MATH 453 HW 07

Name: Changyu Wu

CWID: A20337986

1. Sec 3.3 #1

$$\sum_{k>0} a_k x^k = \frac{1}{(1-x^2)(1-x^3)(1-x^6)(1-x^7)(1-x^8)}$$

2. Sec 3.3 #2

- (a) We need to find the coefficient of x^{14} in $(x+x^2)^{10}$ Since $(x+x^2)^{10}=x^{10}(1+x)^{10}$, the concise OGF is $x^{10}(1+x)^{10}$, therefore, it is equivalent to finding the coefficient of x^4 in $(1+x)^{10}$
- (b) The coefficient of x^k in $\frac{1}{(1-x)(1-x^6)(1-x^{12})(1-x^{24})(1-x^{30})}$
- (c) The coefficient of x^{75} in $\frac{1}{(1-x^3)(1-x^5)(1-x^{10})(1-x^{12})}$
- (d) Let z_i be the number of candies of type i, where $1 \le i \le 5$, then we must have $z_1 + z_2 + z_3 + z_4 + z_5 = 24$ and $2 \le z_i \le 16$, thus, we want the coefficient of x^{24} in $(x^2 + x^3 + x^4 + \dots + x^{16})^5$, since $x^2 + x^3 + x^4 + \dots + x^{16} = x^2(1 + x + x^2 + \dots + x^{14}) = x^2 \cdot \frac{1-x^{15}}{1-x}$, the concise OGF is $x^{10} \cdot \left(\frac{1-x^{15}}{1-x}\right)^5$, therefore, it is equivalent to finding the coefficient of x^{14} in $\left(\frac{1-x^{15}}{1-x}\right)^5$
- (e) We need to find the coefficient of x^{15} in $(1+x+x^2+\cdots+x^8)^3$ Since $(1+x+x^2+\cdots+x^8)=\frac{1-x^9}{1-x}$, the concise OGF is $\left(\frac{1-x^9}{1-x}\right)^3$, therefore, we need to find the coefficient of x^{15} in $\left(\frac{1-x^9}{1-x}\right)^3$
- (f) The coefficient of x^{100} in $\frac{1}{(1-x)(1-x^5)(1-x^{10})(1-x^{25})}$

3. Sec 3.3 #3

(a)
$$x^{60} \text{ in } \frac{1}{(1-x)^{23}} = \left(\binom{23}{60} \right) \approx 5.0826 \times 10^{19}$$

(b)
$$\frac{1+x+x^4}{(1-x^5)} = \frac{1}{(1-x^5)} + \frac{x}{(1-x^5)} + \frac{x^4}{(1-x^5)}$$
, therefore, the coefficient of x^k is $\begin{pmatrix} 5 \\ k \end{pmatrix} + \begin{pmatrix} 5 \\ k-1 \end{pmatrix} + \begin{pmatrix} 5 \\ k-4 \end{pmatrix}$

(c)
$$\left(\binom{8}{3-1} \right) = 36$$

(d)
$$(x^9 + x^{10} + x^{11} + \cdots)^3 = x^{27}(1 + x + x^2 + \cdots)^3$$
, therefore, the coefficient of x^{50} in $(x^9 + x^{10} + x^{11} + \cdots)^3$ is equal to the coefficient of $x^{50-27} = x^{23}$ in $(1 + x + x^2 + \cdots)^3$, which is $(\binom{3}{23})$

(e)
$$\frac{1+x}{(1-2x)^5} = \frac{1}{(1-2x)^5} + \frac{x}{(1-2x)^5}$$
, substitute $2x$ with y and we get $\frac{1}{(1-y)^5} + \frac{1}{2} \cdot \frac{y}{(1-y)^5}$, where the coefficient of $y^{k-1} = \binom{5}{k-1} + \frac{1}{2} \cdot \binom{5}{k-2}$, then replace y with $2x$ and we get $(2x)^{k-1} = 2^{k-1} \cdot x^{k-1} = \binom{5}{k-1} + \frac{1}{2} \cdot \binom{5}{k-2}$, thus, the coefficient of x^{k-1} is $2^{1-k} \cdot \binom{5}{k-1} + 2^{-k} \cdot \binom{5}{k-2}$

4. Sec 3.3 #4

We want to find the coefficient of x^k in $(1+x^2+x^4+x^5)^{20}$, since $(1+x+x^2+\cdots+x^5)^{20}$, since $(1+x+x^2+\cdots+x^5)^{20}$, therefore, the $x^5=\frac{1-x^6}{1-x}$, $1+x^2+x^4+x^5=\frac{1-x^6}{1-x}-x-x^3=\frac{1-x^6-x+x^2-x^3+x^4}{1-x}$, therefore, the concise OGF is $\left(\frac{1-x^6-x+x^2-x^3+x^4}{1-x}\right)^{20}$, thus, it is equivalent to finding the coefficient of x^k in $\left(\frac{1-x^6-x+x^2-x^3+x^4}{1-x}\right)^{20}$

5. Sec 3.3 #6

There are $(1+x)^5$ ways to distribute to these 5 adults and $(1+x+x^2+x^3+\cdots)^3$ ways to distribute to the 3 children, since we have 15 candies, we want to find the coefficient of x^{15} in $(1+x)^5(1+x+x^2+x^3+\cdots)^3$. Since $(1+x+x^2+x^3+\cdots)^3=\frac{1}{(1-x)^3}$, we then need to find the coefficient of x^{15} in $\frac{(1+x)^5}{(1-x)^3}$, which is $\sum_{k=0}^5 \binom{5}{k} \binom{3}{15-k} = 16472$

6. Sec 3.4 # 1

We need to find the coefficient of x^{12} in $(x+x^2+x^3+x^4)^6$, since $x+x^2+x^3+x^4=x^4=x(1+x+x^2+x^3)=x\cdot\frac{1-x^4}{1-x}$, the concise OGF is $x^6\left(\frac{1-x^4}{1-x}\right)^6$, therefore, it is equivalent to finding the coefficient of x^6 in $\left(\frac{1-x^4}{1-x}\right)^6$. $\left[\left(\frac{1-x^4}{1-x}\right)^6\right]_{x^6}=\left[\left(1-x^4\right)^6\cdot\frac{1-x^4}{1-x^4}\right]_{x^6}$

$$\left[\left(\sum_{j \geq 0} {6 \choose j} (-1)^j x^{4j} \right) \left(\sum_{j \geq 0} \left({6 \choose j} \right) x^j \right) \right]_{x^6} = \left({6 \choose 0} - {6 \choose 1} x^4 + {6 \choose 2} x^8 - {6 \choose 3} x^{12} + \cdots \right) \left(\sum_{k \geq 0} \left({6 \choose k} \right) x^k \right)$$

Terms in each sum that contribute to the x^6 term:

term in first sum	term in second sum	resulting term in product
$\binom{6}{0}$	$\left(\binom{6}{6}\right)x^6$	$\binom{6}{0}\binom{6}{6}x^6$
$-\binom{6}{1}x^4$	$\left(\binom{6}{2}\right)x^2$	$-\binom{6}{1}\binom{6}{2}x^6$

So, the coefficient of x^6 is:

$$\binom{6}{0}\binom{6}{6}\binom{6}{6} - \binom{6}{1}\binom{6}{2} = 336$$

7. Sec 3.4 #2

Begin by equating the coefficient of \boldsymbol{x}^k on the left-hand and right-hand sides. On the left,

$$\left[\left[\frac{1}{(1-x)^{m+n}} \right] \right]_{x^k} = \left(\binom{m+n}{k} \right)$$

On the right we know that

$$\frac{1}{(1-x)^m} \cdot \frac{1}{(1-x)^n} = \left(\sum_{j \ge 0} \left(\binom{m}{j} \right) x^j \right) \left(\sum_{j \ge 0} \left(\binom{n}{j} \right) x^j \right)$$

So, by the convolution formula

$$\left[\left[\frac{1}{(1-x)^m} \cdot \frac{1}{(1-x)^n} \right] \right]_{x^k} = \left(\sum_{j=0}^k \left(\binom{m}{j} \right) \right) \cdot \left(\sum_{j=0}^k \left(\binom{n}{j} \right) \right)$$

This proves the identity

$$\left(\binom{m+n}{k}\right) = \left(\sum_{j=0}^{k} \binom{m}{j}\right) \cdot \left(\sum_{j=0}^{k} \binom{n}{j}\right)$$

8. Sec 3.4 #3

Let
$$f(x) = (1+x)^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

And $g(x) = \frac{1}{(1-x)^m} = b_0 + b_1 x + b_2 x^2 + \dots + b_m x^m$,

therefore, by convolution formula, the coefficient of x^k is $\sum_{j=0}^k \binom{n}{j} \binom{m}{k-j}$

9. Sec 3.4 #4

How many ways are there to distribute k identical pieces of candy to n adults and m children such that each adult receives at most 1 piece of candy while each child can receive any number?

10. Sec 3.4 #6

Substitute x^j with y and we get $\frac{1}{(1-y)^n}$, where the coefficient of $y^m = \binom{n}{m}$, m is any integer at the interval [0,n], then replace y with x^j and we get $x^{j\cdot m} = \binom{n}{m}$, therefore, for any number $k \in [0,nj]$ and $k=j\cdot m$, we get $m=\frac{k}{j}$, then replace m with $\frac{k}{j}$ and we get $x^k = \binom{n}{\frac{k}{j}}$