

#### Intro to

# Deep Learning

Neil Gogte KMCE | DL 2024-25



kmce

- 1. Inspiration from neurons
- 2. Required mathematics
- 3. Basics of Deep Learning



# Chapter #1 Inspiration from neurons

### Inspiration from neurons





Inspiration for ANNs came from here

## Inspiration from neurons







#### Chapter #2

# Required mathematics



- Why knowledge of math is needed in DL?
  - To get a deeper understanding of DL
- You don't have to be math experts
- We'll explore only the required math concepts





Idea is:

Mimic neurons on a machine using math









2D representation



- In real time:
  - $\circ$  Many features have to be considered  $(x_1, x_2, x_3...)$
  - o It is an **N-dimensional problem**
  - Non-linearity is required!!



#### Chapter #3

## **Basics of Deep Learning**



- How will my machine automatically learn a math function based on the data I feed it?
- Ans: There should be
  - Automated learning process
  - Automated math function creation
  - Automated feedback process to fit correct function
  - Non-linearity involved



#### Steps in ANNs learning/training:

- 1. Dataset preparation with predictors, truth labels
- 2. ANN initialization with randomness
- 3. Involve non-linearity to fit a good prediction function
- 4. Calculate the prediction with help of predictors
- 5. Check how close the ANN prediction is to the truth label
- 6. Use #5 for feedback and go back correct the params



Steps in ANNs learning/training:

1. Dataset preparation with predictors, truth labels

| X <sub>1</sub> | X <sub>2</sub> | <b>x</b> <sub>3</sub> | X <sub>n</sub> | y (truth label) |
|----------------|----------------|-----------------------|----------------|-----------------|
|                |                |                       |                |                 |



Steps in ANNs learning/training:

#### 2. ANN initialization with randomness



In this step the
weights and biases
are initialized
randomly



Steps in ANNs learning/training:

3. Involve non-linearity to fit a good prediction function



• 
$$z = \sum (w_i x_i + b)$$



A few commonly used activation functions:







- $z = \Sigma (w_i x_i + b)$  is LINEAR
- Activation(z) i.e., tanh(z) or ReLU(z) or Sigmoid(z) is NON-LINEAR