Económicas, UBA. Actuario. Análisis Numérico. Cuatrimestre 2, 2021. Segundo Examen Parcial. PARA APROBAR EL EXAMEN DEBE SUMAR AL MENOS 50 PUNTOS.

Paluch Uriel, 895700

30/noviembre/2021

INSTRUCCIONES

- 1. Ingrese su apellido, nombre y número de registro en la línea 4 de este documento Rmd (sección "author").
- 2. Remplace NULL por su número de registro en la línea 19 de este documento Rmd.
- 3. Teja el documento Rmd en pdf y utilice dicho documento para realizar su examen.
- 4. La entrega del examen debe constar de lo siguiente:
 - a. El archivo pdf con el enunciado (generado en el punto 3. anterior).
 - b. Cinco scripts de R, uno por cada ejercicio. Los nombres de los scripts deben ser:
 - \bullet 1_Integracion_NroReg.R
 - 2_Derivacion_NroReg.R
 - \bullet 3_InterpolacionAjustamiento_NroReg.R
 - 4_Simulacion_NroReg.R
 - 5 Ecuaciones Diferenciales NroReg.R

Observación: en cada uno de los scripts debe figurar su nombre, apellido y número de registro (ingresados como *comentarios*, antes del código). Si no realiza un ejercicio, de todos modos deberá cargar el script correspondiente con sus datos y sin código.

5. Los archivos mencionados en el punto 4. deberán ser comprimidos en un archivo zip (o rar), cuyo nombre será $AN_2021_C2_Parcial2_NroRegistro.zip$, y cargados al campus de la materia, en la sección entregas.

1 Integración (20 puntos)

Considere la siguiente función de densidad de la variable aleatoria Y, con dominio en el intervalo $(0, \infty)$, y parámetros $\alpha = 4.36$ y $\theta = 2.52$:

$$f_Y(x|\alpha,\theta) = \frac{\alpha^2 (x/\theta)^{\alpha}}{x[1 + (x/\theta)^{\alpha}]^{\alpha+1}}$$

1.1 Probabilidades simple

Aproxime la probabilidad de que Y esté entre 1.15 y 4.99 usando los métodos de "Trapecio", "Simpson" y "Simpson tres octavos". Ingrese cada algoritmo por separado (**NO SE ACEPTARÁ UN "ALGORITMO GENERAL"**). Indique en cada caso los "nodos" y_0, y_1, \ldots, y_n que se utilizan para la aproximación.

1.2 Probabilidades Compuesto

Aproxime la probabilidad de que Y esté entre 1.15 y 4.99 usando el método de Trapecio Compuesto con n=17. Además:

- Indique los "nodos" y_0, y_1, \ldots, y_n que se utilizan para la aproximación.
- Calcule la cota del error.
- Compare los resultados con el punto 1.1.

1.3 Esperanza

Use Trapecio Compuesto con n = 474 para aproximar E(Y); es decir, la esperanza matemática de Y. Calcule la cota del error.

1.4 Varianza

Use Simpson Compuesto con n = 474 para aproximar la varianza de Y, es decir $V[Y] = E(Y^2) - E(Y)^2$. Calcule la cota del error.

2 Derivación (10 puntos)

Considere los datos de la tabla siguiente, donde P = f(r).

r	Р
0.00	115.3371
0.01	109.7031
0.02	104.8099
0.03	100.0653
0.04	95.3516
0.05	91.1998
0.06	87.2676
0.07	83.5825
0.08	79.9116
0.09	76.8435
0.10	73.9473
0.11	70.0320
0.12	67.7022

2.1 Derivada primera

Utilice el método de los **tres puntos (punto extremo, con h>0)** para aproximar P'(0.04) y P'(0.03). Si no pudiese aplicar el método, explique por qué.

[Observación: NO SE ACEPTARÁ UN "ALGORITMO GENERAL" que calcule todos los métodos. Utilice solamente el código necesario.]

2.2 Derivada segunda

Aproxime las derivadas segundas P''(0.04) y P''(0.03). Si no pudiese aproximarla/s, explique por qué.

3 Interpolación y Ajustamiento (45 puntos)

Considere los datos x de la variable aleatoria pérdidas (L), y las **probabilidades** acumuladas $(F_L(x) = Prob(L < x))$ estimadas en la siguiente Tabla.

X	F(x) = P(L < x)
1.6579	0.1111
3.8119	0.2222
4.1155	0.3333
5.1111	0.4444
6.0537	0.5556
6.2298	0.6667
11.6898	0.7778
11.7199	0.8889
12.7634	1.0000

3.1 Lagrange (15 puntos)

- Utilice un polinomio de Lagrange que pase por todos los puntos dados para aproximar F(12.2416). Comente el resultado hallado.
- Construya un polinomio de Lagrange que pase por los últimos 3 pares de datos para aproximar F(12.2416). Comente el resultado hallado, comparándolo con el punto anterior.
- Construya un polinomio de Lagrange que pase por las últimas dos observaciones dadas para aproximar F(12.2416). Comente el resultado hallado, comparándolo con los puntos anteriores.

[Observación: no es necesario que esriba los polinomios P(x).]

3.2 Cubic Splines (10 puntos)

- Escriba el trazador cúbico S(x) que pasa por todos los puntos dados. Indique claramente qué polinomio $S_j(x)$ debe utilizarse en cada subintervalo. Para presentar el polinomio, utilice solamente cuatro decimales en los coeficientes.
- Utilice el trazador cúbico para aproximar F(12.2416) (Advertencia: para los cálculos, no redondee los coeficientes!). Comente el resultado hallado, comparándolo con los resultados hallados con el polinomio de Lagrange.

3.3 Ajustamiento (10 puntos)

- Ajuste los datos de la tabla a una distribución normal (pnorm(x, mu, sigma)) utilizando mínimos cuadrados no lineales (nls).
- Utilice el ajuste realizado para aproximar F(12.2416). Comente el resultado hallado, comparándolo con los resultados de Lagrange y Cubic Splines.

3.4 Gráfico comparativo (10 puntos)

Realice un gráfico comparativo que incluya lo siguiente:

- Puntos originales en color verde y tipo de punto pch = 17.
- Curva continua con el polinomio de Lagrange que pasa por todos los puntos dados en color rosa, y un punto (pch = 15 y el mismo color) marcando el valor interpolado.

- Curva continua con el trazador cúbico que pasa por todos los puntos dados en color azul, y un punto (pch = 10 y el mismo color) marcando el valor interpolado.
- Curva continua con el ajuste de la distribución Normal en color negro, y un punto (pch = 7 y el mismo color) marcando el valor interpolado.

4 Simulación de Montecarlo (15 puntos)

4.1 Caminos de precios

Utilice una semilla igual a su número de registro¹ para simular 1233 caminos de precios diarios, considerando $P_0 = 73$, $\mu = 0.13$ y $\sigma = 0.1$, y un horizonte temporal de cinco meses.

Calcule la esperanza, calcule el desvío estándar, y grafique un histograma de los **precios finales**, P_T .

4.2 Probabilidad 1

Calcule la probabilidad de que el precio final P_T esté entre 38 y el precio inicial P_0 .

4.3 Probabilidad 2

Calcule la probabilidad de que el precio final P_T sea mayor al precio esperado en T (calculado en 4.1).

5 Ecuaciones diferenciales (10 puntos)

Considere la siguiente ecuación diferencial:

$$dy/dt = \cos(y)/t^{1.69} + t/y^3$$

con $4 \le t \le 5$ y con y(4) = 0.46.

- a. Aproxime y(t) en el intervalo con N=45 utilizando el algoritmo de Euler.
- b. Repita el punto anterior con el algoritmo de Runge-Kutta de orden 4.
- c. Realice un gráfico comparativo con ambas aproximaciones.
- d. Eplique las diferencias entre los dos métodos e indique cuál espera que sea más preciso.

¹Ingrese set.seed(NroReg), donde NroReg es su numero de registro, antes de empezar a simular.