CSCI3230 (ESTR3108) Fundamentals of Artificial Intelligence

Tutorial 5

Yuehao Wang

Email: yhwang21@cse.cuhk.edu.hk Office: Room 1024, 10/F, SHB

Dept. of Computer Science & Engineering
The Chinese University of Hong Kong

Outline

Part 1. K-means

Part 2. DBSCAN

Part 3. Spectral clustering

Part 1. K-means

K-means algorithm

Review the routine of K-means:

- Choose K (random) data points (as seeds) to be the initial centroids as cluster centers.
- Assign each data point to the closest centroid.
- Re-compute the centroids using the current cluster memberships.
- If a convergence criterion is not met, repeat steps 2 and 3.

Use the k-means algorithm and Euclidean distance.

- \bullet Data points: $A_1(2,10)$, $A_2(2,5)$, $A_3(8,4)$, $A_4(5,8)$, $A_5(7,5)$, $A_6(6,4)$, $A_7(1,2)$, $A_8(4,9)$
- Question: Please show the centroids of clusters after the 1st iteration of k-means. Suppose we set 3 clusters with initial centroids $u_1(2,10)$. $u_2(5,8),\ u_3(1,2)$.

	$u_1(2,10)$	$u_2(5,8)$	$u_3(1,2)$	class
$\overline{A_1}$	0	$\sqrt{13}$	$\sqrt{65}$	1

	$u_1(2,10)$	$u_2(5,8)$	$u_3(1,2)$	class
$\overline{A_1}$	0	$\sqrt{13}$	$\sqrt{65}$	1
$\overline{A_2}$	5	$\sqrt{18}$	$\sqrt{10}$	3

	$u_1(2,10)$	$u_2(5,8)$	$u_3(1,2)$	class
$\overline{A_1}$	0	$\sqrt{13}$	$\sqrt{65}$	1
$\overline{A_2}$	5	$\sqrt{18}$	$\sqrt{10}$	3
$\overline{A_3}$	6	5	$\sqrt{53}$	2

	$u_1(2,10)$	$u_2(5,8)$	$u_3(1,2)$	class
$\overline{A_1}$	0	$\sqrt{13}$	$\sqrt{65}$	1
$\overline{A_2}$	5	$\sqrt{18}$	$\sqrt{10}$	3
$\overline{A_3}$	6	5	$\sqrt{53}$	2
$\overline{A_4}$	$\sqrt{13}$	0	$\sqrt{50}$	2

	$u_1(2,10)$	$u_2(5,8)$	$u_3(1,2)$	class
$\overline{A_1}$	0	$\sqrt{13}$	$\sqrt{65}$	1
$\overline{A_2}$	5	$\sqrt{18}$	$\sqrt{10}$	3
$\overline{A_3}$	6	5	$\sqrt{53}$	2
$\overline{A_4}$	$\sqrt{13}$	0	$\sqrt{50}$	2
$\overline{A_5}$	$\sqrt{50}$	$\sqrt{13}$	$\sqrt{45}$	2

	$u_1(2,10)$	$u_2(5,8)$	$u_3(1,2)$	class
$\overline{A_1}$	0	$\sqrt{13}$	$\sqrt{65}$	1
$\overline{A_2}$	5	$\sqrt{18}$	$\sqrt{10}$	3
A_3	6	5	$\sqrt{53}$	2
A_4	$\sqrt{13}$	0	$\sqrt{50}$	2
A_5	$\sqrt{50}$	$\sqrt{13}$	$\sqrt{45}$	2
$\overline{A_6}$	$\sqrt{52}$	$\sqrt{17}$	$\sqrt{29}$	2

	$u_1(2,10)$	$u_2(5,8)$	$u_3(1,2)$	class
$\overline{A_1}$	0	$\sqrt{13}$	$\sqrt{65}$	1
$\overline{A_2}$	5	$\sqrt{18}$	$\sqrt{10}$	3
$\overline{A_3}$	6	5	$\sqrt{53}$	2
$\overline{A_4}$	$\sqrt{13}$	0	$\sqrt{50}$	2
A_5	$\sqrt{50}$	$\sqrt{13}$	$\sqrt{45}$	2
$\overline{A_6}$	$\sqrt{52}$	$\sqrt{17}$	$\sqrt{29}$	2
$\overline{A_7}$	$\sqrt{65}$	$\sqrt{52}$	0	3

	$u_1(2,10)$	$u_2(5,8)$	$u_3(1,2)$	class
$\overline{A_1}$	0	$\sqrt{13}$	$\sqrt{65}$	1
$\overline{A_2}$	5	$\sqrt{18}$	$\sqrt{10}$	3
$\overline{A_3}$	6	5	$\sqrt{53}$	2
$\overline{A_4}$	$\sqrt{13}$	0	$\sqrt{50}$	2
$\overline{A_5}$	$\sqrt{50}$	$\sqrt{13}$	$\sqrt{45}$	2
$\overline{A_6}$	$\sqrt{52}$	$\sqrt{17}$	$\sqrt{29}$	2
$\overline{A_7}$	$\sqrt{65}$	$\sqrt{52}$	0	3
A_8	$\sqrt{5}$	$\sqrt{2}$	$\sqrt{58}$	2

Re-compute centroids based on the current clustering.

- Data points: $A_1(2,10)$, $A_2(2,5)$, $A_3(8,4)$, $A_4(5,8)$, $A_5(7,5)$, $A_6(6,4)$, $A_7(1,2)$, $A_8(4,9)$
- Cluster 1: $u_1 \leftarrow A_1 = (2, 10)$
- Cluster 2: $u_2 \leftarrow (A_3 + A_4 + A_5 + A_6 + A_8)/5 = (6,6)$
- Cluster 3: $u_3 \leftarrow (A_2 + A_7)/2 = (1.5, 3.5)$

Continue performing k-means until termination.

- 1st iteration, Cluster1 = $\{A_1\}$, Cluster2 = $\{A_3, A_4, A_5, A_6, A_8\}$. Cluster3 = $\{A_2, A_7\}$ $u_1 = (2, 10), u_2 = (6, 6), u_3 = (1.5, 3.5)$
- 2nd iteration, $Cluster1 = \{A_1, A_8\}$, $Cluster2 = \{A_3, A_4, A_5, A_6, \}$. $Cluster3 = \{A_2, A_7\}$ $u_1 = (3, 9.5), u_2 = (6.5, 5.25), u_3 = (1.5, 3.5)$
- 3rd iteration, Cluster1 = $\{A_1, A_4, A_8\}$, Cluster2 = $\{A_3, A_5, A_6, \}$. Cluster3 = $\{A_2, A_7\}$ u_1 = $(3.66, 9), u_2$ = $(7, 4.33), u_3$ = (1.5, 3.5)
- 4th iteration, Cluster1 = $\{A_1, A_4, A_8\}$, Cluster2 = $\{A_3, A_5, A_6, \}$. Cluster3 = $\{A_2, A_7\}$ $u_1 = (3.66, 9), u_2 = (7, 4.33), u_3 = (1.5, 3.5)$
- 5th iteration, Cluster1 = $\{A_1,A_4,A_8\}$, Cluster2 = $\{A_3,A_5,A_6,\}$. Cluster3 = $\{A_2,A_7\}$ u_1 = $(3.66,9),u_2$ = $(7,4.33),u_3$ = (1.5,3.5)
- ... converged after 3 iterations

Part 2. DBSCAN

DBSCAN algorithm

- Determine core points and noise points.
- Starting from core points, BFS to find dense neighboring regions.

```
DBSCAN(DB, distFunc, eps, minPts) {
    C := 0
                                                            /* Cluster counter */
    for each point P in database DB {
        if label(P) ≠ undefined then continue
                                                           /* Previously processed in inner loop */
                                                           /* Find neighbors */
       Neighbors N := RangeQuery(DB, distFunc, P, eps)
        if |N| < minPts then {
                                                            /* Density check */
            label(P) := Noise
                                                            /* Label as Noise */
            continue
        C := C + 1
                                                            /* next cluster label */
        label(P) := C
                                                            /* Label initial point */
        SeedSet S := N \ {P}
                                                            /* Neighbors to expand */
        for each point 0 in S {
                                                            /* Process every seed point 0 */
            if label(Q) = Noise then label(Q) := C
                                                            /* Change Noise to border point */
                                                            /* Previously processed (e.g., border point) */
            if label(Q) ≠ undefined then continue
            label(0) := C
                                                            /* Label neighbor */
            Neighbors N := RangeQuery(DB, distFunc, Q, eps) /* Find neighbors */
                                                            /* Density check (if O is a core point) */
            if |N| ≥ minPts then {
                S ·= S II N
                                                            /* Add new neighbors to seed set */
```

DBSCAN exercise

- Data points: $A_1(2,10)$, $A_2(2,5)$, $A_3(8,4)$, $A_4(5,8)$, $A_5(7,5)$, $A_6(6,4)$, $A_7(1,2)$, $A_8(4,9)$
- Let $\epsilon = \sqrt{5}, minPts = 3$.

DBSCAN exercise

ullet Core points: A_3 , A_5 , A_6 , A_8

{ winft

• Border points: A_1, A_4 ,

TF 13

• Noise points: A_2, A_7 .

Part 3. Spectral clustering

Problem definition

Given a population of N objects, we want to divide the population into c classes, where c is unknown.

- We can introduce a similarity metric to measure the distance between each pair of objects.
- Similarity measurements: cosine distance $x \cdot y$, L2-norm $||x y||_2$.
- By comparing similarities, we can obtain a non-negative symmetric affinity matrix $W.\ W_{ij}$ is the similarity between the i-th object and j-th object.
- Sometimes we can threshold the similarity measurements: low similarities are rounded to 0.
- ullet Then W would be a sparse matrix.

Problem definition

- Represent each object as a node.
- ullet We can create a relational graph G based on the similarities. If the similarity between two nodes is non-zero, we will build an edge between them.
- ullet W is the adjacency matrix of the relational graph.
- Let G_1, \ldots, G_c be subgraphs of G corresponding to c clusters
- Idealized assumption: $G_j \cap G_i = \emptyset$ for any $i \neq j$. G_i 's are connected.
- ullet The problem can be converted to finding connected components in G.

Graph Laplacian

- The key object in this problem is the graph Laplacian.
- Graph Laplacian is defined as L=D-W, where D is the degree matrix $D_{ii}=\sum_{j=[N]}W_{ij}$.
- Properties of graph Laplacian:
 - Symmetric.
 - Positive semi-definite.
 - Not invertible.
 - The vector of all ones lies in its nullspace.

Spectral clustering

Denote the indicator vector of G_i by $e_{G_i} \in \mathbb{R}^N$, i.e. the vector that has ones at all coordinates indexed by the vertices of G_i and 0's elsewhere.

Theorem

 $\dim N(L)=c$ and a basis for N(L) is given by the e_{G_i} 's.

Spectral clustering

Theorem

Let $\xi_1, \ldots, \xi_c \in \mathbb{R}^N$ be a basis for N(L) and consider the matrix $Y = [y_1 \ldots y_N] := [\xi_1 \ldots \xi_c]^T \in \mathbb{R}^{c \times N}$. Then node $i, j \in [N]$ lie in the same connected component of G iff $y_i = y_j$.

This defines an embedding of the graph into the Euclidean space \mathbb{R}^c . Remarkably, the embedding takes nodes in the same cluster to the same vector of \mathbb{R}^c with different vectors for different clusters, thus directly revealing the clustering label of each node.

References

- Von Luxburg, Ulrike. "A tutorial on spectral clustering." Statistics and computing 17.4 (2007): 395-416.
- Manolis C. Tsakiris,. "Lecture notes on linear algebra and applications." (2020).