Министерство образования Республики Беларусь

Учреждение образования

«Белорусский государственный университет информатики и радиоэлектроники»

Кафедра электронных вычислительных машин

Отчёт

по лабораторной работе № 2

«Построение и исследование аналитической модели дискретно – стохастической СМО»

Выполнили Довголёнок Д.А

ст. гр. 950503 Балобин М.А

Проверила: Герман Ю.О.

Цель:

Изучить методы анализа поведения дискретно-стохастической СМО.

Краткое теоретическое введение.

Рассматриваем СМО с марковскими процессами.

Марковский случайный процесс с дискретными состояниями и дискретным временем называют дискретной марковской цепью.

Такие процессы удобно иллюстрировать с помощью **графа состояний** системы, где вершины представляют возможные состояния , S_2 , ..., S_n системы, а дуги — возможные переходы из состояния S_j в состояние S_k , (на графе отмечаются только непосредственные переходы, а не переходы через другие состояния). Над каждой стрелкой, как правило, проставляются соответствующие вероятности перехода из состояния S_j в состояние S_k

Однородная марковская цепь может быть полностью описана **матрицей переходных вероятностей**:

$$||P_{ij}|| = \begin{pmatrix} P_{11} & P_{12} & \dots & P_{1n} \\ P_{21} & P_{22} & \dots & P_{2n} \\ \dots & \dots & P_{ij} & \dots \\ P_{n1} & P_{n2} & \dots & P_{nm} \end{pmatrix}$$

и начальным распределением $p_m(0)$, где m = 1,2,...

3амечание. Распределение X_0 называется начальным распределением марковской цепи:

$$p_m(0) = P\{X_0 = m\}$$
, где $m = 1, 2,$

Элементы матрицы переходных вероятностей обладают следующими свойствами: Pij > 0

$$\sum_{j=1}^{n} P_{ij} = 1, i = 1, ..., n.$$

Задание:

Вариант 1.

Пусть матрица переходных вероятностей Р суть

	S0	S 1	S2	S3
S0	0.1	0.2	0.4	0.3
S1 S2	0.3	0.1	0.4	0.2
S2	0.2	0.2	0.2	0.4
S3	0.3	0.3	0.3	0.1

- 1. Найти установившиеся вероятности состояний системы: P_0 , P_1 , P_2 , P_3 .
- 2. Рассчитать вероятности состояний системы на третьем шаге (k=3)
- 3. Рассчитать число шагов до попадания в поглощающее состояние для матрицы вероятностей переходов

	S0	S1	S2	S3
S0	0.1	0.2	0.4	0.3
S0 S1 S2	0.3	0.1	0.4	0.2
S2	0	0	1.0	0
S3	0.3	0.3	0.3	0.1

Ход работы:

Матрица переходных вероятностей:

	S0	S1	S2	S3
S0	0.1	0.2	0.4	0.3
S1	0.3	0.1	0.4	0.2
S0 S1 S2	0.2	0.2	0.2	0.4
S3	0.3	0.3	0.3	0.1

Сумма вероятностей по каждой строке равна 1.

1. Составим систему уравнений для установившегося режима

$$p_0 = 0.1*p_0 + 0.3*p_1 + 0.2*p_2 + 0.3*p_3$$

$$p_1 = 0.2*p_0 + 0.1*p_1 + 0.2*p_2 + 0.3*p_3$$

$$p_2 = 0.4*p_0 + 0.4*p_1 + 0.2*p_2 + 0.3*p_3$$

$$p_3 = 0.3 * p_0 + 0.2 * p_1 + 0.4 * p_2 + 0.1 * p_3$$

$$1 = p_0 + p_1 + p_2 + p_3$$

Решаем систему и находим вероятности состояний системы: P_0 , P_1 , P_2 , P_3 .:

$$p_0 = 0.22$$

$$p_1 = 0.21$$

$$p_2 = 0.31$$

$$p_3 = 0.26$$

Вероятности состояния системы на шаге k вычисляются по формуле

$$\mathbf{R}(\mathbf{k}) = \mathbf{R}(0) \cdot \mathbf{P}^{\mathbf{k}}$$
.

Здесь \mathbf{P}^k - k-ая степень матрицы.

2. Вероятности состояний системы на третьем шаге (k=3):

Вероятности состояний системы в начальный момент времени:

$$P_0(0) = 0.22$$
, $P_1(0) = 0.21$, $P_2(0) = 0.31$, $P_3(0) = 0.26$

$$\mathbf{R}(1) = \mathbf{R}(0) \cdot \mathbf{P}^1 = \langle 0.22, 0.21, 0.31, 0.26 \rangle$$

	S0	S1	S2	S3
S0	0.1	0.2	0.4	0.3
S1	0.3	0.1	0.4	0.2
S2	0.2	0.2	0.2	0.4
S3	0.3	0.3	0.3	0.1

$$\mathbf{R}(2) = \mathbf{R}(1) \cdot \mathbf{P} = \mathbf{R}(0) \cdot \mathbf{P}^2 = \langle 0.23, 0.20, 0.31, 0.26 \rangle \times \mathbf{R}(2) = \mathbf{R}(1) \cdot \mathbf{P} = \mathbf{R}$$

	S0	S1	S2	S3
S0	0.1	0.2	0.4	0.3
S1	0.3	0.1	0.4	0.2
S2	0.2	0.2	0.2	0.4
S3	0.3	0.3	0.3	0.1

= <0.22, 0.21, 0.31, 0.26>

$$\mathbf{R}(2) = \mathbf{R}(2) \cdot \mathbf{P} = \mathbf{R}(0) \cdot \mathbf{P}^3 = \langle 0.22, 0.21, 0.31, 0.26 \rangle \times \mathbf{R}(2)$$

	S0	S1	S2	S3
S0	0.1	0.2	0.4	0.3
S1	0.3	0.1	0.4	0.2
S2	0	0	1.0	0
S3	0.3	0.3	0.3	0.1

Видим, что значения почти не меняются и на 3 шаге получаются следующие вероятности: <0.23, 0.20, 0.31, 0.26>

3. Рассчитать число шагов до попадания в поглощающее состояние для матрицы вероятностей переходов:

	S0	S1	S2	S3
S0	0.1	0.2	0.4	0.3
S1	0.3	0.1	0.4	0.2
S2	0	0	1.0	0
S3	0.3	0.3	0.3	0.1

Здесь одно поглощающее состояние: S2. Удаляем строку и столбец S2

В матричном виде запишем

$$T = Q*T+I,$$

где I – единичная диагональная матрица.

Здесь Q – матрица вероятностей переходов, которая получается из матрицы Р удалением строк и столбцов, соответствующих поглощающим состояниям.

	S0	S1	S3
S0	0.1	0.2	0.3
S1	0.3	0.1	0.2
S3	0.3	0.3	0.1

Это есть матрица Q.

$$\|\mathbf{Q}\| = \left[q_{00} \, q_{01} \, q_{03} \, q_{10} \, q_{11} \, q_{13} \, q_{30} \, q_{31} \, q_{33} \, \right]$$

Запишем уравнения

$$T = Q*T+I$$

в таком виде:

$$t_1 = q_{11} * t_1 + q_{12} * t_2 + q_{1z} * t_z + 1$$

$$t_2 = q_{21} * t_1 + q_{22} * t_2 + q_{2z} * t_z + 1$$

. . .

$$t_z = q_{z1} * t_1 + q_{z2} * t_2 + q_{zz} * t_z + 1$$
,

где $t_{\rm i}$ — среднее количество шагов, которое сделаем из состояния $t_{\rm i}$ в поглощающее состояние;

 q_{ij} – вероятность перехода.

Согласно примеру, получаем три уравнения:

$$t_0 = q_{00} * t_0 + q_{01} * t_1 + q_{03} * t_3 + 1$$

$$t_1 = q_{10} * t_0 + q_{11} * t_1 + q_{13} * t_3 + 1$$

$$t_3 = q_{30} * t_0 + q_{31} * t_1 + q_{33} * t_3 + 1$$

или

$$t_0 = 0.1 * t_0 + 0.2 * t_1 + 0.3 * t_3 + 1$$

$$t_1 = 0.3 * t_0 + 0.1 * t_1 + 0.2 * t_3 + 1$$

$$t_3 = 0.3 * t_0 + 0.3 * t_1 + 0.1 * t_3 + 1$$

Матрица Т выражается в виде формулы

$$T = (I - Q)^{-1}.$$

Матрица I-Q имеет такой вид в нашем случае:

	S0	S1	S3
S0	0.9	-0.2	-0.3

S1	-0.3	0.9	-0.2
S3	-0.3	-0.3	0.9

С помощью Excel найдем обратную матрицу:

1.5	0.54	0.62
0.66	1.44	0.54
0.72	0.66	1.5

Итак, если система стартует из состояния S0, то она попадает в поглощающее состояние в среднем за $1.5+0.54+0.62\sim3$ шага

Если система стартует из состояния S1, то она попадает в поглощающее состояние в среднем за $0.66+1.44+0.54\sim3$ шага.

Если система стартует из состояния S3, то она попадает в поглощающее состояние в среднем за $0.72 + 0.66 + 1.5 \sim 3$ шага.