Linear Operators and Functional

Tan-Jianbin

School of Mathematics Sun Yat-sen University

Seminar on Statistics 105c

Linear Operators and Functional

- Dual Space
 - Riesz Representation Theorem
 - Hahn-Banach Extension Theorem
 - Reflexive and Weak Convergence
- Adjoint Operators
 - Non-negative and Square Root
 - Projection Operator
 - Tensor Product
- Operator Inverses
 - Inverse Mapping Theorem
 - Generalized Inverse

 V_1 , V_2 are two vector spaces. $L(V_1, V_2) = \{$ all the linear maps $T: V_1 \rightarrow V_2 \}$. $L(V_1, V_2)$ is a linear vector space.

```
Dom(T): Domain of T

Ker(T) = \{x \in V_1; Tx = 0\}

Im(T) = T(V_1)

Rank(T) = dim(Im(T))
```

 $(V_1, ||\cdot||_1)$, $(V_2, ||\cdot||_2)$ are two vector spaces, $T \in L(V_1, V_2)$, define $||T|| = \sup_{x \in B[V_1]} \{||T(x)||_2\}$.

Property

$$||Tx||_2 \le ||T|| \, ||x||_1$$

 $||ST|| \le ||S|| \, ||T||, \, S \in L(V_1, V_2), \, T \in L(V_2, V_3)$

$$||Tx||_2/||x||_1 \le ||T||$$

 $||(ST)x||_3 = ||S(Tx)||_3/||Tx||_2 \cdot ||Tx||_2/||x||_1 \le ||S|| ||T||$

T is bounded \Leftrightarrow *T* is uniformly continuous

Proof.

"
$$\Rightarrow$$
": $\forall x, y \in V_1$, $||T(x-y)||_2 \leq ||T|| ||x-y||_1$

"\(= \)": T is continuous at $0 \Rightarrow ||Tx||_2$ bounded, $x \in B[V_1]$.

 $B(V_1,V_2)=\{T\in L(V_1,V_2); T \text{ is uniformly continuous }\}$, then $(B(V_1,V_2),||\cdot||)$ is a normed vector space.

Property

$$||T|| = \sup_{||x||_1=1} ||Tx||_2, T \in B(V_1, V_2)$$

If
$$||x||_1 < 1$$
, $||Tx||_2 \le ||T|| \, ||x||_1 < ||T||$

Example

$$||x||_k = (\sum_n |x_n|^k)^{1/k}, x \in R^n.$$

 $B(R^q, R^p) \cong M_{pq}(R), G \in B(R^q, R^p). ||G||_k = \max_{||x||_k = 1} ||Gx||_k$
is the k-norm of the matrix G .

If
$$k = 1$$
, $||G||_1 = \max_j \sum_i |g_{ij}|$.

If k = 2, $||G||_2 = \max_{x^T x = 1} \sqrt{x^T G^T G x} = \lambda$, λ^2 is the largest eigenvalue of $G^T G$.

If
$$k = \infty$$
, $||G||_1 = \max_i \sum_j |g_{ij}| = ||G^T||_1$.

 $(V_2, ||\cdot||_2)$ Banach space $\Rightarrow (B(V_1, V_2), ||\cdot||)$ Banach space.

Proof.

Take a Cauchy
$$\{T_n\}$$
, $||T_nx-T_mx||_2 \leq ||T_n-T_m|| \ ||x||_1 \Rightarrow \{T_nx\}$ Cauchy, then $\exists \ y_x \in V_2, \ T_nx \to y_x.$
Let $T: V_1 \to V_2, \ Tx = y_x. \ T \in B(V_1, V_2)$ since $\forall \ x, y \in V_1,$
 $||Tx-Ty||_2 \leq ||Tx-T_nx||_2 + ||T_nx-T_ny||_2 + ||T_ny-Ty||_2.$
 $\forall \ \varepsilon > 0, \ \exists \ k \ \text{s.t.} \ \forall \ x \in B[V_1], \ ||T_mx-T_nx||_2 \leq \varepsilon, \ n, m \geq k \Rightarrow$
 $||Tx-T_mx||_2 \leq \varepsilon \Rightarrow T_n \to T.$

V Banach space $\Rightarrow B(V)$ is a Banach algebra.

V normed vector space, dual space V^* : B(V,R).

If V is a function space, then the elements of V^* is called linear functional.

We can easily conclude that the dual space $V: (V^*, ||\cdot||)$ is a Banach space.

Sometime when we meet some tough questions in V, we can transfer our attention to V^* , which can make the problem easier. So we want to ask a key question: $V \cong V^*$?

H Hilbert space, $\forall T \in H^*$, $\exists ! \ e_T \in H$, called the representer of T s.t. $Tx = \langle x, e_T \rangle$ and $||T|| = ||e_T||$.

Proof.

If
$$e_T$$
 exist, $e_T \in Ker(T)^{\perp}$, take $z \in Ker(T)^{\perp}$ s.t. $Tz = 1$, then $\langle x, z \rangle = \langle x - zTx, z \rangle + Tx \langle z, z \rangle = Tx||z||^2$, let $e_T = z/||z||^2$. $||T|| = ||e_T||$ since that $||e_T|| = ||Te_T||/||e_T|| \le ||T||$ and $|Tx| \le ||x|| \, ||e_T|| \Rightarrow ||T|| \le ||e_T||$. e_T is unique since $\langle x, a - b \rangle = 0$, $\forall x \in H \Rightarrow a = b$.

Corollary

$$H \cong H^*$$
, define $\langle T, G \rangle = \langle e_T, e_G \rangle$.

 $T \in L(V_1, V_2)$, we say $\hat{T} \in L(V_1, V_2)$ is an extension of T if $Dom(T) \subset Dom(\hat{T})$ and $Tx = \hat{T}x$, $\forall x \in Dom(T)$.

Theorem

 V_1 , V_2 Banach space, $\underline{T} \in \underline{B(V_1, V_2)}$, then \exists a unique extension \hat{T} s.t. $Dom(\hat{T}) = \overline{Dom(T)}$ and $||\hat{T}|| = ||T||$.

Proof.

Let $x_n \to x$, since $||Tx_n - Tx_m||_2 \le ||T|| \ ||x_n - x_m||_1$, define $\hat{T}x = \lim_n Tx_n$, then $\hat{T} \in L(V_1, V_2)$ and $||T|| = ||\hat{T}||$.

If T_1 , T_2 are extensions of T and $Dom(T_i) = \overline{Dom(T)}$, then $T_1x = T_1(\lim_n x_n) = \lim_n T_1x_n = \lim_n T_2x_n = T_2x \Rightarrow T_1 = T_2$.

V normed vector space, $f: V \to R$ is called sub-linear function if $\forall x, y \in V$, $a \in R$, $f(x + y) \le f(x) + f(y)$, f(ax) = af(x).

Let $T \in B(M,R)$, M is sub-space of V. Define a sub-linear function $f(x) = ||T|| \ ||x||$, we know that $|Tx| \le f(x)$, $x \in M$. We want to find an extension of T s.t. $Dom(\hat{T}) = V$ and $|\hat{T}x| \le f(x)$, $x \in V$. If we achieve this, we can find a norm-preserved extension of T since that $||\hat{T}|| < ||T||$.

This is easy in Hilbert space, without loss of generality, M is closed then M is Hilbert space. Then $Tx = \langle x, e_T \rangle$, $\forall x \in M$, we can define $\hat{T}: \langle x, e_T \rangle$, $\forall x \in V \Rightarrow \hat{T}(x) = 0$, $\forall x \in M^{\perp}$.

Lemma

 $T \in M^*$, M is a subspace of V, $x \notin M$, $M_x = span\{x, M\}$. $f: V \to R$ is a sub-linear function. If $T(x) \le f(x)$, $\forall x \in M$, then \exists \hat{T} , $Dom(\hat{T}) = M_x$, $\hat{T}(x) \le f(x)$, $\forall x \in M_x$.

Proof.

 $\forall z \in M_x$, $\exists y \in M$, $a \in R$, z = y + ax, let $\hat{T}z = Ty + ah(x)$, the trick is in establishing the existence of h.

If
$$a > 0$$
, $\forall m_1, m_2 \in M$, $T(m_1 + m_2) \le f(m_1 + m_2) \le f(m_1 - x) + f(m_2 + x) \Rightarrow Tm_1 - f(m_1 - x) \le f(m_2 + x) - Tm_2$. Take $h(x) \in [\sup_{m \in M} (Tm - f(m - x)), \inf_{m \in M} (f(m + x) - Tm)]$, then $\hat{T}z = Ty + ah(x) = a(T(y/a) + h(x)) \le af(y/a + x) = f(z)$.

 $T \in M^*, f: V \to R$ is a sub-linear function. If $T(x) \le f(x)$, $\forall x \in M$, then $\exists \hat{T}, Dom(\hat{T}) = V, \hat{T}(x) \le f(x), \forall x \in V$.

Proof.

Define (A, T_A) : $A \subset V$, and T_A is an extension of T which domain is A and $T_A \leq f$. $\Theta = \{ \text{All } (A, T_A) \}$ and define a partial order on Θ : $A_1 \leq A_2$ if $A_1 \subset A_2$ and T_{A_2} is an extension of T_{A_1} . Let $\{(A_\beta, T_{A_\beta})\}_{\beta \in B}$ be the collection of comparable sets.

Let $G = \cup_{\beta \in B} A_{\beta}$. $\forall x \in G$, $\exists A_{\beta}$ s.t. $x \in A_{\beta}$: $T_{G}(x) = T_{A_{\beta}}(x)$. Then $(G, T_{G}) \in \Theta$ is an upper bound on $\{(A_{\beta}, T_{A_{\beta}})\}_{\beta \in B}$. We apply Zorn's Lemma to conclude that $\{(A_{\beta}, T_{A_{\beta}})\}_{\beta \in B}$ has a maximal element $(V^{'}, T_{V^{'}})$. It's easy to show that $V = V^{'}$.

Corollary

$$T \in B(M,R), \exists \hat{T} \in V^* \text{ s.t. } ||T|| = ||\hat{T}||.$$

 $\forall x \in V, \exists T \in V^* \text{ s.t. } Tx = ||x|| \text{ and } ||T|| = 1.$

Let
$$f(x) = ||T|| \ ||x||$$
, then $|Tx| \le f(x) \Rightarrow |\hat{T}x| \le ||T|| \ ||x||$
 $\Rightarrow ||\hat{T}|| \le ||T|| \Rightarrow ||\hat{T}|| = ||T||$
Define $T \in span\{x\}^*$, $T(ax) = a||x||$, then $Tx = ||x||$ and $|T(ax)| = ||ax|| \Rightarrow ||T|| = 1 \Rightarrow \hat{T}x = ||x||$, $||\hat{T}|| = 1$.

$$\forall x \in V$$
, evaluation functional J_x : $J_x(T) = Tx$, $\forall T \in V^*$. $J_x \in V^{**}$. Define $J: V \to V^{**}$, $J(x) = J_x$.

Property

J is an injection.

J is a norm-preserved map and $J_x \in V^{**}$.

 $(V, ||\cdot||)$ is reflexive: J is surjection, then $V \cong V^{**}$.

Theorem

H Hilbert space, then H is reflexive.

$$\forall J \in V^{**}, J(T) = \langle T, E_J \rangle = \langle e_T, e_{E_J} \rangle = T(e_{E_J}).$$

 \mathcal{F} is a collection of A and (A, \mathcal{F}) is called a topological space if:

- (a) $\emptyset, A \in \mathcal{F}$.
- (b) $\forall B, C \in \mathcal{F}$, $B \cap C \in \mathcal{F}$.
- (c) $\cup_{\alpha\in H} B_{\alpha}\in \mathcal{F}$, if $B_{\alpha}\in \mathcal{F}$.

We can similarly define $x_n \to x$: $\forall B \in \mathcal{F}, x \in B, \exists N \text{ s.t.}$ $\forall n \geq N, x_n \in B$. In this setting, $B' \subset B$ is not equivalent to B is closed.

If \mathcal{F}_1 and \mathcal{F}_2 are two topological structures of A and $\mathcal{F}_1 \subset \mathcal{F}_2$, then we say (A, \mathcal{F}_1) is weaker than (A, \mathcal{F}_2) .

We noticed that if $\{x_n\}$ converges in (A, \mathcal{F}_2) , then $\{x_n\}$ converges in (A, \mathcal{F}_1) . We say $\{x_n\}$ weakly converges in (A, \mathcal{F}_1) .

If we want to ensure convergence of $\{x_n\}$, we can consider the convergence in some weaker topological spaces.

But it may sacrifice the uniqueness of the limitation of $\{x_n\}$. Defining a weak convergence is a technical problem.

V Banach space, $x_n \in V$ converges weakly to $x: Tx_n \to Tx$ $\forall T \in V^*$.

If $\{x_n\}$ weakly converges, the limitation of $\{x_n\}$ is unique since $\exists T \in V^*$ s.t. T(x-y) = ||x-y||.

 $x_n \to x$, then x_n converges weakly to x since that $|Tx - Tx_n| \le ||T|| \, ||x_x - x||$, we mark that $x_n \stackrel{w}{\to} x$.

If V Hilbert space, $x_n \stackrel{w}{\to} x \Leftrightarrow \forall y \in V$, $\langle x_n, y \rangle = \langle x, y \rangle$.

Proof.

$$\langle x_n, y \rangle = T_y x_n \to T_y x = \langle x, y \rangle$$

If $||x_n|| \to ||x||$, then $x_n \to x$ since $||x - x_n||^2 = ||x||^2 - 2\langle x, x_n \rangle + ||x_n||^2 \to 0$.

Theorem

V Banach space, V reflexive $\Leftrightarrow B[V]$ is weakly compact.

H Hilbert space, then B[H] is weakly compact.

$$\forall \{x_n\} \subset B[H]$$
, take COB $\{e_m\}$ of $S:=span\{x_n\}$. $\{\langle x_n, e_1 \rangle\}$ bounded $\Rightarrow \exists \{x_{n_k}^{(1)}\}$ s.t. $\langle x_{n_k}^{(1)}, e_1 \rangle \rightarrow a_1 \Rightarrow \exists \{x_{n_k}^{(m)}\}$ $\subset \{x_{n_k}^{(m-1)}\}$ s.t. $\langle x_{n_k}^{(m)}, e_m \rangle \rightarrow a_m$. Let $\{y_g\} = \cap_m \{x_{n_k}^{(m)}\}$, then for $\forall m, \langle y_g, e_m \rangle \rightarrow a_m \Rightarrow \forall z \in S$, $\langle y_g, z \rangle \rightarrow a_z \Rightarrow \forall z \in H, \langle y_g, z \rangle \rightarrow a_z$. Define $Tz = a_z, |Tz| = |\lim_g \langle y_g, z \rangle | \leq \lim_g ||y_g|| \ ||z|| \leq ||z|| \Rightarrow T \in B(H)$, then $a_z = Tz = \langle z, e_T \rangle \Rightarrow \langle y_g, z \rangle \rightarrow \langle e_T, z \rangle$.

$$H_1$$
, H_2 Hilbert spaces, $\forall T \in B(H_1, H_2)$, $\exists ! \ T^* \in B(H_2, H_1)$ s.t. $\langle Tx_1, x_2 \rangle_2 = \langle x_1, T^*x_2 \rangle_1$, $\forall x_i \in H_i$.

Proof.

Define
$$G_{x_2}: H_1 \to H_2, \ G_{x_2}(x_1) = \langle Tx_1, x_2 \rangle_2, \ G_{x_2} \in H_1^*$$
 since $|G_{x_2}x_1| \leq ||T|| \ ||x_1||_1 \ ||x_2||_2 \Rightarrow ||G_{x_2}|| \leq ||T|| \ ||x_2||_2.$ Then $\exists ! \ y \ \text{s.t.} \ \langle Tx_1, x_2 \rangle_2 = \langle x_1, y \rangle_1.$ Let $T^*x_2 = y$. $||T^*x_2||_1 = ||y|| = ||G_{x_2}|| \leq ||T|| \ ||x_2||_2 \Rightarrow T^* \in B(H_2, H_1).$

We say T^* is adjoint to T and $||T|| = ||T^*||$ since that $||T|| \le ||T^*||$ and $||T^*|| \le ||T||$.

 $H_1 = H_2$, if $T = T^*$, we call T self-adjoint.

Theorem

If
$$T \in B(H)$$
 self-adjoint, $||T|| = \sup_{||x||=1} |\langle x, Tx \rangle|$.

Let
$$M = \sup_{||x||=1} |\langle x, Tx \rangle|$$
. $|\langle x, Tx \rangle| \le ||T|| \, ||x||^2 \Rightarrow M \le ||T||$. $||x|| = ||y|| = 1$, $4\langle Tx, y \rangle = \langle T(x+y), x+y \rangle - \langle T(x-y), x-y \rangle$ $\Rightarrow |\langle Tx, y \rangle| \le M(||x+y||^2 + ||x-y||^2)/4 = M(||x||^2 + ||y||^2)/2 = M$ Let $y = Tx/||Tx||$, then $||Tx|| \le M \Rightarrow ||T|| \le M$.

Let
$$m = \inf R_T(x)$$
, $M = \sup R_T(x)$, $[m, M] \subset [-||T||, ||T||]$.

$$T \in B(H_1, H_2)$$
, H_i Hilbert space, then $||T^*T|| = ||T||^2$.

$$||T^*T|| \le ||T^*|| ||T|| = ||T||^2 ||Tx||_2^2 = \langle Tx, Tx \rangle_2 = \langle x, T^*Tx \rangle_1 \le ||x||_1 ||T^*T|| ||x||_1 \Rightarrow ||T|| \le ||T^*T||^{1/2}.$$

$$T \in B(H_1, H_2)$$
, $Ker(T) = Im(T^*)^{\perp}$.

"
$$\subset$$
": $\forall x \in Ker(T), \langle T^*y, x \rangle_1 = \langle y, Tx \rangle_2 = 0$
" \supset ": $\forall x \in Im(T^*)^{\perp}, \langle T^*y, x \rangle_1 = \langle y, Tx \rangle_2 = 0 \Rightarrow Tx = 0$

$$Ker(T^*T) = Ker(T)$$
 and $Im(T^*T) = Im(T^*)$
 $H_1 = Ker(T) \oplus \overline{Im(T^*)} = Ker(T^*T) \oplus \overline{Im(T^*T)}$

"C":
$$\forall x \in Ker(T^*T), \langle T^*Tx, x \rangle_1 = ||Tx||_2 = 0.$$

 $Ker(T)^{\perp} = (Im(T^*)^{\perp})^{\perp} = \overline{Im(T^*)} \Rightarrow \overline{Im(T^*T)} = \overline{Im(T^*)}.$
 $H_1 = Ker(T) \oplus Ker(T)^{\perp} = Ker(T) \oplus \overline{Im(T^*)}.$

$$Rank(T) = Rank(T^*)$$

$$\forall x \in H_1, \ \exists \ x_0 \in Ker(T), \ x_1 \in Ker(T)^{\perp} \ \text{s.t.} \ x = x_0 + x_1, \ \text{then} \\ Tx = Tx_1 \Rightarrow Im(T) \subset T(\overline{Im(T^*)}) \Rightarrow dim(Im(T)) \leq dim(\overline{Im(T^*)}). \\ \text{If } dim(Im(T^*)) < \infty, \ \text{then } dim(Im(T)) \leq dim(Im(T^*)) \ \text{and} \\ dim(Im(T)) < \infty \Rightarrow Rank(T) = Rank(T^*). \\ \underline{\text{If } dim(Im(T^*))} = \infty, \ dim(Im(T^*)) \leq dim(\overline{Im(T)}) \Rightarrow \\ dim(\overline{Im(T)}) = \infty \Rightarrow dim(Im(T)) = \infty.$$

 $T \in B(H)$ is non-negative: T is self-adjoint and $\langle Tx, x \rangle \geq 0$, $\forall x \in H$.

 $T_1 \ge T_2$: $T_1 - T_2$ is non-negative.

 T^*T is non-negative, since that $\langle T^*Tx, x \rangle = ||Tx||^2 \ge 0$.

Let $\sqrt{1-x} := 1 + \sum_n c_n x^n$, $|x| \le 1$, $c_n < 0$. Let T be nonnegative, we use this to ensure the existence of \sqrt{T} .

If $||T|| \le 1$, $||I-T|| = \sup_{||x||=1} |\langle x,x \rangle - \langle x,Tx \rangle| \le 1$. Then we can define $\sqrt{T} := \sqrt{I-(I-T)} = I + \sum_n c_n (I-T)^n$.

Definition

$$\sqrt{T} = ||T||^{1/2}I + ||T||^{1/2} \sum_{n} c_n (I - T/||T||)^n.$$

 \sqrt{T} also non-negative since:

$$\langle \sqrt{T}x, x \rangle = ||x||^2 + \sum_n c_n \langle (I - T)^n x, x \rangle \ge ||x||^2 (1 + \sum_n c_n) \ge 0$$

M closed sub-space of *H*, then $\forall x \in H$, $\exists x_1 \in M$ as a projection of *x* onto *M*, let $P_M : H \to H$, $P_M x = x_1$.

Property

 P_M is self-adjoint, $P_M = P_M^2$ and $||P_M|| = 1$.

$$\langle P_M x, y \rangle = \langle x_1, y \rangle = \langle x_1, y_1 \rangle = \langle x, y_1 \rangle = \langle x, P_M y \rangle$$

$$P_M^2 x = P_M x \Rightarrow ||P_M|| = ||P_M^2|| \leqslant ||P_M||^2 \Rightarrow ||P_M|| \geqslant 1, \text{ and }$$

$$||P_M x|| \leqslant ||x|| \Rightarrow ||P_M|| \leqslant 1$$

 H_i Hilbert spaces, $x_i \in H_i$. The tensor product operator $x_1 \otimes_1 x_2 \in L(H_1, H_2)$, $(x_1 \otimes_1 x_2)y = \langle x_1, y \rangle_1 x_2$, $y \in H_1$.

Theorem

$$||x_1 \otimes x_2|| = ||x_1||_1 ||x_2||_2$$
 and $x_1 \otimes x_2 \in B(H_1, H_2)$

$$||(x_1 \otimes_1 x_2)y||_2 = ||\langle x_1, y \rangle_1 x_2||_2 \le ||x_1||_1 ||x_2||_2 ||y||_1$$
 and let $y = x_1/||x_1||_1, ||(x_1 \otimes_1 x_2)y||_2 = ||x||_1 ||x||_2.$

$$x \otimes x \gg 0$$
 and $(x_1 \otimes_1 x_2)^* = x_2 \otimes_2 x_1$.

Proof.

$$\langle x \otimes x \ y, z \rangle = \langle x, y \rangle \langle x, z \rangle = \langle y, x \otimes x \ z \rangle$$

$$\langle (x_1 \otimes_1 x_2)y, z \rangle_2 = \langle \langle x_1, y \rangle_1 x_2, z \rangle_2 = \langle x_2, z \rangle_2 \langle x_1, y \rangle_1$$

$$\langle y, (x_2 \otimes_2 x_1)z \rangle_1 = \langle y, \langle x_2, z \rangle_2 x_1 \rangle_1 = \langle x_2, z \rangle_2 \langle x_1, y \rangle_1$$

Example

$$H_i = R^{p_i}, (x_1 \otimes_1 x_2)y = x_2 \langle x_1, y \rangle_1 = x_2 x_1^T y \Rightarrow x_1 \otimes_1 x_2 = x_2 x_1^T.$$

 V_i Banach space, $T \in B(V_1, V_2)$, T is invertible: $\exists T^{-1}$ s.t. $TT^{-1} = T^{-1}T = I$.

Property

 $T \in B(V)$, V Banach space. If ||T|| < 1, then I - T invertible and $(I - T)^{-1} = I + \sum_{n} T^{n}$. If $S, T \in B(V)$ is invertible, then $(T + US^{-1}V)^{-1} = T^{-1} - T^{-1}U(S + VT^{-1}U)^{-1}VT^{-1}$.

- V_i Banach space, $T \in B(V_1, V_2)$. The follow is equivalence:
- (a) If T is surjection, then $T(\Omega)$ is open for all open set Ω .
- (b) If T is invertible, then $T^{-1} \in B(V_2, V_1)$.

$$(a) \Rightarrow (b)$$
: $\exists r > 0$ s.t. $B_2(0; r) \subset T(B_1(0; 1))$, then for $\forall y \in B[V_2], ||T^{-1}y||_1 = ||T^{-1}ry||_1/r \le 1/r$.

Corollary

If $||\cdot||_1$ and $||\cdot||_2$ are two norms of Banach space V, and \exists c>0 s.t. $||\cdot||_1\leq c||\cdot||_2$, then $||\cdot||_1\sim ||\cdot||_2$.

$$I: (V, ||\cdot||_1) \rightarrow (V, ||\cdot||_2), I(x) = x$$
, then I is invertible.

Then
$$||x||_1 = ||I^{-1}x||_1 \le C||x||_2$$
.

 V_i Banach space, $W \subset B(V_1, V_2)$ and $\sup_{T \in W} ||Tx||_2 \le \infty$, $\forall x \in V_1$, then W bounded.

Proof.

Define $||x||_1'=max\{||x||_1,\sup_{T\in W}||Tx||_2\}$, we can carefully check $||\cdot||_1'$ is a norm of V_1 and $(V_1,||\cdot||_1')$ is also Banach space. $||x||_1\leq ||x||_1'\Rightarrow \exists\ C>0,\ ||x||_1'\leq C||x||_1\Rightarrow ||Tx||_2\leq C||x||_1\Rightarrow ||T||\leq C.$

H Hilbert space and $T \in B(H)$, if T self-adjoint and $\exists C > 0$ s.t. $||Tx|| \ge C||x|| \ \forall x$, the T is invertible.

Proof.

 $||Tx|| \ge C||x|| \Rightarrow Ker(T) = \{0\}$, then T is an injection. And $H = Ker(T) \oplus Im(T) \Rightarrow \overline{Im(T)} = H$. Claim that Im(T) closed. Let $Tx_n \to y$, $\{x_n\}$ is Cauchy since

that $||T(x_n - x_m)|| \ge C||x_n - x_m|| \Rightarrow \exists x : \lim_n x_n = x \Rightarrow Tx = y \Rightarrow y \in Im(T) \Rightarrow T$ surjection.

For $\forall T \in B(H_1, H_2)$, the inverse of T may not exist. The problem is that $Ker(T) \neq \{0\}$ or $Im(T) \neq H_2$.

We take $G=T|_{Ker(T)^{\perp}}$, then $Ker(G)=\{0\}$, Im(G)=Im(T), then $G^{-1}\in B(Im(T),Ker(T)^{\perp})$, which is the key to define a generalized inverse of T.

We can simply recognize that generalized inverse is just a norm-preserved extension of G^{-1} .

Define
$$T^{\dagger}: Im(T) + Im(T)^{\perp} \rightarrow Ker(T)^{\perp}$$
, $T^{\dagger}y = G^{-1}P_{\overline{Im}(T)}y$.

If Im(T) closed, then $Im(T) \oplus Im(T)^{\perp} = H_2$, $T^{\dagger} = G^{-1}P_{Im(T)}$.

Property

$$Ker(T^{\dagger}) = Im(T)^{\perp}$$
, $Im(T^{\dagger}) = Ker(T)^{\perp}$

If T invertible,
$$Ker(T^{\dagger}) = \{0\}$$
, $Im(T^{\dagger}) = H_1 \Rightarrow T^{\dagger} = T^{-1}$

$$T^{\dagger}T=I-P_{Ker(T)},\,TT^{\dagger}=P_{\overline{Im(T)}}$$
 $TT^{\dagger}T=T,\,T^{\dagger}TT^{\dagger}=T^{\dagger}$ If T_1,T_2 bounded, $(T_1T_2)^{\dagger}=T_2^{\dagger}T_1^{\dagger}$

$$\begin{split} \forall x \in H_1, \, T^\dagger T x &= G^{-1} T x = G^{-1} T P_{Ker(T)^\perp} x = P_{Ker(T)^\perp} x \Rightarrow \\ T^\dagger T &= P_{Ker(T)^\perp} = I - P_{Ker(T)} \\ \forall y \in Im(T) + Im(T)^\perp, \, T T^\dagger y = T G^{-1} P_{\overline{Im(T)}} y = P_{\overline{Im(T)}} y \Rightarrow \\ T T^\dagger &= P_{\overline{Im(T)}} \\ T T^\dagger T &= P_{\overline{Im(T)}} T = T. \\ T^\dagger T T^\dagger &= P_{Ker(T)^\perp} T^\dagger = T^\dagger. \end{split}$$

 H_i Hilbert space, $T \in B(H_1, H_2)$. $\forall y \in Dom(T^{\dagger})$, the solution x of Tx = y which minimizes $||y - Tx||_2$ is $M = \{x \in H_1; Tx = P_{\overline{Im(T)}}y\}$.

$$M = T^{\dagger}y + Ker(T)$$
 since that $T(T^{\dagger}y) = P_{\overline{Im(T)}}y$.

Property

$$T^{\dagger}y = (T^*T)^{\dagger}T^*y, \forall y \in Dom(T^{\dagger}).$$

$$T^*T(T^\dagger y) = T^*y \text{ since } y - T(T^\dagger)y \in \mathit{Im}(T)^\perp = \mathit{Ker}(T^*), \text{ then } T^\dagger y \in (T^*T)^\dagger T^*y + \mathit{Ker}(T^*T) = (T^*T)^\dagger T^*y + \mathit{Ker}(T).$$

