Corrigé du devoir surveillé n°2

Exercice 1

1. D'une minute à la suivante, 20% du médicament présent dans le sang est éliminé; c'est-à-dire que la quantité de médicament est multipliée par 0,80. Mais comme on injecte aussi 1 mL, cette quantité augmente de 1. Autrement dit :

$$u_{n+1} = 0.8u_n + 1.$$

2.

3. Pour tout $n \in \mathbb{N}$:

$$\begin{split} z_{n+1} &= u_{n+1} - 5 & (\text{d\'ef. de } (z_n)_{n \in \mathbb{N}}) \\ &= (0, 8u_n + 1) - 5 \text{ (rel. r\'ec. pour } (u_n)_{n \in \mathbb{N}}) \\ &= 0, 8u_n - 4 & (\text{calcul}) \\ &= 0, 8\left(u_n - \frac{4}{0, 8}\right) \text{ (factorisation)} \\ &= 0, 8(u_n - 5) & (\text{calcul}) \\ &= 0, 8z_n & (\text{d\'ef. de } (z_n)_{n \in \mathbb{N}}) \end{split}$$

Conclusion : pour tout $n \in \mathbb{N}$, $z_{n+1} = 0.8z_n$, donc $(z_n)_{n \in \mathbb{N}}$ est géométrique de raison q = 0.8.

4. La suite $(z_n)_{n\in\mathbb{N}}$ est géométrique de raison q=0,8, et $z_0=u_0-5=10-5=5$, donc pour tout $n\in\mathbb{N}$:

$$z_n = z_0 \times q^n = 5 \times 0.8^n.$$

Enfin $z_n = u_n - 5$ donc

$$u_n = z_n + 5 = 5 \times 0,8^n + 5.$$

5. On fait un tableau de valeurs avec la calculatrice, en rentrant la formule

$$Y = 5 * 0.8^{X} + 5.$$

On obtient ainsi

$$u_{27} \approx 5,0121,$$

 $u_{28} \approx 5,0097.$

Le plus petit entier naturel n tel que $u_n < 5.01$ est donc 28.

Exercice 2

Pour tout $n \in \mathbb{N}$, on note \mathscr{P}_n la propriété

$$u_n \ge 5$$
.

• Initialisation. On prouve que \mathcal{P}_0 est vraie.

$$\begin{array}{cc} u_0 & = 10 \\ 10 & \geq 5 \end{array} \right\} \Longrightarrow \mathscr{P}_0 \text{ est vraie.}$$

• **Hérédité.** Soit $k \in \mathbb{N}$ tel que \mathcal{P}_k soit vraie. On a donc

$$u_k \ge 5$$
 (H.R.)

Objectif

Prouver que \mathcal{P}_{k+1} est vraie, c'est-à-dire que

$$u_{k+1} \ge 5$$
.

On part de

$$u_k \ge 5$$
.

On multiplie par 0,8:

$$u_k \times 0, 8 \ge 5 \times 0, 8$$
$$0, 8u_k \ge 4$$

Puis on ajoute 1:

$$0,8u_k+1 \ge 4+1$$
$$u_{k+1} \ge 5.$$

La propriété \mathcal{P}_{k+1} est donc vraie.

• Conclusion. \mathcal{P}_0 est vraie et \mathcal{P}_n est héréditaire, donc elle est vraie pour tout $n \in \mathbb{N}$.

Exercice 3

Soit k un entier naturel. Si \mathcal{P}_k est vraie, alors $v_k = 2^k + k + 1.$ Donc

$$v_{k+1} = 2v_k - k$$
 (déf. de $(v_n)_{n \in \mathbb{N}}$)
 $= 2\left(2^k + k + 1\right) - k$ (par H.R.)
 $= 2^{k+1} + 2k + 2 - k$ (développement)
 $= 2^{k+1} + (k+1) + 1$ (réécriture)

La propriété \mathcal{P}_{k+1} est donc vraie.