Laplacian Paradigm 2.0

8:40-9:10: Merging Continuous and Discrete (Richard Peng)

9:10-9:50: Beyond Laplacian Solvers (Aaron Sidford)

9:50-10:30: Approximate Gaussian Elimination (Sushant Sachdeva)

10:30-11:00: coffee break

11:00-12:00: Analysis using matrix Martingales (Rasmus Kyng)

12:00-14:00 lunch

14:00-15:00 Graph Structure via Eliminations (Aaron Schild)

Website: bit.ly/laplacian2

Merging the Continuous and Discrete

Richard Peng

Oct 6, 2018

Outline

- Graphs and Laplacians
- Building Blocks
- Laplacian Paradigm 2.0

Large Networks

- Data mining: centrality, clustering...
- Image/video processing: segmentation, denoising ...
- Scientific computing: stress, fluids, waves...

- \ (linear system solve)
- CVX (convex optimization)
- Eigenvector solvers

Graphs and Matrices

High performance computing: non-zeros ⇔ edges, design / analyze matrix algorithms using graph theory

n rows / columns O(m) non-zeros

Graphs and Matrices

High performance computing: non-zeros ⇔ edges, design / analyze matrix algorithms using graph theory

n rows / columns O(m) non-zeros

graph Laplacian matrix L

- Diagonal: degrees
- Off-diagonal: -edge weights

Source of Laplacians

```
2 -1 -1
-1 1 0
-1 0 1
```

graph Laplacian matrix L

- Diagonal: degrees
- Off-diagonal: -edge weights

d-Regular graphs: $\mathbf{L} = d\mathbf{I} - \mathbf{A}$, \mathbf{A} : adjacency matrix

Source of Laplacians

-1 1 0

-1 0 1

graph Laplacian matrix L

- Diagonal: degrees
- Off-diagonal: -edge weights

d-Regular graphs: $\mathbf{L} = d\mathbf{I} - \mathbf{A}$, \mathbf{A} : adjacency matrix

Graph cuts:
$$\mathbf{x}^{\mathsf{T}}\mathbf{L}\mathbf{x} = \sum_{\mathsf{u}\sim\mathsf{v}} \mathbf{w}_{\mathsf{u}\mathsf{v}} (\mathbf{x}_{\mathsf{u}} - \mathbf{x}_{\mathsf{v}})^2$$

$$(1-0)^2=1$$
 $x_b=0$
 $x_a=1$ $(1-1)^2=0$ $x_c=1$

x indicator vector of cut → weight of cut

Source of Laplacians

-1 1 0

-1 0 1

graph Laplacian matrix L

- Diagonal: degrees
- Off-diagonal: -edge weights

d-Regular graphs: $\mathbf{L} = d\mathbf{I} - \mathbf{A}$, \mathbf{A} : adjacency matrix

Graph cuts:
$$\mathbf{x}^{\mathsf{T}}\mathbf{L}\mathbf{x} = \sum_{u \sim v} \mathbf{w}_{uv}(\mathbf{x}_{u} - \mathbf{x}_{v})^{2}$$

$$(1-0)^2=1$$
 $x_b=0$
 $x_a=1$ $(1-1)^2=0$ $x_c=1$

x indicator vector of cut → weight of cut

 $\mathbf{L} = \mathbf{B}^{\mathsf{T}}\mathbf{W}\mathbf{B}$ where \mathbf{B} is edge-vertex incidence matrix

Origin of the Laplacian Paradigm

[Spielman Teng `04]

Input: graph Laplacian L

vector **b**

Output: vector x s.t. $\mathbf{L}\mathbf{x} \cong \mathbf{b}$

Runtime: $O(mlog^{O(1)}nlog(1/\epsilon))$

Origin of the Laplacian Paradigm

```
[Spielman Teng `04]
Input: graph Laplacian L
```

vector **b**

Output: vector x s.t. $\mathbf{Lx} \cong \mathbf{b}$

Runtime: O(mlog O(1) nlog $O(1/\epsilon)$)

[Cohen-Kyng-Miller-Pachocki-P-Rao-Xu `14]: ≤ 1/2

Origin of the Laplacian Paradigm

[Spielman Teng `04]

Input: graph Laplacian L

vector **b**

Output: vector x s.t. $\mathbf{Lx} \cong \mathbf{b}$

Runtime: $O(mlog^{O(1)} nlog(1/\epsilon))$

[Cohen-Kyng-Miller-Pachocki-P-Rao-Xu `14]: ≤ 1/2

Wall clock: $m \le 10^7$ in ≤ 20 s

docs latest

The Laplacian Paradigm

Directly related:

Elliptic systems

Few iterations:

Eigenvectors, Heat kernels

Graph problems
Image processing

Outline

- Graphs and Laplacians
- Building Blocks
- Laplacian Paradigm 2.0

Lx = b as a graph problem

x: voltage vectors

Dual: electrical flow f

Per Cores Mathematical Managements NUMBER TWENTY-FING

RANDOM WALKS AND ELECTRIC NETWORKS

PETER G. DOYLE and J. LAURIE SNELL Unified formulation: $\min_{\mathbf{f} \text{ with resdiual } \mathbf{b}} \|\mathbf{f}\|_{p}$:

- p = 2: solving Lx = b
- p = 1: shortest path / transshipment
- p = ∞: max-flow/min-cut

Direct Methods (combinatorial)

Repeatedly remove vertices by creating equivalent graphs on their neighborhoods

$$\mathbf{M}^{(2)} \leftarrow \text{Eliminate}(\mathbf{M}^{(1)}, i_1)$$

$$\mathbf{M}^{(3)} \leftarrow \text{Eliminate}(\mathbf{M}^{(2)}, i_2)$$

...

Direct Methods (combinatorial)

Repeatedly remove vertices by creating equivalent graphs on their neighborhoods

$$\mathbf{M}^{(2)} \leftarrow \text{Eliminate}(\mathbf{M}^{(1)}, i_1)$$

$$\mathbf{M}^{(3)} \leftarrow \text{Eliminate}(\mathbf{M}^{(2)}, i_2)$$

...

- Parallel graph algorithms
- Matrix multiplication / dense solves
- Sparsified squaring

Iterative Methods (numerical)

Solve
$$Ax = b$$
 by $x \leftarrow x - (Ax - b)$

Fixed point: $\mathbf{A}\mathbf{x} - \mathbf{b} = 0$

Iterative Methods (numerical)

Preconditioning:

Solve
$$B^{-1}Ax = B^{-1}b$$
 by:

$$x \leftarrow x - B^{-1}(Ax - b)$$

Fixed point: $\mathbf{A}\mathbf{x} - \mathbf{b} = 0$

- Simple **B**: **B** = **I**, many iterations
- **B** = **A**: 1 iteration, but same problem

Iterative Methods (numerical)

Preconditioning:

Solve
$$B^{-1}Ax = B^{-1}b$$
 by:

$$x \leftarrow x - B^{-1}(Ax - b)$$

Fixed point: $\mathbf{A}\mathbf{x} - \mathbf{b} = 0$

- Simple **B**: **B** = **I**, many iterations
- **B** = **A**: 1 iteration, but same problem
- Krylov space methods / PCG
- Convex optimization algorithms

Hard instances

Direct methods create too much fill on highly connected graphs

Iterative methods take too many iterations paths

Hard instances

Direct methods create too much fill on highly connected graphs

Iterative methods take too many iterations paths

Easy for iterative methods

Easy for direct methods

Hard instances

Direct methods create too much fill on highly connected graphs

Iterative methods take too many iterations paths

Must handle both simultaneously, but avoid paying n iterations X m per iteration

Hybrid algorithms (aka. v1.0)

• Scientific computing: iChol, multigrid

• [Vaidya `89] precondition with graphs

Hybrid algorithms (aka. v1.0)

• Scientific computing: iChol, multigrid

• [Vaidya `89] precondition with graphs

Hybrid algorithms (aka. v1.0)

• Scientific computing: iChol, multigrid

 [Vaidya `89] precondition with graphs Focus: how to combine • [Gemban-Miller `96]: $U_4(x)$ spectral graph theory • [Spielman-Teng `04]: $U_5(x)$ spectral (ultra-)sparsify

Key "glue": sparsification

[Spielman-Teng `04]: for any G, can find H with $O(nlog^{O(1)}n)$ edges s.t. $\mathbf{x}^T \mathbf{L}_G \mathbf{x} \approx \mathbf{x}^T \mathbf{L}_H \mathbf{x} \ \forall \mathbf{x}$

Key "glue": sparsification

[Spielman-Teng `04]: for any G, can find H with $O(nlog^{O(1)}n)$ edges s.t. $\mathbf{x}^T \mathbf{L}_G \mathbf{x} \approx \mathbf{x}^T \mathbf{L}_H \mathbf{x} \ \forall \mathbf{x}$

- Combinatorial parameter: #edges
- Numerical parameter : approximations

Key "glue": sparsification

[Spielman-Teng '04]: for any G, can find H with O(nlog^{O(1)}n) edges s.t. $\mathbf{x}^T \mathbf{L}_G \mathbf{x} \approx \mathbf{x}^T \mathbf{L}_H \mathbf{x} \ \forall \mathbf{x}$

- Combinatorial parameter: #edges
- Numerical parameter : approximations

[Spielman-Srivatava`08]: sample by effective resistances gives H with O(nlogn) edges

Outline

- Graphs and Laplacians
- Building Blocks
- Laplacian Paradigm 2.0

Max-Flow problem

Maximum number of disjoint s-t paths

Applications:

- Routing
- Scheduling

Recall: $\min_{\mathbf{f} \text{ with resdiual } \mathbf{b}} \|\mathbf{f}\|_{p}$:

- p = 2: solving Lx = b
- p = ∞: max-flow/min-cut

Max-Flow problem

Maximum number of disjoint s-t paths

Dual: separate s and t by removing fewest edges

Applications:

- Routing
- Scheduling

Applications:

- Partitioning
- Clustering

Recall: $\min_{\mathbf{f} \text{ with resdiual } \mathbf{b}} \|\mathbf{f}\|_{p}$:

- p = 2: solving Lx = b
- p = ∞: max-flow/min-cut

[Daitch-Spielman `08][Christiano-Kelner-Madry-Spielman-Teng `10]: [Lee-Sidford `14] Max-flow/Min-cut via (several) electrical flows

Repeat about m^{1/3} iters

- Solve linear systems
- Re-adjust edge weights

[Daitch-Spielman `08][Christiano-Kelner-Madry-Spielman-Teng `10]: [Lee-Sidford `14] Max-flow/Min-cut via (several) electrical flows

Repeat about m^{1/3} iters

- Solve linear systems
- Re-adjust edge weights

[Madry `10] [Racke-Shah-Taubig `14]: cut approximator / oblivious routing $O(n^{o(1)})$ -approx. in $O(m^{1+o(1)})$

[Daitch-Spielman `08][Christiano-Kelner-Madry-Spielman-Teng `10]: [Lee-Sidford `14] Max-flow/Min-cut via (several) electrical flows

[Lee-Rao-Srivastava `13][Sherman `13, `17][Kelner-Lee-Orecchia-Sidford `14]: Preconditioning, (1+ε)-approx

Repeat about m^{1/3} iters

- Solve linear systems
- Re-adjust edge weights

[Madry `10] [Racke-Shah-Taubig `14]: cut approximator / oblivious routing $O(n^{o(1)})$ -approx. in $O(m^{1+o(1)})$

[Daitch-Spielman `08][Christiano-Kelner-Madry-Spielman-Teng `10]: [Lee-Sidford `14] Max-flow/Min-cut via (several) electrical flows

[Lee-Rao-Srivastava `13][Sherman `13, `17][Kelner-Lee-Orecchia-Sidford `14]: Preconditioning, (1+ε)-approx

Repeat about m^{1/3} iters

- Solve linear systems
- Re-adjust edge weights

[P`16]: recurse them into each other: O(mlog⁴¹n), optimistically mlog⁶n

[Madry `10] [Racke-Shah-Taubig `14]: cut approximator / oblivious routing $O(n^{o(1)})$ -approx. in $O(m^{1+o(1)})$

Laplacian Paradigm 2.0

Motivated by the goal of hybrid algorithms, modify direct and iterative methods

New Intermediate structures / theorems motivated by the overall algorithms

Examples

Directed graphs / asymmetric matrices

Sparsified/Approximate Gaussian Elimination

Under the hood

Matrix (martingale) concentration

Partitioning / Localizations of Random Walks

Not covered 😊

Matrix Zoo from Scientific Computing

[Boman-Hendrickson-Vavasis `04] [Kyng-Lee-P-Sachdeva-Spielman `16] [Kyng-Zhang `17][Kyng-P-Schweiterman-Zhang `18]

Interactions with data structures

[Kelner-Orecchia-Sidford-Zhu `13]
[Nanongkai-Saranuk `17][Wulff-Nilsen `17]
[Durfee-Kyng-Peebles-Rao-Sachdeva `17]

Questions

Wist list	Direct	Iterative	Hybrid
Convex functions	?		©©??
Arbitrary values	\odot	?	?⊗©!
Dynamic/streaming	\odot	\odot	⊚???

Approximate eliminations beyond spectral condition #

Unreasonable effectiveness of pcg(ichol(A), b), multigrid

Non-linear (preconditioned) iterative methods

[Adil-Kyng-P-Sachdeva `19]: p-norm iterative refinment

Solvers in Practice

[Kyng-Rao-Sachdeva `15] we suggest rerunning the program a few times... An alternate solver based on iChol is provided...

Questions:

- Precision
- (pseudo) deterministic