Package 'FBCanalysis'

March 16, 2022

Title Develop and evaluate time series data models based on fluctuation based clustering **Version** 0.0.0.9000

Date 2020-03-16

Suggests rmarkdown, knitr

Description The package includes tools for performing fluctuation-based clustering (FBC) on biological time series data, primarily for monitoring data fluctuations in asthmatics. The package includes functions for registering and processing time series data, developing matching clustering models based on Earth Mover's distances, and evaluating the models through enrichment analysis, stability after random data removal, or other frequently used cluster stability metrics.

```
License MIT + file LICENSE
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.2
URL https://github.com/MrMaximumMax/FBCanalysis
BugReports https://github.com/MrMaximumMax/FBCanalysis/issues
Depends R (>= 4.1.1)
Imports arsenal,
     cluster,
     clValid,
     dplyr,
     emdist,
     FCPS,
     glmnet,
     imputeTS,
     lubridate,
     mclust,
     RankAggreg,
     readr,
     stats,
     utils
VignetteBuilder knitr
```

2 add_clust2enrich

R topics documented:

	add_clust2enrich	2
	add_clust2ts	3
	add_enrich	3
	clust_matrix	4
	clValid_flow	4
	emd_heatmap	5
	emd_matrix	6
	enr_obs_clust	6
	init_clValid	7
	jaccard_run_cognate	7
	jaccard_run_emd	8
	max_fluc	9
	patient_boxplot	10
	patient_hist	
	patient_list	
	patient_ts_plot	
	rnd_dat_rm	
	sim_jaccard_cognate	
	sim_jaccard_emd	
	sim_sample_enr	
	znorm	15
Index		16

add_clust2enrich

Add clustering assignments to enrichment data frame

Description

Add clustering assignments to enrichment data frame

Usage

```
add_clust2enrich(enrich, clustdat)
```

Arguments

enrich Preprocessed enrichment data frame (also see function: add_enrich)
clustdat Object of type list storing clustering data (also see function: clust_matrix)

Value

Processed enrichment data frame with added column indicating cluster assignments

```
list <- patient_list('.../ts_demofiles1') #files can be drawn from GitHub demo files (https://github.com/MrMax
#Sampling frequency is supposed to be daily
clustering <- clust_matrix(matrix, method = "kmeans", nclust = 3)
enr <- add_enrich(list, '.../enrichment_dat.csv') #file can be drawn from GitHub demo files
enr <- add_clust2enrich(enr, clustering)</pre>
```

add_clust2ts 3

add_clust2ts	Add clustering assignments to time series data	
--------------	--	--

Description

Add clustering assignments to time series data

Usage

```
add_clust2ts(plist, clustdat)
```

Arguments

plist List storing patient time series data (also see function: patient_list)

clustdat Object of type list storing clustering data (also see function: clust_matrix)

Value

Processed data frame storing time series data with added column indicating cluster assignments

Examples

```
list <- patient_list('.../ts_demofiles1') #files can be drawn from GitHub demo files (https://github.com/MrMax
#Sampling frequency is supposed to be daily
clustering <- clust_matrix(matrix, method = "kmeans", nclust = 3)
ts <- add_clust2ts(list, clustering)</pre>
```

add_enrich

Add enrichment data and preprocess for analysis

Description

Add enrichment data and preprocess for analysis

Usage

```
add_enrich(plist, path)
```

Arguments

plist List storing patient time series data (also see function: patient_list)

path Path where enrichment csv file is stored

Value

Processed data as object of type data frame; Enrichment data Patient_IDs are matched with Time Series Data List Patient IDs; In case it was indicated, NA values in the enrichment data are filled up by random sampling

4 clValid_flow

Examples

```
list <- patient_list('.../ts_demofiles1') #files can be drawn from GitHub demo files (https://github.com/MrMax
#Sampling frequency is supposed to be daily
enr <- add_enrich(list, '.../enrichment_dat.csv') #file can be drawn from GitHub demo files</pre>
```

clust_matrix

Cluster Earth Mover Distance Square Matrix data

Description

Cluster Earth Mover Distance Square Matrix data

Usage

```
clust_matrix(matrix, method, nclust, plotclust)
```

Arguments

matrix	Object of type matrix storing Earth Mover's Distances for patient time series data distribution pairs
method	Clustering method (hierarchical, kmeans, diana, fanny, som, modelbased, sota, pam, clara)
nclust	Number of clusters (if not specified, user will be asked in the terminal)

TRUE/FALSE if clustering data should be visualized (TRUE by default)

Value

plotclust

Object of type list storing cluster data and clustering assignments for the Patient_IDs from the Earth Mover's Distance matrix

Examples

```
list <- patient_list('.../ts_demofiles1') #files can be drawn from GitHub demo files (https://github.com/MrMax
#Sampling frequency is supposed to be daily
matrix <- emd_matrix(list, "FEV1")
clustering <- clust_matrix(matrix, method = "hierarchical", nclust = 2)</pre>
```

clValid_flow Interactive console workflow to calculate and evaluate cluster validation measures

Description

Interactive console workflow to calculate and evaluate cluster validation measures

```
clValid_flow(matrix, par)
```

emd_heatmap 5

Arguments

matrix Earth Mover's Distance Matrix for processed patient time series data (also see

functions: emd_matrix, patient_list)

par Object of type list storing clustering methods and cluster range of interest; ini-

tialized via function: init_clValid

Value

Object of type list storing chosen clustering method and number of clusters (can be then used for function clust_matrix)

Examples

```
list <- patient_list('.../ts_demofiles2') #file can be drawn from GitHub demo files (https://github.com/MrMaxi
#Sampling frequency is twice daily
distmat <- emd_matrix(list, "PEF", maxIter = 5000)
parameters <- init_clValid()
output <- clValid_flow(distmat, parameters)
clustdat <- clust_matrix(distmat, output$method, as.numeric(output$clust_num))</pre>
```

emd_heatmap

Visualize an Earth Mover's Distance Square Matrix as a heatmap

Description

Visualize an Earth Mover's Distance Square Matrix as a heatmap

Usage

```
emd_heatmap(input, parameter)
```

Arguments

input Earth Mover's Distance Matrix or list storing patient time series data (also see

function: patient_list(path))

parameter In case list is input, the parameter of interest from time series data list

Value

Visualized Earth Mover's Distance Matrix as a heatmap

```
list <- patient_list('.../ts_demofiles1') #files can be drawn from GitHub demo files (https://github.com/MrMax
#Sampling frequency is supposed to be daily
matrix <- emd_matrix(list, "FEV1")
emd_heatmap(matrix)</pre>
```

enr_obs_clust

	nerate a Earth Mover's Distance Matrix out of time series data list ries
ent	ries

Description

Generate a Earth Mover's Distance Matrix out of time series data list entries

Usage

```
emd_matrix(plist, parameter, maxIter)
```

Arguments

plist List storing patient time series data (also see function: patient_list(path))

parameter Parameter of interest to determine Earth Mover's Distances between distribu-

tions

maxIter Maximum of iterations to calculate Earth Mover's Distance (default: 500)

Value

Earth Mover's Distance Square Matrix of type matrix

Examples

```
list <- patient_list('.../ts_demofiles1') #files can be drawn from GitHub demo files (https://github.com/MrMax
#Sampling frequency is supposed to be daily
matrix <- emd_matrix(list, "FEV1")</pre>
```

enr_obs_clust

Observe specific cluster for overview and p-values

Description

Observe specific cluster for overview and p-values

Usage

```
enr_obs_clust(ts.dat, enrich, clustno)
```

Arguments

ts.dat Processed data frame storing time series data and cluster assignments (also see

function: add_clust2ts)

enrich Processed data frame storing enrichment data and cluster assignments (also see

function: add_clust2enrich)

clustro Cluster number of interest

init_clValid 7

Value

Terminal output presenting summary of time series and enrichment data with corresponding p-values

Examples

```
list <- patient_list('.../ts_demofiles1') #files can be drawn from GitHub demo files (https://github.com/MrMax
#Sampling frequency is supposed to be daily
clustering <- clust_matrix(matrix, method = "kmeans", nclust = 3)
enr <- add_enrich(list, '.../enrichment_dat.csv') #file can be drawn from GitHub demo files
enr <- add_clust2enrich(enr, clustering)
ts <- add_clust2ts(list, clustering)
enr_obs_clust(ts, enr, 1)</pre>
```

init_clValid

Initialize Cluster Validation Measure Analysis in the context of Fluctuation Based Clustering (FBC) analysis

Description

Initialize Cluster Validation Measure Analysis in the context of Fluctuation Based Clustering (FBC) analysis

Usage

```
init_clValid()
```

Value

Object of type list storing cluster method(s) and number of cluster range of interest (to be used for function: clValid_flow)

Examples

```
init_clValid
```

jaccard_run_cognate

#' Simulate random data removal from time series data list and determine Jaccard index via Cognate Cluster approach for multiple random data removal steps

Description

#' Simulate random data removal from time series data list and determine Jaccard index via Cognate Cluster approach for multiple random data removal steps 8 jaccard_run_emd

Usage

```
jaccard_run_cognate(
  plist,
  parameter,
  n_simu,
  method,
  clust_num,
  n_clust,
  range
)
```

Arguments

plist Object of type list storing patient time series data (also see function: patient_list)

parameter Parameter of interest in time series data list

n_simu Number of simulations

method Clustering method (also see function: clust_matrix)

clust_num Cluster of interest
n_clust Number of clusters

range Range to simulate random data removal (e.g. c(0.1,0.2,0.5,0.7,0.8))

Value

Object of type list storing Jaccard indices for each indicated random data removal step and visualized results in a boxplot

Examples

```
list <- patient_list('.../ts_demofiles1') #files can be drawn from GitHub demo files (https://github.com/MrMax
#Sampling frequency is supposed to be daily
output <- jaccard_run_cognate(list,"PEF",10,"hierarchical",1,3,c(0.005,0.01,0.05,0.1,0.2))</pre>
```

jaccard_run_emd

#' Simulate random data removal from time series data list and determine Jaccard index via Earth Mover's Distance approach for multiple random data removal steps

Description

#' Simulate random data removal from time series data list and determine Jaccard index via Earth Mover's Distance approach for multiple random data removal steps

```
jaccard_run_emd(plist, parameter, n_simu, method, clust_num, n_clust, range)
```

max_fluc 9

Arguments

plist Object of type list storing patient time series data (also see function: patient_list)

parameter Parameter of interest in time series data list

n_simu Number of simulations

method Clustering method (also see function: clust_matrix)

clust_num Cluster of interest
n_clust Number of clusters

range Range to simulate random data removal (e.g. c(0.1,0.2,0.5,0.7,0.8))

Value

Object of type list storing Jaccard indices for each indicated random data removal step and visualized results in a boxplot

Examples

```
list <- patient_list('.../ts_demofiles1') #files can be drawn from GitHub demo files (https://github.com/MrMax
#Sampling frequency is supposed to be daily
output <- jaccard_run_emd(list,"PEF",10,"hierarchical",1,3,c(0.005,0.01,0.05,0.1,0.2))</pre>
```

max_fluc Determine pair of maximum fluctuation difference in a list storing time series data

Description

Determine pair of maximum fluctuation difference in a list storing time series data

Usage

```
max_fluc(plist, parameter)
```

Arguments

plist List storing patient time series data (also see function: patient_list(path))

parameter Parameter of interest from time series data list

Value

Console output with Patient_ID pair, corresponding Earth Mover's Distance and visualized boxplot of both time series data distributions

```
list <- patient_list('.../ts_demofiles1') #files can be drawn from GitHub demo files (https://github.com/MrMax
#Sampling frequency is supposed to be daily
matrix <- emd_matrix(list, "FEV1")
max_fluc(list, "PEF")</pre>
```

10 patient_hist

patient_boxplot	Visualize patient(s) time series data in a boxplot for indicated parameter
-----------------	--

Description

Visualize patient(s) time series data in a boxplot for indicated parameter

Usage

```
patient_boxplot(plist, patients, parameter, normalized)
```

Arguments

plist List storing patient time series data (also see function: patient_list(path))

patients Patient_ID(s) referring to (a) list element; can be single ID or multiple IDs (also

see function: patient_list(path))

parameter Parameter of interest in list element(s)

normalized TRUE/FALSE if z-normalized (TRUE by default)

Value

Visualized patient(s) time series data in a boxplot for indicated parameter

Examples

```
list <- patient_list('.../ts_demofiles1') #files can be drawn from GitHub demo files (https://github.com/MrMax
#Sampling frequency is supposed to be daily
patient_boxplot(list,c("ID_2","testpat_1","testpat_2","a301"), "FEV1")</pre>
```

patient_hist	Visualize patient time series data in a histogram for indicated param-
	eter

Description

Visualize patient time series data in a histogram for indicated parameter

Usage

```
patient_hist(plist, Patient_ID, parameter, normalized)
```

Arguments

plist	List storing patient time series data (also see function: patient_list(path))
Patient_ID	Patient ID referring to a list element (also see function: patient list(path))

parameter Parameter of interest in list element

normalized TRUE/FALSE if z-normalized (TRUE by default)

patient_list 11

Value

Visualized patient time series data in a histogram for indicated parameter

Examples

```
list <- patient_list('.../ts_demofiles1') #files can be drawn from GitHub demo files (https://github.com/MrMax
#Sampling frequency is supposed to be daily
patient_hist(list,"testpat_1","PEF")</pre>
```

patient_list

Process patient time series data by interpolation options and store data in an object of type list

Description

Process patient time series data by interpolation options and store data in an object of type list

Usage

```
patient_list(path)
```

Arguments

path

Path where csv file(s) are stored (only folder, not specific file(s))

Value

Object of type list storing patient time series data

Examples

list <- patient_list('.../ts_demofiles1') #files can be drawn from GitHub demo files (https://github.com/MrMax
#Sampling frequency is supposed to be daily</pre>

patient_ts_plot

Visualize patient time series data in a time series plot for indicated parameter

Description

Visualize patient time series data in a time series plot for indicated parameter

```
patient_ts_plot(plist, Patient_ID, parameter, normalized)
```

12 rnd_dat_rm

Arguments

plist List storing patient time series data (also see function: patient_list(path))

Patient_ID Patient_ID referring to a list element (also see function: patient_list(path))

parameter Parameter of interest in list element

normalized TRUE/FALSE if z-normalized (TRUE by default)

Value

Visualized patient time series data in a time series plot for indicated parameter

Examples

```
list <- patient_list('.../ts_demofiles1') #files can be drawn from GitHub demo files (https://github.com/MrMax
#Sampling frequency is supposed to be daily
patient_ts_plot(list,"testpat_1","PEF")</pre>
```

rnd_dat_rm

Remove random data from time series data list

Description

Remove random data from time series data list

Usage

```
rnd_dat_rm(plist, removal)
```

Arguments

plist Object of type list storing patient time series data (also see function: patient_list)

removal Amount of data removal (0 = 0%, 1 = 100%)

Value

Object of type list storing patient time series data with indicated amount of data removed randomly

```
list <- patient_list('.../ts_demofiles1') #files can be drawn from GitHub demo files (https://github.com/MrMax
#Sampling frequency is supposed to be daily
list_rm <- rnd_dat_rm(testlist, 0.95)</pre>
```

sim_jaccard_cognate 13

-3 - 0	Simulate random data removal from time series data list and determine Jaccard index via Cognate Cluster approach
--------	---

Description

Simulate random data removal from time series data list and determine Jaccard index via Cognate Cluster approach

Usage

```
sim_jaccard_cognate(plist, parameter, removal, n_simu, method, n_clust, Iter)
```

Arguments

plist	Object of type list storing patient time series data (also see function: patient_list)
parameter	Parameter of interest in time series data list
removal	Amount of random data removal to determine Jaccard index
n_simu	Number of simulations
method	Clustering method (also see function: clust_matrix)
n_clust	Number of clusters (also see function: clust_matrix)
Iter	Maximum iterations to determine Earth Mover's Distances (also see function: emd_matrix): default is 5.000 for this function

Value

Object of type matrix storing received Jaccard indices for indicated amount of random data removal for all clusters

Examples

```
list <- patient_list('.../ts_demofiles1') #files can be drawn from GitHub demo files (https://github.com/MrMax
#Sampling frequency is supposed to be daily
output <- sim_jaccard_cognate(list, "PEF", 0.05, 10, "hierarchical", 2, 1000)</pre>
```

sim_jaccard_emd	Simulate random data removal from time series data list and determine
	Jaccard index via Earth Mover's Distance approach

Description

Simulate random data removal from time series data list and determine Jaccard index via Earth Mover's Distance approach

```
sim_jaccard_emd(plist, parameter, removal, n_simu, method, n_clust, Iter)
```

14 sim_sample_enr

Arguments

plist	Object of type list storing patient time series data (also see function: patient_list)
parameter	Parameter of interest in time series data list
removal	Amount of random data removal to determine Jaccard index
n_simu	Number of simulations
method	Clustering method (also see function: clust_matrix)
n_clust	Number of clusters (also see function: clust_matrix)

Iter Maximum iterations to determine Earth Mover's Distances (also see function:

emd_matrix); default is 5,000 for this function

Value

Object of type matrix storing received Jaccard indices for indicated amount of random data removal for all clusters

Examples

```
list <- patient_list('.../ts_demofiles1') #files can be drawn from GitHub demo files (https://github.com/MrMax
#Sampling frequency is supposed to be daily
output <- sim_jaccard_emd(list, "PEF", 0.05, 10, "hierarchical", 2, 1000)</pre>
```

sim_sample_enr	Simulate random sampling for NA entries in enrichment data and
	check stability of resulting p-values for the enrichment parameters

Description

Simulate random sampling for NA entries in enrichment data and check stability of resulting p-values for the enrichment parameters

Usage

```
sim_sample_enr(plist, path, clustdat, clustno, n_sim)
```

Arguments

plist	List storing patient time series data (also see function: patient_list)
-------	---

path Path where enrichment csv file is stored

clustdat Object of type list storing clustering data (also see function: clust_matrix)

clustro Cluster number of interest n_sim Number of simulations

Value

Object of type list storing the received p-values for each parameter in a vector and boxplot visualizing the received p-values znorm 15

Examples

```
path <- ".../enrichment_dat.csv" #file can be drawn from GitHub demo files
list <- patient_list('.../ts_demofiles1') #files can be drawn from GitHub demo files (https://github.com/MrMax
#Sampling frequency is supposed to be daily
test <- sim_sample_enr(list,path,clustering,1,100)
sim_sample_enr <- function(plist, path, clustdat, clustno, n_sim)</pre>
```

znorm

z-normalise data

Description

Function applicable on any numeric distribution of data and z-normalize them.

Usage

znorm(data)

Arguments

data

Numeric distribution; may be stored in an object of type vector, matrix or data frame

Value

z-normalized distribution of input

```
random_distribution <- runif(n = 50, min = 1, max = 10)
znorm_distribution <- znorm(random_distribution)</pre>
```

Index

```
add_clust2enrich, 2, 6
add_clust2ts, 3, 6
add_{enrich}, 2, 3
clust_matrix, 2, 3, 4, 5, 8, 9, 13, 14
clValid_flow, 4, 7
emd_heatmap, 5
emd_matrix, 5, 6, 13, 14
enr_obs_clust, 6
init_clValid, 5, 7
jaccard_run_cognate, 7
jaccard_run_emd, 8
max_fluc, 9
\verb|patient_boxplot|, \\ 10
patient_hist, 10
patient_list, 3, 5, 8, 9, 11, 12-14
patient_list(path), 5, 6, 9, 10, 12
patient\_ts\_plot, \\ 11
\verb"rnd_dat_rm", 12"
sim_jaccard_cognate, 13
sim\_jaccard\_emd, 13
sim_sample_enr, 14
znorm, 15
```