IV. Multiple Regression.

- V. Extensions of Multiple Regression
 - A. Non-Linear Models (Chapter 9)
 - B. Dummy (Binary) Variables (Chapter 10)
 - C. Scaling Variables

VI. Problems and Specification Issues

- A. Model Selection/Specification
- B. Multicollinearity
- C. Heteroskedasticity
- D. Autocorrelation

VI. Problems and Specification Issues

- A. Model Selection/Specification
 - Two Possible Mistakes: omit important independent variables; include variables that don't belong
 - 2. Omitted Variables: estimators are biased
 - Irrelevant Variables: estimators are unbiased, but inefficient – OLS estimators are no longer BLUE
 - 4. Tools and Tests

4. Tools

- a. Start with theory and literature review:
 - ✓ Do you have all the right variables? What did other researchers find?
- b. Check the Adjusted R²:
 - ✓ Do additional variables explain variation in Y?
- c. Joint F-tests for additional variables
- d. Specification tests:
 - ✓ Regression Error Specification Test (RESET)
 - ✓ SAS use the "SPEC" (specification test) option

RESET Test

- i. Estimate: $Y_i = \beta_0 + \beta_0 X_{Ii} + ... + \beta_K X_{Ki} + u_i$
- ii. Save predicted values:
- iii. Create new variables:
- iv. Estimate again:
- v. Hypothesis test:

White's Specification Test (SPEC option)

- i. Estimate: $Y_i = \beta_0 + \beta_0 X_{Ii} + ... + \beta_K X_{Ki} + u_i$
- ii. Save the errors and square:
- iii. Create new variables:
- iv. Estimate the auxiliary regression:
- v. Hypothesis test:

B. Multicollinearity

- Definition: The presence of *linear association* among independent variables i.e. linear association or correlation between X₁ and X₂.
 - *Sample Problem* the problem lies in your sample data.
 - There is *no causal relationship* between X₂ and the other independent variables.
 - Ie., X₂ does not "cause" X₁

2. Consequences:

- OLS estimators remain unbiased.
- Standard errors are inflated.
- Calculated t-statistics are deflated.
- What is the ultimate problem?

2. Consequences of Multicollinearity

- Multiple reg. standard error 2 indep. variables:
- If X₁ and X₂ are strongly and linearly associated:

- Multiple regression variances are inflated the variance inflation factor
- 1. Multiple regression variance:

$$s_{b_1}^2 = \frac{\hat{\sigma}^2 \sum x_{2i}^2}{\sum x_{1i}^2 \sum x_{2i}^2 - (\sum x_{1i} x_{2i})^2}$$

2. Multiply by "1":
$$s_{b_1}^2 = \frac{\hat{\sigma}^2 \sum_{i} x_{2i}^2}{\sum_{i} x_{1i}^2 \sum_{i} x_{2i}^2 - (\sum_{i} x_{1i} x_{2i})^2} \cdot \frac{1/(\sum_{i} x_{1i}^2 \sum_{i} x_{2i}^2)}{1/(\sum_{i} x_{1i}^2 \sum_{i} x_{2i}^2)}$$

3. Rearrange terms and note that some stuff cancels:

$$s_{b_{1}}^{2} = \frac{\hat{\sigma}^{2} \sum x_{2i}^{2} / (\sum x_{1i}^{2} \sum x_{2i}^{2})}{\sum x_{1i}^{2} \sum x_{2i}^{2} - (\sum x_{1i}x_{2i})^{2}} = \frac{\hat{\sigma}^{2} / \sum x_{1i}^{2}}{\sum x_{1i}^{2} \sum x_{2i}^{2} - (\sum x_{1i}x_{2i})^{2}} = \frac{\sum x_{1i}^{2} \sum x_{2i}^{2}}{\sum x_{1i}^{2} \sum x_{2i}^{2} - (\sum x_{1i}x_{2i})^{2}}$$

4. Simplify the denominator:

$$s_{b_{l}}^{2} = \frac{\frac{\hat{\sigma}^{2} / \sum x_{1i}^{2}}{\sum x_{1i}^{2} \sum x_{2i}^{2}} - \frac{(\sum x_{1i} x_{2i})^{2}}{\sum x_{1i}^{2} \sum x_{2i}^{2}} = \frac{\frac{\hat{\sigma}^{2} / \sum x_{1i}^{2}}{1 - \frac{(\sum x_{1i} x_{2i})^{2}}{\sum x_{1i}^{2} \sum x_{2i}^{2}}}$$

5. Two familiar terms:

Simple regression variance:

Squared correlation coefficient:

$$s_{b_1}^2 = \frac{\hat{\sigma}^2}{\sum x_{1i}^2} \qquad r_{x_1x_2}^2 :$$

- $s_{b_1}^2 = \frac{\hat{\sigma}^2}{\sum_{x_{1i}^2}}$ $r_{x_1x_2}^2 = \frac{(\sum_{x_1i}x_{2i})^2}{\sum_{x_2i}\sum_{x_{2i}^2}x_{2i}^2}$
- 6. Viola! The variance of the multiple regression estimator is the variance of the simple regression estimator multiplied by the VIF:

$$s_{b_1}^2 = \frac{\hat{\sigma}^2}{\sum x_{1i}^2} \cdot \left(\frac{1}{1 - r_{x_1 x_2}^2}\right)$$

3. Diagnosis (Multicollinearity)

- a. Classic signs:
- b. Correlation Coefficients
- c. Auxilliary Regressions
- d. Variance Inflation Factors

4. Example – annual per capita demand for chicken.

Estimate the following model:

$$chikcons_t = \beta_0 + \beta_1 pchik_t + \beta_2 ppork_t + \beta_3 pbeef_t + \beta_4 disincom_t + u_t$$

$$\mathbf{Model: MODEL1}$$

Dependent Variable: chikcons chikcons

Analysis of Variance

Source	DF	Sum of	Mean	F Value	Pr > F
		Squares	Square		
Model	4	1127.25901	281.81475	73.87	<.0001
Error	18	68.66969	3.81498		
Corrected Total	22	1195.92870			

 Root MSE
 1.95320
 R-Square
 0.9426

 Dependent Mean
 39.66957
 Adj R-Sq
 0.9298

 Coeff Var
 4.92367

			Parameter	Standard		
Variable	Label	DF	Estimate	Error	t Value	Pr > t
Intercept	Intercept	1	37.23236	3.71770	10.01	<.0001
pchik	pchik	1	-0.61117	0.16285	-3.75	0.0015
ppork	ppork	1	0.19841	0.06372	3.11	0.0060
pbeef	pbeef	1	0.06950	0.05099	1.36	0.1896
disincom	disincom	1	0.00501	0.00489	1.02	0.3194

- **a.** Classic Signs look on your printout for the following *combination a contradiction*:
- Model is good: Fits well and is significant.
 R² is high suggests a good model.
 F_{calc} is high suggests variables are important.
- BUT: Individual t_{calcs} suggest variables are not important. (Contradicts the high R² and F_{calc} values)

b. Correlation Coefficients

```
proc corr data=chicken;
  var pchik ppork pbeef disincom;
run;
```

Pair-wise correlations – any problems?

	mt o	ODD D	1	
		ORR Proce		
4 V:	ariables: po	chik ppork	pbeef disin	com
Pear	rson Correl		,	= 23
		under H0		
	pchik	ppork	pbeef	disincom
pchik	1.00000	0.97011	0.92847	0.93168
		<.0001	<.0001	<.0001
ppork	0.97011	1.00000	0.94057	0.95713
	<.0001		<.0001	<.0001
pbeef	0.92847	0.94057	1.00000	0.98588
	<.0001	<.0001		<.0001
disincom	0.93168	0.95713	0.98588	1.00000
	<.0001	<.0001	<.0001	

c. Auxilliary Regressions – are independent variables related?

Model: MODEL2

Dependent Variable: ppork ppork

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	3	26356	8785.33502	177.66	<.0001
Error	19	939.57493	49.45131		
Corrected Total	22	27296			

 Root MSE
 7.03216
 R-Square
 0.9656

 Dependent Mean
 90.40000
 Adj R-Sq
 0.9601

Coeff Var 7.77894

Parameter Estimates

			Parameter	Standard		
Variable	Label	DF	Estimate	Error	t Value	Pr > t
Intercept	Intercept	1	-17.30398	12.78269	-1.35	0.1917
pchik	pchik	1	1.95988	0.37629	5.21	<.0001
pbeef	pbeef	1	-0.22436	0.17621	-1.27	0.2183
disincom	disincom	1	0.04015	0.01502	2.67	0.0150

d. Regression results with VIFs:

Model: MODEL3

Dependent Variable: chikcons chikcons

Analysis of Variance

Source	DF	Sum of	Mean	F Value	Pr > F
		Squares	Square		
Model	4	1127.25901	281.81475	73.87	<.0001
Error	18	68.66969	3.81498		
Corrected Total	22	1195.92870			

 Root MSE
 1.95320
 R-Square
 0.9426

 Dependent Mean
 39.66957
 Adj R-Sq
 0.9298

 Coeff Var
 4.92367

Variable	Label	DF	Parameter	Standard	t Value	Pr > t	Variance
			Estimate	Error			Inflation
Intercept	Intercept	1	37.23236	3.71770	10.01	<.0001	0
pchik	pchik	1	-0.61117	0.16285	-3.75	0.0015	18.90128
ppork	ppork	1	0.19841	0.06372	3.11	0.0060	29.05099
pbeef	pbeef	1	0.06950	0.05099			39.76141
disincom	disincom	1	0.00501	0.00489	1.02	0.3194	52.70104

5. Solutions – fixing the problem

- a. Sample data problem get new sample data (Not a good suggestion the new sample will probably have the same problem ☺)
- **b.** Eliminate the offensive variable (But your results will be biased if that variable was important ☺)
- c. It's linear Association use non-linear forms (Ok this might work. Eg., try a log-log model (important need logs on right-hand side)
- d. Data transformations try ratios of variables (This is often great, but the ratios must make sense!)
- e. Use "non-sample" information Restrictions (Great possible solution but you need to have some theoretical result to use as a restriction)

c. Use non-linear form:

Model: MODEL4 Dependent Variable: Ingchik

Analysis of Variance

 Source
 DF Sum of Squares
 MeanF ValuePr > F

 Model
 4 0.76105
 0.19026
 249.93<.0001</td>

Error 18 0.013700.00076127

Corrected Total 22 0.77475

Root MSE 0.02759R-Square0.9823 Dependent Mean3.66389Adj R-Sq0.9784

Coeff Var 0.75306

			I til tillicit	Listiniates	,		
Variable	Label	DF	Parameter	Standard	t Value	Pr > t	Variance
			Estimate	Error			Inflation
Intercept	Intercept	1	2.18979	0.15571	14.06	<.0001	0
lnpchik		1	-0.50459	0.11089	-4.55	0.0002	17.48577
lnppork		1	0.14855	0.09967	1.49	0.1535	41.43312
Inpbeef		1	0.09110	0.10072	0.90	0.3776	42.30710
Indine		1	0.34256	0.08327	4.11	0.0007	65.11460

Correlations for the log variables – no improvement

5 Va		CORR Proc		Indina		
5 Variables: Inpchik Inppork Inpbeef Indinc Pearson Correlation Coefficients, N = 23 Prob > r under H0: Rho=0						
	lnp chik	lnppork	Inpbeef	Indinc		
lnp chik		0.94675	0.93306	0.90717		
	1.00000	<.0001	<.0001	<.0001		
lnppork	0.94675		0.95428	0.97246		
	<.0001	1.00000	<.0001	<.0001		
lnp beef	0.93306	0.95428		0.97900		
	<.0001	<.0001	1.00000	<.0001		
lnd in c	0.90717	0.97246	0.97900			
	<.0001	<.0001	<.0001	1.00000		

d. Data transformation – ratios of variables – relative prices:

Model: MODEL6 Dependent Variable: Inqchik

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	3	0.75851	0.25284	295.85	<.0001
Error	19	0.01624	0.00085463		
Corrected Total	22	0.77475			

 Root MSE
 0.02923
 R-Square
 0.9790

 Dependent Mean
 3.66389
 Adj R-Sq
 0.9757

 Coeff Var
 0.79790

		Parameter	Standard			Variance
Variable Labe	el DF	Estimate	Error	t Value	Pr > t	Inflation
Intercept Inter	cept 1	2.38310	0.12093	19.71	<.0001	0
Inrpchik	1	-0.61246	0.09942	-6.16	<.0001	9.22794
Inrppork	1	0.15750	0.10548	1.49	0.1518	3.77977
Inrdinc	1	0.38228	0.08516	4.49	0.0003	8.44858

Correlations for relative prices – these look pretty good.

The CORR Procedure 3 Variables: rpchik rppork rdincom Pearson Correlation Coefficients, N = 23 Prob > |r| under H0: Rho=0rpchik rppork rdincom 0.27577 -0.80185 1.00000 0.2028 <.0001 **rppork** 0.27577 0.20395 1.00000 0.2028 0.3506 rdincom -0.80185 0.20395 1.00000 <.0001 0.3506

e. Use non-sample information - restricted least squares:

Model: MODEL5
Dependent Variable: lnqchik

Note: Restrictions have been applied to parameter estimates. $b_1 + b_2 + b_3 + b_4 = 0$

Analysis of Variance								
Source	DF	Sum of	Mean	F Value	Pr > F			
		Squares	Square					
Model	2	0.75799	0.37900	452.31	<.0001			
Error	20	0.01676	0.00083792					
Corrected Total	22	0.77475						

 Root MSE
 0.02895
 R-Square
 0.9784

 Dependent Mean
 3.66389
 Adj R-Sq
 0.9762

 Coeff Var
 0.79006

Parameter Estimates Parameter Standard Variance Variable Label DF Estimate Error t Value Pr > |t|0.11899 Intercept Intercept 2.37252 19.94 < .0001 1 <.0001 12.51797 Inpchik -0.61227 0.09844 -6.22 Inppork 0.11561 0.08991 1.29 0.2132 0.2132 30.63194 Inpbeef 0.11561 0.08991 1.29 Indinc 0.38104 0.08430 $4.52 \quad 0.0002 \ 60.64222$ RESTRICT 0.03483 0.01898 1.84 0.0647* -1 RESTRICT 0.00614 0.00778 0.79 0.4448* -1 * Probability computed using beta distribution.

11

F-tests of the two restrictions:

The REG Procedure Model: MODEL4

 $\begin{array}{cccc} Test \ 1 \ Results \ for \ Dependent \ Variable \ lnqchik \\ Source & DF & Mean \ F \ Value \ Pr > F \end{array}$

Square

Numerator 1 0.00254 3.33 0.0847

Denominator 18 0.00076127

Model: MODEL4

Test 2 Results for Dependent Variable Inqchik

Source DF Mean F Value Pr > F

Square

Numerator 1 0.00023365 0.31 0.5864

Denominator 18 0.00076127