

第二章: 随机变量与概率分布

2.2 二维随机变量

赵俊舟

junzhou.zhao@xjtu.edu.cn

2025年3月14日

目录

- 二维随机变量与联合分布函数
- ② 二维离散型随机变量
- ③ 二维连续型随机变量

目录

- 二维随机变量与联合分布函数
- ② 二维离散型随机变量
- ③ 二维连续型随机变量

二维随机变量

- 有些随机事件用一个随机变量无法描述,需要两个或多个随机变量描述,如:
 - 导弹的落点 $(X,Y) \rightarrow (横坐标, 纵坐标)$
 - 人的血压 $(X, Y) \rightarrow ($ 收缩压, 舒张压)
 - 一段时期某支股票行情 $(X,Y) \rightarrow ($ 平均市值,波动值)
- 为什么不分别研究 X, Y, 而要整体研究 (X, Y)?
- 分别研究不能体现 X 与 Y 之间的关系: 例如,(X,Y) 表示 收缩压与舒张压,Y 必须满足 $Y \leq X$,而且实际上两者悬殊 不可能太大,即 X,Y 不能分别自由取值。
- 即 X 与 Y 不独立。

n 维随机变量

定义 (n 维随机变量)

如果 $X_1(\omega), X_2(\omega), \ldots, X_n(\omega)$ 是定义在同一样本空间 Ω 上的 n 个随机变量,则称

$$X(\omega) = (X_1(\omega), X_2(\omega), \dots, X_n(\omega))$$

为 n 维随机变量或随机向量。

- 等价说法: 二维随机变量是 Ω 到 \mathbb{R}^2 的映射。
- 常见的一种情况是 $\Omega \subseteq \mathbb{R}^2$ 。例如 Ω 表示血压测量结果或导弹落点结果,此时可定义 $X(x,y) \triangleq x, Y(x,y) \triangleq y$ 。

二维随机变量

例 (掷双筛子问题,续)

掷两颗筛子, 则样本空间 $\Omega = \{(i,j)|i,j=1,2,\ldots,6\}$ 。定义 $X(i,j) = i+j, Y(i,j) = i\cdot j$,则 (X,Y) 为 Ω 上的二维随机变量。

- 如何从整体上研究 (X, Y) 的分布?
- 即研究形如

$$\{\omega | (X(\omega), Y(\omega)) \in (a, b] \times (c, d)\} \triangleq \{(X, Y) \in (a, b] \times (c, d)\}$$
$$= \{a < X \le b, c < Y \le d\}$$

的事件的概率。

• 为此,须与一维情形类似,研究二维随机变量的分布函数。

联合分布函数

定义 (联合分布函数, Joint Distribution Function)

设 (X,Y) 为一个二维随机变量,对任意 $(x,y) \in \mathbb{R}^2$,二元函数 $F(x,y) \triangleq P(X \le x,Y \le y)$

称为二维随机变量 (X,Y) 的联合分布函数。

联合分布函数的性质

- 固定一个变元,F(x,y) 是另一个变元的单调非减函数。
- F(x,y) 对每个变元右连续,即 F(x+0,y) = F(x,y) F(x,y+0) = F(x,y)
- $\forall x, y$ 都有: $0 \le F(x, y) \le 1$, $F(+\infty, +\infty) = 1$, $F(-\infty, -\infty) = F(-\infty, y) = F(x, -\infty) = 0$.
- 对于任意两点 $(x_1, y_1), (x_2, y_2),$ 若 $x_1 \le x_2, y_1 \le y_2,$ 则 $F(x_2, y_2) F(x_1, y_2) F(x_2, y_1) + F(x_1, y_1) \ge 0$

边缘分布函数

• 给定二维随机变量 (X, Y) 的联合分布函数 F(x, y),则它的两个分量 X, Y 的分布函数 $F_X(x), F_Y(y)$ 也随之确定。

$$F_X(x) \triangleq P(X \le x) = P(X \le x, Y \le +\infty) = F(x, +\infty)$$

- 同理可得 $F_Y(y) \triangleq F(+\infty, y)$
- 称 $F_X(x)$ 和 $F_Y(y)$ 分别为二维随机变量 (X,Y) 关于 X,Y 的边缘分布函数。
- 联合分布函数唯一确定边缘分布函数,但反过来不一定成立。

目录

- 二维随机变量与联合分布函数
- ② 二维离散型随机变量
- ③ 二维连续型随机变量

二维离散型随机变量及其联合分布律

定义 (二维离散型随机变量)

若二维随机变量 (X, Y) 的所有可能取值是有限对或者无穷可列对 $(x_i, y_i), i, j = 1, 2, ...$,则称为二维离散型随机变量,并称 $p_{ii} \triangleq P(X = x_i, Y = y_i)$ i, j = 1, 2, ...

为二维离散型随机变量
$$(X,Y)$$
 的联合分布律。

- 联合分布律常用表格表示,满足
 - 非负性: $p_{ij} \geq 0, \forall i, j$
 - 正则性: $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} p_{ij} = 1$
- (X, Y) 的联合分布函数为

$$F(x,y) = P(X \le x, Y \le y) = \sum_{x_i \le x} \sum_{y_j \le y} p_{ij}$$

举例: 二维离散型随机变量

例

设二维离散型随机变量 (X, Y) 的联合分布律如下表,求 $P(X \ge 2, Y \ge 2)$ 及 P(X = 1)。

X	1	2	3	4
1	0.1	0	0.1	0
2	0.3	0	0.1	0.2
3	0	0.2	0	0

- $P(X \ge 2, Y \ge 2) = 0.1 + 0.2 + 0.2 = 0.5$
- P(X = 1) = 0.1 + 0.3 + 0 = 0.4

边缘分布律

- 设 (X, Y) 为二维离散型随机变量,其联合分布律为 $p_{ij} \triangleq P(X = x_i, Y = y_i)$ i, j = 1, 2, ...
- 对于固定的 xi, 考虑和式

$$p_{i.} \triangleq \sum_{j=1}^{\infty} p_{ij} = \sum_{j=1}^{\infty} P(X = x_i, Y = y_j) = P\left(\bigcup_{j=1}^{\infty} \{X = x_i, Y = y_j\}\right)$$
$$= P\left(\{X = x_i\} \cap \bigcup_{j=1}^{\infty} \{Y = y_j\}\right) = P(X = x_i)$$

• 称 $\{p_{i}, i = 1, 2, ...\}$ 为 X 的边缘分布律。

边缘分布律

同理称

$$p_{\cdot j} \triangleq \sum_{i=1}^{N} p_{ij} = P(Y = y_j), \quad j = 1, 2, \dots$$

为 Y 的边缘分布律,因为位于联合分布律表格的边缘。

X	<i>x</i> ₁		Xi		p.j
y_1	p_{11}	• • •	p_{i1}	• • •	p .1
:	:		:		:
Уј	p_{1j}	• • •	p_{ij}	• • •	<i>p</i> . <i>j</i>
:	:		:		:
p_{i} .	p ₁ .		p _i .	• • •	1

举例: 二维离散型随机变量

例 (掷双骰子)

求 X = |i - j|, Y = i + j 的联合分布律及边缘分布律。

Y	0	1	2	3	4	5	$p_{\cdot j}$	
2	$\frac{1}{36}$	0	0	0	0	0	$\frac{1}{36}$	
3	0		0	0	0	0	$\frac{2}{36}$	
4	$\frac{1}{36}$	0	$\frac{2}{36}$	0	0	0	$\frac{3}{36}$	
5	0	$\frac{2}{36}$	0	$\frac{2}{36}$	0	0	$\frac{4}{36}$	
6	$\frac{1}{36}$	0	$\frac{2}{36}$	0	$\frac{2}{36}$	0	$\frac{5}{36}$	
7	0	$\frac{2}{36}$	0	$\frac{2}{36}$	0	$\frac{2}{36}$	$\frac{6}{36}$	
8 9	$\frac{1}{36}$	0	$\frac{2}{36}$	$\begin{array}{c} \frac{2}{36} \\ 0 \\ \frac{2}{36} \\ 0 \\ \frac{2}{36} \\ 0 \\ \end{array}$	$ \begin{array}{c} 0 \\ \frac{2}{36} \\ 0 \\ \frac{2}{36} \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ \frac{2}{36} \\ 0 \\ 0 \\ 0 \end{array} $	$\frac{5}{36}$	
9	0	$\frac{2}{36}$	0	$\frac{2}{36}$	0	0	$\frac{4}{36}$	
10	$\frac{1}{36}$	$\begin{array}{c} \frac{2}{36} \\ 0 \\ \frac{2}{36} \\ 0 \\ \frac{2}{36} \\ 0 \\ \frac{2}{36} \\ 0 \\ 0 \\ \end{array}$	$ \begin{array}{c} 0 \\ \frac{2}{36} \\ 0 \\ \frac{2}{36} \\ 0 \\ \frac{2}{36} \\ 0 \\ \frac{2}{36} \\ 0 \end{array} $	0	0	0	$\frac{3}{36}$	
11	0	$\frac{2}{36}$	0	0	0	0	$\frac{2}{36}$	
12	$ \begin{array}{c} \frac{1}{36} \\ 0 \\ \frac{1}{36} \\ 0 \\ \frac{1}{36} \\ 0 \\ \frac{1}{36} \\ 0 \\ \frac{1}{36} \\ \frac{6}{36} \\ 0 \end{array} $		0	0	0	0	$\begin{array}{c} \frac{1}{36} \\ \frac{2}{36} \\ \frac{3}{36} \\ \frac{4}{36} \\ \frac{5}{36} \\ \frac{6}{36} \\ \frac{5}{36} \\ \frac{4}{36} \\ \frac{3}{36} \\ \frac{2}{36} \\ \frac{1}{36} \\ \end{array}$	
p_i .	$\frac{6}{36}$	$\frac{10}{36}$	$\frac{8}{36}$	$\frac{6}{36}$	$\frac{4}{36}$	$\frac{2}{36}$		1 5

— 15 / 37

目录

- 二维随机变量与联合分布函数
- ② 二维离散型随机变量
- ③ 二维连续型随机变量

二维连续型随机变量

定义(二维连续型随机变量)

如果存在非负函数 f(x,y) 使得二维随机变量 (X,Y) 的分布函数 F(x,y) 可以表示为

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, \mathrm{d}u \, \mathrm{d}v$$

则称 (X,Y) 为二维连续型随机变量,称 f(x,y) 为 (X,Y) 的联合概率密度,简称概率密度。

二维连续型随机变量的性质

- 非负性: $f(x,y) \ge 0, \forall x,y \in \mathbb{R}$
- 正则性:

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}x \, \mathrm{d}y = F(+\infty, +\infty) = 1$$

在 f(x,y) 的连续点处,有

$$\frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y)$$

• 对于任何 \mathbb{R}^2 上的区域 G,有

$$P\{(X,Y)\in G\}=\iint_G f(x,y)\,\mathrm{d}x\,\mathrm{d}y$$

🥊 对于二维连续型随机变量,孤立点或曲线上的概率均为 🛈。

举例: 二维连续型随机变量

例

设随机变量 (X,Y) 的分布函数为

$$F(x,y) = \begin{cases} (1 - e^{-\lambda x})(1 - e^{-\lambda y}), & x > 0, y > 0, \\ 0, &$$
其他

求(X,Y)的联合概率密度。

显然, F(x,y) 是连续的, 且除了直线 x = 0 和 y = 0, F(x,y) 在 \mathbb{R}^2 每点都可导, 故有

$$f(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y) = \begin{cases} \lambda^2 e^{-\lambda(x+y)}, & x > 0, y > 0, \\ 0, &$$
其他

举例:二维连续型随机变量

● 利用联合概率密度容易计算一些随机事件的概率, 计算时要特别注意积分上下限。

例

设随机变量 (X, Y) 的联合概率密度为

$$f(x,y) = \begin{cases} cx^2y, & x^2 \le y \le 1, \\ 0, &$$
其他

(1) 确定常数 c; (2) 计算 P(X > Y)。

举例: 二维连续型随机变量

$$1 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \, dx \, dy = c \int_{0}^{1} y \, dy \int_{-\sqrt{y}}^{\sqrt{y}} x^{2} \, dx$$
$$= c \int_{0}^{1} \frac{2}{3} y^{5/2} \, dy = \frac{4}{21} c \quad \Rightarrow c = \frac{21}{4}$$

$$P(X > Y) = \iint_{x>y} f(x, y) dx dy = \frac{21}{4} \int_0^1 y dy \int_y^{\sqrt{y}} x^2 dx = \frac{3}{20}$$

举例: 二维连续型随机变量

 \P 对于连续型随机变量,如果 (X,Y) 取值在某区域 G 中,即意味着 f(x,y) 在 \overline{G} 上为 0。

例

设随机变量 (X, Y) 在 $[0,2] \times [0,2]$ 中取值,且分布函数在此区域的值如下:

$$F(x,y) = \frac{1}{16}xy(x+y), \quad 0 \le x \le 2, 0 \le y \le 2$$

- (a) 完整写出 F(x,y) 的定义;
- (b) 求其概率密度;
- (c) 求 $P(X + Y \le 1)$;
- (d) 对于 $x, y \in [0, 2]$, 分别求 $P(X \le x)$ 和 $P(Y \le y)$ 。

举例:二维连续型随机变量

(a) 由分布函数的连续性,得

$$F(x,y) = \begin{cases} 0, & x < 0 \text{ if } y < 0, \\ \frac{1}{8}x(x+2), & x \in [0,2], y > 2, \\ \frac{1}{8}y(y+2), & y \in [0,2], x > 2, \\ \frac{1}{16}xy(x+y), & x,y \in [0,2], \\ 1, & x > 2, y > 2 \end{cases}$$

(b) 联合概率密度为

$$f(x,y) = \begin{cases} \frac{1}{8}(x+y), & x,y \in [0,2], \\ 0, &$$
其他

举例:二维连续型随机变量

$$P(X + Y \le 1) = \iint_{x+y\le 1} f(x, y) dx dy$$
$$= \iint_{x+y\le 1} \frac{1}{8} (x + y) dx dy$$
$$= \frac{1}{24}$$

(d) 对于
$$x \in [0, 2]$$
, 有

$$P(X \le x) = F(x, +\infty) = F(x, 2) = \frac{1}{8}x(x+2)$$

同理, 对于 $y \in [0,2]$, 有 $P(Y \le y) = \frac{1}{8}y(y+2)$ 。

边缘概率密度

• 当给定二维连续型随机变量 (X,Y) 的联合概率密度 f(x,y), 那么 X 和 Y 的概率密度 $f_X(x)$ 和 $f_Y(y)$ 也就随之确定。因为

$$F_X(x) = F(x, +\infty) = \int_{-\infty}^x \int_{-\infty}^{+\infty} f(u, y) \, \mathrm{d}y \, \mathrm{d}u$$

• 对 x 求导,得到 X 的边缘概率密度为

$$f_X(x) \triangleq \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}y$$

● 同理, 可得 Y 的边缘概率密度为

$$f_Y(y) \triangleq \int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}x$$

举例: 边缘概率密度

联合概率密度往往是分片定义的。在计算边缘概率密度积分时,需要仔细确定积分限。

例

设 D 为 xy 平面上由 x = 0, x = 1, x = y, x = y - 1 围成的区域,定义随机变量 X, Y 的联合概率密度如下

$$f(x,y) = \begin{cases} c, & (x,y) \in D, \\ 0, &$$
其他

(a) 确定常数 c; (b) 求 X, Y 的边缘概率密度 $f_X(x)$, $f_Y(y)$ 。

边缘概率密度

$$1 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \, dx \, dy = \iint_{D} c \, dx \, dy = c$$

$$f_{X}(x) = \int_{-\infty}^{+\infty} f(x, y) \, dy = \int_{x}^{x+1} dy = 1, \ x \in [0, 1]$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}x = \begin{cases} \int_0^y \mathrm{d}x = y, & y \in [0, 1] \\ \int_{y-1}^1 \mathrm{d}x = 2 - y, & y \in (1, 2] \\ 0, & \sharp \mathbf{w} \end{cases}$$

举例: 边缘概率密度

例

设(X,Y)的联合概率密度为

$$f(x,y) = \begin{cases} \frac{21}{4}x^2y, & x^2 \le y \le 1\\ 0, &$$
其他

求 X, Y 的边缘概率密度 $f_X(x), f_Y(y)$ 。

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}y = \int_{x^2}^{1} \frac{21}{4} x^2 y \, \mathrm{d}y = \frac{21}{8} x^2 (1 - x^4), \quad x \in [-1, 1]$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}x = \int_{-\sqrt{y}}^{\sqrt{y}} \frac{21}{4} x^2 y \, \mathrm{d}x = \frac{7}{2} y^{\frac{5}{2}}, \qquad y \in [0, 1]$$

二维正态分布

定义(二维正态分布)

若二维随机变量 (X,Y) 的概率密度为

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{\frac{-1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} -2\rho\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right]\right\}$$

其中 $\mu_1, \mu_2, \sigma_1, \sigma_2, \rho$ 为常数,且 $\sigma_1 > 0, \sigma_2 > 0, |\rho| < 1$,则称 (X, Y) 服从二维正态分布 $N(\mu_1, \sigma_1^2; \mu_2, \sigma_2^2; \rho)$ 。

二维正态分布 N(0,1;0,1;0)

二维正态分布

一维随机变量与联合分布函数 一维离散刑随机变量 一维连续刑随机变量

二维正态分布的边缘概率分布

令
$$u = \frac{x - \mu_1}{2}$$
, $v = \frac{y - \mu_2}{2}$, 则 X 的边缘概率密度为

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}y$$

$$= \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \int_{-\infty}^{+\infty} \exp\left\{\frac{-1}{2(1-\rho^2)} \left[u^2 - 2\rho u v + v^2\right]\right\} \sigma_2 \,\mathrm{d}v$$

$$= \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}} \int_{-\infty} \exp\left\{\frac{1}{2(1-\rho^{2})} \left[u^{2}-2\rho u v+v^{2}\right]\right\} \sigma_{2} dv$$

$$= \frac{1}{2\pi\sigma_{1}\sqrt{1-\rho^{2}}} \int_{-\infty}^{+\infty} \exp\left\{\frac{-1}{2(1-\rho^{2})} \left[u^{2}(1-\rho^{2})+(v-\rho u)^{2}\right]\right\} dv$$

$$= \frac{2\pi\sigma_1\sqrt{1-\rho^2}}{2\pi\sigma_1\sqrt{1-\rho^2}} \int_{-\infty}^{+\infty} \exp\left\{\frac{2(1-\rho^2)}{2} \left(\frac{(v-\rho u)^2}{2(1-\rho^2)}\right)\right\} dv$$

$$= \frac{1}{2\pi\sigma_1\sqrt{1-\rho^2}} \exp\left(\frac{-u^2}{2}\right) \int_{-\infty}^{+\infty} \exp\left\{-\frac{(v-\rho u)^2}{2(1-\rho^2)}\right\} dv$$

二维正态分布的边缘概率分布

令
$$t = \frac{v - \rho u}{\sqrt{1 - \rho^2}}$$
 则继续上一页的推导,有
$$f_X(x) = \frac{1}{2\pi\sigma_1\sqrt{1 - \rho^2}} \exp(\frac{-u^2}{2}) \int_{-\infty}^{+\infty} \exp(-\frac{t^2}{2}) \sqrt{1 - \rho^2} \, \mathrm{d}t$$

$$= \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left(\frac{-u^2}{2}\right) \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} \, \mathrm{d}t$$

$$= \frac{1}{\sqrt{2\pi}\sigma_1} e^{\frac{-(x-\mu_1)^2}{2\sigma_1^2}}$$

$$= N(\mu_1, \sigma_1^2)$$
 同理可得 $f_Y(y) = N(\mu_2, \sigma_2^2)_{\circ}$

二维正态分布的边缘概率分布

- 二维正态分布的边缘概率分布仍为正态分布。
- 注意两个边缘概率密度均与 ρ 无关。

二维均匀分布

定义(二维均匀分布)

设 (X, Y) 为二维随机变量,取值于平面上有界区域 $G \in \mathbb{R}^2$ 中,面积为 A,其概率密度为

$$f(x,y) = \begin{cases} \frac{1}{A}, & (x,y) \in G \\ 0, &$$
其他

称 (X,Y) 在区域 G 上服从二维均匀分布。

二维均匀分布描述了随机变量在取值空间的每一点概率密度都是相等的。

举例:二维均匀分布

例 (换乘问题)

某人乘甲客车到某站换乘乙客车。已知两车到达该车站的时间 均为等可能地取 8:00 到 8:20 之间, 又客车在此站停 5 分钟, 问该乘客能成功换乘的概率为多少?

• 设乘客到达车站的时间为 $X \in [0, 20]$,所要转乘的客车到达 车站时间为 $Y \in [0, 20]$ 。则 (X, Y) 服从 $[0, 20] \times [0, 20]$ 上的 均匀分布, 概率密度为

$$f(x,y) = \begin{cases} \frac{1}{400}, & (x,y) \in D \\ 0, &$$
其他

• 事件"能成功转乘"为 $G = \{(x,y)|x-y<5\}$,故 $P\{$ 能成功转乘 $\} = \iint_C \frac{1}{400} dx dy = \frac{23}{32}$

$$P\{$$
能成功转乘 $\} = \iint_G rac{1}{400} \, \mathrm{d}x \, \mathrm{d}y = rac{23}{32} \, \mathrm{d}y$

36 / 37

小结

- 二维随机变量与联合分布函数
- ② 二维离散型随机变量
- ③ 二维连续型随机变量