발표자: 박정은

CNN?

https://kr.mathworks.com/solutions/deep-learning/convolutional-neural-network.html

모델이 직접 이미지, 비디오, 텍스트 또는 사운드를 분류하는 머신 러닝의 한 유형인 <u>딥러닝</u>에 가장 많이 사용되는 알고리즘. -이미지에서 객체, 얼굴, 장면을 인식하기 위해 패턴을 찾는 데 특히 유용. -데이터에서 직접 학습하며, 패턴을 사용하여 이미지를 분류하고 특징을 수동으로 추출할 필요가 없음.

- •CNN은 특징을 직접 학습하기 때문에 특징을 수동으로 추출해야 할 필요가 없다.
- •기존 네트워크를 바탕으로 한 새로운 인식 작업을 위해 CNN을 재 학습하여 사용하는 것이 가능하다.

CNN의 작동

- 각 layer에서 각각 서로 다른 이미지의 특징을 감지

-필터는 각 학습 이미지에 서로 다른 해상도로 적용. -출력은 다음 layer의 입력으로 활용. -단순한 특징에서 시작하여 객체만의 고유한 특징으로 더 복잡하게 발전.

Θ

합성곱 신경망 CNN

Layers

Conv2D

각 이미지에서 특정 특징을 활성화하는 컨벌루션 필터 집합에 입력 이미지를 통과시킴.

ReLU(Rectified Linear Unit)

음수 값을 0에 매핑하고 양수 값을 유지. 이때 활성화된 특징만 다음 계층으로 전달됨.

MaxPooling2D

비선형 다운 샘플링을 수행 네트워크에서 학습해야 하는 매개 변수 수를 줄여서 출력을 간소화.

https://kr.mathworks.com/solutions/deep-learning/convolutional-neural-network.html

MNIST 숫자 분류 예제

https://colab.research.google.com/github/tensorflow/docs/blob/master/site/ko/tutorials/images/cnn.ipynb?hl=ko#scrollTo=iAve6DCL4JH4

https://colab.research.google.com/drive/14H7W5QqqJi 6J3fpeCSW8Xpg6JbdWT81J#scrollTo=Pocse1SbNn7l

이미지 분류

https://colab.research.google.com/drive/1TdZd0vA_KjMMtWPSM04FUvvkxnk3cbkh#scrollTo=cQsffvaORjHC

과대 적합

너무 적은 훈련 데이터

데이터 증식

horizontal flip

Randomly Rotate

zoom augmentation

Dropout

네트워크 일부를 생략 ->

Regularization 효과 네트워크의 가중치가 서로 동조화 되는 현상을 피한다.

(a) Standard Neural Net

(b) After applying dropout.