Compilation: TD2

Exercice 1

Sujet

Comment obtenir une grammaire régulière à partir d'une expression régulière.

Expression régulière \rightarrow grammaire régulière

- Exemple d'expression régulière sur le vocabulaire terminal sur $T=\{a,b,c\}$:
 - $a^*|b^*$ représente $\{\varepsilon, a, aa, aaa, \ldots, b, bb, bbb, \ldots\}$
 - $a(b|c)^*$ représente $\{a,ab,ac,abb,acc,\dots\}$
- Méthode de conversion, soit une expression régulière r, on créé:
 - ullet La règle de production S o r
 - \circ On élimine les méta-symboles de $r:(,),^*$
 - 1. Si r est une concaténation de r_1 et r_2 , 2 expressions régulières, telles que $A
 ightarrow r_1 r_2$, il faut remplacer cette règle par
 - 1. $A
 ightarrow r_1 B$
 - 2. $B
 ightarrow r_2$
 - 2. Si on a $A
 ightarrow r_1^* r_2$, il faut remplacer cette règle par
 - 1. $A
 ightarrow r_1 B$
 - 2. $A
 ightarrow r_2$
 - 3. $B
 ightarrow r_1 B$
 - 4. $B
 ightarrow r_2$
 - 3. Si on a $A o r_1|r_2$, il faut remplacer cette règle par
 - 1. $A
 ightarrow r_1$
 - 2. $A
 ightarrow r_2$
 - 4. Si on a $A o a(r_1|r_2)$, on la remplace par
 - 1. $A o ar_1 | ar_2$

Mettre en application cette méthode sur l'expression suivante : $A o a(b|c)^*$

Résolution

A est dans le cas 1 : $A o r_1 r_2$ avec $r_1 = a$ et $r_2 = (b|c)^*$. D'où :

- A o aB
- $B o (b|c)^*$

B est dans le cas 2 : $B o r_1^*r_2$ avec $r_1=(b|c)$ et $r_2=arepsilon$. D'où :

• B o (b|c)C

•
$$B o arepsilon$$

•
$$C o (b|c)C$$

•
$$C o arepsilon$$

C est dans le cas 4 : $C o a(r_1|r_2)$ avec $r_1=b$, $r_2=c$ et a=C. D'où :

•
$$C o bC|cC$$

Au final, on obtient :

$$B \to c C | c$$