Housing Prices report

Yoan Bidart 2/25/2018

Introduction

Here is a report for solving the House Prices prediction competition on Kaggle. Feel free to fork and comment if you want to contribute!

Exploratory analysis

```
library(caret)
library(dplyr)
library(ModelMetrics)
library(ggplot2)
```

Here is our dataset.

```
training <- read.csv(file="train.csv", stringsAsFactors = FALSE)
str(training)</pre>
```

```
## 'data.frame':
                  1460 obs. of 81 variables:
## $ Id
                 : int 1 2 3 4 5 6 7 8 9 10 ...
                        60 20 60 70 60 50 20 60 50 190 ...
## $ MSSubClass : int
## $ MSZoning
                 : chr "RL" "RL" "RL" "RL" ...
## $ LotFrontage : int 65 80 68 60 84 85 75 NA 51 50 ...
## $ LotArea
                 : int
                        8450 9600 11250 9550 14260 14115 10084 10382 6120 7420 ...
                 : chr "Pave" "Pave" "Pave" "Pave" ...
## $ Street
## $ Alley
                 : chr NA NA NA NA ...
## $ LotShape
                        "Reg" "Reg" "IR1" "IR1" ...
                : chr
                        "Lvl" "Lvl" "Lvl" "Lvl" ...
## $ LandContour : chr
## $ Utilities : chr "AllPub" "AllPub" "AllPub" "AllPub" ...
## $ LotConfig
                 : chr "Inside" "FR2" "Inside" "Corner" ...
                        "Gtl" "Gtl" "Gtl" "Gtl" ...
## $ LandSlope
                 : chr
## $ Neighborhood : chr
                        "CollgCr" "Veenker" "CollgCr" "Crawfor" ...
## $ Condition1 : chr "Norm" "Feedr" "Norm" "Norm" ...
                        "Norm" "Norm" "Norm" "Norm" ...
## $ Condition2 : chr
                        "1Fam" "1Fam" "1Fam" "...
## $ BldgType
                 : chr
## $ HouseStyle
                 : chr "2Story" "1Story" "2Story" "2Story" ...
## $ OverallQual : int 7 6 7 7 8 5 8 7 7 5 ...
## $ OverallCond : int 5 8 5 5 5 5 6 5 6 ...
## $ YearBuilt
                 : int
                        2003 1976 2001 1915 2000 1993 2004 1973 1931 1939 ...
## $ YearRemodAdd : int
                        2003 1976 2002 1970 2000 1995 2005 1973 1950 1950 ...
## $ RoofStyle : chr "Gable" "Gable" "Gable" "Gable" ...
## $ RoofMatl
                 : chr
                        "CompShg" "CompShg" "CompShg" "CompShg" ...
## $ Exterior1st : chr
                        "VinylSd" "MetalSd" "VinylSd" "Wd Sdng" ...
## $ Exterior2nd : chr "VinylSd" "MetalSd" "VinylSd" "Wd Shng" ...
## $ MasVnrType : chr "BrkFace" "None" "BrkFace" "None" ...
## $ MasVnrArea : int 196 0 162 0 350 0 186 240 0 0 ...
## $ ExterQual
                 : chr "Gd" "TA" "Gd" "TA" ...
```

```
"TA" "TA" "TA" "TA" ...
## $ ExterCond
                  : chr
## $ Foundation
                        "PConc" "CBlock" "PConc" "BrkTil" ...
                 : chr
                        "Gd" "Gd" "TA" ...
## $ BsmtQual
                  : chr
                        "TA" "TA" "TA" "Gd" ...
## $ BsmtCond
                  : chr
   $ BsmtExposure : chr
                        "No" "Gd" "Mn" "No" ...
## $ BsmtFinType1 : chr "GLQ" "ALQ" "GLQ" "ALQ" ...
                : int 706 978 486 216 655 732 1369 859 0 851 ...
  $ BsmtFinSF1
   $ BsmtFinType2 : chr
                        "Unf" "Unf" "Unf" "Unf" ...
##
                : int 0000003200...
##
   $ BsmtFinSF2
## $ BsmtUnfSF
                  : int 150 284 434 540 490 64 317 216 952 140 ...
## $ TotalBsmtSF : int 856 1262 920 756 1145 796 1686 1107 952 991 ...
                        "GasA" "GasA" "GasA" ...
## $ Heating
                  : chr
                 : chr
                        "Ex" "Ex" "Ex" "Gd" ...
   $ HeatingQC
                        "Y" "Y" "Y" "Y" ...
## $ CentralAir
                 : chr
## $ Electrical
                 : chr
                        "SBrkr" "SBrkr" "SBrkr" ...
##
   $ X1stFlrSF
                  : int
                        856 1262 920 961 1145 796 1694 1107 1022 1077 ...
##
                 : int 854 0 866 756 1053 566 0 983 752 0 ...
   $ X2ndFlrSF
## $ LowQualFinSF : int 0 0 0 0 0 0 0 0 0 ...
                : int 1710 1262 1786 1717 2198 1362 1694 2090 1774 1077 ...
## $ GrLivArea
## $ BsmtFullBath : int 1 0 1 1 1 1 1 1 0 1 ...
## $ BsmtHalfBath : int 0 1 0 0 0 0 0 0 0 ...
## $ FullBath
                : int 2 2 2 1 2 1 2 2 2 1 ...
## $ HalfBath
                 : int 1010110100...
   $ BedroomAbvGr : int 3 3 3 3 4 1 3 3 2 2 ...
## $ KitchenAbvGr : int 1 1 1 1 1 1 1 2 2 ...
## $ KitchenQual : chr "Gd" "TA" "Gd" "Gd" ...
## $ TotRmsAbvGrd : int 8 6 6 7 9 5 7 7 8 5 ...
                        "Тур" "Тур" "Тур" "Тур"
   $ Functional : chr
## $ Fireplaces : int 0 1 1 1 1 0 1 2 2 2 ...
   $ FireplaceQu : chr NA "TA" "TA" "Gd" ...
##
   $ GarageType
                 : chr
                        "Attchd" "Attchd" "Detchd" ...
##
   $ GarageYrBlt : int
                        2003 1976 2001 1998 2000 1993 2004 1973 1931 1939 ...
  $ GarageFinish : chr "RFn" "RFn" "RFn" "Unf" ...
## $ GarageCars
                 : int 2 2 2 3 3 2 2 2 2 1 ...
##
   $ GarageArea
                 : int
                        548 460 608 642 836 480 636 484 468 205 ...
## $ GarageQual
                : chr "TA" "TA" "TA" "TA" ...
                : chr "TA" "TA" "TA" "TA" ...
## $ GarageCond
## $ PavedDrive
                 : chr
                        "Y" "Y" "Y" "Y" ...
                 : int 0 298 0 0 192 40 255 235 90 0 ...
##
   $ WoodDeckSF
## $ OpenPorchSF : int 61 0 42 35 84 30 57 204 0 4 ...
## $ EnclosedPorch: int 0 0 0 272 0 0 0 228 205 0 ...
## $ X3SsnPorch : int 0 0 0 0 0 320 0 0 0 0 ...
   $ ScreenPorch : int 0000000000...
## $ PoolArea : int 0 0 0 0 0 0 0 0 0 ...
## $ PoolQC
                  : chr NA NA NA NA ...
##
   $ Fence
                  : chr
                        NA NA NA NA ...
   $ MiscFeature : chr NA NA NA NA ...
## $ MiscVal
                  : int 0 0 0 0 0 700 0 350 0 0 ...
## $ MoSold
                  : int 2 5 9 2 12 10 8 11 4 1 ...
                        2008 2007 2008 2006 2008 2009 2007 2009 2008 2008 ...
## $ YrSold
                  : int
                 : chr "WD" "WD" "WD" "WD" ...
## $ SaleType
## $ SaleCondition: chr "Normal" "Normal" "Normal" "Abnorm1" ...
   $ SalePrice
                 : int 208500 181500 223500 140000 250000 143000 307000 200000 129900 118000 ...
```

We can see we have a lot of features, and some work to do in feature engineering, which is the heart of this challenge.

Feature engineering

We have some variables with a lot of NAs we will get rid of. Some others that we will replace according to the meaning of these variables, accordingly to the data description.

```
cleanNa <- function(x) {</pre>
        #replace LotFrontage with the median value
        x$LotFrontage[is.na(x$LotFrontage)] = median(training$LotFrontage, na.rm=TRUE)
        #remove Alley
        x <- select(x, -Alley)
        #For some variables Na is actually meaning none
        x$MasVnrType[is.na(x$MasVnrType)] = as.factor("None")
        x$MasVnrArea[is.na(x$MasVnrArea)] = 0
        x$BsmtQual[is.na(x$BsmtQual)] = "None"
        x$BsmtCond[is.na(x$BsmtCond)] = "None"
        x$BsmtExposure[is.na(x$BsmtExposure)] = "None"
        x$BsmtFinType1[is.na(x$BsmtFinType1)] = "None"
        x$BsmtFinType2[is.na(x$BsmtFinType2)] = "None"
        #replace electrical by the most represented type
        x$Electrical[is.na(x$Electrical)] = "SBrkr"
        x$FireplaceQu[is.na(x$FireplaceQu)] = "None"
        x$GarageType[is.na(x$GarageType)] = "None"
        x$GarageYrBlt = as.numeric(x$GarageYrBlt)
        x$GarageYrBlt[is.na(x$GarageYrBlt)] = 0
        x$GarageFinish[is.na(x$GarageFinish)] = "None"
        x$GarageQual[is.na(x$GarageQual)] = "None"
        x$GarageCond[is.na(x$GarageCond)] = "None"
        x$PoolQC[is.na(x$PoolQC)] = "None"
        x$Fence[is.na(x$Fence)] = "None"
        x$MiscFeature[is.na(x$MiscFeature)] = "None"
        x$GarageYrBlt = as.numeric(x$GarageYrBlt)
}
trainC <- cleanNa(training)</pre>
#replace caracters variables by factors
for (i in c(1:80)) {
        x <- is.character(trainC[,i])</pre>
        if (x==TRUE) {
                trainC[,i] <- as.factor(trainC[,i])</pre>
        }
```

We are done with feature engineering.

Machine Learning

Create train and test set

```
set.seed(7)
inTrain <- createDataPartition(trainC$Id, p=0.7, list=FALSE)
train1 <- trainC[inTrain, ]
test1 <- trainC[-inTrain, ]
out1 <- test1$SalePrice
test1 <- select(test1, -SalePrice)</pre>
```

Model fitting

After fitting some models we found the best accuracy to combine Gradient Boosting Machine (gbm) and Random Forest (rf).

```
fit1 <- train(SalePrice~., data=train1, method="gbm", verbose=FALSE)
fit2 <- train(SalePrice~., data=train1, method="rf")</pre>
```

Predicting and evaluating model

```
pred1 <- predict(fit1, test1)
accu <- data.frame(fit = "gbm", rmse = rmse(log(out1), log(pred1)))
pred2 <- predict(fit2, test1)
accu <- rbind(accu, data.frame(fit="rf", rmse=rmse(log(out1), log(pred2))))
#compute the mean of the two predictions
input3 <- as.data.frame(cbind(pred1, pred2))
pred3 <- apply(input3, 1, mean )
accu <- rbind(accu, data.frame(fit="+mean", rmse=rmse(log(out1), log(pred3))))
qplot(fit, rmse, data=accu)</pre>
```


We can see that our Root Mean Squared Error is lower when combining the two models.

Creating output for the competition

Some NA values where present in the test set provided, we created a function to replace them with median or most represented values.

```
testNa <- function(test1) {
    i <- c(456, 757, 791)
    test1[i,3] = "RM"
    test1[1445, 3] = "RL"

test1$Utilities[is.na(test1$Utilities)] <- "AllPub"
    test1$Exterior1st[is.na(test1$Exterior1st)] <- "VinylSd"
    test1$Exterior2nd[is.na(test1$Exterior2nd)] <- "VinylSd"
    test1$BsmtFinSF1[is.na(test1$BsmtFinSF1)] <- 0</pre>
```

```
test1$BsmtFinSF2[is.na(test1$BsmtFinSF2)] <- 0</pre>
         test1$BsmtUnfSF[is.na(test1$BsmtUnfSF)] <- 0</pre>
         test1$TotalBsmtSF[is.na(test1$TotalBsmtSF)] <- 0</pre>
         test1$BsmtHalfBath[is.na(test1$BsmtHalfBath)] <- 0</pre>
         test1$KitchenQual[is.na(test1$KitchenQual)] <- "TA"
         test1$Functional[is.na(test1$Functional)] <- "Typ"</pre>
         test1$GarageCars[is.na(test1$GarageCars)] <- median(test1$GarageCars, na.rm=TRUE)
         test1$GarageArea[is.na(test1$GarageArea)] <- median(test1$GarageArea, na.rm=TRUE)
         test1$SaleType[is.na(test1$SaleType)] <- "WD"</pre>
         test1$BsmtFullBath[is.na(test1$BsmtFullBath)] <- 0</pre>
        test1
test1 <- testNa(testC)</pre>
Prediction time!
pred1 <- predict(fit1, test1)</pre>
pred2 <- predict(fit2, test1)</pre>
input3 <- as.data.frame(cbind(pred1, pred2))</pre>
pred4 <- apply(input3, 1, mean )</pre>
submission <- cbind.data.frame(test1$Id, pred4)</pre>
names(submission) <- c("Id", "SalePrice")</pre>
write.csv(submission, file="sub.csv", row.names=FALSE)
```

That's it!! As you can see this competition was really about data cleaning and feature engineering.