

NLP and IR

Lab05: Building Feature Vector Representation for STS

Aliaksei Severyn

University of Trento, Italy

Plan for the lab

- Modeling input objects
 - Feature-based representation
 - Structural representation
- STS
 - Intro to the task
 - Examples of implemented features
 - In-class experiments

Supervised Learning to-do list

- Get labeled data
- Identify the target task
 - Classification binary/multi-class, reranking, regression, etc.
- Select learning algorithms
 - SVM, k-NN, Naïve Bayes, Decision Trees, etc.
- Build representation of input data
 - Feature vectors
 - Structural objects, e.g. sequences, trees, graphs

Representation overview

Features	Structures
Provide explicit encoding of input objects into Euclidian space	Map input objects into implicit high- dimensional space (can be infinite- dimensional)
Each feature represents a dimension characterizing the input object. Relatively small number of dimensions	Generate huge number of dimensions
Often require significant engineering effort	Requires selection of a good kernel. Comes for free ones the kernel.
Good prior knowledge of the task and domain is essential to build good features	Is less domain-dependent
Learning is fast	Much slower in training

Semantic Textual Similarity (STS)

Goal

- Build a component to compute semantic textual similarity of texts
- Useful for many NLP tasks: QA, paraphrasing, Textual Entailment,
 Machine Translation, etc.

Data

- Pairs of short texts
- Labels similarity degree provided by humans (5 semantic equivalence to 0 - no relation)

Our task

 Build a system able to automatically predict similarity scores between document pairs

STS-2012 task description

Training

- 3 datasets with texts extracted from MSRPar (paraphrasing),
 MSRvid (video descriptions), SMT (machine translation)
- 2234 training examples
- Test
 - 3 datasets (same as in training)
 - 2 (surprise) datasets: OnWN (ontology mappings) and SMTnews (news)
- Evaluation: Pearson correlation w.r.t. human jugdements
- More info about the task:
 - STS-2012 http://www.cs.york.ac.uk/semeval-2012/task6/
 - STS-2013 http://ixa2.si.ehu.es/sts/

STS-2012 approaches

- Most successful systems:
 - Use machine learning methods to learn a scoring function
 - Encode a large variety of various similarity features
- 30 teams competing with 90 systems
- 2 best systems released as open source:
 - Takelab
 - DKPro
- Datasets and software:
 - http://www-nlp.stanford.edu/wiki/STS

STS-2012 Competition

rank	run	ALL	MSRpar N	/ISRvid SMT- eur		SMT- news
1baer/task6-UKP-run2_	_plus_postprocessing_smt_twsi	.8239	.6830	.8739.5280	.6641	.4937
2 jan_snajder/task6-tak	elab-syntax	.8138	.6985	.8620.3612	.7049	.4683
3 jan_snajder/task6-tak	elab-simple	.8133	.7343	.8803.4771	.6797	.3989
4 baer/task6-UKP-run1		.8117	.6821	.8708.5118	.6649	.4672
5 rada/task6-UNT-Indivi	dualRegression	.7846	.5353	.8750.4203	.6715	.4033
6 mheilman/task6-ETS-	PERPphrases	.7834	.6397	.7200.4850	.7124	.5312
7 mheilman/task6-ETS-	PERP	.7808	.6211	.7210.4722	.7080	.5149
8 baer/task6-UKP-run3_	_plus_random	.7790	.6830	.8739.5280	0620	0520
9 rada/task6-UNT-Indivi	dualDecTree	.7677	.5693	.8688.4203	.6491	.2256
10 yeh/task6-SRIUBC-S\	YSTEM2	.7562	.6050	.7939.4294	.5871	.3366
11 yeh/task6-SRIUBC-S		.7513	.6084	.7458 .4688	.6315	.3994
12 croce/task6-UNITOR- 2_REGRESSION_AL	L_FEATURES	.7475	.5763	.8217.5102	.6591	.4713
13 croce/task6-UNITOR- 1_REGRESSION_BE	ST_FEATURES	.7474	.5695	.8217.5168	.6591	.4713
14 rada/task6-UNT-Com	oinedRegression	.7418	.5032	.8695.4797	.6715	.4033

Building an STS system

- Approach
 - Use Machine Learning methods to learn a function mapping text pairs to similarity scores
 - Support Vector Regression
- Representation
 - Pairwise similarity features
 - Encode how similar two texts are using lexical, syntactic, semantic information
 - Each feature is a single score

Similarity measures

- Word similarity
 - Ngram Overlap over raw tokens, lemmas, part-ofspeech tags, WordNet senses
 - Weighted word overlap
 - Gives more importance to content words
- Knowledge-based similarity
 - WordNet, WikiPedia (ESA), etc.
- Corpus-based similarity
 - Uses LSA, Topic Modeling, etc. to compute similarity in the topic space

Similarity measures

- Designing your features
 - Example feature
 - Ngram Overlap

$$ngo(S_1, S_2) = 2 \cdot \left(\frac{|S_1|}{|S_1 \cap S_2|} + \frac{|S_2|}{|S_1 \cap S_2|}\right)^{-1}$$

- Study STS-2012 papers for inspiration
- Use your knowledge from NLPIR class and intuition to come up with good features

Implementing your metrics for STS

- Pull most recent version from GitHub
- Go to:
 - ~/NLPIR/course_projects/sts2012
- Read README.md

Overview of the STS framework

- Folder datasets raw and annotated data (*.dat)
- Folder system contains scripts to:
 - Preprocess the data
 - corpus_utils.py
 - Generate features
 - Baseline: takelab_simple_features.py, takelab_main.py
 - Your features: nlpir_main.py
 - Combine different features sets and generate SVM files:
 - features2svmfile.py
- Folder features contains features per dataset
- Folder models contains SVM files
- SVM-Light-1.5-rer SVR binaries

Replicating exps

```
From your home:
# generate simple features
python -u system/takelab main.py
# generate SVM files
python system/features2svmfile.py
# train/test a model with simple features
sh train-test-eval.sh takelab.simple
# train/test a more advanced baseline model
sh train-test-eval.sh baseline
# generate your features
python -u system/nlpir main.py
```


Summary

- Feature vector representation in ML
 - Often the most important step for building accurate models
- STS task
 - Description
 - Framework for testing your features
 - Experiments
 - Implementing your own features

References

TakeLab: **Systems for Measuring Semantic Text Similarity**, Frane Šarić, Goran Glavaš, Mladen Karan, Jan Šnajder and Bojana Dalbelo Bašić, Semeval 2012

UKP: Computing Semantic Textual Similarity by Combining Multiple Content Similarity Measures, Daniel Bär, Chris Biemann, Iryna Gurevych, and Torsten Zesch, Semeval 2012