Multicore Architectures

Virendra Singh

Associate Professor

Computer Architecture and Dependable Systems Lab

Department of Electrical Engineering

Indian Institute of Technology Bombay

http://www.ee.iitb.ac.in/~viren/

E-mail: viren@ee.iitb.ac.in

EE-739: Processor Design

Single Processor Performance

Dennard Scaling:

Doubling the transistors; scale their power down

Transistor: 2D Voltage-Controlled Switch

Dennard Scaling Broke:

Double the transistors; still scale their power down

Transistor: 2D Voltage-Controlled Switch

Transistor Scaling Model

From 45 nm to 8 nm

	[Dennard, 1974]	[ITRS, 2010]	[VLSI-DAT, 2010]
	Historical Scaling	Optimistic Scaling Model	Conservative Scaling Model
Area	32× ↓	32× ↓	32× ↓
Power	32× ↓	8.3× ↓	4.5× ↓
Speed	5.7× ↑	3.9× ↑	1.3× ↑

11 Mar 2015

Evolution of Processors

Many Core Example

- Intel Polaris
 - 80 core prototype
- Academic Research ex:
 - MIT Raw, TRIPs
 - 2-D Mesh Topology
 - Scalar Operand
 Networks

CMP Examples

- Chip Multiprocessors (CMP)
- Becoming very popular

Processor	Cores/ chip	Multi- threaded?	Resources shared
IBM Power 4	2	No	L2/L3, system interface
IBM Power 5	2	Yes (2T)	Core, L2/L3, system interface
Sun Ultrasparc	2	No	System interface
Sun Niagara	8	Yes (4T)	Everything
Intel Pentium D	2	Yes (2T)	Core, nothing else
AMD Opteron	2	No	System interface (socket)

Multi-core Designs

- Use available transistors efficiently
 - Provide better perf, perf/cost, perf/watt
- Effectively share expensive resources
 - Socket/pins:
 - DRAM interface
 - Coherence interface
 - I/O interface

Multi-core Designs

- How to connect?
- Where to Connect?
- Shared caches
- Cache coherence

On-Chip Bus/Crossbar

- Used widely (Power4/5/6, Piranha, Niagara, etc.)
 - Assumed not scalable
 - Is this really true, given on-chip characteristics?
- Simple, straightforward, nice ordering properties
 - Wiring is a nightmare (for crossbar)
 - Bus bandwidth is weak (even multiple busses)
 - Compare piranha 8-lane bus (32GB/s) to Power4 crossbar (100+GB/s)

On-Chip Ring

- Point-to-point ring interconnect
 - Simple, easy
 - Nice ordering properties (unidirectional)
 - Every request a broadcast (all nodes can snoop)
 - Scales poorly: O(n) latency, fixed bandwidth

On-Chip Mesh

- Widely assumed in academic literature
- Tilera, Intel 80-core prototype
- Not symmetric, so have to watch out for load imbalance on inner nodes/links
 - 2D torus: wraparound links to create symmetry
 - Not obviously planar
 - Can be laid out in 2D but longer wires, more intersecting links
- Latency, bandwidth scale well
- Lots of existing literature

Switching/Flow Control Overview

- Topology: determines connectivity of network
- Routing: determines paths through network
- Flow Control: determine allocation of resources to messages as they traverse network
 - Buffers and links
 - Significant impact on throughput and latency of network

Packets

- Messages: composed of one or more packets
 - If message size is <= maximum packet size only one packet created
- Packets: composed of one or more flits
- Flit: flow control digit
- Phit: physical digit
 - Subdivides flit into chunks = to link width
 - In on-chip networks, flit size == phit size.
 - Due to very wide on-chip channels

Switching

- Different flow control techniques based on granularity
- Circuit-switching: operates at the granularity of messages
- Packet-based: allocation made to whole packets
- Flit-based: allocation made on a flit-by-flit basis

Packet-Based Flow Control

- Store and forward
- Links and buffers are allocated to entire packet
- Head flit waits at router until entire packet is buffered before being forwarded to the next hop
- Not suitable for on-chip
 - Requires buffering at each router to hold entire packet
 - Incurs high latencies (pays serialization latency at each hop)

Store and Forward Example

- High per-hop latency
- Larger buffering required

Virtual Cut Through

- Packet-based: similar to Store and Forward
- Links and Buffers allocated to entire packets
- Flits can proceed to next hop before tail flit has been received by current router
 - But only if next router has enough buffer space for entire packet
- Reduces the latency significantly compared to SAF
- But still requires large buffers
 - Unsuitable for on-chip

Virtual Cut Through Example

- Lower per-hop latency
- Larger buffering required

Flit Level Flow Control

- Wormhole flow control
- Flit can proceed to next router when there is buffer space available for that flit
 - Improved over SAF and VCT by allocating buffers on a flitbasis

Pros

- More efficient buffer utilization (good for on-chip)
- Low latency

Cons

- Poor link utilization: if head flit becomes blocked, all links spanning length of packet are idle
 - Cannot be re-allocated to different packet
 - Suffers from head of line (HOL) blocking

Wormhole Example

Virtual Channel Flow Control

- Virtual channels used to combat HOL block in wormhole
- Virtual channels: multiple flit queues per input port
 - Share same physical link (channel)
- Link utilization improved
 - Flits on different VC can pass blocked packet

Virtual Channel Example

Deadlock

(a) A potential deadlock. (b) an actual deadlock.

Deadlock

- Using flow control to guarantee deadlock freedom give more flexible routing
- Escape Virtual Channels
 - If routing algorithm is not deadlock free
 - VCs can break resource cycle
 - Place restriction on VC allocation or require one VC to be DOR

Topology Overview

- Definition: determines arrangement of channels and nodes in network
- Analogous to road map
- Often first step in network design
- Routing and flow control build on properties of topology

Abstract Metrics

- Use metrics to evaluate performance and cost of topology
- Also influenced by routing/flow control
 - At this stage
 - Assume ideal routing (perfect load balancing)
 - Assume ideal flow control (no idle cycles on any channel)
- Switch Degree: number of links at a node
 - Proxy for estimating cost
 - Higher degree requires more links and port counts at each router

Latency

- Time for packet to traverse network
 - Start: head arrives at input port
 - End: tail departs output port
- Latency = Head latency + serialization latency
 - Serialization latency: time for packet with Length L to cross channel with bandwidth b (L/b)
- Hop Count: the number of links traversed between source and destination
 - Proxy for network latency
 - Per hop latency with zero load

Impact of Topology on Latency

- Impacts average minimum hop count
- Impact average distance between routers
- Bandwidth

Throughput

- Data rate (bits/sec) that the network accepts per input port
- Max throughput occurs when one channel saturates
 - Network cannot accept any more traffic
- Channel Load
 - Amount of traffic through channel c if each input node injects 1 packet in the network

Thank You

