Jegyzőkönyv a méter méréséről

Heiszman Henrik Neptun kód: ENV2R9

Pázmány Péter Katolikus Egyetem, Információs Technológiai és Bionikai Kar 1083 Budapest, Práter utca 50/A

heiszman.henrik@hallgato.ppke.hu

 Mérés célja: az emeleti szoba szélességének, és a számítógép monitor látószögének meghatározása.

Mérést végző személy: Heiszman Henrik *Mérés ideje:* 2021.02.12. 17:00-18:00

• Mérés helye: budapesti lakásom 1. emeleti szobája

• Mérőeszköz: 1 méteres mérőszalag

I. SI-MÉRTÉKEGYSÉGRENDESZ ALAPEGYSÉGEI

Az SI (Système International d'Unités) egy nemzetközileg elfogadott, modern mértékrendszer, amely hét kiválasztott alapegységen, illetve a 10 hatványai alapul.

Az alapegységek, más néven bázisok, a következőek:

Bázis:	Jele:	Egysége:
hossz	L	m (méter)
tömeg	M	kg (kilogram)
idő	t	s (secundum)
áramerősség	I	A (Amper)
termodinamikai hőmérséklet	T vagy θ	K (Kelvin)
anyagmennyiség	n	mol
megvilágítás erőssége	Φ	cd (kandela)

Az SI-mertékrendszerben az alapmennyiségeken kívül beszélhetünk még származtatott mennyiségekről is. Származtatott mennyiségnek nevezzük azokat az egységeket, amelyeket a meglévő alapmennyiségekből állítunk elő. Ilyen például a sebesség: $\frac{s}{t}$ vagy az erő: N= $kg\frac{m}{s^2}$ mértékegysége.

Prefixumra azaz előtagra azért van szükségünk, mert egyes kémia vagy fizikai mennyiségek a megszokott mértékegységekben kifejezve számszerűen, esetlegesen nehezen kezelhető. Ez egyszerűbben fogalmazva azt jelenti, hogy a szám túlságosan kicsi vagy éppen nagy.

A tíz hárommal osztható kitevőjű hatványainak rövidítésére használatosak leginkább, ezek közül a legfontosabbak:

Előtag:	Jele:	Szorzó hatvánnyal:	Szorzó számnévvel:
tera-	T	10^{12}	billió
giga-	G	10 ⁹	milliárd
mega-	M	10^{6}	millió
kilo-	k	10^{3}	ezer
-	=	10^{0}	egy
mili-	m	10^{-3}	ezred
mikro-	μ	10^{-6}	milliomod
nano-	n	10^{-9}	milliárdod
piko-	p	10^{-12}	billiomod
femto-	f	10^{-15}	billiárdod
atto-	a	10^{-18}	trilliomod

Létezik olyan prefixum is, amely nem hárommal osztható hatványkitevőjű. Ezek csak néhány alapegységekkel használatosak:

Előtag:	Jele:	Szorzó:	Használat:
hekto-	h	10^{2}	hPa (hektopascal)
deka-	da	10	dag (dkg)
deci-	d	10^{-1}	dm (deciméter)
centi-	c	10^{-2}	cm (centiméter)

II. A NAPÓRA

A napóra a legősibb időmérő eszköz, amely elve azon a megfigyelésen alapszik, hogy az egyes testek árnyékának iránya és hossza közvetlen kapcsolatban áll a Nap helyzetével.

Felépítése:

- Árnyékvető:
 - Gnómon: egy vízszintes síkon álló, függőleges rúd vagy pálca. Ennek segítségével jelölik ki az észak-déli irányt.
 - Pólosz: ebben az esetben a pálca a Föld forgástengelyével párhuzamos.
- Számlap:
 - Ide vetül az árnyékvető pálca árnyéka. A számlapon találhatóak az órajelek, amelyek segítségével leolvasható a pontos idő.

A napórának két nagy csoportját különböztetjük meg, a rögzítetteket és a hordozhatóakat.

A rögzített napórákat Magyarországon a Magyar Csillagászati Egyesület (MCSE) Napóra szakcsoportja gyűjti össze Keszthelyi Sándor vezetésével.

A rögzített napóráknak a következő fajtáji léteznek:

- Gömb napórák
- Homorú félgömb vagy szkáphosz napórák
- Vertikális vagy függőleges napórák
- Ekvatoriális vagy egyenlítői napórák
- Horizontális vagy vízszintes napórák

Hordozható napórák fajtáji:

- Henger napórák
- Gyűrűs napórák
- Doboz napórák
- Asztali napórák

Az órák egységesen a kiegyenlített középidő, más néven zónaidő szerint járnak. Ezzel szemben a napóra a pontos helyi időt mutatja. Ennek az a hátránya, hogy ahhoz, hogy zónaidőt tudjunk meg a napóra segítségével, egy matematikai számítást kell végeznünk.

A leolvasott értékhez, időszakonként változó számú percet kell hozzáadni vagy abból levonni. Ez az időegyenlet, amelyet a csillagászati évkönyvek nagy pontossággal az év minden egyes napjára megadnak, tökéletesen megfelel az idő kiszámításához. A napórán mért időhöz hozzáadjuk az előjelet figyelembe véve az időegyenlet szerinti percet, akkor megkapjuk a helyi középidőt. A középidőt még át kell számítani zónaidőre, amely azonos a zóna közepén lévő délkör helyi középidejével. Magyarországon a Közép-európai időt használjuk, amely zóna közepe Greenwichtől keletre 15° szögtávolságban helyezkedik el.

III. ALAPFOGALMAK, DEFINÍCIÓK

Mérés:

A mérés alapja az összehasonlítás. A mérés feladata meghatározni azt a számértéket, amely megmondja, hogy a mérendő mennyiség hányszorosa az egységül választott mértékegységnek. Ezt változtatható méretű mérőeszközökkel tudjuk megvalósítani.

Mérőeszköz:

A mérőeszköz vagy műszer olyan eszköz,amely egy anyag vagy természeti jelenség adott tulajdonságának mérésére, vagyis egy jellemző mennyiségének meghatározásához készült.

Mérési hiba:

Mérési hibának nevezzük a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbséget.

Rendszeres hiba:

Rendszeres hibának nevezzük azokat a hibákat, amelyek nagysága és előjele meghatározható, amelyekkel így a mérési eredményt korrigálni lehet.

Véletlen hiba:

Véletlen hibának nevezzük azokat a hibákat, amelyeknek a pontos értéket nem tudjuk meghatározni, sőt időben is mutathatnak változó hatást, ezért az általuk okozott mérési hiba nagysága is és előjele is (adott határok között) megváltozhat.

Durva hiba:

Durva hibának nevezzük azokat a hibákat, amelyeket erős környezeti hatás, vagy személyi tévedés idéz elő, amelyekben a relatív hiba akár 50-100%-ot is elérhet.

Etalon:

Etalonnak nevezünk minden olyan mértéket, mérőeszközt, anyagmintát vagy mérőrendszert, melyeknek az a rendeltetése, hogy egy mennyiség egységét, illetve egy vagy több ismert értékét definiálja, megvalósítsa, fenntartsa vagy reprodukálja és referenciaként szolgáltassa.

IV. A SZOBA SZÉLESSÉGÉNEK MÉRÉSE

A szoba szélességének mérésében segítségemre volt a laminált padló lapjai közötti, az oldalfallal látszólag párhuzamos sávok.

Első lépésben a mérőszalag egyik végét (legyen "A" vég) szorosan a falhoz illesztettem oly módon, hogy párhuzamos legyen az egyik ilyen vonallal, majd megjelöltem krétával a padlót a szalag másik végénél (legyen "B" vég). Második lépésben a szalagot párhuzamosan a sávval elhúztam úgy, hogy az "A" vége kerüljön a krétával jelölt ponthoz, majd ismét megjelöltem a padlón a "B" vég helyzetét.

Az előző folyamatot addig ismételtem, amíg a szoba másik falához nem érve, a szalag már nem fért rá a legutolsó jelölés és a fal távolságára. Ekkor a szalag "A" végét a falhoz illesztettem és lemértem a fal és a jel közötti távolságot a merőszalagon lévő beosztások segítségével.

Az előző elemi mérésből, matematikai összefüggéssel megadható a keresett érték, ez esetben a szoba szélessége.

Jelölje "a" azt a számot, ahányszor a szalag egész hossza ráfért a szoba szélességére, és jelölje "b" a szoba végen az utolsó jelölés és a fal távolsága!

Jelölje a szoba szélességet "l"! Ekkor a mért adatokból a következő összefüggéssel adható meg "l":

$$l = a + b$$
 (egység)

Egység alatt ebben az esetben a merőszalag hosszat értjük.

A mérés eredménye:

$$a = 3$$
 (egység) $b = 0.75$ (egység)

$$l = a + b = 3 + 0.75 = 3.75$$
 (egység)

A számítás elvégzésével megkaptam, hogy a szobám szélességének közelítő értéke: 3.75 m

A mérési módszerem több hibát is okozhatott:

- a mérőszalag gyárilag sem felelt meg az etalonnak vagy tárolás során megnyúl (rendszeres hiba)
- a mérőszalag pontatlan illesztése (véletlen hiba)
- a krétával jelölt csík nem pontosan lett megrajzolva (véletlen hiba)
- a padlólapok közötti vonal nem pontosan párhuzamos a fallal (rendszeres hiba)

V. LÁTÓSZÖG MÉRÉSE

Első lépésben meghatároztam a monitorom képernyőjének középpontját (,,O") átlók segítségével. 22 Második lépésben mérőszalag segítségével meghatároztam a szemem és a monitor középpontjának távolságát ("x"), feltételezve, hogy a szememet és a középpontot összekötő merőleges a monitor kijelzőjének Harmadik lépésben pedig lemértem a merőszalag segítségével a középpont és a monitor alsó valamint bal szélének felezőpontjának távolságát (,,a" "b").

1. lépés:

2. lépés:

3. lépés:

Matematikai összefüggések:

A látószög (mind függőleges, mind vízszintes irányban) meghatározásához az alábbi két, a méréssel megszerkesztett derékszögű háromszög egy-egy meghatározott szögét kell kiszámolni.

Jelölje a szemem azt a pontját "S", amelytől a monitor távolságát mértem, "A" a monitor szélének alsó felezőpontját, "B" a monitor bal oldali felezőpontját és "O" a monitor középpontját.

Az első háromszög, mellyel a függőleges irányú látószöget határoztam meg az "SOA" háromszög. A látószög ennek a háromszögnek az "S" csúcsánál lévő szögével (" α ") lesz egyenlő.

Az "α" szög egyszerűen meghatározható az alábbi tétel szerint: Derékszögű háromszög egyik szögének tangense meghatározható a szöggel szemközti befogó és a szög melletti befogó hányadosával.

Alkalmazva a tétel az "SOA" háromszögre, a következő összefüggést kaptam:

$$tg(\alpha) = \frac{a}{x}$$

Ebből következik, hogy:

$$arctg\left(\frac{a}{r}\right) = \alpha$$

Ezek után behelyettesítéssel megkaptam az általam számolni kívánt adatot.

$$a = 0.14$$
 (egység) $x = 0.56$ (egység)

$$arctg\left(\frac{0.14}{0.56}\right) = 14.036^{\circ}$$

Megkaptam, hogy a függőleges irányú látószög közelítő értéke: 14.036°

Az másik háromszög, mellyel a vízszintes irányú látószöget határoztam meg az "SOB" háromszög. A látószög itt is a háromszög "S" csúcsánál lévő szögével ("β") lesz egyenlő.

Az " β " szög ebben az esetben is egyszerűen meghatározható a tétel segítségével.

$$tg(\beta) = \frac{b}{x}$$

Ebből következik, hogy:

$$arctg\left(\frac{b}{x}\right) = \beta$$

Ezek után behelyettesítéssel megkaptam az általam számolni kívánt adatot.

$$b = 0.25$$
 (egység) $x = 0.56$ (egység)

$$arctg\left(\frac{0.25}{0.56}\right) = 24.057^{\circ}$$

Megkaptam, hogy a vízszintes irányú látószög közelítő értéke: 24.057°

A mérési módszerem több hibát is okozhatott:

- a mérőszalag gyárilag sem felelt meg az etalonnak vagy tárolás során megnyúl (rendszeres hiba)
- a mérőszalag pontatlan illesztése (véletlen hiba)
- a szememet és a monitor középpontját összekötő egyenes nem merőleges a monitor síkjára (véletlen hiba)
- monitor középpontját nem pontosan határoztam meg (véletlen hiba)

VI. ELTÉRÉS MÉRÉSE

Kisszámoltam, hogy mekkora eltérést mutatnak az egyes számolások eredményei abban az esetben, ha a mérést +/- 2mm és +/- 5 mm hosszeltérésű eszközzel végeztem volna.

A szobám szélességének mérés során négyszer mértem távolságot a mérőeszközömmel, így ez az eltérés is négyszer jelentkezett a mérés során.

Eredeti mérés során kapott eredmény: l = 3.75 m

• +/- 2 mm-es eltérés esetén:

$$2 mm = 2 * 10^{-3} m$$

$$l = 3 + (4 * 2 * 10^{-3}) + 0.75 = 3.758 m$$

$$-2 mm = -2 * 10^{-3} m$$

$$l = 3 + (4 * (-2) * 10^{-3}) + 0.75 = 3.742 m$$

Ebben az esetben az eredmény +/- 8 mm-es eltérést mutat.

• +/- 5 mm-es eltérés esetén:

$$5 mm = 5 * 10^{-3} m$$

$$l = 3 + (4 * 5 * 10^{-3}) + 0.75 = 3.77 m$$

$$-5 mm = -5 * 10^{-3} m$$

$$l = 3 + (4 * (-5) * 10^{-3}) + 0.75 = 3.73 m$$

Ebben az esetben az eredmény +/- 20 mm-es eltérést mutat.

A látószög mérés során háromszor mértem távolságot a mérőeszközömmel.

Eredeti mérés során kapott eredmény:

Függőleges irányban: 14.036°
Vízszintes irányban: 24.057°

• +/- 2 mm-es eltérés esetén:

$$2 mm = 2 * 10^{-3} m$$

Függőleges irányban:

$$arctg\left(\frac{0.142}{0.562}\right) = 14.181^{\circ}$$

Eltérés: + 0.145°

Vízszintes irányban:

$$arctg\left(\frac{0.252}{0.562}\right) = 24.151^{\circ}$$

Eltérés: + 0.094°

$$-2 mm = 2 * 10^{-3} m$$

Függőleges irányban:

$$arctg\left(\frac{0.138}{0.558}\right) = 13.891^{\circ}$$

Eltérés: - 0.145°

Vízszintes irányban:

$$arctg\left(\frac{0.248}{0.558}\right) = 23.963^{\circ}$$

Eltérés: - 0.095°

• +/- 5 mm-es eltérés esetén:

$$5 mm = 5 * 10^{-3} m$$

Függőleges irányban:

$$arctg\left(\frac{0.145}{0.565}\right) = 14.394^{\circ}$$

Vízszintes irányban:

$$arctg\left(\frac{0.255}{0.565}\right) = 24.291^{\circ}$$

Eltérés: + 0.234°

$$-5 mm = 5 * 10^{-3} m$$

Függőleges irányban:

$$arctg\left(\frac{0.135}{0.555}\right) = 13.671^{\circ}$$

Eltérés: - 0.365

Vízszintes irányban:

$$arctg\left(\frac{0.245}{0.555}\right) = 23.819^{\circ}$$

Eltérés: - 0.238°

VI. A MÉRÉS PONTOSSÁGA

Tudjuk, hogy minden mérés hibával terhelt, így akármennyire is törekszünk a pontosságra, sosem érjük el azt. Például a mérőszalag nyúlását nem tudjuk kiküszöbölni.

HIVATKOZÁSOK

SI mértékegység [1]

SI mértékegység[2]

SI mértékegység[3]

Napóra[1]

Napóra[2]

Alapfogalmak, definíciók