Academia Sabatina de Jóvenes Talento

Colinealidad y Concurrencia Clase #4

Encuentro: 18 Nivel: 5

Curso: Colinealidad y Concurrencia

Fecha: 12 de agosto de 2023

Instructor: Kenny Jordan Tinoco

D. auxiliar: José Adán Duarte

Unidad II: Colinealidad Contenido: Colinealidad I

1. Desarrollo

1.1. Colinealidad

Tres puntos son **colineales** si se encuentran sobre una misma línea. Dicho esto, presentaremos algunos enfoques que nos ayudarán a probar que tres puntos son colineales al resolver problemas de geometría.

Hay tres formas más comunes de angulear que nos permiten probar que tres puntos A, B y C son colineales.

Figura 1: Tres configuraciones de colinealidad.

En la primera configuración¹, necesitaremos dos puntos adicionales que ya son colineales con nuestro punto "medio" B. Sean esos puntos X e Y. Si $\angle XBA = \angle YBC$, entonces los puntos A, B y C son colineales.

¹Comenzando de izquierda a derecha.

En la segunda configuración, necesitaremos un punto extra X que no esté en la supuesta línea A - B - C. Si $\angle ABX + \angle XBC = 180^{\circ}$, entonces los puntos A, B y C son colineales.

En la tercera configuración, también necesitaremos un punto extra X que no esté en la supuesta línea A-B-C. Si $\angle XAB=\angle XAC$, entonces los puntos A,B y C son colineales.

Teorema 1.1 (Teorema de Menelao).

Dado un triángulo ABC, sean D, E y F puntos sobre los lados (posiblemente en sus prolongaciones) BC, CA y AB, respectivamente. Entonces los puntos D, E y F son colineales si y sólo si

$$\frac{BD}{DC} \cdot \frac{CE}{EA} \cdot \frac{AF}{FB} = -1.$$

Demostración. La demostración se deja como ejercicio al lector.

Observación 1.

Una manera fácil de recordar cómo escribir esas proporciones^a es la siguiente. Si tenemos el $\triangle XYZ$ y los puntos $M \in XY$, $N \in YZ$ y $P \in ZX$, entonces primero, vamos a escribir los lados de manera cíclica, es decir

$$\frac{X}{Y} \cdot \frac{Y}{Z} \cdot \frac{Z}{X}$$

y después solo tendremos que agregar el punto en el numerador y denominador en la fracción del lado correspondientes, es decir

$$\frac{XM}{MY} \cdot \frac{YN}{NZ} \cdot \frac{ZP}{PX}.$$

Teorema 1.2 (Menelao trigonométrico).

Dado un triángulo ABC, sean D, E y F puntos sobre los lados (posiblemente en sus prolongaciones) BC, CA y AB, respectivamente. Entonces los puntos D, E y F son colineales si y sólo si

$$\frac{\operatorname{sen}(\angle BAD)}{\operatorname{sen}(\angle DAC)} \cdot \frac{\operatorname{sen}(\angle CBE)}{\operatorname{sen}(\angle EBA)} \cdot \frac{\operatorname{sen}(\angle ACF)}{\operatorname{sen}(\angle FCB)} = -1.$$

Demostración. La demostración se deja como ejercicio al lector.

^aTambién funciona para el teorema de Ceva.

Teorema 1.3 (Recta de Gauss).

Sean L y M los puntos medios de las diagonales AC y BD del cuadrilátero ABCD. Las rectas AB y CD se cortan en E, y las rectas AD y BC se cortan en F. Sea N el punto medio de EF. Entonces los puntos L, M y N colineales.

Demostración. Sean P, Q y R los puntos medios de AE, AD y DE respectivamente. Las rectas PQ, QR y PR son bases medias de ADE, por lo tanto son las respectivas bases medias de ACE, BDE y AFE, así que estas pasan por L, M y N.

Por semejanza

$$\frac{LQ}{LP} = \frac{CD}{DE}, \quad \frac{NP}{NR} = \frac{FA}{FD} \quad \text{y} \quad \frac{MR}{MQ} = \frac{BE}{BA}.$$

Al multiplicar se obtiene

$$\frac{LQ}{LP} \cdot \frac{NP}{NR} \cdot \frac{MR}{MQ} = \frac{CD}{DE} \cdot \frac{FA}{FD} \cdot \frac{BE}{BA}$$

Pero este producto es igual a 1, ya que cumple el teorema de Menelao para el triángulo ADE con respecto a la transversal B-C-F. Se concluye entonces que L, M y N con colineales.

1.2. Teorema de Pappus

Teorema 1.4 (Teorema de Pappus).

En todo hexágono (no necesariamente convexo) en el que sus vértices no consecutivos están alineados, las intersecciones de sus lados opuestos son colineales.

1.3. Teorema de Desargues

Teorema 1.5 (Teorema de Desargues).

Dos triángulos están en perspectiva si y solo si son coaxiales.

Observación 2.

Dos triángulos están en **perspectiva** si las rectas que unen sus vértices correspondientes son concurrentes.

Observación 3.

Dos triángulos son **coaxiales** cuando los puntos de intersección de los lados correspondientes son colineales.

1.4. Agregados culturales y preguntas

2. Ejercicios y Problemas

Sección de ejercicios y problemas para el autoestudio.

3. Problemas propuestos

Recordar que los problemas de esta sección son los asignados como **tarea**. Es el deber del estudiante resolverlos y entregarlos de manera clara y ordenada el próximo encuentro (de ser necesario, también se pueden entregar borradores).

Ejercicio 3.1. Realizar la demostración del teorema de Menealao tanto en su forma normal como trigonométrica.

Problema 3.1. Sea ABC un triángulo, y sean A_1 , B_1 y C_1 los puntos de tangencia del incírculo con BC, CA y AB, respectivamente. Sea A_2 el simétrico de A_1 con respecto a B_1C_1 , y se definen B_2 y C_2 de manera análoga. Sea A_3 la intersección de AA_2 con BC, B_3 la intersección de BB_2 con AC y C_3 la intersección de CC_2 con AB. Demuestre que A_3 , B_3 y C_3 con colineales.

4. Extra

Problema 4.1 (Olimpiada Matemática de Macedonia, 2016). Sea K el punto medio del segmento AB. Sea C un punto fuera de la recta AB. Sea N la intersección de AC con la recta que pasa a traves de B y el punto medio del segmento CK. Sea U la intersección de AB y la recta que pasa a traves de C y L, el cual es punto medio de BN. Probar que la razón de las áreas de $\triangle CNL$ y $\triangle BUL$ no dependen de la elección del punto C.

Referencias

[Agu19] Eduardo Aguilar. Estrategias sintéticas en Geometría Euclídea. Editorial, 2019.

[Bac22] Jafet Baca. Apuntes de Geometría Euclidiana para Competiciones Matemáticas. Independent publication, 2022.

En caso de consultas

Instructor: Kenny J. Tinoco Teléfono: +505 7836 3102 (Tigo) Correo: kenny.tinoco10@gmail.com

Docente: José A. Duarte Teléfono: +505 8420 4002 (Claro) Correo: joseandanduarte@gmail.com