Lemonade from Lemons: Information Design and Adverse Selection

Navin Kartik Weijie Zhong

December 2019

Introduction

- Asymmetric information can affect market outcomes
 - adverse selection can limit efficiency (Akerlof 70; Stiglitz Weiss 81)
 - private information can alter distribution (Mussa Rosen 78)
- Various mechanisms alter—help or hurt—outcomes
 - signaling (Spence 73)
 - screening (Rothschild Stiglitz 76)
- Our paper: information design
 - fix a canonical interdependent-values trading environment
 - characterize all outcomes as participants' info varies
 - ightarrow interested in more than just efficiency
- Interpretations
 - designer with some objective (e.g., buyer or regulator)
 - predictions across info structures

Punchlines

- Information design can achieve a lot
 - with no restrictions, all feasible and "indiv. rational" payoffs
 - restrictions to canonical classes of info do matter; but in some salient cases, do not
 - → The (non)limits to adverse selection
- Methodological contributions
 - allow information to vary on both sides of market
 - identify role of canonical information classes

Example

Example (1)

Seller can sell one indivisible good

	Prob(1/2)	Prob(1/2)
Buyer's valuation v	1	2
Seller's cost $c(v)$	1/2	2

- lacksquare Seller posts a TIOLI price $p \in \mathbb{R}$
- Payoffs:

	Seller	Buyer
No trade	0	0
Trade	p-c(v)	v-p

- Akerlof benchmark: Fully-informed Buyer; Uninformed Seller
 - eqm price $p \ge 2$; no gains from trade; foregone surplus 1/4

Example (2)

- Both informed: eqm price p = v; all surplus to Seller
- Is there Seller info (w/ informed Buyer) giving all surplus to Buyer?
 - Yes: reveal c=2 sometimes and o-wise induce belief with $\mathbb{E} c=1$. Upon latter, Seller prices at 1, efficient trade, no surplus to Seller.
- **All** points in \triangle obtain w/ some Seller info (and informed Buyer)
- lacktriangleright Feasibility + IR \Longrightarrow nothing else implemented with **any** info design

Example (3)

	Prob(1/2)	Prob(1/2)
Buyer's valuation v	1	2
Seller's cost $c(v)$	0.3	1.8

lacktriangle Akerlof benchmark: p=2; still inefficient, but some gains from trade

- Implement other payoffs with Buyer info design, and uninformed Seller
- In fact, a superset of those with fully-informed Buyer

Example (4)

- No more can be implemented if Buyer is more-informed than Seller
- But can implement still more otherwise
 - e.g., Uninformed Buyer; with ε pr. Seller is informed of v=1 Seller's $p=\mathbb{E} c$ indep of signal; Buyer gets all the surplus
 - \rightarrow Seller's info makes off-path belief credible
- Using joint info design, can fill in the entire feasible & IR \triangle

General Results

- Uninformed Seller sufficient for more-informed Buyer
 - more generally, if Buyer does not update from price
- All three triangles coincide if and only if either
 - Akerlof info can generate full trade
 - Akerlof info can generate no trade

Literature

Monopoly pricing

- Bergemann, Brooks, & Morris 2015
- Roesler & Szentes 2017

Info design in games

- Bergemann & Morris 2016
- Makris & Renou 2019

Others

- Kessler 2001; Levin 2001
- Bar-Isaac, Jewitt, Leaver 2018

Model

Model

- Buyer's valuation: $v \in [\underline{v}, \overline{v}]$; prior μ with support V
- \blacksquare Seller's cost: $c(v) \leq v$, continuous with $\mathbb{E}[v-c(v)] > 0$
- Private signals $t_b, t_s \sim P(t_b, t_s|v)$: info structure; design variable \rightarrow private signals are wlog
- Seller posts a price $p \in \mathbb{R}$; Buyer decides whether to accept
- $\qquad \qquad \textbf{Seller, Buyer vNM payoffs: } \begin{cases} (0,0) & \text{if no trade} \\ (p-c(v),v-p) & \text{if trade} \end{cases}$
- weak Perfect Bayesian Equilibrium
 - + strengthenings

Nb: not assuming $c(v) \uparrow$ subsumes monopoly pricing, adverse or favorable selection

Canonical Info Structures and Notation

 $\Gamma \equiv (c(v), \mu)$ is the environment

Canonical classes of information structures

- T: all (joint) info structures
- \mathbf{T}_{mb} : Buyer more informed than Seller, i.e., t_b is suff statistic for v
- **T** u_s : Seller uninformed
- lacktriangle \mathbf{T}_{fb} : Buyer fully-informed

Implementable payoffs

- \blacksquare $\Pi(\Gamma)$: payoff vectors across all info structures and all wPBE
- $\Pi^*(\Gamma)$: subset with price-independent beliefs
 - ightarrow Buyer does not update from price, after conditioning on t_b
 - → implied by NSWYDK if Buyer more informed
- $\Pi_i^*(\Gamma)$: further subset when information structure is restricted to class i=mb,us,fb

$$\Pi_{us}^*(\Gamma) \cup \Pi_{fb}^*(\Gamma) \subset \Pi_{mb}^*(\Gamma) \subset \Pi^*(\Gamma) \subset \Pi(\Gamma)$$

Results

All Info Structures

Total surplus: $\mathbb{E}[v-c(v)] \equiv S(\Gamma)$

Seller guarantee: $\max \{\underline{v} - \mathbb{E}[c(v)], 0\} \equiv \underline{\pi}_s(\Gamma)$

Buyer guarantee: 0

Theorem

Consider all information structures and equilibria.

$$\mathbf{\Pi}(\Gamma) = \left\{ \begin{array}{ll} \pi_b \geq 0 \\ (\pi_b, \pi_s) : & \pi_s \geq \underline{\pi}_s(\Gamma) \\ \pi_b + \pi_s \leq S(\Gamma) \end{array} \right\}.$$

Moreover, $\forall \varepsilon>0$ \exists a finite information structure and price grid whose set of sequential—even "D1"—equilibrium payoffs is an ε -net of $\Pi(\Gamma)$.

Nb: a single information structure implements entire payoff set

More-informed Buyer

$$\underline{\pi}_s^{us}(\Gamma) \equiv \inf \left\{ \pi_s : \exists (\pi_b, \pi_s) \in \mathbf{\Pi}_{us}^*(\Gamma) \right\}$$

Theorem

Consider equilibria with price-independent beliefs.

- $\mathbf{1} \mathbf{\Pi}^*(\Gamma) = \mathbf{\Pi}^*_{mb}(\Gamma) = \mathbf{\Pi}^*_{us}(\Gamma).$
- $\mathbf{2} \ \mathbf{\Pi}_{us}^*(\Gamma) = \{(\pi_b, \pi_s) \in \mathbf{\Pi}(\Gamma) : \pi_s \ge \underline{\pi}_s^{us}(\Gamma)\}.$
- **3** $\forall (\pi_b, \pi_s) \in \mathbf{\Pi}^*_{us}(\Gamma)$ with $\pi_s > \underline{\pi}^{us}_s(\Gamma)$, $\exists \tau \in \mathbf{T}_{us}$ s.t. all equilibria have payoffs (π_b, π_s) .
- Given price-indep beliefs, uninformed Seller is sufficient
- Only additional constraint now is $\underline{\pi}_s^{us}(\Gamma) \geq \underline{\pi}_s(\Gamma)$. Inequality is strict if $v < \mathbb{E}[c(v)]$ and $c(v) < v \ \forall v$.
- Unique implementation

Fully-Informed Buyer

$$\underline{\pi}_s^{fb}(\Gamma) \equiv \sup_p \int_p^{\overline{v}} (p - c(v)) \mu(\mathbf{y})$$

Theorem

Consider a fully informed Buyer and price-independent beliefs.

- $\mathbf{1} \mathbf{\Pi}_{fb}^*(\Gamma) = \{(\pi_b, \pi_s) \in \mathbf{\Pi}(\Gamma) : \pi_s \ge \underline{\pi}_s^{fb}(\Gamma)\}.$
- 2 $\forall (\pi_b, \pi_s) \in \mathbf{\Pi}_{fb}^*(\Gamma)$ and $\varepsilon > 0$, $\exists \tau \in \mathbf{T}_{fb}$ with all eqm payoffs in ε -ngbhd of (π_b, π_s) .
- $\bullet \text{ Of course, } \underline{\pi}_s^{fb}(\Gamma) \geq \underline{\pi}_s^{us}(\Gamma) \text{; strictly if } \underline{\pi}_s^{fb}(\Gamma) > \underline{\pi}_s(\Gamma)$
- Proof via "incentive compatible distributons", generalizing Bergemann, Brooks & Morris' (2015) "extreme markets"
- Approx. unique implementation

In Sum

Further issues

- characterizing uninformed-Seller bound $\underline{\pi}_s^{us}$ (\checkmark linear v)
- more general correlation in c, v (\checkmark if $c \le v$)
- negative trading surplus (√ for all info structures)
- other mechanisms
 - if $\underline{v} \mathbb{E}[c(v)] \leq 0$, cannot implement any more s.t. participation
 - if $\underline{v} \mathbb{E}[c(v)] > 0$, mech design is useful

Appendix

Theorem 2: Proof Sketch

Lemma

 $\forall (\pi_b, \pi_s) \in \mathbf{\Pi}(\Gamma)$ with $\pi_s > \underline{\pi}_s^{us}(\Gamma)$, \exists garbling of τ^* s.t. all equilibria have payoffs (π_b, π_s) .

Suppose au^* has fully-informed Buyer and prior μ has density:

Garble τ^* so that Seller posts price p^* and there is trade only with all $v>z^*$

- $z^* \leftarrow \text{surplus: } \pi_s + \pi_b = \Pr(v > z^*) \mathbb{E}[v c(v) | v > z^*]$
- $p^* \leftarrow \text{Seller payoff: } \pi_s = \Pr(v > z^*) \mathbb{E}[p^* c(v) | v > z^*]$