A First Course in Abstract Algebra

Samuel Lindskog

June 30, 2024

Definition 1.1 (Binary Operation). A binary operation * on a set S is a function mapping $S \times S$ into S. For each $(a,b) \in S \times S$, we will denote the element *((a,b)) of S by a*b.

Definition 1.2 (Closed Under). Let * be a binary operation on S and let H be a subset of S. The subset H is closed under * if for all $a,b \in H$ we also have $a*b \in H$. In this case, the binary operation on H is the *induced operation* of * on H.

Definition 1.3 (Commutative). A binary operation * on a set S is commutative iff a*b=b*a for all $a,b \in S$.

Definition 1.4 (Associative). A binary operation * on a set S is associative if (a*b)*c = a*(b*c) for all $a,b,c \in S$.

Definition 1.5 (Binary Algebraic Structure). A binary algebraic structure $\langle S, * \rangle$ is a set S together with a binary operation * on S.

Definition 1.6 (Isomorphism). Let $\langle S, * \rangle$ and $\langle S', *' \rangle$ be binary algebraic structures. An isomorphism of S with S' is a one-to-one function¹ ϕ mapping S onto S' such that:

$$\phi(x * y) = \phi(x) *' \phi(y)$$
 for all $(x, y \in S)$.

homomorphism property

If such a function exists, then S and S' are isomorphic binary structures, which we denote by $S \simeq S'$

Definition 1.7 (Identity Element). Let $\langle S, * \rangle$ be a binary structure. An element e of S is an identity element for * if e * s = s * e = s for all $s \in S$

Theorem 1.1 (Uniqueness of Identity Element). A binary structure $\langle S, * \rangle$ has at most one identity element.

Theorem 1.2. Suppose $\langle S, * \rangle$ has an identity element e for *. If ϕ $S \rightarrow S'$ is an isomorphism of $\langle S, * \rangle$ with $\langle S', *' \rangle$, then $\phi(e)$ is an identity element for the binary operation *' on S'.

Definition 1.8 (Group). A group $\langle G, * \rangle$ is a set G, closed under a binary operation *, such that the following axioms are satisfied:²

- 1. For all $a, b, c \in G$, we have (a * b) * c = a * (b * c).
- 2. There is an element e in G such that for all $x \in G$, e * x = x * e = x.

¹ if no one-to-one function exists but the homomorphism property is satisfied, than phi is a homomorphism.

² A group *G* is *abelian* if its binary operation is commutative.

3. Corresponding to each $a \in G$, there is an element a' in G such that a * a' = a' * a = e.

Theorem 1.3. If G is a group with binary operation *, then the left and right cancellation laws hold in G.

Proof: Suppose a * c = b * c. It follows that $(a * c) * c^{-1} =$ $(b*c)*c^{-1}$, and thus following the fact that group operations are associative, a * e = b * e and a = b.

Theorem 1.4. If *G* is a group with binary operation *, and if *a* and b are any elements of G, then the linear equations a * x = b and y * a = b have unique solutions x and y in G.

Theorem 1.5. In a group G with binary operation *, there is only one element *e* in *G* such that e * x = x * e = x for all *x* in *G*. Likewise for each a in G there is only one element a' in G such that a' * a =a * a' = e.3

Corollary 1.1. Let *G* be a group. Then for all $a, b \in G$, we have (a*b)' = b'*a'

Definition 1.9 (Structural Property). A structural property of a binary structure is one that must be shared by any isomorphic binary structure.4

Definition 1.10 (Semigroups and Monoids). A *semigroup* is a set with an associative binary operation. A monoid is a semigroup what has an identity element.⁵

Problem 1. Show that every group G with identity e such that x * x = 0*e* for all $x \in G$ is abelian.

Proof: Suppose a, b are two elements in G, with $a \neq b$. Trivially, (a*b)*(b*a) = e. Because x*x = e for all $x \in G$, it follows that (a * b) * (a * b) = e, so a * b = b * a.

Problem 2. Let *G* be a group with a finite number of elements. Show that for any $a \in G$, there exists $n \in \mathbb{Z}^+$ s.t. $a^n = e$.

Proof: Suppose $G = \{e\}$. Then $e^1 = e$. Suppose G has two or more elements, $n \in \mathbb{Z}^+$, $a \in G$. Because G is finite, there are a finite number of elements in G that a^n can assume. It follows that there exists $k, j \in \mathbb{Z}^+$ with k < j such that $a^k = a^j$. Therefore there exists nsuch that $a^k * a^n = a^j$, from which follows $a^n = e$.

Notation. In place of the notation of a * b, we can use a + b to be read as "the sum of a and b", or ab to be read as "the product of a and b". As a convention, a + b refers to commutative operations, while abmay be used if the operation may or may not be commutative. na refers to $a + \ldots + a$ repeated n times.

- ³ This follows trivially from the left and right cancellation laws.
- ⁴ For example, the cardinality of set *S* is a structural property of $\langle S, * \rangle$
- ⁵ Every group is a semigroup and a monoid.
- ⁶ The associative axiom of groups introduces the existence of a set of factors for any one element in the

Definition 1.11 (Subgroup). If a subset *H* of a group *G* is closed under the binary operation of *G*, and if *H* with the induced operation from *G* is itself a group, then *H* is a subgroup of *G*.⁷

Definition 1.12 (Improper and Proper Subgroups). If *G* is a group, then the subgroup consisting of *G* itself is the *improper subgroup* of G. All other subgroups are *proper subgroups*. The subgroup $\{e\}$ is the trivial subgroup of *G*. All other subgroups are nontrivial.

Definition 1.13 (Klein 4-group).

	О	1	2	3
О	О	1	2	3
1	1	2	3	О
2	2	3	О	1
3	3	0	1	2

Theorem 1.6. A subset *H* of a group *G* is a subgroup of *G* if and only if:

- 1. *H* is closed under the binary operation of *G*
- 2. The identity element *e* of *G* is in *H*
- 3. For all $a \in H$ it is true that $a^{-1} \in H$

Theorem 1.7. Let *G* be a group and let $a \in G$. Then

$$H = \{a^n \mid n \in \mathbb{Z}\}$$

is the smallest subgroup of G that contains a.⁸

Definition 1.14 (Cyclic Subgroup). Let G be a group and let $a \in G$. Then the subgroup $\{a^n \mid n \in \mathbb{Z}\}$ of G is called the *cyclic subgroup of* Ggenerated by a, and is denoted by $\langle a \rangle$.

Definition 1.15 (Generator). An element *a* of a group *G* generates *G* if $\langle a \rangle = G$.

Definition 1.16 (Cyclic Group). A group *G* is cyclic if there is some element *a* in *G* that generates *G*.

Problem 3. Is a generator for a cyclic group unique? *Proof:* No. Suppose G a group and $\langle a \rangle = G$. Because $a^n =$ $(a^{-1})^{-n}$, we can clearly see $\langle a^{-1} \rangle = G$.

⁷ If *H* is a subgroup of *G*, this can be denoted $H \leq G$, or H < G.

⁸ Look at discreetmath notes for definitions. In this case, we are finding the r-smallest element of a partial order on $\mathcal{P}(G)$ pairing each subgroup containing a with all containing groups.

⁹ Take note that n can be negative.