<u>Button Matrix - Documentation</u>

1 Circuit Board

1.1 Schematic

Figure 1: Schematic view of the circuit board design.

1.2 Layout - Top

Figure 2: View of the circuit board top as seen from the top.

1.3 Layout - Bottom

Figure 3: View of the circuit board bottom as seen from the bottom.

1.4 Layout - Hardware

Figure 4: Positioning of the hardware as seen from the top.

2 Hardware Description

2.1 74HC595 - 8-bit Shift Register

Figure 5: Schematic of the 8-bit shift register 74HC595.

Working principle:

The shift register has an internal $[\mathbf{q}_i, i \in [0, 7]]$ and an external $[\mathbf{Q}_i, i \in [0, 7]]$ 8-bit register. On a rising edge on SRCLK the values \mathbf{q}_i are shifted to \mathbf{q}_{i+1} $[i \in [0, 6],$ higher i first] and SER to \mathbf{q}_0 .

On a rising edge on RCLK the values of q_i are copied to Q_i $[i \in [0, 7]]$. These will only be visible externally if $\overline{\text{OE}}$ is LOW [otherwise the outputs will be in a high impedance state]. A LOW on $\overline{\text{SRCLR}}$ will set q_i $[i \in [0, 7]]$ LOW.

VCC and GND are required for the shift-register to work.

 q_7 can be used to pass the out-shifted bits on to another shift-register, if q_7 is connected to SER of the next shift-register [which will have to be clocked accordingly].

 Q_i - Output i; GND - Ground; q_7 - Serial output; \overline{SRCLR} - Clear internal shift-register on LOW; RCLK - Copy internal to external shift-register; SRCLK - shift in SER on rising edge; \overline{OE} - Output Enable; SER - Serial input; VCC - Supply Voltage.

2.2 74HC165 - 8-bit parrallel in, serial out register

Figure 6: Schematic of the parallel in, serial out IC 74HC165.

Working principle:

The parallel load, serial out IC has an internal $[d_i, i \in [0, 7]]$ and an external $[D_i, i \in [0, 7]]$ 8-bit register.

When \overline{PL} is LOW the D_i are copied to the d_i $[i \in [0,7]]$ asynchronously, i.e. without the need

for a clock.

When $\overline{\text{PL}}$ is HIGH the 74HC165 will function as a shift-register: on a positive edge on CP [if $\overline{\text{CE}}$ is low] the values d_i are shifted to d_{i+1} [$i \in [0,6]$, higher i first] and SER to d_0 . Additionally the complementary signal of the new d_7 will be visible on $\overline{d_7}$.

VCC and GND are required for the 74HC165 to work.

 d_7 can be used to pass the out-shifted bits on to another 74HC165, if d_7 is connected to SER of the next 74HC165 [which will need to have \overline{PL} low, \overline{CE} low and be clocked accordingly].

 \overline{PL} - Not Parallel Load; CP - Clock; D_i - Parallel Data In; d₇ - Serial Output; $\overline{d_7}$ - Not Serial Output; GND - Ground; SER - Serial In; \overline{CE} - Not Clock Enable; VCC - Supply Voltage.

2.3 CD4043B - CMOS Quad 3-State R/S-Latches [NOR]

Figure 7: Schematic of the quad 3-state R/S Latch CD4043B.

Table 1: Functional states of the quad 3-state R/S Latch CD4043B $[i \in [0,3]]$.

S_{i}	R_i	OE	Q_i
X	X	LOW	high impedance
LOW	LOW	HIGH	unchanged
HIGH	LOW	HIGH	HIGH
LOW	HIGH	HIGH	LOW
HIGH	HIGH	HIGH	HIGH

Working principle:

OE controls whether the ouputs Q_i [$i \in [0,3]$] are connected [OE is HIGH] or in a high-impedance state [like an open circuit; OE is LOW].

Each separate output Q_i [$i \in [0,3]$] can be set to HIGH [S_i HIGH] or reset to LOW [R HIGH] separately and asynchronously.

In case S_i and R_i are HIGH simultaneously, the respective output Q_i will read HIGH. NC is not connected internally.

 Q_i - Output $i; R_i$ - Reset $i; S_i$ - Set i; OE - Output Enable; GND - Ground; NC - Not Connected; VCC - Supply Voltage.

2.4 LED

Figure 8: Schematic view of a LED and its representation in circuit diagrams.

2.5 npn-Transistor

Figure 9: Schematic top view onto a npn-transistor and its representation in circuit diagrams.

2.6 Periphery

3 SPI-Programming

The Atmega 328p can be programmed using the serial peripheral interface [SPI].

Figure 10: SPI connectors - a) connector, b) cable.

I used an Arduino Uno programmed with the "Arduino ISP" sketch [under Examples in the Arduino IDE] to program my separate Atmega 328p.

In order for that to work one will have to keep the Reset pin of the programming Arduino Uno HIGH with a capacitor and connect the Reset pin of the device to be programmed with the pin as specified in the "Arduino ISP" sketch via #define RESET 10 [this being pin D10 per default].

Other than that each pin of the programmer will have to be connected with the pin of the same name of the programmee [i.e. e.g. MOSI-programmer \rightarrow MOSI-programmee].