# 11/09/2025 - Matematicas Discretas I (Ude@) 1. Repaso clase anterior



| Demostración | Enfoque basado en<br>Modebs                    | throque axiomatico      |
|--------------|------------------------------------------------|-------------------------|
| Verdad       | Tabla de verdad:  A B es tautología            | M= B D= A > Identidades |
| Validez      | A -> B Renglanes critical deben ser Verladeros | *Lo veremos hoy         |

Ejemplo: Represente el siguiente argumento simbólicamente y determine si es valido



1. Proposiciones simples

2. Expresión logica del Argumento.

# 3. Demostración de Validez (Tabla de Verdad)

i. Varinbles: P, Q

ii. filas: n= 2 -> filas = 2" = 2" = 4

iii. Tabla de verdud

|         |           |    |          | Pro    |   | ——<br>رح | Jusion |
|---------|-----------|----|----------|--------|---|----------|--------|
|         |           | P  | 0        | P -> Q | Ø | P        |        |
|         |           | 0  | 0        | ٨      | 0 | Ø        |        |
|         | ~         | ٥  | 1        | 1      | J | k O      |        |
| Renglan | $\preceq$ | ٦. | 0        | 0      | ٥ | A        |        |
| critico |           | ٨  | اد       |        | Л | A        |        |
|         |           | ~  | <b>\</b> |        |   |          |        |

Por la tanto el argumento es invalido

2. Enfoque axiomatico: Usar:

1. I dentidudes logicos (Tabla de axiomas) 2. Silogismos (Tabla de inferencias)

## Equivalencias lógicas

| Nombre           | Equivalencia lógica                                         |                                                         |  |
|------------------|-------------------------------------------------------------|---------------------------------------------------------|--|
| Conmutatividad   | $P \wedge Q \equiv Q \wedge P$                              | $P \lor Q \equiv Q \lor P$                              |  |
| Asociatividad    | $P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$        | $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$            |  |
| Distributividad  | $P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$ | $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$ |  |
| Idempotencia     | $P \wedge P \equiv P$                                       | $P \lor P \equiv P$                                     |  |
| Doble negación   | $\neg(\neg P) \equiv P$                                     |                                                         |  |
| Leyes de Morgan  | $\neg (P \land Q) \equiv \neg P \lor \neg Q$                | $\neg (P \lor Q) \equiv \neg P \land \neg Q$            |  |
| Identidad        | $P \wedge V \equiv P$                                       | $P \vee F \equiv P$                                     |  |
| Dominación       | $P \wedge F \equiv F$                                       | $P \lor V \equiv V$                                     |  |
| Absorción        | $P \wedge (P \vee Q) \equiv P$                              | $P \lor (P \land Q) \equiv P$                           |  |
| Complemento      | $P \wedge \neg P \equiv F$                                  | $P \vee \neg P \equiv V$                                |  |
| Implicación      | $P \to Q \equiv \neg P \lor Q$                              |                                                         |  |
| Contrarrecíproco | $P \to Q \equiv \neg Q \to \neg P$                          |                                                         |  |
| Equivalencia     | $P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P)$      |                                                         |  |

## Principales reglas de inferencia

| Nombre                                  | Regla de inferencia                                                             | Nombre                 | Regla de inferencia                              |
|-----------------------------------------|---------------------------------------------------------------------------------|------------------------|--------------------------------------------------|
| Modus Ponens                            | $\frac{p \to q}{\frac{p}{\therefore q}}$                                        | Simplificación         |                                                  |
| Modus Tollens                           | $p \to q$ $\frac{\neg q}{\therefore \neg p}$                                    | Conjunción             | $\frac{p}{q} \\ \therefore p \land q$            |
| Silogismo Hipotético<br>(Transitividad) | $\begin{array}{c} p \to q \\ \underline{q \to r} \\ \vdots p \to r \end{array}$ | Prueba de división por | $p \lor q$ $p \to r$                             |
| Silogismo disyuntivo<br>(Eliminación)   | p∨q<br>_¬p<br>∴ q                                                               | casos                  | $\frac{q \rightarrow r}{\therefore r}$           |
| Adición                                 | $\frac{p}{\therefore p \lor q}$                                                 | Resolución             | $p \lor q$ $\neg p \lor r$ $\therefore q \lor r$ |

# Egemplo 1

Ejemplo: Demuestre que el siguiente argumento lógico es valido:

 $[\underline{p} \land (\underline{p} \rightarrow \underline{q}) \land (\underline{s} \lor \underline{r}) \land (\underline{r} \rightarrow \neg \underline{q})] \rightarrow (\underline{s} \lor \underline{t})$ 





Notación Proposicional

P, P→q, 5vr, r→7q - 5vt

# Demostración

### Equivalencias lógicas

| Nombre           | Equivalencia lógica                                                    |                                                         |  |
|------------------|------------------------------------------------------------------------|---------------------------------------------------------|--|
| Conmutatividad   | $P \wedge Q \equiv Q \wedge P$                                         | $P \lor Q \equiv Q \lor P$                              |  |
| Asociatividad    | $P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$                   | $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$            |  |
| Distributividad  | $P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$            | $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$ |  |
| Idempotencia     | $P \wedge P \equiv P$                                                  | $P \lor P \equiv P$                                     |  |
| Doble negación   | $\neg(\neg P) \equiv P$                                                |                                                         |  |
| Leyes de Morgan  | $\neg (P \land Q) \equiv \neg P \lor \neg Q$                           | $\neg (P \lor Q) \equiv \neg P \land \neg Q$            |  |
| Identidad        | $P \wedge V \equiv P$                                                  | $P \vee F \equiv P$                                     |  |
| Dominación       | $P \wedge F \equiv F$                                                  | $P \lor V \equiv V$                                     |  |
| Absorción        | $P \wedge (P \vee Q) \equiv P$                                         | $P \lor (P \land Q) \equiv P$                           |  |
| Complemento      | $P \wedge \neg P \equiv F$                                             | $P \vee \neg P \equiv V$                                |  |
| Implicación      | $P \rightarrow Q \equiv \neg P \lor Q$                                 |                                                         |  |
| Contrarrecíproco | $P \rightarrow Q \equiv \neg Q \rightarrow \neg P$                     |                                                         |  |
| Equivalencia     | $P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P)$ |                                                         |  |

#### Principales reglas de inferencia

| Nombre                                  | Regla de inferencia                                                                                                                          | Nombre                 | Regla de inferencia                                                                           |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------|
| Modus Ponens                            | $\frac{p \to q}{\frac{p}{\cdot \cdot $ | Simplificación         | $\frac{p \wedge q}{\therefore p}$                                                             |
| Modus Tollens                           | $ \begin{array}{c} p \to q \\ \hline                                  $                                                                      | Conjunción             | $\frac{p}{q} \\ \therefore p \land q$                                                         |
| Silogismo Hipotético<br>(Transitividad) | $\begin{array}{c} p \to q \\ q \to r \\ \hline \therefore p \to r \end{array}$                                                               | Prueba de división por | $p \lor q$<br>$p \to r$                                                                       |
| Silogismo disyuntivo<br>(Eliminación)   | $ \begin{array}{c} p \lor q \\ \neg p \\ \vdots q \end{array} $                                                                              | casos                  | $\frac{q \rightarrow r}{\therefore r}$                                                        |
| Adición                                 | $\frac{p}{\therefore p \vee q}$                                                                                                              | Resolución             | $\begin{array}{c} p \vee q \\ \hline \neg p \vee r \\ \hline \therefore q \vee r \end{array}$ |



Premisos Pr. P3 Pr. P3 Inference Conclusion

## Procedimiento

# Justifica cion

























**(7)** 

S

(§)

. .

svt

Premisa (a)

Premisa (b)

Modus ponens en (1) y (2)

Premisa (d)

Madrs Tollers en (3) 74(4)



Premisa (c)

Eliminación en By 6

(b) 17p

Adición en (7)

tjemplo 2: Demnestre que el signiente argumento logico es valido.

$$\frac{P \to Q \to P}{\therefore Q \to P}$$

| Equivalencias lógicas | w(n)                                                                   | 8(4)                                                    |  |
|-----------------------|------------------------------------------------------------------------|---------------------------------------------------------|--|
| Nombre                | Equivalencia lógica                                                    |                                                         |  |
| Conmutatividad        | $P \wedge Q \equiv Q \wedge P$                                         | $P \vee Q \equiv Q \vee P$                              |  |
| Asociatividad         | $P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$                   | $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$            |  |
| Distributividad       | $P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$            | $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$ |  |
| Idempotencia          | $P \wedge P \equiv P$                                                  | $P \lor P \equiv P$                                     |  |
| Doble negación        | $\neg(\neg P) \equiv P$                                                |                                                         |  |
| Leyes de Morgan       | $\neg (P \land Q) \equiv \neg P \lor \neg Q$                           | $\neg (P \lor Q) \equiv \neg P \land \neg Q$            |  |
| Identidad             | $P \wedge V \equiv P$                                                  | $P \vee F \equiv P$                                     |  |
| Dominación            | $P \wedge F \equiv F$                                                  | $P \lor V \equiv V$                                     |  |
| Absorción             | $P \wedge (P \vee Q) \equiv P$                                         | $P \lor (P \land Q) \equiv P$                           |  |
| Complemento           | $P \wedge \neg P \equiv F$                                             | $P \vee \neg P \equiv V$                                |  |
| Implicación           | $P \to Q \equiv \neg P \lor Q$                                         |                                                         |  |
| Contrarrecíproco      | $P \rightarrow Q \equiv \neg Q \rightarrow \neg P$                     |                                                         |  |
| Equivalencia          | $P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P)$ |                                                         |  |

#### Principales reglas de inferencia

| Nombre                                  | Regla de inferencia                                                                 | Nombre                 | Regla de inferencia                   |
|-----------------------------------------|-------------------------------------------------------------------------------------|------------------------|---------------------------------------|
| Modus Ponens                            | $\frac{p \to q}{\frac{p}{\therefore q}}$                                            | Simplificación         | $\frac{p \wedge q}{\therefore p}$     |
| Modus Tollens                           | $\begin{array}{c} p \to q \\ \hline \neg q \\ \hline \therefore \neg p \end{array}$ | Conjunción             | $\frac{p}{q} \\ \therefore p \land q$ |
| Silogismo Hipotético<br>(Transitividad) | $\begin{array}{c} p \to q \\ \underline{q \to r} \\ \therefore p \to r \end{array}$ | Prueba de división por | $p \lor q$ $p \to r$                  |
| Silogismo disyuntivo<br>(Eliminación)   | p∨q<br>_¬p<br>∴ q                                                                   | casos                  | $\frac{q \to r}{\therefore r}$        |
| Adición                                 | $\frac{p}{\therefore p \lor q}$                                                     | Resolución             | p∨q<br><u>¬p∨r</u><br>∴q∨r            |

$$\frac{(P \to Q) \to P}{P} \qquad (a)$$

Procedimiento

| ( <del>4</del> ) | $(P \rightarrow Q)$ | → R      |
|------------------|---------------------|----------|
| (4)              |                     | <b>→</b> |

$$( \neg P \vee G ) \longrightarrow k$$

## Justifica cion

# Premisa (a)

## P- Q=7PVQ

## Equivalencias lógicas

| Nombre           | Equivalencia lógica                                                    |                                                         |  |
|------------------|------------------------------------------------------------------------|---------------------------------------------------------|--|
| Conmutatividad   | $P \wedge Q \equiv Q \wedge P$                                         | $P \lor Q \equiv Q \lor P$                              |  |
| Asociatividad    | $P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$                   | $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$            |  |
| Distributividad  | $P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$            | $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$ |  |
| Idempotencia     | $P \wedge P \equiv P$                                                  | $P \lor P \equiv P$                                     |  |
| Doble negación   | $\neg(\neg P) \equiv P$                                                |                                                         |  |
| Leyes de Morgan  | $\neg (P \land Q) \equiv \neg P \lor \neg Q$                           | $\neg (P \lor Q) \equiv \neg P \land \neg Q$            |  |
| Identidad        | $P \wedge V \equiv P$                                                  | $P \vee F \equiv P$                                     |  |
| Dominación       | $P \wedge F \equiv F$                                                  | $P \lor V \equiv V$                                     |  |
| Absorción        | $P \wedge (P \vee Q) \equiv P$                                         | $P \lor (P \land Q) \equiv P$                           |  |
| Complemento      | $P \wedge \neg P \equiv F$                                             | $P \vee \neg P \equiv V$                                |  |
| Implicación      | $P \rightarrow Q \equiv \neg P \lor Q$                                 |                                                         |  |
| Contrarrecíproco | $P \rightarrow Q \equiv \neg Q \rightarrow \neg P$                     |                                                         |  |
| Equivalencia     | $P \leftrightarrow 0 \equiv (P \rightarrow 0) \land (O \rightarrow P)$ |                                                         |  |

## Principales reglas de inferencia

| Nombre                                  | Regla de inferencia                                                           | Nombre                 | Regla de inferencia                                                                           |
|-----------------------------------------|-------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------|
| Modus Ponens                            | $\frac{p \to q}{\frac{p}{\therefore q}}$                                      | Simplificación         | $\frac{p \wedge q}{\therefore p}$                                                             |
| Modus Tollens                           | $\begin{array}{c} p \to q \\ \underline{\neg q} \\ \vdots \neg p \end{array}$ | Conjunción             | $\frac{p}{q} \\ \therefore p \land q$                                                         |
| Silogismo Hipotético<br>(Transitividad) | $\begin{array}{c} p \to q \\ q \to r \\ \therefore p \to r \end{array}$       | Prueba de división por | $p \lor q$ $p \to r$                                                                          |
| Silogismo disyuntivo<br>(Eliminación)   | $\begin{array}{c} p \vee q \\ \neg p \\ \therefore q \end{array}$             | casos                  | $q \to r$<br>$\therefore r$                                                                   |
| Adición                                 | $\frac{p}{\therefore p \vee q}$                                               | Resolución             | $\begin{array}{c} p \lor q \\ \hline \neg p \lor r \\ \hline \therefore q \lor r \end{array}$ |