CENG2030 FUNDAMENTALS OF EMBEDDED SYSTEM DESIGN

LECTURE 3: INSTRUMENTATION AND MEASUREMENT

By Dr. Anthony Sum

Department of Computer Science and Engineering
The Chinese University of Hong Kong

1

CONTENTS

- Lab Instruments
- Measurement Techniques

COMMON LAB INSTRUMENTS

- Instruments commonly used in electronic/maker laboratory:
 - Multimeter
 - Signal Generator
 - Oscilloscope
 - Breadboard
 - 3D Printer

3

BASIC ELECTRONIC CIRCUIT

- Suppose we have a simple circuit
- How can we measure some basic parameters of the circuit?
- Such as:
 - Voltage (V) in Volt (V)
 - Current (I) in Ampere (A)
 - Resistance (R) in Ohm (Ω)

MULTIMETER

- Multimeter is an all-in-one devices that can measure various electrical parameters:
 - Current
 - Voltage
 - Resistance
 - Capacitance
 - Frequency
 - Short circuit alarm
 - AC & DC, etc.

5

MULTIMETER

- There are two types of multimeter
 - Analog multimeter

Digital multimeter

USE OF MULTIMETER

- Basic steps (or common mistakes) in using multimeter
 - 1. Connect the measuring probes into the right places
 - 2. Check if there is any amplification on the measuring probes
 - 3. Select the correct function for the desired measurement
 - 4. Place the probes on the correct places on the circuit

7

CHECK AMPLIFICATION

- Check the probes, especially for oscilloscope
- Is there any amplification switch?
 - X1
 - X10
- If so, you have to take it into account for your measurement

9

9

SELECT FUNCTION

- Select the correct measurement option
- In this example, we have:
 - OFF
 - Voltage (V)
 - Resistance (Ω)
 - Diode/Short Circuit
 - Frequency (Hz)
 - Current (µA, mA, A)
 - Capacitance (nF, µF)

10

VOLTAGE MEASUREMENT

• Connect the voltmeter in parallel with the circuit element

11

11

RESISTANCE MEASUREMENT

• Connect the voltmeter in parallel with the resistor

12

CURRENT MEASUREMENT

- Break the circuit
- Insert the ammeter in the middle
- Therefore, connect the ammeter in series

13

CONNECTION CHECKING

- Short circuit alarm
- Normally use for checking whether a connection has been successfully made between to wires
- If the connection is made (i.e. short circuit), there is a beep sound

14

SIGNAL GENERATOR

- Generate electric signals for testing purposes
- Parameters
 - Frequency
 - Amplitude

15

15

TYPE OF SIGNALS

- Type of signals
 - Sine wave
 - Square wave
 - Triangular wave
 - Sawtooth wave

16

SIGNAL PARAMETERS

Wavelength (λ)

- The distance measured from a point on one wave to the equivalent part of the next, for example from the top of one peak to the next
- Wavelength is measured in meters (m)

Frequency (f)

- The number of whole waves that pass a fixed point in a period of time
- Frequency is measured in cycles per second (or Hertz, Hz)

Amplitude

- The distance from the center of the wave to the extreme of one of its peaks
- What is the unit of amplitude?

In this example, there are 2 complete cycles per second. Therefore, the frequency is 2Hz.

17

TESTING WITH SIGNALS

OSCILLOSCOPE

- An Oscilloscope is commonly used to capture, process, display and analyze the waveform and bandwidth of electronic signals.
- The device draws a graph of the instantaneous signal voltage as a function of time.

19

HOW TO USE THE OSCILLOSCOPE?

OSCILLOSCOPE

• Two-dimensional graph with time on the x-axis and voltage on the y-axis.

21

21

TIME CHARACTERISTICS

- Frequency and Period
 - Frequency is defined as the number of times a waveform repeats per second
 - Period is the reciprocal of frequency.
 - The maximum frequency a scope can measure varies, but it's often in the 100's of MHz range.
- Duty cycle
 - The duty cycle is a ratio that tells you how long a signal is "ON" versus how long it's "OFF" each period.
- Rise and fall time
 - The duration of a wave going from a low point to a high point is called the rise time, and fall time measures the opposite
 - These characteristics are important when considering how fast a circuit can respond to signals

VOLTAGE CHARACTERISTICS

- Amplitude
 - Amplitude is a measure of the magnitude of a signal.
 - There are a variety of amplitude measurements including
 - Peak-to-peak amplitude, which measures the absolute difference between a high and low voltage point of a signal
 - Peak amplitude, only measures how high or low a signal is past 0V
- Maximum and minimum voltages
 - The scope can tell you exactly how high and low the voltage of your signal
- Mean and average voltages
 - Oscilloscopes can calculate the average your signal
 - It can also tell you the average of your signal's minimum and maximum voltage

23

VERTICAL SYSTEM

- The vertical section of the scope controls the voltage scale on the display
- The volts per division (V/div) knob allows you to set the vertical scale on the screen

HORIZONTAL SYSTEM

- The horizontal section of the scope controls the time scale on the screen
- The seconds per division (s/div) knob rotates to increase or decrease the horizontal scale

25

25

TRIGGERING SYSTEM

 The trigger section is devoted to stabilizing and focusing the oscilloscope

26

3D PRINTER

- Finish your 3D drawing in SolidWorks, and export it to .STL file format
- The 3D object can then be printed by using 3D printer

31

31

ANY QUESTIONS?

