Bitacora: Cluster con MPI
Carlos Andres Acosta Ramos
Humberto de Jesus Flores Acuña
José Roberto Guerrero Zurita
25 Junio 2016

1. Requisitos

Estos son los programas necesarios para montar el cluster.

1.1. Servidor

- gcc (gfortran)
- \blacksquare ssh
- rpcbind
- nfs-kernel-server
- \blacksquare mpich3 en tar.gz¹

1.2. Servidor

- gcc (gfortran)
- ssh
- rpcbind
- nfs-common
- \blacksquare mpich3 en tar.gz

¹Se puede obtener de https://www.mpich.org/downloads/

2. Compilando mpich3

Una vez que hemos descargado **mpich-3.2.tar.gz** el siguiente paso es descomprimir el archivo en /home/pi

El siguiente paso es agregar el programa al $\bf PATH$ y podemos comprobar con la instruccion $\bf which$

```
$\frac{\$ PATH=/home/pi/mpich-install/bin:\$PATH}{\$ echo \$PATH}
$\frac{\$ home/pi/mpich-install/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/usr/sbin:/us
```

Esto se realiza tanto en el servidor como en cada uno de los clientes, el tiempo de compilacion aproximadamente es de 2 horas.

3. Configuracion de IP fija

El próximo paso es hacer los ajustes para que tanto el cliente como el servidor puedan compartir datos. Para ambos bajos a configurar que cada uno tenga una IP fija.

```
$ sudo nano /etc/network/interfaces
```

En nuestro caso tenemos una red con las direcciones 192.168.169.0/24. Ahora hay que agregar la siguiente linea tanto al servidor como a los clientes.

```
auto eth0
iface eth0 inet static
address 192.168.169.101
netmask 255.255.255.0
network 192.168.169.0
broadcast 192.168.1.255
gateway 192.168.169.1
dns—nameservers 192.168.169.1
```

La configuración anterior es para el servidor, para los clientes utilizaremos las IP:192.168.169.102 y 192.168.169.103. Ahora lo único que tenemos que hacer es reiniciar para cargar la nueva configuración.

3.1. Servidor

En el servidor podemos editar el archivos ${f host}$ para agregar el nombre de los clientes.

```
$ sudo nano /etc/hosts
```

En el cual agregamos las siguientes lineas, las cuales corresponden a los clientes que se van a conectar al servidor.

```
1 127.0.1.1 raspberrypi2
2 192.168.169.102 raspberrypi3
3 192.168.169.103 jesus
```

4. Llaves SSH

Las maquinas van a comunicarse a través de SSH para compartir información mediante NFS.

Creamos desde el servidor una llave ssh

```
ssh-keygen -t rsa -C "pi@raspberry"
```

Ahora la copiamos hacia cada de los clientes.

```
ssh-copy-id 192.168.169.102
/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out any that are already installed
/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed — if you are prompted now it is to install the new keys pi@raspberrypi3's password:

Number of key(s) added: 1

Now try logging into the machine, with: "ssh '192.168.169.102'" and check to make sure that only the key(s) you wanted were added.
```

Para comprobar que todo esta bien configurado nos conectamos desde al cliente sin que nos pida contraseña.

5. Configurando NFS

NFS es utilizado para sistemas de archivos distribuidos en un entorno de red de computadoras locales. Permite que distintos sistemas conectados a una misma red accedan a ficheros remotos como si se tratara de locales. A continuacion se describe los pasos para la configuracion del **servidor** y los **clientes**.

5.1. Servidor

Agregar en:

sudo nano /etc/exports

La siguiente linea:

/home/pi

192.168.169.0/24(rw,sync,no_subtree_check)

- 192.168.168.0/24: Indica las direcciones IP a la que compartiremos la carpeta
- rw: Habilita la opcion de lectura y escritura (read/write).
- sync: Aplica cambios en el directorio compartido, despues de que los cambios son confirmados.
- no_subtree_check: No hay verificacion del subarbol

5.2. Cliente

Agregar en:

sudo nano /etc/fstab

La siguiente linea:

192.168.169.101:/home/pi /home/pi nfs defaults 0

- 192.168.168.101/home/pi: Indica las direccion IP a la que compartiremos la carpeta.
- /home/pi: Indica el punto de montaje.
- **nfs:** Inidica el tipo de sistema de archivos.
- defaults: No hay verificacion del subarbol.
- 0: No se toma el cuenta el dipositivo para hace respaldos del sistema de archivos.
- 0: No se revisa la particion en busca de errores.

6. Servicios

El siguiente paso es verificar que los servicios esten levantados, los servicios que estan subrayados son los que se les debe de verificar que tengan un signo + lo cual indica que estan arriba.

6.1. Servidor

```
service ---status-all
                {\tt mountnfs-bootclean.sh}
               mountnfs.sh
               networking
               <u>nfs</u>-<u>common</u>
               \underline{\overline{nfs}}\underline{-\underline{kernel}}\underline{-\underline{server}}
               ntp
               plymouth
               plymouth-log
               procps
               raspi-config
                rc.local
12
               rmnologin
13
               rpcbind
14
15
                rsync
                rsyslog
16
                {\tt screen-cleanup}
17
18
                {\tt sendsigs}
       +
               ssh
               sudo
20
                triggerhappy
```

6.2. Cliente

```
service —status—all
             networking
      +
            <u>nfs</u>-<u>common</u>
      +
             ntp
             plymouth
             plymouth-log
             procps
             raspi-config
             rc.local
             rmnologin
      +
             rpcbind
12
             rsync
             rsyslog
13
             {\tt screen-cleanup}
14
             sendsigs
15
      +
             ssh
16
17
             \operatorname{sudo}
             triggerhappy
18
19
             udev-finish
             umountfs
```

7. Ejecutando programas MPI

Para ejecutar los programas de manera adecuada debemos de iniciar primero el servidor, ya que cada uno de los clientes apuntaran a el para montar el sistema de archivos. Desde los **clientes** podemos verificar con la instruccion **df** si se ha montado de manera adecuada el sistema de archivos.

```
1K-blocks
                                            Used Available Use % Mounted
Filesystem
    on
/dev/root
                              15184016 3849880
                                                   10662808
                                                               0\% / \text{dev}
                                 469544
                                                     469544
devtmpfs
                                               0
                                                               0\% / \text{dev/shm}
tmpfs
                                 473880
                                                0
                                                     473880
                                            6428
tmpfs
                                 473880
                                                     467452
                                                               2% /run
tmpfs
                                   5120
                                                4
                                                        5116
                                                                1% /run/lock
tmpfs
                                 473880
                                                0
                                                      473880
                                                               0\% / sys / fs /
     cgroup
/dev/mmcblk0p1
                                  64456
                                           20952
                                                       43504
                                                               33 % / boot
192.168.169.101:/home/pi
                              30361856 3783552
                                                   25290496
                                                               14 % /home/pi
tmpfs
                                  94776
                                                0
                                                       94776
                                                               0% /run/user
     /1000
```

Como se aprecia en la linea 10, se ha montado de manera adecuada.

Ya que todo esta configurado podemos ejecutar el programa que calcula **PI** primero de manera local y luego de manera distribuida. Esto se ejecuta desde el **servidor**.

```
$ mpiexec -n 6 ./cpi
  Process 1 of 6 is on raspberrypi2
  Process 5 of 6 is on raspberrypi2
  Process 3 of 6 is on raspberrypi2
  Process 0 of 6 is on raspberrypi2
  Process 2 of 6 is on raspberrypi2
  Process 4 of 6 is on raspberrypi2
  pi is approximately 3.1415926544231239, Error is 0.0000000008333307
  wall clock time = 0.031505
  $ mpiexec -f machines -n 6 ./cpi
  Process 1 of 6 is on raspberrypi3
  Process 0 of 6 is on raspberrypi2
  Process 3 of 6 is on raspberrypi3
  Process 2 of 6 is on raspberrypi2
  Process 5 of 6 is on raspberrypi3
16 Process 4 of 6 is on raspberrypi2
  pi is approximately 3.1415926544231243, Error is 0.0000000008333312
  wall clock time = 0.002694
```

El archivo machines contiene las direcciones IP de los clientes

```
$ cat machines
192.168.169.101
192.168.169.102
```

Se puede apreciar las ventajas del computo distribuido en el tiempo de procesamiento que le toma al cluster el calculo de PI, que es mucho menor que tiempo que le toma a una sola maquina.

8. Solucion a problemas

Problema: No se puede montar el sistema de archivos en los clientes Solucion:

Reinicar en el **servidor** el servicio:

sudo service nfs-kernel-server restart

y reiniciar todos los clientes.