A quick introduction to machine learning Spyros Samothrakis Senior Lecturer, IADS University of Essex MiSoC

June 22, 2022

Welcome/course contents

- ▶ What will this course cover?
 - ▶ Day 1: An intro to machine learning (ML)
 - ► Day 1: ML labs
 - ▶ Day 2: An intro to causal inference
 - ▶ Day 2: ML and causal inference labs
- ▶ Textbooks?
 - ► Mitchell, T. M. (1997). Machine learning. 1
 - ▶ Bishop, C. M. (2006). Pattern recognition and machine learning. springer.2
 - Wasserman, L. (2013). All of statistics: a concise course in statistical inference. Springer Science & Business Media.³

1http://www.cs.cmu.edu/~tom/mlbook.html

2https://www.microsoft.com/en-us/research/publication/patternrecognition-machine-learning/

 3 http://www.stat.cmu.edu/~larry/all-of-statistics/index.html

Better science through data

Hey, Tony, Stewart Tansley, and Kristin M. Tolle. "Jim Gray on eScience: a transformed scientific method." (2009).⁴

- \blacktriangleright Thousand years ago: empirical branch
 - ▶ You observed stuff and you wrote down about it
- ▶ Last few hundred years: theoretical branch
 - \blacktriangleright Equations of gravity, equations of electromagnetism
- ► Last few decades: computational branch
 - $\,\blacktriangleright\,$ Modelling at the micro level, observing at the macro level
- ► Today: data exploration
 - $\,\blacktriangleright\,$ Let machines create models using vast amounts of data

 4 http://languagelog.ldc.upenn.edu/myl/JimGrayOnE-Science.pdf

Better business through data

► There was a report by Mckinsey

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Hung Byers, A. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute.⁵

- ▶ Urges everyone to monetise "Big Data"
- Use the data provided within your organisation to gain insights
- Has some numbers as to how much this is worth
- ▶ Proposes a number of methods, most of them associated with machine learning and databases

 5 http://www.mckinsey.com/business-functions/digital-mckinsey/ourinsights/big-data-the-next-frontier-for-innovation Introduction

Why is it popular now?

Introduction

- ► Algorithms + data + tools
- \blacktriangleright Breiman, L. (2001). Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statistical science, 16(3), 199-231.6
- ► Anderson, P. W. (1972). More is different. Science, 177(4047),
- ► Pedregosa, et.al. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, $2825 - 2830.^{8}$
- ⁶http://projecteuclid.org/download/pdf_1/euclid.ss/1009213726%20 7https:
- //www.tkm.kit.edu/downloads/TKM1_2011_more_is_different_PWA.pdf
- //www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf

SO THIS COURSE COVERS TOOLS

- ► ML theory
 - ► Supervised learning Regression Classification
 - ▶ Understanding basic modelling
 - Confirming your model is sane
 - ► Tuning your model
 - ► All within a very applied setting
- ► Tools
 - ► Numpy
 - ▶ Scikit-learn

DIABETES CLASSIFICATION Data dimensionality Description Feature ▶ Until now we have seen input data of 1 (for regression) or two Pregnancies: Number of times pregnant Glucose: Plasma glucose concentration BloodPressure: Diastolic blood pressure (mm Hg) SkinThickness: Triceps skin fold thickness (mm) Insulin: 2-Hour serum insulin (mu U/ml) BMI: Body mass index (weight in kg/(height in m)^2) DiabetesPedigreeFunction: Diabetes pedigree function Age: Age (wears) (for classification) dimensions ► How about higher dimensional data? \blacktriangleright Some times data can have millions of features Age: Age (years) Outcome: Has diabetes (0 or 1) ► Let's examine more high dimensional dataset ▶ Visualisation becomes harder https://www.kaggle.com/mathchi/diabetes-data-set HIGHER DIMENSIONS HIGHER DIMENSIONS DECISION TREE How does the data look like? Glucose <= 127.5 gini = 0.454 samples = 768 value = [500, 268] class = 0 BloodPressure SkinThickness DPF Glucose Insulin вмі Pregnancies Age 148 85 183 89 137 33.60 26.60 23.30 28.10 43.10 50 31 32 21 33 BMI <= 29.95 gini = 0.474 samples = 283 alue = [109, 174] class = 1 Age <= 28.5 gini = 0.313 samples = 485 alue = [391, 94] class = 0 gini = 0.155 samples = 271 value = [248, 23] class = 0 gini = 0.443 samples = 214 value = [143, 71] class = 0 gini = 0.432 samples = 76 value = [52, 24] class = 0 gini = 0.399 samples = 207 value = [57, 150] class = 1 HIGHER DIMENSIONS HIGHER DIMENSIONS DIABETES REGRESSION LET'S SEE THE REAL DATA VALUES Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. Annals of statistics, 32(2), 407-499.¹⁰ "Note: Each of these 10 feature variables have been mean centered and scaled by the standard

Feature	Description
$\overline{X_0}$	age in years
X_1	sex
X_2	bmi body mass index
X_3	bp average blood pressure
X_4	sl tc, total serum cholesterol
X_5	s2 ldl, low-density lipoproteins
X_6	s3 hdl, high-density lipoproteins
X_7	s4 tch, total cholesterol / HDL
X_8	s5 ltg, possibly log of serum triglycerides level
X_9	s6 glu, blood sugar level
y	disease progression one year after baseline

¹⁰https:

//scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset

	age	sex	bmi	bp	s1	$^{\rm s2}$	s3	s4	s5	s6
0	0.04	0.05	0.06	0.02	-0.04	-0.03	-0.04	-0.00	0.02	-0.02
1	-0.00	-0.04	-0.05	-0.03	-0.01	-0.02	0.07	-0.04	-0.07	-0.09
2	0.09	0.05	0.04	-0.01	-0.05	-0.03	-0.03	-0.00	0.00	-0.03
3	-0.09	-0.04	-0.01	-0.04	0.01	0.02	-0.04	0.03	0.02	-0.01
4	0.01	-0.04	-0.04	0.02	0.00	0.02	0.01	-0.00	-0.03	-0.05

deviation times n_samples (i.e. the sum of squares of each column totals 1).

	у
0	151.00
1	75.00
2	141.00
3	206.00
4	135.00

Introduction Some algorithms Higher dimensions Testin' Tuning Wrapping up	INTRODUCTION SOME ALGORITHMS HIGHER DIMENSIONS TESTIN' TUNING WRAPPING UP
Linear regression	PLOTTING?
$y = -210x_0 - 5036x_1 + 10916x_2 + 6812x_3 - 16635x_410011x_5 + 2121x_6 + 3718x_7 + 15776x_8 + 1420x_9 + 152$	
43/56 Introduction Some algorithms Higher dimensions Testin' Tuning Wrapping up	44/56 Introduction Some algorithms Higher dimensions Testin' Tuning Wrapping up
QUALITY ASSESSMENT ► In lower dimensions, the visualisations we did provided some insights to the quality of our methods ► This is impossible in higher dimensions ► We need to measure some kind of metric that denotes quality of fit	METRICS ► For regression, ► Mean Squared Error ► Mean Absolute Error ► For classification ► Accuracy ► Mean Squared Error ► Cross-entropy loss ► AUC ► Each one has different benefits, e.g. absolute errors tend to be more robust to outliers
45/56 Introduction Some algorithms Higher dimensions Testin' Tuning Wrapping up	46 / 56 Introduction Some algorithms Higher dimensions Testin' Tuning Wrapping up
ACCURACY • Each row is now assigned to a class of $y_i \in 020$ • Accuracy is the obvious one • $accuracy = \frac{1}{N} \sum_{i=0}^{N-1} y_i = \hat{f}(x)$ • The higher the accuracy the better • What if the dataset is unbalanced - how informative is accuracy then? • There are multiple metric functions • Use the one appropriate for your problem	MEAN SQUARED ERROR (MSE) • Reality is $f(x)$ • Our model is $\hat{f}(x)$ (e.g. a decision tree) • Sample from the model are $\{y_0y_N\}$ • $MSE = \frac{1}{N} \sum_{i=1}^{N} \left(y_i - \hat{f}(x_i)\right)^2$ • For every possible sample • $E\left[\left(y - \hat{f}(x)\right)^2\right]$
47 / 56	48 / 56

