Эконометрика ПМ-1701

Преподаватель:

Курышева Светлана Владимировна

Санкт-Петербург 2020 г., 6 семестр

Список литературы

[1]	Эконометрика: Учебник/И.И.Елисеева и дрМ.:Проспект, 2009				
[2]	Практикум по эконометрике: Учебное пособие/И.И.Елисеева и др.,М.:Финансы и статистика,2006				
[3]	Эконометрика: Учебник/В. С.Мхитарян и дрМ.:2008				
[4]	Доугерти К. Введение в эконометрику: Учебник. 2-е изд. / Пер. англ. – М.: ИНФРА – М, 2007				
[5]	Берндт Э. Практика эконометрики: классика и современность M.,2005				
\mathbf{C}	одержание				
1	21.02.2020				
	4 4 TT / 1				

$1 \quad 21.02.2020$

Дана зависимость спроса от цены:

$$X = (15, 14, 12, 11, 9, 10)$$

$$Y = (5, 4, 6, 10, 18, 10)$$

1. Необходимо построить поле корреляции и выбрать математическую функцию.

По данной информации лучшей аппроксимации является нелинейная регрессия - степенная функция.

2. Найти линейное уравнение, используя МНК.

$$y = a + bx$$

Согласно формуле (7) получаем следующую систему уравнений:

$$\begin{cases} 53 = 6a + 71b \\ 575 = 71a + 867b \end{cases}$$

Из данной системы уравнений находим значения параметров регрессии a и b:

$$a = 31.8385; b = -1.9441$$

Построим график прямой

$$\widehat{Y} = 31.8385 - 1.9441X$$

Линейный коэффициент корреляции по формуле (10):

$$r = -0.87378$$

3. Построить таблицу дисперсионного анализа:

Источник вариации	df	SS	MS	F-критерий
Регрессия (r)	1	101.417	101.417	12.9127
Остаток (е)	4	31.4161	7.85404	1
Итого (t)	5	132.833	26.5667	X

Таблица 1: Таблица дисперсионного анализа для примера

Найдем табличное значение распределения Фишера-Снедекора при заданном уровне значимости:

$$F_{1-\alpha}(m, n-1-m) = F_{0.95}(1, 4) = 7.71$$

4. Найти линейное уравнение регрессии, используя программу Excel.

1.1 Hometask

5. Дать интервальный прогноз спроса, для $x_p = 9$

Выражение для **стандартной ошибки предсказываемого по** линии регрессии значения \widehat{y} :

$$m_{\widehat{y_x}} = \sqrt{MS_E} \sqrt{\frac{1}{n} + \frac{(x_k - \overline{X})^2}{\sum (X - \overline{X})^2}}$$
 (37)

Для прогнозируемого значения \widehat{y} доверительный интервал выглядит следующим бразом:

$$\widehat{y_{x_k}} \pm t_{1-\frac{\alpha}{2}} \cdot m_{\widehat{y_x}}$$

$$\widehat{y_{x_k}} - t_{1-\frac{\alpha}{2}} \cdot m_{\widehat{y_x}} \le \widehat{y_{x_k}} \le \widehat{y_p} + t_{1-\frac{\alpha}{2}} \cdot m_{\widehat{y_x}}$$
(38)

Средняя ошибка прогнозируемого индивидуального значения составит:

$$m_y = \sqrt{MS_E} \sqrt{1 + \frac{1}{n} + \frac{(x_k - \overline{X})^2}{\sum (X - \overline{X})^2}}$$
 (39)

Доверительный интервал для y_p - предсказываемого значения регрессии:

$$\widehat{y_p} - t_\alpha m_y \le y_p \le \widehat{y_p} + t_\alpha m_y \tag{40}$$

Вычислим стандартную ошибку предсказываемого по линии регрессии значения \hat{Y} по формуле (37):

$$m_{\widehat{y_x}} = \sqrt{7.85404} \sqrt{\frac{1}{6} + \frac{(x_k - 11.8333)^2}{26.8333}}$$

Подставляя различные значения из выборки X мы можем узнать ошибку предсказываемого значения. Минимальная ошибка будет при подстановке $x_k = \overline{X} = 11.8333$:

$$m_{y_{\overline{X}}} = \sqrt{11.8333}\sqrt{\frac{1}{6}} = 1.14412$$

Построим доверительный интервал для \widehat{Y} при каком-то произвольном значении x_k , например $x_k = 9$. Воспользуемся формулой (38).

Сначала вычислим значение линейной регресии в точке $x_k = 9$:

$$\widehat{y_9} = 31.8385 - 1.9441 \cdot 9 = 14.3416$$

Затем вычислим стандартную ошибку в точке $x_k = 9$:

$$m_{\widehat{y_9}} = \sqrt{7.85404} \sqrt{\frac{1}{6} + \frac{(9 - 11.8333)^2}{26.8333}} = 1.91278$$

Теперь можно и построить доверительный интервал для уровня значимости $\alpha=0.05$:

$$\widehat{y_9} - t_{0.975} \cdot m_{\widehat{y_9}} \le \widehat{y_9} \le \widehat{y_9} + t_{0.975} \cdot m_{\widehat{y_9}}$$

$$9.0309 \le \widehat{y_9} \le 19.6523$$

Средняя ошибка прогнозируемого индивидуального значения:

$$m_y = \sqrt{MS_E} \sqrt{1 + \frac{1}{n} + \frac{(x_k - \overline{X})^2}{\sum (X - \overline{X})^2}}$$
$$= \sqrt{7.85404} \sqrt{1 + \frac{1}{6} + \frac{(9 - 11.8333)^2}{26.8333}} = 3.39304$$

Доверительный интервал для y_p - предсказываемого значения регрессии:

$$4.92101 \le \widehat{y_9} \le 23.7622$$

6. Используя Excel найти уравнение регрессии по степенной функции.

1. Степенная функция

Модель:

$$y = a \cdot x^b \cdot \varepsilon$$

Логарифмируем обе части равенства (линеаризация):

$$\ln y = \ln a + b \ln x + \ln \varepsilon$$

Замена переменных:

$$\ln y = z, \alpha_1 = \ln a, t = \ln x, \varepsilon_1 = \ln \varepsilon$$

Линейный вид:

$$z = \alpha_1 + b \cdot t + \varepsilon_1$$

В нашем случае нам нужно прологарифмировать наши ряды x и y, найти коэффициенты a и b линейной функции и перейти обратно к степенной, сделав замену $a=\mathrm{e}^{\alpha_1}$

$$X = (15, 14, 12, 11, 9, 10)$$

 $x_{new} = \ln X = (2.70805, 2.63906, 2.48491, 2.3979, 2.19722, 2.30259)$

$$Y = (5, 4, 6, 10, 18, 10)$$

 $y_{new} = \ln Y = (1.60944, 1.38629, 1.79176, 2.30259, 2.89037, 2.30259)$

Находим коэффициенты методом МНК:

$$\alpha_1 = 8.58854, b = -2.66456$$

Исходная степенная модель имеет вид:

$$y = e^{\alpha_1} x^b = 5369.78 \cdot x^{-2.66456}$$

Построим график степенной функции

$$y = 5369.78 \cdot x^{-2.66456}$$

