Nome:	GABARITO		R.A.:	
MS550/F520	1 <u>a</u> D	rova	(9)	3/04/2008)
	us) Considere o campo vetorial	3º Onusta entos	5: De {tilion }	=1N e L.I.
	$F = (x^2 + y^2 + z)$	$(x\hat{x} + y\hat{y} + y\hat{y})$	$z\hat{z}$).	70
(a) (0.5 (b) (0.5	$\vec{F}=(x^2+y^2+z^2)$ Ponto) Escreva \vec{F} em coordenad Ponto) Calcule $\nabla \cdot \vec{F}$. Ponto) Calcule $\nabla \times \vec{F}$. Ponto) Determine uma função es	as cilíndricas.	12, 15 th	0 1 x - 1
(c) (0.5	Ponto) Calcule $\nabla \times F$.	Too	= -	0 0 1
(4) (5.5	,	7 1		
	Ponto) Para que valores de n a f			
2. (3.0 Pont	os) Encontre a solução geral da e $4x^2y'' + xy' -$	equação diference $(x-1)y=0$	do tipo	Euler, soluci y=Ax > Substitu tem-re
utilizando	o o método de Frobenius em torn	o do ponto x :	$= 0. $ $4\lambda^{2} - 4\lambda +$	-1-2=0, h= 1I a
com $N >$	0.0 Pontos) Mostre que o conjuto $ \left\{ 1, x, \frac{x^2}{2!}, \frac{x}{3!} \right\} $ 0, é linearmente independente. 2.5 Pontos) Encontre as duas solo		Se x = 0, as role y = C, x (+4)/2 se a = 0, uma s y = c + x. Pa paulmeter, a 6	ucien Scr; 2 . Cz x (1-4)/2 voluct e variacs chr sutu Sin y = cvx
	$4x^2y'' + (1$	$-\alpha^2)y=0,$		
早=	os os valores de α . clas calinda car $(r, \theta, 3)$ $(r^2 + 3^2)^n (rr^2 + 33)$		e3 =	Croit snof - Senoit + Gosof R
V.F = 3	$= x(x^2+y^2+3)^n + \frac{2}{2}y(x^2+y^2+3)^n$	3+3)+3	3(x2+y+3)=	2 2 2 1 1
) E = 3	3(x2+y2+32)"+ (x3x+43)	132 (2?	+ y + 3°) = (2h	+3)(x+y+3)
JVXF = 5	omente a componente	is (as o	una Seguen	: 2 (22 42 22)"
0	ALL VILLE OF	1/1	1 1- 41 -41	2. ~ 17 144 . 2

 $\nabla_{X}\vec{F} = 0$ $= n(x^{2}+y^{2}+3^{2})^{N-1} \left(3\frac{1}{2}y^{2} - y^{2}\frac{1}{2}3^{2}\right) = 0$ $\vec{F} = r^{2n+1} \quad \text{(Coordenadar esférican)} \quad |e| \quad \text{ϕ diverge na originar pana $n < 0$.}$ $\phi = -\ln r \quad |n=-1|$

2)
$$4x^2y'' + xy' + (x-1)y' = 0$$
 (Equaes de familie des eq. de Bessel)
 $y(x) = \sum_{N=0}^{\infty} a_N x^{N+K} = 1$ $\sum_{N=0}^{\infty} \left[4(n+k)(n+k-1) + (n+k) - 1\right] a_N x^{N+K} + \sum_{N=0}^{\infty} a_{N-1} x^{N+K} = 0$
Equaes indical:
 $4k(k-1) + k-1 = 4k^2 - 3k - 1 = 0 - 7k = 3 = \sqrt{9+16}$

K=1 on K=-{4}

Relacs de recorrència:

$$a_{n} = \frac{a_{n-1}}{4(n+\kappa)^{2} \cdot 3(n+\kappa) + 1}$$

$$\frac{1^{\alpha} \text{ Solucis: } K=1, \quad \alpha_{n}=\frac{\alpha_{n-1}}{4n^{2}+5n}=\frac{\alpha_{n-1}}{m(4(n+1)+1)}$$

solució geral da relació de recorrência:

$$Q_{n} = \frac{5 Q_{0}}{n! \left[4(n+1)+1\right]!!!} = N(N-4)(N-8) - 1$$

$$2^{\circ} \text{ Soluces} \quad K = -\frac{1}{4} \quad a_{n} = \frac{a_{n-1}}{4n^{2}-5n} = \frac{a_{n-1}}{m(4n-5)}$$

$$Q_{n} = \frac{Q_{0}}{n!} \frac{Q_{0}}{11} (4n-5)$$