Name:	
Roll Number:	-

Practice Midsem MTH301A - Analysis I

(Odd Semester 2023/24, IIT Kanpur)

INSTRUCTIONS

- 1. Write your **Name** and **Roll number** above.
- 2. This exam contains $\mathbf{4}\,+\,\mathbf{1}$ questions and is worth $\mathbf{40\%}$ of your grade.
- 3. Answer **ALL** questions.

Page 2 MTH301A

Question 1. $[5 \times 2 \text{ Points}]$

For each of the following statements, determine whether it is true or false. No justification required.

- (i) There is a linear order \prec on $\mathbb C$ such that $(\mathbb C,+,\cdot,\prec)$ is an ordered field.
- (ii) A set X is countably infinite iff there is a surjection from X to \mathbb{N} .
- (iii) $\{2^{-n}: n \ge 1\} \cup \{0\}$ is a compact metric space under the usual metric.
- (iv) If $E \subseteq (0,1)$ is infinite, then $\sup(E)$ is a limit point of E.
- (v) If $E \subseteq \mathbb{R}$ is infinite and bounded, then $E \cap E' \neq \emptyset$.

Solution

- (i) False. See Homework 3.
- (ii) False. Take $X = \mathbb{R}$.
- (iii) True. It is both closed and bounded in \mathbb{R} .
- (iv) False. Take $E = (0, 1/3) \cup \{1/2\}$.
- (v) False. Take $E = \{1/n : n \ge 1\}$.

Page 3 MTH301A

Question 2. [10 Points]

Let (X,d) be a metric space and $E \subseteq X$. A point $y \in X$ is said to be a **boundary point of** E **in** X iff for every r > 0, both $B(y,r) \cap E \neq \emptyset$ and $B(y,r) \cap (X \setminus E) \neq \emptyset$. Let $\partial(E)$ denote the set of all boundary points of E in X.

- (a) [4 Points] Show that $cl(E) = E \cup \partial(E)$. Conclude that E is closed in X iff $\partial(E) \subseteq E$.
- (b) [3 Points] Show that $\{Int(E), \partial(E), Int(X \setminus E)\}$ is a partition of X.
- (c) [3 Points] Let $E \subseteq \mathbb{R}$ be uncountable. Show that there exists $x \in E$ such that x is a limit point of E.

Solution

- (a) Since $\operatorname{cl}(E) = E \cup E'$, it suffices to show that $E \cup E' \subseteq E \cup \partial(E)$ and $E \cup \partial(E) \subseteq E \cup E'$. First suppose $x \in E \cup E'$. If $x \in E$, then $x \in E \cup \partial(E)$. If $x \in E'$ and $x \notin E$, then for every r > 0, $B(x,r) \cap (X \setminus E) \neq \emptyset$ (as $x \in X \setminus E$) and $B(x,r) \cap E \neq \emptyset$ (as x is a limit point of E). So $x \in \partial(E)$. Next suppose $x \in E \cup \partial(E)$. If $x \in E$, then $x \in E \cup E'$. If $x \in \partial(E)$ and $x \notin E$, then for every x > 0, $B(x,r) \cap E \setminus \{x\} \neq \emptyset$ (as $x \in \partial(E)$ and $x \notin E$). So $x \in E'$. Finally, E is closed in E iff $E \cup E' \subseteq E$ iff $E \cup \partial(E) \subseteq E$ iff $E \cup E' \subseteq E$
- (b) Let $x \in X$. We have to show that exactly one of the following holds: $x \in Int(E)$, $x \in Int(X \setminus E)$, $x \in \partial(E)$. We consider two cases.
 - Case 1: $x \in \partial(E)$. This means that for every r > 0, B(x,r) intersects both E and $X \setminus E$. So there is no r > 0 for which B(x,r) is a subset of E or a subset of E. Hence $x \notin \mathsf{Int}(E)$ and $x \notin \mathsf{Int}(X \setminus E)$. Case 2: $x \notin \partial(E)$. This means that for some r > 0, either $B(x,r) \cap E = \emptyset$ or $B(x,r) \cap (X \setminus E) = \emptyset$. If $B(x,r) \cap E = \emptyset$, then $B(x,r) \subseteq X \setminus E$ which means that $x \in \mathsf{Int}(X \setminus E)$. If $B(x,r) \cap (X \setminus E) = \emptyset$, then $B(x,r) \subseteq E$ which means that $E \in \mathsf{Int}(E)$ or $E \in \mathsf{Int}(E)$ also we cannot have both since $\mathsf{Int}(E) \cap \mathsf{Int}(X \setminus E) \subseteq E \cap (X \setminus E) = \emptyset$.
- (c) Let \mathcal{F} be the family of all open intervals J with rational end points such that $J \cap E$ is countable. Note that \mathcal{F} is countable since $|\mathbb{Q} \times \mathbb{Q}| = |\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$. Put $A = \bigcup \{J \cap E : J \in \mathcal{F}\}$. Then A is also countable because it is the union of a countable family of countable sets. Since E is uncountable and A is a countable subset of E, $E \setminus A$ must be uncountable and therefore also nonempty. Let $x \in E \setminus A$. We claim that $x \in E'$. To see this, fix r > 0 and we will show $(x r, x + r) \cap E$ is infinite. Since \mathbb{Q} is dense in \mathbb{R} we can find rationals $a, b \in \mathbb{Q}$ such that x r < a < x and x < b < x + r. Then J = (a, b) an open interval with rational end points such that $x \in J$ and $J \subseteq (x r, x + r)$. As $x \notin A$, we must have $J \notin \mathcal{F}$. So $J \cap E$ is uncountable. Hence $(x r, x + r) \cap E$ is also uncountable.

Question 3. [10 Points]

- (a) [5 Points] Let $\langle a_n : n \geq 1 \rangle$ be a sequence of nonzero reals numbers. Assume that $\liminf_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} > 1$. Show that $\sum_{n=1}^{\infty} a_n$ diverges.
- (b) [5 Points] Let $a_n \ge 0$ for all $n \ge 1$. Assume that $\sum_{n=1}^{\infty} a_n^2$ converges. Show that $\sum_{n=1}^{\infty} \frac{a_n}{n}$ also converges. Is the converge true?

Solution

Will be discussed on Friday Sept. 15.

Page 5 MTH301A

Question 4. [10 Points]

- (a) [2 Points] Give the definition of a complete metric space.
- (b) [2 Points] Give the definition of a compact metric space.
- (c) [4 Points] Show that every compact metric space is complete.
- (d) [2 Points] Give an example of a complete metric space that is not compact.

Solution

- (a) A metric space (X, d) is complete iff every Cauchy sequence in X converges to some point in X.
- (b) A metric space (X, d) is compact iff every open cover of X has a finite subcover.
- (c) See Homework 26.
- (d) \mathbb{R} . Also see Homework 27.

Page 6 MTH301A

Bonus Question [5 Points]

Let $f:[0,1] \to [0,1]$ be a continuous function. Show that there exists $x \in [0,1]$ such that f(x) = x.

Solution

Define $g:[0,1]\to\mathbb{R}$ by g(x)=f(x)-x. Then g is continuous (being the difference of two continuous functions). Note that $g(0)=f(0)\geq 0$ and $g(1)=f(1)-1\leq 0$. If either g(0)=0 or g(1)=0, we are done so assume g(0)>0 and g(1)<0. By the intermediate value theorem (Homework 30 applied to X=[0,1]), there exists some $x\in[0,1]$ such that g(x)=0 and so f(x)=x.