Admitere * Universitatea Politehnica din București 2001 (septembrie) Disciplina: Algebră și Elemente de Analiză Matematică

1. Să se rezolve inecuația $x \leq \frac{8}{x^2}$.

a)
$$x = 2$$
; b) $x \le 2$; c) $x > 2$; d) $x \ge 2$; e) $x > 0$; f) $x \in (-\infty, 0) \cup (0, 2]$.

2. Să se determine intervalul pe care determinantul

$$\left| \begin{array}{ccc} -1 & x & x \\ x & -1 & x \\ x & x & -1 \end{array} \right|$$

este strict pozitiv.

a)
$$\left(\frac{1}{2}, \infty\right)$$
; b) $\left(-\infty, \infty\right)$; c) $\left(1, \infty\right)$; d) $\left[\frac{1}{2}, \infty\right)$; e) $\left(-\infty, \frac{1}{2}\right]$; f) $\left[2, \infty\right)$.

3. Să se calculeze E = f(0) + f'(0) + f''(0) dacă $f(x) = \ln(x^2 + 1)$.

a)
$$-1$$
; b) 4; c) 1; d) 0; e) -2 ; f) 2.

4. Să se calculeze suma cuburilor soluțiilor ecuației $x^2 - 4x + 1 = 0$

5. Să se determine parametrul real m astfel încât ecuația

$$x^4 + x^2 + mx + 2 = 0$$

să admită soluția x=2.

a)
$$m = -11$$
; b) $m = 0$; c) $m = 11$; d) $m = -2$; e) $m = 1$; f) $m = 2$.

6. Să se rezolve inecuația $\ln e^x + e^{\ln x} < 2$.

a)
$$0 < x < 1$$
; b) $x > 1$; c) $x < 1$; d) $x < 2$; e) $x > 2$; f) $x > 0$

7. Să se simplifice expresia $\frac{\frac{x}{y} + \frac{y}{x}}{\frac{1}{x} + \frac{1}{y}}$: $(x^2 + y^2)$, pentru x > 0, y > 0.

a)
$$xy$$
; b) $\frac{1}{x} + \frac{1}{y}$; c) 1; d) $\frac{(x^2 + y^2)^2}{x + y}$; e) $\frac{1}{x + y}$; f) $x + y$.

8. Să se calculeze $(0, 5 - \frac{2}{3}) : (-\frac{1}{6})^3$.

a)
$$16$$
; b) 30 ; c) 12 ; d) 36 ; e) 1 ; f) -36 .

9. Să se determine m astfel încât sistemul $\begin{cases} mx_1 + 3x_2 = 0 \\ 3x_1 + mx_2 = 0 \end{cases}$ să aibă şi soluții nenule.

a)
$$m \in \{-3, 3\}$$
; b) $m = 3$; c) nu există m ; d) $m = 0$; e) $m \neq 3$; f) $m = -3$.

10. Să se simplifice $\frac{(n+2)!}{n!(n+2)}$, pentru $n \in \mathbb{N}^*$.

a)
$$\frac{1}{n+2}$$
; b) $n+2$; c) n ; d) $n+1$; e) $n(n+2)$; f) $\frac{1}{n+1}$.

11. Să se calculeze integrala $I = \int_{1}^{4} \frac{1}{x+2} dx$.

a)
$$\ln 2$$
; b) $\frac{3}{2}$; c) 1; d) $\ln 3$; e) $\ln 4$; f) $\ln 6$.

12. Să se determine tripletul (x,y,z) dacă $\frac{x}{2} = \frac{y}{3} = \frac{z}{5}, \quad x+y+z=20.$

a)
$$(4,4,4)$$
; b) $(10,6,4)$; c) $(4,6,10)$; d) $(1,2,17)$; e) $(10,4,6)$; f) $(6,4,10)$.

13. Să se rezolve ecuația $3^{x+1} = 9^{\sqrt{x}}$.

- 14. Să se calculeze $\lim_{x\to\infty} \frac{2x^2+3}{3x^2+2}$.
 - a) 3; b) $\frac{2}{3}$; c) 0; d) $\frac{1}{3}$; e) ∞ ; f) 2.
- 15. Fie matricele $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -1 \\ 0 & 2 \\ 3 & m \end{pmatrix}$. Să se determine m real dacă determinantul matricei AB este nul.
 - a) 5; b) 0; c) 3; d) -5; e) $\frac{1}{5}$; f) 1.