Définition 9.1 - convergence simple d'une suite de fonctions

Soit E un \mathbb{K} espace vectoriel de dimension finie, $A \subset E$ et $(f_n)_{n \in \mathbb{N}} \in \mathcal{F}(A, \mathbb{K})^{\mathbb{N}}$. On dit que la suite $(f_n)_{n \in \mathbb{N}}$ converge simplement si pour tout $x \in A$, la suite $(f_n(x))_{n \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}}$ converge. Ainsi la fonction :

$$f: A \longrightarrow \mathbb{K}$$

$$x \longmapsto \lim_{n \to +\infty} f_n(x)$$

est appelée limite simple de la suite $(f_n)_{n\in\mathbb{N}}$. Ainsi,

$$\forall x \in A, \forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, |f_n(x) - f(x)| < \epsilon$$

Définition 9.4 - convergence uniforme d'une suite de fonctions

Soit E un \mathbb{K} espace vectoriel de dimension finie, $A \subset E$ et $(f_n)_{n \in \mathbb{N}} \in \mathcal{F}(A, \mathbb{K})^{\mathbb{N}}$. On dit que $la \ suite \ (f_n)_{n \in \mathbb{N}}$ converge uniformément si pour tout $x \in A$, la suite $(f_n(x))_{n \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}}$ converge. Ainsi la fonction :

$$f: A \longrightarrow \mathbb{K}$$

$$x \longmapsto \lim_{n \to +\infty} f_n(x)$$

est appelée limite uniforme de la suite $(f_n)_{n\in\mathbb{N}}$. Ainsi,

$$\forall x \in A, \forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, |f_n(x) - f(x)| < \epsilon$$

Théorème 9.15 - propriétés conservées par la limite uniforme

Soit E un \mathbb{K} -espace vectoriel de dimension finie, $A \subset E$ et $(f_n)_{n \in \mathbb{N}} \in \mathcal{F}(A, \mathbb{K})^{\mathbb{N}}$ convergeant uniformément vers $f : A \to E$.

- 1. Si les $(f_n)_{n\in\mathbb{N}}$ sont bornées, alors il en est de même pour f.
- **2.** Si les $(f_n)_{n\in\mathbb{N}}$ sont continues, alors il en est de même pour f.

Théorème 9.17 - de la double limite

Soit E un \mathbb{K} -espace vectoriel de dimension finie, $A \subset E$ et $(f_n)_{n \in \mathbb{N}} \in \mathcal{F}(A, \mathbb{K})^{\mathbb{N}}$ convergeant uniformément vers $f: A \to E$. Soit $a\overline{a}$.

Si pour tout $n \in \mathbb{N}$, f_n admet en a limite l_n , alors la suite $(l_n)_{n \in \mathbb{N}}$ converge et f converge en a vers sa limite :

$$\lim_{x \to a} \left(\lim_{n \to +\infty} f_n(x) \right) = \lim_{n \to +\infty} \left(\lim_{x \to a} f_n(x) \right)$$