Name: SOLUTIONS

Wed 15 Mar 2017

Exam 2: Multivariate Derivatives and Multiple Integrals $(\S12.3-12.9,\ 10.1-10.3,\ \bar{1}3.1-13.5)$

Exam Instructions: You have 50 minutes to complete this exam. Justification is required

basic scientific calculator. On story problems, then you may leave, UNLESS there are disruption, if you finish with less than 5 minutand quiet.	eones, iDevices, computers, etc) except for a ems, round to one decimal place. If you finisl e less than 5 minutes of class left. To prevent tes of class remaining then please stay seated
i	In addition, please provide the following data:
Drill Instruc	etor:
Drill T	ime:
Your signature below indicates that you lead to the Un	have read this page and agree to follow iversity of Arkansas.
ignature: (1 pt)	

1. Determine whether the following statements are true or false. You must justify your answer.

(a) (4 pts) The graphs of r=3 and $\theta=\frac{\pi}{3}$ intersect exactly once.

(cylindrical)

(b) (4 pts) The graphs of $r = 4 \sec \theta$ and $r = \csc \theta$ are lines.

True

(c) (4 pts) The point $\left(3, \frac{\pi}{2}\right)$ lies on the graph of $r = 3\cos 2\theta$.

True.

2. (12 pts) Find the absolute maximum and minimum values of the function

$$f(x,y) = x^2 + y^2 - 2x - 2y$$

on the closed region R, bounded by the triangle with vertices (0,0), (2,0), (0,2).

$$f_{x} = 2x - 2 = 0$$
 $\Rightarrow x = 1$
 $f_{y} = 2y - 2 = 0$ $\Rightarrow y = 1$

Discriminant

Boundary:

$$x=0$$
: $f(0,y)=y^2-2y$; $\frac{1}{2}f(0,y)=2y-2=0$
 $x=0$: $f(x,0)=x^2-2x$; $\frac{1}{2}f(x,0)=2x-2=0$
 $(0,2)$ $y=0$: $f(x,0)=x^2-2x$; $\frac{1}{2}f(x,0)=2x-2=0$

$$f(0,1)=12-2=-1= (0(x,y)=(1,1))$$

 $f(1,0)=1-2=-1= (0(x,y)=(1,1))$

((x,y)=(0,1),(1,0) Cal IH Spring 2017 Wheeler

p. 2 (of 6)

3. (10 pts) Find the area of the region inside the rose $r = 2 \sin 2\theta$ and outside the circle r=1. (In case you need it, the half-angle formula is $\cos^2 x = \frac{1+\cos 2x}{2}$.) By symmetry use one petel → 20 = F 日= 世, 差-节= 5元 $\cos^2 x = 1 + \cos 2x = \frac{1}{2} + \frac{\cos 2}{2}$ $1-\sin^2 x \rightarrow 1-\frac{1}{2}-\frac{\cos 2x}{2}=\sin^2 x$ 45122A - 1 - 2 (ST - IZ) - - 2 (Sin) Wheeler

4. (8 pts) The following figure shows the level curves for various $z = z_0$ of the function f, along with the constraint curve g(x,y) = 0. Estimate the maximum and minimum values of f subject to the constraint. At each point where an extreme value occurs, indicate the direction of ∇f and the direction of ∇g .

5. (6 pts) Compute the directional derivative of

$$g(x,y) = \sin\left(\pi(2x - y)\right)$$

at the point P = (-1, -1) in the direction of $u = \langle \frac{5}{13}, -\frac{12}{13} \rangle$.

$$D_{u}g(-1,-1) = \nabla_{g}(-1,-1) \cdot \left(\frac{5}{13}, -\frac{12}{13}\right)$$

$$\nabla_{g} = \left(\cos(\pi(2x-y))(2\pi), \cos(\pi(2x-y))(-\pi)\right)$$

$$= \sum_{u}g(-1,-1) = 2\pi\cos(\pi(-2-(-1)))\left(\frac{5}{13}\right) + (-\pi)\cos(\pi(-2-(-1)))\left(\frac{12}{13}\right)$$

$$= -\frac{10\pi}{13} - \frac{12\pi}{13} = -\frac{22\pi}{13}$$

6. Evaluate (or show non-existence of) the following limits:

6. Evaluate (or show non-existence of) the following limits

(a) (5 pts)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{|xy|} = (x,mx)\to(0,0) |x|$$

Use 2-Path Tast

e-long the line

 $y=mx$

ong the line
$$y = m\chi$$

$$= \begin{cases}
-1 & \text{if } m = 1 \\
\text{if } m = -1
\end{cases}$$
(b) (5 pts) $\lim_{(x,y,z) \to (1,\ln 2,3)} (1+y) \ln q^{xz}$

$$\Rightarrow \text{Does not exist.}$$

$$=(1+(n2)(1)(3)$$

7. (6 pts) The density of a thin circular plate of radius 2 is given by $\rho(x,y) = 3 + xy$. The edge of the plate is described by the parametric equations $x = 2\cos t$, $y = 2\sin t$, for $0 \le t \le 2\pi$. Find the rate of change of the density with respect to t on the edge of

$$S(x(t),y(t)) = 3 + (2\cos t)(2\sin t)$$
= 3+4costsint
$$\frac{\partial f}{\partial t} = -4\sin^2 t + 4\cos^2 t$$

8. (10 pts) Set up, but do not evaluate, the integral for the volume of material remaining in a hemisphere of radius 2 after a cylindrical hole of radius 1 is drilled through the center of the hemisphere perpendicular to its base.

ExTrA cReDiT (5 pts) Evaluate the integral you set up. [3 Volume $\frac{2^3-\csc^2\varphi}{3}$ 13 + = cot \$