자동 철판 결함 분류를 위한 딥러닝 모델 개발 및 모니터링 프로그램 개발

김유진 김지훈 문정민

목차

01

연구 개요

02

자동 결함 분류 학습 모델 03

자동 모니터링 프로그램 04

결론 및 향후 연구 방향

<u>01</u> 연구 개요

연구 배경

- 철판 관련 산업 부상 -> 고품질 철판에 대한 수요 상승
- 철판 제조 과정에서 결함은 필연적, 일부 결함 발생시 철판 품질에 치명적인 영향
- 현재 철판 검사 수동으로 진행 -> 시간 및 비용적인 측면에서 매우 비효율적
- 모니터링 프로그램을 통하여 결함을 조기 감지하고 결함 검출을 자동화함으로써 운영 효율성 향상

연구 목적

1. 자동 결함 분류 학습 모델 개발

2. 자동 모니터링 프로그램 개발

1. 딥러닝 모델을 활용하여 철판 코일 이미지에 존재하는 결함들을 자동으로 분류하는 학습 모델 개발 2. 결함 종류의 분포와 철판 코일에 존재하는 결함들을 간편하게 모니터링 할 수 있는 프로그램 개발

연구 개요

<u>02</u>

자동 결함 분류 학습 모델

데이터셋

- Kaggle Severstal: Steel Defect Detection
- 약 13,000개의 학습용 이미지, 약 5,000개의 테스트용 이미지, 모델 학습을 위한 csv 파일로 구성
- 각 철판 표면 이미지들에는 결함이 존재할 수 있으며, 결함들은 Pitted, Inclusion, Scratches, Patches로 총 4가지가 존재함

데이터셋

train.csv

1	Imageld	ClassId	EncodedPixels	
2	0002cc93b	1	29102 12 29346 24 29	9602 24 29
3	0007a71bf	3	18661 28 18863 82 19	9091 110 1
4	000a4bcdd	1	37607 3 37858 8 3810	08 14 3835
5	000f6bf48	4	131973 1 132228 4 13	32483 6 13

- 각 철판 표면 이미지는 1600 x 256 크기를 가지는 jpg
- train.csv 파일은 ImageId, ClassId, EncodedPixels의 3가지 값을 가지는 7,096 개의 엔트리로 구성
- train.csv 파일의 EncodedPixels 값으로부터 결함 위치를 나타내는 마스크를 생성할 수 있으며, 이를 통해 Bounding box 및 Segmentation 모델에 적용할 수 있음

데이터셋

- 왼쪽 그래프: 각 종류의 결함들의 개수 분포
- 오른쪽 그래프: 각 철판 코일마다 존재하는 결함 종류의 개수 분포를 나타냄
- 왼쪽 그래프의 경우 Scratches가 매우 많고, Inclusion이 매우 적은 것을 알 수 있음
- 오른쪽 그래프의 경우 하나의 철판 코일에 2가지 이상의 결함이 동시에 존재하는 경우도 있다는 것을 알 수 있음
- 이 데이터셋의 경우 결함 종류 간 불균형이 심하기 때문에 이를 보완할 방법이 필요함

데이터 전처리 및 데이터 증강 개요

- 주어진 데이터셋의 이미지는 1600 x 256 크기를 가지는 철판 표면 이미지로서 효과적인 모델 학습을 위해 이를 전처리할 필요가 있음
- 이번 과제에서는 철판 표면 이미지들로부터 결함이 있는 부분만을 크롭한 뒤, 128 x 128 크기의 이미지로 리사이징해서 사용하도록 함
- 또한, 이번 과제에서 사용되는 데이터셋은 결함 종류 간의 불균형이 심하기 때문에 데이터 증강을 통해 이를 보완

데이터 전처리 및 데이터 증강 과정

1. 결함 위치 식별

2. 결함 부분 이미지 CROP 3. 이미지 리사이징

데이터 전처리 - 결함 위치 식별

train.csv

1	Imageld	ClassId	Encod	edF	Pixels					
2	0002cc93b	1	29102	12	29346	24	2960	2 2	4 2	29
3	0007a71bf	3	18661	28	18863	82	1909	1 1	10	1
4	000a4bcdd	1	37607	3 3	7858	38	108	14	383	35
5	000f6bf48.	4	13197	3 1	13222	8 4	1324	83	6 1	3

- 이번 데이터셋에서 주어지는 train.csv 파일에는 결함의 형태를 나타내는 마스크의 인코딩 값이 포함됨
- 이미지의 마스크를 활용하여 해당 이미지에서 존재하는 결함들의 좌표를 획득하고 이미지들을 크롭하는데 사용할 수 있음

데이터 전처리 - 결함 부분 이미지 CROP

• 앞서 생성된 마스크를 통해 획득한 결함을 좌표를 활용하여 각 이미지들의 결함 부분들을 CROP

데이터 전처리 - 이미지 리사이징

- 크롭된 결함 부분 이미지들은 각각 서로 다른 크기 => 128 x 128 크기의 일정한 이미지들로 리사이징
- 리사이징된 이미지들을 이후 데이터 증강 과정을 거쳐 새로운 이미지들을 만드는데 사용

데이터 증강

Original Flip Contrast Translation Rotation Cutout

- 이번 과제에서 사용하는 데이터셋은 결함 간의 불균형이 심함
- 데이터셋의 불균형을 보완하기 위해 이미지 전처리 후 데이터 증강 기법을 사용
- 사용 데이터 증강 기법 5가지:
 - 이미지 수평/수직 반전, 대비 변경, 이동, 회전, cutout

데이터 증강

100

• 5가지의 데이터 증강 기법을 적용하여 기존 이미지의 특성을 유지하면서 변형을 거쳐 새로운 이미지 생성

• 학습에 사용하는 데이터의 총 개수를 늘려서 데이터 불균형 및 부족 문제를 보완 가능

증강 전후 데이터셋의 분포

학습모델 - Base Model: Xception

Models	Size	Top-1 Acc	Top-5 Acc	Depth
VGG-16	528 MB	0.713	0.901	23
Inception V3	92 MB	0.779	0.937	159
Xception	88 MB	0.790	0.945	126

성능지표

$$F1 \ score = 2 * \frac{Precision * Recall}{Precision + Recall}$$

 $Precision = \frac{\# \ of \ True \ Positives}{\# \ of \ True \ Positives + \# \ of \ False \ Positives}$

 $Recall = \frac{\# of \ True \ Positives}{\# of \ True \ Positives + \# of \ False \ Negatives}$

		실제 정답		
		True	False	
분류	True	True Positive	False Positive	
결과	False	False Negative	True Negative	

사용한 모델의 하이퍼파라미터

	Output Shape	Param #
xception (Functional)	(None, 4, 4, 2048)	20861480
flatten_2 (Flatten)	(None, 32768)	0
dense_8 (Dense)	(None, 5)	163845
Total params: 21,025,325		

Xception 기본 모델

Trainable params: 20,970,797 Non-trainable params: 54,528

Layer (type)	Output Shape	Param #
xception (Functional)	(None, 4, 4, 2048)	20861480
dropout_3 (Dropout)	(None, 4, 4, 2048)	0
flatten_1 (Flatten)	(None, 32768)	0
dense_4 (Dense)	(None, 256)	8388864
dropout_4 (Dropout)	(None, 256)	0
dense_5 (Dense)	(None, 128)	32896
dropout_5 (Dropout)	(None, 128)	0
dense_6 (Dense)	(None, 256)	33024
dense_7 (Dense)	(None, 5)	1285

Total params: 29,317,549

Trainable params: 29,263,021 Non-trainable params: 54,528

Xception 튜닝 모델

결과 개요

사용 데이터셋 / 모델	Xception	Parameter tuend
Augmentation 전	0.6569	0.7099
Augmentation 후	0.9678	0.9584

Epoch = 15, batch size = 128, learning rate = 0.001

결과

결과

<u>03</u>

자동 모니터링 프로그램

프로그램 - 메인 화면

- QListWidget: 이미지 목록과 결함 목록의 item을 선택
- Qlabel: Training Image와 전처리 후 Image, 그래프 출력

프로그램 -파일 불러오기

- QFileDialog를 사용하여 결함 식별을 원하는 폴더 선택
- 이미지 목록의 item 클릭시 해당 이미지 출력

프로그램 - 실행하기

전처리 완료

결함 위치가 표시된 이미지와 결함 목록을 출력

결과 화면 - 결함이 있는 경우

Bounding box 좌표 전달

Scaling / resizing 결과 출력

결과 화면 - 결함이 없는 경우

프로그램 시연 영상

04

결론 및 향후 연구 방향

결론

- 데이터 증강을 통한 데이터셋 불균형 완화로 모델 성능 향상
- 딥러닝 모델을 통해 주어진 데이터셋에서 무결함 또는 4 종류의 결함 여부를 분류 가능
- 모니터링 프로그램으로 결함 종류의 분포 및 결함의 위치와 형태를 간단하게 체크 가능
- 자동 결함 분류 및 모니터링 프로그램을 통하여 시간적/비용적 문제를 완화를 기대할 수 있음

향후 연구 방향

- 학습 모델을 경량화 시켜 모델의 성능을 향상
- 이번에 사용한 Kaggle의 공개 데이터셋 뿐만이 아닌, 실제 현장 데이터를 모델에 적용할 수 있는 방향으로 모델 개발
- 철판의 제조 과정 중 실시간으로 결함을 모니터링 할 수 있는 방향으로 프로그램 개발