Теория формальных языков. Рубежный контроль №1

Вариант №11

Банников Арсений

Теоретическая информатика и компьютерные технологии МГТУ им. Н.Э. Баумана ноябрь 2023

Содержание

Задача 1	2
Решение	2
Задача 2 Решение	3
Задача 3 Решение	4
Задача 4 Решение	5

Язык всех завершающихся систем переписывания строк из одного правила. Алфавит: $\{f,g,\to\}$

Решение

Докажем нерегулярность при помощи отрицания леммы о накачке для регулярных языков. Рассмотрим слово $f^{n+1} \to f^n$, очевидно то что накачка не может содержать символ \to , так как при положительной накачке количество таких символов увеличивается, но оно должно оставаться равным одному. Следовательно накачку можно выбрать только либо слева, либо справа от \to . При выборе накачки из фрагмента справа положительная накачка выводит слово из языка, а при выборе накачки из левого фрагмента отрицательная накачка выводит слово из языка.

Примеры накачек:

$$f^{n_1} f^{i(n+1-n_1-n_2)} f^{n_2} \to f^n \tag{1}$$

В такой накачке $n+1-n_1-n_2\geq 1\Rightarrow n_1+n_2< n+1$. Следовательно при отрицательной накачке (i=0) мы получим слово $f^{n_1+n_2}\to f^n$. Полученное слово не пренадлежит языку так как $n_1+n_2\leq n$.

$$f^{n+1} \to f^{n_1} f^{i(n-n_1-n_2)} f^{n_2}$$
 (2)

Данное слово эквивалентно $f^{n+1} \to f^{i(n-n_1-n_2)+n_1+n_2}$. Так как длина накачки ненулевая, то $n-n_1-n_2 \ge 1$. Взяв i=n+1 получим $(n+1)(n-n_1-n_2) \ge n \Rightarrow (n+1)(n-n_1-n_2)+n_1+n_2 \ge n$. А заначит полученное от положительной накачки слово не пренадлежит языку.

Мы рассмотрели все варианты накачки, а значит выбранное слово не накачивается, следовательно язык не регулярен.

Язык $\{a^{\frac{n}{\log_2 n}}b^n\}$

Решение

Заметим что область значений n не равна \mathbb{N} , так как например при n=8 степень при a имеет нецелое значение. Найдем область допустимых значений n. Очевидно, что $n\in\mathbb{N}\cap\{x\mid\frac{x}{\log_2x}\in\mathbb{N}\}$. Рассмотрим множество $\{x\mid\frac{x}{\log_2x}\in\mathbb{N}\}$, в него входят только x такие, что $\log_2x\in\mathbb{N}$. Для доказательства последнего утверждения допустим, что $\log_2x\in\mathbb{R}$, возможны два случая: либо $\log_2x\in\mathbb{I}$, либо $\log_2x\in\mathbb{Q}$. Если $\log_2x\in\mathbb{I}$, то $\frac{x}{\log_2x}\in\mathbb{I}$, но такое невозможно в силу правила построения множества. Если $\log_2x\in\mathbb{Q}$, то пусть $\log_2x\notin\mathbb{N}$ что означает, что $\log_2x=a+b,a\in\mathbb{N},b\in(0;1)\cap\mathbb{Q}$. Заметим что $x=2^{\log_2x}=2^a2^b$, но $2^a\in\mathbb{N}$, а $2^b\in\mathbb{I}$, из чего следует, что $2^a2^b\in\mathbb{I}$, а значит и $x\in\mathbb{I}$, но так как $x\in\mathbb{N}$, получили противоречие. Следовательно $x=2^p,p\in\mathbb{N}$.

Получаем, что множество $\{x\mid \frac{x}{\log_2 x}\in\mathbb{N}\}$ состоит из элементов вида $x=\frac{2^p}{p}, p\in\mathbb{N}$, следовательно $2^p=0\pmod{p}$. Это значит, что $p=2^m, m\in\mathbb{N}$. Следовательно $n=2^{2^m}, m\in\mathbb{N}$. Теперь заметим что при увеличении m количество символов a растет медленнее чем количество символов b (имеется в виду порядок роста). Но при накачке (если первый накачиваемый фрагмент состоит только из символов a, а второй только из символов b) рост количества букв у обеих частей линейный, следовательно в какой то момент нарушится отношение количества символов. Если же рассматривать вариант разбиения такой, что первый и второй фрагменты накачки состоят только из одинаковых букв, то очевидно что положительная накачка разрушает соотношение количества букв.

Итак, ниодно слово языка (при достаточно больших n) не накачивается, а значит язык не является KC

Грамматика

$$S \to SbbabSbaaabS$$
 (1)

$$S \to SSbS$$
 (2)

$$S \to a$$
 (3)

Решение

Будем рассматривать только правила (2) и (3). Рассмотрим слово $a^{n+1}(ba)^n$. Оно получается раскрытием второго нетерминала по правилу (2), сентенциальные формы следующие:

S SSbS SSSbSbS SSSSbSbS

• • •

Заметим, что если раскрывать только по второму и третьему правилу то количество букв то для слова ω верно, что $|\omega|_a=2m+1$ и $|\omega|_b=m$.

Рассмотрим пересечение данной граматики с регулярным языком $a^*(ba)^*$. Раскрытие по правилу (1) не лежит в пересечении из-за фрагмента baaab. Очевидно что мы должны выбирать такую накачку ω_2 , что $|\omega_2|_a = 2m$ и $|\omega_2|_b = m$, но такой фрагмент может быть только на границе фрагментов звездочных групп. Мы очевидно мы не можем выбрать такой фрагмент, так как положительная накачка породит слово где справа от первой встретившейся b будет последовательность из a длиной хотя бы 2, что не соответствует пересекаемому регулярному языку. Следовательно исходный язык не регулярен.

Язык всех скобочных последовательностей, являющихся сдвигами слов из языка Дика (скобки только круглые).

Решение

Исходный язык можно переписать как $\{\omega \mid |\omega|_{(} = |\omega|_{)}\}$