

Past Papers Int 2 Chemistry

2005 Marking Scheme

Grade Awarded	Mark Required (/80)		% candidates achieving grade
Α	55+	69%	30.6%
В	46+	57%	21.4%
С	38+	47%	18.5%
D	34+	42%	7.9%
No award	<34	<42%	21.6%

Section:	Multiple Choice		Extended Answer	
Average Mark:	17.7	30	29.0	/50

2005 Int2 Chemistry Marking Scheme				
M <i>C</i> Qu	Answer	% Pupils Correct	Reasoning	
1	В	38	☑A Graph Q is faster initially but no change to particle size so initial rate is same ☑B 0.5g of magnesium would half the gas volume and powder is faster than ribbon ☑C same mass of magnesium so final volume of gas given off would remain the same ☑D increased mass of magnesium would increase volume of gas given off	
2	D	61	 ☑A magnesium hydroxide contains magnesium, hydrogen and oxygen ☑B magnesium phosphate contains magnesium, phosphate and oxygen ☑C magnesium sulphite contains magnesium, sulphur and oxygen ☑D magnesium nitride contains magnesium and nitrogen 	
3	A	70	 ✓ A carbon dioxide does not react as it passes over a catalytic converter. ☑ B carbon monoxide reacts to become carbon dioxide in a catalytic converter ☑ C nitrogen dioxide reacts and reverts back to nitrogen in a catalytic converter ☑ D nitrogen monoxide reacts and reverts back to nitrogen in catalytic converter 	
4	В	89	 ☑A Halogens (group 7) have 7 electrons in their outer shell ☑B Noble gases have a full outer electron shell ∴2,8,8 is a Noble Gas (Argon) ☑C Alkali metals (group 1) have 1 electron in their outer shell ☑D Transition Metals (block between groups 2+3) do not have a full outer shell 	
5	D	58	Atoms of the same element must have the same atomic number and same number of protons. Isotopes of the same element have the same number of protons but can have different numbers of neutrons (hence a different mass number)	
6	Α	38	☑A carbon monoxide (CO) is a diatomic molecule due to 2 atoms in the molecule ☑B carbon tetrachloride (CCl4) is a pentatomic molecule (5 atoms in the molecule) ☑C nitrogen trihydride (NH3) is a tetratomic molecule (4 atoms in the molecule) ☑D Sulphur dioxide (SO2) is a triatomic molecule (3 atoms in the molecule)	
7	Α	59	☑A Ionic compounds conduct as liquids but not as solids & have high melting points ☑B Metallic substances conduct as both solids and liquids ☑C Covalent networks do not conduct in any state and have high melting points ☑D Covalent molecular do not conduct in any state and have low melting points	
8	D	53	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
9	Α	35	☑A Combustion: burning reaction joining up with oxygen ☑B Condensation: small molecules join together with water removed at join ☑C Dehydration: water is removed from a molecule leaving a C=C double bond ☑D Hydrolysis: larger molecule breaks up with water added at the split	
10	С	92	\blacksquare A C_5H_{10} molecule cannot be an isomer as it has a different formula to C_5H_{12} \blacksquare B C_5H_{10} molecule cannot be an isomer as it has a different formula to C_5H_{12} \blacksquare C Molecules are isomers as they have same formula but different structures \blacksquare D C_6H_{14} molecule cannot be an isomer as it has a different formula to C_5H_{12}	
11	В	66	☑A Molecule shown has C=C double bond so it is unsaturated ☑B Molecule is unsaturated (C=C double bond) and an alcohol (contains -OH group) ☑C Molecule shown has C=C double bond so it is unsaturated ☑D Molecule shown has hydroxyl group so it is an alcohol not a carboxylic acid	
12	В	82	 ☑A But-2-ene has 4 carbons and molecule shown has 5 carbons ☑B Pent-2-ene has 5 carbons with a C=C double bond between carbons 2 and 3 ☑C But-3-ene has 4 carbons and molecule shown has 5 carbons ☑D Pent-3-ene: wrong numbering system as C=C should have lowest number possible 	

			🗷 A Molecule is an alcohol as it has a hydroxyl -OH group
13	7	52	☑B Molecule is an aldehyde as it has an aldehyde -CHO group (Higher Chemistry)
15		J 2	☑ C Molecule is an carboxylic acid as it has a carboxyl -COOH group
			☑D Molecule contains the ester group (-C-O-CO-)
		\blacksquare A Molecule shown has formula C_6H_{14} and compound Y has formula C_6H_{12}	
14	В	76	\square B Compound Y is cyclohexane as it has formula C_6H_{12} and does not decolourise Br_2
- '		/ 0	☑ C Compound Y has no C=C double bond as it does not decolourise Bromine solution
			© Compound Y has no C=C double bond as it does not decolourise Bromine solution
			EA Coal is a non-renewable fossil fuel
15	C	70	EB Petrol is made from crude oil. Crude oil is a non-renewable fossil fuel
			☑ C Ethanol is a renewable energy source as it is made from sugar
			☑D Natural gas is a non-renewable fossil fuel
			Fermentation: glucose than ol + carbon dioxide
1/	0	E 2	■ A Hydrogen: burns with a pop
16	В	53	☑B Carbon Dioxide: turns lime water milky
			EC Oxygen: relights a glowing splint
			ED Alkenes: rapidly decolourises bromine solution
			\blacksquare A $C_6H_{14}O$ is not a carbohydrate as hydrogen and oxygen are not in ratio 2:1
17		66	\blacksquare B $C_6H_{12}O_2$ is not a carbohydrate as hydrogen and oxygen are not in ratio 2:1
			$\mathbb{E}C$ $C_6H_{10}O_4$ is not a carbohydrate as hydrogen and oxygen are not in ratio 2:1
			☑D C ₆ H ₁₂ O ₆ is a carbohydrate with hydrogen and oxygen in the ration of 2:1
18		76	Proteins are polymers made from amino acid monomer units.
		, 5	Hydrolysis of proteins breaks the protein back to its amino acid building blocks.
19	_	69	Action on Acid Effect on pH Effect on H+ concentration
19	כ	U	Dilution Increase to 7 Decreases
			🗷 A Ammonia solution is a weak alkali so has pH less than a strong alkali
20	В	47	☑B Sodium hydroxide is a strong alkali so has the highest pH
20	D	7/	区 Ethanoic acid is a weak acid with pH below 7
			☑D Hydrochloric acid is a strong acid with pH below 7
21		50	no. of mol 0.2 mol 3 mol 1-1
21		50	concentration = $\frac{10.07 \text{ MoV}}{\text{volume}} = \frac{0.2 \text{ MoV}}{0.1 \text{ litres}} = 2 \text{ mol } l^{-1}$
			no. of mol H ₂ SO ₄ = volume × concentration = 0.02 litres × 1 mol t^{-1} = 0.02 mol
		D 28	2KOH + H ₂ SO ₄ - Volume × Concern anon - 0.02miles × 1mor - 0.02miles
22	D		2mol 1mol
			0.04mol 0.02mol
			■ A addition: molecule adds across a C=C double bond
23	7	47	B displacement: higher up metal displaces a lower down metal from its ion
		''	EC neutralisation: H ⁺ ions (acid) react with bases to form water
			D precipitation: insoluble solid is formed when two solutions are mixed
			$Ba^{2+} + 2NO_3^- + 2Na^+ + SO_4^{2-} \rightarrow Ba^{2+}SO_4^{2-} + 2Na^+ + 2NO_3^-$
24	A	00	Cancel out any spectator ions which appear on both sides
	A	83	$Ba^{2+} + 2NQ_3^{-} + 2Na^{+} + 5O_4^{2-} \rightarrow Ba^{2+}SO_4^{2-} + 2Na^{+} + 2NQ_3^{-}$
			Re-write equation omitting spectator ions
			Ba^{2+} + + SO_4^{2-} \rightarrow $Ba^{2+}SO_4^{2-}$
			☑A no reaction: copper is below magnesium in electrochemical series
25		38	☑B no reaction: copper is below sodium in electrochemical series
25		20	$oxtimes \mathcal{C}$ displacement reaction: copper is higher than silver in electrochemical series
			☑D no reaction: copper cannot displace itself

26	A	53	 ☑A electrons travel from higher metal (zinc) to lower metal (tin) through the wires ☑B electrons travel from higher metal (zinc) to lower metal (tin) ☑C ions travel through he electrolyte, electrons travel through the wires ☑D ions travel through he electrolyte, electrons travel through the wires 		
27	C	78	Type pH Ions in Solution Acid pH<7 Concentration of H^+ > Concentration of OH^- Neutral pH=7 Concentration of H^+ = Concentration of OH^- Alkali pH>7 Concentration of OH^- > Concentration of H^+		
28	В	41	 ☑A Electrons before arrow is gain of electrons ∴ reduction reaction ☑B Fe²⁺ ions are losing electrons ∴ Fe²⁺ ions are being oxidised ☑C Fe atoms are losing electrons ∴ Fe atoms are being oxidised ☑D Electrons before arrow is gain of electrons ∴ reduction reaction 		
29	A	40	Ferroxyl indicator turns blue in the presence of Fe ²⁺ ions Ferroxyl indicator turns pink in the presence of OH ⁻ ions		
30	С	60	☑A Plastic coating acts as barrier to rusting (except in scratch) ☑B Zinc layer sacrificially protects iron from rusting (galvanising) ☑C Iron rusts to sacrificially protect the tin layer ☑D Paint acts as barrier to rusting (except in scratch)		

	2005 Int2 Chemistry Marking Scheme					
Long Qu	Answer	Reasoning				
1a	non-metal reactive	The halogens (group 7) are a family reactive non-metal elements.				
1b	9 F 19 -1	Atomic number = no. of protons = 9 Atomic Number = 9 : Element is Fluorine Mass number = no. of protons + no of neutrons = 9+10 = 19 Charge = no. of protons - no. of electrons = 9-10 = -1				
2a(i)	Na ₂ CO ₃	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
2a(ii)	Sodium chloride	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
2b	Reaction would be slower	Ethanoic acid is a weak acid and would react slower with sodium carbonate than a strong acid like hydrochloric acid				
3a(i)	Burns with a pop	Gas Hydrogen Oxygen Carbon Dioxide Gas Test Burns with a pop Relights glowing splint Turns lime water milky				
3a(ii)	exothermic	Exothermic: reactions which release (heat) energy Endothermic: reactions which absorb heat energy from the surroundings				
3b(i)	Line graph showing:	½mark: labelling axes ½mark: correct scales ½mark: plotting points ½mark: drawing line				
3b(ii)	85±1cm³	Or answer taken from graph as drawn				
3c	1.8±0.05	Rate = $\frac{\Delta quantity}{\Delta time} = \frac{72 - 0}{40 - 0} = \frac{72}{40} = 1.8 \text{ cm}^3 \text{ s}^{-1}$				
3d	Greater number of collisions so faster reaction	Collision Theory can explain changes to reaction rate: Change Effect Collision Theory Increase Concentration Increase Temperature Decrease Particle Size Reaction Rate increases the number of successful collisions giving increased reaction rate.				
4 a	Chlorine Gas - Positive Copper Metal - Negative	ElectrodeProductEquationPositiveChlorine gas $2Cl^- \rightarrow Cl_2 + 2e^-$ NegativeCopper metal $Cu^{2+} + 2e^- \rightarrow Cu$				
4b	Waft gas towards nose carefully	It is advisable to use your hand to waft a small amount of the gas you are smelling for the first time . Do not breathe in large amount of gas until you are sure there is no danger.				
4c(i)	Copper ions gain electrons	$Cu^{2+} + 2e^{-} \rightarrow Cu$				
4c(ii)	0.02	n o. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{1.27}{63.5} = 0.02 \text{ mol}$				

F -	C ₂ H ₄ + 3O ₂	C 20 200 211 0			
5a	↓ 2CO ₂ + 2H ₂ O	$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$			
5b	heterogeneous	Type of Catalyst Definition Homogeneous Catalyst in same state as reactants			
30	nerel ogeneous	Heterogeneous Catalyst in different state from reactants			
	H	propan-2-ol			
6a(i)	H-C-C-C-H	3 carbons -OH hydroxyl group			
	ННН	functional group on carbon no. 2			
		H + H ₂ O H OH H			
6a(ii)	hydration	$H-C-C=C-H$ \longrightarrow $H-C-C-C-H$			
		н н н н н н			
	HI	CH ₃ H			
6b	hydrogen iodide	$C = C + H-I \longrightarrow I-C-C-H$			
		H H H H H H			
	CH3 H CH3 H CH3 H	CH ₃ H			
6c	- C-	C_C			
	to nautralica avcass	Monomer Polymer Repeating Unit			
7a	acid	Sodium hydrogencarbonate is used to neutralise the dilute hydrochloric acid used in test tube B to hydrolyses starch into glucose.			
7b	A No change B Turns brick red	In test tube A: starch does not react with Benedict's solution In test tube B: acid hydrolyses starch into glucose. Once acid is			
0		neutralised, glucose turn blue Benedict's solution brick red. ethanol + pentanoic acid thus the pentanoate + water			
8a(i)	ethyl pentanoate	NB: alcohol name come first in ester name			
8a(ii)	molecules join	Condensations reactions have small molecules joining up to make a larger molecule with a small molecule like water removed at the join.			
8b(i)	man-made	Synthetic materials are man-made materials manufactured by the chemical industry and are not natural materials			
8b(ii)	<u>O</u>	Ester links have the $C - O - C$ hand combination with 1 carbon has a $C - O$			
	$\begin{pmatrix} 1 \\ C - O \end{pmatrix} C$	Ester links have the ${\it C}$ - ${\it O}$ - ${\it C}$ bond combination with 1 carbon has a ${\it C}$ =0 double bond			
	Takes place at	Catalysts speed up chemical reactions but are not used up during the			
9a	lower temp or catalyst can be reused	reaction. All the catalyst can be recovered. Catalysts can often be used to lower the temperature a reaction takes place at.			
9b	Distillation	Distillation is used to separate chemicals with different boiling points			

		2 possible cracking equations:				
9с	Methane	$C_3H_8 \rightarrow C_3H_6 + H_2 \mid C_3H_8 \rightarrow C_2H_4 + CH_4$				
		propane propene hydrogen propane ethene methane				
10a	HH 0 H-C-C-C HH 0-H	Propanoic acid has 3 carbons and the -COOH functional group must be on carbon number 1				
		Alkanoic acid Alkane				
10b	Pentanoic acid	ethanoic acid CH ₃ COOH methane CH ₄ propanoic acid C ₂ H ₅ COOH ethane C ₂ H ₆ butanoic acid C ₃ H ₇ COOH propane C ₃ H ₈ pentanoic acid C ₄ H ₉ COOH butane C ₄ H ₁₀				
11a	3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
11b	glycerol	Glycerol is also known as propane-1,2,3-triol Glycerol has 3 carbons, each carbon has an -OH hydroxyl group				
11c	red/orange	3 Fatty acids and glycerol are created by the hydrolysis of fat or oil. Fatty acids are weak acids: gives a pH below 7 with universal indicator.				
12a	zinc copper electrode 100cm³ 0.1 mol l¹ hydrochloric acid	In a fair test, only the solution type is changed from sodium chloride to hydrochloric acid. The volume of solution, concentration of solution, temperature, size of electrodes and metals in electrodes are kept the same.				
12b	Electrodes removed, cleaned, dried and replaced	In the experiment, it is importance that there is no contamination between experiments and the electrodes are dry so water does not dilute solution.				
12c	Zn→Ni 0.5V	Electrons always flow from the metal higher in the electrochemical series to the metal lower in the series. Voltage must be below 1.0V (Cu/Zn) but must be higher than 0.3V (Fe/Zn)				
13a	Electrons not shared equally	Polar covalent bonding is caused by unequal sharing of electrons within a covalent bond. Pair of electrons are closer to one end of bond making that end of bond slightly negative and the other end slightly positive.				
13b(i)		Ammonia dissolves in water to form the weak alkali ammonium hydroxide. Only a few molecules dissociate into ions.				

13b(ii)	Reaction is reversible	Some reactions are reversible where the forward reaction and reverse reactions both take place. Equilibrium is formed when the rate of the forward reaction equals the rate of the reverse reaction.
	3.18 <i>g</i>	gfm NH ₄ Cl = $(1\times14) + (4\times1) + (1\times35.5) = 14 + 4 + 35.5 = 53.5g$ no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{10}{53.5} = 0.187 \text{ mol}$
13c		NH ₄ Cl + NaOH → NaCl + H ₂ O + NH ₃ 1mol 1mol 0.187mol 0.187mol gfm NH ₃ = (1×14) + (3×1) = 14 + 3 = 17g mass = no. of mol × gfm = 0.187 × 17 = 3.18g
14a	magnesium hydroxide is insoluble calcium chloride is soluble	Insoluble solids can be separated from solutions by filtration.
14b	Neutralisation	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
14c	$Mg^{2+} + 2e^{-} \longrightarrow Mg$	Molten magnesium chloride contains magnesium ions. Magnesium ions pick up electrons from negative electrode to become magnesium atoms.