Algebra Assignment 03

N'Dah Jean KOUAGOU

December 2, 2018

1.

a) $S^1 = \{e^{i\theta} | \theta \in \mathbb{R}\}.$

Let's show that S^1 is a group under the multiplication $e^{i\theta_1}e^{i\theta_2}=e^{i(\theta_1+i\theta_2)}$ S^1 is a subset of $\mathbb C$. Then we just need to show that S^1 is a subgroup of $\mathbb C$ under its natural multiplication.

- We have $1 = e^{i0}$, so $1 \in S^1$ and then $S^1 \neq \emptyset$.
- Let $x, y \in S^1$. Then there exists $\theta_1, \theta_2 \in \mathbb{R}$ such that $x = e^{i\theta_2}$ and $y = e^{i\theta_2}$. y has an inverse in \mathbb{C} , say $y^{-1} = e^{-i\theta_2}$ and we have : $xy^{-1} = e^{i\theta_1}e^{-i\theta_2} = e^{i(\theta_1 \theta_2)} \in S^1$ because $\theta_1 \theta_2 \in \mathbb{R}$.

We conclude that S^1 is a subgroup of \mathbb{C} , so a group.

b)

 $\mathbb Z$ is a normal subgroup of $\mathbb R$ because $\mathbb R$ is commutative and $\mathbb Z$ is one of its subgroups.

<u>ر</u>

Let's use the first Isomorphism Theorem to prove that $\mathbb{R}/\mathbb{Z} \cong S^1$. We consider the following map

$$\varphi: (\mathbb{R}, +) \to S^1$$
$$\theta \mapsto e^{i2\pi\theta}$$

- For all $\theta_1, \theta_2 \in \mathbb{R}$ we have $\varphi(\theta_1 + \theta_2) = e^{i(\theta_1 + i\theta_2)} = e^{i\theta_1}e^{i\theta_2} = \varphi(\theta_1)\varphi(\theta_2)$. Thus φ is a homomorphism.
- Let $x \in S^1$. Then there exists $\theta \in \mathbb{R}$ such that $x = e^{i\theta}$. We want to find $\theta' \in \mathbb{R}$ such that $\varphi(\theta') = x$.

Let's take $\theta' = \frac{\theta}{2\pi}$. We have $\frac{\theta}{2\pi} \in \mathbb{R}$ and $\varphi(\theta') = \varphi(\frac{\theta}{2\pi}) = e^{i(2\pi(\frac{\theta}{2\pi}))} = e^{i\theta} = x$.

It follows that φ is onto and then we have $Rg(\varphi) = S^1$.

• We have :

$$Ker(\varphi) = \{\theta \in \mathbb{R} | \varphi(\theta) = 1\}$$

$$= \{\theta \in \mathbb{R} | e^{i2\pi\theta} = 1\}$$

$$= \{\theta \in \mathbb{R} | \theta \in \mathbb{Z}\} \text{ because } e^{i2\pi\theta} = 1 \Leftrightarrow \theta \in \mathbb{Z}$$

$$= \mathbb{Z}.$$

$$Ker(\varphi) = \mathbb{Z}.$$

Therefore, we can apply the First Theorem of Isomorphism :

$$\mathbb{R}/Ker(\varphi) \cong Rg(\varphi) \Leftrightarrow \boxed{\mathbb{R}/\mathbb{Z} \cong S^1}$$

2.

Let $T: \mathcal{M}_{22}(\mathbb{R}) \to \mathbb{R}$ be a linear transformation. We want to show that there exist $a, b, c, d \in \mathbb{R}$ such that

$$T\begin{bmatrix} w & x \\ y & z \end{bmatrix} = aw + bx + cy + dz$$

for all
$$\begin{bmatrix} w & x \\ y & z \end{bmatrix} \in \mathcal{M}_{22}(\mathbb{R}).$$

The set
$$\{E_{11}, E_{12}, E_{21}, E_{22}\}$$
 where $E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, E_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix},$

$$E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
 is a basis for $\mathcal{M}_{22}(\mathbb{R})$.

Then for all $\begin{bmatrix} w & x \\ y & z \end{bmatrix} \in \mathcal{M}_{22}(\mathbb{R})$, we have

$$\begin{bmatrix} w & x \\ y & z \end{bmatrix} = wE_{11} + xE_{12} + yE_{21} + zE_{22}.$$

Thus
$$T\begin{bmatrix} w & x \\ y & z \end{bmatrix} = wT(E_{11}) + xT(E_{12}) + yT(E_{21}) + zT(E_{22})$$
 because T is linear.

Let $a = T(E_{11}), b = T(E_{12}), c = T(E_{21})$ and $d = T(E_{22})$.

As a result, there exist $a, b, c, d \in \mathbb{R}$ such that

$$T\begin{bmatrix} w & x \\ y & z \end{bmatrix} = aw + bx + cy + dz$$

for all
$$\begin{bmatrix} w & x \\ y & z \end{bmatrix} \in \mathcal{M}_{22}(\mathbb{R})$$

3.

Let $\{v_1, \dots, v_n\}$ be a basis for a vector space V and let $T: V \to V$ be a linear transformation. We want to prove that if $T(v_1) = v_1, ..., T(v_n) = v_n$, then T is the identity transformation on V.

Suppose V is a K-vectorial space.

Let $x \in V$, $\exists a_1, a_2, \dots, a_n \in K$ such that $x = a_1v_1 + a_2v_2 + \dots + a_nv_n$

Then
$$T(x) = T(\sum_{i=1}^{n} a_i v_i) = \sum_{i=1}^{n} a_i T(v_i)$$
 because T is linear
$$= \sum_{i=1}^{n} a_i v_i \text{ by assumption}$$

$$= x$$

Thus T is the identity transformation on V.

4.

Let $S: \mathcal{P} \to \mathbb{R}$ be the linear transformation defined by

$$S(p(x)) = \int_0^1 p(x)dx$$

• Let's find the **kernel** of S.

We have

$$Ker(S) = \left\{ p(x) \in \mathcal{P} | \int_0^1 p(x) dx = 0 \right\}$$
Let $p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$.

We have $\int_0^1 p(x) dx = \left[a_0 x + \frac{1}{2} a_1 x^2 + \dots + \frac{1}{n+1} a_n x^{n+1} \right]_0^1$

$$= a_0 + \frac{1}{2} a_1 + \dots + \frac{1}{n+1} a_n$$

$$= \sum_{i=0}^{i=n} \frac{1}{i+1} a_i$$

Hence,

$$Ker(S) = \left\{ p(x) = \sum_{i=0}^{i=n} a_i x^i \in \mathcal{P} \mid \sum_{i=0}^{i=n} \frac{1}{i+1} a_i = 0 \right\}$$

• Let's find the range Rg of S.

We have:

$$Rg(S) = \{S(p(x)) \mid p(x) \in \mathcal{P}\}$$
$$= \left\{ \int_0^1 p(x)dx \mid p(x) \in \mathcal{P} \right\}$$
$$\subseteq \mathbb{R}$$

Let's show that $\mathbb{R} \subseteq Rg(S)$.

Let $\beta \in \mathbb{R}$.

Consider $p(x) = 2\beta x$. We have $p(x) \in \mathcal{P}$ and

$$\int_0^1 p(x)dx = \left[\beta x^2\right]_0^1 = \beta.$$

It follows that $\mathbb{R} \subseteq Rg(S)$ and we conclude that

$$Rg(S) = \mathbb{R}$$

5.

Let's consider the subspace $W = span\{e^{2x}, e^{2x}\cos x, e^{2x}\sin x\}$ of \mathcal{D} , the vector space of all differentiable functions over \mathbb{R} .

a) Let's find the matrix of the differential operator D with respect to $\mathcal{B}=\{e^{2x},e^{2x}\cos x,e^{2x}\sin x\}.$

We have:

$$D(e^{2x}) = 2e^{2x}, D(e^{2x}\cos x) = -e^{2x}\sin x + 2e^{2x}\cos x, D(e^{2x}\sin x) = e^{2x}\cos x + 2e^{2x}\sin x$$

In terms of coordinates in the basis \mathcal{B} , we have

$$D(e^{2x}) = \begin{bmatrix} 2\\0\\0 \end{bmatrix}, \ D(e^{2x}\cos x) = \begin{bmatrix} 0\\2\\-1 \end{bmatrix}, \ D(e^{2x}\sin x) = \begin{bmatrix} 0\\1\\2 \end{bmatrix}$$

The matrix of the differential operator is then:

$$M = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & -1 & 2 \end{bmatrix}$$

b)

Let's compute the derivative of $f(x) = 3e^{2x} - e^{2x}\cos x + 2e^{2x}\sin x$ using the answer in a).

In terms of coordinates in the basis \mathcal{B} we have :

$$f(x) = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$$

Thus

$$D(f(x)) = M \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$$

$$= \begin{bmatrix} 6 \\ 0 \\ 5 \end{bmatrix}$$

As a result,

$$D(f(x)) = 6e^{2x} + 5e^{2x}\sin x$$