Data Cleaning Guide

Step 1: Load the Data

```
import pandas as pd
# Load the dataset
df = pd.read_csv("your_dataset.csv") # Replace with your file path
print(df.head())
Step 2: Understand the Data
# Basic info
print(df.info())
print(df.describe())
print(df.columns)
Step 3: Handle Missing Values
# Check for missing values
print(df.isnull().sum())
# Drop rows or columns
df = df.dropna() # drops rows with any missing value
# OR fill missing values
```

```
df['column_name'].fillna(df['column_name'].mean(), inplace=True)
Step 4: Handle Duplicates
# Check for duplicates
print(df.duplicated().sum())
# Remove duplicates
df = df.drop_duplicates()
Step 5: Handle Data Types
# Convert data types if needed
df['date_column'] = pd.to_datetime(df['date_column'])
df['numeric_column'] = df['numeric_column'].astype(float)
Step 6: Encode Categorical Variables
# One-hot encoding
df = pd.get_dummies(df, columns=['categorical_column'])
# Label encoding
```

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['label_column'] = le.fit_transform(df['label_column'])
Step 7: Normalize/Scale Data
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df[['feature1', 'feature2']] = scaler.fit_transform(df[['feature1', 'feature2']])
Step 8: Visualize the Data
import matplotlib.pyplot as plt
import seaborn as sns
# Correlation heatmap
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
plt.show()
# Boxplot to see outliers
sns.boxplot(x=df['feature_column'])
plt.show()
```

1. Data Cleaning
Definition:
The process of detecting and correcting (or removing) inaccurate, inconsistent, or incomplete data from a dataset to improve its quality.
Why it matters:
Raw data often has errors like typos, duplicates, or missing values. Cleaning makes the data suitable for analysis or modeling.
Examples:
Removing duplicate rows
Fixing incorrect or inconsistent values
Handling missing data

2. Handling Nulls (Missing Values)
Definition:
Dealing with empty or missing values in your dataset (shown as NaN in Python).
Methods:
Remove: Drop rows/columns with missing values.
Impute: Fill missing values with:

pd.get_dummies(df['gender'])
4. Feature Scaling
Definition:
Adjusting the values of numeric features to a common scale without distorting differences in the ranges.
Why it's important:
Some algorithms (like KNN, SVM, Gradient Descent) are sensitive to the scale of input data.
Common methods:
Min-Max Scaling: Scales data to a [0,1] range.
Standardization (Z-score): Mean = 0, Std = 1
Example (Min-Max Scaling):
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df[['age', 'income']] = scaler.fit_transform(df[['age', 'income']])