Funktionalanalysis 1

Übungsaufgaben zu:

"Lecture 07 – Operatortopologien"

- 07/1: Seien X, Y, Z normierte Räume, und seien $A_n, A \in \mathcal{B}(Y, Z), B_n, B \in \mathcal{B}(X, Y)$. Dann gilt:
 - (a) Ist $A_n \stackrel{s}{\to} A$, $\sup_{n \in \mathbb{N}} ||A_n|| < \infty$, und $B_n \stackrel{s}{\to} B$, so folgt $A_n B_n \stackrel{s}{\to} AB$.
 - (b) Ist $A_n \stackrel{w}{\to} A$, $\sup_{n \in \mathbb{N}} \|A_n\| < \infty$, und $B_n \stackrel{s}{\to} B$, so folgt $A_n B_n \stackrel{w}{\to} AB$.
 - (c) Ist $A_n \stackrel{s}{\to} A$, so folgt $A_n B \stackrel{s}{\to} AB$. Ist $B_n \stackrel{s}{\to} B$, so folgt $AB_n \stackrel{s}{\to} AB$.
 - (d) Ist $A_n \xrightarrow{w} A$, so folgt $A_n B \xrightarrow{w} AB$. Ist $B_n \xrightarrow{w} B$, so folgt $AB_n \xrightarrow{w} AB$.
- 07 / 2:*Kann man in (a) und (b) des vorigen Beispiels die Voraussetzung $\sup_{n\in\mathbb{N}}\|A_n\|<\infty$ weglassen? Falls ja, beweise dies. Falls nein, finde ein Gegenbeispiel.