LØST OPPGAVE 10.318

10.318

Et atom som er i en eksitert tilstand, kan sende ut et foton med bølgelengden 330 nm ved overgangen mellom to energinivåer. Sluttnivået har energien $-7.7 \cdot 10^{-19}$ J.

Hva er energien til atomet i den eksiterte tilstanden?

Løsning:

Vi finner først frekvensen til fotonet ved hjelp av bølgeformelen:

$$c = f \lambda$$

 $f = \frac{c}{\lambda}$
 $= \frac{3,00 \cdot 10^8 \text{ m/s}}{330 \cdot 10^{-9} \text{ m}} = 9,0909 \cdot 10^{14} \text{ Hz}$

Så finner vi energien til fotonet

$$E_{\rm f} = hf$$

= 6,63·10⁻³⁴ Js·9,0909·10¹⁴ s⁻¹ = 6,027·10⁻¹⁹ J

Vi kaller begynnelsesnivået for E_n er sluttnivået for E_m . Når atomet de-eksiterer fra tilstanden E_n til E_m , emitteres et foton med energi

$$E_{\rm f} = E_{\rm n} - E_{\rm m}$$

Da får vi

$$E_n = E_m + E_f$$

= -7,7 \cdot 10^{-19} J + 6,027 \cdot 10^{-19} J = -1,7 \cdot 10^{-19} J = \bullet -0,17 \cdot aJ