SEMAINE 13

INTÉGRALES DÉPENDANT d'UN PARAMÈTRE

EXERCICE 1:

Si $f: \mathbb{R}_+ \to \mathbb{C}$ est une fonction continue par morceaux, la **transformée de Laplace** de f est la fonction $\mathcal{L}[f]$ définie par

$$\mathcal{L}[f](p) = \int_{0}^{+\infty} e^{-pt} f(t) dt$$

pour tout réel p tel que cette intégrale est convergente.

1. Théorème de la valeur finale

Soit $f: \mathbb{R}_+ \to \mathbb{C}$, continue par morceaux, admettant une limite finie en $+\infty: \lim_{t \to +\infty} f(t) = l$. Montrer que la transformée $\mathcal{L}[f]$ est définie (au moins) sur \mathbb{R}_+^* et que

$$\lim_{p \to 0^+} p \cdot \mathcal{L}[f](p) = l = \lim_{t \to +\infty} f(t) .$$

2. Soit $f: \mathbb{R}_+ \to \mathbb{C}$, continue, telle que l'intégrale $\int_0^{+\infty} f(t) \ dt$ soit convergente (éventuellement "semi-convergente"). Montrer alors que, pour tout $p \geq 0$, l'intégrale $\int_0^{+\infty} f(t) \ e^{-pt} \ dt$ converge et que la fonction $p \mapsto \int_0^{+\infty} f(t) \ e^{-pt} \ dt$ est continue sur \mathbb{R}_+ .

3. Utiliser la question précédente pour calculer l'intégrale $I=\int_0^{+\infty} \frac{\sin t}{t} \ dt.$

1. La fonction f est bornée sur \mathbb{R}_+ donc, pour tout p>0, la fonction $t\mapsto e^{-pt}f(t)$ est intégrable sur \mathbb{R}_+ . Écrivons

$$p \cdot \mathcal{L}[f](p) - l = \int_0^{+\infty} p \, e^{-pt} \left(f(t) - l \right) \, dt \, .$$

Soit M un majorant de |f(t)-l| sur \mathbb{R}_+ . Pour tout A>0, on peut alors écrire

$$|p \cdot \mathcal{L}[f](p) - l| \leq \left| \int_{0}^{A} p \, e^{-pt} \left(f(t) - l \right) \, dt \right| + \left| \int_{A}^{+\infty} p \, e^{-pt} \left(f(t) - l \right) \, dt \right|$$

$$\leq M \int_{0}^{A} p \, e^{-pt} \, dt + \int_{A}^{+\infty} p \, e^{-pt} \, |f(t) - l| \, dt \, . \tag{*}$$

Donnons-nous alors $\varepsilon>0$. Fixons A tel que $|f(t)-l|<\frac{\varepsilon}{2}$ pour $t\geq A$, ce qui rend la deuxième intégrale de (*) inférieure à $\frac{\varepsilon}{2}$. Comme $\int_0^A pe^{-pt}dt=1-e^{-pA} \xrightarrow[p\to 0]{} 0$, on peut rendre la première intégrale inférieure à $\frac{\varepsilon}{2}$ en prenant p suffisamment proche de 0. On a ainsi prouvé que $\lim_{p\to 0^+} \left(p\cdot\mathcal{L}[f](p)-l\right)=0$.

On en déduit que, si $l \neq 0$, alors l'ensemble de définition de $\mathcal{L}[f]$ est exactement \mathbb{R}_+^* et que $\mathcal{L}[f](p) \underset{n \to 0}{\sim} \frac{l}{n}$.

2. Soit F la primitive de f qui s'annule en zéro. La fonction F est de classe C^1 sur \mathbb{R}_+ et admet une limite finie en $+\infty$, donc est bornée sur \mathbb{R}_+ . Pour tout p>0, la fonction $t\mapsto F(t)\,e^{-pt}$

est intégrable sur \mathbb{R}_+ et $\lim_{t\to +\infty} F(t)\,e^{-pt}=0$, ce qui permet une intégration par parties :

$$\forall p \in \mathbb{R}_+^* \qquad \int_0^{+\infty} f(t) e^{-pt} dt = p \cdot \int_0^{+\infty} F(t) e^{-pt} dt .$$

La transformée de Laplace $\mathcal{L}[f]$ est donc définie (au moins) sur \mathbb{R}_+ et on a

$$\forall p \in \mathbb{R}_+^* \qquad \mathcal{L}[f](p) = p \cdot \mathcal{L}[F](p) .$$
 (*)

La transformée $\mathcal{L}[F]$, définie au moins sur \mathbb{R}_+^* , est continue sur cet intervalle : en effet, si on fixe $p_0 > 0$, la fonction $t \mapsto F(t) e^{-p_0 t}$ est intégrable sur \mathbb{R}_+ et une domination évidente montre la continuité de $\mathcal{L}[F]$ sur l'intervalle $[p_0, +\infty[$. Grâce à (*), on déduit la continuité de $\mathcal{L}[f]$ sur \mathbb{R}_+^* . Enfin,

$$\mathcal{L}[f](0) = \int_0^{+\infty} f(t) \ dt = \lim_{+\infty} F = \lim_{p \to 0^+} p \cdot \mathcal{L}[F](p) = \lim_{p \to 0^+} \mathcal{L}[f](p)$$

d'après le théorème de la valeur finale, d'où la continuité de la fonction $\mathcal{L}[f]$ en 0.

- 3. Il est bien connu que cette intégrale I est "semi-convergente". Appliquons alors la question 2. à la fonction "sinus cardinal", à savoir $f:t\mapsto \frac{\sin t}{t}$, prolongée par continuité en zéro : sa transformée de Laplace est donc définie et continue sur \mathbb{R}_+ . Or, il est assez aisé de calculer l'expression de $\mathcal{L}[f](p)=\int_0^{+\infty}e^{-pt}\,\frac{\sin t}{t}\,dt\,$ pour p>0.
 - Pour cela, considérons $g:(p,t)\mapsto e^{-pt}\,\frac{\sin t}{t}$. La fonction g est continue sur $(\mathbb{R}_+^*)^2$ et, si a>0, on a $|g(p,t)|\leq \frac{e^{-at}\,|\sin t|}{t}$ pour $(p,t)\in[a,+\infty[\times\mathbb{R}_+^*]$. La fonction $t\mapsto\frac{e^{-at}\,|\sin t|}{t}$ étant intégrable sur \mathbb{R}_+^* , cela prouve la continuité de la fonction $\mathcal{L}[f]$ sur $[a,+\infty[$ pour tout a>0, donc sur \mathbb{R}_+^* .

De plus, $\frac{\partial g}{\partial p}(p,t) = -e^{-pt} \sin t$ et, si a>0, la majoration $\left|\frac{\partial g}{\partial p}(p,t)\right| \leq e^{-at}$, valable pour $(p,t) \in [a,+\infty[\times \mathbb{R}_+^*, t]]$

prouve que la fonction $\Phi = \mathcal{L}[f]$ est de classe \mathcal{C}^1 sur $[a, +\infty[$ pour tout a > 0, donc sur \mathbb{R}_+^* , avec

$$\Phi'(p) = -\int_0^{+\infty} e^{-pt} \sin t \, dt = -\frac{1}{1+p^2} \, .$$

Donc $\Phi(p) = C - \arctan p$ sur \mathbb{R}_+^* et le théorème de convergence dominée ("version familiale", c'est-à-dire appliqué à une famille de fonctions) permet de montrer que $\lim_{+\infty} \Phi = 0$,

donc
$$C = \frac{\pi}{2}$$
 et

$$\forall p \in \mathbb{R}_+^* \qquad \Phi(p) = \mathcal{L}[f](p) = \frac{\pi}{2} - \operatorname{Arctan} p$$
.

La question **2.** permet d'affirmer que la fonction $\mathcal{L}[f]$ est continue en zéro (ce que les théorèmes du cours ne suffisent pas à garantir puisque la fonction sinus cardinal n'est pas intégrable sur \mathbb{R}_+), d'où

$$I = \int_0^{+\infty} \frac{\sin t}{t} dt = \mathcal{L}[f](0) = \lim_{p \to 0^+} \mathcal{L}[f](p) = \frac{\pi}{2} .$$

EXERCICE 2:

Pour tout x > 0, on pose $\Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt$.

- **1.** Démontrer la relation : $\forall x \in \mathbb{R}_+^* \qquad \Gamma(x) = \lim_{n \to \infty} \int_0^n \left(1 \frac{t}{n}\right)^n t^{x-1} dt$.
- **2.** En déduire : $\forall x \in \mathbb{R}_+^*$ $\Gamma(x) = \lim_{n \to +\infty} \frac{n^x n!}{x(x+1) \cdots (x+n)}$.

En déduire, pour tout x > 0 fixé, l'équivalence

$$x(x+1)\cdots(x+n)\sim \frac{n^x\ n!}{\Gamma(x)}$$

lorsque n tend vers $+\infty$.

- Dans la suite de l'exercice, on note f une fonction logarithmiquement convexe (c'est-à-dire la fonction $x \mapsto \ln(f(x))$ est convexe) de \mathbb{R}_+^* vers \mathbb{R}_+^* , vérifiant f(1) = 1 et la relation fonctionnelle $\forall x \in \mathbb{R}_+^*$ f(x+1) = x f(x).
- **3.** Soient x > 0, y > 0, $\lambda \in [0, 1]$. Posons $t = \lambda x + (1 \lambda)y$. Montrer, pour tout $n \in \mathbb{N}$, l'inégalité $t(t+1)\cdots(t+n)$ $f(t) \leq \left(x(x+1)\cdots(x+n)\ f(x)\right)^{\lambda} \cdot \left(y(y+1)\cdots(y+n)\ f(y)\right)^{1-\lambda}$.

En déduire que

$$\frac{f(t)}{\Gamma(t)} \le \left(\frac{f(x)}{\Gamma(x)}\right)^{\lambda} \left(\frac{f(y)}{\Gamma(y)}\right)^{1-\lambda}$$

4. Montrer que $f = \Gamma$.

1. Plus généralement, soit $f:]0, +\infty[\to \mathbb{C}$ une fonction continue telle que la fonction $g: t \mapsto e^{-t} f(t)$ soit intégrable sur \mathbb{R}_+^* . Alors

$$\int_0^{+\infty} e^{-t} f(t) dt = \lim_{n \to +\infty} \int_0^n \left(1 - \frac{t}{n} \right)^n f(t) dt .$$

En effet, pour tout réel t, on a $e^{-t} = \lim_{n \to +\infty} \left(1 - \frac{t}{n}\right)^n$. Définissons, pour tout $n \in \mathbb{N}^*$, une fonction $u_n :]0, +\infty[\to \mathbb{R}$ par

$$u_n(t) = \begin{cases} \left(1 - \frac{t}{n}\right)^n & \text{si } 0 < t \le n \\ 0 & \text{si } t > n \end{cases}.$$

Alors u_n est continue sur \mathbb{R}_+^* et la suite (u_n) converge simplement, sur \mathbb{R}_+^* , vers la fonction $t \mapsto e^{-t}$.

En posant $g_n = u_n \cdot f$, on a une suite (g_n) de fonctions continues sur \mathbb{R}_+^* , convergeant simplement vers g sur \mathbb{R}_+^* . L'inégalité classique $\ln\left(1-\frac{t}{n}\right) \leq -\frac{t}{n}$, valable pour $t \in [0, n[$, montre que

$$\forall n \in \mathbb{N}^* \quad \forall t \in \mathbb{R}_+^* \qquad 0 \le u_n(t) \le e^{-t} \quad \text{donc} \quad |g_n(t)| \le |g(t)|.$$

L'hypothèse de domination est alors vérifiée et le théorème de convergence dominée s'applique. Il suffit donc d'appliquer ce résultat avec $f(t) = t^{x-1}$.

2. Le changement de variable t = nu donne

$$\int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt = n^x \int_0^1 (1 - u)^n u^{x-1} du = n^x B(x, n+1) ,$$

en notant $B(p,q) = \int_0^1 u^{p-1} (1-u)^{q-1} du$ pour p et q réels strictement positifs (**intégrale** eulérienne de première espèce). La fonction $u \mapsto u^{p-1} (1-u)^{q-1}$ est bien intégrable sur [0,1[et, pour tout $n \in \mathbb{N}^*$ et x > 0, une intégration par parties donne

$$B(x, n+1) = \int_0^1 u^{x-1} (1-u)^n du = \left[(1-u)^n \frac{u^x}{x} \right]_0^1 + \frac{n}{x} \int_0^1 u^x (1-u)^{n-1} du$$
$$= \frac{n}{x} B(x+1, n) .$$

À partir de $B(x,1) = \int_0^1 u^{x-1} du = \frac{1}{x}$ pour tout x > 0, une récurrence immédiate donne

$$B(x,n) = \frac{(n-1)!}{x(x+1)(x+2)\cdots(x+n-1)}.$$

Finalement,

$$\forall x \in \mathbb{R}_+^* \quad \forall n \in \mathbb{N}^* \qquad \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt = \frac{n^x n!}{x(x+1)\cdots(x+n)} ,$$

d'où le résultat. L'équivalence demandée est alors une conséquence immédiate.

3. En vertu de la relation fonctionnelle satisfaite par f, l'inégalité à prouver équivaut à

$$f(\lambda(x+n+1)+(1-\lambda)(y+n+1)) \le (f(x+n+1))^{\lambda} (f(y+n+1))^{1-\lambda},$$
encore à

$$\ln\left[f(\lambda(x+n+1)+(1-\lambda)(y+n+1))\right] \le \lambda \ln\left(f(x+n+1)\right)+(1-\lambda) \ln\left(f(y+n+1)\right),$$

ce qui résulte de la convexité de la fonction $\ln \circ f$.

L'inégalité obtenue peut aussi s'écrire

$$\frac{f(t)}{\left(f(x)\right)^{\lambda} \left(f(y)\right)^{1-\lambda}} \le \frac{\left(x(x+1)\cdots(x+n)\right)^{\lambda} \left(y(y+1)\cdots(y+n)\right)^{1-\lambda}}{t(t+1)\cdots(t+n)} . \tag{*}$$

Faisons tendre n vers $+\infty$ en utilisant l'équivalence démontrée à la fin de la question **2.** Le second membre de (*) tend vers $\frac{\Gamma(t)}{\left(\Gamma(x)\right)^{\lambda}\left(\Gamma(y)\right)^{1-\lambda}}$. Il vient alors

$$\frac{f(t)}{\Gamma(t)} \leq \left(\frac{f(x)}{\Gamma(x)}\right)^{\lambda} \, \left(\frac{f(y)}{\Gamma(y)}\right)^{1-\lambda} \; .$$

4. L'inégalité obtenue ci-dessus signifie que la fonction $\ln\left(\frac{f}{\Gamma}\right)$ est convexe sur \mathbb{R}_+^* . Or, cette fonction est 1-périodique. Elle est donc constante : en effet, si une fonction g est convexe et 1-périodique sur \mathbb{R}_+^* avec g(1)=g(2)=C, on obtient aisément $g\leq C$ sur [1,2] et $g\geq C$ sur [2,3] et la périodicité entraı̂ne g=C sur [1,3], donc sur \mathbb{R}_+^* .

Comme $f(1) = \Gamma(1) = 1$, on a donc $f = \Gamma$.

EXERCICE 3:

1.. Soit $\varphi:[0,1]\to\mathbb{R}$ une application de classe \mathcal{C}^2 . Démontrer l'égalité

$$\int_0^1 \varphi(t) \ dt = \frac{1}{2} (\varphi(0) + \varphi(1)) - \frac{1}{2} \int_0^1 t(1-t) \ \varphi''(t) \ dt \ . \tag{*}$$

On suppose maintenant que $\varphi(0) = \varphi(1) = 0$. Montrer l'existence d'une constante C telle que $\left| \int_0^1 \varphi \right| \leq C \cdot M$, où $M = \max_{[0,1]} |\varphi''|$.

2. On note K le pavé $[0,1]^2$. Soit $f:K\to\mathbb{R}$, de classe \mathcal{C}^4 . On suppose que f est nulle sur le bord ∂K du pavé K et que $\left|\frac{\partial^4 f}{\partial x^2 \, \partial y^2}\right| \leq M'$ sur K. Trouver une constante C' telle que

$$\left| \iint_K f \right| \le C' \cdot M' \ .$$

1. Par deux intégrations par parties successives, on obtient

$$\int_{0}^{1} t(1-t) \varphi''(t) dt = \left[t(1-t) \varphi'(t) \right]_{0}^{1} + \int_{0}^{1} (2t-1) \varphi'(t) dt$$
$$= \left[(2t-1) \varphi(t) \right]_{0}^{1} - 2 \int_{0}^{1} \varphi(t) dt$$
$$= \varphi(1) + \varphi(0) - 2 \int_{0}^{1} \varphi,$$

d'où la relation (*). Si $\varphi(0) = \varphi(1) = 0$, il est alors immédiat que

$$\left| \int_0^1 \varphi \right| = \frac{1}{2} \left| \int_0^1 t(1-t) \, \varphi''(t) \, dt \right| \le \frac{M}{2} \, \int_0^1 t(1-t) \, dt = \frac{M}{12} \,,$$

d'où la possibilité de choisir $C = \frac{1}{12}$.

Ce choix est le "meilleur" possible, ainsi qu'on le voit en considérant la fonction $\varphi: t \mapsto t(1-t)$ (fonction vérifiant $\varphi(0) = \varphi(1) = 0$ et φ'' constante sur [0,1]).

2. La formule de Fubini permet d'écrire

$$\iint_K f = \int_0^1 \left(\int_0^1 f(x, y) \, dy \right) \, dx \, .$$

Or, en appliquant (*) à $y \mapsto f(x,y)$ pour un $x \in [0,1]$ fixé, puisque f(x,0) = f(x,1) = 0,

$$\int_0^1 f(x,y) \ dy = -\frac{1}{2} \int_0^1 y(1-y) \frac{\partial^2 f}{\partial y^2}(x,y) \ dy \ ,$$

puis

$$\iint_{K} f = -\frac{1}{2} \int_{0}^{1} \left(\int_{0}^{1} y(1-y) \frac{\partial^{2} f}{\partial y^{2}}(x,y) dy \right) dx$$
$$= -\frac{1}{2} \int_{0}^{1} y(1-y) \left(\int_{0}^{1} \frac{\partial^{2} f}{\partial y^{2}}(x,y) dx \right) dy \qquad \text{(Fubini)}$$

et, de nouveau grâce à (*), pour tout $y \in [0,1]$ fixé, puisque $\frac{\partial^2 f}{\partial y^2}(0,y) = \frac{\partial^2 f}{\partial y^2}(1,y) = 0$, $\int_0^1 \frac{\partial^2 f}{\partial y^2}(x,y) \ dx = -\frac{1}{2} \int_0^1 x(1-x) \frac{\partial^4 f}{\partial x^2 \partial y^2}(x,y) \ dx$

et, finalement, en utilisant une dernière fois Fubini,

$$\iint_K f = \frac{1}{4} \iint_K xy(1-x)(1-y) \frac{\partial^4 f}{\partial x^2 \partial y^2}(x,y) dx dy,$$

d'où la majoration

$$\left| \iint_K f \right| \le \frac{M'}{4} \iint_K xy(1-x)(1-y) \ dx \ dy = \frac{M'}{4} \left(\int_0^1 x(1-x) \ dx \right)^2 = \frac{M'}{144}$$

qui permet de choisir $C' = \frac{1}{144}$. Ici encore, la fonction $f:(x,y) \mapsto xy(1-x)(1-y)$, nulle sur le bord du pavé K et dont la dérivée partielle $\frac{\partial^4 f}{\partial x^2 \partial y^2}$ garde une valeur constante, montre que $C' = \frac{1}{144}$ est "la meilleure" constante possible.

EXERCICE 4:

Produit de convolution dans $C_{2\pi}$

Soit $\mathcal{E} = \mathcal{C}_{2\pi}$ le \mathbb{C} -espace vectoriel des fonctions continues et 2π -périodiques de \mathbb{R} vers \mathbb{C} . Pour tous f, g de \mathcal{E} , on définit une fonction f * g par la relation

$$\forall x \in \mathbb{R} \qquad (f * g)(x) = \int_0^{2\pi} f(t) g(x - t) dt.$$

- 1. Vérifier que * est une loi interne commutative dans \mathcal{E} . Si l'une des fonctions f ou g est supposée de classe \mathcal{C}^1 , que peut-on dire de f * g?
- **2.** Montrer que \mathcal{E} , muni des lois + (addition usuelle) et *, possède une structure de pseudo-algèbre sur \mathbb{C} (pas d'élément unité).
- 3. On appelle approximation de l'unité 2π -périodique toute suite $(e_n)_{n\in\mathbb{N}}$ de fonctions de \mathcal{E} vérifiant
 - $\forall n \in \mathbb{N}$ $e_n \ge 0 \text{ sur } \mathbb{R}$;
 - $\forall n \in \mathbb{N}$ $\int_{-\pi}^{\pi} e_n = 1$;
 - pour tout $\alpha \in]0,\pi[$, la suite (e_n) converge uniformément vers la fonction nulle sur $[-\pi,-\alpha]$ et sur $[\alpha,\pi]$.

Montrer qu'alors, pour tout $f \in \mathcal{E}$, la suite de fonctions $(e_n * f)$ converge uniformément vers f sur \mathbb{R} .

4. Montrer que, pour tous $f, g \in \mathcal{E}$, on a

$$\int_0^{2\pi} f * g = \left(\int_0^{2\pi} f \right) \left(\int_0^{2\pi} g \right) .$$

1. La continuité de $(x,t)\mapsto f(t)\,g(x-t)\,$ sur $\mathbb{R}\times[0,2\pi]$ garantit la continuité de f*g sur \mathbb{R} . La périodicité est immédiate.

La commutativité se démontre en faisant le changement de variable u=x-t et en notant que l'intégrale d'une fonction 2π -périodique sur $[a,a+2\pi]$ ne dépend pas du réel a.

- Si g est de classe \mathcal{C}^1 sur \mathbb{R} , la formule de Leibniz montre que f*g est de classe \mathcal{C}^1 sur \mathbb{R} avec (f*g)' = f*g'. Grâce à la commutativité, si f est \mathcal{C}^1 , alors f*g est \mathcal{C}^1 et (f*g)' = f'*g. Notons que, si f et g sont toutes deux \mathcal{C}^1 , alors f*g' = f'*g, ce que l'on retrouve par une intégration par parties.
- 2. La distributivité de la convolution par rapport à l'addition

$$f * (g+h) = f * g + f * h$$

est immédiate.

Prouvons l'associativité de la loi de convolution :

$$\begin{aligned} \big[(f * g) * h \big] (x) &= \int_0^{2\pi} (f * g)(t) \, h(x - t) \, dt \\ &= \int_0^{2\pi} \left(\int_0^{2\pi} f(u) \, g(t - u) \, du \right) \, h(x - t) \, dt \\ &= \int_0^{2\pi} f(u) \, \left(\int_0^{2\pi} g(t - u) \, h(x - t) \, dt \right) \, du \,, \end{aligned}$$

d'après la formule de Fubini. Par ailleurs,

$$\int_0^{2\pi} g(t-u) h(x-t) dt = \int_{-u}^{2\pi-u} g(s) h(x-u-s) ds$$
$$= \int_0^{2\pi} g(s) h(x-u-s) ds = (g*h)(x-u),$$

donc
$$[(f * g) * h](x) = \int_0^{2\pi} f(u) (g * h)(x - u) du = [f * (g * h)](x).$$

 $(\mathcal{E},+,*)$ est donc muni d'une structure de pseudo-anneau (pas d'élément unité) et il est immédiat que $\lambda(f*g)=(\lambda f)*g=f*(\lambda g)$ pour $\lambda\in\mathbb{C},\,f\in\mathcal{E},\,g\in\mathcal{E}.$

Vérifions qu'il n'y a effectivement pas d'élément unité : si une telle fonction e existait, pour tout $n \in \mathbb{N}$, notons c_n la fonction de \mathcal{E} définie par $c_n(x) = \cos nx$. Nous aurions alors, pour tout $n \in \mathbb{N}$, $(c_n * e)(0) = c_n(0)$, soit $\int_0^{2\pi} e(-t) \cos nt \ dt = 1$, ce qui contredit manifestement le théorème de Riemann-Lebesgue.

3. Soit $f \in \mathcal{E}$. Notons $M = ||f||_{\infty} = \max_{[0,2\pi]} |f|$.

Soit $\alpha \in]0, \pi[$. Nous avons, pour tout $x \in \mathbb{R}$,

$$(e_n * f)(x) - f(x) = \int_{-\pi}^{\pi} e_n(t) \left(f(x - t) - f(x) \right) dt = I_1 + I_2 + I_3 ,$$

où I_1 , I_2 , I_3 sont les intégrales de cette même expression sur les intervalles $[-\pi, -\alpha]$, $[-\alpha, \alpha]$ et $[\alpha, \pi]$ respectivement.

Donnons-nous alors un $\varepsilon > 0$. Comme f est uniformément continue sur \mathbb{R} (car elle est continue et périodique), nous pouvons trouver un $\alpha > 0$ tel que

$$\forall (x,y) \in \mathbb{R}^2 \qquad |x-y| \le \alpha \Longrightarrow |f(x) - f(y)| \le \frac{\varepsilon}{3}.$$

Pour un tel choix de α , nous avons

$$|I_2| \le \int_{-\alpha}^{\alpha} e_n(t) |f(x-t) - f(x)| dt \le \frac{\varepsilon}{3} \int_{-\alpha}^{\alpha} e_n(t) dt \le \frac{\varepsilon}{3} \int_{-\pi}^{\pi} e_n = \frac{\varepsilon}{3}.$$

Cet α étant maintenant fixé, nous avons

$$|I_3| = \left| \int_{\alpha}^{\pi} e_n(t) \left(f(x-t) - f(x) \right) dt \right| \le 2M \int_{\alpha}^{\pi} e_n(t) dt ,$$

et cette dernière expression tend vers 0 lorsque n tend vers $+\infty$ en vertu de la convergence uniforme de la suite (e_n) vers 0 sur $[\alpha, \pi]$; il est donc possible de la rendre inférieure à $\frac{\varepsilon}{3}$ pour n assez grand (et ceci indépendamment de x). Procédant de même pour majorer $|I_1|$, nous déduisons l'existence d'un entier N tel que

$$\forall n \in \mathbb{N} \qquad n \ge N \Longrightarrow ||e_n * f - f||_{\infty} \le \varepsilon$$
,

donc la convergence uniforme de $(e_n * f)$ vers f sur \mathbb{R} .

On dit que la suite (e_n) est une **approximation de l'unité** 2π -**périodique** car, pour tout f de \mathcal{E} , les fonctions $e_n * f$ approchent f uniformément.

4. C'est une conséquence immédiate de la formule de Fubini :

$$\int_0^{2\pi} f * g = \int_0^{2\pi} \left(\int_0^{2\pi} f(t) g(x - t) dt \right) dx = \int_0^{2\pi} f(t) \left(\int_0^{2\pi} g(x - t) dx \right) dt$$

et l'intégrale intérieure est égale à $\int_0^{2\pi} g(s)\; ds,$ d'où le résultat.

EXERCICE 5:

Produit de convolution dans $\mathcal{C}(\mathbb{R}_+)$

Pour traiter cet exercice, on pourra admettre la "formule de Fubini dans un triangle" :

Soit $a \in \mathbb{R}_+^*$. Soit $f: T_a \to \mathbb{C}$, continue, où T_a est le "triangle":

$$T_a = \{(x, y) \in \mathbb{R}^2 \mid x \ge 0, y \ge 0, x + y \le a\}.$$

On a alors l'égalité

$$\int_0^a \left(\int_0^{a-x} f(x,y) \, dy \right) \, dx = \int_0^a \left(\int_0^{a-y} f(x,y) \, dx \right) \, dy$$

et la valeur commune de ces deux intégrales sera notée $\iint_{T_a} f(x,y) \; dx \; dy \; \; ou \; \iint_{T_a} f$.

Soit $\mathcal{E} = \mathcal{C}(\mathbb{R}_+)$ le \mathbb{C} -espace vectoriel des fonctions continues de \mathbb{R}_+ vers \mathbb{C} . Pour tous f, g de \mathcal{E} , on définit une fonction f * g par la relation

$$\forall x \in \mathbb{R}_+ \qquad (f * g)(x) = \int_0^x f(t) g(x - t) dt.$$

- 1. Vérifier que * est une loi interne commutative dans \mathcal{E} .
- **2.** Montrer que \mathcal{E} , muni des lois + (addition usuelle) et *, possède une structure de pseudo-algèbre sur \mathbb{C} (pas d'élément unité).
- **3.** Montrer que, pour tout $a \in \mathbb{R}_+$, l'intégrale $\int_0^a (f * g)(x) dx$ peut s'exprimer comme une intégrale double.
- 4. Montrer que, si f et g sont intégrables sur \mathbb{R}_+ , alors f * g est intégrable sur \mathbb{R}_+ et

$$\int_{\mathbb{R}_+} f * g = \left(\int_{\mathbb{R}_+} f \right) \left(\int_{\mathbb{R}_+} g \right) .$$

1. Le changement de variable linéaire t = xu donne

$$(f * g)(x) = x \int_0^1 f(xu) g(x(1-u)) du$$

et on en déduit la continuité de f * g sur \mathbb{R}_+ "par application des théorèmes usuels" (comme il est d'usage de dire), donc * est une loi interne dans \mathcal{E} . La commutativité résulte immédiatement du changement de variable u = x - t.

2. La distributivité de la convolution par rapport à l'addition f * (g + h) = f * g + f * h est immédiate.

L'associativité utilise "Fubini dans un triangle" :

$$\begin{aligned} \big[(f*g)*h \big](x) &= \int_0^x (f*g)(x-t) \, h(t) \, dt \\ &= \int_0^x \left(\int_0^{x-t} f(u) \, g(x-t-u) \, du \right) \, h(t) \, dt \\ &= \int_0^x \left(\int_0^{x-u} g(x-t-u) \, h(t) \, dt \right) \, f(u) \, du \\ &= \int_0^x (g*h)(x-u) \, f(u) \, du = \big[f*(g*h) \big](x) \, . \end{aligned}$$

Pour prouver qu'il n'y a pas d'élément neutre, on montre que la relation e*1=1, avec $e \in \mathcal{E}$, est impossible : en effet, cela entraı̂nerait $\int_0^x e(t) dt = 1$ pour tout $x \in \mathbb{R}_+$, ce qui est manifestement impossible pour x = 0.

3. Grâce à "Fubini dans un triangle", on obtient

$$\int_{0}^{a} (f * g)(x) dx = \int_{0}^{a} (f * g)(a - t) dt$$

$$= \int_{0}^{a} \left(\int_{0}^{a - t} f(u) g(a - t - u) du \right) dt$$

$$= \int_{0}^{a} \left(\int_{0}^{a - u} g(a - u - t) dt \right) f(u) du$$

$$= \int_{0}^{a} \left(\int_{0}^{a - u} g(t) dt \right) f(u) du$$

$$= \iint_{T_{a}} f(x) g(y) dx dy,$$

avec $T_a = \{(x, y) \in \mathbb{R}^2 \mid x \ge 0, y \ge 0, x + y \le a\}.$

4. Supposons f et g intégrables sur \mathbb{R}_+ . Notons d'abord que $|f*g| \leq |f|*|g|$. Ensuite, pour tout a>0, notons R_a le pavé $[0,a]^2$, on a, d'après la question précédente,

$$\int_0^a |f*g| \leq \int_0^a |f|*|g| = \iint_{T_a} |f(x)g(y)| \; dx \, dy \leq \iint_{R_a} |f(x)g(y)| \; dx \, dy = \left(\int_0^a |f|\right) \left(\int_0^a |g|\right) \; ,$$

ce qui prouve l'intégrabilité de f * g sur \mathbb{R}_+ .

Pour tout a > 0, posons

$$\varphi(a) = \left(\int_0^a f \right) \left(\int_0^a g \right) - \int_0^a f * g = \iint_{R_a} f(x) g(y) dx dy - \iint_{T_a} f(x) g(y) dx dy.$$

Alors
$$\varphi(a) = \iint_{R_a \setminus T_a} f(x) g(y) dx dy$$
, donc

$$|\varphi(a)| \le \iint_{R_a \setminus T_a} |f(x) g(y)| dx dy \le \iint_{R_a \setminus R_{\frac{a}{2}}} |f(x) g(y)| dx dy,$$

c'est-à-dire

$$|\varphi(a)| \leq \left(\int_0^a |f|\right) \; \left(\int_0^a |g|\right) - \left(\int_0^{\frac{a}{2}} |f|\right) \; \left(\int_0^{\frac{a}{2}} |g|\right) \; ,$$

d'où $\lim_{a \to +\infty} \varphi(a) = 0$, ce qu'il fallait démontrer.

Pour prouver la "formule de Fubini dans un triangle", on peut montrer d'abord que, pour toute fonction d'une variable $\varphi:[0,a]\to\mathbb{C}$, continue, on a

$$\int_0^a \left(\int_0^{a-y} \varphi(x) \ dx \right) \ dy = \int_0^a (a-x) \ \varphi(x) \ dx \ ,$$

puis appliquer Fubini (celui qui est au programme) à la fonction $g:[0,a]^2 \to \mathbb{C}$ définie par g(x,y)=f(x,y)-f(x,a-x) si $(x,y)\in T_a$ et g(x,y)=0 sinon.

EXERCICE 6:

1. On admet $\int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}.$

Soit $f: \mathbb{R}_+ \to \mathbb{C}$, continue par morceaux, intégrable sur \mathbb{R}_+ . On suppose que la fonction $g: t \mapsto \frac{f(t) - f(0^+)}{t}$ est intégrable sur]0,1]. Montrer que

$$\lim_{\lambda \to +\infty} \int_0^{+\infty} f(t) \frac{\sin \lambda t}{t} dt = \frac{\pi}{2} f(0^+).$$

Définition

Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction continue par morceaux (c.p.m.) et intégrable sur \mathbb{R} . Pour tout $\lambda \in \mathbb{R}$, on peut définir l'intégrale

$$\widehat{f}(\lambda) = \int_{-\infty}^{+\infty} f(t) e^{-i\lambda t} dt.$$

La fonction $\widehat{f}: \mathbb{R} \to \mathbb{C}$ est la transformée de Fourier de f.

Dans ce qui suit, la fonction f est supposée continue par morceaux et de classe \mathcal{C}^1 par morceaux, intégrable sur \mathbb{R} . On se propose de démontrer la **formule de réciprocité** suivante :

$$\forall x \in \mathbb{R} \qquad \frac{f(x^+) + f(x^-)}{2} = \frac{1}{2\pi} \lim_{A \to +\infty} \int_{-A}^{A} \widehat{f}(\lambda) e^{ix\lambda} d\lambda . \tag{*}$$

2. Pour tous $n \in \mathbb{N}^*$ et $\lambda \in \mathbb{R}$, on pose $F_n(\lambda) = \int_{-n}^n f(t) e^{-i\lambda t} dt$.

Montrer, pour tous $n \in \mathbb{N}^*$, $x \in \mathbb{R}$ et $A \in \mathbb{R}^+_+$, l'égalité

$$\int_{-A}^{A} F_n(\lambda) e^{i\lambda x} d\lambda = 2 \int_{x-n}^{x+n} f(x-u) \frac{\sin Au}{u} du.$$

3. En utilisant la question 1., montrer l'égalité (*) ci-dessus.

1. L'intégrale $F(\lambda) = \int_0^{+\infty} f(t) \frac{\sin \lambda t}{t} dt$ est bien définie pour tout $\lambda \in \mathbb{R}$: en effet, on a $\left| f(t) \frac{\sin \lambda t}{t} \right| \le |\lambda| f(t)|$, donc la fonction $t \mapsto f(t) \frac{\sin \lambda t}{t}$ est intégrable sur \mathbb{R}_+^* pour tout réel λ .

Pour tout $\lambda \in \mathbb{R}_+^*$, le changement de variable $x = \lambda t$ donne immédiatement

$$\int_0^{+\infty} \frac{\sin \lambda t}{t} dt = \int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2} , \quad \text{donc}$$

$$F(\lambda) - \frac{\pi}{2} f(0^+) = \int_0^{+\infty} (f(t) - f(0^+)) \frac{\sin \lambda t}{t} dt$$
$$= \int_0^1 \frac{f(t) - f(0^+)}{t} \sin \lambda t dt + \int_1^{+\infty} \frac{f(t)}{t} \sin \lambda t dt - f(0^+) \int_{\lambda}^{+\infty} \frac{\sin x}{x} dx.$$

La fonction $t\mapsto \frac{f(t)}{t}$ est intégrable sur $[1,+\infty[$ et la fonction g est intégrable sur]0,1]. Les deux premiers termes tendent donc vers zéro lorsque λ tend vers $+\infty$ (théorème de Riemann-Lebesgue, cf. à la fin). Enfin, la (semi-)convergence de l'intégrale $\int_0^{+\infty} \frac{\sin t}{t} \ dt$ montre que le troisième terme aussi tend vers 0 lorsque λ tend vers $+\infty$.

2. Pour tous $n \in \mathbb{N}^*$, $x \in \mathbb{R}$ et $A \in \mathbb{R}_+^*$, on a

$$\int_{-A}^{A} F_n(\lambda) e^{ix\lambda} d\lambda = \int_{-A}^{A} \left(\int_{-n}^{n} f(t) e^{-i\lambda t} dt \right) e^{ix\lambda} d\lambda$$
$$= \int_{-n}^{n} f(t) \left(\int_{-A}^{A} e^{i(x-t)\lambda} d\lambda \right) dt$$

(cette interversion des intégrations est justifiée par le théorème de Fubini si f est continue sur [-n,n] et reste valable si f est seulement continue par morceaux : il suffit alors de décomposer par la relation de Chasles en faisant intervenir les points de discontinuité de f dans le segment [-n,n]). On a donc

$$\int_{-A}^{A} F_n(\lambda) e^{ix\lambda} d\lambda = 2 \int_{-n}^{n} f(t) \frac{\sin A(x-t)}{x-t} dt = 2 \int_{x-n}^{x+n} f(x-u) \frac{\sin Au}{u} du ,$$

la fonction $u\mapsto \frac{\sin Au}{u}$ étant évidemment prolongée par continuité en zéro.

3. On en déduit

$$\int_{-A}^{A} F_n(\lambda) e^{ix\lambda} d\lambda = 2 \left(\int_{0}^{n-x} f(x+v) \frac{\sin Av}{v} dv + \int_{0}^{x+n} f(x-u) \frac{\sin Au}{u} du \right).$$

Pour x et A fixés, ces intégrales ont des limites finies lorsque n tend vers $+\infty$ car f est intégrable sur \mathbbm{R} et $\frac{\sin Au}{u}$ (évidemment prolongé par continuité pour u=0) est borné.

D'autre part, la majoration

$$|\widehat{f}(\lambda)| e^{ix\lambda} - F_n(\lambda)| e^{ix\lambda}| = |\widehat{f}(\lambda) - F_n(\lambda)| \le \int_{-\infty}^{-n} |f| + \int_{n}^{+\infty} |f||,$$

avec f intégrable sur \mathbb{R} , montre que la suite de fonctions $(\lambda \mapsto F_n(\lambda) e^{ix\lambda})_{n \in \mathbb{N}^*}$ converge uniformément sur \mathbb{R} vers la fonction $\lambda \mapsto \widehat{f}(\lambda) e^{ix\lambda}$.

Pour tout $A \in \mathbb{R}_+^*$, posons $g(A) = \int_{-A}^A \widehat{f}(\lambda) \ e^{ix\lambda} \ d\lambda$. On a donc

$$g(A) = \lim_{n \to +\infty} \int_{-A}^{A} F_n(\lambda) e^{ix\lambda} d\lambda$$
$$= 2 \int_{0}^{+\infty} f(x+u) \frac{\sin Au}{u} du + 2 \int_{0}^{+\infty} f(x-u) \frac{\sin Au}{u} du.$$

Or, si f est c.p.m. et de classe \mathcal{C}^1 par morceaux, les "taux d'accroissement" $\frac{f(x+u)-f(x^+)}{u}$ et $\frac{f(x-u)-f(x^-)}{u}$ ont des limites finies lorsque u tend vers zéro par valeurs supérieures. Les conditions d'application de la question $\mathbf{1}$. sont alors remplies, ce qui permet d'écrire que $\lim_{A\to +\infty} g(A) = \pi \left(f(x^+) + f(x^-)\right)$.

Remarque. Sans hypothèse supplémentaire sur f, on a simplement démontré l'existence d'une limite de l'expression ("intégrale symétrique") $g(A) = \int_{-A}^{A} \widehat{f}(\lambda) e^{ix\lambda} d\lambda$ lorsque A tend vers $+\infty$. Cela n'implique pas la convergence (même la "semi-convergence") de l'intégrale généralisée $\int_{-\infty}^{+\infty} \widehat{f}(\lambda) e^{ix\lambda} d\lambda$: en effet, les intégrales $\int_{-\infty}^{0} et \int_{0}^{+\infty}$, considérées séparément, peuvent être divergentes.

Sous les hypothèses de cet exercice, en supposant de plus f continue sur \mathbb{R} , le "signal" f peut être entièrement retrouvé lorsqu'on connaît sa transformée de Fourier \widehat{f} . Si on suppose de plus \widehat{f} intégrable sur \mathbb{R} (ce qui peut résulter d'hypothèses de régularité faites sur la fonction f), la formule de réciprocité de Fourier peut alors s'écrire

$$\forall x \in \mathbb{R}$$
 $f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \widehat{f}(\lambda) e^{ix\lambda} d\lambda$,

soit

$$\forall x \in \mathbb{R}$$
 $f(x) = \frac{1}{2\pi} \widehat{\widehat{f}}(-x)$, ou encore $\widehat{\widehat{f}}(x) = 2\pi f(-x)$.

Pour finir, voici l'énoncé et une preuve du théorème de Riemann-Lebesgue :

Soit I un intervalle de \mathbb{R} . Soit $f:I\to\mathbb{C}$ une fonction continue par morceaux et intégrable sur I.

Alors l'intégrale $\tilde{f}(\lambda) = \int_I f(t) e^{i\lambda t} dt$ tend vers zéro lorsque le réel λ tend vers $+\infty$.

Preuve : L'existence de $\tilde{f}(\lambda)$ résulte trivialement de l'intégrabilité de f sur I.

• Plaçons-nous d'abord dans le cas où I est un segment : I = [a,b]. \triangleright si f est la fonction caractéristique d'un intervalle $J = [\alpha,\beta]$ (ou $]\alpha,\beta[$ ou $[\alpha,\beta[$ ou $]\alpha,\beta[$) avec $a \le \alpha \le \beta \le b$, alors

$$|\tilde{f}(\lambda)| = \left| \int_{J} e^{i\lambda t} dt \right| = \left| \frac{e^{i\lambda\beta} - e^{i\lambda\alpha}}{i\lambda} \right| \le \frac{2}{|\lambda|},$$

et le résultat est évident.

 \triangleright si f est en escalier sur [a,b], le résultat est encore vrai car f est combinaison linéaire de fonctions caractéristiques d'intervalles.

ightharpoonup si f est une fonction c.p.m. quelconque sur [a,b], f est limite uniforme sur I d'une suite de fonctions en escalier. Cela signifie que, pour tout $\varepsilon > 0$, il existe une fonction φ , en escalier sur [a,b] telle que $\forall x \in [a,b] \quad |f(x)-\varphi(x)| \leq \frac{\varepsilon}{2(b-a)}$. On a alors $\int_I |f-\varphi| \leq \frac{\varepsilon}{2}$. Donc, pour tout $\lambda \in \mathbb{R}$,

$$|\tilde{f}(\lambda) - \tilde{\varphi}(\lambda)| = \left| \int_{I} \left(f(t) - \varphi(t) \right) e^{i\lambda t} dt \right| \leq \int_{I} |f - \varphi| \leq \frac{\varepsilon}{2}.$$

Puisque φ est en escalier, on peut trouver un réel Λ tel que, pour $\lambda \geq \Lambda$, on ait $|\tilde{\varphi}(\lambda)| \leq \frac{\varepsilon}{2}$ et donc $|\tilde{f}(\lambda)| \leq \varepsilon$.

• Soit maintenant I un intervalle quel conque de \mathbbm{R} . Si on se donne $\varepsilon>0$, on peut trouver un segment J inclus dans I tel que $\int_K |f| \leq \frac{\varepsilon}{2}$, en posant $K = I \setminus J$ (K est, soit un intervalle, soit la réunion de deux intervalles). Alors

$$\tilde{f}(\lambda) = \int_{J} f(t) e^{i\lambda t} dt + \int_{K} f(t) e^{i\lambda t} dt ,$$

d'où l'on tire $|\tilde{f}(\lambda)| \leq \left| \int_J f(t) \; e^{i\lambda t} \; dt \right| + \frac{\varepsilon}{2}$. Or, il résulte de l'étude faite sur un segment que $\lim_{\lambda \to +\infty} \int_J f(t) \; e^{i\lambda t} \; dt = 0$; on peut alors trouver Λ tel que, pour $\lambda \geq \Lambda$, on ait $\left| \int_J f(t) \; e^{i\lambda t} \; dt \right| \leq \frac{\varepsilon}{2}$. Pour $\lambda \geq \Lambda$, on aura alors $|\tilde{f}(\lambda)| \leq \varepsilon$.

Remarque. Lorsque f est une fonction de classe C^1 sur un segment [a,b], une intégration par parties, puis une majoration des différents termes obtenus, permettent de conclure plus simplement.