IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In the Application of:

WILSON TAM ET AL.

CASE NO.: CL1253 US DIV

DIVISIONAL OF

APPLICATION NO.: 09/399,261

GROUP ART UNIT: 1711

FILED:

EXAMINER: D. TRUONG

FOR: POLYMERIC PHOSPHITE COMPOSITION AND HYDROCYANATION OF UNSATURATED ORGANIC COMPUNDS AND THE ISOMERIZATION OF UNSATURATED NITRILES

PRELIMINARY AMENDMENT

Assistant Commissioner for Patents Washington, DC 20231

Sir:

Before examination of the above-referenced application, please amend the application as follows:

IN THE SPECIFICATION:

Please add the following paragraph before the first paragraph on page 1: This application is a divisional of application number 09/399,261, which was filed on September 20, 1999.

IN THE CLAIMS:

(CLEAN VERSION)

14. (Once amended) A composition according to Claim 13 wherein said polyhydric alcohol is selected from the group consisting of (OH)_m

 $(R^4) A r^1 - A r^1 (R^4) (OH)_m \text{ and } (OH)_m \, (R^4) A r^1 - A^1 - A r^1 (R^4) (OH)_m;$

Ar1 and A1 are the same as recited in Claim 13; and

each R^4 is independently selected from the group consisting of C_1 to C_{12} alkyl or cycloalkyl group, acetal, ketal, $-OR^3$, $-CO_2R^3$, C_6 to C_{20} aryl group, $-SiR^3$, -

 SO_3R^3 , $-S(O)R^3$, $-S(O)_2R^3$, perhaloalkyl, $-C(O)N(R^3)(R^3)$, $-A^1CO_2R^3$, $-A^1OR^3$ and combinations of two or more thereof.

16. (Once amended) A composition according to Claim 15 said polyhydric alcohol is selected from the group consisting of 6,6'-dihydroxy-4,4,4',7,7,7'-hexamethyl bis-2,2'-spirochroman, 2,2'-diallylbisphenolA, bisphenol A, 4,4'-(1-methylethylidene)bis(2-(1-methylpropyl)phenol), 4,4'-thiophenol, 4,4'-dihydroxydiphenylsulfone, 4,4'-sulfonylbis(2-methylphenol), bis(4-hydroxy-3,-methylphenyl)sulfide, 2,2'-dis(4-hydroxy-3-methylphenyl)propane, 4,4'-ethylidenebis(2,5-dimethylphenol), 4,4'-propylidenebis(2,5-dimethylphenol), 4,4'-ethylidenebis(2-isopropyl-5-methylphenol),

and combinations of two or more thereof.

17. (Once amended) A composition according to Claim 16 wherein said aromatic diol has the formula selected from the group consisting of

$$R^4$$
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5

each R^4 is independently selected from the group consisting of hydrogen, C_1 to C_{12} alkyl or cycloalkyl group, acetal, ketal, $-OR^3$, $-CO_2R^3$, C_6 to C_{20} aryl group, $-SiR^3$, $-NO_2$, $-SO_3R^3$, $-S(O)R^3$, $-S(O)_2R^3$, -CHO, $-C(O)R^3$, -F, -Cl, -CN, $-CF_3$, $-C(O)N(R^3)(R^3)$, $-A^1Z$, and combinations of two or more thereof; Z is selected from the group consisting of $-CO_2R^3$, -CHO, $-C(O)R^3$, $-C(O)SR^3$, $-SR^3$, $-C(O)NR^1R^1$, $-OC(O)R^3$, $-OC(O)OR^3$, $-N=CR^1R^1$, $-C(R^1)=NR^1$, $-C(R^1)=N-O-R^1$, $-P(O)(OR^3)(OR^3)$, $-S(O)_2R^3$, $-S(O)R^3$, $-C(O)OC(O)R^3$, $-NR^3CO_2R^3$, $-NR^3C(O)NR^1R^1$, $-C(R^1)=NO_2$, $-SO_3R^3$, -CN, and combinations of two or more thereof;

each R^3 is independently selected from the group consisting of C_1 to C_{12} alkyl or cycloalkyl group, C_6 to C_{20} aryl group, and combinatons of two or more thereof; each R^5 is independently selected from the group consisting of H, F, Cl, C_1 to C_{12} alkyl, C_1 to C_{12} cycloalkyl, C_6 to C_{20} aryl, $-OR^3$, $-CO_2R^3$, $-C(O)R^3$, -CHO, -CN, $-CF_3$, and combinations of two or more thereof;

each R^6 independently is selected from the group consisting of H, C_1 to C_{12} alkyl, C_1 to C_{12} cycloalkyl, C_6 to C_{20} aryl, and combinations of two or more thereof; and each R^7 independently is selected from the group consisting of H, C_1 to C_{12} alkyl, C_1 to C_{12} cycloalkyl, C_6 to C_{20} aryl, and combinations of two or more thereof.

- 18. (Once amended) A composition according to Claim 17 further comprising at least one Group VIII metal selected from the group consisting of nickel, palladium, cobalt, and combinations of two or more thereof.
- 38. (Once amended) A process according to Claim 36 wherein said polyhydric alcohol is selected from the group consisting of (OH)_m (R⁴)Ar¹- Ar¹(R⁴)(OH)_m and (OH)_m (R⁴)Ar¹-A¹-Ar¹ (R⁴)(OH)_m;

 Ar¹ and A¹ are the same as recited in Claim 14; and

each R^4 is independently selected from the group consisting of C_1 to C_{12} alkyl or cycloalkyl group, acetal, ketal, -OR³, -CO₂R³, C_1 to C_{20} aryl group, -SiR³, -

 SO_3R^3 , $-S(O)R^3$, $-S(O)_2R^3$, perhaloalkyl, $-C(O)N(R^3)(R^3)$, $-A^1CO_2R^3$, $-A^1OR^3$ and combinations of two or more thereof.

- 39. (Once amended) A process according to Claim 38 wherein the location of the OH groups of said polyhydric alcohol are placed such that, when said polyhydric alcohol is contacted with PCl₃, monodentate phosphites are not predominately produced.
- 40. (Once amended) A process according to Claim 39 wherein said polyhydric alcohol is selected from the group consisting of 6,6'-dihydroxy-4,4,4',7,7,7'-hexamethyl bis-2,2'-spirochroman, 2,2'-diallylbisphenolA, bisphenol A, 4,4'-(1-methylethylidene)bis(2-(1-methylpropyl)phenol), 4,4'-thiophenol, 4,4'-dihydroxydiphenylsulfone, 4,4'-sulfonylbis(2-methylphenol), bis(4-hydroxy-3,-methylphenyl)sulfide, 2,2'-dis(4-hydroxy-3-methylphenyl)propane, 4,4'-ethylidenebis(2,5-dimethylphenol), 4,4'-propylidenebis(2,5-dimethylphenol), 4,4'-ethylidenebis(2-isopropyl-5-methylphenol),

and combinations of two or more thereof.

41. (Once amended) A process according to Claim 34 or 35 wherein said aromatic diol has the formula selected from the group consisting of

$$R^4$$
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5

each R^4 is independently selected from the group consisting of hydrogen, C_1 to C_{12} alkyl group, C_1 to C_{12} cycloalkyl group, acetal, ketal, $-OR^3$, $-CO_2R^3$, C_1 to C_{20} aryl group, $-SiR^3$, $-NO_2$, $-SO_3R^3$, $-S(O)R^3$, $-S(O)_2R^3$, -CHO, $-C(O)R^3$, -F, -Cl, -CN, $-CF_3$, $-C(O)N(R^3)(R^3)$, $-A^1Z$, and combinations of two or more thereof;

Z is selected from the group consisting of- CO_2R^3 , -CHO, -C(O)R³, -C(O)SR³, -SR³, -C(O)NR¹R¹, -OC(O)R³, -OC(O)OR³, -N=CR¹R¹, -C(R¹)=NR¹,

 $-C(R^1)=N-O-R^1$, $-P(O)(OR^3)(OR^3)$, $-S(O)_2R^3$, $-S(O)R^3$, $-C(O)OC(O)R^3$, $-NR^3CO_2R^3$, $-NR^3C(O)NR^1R^1$, F, C1, $-NO_2$, $-SO_3R^3$, -CN, and combinations of two or more thereof;

each R^3 is independently selected from the group consisting of C_1 to C_{12} alkyl or cycloalkyl group, C_1 to C_{20} aryl group, and combinatons of two or more thereof; each R^5 is independently selected from the group consisting of H, F, Cl, C_1 to C_{12} alkyl or cycloalkyl, C_6 to C_{20} aryl, $-OR^3$, $-CO_2R^3$, $-C(O)R^3$, -CHO, -CN, $-CF_3$, and combinations of two or more thereof;

each R^6 independently is selected from the group consisting of H, C_1 to C_{12} alkyl or cycloalkyl, C_6 to C_{20} aryl, and combinations of two or more thereof; and each R^7 independently is selected from the group consisting of H, C_1 to C_{12} alkyl or cycloalkyl, C_6 to C_{20} aryl, and combinations of two or more thereof.

- 45. (Once amended) A process comprising (a) contacting a diolefinic compound, in the presence of a catalyst composition, with a fluid comprising hydrogen cyanide to produce a 2-alkyl-3-monoalkenenitrile; and (b) contacting said 2-alkyl-3-monoalkenenitrile with said catalyst composition wherein said catalyst composition is the composition recited in claims 18-21.
- 48. (Once amended) A process comprising contacting a 2-alkyl-3-monoalkenenitrile with a catalyst composition wherein said catalyst composition is the composition recited in Claims 18-21.
- 50. (New) A polymeric composition comprising repeat units derived from (1) a carbonyl compound, (2) a monomer, and (3) phosphorochloridite wherein said carbonyl compound has the formula selected from the group consisting of $(R^1O_2C)_m(OH)-Ar^1-(OH)(CO_2R^1)_m, (R^1O_2C)_m(OH)-Ar^2-A^2-Ar^2-(OH)(CO_2R^1)_m, (R^1O_2C)_m(OH)-Ar^2-Ar^2-(OH)(CO_2R^1)_m \text{ and combinations of two or more thereof; said monomer is selected from the group consisting of polyhydric alcohols,$

amines, and combinations thereof,
said phosphorochloridite has the formula selected from the group consisting

said phosphorochloridite has the formula selected from the group consisting of $ClP(O-Ar^2-R^2)_2$; the Ar^2 groups in $ClP(O-Ar^2-R^2)_2$ are unlinked to each other, directly linked to each other, or linked to each other through group A^2 ;

each Ar^1 is selected from the group consisting of C_6 to C_{40} phenylene group, C_{12} to C_{40} biphenylene group, C_{10} to C_{40} naphthylene group, C_{20} to C_{40} binaphthylene group, and combinations of two or more thereof;

each Ar^2 is independently selected from the group consisting of C_6 to C_{40} phenylene group, C_{10} to C_{40} naphthylene group, and combinations thereof;

 A^2 is selected from the group consisting of $-C(R^1)(R^1)$, -O-, $-N(R^1)$ -, -S-, $-S(O)_2$ -, -S(O)-, and combinations of two or more thereof;

each R^1 is independently selected from the group consisting of hydrogen, C_1 to C_{12} alkyl group or cycloalkyl group, C_6 to C_{20} aryl group, and combinations of two or more thereof;

each R^2 is independently selected from the group consisting of hydrogen, C_1 to C_{12} alkyl or cycloalkyl group, acetal, ketal, $-OR^3$, $-CO_2R^3$, C_6 to C_{20} aryl group, F, Cl, $-NO_2$, $-SO_3R^3$, -CN, perhaloalkyl, $-S(O)R^3$, $-S(O)_2R^3$, -CHO, $-C(O)R^3$, cyclic ether, $-A^1Z$, and combinations of two or more thereof;

A¹ is a C₁ to C₁₂ alkylene group;

Z is selected from the group consisting of -CO₂R³, -CHO, -C(O)R³, -C(O)SR³, -SR³, -C(O)NR¹R¹, -OC(O)R³, -OC(O)OR³, -N=C(R¹)R1, -C(R¹)=NR¹, -C(R¹)=N-O-R¹, -P(O)(OR³)(OR³), -S(O)₂R³, -S(O)R³, -C(O)OC(O)R³, -NR³CO₂R³, -NR³CO₂R³, -NR³CO₂R³, -CN, and combinations of two or more thereof; each R³ is independently selected from the group consisting of C₁ to C₁₂ alkyl or cycloalkyl group, C₆ to C₂₀ aryl group, and combinations thereof; and each m is independently a number in the range of from 1 to 2 further comprising at least one Group VIII metal selected from the group consisting of nickel, palladium, cobalt, and combinations of two or more thereof.

- 51. (New) The composition of claim 50 further comprising at least one Lewis acid which is an inorganic compound or organometallic compound in which the element of said inorganic compound or organometallic compound is selected from the group consisting of scandium, titanium, vanadium, chromium, manganese, iron, cobalt, copper, zinc, boron, aluminum, yttrium, zirconium, niobium, molybdenum, cadmium, rhenium, tin, and combinations of two or more thereof.
- 52. (New) The composition of claim 51 wherein said Lewis acid is selected from the group consisting of ZnBr₂, ZnI₂, ZnCl₂, ZnSO₄, CuCl₂, CuCl, Cu(O₃SCF₃)₂, CoCl₂, CoI₂, FeI₂, FeCl₃, FeCl₂(tetrahydrofuran)₂, FeCl₂, TiCl₄(tetrahydrofuran)₂, TiCl₄, TiCl₃, ClTi(OiPr)₃, MnCl₂, ScCl₃, AlCl₃, (C₈H₁₇)AlCl₂, (C₈H₁₇)₂AlCl, (iso-C₄H₉)₂AlCl, (phenyl)₂AlCl, phenylAlCl₂, ReCl₅, ZrCl₄, NbCl₅, VCl₃, CrCl₂, MoCl₅, YCl₃, CdCl₂, LaCl₃, Er(O₃SCF₃)₃, Yb(O₂CCF₃)₃, SmCl₃, TaCl₅, CdCl₂, B(C₆H₅)₃, and (C₆H₅)₃SnX, and combinations of two or more thereof; and X is selected from the group consisting of CF₃SO₃, CH₃C₆H₅SO₃, (C₆H₅)₃BCN, and combinations of two or more thereof.
- 53. (New) The composition of claim 52 wherein said Lewis acid is selected from the group consisting of zinc chloride, cadmium chloride, iron chloride, triphenylboron, (C₆H₅)₃SnX, and combinations of two or more thereof; and X is selected from the group consisting of CF₃SO₃, CH₃C₆H₃SO₃, (C₆H₃)₃BCN, and combinations of two or more thereof.
- 54. (New) A composition according to claim 15 wherein said aromatic diol has the formula selected from the group consisting of

each R^4 is independently selected from the group consisting of hydrogen, C_1 to C_{12} alkyl or cycloalkyl group, acetal, ketal, $-OR^3$, $-CO_2R^3$, C_6 to C_{20} aryl group, $-SiR^3$, $-NO_2$, $-SO_3R^3$, $-S(O)R^3$, $-S(O)_2R^3$, -CHO, $-C(O)R^3$, -F, -Cl, -CN,

 $\begin{array}{c} -\mathrm{CF_3, -C(O)N(R^3)(R^3), -A^1Z, and combinations of two or more thereof;} \\ \mathrm{Z\ is\ selected\ from\ the\ group\ consisting\ of\ -CO_2R^3, -CHO, -C(O)R^3, -C(O)SR^3, -SR^3, -C(O)NR^1R^1, -OC(O)R^3, -OC(O)OR^3, -N=CR^1R^1, -C(R^1)=NR^1, -C(R^1)=N-O-R^1, -P(O)(OR^3)(OR^3), -S(O)_2R^3, -S(O)R^3, -C(O)OC(O)R^3, -NR^3CO_2R^3, -R^3CO_2R^3, -C(O)OC(O)R^3, -NR^3CO_2R^3, -R^3CO_2R^3, -R^3CO_$

-NR³C(O)NR¹R¹, F, Cl, -NO₂, -SO₃R³, -CN, and combinations of two or more thereof; each R³ is independently selected from the group consisting of C₁ to C₁₂ alkyl or cycloalkyl group, C₆ to C₂₀ aryl group, and combinatons of two or more thereof; each R⁵ is independently selected from the group consisting of H, F, Cl, C₁

to C_{12} alkyl, C_1 to C_{12} cycloalkyl, C_6 to C_{20} aryl, $-OR^3$, $-CO_2R^3$, $-C(O)R^3$, -CHO, -CN, $-CF_3$, and combinations of two or more thereof;

each R^6 independently is selected from the group consisting of H, C_1 to C_{12} alkyl, C_1 to C_{12} cycloalkyl, C_6 to C_{20} aryl, and combinations of two or more thereof; and

each R^7 independently is selected from the group consisting of H, C_1 to C_{12} alkyl, C_1 to C_{12} cycloalkyl, C_6 to C_{20} aryl, and combinations of two or more thereof.

- 55. (New) A composition according to any of Claims 15 further comprising at least one Group VIII metal selected from the group consisting of nickel, palladium, cobalt, and combinations of two or more thereof.
- 56. (New) A composition according to any of Claims 16 further comprising at least one Group VIII metal selected from the group consisting of nickel, palladium, cobalt, and combinations of two or more thereof.
- 57. (New) A composition according to claim 55 further comprising at least one Lewis acid which is an inorganic compound or organometallic compound in which the element of said inorganic compound or organometallic compound is selected from the group consisting of scandium, titanium, vanadium, chromium, manganese, iron, cobalt, copper, zinc, boron, aluminum, yttrium, zirconium, niobium, molybdenum, cadmium, rhenium, tin, and combinations of two or more thereof.
- 58. (New) A composition according to Claim 57 wherein said Lewis acid is selected from the group consisting of ZnBr₂, ZnI₂, ZnCl₂, ZnSO₄, CuCl₂, CuCl, Cu(O₃SCF₃)₂, CoCl₂, CoI₂, FeI₂, FeCl₃, FeCl₂(tetrahydrofuran)₂, FeCl₂, TiCl₄(tetrahydrofuran)₂, TiCl₄, TiCl₃, ClTi(OiPr)₃, MnCl₂, ScCl₃, AlCl₃, (C₈H₁₇)AlCl₂, (C₈H₁₇)₂AlCl, (iso-C₄H₉)₂AlCl, (phenyl)₂AlCl, phenylAlCl₂, ReCl₅, ZrCl₄, NbCl₅, VCl₃, CrCl₂, MoCl₅, YCl₃, CdCl₂, LaCl₃, Er(O₃SCF₃)₃, Yb(O₂CCF₃)₃, SmCl₃, TaCl₅, CdCl₂, B(C₆H₅)₃, and (C₆H₅)₃SnX, and combinations of two or more thereof; and X is selected from the group consisting of CF₃SO₃, CH₃C₆H₅SO₃, (C₆H₅)₃BCN, and combinations of two or more thereof.
- 59. (New) A composition according to Claim 58 wherein said Lewis acid is selected from the group consisting of zinc chloride, cadmium chloride, iron chloride, triphenylboron, $(C_6H_5)_3$ SnX, and combinations of two or more thereof; and X is selected from the group consisting of CF₃SO₃, CH₃C₆H₃SO₃, (C₆H₃)₃BCN, and combinations of two or more thereof.
- 60. (New) A composition according to claim 56 further comprising at least one Lewis acid which is an inorganic compound or organometallic compound in which the element of said inorganic compound or organometallic compound is selected from the group consisting of scandium, titanium, vanadium, chromium, manganese, iron, cobalt, copper, zinc, boron, aluminum, yttrium, zirconium, niobium, molybdenum, cadmium, rhenium, tin, and combinations of two or more thereof.
- 61. (New) A composition according to Claim 60 wherein said Lewis acid is selected from the group consisting of ZnBr₂, ZnI₂, ZnCl₂, ZnSO₄, CuCl₂, CuCl,

 $Cu(O_3SCF_3)_2$, $CoCl_2$, CoI_2 , FeI_2 , $FeCl_3$, $FeCl_2$ (tetrahydrofuran) $_2$, $FeCl_2$, $TiCl_4$ (tetrahydrofuran) $_2$, $TiCl_4$, $TiCl_3$, $ClTi(OiPr)_3$, $MnCl_2$, $ScCl_3$, $AlCl_3$, $(C_8H_{17})AlCl_2$, $(C_8H_{17})_2AlCl$, (iso- C_4H_9) $_2AlCl$, (phenyl) $_2AlCl$, phenyl $_2AlCl$, phenyl $_3AlCl$, $_4AlCl$, $_4Al$

62. (New) A composition according to Claim 61 wherein said Lewis acid is selected from the group consisting of zinc chloride, cadmium chloride, iron chloride, triphenylboron, $(C_6H_5)_3SnX$, and combinations of two or more thereof; and X is selected from the group consisting of CF_3SO_3 , $CH_3C_6H_3SO_3$, $(C_6H_3)_3BCN$, and combinations of two or more thereof.

REMARKS

By this preliminary amendment, the specification acknowledges that the present application is a divisional of a previously filed application, in which claims 1-10 and 22-33 were allowed.

Applicants have amended certain claims, and have added new claims 50 to 62. Applicant has amended claims to place multiple dependent claims in proper form. Support for the amended and new claims appears in the specification. No new matter is added by this amendment.

Pending are claims 11-21 and 34-49 and upon entry of this amendment, claims 50-62. It is respectfully requested that the preliminary amendment filed herewith be entered before examination of the pending claims.

Chyreafebre CHYRREA J. SEBREE ATTORNEY FOR APPLICANTS REGISTRATION NO. 45,348 TELEPHONE: (302) 992-3407 FACSIMILE: (302) 892-7949

Respectfully submitted,

Dated: _____

MARKED-UP VERSION

14. (Once amended) A composition according to Claim 13 wherein said polyhydric alcohol is selected from the group consisting of $\frac{(OH)_m (R^4)Ar^1-Ar^1(R^4)(OH)_m \text{ and } (OH)_m (R^4)Ar^1-A^1-Ar^1(R^4)(OH)_m}{(OH)_m Ar^1-R^4-Ar^1(OH)_m \text{ and } (OH)_m Ar^1-R^4-Ar^1(OH)_m};$

Ar¹ and A¹ are the same as recited in Claim 13; and each R^4 is independently selected from the group consisting of C_1 to C_{12} alkyl or cycloalkyl group, acetal, ketal, $-OR^3$, $-CO_2R^3$, C_6 to C_{20} aryl group, $-SiR^3$, $-SO_3R^3$, $-S(O)_2R^3$, perhaloalkyl, $-C(O)N(R^3)(R^3)$, $-A^1CO_2R^3$, $-A^1OR^3$ and combinations of two or more thereof.

16. (Once amended) A composition according to Claim 13, 14, or 15 said polyhydric alcohol is selected from the group consisting of 6,6'-dihydroxy-4,4,4',7,7,7'-hexamethyl bis-2,2'-spirochroman, 2,2'-diallylbisphenolA, bisphenol A, 4,4'-(1-methylethylidene)bis(2-(1-methylpropyl)phenol), 4,4'-thiophenol, 4,4'-dihydroxydiphenylsulfone, 4,4'-sulfonylbis(2-methylphenol), bis(4-hydroxy-3,-methylphenyl)sulfide, 2,2'-dis(4-hydroxy-3-methylphenyl)propane, 4,4'-ethylidenebis(2,5-dimethylphenol), 4,4'-propylidenebis(2,5-dimethylphenol), 4,4'-benzylidenebis(2,5-dimethylphenol), 4,4'-ethylidenebis(2-isopropyl-5-methylphenol),

and combinations of two or more thereof.

17. (Once amended) A composition according to any of Claims 11 to 16 wherein said aromatic diol has the formula selected from the group consisting of

each R^4 is independently selected from the group consisting of hydrogen, C_1 to C_{12} alkyl or cycloalkyl group, acetal, ketal, $-OR^3$, $-CO_2R^3$, C_6 to C_{20} aryl group, $-SiR^3$, $-NO_2$, $-SO_3R^3$, $-S(O)R^3$, $-S(O)_2R^3$, -CHO, $-C(O)R^3$, -F, -Cl, -CN,

-NR 3 C(O)NR 1 R 1 , F, Cl, -NO $_2$, -SO $_3$ R 3 , -CN, and combinations of two or more thereof; each R 3 is independently selected from the group consisting of C $_1$ to C $_{12}$ alkyl or cycloalkyl group, C $_6$ to C $_{20}$ aryl group, and combinatons of two or more thereof;

each R^5 is independently selected from the group consisting of H, F, Cl, C_1 to C_{12} alkyl, C_1 to C_{12} cycloalkyl, C_6 to C_{20} aryl, $-OR^3$, $-CO_2R^3$, $-C(O)R^3$, -CHO, -CN, $-CF_3$, and combinations of two or more thereof;

each R^6 independently is selected from the group consisting of H, C_1 to C_{12} alkyl, C_1 to C_{12} cycloalkyl, C_6 to C_{20} aryl, and combinations of two or more thereof; and

each R^7 independently is selected from the group consisting of H, C_1 to C_{12} alkyl, C_1 to C_{12} cycloalkyl, C_6 to C_{20} aryl, and combinations of two or more thereof.

- 18. (Once amended) A composition according to any of Claims 1 to 17 further comprising at least one Group VIII metal selected from the group consisting of nickel, palladium, cobalt, and combinations of two or more thereof.
- 38. (Once amended) A process according to Claim 36 wherein said polyhydric alcohol is selected from the group consisting of <u>OH</u>)_m (R⁴)Ar¹- Ar¹(R⁴)(OH)_m and (OH)_m (R⁴)Ar¹-Ar¹ (R⁴)(OH)_m (OH)_m (OH)_m Ar¹-R⁴-R⁴-Ar¹(OH)_m;

Ar¹ and A¹ are the same as recited in Claim 14; and each R^4 is independently selected from the group consisting of C_1 to C_{12} alkyl or cycloalkyl group, acetal, ketal, $-OR^3$, $-CO_2R^3$, C_1 to C_{20} aryl group, $-SiR^3$, $-SO_3R^3$, $-S(O)_2R^3$, perhaloalkyl, $-C(O)N(R^3)(R^3)$, $-A^1CO_2R^3$, $-A^1OR^3$ and combinations of two or more thereof.

- 39. (Once amended) A process according to Claim 37 or 38 wherein the location of the OH groups of said polyhydric alcohol are placed such that, when said polyhydric alcohol is contacted with PCl₃, monodentate phosphites are not predominately produced.
- 40. (Once amended) A process according to Claim 37, 38, or 39 wherein said polyhydric alcohol is selected from the group consisting of 6,6'-dihydroxy-4,4,4',7,7,7'-hexamethyl bis-2,2'-spirochroman, 2,2'-diallylbisphenolA, bisphenol A, 4,4'-(1-methylethylidene)bis(2-(1-methylpropyl)phenol), 4,4'-thiophenol, 4,4'-dihydroxydiphenylsulfone, 4,4'-sulfonylbis(2-methylphenol), bis(4-hydroxy-3,-methylphenyl)sulfide, 2,2'-dis(4-hydroxy-3-methylphenyl)propane, 4,4'-ethylidenebis(2,5-dimethylphenol), 4,4'-propylidenebis(2,5-dimethylphenol), 4,4'-benzylidenebis(2,5-dimethylphenol), 4,4'-ethylidenebis(2-isopropyl-5-methylphenol),

CL 1253 US DIV DIV. OF 09/399,261 PAGE 14

and combinations of two or more thereof.

41. (Once amended) A process according to any of Claims 34 or -40 35 wherein said aromatic diol has the formula selected from the group consisting of

and combinations of two or more thereof;

each R^4 is independently selected from the group consisting of hydrogen, C_1 to C_{12} alkyl group, C_1 to C_{12} cycloalkyl group, acetal, ketal, $-OR^3$, $-CO_2R^3$, C_1 to C_{20} aryl group, $-SiR^3$, $-NO_2$, $-SO_3R^3$, $-S(O)R^3$, $-S(O)_2R^3$, -CHO, $-C(O)R^3$, -F, -Cl, -CN, $-CF_3$, $-C(O)N(R^3)(R^3)$, $-A^1Z$, and combinations of two or more thereof;

Z is selected from the group consisting of- CO_2R^3 , -CHO, -C(O) R^3 ,

-C(O)SR³, -SR³, -C(O)NR¹R¹, -OC(O)R³, -OC(O)OR³, -N=CR¹R¹, -C(R¹)=NR¹,

 $-C(R^1)=N-O-R^1, -P(O)(OR^3)(OR^3), -S(O)_2R^3, -S(O)R^3, -C(O)OC(O)R^3, \\ -NR^3CO_2R^3, -NR^3C(O)NR^1R^1, F, Cl, -NO_2, -SO_3R^3, -CN, and combinations of two or more thereof;$

each R^3 is independently selected from the group consisting of C_1 to C_{12} alkyl or cycloalkyl group, C_1 to C_{20} aryl group, and combinatons of two or more thereof; each R^5 is independently selected from the group consisting of H, F, Cl, C_1 to C_{12} alkyl or cycloalkyl, C_6 to C_{20} aryl, $-OR^3$, $-CO_2R^3$, $-C(O)R^3$, -CHO, -CN, $-CF_3$, and combinations of two or more thereof;

each R^6 independently is selected from the group consisting of H, C_1 to C_{12} alkyl or cycloalkyl, C_6 to C_{20} aryl, and combinations of two or more thereof; and each R^7 independently is selected from the group consisting of H, C_1 to C_{12} alkyl or cycloalkyl, C_6 to C_{20} aryl, and combinations of two or more thereof.

- 45. (Once amended) A process comprising (a) contacting a diolefinic compound, in the presence of a catalyst composition, with a fluid comprising hydrogen cyanide to produce a 2-alkyl-3-monoalkenenitrile; and (b) contacting said 2-alkyl-3-monoalkenenitrile with said catalyst composition wherein said catalyst composition is the composition recited in claims 18-21.
- 48. (Once amended) A process comprising contacting a 2-alkyl-3-monoalkenenitrile with a catalyst composition wherein said catalyst composition is the composition recited in Claims 18-21.