I Questions de cours

- 1 Énoncer et démontrer le théorème de la base extraite.
- 2 Soient E un $\mathbb{K}\text{-espace}$ vectoriel de dimension finie et F un sous-espace vectoriel de E.

Montrer que F est de dimension finie et que $\dim_{\mathbb{K}}(F) \leq \dim_{\mathbb{K}}(E)$ puis énoncer une condition nécessaire et suffisante pour que E = F et démontrer ce résultat.

3 - Énoncer et démontrer la formule de Grassmann.

II Exercices

Exercice 1:

Soit $n \in \mathbb{N}^*$.

Pour une matrice $A \in \mathcal{M}_n(\mathbb{K})$, on appelle commutant de A l'ensemble des matrices qui commutent avec A:

$$\mathcal{C}(A) = \{ M \in \mathcal{M}_n(\mathbb{K}) \mid MA = AM \}$$

1 - Soit $A \in \mathcal{M}_n(\mathbb{K})$.

Montrer que $\mathcal{C}(A)$ est un sous-espace vectoriel de $(\mathcal{M}_n(\mathbb{K}), +, .)$.

- 2 Est-il également un sous-anneau de $(\mathcal{M}_n(\mathbb{K}), +, \times)$?
- 3 Dans cette question on suppose que n=2 et on pose :

$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Déterminer C(A) et C(B).

Exercice 2:

On considère E l'espace vectoriel des fonctions de $\mathbb R$ dans $\mathbb R$, L l'ensemble des fonctions ℓ de E de la forme $x \longmapsto ax$ où a est une constante, et G l'ensemble des fonctions g de E qui sont nulles en 1.

- 1 Montrer que L et G sont des sous-espaces vectoriels de E.
- 2 Montrer qu'ils sont supplémentaires dans ${\cal E}.$

Exercice 3:

Pour tout $n \in \mathbb{N}^*$, on considère la fonction $f_n : x \longmapsto e^{x\sqrt{n}}$ définie sur \mathbb{R} .

Montrer de deux manières que pour tout $n \in \mathbb{N}^*$, la famille (f_1, f_2, \dots, f_n) est libre.

Exercice 4:

Pour $a \in \mathbb{R}$, on note E_a l'ensemble des polynômes P divisibles par X - a.

- 1 Montrer que E_a est un sous-espace vectoriel de $\mathbb{R}[X]$.
- 2 Soient a et $b \in \mathbb{R}$ tels que $a \neq b$.

Montrer qu'il existe α et $\beta \in \mathbb{R}$ tels que

$$1 = \alpha(X - a) + \beta(X - b)$$

En déduire que $E_a + E_b = \mathbb{R}[X]$. La somme est-elle directe?

Exercice 5:

Soient F et G les sous-espaces vectoriels de \mathbb{R}^3 définis par :

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x - 2y + z = 0\} \text{ et } G = \{(x, y, z) \in \mathbb{R}^3 \mid 2x - y + 2z = 0\}$$

- 1 Donner une base de F, une base de G, en déduire leur dimension respective.
- 2 Donner une base de $F \cap G$, et donner sa dimension.
- 3 Montrer que la famille constituée des vecteurs de la base de F et des vecteurs de la base de G trouvées à la question 1 est une famille génératrice de \mathbb{R}^3 . Est-elle libre?
- 4 Les espaces F et G sont-ils supplémentaires?

Exercice 6:

Dans $E = \mathbb{R}^4$, on considère les sous-espaces vectoriels

$$F = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y + z + t = 0\} \text{ et } G = \{(2a, -a, 0, a), \text{ avec } a \in \mathbb{R}\}$$

Le but de l'exercice est de démontrer que F et G sont supplémentaires.

- 1 Démontrer que ${\cal F}$ et ${\cal G}$ sont en somme directe.
- 2 Déterminer la dimension de ${\cal F}$ et celle de ${\cal G}.$
- 3 En déduire que F et G sont supplémentaires.
- 4 Trouver l'unique couple $(u_F, u_G) \in F \times G$ tel que $(1, 2, 3, 4) = u_F + u_G$.

Exercice 7:

On considère dans \mathbb{R}^4 les vecteurs :

$$v_1 = (1, 2, 0, 1)$$
 et $v_2 = (1, 0, 2, 1)$ et $v_3 = (2, 0, 4, 2)$

$$w_1 = (1, 2, 1, 0)$$
 et $w_2 = (-1, 1, 1, 1)$ et $w_3 = (2, -1, 0, 1)$ et $w_4 = (2, 2, 2, 2)$

- 1 Montrer que (v_1, v_2) est libre et que (v_1, v_2, v_3) est liée.
- 2 Montrer que (w_1, w_2, w_3) est libre et que (w_1, w_2, w_3, w_4) est liée.
- 3 Montrer que (v_1, v_2, w_1, w_2) est libre.
- 4 Soit F le sous-espace vectoriel de \mathbb{R}^4 engendré par (v_1, v_2, v_3) .
 - a) Déterminer une base de F.
 - b) Donner un supplémentaire de F.
- 5 Soit G le sous-espace vectoriel engendré par (w_1, w_2, w_3, w_4) .

Déterminer une base de G.

- 6 a) À l'aide des bases trouvées aux questions 4 et 5, construire un système générateur de F+G.
 - b) En déduire que $F + G = \mathbb{R}^4$.
- 7 a) Montrer que $v_1 + v_2$ est dans $F \cap G$.
 - b) Calculer la dimension de $F \cap G$.
 - c) Donner une base de $F \cap G$.
- 8 F et G sont-ils supplémentaires?

Exercice 8:

On considère dans \mathbb{R}^4 :

$$v_1 = (1, 3, -2, 2)$$
 et $v_2 = (2, 7, -5, 6)$ et $v_3 = (1, 2, -1, 0)$

$$w_1 = (1,3,0,2)$$
 et $w_2 = (2,7,-3,6)$ et $w_3 = (1,1,6,-2)$

Soient F le sous-espace vectoriel de \mathbb{R}^4 engendré par (v_1, v_2, v_3) et G celui engendré par (w_1, w_2, w_3) .

- 1 Montrer que v_3 est une combinaison linéaire de v_1 et v_2 puis en déduire une base de ${\cal F}.$
- 2 Montrer que w_3 est une combinaison linéaire de w_1 et w_2 puis en déduire une base de ${\cal G}.$
- 3 Montrer que (v_1, v_2, w_1, w_2) est liée. En déduire une base de F + G.
- 4 Soit $E = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid 4x_1 2x_2 + x_4 = 0\}.$

Donner une base de E.

5 - Montrer que F+G=E. La somme est-elle directe ? Quelle est la dimension de $F\cap G$?

Exercice 9:

On considère la partie F de \mathbb{R}^4 définie par :

$$F = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y = 0 \text{ et } x + z = 0\}$$

- 1 Donner une base de F.
- 2 Compléter la base trouvée en une base de \mathbb{R}^4 .
- 3 On pose $u_1 = (1, 1, 1, 1), u_2 = (1, 2, 3, 4)$ et $u_3 = (-1, 0, -1, 0)$.

La famille (u_1, u_2, u_3) est-elle libre?

4 - On pose G l'espace vectoriel engendré par les vecteurs u_1, u_2 et u_3 .

Quelle est la dimension de G?

- 5 Donner une base de $F \cap G$.
- 6 En déduire que $F + G = \mathbb{R}^4$.
- 7 Est-ce qu'un vecteur de \mathbb{R}^4 s'écrit de façon unique comme somme d'un vecteur de F et d'un vecteur de G ?

Exercice 10:

Dans \mathbb{R}^3 , on considère les 3 vecteurs suivants :

$$v_1 = (1, 0, -1)$$
, et $v_2 = (0, 1, 2)$, et $v_3 = (1, 2, 3)$

- 1 La famille (v_1, v_2, v_3) est-elle libre?
- 2 On pose $F = \text{Vect}(v_1, v_2)$.

Déterminer une base de F et sa dimension.

3 - Déterminer trois réels a, b, c tels que l'on ait :

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid ax + by + cz = 0\}$$

- 4 Déterminer un vecteur w tel que (v_1, v_2, w) soit une base de \mathbb{R}^3 .
- 5 Déterminer un supplémentaire de F dans \mathbb{R}^3 .
- 6 On considère $G = \{(x, y, z) \in \mathbb{R}^3 \mid x + 3y + 2z = 0\}.$

Déterminer une base de G. Quelle est sa dimension?

- 7 Déterminer une base de $F \cap G$. Quelle est sa dimension?
- 8 Sans chercher à déterminer une base de F+G, donner la dimension de F+G.
- 9 En déduire que $F + G = \mathbb{R}^3$.