Universidad Nacional Autónoma de México Facultad de Ciencias Álgebra Lineal I

Tarea-Examen 2

Ángel Iván Gladín García No. cuenta: 313112470 angelgladin@ciencias.unam.mx

4 de Mayo 2020

- 1. Decir si las siguientes afirmaciones son verdaderas o falsas, demostrando/justificando sus afirmaciones. Para lo siguiente, V y W son espacios vectoriales con bases ordenadas finitas α y β , respectivamente, y $T:V\to W$ será lineal. A es una matriz.
 - (a) $([T]_{\alpha}^{\beta})^{-1} = [T^{-1}]_{\alpha}^{\beta}$

Falso. De hecho hay un teorema que dice lo siguiente,

Teorema. Sean V y W espacios vectoriales de dimensión finita con bases ordenadas β y γ respectivamente. Sea $T:V\to W$ lineal. Entonces T es invertible si y solo si $[T]^{\gamma}_{\beta}$ es invertible. Además $[T^{-1}]^{\beta}_{\gamma}=\left([T]^{\gamma}_{\beta}\right)^{-1}$.

(b) T es invertible si y sólo si T es invectiva y suprayectiva.

Verdadero.

Demostración. Una función es invertible si y solo si es inyectiva y suprayectiva. Una transformación lineal es una función, y es por eso que es invertible si y solo si es invertible y suprayectiva.

(c) $(A^{-1})^{-1} = A$

 $\overline{\text{Verdadero.}}$ 1

Demostración. Supongamos que A es una matriz de invertible de $n \times n$. Entonces $A^{-1}B = BA^{-1}$, donde B = A. De este modo, por definición de invertibilidad, la matriz B es la inversa de A^{-1} , es decir, $\left(A^{-1}\right)^{-1} = B = A$.

(d) A es invertible si y sólo si L_A es invertible.

Verdadero. De hecho sale de un corolario que dice lo siguiente

Corolario. A es invertible si y sólo si L_A es invertible. Además, $(L_A)^{-1} = L_{A^{-1}}$.

Demostración. Sean α y β bases ordenadas de V y W respectivamente, entonces $[L_A]^{\beta}_{\alpha}$. También se tiene que

$$[L_A^{-1}]^{\alpha}_{\beta} = ([L_A]^{\alpha}_{\beta})^{-1} = A^{-1} = [L_{A^{-1}}]^{\alpha}_{\beta}$$

y de ahí que $(L_A)^{-1} = L_{A^{-1}}$.

(e) A debe ser cuadrada para poder tener una inversa.

Verdadero. Se sigue de la definición,

Definición. Sea A una matriz de $n \times n$. Entonces A es invertible si existe una matriz B de $n \times n$ tal que AB = BA = I.

Si A es invertible, entonces la matriz B tal que AB = BA = I es única. La matriz B es llamada la inversa de A y es denotada como A^{-1} .

 $^{^1{\}rm Hace}$ falta la observación de que A sea invertible.

2. Sean A y B matrices invertibles de $n \times n$. Demostrar que AB es invertible y que $(AB)^{-1} = B^{-1}A^{-1}$.

Demostración. Como hay a los más una inversa de AB, todo lo que debemos desmotrar es que $B^{-1}A^{-1}$ tiene la propiedad requerida de ser inversa de AB, nombrémosla,

$$(AB)(B^{-1}A^{-1}) = (B^{-1}A^{-1})(AB) = I$$

Pero esto se sigue por la asociatividad de la multiplicación de matrices y por el hecho de que $AA^{-1} = A^{-1}A = I$ y $BB^{-1} = B^{-1}B = I$.

Definición. Sean V y W espacios vectoriales. Decimos que V es **isomorfo** a W si existe una transformación lineal $T:V\to W$ tal que es invertible. A dicha transformación lineal se le conoce como **isomorfismo** de V en W.

- 3. Sean V y W espacios vectoriales dimensionalmente finitos y sea $T:V\to W$ un isomorfismo. Sea V_0 un subespacio de V:
 - (a) Demuestre que $T(V_0)$ es un subespacio de W.

Demostración. El vector cero está en $T(V_0)$ porque T(0) = 0. Ahora tomemos $x, y \in T(V_0)$, entonces x = T(x'), y = T(y') para $x', y' \in V_0$, pero notemos que T(x' + y') = T(x') + T(y') = x + y. Por tanto, $x + y \in T(V_0)$ ya que $x' + y' \in V_0$. Se sigue los mismo con la multiplicación por escalar, si $c \in F$ y $x \in T(V_0)$, entonces cx = c(T(x')) = T(cx') para algún $x' \in V_0$. Por tanto $cx \in T(v_0)$.

(b) Demuestre que $\dim(V_0) = \dim(T(V_0))$.

Demostración. Restrinjamos T al subespacio V_0 . Llamemos a esta restricción $T_{V_0}: V_0 \to T(V_0)$. Entonces por definición T_{V_0} es suprayectiva y también inyectiva, ya que $N(T) = \{0\}$. Entonces T_{V_0} sigue siendo un isomorfismo y por el teorema² se sigue que $\dim(V_0) = \dim(T(V_0))$.

Definición. Sea β una base ordenada de un espacio vectorial n-dimensional V sobre un campo F. La **representación estandar de** V **respecto a** β se define como la función $\phi_{\beta}: V \to F^n$ dada por $\phi_{\beta}(x) = [x]_{\beta}$, para cada $x \in V$.

4. Demuestre que para cualquier espacio vectorial dimensionalmente finito V con base ordenada β , ϕ_{β} es un isomorfismo.

Demostración. Para mostrar que ϕ_{β} es una isomorfismo debemos demostrar que ϕ_{β} es lineal, inyectiva y suprayectiva. Supongamos que $\beta = \{v_1, v_2, \dots, v_n\}$ se una base ordenada para V. Tomemos $x, y \in V$ tal que $x = a_1v_1, a_2v_2, \dots, a_nv_n$ y $y = b_1v_1, b_2v_2, \dots, b_nv_n$. Consideremos la función $\phi_{\beta}: V \to V$ definida como

$$\phi_{\beta}(x) = \phi_{\beta}(a_1v_1, a_2v_2, \dots, a_nv_n) = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

Entonces ϕ_{β} es lineal si $\phi_{\beta}(cx+y) = c\phi_{\beta}(x) + \phi_{\beta}(y)$. Se tiene que,

$$\begin{split} \phi_{\beta}(cx+y) &= \phi_{\beta}(c(a_{1}v_{1} + a_{2}v_{2} + \ldots + a_{n}v_{n}) + (b_{1}v_{1} + b_{2}v_{2} + \ldots + b_{n}v_{n})) \\ &= \phi_{\beta}(ca_{1}v_{1} + ca_{2}v_{2} + \ldots + ca_{n}v_{n} + b_{1}v_{1} + b_{2}v_{2} + \ldots + b_{n}v_{n}) \\ &= \phi_{\beta}((ca_{1} + b_{1})v_{1} + (ca_{2} + b_{2})v_{2} + \ldots + (ca_{n} + b_{n})v_{n}) \\ &= \begin{bmatrix} ca_{1} + b_{1} \\ ca_{1} + b_{1} \\ \vdots \\ ca_{n} + b_{n} \end{bmatrix} = \begin{bmatrix} ca_{1} \\ ca_{2} \\ \vdots \\ b_{n} \end{bmatrix} + \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{bmatrix} + \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{bmatrix} \\ &= c\phi_{\beta}(x) + \phi_{\beta}(y) \end{split}$$

² Sean V y W espacios vectoriales dimensionalmente finitos (sobre el mismo campo). Entonces V es isomorfo a W si y solo si $\dim(V) = \dim(W)$.

Ahora para probar que ϕ_{β} es inyectiva si y solo si $N(\phi_{\beta}) = 0$. Tomemos $x \in N(\phi_{\beta})$ tal que $x = \sum_{i=1}^{n} a_i v_i = 0$. Pero se tiene que

$$\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = 0$$

lo cual implica que $a_i = 0$ para $1 \le i \le n$. Y así $N(\phi_\beta) = 0$, entonces ϕ_β es inyectiva. Pero por un teorema³ tenemos que T es inyectiva si y solo si T es suprayectiva.

- 5. Sea $T: V \to W$ una transformación lineal de un espacio n-dimensional V a un espacio m-dimensional W. Sean β y γ bases ordenadas de V y W, respectivamente. Y sea $A = [T]_{\beta}^{\gamma}$. Demuestre que:
 - (a) $rank(T) = rank(L_A)$.

Demostración. Consideremos $\phi_{\beta}: V \to F^n$ la transformación lineal definida como $\phi_{\beta}(v) = [v]_{\beta}$ y $\phi_{\gamma}: V \to F^m$ la transformación lineal definida como $\phi_{\gamma}(w) = [w]_{\gamma}$. Estas transformaciones son isomorfismos entre sus respectivos espacios.

Por demostrar que $\phi_{\beta}(N(T)) = N(L_A)$,

- (\subseteq) Sea $x \in \phi_{\beta}(N(T))$. Como ϕ_{β} es isomorfa entre V y F^n existe un único $v \in N(T)$ tal que $\phi_{\beta}(v) = [v]_{\beta} = x$. Ahora como $v \in N(T)$, $T(v) = 0_W$. Se tiene que $0_{F^m} = [0_W]_{\gamma} = [T(v)]_{\gamma} = [T]_{\beta}^{\gamma}[v]_{\beta} = Ax$. Por tanto $x \in N(L_A)$.
- (\supseteq) Sea $x \in N(L_A)$. Sea $v \in V$ sea el único vector tal que $\phi_{\beta}(v) = [v]\beta = x$. Entonces se tiene que $0_{F^m} = Ax = [T]_{\beta}^{\gamma}[v]_{\beta} = [T(v)]_{\gamma} = \phi_{\gamma}(T(v))$. Como ϕ_{γ} es un isomorfismo, $T(v) = 0_W$. Por tanto $v \in N(T)$, lo que implica que $x \in \phi_{\beta}(N(T))$.

(b) $\operatorname{nulidad}(T) = \operatorname{nulidad}(L_A)$.

Demostración. Usando la demostración de (3.a) se sigue que,

$$\operatorname{nulidad}(T) = \dim(N(T)) = \dim(\phi_{\beta}(N(T))) = \dim(N(L_A)) = \operatorname{nulidad}(L_A)$$

Aplicando el teorema de la dimensión

$$n = \dim(V) = \text{nulidad}(T) + \text{rank}(T)$$

$$n = \dim(F^n) = \operatorname{nulidad}(L_A) + \operatorname{rank}(L_A)$$

Por tanto, nulidad(T) = nulidad (L_A) .

³ Sean V y W espacios vectoriales de la misma dimensión (finita), y sea $T:V\to W$ lineal. Entonces los siguientes enunciados son equivalentes.

T es inyectiva.

 $[\]blacksquare$ T es suprayectiva.

 $[\]bullet \ \operatorname{rank}(T) = \dim(T).$