Геометрия и топология

Курс Солынина А.А. весна 2022 г.

Оглавление

Оглавление		i
Ι	Общая топология	1
1	Метрические пространства	2
	1.1 Определения и примеры	9

Часть I Общая топология

ГЛАВА

Метрические пространства

1.1. Определения и примеры

Определение 1.1. M – множество. M вместе с $\rho: M \times M \to \mathbb{R}$ называется метрическим пространством, если:

1.
$$\forall x,y \ \rho(x,y) \geqslant 0$$
 и $\rho(x,y) = 0 \Leftrightarrow x = y$

- 2. $\forall x, y \ \rho(x, y) = \rho(y, x)$
- 3. Неравенство треугольника: $\rho(x,z) \le \rho(x,y) + \rho(y,z)$

 (M, ρ) – метрическое пространство, ρ – метрика на M.

Пример. M – множество домов в городе. $\rho(x,y)$ – минимальное время, за которое можно добраться от x до y. (1 свойство очевидно, 2 свойство выполняется при симметричности дорог, 3 очевидно)

Пример. Расстояние на плоскости.

$$\begin{split} \mathbb{R}^2 &= \{(x,y): x,y \in \mathbb{R}\} \\ \rho_1((x_1,y_1),(x_2,y_2)) &\coloneqq |x_1-x_2| + |y_1-y_2| \\ \rho_2((x_1,y_1),(x_2,y_2)) &\coloneqq \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2} \\ \rho_k((x_1,y_1),(x_2,y_2)) &\coloneqq \left(|x_1-x_2|^k + |y_1-y_2|^k\right)^{1/k} \\ k &\to \infty : \rho_\infty((x_1,y_1),(x_2,y_2)) \coloneqq \max\{|x_1-x_2|;|y_1-y_2|\} \end{split}$$

Если перейти к \mathbb{R}^n , то

$$\rho_k((x_1,x_2,...,x_n);(y_1,y_2,...,y_n)) = \left(\sum_{i=1}^n |x_i-y_i|^k\right)^{1/k}$$

$$\left(\left| \underbrace{x_1 - x_3}_{a_1 + b_1} \right|^k + \left| \underbrace{y_1 - y_3}_{a_2 + b_2} \right|^k \right)^{1/k} \leqslant \left(\left| \underbrace{x_1 - x_2}_{a_1} \right|^k + \left| \underbrace{y_1 - y_2}_{a_2} \right|^k \right)^{1/k} + \left(\left| \underbrace{x_2 - x_3}_{b_1} \right|^k + \left| \underbrace{y_2 - y_3}_{b_2} \right|^k \right)^{1/k}$$

$$\left(\sum |a_i + b_i|^k \right)^{1/k} \leqslant \left(|a_1|^k + |a_2|^k \right)^{1/k} + \left(|b_1|^k + |b_2|^k \right)^{1/k}$$

Неравенство Йенсена (к чему это?)

Определение 1.2. $B(x_0,r)\coloneqq \{x\in M: \rho(x,x_0)< r\}$ – шар с центром в точке x_0 и радиусом r.

Нарисуем B((0,0);1) в $\rho_1, \rho_2, \rho_\infty$.

 ho_1 называется манхэттенской метрикой.

$$\begin{split} \rho_1((x_1,y_1),(x_2,y_2)) &= |x_1-x_2| + |y_1-y_2| \\ \rho_1((x_1,y_1),(x_1,y_2)) &= |y_1-y_2| \\ \rho_1((x_1,y_2),(x_2,y_2)) &= |x_1-x_2| \end{split}$$

 $\mathit{Пример}.\ M$ – пространство «некоторых» функций. Функции определены на $X\subset\mathbb{R}.$

$$\rho_1(f,g) \coloneqq \int_X |f(x) - g(x)| dx$$

Есть проблемы: если f(x)=g(x) всюду, кроме 1 точки, то $\rho_1(f,g)=0$. 1 и 2 свойство очевидны. Третье:

$$\int_X |f - h| dx \leqslant \int_X |f - g| dx + \int_X |g - h| dx$$

Аналогично определяются другие метрики, например:

$$\begin{split} \rho_2(f,g) &= \left(\int_X |f(x)-g(x)|^2 dx\right)^{1/2} \\ \rho_k(f,g) &= \left(\int_X |f(x)-g(x)|^k dx\right)^{1/k} \\ \rho_\infty(f,g) &= \sup_{x \in X} |f(x)-g(x)| \end{split}$$

Естественные свойства:

$$\rho_2: \int_X |f(x)|^2 dx < \infty$$

Определение 1.3. (M, ρ) – метрическое пространство. $\{x_n\}_{n=1}^{\infty} \subset M$ – последовательность. Говорим, что $\lim_{n\to\infty} x_n = x_0$, если

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) : \forall n > N \ \rho(x_n; x_0) < \varepsilon$$

 $^{^{1}\!\!}$ «некоторых» — обладающих естественными свойствами, какими именно — зависит от функци

В частности, в пространстве функций с разными метриками бывают разные пределы последовательностей функций.

$$f_n(x) \to f_0(x)$$
 по метрике ρ_1

Аналогично для других метрик.

$$f_n(x) o f_0(x)$$
 по метрике ho_∞

называется равномерной сходимостью. $f_n \rightrightarrows f_0$:

$$f_n(x) \rightrightarrows f_0(x) \Leftrightarrow \limsup_X |f_n(x) - f_0(x)|$$

Пример. Дискретное метрическое пространство. M – любое множество.

$$\rho(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$$

дискретная метрика.

 $\Pi pumep$. На самом деле дискретная метрика – это обобщение $\rho(x,y) \geqslant \varepsilon > 0$. ε не зависит от x или y.

 Π ример. M – множество строк длины n. $\rho(x,y)$ – количество символов, где эти строки отличаются

Пример. Задача: есть код из N бит. Можем переслать, но возникнет не более k ошибок. Сколько бит надо переслать, чтобы эти ошибки можно было исправить?

Решать не будем, переформулируем на язык метрических пространств.

 $(M,\rho).$ M состоит из строк, каждая из N+k двоичных символов. Хотим выбрать $\{x_1,x_2,...,x_{2^N}\}\subset M: \rho(x_i,x_j)>2k.$ $l\to \min$.

 x_i – строки из N+l символов.

$$x_i = a_{i1}a_{i2}...a_{iN+l}$$

 $x_j = b_{i1}b_{i2}...b_{iN+l}$