

## To Bet or Not To Bet: The Modified Kelly Criterion

Dani Chu, Yifan Wu & Tim B. Swartz







## **Sports Gambling**

Point Spread:

Golden State Warriors + 6.5 1.909

Sacramento Kings - 6.5 1.909

Over/Under:

Capitals vs Penguins Over 5.5 goals 1.90

Capitals vs Penguins Under 5.5 goals 1.90

Other Props:

Belichick Hoodie Colour Blue 1.92

Belichick Hoodie Colour Grey 1.92





## **Profitable Systems**

- A gambling system (often found in sports) is profitable with
  - Wager of size \$x
  - System win probability p
  - Peturn of  $x \cdot \theta$  on a win and 0 on a loss

lf

$$(-x)(1-p) + (x\theta - x)p > 0 \to p > 1/\theta$$





## **The Kelly Criterion**

► The Kelly criterion (Kelly 1956) provides a gambler an optimal fraction of a bankroll for wagering given probability p of winning a bet.

$$k(p) = \begin{cases} \frac{p\theta - 1}{\theta - 1} & p > 1/\theta \\ 0 & p \le 1/\theta \end{cases}$$

- Problem: Experienced gamblers claim k(p) is too large
- Reason: p is not known and often overestimated with data
- ► The Fix: Model the unknown parameter p and estimate the unknown k(p) with the estimator f = f(x)





#### **Modified Kelly Criterion**

- To assess the quality of f we use  $l_i(f, p)$  as loss function i
- Use a Bayes estimator f which minimizes the Bayes risk
  - Will minimize expected posterior loss

$$G(f) = \int_0^1 l_0(f, p) \pi(p \mid x) dp$$

- Posterior distribution of p is defined by
  - historical data x ~ Binomial(n, p) from historical win/loss data
  - ▷ prior distribution p | ~ Beta(a, b)
- ► For different loss functions (see poster) we get different f
  - Can be solved for directly or by estimating the integral through computation





#### In Practice

- Find a Winning Gambling System
  - Professor MJ's push-back phenomenon in NBA playoff games point spread system with 271/484 = 0.56 win rate.
- ▶ Define Beta distribution with a and b:
  - ▷ a = b = 50
    - Centered at 0.5, and ~ 95% of the prior probability in the interval (0.4, 0.6)
- Choose loss function:
  - $I_{3b}(f, p) = (I_{f > k(p)} + 2) |f k(p)|^{1.5}$  lies halfway between absolute error loss and squared error loss. Penalty of overestimation is 1.5 times worse than underestimation
- Starting with an \$1000 bankroll would have produced a final bankroll of
  - Original Kelly: \$668.34, using 7.6% of initial bankroll for each bet
  - ▶ Modified Kelly: \$794.89, using 4.7% of initial bankroll for each bet





#### **In Simulation**







#### **THANKS!**

# Any Questions?

Please find me at the E-Poster Session, Poster 11! Or see our paper in **JQAS**!

| Dani Chu             | Yifan (Lucas) Wu | Tim B. Swartz            |
|----------------------|------------------|--------------------------|
| dani_chu@sfu.ca      | yifan_wu@sfu.ca  | tim@stat.sfu.ca          |
| @chuurveg            |                  | people.stat.sfu.ca/~tim/ |
| danichusfu.github.io |                  |                          |

Are you a student interested in Sports Analytics?
Enjoy Vancouver and want to come back on September 22nd?
Check out the Vancouver Whitecaps Datathon at <a href="https://www.VanSASH.com">www.VanSASH.com</a>!

