V105

Das Magnetische Moment

Kalina Toben Daniel Wall kalina.toben@tu-dortmund.de daniel.wall@tu-dortmund.de

Durchführung: 06.11.2018 Abgabe: 13.11.2018

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Ziel	lsetzung	3	
2	The	eorie	3	
	2.1	Theorie zur Bestimmung des magnetischen Moments unter Ausnutzung		
		der Gravitation	4	
	2.2	Theorie zur Bestimmung des magnetischen Moments über die Schwin-		
	2.0	gungsdauer eines Magneten	4	
	2.3	Theorie zur Bestimmung des magnetischen Moments über die Präzession	_	
		eines Magneten	5	
3	Aufl	bau und Durchführung	5	
	3.1	Aufbau	5	
	3.2	Durchführung	6	
		3.2.1 Bestimmung des magnetischen Moments durch Gravitation \dots .	6	
		3.2.2 Bestimmung des magnetischen Momens durch Schwingungsdauer .	7	
		3.2.3 Bestimmung des magnetischen Moments durch Präzession	7	
4	Aus	swertung	8	
	4.1	Bestimmung des magnetichen Moments eines Magneten unter Ausnutzung		
		der Gravitation	8	
	4.2	Bestimmung des magnetischen Moments über die Schwingungsdauer eines		
	4.0	Magneten	10	
	4.3	Bestimmung des magnetischen Moments über die Präzession	11	
5	Disk	kussion	13	
Lit	teratı	ur	14	

1 Zielsetzung

Es wird das magnetische Moment eines Permanentmagneten auf drei verschiedene Arten bestimmt.

2 Theorie

[1] Der Magnetismus tritt in einfachster Form als magnetischer Dipol auf. Dieser kann durch eine, mit dem Strom I durchflossene, Leiterschleife realisiert werden. Jeder Dipol hat das magnetische Moment

$$\vec{\mu} = I \cdot \vec{A},\tag{1}$$

mit A als Querschnittsfläche der Leiterschleife. Allerdings muss für einen Permanentmagneten $\vec{\mu}$ experimentell bestimmt werden. Um ein homogenes Magnetfeld zu erzeugen, wird ein Helmholtz-Spulenpaar genutzt, wessen Achsen zusammenfallen und der Abstand der Spulen der Spulenradius R ist (Abbildung 1). Mithilfe des Biot-Savartschen Gesetzes

$$d\vec{B} = \frac{\mu_0 I}{4\pi} \frac{d\vec{s} \times \vec{r}}{r^3},\tag{2}$$

kann das Magnetfeld im Inneren bestimmt werden. Für eine Spule mit einer Windung lautet die Formel für das Magnetfeld dann:

$$\vec{B}(x) = \frac{\mu_0 I}{2} \frac{R^2}{(R^2 + x^2)^{3/2}} \cdot \hat{x},\tag{3}$$

In diesem Experiment ist der Abstand d = 2 * x nicht identisch mit dem Radius. Beachtet man, dass das Feld im Zentrum durch Überlagerung der Einzelfelder entsteht und der Ursprung in der Mitte der Spulen ist, ergibt es sich zu:

$$B(0) = B_1(x) + B_1(-x) = \frac{\mu_0 I R^2}{(R^2 + x^2)^{3/2}},$$
(4)

Abbildung 1: Anordnung der Helmholtz-Spulen.

Abbildung 2: Biot-Savartsche-Gesetz.

Der Feldgradient:

$$\frac{dB}{dx} = -3\mu_0 I R^2 \frac{x}{(R^2 + x^2)^{5/2}},\tag{5}$$

ist in einem großen Bereich vernachlässigbar.

2.1 Theorie zur Bestimmung des magnetischen Moments unter Ausnutzung der Gravitation

Wirkt auf eine Masse m
 die Gravitationskraft $\vec{F}=m\vec{g}$, stellt sich ein Drehmoment $\vec{D}_{\rm g}=m(\vec{r}\times\vec{g})$ ein. Entgegen der Gravitationskraft wirkt das Magnetfeld der Spulen. Ein Gleichgewicht zwischen Drehmoment $\vec{D}_{\rm B}=\vec{\mu}_{\rm Dipol}\times\vec{B}$ und Drehmoment $\vec{D}_{\rm g}$ tritt nur auf, wenn eine einzige Magnetfeldstärke eingestellt ist.

$$\vec{\mu}_{\rm Dipol} \times \vec{B} = m \cdot (\vec{r} \times \vec{g}) \tag{6}$$

g und B sind parallel, weshalb sich die Gleichung wie folgt schreiben lässt:

$$\mu_{\text{Dipol}} \cdot B = m \cdot r \cdot g,\tag{7}$$

2.2 Theorie zur Bestimmung des magnetischen Moments über die Schwingungsdauer eines Magneten

Wird eine Billiardkugel in Schwingung versetzt, verhält sie sich im homogenen Magnetfeld wie ein harmonischer Oszillator. Die Bewegungsgleichung für den Prozess lautet:

$$-\left|\vec{\mu}_{\text{Dipol}} \times \vec{B}\right| = J_{\text{K}} \cdot \frac{d^2 \theta}{dt^2},\tag{8}$$

Die Schwingungsdauer T ist die Lösung der Gleichung, woraus sich dann das magnetische Moment bestimmen lässt.

$$T^2 = \frac{4\pi^2 J_{\rm K}}{\mu_{\rm Dipol}} \frac{1}{B},\tag{9}$$

2.3 Theorie zur Bestimmung des magnetischen Moments über die Präzession eines Magneten

Ein Kreisel erfährt eine Präzessionsbewegung, wenn eine äußere Kraft auf die Drehachse eines rotierenden Körpers wirkt. Die Drehachse bewegt sich hierbei auf dem Kegelmantel um die Drehimpulsachse. Wird eine rotierende Billiardkugel ausgelenkt, bleibt die Auslenkung wegen der Rotation stabil. Existiert außerdem ein Magnetfeld, wirkt eine äußere Kraft und die Präzessionsbewegung entsteht, welche durch folgende Gleichung beschrieben wird:

$$\vec{\mu}_{\text{Dipol}} \times \vec{B} = \frac{d\vec{L}_{\text{K}}}{dt},$$
 (10)

Diesmal ist die Präzessionsfrequenz eine Lösung.

$$\Omega_{\rm p} = \frac{\mu B}{|L_{\rm K}|} \tag{11}$$

Der Drehimpuls kann über das Trägheitsmoment und deren Kreisfrequenz bestimmt werden und das magnetische Moment über:

$$\frac{1}{T_{\rm p}} = \frac{\mu_{\rm Dipol}}{2\pi L_{\rm K}} B \tag{12}$$

3 Aufbau und Durchführung

3.1 Aufbau

In der Mitte einer Billiardkugel befindet sich ein Permanentmagnet. Sein magnetisches Moment zeigt in Richtung des Stiels. Die Kugel bewegt sich,wegen eines Luftkissens,reibungsfrei auf einem Messingzylinder, zwischen zwei Helmholtz-Spulen. Die zwei Helmholtz-Spulen (N=195) erzeugen ein Magnetfeld, und haben einen Abstand von d = 0.138 m und einen Radius von R = 0.109 m. Ein Stroboskop, welches sich an der oberen Spule befindet, bestimmt die Drehbewegung. Mit einem Steuergerät können Strom, Magnetfeld, Stroboskop und Luftkissen eingestellt und bedient werden.

Helmholtz-Spulenpaar

Abbildung 3: Versuchsaufbau

3.2 Durchführung

Als erstes werden Radius und Masse der Billiardkugel gemessen und daraus das Trägheitsmoment bestimmt. Desweiteren wird die Länge des Stiels gemessen.

3.2.1 Bestimmung des magnetischen Moments durch Gravitation

In den Stiel der Kugel wird eine Aluminiumstange, auf welcher eine verschiebbare Masse ist, gesetzt, und die Kugel wird auf den Zylinder gesetzt. Dann wird der Abstand r von Anfang des Stiels, bis Schwerpunkt der Masse, bestimmt. Nun wird am Steuergerät das Gebläse für das Luftkissen angeschaltet, die Feldrichtung auf "up" und der Feldgradient auf "off" gestellt. Das Magnetfeld wird nun solange eingestellt, bis das System in einem Gleichgewicht ist. Ist dies der Fall, werden sich Magnetfeld und Abstand notiert. Diese Messung wird 10 mal wiederholt, wobei der Abstand beliebig geändert wird.

Abbildung 4: Krafteinwirkungen.

3.2.2 Bestimmung des magnetischen Momens durch Schwingungsdauer

Wieder wird die Kugel auf den Zylinder gesetzt und das Magnetfeld eingeschaltet. Die Kugel wird bei eingestelltem Magnefeld nun in Schwingung versetzt, in dem der Stiel um einen kleinen Winkel ausgelenk wird. Es werden 10 Perioden gemessen und die Ergebnisse gemittelt. Insgesamt wird dies für 10 Stromstärken wiederholt.

3.2.3 Bestimmung des magnetischen Moments durch Präzession

Es wird am Stroboskop eine Frequenz zwischen 4 und 6 Hertz eingestellt. Die sich auf dem Zylinder befindende Kugel wird in Rotation versetzt und durch gezielte Berührungen ausgelenkt, bis sie die eingestellte Frequenz erreicht. Dies ist der Fall, wenn der weiße Punkt auf dem Stiel stationär erscheint. Anschliessend wird das Magnetfeld eingeschaltet und die Umlaufzeit gemessen. Insgesamt wird dies für 10 Magnetfeldstärken durchgeführt.

Abbildung 5: Achsenanordnung.

4 Auswertung

Die Messung der Apparaturkonstanten liefert folgende Werte:

$$\begin{split} r_{\rm K} &= \frac{53,60}{2} {\rm mm} = 0,0268 {\rm m} \\ m_{\rm K} &= 141,97 {\rm g} = 0,14197 {\rm kg} \\ J_{\rm K} &= \frac{2}{5} m_{\rm K} r_{\rm K}^2 = 4,1 \cdot 10^{-5} {\rm kg} \, {\rm m}^2 \\ N &= 195 \\ d &= 0,138 {\rm m} \\ R_{\rm Spule} &= 0,109 {\rm m} \end{split}$$

4.1 Bestimmung des magnetichen Moments eines Magneten unter Ausnutzung der Gravitation

Mithilfe von Gleichung (4) wird die Magnetfeldstärke ausgerechnet.

Tabelle 1: Magnetfeldstärke B in Abhängigkeit von Abstand r und Spulenstrom I

Abstand $r / \cdot 10^{-2}$ m	Spulenstrom I/A	Magnetfeldstärke $B / \cdot 10^{-3} \mathrm{T}$
4,1	1,28	1,74
4,9	1,49	$2,\!02$
5,3	1,58	$2,\!14$
5,6	1,6	$2,\!17$
6,1	1,78	$2,\!41$
7,2	2	2,71
8,0	2,19	$2,\!97$
8,9	$2,\!35$	3,19
9,3	2,46	3,34
10,1	2,64	3,58

Um das magnetische Moment der Kugel zu berechnen wird die Magnetfeldstärke B gegen den Abstand r aufgetragen und mithilfe linearer Regression in Form von

$$y = ax + b,$$

$$a = \frac{\overline{xy} - \overline{xy}}{\overline{x^2} - \overline{x}^2} = 0.0303,$$

$$b = \frac{\overline{x^2}\overline{y} - \overline{x}\overline{x}\overline{y}}{\overline{x^2} - \overline{x}^2} = 0.0005$$

wird die Steigung der Ausgleichsgeraden bestimmt.

Abbildung 6: Feldstärke in Abhängigkeit des Abstands

Nun wird nach Gleichung (7) das magnetische Moment $\mu_{\rm Dipol}$ gemäß

$$\mu_{\rm Dipol} = \frac{m_{\rm g}g}{a} \tag{13}$$

berechnet. Mit

$$\begin{split} m_{\rm g} &= 0,00138 {\rm kg}, \\ g &= 9,81 \frac{\rm m}{\rm s^2}, \\ a &= 0,303 \frac{\rm kg \, m}{\rm s^2 \, A \, m^2} \end{split}$$

folgt:

$$\mu_{\rm Dipol1} = 0,447\,{\rm A\,m^2}.$$

4.2 Bestimmung des magnetischen Moments über die Schwingungsdauer eines Magneten

Mittels Gleichung (4) wird erneut die Magnetfeldstärke B der jeweiligen Stromstärke I berechnet. Um das magnetische Moment μ_{Dipol} zu berechnen wird T^2 gegen 1/B

Tabelle 2: Zur Stromstärke I zugehörige Magnetfeldstärke B und Periodendauer T

Spulenstrom I/A	Magnetfeldstärke $B / \cdot 10^{-3} \mathrm{T}$	Periodendauer $T/\cdot 10^{-1}$ s
3,8	5,15	8,46
$3,\!5$	4,75	8,66
$3,\!2$	$4,\!34$	8,86
2,9	$3,\!93$	$9{,}54$
2,6	$3,\!53$	10,05
2,3	$3{,}12$	10,69
2,0	2,71	11,45
1,7	2,31	$12,\!52$
$1,\!4$	1,90	13,76
1,1	1,49	15,61

 ${\it aufgetragen.}$

Abbildung 7: Schwingungsdauer in Abhängigkeit von der Magnetfeldstärke

Mittels linearer Regression ergibt sich für die Ausgleichsgerade

$$a = 0,00365,$$

 $b = -0,023.$

Aus Gleichung (9) ergibt sich somit für das magnetische Moment

$$\mu_{\text{Dipol}2} = \frac{4\pi^2 J_{\text{K}}}{a} = 0,443 \,\text{A} \,\text{m}^2.$$
(14)

4.3 Bestimmung des magnetischen Moments über die Präzession

Um das magnetische Moment μ_{Dipol} zu bestimmen wird die reziproke Periodendauer T_{P} gegen die Magnetfeldstärke B aufgetragen, welche sich aus der Stromstärke I mittels Gleichung (4) ergibt.

Tabelle 3: Zur Stromstärke Izugehörige Magnetfeldstärke B und reziproke Periodendauer $T_{\rm P}$

Spulenstrom I / A	Magnetfeldstärke $B / \cdot 10^{-3}$ T	$T_{ m P} / { m s}^{-1}$
0,2	0,27	0,0240
$0,\!5$	0,68	0,0439
0,8	1,08	0,0593
1,1	$1,\!49$	0,0749
1,4	1,90	0,0917
1,7	2,31	$0,\!1205$
2,0	2,71	$0,\!1689$
2,3	$3{,}12$	$0,\!1745$
2,6	3,53	$0,\!2160$
2.8	3,80	$0,\!2212$

Mithilfe der linearen Regression ergibt sich für die Ausgleichsgerade

$$a = 0,0586,$$

 $b = -0,003.$

Aus der Steigung der Geraden lässt sich mittels

$$\mu_{\text{Dipol}} = 2\pi L_{\text{K}} a \tag{15}$$

 mit

$$L_{\rm K} = 4, 1 \cdot 10^{-5} {\rm kg \, m^2 \cdot 2\pi \cdot 4}, \\ 3{\rm Hz} = 1, 11 \cdot 10^{-3} \frac{{\rm kg \, m^2}}{{\rm s}}$$

das magnetische Moment berechnen:

$$\mu_{\rm Dipol3} = 0,453\,{\rm A\,m^2}.$$

Abbildung 8: Umlaufzeit in Abhängigkeit von der Magnetfeldstärke

5 Diskussion

Bei dem Vergleich der Ergebnisse fällt auf, dass die errechneten magnetischen Momente verhältnismäßig nah beieinander liegen, wobei alle aufgrund unterschiedlicher Gründe fehlerbehaftet sind. Bei der Bestimmung über die Gravitation ist es mit dem bloßen Auge nicht möglich, den genauen Zeitpunkt zu bestimmen, bei der die auf den Stab wirkenden Kräfte nicht mehr im Gleichgewicht sind und der Stab beginnt zu kippen. Ausschlaggebend für die Fehler bei der Schwingungsdauermethode ist vorallem die menschliche Reaktionszeit beim Stoppen der Zeit, welche durch mehrfache Messung relativiert werden könnte. Allerdings bleibt es schwierig, den Stab immer wieder gleich stark auszulenken. Am meisten fehleranfällig ist die Methode, bei der man die Präzession ausnutzt, da es aufgrund der aufwendigen Durchführung insgesamt zuviele Variablen gibt, wie beispielsweise das nicht konstante Stroboskop, die Reaktionszeit beim Stoppen der Zeit und das manuelle Andrehen und Auslenken.

Ein Vergleich mit Literaturwerten ist in diesem Versuch nicht möglich.

Literatur

 $[1] \quad \text{TU Dortmund. } \textit{Versuch zum Literaturverzeichnis. } 2014.$