Comments about the quiz?

- No limit of challenges;
 - But you need to bring a document
 - Still need to come to office hours with the following in writing:
 - Specify the problem(s) you want regraded
 - For each problem, explain why the grade is in error

CSCI-351 DATA COMMUNICATION AND NETWORKS

Lecture 12: DNS and your Project2

Why Skipping Transport Layer?

3

Application
Transport
Network
Data Link
Physical

- No; we will cover at the next class
- Project 2 is announced: DNS

Project 2

4

Data Communication and Networks CSCI-351 Fall 2018

Project 2: Simple DNS Client October 2, 2018

This project is due at 11:59:59pm on October 18, 2018 and is worth 20% of your grade. You must complete it with a partner. You may only complete it alone or in a group of three if you have the instructor's explicit permission to do so for this project.

Note that there is a milestone deadline for this project, at 11:59:59pm on October 11, 2018. More details are in the Milestone section below.

1 Description

The Domain Name System (DNS) is a hierarchical system for converting domain names (e.g., www.google.com) to Internet Protocol (IP) addresses (e.g., 209.85.129.99). DNS is often referred to as a "phone book" for the Internet, translating human-friendly domain names into machine-friendly IP addresses. In this project, you will implement a DNS client program, which handles DNS requests by querying other machines. Note that the graduate version of this project has additional requirements, which serve as an opportunity for extra credit for students enrolled in the undergraduate version of this course.

Project 2

The IPv4 Shortage

- Problem: consumer ISPs typically only give one IP address per-household
 - Additional IPs cost extra
 - More IPs may not be available
- NAT and DHCP
 - NAT + DHCP

Basic NAT Operation

Port-forwarding

DHCP: Dynamic Host Configuration Protocol

9

- Let's say that a ISP has X customers, How many IPs does it need to have?
 - □ XS
- Goal: allow host to dynamically obtain its IP address from network server when it joins network
 - can renew its lease on address in use
 - allows reuse of addresses (only hold address while connected/"on")
 - support for mobile users who want to join network (more shortly)

П

DHCP Client-Server

DHCP Client-Server

DHCP: More than IP address

- DHCP can return more than just allocated IP address on subnet
 - address of first-hop router for client
 - name and IP address of DNS sever
 - network mask (indicating network versus host portion of address)

DHCP Header (Do not memorize)

Dynamic Host Configuration Protocol						
Bit Offset	0–15		16–31			
0	OpCode	Hardware Type	Hardware Length	Hops		
32	Transaction ID					
64	Seconds Elapsed		Flags			
96	Client IP Address					
128	Your IP Address					
160	Server IP Address					
196	Gateway IP Address					
228+	Client Hardware Address (16 bytes)					
	Server Host Name (64 bytes) Boot File (128 bytes)					
	Options					

CSCI-351 DATA COMMUNICATION AND NETWORKS

Lecture 12: DNS

Layer 8 (The Carbon-based nodes)

- If you want to...
 - Call someone, you need to ask for their phone number
 - You can't just dial "PROFCHUNG"
 - Mail someone, you need to get their address first
- What about the Internet?
 - If you need to reach Google, you need their IP
 - Does anyone know Google's IP?
- Problem:
 - People can't remember IP addresses
 - Need human readable names that map to IPs

Internet Names and Addresses

- Addresses, e.g. 129.10.117.100
 - Computer usable labels for machines
 - Conform to structure of the network
- Names, e.g. www.rit.edu
 - Human usable labels for machines
 - Conform to organizational structure
- How do you map from one to the other?
 - Domain Name System (DNS)

History

- Before DNS, all mappings were in hosts.txt
 - /etc/hosts on Linux
 - C:\Windows\System32\drivers\etc\hosts on Windows
- Centralized, manual system
 - Changes were submitted to SRI via email
 - Machines periodically FTP new copies of hosts.txt
 - Administrators could pick names at their discretion
 - Any name was allowed
 - tijay_server_at_rit_pwns_joo_lol_kthxbye

Towards DNS

- Eventually, the hosts.txt system fell apart
 - Not scalable, SRI couldn't handle the load
 - Hard to enforce uniqueness of names
 - e.g RIT
 - Rochester Institute of Technology?
 - Revolution in Training (US Navy)
 - Many machines had inaccurate copies of hosts.txt
- Thus, DNS was born

19 Outline

- DNS Basics
- DNS Security

DNS at a High-Level

- Domain Name System
- Distributed database
 - No centralization
- Simple client/server architecture
 - UDP port 53, some implementations also use TCP
 - Why? (You will learn at the TCP-lecture)
- Hierarchical namespace
 - As opposed to original, flat namespace
 - \blacksquare e.g. .com \rightarrow google.com \rightarrow mail.google.com

Naming Hierarchy

Hierarchical Administration

Server Hierarchy

- Functions of each DNS server:
 - Authority over a portion of the hierarchy
 - No need to store all DNS names
 - Store all the records for hosts/domains in its zone
 - May be replicated for robustness
 - Know the addresses of the root servers
 - Resolve queries for unknown names
- Root servers know about all TLDs
 - The buck stops at the root servers

Root Name Servers

- Responsible for the Root Zone File
 - Lists the TLDs and who controls them
 - □ ~272KB in size

com.	172800	IN	NS	a.gtld-servers.net.
com.	172800	IN	NS	b.gtld-servers.net.
com.	172800	IN	NS	c.gtld-servers.net.

- Administered by ICANN
 - □ 13 root servers, labeled A→M
 - 6 are anycasted, i.e. they are globally replicated
- Contacted when names cannot be resolved
 - In practice, most systems cache this information

Map of the Roots (root-servers.org)

Local Name Servers (Resolvers)

Where is google.com?

- Each ISP/company has a local, default name server
- Often configured via DHCP
- Hosts begin DNS queries by contacting the local name server
- Frequently cache query results

Authoritative Name Servers

27 www.rit.edu = Where is 129.21.1.40 www.rit.edu www.rit.edu? **RIT** Root edu rit Authority for **Authority** for 'edu' 'rit.edu'

Stores the name > IP mapping for a given host

Basic Domain Name Resolution

- Every host knows a local DNS server
 - Sends all queries to the local DNS server
- If the local DNS can answer the query, then you're done
 - Local server has cached the record for that name
- Otherwise, go down the hierarchy and search for the authoritative name server
 - Every local DNS server knows the root servers
 - Use cache to skip steps if possible
 - e.g. skip the root and go directly to .edu if the root file is cached

Recursive DNS Query

29

Where is www.google.com?

- Puts the burden of resolution on the contacted name server
- How does glados know who to forward responses too?
 - Random IDs embedded in DNS queries
- What have we said about keeping state in the network?

Iterated DNS query

30

Where is www.google.com?

 Contact server replies with the name of the next authority in the hierarchy

"I don't know this name, but asgard.ccs.rit.ed this other server might"

This is how DNS works today

DNS Propagation

- How many of you have purchased a domain name?
 - Did you notice that it took ~72 hours for your name to become accessible?
 - This delay is called DNS Propagation

Caching vs. Freshness

32

DNS Propagation delay is caused by caching

for 1-72 hours

DNS Resource Records

33

- DNS queries have two fields: name and type
- Resource record is the response to a query
 - Four fields: (name, value, type, TTL)
 - There may be multiple records returned for one query
- What are do the name and value mean?
 - Depends on the type of query and response

DNS header:

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31					
<u>Identification</u>	QR Opcode AA TC RD RA Z AD CD Rcode					
<u>Total Questions</u>	Total Answer RRs					
Total Authority RRs	Total Additional RRs					
Questions [] :::						
Answer RRs [] :::						
Authority RRs [] :::						
Additional RRs [] :::						

DNS Types

34

- □ Type = NS
 - Name = partial domain
 - Value = name of DNS server for this domain
 - "Go send your query to this other server"

- Name: <u>rit.edu</u>
 - Type: NS
- ் Name: rit.edu
- Value: ns1a.rit.edu.

- \Box Type = A / AAAA
 - Name = domain name
 - Value = IP address
 - A is IPv4, AAAA is IPv6

Name: <u>www.rit.edu</u>

Type: A

<u>i</u> Name: <u>www.rit.edu</u>

👸 Value: 129.10.116.81

DNS Types, Continued

35

- Type = CNAME
 - Name = hostname
 - Value = canonical hostname
 - Useful for aliasing
 - CDNs use this (will be covered)

Name: foo.mysite.com

Type: CNAME

Name: foo.mysite.com Resp.

Value: <u>bar.mysite.com</u>

- Type = MX
 - Name = domain in email address
 - Value = canonical name of mail server

Name: cs.rit.edu

Type: MX

Name: cs.rit.edu

Value: pony-express.cs.rit.edu.

Reverse Lookups

36

- What about the IP > name mapping?
- Separate server hierarchy stores reverse mappings
 - Rooted at in-addr.arpa and ip6.arpa
- Additional DNS record type: PTR
 - Name = IP address
 - Value = domain name
- Not guaranteed to exist for all IPs
- Why do we need this?

Name: 129.10.116.51

Type: PTR

<u>о</u> Name: 129.21.30.104

👸 Value: cs.rit.edu

DNS Recap

- Name hierarchy
- Two kinds of DNS servers:
 - Authoritative Nameserver
 - Resolver
- How to buy a domain name

Naming Hierarchy

38 Root edu mil net uk etc. gov org com Top Level Domains (TLDs) are at the mit top Maximum tree depth: 128 Each Domain Name is a subtree gccis csec \square .edu \rightarrow rit.edu \rightarrow cs.rit.edu \rightarrow www.ccs.rit.edu Name collisions are avoided login mail rit.edu vs. rit.com

Authoritative Nameserver

ns1a.rit.edu

What is the mail server address of rit.edu?

Do you have other names than rit.edu?

Authoritative Nameserver

Demo 1

41

- Dig: (Domain Information Grouper)
 - Very useful tool to send a DNS request and parse the DNS response

List of Root Servers

HOSTNAME	IP ADDRESSES	MANAGER
a.root-servers.net	198.41.0.4, 2001:503:ba3e::2:30	VeriSign, Inc.
b.root-servers.net	199.9.14.201, 2001:500:200::b	University of Southern California (ISI)
c.root-servers.net	192.33.4.12, 2001:500:2::c	Cogent Communications
d.root-servers.net	199.7.91.13, 2001:500:2d::d	University of Maryland
e.root-servers.net	192.203.230.10, 2001:500:a8::e	NASA (Ames Research Center)
f.root-servers.net	192.5.5.241, 2001:500:2f::f	Internet Systems Consortium, Inc.
g.root-servers.net	192.112.36.4, 2001:500:12::d0d	US Department of Defense (NIC)
h.root-servers.net	198.97.190.53, 2001:500:1::53	US Army (Research Lab)
i.root-servers.net	192.36.148.17, 2001:7fe::53	Netnod
j.root-servers.net	192.58.128.30, 2001:503:c27::2:30	VeriSign, Inc.
k.root-servers.net	193.0.14.129, 2001:7fd::1	RIPE NCC
l.root-servers.net	199.7.83.42, 2001:500:9f::42	ICANN
m.root-servers.net	202.12.27.33, 2001:dc3::35	WIDE Project

Resolver

42

Where is www.google.com?

 Contact server replies with the name of the next authority in the hierarchy

"I don't know this name, but asgard.ccs.rit.ed this other server might"

This is how DNS works today

Cache!

Demo 2

- Dig: (Domain Information Grouper)
 - Dig @1.1.1.1 rit.edu

DNS Types

44

- Type = NS
 - Name = partial domain
 - Value = name of DNS server for this domain
 - "Go send your query to this other server"

Name: rit.edu

Type: NS

<u>்</u> Name: <u>rit.edu</u>

💆 Value: ns 1 a.rit.edu.

- \square Type = A / AAAA
 - □ Name = domain name
 - Value = IP address
 - A is IPv4, AAAA is IPv6

Name: <u>www.rit.edu</u>

Type: A

<u>்</u> Name: <u>www.rit.edu</u>

👸 Value: 129.10.116.81

How to buy a domain name (1)

How to buy a domain name (2) Using your own authoritative nameserver

My nameserver name is ns.example.com and this is the IP addresss: 1.2.3.4.

How to buy a domain name (3) Using the registrar's default nameserver

DNS as Indirection Service

- DNS gives us very powerful capabilities
 - Not only easier for humans to reference machines!
- Changing the IPs of machines becomes trivial
 - e.g. you want to move your web server to a new host
 - Just change the DNS record!

Aliasing and Load Balancing

49

One machine can have many aliases (virtual hosting)

One domain can map to multiple machines

Content Delivery Networks

50 NETFLIX DNS responses may vary NETFLIX based on geography, ISP, etc (details will be covered)

51 Outline

- DNS Basics
- DNS Security

The Importance of DNS

- Without DNS...
 - How could you get to any websites?
- You are your mailserver
 - When you sign up for websites, you use your email address
 - What if someone hijacks the DNS for your mail server?
- DNS is the root of trust for the web
 - When a user types <u>www.bankofamerica.com</u>, they expect to be taken to their bank's website
 - What if the DNS record is compromised?

Denial Of Service

- Flood DNS servers with requests until they fail
- October 2002: massive DDoS against the root name servers
 - What was the effect?
 - users didn't even notice
 - Root zone file is cached almost everywhere
- More targeted attacks can be effective
 - Local DNS server cannot access DNS
 - Authoritative server > cannot access domain

DNS Hijacking

- Infect their OS or browser with a virus/trojan
 - e.g. Many trojans change entries in /etc/hosts
 - *.bankofamerica.com > evilbank.com
- Man-in-the-middle

- Response Spoofing
 - Eavesdrop on requests
 - Outrace the servers response

Query identifier: used to be incremented by 1

Attacking DNS (only few examples)

58

Kaminsky Attack (QID bruteforcing)

Random QID and Random Port

Man-in-the-Middle

Solution: DNSSEC

- Cryptographically sign critical resource records
 - Resolver can verify the cryptographic signature
- Two new resource types
 - Type = DNSKEY
 - Name = Zone domain name
 - Value = Public key for the zone
 - Type = RRSIG
 - Name = (type, name) tuple, i.e. the query itself
 - Value = Cryptographic signature of the query results
- Deployment
 - On the roots since July 2010
 - Verisign enabled it on .com and .net in January 2011
 - Comcast is the first major ISP to support it (January 2012)

DNSSEC Hierarchy of Trust

60 Root Zone (ICANN) .com (Verisign) IPP: 1626364656467.9839 Key: < Where is SBBG9ma8nskUkolka3 bankofamerica.com? chrssbevfibccom

Site Finder

61

 September 2003: Verisign created DNS wildcards for *.com and *.net

You tried to visit thissitedoesntexist.nonexistentdomain123451513.com, which is not loading.

OpenDNS

This Site Doesn T Exist Not Exist ENT Domain 123451513

Results 1 - 7 of 14,900,000 for This Site Doesn T Exist Not Exist ENT Domain 123451513

- Web
 - Did you mean this site does not exist nonexistentdomain123451513?
 - Web Deployment "Site 'sitename' does not exist : The ...
 - Web Deployment "Site 'sitename' does not exist RSS. 3 replies Last post Dec 04, 2010 04:54 AM by joydeep1985 < Previous Thread | Next Thread > Reply ...
 - forums.asp.net/t/next/1630665

Site Does Not Exist

The ShoutCMS **Site Does not Exist**. Top of Page. Posted on Monday, Jan 12 2009. Mediashaker. Posted on Saturday, Jan 10 2009. Mediashaker. Posted on Friday, Jan 9 2009. fencing.shoutcms.com

Much More to DNS

- Caching: when, where, how much, etc.
- Other uses for DNS (i.e. DNS hacks)
 - Content Delivery Networks (CDNs)
 - Different types of DNS load balancing
 - Dynamic DNS (e.g. for mobile hosts)
- DNS and botnets
- Politics and growth of the DNS system
 - Governance
 - New TLDs (.xxx, .biz), eliminating TLDs altogether
 - Copyright, arbitration, squatting, typo-squatting