Okay, let us go through the whole process step by step in this example.

Forward propagation

Taking $sample_1$ ($x_1 = 0.04, x_2 = 0.42$, target=0) as the example.

- 1. **Step1**: Get the values of nodes after the activation operation f in the hidden layer. In this example, they are 1.912, 1.177.
 - The input value N_i^{input} , i = 1, 2, 3 of the node N_i on $sample_1$.

$$N_1^{input} = x_1 w_{1,N_1} + x_2 w_{2,N_1} + b_{N_1 2}$$

$$= 0.04 \times (-2.5) + 0.42 \times 0.6 + 1.6$$

$$= 1.752$$
(1)

$$N_2^{input} = x_1 w_{1,N_2} + x_2 w_{2,N_2} + b_{N_1}$$

$$= 0.04 \times (-1.5) + 0.42 \times 0.4 + 0.7$$

$$= 0.808$$
(2)

■ The output value N_i^{output} , i=1,2 of the node N_i on $sample_1$ with activation function $f(x) = log(1+e^x)$ where x is N_i^{input} , i =the number of nodes in the hidden layer.

$$N_1^{output} = log(1 + e^{N_1^{input}})$$

$$= log(1 + e^{1.752})$$

$$= 1.912$$
(3)

$$N_2^{output} = log(1 + e^{N_2^{input}})$$

$$= log(1 + e^{0.808})$$

$$= 1.177$$
(4)

- 2. **Step2**: Get the values of nodes after the softmax function operation g in the output layer. In this example, they are .
 - The input value O_i^{input} , i = 1, 2, 3 of the node O_i in the hidden layer.

$$O_1^{input} = N_1^{output} w_{N_1,O_1} + N_2^{output} w_{N_2,O_1} + b_{O_1}$$

$$= 1.912 \times (-0.1) + 1.177 \times 1.5 + 0$$

$$= 1.5743$$
(5)

$$O_2^{input} = N_1^{output} w_{N_1,O_2} + N_2^{output} w_{N_2,O_2} + b_{O_2}$$

$$= 1.912 \times 2.4 + 1.177 \times (-5.2) + 0$$

$$= -1.5316$$
(6)

$$O_3^{input} = N_1^{output} w_{1,N_3} + N_2^{output} w_{2,N_3} + b_{O_3}$$

$$= 1.912 \times (-2.5) + 1.177 \times 0.6 + 1$$

$$= -3.074$$
(7)

• The output value O_i^{output} , i = 1, 2, 3 of the node O_i in the hidden layer.

$$O_1^{output} = softmax(O_1^{input}) = \frac{e^{O_1^{input}}}{e^{O_1^{input}} + e^{O_2^{input}} + e^{O_3^{input}}}$$

$$= \frac{e^{1.5743}}{e^{1.5743} + e^{-1.5316} + e^{-3.074}}$$

$$= 0.948$$
(8)

$$O_2^{output} = softmax(O_2^{input}) = \frac{e^{O_2^{input}}}{e^{O_1^{input}} + e^{O_2^{input}} + e^{O_3^{input}}}$$

$$= \frac{e^{-1.5316}}{e^{1.5743} + e^{-1.5316} + e^{-3.074}}$$

$$= 0.042$$
(9)

$$O_3^{output} = softmax(O_3^{input}) = \frac{e^{O_3^{input}}}{e^{O_1^{input}} + e^{O_2^{input}} + e^{O_3^{input}}}$$

$$= \frac{e^{-3.074}}{e^{1.5743} + e^{-1.5316} + e^{-3.074}}$$

$$= 0.009$$
(10)

Till now, we know that $sample_1$ ($x_1 = 0.04, x_2 = 0.42$, target=0) goes through the forward propagation of the neural network and generates three predictions that are

- $Pred_1 = O_1^{output} = 0.948$ means the 'probability' that $sampe_1$ is assigned with Target=0.
- $Pred_2 = O_2^{output} = 0.042$ means the 'probability' that $sampe_1$ is assigned with Target=1.
- $\qquad Pred_3 = O_3^{output} = 0.009 \text{ means the 'probability' that } sampe_1 \text{is assigned with Target} = 2. \\$
- 3. **Step3**: Calculate the 'difference' between the prediction and the actual value via Cross Entropy. The actual target observation of $sample_1$ is
 - $Act_1 = 1$ means the 'probability' that $sampe_1$ is assigned with Target=0.
 - $Act_2 = 0$ means the 'probability' that $sampe_1$ is assigned with Target=1.
 - $Act_3 = 0$ means the 'probability' that $sampe_1$ is assigned with Target=2.

Therefore, the Cross-Entropy(CE) of $sample_1$ with Target=0 is

$$CE_{sample_1} = -\sum_{i}^{M} Act_i log(Pred_i), M = \text{number of nodes in the hidden layer}$$

$$= -Act_1 \times log(Pred_1) - Act_2 \times log(Pred_2) - Act_3 \times log(Pred_3)$$

$$= -1 \times log(Pred_1) - 0 \times log(Pred_2) - 0 \times log(Pred_3)$$

$$= -1 \times log(Pred_1) = 0.053$$
(11)

Calculate 'difference' via Cross

A common neural network architecture involves:

- 1. Three layers and each layer has a number of nodes/neurons:
 - Input layer has 2 nodes x_1 and x_2 . The number of nodes in the Input layer is the number of features in the dataset. In this example, each sample has 2 features.
 - Hidden layer has 2 nodes N_1 and N_2 . The number of nodes in the Hidden layer is customized by us. In this example, We specify that there are two neurons.
 - Output layer has 3 nodes O_1 , O_2 and O_3 . The number of nodes in the Output layer is the number of unique targets. In this example, the dataset has 3 targets (0, 1, 2).
- 2. Parameters (Weights and bias): In this example, parameters exist:
 - between Input layer and Hidden layer:
 - $-W_{1,N_1}, W_{2,N_1}, b_{N_1}$

$$- W_{1,N_2}$$
, W_{2,N_2} , b_{N_2}

• between Hidden layer and Output layer:

-
$$W_{N_1,O_1}$$
, W_{N_2,O_1} , b_{O_1}

-
$$W_{N_2,O_1}$$
, W_{N_2,O_2} , b_{O_2}

-
$$W_{N_2,O_3}$$
, W_{N_2,O_3} , b_{O_3}

- 3. Two kinds of functions (one in the Hidden layer, and one in the Output layer):
 - Activation function f in the Hidden layer for each node. In this example, $f(x) = log(1 + e^x)$.
 - Softmax function g in the Output layer for each node. In this example, $g(x_i) = \frac{e^{x_i}}{sum(e^{x_i})}$.