Weighted graphs

- A weighted graph is a graph that has a number w(e) associated with each edge.
- Weights can be integers, rationals, reals, although in specific problems there may be restrictions.
- Weights can be positive, negative or 0, although in specific problems there may be restrictions.
- Weights can represent distance, cost, affinity, etc.

We will focus on two problems:

- Shortest path problem: Find path of minimum total weight, subject to specifications of the path
- Minimum spanning tree problem: Find spanning tree of minimum total weight

Shortest Paths

Let G be a weighted graph. The length (or weight) of a path $P = e_0, \ldots, e_{k-1}$ is the sum of the weights of the edges:

$$w(P) = \sum_{i=0}^{k-1} w(e_i)$$

- ▶ Let u, v be two vertices in V. A shortest path (or minimum-length path or minimum-weight path) from u to v is a path from u to v of minimum total weight.
- ▶ The distance from vertex u to vertex v, denoted d(u, v), is the length of the shortest path from u to v if such a path exists.
- Note on Terminology
 - ► The weight of an edge is sometimes called its cost or its length
 - Similarly, the weight (or length) of a path is sometimes called its cost

Shortest paths: Notes on definitions

- ▶ If no path exists from u to v, we will say that $d(u,v) = +\infty$.
- ► Even if there is a path from *u* to *v*, there may not be a shortest path. (Because of negative-weight cycles, sometimes called negative cycles.)

Single Source Shortest Path Problem

- ▶ Problem: Given graph G and a vertex $v \in V(G)$, find the shortest path from v to every other vertex in V(G).
- ▶ We will discuss two algorithms:
 - 1. Dijkstra's algorithm
 - 2. The Bellman-Ford Algorithm

Dijkstra's Algorithm

- ► *G* an undirected graph in which every edge weight is nonnegative
- "Weighted BFS" starting at v
- Grow a "cloud" (actually a tree) of points:
 - Initially, the cloud is empty
 - At each iteration:
 - 1. Choose the vertex outside the cloud that is closest to v.
 - 2. Add the chosen vertex to the cloud
- Example of a greedy algorithm

Overview of Dijkstra's algorithm

- Every vertex u has a label, D[u].
- D[u] stores the length of the best path from v to u that we have found so far
- Initially:
 - $\triangleright D[v] = 0$ for our start vertex v
 - ▶ $D[u] = +\infty$ for all other vertices $v \neq u$
 - ▶ The vertex cloud C is empty (i.e., $C = \emptyset$)
- On each iteration:
 - ▶ Select a vertex u not in C with smallest D[u] label
 - ▶ Put selected vertex u into C. (On first iteration, u = v).
 - ▶ Update *D*[*z*] for each neighbor of *u* that is outside *C* (Because there may be a better path from *v* to *z*, via *u*, than we knew about before.)

$$\begin{array}{c} \text{if D[u] + w(u,z) < D[z] then} \\ \text{D[z]} \leftarrow D[u] + \text{w(u,z)} \end{array}$$

This is called edge relaxation

Edge relaxation, shortest-path tree


```
if D[u] + w(u,z) < D[z] then D[z] \leftarrow D[u] + w(u,z) z.parent = u;
```

► Setting z.parent organizes the points as a tree (the shortest-path tree), which allows us to find the shortest path after the algorithm completes.

Example of Dijkstra's Algorithm (Start vertex = A)

Pseudocode for Dijkstra's Algorithm

```
Algorithm DijkstraShortestPath(G,v)
  for each vertex u in G such that u \neq v do
    D[u] = +\infty
  D[v] = 0
  for each vertex u in G
    u.parent = null
  Put all vertices of G in a priority queue Q, using
      the labels D[] as keys
  while Q is not empty
    u ← Q.removeMin() // Priority Queue Operation
    for each z adjacent to u such that z is in Q do
       if D[u] + w(u,z) < D[z] then
          D[z] \leftarrow D[u] + w(u,z)
          Q.updateValue(z) to reflect new D[z] value
              // Priority Queue Operation
          z.parent = u
```

return the collection of labels D[] and the parent values

Correctness of Dijkstra's algorithm

Follows from

▶ Lemma: When a vertex u is put in the "cloud" of known vertices (i.e., when u is removed from the priority queue), D[u] represents the true distance from v to u

Correctness depends on there not being any negative edge weights.

Analysis of Dijkstra's Algorithm

Depends on implementation of priority queue

- Priority queue is abstract data type that supports removing the minimum, changing a value.
- ► Two possible implementations of a priority queue:
 - 1. Heap
 - ► Find/Remove minimum: $O(\log n)$
 - ► Update value: $O(\log n)$
 - 2. Array
 - ► Find/Remove minimum: *O*(*n*)
 - ▶ Update value: *O*(1)

Analysis of Dijkstra's Algorithm (continued)

- Operation counts:
 - Q.removeMin() performed n times
 - Q.updateValue() performed O(m) times
- Standard implementation using heap:
 - ▶ Running time is $O((m+n)\log n)$
 - ▶ This simplifies to $O(m \log n)$ if G is connected
 - ▶ In terms of *n* only, this is $O(n^2 \log n)$ if *G* is simple
- Alternate implementation using an array:
 - Running time is $O((m+n^2)$
 - ▶ In terms of n only, this is $O(n^2)$ if G is simple
- ▶ Generally, heap implementation is better. However, if G is dense (in particular, if $m = \Omega(n/\log n)$), then the alternative implementation may be slightly better.
- ▶ One-sentence summary: Dijkstra's algorithm, using a heap, running on a simple connected graph, runs in $O(m \log n)$ time.

Finding the shortest path

After we have run Dijkstra's algorithm and computed the shortest-path tree, how do we find the actual shortest path from v to u?

▶ We can read off the path in reverse order with the following loop:

```
while (u.parent ≠ null)
  outputEdge(u,u.parent)
  u = u.parent
```

We can read off the path in forward order by recursively calling outputPath(u):

```
outputPath(u)
  if u.parent ≠ null then
    outputPath(u.parent)
    outputEdge(u.parent,u)
```

Bellman-Ford Shortest-path Algorithm

- Directed graphs
- Allows negative edges (unlike Dijkstra)
- Does not allow negative cycles
- ▶ Based on "iterative relaxation" of edge weights
- Repeatedly cycle through edges

Bellman-Ford example

Pass 1:Pass 2:Pass 3:Pass 4:Pass 5:Pass 5: Done

\Rightarrow	DF	и	D[u]
\Rightarrow	CD	Α	0
\Rightarrow	ΑE	В	$+\infty$ 33
\Rightarrow	ВС	C	$+\infty$ 66
\Rightarrow	AD	D	$+\infty \frac{10}{109}$
\Rightarrow	AB	Ε	$+\infty$ 22
\Rightarrow	EF	F	$+\infty 87766$

Pseudocode for Bellman Ford Algorithm

```
Algorithm BellmanFordShortestPath(G,v)
  for each vertex u in G such that u \neq v do
    D[u] = +\infty
  D[v] = 0
  for i \leftarrow 1 to n-1 do
    for each edge e=(u,z) in G do
       if D[u] + w(u,z) < D[z] then
           D[z] \leftarrow D[u] + w(u,z)
  if D[z] \leftarrow D[u] + w(u,z) for all edges e = (u,z) then
    return the collection of labels D[]
  else
    return "G contains a negative-weight cycle"
```

Correctness of Bellman-Ford algorithm

- For any i: After i iterations, D[u] is \leq the length of the shortest path from v to u that has at most i edges.
- ▶ So after n-1 iterations, D[u] is \leq the length of the shortest path from v to u that has at most n-1 edges.
- ightharpoonup Since no simple path can have more than n-1 edges, the Bellman-Ford algorithm finds the shortest path provided there are no negative-weight cycles.

Analysis of Bellman-Ford algorithm

- ▶ n-1 (i.e. O(n)) iterations of outer loop
- ▶ Each loop requires O(m) relaxation tests
- ▶ Hence, total running time is $O(m \cdot n)$.

An optimization:

We can stop after an iteration where no D[u] values change. (So we don't necessarily need to run n-1 iterations.

The Minimum Spanning Tree Problem

A spanning tree in a graph G is a free tree T such that

- ► T is a subgraph of G
- Every vertex of G is also a vertex of T.

A graph may have many different spanning trees

Minimum Spanning Tree

A minimum spanning tree (MST) in a weighted undirected graph is a spanning tree of minimum total edge weight.

Minimum Spanning Tree

If we assume that the weights represent costs:

A minimum spanning tree represents the cheapest way to connect all nodes of a graph, using edges of the graph.

Applications:

- Network layout
- ► Heuristics, subroutines for more complicated graph problems
 - ► Example: 2-Approximation for Traveling Salesman Problem with triangle inequality.

Uniqueness of Minimum Spanning Tree

- ▶ If all edge weights are distinct, the MST is unique.
- ▶ If two edge weights are the same, the MST may be unique, but it may not be.

A Crucial Fact about MST's

Let G be a weighted connected graph, and let V_1 and V_2 be a partition of V(G) into two disjoint nonempty sets. Let e be an edge of minimum weight from among those edges with one endpoint in V_1 and the other endpoint in V_2 . Then there is a minimum spanning tree that has e as one of its edges.

Minimum Spanning Tree algorithms

We will discuss three algorithms for computing the MST:

- Prim-Jarník algorithm: grow MST as a tree from a "root vertex"
- Kruskal's algorithm: Process edges in order of length
- Barůvka's algorithm: Each connected component selects the smallest edge connecting it with another connected component

Prim-Jarník algorithm

- Grow a MST from a single cluster, starting from some "root vertex"
- Similar to Dijkstra's algorithm (in fact, sometimes called the Prim-Dijkstra algorithm)
- Cloud of vertices C
- At each step:
 - Find smallest edge connecting a cloud vertex with a vertex not in the cloud.
 - ► Add this edge to the tree
 - Add endpoint outside cloud to the cloud.

Implementing the Prim-Jarník algorithm

- Each vertex u outside the cloud has a label D[u] and another field, u.parent
- ▶ D[u] stores the weight of the best edge connecting u to a cloud vertex.
- u.parent stores the other endpoint of this edge.
- When a vertex u is added to the cloud, the edge (u,u.parent) is added to the tree.

Prim-Jarník Example (Root vertex = H)

Done!

Pseudocode for Prim-Jarník algorithm

```
Algorithm PrimJarnikMST(G)
  pick an arbitrary root vertex v, set D[v] = 0
  for each vertex u in G such that u != v set D[u] = +\infty
  for each vertex u in G set u.parent = null
  Initialize T \leftarrow \emptyset
  Put all vertices of G in a priority queue Q, using
      the labels D[] as keys
  while Q is not empty
    u ← Q.removeMin() // Priority Queue Operation
    add vertex u to T
    if u.parent != null add edge (u,u.parent) to T
    for each z adjacent to u such that z is not in T do
       if w(u,z) < D[z] then
          D[z] \leftarrow w(u,z)
          z.parent = u
          Q.updateValue(z) to reflect new D[z] value
               // Priority Queue Operation
```

return the tree T

Analysis and Correctness of Prim-Jarník algorithm

- Correctness: Follows from Crucial Fact stated earlier
 - $ightharpoonup V_1$ = vertices in the cloud
 - V_2 = vertices not in the cloud (i.e., in the priority queue Q)
- Analysis:
 - ▶ Runs in $O(m \log n)$ time, assuming we use a heap for the priority queue and the graph is connected

Kruskal's MST algorithm

Basic idea:

- Build MST in clusters
- Initially, each vertex is in its own cluster
- Process edges of graph in nondecreasing order of weight (from smallest to largest)
- Add an edge if its endpoints are in two different clusters
- ▶ Continue until n-1 edges have been added

Example

	Edge	Wt.	Tree?
1	FG	2	YY
2	BG	3	YY
3	GH	4	YY
4	CD	5	YY
5	EF	5	YY
6	EH	6	NN
7	BC	6	YY
8	DE	7	NN

	Edge	Wt.	Tree?			
9	AB	8	YY			
10	AF	9	NN			
11	JK	9	YY			
12	CH	12	NN			
13	IK	12	YY			
14	IJ	14	NN			
15	ΑI	19	YY			
Done!						

Implementation of Kruskal's algorithm

- Store edges in a priority queue, using the edge weight as the key
- ▶ We have to manage the clusters. We need to implement:
 - Query: Are vertex u and vertex v currently in the same cluster?
 - Operation: Merge two clusters

Pseudocode for Kruskal's algorithm

```
Algorithm KruskalMST(G)
   for each vertex v in G
   Define an elementary cluster C(v), containing \{v\} //(*)
   Initialize a Priority Queue Q, storing the edges,
     using the weights as keys
   T \leftarrow 0
   while T has fewer than n-1 edges do
      (u,v) = Q.removeMin();
      Let C(u) = the cluster containing u //(*)
      Let C(v) = the cluster containing v //(*)
      If C(u) != C(v) then //(*)
         Add edge (u,v) to T
         Merge C(u) and C(v) into a single cluster //(*)
```

► How do we implement "cluster management" functions at lines marked with //(*) ?

Cluster Management

- Maintain each cluster as a linked list of vertices.
- ► Each vertex has an additional field v.cluster, indicating which cluster it belongs to
- ▶ When we merge two clusters, move elements of the smaller cluster into the larger cluster.

Analysis of Kruskal's Algorithm

- ▶ Priority queue operations: $O(m \log m)$, assuming heap implementation
 - ► Construct heap: O(m)
 - removeMin(): $O(m \log m)$ for all operations
 - $ightharpoonup \leq m$ operations performed
 - Cost of each operation is O(log m) operation (which is actually O(log n) because G is simple),
- Cluster operations
 - Initializing clusters: O(n)
 - ▶ Merging clusters: $O(n \log n)$
 - Because each vertex gets moved between clusters at most log n times

So Kruskal's Algorithm runs in $O((m+n)\log n)$ time, which simplifies to $O(m\log n)$ time if G is connected.

Notes on Performance of Kruskal's Algorithm

- ▶ Limiting step is $O(m \log n)$ for heap operations. Cost of cluster operations match that step.
- ▶ If edges are already sorted, we can do better by using a faster but more complicated algorithm for cluster management, the Union-Find algorithm.
- We will come back to this later in these notes.

Correctness of Kruskal's Algorithm

- ► Follows from "Crucial Fact"
 - $V_1 = \text{cluster containing } u$
 - V_2 = all other vertices

Barůvka's MST algorithm

- Proceeds in "rounds."
- Initially, each vertex is in its own cluster
- ▶ In each round:
 - ► Each cluster *C* selects the smallest edge in with one endpoint in *C*, the other endpoint outside *C*
 - All selected edges are added to MST.
 - Clusters are merged
- Continue until only one cluster remains

Barůvka's algorithm example

	Round 1: Round 2:			
Cluster		Selected EdgeCl6stected Edge		Sele
{ <i>A</i> }	<i>ABAB</i>	$\{A,B,E,F,G,H\}$	BCBC	
{ <i>B</i> }	BGBG	$\{C,D\}$	BCBC	
$\{C\}$	CDCD	$\{I,J,K\}$	AIAI	
$\{D\}$	CDCD			
$\{E\}$	EF EF	DONE!		
$\{F\}$	FG FG			
$\{G\}$	FG FG			
$\{H\}$	GHGH			
$\{I\}$	IKIK			
$\{J\}$	KJKJ			
{ K }	KJKJ			
		CC.: 161 F.II 2010 @M P D'II	and the transfer of California	4 4

CompSci 161—Fall 2018—© M. B. Dillencourt—University of California, Irvine

Pseudocode for Barůvka's algorithm

Algorithm BarůvkaMST

```
Let T be a subgraph initially containing
just the vertices of G (and no edges)
while T has fewer than n-1 edges do
for each connected component C of T
find the smallest weight edge e=(u,v)
with u in C and v not in C
add e to T (unless e is already in T)
return T
```

Implementation of Barůvka's algorithm

- Store T as an adjacency list.
- ▶ In each round:
 - 1. Label connected components (each vertex gets a label indicating to which component it belongs)
 - 2. Scan edges to find edge that will be selected by each component.

This takes O(m) time per round

Analysis of Barůvka's algorithm

Performance:

- Since the number of components decreases by a factor of at least 2 each round, the number of rounds in $\leq \log n$,
- ▶ The computation in each round is performed in O(m) time
- ▶ So running time of Barůvka's algorithm is $O(m \log n)$.

Correctness:

- follows from "Crucial Fact", with $V_1 = C$, $V_2 = \text{everything else}$.
- Technical issue: avoiding cycles. Number edges, use edge numbers to break ties

The Union-Find Algorithm

Kruskal's algorithm

- Builds MST in clusters
- As we process each edge, we need to
 - Determine whether the two endpoints are in the same cluster
 - If not, add the edge to the MST and merge the two clusters
- Continue until only one cluster remains

We describe a very efficient algorithm for managing these clusters.

Set merging problem

The cluster management problem that arises in Kruskal's algorithm is a special case of the dynamic equivalence problem:

- Objects
- Sets of objects, with membership changing over time
- Queries: are two objects in the same set?

The special case that we need for cluster management in Kruskal's algorithm is called the set merging problem. The sets change as follows:

- Initially, each object is in its own set
- Over time, sets get merged. Once two sets get merged, they never get separated.

The set merging problem arises in other contexts. For example

- ▶ We are given some of the equivalence pairs in an equivalence relation, and we want to determine the equivalence classes.
- ▶ We are given the edges of a graph in some arbitrary order, and we want to construct the connected components without building the entire graph.

Example:

Suppose we have three sets:

```
set 1: {A, B, E}
set 2: {D, G}
set 3: {C}
```

A and C are not in the same set. But if we merged set 1 and set 3 and asked the question again, they would be in the same set.

The Union-Find algorithm

To solve the set merging problem, we will implement two primitive operations, called <u>union</u> and <u>find</u>.

- 1. **find(x)**: returns a temporary name for the set to which the object x currently belongs.
 - More precisely, find(x) returns a special element in the set to which x belongs. If x and y are in the same set, then find(x) and find(y) will return the same value.
- 2. union(s,t): If s and t are the temporary names of two different sets, this command causes the two sets to be merged.

The Union-Find algorithm

Once we have the operations union and find:

▶ To determine whether objects x and y are in the same set:

```
if find(x) == find(y) \dots
```

► To determine whether x and y are in the same set and, if not, to merge them:

```
s = find(x);
t = find(y);
if s \neq t
union(s,t);
```

Data representation

- ► Each set is a tree of objects (not necessarily a binary tree). Each object has a parent pointer, but no child pointer.
- ► A find(x) command returns the object at the root of the tree to which x currently belongs.
- ► A union(x,y) command is only valid if x and y are both roots of trees. It combines the two trees by either
 - making x the parent of y, or
 - making y the parent of x

We will discuss shortly how to make the choice.

Example

CompSci 161—Fall 2018—©M. B. Dillencourt—University of California, Irvine

Union-Find

The algorithm as just stated is not very efficient.

For example, suppose there are n+1 objects x_0, x_1, \ldots, x_n . Suppose we first issue the following union() commands

```
union(x_0, x_1)
union(x_1, x_2)
...,
union(x_{n-1}, x_n)
```

and then call $find(x_0)$ repeatedly.

One possible result of the union() operations is as shown. Each call to find() would then require $\Theta(n)$ work.

Two simple improvements to Union-Find

We can make the Union-Find algorithm extremely efficient with two simple improvements:

- 1. Weight balancing on union.
- 2. Path compression on find.

Improvement 1: Weight balancing on union

When two trees are merged, the root of the larger tree (the tree with more nodes) becomes the root of the new merged tree.

Example:

Implementation note

Implementation of weight-balancing:

- ► Each node has a weight field.
- For a root note, the weight field contains the number of nodes in the tree rooted at that node.
 - ▶ Initially, each weight field is 1.
 - When two trees are merged, the weight field of the non-surviving root node is added to the weight field of the surviving root node.

Improvement 2: Path compression on find

On a find(x) operation, make every non-root node encountered on the path from x to the root a child of the root.

Example: find(E):

With these two simple improvements, the union-find algorithm runs in "almost constant time per operation"

Analysis of the Union-Find Algorithm

- ▶ To describe the running time of the Union-Find algorithm, we first need to introduce a new function, called $\alpha(n)$ ("alpha"), that approaches ∞ as n gets large but does so extremely slowly.
- ▶ The function $\alpha(n)$ is the inverse of another function, A(n), which approaches ∞ very quickly. A(n) is defined as follows:

$$\begin{cases} A(0) = 1 \\ A(n) = 2^{A(n-1)} & \text{if } n > 0 \end{cases}$$

$$A(0) = 1$$
 $A(4) = 65536$
 $A(1) = 2$ $A(5) = 2^{65536} \approx 2 \times 10^{19728}$
 $A(3) = 16$ $A(6) = 2^{265536}$

The function $\alpha(n)$

 $\alpha(n)$ = the smallest i such that $A(i) \ge n$

$$\alpha(1) = 0$$
 $\alpha(2) = 1$
 $\alpha(n) = 2$
 $\alpha(n) = 3$
 $\alpha(n) = 3$
 $\alpha(n) = 4$
 $\alpha(n) = 5$
 $\alpha(n) = 5$
 $\alpha(n) = 6$
 $(2^{65536} < n \le 2^{65536})$

 $\alpha(n)$ grows very slowly, but

$$\lim_{n\to\infty}\alpha(n)=\infty$$

CompSci 161-Fall 2018-©M. B. Dillencourt-University of California, Irvine

Performance of Union-Find

It can be shown that

1. Any sequence of *k* union and find operations on a set of *n* objects, each initially in its own set, has a total cost of

$$O(k\alpha(n))$$

2. There are sequences of *k* union and find operations on a set of *n* objects, each initially in its own set, that do in fact require

$$\Omega(k\alpha(n))$$

So union-find has a cost per operation that is asymptotically worse than $\Theta(1)$, but is "almost" constant.

Note: This material can be found in [GT 4.2] and [CLRS 21]. [GT] proves a weaker analysis result. A proof of the analysis result stated here can be found in [CLRS].