ÜBUNGSBLATT 11 MITTWOCH

Aufgabe 1 (AGS 15.17 b, 15.1 a)

(a) Gegeben sei folgender $\mathrm{AM}_1\text{-}\mathrm{Code}\colon$

```
1: INIT 1;
                     10: MUL;
                                            19: READ(global,1);
             10: MUL; 19: READ(global,1);
11: STOREI(-3); 20: LOADA(global,1);
12: LOAD(lokal,-2); 21: PUSH;
2: CALL 18;
3: INIT 0;
4: LOAD(lokal,-2); 13: LIT 1; 22: LOAD(global,1);
5: LIT 0: 14: SUR: 23: PUSH:
5: LIT 0; 14: SUB;
                                           23: PUSH;
6: GT;
                     15: STORE(lokal,-2); 24: CALL 3;
                                   25: WRITE(global,1);
7: JMC 17;
                   16: JMP 4;
8: LIT 2;
                     17: RET 2;
                                             26: JMP 0;
9: LOADI(-3); 18: INIT 0;
```

Dokumentieren Sie 12 Schritte der AM_1 mit der Startkonfiguration $\sigma=(22,\varepsilon,1:3:0:1,3,\varepsilon,\varepsilon).$

(82,		ÐΚ,	Laufzeitkeller,	REF,	Inp,	Out)
ત્રર		3	1:3:0:1	3	3	E
23		1	1: 3: 0:1	3	3	3
૨ ૫		3	1: 3: 0:1:1	3	9	3
3		3	1:3:0:1:1:25:3	7	3	3
4		3	1:3:0:1: <u>1</u> :25:3	7	3	3
5		1	1: 3: p:1:1:25:3	7	દ	3
G	1702 0): 1	1:3:0:1:1:25:3	7	3	3
7	(10)	1	1:3:0:1:1:25:3	7	3	3
8		3	1:3:0:1:1:25:3	7	3	3
9		2	<u> </u>	7	3	3
10	1	<u>.</u> :2 ◀	1:3:0:1:1:25:3	7	3	3
11		2	1: 3 :0: <u>1</u> : 1:25:3	7	3	3
12		3	<u>2</u> : 3: 0:1: <u>1</u> :25:3	7	3	3
13	_	1	2:3:0:1:1:25:3	7	3	٤

(b) Gegeben sei folgendes C₁-Programm:

JMP 1.21;

1.2.2: RET 2;

```
1 #include <stdio.h>
                                        10 }
        2 int b;
                                        11
                                        12 void main() {
        3 void f(int a, int *b) {
           int c;
                                        13
                                             int a;
    1.1 5
           c = a;
                                        14
                                             scanf("%i", &a);
             while (c > 0) {
                                        15
                                             b = 1;
             *b = *b * 2;
                                        16
                                             f(a, &b);
                                                                      activation record für f:
                                        17
                                             printf("%d", b);
                                        18 }
                                                                                   ra par
      Übersetzen Sie das Programm mittels trans in ein AM_1-Programm mit Baumstrukturi-
      erten Adressen. Geben Sie zunächst die Symboltabellen tab_{\mathtt{main}} und tab_{\mathtt{f}} zur Übersetzung
                                                                                      1
      der Statements in den Funktionen main bzw. f mittels stseqtrans an. Geben Sie keine
                                                                                     REF
      weiteren Zwischenschritte an.
      tab; = [ 8/(proc, 1), a/(var, lokal, -3), b/(var-ref, -2),
                                                             c/ (var, lokal, 1)]
     tab main = [ f/ (proc, 1), b/(var, global, 1), a/(var, lokal, 1)]
      INIT 1; (Speicher für glob. Variable)
              2; (Aufruf der Funktion &)
      CALL
      JHP
                     (Ende des Programms)
  // Ubersetzung von g
                                                   / Übersetzung von main
   1: INIT 1;
                      (Speicher für lok. Variable)
                                                   2:
                                                         INIT 1:
      LOAD (lokal, -3);
                                                                                 scanf(...)
                                                         READ( lokal, 1);
                                                         LIT 1;
      STORE (lokal, 1);
                                                         STORE (global, 1);
1.2.1: LOAD (loke, 1);
      LIT 0;
                                                         LOAD ( lokal, 1);
      GT;
                                                         PUSH;
      JHC 1.2.2;
                                                         LOADA (global, 1); } {[a,8b);
      LOADI (-2);
                                                         PUSH
      LIT 2;
                                                         CALL 1;
                                                         WRITE (global, 1);
      MUL;
      STORE I (-2);
                                                         RET 0;
      LOAD (lokal, 1);
      LIT 1;
      SUB;
      STORE (lokal, 1);
```

(Speicher der zwei Parameter freigeben)

Aufgabe 2 (AGS 15.16 a, AGS 15.18 b)

2.2.1:

(a) Gegeben sei folgendes Fragment eines C_1 -Programms:

```
1 #include <stdio.h>
2 7 void g(int a, int *b) {
2 8 int c;
3 int x, y;
4 2.1 9 c = 3;
4 2.2 10 if (c == *b)
6 void main() {...}

11 while (a > 0) f(&a, b);
12 }

kein INIT und RET benötigf
```

Übersetzen Sie die Sequenz der Statements im Rumpf von g in entsprechenden AM_1 -Code mit baumstrukturierten Adressen (mittels stseqtrans). Sie brauchen keine Zwischenschritte anzugeben. Geben Sie zunächst die benötigte Symboltabelle $tab_{\mathfrak{g}}$ an.

```
taby = [ { /(proc, 1), g / (proc, 2),

X / (var, global, 1), y/ (var, global, 2),

a / (var, lokal, -3), b / (var-ref, -2), c / (var, lokal, 1)]
```

```
LIT 3;
 STORE (lokal, 1);
LDAD (lokal, 1);
                                   if -Bed.
 LOADI (-2);
 EQ;
JMC 2.2.1;
Fkt. g 2.Statement in g
    2.2.2.1: LOAD (lokal, -3);
then-2weig ) LIT 0;
       Schleifenbed. GT;
                  Jnc 2.2.2.2
                           LOADA (lokal, -3);
                           PUSH;
LOAD (lokal, -2);
Schleifenrumpf
PUSH;
                          PUSH;
                          CALL 1;
                           JMP 2.2.2.1;
       2.2.2.2:
```

(b) Gegeben sei folgender AM₁-Code:

```
1: INIT 1;
                       8: LOADI(-2);
                                             15: LOADA(global, 1);
2: CALL 13;
                       9: LIT 2;
                                             16: PUSH;
3: INIT 0;
                      10: DIV;
                                             17: CALL 3;
                                             18: WRITE(global, 1);
4: LOADI(-2);
                          STOREI(-2);
                      11:
                      12: RET 1;
5: LIT 2;
                                             19:
                                                 JMP 0;
6: GT;
                      13:
                          INIT 0;
7: JMC 12;
                      14: READ(global, 1);
```

Erstellen Sie ein Ablaufprotokoll der AM_1 , indem Sie sie schrittweise ablaufen lassen, bis die Maschine terminiert. Die Anfangskonfiguration sei $(14, \varepsilon, 0:0:1,3,4,\varepsilon)$. Sie müssen nur Zellen ausfüllen, deren Wert sich im Vergleich zur letzten Zeile geändert hat.

	DK,	Lowfeeitkeller,	Ref,	Inp,	001)
(14,	ε,	0:0:1	3,	ч,	3)
(15,	٤,	4: 0:1 ,	3,	ε,	e)
(16,	1,	^{ዛ፡}	3,	٤,	3)
(17,	8,	4: D: 1: 1,	3,	ε,	3)
(3	٤,	4:0:1:1:18:3,	6 ,	٤,	3)
(4,	٤,	$\frac{4}{1}$: 0:1: $\underline{1}$: 18:3,	6,	3,	3)
(5,	4,←	4:0:1:1:18:3,	G,	ε,	3)
(6,	2:4,	4: D: 1:1:18:3,	6,	8,	${oldsymbol{arepsilon}}$)
(7,	472? 1,	4: D: 1: 1: 18: 3,	6.	8,	3)
(8,	٤,	<u>ዛ</u> : 0: 1: <u>1</u> : 18:3,	6,	€'	$oldsymbol{arepsilon}$)
(9,	4, 🖛	4:0:1:1:18:3,	6,	ε,	3)
(10,	2:4,	4: 0: 1:1:18:3,	G,	2,	3)
(11,	4/2 = 2,	4:0:1: <u>1</u> :18:3,	G,	٤,	3)
(12,	٤,	2: 0: 1 : 1 : 18:3,	G,	٤,	3)
(18,	٤,	2 : 0: 1 ,	3,	٤,	3)
(19,	٤,	<u>a</u> : o: 1 ,	3,	٤,	2)
(o,	٤,	2:0:1,	3,	ε,	2)