SimulatorBot

Ray-Shimry Garatsa Neha Saini

Robotic Task (Description)

Robotic Task (Requirements)

- **□** Kinematic Requirements
 - 3 DOF to position the simulator
 - 3 DOF orientation of the simulator
- **□** Workspace Requirements
 - \square Reachable 306 m^3 to the end of the simulator.
 - \square Dexterous 80 % of the reachable workspace.
- **□** Force Requirements
 - \square Force at least $[0,1000,0]^T N$
 - Moment No moments applied
- Other
 - Redundant joint to avoid internal workspace Singularities

Robot Design (Specifications)

Description	Specification
Total Degrees of Freedom	7
Arm Type*	DYPP
Wrist Type [†]	PYR (IAW-No)
Redundancy	Prismatic joint at base
Length Sum (L)	5.7 <i>m</i>
Structural Length Index (Q)	≈ 0.85

^{*}R=roll, P=pitch, Y=yaw, D=prismatic †IAW-intersecting axis wrist

Robot Design (Link Frames)

Robot Design (D-H Table)

i	$lpha_{i-1}$ (deg)	a _{i-1} (m)	d _i (m)	θ_{i} (deg)	JL- (deg)	JL ⁺ (deg)
1	0	0	d1	0	-1m	1m
2	90	0	1	θ_2	-360	360
3	90	0	0	θ_3	-160	160
4	0	1.5	0	$ heta_4$	-160	160
5	0	1	0	θ_5	-135	135
6	-90	0.2	0	θ_6	-135	135
7	-90	0	0	θ_7	-360	360

Robot Design (Joint Animation)

Forward Kinematics

$$p\theta T = \begin{pmatrix} 0.1\cos\left[\theta[2] - \theta[3] - \theta[4] - \theta[5]\right] + 0.1c_{2345} + c_2\left(c_3\left(1.5 + c_4\right) - 1.s_3s_4\right) - 1.2\left(c_6s_2 + c_2c_{345}s_6\right) \\ -1. + 1.2 \times \left(0.5\cos\left[\theta[3] + \theta[4] + \theta[5] - \theta[6]\right] - 0.5c_{3456}\right) - 1.5s_3 - 1.s_{34} - 0.2s_{345} \\ 0.1\sin\left[\theta[2] - \theta[3] - \theta[4] - \theta[5]\right] + 0.1c_{2345} + d_1 + 1.5c_3s_2 + c_3c_4s_2 - s_2s_3s_4 + 1.2\left(c_2c_6 - c_{345}s_2s_6\right) \end{pmatrix}$$

Forward Kinematics (Test)

- $q = [0,\pi/2,0,0,0,-\pi/2,0]$:
 - p0T=[0,-1,4.9]
 - R0T=[1,0,0; 0,1,0; 0,0,1]
- $q = [-1,0,\pi/2,0,0,-\pi/2,0]$:
 - p0T=[0,-4.9,-1]
 - R0T=[0,1,0; 0,0,-1; -1,0,0]
- $q = [0,0,0,\pi/2,0,-\pi/2,0]$:
 - p0T=[1.5,-3.4,1]
 - R0T=[0,1,0; 0,0,-1; -1,0,0]

Inverse Kinematics (Solution)

ITERATIVE METHOD

Inverse Kinematics (Test)

- $q_{START} = [-0.9, -.61, 2.59, 1.86, -1.3, -1.5, 0]$
- $p_{GOAL} = [-2.288, -.963, .826],$
- ⁰R_{GOAL}=[-.6, .03, .8; -.001, -.99, -.03; .8, .02, .36]
- Solution:

$$q_{GOAL} = [-.8, -.6, 2.5, 1.98, -1.39, -1.53, 0]$$

Solution Check:

$${}^{0}p_{T}(q_{GOAL}) - [{}^{0}p_{GOAL}] = [-2,4,2]*10^{-16}$$

Jacobian (Simplest Frame)

$$J_{rot} = \begin{pmatrix} 0 & s_{345} & 0 & 0 & 0 & 0 & -s_6 \\ 0 & c_{345} & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & -c_6 \end{pmatrix}$$

Singularities

Boundary:

rnal: linearly dependent columns

Maximum Load

Maximum Task Force/Torque:

$$F_{MAX} = [0,1130,0]N,$$

 $N_{MAX} = [0,0,0]$

Workspace Pose:

$$^{0}p_{T}=[0,-1,4.9],$$

$${}^{0}R_{T}$$
= [1,0,0;0,1,0;0,0,1]

Joint Position:

 $q_T = [1,\pi/2,0,0,0,-\pi/2,0]$

 $\tau = [0,0,4407,2712,$

(Joint Torques)

1582,0,0]

Task (Animation)

Conclusions

- Robot Design
 - Few singularities due to joint Redundancy
 - SimulatorBot has large range of motion compared to the standard Stewart platforms
- ☐ Future Work
 - Link Sizing to reduce interference
 - Training astronauts to drive rovers
- What I Learned
 - Using inverse kinematics to lock joints when needed
 - Roboworks modelling helped in iterating some of the DH parameters and joint.