U-Net Models

- 3 models for the segmentation task:
 - Classic U-Net: baseline U-Net model architecture

U-Net Models

- 3 models for the segmentation task:
 - Classic U-Net: baseline U-Net model architecture
 - Improved U-Net: small improvements, less parameters

U-Net Models

3 models for the segmentation task:

• Classic U-Net: baseline U-Net model architecture

• Improved U-Net: small improvements, less parameters

Attention U-Net: attention mechanism added

U-Net Models

3 models for the segmentation task:

• Classic U-Net: baseline U-Net model architecture

Improved U-Net: small improvements, less parameters

Attention U-Net: attention mechanism added

Classic U-Net

Improved U-Net

Small improvements from previous \rightarrow to reduce n° of parameters and improve performance:

- **Separable Convolutions**: depthwise + pointwise convolutions
- Batch Normalization: to improve training and generalization
- Larger Kernel Size: 7×7 kernels instead of 3×3
- **Inverse Bottleneck**: expands + compresses channels
- Additive Skip Connections: instead of concatenated ones

Attention U-Net

Training Details

U-Net Models training parameters:

• **epochs**: 20

• Optimizer: Adam (with weight decay (1×10^{-2}))

• Scheduler: Exponential Decay $(\gamma = 0.9)$

• Loss Function: BCE with Logits Loss

• learning rate: 2×10^{-3}

• batch size: 32 (both training and validation)

• image size: 240 × 240

• first encoder filters: 32

Performance Assessment

$$\begin{array}{ll} \text{Dice} = \frac{2 \times |X \cap Y|}{|X| + |Y|} & \text{Precision} = \frac{TP}{TP + FP} & \text{Recall} = \frac{TP}{TP + FN} \\ \\ \text{Dice Coefficient} & \text{Precision} & \text{Recall} \\ \text{"overlap" metric} & \text{prediction quality} & \text{prediction quantity} \end{array}$$

Visualizing Attention Maps

