학습 내용

- □ 추천 시스템이 무엇인지 알아본다.
- 추천 시스템을 구현하는데 필요한 데이터의 종류는 무엇이 있는지 알아본다.
- □ 추천 시스템의 유형
- □ 각 추천 시스템의 구현 방법에 대해 학습한다.

추천 시스템의 개요

- □ 지금은 추천 시스템의 전성 시대
 - 쿠팡 등과 같은 전자상거래 업체부터 유튜브, 애플 뮤직 등 콘텐츠 포털까지 사용자의 취향을 이해하고 맞춤 상품과 콘텐츠를 제공해 조금이라도 오래 자기 사이트에 고객을 머무르게 하기 위해 전력을 기울임.
- 전자상거래 업체가 추천 시스템 도입 후 큰 매출 향상을 경험하고 있음.
- 추천 시스템의 진정한 묘미는 사용자 자신도 좋아하는지
 몰랐던 취향을 시스템이 발견하고 그에 맞는 콘텐츠를 추천해 주는 것
- □ 결국 더 많은 데이터가 추천 시스템에 축적되면서 추천이 더욱 정확해지고 다양한 결과를 얻을 수 있는 선순환 시스템을 구축

온라인 상점의 필수 - 추천시스템

□ 누구나 한번쯤은 다양한 상품 이미지와 번잡한 카테고리, 메뉴 구성 등으로 인해 제품 선택의 어려움 겪었을 것

추천 시스템은 내가 좋아할만한 상품들을 귀신같이 찾아내서 제공해 주어 사용자의 온라인 쇼핑의 즐거움을 배가함.

추천 시스템의 기본 원리

추천 시스템의 유형

- □ 추천 시스템은 콘텐츠 기반 필터링(Content based filtering) 방식과 협업 필터링(Collaborative Filtering)방식으로 나뉨
- □ 협업 필터링 방식은 다시 최근접 이웃(Nearest Neighbor) 협업 필터링과 잠재 요인(Latent Factor) 협업 필터링으로 나뉨
- 초창기에는 콘텐츠 기반 필터링이나 최근접 이웃 기반 협업 필터링이 주로 사용됨
- □ 넷플릭스 추천시스템 경연 대회에서 행렬 분해(Matrix Factorization) 기법을 이용한 잠재요인 협업 필터링 방식이 우승하면서 대부분의 온라인 스토어에서 적용함.

콘텐츠 기반 필터링

- □ 콘텐츠 기반 필터 방식이란?
 - 사용자가 특정한 아이템을 매우 선호하는 경우, 그 아이템과 비슷한 컨텐츠를 가진 다른 아이템을 추천하는 방식.
- □ <예> 사용자 특정 영화에 높은 평점을 주었다면
 - 그 영화의 장르, 출연 배우, 감독, 영화 키워드 등의 콘텐츠와 유사한 다른 영화를 추천해 주는 방식임.

협업 필터링 기반 추천 시스템(1)

 사용자가 아이템에 매긴 평점 정보나 상품 구매 이력과 같은 사용자 행동 양식만을 기반으로 추천을 수행하는 것이 협업 필터링 방식임

- □ 협업 필터링의 주요 목표
 - 사용자-아이템 평점 매트릭스와 같은 축적된 사용자 행동 데이터를 기반으로
 - 아직 평가하지 않은 아이템을 예측 평가하는 것

	Item1	Item2	Item3	Item4
철수	3		3	V
영희	4	2		3
준수		1	2	2

평가한 다른 아이템을 기반으로 예측 평가

협업 필터링 기반 추천 시스템(2)

- □ 협업 필터링 기반 추천 시스템
 - **최근접 이웃 방식**과 **잠재 요인 방식**으로 나뉨
 - 사용자-아이템 평점 행렬 데이터에만 의존하여 추천을 수행
 - 행(Row)은 개별 사용자, 열(Column)은 개별 아이템으로 구성(앞의 그림 참조)
 - 사용자 행, 아이템 열 위치에 값이 평점을 나타냄.

UserID	Item ID	Rating
철수	Item 1	3
철수	Item 3	3
영희	Item 1	4
영희	Item 2	1
준수	Item 4	5

변환
pivot_ta ble()

	Item1	Item2	Item3	Item4
철수	3		3	
영희	4	1		
준수				5

사용자 기반 최근접 이웃 협업 필터링

- □ 사용자 기반 최근접 이웃 방식
 - 특정 사용자와 유사한 다른 사용자를 TOP-N으로 선정해 이 TOP-N 사용자가 좋아하는 아이템을 추천하는 방식임.
 - 특정 사용자와 타 사용자 간의 유사도를 측정한 뒤 가장 유사도가 높은 TOP-N 사용자를 추출해 그들이 선호하는 아이템을 추천하는 것

다크나이트 인터스텔라 엣지 오브 프로메테우스 스타워즈 트모로우 라스트 제다이

상호간 유사도 높음

사용자A	5	4	4		
사용자B	5	3	4	5	3
사용자C	4	3	3	2	5

- 사용자 A는 평점 정보가 사용자 B와 비슷하므로 사용자 A와 B는 유사도가 높음.
- 그러므로 사용자 A에게 사용자 B가 재미있게 본 '프로메테우스'를 추천

아이템 기반 최근접 이웃 협업 필터링

- □ 아이템 기반 최근접 이웃 방식
 - 아이템이 가지는 속성과는 상관없이 사용자들이 그 아이템을 좋아하는지/싫어하는지의 평가 척도가 유사한 아이템을 추천하는 알고리즘
 - 사용자 기반 최근접 이웃 데이터 세트와 행과 열이 서로 반대임.

사용자 🛕	사용자 B	사용자 C	사용자 D	사용자 E
11011 A		11011		''I O ''I L

상호간 유사도 높음

다크나이트	5	4	5	5	5
프로메테우스	5	4	4	추천	5
스타워즈 라스트 제다이	4	3	3		4

- `다크 나이트'와 `프로메테우스'는 평점 분포가 비슷하므로 `다크 나이트'를 매우 좋아하는 사용자D에게 `프로메테우스'를 추천
- 일반적으로 사용자 기반보다는 아이템 기반 협업 필터링이 정확도가 더 높다.

콘텐츠 기반 필터링 실습

- □ TMDB 5000 영화 데이터 세트
 - https://www.kaggle.com/tmdb/tmdb-moviemetadata/tmdb_5000_movies_csv
- □ 장르 속성을 이용한 영화 콘텐츠 기반 필터링
 - 사용자가 특정 영화를 감상하고 좋아했다면, 그 영화와 비슷한 특성/속성을 가진 다른 영화를 추천하는 것

코사인 유사도 예

0	1	7	2
1	1	2	4
2	0	8	3
3	2	0	3

cosine_similarity 적용

비교 대상행

기 준 행

0	1	2	3
1	0.68	0.99	0.3
0.68	1	0.72	0.85
0.99	0.72	1	0.29
0.3	0.85	0.29	1

왜곡된 평점 데이터 회피

□ 영화 평점 정보가 0~10점 사이인데, 1-2명의 소수 관객이 특정 영화에 만점이나 매우 높은 평점을 부여해 왜곡된 데이터를 가지고 있음.

	title	vote_average	vote_count
3519	Stiff Upper Lips	10.0	1
4247	Me You and Five Bucks	10.0	2
4045	Dancer, Texas Pop. 81	10.0	1
4662	Little Big Top	10.0	1
3992	Sardaarji	9.5	2
2386	One Man's Hero	9.3	2
2970	There Goes My Baby	8.5	2
1881	The Shawshank Redemption	8.5	8205
2796	The Prisoner of Zenda	8.4	11
3337	The Godfather	8.4	5893

왜곡된 평점 데이터 회피(계속)

□ 평가 횟수를 고려한 가중 평점(Weighted Rating) 공식

- v : 개별 영화에 평점을 투표한 횟수
- m : 평점을 부여하기 위한 최소 투표 횟수 (전체 투표횟수에서 60% 값을 기준)
- R: 개별 영화에 대한 평균 평점
- C : 전체 영화에 대한 평균 평점

아이템 기반 최근접 이웃 필터링 실습

- 사용자가 영화의 평점을 매긴 사용자-영화 평점 행렬 데이터 세트 필요
 - Grouplens 사이트에서 만든 MovieLens 데이터 세트 이용 실습
 - https://grouplens.org/datasets/movielens/latest/ml-latestsmall.zip
- □ 사용자와 아이템 간의 평점에 기반하는 추천 시스템

UserID	movieId	rating
철수	Movie1	3
철수	Movie3	3
영희	Movie6	4
영희	Movie2	1
준수	Movie4	5
준수	Movie5	4

	Movie1	Movie2	Movie3	Movie4	Movie 5	Movie 6
철수	3		3			4
영희		1		5		
준수					4	

개인화된 영화 추천

- □ 영화 유사도 데이터를 이용해 최근접 이웃 협업 필터링으로 개인에게 최적화된 영화 추천 구현
 - 개인이 아직 관람하지 않은 영화를 추천함.
 - 아직 관람하지 않은 영화에 대해서 아이템 유사도와 기존에 관람한 영화의 평점 데이터를 기반으로
 - 새롭게 모든 영화의 예측 평점을 계산한 후
 - 높은 예측 평점을 가진 영화를 추천하는 방식
 - 개인화된 예측 평점 계산 방식
 - $\mathbb{R}_{u,i} = \Sigma_N(\mathbb{S}_{i,N} * \mathbb{R}_{u,N}) / \Sigma_N(|\mathbb{S}_{i,N}|)$
 - * $\mathbb{R}_{u,i}$: 사용자 u, 아이템 i의 개인화된 예측 평점 값
 - * $\mathbb{S}_{i,N}$: 아이템 i와 가장 유사도가 높은 $\mathsf{TOP} ext{-}\mathsf{N}$ 개 아이템의 유사도 벡터
 - * $\mathbb{R}_{u,N}$: 사용자 \mathbf{u} 의 아이템 i와 가장 유사도가 높은 $\mathbf{TOP} ext{-}\mathbf{N}$ 개 아이템에 대한 실제 평점 벡터

 $\mathbb{S}_{i,N}$ 과 $\mathbb{R}_{u,N}$ 에 나오는 N값은 아이템의 최근접 이웃 범위 계수를 의미함.

잠재요인 협업 필터링

잠재요인 협업 필터링 이란

- □ 숨어있는 요인을 통해 평점을 예측하는 방식
- □ `분해'를 통해 잠재요인을 찾아낸다.
 - <예> 철수가 '인터스텔라'라는 영화에 4점이라는 평점을 주었는데
 - 철수는 SF 영화장르를 좋아하지만, 러닝타임이 너무 긴 영화를 좋아하지 않는다.
 - 그러므로 장르에서는 높은 점수(5점)를 받았지만 러닝타임에서 감점(-1점)이 되어 4점을 받게되었다. -> 하나의 값을 분해
- 이와같이 평점을 분해하여 잠재요인을 찾아내는 과정을 잠재요인 협업 필터링이라 한다.

행렬 분해

- □ 행렬 분해
 - 하나의 행렬을 두 개의 행렬로 분해하는 것
 - 인수분해와 유사함.
 - 12 -> (1 * 12), (2 * 6), (3 * 4)와 같은 형식
- □ 행렬 분해의 예

Item A Item B Item C Item D Item E

User1	4			2	
User2		5		3	
User3			3	4	4
User4	5	2	1	2	

user-잠재요인 (4x2)

요인1 요인2

잠재요인-Item (2x5)

User1	0.94	0.96
User2	2.14	0.08
User3	1.93	1.79
User4	0.58	1.59

분해한 행렬로 무엇을 할수 있을까

□ 두 개의 행렬을 조합해서 다시 하나의 행렬로 만들면 비어있던 행렬의 값을 채울 수 있다.

0.0			_	_
요인	1	요	ŲΙ	2

User1	0.94	0.96
User2	2.14	0.08
User3	1.93	1.79
User4	0.58	1.59

Item A	Item B	Item C	Item D	Item E
--------	--------	---------------	--------	---------------

요인1	1.7	2.3	1.41	1.36	0.41
요인2	2.49	0.41	0.14	0.75	1.77

Item A Item B Item C Item D Item E

User1	3.98	2.56	1.46	2	2.08
User2	3.82	5	3.02	2.97	1.02
User3	5	5	3.97	3.97	4.95
User4	4.95	1.99	1.04	1.99	3.05

■ 조합한 값들 중에서 <u>예측 평점이 높은 수치</u>를 뽑아 사용자에게 추천해줄 수 있다.

파이썬 추천 시스템 패키지

SURPRISE 패키지

파이썬 추천 시스템 패키지

Surprise

- 파이썬 기반 추천 시스템 구축을 위한 전용 패키지
- 파이썬 기반에서 사이킷런과 유사한 API와 프레임워크 제공

■ Surprise 주요 장점

- 다양한 추천 알고리즘, 사용자 또는 아이템 기반 최근접 이웃 협업 필터링, 잠재 요인 협업 필터링을 쉽게 적용해 추천 시스템을 구축할 수 있다.
- 사이킷런의 핵심 API와 유사한 API명으로 작성됨
 - □ fit(), predict(), train_test_split(), cross_validate() 등

Surprise 주요 모듈 소개

Dataset

■ Surprise는 user_id(사용자 아이디), item_id(아이템 아이디), rating(평점) 데이터가 행 형태로 된 데이터 세트만 적용

API 명	내용
Dataset.load_builtin(name='ml-100k')	무비렌즈 아카이브 FTP서버에서 무비렌즈 데이터를 내려받는다.
Dataset.load_from_file(file_path, reader)	로컬 컴퓨터 상에서 데이터를 로딩할 때 사용
Dataset.load_from_df(df, reader)	판다스의 DataFrame에서 데이터를 로딩한다.

Surprise 추천 알고리즘 클래스

□ 추천 예측을 위해 자주 사용되는 추천 알고리즘

클래스 명	설명
SVD	행렬 분해를 통한 잠재 요인 협업 필터링을 위한 SVD 알고리즘
KNNBasic	최근접 이웃 협업 필터링을 위한 KNN 알고리즘
BaselineOnly	사용자 Bias와 아이템 Bias를 감안한 SGD 베이스라인 알고리즘

□ SVD 클래스의 입력 파라미터

파라미터명	설명
n_factors	잠재 요인 K의 갯수. 기본값은 100. 커질수록 정확도가 높아질 수 있으나 과적합 문제가 발생할 수 있다.
n_epochs	확률적 경사 하강법 수행 시 반복 횟수. 기본값은 20
biased(bool)	베이스라인 사용자 편향 적용 여부이며 기본값은 True

베이스라인 평점

- □ 개인의 성향을 반영해 아이템 평가에 편향성 요소를 반영하여 평점을 부과하는 것을 베이스라인 평점이라고 함.
- □ 베이스라인 평점 = 전체 평균 평점 + 사용자 편향 점수 + 아이템 편향 점수
 - 전체 평균 평점 = 모든 사용자의 아이템에 대한 평점을 평균한 값
 - 사용자 편향 점수 = 사용자별 아이템 평점 평균 값 전체 평균 평점
 - 아이템 편향 점수 = 아이템 평점 평균 값 전체 평균 평점

모든 사용자의 평균 영화 평점

3.5

3.0 - 3.5 =-0.5

사용자 편향

평점

아이템 편향 평점

4.2 - 3.5 =0.7

어벤저스3 평균 평점:

사용자 A의 어벤저스3 베이스 라인 평점 = 3.5 - 0.5 + 0.7 = 3.7

교차 검증과 하이퍼 파라미터 튜닝

- □ Surprise는 교차 검증과 하이퍼 파라미터 튜닝을 위해 사이킷런과 유사한 cross_validate()와 GridSearchCV 클래스 제공
 - 교차 검증: cross_validate()
 - □ surprise.model_selection 모듈 내에 존재
 - □ 폴드한 데이터 세트의 갯수와 성능 측정 방법을 명시해 교차검증 수행
 - 교차 검증 수행 후 RMSE, MAE로 성능 평가 진행
 - □ <예>

cross_validate(svd, data, measures=['RMSE', 'MAE'], cv=5,
verbose=True)

- svd : 알고리즘 객체

- data: 검증을 수행할 데이터

- measures : 성능 측정 방법 지정

- cv: 데이터의 폴드 수

Surprise를 이용한 개인화 추천시스템

- □ Surprse 패키지로 학습된 추천 알고리즘을 기반으로 특정 사용자가 아직 평점을 매기지 않은 영화 중에서 개인 취향에 가장 적절한 영화 추천
- □ ratings.csv 데이터를 학습 데이터와 테스트 데이터로 분리하지 않고 전체를 학습 데이터로 사용

```
from surprise.dataset import DatasetAutoFolds
```

```
reader = Reader(line_format='user item rating timestamp', sep=',', rating_scale=(0.5, 5))
# DatasetFolds 클래스를 ratings_noh.csv 파일 기반으로 생성
data_folds = DatasetAutoFolds(ratings_file='./ml-latest-small/ratings_noh.csv', reader=reader)
```

전체 데이터를 학습 데이터로 생성함 trainset = data_folds.build_full_trainset()

Surprise를 이용한 개인화 추천시스템

□ 특정 사용자는 userId=9, 아직 평점을 매기지 않은 영화를 movieId 42로 선정하고 예측 평점 계산

```
# userId=9의 movieId 데이터를 추출해 movieId=42 데이터가 있는지 확인 movies = pd.read_csv('./ml-latest-small/movies.csv') movieIds = ratings[ratings['userId']==9]['movieId'] if movieIds[movieIds==42].count() == 0: print('사용자 아이디 9는 영화 아이디 42의 평점 데이터 없음') print(movies[movies['movieId']==42])
```

```
uid = str(9)
iid = str(42)

pred = svd.predict(uid, iid, verbose=True)
```

<결과>

```
user: 9 item: 42 r_ui = None est = 3.12 {'was_impossible': False}
```

사용자가 평가하지 않은 영화를 예측 평점순으로정렬

```
def get_unseen_surprise(ratings, movies, userId):
  # 입력값으로 들어온 userId에 해당하는 사용자가 평점을 매긴 모든 영화를
리스트로 생성
  seen_movies = ratings[ratings['userId'] == userId]['movieId'].tolist()
  # 모든 영화의 movieId를 리스트로 생성
  total_movies = movies['movieId'].tolist()
  # 모든 영화의 movieId 중 이미 평점을 매긴 영화의 movieId를 제외한 후
리스트 생성
  unseen_movies = [movie for movie in total_movies if movie not in
seen_movies]
  print('평점 매긴 영화 수:', len(seen_movies), ', 추천 대상 영화 수:',
len(unseen_movies),
      ', 전체 영화 수:', len(total_movies))
  return unseen movies
unseen_movies = get_unseen_surprise(ratings, movies, 9)
```

예측 평점순으로 영화 추천(1)

```
def recomm_movie_by_surprise(svd, userId, unseen_movies,
top n=10):
  # 알고리즘 객체의 predict()를 평점 없는 영화에 반복 수행 후 결과를 list로
저장
  predictions = [svd.predict(str(userId), str(movieId)) for movieId in
unseen movies]
  # predictions list 객체는 surprise의 Predictions 객체를 원소로 가짐
  # [Predictions(uid='9', iid='1', est=3], Predictions(uid='9', iid='2',
est=2.98_{-,,,}
  # 이를 est값으로 정렬하기 위해 아래의 sortkey_est 함수 정의
  # sortkey_est 함수는 list 객체의 sort() 함수의 키 값으로 사용되어 정렬
수행
  def sortkey est(pred):
     return pred.est;
```

예측 평점순으로 영화 추천(2)

```
# sortkey_est() 변환값의 내림 차순으로 정렬 수행하고 top_n개의 최상위 값
추출
  predictions.sort(key=sortkey_est, reverse=True)
  top predictions = predictions[:top n]
  # top_n으로 추출된 영화의 정보 추출. 영화 아이디, 추천 예상 평점, 제목
추출
  top_movie_ids = [ int(pred.iid) for pred in top_predictions]
  top_movie_rating = [ pred.est for pred in top_predictions]
  top movie titles =
movies[movies.movieId.isin(top_movie_ids)]['title']
  top_movie_preds = [ (id, title, rating) for id, title, rating in \
              zip(top_movie_ids, top_movie_titles, top_movie_rating)]
  return top movie preds
```

예측 평점순으로 영화 추천(3)

```
# 앞에서 구현한 함수를 호출하여 예측 평점순 추천영화 출력 unseen_movies = get_unseen_surprise(ratings, movies, 9) top_movie_preds = recomm_movie_by_surprise(svd, 9, unseen_movies, top_n=10) print('##### Top-10 추천 영화 리스트 #####') for top_movie in top_movie_preds: print(top_movie[1], ":", top_movie[2])
```