Computer Organization 2016

HOMEWORK I

Due day: 2016年3月31日23:59

本作業主要目標是讓你熟悉 MIPS 指令集架構,包含:認識指令集架構中的 FORMAT、如何撰寫組語、如何操作 MIPS 模擬器。作業內容是要求你使用助教列出之指令實作 Fibonacci 數列運算。

繳交作業須知

- 本作業需要個人獨立完成,嚴禁抄襲,違者本學期作業分數不予計算,包含抄襲者與被抄襲者皆會處罰。
- 請壓縮所有要求檔案為 ZIP 檔,並且上傳至 Moodle 作業平台。不符 規定者將予以扣分。
- 提醒!請盡早至 Moodle 平台上傳檔案,一切以 Moodle 繳交狀態為 主,拒絕接受任何理由。且不接受任何額外補交方式。

評分標準

- 完成本作業要求,並且完成 Project Report,。
- 完成本作業 Project Report, 請使用課程網頁上提供 HW1 Project Report template 完成報告。

課程網頁: 計算機組織 2016 課程網頁

● 繳交作業目錄請遵循下列配置,請參考 Fig.1

F740XXXXX(你的學號)(此為資料夾)

SRC(資料夾 內容存放你的程式碼)

F740XXXXX.docx(你的 Project Report)

Fig.1 上傳檔案的檔案配置圖

作業內容

本作業挑選數個指令集提供你使用,請勿使用本作業規定以外的 MIPS 指令,(因為未來你將會使用你實作的 CPU 驗證本作業,如果使用其他未在規範內的指令,你將會在後面的 HW 無法正確的驗證你的程式與 CPU)。

使用下列提供的 MIPS 指令集撰寫 Fibonacci 運算。以下亦會介紹 Fibonacci 數列運算。

MIPS 指令集

R Type

Assembler Syntax

instruction	rd	rs	rt
-------------	----	----	----

Machine code Format

	opcode			rs		rt		rd		shamt		funct	
31	:	26	25	21	20	16	15	1:	l 1	10	6	5	0

opcode	Mnemonics	SRC1	SRC2	DST	funct	Description
000000	nop	00000	00000	00000	000000	No operation
000000	add	\$Rs	\$Rt	\$Rd	100000	Rd = Rs + Rt
000000	sub	\$Rs	\$Rt	\$Rd	100010	Rd = Rs - Rt
000000	and	\$Rs	\$Rt	\$Rd	100100	Rd = Rs & Rt
000000	or	\$Rs	\$Rt	\$Rd	100101	$Rd = Rs \mid Rt$
000000	xor	\$Rs	\$Rt	\$Rd	100110	$Rd = Rs \wedge Rt$
000000	nor	\$Rs	\$Rt	\$Rd	100111	$Rd = \sim (Rs \mid Rt)$
000000	slt	\$Rs	\$Rt	\$Rd	101010	Rd = (Rs < Rt)?1:0
000000	sll		\$Rt	\$Rd	000000	$Rd = Rt \ll shamt$
000000	srl		\$Rt	\$Rd	000010	$Rd = Rt \gg shamt$
000000	jr	\$Rs			001000	PC=Rs

I Type

Assembler Syntax

instruction	rt	rs	imm
-------------	----	----	-----

Machine code Format

	opcode			rs		rt	immediate
31		26	25	21	20	16	 5 15 0

opcode	Mnemonics	SRC1	DST	SRC2	Description
001000	addi	\$Rs	\$Rt	imm	Rt = Rs + imm
001100	andi	\$Rs	\$Rt	imm	Rt = Rs & imm
001010	slti	\$Rs	\$Rt	imm	Rt = (Rs < imm)?1:0
000100	beq	\$Rs	\$Rt	imm	If(Rs == Rt) PC=PC+4+imm
000101	bne	\$Rs	\$Rt	imm	If(Rs != Rt) PC=PC+4+imm
100011	lw	\$Rs	\$Rt	imm	Rt = Mem[Rs + imm]
101011	SW	\$Rs	\$Rt	imm	Mem[Rs + imm] = Rt

J Type

Assembler Syntax

Machine code Format

	opcode		address	
31	. 26	25		0

opcode	Mnemonics	Address	Description
000010	j	jumpAddr	PC = jumpAddr
000011	jal	jumpAddr	R[31] = PC + 8 ; PC = jumpAddr

Fibonacci 數列

費波那契數列 (義大利語: Successione di Fibonacci),又譯費波拿契數、 斐波那契數列、費氏數列、黃金分割數列。

在數學上,費波那契數列是以遞迴的方法來定義:

$$F_0 = 0$$

 $F_1=1$

$$F_n = F_{n-1} + F_{n-2} \ (n \ge 2)$$

用文字來說,就是費波那契數列由 0 和 1 開始,之後的費波那契系數就由之前的兩數相加。首幾個費波那契系數是以下: 0,1,1,2,3,5,8,13,21,34,55,89,144,233......

Fibonacci Pseudo code

```
function fibonacci(n)

integer a = 1

integer b = 0

integer t

for i from 1 to n

t = a + b

b = a

a = t

return a
```

作業要求

- 1. 請使用本作業提供的 MIPS 指令完成 function fibonacci(n)。
- 2. 請使用 MIPS 模擬器運行組合語言運算出 fibonacci(25) 之結果並存在 register \$t0 。
- 3. 完成 Project Report。
- 4. 將完成結果截圖並附在 Report 當中。範例如 Fig2:

Fig2. 完成答案結果

提醒

上傳作業時,請確定上傳內容有符合本作業要求,並且符合評分標準之規定,包含:**目錄結構、須繳交檔案、以及報告格式**,如不符規定者將扣分。

如有其他問題請聯繫助教。