

Relazione di laboratorio del corso di Sperimentazione nei Propulsori

AA 2023-2024

Autore	Codice Persona	Matricola	Indirizzo Email
Andrea Bassi	10665754	220534	andrea13.bassi@mail.polimi.it

Professore: Giulio Angelo Guido Solero

Abstract

Questo documento raccoglie i report delle varie attività laboratoriali svolte nell'ambito del corso di Sperimentazione nei Propulsori. Per ciascuna attività è presentata una sintesi di richieste, metodi risolutivi e risultati criticamente valutati.

Contents

\mathbf{A}	bstract	1
\mathbf{Li}	st of Tables	3
\mathbf{Li}	st of Figures	4
El	enco dei simboli	5
1	Misure di temperatura mediante termocoppia 1.1 Risoluzione	7
2	Stima dell'errore sistematico	11
3	Misura di portata mediante diaframma	12
4	Perdite per irraggiamento	13
5	Misure al banco prova	14

List of Tables

1.1	Valori estremi di temperatura
	Risultati relativi alla serie corta
1.3	Risultati relativi alla serie lunga

List of Figures

1.1	Istogrammi delle due serie	 	7
1.2	Frequenze relative delle diverse classi	 	6
1.3	Frequenze cumulate normalizzate per entrambe le serie	 	10

Lista dei simboli

Variabile	Descrizione	Unità
\overline{F}	Frequenza cumulata normalizzata	_
f	Frequenza relativa	_
T	Temperatura	$^{ m o}{ m C}$

1 Misure di temperatura mediante termocoppia

Dati e richieste Vengono fornite due serie di misure di temperatura allo scarico di una camera di combustione, eseguite mediante termocoppia di tipo B. La prima è costituita da 1599 valori ("Serie corta"), la seconda da 9999 ("Serie lunga"). Entrambe le serie sono campionate con una frequenza di campionamento di 100 Hz e vengono fornite mediante file testuale (.txt). Si chiede di svolgere l'analisi statistica dei dati.

1.1 Risoluzione

Si riportano i risultati emersi dall'elaborazione dei dati sperimentali. I calcoli sono stati svolti mediante il software *Matlab* e le funzioni built-in.

Suddivisione in classi e istogramma Entrambe le serie sono divise in 10 classi, di uguale ampiezza, costruite affinché non ci possa essere ambiguità nell'attribuzione dei valori: poiché le misure hanno 6 cifre decimali, gli estremi di classe sono definiti con 7 cifre decimali. L'estremo della prima classe viene scelto come il minimo valore di a cui viene sottratto 0.5e-7 °C. Analogamente, l'estremo superiore dell'ultima classe viene calcolato sommando la stessa quantità al massimo valore di nella serie. I valori estremi delle due serie sono mostrati in Tab.1.1, riportati integralmente per mettere in evidenza il numero di cifre decimali.

Serie	T _{min} [°C]	T _{max} [°C]
Corta	953.745910	1193.110960
Lunga	931.352290	1449.917970

Table 1.1: Valori estremi di temperatura

Gli istogrammi relativi alle due serie sono mostrati in Fig.1.1.

Figure 1.1: Istogrammi delle due serie

Si osserva come entrambe le distribuzioni di dati siano simili alla distribuzione gaussiana, mostrando tuttavia una evidente asimmetria. Quest'ultima è quantificabile dal coefficiente di skewness, riportato in Tab.

Calcolo delle frequenze relative e cumulate Successivamente vengono riportate in Tab.1.2 e Tab.1.3 le classi, il numero di valori in ciascuna di esse, le frequenze relative () e frequenze cumulate normalizzate().

Classe	Estremi	Occorrenze
1	43535 s74747	
2	43535 s74747	
3	43535 s74747	
4	43535 s74747	
5	43535 s74747	
6	43535 s74747	
7	43535 s74747	
8	43535 s74747	
9	43535 s74747	
10	43535 s74747	

Table 1.2: Risultati relativi alla serie corta

Figure 1.2: Frequenze relative delle diverse classi

Classe	Estremi	Occorrenze
1	43535 s74747	
2	43535 s74747	
3	43535 s74747	
4	43535 s74747	
5	43535 s74747	
6	43535 s74747	
7	43535 s74747	
8	43535 s74747	
9	43535 s74747	
10	43535 s74747	

Table 1.3: Risultati relativi alla serie lunga

Figure 1.3: Frequenze cumulate normalizzate per entrambe le serie

2 Stima dell'errore sistematico

3 Misura di portata mediante diaframma

4 Perdite per irraggiamento

5 Misure al banco prova