Ep. 3: Linear Maps

LetsSolveMathProblems: Navigating Linear Algebra

Let V, W be vector spaces over a field F.

Problem 1. Are there functions $\phi, \psi : \mathbb{R} \to \mathbb{R}$ (which may be nonlinear) such that ϕ is injective, ψ is surjective, and $\phi \circ \psi$ is neither injective nor surjective? Does the answer change if ϕ, ψ are assumed to be linear?

Problem 2. Suppose that $\phi: V \to W$ is an isomorphism. Show that $\phi^{-1}: W \to V$ is linear.

Problem 3. Match each linear map $\phi : \mathbb{R}^2 \to \mathbb{R}^2$ to its description.

Linear Maps:

(a)
$$\phi(e_1) = e_2, \ \phi(e_2) = e_1$$

(b)
$$\phi(e_1) = e_1, \ \phi(e_2) = -e_2$$

(c)
$$\phi(e_1) = -e_1$$
, $\phi(e_2) = -e_2$

Descriptions:

- (i) Reflection about the x-axis
- (ii) Reflection about the line y = x
- (iii) Rotation of 180 degrees about the origin

Problem 4. Check that Hom(V, F) is a vector space over F, where vector addition and scalar multiplication are function addition and function scalar multiplication. This is the algebraic dual space of V.

Problem 5. For any $\phi \in \text{Hom}(V, V)$, let $\phi^2 := \phi \circ \phi$. Does there exist $\phi \in \text{Hom}(\mathbb{R}^2, \mathbb{R}^2)$ such that $\phi(e_1) \neq 0$ and $\phi(e_2) \neq 0$, yet $\phi^2(e_1) = \phi^2(e_2) = 0$?