CAP V.- DEFORMACIONES EN EL PLANO Y CILINDROS DE PARED DELGADA

Profesor: Ing. Guido Gomez U.

Dpto de: Ingeniería Mecánica

FCyT- UMSS

DEFORMACIONES EN EL PLANO

DEFORMACIONES EN EL PLANO

La deformación circunferencial afecta ala funcionalidad

EJERCICIOS RESUELTOS

EJERCICIOS RESUELTOS

EJERCICIOS PROPUESTO

Polígono regular

EJERCICIOS PROPUESTOS

RESISTENCIA DE MATERIALES Ingenieria Civil 1er PARCIAL

PREGUNTA 1.-

2.5.- A partir de la figura presentada. Calcular el diámetro del pasador A que soporta la barra AC a cortante simple, si σ_f =2100kg/cm² y un τ_f =0.5 σ_f con un factor de seguridad de 3.

PREGUNTA 1.-

1.3.- Calcular el diámetro del remache que tiene que soportar la acción de las fuerzas ixiales que se presentan en la figura adjunta, para cuyo efecto se tiene los esfuerzos de $\sigma_f = 4200 \text{kg/cm}^2$ y un $\tau_f = 0.5 \sigma_f$, con un factor de seguridad 2.

бf= 4200 Kg/cm2 $P = \frac{7}{A} = \frac{16000}{11 + 60^{2}} = 5,65 \frac{\text{kg}}{\text{cm}^{2}} = 2,1 \text{ E6 kg/cm2}$ $L7, \frac{PP}{25} = \frac{5,65}{2 + 2100} + \frac{60}{2 + 2100} = 0,08 \text{ cm} = 0,8 \text{ mm ho} = 0,15 \text{ mm}$ Comprehamos halgura E = 4 (TC-MIR)=2/14/0 (1695,3347)=6,86/E-4 S= 1,6 = 1760 6,86 E-40=0,13 Te - lo + S = 1 x 60 + 0,13 +8188,62

PREGUNTA 1.-

- 4.10.- Para la figura representada se pide dimensionar:
- a).- El diámetro del perno del pasador A. σ_f =2100kg/cm², τ_f =0.5 σ_f y n=3
- b).- El diámetro del cable con σ_f =2800kg/cm², τ_f =0.5 σ_f y un n=2
- c).- El diámetro de los remaches la unión de la figura para un σ_f =4200kg/cm² y un τ_f =0.5 σ_f con un factor de seguridad de 3.

PREGUNTA 2.-

3.19.- Un miembro compuesto de tres bloques prismáticos es comprimido por una carga **P** a cierta distancia **X**. se pide calcular el valor de dicha carga **P** y la distancia **X** con los siguientes datos: E₁=2.1*10⁶kg/cm², E₂=7*10⁵kg/cm² y E₃= 1.4*10⁶kg/cm² y los esfuerzos admisibles son: σ₁=2100kg/cm², σ₃=700kg/cm² y σ₂=1050kg/cm².

PREGUNTA 3.-

5.12.- Determinar el espesor de la plancha, las longitudes finales y el numero de remaches, para cuyo efecto se tiene los esfuerzos de σ_f =2100kg/cm², τ_f =0.5 σ_f , n=2. Si la presión interna es de 5kg/cm², E=2.1*10 kg/cm², b=80cm μ =0.3.

Diametro remaches= ½"

Pregunta 1.- Hallar la deformación total

Fy=
$$\Upsilon^*$$
Vol= Υ^*A^*y

$$\mathsf{d}\mathsf{E} = \frac{Fy * dy}{A * E}$$

$$\exists Fy*dy = \frac{Fy*dy}{A*E} = \frac{Y*A*y*dy}{A*E} = \frac{Y*l^2}{2E}$$

$$\mathsf{5p} = \frac{P * L}{A * E}$$

 $\Upsilon = 7000 (kg/m3)$

E= 2,1 E6 (kg/cm2

L= 50 cm

P=2000 Kg

A= 2 cm2

Pregunta 4.- Hallar la deformación total

L= 50 cm

P=2000 Kg

d= 2 cm

D= 6 cm

$$\mathsf{5p} = \frac{P * L}{A * E}$$

$$d\mathsf{B} = \frac{F * dy}{Ay * E}$$

$$\pi*Ry^2$$

$$\frac{\frac{D}{2} - d/2}{L} = \frac{Ry - d/2}{y}$$

$$Ry = (\frac{D-d}{2L})Y + d/2$$

$$\mathsf{B} = \int \frac{F * dy}{Ay * E} = \frac{F * dy}{(\pi((\frac{D-d}{2L})Y + \frac{d}{2})^2 * E}$$

