SCTLR_EL3, System Control Register (EL3)

The SCTLR EL3 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL3.

Configuration

This register is present only when EL3 is implemented. Otherwise, direct accesses to SCTLR EL3 are undefined.

Attributes

SCTLR EL3 is a 64-bit register.

Field descriptions

63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47 46	45	44
RES0	SPINTMASK	NMI	RES0	TCSO			RES0			TME	RES0	TMT			RESC)		DSS
EnIA	EnIB	RI	ES1	EnDA	RES0	EE	RES0	RES1	LEIS	IESB	RES0	WXN	RES1	RES0	RES1	RES0	EnDB	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15 14	13	12

Bit [63]

Reserved, res0.

SPINTMASK, bit [62] When FEAT NMI is implemented:

SP Interrupt Mask enable. When SCTLR_EL3.NMI is 1, controls whether PSTATE.SP acts as an interrupt mask, and controls the value of PSTATE.ALLINT on taking an exception to EL3.

SPINTMASK	Meaning
0d0	Does not cause PSTATE.SP to mask interrupts. PSTATE.ALLINT is set to 1 on taking an exception to EL3.

0b1	When PSTATE.SP is 1 and execution is at EL3, an IRQ or FIQ interrupt that is targeted to EL3 is masked regardless of any denotion of Superpriority. PSTATE.ALLINT is set to 0 on taking an exception
	to EL3.

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

NMI, bit [61] When FEAT_NMI is implemented:

Non-maskable Interrupt enable.

	3.6 ·			
NMI_	Meaning			
0b0	This control does not affect			
	interrupt masking behavior.			
0b1	This control enables all of the			
	following:			
	 The use of the PSTATE.ALLINT interrupt mask. IRQ and FIQ interrupts to have Superpriority as an additional attribute. PSTATE.SP to be used as an interrupt mask. 			

The reset behavior of this field is:

ullet On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Bit [60]

Reserved, res0.

TCSO, bit [59] When FEAT_MTE_STORE_ONLY is implemented:

Tag Checking Store Only.

TCSO	Meaning
0b0	This field has no effect on Tag
	checking.
0b1	Load instructions executed in EL3 are Tag Unchecked.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bits [58:54]

Reserved, res0.

TME, bit [53] When FEAT TME is implemented:

Enables the Transactional Memory Extension at EL3.

TME	Meaning
0b0	Any attempt to execute a TSTART
	instruction at EL3 is trapped,
	unless <u>HCR_EL2</u> .TME or
	SCR_EL3.TME causes TSTART
	instructions to be undefined at
	EL3.
0b1	This control does not cause any TSTART instruction to be trapped.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally unknown value.

Reserved, res0.

Bit [52]

Reserved, res0.

TMT, bit [51] When FEAT TME is implemented:

Forces a trivial implementation of the Transactional Memory Extension at EL3.

TMT	Meaning
0b0	This control does not cause any
	TSTART instruction to fail.
0b1	When the TSTART instruction is
	executed at EL3, the transaction
	fails with a TRIVIAL failure cause.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bits [50:45]

Reserved, res0.

DSSBS, bit [44] When FEAT_SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry.

DSSBS	Meaning
0b0	PSTATE.SSBS is set to 0 on an
	exception to EL3.
0b1	PSTATE.SSBS is set to 1 on an
	exception to EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an implementation defined value.

Reserved, res0.

ATA, bit [43] When FEAT_MTE2 is implemented:

Allocation Tag Access in EL3.

Controls access to Allocation Tags and Tag Check operations in EL3.

ATA	Meaning
0b0	Access to Allocation Tags is prevented at EL3. Memory accesses at EL3 are not subject to a Tag Check operation.
0b1	This control does not prevent access to Allocation Tags at EL3. Tag Checked memory accesses at EL3 are subject to a Tag Check operation. The Tag Check operation depends on the type of tag at the memory being accessed:
	 For Allocation Tagged memory, an Allocation Tag Check operation. If <pre>FEAT_MTE_CANONICAL_TAGS is implemented, for Canonically Tagged memory, a Canonical Tag Check operation.</pre>

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bit [42]

TCF, bits [41:40] When FEAT MTE2 is implemented:

Tag Check Fault in EL3. Controls the effect of Tag Check Faults due to Loads and Stores in EL3.

If FEAT MTE3 is not implemented, the value 0b11 is reserved.

TCF	Meaning	Applies when
0b00	Tag Check Faults have no effect on the PE.	
0b01	Tag Check Faults cause a synchronous exception.	
0b10	Tag Check Faults are asynchronously accumulated.	
0b11	Tag Check Faults cause a synchronous exception on reads, and are asynchronously accumulated on writes.	When FEAT_MTE3 is implemented

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bits [39:38]

ITFSB, bit [37] When FEAT MTE2 is implemented:

When synchronous exceptions are not being generated by Tag Check Faults, this field controls whether on exception entry into EL3, all Tag Check Faults due to instructions executed before exception entry, that are reported asynchronously, are synchronized into TFSREO EL1 and TFSR ELx registers.

ITFSB	Meaning
0b0	Tag Check Faults are not
	synchronized on entry to EL3.
0b1	Tag Check Faults are
	synchronized on entry to EL3.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

BT, bit [36] When FEAT BTI is implemented:

PAC Branch Type compatibility at EL3.

BT	Meaning
0b0	When the PE is executing at EL3, PACIASP and PACIBSP are compatible with PSTATE.BTYPE == 0b11.
0b1	When the PE is executing at EL3, PACIASP and PACIBSP are not compatible with PSTATE.BTYPE == 0b11.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally unknown value.

Otherwise:

Bits [35:32]

Reserved, res0.

EnIA, bit [31] When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL3 translation regime.

Possible values of this bit are:

EnIA	Meaning
0b0	Pointer authentication (using the
	APIAKey_EL1 key) of instruction
	addresses is not enabled.
0b1	Pointer authentication (using the
	APIAKey_EL1 key) of instruction
	addresses is enabled.

For more information, see 'System register control of pointer authentication'.

Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode functions. Specifically, when the field is 1, AddPACIA returns a copy of a pointer to which a pointer authentication code has been added, and AuthIA returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EnIB, bit [30] When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL3 translation regime.

Possible values of this bit are:

EnIB	Meaning
0b0	Pointer authentication (using the
	APIBKey_EL1 key) of instruction
	addresses is not enabled.
0b1	Pointer authentication (using the
	APIBKey_EL1 key) of instruction
	addresses is enabled.

For more information, see 'System register control of pointer authentication'.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode functions. Specifically, when the field is 1, AddPACIB returns a copy of a pointer to which a pointer authentication code has been added, and AuthIB returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bits [29:28]

Reserved, res1.

EnDA, bit [27] When FEAT PAuth is implemented:

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL3 translation regime.

EnDA	Meaning
060	Pointer authentication (using the APDAKey_EL1 key) of data addresses is not enabled.
0b1	Pointer authentication (using the APDAKey_EL1 key) of data addresses is enabled.

For more information, see 'System register control of pointer authentication'.

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode functions. Specifically, when the field is 1, AddPACDA returns a copy of a pointer to which a pointer authentication code has been added, and AuthDA returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bit [26]

Reserved, res0.

EE, bit [25]

Endianness of data accesses at EL3, and stage 1 translation table walks in the EL3 translation regime.

EE	Meaning
0b0	Explicit data accesses at EL3, and
	stage 1 translation table walks in
	the EL3 translation regime are
	little-endian.
0b1	Explicit data accesses at EL3, and
	stage 1 translation table walks in
	the EL3 translation regime are big-
	endian.

If an implementation does not provide Big-endian support at Exception levels higher than ELO, this bit is res0.

If an implementation does not provide Little-endian support at Exception levels higher than ELO, this bit is res1.

The EE bit is permitted to be cached in a TLB.

• On a Warm reset, this field resets to an implementation defined value.

Bit [24]

Reserved, res0.

Bit [23]

Reserved, res1.

EIS, bit [22] When FEAT ExS is implemented:

Exception Entry is Context Synchronizing.

EIS	Meaning
0b0	The taking of an exception to EL3
	is not a context synchronizing
	event.
0b1	The taking of an exception to EL3
	is a context synchronizing event.

If SCTLR EL3.EIS is set to 0b0:

- Indirect writes to <u>ESR_EL3</u>, <u>FAR_EL3</u>, <u>SPSR_EL3</u>, <u>ELR_EL3</u> are synchronized on exception entry to EL3, so that a direct read of the register after exception entry sees the indirectly written value caused by the exception entry.
- Memory transactions, including instruction fetches, from an Exception level always use the translation resources associated with that translation regime.
- Exception Catch debug events are synchronous debug events.
- DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL3.EIS:

- Changes to the PSTATE information on entry to EL3.
- Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores and data processing instructions.
- Debug state exit.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally unknown value.

Reserved, res1.

IESB, bit [21] When FEAT_IESB is implemented:

Implicit Error Synchronization event enable.

IESB	Meaning
0b0	Disabled.
0b1	An implicit error synchronization event is added:
	 At each exception taken to EL3. Before the operational pseudocode of each ERET instruction executed at EL3.

When the PE is in Debug state, the effect of this field is constrained unpredictable, and its Effective value might be 0 or 1 regardless of the value of the field and, if implemented, <u>SCR_EL3.NMEA</u>. If the Effective value of the field is 1, then an implicit error synchronization event is added after each DCPSX instruction taken to EL3 and before each DRPS instruction executed at EL3, in addition to the other cases where it is added.

When FEAT_DoubleFault is implemented, the PE is in Non-debug state, and the Effective value of <u>SCR_EL3</u>.NMEA is 1, this field is ignored and its Effective value is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bit [20]

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL3 translation regime, this bit can force all memory regions that are writable to be treated as XN.

WXN	Meaning
0b0	This control has no effect on
	memory access permissions.
0b1	Any region that is writable in the
	EL3 translation regime is forced
	to XN for accesses from software
	executing at EL3.

This bit applies only when SCTLR EL3.M bit is set.

The WXN bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally unknown value.

Bit [18]

Reserved, res1.

Bit [17]

Reserved, res0.

Bit [16]

Reserved, res1.

Bits [15:14]

Reserved, res0.

EnDB, bit [13]

When FEAT PAuth is implemented:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL3 translation regime.

EnDB	Meaning
0d0	Pointer authentication (using the APDBKey EL1 key) of data
	addresses is not enabled.

0b1	Pointer authentication (using the
	APDBKey EL1 key) of data
	addresses is enabled

For more information, see 'System register control of pointer authentication'.

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode functions. Specifically, when the field is 1, AddPACDB returns a copy of a pointer to which a pointer authentication code has been added, and AuthDB returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL3:

I	Meaning
0b0	All instruction access to Normal
	memory from EL3 are Non-
	cacheable for all levels of
	instruction and unified cache.
	If the value of SCTLR EL3.M is 0,
	instruction accesses from stage 1
	of the EL3 translation regime are
	to Normal, Outer Shareable, Inner
	Non-cacheable, Outer Non-
	cacheable memory.

0b1	This control has no effect on the
	Cacheability of instruction access
	to Normal memory from EL3.
	If the value of SCTLR EL3.M is 0,
	instruction accesses from stage 1
	of the EL3 translation regime are
	to Normal, Outer Shareable, Inner
	Write-Through, Outer Write-
	Through memory.

This bit has no effect on the EL1&0, EL2, or EL2&0 translation regimes.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

EOS, bit [11] When FEAT ExS is implemented:

Exception Exit is Context Synchronizing.

EOS	Meaning
0b0	An exception return from EL3 is
	not a context synchronizing event
0b1	An exception return from EL3 is a
	context synchronizing event

If SCTLR EL3.EOS is set to 0b0:

- Memory transactions, including instruction fetches, from an Exception level always use the translation resources associated with that translation regime.
- Exception Catch debug events are synchronous debug events.
- DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR EL3.EOS:

- The indirect write of the PSTATE and PC values from SPSR_EL3 and ELR EL3 on exception return is synchronized.
- If the PE enters Debug state before the first instruction after an Exception return from EL3 to Non-secure state, any pending Halting debug event completes execution.
- The GIC behavior that allocates interrupts to FIQ or IRQ changes simultaneously with leaving the EL3 Exception level.
- Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores and data processing instructions.
- Exit from Debug state.

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res1.

Bits [10:7]

Reserved, res0.

nAA, bit [6] When FEAT LSE2 is implemented:

Non-aligned access. This bit controls generation of Alignment faults at EL3 under certain conditions. The following instructions generate an Alignment fault if all bytes being accessed are not within a single 16-byte quantity, aligned to 16 bytes for access:

- LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR, LDLARH.
- STLLR, STLLRH, STLR, STLRH, STLUR, and STLURH

If FEAT_LRCPC3 is implemented, the following instructions generate an Alignment fault if all bytes being accessed for a single register are not within a single 16-byte quantity, aligned to 16 bytes for access:

- LDIAPP, STILP, the post index versions of LDAPR and the pre index versions of STLR.
- If Advanced SIMD and floating-point instructions are implemented, LDAPUR (SIMD&FP), LDAP1 (SIMD&FP), STLUR (SIMD&FP), and STL1 (SIMD&FP).

nAA	Meaning
0b0	Unaligned accesses by the
	specified instructions generate an
	Alignment fault.
0b1	Unaligned accesses by the
	specified instructions do not
	generate an Alignment fault.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally unknown value.

Reserved, res0.

Bits [5:4]

Reserved, res1.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL3 uses the SP as the base address and the SP is not aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more information, see 'SP alignment checking'.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally unknown value.

C, bit [2]

Cacheability control, for data accesses.

С	Meaning
0b0	All data access to Normal memory from EL3, and all Normal memory accesses to the EL3 translation
	tables, are Non-cacheable for all levels of data and unified cache.
0b1	This control has no effect on the Cacheability of:
	 Data access to Normal memory from EL3. Normal memory accesses to the EL3 translation tables.

This bit has no effect on the EL1&0, EL2, or EL2&0 translation regimes.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL3.

	3.5
<u>A</u>	Meaning
0b0	Alignment fault checking disabled when executing at EL3.
	Instructions that load or store one
	or more registers, other than load/
	store exclusive and load-acquire/
	store-release, do not check that the
	address being accessed is aligned
	to the size of the data element(s)
	being accessed.
0b1	Alignment fault checking enabled
	when executing at EL3.
	All instructions that load or store
	one or more registers have an
	alignment check that the address
	being accessed is aligned to the
	size of the data element(s) being
	accessed. If this check fails it
	causes an Alignment fault, which is
	taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of the A bit.

If FEAT_MOPS is implemented, SETG* instructions have an alignment check regardless of the value of the A bit.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally unknown value.

M, bit [0]

MMU enable for EL3 stage 1 address translation. Possible values of this bit are:

M	Meaning
0b0	EL3 stage 1 address translation
	disabled.
	See the SCTLR EL3.I field for the
	behavior of instruction accesses to
	Normal memory.
0b1	EL3 stage 1 address translation
	enabled.

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Accessing SCTLR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCTLR_EL3

op0	op1	CRn	CRm	op2
0b11	0b110	0b0001	0b0000	0b000

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    X[t, 64] = SCTLR_EL3;
```

MSR SCTLR EL3, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b110	0b0001	0b0000	0b000

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    SCTLR_EL3 = X[t, 64];
```

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright \hat{A} © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.