Machine Learning

(機器學習)

Lecture 10: Support Vector Machine (1)

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?
- 5 Embedding Numerous Features: Kernel Models

Lecture 10: Support Vector Machine (1)

- Large-Margin Separating Hyperplane
- Standard Large-Margin Problem
- Support Vector Machine
- Motivation of Dual SVM
- Lagrange Dual SVM
- Solving Dual SVM
- Messages behind Dual SVM

Linear Classification Revisited

(linear separable)

linear (hyperplane) classifiers: $h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x})$

Which Line Is Best?

- PLA? depending on randomness
- VC bound? whichever you like!

$$E_{\text{out}}(\mathbf{w}) \leq \underbrace{E_{\text{in}}(\mathbf{w})}_{0} + \underbrace{\Omega(\mathcal{H})}_{d_{\text{VC}} = d + 1}$$

You? rightmost one, possibly :-)

Why Rightmost Hyperplane?

informal argument

if (Gaussian-like) noise on future $\mathbf{x} \approx \mathbf{x}_n$:

 \mathbf{x}_n further from hyperplane

⇔ tolerate more noise

⇔ more robust to overfitting

distance to closest \mathbf{x}_n

⇔ amount of noise tolerance

⇔ robustness of hyperplane

rightmost one: **more robust** because of **larger distance to closest** \mathbf{x}_n

Fat Hyperplane

- robust separating hyperplane: fat
 —far from both sides of examples
- robustness \equiv **fatness**: distance to closest \mathbf{x}_n

goal: find fattest separating hyperplane

Large-Margin Separating Hyperplane

 $\max_{\mathbf{w}} \quad \text{fatness}(\mathbf{w})$

subject to

w classifies every (\mathbf{x}_n, y_n) correctly

 $\frac{\mathsf{fatness}(\mathbf{w}) = \min_{n=1,\dots,N} \mathsf{distance}(\mathbf{x}_n, \mathbf{w})}{\mathsf{distance}(\mathbf{x}_n, \mathbf{w})}$

- fatness: formally called margin
- correctness: $y_n = sign(\mathbf{w}^T \mathbf{x}_n)$

goal: find largest-margin separating hyperplane

Large-Margin Separating Hyperplane


```
\max_{\mathbf{w}} \quad \mathbf{margin}(\mathbf{w})
subject to every y_n \mathbf{w}^T \mathbf{x}_n > 0
\mathbf{margin}(\mathbf{w}) = \min_{n=1,...,N} \mathsf{distance}(\mathbf{x}_n, \mathbf{w})
```

- fatness: formally called margin
- correctness: $y_n = sign(\mathbf{w}^T \mathbf{x}_n)$

goal: find largest-margin separating hyperplane

Questions?

Distance to Hyperplane: Preliminary

$$\max_{\mathbf{w}} \quad \text{margin}(\mathbf{w})$$
subject to
$$\text{every } y_n \mathbf{w}^T \mathbf{x}_n > 0$$

$$\text{margin}(\mathbf{w}) = \min_{n=1,...,N} \frac{\text{distance}(\mathbf{x}_n, \mathbf{w})}{\text{distance}(\mathbf{x}_n, \mathbf{w})}$$

'shorten' **x** and **w**

distance needs w_0 and (w_1, \dots, w_d) differently (to be derived)

$$\begin{bmatrix} | \\ \mathbf{w} \\ | \end{bmatrix} = \begin{bmatrix} w_1 \\ \vdots \\ w_d \end{bmatrix} \quad ; \quad \begin{bmatrix} | \\ \mathbf{x} \\ | \end{bmatrix} = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}$$

for this part: $h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + \mathbf{b})$

Distance to Hyperplane

want: distance($\mathbf{x}, \mathbf{b}, \mathbf{w}$), with hyperplane $\mathbf{w}^T \mathbf{x}' + \mathbf{b} = 0$

consider x', x" on hyperplane

$$\mathbf{1} \ \mathbf{w}^T \mathbf{x}' = -b, \ \mathbf{w}^T \mathbf{x}'' = -b$$

2 w ⊥ hyperplane:

$$\begin{pmatrix} \mathbf{w}^T & \underbrace{(\mathbf{x}'' - \mathbf{x}')} \\ \text{vector on hyperplane} \end{pmatrix} = 0$$

3 distance = project $(\mathbf{x} - \mathbf{x}')$ to \perp hyperplane

$$distance(\mathbf{x}, \mathbf{b}, \mathbf{w}) = \left| \frac{\mathbf{w}^T}{\|\mathbf{w}\|} (\mathbf{x} - \mathbf{x}') \right| \stackrel{\text{(1)}}{=} \frac{1}{\|\mathbf{w}\|} |\mathbf{w}^T \mathbf{x} + \mathbf{b}|$$

Distance to **Separating** Hyperplane

$$distance(\mathbf{x}, \mathbf{b}, \mathbf{w}) = \frac{1}{\|\mathbf{w}\|} |\mathbf{w}^T \mathbf{x} + \mathbf{b}|$$

• separating hyperplane: for every n

$$y_n(\mathbf{w}^T\mathbf{x}_n+b)>0$$

distance to separating hyperplane:

$$distance(\mathbf{x}_n, \mathbf{b}, \mathbf{w}) = \frac{1}{\|\mathbf{w}\|} \mathbf{y}_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b})$$

max
$$\underset{\boldsymbol{b}, \mathbf{w}}{\text{margin}}(\boldsymbol{b}, \mathbf{w})$$

subject to every $y_n(\mathbf{w}^T\mathbf{x}_n + \boldsymbol{b}) > 0$
margin $(\boldsymbol{b}, \mathbf{w}) = \min_{n=1}^{N} \frac{1}{\|\mathbf{w}\|} y_n(\mathbf{w}^T\mathbf{x}_n + \boldsymbol{b})$

Margin of **Special** Separating Hyperplane

$$\max_{\substack{b,\mathbf{w}}} \quad \text{margin}(\mathbf{b}, \mathbf{w})$$
subject to
$$\text{every } y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) > 0$$

$$\text{margin}(\mathbf{b}, \mathbf{w}) = \min_{n=1,\dots,N} \frac{1}{\|\mathbf{w}\|} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b})$$

- $\mathbf{w}^T \mathbf{x} + \mathbf{b} = 0$ same as $3\mathbf{w}^T \mathbf{x} + 3\mathbf{b} = 0$: scaling does not matter
- special scaling: only consider separating (b, w) such that

$$\min_{n=1,\dots,N} y_n(\mathbf{w}^T \mathbf{x}_n + b) = 1 \Longrightarrow \text{margin}(b, \mathbf{w}) = \frac{1}{\|\mathbf{w}\|}$$

$$\begin{array}{ll} \max \limits_{\boldsymbol{b},\mathbf{w}} & \frac{1}{\|\mathbf{w}\|} \\ \text{subject to} & \text{every } y_n(\mathbf{w}^T\mathbf{x}_n + b) > 0 \\ & \min \limits_{n=1,\dots,N} & y_n(\mathbf{w}^T\mathbf{x}_n + b) = 1 \end{array}$$

Standard Large-Margin Hyperplane Problem

$$\max_{\mathbf{b},\mathbf{w}} \quad \frac{1}{\|\mathbf{w}\|} \quad \text{subject to} \min_{n=1,\dots,N} \quad y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = 1$$

necessary constraints: $y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1$ for all n

```
original constraint: \min_{n=1,...,N} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = 1 want: optimal (\mathbf{b}, \mathbf{w}) here (inside)
```

if optimal (b, \mathbf{w}) outside, e.g. $y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) > 1.126$ for all n—can scale (b, \mathbf{w}) to "more optimal" $(\frac{b}{1.126}, \frac{\mathbf{w}}{1.126})$ (contradiction!)

```
final change: \max \Longrightarrow \min, remove \sqrt{\phantom{a}}, add \frac{1}{2} \min_{\substack{b,\mathbf{w}}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w} subject to y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1 \text{ for all } n
```

Questions?

Support Vector Machine (SVM)

optimal solution:
$$(w_1 = 1, w_2 = -1, b = -1)$$

margin (b, \mathbf{w}) $= \frac{1}{\|\mathbf{w}\|} = \frac{1}{\sqrt{2}}$

- examples on boundary: 'locates' fattest hyperplane other examples: not needed
- call boundary example support vector (candidate)

support vector machine (SVM): learn fattest hyperplanes (with help of support vectors)

Solving General SVM

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

subject to
$$y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1 \text{ for all } n$$

- not easy manually, of course :-)
- gradient descent? not easy with constraints
- luckily:
 - (convex) quadratic objective function of (b, \mathbf{w})
 - linear constraints of (b, w)
 - -quadratic programming

quadratic programming (QP):
 'easy' optimization problem

Quadratic Programming

optimal
$$(b, \mathbf{w}) = ?$$

$$\min_{b, \mathbf{w}} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w}$$
subject to $y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1$, for $n = 1, 2, ..., N$

optimal
$$\mathbf{u} \leftarrow \mathsf{QP}(\mathbf{Q}, \mathbf{p}, \mathbf{A}, \mathbf{c})$$

$$\min_{\mathbf{u}} \quad \frac{1}{2} \mathbf{u}^T \mathsf{Q} \mathbf{u} + \mathbf{p}^T \mathbf{u}$$
subject to
$$\mathbf{a}_m^T \mathbf{u} \geq c_m,$$
for $m = 1, 2, \dots, M$

objective function:
$$\mathbf{u} = \begin{bmatrix} b \\ \mathbf{w} \end{bmatrix}$$
; $\mathbf{Q} = \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & \mathbf{I}_d \end{bmatrix}$; $\mathbf{p} = \mathbf{0}_{d+1}$ constraints: $\mathbf{a}_n^T = \mathbf{y}_n \begin{bmatrix} 1 & \mathbf{x}_n^T \end{bmatrix}$; $\mathbf{c}_n = 1$; $M = N$

SVM with general QP solver: easy if you've read the manual :-)

SVM with QP Solver

Linear Hard-Margin SVM Algorithm

$$\mathbf{0} \quad \mathbf{Q} = \begin{bmatrix} \mathbf{0} & \mathbf{0}_d^T \\ \mathbf{0}_d & \mathbf{I}_d \end{bmatrix}; \mathbf{p} = \mathbf{0}_{d+1}; \mathbf{a}_n^T = y_n \begin{bmatrix} 1 & \mathbf{x}_n^T \end{bmatrix}; c_n = 1$$

- 3 return $b \& \mathbf{w}$ as g_{SVM}
 - hard-margin: nothing violate 'fat boundary'
 - linear: \mathbf{x}_n

want non-linear?

$$z_n = \Phi(x_n)$$
—remember? :-)

Why Large-Margin Hyperplane?

 $\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$
subject to $y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 \text{ for all } n$

	minimize	constraint
regularization	<i>E</i> in	$\mathbf{w}^T \mathbf{w} \leq C$
SVM	$\mathbf{w}^T \mathbf{w}$	$E_{\rm in}=0$ [and more]

SVM (large-margin hyperplane): 'weight-decay regularization' within $E_{\rm in}=0$

Large-Margin Restricts Dichotomies

consider 'large-margin algorithm' A_{ρ} :

either returns g with margin(g) $\geq \rho$ (if exists), or 0 otherwise

\mathcal{A}_0 : like PLA \Longrightarrow shatter 'general' 3 inputs

$\mathcal{A}_{1.126}$: more strict than SVM \Longrightarrow cannot shatter any 3 inputs

fewer dichotomies \Longrightarrow smaller 'VC dim.' \Longrightarrow better generalization

VC Dimension of Large-Margin Algorithm fewer dichotomies \Longrightarrow smaller 'VC dim.' considers $d_{VC}(\mathcal{A}_{\rho})$ [data-dependent, need more than VC] instead of $d_{VC}(\mathcal{H})$ [data-independent, covered by VC]

generally, when \mathcal{X} in radius-R hyperball:

$$d_{\text{VC}}(\mathcal{A}_{\rho}) \leq \min\left(\frac{R^2}{\rho^2}, d\right) + 1 \leq \underbrace{d+1}_{d_{\text{VC}}(\text{perceptrons})}$$

Benefits of Large-Margin Hyperplanes

	large-margin hyperplanes	hyperplanes	hyperplanes + feature transform Φ
#	even fewer	not many	many
boundary	simple	simple	sophisticated

- not many good, for d_{VC} and generalization
- sophisticated good, for possibly better E_{in}

a new possibility: non-linear SVM large-margin hyperplanes + numerous feature transform Φ mot many boundary sophisticated

Questions?

Non-Linear Support Vector Machine Revisited

$$\min_{b,\mathbf{w}} \frac{1}{2}\mathbf{w}^{T}\mathbf{w}$$
s. t.
$$y_{n}(\mathbf{w}^{T}\underbrace{\mathbf{z}_{n}}_{\Phi(\mathbf{x}_{n})} + b) \geq 1,$$
for $n = 1, 2, ..., N$

Non-Linear Hard-Margin SVM

$$\mathbf{0} \ \mathbf{Q} = \begin{bmatrix} \mathbf{0} & \mathbf{0}_{\tilde{d}}^T \\ \mathbf{0}_{\tilde{d}} & \mathbf{I}_{\tilde{d}}^T \end{bmatrix}; \mathbf{p} = \mathbf{0}_{\tilde{d}+1};$$
$$\mathbf{a}_n^T = y_n \begin{bmatrix} 1 & \mathbf{z}_n^T \end{bmatrix}; c_n = 1$$

- **3** return $b \in \mathbb{R}$ & $\mathbf{w} \in \mathbb{R}^{\tilde{d}}$ with $g_{\text{SVM}}(\mathbf{x}) = \text{sign}(\mathbf{w}^T \mathbf{\Phi}(\mathbf{x}) + b)$
- demanded: not many (large-margin), but sophisticated boundary (feature transform)
- QP with $\tilde{d} + 1$ variables and N constraints —challenging if \tilde{d} large, or infinite?! :-)

goal: SVM without dependence on \tilde{d}

Todo: SVM 'without' d

Original SVM

(convex) QP of

- $\tilde{d} + 1$ variables
- N constraints

'Equivalent' SVM

(convex) QP of

- N variables
- N + 1 constraints

Warning: Heavy Math!!!!!

- introduce some necessary math without rigor to help understand SVM deeper
- 'claim' some results if details unnecessary
 - —like how we 'claimed' Hoeffding

'Equivalent' SVM: based on some dual problem of Original SVM

Key Tool: Lagrange Multipliers

Regularization by Constrained-Minimizing E_{in}

$$\min_{\mathbf{w}} E_{in}(\mathbf{w}) \text{ s.t. } \mathbf{w}^T \mathbf{w} \leq \mathbf{C}$$

Regularization by Minimizing E_{aug}

$$\min_{\mathbf{w}} E_{\text{aug}}(\mathbf{w}) = E_{\text{in}}(\mathbf{w}) + \frac{\lambda}{N} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

• C equivalent to some $\lambda \geq 0$ by checking optimality condition

$$\nabla E_{\mathsf{in}}(\mathbf{w}) + \frac{2\lambda}{N}\mathbf{w} = \mathbf{0}$$

- regularization: view λ as given parameter instead of C, and solve 'easily'
- dual SVM: view λ 's as unknown given the constraints, and solve them as variables instead

how many λ 's as variables? N—one per constraint

Starting Point: Constrained to 'Unconstrained'

min b,**w**

$$\frac{1}{2}\mathbf{w}^T\mathbf{w}$$

s.t.

$$y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1,$$

for $n = 1, 2, ..., N$

_agrange Function

with Lagrange multipliers $\chi_n \alpha_n$,

$$\mathcal{L}(b, \mathbf{w}, \alpha) = \underbrace{\frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w}}_{\text{objective}} + \sum_{n=1}^{N} \alpha_{n} (\underbrace{1 - y_{n}(\mathbf{w}^{\mathsf{T}}\mathbf{z}_{n} + b)}_{\text{constraint}})$$

Claim

SVM $\equiv \min_{b,\mathbf{w}} \left(\max_{\substack{\text{all } \alpha_n \geq 0}} \mathcal{L}(b,\mathbf{w},\alpha) \right) = \min_{\substack{b,\mathbf{w}}} \left(\infty \text{ if violate }; \frac{1}{2}\mathbf{w}^T\mathbf{w} \text{ if feasible} \right)$

- any 'violating' (b, \mathbf{w}) : $\max_{\substack{a|||\alpha_n|>0}} \left(\square + \sum_n \alpha_n (\text{some positive})\right) \to \infty$
- any 'feasible' (b, \mathbf{w}) : $\max_{\substack{\text{all } \alpha > 0}} \left(\Box + \sum_{n} \alpha_n(\text{all non-positive}) \right) = \Box$

constraints now hidden in max

Questions?

Strong Duality of Quadratic Programming

$$\min_{\substack{b,\mathbf{w} \\ \text{equiv. to original (primal) SVM}}} \left(\max_{\substack{\mathbf{a} \parallel \alpha_n \geq 0}} \mathcal{L}(\mathbf{b},\mathbf{w},\alpha) \right) = \underbrace{\max_{\substack{\mathbf{a} \parallel \alpha_n \geq 0}} \left(\min_{\substack{b,\mathbf{w} \\ \text{b}}} \mathcal{L}(\mathbf{b},\mathbf{w},\alpha) \right)}_{\text{Lagrange dual}}$$

- '=': strong duality, true for QP if
 - convex primal
 - feasible primal (true if Φ-separable)
 - linear constraints

-called constraint qualification

exists primal-dual optimal solution $(b, \mathbf{w}, \boldsymbol{\alpha})$ for both sides

Solving Lagrange Dual: Simplifications (1/2)

$$\max_{\text{all } \boldsymbol{\alpha}_n \geq 0} \left(\min_{\boldsymbol{b}, \mathbf{w}} \underbrace{\frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^{N} \boldsymbol{\alpha}_n (1 - y_n (\mathbf{w}^T \mathbf{z}_n + b))}_{\mathcal{L}(\boldsymbol{b}, \mathbf{w}, \boldsymbol{\alpha})} \right)$$

- inner problem 'unconstrained', at optimal: $\partial \mathcal{L}(b, \mathbf{w}, \boldsymbol{\alpha})$
 - $\frac{\partial \mathcal{L}(b, \mathbf{w}, \boldsymbol{\alpha})}{\partial b} = 0 = -\sum_{n=1}^{N} \alpha_n y_n$
- no loss of optimality if solving with constraint $\sum_{n=1}^{N} \alpha_n y_n = 0$

but wait, b can be removed

$$\max_{\text{all } \boldsymbol{\alpha}_n \geq 0, \sum y_n \boldsymbol{\alpha}_n = 0} \left(\min_{\boldsymbol{b}, \mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^N \boldsymbol{\alpha}_n (1 - y_n(\mathbf{w}^T \mathbf{z}_n)) - \sum_{n=1}^N \boldsymbol{\alpha}_n (1 - y_n(\mathbf{w}^T \mathbf{z}_n)) \right)$$

Solving Lagrange Dual: Simplifications (2/2)

$$\max_{\substack{\mathbf{all}\ \boldsymbol{\alpha}_n \geq 0, \sum y_n \boldsymbol{\alpha}_n = 0}} \left(\min_{\substack{b, \mathbf{w}}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^N \boldsymbol{\alpha}_n (1 - y_n(\mathbf{w}^T \mathbf{z}_n)) \right)$$

• inner problem 'unconstrained', at optimal:

$$\frac{\partial \mathcal{L}(\mathbf{b}, \mathbf{w}, \boldsymbol{\alpha})}{\partial w_i} = 0 = w_i - \sum_{n=1}^{N} \alpha_n y_n z_{n,i}$$

• no loss of optimality if solving with constraint $\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{z}_n$

but wait!

$$\max_{\text{all } \boldsymbol{\alpha}_n \geq 0, \sum y_n \boldsymbol{\alpha}_n = 0, \mathbf{w} = \sum \boldsymbol{\alpha}_n y_n \mathbf{z}_n} \left(\min_{b, \mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^N \boldsymbol{\alpha}_n - \mathbf{w}^T \mathbf{w} \right)$$

$$\iff \max_{\substack{\mathbf{\alpha}_n \geq 0, \sum y_n \alpha_n = 0, \mathbf{w} = \sum \alpha_n y_n \mathbf{z}_n} -\frac{1}{2} \| \sum_{n=1}^N \alpha_n y_n \mathbf{z}_n \|^2 + \sum_{n=1}^N \alpha_n$$

Hsuan-Tien Lin (NTU CSIE)

KKT Optimality Conditions

$$\max_{\text{all } \boldsymbol{\alpha}_n \geq 0, \sum y_n \boldsymbol{\alpha}_n = 0, \mathbf{w} = \sum \boldsymbol{\alpha}_n y_n \mathbf{z}_n} - \frac{1}{2} \| \sum_{n=1}^N \boldsymbol{\alpha}_n y_n \mathbf{z}_n \|^2 + \sum_{n=1}^N \boldsymbol{\alpha}_n$$

if primal-dual optimal $(b, \mathbf{w}, \boldsymbol{\alpha})$,

- primal feasible: $y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1$
- dual feasible: $\alpha_n > 0$
- dual-inner optimal: $\sum y_n \alpha_n = 0$; $\mathbf{w} = \sum \alpha_n y_n \mathbf{z}_n$
- primal-inner optimal (at optimal all 'Lagrange terms' disappear):

$$\alpha_n(1-y_n(\mathbf{w}^T\mathbf{z}_n+\mathbf{b}))=0$$

—called Karush-Kuhn-Tucker (KKT) conditions, necessary for optimality [& sufficient here]

will use KKT to 'solve' (b, \mathbf{w}) from optimal α

Questions?

Dual Formulation of Support Vector Machine

$$\max_{\text{all } \boldsymbol{\alpha}_n \geq 0, \sum y_n \boldsymbol{\alpha}_n = 0, \mathbf{w} = \sum \boldsymbol{\alpha}_n y_n \mathbf{z}_n} \qquad -\frac{1}{2} \| \sum_{n=1}^N \boldsymbol{\alpha}_n y_n \mathbf{z}_n \|^2 + \sum_{n=1}^N \boldsymbol{\alpha}_n$$

standard hard-margin SVM dual

$$\min_{\boldsymbol{\alpha}} \qquad \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} y_{n} y_{m} \mathbf{z}_{n}^{T} \mathbf{z}_{m} - \sum_{n=1}^{N} \alpha_{n}$$
subject to
$$\sum_{n=1}^{N} y_{n} \alpha_{n} = 0;$$

$$\alpha_{n} > 0, \text{ for } n = 1, 2, \dots, N$$

(convex) QP of N variables & N + 1 constraints, as promised

how to solve? yeah, we know QP! :-)

Dual SVM with QP Solver

optimal
$$\alpha = ?$$

$$\min_{\alpha} \qquad \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} y_{n} y_{m} \mathbf{z}_{n}^{\mathsf{T}} \mathbf{z}_{m}$$

$$- \sum_{n=1}^{N} \alpha_{n}$$
subject to
$$\sum_{n=1}^{N} y_{n} \alpha_{n} = 0;$$

$$\alpha_{n} \geq 0,$$
for $n = 1, 2, \dots, N$

optimal
$$\alpha \leftarrow \mathsf{QP}(\mathsf{Q},\mathsf{p},\mathsf{A},\mathsf{c})$$

$$\min_{\alpha} \quad \frac{1}{2}\alpha^{T} \mathbf{Q}\alpha + \mathbf{p}^{T}\alpha$$
subject to
$$\mathbf{a}_{i}^{T}\alpha \geq c_{i},$$
for $i = 1, 2, ...$

- $q_{n,m} = y_n y_m \mathbf{z}_n^T \mathbf{z}_m$
- $p = -1_N$
- $\mathbf{a}_{\geq} = \mathbf{y}, \ \mathbf{a}_{\leq} = -\mathbf{y};$ $\mathbf{a}_{n}^{T} = n$ -th unit direction
- $c_> = 0$, $c_< = 0$; $c_n = 0$

note: many solvers treat equality (a_{\geq}, a_{\leq}) & bound (a_n) constraints specially for numerical stability

Dual SVM with Special QP Solver

optimal
$$\alpha \leftarrow \mathsf{QP}(\boxed{\mathsf{Q}_{\mathsf{D}}}, \mathsf{p}, \mathsf{A}, \mathsf{c})$$

$$\min_{\alpha} \quad \frac{1}{2}\alpha^{T} \mathbf{Q}_{D} \alpha + \mathbf{p}^{T} \alpha$$
subject to special equality and bound constraints

- $q_{n,m} = y_n y_m \mathbf{z}_n^T \mathbf{z}_m$, often non-zero
- if N = 30,000, dense Q_D (N by N symmetric) takes > 3G RAM
- need special solver for
 - not storing whole Q_D
 - utilizing special constraints properly

to scale up to large N

usually better to use **special solver** in practice

KKT conditions

if primal-dual optimal (b, \mathbf{w}, α) ,

- primal feasible: $y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1$
- dual feasible: $\alpha_n > 0$
- dual-inner optimal: $\sum y_n \alpha_n = 0$; $\mathbf{w} = \sum \alpha_n y_n \mathbf{z}_n$
- primal-inner optimal (at optimal all 'Lagrange terms' disappear):

$$\alpha_n(1 - y_n(\mathbf{w}^T\mathbf{z}_n + b)) = 0$$
 (complementary slackness)

- optimal $\alpha \Longrightarrow$ optimal w? easy above!
- optimal $\alpha \Longrightarrow$ optimal b? a range from primal feasible & equality from comp. slackness if one $\alpha_n > 0 \Rightarrow b = y_n - \mathbf{w}^T \mathbf{z}_n$

comp. slackness:

 $\alpha_n > 0 \Rightarrow$ on fat boundary (SV!)

Questions?

Messages behind Dual SVM

Support Vectors Revisited

- on boundary: 'locates' fattest hyperplane; others: not needed
- examples with $\alpha_n > 0$: on boundary
- call $\alpha_n > 0$ examples $(\mathbf{z}_n, \mathbf{y}_n)$ support vectors (candidates)
- SV (positive α_n) ⊂ SV candidates (on boundary)

• only SV needed to compute **w**:
$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{z}_n = \sum_{\text{SV}} \alpha_n y_n \mathbf{z}_n$$

• only SV needed to compute b: $b = y_n - \mathbf{w}^T \mathbf{z}_n$ with any SV (\mathbf{z}_n, y_n)

SVM: learn fattest hyperplane by identifying support vectors with dual optimal solution

Summary: Two Forms of Hard-Margin SVM

Primal Hard-Margin SVM

$$\min_{\substack{b,\mathbf{w}}} \quad \frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w}$$
sub. to
$$y_n(\mathbf{w}^{\mathsf{T}}\mathbf{z}_n + b) \ge 1,$$
for $n = 1, 2, ..., N$

- $\tilde{d} + 1$ variables, N constraints —suitable when $\tilde{d} + 1$ small
- physical meaning: locate specially-scaled (b, w)

Dual Hard-Margin SVM

min
$$\frac{1}{2}\alpha^{T}Q_{D}\alpha - \mathbf{1}^{T}\alpha$$

s.t. $\mathbf{y}^{T}\alpha = 0$;
 $\alpha_{n} > 0$ for $n = 1, ..., N$

- N variables,
 N + 1 simple constraints
 —suitable when N small
- physical meaning: locate SVs (\mathbf{z}_n, y_n) & their α_n

both eventually result in optimal (b, \mathbf{w}) for fattest hyperplane

$$g_{SVM}(\mathbf{x}) = sign(\mathbf{w}^T \mathbf{\Phi}(\mathbf{x}) + b)$$

Are We Done Yet?

goal: SVM without dependence on \tilde{d}

$$\begin{aligned} & \min_{\alpha} & & \frac{1}{2}\alpha^{T}\mathbf{Q}_{\mathsf{D}}\alpha - \mathbf{1}^{T}\alpha \\ & \text{subject to} & & \mathbf{y}^{T}\alpha = 0; \\ & & & \alpha_{n} \geq 0, \text{for } n = 1, 2, \dots, N \end{aligned}$$

- N variables, N + 1 constraints: no dependence on \tilde{d} ?
- $q_{n,m} = y_n y_m \mathbf{z}_n^T \mathbf{z}_m$: inner product in $\mathbb{R}^{\tilde{d}}$ $-O(\tilde{d})$ via naïve computation!

no dependence only if avoiding naïve computation (next lecture :-))

Questions?

Summary

1 Embedding Numerous Features: Kernel Models

Lecture 10: Support Vector Machine (1)

- Large-Margin Separating Hyperplane intuitively more robust against noise
- Standard Large-Margin Problem minimize 'length of w' at special separating scale
- Support Vector Machine 'easy' via quadratic programming
- Motivation of Dual SVM want to remove dependence on \tilde{d}
- Lagrange Dual SVM
 KKT conditions link primal/dual
- Solving Dual SVM another QP, better solved with special solver
- Messages behind Dual SVM
 SVs represent fattest hyperplane