

WBID	COLCLC01						
Site Number			Datastore Period of Record:	12/31/1899	to	12/31/1899	
Site Name			Calculation Period of Record:	10/1/2008	to	9/30/2013	
Agency							
Latitude							
Longitude							
Datum							
AQ Use							
Rec Use:							
WS Use Y/N							
Temp Tier:							
Agriculture							
Date Assessed							
Assessor							

ALL Green Boxes are Required.

	"I" Flag	Aquatic Life		Water Supply	Agriculture (TREC)	Existing Quality	n	Acute Max
		Chronic	Acute*					

1790742

ED_000552G_00000720-00002

1790742

ED_000552G_00000720-00003

1790742

ED_000552G_00000720-00004

1790742

ED_000552G_00000720-00005

1790742

ED_000552G_00000720-00006

1790742

ED_000552G_00000720-00007

1790742

ED_000552G_00000720-00008

```
<-Use Site Specific Information  
|<-Output "TVS Table"  
|<- Output "Graphs" tab  
|<- Output "NH3" tab  
|<- Show "Standards Table"  
|<-- show acute paired calcs. ** will not work with the show calcs tab.
```

OFFSITE STANDARDS PATH

C:\Users\rhillega\Desktop\FakeSTD_DB.xlsx

Status	Summary Stat.

1790742

ED_000552G_00000720-00010

1790742

ED_000552G_00000720-00011

1790742

ED_000552G_00000720-00012

1790742

ED_000552G_00000720-00013

1790742

ED_000552G_00000720-00014

1790742

ED_000552G_00000720-00015

1790742

ED_000552G_00000720-00016

1790742

ED_000552G_00000720-00017

1790742

ED_000552G_00000720-00018

1790742

ED_000552G_00000720-00019

1790742

ED_000552G_00000720-00020

1790742

ED_000552G_00000720-00021

1790742

ED_000552G_00000720-00022

1790742

ED_000552G_00000720-00023

1790742

ED_000552G_00000720-00024

u	0	61
u	0	17
	0.024	8.9
u	0	26.3

1790742

ED_000552G_00000720-00026

1790742

ED_000552G_00000720-00027

1790742

ED_000552G_00000720-00028

1790742

ED_000552G_00000720-00029

1790742

ED_000552G_00000720-00030

1790742

ED_000552G_00000720-00031

1790742

ED_000552G_00000720-00032

WBID	Aquatic Life				Water Supply	Agriculture	Note
	Chronic	SS	Acute	SS			
Temp (s)	NS		NS		NS		
Temp (w)	NS		NS		NS		
D.O.	NS		7		3	3	
pH min	NS		6.5		5	NS	
pH max	NS		9		9	NS	
NH3	TVS		TVS		NS	NS	
NO ₂	0.05		NS		1	10	
NO ₃	NS		NS		10	100	Error: Aluminum a
NO ₅	NS		NS		10	100	
SO ₄	NS		NS		WS	NS	
Ag	TVS(tr)		TVS		100	NS	
Al	NS		NS		NS	NS	
As	150		340		0.02	100	
Cd	TVS		TVS(tr)		5	10	
Cu	TVS		TVS		1000	200	
Cr ₃	TVS		NS		50	100	
Cr ₆	TVS		TVS		50	100	
FeD	NS		NS		WS	NS	
FeT	1000		NS		NS	NS	
Hg	0.01		1.4		NS	NS	
Mo	NS		NS		210	160	
Mn	TVS		TVS		WS	200	
Ni	TVS		TVS		100	200	
Pb	TVS		TVS		50	100	
Se	TVS		TVS		50	20	
U	NS		NS		16.8 - 30	NS	
Zn	TVS		TVS		5000	2000	
TP	NS		NS		-	-	
S-	0.002		NS		0.05	NS	
E. Coli	NS		NS		630	NS	
Cyanide	0.005		NS		0.2	0.2	
Chlor. A	NS		NS		-	-	Rec. standard of NS is in place.
Chlorine	0.019		0.011		NS	NS	
Chloride	NS		NS		250	NS	
Boron	NS		NS		NS	750	
Be	NS		NS		4	100	

Segment Description: 1. Mainstem of the Colorado River from the confluence with the Roaring Fork River to

Uses:

AQ Use: Aq Life Cold 1

WS Use: water supply

Rec Use: Recreation E

Temp Tier: DM:CS-II MWAT:CS-II

Ag: agriculture

cute Error: Aluminum chronic

immediately below the confluence with Rifle Creek.

91

station ID Station Name Date

Org

Latitude

Longitude

Datum

Hardness as CaCO ₃ mg/L	pH s.u.	T Deg C	DO mg/L	u #/100 mL	0	Cd-D ug/L	Cu-D ug/L	Fe-D ug/L
---------------------------------------	------------	------------	------------	---------------	---	--------------	--------------	--------------

Fe-Trec
ug/L

Pb-D
ug/L

Mn-D
ug/L

Se-D
ug/L

Zn-D
ug/L

NH3
mg/L

NO5
mg/L

NO2
mg/L

NO3
mg/L

SO4
mg/L

U-D
ug/L

As-D
ug/L

Ag-D
ug/L

Al-D
ug/L

Hg-D
ug/L

Ni-D ug/L	Cr3-D ug/L	Cr6-D ug/L	Mo-D ug/L	TN mg/L	TP mg/L	TKN mg/L	Chlor A mg/L
--------------	---------------	---------------	--------------	------------	------------	-------------	-----------------

Sb-D ug/L	Asbestos Fibers	Barium ug/L	Be-D ug/L	B-D mg/L	Cl- mg/L	Chlorine mg/L	Cyanide mg/L
--------------	--------------------	----------------	--------------	-------------	-------------	------------------	-----------------

Fl-
mg/L

Hg-T
ug/L

sulfide
mg/L

Tl-D
ug/L

Tl-T
ug/L

Al-T
ug/L

As-T
ug/L

Be-T
ug/L

Cd-T
ug/L

Cu-T
ug/L

Pb-T
ug/L

Mo-T
ug/L

Ni-T
ug/L

Se-T
ug/L

Ag-T
ug/L

U-T
ug/L

Zn-T
ug/L

Sb-T
ug/L

Ba-D
ug/L

Mn-T
ug/L

Cr3-T
ug/L

Cr6-T
ug/L

Regulation Number	Equation ID
32.6	E-1
32.6	E-1
32.6	E-2
32.6	E-2
33.6	E-1
33.6	E-1
33.6	E-10
33.6	E-10
33.6	E-2
33.6	E-2
33.6	E-3
33.6	E-4
33.6	E-5
33.6	E-5
33.6	E-6
33.6	E-6
33.6	E-7
33.6	E-7
33.6	E-8
33.6	E-8
33.6	E-8
33.6	E-9
33.6	E-9
37.6	E-1
37.6	E-1
38.6	E-1
38.6	E-2
38.6	E-3
38.6	E-4
38.6	E-4
38.6	E-5

38.6	E-5
34.6(4)	E-1
34.6(4)	E-2
36.6(4)	E-1
36.6(4)	E-1
36.6(4)	E-2
36.6(4)	E-2
36.6(4)	E-3
36.6(4)	E-3

Equation
$1.136672 - (\ln(\text{hardness}) * 0.041838) * e^{(0.9151 * \ln(\text{hardness}) - 3.6236)}$
$(1.101672 - [\ln(\text{hardness}) * 0.041838]) * e^{(0.7998 * [\ln(\text{hardness})] - 3.1725)}$
$0.978 * e^{(0.8537 * [\ln(\text{hardness})] + 2.2178)}$
$0.986 * e^{(0.8537 * [\ln(\text{hardness})] + 2.0469)}$
$0.978 * e^{(0.8537 * [\ln(\text{hardness})] + 2.2178)}$
The highest level of clarity attainable, consistent with the exercise of established water rights and the protection of aquatic life.
$0.978 * e^{(0.8537 * [\ln(\text{hardness})] + 1.4189)}$
$0.986 * e^{(0.8537 * [\ln(\text{hardness})] + 1.2481)}$
$0.986 * e^{(0.8537 * [\ln(\text{hardness})] + 2.0469)}$
$e^{(1.25 * (\ln(\text{hard}) + 0.799))}$
$1/2 e^{(1.0166 * (\ln(\text{hard}) - 3.132))}$
$e^{(0.9805 * (\ln(\text{hard}) + 1.402))}$
$0.978 * e^{(0.8537 * (\ln(\text{Hardness}) + 1.5227))}$
$0.986 * e^{(0.8537 * (\ln(\text{Hardness}) + 1.3519))}$
$(1.101672 - [\ln(\text{hardness}) * (0.041838)]) * e^{(0.7998 * [\ln(\text{hardness})] - 3.1725)}$
$(1.101672 - [\ln(\text{hardness}) * (0.041838)]) * e^{(0.7998 * [\ln(\text{hardness})] - 3.1725)}$
$0.96 * e^{(0.9801 * [\ln(\text{hardness})] - 1.1073)}$
$0.96 * e^{(0.5897 * [\ln(\text{hardness})] - 0.0053)}$
$0.978 * e^{(0.8537 * [\ln(\text{hardness})] + 2.1302)}$
$0.986 * e^{(0.8537 * [\ln(\text{hardness})] + 1.9593)}$
$0.96 * e^{(0.9801 * [\ln(\text{hardness})] - 1.5865)}$
$0.96 * e^{(0.5897 * [\ln(\text{hardness})] - 0.4845)}$
$0.96 * e^{(0.9801 * [\ln(\text{hard})] - 1.4747)}$
$0.96 * e^{(0.5897 * [\ln(\text{hard})] - 0.3193)}$
site-specific equation
When water is present, D.O. concentrations shall be maintained at levels that protect classified uses.
$0.978 * e^{(0.8537 * [\ln(\text{hardness})] + 1.9467)}$
$0.978 * e^{(0.8537 * [\ln(\text{hardness})] + 1.9467)}$
$0.986 * e^{(0.8537 * [\ln(\text{hardness})] + 1.8032)}$
$0.986 * e^{(0.8537 * [\ln(\text{hardness})] + 1.8032)}$
$e^{(0.8404 * [\ln(\text{hardness})] + 1.8810)}$
$e^{(0.8404 * [\ln(\text{hardness})] + 1.5127)}$
$((\text{QWC} + \text{QWFCC}) * \text{WQSWFCC} - (\text{QWFCC} * \text{CWFCC})) / \text{QWC}$

The trophic status of Standley Lake shall be maintained as mesotrophic as measured by a combination of common indicator parameters such as total phosphorus, chlorophyll a, secchi depth, and dissolved oxygen.

The concentration of dissolved aluminum that is directed toward maintaining and achieving water quality standards established for segments 3a, 4a and 4b.

The concentration of dissolved cadmium that is directed toward maintaining and achieving water quality standards established for segments 3a, 4a and 4b.

The concentration of dissolved copper that is directed toward maintaining and achieving water quality standards established for segments 3a, 4a and 4b.

The concentration of dissolved iron that is directed toward maintaining and achieving water quality standards established for segments 3a, 4a and 4b.

The concentration of dissolved lead that is directed toward maintaining and achieving water quality standards established for segments 3a, 4a and 4b.

The concentration of dissolved manganese that is directed toward maintaining and achieving water quality standards established for segments 3a, 4a and 4b.

The concentration of dissolved zinc that is directed toward maintaining and achieving water quality standards established for segments 3a, 4a and 4b.

The concentration of dissolved aluminum that is directed toward maintaining and achieving water quality standards established for segments 4a and 4b.

The concentration of dissolved cadmium that is directed toward maintaining and achieving water quality standards established for segments 4a and 4b.

The concentration of dissolved copper that is directed toward maintaining and achieving water quality standards established for segments 4a and 4b.

The concentration of dissolved iron that is directed toward maintaining and achieving water quality standards established for segments 4a and 4b.

The concentration of dissolved lead that is directed toward maintaining and achieving water quality standards established for segments 4a and 4b.

The concentration of dissolved manganese that is directed toward maintaining and achieving water quality standards established for segments 4a and 4b.

The concentration of dissolved zinc that is directed toward maintaining and achieving water quality standards established for segments 4a and 4b.

$e^{(0.7852 * \ln[\text{hard}] - 1.545)}$

$e^{(0.7852 * \ln[\text{hard}] - 2.906)}$

$e^{(0.8889 * \ln[\text{hard}] + 0.53)}$

$e^{(0.8889 * \ln[\text{hard}] - 1.519)}$

$e^{(0.8179 * \ln[\text{hard}] + 3.757)}$

$e^{(0.8179 * \ln[\text{hard}] + 2.907)}$

Chronic or acute	Specific period	Analyte	
acute	none	Cd	
chronic	none	Cd	
acute	none	Zn	
chronic	none	Zn	
acute/chronic		Zn	I don't see this one on the list for the spite specific stds
			clairty-secchi
		disk depth	Grand Lake
chronic	none		
acute	differs by segment	Zn	
chronic	differs by segment	Zn	
		Zn	??? I don't see this one is the Blue R. 02a stds table
acute/chronic	none	Zn	
acute/chronic	none	Cd	
acute/chronic	none	Zn	
acute	none	Zn	
chronic	none	Zn	
chronic	none	Cd	Is this supposed to be e raised to the power?
chronic	none	Cd	
acute	none	Cu	
chronic	none	Cu	
acute	none	Zn	
chronic	differs by segment	Zn	
acute	none	Cu	
chronic	none	Cu	
acute	none	Cu	
chronic	none	Cu	
acute/chronic	differs by segment	Ammonia	
chronic	none	D.O.	
acute	none	Zn	
acute	none	Zn	
chronic	none	Zn	
chronic	none	Zn	
acute	none	Zn	
chronic	none	Zn	
		All Metals	See stds table for what all the letters stand for in the equation
acute/chronic	none		

	none	
		Standley Lake; just not sure how to apply this..chronic or acute? W
chronic	none	Al
chronic	none	Cd
chronic	none	Cu
chronic	none	Fe
chronic	none	Pb
chronic	none	Mn
chronic	none	Zn
chronic	none	Al
chronic	none	Cd
chronic	none	Cu
chronic	none	Fe
chronic	none	Pb
chronic	none	Mn
chronic	none	Zn
acute	none	Cd
chronic	none	Cd
acute	none	Cu
chronic	none	Cu
acute	none	Zn
chronic	none	Zn

hich parameters?