Homework #3

Sebastian Griego

September 20, 2024

Problem 1: Find the general solution of the differential equation $\vec{x}' = \vec{A}\vec{x}$ for A given by

$$A_1 = \begin{pmatrix} 2 & 1 \\ -1/4 & 1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 3 & -1/2 \\ 1/2 & 2 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 3 & -1 \\ 1 & 1 \end{pmatrix}$$

Draw the phase diagrams for both the original and transformed systems.

Solution:

Part 1:
$$A_1 = \begin{pmatrix} 2 & 1 \\ -1/4 & 1 \end{pmatrix}$$

 $\operatorname{Tr}(A)^2 = 4 \det(A)$, so there is only one eigenvalue, $\lambda = \frac{1}{2}\operatorname{Tr}(A) = \frac{3}{2}$.

 $A^T \neq \pm A$, so there is only one eigenvector.

Therefore,

$$A = V \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} V^{-1}$$

$$\implies \vec{y}(t) = \begin{pmatrix} e^{\lambda t} & te^{\lambda t} \\ 0 & e^{\lambda t} \end{pmatrix} \vec{y_0}$$

$$\implies \vec{x}(t) = V \begin{pmatrix} e^{\lambda t} & te^{\lambda t} \\ 0 & e^{\lambda t} \end{pmatrix} V^{-1} \vec{x}(0)$$

Find the eigenvector:

$$(A_1 - \lambda I)\vec{v} = 0$$

$$\begin{pmatrix} 1/2 & 1 \\ -1/4 & -1/2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\implies \frac{v_1}{2} = -v_2$$

$$\implies \vec{v} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

Find \vec{u} :

$$(A - \frac{3}{2}I)\vec{u} = \vec{v}$$

$$\begin{pmatrix} \frac{1}{2} & 1 \\ -1/4 & -1/2 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

$$\implies \frac{1}{2}u_1 + u_2 = -2$$

$$\implies u_1 + 2u_2 = -4$$

$$u_2 = 0 \implies u_1 = -4$$

$$\implies \vec{u} = \begin{pmatrix} -4 \\ 0 \end{pmatrix}$$

$$\implies V = \begin{pmatrix} -2 & -4 \\ 1 & 0 \end{pmatrix}$$

Compute V^{-1} :

$$V^{-1} = \begin{pmatrix} 0 & 1 \\ -1/4 & -1/2 \end{pmatrix}$$

Jordan decomposition:

$$A = V \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} V^{-1}$$
$$= \begin{pmatrix} -2 & -4 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{3}{2} & 1 \\ 0 & \frac{3}{2} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1/4 & -1/2 \end{pmatrix}$$

Solution for \vec{y} :

$$\vec{y}(t) = \begin{pmatrix} e^{\frac{3}{2}t} & te^{\frac{3}{2}t} \\ 0 & e^{\frac{3}{2}t} \end{pmatrix} \vec{y_0}$$

Solution for \vec{x} :

$$\vec{x}(t) = \begin{pmatrix} -2 & -4 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} e^{\frac{3}{2}t} & te^{\frac{3}{2}t} \\ 0 & e^{\frac{3}{2}t} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1/4 & -1/2 \end{pmatrix} \vec{x_0}$$

Part 2:
$$A_2 = \begin{pmatrix} 3 & -1/2 \\ 1/2 & 2 \end{pmatrix}$$

 $\operatorname{Tr}(A)^2 = 4 \det(A)$, so there is only one eigenvalue, $\lambda = \frac{1}{2}\operatorname{Tr}(A) = \frac{5}{2}$.

 $A^T \neq \pm A$, so there is only one eigenvector.

$$(A_2 - \lambda I)\vec{v} = 0$$

$$\begin{pmatrix} 1/2 & -1/2 \\ 1/2 & -1/2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\implies v_1 - v_2 = 0$$

$$\implies \vec{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Find \vec{u} :

$$(A - \frac{5}{2}I)\vec{u} = \vec{v}$$

$$\begin{pmatrix} 1/2 & -1/2 \\ 1/2 & -1/2 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\implies \frac{1}{2}u_1 - \frac{1}{2}u_2 = 1$$

$$\implies u_1 - u_2 = 2$$

$$u_2 = 0 \implies u_1 = 2$$

$$\implies \vec{u} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

$$\implies V = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$$

Compute V^{-1} :

$$V^{-1} = \begin{pmatrix} 0 & 1\\ 1/2 & -1/2 \end{pmatrix}$$

Jordan decomposition:

$$A = V \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} V^{-1}$$
$$= \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{5}{2} & 1 \\ 0 & \frac{5}{2} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1/2 & -1/2 \end{pmatrix}$$

Solution for \vec{y} :

$$\vec{y}(t) = \begin{pmatrix} e^{\frac{5}{2}t} & te^{\frac{5}{2}t} \\ 0 & e^{\frac{5}{2}t} \end{pmatrix} \vec{y_0}$$

Solution for \vec{x} :

$$\vec{x}(t) = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} e^{\frac{5}{2}t} & te^{\frac{5}{2}t} \\ 0 & e^{\frac{5}{2}t} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1/2 & -1/2 \end{pmatrix} \vec{x_0}$$

Part 3: $A_3 = \begin{pmatrix} 3 & -1 \\ 1 & 1 \end{pmatrix}$

 $\operatorname{Tr}(A)^2 = 4 \det(A)$, so there is only one eigenvalue, $\lambda = \frac{1}{2} \operatorname{Tr}(A) = 2$.

 $A^T \neq \pm A$, so there is only one eigenvector.

$$(A_3 - \lambda I)\vec{v} = 0$$

$$\begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\implies v_1 - v_2 = 0$$

$$\implies \vec{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Find \vec{u} :

$$(A - \lambda I)\vec{u} = \vec{v}$$

$$\begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\implies u_1 - u_2 = 1$$

$$u_2 = 0 \implies u_1 = 1$$

$$\implies \vec{u} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\implies V = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

Compute V^{-1} :

$$V^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}$$

Jordan decomposition:

$$A = V \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} V^{-1}$$
$$= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}$$

Solution for \vec{y} :

$$\vec{y}(t) = \begin{pmatrix} e^{2t} & te^{2t} \\ 0 & e^{2t} \end{pmatrix} \vec{y_0}$$

Solution for \vec{x} :

$$\vec{x}(t) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} e^{2t} & te^{2t} \\ 0 & e^{2t} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \vec{x_0}$$

Phase Planes below

Figure 1: Phase Planes

Problem 2: Prove that for a real 2×2 matrix A, that

$$\langle A\vec{v}, \vec{w} \rangle = \langle \vec{v}, A^T \vec{w} \rangle$$

Solution:

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

Then,

$$\langle A\vec{v}, \vec{w} \rangle = \langle \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \rangle$$

$$= \langle \begin{pmatrix} av_1 + bv_2 \\ cv_1 + dv_2 \end{pmatrix}, \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \rangle$$

$$= (av_1 + bv_2)w_1 + (cv_1 + dv_2)w_2$$

$$= av_1w_1 + bv_2w_1 + cv_1w_2 + dv_2w_2$$

$$= aw_1v_1 + cw_2v_1 + bw_1v_2 + dw_2v_2$$

$$= (aw_1 + cw_2)v_1 + (bw_1 + dw_2)v_2$$

$$= \langle \begin{pmatrix} aw_1 + cw_2 \\ bw_1 + dw_2 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \rangle$$

$$= \langle \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}, \vec{v} \rangle$$

$$= \langle A^T \vec{w}, \vec{v} \rangle$$

Problem 3: Defining $p(\lambda) = \det(\lambda I - A)$, prove that $\det(A^T - \lambda I) = p(\lambda)$, which is to say, the eigenvalues of a real matrix are the same as its transpose.

Solution:

Proof for 2×2 :

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

Then,

$$p(\lambda) = \det(A - \lambda I)$$

$$= \det\begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix}$$

$$= (a - \lambda)(d - \lambda) - bc$$

$$= \lambda^2 - (a + d)\lambda + (ad - bc)$$

$$= \lambda^2 - \text{Tr}(A)\lambda + \det(A)$$

Now for $\det(A^T - \lambda I)$:

$$\det(A^T - \lambda I) = \det\begin{pmatrix} a - \lambda & c \\ b & d - \lambda \end{pmatrix}$$
$$= (a - \lambda)(d - \lambda) - cb$$
$$= \lambda^2 - (a + d)\lambda + (ad - bc)$$
$$= \lambda^2 - \text{Tr}(A)\lambda + \det(A)$$
$$= p(\lambda)$$

Therefore, the eigenvalues of a real matrix are the same as its transpose in \mathbb{R}^2 .

Problem 4: Prove that A^{-1} exists if and only if A^{-T} exists.

Solution:

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 be a matrix.

Assume A^{-1} exists.

Then,

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

where $det(A) = ad - bc \neq 0$.

Consider
$$A^T = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

 $det(A^T) = ad - bc = det(A) \neq 0$. So,

$$A^{-T} = \frac{1}{\det(A)} \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}$$

exists.

Now, assume A^{-T} exists. Then,

$$A^{-T} = \frac{1}{\det(A^T)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

So, A^{-1} exists because $det(A) = det(A^T)$, and there is no division by zero.

Problem 5: Prove that A^{-1} does not exist if 0 is an eigenvalue of A.

Solution:

Let 0 be an eigenvalue of A. Assume, for the sake of contradiction, that A^{-1} exists.

By definition of eigenvalue and eigenvector,

$$A\vec{v} = 0\vec{v}$$
 where $\vec{v} \neq 0$
 $A\vec{v} = 0$
 $A^{-1}A\vec{v} = A^{-1}0$
 $\vec{v} = 0$

This is a contradiction, so A^{-1} does not exist.

Problem 6: We say for a real 2×2 matrix A that $\vec{b} \in \text{rng}(A)$ if there exists \vec{x} such that

$$A\vec{x} = \vec{b}$$

Prove that $\vec{b} \in \operatorname{rng}(A)$ if and only if $\langle \vec{b}, \vec{y} \rangle = 0$ for all $\vec{y} \in \ker(A^T)$. Note, for a nontrivial 2×2 matrix, $\ker(A^T)$ is either trivial or onedimensional. Thus either A^{-T} (and thus A^{-1}) exists, or b and any $y \in \ker(A^T)$ form a basis of \mathbb{R}^2 .

Solution:

Part 1: Assume $\vec{b} \in \text{rng}(A)$.

Then, there exists \vec{x} such that $A\vec{x} = \vec{b}$.

Let $\vec{y} \in \ker(A^T)$.

Consider $\langle \vec{b}, \vec{y} \rangle$:

$$\langle \vec{b}, \vec{y} \rangle = \langle A\vec{x}, \vec{y} \rangle$$

$$= \langle \vec{x}, A^T \vec{y} \rangle$$

$$= \langle \vec{x}, 0 \rangle$$

$$= 0$$

Therefore, $\langle \vec{b}, \vec{y} \rangle = 0$ for all $\vec{y} \in \ker(A^T)$.

Part 2: Assume $\langle \vec{b}, \vec{y} \rangle = 0$ for all $\vec{y} \in \ker(A^T)$.

If $\ker(A^T)$ is trivial, then $\ker(A)$ is also trivial, so A spans all of \mathbb{R}^2 , and thus \vec{b} is in the range of A.

If $\ker(A^T)$ is not trivial, then there exists a nonzero \vec{y} such that $A^T\vec{y}=0$.

 $\langle \vec{b}, \vec{y} \rangle = 0$ implies that $\vec{b} \perp \vec{y}$.

The Fundamental Theorem of Linear Algebra says $\mathbb{R}^2 = \operatorname{rng}(A) \oplus \ker(A^T)$.

Since $\vec{b} \perp \vec{y}$ and $\vec{y} \in \ker(A^T)$, then $\vec{b} \in \operatorname{rng}(A)$.

Problem 7: For real 2×2 matrix A suppose that $Tr(A) = 4 \det(A)$, and $A \neq cI$, so that A has a repeated, degenerate, eigenvalue λ_0 , i.e.

$$\det(A - \lambda I) = (\lambda - \lambda_0)^2.$$

• Let $A\vec{v} = \lambda_0 \vec{v}$ and suppose $\vec{w} \cdot \vec{v} = 0$ (which we can always find via Gram-Schmidt). Show that

$$A^T \vec{w} = \lambda_0 \vec{w}$$

Hint: Using the results from the prior problems, if A only has one eigenvalue, then so does A^T . Likewise, we're in \mathbb{R}^2 , so two non-trivial orthogonal vectors form a basis.

• From this and the previous problem, show that $\vec{v} \in \text{rng}(A - \lambda_0 I)$. Therefore we can find \vec{z} such that

$$(A - \lambda_0 I)\vec{z} = \vec{v}$$

• Show finally that

$$A(\vec{v}\vec{z}) = (\vec{v}\vec{z}) \begin{pmatrix} \lambda_0 & 1\\ 0 & \lambda_0 \end{pmatrix}$$

• What ensures that $(\vec{v}\vec{z})^{-1}$ exists?

Solution:

Part 1:

Let λ_0 be the only eigenvalue of A and \vec{v} the only eigenvector of A. Let $\vec{w} \cdot \vec{v} = 0$.

$$\vec{v} \in \ker(A - \lambda_0 I)$$

$$\vec{v} \cdot \vec{w} = 0 \implies \vec{v} \perp \vec{w}.$$

FTLA says
$$\mathbb{R}^2 = \ker(A - \lambda_0 I) \oplus \operatorname{rng}(A^T - \lambda_0 I)$$
.

$$\vec{v} \in \ker(A^T - \lambda_0 I) \implies \vec{w} \in \operatorname{rng}(A^T - \lambda_0 I).$$

$$(A - \lambda_0 I)\vec{v} = 0$$
$$\langle (A - \lambda_0 I)\vec{v}, \vec{w} \rangle = 0$$
$$\langle \vec{v}, (A^T - \lambda_0 I)\vec{w} \rangle = 0 \quad (*)$$

$$\implies \vec{v} \perp (A^T - \lambda_0 I) \vec{w} \quad \text{where } \vec{v} \perp \vec{w}$$

$$\implies (A^T - \lambda_0 I)\vec{w} = c\vec{w}$$

$$c = 0$$
 because of (*)

So,
$$(A^T - \lambda_0 I)\vec{w} = 0$$

Then,
$$\vec{w} \in \ker(A^T - \lambda_0 I)$$

Therefore,
$$A^T \vec{w} = \lambda_0 \vec{w}$$

Part 2:

$$\vec{w} \in \ker(A^T - \lambda_0 I)$$

FTLA says
$$\mathbb{R}^2 = \ker(A^T - \lambda_0 I) \oplus \operatorname{rng}(A - \lambda_0 I)$$

$$\vec{v} \in \operatorname{rng}(A - \lambda_0 I)$$

Therefore, $\exists \vec{z}$ such that $(A - \lambda_0 I)\vec{z} = \vec{v}$

Part 3:

$$(A - \lambda_0 I)\vec{z} = \vec{v}$$

$$A\vec{z} = \lambda_0 \vec{z} + \vec{v}$$

$$A\vec{z} = \lambda_0 \vec{z} + \vec{v}$$

$$A(\vec{v}\vec{z}) = (\lambda_0 \vec{v} \mid \lambda_0 \vec{z} + \vec{v})$$

$$= (\vec{v} \mid \vec{z}) \begin{pmatrix} \lambda_0 & 1\\ 0 & \lambda_0 \end{pmatrix}$$

Part 4:

 $(\vec{v}\vec{z})^{-1}$ exists because $\vec{v}\cdot\vec{z}=0$. Two non-zero orthogonal vectors form a basis, so $(\vec{v}\vec{z})$ is invertible.