NASA-CR-162041

HIGH DENSITY

CIRCUIT TECHNOLOGY

PART IV

pirs

ENGINEERING & INDUSTRIAL RESEARCH STATION

ELECTRICAL ENGINEERING

(NASA-CR-162041) HIGH DENSITY CIRCUIT TECHNOLOGY Final Contract Report (Mississippi State Univ., Mississippi State.) 154 p HC A08/MF A01 CSCL 09C

N84-29091

Unclas G3/33 19758

NASA CONTRACT NAS8 - 33448

Mississippi State University
Mississippi State, Mississippi 39762

ابمصو			AL REPORT STANDARD TITLE PAGE			
1.	REPORT NO.	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT'S CATALOG NO.			
4.	TITLE AND SUBTITLE	0.0	5. REPURT DATE MARCH, 1982			
	HIGH DENSITY CIRCUIT TECHNOL	OGY	6. PERFORMING ORGANIZATION CODE			
			MSU-EE-NASA FIN-TEW			
7.	AUTHOR(S)		8 PERFORMING ORGANIZATION REPORT #			
	THOMAS E. WADE, PH.	D.				
9.	PERFORMING ORGANIZATION NAME AND AD		10. WORK UNIT NO.			
	MICROELECTRONICS RESEARCH LA					
,	DEPARTMENT OF ELECTRICAL ENG		11. CONTRACT OR GRANT NO.			
	MISSISSIPPI STATE UNIVERSITY		NAS8-33448			
	MISSISSIPPI STATE, MS 39762		13. TYPE OF REPORT & PERICO COVERED			
12.	SPONSORING AGENCY NAME AND ADDRESS		FINAL CONTRACT REPORT			
	NATIONAL AERONAUTICS AND SPA	CE ADMINISTRATION	PART IV			
	WASHINGTON D.C. 20546	•				
			14. SPONSORING AGENCY CODE			
<u>.</u>						
15.	SUPPLEMENTARY NOTES					
		E UNIVERSITY FOR GEORGE C. MAR				
	MARSHALL SPACE FLIGHT CENTER	R, ALABAMA TECHNICAL MONITORS:	R.F. DEHAYE AND J.M. GOULD			
16.	ABSTRACT					
	, and the same of					
	The chicatizes of	this part of the contrast off	ort was to			
	The objectives of this part of the contract effort was to conduct an accurate study and evaluation of dielectric thin films					
	in order to find the material or combination of materials which					
	would optimize NASA's double layer metal process. Emphasis was					
	placed on polyimide dielectrics because of their reported					
	outstanding dielectric	characteristics (including el	ectrical,			
	chemical, thermal, and	mechanical) and ease of proce	ssing, as			
•		ceptance by the semiconductor				
			•			
	The following die	lectric materials were evaluat	ed:			
	a Atmospheric	CVD silicon dioxide (phosphor	ous doned)			
	a. Atmospheric b. Polyimides	(Hitachi PIQ-13 and Dupont PI-	2545 and PI-2555)			
	c. Low pressur	e CVD silicon dioxide (both do	ped and			
	-	varieties)	-			
	•	uartz (undoped)				
		sited silicon dioxide (both do	ped and			
		from two different vendors)				
	f. Plasma depo	sited silicon nitride				
	g. Polyimides	and composites of polyimides w	ith all			

	g. Polyimides of abov	•	s or borathmas wi	CH GIL	
	KEY WORDS DIELECTRICS FOR MULTILEVEL MULTILEVEL INTERCONNECT FOR INSULATORS FOR VLSI MULTILE VLSI METAL INTERCONNECTION	VLSI VEL METAL	18. DISTRIBUTION STA	TEMENT	
19.	SECURITY CLASSIF. (of this report)	20. SECURITY CLAS	SSIF, (of this page)	21, NO. OF PAGES	22 PRICE
	UNCLASSIFIED	UNCLASSIFIED UNCLASSIFIED			NTIS

一個田田で

FORWARD

This report describes a portion of the work performed from
July 1980 to March 1982 under Contract NAS8-33448 for the George C.
Marshall Space Flight Center, National Aeronautics and Space
Administration, Marshall Space Flight Center, Alabama. The
technical managers for MSFC were Mr. B. R. Hollis, Jr.,
Mr. R. F. Dehaye and Mr. J. M. Gould. This report was prepared
by the Microelectronics Research Laboratory of the Department of
Electrical Engineering, Mississippi State University, under the
direction of the principal investigator Dr. Thomas E. Wade. The
principal participants in the program were Mrs. Mildred N. Sellars
and Mr. James Ebentier.

This final report has been divided into four areas of emphasis, with a separate comprehensive report for each area. These four areas represent the following subject groupings:

- PART I. Emphasis is on the realization of very dense metal interconnection for VLSI systems utilizing the lift-off process. Both a survey of lift-off techniques is presented as well as experimental and novel lift-off methods which have been investigated by the author.
- PART II. Emphasis here is on multilevel metal interconnection system for VLSI systems utilizing polyimide as the interlayer dielectric material. A complete

characterization of polyimide materials is presented as well as experimental methods accomplished using a double level metal test pattern. A novel double exposure polyimide patterning process is also presented.

- PART III. Emphasis is on dry plasma processing including a characterization of and an equipment survey for plasma etching, reactive ion etching, (reactive) ion milling and plasma deposition processes. Also included is an indication of future microelectronic trends, including patterning technology, lithography, materials deposition, packaging, etc.
 - PART IV. Emphasis here is on an evalution of dielectric material for use in VLSI metal interconnection systems. A number of dielectric material types (or combination of materials) are experimentally evaluated using a second test pattern. Recommendations are presented based on these findings.

TABLE OF CONTENTS

Section	Pag	;e
	FORWARD i	
	LIST OF FIGURES iv	
	LIST OF TABLES xi	
I	INTRODUCTION	
II	EXPERIMENTAL PROCEDURE	
	A. General Setup	
	B. Test Mask Description 5	
	C. Wafer Process List	
	D. Restricted Wafer List Studied 11	
	E. Test Setup	
III	EXPERIMENTAL DATA AND RESULTS 16	
IV	EVALUATION OF EXPERIMENTAL DATA AND RESULTS 112	
	A. Breakdown Voltage and Leakage Currents 112	
	B. Dielectric Thickness	
	C. A Figure of Merit for Dielectrics 122	
	D. Pinhole Count	
	E. Adhesion and Life Test	
17	CONCLUSTONS AND RECOMMENDATIONS 137	

LIST OF FIGURES

Figure		Page
1.	Test set-up for making break-down voltage measurements	14
2.	Test set-up for making leakage current measurements	14
3.	Test set-up used to monitor via resistance capacitance measurements, short circuit and open circuits for capacitors, cross-overs, and interdigitated fingers	15
4.	Wafer 1-7. The dielectric consist of 1.0 micron doped atmospheric CVD oxide	20
5.	Wafer 9-8. lum PIQ plus 4000Å atmospheric CVD SiO ₂	23
6.	Wafer 9-8. In addition to cracks in CVD oxide, also notice staining of second level metal pads	23
7.	Wafer 9-8. PIQ plus CVD SiO2	24
8.	Wafer 1-22. lum atmospheric CVD SiO ₂	24
9.	Wafer 9-8. 1 μ PIQ plus 4000 \mathring{A} atmospheric CVD SiO $_2$	25
10.	Wafer 1-5, SEM Micrograph of cross-over structure utilizing atmospheric CVD deposited SiO ₂ as dielectric of approximately 1 micron thickness	26
11.	Wafer 1-5, SEM Micrograph of via cross-section utilizing 1 micron atmospheric CVD deposited SiO ₂ as dielectric. Magnification is 6050X	26
12.	Wafer 1-5, Microslice of large capacitor showing thicknesses of top layer Al/Si, atmospheric CVD SiO, and bottom layer Al/Si. Magnification is 8800X	27
13.	Wafer 9-1, cross-section of a via, dielectric consists of 0.4 μ thick undoped atmospheric CVD SiO, (bottom) plus 0.75 μ PIQ-13 (top)	28

Figure		Page
14.	Cross-over of wafer 9-1	28
15.	Cross-section of wafer 9-1	29
16.	Via of wafer 9-7, dielectric consisting of atmospheric CVD SiO ₂ and PIQ-13	30
17.	Via of wafer 9-7 with top layer Al/Si removed	30
18.	Cross-over of wafer 9-7	31
19.	Cross-section of wafer 9-7 showing thickness	31
20.	Wafer 2-15. The dielectric consists of thick low pressure CVD doped oxide plus polyimide	35
21.	Wafer 2-2. The dielectric consist of undoped low pressure CVD oxide polyimide	40
22.	Wafer 7-2. The dielectric consist of PIQ-13 plus low pressure CVD doped oxide	42
23.	Wafer 7-13. The dielectric consists of PIQ-13 plus low pressure CVD undoped oxide	44
24.	Wafer 7-2. PIQ plus doped LPCVD SiO2	4.5
25.	Via's of wafer 2-21	45
26.	Cross-over of wafer 2-21	46
27.	Step coverage of first level metal for wafer 2-21	46
28.	Via's of wafer 2-13	47
29.	Cross-over for wafer 2-13	47
30.	A view of top and bottom layer interdigitated finger layout for wafer 2-13	48
31.	Cross-section of big capacitor for wafer 2-13	48
32.	Wafer 3-23. The dielectric consist of doped plasma enhanced oxide	50
33.	Wafer 3-9. The dielectric consist of undoped plasma enhanced oxide	52

Figure		Page
34.	Wafer 3-6. The dielectric consist of doped plasma enhanced oxide	54
35.	Wafer 7-25. The dielectric consist of undoped plasma enhancec oxide plus PIO-13	56
36.	Wafer 3-25. The dielectric consists of 0.8 micron undoped plasma enhanced oxide	60
37.	Wafer 3-25. 1 μ m doped plasma enhanced Si9 $_2$	61
38.	On a few of the doped plasma enhanced SiO ₂ obtained from Pacific Western, particulate count was large	61
39.	Wafer 3-9. 1µm undoped plasma enhanced SiO ₂	62
40.	Wafer 3-9. Notice the poor step-coverage	62
41.	Wafer 3-9. Notice overetch in some pads	63
42.	Wafer 7-15. PIQ plus doped plasma enhanced SiO_2	63
43.	Via's of wafer 3-11, dielectric consisting of undoped plasma deposited SiO ₂	64
44.	Cross-over of wafer 3-11	64
45.	Via's of wafer 3-12, dielectric consist of phosphorous doped plasma deposited \sin_2	65
46.	Magnification of last SEM micrograph	6.5
47.	Cross-over of wafer 3-12	66
48.	Cross-section of edge of big capacitor illustrating step coverage	66
49.	Via's of wafer 5-25, dielectric consist of undoped plasma deposited SiO ₂	67
50.	Cross-section of a via on wafer 5-25	67
51.	Cross-overs for wafer 5-25	68

Figure		Page
52.	Cross-section of big capacitor for wafer 5-25	68
53.	Via's of wafer 3-1	69
54.	Cross-over of wafer 3-1	69
55.	Wafer 5-14. The dielectric consist of 0.35 micron thick RF sputtered quartz	71.
56.	Wafer 5-21. The dielectric consist of RF sputtered quartz plus polyimide	73
57.	Wafer 8-13. The dielectric consist of PIQ-13 plus RF sputtered quartz	75
58.	Wafer 5-14. 0.5μm sputtered quartz	76
59.	Wafer 8-13. PIQ plus sputtered quartz on top	76
60.	Via's of wafer 5-15, dielectric consist of sputtered quartz	77
61.	Cross-over of wafer 5-15	77
62.	Perpendicular view of cross-overs of wafer 5-15	78
63.	Cross-section of big capacitor for wafer 5-15	78
64.	Via of wafer 5-20, dielectric consist of quartz and polyimide	79
65.	Cross-over of wafer 5-20	79
66.	Wafer 5-3. The dielectric consist of plasma enhanced mitride	81
67.	Wafer 5-12. The dielectric consist of plasma enhanced nitride	83
68.	Wafer 8-10. The dielectric consist of PIQ plus plasma enhanced nitride	85
69.	Cross-section of via for wafer 5-2	86
70.	Via section of wafer 5-2	86

Figure		Page
71.	Cross-over of wafer 5-2 illustrating step-coverage of dielectric	87
72.	Magnification of a first layer metal interconnect covered with dielectric for wafer 5-2	87
73.	Via of wafer 7-19, dielectric consist of polyimide and plasma deposited silicon nitride	88
74.	Cross-over of wafer 7-19	88
75.	Wafer 9-16. The dielectric consist of PI-2555	90
76.	Wafer 9-25. The dielectric consist of PIQ	92
77.	Wafer 8-18. The dielectric consist of PI-2555	94
78.	Wafer 8-20. The dielectric consist of PI-2545	96.
79.	Wafer 8-22. The dielectric consist of PIQ-13	98
80.	Wafer 8-24. The dielectric consist of PI-2555	100
81.	Wafer 8-25. The dielectric consist of PI-2545	102
82.	Wafer 8-13. The dielectric consist of PIQ-13	104
83.	Wafer 9-23. 1µm PIQ	105
84.	Wafer 9-16. 0.5μm Dupont PI 2555	105
85.	Dupont PI 2555 approximately lum thick. Notice particulates	106
86.	Dupont PI 2555. On a few wafers, light areas were observed in the polyimide	106
87.	Wafer 8-18. 1µm PI 2555	107
88.	Wafer 8-18. Notice that occasionally, breakdown occurred between pads	107
89.	Wafer 9-25. 1um PTO	1:08

Figure		Page
90.	Via of wafer 9-13, dielectric consist of thin layer polyimide	109
91.	Cross-section of big capacitor for wafer 9-13	109
92.	Via of wafer 8-21, dielectric consist of approximately PIQ-13	110
93.	Cross-over of wafer 8-21	110
94.	Cross-section of big capacitor for wafer $8-21$	111
95.	Cross section of big capacitor for wafer 8-1	111
96.	A plot of normalized breakdown voltages for cross-overs	114
97.	A plot of normalized breakdown voltages for capacitors	115
98.	A plot of normalized breakdown voltages for cross-overs	116
99.	A plot of normalized breakdown voltages for capacitors	117
100.	Measured value of leakage current as a function of voltage	118
101.	Ranking of the top ten wafers (of the 30 tested) in percentage having the highest C.D.F.M. before any annealing temperatures based on wafer 2-2 (highest) with a C.D.F.M. = $14,367 \times 10^{55}$ volts ² ohm ⁴ / μ m ⁴ .	128
102.	Ranking of the top ten wafers (of the 30 tested) in percentage having the highest C.D.F.M. after final temperature anneal based on wafer 2-2 (highest) with a C.D.F.M. = 6852x10 ⁵³ volts ² .	
	ohm4/um4	129

Figure			Page
103.	Ranking of the top ten wafers (of the 30 tested) in percentage having the highest C.D.F.M. after final temperature anneal based on wafer 8-13 (highest) assuming two micron thick polyimides whereas all other dielectrics and composits are one micron thick		130
104.	Wafer 4-7. Micrograph of a pin-hole location as etched through low-pressure CVD oxide into the thin aluminum of the test pattern	•	132
105.	Wafer 4-10. A pin-hole in plasma deposited oxide (from Pacific Western) resulting from removing particulates in the scrubber	•	132
106.	Illustration of pressure cooker arranged for making pressure-temperature-humidity-bias test		134
107.	Complete set-up for making pressure-temperature-humidity-bias (PTHB) test on dielectrics		134

LIST OF TABLES

Table		Page
1.	WAFER CODE	12
2.	WAFER TYPE	12
3.	MEASURED DATA AND VISUAL INSPECTION SUMMARY FOR WAFER MSI-7	19
4.	MEASURED DATA AND VISUAL INSPECTION SUMMARY FOR WAFER 9-2	21
5.	MEASURED DATA AND VISUAL INSPECTION SUMMARY FOR WAFER 9-8	22
6.	MEASURED DATA AND VISUAL INSPECTION SUMMARY FOR WAFER 2-22	32
7.	MEASURED DATA AND VISUAL INSPECTION SUMMARY FOR WAFER 2-8	33
8.	MEASURED DATA AND VISUAL INSPECTION SUMMARY FOR WAFER 2-15	34
9.	VIA RESISTANCE DATA FOR WAFER 2-15 AS MEASURED BEFORE ANY TEMPERATURE ANNEAL	36
10.	VIA RESISTANCE DATA FOR WAFER 2-15 AS MEASURED AFTER A 30 MINUTE 100°C TEMPERATURE ANNEAL IN NITROGEN	36
11.	VIA RESISTANCE DATA FOR WAFER 2-15 MEASURED AFTER AN ADDITIONAL 30 MINUTE 200°C TEMPERATURE ANNEAL	27
12.	VIA RESISTANCE DATA FOR WAFER 2-15 MEASURED AFTER AN ADDITIONAL 30 MINUTES 300°C ANNEAL IN NITROGEN .	37 37
13.	VIA RESISTANCE DATA FOR WAFER 2-15 MEASURED AFTER AN ADDITIONAL 30 MINUTES 400°C ANNEAL IN NITROGEN .	38
14.	MEASURED DATA AND VISUAL INSPECTION SUMMARY FOR WAFER 2-2	39
15.	SUMMARY OF MEASURED DATA AND VISUAL INSPECTION FOR WAFER 7-2	41

LIST OF TABLES

Table		Page
16.	SUMMARY OF MEASURED DATA AND VISUAL INSPECTION FOR WAFER 7-13	43
17.	SUMMARY OF MEASURED DATA AND VISUAL INSPECTION FOR WAFER 3-23	, 49
18.	SUMMARY OF MEASURED DATA AND VISUAL INSPECTION FOR WAFER 3-9	. 51
19.	SUMMARY OF MEASURED DATA AND VISUAL INSPECTION FOR WAFER 3-6	. 53
20.	SUMMARY OF MEASURED DATA AND VISUAL INSPECTION FOR WAFER 7-25	. 55
21.	SUMMARY OF MEASURED DATA AND VISUAL INSPECTION FOR WAFER 7-15	. 57
22.	SUMMARY OF MEASURED DATA AND VISUAL INSPECTION FOR WAFER 7-14	. 58
23.	SUMMARY OF MEASURED DATA AND VISUAL INSPECTION FOR WAFER 3-25	. 59
24.	SUMMARY OF MEASURED DATA AND VISUAL INSPECTION FOR WAFER 5.14	. 70
25.	SUMMARY OF MEASURED DATA AND VISUAL INSPECTION FOR WAFER 5-21	. 72
26.	SUMMARY OF MEASURED DATA AND VISUAL INSPECTION FOR WAFER 8-3	. 74
27.	SUMMARY OF MEASURED DATA AND VISUAL INSPECTION FOR WAFER 5-3	. 80
28.	SUMMARY OF MEASURED DATA AND VISUAL INSPECTION FOR WAFER 5-12	. 82
29.	SUMMARY OF MEASURED DATA AND VISUAL INSPECTION FOR WAFER 8-10	. 84
30.	SUMMARY OF MEASURED DATA AND VISUAL INSPECTION	. 89

LIST OF TABLES (Continued)

Table		Page
31.	SUMMARY OF MEASURED DATA AND VISUAL INSPECTION FOR WAFER 9-25	91
32.	SUMMARY OF MEASURED DATA AND VISUAL INSPECTION FOR WAFER 8-18	93
33.	SUMMARY OF MEASURED DATA AND VISUAL INSPECTION FOR WAFER 8-20	95
34.	SUMMARY OF MEASURED DATA AND VISUAL INSPECTION FOR WAFER 8-22	97
35.	SUMMARY OF MEASURED DATA AND VISUAL INSPECTION FOR WAFER 8-24	99
36.	SUMMARY OF MEASURED DATA AND VISUAL INSPECTION FOR WAFER 8-25	101
37.	SUMMARY OF MEASURED DATA AND VISUAL INSPECTION FOR WAFER 8-13	103
38.	SUMMARY OF BREAKDOWN VOLTAGES AND LEAKAGE CURRENTS FOR CAPACITOR (C), CROSS-OVER (C.O.) AND BOTH LEVELS OF INTERDIGITATED FINGERS (I.F.)	113
39.	A SUMMARY OF DIELECYRIC THICKNESSES, THE NUMBER OF VIA OPEN-CIRCUITS AND THE NUMBER OF CAPACITOR (C), CROSS-OVER (C.O.) AND INTERDIGITATED FINGERS (I.F.) SHORT CIRCUITS	121
40.	CALCULATED VALUES OF DIELECTRIC FIGURE OF MERITS (D.F.M.) AND THE COMPREHENSIVE DIELECTRIC FIGURE OF MERIT (C.D.F.M.) FOR ALL WAFERS TESTED PRIOR TO TEMPERATURE ANNEALING	. 126
41.		127
42.	A SUMMARY OF THE NUMBER OF PINHOLES AS DETERMINED FROM THE DECORATION TEST AND THE ADHESION CHARACTERISTIC OF TOP METAL TO THE DIELECTRIC AND ALSO THE DIELECTRIC TO THE SUBSTRATE (OVER ALUMINUM)	
	USING THE SCOTCH TAPE STRESS TEST.	. 136

I. INTRODUCTION

The objectives of this part of the contract effort was to conduct an accurate study and evaluation of dielectric thin films in order to find the material or combination of materials which would optimize NASA's double layer metal process. Emphasis was placed on polyimide dielectrics because of their reported outstanding dielectric characteristics (including electrical, chemical, thermal, and mechanical) and ease of processing, as well as their rapid acceptance by the semiconductor industry.

The following dielectric materials were evaluated:

- a. Atmospheric CVD silicon dioxide (phosphorous doped)
- b. Polyimides (Hitachi PIQ-13 and Dupont PI-2555 and PI-2545)
- c. Low pressure CVD silicon dioxide (both doped and undoped varieties)
- d. Sputtered quartz (undoped)
- e. Plasma deposited silicon dioxide (both doped and undoped from two different vendors)
- f. Plasma deposited silicon nitride
- g. Composite films of polyimide and atmospheric CVD silicon dioxide
 - Composite films of polyimide and LFCVD silicon dioxide (doped/undoped)

Composite films of polyimide and sputtered quartz

Composite films of polyimide and plasma deposited silicon

dioxide

Composite films of polyimide and plasma deposited silicon nitride

h. All of above films over thin aluminum for pin-hole evaluation.

Over 200 wafers have been prepared utilizing these dielectric materials such that a thorough characterization and evaluation may be conducted. Based upon these findings, certain dielectrics are recommended for NASA's use in their custom VLSI MOS arrays which will be yield efficient, reliable (short and long term life tested), and hence economical.

II. EXPERIMENTAL PROCEDURE

A. General Setup

In this experimental study, 10 lots of 25 each 3 inch

Monsanto silicon wafers having a resistivity of 9-15 ohm-cm.,

orientation <111> and boron doping were used as substrate

material. These ten lots were designated as MS1 through MS10.

Two lots, MS6 and MS10 were used for process development of the

polyimide materials and test wafers. Lot MS4 was used for pinhole

density determination test and dielectric adhesion studies.

All wafers used in this study were furnished by Applied Micro

Circuits Corporation of San Diego, California.

All wafers were thermally oxidized at the outset using a Thermco furnace set at 1050°C and a 15 minute dry 0_2 , 120 minute steam, 15 dry 0_2 and a 20 minute N_2 anneal process resulting in approximately $7500\,\text{Å}$ thick oxide. Oxide and other dielectric measurements were made with a Nanometrics Nano Spec/AFT Micro Area Gauge and a Nanometrics CTS-102 Film Thickness instrument. The pinhole decoration wafers, Lot MS4, were thermally oxidized with only 1200 $\,\text{Å}\,$ of oxide (royal blue color in white light) and a subsequent 2000 $\,\text{Å}\,$ Al/Si metal DC sputtered on them.

Metallization of all wafers was accomplished in an MRC 603 vertical sputter system at approximately 8 kilowatt deposition power and 12 millitorr pressure. Patterning of aluminum (and dielectric) thin films was accomplished with positive photoresist and a Perkin-Elmer 140 microalign projection exposure system.

Most dielectrics used in this study were deposited at different semiconductor related vendors—as indicated in Wafer Process List, section C—using the vendors demonstration equipment. Atmospheric CVD phosphorous doped oxides deposited using an AMS 2000 Reactor at 450°C and all polyimides (Hitachi PIQ and Dupont PI 2545 and PI 2555) were processed at Applied Micro Circuits Corporation. Low pressure CVD oxides were deposited using an Applied Crystal Science SPLTO Reactor (diffusion tube type) at 420°C, 320 millitorr and 4% by mol. weight phosphorous doped. Plasma enhanced nitrides were deposited by the LFE Corporation using their System 8000 reactor at 340°C, and 600 watts. The plasma enhanced oxides were deposited primarily

by Pacific Western Systems, Inc. in their Coyote Reactor at 380°C and a pressure of approximately 1 torr. A few plasma deposited oxide wafers were processed at LFE Corp. at 340°C , 45 watts power level. The sputtered quartz was deposited at Varian Corp. using their model 3125 RF S-Gun System with revolving planetary system. Wafers are heated to approximately $150-200^{\circ}\text{C}$ during deposition and result in an oxide composite of 810_{x} where X \approx 1.3. For all composite materials (i.e., deposition of 4000°A atmospheric CVD oxide followed by a 1 μ thick layer of DupontPI 2555 polyimide), the first layer was deposited and via holes (and pads) were patterned prior to depositing and patterning the second dielectric material.

Both first (1 µ thick) and second (1.5 µ thick) level metal layers consist of aluminum with 1% silicon. In order to obtain low ohmic resistance between these two levels in via's (opening in the dielectric to allow first and second level continuity), a RF sputter etch step is incorporated in-situ prior to depositing the second level metal. In processing some of the wafers for this study, the sputter etch step was inadvertantly left out. This resulted in via chains having very high resistance (open-circuited) which could not be broken down by either increased anneal temperature and time or by applying a d.c. bias.

B. Test Mask Description

The test mask used in evaluating these dielectrics consisted of several areas as follows:

- AREA I. <u>Via Test Pattern</u>. Consist of a chain of 400, 600, 1000

 2000 via's all 8 x 8 microns square. Also, small chain

 of 10 via's both 8 x 8 and 6 x 6 microns in size.
- AREA II. <u>Capacitor Short Check</u>. Consist of first and second level metal capacitor plates of area 1194 mils² or 770,625 microns square. Second metal overlaps first metal by 10 microns all around.
- AREA III. Cross-Over Test Area. Consist of 8442 cross-overs having first level metal 5 microns wide and 139,700 microns long, and second level metal 8 microns wide and 84,350 microns long. Total cross-over area is 337,680 square microns (523.3 square mils).
- AREA IV. Interdigitated Metal. For each level of metal, unconnected interdigitated metal patterns are formed, each half of the pattern being connected to a pad. First level metal pattern consist of 19,000 micron (748 mils) long, 5 micron wide with 5 micron spaces. Second level metal pattern consist of 12,160 micron (479 mils) long, 8 microns wide with 8 micron spaces.
- AREA V. Metal Resistivity Monitoring Pattern. For each level of metal, a pattern consisting of three pads is used to monitor the resistivity of that levels metal. Between the first two pads, 35 squares of metal exist. Between the first and third pad, 74 squares of metal exist. By

measuring the resistance between these two sets of pads, the metal ohms per square may be determined excluding contact resistance of the measuring probes. The width of these first and second level metal runs is 50 microns.

C. Wafer Process List

The following wafers have been processed for accurate comparison of the most promising dielectrics based on extensive literature searches:

1. Atmospheric Chemical Vapor Deposited Silicon Dioxide, Atm. ${ m Si0}_2$

Source: Applied Micro Circuits Corporation 8808 Balboa Avenue San Diego, CA 92123

- 17 wafers, 1µ thick phosphorous doped (MS1-1 thru 17)
 - 6 wafers, 0.4µ thick phosphorous doped for PI composit 2-PIQ 13 wafers 9-1, 9-2 2-PI 2555 wafers 9-3, 9-4 2-PI 2545 wafers 9-5, 9-6
 - 6 wafers, 0.4μ thick phosphorous doped over PI 2-PIQ 13 wafers 9-7, 9-8 2-PI 2555 wafers 9-9, 9-10 2-PI 2545 wafers 9-11, 9-12
 - 1 wafer for pinhole density determination

1 wafer, 0.4µ thick vapox then PIQ 13, 4-20

2. Low Pressure Chemical Vapor Deposited Silicon Dioxide LPCVD-Si0 $_{\mathrm{2}}$

Source: Applied Crystal Science 2035 O'Toole Avenue San Jose, CA 95131 ATTN: Chris Guiver (408)946-9353

- 6 wafers, 1µ thick phosphorous doped (3-4% mol. wt.) (wafers 2-8, 2-9, 2-10, 2-11, 2-12, 2-14)
- 6 wafers, 1μ thick undoped (wafers 2-7, 2-16, 2-17, 2-21, 2-22, 2-23)
- 6 wafers, 0.25µ thick phosphorous doped (for PI composit)
 2-PIQ 13 wafers 2-13, 2-15
 2-PI 2555 wafers 2-18, 2-19
 2-PI 2545 wafers 2-20, 2-24

- 6 wafers, 0.25µ thick undoped (for PI composit) 2-PIQ 13 wafers 2-1, 2-2 2-PI 2555 wafers 2-3, 2-4 2-PI 2545 wafers 2-5, 2-6
- 6 wafers, 0.25µ thick phosphorous doped over PI 2-PIO 13, wafers 7-1, 7-2 2-PI 2555, wafers 7-5, 7-7 2-PI 2545, wafers 7-9, 7-10
- 6 wafers, 0.25µ thick undoped over PI 2-PIQ 13, wafers 7-13, 7-3 2-PI 2555, wafers 7-6, 7-17 2-PI 2545, wafers 8-6, 8-7
- 4 wafers for pinhole density determination
 2 wafers with 1μ phosphorous doped LPCVD
 SiO₂ (4-6, 4-7)
 1 wafer with 0.25μ phosphorous doped for
 PI composit (4-8)
 1 wafer with PIQ 13 then 0.25μ phosphorous
 doped (4-16)

Plasma Enhanced Silicon Dioxide, P.E. Si02

Source: Pacific Western Systems, Inc. 505 East Evelyn Avenue Mountain View, CA 94041 ATTN: John Ronald (415) 961-8855

- 6 wafers, 1µ thick phosphorous doped (3-4% mol. Wt.) (wafers 3-3, 3-12, 3-19, 3-20, 3-21, 3-23)
- 6 wafers, 1 thick undoped (wafers 3-11, 3-9, 3-14, 3-17, 3-22, 3-24)
- 6 wafers, 0.25 thick phosphorous doped (for PI composit)
 2-PIQ 13, wafers 3-1, 3-6
 2-PI 2555, wafers 3-8, 3-10
 2-PI 2545, wafers 3-15, 3-18
- 6 wafers, 0.25 μ thick undoped (for PI composit) 2-PIQ 13, wafers 3-2, 3-4 2-PI 2555, wafers 3-5, 3-7 2-PI 2545, wafers 3-13, 3-16
- 6 wafers, 0.25µ thick phosphorous doped over PI 2-PIQ 13, wafers 7-15, 7-16 2-PI 2555, wafers 7-8, 7-18 2-PI 2545, wafers 7-11, 7-12

5 wafers, 0.25µ thick undoped over PI 2-PIQ 13, wafers 7-4, 7-14 2-PI 2555, wafers 8-11, 8-12 1-PI 2545, wafers 7-24

doped (4-17)

4 wafers for pinhole density determination 2 wafers with 1μ phosphorous doped P.E. \sin_2 (4-9, 4-10) 1 wafer with 0.25 μ phosphorous doped for PI composit (4-11) 1 wafer with PIQ 13 then 0.25 μ phosphorous

Also sent 3 wafers to Bill Liggett, LFE, for plasma enhanced SiO, deposition as follows:

2 wafer, 1µ thick undoped, wafer 3-25, 5-25 1 wafer, 0.25µ thick undoped (for PI composit), wafer 7-25

4. Sputtered Quartz SiOx

Source: Varian Corporation
611 Hansen Way
Palo Alto, CA 94303
ATTN: Dennis Nichols
(415) 493-4000 Ext. 3826

7 wafers, 5000 Å thick (MS 5-13 thru 19)

- 5 wafers, 1000 Å thick for PI composit 2-PIQ 13 wafers 5-20, 5-21 2-PI 2555 wafers 5-22, 5-23 1-PI 2545 wafers 5-24
- 6 wafers, PI then 1000 Å thick quartz 2-PIQ 13 wafers 8-2, 8-3 2-PI 2555 wafers 8-4, 8-5 2-PI 2545 wafers 8-14, 8-15
- 3 wafers for pinhole density determination 1 wafer with 5000 Å quartz, wafer 4-14 ! wafer with PIO 13 then 1000 Å quartz, 4-19 1 wafer with 1000 Å quartz for PI composit, 4-15

5. Plasma Enhanced Silicon Nitride, P.E. Si N x y

Source: LFE Corporation 3375 Scott Blvd.

Suite 102

Santa Clara, CA 95051 Attn: William T. Liggett (408) 727-2360

- 6 wafers, 1μ thick P.E. $Si_{x}^{N}y$ (MS 5-1 through 6)
- 6 wafers, 0.25µ thick for P.I. composit 3-PIQ 13 wafers 5-8, 5-11, 5-12 2-PI 2555 wafers 5-9, 5-10 1- PI 2545 wafer 5-7
- 6 wafers, P.I. then 0.25μ thick P.E. Si N y 2-PIQ 13 wafers 8-8, 8-10 2-PI 2555 wafers 7-19, 7-20 2-PI 2545 wafers 7-21, 7-22
- 3 wafers for pinhole density determination 1 wafer with 1 μ PE Si N (4-12) 1 wafer with 0.25 μ for P.I. composit (4-13) 1 wafer with PIQ 13 then 0.25 μ P.E. Si N (4-18)

6. Polyimides, Hitachi PIQ-13 and Dupont PI 2545 and PI 2555

Source: Applied Micro Circuits Corporation and Mississippi State University

- 2 wafers, 0.5µ thick PIQ 13 (9-13, 9-14)
- 2 wafers, 0.5µ thick PI 2555 (9-15, 9-16)
- 2 wafers, 0.5µ thick PI 2545 (9-17, 9-18)
- 2 wafers, 0.75µ thick PIQ 13 (9-19, 9-20)
- 2 wafers, 0.75µ thick PI 2555 (9-21, 9-22)
- 2 wafers, 0.75µ thick PI 2545 (9-23, 9-24)
- 2 wafers, 1.0µ thick PIQ 13 (9-25, 8-16)
- 2 wafers, 1.0 thick PI 2555 (8-17, 8-18)

- 2 wafers, 1.0µ thick PI 2545 (8-19, 8-20)
- 2 wafers, 1.25µ thick PIQ 13 (8-21, 8-22)
- 2 wafers, 1.25p thick PI 2555 (8-23, 8-24)
- 2 wafers, 1.25 thick PI 2545 (8-25, 2-25)
- 4 wafers for pinhole density determination
 - 1 wafer with 0.75µ thick PIQ 13 (4-21)
 - 1 wafer with 1.25µ thick PIQ 13 (4-23)
 - 1 wafer with 0.75µ thick PI 2555 (4-22)
 - 1 wafer with 1.25µ thick PI 2555 (4-24)
- 2 wafers, 2.0µ thick PIO 13 (8-1, 8-13)
- 2 wafers, 2.0µ thick PI 2555 (10-4, 10-6)
- 2 wafers, 2.0µ thick PI 2545 (10-8, 10-23)

D. Restricted Wafer List Studied

Of the some 200 wafers processed, over 200 die per wafer were realized. In collecting data for the dielectric comparative studies, over 40 measurements per die is required (resistance, leakage currents and breakdown voltage measurements for capacitor, cross-over, interdigitated fingers, via chain as well as capacitance of big capacitor for five different anneal temperatures) resulting in over 1.5 million measurements. Since collecting and analyzing this amount of data within the time frame required was impossible, the number of wafers studied was decreased to 30 representative dielectrics, in addition to those in lot M4 which were used for pin-hole and dielectric adhesion studies. For ease of reference, the dielectrics have been coded as indicated in Table 1, and the actual wafers studied are listed in Table 2.

TABLE I - WAFER CODE

Wafer Type	Code
Doped Atmospheric CVD SiO ₂	D-0x
Doped LPCVD SiO2	D-LP-0x
Undoped LPCVD Si02	U-LP-0x
Doped Plasma Enhanced SiO ₂	D-PE-Ox
Undoped Plasma Enhanced SiO2	U-PE-0x
Sputtered Quartz	Qtz
Plasma Enhanced Si N x y	PE-Nit
Hitachi PIQ-13	PIQ
Dupont PI-2545	2545
Dupont PI-2555	2555

TABLE 2 - WAFER TYPE

Wafer No.		Туре
1-7		1µD-0x
9-2		0.4µD-0x + 0.7µ PIQ
9–8		0.9µ PIQ + 0.5µ D-0x
2-22		1µ U-LP-Ox
2-8		lμ D-LP-Ox
2–15		0.25μ D-LP-Ox + 1μ PIQ
2-2		0.25µ U-LP-0x + 1µ PIQ
7-2		0.7µ PIQ + 0.25µ D-LP-Ox
7–13		0.6μ PIQ + 0.25μ U-LP-Ox
3-23		0.95 _µ D-PE-Ox
3-9		1.1µ U-PE-0x
3-6		0.25µ D-PE-O _X + 0.9µ PIO
7–25	-12-	0.25µ U-PE-Ox + 0.9µ PIQ

TABLE 2 - WAFER TYPE (Continued)

Wafer No.	Туре
7–15	0.6µ PIQ + 0.25µ D-PE-Ox
7–14	0.6µ PIQ + 0.25µ U-PE-Ox
3-25	0.8µ U-PE-Ox
5-14	0.35µ Qtz
5-21	0.1µ Qtz + 0.9µ PIQ
8-3	0.6µ PIQ + 0.1µ Qtz
5-3	1.0µ PE-Nit
5-12	0.25μ PE-Nit + 0.9μ PIQ
8-10	0.6µ PIQ + 0.2µ PE-Nit
9-16	1.0µ 2555
9–25	0.8µ PIQ
8-18	1.5µ 2555
8-20	1.1µ 2545
8-22	1.2µ PIQ
8-24	1.5µ 2555
8-25	1.25µ 2545
8-13	1.7µ PIQ

E. Test Setup

The test setup for monitoring breakdown voltages, leakage currents and via chain resistances is shown pictorially in Figures 1 through 3. An Electroglas probe station was used in conjunction with a Keithley 416 Electrometer (for current leakage measurements) and other precision voltage, capacitance and resistance measurement apparatus.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 1. Test set-up for making break-down voltage measurements.

Figure 2. Test set-up for making leakage current measurements.

Notice the copper shielding employed to increase precision of measurement.

Figure 3. Test set-up used to monitor via resistance capacitance measurements, short circuit and open circuits for capacitors, cross-overs, and interdigitated fingers.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

III. EXPERIMENTAL DATA AND RESULTS

Data and results on an individual dielectric basis and its composite with polyimide are presented together as a group in the same order as the dielectric listing presented in Table 2. Summary results for atmospheric CVD oxide are presented in Tables 3 through 5. It should be noted that this dielectric was annealed at 400° C for 30 minutes in nitrogen prior to taking measurements on it. Thus, for this dielectric (and only this dielectric) data could not be taken on breakdown voltages, leakage currents, via resistances, etc. as a function of anneal temperature and time as was taken for all other dielectrics. Figure 4 (top) presents a profile of via resistance as a function of position across the wafer for 400 and 500°C temperature anneal. The bottom figure represents the behavior of via resistance as a function of anneal temperature (representative data taken on later set of experiments). Figures 5 through 9 represent visual inspections of atmospheric CVD oxide wafers as observed through a microscope. As seen, the deposition of oxide on top of polyimide resulted in severe cracking of this glass layer. Also shown are typical breakdown phenomena on capacitors and cross-over sections of the test-pattern. Figures 10 through 19 illustrate observed results in viewing cross-sections of this dielectric and its polyimide composites using a scanning electron microscope (SEM). Using this analytical technique, thicknesses of the various thin films can be accurately determined, step coverage of the dielectric over first level metal and second level metal over the dielectric can be observed, via formation

and misalignment problems associated with via formation are noted, etc.

Information on low pressure CVD oxides (sometimes referred to as low temperature oxides - LTO) and their composite with polyimides are given in summary Tables 6 through 8 and 14 through 16. The information presented in Tables 9 through 13 represent via resistance data for wafer 2-15 taken at various temperature anneal states. This same data was taken and tabulated for all wafers monitored, but is presented here for this one wafer as an indication of the number of die per wafer monitored (76) and the relative location of these die on the wafer. Based on this data for each wafer, the via resistance vs. position profile curves have been drawn, as shown in Figures 20 through 23. Figure 24 shows a microscope photography of an observed capacitor breakdown location for wafer 7-2, and Figures 25 through 31 present representative SEM analysis for low pressure CVD oxide films and their polyimide composites.

Plasma enhanced oxides and their composites with polyimides are presented in Tables 17 through 23 and associated average via resistance data in Figures 32-through 36. Figures 37 through 42 present microscope observed results associated with plasma deposited oxides and their polyimide composites and Figures 43 through 54 their SEM analysis.

Summary of measured data and visual inspection information for sputtered quartz are presented in Tables 24 through 26 and associated average via resistance data in Figures 55 through 57.

Microscope inspection photographs of sputtered quartz and their polyimide composites are shown in Figures 58 and 59, and related SEM analysis in Figures 60 through 65.

Plasma enchanced nitride summary data is presented in Tables 27 through 29, average via resistance data in Figures 66 through 68, and SEM analysis in Figures 69 through 74.

Lastly, straight polyimide as a dielectric is considered, with summary data presented in Tables 30 through 37 and average via resistance data in Figures 75 through 82. Microscope observations are presented in Figures 83 through 89 and SEM analyses in Figures 90 through 95.

ORIGINAL PAGE IS OF POOR QUALITY

VASER	NUMBER	1-7		I	IELECTR	C TYPE DO	ED ATMOS	PHERIC ONIDE			
CAPACITANCE (100KHZ) 15t NETAL(CO) RESISTANCE		100KHZ)	30.375pf		DIELECTRIC THICKNESS			.779microns			
		ESISTANCE 1172 chas		5 2	2nd METAL(CO) RESISTANCE			551ohns			
		LEAKAGE	CURRENT (pa	>	BRI	AKDOVN VOL	TAGE				
						200 'C					
CAPACITOR		.1	750**		N/A		160		MPERATURE FOR		
CROSS-OVER		405	230		N/A	630	470	POLYIMIDE OTHERS 500 (CO) - CROS	, <u>c</u>		
ist METAL([]	E)	55	135		N/A	N/A	N/A	(IF) - INTE	RDIGITATED		
ind HETAL(IF)		80	205		N/A	N/A	N/A	(NO) - NORHALLY OPEN OPEN- R)10Kegoha			
MEASURING VO	OLTAGE		142.4					INTERDIC	·		
		VIA CHAINS			•			FINGERS			
	1000	600	400	CAPACITO	l ,	CROSS-CVE	R	ist METAL	2nd HETAL		
	•	ð	1	3		5		1	4		
)PEKS			0	(NO)		(10)		(NO)	(NO)		
					INSPECT		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
		HE ANNEAL						ANNEALING			
# 11			eep Sidewa		. 4 4 4 4 6 6 6			THE CENTER D	NE,		
POOR STEP CO	OOR STEP COVERAGE						OCCATIONAL BREAKDOWNS BETWEEN PADS				

Table 3. Measured data and visual inspection summary for wafer ${\tt MSl-7.}$

ORIGINAL PAGE IS OF POOR QUALITY

Figure 4. Wafer 1-7. The dielectric consist of 1.0 micron doped atmospheric CVD oxide.

ORIGINAL PAGE IS OF POOR QUALITY

WAFER	NUMBER	9-2	•	D	IELECTR	IC TYPE DO	PED ATMOS	OXIDE + PIO		
CAPACITANCE (100KHZ) 1st METAL(CO) RESISTANCE			23.375pf		DIELECTRIC THICKNESS			1.961microns		
			2633ohm	s 1	2nd METAL(CO) RESISTANCE				330ohms	
		LEAKAGE	CURRENT (pa)	BR	EAKDOWN VO	LTAGE			
		-	- '			204 'C				
CAPACITOR		54.9	3.1		590	575	400	*- FINAL TE	MPERATURE FO	
CROSS-OVER		1100	170		6:10	440	575	OTHERS 500	٠.۲	
1st RETAL(IF)		180	85		N/A	N/A	N/A	- (CO) - CROSS-OVER (IF) - INTERDIGITATE - FINGERS (NO) - NORMALLY OPER - OPEN - R)10Megobm		
2md METAL(IF)		540	125		R/A	N/A	N/A			
MEASURING VO								OLDIN- MAIN	uedone	
		AIY CHY					INTERDIGITATED FINGERS			
									2nd METAL	
SHORTS	0	•	0	.0		0		0	ı	
OPE NS	ALL	ALL	ALL	(NO)		(NO)		(NO)	(NO)	
				VISUAL						
		RE ANNEAL	•					ANNEALING		
	-		LOOKS COOL			OGC1		REAKDOWNS BE	TVELEN	
						PARS AND ALONG STEPS, NO SIGN OF LIFTING				

Table 4. Measured data and visual inspection summary for wafer 9-2.

VATE	R NUMBER	7-1		0	IELECTE	IC TYPE PI	a + DOPED	ATMOS OIIE)Ē
CAPI	ACITANCE (100KHZ)	19pf		DIEL	ECTRIC THI	KNESS	1.émicro	35
ist META	AL (CO) RES	ISTANCE	2784chm	s 2:	nd META	L(CO) RESIS	TANCE	319ohms	
		LEAKAGE	URRENT (pa)	BR	EARDOWN VO	TIGE		
		•							
CAPACITOR		5.4	23.4		335	250	355		EMPERATURE FO
CROSS-OVER		255	545		455	540	340	OTHERS SO	0.46
ist METAL()	IF)	100	280		N/A	n/a	N/A		CERDIGITATED
ind HETAL()	IF)	255	470		n/a	R/A	R/A	(NO) - NOR	
MEASURING \								. ULER- E/I	AVEÄANT
								INTERDI	GITATED
		VIA CHAI	NS					FING	ER5
									2nd METAL
SHORTS	1	•	0	0		0		2	3
op ens	ALL	ALL	76	(RO)		(NO)		(NO)	
			,	VISUAL					
	BEFO	RE ANNEALI	NG				AFTER	ANNEALING	
•			VELOPED CI	RACKS					OCCURRED AT
EFORE 1nd	METAL DEP	OSITION, P	ETAL IN CI	RACKS	TH	E STEPS			
ORMED SHOR	ITS BETWEE	N THE TOP	OF THE CAN	PACITOR					
ND THE CRO	SS-OVER								

Table 5. Measured data and visual inspection summary for wafer 9-8.

Figure 5. Wafer 9-8. $l\mu\,m$ PIQ plus 4000Å atmospheric CVD SiO₂ Notice cracks in top dielectric.

Figure 6. Wafer 9-8. In addition to cracks in CVD oxide, also notice staining of second level metal pads.

ORIG ... BLACK AND WHITE PHOTOGRAPH

Figure 7. Wafer 9-8. PIQ plus CVD SiO₂. The crack in the top layer dielectric (CVD-SiO₂) is sufficient to cause rupture in second metal cross-over.

Figure 8. Wafer 1-22. $1\mu m$ atmospheric CVD SiO2. Notice location of capacitor breakdown at 350 volts.

Figure 9. Wafer 9-8. 1μ PIQ plus 4000\AA atmospheric CVD Si0_2 . Notice that capacitor breakdown in along the crack in top layer oxide.

Figure 10. Wafer 1-5, SEM Micrograph of cross-over structure utilizing atmospheric CVD deposited SiO₂ as dielectric of approximately 1 micron thickness. Magnification is 5500X.

Figure 11. Wafer 1-5, SEM micrograph of via cross-section utilizing 1 micron atmospheric CVD deposited ${\rm SiO}_2$ as dielectric. Magnification is 6050X.

Figure 12. Wafer 1-5, Microslice of large capacitor showing thicknesses of top layer Al/Si, atmospheric CVD SiO₂ and bottom layer Al/Si. Magnification is 8800X. (More accurate thin film thicknesses were obtained from the SEM CRT than that illustrated in this photo.)

ORIGINAL PAGE REACK AUD WHOLE PROTECTED RAPH

Figure 13. Wafer 9-1, cross-section of a via, dielectric consists of 0.4 μ thick undoped atmospheric CVD SiO₂ (bottom) plus 0.75 μ PIQ-13 (top). Magnification is 6600X.

Figure 14. Cross-over of wafer 9-1, notice planarizing characteristic of polyimide. Magnification is 4400X.

Figure 15. Cross-section of wafer 9-1 showing thickness of top layer A1/Si, PIQ-13, atmospheric CVD $\rm SiO_2$ and bottom Layer A1/Si. Magnification is 8800X.

Figure 16. Via of wafer 9-7, dielectric consisting of 0.4 μ atmospheric CVD SiO₂ (top) and approximately 1μ PIQ-13 (bottom). Notice crack in SiO₂ layer. Magnification is 6600X.

Figure 17. Via of wafer 9-7 with top layer Al/Si removed (knocked off in preparing SEM sample). Magnification is 6600X.

CRIMINE DACE BLACK AND WHITE PHOTOGRAPH

Figure 18. Cross-over of wafer 9-7 indicating the two layers of dielectric. Magnification is 6600X.

Figure 19. Cross-section of wafer 9-7 showing thickness of top layer Al/Si, atmospheric CVD/SiO₂, polyimide PIQ-13 and bottom layer Al/Si (not shown up here). Magnification is 8800X.

-VATE	R NUMBER	2-22	-	=	DIELECTE	IC TYPE	UNDGE	PED LTO	
CAPI	ACITANCE (109KHZ)	35.5pf		DIEL	ECTRIC THIC	KNESS	1.00 lmicron	s
ist NET	AL(CO) RES	SISTANCE	1455ehm	3	2nd METAI	L(CO) RESIS	TANCE	517ohms	
		LEAKAGE (URRENT (pa	3	BRI	AKDOWN VOL	TAGE		
			FINAL *			200 'C			
CAPACITOR		.05	.4		610	610	530	*- FINAL TE POLYINIDE	
CROSS-OVER								OTHERS 500	
ist METAL()	IE)	255	290		N/A	N/A	N/A	(IF)- INTE	RDIGITATED
ind METAL	IF)	410	470		N/A		N/A	(NO)- NORM	-
KEASURING V								UPER- R/IV	uegvna
		VIA CHAI		•				interdic Fince:	
								ist METAL	
\$HORTS	•	•	0	2		ô		1	i
OPENS -	71	44	43	(NO)		(NO)		(RO)	(NO)
#=####################################					L INSPECT	TION			
	BEFO	RE ANNEALI						ANNEALING	
vi	AS SLIGHT	LY OVER ET			7*******			EREAKDOWNS OF	
1	CEPS, NO S	IGNS OF LE	FTING			ALON	STEPS		•

Table 6. Measured data and visual inspection summary for wafer 2-22.

VATER NUMBI	ER 2-8		.D	IELECTR	IC TYPE DOP	ED LTO		
CAPACITANG	E (100KHZ)	31.5pf		BIEL	ECTRIC THIC	KNES5	.998micron	i
ist METAL(CO)	RESISTANCE	1436 chm	s 2:	nd META	L(CO) RESIS	TANCE	736ohns	
	LEAKAGE	CURRENT (pa	}	BR	eárdown vol	TAGE		
					200 'C			
CAPACITOR		.2		450	640	580		MPERATURE FOR
CROSS-OVER	140	425		550	490	520	OTHERS 500	·c
ist NETAL(IF)	140	245		N/A.	N/A	N/A		RDIGITATED
ind HETAL(IF)	245	385		N/A	N/A	N/A	(NO)- NORM	ALLY OPEN
BEASURING VOLTAGE	214.4	214.4					INTERDIC	·
	VIA CHA						FINGE	
10	40 604	400	CAPACITOR		CROSS-OVE	R	ist METAL	2nd HETAL
SHORTS	4 4	0	4		4		7	i
OPENS 7	1 57	45	(NO)		(NO)		(NO)	(NO)
			VISUAL				*****	**********
_	EFORE ANNEAL						ANNEATING	
VIAS OVE	R ETCHED, ST						OF BUBBLING	IN THE
TTEP COVERAGE	•			CE)	CTER DIE, N	Ó SIGN O	F LIFTING	•

Table 7. Measured data and visual inspection summary for wafer 2-8.

WAFER NUMBE	_		_		IC TYPE DOP	_	_	
CAPAGITANC	E (100KHZ)	19pf		DIEL	ECTRIC THIC	KNESS	.951micron	•
1st HETAL(CO)	RESISTANCE	1\$14ohm	5 2	nd HETA	L(CO) RESIS	TANCE	301ohms	
	LEAKAGE	CURRENT (pa)	BR	EAKDOWN VOI	TAGE		
*					200 'C			
CAPACITOR	.14	.4		555	540	540		PERATURE FOR
CROSS-OVER	180	250		585	530	540		· c
ist METAL(IF)	95	140		NFA	N/A	N/A	(IF)- INTE	RDIGITATED
2nd HETAL(IF)	150	215		N/A	N/A	N/A		ALLY OPEN
MEASURING VOLTAGE	214.4	214.4					INTERDIG	•
	AIY CHY						FINGE	
							ist METAL	
SHORTS	1 -	0	i		0		3	6
OPENS	1 2	4	(NO)		(NÖ)		(NO)	(NO)
# h h d g g y y g g g g g g g g g g g g g g g			VISUAL				. e u Steen p a 4 4 4	**************
. 3	FORE ANNEAL						ANNEALING	
VIA GOOS	DEFINITION A				BUBB		ENTER DIE,	OME
COOD STEP COVERAGE	E, SLICHTLY	STEEP STEP!	;	BRI	EAKDOWNS OC	CURED BET	TWEEN PADS	

Table 8. Measured data and visual inspection summary for wafer 2-15.

Figure 20. Wafer 2-15. The dielectric consists of 0.25 micron thick low pressure CVD doped oxide (bottom) plus 0.95 microns thick Hitachi PIQ-13 polyimide (top).

11 图图 11年

POSITION	i	2	3	4	5	6	7	ŧ	,	10	11
1	61.4	59.4	\$6.4	\$5 .8	\$4.4	58	56	55.4	\$4.2	\$3.\$	51.1
	61.1	42.3	60.1	58.5	57.4	54.7	\$7.7	54.3	55.5	53.4	53.4
3	45	63.2	61	54	43	38.4	\$1.1	52.3	\$4.9	54.8	\$4.3
•	65.1	63.9	58.9	55.4	60	CENTER	54.9	53.4	\$3.1	\$4.4	54.1
3	59.2	45.1	42.8	41.5	59.3	\$4.4	54.1	54.5	52.4	\$5.8	56.7
6	77.5	69.7	64.7	62.2	58.7	56.8	54.9	54.3	54.4	55.9	40.4
7	43.3	76	72.5	44.4	44	\$7.2	\$4.5	60.5	41.9	46.8	44.5
VAFER	NVKBER	2-15	TEMP.	25 °C	AVERAGE	59.20132	HINIHUM	52.1	MATIMUN	63.1	
OPINS	•	4	0	0	0	6	0	0	0	0	0
AVERAGE	47.91429	45.65714	62.34286	59.17143	60.17143	57.61667	55.17143	55.24286	55.25714	56.42857	56.01429
EIKINUM	59.1	59.4	56.4	54	54.4	56.6	52.1	52.3	52.8	53.5	52.3
KATIKUN	43.3	76	72.5	46.4	45	\$8.7	57.7	40.5	41.9	66.8	41.4

Table 9. Via resistance data for wafer 2-15 as measured before any temperature anneal.

POSITION		. 2	3		. 5	•	. 1		9	10	11,
. 1	62.5	60.4	57.4	56.8	57.	59.5	56.9	56.3	55.2	54.5	53.4
- 2	44.1	63:2	61	59.4	58.5	57.7	58.7	. 57.3	54.5	\$4.8	54.6
1	45.9	44.1	41.9	54.8	44.5	58.8	53	52.2	55.9	\$5.8	55.2
4	44.9	64.7	59.9	56.8	(7.7	CENTER	56.1	54.4	\$4.1	55.4	55.1
\$	74	44.1	43.7	61.4	60.1	57.8	56.9	\$5.4	52.7	56.7	57.6
6	78.4	70.8	45.6	63.1	59.4	\$7.9	\$5.7	\$5.2	55.3	\$4.8	- 44
. 1	81.1	76.9	73.4	68.1	45.4	58.1	554	42.1	63	48	41.4
VATER	NUMBER	2-15	TEMP.				HUHIHUH	52.2	KAXIMUN	•	, <u>-</u>
OPENS	•	Ö	•	0	-0	•	0	. 6	9	•	•
AVERAGE	70.27143	66.7	63.27143	40.2	62.51429	58.43323	54.12857	54.12857	56.1	57.42857	57.44286
HININUN	42.5	40.4	57.4	54.8	57.6	\$7.8	53	52.2	51.7	54.5	51.4
EATIMIK	. 44.1	76.9	73.4	68.1	47.7	59.7	58.7	42.1	63	. 41	4,4

Table 10. Via resistance data for wafer 2-15 as measured after a 30 minute $100^{\circ}\mathrm{C}$ temperature anneal in nitrogen.

POSITION	1	2	3	4			1		,	10	11
1	62	60.1	57.2	56.7	57.5		56.9	56.4	55.3	\$4.5	53.5
1	61.6	45.9	60.7	59.2	54.4	59.5	- 58.7	57.2	54.5	\$4.8	54.7
3	45.2	43.5	41.6	\$4.7	45.8	58.7	52.8	51. i	55.9	\$5.9	55.4
•	64.1	63.9	59.4	54.4	68.1	CENTER	56.1	\$4.\$	\$4.1	\$5.4	\$5.1
5	48.8	65.9	43	61	59.9	57.6	\$6.9	55.5	\$2.4	\$6.7	57.5
6	-74.5	69.5	64.7	62,4	59.4	57.7	55.6	55.1	55.3	56.8	45.4
7	\$1.6	75	71.9	60	64	\$7.7	\$5.2	61.8	43	48.2	41.5
VAFER	NUMBER	1-15	TEMP.	· 200 'C	AVERAGE	59.86447	HININUM	46.1	MAZIMUN	61.6	
OPENS	•	•	4	•	0	0	0	0	Q	0	O
AVERÄGE	69.11429	66.25714	42.64286	58.42857	41.87143	56.21667	56.02857	56.08571	56.1	57.47143	57.57143
HIKIKUM	62	40.1	57.2	54.7	\$7.5	46.1	52.8	52.1	52.6	54.5	53.5
HATIHUH	81.6	75	71.9	42.4	48.1	\$9.5	58.7	61.5	63	48.2	65.4

Table 11. Via resistance data for wafer 2-15 measured after an additional 30 minute $200^{\circ}\mathrm{C}$ temperature anneal in nitrogen.

POSITION	1	2			_		7		9	10	11
1	54.7	53.8	51.9		52.3	42.1	\$2.1	51.8	51	\$0.6	47.6
2	55.4	55.2	54.2	53.3	52.8	53.7	56.7	52.2	\$1.9	50.6	51.4
1	54.2	55.4	\$4.5	41.1	55.2	55.4	47.9	44.8	51.1	51.2	50.6
•	\$6.3	55.2	\$2.1	50.1	54.7	CENTER	\$1.1	49.7	49.3	50.4	50.1
	57.5	54.2	54.5	541.3	52.7	51.6	\$1.1	5.0 . 1	47.1	51.1	51.5
4	62.2	58.3	\$5.1	54.1	52.2	\$1.4	49.8	49.5	49.7	51	56.7
1	64.7	41	54.3	54.4	53.3	50.7	49	55.5	54.5	41.9	55.5
VATER	KUMBER	2-15	TEMP.	300 °C	AVERAGE	53.01711	HINIHUM	43.1	MAZIMUN	64.7	
OPENS	٥	.0	0	.9	-6	•	•	Ó	Ò	0	ŧ
AVERAGE	58,14284	56.47143	\$4.08571	52.71429	53.34286	56.81467	51.1	50.8	50.94286	52.4	52.05714
MININUM	\$4.7	\$3.8	51.9	41.7	52.2	42.1	47.7	46.8	47.1	\$0.4	49.4
MUNICAL	44.7	. 41	54.3	54.4	55.2	55.4	56.7	55.5	54.5	61.9	54.7

Table 12. Via resistance data for wafer 2-15 measured after an additional 30 minutes 300°C anneal in nitrogen.

POSITION	1		3	4	5	6	7	1	,	10	11
	45.6	45.3	44.8	44.9	44.8	37.1	44.8	44.9	44.7	44.8	41.5
7	45.2	46.3	45.2	45.1	44.4	45	47	44.8	45.1	44.9	44.1
1	45.1	45.2	45.3	41.1	46.9	45.2	40.7	41	45	45	44.6
•	45.1	45.1	44.2	43.4	48.4	CENTER	15.2	44.5	44.1	44.6	41.6
;	45.8	45.4	45.4	45.8	45.4	47.8	46.8	45.2	42.7	46.7	46
	46.4	46.8	45.5	45.6	44.9	46	14.\$	44.4	44.8	46.6	51.5
1	46.3	46.9	46.2	48.3	46.1	44.4	44.4	52	53.5	60	53.4
VATER	NUMBER	2-15	TEMP.	400 'C	AVERAGE	45.66842	HUMININ	37.1	HAIIHUN	60	******
OPERS	G	0	0	0	0	0	9	0	0	¢	•
AVERAGE	45.64286	45.84286	45.22857	44.91429	45.92857	44.25	44.77143	45.25714	45.7	47.51429	47.1
HINIMUM	45.1	45.1	44.2	41.1	44.8	37.1	40.7	41	42.7	44.6	44.5
BÁTIMIN	46.4	46.9	46.2	48.3	48.4	47.6	47	52	53.5	40	53.6

Table 13. Via resistance data for wafer 2-15 measured after an additional 30 minutes 400°C anneal in nitrogen.

WATER NUMBER	2-2		D	IELECTR	IC TYPE UND	PED LTG	o+ PIQ	
EAPACITANCE (100KHZ)	ispf		DIEL	ECTRIC THIC	NESS	.953micten	•
ist METAL(CO) RES	ISTANCE	1363chm	5 2	nd METAI	L(CO) RESIST	ANCE	305ohms	
	LEAKAGE (URRENT (pa)	BRI	EAKDOWN VOLT	AGE		
					200 °C			
CAPACITOR	2.5	.1		626		580	*- FINAL TE	
CROSS-OVER	125	285		660	595	575	POLYIMIDE 1	·c
ist HETAL(IF)	88	170		N/A	1	N/A	(IF)- INTE	RDICITATED
ind METAL (IF)	125	250		N/A	N/A	N/A	(NO) - NORM	
KEASURING VOLTAGE	214.4	214.4					INTERDIG	
	VIA CHAI						FINGER	
1080	400	408	CAPACITOR		CROSS-OVER	ı	ist METAL	2nd HETAL
SHORTS 0				,+	9		0	(
OPENS 1	1	•	(NO)		(NO)			(RC)
				INSPECT				
	RE ANNEALI						ANNEALING	
SLOPED VIA							THE CENTER DI	
COVERAGE, NO SIGNS C	F LIFTING				LAXDOWNS BET			٠

Table 14. Measured data and visual inspection summary for wafer 2-2.

Figure 21. Wafer 2-2. The dielectric consist of 0.25 microns undoped low pressure CVD oxide (bottom) plus 1.05 microns Hitachi PIO-13 polyimide (top).

· 第19 图图 至

VAIER)	WHEER	7-1		D	IELECTR	IC TYPE PIO	+ DOPED	LTO	
CAPACI	TANCE	(100KHZ)	26.875pf		DIEL	ECTRIC THIC	KNESS	.731micron	ı
ist METAL	(CO) RE	SISTANCE	1948chm	s 2:	nd META	L(CO) RESIS	TANCE	341ohns	
		LEAKAGE	CURRENT (pa)	er	EYKDOAN AOT,	TAGE		
						200 'C			
CAPACITOR		4.4	9.1		480		355		MPERATURE FÜR
CROSS-OVER		230	350		400	495	345	OTHERS SOO	יכ
ist METAL(IF)	•	110			N/A	N/A	N/A	(CO) - CROSS	RDIGITATED
ind METAL (IF)	,	145	155		N/A	, N/A	N/A		ALLY OPEN
BEASURING VO	TAGE	•	142.8					INTERDIC	
		VIA CHA					•	FINGE	
	1010	404	. 400	•				1st METAL	
SHORTS	. 2	1	. 0	1		. 2		0	i
OPENS	:	3	1	(NO)		(NO)			(NO)
	*				INSPECT		*******		
	ŞEFC	RE ANNEAL!						ANNEALING	
C003	VIA DE	FINITION A	ND SIDEVAL					CENTER DIE, N	
SLOPE, COOD S	TEP CO	/erage		,	\$10	IN ON 2nd H	TAL LIFT	TING	

Table 15. Summary of measured data and visual inspection for wafer 7-2.

Figure 22. Wafer 7-2. The dielectric consist of 0.65 microns thick layer of Hitachi PIQ-13 (bottom) plus a 0.25 micron thick low pressure CVD doped oxide (top).

WAFER NUMBER	7-13	•	D	IELECTR	C TYPE PIC	+ UNDOP	ED LTO		
CAPACITANGE	(100KHZ)	19.875pf		DIELI	CTRIC THIC	Kness	.953micren	5	
ist METAL(CO) R	ESISTANCE	1173ohm	5 2	nd METAS	(CO) RESIS	TANCE	360chms		
	LEAKAGE (URRENT (pa)	BRI	EYKDOAN AOI	TAGE			
		FINAL *							
CAPACITOR	.7	1.8		510	470	330	t- FINAL TE		
CROSS-OVER	8.5	330		490	430	345	OTHERS 500	•6	
ist METAL(IF)	50	80		N/A	N/A	N/A	(IF)- INTE	RDIGITATED	
ne netal (lf)	75	150		N/A	R/A	N/A	(NO)- NORM OPEN- R>101	ALLY OPEN	
MEASURING VOLTAGE	142.4	142.8					INTERDIC	-	
	VIA CHAI	NS .					PINGE	-	
104			CAPACITOR		CROSS-OVI	R	ist METAL	2nd KETAI	
iHORTS 3	•	0	2		2		0	1	
IPENS 0	2	0	(NO)		(NO)		(NO)	(HO)	
			AIENT					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
•	für e annea li						ANNEALING		
AIV GOOD:	DEFINITION,				•		THE CENTER DI		
OVERACE, NO SIGNS	OF LIBERTING		**BREAKDOWNS OCCURING ALONG STEPS						

Table 16. Summary of measured data and visual inspection for wafer 7-13.

Figure 23. Wafer 7-13. The dielectric consists of 0.55 microns Hitachi PIQ-13 (bottom) plus 0.25 microns low pressure CVD undoped oxide (top).

ANNEAL TEMPERATURE (°C)

300

400

500

200

100

0

Figure 24. Wafer 7-2. 1μ PIQ plus 2500Å doped LPCVD Si0 $_2$. Notice location of capacitor breakdown.

Figure 25. Via's of wafer 2-21, dielectric consist of approximately 1 μ undoped LPCVD SiO₂. Magnification is 2750X.

Figure 26. Cross-over of wafer 2-21 illustrating step-coverage. Magnification is 2750X.

Figure 27. Step coverage of first level metal for wafer 2-21. Magnification is 11,000X.

Figure 28. Via's of wafer 2-13, dielectric consist of doped LPCVD $\sin\theta_2$ (bottom) and polyimide PIQ-13 (top). Magnification is 5500X.

Figure 29. Cross-over for wafer 2-13. Magnification is 7700X.

Figure 30. A view of top and bottom layer interdigitated finger layout for wafer 2-13. Magnification is 1100X.

Figure 31. Cross-section of big capacitor for wafer 2-13 illustrating top layer Al/Si, polyimide PIQ, thin layer of LPCVD $\rm SiO_2$ and bottom $\rm 1a^{-1}er$ of Al/Si.

WAFER MUMB	ER 3-23		Di	ELECTR	IC TYPE DOP	ED PLASM	A OXIDE		
CAFACITAN	CE (100KHZ)	35 p.f	35pf DIELECTRIC THICKNESS				.993microns		
ist METAL(CO)	RESISTANCE	1621ohm	s 2:	nd META	L(CO) RESIS	TANCE	456ohms		
	LEAKAGE	CURRENT(pa)	er	EAKDOWN VOL	TACE			
		FINAL *							
CAPACITOR		.1		510	555	540		EMPERATURE FO	
CROSS-OVER	370	450		460 N/A N/A	310 N/A	540 N/A N/A	OTHERS SOURCE		
ist HETAL(IF)		260	٠				(IF)- INT	ERDIGITATED	
2md METAL(IF)	350	445			N/A		(NO) - NOR	MALLY OPEN	
MEASURING VOLTAG	E 214.4	214.4						GITATED	
**************	VIA CHI				• .	•		ers Ers	
1	060 600	400					1st HETAL	2nd METAL	
	4		-2		134			•	
OPENS	1 0		(NO)		(NO)		(NO)	(NO)	
*****		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	VISUAL					77400-Figulag	
1	BEFORE ANNEAS	ING				AFTER	ANNEALING		
	CHED VIAS, PO					·	BREAKDOVNS	OCCURRED	
COVERACE, STEEP	STEPS			AT	STEPS				

Table 17. Summary of measured data and visual inspection for wafer 3-23.

Figure 32. Wafer 3-23. The dielectric consist of 0.95 microns doped plasma enhanced oxide.

VAFER N	UMBER	3-9	•	D	ELECTR	IC TYPE UNI	OOPED PLA	SMA OXIDE		
CAPACI'	CAPACITANCE (100KHZ)				DIEL	ECTRIC THI	erness	1.039microns		
1st METAL(CO) RI		SISTANCE	2109ohm:	s 21	ed HETA	L(CO) RESI	454ohms			
		LEAKAGE	CURRENT (pa))	BREBR	EAKDOWN VO	TAGE			
			FINAL *				_			
GAPACITOR		7	.05		350 590 540		*- FINAL TEMPERATURE F			
CROSS-QVER		215	300		820	480	460	OTHERS 50	P'C	
ist METAL(IF)		275	170		n/a	N/A	N/A	(IF)- INT	ERDIGITATED FINGERS	
and METAL(IF)		320	260		N/A N/A N/A		R/A	(NO)- NORMALLY OPEN		
MEASURING VOL	TAGE		142.8					INTERDI	•	
		VIA CHAI	INS					FING		
									2nd HETAL	
SHORTS				23		31		Ö	1	
0PENS	14	10	•	(NO)		(NO)		(NO)	(NO)	
		& & & & & & & & & & & 		VISUAL				*********		
	BEF	DRE ANNEAL!	ING				AFTER	ANNEALING		
	OVER	ETCHED, VEI	RY SLOPED S	IDE		NO E			OCCURRED AT	
WALLS, STEEP ! ETCHING AND UN					5T)	t 15				

Table 18. Summary of measured data and visual inspection for wafer 3-9.

Figure 33. Wafer 3-9. The dielectric consist of 1.1 microns of undoped plasma enhanced oxide.

	VIA DE	FINITION,	SLOPED SIL					THE CENTER DI	
		BE ANNEALI	-		INSPECT			ANNEALING	
OPINS	2	. •	1	(NO)		(NO)		(NO)	(NG)
SHORTS	•	•	9	1		1		2	i
			404					FINGER 1st METAL	2nd METAL
ist METAL(II') Ind METAL(IF) KEASURING VOLTAGE					R/A R/A			INTERDIC	- -
		145	220			n/a	N/A N/A	(NO)- KORK	ALLY OPEN
		75	155			n/a		(IF)- INTE	RDIGITATED
trass-over		310	265		445	480	495	OTHERS 500	'C
CAPACITOR		3.5	.1		545	565	530	*- FINAL TEMPERATURE	
				•		200 'C			
IST RELALT	CO) RES		FANCE 1303obm EAKAGE CUERENT(pa			EAKDOWN VOL		1860183	
		100KHZ)					.71microns		
VAIER N		-				IC TYPF DOI			-

Table 19. Summary of measured data and visual inspection for wafer 3-6.

THE WIND PER

Figure 34. Wafer 3-6. The dielectric consist of 0.25 microns doped plasma enhanced oxide (bottom) plus 0.85 microns Hitachi PIO-13 (top).

VAIER	KVMBER	7-25		ום	ELECTR	IC TYPE UNI	OPED PLA	SMA OXIDE(LF	E) + PIQ	
CAPACITANCE (100KHZ)			22pf		DIEL	ECTRIC THIC	. 9 38 microns 342 ohns			
ist METAL	(CO) RES	ESISTANCE 1074ohms			ad Hete	L(CO) RESIS				
		LEAKAGE C	URRENT (pa)	BR	EAKDOWN VGL				
					_	200 'C	-			
CAPACITOR		7.8	1.7		540		600	*- FINAL TE	MPERATURE FOR	
CROSS-OVEI	DS5-OVE1 148		290					- POLYIMIDE IS 400°C OTHERS 500°C		
ist METAL(IF)	70	160		N/A	N/A	R/A	(EO) - CROS	RDIGITATED	
ind METAL(IF)		145	250.		N/A	N/A	N/A	- FINGERS (NO) - WIRMALLY OPEN - OPEN- R) TOMEGODE		
MEASURING VO	LTAGE	214.4	214.4						•	
	******	W.T.S. PULL						interdic Finge		
	1.040	ALY CHYL		CAPACITOR		CROSS-OVE	R -	ist METAL	·- <u>-</u>	
SHORTS		-	-1	2 .		1		-	1	
OPINS				(NO)		(NO)			(NO)	
2			,,	VISUAL						
	BEFO	RE ANNEALI						ANNEALING		
COOD WIR DEFINITION AND SIDEWALL						BUBBLING IN THE CENTER DIE,				
SLOPE, GOOD STEP COVERAGE						OCCATIONAL BREAKDOWNS BETWEEN PAGE				

Table 20. Summary of measured data and visual inspection for wafer 7-25.

Figure 35. Wafer 7-25. The dielectric consist of 0.26 microns undoped plasma enhanced oxide (bottom) plus 0.84 micron Hitachi PIQ-13 (top).

	NUMBER LITANCE (• • •	30.675pf					D PLASMA OXID	
ist KETAI	L(CO) RES	ISTANCE	: 1211ohms 2nd METAL(CO) RESISTANCE N/A o						
		LEAKAGE	CURRENT (pa)	BREAKDOWN VOLTAGE				
						200 'C			
CAPACITOR		26	2385		300		330	" - FINAL TEN - POLYINIDE 1	
CROSS-OVER		210	10000		520	480	400	OTHERS 500	· C
ist METAL(II		380	700		N/A	N/A	n/a	- (CO)- CROSS (IF)- INTE	RDIGITATED
ind METAL(IF) 170		170	450		N/A	N/A	N/A	(NO) - NORKI	LLY OPEN
KEASURING VO	PLTAGE	142.8	142.8	w=-,0+m,-,u				- OPEN- R)10?	
		VIA CHAI						INTERDIC: FINCES	
	1040			CAPACITOR		CROSS-OVE	H	ist METAL	_
SHORTS	0	•	•	6		2		1	2
opens						(NO)		(NO)	
	.77040706	## = #####			INSPECT				
		ee anneali						ANNEALING	
					•			THE CENTER DI	
EOVERAGE, 50	ME SIGNS	OF LIFTII	(C		510	NS OF LIFT	ING		

Table 21. Summary of measured data and visual inspection for wafer 7-15.

	-	anneal in		VISUAL INS	PECTION	AFTE	R ANNEALING			
				(NO)		D) 	-			
SHORTS				3	0		1	\$ 		
	1010			CAPACITOR				2nd HETAL		
EASURING VOLT							INTERDIC			
and METAL(IF)		·- 6	00	N/A	NIA	NEA	FINGERS (NO)- NORMALLY OFE OPEN- R) LOMEGODE			
st HETAL(IF)	2.5	5 3	35	N/A	N/A	R/A	(IF)- INTE	'C S-OVER		
ROSS-OVER	~	·- 6	60	**********		39.0	OTHERS 500			
CAPACITOR	10	0 17	. 2	509	460	310				
				25 'C						
INC RETALL				es ac n			3120EE5			
				D)			342 ohns			

Table 22. Summary of measured data and visual inspection for wafer 7-14.

VAFER 1	NUMBER	3-25	•	מ	ELECTR	IC TYPE DO	PED PLASM	A OTIDE (LFE)
CAPAC	ITANCE	(100KHZ)	38pf		DIEL	ECTRIC THE	CKNESS	imicron	s
ist METAL	(CO) RE	SISTANCE	1272ohm:	5 2:	nd META	L(CO) RESI	STANCE	330 chms	
		LEAKAGE	CVRRENT (pa)	BREBB	EAKDOWN VO	LTAGE		•
		_				108 °C	_		
CAPACITOR		11.8	3.6		5.00	260	355	*- FINAL TE	MPERATURE FOR
CROSS-OVER		***	200			440	410	OTHERS 500	·c
1st METAL(IF)	150	110		N/A	N/A	N/A	(CO) - CROS	RDIGITATED
2nd METAL(IF	}	290	310	·	N/A	N/A	H/A	(NO)- NORM	
MEASURING VO	LTAGE		214.4	, 46 - 2				OPEN- R) 101	
		VIA CHAI						FINGE	
	1040			CAPACITOR		cross-ov	E R	1st HETAL	
SHORTS	1	•	0	27		55		1	1
OPINS	1	2	1	(NO)		(NO)			(NO)
				VISUAL					
		ORE ANNEALI						ANNEALING	,
		VER ETCHED			, — +2 in th — i.			CENTER DIE AI	
EOVERAGE, PO	SSIBLE	BREAKS IN (APACITOR A	. מאני	OF	CAPACITOR	BREAKDO	NS OCCURED I	AT STEPS
Closs-ovel									

Table 23. Summary of measured data and visual inspection for wafer 3-25.

Figure 36. Wafer 3-25. The dielectric consists of 0.8 micron undoped plasma enhanced oxide.

ONTHINE PAGE IS OF POOR QUALITY

Figure 37. Wafer 3-25. $1\mu m$ doped plasma enhanced SiO₂ (from LFE). Notice bubbles in second level metal of big capacitor.

Figure 38. On a few of the doped plasma enhanced SiO₂ obtained from Pacific Western, particulate count was large. These particles could be removed by the scrubber, however, this left voids in the oxide rendering shorts between metal layers.

Figure 39. Wafer 3-9. 1µm undoped plasma enhanced SiO₂. Notice over-etching of via's and residue left in the pads.

Figure 40. Wafer 3-9. Notice the poor step-coverage at the cross-overs (very narrow metal).

Figure 41. Wafer 3-9. $1\mu m$ undoped plasma enhanced SiO₂. Notice overetch in some pads (middle) and residue in others (top).

Figure 42. Wafer 7-15. $1\mu m$ PIQ plus doped plasma enhanced SiO2. On this wafer, notice poor adhesion of second level metal to the oxide.

Figure 43. Via's of wafer 3-11, dielectric consisting of undoped plasma deposited SiO₂. Notice large viaover-etch in processing these wafers. Magnification is 3300X.

Figure 44. Cross-over of wafer 3-11. Notice excellent step coverage attainable with this dielectric. Magnification is 6050X.

Figure 45. Via's of wafer 3-12, dielectric consist of phosphorous doped plasma deposited SiO₂. Notice over-etch of dielectric. Magnification is 4400X. (Processed by P.W. Corp.)

Figure 46. Magnification of above SEM micrograph illustrating dielectric and metal step-coverage. Magnification is 11,000X.

Figure 47. Cross-over of wafer 3-12. Magnification is 6600X.

Figure 48. Cross-section of edge of big capacitor illustrating step coverage property of dielectric for wafer 3-12. Magnification is 11,000X.

Figure 49. Via's of wafer 5-25, dielectric consist of approximately one micron undoped plasma deposited SiO₂. Magnification is 4400X.

Figure 50. Cross-section of a via on wafer 5-25. Notice slight misalignment of metal. Magnification is 5500X.

Figure 51. Cross-overs for wafer 5-25. Magnification is 6600X.

Figure 52. Cross-section of big capacitor for wafer 5-25 showing top layer Al/Si, plasma deposited SiO₂ (dark), bottom layer Al/Si and thermal oxide layer. Magnification is 8800%.

Figure 53. Via's of wafer 3-1, dielectric consist of polyimide PIO-13 (top) and 0.25 μ phosphorous doped plasma deposited SiO₂ (bottom). Magnification is 3300X.

Figure 54. Cross-over of wafer 3-1. Notice planarization affect of polyimide. Magnification is 6600X.

¥	AFER NUMBER	5-14	-	. D :	IELECTR	IC TYPE UNI	OPED 5	PUTTERED GUART	Z
1	APACITANCE	(100KHZ)	N/A pf		DIEL	ECTRIC THIC	KNESS	.513micron	5
ist i	TETAL (CO) RI	ESISTANCE	N/A oha	is 21	ad META	L(CO) RESIS	TANCE	N/A ohns	
		LEAKAGE	CURRENT (pa	.)	BR	EAKDOWN VOL	TAGE		
			•	1					
CAPACIT								*- FINAL TE	
EROSS-O	ER.				***			OTHERS 500	·G
ist NET	L(3F)	195	7350		N/A	N/A	N/A	(CO)- CROS	RDIGITATED
Ind KET	L(IF)	115	16300		N/A	N/A	N/A	(NO) - NORM. OPEN- R)101	
	IG VOLTAGE							OFER- A/IVI	ie dou n
		VIA CHI						INTERDIG FINGE	
								1st METAL	
SHORTS	q	ı	1	ALL		ALL		0	1
OPINS	•	•	.0	(NO)		(10)			(NO)
			*******	TISUAL					*******
		ORE ANNEAD						ER ANNEALING	
	VIAS OVER								THE ANNEALING,
OF THE C	APACITOR SE	ek to be i	HSSING, VE	RY POOR STE	P	STIL	L RACEI	LOOKING	
COVERAGE	, APPEARS T	O HAVE RES	IDUE ON TO	P OF FIRST					
HETAL, I	LL CAPACITO	RS AND CRO	55-OVERS	HORTED		•			

Table 24. Summary of measured data and visual inspection for wafer 5-14.

Figure 55. Wafer 5-14. The dielectric consist of 0.35 micron thick RF sputtered quartz.

WATE	NUMBER	5-21		,	DIELECTR	IC TYPE UN	OPED SPU	TTERED QUART	Z + PIG	
CAPA	ACITANCE (100KHZ)	24pf		DIEL	ECTRIC THIC	KNESS	imicren	5	
ist KET/	AL(CO) RES	ISTANCE	1629chm	15	2nd KETA	L(CO) RESIS	TANCE	280ohus		
		LEAKAGE C	URRENT (pa	.)	BR	EAKDOWN VOI	TIGE			
						200 'C				
CAPACITOR		3.1	2.2		260		220	*- FINAL TE	MPERATURE FO	
CROSS-OVER		55	145		330	360	355	OTHERS 500	'C	
ist HETAL()	IF)	110	145		R/a	N/A	N/A	(CO) CROS	RDIGITATED	
	(F)	80	140		N/A	M/A	N/A	(NO) - NORM OPEN- R)40	ALLY OPEN	
MEASURING N	OLTAGE	71.4	71.4				*			
	*	VIA CHAI						INTERDIG FINGE		
	1000			CAPACITO	R	CROSS-OVI	R	1st METAL		
SKORTS	1	1	1	2		2		0	1	
OP ENS	1	0	i	(0K)		(NO)		(NO)	(110)	
*****		****	**************************************	VISUA						
	æefo	RE ANNEALI						ANNEALING		
-60	OD VIA DE	FINITION,						THE CENTER D	IE, NO SIGN	
LIFTING					OF LIFTING					

Table 25. Summary of measured data and visual inspection for wafer 5-21.

Figure 56. Wafer 5-21. The dielectric consist of 0.11 microns of RF sputtered quartz (bottom) plus 0.9 microns of Hitachi PIQ-13 polyimide (top).

		8-3 (185KHZ)	37.425of					ED SPUTTERED . 7micron	
			•			L(CO) RESIS			•
171 1111001	ee/ na					EAKDOWN VOI		5// VILES	
			-			200 'C		ı	
CAPACITOR						140			KPERATURE FO
CROSS-OVER		240	145	135 100 135 OTHERS 500'C				• 6	
ist AETAL(IF)		35	80	-	N/A	N/A	N/A	(IF)- INTER	RDIGITATED
ad METAL(IF)		70	120		N/A	N/A:	N/A	(KO)- NOBN) OPEN- 8>101	ALLY OPEN
KEASURING VOL	FAGE	71.4	71 .4						
·		VIA CHA	•					interdig: Fingli	
						•		ist METAL	
HORTS	•	9	0	3		2		0:	2
ipins	1	•	0 .	(NO)		(NO)			(NO)
						TION			
	-BEF	ORE ANNEAL	ING				AFTER	ANNEALING	
ENTU	LE POR	TIONS OF O	VARTZ MISS	ING,		-: Byes	LING IN	THE CENTER DI	IE, NO SIGN
IONE QUARTZ HI	ESTNC	BETWEEN T	HE CAPACIT	OR	OF	LIFTING			
LATES, COOD	STEP	GOVERAGE D	VE TO THE	PIQ ·				•	

Table 26. Summary of measured data and visual inspection for wafer 8-3.

Figure 57. Wafer 8-3. The dielectric consist of 0.6 microns of Hitachi PIO-13 (bottom) plus 0.11 microns of RF sputtered quartz (top).

Figure 58. Wafer 5-14. 0.5µm sputtered quartz The quartz is left on top of the first level metal only in the center, outter edges are bare.

Figure 59. Wafer 8-3. PIQ plus sputtered quartz on top. Notice in areas that entire portions of quartz is missing (believed to be removed in processing).

Figure 60. Via's of wafer 5-15, dielectric consist of sputtered quartz. Magnification is 3300X.

Figure 61. Closs-over of wafer 5-15. Notice "mouse-holes" at steps. Magnification is 6600X.

Figure 62. Perpendicular view of cross-overs of wafer 5-15 illustrating step-coverage problems. Magnification is 6600X.

Figure 63. Cross-section of big capacitor for wafer 5-15 showing thickness of top layer Al/Si, quartz dielectric, and bottom layer Al/Si. Magnification is 8800X.

Figure 64. Via of wafer 5-20, dielectric consist of 0.11 μ quartz (bottom) and approximately 1 μ polyimide PIQ-13 (top). Magnification is 5500X.

Figure 65. Cross-over of wafer 5-20. Notice planarization of dielectric. Magnification is 5500X.

WAFER KU	MBER	5-3	•	D	IELECTR	IC TYPE PL	ASMA NITE	IIDE	
CAPACIT	ANCE (100KHZ)	47.125pf		DIEL	ECTRIC THI	CENESS	lmicron	5
ist METAL(C	0) RES	ISTANCE	1721ohms	31	nd META	L(CO) RESI	STANCE	473ohms	
		LEAKAGE (URRENT(pa)	٠.	BR	EAKDOWN VO	LTAGE		
		•				106 ,C			
APACITOR		7	12.2		520		450	*= FINAL TE - POLYINIDE	
ROSS-OVER		3400	17.00		400	460	365	OTHERS 5.00 (CO) - CROS	ינ
st METAL(IF)		435	260		N/A	N/A	N/A	(IF)- INTE	RDIGITATED
nd METAL(IF)		560	315		N/A	N/A	N/A	(NO) - NORM OPEN- E)10	TITA OBER
EASURING VOLT	AGE	142.8	1-62 . 4						_
		no						INTERDIC	
	1010	VIA CHAI		CAPACITOR		CROSS-OVI	er	FINGEI L'ST METAL	
HORTS								0	<u> </u>
PENS				·				(NO)	(KO)
4m T 4 4 p g 5 4 m n n n				VISUAL	INSPEC	rion			
•	BEFO	re anneali	ŃG				AFTER	ANNEALING	
POOR	SHAPED	VIAS, SON	E UNDER ET	CHED		MO I	UBBLING,	BREAKDOWNS (CCURRED AT
ND SOME OVER	ETCHED	, STEEP 51	EPS, RAGED)	ST	EPS			
OOKING									

Table 27. Summary of measured data and visual inspection for wafer 5-3.

Figure 66. Wafer 5-3. The dielectric consist of 1.0 microns of plasma enhanced nitride.

VAFER N	VMBER	5-12	-	a	IELECTR	IC TYPE PLI	SMA NITE	IDE + PIQ	
CAPACIT	TANCE (100KHZ)	21pf		DIEL	ECTRIC THE	KNESS	1.05micren	
ist METAL (CO) RES	ISTANCE	1475chm	s 2	nd META	L(CO) RESIS	TANCE	3180hms	
		LEAKAGE (URRENT (pa))	BREBRI	EYRDOAN AOT	TAGE		
		_	,		_	200 'C			
CAFACITOR		34.3	.\$		590		525	*- FINAL TE	
tross-over		440					OTHERS 500	'C	
ist METAL(IF)		130	250		R/A	N/A	N/A	(IF) - INTERDIGITATE FINGERS (NO) - NORMALLY OPEN	
ind HETAL(IF)		230	345		N/A	N/A	R/A		
KEASURING VOL									•
*****	******	VIA CHAI	NG					ekcerdig Pinge	
		404	400	_				ist METAL	2nd METAL
SHORTS		0	•	•		9		0	i
ipins						(NO)		(NO)	(NO)
}				_	INSPECT			6 6 7 7 7 P P P P P P P P P P P P P P P	
•		re anneali							
			THE ETCHIN					THE CENTER DI	
HE TVO LAYER	s, GOOD	STEP COVE	RAGE		-BR)	EAKDOVNS OC	CURRED B	etveen the P	ADS, SOME
					SIC	NS OF LIFT	ING AROU	ND THE EDGES	OF THE WAFE

Table 28. Summary of measured data and visual inspection for wafer 5-12.

Figure 67. Wafer 5-12. The dielectric consist of 0.25 microns of plasma enhanced nitride (bottom) plus 0.85 microns of Hitachi PIQ-13 (top).

C - >

VAFER NUMBER	0-10		D	IELECTRI	C TYPE PIC	+ PLASM	A NITRIDE		
CAPACITANC	(100KHZ)	32.125pf	•	DIEL	ECTRIC THIS	KNESS	.71mieron	s	
1st METAL(CO) 1	RESISTANCE	1171chm	s 2	nd HETAI	(CO) RESIS	STANCE	*- FINAL TEP - POLYIMIDE 1 OTHERS 504* - (CO)- CROSS (IF)- INTER - (NO)- NORMA - OPEN- R)109 INTERDIG: FINGEF 1st METAL		
	LEAKAGE	CURRENT (pa)	BRI	EAXDOWN VOI	TAGE			
4_1000000000000000000000000000000000000		FINAL 0							
CAPACITOR	70.3	. 6		410	405	400			
	748								
1st METAL(IF)	60	135	•	N/A	N/A	N/A	(IF)- INTE	RDIGITATED	
2m4 HETAL(IF)	100	220		N/A	N/A	N/A	FINGERS (NO)- NORMALLY OPEN OPEN- R)10Megohm		
REASURING VOLTAGE								·	
10(0 600 AIY CHY		CAPACITOR		CROSS-OVE	:R			
SHORTS					1	******		1	
OPENS (. 0	0	(NO)		(NO)		(NO)	(NO)	
				INSPECT				_ 4 + - + -	
81	FORE ANNEAL						ANNEALING		
EXCELLENT EOVERAGE, HO SIGN						UBBLING,	NO SIGN OF I		

Table 29. Summary of measured data and visual inspection for wafer 8-10.

(報) あり一年、

Figure 68. Wafer 8-10. The dielectric consist of 0.45 microns Hitachi PIO-13 (bottom) plus 0.25 microns plasma enhanced nitride (top).

Figure 69. Cross-section of via for wafer 5-2, dielectric consist of plasma deposited silicon nitride. Magnification is 5500X.

Figure 70. Via section of wafer 5-2 illustrating incomplete removal of photoresist layer. Magnification is 1650X.

Figure 71. Cross-over of wafer 5-2 illustrating step-coverage dielectric. Magnification is 5500X.

Figure 72. Magnification of a first layer metal interconnect covered with dielectric for wafer 5-2. Notice the excellent step-coverage and slight 'cusping' of dielectric. Magnification is 11,000%.

Figure 73. Via of wafer 7-19, dielectric consist of approximately 0.75 μ polyimide PI-2555 (bottom) and 0.25 μ plasma deposited silicon nitride (top). Magnification is 4400X.

Figure 74. Cross-over of wafer 7-19. Magnification is 6600X.

VAFER NU	MBER	9-16		:	DIELECTR	IC TYPE	2555		
CAPACIT	ANCE (100KHZ)	22p f		DIEL	ECTRIC THIC	XNE55	. émicron	\$
ist METAL(C	O) RES	ISTANCE	2730chm	s	and KETA	L(CO) RESIS	TANCE	253ohns	
		LEAKAGE	CURRENT(pa	}	BR	EAKDOWN VOL	TAGE		
						200 'C			
CAPACITOR		10.7	. 2		475	420	310	a- FINAL TE	
			205					OTHERS 500	
ist METAL(IF)		95	165		N/A	N/A	N/A	(CO)- CROS	RDIGITATED
and METAL (IF)		145	240		N/A	N/A	N/A	(NO) - NORM OPEN~ R)101	ALLY OPEN
MEASURING VOLT	AGE	142.0	142.8						-
	*****	VIA CHA						interdic Fince	
			·	1				ist METAL	
SHORTS	0	9	0	6		0		0	1
OP I NS	0	8	0	(80)		(NO)		(NO)	(HO)
9 g tr 4 m en p 2 d m p; 4, 4 d t		t yqbaan,	. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		INSPEC				
	BEFO	re anneai	-				AFTER	ANNEALING	
EXCEL	TEKL A	IA DEFINI	TION, NO SI		, , , , , , , , , , , , , , , , , , ,		LING IN	THE CENTER D	IE,NO SIGNS
of lifting					:OF	LIFTING			

Table 30. Summary of measured data and visual inspection for wafer 9-16.

The dielectric consist of 1.0 microns of Figure 75. Wafer 9-16. Dupont PI-2555.

200

300

ANNEAL TEMPERATURE (°C)

400

500

50

100

WASER NUMBER	9-25		Į	DIELECTR	IC TYPE	PIQ		
CAPACITANCE	(100KHZ)	20.5pf		DIELE	CTRIC THIC	Kne 55	. B9micron	•
1st METAL(CO) R	ESISTANCE	1047ohm	5 2	ad METAL	L(CO) RESIS	TANCE	20 Sobres 2 - FINAL TE POLYIMIDE OTHERS 500 (CO) - CROS. (IF) - INTE (NO) - NORM. OPEN - R)101 INTERDIG FINGE: 1st METAL 0 (NO)	
	LEAKAGE C	URRENT(pa	}	BRE	EVKDOMM AOT	TACE		
					200 °C	FINAL #		
CAPACITOR		4.9		260	245			
CROSS-OVER	55	155		290	275	190	OTHERS 500	' C
ist METAL(IF)	35	90		N/A	N/A	N/A	(IF)- INTE	RDIGITATED
ind METAL(IF)	65	135		N/A	N/A	N/A	Q FINAL TER POLYIMIDE OTHERS 500 (CO) - CROSS (IF) - INTE (NO) - NORM OPEN - R)101 INTERDIC FINGER 1st HETAL 0 (NO)	ALLY OPEN
MEASURING VOLTAGE	71.4	71.4						·
	VIA CHAI							
			•					
SHORTS 0	9	1	1		0		0	1
OPENS 1	1	1	(NO)		(NO)		(NO)	(NQ)
				INSPECT				
	FORE ANNEALI							
I AIV GOOD	EFINITION,							
SOOD STEP COVERAGE				10	LIFTING			

Table 31. Summary of measured data and visual inspection for wafer 9--25.

Figure 76. Wafer 9-25. The dielectric consist of 0.8 microns of Hitachi PIO-13.

WAFER NUM	BER 8-	-18	. DI	ELECTRIC TY	PE 25	55	
EAPACITA	NCE (100K)	(Z) 15	pf	DIELECTRI	C THICKNESS	luicrons	5
ist METAL(CO) RESISTAN	ICE 1338	ohus 21	d HETAL (CO)	RESISTANCE	266ohms	
	LEAKAGE	CUBRENT(pa)	BREAKDOWN	VOLTAGE		
			25			•	
CAPACITOR	. 05	. 2		0 555	565	*- FINAL TEM	
CROSS-OVER	410	\$60	6.3	5 510	515		Ç
1st METAL(IF)	330	315	N	A N/A	HIA	(IF)- INTER	DIGITATED
and METAL(IF)	410	500	R/	A N/A	H/A	F (NO)- NORMA OPEN- 8)101	LLY OPEN
MEASURING VOLTA	GE 200					INTERBIGI	
	AIY C	2MIAH				FINGER	15
						1st METAL	
SHORTS	0	0 0	0		1	1	1
OPENS			(NO)			(NO)	
				INSPECTION	_	****************	
•	Before an	NEAL ING			AFT	ER ANNEALING	
		VIAS, COOD				DOWNS OCCURED B	
SIDEWALLS OF VI							
SICH OF 2nd MET				_ 3			

Table 32. Summary of measured data and visual inspection for wafer 8-18.

Figure 77. Wafer 8-18. The dielectric consist of 1.5 microns thick Dupont polyimide PI-2555.

CAPACITANCE	(100KHZ)	32pf		DIELE	CTRIC THIC	KNESS	1.imicren	5
1st METAL(CO) BE	SISTANCE	1048chm	s 1	ad METAI	L(CO) RESIS	TANCE	318ohms	
	LEAKAGE	CURRENT (pa)	BRI	EAKDOWN VOI	TAGE		
		FINAL :						
APACITOR	52.1	1		320	310	320	e- FINAL TE	
ROSS-OVER	245	290		300	310	310	OTHERS SOO	'C
ist METAL(IF)	115	160		N/A	H/A	N/A	(IF)- INTE	RDIGITATED
ind METAL(IF)	215	235		N/A	N/A	N/A	(NO)- NORM	ALLY OPEN
MEASURING VOLTAGE	142.0	142.0						ITATED
	VIA CHA						FINGE	
	609	400.					ist METAL	2nd METAL
HORTS 0	0	. 4	•		0		1	2
PINS 3		4					(NO)	
*************				INSPECT				
-9EF	ORE ANNEAL	ING				AFTER	ANNEALING	

COVERACE

Table 33. Summary of measured data and visual inspection for wafer 8-20.

Figure 78. Wafer 8-20. The dielectric consist of 1.1 microns of Dupont PI-2545 polyimide.

TALLI WELL WITH

WAFER NUMB	ER 0-22	•	D	IELECTR	IC TYPE	019		
CAPACITAN	CE (100XHZ)	22pf		DIEL	ECTRIC THIC	KNESS	1.475micron	5
ist MITAL(CO)	RESISTANCE	991ohm	s 2	nd META	L(CO) RESIG	TANCE	285ohms	
	LEAKAGE	CURRENT(pa)	BRI	EKRDOWN VOL	TAGE		
		FINAL =						
CAPACITOR		. 05		405	495	470	2- FINAL TE	
CROSS-OVER	135	275		480	480	470	POLYIMIDE OTHERS 500	'C
ist METAL(IF)	ST HETAL(IF) 75 SE HETAL(IF) 130			N/A	A N/A	N/A	(IF)- INTE	RDIGITATED
ind METAL (IF)				N/A	N/A	n/a	(NO) - NORM	ALLY OPEN
MEASURING VOLTAG	E 142.8	142.8					INTERDIC	
	VIA CH		•				FINGE	
1	000 600	400	CAPACITOR		CROSS-OVE	R	1st HETAL	2nd HETAL
SHORTS		0			0		0	1
OPENS	1 0	0	(NO)		(NO)		(NO)	(NO)
***********	****	5 4 4 5 4 4 4 4 4 4 4 5 4 6 4 6 4 6 4 6	VISUAL					
	BEFORE ANNEAS						ANNEALING	
	DEFINITION,						THE CENTER D	IE, NO SIGN
COVERACE				OF	LIFTING			

Table 34. Summary of measured data and visual inspection for wafer 8-22.

Figure 79. Wafer 8-22. The dielectric consist of 1.2 microns of Ritachi PIQ-13.

		8-24				IC TYPE				
CAPACI'	TANCE ((100KHZ)	15.75pf		DIEL	ECTRIC THIS	KNE5S	1.825mierons		
ist METAL(CO) RES	SISTANCE	1006ohm:	5 2	nd META	L(CO) RESIS	STANCE	294 ohm s		
		LEAKAGE (CURRENT(pa))	BR	EYKDOAN AOI				
						300 'C				
CAPACITOR		. 05	. 4		665		565		MPERATURE FOR	
CROSS-OVER		330	500		550	650	540	OTHERS 500	١٢	
1st METAL(IF)		255	285		N/A	N/A	N/A	(CO) - CROS	RDIGITATED	
2nd HETAL(IF)		410	435		N/A	N/A	N/A	(NO)- NORH	ALLY OPEN	
MEASURING VOLT	TAGE	200	214.4							
		VIA CHAI						INTERDIG FINGE		
	1000	600	400	CAPACITOR	l	CROSS-OVE	ER	ist METAL	2nd HETAL	
SHORTS								1	2	
OPENS .								(80)		
		*******			INSPEC				*******	
	BEFO	RE ANNEALI						ANNEALING		
600 0	VIA DE	FINITION,	SHOOTH STE					CENTER DIE,		
SOME SIGNS OF	2nd ME	TAL LIETIN	(G		CA	PACITOR HAS	BUBBLIN	G, DEFINITE	2nd HETAL	
					LI	TING				

Table 35. Summary of measured data and visual inspection for wafer 8-24.

Figure 80. Wafer 8-24 . The dielectric consists of 1.5 microns thick Dupont PI-2555 polyimide.

WATER NUMBER					IC TYPE			
CAPACITANCE		·					1.35micron	5
ist METAL (CO) R							3040hms	
		CURRENTIPA			EYKDOAN AOF	_		
		FINAL a			300 'C		•	
EAPACITOR	14.9	. 9		480	420	400	*- FINAL TE	
CROSS-OVEI	200	255		400	390	230	OTHERS 500	·с
ist METAL(IF)	120	145		N/A	N/A	N/A	(IF)- INTE	RDIGITATED
and METAL (IF)	210	210		N/A	N/A	N/A	(NO) - NORM OPEN~ R)101	
MEASURING VOLTAGE	142.8	142.8						
****************	VIA CHA						INTERDIC FINCE	
1080		-	CAPACITO	l	CROSS-OVE	R	1st METAL	
SHORTS 0		9			0		0	3
OPINS 4		3					(NO)	(NO)
******************************			VISUA					**********
	FORE ANNEAL						ANNEALING	
		D, APPEARS					OOKS GOOD	
A THICK LAYER, COO	STEP COVE	RAGE						

Table 36. Summary of measured data and visual inspection for wafer 8-25.

Figure 81. Wafer 8-25. The dielectric consist of 1.25 microns of Dupont PI-2545 polyimide.

<u> १६ १६ सम्</u>यक्त भारत

VATER NU	MBER	8-15		D	IELECTR	IC TYPE	PIQ		
CAPACIT	ANCE	(100KHZ)	14pf		DIEL	ECTRIC THIC	KNE55	2.075microns	i
1st METAL(C	0) RE	SISTANCE	1173ohms	; 2	nd KETA	L(CO) RESIS	TANCE	28 tohus	
		LEAKAGE C	URRENT (pa))	BR	EVKDOAN AOF	TAGE		
						200 'C	• • • • • • • • • • • • • • • • • • • •		
CAPACITOR		1.5	.1		630		480	*- FINAL TEN	
CROSS-OVER								POLYIMIDE I OTHERS 500'	
			*******					(CO)- CROSS	-OVER
ist METAL(IF)								(IF)- INTER	
and METAL(IF)		225	260		N/A	N/A	n/a	(NO) - NORMA OPEN- R)10H	LLY OPEN
MEASURING VOLT	AGE		214.4					INTERDICI	-
		VIA CHAI						FINGER	
								1st METAL	
SHORTS	i	9	0	0		i		0	3
opens								(NO)	(NO)
**********				FISUAL	INSPECT	rion			
	ĐEFC	RE ANNEALI	NG				AFTER	ANNEALING	
700R 1		VIAS, GOO						THE CENTER DI	E. ALMOST
VALLS, EXCELLE					AL			ED BETVEEN PA	
Lifting				-					

Table 37. Summary of measured data and visual inspection for wafer 8-13.

Figure 82. Wafer 8-13. The dielectric consist of 1.7 microns of Hitachi PIQ-13 polyimide.

1. 日 四 四 日 1.

Figure 83. Wafer 9-23. $1\mu m$ PIO. Notice the excellent second level metal adhesion to the polyimide.

Figure 84. Wafer 9-16. 0.5 μm Dupont PI 2555. Notice both large and small via formation.

Figure 85. Dupont PI 2555 approximately $1\mu m$ thick. Notice particulates for which polyimide would not cover or adhere to. Unknown if they were on the wafer initially or in the polyimide. Also, coupler VM651 was used.

Figure 86. Dupont PI 2555. On a few wafers, light areas (yielding dark vias) were observed in the polyimide Believe this is results of not filtering polyimide just prior to use.

Figure 87. Wafer 8-18. $1\mu m$ PI 2555. Notice breakdown location in large capacitor.

Figure 88. Wafer 8-18. Notice that occasionally, breakdown occurred between pads.

Figure 89. Wafer 9-25. 1µm PIQ. In this die, the breakdown of the capacitor experienced multiple breakdown locations as shown.

Figure 90. Via of wafer 9-13, dielectric consist of thin layer (~0.5µ) polyimide PIO-13. Magnification is 6600X.

Figure 91. Cross-section of big capacitor for wafer 9-13 illustrating top layer Al/Si, PIQ and bottom layer Al/Si. Top layer metal is lifted off the polyimide in preparing the SEM sample. Magnification is 8800X.

Figure 92. Via of wafer 8-21, dielectric consist of approximately 0.8 μ polyimide PIQ-13. Magnification is 4400X.

Figure 93. Cross-over of wafer 8-21. Magnification is 6600X.

Figure 94. Cross-section of b_{*}g capacitor for wafer S-21 illustrating thickness of top and bottom layer metals and PIQ. Magnification is 8800X.

Figure 95. Cross section of big capacitor for wafer 8-1 illustrating thickness of metal layers and polyimide. Magnification is 8800X.

IV. EVALUATION OF EXPERIMENTAL DATA AND RESULTS

A. Breakdown Voltage and Leakage Currents

Breakdown voltage data was taken for all wafers prior to any temperature anneal after the 200°C anneal cycle and after the final temperature anneal. All wafers were annealed at each temperature (100, 200, 300, 400 and 500°C) for 30 minutes in nitrogen. Wafers having polyimide on them either as the sole dielectric or as a composite were final annealed at 400°C (since the polyimide dissipation factor increases above this temperature). A summary of these measured results for the no temperature and final temperature anneal cases are presented in Table 38. Also, a pictorial representation of the relative magnitudes are presented in Figures 96 through 99 for both cross-over and capacitor patterns.

Also summarized in Table 38 is the measured leakage current data taken with 142 volts applied to the capacitor, crossover and first and second metal levels interdigitated finger patterns. It should be noted that leakage currents were taken at several applied voltages. The behavior of dielectric current as a function of applied voltage at an elevated temperature (100° C) is shown in Figure 100. Here, the linear I-V dependence is somewhat surprising since it is reported that many dielectrics behave linearly in a $v^{\frac{1}{2}}$ vs. ln(I) fashion.

	DIELECTRIC THICKNESS (microns)	BRI		VOLTA	AGE			pplied	ED LEAR Voltag pico-am	ge = 14	42 vol		
	HICH	T=	25°C	T = S	00°C		T = 3					/500°C	
WAFER	O F C	С	C.O.	С	c.o.	С	c.o.	1-I.F	2-I.F.	С	C.O.	I-I.F	2-I.F
1-7	0.98	_	_	160	470	_	_	_		0.5	230	135	205
9-2	1.1	590	610	600	575	31.9	585	310	700	2.5	57	28	42
9-8	1.4	335	45=	355	340	66.2	810	320	635	8.0	182	93	157
2-22	1.0	610	585	530	560	4.2	530	590	740	0.45	172	97	157
2-8	1.0	450	550	580	520	11.7	53	53	82	0.12	142	82	128
2-15	1.2	555	585	560	560	4.7	60	32	50	0.3	83	47	72
2-2	1.3	620	660	580	575	0.83	42	27	42	0.15	95	57	83
7-2	0.9	480	400	355	345	6.4	230	110.	165	9.1	350	110	155
7-13	0.8	510	490	330	345	0.7	85	50	75	1.8	330	: : 80	150
3-23	0.95	510	460	540	541	0.33	123	77	127	0.1	150	87	148
3-9	1.1	350	520	540	460	7.0	215	275	320	0.17	300	170	260
3-6	1.1	545	465	530	495	3.5	310	95	145	0.1	265	155	220
7-25	1.1	540	545	600	530	3.2	53	30	48	1.3	97	53	83
7-1.5	0.8	300	520	330	400	26	210	380	170	2385	10K	700	650
7-14	0.85	500	450	310	390	14.9	590	365	615	4.15	227	112	200
3-25	0,8	500	510	355	480	3.9	105	50	97	0.9	67	37	102
5-14	0.35	5.C.	s.c.	s.c.	s.c.	s.c.	s.c.	195	115	-	-	7350	1.6K
5-21	1.0	260	330	220	355	9.6	176	352	256	240	1450	1150	1400
8-3	0.7	230	135	180	135	92	768	112	224	17K	1450	800	1200
5-3	1.0	520	400	450	365	7.0	3400	635	560	12.2	1700	200	315
5-12	1.1	590	525	525	400	11.4	147	43	77	0.3	152	83	122
8-10	0.7	410	310	400	270	70.3	740	60	100	0.6	240	135	220
9-16	1.0	475	290	310	350	10.7	170	95	145	0.2	285	165	240
9-25	0.8	260	290	200	190	10	176	112	208	1025	450	270	350
8-18	1.5	620	635	565	515	17.5	875	990	1300	0.15	187	105	167
8-20	1.1	320	300	320	310	52.1	245	115	215	1.0	290	160	236
8-22	1.2	485	480	470	470	7.1	135	75	130	1.0	275	155	230
8-24	1.5	665	550	565	540	0.8	115	75	175	0.35	167	95	145
8-25	1.25	480	400	400	230	14.9	200	120	210	0.9	255	145	210
8-13	1.7	630	640	480	560	0.5	63	45	75	0.1	95	57	87

Table 38. Summary of breakdown voltages and leakage currents for capacitor (C), cross-over (C.O.) and both levels of interdigitated fingers (I.F.).

NORMALIZED CROSS-OVER BREAKDOWN VOLTAGE (volts/micron)

Figure 96. A plot of normalized breakdown voltages for cross-overs as a function of wafer type for three temperature anneal conditions: 25°C-no anneal; 200°C-annealed for 30 minutes in nitrogen; Final T-annealed for 30 minutes at 400°C for polyimides, 500°C for all other dielectrics.

3F

9

Figure 97. A plot of normalized breakdown voltages for capacitors as a function of wafer type for three temperature anneal conditions: 25°C - no anneal; 200°C-anneal for 30 minutes in nitrogen; Final T-anneal for 30 minutes at 400°C for polyimides, 500°C for all other dielectrics.

NORMALIZED CROSS-OVER BREAKDOWN VOLTAGE (volts/microns)

Figure 98. A plot of normalized breakdown voltages for cross-overs as a function of wafer type for three temperature anneal conditions: 250°C-no anneal, 200°C-annealed for 30 minutes in nitrogen; Final T-annealed for 30 minutes at 400°C for polyimides, 500°C for all other dielectrics.

Figure 99. A plot of normalized breakdown voltages for capacitors as a function of wafer type for three temperature anneal conditions: 25°C-no anneal; 200°C-anneal for 30 minutes in nitrogen; Final T-anneal for 30 minutes at 400°C for polyimides, 500°C for all other dielectrics.

Figure 100. Measured value of leakage current as a function of voltage at $T = 100^{\circ} C$ for several dielectric types.

B. Dielectric Thicknesses

Sample calculation of total dielectric thickness for two different dielectric composit wafers.

$$\frac{1}{C_{T}} = \frac{1}{C_{1}} + \frac{1}{C_{2}} \quad \text{where} \quad C = \frac{\varepsilon_{0} \varepsilon_{r} A}{d}$$

$$\varepsilon_{0} = 8.854 \times 10^{-18} f/\mu$$

$$A = 770,625 \mu m^{2}$$

thus

$$d_1 = \epsilon_{r_1} \left[\frac{\epsilon_0 A}{c_T} - \frac{d_2}{\epsilon_{r_2}} \right]$$

and assume

TYPE	<u>er</u>
atmospheric CVD oxide	4.2
LPCVD oxide	5.2
plasma enhanced oxide	4.7
sputtered quartz	4.3
plasma enhanced nitride	7.2
polyimide	3.6

Calculation of wafer 9-2, polyimide deposited over atmospheric CVD oxide. The oxide was measured accurately using the nanospec, however polyimide thickness not accurately known due to

t"< t' -planarizing effect

$$C_{\text{measured}}$$
 = 23.3 pf
 d_{oxide} = d_2 = 0.43 μm

$$d_1 = \epsilon_{r_1} \left[\frac{\epsilon_0 A}{c_T} - \frac{d_2}{\epsilon_{r_2}} \right]$$

$$= 3.6 \left[\frac{(8.854 \times 10^{-18} f/\mu) (7.70625 \times 10^{5} \mu m^{2})}{23.3 \times 10^{-12} f} - \frac{0.43 \mu m}{4.2} \right]$$

= 0.685um

Therefore
$$d_T = d_1 + d_2 = 0.685 + 0.43 = 1.1 \mu m$$

The dielectric thickness for most test samples was determined by a combination of nanospec, alpha step and capacitance measurement data. With the polyimide materials, the thickness of the dielectric over first level metal patterns was found to be 75-80 percent of the thickness over the substrate resulting from its planarizing quality. Hence a combination of SEM analysis and capacitance measurements rendered the best results for these dielectrics.

A summary of dielectric thicknesses for the wafers tested is given in Table 39. Also in this table is the number of via open circuits and capacitor, cross-over and interdigitated finger short circuit.

	TH:	ELECTRI ICKNESS icrons	S)		VIA'S N CIRCU		s	HORT C	IRCUIT	s
WAFER	d ₁ bottom	d ₂ top	${ m d}_{ m T}$ total	1000	600	400	С	c.o.	1-IF	2-IF
1-7	0.98	Į l	0.98	0	0	0(1)	3	5	1	0
9-2		0.67	1.1	۸11	A11	All	0	0	0	8
9-8	0.92	0.48	1.4	A11	All	75	0	0	2	3
2-22	1.0		1.0	71	64	6.3	2	0	1	1
2-8	1.0		1.0	71	59	36	4	4	2	1
2-15	0.25	0.95	1.2	4(1)	2	4	1	0	3	6
2-2	0.25	1.05	1.3	1	1	1	0	0	0	4
7-2	0.65	0.25	0.9	2(2)	3(1)	1	1	2	0	2
7-13	0.55	0.25	0.8	0(3)	2	0	2	2	0	1.
3-23	0.95		0.95	1(4)	0(4)	0(5)	2	34	0	0
3-9	1.1		1.1	14(2	10	8	23	31	0	1
3~6	0.25	0.85	1.1	2	0	1	1	1	2	1
7-25	0.26	0.84	1.1	1(1)	4	1(1)	2	1	0	1
7-15	0.54	0.26	0,8	A11	A11	۸11	0	2	1	2
7-14	0.55	0.30	0.85	۸11	۸11	۸1]	2	0	1	5
3⊷25	0.80	•	0.80	1(1)	- 2	. 1	27	55	1	1
5-14	0.35		0.35	0	0	0(1)	٨11	۸11	0	1
5-21	0.11	0.89	1.0	2(1)	0(1)	1(1)	2	2	0	1
8-3	0.59	0.11	0.7	1	0	0	3	2	0	2
5-3	1.0		1.0	0	1	1	11	20	0	1
5~12	0.25		1.1	0	0	0	0	0	0	1
8-10	0.45	0.85	0.7	1	0(1)	0	0	1	0	1
9-16	1.0	0.25	1.0	0	0	0	0	0	0	1
9-25	0.8		0.8	1	1	1(1)	1	0	0	1
8-18	1.5		1.5	8	12	13	0	1	1	1
8-20	1.1		1.1	2	1	4	0	0	1	2
8-22	1.2		1.2	1	0	0	0	0	0	1
8-24	1.5		1.5	7	2	1	1	1	1	2
8-25	1.25		1.25	4	2	2	0	0	0	2
8-13	1.7		1.7	2(1)		1	0	1	0	3
				,			_			

Table 39. A summary of dielectric thicknesses, the number of via open-circuits and the number of capacitor (C), cross-over (C.O.) and interdigitated fingers (I.F.) short circuits.

C. A Figure of Merit for Dielectrics

In order to compare the various types of dielectrics tested in order to find the optimum dielectric for double layer metal processes, a figure of merit had to be derived. This figure of merit should include the following dielectric characteristics:

- high breakdown voltage for both capacitor and cross-over structures per unit thickness (maximum electric field strength).
- high dielectric resistance (as measured by leakage current for an applied voltage) per unit thickness
- low number of short circuits measured between metal layers for capacitor and cross-over structures as well as between interdigitated fingers for each metal level
- . high interface dielectric resistance (as measured between interdigitated fingers for each metal level)

Taking all of these desirable parameters into account, a dielectric and a comprehensive dielectric figure of merit (CDFM) have been defined (see next subsections). Based on these definitions, calculations for each dielectric have been undertaken and the results shown in Tables 40 and 41 for no anneal and final anneal cases. In addition, representation of the top ten dielectrics as per their CDFM value are shown in Figures 101 through 103. Figure 103 represents the results if two micron thick polyimide (twice the normalized breakdown voltage and dielectric resistance) are compared to one micron thick dielectric for all others considered.

C1 - DIELECTRIC FIGURE OF MERIT - D.F.M.

D.F.M. =
$$[NOR-B.V.][NOR-R_D][1/N s.c.]$$

where

NOR-B.V. = Normalized Breakdown Voltage (volts/micron)

= Maximum Electric Field Strength

NOR-R_D = Normalized Dielectric Resistance (ohms/micron)

$$= \frac{V_{applied}}{I_{leakage}} \cdot \frac{1}{Dielectric Thickness} = \frac{V_a}{I_{\ell}} \cdot \frac{1}{t}$$

$$\frac{1}{N}$$
 = A degradation in DFM by up to 50% due to the measured number of short circuits (s.c.) per wafer (76 die) in capacitors or cross-overs.

$$= 1 - 6.58 \times 10^{-3} (\#s.c.)$$

C2 - COMPREHENSIVE DIELECTRIC FIGURE OF MERIT - C.D.F.M.

where

 ${\rm ^{R}I.F.} = \begin{array}{l} {\rm Interface\ dielectric\ resistance\ measured\ between\ interdigitated\ fingers\ (I.F.)\ for\ both\ first\ level\ ({\rm ^{R}_{I.F.-1}})\ and\ second\ level\ ({\rm ^{R}_{I.F.-2}})\ metal\ layers. }$

=
$$(R_{I.F.-1})(R_{I.F.-2})(1/R_{IF-s.c.})$$

and

$$\begin{array}{c} 1 \\ \hline R_{\rm IF} - {\rm s.c.} \end{array} \hspace{0.5cm} = \hspace{0.5cm} \begin{array}{c} \hspace{0.5cm} \text{A degradation in $R_{\rm I.F.}$} \hspace{0.5cm} \text{by up to 50\% due to the sum} \\ \hspace{0.5cm} \text{of the measured number of short circuits per wafer} \\ \hspace{0.5cm} \text{(76 die) in the first and second level metal interdigitated finger test pattern.} \\ \end{array}$$

=
$$1-6.58 \times 10^{-3}$$
 (#s.c. in first and second level I.F.'s)

C3 - SAMPLE CALCULATION OF C.D.F.M.

Wafer 2-22 After Final Anneal Temperature

where

Capacitor D.F.M. =
$$(NOR-B.V.)(NOR-R_D)(1/C_{s.c.})$$

and

measured B.V. = 530 volts

thickness = 1.0µm

NOR-B.V. =
$$\frac{530 \text{ volts}}{1.0 \text{ um}} = 530 \text{ volts/µm}$$

NOR-R_D =
$$\frac{V_{applied}}{I_{leakage}} = \frac{1}{t} = \frac{142 \text{ volts}}{0.45 \text{pA}} = \frac{1}{1.0 \text{µm}} = 315.6 \text{x} 10^{12} \text{ohms/µm}$$

Number of capacitor short circuits in 76 die = 2

$$1/C_{s.c.} = \frac{1}{100} \left[50 \left(\frac{76-X}{76} \right) + 50 \right] = 1-6.579 \times 10^{-3} (\#s.c.)$$
$$= 1-6.58 \times 10^{-3} (2) = 0.987$$

Therefore:

Capacitor D.F.M. =
$$(530 \text{ volts/}\mu\text{m})(315.6\text{x}10^{12}\text{ohm/}\mu\text{m})(0.987)$$

= $165.1\text{x}10^{15} \text{ volt-ohm/}\mu\text{m}^2$

Also

Cross-over D.F.M. =
$$(NOR-B.V.)(NOR-R_D)(1/CO_{s.c.})$$

measured B.V. = 560 volts

$$I_{leakage} = 172 \text{ pA}$$

$$thickness = 1.0 \mu m$$

NOR-B.V. =
$$\frac{560 \text{ volts}}{1 \text{ um}}$$
 = $560 \text{ volts/}\mu\text{m}$

NOR-R_D =
$$\frac{142 \text{ volts}}{172 \text{ pA}}$$
 $\frac{1}{1.0 \mu \text{m}}$ = $0.826 \text{x} 10^{12} \text{ ohm/} \mu \text{m}$

Number of cross-over short circuits in 76 die = 0

$$1/C0$$
 s.c. = 1

and

Cross-over D.F.M. =
$$(560 \text{ volts/}\mu\text{m})(0.826\text{x}10^{12}\text{ohm/}\mu\text{m})(1.0)$$

= $462.56\text{x}10^{12} \text{ volt-ohm/}\mu\text{m}^2$

Now

$$R_{I.F.} = (R_{IF-1})(R_{IF-2})(1/R_{IF-s.c.})$$

Measured leakage current for 1st level = 97 pA

Measured leakage current for 2nd level = 157 pA

$$(R_{IF-1})(R_{IF-2}) = (\frac{142 \text{ volts}}{97 \text{ pA}})(\frac{142 \text{ volts}}{157 \text{ pA}}) = 1.324 \text{x} 10^{24} \text{ohm}^2$$

Number of interdigitated finger short circuit for first level metal is 1, and for second level metal 1; total for both levels 2

$$1/R_{TF-S+C} = 1-6.58 \times 10^{-3} (2) = 0.987$$

Thus

$$R_{T.F.} = (1.324 \times 10^{24})(0.987) = 1.307 \times 10^{24} \text{ ohm}^2$$

C.D.F.M. =
$$[(165.1 \times 10^{15} \text{ volt-ohm/} \mu\text{m}^2)(462.56 \times 10^{12} \text{volt-ohm/} \mu\text{m}^2)$$

 $(1.307 \times 10^{24} \text{ohm}^2)] = 9,981 \times 10^{52} \frac{\text{volts}^2 \text{ohms}^4}{\text{um}^4}$

		CAPA	CITOR			CROSS	-OVER		INTE	RDIGIT	ATED	
			NNEAL)	!		(no an				INGERS	_	Ì
	R _{NOR}	BV	и	DFM	RNOR	BV NOR	,,	DFM	#s.c.	#s.c.	RIF	CDVM
WAFER	X10 ¹¹		#s.c.	X10 ¹⁴	X10 ¹¹		#s.c.	x10 ¹⁴		2-I.F		X10 ⁵⁵
1-7		_	3		_	_	5	-	1	0	-	_
9-2	40.5	536	0	22	2.21	555	0	1.23	0	8	8.8	-0
9~8	15.3	239	0	3.7	1.25	325	0	40.6	2	3	9.6	0.01
2-22	338	610	2	204	2.68	585	0	157	1	1	4.6	1.5
2-8	121	450	4	53	26.8	550	4	1436	2	1	454	345
2-15	252	463	1	116	19.7	488	0	961	3	6	1186	1322
2-2	1316	477	0	628	26	508	0	1321	0	4	1732	14367
7-2	247	533	1	130	6.9	444	2	301	0	2	110	43
7-13	2536	638	2	1596	21	612	2	1263	0	1	534	10760
3-23	4530	537	2	2401	12	484	34	455	0	o	206	2250
3-9	184	318	23	49.3	6	472	31	225	0	1	23	26
3-6	369	495	1	181	4.2	423	1	175	2	1	144	46
7~25	403	491	2	195	24	495	1	1197	0	1	1390	3246
7–15	68	385	0	26.5	8.5	650	2	548	1	2	31	4.5
7-14	112	588	2	64	2.8	529	0	150	1	5	9	0.9
3-25	455	625	27	234	16.9	637	55	686	1	1	410	658
5-14	0	-	76	-	0	s.c.	76	- 1	0	1	89	- 1
5-21	148	260	2	38	8.1	330	2	263	0	1	22	2.2
8-3	22	328	3	7	2.6	193	2	51	0	2	80	0.3
5-3	203	520	11	98	0.4	400	20	14.6	0	1	5	- ₀
5~12	113	536	o	61	8.8	477	0	421	0	1	604	155
8-10	29	586	0	17	2.7	443	1	121	0	1	334	7
9–16	133	475	0	63	8.3	290	0	242	0	1	145	22.
9-25	17.8	325	1	57	10	363	0	367	0	1	86	18
8-18	54	413	0	22	1.1	423	1	45	1	1	1.5	0.01
8-20	25	291	0	7.3	5.3	273	0	144	1	2	80	0,8
8-22	168	404	0	68	8.8	400	0	351	0	1	205	49
8-24	1183	443	1	520	8.2	367	1	300	1	2	150	234
8-25	76	384	0	29	5.7	320	0	182	0	2	79	4
8-13	1671	371	0	620	13.2	376	1	495	0	3	585	1795

Table 40. Calculated values of dielectric figure of merits (D.F.M.) and the comprehensive dielectric figure of merit (C.D.F.M.) for all wafers tested prior to temperature annealing.

	(FIN	CAPACI AL ANNI	RAL TEN	1P.)			-OVER		1	RDIGITA INGERS	ATED		Zum THICK POLY-
WAFER	R _{NOR}	BV _{NOR}	#s.c.	DFM X10 ¹⁴	R _{NOR}	BV _{NOR}	#s.c.	DFM X10 ¹²	#s.c. 1-I.F	#s.c. 2-I.F	R _{IF₂₂ X10²²}	CDFM X10 ⁵³	CDFM X10 ⁵³
1-7	290	163	3	463	6.3	480	5	292	1	0	72.4	98	‡ ; !
9-2	51.6	545	o	281	22.6	523	0	1185	0	8	1624	5406	
9–8	12.7	254	0	32	5.6	243	0	135	2	3	133	5.8	I
2-22	316	530	2	1651	8.26	560	0	463	1	1	131	998	!
2-8	1183	580	4	6685	10.1	520	4	512	2	1 1	189	6463	ī
2-15	394	467	1	1829	14.3	467	0	666	3	6	561	6832	1
2-2	728	446	0	3248	11.5	442	0	508	0	4	415	6852]
7-2	17.3	394	1	678	4.5	383	2	171	0	2	117	125	
7-13	98.6	413	2	402	5.4	431	2	229	0	1	167	154	}
3-23	1495	568	2	8380	9.96	568	34	439	0	0	157	5776	
3-9	759	491	23	3165	4.3	418	31	143	0	1	42	190	1
3~6	1291	482	1	6178	4.9	450	1	218	2	1	58	780	
7-25	99	545	2	534	13.3	482	1	637	0	1	455	1548	i
7-15	0.07	413	0	0.31	0.18	500	2	8.8	1	2	4.4	~0	!
7-14	40.3	365	2	145	7.36	459	0	338	1	5	87	43	
3–25	197	444	27	720	26.5	600	55	1014	1	1	527	3849	!
5-14	s.c.	s.c.	76	-	s.c.	-	76	_	0	1	0.02	_	
5-21	0.6	220	2	1.3	0.98	355	2	34.3	0	1	1.2	-0	!
8-3	0.01	257	3	0.03	0.98	193	2	18.7	0	2	2.0	-0	
5~3	11.6	450	11	48.6	0.84	365	20	26.6	0	1	32	0.4	
5-12	430	477	0	2053	8.5	364	0	309	0	1	198	1258	<u> </u>
810	338	571	0	193	8.46	386	1	324	0	1	67	42	i I
9-16	710	310	0	2201	4.98	350	0	174	0	1	51	196	3130
9-25	0.17	250	1	0.43	3.94	238	0	94	0	1	21	- 0	0.1
8-18	631	377	0	2379	5.06	343	1	172	1	1	113	463	7400
8-20	129	291	0	376	4.45	282	0	126	1	2	52	25	397
8-22	118	392	0	464	4.3	390	0	168	0	1	56	44	697
8–24	271	377	1	1013	5.7	360	1	203	1	2	143	294	4679
8-25	126	320	0	404	4.45	184	0	82	0	2	65	22	349
8-13	835	282	0	2356	8.8	330	1	291	0	3	398	2723	44238

Table 41. Calculated values of dielectric figure of merit (D.F.M.) and the comprehensive D.F.M. for all wafers after final anneal (400°C for 30 minutes for polyimides, and 500°C for 30 minutes for all others).

NO TEMPERATURE ANNEAL

Figure 101. Ranking of the top ten wafers (of the 30 tested) in percentage having the highest C.D.F.M. before any annealing temperatures based on wafer 2-2 (highest) with a C.D.F.M. = $14,367 \times 10^{55}$ volts².ohm⁴/ μ m⁴.

Figure 102. Ranking of the top ten wafers (of the 30 tested) in percentage having the highest C.D.F.M. after final temperature anneal based on wafer 2-2 (highest) with a C.D.F.M. = 6852×10^{53} volts².ohm⁴/ μ m⁴.

AFTER FINAL ANNEAL TEMPERATURE (400°C-polyimides, 500°C-all others)

Figure 103. Ranking of the top ten wafers (of the 30 tested) in percentage having the highest C.D.F.M. after final temperature anneal based on wafer 8-13 (highest) assuming two micron thick polyimides whereas all other dielectrics and composits are one micron thick.

D. Pinhole Count

45

Using the decoration technique, the procedure is as follows:

- 1. Deposit dielectric (or combination of dielectrics) as indicated above.
- 2. Dip wafer in hot phosphoric acid a time equivalent to 3 to 5 times the aluminum thickness etch time. Rinse wafer in D.I. $\rm H_2O$.
- 3. Strip dielectric.
- 4. Monitor etch pits in Al (dark blue silicon dioxide field easily distinguished at etched Locations). Estimate average pinhole density per unit centimeter.
- 5. Pinhole density is a function of dielectric material and its thickness.
- 6. An extension of this test can be used to monitor the integrity (ie, pinhole density) of the photoresist used in patterning the dielectric.

Improved results can be obtained if etching in the hot phosphoric acid mixture is accomplished ultrasonically. Typical pinholes as observed in the microscope are shown in Figures 104 and 105.

Figure 104. Wafer 4-7. Micrograph of a pin-hole location as etched through low-pressure CVD oxide into the thin aluminum of the test pattern. The oxide has not yet been removed.

Figure 105. Wafer 4-10. A pin-hole in plasma deposited oxide (from Pacific Western) resulting from removing particulates in the scrubber. Notice void where particulate was before scrubber removal.

E. Adhesion and Life Testing

In order to monitor the adhesion of the second level metal to the various dielectrics as well as the adhesion of the dielectrics to the substrate, a pressure-temperature-humidity-bias (PTHB) test chamber had to be constructed. A modified pressure cooker was used as shown in Figure 106, consisting of a heater controlled wafer chuck (temperature monitored with a thermocouple), a couple of wafer probes, a means of introducing an inert gas and a pressure gauge to monitor the pressure accurately. The complete set-up is shown in Figure 107.

A summary of the number of pinholes as determined from the decoration test and the adhesion characteristics of top metal to the dielectric and also the dielectric to the substrate (over aluminum) using the scotch tape stress tape is given in Table 42. The presence of pinholes in the dielectric was first determined by measuring the resistance between the top and bottom level metals (of lot MS4) for the whole wafer covered with metal. All were short circuited. Next, the top level metal was patterned into one centimeter squares, with each wafer having 14 to 16 whole one square centimeter areas. The number of these squares which were open circuited compared to the total is given in Table 42 as the first column under the pinhole test data. These wafers were next exposed to room temperature water, boiling water and pressurized steam (15 psi) for 15 minutes each. After each exposure to water, the wafers were spun dry and dehydrated at 80°C in an oven for 15 minutes. Using Scotch tape securely attached

Figure 106. Illustration of pressure cooker arranged for making pressure-temperature-humidity-bias test.

Figure 107. Complete set-up for making pressure-temperature-humidity-bias (PTHB) test on dielectrics.

to the surface, a rapid pull of the tape perpendicular to the wafer removes a portion of the top level metal in some cases. The percentage of top metal removed is given in Table 42. It should be noted that prior to performing the top metal adhesion test, it was attempted to pattern the dialectric using the top 1 cm² metal squares as a mask. The oxides were rather easily patterned, but the polyimides had to be left in hydrazine for an extended period of time (2 hours). This dielectric patterning attempt probably affected the top metal adhesion tests.

Next, the top level metal was removed in a hot phosphoric mixture and then allowed to sit in the ultrasonic etch for a period of time (15 minutes). This allowed the etching of the bottom metal through the dielectric pinholes. The average number of pinholes counted per dielectric is given in Table 42.

After counting the pinholes using a calibrated microscope, the wafers were exposed to room temperature water, boiling water and pressurized steam again such that the Scotch tape adhesion test could be performed on the dielectrics. The percentage dielectric lifted is given in Table 42.

声片

		рт	NHOLE I	reer	SC	OTCH TA	APE TES	ST (% .	lift-o	ff)
PINHOLE	DIELECTRIC			631	To	op Meta	a1	Dielectric		
TEST WAFERS	ТҮРЕ	1cm ² (0.c.) tot	1cm ² %o.c.	Avg. # pinholes per cm ²	1120	1120	15psi 120°C 15min.	Н20	100°C H ₂ 0 30min.	15psi 120°C 30min.
4-6	lμD-LP-0x	0/14	0	6.3(j)	0(a)	0(a)	0(a)	90	95	95
4-7	1μD-LP-0x	0/14	0	8.3	0(a)	0(a)	0(a)	60	70	70
4-8	0.25p D-LP-0x+PIO	16/16	100	1.2	90(ъ)	95	100(c)	100	100	100
4-9	1μD-PE-Ox	15/15	100	0.2	0(a)	0(a)	0(a)	90	95	95
4-10	luD-PE-0x	13/13	100	0.3	0(a)	0(a)	0(a)	95	95	95
4-11	0.25µD-PE-Ox+PIO	13/14	93	0.25	0	0	0	100	100	100
4-12	1μPE-Nit	11/14	79	1.1	0	0	0	15	15	15
4-13	0.25µPE-Nit + PIQ	16/16	100	0.2	0	0	0	95	100	100
4-14	0.5µ Otz	0/13	0	>100	0(a)	0(q)	0(d)	90	80(k)	95
4-15	0.1µQtz+PIQ	13/14	93	1.0	0	0	0	65	65	65
4-16	PIQ+0.25µD-LP-0x	8/14	57	0.4	0(e)	0(e)	0(e)	65	70	76
4-17	PIO+0.25pD-PE-0x	-	-	2.0	100	100	100(f)	100	100	100
4-18	PIO+0.25pPE-Nic	14/14	100	0.08	0(g)	0(g)	O(g)	0	0	5
4-19	PIO+0.luOtz	-	-	10	(h)	(h)	(h)	100	100	100
4-20	0.411D-0x+PIQ	14/14	100	0.7	80(i)	90	100	90	100	100
4-21	0.7µPIQ	6/14	43	>100	90(i)	95	100	95	100	95
4-22	0.75µPI-2555	0/14	0	13.1	90(i)	95	100	95	95	100
4-23	1.2µPIQ	8/16	50	1.3	50(i)	70	100	95	95	100
4-24	1.2u PI~2555	5/14	36	18.7	85(i)	95	100	95	100	100

NOTES:

- s.c. = short circuit
- o.c. = open circuit (resistance measurement between metals utilized mercury probe)
- (a) top metal did not lift but oxide in the scribe lines did lift off
- (b) 90% top metal lifted plus 20% of the polyimide lifted
- (c) 100% top metal lifted plus 90% of the polyimide lifted
- (d) quartz in scribe lines lifted
- (e) oxide in scribe lines lifted, polyimide stayed
- (f) all metal lifted, break at oxide-polyimide interface
- (g) nitride in scribe lines lifted
- (h) top metal was removed in prior processing
- (i) wafer had been in hydrazine for 2 hours trying to pattern polyimide in scribe lines prior to this test
- (j) average number of squares inspected was 8, inspection made by microscope
- (k) one area on wafer exhibited excellent adherence

Table 42. A summary of the number of pinholes as determined from the decoration test and the adhesion characteristic of top metal to the dielectric and also the dielectric to the substrate (over aluminum) using the Scotch tape stress test.

V. CONCLUSIONS AND RECOMMENDATIONS

Based upon the defined comprehensive dielectric figure of merit (C.D.F.M.) after final anneal temperatures, the low pressure CVD oxide combined with polyimide as well as low pressure CVD oxides and plasma enhanced oxides by themselves look very promising. Similar results are observed for these dielectrics having no temperature anneal. If two micron thick polyimides are allowed to be compared to all other dielectrics which are one micron thick (since they do not increase in stress with increased thickness and since most polyimides used in the semiconductor industry today are 1.5 to 2 microns in thickness), then polyimides look very promising.

It should be noted that the thickness of the dielectrics on wafer lot MS4 (the pinhole test wafers) was not measured, and from the pinhole count results, it is suspected that much thinner dielectrics existed on these wafers (especially for polyimides) than anticipated, or the fact that too many experiments were conducted on these wafers to render representative results may be an equally valid explanation.

It should also be noted that the sputtered quartz as received from the vendor was thin and enhibited poor adherence to the substrate. Much of this dielectric was removed in attempting to pattern via holes in the thin quartz (1000 $\overset{\circ}{A}$) for use with polyimide composites prior to depositing second level metal. Thus, it exhibited the poorest qualifications as a dielectric as determined from our testing procedure.

For future recommendations, it is suggested that an investigation of other dielectric combinations be conducted.

In the study just completed, only dielectrics by themselves (atmospheric, LPCVD, plasma and sputtered oxides, plasma nitrides and polyimide) or these dielectrics combined with polyimide were investigated. To complete this study, a look at other dielectric combinations should be undertaken and their advantages utilized (i.e., by depositing a more denser plasma oxide first and then followed by a less denser low pressure or atmospheric oxide, excellent via wall slopes may be realized in patterning this combination; nitride over polyimide proved excellent in the present study in pinhole density and film adhesion under pressurized steam, what about nitride over oxides, etc.)