Лабораторная работа №2. Нечеткая арифметика.

Цель работы: Изучить правила выполнения основных арифметических операций (сложение,

вычитание, умножение, деление) с нечеткими числами, с применением α -

уровневого принципа обобщения Заде.

Задание к работе: Перегрузить операции сложения, вычитания, умножения, деления, в

 A_{i} — верхняя граница обычного множества разложения,

 $0 < \alpha_1 < \alpha_2 < \dots < \alpha_{N-1} < \alpha_N = 1, i = \overline{1, N}$.

Теоретическая часть

В данной работе рассматриваются способы расчета значений четких алгебраических функций от нечетких аргументов. Материал основывается на понятиях нечеткого числа и принципа нечеткого обобщения, также приводятся правила выполнения арифметических операций над нечеткими числами.

Определение: Нечеткое число А *нормальное*, если $\max_{x} \mu_{A}(x) = 1$.

Определение: Нечеткое число А *выпуклое*, если для любых х≤у≤z выполняется

 $\mu_{A}(x) \ge \mu_{A}(y) \Lambda \mu_{A}(z)$.

Определение: Нечетким числом называется выпуклое нормальное нечеткое множество с

кусочно-непрерывной функцией принадлежности $\mu_A(x) \in [0,1]$, заданное на

множестве действительных чисел.

Определение: Подмножество $S_A \subset R$ называется *носителем* нечеткого числа A, если

 $S = \{x/\mu_A(x) > 0\}.$

Определение: Нечеткое число А *положительно*, если $\forall x \in S_A$, x > 0 и *отрицательно*, если

 $\forall x \in S_A, x < 0.$

Определение: Множество α -уровня нечеткого числа A определяется как $A_{\alpha} = \{x/\mu_{A}(x) \ge \alpha\}$.

Правило выполнения арифметических операций над нечеткими числами

В общем случае операции над нечеткими числами определяются согласно принципу обобщения Заде.

Определение: *Принцип обобщения Заде.* Если $y = f(x_1, x_2, ..., x_n)$ - функция от n независимых

переменных и аргументы $x_1, x_2, ..., x_n$ заданы нечеткими числами $\tilde{x}_1, \tilde{x}_2, ..., \tilde{x}_n$, соответственно, то значением функции $\tilde{y} = f\left(\tilde{x}_1, \tilde{x}_2, ..., \tilde{x}_n\right)$ называется

нечеткое число у с функцией принадлежности:

$$\mu_{\tilde{y}}\left(y^*\right) = \sup_{\substack{y^* = f\left(x_1^*, x_2^*, \dots, x_n^*\right) \\ x_i^* \in \sup p(\tilde{x}_i), i = 1, n}} \min_{i=1, n} \left(\mu_x\left(x_i^*\right)\right).$$

Принцип обобщения позволяет найти функцию принадлежности нечеткого числа, соответствующего значению четкой функции от нечетких аргументов.

Применение принципа обобщения Заде сопряжено с двумя трудностями:

- 1. большой объем вычислений количество элементов результирующего нечеткого множества, которые необходимо обработать, равно $p_1 \cdot p_2 \cdot p_3 \cdot ... \cdot p_n$, где p_i количество точек, на которых задан i-й нечеткий аргумент, $i = \overline{1,n}$;
- 2. необходимость построения верхней огибающей элементов результирующего нечеткого множества.

Более практичным является применение α -уровневого принципа обобщения. В этом случае нечеткие числа представляются в виде разложений по α -уровневым множествам: $x = \bigcup_{\alpha \in [0,1]} (\underline{x}_{\alpha}, \overline{x}_{\alpha})$, где $\underline{x}_{\alpha}(\overline{x}_{\alpha})$ - минимальное (максимальное) значение x на α -уровне.

Определение:

а-уровневый принцип обобщения. Если $y=f(x_1,x_2,...,x_n)$ - функция от n независимых переменных и аргументы x_i заданы нечеткими числами $x=\bigcup_{\alpha\in[0,1]}(\underline{x}_{i,\alpha},\overline{x}_{i,\alpha}), \qquad i=\overline{1,n}, \qquad$ то значением функции $\tilde{y}=f(\tilde{x}_1,\tilde{x}_2,...,\tilde{x}_n)$ называется нечеткое число $y=\bigcup_{\alpha\in[0,1]}(\underline{y}_\alpha,\overline{y}_\alpha)$, где:

$$\underline{y}_{\alpha} = \inf_{\substack{x_{i,\alpha} \in \left[\underline{x}_{i,\alpha}, \bar{x}_{i,\alpha}\right] \\ i=1,n}} (f(x_{1,\alpha}, x_{2,\alpha}, ..., x_{n,\alpha}))$$

И

$$\overline{y}_{\alpha} = \sup_{\substack{x_{i,\alpha} \in [\underline{x}_{i,\alpha}, x_{i,\alpha}] \\ i=1,n}} (f(x_{1,\alpha}, x_{2,\alpha}, ..., x_{n,\alpha})).$$

Применение α -уровневого принципа обобщения сводится к решению для каждого α -уровня следующей задачи оптимизации: найти максимальное и минимальное значения функции $y=f(x_1,x_2,...,x_n)$ при условии, что аргументы могут принимать значения из соответствующих α -уровневых множеств. Количество α -уровней выбирают так, чтобы обеспечить необходимую точность вычислений.

Пример. Нечеткие числа $ilde{x}_1$ и $ilde{x}_2$ заданы следующими трапециевидными функциями принадлежности:

падлежности:
$$\mu_{\tilde{x}_1}(x) = \begin{cases} 0, & \text{если } x < 1 \text{ или } x > 4 \\ x - 1, & \text{если } x \in [1, 2] \\ 1, & \text{если } x \in (2, 3) \\ 4 - x, & \text{если } x \in [3, 4] \end{cases}$$

$$\mu_{\tilde{x}_2}(x) = \begin{cases} 0, & \text{если } x < 2 \text{ или } x > 8 \\ x - 2, & \text{если } x \in [2, 3] \\ 1, & \text{если } x \in (3, 4) \\ 2 - 0, 25x, & \text{если } x \in [4, 8] \end{cases}.$$

Необходимо найти нечеткое число $y = x_1 \cdot x_2$ с использованием α -уровневого принципа обобщения.

Будем использовать 2 следующих α -уровня: $\{0, 1\}$. Тогда нечеткие аргументы задаются так: $x_1 = (1,4)_0 \bigcup (2,3)_1$ и $x_2 = (2,8)_0 \bigcup (3,4)_1$. По α -уровневому принципу обобщения получаем: $y = (2,32)_0 \bigcup (6,32)_1$. На рис. 1 показан результат умножения двух нечетких чисел $y = x_1 \cdot x_2$: красными горизонтальными линиями изображены α -сечения, а тонкой красной линией - кусочнолинейная аппроксимация функции принадлежности нечеткого числа y.

Исследуем, как измениться результат нечеткого обобщения при увеличении числа α -уровней. Нечеткое число y при задании аргументов x_1 и x_2 на 41 α -уровне показано на рис. 1. Синими горизонтальными линиями изображены α -сечения нечеткого множества, а жирной синей линией – кусочно-линейная аппроксимация функции принадлежности нечеткого числа y для 41 α -уровня.

Применение α -уровневого принципа обобщения позволяет получить правила выполнения арифметических операций над нечеткими числами. Правила выполнения арифметических операций для положительных нечетких чисел приведены в табл. 1. Эти правила необходимо применять для каждого α -уровня.

Табл. 1. Правила выполнения арифметических операций для положительных нечетких чисел (для каждого *α*-уровня)

Арифметическая операция	<u>y</u>	\overline{y}
$y = x_1 + x_2$	$\underline{x}_1 + \underline{x}_2$	$-\frac{1}{x_1+x_2}$
$y = x_1 - x_2$	$\underline{x}_1 - \overline{x}_2$	$\overline{x}_1 - \underline{x}_2$
$y = x_1 \cdot x_2$	$\underline{x}_1 \cdot \underline{x}_2$	$\overline{x_1 \cdot x_2}$
$y = \frac{x_1}{x_2}$	$\frac{x_1}{x_2}$	$-\frac{x_1}{x_2}$

Литература

- 1. С.Д. Штовба Введение в теорию нечетких множеств и нечеткую логику // http://support.sibsiu.ru/MATLAB_RU/fuzzylogic/book1/1.asp.htm
- 2. В.Я. Пивкин, Е.П. Бакулин, Д.И. Кореньков Нечеткие множества в системах управления // http://idisys.iae.nsk.su/fuzzy_book/content.htm