Practice and some new results

Probability Theory for EOR

Functions of random variables

Functions of random variables

Random variables are functions.

X maps elements from S to numbers! Now we can work with functions/numbers!: e.g.,

$$X: S \mapsto \mathbb{R}$$

There are transformations on **functions** (composite functions), e.g., from f, g to get **new functions**:

$$(f)^2$$
, $(f)^3$, $f+1$, fg , $f+g$, $\max\{f,g,0\}\cdots$

We can manipulate random variables in a similar way:

$$(X)^2$$
, $(X)^3$, $X + 1$, XY , $X + Y$, max $\{X, Y, 0\} \cdots$

Probability Theory for EOR 3 of 7

Functions of a real-valued r.v.'s

For an r.v. $X: S \mapsto \mathbb{R}$ with sample space S, and a proper function $g: \mathbb{R} \to \mathbb{R}$, g(X) is the r.v. that maps s to $g(X(s)) \in \mathbb{R}$ for all $s \in S: S \mapsto \mathbb{R}$.

 $X \sim \text{Bern}(p)$, then Y = 2(X + 1) is also an r.v. with PMF:

$$P(Y = 2) = 1 - p$$
; $P(Y = 4) = p$.

For a discrete r.v. X, the PMF of Y = g(X):

$$P(Y = y) = \sum_{x:g(x)=y} P(X = x); y \in \{g(x) : x \in \text{supp}(X)\}.$$

Functions of multi real-valued r.v.'s

For multiple r.v.'s $X_i: S \mapsto \mathbb{R}, i=1,2,3\cdots,n$ with sample space S, and a proper function $g: \mathbb{R}^n \mapsto \mathbb{R}, \ g(X_1,X_2,\cdots,X_n)$ is the r.v. that maps s to $g(X_1(s),X_2(s),\cdots,X_n(s)) \in \mathbb{R}$ for all $s \in S: S \mapsto \mathbb{R}$.

Example:

 $X_1, X_2 \sim \text{Bern}(0.5)$ and they are independent, then $Y = X_1 + X_2$ is also an r.v. with PMF:

$$P(Y = 0) = 1/4$$
; $P(Y = 1) = 1/2$; $P(Y = 2) = 1/4$.

Practice and some new results

Throw a fair six-sided die

What is the PMF for the random variable X denotes the number of eyes of the outcome if we throw a six-sided fair die for one time?

$$P(X = i) = 1/6, i = 1, 2, 3, 4, 5, 6.$$

Throw a fair six-sided die twice. What is the PMF of, Y, the sum of the two independent die rolls?

$$P(Y = i), i = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.$$

Denote X_1 the number of eyes of the outcome in the first throw, and X_2 the number of eyes of the outcome in the second throw ($Y = X_1 + X_2$):

$$P(Y = 3) = \sum_{x_1, x_2: x_1 + x_2 = 3} P(X_1 = x_1, X_2 = x_2)$$

$$= \sum_{x_1, x_2: x_1 + x_2 = 3} P(X_1 = x_1) P(X_2 = x_2)$$

$$= P(X_1 = 1) P(X_2 = 2) + P(X_1 = 2) P(X_2 = 1)$$

$$= 1/6 \times 1/6 + 1/6 \times 1/6 = 1/18.$$

Throw a fair six-sided die three times. Denote by X, Y, Z the eyes by the first, second and third die. Suppose X, Y and Z are independent identically distributed (i.i.d.). Calculate $P(\max(X, Y, Z) > 5)$:

Probability Theory for EOR 6 of 7

7 of 7

Results: Binomial and Hypergeometric

- ▶ $X \sim Bin(n, p)$, $Y \sim Bin(m, p)$. X and Y are independent:
 - (a) Z = X + Y, $Z \sim Bin(n + m, p)$.
 - (b) The conditional distribution of X given Z = r is HGeom(n, m, r):

$$P(X = k|Z = r) = \frac{\binom{n}{k}\binom{m}{r-k}}{\binom{n+m}{r}}$$

► $X \sim \mathsf{HGeom}(w, b, n)$, if $N = w + b \to \infty$ and $p = \frac{w}{w + b}$: The PMF of X converges to the $\mathsf{Bin}(n, p)$ PMF:

$$P(X = k) = \binom{n}{k} \frac{\prod_{i=0}^{k-1} (p - \frac{i}{N}) \prod_{j=0}^{n-k-1} (q - \frac{j}{N})}{\prod_{j=1}^{n-1} (1 - \frac{j}{N})} \to \binom{n}{k} p^k q^{n-k}$$