2.5 Continuity

- 1. From Definition 1, $\lim_{x \to 4} f(x) = f(4)$.
- **2.** The graph of f has no hole, jump, or vertical asymptote.
- 3. (a) f is discontinuous at -4 since f(-4) is not defined and at -2, 2, and 4 since the limit does not exist (the left and right limits are not the same).
 - (b) f is continuous from the left at -2 since $\lim_{x\to -2^-} f(x) = f(-2)$. f is continuous from the right at 2 and 4 since $\lim_{x\to 2^+} f(x) = f(2)$ and $\lim_{x\to 4^+} f(x) = f(4)$. It is continuous from neither side at -4 since f(-4) is undefined.
- **4.** From the graph of g, we see that g is continuous on the intervals [-3, -2), (-2, -1), (-1, 0], (0, 1), and (1, 3].
- 5. The graph of y=f(x) must have a discontinuity at x=2 and must show that $\lim_{x\to 2^+}f(x)=f(2)$.

6. The graph of y=f(x) must have discontinuities at x=-1 and x=4. It must show that $\lim_{x\to -1^-} f(x)=f(-1) \text{ and } \lim_{x\to 4^+} f(x)=f(4).$

7. The graph of y = f(x) must have a removable discontinuity (a hole) at x = 3 and a jump discontinuity at x = 5.

8. The graph of y=f(x) must have a discontinuity at x=-2 with $\lim_{x\to -2^-}f(x)\neq f(-2)$ and

 $\lim_{x \to -2^+} f(x) \neq f(-2)$. It must also show that

 $\lim_{x \to 2^{-}} f(x) = f(2)$ and $\lim_{x \to 2^{+}} f(x) \neq f(2)$.

9. (a) The toll is \$7 between 7:00 AM and 10:00 AM and between 4:00 PM and 7:00 PM.

- **10.** (a) Continuous; at the location in question, the temperature changes smoothly as time passes, without any instantaneous jumps from one temperature to another.
 - (b) Continuous; the temperature at a specific time changes smoothly as the distance due west from New York City increases, without any instantaneous jumps.
 - (c) Discontinuous; as the distance due west from New York City increases, the altitude above sea level may jump from one height to another without going through all of the intermediate values—at a cliff, for example.
 - (d) Discontinuous; as the distance traveled increases, the cost of the ride jumps in small increments.
 - (e) Discontinuous; when the lights are switched on (or off), the current suddenly changes between 0 and some nonzero value, without passing through all of the intermediate values. This is debatable, though, depending on your definition of current.
- $\mathbf{11.} \ \lim_{x \to -1} f(x) = \lim_{x \to -1} \left(x + 2x^3 \right)^4 = \left(\lim_{x \to -1} x + 2 \lim_{x \to -1} x^3 \right)^4 = \left[-1 + 2(-1)^3 \right]^4 = (-3)^4 = 81 = f(-1).$

By the definition of continuity, f is continuous at a = -1.

12. $\lim_{t \to 2} g(t) = \lim_{t \to 2} \frac{t^2 + 5t}{2t + 1} = \frac{\lim_{t \to 2} (t^2 + 5t)}{\lim_{t \to 2} (2t + 1)} = \frac{\lim_{t \to 2} t^2 + 5 \lim_{t \to 2} t}{2 \lim_{t \to 2} t + \lim_{t \to 2} 1} = \frac{2^2 + 5(2)}{2(2) + 1} = \frac{14}{5} = g(2).$

By the definition of continuity, q is continuous at a = 2.

13.
$$\lim_{v \to 1} p(v) = \lim_{v \to 1} 2\sqrt{3v^2 + 1} = 2\lim_{v \to 1} \sqrt{3v^2 + 1} = 2\sqrt{\lim_{v \to 1} (3v^2 + 1)} = 2\sqrt{3\lim_{v \to 1} v^2 + \lim_{v \to 1} 1}$$

 $= 2\sqrt{3(1)^2 + 1} = 2\sqrt{4} = 4 = p(1)$

By the definition of continuity, p is continuous at a = 1.

14.
$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \left(3x^4 - 5x + \sqrt[3]{x^2 + 4} \right) = 3 \lim_{x \to 2} x^4 - 5 \lim_{x \to 2} x + \sqrt[3]{\lim_{x \to 2} (x^2 + 4)}$$
$$= 3(2)^4 - 5(2) + \sqrt[3]{2^2 + 4} = 48 - 10 + 2 = 40 = f(2)$$

By the definition of continuity, f is continuous at a = 2.

15. For a > 4, we have

$$\begin{split} \lim_{x \to a} f(x) &= \lim_{x \to a} (x + \sqrt{x - 4}\,) = \lim_{x \to a} x + \lim_{x \to a} \sqrt{x - 4} & \quad \text{[Limit Law 1]} \\ &= a + \sqrt{\lim_{x \to a} x - \lim_{x \to a} 4} & \quad \text{[8, 11, and 2]} \\ &= a + \sqrt{a - 4} & \quad \text{[8 and 7]} \\ &= f(a) \end{split}$$

So f is continuous at x=a for every a in $(4,\infty)$. Also, $\lim_{x\to 4^+} f(x)=4=f(4)$, so f is continuous from the right at 4.

Thus, f is continuous on $[4, \infty)$.

16. For a < -2, we have

$$\lim_{x \to a} g(x) = \lim_{x \to a} \frac{x - 1}{3x + 6} = \frac{\lim_{x \to a} (x - 1)}{\lim_{x \to a} (3x + 6)}$$
 [Limit Law 5]
$$= \frac{\lim_{x \to a} x - \lim_{x \to a} 1}{3 \lim_{x \to a} x + \lim_{x \to a} 6}$$
 [2, 1, and 3]
$$= \frac{a - 1}{3a + 6}$$
 [8 and 7]

Thus, g is continuous at x = a for every a in $(-\infty, -2)$; that is, g is continuous on $(-\infty, -2)$.

17. $f(x) = \frac{1}{x+2}$ is discontinuous at a = -2 because f(-2) is undefined.

18.
$$f(x) = \begin{cases} \frac{1}{x+2} & \text{if } x \neq -2\\ 1 & \text{if } x = -2 \end{cases}$$

Here
$$f(-2)=1$$
, but $\lim_{x\to -2^-}f(x)=-\infty$ and $\lim_{x\to -2^+}f(x)=\infty$,

so $\lim_{x \to -2} f(x)$ does not exist and f is discontinuous at -2.

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} (x+3) = -1 + 3 = 2 \text{ and}$$

 $\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} 2^x = 2^{-1} = \frac{1}{2}$. Since the left-hand and the

right-hand limits of f at -1 are not equal, $\lim_{x \to -1} f(x)$ does not exist, and

 $x \rightarrow -1$

f is discontinuous at -1.

20.
$$f(x) = \begin{cases} \frac{x^2 - x}{x^2 - 1} & \text{if } x \neq 1\\ 1 & \text{if } x = 1 \end{cases}$$

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - x}{x^2 - 1} = \lim_{x \to 1} \frac{x(x - 1)}{(x + 1)(x - 1)} = \lim_{x \to 1} \frac{x}{x + 1} = \frac{1}{2},$$

but f(1) = 1, so f is discontinuous at 1.

21.
$$f(x) = \begin{cases} \cos x & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ 1 - x^2 & \text{if } x > 0 \end{cases}$$

 $\lim_{x\to 0} f(x) = 1$, but $f(0) = 0 \neq 1$, so f is discontinuous at 0.

22.
$$f(x) = \begin{cases} \frac{2x^2 - 5x - 3}{x - 3} & \text{if } x \neq 3\\ 6 & \text{if } x = 3 \end{cases}$$

$$\lim_{x \to 3} f(x) = \lim_{x \to 3} \frac{2x^2 - 5x - 3}{x - 3} = \lim_{x \to 3} \frac{(2x + 1)(x - 3)}{x - 3} = \lim_{x \to 3} (2x + 1) = 7,$$

but f(3) = 6, so f is discontinuous at 3.

- 23. $f(x) = \frac{x^2 x 2}{x 2} = \frac{(x 2)(x + 1)}{x 2} = x + 1$ for $x \neq 2$. Since $\lim_{x \to 2} f(x) = 2 + 1 = 3$, define f(2) = 3. Then f is
- **24.** $f(x) = \frac{x^3 8}{x^2 4} = \frac{(x 2)(x^2 + 2x + 4)}{(x 2)(x + 2)} = \frac{x^2 + 2x + 4}{x + 2}$ for $x \neq 2$. Since $\lim_{x \to 2} f(x) = \frac{4 + 4 + 4}{2 + 2} = 3$, define f(2) = 3.

Then f is continuous at 2.

- **25.** $F(x) = \frac{2x^2 x 1}{x^2 + 1}$ is a rational function, so it is continuous on its domain, $(-\infty, \infty)$, by Theorem 5(b).
- **26.** $G(x)=\frac{x^2+1}{2x^2-x-1}=\frac{x^2+1}{(2x+1)(x-1)}$ is a rational function, so it is continuous on its domain,

 $\left(-\infty, -\frac{1}{2}\right) \cup \left(-\frac{1}{2}, 1\right) \cup (1, \infty)$, by Theorem 5(b).

© 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

102 CHAPTER 2 LIMITS AND DERIVATIVES

- **27.** $x^3 2 = 0 \implies x^3 = 2 \implies x = \sqrt[3]{2}$, so $Q(x) = \frac{\sqrt[3]{x-2}}{x^3 2}$ has domain $(-\infty, \sqrt[3]{2}) \cup (\sqrt[3]{2}, \infty)$. Now $x^3 2$ is continuous everywhere by Theorem 5(a) and $\sqrt[3]{x-2}$ is continuous everywhere by Theorems 5(a), 7, and 9. Thus, Q is continuous on its domain by part 5 of Theorem 4.
- **28.** The domain of $R(t) = \frac{e^{\sin t}}{2 + \cos \pi t}$ is $(-\infty, \infty)$ since the denominator is never $0 [\cos \pi t \ge -1 \implies 2 + \cos \pi t \ge 1]$. By Theorems 7 and 9, $e^{\sin t}$ and $\cos \pi t$ are continuous on \mathbb{R} . By part 1 of Theorem 4, $2 + \cos \pi t$ is continuous on \mathbb{R} and by part 5 of Theorem 4, R is continuous on \mathbb{R} .
- **29.** By Theorem 5(a), the polynomial 1 + 2t is continuous on \mathbb{R} . By Theorem 7, the inverse trigonometric function $\arcsin x$ is continuous on its domain, [-1,1]. By Theorem 9, $A(t) = \arcsin(1+2t)$ is continuous on its domain, which is $\{t \mid -1 \le 1 + 2t \le 1\} = \{t \mid -2 \le 2t \le 0\} = \{t \mid -1 \le t \le 0\} = [-1,0]$.
- 30. By Theorem 7, the trigonometric function $\tan x$ is continuous on its domain, $\left\{x\mid x\neq\frac{\pi}{2}+\pi n\right\}$. By Theorems 5(a), 7, and 9, the composite function $\sqrt{4-x^2}$ is continuous on its domain [-2,2]. By part 5 of Theorem 4, $B(x)=\frac{\tan x}{\sqrt{4-x^2}}$ is continuous on its domain, $(-2,-\pi/2)\cup(-\pi/2,\pi/2)\cup(\pi/2,2)$.
- 31. $M(x) = \sqrt{1 + \frac{1}{x}} = \sqrt{\frac{x+1}{x}}$ is defined when $\frac{x+1}{x} \ge 0 \implies x+1 \ge 0$ and x > 0 or $x+1 \le 0$ and $x < 0 \implies x > 0$ or $x \le -1$, so M has domain $(-\infty, -1] \cup (0, \infty)$. M is the composite of a root function and a rational function, so it is continuous at every number in its domain by Theorems 7 and 9.
- 32. By Theorems 7 and 9, the composite function e^{-r^2} is continuous on \mathbb{R} . By part 1 of Theorem 4, $1 + e^{-r^2}$ is continuous on \mathbb{R} . By Theorem 7, the inverse trigonometric function \tan^{-1} is continuous on its domain, \mathbb{R} . By Theorem 9, the composite function $N(r) = \tan^{-1}\left(1 + e^{-r^2}\right)$ is continuous on its domain, \mathbb{R} .
- 33. The function $y = \frac{1}{1 + e^{1/x}}$ is discontinuous at x = 0 because the left- and right-hand limits at x = 0 are different.

34. The function $y=\tan^2 x$ is discontinuous at $x=\frac{\pi}{2}+\pi k$, where k is any integer. The function $y=\ln(\tan^2 x)$ is also discontinuous where $\tan^2 x$ is 0, that is, at $x=\pi k$. So $y=\ln(\tan^2 x)$ is discontinuous at $x=\frac{\pi}{2}n$, n any integer.

- **35.** Because x is continuous on \mathbb{R} and $\sqrt{20-x^2}$ is continuous on its domain, $-\sqrt{20} \le x \le \sqrt{20}$, the product $f(x) = x\sqrt{20-x^2}$ is continuous on $-\sqrt{20} \le x \le \sqrt{20}$. The number 2 is in that domain, so f is continuous at 2, and $\lim_{x \to 0} f(x) = f(2) = 2\sqrt{16} = 8.$
- **36.** Because x is continuous on \mathbb{R} , $\sin x$ is continuous on \mathbb{R} , and $x + \sin x$ is continuous on \mathbb{R} , the composite function $f(x) = \sin(x + \sin x)$ is continuous on \mathbb{R} , so $\lim_{x \to \pi} f(x) = f(\pi) = \sin(\pi + \sin \pi) = \sin \pi = 0$.
- 37. The function $f(x) = \ln\left(\frac{5-x^2}{1+x}\right)$ is continuous throughout its domain because it is the composite of a logarithm function and a rational function. For the domain of f, we must have $\frac{5-x^2}{1+x} > 0$, so the numerator and denominator must have the same sign, that is, the domain is $(-\infty, -\sqrt{5}] \cup (-1, \sqrt{5}]$. The number 1 is in that domain, so f is continuous at 1, and $\lim_{x \to 1} f(x) = f(1) = \ln \frac{5-1}{1+1} = \ln 2.$
- **38.** The function $f(x) = 3^{\sqrt{x^2 2x 4}}$ is continuous throughout its domain because it is the composite of an exponential function, a root function, and a polynomial. Its domain is

$$\left\{ x \mid x^2 - 2x - 4 \ge 0 \right\} = \left\{ x \mid x^2 - 2x + 1 \ge 5 \right\} = \left\{ x \mid (x - 1)^2 \ge 5 \right\}$$

$$= \left\{ x \mid |x - 1| \ge \sqrt{5} \right\} = (-\infty, 1 - \sqrt{5}] \cup [1 + \sqrt{5}, \infty)$$

The number 4 is in that domain, so f is continuous at 4, and $\lim_{x\to 4} f(x) = f(4) = 3^{\sqrt{16-8-4}} = 3^2 = 9$.

39.
$$f(x) = \begin{cases} 1 - x^2 & \text{if } x \le 1\\ \ln x & \text{if } x > 1 \end{cases}$$

By Theorem 5, since f(x) equals the polynomial $1-x^2$ on $(-\infty,1]$, f is continuous on $(-\infty,1]$.

By Theorem 7, since f(x) equals the logarithm function $\ln x$ on $(1, \infty)$, f is continuous on $(1, \infty)$.

At x=1, $\lim_{x\to 1^-}f(x)=\lim_{x\to 1^-}(1-x^2)=1-1^2=0$ and $\lim_{x\to 1^+}f(x)=\lim_{x\to 1^+}\ln x=\ln 1=0$. Thus, $\lim_{x\to 1}f(x)$ exists and equals 0. Also, $f(1) = 1 - 1^2 = 0$. Thus, f is continuous at x = 1. We conclude that f is continuous on $(-\infty, \infty)$

40.
$$f(x) = \begin{cases} \sin x & \text{if } x < \pi/4\\ \cos x & \text{if } x \ge \pi/4 \end{cases}$$

By Theorem 7, the trigonometric functions are continuous. Since $f(x) = \sin x$ on $(-\infty, \pi/4)$ and $f(x) = \cos x$ on $(\pi/4,\infty)$, f is continuous on $(-\infty,\pi/4)\cup(\pi/4,\infty)$. $\lim_{x\to(\pi/4)^-}f(x)=\lim_{x\to(\pi/4)^-}\sin x=\sin\frac{\pi}{4}=1/\sqrt{2}$ since the sine function is continuous at $\pi/4$. Similarly, $\lim_{x \to (\pi/4)^+} f(x) = \lim_{x \to (\pi/4)^+} \cos x = 1/\sqrt{2}$ by continuity of the cosine function at $\pi/4$. Thus, $\lim_{x\to(\pi/4)} f(x)$ exists and equals $1/\sqrt{2}$, which agrees with the value $f(\pi/4)$. Therefore, f is continuous at $\pi/4$, so f is continuous on $(-\infty, \infty)$.

41.
$$f(x) = \begin{cases} x^2 & \text{if } x < -1 \\ x & \text{if } -1 \le x < 1 \\ 1/x & \text{if } x \ge 1 \end{cases}$$

f is continuous on $(-\infty, -1)$, (-1, 1), and $(1, \infty)$, where it is a polynomial,

a polynomial, and a rational function, respectively.

Now
$$\lim_{x \to -1^-} f(x) = \lim_{x \to -1^-} x^2 = 1$$
 and $\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} x = -1$,

so f is discontinuous at -1. Since f(-1) = -1, f is continuous from the right at -1. Also, $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} x = 1$ and

 $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{1}{x} = 1 = f(1)$, so f is continuous at 1.

f is continuous on $(-\infty, 1)$, (1, 4), and $(4, \infty)$, where it is an exponential,

a polynomial, and a root function, respectively.

Now
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} 2^{x} = 2$$
 and $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (3 - x) = 2$. Since $f(1) = 2$ we have continuity at 1. Also,

$$\lim_{x\to 4^-}f(x)=\lim_{x\to 4^-}(3-x)=-1=f(4) \ \ \text{and} \ \ \lim_{x\to 4^+}f(x)=\lim_{x\to 4^+}\sqrt{x}=2, \text{ so } f \text{ is discontinuous at } 4, \text{ but it is continuous } 1$$

from the left at 4.

43.
$$f(x) = \begin{cases} x+2 & \text{if } x < 0 \\ e^x & \text{if } 0 \le x \le 1 \\ 2-x & \text{if } x > 1 \end{cases}$$

f is continuous on $(-\infty,0)$ and $(1,\infty)$ since on each of these intervals

it is a polynomial; it is continuous on (0, 1) since it is an exponential.

Now
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (x+2) = 2$$
 and $\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} e^{x} = 1$, so f is discontinuous at 0. Since $f(0) = 1$, f is

continuous from the right at 0. Also
$$\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} e^x = e$$
 and $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (2-x) = 1$, so f is discontinuous

at 1. Since f(1) = e, f is continuous from the left at 1.

44. By Theorem 5, each piece of F is continuous on its domain. We need to check for continuity at r = R.

$$\lim_{r\to R^-}F(r)=\lim_{r\to R^-}\frac{GMr}{R^3}=\frac{GM}{R^2} \text{ and } \lim_{r\to R^+}F(r)=\lim_{r\to R^+}\frac{GM}{r^2}=\frac{GM}{R^2}, \text{ so } \lim_{r\to R}F(r)=\frac{GM}{R^2}. \text{ Since } F(R)=\frac{GM}{R^2}, \text{ for } R=0$$

F is continuous at R. Therefore, F is a continuous function of r.

45.
$$f(x) = \begin{cases} cx^2 + 2x & \text{if } x < 2\\ x^3 - cx & \text{if } x \ge 2 \end{cases}$$

f is continuous on
$$(-\infty,2)$$
 and $(2,\infty)$. Now $\lim_{x\to 2^-} f(x) = \lim_{x\to 2^-} \left(cx^2+2x\right) = 4c+4$ and

 $\lim_{x\to 2^+} f(x) = \lim_{x\to 2^+} \left(x^3 - cx\right) = 8 - 2c. \text{ So } f \text{ is continuous } \Leftrightarrow 4c + 4 = 8 - 2c \Leftrightarrow 6c = 4 \Leftrightarrow c = \frac{2}{3}. \text{ Thus, for } f = \frac{2}{3}.$ Thus, for $f = \frac{2}{3}$ to be continuous on $(-\infty, \infty)$, $c = \frac{2}{3}$.

46.
$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{if } x < 2\\ ax^2 - bx + 3 & \text{if } 2 \le x < 3\\ 2x - a + b & \text{if } x \ge 3 \end{cases}$$

At
$$x = 2$$
:
$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} \frac{x^{2} - 4}{x - 2} = \lim_{x \to 2^{-}} \frac{(x + 2)(x - 2)}{x - 2} = \lim_{x \to 2^{-}} (x + 2) = 2 + 2 = 4$$
$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (ax^{2} - bx + 3) = 4a - 2b + 3$$

We must have 4a - 2b + 3 = 4, or 4a - 2b = 1 (1).

At
$$x = 3$$
: $\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (ax^{2} - bx + 3) = 9a - 3b + 3$
 $\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{+}} (2x - a + b) = 6 - a + b$
We must have $9a - 3b + 3 = 6 - a + b$, or $10a - 4b = 3$ (2).

Now solve the system of equations by adding -2 times equation (1) to equation (2).

$$-8a + 4b = -2$$

$$10a - 4b = 3$$

$$2a = 1$$

So $a = \frac{1}{2}$. Substituting $\frac{1}{2}$ for a in (1) gives us -2b = -1, so $b = \frac{1}{2}$ as well. Thus, for f to be continuous on $(-\infty, \infty)$, $a = b = \frac{1}{2}$.

47. If f and g are continuous and g(2) = 6, then $\lim_{x \to 2} [3f(x) + f(x)g(x)] = 36 \implies$ $3\lim_{x \to 2} f(x) + \lim_{x \to 2} f(x) \cdot \lim_{x \to 2} g(x) = 36 \implies 3f(2) + f(2) \cdot 6 = 36 \implies 9f(2) = 36 \implies f(2) = 4$.

48. (a)
$$f(x) = \frac{1}{x}$$
 and $g(x) = \frac{1}{x^2}$, so $(f \circ g)(x) = f(g(x)) = f(1/x^2) = 1/(1/x^2) = x^2$.

(b) The domain of $f \circ g$ is the set of numbers x in the domain of g (all nonzero reals) such that g(x) is in the domain of f (also all nonzero reals). Thus, the domain is $\left\{x \mid x \neq 0 \text{ and } \frac{1}{x^2} \neq 0\right\} = \left\{x \mid x \neq 0\right\}$ or $(-\infty, 0) \cup (0, \infty)$. Since $f \circ g$ is the composite of two rational functions, it is continuous throughout its domain; that is, everywhere except x = 0.

49. (a)
$$f(x) = \frac{x^4 - 1}{x - 1} = \frac{(x^2 + 1)(x^2 - 1)}{x - 1} = \frac{(x^2 + 1)(x + 1)(x - 1)}{x - 1} = (x^2 + 1)(x + 1)$$
 [or $x^3 + x^2 + x + 1$]

for $x \neq 1$. The discontinuity is removable and $g(x) = x^3 + x^2 + x + 1$ agrees with f for $x \neq 1$ and is continuous on \mathbb{R} .

(b)
$$f(x) = \frac{x^3 - x^2 - 2x}{x - 2} = \frac{x(x^2 - x - 2)}{x - 2} = \frac{x(x - 2)(x + 1)}{x - 2} = x(x + 1)$$
 [or $x^2 + x$] for $x \neq 2$. The discontinuity is removable and $g(x) = x^2 + x$ agrees with f for $x \neq 2$ and is continuous on \mathbb{R} .

(c)
$$\lim_{x \to \pi^-} f(x) = \lim_{x \to \pi^-} \llbracket \sin x \rrbracket = \lim_{x \to \pi^-} 0 = 0$$
 and $\lim_{x \to \pi^+} f(x) = \lim_{x \to \pi^+} \llbracket \sin x \rrbracket = \lim_{x \to \pi^+} (-1) = -1$, so $\lim_{x \to \pi} f(x)$ does not exist. The discontinuity at $x = \pi$ is a jump discontinuity.

50.

f does not satisfy the conclusion of the Intermediate Value Theorem.

f does satisfy the conclusion of the Intermediate Value Theorem.

- 51. $f(x) = x^2 + 10 \sin x$ is continuous on the interval [31, 32], $f(31) \approx 957$, and $f(32) \approx 1030$. Since 957 < 1000 < 1030, there is a number c in (31, 32) such that f(c) = 1000 by the Intermediate Value Theorem. *Note:* There is also a number c in (-32, -31) such that f(c) = 1000.
- 52. Suppose that f(3) < 6. By the Intermediate Value Theorem applied to the continuous function f on the closed interval [2,3], the fact that f(2) = 8 > 6 and f(3) < 6 implies that there is a number c in (2,3) such that f(c) = 6. This contradicts the fact that the only solutions of the equation f(x) = 6 are x = 1 and x = 4. Hence, our supposition that f(3) < 6 was incorrect. It follows that $f(3) \ge 6$. But $f(3) \ne 6$ because the only solutions of f(x) = 6 are x = 1 and x = 4. Therefore, f(3) > 6.
- 53. $f(x) = x^4 + x 3$ is continuous on the interval [1, 2], f(1) = -1, and f(2) = 15. Since -1 < 0 < 15, there is a number c in (1, 2) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation $x^4 + x 3 = 0$ in the interval (1, 2).
- 54. The equation $\ln x = x \sqrt{x}$ is equivalent to the equation $\ln x x + \sqrt{x} = 0$. $f(x) = \ln x x + \sqrt{x}$ is continuous on the interval [2,3], $f(2) = \ln 2 2 + \sqrt{2} \approx 0.107$, and $f(3) = \ln 3 3 + \sqrt{3} \approx -0.169$. Since f(2) > 0 > f(3), there is a number c in (2,3) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation $\ln x x + \sqrt{x} = 0$, or $\ln x = x \sqrt{x}$, in the interval (2,3).
- 55. The equation $e^x = 3 2x$ is equivalent to the equation $e^x + 2x 3 = 0$. $f(x) = e^x + 2x 3$ is continuous on the interval [0,1], f(0) = -2, and $f(1) = e 1 \approx 1.72$. Since -2 < 0 < e 1, there is a number c in (0,1) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation $e^x + 2x 3 = 0$, or $e^x = 3 2x$, in the interval (0,1).
- 56. The equation $\sin x = x^2 x$ is equivalent to the equation $\sin x x^2 + x = 0$. $f(x) = \sin x x^2 + x$ is continuous on the interval [1,2], $f(1) = \sin 1 \approx 0.84$, and $f(2) = \sin 2 2 \approx -1.09$. Since $\sin 1 > 0 > \sin 2 2$, there is a number c in (1,2) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation $\sin x x^2 + x = 0$, or $\sin x = x^2 x$, in the interval (1,2).
- 57. (a) $f(x) = \cos x x^3$ is continuous on the interval [0,1], f(0) = 1 > 0, and $f(1) = \cos 1 1 \approx -0.46 < 0$. Since 1 > 0 > -0.46, there is a number c in (0,1) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation $\cos x x^3 = 0$, or $\cos x = x^3$, in the interval (0,1).

- (b) $f(0.86) \approx 0.016 > 0$ and $f(0.87) \approx -0.014 < 0$, so there is a root between 0.86 and 0.87, that is, in the interval (0.86, 0.87).
- **58.** (a) $f(x) = \ln x 3 + 2x$ is continuous on the interval [1, 2], f(1) = -1 < 0, and $f(2) = \ln 2 + 1 \approx 1.7 > 0$. Since -1 < 0 < 1.7, there is a number c in (1,2) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation $\ln x - 3 + 2x = 0$, or $\ln x = 3 - 2x$, in the interval (1, 2).
 - (b) $f(1.34) \approx -0.03 < 0$ and $f(1.35) \approx 0.0001 > 0$, so there is a root between 1.34 and 1.35, that is, in the interval (1.34, 1.35).
- **59.** (a) Let $f(x) = 100e^{-x/100} 0.01x^2$. Then f(0) = 100 > 0 and $f(100) = 100e^{-1} - 100 \approx -63.2 < 0$. So by the Intermediate Value Theorem, there is a number c in (0, 100) such that f(c) = 0. This implies that $100e^{-c/100} = 0.01c^2$.

- (b) Using the intersect feature of the graphing device, we find that the root of the equation is x = 70.347, correct to three decimal places.
- **60.** (a) Let $f(x) = \arctan x + x 1$. Then f(0) = -1 < 0 and $f(1) = \frac{\pi}{4} > 0$. So by the Intermediate Value Theorem, there is a number c in (0,1) such that f(c) = 0. This implies that $\arctan c = 1 - c$.

61. Let $f(x) = \sin x^3$. Then f is continuous on [1, 2] since f is the composite of the sine function and the cubing function, both of which are continuous on \mathbb{R} . The zeros of the sine are at $n\pi$, so we note that $0 < 1 < \pi < \frac{3}{2}\pi < 2\pi < 8 < 3\pi$, and that the pertinent cube roots are related by $1 < \sqrt[3]{\frac{3}{2}\pi}$ [call this value A] < 2. [By observation, we might notice that $x = \sqrt[3]{\pi}$ and $x = \sqrt[3]{2\pi}$ are zeros of f.] Now $f(1) = \sin 1 > 0$, $f(A) = \sin \frac{3}{2}\pi = -1 < 0$, and $f(2) = \sin 8 > 0$. Applying the Intermediate Value Theorem on

[1, A] and then on [A, 2], we see there are numbers c and d in (1, A) and (A, 2) such that f(c) = f(d) = 0. Thus, f has at least two x-intercepts in (1, 2).

62. Let $f(x) = x^2 - 3 + 1/x$. Then f is continuous on (0,2] since f is a rational function whose domain is $(0,\infty)$. By inspection, we see that $f(\frac{1}{4}) = \frac{17}{16} > 0$, f(1) = -1 < 0, and $f(2) = \frac{3}{2} > 0$. Appling the Intermediate Value Theorem on $\begin{bmatrix} \frac{1}{4}, 1 \end{bmatrix}$ and then on [1, 2], we see there are numbers c and d in $(\frac{1}{4}, 1)$ and (1, 2) such that f(c) = f(d) = 0. Thus, f has at least two x-intercepts in (0, 2).

63. (\Rightarrow) If f is continuous at a, then by Theorem 8 with g(h) = a + h, we have

$$\lim_{h \to 0} f(a+h) = f\left(\lim_{h \to 0} (a+h)\right) = f(a)$$

 (\Leftarrow) Let $\varepsilon > 0$. Since $\lim_{h \to 0} f(a+h) = f(a)$, there exists $\delta > 0$ such that $0 < |h| < \delta \implies$

$$|f(a+h)-f(a)|<\varepsilon. \text{ So if } 0<|x-a|<\delta, \text{ then } |f(x)-f(a)|=|f(a+(x-a))-f(a)|<\varepsilon.$$

Thus, $\lim_{x\to a} f(x) = f(a)$ and so f is continuous at a.

64. $\lim_{h \to 0} \sin(a+h) = \lim_{h \to 0} (\sin a \cos h + \cos a \sin h) = \lim_{h \to 0} (\sin a \cos h) + \lim_{h \to 0} (\cos a \sin h)$

$$= \left(\lim_{h \to 0} \sin a\right) \left(\lim_{h \to 0} \cos h\right) + \left(\lim_{h \to 0} \cos a\right) \left(\lim_{h \to 0} \sin h\right) = (\sin a)(1) + (\cos a)(0) = \sin a$$

65. As in the previous exercise, we must show that $\lim_{h\to 0}\cos(a+h)=\cos a$ to prove that the cosine function is continuous.

$$\lim_{h \to 0} \cos(a+h) = \lim_{h \to 0} (\cos a \cos h - \sin a \sin h) = \lim_{h \to 0} (\cos a \cos h) - \lim_{h \to 0} (\sin a \sin h)$$

$$= \left(\lim_{h \to 0} \cos a\right) \left(\lim_{h \to 0} \cos h\right) - \left(\lim_{h \to 0} \sin a\right) \left(\lim_{h \to 0} \sin h\right) = (\cos a)(1) - (\sin a)(0) = \cos a$$

66. (a) Since f is continuous at a, $\lim_{x \to a} f(x) = f(a)$. Thus, using the Constant Multiple Law of Limits, we have

$$\lim_{x\to a} (cf)(x) = \lim_{x\to a} cf(x) = c\lim_{x\to a} f(x) = cf(a) = (cf)(a)$$
. Therefore, cf is continuous at a .

(b) Since f and g are continuous at a, $\lim_{x\to a} f(x) = f(a)$ and $\lim_{x\to a} g(x) = g(a)$. Since $g(a) \neq 0$, we can use the Quotient Law

of Limits:
$$\lim_{x \to a} \left(\frac{f}{g} \right)(x) = \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{f(a)}{g(a)} = \left(\frac{f}{g} \right)(a)$$
. Thus, $\frac{f}{g}$ is continuous at a .

67. $f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ 1 & \text{if } x \text{ is irrational} \end{cases}$ is continuous nowhere. For, given any number a and any $\delta > 0$, the interval $(a - \delta, a + \delta)$

contains both infinitely many rational and infinitely many irrational numbers. Since f(a)=0 or 1, there are infinitely many numbers x with $0<|x-a|<\delta$ and |f(x)-f(a)|=1. Thus, $\lim_{x\to a}f(x)\neq f(a)$. [In fact, $\lim_{x\to a}f(x)$ does not even exist.]

68. $g(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ x & \text{if } x \text{ is irrational} \end{cases}$ is continuous at 0. To see why, note that $-|x| \leq g(x) \leq |x|$, so by the Squeeze Theorem

 $\lim_{x\to 0}g(x)=0=g(0)$. But g is continuous nowhere else. For if $a\neq 0$ and $\delta>0$, the interval $(a-\delta,a+\delta)$ contains both infinitely many rational and infinitely many irrational numbers. Since g(a)=0 or a, there are infinitely many numbers x with $0<|x-a|<\delta$ and |g(x)-g(a)|>|a|/2. Thus, $\lim_{x\to a}g(x)\neq g(a)$.

- 69. If there is such a number, it satisfies the equation $x^3 + 1 = x \Leftrightarrow x^3 x + 1 = 0$. Let the left-hand side of this equation be called f(x). Now f(-2) = -5 < 0, and f(-1) = 1 > 0. Note also that f(x) is a polynomial, and thus continuous. So by the Intermediate Value Theorem, there is a number c between -2 and -1 such that f(c) = 0, so that $c = c^3 + 1$.
- **70.** $\frac{a}{x^3 + 2x^2 1} + \frac{b}{x^3 + x 2} = 0 \implies a(x^3 + x 2) + b(x^3 + 2x^2 1) = 0$. Let p(x) denote the left side of the last equation. Since p is continuous on [-1, 1], p(-1) = -4a < 0, and p(1) = 2b > 0, there exists a c in (-1, 1) such that

- 71. $f(x) = x^4 \sin(1/x)$ is continuous on $(-\infty, 0) \cup (0, \infty)$ since it is the product of a polynomial and a composite of a trigonometric function and a rational function. Now since $-1 \le \sin(1/x) \le 1$, we have $-x^4 \le x^4 \sin(1/x) \le x^4$. Because $\lim_{x \to 0} (-x^4) = 0$ and $\lim_{x \to 0} x^4 = 0$, the Squeeze Theorem gives us $\lim_{x \to 0} (x^4 \sin(1/x)) = 0$, which equals f(0). Thus, f is continuous at 0 and, hence, on $(-\infty, \infty)$.
- 72. (a) $\lim_{x\to 0^+} F(x) = 0$ and $\lim_{x\to 0^-} F(x) = 0$, so $\lim_{x\to 0} F(x) = 0$, which is F(0), and hence F is continuous at x=a if a=0. For a>0, $\lim_{x\to a} F(x) = \lim_{x\to a} x = a = F(a)$. For a<0, $\lim_{x\to a} F(x) = \lim_{x\to a} (-x) = -a = F(a)$. Thus, F is continuous at x=a; that is, continuous everywhere.
 - (b) Assume that f is continuous on the interval I. Then for $a \in I$, $\lim_{x \to a} |f(x)| = \left| \lim_{x \to a} f(x) \right| = |f(a)|$ by Theorem 8. (If a is an endpoint of I, use the appropriate one-sided limit.) So |f| is continuous on I.
 - (c) No, the converse is false. For example, the function $f(x) = \begin{cases} 1 & \text{if } x \geq 0 \\ -1 & \text{if } x < 0 \end{cases}$ is not continuous at x = 0, but |f(x)| = 1 is continuous on \mathbb{R} .
- 73. Define u(t) to be the monk's distance from the monastery, as a function of time t (in hours), on the first day, and define d(t) to be his distance from the monastery, as a function of time, on the second day. Let D be the distance from the monastery to the top of the mountain. From the given information we know that u(0) = 0, u(12) = D, d(0) = D and d(12) = 0. Now consider the function u d, which is clearly continuous. We calculate that (u d)(0) = -D and (u d)(12) = D. So by the Intermediate Value Theorem, there must be some time t_0 between 0 and 12 such that $(u d)(t_0) = 0$ \Leftrightarrow $u(t_0) = d(t_0)$. So at time t_0 after 7:00 AM, the monk will be at the same place on both days.