Equation of a straight line SOLUTIONS Samples

1. Let $(x_1, y_1) = (6, -8)$ and $(x_2, y_2) = (-3, -5)$. To find the equation of the line through (x_1, y_1) and (x_2, y_2) you

must find the gradient
$$m$$
 and the y -intercept c .
Then $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-5 - (-8)}{-3 - 6} = \frac{3}{-9}$. Hence $m = -\frac{1}{3}$.

Thus the equation of the line is $y = -\frac{1}{3}x + c$ and we can substitute the coordinates of the point $(x_1, y_1) = (6, -8)$

into this equation to get the value for
$$c$$
.
Hence $-8 = -\frac{1}{3} \times 6 + c$, so $-8 = -2 + c$. Hence $c = -8 - (-2) = -6$.

Hence the equation of the line is $y = -\frac{1}{3}x - 6$.

2. Let $(x_1, y_1) = (7, 10)$ and $(x_2, y_2) = (10, -3)$. To find the equation of the line through (x_1, y_1) and (x_2, y_2) you must find the gradient m and the y-intercept c.

Then $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - 10}{10 - 7} = \frac{-13}{3}$. Hence $m = -\frac{13}{3}$.

Then
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - 10}{10 - 7} = \frac{-13}{3}$$
. Hence $m = -\frac{13}{3}$.

Thus the equation of the line is $y = -\frac{13}{3}x + c$ and we can substitute the coordinates of the point $(x_1, y_1) = (7, 10)$

into this equation to get the value for
$$c$$
.
Hence $10 = -\frac{13}{3} \times 7 + c$, so $10 = -\frac{91}{3} + c$. Hence $c = 10 - \left(-\frac{91}{3}\right) = \frac{121}{3}$.

Hence the equation of the line is $y = -\frac{13}{3}x + \frac{121}{3}$.

3. Let $(x_1, y_1) = (-2, -10)$ and $(x_2, y_2) = (-2, -7)$. To find the equation of the line through (x_1, y_1) and (x_2, y_2) you must find the gradient m and the y-intercept c.

Then
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-7 - (-10)}{-2 - (-2)} = \frac{3}{0}$$
.

Therefore this line has an infinite gradient, and is parallel to the y-axis. It's equation is of the form x = k, where k is a constant.

Hence the equation of the line is x = -2.