Low Level Speed Conversion Algorithm

Function Prototypes:

- 1. Initialize void function OLED_initialize with no parameters.
- 2. Initialize void function send_bit with the following parameters:
 - a. Pointer to GPIO_TypeDef.
 - b. Unsigned 32 bit integer pin_number.
 - c. Boolean variable bit state.
- 3. Initialize void function OLED_sendByte with character data type argument.
- 4. Initialize void function OLED_sendCharacter with character data type argument.
- 5. Initialize void function OLED sendCommand with character data type argument.
- 6. Initialize void function OLED_commandMode with no parameters.
- 7. Initialize void function OLED setWrite with no parameters.
- 8. Initialize void function OLED characterMode with no parameters.
- 9. Initialize void function OLED enable with no parameters.
- 10. Initialize void function OLED_sendString with pointer to char data type.
- 11. Initialize void function OLED sendInt with parameter integer to be displayed.
- 12. Initialize integer function calculate_speed with parameters being unsigned 16 integer period, and double data type numerator.
- 13. Initialize integer function send_speed with integer speed as its function argument.

Global Variable Declarations:

- 1. Unsigned 16 bit integer period, set to zero.
- 2. Integer revolution, set to zero.
- 3. Integer refresh rate, set to 4.

Callback Functions:

Note, the following function is called by HAL_TIM_IRQHandler() upon an input event.

HAL_TIM_IC_CaptureCallback(Timer_typedef * htim)

- 1. If the event is from TIM1, do the following:
 - a. Increment revolution until refresh_rate value is reached.
 - b. Reset the revolution to 1 if revolution is equal to refresh rate.
 - c. Set period equal to return value of
 - __HAL_TIM_GET_COMPARE(&htim,TIM_CHANNEL_1).
 - d. Reset counter back to zero with __HAL_TIM_SET_COUNTER(&htim,0);

main()

- Only including code I wrote. None of the code generated by cubeMX will be shown here.
- 1. Call OLED initialize.
- Call HAL TIM BASE Start(&htim2).
- 3. Call HAL TIM IC START IT(&htim1,TIM CHANNEL 1)
- 4. Set numerator to 2*pi*r*720. Where r is the radius in centimeters.
- 5. Set integer speed, boolean zero flag, and 16 bit unsigned integer count track to zero.
- 6. In an infinite loop:
 - a. While we are in speed mode:

- i. Set count_track equal to return value of __HAL_TIM_GET_COUNTER(&htim1).
- ii. If revolution is equal to refresh_rate:
 - 1. Set speed to zero.
 - Set speed equal to return value of calculate_speed(period,numerator).
 - 3. Set the period to zero.
 - 4. Set zero flag to one.
 - 5. Set revolution to zero.
- iii. Else, if count_track is greater than threshold(TBD) and zero_flag is equal to one, do the following:
 - 1. Set integer to display to zero.
 - 2. Call function send_speed(to_display).
 - 3. Set zero_flag back to zero.
- b. End while loop.

OLED_initialize()

- 1. Call LCD sendCommand(0x1).
- 2. Call LCD_sendCommand(0x38).
- 3. Call LCD_sendCommand(0x0E).
- 4. Call LCD sendCommand(0x06).
- 5. Call LCD_sendCommand(0x17).
- 6. Call LCD sendCommand(0x80).
- 7. Call LCD sendString("Speed").

send_bit(GPIO_typeDef *port, uint32 pin_number, bool bit_state)

- 1. If bit_state == 1:
 - a. Assign port -> BSRR the equivalent bitwise or with itself and pin_number.
- 2. Else if bit_state == 0:
 - a. Assign port -> BRR the equivalent bitwise or with itself and pin number.

OLED sendByte(char character)

- 1. Call send_bit(D0_Port,D0_Pin, character & 1).
- 2. Call send_bit(D1_Port,D1_Pin, character & 2).
- 3. Call send_bit(D2_Port,D2_Pin, character & 4).
- 4. Call send_bit(D3_Port,D3_Pin, character & 8).
- 5. Call send_bit(D4_Port,D4_Pin, character & 16).
- 6. Call send_bit(D5_Port,D5_Pin, character & 32).
- 7. Call send_bit(D6_Port,D6_Pin, character & 64).
- 8. Call send_bit(D7_Port,D7_Pin, character & 128).
- 9. Call HAL delay. Value passed in can be 1-10 (milliseconds).
- 10. Call send bit(EN Port,EN pin,0)

OLED_sendCharacter(char character)

- 1. Call OLED setWrite().
- 2. Call OLED_characterMode().
- 3. Call OLED enable.
- 4. Call OLED sendByte(character).

OLED_sendCommand(char character)

- 5. Call OLED_setWrite().
- 6. Call OLED commandMode().
- 7. Call OLED_enable.
- 8. Call OLED_sendByte(character).

OLED_commandMode()

1. Call send_bit(RS_Port,RS_Pin,0).

OLED_setWrite()

1. Call send_bit(RW_Port,RW_Pin,0).

OLED_characterMode()

1. Call send bit(RS Port,RS Pin,1).

OLED_enable()

- 1. Call HAL Delay(). Value can be 5-10 (milliseconds).
- 2. Call send_bit(EN_Port,EN_Pin,1).

OLED_sendString(char * string)

- 1. While we haven't reached the end of the string:
 - a. Call OLED_sendCharacter(*string++).

OLED sendInt(int to display)

- 1. Initialize char array of size 10 stringNumber.
- Call sprintf(stringNumber,integer value,to_display).
- 3. Call LCD_sendString(stringNumber).

send_speed(int speed)

- 1. Call OLED sendCommand(0x1).
- 2. Call OLED sendCommand(0x80).
- 3. Call OLED sendString("Speed:").
- 4. Call OLED_sendCommand(0xC0).
- 5. Call OLED_sendInt(speed).
- 6. Return 1.

Andrew Capatina 11/26/2017 Version 2.0

calculate_speed(uint16 period, double numerator)

- 1. Set double speed to zero.
- 2. Set speed equal to numerator divided by period.
- 3. Typecast speed to an integer, add .5 for rounding. Set equal to speed.
- 4. Return speed.