1

Note that a is bilinion, so in fact
$$a\left(\sum_{j=1}^{N}d_{j}\psi_{j},\psi_{i}\right)=1/\psi_{i}$$

$$\int_{\mathbb{R}^{N}}we convirte$$

$$\sum_{j=1}^{N}a_{j}(\psi_{j},\psi_{i})=1/\psi_{i}$$

$$\int_{\mathbb{R}^{N}}we convirte$$

$$\sum_{j=1}^{N}a_{j}(\psi_{j},\psi_{i})=1/\psi_{i}$$

$$\int_{\mathbb{R}^{N}}we convirte$$

$$\sum_{j=1}^{N}a_{j}(\psi_{j},\psi_{i})=1/\psi_{i}$$

$$\int_{\mathbb{R}^{N}}we convirte$$

$$\overrightarrow{A} = \overrightarrow{b}$$
, where $\overrightarrow{a} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_N \end{bmatrix}$ and $A_{ij} = \alpha(\phi_j, \phi_i)$ and $b = \begin{bmatrix} \ell(\phi_i) \\ \vdots \\ \ell(\phi_N) \end{bmatrix}$

Lit's look at the case k=1, c=0, ie, the PDE is

Well, $a(b_i, \phi_j) = \int_0^1 \phi_i \cdot \phi_j$. Recall that A is tymmetric, As we can analyze that by first fixing i. $A_{ij} = \int_0^1 \phi_i' \cdot \phi_i' = \int_{X_{i-1}}^{X_{i+1}} (\phi_i')^2 = \int_{X_{i-1}}^{X_{i}} (\frac{1}{h_{i-1}})^2 + \int_{X_{i}}^{X_{i+1}} (\frac{1}{h_{i-1}})^2$ $= \frac{1}{h_{i-1}} \cdot \int_{X_{i-1}}^{X_{i}} (1 + \frac{1}{h_{i-1}})^2 \cdot \int_{X_{i-1}}^{X_{i+1}} (1 +$

$$A_{i,i+1} = \int_{0}^{1} \phi_{i}^{i} \phi_{i+1}^{i}$$

$$= \int_{x_{i}}^{x_{i+1}} \phi_{i}^{i} \phi_{i+1}^{i}$$

$$= \int_{x_{i}}^{x_{i+1}} \frac{1}{h_{i}^{i}} \frac{1}{h_{i+1}^{i}} = \frac{-1}{h_{i}^{i}h_{i+1}^{i}} \cdot h_{i}^{i} = \frac{-1}{h_{i+1}^{i}} \cdot h_{i}^{i} = \frac{-1}{h_{i+1}^{i}}$$

Ai, itz = 0, and Ai, kzitz = 0 as well . By symmetry,
[2-1 0]
A = 1
$A = \frac{1}{h}$ 0 -1 -12
What is the RHS? b = Jof. 4 = J'it! f. p. Since we don't analytically need to know f we we a
Since we don't analytically need to form of we we a summerical integration method for f Dor example, employing the trapezoidal integration for f,
The trapersonal integration for f , $\int_a^b F \simeq \frac{b-q}{2} \cdot \left[F(a) + F(b) \right] \qquad F(a) F$
· · · · · · · · · · · · · · · · · · ·
$\simeq \frac{1}{2} \cdot f(x_i) \cdot \frac{1}{2}$
: Sxitt (4; ~ \frac{h}{2} [f(x; +i) \cdot \frac{h}{2} (x; +i) \cdot \f
b; = h f(x;), since b; = S'f. +: = Sx:-(f.4)
[2-1] [f(x,)]
This reveals: in o -1 (and = h : f(x_n)
[0 /-12][an] [t(xn)]
as our system.

3 Finite elements of second order; p=2. N for of the from xi-10 xi xit! (we me them instead of the Phil hat fact to that we're only disling w/ quadrather, to get botter control on convergence) The modes we now [X;] (X;+1). 4 Existence & Uniqueness of FEM rolm. (Unqueness): Appose U, U2 are tolast. Consider W=U,-U2. (Solk. u/v+ c. W2.v) = Sof.v J. (k.w'.v'+c.w.v) = 0 for all ve Vh. Pich v= w; then
Si(k(w')) + C(w)) + 0 but a might be o ... po lito me Sit. (w')2=0. .. So k(w')2 = Si c(w)2 = 0.

Now, (W'=0) => W is constant on each interval (x; x;+,).
[Perall V & V, is PWL!) Well, W& Vn now means each contact is the some As W is o on the endpto, W= 0 on {x; }, and have everywhere. " How, proving uniquers is equivalent to proving existence (S' undamental Theorem of Linean Algebra;

Ax = To har a unique polar also tells us A is inventible power can find A-16 =: x as a solu!

This is the way of reformulating a problem as a

Smean FD problem! 5 Convergence
"Energy norm of the error: $\left[\int_{0}^{1}k(u'-u'_{h})^{2} dx\right]^{\frac{1}{2}} = \left|\left|\left|u-u_{h}\right|\right|_{E}$ L'anometerror: $\left[\int_0^1 (u-u_n)^2 dx\right]^{\frac{1}{2}} = \left\||u-u_n||_{L^2}$ We can show that ! llu-unle & IIn-ville for all vie Vin ie, || u - u, || = min || u - v, || = // Result: u_n is a PW poly of olegan p =>\(\left(||u-u_n||_{\infty} = O(h^p) \) \(\left(||u-u_n||_{\infty} = O(h^{p+1}) \).

CAAM 452 Convergence of FEM (in 1-D) $||u-u_n||_{\epsilon} \leq ||u-v_n||$ Thom Berall: Cauchy - Schwarz inequality (for L2)

Thu: $\forall f, g \in L^2(\Omega)$, we have $||f,g||_{\mathcal{L}^2} \leq ||f||_{\mathcal{L}^2} \cdot ||g||_{\mathcal{L}^2}$ and Cauchy Achivary inequality (for L_2)

Thu: $\forall \{a_i\}, \{b_i\} \in L_2(\mathbb{Z})$ we have $|\xi_{a_i}b_i| \leq (\xi_{a_i}^2)^2 \cdot (\xi_{a_i}^2)^2$ Remember that un extripes Jolknivit cuniva] = Jof va for ell va e Va We also have, for the exact who u, Jolken vat c.u.v.] = Jof va for ell va e Va Un other words, we have consistency of our PDF FD method!

i. So[k(u-u_n)'v_n+c.(u-u_n) v_n] = 0 These are the orthogonality equations. Assume c = 0. Then \mathcal{L} result: $a(u,v) := \int_0^v k \cdot u' \cdot v'$. $\|u - u_h\|_{\mathcal{L}}^2 = a(u - u_h, \mathcal{U} - u_h) + a(u - u_h, u_h - v_h)$ $\Rightarrow = 0$ price $u_h - v_h \in V_h$ Troof = a (u-u, u-v,)

C-5 = Jok. (u-un) (u-vn) (= [Jo (Jk. (u-un))] [So (Jk. (u-vn))] [2] [2] 4 ([+ ((n-n)))] 2 . [| k. (n-vi))2] 2 < 11 n-nolle . 11 n-Volle . 1

	Vive noted before that $ u-u_h _E = u-v_h _E = O(h^p)$.
	when ming a degree o polynomia
	We can also show that II u-u, II fr = O(h) to link which is a deque
6	We can also show that $\ u-u_h\ _{L^{\infty}} = O(h^{p+1})$ to link wode, run on a how which is a layer polynomial on $O(h^p) = C \cdot h^p$. Non-homogeneous boundary condition. $-(ku')' + c \cdot u = f$ $u(0) = 0$
	-(ku')'+c'u=+ u(o)=x
	4(1)= B. Again, let V:= (Co, Phr-dynee p poly and V; (0)= 4(1)=0.
	now, un \$ Vn! Neverthelin, we prefer this ble
-	v. on the boundary). To account for this we study
	Now, un \$ Vn! Neverthelin, we prefer this ble integration by sparte still bills body terms lucken evaluating Vn on the boundary). To account for this, we study un-d o-B of Hot; EVn, where to and open one the "half that free looking like
-	
	×o ×, ×N ×N+1
	Del. 4. = 4. = 9 & (x) = 8 Pro (x) = so that
	Call $w_n := u_n - \alpha \phi_0 - \beta - \phi_{N+1} \in V_h$. Define $u_{\text{Dividelet}} = u_0 := \alpha \phi_0(x) + \beta \phi_{N+1}(x)$, so that $w_n = u_n - u_0$, i.e., $u_n = u_n + u_0$. (thypathat that $u_n \in V_n!$) is $\int_0^1 ([k : w_n' : v_n'] + c : w_n : v_n] = \int_0^1 f : v_n = \int_0^1 ([k : u_0' : v_n'] + c : u_0 : v_n)$. $v_n = u_n - \alpha \phi_0 - \beta - \phi_{N+1} \in V_h$.
	L'ouchdet deta!
	Now, Awh = 6 + Wo

Sunction spaces
To understand the FEM, we need to know about toboler spaces. Unner product spaces X is an inner product space if it is equipped with an inner product, i.e. a map $(:,:):X*X \rightarrow \mathbb{R}$ satisfying • $\forall u, v \in X$, (u, v) = (v, u) symmetry • $\forall \alpha \in \mathbb{R}$, $(\alpha : u, v) = \alpha : (u, v)$ finearity • $\forall u, v \in X$, (u + v, w) = (u, w) + (v, w). defn · Vu & X, (u, u) > 0 w/ equality iff u=0. non-degeneracy. ex/ $(X=R^n, <; >= dot product)$ ex/ $(X=L^2(x), ||f||_{L^2} \rightarrow (f,g) = \int f.g.$ the mound space (X, 11:11c,). X is a mormed space if it is equipped with a norm, i.e. a map $||\cdot||:X \to \mathbb{R}$ satisfying $\cdot \forall u \in X$, $||u|| \ge 0$ of equality if u = 0 $\cdot \forall u \in \mathbb{R}$ $\forall u \in X$, $||u|| = |\alpha| \cdot ||u||$ dafn · Vu, v EX, llutull & llull + llv/. Of ||u||:= (u,u)2, then we also have the Bythagorean theorem: ||utv||2= ||u||2+ ||v||2 if (u,v)=0.

and also the Canoby Schwarz inequality |(u,v) | = ||u|| · ||v|| for all u,v & X.

defo

A Hilbert space is a complete inner product space.

(Recall definitions of Cauchy segue, completeness, etc.)

3 Dual spaces

Diven (X, (;)) an inner product space,

P: X→ P is a bounded linear functional if

· \(\ph(u+v) = \ph(u) + \ph(v), \text{ \text{\texi\text{\tex{\text{\text{\text{\text{\text{\texi\text{\text{\text{\texi{\te

· P(xu) = x P(u), txER, uEX

. sup ((u) / < 00.

defn

X* is the dual space of X if (X, (...)) is an inner prod space and X*:= {+|+ is a bold linear fuel on X}.

ex/X= $L^2(\Omega)$ and $u_0 \in L^2(\Omega)$, then $(u_0^*) \in [L^2(\Omega))^*$, where $|(u_0^*)(v)| := |\int_{\Omega} u_0 \cdot v | < ||u_0||_{\Omega^2} \cdot ||v||_{L^2}$ by $C \cdot B$

Shim

We can map X -> X by the association above.

CAAM 452

Weak demotives Co(s):= (fe Co(s) | sp+(f) as). Note: fe Co(12) => f(k) (a) = f(k)(b) = O when 20[a,6] > Spt(f)

Pick $u \in C^2(SZ)$; $\forall \varphi \in C_0(SZ)$ we have $\int_{-SZ}^{\frac{2}{2}u} \varphi = -\int_{-SZ}^{\infty} u \cdot \frac{2}{2}u \cdot \varphi = \int_{-SZ}^{\infty} u \cdot \varphi \cdot \varphi$ $\int_{\Omega} \frac{\partial^2}{\partial x^2} u \cdot \phi = -\int_{\Omega} \left(\frac{\partial}{\partial x} u \right) \left(\frac{\partial}{\partial x} \phi \right) = (-1)^2 \cdot \int_{\Omega} u \cdot \left(\left(\frac{\partial}{\partial x} \right)^2 \phi \right), \text{ etc.}$

defi

For the most part, we will denote g by on as well.

Thm

If UEC'(s), then g is in fact the classical ox.

If it is a multi-index, then we can also define the weak derivative of a with 24 is. D'n; here, D'a coincides with 24 if u & C 141(2).

D'a is defined by $\int (D^{\alpha}u)^{\beta} = (-1)^{|\alpha|} \cdot \int_{\Omega} u(D^{\alpha}\phi)$.

ex/ the hat for doesn't have a strong derivative on [0,1], mice 2 is a

Well, - J'u &' = - J'a u &' - J's u &' = + S=(1) + + S12 (-1) + = Sig + -: g(x)= (-1 x = (2,1] + 2 d(2)-0 + Q(1)+2 d(2), March.

defu

5 Soboler Spaces when v' is merely a weak lemintare $L^2(\Omega):=\{v\mid \int_{\Omega}v^2<\infty\}$ when V' is merely a weak lemintare $L^2(\Omega):=\{v\mid \int_{\Omega}v^2<\infty\}$ and $L^2(v')^2<\infty\}$ & Soboler space. More generally, Hp(a) := {v| Dave Z'(s), Ylalek) I undentrood to be the weak derintiver! H'(sz) is a normal space, with $\|v \in H(sz)\|_{H'(sz)} := \left[\int_{sz} v^2 + \int_{sz} v \cdot \sigma v\right]^{\frac{1}{2}}$ Note: $H_{z}^{k}(sz)$ has normal $\|v\|_{H_{z}^{k}(sz)} := \frac{3}{|s| = 0} \|D^{k}v\|_{L^{2}}$ H2(2):= (veH;(s)) v=0 on 2 2). Anom on Hi (52) o is given by $\|V\|_{H_2^1(\Omega)} := [\int_{\Omega} T \cdot \nabla u]^{\frac{1}{2}}$.

(This was the Energy norm!)

(Wedop the 2in Hit for now on!) - Sauv = Sa Du. Dv + Son (Vu · n) v. $-\int_{\mathcal{L}} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) V = \int_{\mathcal{L}} \left(\frac{\partial u}{\partial x} \cdot \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \cdot \frac{\partial v}{\partial y} \right) - \int_{\partial x} \frac{\partial u}{\partial x} \cdot V$ of K is a nitry and we have of PDE:
-V.K(x) Du(x)=f, then we can utilize $-\int_{\mathcal{A}} (\nabla \cdot k \nabla u) v = \int_{\mathcal{A}} k \nabla u \cdot \nabla v - \int_{\partial \mathcal{A}} k \frac{\partial u}{\partial n} \cdot v.$

Jhm

(Princaré chequality) $\forall v \in H'_{o}(s)$, $\exists C > 0 st. ||v||_{L^{2}(s)} \leq C \cdot ||\nabla v||_{L^{2}(s)}$

Variational Problems FEM belongs to the Calass of Variational problems (whereas FDM doesn't!)

defn

For X a Hilbert space, we look for u EX At. a(u, v)=l(v) for all v EX. Here, a! X × X > R is bilinin and V: X > R in linear.

This set up is called a variational problem.

ex/ Elliptic Variational problems 2 ERd, 252 = [, UT] = (15/>0) on which we prescribe Neumann & Directlet body word

-Vo(KVu) + b·Vu + C·U = f in 12 diffusion comertion c≥0 tom

(to=comertion)

gK will be symmetric, positive defin

(Green's Jhm hold in K is symmetric)

with (u=0 on 1)

(KVu:n=g on 1)

CAAM 452

Recall: we want to find 4 EX At. VV EX a(a,v)=l(v)
is the variation problem formulation; with FEM,
we restrict to a finite diml subspace (leg, with
Ph limin, PW polynomials).

We robre PPE's with the psychology that the solution is weak; this allows us to try the solution against fest further via the PDE, i.e. PDE ~> S (PDE) · v ~> Dreen's Jhm.

defn

Doublet &C's are called "eventual" for the FEM and Neumann &C's are called "natural" for the FEM.

(Note: a(u, v) = Sock Vu. Vu + (b. Vu)·v + c.u.v (lu) = Soc f.v + Sp. g.v

ex/ Pove Nemmann publem $-\Delta u = f \text{ in } SZ$ $\nabla u \cdot n = g \text{ on } \partial \Omega \quad \leftarrow \text{ i.e. } \frac{\partial u}{\partial n} = g.$

There BC impose (on f, g): $\int_{2}^{2} f + \int_{\partial\Omega} g = 0$

Aire - Sauv = Sat v and Sath. V= Saf. V

Jhu, a(u,v) = Sa Vuipv ((v) = Sa f.v + San g.v Note also a solving not impre, as u+ C (for any constant C) is also a role. As, we don't want to me simply X:=H'(sz). United, we take X:= ([v] | v & H'(s)) where [v]:= {in eH'(s) | w-v = C for some C} An atternative is to fix u(xo) = given on le u = give. ex Stopen problem: -MD + Tp = F = vector egn \[\vec{u} := \text{flind velocity} \quad \nabla \vec{u} = 0 \text{ incompanible, realizations} \]
\[\vec{v} := \text{flind pressure} \quad \vec{u} = 0 \text{ on } \partial \text{\alpha} \]
\[\text{\$\sigma} = 0 \text{ flind viscosity} \quad \text{(seek \vec{u}, p)}. \] Here, ne above notation: $\Delta \vec{u} = \Delta \begin{pmatrix} u \\ \vdots \\ u \end{pmatrix} := \begin{pmatrix} \Delta u_1 \\ \vdots \\ \Delta u_n \end{pmatrix}.$ Let's find $\vec{u} \in (H'_o(s))^d$ and $p \in L_o(s_1) := \{q \in L'(a) | s_1 = 0\}$. J₂ M. ∀ü: ∀J - J₂ P. ∀•J = J₂ F. J $\int_{-\infty}^{\infty} (\nabla \cdot \vec{u}) q = 0$ for all $\vec{v} \in (H_o^1(x))^d$ and $q \in L_o^1(x)$.

Nexalli if
$$u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$
, then:

 $\nabla u := \begin{pmatrix} \frac{\partial u_1}{\partial x_1} & \frac{\partial u_2}{\partial x_2} \\ \frac{\partial u_2}{\partial x_1} & \frac{\partial u_2}{\partial x_2} \end{pmatrix}$ and also

if $A, B \in M_{n \times n}(R)$, then

 $A : B = \sum_{i,j} A_{ij} \cdot B_{ij} = Tv(AB^T)$

5hm

defo

we way the public is well-posed.

(i) and (iii) are usually natisfied

(ii) is not always likely, depending on the PDE.

existence, uniquees, and stability,

Since this establisher

ŧ.

	$ex/-bu=C$ $X=H^1/2$
	4=0 Ho(s) = Tull + (s) = Tull + 2(s)
	all Ill
	/ noto: 1/4/1 or 56/17/12 /m 2- 1 ineq 14/
	ex (-8u=f X=H'o(s) ull H'o(s) = vull 2(s) u=0
	(i): Sa Du. Th & Millally 2/0): 11 V//22/00)
	yer by Cauchy Adman!
	(ii): do a(x, v) = d. v _{L^{2}(s)} for all v3
	The sine d(v, v) = 11 v1/2 2,
	(iii): \(\(\varphi\) \ \sim m. \varphi \(\varphi\) \ \(\va
	you rice Ish(V) = IIn fv
	< 17/1/2, 1/1/2/
	Poisse! (11
	yor, rice [M(V)] = Infv = f
	simply take K.Cp(sx) =: m.
	'
4	Discrete variational problem
	Juid un exa et Vr exque have alany un)=l(m).
	Nov, X, is finte din! So example,
	X:= (v ∈ E(x) v is Propoly of degree p).
	with II'llx rom
	Note: me X, CX, Lax- Milgran applies to X4.
	Thue, we obtain un and also u as solutions
	I to their respective problem.
	$\forall v \in X, \ a(u,v) = l(v)$
100	$\forall v_h \in X_h$ $a(u_h, v_h) = l(v_h)$

5km

Weghove an ever bound by approximation theory: $\| u - u_h \|_X \le (1 + \frac{M}{\alpha}) \cdot \inf_{u_h \in X_h} \| \| u - w_h \|_X$ So, when X_h is folgree p polyr, $u - w_h$ (an w_h ranger over X_h)

can eliminate the p^{+h} order J -you approx of u!

If wee, $\| u - w_h \|$ will be $O(h^{ph})$ wh constant controlled by $u^{(p+1)}$.

CAAM 452 (Derination of Galerkin method in 1-D) xo x, xxxx x4 x4 x4 x4 x4 x4 Let 0=X0, X, ..., X,+1=1 be a mush of [0,1], and denote K:= (x;-1,x;) for i=1,2,..., N+1. Defice $h := \max_{i=1}^{max} (x_i - x_{i-1})$ and after $(\min_{i=1}^{min} (x_{i+1} - x_i, x_i - x_{i-1}))$ for i=1,2,...,N $h_i := (x_{i+1} - x_i, x_i - x_{i-1})$ Let VBG:= (v) V|K = Pr (Ki) for i=1, 2, ..., N+1)

Let VBG:= (v) V|K = Pr (Ki) for i=1, 2, ..., N+1)

Let VBG:= (v) V|K = Pr (Ki) for i=1, 2, ..., N+1) Let cho [w(xi)]:= (-w|xi+(xi) if i=0 | w|k (xi) - w|ki (xi) if i = 1, 2, 3 ... N | w|k (xi) if i = N+1 / (which to heart winter an {w(x;)}:= 1 2[w'(xi(xi) + w'(xi(xi)) if i=1,2,...,N | w | kin (xi) if i= 0 | eq: 1 | w | kin (xi) = 2 (c1)+(1)) = 0 | w | kin (xi) = 2 (c1)+(1)) = 0 Consider the public of finding u th.

7 -u"(x) = f(x) for 0 < x < 1

u(0) = x Let v & VpG. Then: - Jo "(x) · v(x) dx = Jo f(x)· v(x) dx (note that VDG is not a prospect H'([0,1])!)

- El Si: u"(x) v(x) dx = E Si: f(x) · v(x) dx =) = ((x) v(x) v(x) dx - u(x) v(x) |x;] = \(\frac{\x}{\x} \) \(\frac{

-: \\\ \frac{\xi}{\xi} \left[\int_{\xi_{i-1}}^{\xi_i} \under \left(\xi \right) \under \left(\ Note that [[[" | k(x) v/k(x)]xi-1 = = [u/k:(xi)·V|k:(x;) - u/k:(x:-1)·V|k:(x:-1)] = -u'/k(x0)·v/k(x0) + = [u'/k(x1)·v/k(x1) - u'/k(x1) v/k(x21)] + u/k++ (x++1) · v/k++ (x++1). Assuming continuity of u', we get that (the mille summed)

int |= E W(xi) · [V|ki(xi) - V|ki+(xi)]

mot |= E W(xi) · [V|ki(xi) - V|ki+(xi)] m [=] [u(xi)]. [w(xi)]. Accounting for the defeat of $\{\cdot\}$ & $[\cdot]$ at endpte, $\int_{0}^{1} f(x) v(x) dx = \sum_{i=1}^{N+1} \int_{X_{i-1}}^{X_{i}} u'(x) v'(x) dx - \sum_{i=0}^{N+1} \left\{ u'(x_{i}) \right\} \left[v(x_{i}) \right].$ How do we find a which doesn't jump too much? We penalize jumps by adding a term on the PHS: 5 6 [u(xi) -[v(xi)] + 10 (u(xo)-A).v(xo) + 10 (u(xno)-b).v(xno) where G is the puntty parameter. Adding this term make the problem well-posed! This discontinuous Galenkin method is called the "isomplete interior estation Delevin's

Note-shot the PHS (thought of ar a biline operation on u and r) is not symmetric (no [v] [u] tam, etc.).

He can ringly add multiples of this to the FEM: Let apply (w, v):= E fx: w'(x) v'(x) dx f"symetrigation parameter" - 15 {w/x))·[w/x;)] + E: [{v/(x))·[w/x;)] + 2 fi [w(x;)][v(x;)] + fo w(x) v/x, HI w/x, v/x, +1) and R(v) = Jo f(x)·v(x)dx + for a.v(x) + for p.v(xn+1) - 2 · a.V (x0) ~ Ex v (xn+1). Then: our problem in (approximated) by

as (u,v)=l(v) for all v & V o G.

K since a cto => many town disappear! We am Itim a discontinuing Harlespin approx to 4 by fiding a upa & Voa much that dos (upa,v)= llv) for all ve VDG. When E=-1, we call it the "Ayumetric interior penalty Galertin (SIPG) " < (ohn apa (u, v) = apa (v, w)) When E=0, we call it the "incomplete interior penalty Dalensin (IIPG)" (SIPG and IIPG and o >> 0 for well-When E=1, we call it the "non-symmetric interior penalty Galenhi (NIPGs)" & developed by Princie!

" we obsofor all preeduce!

2/20 CAAM 452 Using notation from last time.) We measure the error in the energy norm 11 v le = (= (Sx) (v(x)) 2 dx) 2 ... but the unt actually a norm on Voc. We have to modify it : [accounting for potential directly @ X; 5) $\|v\|_{\varepsilon} := \left[\sum_{j=1}^{n_{ij}} \int_{K_{j-1}}^{K_{j}} (K_{K_{j}})\right]^{2} dx + \sum_{j=1}^{n_{ij}} \int_{K_{j}}^{K_{j}} [V_{K_{j}}]^{2}$ Note that the approx role only has the body condition wealty enforced, ie. the body value might not be correct. It im be shown that 1 se-usa 1 = O(h') where was as in P(Ki). ||u-upa||= (0(h**)) if 2=-1, ie in 5IPG care (0(h*)) if 2=1 or 2:0, ie (NIPG or IIPG) SIPG seems better but remember that we need (>>0. NIPG revolves this by working for any 0 >0, but the error rate of convergee is only O(h"). Commoler the PDE: (-V. (KD4) = fin 2 = Rd (for d=2 or 3) n= 9 or [= 35 where I is symmetric and there is a uniform upper and lower bond on the eigenvalues of K on so, ie. JK, Kirt, VVERª, K, VTV & VTKV SKZVV. and fela(x), 9 € H'(x).

The week form of this problem is to find u & H'(a) xX u=g on I' and , for all v & H'o (2), we have J(KVu). VV dx = Infrage Let $g \in H'(x)$ be such that g = g on $f = \partial x$. We can then write u = g + u where $u \in H'_0(x)$ is ruch that a(u, v) = U(v) for all $v \in H'_0(x)$ where the symmetric believe form $a(u, v) = \int_{\mathcal{R}} (K \nabla w) \cdot \nabla v dx$ $\chi(\cdot): H'(a) \to R$ / ((v) = In frdx - In (K Dg~). Dr dx Avier a(w,v) < K : 11 vol exa) · 11 vol y 2/20) Lac - Milgram applies. E Kz. Hwll Hym · llull High and also a(v,v) ≥ K, · ||v||22(s) ≥ K, · C· ||v||22(s) Now, let Ple a position of s. Let Voa = [v | VIEE P(E) for all EEP] Neve vo a non-negative integer. Discontinuous Halenfein nethods whire here: ey, 8 = [Ex = 1 t world be very difficult to upone thy along body's!

A family of mesher {Th} 400 is quai-uniform if it is

those regular and if 3 m > 0 to that

the >0, the Etu, we have nih = hp. It is imform if h= h

for all KET. for all KET ... 2 Sinite element Apaces Pp (K):= sprend day p foly on K

ex/P, (K) = span (1, x, y)

ex/P, (K) = span (1, x, y, x², xy, y²).

Excesption: when K is a rectangle, we desote:

Excesption: $Q_{1}(K) = span \{ (x, y, xy) \}$ $Q_{2}(K) = span \{ (x, y, x^{2}, xy, y^{2}, x^{2}, xy^{2}, x^{2}, x^{2}) \}$ $Q_{p}(K) = P_{p}(K) \otimes P_{p}(K) \text{ is of dimension } (p+1)^{2}.$ and do $P_{p}(K)$ has dimension $P_{p}(K)$ X := {v ∈ C(A) | VK ∈ Th, we have V | ∈ Pp (K) and V/20]. There is a set of points in a st any v & X a a uniquely determined by its values at these points. These are called moder. If \$i is a frac which is equal to I at one mode and o at the other modes, it is a model basis further. When the elements are trigingle or quadrilaterale, the modes are simply the interior points, and dim (X4) = # interior vertices.

nesexual university and provide second	when ming pur degree !
Lemma	X = {v x k \in Tn, v k \in P, (k) and v in to at the modes }.
	and vlan = 0.
The state of the s	ex/ 1000 model function by is only
	moment on the elements continuing
	ex model function by is only mongers on the elements continuing the mode of
	When dealing with pu guadratics we have mitered
3	When dealing with pur graduaties, we have mitered to work point on each edge, in addition to wenties.
	to vertices.
)
and the state of t	For consistency we pick the midpoints of edges
	Sor consistency, we pick the midgoints of edges. Unother words when sending with throughout the nodes are the interior vertices and abor the midgoinsto
	nodes we the interior vertices and also the midpoints
	of interior edge. If the mesh is made of a
	of interior edge. If the mesh is made of a vectorife, we need also the bargeenters of K.
3	Linear system
	X = span [4: 15 i \ N] where N= # modes.
	expand: n= = < x; 0; (x)
	Jinean rystem $X = \text{span} \{ \phi_i \mid 1 \le i \le N \} \text{ where } N = \# \text{ nodes}.$ Expand: $u_i = \sum_{j=1}^{N} \chi_j^* (\bar{\chi})$ Let $u_j = \sum_{j=1}^{N} \chi_j^* (\bar{\chi}) = \sum_{j=1}^{N} \chi_j^* (\bar{\chi})$
the double of the second	
	Mor, tre Xn, we have
	Mor tre Xn, we have \[\lambda \times \lambda \tau \tau \tau \tau \tau \tau \tau \ta
	(5) (Ja K. 79; 79; + c. 4; 4; foralli.
	U-1

$(A+B)\vec{a} = \vec{b} \in \hat{a}$ graf representation where $\vec{a} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $\vec{a} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
A= Jok Vd; Vd; i thustiffness ntrye
and Bij - I c. b. of is the mass introc.