Univariate, Bivariate and Multivariate Analysis

```
import numpy as np
In [2]:
        import pandas as pd
        import matplotlib.pyplot as plt
        %matplotlib inline
        import seaborn as sns
        import math
        card_approval_df=pd.read_csv('clean_dataset.csv')
In [3]:
        print(card_approval_df.head())
                          Debt Married BankCustomer
          Gender
                    Age
                                                         Industry Ethnicity \
                                 1
        0
               1 30.83 0.000
                                                  1 Industrials
                                                                     White
        1
                                     1
                                                                     Black
               0 58.67 4.460
                                                  1 Materials
        2
               0 24.50 0.500
                                                       Materials
                                                                     Black
        3
               1 27.83 1.540
                                     1
                                                   1 Industrials
                                                                     White
               1 20.17 5.625
                                                   1 Industrials
                                     1
                                                                     White
          YearsEmployed PriorDefault Employed CreditScore DriversLicense
        0
                   1.25
                                             1
                                   1
                                                         1
        1
                   3.04
                                                         6
                                                                         0
        2
                                                         0
                   1.50
                                   1
                                             0
                                                                         0
        3
                   3.75
                                   1
                                             1
                                                         5
                                                                         1
                   1.71
               Citizen ZipCode Income Approved
        0
               ByBirth
                            202
                                   0
                            43
                                   560
        1
               ByBirth
                                               1
        2
               ByBirth
                            280
                                   824
                                               1
        3
               ByBirth
                            100
                                     3
                                               1
        4 ByOtherMeans
                            120
                                     0
                                               1
In [4]: print(card_approval_df.info())
```

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 690 entries, 0 to 689 Data columns (total 16 columns): Column Non-Null Count Dtype -------------0 Gender 690 non-null int64 690 non-null float64 1 Age Debt 690 non-null float64 3 Married 690 non-null int64 BankCustomer 690 non-null int64 Industry 690 non-null object Ethnicity 690 non-null object 6 float64 7 YearsEmployed 690 non-null PriorDefault 690 non-null int64 Employed 9 690 non-null int64 10 CreditScore 690 non-null int64 DriversLicense 690 non-null int64 12 Citizen 690 non-null object 690 non-null 13 ZipCode int64 14 Income 690 non-null int64 15 Approved 690 non-null int64 dtypes: float64(3), int64(10), object(3)

memory usage: 86.4+ KB

None

```
card_approval_df.duplicated().sum()
```

Out[5]:

Univariate Analysis of continuous Variables

card_approval_df[['Age','Debt','YearsEmployed','CreditScore','Income']].describe()

Out[6]:		Age	Debt	YearsEmployed	CreditScore	Income
	count	690.000000	690.000000	690.000000	690.00000	690.000000
	mean	31.514116	4.758725	2.223406	2.40000	1017.385507
	std	11.860245	4.978163	3.346513	4.86294	5210.102598
	min	13.750000	0.000000	0.000000	0.00000	0.000000
	25%	22.670000	1.000000	0.165000	0.00000	0.000000
	50%	28.460000	2.750000	1.000000	0.00000	5.000000
	75%	37.707500	7.207500	2.625000	3.00000	395.500000
	max	80.250000	28.000000	28.500000	67.00000	100000.000000

```
sns.histplot(card_approval_df.Age,kde=True)
```

<AxesSubplot:xlabel='Age', ylabel='Count'>

Univariate Analysis of categorical Variables

In [8]: sns.countplot(card_approval_df.Gender)

C:\Users\gptkgf\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarni ng: Pass the following variable as a keyword arg: x. From version 0.12, the only v alid positional argument will be `data`, and passing other arguments without an ex plicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[8]: <AxesSubplot:xlabel='Gender', ylabel='count'>

In [9]: sns.countplot(card_approval_df.Ethnicity)

C:\Users\gptkgf\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarni
ng: Pass the following variable as a keyword arg: x. From version 0.12, the only v
alid positional argument will be `data`, and passing other arguments without an ex
plicit keyword will result in an error or misinterpretation.
 warnings.warn(

Out[9]: <AxesSubplot:xlabel='Ethnicity', ylabel='count'>

Bivariate analysis of continuous variable

In [10]: card_approval_df[['Age','Debt','YearsEmployed','CreditScore','Income']].corr()

Out[10]:		Age	Debt	YearsEmployed	CreditScore	Income
	Age	1.000000	0.202177	0.391464	0.187327	0.018719
	Debt	0.202177	1.000000	0.298902	0.271207	0.123121
	YearsEmployed	0.391464	0.298902	1.000000	0.322330	0.051345
	CreditScore	0.187327	0.271207	0.322330	1.000000	0.063692
	Income	0.018719	0.123121	0.051345	0.063692	1.000000

In [12]: sns.scatterplot(card_approval_df.YearsEmployed,card_approval_df.Income)
 plt.ylim(0,20000)

C:\Users\gptkgf\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarni
ng: Pass the following variables as keyword args: x, y. From version 0.12, the onl
y valid positional argument will be `data`, and passing other arguments without an
explicit keyword will result in an error or misinterpretation.
 warnings.warn(

Out[12]: (0.0, 20000.0)

Bivariate Analysis of Categorical Variables vs Continuous Variables

In [13]: card_approval_df.groupby(by='Approved').agg('mean')[['Age','Debt','YearsEmployed',

Out[13]:		Age	Debt	YearsEmployed	CreditScore	Income
Арр	oroved					
	0	29.773029	3.839948	1.257924	0.631854	198.605744
	1	33.686221	5.904951	3.427899	4.605863	2038.859935

```
In [19]: plt.figure(figsize=(5,4))
sns.kdeplot(data=card_approval_df,x='Age',hue='Approved',fill=True)
```

Out[19]: <AxesSubplot:xlabel='Age', ylabel='Density'>

Bivariate Analysis of Categorical Variables vs Categorical Variables

```
In [20]: sns.countplot(data=card_approval_df,x='Approved',hue='Gender')
Out[20]: <AxesSubplot:xlabel='Approved', ylabel='count'>
```


Multivariate Analysis

In []: