

YC31xx FLASH 接口说明

V1.4

Yichip Microelectronics ©2014

Revision History

Version	Date	Author	Description
V1.0	2020-2-19	Dengzhiqian	Initial version
V1.1	2020-04-11	Kiwen	增加接口
V1.2	2020-04-28	Kiwen	明确部分函数参数限制
V1.3	2020-05-11	Kiwen	修正 flash_blank_check 函数返回值描述
V1.4	2021-11-05	Kiwen	添加注意事项

Confidentiality Level:

confidential

目录

1	文档说明	4
	1.1 编写目的	4
	1.2 适用范围	
	1.3 文件说明	
	1.4 名词解释	
	1.5 库使用注意事项	
2	接口说明	
	2.1 qspi flash sectorerase	
	2.2 qspi flash blockerase32k	
	2.3 qspi flash write	
	2.4 qspi flash read	6
	2.5 enc erase flash 32byte	
	2.6 enc_erase_flash_32k	
	2.7 enc_earse_flash_app_area	
	2.8 enc_write_flash	
	2.9 enc_read_flash	7
	2.10 flash_blank_check	8
	2.11 prefetch	
	2.12 app enable download	8
	2.13 app_clear_disable_download_flag	9
	2.14 enc write flash bulk init	
	2.15 enc_write_flash_bulk	9
3		
	3.1 示例代码	10
4 I	FLASH 应用分区说明	11
	4.1 FLASH 加密说明	11
	4.2 FLASH 应用分区参考	
	4.3 FLASH 接口使用说明	12

1 文档说明

1.1 编写目的

为使用 FLASH API 接口函数、相关 demo 及 FLASH 应用分区提供指南

1.2 适用范围

31xx 系列芯片

1.3 文件说明

Demo 路径为: ModuleDemo\QSPI

库文件路径为: Librarier\sdk

yc_qspi.h: FLASH 加密及非加密操作库函数头文件

yc_qspi.lib: FLASH 加密及非加密操作函数 keil 环境库文件 libyc_qspi.a: FLASH 加密及非加密操作函数 gcc 环境库文件 yc_encflash_bulk.h: FLASH 大块(bulk)加密写库函数头文件

yc_encflash_bulk.lib: FLASH 大块(bulk)加密写函数 keil 环境库文件 libyc_encflash_bulk.a: FLASH 大块(bulk)加密写函数 gcc 环境库文件

1.4名词解释

Flash 物理地址:内部 flash 物理存储地址,地址参数要求物理地址的函数为明文操作函数 CPU 地址: CPU 访问 flash 的映射地址,地址参数要求 CPU 地址的函数为加密操作函数

- A、因加密关系, 物理地址与 CPU 地址不是——对应关系, 即 CPU 地址 0x1008000 不对应物理地址 0x8000.
 - B、加密算法中有乱序规则, 乱序单元为 CPU 地址 32k, 所以分配加密区域时大小必须为 32k 整数倍

1.5库使用注意事项

yc_qspi.lib 库对 RAM 有要求, 0x245fc-0x24974(888byte)这段 RAM 地址不能给 yc_qspi.lib 库作为 buf 使用, 包括 buf 传参及库里面申明局部 buf, 所以:

A、当工程中<mark>只用到了 yc_qspi.lib 且没有使用 yc_encflash_bulk.lib</mark> 时需要修改 yc_uart.c 的 UART DMA 申明,将其中一个 DMA BUF 指定到以上区域,具体代码如下:

```
#define uart_DMA_buf_len 1024
uint8_t uart0_DMA_buf[uart_DMA_buf_len] __attribute__((at(0x000245fc))) = {0};//keil
uint8_t uart0_DMA_buf[uart_DMA_buf_len] __attribute__((section(".ARM.__at_0x0000245fc"))) = {0};//gcc
```

注意: gcc 工程还需在链接脚本中做处理才能将 buf 链接到指定地址

B、当工程中同时用到 yc qspi.lib 和 yc encflash bulk.lib 或者都没有使用这两个 lib 则不用做以上处理

2 接口说明

2.1 qspi_flash_sectorerase

函数原型: uint8 t qspi flash sectorerase(uint32 t flash addr);

说明: qspi flash 4k 扇区擦除函数。

参数	方向	说明
uint32_t flash_addr	IN	待擦除的地址(flash 物理地址 4k 对齐)

返回值		说明
uint8_t	1: SUCCESS	
	0: ERROR	

2.2qspi_flash_blockerase32k

函数原型: uint8_t qspi_flash_sectorerase(uint32_t flash_addr);

说明: qspi flash 32k 块擦除函数。

参数	方向	说明	
uint32_t flash_addr	IN	待擦除的地址(flash 物理地址 32k 对齐)	Ì

返回值	说明
uint8_t	1: SUCCESS
	0: ERROR

2.3qspi_flash_write

函数原型: uint8_t qspi_flash_write(uint32_t flash_addr, uint8_t *buf, uint32_t len);

说明: qspi flash 非加密写函数.

参数	方向	说明
uint32_t flash_addr	IN	待写入的地址(flash 物理地址)
uint8_t *buf	IN	待写入的数据
uint32_t len	IN	待写入的长度

返回值	说明
uint8_t	1: SUCCESS
	0: ERROR

qspi flash write 函数页对齐说明:

如上图,绿色图示的两种写 flash 方式是允许的,红色图示的方式不允许,即起始地址不是页(256bytes)的 首地址时不允许跨页写。

2.4qspi_flash_read

函数原型: uint8 t qspi flash write(uint32 t flash addr, uint8 t *buf, uint32 t len);

说明: qspi flash 非加密读函数。

参数	方向	说明
uint32_t flash_addr	IN	待读取的地址(flash 物理地址)
uint8_t *buf	OUT	读取数据数据存入的首地址
uint32_t len	IN	待读取的长度

返回值	说明
uint8_t	1: SUCCESS 0: ERROR

2.5 enc_erase_flash_32byte

函数原型: void enc_erase_flash_32byte(uint32_t flash_addr);

说明: qspi flash 加密擦除 32 字节函数,用于少量数据区域擦除,列如改写带加密的参数区

	参数	方向	说明
uint32	_t flash_addr	IN	待擦除地址,基于 CPU 地址 32 字节对齐

返回值	说明		
None	None		

2.6enc erase flash 32k

函数原型: void enc_erase_flash_32k(uint32_t flash_addr)

说明: qspi flash 加密擦除 32k 函数。

As also		==
发 粉	古白	
少	ノノリロ	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

uint32 t flash addr	IN	待擦除地址, 基于 CPU 地址 32k 对齐

返回值	说明		
None	None		

2.7 enc_earse_flash_app_area

函数原型: uint8 t enc earse flash app area(uint32 t addr,uint32 t len);

说明: qspi flash code 区擦除函数,用于擦除连续加密区域,列如升级固件前擦除原固件

参数	方向	说明
uint32_t addr	IN	待擦除地址,基于 CPU 地址 32k 对齐
uint32_t len	IN	

返回值	说明
None	None

2.8enc_write_flash

函数原型: void enc_write_flash (uint32_t flash_addr, uint8_t *buf, uint32_t len);

说明: qspi flash 加密写函数,同一个 32 byte 区域,擦除之后只能写一次,如果 32 byte 都要写满,则需要一次性写入。

参数	方向	说明
uint32_t flash_addr	IN	待写入地址,基于 CPU 地址 32 字节对齐
uint8_t *buf	IN	待写入数据
uint32_t len	IN	待写入长度(必须为 32 的整数倍)

返回值	说明
None	None

2.9enc_read_flash

函数原型: void enc_read_flash(uint32_t flash_addr, uint8_t *buf, uint32_t len);

说明: qspi flash 加密读函数。

参数	方向	说明
uint32_t flash_addr	IN	待读取地址(CPU 地址)
uint8_t *buf	OUT	读取数据存入的首地址
uint32_t len	IN	待读取数据长度

返回值	说明
None	None

2.10flash_blank_check

函数原型: Boolean flash blank check(uint32 t startaddr,uint32 t len);

说明: 检测 qspi flash 指定区域数据是否符合加密规则,在通过总线直接访问 flash 数据前,需要对访问的区域进行检测,否则可能触发硬件错误。enc_read_flash 已集成此操作,可直接使用。

参数	方向	说明
uint32_t startaddr	IN	待检测的起始地址(CPU 地址)
uint32_t len	IN	检测长度

返回值	说明
Boolean	返回 TRUE 表示此区域为空,即此区域为无效数据,返回 FALSE
	则此区域为有效数据,可进行加密读操作或通过总线直接访问

2.11 prefetch

函数原型: void prefetch(void *start addr, void *end addr)

说明:将 qspi flash 指定区域的数据更新到 cache,在通过总线直接访问 flash 数据前,需要用此函数刷新 cache。enc_read_flash已集成此操作,可直接使用。

参数	方向	说明
void *start_addr	IN	起始地址(CPU 地址)
void *end_addr	IN	结束地址(CPU 地址)

返回值	说明
None	None

2.12app_enable_download

函数原型: void app_enable_download();

说明:清除应用信息头,清除后复位即进入 ccid boot 下载

参数	说明
None	None

返回值	说明
None	None

2.13app_clear_disable_download_flag

函数原型: void app_clear_disable_download_flag();

说明:清除禁用下载标记位,清除后复位需要 gpio1(uart0 tx)接地才会进入 ccid boot 下载

参数	说明
None	None

返回值	ì	兑明
None	None	

2.14enc_write_flash_bulk_init

函数原型: void enc_write_flash_bulk_init();

说明:加密 bulk 写初始化函数,函数在 yc_encflash_bulk 库中。

参数	说明
None	None

返回值	说明
None	None

2.15enc_write_flash_bulk

函数原型: void enc_write_flash_bulk(uint32_t flash_addr, uint8_t *buf, uint32_t len,uint8_t isend);

说明: qspi flash 大块(bulk)加密写函数, bulk 加密写方式能大幅提升速度, 为 BOOT 升级应用专用, 同时此方式会分配 36k RAM 作为加密缓冲 buf, 满 32k 或结束(isend==1)进行写入, 在应用中对少量数据(32k 以下)的加密写建议使用 enc write flash 函数, enc_write_flash_bulk 函数在 yc_encflash_bulk 库中。

注意: 1、整个下载过程只需调用一次 enc_write_flash_bulk_init()

2、enc_write_flash_bulk_init()之后第一次使用 enc_write_flash_bulk 时,起始地址必须为 MCU 地址的 32k 对齐地址

参数	方向	说明
uint32_t flash_addr	IN	待写入地址,基于 CPU 地址 32 字节对齐
uint8_t *buf	IN	待写入数据
uint32_t len	IN	待写入长度(非最后一包时,长度必须为32的整数倍)

uint8 t isend	IN	传入升级过程最后一包数据时为1. 其余情况为0
unito tischu	III	14八八级是住取山 已数加时为1,天示用几为4

返回值	说明
None	None

3 示例代码及说明

示例代码存放在 ModuleDemo\QSPI 目录下(如下图)

> ModuleDemo > QSPI
名称

O QSPI encrypt rw

① QSPI_encrypt_rw: QSPI 加密读写示例

3.1 示例代码

```
int main(void)
{
    UART_Configuration(); // 串口初始化,初始化配置参考 UART 应用说明
    MyPrintf("YC3121 QSPI Encrypt read write Demo!\n\n");
    test_enc_write_flash_32byte(0x1020000); // 加密写 32byte 数据
    test_enc_write_flash_32K(0x1030000); // 加密写 32k 数据

    MyPrintf("TEST END!\r\n");
    while (1)
    {
        uint8_t wbuf[32] = {0};
        Boolean isblank = FALSE;
        // check flash is blank
        isblank = flash_blank_check(base_addr&0xfffffff, (base_addr+0x20)&0xfffffff);
```



```
MyPrintf("\r\nflash blank check(%x~%x)= %d", base_addr, base_addr + 0x20, isblank);
enc_erase_flash_32byte(base_addr); // 擦除起始地均 base_addr 的 32byte 数据

for (int i = 0; i < 32; i++)
{
    wbuf[i] = i;
}
printv(wbuf, 32, "wbuf:");
enc_write_flash(base_addr,wbuf,32); // 加密写
prefetch((volatile uint32_t *)base_addr, (volatile uint32_t *)(base_addr+32)); // 更新 cache 数据

//read new data
printv((volatile uint8_t*)(base_addr), 32, "base_addr NEW data:");
for (int i = 0; i < 32; i++)
{
    if(wbuf[i] != *(volatile uint8_t*)(base_addr+i))
    {
        MyPrintf("Error wbuf[%d] = %x\r\n", i, *(volatile uint8_t*)(base_addr+i));
    }
}
```

4 FLASH 应用分区说明

}

4.1FLASH 加密说明

YC31xx 系列芯片提供 flash 数据加密及不加密两种操作方式。因为 CPU 取指令执行时是带解密操作的,所以 code 区的数据必须使用加密写入,参数区则可以加密也可以不加密。

- 加密最小单元为 32byte: CPU 地址 0x1000000-0x100001f 为 flash 第一个 32byte 单元, 往后依此 类推。加密写入时, 同一个 32 byte 区域, 擦除之后只能写一次, 如果 32 byte 都要写满, 则需要 一次性写入。
- 加密数据以 32byte 为一个单元在 32k 区域内乱序存放: 乱序规则在每次使用 ROM 自带的串口下载接口更新固件时更新一次,CPU 地址 0x1000000-0x1007fff 为 flash 第一个 32k 单元,往后依此类推

4.2FLASH 应用分区参考

基于 4.1 所述特性, flash 中的应用分区应跟 CPU 地址 32k 对齐, 即起始地址和大小是 32k 整数倍, 下面是基于 512kflash 的分区参考:

● 0x1000000-0x1007fff:二次 BOOT(32k), CPU 地址, 由 ROM BOOT 加密方式写入

- 0x1010000-0x1067fff:应用区(352k), CPU 地址,由二次 BOOT 加密方式写入,因相连的两个 32kCPU 地址交界处,对于 flash 物理地址不是 4k 对齐的,因此建议 app 与 boot 之间预留 32k CPU 地址空间,避免 boot 升级 app 时出现正在擦除 app 与 boot 连接处,还没来得及写回 boot 尾部数据情况下设备掉电.导致 boot 损坏。
- 0x1076000-0x107ffff:参数区(40k), 物理地址,由应用通过不加密方式读写,建议参数区放在 boot 及 app 等 code 区之后,参数区的起始地址(物理地址)基于 app 区的结束地址换算,列如 app 区域起始地址为 0x1010000, app 区域大小为 352k,则 app 区结束地址(app_end_addr)=0x1010000+352*1024=0x1068000,则参数区物理地址(param start addr)换算如下:

公式说明:

app_end_addr&0xffffff : 去掉最高位 1

((app_end_addr&0xffffff)+(0x8000-1))/0x8000 : 32k 对齐

*0x9000 : 每 32k CPU 地址空间占用 36k 物理空间

+0x1000 : flash 头部内部使用区域

|0x1000000 : 恢复最高位 1

4.3FLASH 接口使用说明

BOOT 下载及升级应用时,属于大块(bulk)连续操作,推荐使用以下接口函数:

擦除函数: enc_earse_flash_app_area, 连续大块擦除, 此函数效率较高

写入函数: enc_write_flash_bulk, bulk 加密写函数, 需先使用 enc_write_flash_bulk_init 函数初始化

读取函数: enc read flash

应用中对加密参数区的操作,使用以下接口函数:

擦除函数: enc erase flash 32byte

写入函数: enc_write_flash 读取函数: enc read flash

应用中对非加密参数区的操作,使用以下接口函数:

擦除函数: qspi flash sectorerase、qspi flash blockerase32k

写入函数: qspi_flash_write 读取函数: qspi_flash read