Fundamentals of hypothesis testing

Patrick Rubin-Delanchy patrick.rubin-delanchy@bristol.ac.uk

School of Mathematics, University of Bristol

November 15, 2018

The hypothesis testing framework

In a standard hypothesis testing framework, the data are posited to follow one of two families of distributions, each referred to as a hypothesis.

The null hypothesis, denoted H_0 , generally represents a null, default position, e.g. "the drug has no effect".

The alternative hypothesis, denoted H_1 , generally represents a rival explanation for the data that would be of interest if true, e.g. "the drug works!"

The simplest possible example is that we have data $D = (X_1, \dots, X_n)$ and we are testing:

$$H_0: X_1, \ldots, X_n \overset{i.i.d}{\sim} \operatorname{normal}(0,1),$$
 versus, $H_1: X_1, \ldots, X_n \overset{i.i.d}{\sim} \operatorname{normal}(0.1,1).$

- We have fully specified H_0 . In practice we would rarely know the null distribution was normal, perhaps only that the mean was 0.
- We have fully specified H_1 . In practice we would rarely know the alternative distribution was normal, and in fact rarely know that the mean of interest was 0.1 (rather than simply larger than 0, for example).
- We have picked a simple and continuous distribution, making all computations straightforward. For example, even testing whether a coin is fair is more complicated.

The simplest possible example is that we have data $D = (X_1, \dots, X_n)$ and we are testing:

$$H_0: X_1, \ldots, X_n \overset{i.i.d}{\sim} \operatorname{normal}(0,1),$$
 versus, $H_1: X_1, \ldots, X_n \overset{i.i.d}{\sim} \operatorname{normal}(0.1,1).$

- We have fully specified H_0 . In practice we would rarely know the null distribution was normal, perhaps only that the mean was 0.
- We have fully specified H_1 . In practice we would rarely know the alternative distribution was normal, and in fact rarely know that the mean of interest was 0.1 (rather than simply larger than 0, for example).
- We have picked a simple and continuous distribution, making all computations straightforward. For example, even testing whether a coin is fair is more complicated.

The simplest possible example is that we have data $D = (X_1, \dots, X_n)$ and we are testing:

$$H_0: X_1, \ldots, X_n \overset{i.i.d}{\sim} \operatorname{normal}(0,1),$$
 versus, $H_1: X_1, \ldots, X_n \overset{i.i.d}{\sim} \operatorname{normal}(0.1,1).$

- We have fully specified H_0 . In practice we would rarely know the null distribution was normal, perhaps only that the mean was 0.
- We have fully specified H_1 . In practice we would rarely know the alternative distribution was normal, and in fact rarely know that the mean of interest was 0.1 (rather than simply larger than 0, for example).
- We have picked a simple and continuous distribution, making all computations straightforward. For example, even testing whether a coin is fair is more complicated.

The simplest possible example is that we have data $D = (X_1, \dots, X_n)$ and we are testing:

$$H_0: X_1, \ldots, X_n \overset{i.i.d}{\sim} \operatorname{normal}(0,1),$$
 versus, $H_1: X_1, \ldots, X_n \overset{i.i.d}{\sim} \operatorname{normal}(0.1,1).$

- We have fully specified H_0 . In practice we would rarely know the null distribution was normal, perhaps only that the mean was 0.
- We have fully specified H_1 . In practice we would rarely know the alternative distribution was normal, and in fact rarely know that the mean of interest was 0.1 (rather than simply larger than 0, for example).
- We have picked a simple and continuous distribution, making all computations straightforward. For example, even testing whether a coin is fair is more complicated.

Test statistic

A test statistic T is a real-valued function of the data T = g(D), which is used to decide which hypothesis is true.

We will assume:

- 1. The larger T, the more evidence there is in favour of H_1 .
- 2. T has a fully-specified distribution under H_0 , which we denote \mathbb{P}_0 .

Note that the second assumption is often much weaker than assuming a fully specified H_0 .

Test statistic

In our running example, we might use the test statistic

$$T = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Under H_0 ,

Test statistic

In our running example, we might use the test statistic

$$T = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Under H_0 ,

$$T \sim \mathsf{normal}\left\{0, \frac{1}{n}\right\}.$$

The p-value

The p-value, p, associated with the observed value of a test statistic, t, is the probability under the null of observing a test statistic as extreme as t, that is,

$$p = \mathbb{P}_0(T \ge t) = \mathbb{P}(T \ge t \mid H_0 \text{ holds}).$$

The p-value

In our running example, remember that:

$$T \sim \operatorname{normal}\left\{0, \frac{1}{n}\right\}$$

The p-value associated with t is

$$p = \mathbb{P}_0(T \ge t) = 1$$

where

$$\begin{split} \Phi(x) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \mathrm{e}^{-y^2/2} \, \mathrm{d}y. \qquad \qquad (= \mathbb{P}\{\mathsf{normal}(0,1) \leq x\}) \\ T &\sim \mathsf{N}(0,1/n) \\ T' &\sim \mathsf{N}(0,1) \\ T' &= (n)^{\wedge} 0.5^* T \end{split}$$

The p-value

In our running example, remember that:

$$T \sim \operatorname{normal}\left\{0, \frac{1}{n}\right\}$$

The p-value associated with t is

$$p = \mathbb{P}_0(T \ge t) = 1 - \Phi(\sqrt{n}t),$$

where

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} dy. \qquad (= \mathbb{P}\{\mathsf{normal}(0,1) \le x\})$$

So far we have treated the p-value as an observation p. Now we are going to think about the p-value before any data are observed. In this case the data are random rather than observed, and so the p-value is random too. Denote this random variable by P. We now need "two test statistics":

- 1. T: the random test statistic that would be observed if we observed D (our old t).
- 2. T^* : a hypothetical replicate of T under H_0 (our old T).

The p-value is now defined to be the *random variable*:

$$P = \mathbb{P}_0(T^* \geq T \mid T).$$

Assume H_0 holds. Then our example provides a generative model for P:

- 1. Generate data $X_1, \ldots, X_n \overset{i.i.d.}{\sim} \text{normal}(0,1)$
- 2. Compute $T = \frac{1}{n} \sum_{i=1}^{n} X_i$
- 3. Compute $P = \mathbb{P}_0(T^* \geq T \mid T) = 1 \Phi(\sqrt{n}T)$

Assume H_0 holds. Then our example provides a generative model for P:

- 1. Generate data $X_1, \ldots, X_n \overset{i.i.d.}{\sim} \text{normal}(0,1)$
- 2. Compute $T = \frac{1}{n} \sum_{i=1}^{n} X_i$
- 3. Compute $P = \mathbb{P}_0(T^* \geq T \mid T) = 1 \Phi(\sqrt{n}T)$

We'll now run this generative model m times to obtain a sample of p-values.

Theorem

Assume the test statistic T has a continuous distribution. Then, under the null hypothesis, the p-value is uniformly distributed on [0,1].

Proof.

Let $S_0(x) = \mathbb{P}_0(T \ge x)$, which is invertible by continuity of T. Then,

$$\mathbb{P}_0(P \leq x)$$

Theorem

Assume the test statistic T has a continuous distribution. Then, under the null hypothesis, the p-value is uniformly distributed on [0,1].

Proof.

Let $S_0(x) = \mathbb{P}_0(T \ge x)$, which is invertible by continuity of T. Then,

$$\mathbb{P}_0(P \le x) = \mathbb{P}_0\{\mathbb{P}_0(T^* \ge T \mid T) \le x\}$$

Theorem

Assume the test statistic T has a continuous distribution. Then, under the null hypothesis, the p-value is uniformly distributed on [0,1].

Proof.

Let $S_0(x) = \mathbb{P}_0(T \ge x)$, which is invertible by continuity of T. Then,

$$\mathbb{P}_0(P \le x) = \mathbb{P}_0\{\mathbb{P}_0(T^* \ge T \mid T) \le x\}$$
$$= \mathbb{P}_0\{S_0(T) \le x\}$$

Theorem

Assume the test statistic T has a continuous distribution. Then, under the null hypothesis, the p-value is uniformly distributed on [0,1].

Proof.

Let $S_0(x) = \mathbb{P}_0(T \ge x)$, which is invertible by continuity of T. Then,

$$\mathbb{P}_{0}(P \le x) = \mathbb{P}_{0}\{\mathbb{P}_{0}(T^{*} \ge T \mid T) \le x\}$$
$$= \mathbb{P}_{0}\{S_{0}(T) \le x\}$$
$$= \mathbb{P}_{0}\{T \ge S_{0}^{-1}(x)\}$$

Theorem

Assume the test statistic T has a continuous distribution. Then, under the null hypothesis, the p-value is uniformly distributed on [0,1].

Proof.

Let $S_0(x) = \mathbb{P}_0(T \ge x)$, which is invertible by continuity of T. Then,

$$\mathbb{P}_{0}(P \leq x) = \mathbb{P}_{0}\{\mathbb{P}_{0}(T^{*} \geq T \mid T) \leq x\}$$

$$= \mathbb{P}_{0}\{S_{0}(T) \leq x\}$$

$$= \mathbb{P}_{0}\{T \geq S_{0}^{-1}(x)\}$$

$$= S_{0}\{S_{0}^{-1}(x)\}$$

Theorem

Assume the test statistic T has a continuous distribution. Then, under the null hypothesis, the p-value is uniformly distributed on [0,1].

Proof.

Let $S_0(x) = \mathbb{P}_0(T \ge x)$, which is invertible by continuity of T. Then,

$$\mathbb{P}_{0}(P \leq x) = \mathbb{P}_{0}\{\mathbb{P}_{0}(T^{*} \geq T \mid T) \leq x\}$$

$$= \mathbb{P}_{0}\{S_{0}(T) \leq x\}$$

$$= \mathbb{P}_{0}\{T \geq S_{0}^{-1}(x)\}$$

$$= S_{0}\{S_{0}^{-1}(x)\}$$

$$= x$$

Rejecting the null hypothesis

In classical hypothesis testing, the null hypothesis is rejected when t exceeds a certain threshold (still assuming for simplicity that large test statistics are of interest).

This threshold, τ , is typically chosen according to a *false positive rate* (or significance level) α (e.g. $\alpha=0.05$) so that

$$\mathbb{P}_0(T \ge \tau) = \alpha.$$

Equivalently, we reject the null hypothesis if $p \le \alpha$ (i.e., $t \ge \tau \Leftrightarrow p \le \alpha$).

By the uniformity of P, a rejection event $P \leq \alpha$ occurs with probability α under the null hypothesis, hence:

The probability of rejecting the null hypothesis if it holds is α .

Rejecting the null hypothesis

In classical hypothesis testing, the null hypothesis is rejected when t exceeds a certain threshold (still assuming for simplicity that large test statistics are of interest).

This threshold, τ , is typically chosen according to a *false positive rate* (or significance level) α (e.g. $\alpha=0.05$) so that

$$\mathbb{P}_0(T \ge \tau) = \alpha.$$

Equivalently, we reject the null hypothesis if $p \le \alpha$ (i.e., $t \ge \tau \Leftrightarrow p \le \alpha$).

By the uniformity of P, a rejection event $P \leq \alpha$ occurs with probability α under the null hypothesis, hence:

The probability of rejecting the null hypothesis if it holds is α .

What makes a good test? We can answer that by considering the distribution of P under the alternative hypothesis.

To illustrate this we will:

- 1. Generate data $X_1, \ldots, X_n \overset{i.i.d.}{\sim}$ normal(0.1, 1)
- 2. Compute $T = \frac{1}{n} \sum_{i=1}^{n} X_i$
- 3. Compute $P = \mathbb{P}_0(T^* \geq T \mid T) = 1 \Phi(\sqrt{n}T)$ and repeat m times.

Quick recap

Remember that for a specified false positive rate α we reject the null hypothesis if we observe $p \le \alpha$, which is equivalent to $t \ge \tau$ if τ satisfies:

$$\mathbb{P}_0(T \ge \tau) = \alpha.$$

In our running example, with $\alpha = 0.05$ and n = 10,

$$0.05 = 1 - \Phi(\sqrt{10}\tau) \Leftrightarrow au = \frac{\Phi^{-1}(0.95)}{\sqrt{10}} \approx 0.52.$$

We would therefore reject the null hypothesis that the data were independent standard normals if we observed $p=1-\Phi(\sqrt{10}\frac{1}{10}\sum_{i=1}^{10}x_i)\leq 0.05$ or equivalently $t=\frac{1}{10}\sum_{i=1}^{10}x_i\geq 0.52$.

This guarantees that there is only a $\frac{5\%}{9}$ probability of rejecting $\frac{1}{9}$ if $\frac{1}{9}$ holds since:

$$\mathbb{P}_0(P \le 0.05) = \mathbb{P}_0(T \ge \tau) = 0.05.$$

Power

Informally, the power of a hypothesis test is the probability of rejecting the null hypothesis if the alternative holds:

$$\mathbb{P}(\text{Reject } H_0 \mid H_1 \text{ holds}) = \mathbb{P}_1(\text{Reject } H_0).$$

To make this quantity calculable we need

- 1. to have a fully specified alternative hypothesis, or at least calculable $\mathbb{P}_1(T \geq \tau)$, for example:
 - with $H_1: X_1, \ldots, X_n \overset{i.i.d}{\sim} \text{normal}(0.1, 1)$ the calculation is possible, whereas,
 - with $H_1: X_1, \ldots, X_n \overset{i.i.d}{\sim} \operatorname{normal}(\mu_1, 1), \mu_1 > 0$, the calculation is not.
- 2. to have a specified false positive rate α

With these ingredients in place, we define the power of a test to be

$$\beta = \mathbb{P}_1(P \le \alpha) = \mathbb{P}_1(T \ge \tau)$$

Power

Informally, the power of a hypothesis test is the probability of rejecting the null hypothesis if the alternative holds:

$$\mathbb{P}(\text{Reject } H_0 \mid H_1 \text{ holds}) = \mathbb{P}_1(\text{Reject } H_0).$$

To make this quantity calculable we need:

- 1. to have a fully specified alternative hypothesis, or at least calculable $\mathbb{P}_1(T \geq \tau)$, for example:
 - with $H_1: X_1, \ldots, X_n \overset{i.i.d}{\sim} \text{normal}(0.1, 1)$ the calculation is possible, whereas,
 - with $H_1: X_1, \ldots, X_n \overset{i.i.d}{\sim} \operatorname{normal}(\mu_1, 1), \mu_1 > 0$, the calculation is not.
- 2. to have a specified false positive rate α

With these ingredients in place, we define the power of a test to be

$$\beta = \mathbb{P}_1(P \le \alpha) = \mathbb{P}_1(T \ge \tau)$$

Power

Informally, the power of a hypothesis test is the probability of rejecting the null hypothesis if the alternative holds:

$$\mathbb{P}(\text{Reject } H_0 \mid H_1 \text{ holds}) = \mathbb{P}_1(\text{Reject } H_0).$$

To make this quantity calculable we need:

- 1. to have a fully specified alternative hypothesis, or at least calculable $\mathbb{P}_1(T \geq \tau)$, for example:
 - with $H_1: X_1, \ldots, X_n \overset{i.i.d}{\sim} \text{normal}(0.1, 1)$ the calculation is possible, whereas,
 - with $H_1: X_1, \ldots, X_n \overset{i.i.d}{\sim} \operatorname{normal}(\mu_1, 1), \mu_1 > 0$, the calculation is not.
- 2. to have a specified false positive rate α

With these ingredients in place, we define the power of a test to be

$$\beta = \mathbb{P}_1(P \le \alpha) = \mathbb{P}_1(T \ge \tau)$$

Power

Informally, the power of a hypothesis test is the probability of rejecting the null hypothesis if the alternative holds:

$$\mathbb{P}(\text{Reject } H_0 \mid H_1 \text{ holds}) = \mathbb{P}_1(\text{Reject } H_0).$$

To make this quantity calculable we need:

- 1. to have a fully specified alternative hypothesis, or at least calculable $\mathbb{P}_1(T \geq \tau)$, for example:
 - with $H_1: X_1, \ldots, X_n \overset{i.i.d}{\sim} \text{normal}(0.1, 1)$ the calculation is possible, whereas,
 - with $H_1: X_1, \ldots, X_n \overset{i.i.d}{\sim} \operatorname{normal}(\mu_1, 1), \mu_1 > 0$, the calculation is not.
- 2. to have a specified false positive rate α .

With these ingredients in place, we define the power of a test to be

$$\beta = \mathbb{P}_1(P \le \alpha) = \mathbb{P}_1(T \ge \tau)$$

Power

Informally, the power of a hypothesis test is the probability of rejecting the null hypothesis if the alternative holds:

$$\mathbb{P}(\text{Reject } H_0 \mid H_1 \text{ holds}) = \mathbb{P}_1(\text{Reject } H_0).$$

To make this quantity calculable we need:

- 1. to have a fully specified alternative hypothesis, for example: or at least calculable $\mathbb{P}_1(T \geq \tau)$,
 - with $H_1: X_1, \ldots, X_n \overset{i.i.d}{\sim}$ normal(0.1,1) the calculation is possible, whereas,
 - with $H_1: X_1, \ldots, X_n \overset{i.i.d}{\sim} \operatorname{normal}(\mu_1, 1), \mu_1 > 0$, the calculation is not.
- 2. to have a specified false positive rate α .

With these ingredients in place, we define the power of a test to be:

$$\beta = \mathbb{P}_1(P \leq \alpha) = \mathbb{P}_1(T \geq \tau).$$

Here
$$\beta = \mathbb{P}_1(P \le 0.05) \approx 0.26$$
.

In words: "if we're prepared to accept a false positive rate 5%, then if the alternative holds, we will detect it with probability 0.26."

For large n

Here
$$\beta = \mathbb{P}_1(P \le 0.05) \approx 0.94$$
.

In words: "if we're prepared to accept a false positive rate 5%, then if the alternative holds, we will detect it with probability 0.94."

Lemma

Consider test statistics T_1 , T_2 satisfying $T_2 = h(T_1)$ where h is a strictly increasing function. Let t_1 , t_2 be the observed values of T_1 , T_2 . Then the p-values p_1 , p_2 associated with t_1 , t_2 are equal.

Test statistics that are equal up to an increasing transformation are therefore equivalent. In our running example, there would be no difference in the computed p-value (and therefore the power under the alternative) if we had instead used

$$T = \exp\left\{\frac{1}{n}\sum_{i=1}^{n}X_i\right\}.$$

$$p_1 = \mathbb{P}_0(T_1 \geq t_1) =$$

Lemma

Consider test statistics T_1 , T_2 satisfying $T_2 = h(T_1)$ where h is a strictly increasing function. Let t_1 , t_2 be the observed values of T_1 , T_2 . Then the p-values p_1 , p_2 associated with t_1 , t_2 are equal.

Test statistics that are equal up to an increasing transformation are therefore equivalent. In our running example, there would be no difference in the computed p-value (and therefore the power under the alternative) if we had instead used

$$T = \exp\left\{\frac{1}{n}\sum_{i=1}^{n}X_{i}\right\}.$$

$$p_1 = \mathbb{P}_0(T_1 \geq t_1) =$$

Lemma

Consider test statistics T_1 , T_2 satisfying $T_2 = h(T_1)$ where h is a strictly increasing function. Let t_1 , t_2 be the observed values of T_1 , T_2 . Then the p-values p_1 , p_2 associated with t_1 , t_2 are equal.

Test statistics that are equal up to an increasing transformation are therefore equivalent. In our running example, there would be no difference in the computed p-value (and therefore the power under the alternative) if we had instead used

$$T = \exp\left\{\frac{1}{n}\sum_{i=1}^{n}X_{i}\right\}.$$

$$p_1 = \mathbb{P}_0(T_1 \geq t_1) =$$

Lemma

Consider test statistics T_1 , T_2 satisfying $T_2 = h(T_1)$ where h is a strictly increasing function. Let t_1 , t_2 be the observed values of T_1 , T_2 . Then the p-values p_1 , p_2 associated with t_1 , t_2 are equal.

Test statistics that are equal up to an increasing transformation are therefore equivalent. In our running example, there would be no difference in the computed p-value (and therefore the power under the alternative) if we had instead used

$$T = \exp\left\{\frac{1}{n}\sum_{i=1}^{n}X_{i}\right\}.$$

$$T=1/m/X$$

$$T'=1/X'$$

$$p_1 = \mathbb{P}_0(T_1 \geq t_1) = \mathbb{P}_0\{h(T_1) \geq h(t_1)\} = \mathbb{P}_0\{T_2 \geq t_2\} = p_2.$$

Some terminology and notation

- A simple (resp. composite) hypothesis is a hypothesis in which all (resp. not all) the parameters are specified.
 - The hypothesis $H_1: X_1, \ldots, X_n \overset{i.i.d}{\sim} \text{normal}(0.1, 1)$ is simple.
 - The hypothesis $H_1: X_1, \ldots, X_n \overset{i.i.d}{\sim} \operatorname{normal}(\mu, 1), \mu > 0$ is composite.
- Assuming the data $D = (X_1, ..., X_n)$ are continuous, consider the simple hypotheses:

$$H_0: D \sim F_0$$
, with joint density p_0 , versus, $H_1: D \sim F_1$, with joint density p_1 .

• The Likelihood Ratio Test (LRT) is defined as:

$$T = \frac{p_1(D)}{p_0(D)}$$

Some terminology and notation

- A simple (resp. composite) hypothesis is a hypothesis in which all (resp. not all) the parameters are specified.
 - The hypothesis $H_1: X_1, \ldots, X_n \overset{i.i.d}{\sim} \text{normal}(0.1, 1)$ is simple.
 - The hypothesis $H_1: X_1, \ldots, X_n \overset{i.i.d}{\sim} \operatorname{normal}(\mu, 1), \mu > 0$ is composite.
- Assuming the data $D = (X_1, ..., X_n)$ are continuous, consider the simple hypotheses:

$$H_0: D \sim F_0$$
, with joint density p_0 , versus, $H_1: D \sim F_1$, with joint density p_1 .

The Likelihood Ratio Test (LRT) is defined as:

$$T=\frac{p_1(D)}{p_0(D)}.$$

Equivalent terminology

In other contexts you might see the simple hypothesis testing setup written as:

$$H_0: \theta = \theta_0,$$
 versus, $H_1: \theta = \theta_1,$

and the LRT defined as

$$T = \frac{\ell(D; \theta_1)}{\ell(D; \theta_0)},$$

where ℓ denotes the likelihood of the data. Finally, you will often see the reverse definition

$$T = \frac{\ell(D; \theta_0)}{\ell(D; \theta_1)}.$$

This gives an equivalent test (by the equivalence under increasing transformations lemma) if we instead reject for small values of the test statistic.

The Neyman-Pearson Lemma

Theorem

Consider a hypothesis test between two simple hypotheses $H_0: D \sim F_0$ versus $H_1: D \sim F_1$. The test statistic

$$T=\frac{p_1(D)}{p_0(D)},$$

which rejects for large values of T, provides the most powerful test for H_0 versus H_1 , at any significance level α .

Fix α and set τ such that $\mathbb{P}_0(T \ge \tau) = \alpha$. Consider the rejection region:

$$R = \left\{ X : \frac{p_1(X)}{p_0(X)} \ge \tau \right\}.$$

Then $\mathbb{P}_0(D \in R) = \mathbb{P}_0(T \ge \tau) = \alpha$.

Now let T'=g'(D) be another test statistic, with associated p-value P', and τ' at threshold satisfying $\mathbb{P}_0(T'\geq \tau')=\alpha$. Define the rejection region:

$$R' = \left\{ X : g(D') \ge \tau' \right\},\,$$

so that, similarly, $\mathbb{P}_0(D\in R')=\mathbb{P}_0(T'\geq au')=lpha.$

Fix α and set τ such that $\mathbb{P}_0(T \ge \tau) = \alpha$. Consider the rejection region:

$$R = \left\{ X : \frac{p_1(X)}{p_0(X)} \ge \tau \right\}.$$

Then $\mathbb{P}_0(D \in R) = \mathbb{P}_0(T \ge \tau) = \alpha$.

Now let T'=g'(D) be another test statistic, with associated p-value P', and τ' a threshold satisfying $\mathbb{P}_0(T' \geq \tau') = \alpha$. Define the rejection region:

$$R' = \left\{ X : g(D') \ge \tau' \right\},\,$$

so that, similarly, $\mathbb{P}_0(D \in R') = \mathbb{P}_0(T' \ge \tau') = \alpha$.

The power of the LRT is

$$\beta = \mathbb{P}_1(P \le \alpha) = \mathbb{P}_1(T \ge \tau) = \mathbb{P}_1(D \in R),$$

whereas the power of the rival statistic is

$$\beta' = \mathbb{P}_1(P' \le \alpha) = \mathbb{P}_1(T' \ge \tau') = \mathbb{P}_1(D \in R')$$

We are looking to prove $\beta \geq \beta'$

The power of the LRT is

$$\beta = \mathbb{P}_1(P \leq \alpha) = \mathbb{P}_1(T \geq \tau) = \mathbb{P}_1(D \in R),$$

whereas the power of the rival statistic is

$$\beta' = \mathbb{P}_1(P' \leq \alpha) = \mathbb{P}_1(T' \geq \tau') = \mathbb{P}_1(D \in R').$$

We are looking to prove $\beta \geq \beta'$

The power of the LRT is

$$\beta = \mathbb{P}_1(P \le \alpha) = \mathbb{P}_1(T \ge \tau) = \mathbb{P}_1(D \in R),$$

whereas the power of the rival statistic is

$$\beta' = \mathbb{P}_1(P' \leq \alpha) = \mathbb{P}_1(T' \geq \tau') = \mathbb{P}_1(D \in R').$$

We are looking to prove $\beta \geq \beta'$.

Let
$$S=R\cap \bar{R}', S'=R'\cap \bar{R}$$
. Then,
$$\mathbb{P}_0(D\in S)=\mathbb{P}_0(D\in R)-\mathbb{P}(D\in R\cap R')$$

$$=\alpha-\mathbb{P}(D\in R\cap R')$$

$$=\mathbb{P}_0(D\in R')-\mathbb{P}(D\in R\cap R')$$

$$=\mathbb{P}_0(D\in S')=\alpha_0,\quad \text{say}.$$

Furthermore, because

$$\beta = \mathbb{P}_1(D \in S) + \mathbb{P}_1(D \in R \cap R')$$
$$\beta' = \mathbb{P}_1(D \in S') + \mathbb{P}_1(D \in R \cap R'),$$

then $\beta \geq \beta'$ if and only if $\mathbb{P}_1(D \in S) \geq \mathbb{P}_1(D \in S')$.

$$\mathbb{P}_1(D \in S) = \int_S p_1(X) \mathrm{d}X$$

$$\mathbb{P}_1(D \in S) = \int_S p_1(X) dX$$

 $\geq \tau \int_S p_0(X) dX$

$$\mathbb{P}_{1}(D \in S) = \int_{S} p_{1}(X) dX$$
$$\geq \tau \int_{S} p_{0}(X) dX$$
$$= \tau \alpha_{0}$$

$$\mathbb{P}_{1}(D \in S) = \int_{S} p_{1}(X) dX$$

$$\geq \tau \int_{S} p_{0}(X) dX$$

$$= \tau \alpha_{0}$$

$$= \tau \int_{S'} p_{0}(X) dX$$

$$\mathbb{P}_{1}(D \in S) = \int_{S} p_{1}(X) dX$$

$$\geq \tau \int_{S} p_{0}(X) dX$$

$$= \tau \alpha_{0}$$

$$= \tau \int_{S'} p_{0}(X) dX$$

$$\geq \int_{S'} p_{1}(X) dX$$

$$\mathbb{P}_{1}(D \in S) = \int_{S} p_{1}(X) dX$$

$$\geq \tau \int_{S} p_{0}(X) dX$$

$$= \tau \alpha_{0}$$

$$= \tau \int_{S'} p_{0}(X) dX$$

$$\geq \int_{S'} p_{1}(X) dX$$

$$= \mathbb{P}_{1}(D \in S').$$

Suppose we are testing:

$$H_0: D = (X_1, \dots, X_n) \overset{i.i.d}{\sim} \mathsf{normal}(\mu_0, 1),$$
 versus,

$$H_1: D = (X_1, \ldots, X_n) \overset{i.i.d}{\sim} \operatorname{normal}(\mu_1, 1).$$

where $\mu_1 > \mu_0$ (in our earlier example $\mu_0 =$ 0, $\mu_1 =$ 0.1).

Then the Neyman-Pearson lemma says that the most powerful test statistic is:

$$\frac{p_1(D)}{p_0(D)}$$

where p_0 (resp. p_1) is the joint density of D under H_0 (resp. H_1). These densities have the form:

$$p_k(D) = \prod_{i=1}^n (2\pi)^{-1/2} \exp\left\{-\frac{1}{2}(X_i - \mu_k)^2\right\}$$

Suppose we are testing:

$$H_0: D = (X_1, \dots, X_n) \overset{i.i.d}{\sim} \mathsf{normal}(\mu_0, 1),$$
 versus,

$$H_1: D = (X_1, \ldots, X_n) \stackrel{i.i.d}{\sim} \operatorname{normal}(\mu_1, 1).$$

where $\mu_1 > \mu_0$ (in our earlier example $\mu_0 = 0$, $\mu_1 = 0.1$).

Then the Neyman-Pearson lemma says that the most powerful test statistic is:

$$\frac{p_1(D)}{p_0(D)}$$

where p_0 (resp. p_1) is the joint density of D under H_0 (resp. H_1). These densities have the form:

$$p_k(D) = \prod_{i=1}^n (2\pi)^{-1/2} \exp\left\{-\frac{1}{2}(X_i - \mu_k)^2\right\}$$
$$= (2\pi)^{-n/2} \exp\left\{-\frac{1}{2}\sum_{i=1}^n (X_i - \mu_k)^2\right\}, \quad k = 0, 1.$$

Therefore the LRT is

$$\exp \left[-\frac{1}{2} \left\{ \sum (X_i - \mu_1)^2 - \sum (X_i - \mu_0)^2 \right\} \right],$$

or equivalently (using the increasing transformation lemma)

$$\sum (X_i-\mu_0)^2-\sum (X_i-\mu_1)^2=n\{2\bar{X}(\mu_1-\mu_0)+\mu_0^2-\mu_1^2\},$$
 where $\bar{X}=\frac{1}{n}\sum X_i$.

Finally, noting that $\mu_1 > \mu_0$, by the increasing transformation lemma this is equivalent to:

$$T = \square$$

Therefore the LRT is

$$\exp\left[-\frac{1}{2}\left\{\sum (X_i - \mu_1)^2 - \sum (X_i - \mu_0)^2\right\}\right],$$

or equivalently (using the increasing transformation lemma)

$$\sum (X_i - \mu_0)^2 - \sum (X_i - \mu_1)^2 = n\{2\bar{X}(\mu_1 - \mu_0) + \mu_0^2 - \mu_1^2\},\,$$

where $\bar{X} = \frac{1}{n} \sum X_i$.

Finally, noting that $\mu_1 > \mu_0$, by the increasing transformation lemma this is equivalent to:

$$T=\bar{X}$$
.

Lecture outline

Objectives:

- 1. To make you comfortable with all the notions introduced so far.
 - We'll do this with a real data example.
- 2. But also to uncover some interesting phenomena that you might already have noticed, but perhaps without fully appreciating their consequences.

- Monthly GBP/JPY exchange rate from the end of May 2016 until now.
- Because of the Brexit referendum in June 2016, it's a reasonable question whether UK currency has significantly increased or decreased in value.
- JPY taken as a relatively neutral and stable comparison currency.

		Time	Open	High	Low	Close	Volume
1:	31.05.2016	21:00:00.000	160.293	160.654	133.260	137.296	4656524
2:	30.06.2016	21:00:00.000	137.338	143.226	128.788	134.977	6750952
3:	31.07.2016	21:00:00.000	135.188	136.261	129.211	135.863	7768794
4:	31.08.2016	21:00:00.000	135.863	138.830	129.637	131.458	9564064
5:	30.09.2016	21:00:00.000	130.748	132.226	122.383	128.327	6917943
6:	31.10.2016	21:00:00.000	128.333	143.255	126.490	143.087	5347793
7:	30.11.2016	22:00:00.000	143.077	148.456	142.167	144.366	4303096
8:	31.12.2016	22:00:00.000	144.082	145.397	136.455	141.842	5418184
9:	31.01.2017	22:00:00.000	141.838	144.127	138.537	139.587	4240536
10:	28.02.2017	22:00:00.000	139.583	140.750	137.520	139.793	4703494
11:	31.03.2017	21:00:00.000	139.707	144.493	135.597	144.342	3974897
12:		21:00:00.000					
13:	31.05.2017	21:00:00.000	142.754	146.543	138.669	146.352	3912584
14:	30.06.2017	21:00:00.000	145.768	147.776	144.026	145.677	4142948
15:		21:00:00.000					
16:	31.08.2017	21:00:00.000	142.168	152.856	141.194	150.670	4745183
17:	30.09.2017	21:00:00.000	150.598	151.394	146.944	150.935	3847771
18:	31.10.2017	21:00:00.000	150.916	152.407	146.975	152.173	3787820
19:	30.11.2017	22:00:00.000	152.173	153.408	149.410	152.004	3762345
20:		22:00:00.000					
21:		22:00:00.000					
22:	28.02.2018	22:00:00.000	146.776	150.589	144.985	148.886	6528444
23:		21:00:00.000					
24:		21:00:00.000					
25:	31.05.2018	21:00:00.000	144.663	148.117	143.771	146.136	5045401
26:		21:00:00.000					
27:	31.07.2018	21:00:00.000	146.726	147.146	139.896	143.880	3752805
28:		21:00:00.000					
29:		21:00:00.000					
30:	31.10.2018	21:00:00.000	144.175	149.485	144.023	147.673	1987536

Analysis

- Let $X_1, \ldots, X_n, n = 29$ denote the difference sequence.
- We'll silently divide by the empirical standard deviation and test the hypothesis:

$$H_0: X_1, \ldots, X_n \overset{i.i.d}{\sim} \mathsf{normal}(0,1),$$
 versus, $H_1: X_1, \ldots, X_n \overset{i.i.d}{\sim} \mathsf{normal}(\mu_1,1), \quad \mu_1 > 0.$

- Say we want to reject at a significance level $\alpha = 0.05$.
- Then we will reject H_0 if $p \le 0.05$ where:

$$p = 1 - \Phi(\sqrt{29}\bar{x})$$

• Equivalently we will reject H_0 if the test statistic $t = \bar{x} \ge \tau$ where:

$$\tau = \frac{\Phi^{-1}(0.95)}{\sqrt{29}} \approx 0.31$$

$$\begin{aligned}
\sigma &\leq \alpha \Leftrightarrow 1 - \Phi(\sqrt{29}\bar{x}) \leq \alpha, \\
&\Leftrightarrow \Phi(\sqrt{29}\bar{x}) \geq 1 - \alpha, \\
&\Leftrightarrow \sqrt{29}\bar{x} \quad \Box \quad \Phi^{-1}(1 - \alpha) \\
&\Leftrightarrow \bar{x} \frac{\Phi^{-1}(1 - \alpha)}{\sqrt{29}}.
\end{aligned}$$

- We have $\bar{x} = 0.08$
- Equivalently we have $p = 1 \Phi(\sqrt{29} \times 0.08) = 0.33$

- Say we want to reject at a significance level $\alpha = 0.05$.
- Then we will reject H_0 if $p \le 0.05$ where:

$$p=1-\Phi(\sqrt{29}\bar{x}).$$

• Equivalently we will reject H_0 if the test statistic $t = \bar{x} \ge \tau$ where:

$$\tau = \frac{\Phi^{-1}(0.95)}{\sqrt{29}} \approx 0.31$$

$$p \le \alpha \Leftrightarrow 1 - \Phi(\sqrt{29}\bar{x}) \le \alpha,$$
 $\Leftrightarrow \Phi(\sqrt{29}\bar{x}) \ge 1 - \alpha,$
 $\Leftrightarrow \sqrt{29}\bar{x} \quad \text{and} \quad \Phi^{-1}(1 - \alpha),$
 $\Leftrightarrow \bar{x} \frac{\Phi^{-1}(1 - \alpha)}{\sqrt{29}}.$

- We have $\bar{x} = 0.08$
- Equivalently we have $p = 1 \Phi(\sqrt{29} \times 0.08) = 0.33$

- Say we want to reject at a significance level $\alpha = 0.05$.
- Then we will reject H_0 if $p \le 0.05$ where:

$$p=1-\Phi(\sqrt{29}\bar{x}).$$

• Equivalently we will reject H_0 if the test statistic $t = \bar{x} \ge \tau$ where:

$$au = \frac{\Phi^{-1}(0.95)}{\sqrt{29}} \approx 0.31.$$

$$p \leq \alpha \Leftrightarrow 1 - \Phi(\sqrt{29}\bar{x}) \leq \alpha,$$

$$\Leftrightarrow \Phi(\sqrt{29}\bar{x}) \geq 1 - \alpha,$$

$$\Leftrightarrow \sqrt{29}\bar{x} \quad \text{and} \quad \Phi^{-1}(1 - \alpha)$$

$$\Leftrightarrow \bar{x} \frac{\Phi^{-1}(1 - \alpha)}{\sqrt{29}}.$$

- We have $\bar{x} = 0.08$
- Equivalently we have $p = 1 \Phi(\sqrt{29} \times 0.08) = 0.33$

- Say we want to reject at a significance level $\alpha = 0.05$.
- Then we will reject H_0 if $p \le 0.05$ where:

$$p=1-\Phi(\sqrt{29}\bar{x}).$$

• Equivalently we will reject H_0 if the test statistic $t = \bar{x} \ge \tau$ where:

$$au = \frac{\Phi^{-1}(0.95)}{\sqrt{29}} \approx 0.31.$$

$$\begin{split} p &\leq \alpha \Leftrightarrow 1 - \Phi(\sqrt{29}\bar{x}) \leq \alpha, \\ &\Leftrightarrow \Phi(\sqrt{29}\bar{x}) \geq 1 - \alpha, \\ &\Leftrightarrow \sqrt{29}\bar{x} \quad \text{and} \quad \Phi^{-1}(1 - \alpha), \\ &\Leftrightarrow \bar{x} \quad \text{and} \quad \frac{\Phi^{-1}(1 - \alpha)}{\sqrt{29}}. \end{split}$$

- We have $\bar{x} = 0.08$
- Equivalently we have $p = 1 \Phi(\sqrt{29} \times 0.08) = 0.33$

- Say we want to reject at a significance level $\alpha = 0.05$.
- Then we will reject H_0 if $p \le 0.05$ where:

$$p=1-\Phi(\sqrt{29}\bar{x}).$$

• Equivalently we will reject H_0 if the test statistic $t = \bar{x} \ge \tau$ where:

$$au = \frac{\Phi^{-1}(0.95)}{\sqrt{29}} \approx 0.31.$$

$$\begin{split} p &\leq \alpha \Leftrightarrow 1 - \Phi(\sqrt{29}\bar{x}) \leq \alpha, \\ &\Leftrightarrow \Phi(\sqrt{29}\bar{x}) \geq 1 - \alpha, \\ &\Leftrightarrow \sqrt{29}\bar{x} \geq \Phi^{-1}(1 - \alpha), \\ &\Leftrightarrow \bar{x} \geq \frac{\Phi^{-1}(1 - \alpha)}{\sqrt{29}}. \end{split}$$

- We have $\bar{x} = 0.08$
- Equivalently we have $p = 1 \Phi(\sqrt{29} \times 0.08) = 0.33$

- Say we want to reject at a significance level $\alpha = 0.05$.
- Then we will reject H_0 if $p \le 0.05$ where:

$$p=1-\Phi(\sqrt{29}\bar{x}).$$

• Equivalently we will reject H_0 if the test statistic $t = \bar{x} \ge \tau$ where:

$$au = \frac{\Phi^{-1}(0.95)}{\sqrt{29}} \approx 0.31.$$

$$p \le \alpha \Leftrightarrow 1 - \Phi(\sqrt{29}\bar{x}) \le \alpha,$$

$$\Leftrightarrow \Phi(\sqrt{29}\bar{x}) \ge 1 - \alpha,$$

$$\Leftrightarrow \sqrt{29}\bar{x} \ge \Phi^{-1}(1 - \alpha),$$

$$\Leftrightarrow \bar{x} \ge \frac{\Phi^{-1}(1 - \alpha)}{\sqrt{29}}.$$

- We have $\bar{x} = 0.08$
- Equivalently we have $p = 1 \Phi(\sqrt{29} \times 0.08) = 0.33$

- Say we want to reject at a significance level $\alpha = 0.05$.
- Then we will reject H_0 if $p \le 0.05$ where:

$$p=1-\Phi(\sqrt{29}\bar{x}).$$

• Equivalently we will reject H_0 if the test statistic $t = \bar{x} \ge \tau$ where:

$$au = \frac{\Phi^{-1}(0.95)}{\sqrt{29}} \approx 0.31.$$

$$\begin{split} p &\leq \alpha \Leftrightarrow 1 - \Phi(\sqrt{29}\bar{x}) \leq \alpha, \\ &\Leftrightarrow \Phi(\sqrt{29}\bar{x}) \geq 1 - \alpha, \\ &\Leftrightarrow \sqrt{29}\bar{x} \geq \Phi^{-1}(1 - \alpha), \\ &\Leftrightarrow \bar{x} \geq \frac{\Phi^{-1}(1 - \alpha)}{\sqrt{29}}. \end{split}$$

- We have $\bar{x} = 0.08 < 0.31$, therefore no rejection.
- Equivalently we have $p = 1 \Phi(\sqrt{29} \times 0.08) = 0.33$

- Say we want to reject at a significance level $\alpha = 0.05$.
- Then we will reject H_0 if $p \le 0.05$ where:

$$p=1-\Phi(\sqrt{29}\bar{x}).$$

• Equivalently we will reject H_0 if the test statistic $t = \bar{x} \ge \tau$ where:

$$au = \frac{\Phi^{-1}(0.95)}{\sqrt{29}} \approx 0.31.$$

$$\begin{split} p &\leq \alpha \Leftrightarrow 1 - \Phi(\sqrt{29}\bar{x}) \leq \alpha, \\ &\Leftrightarrow \Phi(\sqrt{29}\bar{x}) \geq 1 - \alpha, \\ &\Leftrightarrow \sqrt{29}\bar{x} \geq \Phi^{-1}(1 - \alpha), \\ &\Leftrightarrow \bar{x} \geq \frac{\Phi^{-1}(1 - \alpha)}{\sqrt{29}}. \end{split}$$

- We have $\bar{x} = 0.08 < 0.31$, therefore no rejection.
- Equivalently we have $p = 1 \Phi(\sqrt{29} \times 0.08) = 0.33 > 0.05$, therefore no rejection.

$$\mathbb{P}_0(T \geq t) =$$

$$\mathbb{P}_0(T \geq t) = 1 - \mathbb{P}_0\{\max(X_i) \leq t\},\$$

$$egin{aligned} \mathbb{P}_0(\, T \geq t) &= 1 - \mathbb{P}_0\{\max(X_i) \leq t\}, \ &= 1 - \mathbb{P}_0(X_1, \ldots, X_n \leq t), \end{aligned}$$

$$\mathbb{P}_0(T \geq t) = 1 - \mathbb{P}_0\{\max(X_i) \leq t\},$$

 $= 1 - \mathbb{P}_0(X_1, \dots, X_n \leq t),$
 $= 1 - \Phi(t)^n.$

Consider instead the test statistic $T = \max(X_i)$. Under H_0 :

$$\mathbb{P}_0(T \ge t) = 1 - \mathbb{P}_0\{\max(X_i) \le t\},$$

$$= 1 - \mathbb{P}_0(X_1, \dots, X_n \le t),$$

$$= 1 - \Phi(t)^n.$$

To simulate a p-value under the null, we will therefore:

- 1. Generate data $X_1, \ldots, X_n \overset{i.i.d.}{\sim} \text{normal}(0,1), n = 29$
- 2. Compute $T = \max(X_i)$
- 3. Compute $P = 1 \Phi(T)^n$

and we'll repeat this a million times to obtain a large sample of p-values.

Distribution of the p-value under the null hypothesis

Distribution of the p-value under the alternative

Consider the (usual) alternative hypothesis $H_1: X_1, \ldots, X_n \overset{i.i.d}{\sim} \text{normal}(0.1, 1)$. To simulate a p-value under this alternative we will:

- 1. Generate data $X_1, \ldots, X_n \overset{i.i.d.}{\sim} \text{normal}(0.1, 1), n = 29$
- 2. Compute $T = \max(X_i)$
- 3. Compute $P = 1 \Phi(T)^n$

and we'll repeat this a million times to obtain a large sample of p-values.

Distribution of the p-value under the alternative

- Remember that the power of the test is the probability of rejecting under the alternative, i.e. $\beta = \mathbb{P}_1(P \leq \alpha)$.
- If we plot this value for different α , we are simply plotting the cumulative distribution of the p-value under the alternative.
- This curve is called the "power curve".

- Remember that the power of the test is the probability of rejecting under the alternative, i.e. $\beta = \mathbb{P}_1(P \leq \alpha)$.
- If we plot this value for different α , we are simply plotting the cumulative distribution of the p-value under the alternative.
- This curve is called the "power curve".

- Remember that the power of the test is the probability of rejecting under the alternative, i.e. $\beta = \mathbb{P}_1(P \le \alpha)$.
- If we plot this value for different α , we are simply plotting the cumulative distribution of the p-value under the alternative.
- This curve is called the "power curve".

Power comparison under H_1 : normal(0.1, 1) (max versus mean)

Power comparison under H_1 : normal(0.1, 1) (max versus mean)

Power comparison under H_1 : normal(0.5, 1) (max versus mean)

Power comparison under H_1 : normal(1,1) (max versus mean)

Uniformly most powerful test

- Note that the Neyman-Pearson lemma gives us the most powerful test for two simple (read: specific) hypotheses. Under a range of alternative hypotheses, as we are considering here with $H_1: X_1, \ldots, X_n \overset{i.i.d}{\sim}$ normal $(\mu_1, 1), \mu_1 > 0$, there is no fixed "likelihood ratio" it depends on μ_1 . In general, we will not be able to unilaterally recommend one test over another over a range of alternatives.
- However: we found in this instance that the LRT comes down to a test of the mean, which does not depend on the unknown μ_1 . No matter what μ_1 is, by testing the mean we are implementing a test that is equivalent to using the LRT based on this unknown value of μ_1 . This is the ideal scenario, but it's unfortunately unusual.
- A test is called the uniformly most powerful test (at level α), if it is the most powerful for all alternatives considered (at level α).

Uniformly most powerful test

- Note that the Neyman-Pearson lemma gives us the most powerful test for two simple (read: specific) hypotheses. Under a range of alternative hypotheses, as we are considering here with $H_1: X_1, \ldots, X_n \overset{i.i.d}{\sim}$ normal $(\mu_1, 1), \mu_1 > 0$, there is no fixed "likelihood ratio" it depends on μ_1 . In general, we will not be able to unilaterally recommend one test over another over a range of alternatives.
- However: we found in this instance that the LRT comes down to a test of the mean, which does not depend on the unknown μ_1 . No matter what μ_1 is, by testing the mean we are implementing a test that is equivalent to using the LRT based on this unknown value of μ_1 . This is the ideal scenario, but it's unfortunately unusual.
- A test is called the uniformly most powerful test (at level α), if it is the most powerful for all alternatives considered (at level α).

Uniformly most powerful test

- Note that the Neyman-Pearson lemma gives us the most powerful test for two simple (read: specific) hypotheses. Under a range of alternative hypotheses, as we are considering here with $H_1: X_1, \ldots, X_n \overset{i.i.d}{\sim}$ normal $(\mu_1, 1), \mu_1 > 0$, there is no fixed "likelihood ratio" it depends on μ_1 . In general, we will not be able to unilaterally recommend one test over another over a range of alternatives.
- However: we found in this instance that the LRT comes down to a test of the mean, which does not depend on the unknown μ_1 . No matter what μ_1 is, by testing the mean we are implementing a test that is equivalent to using the LRT based on this unknown value of μ_1 . This is the ideal scenario, but it's unfortunately unusual.
- A test is called the uniformly most powerful test (at level α), if it is the most powerful for all alternatives considered (at level α).

Data

- Say we want to reject at a significance level $\alpha = 0.05$.
- Then we will reject H_0 if $p \le 0.05$ where:

$$p=1-\Phi\{\max(x_i)\}^{29}.$$

$$\tau =$$

- We have $max(x_i) = 3.3$, therefore we reject.
- Equivalently we have $p = 1 \Phi\{3.3\}^{29} \approx 0.01$, therefore we reject.

- Say we want to reject at a significance level $\alpha = 0.05$.
- Then we will reject H_0 if $p \le 0.05$ where:

$$p=1-\Phi\{\max(x_i)\}^{29}.$$

$$\tau =$$

- We have $max(x_i) = 3.3$, therefore we reject.
- Equivalently we have $p = 1 \Phi\{3.3\}^{29} \approx 0.01$, therefore we reject.

- Say we want to reject at a significance level $\alpha = 0.05$.
- Then we will reject H_0 if $p \le 0.05$ where:

$$p=1-\Phi\{\max(x_i)\}^{29}.$$

$$au =$$

- We have $max(x_i) = 3.3$, therefore we reject.
- Equivalently we have $p=1-\Phi\{3.3\}^{29}\approx 0.01$, therefore we reject.

- Say we want to reject at a significance level $\alpha = 0.05$.
- Then we will reject H_0 if $p \le 0.05$ where:

$$p=1-\Phi\{\max(x_i)\}^{29}.$$

$$\tau = \Phi^{-1}[\exp{\{\log(0.95)/29\}}] \approx 2.91.$$

- We have $max(x_i) = 3.3$, therefore we reject.
- Equivalently we have $p = 1 \Phi\{3.3\}^{29} \approx 0.01$, therefore we reject.

- Let $X_{(1)} \leq \ldots \leq X_{(n)}$ denote the order statistics of X_1, \ldots, X_n , that is, $X_{(k)}$ is the kth smallest of X_1, \ldots, X_n . We might have instead used any $T_k = X_{(k)}$.
- Denote by F(x, r) the cumulative distribution function of a Binomial variable X with success probability r and number of trials n, that is,

$$F(x,r) = \mathbb{P}(X \le x)$$

• Then,

$$\mathbb{P}_0(T_k \geq t) =$$

- Let $X_{(1)} \leq \ldots \leq X_{(n)}$ denote the order statistics of X_1, \ldots, X_n , that is, $X_{(k)}$ is the kth smallest of X_1, \ldots, X_n . We might have instead used any $T_k = X_{(k)}$.
- Denote by F(x,r) the cumulative distribution function of a Binomial variable X with success probability r and number of trials n, that is,

$$F(x,r) = \mathbb{P}(X \leq x).$$

• Then,

$$\mathbb{P}_0(T_k \geq t) =$$

- Let $X_{(1)} \leq \ldots \leq X_{(n)}$ denote the order statistics of X_1, \ldots, X_n , that is, $X_{(k)}$ is the kth smallest of X_1, \ldots, X_n . We might have instead used any $T_k = X_{(k)}$.
- Denote by F(x,r) the cumulative distribution function of a Binomial variable X with success probability r and number of trials n, that is,

$$F(x,r) = \mathbb{P}(X \leq x).$$

Then,

$$\mathbb{P}_0(T_k \geq t) =$$

- Let $X_{(1)} \leq \ldots \leq X_{(n)}$ denote the order statistics of X_1, \ldots, X_n , that is, $X_{(k)}$ is the kth smallest of X_1, \ldots, X_n . We might have instead used any $T_k = X_{(k)}$.
- Denote by F(x, r) the cumulative distribution function of a Binomial variable X with success probability r and number of trials n, that is,

$$F(x,r) = \mathbb{P}(X \leq x).$$

Then,

$$\mathbb{P}_0(T_k \geq t) = \mathbb{P}_0(\text{at least } n-k+1 \text{ of } X_i \geq t),$$

- Let $X_{(1)} \leq \ldots \leq X_{(n)}$ denote the order statistics of X_1, \ldots, X_n , that is, $X_{(k)}$ is the kth smallest of X_1, \ldots, X_n . We might have instead used any $T_k = X_{(k)}$.
- Denote by F(x,r) the cumulative distribution function of a Binomial variable X with success probability r and number of trials n, that is,

$$F(x,r) = \mathbb{P}(X \leq x).$$

• Then,

$$\mathbb{P}_0(T_k \ge t) = \mathbb{P}_0(ext{at least } n-k+1 ext{ of } X_i \ge t),$$

$$= \mathbb{P}_0\left\{\sum_{i=1}^n \mathbb{I}(X_i \ge t) \ge n-k+1\right\},$$

- Let $X_{(1)} \leq \ldots \leq X_{(n)}$ denote the order statistics of X_1, \ldots, X_n , that is, $X_{(k)}$ is the kth smallest of X_1, \ldots, X_n . We might have instead used any $T_k = X_{(k)}$.
- Denote by F(x,r) the cumulative distribution function of a Binomial variable X with success probability r and number of trials n, that is,

$$F(x,r) = \mathbb{P}(X \leq x).$$

• Then,

$$\begin{split} \mathbb{P}_0\big(T_k \geq t\big) &= \mathbb{P}_0\big(\text{at least } n-k+1 \text{ of } X_i \geq t\big), \\ &= \mathbb{P}_0\left\{\sum_{i=1}^n \mathbb{I}(X_i \geq t) \geq n-k+1\right\}, \\ &= \mathbb{P}_0\left\{\sum_{i=1}^n \mathbb{I}(X_i \geq t) > n-k\right\}, \\ &= 1 - \mathbb{P}_0\left\{\sum_{i=1}^n \mathbb{I}(X_i \geq t) \leq n-k\right\}, \end{split}$$

- Let $X_{(1)} \leq \ldots \leq X_{(n)}$ denote the order statistics of X_1, \ldots, X_n , that is, $X_{(k)}$ is the kth smallest of X_1, \ldots, X_n . We might have instead used any $T_k = X_{(k)}$.
- Denote by F(x,r) the cumulative distribution function of a Binomial variable X with success probability r and number of trials n, that is,

$$F(x,r) = \mathbb{P}(X \leq x).$$

Then,

$$\begin{split} \mathbb{P}_0\big(T_k \geq t\big) &= \mathbb{P}_0\big(\text{at least } n-k+1 \text{ of } X_i \geq t\big), \\ &= \mathbb{P}_0\left\{\sum_{i=1}^n \mathbb{I}(X_i \geq t) \geq n-k+1\right\}, \\ &= \mathbb{P}_0\left\{\sum_{i=1}^n \mathbb{I}(X_i \geq t) > n-k\right\}, \\ &= 1 - \mathbb{P}_0\left\{\sum_{i=1}^n \mathbb{I}(X_i \geq t) \leq n-k\right\}, \\ &= 1 - F\{n-k, 1 - \Phi(t)\}. \end{split}$$

P-values for all order statistics

