

Kredit für einen Wohnungskauf*

Aufgabennummer: B-C8_34		
Technologieeinsatz:	möglich 🗆	erforderlich ⊠

Frau Simon möchte eine Wohnung kaufen. Sie benötigt dazu einen Kredit und holt deswegen bei Banken verschiedene Angebote ein.

- a) Bank A bietet Frau Simon einen Kredit zu einem Zinssatz von 3 % p.a. an. Die monatlichen Raten sind nach Auszahlung der Kreditsumme von € 120.000 jeweils am Ende jedes Monats fällig. Die Kreditlaufzeit beträgt 20 Jahre. (Spesen und Gebühren werden nicht berücksichtigt.)
 - Ermitteln Sie den für die Berechnung notwendigen Monatszinssatz.
 - Berechnen Sie die Höhe der Monatsraten.
- b) Bank B bietet Frau Simon einen Kredit über € 120.000 an, der in 15 Jahren durch nachschüssige Quartalsraten in Höhe von je € 2.650 zu tilgen ist. Eine Bearbeitungsgebühr von 2 % der Kreditsumme wird bei Auszahlung des Kredits von der Kreditsumme abgezogen. (Weitere Spesen und Gebühren sind in den Raten berücksichtigt.)
 - Berechnen Sie die jährliche Effektivverzinsung dieses Kredits.
- c) Bank C bietet Frau Simon einen Kredit über € 120.000 an, den sie in nachschüssigen Quartalsraten mit dem Zinssatz 1 % p. q. zurückzahlen soll. Die Bank legt ihr den folgenden Tilgungsplan vor:

Quartal	Zinsanteil	Tilgungsanteil	Annuität	Restschuld
0				€ 120.000,00
1	€ 1.200,00	€ 986,26	€ 2.186,26	€ 119.013,74

- Dokumentieren Sie, wie der Zinssatz 1 % p. q. aus dem Tilgungsplan ermittelt werden kann.
- Berechnen Sie die Laufzeit des Kredits.
- Erklären Sie den Zusammenhang zwischen Zinsanteil, Tilgungsanteil und Annuität.

d) Die jährliche Annuität A eines Kredits kann mittels verschiedener Formeln berechnet werden.

Eine Formel lautet:
$$A = K_0 \cdot \frac{i \cdot q^n}{q^n - 1}$$

Eine andere Formel lautet:
$$A = K_0 \cdot \frac{i}{1 - q^{-n}}$$

 $K_{\rm o} \dots {\rm Kreditsumme}$

i ... jährlicher Zinssatz

n ... Laufzeit in Jahren

- Geben Sie an, was q in diesem Sachzusammenhang bedeutet.
- Zeigen Sie, dass diese beiden Formeln gleichwertig sind.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben.

Möglicher Lösungsweg

a) Monatszinssatz: $\sqrt[12]{1,03} - 1 = 0,002466... \approx 0,247 \%$

Der Monatszinssatz beträgt rund 0,247 %.

monatlicher Aufzinsungsfaktor: $r_{12} = 1,03^{\frac{1}{12}}$

Barwertformel für nachschüssige Monatsrente:

$$R = 120\,000 \cdot \frac{r_{12} - 1}{1 - r_{12}^{-240}} \approx 663,09$$

Die Höhe der Monatsrate beträgt € 663,09.

b) Auszahlungsbetrag: 120000 · 0,98 = 117600

Äquivalenzgleichung: $117600 = 2650 \cdot \frac{1 - r_4^{-60}}{r_4 - 1}$

Lösung mittels Technologieeinsatz: $r_4 = 1,010475...$ $r = r_4^4 = 1,042566...$

Die jährliche Effektivverzinsung beträgt rund 4,257 %.

c) Den Quartalszinssatz erhält man, indem der Zinsanteil im Quartal 1 durch die Kreditsumme dividiert wird, d. h.:

$$i_4 = \frac{1200}{120000} = 0.01 = 1 \%$$

Die Kreditsumme ist der Barwert einer nachschüssigen Rente, die Annuität deren Rate.

Äquivalenzgleichung: $120\,000 = 2\,186,26 \cdot \frac{1-1,01^{-n}}{0,01}$

Lösung mittels Technologieeinsatz: $n \approx 80$

Die Laufzeit des Kredits beträgt 80 Quartale.

Die Annuität ist die Summe von Zinsanteil und Tilgungsanteil.

d) q = 1 + i ist der jährliche Aufzinsungsfaktor.

Die Formeln sind äquivalent, weil $q^{-n} = \frac{1}{q^n}$.

Werden in der 1. Formel Zähler und Nenner durch q^n dividiert, erhält man die 2. Formel.

Lösungsschlüssel

- a) 1 × B1: für die richtige Ermittlung des Monatszinssatzes
 - 1 × B2: für die richtige Berechnung der Monatsrate
- b) 1 × A: für einen richtigen Ansatz zur Berechnung des Effektivzinssatzes mit dem richtigen Auszahlungsbetrag
 - 1 × B: für die richtige Berechnung des jährlichen Effektivzinssatzes
- c) $1 \times C$: für die richtige Dokumentation zur Ermittlung des Quartalszinssatzes
 - 1 x B: für die richtige Berechnung der Laufzeit (Runden des Ergebnisses auf 81 Quartale ebenfalls zulässig)
 - 1 x D: für die richtige Erklärung des Zusammenhangs
- d) $1 \times C$: für die richtige Beschreibung von q in diesem Sachzusammenhang
 - 1 × D: für den richtigen Nachweis der Äquivalenz der beiden Formeln