Exp No: 2

Support Vector Machine (SVM) and Random Forest for Binary & Multiclass Classification

Aim

To build classification models using **Support Vector Machines (SVM)** and **Random Forest**, apply them to a dataset, and evaluate the models using performance metrics like accuracy and confusion matrix.

Algorithm

Part A: SVM Model

- 1. Import necessary libraries
- 2. Load and explore the dataset
- 3. Handle missing values if any
- 4. Encode categorical variables
- 5. Split dataset into training and testing sets
- Build SVM classifier using SVC()
- Train and predict

8. Evaluate the model using accuracy and confusion matrix

Part B: Random Forest Model

- Initialize Random Forest using RandomForestClassifier()
- 2. Train and predict
- 3. Evaluate and compare with SVM

Code:

1. Import libraries

import pandas as pd

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.svm import SVC

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score, confusion_matrix

import seaborn as sns

import matplotlib.pyplot as plt

2. Load dataset

iris = load_iris()

X = iris.data

y = iris.target

3. Feature scaling

scaler = StandardScaler()

 $X_scaled = scaler.fit_transform(X)$

4. Train-test split

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=42)

```
# Part A: SUPPORT VECTOR MACHINE
# 5. Initialize and train SVM
svm_model = SVC(kernel='linear') # You can also try 'rbf', 'poly'
svm_model.fit(X_train, y_train)
# 6. Predict and evaluate SVM
y_pred_svm = svm_model.predict(X_test)
print("SVM Accuracy:", accuracy_score(y_test, y_pred_svm))
print("SVM Confusion Matrix:\n", confusion_matrix(y_test, y_pred_svm))
# Part B: RANDOM FOREST
#7. Initialize and train Random Forest
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
rf_model.fit(X_train, y_train)
#8. Predict and evaluate Random Forest
y_pred_rf = rf_model.predict(X_test)
print("Random Forest Accuracy:", accuracy_score(y_test, y_pred_rf))
print("Random Forest Confusion Matrix:\n", confusion_matrix(y_test, y_pred_rf))
# 9. Visual comparison using seaborn heatmap
```

16

```
plt.figure(figsize=(10, 4))

plt.subplot(1, 2, 1)

sns.heatmap(confusion_matrix(y_test, y_pred_svm), annot=True, cmap='Blues', fmt='d')

plt.title("SVM Confusion Matrix")

plt.subplot(1, 2, 2)

sns.heatmap(confusion_matrix(y_test, y_pred_rf), annot=True, cmap='Greens', fmt='d')

plt.title("Random Forest Confusion Matrix")

plt.tight_layout()

plt.show()
```

OUTPUT:

