Rank-67115 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_3^3 + X_0^2 X_2 + X_1^2 X_3 + X_0 X_2^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 1432967577

General information

Number of lines	12
Number of points	33
Number of singular points	3
Number of Eckardt points	0
Number of double points	18
Number of single points	12
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{12}
Type of lines on points	$4^3, 2^{18}, 1^{12}$

Singular Points

The surface has 3 singular points:

0:
$$P_{26} = \mathbf{P}(0, 1, 0, 1) = \mathbf{P}(0, 1, 0, 1)$$

1: $P_{27} = \mathbf{P}(1, 1, 0, 1) = \mathbf{P}(1, 1, 0, 1)$
2: $P_{42} = \mathbf{P}(0, 1, 1, 1) = \mathbf{P}(0, 1, 1, 1)$

The 12 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{22} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{22} = \mathbf{Pl}(1,0,1,0,0,1)_{109}$$

$$\ell_{2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{336} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{336} = \mathbf{Pl}(0,0,0,0,0,1)_{101}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{4} = \mathbf{Pl}(1,0,0,0,1,0)_{26}$$

$$\ell_{4} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{341} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{341} = \mathbf{Pl}(0,1,0,0,0,1)_{105}$$

$$\ell_{5} = \begin{bmatrix} 1 & 0 & \omega^{2} & \omega^{2} \\ 0 & 1 & 1 & 1 \end{bmatrix}_{320} = \begin{bmatrix} 1 & 0 & 3 & 3 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{320} = \mathbf{Pl}(1,0,1,1,2,1)_{259}$$

$$\ell_{6} = \begin{bmatrix} 1 & 0 & \omega & \omega \\ 0 & 1 & 1 & 1 \end{bmatrix}_{215} = \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{215} = \mathbf{Pl}(1,0,1,1,3,1)_{319}$$

$$\ell_{7} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{26} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{26} = \mathbf{Pl}(1,1,1,0,1,1)_{180}$$

$$\ell_{8} = \begin{bmatrix} 1 & 0 & \omega^{2} & 1 \\ 0 & 1 & \omega^{2} & 0 \end{bmatrix}_{150} = \begin{bmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & 3 & 0 \end{bmatrix}_{150} = \mathbf{Pl}(1,1,1,2,0,1)_{159}$$

$$\ell_{9} = \begin{bmatrix} 1 & 0 & \omega & \omega^{2} \\ 0 & 1 & 0 & 1 \end{bmatrix}_{298} = \begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{298} = \mathbf{Pl}(1,1,1,3,0,1)_{168}$$

$$\ell_{10} = \begin{bmatrix} 1 & 0 & \omega & 1 \\ 0 & 1 & \omega & 0 \end{bmatrix}_{128} = \begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{235} = \mathbf{Pl}(1,1,0,3,2,1)_{255}$$

Rank of lines: (0, 22, 336, 4, 341, 320, 215, 26, 150, 298, 128, 235) Rank of points on Klein quadric: (0, 109, 101, 26, 105, 259, 319, 180, 159, 312, 168, 255)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 18 Double points: The double points on the surface are:

$$P_5 = (1, 1, 0, 0) = \ell_0 \cap \ell_1$$

$$P_1 = (0, 1, 0, 0) = \ell_0 \cap \ell_2$$

$$P_0 = (1, 0, 0, 0) = \ell_0 \cap \ell_3$$

$$P_6 = (2, 1, 0, 0) = \ell_0 \cap \ell_5$$

$$P_7 = (3, 1, 0, 0) = \ell_0 \cap \ell_6$$

$$P_{11} = (0, 1, 1, 0) = \ell_1 \cap \ell_2$$

$$P_8 = (1, 0, 1, 0) = \ell_1 \cap \ell_7$$

$$P_{18} = (3, 2, 1, 0) = \ell_1 \cap \ell_9$$

$$P_{21} = (2, 3, 1, 0) = \ell_1 \cap \ell_{11}$$

$$P_2 = (0, 0, 1, 0) = \ell_2 \cap \ell_4$$

$$P_{15} = (0, 2, 1, 0) = \ell_2 \cap \ell_8$$

$$P_{19} = (0, 3, 1, 0) = \ell_2 \cap \ell_{10}$$

$$P_{52} = (3, 3, 1, 1) = \ell_5 \cap \ell_9$$

$$P_{46} = (1, 2, 1, 1) = \ell_5 \cap \ell_{10}$$

$$P_{50} = (1, 3, 1, 1) = \ell_6 \cap \ell_8$$

$$P_{47} = (2, 2, 1, 1) = \ell_6 \cap \ell_{11}$$

$$P_{62} = (1, 2, 2, 1) = \ell_8 \cap \ell_9$$

$$P_{82} = (1, 3, 3, 1) = \ell_{10} \cap \ell_{11}$$

Single Points

The surface has 12 single points: The single points on the surface are:

 $\begin{array}{l} 0: \ P_{28} = (2,1,0,1) \ \text{lies on line} \ \ell_3 \\ 1: \ P_{29} = (3,1,0,1) \ \text{lies on line} \ \ell_3 \\ 2: \ P_{40} = (2,0,1,1) \ \text{lies on line} \ \ell_5 \\ 3: \ P_{41} = (3,0,1,1) \ \text{lies on line} \ \ell_6 \\ 4: \ P_{54} = (1,0,2,1) \ \text{lies on line} \ \ell_{10} \\ 5: \ P_{56} = (3,0,2,1) \ \text{lies on line} \ \ell_{11} \\ 6: \ P_{57} = (0,1,2,1) \ \text{lies on line} \ \ell_4 \end{array}$

 $\begin{array}{l} 7: \ P_{60} = (3,1,2,1) \ \text{lies on line} \ \ell_7 \\ 8: \ P_{70} = (1,0,3,1) \ \text{lies on line} \ \ell_8 \\ 9: \ P_{71} = (2,0,3,1) \ \text{lies on line} \ \ell_9 \\ 10: \ P_{73} = (0,1,3,1) \ \text{lies on line} \ \ell_4 \\ 11: \ P_{75} = (2,1,3,1) \ \text{lies on line} \ \ell_7 \end{array}$

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are:

Line Intersection Graph

	0123456789	10	11
0	0111011000	0	0
1	1010000101	0	1
2	1100100010	1	0
3	1000100111	1	1
4	0011011101	0	1
5	1000101101	1	0
6	1000110110	0	1
7	0101111010	1	0
8	0011001101	1	0
9	0101110010	0	1
10	0011010110	0	1
11	0101101001	1	0

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_5	ℓ_6
in point	P_5	P_1	P_0	P_6	P_7

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_7	ℓ_9	ℓ_{11}
in point	P_5	P_{11}	P_8	P_{18}	P_{21}

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_4	ℓ_8	ℓ_{10}
in point	P_1	P_{11}	P_2	P_{15}	P_{19}

Line 3 intersects

Line	ℓ_0	ℓ_4	ℓ_7	ℓ_8	ℓ_9	ℓ_{10}	ℓ_{11}
in point	P_0	P_{26}	P_{27}	P_{27}	P_{26}	P_{27}	P_{26}

Line	ℓ_2	ℓ_3	ℓ_5	ℓ_6	ℓ_7	ℓ_9	ℓ_{11}
in point	P_2	P_{26}	P_{42}	P_{42}	P_{42}	P_{26}	P_{26}

Line 5 intersects

Line	ℓ_0	ℓ_4	ℓ_6	ℓ_7	ℓ_9	ℓ_{10}
in point	P_6	P_{42}	P_{42}	P_{42}	P_{52}	P_{46}

Line 6 intersects

Line	ℓ_0	ℓ_4	ℓ_5	ℓ_7	ℓ_8	ℓ_{11}
in point	P_7	P_{42}	P_{42}	P_{42}	P_{50}	P_{47}

Line 7 intersects

Line	ℓ_1	ℓ_3	ℓ_4	ℓ_5	ℓ_6	ℓ_8	ℓ_{10}
in point	P_8	P_{27}	P_{42}	P_{42}	P_{42}	P_{27}	P_{27}

Line 8 intersects

Line	ℓ_2	ℓ_3	ℓ_6	ℓ_7	ℓ_9	ℓ_{10}
in point	P_{15}	P_{27}	P_{50}	P_{27}	P_{62}	P_{27}

Line 9 intersects

Line	ℓ_1	ℓ_3	ℓ_4	ℓ_5	ℓ_8	ℓ_{11}
in point	P_{18}	P_{26}	P_{26}	P_{52}	P_{62}	P_{26}

Line 10 intersects

Line	ℓ_2	ℓ_3	ℓ_5	ℓ_7	ℓ_8	ℓ_{11}
in point	P_{19}	P_{27}	P_{46}	P_{27}	P_{27}	P_{82}

Line 11 intersects

Line	ℓ_1	ℓ_3	ℓ_4	ℓ_6	ℓ_9	ℓ_{10}
in point	P_{21}	P_{26}	P_{26}	P_{47}	P_{26}	P_{82}

The surface has 33 points:

The points on the surface are:

0	:	P_0	=	(1,	0,	0,	0)
-		-		10	-	_	\sim \

$$12: P_{26} = (0, 1, 0, 1)$$

$$24: P_{56} = (3, 0, 2, 1)$$

1:
$$P_1 = (0, 1, 0, 0)$$

2: $P_2 = (0, 0, 1, 0)$

13:
$$P_{27} = (1, 1, 0, 1)$$

$$25: P_{57} = (0, 1, 2, 1)$$

$$2: P_2 = (0, 0, 1, 0)$$

14:
$$P_{28} = (2, 1, 0, 1)$$

$$26: P_{60} = (3, 1, 2, 1)$$

$$3: P_5 = (1, 1, 0, 0)$$

 $4: P_6 = (2, 1, 0, 0)$

15:
$$P_{29} = (3, 1, 0, 1)$$

16: $P_{40} = (2, 0, 1, 1)$

27:
$$P_{62} = (1, 2, 2, 1)$$

28: $P_{70} = (1, 0, 3, 1)$

$$5: P_7 = (3, 1, 0, 0)$$

10:
$$P_{40} = (2, 0, 1, 1)$$

17: $P_{41} = (3, 0, 1, 1)$

$$29: P_{71} = (2, 0, 3, 1)$$

$$6: P_8 = (1, 0, 1, 0)$$
$$7: P_{11} = (0, 1, 1, 0)$$

18:
$$P_{42} = (0, 1, 1, 1)$$

19: $P_{46} = (1, 2, 1, 1)$

$$30: P_{73} = (0, 1, 3, 1)$$

 $31: P_{75} = (2, 1, 3, 1)$

 $32: P_{82} = (1, 3, 3, 1)$

$$8: P_{15} = (0, 2, 1, 0)$$

20:
$$P_{47} = (2, 2, 1, 1)$$

21: $P_{50} = (1, 3, 1, 1)$

9:
$$P_{18} = (3, 2, 1, 0)$$

10: $P_{19} = (0, 3, 1, 0)$

$$22: P_{52} = (3, 3, 1, 1)$$

$$11: P_{21} = (2, 3, 1, 0)$$

23:
$$P_{54} = (1, 0, 2, 1)$$