Bivariate Verfahren

WS 2023-24

DI Emil Marinov | DI David Bechtold

Übersicht

1.	Zusammenhang von metrischen MerkmalenStreudiagrammKennzahlen des ZusammenhangsRegression	3 - 9
2.	Zusammenhang von ordinalen Merkmalen - Korrelationskoeffizient von Spearman	10 – 13
3.	Zusammenhang von nominale MerkmalenZweidimensionale VerteilungenKennzahlen des Zusammenhangs	14 – 23

Zusammenhang von metrischen Merkmalen

Streudiagramm

Darstellung des Zusammenhangs zwischen 2 metrischen Merkmalen im (x, y)- Koordinatensystem

Beispiel:

Untersuchung, ob die Menge an Rohmaterial A einen Einfluss auf einen bestimmten Qualitätsparameter hat.

Kovarianz

Maß für die Streuung um den Mittelpunkt $(\overline{x}, \overline{y})$

$$\sigma_{XY} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

Korrelationskoeffizient von Bravais-Pearson

Maß für die Stärke des linearen Zusammenhangs von metrischen Merkmalen

$$r = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

Beispiel:

Zusammenhang Menge an Rohmaterial A und Qualität:

$$\sigma_{XY} = -1.36$$

$$r = -0.85$$

Interpretation des Korrelationskoeffizienten

-1 < r < 0	r = 0	0 < r < 1	
negative Korrelation, Wertepaare liegen um eine Gerade mit negativer Steigung	keine Korrelation, kein linearer Zusammenhang	positive Korrelation, Wertepaare liegen im eine Gerade mit positiver Steigung	
>	>	>	

Regression

- metrische Merkmale X, Y Werte von X: $x_1, x_2, ..., x_n$ Werte von Y: $y_1, y_2, ..., y_n$
- Annäherung des Zusammenhangs durch eine **Funktion**

$$\hat{y} = f(x)$$

Least-Squares-Ansatz:

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (y_i - f(x_i))^2 \to Min.$$

Regression

Beispiel:

Zusammenhang Menge an Rohmaterial A und Qualität:

x ... Rohmaterialmenge_A y ... Qualitätsparameter

Näherung durch lineare Regressionsgerade:

$$\hat{y} = f(x) = kx + d$$

 $\hat{y} = -1.781x + 22.154$

Kontrollfragen

Thema Zusammenhang von metrischen Merkmalen

Fragen

Ordnen Sie die Werte der Korrelationskoeffizienten und Regressionsgeraden zu den Grafiken zu.

$$r = 0.7$$

 $r = 0.9$

$$y = 0.6x + 1.8$$

 $y = 0.8x + 1.6$

Zusammenhang von ordinalen Merkmalen

Korrelationskoeffizient von Spearman

- für zumindest ordinal skalierte Merkmale X, Y
- misst die Stärke des monotonen Zusammenhangs
- Vorgehensweise bei Berechnung:
 - Rangordnung der Merkmalsträger von beiden Merkmalen erstellen und Rangziffer zuordnen
 - > bei gleichen Merkmalswerten als Rang das arithmetische Mittel von benachbarten Plätzen verwenden
 - > Korrelationskoeffizient von den Rangziffernpaaren berechnen

Beispiel:

Merkmalsträger	Merkmal X	Merkmal Y	Rang X	Rang Y
А	1	7	1	4
В	2	5	2.5	3
С	2	3	2.5	1
D	4	4	4	2

$$r_{SP} = -0.63$$

Kontrollfragen				
Thema	Zusammenhang von ordinalen Merkmalen			
Fragen	Für welcher der folgenden Merkmalspaare kann der Korrelationskoeffizient von Spearman sinnvoll bestimmt werden? • Anzahl PS – Anzahl Zylinder eines Autos • Interesse an Statistik – Alter • Beruf – Einstiegsgehalt • Klausurnoten – Geschlecht			

Zusammenhang von nominalen Merkmalen

Darstellung der gemeinsamen Verteilung von zwei Merkmalen X und Y

Werte von X: $a_1, a_2, ..., a_k$

Werte von Y: $b_1, b_2, ..., b_k$

- relative Häufigkeiten h(a_i, b_j) werden in einer Tabelle dargestellt (Kontingenztabelle)
- Spalten bzw. Zeilensummen sind eindimensionale Verteilungen (Randverteilungen)

Beispiel:

Kaufentscheidung für ein Produkt

	männlich	weiblich	Summe
Gewohnheit	74	81	155
Werbung	19	26	45
Empfehlung	27	23	50
Summe	120	130	250

Grafische Darstellung von zweidimensionalen Verteilungen

Bedingte Häufigkeiten

bedingte Häufigkeit des Merkmalswerts b_j von Y unter der Bedingung $X = a_i$:

$$f(b_j|a_i) = \frac{h(a_i, b_j)}{h(a_i)}$$

Beispiel:

	männlich	weiblich	Summe
Gewohnheit	74	81	155
Werbung	19	26	45
Empfehlung	27	23	50
Summe	120	130	250

$$f(Werbung|m\ddot{a}nnlich) = \frac{19}{120} = 15.8\%$$

Grafische Darstellung von bedingten Verteilungen

Unabhängigkeiten von Merkmalen

Bedingung von Merkmal X hat keinen Einfluss auf Merkmal Y

→ X und Y sind unabhängig

$$f(b_j|a_i) = \frac{h(a_i, b_j)}{h(a_i)} = \frac{h(b_j)}{n}$$

Erwartete Häufigkeit he bei Unabhängigkeit:

$$h^{e}(a_{i},b_{j}) = \frac{h(a_{i})h(b_{j})}{n}$$

Chi-Quadrat-Koeffizient

- misst die Abweichung der beobachteten Häufigkeiten von den erwarteten Häufigkeiten bei Unabhängigkeit
- beschreibt nur die Stärke und nicht die Richtung des Zusammenhangs
- Berechnung:

$$\chi^{2} = \sum_{i=1}^{k} \sum_{j=1}^{l} \frac{\left(h(a_{i}, b_{j}) - h^{e}(a_{i}, b_{j})\right)^{2}}{h^{e}(a_{i}, b_{j})}$$

− Wertebereich: $\chi^2 \in [0, \infty[$ (ist abhängig vom Stichprobenumfang)

Cramer'sches Assoziationsmaß V

- normiertes Maß für die Abhängigkeit
- misst nur die Stärke und nicht die Richtung des Zusammenhangs
- Berechnung:

$$V = \sqrt{\frac{\chi^2}{n(M-1)}} \text{ mit } M = \min\{k, l\}^e$$

- Wertebereich: $V \in [0, 1]$

Beispiel:

beobachtete Häufigkeiten

	männlich weiblich		Summe
Gewohnheit	74	81	155
Werbung	19	26	45
Empfehlung	27	23	50
Summe	120	130	250

erwartete Häufigkeiten bei Unabhängigkeit

	männlich	weiblich	Summe
Gewohnheit	74.4	80.6	155
Werbung	21.6	23.4	45
Empfehlung	24.0	26.0	50
Summe	120	130	250

Chi-Quadrat Koeffizient: $\chi^2 = 1.327$,

Cramer'sches V: $M = \min(2, 3) = 2, V = 0.073$

Kontrollfragen					
Thema	Zusammenhang vo	Zusammenhang von nominale Merkmalen			
Fragen	Ernährungsumfragdie erwartete Hden Chi-Quadra	Die folgende Tabelle gibt das Ergebnis einer Ernährungsumfrage wieder. Berechnen Sie daraus • die erwartete Häufigkeiten bei Unabhängigkeit • den Chi-Quadrat-Koeffizient • das Cramer'sche Assoziationsmaß V			
		Gesunde Ernährung			
	Geschlecht	ja	nein		
	weiblich	144	16		
	männlich	16	24		