

Ampliación de Matemáticas Grado en Ingeniería Civil Práctica 2-3 con Matlab

Directorio

- Tabla de Contenido
- Inicio Artículo

Tabla de Contenido

- 1. Planteamiento del problema
- 2. Método de Euler
 - 2.1. Error y convergencia del método de Euler
- 3. Mejoras al Método de Euler
 - 3.1. Método de cuarto orden RK4
- 4. Ecuaciones de orden superior

Soluciones a los Ejercicios

1. Planteamiento del problema

Supongamos que queremos resolver el problema de valores iniciales

$$y' = f(x, y)$$
 $y(x_0) = y_0$ (1)

Obviamente usando un ordenador sólo podremos resolver el problema en un intervalo acotado, digamos [a,b] con $a=x_0$. Para ello vamos a dividir el intervalo en n subintervalos $[x_0,x_1] \cup [x_1,x_2] \cup \cdots \cup [x_{n-1},x_n]$ con $x_n=b$. Supongamos que hemos encontrado los valores de y en los puntos $x_0,x_1,...,x_n$, que denotaremos por $y_0,y_1,...,y_n$.

Entonces, para encontrar una solución aproximada $\widehat{y}(x)$ podemos unir los puntos (x_i, y_i) , i = 0, 1, ..., n mediante líneas rectas (ver figura). Es evidente que si el valor y_i es bastante cercano al valor real $y(x_i)$ para todos los i = 0, 1, ..., n, entonces, al ser \widehat{y} e y funciones continuas, la solución aproximada $\widehat{y}(x)$ estará "muy cercana" a la solución real y(x) en cada uno de los intervalos $[x_i, x_{i+1}]$.

Para resolver nuestro problema de encontrar en valor de $y(x_{k+1})$ conocido el valor de $y(x_k)$ usamos el teorema de Taylor

$$y(x_{k+1}) = y(x_k + h) = y(x_k) + y'(x_k) h + \frac{y''(x_k)}{2!} h^2 + \dots$$

Como $y'(x_k) = f(x_k, y_k)$ despreciando el término cuadrático para h pequeño nos queda

$$y_{k+1} \approx y_k + h f(x_k, y_k)$$
$$y(x_0) = y_0 \qquad (2)$$
$$k = 0, \dots n - 1$$

$$y'=f(x,y)$$
 $y(x_0)=y_0$ $y(x_$

$$y' = f(x,y)$$
 $y(x_0) = y_0$

$$y_5 = y_4 + h f(x_4, y_4)$$

$$y_7 = y_4 + h f(x_4, y_4)$$

$$y_8 = y_8 + h f(x_4, y_4)$$

$$y' = f(x,y)$$
 $y(x_0) = y_0$

$$y_6 = y_5 + h f(x_5, y_5)$$

$$\begin{bmatrix} x_5 \\ y_7 \\ y_8 \\ y_7 \\ z_7 \end{bmatrix}$$

$$\begin{bmatrix} x_5 \\ y_7 \\ y_8 \\ y_7 \\ z_7 \end{bmatrix}$$

$$\begin{bmatrix} x_5 \\ y_7 \\ y_8 \\ y_8 \end{bmatrix}$$

$$\begin{bmatrix} x_5 \\ y_7 \\ y_8 \\ y_8 \end{bmatrix}$$

$$\begin{bmatrix} x_5 \\ y_8 \\ y_8 \\ y_8 \end{bmatrix}$$

$$\begin{bmatrix} x_5 \\ y_8 \\ y_8 \\ y_8 \end{bmatrix}$$

$$\begin{bmatrix} x_5 \\ y_8 \\ y_8 \\ y_8 \end{bmatrix}$$

$$\begin{bmatrix} x_5 \\ y_8 \\ y_8 \\ y_8 \end{bmatrix}$$

$$\begin{bmatrix} x_5 \\ y_8 \\ y_8 \\ y_8 \end{bmatrix}$$

$$\begin{bmatrix} x_5 \\ y_8 \\ y_8 \\ y_8 \end{bmatrix}$$

$$\begin{bmatrix} x_5 \\ y_8 \\ y_8 \\ y_8 \end{bmatrix}$$

$$\begin{bmatrix} x_5 \\ y_8 \\ y_8 \\ y_8 \end{bmatrix}$$

$$\begin{bmatrix} x_5 \\ y_8 \\ y_8 \\ y_8 \end{bmatrix}$$

$$\begin{bmatrix} x_5 \\ y_8 \\ y_8 \\ y_8 \end{bmatrix}$$

$$\begin{bmatrix} x_5 \\ y_8 \\ y_8 \\ y_8 \end{bmatrix}$$

$$\begin{bmatrix} x_5 \\ y_8 \\ y_8 \\ y_8 \end{bmatrix}$$

$$\begin{bmatrix} x_5 \\ y_8 \\ y_8 \\ y_8 \end{bmatrix}$$

$$\begin{bmatrix} x_5 \\ y_8 \\ y_8 \\ y_8 \end{bmatrix}$$

$$y' = f(x,y) \qquad y(x_0) = y_0$$

$$y_{k+1} = y_k + h f(x_k, y_k) \qquad \mathcal{Z}$$

$$y(x) \approx \widehat{y_{k+1}} \qquad \mathcal{Z}$$

$$\mathcal{Z}$$

$$\mathcal{Z$$

El método de Euler

El esquema enterior se conoce por el nombre de esquema o método de Euler y constituye el método más sencillo para resolver númericamente una EDO de primer orden.

Nótese que dicho esquema necesita en cada paso del valor $y(x_k)$, por tanto cuanto más cercano sea el valor y_k calculado del $y(x_k)$ real más preciso será el método.

Obviamente en cada paso "arrastramos" el error del cálculo del paso anterior.

El método de Euler

El esquema enterior se conoce por el nombre de esquema o método de Euler y constituye el método más sencillo para resolver númericamente una EDO de primer orden.

Nótese que dicho esquema necesita en cada paso del valor $y(x_k)$, por tanto cuanto más cercano sea el valor y_k calculado del $y(x_k)$ real más preciso será el método.

Así, para calcular y_1 usamos el valor real y_0 pero cuando calculamos y_2 , sustituimos el valor exacto $y(x_1)$ desconocido por su valor aproximado y_1 , para calcular y_3 sustituimos el valor $y(x_2)$ por su valor aproximado y_2 , y así sucesivamente.

Ejemplo 2.1. Comenzaremos con una ecuación que sepamos resolver exactamente. Por ejemplo, estudiemos el problema de valores iniciales

$$y' = x - y$$
 $y(0) = 1$ $x \in [0, 1]$

Solución:

Escogeremos como paso h = 1/20 = 0.05.

$$y_1 = y_0 + h f(x_0, y_0) = 1 + 0.05(0 - 1) = 0.95$$

k=1

 $\mathbf{k} = 0$

$$y_2 = y_1 + h f(x_1, y_1)$$

= 0.95 + 0.05(0.05 - 0.95) = 0.905

k=2

$$y_3 = y_2 + h f(x_2, y_2)$$

= 0,905 + 0,05(0,1 - 0,905) = 0,86475

k	x_k	$\widehat{y}(x_k)$	$y(x_k)$
0	0	1,000000	1,00000
1	0,05	0,950000	0,95246
2	0,1	0,905000	0,90967
3	0,15	0,864750	0,87142
4	0,2	0,829013	0,83746
5	0,25	0,797562	0,80760
6	0,3	0,770184	0,78164
7	0,35	0,746675	0,75938
8	0,4	0,726841	0,74064
9	0,45	0,710499	0,72526
10	0,5	0,697474	0,71306
11	0,55	0,687600	0,70390
12	0,6	0,680720	0,69762
13	0,65	0,676684	0,69409
14	0,7	0,675350	0,69317
15	0,75	0,676582	0,69473
16	0,8	0,680253	0,69866
17	0,85	0,686241	0,70483
18	0,9	0,694429	0,71314
19	0,95	0,704707	0,72348
20	1	0,716972	0,73576

Solución numérica de y' = x - y, y(0) = 1 donde la solución exacta es

$$y(x) = x - 1 + 2e^{-x}$$

Solución numérica (\bullet) y exacta (línea continua) de y' = x - y, y(0) = 1 para N = 20 (izquierda) y N = 40 (derecha)

2.1. Error y convergencia del método de Euler

Al utilizar el método de Euler para resolver $y_{k+1} = y_k + h f(x_k, y_k)$. Queremos estimar el error de discretización o truncamiento e_n definido por $e_n = y(x_n) - y_n$.

Si la solución exacta y(x) tiene derivada segunda continua en $[x_0, x_n]$, y en este intervalo se verifican las desigualdades

$$|f_y(x,y)| < L \qquad |y''(x)| < M$$

con L y M constantes positiva, el error en un punto $x_n = x_0 + nh$ está acotado por

$$|e_n| \le \frac{h M}{2 L} \left(e^{(x_n - x_0) L} - 1 \right)$$

Ejemplo 2.2. Resolver el problema de valores iniciales utilizando Matlab con el método de Euler

$$y' = t - y$$
 $y(0) = 1$ $t \in [0, 1]$

Solución:

1. Resolver el problema anterior con N = 16;

```
function [t,y]=euler(f,a,b,y0,N)
function fxy=ejemplo2_2(t,y)
                               h=(b-a)/N; % longitud del paso
fxy=t-y;
                                t(1)=a:
                                y(1) = y0;
f='ejemplo2_2'
                                for n=1:N %
[t,y]=euler(f,0,1,1,16)
                                t(n+1)=t(n)+h;
                                % Llamadas a f(t,y)=dy/dt
                                y(n+1)=y(n)+h*feval(f,t(n),y(n));
                                end
                                t=t';y=y';
                               plot(t,y)
                                xlabel(['Metodo de Euler con N=',
                                           num2str(N), ' psos'])
```

2. Dibujar en el mismo gráfico anterior la solución exacta

$$y(x) = x - 1 + 2e^{-x}$$

sol=t-1+2*exp(-t);
hold on
plot(t,sol,'r-')

3. Representar en un gráfico el error absoluto real y la cota de error dada por la expresión

$$|e_n| \le \frac{h M}{2 L} \left(e^{(x_n - x_0) L} - 1 \right)$$

para M = 2 y L = 1.

```
eab=abs(y-sol)
cota=0.05*(exp(t)-1)
plot(t,eab)
hold on
plot(t,cota,'r-')
```


3. Mejoras al Método de Euler

El método de Euler es el más sencillo pero tiene un problema, es un método de orden uno, o sea, es "poco preciso". ¿Cómo mejorarlo?.

Una mejor aproximación es usar la regla de los trapecios para aproximar la integral

$$y_{k+1} = y_k + \frac{h}{2} [f(x_k, y_k) + f(x_{k+1}, y_{k+1})]$$

al ser un esquema implícito, usamos Euler en $y_{k+1} \approx y_k + h f(x_k, y_k)$, y obtenemos

Método de Euler mejorado

El método de Euler es el más sencillo pero tiene un problema, es un método de orden uno, o sea, es "poco preciso". ¿Cómo mejorarlo?.

Una mejor aproximación es usar la regla de los trapecios para aproximar la integral

$$\int_{x_{k}}^{x_{k+1}} \int_{x_{k}}^{x_{k+h}} f(x, y(x)) dx \approx \frac{h}{2} \left[f(x_{k}, y_{k}) + f(x_{k+1}, y_{k+1}) \right]$$

$$\downarrow \qquad \qquad \downarrow$$

$$y_{k+1} = y_{k} + \frac{h}{2} \left[f(x_{k}, y_{k}) + f(x_{k+1}, y_{k} + h f(x_{k}, y_{k})) \right]$$

$$y_{k+1} = y_k + \frac{h}{2} [f(x_k, y_k) + f(x_{k+1}, y_{k+1})]$$

al ser un esquema implícito, usamos Euler en $y_{k+1} \approx y_k + h f(x_k, y_k)$, y obtenemos

Método de Euler mejorado

A los valores que aproximados $\hat{y_k}$, para distinguirlos de los valores exactos de $y(x_k)$ los denotamos como w_k , quedando la fórnula de Euler mejorado, de la forma

$$w_{k+1} = w_k + \frac{h}{2} [f(x_k, w_k) + f(x_{k+1}, w_k + h f(x_k, w_k))]$$

$$y(x_0) = w_0 \qquad k = 0, \dots n - 1$$
(3)

En la práctica los cálculos se disponen de la siguiente manera

Método de Euler mejorado

$$w_{k+1} = w_k + \frac{h}{2} [f(x_k, w_k) + f(x_{k+1}, w_k + h f(x_k, w_k))]$$

$$y(x_0) = w_0 \qquad k = 0, \dots n - 1$$
(4)

En la práctica los cálculos se disponen de la siguiente manera

$$K_{1} = f(x_{k}, w_{k})$$

$$K_{2} = f(x_{k} + h, w_{k} + h K_{1})$$

$$w_{k+1} = w_{k} + \frac{h}{2}(K_{1} + K_{2})$$
(5)

Ejemplo 3.1. Resolver el problema de valores iniciales utilizando Matlab con el método de Euler mejorado

$$y' = t - y$$
 $y(0) = 1$ $t \in [0, 1]$

Solución:

1. Resolver el problema anterior con N = 16;

```
function [t,y]=euler(f,a,b,y0,N)
function fxy=ejemplo2_2(t,y)
                                 h=(b-a)/N; % longitud del paso
fxy=t-y;
                                 t(1)=a:
                                 y(1)=y0;
                                 for n=1:N %
f='ejemplo2_2'
                                 t(n+1)=t(n)+h;
[t,y] = eulermej(f,0,1,1,16)
                                 % Llamadas a f(t,y)=dy/dt
                                 k1=feval(f,t(n),y(n));
                                 k2=feval(f,t(n+1),y(n)+h*k1);
                                 % Llamadas a f(t,y)=dy/dt
                                 y(n+1)=y(n)+0.5*h*(k1+k2);
                                 end
                                 t=t';y=y';
                                 plot(t,y)
                                 xlabel(['Metodo de Euler mejorado con N=
                                            num2str(N),' psos'])
```

2. Dibujar en el mismo gráfico anterior la solución exacta

$$y(x) = x - 1 + 2e^{-x}$$

3.1. Método de cuarto orden RK4

$$w_{k+1} = w_k + \frac{h}{6} [k_1 + 2k_2 + 2k_3 + k_4]$$

$$y(x_0) = w_0 \qquad k = 0, \dots n - 1$$
(6)

En la práctica los cálculos se disponen de la siguiente manera

$$k_{1} = f(x_{k}, w_{k})$$

$$k_{2} = f(x_{k} + \frac{1}{2}h, w_{k} + \frac{1}{2}h k_{1})$$

$$k_{3} = f(x_{k} + \frac{1}{2}h, w_{k} + \frac{1}{2}h k_{2})$$

$$k_{4} = f(x_{k} + h, w_{k} + h k_{3})$$

$$(7)$$

Ejemplo 3.2. Resolver el problema de valores iniciales

$$y' = -y + t^2 + 1$$
 $y(0) = 1$ $t \in [0, 1]$

Solución:

1. Por Euler calcular el máximo error absoluto cometido con N=10,50,100;

```
[t,y]=euler(f,0,1,1,10);sol=-2*exp(-t)+t.^2-2*t+3;max(abs(y-sol));0.0267
```

2. Lo mismo con Euler mejorado.

```
[t,y]=eulermej(f,0,1,1,10);sol=-2*exp(-t)+t.^2-2*t+3; \max(abs(y-sol));0.0020
```

3. Resolver el problema con ode45.

¹la solución exacta es $y(t) = -2e^{-t} + t^2 - 2t + 3$

EJERCICIO 1. Considerar el problema de Cauchy:

$$y' = 1 - y^2$$
 $0 \le x \le 2$ $y(0) = y_0$

1. Realiza un gráfico del campo de direcciones de la ecuación diferencial con $t \in [-2, 10], y \in [-4, 4]$. A partir del gráfico analizar el comportamiento de la solución cuando:

$$y_0 = 1$$
 $y_0 = -1$ $y_0 > 1$ $y_0 < -1$ $|y_0| < 1$

- 2. Calcular la solución analítica y comprobar los resultados obtenidos en el apartado anterior.
- 3. Hallar la solución en [0,2] por RK para los casos y(0)=-0.9 y y(0)=-1.1

EJERCICIO 2. Considerar el problema de Cauchy:

$$y' = x^2 + y^2$$
 $0 \le x \le 1$ $y(0) = 1$

- 1. Utilizar dfield para ver como es la solución.
- 2. Establecer un control de paso que nos permita tomar h de forma que $y(0.9)\approx 14.27$
- 3. Cambiar la condición inicial a y(0,9)=14,27, y aplicar Runge-Kutta para distintos pasos de h en [0,9,1]

4. Ecuaciones de orden superior

Veamos ahora un ejemplo correspondiente a una ecuación de segundo orden, el intervalo [0,2]

$$(VPI) \begin{cases} y'' - (1 - y^2)y' + y = 0\\ y(0) = 2\\ y'(0) = 0 \end{cases}$$

Lo primero que hay que hacer es escribir la ecuación como un sistema de primer orden. Usando el cambio $y_1 = y$, $y_2 = y'$, el sistema diferencial asociado es

$$\mathbf{y}'(t) = \begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = f(t, \mathbf{y}) = \begin{pmatrix} y_2 \\ (1 - y_1)^2 y_2 - y_1 \end{pmatrix}; \quad \mathbf{y}(0) = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

Recordemos que el sistema de primer orden proviene de una ecuación de segundo orden, por lo que y_1 sería la solución de dicha ecuación mientras que y_2 sólo sería su derivada.

Para resolverla usaremos la rutina de Matlab ode45

```
f=0(t,y)([y(2);(1-y(1)^2)*y(2)-y(1)]);
[t,y]=ode45(f,[0,20],[2;0]);
plot(t,y)
```

Observar

- la notación para introducir f
- los datos de entrada: ode45 requiere f, el intervalo para t en [0,20] y los valores iniciales en vector columna [2;0] para $y(t_0)$ e $y'(t_0)$
- los datos de salida: vector columna t con instantes de evaluación de la función, y matriz de 2 columnas con los valores de la función y(t) y de su derivada y'(t).

EJERCICIO 3. Resolver utilizando el método de Euler el problema:

$$y' = 1 + \frac{y}{x}$$
 $1 \le x \le 2$ $y(1) = 2$ $h = 0.25$

EJERCICIO 4. Resolver utilizando el método de Euler el problema:

$$y' = xy$$
 $0 \le x \le 2$ $y(0) = 1$ $h = 0.25$

y comparar con la solución exacta $y = e^{x^2/2}$.

EJERCICIO 5. Resolver utilizando el método de Euler-mejorado el problema:

$$y' = 1 + \frac{y}{x}$$
 $1 \le x \le 2$ $y(1) = 2$ $h = 0.25$

EJERCICIO 6. Resolver utilizando el método de Euler mejorado el problema:

$$y' = xy$$
 $0 \le x \le 2$ $y(0) = 1$ $h = 0.5$

y comparar con la solución exacta $y = e^{x^2/2}$.

EJERCICIO 7. Resolver utilizando el método del **punto medio explícito**. el problema:

$$y' = 1 + \frac{y}{x} \qquad 1 \le x \le 2 \qquad y(1) = 2 \qquad h = 0,25$$

$$K_1 = f(x_k, w_k)$$

$$K_2 = f(x_k + \frac{h}{2}, w_k + \frac{h}{2} K_1)$$

$$w_{k+1} = w_k + h \cdot K_2$$
(8)

Soluciones a los Ejercicios

Ejercicio 1.

1. Con dfield campo de direcciones con $t \in [-2, 10], y \in [-4, 4]$

2. Soluciones analíticas

$$y(0) = 2 y = -\frac{e^{-(2t + \ln(3))} + 1}{e^{-(2t + \log(3)} - 1}$$

$$y(0) = -0.9 -(\exp(\log(19) - 2*t) - 1)/(\exp(\log(19) - 2*t) + 1)$$

$$y(0) = 0 -(1/\exp(2*t) - 1)/(1/\exp(2*t) + 1)$$

$$y(0) = -1.1 -(\exp(\log(21) - 2*t) + 1)/(\exp(\log(21) - 2*t) - 1)$$

3. Solución en [0, 2] por RK para los casos y(0) = -0.9

```
f=inline('t.^0-y.^2');yh=[];h=0.05;
[t, y] = rk4(f, [0,2], -0.9, h);yh=[yh; h y(length(t))],h=h/2;
```

Ejercicio 2.

1. Con dfield

$$u=0(t,y)(t.^2+y.^2); ezcontour(u,[-2,2,-4,4]);$$

2. Iteramos hasta que $|y_h(0.9) - y_{h/2}(0.9)| < 0.05$

```
f=inline('t.^2+y.^2');yh=[];h=0.1;
[t, y] = rk4(f, [0,1], 1, h);yh=[yh; h y(0.9/h+1)],h=h/2;
diff(yh)
```

 $h \approx 0.05$

Ejercicio 3.

$$w_1 = w_0 + h f(x_0, w_0) = 2 + 0.25 \left(1 + \frac{2}{1}\right) = 2.75$$

$$w_2 = w_1 + h f(x_1, w_1) = 2.75 + 0.25 \left(1 + \frac{2.75}{1.25}\right) = 3.55$$

$$w_3 = w_2 + h f(x_2, w_2) = 3.55 + 0.25 \left(1 + \frac{3.55}{1.50}\right) = 4.391667$$

$$w_4 = w_3 + h f(x_3, w_3) = 4.391667 + 0.25 \left(1 + \frac{4.391667}{1.75}\right) = 5.2690476$$

k	x_i	w_i	$y(x_i)$
1	1,25	2,7500000	2,7789294
2	1,50	3,5500000	3,6081977
3	1,75	4,3916667	4,4793276
4	2,00	5,2690476	5,3862944

Ejercicio 4.

$$w_1 = w_0 + h f(x_0, w_0) = 1 + 0.25 (0 \cdot 1) = 1$$

$$w_2 = w_1 + h f(x_1, w_1) = 1 + 0.25 (0.25 \cdot 1) = 1.0625$$

$$w_3 = w_2 + h f(x_2, w_2) = 1.0625 + 0.25 (0.5 \cdot 1.0625) = 1.1953125$$

$$w_4 = w_3 + h f(x_3, w_3) = 1.1953125 + 0.25 (0.75 \cdot 1.1953125) = 1.4194335$$

$$w_5 = w_4 + h f(x_4, w_4) = 1.4194335 + 0.25 (1.0 \cdot 1.4194335) = 1.7742919$$

$$w_6 = w_5 + h f(x_5, w_5) = 1.7742919 + 0.25 (1.25 \cdot 1.7742919) = 2.3287582$$

$$w_7 = w_6 + h f(x_6, w_6) = 2.3287582 + 0.25 (1.5 \cdot 2.3287582) = 3.2020425$$

$$w_8 = w_7 + h f(x_7, w_7) = 3.2020425 + 0.25 (1.75 \cdot 3.2020425) = 4.6029362$$

k	x_i	w_i	$y(x_i)$
0	0,00	1	1
2	0,50	1,0625	1,1331484
4	1	1,4194335	1,6487212
6	1,5	2,3287582	3,0802168
8	2,00	4,6029362	7,3890561

Figura 1: Solución con Euler de y'=xy. Izquierda con h=0,25. Derecha con h=0,125. La curva continua es la solución exacta.

Figura 2: Solución con Euler de y'=xy. Izquierda con h=0.0625. Derecha con h=0.003125. La curva continua es la solución exacta.

Ejercicio 5.

$$k_1 = f(x_0, w_0) = 1 + \frac{2}{1} = 3 \qquad k_2 = f(x_1, w_0 + h \, k_1) = 1 + \frac{2 + 0.25 \cdot 3}{1.25} = 3.2$$

$$w_1 = w_0 + \frac{h}{2}(k_1 + k_2) = 2 + \frac{1}{8}(3 + 3.2) = 2,7750000$$

$$k_1 = f(x_1, w_1) = 1 + \frac{2.775}{1.25} = 3.22 \qquad k_2 = f(x_1, w_1 + h \, k_1) = 3,3866667$$

$$w_2 = w_1 + \frac{h}{2}(k_1 + k_2) = 2,775 + \frac{1}{8}(3.22 + 3.3866667) = 3,6008333$$

$$k_1 = f(x_2, w_2) = 3,400555555556 \qquad k_2 = f(x_2, w_2 + h \, k_1) = 3,54341269841$$

$$w_3 = w_2 + \frac{h}{2}(k_1 + k_2) = 4,468829365079365$$

$$k_1 = f(x_3, w_3) = 3,553616780045 \qquad k_2 = f(x_3, w_3 + h \, k_1) = 3,678616780045$$

$$w_4 = w_3 + \frac{h}{2}(k_1 + k_2) = 5,372858560090$$

k	x_i	w_i	$y(x_i)$
1	1,25	2,7750000	2,7789294
2	1,50	3,6008333	3,6081977
3	1,75	4,4688294	4,4793276
4	2,00	5,3728586	5,3862944

Ejercicio 6.

$$k_1 = f(x_0, w_0) = 0 \cdot 1 = 0$$
 $k_2 = f(x_1, w_0 + h k_1) = 0.5 \cdot 1 = 0.5$
$$w_1 = w_0 + \frac{h}{2}(k_1 + k_2) = 1 + \frac{1}{4}(0 + 0.5) = 1.125$$

$$k_1 = f(x_1, w_1) = 0.5 \cdot 1.125 = 0.5625$$
 $k_2 = f(x_1, w_1 + h k_1) = 1.40625$

$$\mathbf{w_2} = w_1 + \frac{h}{2}(k_1 + k_2) = 1,125 + \frac{1}{4}(0,5625 + 1,40625) = 1,6171875$$

$$w_2 = w_1 + \frac{1}{2}(k_1 + k_2) = 1,125 + \frac{1}{4}(0,5625 + 1,40625) = 1,0171875$$

 $k_1 = f(x_2, w_2) = 1,0 \cdot 1,6171875 = 1,61719$ $k_2 = f(x_2, w_2 + h k_1) = 3,63867$

$$w_3 = w_2 + \frac{h}{2}(k_1 + k_2) = 1,6171875 + \frac{1}{4}(1,61719 + 3,63867) = \frac{2,9311523}{4}$$

 $k_1 = f(x_3, w_3) = 1,5 \cdot 2,9311523 = 4,39673$ $k_2 = f(x_3, w_3 + h k_1) = 10,25903$

$$w_4 = w_3 + \frac{h}{2}(k_1 + k_2) = 2,9311523 + \frac{1}{4}(4,39673 + 10,25903) = 6,5950928$$

k	x_i	w_i	$y(x_i)$
0	0,00	1	1
1	0,50	1,125	1,1331484
2	1	1,6171875	1,6487212
3	1,5	2,9311523	3,0802168
4	2,00	6,5950928	7,3890561

Figura 3: Solución de y' = xy. Izquierda con h = 0.5. Derecha con h = 0.25. Los puntos rojos corresponden a la solución exacta.

Ejercicio 7.

$$k_1 = f(x_0, w_0) = 1 + \frac{2}{1} = 3$$
 $k_2 = f(x_0 + h/2, w_0 + 0.5 h k_1) = 3.1111111111$
 $\mathbf{w_1} = w_0 + h \cdot k_2 = 2.777777777778$
 $k_1 = f(x_1, w_1) = 3.22222$ $k_2 = f(x_1 + h/2, w_1 + 0.5 h k_1) = 3.313131313131$

$$k_1 = f(x_1, w_1) = 3,22222$$
 $k_2 = f(x_1 + n/2, w_1 + 0.5 n k_1) = 3,313131.$

$$w_2 = w_1 + h \cdot k_2 = 2,775 + \frac{1}{8}(3,22 + 3,3866667) = 3,606060606060$$

$$k_1 = f(x_2, w_2) = 3,40404040404$$
 $k_2 = f(x_2 + h/2, w_2 + 0.5 h k_1) = 3,480963$ $w_3 = w_2 + h \cdot k_2 = 4,4763014763$

$$k_1 = f(x_3, w_3) = 3,5578865578$$
 $k_2 = f(x_3 + h/2, w_0 + 0.5 h k_1) = 3,6245532$
 $w_4 = w_2 + h \cdot k_2 = 5.38243978243978$

$$w_4 = w_3 + h \cdot k_2 = 5,38243978243978$$

k	x_i	w_i	$y(x_i)$
1	1,25	2,77777778	2,7789294
2	1,50	3,60606060	3,6081977
3	1,75	4,47630147	4,4793276
4	2,00	5,38243978	5,3862944