Advanced probabilistic methods

Lecture 5: Expectation maximization

Pekka Marttinen

Aalto University

February, 2023

Lecture 5 overview

- Gaussian mixture models (GMMs), recap
- EM algorithm
- EM for Gaussian mixture models
- Suggested reading: Bishop: Pattern Recognition and Machine Learning
 - p. 110-113 (2.3.9): Mixtures of Gaussians
 - simple_example.pdf
 - p. 430-443: EM for Gaussian mixtures

GMMs, latent variable representation

• Introduce **latent variables** $\mathbf{z}_n = (z_{n1}, \dots, z_{nK})$ which spcifies the component k of observation \mathbf{x}_n

$$\mathbf{z}_n = (0, \dots, 0, \underbrace{1}_{k^{th} \text{ elem.}}, 0, \dots, 0)^T$$

Define

$$p(\mathbf{z}_n) = \prod_{k=1}^K \pi_k^{z_{nk}}$$
 and $p(\mathbf{x}_n|\mathbf{z}_n) = \prod_{k=1}^K N(\mathbf{x}_n|\mu_k, \Sigma_k)^{z_{nk}}$

Then the marginal distribution $p(\mathbf{x}_n)$ is a GMM:

$$p(\mathbf{x}_n) = \sum_{k=1}^K \pi_k N(\mathbf{x}_n | \mu_k, \Sigma_k)$$

GMM: responsibilities, complete data

• Posterior probability (responsibility) $p(z_{nk} = 1 | \mathbf{x}_n)$ that observation \mathbf{x}_n was generated by component k

$$\gamma(z_{nk}) \equiv p(z_{nk} = 1 | \mathbf{x}_n) = \frac{\pi_k N(\mathbf{x}_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j N(\mathbf{x}_n | \mu_j, \Sigma_j)}$$

• Complete data: latent variables z and data x together: (x, z)

Idea of the EM algorithm (1/2)

• Let X denote the observed data, and θ model parameters. The goal in maximum likelihood is to find $\widehat{\theta}$:

$$\widehat{\theta} = \arg\max_{\theta} \left\{ \log p(X|\theta) \right\}$$

• If model contains latent variables Z, the log-likelihood is given by

$$\log p(X|\theta) = \log \left\{ \sum_{Z} p(X, Z|\theta) \right\},$$

which may be difficult to maximize analytically

• Possible solutions: 1) numerical optimization, 2) the EM algorithm (expectation-maximization)

Idea of the EM algorithm (2/2)

- X: **observed** data, Z: **unobserved** latent variables
- $\{X, Z\}$: **complete** data, X: **incomplete** data
- In EM algorithm, we assume that the complete data log-likelihood:

$$\log p(X, Z|\theta)$$

is easy to maximize.

- Problem: Z is not observed
- Solution: maximize

$$Q(\theta, \theta_0) \equiv E_{Z|X,\theta_0} [\log p(X, Z|\theta)]$$

=
$$\sum_{Z} p(Z|X, \theta_0) \log p(X, Z|\theta)$$

where $p(Z|X,\theta_0)$ is the posterior distribution of the latent variables computed using the current parameter estimate θ_0

Illustration of the EM algorithm for GMMs

EM algorithm in detail

Goal: maximize $\log p(X|\theta)$ w.r.t. θ

- Initialize θ_0
- **2 E-step** Evaluate $p(Z|X, \theta_0)$, and then compute

$$Q(\theta, \theta_0) = E_{Z|X, \theta_0} \left[\log p(X, Z|\theta) \right] = \sum_{Z} p(Z|X, \theta_0) \log p(X, Z|\theta)$$

M-step Evaluate θ^{new} using

$$\theta^{new} = \arg\max_{\theta} Q(\theta, \theta_0).$$

Set
$$\theta_0 \leftarrow \theta^{new}$$

Repeat E and M steps until convergence

Why EM works

Figure: 11.16 in Murphy (2012)

- As a function of θ , $Q(\theta, \theta_0)$ is a lower bound of the log-likelihood $\log p(x|\theta)$ (plus a constant, see Bishop, Ch. 9.4).
- EM iterates between 1) updating the lower bound (E-step), 2)
 maximizing the lower bound (M-step).

EM algorithm, comments

- In general, Z does not have to be discrete, just replace the summation in $Q(\theta, \theta_0)$ by integration.
- EM-algorithm can be used to compute the MAP (maximum a posteriori) estimate by maximizing in the M-step $Q(\theta, \theta_0) + \log p(\theta)$.
- In general, EM-algorithm is applicable when the observed data X can be **augmented** into complete data $\{X,Z\}$ such that $\log p(X,Z|\theta)$ is easy to maximize; Z does not have to be latent variables but can represent, for example, unobserved values of missing or censored observations.

EM algorithm, simple example

• Consider N independent observations $\mathbf{x} = (x_1, \dots, x_N)$ from a two-component mixture of univariate Gaussians

$$p(x_n|\theta) = \frac{1}{2}N(x_n|0,1) + \frac{1}{2}N(x_n|\theta,1).$$
 (1)

- ullet One unknown parameter, heta, the mean of the second component.
- Goal: estimate

$$\widehat{ heta} = rg \max_{ heta} \left\{ \log p(\mathbf{x}| heta)
ight\}.$$

simple_example.pdf

EM algorithm for GMMs

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k N(\mathbf{x} | \mu_k, \Sigma_k)$$

- Initialize parameter μ_k , Σ_k and mizing coefficients π_k . Repeat until convergence:
- 2 E-step: Evaluate the responsibilities using current parameter values

$$\gamma(z_{nk}) = \frac{\pi_k N(\mathbf{x}_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_k N(\mathbf{x}_n | \mu_k, \Sigma_j)}$$

M-step: Re-estimate the parameters using the current responsibilities

$$\mu_k^{new} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n$$

$$\Sigma_k^{new} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \mu_k^{new}) (\mathbf{x}_n - \mu_k^{new})^T$$

$$\pi_k^{new} = \frac{N_k}{N}$$

Derivation of the EM algorithm for GMMs

- In the **M-step** the formulas for μ_k^{new} and Σ_k^{new} are obtained by differentiating the expected complete data log-likelihood $Q(\theta,\theta_0)$ with respect to the particular parameters, and setting the derivatives to zero.
- The formula for π_k^{new} can be derived by maximizing $Q(\theta,\theta_0)$ under the constraint $\sum_{k=}^K \pi_k = 1$. This can be done using the Lagrange multipliers.

EM for GMM, caveats

- EM converges to a local optimum. In fact, the ML estimation for GMMs is not well-defined due to **singularities**: if $\sigma_k \to 0$ for components k with a single data point, likelihood goes to infinity (fig). Remedy: prior on σ_k .
- **Label-switching**: non-identifiability due to the fact that cluster labels can be switched and likelihood remains the same.
- In practice it is recommended to initialize the EM for the GMM by k-means.

GMM vs. k-means

"Why use GMMs and not just k-means?"

- Clusters can be of different sizes and shapes
- Probabilistic assignment of data items to clusters
- Possibility to include prior knowledge (structure of the model/prior distributions on the parameters)

Important points

- ML-estimation of GMMs can be done using numerical optimization or the EM algorithm.
- The main idea of the EM algorithm is to maximize the expectation of the complete data log-likelihood, where the expectation is computed with respect to the current posterior distributions (responsibilities) of the latent variables.