Fundamentals of Statistical Decision Making

Comparing Multiple Groups

Aaron R. Baggett, Ph.D.

August 28, 2017

Department of Psychology University of Mary Hardin-Baylor

Outline

Outline

- Statistical variables
- Multiple group comparisons (ANOVA)

Recap

- Descriptive vs. inferential statistics
- The normal distribution
- Comparing groups
- Statistical/practical significance

Resources

• Slides, data, and handouts available at:

Statistical Variables

Statistical Variables

- Measureable, observable values or characteristics
- Vary across observations, measures
- Provide the basis for hypothesis test selection
- For example:
 - Is Y numerical?
 - Is X numerical or categorical?

Statistical Variables

Example

 Imagine we design an experiment to test attitudes toward different levels of exercise intensity between high- and low-fit participants

ID	Intensity	Fitness	Attitude
26	Low Intensity	High Fitness	21
10	High Intensity	High Fitness	33
14	High Intensity	Low Fitness	12
8	High Intensity	High Fitness	37
17	High Intensity	Low Fitness	12
3	High Intensity	High Fitness	46
:	÷	:	:

- Independent variables (factors):
 - 1. Exercise intensity (high, low)
 - 2. Fitness level (high, low)
- Dependent variable (outcome):
 - 1. Attitude score (0-50)

- ullet The current study can be thought of as a 2 imes 2 factorial design
- 2 IVs with 2 levels each = 4 cells
- To analyze experimental data like these, we use an F-test
- Analysis of variance (ANOVA)

- The current study can be thought of as a 2 \times 2 factorial design
- 2 IVs with 2 levels each = 4 cells
- To analyze experimental data like these, we use an *F*-test
- Analysis of variance (ANOVA)

	High Fitness	Low Fitness
High Intensity	n = 10	n = 10
Low Intensity	n = 10	n = 10

ANOVA

ANOVA

- Multiple group comparisons (2+)
- All factors are categorical
- Mean comparison between- or within-groups
- Two types of effects are produced
 - 1. Main effects
 - 2. Interaction effects

Main Effects

Main Effects

- Represent mean comparison of the levels of each factor, ignoring others
- An effect suggests a mean difference between levels of a single factor, holding all others constant

- Factors (IVs)
 - 1. Exercise intensity
 - 2. Fitness level

	High Fitness	Low Fitness
High Intensity	$M_1 = 36.30$	$M_2 = 11.60$
Low Intensity	$M_3 = 20.70$	$M_4 = 29.50$

Main Effects::Exercise Intensity

1. Exercise intensity:

 How do participants in the high intensity condition compare to participants in the low intensity condition, when participants' fitness level is ignored?

$$H_0 = \frac{M_1 + M_2}{2} = \frac{M_3 + M_4}{2}$$

$$H_1 = \frac{M_1 + M_2}{2} \neq \frac{M_3 + M_4}{2}$$

Main Effects::Exercise Intensity

1. Exercise intensity:

 How do participants in the high intensity condition compare to participants in the low intensity condition, when participants' fitness level is ignored?

	High Fitness	Low Fitness		
High Intensity	$M_1 = 36.30$	$M_2 = 11.60$	=	23.95
Low Intensity	$M_3 = 20.70$	$M_4 = 29.50$	=	25.10

Main Effects::Exercise Intensity

1. Exercise intensity:

- The typical person in a high intensity exercise condition has an attitude-toward-fitness score of 23.95.
- The typical person in a *low* intensity exercise condition has an attitude-toward-fitness score of 25.10.

	High Fitness	Low Fitness		
High Intensity	$M_1 = 36.30$	$M_2 = 11.60$	=	23.95
Low Intensity	$M_3 = 20.70$	$M_4 = 29.50$	=	25.10

Main Effects::Fitness Level

2. Fitness level:

 How do highly fit participants compare to low fit participants, when exercise intensity is ignored?

$$H_0 = \frac{M_1 + M_3}{2} = \frac{M_2 + M_4}{2}$$

$$H_1 = \frac{M_1 + M_3}{2} \neq \frac{M_2 + M_4}{2}$$

Main Effects::Fitness Level

2. Fitness level:

 How do highly fit participants compare to low fit participants, when exercise intensity is ignored?

	= 28.50	= 20.55
Low Intensity	$M_3 = 20.70$	$M_4 = 29.50$
High Intensity	$M_1 = 36.30$	M_2 = 11.60
	High Fitness	Low Fitness

Main Effects::Fitness Level

2. Fitness level:

- o The typical highly fit person has an attitude-toward-fitness score of 28.50.
- The typical *low fit* person has an attitude-toward-fitness score of 20.55.

	= 28.50	= 20.55
Low Intensity	$M_3 = 20.70$	$M_4 = 29.50$
High Intensity	$M_1 = 36.30$	M_2 = 11.60
	High Fitness	Low Fitness

Interaction Effects

Interaction Effects

- Represent the combination, or interaction, of different levels of each IV on the DV
- Occur when the pattern of means across one level of an IV differ from the pattern across another level

- Factors (IVs)
 - 1. Exercise intensity
 - 2. Fitness level
- Dependent variable (DV)
 - 1. Attitude toward fitness score

	High Fitness	Low Fitness
High Intensity	36.30	11.60
Low Intensity	20.70	29.50

Interaction Effects

- 1. Exercise Intensity \times Fitness Level
 - Does exercise intensity influence attitudes toward working out among people categorized as either high or low fit?

No interaction effect:
$$M_1 - M_2 = M_3 - M_4$$

Interaction effect: $M_1 - M_2 \neq M_3 - M_4$

Let's test our hypotheses using a factorial ANOVA

$$F = \frac{MS_{BG}}{MS_{WG}}$$

Results

Table 1: Two-Way Analysis of Variance Results

	df	SS	MS	F	р	ω^2
Intensity	1	13.22	13.22	0.56	0.46	0.00
Fitness	1	632.02	632.02	26.80	<.01	0.14
${\sf Intensity} \times {\sf Fitness}$	1	2805.63	2805.63	118.95	<.01	0.64
Total	36	849.10	23.59			

Results::Main Effects

- No main effect for exercise intensity was observed, F(1, 36) = 0.56, p >
 .05
 - Attitude-toward-fitness scores did not differ between participants in either the high- or low-intensity exercise conditions
- A main effect for participant fitness level was observed, F(1, 36) = 26.79, p < .01, $\omega^2 = .14$
 - People who are highly fit demonstrate higher attitude-toward-fitness scores, on average, comared to people who are considered low fit

- A significant Intensity \times Fitness level interaction effect was observed, F(1,36) = 118.95, p < .01, $\omega^2 = .64$
 - High fitness::High intensity > High fitness::Low intensity
 - Low fitness::High intensity < Low fitness::Low intensity

	High Fitness	Low Fitness
High Intensity	$M_1 = 36.30$	$M_2 = 11.60$
Low Intensity	$M_3 = 20.70$	$M_4 = 29.50$

Results::Main Effects

- No main effect for exercise intensity was observed, F(1, 36) = 0.56, p >
 .05
 - Attitude-toward-fitness scores did not differ between participants in either the high- or low-intensity exercise conditions
- A main effect for participant fitness level was observed, F(1, 36) = 26.79, p < .01, $\omega^2 = .14$
 - People who are highly fit demonstrate higher attitude-toward-fitness scores, on average, comared to people who are considered low fit

- A significant Intensity \times Fitness level interaction effect was observed, F(1,36) = 118.95, p < .01, ω^2 = .64
 - High fitness::High intensity > High fitness::Low intensity

	High Fitness	Low Fitness
High Intensity	$M_1 = 36.30$	$M_2 = 11.60$
Low Intensity	$M_3 = 20.70$	$M_4 = 29.50$

- A significant Intensity \times Fitness level interaction effect was observed, F(1,36) = 118.95, p < .01, ω^2 = .64
 - Low Fitness + High Intensity < Low Fitness + Low Intensity

High Fitness	Low Fitness
$M_1 = 36.30$	$M_2 = 11.60$
$M_3 = 20.70$	$M_4 = 29.50$
	$M_1 = 36.30$

Results::Effect Sizes

- Intensity: N/A
- Fitness: $\omega^2 = .14$
 - Participant fitness level explains approximately .14 ightarrow 14% of the variability in attitude-toward-fitness scores
- Intensity \times Fitness: ω^2 = .64
 - $\circ~$ The Intensity \times Fitness interaction explains approximately .64 \to 64% of the variability in attitude-toward-fitness scores

Recap

Recap

- All variables are either numerical or categorical
- ANOVA allows for multiple group comparisons
- Main effects represent differences between levels of a single variable, ignoring others
- Interaction effects occur when the pattern of means across one level of an IV differ from the pattern across another level

Next Time

- Foundations of relationships and prediction
 - Correlating variables
 - Predicting outcomes (Regression)