Introduction to Tensors PFI Seminar

Kenta OONO

2012/07/11

Self Introduction

- Kenta OONO (Twitter:@delta2323_)
- PSS(Professional and Support Service) Division
- Jubatus Project
 - msgpack-idl, generation of clients
- Survey and Prototyping Team
- 2010 PFI Summer Intern ightarrow 2011 Engineer

Agenda

- What is Tensor?
- Decomposition of Matrices and Tensors
- Symmetry Parametrized by Young Diagram

Agenda

- What is Tensor?
- Decomposition of Matrices and Tensors
- Symmetry Parametrized by Young Diagram

Vector as a Special Case of Tensor

Consider a *n* dimensional vector (Below is the case n = 3)

$$v = \begin{bmatrix} 7 \\ 4 \\ 9 \end{bmatrix} \tag{1}$$

When we write this vector as $v = (v_i)$, we have $v_1 = 7$, $v_2 = 4$, and $v_3 = 9$. As v has **One** index, this vector is regarded as **Rank 1 Tensor**.

Note

- We use 1-index notation, not 0-index.
- We somtimes use rank in a different meaning, (also in the context of tensors).

Matrix as a Special Case of Tensor

Consider a $n \times n$ Matrix (Below is the case n = 3).

$$A = \begin{bmatrix} 7 & 10 & 3 \\ 4 & -1 & -2 \\ 9 & 4 & 5 \end{bmatrix} \tag{2}$$

We write this matrix as $A = (a_{ij})_{1 \le i,j \le 3}$.

• e.g. $a_{11} = 7$, $a_{23} = -2$, $a_{32} = 4$.

A has **Two** indices (namely i and j) and these indeices run through 1 to 3. A can be regarded as **Rank 2 Tensor**.

 \rightarrow What happens if the number of indices are not just 1 or 2 ?

An Example of Rank 3 Tensor

Consider the set of real numbers $X = (x_{ijk})_{1 \le i,j,k \le 3}$. As i,j,k run throuth 1 to 3 independently, this set contains $3 \times 3 \times 3 = 27$ elements.

If we fix the value of i, we can write this set in a matrix form.

$$x_{1**} = \begin{bmatrix} 7 & 10 & 3 \\ 4 & -1 & -2 \\ 9 & 4 & 5 \end{bmatrix}, x_{2**} = \begin{bmatrix} 10 & 2 & 1 \\ 3 & -1 & 0 \\ 8 & 1 & 4 \end{bmatrix}, x_{3**} = \begin{bmatrix} 5 & -10 & 18 \\ -4 & 1 & -2 \\ 9 & -4 & -10 \end{bmatrix}$$
(3)

Note

- In some field, we concatenate these matrix and name it $X_{(1)}$
 - This is called **Flattening** or **Matricing** of *X*.

Is This a Multidimensional Array?

We can realize a tensor as a multiple dimensional array in most programming languages.

```
PseudoCode(C like):
int[3][3][3] x;
x[1][1][2] = -1;
```

Inner Product of Tensors

Let $X = (x_{ijk})$, $Y = (y_{ijk})$ be two rank 3 tensors and $G = (g^{ij})$ be a symmetric (i.e. $g^{ij} = g^{ji}$) and positive definite matrix. We can introduce an inner product of X and Y by:

$$\langle X, Y \rangle = \sum_{a,b,c,i,j,k=1}^{n} g^{ai} g^{bj} g^{ck} X_{abc} Y_{ijk}$$
 (4)

Note:

- We can similarly define an inner product of two arbitrary rank tensor
 - X and Y must have same rank.

An Example of Inner Product (Vector)

Let's consider the case of rank 1 tensor (= vector). We can write $X = (x_i), Y = (y_i)$. And we set $G = (g^{ij})$ an identity matrix:

$$G = \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & 1 & \vdots \\ 0 & \cdots & 1 \end{bmatrix}$$
 (5)

In this case, this definition of inner product reduce to ordinal inner product of two vectors, namely,

$$\langle X, Y \rangle = \sum_{a,i} g^{ai} x_a y_i = \sum_i x_i y_i \tag{6}$$

An Example of Tensor

Suppose we have a (smooth) function $f : \mathbb{R}^3 \to \mathbb{R}$. We can derive tensors of arbitrary rank from this function.

Taking **Gradient**, we obtain rank 1 tensor. (Please replace (1, 2, 3) with (x, y, z) and vice versa.

$$\nabla f = (\nabla_i f) = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{bmatrix}$$
 (7)

Similarly, Hessian is an example of rank 2 tensor.

$$H(f) = (H_{ij}(f)) = \begin{bmatrix} \frac{\partial^2 f}{\partial x \partial x} & \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial x \partial z} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y \partial y} & \frac{\partial^2 f}{\partial y \partial z} \\ \frac{\partial^2 f}{\partial z \partial x} & \frac{\partial^2 f}{\partial z \partial y} & \frac{\partial^2 f}{\partial z \partial z} \end{bmatrix}$$
(8)

Supersymmetry Property

By taking derivative, we can create an arbitrary rank of tensors. These tensors are **(Super)Symmetric** in the sense that interchange of any two indices remains the tensor identical. For example,

$$f_{xyz} = f_{xzy} = f_{yxz} = f_{yzx} = f_{zxy} = f_{zyx}. \tag{9}$$

Note:

Afterward, we write this symmetry as <a>IIII.

Agenda

- What is Tensor?
- Decomposition of Matrices and Tensors
- Symmetry Parametrized by Young Diagram

Decompose!

It is fundamental in mathematics to decompose some object into simpler, easier-to-handle objects.

- Fourier Expansion : $f = \sum_{n \in \mathbb{Z}} a_n \exp(\sqrt{-1}nx)$
- Legendre Polynomial : $P = \sum_{k} a_k P_k$
 - where $P_k(x) = \frac{1}{k!2^k} \frac{d^k}{dx^k} (x^2 1)^k$
- Jordan-Hölder : $e = G_0 \lhd G_1 \lhd G_2 \lhd \cdots \lhd G_{n-1} \lhd G_n = G$

Decomposition of Matrix

There are many theories regarding the decomposition (or, factorization) of matrices.

- SVD
- LU
- QR
- Cholesky
- Jordan
- Diagonalization ...

Although we have theories of factorization of Tensors (e.g. Tucker Decomposition, higher-order SVD etc.) We do **NOT** go this direction. Instead, we consider decomposition of matrix into **Summation** of matrix.

Example: Projection to Axis

Example of Decomposition of Matrix

We can decompose matrix into **Symmetric** part and **Antisymmetric** part.

Example:

$$\begin{bmatrix} 7 & 10 & 3 \\ 4 & -1 & -2 \\ 9 & 4 & 5 \end{bmatrix} = \begin{bmatrix} 7 & 7 & 6 \\ 7 & -1 & 1 \\ 6 & 1 & 5 \end{bmatrix} + \begin{bmatrix} 0 & 3 & -3 \\ -3 & 0 & -3 \\ 3 & 3 & 0 \end{bmatrix}$$
Symmetric Part
$$A = A^{sym}$$
Antisymmetric Part
$$A^{anti}$$
(10)

Kenta OONO

How to Calculate Sym. and Antisym. Part

We can calculate the symmetric and antisymmetric part by simple calculation (Exercise!).

$$A^{sym} = \frac{1}{2} \begin{pmatrix} 7 & 10 & 3 \\ 4 & -1 & -2 \\ 9 & 4 & 5 \end{pmatrix} + \begin{bmatrix} 7 & 4 & 9 \\ 10 & -1 & 4 \\ 3 & -2 & 5 \end{bmatrix}$$

$$a_{ij}^{sym} = \frac{1}{2} (a_{ij} + a_{ji})$$

$$A^{anti} = \frac{1}{2} \begin{pmatrix} 7 & 10 & 3 \\ 4 & -1 & -2 \\ 9 & 4 & 5 \end{pmatrix} - \begin{bmatrix} 7 & 4 & 9 \\ 10 & -1 & 4 \\ 3 & -2 & 5 \end{bmatrix}$$

$$a_{ij}^{anti} = \frac{1}{2} (a_{ij} - a_{ji})$$

$$(11)$$

Picture of Projection to Sym. and Antisym. Part

Notation Using Young Diagram

We can symbolize symmetry and antisymmetry with **Young Diagram**

The number of boxes indicates rank of the tensor (one box for vector and two boxes for matrix).

Agenda

- What is Tensor?
- Decomposition of Matrices and Tensors
- Symmetry Parametrized by Young Diagram

Note:

- From now on, we concentrate on Rank 3 Tensors (i.e. k = 3).
- And we assume that n = 3, that is, indices run from 1 to 3.

Symmetrizing Operator

We consider the transformation of tensor:

$$T_{\square\square\square}: X = (x_{ijk}) \mapsto X' = (x'_{ijk}),$$
 (14)

where
$$x'_{ijk} = \frac{1}{6} (x_{ijk} + x_{ikj} + x_{jik} + x_{jki} + x_{kij} + x_{kji})$$

= $x_{(ijk)}$. (15)

Young Diagram and Symmetry of Tensor (Sym. Case)

Let $X = (x_{123})$ be a tensor of rank 3, we call X **Has a Symmetry** of $\square \square$, if interchange of any of two indices doesn't change each entry of X.

Example:

• If X has a symmetry of $\square \square$, then

$$x_{112} = x_{121} = x_{211}$$

 $x_{123} = x_{132} = x_{213} = x_{231} = x_{312} = x_{321}$ etc... (16)

Symmetric matrices have a symmetry of □

Property of $T_{\square \square}$

- For all X, $T_{\square \square}(X)$ has symmetry of $\square \square$.
- If X has symmetry of $\square \square$, then $T_{\square \square \square}(X) = X$.
- For all X, $T_{\square \square \square}(T_{\square \square \square}(X)) = T_{\square \square \square}(X)$.

Antisymmetrizing Operator

Next, we consider **Anti**symmetrization of tensors:

$$T_{\square}: X = (x_{ijk}) \mapsto X' = (x'_{ijk}), \tag{17}$$

where
$$x'_{ijk} = \frac{1}{6} (x_{ijk} - x_{ikj} - x_{jik} + x_{jki} + x_{kij} - x_{kji})$$

= $x_{[ijk]}$. (18)

Young Diagram and Symmetry of Tensor (Antisym. Case)

Let $X = (x_{123})$ be a tensor of rank k, we call X has a symmetry of if interchange of any of two indices change **only the sign** of each entry of X.

Example.

- If X has a symmetry of \Box , then
 - $x_{123} = -x_{132} = -x_{213} = x_{231} = x_{312} = -x_{321}$
 - $x_{112} = 0$, because x_{112} must be equal to $-x_{112}$.
- Antisymmetric matrix has a symmetry of \Box

Orthogonality of Projection

$$T_{\square \square} \circ T_{\square}(X) = T_{\square} \circ T_{\square \square}(X) = 0.$$
 (19)

Counting Dimension

How many dimension do the vector space consisting of tensors ...

- with symmetry □□□ have ?
- with symmetry have?

Dimensions of each subvector spaces.

If n = 3 (that is, i, j and k runs through 1 to 3), then each dimension is as follows.

But dimension of total space is $3 \times 3 \times 3 = 27$. This is larger than 1+10=11.

Young Diagram

Young Diagram is an arrangent of boxes of the same size so that:

- two adjacent boxes share one of their side.
- the number of boxes in each row is non-increasing.
- the number of boxes in each column is non-increasing.

Here is an example of Young Diagram with 10 boxes.

English Notation French Notation

Decomposition of Tensor (of Rank 3)

We have three types of Young Diagram which have three boxes, namely,

Coefficients of Symmetrizers

We list coneffients of each operator in a tabular form.

	Coefficient of x_{ijk}							
	ijk	ikj	jik	jki	kij	kji		
	1/6	1/6	1/6	1/6	1/6	1/6		
	1/6	-1/6	-1/6	1/6	1/6	-1/6		
Sum	1							

Coefficients of Symmetrizers

	Coefficient of x_{ijk}								
	ijk	ikj	jik	jki	kij	kji			
	1/6	1/6	1/6	1/6	1/6	1/6			
	1/6	-1/6	-1/6	1/6	1/6	-1/6			
	4/6			-2/6	-2/6				
Sum	1								

Symmetrizer T_{\square}

We consider the transformation of tensor:

$$T_{\square}: X = (x_{ijk}) \mapsto X' = (x'_{ijk}), \tag{22}$$

where $x'_{ijk} = \frac{1}{3} (2x_{ijk} - x_{jki} - x_{kij}).$

Property of T_{\Box}

- For all X, $T_{\square}(X)$ has symmetry of \square .
- If X has symmetry of \square , then $T_{\square \square}(X) = X$.
- For all X, $T_{\square} \left(T_{\square}(X) \right) = T_{\square}(X)$.

Tensors with Symmetry of

Let $X = (x_{ijk})$ be a tensor of rank 3. We say X Has a Symmetry of \square , if

$$x_{ijk} = \frac{1}{3} \left(2x_{ijk} - x_{jki} - x_{kij} \right) \tag{23}$$

for all $1 \le i, j, k \le n$.

Where This Equation "Symmetric"?

Remember that X has a symmetry of \square , if

$$x_{ijk} = \frac{1}{3} \left(2x_{ijk} - x_{jki} - x_{kij} \right) \tag{24}$$

for all $1 \le i, j, k \le n$.

This equation can be transormed as follows:

$$x_{ijk} = \frac{1}{3} (2x_{ijk} - x_{jki} - x_{kij})$$

$$\Leftrightarrow 3x_{ijk} = 2x_{ijk} - x_{jki} - x_{kij}$$

$$\Leftrightarrow x_{ijk} + x_{jki} + x_{kij} = 0$$
(25)

Projection to Each Symmetrized Tensors

Decomposition of Higher Rank Tensors

Higher rank tensors are also decompose into symmetric tensors parametrized by Young Diagram.

Kenta OONO

Summary

- Tensors as a Generalization of Vectors and Matrices.
- Decomposition of Matrices and Tensors
- Symmetry of Tensors Parametrized by Young Diagrams.

References

- T G. Kolda and B W. Bader, Tensor Decompositions and Applications
 - 2009, SIAM Review Vol. 51, No 3, pp 455-500
- D S. Watkins, Fundamentals of Matrix Computations 3rd. ed.
 - 2010, A Wiley Series of Texts, Monographs and Tracts
- W. Fulton and J Harris, Representation Theory
 - 1991, Graduate Texts in Mathematics Readins in Mathematics.
- And Google "Representation Theory", "Symmetric Group", "Young Diagram" and so on.