Note8 Bessel Equations

Note8 Bessel Equations

- 1 Bessel Equations of Order v
 - 1. 1 Find the Indical and Recurrence Equations
 - 1. 2 Find the First Independent Solution
 - 1. 2. 1 Find the First Independent Solution with the Larger r_1
 - 1. 2. 2 The Bessel Function of the First Kind
 - 1. 3 Find the Second Independent Solution ($v \notin \mathbb{N}$)
 - **1. 4** Find the Second Independent Solution ($v \in \mathbb{N}$)
 - 1. 4. 1 Reduction of Order
 - 1. 4. 2 The Other Method
 - 1. 4. 3 The Bessel Function of the Second Kind
- 2 Reduce Differential Equations to Bessel Equation

2. 1
$$x^2y'' + xy' - (x^2 + v^2)y = 0$$

2. 2
$$x^2y'' + xy' + (a^2x^2 - v^2)y = 0$$

2. 3
$$x^2y'' + axy' + (x^2 - v^2)y = 0$$

2. 4 * For thoughts:
$$y'' - xy = 0$$

Let's apply the Method of Frobenius to solve Bessel equations.

And analyze the solutions (Bessel functions).

1 Bessel Equations of Order v

$$x^{2}y'' + xy' + (x^{2} - v^{2})y = 0$$

Having a regular singular point at 0.

The Method of Frobenius can be applied.

1.1 Find the Indical and Recurrence Equations

Choose the Frobenius ansatz

$$a_0 x(t) = t^r \sum_{k=0}^\infty a_k t^k \qquad \quad a_0
eq 0$$

Besides,

$$xp(x) = 1, \qquad p_0 = 1$$
 $x^2q(x) = x^2 - v^2, \qquad q_0 = -v^2, \quad q_2 = 1$

Setting

$$F(x) := x(x-1) + p_0x + q_0 = x^2 - v^2$$

We get the *indicial equation* and *recurrence equations*

$$F(r)=r^2-v^2=0 \ a_m F(r+m)=-\sum_{k=0}^{m-1}\left(q_{m-k}+(r+k)p_{m-k}
ight)a_k, \quad m\geq 1$$

Which gives us

$$egin{aligned} r^2-v^2&=0\ a_1((r+1)^2-v^2)&=0\ a_m&=-rac{a_{m-2}}{(m+r+v)(m+r-v)},\quad m\geq 2 \end{aligned}$$

It obviously turns out $r_1 = v$ and $r_2 = -v$.

From the result in class we know if $r_1-r_2=2v\not\in\mathbb{N}$, two independent solutions would be found easily.

And if $r_1-r_2=2v\in\mathbb{N}$, we may use the special technique.

However, we will see actually for Bessel Equations, the condition is slightly less strict:

If $v \notin \mathbb{N}$, then r_1 and r_2 give two independent solutions.

1.2 Find the First Independent Solution

1.2.1 Find the First Independent Solution with the Larger $r_{ m 1}$

With the **LARGER** $r_1 = v$, we have

$$egin{aligned} a_1((v+1)^2-v^2) &= 0 \ a_m &= -rac{a_{m-2}}{(m+2v)m}, \quad m \geq 2 \end{aligned}$$

So $a_1=a_3=a_5=\cdots=0$ and

$$a_{2k} = rac{(-1)^k a_0}{2^{2k} k! (1+v)(2+v) \cdots (k+v)}$$

Question:

Notice \boldsymbol{v} may not be an integer. Don't write as factories.

Then how do you simpliy this solution?

1.2.2 The Bessel Function of the First Kind

Recall *Euler Gamma function*'s property:

$$\Gamma(s+1) = s\Gamma(s)$$

So it gives

$$(1+v)(2+v)\cdots(k+v)=rac{\Gamma(k+1+v)}{\Gamma(1+v)}$$

And by setting $a_0=\frac{2^{-v}}{\Gamma(1+v)}$, we will have the first independent solution be **the Bessel function of the first kind of order** v

$$J_v(x) = \left(rac{x}{2}
ight)^v \sum_{k=0}^\infty rac{(-1)^k}{k!\Gamma(k+1+v)} \Big(rac{x}{2}\Big)^{2k}$$

Question:

Which region of x does $J_v(x)$ defined?

Take v=1 as example, we have

$$J_1(x) = rac{x}{2} \sum_{k=0}^{\infty} rac{(-1)^k x^{2k}}{2^{2k} (k+1)! k!}$$

1.3 Find the Second Independent Solution ($v ot\in\mathbb{N}$)

Starting from if 2v is not an integer, with the SMAllER $r_2=-v$, we have

$$egin{aligned} a_1((v-1)^2-v^2)&=0,\quad a_1(2v-1)=0\ a_m&=-rac{a_{m-2}}{(m-2v)m},\quad m\geq 2 \end{aligned}$$

We have $a_1=a_3=a_5=\cdots=0$ and

$$a_{2k} = rac{(-1)^k a_0}{2^{2k} k! (1-v) (2-v) \cdots (n-v)}$$

Similarly,

$$(1-v)(2-v)\cdots(k-v)=rac{\Gamma(k+1-v)}{\Gamma(1-v)}$$

And by setting $a_0=rac{2^{-v}}{\Gamma(1+v)}$, the second independent solution will be **the Bessel function of the** first kind of negative order -v

$$J_{-v}(x)=\left(rac{x}{2}
ight)^{-v}\sum_{k=0}^{\infty}rac{(-1)^k}{k!\Gamma(k+1-v)}\Big(rac{x}{2}\Big)^{2k}$$

Then the **general solution** is

$$y(x) = C_1 J_v(x) + C_2 J_{-v}(x)$$

But actually, If 2v is an odd integer, which means v is not an integer, the above results also holds.

And the combined conclusion is if v is not an integer, the above results will hold.

1.4 Find the Second Independent Solution ($v \in \mathbb{N}$)

1.4.1 Reduction of Order

Set
$$y_2(x)=c(x)\cdot J_{\nu}(x)$$
, then
$$x^2y_2''+xy_2'+\left(x^2-\nu^2\right)y_2=0 \\ \Rightarrow x^2\left(c''(x)J_{\nu}(x)+2c'(x)J_{\nu}'(x)+c(x)J_{\nu}''(x)\right) \\ +x\left(c'(x)J_{\nu}(x)+c(x)J_{\nu}(x)\right)+\left(x^2-\nu^2\right)c(x)\cdot J_{\nu}(x)=0 \\ \Rightarrow x^2J_{\nu}(x)c''(x)+\left(2x^2J_{\nu}'(x)+xJ_{\nu}(x)\right)c'(x)=0 \\ \Rightarrow \ln|c'(x)|=(-2\ln|J_{\nu}(x)|-\ln|x|) \\ \Rightarrow c'(x)=\frac{1}{x\cdot J_{\nu}^2(x)} \\ \Rightarrow c(x)=\int \frac{dx}{x\cdot J_{\nu}^2(x)}$$

So a second independent solution is given as

$$y_2(x) = J_
u(x) \int rac{dx}{x \cdot J_
u^2(x)}$$

1.4.2 The Other Method

$$egin{aligned} x_2(t) &= rac{\partial}{\partial r} \Bigg(t^r \sum_{k=0}^\infty a_k(r) t^k \Bigg) \Bigg|_{r=r_2} = c \cdot x_1(t) \ln t + t^{r_2} \sum_{k=0}^\infty a_k'\left(r_2
ight) t^k \ & rac{a_{2k}'(r)}{a_{2k}(r)} = rac{d}{dr} \mathrm{ln} |a_{2k}(r)| \end{aligned}$$

Practice:

Using 5 minites to try solving out the second solution by yourself.

Do you find any problems?

Instead of computing $a_{2k}^{\prime}(r_2)$, let's find these new constants in another way. Assume

$$y_2(x)=aJ_v(x)\ln x+x^{-1}\left[\sum_{k=0}^\infty c_k x^k
ight],\quad x>0$$

Computing y_2 I, y_2 I(x), substituting in the original Bessel Equation, and make use of $J_v(x)$ is a solution(as we have done by reduction of order), we can obtain all the constants a, c_0, c_1, \ldots

Let's try with the Bessel Equation of order 1. Notice $a_0(r)=1$, so we can set $c_0=1$

$$y_2(x)=aJ_1(x)\ln x+x^{-1}\left[1+\sum_{k=1}^\infty c_kx^k
ight],\quad x>0$$

Substituting back and we get

$$2axJ_1'(x) + \sum_{k=0}^{\infty} \left[(k-1)(k-2)c_k + (k-1)c_k - c_k
ight]x^{k-1} + \sum_{k=0}^{\infty} c_k x^{k+1} = 0$$

Substituting for $J_1(x)$ then

$$\left[-c_1 + \left[0 \cdot c_2 + c_0
ight] x + \sum_{k=2}^{\infty} \left[\left(k^2 - 1
ight) c_{k+1} + c_{k-1}
ight] x^k = -a \left[x + \sum_{k=1}^{\infty} rac{(-1)^k (2k+1) x^{2k+1}}{2^{2k} (k+1)! k!}
ight]$$

This first gives us $c_1=0$, $c_0=-a=1$.

Further even powers on the left must vanish, so (k^2-1) $c_{k+1}+c_{k-1}$ must vanish for even k, and then $c_1=c_3=\cdots=0$.

And from odd powers on the left we have

$$\left[(2m+1)^2-1
ight]c_{2m+2}+c_{2m}=rac{(-1)^m(2m+1)}{2^{2m}(m+1)!m!},\quad m=1,2,3,\ldots$$

When we set m=1, we get

$$\left(3^{2}-1
ight)c_{4}+c_{2}=\left(-1\right)3/\left(2^{2}\cdot2!
ight)$$

Hence, c_2 can be selected in arbitrary, and then we just gain the second independent solution.

In practice, we always choose $c_2=rac{1}{2^2}$, and then we would be possible to simplify:

$$c_{2m} = rac{(-1)^{m+1} \left(H_m + H_{m-1}
ight)}{2^{2m} m! (m-1)!}$$

Where $H_m(x) := \sum_{i=1}^m \frac{1}{i}$, $H_0 = 0$. So

$$y_2(x) = -J_1(x) \ln x + rac{1}{x} \Biggl[1 - \sum_{m=1}^{\infty} rac{(-1)^m \left(H_m + H_{m-1}
ight)}{2^{2m} m! (m-1)!} x^{2m} \Biggr] \, , \quad x > 0$$

1.4.3 The Bessel Function of the Second Kind

Actually the second independent solution of Bessel Equations are written as **the Bessel function** of the second kind of order v, which can be some linear combinition of $J_v(x)$ and the second independent solution $y_2(x)$. In our specific case here of order 1, we set the Bessel function of the second kind of order 1 as

$$Y_1(x) = rac{2}{\pi} [-y_2(x) + (\gamma - \ln 2) J_1(x)]$$

But, in practice, the Bessel function of the second kind of order v can be found from $J_v(x)$ and $J_{-v}(x)$:

$$Y_v(x) = rac{J_v(x)\cos\pi v - J_{-v}(x)}{\sin\pi v}$$

And then the general solution can be written as

$$y(x) = C_1 J_v(x) + C_2 Y_v(x)$$

2 Reduce Differential Equations to Bessel Equation

2.1
$$x^2y'' + xy' - (x^2 + v^2)y = 0$$

Exercise:

Show that the general solution of this equation can be expressed as

$$y(x)=C_1J_v(-ix)+C_2Y_v(-ix)$$

2.2
$$x^2y'' + xy' + (a^2x^2 - v^2)y = 0$$

Exercise:

Show that the general solution of this equation can be expressed as

$$y(x) = C_1 J_v(ax) + C_2 Y_v(ax)$$

2.3
$$x^2y'' + axy' + (x^2 - v^2)y = 0$$

Exercise:

Show that the general solution of this equation can be expressed as

$$y(x) = x^{rac{1-a}{2}} \left[C_1 J_n(x) + C_2 Y_n(x)
ight]$$

Hint:

using the substitution $y(x)=x^{\frac{1-a}{2}}z(x)$

2.4 * For thoughts: y'' - xy = 0

*Exercise:

Show that the general solution of this equation can be expressed as

$$y(x) = C_1 \sqrt{x} J_{rac{1}{3}} \left(rac{2}{3} i x^{rac{3}{2}}
ight) + C_2 \sqrt{x} J_{-rac{1}{3}} \left(rac{2}{3} i x^{rac{3}{2}}
ight)$$