Appl. No. 10/790,434 Amendment Dated July 31, 2009 Reply to Office Action of April 1, 2009

Amendments to Claims

This listing of claims will replace all prior revisions and listings of claims in this application.

Listing of Claims

1	1. (Currently Amended) A method comprising:
2	generating a phase-shift keyed optical signal; and
3 4 5	propagating the phase shift keyed optical signal through a semiconductor optical amplifier in deep saturation, wherein $-4dBm \le P_{\rm PS} \le 4dBm$, such that an optical signal exhibiting a regulated, -amplified optical power is produced;
6 7 8 9	wherein the amplified optical power is regulated to a saturation output power such that $\Delta P_{\text{OUT}}(dB)/\Delta P_{\text{DS}}(dB)$ of the optical amplifier is less than about 0.25, wherein P_{CST} is the power of the optical signal output from the amplifier, and P_{DS} is the power of the optical signal input into the amplifier.
1	
1 2	2. (Previously presented) The method of claim 1, wherein the amplified optical power is regulated to about the saturation output power of the semiconductor optical amplifier.
1	
1	3. (Previsously Presented) The method of claim 1, wherein a gain recovery time of the optical amplifier is larger than the bit period of the optical signal.
1	
1 2	4. (Original) The method of claim 1, wherein the optical signal has a data-independent intensity profile.
1	
1	$5. \ (\textbf{Original}) \ \text{The method of claim 1 wherein the optical signal is RZ-DPSK signal.}$
1	
1	6. (Original) The method of claim 1, wherein the optical signal is an $\pi/2$ -DPSK signal.

1 7. (Original) The method of claim 1, wherein the optical signal is a constant-intensity DPSK 2 signal. 1 1 8. (Original) The method of claim 1, wherein the optical signal is an RZ-DQPSK signal, 1 9. (Cancelled) 1 1 10. (Currently Amended) A method for optical limiting amplification comprising: 2 inputting a phase-shift keyed optical signal having a data independent intensity profile 3 into a semiconductor optical amplifier in a deep saturation regime wherein -4dBm < 4 P_{IN} < 4dBm such that an optical signal exhibiting a regulated, amplified optical 5 power is produced and output, wherein ΔP_{OUT}(dB)/ ΔP_{IN}(dB) is less than about 0.25, 6 where P_{OUT} is the power of the optical signal output from the amplifier, and P_{IN} is the 7 power of the optical signal input into the amplifier. 1 1 11. (Previously Presented) The method of claim 10, wherein a gain recovery time of the optical amplifier is larger than the bit period of the optical signal. 1 1 12. (Original) The method of claim 10, wherein the optical signal is an RZ-DPSK signal. 1 1 (Original) The method of claim 10, wherein the optical signal is an π/2-DPSK signal. 1 1 14. (Original) The method of claim 10, wherein the optical signal is a constant-intensity 2 DPSK signal. 1 1 15. (Original) The method of claim 10, wherein the optical signal is an RZ-DOPSK signal. 1 16.(Withdrawn)

1	17. (Currently Amended) An optical signal processor apparatus comprising:
2	a semiconductor optical amplifier device adapted to operate in deep saturation , wherein -
3	$\underline{4dBm < P_{I\!N} \leq 4dBm_{\star}}$ and to receive an RZ-DPSK optical signal having an amplitude-
4	shift keyed optical label portion, such that the optical label portion of the signal is
5	removed upon propagation through the semiconductor optical amplifier device;
6	wherein $\Delta P_{OUT}(dB)/\Delta P_{IN}(dB)$ is less than about 0.25, where P_{OUT} is the power of the optical
7	signal output from the amplifiers, and P_{IN} is the power of the optical signal input into the
8	amplifiers.
	18. (Withdrawn)
1	19. (Currently Amended) An optical communication system for transmitting multi-channel
2	phase-shift keyed optical signals comprising:
3	a plurality of semiconductor optical amplifiers,
4	wherein the system is adapted to transmit the optical signals such that the plurality of
5	semiconductor optical amplifiers operate in deep saturation amplifier in a deep saturation
6	regime wherein $-4dBm \le P_{DN} \le 4dBm$ so as to provide optical power equalization of a
7	plurality of channels of the multi-channel optical signals.
8	$\underline{\text{wherein }\Delta P_{OUT}(dB)/\Delta P_{DS}(dB)\text{ is less than about 0.25, where }P_{OUT}\text{ is the power of the optical}}$
9	signal output from the amplifiers, and $P_{\underline{N}}$ is the power of the optical signal input into the
10	amplifiers.
1	20. (Currently Amended) An apparatus comprising:
2	a means for generating a phase-shift keyed optical signal; and
3	a means for propagating the optical signal through a semiconductor optical amplifier in deep
4	saturation wherein -4dBm < $P_{\rm IN}$ < 4dBm to regulate the amplified optical power;
5	$\underline{\text{wherein }\Delta P_{OUT}(dB)/\Delta P_{DN}(dB)\text{ is less than about 0.25, where }P_{OUT}\underline{\text{ is the power of the optical}}$
6	signal output from the amplifiers, and P_{IN} is the power of the optical signal input into the
7	amplifiers.