Лабораторная работа 5.1.1 **Фотоэффект**

Шерхалов Денис Б02-204и Фаттахов Марат Б02-204кт

26 ноября 2024 г.

В работе: исследовать зависимость фототока от величины задерживающего потенциала и частоты падающего излучения, что позволяет вычислить величину постоянной Планка.

1. Введение

Фотоэффект — явление испускания электронов фотокатодом, облучаемым светом, Это явление хорошо объясняется фотонной теорией света. Взаимодействие монохроматического света с веществом можно описывать как взаимодействие с веществом частиц, называемых фотонами, которые обладают энергией $\hbar\omega$ и импульсом $\hbar\omega/c$. При столкновении фотона с электроном фотокатода энергия отона полностью передается электрону, и фотон прекращает свое существование. Энергетический баланс этого взаимодействия для вылетающих электронов описывается уравнением

Рис. 1: Зависимость фототока от напряжения на аноде фотоэлемента

$$\hbar\omega = E_{\text{\tiny KMH}} + A_{\text{\tiny BMX}} \tag{1}$$

Здесь $E_{\text{кин}}$ — максимальная кинетическая энергия электрона после выхода из фотокатода, $A_{\text{вых}}$ — работа выхода электрона из катода. Реально энергетический спектр вылетевших из фотокатода электронов непрерывен — он простирается от нуля до $E_{\text{кин}}$.

Для измерения энергии вылетевших фотоэлектронов вблизи фотокатода обычно располагается второй электрод (анод), на который подается задерживающий (V<0) или ускоряющий (V>0) потенциал. При достаточно больших ускоряющих напряжениях фототок достигает насыщения (рис. 1): все испущенные электроны попадают на анод.

При задерживающих потенциалах на анод попадают лишь электроны, обладающие достаточно большой кинетической энергией, в то время как медленно движущиеся электроны заворачиваются полем и возвращаются на катод. При некотором значении $V = -V_0$ (потенциал запирания)

даже наиболее быстрые фотоэлектроны не могут достичь анода. Максимальная кинетическая энергия $E_{\text{кин}}$ электронов связана с запирающим потенциалом V_0 очевидным соотношением $E_{\text{кин}} = eV_0$. Тогда (1) примет вид, называемый уравнением Эйнштейна:

$$eV_0 = \hbar\omega - A_{\text{BMX}} \tag{2}$$

Чтобы определить величину запирающего напряжения, нам надо правильно экстраполировать получаемую токовую зависимость к нулю, т. е. определить, какова функциональная зависимость I(V). Расчет для простейшей геометрии — плоский катод, освещаемый светом, и параллельный ему анод — приводит к зависимости

$$\sqrt{I} \propto V_0 - V \tag{3}$$

т. е. корень квадратный из фототока линейно зависит от запирающего напряжения. Эта зависимость хорошо описывает экспериментальные данные.

В работе изучается зависимость фототока из фотоэлемента от величины задерживающего потенциала V для различных частот света ω , лежащих в видимой области спектра. С целью экспериментальной проверки уравнения Эйнштейна определяются потенциалы запирания V_0 при разных частотах света и строится зависимость $V_0(\omega)$, которая, как это следует из (2), должна иметь вид

$$V_0(\omega) = \frac{\hbar\omega - A_{\text{вых}}}{e}$$

Потенциал запирания V_0 для любого катода линейно зависит от частоты света ω . По наклону прямой на графике $V_0(\omega)$ (рис. 2) можно определить постоянную Планка:

$$\frac{dV_0}{d\omega} = \frac{\hbar}{e} \tag{4}$$

Как показывает формула (4), угол наклона прямой $V_0(\omega)$ не зависит от рода вещества, из которого изготовлен фотокатод. От рода вещества, однако, зависит величина фототока, работа выхода W и форма кривой I(V) (рис. 1). Все это определяет выбор пригодных для опыта катодов.

2. Выполнение

Сначала выполним градуировку монохроматора. Проведем серию измерений для линий спектра неона, снимая зависимость длины волны света от параметра θ барабана монохроматора. Результаты занесем в Таблицу 1 и построим график зависимости $\lambda(\theta)$.

Рис. 2: Зависимость запирающего потенциала от частоты света

Таблица 1: Калибровка

θ , °	1892	2150	2196	2288	2396	2500
λ , Å	5401	5852	5945	6143	6402	6507

Рис. 3: Калибровка

Теперь проведем 5 серий измерений зависимости фототока от напряжения для разных длин волн падающего света, изменяя на монохроматоре параметр θ и переводя его в длину волны с помощью градуировки. Ток приведен в безразмерных единицах в силу работы установки.

Таблица 2: U_I для соответствующих λ и U

	$\lambda = 1690 \text{Å}$	$\lambda = 1790 \text{Å}$	$\lambda = 1890 \text{Å}$	$\lambda = 1990 \text{Å}$	$\lambda = 2090 \text{Å}$
U = -0.6	0.021	0.016	0.000	0.011	0.007
U = -0.55	0.039	0.031	0.010	0.027	0.01
U = -0.5	0.059	0.052	0.032	0.050	0.029
U = -0.45	0.081	0.075	0.059	0.078	0.056
U = -0.4	0.107	0.103	0.090	0.112	0.088
U = -0.35	0.133	0.134	0.129	0.148	0.122
U = -0.3	0.166	0.168	0.172	0.191	0.165
U = -0.25	0.199	0.205	0.218	0.236	0.212
U = -0.2	0.230	0.242	0.264	0.279	0.263

Рис. 4: Зависимость фототока от напряжения для $\lambda = 1890~{\rm \AA}$

Рис. 5: Корень из зависимости фототока от напряжения

Вблизи потенциала запирания, искомая зависимость описывается формулой (3). Согласно этой формуле (3), построим график зависимости в координатах $\sqrt{I}(V)$ и аппроксимируем линейные участки прямой. Экстраполируя прямую к нулю, получим значения потенциала запирания для каждой серии измерения (длины волны).

Таблица 3: $U_{\text{зап}}$ для соответствующих λ

λ , Å	1690	1790	1890	1990	2090
U_z	-0.544	-0.612	-0.764	-0.772	-0.797

Рис. 6: Зависимость запирающего потенциала от циклической частоты

$$\frac{\hbar}{e} = k = (0.126 \pm 0.005) \cdot 10^{-15} \frac{\text{Дж} \cdot \text{с}}{\text{Кл}}$$

$$\hbar = 0.2 \cdot 10^{-34} \text{ Дж} \cdot \text{c}$$

По порядку это согласуется с табличным значением $\hbar = 1{,}054 \cdot 10^{-34}$ Дж \cdot с.

3. Вывод

Таким образом, в ходе выполнения работы мы проверили Энштейновское описание фотоэффекта и с помощью уравнения последнего измерили постоянную Планка. Результат по порядку соответствуют табличному значению.