Ensembles, relations, fonctions

R1.06 - Mathématiques discrètes

monnerat@u-pec.fr ₺

15 octobre 2021

IUT de Fontainebleau

Partie 4

Fonctions

Définitions

Vocabulaires

Applications

Quelques classes importantes de fonctions

Définitions

Notion de fonction

Fonction

Une fonction $f: E \to F$ (de E dans F) est une relation de $f \subset E \times F$ tel que pour tout $x \in E$, il existe au plus un $y \in F$ tel que $(x,y) \in f$, on note y = f(x) plutôt que xfy. Attention, f^{-1} (en tant que relation) n'est pas nécessairement une fonction.

Exemple 1

Soit $E = \{1, 2, 3, 4\}$ et $F = \{a, b, c\}$.

On définit la fonction f en extension Autrement dit

$$f: E \longrightarrow F$$

$$f = \{(1,a),(2,c),(4,a)\} \subset E \times F$$

$$1 \longmapsto a$$

$$2 \longmapsto c$$

$$4 \longmapsto a$$

 f^{-1} est-elle une fonction?

Exemple 2

 $h = \{(1, a), (1, c), (4, a)\} \subset E \times F$ n'est pas une fonction. Pourquoi?

- Table de valeur
- Diagramme de Venn
- Formule algébrique
- Courbe
- Algorithme

12 p 13 q 14 r 15 s 16 t
14 r 15 s 16 t
15 s 16 t
16 t
17
.17 u
18 v
19 w
20 x
21 у
22 z
23 {
24
25 }
26 ~
27 △

Table 1: Table ascii

- Table de valeur
- Diagramme de Venn
- Formule algébrique
- Courbe
- Algorithme

- Table de valeur
- Diagramme de Venn
- Formule algébrique
- Courbe
- Algorithme

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto 3x^2 + 2x - 5$$

- Table de valeur
- Diagramme de Venn
- Formule algébrique
- Courbe
- Algorithme

- Table de valeur
- Diagramme de Venn
- Formule algébrique
- Courbe
- Algorithme

Algorithm 1 Algorithme d'Euclide

```
1: procedure Euclide(a, b)
                                                 b We have the answer if b is 0.
       while b \neq 0 do
2:
           r \leftarrow a \mod b
3.
           a \leftarrow b
4.
           b \leftarrow r
5:
       end while
6.
7.
       return a
8: end procedure
```

Vocabulaires

Ensemble image

Ensemble image

Soit $f: E \to F$ une fonction de E dans F.

- Image f(x) est l'image de x
- Ensemble image de $A \subset E$: $f(A) = \{y \in F, \exists x \in A, f(x) = y\}$
- Ensemble image de f : Im(f) = f(E)

Exemple:

Soit
$$E=\{1,2,3,4\}$$
 et $F=\{a,b,c\}$ et $f:E\to F$ défini par
$$f=\{(1,a),(2,c),(4,a)\}\subset E\times F$$

On a:

$$f(\{1\}) = \{a\}$$
 $f(\{1,4\}) = \{a\}$ $f(\{3\}) = \emptyset$ $f(\{1,2,3\}) = \{a,c\}$

$$Im(f) = \{a, c\}$$

Préimage/image récirpoque

Préimage (image réciproque)

Soit $f: E \to F$ une fonction de E dans F.

- Antécédent : x est un antécedent de y si y = f(x)
- Préimage de $B \subset F$ $f^{-1}(B) = \{x \in E, f(x) \in B\}$
- Domaine de définition de $f: Dom(f) = f^{-1}(F)$

Exemple:

Soit
$$E=\{1,2,3,4\}$$
 et $F=\{a,b,c\}$ et $f:E\to F$ défini par
$$f=\{(1,a),(2,c),(4,a)\}\subset E\times F$$

On a:

$$f^{-1}(\{a\}) = \{1,4\}$$
 $f^{-1}(\{a,c\}) = \{1,2,4\}$ $f^{-1}(\emptyset) = \emptyset$

$$f^{-1}(\{b\}) = \emptyset$$
 $Dom(f) = \{1, 2, 4\}$

Applications

Application

Application

Une fonction $f: E \to F$ est une application si Dom(f) = E. On note

l'ensemble des fonctions de $E \rightarrow F$.

Exemple : Soient $E = \{1, 2, 3, 4\}$ et $F = \{a, b, c\}$.

- $\{(1,a),(2,c),(4,a)\}\subset E\times F$ définit une fonction de E dans F mais pas une application.
- $\{(1,a),(2,c),(3,b),(4,a)\}\subset E\times F$ définit une fonction de E dans F qui est aussi une application.

Remarque : on emploie souvent fonction pour application.

Composition

Composition

La fonction composée de $f: E \rightarrow F$ et $g: F \rightarrow G$ est la relation

$$g \circ f$$

C'est bien encore une fonction

$$Dom(g \circ f) = \{x \in Dom(f) : f(x) \in Dom(g)\}$$

Propriétés

- En général $f \circ g \neq g \circ f$.
- Associativité : $(f \circ g) \circ h = f \circ (g \circ h)$.

Injections

Application injective

 $f: E \to F$ application est injective si tout $y \in F$ admet au plus un antécédent.

Autrement dit : $\forall x_1, x_2 \in E$ on a $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

Exemple : Code ASCII, Code INSEE...

Surjections

Application surjective

 $f: E \to F$ application est surjective si tout $y \in F$ admet au moins un antécédent.

Autrement dit : Im(f) = f(E) = F.

Bijections

Application bijective

 $f: E \to F$ application est bijective si tout $y \in F$ admet exactement un antécédent.

Autrement dit : f est une application injective et surjective.

Bijections

Application réciproque

L'application $f: E \to F$ est bijective si et seulement si il existe une application $g: F \to E$ telle que $f \circ g = \mathrm{Id}_F$ et $g \circ f = \mathrm{Id}_E$.

Si f est bijective, l'application g est unique, c'est l'application réciproque de l'application f, notée f^{-1} .

C'est l'application obtenue en inversant le "sens des flèches".

Composée de deux bijections

Soient $f:E\to F$ et $g:F\to G$ deux applications bijectives. La composée $g\circ f$ est bijective et

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

Quelques classes importantes de fonctions

Suites

Soit $\mathbb K$ un ensemble, une suite à valeurs dans $\mathbb K$ est une application de $\mathbb N$ dans $\mathbb K$.

On note $\mathbb{K}^{\mathbb{N}}$ l'ensemble des suite à valeurs dans \mathbb{K} .

Etant donnée une suite $u \in \mathbb{K}^{\mathbb{N}}$, on note souvent u_n le $n^{\text{i}\text{ème}}$ élément de la suite et $u = (u_n)_{n \in \mathbb{N}}$.

Fonctions caractéristiques

Fonctions caractéristiques

Soient $A \subseteq \Omega$ on définit la fonction caractéristique de l'ensemble A par

$$\begin{array}{cccc} 1_A: & \Omega & \longrightarrow & \{0,1\} \\ & x & \longmapsto & \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si } x \notin A \end{cases} \end{array}$$

Propriétés

Soient $A, B \in \mathcal{P}(\Omega)$, pour tout $x \in \Omega$, on a :

- $1_{A\cap B}(x) = 1_A(x) \times 1_B(x)$
- $1_{A \cup B}(x) = 1_A(x) + 1_B(x) 1_{A \cap B}(x)$
- $\bullet \ 1_{\overline{A}}(x) = 1 1_A(x)$