NEDERITAL / US OFFIC S ONLY

REPORT NO

INFORMATION REPORT

CD NO.

COUNTRY

China

DATE DISTR.

9 May 1949

SUBJECT

Agricultural Conditions in Kwangsi Province

25X1C

NO. OF PAGES

PLACE ACQUIRED

DATE ACQUIRED BY SOUR

25X1A

NO. OF ENCLS. (LISTED BELOW)

SUPPLEMENT TO REPORT NO.

25X1X

25X1A

- Kwangsi is at once one of the most backward and one of the most forward provinces of China. It has an area of 81,000 square miles with a population estimated at about 12,000,000. In other words, with an area a helf larger than Wisconsin, its population is three times as great. Accordingly, its population density is twice that of the Badger state. The bulk of this population is massed along the West River leaving the northern three-fourths of the area sparsely populated. For miles one may travel along the highway from Kweichow to Hunan without seeing a village or more than an occasional isolated farmhouse. Next to Kweichow perhaps, Kwangsi is the poorest of the original eighteen provinces.
- 2. On the other hand, of all provinces, Kwangsi has the least banditry. One hears little talk of squeeze and official corruption. There is an atmosphere of Officials live simply and dress plainly. On the other hand, honest poverty. Officials live simply and dress plainly. On the other in places like Kweilin and Liuchow government buildings, all of which were destroyed during the Japanese occupation, have been newly reconstructed in a substantial manner in good taste and on a fairly liberal scale. The explanation is that UNRRA and CNNRA resources were used efficiently. Literacy is said to be as high as 50 per cent. Near Liuchow miles of forest are to be observed on the hills with trees as much as 9 inches in diameter. Still other miles show recent plantation. No doubt, lack of population pressure for fuel accounts in considerable measure for the success of the forestation program, but probably the largest factor in the situation is the fact that for 20 years there has been continuous administration with little change in personnel except that necessitated by deaths, promotions and the two years of Japanese occupation. Men who conceived a program have remained in position to see it put into operation and carried through to completion.
- 3. The poverty, the lack of population, the great stretches of unoccupied land are explained by the nature of the soil. Most of this area consists of a sandy yellow soil so porous that even after a heavy rain fields are not muddy 24 hours later. Rain water seeps through the soil almost immediately. Irrigation must be almost constant in order to be effective and irrigation reservoirs lose their contents in short order because of leakage. Commercial fertilizer put on such lands leaches through to lower levels. Hence, cultivated lands are not very productive and the uncultivated lands produce only a coarse grass which grows tall but is not very nutritious.
- 4. Nevertheless, for nearly 20 years, in different parts of this unpromising area, officials in charge have endeavored to make the land habitable. At the same time that the hills were planted to trees, small irrigation systems were constructed. The heavy rainy season is during the months of June, July and August but the crop-maturing months are principally September and October.

CLASSIFICATION ON FIDENTIAL / US OFFICIALS ONLY

STATE	X	NAVY	×	NSRB	DISTRIBUTION				
ARMY	\sum	AIR	\boxtimes	FBI					

CONFIDENTIALL / US OFFICIALS ONLY

Where the irrigation reservoirs impound sufficient run-off to carry on irrigation through September it has been possible to mature crops. In these later years it has been observed that the run-off from well forested highlands has been retarded considerably, making possible irrigation at a later date. In addition, a certain amount of humus is brought down with the run-off and has begun to seal up the pores in the reservoir floors. Where crops have been matured, a certain amount of root structure and leafy matter soon permeates the soil and produces a humus which to a certain extent holds the water. Thus, a gradual building up of the soil results; and this program can be observed by noting the changes in soil color.

- 5. At the same time new crops are being introduced, which either are adapted to the soil or help in this transformation and in any case add to the resources of the people. Among these are cassava, used in the making of starch; derris, whose root makes a valuable insecticide; and new grasses which can be used for forage. Alsike clover has been found adapted. Alfalfa will grow well but does not seed.
- To the casual observer these great unoccupied grass lands seem to be ideally suited to range purposes but this appearance is somewhat deciving. Apparently native cattle thrive on the coarse grass, but imported cattle starve on it during the winter months. The imported dairy herd at Kweilin affords an excellent demonstration. These Shorthorns, Ayrshires, Holsteins and Jerseys, when observed on March 7, were in such an emaciated condition that it seemed likely that many of them would die before new grass is available. On the other hand, the native cows, stabled beside them and pastured with them, were in excellent condition.
- The authorities of the province appear to have a firm grasp of the basic principles underlying an improved economy for the province. Because the population is 90 per cent agricultural they are emphasizing a rural program and this rural program stresses crop production, literacy and development of rural cooperatives. Crop production involves several factors which it appears must be developed with a considerable degree of coordination. Fundamentally, this program must deal with correction of the soil condition; and, as indicated earlier, this involves irrigation, forestation, production of humus. It also involves the animal husbandry which cannot rapidly precede cross breeding with native cows and the introduction of improved grasses. Fortunately, a well organized veterinary service has a firm control of rinderpest. Along with this, should probably go a program of liming large areas. The country is full of lime rock. Water power can be developed every few miles and the introduction of rock crushers is probably a desirable step toward a wide scale use of crushed lime rock as a part of the improved fertility program.
- So It is well known that much of the rural poverty of China is caused by the small size of the average farm. For all China this average is only 4 acres and for many regions not more than one acre. With the sparse population of western Kwangsi there is an opportunity to get away from the extremely small farm. Because of the character of the soil at the present time there is even a necessity for larger farms. However, larger farms are not possible unless the farmers can have the assistance of some kind of power and powered tools. At the present time there is a movement on foot to organize ploughing cooperatives so that each farmer may cultivate as much as 10 or even 15 acres. By use of the cooperatives, 3 to 4 farmers may have at their disposal a buffalo or a yoke of yellow cows. This would greatly increase the plowed and harrowed area per family.
- 9. If the benefits of rural production are to be enjoyed by the people, there products must be processed. Larger scale cooperatives are necessary in order to provide sugar mills, oil presses, starch factories, and tanneries. These all require financing.
- 10. At the present juncture in Chinese national affairs land reform commands major attention. The province of Kwangsi has made a thorough survey of land ownership. It has made primary decisions to the effect that excessive ownership begins at 8 acres of first class land, $12\frac{1}{2}$ acres of second class land or 17 acres of third class land. The price fixed for the purchases of these various classes of land is 7 years rent. But it also finds that the farms held in

CONFIDENTIAL / US OFFICIALS ONLY

CONFIDENTIAL

CONFIDENTIALIAL / US OFFICIAL

excess of these limits are relatively few. The purchase of all excess holdings involve no more than the equivalent of US\$2,800,000. From this standpoint the tenure problem is least serious in Kwangsi of all the provinces so far studied.

- 11. The question arises concerning the use which owners would make of US\$2,800,000. If it is turned into silver and buried in the ground the economic use of these funds is lost. If it is used for gambling, it becomes demoralizing. If it is used for speculation, it is just as likely to produce economic harm as economic benefit. But if it could be invested in the various kinds of processing plants, such as cement factories or lime rock crushers, it would be of vast service to the economy of the province.
- 12. Kwangsi is well served by navigable streams; the West River and its tributaries. This connects most of the province with Canton. On the other side of the province, opposite the West River, a railway connects it with the adjoining provinces of Kweichow and Hunan. Once the productive and processing problems are in a fair way toward solution the transportation system is adequate to make these products available to a large commerce.

- 000

CONFIDENTIAL / US OFFICIALS ONLY

La

SOCIÉTÉ FRANÇAISE RADIOELECTRIQUE

vous présente ses

TUBES D'ÉMISSION

et ses

TUBES INDUSTRIELS

Approved For Release 2002/01/10 : CIA-RDP80-00926A001100040

Refroidissement naturel

TABLEAU DES TUBES S.F.R.

Refroidissement

par air forcé

ILLEGIB

Refroidissement par eau

	Н. Г.	В. Г.	Н. F.	H.F.	B. F.
Triodes	E 2-15 E 550 E 130 E 656 E 135 E 756 E 140 E 953 B E 150 E 956 E 175 E 1301 E 356	E 60 M E 200 M E 250 E 600 M E 1500 M	E 1056 R E 15 56 R	E 1056 E 1856 E 1456 E 1876 E 1556 E 1951 E 1651 OC E 2006 E 1751 A E 2051 E 1758 E 2056 E 1801 E 3056	P
	Pages 3 et 4	Pages 9 et 10	Pages 9 et 10	Pages 13 et 14	Page 13
Tétrodes	EG 75 EG 400 Page 5			!	
Pentodes	P 2 P 77 P 5 A P 125 P 6 P 150 P 2-6 P 200 P 17 P 2-200 P 17 A P 453 P 35 P 500 P 40 P 600 P 2-40 P 2-600 P 57 P 1000 P 75 B Pages 5, 6.7 et 8			P 1806 Pages 13 et 14	
	A vapeur	de mercure		A vide	
Valves	VH 550 VH 550 A	VH 7400 VH 8500 <i>Pages</i>	15 et 16	V 401 V 952 D V 752 C V 1401	s 19 et 20
Tubes miniatures	PM 05 PM 07 BPM 04	D2M S HM C PM C		150-30 TXM 1 12 VM 1 05 V2M 7	
Tubes à rayons cathodiques	OE 70 - 55	OE 40	7 OE 41	l OE 418	Page 18
Magnétron			MIC 9-1000		
Klystrons	K 771	K 773	AK 77		s 19 et 20
Régulatrices			0-6 1150-10 0-10 1350-11	2200-7,5 250	00-4 10-6 s 19 et 20
Sorties isolantes	В	. 30	B. 31	B. 32 Page	s 19 et 20
Thyratron			VHC. 3-1000	Page	s 21 et 22
	TABLEALL	DEC ADDÉS	ZI A TI ON IO		<u> </u>

TABLEAU DES ABRÉVIATIONS

Ampère Δ

PLANS DE BROCHAGE

- Cathode
- F Filament FM Point milieu du filament
- Causs KV Kilovolt

TABLEAUX DE CARACTERISTIQUES

mA V Milliampère par volt

MCS Mégacycie par seconde

mm: V Millimétre par volt MW Missawatt

Plaque Approved For Release 2002/01/10 : CIA-RDP80-00926A0011000440004-3 remplissage gazeux

Les brochages des tubes correspondent à une vue de dessous.

TRIODES HF A REFROIDISSEMENT NATUREL

		etéristiq urs maxi				Б:	semple «	le fonction C. Télégra	nement phie		:	Chauffa	иe	int	'apacité erélectro	s des		bremen imum
туре	Tens. anod.	Cour. cathod.	Dissip	Pente	Coefficient	Tens, anod,	Cour.	Tension grille	Puiss, d'excit, (env.)	Puiss, utile (cuv.)	Mode	Tens.	i Cour.	¹ -С, g-р	C. g-f	C. p-f	Haut.	Diam
	v	mA	W	mA/V		V	mΛ	v	w	w		V	. Δ	gg F	,99. Е	pp F	$[-\mathbf{m},\mathbf{m}]$	· 10, 01
			: 		1					!								
E 2-15	600	130	35	4,5	20	600	i 120	- 90	1	45	I	6,3 12,6		0,5	7.5	5	94	60
E 130	400	. 80	12	3	18	400	65	- 35	0,8	15	D	4	0,65	13,5	11,5	9,5	. 117	54
E 135	500	100	15	5	15	400	70	40	8,0	15	. 1	12.6	0,5	4,5	6	· 4	108	46
E 140	500	60	15	3	27	500	50	- 45	1	17	D	4	1,1	7	4,5	! 4	153	55
E 150	600	110	40	2,6	9	600	85	130	: 5	35	D	4	2	7,5	7,5	4,5	165	: 51
E 175	1500	150	75	6	28	1500	120	130	6	120	D	10	1,6	11	8,5	6	205	51
E 356	1000	110	45	1,8	25	1000	90	150	6	50	D	7,5	3,25	3,5	2	1	120	. 51
E 550	1500	90	50	4	18	1500	80	160	6	80	D	6	1,1	7	4,5	4	185	51
E 656	1200	215	120	4,5	9	1200	180	400	19	130	D	7,5	5	13	6,5	1.7	180	67
E 756	4000	250	350	3,5	35	4000	190	200	. 17	500	D	16	8,8	8	9,5	1,7	340	102
E 953 B	2000	1000	700	13	20	2000	750	200	50	1000	D	11	15,5	47	24	4,5	450	
E 956	4000	500	800	4,5	13 :	4000	380	_500	25	1000	D	13	25	15,5	11	6	525	190
E 1301 m	10000	550	1500	3,5	55	10000	450	500	35	3000	D	16	36	13,5	16,5	9	670	215
	!				:		'					:						

E 600 ▲
E 1200 ▲

Double triode. Les capacités sont données par élément triode. Le diamètre d'encombrement ne comprend pas les cornes.

Le diamètre d'encombrement ne comprend pas la sortie grille.

■ Le diametre d'encombrement ne comprend pas la sortie grille.
 ▲ Les caractéristiques définitives seront déduites des fabrications de série et fournies sur demande.

TRIODES HE A REFROIDISSEMENT NATUREL

TÉTRODES A REFROIDISSEMENT NATUREL

	Caractéristiques (valeurs maxima)	Exemple de fonctionnement classe C. Télégraphie	Chauffage Capacités Interélectrodes	Encombremen Baximum
TYPE	Tens. Cour., Dissip.	Tens, Cour. Tens, Tension Puiss, Puiss anod, anod, ceran grille convi. tens.	Model Tens. Com. Cgl p	Haut. Diam
	V mA W mAV	$V = -m\Lambda$ $V = -V$ $W = -W$	The state of the s	to, to lasto
EG 75 EG 400 ■	12500 150 75 1.6 4000 260 300 1.6	2000 100 500 —140 6 125 4000 175 725 —110 17 400		205 102 320 102

PENTODES A REFROIDISSEMENT NATUREL

		actéristi curs max			:			fonctions Télegrap				hauffag	e		'apacite erélectro		Encom max	
түре	Tens, anod.		Dissip.		Tens. anod.	Cour.	Tens. écran	Tension grille	Puiss. Percit.	Puiss, utile teny.)	Mode	Tens.	Com	10.24-0	C entres	C sortie	Haut.	Dian
	v	m X	: "	m V V	V	m V	V	v	W.	w		V 1	Λ	gg F	gg. F	99 F	III III	m, t
																	I	
P 2	300	20	2,5	5	300	14	220	25	0,03	2	Ι.	6,3	0,5	-0,015	8	5,5	57	36
P 5 A	300	30	3,5	2	300	20	75	75	0.05	4	D i	4	0,4	0,2	8	5,5	132	52
P 6	500	45	10	2	500	36	250	80	0.16	11	1	6,3	0,5	.0,04	6	10	63,5	31
P 2-6	500	90	20	2	. 500	70	250	80	0,3	20	1	6,3	1	0.04	. 6	. 10	83	4]
P 17	600	120	25	5	600	100	300	90	0.3	40	Ι	4	1,8	0.1	14	10	145	46
P 17 A •	600	120	25	5	600	100	300	90	0.3	40	Į	6,3	1	0.1	14	10	145	4(
P 35	800	150	30	3.5	800	90	200	—80	. 0,5	50	I	12,6	0,6	0,05	- 16,5	10,5	159	51
P 40 •	500	135	20	8,5	500	110	200	 7 5		40	· I ;	6,3	1,5	0.12	15	8	85	38
P 2-40 A	500	270	. 40	8.5	500	220	200	— 75	. 1	i 80	: I)	- 6,3 \ -12.6 <i>l</i>	: 3 : 15	0.12	15	8	116	152

- Le diamètre d'encombrement ne comprend pas la sortie plaque,
- Le diamètre d'encombrement ne comprend pas les sorties G1 et G2. Double pentode. Les capacités sont données par élément pentode.
- Tétrodes à faisceaux dirigés.
- lacktriangle Double tétrade à l'aisceaux dirigés. Les capacités sont données par élément tétrade.

PENTODES A REFROIDISSEMENT NATUREL (Suite)

		actéristic urs max				Exe	mple de lasse C.	fonctionne Télégraphi	ment e			Chauffas	i e-		Capacites erelectrodes		Encomb maxi	
TYPE	Tens.	Cour, cathod,	Dissip. anod,	Pente	Tens.	Cour. anod.	Tens. écran	Tension grille	Puiss, d'excit, (env.)	Puiss- ntile (env.)	Mode	Tens.	Cour.	C. g-p	entree 8	c ortic	Haut.	Diam.
	iv	m A	W.	mA.V	. v ,	mA	v	v	W.	W		V	Α .	др г	ညာ ၈ ည	9. F	m/m	nom
P 57	1000	110	30	2.3	1000	90	i 280	110	0,4	65	I	24	0,45	0,1	. 15	12	154	58
P 75 B	1500	200	75	2	1500	150	330	150	1.5	150	D	10	1,8	0,03	36	28 ;	255	66
P 77	1500	225	. 85 .	5	1500	170	400	80	3	170	D	10	2	0,05	33	24	216	66
P 125	1500	. 200	90	4,5	1500	150	450	100	. 0,5	: 150	Ţ	12,6	1,3	0,03	20	16	170	60
P 150	1750	300	100	3,7	1750	190	475	115	. 4	230	D	10	3	0,05	43	27 :	295	82
P 200	2000	250	120	4	2000	175	450	90	3	240	D	10	4	0,1	16,5	23	147	64
P 2-200	2000	500	240	4	2000	350	450	90	6	480	D	10	8	0.1	: 16,5	23	180	104
P 453	3000	700	450	5	2500	540	600	200	2.5	900	D	12,6	9	0,08	32	25	275	102
P 500	2000	550	! : 300	6	2000	420	850	260	4	550	į D	10	5	0,2	50	25	430	112
P 600	2500	: : 550	350	8	2500	440	600	150	5	750	D	10	10	0,1	: 23	28	235	104
P 2-600	2500	1100	700	8	2500	. 880	600	150	- 10	1500	D	. 10	20	0,1	23	28	. 263	155
P 1000	3000	800	600	6	3000	500	900	250	12	1000	D	12	6,2	0,1	60	31	560	167

■ Le diamètre d'encombrement ne comprend pas la sortie grille.

△ Double pentode, Les capacités sont données par élément pentode.

Nos services techniques vous indiqueront sur demande la lampe qui répond à vos besoins.

TABLEAU DES ABREVIATIONS PAGE 2.

QUELQUES PRÉCISIONS SUR...

La série des Pentodes "Tout verre"

Les tubes de cette famille, de conception nouvelle, ont été spécialement étudiés pour fonctionner en ondes courtes.

Cette série est composée :

de pentodes simples : P.6, P.40, P.200, P.600 ;

de pentodes doubles : P.2-6, P.2-40, P.2-200, P.2-600.

Chaque pentode double est formée des deux pentodes simples correspondantes réunies dans un même ballon. La possibilité de monter les deux éléments en parallèle ou en push-pull permet d'obtenir une gamme de puissance étendue avec un nombre de tubes restreint.

Toutes ces pentodes sont réalisées selon les techniques les plus modernes. Le choi ${\bf x}$ judicieux des matériaux utilisés et les nouvelles méthodes de traitement des électrodes ont permis d'obtenir des tubes puissants sous un faible encombrement.

La suppression du culot, réduisant les capacités interélectrodes et les inductances des sorties, améliore considérablement le fonctionnement aux très hautes fréquences.

Ces avantages sont encore accrus pour les pentodes doubles dont les connexions entre les deux éléments sont très courtes.

La forme et la structure de la verrerie et des broches ont été spécialement étudiées pour donner à l'ensemble une excellente rigidité.

Des supports en céramique, realisés par nos usines, sont adaptés à chaque type de pentode.

La fabrication en chaîne des divers éléments, le montage des tubes en grandes séries, une mécanisation très poussée, assurent la parfaite régularité des caractéristiques de ces lampes.

LA SOCIETE FRANÇAISE RADIO ELECTRIQUE

dispose de moyens puissants mis en œuvre dans des usines modernes.

Ses ouvriers, ses cadres et ses ingénieurs, méthodiquement choisis, formés et spécialisés, assurent la création, la mise au point et la fabrication en série des tubes électroniques selon une technique perfectionnée.

Le contrôle rigoureux des matières premières est effectué dans des laboratoires spécialement équipés.

Un outillage approprié, élaboré dans ses bureaux d'études et réalisé dans ses ateliers, permet d'obtenir des produits d'une haute précision.

Une mécanisation poussée des procédés de fabrication confère à ses productions en série une excellente régulcrité.

Des contrôles successifs et l'essai individuel des tubes garantissent et sanctionnent leur qualité.

Des moyens puissants, une technique constamment perfectionnée, un outillage de haute précision, des contrôles nombreux et sévères font

LA QUALITE S.F.R.

TRIODES BF A REFROIDISSEMENT NATUREL

TRIODE BF A REFROIDISSEMENT PAR EAU

		Ī:					_	
		Page 11, ben same a. e.	bro Ministra	 grille utility Mode Teas, typic typic typic typic Rank, Blank. 	1	# : # ;	88	
		Light	3 !	H.a.	1	#	670	
				4.7	1	i.	80	
		Catalogue		5	A contract of the	i.	(D)	
ı			-	4.5	14.55		ZI O	
ľ		ð		1	-	S	3	
ı		The officer		Terris	-	0	3	
	1			Medic)	
		Tiller Tiller	Ž	İź	×	C.	2	
		These R. Astrone par The	Tens, Class Tension	Ž.	-	750	9	
		B. Ash	170	3	-	100		
		i see	· ·	inest.	XX	C1		
		10000	nterne	-	E I	2000		
	15	oi in	-E -1001	lare,	p	12 2		
I		100			> 4 3	TO.	1	
I			Ť.					
	Telline territori populari	1	Peach Cour. Disease,	-	4	Ξ.		
	alama,		T from	,		DVI		
		-	Pens	-	, ,	4	-	
						•		
		14.6			1651 14			
					15	1		
_								

A REFROIDISSEMENT PAR AIR FORCE

	PENTODE A REFROIDISSEMENT PAR EAU	Eventue de conclusionemen. Saver C. Terraphica	thresher trade	P1806 .8 4 20 9.5 .8 2 1000 350 0 1 100 93	22 110 013 24 EA
_l 0 : C	ا IA-RD	P80	-009) 26A	0.

ชิติจ

Note: D'aures 'ampses s'an'emen' prévises en reincidissement par en a sem nises pags 2.

FABLEST DES ARREITATIONS PAGE 2.

Approved For Pologge 2002/01/10 · CIA-RDP80-00926A001100040004-3 TRIODES BF A REFROIDISSEMENT NATUREL

		etéristic 118 Blay			- 3		et a	emple d sse B (v	e fonctionn aleure par	ement Lipher		L bara (Ca	2.0	int	Capacites erélectrodes		ubreme: Simum
TYPE	Tens.	Cont.	Dissip. anod	Pente	- efficient aphificat	Resist interne		Cour. anod.	Tension grille	Puiss, utile	Mode	Tens.	Cour.	С у-р			
	1 V ·	mA	w	m V V	- 2	olim	٧.	m t	. V	W		ι.		да ғ	gg F gg	F m m	i man
	-																
E 60 M	1000 .	120	75 -	6	12.5	2100	1000	120	80	80	D	4	3.3	18	8.5 6	194	: 51
E 200 M	2000	250	250	в	15	2500	2000	250	· 125	315	D	Ц	2.5	19	17.5 11	.5, 348	9:
E 250	600	70	25	2,8	4	1750	600	70	140	25	D	7.5	1,3-	18	13 12	165	5
E 600 M	4000	350	600	4 .	25	6250	4000	350	- 130	900 :	D	16	16	11.5	14,5 4	500	125
E 1500 M	7000	500	1500	1.7	5,5	3200	7000	500	-1300	2300	D	16	36	23	3L ' 5	550	: i 193

TRIODES HF A REFROIDISSEMENT PAR AIR FORCE

		racteristi curs mas			_ =		Exemple Lasse	de fonct C. Télé	inanemen graphie	1		Chauff	920		Capacite			mbrement ximum
TYPE	anod.	Cour, cat hod	anod.	Pente	heffloten tegdere as	Tens anod	Cour.	Tension grille	, or exerci-	Paiss, utile teny,	Moste	Tens.	Cour	, C. g	p C, g-f	C, per	Haut.	Diam
College and the control of the contr	KV.	•	K "	m V V	- 4	K١	•	٧	w	ĸw		V		μμ	ғ да ғ	ар ғ	m no	BH 110
E 1056 R •	3	0.45	. 1	5.5	8	3	0.33	450	34	0,7	D	7.5	. 10	4	6	1	150	115
E 1356 R 🥊													:					
E 1556 R •	6	3,4	6	12;	12.5	5	3,2	600	250	10	D	17.5	47,5	13	20,5	8	236	270

Le diamètre d'encombrement ne comprend pas la sortie grille. Ces lampes sont également prévues en refroidissement par eau. Les caractéristiques définitives seront déduites des labrications de série et fournies sur demande.

VALVES A VAPEUR DE MERCURE

		téristiques rs maxima)		Limites de température	Chau	ffage	Encount maxi	
ТүрЕ	Tension inverse	Courant anodique de pointe	Courant redressé moyen	du tuercure condensé	Tensiou	Courant	Hauteur	Diamètre
	Y	Λ.	Α .	oc:	v	4	to/in	In m
							ì	1
VH 550	1,0000	1	0,25 0,25	20 à 60 20 à 70	2.5	5	142	46
VH 550 A	10000 5000	1	0,25 0,25	20 a 60 20 à 70	2,5	5	155	46
VH 7400	10000 5000	5 5	1,25 1,25	20 à 60 20 à 70	5	7,5	215	60
VH 8500	10000 5000	20 20	5 5	20 à 60 20 à 70	5	20	379	142

NOTA. — Afin d'éviter une usure prématurce des tubes $_{f 0}$ les limites de temperature indiquées dans le tableau ci-dessus doivent être respectées.

Lorsque la température ambiante est trop faible, le mercure condense doit être réchauffe, soit par mise sous tension du filament pendant le temps nécessaire, soit par chauffage du tube.

Lorsque la temperature ambiante est trop elevée, il est indispensable de ramener la température du mercure condense à une valeur convenable par soufflage à la base du ballon.

Les caractéristiques definitives des valves à gaz seront fournies sur demande.

TUBES MINIATURES

			evalen	teristiqu rs maxit		Pente	Chai	iffage		rement mum	Tubes
TYPE		Function	· Tension anodique		Tens, ecran		Tens.	Cour.	Haut.		
			V	w	v	mA V	V	A	10:10	10/10	
PM 05		Pentode H.F.	180	1,7	140	5	33	0,175	44,5	19	6 AK 5
PM 07		Pentode H.F.	1 250	2,5	250	7	6,3	0,3	54	19	CV 138 6 F 12
врм 04		Tétrode finale à faisceaux dirigés	250	12	250	4	6,3	0.45	66,7	19	6 AQ 5
D2M 9		Double diode UHF	; 420				6.3	0,3	44,5	19	6 AL 5
HM 04		l feptode changeuse de fréquence	300	1	100	●0,47	6,3	0,3	54	19	6 BE 6
PM 04		Pentode H.F.	300	3	125	4,3	6,3	0,3	54	19	6 BA 6
SM 150	0-30	Stabilisateur de ten s ion	Tension Plag	de fon 150 re de re 5 à 30	V Egulatic			1	66,7	19	OA 2
TM 12		Triode UHF	150	2,25	-	12	6,3	0,4	54	19	6 J 4
T2M 05		Double triode UHF	300	1,5		5	6,3	0,45	54	19	6 J 6
VM 1	:	Valve monoplaque	7000	pointe Cou	max.	lique de : 6 mA dressé i : 1 mA	1,4	0,05	62	19	1654
V2M 70		Valve biplaque	1250	pointe Cou	max.	dique de 210 mA dressé ; 70 mA		0,6	66,7	19	6 X 4
TXM10	00	Thyratron tétrode	[]1300	Cour	ant cat de poi x.:50	hodique nte	6,3	0,6	54	19	2 D 21

Tension inverse.
Par élément.

Pente de conversion.

Nos services techniques vous indiqueront sur demande la lampe qui répond à vos besoins.

TABLEAU DES ABREVIATIONS PAGE 2.

VM.1

TXM.100

V2M.70 PM.05

PM•07

ARACTÉRISTIQUES BES S.F.R.

	Caracteristic (valeurs max		**	Puiss, utile O. L.	:	Chauff	rge	Capacil	és interélec	strodes	Encombrement maximum	
туре	Tension Courant anodique cathod.	Dissip. anodique	Pente	elasse C (env.)	Mode	Fensjon	Courant	C. g-p :	C entree	t' soutie	Hauteur Diamitri	Refraidis- sement
	V mA	W	$\operatorname{m} A^{2} V$	w	į į	V	A	gg F	9 9. F	gg F	10 to 10 to 1	
EG 75 EG 400	2500 150 4000 260	75 300	1,6 1.6	125 400	D D	10 16	3,25 9 .	0,02 0,05 ,	10	8.5 8	205 102 320 102	naturel naturel

				éristiq s maxi		Pente	Puiss, utile O. L.	!	Chauffag	20	Capae	ltésinterel	ectrodes	Encount max	rement mum	
TYPE		ension rodique		orant thod.	Dissip. anodique		classe (Mode	Tension	Courant	C. g-p	entrée	sortie	Hauteur	Diamètre	Refroidis sement
 	!	V		ti A	w	mA/V	: W	1 ,1	V	A	åå e	Гадг	j ka r	m/m	m m	
P 2		300		20	2,5	5	2	: 1	6,3	0,5	0,015	8	5.8	57	36,6	nature
P 5 A		300		30	3,5	2	4	. D	4	0.4	0,2	8	5.5	132	52	nature
P 6		500		45	10	2	11	1	6,3	0,5	0.04	E3	10	63.5	31	naturo
P 2-6		500		90	20	2	20	I	6,3	1	0.04	ß	10	83	41	nature
P 17		600		120	25	5	40	1	4	1,8	0.1	14	10	145	46	nature
P 17 A	i	600		120	25	5	40	1	6,3	1	0,1	14	10	145	46	nature
P 40	i	500	į	135	20	8.5	40	Ī	6,3	1.5	0,12	15	8	85	38,5	nature
P 35	i	800		150	30	3,5	50	1	12,6	0,6	0,08	16.5	10,5	159	51	nature
P 57	- !	1000		110	30	2.3	65	1	24	0,45	0.1	15	12	154	58	nature
P 2-40	ì	500		270	40	8,5	80	I	6,3	3 1,5	0,12	- 15	8	116	52	nature
P 75 B		1500		200	75	2	150	- p !	10	1.8	0,03	36	28	255	66	nature
P 125	- 1	1500	1	200	90	4,5	150	1	12,6	1.3	0.03	20	16	170	60	nature
P 77		1500		225	85	5	170	Ď	10	2	0,03	33	24	216	66	nature
P 150		1750		300	100	3,7	230	Ď	10	3	0,05	43	27	295	82	nature
P 200		2000		250	120	4	240	Ď	10	. 4	0,1	16,5	23	147	64	nature
P 2-200		2000		500	240	4	480	Ď	10	8	0,1	16,5	23	180	104	nature
P 500		2000		550	300	G	550	D	10	5	0.2	50	25	430	112	nature
P 600	- 1	2500		550	350	8	750	D ·	10	10	0.1	23	28	235	104	nature
P 453		3000		700	450	5	900	D	12,6	. 9	0,08	. 32	25	275	102	nature
P 1000		3000		800	600	6	1000	- D	12	6,2	0.1	60	31	560	167	nature
P 2-600		2500		100	700	8	1500	: D	10	20	0,1	23	: 28	263	155	nature
P 1806	- [1	8000	- 4	1000	20000	9,6	25000	- D	22	110	∈0,3	. 45	: 54	591	221	eau

	Caractéristiqu	er (v	alcurs ma	xim:	9.}	- 1		1	Ch	auff	ape	1	Encombrem	ent	нахівщь
TYPE	Tension inverse		Courant anodique de pointe	l.	Courant redressé moven	1	Limites de température du mercure condense		Tension		Courant	:	Hautenr	į	Diamètre
	v	1	Α		A		46;	ï	V		A		m m		m m
VH 550	10000 5000	Ì	1		0,25 0,25		20 à 60 20 a 70)	2,5	;	5	i	142		46
VH 550 A	10000 5000		1 1		0,25 0,25		20 a 60 20 a 70	ì	2.5	1	5		155		46
VH 7400	10000 5000	1	5 5		1,25 1,25	i	20 à 60 20 a 70	1	5		7,5	I I	215		60
VH 8500	10000 5000	1	20 20		5 5	,	20 à 60 20 à 70	j	S	l	20		379		142

	e c	aractéristiques	(valcurs maxin	(я)	Limites		fface	Encombren	
TYPE	Tension inverse	Tension anodique	Courant redressé moyen	Conrant anodique de pointe	de température du mercure condensé	Tension	Conrant	Hanteur	Diamétre
	v	v	Δ	Λ	nę:	v	A	i na m	: m.m
VHC 3-1000	1000	1000	3	30	40 à 80	5	7,5	209	62

[:] demande la lampe qui répond à vos besoins.

SERVICES TECHNIQUES & USINES

١.			ractérist. leurs ma			nt tion	Pulssance utile		Chauffa	ge		Capacité erélectre		Encombi maxin		
	TYPE	Tension anodique	Cour. cathod.	Dissipation anodique	Pente	Coefficient	O. L. classe C (environ)	Mode	Tension	Courant	C. g-p	C. g-f	C.p-f	Hauteur	Diam.	Refroidissement
		. v	Λ		mA/V		w		v	A	μμ F	μμ	μμ. Ε	m/m	m/m	
•	E 130 E 135 E 140 E 250 E 150	400 500 500 600 600	0,08 0,1 0,06 0,07 0,11	12 15 15 25 40	3 5 3 2,3 2,6	18 15 27 4	15 15 17 B. F. 35	D I D D	4 12,6 4 7,5 4	0,65 0,50 1,1 1,3 2	13,5 4,5 7 18 7,5	11,5 6 4,5 13 7.5	9,5 4 4 12 4.5	117 108 153 165 165	54 46 55 51	naturel naturel naturel naturel naturel
	E 2-15	600	0,13	35	4,5	20	45	I	6,3	2,4	0.5	7,5	5	94	60	naturel
	E 356 E 60 M E 550 E 175 E 656 E 200 M E 756 E 600 M E 1056 E 953 B E 956 E 1500 M E 1301 E 1456 E 1556 E 1651 OC E 1651 M E 1751 A E 1758 E 1856 B E 1801	1000 1000 1500 1500 1200 2000 4000 3000 2000 4000 10000 10000 10000 12000 11000 15000 18000 12500	0,11 0,12 0,09 0,15 0,215 0,25 0,35 0,45 1 0,5 0,5 0,5 1 3,4 2 2 3 3,4,2	45 75 50 75 75 75 75 75 75 75 75 75 75 75 75 75	1,8 6 4 6 4,5 6 3,5 4,5 13 4,5 3,5 12 6,5 7 10 7 8,5	25 12,5 18 28 9 15 35 25 8 20 13 5,5 19 12,5 22 25 40 47	50 B. F. 80 120 130 B. F. 500 1000 1000 B. F. 3000 4500 10000 B. F. 20000 20000 20000 23000		12,6 7,5 4 6 10 7,5 11 16 16 7,5 11 13 16 16,5 17,5 16,5 17,5 16,5 20 17 21,5 30 30	3,25 3,3 1,1 1,6 5 2,5 8,8 16 10 15,5 25 36 36 35 47,5 50 80 78 80	3,5 18 7 11 13 19 8 11,5 4 47 16,5 23 13,5 11 13 22 26 24 24 21 39	2 8,5 4,5 8,5 6,5 17,5 9,5 14,5 6 24 11 31 16,5 8 20,5 17 19 21 25 28 33	1 6 4 6 1,7 11,5 1,7 4 1 4,5 6 5 9 6,5 8 8,4 1,7 6 9 28	120 194 185 205 180 348 340 500 150 450 525 550 670 780 750 630 820	51 51 51 67 91 102 125 115 153 190 193 215 150	naturel eau eau eau eau eau eau eau eau eau
	E 1876 P	18000	4,5	25000	17	29	50000	D	15	175 118	57	55	3	525	138	eau
	E 1951 E 2006 E 2051	15000 18000 18000	10 12 12	50000 100000 100000	16 13 20	44 31 55	75000 105000 120000	D. D D		59 210 210 285 260	73 68 78	55 41 68	9 5 6,5	1280 1000 1300	160 190 160	eau eau eau
	E 2056 P	18000	12	100000	15	30	120000	D	30	175	72	60	4	865	230	eau
	E 3056	20000	30	180000	34	45	300000	D.	17,5 35	87,50 575	79	88	9	1136	346	eau

* *	Diamètre	Longueur	Caractéristi	ques (valeu	rs maxima)		Exemp	ple de foncti	onnement	'	Chau	ffage
TYPE	d'écran	maximum	Tension anode A2	Tension anode A1	Tension de bloonge	Tension anode A2	Tension anode Al	Tension de blocage	Sensibilité des plaques X	Sensibilité des plaques Y	Tension	Courant
	m/m	m/m	v	v	v	v	v	v	mm/V	mm/V	v	A
OE 70-55 OE 407 OE 411 OE 418	70 70 110 180	175 262 310 430	2000 2000 2000 2500	350 350 350 800	70 120 120 150	1000 1000 1500 2000	90 130 210 500	25 35 53 90	0,12 0,35 0,33 0,40	0,18 0,40 0,33 0,40	4 6,3 6,3 6,3	0,75 0,5 0,5 0,5

Nos services techniques vous indiqueront sui

SERVICES COMMERCIAUX 79, BOULEVARD HAUSSMANN PARIS (8°)

SOCIÉTÉ FRANÇAISE

TABLEAU RÉCAPITULATIF DES CARACTÉRISTIQUES PRINCIPALES DES TUBES S.F.R.

TUBES A RAYONS CATHODIQUES

				ractéristiqu leurs maxir			Exemple	es de foncti	onnement		Chau	iffage
TYPE	Diametre d'écran	Longueur max.	Tension anode A2	Tension anode Al	Tension de blocage	Tension anode A2	Tension anode A l	Tension de blocage	Sensibilité des plaques X	Sensibilité des piaques Y	Tension	Courant
	m/m	ın/m	v	v	v	v	v	v	nom/V	mm/V	v 	Λ
OE 70-55 ▲	70	175	2000	350	— 70	2000 1500 1000	180 135 90	—50 —37 —25	0,06 0,08 0,12	0,09 0,12 0,18	4	0,75
OE 407	70	262	2000	350	120	2000 1500 1000	260 195 130	—70 —52 —35	0,17 0,23 0,35	0,20 0,26 0,40	6,3	0.5
OE 411 ^	110	310	2000	350	—120	2000 1500	280 210	—70 —53	0,25 0,33	0,25 0,33	6,3	0,5
OE 418 .▲	180	430	2500	800	—150 ·	2000	500	90	0,40	0,40	6,3	0,5

- \triangle Ces tubes peuvent être fournis, sur demande, avec électrode post-accélératrice.
- ▲ Ces tubes sont à focalisation et déflection électrostatique.

TABLEAU DES ABREVIATIONS PAGE 2.

MP MOUN & FIS - PAR

MAGNÉTRON

	Cara	sctéristiques :	valeurs max	ima)	Puissance		<u> </u>	Durée	Préquence	Chau	ffage
TYPE	Tension de crête	Courant de crôte	Puissance movenne appliquée	Températ. du corps d'anode	de créte maximum appliquée	Fréquence	1	maximum d'impulsion	maximum des impuls. Durée d'impul.IUs	Tension	Courant
	K V	4	w	ut.	MW	MC/S	6	Ú.s.	p.p.s.	v	Α
MIC 9-1000	30	33	375	140	1	3000	2300	1.5	500	5.2	2.6

KLYSTRONS

		Limites					maximal		Champ	Puiss.	Cha	ıffage	Capac.	interéle	ctrodes
TYPE	Fourtion	de fréquence	Tens.	Cu.	Ter 8	Cour.			magné. de foc.	utile max.	Tens.	Cour.	C.g.e.	C.g.r.	C.e.r.
		MCS	V	III A	V	m A	w	W	A tours	W	v	A	g.g. F	ԱԱ Р	μμ Р
K 771	auto-oscillateur	1400 à 1100	5000	400	500	50	2000	25	1500	250	5,5	20,5	15	15	10
К 773	oscillateur pilote	1350 à 1050	5000	200	400	20	1000	10	1500	100	4,5	8,5	15	15	10
AK 774	amplificateur	1350 à 1050	5000	500	500	50	2500	22	1500	300	5,5	26	16	16	11
K 781	auto-oscillateur	2200 à 1700	5000	350	500	50	1500	25	1500	200	5.5	20.5	15	15	10

VALVES A VIDE

	Caractéristiq	ues (valeurs n	axima)	Courant	Résistance	Chau	ffage	Encombreme	nt maximum
TYPE	Tension inverse	Courant redressé moyen	Dissipation anodique	de saturation	luterne	Tension	Courant	Hauteur	Dinmêtre
	v	nı 4	W	A	ohni	V	A	m/m	in/m
V 401 V 752 C V 952 D V 1401	10000 16000 20000 22000	20 100 140 500	40 150 400 1200	0,13 0,7 1 3,5	2000 1000 1000 400	6 15 16 28	1,3 7 10,5 20	132 260 410 620	72 127 202 215

RÉGULATRICES

TYPE	Courant moyen	Plage de régulation		brement imum		Courant	Place de	Encomb maxi	
	A	- V	Hauteur u.m	Diametre m/m	TYPE	moyen A	régulation V	Hauteur m/m	Diamètre m/m
280-25 300-4 430-31 750-2 750-6 1100-10	0,28 0,3 0,43 0,75 0,75 1,1	15 à 35 2 à 6 17 à 45 1 à 3 3 à 9 5 à 15	95 95 100 100 100	30 30 42 30 30 30	1150-10 1350-11 2000-7,5 2200-7,5 2500-4 2500-6	1,15 1,35 2 2,2 2,5 2,5	5 à 15 6 à 16 5 à 10 5 à 10 2 à 6 3 à 9	100 100 105 110 100	30 30 33 35 30

SORTIES ISOLANTES

		cace minimum	Résistance			DI/	MENSIONS		
TYPE	Air sec V	Air humide V	minimum d'isolement Ohm	Capacité maximum דעע F	A m m	B	C	Diamètro intérieur m m	ÉLECTRODE CENTRALE
B.30 a B.30 b	2500 3500	2000 3000	10 9	2,5	9	7	10	2	Tubulaire
B.31 a B.31 b	2500 3500	2000 3000	10 10	2	9	7	10	1,1	Tubulaire
B.32 a B.32 b	3500 4500	1000 4000	2.10 10	1,5	9	7	10	1,1	Tubulaire

THYRATRONS

TYPE	Caractéristiques (valeurs maxima)				Limites de température	Tension grille de déblocage		Chauffage		Encombrement maximum	
	Tension inverse,	anodique redres	Courant redressé moyen	anodique	du mercure	Tension anodique	Tension gri le (environ)	Tension	Courant	Hauteur m/m	Diamètre m/m
	v	V	A								
VHC 3-1000	1000	1000	3	30	40 à 80	1000	— 7				
						500 300	—5 —3	5	7,5	209	62

Le thyratron VHC 3/1000 est une valve à vapeur de mercure à grille de contrôle, spécialement destinée aux applications industrielles de l'électronique.

L'amorçage de la décharge de ce tube est déclenché par une puissance extrêmement faible alors que le courant débité peut atteindre des valeurs élevées. Le thyratron est un véritable relais électronique, sans organe mobile, d'une haute sensibilité. Il résoud les problèmes les plus divers posés par la commande des installations électriques de puissance.

- Les dispositifs électroniques utilisant des thyratrons permettent :

 d'alimenter à partir de l'alternatif les installations à courant continu et de supprimer ainsi les machines
- d'obtenir une variation de tension parfaitement progressive tout en réduisant l'énergie perdue dans les organes habituels de réglage;
- d'établir, avec une très faible puissance de commande, des courantsintenses en évitant l'inertie des solutions électromécaniques.

Citons, à titre d'exemples, parmi les nombreuses applications possibles :

- le réglage de la vitesse des moteurs,
- les redresseurs à tension variable commandés par grille,
- les régulateurs de tension, de courant et de fréquence,
- les appareils de contrôle automatique,
- les " servo-mécanismes " électroniques,
- la soudure électrique par points,
- le réglage de l'intensité lumineuse,
- les changeurs de fréquence, de puissance.

La S. F. R. met à la disposition de l'Industrie Française le thyratron dont les caractéristiques répondent à la plupart de ses besoins.

Des machines-outils aux jeux de lumière, de la télé-commande d'artillerie aux centrales électriques, des chemins de fer à l'imprimerie, le thyratron VHC 3/1000 assure les fonctions les plus variées

