Transcriptomic, epigenomic and spatial metabolomic cell profiling redefines regional human kidney anatomy

Haikuo Li¹, Dian Li¹, Nicolas Ledru¹, Qiao Xuanyuan^{1,} Haojia Wu¹, Benjamin D. Humphreys^{1,2*}

¹Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis Department of Developmental Biology, Washington University in St. Louis, St. Louis

INTRODUCTION

Chronic Kidney Disease (CKD)

Human Kidney Anatomy

- 1. The <u>multimodal landscape</u> of human kidney has not been studied across major anatomic regions.
- 2. The <u>same</u> tubular epithelial cell type may be positioned within <u>distinct</u> anatomical regions. Do these cells possess a differential molecular signature when located in different regions?

Single-cell Sequencing Methodology

- Current popular droplet microfluidics platforms have <u>limitations</u> including throughput, sample multiplexing ability and costs.
- We previously developed an optimized <u>split-pool barcoding</u>based scRNA-seq method to study mouse kidneys with high throughput and low costs (Li et al. Cell Metabolism 2022)
 - Transcriptomic profiling → Multiomics
 - Mouse → Human kidneys

METHODS & WORKFLOW

We employed split-pool barcoding simultaneous RNA and ATAC-sequencing (**SHARE-seq**) and spatially resolved metabolomics (**MALDI-IMS**) to profile 54 human kidneys from different anatomical regions.

KEY HIGHLIGHTS

1. A multimodal & anatomically stratified <u>human kidney</u> atlas: 446,267 snRNA-seq + 401,875 snATAC-seq cells

2. Developing **MALDIpy** as a package for IMS single-cell analysis & identification of metabolomic heterogeneity across kidney regions

3. The <u>same</u> tubular epithelial <u>cell type</u> may have <u>distinct</u> transcriptomic, epigenomic and metabolomic <u>signatures</u> depending on anatomical regions.

5. Integrating multiomics with clinical data

CONCLUSIONS & ACKNOWLEDGEMENT

- SHARE-seq analyzes transcriptomes and open chromatin accessibility profiles of >400,000 cells from human kidney samples of different anatomical regions.
- MALDIpy is a package for IMS single-cell analysis allowing identification of kidney anatomical heterogeneity.
- The same kidney tubular cell types have distinct transcriptomic, epigenomic and metabolomic signatures depending on regional location.
- Clinical data integration identifies novel candidate genes in kidney disease progression.

