Geometric characteristics of real-world networks

Heather M. Guarnera The College of Wooster

Why graph networks?

Utility Patent network 1972-1999 (3 Million patents)

nodes n = 23,752 autonomous systems

edges m = 58,416 AS links

What is Fellow Travelers Phenomenon?

For any two x,y vertices on a graph $I(x,y)=\{z\in V:d(x,y)=d(x,z)+d(z,y)\}$ denotes the (metric) **interval**, i.e., all vertices that lay on a shortest path between x and y.

For any two x,y vertices on a graph $I(x,y)=\{z\in V:d(x,y)=d(x,z)+d(z,y)\}$ denotes the (metric) **interval**, i.e., all vertices that lay on a shortest path between x and y.

For any two x,y vertices on a graph $I(x,y)=\{z\in V:d(x,y)=d(x,z)+d(z,y)\}$ denotes the (metric) **interval**, i.e., all vertices that lay on a shortest path between x and y.

The set $S_p(x,y) = \{z \in I(x,y) : d(z,x) = p\}$ is called a **slice** of the interval from x to y.

For any two x,y vertices on a graph $I(x,y)=\{z\in V:d(x,y)=d(x,z)+d(z,y)\}$ denotes the (metric) **interval**, i.e., all vertices that lay on a shortest path between x and y.

The set $S_p(x,y) = \{z \in I(x,y) : d(z,x) = p\}$ is called a **slice** of the interval from x to y.

An interval I(x, y) is said to be κ -thin if any two vertices u, v of the slice $S_p(x, y)$ are at most κ apart, where integer p satisfies $0 \le p \le d(x, y)$.

Ex: I(x, y) is 2-thin.

The smallest value κ for which all intervals of G are κ -thin is the thinness of the graph, denoted $\kappa(G)$.

 $\kappa(G)$ is a small constant in many real-world networks!

Ex: Protein Interaction Network

Ex: Other real-world networks with small thinness

- Social networks (subset of Facebook)
 - nodes *n* = 293,501 users
 - edges m = 5,589,802 friendships between users

$$\kappa(G) \leq 7$$

- Web networks (from Google)
 - nodes *n* = 855,802 websites
 - edges m = 4,291,352 hyperlinks connecting sites

$$\kappa(G) \leq 4$$

Peer-to-peer networks (Gnutella)

- nodes *n* = 62,561 hosts
- edges m = 147,878 connections between hosts

$$\kappa(G) \leq 5$$

Fellow travelers phenomenon is attributed to the negative curvature of the graph

Geometric characteristics of real-world networks

- Surge of recent empirical and theoretical work analyzes geometric characteristics
- One important property: negative curvature
 - causes traffic between vertices to pass through a relatively small core of the network – as if the shortest paths between them were curved inwards
 - measured in many different (somewhat equivalent) ways

Zero Curvature

Negative Curvature

Geometric characteristics of real-world networks

- Surge of recent empirical and theoretical work analyzes geometric characteristics
- One important property: negative curvature
 - causes traffic between vertices to pass through a relatively small core of the network – as if the shortest paths between them were curved inwards
 - measured in many different (somewhat equivalent) ways
- Measures of negative curvature
 - κ Interval thinness
 - τ Geodesic triangle thinness
 - δ Gromov Hyperbolicity
 - ς Slimness
 - ι Rooted Insize

How can this geometric information be applied?

Parameterized complexity/approximation factor

- Goal: create algorithms which solve problems utilizing these geometric properties
- Example: Consider δ hyperbolicity, which is known to be small in many real-world networks.
 - Solve a problem in $O(f(\delta) m)$ time
 - Compute a $f(\delta)$ approximation
- Some problems this has been applied to:
 - Covering/packing problems
 - Computing the diameter/radius
 - Facility location problems
 - Network analysis
 - Vertex pursuit games on graphs
 - Traveling salesman problem

Parameterized complexity/approximation factor

- Goal: create algorithms which solve problems utilizing these geometric properties
- Example: Consider δ hyperbolicity, which is known to be small in many real-world networks.
 - Solve a problem in $O(f(\delta) m)$ time
 - Compute a $f(\delta)$ approximation
- Some problems this has been applied to:
 - Covering/packing problems
 - Computing the diameter/radius
 - Facility location problems
 - Network analysis
 - Vertex pursuit games on graphs
 - Traveling salesman problem

- 1. F. Dragan and **H. Guarnera**. Helly-gap of a graph and vertex eccentricities. Theoretical Computer Science, 867:68-84, 2021.
- 2. F. Dragan and **H. Guarnera**. Eccentricity function in distance-hereditary graphs. Theoretical Computer Science, 833: 26-40, 2020.
- 3. F. Dragan and **H. Guarnera**. Eccentricity terrain of δ -hyperbolic graphs. Journal of Computer and System Sciences, 112: 50-56, 2020.
- 4. F. Dragan, G. Ducoffe, **H. Guarnera**. Fast deterministic algorithms for computing all eccentricities in (hyperbolic) Helly graphs, the 17th Algorithms and Data Structures Symposium (WADS'21), 2021.
- 5. Mohammed, F. Dragan, **H. Guarnera**. Fellow Travelers Phenomenon Present in Real-World Networks, Complex Networks & Their Applications, 2022.

Example: eccentricity function and centers

The eccentricity e(x) of a vertex x is the distance to a furthest u vertex to x

$$e(x) = \max_{u \in V} d(x, u)$$

The minimum and maximum eccentricities are called the radius rad(G) and diameter diam(G) of the graph, respectively

The center of a graph C(G) is the set of vertices with minimum eccentricity

$$C(G) = \{ v \in V : e(v) = rad(G) \}$$

Applications:

- Measure the importance of a node (centrality indices)
- Facility location problems
- Detecting small-world networks (degrees of freedom)

Computing vertex eccentricities straightforwardly.

The eccentricity e(x) of a vertex x is the distance to a furthest u vertex to x

$$e(x) = \max_{u \in V} d(x, u)$$

Take a connected graph with n vertices and m edges.

- A single Breadth-First Search (BFS) from a vertex x
 - runs in *O(m)* time
 - yields *e(x)*
- Call BFS for each of the n vertices
- Total *O(nm)* runtime

This is prohibitively expensive on many real-world networks, as they are huge!

• Find a long path in O(m) time

• Find a long path in O(m) time

- Run breadth-first search (BFS) from the middle vertex c between u_2u_3
- We show $e_T(v) \le e_G(v) \le e_T(v) + 6\delta$

Theorem [2]: There is a 6δ approximation of all eccentricities in total O(m) time

[2] F. Dragan and **H. Guarnera**. Eccentricity terrain of δ -hyperbolic graphs. Journal of Computer and System Sciences, 112: 50-56, 2020.

• Find a mutually distant pair of vertices x,y in $O(\delta m)$ time

$$e(x) = d(x, y) = e(y)$$

$$u_0 \longrightarrow u_1$$

$$u_2 \longrightarrow u_3$$

$$u_4 \longrightarrow \dots$$

$$u_{i+1}$$

• Find a mutually distant pair of vertices x,y in $O(\delta m)$ time e(x) = d(x,y) = e(y)

• We show $e_T(v) \le e_G(v) \le e_T(v) + 4\delta$

Theorem [2]: There is a 4δ approximation of all eccentricities in total $O(\delta m)$ time

[2] F. Dragan and **H. Guarnera**. Eccentricity terrain of δ -hyperbolic graphs. Journal of Computer and System Sciences, 112: 50-56, 2020.

Conclusion

- Many real world networks exhibit the fellow travelers property
 - Biological networks
 - Communication networks
 - Social networks
 - Software ecosystems

- We can take advantage of this nice geometric property to solve problems faster on these networks
 - Ex: computing vertex eccentricities

Conclusion and future work

- Many real world networks exhibit the fellow travelers property
 - Biological networks
 - Communication networks
 - Social networks
 - Software ecosystems
 - What else?
- We can take advantage of this nice geometric property to solve problems faster on these networks
 - Ex: computing vertex eccentricities
 - What else? Ex: vertex pursuit games
- Routes:
 - Theoretical
 - Applied

Games on graphs: cops vs. robbers

Paths for Future Work (Theoretical)

Every graph G can be isometrically embedded into the smallest Helly graph \mathcal{H} (G).

A family *F* of sets has the **Helly property** if for every subfamily *S* of *F* the following hold: if the elements of *S* pairwise intersect, then the intersection of all elements of *S* is also non-empty.

A graph is called **Helly** if its family of disks satisfies the Helly property.

Paths for Future Work (Theoretical)

Every graph G can be isometrically embedded into the smallest Helly graph \mathcal{H} (G).

 \mathcal{H} (G) is called the injective hull of G [Isbell 1964, Dress 1984].

- \mathcal{H} (G) preserves hyperbolicity
- If G is δ -hyperbolic, then any vertex of $\mathcal H$ (G) is within 2 δ to a vertex of G [Lang 2013]
- [1] Any vertex of \mathcal{H} (G) is within α (G) to a vertex of G, where α (G) is the Hellygap.

This motivates finding solutions to problems in \mathcal{H} (G) which can lead to approximate solutions in G.

[1] F. Dragan and **H. Guarnera**. Helly-gap of a graph and vertex eccentricities. Theoretical Computer Science, 867:68-84, 2021.

Paths for Future Work (Theoretical)

 $\mathcal{H}(G)$ can be constructed efficiently [6] for some graph classes (e.g., distance-hereditary graphs).

- It is computationally difficult to compute for other (even basic) graph classes [6]
- Investigate other graph classes (alpha-i metric graphs, chordal graphs, etc.)

The existence of $\mathcal{H}(G)$ is a powerful tool to gain insight into a graph class from various perspectives

- structurally what other classes are closed under Hellification?
- metrically what parameters are preserved?
- algorithmically what else can be solved?

It lends itself nicely to approximation algorithms dependent on $\alpha(G)$.

Apply those algorithms to specific graph classes

[6] **Heather M. Guarnera**, Feodor F. Dragan, and Arne Leitert. Injective hulls of various graph classes. Graphs and Combinatorics 38, 112 (2022).

Paths for Future Work (Applied)

- Analyze existing real-world networks
 - Biological networks
 - Communication networks
 - Social networks
 - Software ecosystems
- Compute values of graph parameters on existing networks
 - Form conjectures for theoretical work
- Optimize algorithms to run efficiently on enormous networks
- Mining software repositories

Network analysis: software ecosystems

Software Heritage Project

Thank you! Questions?