

Soil Information Transfer and Evaluation System (SITES) – Database design and exchange protocols Version 2.0

David Jacquier¹, Peter Wilson¹, Ted Griffin² and Daniel Brough³

CSIRO Land and Water¹
Department of Agriculture and Food, Western Australia²
Department of Environment and Resource Management, Queensland³

June 2012

Enquiries should be addressed to: David Jacquier, Database Manager, National Soil Information CSIRO Land and Water, GPO Box 1666, Canberra, ACT, 2601

Distribution list

Michele Barson Department of Agriculture, Fisheries and Forestry

Mike Grundy CSIRO, Sustainable Agriculture Flagship

National Committee on Soil and Terrain

Copyright and Disclaimer

© 2012 CSIRO To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO.

Important Disclaimer

CSIRO advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it.

Acknowledgements

The authors acknowledge the substantial contribution to the original version of this document by Warwick McDonald, Eddie Peluso, Greg Beeston, Les Heinrich, Liz Kidston, Kerry Rosenthal and Mike Grundy. Finally to CSIRO Land and Water, Department of Agriculture, Forestry and Fisheries and State and Territory representatives who have helped fund or provide input into this updated version.

Preface to Version 2.0

The Soil Information Transfer and Evaluation System (SITES) database schema (ACLEP 1995) was originally developed to overcome problems associated with soil data collation by developing a national standard for data exchange. The SITES schema was adopted for data collation and management by a number of State and Territory agencies responsible for the collection of soil information. It is still currently in use by a several agencies (particularly within Queensland, Western Australia, South Australia, Tasmania, the Northern Territory and CSIRO) albeit with some modification to suit local requirements.

The SITES schema was used in the late 1990's for the collation of national soil site data for the National Land and Water Resources Audit. This collation was used to produce the first national soil attribute maps since the Atlas of Australian Soils (CSIRO Division of Soils 1969). These detailed soil information datasets where used as inputs to assess changes in landscape water and farm nutrient balances and the extent and impact of soil acidification on Agricultural soils (NLWRA 2001).

The rational for updating the SITES schema is a result of:

- Agreement by agencies that the SITES model needed to be modified to be able to cope with temporal variation of soil properties, and
- The need to expand the scope of the traditional site model as outlined in the Australian Soil and Land Survey Field Handbook (NCST 2009) to include soil monitoring, carbon assessment and other types of soil data.

Monitoring of soil condition is being conducted at a number of government levels across the country. The purposes include soil carbon assessment, rate of soil acidification and loss of soil by erosion. To make more effective use of data now and in the future, more specific details pertaining to the geometry and the explicit location of sites and individual monitoring observations need to be captured along with the soils data. Depending on the purpose of the monitoring activity the nature of the site will vary (i.e. $25m \times 25m$ plots, $100m \times 100m$ plots, transects, roadside survey etc).

The Australian Soil Resource Information System (ASRIS) maintained at CSIRO Land and Water, through the Australian Collaborative Land Evaluation Program (ACLEP), uses the SITES schema for a national collation of soil site information. These data will form the basis of new national assessments of soil attributes and condition such as through the Terrestrial Ecosystems Research Network (TERN) Soil and Landscape Facility. In the future soil site data will be used for reporting and forecasting changes to the soil resource. The updated SITES schema provides a reference implementation for new national soil information models and can be used as a transfer standard by the State and Territory agencies as well as by users of national soil information.

The CSIRO National Soil Archive which currently houses over 70,000 soil samples also uses the SITES schema for storing, managing and transferring all site, soil morphology, sample and analytical data.

Currently, data transfer between users will most likely be as whole databases or as exports of tables as individual files (CSV format). In the future it is expected that data will be transferred as XML documents or delivered as on-line web services to provide on demand access to the most recent and best available soil data across the country.

Appendix D documents the changes that have been made to the original SITES schema.

Contents

1.	Intro	oductio	n	6
2.	Sys	tem Def	finition	6
	2.1	Scope.		6
		2.1.1	Data collection standards	6
		2.1.2	Data inclusions	7
		2.1.3	Entity-relationship model	7
		2.1.4	Code sources	7
	2.2	Constr	raints and assumptions	7
		2.2.1	Database design	7
		2.2.2	Primary keys	7
3.	Data	a Model	I	7
	3.1	The en	ntity-relationship model	7
	3.2	Detaile	ed description of entities	g
		3.2.1	State	9
		3.2.2	Agency	9
		3.2.3	Project	
		3.2.4	Officer	<u>و</u>
		3.2.5	Site	g
		3.2.6	Observation	g
		3.2.7	Horizon	10
		3.2.8	Sample	10
		3.2.9	Archive sample	10
		3.2.10	Lab result	10
		3.2.11	Laboratory codes entities	10
4.	DAT	ABASE		11
	4.1	Physica	al Database Overview	11
		4.1.1	Database mapping	11
		4.1.2	Lab result entity	11
		4.1.3	Natural primary keys	11
		4.1.4	Sequence number primary keys	12
		4.1.5	Laboratory data	12
		4.1.6	Laboratory results	12
		4.1.7	Codes table	12
	4.2	Tables	s, Indexes and Views	12
		4.2.1	Database creation script	12
		4.2.2	Description of tables	13
		4.2.3	Table and column names	13
		4.2.4	Data types	13
		4.2.5	Column name prefixes	13
		4.2.6	Unique indexes	13
5	Guid	dalinas	for soil site and sample data	13

	5.1	Background	13
	5.2	General Principles	14
	5.3	Site Types	14
		5.3.1 Sampling Site	15
		5.3.2 Monitoring Site	15
		5.3.3 Reference Site	15
6.	Exch	hange Format	18
	6.1	General Principles	18
	6.2	Database Transfer	18
	6.3	XML Document Transfer	18
Refe	rence	es	19
App	endix	x A – Table creation scripts	20
App	endix	κ B – Table definitions	39
App	endix	C – Codes tables	51
App	endix	CD – Updates to the SITES database schema	117

List of Figures

Figure 1 SITES Entity Relationship diagram	8
List of Tables	
Table 1: Lab Results example	11
Table 2: Lab Method example	11
Table 3: Lab Property example	11
Table 4: Lab Method Type example	11
Table 5: Minimum data set for location and site identification (page references are from the Australian Soil and Land Survey Field Handbook 3rd edition)	14
Table 6: Minimum data set for samples	15
Table 7: Minimum data set for laboratory analyses	15
Table 8: Minimum data set for landform	16
Table 9: Minimum data set for characterising land surface at a site	16
Table 10: Minimum data set for morphology of the soil profile	17

1. INTRODUCTION

Land resource agencies in Australia have been collecting soil and vegetation information in a standard format for a number of years. The *Australian Soil and Land Survey Field Handbook* 3rd edition (NCST 2009) is widely adopted as the Australian standard for describing site and soil attributes. This handbook was largely based on similar publications, and much of the soil information collected prior to the emergence of the Handbook series has also been described in standard formats.

The Soil Information Transfer and Evaluation System (SITES) was developed out of the need for a standard database design to capture data collected according to the Handbook and to facilitate national data collation. This data was mainly collected for mapping and soil inventory projects. The scope of SITES now also includes the capture of soil monitoring and other types of soil data (e.g. carbon assessment) that is being collected by many State and Territory agencies as well as research, agricultural industry, land development and private organisations and individuals.

The purpose of SITES is:

- to define a national standard soil database design
- to define the protocols for data exchange within Australia.

The previous version of SITES included a custom windows-based tool for querying and analysing soil information. This software is no longer available, however The Australian Collaborative Land Evaluation Program (ACLEP) provides access to a Microsoft Access database that complies with the SITES schema. All code lists are populated and maintained by ACLEP through endorsement by the National Committee on Soil and Terrain (NCST). The database is available for download from the ACLEP website (http://www.clw.csiro.au/aclep/).

SYSTEM DEFINITION

2.1 Scope

2.1.1 Data collection standards

The database is designed to capture data collected according to the *Australian Soil and Land Survey Field Handbook* 3rd edition (NCST 2009), *Soil Chemical Methods - Australasia* (Rayment and Lyons 2011), *Soil Physical Measurement and Interpretation for Land Evaluation* (McKenzie et al. 2002) and *The Australian Soil Classification* revised edition (Isbell 2002). The design is flexible enough to accommodate future additions, modifications or deletions from these survey and analysis standards.

Data inclusions 2.1.2

The database design also includes chemistry, physical, mineralogical and soil biota attributes which have been historically collected by the CSIRO.

2.1.3 Entity-relationship model

An entity-relationship model is defined, and a set of SQL scripts has been produced to create tables and indexes.

2.1.4 Code sources

A codes table has been populated for validation and decoding, based on the reference books mentioned in section 2.1.1. The codes table will be maintained by ACLEP as endorsed by the NCST.

2.2 Constraints and assumptions

2.2.1 Database design

The database design is based on ANSI standard SQL.

Primary keys 2.2.2

Primary key fields are based on the natural key fields such as the Site ID and Observation ID, rather than artificial key fields.

3. DATA MODEL

3.1 The entity-relationship model

The entity-relationship model for SITES is shown in Figure 1.

Figure 1 SITES Entity Relationship diagram

3.2 Detailed description of entities

3.2.1 State

State, territory or national jurisdiction of responsibility or authority.

3.2.2 Agency

Government, federal or state, or private organisation.

3.2.3 Project

A project is usually a soil survey being conducted in a discrete area. It can also be a specific study which may not be bound by administrative boundaries, for example, a study investigating salinity levels in soils. Each project has an identifier which is unique within each agency. The project also has a short description, a manager, a bibliographic reference and a commencement and completion date.

3.2.4 Officer

An officer has a four character identifier which is unique within each agency. The officer may be the manager of one or more projects and the describer of one or more sites.

3.2.5 Site

A site as described in the Australian Soil and Land Survey Field Handbook 3rd edition (NCST 2009), 'is a small area of land considered representative of the landform, vegetation, land surface and other land features associated with the soil observation'. A site is associated with one project and is described by one officer (although in practice this may be a team). Depending on its size, a site may have many land uses (both spatially and temporally), and each land use may have many management practices. A site may have many land pattern and element geomorphologies and many land covers. Land and soil features at a site may be recorded through a number of observations that may have been measured and recorded through time.

The Handbook site concept within the SITES database has now been broadened to include sites which may have any defined geometry (site envelope) and may be nested (i.e. a point or grid cell within a 25x25m monitoring site or a point along a transect).

3.2.6 **Observation**

In the majority of cases a site is described by only one observation. However, there are instances where a site may consist of more than one observation, such as the case in some gilgai, where the vegetation, land surface and soil all differ between the mound and depression. An observation may be the location for a number of vegetation strata, each of which may also contain a number of vegetation species. An observation may consist of a number of the following attributes: horizons, management practices, disturbances, microreliefs, rock outcrops, surface coarse fragments, surface conditions, and substrate mineral compositions. In addition, where the site (envelope) describes an area (rather than an explicit coordinate location), such as a 25x25m monitoring site, a number of

observations may be used to describe the site, both spatially (such as through a number of discreetly located observations at a point in time) or temporally (as observations of the site over time).

3.2.7 Horizon

A horizon (or depth slice) must be associated with an observation. A horizon may also have a number of samples used for laboratory analyses. Additionally, a horizon may have a number of the following soil properties: colours, mottles, coarse fragments, structures, fabrics, cutans, cracks, pores, strengths, pans, segregations, pH, and roots. A horizon maybe recorded as a depth slice or layer, defined by upper and lower depths, without any horizon designation or subdivision, indicating a portion of interest within the soil profile rather than any pedologic organisation.

3.2.8 Sample

A sample must be associated with a horizon. Samples are usually taken over discrete portions of the horizon. For example, a horizon may span a depth from 0.2 to 0.5 m. Sample 1 may be taken from 0.2 to 0.35 m, and sample 2 may range from 0.35 to 0.5 m. A sample may also have a number of laboratory results.

3.2.9 Archive sample

An archive sample must be associated with a sample. It is a physical sample that exists at a known location in a sample repository such as the CSIRO National Soil Archive.

3.2.10 Lab result

A lab result be associated with a sample and is for a particular soil property. A lab result may be of the subtype-entities: chemical, physical or mineral analysis. A laboratory result must be analysed through a laboratory method. The laboratory method indicates what type of property is being analysed and is represented by a laboratory method type. A laboratory result may also be recorded as a range of values, rather than an absolute value.

3.2.11 Laboratory codes entities

The Lab Method, Lab Method Type and Lab Property entities are essentially codes entities. The following example illustrates the use of these entities.

In the Lab Results entity below, the site GTN 0014 has had a chemical analysis done on the first horizon layer using a laboratory method. The analysis has been done in replicate, namely, replicate numbers 1 and 2 and yielded results of 7.5 and 7.6 respectively. The site GTN 0193 has only one replicate, and has used the laboratory method 4B2.

The Lab Method entity reveals that methods 4B1 and 4B2 are a pH analysis in calcium chloride. Method 4B1 has a property code of PH, which the Lab Property entity simply describes as pH. The Lab Method type code for 4B1 is 4.2. The Lab Method Type entity has another entry for this method type, namely, method 4B2. Methods 4B1 and 4B2 are equivalent methods, and therefore have been assigned the same Method type code. The assignment of a Lab Method type to each laboratory method makes it possible to directly compare results that have slightly different methods but are essentially of the same type.

Agency	Project	Site	Obs	Hor	Samp	Lab	Rep	Value	Value	Low	High	Analysis
code	code	ID	ID	no.	no.	method	no.	pref				type
501	GTN	0014	1	1	1	4B1	1		7.5			Chem
501	GTN	0014	1	1	1	4B1	2		7.6			Chem
501	GTN	0193	1	1	1	4B2	1		6.3			Chem

Table 1: Lab Results example

Lab	Lab	Method	Method description	Method short name	Value mask
method	property	type			
code	code	code			
4A1	PH	4.1	pH of 1:5 soil/water suspension	PH SOIL/WATER	99.99
4B1	PH	4.2	pH of 1:5 soil/0.01M calcium chloride	PH SOIL/CACL2 DIR	99.99
			extract - direct		
4B2	PH	4.2	pH of 1:5 soil/0.01M calcium chloride	PH SOIL/CACL2 -4A1	99.99
			extract - following Method 4A1		

Table 2: Lab Method example

Lab property code		Description	
PH	pН		

Table 3: Lab Property example

Lab method type code	Description
4.1	pH of 1:5 soil/water suspension
4.2	pH of 1:5 soil/0.01M calcium chloride extract

Table 4: Lab Method Type example

4. DATABASE

4.1 Physical Database Overview

4.1.1 Database mapping

In the design of the physical database, there is a one-to-one mapping of entities to tables.

4.1.2 Lab result entity

The lab result entity is made up of three sub-types: chemical analysis, physical analysis and mineral analysis. Each of these sub-types is mapped to a record within the lab results table and a column called labr analysis type is used to identify each lab analysis result.

Natural primary keys 4.1.3

At the higher levels of the model, the primary key of each table consists of the natural key fields. For example, the primary key of the table horizon is agency code, project_code, s_id, o_id and h_no.

4.1.4 Sequence number primary keys

Tables at the extremities of the model, such as rock outcrops and cutans, have a sequence number field to replace the non-foreign key fields of the primary key. This has been done for two reasons: (1) Often the fields constituting the non-foreign key component of the primary key have null values; (2) The assignment of a numeric key field will aid the retrieval of data when using SQL.

4.1.5 Laboratory data

The laboratory data component of the database has a number of features which warrant particular discussion. A horizon is made of a number of samples based on the sampling depth range. For example, horizon 1 which spans the depth 0 to 0.4 m may be divided into two samples: sample 1 which ranges from 0 to 0.2 m and sample 2 which covers the 0.2 to 0.4 m depth range. In the lab results table, each sample may have replicate tests done, hence the field laboratory replicate number, labr no.

4.1.6 Laboratory results

Each laboratory result is the outcome of analysis by a particular lab method. The lab methods table holds a lab method code, the format mask, and allowable lowest and highest values. The lab methods table is linked to the lab properties and lab method types tables. The function of the lab properties table is to allow queries on the lab results table using the type of laboratory property. For example, the various pH methods are associated with the laboratory property PH. It would thus be possible to quickly determine which observations have had pH analysis in water and calcium chloride. The lab method types table allows grouping of equivalent laboratory results regardless of the method used. Hence, whilst there may be a number of CEC determination methods used, the laboratory method type code is used as a flag to indicate that although the methods vary, they yield comparable results. This feature is particularly important for the statistical reports.

4.1.7 Codes table

The codes table contains the entire codes data set. For practical purposes, in the entityrelationship diagram, the codes table is shown in isolation from the rest of the model. In fact, almost every table is associated with the codes table.

4.2 Tables, Indexes and Views

4.2.1 Database creation script

The database creation script is shown in Appendix A.

4.2.2 Description of tables

A description of the tables and attributes is shown in Appendix B. The description of the attributes contains a page reference to the Australian Soil and Land Survey Field Handbook (NCST 2009).

4.2.3 Table and column names

Table and column names have been limited to the ANSI standard of 18 characters.

4.2.4 Data types

The data types used are VARCHAR, INTEGER and FLOAT.

4.2.5 Column name prefixes

Column names are prefixed by a short table name. Columns that are codes are associated with a domain. The domain name is prefixed with a N for codes that have numeric translations and a C for all others.

4.2.6 Unique indexes

Unique indexes based on the primary key for each table are part of the database design.

5. GUIDELINES FOR SOIL SITE AND SAMPLE DATA

5.1 Background

The multitude of reasons for collecting soil and land site data complicates the specification of a simple minimum data set. For example:

- Some soil and land attributes attain more significance in particular environments. E.g. water repellence can have significant management practice implications for southern parts of South Australia and Western Australia.
- The applicability of a method for soil measurement can depend on the nature of the soil. E.g. CEC methods buffered at high pH are inappropriate for highly weathered soils with low pH.
- Some forms of land use require specific information which may be significant in only a few regimes. E.g. Boron deficiencies have a major impact on the growth of Pinus radiata.
- The reason that a site has been sampled may be to serve a very narrow objective. E.g. A pH monitoring project may only capture the site/observation location, the depth of sampling and the associated pH value.

There is however, great value in identifying a flexible data framework that can accommodate a full range of site and soil characterisation, sampling and monitoring data. Defining a minimum set of required attributes allows the national collation of consistent and useable soil data within ASRIS.

Three different scenarios are given below as examples and a minimum list of site and soil attributes is detailed for each case. This listing should in no way limit the detail of the land and soil attributes recorded. Most soil site investigations will fit into one of the following categories: Sampling Site, Monitoring Site and Reference Site. Each one will be considered in more detail below.

5.2 **General Principles**

The recording of land and soil properties *must* adhere to the recognised Australian data collection standards. All site and soil morphology data must be collected by the methods and coding conventions outlined in the Australian Soil and Land Survey Field Handbook 3rd edition (NCST 2009). Soil chemical and physical measurements must be accompanied by a nominated method from either Soil Chemical Methods - Australasia (Rayment and Lyons 2011) or Soil Physical Measurement and Interpretation for Land Evaluation (McKenzie et al. 2002). If a new measurement method is not included in these publications, the method reference (for published methods) or complete method procedure needs to be stored with the data.

5.3 Site Types

A site is the location of soil observation and/or sampling events. A site can have a single coordinate pair (e.g. latitude/longitude) location or a spatial extent (an 'envelope' defined by area, length etc).

All sites must record location and site identification information (see table 1). Accurate location of a site is paramount. If the site has an extent (such as a 25x25m quadrat), record the location of all vertices (corners) as well as the specific locations at which all observations/samplings were made. Observations/samples relating to the entire site (eg a single soil profile description, a bulked set of samples, or observation of an attribute of the site such as slope) are given a single site location, usually the south-west corner or centre of the site. Linear sites (transects) should record the point of origin, end point, length and location of all discreet observation/sample points. Consult the location chapter of the Field Handbook (pp7-11) for additional attributes.

Variable	Comments
Latitude	Coordinate recorded in decimal degrees (five decimal places) using
	GDA94 datum. (pp7-11)
Longitude	Coordinate recorded in decimal degrees (five decimal places) using
	GDA94 datum. (pp7-11)
Agency	Organisation responsible for the site (a national list of agency
	names and unique codes is maintained by ACLEP)
Project	A code for the project name
Site identifier	Unique within a project
Described by	Name of the person describing/sampling the site (p13)
Date	Date when the site was described (p13)
Site type	Erosion survey, soil property monitoring, etc (p13)

Table 5: Minimum data set for location and site identification (page references are from the Australian Soil and Land Survey Field Handbook 3rd edition).

5.3.1 Sampling Site

A Sampling site is likely to have minimal or no site or soil data recorded in the field other than location and site identification data (see table 5) and the method and depth intervals at which the soil is sampled (see table 6). Soil samples taken from the site are usually analysed at a future date and may be stored within a soil archive. Analysis results should be added to the data record when available (see table 7).

Variable	Comments
Upper Depth	Upper depth (m) of the sampled layer measured from the soil
	surface
Lower Depth	Lower depth (m) of the sampled layer measured from the soil
	surface
Type of	Soil pit, auger boring, etc (p147)
observation	

Table 6: Minimum data set for samples

Individuals wishing to submit soil samples to the CSIRO National Soil Archive need to lodge a specimen submission form (http://www.clw.csiro.au/aclep/archive/index.htm). Before inclusion in the national collection, submissions are assessed on whether the specimens support priority initiatives, represent important landscapes or fill knowledge gaps.

5.3.2 Monitoring Site

In general terms this is a site established to monitor changes in a soil properties over time. Monitoring sites are required to have data recorded for location and site identification (table 5), samples (table 6) and laboratory analyses (table 7). Monitoring sites will have at least one measurement for a soil property and the method by which it was analysed. Analysis of multiple soil chemical and physical properties is preferred but not essential and may, in some instances, be carried out by new methods (such as infrared spectrometry) on archived samples. Ideally, Monitoring sites would have full site and soil characterisation data associated with them also, to allow spatial extrapolation of results by soil type, but the need and resourcing of this collection would be determined by the project activity.

Variable	Comments
Result	e.g. Total Potassium value
Analytical method	e.g. 9A1 (method code from Soil Chemical Methods)
Analysis date	

Table 7: Minimum data set for laboratory analyses

5.3.3 Reference Site

A Reference site generally refers to a full soil characterisation site. It is expected that the site has detailed site and soil morphological data as well some laboratory analysis of soil samples. It follows that the Reference site has the same data capture requirements as the Monitoring site but has additional site and soil characterisation attribution. This type of site is typically one where detailed soil characterisation is required when establishing a

monitoring or trial site or, in the context of soil survey, it may be the type or reference site for a particular soil class or landscape unit.

It is a highly skilled and often arduous task to collect data for all the variables outlined in the Field Handbook. For this reason the following attribute listings provide a guide to what would constitute a comprehensively described Reference site. (Also see Guidelines for Surveying Soil and Land Resources – Minimum data sets for land resource survey in Australia p277-282).

Variable	Comments (page numbers refer to the Field Handbook)
Slope	Recorded as % (p18)
Morphological type	Crest, hillock, ridge, etc (p19)
Relief/Modal slope class	Rolling hills, steep rises, etc (p45)
Landform element	Fan, hillslope, plain, etc (p31-44)
Landform pattern	Escarpment, pediment, tidal flat, etc (p55-72)
Drainage	Poorly drained, well-drained, etc (p202-204)

Table 8: Minimum data set for landform

Tables 8, 9, and 10 provide a set of suggested attributes for collecting landform, land surface and soil morphological data. These attributes have been selected from the Field Handbook as they are regarded as the most important/useful variables for a range of applications. Depending on the broader framework within which the Reference site is located, additional variables may need to be captured.

Variable	Comments (page numbers refer to the Field Handbook)
Aspect	Compass bearing to nearest 10 degrees (p127)
Elevation	Metres above sea level (p127)
Microrelief	Gilgai, biotic or other microrelief (p129-133)
Erosion	Presence and state of erosion (p133-138)
Surface coarse fragments	Presence of >2mm particles (p139-143)
Rock Outcrop	Recorded as % (p143)

Table 9: Minimum data set for characterising land surface at a site

Variable	Comments (page numbers refer to the Field Handbook)
Horizon	A1, A2, B2, etc (pp148-156)
Boundary distinctness	Abrupt, clear, gradual, etc (p199)
Boundary shape	Wavy, irregular, broken, etc (p200)
Upper and lower depth	(p156)
Matrix colour	Using Munsell Colour system (e.g. 10YR4/2) (p159)
Mottles	Colour, abundance, size and contrast (p159-161)
Texture	Loam, loamy sand, medium clay, etc (p163-167)
Structure	Distinctness, size and shape of peds (p171-181)
Coarse fragments	Abundance, size, shape, lithology and strength
	(p170)
Segregations	Discrete chemical or biological accumulations (p195-
	198)
Pans	Indurated or cemented soil horizon (p192-195)
Reaction to HCl	Presence of carbonate (p198)
Field pH	(p198)
Australian Soil Classification	Allocation to at least Suborder level (i.e. Red
	Kandosol) of the Australian Soil Classification (Isbell
	2002).

Table 10: Minimum data set for morphology of the soil profile

For most attributes, the Australian Soil and Land Survey Field Handbook makes provision for recording nil value or occurrence. In the past it has been assumed that the non-recording of an attribute simply meant that it was not present. A non-recording will always leave some doubt as to whether the describer of the profile did in fact examine for a particular attribute. It is important that a nil value or occurrence is recorded when making an observation of an attribute.

Additional data pertaining to regolith and geological materials of the site may be worthy inclusions in some cases. The collection of land use and land management practice information, including historic records, may also be important, particularly if the site is part of a soil condition monitoring program.

6. **EXCHANGE FORMAT**

6.1 **General Principles**

The format of the exchange protocol is closely related to the database design. Data is stored in text files, one table per file. The file name consists of the table name and a .DAT suffix. For example, the COARSE FRAGMENTS table would be exported in a file called COARSE FRAGMENTS.DAT.

All fields are separated by a comma (",") character, which must not appear anywhere in the data. There are no enclosing quotes surrounding text fields.

Database Transfer 6.2

A SITES Version 2.0 database containing all codes can be downloaded from the ACLEP website (http://www.clw.csiro.au/aclep/). This empty database can be populated with soil site data and then forwarded to the intended government or private organisation.

XML Document Transfer 6.3

In the future data may be transferred as XML documents or delivered as web services to provide on demand access to soil data. Compliance to emerging soil data and information models (such as OzSoilML) for data transfer and web service provision will allow more streamlined collation and use of data from multiple sources. It will also facilitate the provision of online applications, such as mobile device apps and web-based data query and processing tools, through the provision of known data elements and responses.

REFERENCES

Forward G. (2009). Manual of proposed national minimum standards for roadside erosion survey. Report DWLBC 2009/24. Department of Water, Land and Biodiversity Conservation, South Australia.

Isbell R. F. (2002). The Australian Soil Classification. Revised Edition. CSIRO Publishing, Melbourne.

McKenzie N.J., Cresswell H.P. and Coughlan K.J. (2002). Soil Physical Measurement and Interpretation for Land Evaluation. CSIRO Publishing, Melbourne.

McKenzie N.J., Grundy M.J., Webster R. and Ringrose-Voase A.J. (2008). Guidelines for Surveying Soil and Land Resources. CSIRO Publishing, Melbourne.

McKenzie N.J., Jacquier D.W., Maschmedt D.J., Griffin E.A., Brough D.M. (2005). The Australian Soil Resource Information System: technical specifications. Version 1.6 June 2012. National Committee on Soil and Terrain Information/Australian Collaborative Land Evaluation Program, Canberra. www.asris.csiro.au.

NCST (2009). Australian Soil and Land Survey Field Handbook 3rd Edition. The National Committee on Soil and Terrain, Australian Collaborative Land Evaluation Program, Canberra, Australia.

NLWRA (2001). Australian agricultural assessment 2001. National Land and Water Resources Audit, Canberra.

Peluso E. and McDonald W. (1995). Soil Information Transfer and Evaluation System: Database Design and Exchange Protocols. ACLEP Tech Report No. 3. CSIRO Division of Soils, Canberra.

Rayment G.E. and Lyons D.J. (2011). Soil Chemical Methods – Australasia. CSIRO Publishing, Melbourne.

APPENDIX A – TABLE CREATION SCRIPTS

```
CREATE TABLE agencies (
                                            VARCHAR(1) NOT NULL,
VARCHAR(3) NOT NULL,
VARCHAR(240) NOT NULL,
VARCHAR(10)
 state code
 agency_code
agency_name
 agency acronym
)
CREATE TABLE archive_samples(
                                            VARCHAR(3)
VARCHAR(10)
VARCHAR(10)
VARCHAR(10)
VARCHAR(2)
INTEGER
INTEGER
INTEGER
VARCHAR(2),
VARCHAR(2),
VARCHAR(12),
VARCHAR(12),
FLOAT
 agency code
 proj code
 s id
 o id
 h no
 samp no
 jar no
 samp type
 location
                                                FLOAT,
 weight
 >2mm
                                                 VARCHAR(1),
 spec id
                                                INTEGER,
                                           VARCHAR(8),
VARCHAR(50),
 subsample_date
subsample trav
subsample tray
)
;
CREATE TABLE coarse_frags(
                                               VARCHAR(3)

VARCHAR(10)

VARCHAR(10)

VARCHAR(10)

VARCHAR(2)

INTEGER

INTEGER

INTEGER

VARCHAR(1),
 agency_code
 proj_code
 s id
 o_id
 h no
 cf no
                                               VARCHAR(1),
 cf abun
 cf<sup>-</sup>size
                                               VARCHAR(1),
 cf shape
                                               VARCHAR(2),
 cf_lith
                                               VARCHAR(2),
 cf_strength
                                                 VARCHAR(2),
 cf distribution
                                                 VARCHAR (1)
CREATE TABLE codes(
code_domain
code_value
---lue2
CREATE TABLE codes (
                                               VARCHAR(20) NOT NULL,
VARCHAR(10) NOT NULL,
VARCHAR(6),
                                   VARCHAR(6),
VARCHAR(6),
VARCHAR(100)
VARCHAR(100)
VARCHAR(1),
FLOAT,
FLOAT,
 code desc
 code_tech_ref
code_avg_no_value
code_low_no_value
```

```
code high no value
                                                  FLOAT,
 agency code
                                                  VARCHAR (3)
)
;
CREATE TABLE colours (
                                               VARCHAR(3)
VARCHAR(10)
VARCHAR(10)
VARCHAR(10)
VARCHAR(2)
INTEGER
INTEGER
VARCHAR(10),
VARCHAR(10),
VARCHAR(5)
FLOAT.
 agency_code
 proj_code
 s id
 o_id
 h no
 col no
 col hue val chrom
 col hue
 col_value
                                                 FLOAT,
 col chroma
                                                 FLOAT,
 col moisture stat
                                                  VARCHAR (1)
)
CREATE TABLE cracks (
                                               VARCHAR(3)

VARCHAR(10)

VARCHAR(10)

VARCHAR(10)

VARCHAR(2)

INTEGER

INTEGER

INTEGER

VARCHAR(1)

NOT NULL,

NOT NULL,

NOT NULL,
agency code
 proj_code
 s id
 o_id
 h no
 crack no
 crack width
)
;
CREATE TABLE cutans (
                                                 VARCHAR(3) NOT NULL,
VARCHAR(10) NOT NULL,
VARCHAR(10) NOT NULL,
VARCHAR(2) NOT NULL,
INTEGER NOT NULL,
 agency_code
 proj_code
 s_id
 o_id
                                           INTEGER
INTEGER
VARCHAR(1),
VARCHAR(1),
 h no
 cutan no
                                                                           NOT NULL,
 cutan type
 cutan abun
                                                VARCHAR (1)
 cutan distinct
;
CREATE TABLE disturbances (
                                                VARCHAR(3)

VARCHAR(10)

VARCHAR(10)

VARCHAR(10)

VARCHAR(2)

INTEGER

VARCHAR(1)

NOT NULL,

NOT NULL,

NOT NULL,
 agency code
 proj_code
 s id
 o id
 dist no
 dist_type
)
CREATE TABLE elem geomorphs (
 agency_code
                                                  VARCHAR(3) NOT NULL,
```

```
VARCHAR(10) NOT NULL,
VARCHAR(10) NOT NULL,
INTEGER NOT NULL,
VARCHAR(2),
    proj code
    s id
     egm no
    egm mode
    egm agent
                                                                                                                                                                         VARCHAR (2)
CREATE TABLE fabrics (
                                                                                                                                                                           VARCHAR(3)
VARCHAR(10)
VARCHAR(10)
VARCHAR(10)
VARCHAR(2)
VARCHAR(2)
VARCHAR(2)
VARCHAR(2)
VARCHAR(10)
    agency code
    proj_code
    s id
    o id
                                                                                                                                                                           INTEGER
INTEGER
    h no
    fab no
                                                                                                                                                                              VARCHAR(1),
    fab type
    fab abun
                                                                                                                                                                               VARCHAR (1)
)
CREATE TABLE horizons (
                                                                                                                                                                        VARCHAR(3)

VARCHAR(10)

VARCHAR(10)

VARCHAR(10)

VARCHAR(2)

INTEGER

NOT NULL,
    agency code
    proj code
    s id
 o_id
)
CREATE TABLE lab_methods(
                                                                                                                                                VARCHAR(10) NOT NULL,
VARCHAR(20) NOT NULL,
VARCHAR(20) NOT NULL,
VARCHAR(240) NOT NULL,
VARCHAR(20) NOT NULL,
VARCHAR(240) NOT NULL,
VARCHAR(12),
VARCHAR(20),
     labm code
     labp code
     labmt code
     labm name
     labm_short_name
labm_ref
     labm mask
     labm units
```

```
agency code
)
;
CREATE TABLE lab method types (
                                                  VARCHAR (20) NOT NULL,
VARCHAR (80) NOT NULL
 labmt code
 labmt name
)
CREATE TABLE lab properties (
                                                  VARCHAR(20) NOT NULL,
VARCHAR(80) NOT NULL
 labp_code
 labp name
CREATE TABLE lab results(
                                              VARCHAR(3)
VARCHAR(10)
VARCHAR(10)
VARCHAR(10)
VARCHAR(2)
INTEGER
INTEGER
VARCHAR(10)
INTEGER
VARCHAR(10)
INTEGER
VARCHAR(11)
INTEGER
VARCHAR(11),
FLOAT,
FLOAT
 agency code
 proj_code
 s id
 o id
 h no
 samp_no
 labm_code
 labr no
 labr value prefix
 labr value
                                          FLOAT,
FLOAT,
VARCHAR(4),
 labr_low_value
labr_high_value
labr_analysis_type
                                                   VARCHAR (8)
 labr_date
CREATE TABLE land cover (
                                              VARCHAR(3)

VARCHAR(10)

VARCHAR(10)

INTEGER

VARCHAR(8)

VARCHAR(10)

VARCHAR(10)

VARCHAR(10)

VARCHAR(10)

NOT NULL,

NOT NULL,
agency code
 proj code
 s id
 lcov no
 lcov_date
 lcov ref
 land cover
)
CREATE TABLE land uses (
                                            VARCHAR(3)
VARCHAR(10)
VARCHAR(10)
NOT NULL,
VARCHAR(10)
NOT NULL,
INTEGER
VARCHAR(8)
VARCHAR(8)
VARCHAR(10)
VARCHAR(10)
VARCHAR(10)
NOT NULL,
VARCHAR(10)
 agency code
 proj_code
 s id
 luse no
 luse date
 luse end date
 luse ref
 land use
```

```
)
CREATE TABLE microreliefs(
                                        VARCHAR(3) NOT NULL,
VARCHAR(10) NOT NULL,
VARCHAR(10) NOT NULL,
VARCHAR(2) NOT NULL,
 agency code
 proj_code
 s_id
o id
                                                            NOT NULL,
                                        INTEGER
mr no
                                        VARCHAR(1),
mr type
mr prop gilgai
                                       VARCHAR(1),
mr biotic_agent
                                       VARCHAR(1),
                                       VARCHAR(1),
mr biotic comp
                                       FLOAT,
mr vertical int
mr horiz int
                                        FLOAT
CREATE TABLE mottles (
                                        VARCHAR(3)

VARCHAR(10)

VARCHAR(10)

VARCHAR(10)

VARCHAR(2)

INTEGER

INTEGER

NOT NULL,

INTEGER

NOT NULL,
 agency code
 proj_code
 s id
 o id
h no
mott_no
mott_type
                                        VARCHAR(1),
mott abun
                                        VARCHAR(1),
                                      VARCHAR(1),
VARCHAR(1),
 mott size
 mott contrast
mott hue val chrom
                                       VARCHAR (10),
mott hue
                                       VARCHAR(5),
                                        FLOAT,
 mott_value
mott_chroma
                                        FLOAT,
mott moisture stat
                                        VARCHAR(1),
mott_colour
                                        VARCHAR (1),
mott boun distinct
                                        VARCHAR (1)
)
;
CREATE TABLE observations (
                                        VARCHAR(3) NOT NULL,
VARCHAR(10) NOT NULL,
VARCHAR(10) NOT NULL,
VARCHAR(2) NOT NULL,
 agency_code
 proj_code
 s id
 o id
 o type
                                        VARCHAR (1),
                                        VARCHAR(1),
 o nature
 o desc by
                                        VARCHAR(4),
 o date desc
                                        VARCHAR(8),
 o amg zone
                                        INTEGER,
 o easting
                                         INTEGER,
                                        INTEGER,
 o northing
 o latitude
                                        FLOAT,
 o longitude
                                       FLOAT,
 o datum
                                        VARCHAR (10),
 o latitude GDA94
                                        FLOAT,
```

```
o_longitude_GDA94
                                                             FLOAT,
                                                          VARCHAR(3),
   o state
                                                       VARCHAR (240),
INTEGER,
INTEGER,
   o_location_notes
   o photo east
   o photo north
   o land use
                                                         VARCHAR (4),
VARCHAR (1),
VARCHAR (240),
VARCHAR (240),
                                                            VARCHAR(4),
  o_land_use
o_forest_type
o_rf_complex
o_rf_leafsize
o_rf_flor_comp
o_rf_indicator
o_rf_emergents
   o sclerophyll
varchar (240 INTEGER,

varchar (1),

velevation pf varchar (1),

oelevation integer,

odrainage eval varchar (1),

odrainage height float,

odrainage varchar varchar (1),

omr_sampled varchar (1),

osoil_disturb varchar (1),

ogrnd_cov_level_min integer,

ogrnd_cov_level_max integer,

ogrnd_cov_height_min integer,

ogrnd_cov_height_max integer,

owind_state varchar (1)

owind_deg

owind_stability

owind_visibility
   o veg notes
  o_gully_state
                                                              VARCHAR(1),
   o_gully_deg
                                                              VARCHAR(1),
   o_stbank_state
                                                             VARCHAR(1),
                                                          VARCHAR(1),
VARCHAR(1),
   o stbank deg
   o tunnel state
  o_inund_runon_vel
                                                           VARCHAR (1),
```

```
o_depth_water
                                                        FLOAT,
 o_depth_water_pref
o_depth_rhorizon_pf
o_depth_rhorizon
                                                       VARCHAR(1),
                                                  VARCHAR(1),
VARCHAR(1),
FLOAT,
VARCHAR(1),
 o runoff
                                                      VARCHAR(1),
 o permeability
 o_sb_obs_type
o_sb_distance
                                                      VARCHAR(1),
                                                   FLOAT,
VARCHAR(1),
 o sb confidence
 o sb depth pf
 o sb depth
                                                       FLOAT,
                                                      VARCHAR(1),
 o sb grain size
                                                  VARCHAR(1),
VARCHAR(1),
VARCHAR(1),
 o sb texture
 o sb structure
 o sb porosity
                                                      VARCHAR(2),
 o sb strength
O_sb_lith VARCHAR(2),
O_sb_mass_spac_dis VARCHAR(1),
O_sb_mass_alt VARCHAR(1),
O_sb_mass_strength VARCHAR(2),
O_sb_mass_gen_type VARCHAR(2),
O_substrate_notes VARCHAR(240),
O_pof VARCHAR(9),
O_pof
                                                      VARCHAR (3),
 o_gsg
 o_asc_tech_ref
                                                        VARCHAR (1),
                                                        VARCHAR(1),
 o_asc_conf
                                                        VARCHAR (2),
 o asc ord
                                                       VARCHAR(2),
 o asc subord
 o asc qq
                                                       VARCHAR(2),
 o asc subq
                                                       VARCHAR(2),
 o asc fam1
                                                       VARCHAR(1),
 o asc fam2
                                                      VARCHAR(1),
                                                        VARCHAR(1),
 o_asc_fam3
 o_asc_fam4
                                                        VARCHAR(1),
VARCHAR(1),

o_asc_notes

o_uni_soil_class

o_soil_taxonomy

o_tax_unit_type

o_tax_unit_name

o_map_unit_type

o_map_unit_name

o_notes

VARCHAR(3),

VARCHAR(100),

VARCHAR(3),

VARCHAR(3),

VARCHAR(100),

VARCHAR(100)
)
CREATE TABLE obs_mng_pracs(
                                                       VARCHAR(3)

VARCHAR(10)

VARCHAR(10)

VARCHAR(10)

VARCHAR(2)

INTEGER

VARCHAR(8)

VARCHAR(8)

VARCHAR(10)

VARCHAR(10)

VARCHAR(10)

NOT NULL,

NOT NULL,
 agency code
 proj code
 s id
 o id
 omp no
 omp date
 omp ref
 omp_code
```

```
CREATE TABLE officers (
                                                                                                                                  VARCHAR(3) NOT NULL,
VARCHAR(4) NOT NULL,
VARCHAR(40) NOT NULL
  agency code
   offr code
   offr name
CREATE TABLE pans (
                                                                                                                             VARCHAR(3)
VARCHAR(10)
VARCHAR(10)
VARCHAR(10)
VARCHAR(2)
INTEGER
INTEGER
VARCHAR(1),
VARCHAR(1),
  agency code
   proj_code
   s id
    o id
   h no
    pan no
   pan cementation
                                                                                                                     VARCHAR(1),
VARCHAR(1),
   pan_type
   pan_continuity
   pan structure
                                                                                                                                  VARCHAR (1)
;
CREATE TABLE patt_geomorphs(
                                                                                                                                     VARCHAR(3) NOT NULL,
VARCHAR(10) NOT NULL,
VARCHAR(10) NOT NULL,
INTEGER
    agency_code
    proj_code
   s id
                                                                                                                                                                                                       NOT NULL,
                                                                                                                                    INTEGER
  pgm no
  pam mode
                                                                                                                                  VARCHAR(2),
                                                                                                                              VARCHAR(2),
  pgm agent
                                                                                                                                   VARCHAR (1)
  pgm stat
)
CREATE TABLE phs (
                                                                                                                                  VARCHAR(3)
VARCHAR(10)
VARCHAR(10)
VARCHAR(10)
VARCHAR(2)
VARCHAR(2)
VARCHAR(2)
VARCHAR(2)
VARCHAR(10)
  agency code
   proj code
   s id
   o id
   h no
   ph no
   ph_value
                                                                                                                                    FLOAT,
  ph_depth
  ph method
                                                                                                                                      VARCHAR (1)
)
CREATE TABLE pores (
                                                                                                                                 VARCHAR(3)

VARCHAR(10)

VARCHAR(10)

VARCHAR(10)

VARCHAR(2)

INTEGER

INTEGER

INTEGER

NOT NULL,

VARCHAR(1)
    agency code
    proj code
    s_id
    o_id
   h no
   pore no
   pore abun
                                                                                                                                  VARCHAR(1),
   pore diameter
                                                                                                                               VARCHAR (1)
```

```
)
CREATE TABLE projects (
                                                 VARCHAR(3) NOT NULL,
VARCHAR(10) NOT NULL,
VARCHAR(240) NOT NULL,
 agency code
 proj_code
 proj_name
                                             VARCHAR (4),
VARCHAR (240),
VARCHAR (8),
VARCHAR (8)
 proj_manager_code
 proj_biblio_ref
proj_start_date
 proj_finish_date
;
CREATE TABLE rock_outcrops(
                                                VARCHAR(3)
VARCHAR(10)
VARCHAR(10)
VARCHAR(10)
VARCHAR(2)
VARCHAR(2)
VARCHAR(10)
VARCHAR(10)
VARCHAR(10)
VARCHAR(10)
 agency code
 proj code
 s id
 o_id
 ro no
 ro abun
 ro lith
                                                  VARCHAR (2)
)
;
CREATE TABLE roots (
                                                  VARCHAR(3)

VARCHAR(10)

VARCHAR(10)

VARCHAR(10)

VARCHAR(2)

INTEGER

INTEGER

NOT NULL,

NOT NULL,
 agency code
 proj code
 s id
 o id
                                                  INTEGER
INTEGER
 h no
 root_no
                                                   VARCHAR(1),
 root_abun
 root size
                                                   VARCHAR (1)
)
CREATE TABLE samples (
                                                 VARCHAR(3) NOT NULL,
VARCHAR(10) NOT NULL,
VARCHAR(10) NOT NULL,
VARCHAR(2) NOT NULL,
INTEGER NOT NULL,
INTEGER NOT NULL,
 agency code
 proj code
 s id
 o id
 h no
 samp no
 samp_upper_depth
samp_lower_depth
samp_contrib
                                                  FLOAT,
                                                  FLOAT,
 samp contrib
                                                  INTEGER,
 samp size
                                                  VARCHAR(1),
                                                   VARCHAR (240)
 samp notes
)
CREATE TABLE segregations (
                                                 VARCHAR(3) NOT NULL,
VARCHAR(10) NOT NULL,
VARCHAR(10) NOT NULL,
 agency code
 proj code
 s id
```

```
VARCHAR(2) NOT NULL,
INTEGER NOT NULL,
INTEGER NOT NULL,
 o id
h_no
 seg no
                                                VARCHAR(1),
seg abun
 seg_nature
                                               VARCHAR(1),
 seg form
                                               VARCHAR(1),
                                                 VARCHAR(1),
 seg_size
seg_strength
seg_magnetic_attr
                                                 VARCHAR(1),
                                                 VARCHAR (1)
)
CREATE TABLE sites (
                                                 VARCHAR(3) NOT NULL,
VARCHAR(10) NOT NULL,
VARCHAR(10) NOT NULL,
 agency_code
 proj_code
 s id
 s_orig_tech_ref
                                                 VARCHAR(1),
 s map scale
                                                 VARCHAR(1),
s_map_scale
s_map_sheet_no
s_map_ref_type
s_photo_film_no
s_photo_run_no
s_photo_frame_no
                                             VARCHAR(1),
VARCHAR(10),
VARCHAR(1),
VARCHAR(11),
VARCHAR(3),
INTEGER,
VARCHAR(4),
VARCHAR(8),
 s desc by
 s_date_desc
                                                 VARCHAR(8),
 s rainfall
                                                INTEGER,
 s_type
                                                VARCHAR(1),
                                                VARCHAR(1),
 s slope pf
 s slope
                                                FLOAT,
 s slope eval
                                               VARCHAR(1),
                                              VARCHAR(2),
VARCHAR(1),
 s slope class
 s morph type
 s_elem_inc_slope
s_elem_length
                                                 VARCHAR(1),
                                                 FLOAT,
 s elem width
                                               FLOAT,
 s_elem_height
s_elem_location
                                             FLOAT,
VARCHAR(1),
VARCHAR(3),
 s elem type
 s relief
                                                INTEGER,
                                             VARCHAR(2),
VARCHAR(1),
VARCHAR(2),
VARCHAR(2),
 s modal slope
 s relief class
 s_relief_class
s_rel_ms_class
s_strm_ch_spacing
                                                 VARCHAR(2),
 s_strm_ch_dev
                                               VARCHAR(1),
                                             VARCHAR(1),
VARCHAR(1),
VARCHAR(1),
VARCHAR(1),
VARCHAR(1),
VARCHAR(3),
VARCHAR(240
 s strm ch dtow
 s strm ch mig
 s strm ch patt
 s_strm_ch_net_int
s_strm_ch_dir_net
s_patt_type
 s notes
                                                 VARCHAR (240),
s_trans_author VARCHAR(240
s_trans_date VARCHAR(4),
ref_agency_code VARCHAR(3),
ref_project_code VARCHAR(10)
ref_s_id VARCHAR(10)
                                               VARCHAR (10),
 ref s id
                                                VARCHAR (10)
```

```
)
CREATE TABLE site envelope(
                                                   VARCHAR (3) NOT NULL,
VARCHAR (10) NOT NULL,
VARCHAR (10) NOT NULL,
INTEGER NOT NULL,
VARCHAR (10) NOT NULL,
VARCHAR (50)
 agency code
 proj_code
 s id
 s_env_no
 s_env_code
 s env value
                                                   VARCHAR (50)
)
CREATE TABLE site mng pracs(
                                                VARCHAR(3)
VARCHAR(10)
VARCHAR(10)
VARCHAR(10)
INTEGER
INTEGER
VARCHAR(8),
VARCHAR(10),
VARCHAR(4)
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL
 agency code
 proj code
 s id
 luse no
 smp no
 smp date
 smp ref
 smp code
)
;
CREATE TABLE states (
                                                  VARCHAR(1) NOT NULL,
VARCHAR(3) NOT NULL
state code
 state name
)
CREATE TABLE strengths(
                                                 VARCHAR(3)
VARCHAR(10)
VARCHAR(10)
VARCHAR(10)
VARCHAR(2)
INTEGER
INTEGER
VARCHAR(1)
VARCHAR(1)
VARCHAR(1)
 agency_code
 proj_code
 s id
 o id
 h no
 strg no
 strg class
 strg moisture stat
)
CREATE TABLE structures (
                                                  VARCHAR(3)

VARCHAR(10)

VARCHAR(10)

VARCHAR(10)

VARCHAR(2)

INTEGER

INTEGER

INTEGER

VARCHAR(1)

VARCHAR(1)
 agency code
 proj code
 s id
 o id
 h no
 str no
 str_ped_grade
                                                    VARCHAR(1),
                                                 VARCHAR(1),
VARCHAR(2),
 str_ped_size
 str ped type
                                                  VARCHAR(1),
 str compound ped
 str clods frags
                                                   VARCHAR (2)
```

```
CREATE TABLE sub mineral comps(
                                                     VARCHAR(3) NOT NULL,
VARCHAR(10) NOT NULL,
VARCHAR(10) NOT NULL,
VARCHAR(2) NOT NULL,
INTEGER NOT NULL,
VARCHAR(1) NOT NULL
 agency code
 proj code
 s id
 o id
 sb no
 sb mineral comp
)
;
                                                      VARCHAR(3)

VARCHAR(10)

VARCHAR(10)

VARCHAR(10)

VARCHAR(2)

INTEGER

VARCHAR(11)

NOT NULL,

NOT NULL,

NOT NULL,
CREATE TABLE surf_coarse frags(
 agency_code
 proj_code
 s_id
 o id
 scf no
 scf abun
                                                      VARCHAR(1),
 scf size
                                                   VARCHAR(1),
VARCHAR(2),
 scf shape
 scf lith
                                                     VARCHAR(2),
 scf strength
                                                     VARCHAR (2)
)
CREATE TABLE surf conditions (
                                                      VARCHAR(3)

VARCHAR(10)

VARCHAR(10)

VARCHAR(10)

VARCHAR(2)

INTEGER

NOT NULL,
 agency code
 proj code
 s id
 o id
 scon no
 scon stat
                                                       VARCHAR (1)
;
CREATE TABLE veg_species(
                                                     VARCHAR (3)

VARCHAR (10)

VARCHAR (10)

VARCHAR (10)

VARCHAR (2)

VARCHAR (2)

VARCHAR (2)

INTEGER

VARCHAR (90)

VARCHAR (90)

VARCHAR (90)

VARCHAR (90)
 agency_code
 proj code
 s id
 o id
 vstr code
 vsp_no
 vsp_species
 vsp code
                                                     VARCHAR(8),
 vsp anbg id
                                                      INTEGER,
                                                      VARCHAR (3)
 vsp abun
)
CREATE TABLE veg_strata(
                                                     VARCHAR(3) NOT NULL,
VARCHAR(10) NOT NULL,
VARCHAR(10) NOT NULL,
VARCHAR(2) NOT NULL,
VARCHAR(2) NOT NULL,
 agency code
 proj code
 s id
 o id
 vstr_code
```

```
VARCHAR(1),
vstr_height_class
vstr_cover_class
vstr_crown_cover

VARCHAR(1),
VARCHAR(1),
VARCHAR(1),
)
CREATE UNIQUE INDEX AGENCY PRIM ON AGENCIES
      agency_code )
CREATE UNIQUE INDEX AS PRIM ON ARCHIVE SAMPLES
      agency_code ,
      proj_code ,
      s id ,
      o id ,
      h no ,
      samp no ,
      jar no )
CREATE UNIQUE INDEX CF PRIM ON COARSE FRAGS
      agency code ,
      proj code ,
      s id ,
      o id ,
      h no,
      c\overline{f} no )
CREATE UNIQUE INDEX CODE PRIM ON CODES
      code domain ,
      code value ,
      code value2 ,
      code value3 )
;
CREATE UNIQUE INDEX COL PRIM ON COLOURS
      agency_code ,
      proj code ,
      s id,
      o_{id},
      h no ,
      col no )
CREATE UNIQUE INDEX CRACK PRIM ON CRACKS
      agency_code ,
      proj code ,
```

```
s_id ,
      o id ,
      h no ,
      crack no )
CREATE UNIQUE INDEX CUTAN PRIM ON CUTANS
      agency code ,
      proj_code ,
      s_id ,
      o_id,
      h_no ,
      cutan no )
CREATE UNIQUE INDEX DIST PRIM ON DISTURBANCES
      agency_code ,
      proj_code ,
      s id,
      o^{-}id ,
      dist no )
CREATE UNIQUE INDEX EGM PRIM ON ELEM GEOMORPHS
      agency code ,
      proj_code ,
      s_{id},
      egm no )
CREATE UNIQUE INDEX FAB PRIM ON FABRICS
      agency_code ,
      proj_code ,
      s id,
      o id ,
      h no ,
      fab no )
CREATE UNIQUE INDEX H PRIM ON HORIZONS
      agency_code ,
      proj_code ,
      s id,
      o_id ,
      h_no )
;
CREATE UNIQUE INDEX LMET PRIM ON LAB METHODS
      labm_code )
```

```
CREATE UNIQUE INDEX LMTYP PRIM ON LAB METHOD TYPES
      labmt code )
CREATE UNIQUE INDEX LPROP PRIM ON LAB PROPERTIES
      labp code )
CREATE UNIQUE INDEX LRES PRIM ON LAB RESULTS
      agency code ,
      proj_code ,
      s_id,
      o_id ,
      h no ,
      samp no ,
      labm code ,
      labr no )
CREATE UNIQUE INDEX LCOV PRIM ON LAND COVER
      agency code ,
      proj code ,
      s id ,
      lcov no )
CREATE UNIQUE INDEX LUSE PRIM ON LAND USES
      agency_code ,
      proj code ,
      s id,
      luse no )
;
CREATE UNIQUE INDEX MOTT PRIM ON MOTTLES
(
      agency_code ,
      proj_code ,
      s_id ,
      o id ,
      h no ,
      mott no )
CREATE UNIQUE INDEX MR PRIM ON MICRORELIEFS
      agency code ,
      proj code ,
      s id ,
      o id ,
```

```
mr_no )
CREATE UNIQUE INDEX OFFR PRIM ON OFFICERS
(
      agency_code ,
      offr code )
CREATE UNIQUE INDEX OMP PRIM ON OBS MNG PRACS
      agency_code ,
     proj_code ,
      s_{id},
      o^{-}id ,
      omp no )
CREATE UNIQUE INDEX O PRIM ON OBSERVATIONS
      agency code ,
      proj_code ,
      s id,
      o id )
CREATE UNIQUE INDEX PAN PRIM ON PANS
      agency code ,
     proj code ,
     s id,
     o_{id},
     h no,
     pan no )
CREATE UNIQUE INDEX PGM PRIM ON PATT GEOMORPHS
     agency_code ,
     proj code ,
     s id,
     pgm no )
CREATE UNIQUE INDEX PH PRIM ON PHS
      agency_code ,
     proj_code ,
      s id,
      o_{id},
     h no ,
     ph no )
CREATE UNIQUE INDEX PORE PRIM ON PORES
(
```

```
agency_code ,
      proj code ,
      s id ,
      o^{-}id ,
      h no ,
      pore no )
CREATE INDEX PROJ MANAGED BY FRGN ON PROJECTS
      proj manager code )
CREATE UNIQUE INDEX PROJ PRIM ON PROJECTS
      agency_code ,
      proj code )
CREATE UNIQUE INDEX ROOT PRIM ON ROOTS
      agency_code ,
      proj_code ,
      s_{id},
      o_id ,
      h_no,
      root no )
CREATE UNIQUE INDEX RO PRIM ON ROCK OUTCROPS
      agency_code ,
      proj_code ,
      s_{id},
      o_id ,
      ro no )
;
CREATE UNIQUE INDEX SAMP PRIM ON SAMPLES
(
      agency code ,
      proj_code ,
      s_id,
      o id ,
      h no ,
      samp no )
CREATE UNIQUE INDEX SB PRIM ON SUB MINERAL COMPS
      agency_code ,
      proj code ,
      s id,
      o id ,
      sb no )
```

```
CREATE UNIQUE INDEX SCF PRIM ON SURF COARSE FRAGS
      agency code ,
     proj_code ,
      s id,
     o_id ,
      scf no )
CREATE UNIQUE INDEX SCON PRIM ON SURF CONDITIONS
      agency_code ,
     proj code ,
      s id,
      o id ,
      scon no )
CREATE UNIQUE INDEX SEG PRIM ON SEGREGATIONS
      agency_code ,
     proj_code ,
      s id ,
      o_id ,
     h_no,
     seg no )
CREATE UNIQUE INDEX S ENV PRIM ON SITE ENVELOPE
      agency_code ,
     proj_code ,
      s_id ,
      s env no,
      s env code )
CREATE UNIQUE INDEX SMP PRIM ON SITE MNG PRACS
      agency_code ,
     proj_code ,
      s_id ,
      luse_no ,
      smp_no )
CREATE UNIQUE INDEX STATE PRIM ON STATES
      state code )
CREATE UNIQUE INDEX STRG PRIM ON STRENGTHS
      agency code ,
     proj code ,
```

```
s id ,
      o id ,
      h no ,
      strg no )
;
CREATE UNIQUE INDEX STR PRIM ON STRUCTURES
      agency code ,
      proj code ,
      s id ,
      o_id ,
      h_no ,
      str no )
CREATE INDEX S DESCRIBED BY FRGN ON SITES
      s desc by )
CREATE UNIQUE INDEX S PRIM ON SITES
(
      agency_code ,
      proj code ,
      s id )
CREATE UNIQUE INDEX VSP_PRIM ON VEG_SPECIES
      agency_code ,
      proj_code ,
      s_id ,
      o_{id},
      vstr code ,
      vsp no )
CREATE UNIQUE INDEX VSTR PRIM ON VEG STRATA
(
      agency_code ,
      proj_code ,
      s id,
      o id,
      vstr code )
```

APPENDIX B - TABLE DEFINITIONS

Note: All page numbers refer to the Australian Soils and Land Survey Field Handbook (NCST 2009) unless otherwise stated.

AGENCIES

Column name	Domain name	Description	Data type	Length	Null
STATE_CODE		State code p7 Note: new codes	VARCHAR	1	NOT NULL
AGENCY_CODE		Agency unique identifier	VARCHAR	3	NOT NULL
AGENCY_NAME		Name of agency	VARCHAR	240	NOT NULL
AGENCY_ACRONYM		Acronym of agency, e.g. ACLEP	VARCHAR	10	NULL

ARCHIVE_SAMPLES

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID		Site identifier	VARCHAR	10	NOT NULL
O_ID		Observation identifier	VARCHAR	2	NOT NULL
H_NO		Horizon identifier	INTEGER		NOT NULL
SAMP_NO		Sample number	INTEGER		NOT NULL
JAR_NO		Jar number	INTEGER		NOT NULL
SAMP_TYPE	C_AS_SAMP_TYPE	Sample type, e.g. fine earth, whole soil	VARCHAR	2	NULL
LOCATION		Location of sample i.e. shelf number	VARCHAR	12	NULL
WEIGHT		Weight of the sample (in grams)	FLOAT		NULL
>2mm		Presence of coarse fragment sample	VARCHAR	1	NULL
SPEC_ID		Subsample ID for spectroscopy	INTEGER		NULL
SUBSAMPLE_DATE		Date of subsampling	VARCHAR	8	NULL
SUBSAMPLE_TRAY		Subsample tray identifier	VARCHAR	50	NULL

COARSE_FRAGS

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID _		Site identifier	VARCHAR	10	NOT NULL
O_ID		Observation identifier	VARCHAR	2	NOT NULL
H_NO		Horizon identifier	INTEGER		NOT NULL
CF_NO		Coarse fragment number	INTEGER		NOT NULL
CF_ABUN	N_CF_ABUN	Coarse fragments abundance p139	VARCHAR	1	NULL
CF_SIZE	N_CF_SIZE	Coarse fragments size p140	VARCHAR	1	NULL
CF_SHAPE	C_CF_SHAPE	Coarse fragments shape p142	VARCHAR	2	NULL
CF_LITH	C_LITHOLOGY	Coarse fragment lithology p142	VARCHAR	2	NULL
CF_STRENGTH	C_CF_STRENGTH	Coarse fragments strength p142	VARCHAR	2	NULL
CF_DISTRIBUTION	C_CF_DISTRIBUTION	Coarse fragments distribution p170	VARCHAR	1	NULL

CODES

Column name	Domain name	Description	Data type	Length	Null
CODE_DOMAIN		Code domain, that is, code type	VARCHAR	20	NOT NULL
CODE_VALUE		Code value	VARCHAR	10	NOT NULL
CODE_VALUE2		Second code value	VARCHAR	6	NULL
CODE_VALUE3		Third code value	VARCHAR	6	NULL
CODE_DESC		Code description	VARCHAR	100	NOT NULL
CODE_TECH_REF	C_TECH_REF	Technical reference	VARCHAR	1	NULL
CODE_AVG_NO_VALUE		Average value of range	FLOAT		NULL
CODE_LOW_NO_VALUE		Low numeric value of range	FLOAT		NULL
CODE_HIGH_NO_VALUE		High numeric value of range	FLOAT		NULL

COLOURS

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID		Site identifier	VARCHAR	10	NOT NULL
O_ID		Observation identifier	VARCHAR	2	NOT NULL
H_NO		Horizon identifier	INTEGER		NOT NULL
COL_NO		Colour number	INTEGER		NOT NULL
COL_HUE_VAL_CHROM	C_MUNSELL_COLOUR	Colour for decode	VARCHAR	10	NOT NULL
COL_HUE		Colour hue p159	VARCHAR	5	NOT NULL
COL_VALUE		Colour value p159	FLOAT		NULL
COL_CHROMA		Colour chroma p159	FLOAT		NULL
COL_MOISTURE_STAT	C_MOISTURE_STAT	Colour moisture status p159	VARCHAR	1	NULL

CRACKS

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID		Site identifier	VARCHAR	10	NOT NULL
O_ID		Observation identifier	VARCHAR	2	NOT NULL
H_NO		Horizon identifier	INTEGER		NOT NULL
CRACK_NO		Crack number	INTEGER		NOT NULL
CRACK_WIDTH	N_CRACK_WIDTH	Crack width p184	VARCHAR	1	NOT NULL

CUTANS

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID _		Site identifier	VARCHAR	10	NOT NULL
O_ID		Observation identifier	VARCHAR	2	NOT NULL
H_NO		Horizon identifier	INTEGER		NOT NULL
CUTAN_NO		Cutan number	INTEGER		NOT NULL
CUTAN_TYPE	C_CUTAN_TYPE	Type of cutan p182	VARCHAR	1	NULL
CUTAN_ABUN	N_CUTAN_ABUN	Abundance of cutan p183	VARCHAR	1	NULL
CUTAN_DISTINCT	C_CUTAN_DISTINCT	Distinctness of cutan p183	VARCHAR	1	NULL

DISTURBANCES

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID		Site identifier	VARCHAR	10	NOT NULL
S_ID O_ID		Observation identifier	VARCHAR	2	NOT NULL
DIST_NO		Disturbance number	INTEGER		NOT NULL
DIST_TYPE	C_DIST_TYPE	Disturbance of site p128	VARCHAR	1	NOT NULL

ELEM_GEOMORPHS

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID _		Site identifier	VARCHAR	10	NOT NULL
EGM_NO		Element geomorphology number	INTEGER		NOT NULL
EGM_MODE	C_GEOMORPH_MODE	Element mode of geomorphological activity p29	VARCHAR	2	NULL
EGM_AGENT	C_GEOMORPH_AGENT	Element geomorphological agent p30	VARCHAR	2	NULL

FABRICS

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID		Site identifier	VARCHAR	10	NOT NULL
O_ID		Observation identifier	VARCHAR	2	NOT NULL
H_NO		Horizon identifier	INTEGER		NOT NULL
FAB_NO		Fabric number	INTEGER		NOT NULL
FAB_TYPE	C_FAB_TYPE	Fabric type p181	VARCHAR	1	NULL
FAB_ABUN	N_CF_ABUN	Fabric abundance	VARCHAR	1	NULL

HORIZONS

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID		Site identifier	VARCHAR	10	NOT NULL
O_ID		Observation identifier	VARCHAR	2	NOT NULL
H_NO		Horizon identifier	INTEGER		NOT NULL
H_DESIG_NUM_PREF		Horizon numeric prefix, p148	INTEGER		NULL
H_DESIG_MASTER		Master horizon designation,	VARCHAR	3	NULL
		e.g. A1, B2 p148			
H_DESIG_SUBDIV		Horizon subdivision, 1, 2 etc	INTEGER		NULL
		p155			
H_DESIG_SUFFIX		Horizon suffix, e.g., b, c, d	VARCHAR	5	NULL
		p153			
H_UPPER_DEPTH		Upper depth (m) p156	FLOAT		NULL
H_LOWER_DEPTH		Lower depth (m) p156	FLOAT		NULL
H_TEXTURE	C_H_TEXTURE	Field texture (mineral soils),	VARCHAR	5	NULL
_		including modifiers p161			
H_TEXTURE_QUAL	C_H_TEXTURE_QUAL	Field texture qualification	VARCHAR	1	NULL
		p166			
H_SOIL_WATER_STAT	C_SOIL_WATER_STAT	Soil water status p186	VARCHAR	1	NULL
H STICKINESS	C H STICKINESS	Consistence, stickiness	VARCHAR	1	NULL
_		p187			
H PLASTICITY TYPE	C H PLASTICITY TYPE	Consistence, type of	VARCHAR	1	NULL
		plasticity p188			
H PLASTICITY DEG	C H PLASTICITY DEG	Consistence, degree of	VARCHAR	1	NULL
		plasticity p188			
H WATER REPELLENCE	C H WATER REPELLENCE	Water repellence p191	VARCHAR	1	NULL
H CARBONATE EFF	C H CARBONATE EFF	Effervescence of carbonate	VARCHAR	1	NULL
		in fine earth p198			
H BOUND DISTINCT	N H BOUND DISTINCT	Distinctness of boundary	VARCHAR	1	NULL
		between horizons p199			
H BOUND SHAPE	C H BOUND SHAPE	Shape of boundary between	VARCHAR	1	NULL
		horizons p200			
H PERMEABILITY	C PERMEABILITY	Soil water regime,	VARCHAR	1	NULL
_	_	permeability p200			-
H NOTES		Free text notes, additional	VARCHAR	240	NULL
		field			-

LAB_METHODS

Column name	Domain name	Description	Data type	Length	Null
LABM_CODE		Lab method code, based on Rayment and Lyons (2011)	VARCHAR	10	NOT NULL
LABP_CODE		Lab property code	VARCHAR	20	NOT NULL
LABMT_CODE		Lab method type code	VARCHAR	20	NOT NULL
LABM_NAME		Lab method description	VARCHAR	240	NOT NULL
LABM_SHORT_NAME		Lab method short name	VARCHAR	20	NOT NULL
LABM_MASK		Lab method format mask e.g. 99.99 or 0.9999	VARCHAR	12	NULL
LABM_UNITS		Lab property units e.g. m	VARCHAR	20	NULL
LABM_LOW_VALUE		Lab property low value of range allowed	FLOAT		NULL
LABM_HIGH_VALUE		Lab property high value of range allowed	FLOAT		NULL
AGENCY_CODE		Agency code; used for exchange purposes	VARCHAR	3	NULL

LAB_METHOD_TYPES

Column name	Domain name	Description	Data type	Length	Null
LABMT_CODE		Lab method type code	VARCHAR	20	NOT NULL
LABMT_NAME		Lab method type name	VARCHAR	80	NOT NULL

LAB_PROPERTIES

Column name	Domain name	Description	Data type	Length	Null
LABP_CODE		Lab property code	VARCHAR	20	NOT NULL
LABP_NAME		Name of laboratory property	VARCHAR	80	NOT NULL

LAB_RESULTS

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID _		Site identifier	VARCHAR	10	NOT NULL
O_ID		Observation identifier	VARCHAR	2	NOT NULL
H_NO		Horizon identifier	INTEGER		NOT NULL
SAMP_NO		Sample number e.g. Hrz 1 = 0-0.4	INTEGER		NOT NULL
		m Samp 1 = 0-0.2 Samp 2 = 0.2-			
		0.4 m			
LABM_CODE		Lab method code	VARCHAR	10	NOT NULL
LABR_NO		Replicate number of sample	INTEGER		NOT NULL
LABR_VALUE_PREFIX		Prefix of value e.g. >, <, t for	VARCHAR	1	NULL
		trace, etc			
LABR_VALUE		Value of lab result	FLOAT		NULL
LABR_LOW_VALUE		Low value of range	FLOAT		NULL
LABR_HIGH_VALUE		High value of range	FLOAT		NULL
LABR_ANALYSIS_TYPE	C_LABR_ANALYSIS_TYPE	Lab analysis type, CHEM, PHYS	VARCHAR	4	NULL
		or MIN			
LABR_DATE		Date analysis undertaken	VARCHAR	8	NULL

LAND _COVER

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID _		Site identifier	VARCHAR	10	NOT NULL
LCOV NO		Land cover number	INTEGER		NOT NULL
LCOV DATE		Date land cover observed ddmmyyyy	VARCHAR	8	NULL
LCOV_REF	C_LAND_COVER_REF	Land cover reference e.g. FAO Land Cover	VARCHAR	10	NOT NULL
		Version 2			
LAND COVER	C LAND COVER	Land cover code	VARCHAR	10	NOT NULL

LAND_USES

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID _		Site identifier	VARCHAR	10	NOT NULL
LUSE_NO		Land use number	INTEGER		NOT NULL
LUSE_DATE		Date land use observed or started	VARCHAR	8	NULL
LUSE_END_DATE		End date for land use ddmmyyyy	VARCHAR	8	NULL
LUSE_REF	C_LAND_USE_REF	Land use reference e.g. ALUM Version 6	VARCHAR	10	NOT NULL
LAND_USE	C_LAND_USE	Land use code	VARCHAR	10	NOT NULL

MICRORELIEFS

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID		Site identifier	VARCHAR	10	NOT NULL
O_ID		Observation identifier	VARCHAR	2	NOT NULL
MR_NO		Microrelief number	INTEGER		NOT NULL
MR_TYPE	C_MR_TYPE	Type of microrelief p129	VARCHAR	1	NULL
MR_PROP_GILGAI	C_MR_PROP_GILGAI	Proportions of gilgai components p130	VARCHAR	1	NULL
MR_BIOTIC_AGENT	C_MR_BIOTIC_AGENT	Biotic microrelief (agent) p131	VARCHAR	1	NULL
MR_BIOTIC_COMP	C_MR_BIOTIC_COMP	Component of biotic microrelief p133	VARCHAR	1	NULL
MR_VERTICAL_INT		Vertical interval (m) p133	FLOAT		NULL
MR_HORIZ_INT		Horizontal interval (m) p133	FLOAT		NULL

MOTTLES

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID		Site identifier	VARCHAR	10	NOT NULL
O_ID		Observation identifier	VARCHAR	2	NOT NULL
H_NO		Horizon identifier	INTEGER		NOT NULL
MOTT_NO		Mottle number	INTEGER		NOT NULL
MOTT_TYPE	C_MOTT_TYPE	Mottle type p160	VARCHAR	1	NULL
MOTT_ABUN	N_MOTT_ABUN	Mottle abundance p160	VARCHAR	1	NULL
MOTT_SIZE	N_MOTT_SIZE	Mottle size p160	VARCHAR	1	NULL
MOTT_CONTRAST	C_CONTRAST	Mottle contrast p160	VARCHAR	1	NULL
MOTT_HUE_VAL_CHROM	C_MUNSELL_COLOUR	Colour for decode	VARCHAR	10	NOT NULL
MOTT_HUE		Mottle hue p159	VARCHAR	5	NULL
MOTT_VALUE		Mottle value p159	FLOAT		NULL
MOTT_CHROMA		Mottle chroma p159	FLOAT		NULL
MOTT_MOISTURE_STAT	C_MOISTURE_STAT	Mottle colour moisture status p159	VARCHAR	1	NULL
MOTT_COLOUR	C_MOTT_COLOUR	Mottle colour i.e. old colours R, O, B etc p161	VARCHAR	1	NULL
MOTT_BOUN_DISTINCT	C_MOTT_BOUN_DISTINCT	Distinctness of boundaries (colour boundaries) p161	VARCHAR	1	NULL

OBSERVATIONS

AGENCY_CODE Agency identifier VARCHAR 3 NO NU PROJ_CODE Project identifier VARCHAR 10 NO NU S_ID Site identifier VARCHAR 10 NO NU O_ID Observation identifier VARCHAR 2 NO NU O_TYPE C_O_TYPE Type of soil observation, VARCHAR 1 NU e.g. Soil pit, etc p147 O_NATURE C_O_NATURE Nature of observation e.g. VARCHAR 1 NU characterisation, single, etc Officer code p13 VARCHAR 1 NU O_DATE_DESC Date site described p13 VARCHAR 8 NU ddmmyyyy O_AMG_ZONE O_EASTING O_NORTHING O_NORTHING O_LATITUDE O_LONGITUDE Agency identifier VARCHAR 3 NO N	
PROJ_CODE Project identifier VARCHAR 10 NO NU S_ID Site identifier VARCHAR 10 NO NU O_ID Observation identifier VARCHAR 2 NO NU O_TYPE C_O_TYPE Type of soil observation, e.g. Soil pit, etc p147 O_NATURE C_O_NATURE Nature of observation e.g. VARCHAR 1 NU characterisation, single, etc O_DESC_BY O_DATE_DESC Date site described p13 VARCHAR 8 NU o_DATE_DESC D_AMG_ZONE Australian map grid zone p8 O_EASTING O_NORTHING O_NORTHING O_LATITUDE AMG aosting (m) p8 INTEGER NU O_LATITUDE Latitude decimal degrees PLOAT NU NO NO NU	
S_ID Site identifier VARCHAR VARCHAR	
S_ID Site identifier VARCHAR 10 NU O_ID Observation identifier VARCHAR 2 NO NU O_TYPE C_O_TYPE Type of soil observation, e.g. Soil pit, etc p147 O_NATURE C_O_NATURE Nature of observation e.g. VARCHAR O_DESC_BY O_DESC_BY O_DATE_DESC Officer code p13 VARCHAR NU O_DATE_DESC Date site described p13 VARCHAR NU O_AMG_ZONE Australian map grid zone p8 O_EASTING O_NORTHING O_NORTHING O_LATITUDE D_LONGITUDE Site identifier VARCHAR NU NU NU NU NU NU NU NU NU N	
O_ID O_TYPE C_O_TYPE Type of soil observation, e.g. Soil pit, etc p147 O_NATURE C_O_NATURE Nature of observation e.g. VARCHAR 1 NU characterisation, single, etc O_DESC_BY O_DATE_DESC Date site described p13 VARCHAR 8 NU ddmmyyyy O_AMG_ZONE Australian map grid zone INTEGER NU p8 O_EASTING O_NORTHING O_NORTHING O_LATITUDE AMG assting (m) p8 INTEGER NU Latitude decimal degrees FLOAT NU p9 O_LONGITUDE NUCLEACTION NUCLEAR NU NARCHAR 2 NU NARCHAR NU NA	
O_ID O_TYPE C_O_TYPE C_O_TYPE Type of soil observation, vARCHAR 1 NU e.g. Soil pit, etc p147 O_NATURE C_O_NATURE Nature of observation e.g. vARCHAR 1 NU characterisation, single, etc O_DESC_BY O_DATE_DESC Date site described p13 VARCHAR 8 NU ddmmyyyy O_AMG_ZONE Australian map grid zone INTEGER NU p8 O_EASTING O_NORTHING O_NORTHING O_LATITUDE AMG acting (m) p8 INTEGER NU Latitude decimal degrees FLOAT NU p9 Longitude decimal degrees FLOAT NU	
O_TYPE	
e.g. Soil pit, etc p147 O_NATURE C_O_NATURE Nature of observation e.g. VARCHAR 1 NU characterisation, single, etc O_DESC_BY Officer code p13 VARCHAR 4 NU O_DATE_DESC Date site described p13 VARCHAR 8 NU ddmmyyyy O_AMG_ZONE Australian map grid zone INTEGER NU p8 O_EASTING AMG easting (m) p8 INTEGER NU O_NORTHING AMG northing (m) p8 INTEGER NU O_LATITUDE Latitude decimal degrees FLOAT NU p9 O_LONGITUDE Longitude decimal degrees FLOAT NU	LL
O_NATURE C_O_NATURE Nature of observation e.g. VARCHAR 1 NU characterisation, single, etc Officer code p13 VARCHAR 4 NU O_DATE_DESC Date site described p13 VARCHAR 8 NU ddmmyyyy Australian map grid zone INTEGER NU p8 AMG easting (m) p8 INTEGER NU O_NORTHING AMG northing (m) p8 INTEGER NU O_LATITUDE Latitude decimal degrees FLOAT NU p9 Longitude decimal degrees FLOAT NU	LL
characterisation, single, etc O_DESC_BY O_DATE_DESC O_DATE_DESC O_DATE_DESC O_AMG_ZONE O_AMG_ZONE O_EASTING O_NORTHING O_LATITUDE O_LONGITUDE characterisation, single, etc Officer code p13 VARCHAR 4 NU OARCHAR 8 NU OARCHAR 9 OARCHAR 8 NU OARCHAR 9	
O_DESC_BY O_DATE_DESC Date site described p13 VARCHAR 4 NU O_DATE_DESC Date site described p13 VARCHAR 8 NU ddmmyyyy O_AMG_ZONE Australian map grid zone INTEGER NU p8 O_EASTING O_NORTHING O_NORTHING O_LATITUDE Latitude decimal degrees FLOAT NU p9 O_LONGITUDE Longitude decimal degrees FLOAT NU	LL
O_DATE_DESC Date site described p13 VARCHAR 8 NU ddmmyyyy O_AMG_ZONE Australian map grid zone INTEGER NU p8 O_EASTING O_NORTHING O_LATITUDE AMG easting (m) p8 INTEGER NU p8 Latitude decimal degrees FLOAT NU p9 O_LONGITUDE Longitude decimal degrees FLOAT NU	
O_AMG_ZONE O_EASTING O_NORTHING O_LATITUDE O_LONGITUDE ddmmyyyy Australian map grid zone INTEGER NU p8 AMG easting (m) p8 INTEGER NU AMG northing (m) p8 INTEGER NU DESCRIPTION NU DE	
O_AMG_ZONE Australian map grid zone INTEGER NU p8 O_EASTING AMG easting (m) p8 INTEGER NU O_NORTHING AMG northing (m) p8 INTEGER NU O_LATITUDE Latitude decimal degrees FLOAT NU p9 O_LONGITUDE Longitude decimal degrees FLOAT NU	LL
O_EASTING O_NORTHING O_NORTHING O_LATITUDE O_LONGITUDE O_LONGITUDE AMG easting (m) p8 INTEGER NU AMG northing (m) p8 INTEGER NU Latitude decimal degrees FLOAT NU p9 Longitude decimal degrees FLOAT NU	LL
O_NORTHING O_LATITUDE Latitude decimal degrees O_LONGITUDE Longitude decimal degrees FLOAT NU p9 Longitude decimal degrees FLOAT NU	
O_LATITUDE Latitude decimal degrees FLOAT NU p9 O_LONGITUDE Longitude decimal degrees FLOAT NU	
p9 O_LONGITUDE Longitude decimal degrees FLOAT NU	
O_LONGITUDE Longitude decimal degrees FLOAT NU	LL
	LL
O DATUM Datum of the coordinates VARCHAR 10 NU	1
p7	
O_LATITUDE_GDA94 Latitude decimal degrees FLOAT NU	LL
O_LONGITUDE_GDA94 Longitude decimal degrees FLOAT NU	LL
O_LOCATION_STATE State e.g. TAS, NSW, VIC VARCHAR 3 NU	LL
etc	
O_LOCATION_NOTES Free text location notes VARCHAR 240 NU	
O_PHOTO_EAST Air photo site reference mm INTEGER NU east p11	LL
O PHOTO NORTH Air photo site reference mm INTEGER NU	1
north p11	

O LAND USE					
	C_LAND_USE	Land use code	VARCHAR	4	NULL
O FOREST TYPE	C O FOREST TYPE	Type of forest p73 (2 nd Ed)	VARCHAR	1	NULL
O_RF_COMPLEX	C_O_RF_COMPLEX	Rainforest complexity p77	VARCHAR	1	NULL
		(2 nd Ed)			
O_RF_LEAFSIZE	C_O_RF_LEAFSIZE	Rainforest leaf size of	VARCHAR	1	NULL
O_IN _LL/N OIZL	O_O_N _LL/N OIZL		V/ ((\O) / ((\	•	NOLL
		tallest stratum trees p81			
		(2 nd Ed)			
0 DE ELOD 00MD	0 0 DE ELOD 00MD		VAROUAR	4	A 11 11 1
O_RF_FLOR_COMP	C_O_RF_FLOR_COMP	Rainforest floristic	VARCHAR	1	NULL
		composition of tallest			
		stratum trees p83 (2 nd Ed)			
O_RF_INDICATOR	C_O_RF_INDICATOR	Rainforest indicator growth	VARCHAR	1	NULL
0	0_0 12.07 0		**********	•	
		form p84 (2 nd Ed)			
O RF EMERGENTS	C O RF EMERGENTS	Rainforest emergents p85	VARCHAR	1	NULL
	0_0				
O_SCLEROPHYLL		Sclerophyll presence in	VARCHAR	1	NULL
		canopy p63,85 (2 nd Ed)			
O VEG NOTES		Free text vegetation notes	VADCHAD	240	NULL
		ū	VARCHAR	240	
O ASPECT		Aspect (nearest 10	INTEGER		NULL
_		degrees) p127			
0 51514451011 51441	0 0 5 44 44 7 64				
O_ELEVATION_EVAL	C_O_EVALUATION	Elevation evaluation p127	VARCHAR	1	NULL
O ELEVATION PF		Elevation prefix	VARCHAR	1	NULL
				•	
O_ELEVATION		Elevation (m above sea	INTEGER		NULL
		level) p128			
O DDAINIAGE EVAL	0.0.5\/ALLIATION		\/A DOLLA D		
O_DRAINAGE_EVAL	C_O_EVALUATION	Drainage height evaluation	VARCHAR	1	NULL
		p128			
0. 004.04.05 4.5.04.5		•	EL 0.4 E		
O_DRAINAGE_HEIGHT		Drainage height value (m)	FLOAT		NULL
-		p128			
O DDAINAGE	C O DDAINAGE	•	VADOLIAD	4	NII II I
O_DRAINAGE	C_O_DRAINAGE	Drainage, soil water	VARCHAR	1	NULL
		regime, p202			
O MD CAMPLED	0.0.140.04140150		\/A DOLLA D		
O_MR_SAMPLED	C_O_MR_SAMPLED	Component of microrelief	VARCHAR	1	NULL
		sampled p133			
0 0011 01071100	0 0 00" BIOTUBB				
O_SOIL_DISTURB	C_O_SOIL_DISTURB	Soil disturbance from	VARCHAR	1	NULL
		Forward (2009)			
0. 00110. 0017.151751. 14111		,			
O_GRND_COV_LEVEL_MIN		Minimum level of flattened	INTEGER		NULL
		groundcover from Forward			
		(2009)			
O_GRND_COV_LEVEL_MAX		Maximum level of flattened	INTEGER		NULL
0_0					
		groundcover from Forward			
		(2009)			
O COND COV LIFICUT MIN			INITECED		NII II I
O_GRND_COV_HEIGHT_MIN		Minimum height of	INTEGER		NULL
		groundcover from Forward			
		(2009)			
O_GRND_COV_HEIGHT_MAX		Maximum height of	INTEGER		NULL
		groundcover from Forward			
		(2009)			
O WIND STATE	C O ED STATE	* *	VADCHAD	1	NULL
O_WIND_STATE	C_O_ER_STATE	Wind erosion state p134	VARCHAR		
O WIND DEG	C O WIND DEG	Wind erosion degree p134	VARCHAR	1	NULL
O_WIND_STABILITY	C_O_WIND_STABILTY	Wind erosion stability from	VARCHAR	1	NULL
		Forward (2009)			
O WIND VICIDILITY	C O WIND VICIDILITY	,	VADCLIAD	4	NII II I
O_WIND_VISIBILITY	C_O_WIND_VISIBILITY	Wind erosion occurring on	VARCHAR	1	NULL
		the day from Forward			
		(2009)			
O_SCALD_DEG	C_O_SCALD_DEG	Scald erosion degree p135	VARCHAR	1	NULL
O SHEET STATE	C O ER STATE	Sheet erosion state p135	VARCHAR	1	NULL
O_SHEET_DEG	C_O_SHEET_DEG	Sheet erosion degree p135	VARCHAR	1	NULL
O_WAVE_STATE	C O ER STATE	Wave erosion state p137	VARCHAR	1	NULL
O_WAVE_DEG	C_O_WAVE_DEG	Wave erosion degree p137	VARCHAR	1	NULL
O_RILL_STATE	C_O_ER_STATE	Rill erosion state p136	VARCHAR	1	NULL
O_RILL_DEG	C_O_RILL_DEG	Rill erosion degree p136	VARCHAR	1	NULL
O_MASS_STATE		Mass movement erosion	VARCHAR	1	NULL
	C_O_ER_STATE	iviass movement E1051011	VALIOUIAR		NULL
0_107.00_017.112					
0_111110		state p138			NII II I
			VARCHAD	1	
O_MASS_DEG	C_O_MASS_DEG	Mass movement erosion	VARCHAR	1	NULL
			VARCHAR	1	NULL
O_MASS_DEG	C_O_MASS_DEG	Mass movement erosion degree p138			
O_MASS_DEG O_GULLY_STATE	C_O_MASS_DEG C_O_ER_STATE	Mass movement erosion degree p138 Gully erosion state p137	VARCHAR	1	NULL
O_MASS_DEG	C_O_MASS_DEG	Mass movement erosion degree p138			
O_MASS_DEG O_GULLY_STATE O_GULLY_DEG	C_O_MASS_DEG C_O_ER_STATE N_O_GULLY_DEG	Mass movement erosion degree p138 Gully erosion state p137 Gully erosion degree p137	VARCHAR VARCHAR	1 1	NULL NULL
O_MASS_DEG O_GULLY_STATE	C_O_MASS_DEG C_O_ER_STATE	Mass movement erosion degree p138 Gully erosion state p137 Gully erosion degree p137 Stream bank erosion state	VARCHAR	1	NULL
O_MASS_DEG O_GULLY_STATE O_GULLY_DEG	C_O_MASS_DEG C_O_ER_STATE N_O_GULLY_DEG	Mass movement erosion degree p138 Gully erosion state p137 Gully erosion degree p137	VARCHAR VARCHAR	1 1	NULL NULL
O_MASS_DEG O_GULLY_STATE O_GULLY_DEG O_STBANK_STATE	C_O_MASS_DEG C_O_ER_STATE N_O_GULLY_DEG C_O_ER_STATE	Mass movement erosion degree p138 Gully erosion state p137 Gully erosion degree p137 Stream bank erosion state p137	VARCHAR VARCHAR VARCHAR	1 1 1	NULL NULL NULL
O_MASS_DEG O_GULLY_STATE O_GULLY_DEG	C_O_MASS_DEG C_O_ER_STATE N_O_GULLY_DEG	Mass movement erosion degree p138 Gully erosion state p137 Gully erosion degree p137 Stream bank erosion state p137 Stream bank erosion	VARCHAR VARCHAR	1 1	NULL NULL
O_MASS_DEG O_GULLY_STATE O_GULLY_DEG O_STBANK_STATE	C_O_MASS_DEG C_O_ER_STATE N_O_GULLY_DEG C_O_ER_STATE	Mass movement erosion degree p138 Gully erosion state p137 Gully erosion degree p137 Stream bank erosion state p137	VARCHAR VARCHAR VARCHAR	1 1 1	NULL NULL NULL
O_MASS_DEG O_GULLY_STATE O_GULLY_DEG O_STBANK_STATE O_STBANK_DEG	C_O_MASS_DEG C_O_ER_STATE N_O_GULLY_DEG C_O_ER_STATE C_O_STBANK_DEG	Mass movement erosion degree p138 Gully erosion state p137 Gully erosion degree p137 Stream bank erosion state p137 Stream bank erosion degree p137	VARCHAR VARCHAR VARCHAR VARCHAR	1 1 1	NULL NULL NULL NULL
O_MASS_DEG O_GULLY_STATE O_GULLY_DEG O_STBANK_STATE O_STBANK_DEG O_TUNNEL_STATE	C_O_MASS_DEG C_O_ER_STATE N_O_GULLY_DEG C_O_ER_STATE C_O_STBANK_DEG C_O_ER_STATE	Mass movement erosion degree p138 Gully erosion state p137 Gully erosion degree p137 Stream bank erosion state p137 Stream bank erosion degree p137 Tunnel erosion state p137	VARCHAR VARCHAR VARCHAR VARCHAR	1 1 1 1	NULL NULL NULL NULL
O_MASS_DEG O_GULLY_STATE O_GULLY_DEG O_STBANK_STATE O_STBANK_DEG	C_O_MASS_DEG C_O_ER_STATE N_O_GULLY_DEG C_O_ER_STATE C_O_STBANK_DEG	Mass movement erosion degree p138 Gully erosion state p137 Gully erosion degree p137 Stream bank erosion state p137 Stream bank erosion degree p137	VARCHAR VARCHAR VARCHAR VARCHAR	1 1 1	NULL NULL NULL NULL
O_MASS_DEG O_GULLY_STATE O_GULLY_DEG O_STBANK_STATE O_STBANK_DEG O_TUNNEL_STATE	C_O_MASS_DEG C_O_ER_STATE N_O_GULLY_DEG C_O_ER_STATE C_O_STBANK_DEG C_O_ER_STATE	Mass movement erosion degree p138 Gully erosion state p137 Gully erosion degree p137 Stream bank erosion state p137 Stream bank erosion degree p137 Tunnel erosion state p137 Tunnel erosion degree	VARCHAR VARCHAR VARCHAR VARCHAR	1 1 1 1	NULL NULL NULL NULL
O_MASS_DEG O_GULLY_STATE O_GULLY_DEG O_STBANK_STATE O_STBANK_DEG O_TUNNEL_STATE O_TUNNEL_DEG	C_O_MASS_DEG C_O_ER_STATE N_O_GULLY_DEG C_O_ER_STATE C_O_STBANK_DEG C_O_ER_STATE C_O_TUNNEL_DEG	Mass movement erosion degree p138 Gully erosion state p137 Gully erosion degree p137 Stream bank erosion state p137 Stream bank erosion degree p137 Tunnel erosion state p137 Tunnel erosion degree p137	VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR	1 1 1 1	NULL NULL NULL NULL NULL
O_MASS_DEG O_GULLY_STATE O_GULLY_DEG O_STBANK_STATE O_STBANK_DEG O_TUNNEL_STATE	C_O_MASS_DEG C_O_ER_STATE N_O_GULLY_DEG C_O_ER_STATE C_O_STBANK_DEG C_O_ER_STATE	Mass movement erosion degree p138 Gully erosion state p137 Gully erosion degree p137 Stream bank erosion state p137 Stream bank erosion degree p137 Tunnel erosion state p137 Tunnel erosion degree	VARCHAR VARCHAR VARCHAR VARCHAR	1 1 1 1	NULL NULL NULL NULL
O_MASS_DEG O_GULLY_STATE O_GULLY_DEG O_STBANK_STATE O_STBANK_DEG O_TUNNEL_STATE O_TUNNEL_DEG O_OTHER_ER_STATE	C_O_MASS_DEG C_O_ER_STATE N_O_GULLY_DEG C_O_ER_STATE C_O_STBANK_DEG C_O_ER_STATE C_O_TUNNEL_DEG C_O_ER_STATE	Mass movement erosion degree p138 Gully erosion state p137 Gully erosion degree p137 Stream bank erosion state p137 Stream bank erosion degree p137 Tunnel erosion state p137 Tunnel erosion degree p137 Other erosion state, p134	VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR	1 1 1 1 1	NULL NULL NULL NULL NULL NULL
O_MASS_DEG O_GULLY_STATE O_GULLY_DEG O_STBANK_STATE O_STBANK_DEG O_TUNNEL_STATE O_TUNNEL_DEG O_OTHER_ER_STATE O_OTHER_ER_DEG	C_O_MASS_DEG C_O_ER_STATE N_O_GULLY_DEG C_O_ER_STATE C_O_STBANK_DEG C_O_ER_STATE C_O_TUNNEL_DEG C_O_ER_STATE C_O_OTHER_ER_DEG	Mass movement erosion degree p138 Gully erosion state p137 Gully erosion degree p137 Stream bank erosion state p137 Stream bank erosion degree p137 Tunnel erosion state p137 Tunnel erosion degree p137 Other erosion state, p134 Other erosion degree, p134	VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR	1 1 1 1 1 1 1	NULL NULL NULL NULL NULL NULL NULL
O_MASS_DEG O_GULLY_STATE O_GULLY_DEG O_STBANK_STATE O_STBANK_DEG O_TUNNEL_STATE O_TUNNEL_DEG O_OTHER_ER_STATE	C_O_MASS_DEG C_O_ER_STATE N_O_GULLY_DEG C_O_ER_STATE C_O_STBANK_DEG C_O_ER_STATE C_O_TUNNEL_DEG C_O_ER_STATE	Mass movement erosion degree p138 Gully erosion state p137 Gully erosion degree p137 Stream bank erosion state p137 Stream bank erosion degree p137 Tunnel erosion state p137 Tunnel erosion degree p137 Other erosion state, p134	VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR	1 1 1 1 1	NULL NULL NULL NULL NULL NULL
O_MASS_DEG O_GULLY_STATE O_GULLY_DEG O_STBANK_STATE O_STBANK_DEG O_TUNNEL_STATE O_TUNNEL_DEG O_OTHER_ER_STATE O_OTHER_ER_DEG	C_O_MASS_DEG C_O_ER_STATE N_O_GULLY_DEG C_O_ER_STATE C_O_STBANK_DEG C_O_ER_STATE C_O_TUNNEL_DEG C_O_ER_STATE C_O_OTHER_ER_DEG	Mass movement erosion degree p138 Gully erosion state p137 Gully erosion degree p137 Stream bank erosion state p137 Stream bank erosion degree p137 Tunnel erosion state p137 Tunnel erosion degree p137 Other erosion state, p134 Other erosion degree, p134 Other erosion type, free	VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR	1 1 1 1 1 1 1	NULL NULL NULL NULL NULL NULL NULL
O_MASS_DEG O_GULLY_STATE O_GULLY_DEG O_STBANK_STATE O_STBANK_DEG O_TUNNEL_STATE O_TUNNEL_DEG O_OTHER_ER_STATE O_OTHER_ER_DEG O_OTHER_ER_TYPE	C_O_MASS_DEG C_O_ER_STATE N_O_GULLY_DEG C_O_ER_STATE C_O_STBANK_DEG C_O_ER_STATE C_O_TUNNEL_DEG C_O_ER_STATE C_O_OTHER_ER_DEG C_O_OTHER_ER_TYPE	Mass movement erosion degree p138 Gully erosion state p137 Gully erosion degree p137 Stream bank erosion state p137 Stream bank erosion degree p137 Tunnel erosion state p137 Tunnel erosion degree p137 Other erosion state, p134 Other erosion degree, p134 Other erosion type, free text, Additional field	VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR	1 1 1 1 1 1 1 1 30	NULL NULL NULL NULL NULL NULL NULL NULL
O_MASS_DEG O_GULLY_STATE O_GULLY_DEG O_STBANK_STATE O_STBANK_DEG O_TUNNEL_STATE O_TUNNEL_DEG O_OTHER_ER_STATE O_OTHER_ER_DEG	C_O_MASS_DEG C_O_ER_STATE N_O_GULLY_DEG C_O_ER_STATE C_O_STBANK_DEG C_O_ER_STATE C_O_TUNNEL_DEG C_O_ER_STATE C_O_OTHER_ER_DEG	Mass movement erosion degree p138 Gully erosion state p137 Gully erosion degree p137 Stream bank erosion state p137 Stream bank erosion degree p137 Tunnel erosion state p137 Tunnel erosion degree p137 Other erosion state, p134 Other erosion degree, p134 Other erosion type, free	VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR	1 1 1 1 1 1 1	NULL NULL NULL NULL NULL NULL NULL
O_MASS_DEG O_GULLY_STATE O_GULLY_DEG O_STBANK_STATE O_STBANK_DEG O_TUNNEL_STATE O_TUNNEL_DEG O_OTHER_ER_STATE O_OTHER_ER_TYPE O_GULLY_DEPTH	C_O_MASS_DEG C_O_ER_STATE N_O_GULLY_DEG C_O_ER_STATE C_O_STBANK_DEG C_O_ER_STATE C_O_TUNNEL_DEG C_O_ER_STATE C_O_OTHER_ER_DEG C_O_OTHER_ER_TYPE N_O_GULLY_DEPTH	Mass movement erosion degree p138 Gully erosion state p137 Gully erosion degree p137 Stream bank erosion state p137 Stream bank erosion degree p137 Tunnel erosion state p137 Tunnel erosion degree p137 Other erosion state, p134 Other erosion degree, p134 Other erosion type, free text, Additional field Gully depth p137	VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR	1 1 1 1 1 1 1 1 30	NULL NULL NULL NULL NULL NULL NULL NULL
O_MASS_DEG O_GULLY_STATE O_GULLY_DEG O_STBANK_STATE O_STBANK_DEG O_TUNNEL_STATE O_TUNNEL_DEG O_OTHER_ER_STATE O_OTHER_ER_TYPE O_GULLY_DEPTH O_AGGRADATION	C_O_MASS_DEG C_O_ER_STATE N_O_GULLY_DEG C_O_ER_STATE C_O_STBANK_DEG C_O_ER_STATE C_O_TUNNEL_DEG C_O_ER_STATE C_O_OTHER_ER_DEG C_O_OTHER_ER_TYPE N_O_GULLY_DEPTH C_O_AGGRADATION	Mass movement erosion degree p138 Gully erosion state p137 Gully erosion degree p137 Stream bank erosion state p137 Stream bank erosion degree p137 Tunnel erosion state p137 Tunnel erosion degree p137 Other erosion degree p134 Other erosion degree, p134 Other erosion type, free text, Additional field Gully depth p137 Aggradation p138	VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR	1 1 1 1 1 1 1 1 1 30	NULL NULL NULL NULL NULL NULL NULL NULL
O_MASS_DEG O_GULLY_STATE O_GULLY_DEG O_STBANK_STATE O_STBANK_DEG O_TUNNEL_STATE O_TUNNEL_DEG O_OTHER_ER_STATE O_OTHER_ER_TYPE O_GULLY_DEPTH	C_O_MASS_DEG C_O_ER_STATE N_O_GULLY_DEG C_O_ER_STATE C_O_STBANK_DEG C_O_ER_STATE C_O_TUNNEL_DEG C_O_ER_STATE C_O_OTHER_ER_DEG C_O_OTHER_ER_TYPE N_O_GULLY_DEPTH	Mass movement erosion degree p138 Gully erosion state p137 Gully erosion degree p137 Stream bank erosion state p137 Stream bank erosion degree p137 Tunnel erosion state p137 Tunnel erosion degree p137 Other erosion state, p134 Other erosion degree, p134 Other erosion type, free text, Additional field Gully depth p137	VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR	1 1 1 1 1 1 1 1 30	NULL NULL NULL NULL NULL NULL NULL NULL
O_MASS_DEG O_GULLY_STATE O_GULLY_DEG O_STBANK_STATE O_STBANK_DEG O_TUNNEL_STATE O_TUNNEL_DEG O_OTHER_ER_STATE O_OTHER_ER_TYPE O_GULLY_DEPTH O_AGGRADATION O_INUND_FREQ	C_O_MASS_DEG C_O_ER_STATE N_O_GULLY_DEG C_O_ER_STATE C_O_STBANK_DEG C_O_ER_STATE C_O_TUNNEL_DEG C_O_ER_STATE C_O_OTHER_ER_DEG C_O_OTHER_ER_TYPE N_O_GULLY_DEPTH C_O_AGGRADATION C_O_INUND_FREQ	Mass movement erosion degree p138 Gully erosion state p137 Gully erosion degree p137 Stream bank erosion state p137 Stream bank erosion degree p137 Tunnel erosion state p137 Tunnel erosion degree p137 Tunnel erosion degree p137 Other erosion state, p134 Other erosion state, p134 Other erosion type, free text, Additional field Gully depth p137 Aggradation p138 Inundation frequency p138	VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR	1 1 1 1 1 1 1 1 1 30	NULL NULL NULL NULL NULL NULL NULL NULL
O_MASS_DEG O_GULLY_STATE O_GULLY_DEG O_STBANK_STATE O_STBANK_DEG O_TUNNEL_STATE O_TUNNEL_DEG O_OTHER_ER_STATE O_OTHER_ER_TYPE O_GULLY_DEPTH O_AGGRADATION	C_O_MASS_DEG C_O_ER_STATE N_O_GULLY_DEG C_O_ER_STATE C_O_STBANK_DEG C_O_ER_STATE C_O_TUNNEL_DEG C_O_ER_STATE C_O_OTHER_ER_DEG C_O_OTHER_ER_TYPE N_O_GULLY_DEPTH C_O_AGGRADATION	Mass movement erosion degree p138 Gully erosion state p137 Gully erosion degree p137 Stream bank erosion state p137 Stream bank erosion degree p137 Tunnel erosion state p137 Tunnel erosion degree p137 Other erosion state, p134 Other erosion state, p134 Other erosion degree, p134 Other erosion type, free text, Additional field Gully depth p137 Aggradation p138 Inundation frequency p138 Inundation duration	VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR	1 1 1 1 1 1 1 1 1 30	NULL NULL NULL NULL NULL NULL NULL NULL
O_MASS_DEG O_GULLY_STATE O_GULLY_DEG O_STBANK_STATE O_STBANK_DEG O_TUNNEL_STATE O_TUNNEL_DEG O_OTHER_ER_STATE O_OTHER_ER_TYPE O_GULLY_DEPTH O_AGGRADATION O_INUND_FREQ	C_O_MASS_DEG C_O_ER_STATE N_O_GULLY_DEG C_O_ER_STATE C_O_STBANK_DEG C_O_ER_STATE C_O_TUNNEL_DEG C_O_ER_STATE C_O_OTHER_ER_DEG C_O_OTHER_ER_TYPE N_O_GULLY_DEPTH C_O_AGGRADATION C_O_INUND_FREQ	Mass movement erosion degree p138 Gully erosion state p137 Gully erosion degree p137 Stream bank erosion state p137 Stream bank erosion degree p137 Tunnel erosion state p137 Tunnel erosion degree p137 Tunnel erosion degree p137 Other erosion state, p134 Other erosion state, p134 Other erosion type, free text, Additional field Gully depth p137 Aggradation p138 Inundation frequency p138	VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR	1 1 1 1 1 1 1 1 1 30	NULL NULL NULL NULL NULL NULL NULL NULL
O_MASS_DEG O_GULLY_STATE O_GULLY_DEG O_STBANK_STATE O_STBANK_DEG O_TUNNEL_STATE O_TUNNEL_DEG O_OTHER_ER_STATE O_OTHER_ER_DEG O_OTHER_ER_TYPE O_GULLY_DEPTH O_AGGRADATION O_INUND_FREQ O_INUND_DUR	C_O_MASS_DEG C_O_ER_STATE N_O_GULLY_DEG C_O_ER_STATE C_O_STBANK_DEG C_O_ER_STATE C_O_TUNNEL_DEG C_O_ER_STATE C_O_OTHER_ER_DEG C_O_OTHER_ER_TYPE N_O_GULLY_DEPTH C_O_AGGRADATION C_O_INUND_FREQ N_O_INUND_DUR	Mass movement erosion degree p138 Gully erosion state p137 Gully erosion degree p137 Stream bank erosion state p137 Stream bank erosion degree p137 Tunnel erosion state p137 Tunnel erosion state p137 Tunnel erosion state, p134 Other erosion degree, p134 Other erosion degree, p134 Other erosion degree, p134 Other erosion field Gully depth p137 Aggradation p138 Inundation frequency p138 Inundation duration (annual) p139	VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR	1 1 1 1 1 1 1 1 30 1 1 1	NULL NULL NULL NULL NULL NULL NULL NULL
O_MASS_DEG O_GULLY_STATE O_GULLY_DEG O_STBANK_STATE O_STBANK_DEG O_TUNNEL_STATE O_TUNNEL_DEG O_OTHER_ER_STATE O_OTHER_ER_TYPE O_GULLY_DEPTH O_AGGRADATION O_INUND_FREQ	C_O_MASS_DEG C_O_ER_STATE N_O_GULLY_DEG C_O_ER_STATE C_O_STBANK_DEG C_O_ER_STATE C_O_TUNNEL_DEG C_O_ER_STATE C_O_OTHER_ER_DEG C_O_OTHER_ER_TYPE N_O_GULLY_DEPTH C_O_AGGRADATION C_O_INUND_FREQ	Mass movement erosion degree p138 Gully erosion state p137 Gully erosion degree p137 Stream bank erosion state p137 Stream bank erosion degree p137 Tunnel erosion state p137 Tunnel erosion degree p137 Other erosion state, p134 Other erosion state, p134 Other erosion degree, p134 Other erosion type, free text, Additional field Gully depth p137 Aggradation p138 Inundation frequency p138 Inundation duration	VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR	1 1 1 1 1 1 1 1 1 30	NULL NULL NULL NULL NULL NULL NULL NULL

O_INUND_RUNON_VEL	N_O_INUND_RUNON_VEL	Inundation runon velocity	VARCHAR	1	NULL
O_DEPTH_WATER		p139 Depth to free water (m)	FLOAT		NULL
O_DEPTH_WATER_PREF	C_O_DEPTH_WATER_PREF	p144 Depth to free water prefix:	VARCHAR	1	NULL
O_DEPTH_RHORIZON_PF O_DEPTH_RHORIZON		+,-,0 p144 Depth to R horizon prefix Depth to R horizon or strongly cemented pan	VARCHAR FLOAT	1	NULL NULL
		p156			
O_RUNOFF	C_O_RUNOFF	Runoff p144	VARCHAR	1	NULL
O_PERMEABILITY	C_PERMEABILITY	Permeability p200	VARCHAR	1	NULL
O_SB_OBS_TYPE	C_O_SB_OBS_TYPE	Substrate type of observation p205	VARCHAR	1	NULL
O_SB_DISTANCE		Substrate distance (m) p206	FLOAT		NULL
O_SB_CONFIDENCE	C_O_SB_CONFIDENCE	Substrate confidence p206	VARCHAR	1	NULL
O_SB_DEPTH_PF		Substrate depth prefix	VARCHAR	1	NULL
O_SB_DEPTH		Substrate depth (m) p206	FLOAT		NULL
O_SB_GRAIN_SIZE	N_O_SB_GRAIN_SIZE	Substrate grain size p206	VARCHAR	1	NULL
O_SB_TEXTURE	C_O_SB_TEXTURE	Substrate texture p207	VARCHAR	1	NULL
O_SB_STRUCTURE	C_O_SB_STRUCTURE	Substrate structure p207	VARCHAR	1	NULL
O_SB_POROSITY	C_O_SB_POROSITY	Substrate porosity p208	VARCHAR	1	NULL
O_SB_STRENGTH	C_STRENGTH	Substrate strength p209	VARCHAR	2	NULL
O_SB_LITH	C_LITHOLOGY	Substrate lithology p209	VARCHAR	2	NULL
O_SB_MASS_SPAC_DIS	N_O_SB_MASS_SPAC_DIS	Substrate mass spacing of discontinuities p210	VARCHAR	1	NULL
O_SB_MASS_ALT	C_O_SB_MASS_ALT	Substrate mass alteration p211	VARCHAR	1	NULL
O_SB_MASS_STRENGTH	C_O_SB_MASS_STRENGTH	Substrate mass strength p211	VARCHAR	2	NULL
O_SB_MASS_GEN_TYPE	C_O_SB_MASS_GEN_TYPE	Substrate mass genetic type p216	VARCHAR	2	NULL
O_SUBSTRATE_NOTES		Free text substrate notes	VARCHAR	240	NULL
O PPF		Principal profile form	VARCHAR	9	NULL
O GSG	C O GSG	Great soil group	VARCHAR	3	NULL
O_ASC_TECH_REF	C_O_ASC_TECH_REF	Aust soil classification	VARCHAR	1	NULL
O_ASC_CONF	C_O_ASC_CONF	technical reference Aust soil classification	VARCHAR	1	NULL
O_ASC_ORD	C_O_ASC_ORD	confidence Aust soil classification order	VARCHAR	2	NULL
O_ASC_SUBORD	C_O_ASC	p255 Aust soil classification	VARCHAR	2	NULL
O_ASC_GG	C_O_ASC	suborder Aust soil classification great	VARCHAR	2	NULL
O_ASC_SUBG	C_O_ASC	soil group Aust soil classification	VARCHAR	2	NULL
O_ASC_FAM1	C_O_ASC_FAM	subgroup Aust soil classification family; likely to be horizon	VARCHAR	1	NULL
O_ASC_FAM2	C_O_ASC_FAM	thickness Aust soil classification	VARCHAR	1	NULL
	0_0_,100_,7	family; likely to be gravel content	77 11 10 1 17 11 1		
O_ASC_FAM3	C_O_ASC_FAM	Aust soil classification family; likely to be A1 texture	VARCHAR	1	NULL
O_ASC_FAM4	C_O_ASC_FAM	Aust soil classification family; likely to be B texture	VARCHAR	1	NULL
O_ASC_FAM5	C_O_ASC_FAM	Aust soil classification family; likely to be soil	VARCHAR	1	NULL
O_ASC_NOTES		depth Aust soil classification notes	VARCHAR	240	NULL
O_UNI_SOIL_CLASS		Unified soil classification	VARCHAR	5	NULL
O_SOIL_TAXONOMY	C_O_SOIL_TAXONOMY	Soil taxonomy p226	VARCHAR	6	NULL
O_TAX_UNIT_TYPE	C_O_TAX_UNIT_TYPE	Taxonomic unit type: Soil type-ST soil series-SS soil	VARCHAR	3	NUL
O_TAX_UNIT_NAME		profile class-SPC Taxonomic unit name, free	VARCHAR	100	NULL
O_MAP_UNIT_TYPE	C_O_MAP_UNIT_TYPE	text Mapping unit type: Land sys-LS land unit-LU soil landscape-SL soil assoc-	VARCHAR	3	NULL
O MAP INIT NAME		SA soil cpx-SC Map unit name, free text	VARCHAD	100	NULL
O_MAP_UNIT_NAME O_NOTES		Free text notes, additional field	VARCHAR VARCHAR	240	NULL

OBS_MNG_PRACS

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID		Site identifier	VARCHAR	10	NOT NULL
O_ID		Observation identifier	VARCHAR	2	NOT NULL
OMP_NO		Observation mngt practice number	INTEGER		NOT NULL
OMP_DATE		Date mngt practice observed ddmmyyyy	VARCHAR	8	NULL
OMP_REF	C_MP_REF	Management practice reference e.g. LUMIS Version 1	VARCHAR	10	NOT NULL
OMP_COVER	C_MP_CODE	Observation mngt practice type, e.g. liming, fertiliser	VARCHAR	10	NOT NULL

OFFICERS

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
OFFR_CODE		Officer code p13. Code is unique within each state	VARCHAR	4	NOT NULL
OFFR NAME		Officer name	VARCHAR	40	NOT NULL

PANS

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID		Site identifier	VARCHAR	10	NOT NULL
O_ID		Observation identifier	VARCHAR	2	NOT NULL
H_NO		Horizon identifier	INTEGER		NOT NULL
PAN_NO		Pan number	INTEGER		NOT NULL
PAN_CEMENTATION	C_PAN_CEMENTATION	Pan cementation p192	VARCHAR	1	NULL
PAN TYPE	C PAN TYPE	Type of pan p192	VARCHAR	1	NULL
PAN CONTINUITY	C PAN CONTINUITY	Continuity of pan p195	VARCHAR	1	NULL
PAN_STRUCTURE	C_PAN_STRUCTURE	Structure of pan p195	VARCHAR	1	NULL

PATT_GEOMORPHS

Column name	Domain name	Description	Data type	Length	Null
AGENCY CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID _		Site identifier	VARCHAR	10	NOT NULL
PGM NO		Pattern geomorphology number	INTEGER		NOT NULL
PGM_MODE	C_GEOMORPH_MODE	Pattern, mode of geomorphological activity p52	VARCHAR	2	NULL
PGM AGENT	C GEOMORPH AGENT	Pattern geomorphological agent p52	VARCHAR	2	NULL
PGM_STAT	C_PGM_STAT	Pattern status of geomorphological activity p54	VARCHAR	1	NULL

PHS

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID _		Site identifier	VARCHAR	10	NOT NULL
O_ID		Observation identifier	VARCHAR	2	NOT NULL
H_NO		Horizon identifier	INTEGER		NOT NULL
PH_NO		pH number	INTEGER		NOT NULL
PH_VALUE		Field pH value p198	FLOAT		NOT NULL
PH_DEPTH		Depth at which pH recorded (m) p198	FLOAT		NULL
PH_METHOD	C_PH_METHOD	Field pH method	VARCHAR	1	NULL

PORES

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID		Site identifier	VARCHAR	10	NOT NULL
S_ID O_ID		Observation identifier	VARCHAR	2	NOT NULL
H_NO		Horizon identifier	INTEGER		NOT NULL
PORE_NO		Pore number	INTEGER		NOT NULL
PORE_ABUN	N_PORE_ABUN	Abundance of macropores p184	VARCHAR	1	NULL
PORE_DIAMETER	N_PORE_DIAMETER	Diameter of macropores p185	VARCHAR	1	NULL

PROJECTS

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier (unique within each agency)	VARCHAR	10	NOT NULL
PROJ_NAME		Name of project	VARCHAR	240	NOT NULL
PROJ_MANAGER_CODE		Officer code p13	VARCHAR	4	NULL
PROJ_BIBLIO_REF		Bibliographic reference	VARCHAR	240	NULL
PROJ_START_DATE		Date of commencement of project ddmmyyyy	VARCHAR	8	NULL
PROJ_FINISH_DATE		Date of completion of project ddmmyyyy	VARCHAR	8	NULL

ROCK_OUTCROPS

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID _		Site identifier	VARCHAR	10	NOT NULL
O_ID		Observation identifier	VARCHAR	2	NOT NULL
RO_NO		Rock outcrop number	INTEGER		NOT NULL
RO_ABUN	N_RO_ABUN	Rock outcrop abundance p143	VARCHAR	1	NULL
RO_LITH	C_LITHOLOGY	Rock outcrop lithology p214	VARCHAR	2	NULL

ROOTS

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID		Site identifier	VARCHAR	10	NOT NULL
O_ID		Observation identifier	VARCHAR	2	NOT NULL
H_NO		Horizon identifier	INTEGER		NOT NULL
ROOT_NO		Root number	INTEGER		NOT NULL
ROOT_ABUN	N_ROOT_ABUN	Root abundance (per 0.01 m2) p199	VARCHAR	1	NULL
ROOT_SIZE	N_ROOT_SIZE	Root size (diameter) p199	VARCHAR	1	NULL

SAMPLES

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID _		Site identifier	VARCHAR	10	NOT NULL
O_ID		Observation identifier	VARCHAR	2	NOT NULL
H_NO		Horizon identifier	INTEGER		NOT NULL
SAMP_NO		Sample number E.g. Hrz 1 = 0-0.4 m Samp 1	INTEGER		NOT NULL
		= 0-0.2 m Samp 2 = 0.2-0.4 m			
SAMP_UPPER_DEPTH		Sample upper depth (m)	FLOAT		NULL
SAMP_LOWER_DEPTH		Sample lower depth (m)	FLOAT		NULL
SAMP_CONTRIB		Number of contributing samples	INTEGER		NULL
SAMP_SIZE		Size of final sample	VARCHAR	1	NULL
SAMP_NOTES		Free text notes	VARCHAR	240	NULL

SEGREGATIONS

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S ID		Site identifier	VARCHAR	10	NOT NULL
O_ID		Observation identifier	VARCHAR	2	NOT NULL
H_NO		Horizon identifier	INTEGER		NOT NULL
SEG_NO		Segregation number	INTEGER		NOT NULL
SEG_ABUN	N_SEG_ABUN	Segregation abundance p196	VARCHAR	1	NULL
SEG_NATURE	C_SEG_NATURE	Segregation nature p196	VARCHAR	1	NULL
SEG_FORM	C_SEG_FORM	Segregation form p196	VARCHAR	1	NULL
SEG_SIZE	N_SEG_SIZE	Segregation size p197	VARCHAR	1	NULL
SEG_STRENGTH	C_SEG_STRENGTH	Segregation strength p197	VARCHAR	1	NULL
SEG_MAGNETIC_ATTR	C_SEG_MAGNETIC_ATTR	Segregation magnetic attributes p198	VARCHAR	1	NULL

SITES

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID _		Site identifier	VARCHAR	10	NOT NULL
S ORIG TECH REF	C TECHNICAL REF	Technical reference used	VARCHAR	1	NULL
S MAP SCALE	C_S_MAP_SCALE	Map scale p9	VARCHAR	1	NULL
S MAP SHEET NO		Map sheet number	VARCHAR	10	NULL
S MAP REF TYPE	C_S_MAP_REF_TYPE	Map reference type p8	VARCHAR	1	NULL
S PHOTO FILM NO		Air photo film number p10	VARCHAR	11	NULL
S PHOTO RUN NO		Air photo run number p10	VARCHAR	3	NULL
S PHOTO FRAME NO		Air photo frame number p11	INTEGER	Ü	NULL
S DESC BY		Officer code p13	VARCHAR	4	NULL
S DATE DESC		Date site described p13	VARCHAR	8	NULL
0_5/112_5200		ddmmyyyy	Villoniill	J	NOLL
S TYPE	C S TYPE	Type of site p13	VARCHAR	1	NULL
S RAINFALL	0_0_1112	Annual rainfall (mm) p13	INTEGER	•	NULL
S SLOPE PF		Slope prefix	VARCHAR	1	NULL
S_SLOPE		Slope value, % p18	FLOAT	'	NULL
S SLOPE EVAL	C S SLOPE EVAL	Slope, means of evaluation p18	VARCHAR	1	NULL
	C S SLOPE_EVAL C S SLOPE CLASS	Slope class, p18		2	NULL
S_SLOPE_CLASS			VARCHAR		-
S_MORPH_TYPE	C_S_MORPH_TYPE	Slope morphological type p19	VARCHAR	1	NULL
S_ELEM_INC_SLOPE	C_S_ELEM_INC_SLOPE	Relative inclination of slope elements p21	VARCHAR	1	NULL
S_ELEM_LENGTH		Length of landform element (m) p27	FLOAT		NULL
S_ELEM_WIDTH		Width of landform element (m) p27	FLOAT		NULL
S_ELEM_HEIGHT		Height of landform element (m) p27	FLOAT		NULL
S_ELEM_LOCATION	C_S_ELEM_LOCATION	Location within landform element p27	VARCHAR	1	NULL
S_ELEM_TYPE	C_S_ELEM_TYPE	Element type p31	VARCHAR	3	NULL
S RELIEF		Pattern relief (m) p45	INTEGER		NULL
S MODAL SLOPE	N S MODAL SLOPE	Modal slope p45	VARCHAR	2	NULL
S RELIEF CLASS	N S RELIEF CLASS	Relief class p48	VARCHAR	1	NULL
S REL MS CLASS	C S REL MS CLASS	Relief/modal slope class p47	VARCHAR	2	NULL
S STRM CH SPACING	N S STRM CH SPACING	Stream channel spacing p48	VARCHAR	2	NULL
S STRM CH DEV	C S STRM CH DEV	Stream channel development p49	VARCHAR	1	NULL
S_STRM_CH_DTOW	N_S_STRM_CH_DTOW	Channel depth relative to width p49	VARCHAR	1	NULL
S STRM CH MIG	C S STRM CH MIG	Stream channel migration p50	VARCHAR	1	NULL
S STRM CH PATT	C S STRM CH PATT	Stream-wise channel pattern p50	VARCHAR	1	NULL
S_STRM_CH_NET_INT	C_S_STRM_CH_NET_INT	Stream channel network integration p50	VARCHAR	1	NULL
S_STRM_CH_DIR_NET	C_S_STRM_CH_DIR_NET	Stream channel network directionality p52	VARCHAR	1	NULL
S PATT TYPE	C S PATT TYPE	Pattern type p55	VARCHAR	3	NULL
S NOTES		Free text notes	VARCHAR	240	NULL
S TRANS AUTHOR		Translation of format author	VARCHAR	4	NULL
REF_AGENCY_CODE		Parent site agency identifier (used for nested sites)	VARCHAR	3	NULL
REF_PROJ_CODE		Parent site project identifier (used for nested sites)	VARCHAR	10	NULL
REF_S_ID		Parent site site identifier (used for nested sites)	VARCHAR	10	NULL

SITE_ENVELOPE

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID		Site identifier	VARCHAR	10	NOT NULL
S_ENV_NO		Site envelope number	INTEGER		NOT NULL
S_ENV_CODE		Site envelope parameter code (e.g. latitude or longitude of vertices)	VARCHAR	10	NOT NULL
S_ENV_VALUE		Value of site envelope parameter	VARCHAR	50	NULL

SITE_ENVELOPE_CODE

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
S_ENV_ CODE		Site envelope parameter code (e.g. latitude or longitude of vertices)	VARCHAR	10	NOT NULL
S_ENV_DESC		Site envelope description	VARCHAR	50	NOT NULL
S_ENV_UNITS		Site envelope parameter units e.g. m	VARCHAR	5	NULL

SITE_MNG_PRCS

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID		Site identifier	VARCHAR	10	NOT NULL
LUSE_NO		Land use number	INTEGER		NOT NULL
SMP_NO		Site mngt practice number	INTEGER		NOT NULL
SMP_DATE		Date mngt practice observed	VARCHAR	8	NULL
SMP_REF	C_MP_REF	Management practice reference e.g. LUMIS Version 1	VARCHAR	10	NULL
SMP CODE	C MP CODE	Site mngt practice type, e.g. liming, fertiliser	VARCHAR	4	NOT NULL

STATES

Column name	Domain name	Description	Data type	Length	Null
STATE_CODE		State code p7 Note: new codes	VARCHAR	1	NOT NULL
STATE_NAME		State name, p7	VARCHAR	3	NOT NULL

STRENGTHS

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID _		Site identifier	VARCHAR	10	NOT NULL
S_ID O_ID		Observation identifier	VARCHAR	2	NOT NULL
H_NO		Horizon identifier	INTEGER		NOT NULL
STRG_NO		Strength number	INTEGER		NOT NULL
STRG_CLASS	C_STRG_CLASS	Strength p187	VARCHAR	1	NOT NULL
STRG_MOISTURE_STAT	C_SOIL_WATER	Moisture status p187	VARCHAR	1	NULL

STRUCTURES

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID _		Site identifier	VARCHAR	10	NOT NULL
O_ID		Observation identifier	VARCHAR	2	NOT NULL
H_NO		Horizon identifier	INTEGER		NOT NULL
STR_NO		Structure number	INTEGER		NOT NULL
STR_PED_GRADE	C_STR_PED_GRADE	Grade of pedality p171	VARCHAR	1	NULL
STR_PED_SIZE	N_STR_PED_SIZE	Size of peds p172	VARCHAR	1	NULL
STR_PED_TYPE	C_STR_PED_TYPE	Type of pedality p173	VARCHAR	2	NULL
STR_COMPOUND_PED	C_STR_COMPOUND_PED	Compound pedality p180	VARCHAR	1	NULL
STR_CLODS_FRAGS	C_STR_CLODS_FRAGS	Clods and fragments p181	VARCHAR	2	NULL

SUB_MINERAL_COMPS

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID _		Site identifier	VARCHAR	10	NOT NULL
O_ID		Observation identifier	VARCHAR	2	NOT NULL
SB_NO		Substrate number	INTEGER		NOT NULL
SB_MINERAL_COMP	C_SB_MINERAL_COMP	Mineral composition p208	VARCHAR	1	NOT NULL

SURF_COARSE_FRAGS

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID		Site identifier	VARCHAR	10	NOT NULL
O_ID		Observation identifier	VARCHAR	2	NOT NULL
SCF_NO		Surface coarse fragment number	INTEGER		NOT NULL
SCF_ABUN	N_CF_ABUN	Surface coarse fragment abundance p139	VARCHAR	1	NULL
SCF_SIZE	N_CF_SIZE	Surface coarse fragment size p140	VARCHAR	1	NULL
SCF_SHAPE	C_CF_SHAPE	Surface coarse fragment shape p142	VARCHAR	2	NULL
SCF_LITH	C_LITHOLOGY	Surface coarse fragment lithology p214	VARCHAR	2	NULL
SCF_STRENGTH	C_CF_STRENGTH	Surface coarse fragment strength p209	VARCHAR	2	NULL

SURF_CONDITIONS

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID _		Site identifier	VARCHAR	10	NOT NULL
S_ID O_ID		Observation identifier	VARCHAR	2	NOT NULL
SCON_NO		Surface condition number	INTEGER		NOT NULL
SCON_STAT	C_SCON_STAT	Condition of surface when dry p189	VARCHAR	1	NULL

VEG_SPECIES

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID		Site identifier	VARCHAR	10	NOT NULL
O_ID		Observation identifier	VARCHAR	2	NOT NULL
VSTR_CODE	C_VSTR_CODE	Stratum, T=tallest, M=mid, L=lower,	VARCHAR	2	NOT NULL
_		U=undescribed			
VSP_NO		Vegetation species number	INTEGER		NOT NULL
VSP_SPECIES		Genus and species	VARCHAR	90	NOT NULL
VSP_CODE		Vegetation species	VARCHAR	8	NULL
VSP_ANBG_ID		Vegetation species ID used by Australian	INTEGER		NULL
		National Botanic Gardens			
VSP_ABUN		Vegetation species abundance	VARCHAR	3	NULL

VEG_STRATA

Column name	Domain name	Description	Data type	Length	Null
AGENCY_CODE		Agency identifier	VARCHAR	3	NOT NULL
PROJ_CODE		Project identifier	VARCHAR	10	NOT NULL
S_ID		Site identifier	VARCHAR	10	NOT NULL
O_ID		Observation identifier	VARCHAR	2	NOT NULL
VSTR_CODE	C_VSTR_CODE	Stratum, T=tallest, M=mid, L=lower, U=undescribed ,	VARCHAR	2	NOT NULL
VSTR GROWTH FORM	C VSTR GROWTH FORM	CM=continuum mid Growth form	VARCHAR	1	NULL
VSTR_HEIGHT_CLASS	N_VSTR_HEIGHT_CLASS	Height	VARCHAR	1	NULL
VSTR_COVER_CLASS	C_VSTR_COVER_CLASS	Crown and foliage cover class NB Values different for Lower	VARCHAR	1	NULL
VSTR_CROWN_COVER		Crown cover percentage	FLOAT		NULL

APPENDIX C - CODES TABLES

Table States

Code	State
1	NSW
2	VIC
3	QLD
4	SA
5	WA
6	TAS
7	NT
8	ACT
9	No state

Table Agencies

State	Code	Description	Acronym
1	101	NSW Department of Agriculture	
1	102	NSW Conservation and Land Management	
1	103	NSW State Forests	SFNSW
1	103	NSW Department of Infrastructure, Planning and Natural	
		Resources	
1	104	Department of Land and Water Conservation (NSW)	DLWC
1	105	Department of Infrastructure, Planning and Natural Resources (NSW)	
1	199	CSIRO Division of Soils (NSW)	
2	201	VIC Department of Agriculture	
2	202	VIC Department of Conservation and Natural Resources	
2	203	VIC Department of Primary Industries	
2	299	CSIRO Division of Soils (VIC)	
3	301	QLD Department of Primary Industries	QDPI
3	302	QLD Environment and Heritage	QEH
3	303	QLD Department of Natural Resources and Mines	
3	397	CSIRO Sustainable Ecosystems (QLD)	CSE
3	398	CSIRO Land and Water (QLD)	
3	399	CSIRO Division of Soils (QLD)	
4	401	SA Department of Primary Industries	
4	402	Department Water, Land and Biodiversity Conservation (SA)	DWLBC
4	498	CSIRO Land and Water (SA)	
4	498	CSIRO Land and Water (SA)	
4	499	CSIRO Division of Soils (SA)	
5	501	Agriculture Western Australia	AgWA
5	502	WA Department of Conservation and Land Management	
5	599	CSIRO Division of Soils (WA)	
6	601	TAS Department of Primary Industries and Fisheries	
6	602	TAS Forestry Commission	
6	603	Department of Primary Industries, Water and Environment (TAS)	
6	603	TAS Department of Primary Industries, Water and Environment	
6	699	CSIRO Division of Soils (TAS)	
7	701	Conservation Commission of the Northern Territory	
7	702	Department of Infrastructure, Planning and Environment (NT)	
7	703	NT Natural Resources, Environment and the Arts	

7	799	CSIRO Division of Soils (NT)	
8	801	ACT Environment Land and Planning	
8	802	Soil and Land Conservation Consulting	CPSS
8	889	CSIRO Forestry and Forest Products	CSIRO FFP
8	898	CSIRO Land and Water (ACT)	
8	899	CSIRO Division of Soils (ACT)	
9	998	Geoscience Australia	
9	999	Australian Collaborative Land Evaluation Program	ACLEP

Table codes: Domain C_AS_SAMP_TYPE

Value	Description
CF	Coarse Fragments
FE	Fine earth
WS	Whole soil

Table codes: Domain N_CF_ABUN

Value	Description	Numeric value	Low value	High value
0	No coarse fragments	0	0	0
1	very few	1	0	2
2	few	6	2	10
3	common	15	10	20
4	many	35	20	50
5	abundant	70	50	90
6	very abundant	95	90	100

Table codes: Domain C_CF_DISTRIBUTION

Value	Description
D	Dispersed
R	Reoriented
S	Stratified
U	Undisturbed

Table codes: Domain C_CF_SHAPE

Value	Description
Α	Angular
AP	Angular platy
AT	Angular tabular
R	Rounded
RP	Rounded platy
RT	Rounded tabular
S	Subangular
SP	Subangular platy
ST	Subangular tabular
U	Subrounded
UP	Subrounded platy
UT	Subrounded tabular

Table codes: Domain N_CF_SIZE

Value	Description	Numeric value	Low value	High value
1	fine gravelly, 2-6mm	4	2	6
2	medium gravelly, 6-20mm	13	6	20
3	coarse gravelly, 20-60mm	40	20	60
4	cobbly, 60-200mm	130	60	200
5	stony, 200-600mm	400	200	600
6	bouldery, 600mm-2m	1300	600	2000
7	large Boulders, >2m	2000	2000	

Table codes: Domain C_CF_STRENGTH

Value	Description
М	moderately strong
S	strong
VS	very strong
VW	very weak
W	weak

Table codes: Domain C_CONTRAST

Value	Description
D	Distinct
F	Faint
Р	Prominent

Table codes: Domain N_CRACK_WIDTH

Value	Description	Numeric value	Low value	High value
1	Fine, (0 - 5) mm	2.5	0	5
2	Medium, (5 - 10) mm	7.5	5	10
3	Coarse, (10 - 20) mm	15	10	20
4	Very coarse, (20 - 50) mm	35	20	50
5	Extremely coarse, (50 - 100) mm	75	50	100

Table codes: Domain N_CUTAN_ABUN

Value	Description	Numeric value	Low value	High value
0	No cutans	0	0	0
1	Few; <10% of ped faces or walls coated	5	0	10
2	Common; 10-50% of ped faces or walls coated	30	10	50
3	Many; >50% of ped faces or walls coated	75	50	100

Table codes: Domain C_CUTAN_TYPE

Value	Description
С	Clay skins
K	Slickensides
M	Mangans
0	Other cutans
S	Stress cutans
U	Unspecified
Z	Zero or no cutans

Table codes: Domain C_DIST_TYPE

Value	Description
0	No effective disturbance. Natural
1	No effective disturbance other than grazing by hoofed animals
2	Limited clearing, for example selective logging
3	Extensive clearing, for example poisoning, ringbarking
4	Complete clearing. Pasture, native or improved, but never cultivated
5	Complete clearing. Pasture, native or improved, cultivated at some stage
6	Cultivation. Rainfed
7	Cultivation. Irrigated, past or present
8	Highly disturbed, for example, quarrying, roadworks, mining, landfill, urban

Table codes: Domain C_FAB_TYPE

Value	Description
E	Earthy
G	Sandy (grains prominent)
R	Rough-ped
S	Smooth-ped

Table codes: Domain C_GEOMORPH_AGENT

Value	Description
BI	Non-human biological agents; coral
CH	Channelled stream flow
DI	Diastrophism; earth movements
EU	Eustasy; changes in sea level
FR	Frost, including freeze-thaw
GL	Glacier flow
GR	Gravity
HU	Human agents
IM	Impact by meteors
OV	Over bank stream flow, unchannelled
SH	Sheet flow; sheet wash, surface wash
SM	Soil moisture status changes: creep
SO	Solution
TI	Tides
VO	Volcanism
WA	Waves
WI	Wind
WM	Water-aided mass movements; landslides

Table codes: Domain C_GEOMORPH_MODE

Value	Description
AG	Aggraded
BU	Built up
EA	Eroded or aggraded
ER	Eroded
EX	Excavated or dug out
HU	Heaved up or elevated
SU	Subsided or depressed

Table codes: Domain N_H_BOUND_DISTINCT

Value	Description	Numeric value	Low value	High value
Α	Abrupt	12.5	5	20
С	Clear	35	20	50
D	Diffuse	100	100	
G	Gradual	75	50	100
S	Sharp	2.5	0	5

Table codes: Domain C_H_BOUND_SHAPE

Value	Description
В	Broken
1	Irregular
S	Smooth
T	Tongued
W	Wavy

Table codes: Domain C_H_CARBONATE_EFF

Value	Description
Н	Highly calcareous
M	Moderately calcareous
N	Non-calcareous
S	Slightly calcareous
V	Very highly calcareous

Table codes: Domain C_H_PLASTICITY_DEG

Value	Description
0	Non-plastic
1	Slightly plastic
2	Moderately plastic
3	Very plastic

Table codes: Domain C_H_PLASTICITY_TYPE

Value	Description
N	Normal plasticity
S	Superplastic
Т	Strongly subplastic
U	Subplastic

Table codes: Domain C_H_SOIL_WATER_STAT

Value	Description
D	Dry
M	Moist
T	Moderately moist
W	Wet

Table codes: Domain C_H_STICKINESS

Value	Description
0	Non-sticky
1	Slightly sticky
2	Moderately sticky
3	Very sticky

Table codes: Domain C_H_TEXTURE

Value	Description
AP	Sapric peat
CFS	Clayey fine sand
CKS	Clayey coarse sand
CL	Clay loam
CLFS	Clay loam, fine sandy
CLKS	Clay loam, coarse sandy
CLMS	Clay loam, medium sandy
CLS	Clay loam, sandy
CMS	Clayey medium sand
CP	Clayey peat
CS	Clayey sand
FS	Fine sand
FSC	Fine sandy clay
FSCL	Fine sandy clay loam
FSHC	Fine sandy heavy clay
FSL	Fine sandy loam
FSLC	Fine sandy light clay
FSLMC	Fine sandy light medium clay
FSMC	Fine sandy medium clay
FSMHC	Fine sandy medium heavy clay
FSS	Fine pure sand
GP	Granular peat
GR	Gravel
HC	Heavy clay
HP	Hemic peat
IP	Fibric peat
KS	Coarse sand
KSC	Coarse sandy clay
KSCL	Coarse sandy clay loam
KSHC	Coarse sandy heavy clay
KSL	Coarse sandy loam
KSLC	Coarse sandy light clay
KSLMC	Coarse sandy light medium clay
KSMC	Coarse sandy medium clay
KSMHC	Coarse sandy medium heavy clay
KSS	Coarse pure sand
L	Loam
LC	Light clay
LFS	Loamy fine sand
LFSY	Loam fine sandy
LKS	Loamy coarse sand
LMC	Light medium clay
LMS	Loamy medium sand
LP LS	Loamy peat
	Loamy sand Modium clay
MC	Medium clay

MHC	Medium heavy clay
MS	Medium sand
MSC	Medium sandy clay
MSCL	Medium sandy clay loam
MSHC	Medium sandy heavy clay
MSL	Medium sandy loam
MSLC	Medium sandy light clay
MSLMC	Medium sandy light medium clay
MSMC	Medium sandy medium clay
MSMHC	Medium sandy medium heavy clay
MSS	Medium pure sand
S	Sand
SC	Sandy clay
SCL	Sandy clay loam
SCLFS	Sandy clay loam, fine sandy
SHC	Sandy heavy clay
SL	Sandy loam
SLC	Sandy light clay
SLMC	Sandy light medium clay
SMC	Sandy medium clay
SMHC	Sandy medium heavy clay
SP	Sandy peat
SS	Pure sand
ST	Stones
VWCFS	Very weak clayey fine sand
VWCKS	Very weak clayey coarse sand
VWCMS	Very weak clayey medium sand
VWCS	Very weak clayey sand
WCFS	Weak clayey fine sand
WCKS	Weak clayey coarse sand
WCMS	Weak clayey medium sand
WCS	Weak clayey sand
ZC	Silty clay
ZCL	Silty clay loam
ZHC	Silty heavy clay
ZL ZLC	Silty light clay
ZLMC	Silty light clay Silty light medium clay
ZLIVIC	Silty light medium clay Silty medium clay
ZMHC	Silty medium clay Silty medium heavy clay
ZIVII IC	Only medium neavy day

Table codes: Domain C_H_QUAL

Value	Description
+	Heavy
-	Light
Α	Sapric
1	Fibric

Table codes: Domain C_H_WATER_REPELLENCE

Value	Description
N	Non-repellent
R	Water repellent
S	Strongly water repellent

Table codes: Domain C_LAND_USE

Value	Description				
0	Unknown				
1	Conservation and Natural Environments				
1.1	Nature conservation				
1.1.0	Nature conservation				
1.1.1	Strict nature reserves				
1.1.2	Wilderness area				
1.1.3	National park				
1.1.4	Natural feature protection				
1.1.5	Habitat/species management area				
1.1.6	Protected landscape				
1.1.7	Other conserved area				
1.2	Managed resource protection				
1.2.0	Managed resource protection				
1.2.1	Biodiversity				
1.2.2	Surface water supply				
1.2.3	Groundwater				
1.2.4	Landscape				
1.2.5	Traditional indigenous uses				
1.3	Other minimal use				
1.3.0	Other minimal use				
1.3.1	Defence land - natural areas				
1.3.2	Stock route				
1.3.3	Residual native cover				
1.3.4	Rehabilitation				
2	Production from Relatively Natural Environments				
2.1	Grazing native vegetation				
2.1.0 2.2	Grazing native vegetation				
2.2.0	Production forestry				
2.2.0	Production forestry Wood production				
2.2.1	Other forest production				
3	Production from Dryland Agriculture and Plantations				
3.1	Plantation forestry				
3.1.0	Plantation forestry				
3.1.1	Hardwood plantation				
3.1.2	Softwood plantation				
3.1.3	Other forest plantation				
3.1.4	Environmental forest plantation				
3.2	Grazing modified pastures				
3.2.0	Grazing modified pastures Grazing modified pastures				
3.2.1	Native/exotic pasture mosaic				
3.2.2	Woody fodder plants				
3.2.3	Pasture legumes				
3.2.4	Pasture legume/grass mixtures				
3.2.5	Sown grasses				
3.3	Cropping				
3.3.0	Cropping				
3.3.1	Cereals				
3.3.2	Beverage and spice crops				
3.3.3	Hay and silage				
3.3.4	Oil seeds				
3.3.5	Sugar				
3.3.6	Cotton				
3.3.7	Alkaloid poppies				
3.3.8	Pulses				

3.4	Perennial horticulture				
3.4.0	Perennial horticulture				
3.4.1	Tree fruits				
3.4.2	Oleaginous fruits				
3.4.3	Tree nuts				
3.4.4	Vine fruits				
3.4.5	Shrub nuts, fruits and berries				
3.4.6	Perennial flowers and bulbs				
3.4.7	Perennial vegetables and herbs				
3.4.8	Citrus				
3.4.9	Citrus Grapes				
3.5	Seasonal horticulture				
3.5.0	Seasonal horticulture				
3.5.1	Seasonal fruits				
3.5.2	Seasonal nuts				
3.5.3	Seasonal flowers and bulbs				
3.5.4	Seasonal vegetables and herbs				
3.6	Land in transition				
3.6.0	Land in transition				
3.6.1	Degraded land				
3.6.2	Abandoned land				
3.6.3	Land under rehabilitation				
3.6.4	No defined use				
3.6.5	Abandoned perennial horticulture				
4	Production from Irrigated Agriculture and Plantations				
4.1					
4.1.0	Irrigated plantation forestry				
4.1.1	Irrigated plantation forestry				
	Irrigated hardwood plantation				
4.1.2	Irrigated softwood plantation				
4.1.3	Irrigated other forest plantation				
4.1.4	Irrigated environmental forest production				
4.2	Grazing irrigated modified pastures				
4.2.0	Grazing irrigated modified pastures				
4.2.1	Irrigated woody fodder plants				
4.2.2	Irrigated pasture legumes				
4.2.3	Irrigated legume/grass mixtures				
4.2.4	Irrigated sown grasses				
4.3	Irrigated cropping				
4.3.0	Irrigated cropping				
4.3.0	Irrigated cropping				
4.3.1	Irrigated cereals				
4.3.1	Irrigated cereals				
4.3.2	Irrigated beverage and spice crops				
4.3.3	Irrigated hay and silage				
4.3.4	Irrigated oil seeds				
4.3.5	Irrigated sugar				
4.3.6	Irrigated cotton				
4.3.7	Irrigated alkaloid poppies				
4.3.8	Irrigated pulses				
4.3.9	Irrigated rice				
4.4	Irrigated perennial horticulture				
4.4.0	Irrigated perennial horticulture				
4.4.1	Irrigated tree fruits				
4.4.2	Irrigated oleaginous fruits				
4.4.3	Irrigated tree nuts				
4.4.4	Irrigated vine fruits				
4.4.5	Irrigated shrub nuts, fruits and berries				
4.4.6	Irrigated perennial flowers and bulbs				

4.4.7	Irrigated perennial vegetables and herbs				
4.4.8	Irrigated citrus				
4.4.9	Irrigated grapes				
4.5	Irrigated seasonal horticulture				
4.5.0	Irrigated seasonal horticulture				
4.5.1	Irrigated seasonal fruits				
4.5.2	Irrigated seasonal nuts				
4.5.3	Irrigated seasonal flowers and bulbs				
4.5.4					
4.5.5	igated seasonal vegetables and herbs				
4.6	ited turf farming ited land in transition				
4.6.0	Irrigated land in transition				
4.6.1	Degraded irrigated land				
4.6.2	Abandoned irrigated land				
4.6.3	Irrigated land under rehabilitation				
4.6.4					
	No defined use (irrigation)				
4.6.5	Abandoned irrgated perennial horticulture				
5	Intensive Uses				
5.1	Intensive horticulture				
5.1.0	Intensive horticulture				
5.1.1	Shadehouses				
5.1.2	Glasshouses				
5.1.3	Glasshouses (hydroponic)				
5.1.4	Abandoned intensive horticulture				
5.2	Intensive animal husbandry				
5.2.0	Intensive animal husbandry				
5.2.1	Dairy sheds and yards				
5.2.2	Cattle feedlots				
5.2.3	Sheep feedlots				
5.2.4	Poultry farms				
5.2.5	Piggeries				
5.2.6	Aquaculture				
5.2.7	Horse studs				
5.2.8	Stockyards/saleyards				
5.2.9	Abandoned intensive animal husbandry				
5.3	Manufacturing and industrial				
5.3.0	Manufacturing and industrial				
5.3.1	General purpose factory				
5.3.2	Food processing factory				
5.3.3	Major industrial complex				
5.3.4	Bulk grain storage				
5.3.5	Abattoirs				
5.3.6	Oil refinery				
5.3.7	Sawmill				
5.3.8	Abandoned manufacturing and industrial				
5.4	Residential and farm infrastructure				
5.4.0	Residential and farm infrastructure				
5.4.1	Urban residential				
5.4.2	Rural residential with agriculture				
5.4.3	Rural residential without agriculture				
5.4.4	Remote communities				
5.4.5	Farm buildings/infrastructure				
5.4.5	· · · · · · · · · · · · · · · · · · ·				
5.5.0	Services Services				
5.5.0	Commercial services				
5.5.1	Public services				
5.5.2	Recreation and culture				
5.5.4	Defence facilities - urban				
0.0.4	Defende facilities - urbari				

5.5.5	Research facilities				
5.6	Utilities				
5.6.0	Utilities				
5.6.1	Fuel powered electricity generation				
5.6.2	Hydro electricity generation				
5.6.3	Wind farm electricity generation				
5.6.4	Electricity substations and transmission				
5.6.5	Gas treatment, storage and transmission				
5.6.6	-				
5.7	Water extraction and transmission Transport and communication				
5.7.0	Transport and communication				
	Transport and communication				
5.7.1	Airports/aerodromes				
5.7.2	Roads				
5.7.3	Railways				
5.7.4	Ports and water transport				
5.7.5	Navigation and communication				
5.8	Mining				
5.8.0	Mining				
5.8.1	Mines				
5.8.2	Quarries				
5.8.3	Tailings				
5.8.4	Extractive industry not in use				
5.9	Waste treatment and disposal				
5.9.0	Waste treatment and disposal				
5.9.1	Effluent pond				
5.9.2	Landfill				
5.9.3	Solid garbage				
5.9.4	Incinerators				
5.9.5	Sewage/sewerage				
6	Water				
6.1	Lake				
6.1.0	Lake				
6.1.1	Lake - conservation				
6.1.2					
6.1.3	Lake - production				
	Lake - intensive use				
6.2	Reservoir				
6.2.0	Reservoir/dam				
6.2.1	Reservoir				
6.2.2	Water storage - intensive use/farm dams				
6.2.3	Evaporation basin				
6.2.4	Effluent pond				
6.3	River				
6.3.0	River				
6.3.1	River - conservation				
6.3.2	River - production				
6.3.3	River - intensive use				
6.4	Channel/aqueduct				
6.4.0	Channel/aqueduct				
6.4.1	Supply channel/aqueduct				
6.4.2	Drainage channel/aqueduct				
6.4.3	Stormwater				
6.5	Marsh/wetland				
6.5.0	Marsh/wetland				
6.5.1	Marsh/wetland - conservation				
6.5.2	Marsh/wetland - production				
6.5.3	Marsh/wetland - production Marsh/wetland - intensive use				
6.5.4	Marsh/wetland - saline				
6.6					
0.0	Estuary/coastal waters				

6.6.0	Estuary/coastal waters
6.6.1	Estuary/coastal waters - conservation
6.6.2	Estuary/coastal waters - production
6.6.3	Estuary/coastal waters - intensive use

Table codes: Domain C_LAND_USE_REF

Value	Description
ALUMV5	ALUM Version 5
ALUMV6	ALUM Version 6

Table codes: Domain C_LITHOLOGY

Value	Description				
AC	Alcrete (bauxite)				
AD	Adamellite				
AF	Ash (fine)				
AG	Agglomerate				
AH	Anhydrite				
AL	Alluvium				
AM	Amphibolite				
AN	Andesite				
AP	Aplite				
AR	Arkose				
AS	Ash (sandy)				
ВА	Basalt				
BB	Bombs (volcanic)				
BR	Breccia				
BS	Beach sediment				
С	Clay				
CC	Charcoal				
CD	Creep deposit				
CG	Conglomerate				
CH	Chert				
CL	Colluvium				
CN	Concrete				
CO	Coal				
CR	Coral reef				
CU	Consolidated rock (unidentified)				
DI	Diorite				
DM	Dolomite				
DR	Dolerite				
ES	Eolian sand				
FC	Ferricrete				
GA	Gabbro				
GD	Granodiorite				
GE	Greenstone				
GN	Granite				
GR	Granulite				
GS	Gneiss				
GV	Gravel				
GW	Graywacke				
GY	Gypsum				
HA	Halite				
НО	Hornfels				
IG	Igneous rock (unidentified)				
IS	Ironstone				

JA	Jasper				
KA	Calcarenite				
KC	Calcrete				
KL	Calcilutite				
KM	Calcareous mudstone				
KR	Calcirudite				
KS	Calcareous sand				
LA	Lacustrine Sediment				
LC					
LD	Silcrete				
	Landslide Deposit				
LI	Limestone				
LO	Loess				
M	Substrate material				
MB	Marble				
MD	Microdiorite				
ME	Metamorphic rock (unidentified)				
MF	Mudflow deposit				
MG	Microgranite				
MI	Migmatite				
ML	Marl				
MS	Microsyenite				
MU	Mudstone				
MY	Mylonite				
OT	Other				
OW	Opalised wood				
PA	Parna				
PC	Porcellanite				
PE	Peridotite				
PG					
	Pegmatite				
PH	Phyllite				
PL	Phonolite				
PO	Porphyry				
PT	Peat				
PU	Pumice				
PY	Pyroxenite				
PZ	Pelagic ooze				
QP	Quartz porphyry				
QS	Quartz sandstone				
QU	Quartzite				
QZ	Quartz				
R	Rock outcrop				
RB	Red-brown hardpan				
RD	Rock dump				
RH	Rhyolite				
S	Sand				
SA					
SD	Sandstone Detrital sedimentary rock (unidentified)				
SE	Detrital sedimentary rock (unidentified)				
SF	Scree Shootflow denocit				
	Sheetflow deposit				
SH	Shale				
SK	Scoria				
SL	Slate				
SM	Metasandstone				
SO	Stabilised soil				
SR	Serpentinite				
SS	Shells				
ST	Schist				
SY	Syenite				
	•				

SZ	Metasiltstone
TI	Till
TR	Trachyte
TU	Tuff
UC	Unconsolidated material (unidentified)
VB	Volcanic breccia
VG	Volcanic glass
WD	Waste dump
Z	Silt
ZS	Siltstone

Table codes: Domain C_MOISTURE_STAT

Value	Description
D	Dry
M	Moist

Table codes: Domain N_MOTT_ABUN

Value	Description	Numeric value	Low value	High value
0	No mottles	0	0	0
1	Very few	1	0	2
2	Few	6	2	10
3	Common	15	10	20
4	Many	35	20	50

Table codes: Domain C_MOTT_BOUND_DIST

Value	Description
D	Distinct
F	Faint
Р	Prominent

Table codes: Domain C_MOTT_COLOUR

Value	Description
В	Brown
D	Dark
G	Grey
L	Gley
0	Orange
Р	Pale
R	Red
Υ	Yellow

Table codes: Domain N_MOTT_SIZE

Value	Description	Numeric value	Low value	High value
1	Fine	2.5	0	5
2	Medium	10	5	15
3	Coarse	22.5	15	30
4	Very coarse	30	30	

Table codes: Domain C_MOTT_TYPE

Value	Description
М	Mottles
X	Biological mixing
Υ	Mechanical
Z	Substrate influence

Table codes: Domain C_MP_CODE

Value	Description
1	Plants / Vegetation
1.1	Establishment and rehabilitation
1.1.1	Site selection
1.1.2	Breeding / selecting
1.1.3	Pre-planting
1.1.4	Planting
1.1.5	Regenerating
1.2	Maintenance of growth and condition
1.2.1	Promoting growth
1.2.2	Controlling disease
1.2.3	Controlling pests
1.3	Plant, product and residue removal
1.3.1	Harvesting
1.3.2	Storage
1.3.3	Transporting
1.3.4	Handling residues
1.3.5	Removing unproductive biomass
1.3.6	Hazard reduction
2	Animals
2.1	Establishment
2.1.1	Breeding / selecting
2.2	Growth and development
2.2.1	Promoting growth
2.2.2	Controlling and preventing disease
2.2.2	Animal, product and waste removal
2.3.1	Harvesting
2.3.1	Transporting
2.3.2	Handling effluent
2.3.3	Protection
2.4	Monitoring
2.5.1	
2.5.1	Populations Infestations
3	Soil
3.1	
3.1.1	Site preparation / modification and/or rehabilitation
3.1.1	Tillage / cultivation / machine operations
3.2.1	Maintenance of soil condition Amelioration
-	
3.2.2	Change of use
3.2.3	Protection
3.3	Removal of products, residues and waste
3.3.1	Mining / quarrying
3.3.2	Handling residues
3.3.3	Surface waste management
3.4	Monitoring
3.4.1	Chemical
3.4.2	Physical

3.4.3	Biological
4	Water
4.1	Interception
4.1.1	Surface drainage
4.1.2	Impoundment
4.1.3	Subsurface drainage
4.1.4	Condensation
4.1.5	Extraction
4.2	Reticulation
4.2.1	Open surface waterways
4.2.1	Enclosed canals / drains
4.2.2	
4.2.3	Pipes / aqueducts
	Troughs
4.3	Application
4.3.1	Surface irrigation
4.3.2	Spray (sprinkler) irrigation
4.3.3	Drip (trickle) irrigation
4.4	Treatment
4.4.1	Physical
4.4.2	Chemical
4.4.3	Biological
4.4.4	Technological
4.5	Monitoring
4.5.1	Physical
4.5.2	Chemical
4.5.3	Biological
4.5.4	Metering
4.5.5	Scheduling
5	Air
5.1	Treatment / protection
5.2	Monitoring
5.2.1	Air quality
5.2.2	Noise
6	Business
6.1	Business establishment
6.1.1	Business structure
6.1.2	Business planning
6.2	Maintenance of business growth and viability
6.2.1	Inventory
6.2.2	Access to capital
6.3	Monitoring system processes and resources
6.3.1	Finances
6.3.2	Human resources
6.3.3	Product quality
6.4	Risk protection
6.4.1	Production
6.4.2	Price or market
6.4.3	Human or personal
7	Infrastructure and Built Environment
7.1	Design and planning
7.1.1	Site selection and survey
7.2	Construction
7.2.1	Site preparation
7.2.2	Building / facility construction
7.3	Maintenance
7.3.1	Building / facility maintenance
7.3.1	Site maintenance
7.4	Demolition
7	Demonator

7.4.1	Building / site demolition
7.4.2	Site cleanup
7.4.3	Site decontamination

Table codes: Domain C_MP_REF

Value	Description
LUMISV1	LUMIS Version 1

Table codes: Domain C_MR_BIOTIC_AGENT

Value	Description
Α	Ant
В	Bird
M	Man
N	Animal
0	Other
T	Termite
V	Vegetation

Table codes: Domain C_MR_BIOTIC_COMP

Value	Description
D	Depression
E	Elongate mound
Н	Hole
L	Elongate depression
M	Mound
0	Other
Τ	Terrace

Table codes: Domain C_MR_PROP_GILGAI

Value	Description
Α	Mound=depression,no shelf
В	Mound>depression,no shelf
С	Mound <depression,no shelf<="" td=""></depression,no>
D	Mound, shelf and depressions

Table codes: Domain C_MR_TYPE

Value	Description
Α	Lattice gilgai
С	Crabhole gilgai
D	Debil-debil Debil-debil
G	Contour gilgai
Н	Spring hollow
I	Sinkhole
K	Karst microrelief
L	Linear gilgai
M	Melonhole gilgai
N	Normal gilgai
0	Other
Р	Spring mound
R	Terracettes
S	Mass movement microrelief

Т	Contour trench
U	Mound/depression microrelief
W	Swamp hummock
Z	Zero or no microrelief

Table codes: Domain C_MUSELL_COLOUR

Hue	Value	Chroma	Description
10R20	2	0	Black
10R21	2	1	Reddish black
10R22	2	2	Very dusky red
10R23	2	3	Very dusky red
10R24	2	4	Very dusky red
10R25	2	5	Dark red
10R26	2	6	Dark red
10R27	2	7	Dark red
10R28	2	8	Dark red
10R30	3	0	Very dark grey
10R31	3	1	Dark reddish grey
10R32	3	2	Dusky red
10R33	3	3	Dusky red
10R34	3	4	Dusky red
10R35	3	5	Dark red
10R36	3	6	Dark red
10R37	3	7	Dark red
10R38	3	8	Dark red
10R40	4	0	Dark grey
10R41	4	1	Dark reddish grey
10R42	4	2	Weak red
10R43	4	3	Weak red
10R44	4	4	Weak red
10R45	4	5	Red
10R46	4	6	Red
10R47	4	7	Red
10R48	4	8	Red
10R50	5	0	Grey
10R51	5	1	Reddish grey
10R52	5	2	Weak red
10R53	5	3	Weak red
10R54	5	4	Weak red
10R55	5	5	Red
10R56	5	6	Red
10R57	5	7	Red
10R58	5	8	Red
10R60	6	Ō	Grey
10R61	6	1	Reddish grey
10R62	6	2	Pale red
10R63	6	3	Pale red
10R64	6	4	Pale red
10R65	6	5	Light red
10R66	6	6	Light red
10R67	6	7	Light red
10R68	6	8	Light red
10R71	7	1	Reddish grey
10YR20	2	Ö	Black
10YR21	2	1	Black
101R21 10YR22	2	2	Very dark brown
101R22 10YR23	2	3	Very dark brown
IUIRZS	4	J	very uark brown

40)/D04			Dealers Herrich brown
10YR24	2	4	Dark yellowish brown
10YR25	2	5	Dark yellowish brown
10YR26	2	6	Dark yellowish brown
10YR27	2	7	Dark yellowish brown
10YR28	2	8	Dark yellowish brown
10YR30	3	0	Very dark grey
10YR31	3	1	Very dark grey
10YR32	3	2	Very dark greyish brown
10YR33	3	3	Dark brown
10YR34	3	4	Dark yellowish brown
10YR35	3	5	Dark yellowish brown
10YR36	3	6	Dark yellowish brown
10YR37	3	7	Dark yellowish brown
101R37	3	8	Dark yellowish brown
	4	0	
10YR40	4		Dark grey
10YR41		1	Dark grey
10YR42	4	2	Dark greyish brown
10YR43	4	3	Brown
10YR44	4	4	Dark yellowish brown
10YR45	4	5	Dark yellowish brown
10YR46	4	6	Dark yellowish brown
10YR47	4	7	Dark yellowish brown
10YR48	4	8	Dark yellowish brown
10YR50	5	0	Grey
10YR51	5	1	Grey
10YR52	5	2	Greyish brown
10YR53	5	3	Brown
10YR54	5	4	Yellowish brown
10YR55	5	5	Yellowish brown
10YR56	5	6	Yellowish brown
10YR57	5	7	Yellowish brown
10YR58	5	8	Yellowish brown
10YR60	6	Ö	Grey
101R00	6	1	Grey
	6	2	
10YR62		3	Light brownish grey Pale brown
10YR63	6		
10YR64	6	4	Light yellowish brown
10YR65	6	5	Brownish yellow
10YR66	6	6	Brownish yellow
10YR67	6	7	Brownish yellow
10YR68	6	8	Brownish yellow
10YR70	7	0	Light grey
10YR71	7	1	Light grey
10YR72	7	2	Light grey
10YR73	7	3	Very pale brown
10YR74	7	4	Very pale brown
10YR75	7	5	Yellow
10YR76	7	6	Yellow
10YR77	7	7	Yellow
10YR78	7	8	Yellow
10YR80	8	Ö	White
10YR81	8	1	White
101R81	8	2	White
10YR83	8	3	Very pale brown
101R83	8	4	
	8	5	Very pale brown
10YR85			Yellow
10YR86	8	6	Yellow
10YR87	8	7	Yellow

40) (D00			V II
10YR88	8	8	Yellow
2.5Y20 2.5Y21	2 2	0	Black
	2	1 2	Black
2.5Y22	2		Black Olive brown
2.5Y23 2.5Y24	2	3 4	Olive brown
	2	5	
2.5Y25			Olive brown
2.5Y26	2 2	6 7	Olive brown
2.5Y27	2	<i>7</i> 8	Olive brown Olive brown
2.5Y28		0	
2.5Y30	3		Very dark grey
2.5Y31	3 3	1 2	Very dark grey
2.5Y32 2.5Y33	3	3	Very dark greyish brown Olive brown
	3	3 4	
2.5Y34	3		Olive brown
2.5Y35 2.5Y36	3	5	Olive brown
2.5136 2.5Y37	3	6 7	Olive brown Olive brown
	3	8	
2.5Y38	3 4		Olive brown
2.5Y40	4	0	Dark grey
2.5Y41		1	Dark grey
2.5Y42	4	2 3	Dark greyish brown
2.5Y43	4		Dark greyish brown
2.5Y44	4 4	4 5	Olive brown
2.5Y45			Olive brown
2.5Y46	4	6	Olive brown
2.5Y47	4	7	Olive brown
2.5Y48	4	8	Olive brown
2.5Y50	5	0	Grey
2.5Y51	5 5	1	Grey
2.5Y52	5 5	2 3	Greyish brown
2.5Y53	5 5	3 4	Greyish brown
2.5Y54			Light olive brown
2.5Y55	5	5 6	Light olive brown
2.5Y56	5	6 7	Light olive brown
2.5Y57	5	8	Light olive brown
2.5Y58	5 6	0	Light olive brown
2.5Y60			Grey
2.5Y61 2.5Y62	6 6	1 2	Grey Light brownish grey
2.5Y63	6	3	Light brownish grey
2.5Y64	6	3 4	Light yellowish brown
2.5Y65	6	5	Olive yellow
2.5Y66	6	5 6	Olive yellow
2.5Y67	6	7	
	6		Olive yellow
2.5Y68	6 7	8 0	Olive yellow
2.5Y70	7 7		Light grey
2.5Y71	7 7	1 2	Light grey
2.5Y72	7 7		Light grey
2.5Y73	7 7	3 4	Pale yellow
2.5Y74	7 7		Pale yellow
2.5Y75		5	Yellow
2.5Y76	7 7	6 7	Yellow
2.5Y77	7 7		Yellow
2.5Y78		8	Yellow White
2.5Y80	8 8	0	White
2.5Y81		1	White
2.5Y82	8	2	White

0.57/00	0	2	Dala vallavi
2.5Y83	8	3	Pale yellow
2.5Y84	8	4	Pale yellow
2.5Y85	8	5	Yellow
2.5Y86	8	6	Yellow
2.5Y87	8	7	Yellow
2.5Y88	8	8	Yellow
2.5YR20	2	0	Black
2.5YR21	2	1	Very dusky red
2.5YR22	2	2	Very dusky red
2.5YR23	2	3	Dark reddish brown
2.5YR24	2	4	Dark reddish brown
2.5YR25	2	5	Dark red
2.5YR26	2	6	Dark red
2.5YR27	2	7	Dark red
2.5YR28	2	8	Dark red
2.5YR30	3	0	Very dark grey
2.5YR31	3	1	Dusky red
2.5YR32	3	2	Dusky red
2.5YR33	3	3	Dark reddish brown
2.5YR34	3	4	Dark reddish brown
2.5YR35	3	5	Dark red
2.5YR36	3	6	Dark red
2.5YR37	3	7	Dark red
2.5YR38	3	8	Dark red
2.5YR40	4	0	Dark grey
2.5YR41	4	1	Weak red
2.5YR42	4	2	Weak red
2.5YR43	4	3	Reddish brown
2.5YR44	4	4	Reddish brown
2.5YR45	4	5	Red
2.5YR46	4	6	Red
2.5YR47	4	7	Red
2.5YR48	4	8	Red
2.5YR50	5	0	Grey
2.5YR51	5	1	Weak red
2.5YR52	5	2	Weak red
2.5YR53	5	3	Reddish brown
2.5YR54	5	4	Reddish brown
2.5YR55	5	5	Red
2.5YR56	5	6	Red
2.5YR57	5	7	Red
2.5YR58	5	8	Red
2.5YR60	6	0	Grey
2.5YR61	6	1	Pale red
2.5YR62	6	2	Pale red
2.5YR63	6	3	Light reddish brown
2.5YR64	6	4	Light reddish brown
2.5YR65	6	5	Light red
2.5YR66	6	6	Light red
2.5YR67	6	7	Light red
2.5YR68	6	8	Light red
2.5YR70	7	0	Grey
2.5YR71	7	1	Pale red
2.5YR72	7	2	Pale red
2.5YR73	7	3	Light reddish brown
2.5YR74	7	4	Light reddish brown
2.5YR75	7	5	Light red
2.5YR76	7	6	Light red
		-	<u> </u>

0.5)/D77			
2.5YR77	7	7	Light red
2.5YR78	7	8	Light red
2.5YR80	8	0	White
2.5YR82	8	2	Pinkish White
2.5YR83	8	3	Pinkish White
5B41	4	1	Dark bluish grey
5B51	5	1	Bluish grey
5B61	6	1	Bluish grey
5B71	7	1	Light bluish grey
5BG41	4	1	Dark greenish grey
5BG51	5	1	Greenish grey
5BG61	6	1	Greenish grey
5BG71	7	1	Light greenish grey
5G41	4	1	Dark greenish grey
5G42	4	2	
			Greyish green
5G51	5	1	Greenish grey
5G52	5	2	Greyish green
5G61	6	1	Greenish grey
5G62	6	2	Pale green
5G71	7	1	Light greenish grey
5G72	7	2	Pale green
5GY41	4	1	Dark greenish grey
5GY51	5	1	Greenish grey
5GY61	6	1	Greenish grey
5GY71	7	1	Light greenish grey
5R20	2	0	Black
5R21	2	1	Reddish black
5R22	2	2	Very dark red
	2		
5R23		3	Very dark red
5R24	2	4	Very dark red
5R25	2	5	Very dark red
5R26	2	6	Dark red
5R27	2	7	Dark red
5R28	2	8	Dark red
5R30	3	0	Very dark grey
5R31	3	1	Dark reddish grey
5R32	3	2	Dusky red
5R33	3	3	Dusky red
5R34	3	4	Dusky red
5R35	3	5	Dusky red
5R36	3	6	Dark red
5R37	3	7	Dark red
	3 3	<i>7</i> 8	
5R38	3 4		Dark red
5R40		0	Dark grey
5R41	4	1	Dark reddish grey
5R42	4	2	Weak red
5R43	4	3	Weak red
5R44	4	4	Weak red
5R45	4	5	Weak red
5R46	4	6	Red
5R47	4	7	Red
5R48	4	8	Red
5R50	5	Ö	Grey
5R51	5	1	Reddish grey
5R52	5	2	Weak red
5R52 5R53	5 5	3	Weak red
5R54	5	4	Weak red
5R55	5	5	Weak red

5R56	5	6	Red
5R57	5	7	Red
5R58	5	8	Red
	6		
5R60		0	Grey
5R61	6	1	Reddish grey
5R62	6	2	Pale red
5R63	6	3	Pale red
5R64	6	4	Pale red
5R65	6	5	Pale red
5R66	6	6	Light red
5R67	6	7	Light red
5R68	6	8	Light red
5Y20	2	0	Black
5Y21	2	1	Black
5Y22	2	2	Black
5Y23	2	3	Dark olive
5Y24	2	4	Dark olive
5Y25	2	5	Dark olive
5Y26	2	6	Dark olive
5Y27	2	7	Dark olive
	2		
5Y28		8	Dark olive
5Y30	3	0	Very dark grey
5Y31	3	1	Very dark grey
5Y32	3	2	Dark olive grey
5Y33	3	3	Dark olive
5Y34	3	4	Dark olive
5Y35	3	5	Dark olive
5Y36	3	6	Dark olive
5Y37	3	7	Dark olive
5Y38	3	8	Dark olive
5Y40	4	0	Dark grey
5Y41	4	1	Dark grey
5Y42	4	2	Olive grey
5Y43	4	3	Olive
5Y44	4	4	Olive
5Y45	4	5	Olive
5Y46	4	6	Olive
		7	
5Y47	4		Olive
5Y48	4	8	Olive
5Y50	5	0	Grey
5Y51	5	1	Grey
5Y52	5	2	Olive grey
5Y53	5	3	Olive
5Y54	5	4	Olive
5Y55	5	5	Olive
5Y56	5	6	Olive
5Y57	5	7	Olive
5Y58	5	8	Olive
5Y60	6	0	Grey
5Y61	6	1	Grey
5Y62	6	2	Light olive grey
5Y63	6	3	Pale olive
5Y64	6	4	Pale olive
5Y65	6	5	Olive yellow
5Y66	6	6	
		7	Olive yellow
5Y67	6		Olive yellow
5Y68	6	8	Olive yellow
5Y70	7	0	Light grey

E)/74		<u> </u>	Distriction of the second
5Y71	7	1	Light grey
5Y72	7	2	Light grey
5Y73	7	3	Pale yellow
5Y74	7	4	Pale yellow
5Y75	7	5	Yellow
5Y76	7	6	Yellow
5Y77	7	7	Yellow
5Y78	7	8	Yellow
5Y80	8	0	White
5Y81	8	1	White
5Y82	8	2	White
5Y83	8	3	Pale yellow
5Y84	8	4	Pale yellow
5Y85	8	5	Yellow
5Y86	8	6	Yellow
5Y87	8	7	Yellow
5Y88	8	8	Yellow
5YR2.51	2.5	1	Black
5YR2.52	2.5	2	Dark reddish brown
5YR20	2.5	0	Black
5YR21	2	1	Black
5YR22	2	2	Dark reddish brown
	2	3	
5YR23			Dark reddish brown
5YR24	2	4	Dark reddish brown
5YR25	2	5	Yellowish red
5YR26	2	6	Yellowish red
5YR27	2	7	Yellowish red
5YR28	2	8	Yellowish red
5YR30	3	0	Very dark grey
5YR31	3	1	Very dark grey
5YR32	3	2	Dark reddish brown
5YR33	3	3	Dark reddish brown
5YR34	3	4	Dark reddish brown
5YR35	3	5	Yellowish red
5YR36	3	6	Yellowish red
5YR37	3	7	Yellowish red
5YR38	3	8	Yellowish red
5YR40	4	0	Dark grey
5YR41	4	1	Dark grey
5YR42	4	2	Dark reddish grey
5YR43	4	3	Reddish brown
5YR44	4	4	Reddish brown
5YR45	4	5	Yellowish red
5YR46	4	6	Yellowish red
5YR47	4	7	Yellowish red
5YR48	4	8	Yellowish red
5YR50	5	Ö	Grey
5YR51	5	1	Grey
5YR52	5	2	Reddish grey
5YR53	5	3	Reddish brown
5YR54	5	4	Reddish brown
5YR55	5	5	Yellowish red
	5 5	5 6	
5YR56	5 5	7	Yellowish red
5YR57	5 5		Yellowish red
5YR58		8	Yellowish red
5YR60	6	0	Grey
5YR61	6	1	Grey
5YR62	6	2	Pinkish grey

EVDCC	6	2	Light vaddiah hyayya
5YR63	6	3	Light reddish brown
5YR64	6	4	Light reddish brown
5YR65	6	5	Reddish yellow
5YR66	6	6	Reddish yellow
5YR67	6	7	Reddish yellow
5YR68	6	8	Reddish yellow
5YR70	7	0	Light grey
5YR71	7	1	Light grey
5YR72	7	2	Pinkish grey
5YR73	7	3	Pink
5YR74	7	4	Pink
5YR75	7	5	Reddish yellow
5YR76	7	6	Reddish yellow
5YR77	7	7	Reddish yellow
5YR78	7	8	Reddish yellow
5YR80	8	0	White
5YR81	8	1	White
5YR82	8	2	Pinkish white
5YR83	8	3	Pink
5YR84	8	4	Pink
5YR85	8	5	Reddish yellow
5YR86	8	6	Reddish yellow
5YR87	8	7	Reddish yellow
5YR88	8	8	Reddish yellow
7.5R20	2	0	Black
7.5R21	2	1	Black
7.5R22	2	2	Very dusky red
7.5R23	2	3	Very dusky red
7.5R24	2	4	Very dusky red
7.5R25	2	5	Dark red
7.5R26	2	6	Dark red
7.5R27	2	7	Dark red
7.5R28	2	8	Dark red
7.5R30	3	0	Very dark grey
7.5R31	3	1	Very dark grey
7.5R32	3	2	Dusky red
7.5R33	3	3	Dusky red
7.5R34	3	4	Dusky red
7.5R35	3	5	Dusky red
7.5R36	3 3	6	Dark red
7.5R37	3	7	Dark red
7.5R38	3	8	Dark red
7.5R40	4	0	Dark grey
7.5R41	4	1	Dark grey
7.5R42	4	2	Weak red
7.5R43	4	3	Weak red
7.5R44	4	4	Weak red
7.5R45	4	5	Weak red
7.5R46	4	6	Red
7.5R47	4	7	Red
7.5R48	4	8	Red
7.5R50	5	0	Grey
7.5R51	5	1	Grey
7.5R52	5	2	Weak red
7.5R53	5	3	Weak red
7.5R54	5	4	Weak red
7.5R55	5	5	Red
7.5R56	5	6	Red

T= -5			
7.5R57	5	7	Red
7.5R58	5	8	Red
7.5R60	6	0	Grey
7.5R61	6	1	Grey
7.5R62	6	2	Pale red
7.5R63	6	3	Pale red
7.5R64	6	4	Pale red
7.5R65	6	5	Light red
7.5R66	6	6	Light red
7.5R67	6	7	Light red
7.5R68	6	8	Light red
7.5R70	7	0	Grey
7.5R71	7	1	Grey
7.5R72	7	2	Pale red
7.5R73	7	3	Pale red
7.5R74	7	4	Pale red
7.5R75	7	5	Light red
7.5R76	7	6	Light red
7.5R77	7	7	Light red
7.5R78	7	8	Loght red
7.5K76 7.5YR20	2	0	Black
	2		
7.5YR21		1	Black
7.5YR22	2	2	Very dark brown
7.5YR23	2	3	Very dark brown
7.5YR24	2	4	Very dark brown
7.5YR25	2	5	Strong brown
7.5YR26	2	6	Strong brown
7.5YR27	2	7	Strong brown
7.5YR28	2	8	Strong brown
7.5YR30	3	0	Very dark grey
7.5YR31	3	1	Very dark grey
7.5YR32	3	2	Dark brown
7.5YR33	3	3	Dark brown
7.5YR34	3	4	Dark brown
7.5YR35	3	5	Strong brown
7.5YR36	3	6	Strong brown
7.5YR37	3	7	Strong brown
7.5YR38	3	8	Strong brown
7.5YR40	4	0	Dark grey
7.5YR41	4	1	Dark grey
7.5YR42	4	2	Brown
7.5YR43	4	3	Brown
7.5YR44	4	4	Brown
7.5YR45	4	5	Strong brown
7.5YR46	4	6	Strong brown
7.51R40 7.5YR47	4	7	Strong brown Strong brown
7.51R47 7.5YR48	4	8	Strong brown Strong brown
	5	0	•
7.5YR50			Grey
7.5YR51	5	1	Grey
7.5YR52	5	2	Brown
7.5YR53	5	3	Brown
7.5YR54	5	4	Brown
7.5YR55	5	5	Strong brown
7.5YR56	5	6	Strong brown
7.5YR57	5	7	Strong brown
7.5YR58	5	8	Strong brown
7.5YR60	6	0	Grey
7.5YR61	6	1	Grey

7.5YR62	6	2	Pinkish grey
7.5YR63	_	3	
	6		Pinkish grey
7.5YR64	6	4	Light brown
7.5YR65	6	5	Reddish yellow
7.5YR66	6	6	Reddish yellow
7.5YR67	6	7	Reddish yellow
7.5YR68	6	8	Reddish yellow
7.5YR70	7	0	Light grey
7.5YR71	7	1	Light grey
7.5YR72	7	2	Pinkish grey
7.5YR73	7	3	Pinkish grey
7.5YR74	7	4	Pink
7.5YR75	7	5	Reddish yellow
7.5YR76	7	6	Reddish yellow
7.5YR77	7	7	Reddish yellow
7.5YR78	7	8	Reddish yellow
7.5YR80	8	0	White
7.5YR81	8	1	White
7.5YR82	8	2	Pinkish yellow
7.5YR83	8	3	Pinkish white
7.5YR84	8	4	Pink
7.5YR85	8	5	Reddish yellow
7.5YR86	8	6	Reddish yellow
7.5YR87	8	7	Reddish yellow
7.5YR88	8	8	Reddish yellow

Table codes: Domain C_O_AGGRADATION

Value	Description
0	No aggradation
1	Present
Χ	Not apparent

Table codes: Domain C_O_ASC

Value	Description
AA	Red
AB	Brown
AC	Yellow
AD	Grey
AE	Black
AF	Dystrophic
AG	Mesotrophic
AH	Eutrophic
Al	Acidic
AJ	Acidic-Mottled
AK	Andic
AL	Aeric
AM	Aquic
AN	Anthroposols
AO	Arenic
AP	Argic
AQ	Argillaceous
AR	Basic
AS	Bauxitic
AT	Bleached
AU	Bleached-Acidic

AV	Bleached-Ferric
AW	Bleached-Leptic
AX	Bleached-Magnesic
AY	Bleached-Manganic
AZ	Bleached-Mottled
BA	Bleached-Sodic
BB	Bleached-Vertic
BC	Calcareous
BD	Calcic
BE	Chernic
BF	Chernic-Leptic
BG	Chromosolic
BH	Crusty
ВІ	Densic
BJ	Duric
BK	Pedaric
BL	Endoacidic
BM	Endic
BN	Episodic
ВО	Endic-Pedal
BP	Endohypersodic
BQ	Epic
BR	Epihypersodic
BS	Epic-Pedal
ВТ	Extratidal
BU	Ferric
BV	Arenaceous
BW	Fibric
BX	
	Fluvic
BY	Fragic
BZ	Gypsic
CB	Calcarosolic
CC	Halic
CD	Haplic
CE	Hemic
CF	Histic
CG	Humic
CH	Chromosol
CI	Humic/Humosesquic
CJ	
	Humic/Sesquic
CK	Humose
CL	Humose-Magnesic
CM	Humose-Mottled
CN	Humose-Parapanic
CO	Humosesquic
CP	Hypervescent
CQ	Hypercalcic
CR	Hypernatric
CS	Hypersalic
CU	Epihypersodic-Epiacidic
CV	Hypocalcic Hypocalcic
CW	Intertidal
CX	Kurosolic
CY	Leptic
CZ	Lithic
DA	Lithocalcic
DB	Magnesic
DC	Manganic
	-

DD	Made
DD	Marly
DF	Massive
DG	Melacic
DH	Melacic-Magnesic
DI	Melacic-Mottled
DJ	Melacic-Parapanic
DK	Melanic
DL	Melanic-Bleached
DM	Melanic-Mottled
DN	Melanic-Vertic
DO	Mellic
DP	Mesonatric
DQ	Mottled
DR	Subhumose
DS	Orthic
DT	Oxyaquic
DU	Paralithic
DV	Parapanic
DW	Peaty
DX	Peaty-Parapanic
DY	Pedal
DZ	Petrocalcic
EA	Petroferric
EB	Pipey
EC	Placic
ED	Redoxic
EE	Rendic
EF	Reticulate
EG	Salic
EH	Sapric
EI	Self-Mulching
EJ	Semiaquic
EK	Sesquic
EL	Shelly
EM	Silpanic
EN	Snuffy
EO	Sodic
EP	Episodic-Epiacidic
EQ	Sodosolic
ER	Stratic
ES	Subnatric
ET	Subplastic
EU	Sulfidic
EV	Sulfuric
EW	Supratidal
EX	Vertic
EY	Humose-Bleached
EZ	Melacic-Bleached
FA	Siliceous
FB	Supracalcic
FC	Melanic-Calcareous
FD	Natric
FF	Submelacic
FG	Submelanic
FH	Palic
FI	Ochric
FJ	Hypergypsic
FK	Ferric-Duric

FL	Gypsic-Subplastic
FM	Epicalcareous-Epihypersodic
FN	Mottled-Subnatric Mottled-Subnatric
FO	Mottled-Mesonatric
FP	Mottled-Hypernatric
FQ	Dermosolic
FR	Kandosolic
FS	Terric
FT	Humose-Basic
FU	Melacic-Basic
FV	Melanic-Acidic
FW	Faunic
FX	Lutaceous
FY	Epicalcareous
FZ	Endocalcareous
GA	Epiacidic
GB	Epicalcareous-Endohypersodic
GC	Melacic-Reticulate
GD	Peaty-Placic
GE	Ferric-Petroferric
GF	Regolithic
GG	Episodic-Endoacidic
GH	Episodic-Epicalcareous
GI	Episodic-Endocalcareous
GJ	Epicalcareous-Endoacidic
GK	Epiacidic-Mottled
GL	Endoacidic-Mottled
GM	Endocalcareous-Endohypersodic
GN	Epihypersodic-Endoacidic
GO	Epihypersodic-Endocalcareous
GP	Magnesic-Natric
GQ	Episodic-Gypsic
GR	Rudosolic
GS	Epipedal
GT	Tenosolic
GU	Humose-Calcareous
GV	Lutic
GW	Ferric-Acidic
GX	Manganic-Acidic
GY	Humose-Acidic
GZ	Bleached-Orthic
HA	Melanic-Sodic
НВ	Mottled-Sodic
HC	Ferric-Sodic Ferric-Sodic
HD	Rudaceous
HE	Endocalcareous-Mottled
HF	Tephric
HG	Carbic
HH	Clastic
HI	Colluvic
HJ	Lithosolic
HK	Supravescent
HL	Episulfidic
HM	Episulfidic-Petrocalcic
HN	Densic-Placic
НО	Acidic-Sodic
HP	Palic-Acidic
HQ	Ochric-Acidic

HR	Cumulic
HS	Hortic
HT	Garbic
HU	Urbic
HV	Dredgic
HW	Spolic
HX	Scalpic
HZ	Ashy
IA	Inceptic
IB	Epibasic
IC	Ceteric
ID	Subpeaty
ΙE	Effervescent
IF	Folic
IG	Humosesquic/Sesquic
ΙΗ	Humic/Alsilic
IJ	Modic
IK	Histic-Sulfidic
IL	Sequi-Nodular Sequi-Nodular
IM	Calcenic
IN	Red-Orthic
10	Brown-Orthic
ΙP	Yellow-Orthic
IQ	Grey-Orthic
IR	Black-Orthic
IS	Ferric-Reticulate
XX	Available Class Inappropriate
YY	Class Undetermined
ZZ	No Available Class

Table codes: Domain C_O_ASC_CONF

Value	Description
-	No confidence level recorded.
1	All necessary analytical data are available.
2	Analytical data are incomplete but reasonable confidence.
3	No analytical data are available but confidence is fair.
4	No analytical data and little or no knowledge of this soil.

Table codes: Domain C_O_ASC_FAM

Value	Description
-	Not recorded
Α	Thin
В	Medium
С	Thick
D	Very thick
E	Non-gravelly
F	Slightly gravelly
G	Gravelly
Н	Moderately gravelly
I	Very gravelly
J	Peaty
K	Sandy
L	Loamy
M	Clay-loamy
Ν	Silty

0	Clayey
Р	Granular
Q	Fine
R	Medium fine
S	Very fine
T	Very shallow
U	Shallow
V	Moderately deep
W	Deep
Χ	Very deep
Υ	Giant

Table codes: Domain C_O_ASC_VERSION

Value	Description
2	The Australian Soil Classification 2nd approximation
3	The Australian Soil Classification 3rd approximation
4	The Australian Soil Classification 1st Edition
5	The Australian Soil Classification Revised Edition

Table codes: Domain C_O_DEPTH_WATER_PREF

Value	Description
+	Above soil surface
-	Below soil surface
0	No free water

Table codes: Domain C_O_DRAINAGE

Value	Description
1	Very poorly drained
2	Poorly drained
3	Imperfectly drained
4	Moderately well drained
5	Well drained
6	Rapidly drained

Table codes: Domain C_O_ER_STATE

Value	Description
Α	Active
Р	Partially stabilised
S	Stabilised

Table codes: Domain C_O_EVALUATION

Value	Description
Α	Determined by altimeter
E	Estimate
L	Levelled from survey datum
M	Interpolated from contour map with contour interval of 20 m or less

Table codes: Domain C_O_FOREST_TYPE

Value	Description
1	Non-rainforest
2	Rainforest
3	Mixture of rainforest and non-rainforest
4	Plantation
5	No vegetation

Table codes: Domain C_O_GSG

Value	Description
Α	Alluvial soil
ACP	Acid peat
AH	Alpine humus soil
ALP	Alkaline peat
ВС	Brown clay
BE	Black earth
BP	Brown podzolic soil
BRE	Brown earth
C	Chocolate soil
CM	Chernozem
DL	Desert loam
E	Euchrozem
ES	Earthy sand
GBK	Grey-brown calcareous soil
GBP	Grey-brown podzolic soil
GC	Grey clay
GE	Grey earth
GP	Gleyed podzolic soil
HG	Humic gley
HP	Humus podzol
K	Krasnozem
KRE	Calcareous red earth
KS	Calcareous red earth
1 -	
L LP	Lithosol
NKB	Lateritic podzolic soil Non-calcic brown soil
NP	
NSG	Neutral peat
P	No suitable group
PP	Podzol Posty podzel
	Peaty podzol
PS	Prairie soil
R	Rendzina
RBE	Red-brown earth
RBH	Red and brown hardpan soil
RC	Red clay
RE	Red earth
RK	Red calcareous soil
RP	Red podzolic soil
SB	Solonized brown soil
SC	Solodic soil
SDS	Solodized solonetz
SH	Soloth
SK	Solonchak
SS	Siliceous sand
SZ	Solonetz

TR	Terra rossa soil
W	Wiesenboden
Χ	Xanthozem
YE	Yellow earth
YP	Yellow podzolic soil

Table codes: Domain N_O_GULLY_DEPTH

Value	Description	Numeric value	Low value	High value
1	<1.5 m	.75	0	1.5
2	1.5-3.0 m	2.25	1.5	3
3	>3 m	3	3	

Table codes: Domain N_O_INUND_DEPTH

Value	Description	Numeric value	Low value	High value
1	<50mm	25	0	50
2	50-100mm	75	50	100
3	100-300mm	200	100	300
4	300mm-1m	650	300	1000
5	>1m	1000	1000	

Table codes: Domain N_O_INUND_DUR

Value	Description	Numeric value	Low value	High value
1	Less than 1 day	.5	0	1
2	Between 1 and 20 days	10.5	1	20
3	Between 20 and 120 days	70	20	120
4	More than 120 days	120	120	

Table codes: Domain C_O_INUND_FREQ

Value	Description
0	No inundation
1	Less than one per 100 years
2	One in 50-100 years
3	One in 10-50 years
4	One in 1-10 years
5	More than one per year

Table codes: Domain N_O_INUND_RUNON_VEL

Value	Description	Numeric value	Low value	High value
Н	High velocity >300mm/s	300	300	
L	Low velocity <300mm/s	150	0	300

Table codes: Domain C_O_MASS_DEG

Value	Description
0	No mass movement
1	Present

Table codes: Domain C_O_MR_SAMPLED

Value	Description
D	Depression
E	Elongate mound
F	Flat
K	Hummock
L	Elongate depression
M	Mound
S	Shelf

Table codes: Domain C_O_NATURE

Value	Description
С	Characterisation
M	Composite
S	Single

Table codes: Domain C_O_OTHER_ER_DEG

Value	Description
0	No erosion
1	Minor or present
2	Moderate
3	Severe
4	Very severe
Χ	Not apparent

Table codes: Domain C_O_RF_COMPLEX

Value	Description
С	Complex
S	Simple
X	Simple-complex

Table codes: Domain C_O_RF_EMERGENTS

Value	Description
Α	Emergent present is not sclerophyll
E	Emergent present is sclerophyll

Table codes: Domain C_O_RF_FLOR_COMP

Value	Description
M	Mixed
S	One or two species
Χ	Mixed + one species

Table codes: Domain C_O_RF_INDICATOR

Value	Description
1	Moss
2	Fern
3	Fan palm
4	Feather palm

5	Vine
6	No dominant indicator growth form

Table codes: Domain C_O_RF_LEAFSIZE

Value	Description
1	Macrophyll
2	Macrophyll-mesophyll
3	Mesophyll
4	Mesophyll-notophyll
5	Notophyll
6	Notophyll-microphyll
7	Microphyll
8	Microphyll-nanophyll
9	Nanophyll

Table codes: Domain C_O_RILL_DEG

Value	Description
0	No rill erosion
1	Minor
2	Moderate
3	Severe

Table codes: Domain C_O_RUNOFF

Value	Description
0	No runoff
1	Very slow
2	Slow
3	Moderately rapid
4	Rapid
5	Very rapid

Table codes: Domain C_O_SB_CONFIDENCE

Value	Description
Α	Almost certain or certain
D	Dubious, doubtful
N	Not parent material
Р	Probable

Table codes: Domain N_O_SB_GRAINSIZE

Value	Description	Numeric value	Low value	High value
1	<0.06mm	0.03	0	0.06
2	0.06-2mm	1.03	0.06	2.00
3	>2mm	2.00	2.00	

Table codes: Domain $C_OSB_MASS_ALT$

Value	Description
F	Ferruginized
K	Calcified
L	Kaolinized
0	Other

Table codes: Domain C_O_SB_MASS_GEN_TYPE

Value	Description		
AC	Alcrete		
AH	Artificially hardened materials		
AL	Alluvium		
AT	Anthropic materials		
BE	Beach Sediment		
BG	Biogenic rocks and materials		
CD	Creep deposit		
CH	Chemically hardened materials		
CN	Concrete		
CO	Colluvium		
DR	Decomposed rock		
ED	Eolian sediment		
ES	Eolian sand		
ET	Eolianite		
EV	Evaporite		
FC	Ferricrete		
FI	Fill		
GY	Gypsum		
HA	Halite (rock salt)		
IG	Igneous rocks		
IN	Ignimbrite		
KC	Calcrete		
LA	Lacustrine sediment		
LC	Silcrete		
LD	Landslide deposit		
LO	Loess		
MA	Marine sediment		
ME	Metamorphic rocks		
MD	Mudflow deposit		
МН	Masses hardened in the regolith		
PA	Parna		
PC	Porcellanite		
PL	Plutonic rocks		
PW	Partially weathered rock		
RB	Red-brown hardpan		
SA	Saprolite		
SC	Chemical and organic sidimentary rocks		
SD	Detrital sedimentary rocks		
SE	Scree		
SH	Sheet flow deposit		
SO	Stabilised soil		
SP	Pyroclastic rocks (including ignimbrite)		
SR	Sedimentary rocks		
TI	Till		
UR	Unweathered rocks of the bedrock zone		
US	Unconsolidated sediments		

VA	Volcanic ash		
VO	Volcanic rocks		
WR	Weathered rocks		

Table codes: Domain N_O_SB_MASS_SPAC_DIS

Value	Description	Numeric value	Low value	High value
В	300 mm-1 m	.65	.3	1
С	<50 mm	.025	0	.05
F	50-300 mm	.175	.05	.3
M	1-3 m	2	1	3
S	>3 m	3	3	

Table codes: Domain C_O_SB_MASS_STRENGTH

Value	Description
E	Earth or soil
M	Moderately strong rock
S	Strong rock
VS	Very strong rock
VW	Very weak rock
W	Weak rock

Table codes: Domain C_O_SB_OBS_TYPE

Value	Description
Α	Auger boring
С	Undisturbed soil core
E	Existing vertical exposure
0	Outcrop
Р	Soil pit .

Table codes: Domain C_O_SB_POROSITY

Value	Description
0	Non-porous, dense
1	Slightly porous
2	Porous

Table codes: Domain C_O_SB_STRUCTURE

Value	Description
В	Bedded
С	Concretionary
F	Fissile
L	Foliated
Р	Platy
R	Vermicular
S	Vesicular
V	Massive

Table codes: Domain C_O_SB_TEXTURE

Value	Description
Α	Amorphus
F	Fragmental
Р	Porphyritic
X	Crystalline

Table codes: Domain C_O_SCALD_DEG

Value	Description
0	No scalding
1	Minor scalding
2	Moderate scalding
3	Severe scalding

Table codes: Domain C_O_SHEET_DEG

Value	Description
0	No sheet erosion
1	Minor
2	Moderate
3	Severe
Χ	Not apparent

Table codes: Domain C_O_SOIL_DISTURB

Value	Description
1	No significant disturbance apparent
2	Disturbance of some of the soil surface
3	Complete soil disturbance by cultivation, heavy grazing or both

Table codes: Domain C_O_SOIL_TAXONOMY

Value	Description
Α	Alfisol
AAQ	Aqualf
AAQAL	Albaqualf
AAQDU	Duraqualf
AAQFR	Fragiaqualf
AAQGL	Glossaqualf
AAQKA	Kandiaqualf
AAQNA	Natraqualf
AAQOC	Ochraqualf
AAQPN	Plinthaqualf
AAQUM	Umbraqualf
ABO	Boralf
ABOCR	Cryoboralf
ABOEU	Eutroboralf
ABOFR	Fragiboralf
ABOGL	Glossoboralf
ABONA	Natriboralf
ABOPA	Paleboralf
AUD	Udalf
AUDAG	Agrudalf
AUDFE	Ferrudalf

AUDFR Fragilodalf AUDBA Glossudalf AUDHA Halpludalf AUDKA Kandiudalf AUDKA Kanhapludalf AUDNA Natrudalf AUDRA Paleudalf AUDRA Tropudalf AUS Ustalf AUSDA Durustalf AUSHA Kanhaplustalf AUSHA Kandiustalf AUSHA Kanhaplustalf AUSHA Kanhaplustalf AUSKA Kandiustalf AUSKA Kandiustalf AUSPA Paleustalf AUSPA Paleustalf AUSPA Paleustalf AUSPA Paleustalf AVSPA Paleustalf AXEDU Durixeralf AXEDU Durixeralf AXEEN Fragixeralf AXENA Natrixeralf AXEPA Palexeralf AXEPN Plinthoxeralf AXEPN Plinthoxeralf AXEPN Plinthoxeralf AXEPN Noweralf D Aridisol DAR Argid DARND Nadurargid DARND Camborthid DORCU Calciorthid DORCU Calciorthid DORCH Gypsiorthid DORCH Aguent
AUDGL Glossudalf AUDHA Halpludalf AUDKH Kanhapludalf AUDNA Natrudalf AUDTR Tropudalf AUSTR Tropudalf AUSTR Tropudalf AUSTR AUSHA Haplustalf AUSHA Kandiustalf AUSHA Kanhaplustalf AUSHA Kanhaplustalf AUSHA Natrustalf AUSPA Paleustalf AXENA Natrixeralf AXEDU Durixeralf AXEDU Durixeralf AXEDU Pinthustalf AXEHA Haploxeralf AXENA Natrixeralf AXENA Natrixeralf AXENA Palexeralf AXENA Palexeralf AXEPN Pinthoxeralf AXEPN Pinthoxeralf AXEPN Pinthoxeralf AXEPN Paleargid DARDU Durargid DARDU Durargid DARNT Natrargid DARNT Natrargid DARNT Natrargid DORCL Calciorthid DORCM Camborthid DORCM Gypsiorthid DORCPA Paleorthid
AUDHA Halpludalf AUDKA Kandiudalf AUDKH Kanhapludalf AUDNA Natrudalf AUDPA Paleudalf AUDR Tropudalf AUS Ustalf AUSDA Durustalf AUSBA Haplustalf AUSKA Kanhaplustalf AUSKH Kanhaplustalf AUSPN Pinthustalf AUSPN Pinthustalf AXEPN Pinthustalf AXEP Yeralf AXEDU Durixeralf AXEDU Durixeralf AXEDU Durixeralf AXENA Natrixeralf DARPA Palearald DARND Durargid DARND Nadurargid DARNT Natrargid DARNT Natrargid DARNT Natrargid DORCL Calciorthid DORCL Calciorthid DORCM Camborthid DORCM Spysiorthid DORCPA Paleorthid DORPA Paleorthid
AUDKA Kandiudalf AUDKH Kanhapludalf AUDNA Natrudalf AUDPA Paleudalf AUDTR Tropudalf AUS Durustalf AUSDA Durustalf AUSHA Haplustalf AUSKA Kandiustalf AUSKA Kandiustalf AUSRA Natrustalf AUSRA Paleustalf AUSPA Paleustalf AUSPA Paleustalf AUSPA Natrustalf AUSPA Paleustalf AUSPA Natrustalf AUSPA Paleustalf AUSPA Paleustalf AXE Xeralf AXE Tragixeralf AXEHA Haploxeralf AXEHA Haploxeralf AXENA Natrixeralf AXEPN Plinthoxeralf AXERH Rhodoxeralf D Aridisol DAR Argid DARND Nadurargid DARND Nadurargid DARNT Natrargid DARNA Paleargid DORCL Calciorthid DORCL Calciorthid DORCL Calciorthid DORCH Gypsiorthid DORCH Paleorthid DORCH Paleorthid DORCH Paleorthid DORCH Paleorthid DORCH Paleorthid DORCH Salorthid E Entisol
AUDKH Kanhapludalf AUDNA Natrudalf AUDRA Paleudalf AUDTR Tropudalf AUS Ustalf AUSDA Durustalf AUSHA Kanhaplustalf AUSKA Kandiustalf AUSKH Kanhaplustalf AUSPA Paleustalf AUSPA Paleustalf AUSPN Plinthustalf AUSPN Plinthustalf AXEDU Durixeralf AXEDU Durixeralf AXEDU Astrealf AXERA Fragixeralf AXERA Natrixeralf AXEPA Palexeralf D Aridisol DAR Argid DARND Durargid DARND Nadurargid DARNT Natrargid DARNT Natrargid DARNT Natrargid DARNA Paleargid DORCL Calciorthid DORCL Calciorthid DORCM Camborthid DORCHA Paleorthid DORCPA Paleorthid DORCPA Paleorthid DORCPA Paleorthid DORCPA Salorthid E Entisol
AUDNA Natrudalf AUDPA Paleudalf AUDTR Tropudalf AUS Ustalf AUSDA Durustalf AUSHA Haplustalf AUSKH Kanhaplustalf AUSNA Natrustalf AUSPN Plinthustalf AUSPN Plinthustalf AXED Durixeralf AXED Durixeralf AXER Fragixeralf AXEPA Paleustalf AXEPA Paleustalf AXEPA Paleustalf AXEPA Paleustalf AXER Fragixeralf AXER Fragixeralf AXER Fragixeralf AXER Haploxeralf AXER Plinthoxeralf AXER Plinthoxeralf AXER Plinthoxeralf AXER Nodoxeralf D Aridisol DAR Argid DARND Natriargid DARND Naturargid DARNT Natrargid DARNT Natrargid DARNA Paleargid DORCL Calciorthid DORCL Calciorthid DORCM Camborthid DORCH Paleorthid DORCH Paleorthid DORCH Paleorthid DORCH Paleorthid DORCA Salorthid E Entisol
AUDNA Natrudalf AUDPA Paleudalf AUDTR Tropudalf AUS Ustalf AUSDA Durustalf AUSHA Haplustalf AUSKA Kandiustalf AUSKH Kanhaplustalf AUSNA Natrustalf AUSPN Plinthustalf AUSPN Plinthustalf AXEDU Durixeralf AXEDU Durixeralf AXEDU Durixeralf AXEPA Paleustalf AXENA Natrixeralf AXERH Rhodoseralf AXERA Palexeralf AXERA Palexeralf AXERA Palexeralf AXERA Palexeralf AXERN Plinthoxeralf AXERA Palexeralf AXERA Palexeralf AXERN Plinthoxeralf AXERN Plinthoxeralf AXERN Atrixeralf AXERN Ardisol DAR Argid DARND Durargid DARND Nadurargid DARNT Natrargid DARNT Natrargid DARNA Paleargid DORCL Calciorthid DORCL Calciorthid DORCL Camborthid DORCH Orbid DORCH Paleorthid DORCH Paleorthid DORCH Paleorthid DORCH Salorthid E Entisol
AUDPA Paleudalf AUDTR Tropudalf AUS Ustalf AUSDA Durustalf AUSHA Haplustalf AUSKA Kandiustalf AUSKA Kandiustalf AUSNA Natrustalf AUSPA Paleustalf AUSPA Paleustalf AUSPN Plinthustalf AUSPN Plinthustalf AXENA Natrusralf AXE Xeralf AXEDU Durixeralf AXEDU Durixeralf AXEHA Haploxeralf AXEHA Haploxeralf AXENA Natrixeralf AXEPA Palexeralf AXEPA Palexeralf D Aridisol DAR Argid DARND Durargid DARND Nadurargid DARNT Natrargid DARNT Natrargid DORCL Calciorthid DORCL Calciorthid DORCM Camborthid DORCH Paleorthid DORCA Salorthid E Entisol
AUDTR AUS JUSTAIF AUSDA JURNATION JURNATION AUSHA AUSHA AUSKA Kandiustalf AUSKH Kanhaplustalf AUSNA AUSPA Paleustalf AUSPN Plinthustalf AUSRH AXED Durixeralf AXED AXETR Fragixeralf AXEHA Haploxeralf AXEHA Haploxeralf AXENA Natrixeralf AXENA Natrixeralf AXENA Paleveralf AXENA Natrixeralf AXENA ARIOD DARA Aridisol DARA DARND DARND DARND DARND DARND DARND DARND DARNA Natriargid DARNA DARNA DARNA DARNA DARNA DORCL Calciorthid DORCL Calciorthid DORCM Camborthid DORCA DORCA Paleorthid DORCA BORCA Calciorthid DORCA DORCA Calcorthid DORCA DORCA Calcorthid DORCA DORCA Paleorthid DORCA Borch Calcorthid DORCA DORCA Salorthid E Entisol
AUS Ustalf AUSDA Durustalf AUSHA Haplustalf AUSKH Kandiustalf AUSKH Kanhaplustalf AUSNA Natrustalf AUSPA Paleustalf AUSPA Plinthustalf AUSPH Rhodustalf AXER Rhodustalf AXE Xeralf AXED Durixeralf AXEFR Fragixeralf AXEHA Haploxeralf AXEHA Haploxeralf AXENA Natrixeralf AXEPN Plinthoxeralf AXEPN Plinthoxeralf AXEPN Plinthoxeralf AXERH Rhodoxeralf D Aridisol DAR Argid DARDU Durargid DARND Nadurargid DARND Nadurargid DARND Nadurargid DARNA Paleargid DORCL Calciorthid DORCL Calciorthid DORCM Gypsiorthid DORCPA Paleorthid DORCPA Paleorthid DORCPA Paleorthid DORCPA Paleorthid DORCPA Paleorthid DORCPA Paleorthid DORCA Salorthid E Entisol
AUSDA Durustalf AUSHA Haplustalf AUSKA Kandiustalf AUSNA Natrustalf AUSPA Paleustalf AUSPA Paleustalf AUSPA Paleustalf AUSPH Rhodustalf AXE Xeralf AXEDU Durixeralf AXEDU Durixeralf AXEHA Haploxeralf AXEHA Haploxeralf AXEPA Palexeralf AXEPA Palexeralf AXEPN Plinthoxeralf AXERH Rhodoxeralf D Aridisol DAR Argid DARDU Durargid DARNA Natrixergid DARNA Natrixergid DARNA Natrixergid DARNA Natrixergid DARNA Paleargid DARNA Natrargid DARNA Paleargid DARNA Paleargid DORCL Calciorthid DORCL Calciorthid DORCM Camborthid DORCM Gypsiorthid DORCA Salorthid E Entisol
AUSHA Haplustalf AUSKA Kandiustalf AUSKH Kanhaplustalf AUSNA Natrustalf AUSPA Paleustalf AUSPN Plinthustalf AUSRH Rhodustalf AXE Xeralf AXED Durixeralf AXEFR Fragixeralf AXEHA Haploxeralf AXENA Natrixeralf AXENA Natrixeralf AXEPA Palexeralf AXERH Rhodoxeralf D Aridisol DAR Argid DARDU Durargid DARND Nadurargid DARND Nadurargid DARNAT Natrargid DARPA Paleargid DOR Orthid DORCL Calciorthid DORCM Camborthid DORCM Salorthid E Entisol
AUSKA Kandiustalf AUSNA Natrustalf AUSNA Natrustalf AUSPN Paleustalf AUSPN Plinthustalf AUSRH Rhodustalf AXE Xeralf AXEDU Durixeralf AXEBU Durixeralf AXEHA Haploxeralf AXENA Natrixeralf AXENA Palexeralf AXENA Plinthoxeralf AXEN Plinthoxeralf AXEN Hodoxeralf D Aridisol DAR Argid DARDU Durargid DARNU Nadurargid DARNA Natrargid DARNA Paleargid DARNA Paleargid DARNA Paleargid DOR Orthid DORCL Calciorthid DORCM Camborthid DORCM Camborthid DORCM Gypsiorthid DORCA Salorthid E Entisol
AUSKH Kanhaplustalf AUSNA Natrustalf AUSPA Paleustalf AUSPN Plinthustalf AUSRH Rhodustalf AXE Xeralf AXEDU Durixeralf AXEDU Durixeralf AXERH Fragixeralf AXEHA Haploxeralf AXEHA Haploxeralf AXENA Natrixeralf AXENA Palexeralf AXEPN Plinthoxeralf AXERH Rhodoxeralf D Aridisol DAR Argid DARDU Durargid DARND Nadurargid DARND Nadurargid DARNT Natrargid DARNT Natrargid DARPA Paleargid DOR Orthid DORCL Calciorthid DORCL Calciorthid DORCM Camborthid DORCH Ore Paleorthid DORCH Paleorthid DORCH Paleorthid DORCH Salorthid E Entisol
AUSNA Natrustalf AUSPA Paleustalf AUSPN Plinthustalf AUSRH Rhodustalf AXE Xeralf AXEDU Durixeralf AXEFR Fragixeralf AXEHA Haploxeralf AXEHA Natrixeralf AXENA Natrixeralf AXEPN Plinthoxeralf AXEPN Plinthoxeralf AXERH Rhodoxeralf D Aridisol DAR Argid DARDU Durargid DARHA Haplargid DARND Nadurargid DARNT Natrargid DARNT Natrargid DARPA Paleargid DOR Orthid DORCL Calciorthid DORCL Calciorthid DORCM Camborthid DORCH Gypsiorthid DORCH Paleorthid DORCA Salorthid E Entisol
AUSPA Paleustalf AUSPN Plinthustalf AUSRH Rhodustalf AXE Xeralf AXEDU Durixeralf AXEDU Durixeralf AXEHA Haploxeralf AXEHA Haploxeralf AXENA Natrixeralf AXEPA Palexeralf AXEPA Palexeralf AXEPN Plinthoxeralf AXERH Rhodoxeralf D Aridisol DAR Argid DARDU Durargid DARHA Haplargid DARND Nadurargid DARNT Natrargid DARNT Natrargid DARNAT Natrargid DOR Orthid DORCL Calciorthid DORCL Calciorthid DORCM Camborthid DORCH Paleorthid DORCH Paleorthid DORCH Paleorthid DORCH Paleorthid DORCH Paleorthid DORCH Paleorthid DORCH Salorthid DORCH Salorthid E Entisol
AUSPN Plinthustalf AUSRH Rhodustalf AXE Xeralf AXEDU Durixeralf AXEFR Fragixeralf AXEHA Haploxeralf AXEHA Haploxeralf AXENA Natrixeralf AXEPA Palexeralf AXEPN Plinthoxeralf AXERH Rhodoxeralf D Aridisol DAR Argid DARDU Durargid DARNU Durargid DARND Nadurargid DARND Nadurargid DARNT Natrargid DARPA Paleargid DOR Orthid DORCL Calciorthid DORCL Calciorthid DORCM Camborthid DORCH Gypsiorthid DORCH Paleorthid DORCH Paleorthid DORCA Salorthid E Entisol
AUSRH Rhodustalf AXE Xeralf AXEDU Durixeralf AXEFR Fragixeralf AXEHA Haploxeralf AXEHA Haploxeralf AXENA Natrixeralf AXEPA Palexeralf AXEPN Plinthoxeralf AXERH Rhodoxeralf D Aridisol DAR Argid DARDU Durargid DARHA Haplargid DARND Nadurargid DARNT Natrargid DARNT Natrargid DARPA Paleargid DOR Orthid DORCL Calciorthid DORCL Camborthid DORCM Camborthid DORCH Gypsiorthid DORGY Gypsiorthid DORSA Salorthid E Entisol
AXE Xeralf AXEDU Durixeralf AXEFR Fragixeralf AXEHA Haploxeralf AXENA Natrixeralf AXENA Palexeralf AXEPN Plinthoxeralf AXEN Rhodoxeralf D Aridisol DAR Argid DARDU Durargid DARND Nadurargid DARND Nadurargid DARNT Natrargid DARPA Paleargid DOR Orthid DORCL Calciorthid DORCM Camborthid DORCM Gypsiorthid DORCH Paleorthid DORCH Paleorthid DORCA Salorthid DORCA Salorthid E Entisol
AXEDU Durixeralf AXEFR Fragixeralf AXEHA Haploxeralf AXENA Natrixeralf AXEPA Palexeralf AXEPN Plinthoxeralf AXERH Rhodoxeralf D Aridisol DAR Argid DARDU Durargid DARND Nadurargid DARND Nadurargid DARNT Natrargid DARPA Paleargid DOR Orthid DORCL Calciorthid DORCM Camborthid DORCM Gypsiorthid DORCH Paleorthid DORCA Salorthid DORCA Salorthid E Entisol
AXEFR Fragixeralf AXEHA Haploxeralf AXENA Natrixeralf AXEPA Palexeralf AXEPN Plinthoxeralf AXERH Rhodoxeralf D Aridisol DAR Argid DARDU Durargid DARND Nadurargid DARND Natrargid DARNA Paleargid DARPA Paleargid DOR Orthid DORCL Calciorthid DORCL Camborthid DORCM Camborthid DORCH Gypsiorthid DORCH Paleorthid DORCH Paleorthid DORCA Salorthid E Entisol
AXEHA Haploxeralf AXENA Natrixeralf AXEPA Palexeralf AXEPN Plinthoxeralf AXERH Rhodoxeralf D Aridisol DAR Argid DARDU Durargid DARNA Haplargid DARNA Naturargid DARNT Natrargid DARPA Paleargid DOR Orthid DORCL Calciorthid DORCL Camborthid DORCM Camborthid DORCH Ogysiorthid DORCH Paleorthid DORCH Paleorthid DORCH Paleorthid DORCH Paleorthid DORCH Salorthid DORCH Salorthid DORCH Paleorthid DORCH Salorthid DORCH Paleorthid DORCH Paleorthid DORCH Salorthid DORCH Salorthid DORCH Paleorthid DORCH Paleorthid DORCH Salorthid DORCH Salorthid DORCH Salorthid DORCH Paleorthid DORCH Salorthid DORCH Salorthid E Entisol
AXENA Natrixeralf AXEPA Palexeralf AXEPN Plinthoxeralf AXERH Rhodoxeralf D Aridisol DAR Argid DARDU Durargid DARHA Haplargid DARND Nadurargid DARNT Natrargid DARPA Paleargid DOR Orthid DORCL Calciorthid DORCM Camborthid DORCM Cypsiorthid DORCH Gypsiorthid DORCH Paleorthid DORCH Paleorthid DORCH Paleorthid DORCH Paleorthid DORCH Salorthid
AXEPA Palexeralf AXEPN Plinthoxeralf AXERH Rhodoxeralf D Aridisol DAR Argid DARDU Durargid DARHA Haplargid DARND Nadurargid DARNT Natrargid DARPA Paleargid DOR Orthid DORCL Calciorthid DORCM Camborthid DORCM Cypsiorthid DORCH Gypsiorthid DORCH Paleorthid DORCH Paleorthid DORCH Paleorthid DORCH Paleorthid DORCH Salorthid E Entisol
AXEPN Plinthoxeralf AXERH Rhodoxeralf D Aridisol DAR Argid DARDU Durargid DARHA Haplargid DARND Nadurargid DARNT Natrargid DARPA Paleargid DOR Orthid DORCL Calciorthid DORCM Camborthid DORCM Gypsiorthid DORCH Qypsiorthid DORPA Paleorthid DORPA Paleorthid DORPA Paleorthid DORPA Paleorthid DORSA Salorthid E Entisol
AXERH Rhodoxeralf D Aridisol DAR Argid DARDU Durargid DARHA Haplargid DARND Nadurargid DARNT Natrargid DARPA Paleargid DOR Orthid DORCL Calciorthid DORCM Camborthid DORDU Durorthid DORGY Gypsiorthid DORPA Paleorthid DORSA Salorthid E Entisol
D Aridisol DAR Argid DARDU Durargid DARHA Haplargid DARND Nadurargid DARNT Natrargid DARPA Paleargid DOR Orthid DORCL Calciorthid DORCM Camborthid DORDU Durorthid DORGY Gypsiorthid DORPA Paleorthid DORPA Paleorthid DORSA Salorthid E Entisol
DAR Argid DARDU Durargid DARHA Haplargid DARND Nadurargid DARNT Natrargid DARPA Paleargid DOR Orthid DORCL Calciorthid DORCM Camborthid DORDU Durorthid DORGY Gypsiorthid DORPA Paleorthid DORSA Salorthid E Entisol
DARDU Durargid DARHA Haplargid DARND Nadurargid DARNT Natrargid DARPA Paleargid DOR Orthid DORCL Calciorthid DORCM Camborthid DORDU Durorthid DORGY Gypsiorthid DORPA Paleorthid DORSA Salorthid E Entisol
DARHA Haplargid DARND Nadurargid DARNT Natrargid DARPA Paleargid DOR Orthid DORCL Calciorthid DORCM Camborthid DORDU Durorthid DORGY Gypsiorthid DORPA Paleorthid DORSA Salorthid E Entisol
DARND Nadurargid DARNT Natrargid DARPA Paleargid DOR Orthid DORCL Calciorthid DORCM Camborthid DORDU Durorthid DORGY Gypsiorthid DORPA Paleorthid DORSA Salorthid E Entisol
DARNT Natrargid DARPA Paleargid DOR Orthid DORCL Calciorthid DORCM Camborthid DORDU Durorthid DORGY Gypsiorthid DORPA Paleorthid DORSA Salorthid E Entisol
DARPA Paleargid DOR Orthid DORCL Calciorthid DORCM Camborthid DORDU Durorthid DORGY Gypsiorthid DORPA Paleorthid DORSA Salorthid E Entisol
DOR Orthid DORCL Calciorthid DORCM Camborthid DORDU Durorthid DORGY Gypsiorthid DORPA Paleorthid DORSA Salorthid E Entisol
DORCL Calciorthid DORCM Camborthid DORDU Durorthid DORGY Gypsiorthid DORPA Paleorthid DORSA Salorthid E Entisol
DORCM Camborthid DORDU Durorthid DORGY Gypsiorthid DORPA Paleorthid DORSA Salorthid E Entisol
DORDU Durorthid DORGY Gypsiorthid DORPA Paleorthid DORSA Salorthid E Entisol
DORGY Gypsiorthid DORPA Paleorthid DORSA Salorthid E Entisol
DORPA Paleorthid DORSA Salorthid E Entisol
DORSA Salorthid E Entisol
E Entisol
EAQCR Cryaquent
EAQFL Fluvaquent
EAQHA Haplaquent
EAQHY Hydraquent
EAQPS Psammaquent
EAQSU Sulfaquent
EAQTR Tropaquent
EAR Arent
EARAR Arent
EFL Fluvent
EFLCR Cryofluvent
EFLTO Torrifluvent
EFLTR Tropofluvent
EFLUD Udifluvent
EFLUS Ustifluvent
EFLXE Xerofluvent

EOD	Only and
EOR	Orthent
EORCR	Cryorthent
EORTO	Torriorthent
EORTR	Troporthent
EORUD	Udorthent
EORUS	Ustorthent
EORXE	Xerorthent
EPS	Psamment
EPSCR	Cryopsamment
EPSQU	Quartzipsamment
EPSTO	Torripsamment
EPSTR	Tropopsamment
EPSUD	Udipsamment
EPSUS	Ustipsamment
EPSXE	Xeropsamment
H	Histosol
HFI	Fibrist
HFIBO	Borofibrist
HFICR	Cryofibrist
HFILU	Luvifibrist
HFIME	Medifibrist
HFISP	Sphagnofibrist Transfibrist
HFITR	Tropofibrist
HFO	Folist Para fallat
HFOBO	Borofolist
HFOCR	Cryofolist
HFOTR	Tropofolist
HHE	Hemist
HHEBO	Borohemist
HHECR	Cryohemist
HHELU	Luvihemist
HHEME	Medihemist
HHESI	Sulfihemist
HHESO	Sulfohemist
HHETR	Tropohemist
HSA	Saprist
HSABO	Borosaprist
HSACR	Cryosaprist
HSAME	Medisaprist
HSATR	Troposaprist
1	Inceptisol
IAN	Andept
IANCR	Cryandept
IANDU	Durandept
IANDY	Dystrandept
IANEU	Eutrandept
IANHY	Hydrandept
IANPK	Placandept
IANVI	Vitrandept
IAQ	Aqueot
IAQAN	Andaquept
IAQCR	Cryaquept
IAQFR	Fragiaquept
IAQHL	Halaquept
IAQHP	Haplaquept
IAQHU	Humaquept
IAQPK	Placaquept
IAQPN	Plinthaguept
IAGI N	т пиначиськ

IAQSU	Cultoquant
	Sulfaquept
IAQTR	Tropaquept
IOC	Ochrept
IOCCR	Cryochrept
IOCDU	Durochrept
IOCDY	Dystrochrept
IOCEU	Eutrochrept
IOCFR	Fragiochrept
IOCUS	Ustochrept
IOCXF	Xerochrept
IPL	Plaggept
IPLPL	Plaggept
ITR	Tropept
ITRDY	Dystropept
ITREU	Eutropept
ITRHU	Humitropept
ITRSO	Sombritropept
ITRUS	Ustroept
IUM	Umbrept
IUMCR	Cryumbrept
IUMFR	Fragiumbrept
IUMHA	Haplumbrept
IUMXF	Xerumbrept
M	Mollisol
MAL	Alboll
MALAR	Argialboll
MALNA	Natralboli
MAQ	Aquoll
MAQAR	Argiaquoll
MAQCA	Calciaquoll
MAQCR	Cryaquoll
MAQDU	Duraquoll
MAQHA	Haplaquoli
MAQNA	Natraquoll
MBO	Boroll
MBOAR	Argiboroll
MBOCA	Calciboroll
MBOCR	Cryoboroll
MBOHA	Haploboroll
MBONA	Natriboroll
MBOPA	Paleboroll
MBOVE	Vermiboroll
MRE	Rendoll
MRERE	Rendoll
MUD	Udoll
MUDAR	Argiudoll
MUDHA	Hapludoll
MUDPA	Paleudoll
MUDVE	Vermudoll
MUS	Ustoll
MUSAR	Argiustoll
MUSCA	Calciustoll
MUSDU	Durustoll
MUSHA	Haplustoll
MUSNA	Natrustoll
MUSPA	Paleustoll
MUSVE	Vermustoll
MXE	Xeroll
IVIAL	ACIOII

MAYEAD	Agricage
MXEAR	Argixeroll
MXECA	Calcixeroll
MXEDU	Durixeroll
MXEHA	Haploxeroll
MXENA	Natrixeroll
MXEPA	Palexeroll
0	Oxisol
OAQ	Aquox
OAQAC	Aeraquox
OAQPN	Plinthaquox
OAQUE	Eutraquox
OAQUM	Umbraquox
OPE	Perox
OPEAC	Acroperox
OPEEU	Eutroperox
OPEHA	Haploperox
OPEKA	Kandiperox
OPESO	Sombriperox
OTO	Torrox
OTOAC	
	Aerotorox
OTOEU	Eutrotorox
OTOHA	Haplotorox
OUD	Udox
OUDAC	Aerudox
OUDEU	Eutrudox
OUDHA	Hapludox
OUDKA	Kandiudox
OUDSO	Sombriudox
OUS	Ustox
OUSAC	Acrustox
OUSEU	Eutrustox
OUSHA	Haplustox
OUSKA	Kandiustox
OUSSO	Sombriustox
S	Spodosol
SAQ	Aquod
SAQCR	Cryaquod
SAQDU	Duraquod
SAQFR	Fragiaquod
SAQHA	Haplaquod
SAQPK	Placaquod
SAQSI	Sideraquod
SAQTR	Tropaquod
SFE	Ferrod
SFEFE	Ferrod
SHU	Humod
SHUCR	Cryohumod
SHUFR	Fragihumod
SHUHA	Haplohumod
SHUPK	Placohumod
SHUTR	Tropohumod
SOR	Orthod
SORCR	Cryorthod
SORFR	Fragiorthod
SORHA	Haplorthod
SORPK	Placorthod
SORTR	Troporthod
U	Ultisol

UAQ	Aquult
UAQAL	Albaquult
UAQFR	Fragiaquult
UAQKA	Kandiaquult
UAQKH	Kanhaplaquult
UAQOC	Ochraquult
UAQPA	Paleaquult
UAQPN	Plinthaquult
UAQTR	Tropaquult
UAQUM	Umbraquult
UHU	Humult
UHUHA	Haplohumult
UHUKA	Kandihumult
UHUKH	Kanhaplohumult
UHUPN	Plinthohumult
UHUSO	Sombrihumult
UUD	Udult
UUDFR	Fragiudult
UUDHA	Hapludult
UUDKA	Kandiudult
UUDKH	Kanhapludult
UUDPA	Paleudult
UUDPN	Plinthudult
UUDRH	Rhodudult
UUS	Ustult
UUSHA	Haplustult
UUSKA	Kandiustult
UUSKH	Kanhaplustukt
UUSPA	Paleustult
UUSPN	Plinthustult
UUSRH	Rhodustult
UXE	Xerult
UXEHA	Haploxerult
UXEPA	Palexerult
V	Vertisol
VTD	Torrert
VTOTO	Torrert
VUD	Udert
VUDCH	Chromudert
VUDPE	Pelludert
VUS	Ustert
VUSCH	Chromustert
VUSPE	Pellustert
VXE	Xerert
VXECH	Chromoxerert
VXEPE	Pelloxerert

Table codes: Domain C_O_STBANK_DEG

Value	Description
0	No stream bank erosion
1	Present
Χ	Not apparent

Table codes: Domain C_O_TUNNEL_DEG

Value	Description
0	No tunnel erosion
1	Present
Χ	Not apparent

Table codes: Domain C_O_TYPE

Value	Description
Α	Auger boring
С	Undisturbed soil core
E	Existing vertical exposure
Р	Soil pit

Table codes: Domain C_O_WAVE_DEG

Value	Description
0	No wave erosion
1	Present
X	Not apparent

Table codes: Domain C_O_WIND_DEG

Value	Description
0	No wind erosion
1	Minor or present
2	Moderate
3	Severe
4	Very severe
Χ	Not apparent

Table codes: Domain C_O_WIND_STABILITY

Value	Description
1	Unlikely to erode with >30 km/h wind
2	Likely to erode with >30 km/h wind

Table codes: Domain C_O_WIND_VISIBILITY

Value	Description
0	Full visibility
1	Visibility >100m
2	Visibility <100m

Table codes: Domain C_PAN_CEMENTATION

Value	Description
0	Uncemented
1	Weakly cemented
2	Moderately cemented
3	Strongly cemented
4	Very strongly cemented

Table codes: Domain C_PAN_CONTINUITY

Value	Description
В	Broken
С	Continuous
D	Discontinuous

Table codes: Domain C_PAN_STRUCTURE

Value	Description
С	Concretionary
L	Platy
N	Nodular
R	Vermicular
S	Vesicular
V	Massive

Table codes: Domain C_PAN_TYPE

Value	Description
Α	Alcrete
С	Organic pan
D	Duripan
E	Ferricrete
F	Fragipan
1	Thin ironpan
K	Calcrete
L	Silcrete
M	Manganiferous pan
N	Densipan
0	Other pans
R	Red-brown hardpan
T	Ortstein
V	Cultivation pan
Z	Zero or no pan

Table codes: Domain C_PERMEABILITY

Value	Description
1	Very slowly permeable
2	Slowly permeable
3	Moderately permeable
4	Highly permeable

Table codes: Domain C_PGM_STAT

Value	Description
В	Barely active to inactive
С	Continuously active
F	Frequently active
R	Relict
S	Seldom active
U	Unspecified

Table codes: Domain N_PORE_ABUN

Value	Description	Numeric value	Low value	High value
0	None	0	0	0
1	Few; <1 per 100mm2	0.5	0	1
2	Common; 1-5 per 100mm2	3	1	5
3	Many; >5 per 100mm2	5	5	
4	Few; <1 per 0.01m2	0.5	0	1
5	Common; 1-5 per 0.01m2	3	1	5
6	Many; >5 per 0.01m2	5	5	

Table codes: Domain N_PORE_DIAMETER

Value	Description	Numeric value	Low value	High value
1	Very fine; 0.075-1mm	0.5375	0.075	1
2	Fine; 1-2mm	1.5	1	2
3	Medium; 2-5mm	3.5	2	5
4	Coarse; >5mm	5	5	

Table codes: Domain C_ROOT_ABUN

Value	Description
0	No roots
1	Few
2	Common
3	Many
4	Abundant

Table codes: Domain N_ROOT_SIZE

Value	Description	Numeric value	Low value	High value
1	Very Fine	0.5	0	1
2	Fine	1.5	1	2
3	Medium	3.5	2	5
4	Coarse	5	5	

Table codes: Domain N_RO_ABUN

Value	Description	Numeric value	Low value	High value
0	No bedrock exposed	0	0	0
1	<2% bedrock exposed	1	0	2
2	2-10% bedrock exposed	6	2	10
3	10-20% bedrock exposed	15	10	20
4	20-50% bedrock exposed	35	20	50
5	>50% bedrock exposed	75	50	100

Table codes: Domain C_SB_MINERAL_COMP

Description
Carbonaceous material
Dark minerals
Feldspar
Glauconite
Carbonates (react with 1m HCI)
Clays (argillaceous)

M	Mica
Q	Quartz
S	Sesquioxides
Υ	Gypsum

Table codes: Domain C_SCON_STATUS

Value	Description
С	Surface crust
F	Firm
G	Cracking
Н	Hardsetting
L	Loose
M	Self-mulching
0	Other
Р	Poached
R	Recently cultivated
S	Soft
Т	Trampled
X	Surface flake
Υ	Cryptogam surface
Z	Saline

Table codes: Domain N_SEG_ABUN

Value	Description	Numeric value	Low value	High value
0	No segregations	0	0	0
1	Very few	1	0	2
2	Few	6	2	10
3	Common	15	10	20
4	Many	35	20	50
5	Very many	75	50	100

Table codes: Domain C_SEG_FORM

Value	Description
С	Concretions
F	Fragments
L	Laminae
N	Nodules
R	Root linings
S	Soft segregations
Т	Tubules
V	Veins
Χ	Crystals

Table codes: Domain C_SEG_MAGNETIC_ATTR

Value	Description
M	Magnetic
N	Non-magnetic

Table codes: Domain C_SEG_NATURE

Value	Description
Α	Aluminous
E	Earthy
F	Ferruginous
G	Ferruginous-organic
Н	Organic (humified)
K	Calcareous
L	Argillaceous
M	Manganiferous
N	Ferromanganiferous
0	Other
S	Sulphurous
U	Unidentified
Υ	Gypseous
Z	Saline (visible salt)

Table codes: Domain N_SEG_SIZE

Value	Description	Numeric value	Low value	High value
1	Fine	1	0	2
2	Medium	4	2	6
3	Coarse	13	6	20
4	Very coarse	40	20	60
5	Extremely coarse	60	60	

Table codes: Domain C_SEG_STRENGTH

Value	Description
1	Weak
2	Strong

Table codes: Domain C_STRENGTH

Value	Description
M	Moderately strong
S	Strong
W	Weak

Table codes: Domain C_STRG_CLASS

Value	Description
0	Loose
1	Very weak
2	Weak
3	Firm
4	Very firm
5	Strong
6	Very strong
7	Rigid

Table codes: Domain C_STR_CLODS_FRAGS

Value	Description
CL	Clod
FR	Fragment

Table codes: Domain C_STR_COMPOUND_PED

Value	Description
1	Largest peds
2	Next size peds
3	Next size peds

Table codes: Domain C_STR_PED_GRADE

Value	Description
G	Single grain
M	Moderate
S	Strong
V	Massive
W	Weak

Table codes: Domain N_STR_PED_SIZE

Value	Description	Numeric value	Low value	High value
1	<2 mm	1	0	2
2	2-5 mm	3.5	2	5
3	5-10 mm	7.5	5	10
4	10-20 mm	15	10	20
5	20-50 mm	35	20	50
6	50-100 mm	75	50	100
7	100-200 mm	150	100	200
8	200-500 mm	350	200	500
9	>500 mm	500	500	

Table codes: Domain C_STR_PED_TYPE

Value	Description
AB	Angular blocky
CA	Cast
CO	Columnar
GR	Granular
LE	Lenticular
PL	Platy
PO	Polyhedral
PR	Prismatic
SB	Subangular blocky

Table codes: Domain C_S_ELEM_INC_SLOPE

Value	Description
Α	Maximal
I	Minimal
N	Waning
Χ	Waxing

Table codes: Domain C_S_ELEM_LOCATION

Value	Description
В	Bottom third of height of landform element
M	Middle third of height of landform element
T	Top third of height of landform element

Table codes: Domain C_S_ELEM_TYPE

ALC	Description
ALC	Alcove
BAN	Bank
BAR	Bar
BEA	Beach
BEN	Bench
BER	Berm
BKP	Backplain
BOU	Blow out
BRI	Beach ridge
BRK	Breakaway
CBE	Channel bench
CFS	Cliff-foot slope
CIR	Cirque
CLI	Cliff
CON	Cone
cos	Cut-over surface
CRA	Crater
CUT	Cutface
DAM	Dam
DBA	Deflation basin
DDE	Drainage depression
DOC	Collapse doline
DOL	Solution doline
DUB	Barchan dune
DUC	Dunecrest
DUF	Linear or longitudinal (seif) dune
DUH	Hummocky (weakly oriented) dune
DUN	Dune
DUP	Parabolic dune
DUS	Duneslope
EMB	Embankment
EST	Estuary
FAN	Fan
FIL	Fill-top
FLD	Flood-out
FOO	Footslope
FOR	Foredune
GUL	Gully
HCR	Hillcrest
HSL	Hillslope
ITF	Intertidal flat
LAG	Lagoon
LAK	Lake
LDS	Landslide
LEV	Levee
LUN	Lunette
MAA	Maar

MOU	Mound
OXB	Ox-bow
PED	Pediment
PIT	Pit
PLA	Plain
PLY	Playa
PST	Prior stream
REC	Risecrest
REF	Reef flat
RER	Residual rise
RES	Riseslope
RFL	Rock flat
RPL	Rock platform
SCA	Scarp
SCD	Scald
SCR	Scroll
SFS	Scarp-foot slope
SRP	Scroll plain
STB	Stream bed
STC	Stream channel
STF	Supratidal flat
SUS	Summit surface
SWL	Swale
SWP	Swamp
TAL	Talus
TDC	Tidal creek
TDF	Tidal flat
TEF	Terrace flat
TEP	Terrace plain
TOR	Tor
TRE	Trench
TUM	Tumulus
VLF	Valley flat

Table codes: Domain C_S_MAP_REF_TYPE

Value	Description
L	Latitude and longitude
M	Australian map grid (metric)

Table codes: Domain C_S_MAP_SCALE

Value	Description
1	1:1000
2	1:2500
3	1:5000
4	1:10000
5	1:25000
6	1:50000
7	1:100000
8	1:250000

Table codes: Domain N_S_MODAL_SLOPE

Value	Description	Numeric value	Low value	High value
GE	Gently inclined	6.5	3	10
LE	Level	0.5	0	1

MO	Moderately inclined	21	10	32	
PR	Precipitous	100	100		
ST	Steep	44	32	56	
VG	Very gently inclined	2	1	3	
VS	Very steep	78	56	100	

Table codes: Domain C_S_MORPH_TYPE

Value	Description
С	Crest
D	Closed Depression
F	Flat
Н	Hillock
L	Lower-slope Lower-slope
M	Mid-slope Mid-slope
R	Ridge
S	Simple-slope
U	Upper-slope
V	Open depression (vale)

Table codes: Domain C_S_PATT_TYPE

Value	Description
ALF	Alluvial fan
ALP	Alluvial plain
ANA	Anastomatic plain
BAD	Badlands
BAR	Bar plain
BEA	Beach ridge plain
CAL	Caldera
CHE	Chenier plain
COR	Coral reef
COV	Covered plain
DEL	Delta
DUN	Dunefield
ESC	Escarpment
FLO	Flood plain
HIL	Hills
KAR	Karst
LAC	Lacustrine plain
LAV	Lava plain
LON	Longitudinal dunefield
LOW	Low hills
MAD	Made land
MAR	Marine plain
MEA	Meander plain
MET	Meteor crater
MOU	Mountains
PAR	Parabolic dunefield
PED	Pediment
PEP	Pediplain
PLA	Plain
PLT	Plateau
PLY	Playa plain
PNP	Peneplain
RIS	Rises
SAN	Sand plain

SHF	Sheet-flood fan
STA	Stagnant alluvial plain
TEL	Terraced land (alluvial)
TER	Terrace (alluvial)
TID	Tidal flat
VOL	Volcano

Table codes: Domain N_S_RELIEF_CLASS

Value	Description	Numeric value	Low value	High value
M	Very high	300	300	
Н	High	195	90	300
L	Low	60	30	90
Р	Extremely low	4.5	0	9
R	Very low	19.5	9	30

Table codes: Domain C_S_REL_MS_CLASS

Value	Description
В	Badlands <9m >32%
B1	Badlands 9-30m >56%
B2	Badlands 30-90m >100%
GP	Gently undulating plains <9m 1-3%
GR	Gently undulating rises 9-30m 1-3%
LP	Level plain <1%
PH	Precipitous hills 90-300m >100%
PM	Precipitous mountains >300m >100%
RH	Rolling hills 90-300m 10-32%
RL	Rolling low hills 30-90m 10-32%
RM	Rolling mountains >300m 10-32%
RP	Rolling plains <9m 10-32%
RR	Rolling rises 9-30m 10-32%
SH	Steep hills 90-300m 32-56%
SL	Steep low hills 30-90m 32-56%
SM	Steep mountains >300m 32-56%
SR	Steep rises 9-30m 32-56%
UH	Undulating hills 90-300m 3-10%
UL	Undulating low hills 30-90m 3-10%
UP	Undulating plains <9m 3-10%
UR	Undulating rises 9-30m 3-10%
VH	Very steep hills 90-300m 56-100%
VL	Very steep low hills 30-90m 56-100%
VM	Very steep mountains >300m 56-100%

Table codes: Domain N_S_SAMP_SIZE

Value	Description	Numeric value	Low value	High value
1	<100g	50	0	100
2	100-500g	300	100	500
3	500-1000g	750	500	1000
4	1000-5000g	3000	1000	5000
5	>5000g	5000	5000	

Table codes: Domain C_S_SLOPE_CLASS

Value	Description
CL	Cliffed
GE	Gently inclined
LE	Level
PR	Precipitous
ST	Steep
VG	Very gently sloped
VS	Very steep

Table codes: Domain C_S_SLOPE_EVAL

Value	Description
Α	Abney level or clinometer and tape
E	Estimate
Р	Contour plan at 1:10000 or larger scale
T	Tripod-mounted instrument and staff

Table codes: Domain C_S_STRM_CH_DEV

Value	Description
Α	Alluvial
E	Erosional
1	Incipient
0	Absent

Table codes: Domain C_S_STRM_CH_DIR_NET

Value	Description
В	Bidirectional
С	Convergent
D	Divergent
F	Centrifugal
N	Non-directional
Р	Centripetal
U	Unidirectional

Table codes: Domain N_S_STRM_CH_DTOW

Value	Description	Numeric value	Low value	High value
D	Deep	10	0	20
M	Moderately deep	35	20	50
S	Shallow	100	50	150
V	Very shallow	150	150	

Table codes: Domain C_S_STRM_CH_MIG

Value	Description
F	Fixed
R	Rapidly migrating
S	Slowly migrating

Table codes: Domain C_S_STRM_CH_NET_INT

Value	Description
D	Disintegrated
1	Integrated
Р	Interrupted (partial integration)

Table codes: Domain C_S_STRM_CH_PATT

Value	Description
D	Distributary
N	Non-tributary
R	Reticulated
T	Tributary

Table codes: Domain N_S_STRM_CH_SPACING

Value	Description	Numeric value	Low value	High value
AB	Absent or very rare	2500	2500	
SP	Sparse	2042.5	1585	2500
VW	Very widely spaced	1292.5	1000	1585
WS	Widely spaced	812.5	625	1000
MS	Moderately spaced	512.5	400	625
CS	Closely spaced	325	250	400
VC	Very closely spaced	204	158	250
NU	Numerous	79	0	158

Table codes: Domain C_S_TYPE

Value	Description
F	Free survey site
G	Grid site
M	Soil property monitoring
T	Transect

Table codes: Domain C_TECH_REF

Value	Description
1	Australian Soil and Land Survey, Field Handbook First Edition
2	Australian Soil and Land Survey, Field Handbook Second Edition
3	Australian Soil and Land Survey, Field Handbook Third Edition

Table codes: Domain C_VSTR_CODE

Value	Description
CL	Continuum Lower
CM	Continuum Mid
L	Lower
M	Mid
Т	Tallest

Table codes: Domain C_VSTR_COVER_CLASS

Value	Description
D	Closed or dense
1	Isolated plants
L	Isolated clumps
M	Mid-dense
S	Sparse
V	Very sparse

Table codes: Domain C_VSTR_GROWTH_FORM

Value	Description
Α	Cycad
С	Chenopod shrub
D	Sod grass
Е	Fern
F	Forb
G	Tussock grass
Н	Hummock grass
L	Vine
М	Tree mallee
N	Lichen
0	Moss
Р	Palm
R	Rush
S	Shrub
T	Tree
V	Sedge
W	Liverwort
X	Xanthorhea
Υ	Malle shrub
Z	Heath shrub

Table codes: Domain N_VSTR_HEIGHT_CLASS

Value	Description	Numeric value	Low value	High value
1	<0.25m	0.125	0	0.25
2	0.26-0.5m	0.375	0.25	0.5
3	0.51-1m	0.75	0.5	1
4	1.01-3m	2	1	3
5	3.01-6m	4.5	3	6
6	6.01-12m	9	6	12
7	12.01-20m	16	12	20
8	20.01-35m	27.5	20	35
9	>35.01m	35	35	

Table LAB_METHODS

Code	Lab property code	Description	Units	Reference
10_BC	SULFUR	Bicarbonate-extractable sulfur. Keay, Menage and Dean (1972)		
10_HCL	SULFUR	Total element - S(%) - By boiling HCI	%	
10A_HF+	SULFUR	Total element - S(%) - HF/HCl04 Digest	%	
10A_NR	SULFUR	Total element - S(%) - Not recorded	%	
10A1	SULFUR	Total sulfur - S(%) - X-ray fluorescence	%	ASLSH Vol 3
10B	SULFUR	Extractable sulfur (mg/kg) - Phosphate extractable sulfur	mg/kg	
10B_NR	SULFUR	Extractable sulfur (mg/kg) - Not recorded	mg/kg	
10B1	SULFUR	Calcium phosphate-extractable sulfur - manual distillation	mg/kg	ASLSH Vol 3
10B2	SULFUR	Calcium phosphate-extractable sulfur - automated distillation	mg/kg	ASLSH Vol 3
10B3	SULFUR	Calcium phosphate-extractable sulfur - ICPAES	mg/kg	ASLSH Vol 3
10B4	SULFUR	Calcium phosphate-extractable sulfur - ion chromatography	mg/kg	ASLSH SCM
10C1	SULFUR	Calcium phosphate-extractable sulfur - ICPAES, + charcoal (CPC-S)	mg/kg	ASLSH SCM
10D1	SULFUR	Potassium chloride - 40 sulfur (KCI-40)-S	mg/kg	ASLSH SCM

1111	CVDCIIM	Tatal minarim	0/	ACI CILV-I 2
11A1 11A2	GYPSUM GYPSUM	Total gypsum Total gypsum - MIR reflectance spectroscopy	% %	ASLSH Vol 3 ASLSH SCM
12_HCL_CU	TOTAL_ELEMENTS	Total element - Cu(mg/kg) - Total acid(HCI) Total element - Fe(%) - Total acid(HCI) extractable Fe	mg/kg	
12_HCL_FE 12_HCL_FEO	TOTAL_ELEMENTS TOTAL_ELEMENTS	Total element - Fe(%) - Total acid(HCI) extractable Fe Total element - Fe(%) - Total acid(HCI) extractable Fe2O3	% %	
12_HCL_MN	TOTAL_ELEMENTS	Total element - Mn(mg/kg) - Total acid(HCI)	mg/kg	
12_HCL_ZN 12_HF_CU	TOTAL_ELEMENTS TOTAL_ELEMENTS	Total element - Zn(mg/kg) - Total acid(HCI) Total element - Cu(mg/kg) - HF/HClO4 Digest	mg/kg mg/kg	
12_HF_FE	TOTAL_ELEMENTS	Total element - Fe(%) - HF/HCIO4 Digest	%	
12_HF_MN 12_HF_ZN	TOTAL_ELEMENTS TOTAL_ELEMENTS	Total element - Mn(mg/kg) - HF/HClO4 Digest Total element - Zn(mg/kg) - HF/HClO4 Digest	mg/kg mg/kg	
12_HF+_FEO	TOTAL_ELEMENTS	Total element - Fe(%) - HF/HCIO4 Digest(Fe2O3)	%	
12_NR_CU 12_NR_FE	TOTAL_ELEMENTS	Total element - Cu(mg/kg) - Not recorded	mg/kg %	
12_NR_FE 12_NR_MN	TOTAL_ELEMENTS TOTAL_ELEMENTS	Total element - Fe(%) - Not recorded Total element - Mn(mg/kg) - Not recorded	mg/kg	
12_NR_ZN	TOTAL_ELEMENTS	Total element - Zn(mg/kg) - Not recorded	mg/kg	
12_XRF_CU 12_XRF_FE	TOTAL_ELEMENTS TOTAL_ELEMENTS	Total element - Cu(mg/kg) - X-Ray Fuoresence Total element - Fe(%) - X-Ray Fuoresence	mg/kg %	
12_XRF_FEO	TOTAL_ELEMENTS	Total element - Fe(%) - X-Ray Fuoresence(Fe2O3)	%	
12_XRF_MN 12_XRF_ZN	TOTAL_ELEMENTS TOTAL_ELEMENTS	Total element - Mn(mg/kg) - X-Ray Fuoresence Total element - Zn(mg/kg) - X-Ray Fuoresence	mg/kg mg/kg	
12A1_AL	AL	DTPA - extractable aluminium	mg/kg	
12A1_CU 12A1_FE	CU FE	DTPA - extractable copper, zinc, manganese and iron DTPA - extractable copper, zinc, manganese and iron	mg/kg mg/kg	ASLSH Vol 3 ASLSH Vol 3
12A1_IL	MN	DTPA - extractable copper, zinc, manganese and iron	mg/kg	ASLSH Vol 3
12A1_ZN	ZN	DTPA - extractable copper, zinc, manganese and iron	mg/kg	ASLSH Vol 3
12B1_CU 12B1_ZN	CU ZN	Ammonium bicarbonate/EDTA - extractable copper and zinc Ammonium bicarbonate/EDTA - extractable copper and zinc	mg/kg mg/kg	ASLSH Vol 3 ASLSH Vol 3
12C1	BORON	Calcium chloride extractable boron - manual colour	mg/kg	ASLSH Vol 3
12C2 12D1 CU	BORON CU	Calcium chloride extractable boron - ICPAES	mg/kg	ASLSH Vol 3
12D1_C0 12D1_FE	FE	0.1 M HCI - extractable copper, zinc, manganese and iron 0.1 M HCI - extractable copper, zinc, manganese and iron	mg/kg mg/kg	ASLSH SCM ASLSH SCM
12D1_MN	MN	0.1 M HCI - extractable copper, zinc, manganese and iron	mg/kg	ASLSH SCM
12D1_ZN 12E1	ZN MO	0.1 M HCl - extractable copper, zinc, manganese and iron Calcium chloride - extractable Mo	mg/kg mg/kg	ASLSH SCM ASLSH SCM
13_C_FE	FE	Extractable Fe(%) - Method recorded as C	%	
13_NR_AL 13_NR_FE	AL FE	Extractable Al(%) - Not recorded Extractable Fe(%) - Not recorded	% %	
13Ā1_ĀL	AL	Oxalate-extractable iron, aluminium and silicon	%	ASLSH Vol 3
13A1_FE	FE	Oxalate-extractable iron, aluminium and silicon	%	ASLSH Vol 3
13A1_MN 13A1_SI	MN Si	Oxalate-extractable manganese Oxalate-extractable iron, aluminium and silicon	% %	ASLSH Vol 3
13B1_AL	AL	Pyrophosphate-extractable iron and aluminium	%	ASLSH Vol 3
13B1_FE 13C_C_FE	FE FE	Pyrophosphate-extractable iron and aluminium Extractable Fe(Free) % - Method recorded as C	% %	ASLSH Vol 3
13C_C_FE 13C1_AL	AL	Citrate/dithionite-extractable iron and aluminium	%	ASLSH Vol 3
13C1_FE	FE	Citrate/dithionite-extractable iron and aluminium	%	ASLSH Vol 3
13C1_FE203 13C1_MN	FE MN	Extractable Fe (Free) % - Citrate/Dithionite Extractable Fe2O3 Citrate/dithionite-extractable manganese	% %	
13C1_SI	SI	Citrate/dithionite-extractable silicon	%	
13D1 13D2	SI	Acid-extractable soil silicon - automated colour Acid-extractable soil silicon - ICPAES	mg/kg	ASLSH SCM
13D2 14A1	SI SE	Acid-extractable soil silicon - ICPAES Saturation extract - filter suction	mg/kg	ASLSH SCM ASLSH Vol 3
14A2	SE	Saturation extract - automatic extractor		ASLSH Vol 3
14A3 14A4	SE SE	Saturation extract - centrifuge, closed system Saturation extract - centrifuge, Gillman		ASLSH Vol 3 ASLSH Vol 3
14B1	EC	Electrical conductivity/SE	dS/m	ASLSH Vol 3
14C1	PH/SE	pH/SE		ASLSH Vol 3
14D1_BC 14D1_C	BICARB/SE CARB/SE	Bicarbonate/SE and carbonate/SE - potentiometric titration Bicarbonate/SE and carbonate/SE - potentiometric titration	mequiv/L mequiv/L	ASLSH Vol 3 ASLSH Vol 3
14D2_BC	BICARB/SE	Bicarbonate/SE and carbonate/SE - indicator method	mequiv/L	ASLSH Vol 3
14D2_C 14E1	CARB/SE CHLORIDE/SE	Bicarbonate/SE and carbonate/SE - indicator method Chloride/SE - potentiometric titration	mequiv/L mequiv/L	ASLSH Vol 3 ASLSH Vol 3
14E2	CHLORIDE/SE	Chloride/SE - ion chromatography	mequiv/L	ASLSH Vol 3
14E2a	CHLORIDE/SE	Chloride/SE - ion chromatography (chemical suppression of eluent conductivity) Chloride/SE - ion chromatography (single column with electronic suppression of eluent	mequiv/L	ASLSH SCM
14E2b	CHLORIDE/SE	conductivity)	mequiv/L	ASLSH SCM
14E3	CHLORIDE/SE	Chloride/SE - ICPAES	mequiv/L	ASLSH Vol 3
14F1 14F2	SULFATE/SE SULFATE/SE	Sulfate/SE - ICPAES Sulfate/SE - turbidimetric	mequiv/L mequiv/L	ASLSH Vol 3 ASLSH Vol 3
14F3	SULFATE/SE	Sulfate/SE - gravimetric	mequiv/L	ASLSH Vol 3
14F4 14F5	SULFATE/SE SULFATE/SE	Sulfate/SE - automated colour Sulfate/SE - ion chromatography	mequiv/L mequiv/L	ASLSH Vol 3 ASLSH Vol 3
14F5a	SULFATE/SE	Sulfate/SE - ion chromatography (chemical suppression of eluent conductivity)	mequiv/L	ASLSH SCM
14F5b	SULFATE/SE	Sulfate/SE - ion chromatography (single column with electronic suppression of eluent	mequiv/L	ASLSH SCM
14G1	FLUORIDE/SE	conductivity) Fluoride/SE - specific ion electrode	mequiv/L	ASLSH Vol 3
14G2	FLUORIDE/SE	Fluoride/SE - ion chromatography	mequiv/L	ASLSH Vol 3
14G2a	FLUORIDE/SE	Fluoride/SE - ion chromatography (chemical suppression of eluent conductivity) Fluoride/SE - ion chromatography (single column with electronic suppression of eluent	mequiv/L	ASLSH SCM
14G2b	FLUORIDE/SE	conductivity)	mequiv/L	ASLSH SCM
14H1_CA 14H1_K	SOL_BASES_CA SOL_BASES_K	Soluble bases/SE (Ca,Mg,K,Na) Soluble bases/SE (Ca,Mg,K,Na)	mg/L mg/L	ASLSH Vol 3 ASLSH Vol 3
14H1_MG	SOL_BASES_MG	Soluble bases/SE (Ca,Mg,K,Na)	mg/L	ASLSH Vol 3
14H1_NA	SOL_BASES_NA	Soluble bases/SE (Ca,Mg,K,Na)	mg/L	ASLSH Vol 3
15_BASES 15 HSK CEC	ECEC CEC	Sum of Ex. cations + Ex. acidity - Sum of basic exch. cations CEC - meq per 100g of soil - HOSK	meq/100g meq/100g	
15_NR	ECEC	Sum of Ex. cations + Ex. acidity - Not recorded	meq/100g	
15_NR_AL 15_NR_CA	EXCH_ACIDITY EXCH_BASES_CA	Aluminium Cation - meq per 100g of soil - Not recorded Exch. basic cations (Ca++) - meq per 100g of soil - Not recorded	meq/100g meq/100g	
15_NR_CEC	CEC	CEC - meq per 100g of soil - Not recorded	meq/100g	
15_NR_H	EXCH_H	Hydrogen Cation - med per 100g of soil - Not recorded	meq/100g	
15_NR_K 15_NR_MG	EXCH_BASES_K EXCH_BASES_MG	Exch. basic cations (K++) - meq per 100g of soil - Not recorded Exch. basic cations (Mg++) - meq per 100g of soil - Not recorded	meq/100g meq/100g	
15_NR_NA	EXCH_BASES_NA	Exch. basic cations (Na++) - meq per 100g of soil - Not recorded	meq/100g	
15_UB_CA 15_UB_CEC	EXCH_BASES_CA EXCH_BASES_CEC	Exch. basic cations (Ca++) - meq per 100g of soil - 1M Ammonium Chloride Un-buffered CEC - meq per 100g of soil - 1M Ammonium Chloride Un-buffered	meq/100g meq/100g	
15_UB_K	EXCH_BASES_K	Exch. basic cations (K++) - meq per 100g of soil - 1M Ammonium Chloride Un-buffered	meq/100g	
15_UB_MG	EXCH_BASES_MG	Exch. basic cations (Mg++) - meq per 100g of soil - 1M Ammonium Chloride Un-buffered	meq/100g	
15_UB_NA	EXCH_BASES_NA	Exch. basic cations (Na++) - meq per 100g of soil - 1M Ammonium Chloride Un-buffered Exchangeable bases (Ca2+,Mg2+,Na+,K+) - 1M ammonium chloride at pH 7.0, no	meq/100g	4010111111
15A1_CA	EXCH_BASES_CA	pretreatment for soluble salts	meq/100g	ASLSH Vol 3
15A1_K	EXCH_BASES_K	Exchangeable bases (Ca2+,Mg2+,Na+,K+) - 1M ammonium chloride at pH 7.0, no pretreatment for soluble salts	meq/100g	ASLSH Vol 3
15A1_MG	EXCH_BASES_MG	Exchangeable bases (Ca2+,Mg2+,Na+,K+) - 1M ammonium chloride at pH 7.0, no	meq/100g	ASLSH Vol 3
		pretreatment for soluble salts Exchangeable bases (Ca2+,Mg2+,Na+,K+) - 1M ammonium chloride at pH 7.0, no		
15A1_NA	EXCH_BASES_NA	pretreatment for soluble salts	meq/100g	ASLSH Vol 3
15A2_CA	EXCH_BASES_CA	Exchangeable bases- 1M ammonium chloride at pH 7.0, pretreatment for soluble salts	meq/100g	ASLSH Vol 3
15A2_CEC	EXCH_BASES_CEC	Exchangeable bases- 1M ammonium chloride at pH 7.0, pretreatment for soluble salts	meq/100g	ASLSH Vol 3

15A2_K	EXCH_BASES_K	Exchangeable bases- 1M ammonium chloride at pH 7.0, pretreatment for soluble salts	meq/100g	ASLSH Vol 3
15A2_MG	EXCH_BASES_MG	Exchangeable bases- 1M ammonium chloride at pH 7.0, pretreatment for soluble salts	meq/100g	ASLSH Vol 3
15A2_NA 15A3 CA	EXCH_BASES_NA EXCH_BASES_CA	Exchangeable bases- 1M ammonium chloride at pH 7.0, pretreatment for soluble salts Exchangeable bases- 1M ammonium chloride at pH 7.0, adjusted for soluble sodium	meq/100g meq/100g	ASLSH Vol 3 ASLSH Vol 3
15A3_CEC	EXCH BASES CEC	Exchangeable bases- 1M ammonium chloride at pH 7.0, adjusted for soluble sodium	meg/100g	ASLSH Vol 3
15A3_K	EXCH_BASES_K	Exchangeable bases- 1M ammonium chloride at pH 7.0, adjusted for soluble sodium	meq/100g	ASLSH Vol 3
15A3_MG	EXCH_BASES_MG	Exchangeable bases- 1M ammonium chloride at pH 7.0, adjusted for soluble sodium	meq/100g	ASLSH Vol 3
15A3_NA	EXCH_BASES_NA	Exchangeable bases- 1M ammonium chloride at pH 7.0, adjusted for soluble sodium Exchangeable bases and CEC - 1M ammonium chloride at pH 7.0, no pretreatment for	meq/100g	ASLSH Vol 3
15B1_CA	EXCH_BASES_CA	soluble salts	meq/100g	ASLSH Vol 3
15B1_CEC	CEC	Exchangeable bases and CEC - 1M ammonium chloride at pH 7.0, no pretreatment for	meq/100g	ASLSH Vol 3
1051_020	525	soluble salts		7.020 10.0
15B1_K	EXCH_BASES_K	Exchangeable bases and CEC - 1M ammonium chloride at pH 7.0, no pretreatment for soluble salts	meq/100g	ASLSH Vol 3
45D4 MC	EVOLUBACES MO	Exchangeable bases and CEC - 1M ammonium chloride at pH 7.0, no pretreatment for	/400	ACL CIL Val 2
15B1_MG	EXCH_BASES_MG	soluble salts	meq/100g	ASLSH Vol 3
15B1_NA	EXCH_BASES_NA	Exchangeable bases and CEC - 1M ammonium chloride at pH 7.0, no pretreatment for soluble salts	meq/100g	ASLSH Vol 3
4500.04	EVOU BASES 04	Exchangeable bases and CEC - 1M ammonium chloride at pH 7.0, pretreatment for		401011111
15B2_CA	EXCH_BASES_CA	soluble salts	meq/100g	ASLSH Vol 3
15B2_CEC	EXCH_BASES_CEC	Exchangeable bases and CEC - 1M ammonium chloride at pH 7.0, pretreatment for	meq/100g	ASLSH Vol 3
_		soluble salts Exchangeable bases and CEC - 1M ammonium chloride at pH 7.0, pretreatment for		
15B2_K	EXCH_BASES_K	soluble salts	meq/100g	ASLSH Vol 3
15B2_MG	EXCH_BASES_MG	Exchangeable bases and CEC - 1M ammonium chloride at pH 7.0, pretreatment for	meq/100g	ASLSH Vol 3
_		soluble salts Exchangeable bases and CEC - 1M ammonium chloride at pH 7.0, pretreatment for		
15B2_NA	EXCH_BASES_NA	soluble salts	meq/100g	ASLSH Vol 3
15B3_CA	EXCH_BASES_CA	Exchangeable bases and CEC - 1M ammonium chloride at pH 7.0, adjusted for soluble	meq/100g	ASLSH Vol 3
1020_0/1	2/10/1-2/10/20/20/1	sodium Evaluation because and CEC 1M ammonium chloride at pH 7.0 adjusted for callula	oqoog	7.020 10.0
15B3_CEC	EXCH_BASES_CEC	Exchangeable bases and CEC - 1M ammonium chloride at pH 7.0, adjusted for soluble sodium	meq/100g	ASLSH Vol 3
45D2 K	EVOLUBACES IX	Exchangeable bases and CEC - 1M ammonium chloride at pH 7.0, adjusted for soluble	/400-	ACL CIL Val 2
15B3_K	EXCH_BASES_K	sodium	meq/100g	ASLSH Vol 3
15B3_MG	EXCH_BASES_MG	Exchangeable bases and CEC - 1M ammonium chloride at pH 7.0, adjusted for soluble sodium	meq/100g	ASLSH Vol 3
	EVOLUBACES ***	Exchangeable bases and CEC - 1M ammonium chloride at pH 7.0, adjusted for soluble		ACI C
15B3_NA	EXCH_BASES_NA	sodium	meq/100g	ASLSH Vol 3
15C1_CA	EXCH_BASES_CA	Exchangeable bases and CEC - alcoholic 1M ammonium chloride at pH 8.5, pretreatment	meq/100g	ASLSH Vol 3
_		for soluble salts Exchangeable bases and CEC - alcoholic 1M ammonium chloride at pH 8.5, pretreatment		
15C1_CEC	EXCH_BASES_CEC	for soluble salts	meq/100g	ASLSH Vol 3
15C1_K	EXCH_BASES_K	Exchangeable bases and CEC - alcoholic 1M ammonium chloride at pH 8.5, pretreatment	meq/100g	ASLSH Vol 3
1001_1	2.0.1.2.1.02.0.1.1	for soluble salts	oqoog	7.020 10.0
15C1_MG	EXCH_BASES_MG	Exchangeable bases and CEC - alcoholic 1M ammonium chloride at pH 8.5, pretreatment for soluble salts	meq/100g	ASLSH Vol 3
15C1_NA	EYCH BASES NA	Exchangeable bases and CEC - alcoholic 1M ammonium chloride at pH 8.5, pretreatment	meq/100g	ASLSH Vol 3
	EXCH_BASES_NA	for soluble salts		
15C2_CA 15C2_CEC	EXCH_BASES_CA EXCH_BASES_CEC	Exchangeable divalent cations and CEC - MIR diffuse reflectance spectroscopy Exchangeable divalent cations and CEC - MIR diffuse reflectance spectroscopy	meq/100g meq/100g	ASLSH SCM ASLSH SCM
15C2_MG	EXCH_BASES_MG	Exchangeable divalent cations and CEC - MIR diffuse reflectance spectroscopy	meq/100g	ASLSH SCM
15D1_CA	EXCH_BASES_CA	Exchangeable bases and CEC - 1M ammonium acetate at pH 7.0, pretreatment for soluble	meq/100g	ASLSH Vol 3
1001_0/	EXGIT_BAGEG_GA	salts; manual leach	meq/100g	ACEON VOI O
15D1_CEC	EXCH_BASES_CEC	Exchangeable bases and CEC - 1M ammonium acetate at pH 7.0, pretreatment for soluble salts; manual leach	meq/100g	ASLSH Vol 3
15D1 K	EVOL BASES K	Exchangeable bases and CEC - 1M ammonium acetate at pH 7.0, pretreatment for soluble	mag/100g	ACICH Val 2
15D1_K	EXCH_BASES_K	salts; manual leach	meq/100g	ASLSH Vol 3
15D1_MG	EXCH_BASES_MG	Exchangeable bases and CEC - 1M ammonium acetate at pH 7.0, pretreatment for soluble	meq/100g	ASLSH Vol 3
		salts; manual leach Exchangeable bases and CEC - 1M ammonium acetate at pH 7.0, pretreatment for soluble		
15D1_NA	EXCH_BASES_NA	salts; manual leach	meq/100g	ASLSH Vol 3
15D2_CA	EXCH_BASES_CA	Exchangeable bases and CEC - 1M ammonium acetate at pH 7.0, pretreatment for soluble	meq/100g	ASLSH Vol 3
		salts; automatic Exchangeable bases and CEC - 1M ammonium acetate at pH 7.0, pretreatment for soluble		
15D2_CEC	EXCH_BASES_CEC	salts; automatic	meq/100g	ASLSH Vol 3
15D2_K	EXCH_BASES_K	Exchangeable bases and CEC - 1M ammonium acetate at pH 7.0, pretreatment for soluble	meq/100g	ASLSH Vol 3
		salts; automatic Exchangeable bases and CEC - 1M ammonium acetate at pH 7.0, pretreatment for soluble		
15D2_MG	EXCH_BASES_MG	salts; automatic	meq/100g	ASLSH Vol 3
15D2_NA	EXCH_BASES_NA	Exchangeable bases and CEC - 1M ammonium acetate at pH 7.0, pretreatment for soluble	meg/100g	ASLSH Vol 3
13D2_NA	EXCIT_BAGES_NA	salts; automatic	meq/100g	AGESTI VOI S
15D3_CA	EXCH_BASES_CA	Exchangeable bases - 1M ammonium acetate at pH 7.0, rapid method with no pretreatment for soluble salts	meq/100g	ASLSH Vol 3
15D2 1/	EVOL BASES "	Exchangeable bases - 1M ammonium acetate at pH 7.0, rapid method with no	me=1400	ACL CHIV-10
15D3_K	EXCH_BASES_K	pretreatment for soluble salts	meq/100g	ASLSH Vol 3
15D3_MG	EXCH_BASES_MG	Exchangeable bases - 1M ammonium acetate at pH 7.0, rapid method with no pretreatment for soluble salts	meq/100g	ASLSH Vol 3
45D0 NG		pretreatment for soluble saits Exchangeable bases - 1M ammonium acetate at pH 7.0, rapid method with no		ACI C
15D3_NA	EXCH_BASES_NA	pretreatment for soluble salts	meq/100g	ASLSH Vol 3
15E1_AEC	EXCH_BASES_AEC	Exchangeable bases , CEC and AEC by compulsive exchange, no pretreatment for	meq/100g	ASLSH Vol 3
_ 15E1_AL	EXCH_AL	soluble salts Exchangeable Al - by compulsive exchange, no pretreatment for soluble salts	meq/100g	ASLSH Vol 3
15E1_CA	EXCH_BASES_CA	Exchangeable bases, CEC and AEC by compulsive exchange, no pretreatment for soluble	meq/100g	ASLSH Vol 3
.521_0/3	DAGEG_GA	salts	q, 100g	
15E1_CEC	EXCH_BASES_CEC	Exchangeable bases, CEC and AEC by compulsive exchange, no pretreatment for soluble salts	meq/100g	ASLSH Vol 3
15E1_H	EXCH_H	Exchangeable H - by compulsive exchange, no pretreatment for soluble salts	meq/100g	ASLSH Vol 3
15E1_K	EXCH_BASES_K	Exchangeable bases, CEC and AEC by compulsive exchange, no pretreatment for soluble	meq/100g	ASLSH Vol 3
1021_1	2.10.12.10.20_11	salts	oqoog	7.020 10.0
15E1_MG	EXCH_BASES_MG	Exchangeable bases, CEC and AEC by compulsive exchange, no pretreatment for soluble salts	meq/100g	ASLSH Vol 3
15E1_NA	EXCH BASES MA	Exchangeable bases, CEC and AEC by compulsive exchange, no pretreatment for soluble	meq/100g	VSI SH AVI S
ISE I_INA	EXCH_BASES_NA	salts	meq/100g	ASLSH Vol 3
15E2_AEC	EXCH_BASES_AEC	Exchangeable bases, CEC and AEC by compulsive exchange, pretreatment for soluble	meq/100g	ASLSH Vol 3
_		salts Exchangeable bases, CEC and AEC by compulsive exchange, pretreatment for soluble		
15E2_CA	EXCH_BASES_CA	salts	meq/100g	ASLSH Vol 3
15E2_CEC	EXCH_BASES_CEC	Exchangeable bases, CEC and AEC by compulsive exchange, pretreatment for soluble	meq/100g	ASLSH Vol 3
		salts Exchangeable bases, CEC and AEC by compulsive exchange, pretreatment for soluble		
15E2_K	EXCH_BASES_K	salts	meq/100g	ASLSH Vol 3
15E2_MG	EXCH_BASES_MG	Exchangeable bases, CEC and AEC by compulsive exchange, pretreatment for soluble	meq/100g	ASI SH Vol 3
IOLZ_IVIG	EXCIT_DAGEG_MG	salts	meq/100g	ASLSH Vol 3
15E2_NA	EXCH_BASES_NA	Exchangeable bases, CEC and AEC by compulsive exchange, pretreatment for soluble salts	meq/100g	ASLSH Vol 3
1552 450	EYCH DAGES AFO	Exchangeable bases, CEC and AEC by compulsive exchange, adjusted for soluble	mea/400-	V61 6H //-1 3
15E3_AEC	EXCH_BASES_AEC	sodium	meq/100g	ASLSH Vol 3
15E3_CA	EXCH_BASES_CA	Exchangeable bases, CEC and AEC by compulsive exchange, adjusted for soluble	meq/100g	ASLSH Vol 3
		sodium Exchangeable bases, CEC and AEC by compulsive exchange, adjusted for soluble		
15E3_CEC	EXCH_BASES_CEC	sodium	meq/100g	ASLSH Vol 3

15E3_K	EXCH_BASES_K	Exchangeable bases, CEC and AEC by compulsive exchange, adjusted for soluble sodium	meq/100g	ASLSH Vol 3
15E3_MG	EXCH_BASES_MG	Exchangeable bases, CEC and AEC by compulsive exchange, adjusted for soluble	meq/100g	ASLSH Vol 3
		sodium Exchangeable bases, CEC and AEC by compulsive exchange, adjusted for soluble		
15E3_NA	EXCH_BASES_NA	sodium	meq/100g	ASLSH Vol 3
15F1_CA 15F1_CEC	EXCH_BASES_CA EXCH_BASES_CEC	Exchangeable bases by 0.01m (AgTU)+, no pretreatment for soluble salts Exchangeable bases by 0.01m (AgTU)+, no pretreatment for soluble salts	meq/100g meq/100g	ASLSH Vol 3 ASLSH Vol 3
15F1_K	EXCH_BASES_K	Exchangeable bases by 0.01m (AgTU)+, no pretreatment for soluble salts	meq/100g	ASLSH Vol 3
15F1_MG 15F1_NA	EXCH_BASES_MG EXCH_BASES_NA	Exchangeable bases by 0.01m (AgTU)+, no pretreatment for soluble salts Exchangeable bases by 0.01m (AgTU)+, no pretreatment for soluble salts	meq/100g meq/100g	ASLSH Vol 3 ASLSH Vol 3
15F2	EXCH_AL	Exchangeable aluminium by 0.01m (AgTU)+	meq/100g	ASLSH Vol 3
15F2_AL 15F3	EXCH_AL CEC	Extractable Al (%) - Silver Thiorea CEC by 0.01m (AgTU)+	% meq/100g	ASLSH Vol 3
15F4	EXCH_AL	Exchangeable aluminium by 1M ammonium acetate (pH 5.8). Abdullah and Riley (1966).	meq/100g	ASESTI VOI S
15G_C	EXCH_ACIDITY	Exchange acidity (hydrogen and aluminium) - meq per 100g of soil - By 1M KCl exch. acidity by titration to pH 8.4	meq/100g	
15G_C_AL1	EXCH_AL	Exchangeable aluminium - meq per 100g of soil - Aluminium By difference of C and A or B	meq/100g	
15G_C_AL2	EXCH_AL	Exchangeable aluminium - meq per 100g of soil - Aluminium By KCI extraction and detremination By AAS	meq/100g	
15G_C_H1	EXCH_H	Exchangeable hydrogen - meq per 100g of soil - Hydrogen By back titration of A or B	meq/100g	
15G_C_H2	EXCH_H	Exchangeable hydrogen - meq per 100g of soil - Hydrogen By lime water, P-nitrophenol buffer at pH 7.0	meq/100g	
15G_H	EXCH_H	Hydrogen Cation - meq per 100g of soil - 1M KCI Exch. acidity By titration to pH 8.4	meq/100g	
15G1 15G1_AL	EXCH_ACIDITY EXCH_AL	Exchange acidity (hydrogen + aluminium) by 1M potassium chloride Aluminium Cation - meq per 100g of soil - 1M KCI Exch. Acidity By titration to pH 8.0	meq/100g meq/100g	ASLSH Vol 3
15G1_H	EXCH_H	Hydrogen Cation - meq per 100g of soil - 1M KCI Exch. Acidity By titration to pH 8.0	meq/100g	
15H1 15I1	EXCH_ACIDITY CEC	Exchange acidity by TEA CEC measurement - distillation of ammonium ions	meq/100g meq/100g	ASLSH Vol 3 ASLSH Vol 3
1512	CEC	CEC measurement - automated determination of ammonium ions	meq/100g	ASLSH Vol 3
15I3 15I4	CEC CEC	CEC measurement - automated determination of ammonium and chloride ions CEC measurement - titration of ammonium and chloride ions	meq/100g meq/100g	ASLSH Vol 3 ASLSH Vol 3
15J_BASES	BASES	Sum of Bases	meq/100g	
15J_CEC 15J_H	CEC ECEC	Sum of Cations Sum of Ex. cations + Ex. acidity - Sum of basic exch. cations and exch. (Hydrogen)	meq/100g meq/100g	
15J1	CEC	Effective CEC	meq/100g	ASLSH Vol 3
15JG 15JH	CEC CEC	Effective CEC using 15G1 for exchangeable acidity Effective CEC using 15H1 for exchangeable acidity	meq/100g meq/100g	
15K1	CEC	CEC measurement - pH 8.2	meq/100g	ASLSH Vol 3
15L1 15M1	BSP Cation_ratio	Base saturation percentage (BSP) Cation ratio	%	ASLSH Vol 3 ASLSH Vol 3
15N1	ESP	Exchangeable sodium percentage (ESP)	%	ASLSH Vol 3
1501	AL_SAT	Percenatge aluminium saturation	% kg/ha	ASLSH Vol 3
16A1	LIME_RATE	Calculated lime rate - from exchangeable aluminium	10cm	ASLSH Vol 3
16B1	LIME_RATE	Calculated lime rate - Cregan	kg/ha 10cm	ASLSH Vol 3
16C1 16D1	LIME_REQ LIME_REQ	Lime requirement - Mehlich single buffer	t/ha 20cm t/ha 20cm	ASLSH Vol 3 ASLSH Vol 3
17A1	TOTAL_ELEMENT	Lime requirement - Dunn titration curves Total element - X-ray fluorescence	%	ASLSH SCM
17A2	TOTAL_ELEMENT	Total element - microwave assisted digestion, determination by AAS	%	ASLSH SCM
17B1 17B2	TOTAL_ELEMENT	Psuedo-total element - reverse aqua regia block digestion, determination by AAS Psuedo-total element - reverse aqua regia digestion, determination by atomic	%	ASLSH SCM
1762	TOTAL_ELEMENT	spectrometry Psuedo-total element - conventional aqua regia block digestion, determination by atomic	70	ASLSH SCM
17C1	TOTAL_ELEMENT	spectrometry	%	ASLSH SCM
18A1 18B1	POTASSIUM POTASSIUM	Bicarbonate-extractable potassium Hydrochloric acid - extractable potassium	mg/kg mg/kg	ASLSH Vol 3 ASLSH Vol 3
18B2	POTASSIUM	Sulfuric acid (10%) - extractable potassium	mg/kg	
18C1 18D1	POTASSIUM CD	Boiling 1 M nitric acid - extractable potassium 0.1 M calcium chloride - extractable Cadmium	mg/kg mg/kg	ASLSH SCM ASLSH SCM
18E1	CD	0.01 M calcium chloride - extractable Cadmium	mg/kg	ASLSH SCM
18E2	POTASSIUM EXTRACTABLE_ELEMENT	Fluoride-extractable potassium (Bray 1-K) - AAS	mg/kg	
18F1	S	Mehlich 3 - extractable elements (P, Ca, Mg, Na, K, Fe, Cu, Mn, Zn, B, S, Al)	mg/kg	ASLSH SCM
18F2 18G1	POTASSIUM POTASSIUM	Mehlich 3 - extractable potassium - colour finish Reserve soil K+ by copper-modified sodium tetraphenylboron extraction	mg/kg mg/kg	ASLSH SCM ASLSH SCM
19_COL	CARBONATES	Carbonates - Collins Calcimeter	%	
19A1 19B_NR	CARBONATES CARBONATES	Carbonates - rapid titration Calcium Carbonate (CaCO3) - Not recorded	% %	ASLSH Vol 3
19B1	CARBONATES	Carbonates - manometric	%	ASLSH Vol 3
19B2 19C1	CARBONATES CARBONATES	Carbonates - transducer Spot field test for the presence of soil carbonates with dilute HCI	%	ASLSH SCM ASLSH SCM
19C2	CARBONATES	Field test for soil carbonates with dilute HCl and effervescence class assessment		ASLSH SCM (method 6G1
2_LOI	LOSS_ON_IGNITION	Loss on Ignition (%)	%	SCM)
20A1 20B1	SULFUR TAA	Chromium reducible S SPOCAS acid trail - titratable actual acidity (TAA)	% mol(H+)/t	ASLSH SCM ASLSH SCM
20C1_ANC	ANC	SPOCAS acid trail - titratable peroxide acidity (TPA) and Net Acid Neutralising Capacity	mol(H+)/t	ASLSH SCM
_		(ANC) SPOCAS acid trail - titratable peroxide acidity (TPA) and net acid neutralising capacity		
20C1_TPA	TPA	(ANC)	mol(H+)/t	ASLSH SCM
20D1_CA 20D1_MG	CA MG	1 M KCI - extractable S, Ca, Mg 1 M KCI - extractable S, Ca, Mg	% %	ASLSH SCM ASLSH SCM
20D1_S	SULFUR	1 M KCI - extractable S, Ca, Mg	%	ASLSH SCM
20E1_CA 20E1_MG	CA MG	1 M KCI - extractable S, Ca, Mg after peroxide oxidation 1 M KCI - extractable S, Ca, Mg after peroxide oxidation	% %	ASLSH SCM ASLSH SCM
20E1_S	SULFUR	1 M KCI - extractable S, Ca, Mg after peroxide oxidation	%	ASLSH SCM
20F1 20F2	SULFUR SULFUR	Sulfur - 4 M HCl extraction, ICPAES Sulfur - 4 M HCl extraction, ion chromatography	% %	ASLSH SCM ASLSH SCM
20G1	SULFUR	Peroxide residual acid soluble sulfur	%	ASLSH SCM
20H1 20I1	ANC ANC	Acid neutralising capacity - acid reacted and back titration Acid neutralising capacity - from SPOCAS	% %	ASLSH SCM ASLSH SCM
20J1_RQNC	ASS_HAZARD	Field approximation of ASS hazard	mol/m3	ASLSH SCM
20J1_TAA 20J1_TSA	ASS_HAZARD ASS_HAZARD	Field approximation of ASS hazard Field approximation of ASS hazard	mol/m3 mol/m3	ASLSH SCM ASLSH SCM
20K1 2A1	ASS_PRESENCE MOISTURE_CONTENT	Quick field approximation of ASS presence and associated lime reqirement for drain spoil Air-dry moisture content	%	ASLSH SCM
2B1	MOISTURE_CONTENT	As received moisture content	%	ASLSH Vol 3 ASLSH Vol 3
2C1 2D1	MOISTURE_CONTENT MOISTURE_CONTENT	Moisture content - 10 mm tension Moisture content - 1approximate saturation paste	% %	ASLSH Vol 3 ASLSH Vol 3
3_C_B	EC	Electrical conductivity or soluble salts - Total soluble salts %	%	AGLOR VOI 3
3_NR 3A_C_2.5	EC EC	Electrical conductivity or soluble salts - Not recorded EC of 1:2.5 soil/water extract	dS/m	
3A_TSS	EC	Electrical conductivity or soluble salts - Total soluble salts %	%	
3A1 3B1	EC SOLUBLE_SALT	EC of 1:5 soil/water extract Estimation of soluble salt concentration	dS/m %	ASLSH Vol 3 ASLSH SCM
3C1	IONIC_STRENGTH	Estimation of soil ionic strength	nM	ASLSH SCM
3D1 4_NR	REDOX_POTENTIAL PH	Redox potential (Eh; field) pH of soil - Not recorded	mV	ASLSH SCM
· 12.515		F 1 101 1000 1000		

4A_C_1	PH	pH of soil - pH of 1:1 soil/water suspension		(method 4A2 SCM)
4A_C_2.5	PH	pH of soil - pH of 1:2.5 soil/water suspension		(method 4A3
4A1	PH	pH of 1:5 soil/water suspension		SCM) ASLSH Vol 3
4A2	PH	pH of 1:1 soil/water suspension		ASLSH SCM
4A3	PH	pH of 1:2.5 soil/water suspension		ASLSH SCM
4B_C_2.5	PH	pH of soil - pH of 1:2.5 Soil/0.1M CaCl2 suspension pH of 1:5 soil/0.01M calcium chloride extract - direct (without stirring during		
4B1	PH	measurement)		ASLSH Vol 3
4B2	PH	pH of 1:5 soil/0.01M calcium chloride extract - following Method 4A1 (without stirring		ASLSH Vol 3
4B3	PH	during measurement) pH of 1:5 soil/0.01M calcium chloride extract - direct (with stirring during measurement)		ASLSH SCM
		pH of 1:5 soil/0.01M calcium chloride extract - direct (with stirring during the astrellerit)		
4B4	PH	measurement)		ASLSH SCM
4B5 4C_C_1	PH PH	pH of 1:5 soil/0.01M calcium chloride extract equivalent - MIR pH of 1:1 soil/1M potassium chloride suspension		ASLSH SCM
4C1	PH	pH of 1:5 soil/1M potassium chloride extract - direct (without stirring during		ACICH Val 2
401	FN	measurement)		ASLSH Vol 3
4C2	PH	pH of 1:5 soil/1M potassium chloride extract - following Method 4A1 (without stirring during measurement)		ASLSH Vol 3
4C3	PH	pH of 1:5 soil/1M potassium chloride extract - direct (with stirring during measurement)		ASLSH SCM
4C4	РН	pH of 1:5 soil/1M potassium chloride extract - following Method 4A1 (with stirring during measurement)		ASLSH SCM
4D1	РН	pH of sodium fluoride suspension		ASLSH Vol 3
4E1	PH	pH of hydrogen peroxide extract		ASLSH Vol 3
4F1 4G1	PH_CHANGE PH	pH change		ASLSH Vol 3
5 C B	CHLORIDE	Field determination of pH Water soluble Chloride - Method recorded as B	mg/kg	ASLSH SCM
5_NR	CHLORIDE	Water soluble Chloride - Cl(%) - Not recordede	%	
503.01	DENSITY DENSITY	Bulk density lintact small core	g/cm3	ASLSH Vol 5 ASLSH Vol 5
503.02 503.03	DENSITY	Bulk density Vertic properties, extruded small core Bulk density Intact clod	g/cm3 g/cm3	ASLSH Vol 5
503.04	DENSITY	Bulk density Field excavation and water replacement	g/cm3	ASLSH Vol 5
503.05 503.06	PSA DENSITY	Soil with coarse fragments: Volumetric coarse fragment content Soil with coarse fragments: Gross bulk density (fine earth and coarse fragments)	a/cm3	ASLSH Vol 5 ASLSH Vol 5
503.06	PSA	Soil with coarse fragments: Gross bulk density (line earth and coarse fragments) Soil with coarse fragments: Volume of porous coarse fragments	g/cm3	ASLSH Vol 5
503.08	DENSITY	Soil with coarse fragments: Bulk density of fine earth	g/cm3	ASLSH Vol 5
503.09 504.01	POROSITY MOISTURE RELEASE	Soil with coarse fragments: Total pore space Soil water characteristic Suction plate or table		ASLSH Vol 5 ASLSH Vol 5
504.02	MOISTURE_RELEASE	Soil water characteristic Suction plate of table		ASLSH Vol 5
504.03	MOISTURE_RELEASE	Soil water characteristic Filter paper		ASLSH Vol 5
505.01 507.01	WATER_REPELLENCE HYDRAULIC_COND	Water repellence Field saturated hydraulic conductivity Twin ring		ASLSH Vol 5 ASLSH Vol 5
507.02	HYDRAULIC_COND	Field saturated hydraulic conductivity Single ring		ACECIT VOI O
508.01	HYDRAULIC_COND	Field unsaturated hydraulic conductivity Tension infiltrometer		ASLSH Vol 5
509.01 510.01	HYDRAULIC_COND HYDRAULIC_COND	Field saturated hydraulic conductivity Well permeameter Laboratory saturated hydraulic conductivity Constant potential, large cores		ASLSH Vol 5 ASLSH Vol 5
510.02		Laboratory saturated hydraulic conductivity Constant potential, large cores, very		
510.02	HYDRAULIC_COND	permeable soil		ASLSH Vol 5
510.03	HYDRAULIC_COND	Laboratory saturated hydraulic conductivity Constant potential, large cores, very impermeable soil		ASLSH Vol 5
510.04	HYDRAULIC_COND	Laboratory unsaturated hydraulic conductivity Constant potential, large cores		ASLSH Vol 5
510.05	HYDRAULIC_COND	Laboratory unsaturated hydraulic conductivity Constant potential, small cores		ASLSH Vol 5
513.01 514.01	DISPERSION DISPERSION	Emerson Dispersion Test Clay dispersion		ASLSH Vol 5 ASLSH Vol 5
514.02	DISPERSION	Simplified clay dispersion		ASLSH Vol 5
514.03	DISPERSION	Dispersive potential		ASLSH Vol 5
514.04 515.01	DISPERSION DISPERSION	Mechanical dispersive potential Dry aggregate distribution		ASLSH Vol 5 ASLSH Vol 5
516.01	PSA	Non-dispersed particle size analysis		ASLSH Vol 5
517.01	PSA	Particle size analysis No pretreatments		ASLSH Vol 5
517.02 517.03	PSA PSA	Particle size analysis Organic matter removed Particle size analysis Soluble salts removed		ASLSH Vol 5 ASLSH Vol 5
517.04	PSA	Particle size analysis Organic matter and soluble salts removed		ASLSH Vol 5
517.05	PSA	Particle size analysis Fe/Al oxides removed		ASLSH Vol 5 ASLSH Vol 5
517.06 517.07	PSA PSA	Particle size analysis Fe/Al and organic matter removed Particle size analysis Fe/Al and soluble salts removed		ASLSH Vol 5
517.08	PSA	Particle size analysis Fe/Al, organic matter and soluble salts removed		ASLSH Vol 5
517.09 517.10	PSA PSA	Particle size analysis Carbonate removed Particle size analysis Carbonate and organic matter removed		ASLSH Vol 5 ASLSH Vol 5
517.10	PSA	Particle size analysis Carbonate and organic matter removed Particle size analysis Carbonate and soluble salts removed		ASLSH Vol 5
517.12	PSA	Particle size analysis Carbonate and Fe/Al removed		ASLSH Vol 5
517.13 517.14	PSA PSA	Particle size analysis Carbonate, organic matter and soluble salts removed Particle size analysis Carbonate, organic matter and Fe/Al removed		ASLSH Vol 5 ASLSH Vol 5
517.15	PSA	Particle size analysis Carbonate, soluble salts and Fe/Al removed		ASLSH Vol 5
517.16	PSA CURINICACE	Particle size analysis Carbonate, organic matter, soluble salts and Fe/Al removed		ASLSH Vol 5
518.01 518.02	LINEAR_SHRINKAGE LINEAR SHRINKAGE	Soil Shrinkage Linear shrinkage Soil Shrinkage Coefficient of linear shrinkage		ASLSH Vol 5 ASLSH Vol 5
518.03	LINEAR_SHRINKAGE	Soil Shrinkage Modified linear shrinkage		ASLSH Vol 5
519.01	LIQUID_LIMIT	Liquid limit Casagrande		ASLSH Vol 5
519.02 519.03	LIQUID_LIMIT PLASTIC_LIMIT	Liquid limit Drop cone Plastic limit (AS 1289.3.2.1)		ASLSH Vol 5 ASLSH Vol 5
520.01	SOIL_STRENGTH	Soil strength characteristic		ASLSH Vol 5
521.01 54.0.25	MOD_RUPTURE CHLORIDE	Modulus of rupture	me-II	ASLSH Vol 5
5A_C_2.5 5A1	CHLORIDE	Chloride - 1:2.5 soil/water extract Chloride - 1:5 soil/water extract, potentiometric titration	mg/kg mg/kg	ASLSH Vol 3
5A2	CHLORIDE	Chloride - 1:5 soil/water extract, automated colour	mg/kg	ASLSH Vol 3
5A2b	CHLORIDE	Chloride - 1:5 soil/water extract, FIA Chloride - 4:5 cell/water extract ion chromatography (chemical cumpression of cluent	mg/kg	ASLSH SCM
5A3a	CHLORIDE	Chloride - 1:5 soil/water extract, ion chromatography (chemical suppression of eluent conductivity)	mg/kg	ASLSH SCM
5A3b	CHLORIDE	Chloride - 1:5 soil/water extract, ion chromatography (single column with electronic	mg/kg	ASLSH SCM
5A36 5A4	CHLORIDE	suppression of eluent conductivity) Chloride - 1:5 soil/water extract, ICPAES	mg/kg	ASLSH SCM
6_DC	ORGANIC_CARBON	Organic carbon (%) - Dry combustion	mg/kg %	ACEST SCIVI
6A1	ORGANIC_CARBON	Organic carbon - Walkley and Black	%	ASLSH Vol 3
6A1_UC 6B1	ORGANIC_CARBON ORGANIC CARBON	Organic carbon (%) - Uncorrected Walkley and Black method Total organic carbon - Heanes wet oxidation	% %	ASLSH Vol 3
6B2	ORGANIC_CARBON	Total organic carbon - Heanes wet oxidation Total organic carbon - high frequency induction furnace, volumetric	% %	ASLSH Vol 3
6B2a	ORGANIC_CARBON	Total organic carbon - high frequency induction furnace, volumetric (no soil	%	ASLSH SCM
		pretreatment) Total organic carbon - high frequency induction furnace infared/thermal (no soil		
6B2b	ORGANIC_CARBON	Total organic carbon - high frequency induction furnace, infared/thermal (no soil pretreatment)	%	ASLSH SCM
6B3	ORGANIC_CARBON	Total organic carbon - high frequency induction furnace, infrared	%	ASLSH Vol 3
6B4 6B4a	ORGANIC_CARBON ORGANIC_CARBON	Total organic carbon - infared diffuse reflectance spectroscopy Total organic carbon - NIR reflectance spectroscopy	% %	ASLSH SCM ASLSH SCM
6B4b	ORGANIC_CARBON	Total organic carbon - NIR reflectance spectroscopy Total organic carbon - MIR reflectance spectroscopy	% %	ASLSH SCM
6C1	ORGANIC_CARBON	Particulate organic C (POC)	%	ASLSH SCM
6D1 6E1	ORGANIC_CARBON ORGANIC_CARBON	Pyrophosphate-extractable carbon Potassium permanganate oxidisable C (PPOC)	% %	ASLSH SCM ASLSH SCM
VL I	SINOAMO_OANDON	. Saccion permanganate extensible o (FFOO)	/0	AGEGIT GOW

6F1	CARBON	Charcoal-C	%	ASLSH SCM
6G1	CARBON	Total organic matter, organic C and carbonate by loss-on-ignition	%	ASLSH SCM
6Z 7_C_B	ORGANIC_CARBON NITROGEN	Organic carbon (%) - Not recorded Total Nitrogen - method description not recorded	% %	
7_NR	NITROGEN	Total nitrogen (%) - Not recorded	%	
7A1 7A2	NITROGEN NITROGEN	Total nitrogen - semimicro Kjeldahl, steam distillation Total nitrogen - semimicro Kjeldahl , automated colour	% %	ASLSH Vol 3 ASLSH Vol 3
7A2a	NITROGEN	Total nitrogen - semimicro Kjeldahl , automated colour, continuous segmented flow	%	ASLSH SCM
7A2b 7A3	NITROGEN NITROGEN	Total nitrogen - semimicro Kjeldahl , automated colour, FIA Total nitrogen (where nitrate > 20 mg N kg-1) - steam distillation	% %	ASLSH SCM ASLSH Vol 3
7A4	NITROGEN	Total nitrogen (where nitrate > 20 mg N kg-1) - automated colour	%	ASLSH Vol 3
7A5 7A6	NITROGEN NITROGEN	Total nitrogen - high frequency induction furnace, thermal conductivity	% %	ASLSH Vol 3 ASLSH SCM
7A6 7A6a	NITROGEN	Total nitrogen - infared diffuse reflectance spectroscopy Total nitrogen - NIR reflectance spectroscopy	%	ASLSH SCM
7A6b	NITROGEN	Total nitrogen - MIR reflectance spectroscopy Water soluble nitrate - automated colour	%	ASLSH SCM
7B1 7B1a	NITRATE NITRATE	Water soluble nitrate - automated colour, continuous segmented flow	mg/kg mg/kg	ASLSH Vol 3 ASLSH SCM
7B1b	NITRATE	Water soluble nitrate - automated colour, FIA	mg/kg	ASLSH SCM
7B2 7C_CASO4	NITRATE NITRATE	Water soluble nitrate - ion chromatography CaSO4 extractable nitrate. O'Brien and Fiore (1962)	mg/kg mg/kg	ASLSH SCM
7C1	MIN_NITROGEN AMMONIUM-N	Mineral nitrogen with 2M KCI - steam distillation	mg/kg	ASLSH Vol 3
7C1a 7C1b	(NITRATE+NITRITE)-N	Ammonium-N, in presence or absence of nitrite (Nitrate+nitrite)-N, in presence of nitrite	mg/kg mg/kg	ASLSH Vol 3 ASLSH Vol 3
7C1c 7C1d	(AMMONIUM+NO3+NO2)-N	(Ammonium+nitrate+nitrite)-N, in presence of nitrite	mg/kg	ASLSH Vol 3 ASLSH Vol 3
7C1a 7C1e	(AMMONIUM+NITRATE)-N NITRATE-N	(Ammonium+nitrate)-N, in presence of nitrite Nitrate-N, in presence of nitrite	mg/kg mg/kg	ASLSH Vol 3
7C1f	NITRATE-N	Nitrate-N, in absence of nitrite	mg/kg	ASLSH Vol 3
7C1g 7C1h	(AMMONIUM+NITRATE)-N NITRITE-N	(Ammonium+nitrate)-N, in absence of nitrite Nitrite-N	mg/kg mg/kg	ASLSH Vol 3 ASLSH Vol 3
7C2	MIN_NITROGEN	Mineral nitrogen with 2M KCI - automated colour	mg/kg	ASLSH Vol 3
7C2a 7C2b	MIN_NITROGEN MIN_NITROGEN	Mineral nitrogen with 2M KCI - automated colour, continuous segmented flow Mineral nitrogen with 2M KCI - automated colour, FIA	mg/kg mg/kg	ASLSH SCM ASLSH SCM
7D1a	MIN_NITROGEN	Potentially mineralisable N, hot KCI extraction - automated colour, continuous segmented	mg/kg	ASLSH SCM
7D1b	MIN NITROGEN	flow Potentially mineralisable N, hot KCl extraction - automated colour, FIA	mg/kg	ASLSH SCM
7D1c	MIN_NITROGEN	Potentially mineralisable N, hot KCI extraction - NIR diffuse reflectance spectroscopy	mg/kg	ASLSH SCM
7D2a	MIN_NITROGEN	Potentially mineralisable N, anerobic incubation - automated colour, continuous segmented flow	mg/kg	ASLSH SCM
7D2b	MIN_NITROGEN	Potentially mineralisable N, anerobic incubation - automated colour, FIA	mg/kg	ASLSH SCM
8A1 8B1	C/N_RATIO C/N_RATIO	Total organic carbon/total nitrogen ratio Organic carbon - Walkley and Black/total nitrogen ratio		ASLSH Vol 3 ASLSH SCM
9_NR	PHOSPHORUS	Available P (mg/kg) - Not recorded	%	24
9A_HCL 9A_HCLP2O5	PHOSPHORUS PHOSPHORUS	Total element - P(%) - By boiling HCI Total element - P(%) - By boiling HCI(P2O5)	% %	
9A_HF+	PHOSPHORUS	Total element - P(%) - HF/HCl04 Digest	%	
9A_NR 9A1	PHOSPHORUS PHOSPHORUS	Total element - P(%) - Not recorded Total phosphorus - P(%) -X-ray fluorescence	% %	ASLSH Vol 3
9A1_P2O5	PHOSPHORUS	Total element - P(%) - X-ray fluoresence (P2O5)	%	
9A2 9A3	PHOSPHORUS PHOSPHORUS	Total phosphorus - P(%) - sodium carbonate fusion Total Phosphorus (ppm) - semimicro kjeldahl, automated colour	% mg/kg	ASLSH Vol 3 ASLSH Vol 3
9A3a	PHOSPHORUS	Total Phosphorus (ppm) - semimicro kjeldahl, automated colour, FIA/continuous	mg/kg	ASLSH SCM
9B 9C	PHOSPHORUS	segmented flow Available P (mg/kg) - Bicarbonate P - 0.5M NaHCO3 extractable	mg/kg	
9B_9C 9B1	PHOSPHORUS	Bicarbonate-extractable phosphorus (Cowell P) - manual colour	mg/kg	ASLSH Vol 3
9B2	PHOSPHORUS	Bicarbonate-extractable phosphorus (Cowell P) - automated colour, FIA/continuous segmented flow	mg/kg	ASLSH Vol 3
9B2_COL	PHOSPHORUS	Bicarbonate-extractable phosphorus - automated colour. Based on Colwell (1965).	mg/kg	
_		Method no longer recommended Buffering Capacity by 0.01M CaCl2, solution of 0 ppm phosphorus added (CSIRO Div of		
9BUFF_0	PHOSPHORUS	Soil Tech Mem 63/1972)		
9BUFF_0.5	PHOSPHORUS	Buffering Capacity by 0.01M CaCl2, solution of 0.5 ppm phosphorus added (CSIRO Div of Soil Tech Mem 63/1972)		
9BUFF_1	PHOSPHORUS	Buffering Capacity by 0.01M CaCl2, solution of 1 ppm phosphorus added (CSIRO Div of		
		Soil Tech Mem 63/1972) Buffering Capacity by 0.01M CaCl2, solution of 2 ppm phosphorus added (CSIRO Div of		
9BUFF_2	PHOSPHORUS	Soil Tech Mem 63/1972)		
9BUFF_4	PHOSPHORUS	Buffering Capacity by 0.01M CaCl2, solution of 4 ppm phosphorus added (CSIRO Div of Soil Tech Mem 63/1972)		
9C1	PHOSPHORUS	Olsen-extractable phosphorus - manual colour	mg/kg	ASLSH Vol 3
9C2 9C2a	PHOSPHORUS PHOSPHORUS	Olsen-extractable phosphorus - automated colour Olsen-extractable phosphorus - automated colour, continuous segmented flow	mg/kg mg/kg	ASLSH Vol 3 ASLSH SCM
9C2b	PHOSPHORUS	Olsen-extractable phosphorus - automated colour, FIA	mg/kg	ASLSH SCM
9D1 9D2	PHOSPHORUS PHOSPHORUS	Lactate-extractable phosphorus - manual colour Lactate-extractable phosphorus - automated colour	mg/kg mg/kg	ASLSH Vol 3
9E	PHOSPHORUS	Available P (mg/kg) - Bray P	mg/kg	ASLSH Vol 3
9E1	PHOSPHORUS	Fluoride-extractable phosphorus (Bray 1-P) - manual colour Fluoride-extractable phosphorus (Bray 1-P) - automated colour, FIA/continuous	mg/kg	ASLSH Vol 3
9E2	PHOSPHORUS	segmented flow	mg/kg	ASLSH Vol 3
9F1	PHOSPHORUS	Calcium chloride-extractable phosphorus - manual colour Calcium chloride-extractable phosphorus - automated colour, FIA/continuous segmented	ug/kg	ASLSH Vol 3
9F2	PHOSPHORUS	flow	ug/kg	ASLSH Vol 3
9G_BSES	PHOSPHORUS	Available P (mg/kg) - Acid P - 0.005M H2SO4 (BSES)	mg/kg	(method 9G1 Vol 3)
9G1	PHOSPHORUS	Acid-extractable phosphorus - manual colour	mg/kg	ASLSH Vol 3
9G2 9H_NR	PHOSPHORUS PHOSPHORUS	Acid-extractable phosphorus - automated colour, FIA/continuous segmented flow Posphate retention % - Not recorded	mg/kg %	ASLSH Vol 3
9H1	ANION_STORAGE	Anion storage capacity	%	ASLSH SCM
9I1 9I2a	PHOSPHATE_SORPTION P_BUFFER_INDEX	Phosphate sorption index P buffer index - PBI (+CoIP) - Murphy and Riley		ASLSH Vol 3 ASLSH SCM
9I2b	P_BUFFER_INDEX	P buffer index - PBI (+CoIP) - ICPAES		ASLSH SCM
9I2c 9I3a	P_BUFFER_INDEX P_BUFFER_INDEX	P buffer index - PBI (+CoIP) - Vanadate P buffer index - PBI (+OlsenP) - Murphy and Riley		ASLSH SCM ASLSH SCM
9I3b	P_BUFFER_INDEX	P buffer index - PBI (+OlsenP) - ICPAES		ASLSH SCM
913c 914a	P_BUFFER_INDEX P_BUFFER_INDEX	P buffer index - PBI (+OlsenP) - Vanadate P buffer index - PBI (unadj) - Murphy and Riley		ASLSH SCM ASLSH SCM
9I4b	P_BUFFER_INDEX	P buffer index - PBI (unadj) - ICPAES		ASLSH SCM
9I4c 9J1	P_BUFFER_INDEX PHOSPHATE_SORPTION	P buffer index - PBI (unadj) - Vanadate Phosphate sorption curve - manual colour		ASLSH SCM ASLSH Vol 3
9J2	PHOSPHATE_SORPTION	Phosphate sorption curve - automated colour, FIA/continuous segmented flow		ASLSH Vol 3
9K1a 9K1b	PHOSPHORUS_RATIO PHOSPHORUS_RATIO	Mehlich 3-P saturation ratio - colorimetric estimate of P Mehlich 3-P saturation ratio - ICPAES estimate of P		ASLSH SCM
9K1b 9K2	PHOSPHORUS_RATIO	Colwell-P/PBI(+CoIP) ratio		ASLSH SCM ASLSH SCM
9M	PHOSPHORUS	Available P (mg/kg) - Mehlich P	mg/kg	
9R1 M1a	PHOSPHORUS SAR	Resin extractable phosphorus - automated colour (CSIRO Div of Soil Tech Mem 63/1972) Sodium absorption ratio (SAR)		
MIN_EC	CLAY_MINERAL	Exchange Capacity - Minerology		
MIN_NR_K2O P10_CF_C	CLAY_MINERAL PSA	Kaolin minerals Clay (%) - Coventry and Fett pipette method	%	
P10_CF_CS	PSA	Coarse sand (%) - Coventry and Fett pipette method	%	
P10_CF_FS	PSA	Fine sand (%) - Coventry and Fett pipette method	%	

P10_CF_Z P10_GRAV	PSA PSA	Silt (%) - Coventry and Fett pipette method Gravel (%)	% %
P10 HYD C	PSA	Clay (%) - Hydrometer Method	%
P10_HYD_CS	PSA	Coarse Sand (%) - Hydrometer Method	%
P10_HYD_FS	PSA	Fine Sand (%) - Hydrometer Method	%
P10_HYD_Z P10_NR_C	PSA PSA	Silt (%) - Hydrometer Method Clay (%) - Not recorded	% %
P10_NR_CS	PSA	Coarse sand (%) - Not recorded	%
P10_NR_FS	PSA	Fine sand (%) - Not recorded	%
P10_NR_S P10_NR_Z	PSA PSA	Sand (%) - Not recorded Silt (%) - Not recorded	% %
P10_PB_C	PSA	Clay (%) - Plummet balance	%
P10_PB_CS	PSA	Coarse sand (%) - Plummet balance	%
P10_PB_FS P10_PB_Z	PSA PSA	Fine sand (%) - Plummet balance Silt (%) - Plummet balance	% %
P10_PB1_C	PSA	Clay (%) - Plummet balance (Acid digestion pretreatment)	%
P10_PB1_CS	PSA	Coarse sand (%) - Plummet balance (Acid digestion pretreatment)	%
P10_PB1_FS P10_PB1_Z	PSA PSA	Fine sand (%) - Plummet balance (Acid digestion pretreatment) Silt (%) - Plummet balance (Acid digestion pretreatment)	% %
P10_S_0.20	PSA	0.20 micron (cumulative %) - Sedigraph	%
P10_S_0.48	PSA	0.48 micron (cumulative %) - Sedigraph	%
P10_S_1 P10_S_1000	PSA PSA	1 micron (cumulative %) - Sedigraph 1000 micron (cumulative %) - Sedigraph	% %
P10_S_125	PSA	125 micron (cumulative %) - Sedigraph	%
P10_S_15.6	PSA	15.6 micron (cumulative %) - Sedigraph	%
P10_S_2 P10_S_20	PSA PSA	2 micron (cumulative %) - Sedigraph 20 micron (cumulative %) - Sedigraph	% %
P10_S_2000	PSA	2000 micron (cumulative %) - Sedigraph	%
P10_S_250	PSA	250 micron (cumlative %) - Sedigraph	%
P10_S_3.9	PSA PSA	3.9 micron (cumulative %) - Sedigraph	% %
P10_S_31.2 P10_S_500	PSA PSA	31.2 micron (cumulative %) - Sedigraph 500 micron (cumulative %) - Sedigraph	% %
P10_S_53	PSA	53 micron (cumulative %) - Sedigraph	%
P10_S_63	PSA PSA	63 micron (cumulative %) - Sedigraph	% %
P10_S_7.8 P10A1 C	PSA PSA	7.8 micron (cumulative %) - Sedigraph Clay (%) - Pipette	% %
P10A1_CS	PSA	Coarse sand (%) - Pipette	%
P10A1_FS	PSA	Fine sand (%) - Pipette	%
P10A1_Z P3A_NR	PSA DENSITY	Silt (%) - Pipette Bulk density - Not recorded	%
P3A_NR P3A1	DENSITY	Bulk density - g/cm3	g/cm3
P3A1_CLOD	DENSITY	Bulk density g/cm3 - Clods at 0.1 Bar moisture content (McIntyre & Stirk, 1954, Aust. J.	g/cm3
P3A2	POROSITY	Agric. Res. 5:291-6) Macro Porosity %	%
P3A2 P3A3	POROSITY	Total Porosity %	% %
P3A4	MOISTURE_RELEASE	Particle Density g/cm3	g/cm3
P3B_GV_001 P3B_GV_003	MOISTURE_RELEASE MOISTURE_RELEASE	0.01 BAR Moisture g/g - Gravimetric using suction plate 0.03 BAR Moisture g/g - Gravimetric using suction plate	
P3B_GV_005	MOISTURE_RELEASE	0.05 BAR Moisture g/g - Gravimetric using suction plate 0.05 BAR Moisture g/g - Gravimetric using suction plate	
P3B_GV_01	MOISTURE_RELEASE	0.1 BAR Moisture g/g - Gravimetric using suction plate	
P3B_GV_03	MOISTURE_RELEASE	0.3 BAR Moisture g/g - Gravimetric using suction plate	
P3B_GV_05 P3B_GV_1	MOISTURE_RELEASE MOISTURE_RELEASE	BAR Moisture g/g - Gravimetric using suction plate BAR Moisture g/g - Gravimetric using pressure plate	
P3B_GV_15	MOISTURE_RELEASE	15 BAR Moisture g/g - Gravimetric using pressure plate	
P3B_GV_5	MOISTURE_RELEASE	5 BAR Moisture g/g - Gravimetric using pressure plate	
P3B_GV_SAT P3B_NR_001	MOISTURE_RELEASE MOISTURE_RELEASE	Saturated Moisture g/g - Gravimetric using suction plate 0.01 BAR Moisture % - Not recorded	%
P3B_NR_003	MOISTURE_RELEASE	0.03 BAR Moisture % - Not recorded	%
P3B_NR_005	MOISTURE_RELEASE	0.05 BAR Moisture % - Not recorded	%
P3B_NR_01 P3B_NR_03	MOISTURE_RELEASE MOISTURE_RELEASE	0.1 BAR Moisture % - Not recorded 0.3 BAR Moisture % - Not recorded	% %
P3B_NR_05	MOISTURE_RELEASE	0.5 BAR Moisture % - Not recorded	%
P3B_NR_1	MOISTURE_RELEASE	1 BAR Moisture % - Not recorded	%
P3B_NR_15 P3B_NR_5	MOISTURE_RELEASE MOISTURE_RELEASE	15 BAR Moisture % - Not recorded 5 BAR Moisture % - Not recorded	% %
P3B_NR_SAT	MOISTURE_RELEASE	Saturated Moisture % - Not recorded	%
P3B_VL_001	MOISTURE_RELEASE	0.01 BAR Moisture m3/m3 - Volumetric using suction plate	
P3B_VL_003	MOISTURE_RELEASE	0.03 BAR Moisture m3/m3 - Volumetric using suction plate	
P3B_VL_005 P3B_VL_01	MOISTURE_RELEASE MOISTURE_RELEASE	0.05 BAR Moisture m3/m3 - Volumetric using suction plate 0.1 BAR Moisture m3/m3 - Volumetric using suction plate	
P3B_VL_03	MOISTURE_RELEASE	0.3 BAR Moisture m3/m3 - Volumetric using suction plate	
P3B_VL_05	MOISTURE_RELEASE	0.5 BAR Moisture m3/m3 - Volumetric using suction plate	
P3B_VL_1 P3B_VL_15	MOISTURE_RELEASE MOISTURE_RELEASE	1 BAR Moisture m3/m3 - Volumetric using pressure plate 15 BAR Moisture m3/m3 - Volumetric using pressure plate	
P3B_VL_5	MOISTURE_RELEASE	5 BAR Moisture m3/m3 - Volumetric using pressure plate	
P3B_VL_SAT	MOISTURE_RELEASE	Saturated Moisture m3/m3 - Volumetric using suction plate	
P3B1GV_15 P3B1VL_1	MOISTURE_RELEASE MOISTURE_RELEASE	15 BAR Moisture g/g - Gravimetric of ground sample (<2mm) using pressure plate 1 BAR Moisture m3/m3 - Volumetric using <2mm sample on pressure plate	
P3B1VL_15	MOISTURE_RELEASE	15 BAR Moisture m3/m3 - Volumetric using <2mm sample on pressure plate	
P3B2GV_1	MOISTURE_RELEASE	1 BAR Moisture m3/m3 - Volumetric using disturbed sample on pressure plate	
P3B2GV_15 P3B2GV_5	MOISTURE_RELEASE MOISTURE RELEASE	15 BAR Moisture m3/m3 - Volumetric using disturbed sample on pressure plate 5 BAR Moisture m3/m3 - Volumetric using disturbed sample on pressure plate	
P3B2VL_1	MOISTURE_RELEASE	1 BAR Moisture m3/m3 - Volumetric using disturbed sample on pressure plate	
P3B2VL_15	MOISTURE_RELEASE	15 BAR Moisture m3/m3 - Volumetric using disturbed sample on pressure plate	
P3B2VL_5	MOISTURE_RELEASE	5 BAR Moisture m3/m3 - Volumetric using disturbed sample on pressure plate 0.01 BAR Moisture m3/m3 - Volumetric using undisturbed 76mm diameter core on suction	
P3B3VLa001	MOISTURE_RELEASE	plate	
P3B3VLa005	MOISTURE_RELEASE	0.05 BAR Moisture m3/m3 - Volumetric using undisturbed 76mm diameter core on suction	
	_	plate 0.1 BAR Moisture m3/m3 - Volumetric using undisturbed 76mm diameter core on suction	
P3B3VLa01	MOISTURE_RELEASE	plate	
P3B3VLa03	MOISTURE_RELEASE	0.3 BAR Moisture m3/m3 - Volumetric using undisturbed 76mm diameter core on suction	
	_	plate 0.6 BAR Moisture m3/m3 - Volumetric using undisturbed 76mm diameter core on suction	
P3B3VLa06	MOISTURE_RELEASE	plate	
P3B3VLaSAT	MOISTURE_RELEASE	Saturated Moisture m3/m3 - Volumetric using undisturbed 76mm diameter core on	
		suction plate 0.01 BAR Moisture m3/m3 - Volumetric using undisturbed 73mm diameter and 75mm	
P3B3VLb001	MOISTURE_RELEASE	height core on suction plate taken from center of large core (CSIRO Div of Soil, DR 125,	
		McKenzie and Jacquier, 1996)	
P3B3VLb003	MOISTURE PELEASE	0.03 BAR Moisture m3/m3 - Volumetric using undisturbed 73mm diameter and 75mm height core on suction plate taken from center of large core (CSIRO Div of Soil, DR 125,	
F3D3VLDUU3	MOISTURE_RELEASE	McKenzie and Jacquier, 1996)	
1		0.05 BAR Moisture m3/m3 - Volumetric using undisturbed 73mm diameter and 75mm	
P3B3VLb005	MOISTURE_RELEASE	height core on suction plate taken from center of large core (CSIRO Div of Soil, DR 125, McKenzie and Jacquier, 1996)	
		0.1 BAR Moisture m3/m3 - Volumetric using undisturbed 73mm diameter and 75mm	
P3B3VLb01	MOISTURE_RELEASE	height core on suction plate taken from center of large core (CSIRO Div of Soil, DR 125,	
	MOISTURE_RELEASE	McKenzie and Jacquier, 1996) 0.33 BAR Moisture m3/m3 - Volumetric using undisturbed 73mm diameter and 75mm	
P3B3VLb03			

POST-LOSS MOSTURE_PRELABE SARM Multare make the control of large one CRISTIC DO of Bod, DR 155,				
Description MolSTURE_RELEASE				
Notifyer, RELEASE P383/1250 MOSTURE, RELEASE P38	B0B0\#\.05		0.5 BAR Moisture m3/m3 - Volumetric using undisturbed 73mm diameter and 75mm	
POST-LOS MOSTURE_RELASE MOST	P3B3VLb05	MOISTURE_RELEASE		
MOSTURE_PELBASE PEDIOLEON PELBASE PEDIOLEON MOSTURE_PELBASE PEDIOLEON PELBASE PEDIOLEON MOSTURE_PELBASE PEDIOLEON PELBASE PEDIOLEON PELBASE PEDIOLEON PELBASE PEDIOLEON PELBASE PELBASE PEDIOLEON PELBASE PELBASE PEDIOLEON PELBASE PELBAS	D2D2)// b06	MOJETURE RELEASE	0.66 BAR Moisture m3/m3 - Volumetric using undisturbed 73mm diameter and 75mm	
FIGSULATION MOSTURE_RELASE PRISTANCIAN MOST	P3B3VLDU6	MOISTURE_RELEASE		
MOSTURE_RELAGE PSSYVL050 MOSTURE_RELAGE SSSYVL050 MOSTURE_RELAGE SSSYVL051 MOSTURE_RELAGE SSSYVL050 MOSTURE_RELAGE SSSYV	D3B3\/I bCAT	MOISTLIDE DELEASE		
place POSYLCOS MOSTURE_PELASE	I SBSVEBSAT	MOISTORE_RELEASE	McKenzie and Jacquier, 1996)	
Despite Desp	P3B3VLc001	MOISTURE_RELEASE		
ABSTANCE MOISTURE, PELEASE 20.0 BAR Moisture milms - Volumetric using undisturbed films dismeter one on suction 1.5 BAR Moisture milms - Volumetric using undisturbed films dismeter core on suction 2.5 BAR Moisture milms - Volumetric using undisturbed films dismeter core on suction 2.5 BAR Moisture milms - Volumetric using undisturbed films dismeter core on suction 2.5 BAR Moisture milms - Volumetric using undisturbed films dismeter and 15mm height 2.5 BAR Moisture milms - Volumetric using undisturbed films dismeter and 15mm height 2.5 BAR Moisture milms - Volumetric using undisturbed films dismeter and 15mm height 2.5 BAR Moisture milms - Volumetric using undisturbed films dismeter and 15mm height 2.5 BAR Moisture milms - Volumetric using undisturbed films dismeter and 15mm height 2.5 BAR Moisture milms - Volumetric using undisturbed films dismeter and 15mm height 2.5 BAR Moisture milms - Volumetric using undisturbed films dismeter and 15mm height 2.5 BAR Moisture milms - Volumetric using undisturbed films dismeter and 15mm height 2.5 BAR Moisture milms - Volumetric using undisturbed films dismeter and 15mm height 2.5 BAR Moisture milms - Volumetric using undisturbed films dismeter and 15mm height 2.5 BAR Moisture milms - Volumetric using undisturbed films dismeter and 34mm height 2.5 BAR Moisture milms - Volumetric using undisturbed films dismeter and 34mm height 2.5 BAR Moisture milms - Volumetric using undisturbed films dismeter and 34mm height 2.5 BAR Moisture milms - Volumetric using undisturbed films dismeter and 34mm height 2.5 BAR Moisture milms - Volumetric using undisturbed films dismeter and 34mm height 2.5 BAR Moisture milms - Volumetric using undisturbed films dismeter and 34mm height 2.5 BAR Moisture milms - Volumetric using undisturbed films dismeter and 34mm height 2.5 BAR Moisture milms - Volumetric using undisturbed films dismeter and 34mm height 2.5 BAR Moisture milms - Volumetric using undisturbed films dismeter and 34mm height 2.5 BAR Mois	P3B3VLc003	MOISTURE_RELEASE	0.03 BAR Moisture m3/m3 - Volumetric using undisturbed 98mm diameter core on suction	
P309VL03 MOSTURE_RELEASE SAR Moisture m3m3 - Volumetric using undisturbed Stimm diameter core on suction place P309VL03 MOSTURE_RELEASE SAR Moisture m3m3 - Volumetric using undisturbed Stimm diameter core on suction P309VL03 MOSTURE_RELEASE SAR Moisture m3m3 - Volumetric using undisturbed Stimm diameter core on suction P309VL03 MOSTURE_RELEASE SAR Moisture m3m3 - Volumetric using undisturbed Stimm diameter core on suction P309VL03 MOSTURE_RELEASE SAR Moisture m3m3 - Volumetric using undisturbed Stimm diameter and 15mm height P309VL03 MOSTURE_RELEASE SAR Moisture m3m3 - Volumetric using undisturbed Stimm diameter and 15mm height P309VL03 MOSTURE_RELEASE SAR Moisture m3m3 - Volumetric using undisturbed Stimm diameter and 15mm height P309VL03 MOSTURE_RELEASE SAR Moisture m3m3 - Volumetric using undisturbed Stimm diameter and 15mm height P309VL03 MOSTURE_RELEASE SAR Moisture m3m3 - Volumetric using undisturbed Stimm diameter and 15mm height P309VL03 MOSTURE_RELEASE SAR Moisture m3m3 - Volumetric using undisturbed Stimm diameter and 15mm height P309VL03 MOSTURE_RELEASE SAR Moisture m3m3 - Volumetric using undisturbed Stimm diameter and 35mm height P309VL03 MOSTURE_RELEASE SAR Moisture m3m3 - Volumetric using undisturbed Stimm diameter and 35mm height P309VL03 MOSTURE_RELEASE SAR Moisture m3m3 - Volumetric using undisturbed Stimm diameter and 35mm height P309VL03 MOSTURE_RELEASE SAR Moisture m3m3 - Volumetric using undisturbed Stimm diameter and 35mm height P309VL03 MOSTURE_RELEASE SAR Moisture m3m3 - Volumetric using undisturbed Stimm diameter and 35mm height P309VL03 MOSTURE_RELEASE SAR Moisture m3m3 - Volumetric using undisturbed Stimm diameter and 35mm height P309VL03 MOSTURE_RELEASE SAR Moisture m3m3 - Volumetric using undisturbed Stimm diameter and 35mm height P309VL03 MOSTURE_RELEASE SAR Moisture m3m3 - Volumetric using undisturbed Stimm diameter and 35mm height P309VL03 MOSTURE_RELEASE SAR Moisture m3m3 - Volumetric		_		
Passivition MoisTure, Peta-Des Passivition Passivi		_		
MOSTURE_PELANE PASSW.CS MOSTURE_PELANE Standard Mosture miles Mostur	P3B3VLc01	MOISTURE_RELEASE	plate	
PROSPULCAT MOISTURE_RELEASE Lab Rill between 2010-1. Volumetric using undisturbed 88mm diameter core on pressure plate	P3B3VLc03	MOISTURE_RELEASE		
Sastrated Most Ture, Release Sastrated Most Ture, Sastra	P3B3VLc06	MOISTURE_RELEASE		
POSSYLED	P3B3VLcSAT	MOISTURE RELEASE	Saturated Moisture m3/m3 - Volumetric using undisturbed 98mm diameter core on	
MOSTURE_RELEASE 15 ARK Mosture minutes 1				
MOSTURE_RELEASE 19 BAR Mostrum Annual Programment 19 BAR Mos	P3B3VLd06	MOISTURE_RELEASE	height core on pressure plate	
MOISTURE_RELEASE SARM Resizure minus / Volumetric using undisturbed 48mm diameter and 15mm height on the pressure piles Sarm Resizure minus / Volumetric using undisturbed 48mm diameter and 15mm height on the pressure piles Sarm Resizure minus / Volumetric using undisturbed 48mm diameter and 34mm height one on pressure piles Sarm Resizure minus / Volumetric using undisturbed 48mm diameter and 34mm height core on suction piles Sarm Resizure minus / Volumetric using undisturbed 48mm diameter and 34mm height core on suction piles Sarm Resizure minus / Volumetric using undisturbed 48mm diameter and 34mm height core on suction piles Sarm Resizure minus / Volumetric using undisturbed 48mm diameter and 34mm height core on pressure piles Sarm Resizure minus / Volumetric using undisturbed 48mm diameter and 34mm height core on pressure piles Sarm Resizure minus / Volumetric using undisturbed 48mm diameter and 34mm height core on pressure piles Sarm Resizure minus / Volumetric using undisturbed 48mm diameter and 34mm height core on pressure piles Sarm Resizure minus / Volumetric using undisturbed 48mm diameter and 34mm height core on pressure piles Sarm Resizure minus / Volumetric using undisturbed 48mm diameter and 34mm height core on pressure piles Sarm Resizure minus / Volumetric using undisturbed 48mm diameter and 34mm height core on pressure piles Volumetric using undisturbed 48mm diameter and 34mm height core on pressure piles Volumetric using undisturbed 48mm diameter and 34mm height core on pressure piles Volumetric using undisturbed 48mm diameter and 34mm height core on pressure piles Volumetric using undisturbed 48mm diameter and 34mm height core on pressure piles Volumetric using undisturbed 48mm diameter and 34mm height core on pressure piles Volumetric using undisturbed 48mm diameter and 34mm height core on pressure piles Volumetric using undisturbed 48mm diameter and 34mm height core on pressure piles Volumetric using undisturbed 48mm diameter and 34mm height core	P3B3VLd1	MOISTURE_RELEASE		
SARA MoiSTURE_RELEASE SARA MoiSture mând - Volumetric using undisturbed 48mm diameter and 15mm height core on pressure plate Core on pressur	P3B3VLd15	MOISTURE_RELEASE		
P383VL60 MOSTURE_RELEASE OAR O	P3B3VLd3	MOISTURE RELEASE	3 BAR Moisture m3/m3 - Volumetric using undisturbed 48mm diameter and 15mm height	
MOSTURE_RELEASE 1983VL601 MOSTURE_RELEASE 1983VL603 MOSTURE_RELEASE 1983VL603 MOSTURE_RELEASE 1983VL604 MOSTURE_RELEASE 1983VL605 MO				
MOISTURE, RELEASE P383V.e03 MOISTURE, RELEASE AS Reliciture m3/m3 - Volumetric using undisturbed 60mm diameter and 34mm helpht core on surction plate helph core on surction plate or on surction plate or on surction plate helph core on surction plate helph core on pressure plate helph core on pressure plate or o	P3B3VL05	WOISTURE_RELEASE	core on pressure plate	
Page	P3B3VLe004	MOISTURE_RELEASE	height core on suction plate	
P385VLe03 MOISTURE_RELEASE height core on suction platemented some diameter and 34mm height core on suction platemented using undisturbed 60mm diameter and 34mm height core on suction platemented using undisturbed 60mm diameter and 34mm height core on pressure plate	P3B3VLe01	MOISTURE_RELEASE		
P383VLe5 MOISTURE_RELEASE helpit core on pressure plate core on pres	P3B3VLe03	MOISTURE RELEASE	0.3 BAR Moisture m3/m3 - Volumetric using undisturbed 60mm diameter and 34mm	
NotSTURE_RELEASE **BAR** Moisture m3/m3 - Volumetric using undisturbed 60mm diameter and 34mm height **P839142** MOISTURE_RELEASE **CRAR** Moisture m3/m3 - Volumetric using undisturbed 60mm diameter and 34mm height **P839407** MOISTURE_RELEASE **CRAR** Moisture m3/m3 - Volumetric using undisturbed 60mm diameter and 34mm height **P839407** MOISTURE_RELEASE **CRAR** Moisture m3/m3 - Volumetric using undisturbed 60mm diameter and 34mm height **P839407** MOISTURE_RELEASE **CRAR** Moisture m3/m3 - Volumetric using undisturbed 60mm diameter and 34mm height **P839407** MOISTURE_RELEASE **CRAR** Moisture m3/m3 - Volumetric using undisturbed 60mm diameter and 34mm height **MOISTURE_RELEASE **CRAR** MOISTURE_RELEASE **D8408** MOISTURE_RELEASE		_	0.6 BAR Moisture m3/m3 - Volumetric using undisturbed 60mm diameter and 34mm	
Org. op pressure plate P383VL2 MOISTURE, RELEASE BAR Moisture m3/m3 - Volumetric using undisturbed 60mm diameter and 34mm height P384V_00 MOISTURE, RELEASE CORE on pressure plate P384V_01 MOISTURE, RELEASE CORE on pressure plate O1 BAR Moisture m3/m3 - Volumetric of coil clock (500 Survey Staff, 1967) P384V_00 MOISTURE, RELEASE CORE on pressure plate O1 BAR Moisture m3/m3 - Volumetric of coil clock (500 Survey Staff, 1967) P384V_00 MOISTURE, RELEASE CORE on pressure plate O1 BAR Moisture m3/m3 - Volumetric of coil clock (500 Survey Staff, 1967) P384V_00 MOISTURE, RELEASE CORE on pressure plate O1 BAR Moisture m3/m3 - Volumetric of coil clock (500 Survey Staff, 1967) P4 10 Moisture, P4 MOISTURE, RELEASE CORE on pressure plate O1 BAR Moisture m3/m3 - Volumetric of coil clock (500 Survey Staff, 1967) P4 10 Moisture, P4 MOISTURE, RELEASE O2 MOISTURE, RELEASE CORE on pressure plate O1 BAR Moisture m3/m3 - Volumetric of coil clock (500 Survey Staff, 1967) MOISTURE, RELEASE CORE on pressure plate O1 BAR Moisture m3/m3 - Volumetric of coil clock (500 Survey Staff, 1967) MOISTURE, RELEASE CORE on pressure plate O1 BAR Moisture m3/m3 - Volumetric of coil clock (500 Survey Staff, 1967) MOISTURE, RELEASE CORE on pressure plate O1 BAR Moisture m3/m3 - Volumetric of coil clock (500 Survey Staff, 1967) MOISTURE, RELEASE CORE on pressure plate O1 BAR Moisture m3/m3 - Volumetric of coil clock (500 Survey Staff, 1967) MOISTURE, RELEASE CORE on pressure plate O1 BAR Moisture m3/m3 - Volumetric of coil clock (500 Survey Staff, 1967) MOISTURE, RELEASE CORE on pressure plate O1 BAR Moisture m3/m3 - Volumetric of coil clock (500 Survey Staff, 1967) MOISTURE, RELEASE CORE on pressure plate O1 BAR Moisture m3/m3 - Volumetric of coil clock (500 Survey Staff, 1967) Moisture, Release O1 BAR Moisture m3/m3 - Volumetric of coil clock (500 Survey Staff, 1967) Moisture, Release Moisture, Release Moisture, Release CORE of Core on pressure plate O1 BAR Moisture m3/m3 - Volumetric of coil		_	height core on pressure plate	
Oro on pressure plate P383VL2 MOISTURE, RELEASE BAR Moisture m373. Volumetric using undisturbed 60mm diameter and 34mm height P384VL_005 MOISTURE, RELEASE BAR Moisture m373. Volumetric of soil clotds (500 Survey Staff, 1967) P385VL_007 MOISTURE, RELEASE BAR Moisture m373. Volumetric of soil clotds (500 Survey Staff, 1967) P385VL_007 P4_10_McK HYDRAULC_COND MICHARITE M574 MOISTURE, RELEASE BAR Moisture m373. Volumetric of soil clotds (500 Survey Staff, 1967) O. 1 BAR Moisture g19 - Gravimetric of soil clotds (500 Survey Staff, 1967) O. 1 BAR Moisture g19 - Gravimetric of soil clotds (500 Survey Staff, 1967) O. 1 BAR Moisture g19 - Gravimetric of soil clotds (500 Survey Staff, 1967) O. 1 BAR Moisture g19 - Gravimetric of soil clotds (500 Survey Staff, 1967) O. 1 BAR Moisture g19 - Gravimetric of soil clotds (500 Survey Staff, 1967) O. 1 BAR Moisture g19 - Gravimetric of soil clotds (500 Survey Staff, 1967) O. 1 BAR Moisture g19 - Gravimetric of soil clotds (500 Survey Staff, 1967) O. 1 BAR Moisture g19 - Gravimetric of soil clotds (500 Survey Staff, 1967) O. 1 BAR Moisture g19 - Gravimetric of soil clotds (500 Survey Staff, 1967) O. 1 BAR Moisture g19 - Gravimetric of soil clotds (500 Survey Staff, 1967) O. 1 BAR Moisture g19 - Gravimetric of soil clotds (500 Survey Staff, 1967) O. 1 BAR Moisture g19 - Gravimetric of soil clotds (500 Survey Staff, 1967) O. 1 BAR Moisture g19 - Gravimetric of soil clotds (500 Survey Staff, 1967) O. 1 BAR Moisture g19 - Gravimetric of soil clotds (500 Survey Staff, 1967) O. 1 BAR Moisture g19 - Gravimetric of soil clotds (500 Survey Staff, 1967) O. 1 BAR Moisture g19 - Gravimetric of soil clotds (500 Survey Staff, 1967) O. 1 BAR Moisture g19 - Gravimetric of soil clotds (500 Survey Staff, 1967) O. 1 BAR Moisture g19 - Gravimetric of soil clotds (500 Survey Staff, 1967) O. 1 BAR Moisture g19 - Gravimetric of soil clotds (500 Survey Staff, 1967) O. 1 BAR Moisture g19 - Gravimetric of soil clotds (500 Survey Staff, 1967) O. 1 BAR Moisture g19 - Gravimetric of soil clotds (500 S	P3B3VLe15	MOISTURE_RELEASE	core on pressure plate	
PastAVLO7 MOISTURE, RELEASE PastAV_050 PastA	P3B3VLe2	MOISTURE_RELEASE		
P3840_00	P3B3VLe7	MOISTURE RELEASE	7 BAR Moisture m3/m3 - Volumetric using undisturbed 60mm diameter and 34mm height	
P385CV_005		-		
P4_10_McK			0.05 BAR Moisture m3/m3 - Volumetric of soil clods (Soil Survey Staff,1967)	
Ded. 100_McK HYDRAULIC_COND McKenzie and Jacquier, 1986) Unsaturated Hydraulic Conductivity - 100mm potential (CSIRO Div of Soil, DR 125, mm/hr Pd. 100DMcK HYDRAULIC_COND McKenzie and Jacquier, 1986) Unsaturated Hydraulic Conductivity - 100mm potential - Using disk permeameter with method CSIRO Div of Soil, DR 125, McKenzie and Jacquier, 1986 Unsaturated Hydraulic Conductivity - 100mm potential - Using disk permeameter with method CSIRO Div of Soil, DR 125, McKenzie and Jacquier, 1986 HYDRAULIC_COND McKenzie and Jacquier, 1986) McKenzie and Jacquier, 1986			Unsaturated Hydraulic Conductivity - 10mm potential (CSIRO Div of Soil, DR 125,	mm/hr
McKenzie and Jacquier, 1998) P4_10DMcK HYDRAULIC_COND HASA HYDRAULIC_COND HYDRAULIC_HYDRAULIC_HYDRAULIC HYDRAU				
method CSIRO Div of Soil, Dr. 125, McKenzie and Jacquier, 1996 mm/hr p4_50_McK HYDRAULIC_COND Saturated Hydraulic Conductivity - 50mm potential - Using disk permeameter with method CSIRO Div of Soil, Dr. 125, McKenzie and Jacquier, 1996 mm/hr ### Asst	P4_100_McK	HYDRAULIC_COND	McKenzie and Jacquier, 1996)	mm/hr
method CSIRO Div of Soil, DR 125, McKenzie and Jacquier, 1996 P4_50McK HYDRAULIC_COND HYDRAULIC_COND HYDRAULIC_COND HYDRAULIC_COND HYDRAULIC_COND HYDRAULIC_COND HYDRAULIC_COND Saturated Hydraulic Conductivity - 50mm potential - Using disk permeameter with method CSIRO Div of Soil, DR 125, McKenzie and Jacquier, 1996 P4_sat _LOV HYDRAULIC_COND HYDRAULIC_COND Saturated Hydraulic Conductivity - Modified (no de-aired water) Loveday falling head method using 98mm diameter cores Author of the Hydraulic Conductivity - Modified (no de-aired water) Loveday falling head method using 98mm diameter cores Baturated Hydraulic Conductivity - Modified (no de-aired water) Loveday falling head method using 98mm diameter cores Baturated Hydraulic Conductivity - Modified (no de-aired water) Loveday falling head method using 98mm diameter cores Baturated Hydraulic Conductivity - Modified (no de-aired water) Loveday falling head method using 98mm diameter cores Baturated Hydraulic Conductivity - Modified (no de-aired water) Loveday falling head method using 98mm diameter cores Baturated Hydraulic Conductivity - Modified (no de-aired water) Loveday falling head method using 98mm diameter cores Baturated Hydraulic Conductivity - Modified (no de-aired water) Loveday falling head method using 98mm diameter cores Baturated Hydraulic Conductivity - Modified (no de-aired water) Loveday falling head method using 98mm diameter cores Baturated Hydraulic Conductivity - Modified (no de-aired water) Loveday falling head method using 98mm diameter cores Baturated Hydraulic Conductivity - Modified (no de-aired water) Loveday falling head method using 98mm diameter cores Baturated Hydraulic Conductivity - Modified (no de-aired water) Loveday falling head method using 98mm diameter cores Baturated Hydraulic Conductivity - Modified (no de-aired water) Loveday falling head method using 98mm diameter and fall past of the development of the devel	P4_100DMcK	HYDRAULIC_COND		mm/hr
P4_50_McK HYDRAULIC_COND Unsaturated Hydraulic Conductivity - 50mm potential (CSIRO Div of Soil, DR 125, mm/hr McKenzie and Jacquier, 1989) HYDRAULIC_COND CONE P4_sat_Lov HYDRAULIC_COND HYDRAULIC_COND HYDRAULIC_COND CONE P5_LSE_MCD HYDRAULIC_COND CONE P5_LSE_MCD HYDRAULIC_COND CONE P5_LSE_MCD LINEAR_SHRINKAGE LINEAR	P4_10DMcK	HYDRAULIC_COND		mm/hr
P4_50DMcK HYDRAULIC_COND Unsatitured Hydraulic Conductivity - Somm potential - Using disk permeameter with method CSIRO Div of Soil, DR 125, McKenzie and Jacquier, 1996 P4_sat P4_Sa	P4 50 McK	HYDRAULIC COND	Unsaturated Hydraulic Conductivity - 50mm potential (CSIRO Div of Soil, DR 125,	mm/hr
P4_sat_For HYDRAULIC_COND P4_sat_LOV HYDRAULIC_COND P5_score P5_score P5_score Color P5_score Color P5_score Color P5_score Color P5_score Color		_		
P4_sat_LOV HYDRAULIC_COND Saturated Hydraulic Conductivity (Forrest et al. 1985) mm/hr mm/hr hydraulic Conductivity - Modified (not dealer water) Loveday falling head method using 98mm diameter cores Saturated Hydraulic Conductivity (CSIRO Div of Soil, DR 125, McKenzie and Jacquier, 1996) mm/hr hydraulic Conductivity (CSIRO Div of Soil, DR 125, McKenzie and Jacquier, 1996) saturated Hydraulic Conductivity (CSIRO Div of Soil, DR 125, McKenzie and Jacquier, 1996) saturated Hydraulic Conductivity (CSIRO Div of Soil, DR 125, McKenzie and Jacquier, 1996) saturated Hydraulic Conductivity (CSIRO Div of Soil, DR 125, McKenzie and Jacquier, 1996) saturated Hydraulic Conductivity (CSIRO Div of Soil, DR 125, McKenzie and Jacquier, 1996) saturated Hydraulic Conductivity (CSIRO Div of Soil, DR 125, McKenzie and Jacquier, 1996) saturated Hydraulic Conductivity (CSIRO Div of Soil, DR 125, McKenzie and Jacquier, 1996) saturated Hydraulic Conductivity (CSIRO Div of Soil, DR 125, McKenzie and Jacquier, 1996) saturated Hydraulic Conductivity (CSIRO Div of Soil, DR 125, McKenzie and Jacquier, 1996) saturated Hydraulic Conductivity (CSIRO Div of Soil, DR 125, McKenzie and Jacquier, 1996) saturated Hydraulic Conductivity (CSIRO Div of Soil, DR 125, McKenzie and Jacquier, 1996) saturated Hydraulic Conductivity (CSIRO Div of Soil, DR 125, McKenzie and Jacquier, 1996) saturated Hydraulic Conductivity (CSIRO Div of Soil, DR 125, McKenzie and Jacquier, 1996) saturated Hydraulic Conductivity (CSIRO Div of Soil, DR 125, McKenzie and Jacquier, 1996) saturated Hydraulic Conductivity (CSIRO Div of Soil, DR 125, McKenzie and Jacquier, 1996) saturated Hydraulic Conductivity (CSIRO Div of Soil, DR 125, McKenzie and Jacquier, 1996) saturated Hydraulic Conductivity (CSIRO Div of Soil, DR 125, McKenzie and Jacquier, 1996) saturated Hydraulic Conductivity (CSIRO Div of Soil, DR 125, McKenzie and Jacquier, 1996) saturated Hydraulic Conductivity (CSIRO Div of Soil, DR 125, McKenzie and Jacquier, 1996) saturated Hydraulic Conductivity and Information A	_	=		mm/nr
method using 98mm diameter cores method using 98mm diameter cores Saturated Hydraulic Counductivity (CSIRO Div of Soil, DR 125, McKenzie and Jacquier, 1996) PA_Sol_MCN PS_COLE COLE COLE COLE LINEAR_SHRINKAGE LINEAR_SHRINKAGE PS_LS_MOD LINEAR_SHRINKAGE PS_LS_MOD LINEAR_SHRINKAGE PS_LS_MOD LINEAR_SHRINKAGE PS_LS_MOD LINEAR_SHRINKAGE PS_LS_MOD LINEAR_SHRINKAGE PS_LS_MOD Dispersion Index (Loveday and Pyle, 1973) PSA PWS212425 PSA PSA 20-83 micron fraction (%) - Wet Sieving after chemical dispersion % 212425 micron fraction (%) - Wet Sieving after chemical dispersion % PWS2122-17 PSA 245-1000 micron fraction (%) - Wet Sieving after chemical dispersion % PWS2122-17 PSA 425-1000 micron fraction (%) - Wet Sieving after chemical dispersion % 212425 micron fraction (%) - Wet Sieving after chemical dispersion % TOTAL_ELEMENTS Total Element A - by Citrate/Dithionite Extraction Total Element A - by Citrate/Dithionite Extraction % TE_CD_NO TOTAL_ELEMENTS Total Element Na - by Citrate/Dithionite Extraction % TE_HF-AC TOTAL_ELEMENTS Total Element Na - by Citrate/Dithionite Extraction % TE_HF-AC TOTAL_ELEMENTS Total Element Na - by Citrate/Dithionite Extraction % TE_HF-AC TOTAL_ELEMENTS Total Element Na - by Citrate/Dithionite Extraction % TE_HF-AC TOTAL_ELEMENTS Total Element Na - by Citrate/Dithionite Extraction % TE_HF-AC TOTAL_ELEMENTS Total Element Na - by Citrate/Dithionite Extraction % TE_HF-AC TOTAL_ELEMENTS Total Element Na - by Citrate/Dithionite Extraction % TE_HF-AC TOTAL_ELEMENTS Total Element Na - by Citrate/Dithionite Extraction % TE_HF-AC TOTAL_ELEMENTS Total Element Na - by Citrate/Dithionite Extraction % TE_HF-AC TOTAL_ELEMENTS Total Element Na - by Citrate/Dithionite Extraction % TE_HF-AC TOTAL_ELEMENTS Total Element Na - by Citrate/Dithionite Extraction % TE_HF-AC TOTAL_ELEMENTS Total Element Na - by Citrate/Dithionite Extraction % TE_HF-AC TOTAL_ELEMENTS Total Element Na - by Citrate/Dithionite Extraction % TE_HF			Saturated Hydraulic Conductivity (Forrest et al, 1985)	mm/hr
P4_sat_McK HYDRAULIC_COND P4D1 HYDRAULIC_COND P5_COLE COLE P5_LS LINEAR_SHRINKAGE Linear shrinkage (Standards Association of Australia 1977. AS 1289 C.4.1) P5_LS LINEAR_SHRINKAGE Linear shrinkage (Standards Association of Australia 1977. AS 1289 C.4.1) P6_LP DISPERSION Dispersion Index (Loveday and Pyle, 1973) PWS20-63 PSA 1000-2000 micron fraction (%). Wet Sieving after chemical dispersion PWS20-63 PSA 20-63 micron fraction (%). Wet Sieving after chemical dispersion PWS20-63 PSA 212-425 micron fraction (%). Wet Sieving after chemical dispersion PWS20-63 PSA 212-425 micron fraction (%). Wet Sieving after chemical dispersion PWS20-63 PSA 212-425 micron fraction (%). Wet Sieving after chemical dispersion PWS20-63 PSA 212-425 micron fraction (%). Wet Sieving after chemical dispersion PWS20-63 PSA 212-425 micron fraction (%). Wet Sieving after chemical dispersion PWS20-63 PSA 212-425 micron fraction (%). Wet Sieving after chemical dispersion PWS20-70 PSA 212-425 micron fraction (%). Wet Sieving after chemical dispersion PWS20-70 PWS20-	P4_sat_LOV	HYDRAULIC_COND		mm/hr
PAD1	P4 sat McK	HYDRAULIC COND	Saturated Hydraulic Conductivity (CSIRO Div of Soil, DR 125, McKenzie and Jacquier,	mm/hr
P5_LS	P4D1		Saturated Hydraulic Conductivity	
P5_LS_MOD LINEAR_SHRINKAGE 8) P6_LP DISPERSION DISPERSION Dispersion index (Loveday and Pyle, 1973) PWS1-2mm PSA 1000-2000 micron fraction (%) - Wet Sleving after chemical dispersion % PWS212-425 PSA 20-83 micron fraction (%) - Wet Sleving after chemical dispersion % PWS212-425 PSA 212-425 micron fraction (%) - Wet Sleving after chemical dispersion % PWS425-1mm PSA 425-1000 micron fraction (%) - Wet Sleving after chemical dispersion % PWS425-1mm PSA 425-1000 micron fraction (%) - Wet Sleving after chemical dispersion % PWS425-1mm PSA 425-1000 micron fraction (%) - Wet Sleving after chemical dispersion % PWS425-1mm PSA 425-1000 micron fraction (%) - Wet Sleving after chemical dispersion % PWS425-1mm PSA 63-212 PSA 63-212 micron fraction (%) - Wet Sleving after chemical dispersion % PWS425-1mm PSA 63-212 micron fraction (%) - Wet Sleving after chemical dispersion % PWS425-1mm PSA 63-212 micron fraction (%) - Wet Sleving after chemical dispersion % PWS425-1mm PSA 63-212 micron fraction (%) - Wet Sleving after chemical dispersion % PSA 63-212 micron fraction (%) - Wet Sleving after chemical dispersion % PSA 63-212 micron fraction (%) - Wet Sleving after chemical dispersion % PSA 63-212 micron fraction (%) - Wet Sleving after chemical dispersion % PSA 63-212 micron fraction (%) - Wet Sleving after chemical dispersion % PSA 63-212 micron fraction (%) - Wet Sleving after chemical dispersion % PSA 63-212 micron fraction (%) - Wet Sleving after chemical dispersion % PSA 63-212 micron fraction (%) - Wet Sleving after chemical dispersion % PSA 63-212 micron fraction (%) - Wet Sleving after chemical dispersion % PSA 63-212 micron fraction (%) - Wet Sleving after chemical dispersion % PSA 63-212 micron fraction (%) - Wet Sleving after chemical dispersion % PSA 63-212 micron fraction (%) - Wet Sleving after chemical dispersion % PSA 63-212 micron fraction (%) - Wet Sleving after chemical dispersion % PSA 63-212 micron fraction (%) - Wet Sleving after chemical dispersion % PSA 63-212 micron fraction (%) - Wet Sleving after ch			Coefficient of Linear Extensibility (Grossman et al. 1968)	
P6_LP DISPERSION Dispersion Index (Loveday and Pyle, 1973) PWS12-mm PSA 1000-2000 micron fraction (%) - Wet Sieving after chemical dispersion % PWS212-425 PSA 212-425 micron fraction (%) - Wet Sieving after chemical dispersion % PWS425-1mm PSA 425-1000 micron fraction (%) - Wet Sieving after chemical dispersion % PWS425-1mm PSA 425-1000 micron fraction (%) - Wet Sieving after chemical dispersion % PWS425-1mm PSA 425-1000 micron fraction (%) - Wet Sieving after chemical dispersion % PWS63-212 PSA 63-212 micron fraction (%) - Wet Sieving after chemical dispersion % TE_CD_CA TOTAL_ELEMENTS Total Element A - by Citrate/Dithionite Extraction % TE_CD_DNG TOTAL_ELEMENTS Total Element A - by Citrate/Dithionite Extraction % TE_CD_NA TOTAL_ELEMENTS Total Element Na - by Citrate/Dithionite Extraction % TE_CD_TNO TOTAL_ELEMENTS Total Element Na - by Citrate/Dithionite Extraction % TE_CD_TNO TOTAL_ELEMENTS Total Element Na - by Citrate/Dithionite Extraction % TE_HF-MG TOTAL_ELEMENTS Total Element Na - by HF/HCIO4 Digest % TE_HF-NA TOTAL_ELEMENTS Total Element Ma - by HF/HCIO4 Digest % TE_HF-NA TOTAL_ELEMENTS Total Element A - by HF/HCIO4 Digest % TE_HF-NA TOTAL_ELEMENTS Total Element Na - by HF/HCIO4 Digest % TE_HF-NA TOTAL_ELEMENTS Total Element Na - by HF/HCIO4 Digest % TE_HF-NA TOTAL_ELEMENTS Total Element Na - by HF/HCIO4 Digest % TE_HF-NA TOTAL_ELEMENTS Total Element Na - by HF/HCIO4 Digest % TE_HF-NA TOTAL_ELEMENTS Total Element Na - by HF/HCIO4 Digest % TE_HF-NA TOTAL_ELEMENTS Total Element Na - by HF/HCIO4 Digest % TE_HF-NA TOTAL_ELEMENTS Total Element Na - by HF/HCIO4 Digest % TE_HF-NA TOTAL_ELEMENTS Total Element Na - by HF/HCIO4 Digest % TE_HF-NA TOTAL_ELEMENTS Total Element Na - by HF/HCIO4 Digest % TE_HF-NA TOTAL_ELEMENTS Total Element Na - by HF/HCIO4 Digest % TE_HF-NA TOTAL_ELEMENTS Total Element Na - by HT-NA TOTAL_ELEMENTS TOTAL Element Na - by HT-NA TOTAL_ELEMENTS TOTAL ELEMENTS TOTAL Element Na - by HT-NA TOTAL ELEMENTS TOTAL ELEMENTS TOTAL Element Na - by HT-NA TOTAL ELEMENTS TOTAL Element Na - by HT-NA		-	Modified linear shrinkage (McKenzie, Jacquier and Ringrose-Voase, AJSR, 1994, 32, 931-	
PWS1-2mm PSA 1000-2000 micron fraction (%) - Wet Sieving after chemical dispersion % PWS212-425 PSA 20-63 micron fraction (%) - Wet Sieving after chemical dispersion % PWS425-1mm PSA 212-425 micron fraction (%) - Wet Sieving after chemical dispersion % PWS425-1mm PSA 425-1000 micron fraction (%) - Wet Sieving after chemical dispersion % PWS63-212 PSA 425-1000 micron fraction (%) - Wet Sieving after chemical dispersion % PWS63-212 PSA 63-212 micron fraction (%) - Wet Sieving after chemical dispersion % PWS63-212 PSA 63-212 micron fraction (%) - Wet Sieving after chemical dispersion % PWS63-212 PSA 63-212 micron fraction (%) - Wet Sieving after chemical dispersion % PWS63-212 PSA 63-212 micron fraction (%) - Wet Sieving after chemical dispersion % PWS63-212 PSA 63-212 micron fraction (%) - Wet Sieving after chemical dispersion % PWS63-212 PSA 63-212 micron fraction (%) - Wet Sieving after chemical dispersion % PWS63-212 micron fraction (%) - Wet Sieving after chemical dispersion % PWS63-212 PSA 63-212 micron fraction (%) - Wet Sieving after chemical dispersion % PWS63-212 PSA 63-212 micron fraction (%) - Wet Sieving after chemical dispersion % PWS63-212 PSA 63-212 micron fraction (%) - Wet Sieving after chemical dispersion % PWS63-212 PSA 63-212 psa 63-212 micron fraction (%) - Wet Sieving after chemical dispersion % PWS63-212 PSA 63-212 psa 63-212 micron fraction (%) - Wet Sieving after chemical dispersion % PWS63-212 PSA 63-212 psa 63-212 micron fraction (%) - Wet Sieving after chemical dispersion % PWS63-212 psa 63-212 psa 63-212 micron fraction (%) - Wet Sieving after chemical dispersion % PWS63-212 psa 63-212		-		
PWS212-425 PSA 212-425 micron fraction (%) - Wet Sieving after chemical dispersion % PWS432-11mm PSA 425-1000 micron fraction (%) - Wet Sieving after chemical dispersion % PWS63-212 PSA 63-212 micron fraction (%) - Wet Sieving after chemical dispersion % FE_CD_AL TOTAL_ELEMENTS Total Element AL - by Citrate/Dithionite Extraction % FE_CD_MO TOTAL_ELEMENTS Total Element Mg - by Citrate/Dithionite Extraction % FE_CD_NA TOTAL_ELEMENTS Total Element Mg - by Citrate/Dithionite Extraction % FE_CD_Sl02 TOTAL_ELEMENTS Total Element Mg - by Citrate/Dithionite Extraction % FE_CD_Sl02 TOTAL_ELEMENTS Total Element Mg - by Citrate/Dithionite Extraction % FE_CD_TI02 TOTAL_ELEMENTS Total Element Mg - by HF/HCI04 Digest % FE_HF+ MG TOTAL_ELEMENTS Total Element Mg - by HF/HCI04 Digest % FE_HF+AL TOTAL_ELEMENTS Total Element Mg - by HF/HCI04 Digest % FE_HF+ND TOTAL_ELEMENTS Total Element Na - by HF/HCI04 Digest % FE_HF+ND TOTAL_ELEMENTS Total Element Na - by HF/HCI04 Digest % FE_HF+ND TOTAL_ELEMENTS Total Element Na - by HF/HCI04 Digest % FE_HF+ND TOTAL_ELEMENTS TOTAL Element Na - by HF/HCI04 Digest % FE_HF+ND TOTAL_ELEMENTS TOTAL ELEMENTS TOTAL E	PWS1-2mm	PSA	1000-2000 micron fraction (%) - Wet Sieving after chemical dispersion	
PWS63-212 PSA 63-212 micron fraction (%) - Wet Sieving after chemical dispersion % TE_CD_AL TOTAL_ELEMENTS Total Element AI - by Citrate/Dithionite Extraction % TE_CD_MG TOTAL_ELEMENTS Total Element Ca - by Citrate/Dithionite Extraction % TE_CD_NA TOTAL_ELEMENTS Total Element Mg - by Citrate/Dithionite Extraction % TE_CD_SI02 TOTAL_ELEMENTS Total Element SiO2 - by Citrate/Dithionite Extraction % TE_CD_TI02 TOTAL_ELEMENTS Total Element Mg - by Citrate/Dithionite Extraction % TE_DTOTAL_ELEMENTS Total Element SiO2 - by Citrate/Dithionite Extraction % TE_HF+MG TOTAL_ELEMENTS Total Element Mg - by HF/HCIO4 Digest % TE_HF+AL TOTAL_ELEMENTS Total Element Mg - by HF/HCIO4 Digest % TE_HF+CA TOTAL_ELEMENTS Total Element AI - by HF/HCIO4 Digest % TE_HF+NA TOTAL_ELEMENTS Total Element Ca - by HF/HCIO4 Digest % TE_HF+NO TOTAL_ELEMENTS Total Element Ca - by HF/HCIO4 Digest % TE_HF+NO TOTAL_ELEMENTS Total Element Ca - by HF/HCIO4 Digest % TE_HF+NIO2 TOTAL_ELEMENTS Total Element SiO2 - by HF/HCIO4 Digest % TE_HF+NIO2 TOTAL_ELEMENTS Total Element SiO2 - by HF/HCIO4 Digest % TE_NR_AL TOTAL_ELEMENTS Total Element TiO2 - by HF/HCIO4 Digest % TE_NR_AL TOTAL_ELEMENTS Total Element TiO2 - by HF/HCIO4 Digest % TE_NR_AL TOTAL_ELEMENTS Total Element TiO2 - by HF/HCIO4 Digest % TE_NR_AL TOTAL_ELEMENTS Total Element TiO2 - by HF/HCIO4 Digest % TE_NR_NG TOTAL_ELEMENTS Total Element AI - Not recorded % TE_NR_NG TOTAL_ELEMENTS Total Element Mg - Not recorded % TE_NR_NG TOTAL_ELEMENTS Total Element Mg - Not recorded % TE_NR_NG TOTAL_ELEMENTS Total Element Mg - Not recorded % TE_NR_NG TOTAL_ELEMENTS Total Element Mg - Not recorded % TE_NR_NG TOTAL_ELEMENTS Total Element Mg - Not recorded % TE_NR_NG TOTAL_ELEMENTS Total Element Mg - Not recorded % TE_NR_NG TOTAL_ELEMENTS Total Element Mg - Not recorded % TE_NR_NG TOTAL_ELEMENTS Total Element Mg - Not recorded % TE_NR_NG TOTAL_ELEMENTS Total Element Mg - Not recorded % TE_NR_NG TOTAL_ELEMENTS TOTAL ELEMENTS TOTAL Element Mg - Not recorded % TOTAL_ELEMENTS TOTAL ELEMENTS TOTAL Element Mg - Not re	PWS212-425	PSA	212-425 micron fraction (%) - Wet Sieving after chemical dispersion	%
TE_CD_AL TOTAL_ELEMENTS Total Element A - by Citrate/Dithionite Extraction % TE_CD_CA TOTAL_ELEMENTS Total Element Mg - by Citrate/Dithionite Extraction % TE_CD_NA TOTAL_ELEMENTS Total Element Mg - by Citrate/Dithionite Extraction % TE_CD_SI02 TOTAL_ELEMENTS Total Element SiO2 - by Citrate/Dithionite Extraction % TE_CD_TI02 TOTAL_ELEMENTS Total Element SiO2 - by Citrate/Dithionite Extraction % TE_CH=MG TOTAL_ELEMENTS Total Element SiO2 - by Citrate/Dithionite Extraction % TE_HF=MG TOTAL_ELEMENTS Total Element Mg - by HF/HCIO4 Digest % TE_HF=AL TOTAL_ELEMENTS Total Element Mg - by HF/HCIO4 Digest % TE_HF=AL TOTAL_ELEMENTS Total Element Mg - by HF/HCIO4 Digest % TE_HF=NA TOTAL_ELEMENTS Total Element Na - by HF/HCIO4 Digest % TE_HF=NIO2 TOTAL_ELEMENTS Total Element Na - by HF/HCIO4 Digest % TE_HF=NIO2 TOTAL_ELEMENTS Total Element SiO2 - by HF/HCIO4 Digest % TE_HF=NIO2 TOTAL_ELEMENTS Total Element TiO2 - by HF/HCIO4 Digest % TE_NR_AL TOTAL_ELEMENTS Total Element TiO2 - by HF/HCIO4 Digest % TE_NR_AL TOTAL_ELEMENTS Total Element TiO2 - by HF/HCIO4 Digest % TE_NR_AL TOTAL_ELEMENTS Total Element TiO2 - by HF/HCIO4 Digest % TE_NR_AL TOTAL_ELEMENTS Total Element TiO2 - by HF/HCIO4 Digest % TE_NR_AL TOTAL_ELEMENTS Total Element Mg - Not recorded % TE_NR_AL TOTAL_ELEMENTS Total Element Mg - Not recorded % TE_NR_NA TOTAL_ELEMENTS Total Element Mg - Not recorded % TE_NR_NA TOTAL_ELEMENTS Total Element Mg - Not recorded % TE_NR_NA TOTAL_ELEMENTS Total Element NG - Not recorded % TE_NR_NA TOTAL_ELEMENTS Total Element Mg - Not recorded % TE_NR_NA TOTAL_ELEMENTS Total Element Mg - Not recorded % TE_NR_NA TOTAL_ELEMENTS Total Element NG - Not recorded % TE_NR_NA TOTAL_ELEMENTS Total Element NG - Not recorded % TE_NR_NA TOTAL_ELEMENTS Total Element NG - Not recorded % TE_NR_NA TOTAL_ELEMENTS Total Element NG - Not recorded % TE_NR_NA TOTAL_ELEMENTS Total Element NG - Not recorded % TE_NR_NA TOTAL_ELEMENTS Total Element NG - Not recorded % TE_NR_NA TOTAL_ELEMENTS TOTAL ELEMENTS TOTAL Element NG - Not recorded % TOTAL_ELEMENTS TOTAL				
TE_CD_MG TOTAL_ELEMENTS Total Element Mg - by Citrate/Dithionite Extraction ### TE_CD_NA TOTAL_ELEMENTS Total Element Na - by Citrate/Dithionite Extraction ### TOTAL_ELEMENTS Total Element Na - by Citrate/Dithionite Extraction ### TOTAL_ELEMENTS Total Element Na - by Citrate/Dithionite Extraction ### TOTAL_ELEMENTS Total Element Na - by Citrate/Dithionite Extraction ### TOTAL_ELEMENTS Total Element Mg - by Citrate/Dithionite Extraction ### TOTAL_ELEMENTS Total Element Mg - by Hir/HCIO4 Digest ### TOTAL_ELEMENTS Total Element A - by Hir/HCIO4 Digest ### TOTAL_ELEMENTS Total Element Na - by Hir/HCIO4 Digest ### TOTAL_ELEMENTS TOTAL_ELEMENTS Total Element Na - by Hir/HCIO4 Digest ### TOTAL_ELEMENTS TOTAL_ELEMENTS Total Element Na - by Hir/HCIO4 Digest ### TOTAL_ELEMENTS TOTAL_ELEMENTS Total Element Na - by Hir/HCIO4 Digest ### TOTAL_ELEMENTS Total Element Na - by Hir/HCIO4 Digest ### TOTAL_ELEMENTS Total Element Na - by Hir/HCIO4 Digest ### TOTAL_ELEMENTS ### TOTAL_ELEMENTS Total Element Na - by Hir/HCIO4 Digest ### TOTAL_ELEMENTS ### TOTAL_ELEMENTS Total Element Na - Not recorded ### TOTAL_ELEMENTS Total Element Mg - Not recorded ### TOTAL_ELEMENTS TOTAL_ELEMENTS Total Element Mg - Not recorded ### TOTAL_ELEMENTS TOTAL_ELEMENTS Total Element Na - Not recorded ### TOTAL_ELEMENTS TOTAL_ELEMENTS Total Element Na - Not recorded ### TOTAL_ELEMENTS ### TOTAL_ELEMENTS Total Element Na - Not recorded ### TOTAL_ELEMENTS ### TOTAL_ELEMENTS Total Element Na - Not recorded ### TOTAL_ELEMENTS ### TOTAL_ELEMENTS Total Element Na - Not recorded ### TOTAL_ELEMENTS ### TOTAL_ELEMENTS Total Element Na - Not recorded ### TOTAL_ELEMENTS ### TOTAL_ELEMENTS Total Element Na - Not recorded ### TOTAL_ELEMENTS ### TOTAL_ELEMENTS Total Element Na - Not recorded ### TOTAL_ELEMENTS ### TOTAL_ELEMENTS Total Element Na - Not recorded ### TOTAL_ELEMENTS ### TOTAL_ELEMENTS Total Element Na - Not recorded ### TOTAL_ELEMENTS ### TOTAL_ELEMENTS TOTAL_ELEMENTS TOTAL_ELEMENTS TOTAL_ELEMENTS TOTAL_ELEMENTS TOTAL_ELEMENTS TOTAL_ELEMENTS TOTAL_ELEMENTS	TE_CD_AL	TOTAL_ELEMENTS	Total Element AI - by Citrate/Dithionite Extraction	%
TE_CD_NA				
TE_CD_TI02	TE_CD_NA	TOTAL_ELEMENTS	Total Element Na - by Citrate/Dithionite Extraction	%
TE_HF+_MG	TE_CD_TI02	TOTAL_ELEMENTS	Total Element TiO2 - by Citrate/Dithionite Extraction	%
TE_HF+CA	TE_HF+_MG			
TE_HF+SIO2	TE_HF+CA	TOTAL_ELEMENTS	Total Element Ca - by HF/HCIO4 Digest	%
TE_HF+TIO2				
TE_NR_CA	TE_HF+TIO2	TOTAL_ELEMENTS	Total Element TiO2 - by HF/HCIO4 Digest	%
TE_NR_NA	TE_NR_CA	TOTAL_ELEMENTS	Total Element Ca - Not recorded	%
TE_NR_SI02			Total Element Mg - Not recorded Total Element Na - Not recorded	
TE_XRF_MG	TE_NR_SI02	TOTAL_ELEMENTS	Total Element SiO2 - Not recorded	%
TE_XRFĀL	TE_XRF_MG	TOTAL_ELEMENTS	Total Element Mg - By XRF	%
TE_XRFNA	TE_XRFAL	TOTAL_ELEMENTS	Total Element AI - By XRF	%
TE_XRFTIO2 TOTAL_ELEMENTS Total Element TiO2 - By XRF % XRD_C_Ab CLAY_MINERAL Amphibole - X-Ray Diffraction XRD_C_Ah CLAY_MINERAL Allophane - X-Ray Diffraction XRD_C_An CLAY_MINERAL Anatase - X-Ray Diffraction XRD_C_Ap CLAY_MINERAL Apatite - X-Ray Diffraction XRD_C_Arg CLAY_MINERAL Argonite - X-Ray Diffraction	TE_XRFNA	TOTAL_ELEMENTS	Total Element Na - By XRF	%
XRD_C_Ab CLAY_MINERAL Amphibole - X-Ray Diffraction XRD_C_Ah CLAY_MINERAL Allophane - X-Ray Diffraction XRD_C_An CLAY_MINERAL Anatase - X-Ray Diffraction XRD_C_Ap CLAY_MINERAL Apatite - X-Ray Diffraction XRD_C_Ap CLAY_MINERAL Apatite - X-Ray Diffraction				
XRD_C_An CLAY_MINERAL Anatase - X-Ray Diffraction XRD_C_Ap CLAY_MINERAL Apatite - X-Ray Diffraction XRD_C_Arg CLAY_MINERAL Argonite - X-Ray Diffraction	XRD_C_Ab	CLAY_MINERAL	Amphibole - X-Ray Diffraction	•
XRD_C_Ap CLAY_MINERAL Apatite - X-Ray Diffraction XRD_C_Arg CLAY_MINERAL Argonite - X-Ray Diffraction	XRD_C_An	CLAY_MINERAL	Anatase - X-Ray Diffraction	
	XRD_C_Ap	CLAY_MINERAL		
	XRD_C_At			

XRD_C_Bd	CLAY_MINERAL	Beidellite - X-Ray Diffraction
XRD_C_Bm	CLAY MINERAL	Boehmite - X-Ray Diffraction
XRD C Bt	CLAY MINERAL	Biotite - X-Ray Diffraction
XRD_C_Cb	CLAY_MINERAL	Cristobalite - X-Ray Diffraction
XRD_C_Ch	CLAY_MINERAL	Chlorite - X-Ray Diffraction
XRD C Ch2	CLAY_MINERAL	Chloritized 2:1 minerals - X-Ray Diffraction
XRD_C_Cm	CLAY MINERAL	Corondum - X-Ray Diffraction
XRD C Ct	CLAY MINERAL	Calcite - X-Ray Diffraction
XRD_C_Dr	CLAY_MINERAL	Dravite - X-Ray Diffraction
XRD_C_Dt	CLAY_MINERAL	Dolomite - X-Ray Diffraction
XRD_C_Fd	CLAY_MINERAL	Feldspar - X-Ray Diffraction
XRD_C_Fh	CLAY_MINERAL	Ferrihydrite - X-Ray Diffraction
XRD_C_FI	CLAY_MINERAL	Flourite - X-Ray Diffraction
XRD_C_Fo	CLAY_MINERAL	Feroxyhite - X-Ray Diffraction
XRD_C_Gb	CLAY_MINERAL	Gibbsite - X-Ray Diffraction
XRD_C_GI	CLAY_MINERAL	Glauconite - X-Ray Diffraction
XRD_C_Gt	CLAY_MINERAL	Geothite - X-Ray Diffraction
XRD_C_Gy	CLAY_MINERAL	Gypsum - X-Ray Diffraction
XRD_C_HI	CLAY_MINERAL	Halite - X-Ray Diffraction
XRD_C_Hm	CLAY_MINERAL	Hematite - X-Ray Diffraction
XRD_C_Hn	CLAY_MINERAL	Huntite - X-Ray Diffraction
XRD_C_Ht0	CLAY_MINERAL	Halloysite (10 A') - X-Ray Diffraction
XRD_C_Ht7	CLAY_MINERAL	Halloysite (7 A') - X-Ray Diffraction
XRD_C_lg	CLAY_MINERAL	Imogolite - X-Ray Diffraction
XRD C II	CLAY MINERAL	Illite - X-Ray Diffraction
XRD_C_Im	CLAY_MINERAL	Ilmenite - X-Ray Diffraction
XRD_C_ls	CLAY_MINERAL	Interstratified clay minerals - X-Ray Diffraction
XRD C Jr	CLAY MINERAL	Jarosite - X-Ray Diffraction
XRD_C_K2O	CLAY MINERAL	K2O - X-Ray Diffraction or Clay Fraction (air dry)
XRD_C_Ka	CLAY_MINERAL	Kaolin - X-Ray Diffraction
XRD_C_Kt	CLAY MINERAL	Kaolinite - X-Ray Diffraction
XRD_C_Lp	CLAY_MINERAL	Lepidocrosite - X-Ray Diffraction
XRD C Mh	CLAY MINERAL	Meghemite - X-Ray Diffraction
XRD C Mi	CLAY MINERAL	Mica - X-Ray Diffraction
XRD_C_Mm	CLAY_MINERAL	Montmorillonite - X-Ray Diffraction
XRD_C_Ms	CLAY_MINERAL	Magnesite - X-Ray Diffraction
XRD C Mt	CLAY MINERAL	Magnetite - X-Ray Diffraction
XRD_C_Mu	CLAY MINERAL	Muscovite - X-Ray Diffraction
XRD_C_Mz	CLAY_MINERAL	Monozite - X-Ray Diffraction
XRD_C_Nt	CLAY_MINERAL	Nontronite - X-Ray Diffraction
XRD_C_NI	CLAY_MINERAL	Olivine - X-Ray Diffraction
XRD_C_Or	CLAY MINERAL	Orthoclase - X-Ray Diffraction
XRD_C_OI	CLAY MINERAL	Plagioclase - X-Ray Diffraction
XRD_C_Pk XRD_C_PI	CLAY_MINERAL CLAY_MINERAL	Palygorskite - X-Ray Diffraction Plombogummite - X-Ray Diffraction
XRD_C_PI	CLAY_MINERAL	Priombogummie - X-Ray Dimraction Phlogopite - X-Ray Diffraction
XRD_C_Pp XRD C Ps	CLAY_MINERAL CLAY MINERAL	Pniogopite - X-ray Diffraction Pseudorutile - X-Ray Diffraction
XRD_C_Px	CLAY_MINERAL	Pyroxene - X-Ray Diffraction
XRD_C_Py	CLAY_MINERAL	Pyrophyllite - X-Ray Diffraction
XRD_C_Qz	CLAY_MINERAL	Quartz - X-Ray Diffraction
XRD_C_Rt	CLAY_MINERAL	Rutile - X-Ray Diffraction
XRD_C_Sd	CLAY_MINERAL	Siderite - X-Ray Diffraction
XRD_C_SI	CLAY_MINERAL	Saponite - X-Ray Diffraction
XRD_C_Sp	CLAY_MINERAL	Saponite - X-Ray Diffraction
XRD_C_Spn	CLAY_MINERAL	Sphene - X-Ray Diffraction
XRD_C_Srp	CLAY_MINERAL	Serpentine - X-Ray Diffraction
XRD_C_St	CLAY_MINERAL	Smectite - X-Ray Diffraction
XRD_C_Tc	CLAY_MINERAL	Talc - Tourmaline - X-Ray Diffraction
XRD_C_Tr	CLAY_MINERAL	Tridymite - X-Ray Diffraction
XRD_C_Un	CLAY_MINERAL	Unidentified - X-Ray Diffraction
XRD_C_Vm	CLAY_MINERAL	Vermiculte - X-Ray Diffraction
XRD_C_Zi	CLAY_MINERAL	Zircon - X-Ray Diffraction
XRD_C_Zt	CLAY_MINERAL	Zeolite - X-Ray Diffraction

Table SITE_ENVELOPE_CODES

Value	Description	Numeric value	Low value
999	CENTRE_LAT	Centre point lattitude of circular site	DD
999	CENTRE_LON	Centre point longitude of circular site	DD
999	DATUM	Datum of location	
999	RADIUS	Radius of circular site	m
999	V1_LAT	Lattitude of vertice 1	DD
999	V1_LON	Longitude of vertice 1	DD
999	V2_LAT	Lattitude of vertice 2	DD
999	V2_LON	Longitude of vertice 2	DD
999	V3_LAT	Lattitude of vertice 3	DD
999	V3_LON	Longitude of vertice 3	DD
999	V4_LAT	Lattitude of vertice 4	DD
999	V4_LON	Longitude of vertice 4	DD

APPENDIX D - UPDATES TO THE SITES DATABASE SCHEMA

Overview

The changes to the Sites database include the addition of 3 new tables, the redesign of 2 existing tables and creation of additional fields in 4 tables.

By adding new tables for land cover (LAND COVER) and site location/geometry (SITE ENVELOPE), extending the purpose of exiting fields and adding new fields (particularly to OBSERVATIONS) a database implementation for storing monitoring data has also been achieved.

The addition of parent site identifiers to the SITES table (with a self-referencing join) facilitates the storage of nested sites (unlimited sub-sites) as well as maintaining relationships between sites and transects in the case of roadside erosion survey data. By definition, the measurements at these sites (and subsites) will be temporally invariant. To complement this, the OBSERVATIONS table would be reserved for temporally variant measurements.

The temporal variation in land use and land management is catered for by distinct tables which can be populated by dates different from the date of soil observations.

The ARCHIVE SAMPLE table has been added to facilitate the management of soil samples in the CSIRO National Soil Archive. The table has been added to SITES version 2.0 so that the relevant soil sample data is transferred when physical soil samples are shipped to the soil archive.

To support these changes additional entries to the CODES table have been required.

Major table changes

Major changes have been made to the SITES, LAND USE and SITE MNG PRACS tables.

SITES

The addition of a parent site identifier that has a self-join to the site identifier is a significant concept shift. This allows nesting of sites (i.e. a grid cell within a 25m² monitoring site or a point along a transect) with the same attributes recorded (if necessary) against both parent and child.

LAND USE

The LAND USE table is underutilised in many implementations of the Sites data model. This table is to be reworked to capture data according to the ALUM classification (BRS 2006). Land use is to be recorded as an event so a result a date stamp is now required for each entry.

SITE MNG PRACS

This table is also seldom used and will be repurposed to capture land management practice data from the LUMIS scheme

(http://adl.brs.gov.au/data/warehouse/pe_abares99001770/ACLUMP_StatusReport_20101216. pdf) or Roadside Erosion Survey Manual (Forward 2009). Land management practice is to be recorded as an event and a result a date stamp is required for each entry.

Additional tables

Two new tables, SITE ENVELOPE and LAND COVER have been added to the SITES schema as child tables to the Sites table. A third table, ARCHIVE SAMPLES has been added as a child of the SAMPLES table.

SITE ENVELOPE

The purpose of this table is to capture the location and geometry of sites and sub-sites. Locations of vertices are recorded for polygons and transects, and for circular sites the centre and radius are recorded.

LAND COVER

This table is used to record land cover for any of the current recording schemes e.g. FAO Land Cover Classification System version 2 (FAO 2005). Land cover is to be recorded as an event and as a result a date stamp is required for each entry.

ARCHIVE SAMPLES

This table is used to record data on the physical soil sample held in the CSIRO National Soil Archive. Details include type of soil material (e.g. whole earth), amount of sample and the archive location of the stored sample.

Additions/changes to fields

The OBSERVATIONS table is subject to the greatest number of changes. Fields relating to the describing officer and date of observation have already been added by a number of state and territory agencies to their implementation of Sites. Others fields arising from the roadside erosion survey specifications (wind stability and ground cover) are also proposed inclusions. Additions to the SAMPLES table are also up for consideration.

OBSERVATIONS table

New field - o date desc

Provides a needed date stamp for temporal observations. The date stamp in the SITES table will also remain.

New field - o desc by

Records the name of the officer that describes the observation. The describing officer field will also remain in the SITES table.

New field - o datum

Records the datum used for the location coordinates.

New field - o nature

Aims to record the nature of the observation. Possible entries include composite, characterisation, single.

New Field - o soil disturb

Captures soil disturbance in accordance with the roadside erosion survey specification (Forward 2009).

New Field - o grnd cov level min

Captures estimated minumim level of flattened groundcover in accordance with the roadside erosion survey specification (Forward 2009). Please note that other ground cover schemes are currently in development (see ACLUMP publication -

http://adl.brs.gov.au/data/warehouse/pe abares99001799/Groundcover mappingworkshop proc 11.pdf).

New Field - o grnd cov level max

Captures estimated maximum level of flattened groundcover in accordance with the roadside erosion survey specification (Forward 2009). Please note that other ground cover schemes are currently in development (see ACLUMP publication -

http://adl.brs.gov.au/data/warehouse/pe abares99001799/Groundcover mappingworkshop proc 11.pdf).

New Field - o grnd cov height min

Captures dominant minimum height of groundcover in accordance with the roadside erosion survey specification (Forward 2009).

New Field - o grnd cov height max

Captures dominant maximum height of groundcover in accordance with the roadside erosion survey specification (Forward 2009).

New Field - o wind stability

Captures wind erosion stability in accordance with the roadside erosion survey specification (Forward 2009).

New Field - o wind visibility

Captures visibility due to wind erosion in accordance with the roadside erosion survey specification (Forward 2009).

New Field - o date transfer

Capture the date the observation was transferred to the national inventory.

SAMPLES table

New field - samp contrib

Used to record the number of contributing samples for bulked samples.

New field - samp size

Used to record the size of the final sample size (5 classes of sample size).

New field – samp notes

Captures extra information (free text) on the nature of the samples.

SITES table

Expand scope of field - s type

Add additional codes relating to roadside erosion survey and soil property monitoring

LAB_RESULTS table

New field - labr_date Used to record the date the analysis was undertaken.

Contact Us

Phone: 1300 363 400 +61 3 9545 2176

Email: enquiries@csiro.au Web: www.csiro.au/flagships

CSIRO and the Flagships program

Australia is founding its future on science and innovation. Its national science agency, CSIRO, is a powerhouse of ideas, technologies and skills. CSIRO initiated the National Research Flagships to address Australia's major research challenges and opportunities. They apply large scale, long term, multidisciplinary science and aim for widespread adoption of solutions.