CAIRO UNIVERSITY COMPUTER ENGINEERING

Assignment #1

Students: Mahmoud Othman Adas {SEC:2, B.N:21} Evram Youssef {SEC:1, B.N:9}

Course: *Digital Communications* – Professor: *Dr. Mai Badawi* Due date: *April 10, 2020*

Part II

Requirement 2

Plot the output of the receive filter for the three mentioned cases.

Answer. Plot 1 shows the output for the 3 cases:

- The receive filter h(t) is a matched filter with unit energy.
- The receive filter h(t) is not existent (i.e. $h(t) = \delta(t)$).
- The receive filter h(t) has the givent impulse response.

Plot 2 shows the original signal.

Plot 1: The output of the receive filter for the 3 cases.

Plot 2: The original signal.

Requirement 3

On the same figure, plot the Bit Error Rate (BER) Vs E/N_0 (where E is the average symbol energy) for the three mentioned cases. Take E/No to be in the range -10 dB: 20:dB. (Use a semilogy plot).

Answer. Plots 3, 4 and 5 are the required plots.

Plot 3: The receive filter h(t) is a matched filter with unit energy.

Plot 4: The receive filter h(t) is not existent (i.e. $h(t) = \delta(t)$).

Plot 5: The receive filter h(t) has the givent impulse response.

Requirement 4

Is the BER an increasing or a decreasing function of E/N_0 ? Why?

Answer. BER is a decaying curve. As E/N_0 increases the signal to noise ratio increases (signal power \gg noise). So the bit rate error decreases.

Requirement 5

Which case has the lowest BER? Why?

Answer. From the plotted graphs, the third matched filter (MF = $\sqrt{3}$) has the best BER, it reaches '0' faster than the other two cases, nearly at SNR = 0

Part I

The following pages are the scanned answers for part 1.

