Theorem. 10. The boundary of a set is closed.

Def: A point p, is a boundary point of the set D, if \forall nbhd N of p, N contains points of both D and D^c .

Proof: Let D be a point set. Suppose that bd(D) is not closed. This means that there is some limit point l of bd(D) s.t. $l \notin bd(D)$.

Since l is a limit point of bd(D), \forall nhbd N of l, \exists a point $q \in bd(D) \cap N \setminus \{l\}$. N is also a nhbd of $q \in bd(D)$.

We have shown \forall nbhd N of p , N has point in both D and D^c , so it follows by the definition of boundary that $l \in bd(D)$.

This means bd(D) contains all its limits points.

∴ The boundary of a set closed.