Hierarchical Classification (Internet Memory)

A look into the nature of train and test data

Presented: M. Naeem

Feature Engineering

 Generate some new attributes out of existing attributes in order to increase the predictabillity

description

NLP Transormation

Input: text attribute

Output: variable number

of numerical

attributes

Description.1	Description.2	Description.3	Description.4	Description.5
0.00004564	0.0004784	0.0083694	0.00144564	0.000012364
				•

label

NLP Transormation

Input: text attribute

Output: variable number

of numerical

attributes

Description.1	Description.2	Description.3	Description.4	Description.5
0.00004564	0.0004784	0.0083694	0.00144564	0.000012364
•				•
•				•

Train Data after data engineering

	marque	discount	prix	description.1		description.n	label.1		label.n
A STANTANTANTANTANTANTANTANTANTANTANTANTANT									
QL									
					ı				
Stage 2 Top lev Classif	/el			Stage 2 Intermediate			Stage	3 om level	

Stage 1
Top level
Classification

Stage 2
Intermediate
Level

categorie.2

Stage 3
Bottom level
Classification

categorie.3

Stage 1 (Prediction of Categorie 1)

 Classical approach of learning data and then predicting the labels of categorie 1

 Subset the train data and test data given the categories in the outcome predicted labels

Stage 2 (Prediction of Categorie 2)

 Learn each of the subsetted train data and then predict the labels of corresponding test data

 At the end of round of learning/prediction of all sets of train data, all predicted outcome are ensembled in one attribute

Again subset the train data and test data given the categories
 1 and 2 in the outcome predicted labels

Constant attribute will not take part in learning phase

Stage 3 (Prediction of Categorie 3)

 We shall subset the train data as per outcome of categorie1 and catetorie2 of test data

 Repeat the same process doing 'x' number of learning in DNN classifier

End