Direccionamiento TCP/IP

Introducción a las direcciones TCP/IP

 Las direcciones únicas permiten la comunicación entre estaciones finales

Introducción a las direcciones TCP/IP

- Las direcciones únicas permiten la comunicación entre estaciones finales
- La selección del camino se basa en la ubicación
- La ubicación se representa por una dirección

Direccionamiento IP

Las direcciones son administradas por el NIC (Internet Network Information Center)

Direcciones Binarias Vs. Decimales (Ej.)

Dirección Binaria:	000010	10.0	00000	01.0	00101	111.0	00100)11
Dirección Decimal:	10	_=	1		23	=	19	
Dirección Binaria:	1010110	0.0	00100 ⁻	10.0	10000	01.1	01010	10
Dirección Decimal:	172	•	18	•	65	•	170	
Dirección Binaria:	110000	00.0	001001	11.0	000011	10.0	0000	110
Dirección Decimal:	192	_:_	39	_:_	14		6	

Clases de Direcciones IP

• Clase A: N

N H H H

Clase B:

N N H H

Clase C:

N N N H

- Clase D: para multicast
- Clase E: para investigación

N = Número de Red

H = Número de Host

Bits 1 7 24

Clase A: 0 network # host #

•

 2^{24} -2 = 16'777.214 Hosts / Red

Bits 1 1 14 16

Clase B: 1 0 network # host #

•

 2^{16} -2 = 65.534 Hosts / Red

11000000.00000000.00000001.000000000 = 192.0.1.0

11011111.111111111111110.00000000 = 223.255.254.0

 $2^{8}-2 = 254 \text{ Hosts / Red}$

CLASE D

Inicia en:

Se usa para propósitos de MULTICAST

CLASE E

Inicia en:

Se usa para propósitos de INVESTIGACION

Reconocimiento de Clases en Direccionamiento IP (Regla del Primer Octeto)

High Order Bits	Octet in Decimal	Address Class
0	1 – 126	Α
10	128 – 191	В
110	192 – 223	С

Una vez que se aplica el primer octeto, el router entiende cuántos y cuáles son los bits de host y de red para tomar decisiones de encaminamiento

Ejercicio: Clases de Direcciones IP

Address	Class	Network	Host
10.2.1.1			
128.63.2.100			
201.222.5.64			
192.6.141.2			
130.113.64.16			
256.241.201.10			

Ejercicio: Clases de Direcciones IP

Address	Class	Network	Host
10.2.1.1	Α	10.0.0.0	0.2.1.1
128.63.2.100	В	128.63.0.0	0.0.2.100
201.222.5.64	С	201.222.5.0	0.0.0.64
192.6.141.2	С	192.6.141.0	0.0.0.2
130.113.64.16	В	130.113.0.0	0.0.64.16
256.241.201.10	No existente		

Configuración de Direcciones IP

Direcciones de Host

Direccionamiento sin Subredes

• Red 172.16.0.0

Direccionamiento con Subredes

• Red 172.16.0.0

Direccionamiento de Subredes

Direccionamiento de Subredes

Máscara de Subred

Máscara de Subred sin Subredes

Por omisión - Subredes no en uso

Máscara de Subred con Subredes

	Network		Subnet	Host
172.16.2.160	10101100	00010000	00000010	10100000
255.255.255.0	11111111	11111111	11111111	0000000
	10101100	00010000	00000010	00000000
	172	16	2	0

- Número de red extendido en ocho bits
- Dirección de Subred = 172.16.2.0
- Direcciones de Host = 172.16.2.1–172.16.2.254
- Direcciones de Broadcast = 172.16.2.255
- Ocho bits de Subred

Ejercicio: Máscara de Subredes

Address	Subnet Mask	Class	Subnet
172.16.2.10	255.255.255.0		
10.6.24.20	255.255.0.0		
10.30.36.12	255.255.255.0		

Ejercicio: Máscara de Subredes

Address	Subnet Mask	Class	Subnet
172.16.2.10	255.255.255.0	В	172.16.2.0
10.6.24.20	255.255.0.0	Α	10.6.0.0
10.30.36.12	255.255.255.0	Α	10.30.36.0

Extensión de una Dirección IP Usando Máscaras de Subred IP

Basada en la máscara de subred

Equivalentes Decimales de Patrones de Bits

		1 ↓	2 ↓	4 ↓	8 ↓	16 ↓	32 ↓	64 ↓	128 ↓
128	=	0	0	0	0	0	0	0	1
192	=	0	0	0	0	0	0	1	1
224	=	0	0	0	0	0	1	1	1
240	=	0	0	0	0	1	1	1	1
248	=	0	0	0	1	1	1	1	1
252	=	0	0	1	1	1	1	1	1
254	=	0	1	1	1	1	1	1	1
255	=	1	1	1	1	1	1	1	1

Cálculo de una Máscara de Subred

Dirección IP=172.6.0.0

Dirección Asignada: 172.6.0.0

En Binario 10101100.00000110.00000000.00000000

Dirección en Subred: 172.6.0.0

En Binario 10101100.00000110.xxxx00000.00000000

1stSubnet:

Network

Subnet

Host

Dirección Asignada: 172.6.0.0

En Binario 10101100.00000110.00000000.00000000

Dirección en Subred: 172.6.0.0

En Binario 10101100.00000110.xxxx00000.00000000

1s t Subnet: 2nd Subnet:

10101100 . 00000110 <mark>.00</mark>

.0001 0000.00000000 .0010 0000.000000000

=172.6.16.0 =172.6.32.0

Network

Subnet

Host

Dirección Asignada: 172.6.0.0

En Binario 10101100.00000110.00000000.00000000

Dirección de Subred: 172.6.0.0

En Binario 10101100.00000110.xxxx00000.00000000

10101100 . 00000110 .0001 0000.00000000 = 172.6.16.0 1stSubnet: 2nd Subnet: 172 .0010 0000.00000000 =172.6.32.0 6 3rd Subnet: 0000.00000000 172 .0011 =172.6.48.0 14th Subnet: 0000.000000000 = 172.6.224.0 172 .1110

Network Subnet Host

Ej. 1st Subnet: Subnet ID: 172.6.16.0

Subnet B-cast: 172.6.31.255

Rango: 172.6.16.1 --- 172.6.31.254 (4094 Hosts)

Dirección Asignada: 172.6.0.0

En Binario 10101100.00000110.00000000.00000000

Dirección de Subred: 172.6.0.0

En Binario 10101100.00000110.xxxx00000.00000000

1stSubnet: 10101100 . 00000110 .0000 |0000.000000000| = 172.6.0.02nd Subnet: 0000.00000000 172 .0001 =172.6.16.0 6 |0000.000000000| = 172.6.32.03rd Subnet: 172 .0010 14th Subnet: 0000.00000000 = 172.6.224.0 172 .1110

Network Subnet Host

Supernet: Supernet Bits: 16

Supernet Mask: 255.255.0.0

Supernet Range: 172.6.0.1 --- 172.6.255.254 (65.534 Hots)

Route: 172.6.0.0 B-cast: 172.6.255.255

Planeamiento de Subredes

Ejemplo de Planeamiento de Subredes de Clase C

Dirección de Host IP: 201.222.5.121 Máscara de Subred: 255.255.255.248

			Subnet	Host	
201.222.5.121:	11001001	11011110	00000101	01111	001
255.255.255.248:	11111111	11111111	11111111	11111	000
Subnet:	11001001	11011110	00000101	01111	000
	201	222	5	120)

- Dirección de Subred = 201.222.5.120
- Direcciones de Host = 201.222.5.121-201.222.5.126
- Dirección de Broadcast = 201.222.5.127
- Cinco bits de Subred

Direcciones de Broadcast

Ejercicio: Direcciones de Broadcast

Address	Subnet Mask	Class	Subnet	Broadcast
201.222.10.60	255.255.255.248			
15.16.193.6	255.255.248.0			
128.16.32.13	255.255.255.252			
153.50.6.27	255.255.255.128			

Ejercicio: Direcciones de Broadcast

Address	Subnet Mask	Class	Subnet	Broadcast
201.222.10.60	255.255.255.248	С	201.222.10.56	201.222.10.63
15.16.193.6	255.255.248.0	Α	15.16.192.0	15.16.199.255
128.16.32.13	255.255.255.252	В	128.16.32.12	128.16.32.15
153.50.6.27	255.255.255.128	В	153.50.6.0	153.50.6.127

Ejemplo de Subredes

Router A		Máscara	Subred			
_	172.16.2.1 172.16.1.1	255.255.255.0 255.255.255.0	172.16.2.0 172.16.1.0			
Rou	iter B	Máscara	Subred			
S0: E0:	172.16.1.2	255.255.255.0	172.16.1.0			

Estructura IP subnet-zero

Considerando la subutilización de las subredes "todos 0s" y "todos 1s", Cisco creó la estructura:

IP subnet-zero

Que permite utilizar la subnet con todos ceros, de manera que con el uso de esta estructura el cálculo del # de subredes sería:

2bits de subred_1

Y se habilitarían todos los hosts de la subred "0"

Problemas con el Direccionamiento IP Tradicional

- Agotamiento de las direcciones IP
- Crecimiento de tablas de Rutas

Otras Soluciones al Direccionamiento IP

- Máscaras de Subred, RFC 1812
- Variable-Length Subnet Masks, RFC 1009
- Asignación de Direcciones IP Privadas, RFC 1918
- Network Address Translation, RFC 1631

VLSM Nueva Notación de Prefijos de Longitud

Se indica el número "x" de dígitos de red con /x

Ej. Clase A: 10.0.0.0/8 - 10.0.0.0 255.0.0.0

Los routers "Classful" únicamente aceptan prefijos:

Clase A: /8

Clase B: /16

Clase C: /24

 Los routers "Classless" aceptan cualquier longitud de prefijo, y este es incluído en la dirección IP

Ej. 192.168.112.0/21

192.168.112.0 255.255.248.0

Máscara VLSM

• La subred 172.16.14.0/24 se divide en subredes más pequeñas:

Subred con una máscara fija al inicio

Subredes adicionales en una subred regular

Ejemplo de Uso de VLSM en Jerarquías

Resumen de Rutas

 Los protocolos de routing pueden resumir direcciones de varias redes en una sola dirección

Ejemplo de Resumen de Rutas

172.108.168.0=	10101100	•	01101100	.10101	000	•	0000000
172.108.169.0=	172		108	.10101	001	•	0
172.108.170.0=	172		108	.10101	010	•	0
172.108.171.0=	172		108	.10101	011	•	0
172.108.172.0=	172	•	108	.10101	100	•	0
172.108.173.0=	172	•	108	.10101	101	•	0

Bits Comunes = 21 Resumen: 172.108.168.0/21 Bits
No comunes= 11

Resumen de Rutas en una red VLSM

Resumen de Rutas Condicionantes de Implementación

- Múltiples direcciones IP deben tener los mismos bits de orden superior
- Las decisiones de routing deben basarse en la dirección integral
- Los protocolos de routing deben llevar la longitud del prefijo (máscara de subred)

Direcciones Privadas

Los siguientes rangos de direcciones IP son considerados privados:

- Clase A—10.0.0.0 a 10.255.255.255
- Clase B—172.16.0.0 a 172.31.255.255
- Clase C—192.168.0.0 a 192.168.255.255

Direcciones Privadas Condicionantes de Implementación

- Identificar los hosts que no requieren acceso externo
- **→** Filtrar las direcciones privadas
- Cambiar las direcciones IP de direcciones privadas a direcciones públicas requiere tiempo

Direcciones Privadas Uso de NATs (Network Add. Translators)

SA—Source Address

Direcciones Privadas Uso de NATs (Network Add. Translators)

Verificación de Configuración de Direcciones

