

3D geometry
Cross product
Polyloop subdivisions in 3D

- FourPoint
- Cubic Bspline
- Quadratic Bspline
- Quintic Bpline

Acceleration and gravity
Physically plausible motion
Skater on 3D curve

P4 Cloud Skater: Individual

Overall objective

Interactive animation system that animates an articulated character running on a curve and leaning to balance the momentum of acceleration forces and gravity forces.

Learning objectives

Read research paper on subdivision curves

Implement several simple polyloop subdivision schemes

Compute acceleration

Understand stationary physics

Practice 3D geometry constructions (cross-product...)

Produce physically plausible animation of skater

Module 1 (20 pts): Curve subdivision in 3D

Read/understand paper on J-Splines

Implement common subdivision schemes:

- Quadratic B-spline
- FourPoint
- Cubic B-spline
- Quintic B-spline

Show curve using a tube

Extra credit:

- Interactive editing
- Retrofitting (see paper)

Module 2 (20 pts): Offset vectors and path

For each point C_i of subdivided curve C display $V_i = G - C_i$ C_i = acceleration at C_i , G = constant gravity vector

Display arrows(Fi,Ci) and curve F using $F_i = C_i + aG - bC_i$ " Select coefficients a and b (b depends on subdivision level)

Animate red arrow of **constant length** from F_i towards C_i

Module 3: Skate Border

Show simple skate border sliding along the curve with bend knees with body center at the tip of the arrow (of module 2) and with feet at B_{i-k} and B_{i+k} Pick k and lengths of the leg limbs to ensure reach

Extra credit: Cloud Runner

Replace skater with runner:

Increment i at each frame to animate C_i

Facing the tangent C_i' at C_i

Keep body axis parallel to B_iC_i

Use 2 hips and 2 legs (hip, knee, ankle)

Keeping hip-knee and knee-ankle distances constant

Move free foot (as in Project 3 or some plausible manner)

Pick foot steps B_i carefully so that the runner can AIM,

TRANSFER, COLLECT without lifting the feet from curve B

Animate the runner

Deliverables: Due Dec 1 before class

Zip of source code (make sure that your name and face appear on the canvas)

Video (less than 2 mns) with:

Usual header (CS3451, 2016, student name, P4: Cloud Runner)

Segment titles ("Module 1: Curve subdivision"..., "Extra credit: XXX")

One short (up to ~15 secs) segment per module

Additional segments for each extra credit module

Grading: out of 40

Each one of the 3 modules is worth **10** points Extra credit can bring you a **maximum** of **40 additional** points For example:

Retrofitting a quintic B-spline: up to 10 points

Automatic resampling so that the runner accelerates progressively downhill and slows down uphill: up to 10 points

Cloud Runner: up to 15 points

Sinusoidal up&down motion along B_iC_i: up to 5 points

Jump between foot prints: up to 10 points

Moving arms in synch with runner's feet: up to 5 points