

Uncovering Patterns and Predicting Chronic Disease Risks in the U.S

Van Le - Stanley He - James Li

6 IN 10

Adults in the US have a chronic disease

4 IN 10

Adults in the US have two or more

The Burden of Chronic Diseases

- ☐ Chronic diseases are the leading causes of death and disability in the U.S.
- ☐ Importance to predict and manage disease outbreaks.
- ☐ These indicators are essential for surveillance, prioritization, and evaluation of public health interventions.

Project Objectives

Classification
of risk levels at
the state level
that are
essential for
the evaluation
of public
health
interventions.

Pattern of chronic disease across different states.

Predictive models of mortality risk that important for early detection and future strategies.

Dataset Overview

- □ `U.S. Chronic Disease Indicators (CDI)` was developed by consensus that allows states and large metropolitan areas to uniformly define, collect, and report chronic disease data that are important to public health practice. (catalog.data.gov)
- ☐ The Chronic Condition Indicator was created to facilitate health services research on diagnoses using administrative data.
- ☐ There are more than 900K data rows in our dataset, with more than 24 indicators over 50 states that include 17 topic groups.

Y	earstart	rearEnd	LocationAbbr	Topic	Question	Datavalueunit	DatavalueType	Datavalue I	JatavalueAlt	StratificationCategoryl	Stratificationi	LocationID	Topicid	QuestionID	DataValueTypeID	StratificationCategoryID1	StratificationID1	Longitude	Latitude	DeadStatus
0	2001	2001	NJ	Overarching Conditions	Life expectancy at birth	Years	Number	77.6	77.6	Overall	Overall	34	ovc	OVC4_1	NMBR	OVERALL	OVR	-74.273691	40.13057	1
1	2001	2001	ОН	Overarching Conditions	Life expectancy at birth	Years	Number	76.5	76.5	Overall	Overall	39	ovc	OVC4_1	NMBR	OVERALL	OVR	-82.404260	40.06021	1
2	2001	2001	NJ	Overarching Conditions	Life expectancy at age 65 years	Years	Number	18.1	18.1	Overall	Overall	34	OVC	OVC4_2	NMBR	OVERALL	OVR	-74.273691	40.13057	1
3	2001	2001	МА	Overarching Conditions	Life expectancy at age 65 years	Years	Number	18.7	18.7	Overall	Overall	25	OVC	OVC4_2	NMBR	OVERALL	OVR	-72.082691	42.27687	1
4	2001	2001	KS	Overarching Conditions	Life expectancy at birth	Years	Number	77.8	77.8	Overall	Overall	20	OVC	OVC4_1	NMBR	OVERALL	OVR	-98.200781	38.34774	1

Data Summary & Statistics

Trends of Topic Over Years

Recovery Time Analysis

- ☐ The majority recovered swiftly during the initial year.
- ☐ A significant portion required 4 years for recovery.
- □ A notable subset recovered after 1 or 2 years.

Cancer Death Rate Throughout The Years

Percentage of Deaths Due to Cancer Over the Years

K-means Clustering Analysis

- ☐ Purpose: Determine patterns in disease prevalence across states.
- ☐ Input data consists of the health issues or the chronic diseases that are the most frequent in each state in the US.
- ☐ The K-means cluster analysis was chosen because it is relatively easy to understand and implement.
- ☐ Silhouette score: 0.63622 which is relatively high.

Risk Level Assessment

- ☐ Random Forest Classifier
- □ Attributes: `LocationAbbr`, `YearStart`, `DataValue`, `DeadStatus`, `TopicID`
- ☐ Target: `RiskLevel` that is defined based on `DataValue` and `DataValueAlt`.

Risk Level	DataValue				
Low	[-1, 500000)				
Medium	[500000 - 1000000)				
High	[1000000 – 2000000)				
Very High	>= 2000000				

Structure of Random Forest

RandomForest Classifier Evaluation

Chronic Disease Mortality Prediction

- ☐ Logistic Regression
 - Binary classification tasks. (1 = Deceased, 0 = Alive)
- Naïve Bayes Classification
 - Able to handle many features
- ☐ Attributes used for model training
 - YearStart`, `Arthritis`, `Cancer`, `Cardiovascular Disease`, `Chronic Kidney Disease`, `Nutrition, Physical Activity, and Weight Status`, `Tobacco`, `diseaseDuration`

Correlation Matrix

☐ Selected features based on correlation threshold (> 0.1)

'YearStart', 'DeadStatus',
'Arthritis', 'Cancer',
'Cardiovascular Disease', 'Chronic
Kidney Disease', 'Nutrition,
Physical Activity, and Weight
Status', 'Tobacco',
'diseaseDuration'

Logistic Regression vs. Naïve Bayes

Predicted 1, Actual 1 = TP Predicted 0, Actual 1 = FN Predicted 1, Actual 0 = FP Predicted 0, Actual 0 = TN

Logistic Regression vs. Naïve Bayes Result

Logistic Regression Classification Report

Accuracy: 0.77										
Classification Report :										
	precision	recall	f1-score	support						
0	0.77	0.99	0.87	121671						
1	0.61	0.06	0.11	37293						
accuracy			0.77	158964						
macro avg	0.69	0.52	0.49	158964						
weighted avg	0.74	0.77	0.69	158964						

Naïve Bayes Classification Report

Accuracy: 0.43 Classification Report:										
	precision	recall	f1-score	support						
0	1.00	0.25	0.40	121671						
1	0.29	1.00	0.45	37293						
accuracy			0.43	158964						
macro avg	0.65	0.63	0.43	158964						
weighted avg	0.83	0.43	0.41	158964						

Challenges

- ☐ Unbalanced dataset
- ☐ Data types are diverse: hard to compile into model training, so we need intensive preprocessing data.
- ☐ Data was not available for all `Topic` for all years.

Questions