

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Institut Supérieur d'Informatique et des Mathématiques de Monastir Université de Monastir

Chapitre 2

Systèmes Logiques et Architecture des Ordinateurs

Dr. Safa Teboulbi

Année universitaire : 2024-2025

Annee universitaire: 2024-2025

Les Variables et les Fonctions Logiques

Les Variables Logiques

Une variable logique est une grandeur qui ne peut prendre que deux états logiques.
 Nous les symbolisons par 0 ou 1.

Exemples

Un interrupteur peut être : * Fermé (1 logique) * Ouvert (0 logique)

> Une lampe peut être : * Allumée (1 logique) * Eteinte (0 logique)

> > Une alarme peut être : * Activée (1 logique) * Désactivée (0 logique)

Les Fonctions Logiques

Une fonction logique est une variable logique dont la valeur dépend d'autres variables.

Algèbre De BOOLE

Fonctions Logiques

* C'est une <u>expression logique</u> (de valeur 0 ou 1) qui combine un ensemble de <u>variables booléennes</u> à l'aide des <u>opérateurs logiques</u> OU, ET, NON.

Une fonction logique qui prend les valeurs 0 ou 1 peut être considérée comme une variable binaire pour une <u>autre fonction logique</u>.

Les Circuits Combinatoires

Dans un système logique (les entrées et sorties ne peuvent prendre que (0) ou (1) comme valeur)
 combinatoire, les sorties ne sont fonctions que des entrées

Exemple

Soit le schéma électrique suivant

- Pour décrire le fonctionnement d'un système en cherchant l'état de la sortie pour toutes les combinaisons possibles des entrées, on utilisera « La table de verite ≥.
- La table de vérité est une toble qui décrit toutes les combinaisons des entrées et la valeur de la tonction (sortie) pour chaque entrée

Α	1
0	0
1	1

- Nombre d'états de la sortie dépend de nombre des entrées :
- Si'nombre des entrées 1 → nombre d'états de la sortie est
- Si nombre des entrées 2 → nombre d'états de la sortie est
- Si nombre des entrées 3 → nombre détats de la sortie est
 2³ = 8

Porte OUI

- * Cest une porte dite unaire (ne s'applique qu'à une seule opérande).
- ❖ Elle affecte à la variable de sortie, l'état logique de la variable d'entrée.

Symboles		Equation	Table o	de vérité
Symbole Européen	Symbole Américain	5 = A	A 0	5 0
1.	7		1	1

Algèbre de BOOLE

- L'algèbre de Boole est l'autil mathématique qui permet d'établir la relation entre les sorties et les entrées du système logique (synthèse du système).
- En technologie électronique:
- Les variables logiques sont généralement <u>des signaux « bi-tension »</u>.
- Les opérateurs logiques sont des circuits électroniques appelés « portes logiques »

L'algèbre de Boole est un ensemble de variables à <u>deux états</u> (0 et 1) dites aussi <u>booléennes</u> muni de <u>3 operateurs</u> élémentaires présentés dans le tableau suivant.

Notation algébrique	A OU B = A+B	AETB=AB	Non A = A
operation logique	OU	FT	NON
Opération logique	Addition	Multiplication	Inversion

Porte NON (NOT)

- Cest une porte à une seule entrée, elle matérialise l'opérateur inverseur.
- * Elle effectue l'opération appelée <u>Inversion</u> ou <u>Complémentaire</u>.
- ⇒ Elle transfert un 1 en 0 et un 0 en 1.

Symboles		Equation	Table de vérité		
Symbole Européen	Symbole Américain		A	5	
	. No s	S = Ā	0	1	
A 1 0-S	A — > > - S		1	0	

La sortie est active, si les deux entrées sont actives.

Symboles	Equation	Table de vérité
Symbole Européen Symbole Américain A S B S B S B S B S B S B S B S B S B S	S = A.B	A B S 0 0 0 0 1 0 1 0 0 1 1 1

- & L'opérateur OU est la somme logique.
- ❖ C'est un opérateur binaire qui qui affecte à la variable de sortie l'état 1 si et seulement si une variable d'entrée est à 1.

Symboles		Equation	Ţ	Table	e de ve	érité	
Symbole Européen	Symbole Américain		Г	A	В	5	
				0	0	0	
^ ≥1 s	1 - 5 s	S = A+B		0	1	1	
в	$ B \rightarrow D^{-3} $			1	0	1	
				1	1	1	

Porte OU-exclusif (XOR)

Cet opérateur logique binaire ne prend la valeur 1 que si une seule des entrées est à 1.

Symboles	Equation	Table de vérité			érité	
Symbole Européen Symbole Américain			Α	В	s	1
			0	0	0	
A -1 -1 - A - N - 1	$C = A \cap D$		0	1	1	
$\begin{vmatrix} \mathbf{s} \end{vmatrix} = 1 \begin{vmatrix} \mathbf{s} \end{vmatrix} \begin{vmatrix} \mathbf{s} \end{vmatrix} \begin{vmatrix} \mathbf{s} \end{vmatrix} $	S=A⊕B		1	0	1	
			1	1	0	

Remarque

 \div La sortie de la fonction OU-EXCLUSIF prend l'état logique f 1 si un nombre impair des variables d'entrée est à l'état logique 1.

* Elle est équivalente à une porte NON suivie d'un inverseur.

Symboles	Equation	Table de vérité
Symbole Européen Symbole Américain A S B S B	S=A B S=A.B	A B 5 0 0 1 0 1 1 1 0 1 1 1 0

Porte NON-OU (NOR)

· Elle est équivalente à une porte OU suivie d'un inverseur.

Symboles	Equation	Table de vérité
Symbole Européen Symbole Américain A ≥1 s B S B S	S=A↓B S=A+B	A B S 0 0 1 0 1 0 1 0 0 1 1 0

La sortie XNOR (NON-XOR, NON OU-EXCLUSIF) est simplement le complément logique de la sortie XOR. Donc, lorsque la sortie XOR est 0, la sortie XNOR est 1, et vice versa.

Symb	oles	Equation		Table	e de v	ér:té	
Symbole Européen	Symbole Américain		١	A	В	5	1
				0	0	1	
^	A	S=A⊕B		0	1	0	
B = 1 23	(((_B)	5 71@B		1	0	0	
			Į	1	1	- 1	

Les Théorèmes de l'Algèbre de BOOLE

* Pour effectuer tout calcul Booléen, on utilise, en plus des propriétés, un ensemble de théorèmes :

Théorèmes	OU	ET	
De DEMORGAN	$\overline{A+B} = \overline{A} \cdot \overline{B}$	$\overline{A.B} = \overline{A} + \overline{B}$	
DE DEMORGAIN	Ce théorème peut être généralisé à plusieurs variabl		
	A+B++Z= A.B Z	$\overline{A.B Z} = \overline{A} + \overline{B} + + \overline{Z}$	
D'Absorption	A+AB=A	A.(A+B)=A	
D'Allè copert	A+AB=A+B	A.(A+B)=A.B	
D'Allègement	A.B+ĀC+BC=AB+ĀC		

Les Lois et les règles de l'Algèbre de BOOLE

$A + A = A \qquad A \cdot A = A \qquad \text{Idempotence}$ $A + 1 = 1 \qquad A \cdot 0 = 0 \qquad \text{Elément absor}$ $A + 0 = A \qquad A \cdot 1 = A \qquad \text{Elément neutr}$ $A + \overline{A} = 1 \qquad A \cdot \overline{A} = 0 \qquad \text{Complément}$ $\overline{A} = A \qquad \text{Involution}$ $2 \text{ Variables} \qquad A + B = B + A \qquad A \cdot B = B \cdot A \qquad \text{Commutativit}$ $3 \text{ Variables} \qquad A^{+}(B \cdot C) = (A \cdot B) \cdot C \qquad = A \cdot B \cdot C \qquad = A \cdot B$				
1 Variable $A + 1 = 1$ $A \cdot 0 = 0$ $Elément absor$ $A + 0 = A$ $A \cdot 1 = A$ $Elément neuti$ $A + \overline{A} = 1$ $A \cdot \overline{A} = 0$ $\overline{A} = A$ Involution 2 Variables $A + B = B + A$ $A \cdot B = B \cdot A$ Commutativit 3 Variables $A + (B + C) = (A + B) + C$ $= A + B + C$ $= A + $	Fonctions	OU	ET	Commentaires
1 Variable $A + 0 = A$ $A \cdot 1 = A$ Elément neutri $A + \overline{A} = 1$ $A \cdot \overline{A} = 0$ Complément 2 Variables $A + B = B + A$ $A \cdot B = B \cdot A$ Commutativit 3 Variables $A + (B \cdot C) = (A + B) + C$ $= A + B \cdot C$ $= A + B \cdot C$ Associativité $A + (B \cdot C) = (A + B) + C$ $= A \cdot B \cdot C$ Distributivité Associativité $A + (B \cdot C) = (A + B) \cdot (A \cdot C) \cdot A \cdot (B \cdot C)$ Distributivité		A + A = A	A . A = A	Idempotence
$A + \overline{A} = 1$ $A \cdot \overline{A} = 0$ Complément $\overline{A} = A$ Involution 2 Variables $A + B = B + A$ $A \cdot B = B \cdot A$ Commutativit $A^{+}(B \cdot C) = (A \cdot B) \cdot C$ $= A \cdot B \cdot C$ Distributivité		A + 1 = 1	A.0=0	Elément absorbant
$ \overline{A} = A \qquad Involution $ 2 Variables $ A + B = B + A \qquad A \cdot B = B \cdot A \qquad Commutativit $ 3 Variables $ A^*(B \cdot C) = (A \cdot B) \cdot C \qquad A \cdot (B \cdot C) \qquad Associativities $ $ A^*(B \cdot C) = (A \cdot B) \cdot (A \cdot C) \qquad A \cdot (B \cdot C) \qquad Distributivities$	1 Variable	A + 0 = A	A.1=A	Elément neutre
2 Variables $A + B = B + A$ $A \cdot B = B \cdot A$ Commutativity 3 Variables $A + (B + C) = (A + B) + C$ $A \cdot (B + C) = (A + B) + C$ $A \cdot (B + C) = (A + B) + C$ Associativity $A + (B \cdot C) = (A + B) \cdot (A + C) \cdot A \cdot (B + C)$ Distributivities		A + Ā = 1	A . Ā = 0	Complément
3 Variables $A+(B+C) = (A+B)+C \qquad A.(B.C) = (A.B).C \qquad Associativities$ $A+(B-C) = (A+B) + C \qquad A.(B.C) = (A.B).C \qquad Associativities$ $A+(B-C) = (A+B) + (A+C) \qquad A.(B+C) \qquad Distributivities$		Ā:	= A	Involution
3 Variables = $A \cdot B \cdot C$ = $A \cdot B \cdot C$ A*(B C)= (A*B) (A*C) A. (B*C) Distributivité	2 Variables	A + B = B + A	A.B=B.A	Commutativité
$A+(B-C)=(A+B)\cdot (A+C)$ $= (A-B)+(A-C)$ Distributivité	3 Variables			Associativité
		A+(B . C)= (A+B) . (A+C)	A. (B+C) = (A.B) + (A.C)	Distributivité

Systèmes Logiques et Architecture des Ordinateurs

Série 2

Dr. Safa Teboulbi

2024-2025

Exercice 1:

1/ Réaliser les opérateurs de base (NON, ET, OU) à l'aide des portes NAND.

Exercice 2:

Donner le complément des équations suivantes :

$$E = a + \overline{b} + c \overline{b}$$

$$F = ab + c\bar{b} + \bar{a}\bar{c}$$

$$G = (b + \bar{c}) \bar{a} b$$

Exercice 3:

Simplifier le circuit logique suivant :

Exercice 4:

Donner les schémas logiques des fonctions suivantes, en utilisant :

- Des portes ET, OU, et des inverseurs.
- Des portes NON-ET.
- Des portes NON-OU.

$$1/F1 = (A+B) \cdot CD$$

$$2/A \cdot (B+\overline{C}) + \overline{B} \cdot C$$

Exercice 5:

1/ Déterminer la sortie d'une porte NON-ET ayant des entrées représentées sur la figure suivante :

2/ On applique un inverseur à l'entrée A, donner la nouvelle sortie x.

3/ Donner la sortie x si on applique un inverseur à l'entrée B.

Exercice 6:

Soit la fonction logique définie par la table de vérité suivante :

а	Ь	F(a,b)
0	0	1
0	1	0
1	0	1
1	1	1

Donner le schéma de cette fonction, avec deux méthodes, en utilisant uniquement des portes NON-ET.

Exercice 7:

1/ Réaliser un NAND à 3 entrées avec des NAND à 2 entrées.

2/ Réaliser la fonction suivante en utilisant uniquement des NAND à 2 entrées :

$$Z = x_1 x_0 + x_3 x_2 x_1$$

Exercice 8:

Analyser le circuit ci-dessous. Déterminer les fonctions logiques F1 et F2. Générer la table de vérité.

Exercice 9:

Déterminer l'équation du circuit de la figure suivante :

- a. Dresser la table de vérité de ce circuit.
- b. Quelle est la fonction logique réalisée et quel est son symbole.