

IP Security

Based on W.Stallings' «IP Security» chapter and diagrams

F. Parisi Presicce

UnitelmaSapienza.it

IPSEC

- Objectives
- ■IPSec architecture and concepts
- ■IPSec authentication header
- ■IPSec encapsulating security payload

http://www.ietf.org/html.charters/ipsec-charter.html

unitelmasapienza.it

Web Security: Network Level

Provide security using IPSec

Advantages:

- Transparent to users and applications
- Filtering: only selected traffic need incur the overhead of IPSec processing

Why IP Security?

- Problem:
 - Traditional IP does not directly handle encryption/authentication of traffic ...
 - ...There was a need as identified in 1994 to "secure the network infrastructure from unauthorized monitoring and control of network traffic ... and ... end-to-end-user traffic" (Stallings, 1999)
- Recommendations of Internet Architecture Board
 - Include authentication/encryption in next-generation IP
 - concepts compatible both with IPv4 and IPv6
 - These features are **MANDATORY** for IPv6 implementations and **OPTIONAL** for IPv4 implementations
 - Both implementations use the "extension header" method

IPSec Objectives

Band-aid for IPv4: known vulnerabilities

- Replay
- Wiretap
- Spoofing and Masquerading
- Hijacking of connections
- IP layer mechanism for IPv4 and IPv6
 - Not all applications need to be security aware
- Can be transparent to users
- sometimes used interchangeably with IPv6, but it is more correct to think of IPv6 as a protocol incorporating IPSEC philosophies

IPv6 'includes' IPSEC

- Protocol to support
 - authentication of data origin,
 - data integrity, and
 - encryption for privacy
- Techniques
 - Authentication Header and Encapsulating Security Payload
 - Security associations between connections, connection sets

Security depends upon

- secure protocols but also (among others)
 - cryptographic strength
 - implementation quality
 - good random number sources
 - end system security
 - system management

• ...

IP Security Architecture

- The specification is quite complex, defined in numerous RFC's (Main ones RFC 2401/2402/2406/2408)
- There are seven groups within the original IP Security Protocol Working Group, based around the following:
- Architecture (general issues, requirements, mechanisms)
- Encapsulating Security Payload, ESP (packet form and usage for encryption and some auth)
- Authentication Header, AH (packet form and usage for auth)
- Encryption Algorithm (how different ones are used)
- Authentication Algorithm (using algorithms for AH and ESP)
- **Key management** (schemes)
- **Domain of Interpretation** (relating the other ones)

Next level

IPSec lets systems do the following:

- Allow selection of required security protocols
- Decide on which algorithms to use on which services,
- Deal with the "key" issue

These choices are guided by the two protocols:

- Authentication Header
 - authentication and integrity of payload and header
- Encapsulating Security Payload
 - without authentication: confidentiality of payload
 - with authentication: confidentiality, authentication and integrity of payload

Some services can only be provided with certain combinations of AH, ESP "with" and ESP "without".

Components and Concepts

- Host or gateway implementation
- Tunnel vs. Transport mode
- Security association (SA)
 - Security parameter index (SPI)
 - Security policy database (SPD)
 - SA database (SAD)
- Encapsulating security payload (ESP)
- Authentication header (AH)

Hosts and Gateways

- Hosts can implement IPSec to:
 - Other hosts in transport or tunnel mode
 - Gateways with tunnel mode
- Gateways to gateways tunnel mode
- both IP AH and IP ESP can operate in
 - transport mode
 - end-to-end
 - tunnel mode
 - security-gateway to security-gateway
- transport mode and tunnel model can coexist

Transport Mode

- Transport Mode
 - good for upper layer protocols
 - authentication is between the client and server workstations
 - workstation may be either local or remote
 - workstation and server share a protected secret key

Simple transport-mode: host-to-host

Tunnel Mode

- Tunnel Mode
 - protects entire IP packet
 - authentication is between remote workstation and corporate firewall
 - authentication for access to entire internal network or because the server doesn't "speak authentication"
 - (called "standards based tunneling" as opposed to some other forms which do not adhere to any specific standard).

Simple tunnel-mode: gateway-to-gateway

UnitelmaSapienza.it 15

«Protection» is at different levels

The transport mode is "end-to-end"

- AH is used to authenticate the IP payload and certain parts of the headers
- ESP is used to encrypt the IP payload
 - not headers for IPv4, but includes extension header info for IPv6
- ESP with authentication encrypts IP payload and the extension headers; authenticates IP payload but not IP header

The tunnel mode is not end-to-end

- AH: authenticates the inner IP packet including header plus some of the outer IP header and IPv6 extensions
- ESP: encrypts inner IP packet (which includes header info)
- ESP "with": encrypts inner IP packet, authenticates inner IP packet

IPSEC Security Association

- SA is a one-directional relationship between sender and receiver
- Determines IPSec processing for sender and IPSec decoding for destination
- SAs are not fixed, but generated and customized per traffic flows
- SA applies to AH or ESP but not both
- two-way secure exchange of IP packets requires two SAs
- SAs are established by
 - management protocols (IKE)
 - manually

IPSEC Security Association

- referenced by a 32 bit Security Parameter Index (SPI) carried in header of each IPSEC packet
- The SPI allows the destination to select the correct SA under which the received packet will be processed (according to the agreement with the sender)
- SA for an IP packet uniquely identified by
 - SPI
 - destination IP address
 - IPSec protocol (AH or ESP)

Security Association Parameters

- sequence number counter: 32 bit
- overflow flag: indicating abort or not on overflow
- anti-replay window: to check inbound replay
- AH information:
 - algorithm, key, key lifetime
- ESP information:
 - algorithm, key, key lifetime for encryption and authentication
- lifetime of SA: time interval or byte count
- IPSEC protocol mode: transport, tunnel, wildcard (allows same SA to be used, for either tunnel or transport, on a per-packet basis, specified by the application)
- path MTU (maximum transmission unit)

Security Association Database SAD

- Holds parameters for each SA
 - Lifetime of this SA
 - AH and ESP information
 - Tunnel or transport mode
- Every host or gateway participating in IPSec has own SA database (not specified how expected functionalities are provided)

Security Policy Database SPD

- What traffic to protect?
- Has incoming traffic been properly secured?
- Policy entries define which SA or SA Bundles to use on IP traffic
- Each host or gateway has own (nominal) SPD
- Index into SPD by Selector fields
 - Dest IP, Source IP, Userld, DataSensitivityLevel,
 Transport Protocol, IPSec Protocol, Source & Dest Ports,

...

Security Policy Database Entry Actions

- Discard
 - Do not let in or out
- Bypass
 - Outbound: do not apply IPSec
 - Inbound: do not expect IPSec
- Protect will point to an SA or SA bundle
 - Outbound: apply security
 - Inbound: check that security must have been applied

If the SA does not exist...

- Outbound processing: use IKE to generate SA dynamically
- Inbound processing: drop packet

Outbound Processing

Outbound packet (on A)

UnitelmaSapienza.it

23

Inbound Processing

A B

Inbound packet (on B)

UnitelmaSapienza.it 24

IP Authentication Header

- Data integrity
 - Entire packet has not been tampered with
- Authentication
 - Can "trust" IP address source
 - Use MAC on IP packet header and data payload to authenticate
- Anti-replay feature
- Integrity check value

IP Authentication Header

• Provides support for data integrity and authentication (MAC code) of IP packets.

Figure 6.3 IPSec Authentication Header

IP Authentication Header Fields

- next header: 8 bit protocol field
- length: 8-bit field specifying length of authentication data in 32-bit words
- Unused (so far): 16 bit set to 0
- SPI: 32 bit to identify a SA
- sequence number: 32 bit
- integrity check value (ICV): some multiple of 32 bits, e.g., 96, 128, 160

Anti-replay Features

- Optional (default is ON)
- Information to enforce held in SA entry
- Sequence number counter 32-bit for outgoing packets, initialized at 0 when SA established, and incremented per each packet transmitted (first packet SN=1)
- MAX value 2³²-1 (if reached, SA terminated and new one negotiated). No cycling allowed.
- 2^{32} = approx 4.3 billion: big number? Yes, not very big
 - Packet size = 1500 (1460 payload)
 - 2³² * 1460 bytes = 6270GB <-> 14 h transmission on 1 Gbps link
- Anti-replay window 32-bit
 - Bit-map for detecting replayed packets

Anti-replay Mechanism

- receiver keeps a window of min size 32 (64 preferred and default, larger is ok)
 - packets to the left of window are discarded
 - repeated packets within window are discarded
 - authentic packets to the right of window cause window to move right
- Window should not be advanced until the packet has been authenticated
- Without authentication, malicious packets with large sequence numbers can advance window unnecessarily
 - Valid packets would be dropped

Integrity Check Value - ICV

- ICV is a message authentication code produced by a MAC algorithm
- The ICV is calculated over
 - IP header fields that do not change (e.g., source address) or are predictable (e.g., destination address); those that do change (e.g., Time-to-Live) are set to zero for calculation
 - AH header minus Authentication Data (where the ICV value goes)
 - Upper-level data (assumed not to change in transit)
- Code may be truncated to first 96 bits
- Compliant implementations must support HMAC-MD5-96, HMAC-SHA-1-96

Before applying AH

Transport Mode AH

- protocol field of IP header is 51 (for AH payload)
- AH in turn contains protocol field specifying protocol of actual payload,
 e.g., TCP or UDP or ICMP or IP

Tunnel Mode AH

Encapsulating Security Payload (ESP)

- IPv4 and IPv6
 - ESP: confidentiality
 - ESP w/Auth: confidentiality, authentication, integrity
 - ESP w/Auth is an option within ESP
- ESP header (cleartext)
 - security parameter index (SPI)
 - sequence number: 32 bit
 - Initial Value for CBC (if algorithm requires it)
- ESP trailer (encrypted)
 - padding
 - next header (identifies payload protocol)
- ESP w/Auth authentication
 - ICV: for authentication option
 - applies only to encrypted payload and not to header
- Format varies based on encryption type

Encapsulating Security Payload (ESP)

- provides message content confidentiality and limited traffic flow confidentiality
- can optionally provide the same authentication services as AH
- Modes supported by ESP:
 - Tunnel mode: encrypt entire IP packet plus headers inside another IP packet
 - **Transport** mode: do not encrypt headers
- supports range of ciphers, modes, padding
 - incl. DES, Triple-DES, RC5, IDEA, CAST etc
 - CBC most common
 - pad to meet blocksize, for traffic flow

Encapsulating Security Payload (ESP)

UnitelmaSapienza.it

ESP Encryption and Authentication

(a) Transport Mode

ESP Encryption and Authentication

(b) Tunnel Mode

UnitelmaSapienza.it 38

Outbound Packet Processing

- Form ESP payload
- Pad as necessary
- Encrypt result [payload, padding, pad length, next header]
- Apply authentication
 - Allow rapid detection of replayed/bogus packets
 - Allow potential parallel processing decryption & verifying authentication code

Outbound Packet Processing

- Sequence number generation
 - Increment then use
 - With anti-replay enabled, check for rollover and send only if no rollover
 - With anti-replay disabled, still needs to increment and use but no rollover checking
- ICV calculation
 - ICV includes whole ESP packet minus authentication data field
 - Implicit padding of '0's between next header and authentication data is used to satisfy block size requirement for ICV algorithm

Inbound Packet Processing

- Sequence number checking
 - Anti-replay is used only if authentication is selected
 - Sequence number should be the first ESP check on a packet upon looking up a SA
 - Duplicates are rejected

Inbound Packet Processing

- Packet decryption
 - Decrypt quantity [ESP payload, padding, pad length, next header] per SA specification
 - Processing (stripping) padding per encryption algorithm; in case of default padding scheme, the padding field should be inspected
 - Reconstruct the original IP datagram
- Authentication verification (optional) precedes decryption to avoid denial of service attacks

Key Management

- AH and ESP require encryption and authentication keys to be used with agreed algorithms
- IPSEC does not use PKI
- Manual setting (offline) and maintenance suitable for small scale VPNs
- Need process to negotiate and establish IPSec SA's between two entities
 - handles key generation and distribution
 - typically need 2 pairs of keys
 - 2 for each direction, for AH and ESP

IPSEC Key Management

There are three possibilities for Key Management

- Manual keying
 - manually distribute crypto information, sysadmin configures
- SKIP: Simple Key Interchange Protocol (Sun)
 - Not session oriented, no SA, per packet overhead
- **ISAKMP**: Internet Security Association and Key Management Protocol (NSA)
 - General-purpose security exchange protocol, provides framework for key management and policy negotiations
 - defines procedures and packet formats to establish, negotiate, modify and delete SAs
 - independent of key exchange protocol, encryption algorithm and authentication method

Internet Key Exchange - IKE

- Used when an outbound packet does not have a SA
- Two phases:
 - Establish an IKE SA using DH to establish shared secret
 - Use that SA to negotiate IPSec SAs
 - Keys and SA attributes communicated with IKE SA
 - What traffic does SA cover ?
 - *Initiator* specifies which entries (selectors) in SPD are for this IPSec SA, sends off to *responder*
- IKE SA used to define encryption and authentication of IKE traffic
- Multiple IPSec SAs established with one IKE SA
- IKE SA bidirectional

IPSec Pros and Cons

- Key exchange and encryption are separate
 - New encryption algorithms can be added
- Complex a lot of flexibility and options
- Applications need not be changed to use IPSec
- Security at Internet layer can be used by both TCP- and UDP- based applications
- BUT ... the IP stack either changed or extended
- Industry trend suggests best use in VPN
- <u>www.strongswan.org</u> open source IPsec-based VPN solution for Linux, OS X, Windows, includes implementation of IKE

Transition From IPv4 To IPv6

- Not all routers can be upgraded simultaneous
 - no "flag days"
 - How will the network operate with mixed IPv4 and IPv6 routers?
- Two proposed approaches:
 - Dual Stack: some routers with dual stack (v6, v4) can "translate" between formats
 - Tunneling: IPv6 carried as payload in IPv4 datagram among IPv4 routers

Dual Stack Approach

Tunneling

