T.D. 2: Integrales dobles y aplicaciones. Teorema de Green-Riemann.

Ejercicio 1

Probar que
$$\lim_{n\to\infty} \int_0^1 \int_0^1 x^n y^n dx dy = 0.$$

Ejercicio 2

Calcular las integrales:

- 1. $\iint_D x^3 y dS$, con *D* la región entre el eje *Y* y la parábola $x = -4y^2 + 3$.
- 2. $\iint_D 2ydS$, con *D* la región $y \ge x^2$ interior al círculo $x^2 + y^2 = 2$.

Ejercicio 3

Calcular el volúmen del solido acotado mediante integración doble.

La superficie $z = x^2 + y^2$ y los planos z = 0 y z = 10.

Ejercicio 4

Calcular la integral doble $\int \int_D 4xydS$ donde D es el recinto limitado por las curvas $y = 1 - x^2$ e y = x - 1.

Ejercicio 5

Calcular el área de la región :

$$R = \{(x, y) : 2x \le x^2 + y^2, x^2 + y^2 \le 4x, y \le x, \frac{-x}{\sqrt{3}} \le y\}$$

y la masa del cuerpo con densidad $\rho(x, y) = \frac{y}{x^2 + y^2}$ y contenido en dicha región.

Ejercicio 6

Hallar el área de la porción de $z = x + y^2$ que se encuentra encima del triángulo de vértices (0,0,0),(1,1,0) y (0,1,0).

Ejercicio 7

Calcular el flujo del campo **F** a través de la superficie *S* donde **F** = (e^x, e^y, z) y *S* es la porción de z = xy sobre el triángulo (0, 0, 0), (1, 1, 0), (1, -1, 0) con orientación hacia arriba.

Ejercicio 8

Calcular de dos maneras distintas la integral de linea del campo $\mathbf{F}(x,y) = (2x^3 - y^3, x^3 + y^3)$ en la frontera del anillo $\{1 \le x^2 + y^2 \le 4\}$.