

102architect

B-MAT-100

Geometric transformations

Translation

Translation along vector V(i,j)

$$P'(x) = P(x) + i$$

$$P'(y) = P(y) + j$$

Scaling

Scaling by factors m and n

$$P'(x) = m \times P(x)$$

$$P'(y) = n \times P(y)$$

Rotation

Rotation centered in O

$$P'(x) = \cos(\theta) \times P(x) - \sin(\theta) \times P(y)$$

$$P'(y) = \sin(\theta) \times P(x) + \cos(\theta) \times P(y)$$

Reflection

Reflection over an axis

$$P'(x) = \cos(2\theta) \times P(x) + \sin(2\theta) \times P(y)$$

$$P'(y) = \sin(2\theta) \times P(x) - \cos(2\theta) \times P(y)$$

Matrices

• 2-dimensional array of values

$$\begin{pmatrix} 42 & 12 & 34 & 2 \\ 36 & 2 & 1 & 15 \\ 3 & 23 & 17 & 9 \end{pmatrix}$$

• Can be represented in 2D $\binom{1}{4}$, 3D $\binom{2}{4}$ and much more...

Matrix addition

They MUST have same dimensions

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} + \begin{pmatrix} 3 & 5 \\ 6 & 2 \\ -2 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 7 \\ 9 & 6 \\ 3 & 8 \end{pmatrix}$$

• The resulting matrix has the same dimensions

Multiplication of 2 matrices

- Two matrices can be multiplied if:
 - Numbers of columns of the 1st one = number of rows of the 2nd one

$$\begin{pmatrix} 3 & 2 & 1 \\ 2 & 1 & 3 \end{pmatrix} \times \begin{pmatrix} 3 & 5 & 4 & 8 \\ 6 & 2 & 7 & 6 \\ 2 & 2 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 23 & 21 & 30 & 39 \\ 18 & 18 & 27 & 31 \end{pmatrix}$$

- The resulting matrix has the number of rows of the 1^{st} one and the number of columns of the 2^{nd} one
- The multiplication is NOT commutative $!A \times B \neq B \times A$

Multiplication of 2 matrices

$$(3*3) + (2*6) + (1*2) = 9 + 12 + 2 = 23$$

Homogeneous coordinates

- In graphics programming, we use homogeneous coordinates to easily compute transformations.
- A point (x, y) is represented by a 3x1 matrix with a 3rd « coordinate » equal to 1:

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

We can now use matrix multiplication to compute transformations!

Translation

Translation along vector V(i, j)

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & i \\ 0 & 1 & j \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Scaling

Scaling by factors m and n

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} m & 0 & 0 \\ 0 & n & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Rotation

Rotation centered in *O*

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Reflection

Reflection over an axis

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos 2\theta & \sin 2\theta & 0 \\ \sin 2\theta & -\cos 2\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Composed transformations

• T is a translation matrix, and R a rotation matrix

$$P' = T \times P$$

$$P'' = R \times P' = R \times (T \times P) = (R \times T) \times P$$

- $M = R \times T$ is the transformation matrix of a translation followed by a rotation
- This works for as many consecutive transformations as you want!

102architect

- Inputs
 - x, y: original coordinates
 - At least one transformation
- Outputs
 - The matrix of the (composed) transformation
 - The resulting transformed coordinates
- Using a matrix calculus library is considered as cheating

Boni ideas

- Graphical interface showing transformation of several points/figures
- Additional transformations
 - Shear mapping
 - Projection
 - •
- 3D