Project 5 Taxi vận chuyển người kết hợp hàng hóa

Trần Huy Hùng Đỗ Ngọc Sơn

Đại học Bách Khoa Hà Nội

Ngày 10 tháng 6 năm 2020

Nội dung

- Giới thiệu bài toán
- Mô hình bài toán
- Giải thuật chính xác
- 4 Giải thuật heuristics
- Thực nghiệm
- 6 Kết luận và phân công công việc

Nội dung

- Giới thiệu bài toán
- Mô hình bài toán
- Giải thuật chính xác
- Giải thuật heuristics
- Thực nghiệm
- 6 Kết luận và phân công công việc

Giới thiệu bài toán

Bài toán taxi vận chuyển người kết hợp hàng hóa:

- Có N hành khách (1,2,..., N) và M gói hàng (N+1,N+2,...,N+M):
 - Hành khách (hoặc gói hàng) i có điểm đón i và điểm trả i + N + M (u = 1, 2, ..., N + M).
 - Gói hàng i có khối lượng q_i (i = N + 1, ..., N + M).
- Có K xe taxi (1,2,..., K):
 - Các taxi cùng xuất phát từ điểm 0, thực hiện các yêu cầu chở khách và hàng, rồi quay về điểm 0.
 - Xe taxi k có thể vận chuyển cùng lúc 1 hành khách và tối đa Q_k khối lượng hàng (k=1,2,...,K).
 - Taxi đã đón hành khách thì phải đi đến điểm trả khách đó ngay lập tức.
- d_{ij} là khoảng cách từ điểm i đến điểm j (i, j = 0, ..., 2N + 2M).

<u>Yêu cầu:</u> Tính toán phương án vận chuyển sao cho quãng đường di chuyển <u>dài nhất</u> của các xe là <u>ngắn nhất</u>.

Giới thiệu bài toán

Hình: Lộ trình đón trả người kết hợp hàng hóa

Nội dung

- Giới thiệu bài toán
- 2 Mô hình bài toán
- Giải thuật chính xác
- Giải thuật heuristics
- Thực nghiệm
- 6 Kết luận và phân công công việc

Tham số

- Tập 2N + 2M + 2K điểm:
 - Hành khách i: điểm đón i và điểm trả i+N+M (i=1,2,...,N)
 - Gói hàng j: điểm lấy hàng j và điểm trả j + N + M (j = N + 1, N + 2, ..., N + M)
 - 2K điểm logic 2N+2M+1, 2N+2M+2, ..., 2N+2M+2K tham chiếu tới điểm xuất phát vật lý 0. Điểm 2N+2M+k tương ứng là điểm bắt đầu, 2N+2M+K+k là điểm kết thúc lộ trình xe thứ k (k=1,2,...,K)
- d_{ij} : Khoảng cách từ điểm i tới điểm j $(i,j \in \{1,2,...,2N+2M+2K\})$
- w_i : Sự thay đổi khối lượng hàng khi đi tới điểm i (i = 1, 2, ..., 2N + 2M + 2K)

$$w_i = egin{cases} q_i & ext{n\'eu} \ N+1 \leq i \leq N+M \ -q_{i-(N+M)} & ext{n\'eu} \ 2N+M+1 \leq i \leq 2N+2M \ 0 & ext{ngược lại} \end{cases}$$

• Q_k : Khối lượng hàng tối đa xe thứ k có thể chở (k = 1, 2, ..., K)

Biến quyết định

• x_{ij} : Biến nhị phân, xác định cung đi từ điểm i đến điểm j có xuất hiện trong lộ trình của 1 trong k xe không $(i, j \in [1..(2N + 2M + 2K)])$

$$x_{ij} = \begin{cases} 1 & \text{n\'eu cung } (i,j) \text{ c\'o trong } \text{l\^o trình của } 1 \text{ xe} \\ 0 & \text{ngược lại} \end{cases}$$
 (1)

- Tại mỗi điểm $i \ (i \in [1..(2N + 2M + 2K)])$:
 - r_i : chỉ số của xe đi qua điểm i trong lộ trình

$$1 \leq r_i \leq K \tag{2}$$

ullet I_i : khoảng cách tích lũy của xe đi từ điếm 0 đến điểm i trong lộ trình

$$0 \le l_i < \infty \tag{3}$$

ullet c_i : khối lượng hàng xe k (đi qua điểm i) còn chịu được khi đi tới điểm i

$$0 \le c_i \le \max_{1 \le k \le K} \{Q_k\} \tag{4}$$

Ràng buộc (ký hiệu P = 2N + 2M)

• Ràng buộc cân bằng luồng vào ra:

$$\sum_{j=1}^{2N+2M+2K} x_{ij} = 1, \quad \forall i \in [1..(P+K)]$$
 (5)

$$\sum_{i=1}^{2N+2M+2K} x_{ij} = 1, \quad \forall j \in [1..P] \cup [(P+K+1)..(P+2K)]$$
 (6)

Xác định r_i:

$$r_{2N+2M+k} = k, \quad \forall k = 1, 2, ..., K$$
 (7)

$$\begin{cases} r_{j} - r_{i} \leq \mu \times (1 - x_{ij}), & \forall j \in [1...P] \cup [(P + K + 1)...(P + 2K)], \\ r_{j} - r_{i} \geq -\mu \times (1 - x_{ij}) & i \in [1...(P + 2K)], i \neq j \end{cases}$$
(8)

401481471717

• Xác định l_i:

$$I_{2N+2M+k} = 0, \quad k \in [1..K]$$
 (9)

$$\begin{cases} I_{j} - I_{i} - d_{ij} \leq \mu \times (1 - x_{ij}), & \forall j \in [1..P] \cup [(P + K + 1)..(P + 2K)], \\ I_{j} - I_{i} - d_{ij} \geq -\mu \times (1 - x_{ij}) & i \in [1..(P + 2K)], i \neq j \end{cases}$$
(10)

Xác định c_i:

$$c_{2N+2M+k} = Q_k, \quad k \in [1..K]$$
 (11)

$$\begin{cases} c_{j} - c_{i} - w_{j} \leq \mu \times (1 - x_{ij}), & \forall j \in [1..P] \cup [(P + K + 1)..(P + 2K)] \\ c_{j} - c_{i} - w_{j} \geq -\mu \times (1 - x_{ij}) & i \in [1..(P + 2K)], i \neq j \end{cases}$$
(12)

 Điểm đón và trả của hành khách i phải thuộc lộ trình của cùng một xe, tương tự với các gói hàng:

$$r_i = r_{i+N+M}, \quad \forall i \in [1..(N+M)]$$
 (13)

• Điểm đón khách phải liền trước điểm trả khách:

$$x_{i,(i+N+M)} = 1, \quad \forall i \in [1..N]$$
 (14)

• Điểm lấy hàng phải ở trước điểm giao hàng:

$$I_i \le I_{i+N+M}, \quad \forall i \in [(N+1)..(N+M)]$$
 (15)

• Khối lượng còn lại của xe tại mọi thời điểm không âm (đã thỏa mãn).

- L: Độ dài của lộ trình xe dài nhất trong K lộ trình
- Ràng buộc xác định lộ trình dài nhất:

$$I_i \le L, \quad \forall i \in [(P + K + 1)..(P + 2K)]$$
 (16)

Hàm mục tiêu

$$L \leftarrow min$$
 (17)

Nội dung

- Giới thiệu bài toán
- 2 Mô hình bài toán
- Giải thuật chính xác
 - Mô hình MIP
 - Thuật toán nhánh cận
- 4 Giải thuật heuristics
- Thực nghiệm
- 6 Kết luận và phân công công việc

Mô hình MIP

- Mô hình MIP đã trình bày ở trên.
- Sử dụng thư viện OR-Tools (Java) để triển khai.

Thuật toán nhánh cận

Phương pháp:

- Khởi tạo: Lời giải rỗng, lộ trình mỗi xe chỉ có điểm đầu 0 và điểm cuối 0.
- Trạng thái nút: Dang xét xe thứ k, đã xây xong lộ trình các xe trước.
- Rẽ nhánh: Thực hiện một trong các thao tác:

 - ullet Chọn 1 gói hàng chưa có xe lấy, thêm điểm lấy hàng vào cuối lộ trình

 - ullet Kết thúc xây lộ trình xe k, chuyển sang xe k+1
- $\underline{\mathsf{T\'{i}a}}$ nhánh: Các nút có lộ trình xe k dài hơn lời giải tốt nhất hiện tại.

Nội dung

- Giới thiệu bài toán
- 2 Mô hình bài toán
- Giải thuật chính xác
- Giải thuật heuristics
 - Giải thuật di truyền
 - Thuật toán tham lam
 - Tìm kiếm cục bộ
- Thực nghiệm
- 6 Kết luận và phân công công việc

Giải thuật di truyền

- Sử dụng giải thuật di truyền cho các bộ dữ liệu kích thước lớn
- Tìm ra lời giải tối ưu cục bộ

Hình: Sơ đồ giải thuật di truyền

Giải thuật di truyền

Toán tử lai ghép: Phép lai ghép làm đổi lại thứ tự của các hành khách trong hành trình

- Chọn ra tập cha mẹ bằng phương pháp tournament
- ullet Đối với từng cặp lời giải, xác suất xảy ra lai ghép là P_c
- Xét cặp lời giải bất kì trong tập cha mẹ gồm lời giải S_p và S_q :
 - Gọi cặp hành trình r_i và r_j $(r_i \in S_p \text{ và } r_j \in S_q)$ là cặp hành trình tương đồng nếu có số hành khách trùng nhau là lớn nhất
 - Sắp xếp lại thứ tự đón các hành khách chung của r_i và r_j trong r_i theo r_j ta được lời giải mới

Toán tử đôt biến:

- Di chuyển một món hàng hóa từ route có độ dài lớn nhất sang route có độ dài nhỏ nhất
- Di chuyển Hoán đổi khách hàng giữa 2 route bất kì

Thuật toán tham lam

Các bước thực hiện:

- Bước 0: Khởi tạo lời giải rỗng.
- Bước 1: Thêm các yêu cầu chuyển hàng:
 - Duyệt qua các gói hàng chưa xử lý.
 - Duyệt tất cả các cặp vị trí (thuộc cùng 1 xe) có thể chèn điểm lấy và điểm giao hàng (mà không vi phạm ràng buộc).
 - Chọn một trong các cặp vị trí làm lộ trình được chèn có độ dài mới là nhỏ nhất.
- Bước 2: Thêm các yêu cầu chuyển người:
 - Duyệt qua các yêu cầu chờ khách chưa xử lý.
 - Duyệt tất cả các vị trí để chèn cặp điểm đón và điểm trả người (mà không vi phạm ràng buộc).
 - Chọn một trong các vị trí làm lộ trình được chèn có độ dài mới là nhỏ nhất.

Độ phức tạp: $O(\max\{M \times (2M + 2N + K)^3, N \times (2M + 2N + K)^2\})$

Thuật toán tham lam

Algorithm 1: Greedy algorithm

```
Input: S: The station of K taxis:
Taxis: List of K taxis;
People: List of N passenger transport requests;
Goods: List of M commodity delivery requests;
Output: K routes which balance the traveling distances of K taxis
mgr \leftarrow Vehicle routing manager for K taxis;
foreach g \in Goods do
      (x_1, x_2) \leftarrow \text{pickup and delivery points of } g;
      foreach Route r_{\nu} \in mgr \ do
             foreach Pair(y_1, y_2) \in r_k do
                    mgr \rightarrow \text{ evaluate inserting } x_1 \text{ behind } y_1, x_2 \text{ behind } y_2;
                    \Rightarrow I_{v_1 v_2}: The new length of route r_k;
      Find pair (y_1, y_2) with no violation and l_{y_1y_2} \leftarrow min;
      mgr \rightarrow insert x_1 behind y_1, x_2 behind y_2;
foreach p \in People do
      (x_1, x_2) \leftarrow \text{pickup and delivery points of } p;
      foreach Route r_{\nu} \in mgr do
             foreach y \in r_k do
                    mgr \rightarrow \text{ evaluate inserting } (x_1, x_2) \text{ behind } y;
                    \Rightarrow I_{y}: The new length of route r_{k};
      Find point y with no violation and l_v \leftarrow min;
      mgr \rightarrow insert(x_1, x_2) behind y;
```

Các bước thực hiện:

- Khởi tạo: Sử dụng thuật toán tham lam đã trình bày.
- Quá trình tìm kiếm:
 - Tìm một lời giải hàng xóm tốt hơn lời giải hiện tại.
 - Nếu không, tìm lời giải tốt nhất trong các hàng xóm, tạm thay lời giải hiện tai.
 - Nếu đã qua một số vòng lặp mà lời giải hiện tại không cải thiện, khởi tạo lại lời giải.
 - Cập nhật lời giải tốt nhất (nếu có thể).
- Lặp lại quá trình trên tới khi chạm số vòng lặp hoặc thời gian chạy tối đa.

Xây dựng tập lời giải hàng xóm:

- Move 1: Dịch vị trí điểm lấy và giao hàng:
 - x_1, x_2 là điểm lấy và giao cùng một gói hàng
 - Chọn 2 điểm y_1, y_2 thuộc cùng lộ trình
 - Bỏ x_1, x_2 khỏi lộ trình hiện tại, chèn x_1 sau y_1, x_2 sau y_2
- Move 2: Dịch vị trí cặp điểm đón trả khách:
 - x_1, x_2 là điểm đón và trả cùng một gói hàng
 - Chọn điểm y bất kỳ trong các lộ trình
 - ullet Bổ x_1,x_2 khỏi lộ trình hiện tại, chèn x_1,x_2 liên tiếp sau y

Hình: Move 1: Dịch vị trí gói hàng

Hình: Move 2: Dịch vị trí hành khách ▗▗<mark>૾ૢ૾</mark>▗ૢ૾ૺ૽ऻॏ

Nội dung

- Giới thiệu bài toán
- Mô hình bài toán
- Giải thuật chính xác
- Giải thuật heuristics
- Thực nghiệm
 - Tham số thuật toán
 - Kết quả thực nghiệm
- 6 Kết luận và phân công công việc

Tham số thuật toán

- Số lần chạy heuristics / bộ dữ liệu: 10
- Tìm kiếm cục bộ:
 - Số vòng lặp: 100
 - Số bước cho phép lời giải tồi: 10
 - Giới hạn thời gian: 5 phút
- Giải thuật di truyền:
 - Kích thước quần thế khởi tạo: 200
 - Số thế hệ: 500
 - Xác suất lai ghép: 0.5
 - Xác suất đột biến: 0.1

Hình: Thực nghiệm giải thuật chính xác

	Kích thước		Giải thuật chính xác					
Bộ dữ liệu			M	IP	Back-tracking			
			f t(ms)		f	t(ms)		
exac_232.txt	N	2		760362	2256.65	14		
	M	3	2256.65					
	K	2						
exac_233.txt	N	2		1067281	2564.64	7		
	M	3	2564.64					
	K	3						
exac_322.txt	N	3		141182	974.56	8		
	M	2	974.56					
	K	2						
exac_433.txt	N	4		TLE	2208.61			
	M	3	TLE			74		
	K	3						

Hình: Minh họa kết quả giải thuật chính xác

Hình: Thực nghiệm giảt thuật di truyền

Bộ dữ liệu	Kích thước		GA					
			f_min	f_max	f_avg	std_dev	t_avg (ms)	
appr_20305.txt	N	20	8358.53	9808.88	9022.37	434.34	2319.9	
	M	30						
	K	5						
appr_30407.txt	N	30	9032.87	10520.07	9973.63	430.23	3044.4	
	M	40						
	K	7						
appr_608010.txt	N	60	2589.53	2704.65	2635.07	36.96	5135.4	
	M	80						
	K	10						
	N	100	21956.22	22468.28	22265.037	162.71	12246.6	
appr_10012010.txt	M	120						
	K	10						
appr_20015020.txt	N	200	18735.04	19475.05	19128.43	283.99	22031	
	M	150						
	K	20						
appr_50020050.txt	N	500	3359.31	3755.33	3629.44	101.78	25432.4	
	M	200						
	K	50						

Hình: Thực nghiệm giải thuật tham lam

Bộ dữ liệu	Kích thước		Greedy					
			f_min	f_max	f_avg	std_dev	t_avg (s)	
appr_20305.txt	N	20	5864.24	6041.44	5923.91	49.96	40.4	
	M	30						
	K	5						
	N	30		6875.4	6580.55	183.37	84	
appr_30407.txt	M	40	6277.56					
	K	7						
appr_608010.txt	N	60	1543.87	1615.34	1577.43	21.94	669.7	
	M	80						
	K	10						
	N	100	10469.24	10781.03	10611.85	96.41	5502.1	
appr_10012010.txt	M	120						
	K	10						
appr_20015020.txt	N	200	2043.31	2093.13	2073.58	16.82	23443	
	M	150						
	K	20						
appr_50020050.txt	N	500	12534.24	12863.59	12687.36	127.06	1234.4	
	M	200						
	K	50						

Hình: Thực nghiệm giải thuật tìm kiếm cục bộ

Bộ dữ liệu	Kích thước		Local search					
27 44 1174			f_min	f_max	f_avg	std_dev	t_avg (s)	
appr_20305.txt	N	20	5434.74	5744.79	5586.46	107.51	17280.6	
	M	30						
	K	5						
	N	30	5646.01	6140.23	5901.66	167.04	56135.8	
appr_30407.txt	M	40						
	K	7						
appr_608010.txt	N	60	1463.55	1550.56	1518.01	29.23	253286.6	
	M	80						
	K	10						
appr_10012010.txt	N	100	12069.64	12488	12256.41	126.7	315169.1	
	M	120						
	K	10						
appr_20015020.txt	N	200	9856.73	10289.45	10125.2	132.77	328774.1	
	M	150						
	K	20						
appr_50020050.txt	N	500	2093.84	2192.67	2135.75	31.91	385086.5	
	M	200						
	K	50						

Hình: So sánh các giải thuật xấp xỉ

Hình: So sánh tất cả giải thuật trên bộ exac

Nội dung

- Giới thiệu bài toán
- Mô hình bài toán
- Giải thuật chính xác
- Giải thuật heuristics
- Thực nghiệm
- 6 Kết luận và phân công công việc

Kết luận

- Mô hình MIP đã đề xuất cho kết quả chính xác, tuy nhiên thời gian chạy lớn hơn rất nhiều so với giải thuật nhánh cận.
- Đối với các bộ dữ liệu kích thước lớn, thuật toán tìm kiểm cục bộ cho hiệu quả tốt nhất

Phân công công việc

- Trần Huy Hùng 20164777
 - Mô hình MIP
 - Triển khai:
 - Thuật toán nhánh cận
 - Thuật toán tham lam
 - Tìm kiếm cục bộ
 - Slide
- Đỗ Ngọc Sơn 20163506
 - Mô hình MIP
 - Triển khai:
 - Giải thuật di truyền
 - Thực nghiệm:
 - Sinh dữ liêu
 - Thống kê và visualize kết quả
 - Slide

