Minimize Z = long + 6ng + dnz Subject to : 3n, 12nz

$$-n_1 + n_2 + n_3 \ge 1$$
,
 $3n_1 + n_2 - n_3 \ge 2$,
 $n_1, n_2, n_3 \ge 0$

Inital basic feasible solution, $M_1 = M_2 = M_3 = 0$ S=-1 and S=-2

$$0 = \text{Man} \left[\frac{-10}{3}, -6 \right]$$

$$R_1' \leftarrow R_1 \times \left(\frac{1}{3}\right)$$

$$R_1' \leftarrow R_1 - R_2'$$

-10 a_2 5, -9/3 SI 1/3 0 8/3 Man = [-, -2, -1/8, -, - $R' \leftarrow R_1 \times \left(\frac{1}{2}\right)$ $R_2' \leftarrow R_1 + L_X R_2'$ -10 XB a3 CB a2 8/2 X3___ -2 3/2 X Zg-(g) 0 a2 -> a1. $R' \leftarrow R_1 - 2R_2$ -10 -6 92 93 \mathcal{B} X_{b} 93 0 1 KZ -6 az 1 0 2 0 = Man [-9, -, -, -, -6, -]

RICKIX(-12) $R_2 \leftarrow R_2 - R_1^2$ a, replaces az G -10 -2 0 0 Cg B $\chi_{\mathbf{b}}$ Ь a3 S, ai az $\mathcal{S}_{\!\scriptscriptstyle oldsymbol{2}}$ 1/4 -10 14 ni 0 1 5/9 1 1/2 -3/9 -1/9 nz 2 4 29-69 0 n, = 1/4 nz = 5/9 n3=0. B A D E 6 3 8 4 7 00 5 00 Down 12 1 3. 2 00 menenum for Row?-Subtracting oow A D E B 6 0 A 0 4 6 .1 9 00 0 3 9 ∞ . 0 0 8 0 1. 2 0 7

				Date : / /	
ubitoactile	colum	n hin	hum	from cole	lun
A	В	C	D	E	
∞	1	3	6	Ô	
3	90	0	6	O	
4	3	<i>∞</i> °	0	3	
8	0	1	90	1	
E O	2	0	7	∞	
A	B	C	D	E	
1 00	1	3 -	6	b	
4	∞	Ō	6	O	
4	3	∞		3	,
3	0	1	∞	1	
5 0	2	Q	7	∞0	t ,
				<u>, , , , , , , , , , , , , , , , , , , </u>	
,	no, o	P Line	= N		
		V	To		
	FXO) E	,	
	ß		2 C		
ė.	C		D		
	D	-	B	1	
	E) A		
		ζ.			

Solution 3. Let n unids of fooder I and y with of foodles 2 be included in the food rather of an animal.

The cost of fooder I is ± 3 per unit and that of fooder 2 is ± 2 per unit.

Total cost = $\pm (3n + 2y)$ The nothern cum requirement of nutricals A, B, C. for an animal are 14, 22 and I wint respectively. Je ve constant given table with minimum requi-Nutrient Folder Folder 1 Folder 2 Menincen requirement 14 Nutrent A Nutrient B α 2 ત્ર Nutrient C 1 from table the food dation of an animal must contain (an + y) units of nutorent A, to may (ax + 3y) units of B and (n+y) units of C.

Page Date Since a and y cannot be megative, we have $x \ge 0$, $y \ge 0$. 3. Gren problem can be formulated as follow-Minimize Z = 3x + 2y Subject to $2n+y\geq 14$, $2n+3y\geq 22$, $n+y\geq 1$, $n\geq 0$, $y\geq 0$ Solution 9; Demand Since Esupply = E Domand balancel This 2 table 15/3 10 6

Page Date

	A	<u> </u>	C,	
	A 1	, B	3	Demand
J	6	8	4	14
I	9	9	3 12	12
	7 3	2	6	5
Supply	6.	10,	,15	

Total cost =
$$6 \times 1 + 8 \times 10 + 9 \times 3 + 3 \times 12$$

 $+ 1 \times 5$
= $6 + 80 + 12 + 36 + 5$

= 139,