

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources

Lecture 12: Clustering

COMP90049 Knowledge Technologies

Hasti Samadi & Sarah Erfani & Karin Verspoor, CIS

Semester 2, 2019

Dataset with no label

Clustering

COMP90049 Knowledge Technologies

Clustering Definition Types

Types Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Outlook	Temperature	Humidity	Windy
sunny	hot	high	F ALSE
sunny	hot	high	TRUE
overcast	hot	high	F ALSE
rainy	mild	high	F ALSE
rainy	cool	normal	F ALSE
rainy	cool	normal	TRUE
:	:	÷	÷

Dataset with no label

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources

Outlook	Temperature	Humidity	Windy
sunny	hot	high	F ALSE
sunny	hot	high	TRUE
overcast	hot	high	F ALSE
rainy	mild	high	F ALSE
rainy	cool	normal	F ALSE
rainy	cool	normal	TRUE
÷	:	÷	÷

What can we do with a data set without labels?

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources We can find groups of data in our dataset which are similar (close) to one another -what we call clusters.

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources We can find groups of data in our dataset which are similar (close) to one another -what we call clusters.

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resource We can find groups of data in our dataset which are similar (close) to one another -what we call clusters.

 In clustering it is also important that the objects (instances) in each cluster are different from (or unrelated to) the objects in other groups.

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

- Clustering is an unsupervised learner
- Applications in:
 - Pattern recognition
 - Spatial data analysis
 - Medical diagnosis
 - Marketing...

A possible clustering of the weather dataset

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Outlook	Temperature	Humidity	Windy	Cluster
sunny	hot	high	FALSE	?
sunny	hot	high	TRUE	?
overcast	hot	high	FALSE	?
rainy	mild	high	FALSE	?
rainy	cool	normal	FALSE	?
rainy	cool	normal	TRUE	?
overcast	cool	normal	TRUE	?
sunny	mild	high	FALSE	?
sunny	cool	normal	FALSE	?
rainy	mild	normal	FALSE	?
sunny	mild	normal	TRUE	?
overcast	mild	normal	TRUE	?
overcast	hot	high	FALSE	?
rainy	mild	high	TRUE	?

A possible clustering of the weather dataset

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Outlook	Temperature	Humidity	Windy	Cluster
sunny	hot	high	FALSE	0
sunny	hot	high	TRUE	0
overcast	hot	high	FALSE	0
rainy	mild	high	FALSE	1
rainy	cool	normal	FALSE	1
rainy	cool	normal	TRUE	1
overcast	cool	normal	TRUE	1
sunny	mild	high	FALSE	0
sunny	cool	normal	FALSE	1
rainy	mild	normal	FALSE	1
sunny	mild	normal	TRUE	1
overcast	mild	normal	TRUE	1
overcast	hot	high	FALSE	0
rainy	mild	high	TRUE	1

Clustering over the weather dataset (cf. outputs)

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Outlook	Temperature	Humidity	Windy	Cluster	Play
sunny	hot	high	FALSE	0	no 🔨
sunny	hot	high	TRUE	0	no 🔨
overcast	hot	high	FALSE	0	yes 🗙
rainy	mild	high	FALSE	1	yes 🎻
rainy	cool	normal	FALSE	1	yes 🍑
rainy	cool	normal	TRUE	1	no 🗙
overcast	cool	normal	TRUE	1	yes 🏑
sunny	mild	high	FALSE	0	no 🎺
sunny	cool	normal	FALSE	1	yes 🎻
rainy	mild	normal	FALSE	1	yes 🏑
sunny	mild	normal	TRUE	1	yes 🏑
overcast	mild	normal	TRUE	1	yes 🎸
overcast	hot	high	FALSE	0	yes 🗙
rainy	mild	high	TRUE	1	no 🗙
					'

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

- Exclusive vs. overlapping clustering
 - Can an item be in more than one cluster?

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources

Exclusive vs. overlapping clustering

Can an item be in more than one cluster?

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources

Exclusive vs. overlapping clustering

Can an item be in more than one cluster?

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources Exclusive vs. overlapping clustering

- Can an item be in more than one cluster?
- Deterministic vs. probabilistic clustering (Hard vs. soft clustering)
 - Can an item be partially or weakly in a cluster?

lastonos	Cluster.			Clu	ster	
<u>Instance</u>	<u>Cluster</u>	Instance	1	2	3	4
1	2	1	0.01	0.87	0.12	0.00
2 3	3 2	2	0.05	0.25	0.67	0.03
	_	3	0.00	0.98	0.02	0.00
4	1	4	0.45	0.39	0.08	0.08
5	2	5	0.01	0.99	0.00	0.00
6	2	6	0.07	0.75	0.08	0.10
/	4	7	0.23	0.10	0.20	0.47
:	:	-				

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

- Exclusive vs. overlapping clustering
 - Can an item be in more than one cluster?
- Deterministic vs. probabilistic clustering (Hard vs. soft clustering)
 - Can an item be partially or weakly in a cluster?
- Hierarchical vs. partitioning clustering
 - Do the clusters have subset relationships between them? e.g. nested in a tree?

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

- Exclusive vs. overlapping clustering
 - Can an item be in more than one cluster?
- Deterministic vs. probabilistic clustering (Hard vs. soft clustering)
 - Can an item be partially or weakly in a cluster?
- Hierarchical vs. partitioning clustering
 - Do the clusters have subset relationships between them? e.g. nested in a tree?
- Partial vs. complete
 - In some cases, we only want to cluster some of the data

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods Similarity k-Means

k-Means k-Ms limitation Hierarchal

- Partial vs. complete
 - In some cases, we only want to cluster some of the data

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources

Partial vs. complete

In some cases, we only want to cluster some of the data

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources

Partial vs. complete

In some cases, we only want to cluster some of the data

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

- Exclusive vs. overlapping clustering
 - Can an item be in more than one cluster?
- Deterministic vs. probabilistic clustering (Hard vs. soft clustering)
 - Can an item be partially or weakly in a cluster?
- Hierarchical vs. partitioning clustering
 - Do the clusters have subset relationships between them? e.g. nested in a tree?
- Partial vs. complete
 - In some cases, we only want to cluster some of the data
- Heterogenous vs. homogenous
 - Clusters of widely different sizes, shapes, and densities

Heterogenous vs. homogenous

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

- Exclusive vs. overlapping clustering
 - Can an item be in more than one cluster?
- Deterministic vs. probabilistic clustering (Hard vs. soft clustering)
 - Can an item be partially or weakly in a cluster?
- Hierarchical vs. partitioning clustering
 - Do the clusters have subset relationships between them? e.g. nested in a tree?
- Partial vs. complete
 - In some cases, we only want to cluster some of the data
- Heterogenous vs. homogenous
 - Clusters of widely different sizes, shapes, and densities
- Incremental vs. batch clustering
 - Is the whole set of items clustered in one go?

What is a good clustering?

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Two clusters?

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods Similarity

k-Means k-Ms limitation Hierarchal

Four clusters?

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Six clusters?

Clustering

COMP90049 Knowledge Technologies

Clustering Definition Types

Evaluation Methods

Similarity k-Means k-Ms limitation Hierarchal

What number of clusters is better?

2 Clusters

- 4 Clusters
- 6 clusters
- 18 clusters

Clustering Evaluation

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resource Clustering evaluation measures come in two basic types:

- Unsupervised: Measures the goodness of a clustering structure without respect to external information.
 - How <u>cohesive</u> are individual clusters?
 - How <u>separate</u> is one cluster from other clusters?
- Supervised: how well do cluster labels match externally supplied class labels?

Unsupervised Evaluation

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resource A "good" cluster analysis should have one or both of:

 high cluster cohesion, i.e. instances in a given cluster should be closely related to each other

$$cohesion(C_i) = \frac{1}{\sum_{x,y \in C_i} Distance(x,y)}$$

 high cluster separation, i.e. instances in <u>different</u> clusters should be distinct from each other

$$separation(C_i, C_j) = \sum_{x \in C_i, y \in C_{j \neq i}} Distance(x, y)$$

Unsupervised Evaluation

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources Most common measure evaluating the quality of clusters (esp. for k-means) is Sum of Squared Error (SSE) or Scatter

Evaluating clusters mathematically

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources

Sum of Squared Error (SSE):

- For each point, the error is the distance to the nearest cluster
- To get SSE, we square these errors and sum them.

$$\sum_{i=1}^{k} \sum_{x \in C_i} dist^2(m_i, x)$$

- x is a data point in cluster C_i and m_i is the representative point for cluster C_i (Centroid)
- Can show that the m_i that minimises SSE corresponds to the center (mean) of the cluster
- Given two clusters, we can choose the one with the smallest error
- One easy way to reduce SSE is to increase k, the number of clusters
- However, a good clustering with smaller k can have a lower SSE than a poor clustering with higher k

Two clusters?

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation

Hierarchal
Summary
Resources

Six clusters?

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods Similarity k-Means

k-Means k-Ms limitation Hierarchal

Supervised Evaluation

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources Supervised evaluation of cluster "validity" measures
the degree to which predicted class labels <u>match</u> the
actual class labels, e.g. based on the distribution of
actual class labels within each cluster.

Clustering over the weather dataset (cf. outputs)

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Outlook	Temperature	Humidity	Windy	Cluster	Play
sunny	hot	high	FALSE	0	no 🔨
sunny	hot	high	TRUE	0	no 🔨
overcast	hot	high	FALSE	0	yes 🗙
rainy	mild	high	FALSE	1	yes 🎻
rainy	cool	normal	FALSE	1	yes 🍑
rainy	cool	normal	TRUE	1	no 🗙
overcast	cool	normal	TRUE	1	yes 🏑
sunny	mild	high	FALSE	0	no 🎺
sunny	cool	normal	FALSE	1	yes 🎻
rainy	mild	normal	FALSE	1	yes 🏑
sunny	mild	normal	TRUE	1	yes 🏑
overcast	mild	normal	TRUE	1	yes 🎸
overcast	hot	high	FALSE	0	yes 🗙
rainy	mild	high	TRUE	1	no 🗙
					'

Distance / Similarity / Proximity

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources

Based our definition:

- Clustering is finding groups of data in our dataset which are similar or close to one another and different or separated from other clusters
- A key component of any clustering algorithm is a measurement of the distance between any points.

Clustering

COMP90049 Knowledge Technologies

Clustering Definition Types

Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

- Data points (in Euclidean space)
 - Euclidean (L2) distance
 - Manhattan (L1) distance

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources Data points (in Euclidean space)

- Euclidean (L2) distance
- Manhattan (L1) distance

Discrete values

Hamming distance (discrepancy between the bit strings)

Sunny 011

Overcast 101

Rainy 110

For two bit strings, the number of positions at which the corresponding symbols are different

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources Data points (in Euclidean space)

- Euclidean (L2) distance
- Manhattan (L1) distance

Discrete values

Hamming distance (discrepancy between the bit strings)

Sunny 011

Overcast 101

Rainy 110

For two bit strings, the number of positions at which the corresponding symbols are different

011

101

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources Data points (in Euclidean space)

- Euclidean (L2) distance
- Manhattan (L1) distance

Discrete values

Hamming distance (discrepancy between the bit strings)

Sunny 011

Overcast 101

Rainy 110

For two bit strings, the number of positions at which the corresponding symbols are different

011 Hamming Distance = 2

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources

Data points (in Euclidean space)

- Euclidean (L2) distance
- Manhattan (L1) distance

Discrete values

Hamming distance (discrepancy between the bit strings)

Documents

- Cosine similarity
- Jaccard measure

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
<u>Similarity</u>
<u>k-Means</u>
<u>k-Ms limitation</u>
Hierarchal

Summary Resources

Data points (in Euclidean space)

- Euclidean (L2) distance
- Manhattan (L1) distance

Discrete values

Hamming distance (discrepancy between the bit strings)

Documents

- Cosine similarity
- Jaccard measure

Other measures

- Correlation
- Graph-based measures

k-means Clustering

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

- K-Means is one of the most popular "clustering" algorithms.
- Group the dataset into K clusters, with the use of K centroids

k-means Clustering – Algorithm

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resource Given \mathbf{k} , the k-means algorithm is implemented as follows:

- 1. Select K points at random to act as **seed** clusters $(\mu_1, ..., \mu_k)$, the initial **centroids**
- 2. repeat
- Assign each instance to the cluster with *nearest* centroid
- Recompute the centroids of each clusters (the centroid is the center, i.e. *mean* point of the cluster)
- 5. Until the centroids don't change

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Clustering

COMP90049 Knowledge Technologies

Clustering Definition Types

<u>Evaluation</u> Methods

Similarity k-Means k-Ms limitation Hierarchal

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation

Hierarchal
Summary
Resources

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.

Clustering

COMP90049 Knowledge Technologies

Clustering Definition Types Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources Initial centroids are often chosen randomly.

- Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- 'Nearest' is based on proximity/similarity/distance metric.

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- 'Nearest' is based on proximity/similarity/distance metric.
- K-means will converge for common similarity measures mentioned above.
 - Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources Exclusive, deterministic, partitioning, batch clustering method

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources Exclusive, deterministic, partitioning, batch clustering method

Strengths:

relatively efficient:

O(ndki), where

- o *n* is number of *instances*,
- o d is number of attributes,
- o k is number of clusters.
- o i is number of iterations; normally k, i << n
- Unfortunately we know the value of i in advance

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources

Weaknesses:

Need to specify k in advance

Clustering

COMP90049 Knowledge Technologies

Clustering Definition Types

Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources

Weaknesses:

- Need to specify k in advance
- "Mean" is ill-defined for nominal or categorical attributes

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
<u>Similarity</u>
<u>k-Means</u>
k-Ms limitation

Hierarchal
Summary
Resources

Weaknesses:

- Need to specify k in advance
- "Mean" is ill-defined for nominal or categorical attributes
- May not work well when the data contains outliers

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources

Weaknesses:

- Need to specify k in advance
- "Mean" is ill-defined for nominal or categorical attributes
- May not work well when the data contains outliers
- Tends to converge to local minimum; sensitive to seed instances

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation

Hierarchal
Summary
Resources

Clustering

COMP90049 Knowledge Technologies

Clustering Definition Types

Types Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Clustering

COMP90049 Knowledge Technologies

Clustering Definition Types

Evaluation

Methods
Similarity

Similarity k-Means k-Ms limitation Hierarchal

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation

Hierarchal
Summary
Resources

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

- K-means has problems when clusters are different in
 - Sizes
 - Densities

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources

Clusters with different sizes:

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources

Clusters with different Densities:

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation

Hierarchal
Summary
Resources

K-means has problems when clusters are different in

- Sizes
- Densities
- K-means does not work well on non-globular shapes

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources

Clusters with non-globular Shapes:

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Other limitations of k-means

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods Similarity k-Means

k-Ms limitation Hierarchal

Resources

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources

Bottom-up (= agglomerative) clustering

- Start with single-instance clusters
- At each step, join the two closest clusters (in terms of margin between clusters, distance between mean, ...)

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resource

Bottom-up (= agglomerative) clustering

- Start with single-instance clusters
- At each step, join the two closest clusters (in terms of margin between clusters, distance between mean, ...)

Top-down (= divisive) clustering

- Start with one universal cluster
- Find two partitioning clusters
- Proceed recursively on each subset
- Can be very fast

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summar

Bottom-up (= agglomerative) clustering

- Start with single-instance clusters
- At each step, join the two closest clusters (in terms of margin between clusters, distance between mean, ...)

Top-down (= divisive) clustering

- Start with one universal cluster
- Find two partitioning clusters
- Proceed recursively on each subset
- Can be very fast
- ➤ In contrast to *k* -means clustering, hierarchical clustering only requires a measure of similarity between *groups* of data points (no seeds, no *k* value).

Agglomerative Clustering (Dendrograms)

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources Compute the proximity matrix, if necessary.

repeat

- Merge the closest two clusters
- Update the proximity matrix to reflect the proximity between the new cluster and the original clusters

until Only one cluster remains

Example, Step 1

Clustering

COMP90049 Knowledge Technologies

Clustering Definition Types

Evaluation

Methods Similarity k-Means k-Ms limitation Hierarchal

Example, Step 2

Clustering

COMP90049 Knowledge Technologies

Clustering Definition Types

Evaluation

Methods
Similarity

k-Means k-Ms limitation Hierarchal

Example, Step 3

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation

Hierarchal
Summary
Resources

c234 с5 с1 **C1** c1 C5 c234 с5 C2 C234 C3 C4 C5 C2 ... C4 p1 p2 рЗ р4 p9 p10 p11 p12

Graph-based measure of Proximity

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resource

Updating the proximity matrix:

- Single Link: Minimum distance between any two points in the two clusters. (most similar members)
- Complete Link: Maximum distance between any two points in the two clusters. (most dissimilar members)
- Centroid: Distance between the centroids of each cluster

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources

	1	2	3	4	5
1	-	0.90	0.10	0.75	0.20
2		-	0.80	0.60	0.50
3	0.10		-	0.40	0.30
4	0.75	0.60	0.40	-	0.70
5	0.20	0.50	0.30	0.70	-

Based on this similarity matrix, what are the two closest points?

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources

	1	2	3	4	5
1	-	0.90	0.10	0.75	0.20
2	0.90	-		0.60	0.50
3	0.10	0.80	-	0.40	0.30
4	0.75	0.60	0.40	-	0.70
5	0.20	0.50	0.30	0.70	-

Based on this similarity matrix, what are the two closest points?

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources Merge points 1 & 2 into a new cluster: 12

	1	2	3	4	5
1	-	0.90	0.10	0.75	0.20
2	0.90	-	0.80	0.60	0.50
3	0.10	0.80	-	0.40	0.30
4	0.75	0.60	0.40	-	0.70
5	0.20	0.50	0.30	0.70	-

	12	3	4	5
12				
3				
4				
5				

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources Merge points 1 & 2 into a new cluster: 12

	1	2	3	4	5
1	-	0.90	0.10	0.75	0.20
2	0.90	-	0.80	0.60	0.50
3	0.10	0.80	-	0.40	0.30
4	0.75	0.60	0.40		0.70
5	0.20	0.50	0.30	0.70	-

	12	3	4	5
12				
3				
4				
5				

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources Merge points 1 & 2 into a new cluster: 12

	1	2	3	4	5
1	-	0.90	0.10	0.75	0.20
2	0.90	-	0.80	0.60	0.50
3	0.10	0.80	-	0.40	0.30
4	0.75	0.60	0.40	-	0.70
5	0.20	0.50	0.30	0.70	-

	12	3	4	5
12	-	0.80		
3	0.80	-		
4			-	
5				-

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources Merge points 1 & 2 into a new cluster: 12

	1	2	3	4	5
1	-	0.90	0.10	0.75	0.20
2	0.90	-	0.80	0.60	0.50
3	0.10	0.80	-	0.40	0.30
4	0.75	0.60	0.40	-	0.70
5	0.20	0.50	0.30	0.70	-

	12	3	4	5
12	-	0.80	0.75	
3	0.80	-	0.40	
4	0.75	0.40	-	
5				-

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources Merge points 1 & 2 into a new cluster: 12

	1	2	3	4	5
1	-	0.90	0.10	0.75	0.20
2	0.90	-	0.80	0.60	0.50
3	0.10	0.80	-	0.40	0.30
4	0.75	0.60	0.40	-	0.70
5	0.20	0.50	0.30	0.70	-

	12	3	4	5
12	-	0.80	0.75	0.50
3	0.80	-	0.40	0.30
4	0.75	0.40	-	0.70
5	0.50	0.30	0.70	-

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation

Hierarchal
Summary
Resources

Merge points 12 & 3 into new cluster: 123

Using Single Link

	12	3	4	5
12	-	0.80	0.75	0.50
3	0.80	-	0.40	0.30
4	0.75	0.40	-	0.70
5	0.50	0.30	0.70	-

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources Merge points 12 & 3 into new cluster: 123 Using Single Link

	12	3	4	5
12	-	0.80	0.75	0.50
3	0.80	-	0.40	0.30
4	0.75	0.40	-	0.70
5	0.50	0.30	0.70	-

	123	4	5
123	-	0.75	0.50
4	0.75	-	0.70
5	0.50	0.70	-

Clustering

COMP90049 Knowledge Technologies

Clustering Definition Types

Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources Merge points 123 & 4 into new cluster: 12345 **Using Single Link**

	1234	5
1234	-	0.70
5	0.70	-

Clustering

COMP90049 Knowledge Technologies

Clustering Definition Types

Evaluation Methods

Similarity k-Means k-Ms limitation Hierarchal

Summary Resources

Merge points 123 & 4 into new cluster: 12345 **Using Single Link**

	1234	5
1234	-	0.70
5	0.70	-

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources Merge points 1 & 2 into a new cluster: 12

	1	2	3	4	5
1			0.10		
2	0.90	-	0.80	0.60	0.50
3	0.10	0.80	-	0.40	0.30
4	0.75	0.60	0.40	-	0.70
5	0.20	0.50	- 0.40 0.30	0.70	-

	12	3	4	5
12				
3				
4				
5				

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources Merge points 1 & 2 into a new cluster: 12

	1	2	3	4	5
1				0.75	
2	0.90	-	0.80	0.60	0.50
3	0.10	0.80	-	0.60 0.40	0.30
4	0.75	0.60	0.40	-	
5	0.20	0.50	0.30	0.70	-

	12	3	4	5
12	-	0.10		
3	0.10	-		
4			-	
5				-

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources Merge points 1 & 2 into a new cluster: 12

	1	2	3	4	5
1	-	0.90	0.10	0.75	0.20
2	0.90	-	0.80	0.60	0.50
3	0.10	0.80	-	0.60 0.40	0.30
4	0.75	0.60	0.40	-	0.70
5	0.20	0.50	0.30	0.70	-

	12	3	4	5
12	-	0.10	0.60	
3	0.10	-	0.40	
4	0.60	0.40	-	
5				-

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources Merge points 1 & 2 into a new cluster: 12

	1	2	3	4	5
1	-	0.90	0.10	0.75	0.20
2	0.90	-	0.80	0.60	0.50
3	0.10	0.80	-	0.60 0.40	0.30
4	0.75	0.60	0.40	_	0.70
5	0.20	0.50	0.30	0.70	-

	12	3	4	5
12	-	0.10	0.60	0.20
3	0.10	-	0.40	0.30
4	0.60	0.40	-	0.70
5	0.20	0.30	0.70	-

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation

Hierarchal
Summary
Resources

Merge points 4 & 5 into new cluster: 45 Using Complete Link

	12	3	4	5
12	-	0.10	0.60	0.20
3	0.10	-	0.40	0.30
4	0.60	0.40	-	0.70
5	0.20	0.30	0.70	-

Clustering

COMP90049 Knowledge Technologies

Clustering Definition Types

Evaluation

Methods

Similarity k-Means k-Ms limitation Hierarchal

Summary Resources

Merge points 4 & 5 into new cluster: 45 Using Complete Link

	12	3	4	5
12	-	0.10	0.60	0.20
3	0.10	-	0.40	0.30
4	0.60	0.40	-	0.70
5	0.20	0.30	0.70	-

	12	3	45
12			
3			
45			

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation

Hierarchal
Summary
Resources

Merge points 4 & 5 into new cluster: 45 Using Complete Link

	12	3	4	5
12	-	0.10	0.60	0.20
3	0.10	-	0.40	0.30
4	0.60	0.40	-	0.70
5	0.20	0.30	0.70	-

	12	3	45
12	-	0.10	0.20
3	0.10	-	0.30
45	0.20	0.30	-

Clustering

COMP90049 Knowledge Technologies

Clustering Definition Types

<u>Evaluation</u> Methods

Similarity k-Means k-Ms limitation Hierarchal

Summary Resources Merge points 45 & 3 into new cluster: 345 **Using Complete Link**

	12	345
12	-	0.10
345	0.10	-

Clustering

COMP90049 Knowledge Technologies

Clustering Definition

Types Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources Merge points 45 & 3 into new cluster: 345 **Using Complete Link**

	12	345
12	-	0.10
345	0.10	-

Clustering

COMP90049 Knowledge Technologies

Clustering Definition Types

Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources

Complete Link

Clustering vs Classification

Clustering

COMP90049 Knowledge Technologies

Clustering Definition

Types Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Outlook	Temperature	Humidity	Windy	Play
sunny sunny overcast rainy	hot hot hot mild	high high high high	F ALSE TRUE F ALSE F ALSE	no no ves yes
rainy rainy :	cool cool :	normal normal	F ALSE TRUE :	no :

Clustering vs Classification

Clustering

COMP90049 Knowledge Technologies

Clustering Definition

Types Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

	Humidity	Windy	Play
hot	high	F ALSE	no
hot	high	TRUE	no
hot	high	FALSE	yes
mild	high	FALSE	yes
cool	normal	F ALSE	yes
cool	normal	TRUE	no
:	:	:	÷
	hot hot mild cool	hot high hot high mild high cool normal	hot high TRUE hot high FALSE mild high FALSE cool normal FALSE

Summary

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

- What basic contrasts are there in different clustering methods?
- How does k -means operate, and what are its strengths and weaknesses?
- How to evaluate clusters
- What are some challenges we face when clustering data?

Resources

Clustering

COMP90049 Knowledge Technologies

Clustering
Definition
Types
Evaluation

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

Summary Resources Tan, Steinbach, Kumar (2006) Introduction to Data Mining. Chapter 8, Cluster Analysis http://www-users.cs.umn.edu/~kumar/dmbook/ch8.pdf

Jain, Dubes (1988) Algorithms for Clustering Data. http://homepages.inf.ed.ac.uk/rbf/BOOKS/JAIN/Clustering Jain Dubes.pdf

MID-SEMESTER EXAM REVIEW

Clustering

COMP90049 Knowledge Technologies

Clustering Definition Types

<u>Types</u> <u>Evaluation</u>

Methods
Similarity
k-Means
k-Ms limitation
Hierarchal

	Q1	Q2	Q3	Q4	Q5	Q6
Average	1.41	1.70	0.68	1.28	1.25	0.68
Median	1.5	2	0.75	1.5	1.5	1
SD	0.52	0.55	0.30	0.85	0.69	0.41