Language Models & Smoothing

$$|p(\boldsymbol{W} = \boldsymbol{w}) = p(W_{1} = w_{1}, W_{2} = w_{2}, \dots, W_{L+1} = stop)$$

$$= \left(\prod_{\ell=1}^{L} p(W_{\ell} = w_{\ell} \mid \boldsymbol{W}_{1:\ell-1} = \boldsymbol{w}_{1:\ell-1})\right) p(W_{L+1} = stop \mid \boldsymbol{W}_{1:L} = \boldsymbol{w}_{1:L})$$

$$= \left(\prod_{\ell=1}^{L} p(w_{\ell} \mid history_{\ell})\right) p(stop \mid history_{L})$$

$$= e^{\left(\prod_{\ell=1}^{L} p(w_{\ell} \mid history_{\ell})\right)} p(stop \mid history_{L})$$

$$= p(\boldsymbol{w})^{-\frac{1}{|\boldsymbol{w}|}}$$

$$= p(\boldsymbol{w})^{-\frac{1}{|\boldsymbol{w}|}}$$

$$= |\boldsymbol{w}| \frac{1}{p(\boldsymbol{w})}$$

$$= \frac{1}{|\boldsymbol{w}|} \frac{1}{p(\boldsymbol{w}_{i} \mid w_{i-N+1}, \dots, w_{i-1})}$$

Maximum likelihood ("relative frequency") estimation:

$$\hat{p}_{\text{MLE}}(w_N \mid \langle w_1, \dots, w_{N-1} \rangle) = \frac{\text{count}(\langle w_1, w_2, \dots, w_{N-1}, w_N \rangle)}{\sum_{v \in \Sigma} \text{count}(\langle w_1, w_2, \dots, w_{N-1}, v \rangle)}$$

Add- λ smoothing (commonly, $\lambda = 1$, in which case this is also called Laplace smoothing):

$$\hat{p}_{\text{add-}\lambda}(w_N \mid \langle w_1, \dots, w_{N-1} \rangle) = \frac{\lambda + \text{count}(\langle w_1, w_2, \dots, w_{N-1}, w_N \rangle)}{\lambda \mid \Sigma \mid + \sum_{v \in \Sigma} \text{count}(\langle w_1, w_2, \dots, w_{N-1}, v \rangle)}$$

Good-Turing discounted counts:

$$c^* = \frac{(c+1) \times N_{c+1}}{N_c}$$

Linear interpolation ("mixture model"):

$$\begin{split} \hat{p}_{\text{interp}}(w_N \mid \langle w_1, \dots, w_{N-1} \rangle) = & \lambda_N \times \hat{p}_{\text{MLE}}(w_N \mid \langle w_1, \dots, w_{N-1} \rangle) \\ &+ \lambda_{N-1} \times \hat{p}_{\text{MLE}}(w_N \mid \langle w_2, \dots, w_{N-1} \rangle) \\ \vdots \\ &+ \lambda_2 \times \hat{p}_{\text{MLE}}(w_N \mid \langle w_{N-1} \rangle) \\ &+ \lambda_1 \times \hat{p}_{\text{MLE}}(w_N) \\ &+ \lambda_0 \times \frac{1}{|\Sigma|} \end{split}$$

Noisy Channel & Edit Distance

$$D_{0,0} = 0$$

$$D_{i,j} = \min \begin{cases} D_{i-1,j} + \operatorname{inscost}(t_i) \\ D_{i,j-1} + \operatorname{delcost}(s_j) \\ D_{i-1,j-1} + \operatorname{substcost}(t_i, s_j) \end{cases}$$

$$D_{0,0} = 0$$

$$D_{i,j} = \min \begin{cases} D_{i-1,j} + \operatorname{inscost}(t_i) \\ D_{i,j-1} + \operatorname{delcost}(s_j) \\ D_{i-1,j-1} + \operatorname{substcost}(t_i, s_j) \\ D_{i-2,j-2} + \operatorname{transcost}(s_{j-1}, s_j) \text{if } s_{j-1} = t_i \text{ and } s_j = t_{i-1} \end{cases}$$
 + Noisy Channel

+ Noisy Channel

The Noisy Channel Model assumes we want to recover the most likely system output y for an observed input x by modeling the probability distribution $p(y \mid x)$

$$\begin{split} y^* &= \arg\max_y p(y\mid x) \\ &= \arg\max_y \frac{p(x\mid y) \times p(y)}{p(x)} \\ &= \arg\max_y \frac{p(x\mid y) \times p(y)}{\sum_{y'} p(x\mid y') \times p(y')} \\ &= \arg\max_y p(x\mid y) \times p(y) \end{split}$$
 Bayes' rule

Classification

+ Naïve Bayes Classifier

$$\phi_j \leftarrow [\mathbf{\Phi}(x)]_j$$

return
arg $\max_{y'} p(y') \times \prod_i p(\phi_i \mid y')$

+ Naïve Bayes Learner

$$\begin{array}{c}
\mathbf{X} \to \left| \forall y, p(y) \leftarrow \frac{\text{count}(y)}{N} \right| \\
\mathbf{y} \to \left| \forall y, \forall j, \forall f, \\ p(\phi_j(x) = f \mid y) \leftarrow \frac{\text{count}(f, y)}{\text{count}(y)} \right| \\
\end{array}$$

Sentiment Analysis

Social Media (tweets), product reviews, discussion forum posts, and blog posts

Part of Speech Tags

СС	Conj.	PRP	Pronoun, personal
CD	Numeral, Cardinal	RB	Adverb
DT	Determiner	RBR	Adverb, comparative
IN	Prep., Conj.	RP	Particle
JJ	Adj. or Numeral	VB	Verb, base form
NN	Noun, common, s.	VBD	Verb, past tense
NNP	Noun, proper, s.	VBG	V., present participle
NNPS	Noun, proper, pl.	VBN	V., past participle
NNS	Noun, common, pl.	VBP	V., present, not 3rd

Two difficulties:

- 1) What tags? Unknown words?
- 2) Disambiguating words (more than one tag)

Hidden Markov Models

- + Markov Property: the state we move to at time t depends only on the state we were at time t-1
- + Symbols are observed, state sequence is hidden
- q0: start state ("silent")
- qf: final state ("silent")
- Q: set of "normal" states (excludes q0 and final qf)
- Σ: vocabulary of observable symbols
- yi,j: probability of transitioning to qj given current state qi
- $\eta i, w$: probability of emitting $w \in \Sigma$ given current state gi

+ Viterbi Algorithm

$$\begin{split} y_n^* &= \arg\max_{q_i \in Q} p(Y_1 = y_1^*, \dots, Y_{n-1} = y_{n-1}^*, Y_n = q_i \mid \boldsymbol{x}) \\ &= \arg\max_{q_i \in Q} V[n-1, y_{n-1}^*] \cdot \gamma_{y_{n-1}^*, i} \cdot \eta_{i, x_n} \cdot \gamma_{i, f} \\ &= \arg\max_{q_i \in Q} \gamma_{y_{n-1}^*, i} \cdot \eta_{i, x_n} \cdot \gamma_{i, f} \\ V[0, q_0] &= 1 \\ V[t, q_j] &= \max_{q_i \in Q \cup \{q_0\}} V[t-1, q_i] \cdot \gamma_{i, j} \cdot \eta_{j, x_t} \\ &= \max_{q_i \in Q} V[n, q_i] \cdot \gamma_{i, f} \\ V[*, *] \leftarrow 0 \\ V[0, q_0] \leftarrow 1 \\ \text{for } t = 1 \dots n \\ \text{for each } q_i \\ V[t, q_j] \leftarrow \max\{V[t, q_j], V[t-1, q_i] \times \gamma_{i, j} \times \eta_{i, xt}\} \\ \text{for each } q_i \\ \text{goal } \leftarrow \max\{\text{ goal, } V[n, q_i] \times \gamma_{i, f}\} \end{split}$$

Syntactic Representation

- •Vocabulary of terminal symbols, Σ
- •Set of nonterminal symbols (a.k.a. variables), N
- •Special start symbol $S \subseteq N$
- •Production rules of the form X $\rightarrow \alpha$ where

 $X \in N$

return goal

 $\alpha \in (N \cup \Sigma)^*$

Grammatical: said of a sentence in the language Ungrammatical: said of a sentence **not** in the language

Derivation: sequence of top-down production

steps

Parse tree: graphical representation of the

derivation

A string is grammatical iff there exists a derivation for it.

Chomsky Hierarchy

\		language class	automaton
	0	recursively enumerable	Turing machine
/	1	context- sensitive	linear bounded automaton
	*	mildly context- sensitive	thread automaton
	2	context-free	pushdown automaton
	3	regular	finite-state automaton

+ Pumping Lemma

If L is an infinite regular language, then there are strings x, y, and z such that y is not empty, xy^nz is in L, for all $n \ge 0$

Context-free Recognition & CKY Algorithm Requires the grammar be in Chomsky normal form

for
$$i=1\dots n$$

$$C[i-1,i]=\{V\mid V\to wi\}$$
 for $\ell=2\dots n$ // width for $i=0\dots n-\ell$ // left boundary
$$k=i+\ell \text{ // right boundary}$$
 for $j=i+1\dots k-1$ // midpoint
$$C[i,k]=C[i,k]\cup \\ \{V\mid V\to YZ,Y\in C[i,j],Z\in C[j,k]\}$$
 return true if $S\in C[0,n]$
$$C[i-1,i,w_i]=\text{TRUE}$$

$$C[i-1,i,V]=\begin{cases} \text{TRUE} & \text{if }V\to w_i\\ \text{FALSE} & \text{otherwise} \end{cases}$$

$$C[i,j,V] = \begin{cases} \text{TRUE} & \text{if } \exists j,Y,Z \text{ such that} \\ V \to YZ \\ & \text{and } C[i,k,Y] \\ & \text{and } C[k,j,Z] \\ & \text{and } i < k < j \end{cases}$$
 False otherwise

$$goal = C[0, n, S]$$

\mathscr{L}_1 Grammar	\mathscr{L}_1 in CNF
$S \rightarrow NP VP$	$S \rightarrow NP VP$
$S \rightarrow Aux NP VP$	$S \rightarrow X1 VP$
	$X1 \rightarrow Aux NP$
$S \rightarrow VP$	$S \rightarrow book \mid include \mid prefer$
	$S \rightarrow Verb NP$
	$S \rightarrow X2 PP$
	$S \rightarrow Verb PP$
	$S \rightarrow VPPP$
NP → Pronoun	$NP \rightarrow I \mid she \mid me$
NP → Proper-Noun	NP → TWA Houston
NP → Det Nominal	$NP \rightarrow Det Nominal$
Nominal → Noun	Nominal → book flight meal money
Nominal → Nominal Noun	$Nominal \rightarrow Nominal Noun$
Nominal → Nominal PP	$Nominal \rightarrow Nominal PP$
$VP \rightarrow Verb$	$VP \rightarrow book \mid include \mid prefer$
$VP \rightarrow Verb NP$	$VP \rightarrow Verb NP$
$VP \rightarrow Verb NP PP$	$VP \rightarrow X2 PP$
	$X2 \rightarrow Verb NP$
$VP \rightarrow Verb PP$	$VP \rightarrow Verb PP$
$VP \rightarrow VP PP$	$VP \rightarrow VP PP$
PP → Preposition NP	PP → Preposition NP

Figure 13.8 \mathcal{L}_1 Grammar and its conversion to CNF. Note that although they aren't shown here all the original lexical entries from \mathcal{L}_1 carry over unchanged as well.