NETWORKS AND COMPLEXITY

Exercise Sheet 20: Motifs

This is an exercise sheet from the forthcoming book Networks and Complexity. Find more exercises and solutions at https://github.com/NC-Book/NCB

Ex 20.1: Symmetry [2]

Find at least 5 eigenvalues of the adjacency matrix of the following network:

Ex 20.2: Eigenvector in a Branch [2]

Suppose the adjacency matrix of the following network has an eigenvalue λ with the corresponding eigenvector \boldsymbol{v} :

- a) Consider the eigenvector v_1 and v_2 element of \boldsymbol{v} that correspond to node 1 and 2, respectively. Express v_2 as a function of v_1 and λ .
- b) Also express v_2 , v_3 and v_4 as functions of λ and v_1 .
- c) For which values of λ would v_1 and v_3 have the same sign.

Ex 20.3: Exploitative Competition [3]

We consider two species of predators, X_1 , X_2 , and a resource R, which are part of much larger ecological food web. The dynamics of the three variables are described by the differential equations

$$\dot{X}_1 = g_1(R)X_1 - m_1X_1
\dot{X}_2 = g_2(R)X_2 - m_2X_2
\dot{R} = s(R) - g_1(R)X_1 - g_2(R)X_2 + \dots$$

where g_1 , g_2 and s are arbitrary functions, m_1 and m_2 are arbitrary mortality rates for the two predator species and '...' represents further terms that connect R to other variables of a large dynamical system.

- a) Formally compute the 3×3 -block of the Jacobian that describes the interaction between X_1 , X_2 , and R. Use the stationarity condition for X_1 and X_2 to simplify your matrix.
- b) Show that in any large ODE system that contains the exploitative competition motif studied here, one eigenvalue of the Jacobian for the entire system will be zero.

Ex 20.4: Reactivity [4]

Reactivity was introduced by Neubert and Caswell in 1997 to measure the initial response of a dynamical system to perturbations. Specifically, reactivity is defined as the initial amplification of a perturbation by the dynamics. In this exercise we will re-derive reactivity, interpret it as a bespoke centrality for a given question and also discuss its role in motifs.

a) We are interested in the relative rate of growth a of the size of small perturbation $\boldsymbol{\delta}$ to a steady state, that is

$$a = \frac{1}{|\boldsymbol{\delta}|} \frac{\mathrm{d}}{\mathrm{d}t} |\boldsymbol{\delta}|$$

Recall that $|\boldsymbol{\delta}| = \sqrt{\boldsymbol{\delta}^{\mathrm{T}} \boldsymbol{\delta}}$, and $\dot{\boldsymbol{\delta}} = \mathbf{J} \boldsymbol{\delta}$. Then show

$$a = \frac{\boldsymbol{\delta}^{\mathrm{T}} \mathbf{H} \boldsymbol{\delta}}{\boldsymbol{\delta}^{\mathrm{T}} \boldsymbol{\delta}},$$

where $\mathbf{H} = (\mathbf{J} + \mathbf{J}^{\mathrm{T}})/2$ is the symmetric part of the Jacobian.

b) Consider the predator prey system

$$\dot{X} = X - XY/(3+X)$$

$$\dot{Y} = 2XY/(3+X) - Y.$$

Compute J and H in the nontrivial steady state.

- c) We define the reactivity of the system as the largest amplification a that can be observed in response to any small perturbation. Because **H** is a symmetric (hermitian) matrix, it's eigenvectors are orthogonal. Hence they can be normalized such that $\mathbf{v_n}^T \mathbf{v_m} = \delta_{nm}$, where δ is the Kronecker delta. Use this to show that the maximal value of a is observed when the perturbation is in the direction of the eigenvector of \mathbf{v} with the largest eigenvalue.
- d) A system is said to be reactive if it has positive reactivity, a > 0. Is our predator-prey system from above reactive. Furthermore, would a system with the following Jacobian be reactive:

$$\mathbf{J} = \left(\begin{array}{cc} -8 & -8 \\ 2 & 0 \end{array} \right).$$

e) The reactivity of a system is at least as large as the reactivity found in any motif within the system. Explain why.