tiagokatcipis

software engineer

contact

+39 349 859 0291 tiagokatcipis@gmail.com GitHub LinkedIn Blog

education

experience

2006–2011 Bachelor of Computer Science

UFSC

Berlin, Germany

languages skill

English: advanced, Portuguese: advanced

programming languages

Go, C, C++, Python, Lua, Bash, Javascript, Nash

protocols

HTTP, gRPC, SIP, RTP, AMQP

cloud

Kubernetes, AWS, Azure, Google Cloud, Docker, Terraform

automation

Ansible, Make

dev environment

Vagrant, Docker Compose

monitoring

Prometheus, Grafana, StatsD, Sysdig

2019–now **FromAtoB**

Software Engineer - Data Platform Team

Led the migration of the entire data platform from AWS to Azure, which resulted in a fully automated infrastructure. To build this automation an open source project was developed at Neoway to deploy infrastructure at Azure called klb which is a stateless tool to build infrastructure.

After the infrastructure migration I helped to solve an audio captcha, something that had not been done before at Neoway. Doing that involved some researching on current techniques and culminated on a service capable of solving a specific audio captcha with 80% of assertiveness.

The creation of this service involved the integration of different tools and techniques, like sox to remove noise and segment audios, MFC (Mel-Frequency Cepstrum) to extract features from the audio and SVM to train models. This service (and helper tooling) was developed in Go with integration to some open source Python tools for feature extraction.

2017–2019 **Neoway**

Software Engineer - Data Platform Team

Florianópolis, Brazil

Led the migration of the entire data platform from AWS to Azure, which resulted in a fully automated infrastructure. To build this automation an open source project was developed at Neoway to deploy infrastructure at Azure called klb which is a stateless tool to build infrastructure.

After the infrastructure migration I helped to solve an audio captcha, something that had not been done before at Neoway. Doing that involved some researching on current techniques and culminated on a service capable of solving a specific audio captcha with 80% of assertiveness.

The creation of this service involved the integration of different tools and techniques, like sox to remove noise and segment audios, MFC (Mel-Frequency Cepstrum) to extract features from the audio and SVM to train models. This service (and helper tooling) was developed in Go with integration to some open source Python tools for feature extraction.

2015–2017 **Neoway** Florianópolis, Brazil

Lead Software Engineer - Data Capture Team

My main job was to lead the development of a new data capture architecture that would scale better than the current one, both in performance as in development effort required to develop new web scrappers and maintain the current ones. It was also an objective to have improved visibility on the health of services and the whole data capture process, together with improved code quality.

The work started by substituting the current web scrapper language (XML) with Python using the Scrappy framework. This enabled us to tackle new challenges like parsing PDF or other complex binary formats and also enabled better testing and the introduction of continuous integration.

I also helped to define and implement services with clear boundaries like proxy, captcha, and raw storage services. These services where developed in Go and exported metrics using the StatsD protocol.

An automated development environment was created using Docker and docker-compose and the deployment and scheduling of more than 200 web scrappers in production was automated using Kubernetes.

2012–2015 **Dígitro** Florianópolis, Brazil

Lead Software Engineer

Worked on the development of a VoIP phone with touchscreen in a very strict environment (a Blackfin DSP processor with no MMU and 64MB of RAM). The project was built from scratch in C and used DBus to integrate different processes. The development environment was rather complex and involved cross compilation with very specific tools. This build of this development environment was done using Vagrant and Ansible.

Also worked on REST services. One to a new and simpler API to the company PBX, which was written in Lua. And another one was a solution to web audio playback with very specific audio effects (like silence removal, change in pitch, DTMF/Fax detection) that was a reimplementation of a legacy system that used RTMP, but now using HTTP.

This was developed in Javascript (NodeJS) integrating with the C code for transcoding of different media formats to a format more friendly to browsers.

During these projects I always practiced and advocated TDD (even on embedded systems in C) and helped people on the team to write automated tests for their code.

Software Engineer

I started working on a solution to web audio playback with very specific audio effects (like silence removal, change in pitch) that had to be developed using Flash (RTMP). To solve that problem I worked with two different open source C++ projects that did reverse engineering of the RTMP protocol to develop our own Flash Media Server. I worked directly with the integration of the server playback logic with Gstreamer and the plugins that enabled the desired effects on playback.

The next project was a solution to biometric identification using a third party C library that built and scored voice models. I developed a REST service in Lua that integrated with C code that built the voice models and used MongoDB to store the voice models and perform searches on the database.

2008–2010 **Dígitro**

Florianópolis, Brazil

Trainee

Helped in the development of an cross platform (Windows and Linux) audio streaming library for a VoIP softphone, aiming at porting the current application that was Windows only to Linux. I also got involved in the development of a prototype for a voice biometrics system.

2007-2008 **C**y

Cyclops / LAPIX

Florianópolis, Brazil

Trainee

Worked on adding new features on the system responsible to integrate medical equipment to the DICOM system, developing a cross platform domain specific graphical XML editor. This involved learning C++ and XML parsing, together with developing cross platform GUI applications, on this case using WxWidgets. The code has been tested using CppUnit.

open source projects

2017-now mdtoc https://github.com/madlambda/mdtoc

A very simple table of contents generator for markdown.

2016-2018 https://github.com/NeowayLabs/nash

> Nash is a shell language focused on simplicity and having a nicer syntax than traditional shells and support to containers. It also strives to be safer than tra-

ditional shells.

klb 2016-2018 https://github.com/NeowayLabs/klb

> klb is used to automate infrastructure creation on AWS and Azure. I got involved on designing the support for Azure since this was the tool used to migrate Neoway production infrastructure from AWS to Azure.

2013 **CppUTest** http://cpputest.github.io

> CppUTest is a C /C++ based unit xUnit test framework for unit testing and for test-driving code.

> In this project I worked both on improving the documentation and at adding new native types to the mock framework (which involved some refactoring).

2012 **GStreamer** http://www.gstreamer.net

> GStreamer is a library for constructing graphs of media-handling components. I contributed with a plugin named removesilence and some documentation for the GstCheck documentation.

2010-2011 Pattern detection on H.264 https://github.com/katcipis/h264.pattern.detection

> This is my Bachelor's Thesis and it consists of a prototype of a H.264 CODEC that uses OpenCV and H.264 internal algorithms to do pattern detection and object tracking integrated on the encoding process.

> Metadata generated on the encoding process is integrated on the video bitstream on conformance with the standard.

2010-2011 LuaSofia https://github.com/ppizarro/luasofia

> Lua binding for the Sofia-SIP library. Contributed to the project from the start, helping to make decisions about the design of the software and documenting

it.

2010 **GPS** tracking system https://github.com/katcipis/gps.tracking

System designed to provide the location of a device at the receive of a position

request using SMS.

2010 https://github.com/katcipis/luanotify

Lua library that implements a simple Pub/Sub system inspired on glib GSignal

API.

2018 **Object Orientation in Go**

The Developers Conference

For people that come from a background on Java or other classic object oriented languages (like C++) there is also some discussion on if Go is actually object oriented.

In this presentation I try to present Go as a language that is more object oriented than these classic languages, at least according to the original foundations of object orientation.

Presentation source can be found here.

2016 **Building Resilient Services in Go**

GopherCon Brazil

Resilience is not about never failing, but how do you recover from it. How can you prevent your services from locking down or exhausting all its resources? How to perform graceful service degradation? Can this kind of behaviour be tested properly?

On Go we have some new features, like Contexts, that helps us to model timeouts and cancellation properly.

They can be combined with other useful features as select and channels to model timeouts and resource pools, which can be essential to provide proper service degradation instead of total failure of the system.

On this talk I try to answer this questions using new features available on Go 1.7, direct from production ready software.

Presentation source can be found here.

2016 Real Life Kubernetes

The Developers Conference

On this presentation we will give a short introduction on Kubernetes and show the experience of learning and using Kubernetes on production for two very distinct systems.

The first one is a data acquisition system, involving running multiple instances of different crawlers, storage services, captcha breaking services, message brokers (like RabbitMQ) and database integration outside the cluster.

The second one is a web application, involving network analysis using graphs with the ultimate goal of fraud prevention. The application is strongly bounded with the microservices architecture and the twelve factor app.

Graph and document databases, cache layers, a message broker and a distributed filesystem are some of the technologies surrounding the application ecosystem.

Presentation source can be found here.