The Limit Superior

LaurenceWarne

August 13, 2019

Contents

1	Definition	1
2	Interpretation	1
3	Examples	2
4	Questions	2

1 Definition

We define the **limit superior** of a sequence a_n as follows:

$$\limsup_{n \to \infty} a_n = \lim_{n \to \infty} \left(\sup_{m \ge n} a_m \right)$$

An equivalent but perhaps more intuitive definition is:

$$\limsup_{n \to \infty} a_n = \sup S$$

Where S is the set of limits of all **convergent** subsequences of a_n . The **limit inferior** is defined similarly:

$$\liminf_{n \to \infty} a_n = \lim_{n \to \infty} \left(\inf_{m \ge n} a_m \right)$$

2 Interpretation

Consider some sequence a_n where the limit superior is not infinite. Then the limit superior b is the smallest real number s.t. $\forall \epsilon > 0$, there exist only a finite n s.t. $a_n > b + \epsilon$.

3 Examples

Define $a_n = \sin n\pi$

4 Questions

Show that a sequence a_n converges iff:

$$\limsup_{n \to \infty} a_n = \liminf_{n \to \infty} a_n$$

Show that if the sequences a_n and b_n are bounded above then:

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$$

and find a similar relation for the limit inferior.