

Motivation

The Analog

Results

Conclusions

Is the Analog Method Able to Reconstruct Precipitation Over Europe?

J. J. Gómez-Navarro, S. Wagner, and E. Zorita

Institute for Coastal Research Helmholtz-Zentrum Geesthacht, Germany

Two Main Tools in Palaeoclimatology

Motivation

The Analog Method

Results

Conclusions

Climate Reconstructions

- Based on multiple proxy indicators
- Local-oriented, but also combined to create Climate Field Reconstructions (CRF)
- A number of uncertainties to be addressed

Two Main Tools in Palaeoclimatology

Motivation

The Analog Method

Results

Conclusions

Climate Reconstructions

- Based on multiple proxy indicators
- Local-oriented, but also combined to create Climate Field Reconstructions (CRF)
- A number of uncertainties to be addressed

Climate Simulations

- Many approximations in their formulation
- Forcings uncertain
- Physically consistent

Blending Both Methodologies

Motivation

The Analog Method

Results

Conclusions

Exercises combining these methodologies offers a number of opportunities

- Benchmarking climate models in long-term climatic context
- Check consistence among climate reconstructions
- Testing the validity of hypothesis used in the statistical techniques employed in climate reconstructions

Blending Both Methodologies

Motivation

The Analog Method

Results

Conclusions

Exercises combining these methodologies offers a number of opportunities

- Benchmarking climate models in long-term climatic context
- Check consistence among climate reconstructions
- Testing the validity of hypothesis used in the statistical techniques employed in climate reconstructions

The Goal

We propose a CFR technique for precipitation over Europe based in the combination of both approaches: The analog method

The Idea Behind the Analog Method

Motivation

The Analog Method

Results

- Not a new idea!
- It is a method originally developed for downscaling (in weather forecast)
- The predictand is chosen from a pool of stereotypical situations based on the predictor
- Our predictor is a set of local reconstrucions of precipitation

Motivation

The Analog Method

Results

Conclusions

Pool of Situations

N Local Reconstructions

Motivation

The Analog Method

Results

Conclusions

Pool of Situations

N Local Reconstructions

Motivation

The Analog Method

Results

N Local Reconstructions

Motivation

The Analog Method

Results

Conclusions

Pool of Situations

Field Reconstruction

N Local Reconstructions

Properties of the Analog Method

Motivation

The Analog Method

Results

Conclusions

This method has some advantages and caveats:

- The quality of the CFR relies on the quality of the local reconstructions used as predictors
- The size and quality of the analogs pool is critical: we need a large and reliable dataset to search for analogs
- A non-linear method (does not necessarily le variance)
- We do not need to make assumptions about the behaviour of the reconstructed field

Motivation

The Analog Method

Results

Conclusions

We use a 2000-year long high-resolution simulation over Europe as a pool for searching analogs

Testing the Method in the Model World

Motivation

The Analog Method

Results Conclusions We use the model simulation as a *pseudo-reality* where pseudo-proxy experiments (PPE) can be performed:

- 1: Simulated series in 11 locations are extracted and contaminated with noise
- 2: The CFR methodology is applied to these pseudo-proxies
- 3: The "reconstruction" is compared with the "reality" to asses the skill of the reconstruction methodology

Correlation in the Noise-free PPE (Winter)

We first have tried a noise-free (ideal case) PPE

Motivation

The Analog Method

Results

Perfect Proxies Noise Proxies

Correlation in the Noise-free PPE (Summer)

But in summer the large-scale influence on precipitation is lower, which reduces the skill

Motivation

The Analog Method

Results

Perfect Proxies
Noise Proxies

Correlation and Number of Analogs (Winter)

When several analogs are averaged, correlation increases...

Motivation

The Analog Method

Results

Perfect Proxies
Noise Proxies

Correlation and Number of Analogs (Winter)

When several analogs are averaged, correlation increases...

Motivation

The Analog Method

Results

Perfect Proxies
Noise Proxies

Variance and Number of Analogs (Winter)

... but variance decreases

Motivation

The Analog Method

Results

Perfect Proxies
Noise Proxies

Variance and Number of Analogs (Winter)

... but variance decreases

Motivation

The Analog Method

Results

Perfect Proxies Noise Proxies

Including Noise to Simulate realistic Pseudo-Proxies

Motivation

The Analog Method

Results
Perfect Proxies

Noise Proxies

Conclusions

- The results shown so far are the baseline to illustrate a perfect scenario
- But real proxies contain uncertainty
- We add white noise with the simple formula:

$$\hat{P}_i(t) = P_i(t) + \alpha_i W(t)$$

where $W \sim N(0, 1)$ and α_i is scaled so that $Cor(\hat{P}, P) = 0.5$

Correlation When Noise Is Included (Winter)

The noise decreases the skill of the pseudo-reconstruction

Motivation

The Analog Method

Results

Perfect Proxies
Noise Proxies

Correlation When Noise Is Included (Winter)

The noise decreases the skill of the pseudo-reconstruction

Motivation

The Analog Method

Results

Perfect Proxies
Noise Proxies

Conclusions

Motivation

The Analog Method

Results

- The analog method can be combined with long, high-resolution simulations to perform seasonal CFR of precipitation
- The noise-free experiment represents the theoretical limit for the skill of the method
- Skillful reconstruction close to the PPE locations
- Not so skillful in areas where few input information is available, especially in summer
- There is trade off between correlation and variability
- Create several reconstructions at different temporal scales?

Motivation

The Analog Method

Results

Conclusions

Thank you!