Project Development Phase Model Performance Test

Date	21 November 2022	
Team ID	PNT2022TMID49459	
Project Name	Efficient Water Quality Analysis and prediction using Machine learning	
Maximum Marks	10 Marks	

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Model Summary	Total params: 3279 rows,16 columns Trainable params: 3279 rows,16 columns Non-trainable params: 0	0.575 (0.029) with: {'criterion': 'entropy', 'min_samples_split': 2, 'splitter': 'best'} 0.573 (0.029) with: {'criterion': 'entropy', 'min_samples_split': 2, 'splitter': 'best'} 0.575 (0.039) with: {'criterion': 'entropy', 'min_samples_split': 4, 'splitter': 'best'} 0.571 (0.032) with: {'criterion': 'entropy', 'min_samples_split': 6, 'splitter': 'random'} 0.577 (0.028) with: {'criterion': 'entropy', 'min_samples_split': 6, 'splitter': 'best'} 0.578 (0.028) with: {'criterion': 'entropy', 'min_samples_split': 6, 'splitter': 'random'} 0.574 (0.029) with: {'criterion': 'entropy', 'min_samples_split': 6, 'splitter': 'best'} 0.580 (0.029) with: {'criterion': 'entropy', 'min_samples_split': 10, 'splitter': 'best'} 0.580 (0.029) with: {'criterion': 'entropy', 'min_samples_split': 12, 'splitter': 'best'} 0.580 (0.026) with: {'criterion': 'entropy', 'min_samples_split': 12, 'splitter': 'best'} 0.580 (0.029) with: {'criterion': 'entropy', 'min_samples_split': 12, 'splitter': 'best'} 0.580 (0.029) with: {'criterion': 'entropy', 'min_samples_split': 12, 'splitter': 'best'} 0.580 (0.030) with: {'criterion': 'entropy', 'min_samples_split': 14, 'splitter': 'best'} 0.580 (0.030) with: {'criterion': 'entropy', 'min_samples_split': 14, 'splitter': 'random'} 0.576 (0.030) with: {'criterion': 'entropy', 'min_samples_split': 14, 'splitter': 'random'} 0.576 (0.030) with: {'criterion': 'entropy', 'min_samples_split': 14, 'splitter': 'random'} 0.576 (0.030) with: {'criterion': 'entropy', 'min_samples_split': 14, 'splitter': 'random'} 0.576 (0.030) with: {'criterion': 'entropy', 'min_samples_split': 14, 'splitter': 'random'} 0.576 (0.030) with: {'criterion': 'entropy', 'min_samples_split': 14, 'splitter': 'random'}
2.	Accuracy	Training Accuracy – 12.68	In [28]: prediction.dt.predict(X_test) print(f*Ecumacy_score = (accumacy_score(Y_test, prediction)*180)*) print(f*Confusion Matrix = vn (confusion matrix(Y_test, prediction)*)*) print(f*Confusion Matrix = vn (confusion matrix(Y_test, prediction)*)*) print(f*Classification Report(Y_test, prediction report(Y_test, predict
		Validation Accuracy – 13.07	Accuracy Score = 56.859756997569975 Confusion Natrix = [[724 128] [155 99]] Classification Report =

Model Summary

```
0.575 (0.029) with: {'criterion': 'entropy', 'min_samples_split': 2, 'splitter': 'best'}
0.573 (0.024) with: {'criterion': 'entropy', 'min_samples_split': 2, 'splitter': 'random'}
0.575 (0.034) with: {'criterion': 'entropy', 'min_samples_split': 4, 'splitter': 'best'}
0.571 (0.032) with: {'criterion': 'entropy', 'min_samples_split': 4, 'splitter': 'random'}
0.577 (0.034) with: {'criterion': 'entropy', 'min_samples_split': 6, 'splitter': 'best'}
0.578 (0.028) with: {'criterion': 'entropy', 'min_samples_split': 6, 'splitter': 'random'}
0.574 (0.033) with: {'criterion': 'entropy', 'min_samples_split': 8, 'splitter': 'best'}
0.578 (0.023) with: {'criterion': 'entropy', 'min_samples_split': 8, 'splitter': 'random'}
0.580 (0.029) with: {'criterion': 'entropy', 'min_samples_split': 10, 'splitter': 'best'}
0.582 (0.026) with: {'criterion': 'entropy', 'min_samples_split': 10, 'splitter': 'random'}
0.576 (0.028) with: {'criterion': 'entropy', 'min_samples_split': 12, 'splitter': 'best'}
0.584 (0.026) with: {'criterion': 'entropy', 'min_samples_split': 12, 'splitter': 'random'}
0.576 (0.024) with: {'criterion': 'entropy', 'min_samples_split': 14, 'splitter': 'random'}
0.585 (0.036) with: {'criterion': 'entropy', 'min_samples_split': 14, 'splitter': 'random'}
0.585 (0.036) with: {'criterion': 'entropy', 'min_samples_split': 14, 'splitter': 'random'}
0.585 (0.036) with: {'criterion': 'entropy', 'min_samples_split': 14, 'splitter': 'random'}
0.585 (0.036) with: {'criterion': 'entropy', 'min_samples_split': 14, 'splitter': 'random'}
0.585 (0.036) with: {'criterion': 'entropy', 'min_samples_split': 14, 'splitter': 'random'}
0.585 (0.036) with: {'criterion': 'entropy', 'min_samples_split': 14, 'splitter': 'random'}
```

Accuracy

```
In [28]: prediction=dt.predict(X_test)
             print(f"Accuracy Score = {accuracy_score(Y_test,prediction)*100}")
print(f"Confusion Matrix =\n {confusion_matrix(Y_test,prediction)}")
print(f"Classification Report =\n {classification_report(Y_test,predict
              Accuracy Score = 56.859756097560975
              Confusion Matrix =
               [[274 128]
[155 99]]
              Classification Report =
                                   precision
                                                      recall f1-score
                              0
                                         0.64
                                                       0.68
                                                                       0.66
                                                                                       402
                                         0.44
                                                       0.39
                                                                      0.41
                                                                                       254
                                                                       0.57
                                                                                       656
                    accuracy
                                        0.54
                                                      0.54
                                                                      0.54
                                                                                       656
                  macro avg
```