Binomial theorem

Properties of Binomial Coefficients

1.
$${}^{n}C_{r} = {}^{n}C_{r-1}$$

2.
$${}^{n}C_{r} = {}^{n}C_{s} \Rightarrow r = s$$
 or $r + s = n$

3.
$${}^{n}C_{r} + {}^{n}C_{r+1} = {}^{n+1}C_{r+1}$$

4.
$$\frac{{}^{n}C_{r}}{{}^{n+1}C_{r+1}} = \frac{r+1}{n+1}$$

5.
$$\frac{{}^{n}C_{r}}{{}^{n}C_{r+1}} = \frac{r+1}{n-r}$$

Series of Binomial Coefficients

$$(1+x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + \dots + {}^nC_nx^n \qquad \dots (1)$$

1. Sum of the binomial coefficients in the expansion of $(1 + x)^n = 2^n$

2.
$$\sum_{r=0}^{n} (-1)^{r} {}^{n}C_{r} = 0$$

3. In the expansion $(1 + x)^n$:

Sum of the binomial coefficients at odd position = Sum of the binomial coefficients at even position

$${}^{n}C_{0} + {}^{n}C_{2} + {}^{n}C_{4} + ... = {}^{n}C_{1} + {}^{n}C_{3} + {}^{n}C_{5} + ... = 2^{n-1}$$

4.
$${}^{n}C_{1} + 2{}^{n}C_{2} + 3{}^{n}C_{3} + \dots + n{}^{n}C_{n} = n \ 2^{n-1}$$

5.
$${}^{n}C_{1} - 2{}^{n}C_{2} + 3{}^{n}C_{3} - ... + (-1)^{n-1} n^{n}C_{n} = 0$$

6.
$${}^{n}C_{0} {}^{n}C_{r} + {}^{n}C_{1} {}^{n}C_{r+1} + {}^{n}C_{2} {}^{n}C_{r+2} + \dots + {}^{n}C_{n-r} {}^{n}C_{n} = {}^{2n}C_{n+r}$$

7.
$${}^{n}C_{0} + 3{}^{n}C_{1} + 5{}^{n}C_{2} + 7{}^{n}C_{3} + ... + (2n+1){}^{n}C_{n} = (n+1)2^{n}$$

• The coefficients of the expansions of a binomial are arranged in an array. This array is called Pascal's triangle. It can be written as

Index	Coefficient(s)
0	⁰ C ₀
	(=1)

1	$^{1}C_{0}$ $^{1}C_{1}$ $(=1)$
2	$^{2}C_{0}$ $^{2}C_{1}$ $^{2}C_{2}$ $(=1)$ $(=2)$ $(=1)$
3	$^{3}C_{0}$ $^{3}C_{1}$ $^{3}C_{2}$ $^{3}C_{3}$ $(=1)$ $(=3)$ $(=1)$
4	$^{4}C_{0}$ $^{4}C_{1}$ $^{4}C_{2}$ $^{4}C_{3}$ $^{4}C_{4}$ $(=1)$ $(=4)$ $(=6)$ $(=4)$ $(=1)$
5	

• **General Term:** The $(r+1)^{th}$ term (denoted by T_{r+1}) is known as the general term of the expansion $(a+b)^n$ and it is given by $T_{r+1} = {}^n C_r a^{n-r} b^r$

Example 1: In the expansion of $(5x - 7y)^9$, find the general term?

Solution:
$$T_{r+1} = {}^{9}C_{r}(5x)^{9-r}(-7y)^{r} = (-1)^{r}{}^{9}C_{r}(5x)^{9-r}(7y)^{r}$$

- Middle term in the expansion of $(a + b)^n$:
 - If n is even, then the number of terms in the expansion will be n+1. Since n is even, n+1 is odd. Therefore, the middle term is $\left(\frac{n}{2}+1\right)^{\text{th}}$ term.
 - If n is odd, then n+1 is even. So, there will be two middle terms in the expansion. They are $\left(\frac{n+1}{2}\right)^{\text{th}}$ term and $\left(\frac{n+1}{2}+1\right)^{\text{th}}$ term.
- In the expansion of $\left(x+\frac{1}{x}\right)^{2n}$, where $x \neq 0$, the middle term is $\left(\frac{2n}{2}+1\right)^{th}$, i.e., $(n+1)^{th}$ term [since 2n is even].

It is given by ${}^{2n}C_n x^n \left(\frac{1}{x}\right)^n = {}^{2n}C_n$ which is a constant.

This term is called the term independent of x or the constant term.

Note: In the expansion of $(a + b)^n$, r^{th} term from the end = $(n - r + 2)^{th}$ term from the beginning

Example 2: In the expansion of $\left(\frac{x^3}{4} - \frac{12}{x}\right)^4$, find the middle term and find the term which is independent of x.

Solution: As 4 is even, the middle term in the expansion of $\left(\frac{x^3}{4} - \frac{12}{x}\right)^4$ is the $\left(\frac{4}{2} + 1\right)^{th}$ term, i.e., 3^{rd} term, which is given by

$$T_3 = T_{2+1} = {}^{4}C_{2} \left(\frac{x^{3}}{4}\right)^{2} \left(\frac{-12}{x}\right)^{2}$$
$$= 6 \times \frac{x^{6}}{16} \times \frac{144}{x^{2}}$$
$$= 54x^{4}$$

Now, we will find the term in the expansion which is independent of x. Suppose $(r+1)^{\text{th}}$ term is independent of x.

The $(r+1)^{th}$ term in the expansion of $(a+b)^n$ is given by $T_{r+1} = {}^nC_r a^{n-r} b^r$

Hence, the $(r+1)^{\text{th}}$ term in the expansion of $\left(\frac{x^3}{4} - \frac{12}{x}\right)^4$ is given by