See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/259987473

ChemInform Abstract: Synthesis and Biological Evaluation of Thiazoline Derivatives as New Antimicrobial and Anticancer Agents.

ARTICLE in EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY · JANUARY 2014					
mpact Factor: 3.45 · DOI: 10.1016/j.ejmech.2013.12.060 · Source: PubMed					
CITATIONS	READS				
5	72				

4 AUTHORS, INCLUDING:

21 PUBLICATIONS 59 CITATIONS

SEE PROFILE

Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/authorsrights

Author's personal copy

European Journal of Medicinal Chemistry 74 (2014) 264-277

Contents lists available at ScienceDirect

European Journal of Medicinal Chemistry

journal homepage: http://www.elsevier.com/locate/ejmech

Original article

Synthesis and biological evaluation of thiazoline derivatives as new antimicrobial and anticancer agents

Mehlika Dilek Altıntop ^a, Zafer Asım Kaplancıklı ^{a,*}, Gülşen Akalın Çiftçi ^b, Rasime Demirel ^c

- ^a Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470 Eskişehir, Turkey
- ^b Anadolu University, Faculty of Pharmacy, Department of Biochemistry, 26470 Eskişehir, Turkey
- ^c Anadolu University, Faculty of Science, Department of Biology, 26470 Eskişehir, Turkey

ARTICLE INFO

Article history:
Received 10 August 2013
Received in revised form
30 December 2013
Accepted 30 December 2013
Available online 10 January 2014

Keywords:
Thiazoline
Hydrazone
Antimicrobial activity
Cytotoxicity
DNA synthesis inhibitory activity

ABSTRACT

N'-(3,4-Diarylthiazol-2(3H)-ylidene)-2-(arylthio)acetohydrazides were synthesized and evaluated for their antimicrobial activity and cytotoxicity against NIH/3T3 cells. Compound **22** bearing 1-phenyl-1H-tetrazole and p-chlorophenyl moieties was found to be the most promising antibacterial agent against P-seudomonas e-ruginosea, whereas compound **23** bearing 1-phenyl-1H-tetrazole and p-bromophenyl moieties was the most promising antifungal agent against P-calculated P-bromophenyl moieties were also evaluated for their cytotoxicity against P-calculated P-bromophenyl moieties were also evaluated for their cytotoxicity against P-calculated P-bromophenyl moieties (P-calculated P-bromophenyl moie

 $\ensuremath{\text{@}}$ 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Infectious diseases caused by bacteria and fungi have emerged as important causes of morbidity and mortality worldwide due to their ability to thwart therapeutic regimens by rapidly evolving resistance to antimicrobial agents [1-6].

Eukaryotic pathogens such as fungi pose a particular therapeutic challenge since they share a close evolutionary relationship with their human hosts, limiting the number of drug targets that can be exploited to selectively kill the pathogen [6]. The treatment of fungal infections, particularly those caused by drug-resistant fungal pathogens is often complicated by high toxicity, low tolerability, or narrow spectrum of activity [3–7].

In the last few decades, the greatly increased incidence of life-threatening bacterial and fungal infections has resulted in a corresponding increase in demand for new effective antimicrobial agents which inhibit the growth of pathogens or kill them and have no or least toxicity to host cells [1–8].

Thiazoles are found in many biologically active compounds, including natural products and pharmaceutical agents [9,10]. The reduced forms of thiazoles, thiazolines, have attracted a great deal

of interest as privileged scaffolds due to their synthetic and biological importance. Compounds bearing thiazoline moiety have been reported to exhibit a wide spectrum of biological effects including antimicrobial activity [11–18]. In addition, hydrazides—hydrazones have received considerable attention as important pharmacophores in medicinal chemistry [19,20]. Isoniazid, which possesses a hydrazide moiety in its molecular structure, is the frontline drug employed in the treatment of tuberculosis [21]. Nifuroxazide, which is a nitrofuran antibacterial agent bearing a hydrazone moiety, is widely used as an intestinal antiseptic. Many studies have also confirmed that hydrazone derivatives of isoniazid and other hydrazides exhibit significant antimicrobial activity [19–26].

1-Substituted-1H-tetrazole-5-thiol and 5-methyl-1,3,4-thiadia zole-2-thiol have gained great importance in the synthesis of pharmacologically active drugs. Some synthetic β -lactam antibiotics possess 5-thio-1-methyl-1H-tetrazole (MTT) or thio-linked thiadiazole as the side chain [10,27].

Triazole antifungal agents, play a leading role in the treatment of systemic fungal infections due to their broad spectrum and improved safety profile. Fluconazole, itraconazole, voriconazole, and posaconazole are widely used antifungal drugs bearing triazole ring for the treatment of systemic fungal infections [28,29].

Medicinal chemists have also carried out considerable research for novel antimicrobial agents bearing a pyrimidine moiety.

^{*} Corresponding author. Tel.: +90 222 3350580/3776; fax: +90 222 3350750. E-mail address: zakaplan@anadolu.edu.tr (Z.A. Kaplancıklı).

M.D. Altıntop et al. / European Journal of Medicinal Chemistry 74 (2014) 264–277

Ar—SH
$$\xrightarrow{\text{CICH}_2\text{COOC}_2\text{H}_5}$$
 Ar $\xrightarrow{\text{NH}_2\text{NH}_2 \cdot \text{H}_2\text{O}}$ Bl-6 $\xrightarrow{\text{N}=\text{C}=\text{S}}$

Scheme 1. The synthetic route for the preparation of the target compounds (1-40).

Trimethoprim and sulfadiazine are chemotherapeutic drugs containing a pyrimidine moiety currently used in the treatment of infectious diseases [10,30].

On the basis of these findings, herein we reported the synthesis of a series of thiazoline derivatives bearing a hydrazone moiety and

focused on their potential antimicrobial effects and cytotoxicity. Thiolinked triazole, tetrazole, thiadiazole and pyrimidine were preferred as the side chain while designing the molecules. Furthermore, all compounds were evaluated for their cytotoxic effects against NIH/ 3T3 cell lines. The most effective antimicrobial derivatives were also

Table 1Some properties of the compounds (1–40).

Compound	R	Ar	Yield (%)	M.p. (°C)	Molecular formula	Molecular weight
1	Н	4-Methyl-4 <i>H</i> -1,2,4-triazol-3-yl	70	123-126	C ₂₀ H ₁₈ N ₆ OS ₂	422
2	NO_2	4-Methyl-4H-1,2,4-triazol-3-yl	80	100-103	$C_{20}H_{17}N_7O_3S_2$	467
3	CH ₃	4-Methyl-4H-1,2,4-triazol-3-yl	70	109-112	$C_{21}H_{20}N_6OS_2$	436
4	OCH ₃	4-Methyl-4H-1,2,4-triazol-3-yl	71	148-151	$C_{21}H_{20}N_6O_2S_2$	452
5	F	4-Methyl-4H-1,2,4-triazol-3-yl	72	167-169	$C_{20}H_{17}FN_6OS_2$	440
6	Cl	4-Methyl-4H-1,2,4-triazol-3-yl	75	260-262	$C_{20}H_{17}CIN_6OS_2$	456
7	Br	4-Methyl-4H-1,2,4-triazol-3-yl	76	260-263	$C_{20}H_{17}BrN_6OS_2$	501
8	CN	4-Methyl-4H-1,2,4-triazol-3-yl	81	246-247	$C_{21}H_{17}N_7OS_2$	447
9	Н	1-Methyl-1 <i>H</i> -tetrazol-5-yl	75	202-206	C ₁₉ H ₁₇ N ₇ OS ₂	423
10	NO_2	1-Methyl-1 <i>H</i> -tetrazol-5-yl	80	78-80	$C_{19}H_{16}N_8O_3S_2$	468
11	CH ₃	1-Methyl-1 <i>H</i> -tetrazol-5-yl	74	224-225	$C_{20}H_{19}N_7OS_2$	437
12	OCH ₃	1-Methyl-1 <i>H</i> -tetrazol-5-yl	72	124-125	$C_{20}H_{19}N_7O_2S_2$	453
13	F	1-Methyl-1 <i>H</i> -tetrazol-5-yl	75	218-219	$C_{19}H_{16}FN_7OS_2$	441
14	Cl	1-Methyl-1 <i>H</i> -tetrazol-5-yl	77	223-227	C ₁₉ H ₁₆ CIN ₇ OS ₂	457
15	Br	1-Methyl-1 <i>H</i> -tetrazol-5-yl	78	229-230	$C_{19}H_{16}BrN_7OS_2$	502
16	CN	1-Methyl-1 <i>H</i> -tetrazol-5-yl	81	244-245	$C_{20}H_{16}N_8OS_2$	448
17	Н	1-Phenyl-1 <i>H</i> -tetrazol-5-yl	78	71-74	C ₂₄ H ₁₉ N ₇ OS ₂	485
18	NO_2	1-Phenyl-1 <i>H</i> -tetrazol-5-yl	85	235-237	$C_{24}H_{18}N_8O_3S_2$	530
19	CH ₃	1-Phenyl-1 <i>H</i> -tetrazol-5-yl	75	232-233	$C_{25}H_{21}N_7OS_2$	499
20	OCH ₃	1-Phenyl-1 <i>H</i> -tetrazol-5-yl	73	230-231	$C_{25}H_{21}N_7O_2S_2$	515
21	F	1-Phenyl-1 <i>H</i> -tetrazol-5-yl	75	237	$C_{24}H_{18}FN_7OS_2$	503
22	Cl	1-Phenyl-1 <i>H</i> -tetrazol-5-yl	83	246-248	C ₂₄ H ₁₈ ClN ₇ OS ₂	519
23	Br	1-Phenyl-1 <i>H</i> -tetrazol-5-yl	84	242-243	$C_{24}H_{18}BrN_7OS_2$	564
24	CN	1-Phenyl-1 <i>H</i> -tetrazol-5-yl	86	233-234	C ₂₅ H ₁₈ N ₈ OS ₂	510
25	Н	5-Methyl-1,3,4-thiadiazol-2-yl	79	156-160	C ₂₀ H ₁₇ N ₅ OS ₃	439
26	NO_2	5-Methyl-1,3,4-thiadiazol-2-yl	88	250-252	$C_{20}H_{16}N_6O_3S_3$	484
27	CH ₃	5-Methyl-1,3,4-thiadiazol-2-yl	76	240-241	$C_{21}H_{19}N_5OS_3$	453
28	OCH ₃	5-Methyl-1,3,4-thiadiazol-2-yl	75	248-249	$C_{21}H_{19}N_5O_2S_3$	469
29	F	5-Methyl-1,3,4-thiadiazol-2-yl	78	228-231	$C_{20}H_{16}FN_5OS_3$	457
30	Cl	5-Methyl-1,3,4-thiadiazol-2-yl	85	244-245	C ₂₀ H ₁₆ CIN ₅ OS ₃	473
31	Br	5-Methyl-1,3,4-thiadiazol-2-yl	86	237-239	$C_{20}H_{16}BrN_5OS_3$	518
32	CN	5-Methyl-1,3,4-thiadiazol-2-yl	89	254-255	$C_{21}H_{16}N_6OS_3$	464
33	Н	Pyrimidin-2-yl	80	77–78	C ₂₁ H ₁₇ N ₅ OS ₂	419
34	NO_2	Pyrimidin-2-yl	89	260-263	$C_{21}H_{16}N_6O_3S_2$	464
35	CH ₃	Pyrimidin-2-yl	77	84–87	C ₂₂ H ₁₉ N ₅ OS ₂	433
36	OCH ₃	Pyrimidin-2-yl	75	218-219	$C_{22}H_{19}N_5O_2S_2$	449
37	F	Pyrimidin-2-yl	79	241-242	C ₂₁ H ₁₆ FN ₅ OS ₂	437
38	Cl	Pyrimidin-2-yl	87	247-248	C ₂₁ H ₁₆ CIN ₅ OS ₂	453
39	Br	Pyrimidin-2-yl	88	245-246	$C_{21}H_{16}BrN_5OS_2$	498
40	CN	Pyrimidin-2-yl	90	256-258	$C_{22}H_{16}N_6OS_2$	444

investigated for their cytotoxicity against C6 rat glioma cells. Among these derivatives, the most effective anticancer compounds were evaluated for their DNA synthesis inhibitory activity.

2. Chemistry

The synthesis of the thiazoline derivatives (1–40) was carried out according to the steps shown in Scheme 1. In the initial step, ethyl 2-[(aryl)thio]acetate derivatives (A1–6) were synthesized via the reaction of thiols with ethyl chloroacetate in the presence of potassium carbonate. The treatment of the ester derivatives (A1–6) with hydrazine hydrate afforded 2-[(aryl)thio]acetohydrazides (B1–6) [31–34]. 1-(Arylthioacetyl)-4-phenyl thiosemicarbazides (C1–6) were obtained by the reaction of the hydrazides (B1–6) with phenyl isothiocyanate [34–36]. In the last step, the ring closure reaction of the thiosemicarbazide derivatives (C1–6) with 2-bromoacetophenone/4'-substituted-2-bromoacetophenone gave the target compounds (1–40) [18,36]. Some properties of the compounds were given in Table 1.

3. Results and discussion

The structures of new compounds were confirmed by FT-IR, ¹H NMR, ¹³C NMR, mass spectral data, and elemental analysis.

In the IR spectra of **C-2** and **C-5**, the C=O stretching vibrations gave rise to a band at $1700-1650 \, \mathrm{cm}^{-1}$. The stretching bands for N–H group were observed in the region $3400-3200 \, \mathrm{cm}^{-1}$. The stretching bands for aromatic and aliphatic C–H groups occurred at $3100-3000 \, \mathrm{cm}^{-1}$ and $2980-2900 \, \mathrm{cm}^{-1}$, respectively. C=N, C=C stretching and N–H bending vibrations were observed in the region $1600-1450 \, \mathrm{cm}^{-1}$.

In the IR spectra of compounds **1–40**, the compounds had a strong, characteristic band in the region 1750–1650 cm $^{-1}$ due to the C=O stretching vibration. The stretching bands for N–H group occurred at 3500–3200 cm $^{-1}$. The aromatic and aliphatic C–H stretching vibrations gave rise to bands at 3120–3000 cm $^{-1}$ and 2990–2700 cm $^{-1}$, respectively. C=N, C=C stretching and N–H bending vibrations were observed in the region 1620–1450 cm $^{-1}$. In the IR spectra of the compounds bearing cyano substituent, the stretching bands for C=N group occurred at 2250–2200 cm $^{-1}$.

In the 1 H NMR spectra of **C-2** and **C-5**, the signal due to the thiosemicarbazide protons appeared in the region 9.5–10.5 ppm. The signal due to the S–CH₂ protons was observed in the region 3.99–4.11 ppm.

In the ${}^{1}H$ NMR spectra of compounds **1–40**, the signal due to the hydrazone proton appeared in the region 10–13 ppm. The signal due to the S–CH₂ protons was observed in the region 3.86–4.37 ppm. In the ${}^{1}H$ NMR spectra of some compounds, N–H and S–CH₂ protons gave rise to two singlet peaks in accordance with the presence of the *E* and *Z* isomers [37,38]. The signal due to the thiazoline proton was observed in the region 6.5–7.3 ppm. Other aromatic and aliphatic protons were observed at expected regions.

In the 13 C NMR spectra of all compounds, the signal due to the S–CH $_2$ carbon was observed in the region 32–36 ppm.

In the ¹³C NMR spectra of **C-2** and **C-5**, the signal due to the C=S carbon was observed at 181.68 and 181.52 ppm, respectively. The signal due to the C=O carbon was observed at 167–168 ppm.

In the ¹³C NMR spectra of compounds **1–40**, the signal due to the C=O carbon was observed at 160–180 ppm. Other aromatic and aliphatic carbons were observed at expected regions.

The mass spectral data were also consistent with the assigned structures. All compounds gave satisfactory elemental analysis.

Compounds **1–40** were tested *in vitro* against pathogenic bacteria and fungi strains. As shown in Tables 2 and 3, the compounds

exhibited more significant antimicrobial activity against fungi than

Among bacteria species, *Pseudomonas aeruginosa* was the most susceptible bacterium to compounds **5**, **22** and **40**. These compounds and streptomycin exhibited the same level of antibacterial activity against *P. aeruginosa* with a MIC value of $125 \mu g/mL$. Among these derivatives, compound **22** bearing 1-phenyl-1*H*-tetrazole and *p*-chlorophenyl moieties can be identified as the most promising antibacterial agent against *P. aeruginosa* due to its inhibitory effect on *P. aeruginosa* and low toxicity to NIH/3T3 cells (IC₅₀ = $313.3 \pm 15.3 \mu g/mL$).

Compounds **3** and **23** were more effective than ketoconazole, whereas other derivatives and ketoconazole exhibited the same level of antifungal activity against *Candida albicans*. Compounds **3** and **23** exhibited the inhibitory activity against *C. albicans* with a MIC value of 125 μ g/mL, whereas ketoconazole exhibited the inhibitory activity with a MIC value of 250 μ g/mL. In addition, IC₅₀ values of compounds **3** and **23** were determined as 130.0 \pm 20.0 μ g/mL and 433.3 \pm 28.9 μ g/mL, respectively. According to MTT assay, compound **23** bearing 1-phenyl-1*H*-tetrazole and *p*-bromophenyl moieties seems to be the most promising anticandidal agent owing to its inhibitory effect on *C. albicans* and low toxicity to NIH/3T3 cells.

Compounds **1–40** exhibited the inhibitory activity against *Aspergillus parasiticus* with a MIC value of 250 μ g/mL, whilst

Table 2 Antibacterial activity of the compounds (1–40) as MIC values ($\mu g/mL$).

Compound	A	В	С	D	E	F
1	250	250	250	250	250	250
2	250	250	250	250	125	125
3	250	250	125	250	125	250
4	250	250	250	250	250	250
5	125	125	125	125	250	250
6	125	250	125	250	125	125
7	250	250	250	250	250	250
8	250	250	250	250	250	250
9	250	250	250	250	250	250
10	250	250	250	250	250	500
11	250	250	250	250	250	500
12	250	250	500	250	250	250
13	250	250	125	250	250	250
14	500	250	250	250	250	250
15	250	250	250	250	125	250
16	250	250	250	250	250	500
17	250	250	250	250	250	500
18	250	250	250	250	500	250
19	250	250	250	250	250	250
20	250	250	250	250	125	500
21	250	250	250	250	250	500
22	250	250	125	125	125	250
23	250	250	250	250	250	250
24	500	250	250	250	250	250
25	500	250	250	250	250	500
26	500	250	250	250	250	250
27	500	250	250	250	250	500
28	250	250	250	250	250	250
29	250	250	250	250	250	250
30	250	250	250	250	250	250
31	500	250	250	250	250	500
32	250	250	250	250	250	250
33	250	250	250	250	250	500
34	250	250	250	250	250	250
35	250	250	250	250	250	500
36	250	250	250	250	250	250
37	500	250	250	250	250	500
38	500	250	250	250	250	500
39	500	250	250	250	250	250
40	250	250	250	125	250	250
Streptomycin	31.25	7.81	31.25	125	15.625	15.625

A: S. aureus (NRRL B-767), B: L. monocytogenes (ATCC-7644), C: E. coli (ATCC-25922), D: P. aeruginosa (ATCC-254992), E: M. luteus (NRLL B-4375), F: B. subtilis (NRS-744).

Table 3 Antifungal activity of the compounds (1-40) as MIC values $(\mu g/mL)$.

Compound	A	В	С	D	E	F	G	Н
1	250	250	125	250	250	250	250	250
2	250	250	250	250	250	250	250	250
3	250	250	125	250	250	250	250	125
4	250	250	250	250	250	250	250	250
5	250	250	250	250	250	250	250	250
6	250	250	125	250	250	250	250	250
7	250	250	125	250	250	250	250	250
8	250	250	125	250	250	250	250	250
9	250	250	125	250	250	250	250	250
10	250	250	125	250	250	250	250	250
11	250	250	125	250	250	250	125	250
12	250	250	250	250	250	250	250	250
13	250	250	250	250	250	250	250	250
14	250	250	250	250	250	250	250	250
15	250	250	125	250	250	250	125	250
16	250	250	125	250	250	250	250	250
17	250	250	125	250	250	250	125	250
18	250	250	125	250	250	250	250	250
19	250	250	125	250	250	250	125	250
20	250	250	125	250	250	250	125	250
21	250	250	125	250	250	250	125	250
22	250	250	125	250	250	250	250	250
23 24	250 250	250 250	125 250	250	250 250	250 250	250 250	125 250
2 4 25	250 250	250 250	250 125	250 250	250 250	250 250	250 250	250 250
26 26	250	250	250	250	250	250	250	250
27	250	250	250	250	250	250	250	250
28	250	250	125	250	250	250	250	250
29	250	250	125	250	250	250	250	250
30	250	250	125	250	250	250	250	250
31	250	250	125	250	250	250	250	250
32	250	250	125	250	250	250	250	250
33	250	250	250	250	250	250	250	250
34	250	250	250	250	250	250	250	250
35	250	250	250	250	250	250	250	250
36	250	250	250	250	250	250	250	250
37	250	250	250	250	250	250	250	250
38	250	250	250	250	250	250	250	250
39	250	250	250	250	250	250	250	250
40	250	250	250	250	250	250	250	250
Ketoconazole	125	7.8	250	250	500	500	500	250

A: A. parasiticus (NRRL 465), B: P. chrysogenum (NRRL 1951), C: T. harzianum (NRRL 20565), D: A. ochraceus (NRRL 3174), E: F. solani (NRRL-13414) F: F. moniliforme (NRLL 1866), G: F. culmorum (wild culture), H: C. albicans (ATCC-22019).

ketoconazole exhibited the inhibitory activity with a MIC value of 125 μ g/mL. Compounds **1–40** and ketoconazole also showed the same level of antifungal activity against *Aspergillus ochraceus* with a MIC value of 250 μ g/mL.

Compounds **1–40** were more effective than ketoconazole against *Fusarium solani* and *Fusarium moniliforme*. These compounds exhibited the inhibitory activity against *F. solani* and *F. moniliforme* with a MIC value of 250 μ g/mL, whereas ketoconazole exhibited the inhibitory activity with a MIC value of 500 μ g/mL. The microbiological results demonstrated that the antifungal effects of the compounds on *A. parasiticus*, *A. ochraceus*, *F. solani* and *F. moniliforme* did not depend on the substituents.

Compounds **1–40** were found to be more potent than ketoconazole against *Fusarium culmorum*. Compounds **11, 15, 17, 19, 20** and **21** showed the antifungal activity with a MIC value of 125 μ g/mL, whereas other derivatives showed the antifungal activity against *F. culmorum* with a MIC value of 250 μ g/mL.

Compounds **2**, **4**, **5**, **12**, **13**, **14**, **24**, **26**, **27**, **33**, **34**, **35**, **36**, **37**, **38**, **39**, **40** and ketoconazole exhibited the inhibitory activity against *Trichoderma harzianum* with a MIC value of 250 μ g/mL, other derivatives exhibited the inhibitory activity with a MIC value of 125 μ g/mL.

The most effective derivatives were also evaluated for their cytotoxicity against C6 rat glioma cells. The viability and IC₅₀ values

of compounds **1**, **3**, **8**, **9**, **10**, **11**, **16**, **17**, **19**, **21**, **22**, **23**, **24**, **25**, **27**, **28**, **29**, **30**, **35**, **36**, **37**, **38**, **39** against C6 cells for 24 h were presented in Tables 4 and 5, respectively. Compound **17** bearing 1-phenyl-1*H*-tetrazole and nonsubstituted phenyl moieties can be identified as the most promising anticancer agent against C6 glioma cell lines due to its inhibitory effect on C6 cells and low toxicity to NIH/3T3 cells (IC₅₀ = 416.7 \pm 28.9 μ g/mL). Compound **17** exhibited its inhibitory effect on C6 cells with an IC₅₀ value of 8.3 \pm 2.6 μ g/mL, whereas cisplatin showed its anticancer activity with an IC₅₀ value of 13.7 \pm 1.2 μ g/mL.

The immunostaining procedure was carried out with specific anti-BrdU antibodies in the S-phase of the cell cycle. DNA synthesis inhibitory activity of compounds 16, 17, 19, 21, 23, 27, 28, 29 and 30 which exhibited significant cytotoxic activity in MTT assay on C6 cell lines is presented in Fig. 1. DNA synthesis inhibition activity of the compounds was evaluated for 24 h. C6 cell lines were incubated with three different concentrations of the compounds that were determined according to their IC₅₀ values. Cisplatin was used as a positive control. The tested compounds showed inhibitory activity on dose dependent manner. These results show that the compounds tested in this assay cause DNA synthesis inhibition. Among these compounds, the most potent inhibitors of DNA synthesis against C6 cell lines were found as compounds 16, 17 and 19. DNA synthesis inhibition caused by the concentration of IC₅₀ for compounds 16, 17 and 19 tested in C6 cell line were similar. Although compounds 16, 17 and 19 had similar inhibitory effects on DNA synthesis activity, compound 17 was the best among them due to low IC₅₀ value against C6 glioma cells (Table 5). On the other hand, DNA synthesis inhibition caused by the concentration of IC₅₀ for compounds **21**, **23**, **27**, **28**, **29** and **30** were similar.

All compounds were also evaluated for their cytotoxic effects against NIH/3T3 cell lines. The MTT assay indicated that compounds **32** and **40** possessed the highest cytotoxicity (IC $_{50} < 3.9~\mu g/mL$), whereas compounds **19**, **35** and **37** exhibited the lowest cytotoxicity (IC $_{50} > 500~\mu g/mL$) against NIH/3T3 cells among the compounds (Table 5).

4. Conclusion

In the present paper, we described the synthesis of thiazoline derivatives bearing a hydrazone moiety, which were tested *in vitro* against pathogenic bacteria and fungi.

The microbiological results revealed that the compounds exhibited more significant antimicrobial activity against fungi than bacteria.

Compound **22** bearing 1-phenyl-1*H*-tetrazole and *p*-chlorophenyl moieties can be identified as the most promising antibacterial agent against *P. aeruginosa* due to its inhibitory effect on *P. aeruginosa* and low toxicity to NIH3T3 cells (IC₅₀ = 313.3 \pm 15.3 µg/mL), whereas compound **23** bearing 1-phenyl-1*H*-tetrazole and *p*-bromophenyl moieties was found to be the most promising anticandidal agent owing to its inhibitory effect on *C. albicans* and low toxicity to NIH3T3 cells (IC₅₀ = 433.3 \pm 28.9 µg/mL). Furthermore, all compounds exhibited significant antifungal activity against *T. harzianum*, *A. ochraceus*, *F. solani*, *F. moniliforme*, *F. culmorum*.

The most effective derivatives were also evaluated for their cytotoxicity against C6 rat glioma cells. Compound **17** bearing 1-phenyl-1*H*-tetrazole and nonsubstituted phenyl moieties was the most promising anticancer agent against C6 glioma cell lines with an IC₅₀ value of 8.3 \pm 2.6 µg/mL when compared with cisplatin (IC₅₀ = 13.7 \pm 1.2 µg/mL). Compound **17** also exhibited low toxicity to NIH/3T3 cells with an IC₅₀ value of 416.7 \pm 28.9 µg/mL. The results also revealed that compounds **16**, **17** and **19** were the most potent inhibitors of DNA synthesis against C6 cell lines.

Table 4
The viability of compounds 1, 3, 8, 9, 10, 11, 16, 17, 19, 21, 22, 23, 24, 25, 27, 28, 29, 30, 35, 36, 37, 38, 39 against C6 cell lines.

Compounds	Concentration (μg/mL) ^a								
	6	12	25	50	100	200			
1	90.0 ± 12.0	79.6 ± 2.4	77.3 ± 3.6	62.4 ± 13.4	38.6 ± 8.8	35.5 ± 3.7			
3	74.6 ± 8.3	72.0 ± 11.9	70.7 ± 6.5	53.8 ± 18.9	39.6 ± 7.6	27.8 ± 3.4			
8	70.2 + 1.6	62.6 ± 0.6	58.8 ± 2.3	58.8 ± 3.9	55.2 ± 5.4	52.6 ± 2.7			
9	85.2 ± 3.4	80.7 ± 5.6	64.2 ± 7.9	56.2 ± 1.0	38.8 ± 8.3	26.8 ± 2.2			
10	80.4 ± 4.6	76.2 ± 1.5	69.3 ± 8.1	69.2 ± 1.8	64.1 ± 4.9	58.6 ± 5.0			
11	88.0 ± 9.3	68.8 ± 4.7	60.7 ± 6.5	44.3 ± 3.7	39.7 ± 5.7	39.7 ± 6.5			
16	63.5 + 11.1	53.9 ± 4.4	43.9 ± 6.2	35.6 ± 4.6	30.9 ± 3.6	28.6 ± 4.3			
17	52.1 ± 1.9	47.1 ± 1.8	42.5 ± 6.3	36.7 ± 9.1	35.8 ± 5.9	22.6 ± 0.9			
19	66.8 ± 7.3	55.1 ± 7.8	38.8 ± 3.1	29.5 ± 3.4	28.5 ± 4.6	22.2 ± 3.9			
21	74.9 ± 0.4	60.0 ± 8.2	49.3 ± 6.5	43.7 ± 4.5	35.8 ± 3.5	30.6 ± 4.3			
22	77.4 ± 13.0	69.3 ± 12.3	62.3 ± 12.4	60.0 ± 6.8	54.3 ± 3.4	52.4 ± 2.6			
23	61.8 ± 10.3	58.6 ± 8.7	47.9 ± 4.1	32.0 ± 4.9	24.3 ± 2.4	20.4 ± 2.1			
24	78.8 + 17.1	74.1 ± 15.3	64.2 ± 5.9	61.1 ± 6.3	59.8 ± 5.9	54.0 ± 2.4			
25	72.4 ± 2.9	72.5 ± 4.6	65.9 ± 4.8	63.9 ± 1.7	61.8 ± 4.8	59.2 ± 1.9			
27	65.9 ± 6.4	58.3 ± 5.3	50.1 ± 3.7	40.6 ± 5.2	31.5 ± 11.1	13.3 ± 2.8			
28	57.9 ± 8.4	53.6 ± 1.9	42.6 ± 9.1	31.5 ± 3.3	25.9 ± 5.1	22.2 ± 6.2			
29	74.3 ± 18.1	73.7 ± 16.8	50.1 ± 16.5	37.4 ± 7.1	34.9 ± 11.1	26.5 ± 6.3			
30	82.8 ± 10.0	76.6 ± 9.8	53.3 ± 15.1	37.9 ± 3.4	34.1 ± 5.2	29.0 ± 5.1			
35	93.2 ± 20.7	83.0 ± 24.1	82.7 ± 10.7	64.4 ± 2.3	45.9 ± 4.4	43.7 + 9.7			
36	89.6 + 2.1	78.4 + 8.1	74.0 + 8.4	66.5 + 10.7	51.5 + 8.1	37.6 + 6.6			
37	84.0 + 16.7	77.4 + 13.7	63.9 + 3.3	55.5 + 1.4	53.4 + 0.4	32.2 + 6.2			
38	95.9 + 19.8	91.6 + 11.9	91.1 + 24.6	61.8 + 2.4	45.5 + 6.6	39.7 + 9.4			
39	76.4 + 26.0	72.1 + 11.9	72.3 + 23.6	69.0 + 15.7	67.6 + 14.9	63.2 + 15.1			
Cisplatin	57.3 + 2.9	51.7 + 2.8	31.2 + 8.8	27.2 + 4.1	17.3 + 2.5	16.2 + 2.4			

^a Viability % was determined relative to controls.

In the view of the current study, further research can be carried out on the development of new effective antimicrobial and anticancer agents by the modification of these compounds.

5. Experimental

5.1. Chemistry

All reagents were purchased from commercial suppliers and were used without further purification. Melting points were determined on an Electrothermal 9100 melting point apparatus (Weiss-Gallenkamp, Loughborough, UK) and are uncorrected. IR spectra were recorded on Shimadzu 8400 FT-IR spectrophotometer (Shimadzu, Tokyo, Japan). ¹H NMR spectra were recorded on a Bruker 300 MHz and 400 MHz spectrometer (Bruker, Billerica, USA), respectively. ¹³C NMR spectra were recorded on a Bruker 100 MHz spectrometer (Bruker, Billerica, USA). Mass spectra were recorded on an Agilent LC-MSD-Trap-SL Mass spectrometer (Agilent, Minnesota, USA). Elemental analyses were performed on a Perkin—Elmer EAL 240 elemental analyser (Perkin—Elmer, Norwalk, USA).

5.1.1. General procedure for the synthesis of the compounds 5.1.1.1. Ethyl 2-[(aryl)thio]acetate derivatives (A1-6). A mixture of thiol (0.2 mol) and ethyl chloroacetate (0.2 mol) in the presence of potassium carbonate (0.2 mol) in acetone (60 mL) was refluxed for 24 h. The reaction mixture was cooled, filtered and the crude product was solved in water and then extracted with diethyl ether [31–34].

5.1.1.2. 2-[(Aryl)thio]acetohydrazide derivatives (**B1**–**6**). A mixture of the ester (**A**) (0.1 mol) and hydrazine hydrate (0.2 mol) in ethanol (40 mL) was stirred at room temperature for 10 h and then filtered [31–34].

5.1.1.3. 1-(Arylthioacetyl)-4-phenyl thiosemicarbazide derivatives (*C1*–*6*). A mixture of the hydrazide (*B*) (0.05 mol) and phenyl isothiocyanate (0.05 mol) in ethanol (30 mL) was refluxed for 1 h and then filtered [34–36].

5.1.1.3.1. 1-[(1-Methyl-1H-tetrazol-5-yl)thioacetyl]-4-phenyl thiosemicarbazide (C-2). M.p.: 168–169 °C.

IR (KBr) $\nu_{\rm max}$ (cm $^{-1}$): 3296.12, 3236.33, 3215.11 (N $^{-}$ H stretching), 3056.96 (Aromatic C $^{-}$ H stretching), 2975.96, 2937.38 (Aliphatic C $^{-}$ H stretching), 1685.67 (C $^{-}$ O stretching), 1593.09, 1548.73, 1537.16, 1502.44, 1471.59 (C $^{-}$ N, C $^{-}$ C stretching and N $^{-}$ H bending), 1446.51 (C $^{-}$ H bending), 1269.07 (C $^{-}$ N stretching), 1207.36, 1153.35 (Aromatic C $^{-}$ H in plane bending), 752.19, 703.97 (Aromatic C $^{-}$ H out of plane bending).

¹H NMR (400 MHz) (DMSO- d_6) δ (ppm): 3.93 (3H, s, CH₃), 4.11 (2H, s, S–CH₂), 7.13 (1H, t, J_1 = 7.6 Hz, J_2 = 6.8 Hz, phenyl H₄), 7.30 (2H, t, J_1 = 8 Hz, J_2 = 7.6 Hz, phenyl H₃, H₅), 7.43 (2H, d, J = 7.6 Hz, phenyl H₂, H₆), 9.59 (1H, s, N–H), 9.72 (1H, s, N–H), 10.40 (1H, s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 34.48 (CH₃), 36.00 (CH₂), 126.01 (2CH), 128.82 (3CH), 139.50 (C), 154.02 (C), 167.11 (C), 181.68 (C).

MS (ESI)(m/z): (M⁺ – 1) 322.

For $C_{11}H_{13}N_7OS_2$ calculated: C, 40.85; H, 4.05; N, 30.32; Found: C, 40.84; H, 4.06; N, 30.32.

5.1.1.3.2. 1-[(Pyrimidin-2-yl)thioacetyl]-4-phenyl thiosemicarbazide (C-5). M.p.: 176–181 °C.

IR (KBr) $\nu_{\rm max}$ (cm $^{-1}$): 3307.69, 3261.40 (N–H stretching), 3103.25 (Aromatic C–H stretching), 2933.53 (Aliphatic C–H stretching), 1681.81 (C=O stretching), 1596.95, 1508.23, 1450.37 (C=N, C=C stretching and N–H bending), 1379.01 (C–H bending), 1317.29, 1274.86 (C–N stretching), 1213.14, 1159.14 (Aromatic C–H in plane bending), 636.47 (C–S stretching).

¹H NMR (400 MHz) (DMSO- d_6) δ (ppm): 3.99 (2H, s, S–CH₂), 7.14 (1H, t, J_1 = 7.6 Hz, J_2 = 6.8 Hz, phenyl H₄), 7.18 (1H, t, J_1 , J_2 = 4.8 Hz, pyrimidine H₄), 7.31 (2H, t, J_1 = 8.4 Hz, J_2 = 7.2 Hz, phenyl H₃, H₅), 7.39 ve 7.48 (2H, 2d, J_1 , J_2 = 7.6 Hz, phenyl H₂, H₆), 8.58 (2H, d, J = 4.8 Hz, pyrimidine), 9.55 (1H, s, N–H), 9.70 (1H, s, N–H), 10.26 (1H, s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 33.64 (CH₂), 118.10 (CH), 125.92 (2CH), 126.53 (CH), 128.81 (2CH), 139.66 (C), 158.48 (2CH), 168.13 (C), 170.87 (C), 181.52 (C).

MS (ESI)(m/z): $(M^+ - 1)$ 318.

Table 5 IC₅₀ values of the compounds against NIH/3T3 and C6 cell lines.

Compound	IC ₅₀ value (µg/mL)			
	NIH/3T3 cell lines	C6 cell lines		
1	216.7 ± 15.3	68.3 ± 13.1		
2	133.3 ± 11.5	nt		
3	130.0 ± 20.0	56.0 ± 10.4		
4	166.7 ± 5.8	nt		
5	65.0 ± 17.3	nt		
6	51.7 ± 20.8	nt		
7	58.3 ± 36.8	nt		
8	153.3 ± 5.7	>200		
9	173.3 ± 20.8	67.7 ± 8.8		
10	166.7 ± 28.8	>200		
11	243.3 ± 40.4	36.3 ± 4.9		
12	45.0 ± 5.0	nt		
13	113.3 ± 52.0	nt		
14	40.0 ± 13.2	nt		
15	19.3 ± 0.6	nt		
16	213.3 ± 5.7	23.3 ± 6.2		
17	416.7 ± 28.9	8.3 ± 2.6		
18	14.3 ± 4.0	nt		
19	>500	14.7 ± 3.4		
20	11.7 ± 1.5	nt		
21	206.7 ± 15.3	24.3 ± 6.3		
22	313.3 ± 15.3	>200		
23	433.3 ± 28.9	21.0 ± 3.7		
24	453.3 ± 53.3	>200		
25	196.7 ± 5.8	>200		
26	176.7 ± 86.6	nt		
27	373.3 ± 30.5	25.3 ± 6.1		
28	300.0 ± 50.0	18.7 ± 2.9		
29	383.3 ± 28.9	27.3 ± 10.5		
30	253.3 ± 25.2	28.0 ± 8.6		
31	55.0 ± 5.0	nt		
32	<3.9	nt		
33	106.7 ± 30.5	nt		
34	193.3 ± 11.5	nt		
35	>500	85.0 ± 10.8		
36 37	450 ± 50	101.7 ± 16.5		
37 38	$>$ 500 396.7 \pm 5.8	110.0 ± 8.2 83.3 ± 12.5		
38 39	396.7 ± 5.8 273.3 ± 20.8	83.3 ± 12.5 >200		
40	273.3 ± 20.8 <3.9	>200 nt		
	< 5.9 nt	13.7 ± 1.2		
Cisplatin	IIL	15.7 ± 1.2		

nt: not tested.

For $C_{13}H_{13}N_5OS_2$ calculated: C, 48.88; H, 4.10; N, 21.93; Found: C, 48.85; H, 4.10; N, 21.95.

5.1.1.4. N'-(3,4-Diarylthiazol-2(3H)-ylidene)-2-(arylthio)acetohydrazide derivatives (1–40). A mixture of the thiosemicarbazide (\mathbf{C})

Fig. 1. DNA synthesis inhibitory activity of compounds 16, 17, 19, 21, 23, 27, 28, 29, 30 and cisplatin on C6 cells.

(2 mmol) and 2-bromoacetophenone/4′-substituted-2-bromoacetophenone (2 mmol) in ethanol (15 mL) was refluxed for 5 h and then filtered [18,36].

5.1.1.4.1. N'-[(3,4-Diphenylthiazol-2(3H)-ylidene)]-2-[(4-methyl-4H-1,2,4-triazol-3-yl)thio]acetohydrazide (1). IR (KBr) $\nu_{\rm max}$ (cm $^{-1}$): 2927.82 (Aliphatic C–H stretching), 1677.23 (C=O stretching), 1572.17, 1511.84, 1488.62 (C=N, C=C stretching and N–H bending), 1442.44, 1356.41 (C–H bending), 1299.82 (C–N stretching), 1198.50, 1155.96, 1092.80, 1072.12, 1011.25 (Aromatic C–H in plane bending), 917.04, 830.77, 760.55, 691.98 (Aromatic C–H out of plane bending and C–S stretching).

¹H NMR (400 MHz) (DMSO- d_6) δ (ppm): 3.60 (3H, s, CH₃), 3.86 (2H, s, S–CH₂), 6.54 (1H, s, thiazoline), 7.13–7.42 (10H, m, phenyl), 8.59 (1H, s, triazole), 10.36 (1H, s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 31.61 (CH₃), 36.28 (CH₂), 99.85 (CH), 128.46 (CH), 128.85 (2CH), 128.94 (CH), 129.17 (CH), 129.23 (CH), 129.29 (2CH), 129.54 (2CH), 131.31 (C), 138.02 (C), 140.21 (CH), 146.90 (C), 149.43 (2C), 167.90 (C).

MS (ESI)(m/z): $(M^+ - 1)$ 421.

For $C_{20}H_{18}N_6OS_2$ calculated: C, 56.85; H, 4.29; N, 19.89; Found: C, 56.85; H, 4.30; N, 19.90.

5.1.1.4.2. N'-[(4-Nitrophenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(4-methyl-4H-1,2,4-triazol-3-yl)thio]acetohydrazide (2). IR (KBr) $\nu_{\rm max}$ (cm $^{-1}$): 3105.32 (Aromatic C–H stretching), 1688.90 (C=O stretching), 1601.78, 1587.64, 1574.24, 1556.46, 1488.71, 1454.19 (C=N, C=C stretching and N–H bending), 1445.83, 1341.62 (C–H bending), 1318.20, 1300.36, 1287.44 (C–N stretching), 1195.46, 1173.07, 1158.41, 1107.02, 1075.43, 1028.28, 1002.02 (Aromatic C–H in plane bending), 921.02, 852.97, 765.46, 753.34, 691.94 (Aromatic C–H out of plane bending and C–S stretching).

 1 H NMR (300 MHz) (DMSO- d_{6}) δ (ppm): 3.46 and 3.56 (3H, 2s, CH₃), 4.06 (2H, s, S–CH₂), 6.70–8.54 (11H, m, thiazoline, phenyl, 4-nitrophenyl, triazole), 11.30 (1H, s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 31.40 (CH₃), 35.32 (CH₂), 107.11 (CH), 121.51 (CH), 124.13 (CH), 124.19 (CH), 124.44 (2CH), 128.97 (CH), 129.07 (CH), 129.68 (CH), 129.72 (CH), 137.59 (C), 138.56 (C), 143.37 (CH), 146.84 (C), 147.57 (C), 147.90 (C), 150.68 (C), 168.04 (C).

MS (ESI)(m/z): $(M^+ - 1)$ 466.

For $C_{20}H_{17}N_7O_3S_2$ calculated: C, 51.38; H, 3.67; N, 20.97; Found: C, 51.40; H, 3.68; N, 20.97.

5.1.1.4.3. N'-[(4-Methylphenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(4-methyl-4H-1,2,4-triazol-3-yl)thio]acetohydrazide (**3**). IR (KBr) $\nu_{\rm max}$ (cm $^{-1}$): 2920.48 (Aliphatic C–H stretching), 1676.49 (C=O stretching), 1598.24, 1557.20, 1497.37, 1451.91 (C=N, C=C stretching and N–H bending), 1354.97 (C–H bending), 1286.79 (C–N stretching), 1183.91, 1111.26, 1065.51, 1017.97 (Aromatic C–H in plane bending), 967.30, 812.24, 783.89, 754.20, 693.09 (Aromatic C–H out of plane bending and C–S stretching).

¹H NMR (400 MHz) (DMSO- d_6) δ (ppm): 2.31 (3H, s, CH₃), 3.53 (3H, s, CH₃, triazole), 4.02 (2H, s, S–CH₂), 7.04 (1H, s, thiazoline), 7.23 (2H, d, J=8 Hz, 4-methylphenyl), 7.35–7.53 (7H, m, phenyl, 4-methylphenyl), 8.85 (1H, s, triazole), 10.35 (1H, s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 21.61 (CH₃), 32.07 (CH₃), 35.48 (CH₂), 101.82 (CH), 124.17 (CH), 124.87 (2CH), 128.44 (C), 129.01 (2CH), 130.01 (2CH), 130.95 (2CH), 139.73 (C), 140.69 (C), 141.10 (CH), 146.83 (C), 149.79 (2C), 167.68 (C).

MS (ESI)(m/z): $(M^+ + 1)$ 437.

For $C_{21}H_{20}N_6OS_2$ calculated: C, 57.78; H, 4.62; N, 19.25; Found: C, 57.79; H, 4.60; N, 19.25.

5.1.1.4.4. N'-[(4-Methoxyphenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(4-methyl-4H-1,2,4-triazol-3-yl)thio]acetohydrazide (**4**). IR (KBr) $\nu_{\rm max}$ (cm⁻¹): 3355.05 (N–H stretching), 3054.18 (Aromatic C–H stretching), 2871.63 (Aliphatic C–H stretching), 1705.44 (C=O stretching), 1603.12, 1561.21, 1510.66, 1492.71, 1466.63 (C=N, C=C

stretching and N–H bending), 1438.95, 1416.76, 1346.04 (C–H bending), 1300.05, 1258.52, 1230.96 (C–N stretching), 1197.99 (C–O stretching), 1181.13, 1107.16, 1077.25, 1051.47, 1036.95, 1023.50 (Aromatic C–H in plane bending), 961.96, 878.09, 846.37, 832.55, 819.84, 774.79, 766.03, 744.95, 714.93, 694.16, 656.22 (Aromatic C–H out of plane bending and C–S stretching).

¹H NMR (300 MHz) (DMSO- d_6) δ (ppm): 3.57 (3H, s, CH₃), 3.82 (3H, s, OCH₃), 4.01 (2H, s, S–CH₂), 6.95 (1H, s, thiazoline), 7.02 (2H, d, J=9 Hz, 4-methoxyphenyl), 7.38–7.57 (7H, m, phenyl, 4-methoxyphenyl), 8.75 (1H, s, triazole), 12.08 (1H, s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 31.95 (CH₃), 35.35 (CH₂), 56.07 (CH₃), 100.77 (CH), 114.91 (2CH), 119.98 (CH), 124.11 (C), 128.32 (2CH), 130.72 (2CH), 130.96 (2CH), 140.06 (C), 140.94 (CH), 146.90 (C), 149.70 (2C), 161.25 (C), 167.75 (C).

MS (ESI)(m/z): (M⁺ + 1) 453.

For $C_{21}H_{20}N_6O_2S_2$ calculated: C, 55.73; H, 4.45; N, 18.57; Found: C, 55.75; H, 4.45; N, 18.58.

5.1.1.4.5. N'-[(4-Fluorophenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(4-methyl-4H-1,2,4-triazol-3-yl)thio]acetohydrazide (5). IR (KBr) $\nu_{\rm max}$ (cm⁻¹): 3421.07 (N–H stretching), 3061.60 (Aromatic C–H stretching), 2890.79 (Aliphatic C–H stretching), 1704.58 (C=O stretching), 1600.44, 1584.15, 1567.31, 1505.80, 1496.56, 1467.04 (C=N, C=C stretching and N–H bending), 1410.18, 1380.91, 1344.37 (C–H bending), 1311.88, 1276.96, 1232.00 (C–N stretching), 1200.92, 1162.99, 1103.17, 1028.52, 1013.09 (Aromatic C–H in plane bending), 962.40, 832.02, 780.42, 763.32, 747.72, 712.36, 689.84, 654.90 (Aromatic C–H out of plane bending and C–S stretching).

¹H NMR (300 MHz) (DMSO- d_6) δ (ppm): 3.59 and 3.68 (3H, 2s, CH₃), 4.03 (2H, d, J=6 Hz, S–CH₂), 7.05–7.57 (10H, m, thiazoline, phenyl, 4-fluorophenyl), 8.84 and 9.02 (1H, 2s, triazole), 12.10 (1H, s, N–H).

 ^{13}C NMR (100 MHz) (DMSO- d_6) δ (ppm): 32.28 (CH₃), 35.47 (CH₂), 102.79 (CH), 116.49 (CH), 116.71 (CH), 124.11 (CH), 124.14 (CH), 124.23 (CH), 128.59 (C), 131.02 (2CH), 131.80 (CH), 131.89 (CH), 139.54 (C), 140.02 (CH), 146.74 (C), 150.14 (C), 150.99 (C), 162.50 (C), 167.65 (C).

MS (ESI)(m/z): $(M^+ + 1)$ 441.

For $C_{20}H_{17}FN_6OS_2$ calculated: C, 54.53; H, 3.89; N, 19.08; Found: C, 54.54; H, 3.90; N, 19.08.

5.1.1.4.6. N'-[(4-Chlorophenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(4-methyl-4H-1,2,4-triazol-3-yl)thio]acetohydrazide (**6**). IR (KBr) $\nu_{\rm max}$ (cm $^{-1}$): 3037.87 (Aromatic C–H stretching), 2851.33 (Aliphatic C–H stretching), 1718.10 (C=O stretching), 1585.11, 1553.42, 1505.64, 1487.76, 1453.15 (C=N, C=C stretching and N–H bending), 1422.87, 1395.31, 1376.38 (C–H bending), 1310.58 (C–N stretching), 1190.98, 1164.76, 1110.75, 1090.99, 1051.16, 1013.89 (Aromatic C–H in plane bending), 945.69, 963.72, 895.74, 866.25, 829.02, 820.88, 783.59, 760.19, 710.09, 696.14, 684.73 (Aromatic C–H out of plane bending and C–S stretching).

¹H NMR (300 MHz) (DMSO- d_6) δ (ppm): 3.71 and 3.72 (3H, 2s, CH₃), 3.87 and 4.00 (2H, 2s, S–CH₂), 7.17–7.41 (10H, m, thiazoline, phenyl, 4-chlorophenyl), 9.04 (1H, s, triazole), 11.80 (1H, s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 32.95 (CH₃), 35.39 (CH₂), 106.05 (CH), 128.37 (2CH), 129.03 (CH), 129.09 (2CH), 130.69 (C), 130.91 (2CH), 131.77 (2CH), 134.99 (2C), 141.07 (CH), 146.33 (C), 151.57 (2C), 166.05 (C).

MS (ESI)(m/z): (M⁺ + 1) 457.

For $C_{20}H_{17}CIN_6OS_2$ calculated: C, 52.57; H, 3.75; N, 18.39; Found: C, 52.58; H, 3.75; N, 18.40.

5.1.1.4.7. N'-[(4-Bromophenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(4-methyl-4H-1,2,4-triazol-3-yl)thio]acetohydrazide (7). IR (KBr) $\nu_{\rm max}$ (cm $^{-1}$): 3108.56, 3035.01 (Aromatic C–H stretching), 2850.52, 2734.33 (Aliphatic C–H stretching), 1717.73 (C=O stretching), 1580.57, 1553.70, 1505.47, 1485.83, 1452.55 (C=N, C=C stretching)

and N–H bending), 1422.99, 1393.45, 1351.23, 1374.05 (C–H bending), 1310.04, 1225.98 (C–N stretching), 1190.48, 1165.12, 1109.10, 1070.32, 1050.98, 1009.23 (Aromatic C–H in plane bending), 963.01, 945.29, 895.41, 866.11, 827.64, 818.18, 782.74, 760.36, 724.31, 714.07, 693.63, 682.24 (Aromatic C–H out of plane bending and C–S stretching).

 1 H NMR (300 MHz) (DMSO- d_{6}) δ (ppm): 3.72 and 3.73 (3H, 2s, CH₃), 4.01 and 4.10 (2H, 2s, S–CH₂), 7.14–7.51 (10H, m, thiazoline, phenyl, 4-bromophenyl), 9.29 and 9.38 (1H, 2s, triazole), 11.14 (1H, s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 32.76 (CH₃), 35.42 (CH₂), 105.53 (CH), 123.66 (C), 128.85 (CH), 129.03 (2CH), 129.40 (2CH), 129.77 (C), 130.61 (2CH), 131.85 (CH), 131.99 (CH), 135.19 (C), 140.95 (CH), 146.39 (C), 151.29 (2C), 165.81 (C).

MS (ESI)(m/z): $(M^+ + 1)$ 501.

For $C_{20}H_{17}BrN_6OS_2$ calculated: C, 47.91; H, 3.42; N, 16.76; Found: C, 47.90; H, 3.40; N, 16.75.

5.1.1.4.8. N'-[(4-Cyanophenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(4-methyl-4H-1,2,4-triazol-3-yl)thio]acetohydrazide (8). IR (KBr) $\nu_{\rm max}$ (cm $^{-1}$): 3433.06 (N–H stretching), 3037.68 (Aromatic C–H stretching), 2908.45 (Aliphatic C–H stretching), 2229.56 (C=N stretching), 1716.53 (C=O stretching), 1598.88, 1488.94 (C=N, C=C stretching and N–H bending), 1317.29 (C–N stretching), 1110.92 (Aromatic C–H in plane bending), 833.19 (Aromatic C–H out of plane bending).

¹H NMR (400 MHz) (DMSO- d_6) δ (ppm): 3.76 (3H, s, CH₃), 4.06 and 4.15 (2H, 2s, S–CH₂), 7.28–7.52 (8H, m, thiazoline, phenyl, 4-cyanophenyl), 7.76–7.81 (2H, m, 4-cyanophenyl), 9.52 and 9.56 (1H, 2s, triazole), 11.15 (1H, s, N–H).

 ^{13}C NMR (100 MHz) (DMSO- d_6) δ (ppm): 32.29 (CH₃), 34.72 (CH₂), 106.14 (CH), 111.64 (C), 118.01 (C), 128.19 (CH), 128.54 (2CH), 129.01 (2CH), 129.73 (CH), 129.79 (CH), 131.05 (2CH), 132.08 (C), 136.55 (C), 139.40 (CH), 145.35 (C), 145.44 (C), 151.05 (C), 164.69 (C). MS (ESI)(m/z): (M $^+$ + 1) 448.

For $C_{21}H_{17}N_7OS_2$ calculated: C, 56.36; H, 3.83; N, 21.91; Found: C, 56.37; H, 3.83; N, 21.90.

5.1.1.4.9. N'-[(3,4-Diphenylthiazol-2(3H)-ylidene)]-2-[(1-methyl-1H-tetrazol-5-yl)thio]acetohydrazide (9). IR (KBr) $\nu_{\rm max}$ (cm $^{-1}$): 3053.11 (Aromatic C–H stretching), 2860.16 (Aliphatic C–H stretching), 1723.44 (C=O stretching), 1595.18, 1573.85, 1557.58, 1514.48, 1458.36 (C=N, C=C stretching and N–H bending), 1445.50, 1397.08, 1368.05 (C–H bending), 1310.69, 1227.67 (C–N stretching), 1210.93, 1194.17, 1179.66, 1124.94, 1076.71, 1019.72, 1003.86 (Aromatic C–H in plane bending), 963.44, 936.93, 917.06, 896.68, 835.43, 811.36, 776.09, 745.91, 691.14 (Aromatic C–H out of plane bending and C–S stretching).

¹H NMR (400 MHz) (DMSO- d_6) δ (ppm): 3.84 and 3.95 (3H, 2s, CH₃), 4.20 and 4.23 (2H, 2s, S–CH₂), 7.17 (1H, s, thiazoline), 7.39–7.57 (10H, m, phenyl), 11.38 and 12.41 (1H, 2s, N–H).

 ^{13}C NMR (100 MHz) (DMSO- d_6) δ (ppm): 34.44 (CH₃), 35.75 (CH₂), 103.23 (CH), 124.57 (CH), 127.38 (2CH), 128.97 (CH), 129.06 (CH), 129.17 (CH), 129.26 (2CH), 129.41 (2CH), 130.99 (C), 131.10 (C), 141.21 (2C), 153.37 (C), 167.12 (C).

MS (ESI)(m/z): $(M^+ + 1)$ 424.

For $C_{19}H_{17}N_7OS_2$ calculated: C, 53.88; H, 4.05; N, 23.15; Found: C, 53.90; H, 4.03; N, 23.15.

5.1.1.4.10. N'-[(4-Nitrophenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(1-methyl-1H-tetrazol-5-yl)thio]acetohydrazide (10). IR (KBr) $\nu_{\rm max}$ (cm⁻¹): 3197.61 (N–H stretching), 1721.69 (C=O stretching), 1589.15, 1552.80, 1516.69, 1489.05, 1455.35 (C=N, C=C stretching and N–H bending), 1408.01, 1387.21, 1345.52 (C–H bending), 1288.86 (C–N stretching), 1172.14, 1108.09, 1075.04, 1014.94 (Aromatic C–H in plane bending), 967.57, 915.36, 853.61, 758.06, 738.42, 697.12 (Aromatic C–H out of plane bending and C–S stretching).

¹H NMR (300 MHz) (DMSO- d_6) δ (ppm): 3.87 (3H, s, CH₃), 4.08 (2H, s, S–CH₂), 6.76–8.25 (10H, m, thiazoline, phenyl, 4-nitrophenyl), 11.81 (1H, s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 34.34 (CH₃), 35.69 (CH₂), 104.06 (CH), 121.84 (CH), 122.21 (CH), 123.66 (CH), 124.13 (CH), 124.38 (CH), 128.84 (CH), 128.93 (CH), 129.13 (CH), 129.25 (CH), 137.55 (C), 138.34 (C), 147.57 (C), 148.03 (C), 148.16 (C), 153.24 (C), 167.37 (C).

MS (ESI)(m/z): $(M^+ + 1)$ 469.

For $C_{19}H_{16}N_8O_3S_2$ calculated: C, 48.71; H, 3.44; N, 23.92; Found: C, 48.70; H, 3.45; N, 23.90.

5.1.1.4.11. N'-[(4-Methylphenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(1-methyl-1H-tetrazol-5-yl)thio]acetohydrazide (11). IR (KBr) $\nu_{\rm max}$ (cm $^{-1}$): 3033.02 (Aromatic C–H stretching), 2861.21 (Aliphatic C–H stretching), 1715.69 (C=O stretching), 1604.28, 1570.13, 1509.78, 1497.50, 1457.38 (C=N, C=C stretching and N–H bending), 1387.32, 1359.70 (C–H bending), 1298.45, 1281.47, 1261.97, 1246.99, 1230.14 (C–N stretching), 1192.95, 1171.02, 1127.83, 1077.32, 1018.13, 1005.46 (Aromatic C–H in plane bending), 959.96, 883.71, 842.61, 827.41, 812.77, 794.83, 782.15, 772.95, 753.42, 736.62, 698.75 (Aromatic C–H out of plane bending and C–S stretching).

¹H NMR (400 MHz) (DMSO- d_6) δ (ppm): 2.36 (3H, s, CH₃), 3.89 (3H, s, CH₃, tetrazole), 4.24 and 4.32 (2H, 2s, S–CH₂), 7.10 (1H, s, thiazoline), 7.25 (2H, d, J=8.4 Hz, aromatic), 7.37 (2H, d, J=7.6 Hz, aromatic), 7.43–7.48 (3H, m, aromatic), 7.57–7.61 (2H, m, aromatic), 12.34 (1H, s, N–H).

 ^{13}C NMR (100 MHz) (DMSO- d_6) δ (ppm): 21.64 (CH₃), 34.39 (CH₃), 35.70 (CH₂), 102.11 (CH), 124.46 (CH), 124.69 (2CH), 128.85 (C), 129.07 (2CH), 129.97 (2CH), 131.09 (2CH), 138.96 (C), 140.76 (2C), 141.30 (C), 153.35 (C), 167.12 (C).

MS (ESI)(m/z): $(M^+ + 1)$ 438.

For $C_{20}H_{19}N_7OS_2$ calculated: C, 54.90; H, 4.38; N, 22.41; Found: C, 54.89; H, 4.35; N, 22.42.

5.1.1.4.12. N'-[(4-Methoxyphenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(1-methyl-1H-tetrazol-5-yl)thio]acetohydrazide (12). IR (KBr) $\nu_{\rm max}$ (cm⁻¹): 3360.96 (N–H stretching), 2713.08 (Aliphatic C–H stretching), 1699.11 (C=O stretching), 1601.61, 1573.64, 1557.76, 1508.14, 1456.13 (C=N, C=C stretching and N–H bending), 1410.34 (C–H bending), 1299.85, 1256.06 (C–N stretching), 1204.33 (C–O stretching), 1179.66, 1135.14, 1115.76, 1023.98 (Aromatic C–H in plane bending), 962.51, 839.78, 816.69, 766.97, 720.80, 697.73 (Aromatic C–H out of plane bending and C–S stretching).

¹H NMR (300 MHz) (DMSO- d_6) δ (ppm): 3.69 and 3.81 (3H, 2s, OCH₃), 3.90 and 3.98 (3H, 2s, CH₃), 4.12–4.22 (2H, m, S–CH₂), 6.65–7.60 (10H, m, thiazoline, phenyl, 4-methoxyphenyl), 11.81 (1H, s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 34.34 (CH₃), 35.58 (CH₂), 55.96 (CH₃), 99.90 (CH), 114.74 (2CH), 123.36 (CH), 129.20 (C), 130.09 (2CH), 130.35 (2CH), 130.70 (2CH), 130.86 (C), 140.50 (2C), 153.38 (C), 160.96 (C), 167.17 (C).

MS (ESI)(m/z): $(M^+ + 1)$ 454.

For $C_{20}H_{19}N_7O_2S_2$ calculated: C, 52.96; H, 4.22; N, 21.62; Found: C, 52.95; H, 4.20; N, 21.63.

5.1.1.4.13. N'-[(4-Fluorophenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(1-methyl-1H-tetrazol-5-yl)thio]acetohydrazide (13). IR (KBr) $\nu_{\rm max}$ (cm⁻¹): 3503.26 (N–H stretching), 3116.58 (Aromatic C–H stretching), 1715.79 (C=O stretching), 1602.24, 1566.64, 1496.42, 1455.49 (C=N, C=C stretching and N–H bending), 1407.64, 1371.82 (C–H bending), 1278.53, 1228.28 (C–N stretching), 1173.37, 1160.55, 1101.28, 1075.68, 1025.17, 1010.42 (Aromatic C–H in plane bending), 963.54, 889.11, 855.21, 822.06, 792.38, 777.12, 757.78, 745.09, 703.94, 684.82, 656.09 (Aromatic C–H out of plane bending and C–S stretching).

 1 H NMR (300 MHz) (DMSO- d_{6}) δ (ppm): 3.91 (3H, s, CH₃), 4.19 and 4.24 (2H, 2s, S–CH₂), 6.99 (1H, s, thiazoline), 7.25–7.57 (9H, m, phenyl, 4-fluorophenyl), 12.04 (1H, s, N–H).

 13 C NMR (100 MHz) (DMSO- d_6) δ (ppm): 34.40 (CH₃), 35.60 (CH₂), 102.50 (CH), 116.63 (2CH), 124.01 (CH), 124.40 (2CH), 128.81 (C), 131.09 (2CH), 131.79 (CH), 131.89 (CH), 140.19 (3C), 153.37 (C), 162.52 (C), 167.17 (C).

MS (ESI)(m/z): (M⁺ + 1) 442.

For $C_{19}H_{16}FN_7OS_2$ calculated: C, 51.69; H, 3.65; N, 22.21; Found: C, 51.70; H, 3.65; N, 22.20.

5.1.1.4.14. N'-[(4-Chlorophenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(1-methyl-1H-tetrazol-5-yl)thio]acetohydrazide (14). IR (KBr) $\nu_{\rm max}$ (cm⁻¹): 2879.95 (Aliphatic C–H stretching), 1715.30 (C=O stretching), 1571.56, 1458.25 (C=N, C=C stretching and N–H bending), 1092.79, 1011.35 (Aromatic C–H in plane bending), 752.01 (Aromatic C–H out of plane bending).

¹H NMR (300 MHz) (DMSO- d_6) δ (ppm): 3.91 (3H, s, CH₃), 4.23 (2H, d, J=12 Hz, S–CH₂), 7.03 (1H, s, thiazoline), 7.33–7.56 (9H, m, phenyl, 4-chlorophenyl), 12.19 (1H, s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 34.39 (CH₃), 35.49 (CH₂), 102.40 (CH), 124.11 (2CH), 126.63 (CH), 128.34 (2CH), 129.51 (C), 130.94 (2CH), 131.03 (2CH), 135.72 (2C), 139.82 (2C), 153.41 (C), 167.25 (C).

MS (ESI)(m/z): $(M^+ + 1)$ 458.

For $C_{19}H_{16}ClN_7OS_2$ calculated: C, 49.83; H, 3.52; N, 21.41; Found: C, 49.82; H, 3.50; N, 21.42.

5.1.1.4.15. N'-[(4-Bromophenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(1-methyl-1H-tetrazol-5-yl)thio]acetohydrazide (**15**). IR (KBr) $\nu_{\rm max}$ (cm $^{-1}$): 3049.57 (Aromatic C–H stretching), 2878.02 (Aliphatic C–H stretching), 1710.14 (C=O stretching), 1609.00, 1600.29, 1571.18, 1488.78, 1463.73 (C=N, C=C stretching and N–H bending), 1398.02 (C–H bending), 1286.25, 1230.88 (C–N stretching), 1195.72, 1170.19, 1115.87, 1071.96, 1027.90, 1004.77 (Aromatic C–H in plane bending), 958.17, 915.24, 887.94, 827.97, 805.46, 748.09, 713.05, 700.50, 690.56 (Aromatic C–H out of plane bending and C–S stretching).

¹H NMR (300 MHz) (DMSO- d_6) δ (ppm): 3.91 (3H, s, CH₃), 4.24 (2H, d, J = 9 Hz, S–CH₂), 7.03 (1H, s, thiazoline), 7.33–7.66 (9H, m, phenyl, 4-bromophenyl), 12.05 (1H, s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 34.41 (CH₃), 35.56 (CH₂), 103.04 (CH), 124.30 (C), 124.59 (CH), 126.79 (2CH), 128.65 (2CH), 131.06 (C), 131.16 (2CH), 132.43 (2CH), 139.96 (3C), 153.40 (C), 167.22 (C).

MS (ESI)(m/z): $(M^+ + 1)$ 503.

For C₁₉H₁₆BrN₇OS₂ calculated: C, 45.42; H, 3.21; N, 19.52; Found: C, 45.42; H, 3.21; N, 19.52.

5.1.1.4.16. N'-[(4-Cyanophenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(1-methyl-1H-tetrazol-5-yl)thio]acetohydrazide (**16**). IR (KBr) $\nu_{\rm max}$ (cm⁻¹): 3429.20 (N–H stretching), 3058.89 (Aromatic C–H stretching), 2894.95 (Aliphatic C–H stretching), 2227.63 (C \equiv N stretching), 1720.39 (C \equiv O stretching), 1604.66, 1571.88, 1477.37 (C \equiv N, C \equiv C stretching and N–H bending), 1176.50 (Aromatic C–H in plane bending), 856.34 (Aromatic C–H out of plane bending), 667.32 (C–S stretching).

¹H NMR (400 MHz) (DMSO- d_6) δ (ppm): 3.91 (3H, s, CH₃), 4.22 (2H, d, J = 16 Hz, S–CH₂), 6.96–7.11 (1H, thiazoline), 7.28–8.04 (9H, m, phenyl, 4-cyanophenyl), 12.02 (1H, s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 33.56 (CH₃), 34.56 (CH₂), 110.88 (CH), 112.20 (C), 118.25 (C), 122.67 (CH), 128.77 (2CH), 128.93 (2CH), 130.08 (2CH), 131.44 (CH), 131.80 (CH), 132.44 (C), 138.22 (3C), 152.55 (C), 166.47 (C).

MS (ESI)(m/z): $(M^+ + 1)$ 449.

For $C_{20}H_{16}N_8OS_2$ calculated: C, 53.56; H, 3.60; N, 24.98; Found: C, 53.55; H, 3.63; N, 24.98.

5.1.1.4.17. N'-[(3,4-Diphenylthiazol-2(3H)-ylidene)]-2-[(1-phenyl-1H-tetrazol-5-yl)thio]acetohydrazide (17). IR (KBr) $\nu_{\rm max}$ (cm $^{-1}$): 3108.98 (Aromatic C–H stretching), 1671.06 (C=O stretching), 1616.69, 1578.50, 1551.16, 1497.07 (C=N, C=C stretching and N–H bending), 1445.30, 1386.11, 1357.86 (C–H bending), 1300.61, 1242.75 (C–N stretching), 1155.47, 1090.59, 1074.06, 1014.15 (Aromatic C–H in plane bending), 966.93, 916.68, 830.89, 758.47, 691.94 (Aromatic C–H out of plane bending and C–S stretching).

¹H NMR (300 MHz) (DMSO- d_6) δ (ppm): 4.20–4.29 (2H, m, S–CH₂), 6.97–7.71 (16H, m, phenyl, thiazoline), 10.46 and 11.34 (1H, 2a, N, H)

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 35.30 (CH₂), 102.50 (CH), 121.93 (CH), 125.05 (2CH), 125.16 (2CH), 128.30 (CH), 128.94 (2CH), 129.16 (2CH), 129.27 (CH), 129.63 (CH), 129.81 (CH), 130.26 (2CH), 130.74 (C), 133.62 (C), 139.66 (C), 140.40 (2C), 154.03 (C), 167.04 (C).

MS (ESI)(m/z): $(M^+ + 1)$ 486.

For $C_{24}H_{19}N_7OS_2$ calculated: C, 59.36; H, 3.94; N, 20.19; Found: C, 59.35; H, 3.95; N, 20.21.

5.1.1.4.18. N'-[(4-Nitrophenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(1-phenyl-1H-tetrazol-5-yl)thio]acetohydrazide (18). IR (KBr) $\nu_{\rm max}$ (cm $^{-1}$): 3051.47 (Aromatic C–H stretching), 2998.42, 2865.67, 2713.80 (Aliphatic C–H stretching), 1706.42 (C=O stretching), 1601.19, 1583.64, 1567.32, 1518.32, 1493.90, 1459.06 (C=N, C=C stretching and N–H bending), 1432.77, 1405.65, 1385.86, 1340.41 (C–H bending), 1281.46, 1236.60 (C–N stretching), 1205.51, 1179.21, 1116.79, 1107.17, 1077.76, 1059.36, 1026.94, 1012.84, 1003.01 (Aromatic C–H in plane bending), 986.22, 964.12, 921.26, 887.34, 868.17, 850.76, 840.40, 807.86, 761.05, 738.39, 710.65, 683.77, 656.04 (Aromatic C–H out of plane bending and C–S stretching).

¹H NMR (300 MHz) (DMSO- d_6) δ (ppm): 4.32 (2H, s, S–CH₂), 7.13–7.68 (15H, m, thiazoline, phenyl, 4-nitrophenyl), 12.04 (1H, s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 35.41 (CH₂), 104.37 (CH), 123.96 (CH), 124.39 (2CH), 124.88 (2CH), 130.43 (2CH), 130.78 (2CH), 130.97 (2CH), 131.40 (2CH), 133.51 (CH), 133.93 (C), 138.99 (2C), 148.67 (3C), 153.86 (C), 166.92 (C).

MS (ESI)(m/z): $(M^+ + 1)$ 531.

For $C_{24}H_{18}N_8O_3S_2$ calculated: C, 54.33; H, 3.42; N, 21.12; Found: C, 54.35; H, 3.40; N, 21.11.

 $5.1.1.4.19.\ N'-[(4-Methylphenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(1-phenyl-1H-tetrazol-5-yl)thio]acetohydrazide ($ **19** $). IR (KBr) <math>\nu_{\rm max}$ (cm $^{-1}$): 3054.94 (Aromatic C–H stretching), 2865.96 (Aliphatic C–H stretching), 1719.31 (C=O stretching), 1604.11, 1595.64, 1566.99, 1511.36, 1497.15, 1458.35 (C=N, C=C stretching and N–H bending), 1430.63, 1400.19, 1388.33, 1372.96 (C–H bending), 1335.31, 1304.67, 1276.09, 1241.89 (C–N stretching), 1198.38, 1126.98, 1091.18, 1075.17, 1059.47, 1028.44, 1012.88, 1004.22 (Aromatic C–H in plane bending), 977.13, 959.48, 917.70, 881.47, 842.12, 813.89, 793.92, 744.85, 756.30, 693.44 (Aromatic C–H out of plane bending and C–S stretching).

¹H NMR (300 MHz) (DMSO- d_6) δ (ppm): 2.30 (3H, s, CH₃), 4.36 (2H, d, J=9 Hz, S–CH₂), 6.98 (1H, s, thiazoline), 7.18–7.68 (14H, m, phenyl, 4-methylphenyl), 12.16 (1H, s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 21.64 (CH₃), 35.59 (CH₂), 102.08 (CH), 124.46 (CH), 124.73 (2CH), 124.98 (2CH), 128.81 (C), 129.10 (CH), 129.93 (2CH), 130.85 (2CH), 131.09 (2CH), 131.46 (2CH), 133.55 (2C), 140.69 (C), 141.30 (2C), 153.92 (C), 166.87 (C).

MS (ESI)(m/z): $(M^+ + 1)$ 500.

For $C_{25}H_{21}N_7OS_2$ calculated: C, 60.10; H, 4.24; N, 19.62; Found: C, 60.12; H, 4.25; N, 19.63.

5.1.1.4.20. N'-[(4-Methoxyphenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(1-phenyl-1H-tetrazol-5-yl)thio]acetohydrazide (**20**). IR (KBr) $\nu_{\rm max}$ (cm $^{-1}$): 3047.43, 3003.90 (Aromatic C–H stretching), 2839.26, 2755.74 (Aliphatic C–H stretching), 1712.55 (C=O)

stretching), 1599.73, 1575.50, 1561.78, 1497.12, 1457.11 (C=N, C=C stretching and N-H bending), 1442.55, 1427.94, 1403.56, 1385.67 (C-H bending), 1317.02, 1280.76, 1249.12, 1239.06 (C-N stretching), 1203.67 (C-O stretching), 1181.70, 1155.57, 1110.39, 1079.63, 1063.49, 1041.70, 1024.21 (Aromatic C-H in plane bending), 986.34, 964.04, 916.01, 889.10, 836.98, 812.86, 782.06, 761.19, 744.75, 716.73, 699.26, 685.00 (Aromatic C-H out of plane bending and C-S stretching).

¹H NMR (300 MHz) (DMSO- d_6) δ (ppm): 3.78 (3H, s, OCH₃), 4.36 (2H, d, J=9 Hz, S–CH₂), 6.92–6.96 (3H, m, thiazoline, 4-methoxyphenyl), 7.36–7.70 (12H, m, phenyl, 4-methoxyphenyl), 12.14 (1H, s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 35.53 (CH₂), 55.94 (CH₃, OCH₃), 101.40 (CH), 114.78 (2CH), 119.68 (CH), 121.80 (C), 124.43 (2CH), 124.98 (2CH), 130.81 (3CH), 131.07 (2CH), 131.46 (2CH), 133.50 (C), 141.17 (3C), 153.95 (C), 161.23 (C), 166.88 (C).

MS (ESI)(m/z): $(M^+ + 1)$ 516.

For $C_{25}H_{21}N_7O_2S_2$ calculated: C, 58.24; H, 4.11; N, 19.02; Found: C, 58.25; H, 4.13; N, 19.01.

5.1.1.4.21. N'-[(4-Fluorophenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(1-phenyl-1H-tetrazol-5-yl)thio]acetohydrazide (21). IR (KBr) $\nu_{\rm max}$ (cm⁻¹): 3042.79 (Aromatic C–H stretching), 2878.76, 2789.99 (Aliphatic C–H stretching), 1718.32 (C=O stretching), 1601.64, 1580.79, 1563.79, 1495.43, 1459.73 (C=N, C=C stretching and N–H bending), 1433.58, 1410.86, 1392.56 (C–H bending), 1302.22, 1278.20, 1229.76 (C–N stretching), 1197.61, 1161.24, 1126.60, 1090.12, 1072.59, 1055.48, 1022.55, 1011.93 (Aromatic C–H in plane bending), 972.60, 960.57, 919.97, 910.78, 881.99, 834.64, 824.13, 799.66, 756.33, 694.23, 685.64 (Aromatic C–H out of plane bending and C–S stretching).

¹H NMR (300 MHz) (DMSO- d_6) δ (ppm): 4.35 (2H, d, J = 9 Hz, S–CH₂), 7.00 (1H, s, thiazoline), 7.22–7.68 (14H, m, phenyl, 4-fluorophenyl), 12.12 (1H, s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 34.70 (CH₂), 101.58 (CH), 115.57 (CH), 115.79 (CH), 123.36 (CH), 123.48 (2CH), 124.21 (2CH), 127.74 (C), 130.04 (2CH), 130.26 (CH), 130.67 (2CH), 130.98 (CH), 131.07 (CH), 132.74 (C), 139.35 (3C), 153.15 (C), 161.68 (C), 166.14 (C).

MS (ESI)(m/z): (M⁺ + 1) 504.

For $C_{24}H_{18}FN_7OS_2$ calculated: C, 57.24; H, 3.60; N, 19.47; Found: C, 57.23; H, 3.59; N, 19.46.

5.1.1.4.22. N'-[(4-Chlorophenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(1-phenyl-1H-tetrazol-5-yl)thio]acetohydrazide (**22**). IR (KBr) $\nu_{\rm max}$ (cm $^{-1}$): 3041.64 (Aromatic C–H stretching), 2873.45 (Aliphatic C–H stretching), 1715.75 (C=O stretching), 1611.51, 1595.09, 1570.70, 1557.71, 1489.96, 1458.35 (C=N, C=C stretching and N–H bending), 1427.60, 1402.09, 1390.57 (C–H bending), 1300.05, 1278.84, 1241.02 (C–N stretching), 1198.92, 1125.86, 1090.33, 1073.86, 1055.84, 1025.05, 1010.90 (Aromatic C–H in plane bending), 975.60, 959.49, 913.82, 882.48, 847.42, 830.06, 808.10, 778.74, 751.28, 709.97, 691.25, 683.47 (Aromatic C–H out of plane bending and C–S stretching).

¹H NMR (300 MHz) (DMSO- d_6) δ (ppm): 4.35 (2H, d, J = 6 Hz, S–CH₂), 7.03 (1H, s, thiazoline), 7.33–7.70 (14H, m, phenyl, 4-chlorophenyl), 12.09 (1H, s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 35.41 (CH₂), 102.00 (CH), 124.99 (2CH), 126.77 (3CH), 129.45 (2CH), 130.82 (C), 130.88 (2CH), 130.96 (3CH), 131.45 (2CH), 133.54 (2C), 135.63 (C), 139.73 (2C), 153.96 (C), 167.01 (C).

MS (ESI)(m/z): $(M^+ + 1)$ 520.

For $C_{24}H_{18}ClN_7OS_2$ calculated: C, 55.43; H, 3.49; N, 18.85; Found: C, 55.42; H, 3.51; N, 18.84.

5.1.1.4.23. N'-[(4-Bromophenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(1-phenyl-1H-tetrazol-5-yl)thio]acetohydrazide (23). IR (KBr) ν_{max} (cm⁻¹): 3053.59 (Aromatic C–H stretching), 2873.39

(Aliphatic C–H stretching), 1715.31 (C=O stretching), 1611.83, 1595.08, 1570.56, 1495.96, 1457.97 (C=N, C=C stretching and N–H bending), 1399.60 (C–H bending), 1299.59, 1279.05, 1247.77 (C–N stretching), 1199.44, 1124.69, 1087.91, 1073.75, 1056.14, 1023.65, 1007.92 (Aromatic C–H in plane bending), 976.79, 958.57, 912.47, 882.81, 846.65, 828.60, 807.02, 751.10, 711.60, 699.15, 689.58, 682.91 (Aromatic C–H out of plane bending and C–S stretching).

¹H NMR (300 MHz) (DMSO- d_6) δ (ppm): 4.35 (2H, d, J = 3 Hz, S–CH₂), 6.99 (1H, s, thiazoline), 7.32–7.70 (14H, m, phenyl, 4-bromophenyl), 12.02 (1H, s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 35.51 (CH₂), 103.00 (CH), 124.20 (C), 124.56 (CH), 125.00 (2CH), 125.07 (2CH), 126.90 (2CH), 129.01 (CH), 130.83 (2CH), 131.02 (C), 131.15 (2CH), 131.46 (2CH), 132.40 (C), 133.53 (C), 139.95 (2C), 153.97 (C), 166.99 (C).

MS (ESI)(m/z): $(M^+ + 2)$ 566.

For $C_{24}H_{18}BrN_7OS_2$ calculated: C, 51.07; H, 3.21; N, 17.37; Found: C, 51.05; H, 3.20; N, 17.36.

5.1.1.4.24. N'-[(4-Cyanophenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(1-phenyl-1H-tetrazol-5-yl)thio]acetohydrazide (24). IR (KBr) $\nu_{\rm max}$ (cm⁻¹): 3438.84 (N–H stretching), 3053.11 (Aromatic C–H stretching), 2864.09, 2752.23 (Aliphatic C–H stretching), 2227.63 (C \equiv N stretching), 1708.81 (C \equiv O stretching), 1602.74, 1577.66, 1496.66 (C \equiv N, C \equiv C stretching and N–H bending), 1284.50 (C–N stretching), 1116.71 (Aromatic C–H in plane bending), 854.41, 759.90, 694.33 (Aromatic C–H out of plane bending and C–S stretching).

¹H NMR (400 MHz) (DMSO- d_6) δ (ppm): 4.42 (2H, d, J = 10.4 Hz, S–CH₂), 7.28 (1H, s, thiazoline), 7.40–7.43 (3H, m, phenyl), 7.55–7.59 (5H, m, phenyl), 7.64–7.73 (4H, m, phenyl, 4-cyanophenyl), 7.90 (2H, d, J = 8.4 Hz, 4-cyanophenyl), 12.37 (1H, s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 34.73 (CH₂), 103.48 (CH), 112.52 (C), 118.21 (C), 123.31 (CH), 124.18 (2CH), 127.58 (2CH), 129.11 (2CH), 129.70 (CH), 130.04 (2CH), 130.22 (2CH), 130.66 (2CH), 132.44 (C), 132.74 (C), 138.60 (3C), 153.11 (C), 166.14 (C).

MS (ESI)(m/z): (M⁺ + 1) 511.

For $C_{25}H_{18}N_8OS_2$ calculated: C, 58.81; H, 3.55; N, 21.95; Found: C, 58.82; H, 3.52; N, 21.97.

 $5.1.1.4.25.\ N'-[(3,4-Diphenylthiazol-2(3H)-ylidene)]-2-[(5-methyl-1,3,4-thiadiazol-2-yl)thio]acetohydrazide ($ **25** $) [36]. IR (KBr) <math>\nu_{\rm max}$ (cm $^{-1}$): 3089.35 (Aromatic C–H stretching), 2867.03 (Aliphatic C–H stretching), 1706.41 (C=O stretching), 1601.98, 1581.41, 1518.32, 1490.97 (C=N, C=C stretching and N–H bending), 1443.60, 1385.33, 1342.49 (C–H bending), 1282.24, 1236.05 (C–N stretching), 1195.45, 1153.90, 1116.47, 1076.69, 1026.93, 1012.08 (Aromatic C–H in plane bending), 959.19, 921.19, 888.11, 868.06, 850.63, 807.40, 761.50, 738.33, 690.85 (Aromatic C–H out of plane bending and C–S stretching).

¹H NMR (300 MHz) (DMSO- d_6) δ (ppm): 2.61 and 2.68 (3H, 2s, CH₃), 4.05–4.12 (2H, m, S–CH₂), 6.96–7.43 (11H, m, thiazoline, phenyl), 10.36 and 11.29 (1H, 2s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 15.96 (CH₃), 36.09 (CH₂), 102.84 (CH), 124.51 (3CH), 127.54 (CH), 129.29 (2CH), 129.43 (2CH), 130.89 (2CH), 131.09 (C), 138.88 (C), 141.29 (3C), 164.45 (C), 166.52 and 167.14 (C).

MS (ESI)(m/z): (M⁺ + 1) 440.

For $C_{20}H_{17}N_5OS_3$ calculated: C, 54.65; H, 3.90; N, 15.93; Found: C, 54.66; H, 3.92; N, 15.90.

5.1.1.4.26. N'-[(4-Nitrophenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(5-methyl-1,3,4-thiadiazol-2-yl)thio]acetohydrazide (**26**). IR (KBr) ν_{max} (cm $^{-1}$): 3068.23 (Aromatic C–H stretching), 2902.74 (Aliphatic C–H stretching), 1725.01 (C=O stretching), 1603.82, 1566.58, 1513.90, 1495.24, 1475.36, 1459.37 (C=N, C=C stretching and N–H bending), 1409.26, 1381.52, 1346.75 (C–H bending), 1291.94, 1232.17 (C–N stretching), 1191.79, 1165.64, 1121.52, 1108.97, 1069.62, 1022.03, 1013.07 (Aromatic C–H in plane bending), 954.42,

909.14, 888.78, 865.71, 852.39, 837.60, 810.92, 778.23, 765.70, 740.97, 708.49, 691.18 (Aromatic C—H out of plane bending and C—S stretching).

¹H NMR (300 MHz) (DMSO- d_6) δ (ppm): 2.59 (3H, s, CH₃), 4.21 (2H, d, J=9 Hz, S–CH₂), 7.14 (1H, s, thiazoline), 7.27–7.54 (5H, m, phenyl), 7.74 (2H, d, J=9 Hz, 4-nitrophenyl), 8.24 (2H, d, J=9 Hz, 4-nitrophenyl), 11.99 (1H, s, N–H).

 ^{13}C NMR (100 MHz) (DMSO- d_6) δ (ppm): 15.71 (CH₃), 35.48 (CH₂), 102.80 (CH), 123.63 (CH), 124.39 (2CH), 127.64 (2CH), 130.22 (2CH), 130.91 (2CH), 134.21 (C), 138.87 (2C), 148.51 (3C), 164.15 (C), 166.26 and 167.35 (C).

MS (ESI)(m/z): $(M^+ + 1)$ 485.

For $C_{20}H_{16}N_6O_3S_3$ calculated: C, 49.57; H, 3.33; N, 17.34; Found: C, 49.55; H, 3.34; N, 17.36.

 $5.1.1.4.27.\ N'-[(4-Methylphenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(5-methyl-1,3,4-thiadiazol-2-yl)thio]acetohydrazide (27).\ IR (KBr) <math>\nu_{\rm max}$ (cm $^{-1}$): 3037.33 (Aromatic C–H stretching), 2890.43 (Aliphatic C–H stretching), 1706.73 (C=O stretching), 1602.97, 1557.64, 1509.59, 1480.58, 1455.68 (C=N, C=C stretching and N–H bending), 1427.62, 1370.00 (C–H bending), 1259.28, 1229.94 (C–N stretching), 1214.55, 1186.58, 1073.63, 1046.71, 1030.98, 1017.64, 1002.56 (Aromatic C–H in plane bending), 955.19, 880.59, 839.81, 819.18, 808.22, 781.67, 759.38, 739.61, 694.39 (Aromatic C–H out of plane bending and C–S stretching).

¹H NMR (300 MHz) (DMSO- d_6) δ (ppm): 2.34 (3H, s, CH₃), 2.66 (3H, s, CH₃, thiadiazole), 4.23 (2H, s, S–CH₂), 6.98 (1H, s, thiazoline), 7.22–7.59 (9H, m, phenyl, 4-methylphenyl), 12.11 (1H, s, N–H).

 13 C NMR (100 MHz) (DMSO- d_6) δ (ppm): 15.91 (CH₃), 21.65 (CH₃), 35.93 (CH₂), 102.05 (CH), 124.48 (3CH), 124.72 (C), 128.84 (2CH), 129.11 (2CH), 129.96 (2CH), 131.08 (C), 140.66 (C), 141.37 (3C), 164.47 (C), 166.42 and 167.15 (C).

MS (ESI)(m/z): $(M^+ + 1)$ 454.

For $C_{21}H_{19}N_5OS_3$ calculated: C, 55.60; H, 4.22; N, 15.44; Found: C, 55.61; H, 4.20; N, 15.45.

5.1.1.4.28. N'-[(4-Methoxyphenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(5-methyl-1,3,4-thiadiazol-2-yl)thio]acetohydrazide (**28**). IR (KBr) v_{max} (cm⁻¹): 2998.70, 2901.02 (Aliphatic C–H stretching), 1717.46 (C=O stretching), 1602.24, 1560.36, 1509.10, 1489.85, 1455.92 (C=N, C=C stretching and N–H bending), 1424.03, 1397.60, 1372.00, 1354.23 (C–H bending), 1294.48, 1251.05, 1226.20 (C–N stretching), 1182.55, 1133.69, 1064.62, 1035.52, 1020.08 (Aromatic C–H in plane bending), 955.01, 884.79, 852.09, 838.10, 822.02, 783.55, 762.97, 743.91, 695.88 (Aromatic C–H out of plane bending and C–S stretching).

¹H NMR (300 MHz) (DMSO- d_6) δ (ppm): 2.65 (3H, s, CH₃), 3.80 (3H, s, OCH₃), 4.24 (2H, s, S–CH₂), 6.96–6.99 (3H, m, thiazoline, 4-methoxyphenyl), 7.39–7.59 (7H, m, phenyl, 4-methoxyphenyl), 12.13 (1H, s, N–H).

 ^{13}C NMR (100 MHz) (DMSO- d_6) δ (ppm): 15.84 (CH₃), 36.04 (CH₂), 56.04 (CH₃), 101.66 (CH), 114.85 (2CH), 119.71 (CH), 124.55 (C), 128.93 (2CH), 130.88 (2CH), 131.10 (2CH), 138.79 (C), 141.30 (3C), 161.31 (C), 164.49 (C), 166.49 and 167.15 (C).

MS (ESI)(m/z): $(M^+ + 1)$ 470.

For $C_{21}H_{19}N_5O_2S_3$ calculated: C, 53.71; H, 4.08; N, 14.91; Found: C, 53.70; H, 4.10; N, 14.92.

 $5.1.1.4.29.\ N'-[(4-Fluorophenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(5-methyl-1,3,4-thiadiazol-2-yl)thio]acetohydrazide ($ **29** $). IR (KBr) <math>\nu_{\rm max}$ (cm $^{-1}$): 3058.84 (Aromatic C–H stretching), 2899.54 (Aliphatic C–H stretching), 1708.38 (C=O stretching), 1601.57, 1582.91, 1563.21, 1506.61, 1493.66, 1450.70 (C=N, C=C stretching and N–H bending), 1384.77, 1351.30 (C–H bending), 1225.19 (C–N stretching), 1185.93, 1163.54, 1103.92, 1070.29, 1026.05 (Aromatic C–H in plane bending), 883.45, 856.84, 821.97, 791.26, 777.42, 746.95, 694.88 (Aromatic C–H out of plane bending and C–S stretching).

 1 H NMR (300 MHz) (DMSO- d_{6}) δ (ppm): 2.65 (3H, s, CH₃), 4.22 (2H, s, S–CH₂), 7.00 (1H, s, thiazoline), 7.24–7.57 (9H, m, phenyl, 4-fluorophenyl), 12.04 (1H, s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 15.83 (CH₃), 35.89 (CH₂), 102.82 (CH), 116.36 (CH), 116.58 (CH), 121.75 (CH), 124.39 (2CH), 128.75 (C), 130.48 (2CH), 131.06 (CH), 131.91 (CH), 137.88 (C), 140.28 (3C), 162.50 (C), 164.29 (C), 166.44 and 167.21 (C).

MS (ESI)(m/z): (M⁺ + 1) 458.

For $C_{20}H_{16}FN_5OS_3$ calculated: C, 52.50; H, 3.52; N, 15.31; Found: C, 52.52; H, 3.51; N, 15.29.

5.1.1.4.30. N'-[(4-Chlorophenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(5-methyl-1,3,4-thiadiazol-2-yl)thio]acetohydrazide (30). IR (KBr) $\nu_{\rm max}$ (cm $^{-1}$): 3468.63 (N–H stretching), 3056.87 (Aromatic C–H stretching), 2962.51, 2918.10 (Aliphatic C–H stretching), 1708.68 (C=O stretching), 1600.34, 1567.72, 1557.93, 1489.71, 1451.18 (C=N, C=C stretching and N–H bending), 1428.07, 1406.25, 1383.78, 1350.71 (C–H bending), 1225.28 (C–N stretching), 1186.78, 1155.33, 1087.85, 1070.70, 1052.86, 1026.74, 1010.63 (Aromatic C–H in plane bending), 949.91, 918.06, 883.88, 854.58, 832.85, 806.38, 779.61, 759.95, 749.89, 707.23, 694.01 (Aromatic C–H out of plane bending and C–S stretching).

¹H NMR (300 MHz) (DMSO- d_6) δ (ppm): 2.67 (3H, s, CH₃), 4.23 (2H, s, S–CH₂), 7.03 (1H, s, thiazoline), 7.34–7.57 (9H, m, phenyl, 4-chlorophenyl), 12.04 (1H, s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 15.89 (CH₃), 35.69 (CH₂), 102.81 (CH), 121.53 (2CH), 124.07 (CH), 126.51 (2CH), 128.43 (C), 129.46 (2CH), 130.42 (2CH), 131.02 (C), 135.65 (C), 139.90 (3C), 164.29 (C), 166.41 and 167.25 (C).

MS (ESI)(m/z): $(M^+ + 1)$ 474.

For $C_{20}H_{16}CIN_5OS_3$ calculated: C, 50.68; H, 3.40; N, 14.77; Found: C, 50.69; H, 3.42; N, 14.76.

5.1.1.4.31. *N'-[(4-Bromophenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(5-methyl-1,3,4-thiadiazol-2-yl)thio]acetohydrazide* (**31**). IR (KBr) $\nu_{\rm max}$ (cm $^{-1}$): 3061.03 (Aromatic C–H stretching), 2882.43, 2750.05 (Aliphatic C–H stretching), 1716.93 (C=O stretching), 1597.84, 1587.35, 1571.34, 1555.38, 1508.37, 1482.05, 1453.65 (C=N, C=C stretching and N–H bending), 1421.97, 1396.34, 1379.30 (C–H bending), 1260.27 (C–N stretching), 1217.93, 1186.32, 1127.90, 1073.22, 1060.82, 1031.15, 1007.78 (Aromatic C–H in plane bending), 970.35, 957.25, 925.19, 878.29, 852.92, 830.73, 810.64, 772.15, 755.12, 701.88, 670.49 (Aromatic C–H out of plane bending and C–S stretching).

¹H NMR (300 MHz) (DMSO- d_6) δ (ppm): 2.68 (3H, s, CH₃), 4.24 (2H, s, S–CH₂), 7.05 (1H, s, thiazoline), 7.34–7.64 (9H, m, phenyl, 4-bromophenyl), 12.04 (1H, s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 16.06 (CH₃), 35.89 (CH₂), 103.31 (CH), 124.43 (C), 124.64 (CH), 126.73 (2CH), 128.81 (2CH), 131.09 (C), 131.25 (2CH), 132.19 (2CH), 132.43 (C), 140.15 (3C), 164.34 (C), 166.44 and 167.28 (C).

MS (ESI)(m/z): (M⁺ + 1) 519.

For $C_{20}H_{16}BrN_5OS_3$ calculated: C, 46.33; H, 3.11; N, 13.51; Found: C, 46.34; H, 3.12; N, 13.50.

5.1.1.4.32. N'-[(4-Cyanophenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(5-methyl-1,3,4-thiadiazol-2-yl)thio]acetohydrazide (**32**). IR (KBr) $\nu_{\rm max}$ (cm⁻¹): 3444.63 (N–H stretching), 3045.39 (Aromatic C–H stretching), 2902.67 (Aliphatic C–H stretching), 2223.77 (C \equiv N stretching), 1724.24 (C \equiv O stretching), 1610.45, 1569.95, 1477.37 (C \equiv N, C \equiv C stretching and N–H bending), 1382.87 (C–H bending), 1292.22 (C–N stretching), 1191.93, 1122.49 (Aromatic C–H in plane bending), 833.19, 757.97 (Aromatic C–H out of plane bending).

¹H NMR (400 MHz) (DMSO- d_6) δ (ppm): 2.69 (3H, s, CH₃), 4.29 (2H, d, J = 5.2 Hz, S–CH₂), 7.27 (1H, s, thiazoline), 7.42 (3H, d, J = 7.2 Hz, phenyl), 7.57 (2H, t, $J_1 = 7.6$ Hz, $J_2 = 8$ Hz, phenyl), 7.70 (2H, d, J = 8.4 Hz, 4-cyanophenyl), 7.88–7.90 (2H, d, J = 8 Hz, 4-cyanophenyl), 11.51 and 12.28 (1H, 2s, N–H).

 ^{13}C NMR (100 MHz) (DMSO- d_6) δ (ppm): 15.13 (CH₃), 34.92 (CH₂), 103.47 (CH), 112.37 (C), 118.24 (C), 120.80 (CH), 123.32 (2CH), 127.61 (2CH), 129.09 (2CH), 130.23 (2CH), 132.44 (C), 138.66 (4C), 163.40 (C), 165.57 and 166.50 (C).

MS (ESI)(m/z): $(M^+ + 1)$ 465.

For $C_{21}H_{16}N_6OS_3$ calculated: C, 54.29; H, 3.47; N, 18.09; Found: C, 54.32; H, 3.45; N, 18.11.

5.1.1.4.33. N'-[(3,4-Diphenylthiazol-2(3H)-ylidene)]-2-[(pyrimidin-2-yl)thio]acetohydrazide (33). IR (KBr) $\nu_{\rm max}$ (cm⁻¹): 3116.21 (Aromatic C–H stretching), 2927.91 (Aliphatic C–H stretching), 1673.26 (C=O stretching), 1618.49, 1583.35, 1550.63, 1489.09 (C=N, C=C stretching and N–H bending), 1445.64, 1379.64 (C–H bending), 1304.73, 1239.08 (C–N stretching), 1172.91, 1072.89, 1014.78 (Aromatic C–H in plane bending), 958.97, 925.10, 881.62, 829.55, 806.50, 766.78, 747.03, 727.95, 693.79 (Aromatic C–H out of plane bending and C–S stretching).

¹H NMR (300 MHz) (DMSO- d_6) δ (ppm): 3.91 and 3.94 (2H, 2s, S–CH₂), 6.98–7.44 (12H, m, thiazoline, phenyl, pyrimidine), 8.48 (1H, d, J = 6 Hz, pyrimidine), 8.66 (1H, d, J = 3 Hz, pyrimidine), 10.30 and 11.16 (1H, 2s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 33.03 (CH₂), 101.00 (CH), 118.09 (CH), 121.61 (CH), 121.88 (2CH), 128.28 (CH), 128.94 (CH), 128.99 (CH), 129.26 (2CH), 129.63 (CH), 129.68 (CH), 130.25 (C), 139.95 (C), 140.38 (2C), 158.34 (CH), 158.50 (CH), 168.16 (C), 170.20 (C).

MS (ESI)(m/z): (M⁺ + 1) 420.

For $C_{21}H_{17}N_5OS_2$ calculated: C, 60.12; H, 4.08; N, 16.69; Found: C, 60.10; H, 4.11; N, 16.71.

5.1.1.4.34. N'-[(4-Nitrophenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(pyrimidin-2-yl)thio]acetohydrazide (**34**). IR (KBr) $\nu_{\rm max}$ (cm⁻¹): 3099.76, 3048.66 (Aromatic C—H stretching), 2916.81 (Aliphatic C—H stretching), 1720.72 (C=O stretching), 1602.77, 1588.89, 1571.48, 1552.18, 1513.61, 1491.23, 1455.61 (C=N, C=C stretching and N-H bending), 1445.73, 1351.48 (C—H bending), 1318.33, 1287.98, 1253.72 (C—N stretching), 1195.34, 1173.10, 1158.16, 1116.35, 1075.68, 1026.26, 1002.42 (Aromatic C—H in plane bending), 920.62, 866.11, 852.66, 810.07, 764.91, 739.15, 691.88 (Aromatic C—H out of plane bending and C—S stretching).

¹H NMR (300 MHz) (DMSO- d_6) δ (ppm): 3.93 and 4.08 (2H, 2d, J_1 , J_2 = 15 Hz, S–CH₂), 7.11–7.56 (7H, m, thiazoline, phenyl, pyrimidine), 7.70 (2H, d, J = 9 Hz, 4-nitrophenyl), 8.08 (2H, d, J = 9 Hz, 4-nitrophenyl), 8.45 (2H, d, J = 6 Hz, pyrimidine), 11.77 (1H, s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 33.20 (CH₂), 104.77 (CH), 118.10 (CH), 124.06 (3CH), 124.14 (2CH), 128.48 (2CH), 130.51 (CH), 131.08 (CH), 133.97 (C), 139.24 (C), 148.47 (3C), 158.36 (2CH), 168.27 (C), 169.83 (C).

MS (ESI)(m/z): $(M^+ + 1)$ 465.

For $C_{21}H_{16}N_6O_3S_2$ calculated: C, 54.30; H, 3.47; N, 18.09; Found: C, 54.32; H, 3.46; N, 18.11.

5.1.1.4.35. N'-[(4-Methylphenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(pyrimidin-2-yl)thio]acetohydrazide (35). IR (KBr) ν_{max} (cm⁻¹): 3178.95 (N–H stretching), 1678.05 (C=O stretching), 1609.67, 1584.42, 1553.13, 1489.35 (C=N, C=C stretching and N–H bending), 1446.33, 1380.68 (C–H bending), 1307.59, 1235.57 (C–N stretching), 1183.19, 1070.10, 1027.89, 1015.99 (Aromatic C–H in plane bending), 956.22, 883.18, 811.97, 765.62, 746.57, 695.04 (Aromatic C–H out of plane bending and C–S stretching).

¹H NMR (300 MHz) (DMSO- d_6) δ (ppm): 2.30 (3H, s, CH₃), 3.93 (2H, s, S–CH₂), 6.34 (1H, phenyl), 6.97–7.39 (10H, m, thiazoline, phenyl, 4-methylphenyl, pyrimidine), 8.49 (2H, d, J=3 Hz, pyrimidine), 11.09 (1H, s, N–H).

 ^{13}C NMR (100 MHz) (DMSO- d_6) δ (ppm): 21.55 (CH₃), 33.02 (CH₂), 95.00 (CH), 118.06 (CH), 121.96 (3CH), 128.21 (C), 129.55 (2CH), 129.69 (2CH), 130.29 (2CH), 139.24 (2C), 140.05 (2C), 158.31 (2CH), 168.15 (C), 170.18 (C).

MS (ESI)(m/z): $(M^+ + 1)$ 434.

For $C_{22}H_{19}N_5OS_2$ calculated: C, 60.95; H, 4.42; N, 16.15; Found: C, 60.95; H, 4.40; N, 16.16.

5.1.1.4.36. N'-[(4-Methoxyphenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(pyrimidin-2-yl)thio]acetohydrazide (**36**). IR (KBr) $\nu_{\rm max}$ (cm⁻¹): 3458.23 (N–H stretching), 3090.59, 3061.82, 3006.60 (Aromatic C–H stretching), 2906.63 (Aliphatic C–H asymmetric stretching), 1707.44 (C=O stretching), 1603.05, 1571.51, 1548.99, 1509.43, 1495.36, 1455.61 (C=N, C=C stretching and N–H bending), 1426.26, 1381.49, 1363.53 (C–H bending), 1309.03, 1296.15, 1249.38, 1228.42 (C–N stretching), 1204.89 (C–O stretching), 1180.18, 1147.29, 1070.66, 1049.92, 1037.73, 1070.66, 1021.86 (Aromatic C–H in plane bending), 919.16, 884.81, 847.85, 831.51, 814.28, 781.39, 756.20, 736.26, 718.95, 693.25 (Aromatic C–H out of plane bending and C–S stretching).

¹H NMR (300 MHz) (DMSO- d_6) δ (ppm): 3.77 (3H, s, OCH₃), 4.01 and 4.13 (2H, 2d, J_1 , J_2 = 15 Hz, S–CH₂), 6.81–6.84 (3H, m, phenyl, 4-methoxyphenyl), 6.89 (1H, s, thiazoline), 7.18–7.58 (7H, m, phenyl, 4-methoxyphenyl, pyrimidine), 8.49 (2H, d, J = 6 Hz, pyrimidine), 11.97 (1H, s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 33.29 (CH₂), 55.97 (CH₃), 102.00 (CH), 114.52 (2CH), 118.18 (2CH), 119.62 (C), 124.61 (2CH), 130.81 (2CH), 131.12 (2CH), 138.45 (C), 141.57 (2C), 158.37 (2CH), 161.08 (C), 168.07 (C), 169.83 (C).

MS (ESI)(m/z): $(M^+ + 1)$ 450.

For $C_{22}H_{19}N_5O_2S_2$ calculated: C, 58.78; H, 4.26; N, 15.58; Found: C, 58.80; H, 4.25; N, 15.58.

5.1.1.4.37. *N'-[(4-Fluorophenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(pyrimidin-2-yl)thio]acetohydrazide* (**37**). IR (KBr) ν_{max} (cm⁻¹): 3439.55, 3214.83 (N–H stretching), 3111.10 (Aromatic C–H stretching), 2897.96 (Aliphatic C–H stretching), 1710.06 (C=O stretching), 1605.03, 1582.01, 1565.56, 1548.99, 1507.25, 1496.78, 1468.84 (C=N, C=C stretching and N–H bending), 1449.85, 1413.21, 1379.79, 1364.77 (C–H bending), 1252.01, 1232.50 (C–N stretching), 1204.74, 1190.26, 1165.02, 1147.37, 1106.85, 1067.77, 1051.30, 1024.36, 1012.48 (Aromatic C–H in plane bending), 908.86, 879.03, 843.44, 831.39, 808.43, 792.62, 772.88, 754.16, 745.95, 707.60 (Aromatic C–H out of plane bending).

¹H NMR (300 MHz) (DMSO- d_6) δ (ppm): 3.96 and 4.09 (2H, 2d, J_1 = 15 Hz, J_2 = 18 Hz, S–CH₂), 7.01 (1H, s, thiazoline), 7.09–7.59 (10H, m, phenyl, 4-fluorophenyl, pyrimidine), 8.52 (2H, d, J = 3 Hz, pyrimidine), 11.79 (1H, s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 33.20 (CH₂), 102.88 (CH), 116.08 (CH), 116.30 (CH), 118.24 (CH), 123.99 (CH), 124.49 (2CH), 128.91 (C), 131.12 (2CH), 131.81 (CH), 131.89 (CH), 140.52 (3C), 158.42 (2CH), 162.31 (C), 168.13 (C), 169.79 (C).

MS (ESI)(m/z): $(M^+ + 1)$ 438.

For $C_{21}H_{16}FN_5OS_2$ calculated: C, 57.65; H, 3.69; N, 16.01; Found: C, 57.65; H, 3.71; N, 16.02.

 $5.1.1.4.38.\ N'-[(4-Chlorophenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(pyrimidin-2-yl)thio]acetohydrazide (38). IR (KBr) <math>\nu_{max}$ (cm $^{-1}$): 3446.68, 3221.62 (N-H stretching), 3106.47 (Aromatic C-H stretching), 2896.97 (Aliphatic C-H stretching), 1712.54 (C=O stretching), 1608.42, 1571.18, 1551.32, 1492.20, 1470.47, 1450.21 (C=N, C=C stretching and N-H bending), 1422.93, 1406.31, 1378.72, 1365.82 (C-H bending), 1266.95, 1240.30 (C-N stretching), 1186.87, 1166.73, 1143.08, 1094.72, 1071.21, 1053.18, 1024.40, 1011.91 (Aromatic C-H in plane bending), 907.41, 878.07, 832.54, 810.88, 784.21, 772.79, 755.25, 744.55, 712.70, 692.71 (Aromatic C-H out of plane bending and C-S stretching).

¹H NMR (300 MHz) (DMSO- d_6) δ (ppm): 3.95 and 4.09 (2H, 2d, J_1 , $J_2=15$ Hz, S–CH₂), 7.03 (1H, s, thiazoline), 7.19–7.58 (10H, m, phenyl, 4-chlorophenyl, pyrimidine), 8.50 (2H, d, J=3 Hz, pyrimidine), 11.78 (1H, s, N–H).

 ^{13}C NMR (100 MHz) (DMSO- d_6) δ (ppm): 32.26 (CH₂), 103.32 (CH), 118.23 (CH), 124.46 (2CH), 126.37 (CH), 128.90 (2CH), 129.18 (C), 131.05 (2CH), 131.11 (2CH), 135.67 (C), 138.96 (C), 140.34 (2C), 158.34 (2CH), 168.14 (C), 169.75 (C).

MS (ESI)(m/z): (M⁺ + 1) 454.

For $C_{21}H_{16}ClN_5OS_2$ calculated: C, 55.56; H, 3.55; N, 15.43; Found: C, 55.55; H, 3.55; N, 15.44.

 $5.1.1.4.39.\ N'-[(4-Bromophenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(pyrimidin-2-yl)thio]acetohydrazide (39). IR (KBr) <math>\nu_{max}$ (cm $^{-1}$): 3448.17, 3222.00 (N–H stretching), 3104.75 (Aromatic C–H stretching), 2896.91 (Aliphatic C–H stretching), 1711.55 (C=O stretching), 1606.93, 1586.30, 1570.01, 1552.24, 1494.72, 1470.70, 1450.75 (C=N, C=C stretching and N–H bending), 1423.41, 1402.49, 1378.75 (C–H bending), 1267.03, 1232.97 (C–N stretching), 1183.85, 1165.79, 1141.66, 1074.38, 1053.64, 1024.00, 1008.74 (Aromatic C–H in plane bending), 906.46, 877.71, 823.54, 811.65, 783.10, 772.48, 754.67, 744.71, 702.92, 688.55 (Aromatic C–H out of plane bending and C–S stretching).

¹H NMR (300 MHz) (DMSO- d_6) δ (ppm): 3.95 and 4.09 (2H, 2d, J_1 , J_2 = 15 Hz, S–CH₂), 7.02 (1H, s, thiazoline), 7.20–7.58 (10H, m, phenyl, 4-bromophenyl, pyrimidine), 8.51 (2H, d, J = 3 Hz, pyrimidine), 11.76 (1H, s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 33.27 (CH₂), 103.19 (CH), 118.26 (CH), 124.45 (C), 124.52 (CH), 126.80 (2CH), 128.86 (2CH), 131.12 (C), 131.22 (2CH), 132.11 (2CH), 140.40 (3C), 158.37 (2CH), 168.17 (C), 169.77 (C).

MS (ESI)(m/z): $(M^+ + 1)$ 499.

For $C_{21}H_{16}BrN_5OS_2$ calculated: C, 50.60; H, 3.24; N, 14.05; Found: C, 50.60; H, 3.25; N, 14.02.

5.1.1.4.40. N'-[(4-Cyanophenyl-3-phenylthiazol-2(3H)-ylidene)]-2-[(pyrimidin-2-yl)thio]acetohydrazide (40). IR (KBr) $\nu_{\rm max}$ (cm⁻¹): 3419.56 (N−H stretching), 3085.89 (Aromatic C−H stretching), 2912.31, 2827.45 (Aliphatic C−H stretching), 2229.56 (C≡N stretching), 1720.39 (C=O stretching), 1604.66, 1562.23, 1548.73, 1477.37 (C=N, C=C stretching and N−H bending), 1390.58 (C−H bending), 1255.57 (C−N stretching), 1182.28, 1122.49, 1033.77 (Aromatic C−H in plane bending), 802.33, 765.69, 628.75 (Aromatic C−H out of plane bending and C−S stretching).

¹H NMR (400 MHz) (DMSO- d_6) δ (ppm): 3.99 and 4.16 (2H, 2d, J_1 , J_2 = 11.7 Hz, S–CH₂), 7.23 (1H, t, J_1 = 5.2 Hz, J_2 = 4.4 Hz, pyrimidine), 7.27 (1H, s, thiazoline), 7.41–7.45 (3H, m, phenyl), 7.58 (2H, t, J_1 = 7.2 Hz, J_2 = 8.4 Hz, phenyl), 7.66 (2H, d, J = 8 Hz, 4-cyanophenyl), 7.76 (2H, d, J = 8.4 Hz, 4-cyanophenyl), 8.52 (2H, d, J = 4.8 Hz, pyrimidine), 11.29 and 11.99 (1H, 2s, N–H).

¹³C NMR (100 MHz) (DMSO- d_6) δ (ppm): 32.43 (CH₂), 103.61 (CH), 112.37 (C), 117.46 (CH), 118.06 (C), 120.84 (CH), 123.42 (2CH), 127.78 (2CH), 129.16 (2CH), 130.28 (2CH), 132.16 (C), 138.87 (3C), 157.62 (2CH), 167.41 (C), 169.03 (C).

MS (ESI)(m/z): $(M^+ + 1)$ 445.

For $C_{22}H_{16}N_6OS_2$ calculated: C, 59.44; H, 3.63; N, 18.91; Found: C, 59.43; H, 3.61; N, 18.90.

5.2. Microbiology

5.2.1. Antibacterial and anticandidal activity

The antimicrobial activities of compounds **1–40** were tested using the microbroth dilution method [39]. Tested microorganism strains were *Micrococcus luteus* (NRLL B-4375), *Bacillus subtilis* (NRS-744), *P. aeruginosa* (ATCC-254992), *Staphylococcus aureus* (NRRL B-767), *Escherichia coli* (ATCC-25922), *Listeria monocytogenes* (ATCC-7644) *C. albicans* (ATCC-22019). Microbroth dilutionsusceptibility assay was used for antimicrobial evaluation of the compounds. Stock solutions of the samples were prepared in dimethyl sulfoxide. Dilution series using sterile distilled water were prepared from 4 mg/mL to 0.0039 mg/mL in micro-test tubes that

were transferred to 96-well microtiter plates. Overnight-grown bacterial and C. albicans suspensions in double-strength Mueller-Hinton broth were standardized to 10⁸ CFU/mL using McFarland No: 0.5 standard solutions. Hundred microliter of each microorganism suspension was then added into the wells. The last wellchain without a microorganism was used as a negative control. Sterile distilled water and the medium served as a positive growth control. After incubation at 37 °C for 18–24 h, antimicrobial activity was detected by spraying of 0.5% TTC (triphenyl tetrazolium chloride, Merck) aqueous solution. MIC was defined as the lowest concentration of compounds that inhibited visible growth, as indicated by the TTC staining.

5.2.2. Antifungal activity

The antifungal activities of compounds **1–40** were tested using the microbroth dilution method with some modifications [39,40]. Tested fungal strains were A. parasiticus (NRRL-465), A. ochraceus (NRRL 3174) Penicillium chrysogenum (NRRL 1951), Trichoderma harzianum (NRRL 20565), F. solani (NRRL-13414), F. culmorum (wild culture) and F. moniliforme (NRRL 1866). Microbroth dilutionsusceptibility assay was used for antimicrobial evaluation of the compounds. Stock solutions of the samples were prepared in dimethyl sulfoxide. Dilution series using sterile distilled water were prepared from 4 mg/mL to 0.0039 mg/mL in micro-test tubes that were transferred to 96-well microtiter plates. Fungal strains grown on PDA at 25 °C for 5 suspensions in double-strength Potato Dextrose Broth (PDB) were standardized to 10⁵ spores/mL. Hundred microliter of each spore suspension was then added into the wells. The last well-chain without a fungus was used as a negative control. Sterile distilled water and the medium served as a positive growth control. After incubation at 25 °C for 48-72 h, antifungal activity was detected by investigation of mycelia growing under stereo microscope.

Streptomycin was used as standard antibacterial agent, whereas ketoconazole was used as an antifungal agent.

5.3. Biochemistry

5.3.1. Cell culture and drug treatment

C6 rat glioma cells and NIH/3T3 mouse embryonic fibroblast cells were obtained from the American Type Culture Collection (ATCC, USA). The cells were incubated in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal calf serum (Life Technologies, UK), 100 IU/mL penicillin (Gibco, Paisley, Scotland) and 100 mg/mL streptomycin (Gibco) at 37 °C in a humidified atmosphere of 95% air and 5% CO₂. Exponentially growing cells were plated at 2×10^4 cells/mL into 96-well microtiter tissue culture plates (Nunc, Denmark) and incubated for 24 h before the addition of the drugs (the optimum cell number for cytotoxicity assays was determined in preliminary experiments). Stock solutions of compounds were prepared in dimethyl sulfoxide (DMSO; Sigma-Aldrich, Poole, UK) and further dilutions were made with fresh culture medium (the concentration of DMSO in the final culture medium was <0.1% which had no effect on the cell viability).

5.3.2. MTT assay

The level of cellular MTT (Sigma) reduction was quantified as previously described in the literature with small modifications [41,42].

After 24 h of preincubation, the compounds and cisplatin (positive control) were added to give final concentration in the range 3.9–500 μ g/mL for NIH/3T3 cells and 1.5–200 μ g/mL for C6 glioma cells and the cells were incubated for 24 h. At the end of this period, MTT was added to a final concentration of 0.5 mg/mL and the cells were incubated for 4 h at 37 °C. After the medium was

removed, the formazan crystals formed by MTT metabolism were solubilized by addition of 200 µL DMSO to each well and absorbance was read at 540 nm with a microtitre plate spectrophotometer (Bio-Tek plate reader). Each concentration was repeated in three wells and IC₅₀ values were defined as the drug concentrations that reduced absorbance to 50% of control values.

5.3.3. Analysis of DNA synthesis

Analysis of DNA synthesis was measured by BrdU Cell Proliferation ELISA (colorimetric) kit (Roche). This immunostaining procedure is based on the use of specific anti-BrdU antibodies for measuring the incorporation of bromodeoxyuridine (BrdU) into nuclear DNA in place of thymidine during the S-phase of the cell cycle [43]. Hence, this method provides a colorimetric measurement for DNA synthesis inhibition ratio of the carcinogenic cells. After cells were seeded into 96 well flat-bottomed microtiter plates at a density of 2×10^3 , various doses of compounds which were chosen after MTT test (compounds 16, 17, 19, 21, 23, 27, 28, 29, 30) and cisplatin were administrated into C6 tumor cells. Microtiter plates were incubated at 37 °C in a 5% CO₂/95% air humidified atmosphere for 24 h. The cells were labeled with 10 μL BrdU solution for 2 h and then fixed. Anti-BrdU-POD (100 μ L) was added and incubated for 90 min. After washing steps with 1xPBS, cells were incubated with substrate. Absorbance of the samples was measured with an ELX808-IU Bio-Tek apparatus at 450 nm. For each compound dose, triplicate wells were used.

5.3.4. Statistical analyses

Statistical analyses were evaluated by Statistical Package for the Social Science (SPSS) for Windows 15.0. Data was expressed as Mean \pm SD. Comparisons were performed by one way ANOVA test for normally distributed continuous variables and Tukey test was used for post hoc analyses of group differences.

Acknowledgments

This study was supported by Anadolu University Scientific Research Projects Commission under the grant no: 1105S087.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http:// dx.doi.org/10.1016/j.ejmech.2013.12.060.

References

- [1] M.A. Ghannoum, L.B. Rice, Clin. Microbiol. Rev. 12 (4) (1999) 501-517.
- A.C. Fluit, M.R. Visser, F.-J. Schmitz, Clin. Microbiol. Rev. 14 (2001) 836–871.
- M.M. Canuto, F.G. Rodero, Lancet Infect. Dis. 2 (2002) 550-563. [4] M.A. Pfaller, D.J. Diekema, Clin. Microbiol. Rev. 20 (1) (2007) 133–163.
- [5] P.K. Mukherjee, D.J. Sheehan, C.A. Hitchcock, M.A. Ghannoum, Clin. Microbiol. Rev. 18 (1) (2005) 163-194.
- [6] R.S. Shapiro, N. Robbins, L.E. Cowen, Microbiol. Mol. Biol. Rev. 75 (2) (2011) 213-267.
- [7] M.K. Kathiravan, A.B. Salake, A.S. Chothe, P.B. Dudhe, R.P. Watode, M.S. Mukta, S. Gadhwe, Bioorg. Med. Chem. 20 (2012) 5678–5698. I. Ahmad, A.Z. Beg, J. Ethnopharmacol. 74 (2001) 113–123.
- S.J. Kashyap, V.K. Garg, P.K. Sharma, N. Kumar, R. Dudhe, J.K. Gupta, Med. Chem. Res. 21 (2012) 2123–2132.
- [10] T. Eicher, S. Hauptmann, The Chemistry of Heterocycles, second ed., Wiley-VCH, Weinheim, 2003, pp. 149-407.
- [11] A.-C. Gaumont, M. Gulea, J. Levillain, Chem. Rev. 109 (2009) 1371–1401.
- [12] S.M. El-Khawass, M.A. Khalil, G.G. Tawil, Sci. Pharm. 48 (1980) 219–224.
 [13] A.-M.M.E. Omar, S.A. Shams El-Dine, A.A. Ghobashy, M.A. Khalil, Eur. J. Med.
- Chem. 16 (1) (1981) 77–80.
- [14] S.A.M. El-Hawash, A.E. Abdel Wahab, Arch. Pharm. Chem. Life Sci. 339 (2006)
- [15] B.F. Abdel-Wahab, H.A. Abdel-Aziz, E.M. Ahmed, Arch. Pharm. Chem. Life Sci. 341 (2008) 734-739.
- [16] R.P. Bhole, K.P. Bhusari, QSAR Comb. Sci. 28 (2009) 1405–1417.

- [17] G. Naganagowda, B. Padmashali, Phosphorus Sulfur Silicon 185 (2010) 1691— 1700.
- C.G. Bonde, N.J. Gaikwad, Bioorg. Med. Chem. 12 (2004) 2151-2161.
- [19] S. Rollas, S.G. Küçükgüzel, Molecules 12 (2007) 1910–1939.
 [20] R. Narang, B. Narasimhan, S. Sharma, Curr. Med. Chem. 19 (2012) 569–612.
 [21] V. Judge, B. Narasimhan, M. Ahuja, Med. Chem. Res. 21 (2012) 3940–3957.
- [22] P.P.T. Sah, S.A. Peoples, J. Am. Pharm. Assoc. 43 (1954) 513–524.
- [23] D. Chakravarty, A. Bose, S. Bose, J. Pharm. Sci. 53 (1964) 1036–1039.
- A. Gürsoy, N. Terzioglu, G. Ötük, Eur. J. Med. Chem. 32 (1997) 753–757.
- [25] P. Vicini, F. Zani, P. Cozzini, I. Doytchinova, Eur. J. Med. Chem. 37 (2002) 553-
- [26] P. Kumar, B. Narasimhan, D. Sharma, V. Judge, R. Narang, Eur. J. Med. Chem. 44 (2009) 1853-1863.
- [27] T.L. Lemke, D.A. Williams, Foye's Principles of Medicinal Chemistry, sixth ed., Lippincott Williams & Wilkins, Baltimore and Philadelphia, 2008, pp. 1028-
- D.J. Sheehan, C.A. Hitchcock, C.M. Sibley, Clin. Microbiol. Rev. 12 (1999) 40–79.
- [29] J.A. Maertens, Clin. Microbiol. Infect. 10 (2004) 1–10.
- [30] I.M. Lagoja, Chem. Biodivers. 2 (2005) 1–50.
- [31] S. Mohan, S. Ananthan, K.R. Murugan, Int. J. Pharm. Sci. Res. 1 (2010) 391–398.
- [32] Y.-W. He, L.-H. Cao, J.-B. Zhang, D.-Z. Wang, H.A. Aisa, Carbohydr. Res. 346 (2011) 551-559.

- [33] A.K. El-Shafei, A.B.A.G. Ghattas, F.A. Gad, Rev. Roum. Chim. 30 (9–10) (1985)
- [34] A. Maliszewska-Guz, M. Wujec, M. Pitucha, M. Dobosz, A. Chodkowska, E. Jagiello-Wojtowicz, L. Mazur, A.E. Koziol, Collect. Czech. Chem. Commun. 70 (1) (2005) 51–62.
- [35] J. Kejha, D. Slukova, B. Brunova, E. Maturova, J. Grimova, Cesko-Slovenska Farm. 39 (7) (1990) 294–298.
- [36] M. Kidwai, R. Kumar, Gazz. Chim. Ital. 127 (5) (1997) 263–267.
- A. Özdemir, G. Turan-Zitouni, Z.A. Kaplancikli, Y. Tunalı, J. Enzym. Inhib. Med. Chem. 24 (2009) 825-831.
- [38] A.A.R. Despaigne, L.F. Vieira, I.C. Mendes, F.B. da Costa, N.L. Speziali, H. Beraldo, J. Braz. Chem. Soc. 21 (2010) 1247—1257.
 [39] W.C. Winn, S.D. Allen, W.M. Janda, E.W. Koneman, G.W. Procop, P.C. Schreckenberger, G.L. Woods, Koneman's Color Atlas and Textbook of Diagnostic Microbiology, sixth ed., Lippincott Williams & Wilkins, Baltimore and Philadelphia, 2006.

- [40] A. Espinel-Ingroff, J. Clin. Microbiol. 39 (3) (2001) 954–958.
 [41] T. Mossmann, J. Immunol. Methods 65 (1983) 55–63.
 [42] K. Keiser, C.C. Johnson, D.A. Tipton, J. Endod. 26 (2000) 288–291.
- [43] J. Malikova, J. Swaczynova, Z. Kolar, M. Strnad, Phytochemistry 69 (2008)