

Weather Analytics and Travel Path Guider

Team Members

Solution Architecture - Hardware

Hardware Components

LED Bulb 7W

With Solar

Panel

Solar Panel

DHT11 Temperature Sensor

Battery Charging / Protection Module

YL-83 FC-37 Rain Sensor

SIM800L GSM Module

LDR Light Sensor

Air Quality Sensor

DHT11 - Temperature Sensor

Temperature Range	0°c to 50°c
Humidity Range	20% to 90%
Accuracy	± 1°c and ± 1%
Output	Serial Data
Operating Voltage	3.5V to 5V
Operating Current	0.3mA, 60µA

YL-83 FC-37 Rain Sensor

Output	1 Analog, 1 Digital						
Operating Voltage	5V						
Operating Current for Digital Output	100mA (max)						
Dimensions	54x40 mm						

LDR Light Sensor

Output	Digital output							
Operating Voltage	3.5V to 5V							
Sensitivity	Adjustable							
LED Indicator	Output and Power Indicator							

TP 4056 - Battery Charging / Protection Module

Max Charging Current	1A
Input Voltage	4.5V ~ 5.5V
Output Voltage	4.2V
Power	4.2W

SIM800L GSM Module

Operating Voltage	3.4V ~ 4.4V
Peak Current	2A
Power Consumption	Sleep mode < 2.0mA Idle mode < 7.0mA GSM Transmission (avg) : 350 mA GSM transmission (peek) : 2000mA
Supported frequencies	2G Quad Band (850 / 950 / 1800 /1900 MHz)

MQ135 - Air Quality Sensor

Operating Voltage	5V							
Working Current	150mA							
Output	1 Digital, 1 Analog							
Operating Temperature	-10°C to 45°C.							

Data flow in Hardware

Solution Architecture - Backend

- Node.js works well with a real-time handling large amount of information
- It can handle multiple requests simultaneously without straining the server.
- Node.js offers relatively higher performance.

Solution Architecture - Backend

- MongoDB's scale-out architecture
 - can create an application that will handle spikes with traffic grows.
- To guarantee reliability, it uses a replica set mechanism
 - that makes the entire process more secure
- It is free to use
- NoSQL suits IoT database implementation

Dataflow in Backend

Solution Architecture - Frontend

- Flutter is Cross-Platform.
- Flutter has hot-reloading.
- UI rendering in Flutter is pixel-perfect. We are in charge of every pixel painted on the device screen.

Progress on Implementation Work - Frontend

Progress on Implementation Work - Backend

Now let's go for a demonstration,

Testing - Hardware

- What is tested?
 - Connections to all the modules
 - Internet Connection to SIM800
 - Water proof, dustproof testing
- How to test?
 - Unit testing library in PlatformIO
 - Physical Testing on the Casing

Testing - Backend

- What is tested?
 - all the new API endpoints will be tested
- Why Testing?
 - To make sure old features are working when a new one is implemented
 - Check load Handling capacity and limits
- How to test?
 - JEST (Library in java to do testing)
 - Artillery (Library in Node.js for load testing)

Testing - Frontend

- What is tested?
 - all the input fields will be tested
 - all the correct error messages will be thrown
- Why Testing?
 - to make sure all the components on the screen are working
 - to make sure correct errors are shown to the user
- How to test?
 - using Flutter in-built testing library

Security

- User Login Authentication
- Firewalls in the Server

TIMELINE

	 EK - 2	WEEK 3 - 4		WEEK 5-6		WEEK 7-8		WEEK 9-10		WEEK 11-12		WEEK 13-14		WEEK 15-16	
Topic Selection															
Research on Applicable Tech.															
Project Proposal Presentation				⊘											
Component Assembling															
Backend Development					⊘	~	~	⊘							
Frontend Development							\bigcirc	\bigcirc	V	⊘					
Testing and Debugging							⊘	V	V	V	▽	▽	◇		
Evaluations								⊘						⊘	

Equipment Name Qty Price Arduino UNO Normal Development Board 1 3450.00

TOTAL

18860.00

Thank You!

