

LA INGESTA DE HONGOS VENENOSOS TIENE GRANDES CONSECUENCIAS, QUE VAN DESDE EFECTOS ALUCINOGENOS HASTA, EN CASOS EXTREMOS, LA MUERTE

PARA EVITAR ESTO, SE BUSCA DESARROLLAR UN CLASIFICADOR

QUE PERMITA IDENTIFICAR SI UN HONGO ES VENENOSO O

COMESTIBLE

- 01 PRESENTACIÓN DEL PROYECTO 05 SELECCIÓN DEL MODELO
- 02 DATASET
- 03 EXPLORACIÓN
- LIMPIEZA

- FINE TUNNING
- MÉTRICAS FINALES
- COMENTARIOS Y CONCLUSIÓN

DATASET

TIENE 61069 INSTANCIAS Y 21 COLUMNAS (20 FEATURES + TARGET)

NUESTRO DATASET LO ENCONTRAMOS EN EL REPOSITORIO DE MACHINE LEARNING DE LA UNIVERSIDAD UC IRVINE. SE BASA EN UNA SERIE DE MUESTRAS HIPOTETICAS BASADAS EN 173 ESPECIES DISTITAS DE HONGOS CON SOMBRERO. ESTA BASADO EN UN DATASET DE J. SCHLIMMER, CON MUESTRAS REALES DE HONGOS DE LA FAMILIA AGARICUS Y LEPIOTA.

SE INDICA EN LA DESCIPCION DEL DATASET, QUE LAS MUESTRAS FUERON CLASIFICADAS COMO COMESTIBLES, INDETERMINADOS Y NO RECOMENDADOS Y VENENOSOS, Y QUE ESTAS ULTIMAS DOS CLASES FUERON JUNTADAS DENTRO DE LA CLASE VENENOSA.

TIPOS DE DATOS EN EL DATASET INICIAL

COLUMNAS SIN DATOS FALTANTES

12 (11 FEATURES + TARGET)

	Tipo de dato
class	object
cap-diameter	float64
cap-shape	object
cap-color	object
does-bruise-or-bleed	object
gill-color	object
stem-height	float64
stem-width	float64
stem-color	object
has-ring	object
habitat	object
season	object
· · · · · · · · · · · · · · · · · · ·	

COLUMNAS CON DATOS FALTANTES 9 (FEATURES)

	Tipo de dato	Datos Faltantes	Datos No Faltantes	% datos faltantes
cap-surface	object	14120	46949	23.1214
gill-attachment	object	9884	51185	16.185
gill-spacing	object	25063	36006	41.0405
stem-root	object	51538	9531	84.3931
stem-surface	object	38124	22945	62.4277
veil-type	object	57892	3177	94.7977
veil-color	object	53656	7413	87.8613
ring-type	object	2471	58598	4.04624
spore-print-color	object	54715	6354	89.5954
•	. '	•	· · · · · · · · · · · · · · · · · · ·	

EXPLORACIÓN

REPRESENTACION DE LA DISPERSION DE LOS VALORES EN LAS COLUMNAS NUMERICAS

PRUEBA DE QUE EXISTE ALGUN TIPO DE SEPARACION
POSIBLE ENTRE LAS CLASES DEPENDIENDO DE LOS
ATRIBUTOS QUE SE UTILICEN

¿LA COLUMNA TIENE MAS DE UN 5% DE DATOS FALTANTES?

¿LA FILA QUEDO CON ALGÚN DATO FALTANTE?

¿HAY DATOS QUE NO TIENEN SENTIDO?

TRATAMOS TODAS LAS VARIABLES CATEGORICAS USANDO VARIABLES DUMMY Y ONE HOT

CON DUMMIES TRATAMOS EL TARGET Y OTRAS 3 COLUMNAS
EN LA UNICA VARIABLE CATEGORICA ORDINAL (SEASON) REEMPLAZAMOS LOS VALORES POR NÚMEROS
CON ONE HOT TRATAMOS LAS 6 COLUMNAS RESTANTES

ESTO ULTIMO NOS CAUSO VARIOS PROBLEMAS AL MOMENTO DE PLANTEAR UN MODELO

¿POR QUE?

ENTRE LAS VARIBALES NUMERICAS, LAS VARIABLES QUE A LAS QUE PODEMOS APLICAR DUMMIES Y LAS CATEGORICAS ORDINALES, NOS QUEDA UN DATASET DE 57.539 INSTANCIAS Y 7 COLUMNAS (6 FEATURES + TARGET)

PERO AL APLICAR ONE-HOT AL RESTO DE LAS COLUMNAS COMPLETAS (LAS CATEGORICAS NOMINALES) NOS QUEDA UN DATASET DE 57.539 INSTANCIAS Y 66 COLUMNAS (65 FEATURES + TARGET)

EXPLORACIÓN PTE. 2

REPRESENTACION DE LA CORRELACION ENTRE
UN FEATURE Y EL TARGET

REPRESENTACION DE LA CANTIDAD DE INSTANCIAS DE CADA GRUPO DENTRO DE UN FEATURE QUE PERTENECEN A CADA CLASE

MODELO DATASET TRABATADO

Matriz de confusión

Pred Positiva

Pred Negativa

Métricas de evaluación

Verdaderos

Positivos

6663

993

• Precision: 0.89

• Recall: 0.88

Verdaderos negativos

964

8642

• F1-score: 0.89

MODELO DATASET 919ANTE

Matriz de confusión

Pred Positiva

Pred Negativa

Métricas de evaluación

Verdaderos

Positivos

7630

26

• Recall: 0.99

Verdaderos negativos

30

9756

• F1-score: 0.99

• Precision: 0.99

DECIDIMOS AGREGAR ALGÚN FEATURE DE IMPORTANCIA DEL DATASET GRANDE AL DATASET YA TRABAJADO, PARA PODER TENER UN MODELO QUE SI BIEN ES BUENO, PUEDA SER AJUSTADO CON HIPERPARAMETROS

ESTA FUE: STEM-COLOR

Precision: 0.956

Recall: 0.959

F1-score: 0.958

FINE TUNNING

PARA AJUSTAR LOS HIPERPARÁMETROS USAMOS EL MÉTODO GRID SEARCH. LA COMBINACIÓN DE HIPERPARÁMETROS CON MEJOR RESULTADO FUE LA SIGUIENTE:

{'max_depth': None, 'min_samples_leaf': 1,

'min_samples_split': 5, 'n_estimators': 100}

MÉTRICAS FINALES

Matriz de confusión

Pred Positiva

Pred Negativa

Verdaderos Positivos

7398

409

Verdaderos negativos

377

9078

Métricas de evaluación

• Precision: 0.956

• Recall: 0.96

• F1-score: 0.958

CONCLUSIONES

SI BIEN LAS METRICAS FUERON SIMILARES ANTES Y DESPUES DEL GRID SEARCH Y LA VALIDACION CRUZADA, ESTE SEGUNDO CLASIFICADOR ES MAS FUERTE PORQUE NOS ASEGURAMOS QUE LAS METRICAS NO SE RELACIONAN CON EL GRUPO DE TRAIN-TEST PARTICULAR, Y ADEMAS, MEJORO LA EXHAUSTIVIDAD, QUE ES LO MAS IMPORTANTE EN NUESTRO CASO PARTUCULAR

Se inventa la máquina del tiempo

NOOOO GACHI Y PACHI, NO USEN DATASETS SINTÉTICOS

GRACIAS POR ESCUCHARNOS ¿PREquntas?