Beyond the plain text file format

How a relational database file can take us beyond the plain text file format

ACS Spring 2016 San Diego
TJ O'Donnell
gNova, Inc.
tjo@gnova.com

Topics

- Text file formats
- Atoms, bonds, coordinates, properties, ...
- Relational database tables and SQL
- SQLite is a relational database in a single file
- Chemical and biological data
- Extensibility of SQL schemas
- Using SQLite files, programming

Molecular text file formats

Multiple formats commonly used

- Small molecules
- Proteins
- Nucleic acids
- Proprietary formats
- Chemical and biological data

Most can be interconverted – Problem solved!?

OpenBabel supports 118 formats

PDB plain text

COMPND	1-		med by	ODEN	חגם	шт о о о	.					
AUTHOR HETATM	1	C C	LIG	OPEN 1	BAB	EL 2.3.2 27.705	22.040	17.024	1.00	0.00		С
HETATM	2	N	LIG	1		26.440	22.040	16.432	1.00	0.00		N
HETATM	3	C	LIG	1		25.538	21.442	17.283	1.00	0.00		
HETATM	4	C	LIG	1		26.253	20.975	18.375	1.00	0.00		C
HETATM	5	C	LIG	1		27.594	21.361	18.222	1.00	0.00		C C
HETATM	6	C	LIG	1		24.082	21.367	17.108	1.00	0.00		C
HETATM	7	C	LIG	1		26.132	22.682	15.163	1.00	0.00		C
HETATM	8	C	LIG	1		23.410	22.267	16.267	1.00	0.00		C
HETATM	9	C	LIG	1		22.022	22.201	16.120	1.00	0.00		C
HETATM	10	C	LIG	1		21.298	21.241	16.831	1.00	0.00		C
HETATM	11	C	LIG	1		21.951	20.340	17.675	1.00	0.00		C
HETATM	12	C	LIG	1		23.340	20.412	17.817	1.00	0.00		C
HETATM	13	C	LIG	1		26.369	24.046	14.936	1.00	0.00		C
HETATM	14	C	LIG	1		26.063	24.612	13.696	1.00	0.00		C
HETATM	15	C	LIG	1		25.524	23.818	12.691	1.00	0.00		C
CONECT	1	2	5	19								
CONECT	2	1	3	7								
CONECT	3	2	4	6								
CONECT	4	3	5	24								
CONECT	5	1	4	25								
CONECT	6	3	8	12								
CONECT	7	2	13	17								
CONECT	8	6	9	26								
CONECT	9	8	10	27								
CONECT	10	9	11	20								
CONECT	11	10	12	28								
CONECT	12	6	11	29								
CONECT	13	7	14	30								
CONECT	14	13	15	31								
CONECT	15	14	16	18								
CONECT	16	15	17	32								
MA CHED		0	0	0	0	0	0 0	0 20	0	2.0	0	
MASTER END		0	0	0	0	0	0 0	0 39	0	39	0	

SDF plain text

\$\$\$\$

```
1-1
  Cerius2 12120216093D 1
                         1.00000
 Structure written by MMmdl.
 39 41 0 0 0 0 0 0 0 0 0999 V2000
   27.7051
             22.0403
                       17.0243 C
             22.0976
   26.4399
                      16.4318 N
   25.5381
             21.4424
                      17.2831 C
            20.9753
                      18.3748 C
   26.2525
   27.5943
             21.3608
   24.0821
             21.3670
                       17.1082 C
   26.1324
             22.6824
                      15.1634 C
  2
M END
> <Name>
1 - 1
> <Family>
A.1
> <IC50 uM>
0.06
> <set>
```

JSON structured file

```
"name": "1-1",
    "charge": null,
    "atoms": [
            "idx": 1,
            "symbol": "C",
            "atomic number": 6,
            "charge": 0,
            "x": 27.7051,
            "y": 22.0403,
            "z": 17.0243
            "idx": 2,
            "symbol": "N",
            "atomic number": 7,
            "charge": 0,
            "x": 26.4399,
            "y": 22.0976,
            "z": 16.4318
...],
    "bonds": [
            [1,19,1],
            [1,2,1],
            [1,5,2],
            [2,3,1],
            [2,7,1],
    "properties":
          "Family": "A.1",
          "IC50 uM": 0.06,
          "set": 1
```

CML/XML structured file

```
<?xml version="1.0"?>
<molecule id="id1-1" xmlns="http://www.xml-cml.org/schema">
 <atomArrav>
 <atom id="a1" elementType="C" x3="27.705100" y3="22.040300" z3="17.024300"/>
 <atom id="a2" elementType="N" x3="26.439900" y3="22.097600" z3="16.431800"/>
  <atom id="a3" elementType="C" x3="25.538100" v3="21.442400" z3="17.283100"/>
  <atom id="a4" elementType="C" x3="26.252500" y3="20.975300" z3="18.374800"/>
 <atom id="a5" elementType="C" x3="27.594300" y3="21.360800" z3="18.221800"/>
 <atom id="a6" elementType="C" x3="24.082100" y3="21.367000" z3="17.108200"/>
</atomArray>
 <bondArray>
 <bond atomRefs2="a1 a2" order="1"/>
 <bond atomRefs2="a1 a5" order="2"/>
 <bond atomRefs2="a1 a19" order="1"/>
  <bond atomRefs2="a2 a3" order="1"/>
 <bond atomRefs2="a2 a7" order="1"/>
 <bond atomRefs2="a3 a4" order="2"/>
</bondArray>
 cpropertyList>
 property title="Name">
  <scalar>1-1</scalar>
  </property>
  property title="Family">
  <scalar>A.1</scalar>
  </property>
 property title="IC50 uM">
  <scalar>0.06</scalar>
  </property>
  property title="set">
  <scalar>1</scalar>
  </property>
</molecule>
```

SQLite structured file .umdb

What's in a SQLite file?

Select atom.atom_number, atom.symbol, coord.x, coord.y, coord.z, atom.charge
 From atom Join coord Using (molecule_id, atom_number)
 Where molecule id=1 Order By atom.atom number;

atom_number	symbol	x	У	z 	charge
1	C	27.7051	22.0403	17.0243	0
2	N	26.4399	22.0976	16.4318	0
3	C	25.5381	21.4424	17.2831	0
4	С	26.2525	20.9753	18.3748	0
5	C	27.5943	21.3608	18.2218	0
6	C	24.0821	21.367	17.1082	0
7	C	26.1324	22.6824	15.1634	0
8	C	23.4105	22.2668	16.2675	0
9	C	22.022	22.2007	16.1197	0
10	C	21.2976	21.2409	16.8307	0
11	C	21.9509	20.3402	17.675	0
12	C	23.3399	20.4115	17.8175	0
13	C	26.3695	24.0457	14.9358	0
14	C	26.0627	24.6119	13.6959	0
15	C	25.5236	23.8179	12.691	0
16	C	25.2821	22.466	12.901	0
17	C	25.5848	21.8942	14.1391	0
18	F	25.2311	24.3643	11.5034	0

Viewing and editing SQLite files

- Command line (built-in, all platforms)
- DB Browser for SQLite (open source on github)
- SQLite Manager Firefox addin
- SQLite Administrator (freeware, windows)
- Toad v4.2+ (not Mac)

SQLite Manager Firefox addin

SQLite (www.sqlite.org)

- All the advantages of a flat-file; all the features of a relational database
- Self-contained, serverless, zero configuration
- Included in Python standard library
- Bindings for 43 languages
- Most widely deployed database engine in the world
- Public domain, free to use for any purpose

How large are SQLite files?

Original SDF contains 467 molecules

```
babel cox2 3d.sdf cox2 3d.pdb
 babel cox2 3d.sdf cox2 3d.cml
 python obmol.py cox2 3d.sdf cox2 3d.umdb
$ wc -c cox* | sort -n
 1486991 cox2 3d.sdf
 2419255 cox2 3d.cml
 2444870 cox2 3d.js
 2994176 cox2 3d.umdb
 3115692 cox2 3d.pdb
$ gzip cox*; wc -c cox*
                           sort -n
  247045 cox2 3d.sdf.qz
                           (16\%)
 262544 cox2 3d.pdb.qz
                           (8%)
 273579 cox2 3d.js.qz
                           (11%)
  284060 cox2 3d.cml.gz
                           (11%)
1293529 cox2 3d.umdb.qz
                           (37%)
```

Maximum size allowed by filesystem

How do SQLite files scale?

How efficient is using SQLite files?

Compute center of mass for 467 molecules OpenBabel python vs. SQLite

```
$ time python cm.py
14-15 397.4194432 24.5140548807 22.1725456909 15.9736236732
  -16 412.88598 24.5963886245 22.3002506939 15.8502371715
14-17 413.87404 24.5813303532 22.2904584772 15.8464177326
7-39 328.3607232 23.7537457692 21.924262208 15.9951401499
      0m0.842s
real
user
      0m0.811s
      0m0.026s
 sys
$ time python cm-select.py
14-15 397.4194432 24.5140548807 22.1725456909 15.9736236732
14-16 412.88598 24.5963886245 22.3002506939 15.8502371715
14-17 413.87404 24.5813303532 22.2904584772 15.8464177326
7-39 328.3607232 23.7537457692 21.924262208 15.9951401499
real
      0m0.166s
      0m0.136s
user
      0m0.027s
 sys
```

SQLite is fast random access file

Any table can be indexed for fast access

Select data for first molecule

```
sqlite> select molecule_id,name,value from property
where name in ('PUBCHEM_IUPAC_CAS_NAME', 'PUBCHEM_IUPAC_INCHI') And molecule_id=1;

molecule_id|name|value
1|PUBCHEM_IUPAC_CAS_NAME|3-acetyloxy-4-(trimethylammonio)butanoate
1|PUBCHEM_IUPAC_INCHI|InChI=1S/C9H17NO4/c1-7(11)14-8(5-9(12)13)6-10(2,3)4/h8H,5-6H2,1-4H3
Run Time: real 0.001 user 0.000293 sys 0.000087
```

Select data for molecule 20000

```
sqlite> select molecule_id,name,value from property where name in ('PUBCHEM_IUPAC_CAS_NAME', 'PUBCHEM_IUPAC_INCHI') And molecule_id=20000; molecule_id|name|value 20000|PUBCHEM_IUPAC_CAS_NAME|2-thiocyanatoacetic acid butyl ester 20000|PUBCHEM_IUPAC_INCHI|InChI=1S/C7H11NO2S/c1-2-3-4-10-7(9)5-11-6-8/h2-5H2,1H3 Run Time: real 0.000 user 0.000279 sys 0.000089
```

Create SQLite .umdb files

Row by row, table by table taking data from anywhere

```
Insert into molecule (name, charge, created) Values ('aspirin', 0, datetime());
Insert Into atom (molecule_id, atom_number, z) Values (1,1,6),(1,2,6),(1,3,7);
Insert Into coord (molecule_id, atom_number, x, y, z) Values (1,1,0.0,0.0,0.0);
...
```

467 molecules; python program using OpenBabel

```
$ time python obmol.py cox2_3d.sdf cox2_3d.umdb
```

```
real 0m2.854s
user 0m2.252s
sys 0m0.400s
```

Update SQLite .umdb files

```
sqlite> .timer on
sqlite> .mode csv
salite> .import newprop.csv newprop
sqlite> Insert Into property (molecule id, name, value)
 Select molecule id, 'gnova glogp', gnova glogp From molecule
Join newprop On (molecule.name=newprop.pubchem id);
Run Time: real 0.807 user 0.283474 sys 0.469584
sqlite> Insert Into property (molecule id, name, value)
 Select molecule id, 'qnova tpsa', qnova tpsa From molecule
Join newprop On (molecule.name=newprop.pubchem id);
Run Time: real 0.830 user 0.296428 sys 0.481289
sglite> drop table newprop;
Run Time: real 0.038 user 0.006310 sys 0.021853
$ head newprop.csv
pubchem id, qnova glogp, qnova tpsa
384,0.6933,86.63
385,1.1061,74.6
391,3.7655,132.91
399, -0.2772, 111.9
409,1.8197,42.32
413,1.3615,41.99
416, -1.7999, 149.65
420,7.3887,20.23
422, -3.3761, 194.79
```

Using .umdb files in programs

- Compared to traditional object-oriented C++ or python
- Replacing object iterators with SQL select
- Replacing entire program with SQL computation

Structured data in programs

```
class OBAPI OBMol: public OBBase
 protected:
   int
                                 flags;
                                               //!< bitfield of flags
   bool
                                  autoPartialCharge;//!< Assign partial charges</pre>
                                  autoFormalCharge;//!< Assign formal charges</pre>
   bool
                                               //!< Molecule title
   std::string
                                  title;
   std::vector<OBAtom*>
                                 vatom;
                                             //!< vector of atoms
                                 atomIds;
                                            //!< vector of atoms indexed by id
   std::vector<OBAtom*>
                                  vbond;
                                              //!< vector of bonds
   std::vector<OBBond*>
   std::vector<OBBond*>
                                  bondIds;
                                              //!< vector of bonds
                                  dimension; //!< Dimensionality of coordinates
   unsigned short int
   int
                                  totalCharge; //!< Total charge on the molecule
   unsigned int
                                  totalSpin;
                                               //!< Total spin on the molecule
   double
                                               //!< coordinate array
                                 * C;
                                               //!< vector of conformers
   std::vector<double*>
                                  vconf;
   double
                                               //!< heat of formation
                                  energy;
   unsigned int
                                  natoms;
                                               //!< Number of atoms
   unsigned int
                                 nbonds;
                                               //!< Number of bonds
   std::vector<OBResidue*>
                                 residue;
                                             //!< Residue information (if applicable)
   std::vector<OBInternalCoord*> internals;
                                              //!< Internal Coordinates (if applicable)</pre>
```

Read text file into program objects

```
# compute center of mass
import openbabel
mol = openbabel.OBMol()
conv = openbabel.OBConversion()
conv.SetInFormat("sdf")
notatend = conv.ReadFile(mol, "cox2 3d.sdf")
while notatend:
   total mass = 0.0
   cm x = 0.0
   cm y = 0.0
   cm z = 0.0
   for atom in openbabel.OBMolAtomIter(mol):
      m = atom.GetAtomicMass()
      total mass += m
      cm x += m * atom.GetX()
      cm y += m * atom.GetY()
      cm z += m * atom.GetZ()
   print mol.GetTitle(), total mass, \
   cm x/total mass, cm y/total mass, cm z/total mass
   mol.Clear()
   notatend = conv.Read(mol)
```

Read SQLite tables into program objects

Open the database file

Select all molecule, atoms, bonds, properties into program objects, corresponding to traditional reading of plain text file

Select molecule_id, molecule.name, atom.atom_number, atom.symbol, atom.charge, coord.x, coord.y, coord.z, group_concat(to_atom) As bonds From molecule Join atom Using(molecule_id) Join coord Using (molecule_id,atom_number) Join bond Using (molecule_id) Where atom.atom_number=bond.from_atom Group by molecule_id, atom_number;

Iterate over objects to carry out program algorithms

Use SQL select as object iterators

Connect database file replaces file open and read

Database tables replace program objects

SQL select replaces object iterator

```
import sqlite3
conn = sqlite3.connect('cox2 3d.umdb')
conn.row factory = sqlite3.Row
curs = conn.cursor()
curs.execute("Attach 'element.sqlite' As element")
sql = "Select molecule.name, mass, coord.x, coord.y, coord.z From molecule \
 Join atom Using (molecule id)\
 Join element.element Using(z) \
 Join coord Using (molecule id, atom number) \
 Where molecule id = ?"
for imol in range(467):
      total mass = 0.0
      cm x = 0.0
      cm y = 0.0
      cm z = 0.0
      for row in curs.execute(sql, [imol+1]):
         name = row['name']
         m = row['mass']
         total mass += m
         cm x += m * row['x']
         cm y += m * row['y']
         cm z += m * row['z']
      print name, total mass, cm x/total mass, cm y/total mass, cm z/total mass
```

Using SQL for entire computation

Compute center of mass for 467 molecules using SQL

```
Attach "element.sglite" As element;
Select molecule.name, sum(mass),
 sum(mass*coord.x)/sum(mass),
 sum(mass*coord.y)/sum(mass),
 sum(mass*coord.z)/sum(mass)
 From molecule Join atom Using (molecule id)
  Join element.element Using(z)
 Join coord Using (molecule id, atom number)
 Group By molecule id;
$ time sqlite3 cox2 3d.umdb <cm.sql</pre>
real
       0m0.058s
       0m0.046s
user
       0m0.008s
sys
$ sqlite3 element.sqlite
sqlite> select z, symbol, mass from element limit 10;
            symbol
                         mass
                         1.00794
2
            Не
                         4.002602
            Li
                         6.941
                         9.012182
            Be
            В
                         10.811
6
                         12.0107
                         14.0067
                         15.9994
                         18.9984032
10
                         20.1797
```

How efficient can SQLite be?

Compute center of mass for 467 molecules OpenBabel python vs. SQLite

```
$ time python cm.py
         0m0.842s
real
         0m0.811s
user
         0m0.026s
sys
$ time python cm-select.py
         0m0.166s
real
         0m0.136s
user
        0m0.027s
sys
$ time sqlite3 cox2 3d.umdb <cm.sql</pre>
real
         0m0.059s
         0m0.047s
user
sys
         0m0.008s
```

Extending .umdb files

SQLite .umdb files can add new tables and relationships as well as update or add new data

SD files v2000 limited to 999 atoms

V3000 no atom limit, enhanced stereochemistry

PDB files limited to 99999 atoms, 1-character chain, 3-character residue

PDBML/XML, mmCIF eliminate column-width limits and add data definitions

Extended schema for proteins

Chemical and biological data

Select property.name, property.value
From property Where molecule_id=1;

Name	value
Name Family IC50_uM Set	1-1 A.1 0.06

Extension for chemical/biological data

Select dict.name, data.value
From molecule_data As data Join data_dictionary dict Using (data_id)
Where molecule id=1;

CML data dictionary

```
<?xml version="1.0" encoding="UTF-8" ?>
<dictionary xmlns="http://www.xml-cml.org/schema"</pre>
            xmlns:convention="http://www.xml-cml.org/convention/"
            xmlns:unit="http://www.xml-cml.org/unit/nonSi/"
            xmlns:unitType="http://www.xml-cml.org/unit/unitType/"
            xmlns:xhtml="http://www.w3.org/1999/xhtml"
            xmlns:xsd="http://www.w3.org/2001/XMLSchema"
            convention="convention:dictionary"
            title="fundamental chemistry concepts"
            namespace="http://www.xml-cml.org/dictionary/dummy/"
            dictionaryPrefix="dummy">
        <description>
            <xhtml:p>
                This is an example dictionary
            </xhtml:p>
        </description>
    <entry id="molecmass" term="Molecular Mass"</pre>
           dataType="xsd:double" unitType="unitType:amount" units="unit:dalton">
        <definition>
            <xhtml:p>
                The mass of one mole of a substance in unified atomic mass units (Dalton).
        </definition>
        <description>
            <xhtml:p>
                The molecular mass (m) of a substance is the mass of one molecule of that substance,
                in unified atomic mass unit(s) ...
            </xhtml:p>
        </description>
    </entry>
    <entry id="molarmass" term="Molar Mass"</pre>
           dataType="xsd:double" unitType="unitType:amount" units="unit:dalton">
        <definition>
                The mass per amount of substance.
            </xhtml:p>
        </definition>
        <description>
            <xhtml:p>
                Molar mass, symbol M, is a physical property characteristic of a given substance
            </xhtml:p>
        </description>
    </entry>
</dictionary>
```

Summary

Advantages

- Single-File documents
- Cross-platform
- Fast access
- SQL
- Easily updated
- Readily extensible and reducible
- Concurrent use by multiple processes
- Transactions
- Better applications; restart files

Future work, other extensions

- umdb project at http://github.com/tjod
- PDBML/XML
 - "Third, the straightforward mapping of PDB data to relational database systems is retained."
- mmCIF
 - flexible and extensible tag-value format for representing macromolecular structural data
- Extension tables
 - New types of data, for example spectroscopic data
 - Supramolecular assemblies