Задача N. От префикс-функции к z-функции [2 sec, 256 mb]

Префикс-функция p(i) для строки $s=s_1s_2\dots s_n$ определяется от позиции i $(1\leqslant i\leqslant n)$ в строке так: p(i) — это максимальная длина собственного префикса строки $s_1s_2\dots s_i$, равного её собственному суффиксу. Напомним, что собственный префикс строки $s=s_1s_2\dots s_n$ это строка $s_1s_2\dots s_r$ для некоторого r< n. Аналогично, собственный суффикс строки $s=s_1s_2\dots s_n$ это строка $s_1s_2\dots s_n$ для некоторого l>1.

Z-функция z(i) для строки $s=s_1s_2\dots s_n$ определяется от позиции i $(1\leqslant i\leqslant n)$ в строке так: z(1)=0, а для i>1 z(i)— это максимальное число такое, что строки $s_1s_2\dots s_{z(i)}$ и $s_is_{i+1}\dots s_{i+z(i)-1}$ совпадают.

Даны длина строки n и значения префикс-функции $p(1), p(2), \ldots, p(n)$ для этой строки. Найдите для этой строки значения z-функции $z(1), z(2), \ldots, z(n)$.

Формат входных данных

В первой строчке входного файла задано целое число n ($1 \le n \le 1\,000\,000$). Во второй строчке заданы n чисел через пробел — значения префикс-функции $p(1), p(2), \ldots, p(n)$. Гарантируется, что существует строка длины n, состоящая из строчных букв латинского алфавита, для которой префикс-функция от позиций $1, 2, \ldots, n$ принимает данные значения.

Формат выходных данных

В первой строчке выходного файла выведите n чисел через пробел — значения z-функции для строки, имеющей данную префикс-функцию.

Примеры

stdin	stdout
6	0 0 4 0 2 0
0 0 1 2 3 4	
7	0 0 0 4 0 0 1
0 0 0 1 2 3 4	
4	0 0 0 0
0 0 0 0	

Задача V. Сила [2 sec, 256 mb]

Инженеры разработали новое подводное устройство. Для получения дополнительного финансирования было решено назвать его «наноустройством».

Задумавшись о том, как обосновать такое название, молодой специалист Вася предложил измерять силу устройства в нано-ньютонах.

Предложение было с радостью принято, а вам было предложено написать программное обеспечение для контроллера рулевого управления устройства.

У устройства есть четыре рулевых двигателя на левой, правой, верхней и нижней сторонах. Их силы определяются целыми числами f_L , f_R , f_U и f_D , соответственно.

Допустимые значениия этих сил лежат в пределах от -10^8 до 10^8 нано-ньютонов, включительно. Положительные значения соответствуют движению вперёд, отрицательные — движению назад.

Несмотря на то, что все двигатели расположены параллельно, их всё ещё можно использовать для поворота устройства. Например, если $f_L = -10^8$, $f_R = 10^8$, $f_U = f_D = 0$, устройство поворачивает влево. Если $f_L = f_R = f_U = f_D = 10^8$, устройство двигается вперёд на полной скорости.

Для человека, который управляет устройством, вместо установки значений сил двигателей напрямую, удобнее установить *полную силу* T, горизонтальное отклонение H и вертикальное отклонение V, которые определяются следующим образом:

- $T = f_L + f_R + f_U + f_D$
- $H = f_R f_L$
- $\bullet \ V = f_U f_D$

Напишите программу, которая по значениям T, H и V вычислит соответствующие значения f_L , f_R , f_U и f_D .

Формат входных данных

В единственной строке ввода записаны три целых числа T, H и V $(-4 \cdot 10^8 \leqslant T \leqslant 4 \cdot 10^8, -2 \cdot 10^8 \leqslant H, V \leqslant 2 \cdot 10^8.$

Формат выходных данных

Выведите четыре целых числа, являющиеся допустимыми значениями сил: f_L , f_R , f_U и f_D . Если решений несколько, выведите любое. Гарантируется, что хотя бы одно решение существует.

Пример

stdin	stdout
0 10 0	99999990 100000000 -99999995
	-9999995