Predicting Home Improvement: Green Or Not?

Amber Rivera

http://bit.ly/ee-upgrades

Predict whether a household will choose an energy efficient upgrade

Building characteristics

Census information

Simulated energy usage

The Data

- 18,000 homes, 360 features
 - 30% numerical Last Sale Price
 - 70% categorical AC Type, Garage
- New features:
 - # upgrades in neighborhood
 - # permits since purchase
- Only 9% of homes in positive class
 - Tried upsampling minority class
 - Random Over Sampling
 - SMOTE
 - Downsampling to 50/50 generalized best!

Finding The Best Model

Random Forest (200 trees)

- Binary classification; 30% holdout
- Evaluated with Recall metric
- Seeking stability and interpretability

Final results:					
Confusion Matrix		precision	recall	f1-score	support
TP: 342					
FP: 2193	0	0.94	0.53	0.68	4716
	1	0.13	0.70	0.23	490
TN: 2523					
avg / tota	al	0.87	0.55	0.64	5206

Making Predictions

- TP: Has upgraded; Predicted 'Yes'
- FP: Has not upgraded; Predicted 'Yes'
- X TN: Has not upgraded; Predicted 'No'
- X FN: Has upgraded; Predicted 'No'

Business Implications:

- Volume of 500 jobs per year
- TP: (111) * (revenue cost)
- FP: (389) * (cost)
- = 13% potential increase in profit

Next Iteration

- Supervised
 - Incorporate behavioral information
 - Develop more sophisticated handling of class imbalance
- Unsupervised
 - Clustering algorithms
 - Outlier detection algorithms

More at: http://bit.ly/ee-upgrades

Contact: linkedin.com/in/amberjrivera

Technologies Used:

- Python, Pandas, NumPy for data analysis
- Matplotlib, Seaborn , Google for visualization
- Scikit-learn and imbalanced-learn for machine learning
 - Check out this gist I co-wrote on Sklearn's Pipeline constructor: http://bit.ly/Pipeline-gist