LINGXIAO ZHAO

http://lingxiaozhao.com lingxiao@cmu.edu

EDUCATION

• Carnegie Mellon University	Pittsburgh, PA, USA
Ph.D. in Machine Learning Joint Public Policy	Aug. 2018 to Now
Advisors: Prof. Leman Akoglu, Prof. Aarti Singh	
• Carnegie Mellon University	Pittsburgh, PA, USA
M.S. in Electrical and Computer Engineering	Aug. 2016 to Dec. 2017
GPA: 3.90/4.00	
• Xi'an Jiaotong University	Xi'an, Shaanxi, China
B.S. in Electrical Engineering	Aug. 2012 to July 2016
GPA: 91.05/100, Rank: 7/370	
VORKING EXPERIENCE	

WORKING EXPERIENCE

• Reserach Intern at Nvidia Advised by Dr. Haggai Maron.	May 2022 to Aug. 2022
• Reserach Intern at Snap Inc. Advised by Dr. Neil Shah.	May 2021 to Aug. 2021
• Research Intern at IBM Advised by Dr. Charu Aggarwal.	May 2020 to Aug. 2020

RESEARCH INTEREST

Graph is a powerful representation that captures interactions between identities. GNNs achieve stateof-art performance in a variety of graph-based tasks, while being not well-understood. My work focuses on solving some fundamental problems of GNNs, such as breaking depth-limitation, relaxing homophily requirement, learning better structure, and improving expressiveness.

PUBLICATIONS

Preprint Papers

1. Sign and Basis Invariant Networks for Spectral Graph Representation Learning, 2022 Derek Lim*, Joshua Robinson*, Lingxiao Zhao, Tess Smidit, Suvrit Sra, Haggai Maron, Stefanie Jegelka. (* equal contribution)

Published Papers

- 1. A Practical, Progressively-Expressive GNN, 2022 NeurIPS Lingxiao Zhao, Neil Shah, and Leman Akoglu
- 2. Hyperparameter Sensitivity in Deep Outlier Detection: Analysis and a Scalable Hyper-Ensemble Solution, 2022 NeurIPS

Xueying Ding, Lingxiao Zhao, Leman Akoglu

- 3. Graph-level Anomaly Detection with Unsupervised GNNs, 2022 ICDM Lingxiao Zhao, Saurabh Sawlani, Arvind Srinivasan, Leman Akoglu
- 4. Density of States for Fast Embedding Node-Attributed Graphs 2022 Knowledge and Information System Joural Lingxiao Zhao, Saurabh Sawlani, Leman Akoglu
- 5. From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness, 2022 ICLR Lingxiao Zhao, Wei Jin, Leman Akoglu, Neil Shah
- 6. Graph Condensation for Graph Neural Networks, 2022 ICLR Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, Neil Shah
- 7. On Using Classification Datasets to Evaluate Graph Outlier Detection: Peculiar Observations 2021 Big Data Journal

Lingxiao Zhao, Leman Akoglu

- 8. Fast Attributed Graph Embedding via Density of States , **2021 ICDM** Saurabh Sawlani, **Lingxiao Zhao**, Leman Akoglu
- 9. Graph unrolling networks: Interpretable neural networks for graph signal denoising 2021 IEEE Transactions on Signal Processing Siheng Chen, Yonina C. Eldar, Lingxiao Zhao
- 10. Beyond Homophily in Graph Neural Networks: Limitations and Effective Designs, **2020 NeurIPS**Jiong Zhu, Yujun Yan, **Lingxiao Zhao**, Mark Heimann, Leman Akoglu, Danai Koutra
- 11. Connecting Graph Convolutional Net and Graph-Regularized PCA, **2020 ICML Workshop** Lingxiao Zhao, Leman Akoglu
- 12. PairNorm: Tackling Oversmoothing in GNNs, **2020 ICLR** Lingxiao Zhao, Leman Akoglu
- 13. A Quest for Structure: Jointly Learning Graph and Semi-Supervised Classification, 2018 CIKM Xuan Wu*, Lingxiao Zhao*, Leman Akoglu. (* equal contribution)

SELECTED RESEARCH PROJECTS

From Stars to Subgraphs: Uplifting Any GNN

Mar. 2021 to Oct. 2021

Proposed the first general framework to boost expressiveness of any GNN

- Designed a general framework to uplift any GNN, by generalizing MPNN's aggregation field from stars to subgraphs and encoding subgraphs with the (base) GNN.
- Proved the expressiveness is strictly better than 1-WL, while being not less powerful than 3-WL.
- Designed effective and efficient realizations: different encodings and distance-to-centroid feature.
- Designed SubgraphDrop that greatly reduces memory cost and still keeps same performance.

Tackling oversmoothing problem in GNNs

March 2019 to Sept. 2019

Proposed the first normalization layer in GNNs, with Prof. Leman Akoglu

- Studied oversmoothing thoroughly with SGC, which decouples the effect of oversmoothing on performance drop of increasing layers from overfitting and vanishing gradient problems.
- Proposed an efficient and effective normalization layer, PairNorm, that "pushes" oversmoothed node representations away from each other. PairNorm greatly improves robustness of depth.
- Studied a new setting: Semi-Supervised Learning with large percentage missing feature problem, where PairNorm greatly boost performance for all three types of GNN (SGC,GCN,GAT).

Optimal Graph Learning for Semi-Supervised Learning Sep. 2017 to Feb. 2018 Supervised By Prof. Leman Akoglu, Project Link: https://pg-learn.github.io

- Designed a hyper-loss over validation set measuring task-based "optimal" graph for SSL.
- Proposed an algorithm minimizing the hyper-loss based on hyper-gradient of the graph.
- Boosted the runtime 10x faster by using tensor-form update and efficient sparse operation.
- Paralleled it by incorporating and modifying HyperBand, an adaptive resource allocation alg.

HONORS and **AWARDS**

SIGIR Student Travel Grant for attending CIKM 2018
2nd Prize in Challenge Cup (National Innovation Competition)
Outstanding Student Pacesetter (Only 10 students in 3800 undergraduates)
National Scholarship (Rank 4/370 and 5/370, respectively)
Oct. 2015, Oct. 2014

• Outstanding Winner (highest) In MCM/ICM¹ (Only 19 teams (0.19%) worldwide) April. 2014

¹The Mathematical Contest in Modeling/The Interdisciplinary Contest in Modeling: comap.com