ZEMRIS

Ponovljeni završni ispit iz Elektronike 1

04.02.2008.

PRVA SKUPINA ZADATAKA

- 1. Zajednički i diferencijski napon diferencijskog pojačala sa slike su $u_z = -10\sin\omega t \text{ mV}$ i $u_d = +10\sin\omega t \text{ mV}$. Koliki su naponi u_{g1} i u_{e2} ? U odgovorima nije bitan redoslijed ulaznih napona. (1 bod)
 - a) $-10\sin \omega t \text{ mV i } + 10\sin \omega t \text{ mV}$
 - **b)** $-20\sin \omega t \text{ mV i } 0 \text{ mV}$
 - c) $-15\sin\omega t$ mV i $-5\sin\omega t$ mV
 - **d)** $0 \text{ mV i} + 20 \sin \omega t \text{ mV}$
 - e) $+ 5 \sin \omega t \text{ mV i } + 15 \sin \omega t \text{ mV}$

- 2. Statički i dinamički radni pravac pojačala na slici a) nacrtani su na slici b). Koliki su otpori R_C i R_T ? Zanemariti struju baze u odnosu na struju kolektora. (1 bod)
 - **a**) $R_C = 2.5 \text{ k}\Omega$, $R_T = 2.5 \text{ k}\Omega$
 - **b**) $R_C = 1.5 \text{ k}\Omega$, $R_T = 2.5 \text{ k}\Omega$
 - c) nema dovoljno podataka
 - **d**) $R_C = 2 \text{ k}\Omega$, $R_T = 1 \text{ k}\Omega$
 - e) $R_C = 2 \text{ k}\Omega$, $R_T = 2 \text{ k}\Omega$,

- **3.** GSN i GSV su granice smetnji niske i visoke razine. Ako se izlaz bipolarnog tranzistorskog invertora optereti istim takvim invertorom, za granice smetnji u odnosu na neopterećeni invertor vrijedi sljedeće (**1 bod**):
 - a) GSN se smanjuju, a GSV ostaju iste
 - **b**) GSN se povećavaju, a GSV ostaju iste
 - c) GSV se smanjuju, a GSN ostaju iste
 - d) GSV se povećavaju, a GSN ostaju iste
 - e) GSV i GSN ostaju iste
- **4.** Bipolarna tranzistorska sklopka upravljana je naponskim razinama $+U_1$ i $-U_2$. Vrijeme isključenja sklopke može se ubrzati (**1 bod**):
 - a) povećanjem napona $+U_1$ i smanjenjem iznosa napona $-U_2$
 - **b**) smanjenjem napona $+U_1$ i povećanjem iznosa napona $-U_2$
 - c) povećanjem napona $+U_1$, uz konstantan $-U_2$
 - **d**) smanjenjem iznosa napona $-U_2$, uz konstantan $+U_1$
 - e) vrijeme isključenja sklopke ne ovisi o naponima $+U_1$ i $-U_2$
- 5. Izlazni napon stabilizatora sa slike je 8V, otpori u sklopu iznose: $R_T = 400 \,\Omega$, $R = 100 \,\Omega$, $\beta = 100$. Struja kroz diodu mijenja se u granicama od 5 mA do 25 mA. Odrediti najmanji ulazni napon uz koji stabilizator ispravno radi. U kojem području rada pri tome radi tranzistor? (1 bod)

- a) $U_{ULmin} = 8.7 \text{ V}$, granica normalno aktivno-zasićenje
- **b)** $U_{ULmin} = 8 \text{ V}$, normalno aktivno područje
- c) $U_{ULmin} = 9,22 \text{ V}$, granica normalno aktivno-zasićenje
- d) $U_{ULmin} = 9,22 \text{ V}$, normalno aktivno područje
- e) $U_{ULmin} = 11,22 \text{ V}$, normalno aktivno područje

Grupa A

- I-U karakterstika diode korištene u stabilizatoru zadana je slikom, a struja koja teče kroz trošilo mijenja se u rasponu od 10 mA do 50 mA. Odrediti izlazni napon i najmanju struju kroz otpornik R da bi stabilizator ispravno radio. (1 bod)
 - **a**) $U_{IZ} = 0.7 \text{ V}$, $I_{Rmin} = 14 \text{ mA}$
 - **b**) $U_{IZ} = 0.7 \text{ V}, I_{Rmin} = 54 \text{ mA}$
 - c) $U_{IZ} = 6 \text{ V}, I_{Rmin} = 5 \text{ mA}$
 - **d**) $U_{IZ} = 6 \text{ V}, I_{Rmin} = 15 \text{ mA}$
 - e) $U_{IZ} = 6 \text{ V}, I_{Rmin} = 55 \text{ mA}$

- Odrediti iznos izlaznog napona u sklopu na slici ako je $U_{UL1} = 2,0 \text{ V}$, $U_{UL2} = 2.5 \text{ V}, \quad R_1 = 10 \text{ k}\Omega, \quad R_2 = 40 \text{ k}\Omega, \quad R_3 = 10 \text{ k}\Omega, \quad R_4 = 30 \text{ k}\Omega.$ Operacijsko pojačalo spojeno je na napajanje 0 V i 5 V. (1 bod)
 - **a**) $U_{IZ} = 2.0 \text{ V}$
 - $\mathbf{b)} \quad U_{IZ} = 0 \text{ V}$
 - **c)** $U_{IZ} = 1,375 \text{ V}$
 - **d)** $U_{IZ} = -1,375 \text{ V}$ **e)** $U_{IZ} = 1,5 \text{ V}$
- 8. Odrediti iznos izlaznog napona u sklopu na slici ako je U_{UL1} = 2,5 V, $U_{UL2} = 2.0 \text{ V}, \quad R_1 = 10 \text{ k}\Omega, \quad R_2 = 40 \text{ k}\Omega, \quad R_3 = 10 \text{ k}\Omega, \quad R_4 = 30 \text{ k}\Omega.$ Operacijsko pojačalo spojeno je na napajanje 0 V i 5 V. (1 bod)
 - a) $U_{IZ} = 2.0 \text{ V}$
 - **b**) $U_{IZ} = 0 \text{ V}$
 - c) U_{IZ} = 1,375 V
 - **d**) $U_{IZ} = -1,375 \text{ V}$
 - e) $U_{IZ} = 1.5 \text{ V}$

- Koliko iznosi izlazni napon za sklop komparatora na slici ako je ulazni napon 0 V? Zadano je $U_Z = 5.6 \text{ V}$ i $U_D = 0.7 \text{ V}$. (1 bod)
 - a) +7 V ili -7 V
 - **b**) -5,6 V
 - \mathbf{c}) -7 V
 - **d)** +5,6 V
 - +7 V
- 10. Ako se napon na ulazu poveća na +3 V koliko će u tom slučaju iznositi izlazni napon? (1 bod)
 - a) +7 V ili -7 V
 - **b**) -5.6 V
 - -7 V c)
 - **d)** +5.6 V
 - e) +7 V

DRUGA SKUPINA ZADATAKA

ZADATAK 1. Prijenosna karakteristika nekog MOSFET-a prikazana je na slici. Pretpostaviti da je $\lambda = 0$.

Odrediti:

- **1.1.** tip MOSFET-a (**1 bod**),
- 1.2. strminu u točki A (1 bod),
- 1.3. struju i strminu u točki B (1 bod).

Odgovori:

- 1.1. a) osiromašeni PMOS
 - b) obogaćeni PMOS
 - c) osiromašeno-obogaćeni MOSFET
 - d) osiromašeni NMOS
 - e) obogaćeni NMOS
- **2. a)** $g_{mA} = 0.25 \text{ mA/V}$ **1.3.**
 - **b**) $g_{mA} = 0.5 \text{ mA/V}$
 - **c**) $g_{mA} = 0.33 \text{ mA/V}$
 - **d)** $g_{mA} = 0.167 \text{ mA/V}$
 - **e)** $g_{mA} = 1 \text{ mA/V}$
- a) $I_{DB} = 0.5625 \text{ mA}, g_{mB} = 0.75 \text{ mA/V}$
- **b)** $I_{DB} = 1{,}125 \text{ mA}, g_{mB} = 1{,}5 \text{ mA/V}$
- c) $I_{DB} = 0.5 \text{ mA}, g_{mB} = 1 \text{ mA/V}$
- **d**) $I_{DB} = 1 \text{ mA}, g_{mB} = 2 \text{ mA/V}$

Ε

 $p_{n0}=3,616\cdot10^{1}$

p_{0n}=2,1·10²

w_E= 0,5 μm

e) $I_{DB} = 0.4 \text{ mA}, g_{mB} = 0.625 \text{ mA/V}$

В

n_{p0}=1,81·10¹³

- **ZADATAK 2.** Na slici je prikazana raspodjela manjinskih nosilaca bipolarnog *npn* tranzistora. Poznate su pokretljivosti manjinskih nosilaca u emiteru i bazi: $\mu_n = 500 \text{ cm}^2/\text{Vs}$, $\mu_p = 250 \text{ cm}^2/\text{Vs}$. Površina presjeka spoja baza-emiter iznosi $S = 2 \text{ mm}^2$, a u prikazanoj radnoj točki rekombinacijska struja baze iznosi $I_R = 30 \text{ }\mu\text{A}$. Temperatura je T = 300 K. Odrediti:
- **2.1.** napon priključen na spoju baza-emiter (1 bod),
- 2.2. koncentraciju primjesa u bazi (1 bod),
- **2.3.** faktor pojačanja β (1 bod).

Odgovori:

- **2.1.** a) $U_{BE} = 0.5 \text{ V}$
 - **b**) $U_{BE} = 0.575 \text{ V}$
 - c) $U_{BE} = 0.625 \text{ V}$
 - **d**) $U_{BE} = 0,525 \text{ V}$
 - e) $U_{BE} = 0.55 \text{ V}$
- **2.2.** a) $N_{AB} = 1 \cdot 10^{16} \, \text{cm}^{-3}$
 - **b)** $N_{AB} = 1,05 \cdot 10^4 \, \text{cm}^{-3}$
 - c) $N_{AB} = 2 \cdot 10^{16} \, \text{cm}^{-3}$
 - **d)** $N_{AB} = 2.1 \cdot 10^4 \, \text{cm}^{-3}$
 - e) $N_{AB} = 1 \cdot 10^{18} \, \text{cm}^{-3}$
- **2.3.** a) $\beta = 101$
 - **b**) $\beta = 84$
 - c) $\beta = 72$
 - **d**) $\beta = 223$
 - **e**) $\beta = 498$
- **ZADATAK 3.** Za pojačalu sa slike zadano je: $U_{CC} = 18 \text{ V}$, $R_g = 500 \Omega$, $R_1 = 47 \text{ k}\Omega$, $R_2 = 6.8 \text{ k}\Omega$, $R_C = 4.7 \text{ k}\Omega$ i $R_T = 5.6 \text{ k}\Omega$. Parametri npn bipolarnog tranzistora su $\beta \approx h_{fe} = 180$ i $U_{\gamma} = 0.7 \text{ V}$. Naponski ekvivalent temperature $U_T = 25 \text{ mV}$.

3.2.

- **3.1.** Odrediti struju I_{CQ} i napon U_{CEQ} , ako je vrijednost otpornika $R_E = 1 \text{ k}\Omega$. **(1 bod)**
- **3.2.** Odrediti dinamičke parametre g_m i r_{be} , ako je poznato $I_{CQ} = 1,383$ mA, $U_{CEQ} = 9,97$ V i $R_E = 1,1$ k Ω . (1 bod)
- **3.3.** Odrediti naponsko pojačanje $A_V = u_{iz}/u_{ul}$, ako su poznati dinamički parametri $g_m = 50.82 \text{ mA/V}$ i $r_{be} = 3542 \Omega$, te $R_E = 1.2 \text{ k}\Omega$. (1 bod)
- **3.4.** Odrediti ulazni otpor R_{ul} , ako su poznati dinamički parametri $g_m = 50,82 \text{ mA/V}$ i $r_{be} = 3542 \Omega$, te $R_E = 1,2 \text{ k}\Omega$. (1 bod)
- **3.5.** Odrediti izlazni otpor R_{iz} , ako su poznati dinamički parametri $g_m = 50,82 \text{ mA/V}$ i $r_{be} = 3542 \Omega$, te $R_E = 1,2 \text{ k}\Omega$. (1 bod)

Odgovori:

- **3.1.** a) $I_{CQ} = 1,52 \text{ mA i } U_{CEQ} = 16,5 \text{ V}$
 - **b**) $I_{CO} = 1,52 \text{ mA i } U_{CEO} = 9,35 \text{ V}$
 - c) $I_{CQ} = 1,42 \text{ mA i } U_{CEQ} = 9,35 \text{ V}$
 - **d**) $I_{CQ} = 1,42 \text{ mA i } U_{CEQ} = 16,5 \text{ V}$
 - e) $I_{CO} = 0.84 \text{ mA i } U_{CEO} = 9.35 \text{ V}$
- a) $g_m = 99,56 \text{ mA/V}, r_{be} = 1808 \Omega$
 - **b)** $g_m = 55,32 \text{ mA/V}, r_{be} = 1808 \Omega$
 - c) $g_m = 99,56 \text{ mA/V}, r_{be} = 3254 \Omega$
 - **d)** $g_m = 55,32 \text{ mA/V}, r_{be} = 3254 \Omega$
 - e) $g_m = 37,35 \text{ mA/V}, r_{be} = 2678 \Omega$

3.3.

a)
$$A_V = -130$$

b)
$$A_V = -0.448$$

c)
$$A_V = -63.2$$

d)
$$A_V = 0.448$$

e)
$$A_V = 130$$

3.4.

a)
$$R_{ul} = 82,02 \Omega$$

b)
$$R_{ul} = 42.1 \Omega$$

c)
$$R_{ul} = 19.3 \Omega$$

d)
$$R_{ul} = 204,2 \Omega$$

e)
$$R_{ul} = 132,2 \Omega$$

3.5.

a)
$$R_{iz} = 8.2 \text{ k}\Omega$$

b)
$$R_{iz} = 4.7 \text{ k}\Omega$$

c)
$$R_{iz} = 3.9 \text{ k}\Omega$$

$$\mathbf{d)} \quad R_{iz} = 6.8 \text{ k}\Omega$$

e)
$$R_{iz} = 5.6 \text{ k}\Omega$$

ZADATAK 4. Na izlazu stabilizatora, prikazanog slikom, izmjeren je napon 10 V. Ako na ulaz dovedeno napon između 15 V i 25 V moramo koristiti otpornik R_1 u granicama od 185 do 3200 Ω da bi stabilizator radio ispravno. Faktor strujnog pojačanja tranzistora je $\beta \approx h_{fe} = 200$, $U_{BE} = 0.7$ V i $U_T = 25$ mV. Otpor trošila je $R_T \ge 390$ Ω .

4.1. Odrediti napon Zenerove diode U_Z . (1 bod)

4.2. Odrediti minimalnu struju Zenerove diode I_{Zmin} , ako je U_Z = 8,3 V. (1 bod)

4.3. Odrediti maksimalnu disipaciju snage na Zenerovoj diodi P_{Zmax} , ako je U_Z = 8,3 V. (1 bod)

4.4. Odrediti dinamički otpor Zenerove diode r_z , ako želino da je naponski faktor stabilizacije S_U = 0,0025. Zadano je U_Z = 8,3 V, R_1 = 2 k Ω i R_T = 680 Ω . (1 bod)

4.5. Odrediti izlazni otpor R_{IZ} , ako su vrijednosti otpornika R_1 = 1,8 k Ω i R_T = 820 Ω . Parametri Zenerove diode su U_Z = 8,3 V, r_z = 3 Ω . (1 bod)

Odgovori:

4.1.

a)
$$U_Z = 9.3 \text{ V}$$

b)
$$U_z = 10 \text{ V}$$

b)
$$U_Z = 10 \text{ V}$$

c)
$$U_Z = 10.3 \text{ V}$$

d)
$$U_Z = 10.7 \text{ V}$$

e)
$$U_Z = 9.7 \text{ V}$$

a)
$$I_{Zmin} = 1,25 \text{ mA}$$

b)
$$I_{Zmin} = 1.5 \text{ mA}$$

c)
$$I_{Zmin} = 1 \text{ mA}$$

d)
$$I_{Zmin} = 1,75 \text{ mA}$$

e)
$$I_{Zmin} = 2 \text{ mA}$$

a)
$$P_{Zmax} = 0.75 \text{ W}$$

b) $P_{Zmax} = 500 \text{ mW}$

c)
$$P_{Zmax} = 0.25W$$

d)
$$P_{Zmax} = 0.125 \text{ W}$$

e)
$$P_{Zmax} = 50 \text{ mW}$$

4.4.

a)
$$r_z = 1 \Omega$$

b)
$$r_z = 2 \Omega$$

c)
$$r_z = 5 \Omega$$

d)
$$r_z = 10 \Omega$$

e)
$$r_z = 15 \Omega$$

4.5.

a)
$$R_{IZ} = 2.71 \Omega$$

b)
$$R_{IZ} = 1,75 \Omega$$

c)
$$R_{IZ} = 2,48 \Omega$$

d)
$$R_{IZ} = 1.5 \Omega$$

e)
$$R_{IZ} = 2,22 \Omega$$

ZADATAK 5. Za komparator sa slike poznato je $R_1 = 1$ k Ω , $R_2 = 10$ k Ω , $R_3 = 4.7$ k Ω $U_R = 5$ V i $U_{ZZ} = [-10\text{V}, 10\text{V}]$. Operacijsko pojačalo je idealno.

5.1. Odrediti napon praga okidanja U_{PV} . (1 bod)

5.2. Odrediti napon praga okidanja U_{PN} . (1 bod)

5.3. Odrediti vrijednost izlaznog napona u t = 4 ms za ulazni napon sa slike. (1 bod)

5.4. Odrediti vrijednost izlaznog napona u

t = 6 ms za ulazni napon sa slike. (1 bod)

Odgovori:

5.1. a) $U_{PV} = 1,57 \text{ V}$

b)
$$U_{PV} = -1.57 \text{ V}$$

b)
$$U_{PV} = -1.5 / V$$

c)
$$U_{PV} = -2 \text{ V}$$

d) $U_{PV} = 2 \text{ V}$

e)
$$U_{PV} = 0 \text{ V}$$

5.2. a)
$$U_{PN} = 49 \text{ mV}$$

b)
$$U_{PN} = -49 \text{ mV}$$

c)
$$U_{PN} = -1.24 \text{ V}$$

d)
$$U_{PN}$$
 = 1,24 V

e)
$$U_{PN} = 0$$
 V

5.3.

a)
$$U_{IZ} = 2 \text{ V}$$

b)
$$U_{IZ} = -2 \text{ V}$$

c)
$$U_{IZ} = -10 \text{ V}$$

d)
$$U_{IZ} = 10 \text{ V}$$

e)
$$U_{IZ} = 0 \text{ V}$$

$$a) U_{IZ} = 2 V$$

b)
$$U_{IZ} = -2 \text{ V}$$

c)
$$U_{IZ} = -10 \text{ V}$$

d)
$$U_{IZ} = 10 \text{ V}$$

e)
$$U_{IZ} = 0 \text{ V}$$