物体検出手法の解説 Faster-RCNN, YOLO

簡単なおさらい(1/2)

従来手法(R-CNN)

- パート1:物体候補領域の提案
- パート2:提案された候補領域における物体のクラス分類

R-CNNのネットワーク

[1] Girshick, Ross B. et al. "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation." 2014 IEEE Conference on Computer Vision and Pattern Recognition (2014): 580-587.

簡単なおさらい(1/2)

従来手法(R-CNN)

- パート1:物体候補領域の提案
- パート2:提案された候補領域における物体のクラス分類

R-CNNのネットワーク

[1] Girshick, Ross B. et al. "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation." 2014 IEEE Conference on Computer Vision and Pattern Recognition (2014): 580-587.

簡単なおさらい(1/2)

従来手法(R-CNN)

- パート1:物体候補領域の提案
- パート2:提案された候補領域における物体のクラス分類

R-CNNのネットワーク

パート2

[1] Girshick, Ross B. et al. "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation." 2014 IEEE Conference on Computer Vision and Pattern Recognition (2014): 580-587.

簡単なおさらい(2/2)

R-CNNの課題

- パート1の処理に Selective Searchを使用しているため、 処理速度が遅い
- Fast-R-CNNではパート2の処理は改良されたものの,
 パート1にはSelective Searchを使用
- → 画像 1 枚の処理時間は, パート1:1秒, パート2:0.22秒

- 課題解決のために -----

高速な処理を行う手法を提案する

→動画などのリアルタイム処理が可能になる

Faster-RCNN アイデア

- 物体候補領域の提案の処理にCNNを使用するRPN (Region Proposal Network)を提案
 - End-to-Endな処理が可能になった

Faster-RCNNのネットワーク

[2] Ren, Shaoqing et al. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks." *IEEE Transactions on Pattern Analysis and Machine Intelligence* 39 (2015): 1137-1149.

Faster-RCNN | RPN (1/2)

- 特徴マップ
 - 入力された画像は, VGG16により特徴マップに変換される

Faster-RCNN | RPN (2/2)

Anchors

- 特徴マップに Anchor Points を仮視し,PointごとにAnchor Boxesを作成する
- Anchor Points の個数: H × W
- 1 つのAnchor Point あたりの Anchor Boxの個数: S
- Anchor Boxes の個数: H × W × S

Faster-RCNN RPNの補足

RPNの出力

- 各 Anchor Boxes を Grand Truth の Boxesと比較し,
 含まれているものが背景か物体か, どれくらいズレてるか出力
- 各Anchor Boxesにおいて背景か物体か: H × W × S × 2
- 各Anchor Boxesにおいて正解Boxesとのズレ (中心座標(x, y), 縦, 横): H × W × S × 4

Faster-RCNN 実験

- 従来手法と比較
 - PASCAL VOC データで検証

	train	mAP	FPS	
Fastest DPM [38]	2007	30.4	15	
R-CNN Minus R [20]	2007	53.5	6	R-CNN, Fast R-CNN
Fast R-CNN [14]	2007+2012	70.0	0.5	より高速
Faster R-CNN VGG-16[28]	2007+2012	73.2	7	3 7 7 12,72
Faster R-CNN ZF [28]	2007+2012	62.1	18	

R-CNNやFast R-CNNよりmAPスコアが高い

[2] Ren, Shaoqing et al. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks." *IEEE Transactions on Pattern Analysis and Machine Intelligence* 39 (2015): 1137-1149.

YOLO (V1) | アイデア

Faster R-CNN

物体候補領域の提案とクラス分類を

異なるネットワークで処理

YOLO (V1)[3]

物体候補領域の提案とクラス分類を

一つのネットワークで処理

You Only Look Once

(一回だけ見れば良い)

YOLO (V1) | 利点と欠点

■利点

- 高速な処理
- 画像全体を一度に見るから,背景を物体と間違える ことがない
- 汎化性が高い
- 欠点
 - 精度はFaster-RCNNに劣る

YOLO (V1) | 工夫

Grid cell

- 入力画像をS×SのGridsに分割
- 候補領域の提案:各 Grid において,その Gridの真ん中を中心 とするB個のBounding Boxを生成
- クラス分類: 各 Grid ごとに, 含む物体のクラスを分類

YOLO (V1) | ネットワーク

- 何が出力されるか
 - 各 Gridにおける各 バウンディングボックスの 中心,高さ,横
 (x, y, w, h), 信頼度スコアの5つと各クラスに対応する
 特徴マップを同時に出力
 - → S = 7, B = 2, クラス数 = 20の例

YOLO (V1) | 実験

従来手法と比較

Real-Time Detectors	Train	mAP	FPS
100Hz DPM [31]	2007	16.0	100
30Hz DPM [31]	2007	26.1	30
Fast YOLO	2007+2012	52.7	155
YOLO	2007+2012	63.4	45
Less Than Real-Time			
Fastest DPM [38]	2007	30.4	15
R-CNN Minus R [20]	2007	53.5	6
Fast R-CNN [14]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[28]	2007+2012	73.2	7
Faster R-CNN ZF [28]	2007+2012	62.1	18
YOLO VGG-16	2007+2012	66.4	21

YOLOが最速

mAPスコアは 従来手法より高いわけではない

まとめ

従来手法のSelective Searchによる処理を改良し 処理を高速化したい

- Faster R-CNN
 - CNNベースのRPNを提案し, End-To-Endなネットワークを可能にした
- YOLO
 - 候補領域の提案とクラス分類を**同時に**行うネットワークの提案