Recurrence Relation

Theoretical questions

1. Define a recurrence relation. What do you mean by it's solution?

[CU 2011]

- 2. State the general form of a linear recurrence relation with constants.
- 3. Define a Homogeneous linear recurrence relation (HDE) and Non-homogeneous linear recurrence relation.

 [CU 2010]

Problems

On HDE

- 1. Determine whether the sequence $\{a_n\}$ is a solution of the recurrence relation $a_n = 2a_{n-1} a_{n-2}$ for n = 2, 3, 4, ... where $a_n = 3n$ for every non-negative integer n. What happens when $a_n = 2^n$. [CU 2010]
- 2. $a_n = a_{n-1} + 6a_{n-1}$; $n \ge 2$ with $a_0 = 1, a_1 = 1$
- 3. $a_n = 3a_{n-1} 3a_{n-1} + a_{n-3}$; $a_0 = 0, a_3 = 3, a_5 = 10$
- 4. $a_n = 7a_{n-1} 10a_{n-2}$; $a_0 = 4, a_1 = 17$
- 5. $a_n 8a_{n-1} + 16a_{n-2} = 0$; $a_2 = 16$, $a_3 = 80$
- 6. $a_n = a_{n-1} + 2a_{n-2}$; $a_0 = 2, a_1 = 7$
- 7. $a_{n+2} + 4a_{n+1} + 5a_n$; $n \ge 0$ with $a_0 = 2, a_1 = 8$
- 8. $a_n = 6a_{n-1} 8a_{n-2}$; $n \ge 2$ with $a_0 = 4, a_1 = 10$
- 9. $a_n = 2an 1 a_{n-2}$; $n \ge 2$, with $a_0 = 3, a_1 = 1$
- 10. $a_n = 6a_{n-1} 9a_{n-2}$; $n \ge 2$ with $a_0 = 1, a_1 = 6$ [CU 2014]
- 11. $a_n = -4a_{n-1} 4a_{n-2}$; $n \ge 2$ with $a_0 = 6, a_1 = 8$
- 12. $a_n = 2a_{n-1} + a_{n-2} 2a_{n-3}$; $n \ge 3$ with $a_0 = 3, a_1 = 6, a_2 = 0$
- 13. $a_n = 7a_{n-2} + 6a_{n-3}$; $a_0 = 9, a_1 = 10, a_2 = 32$
- 14. $a_n = 5a_{n-2} 4a_{n-4}$; $a_0 = 3, a_1 = 2, a_2 = 6, a_3 = 8$
- 15. $a_n = 2a_{n-1} + 5a_{n-2} 6a_{n-3}$; $a_0 = 7, a_1 = -4, a_2 = 8$
- 16. $a_n = 6a_{n-1} 12a_{n-2} + 8a_{n-3}$; $a_0 = -5, a_1 = 4, a_2 = 88$
- 17. $a_n = -3a_{n-1} 3a_{n-2} a_{n-3}$; $a_0 = 5, a_1 = -9, a_2 = 15$
- 18. Fibonacci Sequence $a_n = a_{n-1} + a_{n-2}$; $a_0 = 0, a_1 = 1$ [CU 2013]
- 19. Show that Fibonacci numbers satisfy the recurrence relation $f_n = 5f_{n-4} + 3f_{n-5}$ for n = 5, 6, 7, ... together with initial conditions, $f_0 = 0$, $f_1 = 1$, $f_2 = 1$, $f_3 = 2$, $f_4 = 3$. Use this relation to show that $5f_n$ is divisible by 5, for n = 1, 2, 3,
- 20. The Lucas numbers satisfy the recurrence relation $L_n = L_{n-1} + L_{n-2}$; $L_0 = 2, L_1 = 1$

SUKALYAN SOM

- (a) Show that, $L_n = f_{n-1} + f_{n+1}$ for n = 2, 3, ... where f_n is the nth Fibonacci number.
- (b) Find an explicit formula for Lucas numbers.

On IDE

1.
$$a_n - 5a_{n-1} + 6a_{n-2} = 1$$

2.
$$a_n - 6a_{n-1} + 8a_{n-2} = 3$$

3.
$$a_{n+2} - 2a_{n+1} + a_n = 3n + 5$$

4.
$$a_{n+2} - 5a_{n+1} + 6a_n = n^2$$

5.
$$a_n + 4a_{n-1} + 4a_{n-2} = n^2 - 3n + 5$$

6.
$$2a_n - 7a_{n-1} + 3a_{n-2} = 2^n$$

7.
$$a_n - 4a_{n-1} + 4a_{n-2} = (n+1)2^n$$

8.
$$a_n - 6a_{n-1} + 12a_{n-2} - 8a_{n-3} = F(n)$$
 where

(a)
$$F(n) = n^2$$

(b)
$$F(n) = 2^n$$

(c)
$$F(n) = n2^n$$

(d)
$$F(n) = (-2)^n$$

(e)
$$F(n) = n^2 \cdot 2^n$$

(f)
$$F(n) = n^3 \cdot (-2)^n$$

(g)
$$F(n) = 3$$

9.
$$a_n = 8a_{n-2} - 16a_{n-4} + F(n)$$
 where $F(n) =$

- (a) n^3
- (b) $(-2)^n$
- (c) $n \cdot 2^n$
- (d) $n^2 \cdot 4^n$

(e)
$$(n^2-2)\cdot(-2)^n$$

- (f) $n^4 \cdot 2^n$
- (g) 2

10.
$$a_n = 5a_{n-1} - 6a_{n-2} + 2^n + 3n$$
 [Hint: $a_n^{(p)} = An2^n + A_0 + A_1n$]

11.
$$a_n = 2a_{n-1} + 3 \cdot 2^n$$

12.
$$a_n = 4a_{n-1} - 4a_{n-2} + (n+1) \cdot 2^n$$

13. Let a_n be the sum of the first n perfect squares, i.e. $a_n = \sum_{k=1}^n k^2$. Show that the sequence a_n satisfies the linear non-homogeneous recurrence relation $a_n = a_{n-1} + n^2$ and the initial condition $a_1 = 1$.

On IDE with initial conditions

1.
$$a_n - a_{n-1} = n$$
; $a_0 = 1$ [CU 2003]

- 2. $a_n 2a_{n-1} = 6$; $a_1 = 2$
- 3. $a_n a_{n+1} = 3^n$; $a_0 = 1$
- 4. $a_n a_{n-1} 2a_{n-2} = 1$; $a_1 = 1, a_2 = 3$
- 5. $a_{n+2} 4a_{n+1} + 4a_n = 2^n$; $a_0 = -2, a_1 = 0$
- 6. $2a_{n+1} a_n = (\frac{1}{2})^n$; $a_1 = 2$

7.
$$a_{n+2} - 6a_{n+1} + 9a_n = 3 \cdot 2^n + 7 \cdot 3^n$$
 with $a_0 = 1$ and $a_1 = 4$ [CU 2011]

- 8. Determine the values of the constants A and B such that $a_n = An + B$ is a solution of the recurrence relation $a_n = 2a_{n-1} + n + 5$; $a_0 = 4$
- 9. Solve the simultaneous recurrence relations
 - (a) $a_n = 3a_{n-1} + 2b_{n-1}$
 - (b) $b_n = a_{n-1} + 2b_{n-1}$; $a_0 = 1, b_0 = 2$
- 10. Show that if $a_n = a_{n-1} + a_{n-2}$; $a_0 = s$ and $a_1 = t$ where s and t are constants then $a_n = sf_{n-1} + tf_n$ for all positive initegers n.
- 11. Express solution of the linear non-homogeneous recurrence relation $a_n = a_{n_1} + a_{n-2} + 1$; $n \ge 2$ where $a_0 = 0$ and $a_1 = 1$ in terms of Fibonacci numbers.

[Hint: Let, $b_n = a_n + 1$ and apply previous question the sequence for b_n]

12. $a_n = 2a_{n-1}$ if n is even with $a_0 = 0$ = $2a_{n_1} + 1$ if n is odd

Miscelleneous

- 1. Suppose a person deposit Rs. 10,000 in a savings account at a bank yielding 11% per year with interest compounded annually. How much will be in account after 30 years?
- 2. Find a recurrence relation for the no of bit strings that contain the string 01.
- 3. Find a recurrence relation and give initial condition for the number of bit strings of length n that does not have two consequtive 0s. How many such bit strings are there of length 5?
- 4. A computer system considers a string od decimal digits a valid codeword if it contains an even no of 0 digits. For example, 1230407869 is valid. Let a_n be the no of valid n digit codeword. Find a recurrence relation for a_n .

SUKALYAN SOM 3