Precalculus

Homework

Trig cofunction identities and angle-sum formulas

- 1. Convert from degrees to radians.
 - (a) 15° .

(h) 120°.

(n) 305°.

(p) 405° .

(q) 1200° .

(r) -900° .

(s) -2014° .

(b) 30°.

answer: $\frac{\pi}{12} \approx 0.261799388$

(i) 135°.

answet: $\frac{2\pi}{3}$

answer: $\frac{61\pi}{36} pprox 5.323254$

(c) 36°.

 $877865525.0 \approx \frac{\pi}{8}$:19Wzris

1) 155 .

(o) 360°.

answer: 2π

(c) 30 .

(j) 150° .

(d) 45° .

 $601896587.0 \approx \frac{\pi}{4}$: iswers

(k) 180°.

answer: $\frac{5\pi}{6}$

answer: $\frac{9\pi}{4}$

(e) 60° .

(K) 100 .

answer: $\frac{20\pi}{3}$

(f) 75°.

133791740.1 $pprox \frac{\pi}{8}$: Towards

(1) 225°.

(g) 90°.

wer: $\frac{5\pi}{12} \approx 1.30899$

(m) 270° .

answet: $\frac{3\pi}{2}$

answer: $-\frac{1007}{90}\pi \approx -35.150931$

- 2. Convert from radians to degrees. The answer key has not been proofread, use with caution.
 - (a) 4π .

(d) $\frac{4}{3}\pi$.

(g) 5.

(h) -2014.

(b) $-\frac{7}{6}\pi$.

answer: 720°

answer: 2

(e) $-\frac{3}{8}\pi$.

answer: 240°

answer: $\left(\frac{900}{\pi}\right)^{\circ} \approx 286^{\circ}$

(c) $\frac{7}{12}\pi$.

°012− :10°

(f) 2014π .

- G. 1 O — :19W8

answer: -362520°

(c) ₁₂ "

answer: 105°

answer: 362520°

- 3. Find the indicated circle arc-length. The answer key has not been proofread, use with caution.
 - (a) Circle of radius 3, arc of measure 36°.

(b) Circle of radius $\frac{1}{2}$, arc of measure 100° .

answer: $\frac{5\pi}{18} \approx 0.872665$

(c) Circle of radius 1, arc of measure 3 (radians).

answer: 3

(d) Circle of radius 3, arc of measure 300°.

 $696707.31 \approx \pi \text{d :Tovals}$

4. Find the 6 trigonometric functions of the indicated angle in the indicated right triangle.

(a)

answer;
$$\sin\theta = \frac{3}{13}\sqrt{13},\cos\theta = \frac{2}{13}\sqrt{13},\tan\theta = \frac{2}{3},\cot\theta = \frac{2}{3},\sec\theta = \frac{2}{3},\sec\theta = \frac{\sqrt{13}}{2}$$

 $\sqrt{5}$

(b)

arswell
$$\sin \theta = \frac{\sqrt{5}}{5}$$
, $\cos \theta = \frac{2\sqrt{5}}{5}$, $\tan \theta = \frac{1}{2}$, $\cot \theta = 2$, $\sec \theta = \frac{\sqrt{5}}{2}$, $\csc \theta = \sqrt{5}$

(c) θ

(d)

answer
$$\sin \theta = \frac{5}{\sqrt{29}} = \frac{5\sqrt{99}}{2}$$
, $\cos \theta = \frac{2}{\sqrt{29}}$, $\tan \theta = \frac{2}{5}$, $\cot \theta = \frac{5}{2}$, $\sec \theta = \frac{\sqrt{29}}{5}$, $\csc \theta = \frac{\sqrt{29}}{2}$

$$\text{answell sin } \theta = \frac{\sqrt{11}}{6}, \cos \theta = \frac{5}{6}, \tan \theta = \frac{\sqrt{11}}{5}, \cos \theta = \frac{5}{\sqrt{11}}, \sec \theta = \frac{6}{5}, \csc \theta = \frac{6}{5}, \csc \theta = \frac{11}{1}$$

- 5. Find the exact value of the trigonometric function (using radicals).
 - (a) $\cos 135^{\circ}$.

(b) $\sin 225^{\circ}$.

...........

answer:

(c) $\cos 495^{\circ}$.

answer:

(d) $\sin 560^{\circ}$.

suswer:

(e)
$$\sin\left(\frac{3\pi}{2}\right)$$
.

suswer:

(f)
$$\cos\left(\frac{11\pi}{6}\right)$$
.

:Jəmsue

(g)
$$\sin\left(\frac{2015\pi}{3}\right)$$
.

(h)
$$\cos\left(\frac{17\pi}{3}\right)$$
.

6. Find all solutions of the equation in the interval $[0, 2\pi)$. The answer key has not been proofread, use with caution.

(a)
$$\sin x = -\frac{\sqrt{2}}{2}$$
.

answer:
$$x=\frac{\pi 7}{\hbar}$$
 , $\frac{\pi 5}{\hbar}=x$:Towers

(b)
$$\cos x = \frac{\sqrt{3}}{2}$$
.

answer:
$$x = \frac{\pi}{6}$$
, $\frac{\pi}{6}$ = x : Then $\frac{\pi}{6}$

(c)
$$\sin(3x) = \frac{1}{2}$$
.

$$\frac{\pi 81}{6}$$
 , $\frac{\pi 81}{81}$, $\frac{\pi 71}{81}$, $\frac{\pi 81}{81}$, $\frac{\pi 6}{81}$, $\frac{\pi}{81}$ = x Hawsing

(d)
$$\cos(7x) = 0$$
.

$$\frac{\pi^{7}}{1},\frac{\pi^{6}}{1},\frac{\pi^{6}}{1},\frac{\pi^{6}}{1},\frac{\pi^{6}}{2},\frac{\pi^{6}}{1},\frac{\pi^{6}}{1},\frac{\pi^{7}}{1},\frac{\pi^{7}}{1},\frac{\pi^{6}}{1},\frac{\pi^$$

(e)
$$\cos(3x + \frac{\pi}{2}) = 0$$
.

answer:
$$x=0$$
, $\frac{\pi E}{E}$, π , $\frac{\pi E}{E}$, $\frac{\pi E}{E}$, $0=x$: Then $\frac{\pi E}{E}$

(f)
$$\sin(5x - \frac{\pi}{3}) = 0$$
.

$$\frac{\pi S}{1}$$
, $\frac{\pi S}{1}$, $\frac{\pi$

Solution. 6.a

$$\sin x = -\frac{\sqrt{2}}{2}$$

Since $\sin x$ is negative it must be either in Quadrant III or IV. Therefore the angle x is coterminal either with $225^{\circ} = \frac{5\pi}{4}$ (Quadrant III) or $315^{\circ} = \frac{7\pi}{4}$ (Quadrant IV).

Case 1. x is coterminal with $225^{\circ} = \frac{5\pi}{4}$. We can compute

$$x = \frac{5\pi}{4} + 2k\pi \qquad k \text{ is any integer}$$

$$x = \frac{5\pi}{4} + \frac{8k\pi}{4}$$

$$x = \frac{5\pi + 8k\pi}{4}$$

$$x = \frac{\pi(5+8k)}{4}$$

We are looking for solutions in the interval $[0, 2\pi)$ and so we must discard those values of the integer k for which $\frac{\pi(7+8k)}{4}$ is negative or is greater than or equal to 2π . Therefore the only solution in this case is $x = \frac{5\pi}{4}$.

Case 2.

$$x = \frac{7\pi}{4} + 2k\pi$$

$$x = \frac{7\pi}{4} + \frac{8k\pi}{4}$$

$$x = \frac{7\pi + 8k\pi}{4}$$

$$x = \frac{\pi(7+8k)}{4}$$

We are looking for solutions in the interval $[0, 2\pi)$ and so we must discard those values of the integer k for which $\frac{\pi(7+8k)}{4}$ is negative or is greater than or equal to 2π . Therefore the only solution in this case is $x = \frac{7\pi}{4}$.

Solution. 6.f

$$\sin\left(5x - \frac{\pi}{3}\right) = 0$$

Since $\sin 0 = 0$ and $\sin 180^\circ = \sin \pi = 0$, the angle $5x - \frac{\pi}{3}$ must be coterminal with 0 or π .

Case 1. $5x - \frac{\pi}{3}$ is coterminal with 0. We compute

$$5x - \frac{\pi}{3} = 0 + 2k\pi$$

$$5x = \frac{\pi}{3} + 2k\pi$$

$$x = \frac{\frac{\pi}{3} + 2k\pi}{5}$$

$$x = \frac{\frac{\pi}{3} + \frac{6k\pi}{3}}{5}$$

$$x = \frac{\frac{\pi + 6k\pi}{35}}{5}$$

$$x = \frac{\pi + 6k\pi}{\frac{15}{5}}$$

$$x = \frac{\pi + 6k\pi}{15}$$

$$x = \frac{\pi (1 + 6k)}{15}$$

$$x = \frac{\pi (1 + 6k)}{15}$$

$$x = \frac{\pi [1 + 6(0)]}{15}, \frac{\pi [1 + 6(1)]}{15}, \frac{\pi [1 + 6(2)]}{15}, \frac{\pi [1 + 6(3)]}{15}, \frac{\pi [1 + 6(4)]}{15}, \checkmark$$
Discard other values of k as they yield angles outside of $[0, 2\pi)$

$$x = \frac{\pi}{15}, \frac{7\pi}{15}, \frac{13\pi}{15}, \frac{19\pi}{15}, \frac{25\pi}{15}.$$

Case 2.

$$5x - \frac{\pi}{3} = \pi + 2k\pi$$

$$5x = \pi + \frac{\pi}{3} + 2k\pi$$

$$5x = \frac{4\pi}{3} + 2k\pi$$

$$x = \frac{\frac{4\pi}{3} + 2k\pi}{\frac{5}{3}}$$

$$x = \frac{\frac{4\pi}{3} + 6k\pi}{\frac{3}{5}}$$

$$x = \frac{\frac{4\pi + 6k\pi}{3}}{\frac{5}{5}}$$

$$x = \frac{4\pi + 6k\pi}{15}$$

$$x = \frac{2\pi(2 + 3k)}{15}$$

$$x = \frac{2\pi(2 + 3k)}{15}$$

$$x = \frac{2\pi[2 + 3(0)]}{15}, \frac{2\pi[2 + 3(1)]}{15}, \frac{2\pi[2 + 3(2)]}{15}, \frac{2\pi[2 + 3(3)]}{15}, \frac{2\pi[2 + 3(4)]}{15}, \checkmark$$
Discard other values of k as they yield angles outside of $[0, 2\pi)$

$$x = \frac{4\pi}{15}, \frac{10\pi}{15}, \frac{16\pi}{15}, \frac{22\pi}{15}, \frac{28\pi}{15}.$$

Our final answer (combined from the two cases) is $x = \frac{\pi}{15}, \frac{4\pi}{15}, \frac{7\pi}{15}, \frac{2\pi}{3}, \frac{13\pi}{15}, \frac{16\pi}{15}, \frac{19\pi}{15}, \frac{22\pi}{15}, \frac{5\pi}{3}$ or $\frac{28\pi}{15}$.

- 7. Use the known values of $\sin 30^\circ, \cos 30^\circ, \sin 45^\circ, \cos 45^\circ, \sin 60^\circ, \cos 60^\circ, \ldots$, the angle sum formulas and the cofunction identities to find an exact value (using radicals) for the trigonometric function.
 - (a) The six trigonometric functions of $105^{\circ} = 45^{\circ} + 60^{\circ}$:
- $\sin\left(\frac{\pi}{12}\right)$.

• $\sin(105^\circ)$.

- $\cos{(105^\circ)}$. Should your answer be a positive or a negative number?
- $\cos\left(\frac{\pi}{12}\right)$. Should $\sin\left(\frac{\pi}{12}\right)$ be larger or smaller than $\cos\left(\frac{\pi}{12}\right)$?

• $\tan (105^{\circ})$.

• $\tan\left(\frac{\pi}{12}\right)$.

• $\cot (105^{\circ})$.

SINGE: $\frac{4}{\sqrt{2}-\sqrt{6}}$

• $\cot\left(\frac{\pi}{12}\right)$.

• $\sec{(105^{\circ})}$. • $\csc{(105^{\circ})}$.

(b) The six trigonometric functions of $\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}$:

answet: $\sqrt{6} - \sqrt{2}$

• $\csc\left(\frac{\pi}{12}\right)$.

- 8. Simplify to a trigonometric function of the angle θ . The answer key has not been proofread, use with caution.
 - (a) $\sin\left(\frac{\pi}{2} \theta\right)$.

(b) $\cos\left(\frac{13\pi}{2} - \theta\right)$.

(c) $\tan (\pi - \theta)$

(d) $\cot\left(\frac{3\pi}{2} - \theta\right)$

answer: tan b (e) $\csc\left(\frac{3\pi}{2} + \theta\right)$

SUSWET: Sec B

- 9. Using the power-reducing formulas, rewrite the expression in terms of first powers of the cosines and sines of multiples of the angle θ .
 - (a) $\sin^4 \theta$.

Subsect $\frac{8}{1}\cos{(4\theta)}-\frac{5}{1}\cos{(5\theta)}+\frac{8}{3}$

(b) $\cos^4 \theta$.

Suzange: $\frac{8}{1}$ cos $(4\theta) + \frac{7}{1}$ cos $(5\theta) + \frac{8}{3}$

(c) $\sin^6 \theta$.

answer: $\sin_{\mathcal{Q}}\theta = -\frac{1}{12}\cos\left(\theta\theta\right) + \frac{16}{3}\cos\left(\theta\theta\right) - \frac{32}{12}\cos\left(2\theta\right) + \frac{16}{5}$

(d) $\cos^6 \theta$.

- Suzamel: $\cos_Q\theta = \frac{35}{1}\cos\left(\theta\theta\right) + \frac{10}{3}\cos\left(\theta\theta\right) + \frac{35}{12}\cos\left(5\theta\right) + \frac{10}{2}$
- 10. Use the sum-to-product formulas to find all solutions of the trigonometric equation in the interval $[0, 2\pi)$.

Please note that typing a query such as "solve($\sin(x)+\sin(3x)=0$)" at www.wolframalpha.com will provide you with a correct answer and a function plot.

(a) $\sin(x) + \sin(3x) = 0$.

answer: x=0 , π , $\frac{\pi}{2}$, 0=x : The same $\frac{3\pi}{2}$

(b) $\cos(x) + \cos(-3x) = 0$.

answer $\frac{\pi T}{L}$, $\frac{\pi E}{L}$, $\frac{\pi E}{L}$, π , $\frac{\pi E}{L}$, $\frac{\pi}{L}$, $\frac{\pi}{L}$ = x : Inweight

(c) $\sin(x) - \sin(3x) = 0$.

answer $\frac{\pi\,7}{4}$, $\frac{\pi\,6}{4}$, π , $\frac{\pi\,6}{4}$, $\frac{\pi}{4}$, 0=x . Then we have

(d) $\cos(2x) - \cos(3x) = 0$.

answer: x=0 , $\frac{2}{6}$, $\frac{\pi\delta}{6}$, $\frac{\pi\delta}{6}$, $\frac{\pi\delta}{6}$, 0=x : Therefore