915 MHz Transceiver for Digital Communication

Team: Peter Handler, Philip Pierce, and Connor Dickey

Advisors: Dr. Aleksander Malinowski and Dr. Prasad Shastry

Department of Electrical and Computer Engineering, Bradley University

Presentation Outline

- Why this project exists
- Device Specifications
- System Modularity
- Project Timeline
- Additional Considerations
- Conclusion

Why this project exists

Project overview

- Lack of available 915MHz open-source and open-hardware modules
- As an example use case and practical implementation of the 915MHz module
- Enable extensible and easy communication tailored to more specific use cases
- Low Cost and ubiquitous hardware to facilitate inexpensive modules.

Potential Applications

Table of LoRa WAN vs our Product

	LoRa	Our Product
Frequency	902-928 MHz	902-928 MHz
Data Rate	300 bit/s - 27 kbit/s	512 bit/s - 9.6 kbit/s
Duty Cycle	Very Low	Up to 100%
Hand-Shake	Required Handshake	Optional Handshake
Broadcasting	Does not Support	Support
License	\$6000 Yearly	Free for use

Device Specifications

Preliminary Specifications of <u>Transceiver</u> module

Transceiver	MAX 7037
Modulation	FSK ASK
Antenna	SMA male 50 Ω
Power Max	10 dBm - 10mW
Frequencies	915 ISM band (902-928 MHz)

• Theoretical Range

- 2dbi Antenna ideal range is 2.9km (1.80 Miles)
- 5dbi Antenna ideal range is 15km (9.3 Miles)
- Baseline Current draw at 3.3V
 - Sleep draw is .8mA
 - Full TX draw is 120mA
 - RX draw is 20mA

Preliminary Specifications of <u>Control</u> module

Microcontroller	ESP 32
Communication I/O Protocols	SPI, I2C, WiFi, BT UART
Power Supply	$12V \rightarrow 5V \rightarrow 3.3V$
Supported Modules	Camera, Display, GPS, Battery, and Environment Sensor

- Baseline Current draw 3.3V
 - o Sleep draw is .8mA
 - RF Tx off draw is 40mA
 - o RF Tx on draw is 160mA
 - o RF Tx off, Wifi/BT on draw 240mA
- External power budget 12V
 - 1A peak draw to peripheral devices

Function testing

- Component level testing
 - Software stability
 - Proper hardware installation
- Digital Radio
 - Successful Tx/Rx modulation
 - Compliance with regulations
- Module Testing
 - Operates as intended
 - Communication between systems

Quantitative Testing

- Max Range Testing for 2dbi Antenna
- Max Range Testing for 5dbi Antenna
- Power Draw on Maximum RF Tx Power
- Power Draw on Minimum RF Tx Power
- Power Draw for different RF Protocols

B.O.M.

QTY	Vendor	Vendor Part	ITEM DESCRIPTION	UNIT PRICE	TOTAL
1	Digikey	MAX7037EVKIT915#-ND	Eval Board Max7037	\$254.99	\$254.99
10	Digikey	MAX7037EGL+-ND	MAX7037 Chips	\$5.96	\$59.62
2	Digikey	343-ANT-916-CW-RCL-SMA-ND	SMA 900Mhz Hi Gain (Small) Antenna	\$8.68	\$17.36
2	Digikey	2151-RST-W1B6-10808-22M-FY-001-ND	SMA 900Mhz Low Gain (Small) Antenna	\$4.64	\$9.28
2	Digikey	1597-104020250-ND	OLED Display 1.12 (SH1107) v3.0 128x128 resolution	\$12.50	\$25.00
1	Digikey	1597-103020272-ND	I2C HUB (6 PORT)	\$1.70	\$1.70
1	Digikey	1597-1092-ND	4PIN MALE JUMPERS 5PACK	\$3.20	\$3.20
1	Digikey	1597-109020022-ND	GPS module for GPS / Beidou / Glonass / Galileo / QZSS / SBAS	\$13.10	\$13.10
2	Digikey	1597-1674-ND	Switch Human Interface 5WAY	\$4.90	\$9.80
2	Digikey	1597-104020169-ND	RGB LED	\$4.40	\$8.80
2	Digikey	1597-111020103-ND	Switch Human Interface Large Dual Button	\$2.40	\$4.80
1	Digikey	223-1785-ND	MS8607 SENSOR FOR GROVE SYSTEM	\$16.09	\$16.09
2	Digikey	1597-1687-ND	ESP32-CAM 2MP WIFI+BT AI-THINKER	\$10.00	\$20.00
2	Digikey	1965-ESP32-DEVKITC-32E-ND	ESP32-WROOM-32E series Transceiver Evaluation Board	\$10.00	\$20.00
1	Amazon	SMA Female Base	SMA Female Jack Connector 10-Count	\$7.89	\$7.89
1	Amazon	B07BBPX8B8	UART Cable	\$10.99	\$10.99

SUBTOTAL	\$482.62
SHIPPING	\$12.00
TOTAL	\$494.62

System Modularity

Block Diagram

Potential Modular Accessory

Project Timeline

High Level Timeline Overview

	er 2021 January	2022	Februa	ry 2022	March	2022	April 20:	22	May 202	2.2
PHASE ONE					Carria					ı
PHASE TWO					Spring				Graduation	
PHASE THREE	Winter Break								Jation	
PHASE FOUR					Break i					
PHASE FIVE					break					

Senior Project Progress

first Monday of each month>	September 2021					October 2021				November 2021						December 2021				
	4	11	18	25	0	2	9	16	23	30	6	13	20	27	0	4	11	18	25	0
PHASE ONE	Proje	ct Brainsto	orming																	
Project Conception and Initiation			Pro	oject Initia	tion															
PHASE TWO							ement / aper Draft													
									ment / aper Final											
Project Definition,										Reposit ory Set Up	Project	Proposal F	Practice							
Planning, and Presentation													Preser	ject ntation ctice						
																Project port				

first Monday of each month	December 2021					January 2022					February 2022					March 2022			
>	11	18	25	0	2	9	16	23	30	6	13	20	27	0	6	13	20	27	
PHASE THREE									mble arts										
											Prototy	oe Progr	amming						
										Test Dev Board						Spring Break			
Project Launch and Starting Prototype	Finals		V	vinte	r Brea	Break				Basio	c Compo Testing								
3),											Design	Layout							
													CB Desig	ın and Pı	rocurme	ent			

first Monday of each month	Ma	arch 20	22		April 2022						
>	13	20	27	0	3	10	17	24	0		
PHASE FOUR			mble on PCB								
		Progi	am MA〉	< 7037							
	Spring Break		RF	Chip Tes	ting						
Project Refinement and Assembly					Progra	ram ESP					
			Program Accsessories								
					Verify Specifications						

first Monday of each month	А	pril 202	2		May	2022	j	
>	17	24	0	1	8	15	22	
PHASE FIVE	Control of the Control	ntaion ctice						
		DESCRIPTION OF THE PARTY.	Draft oort					
			Presen tation					
Project Sendoff				Report				
					Paper in QST			
						for Add	Report ditional ding	

Division of Work

- Software Development
- Hardware Design
- Communication Schemes
- Documentation
- All have general knowledge in topics

Parts

Three rounds of funding

- 1. ECE Department
- 2. ARDC R&D
- 3. ARDC Production

Additional Considerations

Software and Tools

- PCB Designer / CAD
 - -Keysight PathWave ADS
 - o -KiCAD
- Embedded Systems Development
 - VS Code + ESP-IDF ESP32
 - Github
- RF Lab
 - Network Analyzer
 - Spectrum Analyzer
 - Oscilloscope
 - Logic Analyzer

Project Future

- Endless Applications
- Driven by Community Engagement
- Additional Communication Protocols

Conclusion

In Summary

- Microcontroller powered RF transceiver board for digital radio modes in the 915 MHz ISM band.
- Will be entirely Open source and Open hardware to make a positive impact in open initiatives and receive contributions from others.
- Use a higher duty cycle and be designed with extensibility in mind compared to the popular and proprietary alternative LoRa.
- Use ubiquitous and inexpensive hardware to build the board and interface with a variety of external modules.

Any Questions?

References

- https://www.espressif.com/sites/default/files/documentation/esp32 datasheet en.pdf
- https://datasheets.maximintegrated.com/en/ds/MAX7037.pdf
- https://lora-alliance.org/resource https://lora-alliance.org/resource hub/lorawan-104-specification-package/