

Outline

1. Operations

1.1. Function Equality

1.2. Add/Subtract/Multiply/Divide

1.3. Function Composition	8

Functions — Where are we?

At this point we have:

- defined what a function is (any process that generates exactly one output for each input)
- covered fundamental concepts (source, target, domain, image),
- covered properties (injective, surjective and bijective).

we want to discuss

- function operations constructing new functions by adding/multiplying functions* or by applying one function after another function.
- function inverse finding function pairs that have the property that applying one after the other results in the original input.
- yet another graphical representation of functions using 2D Cartesian graphs to represent functions.
- a library of useful functions in computing.

^{*}These are a bigger deal in calculus than in discrete mathematics

Before we start combining functions, I want to make sure that you are happy with evaluating a function.

Example 1

Given the function $f: x \mapsto 2x^2 - x + 3$, evaluate

2
$$f(2a)$$

4
$$f(x+5)$$

$$f(-a) = 2[-a]^2 - [-a] + 3 = 2a^2 + a + 3$$

 \bigcirc f(2a)

$$f(2a) = 2[2a]^2 - [2a] + 3 = 8a^2 - 2a + 3$$

$$f(a+h) = 2[a+h]^2 - [a+h] + 3 = 2a^2 + 4ah + 2h^2 - a - h + 3$$

a f(x+5)

$$f(x+5) = 2[x+5]^2 - [x+5] + 3 = 2x^2 + 10x - x + 4$$

[†]Simply use an extra set of brackets to ensure correct order of operations.

Before we start combining functions, I want to make sure that you are happy with evaluating a function.

Example 1

Given the function $f: x \mapsto 2x^2 - x + 3$, evaluate

$$\bullet$$
 $f(-a)$

2
$$f(2a)$$

4
$$f(x+5)$$

$$f(-a) = 2[-a]^2 - [-a] + 3 = 2a^2 + a + 3$$

2 f(2a)

$$f(2a) = 2[2a]^2 - [2a] + 3 = 8a^2 - 2a + 3$$

$$f(a+h) = 2[a+h]^2 - [a+h] + 3 = 2a^2 + 4ah + 2h^2 - a - h + 3$$

a f(x+5)

$$f(x+5) = 2[x+5]^2 - [x+5] + 3 = 2x^2 + 10x - x + 4$$

[†]Simply use an extra set of brackets to ensure correct order of operations.

Before we start combining functions, I want to make sure that you are happy with evaluating a function.[†]

Example 1

Given the function $f: x \mapsto 2x^2 - x + 3$, evaluate

1
$$f(-a)$$

$$\circ$$
 $f(2a)$

4
$$f(x+5)$$

$$f(-a) = 2[-a]^2 - [-a] + 3 = 2a^2 + a + 3$$

2 f(2a)

$$f(2a) = 2[2a]^2 - [2a] + 3 = 8a^2 - 2a + 3$$

$$f(a+h) = 2[a+h]^2 - [a+h] + 3 = 2a^2 + 4ah + 2h^2 - a - h + 3$$

f(x+5)

$$f(x+5) = 2[x+5]^2 - [x+5] + 3 = 2x^2 + 10x - x + 4$$

[†]Simply use an extra set of brackets to ensure correct order of operations.

Before we start combining functions, I want to make sure that you are happy with evaluating a function.[†]

Example 1

Given the function $f: x \mapsto 2x^2 - x + 3$, evaluate

4
$$f(x+5)$$

$$f(-a) = 2[-a]^2 - [-a] + 3 = 2a^2 + a + 3$$

 \circ f(2a)

$$f(2a) = 2[2a]^2 - [2a] + 3 = 8a^2 - 2a + 3$$

$$f(a+h) = 2[a+h]^2 - [a+h] + 3 = 2a^2 + 4ah + 2h^2 - a - h + 3$$

a f(x+5)

$$f(x+5) = 2[x+5]^2 - [x+5] + 3 = 2x^2 + 10x - x + 48$$

[†]Simply use an extra set of brackets to ensure correct order of operations.

Function Equality

Two functions are equal if they have the same domain and the same rule/mapping.

Definition 2 (Function Equality)

Let f and g be two functions. Then

$$f = g$$
 \iff $\underbrace{\operatorname{Dom}(f) = \operatorname{Dom}(g)}_{\text{same domain}} \land \underbrace{f(x) = g(x) \quad \forall x \in \operatorname{Dom}(f)}_{\text{same rule}}$

• Two functions that have different domains cannot be equal. For example

$$f: \mathbb{Z} \to \mathbb{Z}: x \mapsto x^2$$
 and $g: \mathbb{R} \to \mathbb{R}: x \mapsto x$

are **not** equal even though the rule that defines them is the same

• However, it is not uncommon for two functions to be equal even though they are defined differently.

$$h: \{-1, 0, 1, 2\} \rightarrow \{0, 1, 2\} : x \mapsto |x|$$

and

$$k: \{-1, 0, 1, 2\} \to \{0, 1, 2\}: x \mapsto -\frac{x^3}{3} + x^2 + \frac{x}{3}$$

appear to be very different functions. However, they are equal because, domains are equal and

Function Equality

Two functions are equal if they have the same domain and the same rule/mapping.

Definition 2 (Function Equality)

Let f and g be two functions. Then

$$f = g$$
 \iff $\underbrace{\operatorname{Dom}(f) = \operatorname{Dom}(g)}_{\text{same domain}} \land \underbrace{f(x) = g(x) \quad \forall x \in \operatorname{Dom}(f)}_{\text{same rule}}$

• Two functions that have different domains cannot be equal. For example,

$$f: \mathbb{Z} \to \mathbb{Z}: x \mapsto x^2$$
 and $g: \mathbb{R} \to \mathbb{R}: x \mapsto x^2$

are **not** equal even though the rule that defines them is the same.

• However, it is not uncommon for two functions to be equal even though they are defined differently.

$$h: \{-1, 0, 1, 2\} \to \{0, 1, 2\} : x \mapsto |x|$$

and

$$k: \{-1, 0, 1, 2\} \to \{0, 1, 2\}: x \mapsto -\frac{x^3}{3} + x^2 + \frac{x}{3}$$

appear to be very different functions. However, they are equal because, domains are equal and

Function Equality

Two functions are equal if they have the same domain and the same rule/mapping.

Definition 2 (Function Equality)

Let f and g be two functions. Then

$$f = g$$
 \iff $\underbrace{\operatorname{Dom}(f) = \operatorname{Dom}(g)}_{\text{same domain}} \land \underbrace{f(x) = g(x) \quad \forall x \in \operatorname{Dom}(f)}_{\text{same rule}}$

• Two functions that have different domains cannot be equal. For example,

$$f: \mathbb{Z} \to \mathbb{Z}: x \mapsto x^2$$
 and $g: \mathbb{R} \to \mathbb{R}: x \mapsto x^2$

are **not** equal even though the rule that defines them is the same.

• However, it is not uncommon for two functions to be equal even though they are defined differently. For example

$$h: \{-1, 0, 1, 2\} \rightarrow \{0, 1, 2\} : x \mapsto |x|$$

and

$$k: \{-1,0,1,2\} \to \{0,1,2\}: x \mapsto -\frac{x^3}{3} + x^2 + \frac{x}{3}$$

appear to be very different functions. However, they are equal because, domains are equal and h(x) = k(x) for all $x \in \{-1, 0, 1, 2\}$.

Add/Subtract/Multiply/Divide

Function Addition/Subtraction/Multiplication/Division

I'm throwing these four operations together in the hope that you see that this is just notational convenience[‡]. You will cover these more formally in your *Calculus* module.

Definition 3

Given two functions $f: x \mapsto f(x)$ and $g: x \mapsto g(x)$ then (informally) the

sum function is

$$(f+g): x \mapsto f(x) + g(x)$$

difference function is

$$(f-g): x \mapsto f(x) - g(x)$$

• product function is

$$(fg): x \mapsto f(x)g(x)$$

• quotient function is

$$(f/g): x \mapsto f(x)/g(x)$$
 $g(x) \neq 0$

^{*}What programmers call "syntax sugar".

Example 4

Let $f: x \mapsto x^4 - 16$ and $g: x \mapsto |x| - 4$ Determine

- **1** (f+g)(2) **2** (fg)(2)

 $\bullet \left(\frac{g}{f}\right)(2)$

$$(f+g)(2) = f(2) + g(2) = [0] + [-2] = -2$$

②
$$(fg)(2) = f(2)g(2) = [0] \cdot [-2] = 0$$

Example 4

Let $f: x \mapsto x^4 - 16$ and $g: x \mapsto |x| - 4$ Determine

- **1** (f+g)(2) **2** (fg)(2)

 $\bullet \left(\frac{g}{f}\right)(2)$

- (f+g)(2) = f(2) + g(2) = [0] + [-2] = -2
- **(**fg)(2) = f(2)g(2) = $[0] \cdot [-2] = 0$

Example 4

Let $f: x \mapsto x^4 - 16$ and $g: x \mapsto |x| - 4$ Determine

- **1** (f+g)(2) **2** (fg)(2)

$$(f+g)(2) = f(2) + g(2) = [0] + [-2] = -2$$

$$(fg)(2) = f(2)g(2) = [0] \cdot [-2] = 0$$

Example 4

Let $f: x \mapsto x^4 - 16$ and $g: x \mapsto |x| - 4$ Determine

- (f+g)(2) (fg)(2)

 \bullet $\left(\frac{g}{f}\right)(1)$

$$(f+g)(2) = f(2) + g(2) = [0] + [-2] = -2$$

$$(fg)(2) = f(2)g(2) = [0] \cdot [-2] = 0$$

Example 4

Let $f: x \mapsto x^4 - 16$ and $g: x \mapsto |x| - 4$ Determine

- (f+g)(2) (fg)(2)

$$(f+g)(2) = f(2) + g(2) = [0] + [-2] = -2$$

$$(fg)(2) = f(2)g(2) = [0] \cdot [-2] = 0$$

Function Composition

Definition 5 (Function Composition)

Let $f:A\to B$ and $g:B\to C$. Then the composition of f followed by g, written $g\circ f$ is a function from A into C defined by

$$(g \circ f)(x) = g(f(x))$$

Function Composition

Definition 5 (Function Composition)

Let $f:A\to B$ and $g:B\to C$. Then the composition of f followed by g, written $g\circ f$ is a function from A into C defined by

$$(g \circ f)(x) = g(f(x))$$

Definition 5 (Function Composition)

Let $f: A \to B$ and $g: B \to C$. Then the composition of f followed by g, written $g \circ f$ is a function from A into C defined by

$$(g \circ f)(x) = g(f(x))$$

$$f = \{(1, a), (2, a), (3, b)\}$$
 $g = \{(a, B), (b, C), (c, A)\}$

$$g = \{(a, B), (b, C), (c, A)\}$$

Function Composition

Definition 5 (Function Composition)

Let $f: A \to B$ and $g: B \to C$. Then the composition of f followed by g, written $g \circ f$ is a function from A into C defined by

$$(g \circ f)(x) = g(f(x))$$

$$f = \{(1, a), (2, a), (3, b)\}\$$
 $g = \{(a, B), (b, C), (c, A)\}\$

$$g = \{(a, B), (b, C), (c, A)\}$$

Function Composition

Definition 5 (Function Composition)

Let $f: A \to B$ and $g: B \to C$. Then the composition of f followed by g, written $g \circ f$ is a function from A into C defined by

$$(g \circ f)(x) = g(f(x))$$

Example 6 (Function composition using formulae)

Consider functions $f : \mathbb{R} \to \mathbb{R} : x \mapsto x^3$ and $g : \mathbb{R} \to \mathbb{R} : x \mapsto 3x + 1$. Then, construct functions $g \circ f$ and $f \circ g$.

$$g \circ f > g \circ f$$

$$g \circ f : \mathbb{R} \to \mathbb{R} : x \mapsto g(f(x))$$
and since $g(f(x)) = g(x^3) = 3[x^3] + 1$ we have
$$g \circ f : \mathbb{R} \to \mathbb{R} : x \mapsto 3x^3 + 1$$

$$f \circ g : \mathbb{R} \to \mathbb{R} : x \mapsto f(g(x))$$

and since $f(g(x)) = f(3x + 1) = \begin{bmatrix} 3x + 1 \end{bmatrix}^3$ we have
 $f \circ g : \mathbb{R} \to \mathbb{R} : x \mapsto 27x^3 + 27x^2 + 9x + 1$

• Note that, in general, $f \circ g \neq g \circ f$.

Example 6 (Function composition using formulae)

Consider functions $f : \mathbb{R} \to \mathbb{R} : x \mapsto x^3$ and $g : \mathbb{R} \to \mathbb{R} : x \mapsto 3x + 1$. Then, construct functions $g \circ f$ and $f \circ g$.

$$f \circ g : \mathbb{R} \to \mathbb{R} : x \mapsto f(g(x))$$
 and since $f(g(x)) = f(3x + 1) = \begin{bmatrix} 3x + 1 \end{bmatrix}^3$ we have
$$f \circ g : \mathbb{R} \to \mathbb{R} : x \mapsto 27x^3 + 27x^2 + 9x + 1$$

Note that, in general, $f \circ g \neq g \circ f$.

Example 6 (Function composition using formulae)

Consider functions $f : \mathbb{R} \to \mathbb{R} : x \mapsto x^3$ and $g : \mathbb{R} \to \mathbb{R} : x \mapsto 3x + 1$. Then, construct functions $g \circ f$ and $f \circ g$.

$$\searrow g \circ f$$

$$g \circ f : \mathbb{R} \to \mathbb{R} : x \mapsto g(f(x))$$

and since $g(f(x)) = g(x^3) = 3[x^3] + 1$ we have

$$g \circ f : \mathbb{R} \to \mathbb{R} : x \mapsto 3x^3 + 1$$

$$f \circ g$$

$$f \circ g : \mathbb{R} \to \mathbb{R} : x \mapsto f(g(x))$$

and since $f(g(x)) = f(3x + 1) = [3x + 1]^3$ we have

$$f \circ g : \mathbb{R} \to \mathbb{R} : x \mapsto 27x^3 + 27x^2 + 9x + 1$$

• Note that, in general, $f \circ g \neq g \circ f$.

Properties of Function Composition

While the previous example shows that we cannot change the order of functions in a function composition we are free to change the grouping . . .

Theorem 7 (Function composition is associative)

Given three function, $f: A \rightarrow B$, $g: B \rightarrow C$, and $h: C \rightarrow D$, then

$$h \circ (g \circ f) = (h \circ g) \circ f$$

• This result means that no matter how the functions in the expression $h \circ g \circ f$ are grouped, the final image of any element of $x \in A$ is h(g(f(x)))

Using function composition we can define repeated application of functions§ . .

Definition 8 ("Powers" of Functions)

Let $f: A \to A$.

•
$$f^1 = f$$
; that is, $f^1(a) = f(a)$, for $a \in A$.

• For
$$n \ge 1$$
, $f^{n+1} = f \circ f^n$; that is, $f^{n+1}(a) = f(f^n(a))$ for $a \in A$.

Take care of notation here: $f^2(x) \neq (f(x))^2$, etc.

Properties of Function Composition

While the previous example shows that we cannot change the order of functions in a function composition we are free to change the grouping . . .

Theorem 7 (Function composition is associative)

Given three function, $f: A \rightarrow B$, $g: B \rightarrow C$, and $h: C \rightarrow D$, then

$$h \circ (g \circ f) = (h \circ g) \circ f$$

• This result means that no matter how the functions in the expression $h \circ g \circ f$ are grouped, the final image of any element of $x \in A$ is h(g(f(x)))

Using function composition we can define repeated application of functions§ ...

Definition 8 ("Powers" of Functions)

Let $f: A \to A$.

- $f^1 = f$; that is, $f^1(a) = f(a)$, for $a \in A$.
- For $n \ge 1$, $f^{n+1} = f \circ f^n$; that is, $f^{n+1}(a) = f(f^n(a))$ for $a \in A$.

[§] Take care of notation here: $f^2(x) \neq (f(x))^2$, etc.

Outline

2. Function Inverse

1. Operations	
1.1. Function Equality	5
1.2. Add/Subtract/Multiply/Divide	6
1.3. Function Composition	8

Definition 9 (Inverse of a Function)

Let $f: A \to B$. If there exists a function $g: B \to A$ such that

$$(g \circ f)(x) = x \quad \forall x \in A$$
 and $(f \circ g)(x) = x \quad \forall x \in B$

- Notice that in the definition we refer to "the inverse" as opposed to "an inverse" because, if the
 inverse exists it is unique.
- The inverse effectively "undoes" the effect of f

If
$$f(a) = b$$
 then $f^{-1}(b) = a$

- The inverse of f exists if and only if f is bijective, i.e., f is one-to-one and onto
- Existence of a function inverse is fundamental to cryptography, lossless compression, relational databases, communication protocols, etc.
- Existence implies nothing about the relative ease of obtaining f^{-1} , or if found the effort to compute $f^{-1}(x)$.

Definition 9 (Inverse of a Function)

Let $f: A \to B$. If there exists a function $g: B \to A$ such that

$$(g \circ f)(x) = x \quad \forall x \in A$$
 and $(f \circ g)(x) = x \quad \forall x \in B$

- Notice that in the definition we refer to "the inverse" as opposed to "an inverse" because, if the inverse exists it is unique.
- The inverse effectively "undoes" the effect of f.

If
$$f(a) = b$$
 then $f^{-1}(b) = a$

- The inverse of f exists if and only if f is bijective, i.e., f is one-to-one and onto
- Existence of a function inverse is fundamental to cryptography, lossless compression, relational databases, communication protocols, etc.
- Existence implies nothing about the relative ease of obtaining f^{-1} , or if found the effort to compute $f^{-1}(x)$.

Definition 9 (Inverse of a Function)

Let $f: A \to B$. If there exists a function $g: B \to A$ such that

$$(g \circ f)(x) = x \quad \forall x \in A$$
 and $(f \circ g)(x) = x \quad \forall x \in B$

- Notice that in the definition we refer to "the inverse" as opposed to "an inverse" because, if the inverse exists it is unique.
- The inverse effectively "undoes" the effect of f.

If
$$f(a) = b$$
 then $f^{-1}(b) = a$

- The inverse of f exists if and only if f is bijective, i.e., f is one-to-one and onto
- Existence of a function inverse is fundamental to cryptography, lossless compression, relational databases, communication protocols, etc.
- Existence implies nothing about the relative ease of obtaining f^{-1} , or if found the effort to compute $f^{-1}(x)$.

Definition 9 (Inverse of a Function)

Let $f: A \to B$. If there exists a function $g: B \to A$ such that

$$(g \circ f)(x) = x \quad \forall x \in A$$
 and $(f \circ g)(x) = x \quad \forall x \in B$

- Notice that in the definition we refer to "the inverse" as opposed to "an inverse" because, if the inverse exists it is unique.
- The inverse effectively "undoes" the effect of f.

If
$$f(a) = b$$
 then $f^{-1}(b) = a$

- The inverse of f exists if and only if f is bijective, i.e., f is one-to-one and onto.
- Existence of a function inverse is fundamental to cryptography, lossless compression, relational databases, communication protocols, etc.
- Existence implies nothing about the relative ease of obtaining f^{-1} , or if found the effort to compute $f^{-1}(x)$.

Definition 9 (Inverse of a Function)

Let $f: A \to B$. If there exists a function $g: B \to A$ such that

$$(g \circ f)(x) = x \quad \forall x \in A$$
 and $(f \circ g)(x) = x \quad \forall x \in B$

- Notice that in the definition we refer to "the inverse" as opposed to "an inverse" because, if the inverse exists it is unique.
- The inverse effectively "undoes" the effect of f.

If
$$f(a) = b$$
 then $f^{-1}(b) = a$

- The inverse of f exists if and only if f is bijective, i.e., f is one-to-one and onto.
- Existence of a function inverse is fundamental to cryptography, lossless compression, relational databases, communication protocols, etc.
- Existence implies nothing about the relative ease of obtaining f^{-1} , or if found the effort to compute $f^{-1}(x)$.

Definition 9 (Inverse of a Function)

Let $f: A \to B$. If there exists a function $g: B \to A$ such that

$$(g \circ f)(x) = x \quad \forall x \in A$$
 and $(f \circ g)(x) = x \quad \forall x \in B$

- Notice that in the definition we refer to "the inverse" as opposed to "an inverse" because, if the inverse exists it is unique.
- The inverse effectively "undoes" the effect of f.

If
$$f(a) = b$$
 then $f^{-1}(b) = a$

- The inverse of f exists if and only if f is bijective, i.e., f is one-to-one and onto.
- Existence of a function inverse is fundamental to cryptography, lossless compression, relational databases, communication protocols, etc.
- Existence implies nothing about the relative ease of obtaining f^{-1} , or if found the effort to compute $f^{-1}(x)$.

Example 10

On the set $A = \{0, 1, 2, 3, 4\}$ the functions

$$f: A \to A: x \mapsto -\frac{5}{6}x^4 + \frac{20}{3}x^3 - \frac{50}{3}x^2 + \frac{83}{6}x$$

and

$$g: A \to A: x \mapsto 2x \mod 5$$

Example 10

On the set $A = \{0, 1, 2, 3, 4\}$ the functions

$$f: A \to A: x \mapsto -\frac{5}{6}x^4 + \frac{20}{3}x^3 - \frac{50}{3}x^2 + \frac{83}{6}x$$

and

$$g:A\to A:x\mapsto 2x\bmod 5$$

Example 10

On the set $A = \{0, 1, 2, 3, 4\}$ the functions

$$f: A \to A: x \mapsto -\frac{5}{6}x^4 + \frac{20}{3}x^3 - \frac{50}{3}x^2 + \frac{83}{6}x$$

and

$$g: A \to A: x \mapsto 2x \mod 5$$

Example 10

On the set $A = \{0, 1, 2, 3, 4\}$ the functions

$$f: A \to A: x \mapsto -\frac{5}{6}x^4 + \frac{20}{3}x^3 - \frac{50}{3}x^2 + \frac{83}{6}x$$

and

$$g: A \to A: x \mapsto 2x \mod 5$$

Example 10

On the set $A = \{0, 1, 2, 3, 4\}$ the functions

$$f: A \to A: x \mapsto -\frac{5}{6}x^4 + \frac{20}{3}x^3 - \frac{50}{3}x^2 + \frac{83}{6}x$$

and

$$g: A \to A: x \mapsto 2x \mod 5$$

Example 10

On the set $A = \{0, 1, 2, 3, 4\}$ the functions

$$f: A \to A: x \mapsto -\frac{5}{6}x^4 + \frac{20}{3}x^3 - \frac{50}{3}x^2 + \frac{83}{6}x$$

and

$$g: A \to A: x \mapsto 2x \mod 5$$

Example — Caesar Cipher

Example 11 (Caesar Cipher)

The Caesar cipher, also known as a shift cipher, is one of the simplest forms of encryption. It is a substitution cipher where each letter in the original message (called the plaintext) is replaced with corresponding letter at a fixed shift[¶] in the alphabet with wrap around.

Decrypting with shift of 3.

If *n* is the required shift, and we have functions to map letters to/from integers such that 'A' \leftrightarrow 0, 'B' \leftrightarrow 1, ..., 'Z' \leftrightarrow 25 then we have inverse function pair

$$E_n(x) = (x+n) \bmod 26$$

and

$$D_n(x) = (x - n) \bmod 26$$

In other words, $(D_n \circ E_n)(x) = x$

[¶]Apparently Caesar used to prefer an offset of 3 letters, and would shave slaves' head, tattoo encrypted message, wait till hair regrows and then send "message".

Example — Caesar Cipher

Application

Caesar's used a shift of 3 so had encrypt/decrypt inverse pair E_3 and D_3 ,

The following message was encrypted using E_3

Decrypt the message

^ISecurity-wise, this is worse than useless, and has not been used since the 16th century, but a shift of 13 was (is?) popular in usenet newsgroups when posting offensive content. Google "ROT13"

| Implementation |

If n is the required shift, then using the ord and chr functions in Python** we have inverse function pair

$$E_n(c) = \mathbf{chr} \left(\underbrace{\left(\underbrace{\mathbf{ord}(c) - \mathbf{ord}('A')}_{\text{get integer in range } 0 \dots 25} \right)}_{\text{apply shift}} + \mathbf{ord}('A') \right)$$

$$\underline{\mathbf{Add back ASCII offset}}_{\text{convert back to uppercase character}}$$

and decrypt function

$$D_n(c) = \operatorname{chr}\left(\left(\operatorname{ord}(c) - \operatorname{ord}('A') + (26 - n)\right) \bmod 26\right) + \operatorname{ord}('A')\right) = E_{26-n}(x)$$

^{**}These functions map to/from ASCII values, so we have 'A' \leftrightarrow 65, 'B' \leftrightarrow 66, . . . , 'Z' \leftrightarrow 90

Example — Caesar Cipher

Functions to Encode/Decode Caesar Cipher

```
def shift (n, x):
    return (x+n) % 26

def encrypt(n,message):
    result = ""
    for c in message:
        if 'A'<=c<='Z':
            result += chr(shift(n, ord(c)-ord('A')) + ord('A'))
        else:
            result += c
    return result</pre>
```

Sample Usage

```
plaintext = "ATTACK AT DAWN"
cypertext = encrypt(3, plaintext)
test = decrypt(3, cypertext)

print ("Plaintext = ", plaintext)
print ("Cypertext = ", cypertext)
print ("test = ", test)
```

Plaintext = ATTACK AT DAWN
Cypertext = DWWDFN DW GDZQ
test = ATTACK AT DAWN

Question 1:

Let $A = \{1, 2, 3\}$. Define $f : A \to A$ by f(1) = 2, f(2) = 1, and f(3) = 3. Find f^2 , f^3 , f^4 and f^{-1} .

Question 2:

Let f, g, and h all be functions from \mathbb{Z} into \mathbb{Z} defined by f(n) = n + 5, g(n) = n - 2, and $h(n) = n^2$. Define:

b f^3

 \bigcirc $f \circ h$

Question 3:

Define s, u, and d, all functions on the set of integers, \mathbb{Z} , by $s(n) = n^2$, u(n) = n + 1, and d(n) = n - 1. Determine:

 $u \circ s \circ d$

 \bullet $s \circ u \circ d$

 \bigcirc $d \circ s \circ u$

Question 4:

Define the following functions on the integers by f(k) = k + 1, g(k) = 2k, and $h(k) = \lceil k/2 \rceil$

- Which of these functions are one-to-one?
- Which of these functions are onto?
- Substitute Express in simplest terms the compositions $f \circ g$, $g \circ f$, $g \circ h$, $h \circ g$, and h^2 ,