Collateral Crisis

Gary Gorton and Guillermo Ordoñez

Presenter: DING Xiangyu dingxiangyu@pku.edu.cn

April 22, 2021

Overview

- Motivation
- Abstract
- Single Period Model
 - Model Setup: Preference, Schooling, and Technology
 - Choice of Information Regime: IS or II
- Oynamic OLG Model
 - Additional Model Setup: Land Market and Shocks
 - Analytical Result of Model Dynamic
 - Numerical Illustration
- 5 Social Planner Benchmark and Policy Implication

Motivation:

Financial crisis is hard to explain without resorting to large shocks:

- The Financial Crisis Inquiry Commission (FCIC) Report (2011):
 - "Overall, for 2005 to 2007 vintage tranches of mortgage-backed securities originally rated triple-A, despite the mass downgrades, only about 10 percent of Alt-A and 4 percent of subprime securities had been "materially impaired"
- However, the crisis is large:
 - "13 of the most important financial institutions in the United States, 12 were at risk of failure within a period of a week or two."

Why Bond Market Froze After Credit Shocks?

- After credit shocks (e.g. MBS Crisis in US, Yongmei in China):
 - Inter-bank lending market froze with Repo rate rocket up;
 - Primary market froze for a longer time without bond issuance.
 - The effect is higher when there is a high-credit-rated bond default (e.g. Prime Level MBS before Crisis was AAA; Yongmei default at AAA; Baoshang Bank 'bankrupt' with rate AA+, etc.)
- But why cannot banks and firms borrow at higher rate?

Why Bond Market Froze After Credit Shocks?

- Like 'land' in Kiyotaki and Moore (1997), corporate bond also have dual functions: generate investment return and be collateral for repurchase agreement borrowing (repo):
 - Corporate bond investors are highly leveraged relying on especially repo;
 - Investigate the real value of collateral is costly since repo usually matures less than 30 days (the most popular repo agreement is overnight).
- Therefore, corporate bond investors (e.g. trust funds) do not accept the bond that is consider 'bad' collateral, even the return is high.

A. Agents

- Two agents: entrepreneurs and households (each with mass 1):
 - Both agents are risk-neutral.
- Two goods: numeraire K and Land L.
 - Numeraire: represent productive capital and consumption goods.
 - Land: represent collateral (e.g. real estate, MBS, bond, etc.)
- Entrepreneur:
 - Endowed with nontransferable managers N^* and 1 unit of land.
 - Also endowed with $\bar{L}=1$ unit of land.
- Households:
 - Endowed with $\bar{K} \geq N^*$ unit of numeraire.

B. Goods

- Numeraire (Capital & Consumption) K:
 - Can be used to produce more numeraire in the end of period.
 - Assume numeraire is consumable in the end of period.

$$K' = \begin{cases} A \min\{K, N^*\} & \text{with prob. } q \\ 0 & \text{with prob. } (1-q). \end{cases}$$
 (1)

- Technical assumption: qA > 1 (i.e. it is optimal to invest).
- Land (Collateral Goods):
 - \hat{p} fraction of 'good' land is endowed oil worth C per unit of land;
 - $1 \hat{p}$ fraction of 'bad' land have no oil therefore worth 0;
 - Before verification, people believe the probability is p.
 - γ unit of numeraire need to be paid to verify whether the land is good or bad.

C. Production

• Given production function, entrepreneur wants to borrow $K^* = N^*$:

$$\mathcal{K}' = \left\{ egin{array}{ll} A \min \left\{ \mathcal{K}, \mathcal{N}^*
ight\} & ext{with prob. } q \ 0 & ext{with prob. } (1-q). \end{array}
ight.$$

- But how?
- If output is verifiable: state contingent claims.
- However, assume output is not verifiable:
 - Entrepreneurs have incentive to hide output and pay nothing;
 - Households have no incentive to lend.
- Entrepreneur can use x fraction of land as collateral:
 - Technical assumption: $C > K^* = N^*$ (i.e. land known to be good is enough to borrow at optimal K^*)

4 11 1 4 4 12 1 4 12 1 1 2 1 9 9 9

D. Financial Market

- Market Assumption:
 - Entrepreneurs does not know the land quality (no numeraire to verify);
 - Each entrepreneur randomly matches with a household and borrow;
 - Entrepreneur have bargaining power in writing debt contract;
 - A household may verify the land (after paying γ) and it keeps it as secret until the end fo the period unless it want to disclosure it.
- Entrepreneur choose between:
 - Information-Sensitive (IS) Debt: Verify and lend to good land;
 - Information-Insensitive (II) Debt: Lend without verify.
- Entrepreneur also write debt contract:
 - K: Amount of numeraire borrowing for production;
 - R: Repayment value if success;
 - x < 1: Amount of land used as collateral.

D1. Information-Sensitive (IS) Debt

- Verify or issue Information-Sensitive (IS) Debt:
 - After verify, households only lend to entrepreneurs with 'good' land;
 - Binding Participation constrain (the zero profit condition):

Expected Revenue if Good Land if Bad
$$p(qR_{IS} + (1-q)x_{IS}C - K) + (1-p)0 = \gamma$$
(2)

Lemma

For optimal IC Debt: $x_{IS}C = R_{IS}$

- i.e. Collateral liquidation value = repayment;
- Proof:
 - Suppose $x_{IS}C < R_{IS}$: If success, entrepreneur will not repay;
 - Suppose $x_{IS}C > R_{IS}$: If success, entrepreneur will sell the collateral and pay back R_{IS} .

D1. Information-Sensitive (IS) Debt

Combine the lemma and the participation constrain:

$$x_{IS} = \frac{pK + \gamma}{pC} \le 1 = \bar{L} \tag{3}$$

- There are three possible cases:
 - Case A: $\frac{pK^* + \gamma}{pC} \le 1$ Borrow $K = K^*$;
 - Case B: $\frac{pK^* + \gamma}{pC} \ge 1$ and $pC > \gamma$ Borrow $K = (pC \gamma)/p \le K^*$;
 - Case C: $p\tilde{C} \leq \gamma$ Borrow K = 0.
- Expected profit of entrepreneur if choose IS debt:

$$E(\pi \mid p, IS) = p(qAK - x_{IS}C)$$

D1. Information-Sensitive (IS) Debt

• For simplicity, we make technical assumption:

$$\frac{\gamma}{K^*(qA-1)} > \frac{\gamma}{C-K^*} \quad \Leftrightarrow \quad qA < C/K^*$$

- Which rule out case B and case C:
- i.e. Entrepreneurs with land verify to be good borrow at optimal.
- Expected profit can be simplify to:

$$E(\pi \mid p, IS) = \begin{cases} pK^*(qA - 1) - \gamma & \text{if} \quad p \ge p_{IS}^L \equiv \frac{\gamma}{K^*(qA - 1)} \\ 0 & \text{if} \quad p < p_{IS}^L \equiv \frac{\gamma}{K^*(qA - 1)} \end{cases}$$
(4)

• Where we define cutoff subjective probability as p_{IS}^L .

- No Verify or issue Information-Insensitive (II) Debt:
 - Household lend to all the entrepreneur without verify.
 - Binding participation constrain (zero profit condition):

$$qR_{II} + (1-q)px_{II}C = K$$

- $R_{II} = x_{II}pC$ also holds (similar to the lemma in IS Debt).
- Combine equations, we get maximum collateral constrain:

$$x_{II} = \frac{K}{pC} \le 1 = \bar{L} \tag{5}$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

- The debt is also subject to a incentive compatibility constrain:
 - Household may secretly verify the land and only lend to good;
 - If this gives positive profit rather than zero profit if no check, then households will always check;

Household's Profit if Secretly Check

• Entrepreneur have incentive to rule out this case:

$$\overbrace{p(qR_{II} + (1-q)x_{II}C - K) - \gamma} < 0$$

$$\Leftrightarrow K < \frac{\gamma}{(1-p)(1-q)} \tag{6}$$

• Intuition: Entrepreneur can disincentive secret verification by borrowing less.

- To summarize, the II debt must subject to three constrains:
 - Maximum collateral constrain (5);
 - IC constrain (6);
 - Technology constrain $K \leq K^* \equiv N^*$.

$$K(p \mid II) = \min \left\{ K^*, \frac{\gamma}{(1-p)(1-q)}, pC \right\}$$
 (7)

Expected profit of entrepreneur if choose II debt:

$$E(\pi \mid p, II) = qAK - x_{II}pC = K(p \mid II)(qA - 1)$$

• Plug in equation (7), we have:

$$E(\pi \mid p, II) = \begin{cases} K^*(qA - 1) & \text{if} \quad K^* \le \frac{\gamma}{(1 - p)(1 - q)} \\ \frac{\gamma}{(1 - p)(1 - q)}(qA - 1) & \text{if} \quad K^* > \frac{\gamma}{(1 - p)(1 - q)} \\ pC(qA - 1) & \text{if} \quad pC < \frac{\gamma}{(1 - p)(1 - q)} \end{cases}$$
(8)

• If $\frac{\gamma}{(1-p)(1-q)} = p$ have solution $(\Leftrightarrow C(1-q) > \gamma)$:

$$E(\pi \mid p, H) = \begin{cases} K^*(qA - 1) & \text{if} \quad p \ge p^H \equiv 1 - \frac{\gamma}{K^*(1 - q)} \\ \frac{\gamma}{(1 - p)(1 - q)}(qA - 1) & \text{if} \quad p_H^L \le p < p^H \\ pC(qA - 1) & \text{if} \quad p < p_H^L \equiv \frac{1}{2} - \sqrt{\frac{1}{4} - \frac{\gamma}{C(1 - q)}} \end{cases}$$
(9)

• Notice that we define the higher cutoff as p^H and the lower as p_H^L

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

- Entrepreneur choose IS or II debt to maximize his expected profit:
 - Entrepreneur compare equation (4) and equation (8), given every household's belief on p (proportion of good land).
- We can plot $E(\pi \mid p, IS)$ and $E(\pi \mid p, II)$ in different p:
 - Expected IS profit in solid line and Expected II profit in dash line;
 - \bullet Arrows denotes the direction of change when $\gamma \Downarrow$
- If γ is low enough, IS debt is chosen in the mid between p^{CL} and p^{Ch} .
 - Cutoff p^{CL} and p^{Ch} are two solution to:

$$\gamma = \left[pK^* - \frac{\gamma}{(1-p)(1-q)} \right] (qA - 1) \tag{10}$$

Aggregate: Productive Numeraire (Capital)

 The productive numeraire or capital (excluding numeraire used to verify):

$$K(p) = \begin{cases} K^* & \text{if } p^H$$

Aggregate: Wealth of Economy

Household's wealth is

$$\bar{K} - K(p) + E(\text{repay} \mid p)$$

Entrepreneur's wealth is

$$E(K' \mid p) - E(\text{repay} \mid p) = qAK(p) - E(\text{repay} \mid p)$$

Add together we get total wealth of economy:

$$W_{t} = \bar{K} + \int_{0}^{1} K(p)(qA - 1)dF(p)$$
 (11)

- where we assume household's belief of land quality $p \sim^{CDF} F(p)$;
- First best wealth (everybody borrow): $W_{fb}^* = \bar{K} + K^*(qA 1)$.

◆□▶◆□▶◆壹▶◆壹▶ 壹 める○

Dynamic OLG Model: Overview

- Purpose: Study the evolution and influence of collateral belief p
- OLG setup: Two cohort of population:
 - ullet Young household: born with <u>non-storable</u> $ar{K}$ no management skill;
 - Old entrepreneur: Management skill N^* and purchased land L=1.
 - Each period beginning young and old randomly matched and borrow.
- Land market:
 - Land is storable, sold to young when old is dying (period end);
 - We want to rule out multiple equilibrium (i.e. asset bubble equilibrium):
 - Why? We want to separate the effect of information regime.
 - We fixed land prices at Q(p) = pC, which holds under assumption:
 - 1, Young have bargaining power: 'take-it-or-leave-it offers';
 - 2, Only possible to verify at period beginning, not at end.

Timeline: Life of an Agent

- At t = T: A household is born with \bar{K} ;
- At beginning of period [T, T+1]: K_t is lent to the old
- At the end of period [T, T+1]:
 - households gets repayment with prob q (no repayment otherwise);
 - Purchase the 1 unit of land from the the old at fundamental price (if the old default, only need to purchase (1-x) fraction of land);
 - Consume all the numeraire left (because numeraire is non-storable).
- At t = T + 1:
 - Household transform to entrepreneur acquiring N*;
 - The land acquired exposed to idiosyncratic (and systematic) shock;
- At beginning of period [T+1, T+2]: K_{t+1} is borrowed.
- At the end of period [T+1, T+2]:
 - Produces $A \min\{K_{t+1}, N^*\}$ repay with prob q (default otherwise);
 - Sell the land at fundamental price and consume all numeraire.
- At t = T + 2: The old entrepreneur passes away.

4 D > 4 A > 4 B > 4 B > B 9 Q Q

Idiosyncratic Shocks

- Mean reversion idiosyncratic shocks at each period start:
 - Shock is observable: people know whether the land is shocked;
 - \bullet Realized value of shock is unknown unless pay γ to verify;
 - Fraction of land face the shock is independent of land types;
 - Probability of being good after shock is independent of land types.
- For simplicity we assume:
 - λ fraction of land remain unchanged;
 - 1λ fraction of land changes: in which \hat{p} to good land and $1 \hat{p}$ to bad. (\hat{p} is the real probability of good land)
- This means that after shock, distribution of collateral belief p have three point support $\{0, \hat{p}, 1\}$.

Evolution with Only Idiosyncratic Shocks

Proposition 3:

Evolution of Aggregate Consumption in the Absence of Aggregate Shocks

Assume there is perfect information about land types in the initial period.

- If \hat{p} is in the information-sensitive region ($\hat{p} \in [p^{Cl}, P^{Ch}]$), consumption is constant over time and is lower than the unconstrained first-best.
- If \hat{p} is in the information-insensitive region, consumption grows over time if $\hat{p} > \hat{p}_h^*$ or $\hat{p} < \hat{p}_l^*$, where $\hat{p}_h^* > \hat{p}_l^*$ are the two solutions to the quadratic equation $\hat{p}^*K^* = \frac{\gamma}{(1-\hat{p}^*)(1-q)}$.

Evolution with Only Idiosyncratic Shocks

- We particularly focus on $p > p^H > \hat{p}_h^*$:
 - Information decays overtime (At period t, $(1 \lambda^t)$ fraction of land is of unknown quality);
 - Wealth approach unconstrained first-best W_{fb}^* .
- 'Blissful Ignorance': Always producing information is not optimal if there is no (or only small) aggregate shock.
 - No information, everybody can borrow.
 - Otherwise, agents with land that is known to be bad cannot borrow and produce.
- But 'Blissful Ignorance' is costly: fragility to aggregate shock.

◆ロト ◆部ト ◆注ト ◆注ト 注 り < ○</p>

Evolution with Aggregate Shocks

- Negative aggregate shock:
 - Transform (1η) fraction of good land to bad land;
 - Whether shock happens is observable, but which piece good land changes to bad land is not;
 - Belief p=1 becomes $p'=\eta$, and $p=\hat{p}$ becomes $p'=\eta p$.

Proposition 4:

The Larger Boom and Shock, the Larger Crisis

Assume $p>p^H>\hat{p}_h^*$, and a negative aggregate shock η , hits after t periods of no aggregate shocks. The reduction in wealth $\Delta(t\mid\eta)=W_t-W_{t\mid\eta}$ is non-decreasing in the size of the shock and non-decreasing in the time t elapsed previously without a shock.

Recovery Speed

Proposition 5:

Information and Recoveries

Assume $p>p^H>\hat{p}_h^*$, and that a negative aggregate shock generates a crisis in period t. The recovery from the crisis is faster if information is generated after the shock when $\eta \hat{p} < \bar{\eta} \hat{p} \equiv \frac{1}{2} + \sqrt{\frac{1}{4} - \frac{\gamma}{C(1-q)}}$, where $p^{Ch} < \bar{\eta} \hat{p} < p^H$. That is $W_{t+1}^{IS} > W_{t+1}^{II}$ for all $\eta \hat{p} < \bar{\eta} \hat{p}$.

Corollary 2:

Potential Gain from Regulator Intervention

There exists a range of negative aggregate shocks (η such that $\eta \hat{p} \in [p^{Ch}, \bar{\eta}\hat{p}]$) in which agents do not acquire information, but recovery would be faster if they did.

| □ ▶ ◀御 ▶ ∢差 ▶ ∢差 ▶ | 差 | 釣 Q で

Dispersion of Beliefs During Booms and Crises

- Parametric setting:
 - Idiosyncratic shock probability: $1 \lambda = 0.1$;
 - Real fraction of good land: $\hat{p} = 0.92$;
 - Probability of project success: q = 0.6;
 - Productivity parameter: A = 3 (Investment return is qA 1 = 80%);
 - Management skill and optimal input $N^* = K^* = 7$;
 - Numeraire endowment $\bar{K} = 20$;
 - Good land provide numeraire C = 15.
- Cutoff value:
 - Optimal capital cutoff: $p^H = 0.88 > \hat{p} = 0.92$;
 - Information sensitive region $[p^{Cl}, p^{Ch}] = [0.22, 0.84].$

Aggregate Shocks

- Three different aggregate shocks at periods 5 and 50:
 - **Small:** $\eta = 0.97$, so $\eta \hat{p} > p^h$, still at optimal borrowing;
 - Medium: $\eta = 0.91$, so $\eta \hat{p} \in [p^{Ch}, \bar{\eta} \hat{p}]$ (as described in Proposition 5). It will not trigger verification and therefore slow recovery.
 - Large: $\eta = 0.90$, so $\eta \hat{p} \in [p^{Cl}, p^{Ch}]$. It trigger verification, so recovery speed is higher even if the shock is larger than the medium one.

Aggregate Shocks

Figure: Average Value of Collateral

Wealth (Productivity) Evolution

Figure: Wealth Evolution after Crisis

Wealth (Productivity) Evolution

- The evolution is consistent with analytical results:
 - As demonstrated in Proposition 3: If there is no shock or only small shock $\eta=0.97$, the wealth will gradually approaching the first best, which is higher than always perfect information.
 - As demonstrated in Proposition 4: The longer time there is no shock, the larger crisis there will be;
 - As demonstrated in Proposition 5: Economy recover quicker from the large shock $\eta=0.91$ that trigger verification quicker than after the medium shock that does not trigger verification.
- If regulator can promote verification after medium shock $\eta=0.91$, social welfare can potentially be larger.

Thanks for listening!