

Maths

Classe: **Bac Maths**

Série: f.reciproques

déplacements et antideplacements

Nom du Prof: Mohamed Hedi

Ghomriani

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1:

(S) 20 min

4pts

Soit ABCD est un rectangle direct de centre O tel que $(AB,AC) \equiv \frac{\pi}{6}[2\pi]$, on construit le point E tel que ACE un triangle équilatéral direct et I est le milieu de [EC].

- 1) a) Montrer qu'il existe un unique déplacement f tel que $\mathbf{f}(B) = A \text{ et } \mathbf{f}(D) = E.$
- b) Déterminer les éléments caractéristiques de f.
- 2) Soit $g = t_{\overline{OA}} or_{(c, \frac{-\pi}{3})}$
- 3) a) Déterminer g(B) puis montrer que g=f.
 - b) Soit le point F = g(A) montrer que AOEF est un rectangle

Exercice 2:

(S) 30 min

4 pts

Soit ABC est un triangle isocèle en A tel que $(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\pi}{6}[2\pi]$] H est le projeté orthogonal de C sur (AB) I et J les milieux respectifs des segments [AH] et [AC] Δ est la médiatrice de [AC].

- 1)a)Faire une figure claire
- b) Montrer qu'il existe un unique antidéplacement f tel que $\mathrm{f}(\mathcal{C})=A$ et $\mathrm{f}(H)=J$
- b) Montrer que f est une symétrie glissante dont on précisera l'axe et le vecteur
- c) Soit D le symétrique de H par rapport à J, montrer que f(J)=D
- d) Montrer que $f((AB)) = \Delta$
- e) La parallèle à (AC) passant par D coupe Δ en K, montrer que f (I)=K
- 2) Soit $g = S\Delta \circ f$
 - a) Déterminer g(H) et g(C)
 - b) En déduire la nature et les éléments caractéristiques de \boldsymbol{g}

Exercice 3:

(S) 30 min

4 pts

Soit ABCD un carré de centre o tel que. On désigne par

R: la rotation de centre a et d'angle $\frac{\pi}{2}$.

t: translation de vecteur \overrightarrow{AC} .

S: la symétrie de centre C.

- 1) Déterminer la nature et les éléments caractéristiques de des applications : f = toR ; g = SotoR et fog.
- 2) Montrer qu'il existe un unique point M du plan vérifiant $f\left(M\right)=g\left(M\right).$
- 3) Soient I = A * B et J = B * C.
 - a) Montrer qu'il existe un unique déplacement φ qui envoie A en C et B en D .

Caractériser φ .

b) Soit Ψ l'antidéplacement qui envoie A en C et B en D. Déterminer $\psi \circ \varphi(C)$ et $\psi \circ \varphi(D)$.

Exercice 4

6 pts

Soit g la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par : $g(x) = \tan x$.

- 1) a) Montrer que g réalise une bijection de $[0, \frac{\pi}{2}]$ sur $[0, +\infty[$.
 - b) Soit g^{-1} sa fonction réciproque.

Montrer que g^{-1} est dérivable sur $[0, +\infty[$ et que $(g^{-1})'(x) = \frac{1}{1+x^2}$.

2) Soit $n \in \mathbb{N}^*$, on considère la fonction g_n définie sur $[0, +\infty[$ par :

$$g_n(x) = x^n + g^{-1}\left(\frac{x}{n}\right).$$

- a) Montrer que l'équation $g_n(x) = 1$ admet une solution unique α_n dans $[0, +\infty[$ et que $\alpha_n \in]0,1[$.
- b) Montrer que $\forall x \in]0,1[$; $g_{n+1}(x) < g_n(x)$. En déduire que la suite (α_n) est croissante.
- c) Montrer que la suite (α_n) est convergente.
- 3) a) Montrer que $\forall n \in \mathbb{N}^*$, $1 g^{-1} \left(\frac{\alpha_n}{n} \right) < \alpha_n < 1$. Déterminer alors $\lim_{n \to +\infty} \alpha_n$.

b) Montrer que : $\lim_{n\to+\infty} n \left(1-\left(\alpha_n\right)^n\right) = 1$.

Exercice 5

(S) 30 min

6 pts

Le plan est orienté. On considère un parallélogramme ABCD de centre O tel que AB = AD;

 $(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\pi}{3} [2\pi]$ et $(\overrightarrow{DA}, \overrightarrow{DB}) = \frac{\pi}{2} [2\pi]$. Soit *E* le point tel que *CED* soit un triangle équilatéral direct.

- 1)
- a) Montrer que AB = ED.
- b) En déduire qu'il existe une rotation r tel que r(A) = E et r(B) = D. Préciser son angle θ et construire son centre I.
- 2) L droite (EC) coupe (AB) en F.
 - a) Montrer que le triangle AEF est équilatéral et que r(F) = A.
 - b) En déduire que I est le centre du cercle circonscrit au triangle AEF.
- 3) Soit r' la rotation de centre c et d'angle $-\frac{\pi}{3}$. Trouver r'(F) et r'(D) et en déduire que les droites (FD) et (BE) se coupe en J et que $(\overrightarrow{JD}, \overrightarrow{JB}) \equiv -\frac{\pi}{3}[2\pi]$.
- 4) Soit Γ le cercle de centre Ω circonscrit au triangle ABD.
 - a) Montrer que Γ passe par I et J.
 - b) Montrer que I, O et Ω sont alignés sur une droite A.
- 5)
- a) Caractériser le déplacement f tel que : f(B) = A et f(C) = D.
- b) Montrer qu'il existe un unique antidéplacement σ tel que $\sigma(C) = D$ et $\sigma(B) = A$. Donner les éléments caractéristiques de σ .
- 6) Soit $S = \sigma o S_{(BD)}$.
 - a) Donner la nature de S.
 - b) Donner les éléments caractéristiques de S.

Exercice6

© 30 min

5 pt

Le plan est orienté.

Dans la figure ci-contre, *ABC* est un triangle direct, non rectangle et non isocèle.

GAC et EBA sont des triangles directs, rectangles et isocèles respectivement en G et E .

 $L,K,I\ et\ J$ sont les milieux respectifs des côtés $\left[BC\right]$, $\left[GE\right]$, $\left[EL\right]$ et $\left[GL\right]$. F et H sont les symétriques respectifs de G et J par rapport à L.

On note r_1 et r_2 les rotations de même angle $\frac{\pi}{2}$ et de centres respectifs G et E. S_L désigne la symétrie centrale de centre L.

a) Déterminer $r_2 \circ S_L \circ r_1(A)$. Caractériser $r_2 \circ S_L \circ r_1$.

- c) Justifier que le quadrilatère *LJKI* est un carré.
- 2) Soit φ la symétrie glissante de vecteur \overrightarrow{LK} de l'axe Δ passant par I. On pose $g = \varphi \circ S_{(LE)}$, où $S_{(LE)}$ est la symétrie orthogonale d'axe (LE).
 - a) Montrer que $\Delta = (IH)$.
 - b) Montrer que g(J) = I et g(L) = E.
 - c) Prouver que g est la rotation de centre K et d'angle $-\frac{\pi}{2}$.
- 3) Soit f l'antidéplacement qui envoie J en I et L en E .
 - a) Justifier que f est une symétrie glissante.
 - b) Donner les éléments caractéristiques de f.
- 4) Soit M un point du plan. Soient M ' et M " les images de M respectivement par f et g .

Montrer que M ' et M " sont symétriques par rapport à une droite fixe que l'on précisera.

