

UNIVERZITA KOMENSKÉHO, BRATISLAVA FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

Vizualizácia verifikácie predpovedných modelov počasia

Diplomová práca

Bratislava, 2015

Bc. Marek Kružliak

UNIVERZITA KOMENSKÉHO, BRATISLAVA FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

Vizualizácia verifikácie predpovedných modelov počasia

Diplomová práca

Študijný program: Aplikovaná informatika

Študijný odbor: 2511 Aplikovaná informatika

Školiace pracovisko: Katedra aplikovanej informatiky

Školiteľ: RNDr. Andrej Lúčny, PhD.

Bratislava, 2015

Bc. Marek Kružliak

Tu bude zadanie

Čestne prehlasujem, že som túto diplomovú prácu vypracoval samostatne s použitím citovaných zdrojov.

Abstrakt

TODO

Kľúčové slová: vizualizácia informácií, verifikácia predpovedí počasia

Abstract

TODO.

 ${\bf Keywords:}$ information visualization, verification of weather forecasts

Obsah

1 Úvod				1
2	Ver	Verifikácia predpovedných modelov počasia		
	2.1	Predp	ovedný model počasia	2
		2.1.1	WRF model	4
	2.2	Dáta		4
		2.2.1	Predpovedané dáta	5
		2.2.2	Pozorované dáta	6
		2.2.3	Párovanie dát	6
	2.3	Meran	nie chyby predpovede	8
		2.3.1	Stredná chyba predpovede	8
		2.3.2	Stredná absolútna chyba	S
		2.3.3	Stredná kvadratická chyba	S
		2.3.4	Všeobecná kumulovaná chyba	S
		2.3.5	Medián absolútnych chýb	11
3	Pre	dchádz	zajúce riešenia	12
	3.1	Verifik	xačný softvér	12
		3.1.1	Štatistický softvér	12
		3.1.2	Špecializovaný softvér	14
	3.2	Vizua	lizácia verifikácie	14
		3.2.1	Scatterplot	14
		3.2.2	Krabicový diagram	14
		3 2 3	Ďalšie variácie krabicového diagramu	16

		3.2.4	Time series plot	16
4 Návrh riešenia				17
	4.1	Návrh	systému	17
	4.2	Návrh	vizualizácie	17
		4.2.1	Charakteristika dát	17
		4.2.2	Špecifikácia požiadaviek na vizualizáciu	17
		4.2.3	Návrh farebnej palety	17
5	Imp	olemen	tácia	18
6	Výs	sledky		19

Zoznam obrázkov

2.1	Flowchart systému predpovedného model počasia od edukačného programu	
	The COMET [LE11]. Na obrázku je zvýraznená časť, ktorej sa venujeme v	
	tejto práci	3
2.2	Vizuálne znázornenie dvoch bežne používaných metód na získavanie hodnôt	
	z mriežky	7
3.1	Krabicový diagram	16

Zoznam tabuliek

Zoznam skratiek

WRF Weather Research and Forecasting

NCEP National Centers for Environmental Prediction

NCAR National Center for Atmospheric Research

$\mathbf{\acute{U}vod}$

Verifikácia predpovedných modelov počasia

Verifikácia je proces, ktorý má overiť správnosť fungovania predpovedného modelu počasia. Z tohto dôvodu je nepostrádateľnou súčasťou meteorologického výskumu a taktiež celkového procesu predpovedania počasia. [CWS+08] Ciele verifikácie môžeme rozdeliť do troch skupín: administratívne, vedecké a ekonomické. Medzi administratívne ciele patrí monitorovanie úspešnosti predpovedania modelu a nasmerovanie užívateľov na jeho správnu konfiguráciu alebo voľbu iného modelu. Vedeckými cieľmi sú identifikovanie a oprava slabín modelu a taktiež vylepšovanie predpovedí. Ekonomickými cieľmi sú rozhodovanie, kam majú smerovať investície do výskumu a iné závažné ekonomické rozhodnutia. [FJB12]

2.1 Predpovedný model počasia

Už v 19. storočí vývoj termodynamiky na základe Newtonovskej fyziky vyvrcholil v ucelení množiny fundamentálnych princípov, ktoré riadia prúdenie plynov v atmosfére. Začiatkom 20. storočia sa o matematický prístup k predpovedaniu počasia najviac zaslúžili osobnosti ako Vilhelm Bjerknes alebo Lewis F.Richardson. Avšak na ďalší úspech, v tejto oblasti, sa muselo čakať až na vynájdenie prvých počítačov počas 2. svetovej vojny ako bol IAS alebo ENIAC. [Lyn07] Prvá úspešná predpoveď bola vykonaná v 50. rokoch minulého storočia a to hlavne vďaka práci Jula Charneyho. Následný vývoj vo výpočtovej sile počítačov,

Obr. 2.1: Flowchart systému predpovedného model počasia od edukačného programu The COMET [LE11]. Na obrázku je zvýraznená časť, ktorej sa venujeme v tejto práci.

používanie satelitných pozorovaní a vývoj samotnej meteorológie ako vedy zapríčinil, že je numerická predpoveď počasia (NWP) dnes najúspešnejším prístupom ako predpovedať počasie. [Gol]

Odvtedy vzniklo veľké množstvo modelov, ako sú napríklad GFS, NAM, RUC, WRF, SREF, GEFS, ECMWF, ALADIN a mnoho ďalších. Naša práca sa zameriava konkrétne na verifikáciu modelu WRF. Taktiež pokračuje neustály vývoj aj vďaka novým modelovacím technikám, novým parametrizáciám, a zvyšovaniu výkonu výpočtových zdrojov.

Ako môžeme vidieť na obrázku 2.1 proces predpovedania počasia má okrem numerického modelu, ktorý je jej jadrom, aj iné časti. Ako príklad môžme spomenúť získavanie vstupných dát, ich predspracovanie, postprocesing, spracovanie výstupu a následne poskladanie samotnej predpovede. Cieľom nášho záujmu, celého procesu predpovedania, je verifikácia. Ako môžme vidieť z obrázka, verifikácia vplýva na vyladenie parametrov modelu, avšak tento proces sa nedeje automaticky, ale vyžaduje prácu meteorológov a ich

chápanie základných meteorologických princípov.

2.1.1 WRF model

Ako sme už spomenuli *The Weather Research and Forecasting* (WRF) model je *numerická* predpoveď počasia (NWP) a systém atmosferickej simulácie.

WRF je podporovaný, ako bežný nástroj pre univerzity, výskum a operačné komunity, pričom sa usiluje o splnenie požiadaviek ich všetkých súčasne. Vývoj WRF modelu bol snahou mnohých spoločností ako napríklad The National Center for Atmospheric Research's (NCAR), Mesoscale and Microscale Meteorology (MMM), The National Oceanic and Atmospheric Administration's (NOAA) National Centers for Environmental Prediction (NCEP) a Earth System Research Laboratory (ESRL), oddelenie ministerstva obrany Air Force Weather Agency (AFWA) a Naval Research Laboratory (NRL), The Center for Analysis and Prediction of Storms (CAPS) [WCSDG+08].

WRF model je vhodný pre širokú škálu aplikácií od *metódy vzdušných vírov* (Large Eddy Simulation - LES) až po globálne simulácie počasia. Takéto aplikácie vyžadujú numerické predpovede v reálnom čase, vývoj a štúdium asimilácie dát, výskum parametrizovanej fyziky, výskum parametrizovanej fyziky "modelovanie kvality ovzdušia, idealizované simulácie, čo všetko WRF model spĺňa.

V roku 2008 evidovala WRF viac ako 6000 užívateľov, no dnes (2014) eviduje viac ako 25000 užívateľov vo viac ako 130 krajinách sveta. Tieto fakty poukazujú na to, že WRF model má nie len veľkú základňu užívateľov, ale aj vývojárov a má v budúcnosti istotne svoje miesto a preto si myslíme, že sa oplatí investovať čas a úsilie do verifikácie tohto modelu.

2.2 Dáta

Na správne zhodnotenie úspešnosti modelu potrebujeme dva druhy dát. V prvom rade sa jedná o dáta, ktoré sú výstupom z daného predpovedného modelu počasia, teda **predpovedné dáta**. Tieto umelo získané dáta chceme konfrontovať s realitou, aby sme si mohli vytvoriť obraz o správnom fungovaní celého modelu. Realitu v našom prípade predsta-

vujú dáta namerané špecializovanými meteorologickými senzormi, ktoré označujeme ako **pozorované dáta** alebo skrátene *pozorovania*.

2.2.1 Predpovedané dáta

Predpovedané dáta z modelu WRF sa ukladajú vo formáte **GRIB**, čo je skratka pre *GRIdded Binary* [WMO94] alebo na iných miestach uvádzané ako *General Regularly-distributed Information in Binary form* [WMO03]. Tento formát je štandardom Svetovej meteorologickej organizácie teda *World Meteorological Organization* (WMO). Jedná sa o pomerne rozšírený formát, používaný pri veľkom množstve meteorologických aplikácií a je taktiež používaný ako výstupný formát pre iné predpovedné modely ako WRF, či už ECMWF, GFS, NAM, SREF alebo mnohé iné [NCE14].

Doteraz boli vyvinuté 3 verzie tohoto formátu od 0 po 2. Verzia 0 bola určená pre malé projekty typu TOGA a to iba s limitovaným použitím a dnes sa táto verzia už vôbec nepoužíva. Verzia grib 1 [WMO94], grib 2 [WMO03] sú dnes bežne používané väčšinou meteorologických centier.

Medzi verziami 1 a 2 nie sú žiadne rozdiely v obsahovej filozofii, preto popis obsahu gribovského formátu, ktorý tu uvádzame je spoločný pre obe tieto verzie. *Gribovský súbor* (ďalej iba *Grib*) pozostáva z viacerých *Gribovských záznamov*, pričom jeden záznam môže existovať ako samostatný Grib. Vďaka tomu je možné ľahko spájať Griby, a to tiež v ľubovoľnom poradí, bez toho, aby sme ich nejako poškodili. Samozrejme musí byť zachovaná homogenita, čo sa týka verzií Gribov, teda verziu 1 nemožno miešať s verziou 2 a naopak. Už samotný názov *Gridded Binary* nám napovedá, že dáta sú usporiadané v pravidelnej mriežke. Každý Gribovský záznam obsahuje dvojrozmernú mriežku (zemepisná šírka x zemepisná dĺžka) hodnôt v určitom čase a vertikálnej hladine. Taktiež v hlavičke záznamu sa nachádzajú metainformácie, ktoré nám hovoria o aké dáta ide, teda o akú premennú sa jedná, čas predpovede, výškovú hladinu a podobne. Grib je zvyčajne z tohto dôvodu 2 až 5 rozmerná dátová štruktúra s veľkým množstvom veličín ako je napríklad teplota, tlak, relatívna vlhkosť, rosný bod, *u* a *v* súradnice vetra a ďalšie, ktoré sú definované v rôznych hladinách. Taktiež je dôležité povedať, že Grib zriedkakedy zachytáva povrch celej planéty, ale iba vymedzenú skúmanú oblasť - *doménu*.

2.2.2 Pozorované dáta

Pozorovania sa získavajú meraním priamo v teréne pomocou špecializovaných meracích zariadení, ktoré sú súčasťou meteo staníc. Každá stanica môže obsahovať iné vybavenie, ku príkladu teplomer, zrážkomer, barometer, vetromer a im podobné [Vas98], ktorými môžme zachytávať informácie o rôznych skúmaných veličinách.

Majoritná časť meraní sa deje pri povrchu zeme priamo na meteo staniciach a nazývajú sa surface merania. Tieto merania najlepšie popisujú dianie v oblasti najväčšieho záujmu (biosfére), avšak neobsahujú informáciu o dianí v iných výškových hladinách. Pozorovania týchto hladín sa dejú pomocou radiosondy, ktorá je pripojená k meteo balónu alebo vypustená z lietadla smerom k zemi. Takéto pozorovania sa nazývajú upper air merania.

Narozdiel od predpovedaných dát, pozorované dáta nemajú štandardizovaný formát a zvyčajne sa ukladajú do databázy. Aby sme zhrnuli charakteristiku týchto dát, jedná sa o niekoľko meraných veličín, nameraných v konštantných časových krokoch - napríklad každú minútu alebo každú hodinu - v jednom konkrétnom geografickom bode a zvyčajne pri povrchu zeme, teda ak sa nejedná o upper air merania, ktoré sa uskutočňujú v štandardných výškových hladinách, ktoré sa merajú v hPa.

2.2.3 Párovanie dát

Z predpovedného modelu a rovnako aj z merania získame veľké množstvo hodnôt. Aby sme mohli korektne porovnať predpovede s pozorovaniami, je nevyhnutné nájsť správne párovanie týchto hodnôt, teda zistiť, ktorú hodnotu porovnať s ktorou, aby sme získali zmysluplný výsledok.

Vždy sa snažíme nájsť správnu predpoveď pre pozrovanie a nie naopak. Dôvodom je, že chceme skúmať vzťah predpovede s realitou a preto v párovaní musí byť zahrnutých čo najviac **meraných** hodnôt, ak nie všetky.

Každá pozorovaná hodnota, ktorú chceme spárovať má štyri kľúče podľa ktorých hľadáme pár: meraná veličina (napríklad teplota), čas merania, výšková hladina a geografická poloha. Nájsť všetky hodnoty podľa kľúča meranej veličiny v Gribe je ľahké, keď že sa jedná o kategorickú premennú, teda môže nadobúdať iba určitý konečný počet hodnôt.

Obr. 2.2: Vizuálne znázornenie dvoch bežne používaných metód na získavanie hodnôt z mriežky

Toto sa však nedá povedať o čase, hladine a polohe, ktoré sú spojitými premennými.

Pre čas pozorovania, čas predpovede a výškovú hladinu existujú štandardy, ktoré určujú v akých časoch resp hladinách sa robia merania a predpovede, čo nám uľahčuje prácu. Ak sa napriek tomu čas alebo hladina v Gribe nevyskytuje, tak pár vyhadzujeme z párovania.

V prípade polohy zo samozrejmých dôvodov neexistuje žiaden štandard a hustota mriežky v Gribe nemôže byť nikdy tak veľká, aby poloha našej stanice vždy dopadla na presný bod mriežky. Z tohoto dôvodu získavame hodnoty z mriežky z okolitých bodov a to dvoma metódami *Point-to-Grid* a *Grid-to-Point* [FJB12], ktoré sú znázornené na obrázku 2.2. Jedná sa vlastne o dve interpolačné metódy. Point-to-Grid predstavuje metódu *najbližší sused (Nearest Neighbour)* a Grid-to-Point *bilineárnu interpolačnú metódu*.

Výber správnej metódy môže značne ovplyvniť výsledok. Dôvodom je, že môžu byť veľké rozdiely hodnôt v okolitých mrežových bodoch a tak, ak pomocou Point-To-Grid metódy získame nízku hodnotu, tak pomocou Grid-To-Point môžeme získať hodnotu omnoho väčšiu, vplyvom zvyšných troch bodov, ktoré vstúpili do interpolácie. Nemožno však jednoznačne povedať, ktorá z metód je lepšia, keďže obe môžu v istých prípadoch dávať lepšie výsledky.

2.3 Meranie chyby predpovede

Výsledkom procesu párovania je n párov (predpoveď, pozorovanie), ktoré je možné porovnať. Z porovnania týchto dvojíc získame numerickú hodnotu, ktorá nám hovorí o veľkosti chyby predpovede daného modelu pre vybrané predpovedané časy.

Chybu predpovede e_i pre *i*-tu dvojicu (y_i, \hat{y}_i) definujeme takto:

$$e_i = (y_i - \hat{y}_i)$$

Kde y_i je predpoveď a \hat{y}_i je pozorovanie. Takýmto spôsobom z n párov získame n chýb, ktoré agregujeme pomocou rôznych štatistických metód, ktoré sú bežne používané pri verifikácií predpovedí, ako sa spomína v [Nur03], [FJB12] a [Cas09]. Výsledkom agregácie je numerická hodnota, ktorá sa nazýva skóre predpovede.

2.3.1 Stredná chyba predpovede

Budeme ju označovať ako *MFE* z anglického *Mean Forecast Error*, ale v literatúre je možné ju nájsť ako *ME* [Nur03], teda *stredná chyba* alebo ako *Linear Bias* [Cas09], [FJB12]. Vzorec pre výpočet MFE vyzerá nasledovne:

$$MFE = \frac{1}{n} \sum_{i=0}^{n} e_i$$

MFE je možné vypočítať aj ako rozdiel priemerov predpovedí a pozorovaní.

$$MFE = \bar{y} - \bar{\hat{y}}$$

MFE vyjadruje priemerný smer chyby. To znamená, že pozitívny výsledok indikuje *overforecast*, teda nadhodnotenú predpoveď a negatívny výsledok *under-forecast*, teda podhodnotenú predpoveď. Avšak MFE **nevyjadruje veľkosť** chyby v tomto smere, keď že kladné a záporné chyby sa navzájom môžu zrušiť. Napríklad máme množinu chýb $E = \{2, -5\}$, tak MFE pre E je -1.5, ale priemerná veľkosť chyby je 3.5.

2.3.2 Stredná absolútna chyba

Budeme ju označovať ako *MAE* z anglického *Mean Absolute Error*. Vzorec pre výpočet MAE vyzerá nasledovne:

$$MAE = \frac{1}{n} \sum_{i=0}^{n} |e_i|$$

Narozdiel od MFE **neurčuje smer chyby**, ale vyjadruje veľkosť chyby. Z týchto dôvodov je v praxi odporúčané zobrazovať MFE a MAE súčasne [Nur03].

2.3.3 Stredná kvadratická chyba

Budeme ju označovať ako *RMSE* z anglického *Root Mean Square Error*. Vzorec pre výpočet RMSE vyzerá nasledovne:

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=0}^{n} e_i^2}$$

Z povahy vzorca pre RMSE je jasné, že rovnako ako MAE, ani RMSE neurčuje smer chyby, pretože nadobúda vždy iba kladné hodnoty. Ďalšou vlastnosťou RMSE je, že nadobúda hodnoty vždy väčšie alebo rovné ako MAE, pričom výsledok RMSE je citlivý na veľké hodnoty chýb.

V praxy sa zvykne používať aj MSE (Mean Square Error):

$$MSE = \frac{1}{n} \sum_{i=0}^{n} e_i^2$$

Má podobné vlastnosti ako RMSE s jediným rozdielom, že RMSE meria veľkosť chyby zachovávajúc jednotky danej veličiny (napr. °C), zatiaľ čo MSE jednotky nezachováva [Nur03]. Preto sme si pre náš účel zvolili RMSE, ktoré je jednoduchšie zobraziť spolu s MFE a MAE v jednom grafe, keďže sa zachováva konzistentnosť jednotiek veličín.

2.3.4 Všeobecná kumulovaná chyba

V našom systéme sme navrhli všeobecný vzorec na výpočet kumulovaného skóre, ktorým možno vyjadriť ľubovoľnú zo spomenutých štatistických metód. Takéto vyjadrenie umožňuje

nie len všeobecnosť, ale aj jednoduché rozšírenie systému o ďalšie metódy a to nie len programátorom, ale aj samotným užívateľom systému.

Všeobecný vzorec na výpočet *skóre* pre danú predpoveď vyzerá takto:

$$Score = \Phi(\sum_{i=0}^{n} \varepsilon(e_i))$$

Kde Φ je ľubovoľná funkcia z \mathbb{R} do \mathbb{R} , teda $\Phi: \mathbb{R} \to \mathbb{R}$ a podobne funkcia $\varepsilon: \mathbb{R} \to \mathbb{R}$. Spomenuté metódy môžme teda skonštruovať zadefinovaním správneho Φ a ε .

Napríklad pre MFE:

$$\Phi(x) = \frac{x}{n}$$

$$\varepsilon(e) = e$$

Pre MAE:

$$\Phi(x) = \frac{x}{n}$$

$$\varepsilon(e) = |e|$$

Pre RMSE:

$$\Phi(x) = \sqrt{\frac{x}{n}}$$

$$\varepsilon(e)=e^2$$

Pre MSE:

$$\Phi(x) = \frac{x}{n}$$

$$\varepsilon(e) = e^2$$

Ako sme spomenuli, je možné rozšírenie o ďalšie metódy a to napríklad o Brownov a Triggov signál chybných predikcií, ktorý budeme označovať ako TS z anglického Tracking Signal. Tieto metódy sme vyššie nespomenuli, keďže sa v meteorologickej praxi nepoužívajú. Uvádzame ich však ako možné rozšírenie, keďže sú tieto metódy bežne používané pri verifikácii iných predpovedných modeloch, ako sú tie meteorologické.

2.3.5 Medián absolútnych chýb

Budeme ju označovať ako MAD z anglického $Median\ Absolute\ Deviation.$ Vzorec pre výpočet MAD vyzerá nasledovne:

$$MAD = median(|e|) = |\tilde{e}|$$

Nech je daná usporiadaná postupnosť Y_1, \ldots, Y_N , tak potom median náhodnej premennej x je definovaný rovnako ako v [Wei14]:

$$median(x) = \tilde{x} \equiv \begin{cases} Y_{(N+1)/2} & \text{ak } N \mod 2 = 0\\ \frac{1}{2}(Y_{(N+1)/2} + Y_{(N+1)/2+1}) & \text{ak } N \mod 2 = 1 \end{cases}$$

Z daného vzorca môžeme vidieť podobné vlastnosti ako má MAE, avšak MAD je robustnejší a extrémne chyby nemajú na skóre žiaden efekt.

Predchádzajúce riešenia

3.1 Verifikačný softvér

Verifikácia predpovedných modelov počasia je úloha dokonale stvorená pre automatizáciu. Z tohto dôvodu meteorológovia začali využívať dostupný štatistický softvér a neskôr boli taktiež vyvíjané špecializované nástroje určené pre verifikáciu. Môžeme teda rozdeliť verifikačný softvér do dvoch základných kategórií a to *štatistický* a *špecializovaný*, ktorý je zväčša podporovaný rôznymi národnými a medzinárodnými organizáciami.

3.1.1 Štatistický softvér

Spoločnou črtou:

- obmedzená funkcionalita
- obmedzená vizualizácia
- slabé / žiadne GUI
- vyžaduje znalosť špecifického programovacieho jazyka

- ...

Tabuľkový softvér

Napriek tomu, že je tabuľkový softvér na výpočet štatistík zamietnutý komunitou vedcov a štatistikov ako nevhodný a neprofesionálny, tak je využívaný, a to pomerne často, aj vo vedeckých kruhoch. Výhodou je, že novému užívateľovi umožňuje okamžite vidieť všetky

kroky v základných procedúrach verifikácie a teda je výborný pre výučbové účely. [Poc11] Najznámejší kus softvéru z pomedzi komerčných produktov je *Microsoft Excel*[ref] a z voľne dostupných je jeho opensoruce náprotivok *Open Office Calculate*[ref]. Oba programy zahrňujú základné štatistické funkcie ako napríklad stredná kvadratická chyba (*MSE*) pre spojité predpovede (pozri odsek 2.3.3) a taktiež umožňujú generovanie jednoduchých grafov na základe tabuľkových dát. Tabuľkový softvér neposkytuje priamo funkcionalitu na výpočet ďalších sofistikovanejších verifikačných štatistík, avšak umožňuje ich implementáciu pomocou makro programovania v špecifickom jazyku. Pre Microsoft Excel je to *Microsoft Visual Basic*[ref] a pre Open Office Calculate zasa *OpenOffice.org Basic*[ref]. Oba jazyky patria do rodiny *Basic* jazykov, takže majú mnoho podobných prvkov.

MATLAB

MATLAB je interaktívne prostredie s vlastným programovacím jazykom, ktorý je využívaný miliónmi inžinierov a vedcov po celom svete [ref] a tým nevynímajúc meteorológov a ďalších odborníkov pracujúcich v atmosférickom výskume. Zvyčajne sa MATLAB využíva na výskum a protoypovanie nových metód a procedúr [Poc11], pretože umožňuje rýchlu a jednoduchú implementáciu, keďže jeho súčasťou je mnoho matematických knižníc a je prispôsobený na prácu s maticami dát. Výhodou MATLABU je, že umožňuje tvorbu GUI a taktiež poskytuje kreslenie rôznorodých grafov a diagramov. Mali by sme však podotknúť, že podobne ako väčšina štatistického softvéru, aj MATLAB je komerčný produkt. Jeho cena za jednu licenciu je \$2,650 (k roku 2015), čo je pomerne vysoká suma, ak vezmeme do úvahy za akým účelom chceme tento softvér využívať a ako dobre je naň prispôsobený.

Minitab

 \mathbf{R}

Statistical Analysis Software (SAS)

Interactive Data Language (IDL)

3.1.2 Špecializovaný softvér

NCAR Command Language (NCL)

Model Evaluation Tools (MET)

Ensemble Verification System (EVS)

3.2 Vizualizácia verifikácie

3.2.1 Scatterplot

3.2.2 Krabicový diagram

Krabicový diagram je v anglickej literatúre zvyčajne nazývaný box plot alebo na niektorých miestach označovaný tiež ako box and whisker¹ plot. Odkedy bol prvýkrát publikovaný v roku 1977 [Tukey], uplynulo už takmer 40 rokov a dnes ho považujeme už za štandardnú techniku ako vizualizovať distribúciu hodnôt kompaktným spôsobom. Na svoju reprezentáciu využíva súbor 5 čísel (tzv. 5-number summary)[Potter], ktoré charakterizujú distribúciu dát robustným spôsobom. Tým, že zredukujeme zvyčajne veľkú dátovú množinu na týchto pár hodnôt ušetríme nielen vzácny vizuálny priestor [Wickham], ale taktiež námahu analytika, ktorý sa snaží preskúmať iba niektoré vybrané charakteristiky.

¹Slovo *whisker* znamená po slovensky fúz, čo naznačuje, že čiary, ktoré spájajú horný a dolný kvartál s hraničnými hodnotami pripomínajú fúzy.

Konštrukcia krabicového diagramu

Na zostavenie krabicového diagramu potrebujeme týchto 5 hodnôt: medián, horný a dolný kvartil, maximum, minimum. (pozri obrázok 3.1) Prvé tri hodnoty sú takzvané kvartily (Q1, Q2, Q3), ktoré rozdeľujú súbor dát na 4 rovnako veľké časti a ďalšie dve sú extrémne hodnoty, ktoré ohraničujú celú dátovú množinu.

Zovšeobecnenie kvartilov sú kvantily ktoré rozdeľujú množinu na n rovnakých častí a preto môžme o kvartile hovoriť ako o 4-kvantile. Medián hodnôt je 2-kvantil a teda rozdeľuje množinu na 2 rovnaké časti a je definovaný rovnako ako v časti 2.3.5. Ďalej horný (Q1) a dolný (Q3) kvartil získame ako medián hodnôt pod a nad hodnotou Q2, pričom hodnotu Q2 nezahŕňame do výpočtov.

Na obrázku 3.1 vidíme, že krabica v grafe určuje pozície horného a dolného kvartilu, zatiaľ čo vnútro krabice znázorňuje takzvané *IQR*. Táto skratka označuje *interquartile* range, čo sa dá preložiť ako medzikvartilový rozsah. IQR definujeme ako rozdiel kvartilov Q3 a Q1:

$$IQR = Q3 - Q1$$

IQR nám hovorí o vzdialenosti týchto dvoch kvartilov, preto nám môže byť tento vzorec na pohľad podozrivý, keďže sa javí, že IQR by mohlo nadobúdať aj záporné hodnoty. My však vieme z definície Q3 a Q1, že Q3 > Q1 a ich rozdiel je teda vždy nezáporný (Hovoríme o rozdiele Q3 od Q1, tak ako je definované IQR).

Malú obmenu pôvodného návrhu krabicového diagramu od Tukeyho, vidíme na obrázku 3.1 b), kde malé bodky znázorňujú hodnoty nazývané *outlier*, teda hodnoty ležiace ďaleko od hlavného dátového tela, a hviezdička v strede diagramu určuje priemer hodnôt. Môžme si všimnúť, že konce čiar vychádzajúcich z boxu nemôžu byť extrémy celej množiny dát, ale sú iba extrémami vypočítaných z dát bez *outlier*-ov.

Otázkou zostáva ako určiť, ktorá hodnota je *outlier* a ktorá nie je. Na zodpovedanie tejto otázky sa využíva už spomínaný rozsah IQR. Pomocou neho sa definujú hranice inner fences (f_1, f_2) a outer fences (F_1, F_2) , za ktorými hovoríme už o outlier-och alebo o ďalekých outlier-och. Definované sú nasledovne:

$$f_1 = Q1 - c \times IQR$$

Obr. 3.1: Krabicový diagram

$$f_2 = Q3 + c \times IQR$$

$$F_1 = Q1 - C \times IQR$$

$$F_2 = Q3 + C \times IQR$$

Konštanty c a C sú v niektorých zdrojoch definované rôzne. Najčastejšie sa však vyskytujú hodnoty c=1.5 a C=3, tak ako ich určil pôvodný autor krabicového diagramu [Tukey].

3.2.3 Ďalšie variácie krabicového diagramu

3.2.4 Time series plot

Návrh riešenia

- 4.1 Návrh systému
- 4.2 Návrh vizualizácie
- 4.2.1 Charakteristika dát
- 4.2.2 Špecifikácia požiadaviek na vizualizáciu
- 4.2.3 Návrh farebnej palety

Implementácia

Výsledky

Literatúra

- [Cas09] Barbara Casati. Verification of continuous predictands. Joint Working Group on Forecast Verification Research (JWGFVR), Jún 2009.
- [CWS+08] B. Casati, L. J. Wilson, D. B. Stephenson, P. Nurmi, A. Ghelli,
 M. Pocernich, U. Damrath, E. E. Ebert, B. G. Brown, and S. Mason.
 Forecast verification: current status and future directions. *Meteorological Applications*, 15(1):3–18, 2008.
- [FJB12] Tressa L. Fowler, Tara L .Jensen, and Barbara G. Brown. *Introduction to Forecast Verification*. 2012.
- [Gol] Professor Brian Golding. Weather forecasting part 1. http://www.rmets.org/weather-and-climate/weather/weather-forecasting. [Prístupné online: 6.12.2014].
- [LE11] Dr. Arlene Laing and Dr. Jenni-Louise Evans. Introduction to Tropical Meteorology 2nd Edition. UCAR, Október 2011.
- [Lyn07] Peter Lynch. The origins of computer weather prediction and climate modeling. *Journal of Computational Physics 227 (2008) 3431–3444*, Február 2007.
- [NCE14] NCEP. Inventory of Data Products on the NOAA Servers.

 http://www.nco.ncep.noaa.gov/pmb/products/, November 2014.

 [Prístupné online: 10.11.2014].

- [Nur03] Pertti Nurmi. Recommendations on the verification of local weather forecasts. European Centre for Medium Range Weather Forecasts, Decmeber 2003.
- [Poc11] Matthew Pocernich. Forecast Verification: A Practitioner's Guide in Atmospheric Science, chapter Appendix Verification Software, pages 232–240. John Wiley and Sons, Ltd., 2nd edition, December 2011.
- [Vas98] Tim Vasquez. Observer Handbook. International Weather Watchers, 1995, 1998.
- [WCSDG+08] Joseph B. Klemp William C. Skamarock, Jimy Dudhia, David O. Gill, Dale M. Barker, Michael G. Duda, Xiang-Yu Huang, Wei Wang, and Jordan G. Powers. A Description of the Advanced Research WRF Version 3. National Center for Atmospheric Research, Jún 2008.
- [Wei14] Eric W. Weisstein. Statistical Median.

 http://mathworld.wolfram.com/StatisticalMedian.html, 2014.
- [WMO94] WMO. A GUIDE TO THE CODE FORM FM 92-IX Ext. GRIB Edition 1. WMO, Máj 1994.
- [WMO03] WMO. Introduction to GRIB Edition 1 and GRIB Edition 2. WMO, Jún 2003.