The Periodic Table

Arrangement of Elements

- The Periodic table is a method of classifying elements.
- Elements are arranged in order of increasing atomic number (each proceeding element has one more proton)
- Made up of rows called **periods** and columns called **groups**, the position of an element helps determine its electronic configuration.
- **Period number**: can be determined by total number of shells.
- **Group number**: number of electrons in outer shell electrons. Elements in the same group have similar chemical properties.

<u></u>		Group																
2020	- 1	Ш											III	IV	V	VI	VII	VIII
Ī								1							•			2
		Key					H										He	
ļ							1]									4	
	3 Li	Be	atomic number										B B	° C	N N	8 O	F F	10 Ne
	lithium	beryllium		atomic symbol									boron	carbon	nitrogen	oxygen	fluorine	neon
-	7	9	relative atomic mass									11	12	14	16	19	20	
	Na	Mg											13 A <i>I</i>	Si	15 P	16 S	Cl	18 Ar
	sodium 23	magnesium 24											aluminium	silicon	phosphorus 31	sulfur 32	chlorine 35.5	argon 40
H	19	24	21	22	23	24	25	26	27	28	29	30	27 31	28 32	33	34	35.5	36
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	potassium 39	calcium 40	scandium 45	Stanium 48	vanadium 51	chromium 52	manganese 55	iron 56	cobalt 59	nickel 59	copper 64	zinc 65	gallium 70	germanium 73	arsenic 75	selenium 79	bromine 80	krypton 84
8	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
š	Rb rubidium	Sr	Y	Zr	Nb	Мо	Tc technetium	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
0620/01/SP/23	85	strontium 88	yttrium 89	zirconium 91	niobium 93	molybdenum 96	technetum -	101	modium 103	palledium 106	108	112	indium 115	tin 119	122	128	iodine 127	xenon 131
23	55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba	lanthanoids	Hf hefnium	Ta tentelum	W	Re	Os	Ir	Pt	Au	Hg	T/I	Pb	Bi	Po	At astatine	Rn
ı	133	137		178	181	184	186	190	192	195	197	201	204	207	209	-	-	-
	87 Fr	Ra	89-103 actinoida	104 Rf	105 Db	Sq	107 Bh	108 Hs	109 Mt	Ds	Rg	Cn	Nh	114 F/	Mc Mc	Lv	117 Ts	118 Og
	francium	radium		rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadtium	roentgenium	copernicium	nihonium	flerovium	moscovium	livermorium	tennessine	oganessor
l	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	1
	lanthano	oids	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
			lanthanum 139	cerium 140	praseodymium 141	neodymium 144	promethium —	samarium 150	europium 152	gadolinium 157	terbium 159	dysprosium 163	holmium 165	erbium 167	thulium 169	ytterbium 173	lutetium 175	
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	1
	actinoids		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
			actinium	thorium 232	protectinium 231	uranium 238	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrengium	

Periodic Trends

- 1. The table moves from metals on the left to non-metals on the right.
- 2. Down a group of metals, elements become more reactive.
- 3. With non-metals going down a group, reactivity decreases.

Group I Properties

• **Group I Metals**: Lithium, sodium, potassium, etc.

Chemical Properties	Physical Properties
Readily react with oxygen and water; stored in oil	Good conductors of heat and electricity
React violently with chlorine	Soft and easy to cut
Burst into flames when heated with oxygen[red flame for lithium; yellow flame for sodium; lilac flame for potassium]	Shiny when freshly cut
Produce soluble white compounds.	Melting points decrease down the group.
React with water to form alkaline metal and hydrogen gas	Increase density down the group

• Predicting the properties of other Group I alkali metals: Rubidium, Caesium and Francium [reactivity increases down the group].

Element	Reaction with Water
Lithium	Floats and gives off hydrogen gas (effervescence)
Sodium	Vigorous Reaction and moves very quickly
Potassium	Explosive Reaction, lilac flame

Group VII(Halogens) Properties: Salt Producers

Halo: Salt

Gen: Formers

Properties	Patterns/Trends
States and Colours, at RTP: Fluorine(F ₂)- Pale-Yellow-green gas Chlorine(Cl ₂)- Greenish/Pale Yellow-Green gas Bromine(Br ₂)- Red-Brown liquid Iodine(I ₂)- Purple-Grey-Black solid	Top to Down the group, reactivity, size, mass and density increase
Halogens are colored, poisonous , non-metals, low m.p, b.p, Exist as diatomic covalent compound/molecules.	Down the group, the colour darkens
 Halogens are also reactive no-metals. Diatomic; form halide ions in a displacement reaction Halogen are reactive metal 	Reactivity decreases down the group, because it has to gain an electron, so the closer the electron is to the positive nucleus, the more easily it will be gained, so atoms with fewer shells will react more easily.
Do not conduct electricity	melting point increases down the group

Transition Elements

Physical Properties

- High melting & boiling points
- Malleable and ductile
- Good conductors of heat & electricity
- High density

Chemical Properties

- Act as catalysts
- Form coloured compounds
- Variable Oxidation Numbers (Iron (II) or Iron (III))

Noble Gases

Properties	Uses
Density increases down the group	Helium-filling balloons
Monoatomic and colourless	Argon – Lamps
M.P. and B.P. increases down the group	Neon – advertising signs
Don't conduct electricity	
Inert & stable due to full outer shell electrons	

Catalyst:

In simpler terms, catalysts are substances that make chemical reactions happen faster without being used up in the process. They speed up reactions by providing an easier route for the reaction to occur, making it more efficient. Catalysts play a crucial role in various industries, helping to produce products more quickly and with less energy. They are like facilitators that enable chemical processes to happen smoothly.