Euclidean Planes

Recall that an incidence geometry is called *euclidean* if, given any line ℓ and any point p not on ℓ , there is exactly one line passing through p which is parallel to ℓ . So far we have avoided using any assumptions about the uniqueness of parallel lines, and have been able to prove a good number of interesting results. We will now specialize to the Euclidean case for a while.

Proposition 1 (Converse of the Alternate Interior Angles Theorem). In a Euclidean plane geometry, if two parallel lines are cut by a transversal, then alternate interior angles formed by the cut are congruent.

Proof. (copy angle, use AIA, use uniqueness.)	Proof.	(copy angle,	use AIA,	use uniqueness.	.)
---	--------	--------------	----------	-----------------	----

Proposition 2. If ℓ and m are parallel and m and t are parallel, then ℓ and t are parallel.

Proof. We can assume that ℓ and t are distinct (if equal, they are parallel). Suppose BWOC that ℓ and t meet at the unique point x. Since ℓ and m are parallel, x is not on m. By the Euclidean property, there is a unique line s containing x which is parallel to m. But both ℓ and t satisfy this condition, and they are distinct - a contradiction.

Corollary 3. If ℓ_1 and ℓ_2 are parallel and m is incident to ℓ_1 , then m is incident to ℓ_2 .

Proposition 4. If ℓ_1 and m are perpendicular, and if ℓ_1 and ℓ_2 are parallel, then ℓ_2 and m are perpendicular.

Proof. If $\ell_1 = \ell_2$ there's nothing to do. Otherwise m is a transversal and the result follows from the converse of the AIA theorem.

Proposition 5. If ℓ_1 and ℓ_2 are parallel, m_1 and ℓ_1 are perpendicular, and m_2 and ℓ_2 are perpendicular, then m_1 and m_2 are parallel.

Proof. ℓ_2 and m_1 are perpendicular by the converse of AIA, and then m_1 and m_2 are parallel by AIA.

Construction 6. Given 3 distinct noncollinear points A, B, and C, there is a unique circle which contains all of them. This circle is called the circumcircle of $\triangle ABC$, and its center is the circumcenter.

Proof. Let ℓ be the perpendicular bisector of \overline{AB} and let m be the perpendicular bisector of \overline{BC} . Now ℓ and m must meet, since otherwise \overline{AB} and \overline{BC} are parallel (which they aren't, as they meet at the unique point B (since A, B, and C are not collinear)). Moreover they must meet at a unique point, say O, since otherwise we can show that A = C. Recall that points X on the perpendicular bisector of \overline{AB} have the property that $\overline{AX} \equiv \overline{BX}$. So we have $\overline{AO} \equiv \overline{BO} \equiv \overline{CO}$, and thus $C_O(A)$ contains A, B, and C.

Proposition 7.

- 1. Opposite angles of a parallelogram are congruent.
- 2. Opposite sides of a parallelogram are congruent.
- 3. The diagonals of a parallelogram bisect each other.

Proof. For the angles, use AIA and converse of AIA. For the sides, construct a diagonal and use AAS. For the diagonals, use converse of AIA and ASA. \Box

Proposition 8 (Thales' Theorem). Suppose A and B are the opposite endpoints of a diameter of a circle centered at O, and that C is a point on this circle distinct from A and B. Then $\angle ACB$ is right.