Cluster Galaxy Classification Using the Perseus Cluster With a Convolutional Neural Network

Jason Pruitt, Dr. Aaron Romanowsky

Dept. of Physics and Astronomy San José State University

Classifying Galaxies by Hand/Eye

Astronomers use the Hubble tuning fork:

"Morphological Classification" - based off of shape, constituent components

Stellar Objects and Color

https://www.sdss4.org/instruments/camera/#Filters

Magnitudes:

r, i, u, z, g

Colors:

(r-i), (r-u), (u-z), etc.

Color regions from color-magnitude relationships

Red Sequence

Blue Cloud

Green Valley

Perseus Cluster Catalogue

The Perseus galaxy cluster

An example elliptical galaxy in the cluster

Tagged by Wittmann et al. 2019

Types of Machine Learning

https://starship-knowledge.com/supervised-vs-unsupervised-vs-reinforcement

Machine Learning and Neural Networks

Image Prediction

"Cluster member"

Function Convolution in Math

The Convolutional Layer

Dumoulin, Vincent and Francesco Visin. "A guide to convolution arithmetic for deep learning." ArXiv abs/1603.07285 (2016): n. pag.

Convolution Builds a Feature Map

https://phys.org/news/2021-07-thousands-galaxies-eye.html

Large Networks Cause Problems

Balance between enough layers / parameters and the vanishing / exploding gradients

Can't just add more layers blindly

Ghosh, Bhaskar et al.. (2020). An Empirical Analysis of Generative Adversarial Network Training Times with Varying Batch Sizes. 10.1109/UEMCON51285.2020.9298092.

He et al. - Residual Learning

Target Classification: $\mathcal{H}(x)$ ex. "Cluster galaxy"

He et al. - Residual Learning

Target Classification: $\mathcal{H}(x)$ ex. "Cluster galaxy"

Residual:
$$\mathcal{F}(x) = \mathcal{H}(x) - x$$

He et al. - Residual Learning

Target Classification: $\mathcal{H}(x)$ ex. "Cluster galaxy"

Residual: $\mathcal{F}(x) = \mathcal{H}(x) - x$

Remapping: $\mathcal{F}(x) + x = \mathcal{H}(x)$ Now the network only needs to learn $\mathcal{F}(x)$

He et al. - ResNets

Remapping:
$$\mathcal{F}(x) + x = \mathcal{H}(x)$$

He et al. - ResNets

Remapping:
$$\mathcal{F}(x) + x = \mathcal{H}(x)$$

He et al. - ResNets

Remapping:
$$\mathcal{F}(x) + x = \mathcal{H}(x)$$

layer name	output size	18-layer	34-layer	50-layer		101-layer	152-layer
conv1	112×112	8		7×7, 64, stride 2			
		0		3×3 max pool, strid	le 2		
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$		$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4 $		$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$
conv4_x	14×14	$\begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6 $		×1, 256 ×3, 256 ×1, 1024	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $		$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$
	1×1	average pool, 1000-d fc, softmax					
FLOPs		1.8×10^{9}	3.6×10^9	3.8×10^{9}		7.6×10^9	11.3×10 ⁹

Important Metrics for Classification

First consider:

- True Positive (TP)
- True Negative (TN)
- False Positive (FP)
- False Negative (FN)

Important Metrics for Classification

First consider:

- True Positive (TP)
- True Negative (TN)
- False Positive (FP)
- False Negative (FN)

$$Accuracy = \frac{TP + TN}{P + N}$$

$$Recall = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$F1 = 2 \frac{Precision * Recall}{Precision + Recall}$$

All Together - Confusion Matrix

 $Binary\ classification\ -\ https://medium.com/@dtuk81/confusion-matrix-visualization-fc31e3f30 feasing the confusion of the$

Problem to Solve - Cluster Galaxy Classification

Work from Wittmann et al. 2019 gives us a 5437 image training set with labels

Can we use this to classify cluster galaxies not in the red sequence?

Confusion Matrix for Visualization of Performance

Label mapping for 7 classes:

0: Cluster or background LTG

1: Likely background ETG or unresolved source

2 : Likely cluster or background edge-on disk galaxy

3: Likely dE/ETGcluster candidate

4: Likely merging system

5 : Possible dE/ETGcluster candidate

6: Background galaxy with possibly weak substructure

Confusion Matrix for Visualization of Performance

Label mapping for 7 classes:

0: Cluster or background LTG

0: Likely background ETG or unresolved source

0 : Likely cluster or background edge-on disk galaxy

1: Likely dE/ETGcluster candidate

4: Likely merging system

1 : Possible dE/ETGcluster candidate

0: Background galaxy with possibly weak substructure

Confusion Matrix for Visualization of Performance

Label mapping for 7 classes:

0: Cluster or background LTG

0: Likely background ETG or unresolved source

0 : Likely cluster or background edge-on disk galaxy

1: Likely dE/ETGcluster candidate

4: Likely merging system

1 : Possible dE/ETGcluster candidate

0: Background galaxy with possibly weak substructure

Data Cleaning - Brightness Threshold

PCC-0023

Data Cleaning - Brightness Threshold

PCC-0023

r < 19.4, Reduced train set to 272 objects

Data Cleaning - Red Objects

Reduced train set to 230 objects

Data Augmentation - Rotations

Multiplied train set by 15 (Now 3450 images)

Hyperparameters

Train/test split of 75/25

Train/valid split of 75/25

20 image batch size train and valid

200 epochs

$$LR = (0.8)e^{-0.9t}$$

Performance on PCC Brights

An average of 95% accuracy from every model on the test set from train/test split (balanced classes)

Performance on PCC Brights (grayscale)

An average of ~5% accuracy dip when trained on grayscale versions of images

Performance on PCC Brights

An average of 95% accuracy from every model on the test set from train/test split (balanced)

Needed a way to independently verify

Finding a New Test Set - Color Pairplots

Finding an independent test set - any dividing lines between the classes?

Finding a New Test Set - Color Pairplots

Red Sequence most obvious in r vs (g-z) color magnitude relation

First Independent Test - Low Performance

Off diagonal elements take up 40% of the total predictions

First Independent Test - Low Performance

Stars Mislabeled as Galaxies

Stars Mislabeled as Galaxies

Stars Mislabeled as Galaxies - Flags?

Stars Mislabeled as Galaxies

Spectroscopic Redshift (z)

Cluster Galaxies: 0.01 < z < 0.033

Stars: z < 0.01

Background Galaxies: z > 0.033

Spectroscopic Redshift (z)

Cluster Galaxies: 0.01 < z < 0.033

Stars: z < 0.01

Background Galaxies: z > 0.033

Adding the Radial "Spectroscopic Search" to Training Set

Adding the Radial "Spectroscopic Search" to Training Set

Independent Test Set Results

	precision	recall	f1-score	support
0	0.94	0.94	0.94	247
1	0.84	0.84	0.84	88
accuracy			0.92	335
macro avg	0.89	0.89	0.89	335
weighted avg	0.92	0.92	0.92	335

Performance in Different Color Regions

	precision	recall	f1-score	support
0	1.00	0.99	0.99	89
1	0.50	1.00	0.67	1
accuracy			0.99	90
macro avg	0.75	0.99	0.83	90
weighted avg	0.99	0.99	0.99	90
 Red Sequence	- Indep. Tes	t Set		
Red Sequence	- Indep. Tes		f1-score	support
Red Sequence	precision	recall	f1-score	
	precision 0.85	recall	0.87	78
	precision 0.85	recall 0.88	0.87	78 71
0	precision 0.85 0.87	recall 0.88 0.83	0.87 0.85	78 71 149

	precision	recall	f1-score	support
0	0.97	0.95	0.96	80
1	0.78	0.88	0.82	16
accuracy			0.94	96
macro avg	0.88	0.91	0.89	96
weighted avg	0.94	0.94	0.94	96

Performance in Different Color Regions

	precision	recall	f1-score	support	
6	1.00	0.99	0.99	89	
1	0.50	1.00	0.67	1	
accuracy			0.99	90	
macro ave	0.75	0.99	0.83	90	
weighted ave				90	
		st Set			
		st Set			
	- Indep. Te	st Set recall		support	
Red Sequence	- Indep. Te	st Set recall 0.88	f1-score	support 78	
Red Sequence	- Indep. Te 	st Set recall 0.88	f1-score	support 78 71	
Red Sequence	- Indep. Te 	st Set recall 0.88 0.83	f1-score 0.87 0.85	support 78 71 149	

	precision	recall	f1-score	support
e	0.97	0.95	0.96	80
1	0.78	0.88	0.82	16
accuracy			0.94	96
macro avg	0.88	0.91	0.89	96
eighted avg	0.94	0.94	0.94	96

Performance in Different Color Regions

	precision	recall	f1-score	support
0	1.00	0.99	0.99	89
1	0.50	1.00	0.67	1
accuracy			0.99	90
macro avg	0.75	0.99	0.83	90
weighted ave	0.99	0.99	0.99	90
		t Set		
	- Indep. Tes	t Set recall	f1-score	support
Red Sequence	- Indep. Tes precision 0.85	t Set recall	f1-score	support
Red Sequence	- Indep. Tes precision 0.85 0.87	recall	f1-score 0.87 0.85	support
Red Sequence 0 1 accuracy	- Indep. Tes precision 0.85 0.87	recall 0.88	f1-score 0.87 0.85	support 78 71

	precision	recall	f1-score	support
e	0.97	0.95	0.96	80
1	0.78	0.88	0.82	16
accuracy			0.94	96
macro avg	0.88	0.91	0.89	96
eighted avg	0.94	0.94	0.94	96

Independent Test Set Results

Concluding Remarks and Future Work

Add more images from blue cloud/red shoulder regions

Subaru Hyper Suprime-Cam imaging

European Sky Agency (ESA) Euclid imaging

ResNet-15 or potentially more efficient models

Transformers/visual attention maps

Different hyperparameters