DSBDAL Assignment 04 - Data Visualization 1

- 1. Use the inbuilt dataset 'titanic'. The dataset contains 891 rows and contains information about the passengers who boarded the unfortunate Titanic ship. Use the Seaborn library to see if we can find any patterns in the data.
- 2. Write a code to check how the price of the ticket (column name: 'fare') for each passenger is distributed by plotting a histogram.

The objective is to predict the value of prices of the house using the given features.

from google.colab import drive drive.mount('/content/drive')

Mounted at /content/drive

import numpy as np import pandas as pd import seaborn as sns

Pre Processsing

Structure of Dataset

survival Survival 0 = No, 1 = Yes pclass Ticket class 1 = 1st, 2 = 2nd, 3 = 3rd sex Sex Age Age in years sibsp # of siblings / spouses aboard the Titanic parch # of parents / children aboard the Titanic ticket Ticket number fare Passenger fare cabin Cabin number embarked Port of Embarkation C = Cherbourg, Q = Queenstown, S = Southampton

ds = pd.read_csv('/content/drive/My Drive/DSBDL/Assignment4/titanic.csv') ds.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	-
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	ılı
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S	
Next ste	eps: Generate	e code with	ds	View recommended plots									

ds.describe()

View recommended plots

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare	#
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000	ıl.
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208	
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429	
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000	
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400	
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200	
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000	
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200	

ds.dtypes

PassengerId	int64
Survived	int64
Pclass	int64
Name	object
Sex	object
Age	float64
U	
SibSp	int64
Parch	int64
Ticket	object
Fare	float64
Cabin	object

Embarked object dtype: object

Correcting data-types

```
ds = ds.astype( {
    "Name": "string" ,
    "Sex": "string" ,
     "Ticket": "string"
"Cabin": "string"
     "Cabin": "string" ,
"Embarked": "string" ,
} )
ds.dtypes
     PassengerId
Survived
                         int64
                         int64
      Pclass
                         int64
      Name
                        string
      Sex
                        string
                       float64
      Age
      SibSp
                          int64
      Parch
                         int64
      Ticket
                         string
      Fare
                       float64
      Cabin
                        string
                        string
      Embarked
      dtype: object
# Check number of missing values
ds.isna().sum()
      PassengerId
      Survived
                         0
      Pclass
                         0
                         0
      Name
      Sex
                         0
      Age
                       177
      SibSp
                         0
      Parch
                         0
      Ticket
                         0
      Fare
                         0
      Cabin
                       687
      Embarked
                         2
      dtype: int64
# Check statistics of columns with missing values
print( ds[ "Age" ].describe() )
sns.histplot( data=ds , x="Age" , bins=16 )
```

```
count
          714.000000
mean
            29.699118
            14.526497
min
             0.420000
            20.125000
            28.000000
50%
75%
            38.000000
            80.000000
max
Name: Age, dtype: float64
<Axes: xlabel='Age', ylabel='Count'>
    120
    100
     80
 Count
     60
      40
     20
```

Exploratory Data Analysis

10

20

Visualization of each feature with target class Survived

30

40

Age

50

Observation: Pclass = 3 (third class) passengers survived the least and Pclass = 1 (first class) passengers survived the most

60

70

80

Observation: Males survived least, females the most

```
\# Sex vs. Survived sns.countplot( data=ds , x="Sex" , hue="Survived" )
```

<Axes: xlabel='Sex', ylabel='count'>

Observation: The distribution of the age of passengers who survived appears to have a smaller median than that of the passengers who didn't survived, indicating younger passengers survived most

Observation: Most passengers which survived or didn't survive embarked the Titanic from Southampton

```
# Embarked vs. Survived sns.countplot( data=ds , x="Embarked" , hue="Survived" )
```

<Axes: xlabel='Embarked', ylabel='count'>

Observation: As first class passengers survived the most, passengers with higher fare survived, assuming the fact that first-class had a higher fare than other classes

Survived

sns.countplot(data=ds , x="SibSp" , hue="Survived")

```
# Parch vs. Survived
sns.countplot( data=ds , x="Parch" , hue="Survived" )
```

<Axes: xlabel='Parch', ylabel='count'>

