Undergraduate Complexity Theory

Lecture 13: Search-to-Decision, Padding, Dichotomy Theorems

Marcythm

July 16, 2022

1 Lecture Notes

What we are going to do:

- 1. Deciding SAT is hard. Is searching even harder?
- 2. Maybe $SAT \notin P$, how fast can we solve it?
- 3. LIS $\in P$, even $\in TIME(n^2)$. Is it $\in TIME(n^{1.9})$?
- 4. Other resources (e.g. space, random interaction)?
- 5. $2SAT \in P$, 3SAT NP-complete. Why?
- 6. Is every $L \in \mathsf{NP}$ either $\in \mathsf{P}$ or NP -complete?
- 7. Maybe SAT "almost in" P?

Suppose P = NP, then CIRCUIT-SAT $\in P$, exists poly-time algo M_{CSAT} s.t.

$$M_{\mathsf{CSAT}}(C) = \begin{cases} \text{yes,} & \text{if } C \text{ is satisfiable} \\ \text{no,} & \text{if } C \text{ is not satisfiable} \end{cases}$$

then we can decide a satisfying assignment bit-by-bit.

For 3COL, the subinstance to find solution is 3COL+UNARY in homework 6. CSAT is "downward" self-reducible.

Theorem 1.1. Suppose $L \in \mathsf{NP}$, with verifier V(x,y). Assume $\mathsf{P} = \mathsf{NP}$, then exists poly-time algo S s.t. $\forall x \in L, V(x,S(x))$ accepts.

Proof. Use the idea of Cook-Levin Theorem. Given $x \in L$, construct a circuit $C_x(y)$ that does the same as V(x,y). Then S(x) = C(x,y) is a solution.

A complexity theory "trick": padding

Theorem 1.2. $P = NP \implies EXP = NEXP \ (contrapositive: EXP \neq NEXP \implies P \neq NP)$

Proof. Assume $\mathsf{P} = \mathsf{NP},$ need to show $\mathsf{NEXP} \subseteq \mathsf{EXP}.$ Let $L \in \mathsf{NEXP},$ say M is a nondet TM deciding L in time 2^{n^k} . Let $L_{pad} = \{\langle x, 1^{2^{|x|^k}} \rangle : x \in L\}.$

Claim 1.3. $L_{pad} \in NP$.

Proof. Define M' a nondet TM. Given input y, it first check if $y = \langle x, 1^{2^{|x|^k}} \rangle$ in time about O(|y|), then throws away 1s, gets x, and simulate nondet M(x) in time $O(2^{n^k}) = O(|y|)$.

Then $L_{pad} \in \mathsf{P}$. Let A be poly-time also deciding L_{pad} .

Claim 1.4. $L \in \mathsf{EXP}$.

Proof. Let A' be TM with input x, it runs $A(\langle x, 1^{2^{|x|^k}} \rangle)$ in time $O(\text{poly}(2^{|x|^k}) = 2^{O(n^k)}$, i.e. A' is in exponential time, so $L \in \mathsf{EXP}$.

- 1. World 1: NP = P + NP-hard + something else
- 2. World 2: NP = P + NP-hard
- 3. World 3: P = NP

Theorem 1.5 (Schaefer's Dichotomy Theorem '78). Every boolean CSP is either in P (basically 2SAT, XOR-SAT, Horn-SAT) or NP-complete (everything else).

Theorem 1.6 (Bulatov '06). Same theorem for ternary CSP, i.e. |D| = 3. e.g. 3-COL.

Conjecture 1.7 (Dichotomy Conjecture). Every CSP is either in P or NP-complete.

upcoming: a theorem that shows world 2 is generally impossible.

Theorem 1.8 (Ladner's Theorem). Assume $P \neq NP$, then $\exists L \in NP$ s.t. $L \notin P$ and L is not NP-complete.

such Ls are mostly unnatural. Maybe a natural L: GRAPH-ISOMORPHISM. Fastest algo is TIME $(n^{\log^{10} n})$ (Babai '16).