```
1 import torch
 2 import torch.nn as nn
 3 import torch.nn.functional as F
 1 # Create a Model Class that inherits nn.Module
 2 class Model(nn.Module):
 3 # Input layer (4 features of the flower)
   # --> Hidden Layer1 H1 (number of neurone)
    # --> Hidden Layer H2 (n)
 5
    # --> output (which 3 classes of iris flower)
 6
    def __init__(self, in_features=4, h1=8, h2=9, out_features=3):
 8
 9
10
       super().__init__() # Instantiate nn.Module (parent class)
11
12
       self.fc1 = nn.Linear(in_features, h1)
13
       self.fc2 = nn.Linear(h1, h2)
       self.out = nn.Linear(h2, out_features)
14
15
16
    def forward(self, x):
17
     x = F.relu(self.fc1(x))
18
19
      x = F.relu(self.fc2(x))
20
      x = self.out(x)
21
22
       return x
23
24
```

1 my_df

	sepal.length	sepal.width	petal.length	petal.width	variety
0	5.1	3.5	1.4	0.2	Setosa
1	4.9	3.0	1.4	0.2	Setosa
2	4.7	3.2	1.3	0.2	Setosa
3	4.6	3.1	1.5	0.2	Setosa
4	5.0	3.6	1.4	0.2	Setosa
145	6.7	3.0	5.2	2.3	Virginica
146	6.3	2.5	5.0	1.9	Virginica
147	6.5	3.0	5.2	2.0	Virginica
148	6.2	3.4	5.4	2.3	Virginica
149	5.9	3.0	5.1	1.8	Virginica

150 rows × 5 columns

1 my_df.head()

	sepal.length	sepal.width	petal.length	petal.width	variety	
0	5.1	3.5	1.4	0.2	Setosa	ıl.
1	4.9	3.0	1.4	0.2	Setosa	
2	4.7	3.2	1.3	0.2	Setosa	
3	4.6	3.1	1.5	0.2	Setosa	
4	5.0	3.6	1.4	0.2	Setosa	

1 my_df.tail()

	sepal.length	sepal.width	petal.length	petal.width	variety	
145	6.7	3.0	5.2	2.3	Virginica	ılı
146	6.3	2.5	5.0	1.9	Virginica	
147	6.5	3.0	5.2	2.0	Virginica	
148	6.2	3.4	5.4	2.3	Virginica	
149	5.9	3.0	5.1	1.8	Virginica	

^{1 #} Change last column from string to numbers (use as integers afterwards)

² my_df["variety"] = my_df.variety.replace('Setosa', 0.0)

³ $my_df["variety"] = my_df.variety.replace('Versicolor', 1.0)$

⁴ my_df["variety"] = my_df.variety.replace('Virginica', 2.0)

⁵ my_df

```
6 # my_df['variety'] = my_df['variety'].replace('Setosa', 0.0)
7 # my_df['variety'] = my_df['variety'].replace('Versicolor', 1.0)
8 # my_df['variety'] = my_df['variety'].replace('Virginica', 2.0)
9 # my_df
```

	sepal.length	sepal.width	petal.length	petal.width	variety	
0	5.1	3.5	1.4	0.2	0.0	ıl.
1	4.9	3.0	1.4	0.2	0.0	
2	4.7	3.2	1.3	0.2	0.0	
3	4.6	3.1	1.5	0.2	0.0	
4	5.0	3.6	1.4	0.2	0.0	
145	6.7	3.0	5.2	2.3	2.0	
146	6.3	2.5	5.0	1.9	2.0	
147	6.5	3.0	5.2	2.0	2.0	
148	6.2	3.4	5.4	2.3	2.0	
149	5.9	3.0	5.1	1.8	2.0	

150 rows × 5 columns

```
1 # Train Test Split: Set X, y
2 X = my_df.drop('variety', axis=1)
3 y = my_df['variety']
4
```

```
1 # Convert to numpy arrays
```

1 X

```
array([[5.1, 3.5, 1.4, 0.2],
        [4.9, 3. , 1.4, 0.2],
        [4.7, 3.2, 1.3, 0.2],
        [4.6, 3.1, 1.5, 0.2],
        [5. , 3.6, 1.4, 0.2],
        [5.4, 3.9, 1.7, 0.4],
        [4.6, 3.4, 1.4, 0.3],
        [5. , 3.4, 1.5, 0.2],
        [4.4, 2.9, 1.4, 0.2],
        [4.9, 3.1, 1.5, 0.1],
        [5.4, 3.7, 1.5, 0.2],
        [4.8, 3.4, 1.6, 0.2],
        [4.8, 3.4, 1.6, 0.2],
        [4.8, 3. , 1.4, 0.1],
        [4.3, 3. , 1.4, 0.1],
```

² X = X.values

³ y = y.values

```
[-.-, .. , ..., ...],
            [5.8, 4., 1.2, 0.2],
            [5.7, 4.4, 1.5, 0.4],
            [5.4, 3.9, 1.3, 0.4],
            [5.1, 3.5, 1.4, 0.3],
            [5.7, 3.8, 1.7, 0.3],
            [5.1, 3.8, 1.5, 0.3],
            [5.4, 3.4, 1.7, 0.2],
            [5.1, 3.7, 1.5, 0.4],
            [4.6, 3.6, 1., 0.2],
            [5.1, 3.3, 1.7, 0.5],
            [4.8, 3.4, 1.9, 0.2],
            [5., 3., 1.6, 0.2],
            [5., 3.4, 1.6, 0.4],
            [5.2, 3.5, 1.5, 0.2],
            [5.2, 3.4, 1.4, 0.2],
            [4.7, 3.2, 1.6, 0.2],
            [4.8, 3.1, 1.6, 0.2],
            [5.4, 3.4, 1.5, 0.4],
            [5.2, 4.1, 1.5, 0.1],
            [5.5, 4.2, 1.4, 0.2],
            [4.9, 3.1, 1.5, 0.2],
            [5., 3.2, 1.2, 0.2],
            [5.5, 3.5, 1.3, 0.2],
            [4.9, 3.6, 1.4, 0.1],
            [4.4, 3., 1.3, 0.2],
            [5.1, 3.4, 1.5, 0.2],
            [5., 3.5, 1.3, 0.3],
            [4.5, 2.3, 1.3, 0.3],
            [4.4, 3.2, 1.3, 0.2],
            [5., 3.5, 1.6, 0.6],
[5.1, 3.8, 1.9, 0.4],
            [4.8, 3., 1.4, 0.3],
            [5.1, 3.8, 1.6, 0.2],
            [4.6, 3.2, 1.4, 0.2],
            [5.3, 3.7, 1.5, 0.2],
            [5., 3.3, 1.4, 0.2],
            [7., 3.2, 4.7, 1.4],
            [6.4, 3.2, 4.5, 1.5],
            [6.9, 3.1, 4.9, 1.5],
            [5.5, 2.3, 4., 1.3],
            [6.5, 2.8, 4.6, 1.5],
            [5.7, 2.8, 4.5, 1.3],
            [6.3, 3.3, 4.7, 1.6],
            [4.9, 2.4, 3.3, 1.],
1 from sklearn.model_selection import train_test_split
1 # Train Test Split
2 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=41)
1 # Convert X features to float tensors
2 X_train = torch.FloatTensor(X_train)
3 X_test = torch.FloatTensor(X_test)
1 # Convert y labels to tensors long
2 y_train = torch.LongTensor(y_train)
3 y_test = torch.LongTensor(y_test)
```

```
1 # Set the criterion of model to mesure the error, how far off the predictions are from the data
2 criterion = nn.CrossEntropyLoss()
3 # Choose Adam Optimizer, lr = learning rate (if error does not go down after
4 # a bunch of iterations (epochs), lower the learning rete)
 5 optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
 1 model.parameters
     <bound method Module.parameters of Model(</pre>
        (fc1): Linear(in_features=4, out_features=8, bias=True)
        (fc2): Linear(in_features=8, out_features=9, bias=True)
        (out): Linear(in_features=9, out_features=3, bias=True)
     )>
 1 # Train our model!
 2 # Epochs? (one run all the training data in our network)
 3 epochs = 100 # How many times
 4 losses = []
 5 for i in range(epochs):
 6 # Go forward and get a prediction
    y_pred = model.forward(X_train) # Get predicted results
 8
9
    \mbox{\tt\#} Mesure the loss/error, will be high at first
    loss = criterion(y_pred, y_train) # Predicted values vs. the y_train values
10
11
12
    # Keep track of the losses
13
   losses.append(loss.detach().numpy())
14
15 # Print every 10 epochs
16 if i % 10 == 0:
      print(f'Epoch: {i} and loss: {loss}')
17
18
19 # Do some back propagration: take the error rate of forward propagation
20 # and feed it back through the netword to fine tune the weights
   optimizer.zero_grad()
21
   loss.backward()
22
   optimizer.step()
23
24
25
26
27
```

```
Epoch: 0 and loss: 0.05193043872714043
Epoch: 10 and loss: 0.04446204751729965
Epoch: 20 and loss: 0.03935651853680611
Epoch: 30 and loss: 0.03563718870282173
Epoch: 40 and loss: 0.032763414084911346
Epoch: 50 and loss: 0.030291257426142693
Epoch: 60 and loss: 0.02742672711610794
```

```
Epoch: 70 and loss: 0.02430540882050991
Epoch: 80 and loss: 0.021412163972854614
Epoch: 90 and loss: 0.019128229469060898

1 # Graph it out!
2 plt.plot(range(epochs), losses)
3 plt.ylabel('loss/error')
4 plt.xlabel('Epoch')
```

```
Text(0.5, 0, 'Epoch')
    0.050
    0.045
    0.040
 loss/error
    0.035
    0.030
    0.025
    0.020
                            20
               0
                                          40
                                                        60
                                                                      80
                                                                                    100
                                               Epoch
```

```
1 # Evaluate Model on Test Data Set (validate model on test set)
 2 with torch.no_grad(): # Basically turn off propagration
 3 y_val = model.forward(X_test) \# X_test are features from the test set. y_val will be predictions
    loss = criterion(y_val, y_test) # Find the loss or error
 1
     loss
     tensor(0.1784)
 1 correct = 0
 3 with torch.no_grad():
    for i, data in enumerate(X_test):
 5
       y_val = model.forward(data)
 6
       if y_test[i] == 0:
 7
         x = 'Setosa'
 8
       elif y_test[i] == 1:
 9
10
         x = 'Versicolor'
11
       else:
12
         x = 'Virginica'
13
14
       # Will print what type of flower class the network thinks it is
15
       print(f'\{i+1\}.) \ \{str(y_val)\} \ \ \{y\_test[i]\}: \{x\} \ \ \ \{y\_val.argmax().item()\}')
16
```

```
17
     # Correct or not
     if y_val.argmax().item() == y_test[i]:
18
19
       correct += 1
20
21 print(f'We get {correct!')
    1.) tensor([-7.1455, 3.8413, 8.9871])
                                                      2:Virginica
                                                                     2
    2.) tensor([-9.9048, 1.6718, 16.1223])
                                                      2:Virginica
                                                                     2
    3.) tensor([-10.9332, 2.8676, 16.4577])
                                                      2:Virginica
                                                                     2
    4.) tensor([-3.9721, 7.8497, -1.0292])
                                                      1:Versicolor
                                                                     1
    5.) tensor([-9.0422, 3.4844, 12.5741])
                                                     2:Virginica
                                                                     2
    6.) tensor([-2.1100, 8.5816, -5.1552])
                                                     1:Versicolor
    7.) tensor([-6.9497, 4.8942, 7.4118])
                                                     2:Virginica
    8.) tensor([-3.8674, 8.0269, -1.4135])
                                                     1:Versicolor
                                                                    1
    9.) tensor([-7.9727, 4.1934, 9.9512])
                                                     2:Virginica
                                                                     2
    10.) tensor([-10.5891, 1.7318, 17.2016])
                                                                     2
                                                     2:Virginica
    11.) tensor([-6.5618, 5.0615, 6.5757])
                                                      2:Virginica
                                                                     2
    12.) tensor([ 11.6368,  1.5849, -20.5907])
                                                      0:Setosa
    13.) tensor([ 10.6881, 1.4099, -18.7038])
                                                                     0
                                                      0:Setosa
    14.) tensor([-0.4877, 6.8020, -5.8184])
                                                      1:Versicolor
                                                                     1
    15.) tensor([ 9.4158, 2.5891, -17.9623])
                                                      0:Setosa
                                                                     0
    16.) tensor([-6.0888, 5.6836, 5.0628])
                                                      2:Virginica
                                                                     1
    17.) tensor([ 10.4663, 1.7461, -18.7670])
                                                      0:Setosa
    18.) tensor([-6.9453, 4.2227, 8.2130])
                                                      1:Versicolor
    19.) tensor([ 12.4135, 1.1981, -21.4224])
                                                     0:Setosa
                            2.1077, -16.6591])
    20.) tensor([ 9.0034,
                                                      0:Setosa
    21.) tensor([-1.1123, 7.4944, -5.5712])
                                                      1:Versicolor
                                                                     1
    22.) tensor([-10.0344, 2.6442, 15.2228])
                                                      2:Virginica
                                                                     2
    23.) tensor([ 9.5920, 2.4860, -18.1442])
                                                      0:Setosa
    24.) tensor([ 11.3869,
                             1.3970, -19.9024])
                                                      0:Setosa
                                                                     0
    25.) tensor([-1.0643, 7.7232, -5.9343])
                                                      1:Versicolor
                                                                    1
    26.) tensor([-2.0369, 8.2982, -4.9376])
                                                     1:Versicolor
                                                                    1
    27.) tensor([-4.3994, 7.8715, -0.3420])
                                                     1:Versicolor
                                                                    1
    28.) tensor([-1.5124, 7.9307, -5.4029])
                                                     1:Versicolor
                                                                    1
    0:Setosa
    30.) tensor([-4.4544, 7.2546, 0.4784])
                                                                    1
                                                      1:Versicolor
    We get 28 correct!
1 # New data point
2 new_iris = torch.tensor([4.7, 3.2, 1.3, 0.2])
1 #, Add point to iris
2 with torch.no_grad():
3 print(model(new_iris))
    tensor([ 11.3869,
                      1.3970, -19.9024])
1 # New data pint with a 2 in the veriety column (last row of the original iris dataset)
2 newer_iris = torch.tensor([5.9, 3.0, 5.1, 1.8])
1 #, Add point to iris
2 with torch.no_grad():
3 print(model(newer_iris))
```

1

8 of 8