

E32-xxxT20x User Manual

AT commands, 20dBm LoRa, Wireless Module

Contents

Disclaimer			4
1 Introduction			5
1.1 Product Introduction			
1.2 Features			
1.3 Applications			
2 Specification and parameters			
2.1 RF parameters	<u> </u>	<u> </u>	
2.2 Electrical parameters			
2.3 Hardware parameters			
3 Size and pin definition			9
3.1 E32-400 / 900T20S			9
3.2 E32-400 / 900T20D			
4 Recommended Connections			12
5 Functional details			
5.1 Fixed point sending			13
5.2 Broadcast			13
5.3 Broadcast address			14
5.4 Listening address			14
5.5 Module reset			14
5.6 AUX explanation			14
5.6.1 Serial port data output indication			15
5.6.2 Wireless transmission indication			15
5.6.3 The module is in the configuration process			15
5.6.4 Precautions			
6 Working mode			16
6.1 Notes for mode switching			17
6.2 General Mode (Mode 0)			18
6.3 WOR Mode (Mode 1)			18
6.4 Power-saving mode (mode 2)			18
6.5 Deep dormancy mode (mode 3)			19
7 Register read and write control			19
7.1 Directive introduction			19
7.2 Read working parameter			20
7.3 Read firmware			20
7.4 Resignation command			20
7.5 E32-xxxT20x register description			20
7.6 Default parameters			22
8 AT command			23
8.1 The AT command sheet			23
8.2 AT parameter analysis			25
8.3 Upgrade firmware via serial port			25
9 Software configuration description			26

10 Hardware Design		26
11 FAQ		
11.1 Communication range is too short		27
11.2 Module is easy to damage		
11.3 BER(Bit Error Rate) is high		28
11.4 Antenna selection		28
12 Production guidance		29
12.1 Reflow weld temperature		29
12.2 Reflow welding curve diagram	<u>®</u>	29
13 Related models		30
14: Antenna recommendation		30
14.1 Recommendation		30
15. Packing methods		32
15.1 E32-433 / 900T20S bulk packaging method		32
15.2 E32-433 / 900T20D bulk packaging method		32
Revise the history		33
About Us		33

Disclaimer

EBYTE reserves all rights to this document and the information contained herein. Products, names, logos and designs described herein may in whole or in part be subject to intellectual property rights. Reproduction, use, modification or disclosure to third parties of this document or any part thereof without the express permission of EBYTE is strictly prohibited.

The information contained herein is provided "as is" and EBYTE assumes no liability for the use of the information. No warranty, either express or implied, is given, including but not limited, with respect to the accuracy, correctness, reliability and fitness for a particular purpose of the information. This document may be revised by EBYTE at any time. For most recent documents, visit www.cdebyte.com.

1 Introduction

1.1 Product Introduction

E32-xxxT20x series (UART) module is developed based on SEMTECH classic RF chip. It's transmitting power is 20 dBm, with a variety of transmission modes, working frequency band in 400 and 900 band, LoRa spread frequency technology, TTL level output, compatible with 3.3V IO port voltage.

E32-xxxT20x adopts the new generation of LoRa expansion technology, LoRa ™ straight sequence expansion technology has the advantages of farther communication distance, strong anti-interference ability, and strong confidentiality. The default air rate is 2.4 kbps and the transmitting power is 20 dBm, so as to improve the communication stability and extend the communication distance; industrial active temperature filling vibration is adopted to ensure its stability and consistency. At present, it has been stable in mass production, and has been widely used in the three-table industry, Internet of things transformation, smart home and other fields.

E32-xxxT 20x strictly comply with FCC, CE, ROHS and other domestic and foreign design specifications, meet the radio frequency related certification, meet the export requirements, but also can provide customized development services. The four modules in the figure below have the same power and different frequency bands.

Figure 1: E32-433T20S

Figure 2: E32-433T20D

Figure 3:E32-900T20S

Figure 4: E32-900T20D

1.2 Features

- Using the new generation of LoRa spread spectrum modulation technology, bring farther communication distance, anti-interference ability is stronger;
- Support serial port upgrade firmware, update firmware is more convenient;

- Support AT instruction, more convenient to use;
- Support FEC forward error correction to improve communication stability;
- Support for the global license-free ISM 433MHz frequency band;
- Support the 868 / 915 MHz EU universal frequency band;
- Support users to set the communication key, and can not be read, greatly improve the confidentiality of user data;
- Support the LBT function, and monitor the channel environment noise before sending, which can greatly improve the communication success rate of the module in the harsh environment;
- Support RSSI signal strength indication function for assessing signal quality, improving communication network and ranging;
- Support wireless parameter configuration, through wireless sending command packet, remote configuration or reading wireless module parameters;
- Support air wake-up, that is, ultra-low power consumption function, suitable for the application scheme of battery power supply;
- Support fixed-point transmission, broadcast transmission, and channel monitoring;
- Support deep dormancy, the power consumption of the whole machine is about 3 uA;
- Under ideal conditions, the communication distance can reach 5km;
- The parameters are saved, and the module will work according to the set parameters;
- Efficient watchdog design, in case of abnormal, the module will automatically restart, and can continue to work according to the previous parameter Settings;
- Support for 2.4K~19.2K bps of data transmission rate;
- Support 2.7~5.5V power supply, more than 5V power supply can ensure the best performance;
- Industrial grade standard design, support-40~ + 85°C for a long time to use;
- The maximum module power is 100 mW (20 dBm), and the transmission is farther and more stable.

1.3 Applications

- Home security alarm and remote keyless entry;
- Smart home and industrial sensors;
- Wireless alarm security system;
- Building automation solutions;
- Wireless industrial-grade remote control;
- Health care products;
- Advanced meter reading architecture (AMI).

2 Specification and parameters

2.1 RF parameters

RF	11.4		Performance		D I v
parameter	Unit	Min	Туре	Max	Remarks
Max TX Power	dBm	- (C)	20	- ((6)	
RX Sensitivity	dBm	123	124	125	The air rate was 2.4 kbps
Reference Distance	M		5K	JE (C	Clear and empty, antenna gain 5 dBi, antenna height 2.5 m, air rate 2.4 kbps.
Work	MHz	410	433	441	Suitable for E32-433T 20S, E32-433T 20D.
Frequency Band	MHz	862	900	930	Suitable for E32-900T 20S, E32-900T 20D.
Air Rate	bps	2.4K	2.4K	19.2K	User programming control
Block Power	dBm	EP	-10	_	The probability of burning in close range use is small

2.2 Electrical parameters

F14-*-	-1	Unit	(14.1	Performance		D
Electric	Electrical parameters		Min Type Max		Remarks	
Working voltage		V	2.7	5.0	5.5	5V can guarantee the output power, over 5.5V permanently burned module.
Communio	cation level	V	<u></u>	3.3V	-1110	Use 5V TTL
D	emission current	mA	110	110	150	Instantaneous power consumption of @ 20 dBm
Power Dissipati	receive current	mA	15	15	17	®
on	The dormant current	uA	3	3	3	Software off
Temperat	working temperature	$^{\circ}$	-40~+85 -40~+85		EB	Industrial grade design
ure	storage temperature	$^{\circ}$ C				Industrial grade design

2.3 Hardware parameters

TT 1		Mo	odel		
Hardware parameters	E32-433T20 S	E32-433T20 D	E32-900T20 S	E32-900T20 D	Remarks
modulation mode	LoRa	EB, EB, EB		New-generation of LoRa modulation technology	
Interface mode	1.27mm stamp hole	Pin plug-in	1.27mm stamp hole	Pin plug-in	
CI	UART gorge li	ne			TTL electrical level
Launch length	58 B tye				Maximum capacity of single package, automatic subcontracting after exceeding
Packaging method	Patch type	(C)		E (G)	TE COTE
Cache capacity	512B tye	(8)		8	- 8 8
Antenna interface	IPEX / Stamp hole IPEX / Stamp hole SMA-K		The equivalent impedance is about 50Ω		
size	16*26mm	21*36 mm	16*26mm	21*36 mm	±0.2mm
Net weight of products	2.3g	7.6	5.8g	2.3g	±0.1g

3 Size and pin definition

3.1 E32-400 / 900T20S

Pin No.	Item	Direction	Description
1	NRST	import	Module reset pin
2	GND		Module ground wire
3	NC	_	Empty feet
4	NC ®	- (8)	Empty feet
5	NC	11(-1)	Empty feet
6	NC	C-NA	Empty feet
7	NC		Empty feet
8	GND	-	Module ground wire
11	GND	-27	Module ground wire
12	ANT	output	Antenna interface (high-frequency signal output, 50 ohm characteristic impedance)
13	GND	-	Module ground wire
14	GND	-	Module ground wire
15	GND	-	Module ground wire
16	GND	-	Module ground wire

19	GND	-	Module ground wire
20	M0	Input (very weak pull-up)	With M1, determine the four working modes of the module (not suspended, if not grounded)
21	M 1	Input (very weak pull-up)	With M 0, determine the four working modes of the module (not suspended, if not grounded)
22	RXD	import	TTL serial port input, connected to the external TXD output pin;
23	TXD	output	TTL, serial port output, connected to the external RXD output pin;
24	AUX	output	Used to indicate the working state of the module; user awakens external MCU and output low level during self-test initialization (can be suspended)
25	VCC	EBY	Module power supply is positive reference, voltage range: 2.7~5.5V DC
26	GND ®	- ®	Module ground wire

3.2 E32-400 / 900T20D

Pin No.	Item	Direction	Description
1	M0	Input (very weak	And M1, determines the four working modes of the module.

		pull-up)	
2	M1	Input (very weak pull-up)	With M0, we can determine the four working modes of the module.
3	RXD	import	TTL serial port input, connected to the external TXD output pin; Can be configured for drain open or pull-up input, see parameter settings.
4	TXD	output	TTL serial port output, connected to the external RXD input pin; It can be configured as open drain or push output, see parameter settings.
5	AUX	output	To indicate the working status of the module; (it can be suspended) The user wakes up the external MCU and output low level during the self-test; It can be configured as drain open output or push pull output, see parameter settings.
6	VCC	import	Module power supply is positive reference, voltage range: 2.3~5.5V DC
7	GND	import	Module ground wire
8	lashing eye		lashing eye
9	lashing eye	EBY	lashing eye
10	lashing eye	9 @	lashing eye

4 Recommended Connections

No.	Brief connection between module and MCU (above takes STM 8 L as an example)
1	The wireless serial port module is TTL level, please connect to the MCU of TTL level.
2	Some 5V chips may need to add 4~10K on the TXD and AUX feet of the module.

5 Functional details

5.1 Fixed point sending

5.2 Broadcast

5.3 Broadcast address

- Example: Set module A address to 0xFFFF and channel to 0x04.
- When module A is used as transmission (the same mode, transparent transmission mode), all the receiving modules under the 0x04 channel can receive data to achieve the purpose of broadcasting.

5.4 Listening address

- Example: Set module A address to 0xFFFF and channel to 0x04.
- When module A is received as, all the data under the 0x04 channel to achieve the purpose of monitoring.

5.5 Module reset

- After the module is powered, AUX will immediately output the low level, conduct hardware self-test, and set the working mode according to user parameters;
- In this process, AUX keeps a low level, after which AUX outputs a high level, and starts to work normally according to the combination of M1 and M0;
- Therefore, the user needs to wait for the AUX to rise along, as the starting point for the normal operation of the module.

5.6 AUX explanation

- AUX is used for wireless transceiver buffer indication and self-test indication.
- It indicates whether the module has data that has not been transmitted wirelessly, or whether the wireless data has not been transmitted entirely through the serial port, or whether the module is in the process of initializing the self-test.

5.6.1 Serial port data output indication

• For awakening the external MCU in dormancy;

模块串口外发数据时,AUX引脚时序图

5.6.2 Wireless transmission indication

- Buffer blank: data from the internal 512 bytes buffer is written to the wireless chip (automatic subcontracting).
- When AUX = 1, the user initiates less than 512 bytes of data and does not overflow. When AUX = 0, the buffer is not empty: the data of the internal 512-byte buffer has not been fully written to the wireless chip and started transmission. At this time, the module may wait for the user data to end the timeout, or is undergoing wireless subcontract transmission.
- [Note]: AUX = 1 does not mean that all the serial port data of the module is transmitted wirelessly, or the last packet of data may be being transmitted.

模块接收串口数据时,AUX引脚时序图

5.6.3 The module is in the configuration process

• Only when reset and exit dormancy mode;

自检期间,AUX引脚时序图

5.6.4 Precautions

No.	AUX matters need attention
	The above function 1 and function 2, the output low level priority, that is, meet any one of the output low
1	level conditions, AUX output low level;
	When all low level conditions are not satisfied, AUX outputs a high level.
	When AUX output is low level, the module is busy and no working mode detection will be conducted at this
2	time;
	When the module AUX is output within 1ms after the high level, the mode switching work will be completed.
	After the user switches to the new working mode, he needs to rise the AUX for at least 2ms before the
3	module will really enter this mode;
	If the AUX is always at a high level, then the mode switch takes effect immediately.
4	The user enters another mode from mode 3 (sleep mode), or during the reset process, the module resets the
4	user parameters, during which the AUX outputs a low level.
	Due to the characteristics of LoRa modulation mode, the information transmission delay is much longer than
5	that of FSK. For example, at the empty speed of 2.4 kbps, the 100-byte transmission delay is about 1.5
5	seconds. It is suggested that customers do not carry out large data transmission at low altitude speed, so as to
	avoid abnormal communication caused by data loss caused by data accumulation.

6 Working mode

The module has four working modes, set by pins M1 and M0; the details are shown in the following table:

Pattern (0-3)	M1	M0	Model introduction	Remarks
0 General mode	0	0	Serial port open, wireless open, transparent transmission	The receiver must be mode 0,1
1 Wake up mode	0	1	Serial port open, wireless open; The only difference from mode 0: Before the packet launches, automatically add the wake up code to wake up the receiver working in mode 2	The receiver can be a mode 0 The receiver can be mode 1 The receiver can be

				mode 2	
2. Power saving mode	1	0	The serial port is off, and the wireless is in air wake up mode. After receiving the wireless data, open the serial port to send the data.	The itter must mode 1 Cannot launch in this mode	
3 Sleep mode	1	1	The module enters hibernation and can receive parameter setting commands	See the working parameters for details	
6.1 Notes for mode switching					

No.	Remarks
	Users can combine M1 and M0 at high and low levels to determine the module working mode. Two GPIO of the MCU can be used to control the mode switching;
	When M1 and M0 are changed: if the module is idle, after 1ms, it can start working according to the new mode;
	If the module has serial data that has not been transmitted wirelessly, the new working mode can be entered after
1	the transmission mode is completed;
	If the module receives the wireless data and sends the data through the serial port, it needs to send the data before
	entering the new working mode;
	So the mode switching can only be effective when the AUX outputs 1, otherwise the switching will be delayed.
	For example, if the user continuously inputs a large amount of data and switches the mode, the switching mode
2	operation is invalid; the module will process all the user data before conducting new mode detection;
	Therefore, it is generally recommended to detect the output state of the AUX pin, and wait for the output high
	level for 2ms before switching.
	When the module is switched from other mode to dormant mode, if there is data not processed;
	The module will process the data (including receiving and sending) before entering the hibernation mode. This
	feature can be used for fast sleep, thus saving power consumption; for example, the transmission module works
3	in mode 0, the user initiates the serial data "12345", and then do not have to wait for the AUX pin idle (high
	level), can directly switch to the sleep mode, and the user main MCU immediately sleep, the module will
	automatically send all the user data through wireless, automatically enter the hibernation within 1ms;
	This saves the working time of MCU and reduces the power consumption.
	Similarly, any mode switching, can use this feature, the module handles the current mode event, within 1ms, will
	automatically enter the new mode; thus eliminating the user query AUX work, and can achieve the purpose of
4	rapid switching;
4	For example, switching from transmitting mode to receiving mode; the user MCU can also enter hibernation
	before the mode switching premise, and use the external interrupt function to obtain AUX changes, thus
	performing mode switching.
	This operation mode is very flexible and efficient, which is designed in accordance with the convenience of
5	operation of the user MCU, and can reduce the workload of the whole system as much as possible, improve the
	system efficiency and reduce the power consumption.

6.2 General Mode (Mode 0)

Туре	When $M0 = 0$ and $M1 = 0$, the module works in mode 0			
TX	The module receives the user data from the serial port, The module transmitting wireless packet length of 58 bytes, When the amount of user input data reaches 58 bytes, The module will initiate the wireless transmission, At this point, the user can continue to input the data needed to be launched; When the user needs to transmit less than 58 bytes, Module waiting for a 3-byte time, If no user data is further entered, The data is considered terminated, At this time, the module sends out all the data packets wirelessly; When the module receives the first user data, The AUX output low level, After the module puts all the data into the RF chip and starts the launch, AUX output high level; this moment, Indicates that the last package of wireless data has initiated launched, Users can continue to enter up to 512 bytes of data; Pages issued by mode 0, Can only be received by receiving modules in mode 0 and 1.			
RX	The module always turns on the wireless receiving function, which can receive the data packets sent from mode 0 and mode 1; After receiving the packet, the module AUX outputs the low level and delays for 5ms, and starts to send the wireless data through the serial port TXD pin. After all the wireless data is output through the serial port, the module outputs the AUX at the high level.			

6.3 WOR Mode (Mode 1)

Туре	When $M0 = 1$ and $M1 = 0$, the module works in mode 1				
TX	The condition of the module startup packet launch is equivalent to the AUX function; the only difference is that the module automatically adds the wake code before each packet, the length of the wake up code depends on the wake time set in the user parameters; the wake code is used to awaken the receiving module working in mode 2; so the data transmitted by mode 1 can be received by mode 0,1 and 2.				
RX	Equivalent to mode 0.				

6.4 Power-saving mode (mode 2)

Туре	When $M0 = 0$ and $M1 = 1$, the module works in mode 2		
TX	The module is dormant, and the serial port is closed, unable to receive the serial port data from the external MCU, so this mode does not have the wireless transmission function.		
RX	In mode 2, Ask the transmitter to work in mode 1; Timed listening for the wake-up code, Once a valid wake code, The module will remain in the receiving state, And wait for the entire valid data packet to be received; The AUX will then output a low-level, After a 5-ms delay, Opening the serial port will send out the received wireless data through the TXD, After finishing the AUX output high level; The wireless module continues to enter the working state of "sleep-listening" (polling); By setting the different wake-up times, The module has		

different receiving response delay (maximum 2s) and average power consumption (minimum 30 uA); Users need to strike a balance between the communication delay time and the average power consumption.

6.5 Deep dormancy mode (mode 3)

Туре	When $M0 = 1$ and $M1 = 1$, the module works in mode 3
TX	Unable to transmit the wireless data.
RX	Unable to receive the wireless data.
Configure	The hibernation mode can be used for the module parameter setting, using the serial port 9600,8N1, to set the module working parameters by a specific instruction format.
When entering from the hibernation mode to the other mode, the module will reconfigure the particle. Note During the configuration process, the AUX remains low; after the output is high, so the user should AUX rising edge.	

7 Register read and write control

7.1 Directive introduction

In hibernation mode (mode 3: M0=1, M1=1), the supported instruction list is as follows (when setting, only 9600,8N1 format is supported):

NO.	Format	Define
1	And C0 + operating parameters	16 C0 + 5 bytes working parameters, 6 bytes, must be sent continuously (power out)
2 C1+C1+C1 parameters, which mus And C2 + operating 16 binary format to ser		16 The binary format sends three C1s, and the module returns the saved parameters, which must be sent continuously.
		16 binary format to send C2 + 5 bytes working parameters, a total of 6 bytes, must be sent continuously (power loss is not saved)
4	C3+C3+C3	16 In ary format sends three C3, module returns version information, must be sent continuously.
5	C4+C4+C4	16 The decimal format sends three C4, the module will produce a reset, must be sent continuously.

7.2 Read working parameter

Format	Define
C1+C1+C1	In dormant mode (M0=1, M1=1), issue a command to the module serial port (HEX format): C1 C1 C1, The module returns the current configuration parameters, such as: C0 00 00 1A 06 44.

7.3 Read firmware

Format	Define		
(C)	In dormant mode (M0=1, M1=1), issue a command to the module serial port (HEX format): C3 C3 C3,		
	The module returns the current configuration parameters, such as: C3 32 XX YY;		
C3+C3+C3	C3 is the command prefix, 32 represents the product model, XX represents the		
	version number, and YY represents the interface format + module maximum power		
	value (16 decimal point). The TTL interface is 0x10, RS232 is 0x40, and 0x80 for		
	RS485		

7.4 Resignation command

Format	Define
®	In dormant mode (M0=1, M1=1), issue a command to the module serial port (HEX format): C4 C4 C4,
C4+C4+C4	The module will produce a single reset;
EBY	During the reset process, the module conducts self-test and AUX outputs low level. After the reset, AUX outputs high level and the module starts to work normally; At this point, you can mode switch or initiate the next command.

7.5 E32-xxxT20x register description

No.	Name	Description	Remarks
	(Must be 0 xC 0 or C2
	HEAD	Fixed 0 xC 0 or 0 xC 2, indicating that this frame data is a	C0: The set parameters will be dropped and
0	ПЕАБ	control command	saved.
			C2: The set parameters will not be saved.
1	ADDH	Module address high byte (default 00H)	00H-FFH
2	ADDL	Module address low byte (default 00H)	00H-FFH

_		7	6	Seria	l check bit	
		0	0	8N1 ((by default)	
		0	1	1 801		The serial port mode of both sides of the
		1	0	8E1	<u> </u>	communication system can be different
		(1.5))	1	8N1 ((equivalent to 00)	
		5	4	3	TTL Serial rate (bps)	
		0	0	0	The serial port port rate is 1200	EB "
		0	0	1	The serial port port rate is 2400	
		0	1	0	The serial port port rate is 4800	The baud rates of the communication
		0	1		Serial port port rate of 9600 (default)	parties can be different serial port and wireless transmission parameters, and does
	CDED	1	0	0	The serial port port rate is 19200	not affect the wireless transceiver
3	SPED	1	0	1	The serial port port rate is 38400	characteristics.
		1	1	0	The serial port port rate is 57600	
		1	1	1	The serial port port rate is 115200	TE CITE
		2	1	0	Universal wireless aerial rate (bps)	
		0	0	0	The air rate is 2.4k	
		0	0	1	The air rate is 2.4k	The lower the air rate, the farther the
		0	1	0	Aerial rate of 2.4k (default)	distance, the stronger the anti-interference
		0	1	1	The air rate is 4.8k	performance, and the longer the transmission time. The air wireless transmission rate must be the same on both sides.
		1	0	0	The air rate is 9.6k	
		1	0	1	Aerial rate 19.2k	
		1	1	0	Aerial rate 19.2k	
		1	1	1	Aerial rate 19.2k	TE CITE
		General	l model			
		7	6	5	Keep unused	Write 0
		commu	nication	channel		00H-1 FH, corresponding to 410 to 441
4	CHAN	4~0, corresponding (410 MHz + CHAN * 1 MHz), default 17H (433 MHz) (400 band) 4~0, corresponding (862 MHz + CHAN * 1 MHz), default 06H (868 MHz) (900 band applicable)			and) 2 MHz + CHAN * 1 MHz), default	MHz 00H-45H, corresponding to 862 to 930 MHz
		7 Fixe		ed-point transmit enable bits (class MODBUS)		For 1, the first 3 bytes of each user data
		0	Trans	sparent tr	ransmission mode	frame are used as the high and low address,
						channel. During launching, the module
5		1	Five	l-noint tr	ansmission mode	changes its own address and channel, and after completion, the original setting is
		1		-рош и		
	OPTIO	<u></u>		- 3	9 - 9 - 2	restored.
	N	6	6 IO drive mode (default 1)			This bit is used for the pull resistance inside
		1		, AUX poull the in	ush and pull the output, RXD pull up uput	the enabling module. The drain open circuit mode level is more adaptable, and some
		0	TXD input		ppen circuit output, RXD open circuit	cases may require external pull-up resistance.
		5	4	3	Wireless wake up time	Transceiver modules are working in mode

	0	0	0	250ms (b	y defaul	t)		0, the	delay tin	ne is inva	llid, can be any	
	0	0	1	500ms				value;				
	0	1	0	750ms				The 1	transmitter	works in	mode 1, and wil	
	0	w 1	1	1000ms		<i>w</i>		contin	ue to laui	nch the c	all code of the	
	(1.))	0	0	1250ms	1110)		1110	corres	corresponding time;			
	1	0	1	1500ms				The re	eceiver wor	ks in mod	e 2, which refers	
	1	1	0	1750ms	CB.	-	CB				ne of the receive	
	1	1	1	2000ms	(10)	(8)	110	(wireless wake-up), and can only receive the data of the transmitter working in model.				
	2	FEC	switch					After	FEC	is close	d, the actua	
	0	Turn	off the FI	EC error cor	rection		ED	transn	nission rate	of data i	ncreases, but the	
		Oper	n FEC Err	FEC Error Correction (default)					anti-interference ability is weakened, and the distance is slightly closer, please choose according to the actual application; Both parties must be turned on or closed.			
	1	0	Emiss	ion power (a	approx.	value)		The	The external power supply must provide the current output capacity above 250 mA,			
	0	0	20 dB	m (by defau	ılt)			the cu				
	0	1	17dBr	n	1110		1115	and ensure that the power supply ripple is				
	1	0	14dBr	n			(6)	less th	an 100mV	;		
		1	10dBr	n ®				It is not recommended to send with small power, and its power utilization efficiency is not high.				
Example (meani	ng of serial nu	ımber 3	"SPED" l	oyte):								
Binary bits of the byte			7	6	5	4	3		2	1	0	
Specific value (user configuration)			0	0 0 1 1			1		0	1	0	
Representative meaning			Serial port check bit 8N1 The serial port port rate is			s 9600	The air r	ate is 2.4k				
Corresponding to the hexadecimal system			1	A			4	EB				

7.6 Default parameters

Model		Factory default parameter value: C0 00 09 00 00 1A 00 17 03 00 00									
PN	Frequency	Address	Channel	Air rate	Baud rate	Serial port format	Transmitti ng power				
E32-433T20S	433.125MH z	0x0000	0x17	2.4kbps	9600	8N1	20dbm				
E32-900T20S	868.125MH z	0x0000	0x12	2.4kbps	9600	8N1	20dbm				

E32-433T20D	433.125MH z	0x0000	0x17	2.4kbps	9600	8N1	20dbm
E32-900T20D	868.125MH z	0x0000	0x12	2.4kbps	9600	8N1	20dbm

8 AT command

- Using AT instructions for parameter configuration or query should be performed in configuration mode;
- AT instructions are used in configuration mode, AT instructions are divided into three categories: command instruction, setting instruction and query instruction;
- Users can go through the words "AT + HELP =?"Query to the AT instruction set supported by the module, the AT instruction adopts the port rate of 9600 8N1;
- When the input parameter exceeds the range, it will be limited. Please do not let the parameter exceed the range to avoid the unknown situation.

8.1 The AT command sheet

Command instruction	Description	Instance	Example description	
AT + IAP (Use carefully, see article 8.3 serial port upgrade firmware considerations)	Enter the IAP upgrade mode	AT+IAP	Enter the IAP upgrade mode	
AT+RESET	Equipment restart	AT+RESET	Equipment restart	
AT+DEFAULT	Configuration parameters to restore the default	AT+DEFAULT	Configuration parameters to restore the default And the device restarted	
50	And the device restarted		3)	

Set instructions	description	instance	Example description	
AT+UART=baud,parity	Set the port rate and check	AT+UART=3,0	Set the port rate to 9600,8N 1	
AT+RATE=rate	Set air rate	AT+RATE=7	Set the air rate to 19.2K	
AT+WOR=role	Set the WOR roles and cycles	AT+WOR=0	Set to WOR to receive	
AT+POWER=power	Set the sending power	AT+POWER=0	Set the transmission power to 30 dBm	
AT+TRANS=mode	Set the send mode	AT+TRANS=1	Set to point mode	
AT+LBT=lbt	Set the Listen Before Talk function switch	AT+LBT=1	Set on, refer to section 7.5 LBT enable for details	
AT+ERSSI=erssi	Set the ambient noise RSSI switch	AT+ERSSI=1	Set on, refer to section 7.5 RSSI environmental noise function in detail	

AT+DRSSI=data_rssi Sets the received data RSSI		AT+DRSSI=1	The receive data RSSI function is	
	switch		turned on	
AT+ADDR=addr	Set module address	AT+ADDR=1234	Set the module address to 1234	
AT+CHANNEL=channel	NEL=channel Set up the module working channel		Set the frequency to 433.125M	
AT+NETID=netid	Set the network ID	AT+NETID=2	Set the network ID to 2	
AT+KEY=key	Set the module key	AT+KEY=1234	Set the module key to 1234	
AT+DELAY=delay	Set the WOR delay sleep time	AT+DELAY=1000	The WOR delay dormancy was set to 1000ms	
AT+SWITCH=switch	Set the software switching mode switch	AT+SWITCH=1	Set on to allow software switching	
AT+SWITCH=switch	Set the software switching mode switch	AT+SWITCH=1	Set on in configuration mode to allow software switching	
AT+MODE=mode	Switch the working mode	AT+MODE=0	Switch to transmission mode	

Query instructions	description	Return an example	Example description		
AT+HELP=?	Query the AT timetable		Returns the AT repertoire		
AT+DEVTYPE=?	Query module model	DEVTYPE=E 32-400T30D/D	Return Module Model		
AT+FWCODE=?	Query firmware encoding	FWCODE=7432-0-10	Return firmware version		
AT+UART=?	Query the baud rate and the check	AT+UART=3,0	Return to a port rate of 9600,8N 1		
AT+RATE=?	Query air rate	AT+RATE=7	The return to the air rate is 19.2K		
AT+WOR=?	Query for the WOR role	AT+WOR=0	Return to the WOR to receive		
AT+POWER=?	Query send power	AT+POWER=0	The return sending power is 20 dBm		
AT+TRANS=?	Query send mode	AT+TRANS=1	Returns to the fixed-point mode		
AT+LBT=?	Query the Listen Before Talk function switch	AT+LBT=1	Return to the LBT switch status		
AT+ERSSI=?	Query the ambient noise RSSI switch	AT+ERSSI=1	Return to the ambient noise switch state		
AT+DRSSI=?	Query the RSSI output	AT+DRSSI=1	The return-channel RSSI function is turned on		
AT+ADDR=?	Query module address	AT+ADDR=1234	The return module address is 1234		
AT+CHANNEL=?	Query the module working channel	AT+CHANNEL=23	The return frequency is set at 433.125M		
AT+NETID=?	Query network ID	AT+NETID=2	The return network ID is 2		

AT+KEY=?	Query module key	Read is not supported	return ERR
		(security considerations)	
ATIDELAY_9	Query WOR delay	ATIDELAV-1000	The return WOR delay sleep
AT+DELAY=?	1 1		time is 1000ms
AT+SWITCH=?	Query software switch	AT+SWITCH=0	Software switching mode is
AI+SWITCH-:	mode switch	AI+SWITCH-0	turned off
EB.	Query the current working	EB.	Dotyme to the assessment
AT+MODE=?	mode (available in all	AT+MODE=0	Return to the current
®	modes)	8	transmission mode

8.2 AT parameter analysis

When the serial port receives the correct instruction, the serial port returns "instruction =OK", otherwise it returns "= ERR"

Instruction parameters	Parameter meaning					
Baud (serial port rate)	0:1200 1:2400 2:4800 3:9600 4:19200 5:38400 6:57600 7:115200					
Parity (Serial port check bit)	0:8N1 1:8O1 2:8E1 3:8N1					
Rate (air rate)	0:2.4K 1:2.4K 2:2.4K 3:4.8K 4:9.6K 5:19.2K 6:19.2K 7:19.2K					
Role (WOR role)	0: receive 1: send					
Period (WOR Cycle)	0:500ms 1:1000ms 2:1500ms 3:2000ms 4:2500ms 5:3000ms 6:3500ms 7:4000ms					
Power (transmit power)	0:20dBm 1:17dBm 2:14dBm 3:10dBm					
Mode (Transport mode)	0: transparent 1: fixed point					
LBT(listen before talk)	0: Off 1: Turn on					
Erssi (Environmental RSSI)	0: Off 1: Turn on					
Data _ rssi (Data RSSI)	0: Off 1: Turn on					
Addr (module address)	Module address 0~65535 (10 r)					
Channel (Module channel)	Module channel 0~45 (10 decimal system)					
Netid(network ID)	Module network 0~255 (10 r)					
Key(cipher code)	Module key 0~65535 (10 r)					
Delay (WOR time-delay dormancy)	Delay hibernation 0~65535 (10 decimal point)					
Mode (working mode)	0: Transmission mode 1: wake up mode 2: power saving mode 3: sleep mode					

8.3 Upgrade firmware via serial port

If the customer needs to upgrade the firmware, it needs to find the corresponding BIN file provided by the official, and then use the official provided upper machine to upgrade the firmware. Generally, the user does not need to upgrade

the firmware, so do not use the "AT + IAP" command.

The first necessary pins for the upgrade must be introduced (M1, M0, AUX, TXD, RXD, VCC, GND), and then send "AT + IAP" command into the upgrade mode. If you need to exit the IAP upgrade mode, you need to stay on and wait for 60 seconds, the program will automatically exit, otherwise even if the restart, it will enter the upgrade mode indefinitely.

After entering the upgrade mode, the port rate will automatically switch to 115200 until you automatically exit, with a log output.

9 Software configuration description

• The following figure shows the example of the upper computer display interface of E 32-900T 30S. Users can switch to command mode through M0 and M1, and quickly configure and read parameters in the upper computer.

- In the configuration computer, the module address, frequency channel, network ID and key are all decimal display mode; taking the values of each parameter:
- Network address: 0~65535
- Frequency channel: 0~45
- network ID:0~255
- Key: 0~65535

10 Hardware Design

- It is recommended to use DC voltage regulator power to supply the module, the power ripple coefficient is as small as possible, and the module should be reliably grounded;
- Please note the correct connection of the positive and negative poles of the power supply, if the reverse connection

may cause permanent damage to the module;

- Please check the power supply to ensure that between the recommended supply voltage, exceeding the maximum value will cause permanent damage to the module;
- Please check the stability of the power supply, and the voltage cannot fluctuate substantially and frequently;
- When designing power supply circuit for modules, it is often recommended to retain more than 30% allowance, and the whole machine is conducive to long-term stable work;
- Modules should be as far as possible away from the power supply, transformer, high frequency wiring and other electromagnetic interference parts;
- High frequency digital routing, high frequency analog wiring, power wiring must avoid below the module, if really need to pass below the module, assuming that the module is welded in Top Layer, Top Layer in the contact part of the module paving copper (all paved copper and good grounding), must be close to the digital part of the module and line in Bottom Layer;
- Assuming that the module is welded or placed in Top Layer, it is also wrong to walk randomly in Bottom Layer or
 other layers, which will affect the stray dispersion and receiving sensitivity of the module to different degrees;
- Assuming that there are devices with large electromagnetic interference around the module will also greatly affect the performance of the module, according to the strength of the interference according to the module, if the situation allows to do appropriate isolation and shielding;
- Assuming that there is a wiring around the module with large electromagnetic interference (high frequency digital, high frequency simulation, power wiring) will also greatly affect the performance of the module, according to the strength of the interference is recommended to be appropriate away from the module, if the situation allows to do appropriate isolation and shielding;
- If the communication line uses a 5V level, the 1k-5.1k resistance must be connected in series (not recommended, there is still a risk of damage);
- Keep away from the 2.4GHz TTL protocol, such as USB3.0;
- The antenna installation structure has a great impact on the performance of the module, so make sure that the antenna is exposed and the best vertical upward;
- When the module is installed inside the casing, a high-quality antenna extension line can be used to extend the antenna to the outside of the casing;
- The antenna must not be installed inside the metal shell, which will greatly weaken the transmission distance.

11 FAQ

11.1 Communication range is too short

- When there is a linear communication obstacle, the communication distance will decay accordingly;
- Temperature, humidity, the same frequency interference, will lead to the communication packet loss rate increased;
- Ground absorption, reflection of radio waves, close to the ground test effect is poor;
- Seawater has a strong ability to absorb radio waves, so the seaside test effect is poor;
- There are metal objects near the antenna, or placed in the metal shell, the signal attenuation will be very serious;
- Power register setting is wrong, the air rate setting is too high (the higher the air rate, the closer the distance);
- At room temperature, the low voltage of the power supply is lower than the recommended value, and the lower the

voltage, the lower the power generation;

• The antenna is poor to match the module or the quality of the antenna itself.

11.2 Module is easy to damage

- Please check the power supply to ensure that between the recommended supply voltage, exceeding the maximum value will cause permanent damage to the module;
- Please check the stability of the power supply, and the voltage cannot fluctuate;
- Please ensure anti-static operation during installation and use process and static sensitivity of high frequency devices;
- Please ensure that the humidity should not be too high, and some components are humidity-sensitive devices;
- If there is no special demand, it is not recommended to use it at too high or too low temperature.

11.3 BER(Bit Error Rate) is high

- There is the same frequency signal interference nearby, stay away from the interference source or modify the frequency, channel to avoid interference;
- The lock waveform on SPI is not standard, check whether there is interference on SPI line, SPI bus line should not be too long;
- The power supply is not ideal may also cause disorderly code, be sure to ensure the reliability of the power supply;
- Extension line, feeder quality is poor or too long, will also cause high bit error rate.

11.4 Antenna selection

At the same time, IPEX interface and stamp hole interface, IPEX interface and stamp hole interface can be selected

12 Production guidance

12.1 Reflow weld temperature

Reflow weld	curve characteristics	Lead process assembly	Lead-free process assembly	
Preheat /	Minimum temperature (Tsmin)	100℃	150℃	
heat preservation	Maximum temperature (T smax)	150℃	200℃	
	Time (T smin ~T smin)	For the next time, 60-120 seconds	For the next time, 60-120 seconds	
Temperature r	rise slope (TL ~ Tp)	At 3 °C / s, with the maximum value	At 3 °C / s, with the maximum value	
Liquid-phase temperature (TL)		183℃	217℃	
Hold time abo	ove the TL	60~90 Seconds	60~90 Seconds Users must not exceed the temperature specified on the "Humidity sensitivity" label of the product.	
Package bull	k peak temperature Tp	Users must not exceed the temperature specified on the "Humidity sensitivity" label of the product.		
Time (Tp) within 5°C of the specified grade temperature (Tc), shown in the figure below		20 Seconds	30 Seconds	
Cooling slope	r (Tp \sim TL)	6°C / s, max	6°C / s, max	
Time from the room temperature to the peak temperature		Six minutes, the longest	8 Minutes, longest	
The peak tem	perature (Tp) tolerance of the ter	mperature curve is defined as the upper	limit of the user	

12.2 Reflow welding curve diagram

13 Related models

PN	Carrier frequenc y Hz	TX power dBm	Distance km	Air rate	Packaging form	Size mm	Antenna
E32-170T30D	170M	30	8	0.3k ∼9.6k	straight pin	24*43	SMA-K
E32-433T20DC	433M	20	3	0.3k ∼19.2k	straight pin	21*36	SMA-K
E32-433T20S1	433M	20	3	0.3k ∼19.2k	paster	17*25.5	Stamp hole
E32-433T20S2 T	433M	20	3	0.3k ∼19.2k	paster	17*30	IPEX / Stamp hole
E32-400T20S	433/470 M	20	3	0.3k ∼19.2k	paster	16*26	IPEX / Stamp hole
E32-433T30D	433M	30	8	0.3k ∼19.2k	straight pin	24*43	SMA-K
E32-433T30S	433M	30	8	0.3k ∼19.2k	paster	25*40.3	IPEX / Stamp hole
E32-868T20D	868M	20	3	0.3k ∼19.2k	straight pin	21*36	SMA-K
E32-868T20S	868M	20	3	0.3k ∼19.2k	paster	16*26	IPEX / Stamp hole
E32-868T30D	868M	30	8	0.3k ∼19.2k	straight pin	24*43	SMA-K
E32-868T30S	868M	30	8	0.3k ∼19.2k	paster	25*40.3	IPEX / Stamp
E32-915T20D	915M	20	3	$0.3k \sim 19.2k$	straight pin	21*36	SMA-K
E32-915T20S	915M	20	3	0.3k ∼19.2k	paster	16*26	IPEX / Stamp hole
E32-915T30D	915M	30	8	0.3k ~19.2k	straight pin	24*43	SMA-K
E32-915T30S	915M	30	8	0.3k ∼19.2k	paster	25*40.3	IPEX / Stamp hole

14: Antenna recommendation

14.1 Recommendation

Antenna is an important role in the communication process, and often inferior antenna will have a great impact on the communication system, so our company recommends some antennas as antennas supporting our wireless modules with excellent performance and reasonable price.

PN	Туре	Frequency Hz	Interface	Gain dBi	Size mm	feeder cm	Features
TX433-NP-43 10	Flexible antenna	433M	weld	2.0	43.8*9.5	<u>-</u>	Built-in flexible, FPC soft antenna
TX433-JZ-5	Rubber rod antenna	433M	SMA-J	2.0	52	-	Ultra-short straight, omnidirectional antenna
TX433-JZG-6	Rubber rod antenna	433M	SMA-J	2.5	62	® -	Ultra-short straight, omnidirectional antenna
TX433-JW-5	Rubber rod antenna	433M	SMA-J	2.0	50		Bend the adhesive rod, and use the omnidirectional antenna
TX433-JWG-7	Rubber rod antenna	433M	SMA-J	2.5	75	8	Bend the adhesive rod, and use the omnidirectional antenna
TX433-JK-11	Rubber rod antenna	433M	SMA-J	2.5	110	- 6	Bendable adhesive rod, omnidirectional antenna
TX433-JK-20	Rubber rod antenna	433M	SMA-J	3.0	210	® <u>-</u>	Bendable adhesive rod, omnidirectional antenna
TX433-XPL -100	The suction dish antenna	433M	SMA-J	3.5	185	100	Small suction cup antenna, cost-effective
TX433-XP-20 0	The suction dish antenna	433M	SMA-J	4.0	190	200	Neutral suction cup antenna, low loss
TX433-XPH-3 00	The suction dish antenna	433M	SMA-J	6.0	965	300	Large sucker antenna, with high gain
TX490-JZ-5	Rubber rod antenna	470/490M	SMA-J	2.0	50	<u>-</u>	Ultra-short straight, omnidirectional antenna
TX490-XPL -100	The suction dish antenna	470/490M	SMA-J	3.5	120	100	Small suction cup antenna, cost-effective

15. Packing methods

15.1 E32-433 / 900T20S bulk packaging method

15.2 E32-433 / 900T20D bulk packaging method

Revise the history

Version	Date	Description	Issued by
1.0	2023-10-25	The initial version	LIU

About Us

Technical support: support@cdebyte.com

Documents and RF Setting download link: www.cdebyte.com

Thank you for using Ebyte products! Please contact us with any questions or suggestions: info@cdebyte.com

Phone: +86 028-61399028 Web: www.cdebyte.com

Address: B5 Mould Park, 199# Xiqu Ave, High-tech District, Sichuan, China

