a^2}$.

Exercice 6 - (Produits)

1. Etudier la série de terme général $v_n = \prod_{q=2}^n \left(1 + \frac{(-1)^q}{\sqrt{q}}\right)$.

Soit $u_n = \frac{(-1)^n}{\sqrt{n+1}}$.

- 2. Vérifier la semi-convergence de la série $\sum u_n$.
- 3. Montrer que $(\sum u_n)^2$ ne converge pas.
- 4. Soit $\sigma: \mathbb{N} \to \overline{\mathbb{N}}$ telle que $\sigma(3p) = 2p, \sigma(3p+1) = 4p+1, \sigma(3p+2) = 4p+3$. On admet que σ est une permutation de \mathbb{N} . Que dire de $\sum_{n\geq 0} u_{\sigma(n)}$?

Exercice 7 - (Comparaison)

Soit
$$n \in \mathbb{N}^*$$
, $I_n = \int_0^{\frac{\pi}{2}} \cos^n(t) dt$.

- 1. Déterminer un équivalent de I_n .
- 2. Nature de la série de terme général $(I_n)^{\alpha}$, pour $\alpha \in \mathbb{R}$.

Exercice 8 - (Intégrale par éclatement)

Soit $\alpha > 0$. Etudier la convergence de $\int_1^\infty \ln \left(1 + \frac{\sin(t)}{t^\alpha}\right) \, \mathrm{d}t$.

Exercice 9 - (Une transformée)

Soit
$$n \in \mathbb{N}^*$$
, $I_n = \int_0^\infty \frac{e^{-nt} ln(t)}{\sqrt{t}} dt$.

- 1. Etudier la convergence de I_n .
- 2. Déterminer la limite de I_n .
- 3. Déterminer un équivalent de I_n .

Exercice 10 - (Intégrabilité)

- 1. Soit $a \in \mathbb{R}$ et f une application continue de $[a, +\infty[$ dans \mathbb{R} , intégrable sur $[a, +\infty[$. Si f admet une limite en $+\infty$, que vaut-elle?
- 2. Soit f de $[0, +\infty[$ dans $[0, +\infty[$ de classe C^1 telle qu'il existe a < 0 satisfaisant $\lim_{x \to +\infty} \frac{f'(x)}{f(x)} = a$. Montrer que f et f' sont intégrables sur $[0, +\infty[$.

Questions de cours

- Enoncer les résultats sur les séries de Bertrand et démontrer le cas $\alpha > 1$.
- Montrer que $x \mapsto \frac{\sin(x)}{x} \notin L^1(\mathbb{R}^{+*})$ mais que $\int_0^\infty \frac{\sin(x)}{x}$ converge.
- Ensemble de définition de Γ , puis $\Gamma(n)$. Déterminer $\Gamma(\frac{1}{2})$ par le calcul.