Hopcroft-Karp Algorithm

1905047-Rakib Abdullah 1905048-Md. Al-Amin Sany 1905052-Bijoy Ahmed Saiem

Department of Computer Science and Engineering Bangladesh University of Engineering and Technology

February 25, 2023

- Introduction
- 2 Definitions
- 3 Algorithm
- Time Complexity
- 6 Applications

Table of Contents

- Introduction
- 2 Definitions
- 3 Algorithm
- 4 Time Complexity
- 6 Applications

Introduction

Hopcroft-Karp Algorithm

The Hopcroft-Karp algorithm is a graph algorithm that finds the maximum cardinality matching in a bipartite graph.

Introduction

Hopcroft-Karp Algorithm

The Hopcroft-Karp algorithm is a graph algorithm that finds the maximum cardinality matching in a bipartite graph.

Figure: Bipartite graph

Introduction

Hopcroft-Karp Algorithm

The Hopcroft-Karp algorithm is a graph algorithm that finds the maximum cardinality matching in a bipartite graph.

Figure: Bipartite graph

Figure: Maximum cardinality matching

Table of Contents

- Introduction
- 2 Definitions
- 3 Algorithm
- 4 Time Complexity
- 6 Applications

Bipartite Graph

A graph is bipartite if its vertices can be divided into two disjoint sets such that every edge connects a vertex in one set to a vertex in the other set.

Bipartite Graph

A graph is bipartite if its vertices can be divided into two disjoint sets such that every edge connects a vertex in one set to a vertex in the other set.

Maximum Cardinality

A matching in a graph is a set of edges such that no two edges share a common vertex. Maximum cardinality means maximum possible matching.

Bipartite Graph

A graph is bipartite if its vertices can be divided into two disjoint sets such that every edge connects a vertex in one set to a vertex in the other set.

Maximum Cardinality

A matching in a graph is a set of edges such that no two edges share a common vertex. Maximum cardinality means maximum possible matching.

Free vertex

A free vertex is a vertex with no matching edge connected to it.

Bipartite Graph

A graph is bipartite if its vertices can be divided into two disjoint sets such that every edge connects a vertex in one set to a vertex in the other set.

Maximum Cardinality

A matching in a graph is a set of edges such that no two edges share a common vertex. Maximum cardinality means maximum possible matching.

Free vertex

A free vertex is a vertex with no matching edge connected to it.

Augmenting Path

- Starts and ends both at free vertex
- Edges in the path alternate between being in the matching and not in the matching

Table of Contents

- Introduction
- 2 Definitions
- 3 Algorithm
- 4 Time Complexity
- 6 Applications

Hopcroft-Karp(G)

1: **M** = φ

- 1: $M = \phi$
- 2: repeat
- 3: $P = \{p_1, p_2, \dots, p_k\}$ //maximal set of vertex-disjoint shortest augmenting paths

- 1: $M = \phi$
- 2: repeat
- 3: $P = \{p_1, p_2, \dots, p_k\}$ //maximal set of vertex-disjoint shortest augmenting paths
- 4: $M := M \oplus \{p_1 \cup p_2 \cup \cdots \cup p_k\}$

- 1: $M = \phi$
- 2: repeat
- 3: $P = \{p_1, p_2, \dots, p_k\}$ //maximal set of vertex-disjoint shortest augmenting paths
- 4: $M := M \oplus \{p_1 \cup p_2 \cup \cdots \cup p_k\}$
- 5: **until** $P = \phi$

- 1: $M = \phi$
- 2: repeat
- 3: $P = \{p_1, p_2, \dots, p_k\}$ //maximal set of vertex-disjoint shortest augmenting paths
- 4: $M := M \oplus \{p_1 \cup p_2 \cup \cdots \cup p_k\}$
- 5: **until** $P = \phi$
- 6: Output the matching M as the maximum cardinality matching.

Example

A bipartite graph is given below where we will find its maximum cardinality mathching:

BFS sources =
$$\{a, b, c, d\}$$

 $F = \{\}$

BFS sources =
$$\{a, b, c, d\}$$

 $F = \{e, f, h\}$

BFS sources =
$$\{a, b, c, d\}$$

 $F = \{e, f, h\}$

BFS sources =
$$\{a, b, c, d\}$$

 $F = \{e, f, h\}$

BFS sources =
$$\{a, b, c, d\}$$

 $F = \{e, f, h, g\}$

$$F = \{e, f, h, g\}$$

 $P = \{(e - a)\}$

$$F = \{e, f, h, g\}$$

 $P = \{(e - a)\}$

$$F = \{f, h, g\}$$
$$P = \{(e - a)\}$$

$$F = \{f, h, g\}$$

 $P = \{(e - a), (f - c)\}$

$$F = \{h, g\}$$

 $P = \{(e - a), (f - c)\}$

$$F = \{h, g\} P = \{(e - a), (f - c), (g - d)\}$$

$$F = \{h\}$$

$$P = \{(e - a), (f - c), (g - d)\}$$
Before $M = \phi$
After $M = M \oplus \{(e - a) \cup (f - c) \cup (g - d)\}$

$$M = \{(e - a), (f - c), (g - d)\}$$

After first iteration

After running the DFS,

$$M = \{(e-a), (f-c), (g-d)\}$$

Second iteration:BFS

BFS sources =
$$\{b\}$$

 $F = \{\}$
BFS tree = $b - > e$

Second iteration:BFS

BFS sources =
$$\{b\}$$

 $F = \{\}$
BFS tree = $b->e->a$

Second iteration:BFS

BFS sources =
$$\{b\}$$

 $F = \{h\}$
BFS tree = $b - > e - > a - > f, h$

Second iteration:DFS

Second iteration:DFS

DFS sources =
$$\{h\}$$

 $P = \{(h - a -)\}$

DFS sources =
$$\{h\}$$

 $P = \{(h - a - e - \}$

DFS sources =
$$\{h\}$$

 $P = \{(h - a - e - b)\}$

DFS sources =
$$\{\}$$

 $P = \{(h - a - e - b)\}$

$$P = \{ (h - a - e - b) \}$$
Before $M = \{ (a - e), (f - c), (g - d) \}$
After $M = M \oplus \{ (h - a), (a - e), (e - b) \}$

$$M = \{ (h - a), (e - b), (f - c), (g - d) \}$$

Algorithm termination

As no more free vertex is available in upper set, the algorithm terminates and finally we get the following graph with maximum cardinally 4 where $M = \{(h-a), (e-b), (f-c), (g-d)\}$

Table of Contents

- Introduction
- 2 Definitions
- 3 Algorithm
- 4 Time Complexity
- 6 Applications

Hopcroft-Karp(G)

- 1: $M = \phi //o(1)$
- 2: repeat
- 3: $P = \{p_1, p_2, \dots, p_k\}$
- 4: $M := M \oplus \{p_1 \cup p_2 \cup \cdots \cup p_k\}$
- 5: **until** $P = \phi$
- 6: Return M //O(1)

Per Loop Iteration

Breadth First Search: Uses all edges at most once so time complexity is O(|E|)

Depth First Search: Since vertices and edges are deleted once used, all edges are also used at most once, so time complexity is O(|E|)

So over all each iteration is linear with the number of edges. i.e O(|E|)

- ▲ Breadth first search terminates when it reaches the free vertex. Therefor, there is no shorter path to a free vertex. Therefore, in subsequent iterations a shorter path cannot be found.
- ▲ Once it terminates it collects all free vertex on that level so all possible paths of that length are found. Therefore, in subsequent iterations the paths found must be longer.
- ▲ Since the paths alternate between matched and unmatched edges,and free vertices cannot be connected to a matched edge,then in subsequent iterations the paths must be at least two edges longer.

- \blacktriangle After $\sqrt{|V|}$ iterations the minimum path length would therefore be $2\sqrt{|V|}$
- ▲ Since in $P = \{p_1, p_2, ..., p_k\}$ the paths are vertex disjoint and there are only |V| vertices in the graph,then there can only be $\frac{|V|}{2\sqrt{|V|}} = \frac{1}{2}\sqrt{|V|}$
- ▲ Therefore after $\sqrt{|V|}$ iterations only $\frac{1}{2}\sqrt{|V|}$ more are needed so the loop will terminate after $\frac{3}{2}\sqrt{|V|}$ repeats.

Table of Contents

- Introduction
- 2 Definitions
- 3 Algorithm
- 4 Time Complexity
- 6 Applications

• Dating app-The algorithm can be used in online dating apps to match people based on their interests and preferences.

- Dating app-The algorithm can be used in online dating apps to match people based on their interests and preferences.
- Image segmentation finding matches between objects in an image and a pre-defined set of object templates.

- Dating app-The algorithm can be used in online dating apps to match people based on their interests and preferences.
- Image segmentation finding matches between objects in an image and a pre-defined set of object templates.
- Job scheduling matching workers with tasks based on their skills and availability.

- Dating app-The algorithm can be used in online dating apps to match people based on their interests and preferences.
- Image segmentation finding matches between objects in an image and a pre-defined set of object templates.
- Job scheduling matching workers with tasks based on their skills and availability.
- Online advertising matching ads with potential viewers based on demographic and behavioral data.

Thank You!

Gracias por todo

- Thank you for your attention.
- We appreciate your support.