

Department Computer Science and Engineering. Yuan Ze University, Taiwan.

Stock Market Prediction Using Deep Learning Neural Networks and Candlestick Chart

Master Thesis Defense

Advisor: Yu-Yen Ou

Tuesday, July, 19th, 2018

Student: Rosdyana Mangir Irawan Kusuma

OUTLINE

01	INTRODUCTION	
02	RELATED WORK	
03	METHODOLOGY	
04	RESULT	
05	CONCLUSION	

INTRODUCTION

Introduction

- A stock market, equity market or share market is the aggregation of buyers and sellers of stocks, which represent ownership claims on businesses.
- Stock market crash: Panic of 1907, Wall Street Crash of 1929, Black Monday 1987, Crash of 2008-2009

Motivations

- Stock market prediction is a challenging problem:
 - Company news and performance
 - Industry performance
 - > Economic factor
 - > Social media sentiment
 - > Investor sentiment
- Helps trader to enhance their information about stock market movements.
- Perform good prediction to get more benefit in stock market trading.

Candlestick Chart

- A style of financial chart used to describe price movements of stock market.
- Contains open, high, low and close price value.
- Candlestick pattern is a movement in prices shown graphically on a candlestick chart that some believe can predict a particular market movement.
- Currently there are 41 recognised patterns.

Candlestick Patterns

Historical Stock Market Data

Name	Description
Open Price	The first price in daily activity of the stock market that is noted when the stock market opens in the specified period.
Close Price	The final price at which a security is traded on a given trading day.
High Price	Highest price at which a stock traded during the course of the day.
Low Price	Lowest price at which a stock trades over the course of a trading day.
Volume	the number of shares or contracts traded in a security or an entire market during a given period.

Deep Learning

Using brain-inspired mechanics to achieve brain-like function

A Neuron in our brain

A Neuron in our neuron network

Traditional Learning Approach vs Deep Learning Approach

❖ Traditional Learning architecture:

❖ Deep Learning architecture:

RELATED WORK

Related Work

Author	Idea and Method	Result
Patel, Shah et al. 2015	Added 10 technical parameter in feature set to perform stock market prediction using 4 algorithm (ANN, SVM, random forest, naive-bayes).	Highest result by naive-bayes with average 90 % accuracy.
Khaidem, Saha et al. 2016	Using random forest with adding RSI in 3 different trading data(APPL, GE, Samsung).	Average result 89 % accuracy
(Zhang, Zhang et al. 2018	Combine trading data with sentiment from social media and financial news in Hong Kong stock market.	Highest result 61 % accuracy.

METHODOLOGY

Top 10 - Taiwan50 Company List

No	Name	Ticker	Volume	52 Week Range
1	Advanced Semiconductor Engineering	2311.TW	86,190,484	44.15 - 46.10
2	AU Optronics	2409.TW	43,954,252	11.60 - 14.45
3	Hon Hai Precision Industry	2317.TW	36,224,415	79.50 - 122.50
4	China Development Financial Holdings	2883.TW	35,958,075	8.71 - 11.70
5	Taiwan Semiconductor Manufacturing	2330.TW	29,716,311	210.00 - 270.50
6	Siliconware Precision Industries	2325.TW	28,090,566	50.90 - 51.10
7	Innolux	3481.TW	27,146,129	10.80 - 16.30
8	E.Sun Financial Holding	2884.TW	20,970,569	17.70 - 21.9
9	United Microelectronics	2303.TW	20,428,290	13.40 - 18.65
10	Taiwan Cement	1101.TW	19,271,854	33.35 - 47.30

Full list: http://bit.ly/TAIWAN50COMPANIES

Indonesia 10 Company List

No	Name	Ticker	Volume	52 Week Range
1	Perusahaan Perseroan (Persero) PT Telekomunikasi Indonesia Tbk	TLKM.JK	120,850,800	3,250.00 - 4,840.00
2	PT Bank Rakyat Indonesia (Persero) Tbk	BBRI.JK	101,906,100	2,720.00 - 3,920.00
3	PT Bank Mandiri (Persero) Tbk	BMRI.JK	35,536,800	6,250.00 - 9,050.00
4	PT Bank Rakyat Indonesia (Persero) Tbk	ASII.JK	27,647,800	6,250.00 - 8,850.00
5	PT Bank Negara Indonesia (Persero) Tbk	BBNI.JK	25,450,600	6,750.00 - 10,175.00
6	PT Bank Central Asia Tbk	BBCA.JK	14,787,200	18,100.00 - 24,700.00
7	PT Bank Central Asia Tbk	HMSP.JK	12,466,700	3,230.00 - 5,550.00
8	PT United Tractors Tbk	UNTR.JK	4,970,000	27,625.00 - 40,500.00
9	PT Unilever Indonesia Tbk	UNVR.JK	1,317,800	43,875.00 - 58,100.00
10	PT Gudang Garam Tbk	GGRM.JK	413,900	61,925.00 - 86,400.00

From Historical Trading Data To Candlestick Chart

TW50	198 344		147 369			48 48
Name	Training		Testing		Indepe	endent
Jun 29, 2018	0.6515	0.6710	0.6515	0.6610	0.6610	867,89
Jul 02, 2018	0.6680	0.6680	0.6530	0.6660	0.6660	750,54
Jul 03, 2018	0.6680	0.6900	0.6640	0.6875	0.6875	2,944,22
Jul 04, 2018	0.7100	0.7390	0.7035	0.7375	0.7375	13,399,59
Jul 05, 2018	0.7600	0.8275	0.7555	0.8200	0.8200	39,754,17
Jul 06, 2018	0.8735	0.8995	0.8385	0.8785	0.8785	60,624,9
Jul 09, 2018	0.9120	0.9240	0.8220	0.8490	0.8490	39,492,46
Jul 10, 2018	0.8360	0.9030	0.8300	0.8980	0.8980	26,332,17
Jul 11, 2018	0.9000	0.9090	0.8360	0.8515	0.8515	42,052,08
Jul 12, 2018	0.8450	0.8450	0.7615	0.7800	0.7800	30,014,35
Jul 13, 2018	0.7700	0.8115	0.7700	0.8045	0.8045	14,205,54
Date	Open	High	Low	Close*	Adj Close**	Volun

HISTORICAL TRADING DATA

Our Candlestick Chart

Sliding Window of Trading days Period

Our Dataset

Training and Testing Dataset

	5 Periods		10 Pe	riods	20 Periods	
Name	Training	Testing	Training	Testing	Training	Testing
TW50	198569	17164	198151	16950	197819	16414
ID10	34350	3611	34323	3582	34233	3482

Independent Dataset

Data	5 Periods	10 Periods	20 Periods
0050.TW	342	337	327
^JKSE	342	337	327

Positive And Negative Statistic - TW50

TAIWAN50 - TRAINING DATASET

TAIWAN50 – TESTING DATASET

Positive And Negative Statistic - ID10

INDONESIA10 – TRAINING DATASET

INDONESIA10 – TESTING DATASET

Learning Algorithm

MODERN NEURAL NETWORK

TRADITIONAL NEURAL NETWORK

Random Forest

- Decision trees use a tree-like model of decisions and their possible consequences.
- Random Forest classifier is a classifier with Consist of many decision trees. Each decision tree in the forest considers a random subset of features

K-Nearest Neighbors

- A non-parametric method ,lazy learning algorithm that categorizes an input by using its k nearest neighbors
- Separate the data points into several classes to predict the classification of a new point
- ❖ Determining a neighbor can be performed using many different notions of distance, with the most common being Euclidean and Hamming distance

Euclidean distance
$$\sqrt{\sum_{i=1}^{k} (x_i - y_i)^2}$$

Harming distance
$$D_H = \sum_{i=1}^k |x_i - y_i|$$

Convolution Neural Networks

❖ Neural Network:

- > Modeled as collections of neurons that are connected in an acyclic graph
- > outputs of some neurons can become inputs to other neurons
- > Receive an input, and transform it through a series of hidden layers.
- > Each neuron is fully connected to all neurons in previous layer.
- ➤ Last full-connected layer is called the "output layer" (represents the class scores in classification task)

Convolution Neural Networks

Convolution Neural Networks (ConvNets)

- > A class of deep, feed-forward artificial neural networks.
- > Neurons that have learnable weights and biases
- ➤ The hidden layers: convolutional layers, pooling layers, fully connected layers and normalization layers.
- > The **features** are **learned directly** by the CNN.
- > CNNs can be retrained for new recognition tasks

CNN Configuration
Input
Conv2D-32 ReLU
max-pooling
Conv2D-48 ReLU
max-pooling
Dropout
Conv2D-64 ReLU
max-pooling
Conv2D-96 ReLU
max-pooling
Dropout
Flatten
Dense-256
Dropout
Dense-2

RESIDUAL NETWORK

- ❖ Developed by (He, Zhang et al. 2016) was the winner of ILSVRC 2015.
- It features special skip connections and a heavy use of batch normalization.
- ResNets are currently by far state of the art Convolutional Neural Network models

Visual Geometry Group Network

- The VGG network architecture was introduced by (Simonyan and Zisserman 2014).
- using only 3x3 convolutional layers stacked on top of each other in increasing depth.
- Reducing volume size is handled by max pooling

Performance Evaluation

$$Sensitivity = \frac{TP}{TP + FN}$$

$$Specitivity = \frac{TN}{TN + FP}$$

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

$$MCC = \frac{TPxTN - FPxFN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

TESTING RESULT

TW50 and ID10

Testing Result TW50

	Classifier	Periods	Dimension	Sensitivity	Specificity	Accuracy	MCC
	CNN	5	50	83.2	83.8	83.5	0.67
me	CNN	10	50	88.6	87.3	88.0	0.758
Volume	CNN	20	50	91.6	91.3	91.5	0.827
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CNN	5	20	83.9	82.7	83.3	0.666
With	Random Forest	10	20	87.0	88.3	87.6	0.751
	CNN	20	20	90.8	90.2	90.6	0.808
Φ	CNN	5	50	83.6	85.1	84.4	0.687
Volume	CNN	10	50	89.2	88.1	88.7	0.773
\ \ \ \	CNN	20	50	93.3	90.7	92.2	0.84
out	CNN	5	20	84.8	83.0	83.9	0.678
Without	CNN	10	20	88.0	88.2	88.1	0.761
S	CNN	20	20	81.7	91.4	91.0	0.817

Testing Result ID10

	Classifier	Periods	Dimension	Sensitivity	Specificity	Accuracy	MCC
	ResNet50	5	50	80.7	85.4	83.1	0.661
me	ResNet50	10	50	88.6	88.4	88.5	0.77
With Volume	CNN	20	50	90.0	90.1	90.0	0.798
+ :	ResNet50	5	20	78.8	82.3	80.6	0.612
×it	CNN	10	20	83.3	85.4	84.3	0.686
	CNN	20	20	89.1	84.6	87.1	0.738
Φ	ResNet50	5	50	79.1	87.9	83.3	0.671
<u>m</u>	CNN	10	50	87.5	86.6	87.1	0.74
Volume	CNN	20	50	92.1	92.1	92.1	0.837
	CNN	5	20	83.4	82.4	82.9	0.658
Without	CNN	10	20	85.4	85.6	85.5	0.708
>	VGG16	20	20	91.5	89.7	90.7	0.808

INDEPENDENT TEST RESULT

TW50 and ID10

Independent Result TW50

	Classifier	Periods	Dimension	Sensitivity	Specificity	Accuracy	MCC
	CNN	5	50	82.1	77.1	79.9	0.593
пе	CNN	10	50	85.7	81.5	84.0	0.669
Volume	CNN	20	50	95.8	87.1	92.7	0.839
÷	CNN	5	20	82.6	83.0	82.8	0.654
With	Random Forest	10	20	44.8	84.4	60.7	0.305
	CNN	20	20	92.9	89.7	91.8	0.821
(1)	CNN	5	50	82.1	81.0	81.6	0.63
Volume	CNN	10	50	89.7	83.7	87.3	0.735
\ 	CNN	20	50	94.3	91.4	93.3	0.854
out	CNN	5	20	81.1	82.4	81.6	0.631
Without	CNN	10	20	89.7	86.7	88.5	0.761
	CNN	20	20	92.0	93.1	92.4	0.838

Independent Result ID10

	Classifier	Periods	Dimension	Sensitivity	Specificity	Accuracy	MCC
With Volume	RESNET50	5	50	80.8	88.8	83.9	0.681
	RESNET50	10	50	90.9	84.7	89.3	0.733
	CNN	20	50	87.2	83.5	86.2	0.67
	RESNET50	5	20	75.0	82.1	77.8	0.558
	CNN	10	20	83.9	75.3	81.7	0.559
	CNN	20	20	83.9	82.4	83.5	0.616
Volume	RESNET50	5	50	79.3	86.6	82.2	0.645
	CNN	10	50	90.6	87.1	89.3	0.772
Vol	CNN	20	50	90.6	88.7	89.9	0.786
Without	CNN	5	20	81.7	78.4	80.4	0.595
	CNN	10	20	86.9	88.7	87.5	0.741
	VGG16	20	20	91.3	81.2	88.7	0.712

COMPARISON

Comparison - Patel, Shah et al. 2015

Comparison - Khaidem, Saha et al. 2016 - Samsung

1 Month Periods

3 Months Period

Comparison - Khaidem, Saha et al. 2016 - Apple

1 Month Period

3 Months Period

Comparison - Khaidem, Saha et al. 2016

- GE

1 Month Period

41

Comparison – Zhang, Zhang et al. 2018

CONCLUSION

- Our proposed method provide highly accurate forecast compare to the other existing methods.
- Model using long-term trading days' period with CNN learning algorithm achieves the highest performance of sensitivity, specificity, accuracy, and MCC.
- Adding the indicator such as **volume** in candlestick chart **not** really help the algorithms **increase** finding the hidden pattern.

