1782

http://www.kuonline.in

http://www.kuonline.in

Printed Pages: 4

GSQ / M-19 MATHEMATICS Paper-BM-361 Real and Complex Analysis

Time allowed: 3 hours]

[Maximum marks: 40

Note: Attempt five questions in all, selecting one question from each section. Question No. 1 is compulsory.

Compulsory Question

- 1. (a) Evaluate $\int_{0}^{\infty} x^{3} e^{-x} dx$
 - (b) Change the order of integration of $\int_{0}^{\pi} \int_{x^2/4}^{2a-x} xy \, dy \, dx$. 2
 - (c) Find the Fourier co-efficient a_n for the function $f(x) = x \cos x$ in $[-\pi, \pi]$
 - (d) Find the invariant points of the Mobius transformation $w = z^3$.

Section-I

2. (a) Prove that the functions

 $u = \sin^{-1} x + \sin^{-1} y$, $v = x \sqrt{1 - y^2} + y \sqrt{1 - x^2}$

are functionally dependent. Also find the relation between them.

http://www.kuonline.in

(Turn over

http://www.kuonline.in

(2)

- (b) Express $\int_{0}^{1} x^{m} (1-x^{n})^{p} dx$ in terms of Beta function and hence evaluate $\int_{0}^{1} x^{5} (1-x^{3})^{3} dx$.
- 3. (a) Evaluate $\iiint_V x^2 dx dy dz$, where V is the interior of sphere $x^2 + y^2 + z^2 = 1$.
 - (b) Show that the mass of an octant of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, the density at any point being $\rho = kxyz \text{ is } \frac{k a^2 b^2 c^2}{48}$. http://www.kuonline.in 4

Section-II

- 4. (a) Obtain a Fourier series expansion for the function $f(x) = |\cos x| \sin(-\pi, \pi)$.
 - (b) Find the Fourier series expansion for the function f(x) in $(0, 2\pi)$ defined as:

$$f(x) = \begin{cases} x , & 0 < x < \pi \\ 2\pi - x, & \pi < x < 2\pi \end{cases}$$

Hence deduce that

$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$$

Find a series of cosines of multiples of x which will 5. represent $f(x) = x \sin x$ in $(0, \pi)$.

Find the Fourier series expansion for f(x) if

$$f(x) = \begin{cases} 0, & -2 < x < -1 \\ k, & -1 < x < 1 \\ 0, & 1 < x < 2 \end{cases}$$

Section-III

- Prove that the function $f(z) = |z|^2$ is continuous everywhere but nowhere differentiable except at the origin.
 - If f(z) is a regular function of z, prove that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2 \qquad 4$$

- Show that the function $u(x, y) = e^x \cos y$ is harmonic. 7. (a) Determine its harmonic conjugate v(x, y) and the analytic function f(z) = u + iv.
 - Show that f(z) = xy + iy is continuous everywhere but is not analytic.

Section-IV

8. Find the image of the line y - x + 1 = 0 under the mapping

1782

Turn over

http://www.kuonline.in

http://www.kuonline.in

http://www.kuonline.in

(4)

- Find the Mobius transformation which maps the points z = 0, -1, i onto $w = i, 0, \infty$. Also find the image of the unit circle |z|=1.
- Determine the region of the w-plane into which the region 9. $\frac{1}{2} \le x \le 1$ and $\frac{1}{2} \le y \le 1$ is mapped by the transformation $w = z^2$.
 - Find the Mobius transformation which maps the half plane $I(z) \ge 0$ into circle $|w| \le 1$.

http://www.kuonline.in

http://www.kuonline.in Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भैजे और 10 रुपये पायें, Paytm or Google Pay 社

. *

http://www.kuonline.in