	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

df['target'] = iris.target
df.head()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

df[df.target==1].head()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
50	7.0	3.2	4.7	1.4	1
51	6.4	3.2	4.5	1.5	1
52	6.9	3.1	4.9	1.5	1
53	5.5	2.3	4.0	1.3	1
54	6.5	2.8	4.6	1.5	1

df[df.target==2].head()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
100	6.3	3.3	6.0	2.5	2
101	5.8	2.7	5.1	1.9	2
102	7.1	3.0	5.9	2.1	2
103	6.3	2.9	5.6	1.8	2
104	6.5	3.0	5.8	2.2	2

df['flower_name'] =df.target.apply(lambda x: iris.target_names[x])
df.head()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target fl
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

df[45:55]

	sepal	length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target f
	45	4.8	3.0	1.4	0.3	0
	46	5.1	3.8	1.6	0.2	0
	47	4.6	3.2	1.4	0.2	0
df1 =	#9 df[:50] df[50:100] df[100:]	5.2	2 7	1 5	N 2	n
		···	~ ·-			-

import matplotlib.pyplot as plt
%matplotlib inline

```
plt.xlabel('Sepal Length')
plt.ylabel('Sepal Width')
plt.scatter(df0['sepal length (cm)'], df0['sepal width (cm)'],color="green",marker='+')
plt.scatter(df1['sepal length (cm)'], df1['sepal width (cm)'],color="blue",marker='.')
```

<matplotlib.collections.PathCollection at 0x7f9b03ed1550>


```
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.scatter(df0['petal length (cm)'], df0['petal width (cm)'],color="green",marker='+')
plt.scatter(df1['petal length (cm)'], df1['petal width (cm)'],color="blue",marker='.')
```

```
<matplotlib.collections.PathCollection at 0x7f9b03ec5850>
        1.75
        1.50
        1.25
      tal Width
        1.00
from sklearn.model_selection import train_test_split
X = df.drop(['target','flower_name'], axis='columns')
y = df.target
                              Petal Length
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
len(X_train)
     120
len(X_test)
     30
from sklearn.svm import SVC
model = SVC()
model.fit(X_train, y_train)
     SVC(C=1.0, break ties=False, cache size=200, class weight=None, coef0=0.0,
         decision_function_shape='ovr', degree=3, gamma='scale', kernel='rbf',
         max_iter=-1, probability=False, random_state=None, shrinking=True,
         tol=0.001, verbose=False)
model.score(X test, y test)
     0.9
model.predict([[4.8,3.0,1.5,0.3]])
     array([0])
model C = SVC(C=1)
model ( fit/Y train v train)
```

```
mouct_c.itc(\land\_ciatii) y_ciatii)
model_C.score(X_test, y_test)
     0.9
model C = SVC(C=10)
model_C.fit(X_train, y_train)
model_C.score(X_test, y_test)
     0.9
model g = SVC(gamma=10)
model_g.fit(X_train, y_train)
model_g.score(X_test, y_test)
     0.933333333333333
model_linear_kernal = SVC(kernel='linear')
model_linear_kernal.fit(X_train, y_train)
     SVC(C=1.0, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
         decision_function_shape='ovr', degree=3, gamma='scale', kernel='linear',
         max_iter=-1, probability=False, random_state=None, shrinking=True,
         tol=0.001, verbose=False)
model_linear_kernal.score(X_test, y_test)
     0.966666666666667
```

✓ 0s completed at 19:04

×