Model

Difference-in-Difference: A novel approach

Will Zhang

University of Washington

June 7, 2023

Table of contents

- Model and Setting
- 2 RDID identification

3 Distributional Robuestnesss Property

Background

Richardson and Tchetgen Tchetgen (2021) (Richardson *et al.*, 2023) introduced Bespoke IV (generalized diff-in-diff or GDID), which offer an alternative approach to identify causal effects under different assumptions than what's required for standard DID.

Shortcomings of existing estimators:

- DID requires treatment parallel trend assumption for identification and exogenous policy, which do not always hold.
- GDID requires an alternative set of assumptions including instrument parallel trend assumptions, exhibits lower efficiency in terms of standard error, etc.

Will Zhang (UW)

June 7, 2023 3/16

Intuition

Given different sets of assumptions, we can fit

- **1** OLS (fitting a linear regression of $Y_i(t)$ on a combination of covariates) to derive causal effect of interest in DID
- 2SLS (using valid covariates as instruments) to derive causal effect of interest in GDID

However, assumptions may not hold for either procedure. I propose a penalized OLS regression with 2SLS as penalization. Doing such, the estimator exhibits

- a set of possible causal parameters, where the result depends on the tuning parameter in penalized regression;
- potential distributional robustness properties given certain assumptions hold.

4/16

Will Zhang (UW) June 7, 2023

Notation

Below notations are described for our interest of average effect of treatment on the treated (ATT): $\mathrm{E}\left[Y_{i}^{1}\left(t_{1}\right)-Y_{i}^{0}\left(t_{1}\right)\mid A_{i}=1\right]$

- A_i denote treatment, where $A_i = 1$ if individual i is treated, $A_i = 0$ otherwise.
- $Y_i(t)$ denotes the outcome of interest at time t, where a population is observed in two periods: a pre-treatment period, $t=t_0$; and, a post-treatment period, $t=t_1$.
- $Z_i(t)$ and $U_i(t)$ denote vectors of measured and unmeasured variables: $(Z_{i,1}, \ldots, Z_{i,p})^{\top}$, and similarly $(U_{i,1}, \ldots, U_{i,q})^{\top}$.
- $Y_i^a(t)$ denote individual's potential outcome at time t.

Proposed estimator: Robust diff-in-diff (RDID)

$$heta_{ ext{RDID}}(\gamma) := rg \min_{ heta} \left\{ \mathcal{L}_{ ext{OLS}}(heta) + \gamma \mathcal{L}_{ ext{IV}}(heta)
ight\}$$

where θ is the treatment effect, $\gamma \in [-1, \infty)$ is the tuning parameter, with defined loss functions:

$$\mathcal{L}_{\text{OLS}}(\theta; Y, Z, A) := \mathbb{E}\left[Y_i(t) - \theta A_i t - \mu_i - \nu_t - \beta^\top Z_{it}\right]^2,$$

$$\mathcal{L}_{\text{IV}}(\theta; Y, Z, A) := \mathbb{E}\left[Z_i(Y_{*i} - \alpha - \theta A_i)\right]^\top \mathbb{E}\left[Z_i Z_i^\top\right]^{-1} \mathbb{E}\left[Z_i(Y_{*i} - \alpha - \theta A_i)\right]$$

where we assume Z is not time-varying for simplicity.

- μ_i, ν_t denote individual and time fixed effect, respectively
- $Y_{*i} = Y_i(t_1) Y_i(t_0)$
- $\alpha = E[Y_i^{a=0}(t_1) Y_i^{a=0}(t_0) \mid Z = 0]$ accounts for baseline difference of potential outcome of no treatment between two periods.

Will Zhang (UW) June 7, 2023 6/16

RDID as Anchor Regression (AR)

We can drop (i, t) notations for simplicity.

$$\mathcal{L}_{\mathrm{OLS}}(\theta; Y, A) := \mathrm{E}\left[Y_* - \alpha - \theta A\right]^2$$
, where $\alpha = \nu_{t=1} - \nu_{t=0}$

$$\mathcal{L}_{\mathrm{IV}}(\theta; Y, Z, A) := \mathrm{E}\left[Z\left(Y_* - \alpha - \theta A\right)\right]^{\top} \mathrm{E}\left[ZZ^{\top}\right]^{-1} \mathrm{E}\left[Z\left(Y_* - \alpha - \theta A\right)\right]$$

Let $\Theta = (\alpha, \theta)^{\top}$ and $A_* = (1, A)^{\top}$, we express the penalized regression as Anchor Regression (AR):

$$\Theta_{\mathrm{RDID}}(\gamma) = \underset{\Theta}{\arg\min}\{\mathrm{E}[(Y_* - \Theta^\top A_*)^2] + \gamma \mathrm{E}[(P_Z(Y_* - \Theta^\top A_*))^2]\},$$

where P_Z denotes the L2-projection on the linear span from Z.

 (UW)
 June 7, 2023
 7/16

Closed form solution

Let (Y, Z, A) consist of n row-wise random vector (Y, Z, A) respectively. We express sample analog

$$\hat{\Theta}_{\mathrm{RDID}}^{\textit{n}}(\gamma) = \underset{\Theta}{\arg\min} \{ \|\mathbf{Y}_* - \mathbf{A}_* \Theta\|_2^2 + \gamma \, \|\boldsymbol{\Pi}_{\mathbf{Z}}(\mathbf{Y}_* - \mathbf{A}_* \Theta)\|_2^2 \},$$

where $\Pi_{\mathbf{Z}} \in \mathbb{R}^{n \times n}$ is projection matrix. i.e. $\Pi_{\mathbf{Z}} := \mathbf{Z} (\mathbf{Z}^{\top} \mathbf{Z})^{-1} \mathbf{Z}^{\top}$, we obtain the closed form solution

$$\hat{\Theta}_{\mathrm{RDID}}^{n}(\gamma) = \left[\mathbf{A}_{*}^{\top} \left(\mathbf{I} + \gamma \Pi_{\mathbf{Z}}\right) \mathbf{A}_{*}^{\top}\right]^{-1} \mathbf{A}_{*}^{\top} \left(\mathbf{I} + \gamma \Pi_{\mathbf{Z}}\right) \mathbf{Y}_{*},$$

where $\Pi_Z = \mathbf{Z} \left(\mathbf{Z}^{ op}\mathbf{Z}\right)^{-1}\mathbf{Z}^{ op}$ is the orthogonal projection onto the column space of **Z**.

9/16

Assumptions for RDID

Suppose that $Z = (Z_1, Z_2)$ and instead of taking all of Z as a candidate bespoke instrumental variable:

- take Z_1 only as a bespoke instrumental variable
- Z_2 are additional measured covariates that we adjust for.

We begin by assuming:

- **1** Consistency for the treated, $Y(t_1) = Y^a(t_1)$, if A = a
- 2 Positivity (i.e., a small constant c>0, such that for any z such that $\Pr(Z=z\mid A=1)>c$ it must be that $\Pr(Z=z\mid A=0)>c$
- **3** No anticipation of future treatment (i.e., at t_0 individuals do not anticipate the treatment received at t_1), such that $E[Y(t_0) | Z] = E[Y^a(t_0) | Z]$), for all a.

Above are standard assumptions required for DID besides parallel trend assumption.

Will Zhang (UW) June 7, 2023

Additional Assumptions for RDID

- **4** Z_1 is relevant for predicting treatment: $E[A \mid Z_1, Z_2]$ depends on Z_1 ;
- **6** No interaction between A and Z_1 in causing $Y^a(t_1)$ conditional on Z_2 and A=1, such that

$$\mathbb{E}\left[Y^{a}(t_{1}) - Y^{0}(t_{1}) \mid A = a, Z_{1}, Z_{2}\right] = \mathbb{E}\left[Y^{a}(t_{1}) - Y^{0}(t_{1}) \mid A = a, Z_{1} = 0, Z_{2}\right]$$

6 $\exists \gamma \in (0,\infty)$ s.t. $(\mathcal{C}_1)_{2,2} \times \mathsf{bias}(\theta_{\mathrm{OLS}}) + (\mathcal{C}_2)_{2,2} \times \mathsf{bias}(\theta_{\mathrm{IV}}) = \mathsf{0}$, where

$$\begin{aligned} \text{bias}(\theta_{\text{OLS}}) &= \text{E}\left[Y^{0}\left(t_{1}\right) - Y^{0}\left(t_{0}\right) \mid A = 1\right] - \text{E}\left[Y^{0}\left(t_{1}\right) - Y^{0}\left(t_{0}\right) \mid A = 0\right] \\ \text{bias}(\theta_{\text{IV}}) &= \frac{\text{E}[Y^{a}(t_{1}) - Y^{t_{0}}(1) \mid A - a, Z_{1}, Z_{2}] - \text{E}[Y^{a}(t_{1}) - Y^{t_{0}}(1) \mid A = a, Z_{1} = 0, Z_{2}]}{\text{E}[A \mid Z_{1} = z_{1}, Z_{2}] - \text{E}[A \mid Z_{1} = 0, Z_{2}]} \end{aligned}$$

 $\mathcal{C}_1 = I - \gamma \mathrm{E}[AA^\top]^{-1} \mathrm{E}[AZ^\top] \mathrm{E}[ZZ^\top]^{-1} \left(\mathrm{E}[ZZ^\top] (I + \gamma \mathrm{E}[ZA^\top] \mathrm{E}[AA^\top]^{-1} \mathrm{E}[AZ^\top] \mathrm{E}[ZZ^\top]^{-1}) \right)^{-1} \mathrm{E}[ZZ^\top]^{-1} \mathrm{E}[ZA^\top]$

 $\mathcal{C}_2 = I - \tfrac{1}{\gamma} (\mathbb{E}[AZ^\top] \mathbb{E}[ZZ^\top]^{-1} \mathbb{E}[ZA^\top])^{-1} \mathbb{E}[AA^\top] (\mathbb{E}[AA^\top] (I + \tfrac{1}{\gamma} \mathbb{E}[AA^\top] (\mathbb{E}[AZ^\top] \mathbb{E}[ZZ^\top]^{-1} \mathbb{E}[ZA^\top])^{-1} \mathbb{E}[AA^\top]))^{-1} \mathbb{E}[AA^\top]$

Will Zhang (UW) June 7, 2023 10 / 16

RDID Identification

We want to identify the average treatment effect on treated

$$E[Y^{a=1}(t_1) - Y^{a=0}(t_1) \mid A = 1, Z] = \psi(Z)$$

Suppose assumptions 1-6 hold. For $z_1 \neq 0$ and $\gamma \in (0, \infty)$, we have

$$\psi(Z) = \frac{\theta_{\text{RDID}} - (\mathcal{C}_1)_{2,1} \alpha_{\text{OLS}} - (\mathcal{C}_2)_{2,1} \alpha_{\text{IV}}}{(\mathcal{C}_1)_{2,2} + (\mathcal{C}_2)_{2,2}}$$

4日 → 4周 → 4 重 → 4 重 → 9 9 0 0 Will Zhang (UW) June 7, 2023 11 / 16

Structural equation model setup

We only assume the Z as the exogenous variable, and causal relations between Y, A, U, Z are ambiguous. Consider a possibly cyclic linear SEM, dropping * notations, as in Rothenhäusler *et al.* (2018):

$$[Y \quad A \quad U^{\top}] := [Y \quad A \quad U^{\top}]B + Z^{\top}M + \varepsilon^{\top},$$

- $Y \in \mathbb{R}$ is the difference in outcome between two periods,
- $A \in \mathbb{R}^2$ is the constant and treatment,
- $U \in \mathbb{R}^q$ are hidden variables with possible presence of causal relations,
- $Z \in \mathbb{R}^p$ are exogenous variables independent from the unobserved noise innovations ε .

Assuming I - B is invertible, under intervention do(Z := v):

$$[Y A U^{\top}] := (v^{\top}M + \varepsilon^{\top})(I - B)^{-1},$$

Will Zhang (UW) June 7, 2023 12 / 16

Distributional robustness of RDID

Recall the solution to RDID empirical minimization problem:

$$\hat{\Theta}_{\mathrm{RDID}}(\gamma) = \left[\mathbf{A}^{\top} \left(\mathbf{I} + \gamma \Pi_{\mathbf{Z}} \right) \mathbf{A} \right]^{-1} \mathbf{A}^{\top} \left(\mathbf{I} + \gamma \Pi_{\mathbf{Z}} \right) \mathbf{Y},$$

RDID is well-identified even if the model is under-identified. Then, RDID aims to possess interventional robustness over causal inference.

$$\Theta_{\mathrm{RDID}}(\gamma) = \underset{\Theta \in \mathbb{R}^2}{\mathsf{arg\,min}} \, \underset{v \in C(\gamma)}{\mathsf{sup}} \, E^{\mathrm{do}(Z := v)} \left[\left(Y - \Theta^\top A \right)^2 \right],$$

where
$$C(\gamma) := \left\{ v : \Omega \to \mathbb{R}^q : \mathsf{Cov}(v, \varepsilon) = 0, \mathrm{E}\left[vv^\top\right] \preceq (\gamma + 1) E\left(ZZ^\top\right) \right\}.$$

Will Zhang (UW) June 7, 2023 13 / 16

K-class estimator generalization

Define $\mathbf{X} = [\mathbf{Z}\mathbf{A}]$ with $\mathbf{Z} \in \mathbb{R}^{n \times ((2+q))}$. Given matrices are well-defined assumptions hold, with parameter $\kappa \in \mathbb{R}$:

$$\hat{\Theta}_{\mathrm{RDID}}^{n}(\kappa) = \left[\mathbf{X}^{\top} \left(I - \kappa \Pi_{\mathbf{Z}}^{\perp} \right) \mathbf{X} \right]^{-1} \mathbf{X}^{\top} \left(I - \kappa \Pi_{\mathbf{Z}}^{\perp} \right) \mathbf{Y},$$

where $I - \kappa \Pi_{\mathbf{Z}}^{\perp} = I - \kappa (I - \Pi_{\mathbf{Z}}) = (1 - \kappa)I + \kappa \Pi_{\mathbf{Z}}$.

K-class estimator with no included exogenous variables, coincides with the RDID(AR) estimator with penalty parameter $\gamma = \kappa/(1-\kappa)$, i.e.

- for $\kappa < 1$, $\hat{\Theta}_{K}^{n}(\kappa) = \hat{\Theta}_{RDID}^{n}\left(\frac{\kappa}{1-\kappa}\right)$;
- for $\gamma > -1$, $\hat{\Theta}_{PDID}^n(\gamma) = \hat{\Theta}_V^n(\gamma/(1+\gamma))$;

therefore, both exhibit distributional robustness properties under some assumptions, as shown in Jakobsen and Peters (2021).

14 / 16

RDID Robustness Properties

Causal inference versus minimizing prediction error Work in progress.

15 / 16

Will Zhang (UW) June 7, 2023

- D. B. Richardson and E. J. Tchetgen Tchetgen, *American Journal of Epidemiology*, 2021, **191**, 939–947.
- D. B. Richardson, T. Ye and E. J. Tchetgen Tchetgen, *Epidemiology*, 2023, **34**, 167–174.
- D. Rothenhäusler, N. Meinshausen, P. Bühlmann and J. Peters, *Anchor regression: heterogeneous data meets causality*, 2018, https://arxiv.org/abs/1801.06229.
- M. E. Jakobsen and J. Peters, *The Econometrics Journal*, 2021, **25**, 404–432.