Section 6-3

7, 9, 11, 17, 19, 21, 23, 31, 37.

- 1. 請見課本後的答案。
- 2. 課本第 21 題

Let A be an orthogonal matrix. Show that A^2 is an orthogonal matrix, too.

Answer:

A be an orthogonal matrix, i.e. $A^TA = I$. $(A^2)^T = (AA)^T = A^TA^T = (A^T)^2$. Therefore $(A^2)^T(A^2) = A^TA^TAA = A^T(A^TA)A = A^TIA = A^TA = I$. We have A^2 is an orthogonal matrix.

3. 課本第 23 題

Find a 2×2 matrix with determinant 1 that is not an orthogonal matrix.

Answer:

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

$$\det(A) = 1$$
, but $A^T A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \neq I$

4. 課本第 31 題

Let A and C be orthogonal $n \times n$ matrices. Show that CAC^{-1} is orthogonal.

Answer

A and C be orthogonal matrices, i.e. $A^TA=C^TC=I.$ We also know that $C^{-1}=C^T,$ i.e. $CAC^{-1}=CAC^T$

$$(CAC^T)^T(CAC^T) = (C^T)^TA^TC^TCAC^T = CA^TC^TCAC^T = CA^T(C^TC)AC^T = CA^TIAC^T = C(A^TA)C^T = CIC^T = (C^TC)^T = I^T = I.$$
 We have $CAC^T = CAC^{-1}$ is orthogonal