DENEY NO: 1 (OHM YASASI)

SERİ BAĞLI DİRENÇLER

AMAÇ: Ohm yasasının seri bağlı dirençlerden oluşan devrelere uygulanması
ÖN BİLGİ

Bir iletkenin uçları arasına potansiyel fark uygulanırsa, iletken içinde bir J akım yoğunluğu ve bir E elektrik alanı meydana gelir. Bir iletken içerisindeki akım yoğunluğu, elektrik alan ile $J=\sigma E$ (Ohm Kanunu) şeklinde orantılıdır. Buradaki σ orantı katsayısına malzemenin iletkenliği denir ve iletkenlik elektrik alandan bağımsızdır. Ohm yasası şu şekilde de ifade edilebilir: Bir iletkenden geçen I akımı, iletkenin uçları arasındaki V potansiyel farkı ile doğru orantılıdır: I=V/R. Burada R'ye iletkenin direnci denir. Akım yoğunluğu, $J=\sigma E$ ve J=I/A olduğundan, $\sigma E=I/A$ yazılabilir. Diğer taraftan, L uzunluklu iletkenin içiendeki elektrik alanı E=V/L olduğundan, $\frac{\sigma V}{L}=\frac{I}{A}$ ve buradan da $I=\frac{\sigma A}{L}V$ elde edilir. Bu ifade Ohm yasası ile kıyaslanırsa, iletkenin direnci için $R=L/(\sigma A)$ elde edilir. Görüldüğü üzere, iletkenin direnci, iletkenin geometrik boyutlarına ve malzemenin cinsine bağlıdır. SI sistemindeki direnç birimi ohm (Ω) kabul edilmiştir. Uçlarına V=1 volt potansiyel farkı uygulandığında, iletkenden geçen akım I=1 A ise, bu iletkenin direnci 1 Ω olarak tanımlanır.

SERİ BAĞLI DİRENÇLER

Şekil 1'de görülen devrede R_1 direncinden akan yük, R_2 direncinden akan yüke eşit olduğundan, bütün dirençler içerisinden geçen akım aynıdır.

Şekil 1. Seri bağlı iki direnç

A ve B noktaları arasındaki potansiyel farkı, $V = IR_1 + IR_2$ veya $IR_{ey} = I (R_1 + R_2)$ yazılabilir. Buradan, devrenin eşdeğer direnci $R_{ey} = R_1 + R_2$ olur. İkiden fazla direnç olması durumunda ise eşdeğer direnç,

 $R_{es} = R_1 + R_2 + R_3 + \dots$ eşitliğinden bulunur.

<u>DENEYİN YAPILIŞI</u>

A. Seri Bağlama

1) $R_1 = 120 \ \Omega$; $R_2 = 220 \ \Omega$ ve $R_3 = 330 \ \Omega$ 'luk dirençleri kullanarak, Şekil 3'teki devreyi kurunuz. Multimetre ile 1 akımını ve her bir direnç üzerindeki V_1 , V_2 , V_3 gerilimlerini okuyunuz ve Tablo 1'e kaydediniz.

2) Tablo 1'deki hesaplamaları yaparak, deneysel (R_{deney}) ve kuramsal (R_{kuram}) eşdeğer dirençleri için $\frac{\left|R_{kuram}\right|-R_{deney}}{R_{kuram}} \times \%100$ ifadesinden, bağıl hatayı hesaplayınız.

Tablo 1

ε	I	V_I	V_2	V_3	$R_{deney}\left(arOlema ight)$	$R_{kuram}\left(arOlema ight)$	Bağıl Hata
(V)	(A)	(V)	(V)	(V)	$R_{deney} = (V_1 + V_2 + V_3)/I$	$R_{kuram} = R_1 + R_2 + R_3$	
10							