Centre Number	Candidate Number	Name

MINISTRY OF EDUCATION, BOTSWANA

in collaboration with

UNIVERSITY OF CAMBRIDGE LOCAL EXAMINATIONS SYNDICATE

Botswana General Certificate of Secondary Education

SCIENCE: DOUBLE AWARD

0569/03

Paper 3

October/November 2005

2 hours

Candidates answer on the Question Paper. No Additional Materials are required.

Read the following carefully before you start.

Write your centre number, candidate number and name in the spaces provided at the top of this page.

Answer all questions.

Write your answers in the spaces provided on the question paper.

Do not use staples, paper clips, highlighters, glue or correction fluid.

The number of marks is given in brackets [] at the end of each question or part question.

You may use a calculator.

A copy of the Periodic Table is printed on page 20.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
TOTAL	

					2						
(a)	(i)	Define ac	cceleration.								
											r.
	(ii)	A bus sto	pps to pick up	a passeng							
		Calculate	e its decelerati	on.							
						dec	eleratio	on = .			[2
(b)	Fig.	1.1 shows	s a distance-ti	me graph f	for a ca	ır joui	rney fro	om A	to C.		
			1000					В			С
	die	stance/m	800								
	ui	stance/iii	400								
			200								
			040						150		
			O	50		time	00 e/s		150	2	00
	/i\	In which	ragion of the		Fig. 1.		oo oor	nonci	tant?		
	(i)		region of the (grapii is liik		i Oi ti	le car i	50115	ant		
	(ii)	For how I	long is the car	at rest?							
		•••••		••••••							[2

(c) A ball is dropped from the roof of a building. It reaches the ground in 3 s. ($g = 10 \text{ m/s}^2$). Calculate

(i) the height of the building,

height =

(ii) the speed of the ball as it touches the ground.

speed =

[4]

2 (a) Fig. 2.1 shows waves on the surface of a liquid.

- (i) What type of wave is illustrated?
- (ii) On the diagram, show one wavelength and label it λ .
- (iii) X is a particle on the surface of the liquid.On the diagram, draw an arrow to show the direction in which the particle is moving.[3]

(b) Table 2.2 shows critical angles of water, diamond and glass.

Table 2.2

material	critical angle
water	48.8°
diamond	24.4°
glass	41.8°

(I) What is <i>critic</i> a	ai angie?
-----------------------------	-----------

.....[

air

Υ

(ii) X and Y are materials in Table 2.2. Use the information from the Table and the paths of the rays in Fig. 2.3 to identify materials X and Y.

Fig. 2.3

v

Υ

30°

[2] ' [Turn over **3** Fig. 3.1 shows two magnets.

Fig. 3.1

(a) On the diagram below draw the magnetic field around magnet XY.

[2]

© BEC 2005

[4]

(b) Fig. 3.2 shows an electromagnet next to four cubes, **A** aluminium, **B** lead, **C** nickel and **D** cobalt.

Fig. 3.2

(i)	Which two cubes will the magnet pick up when the switch is closed?
	1
	2
(ii)	Suggest two changes that could be made to make the magnet stronger.
	1
	2

4 (a) Fig. 4.1 shows a transformer connected to a power supply and a milliammeter.

Fig. 4.1

(1)	What type of transformer is this?	
(ii)	Explain why the milliammeter deflects momentarily when the switch is closed.	[1]
(iii)	Explain why there is no deflection when the switch remains closed.	
		[2]
(iv)	A 240 V a.c. source replaces the supply shown in Fig. 4.1.	
	Calculate the output voltage.	
	output =	[2]
(v)	State the advantage of transmitting power at a high voltage.	
		f41

© BEC 2005 0569/03/O/N05

(b) Fig. 4.2 shows a mains plug.

Fig. 4.2

(i)	Label the three wires.	[3]
(ii)	Which wire would be connected to the metal body of an appliance?	
	Explain why.	
		[2]

5 Several water samples were taken from each of three different sources, X, Y and Z.

A sample from each source was tested for the total concentration of calcium and magnesium ions present.

Further samples were then treated in two different ways before testing again for their concentrations of calcium and magnesium ions.

- A sample from each source was boiled.
- A sample from each source was treated with sodium carbonate.

The results of all these tests are shown in Table 5.1.

Table 5.1

source	total calcium and magnesium ion concentration before treatment/parts per million (ppm)	total calcium and magnesium ion concentration after boiling/parts per million (ppm)	total calcium and magnesium ion concentration after adding sodium carbonate/parts per million (ppm)
X	30	19	0
Y	30	0	0
Z	10	1	0

(a)	(i)	Explain how boiling removes hardness from water. Include a balanced chemical equation for the reaction that occurs.
		explanation
		equation[4]
	(ii)	Suggest a reason why boiling removed all of the hardness from source Y but only part of the hardness of water from sources X and Z .
		[1]
(b)		plain why adding sodium carbonate removed all the hardness of the water from all rces.
		[1]
(c)	Sta	te a problem which might be caused by water from source X in the home.
		[1]

© BEC 2005 0569/03/O/N05

6 The equation shows the decomposition of magnesium carbonate.

$$MgCO_3(s) \rightarrow MgO(s) + CO_2(g)$$

(a) Calculate the mass of carbon dioxide formed when 0.1 moles of magnesium carbonate is completely decomposed.

$$[A_r: Mg = 24, C = 12, O = 16]$$

(b) Magnesium carbonate reacts with dilute hydrochloric acid as shown by the equation.

$$MgCO_3(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + CO_2(g) + H_2O(l)$$

(i) How many moles of hydrochloric acid react with 1 mole of magnesium carbonate?

(ii) Calculate the number of moles in 25 cm³ of 0.1 mol/dm³ hydrochloric acid.

(iii) What volume of carbon dioxide would be produced when 0.1 moles of magnesium carbonate completely reacts with dilute hydrochloric acid at room temperature and pressure?

(1 mole of any gas occupies 24 dm³ at r.t.p.).

[1]

7 Fig. 7.1 shows a fractionating column used to separate the fractions of crude oil.

Fig. 7.1

(a)	(1)	At which point, P , u or H , is the column at the lowest temperature?	
			[1]
	(ii)	Which fraction on the diagram contains the largest hydrocarbon molecules?	
			[1]
(b)	Cru	de oil is a mixture of alkanes which are saturated hydrocarbons.	
	Wh	at type of reactions do alkanes undergo?	
			F43

(c)	The	fuel gas fraction contains the hydrocarbon propane, C ₃ H ₈ .
	(i)	Draw the structural formula of propane, C ₃ H ₈ , showing all the bonds around all the atoms.
		[1]
	(ii)	Write a balanced equation for the burning of propane in a plentiful supply of oxygen.
		[2]
	(iii)	When propane is burnt in a limited supply of oxygen a poisonous gas is produced.
		Name the gas and explain how it is poisonous.
		gas
		explanation
		[2]
d)		en propane is passed over a hot catalyst, the molecule breaks down to form rogen and an alkene.
	(i)	Name the alkene.
		[1]
	(ii)	Describe a test you would carry out to distinguish an alkene from propane.
		test
		result for propane
		result for alkene[3]

8 Samples of two different gases are allowed to diffuse through a small hole, in air at room temperature and pressure. The time taken by each gas is shown in Table 8.1.

Table 8.1

gas	time/s	relative molecular mass
ammonia	20	
nitrogen	26	28

(a)	Use the Periodic Table to calculate the relative molecular mass of ammonia, NH_3 .	
	Write the answer in Table 8.1.	1]
(b)	What is meant by diffusion?	
	[1]
(c)	Explain why, at the same temperature, nitrogen takes longer than ammonia to diffus through a small hole.	e
		•••
	[2]
(d)	Suggest what would happen to the time taken for the ammonia sample to diffuse if the temperature was dropped to 10 °C.	ıe
	Explain your answer.	
	[2]

9 Fig. 9.1 shows how two hormones A and B control the levels of glucose in the blood.

Fig. 9.1

(a)	Identify hormones A and B .
	A
	B [2]
(b)	Name the gland that produces hormones A and B .
(c)	How does the presence of hormone A lead to the drop in glucose level?
	[2]

10 Fig. 10.1 shows some parts of the digestive system.

Fig. 10.1

(a)	Identify blood vessel G .
(b)	Why is there a lesser amount of amino acids in the hepatic vein than in vessel G ?
	[1]
(c)	Bile is an excretory product. State two advantages of releasing bile into the duodenum. 1
	2

11 Fig. 11.1 shows a longitudinal section of a bean seed.

Fig. 11.1

(a)	Name the structures P and Q .
	P
	Q [2]
(b)	Describe how you would show that the cotyledons contain protein.
	[3]
(c)	Describe how structures P and Q are able to use the starch stored in the cotyledons.
	[3]
(d)	The seed in Fig. 11.1 formed inside the ovary of a flower. As the seed develops in the flower, water is withdrawn from it so that it becomes almost dry. Suggest why this is important.
	[2]

12 Fig. 12.1 shows a longitudinal section of the heart.

Fig. 12.1

On the diagram, label the following parts:

pulmonary vein right auricle (atrium) left ventricle [3]

13 Fig. 13.1 shows a commercial application of asexual reproduction.

Fig. 13.1

(a)	Name this type of asexual reproduction.
	[1]
(b)	Why is this method regarded as asexual reproduction?
	[1]
(c)	Give two reasons why the bark around the cut surfaces is covered with grease.
	1
	2 [2]
(d)	Why is it important for the woody parts of the scion and stock to be in contact before tying the two together?
	[11]

14 Fig. 14.1 shows how the pulse rate of a student changes during and after vigorous exercise. The exercise took five minutes.

Fig. 14.1

` '	Explain why the pulse rate increases during the early stage of the exercise.
	[3]
(b)	Explain why the pulse rate does not return to normal immediately after the exercise.
	[3]
	[5]

BLANK PAGE

Permission to reproduce Items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of the Elements DATA SHEET

	0	4 ∓		20	Se		40	Ā	Argon 3	84	호	Krypton 36	131	Xe			띺	Radon 3				
	=			19	щ	Fluorine 10	35.5	ರ	Chlorine 18	80	മ്	romine	127	_			¥	Astatine 86				
												35			53			- 8 6				
	>			¥	0	Sóxo 8			s Sulphur 16			Selenium 34	12	<u>"</u>	Tellurium 52		8	Polon 84				
	>			14	z	Nitrogen 7	31	۵		75		Arsenic 33	122	Sp	Antimony 51	509	ö	Bismuth 83				
	2			12	ပ	Carbon 6		Si	Silicon 14	73	g	Germanium 32	119	Sn	50 Tin	207	P	Lead 82				
	=			=	Ω	Boron 5	27	Αſ	Aluminium 13	02		Gallium 31		Ľ	Indium 49	204	11	Thallium 81				
								-			Zu		112	ප	Cadmium 48	201	Ηg					
										64	3	Copper 29			Silver 47		Ρn	Gold 79				
Group	•									69	Z	Nicket 28	106	Pd	Palladium 46	195	盂	Platinum 78				
Ğ				1						69	රි	Cobalt 27	103	뜐	Rhodium 45	192	<u>-</u>	Iridium 77				
		- I	Hydrogen 1							56	Тe	Iron 26	101	æ	Ruthenium 44	190	SO	7				
•										55	Ž	Manganese 25		ည	Technetium 43	186	Be	Rhenium 75				
										25	ඊ	Chromium 24	96	ě	Molybdenum 42	184	>	Tungsten 74				
											>	Vanadium 23	93	Š	4	181	Т <u>а</u>	Tantalum 73				
										48	F	Titanium 22	91	ZŁ	Zirconium 40	178	Ξ				<u>.</u>	7
											တိ	Scandium 21	68	>	Yttrium 39	139	Ľ	Lanthanum 57 * 7	227	Ac	Actinium 89 †	
	=	-		6	Be	Beryllium 4	24	Mg	Magnesium 12	40	ပ္ပ	N	88	ഗ്	Strontium 38	137	Ва	29		Ba	86	
	_			7	=	3 Lithium	23	Na	Sodium 11	39	¥	Potassium 19	85	82	Rubidium 37	133	క	Caesium 55		正	Francium 87	

*58-71 Lanthanoid series †90-103 Actinoid series

a = relative atomic mass X = atomic symbol а **×** Key

b = proton (atomic) number

175 Lu Lutetium 71	Lr Lawrencium 103
Y b Ytterbium 70	Nobelium 102
169 Tm Thullum	Md Mendelevium 101
167 Er Erbium 68	Fm Fermium
165 Ho Holmium 67	Es Einsteinium 99
162 Dy Dysprosium 66	Californium 98
159 Tb Terbium 65	Bk Berkelium 97
157 Gd Gadolinium 64	Curium Se
152 Eu Europium 63	Am Americium 95
Samarium 62	Pu Plutonium 94
Pm Promethium 61	Neptunium
Neodymium 60	238 U Uranium 92
T41 Praseodymium 59	Pa Protactinium
140 Ce Cerlum	232 Th Thorium 90

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).