MĚŘENÍ KMITOČTU A DOBY PERIODY ČÍTAČEM

Jakub Dvořák

27.10.2020

1 Úkol měření

- 1. Nakreslete blokové schéma čítače v obou režimech činnosti.
- 2. Zkontrolujte správnost stupnice nízkofrekvenčního generátoru:
 - a) čítačem v režimu měření frekvence při různých dobách měření,
 - b) čítačem v režimu měření doby periody jednak přímo, jednak s využitím průměrování. Měřte při kmitočtech 60 Hz, 500 Hz, 5 kHz, 10 kHz, 20 kHz, 50 kHz, 100 kHz. U všech měření určete nejistotu měření způsobenou rozlišením.
- 3. Ověřte přesnost krystalem řízených hodin:
 - a) měřením doby periody pulsů pro krokový motor (správná hodnota je 2 s),
 - b) přímým měřením frekvence oscilátoru (správná hodnota je 2¹⁵, tj. 32 768 Hz, resp. 2²² tj. 4 194 304 Hz).

V obou případech určete nepřesnost hodin v sekundách za den.

2 Schéma zapojení

Obrázek 1: Schéma zapojení měření na přípravku

3 Seznam použitých přístrojů

GENERÁTOR - nízkofrekvenční generátor, typ GOLDSTAR FG-8002

ČÍTAČ - univerzální čítač, typ *made by ČVUT* PŘÍPRAVEK - přípravek s hodinami řízenými krystalem

4 Teoretický úvod

Měření frekvence a doby periody je zpravidla provázeno čítačem. Ten v závislosti na nastaveném typu měření měří následovně. Při měření frekvence ve vstupní signál upraven podle blokového schéma 1. Signál prochází zesílením a tvarovačem, díky čemuž se stane vhodným pro hradlo. Toto hradlo počítá kmity za danou periodu. Ta je dána vnitřním krystalovým oscilátorem.

Pro měření doby periody naopak použijeme zapojení podle schématu 2. V tomto režimu vstupním signálem určujeme, jak dlouho bude hradlo otevřeno, zatímco mu z krystalového oscilátoru sypeme kmity, dokud to jde. Podle kmitů, které se vešly do doby jedné periody vstupního signálu poté určíme dobu periody.

Schéma 1: Režim měření frekvence

Schéma 2: Režim měření doby periody

5 Naměřené hodnoty

Naměřená data z měření frekvenčního generátoru jsou v tabulce ?? a ??.

	60 Hz [Hz]	10 kHz [kHz]	100 kHz [kHz]
0,1 s	70	10,63	110,83
1 s	68	10,622	110,828
10 s	67,9	10,6231	110,8373

Tabulka 1: Naměřené hodnoty frekvence

Data z měření hodin jsou v tabulce 3.

	60 Hz [μs]	10 kHz [μs]	$100 \mathrm{kHz} [\mu \mathrm{s}]$
1 T	15100,7	93,6	9
10 T	15101,87	93,64	-
100 T	-	93,6488	-
1000 T	-	93,63633	9,05553

Tabulka 2: Naměřené hodnoty periody

f [kHz]	T [μs]
32,7677	2000038,9

Tabulka 3: Hodnoty pro ručičkové hodiny

6 Zpracování naměřených hodnot

Pro určení nejistoty měření frekvence způsobenou rozlišením budeme vycházet ze vzorce 1.

$$u_{f_X} = \sqrt{\left(\Delta' f_X / \sqrt{3}\right)^2 + \left(\Delta f_X / \sqrt{3}\right)^2} \tag{1}$$

Pro určení nejistoty měření doby periody způsobenou rozlišením budeme vycházet ze vzorce 2.

$$u_{T_X} = \sqrt{\left(\Delta' T_X / \sqrt{3}\right)^2 + \left(\Delta T_X / \sqrt{3}\right)^2 + 2u_k^2}$$
 (2)

Jelikož neznáme efektivní hodnotu šumu vstupního zesilovače, nemůžeme určit člen u_k^2 a budeme ho proto ignorovat. Nejistoty jsou dále v tabulce.

Pro zjištění přesnosti hodin použijeme rovnice 3 a 4. Budeme vycházet z toho, že den má $24 \cdot 60 \cdot 60 = 86\,400\ s$.

$$\left(\frac{T_m}{T} - 1\right) \cdot 86\,400 \ s = \left(\frac{2,0000389}{2} - 1\right) \cdot 86\,400 \ s = 1,68 \text{ s/den}$$
 (3)

$$\left(\frac{f_m}{f} - 1\right) \cdot 86400 \ s = \left(\frac{32767, 7}{32768} - 1\right) \cdot 86400 \ s = -0,79 \text{ s/den}$$
 (4)

	60 Hz [Hz]	10 kHz [Hz]	100 kHz [Hz]
0,1	5,773502692	5,773502822	5,773516875
1	0,577350269	0,577351572	0,577492082
10	0,057735027	0,057748056	0,059136555

Tabulka 4: Nejistoty měření frekvence

T, T= 1 μ s	60 Hz [μs]	10 kHz [μs]	100 kHz [μs]
1	0,001743679	1,08234E-05	1,18884E-06
10	0,001743823	1,22575E-05	
100		5,8739E-05	
1000		0,000577452	0,000577351

Tabulka 5: Nejistoty měření periody

Relativní chyba stupnice vůči měřené hodnotě je zobrazena v tabulce níže.

	60 Hz [Hz]	10 kHz [Hz]	100 kHz [Hz]
Naměřeno	67,9	10623,1	110837,3
Absolutní chyba	7,9	623,1	10837,3
Relativní chyba	0,12	0,059	0,098

Tabulka 6: Relativní chyba stupnice na generátoru funkcí

7 Závěrečné vyhodnocení

Zjistili jsme nepřesnost hodin a jaký rozchod můžeme čekat za den. Také jsme ověřili, jak se při průměrování a při používání delšího časového okna pro počítání tiků může zvýšit přesnost resp. snížit nejistota měření. Dále jsme zjistili absolutní a relativní chybu stupnice generátoru funkcí. Zjistili jsme, že právě nastavení frekvence byl největší zdroj chyby.

Seznam použité literatury a zdrojů informací

Seznam použitých internetových zdrojů

[1] Návod k laboratorní úloze