Manuscript Details

Manuscript number AAP_2020_307_R2

Title A systematic assessment of the use of opponent variables, data subsetting and

hierarchical specification in two-party crash severity analysis

Article type Full Length Article

Abstract

Road crashes impose an important burden on health and the economy. Numerous efforts have been undertaken to understand the factors that affect road collisions in general, and the severity of crashes in particular. In this literature several strategies have been proposed to model interactions between parties in a crash, including the use of variables regarding the other party (or parties) in the collision, data subsetting, and estimating models with hierarchical components. Since no systematic assessment has been conducted of the performance of these strategies, they appear to be used in an ad-hoc fashion in the literature. The objective of this paper is to empirically evaluate ways to model party interactions in the context of crashes involving two parties. To this end, a series of models are estimated using data from Canada's National Collision Database. Three levels of crash severity (no injury/injury/fatality) are analyzed using ordered probit models and covariates for the parties in the crash and the conditions of the crash. The models are assessed using predicted shares and classes of outcomes, and the results highlight the importance of considering opponent effects in crash severity analysis. The study also suggests that hierarchical (i.e., multi-level) specifications and subsetting do not necessarily perform better than a relatively simple single-level model with opponent-related factors. The results of this study provide insights regarding the performance of different modelling strategies, and should be informative to researchers in the field of crash severity.

Keywords Crash severity; opponent effects; ordered logit; model performance; Canada's

National Crash Database; reproducible research

Taxonomy Motor Vehicle Accident, Risk Assessment, Statistical Method

Corresponding Author Antonio Paez

Corresponding Author's

Institution

McMaster University

Order of Authors Antonio Paez, Hany Hassan, Mark Ferguson, Saiedeh Razavi

Submission Files Included in this PDF

File Name [File Type]

Cover-Letter-v3.pdf [Cover Letter]

Response-to-Reviewers-v3.pdf [Response to Reviewers]

Highlights-v2.pdf [Highlights]

Interactions-Crash-Severity-v3.pdf [Manuscript File]

Author-Statement-v2.pdf [Author Statement]

To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE Homepage, then click 'Download zip file'.

Research Data Related to this Submission

Data set https://github.com/paezha/Modelling-Participant-Interactions-in-Crash-Severity

Modelling Participant Interactions in Crash Severity

Data and code used in this research.

Cover Letter

6/6/2020

Dear Editor:

We would like to express our gratitude to three anonymous reviewers for their generous reviews of our paper. Their comments have helped us to improve the paper. In this letter we detail our responses to the feedback received, and actions taken in this revision.

We hope that you and the expert reviewers will find that our responses address in a thorough and conscientious manner the points raised with respect to the previous version of the paper.

Looking forward to hearing back from you in due course with your opinion about this revision, we remain sincerely yours.

The Authors

Response to reviewers

6/6/2020

We wish to thank three anonymous reviewers for their feedback on the second version of our paper. In this letter we respond to their comments and describe the changes made to the paper in response. Reviewer comments are in black and our responses in blue.

Reviewer 1

No comment to authors.

Thank you for reading the paper again.

Reviewer 3

This paper is very well done and the revisions have improved it even further.

Thank you for your earlier suggestions to improve the paper.

Reviewer 4

Authors mentioned that the WAPE are still less than one percent for every model/ensemble of models in Table 6. This is true. But it does not change the fact that the models are overfitting. If you evaluate the model performances based on other criteria, the in-sample and out-of-sample performances might be quite different. As such, these models might be biased.

We recognize that the models might be biased, although the amount of bias is unknowable in this case since we do not know the true data generation process. See the following in the concluding remarks:

"There was some evidence that subsetting the sample can improve the results in some cases (e.g., when modelling the severity of crashes involving active travelers or motorcyclists), but possibly at the risk of overfitting the process. It is well known that overfitting can increase the accuracy of in-sample predictions at the expense of bias in out-of-sample predictions. Alas, since the true data generating process is unknowable in this empirical research, it is not possible to assess the extent of estimator bias."

I'm very confused by the calculation process of "percent correct". Not sure if it is a proper performance measure.

Thank you for this comment. We suspect that the confusion might be caused by the differences in terminology. The terminology we are using is as follows:

Observed Marginal Total Predicted Yes No Yes Hit False Alarm Predicted Yes Predicted No Correct Non-event Miss Marginal Total Observed Yes

Observed No.

Table 1: Example of a two-by-two confusion matrix

An alternative terminology is used by He and Garcia in their 2009 paper "Learning from Imbalanced Data" (see Fig. 9 in their paper):

Table 2: Example of a two-by-two confusion matrix

	Т	rue
Hypothesis	Yes	No
Yes	True Positive (TP)	False Negative (FN)
No	False Positive (FP)	True Negative (TN)
Marginal Total	P_c	N_c

Percent correct in our paper is simply the accuracy of the forecast, in the terminology of He and Garcia (see formula 13 in their paper):

$$PC = \frac{\text{Hit} + \text{Correct Non-event}}{\text{Observed Yes} + \text{Observed No}} = Accuracy = \frac{\text{TP} + \text{TN}}{P_c + N_c}$$

As the authors mentioned, that crash data is highly imbalanced. In this case, there are other performance metrics which are more adapted into imbalanced data problem, such as ROC, G-mean, or F-measure.

He and Garcia also reveal that the verification metrics we use report are all useful for imbalanced data. For instance, Precision is (formula 14 in He and Garcia):

$$Precision = \frac{TP}{TP + TF}$$

This is equivalent to the Post-Agreement, which we don't report, but that is a complement of False Alarm Ratio, which we do report:

$$PA = \frac{\text{Hit}}{\text{Hit} + \text{False Alarm}} = 1 - FAR$$

Recall in He and Garcia is simply the Probability of Detection:

$$Recall = \frac{TP}{TP + FN} = POD = \frac{\text{Hit}}{\text{Hit} + \text{Miss}}$$

As you can see, we do use performance metrics for imbalanced data. Other measures, such as ROC, G-mean, or F-measure, are combinations of the same metrics (Hits, False Alarm, Miss, Correct Non-event), similar to the Skill Scores that we report. Hopefully this will clear the matter.

You can refer to the following paper. Learning from class-imbalanced data: Review of methods and applications https://www.sciencedirect.com/science/article/pii/S0957417416307175

Thank you for bringing this paper to our attention. We now cite it (as well as He and Garcia) in the concluding remarks.

Highlights

5/8/2020

- Strategies to model opponent effects in the analysis of severity of crashes involving two-parties
- A data workflow is presented for preparing data for modelling party interactions
- Single-level and hierarchical models are compared
- $\bullet\,$ Full-sample and sub-sample models are compared
- The results provide information useful to select a modelling strategy for crash severity

- A systematic assessment of the use of opponent variables, data subsetting and hierarchical specification in two-party crash severity analysis
- Antonio Paez^a, Hany Hassan^b, Mark Ferguson^a, Saiedeh Razavi^a
- ^a McMaster Institute for Transportation and Logistics, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
- ^bDepartment of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, Louisiana, USA 70803

7 Abstract

Road crashes impose an important burden on health and the economy. Numerous efforts have been undertaken to understand the factors that affect road collisions in general, and the severity of crashes in particular. In this literature several strategies have been proposed to model interactions between parties in a crash, including the use of variables regarding the other party (or parties) in the collision, data subsetting, and estimating models with hierarchical components. Since no systematic assessment has been conducted of the performance of these strategies, they appear to be used in an ad-hoc fashion in the literature. The objective of this paper is to empirically evaluate ways to model party interactions in the context of crashes involving two parties. To this end, a series of models are estimated using data from Canada's National Collision Database. Three levels of crash severity (no injury/injury/fatality) are analyzed using ordered probit models and covariates for the parties in the crash and the conditions of the crash. The models are assessed using predicted shares and classes of outcomes, and the results highlight the importance of considering opponent effects in crash severity analysis. The study also suggests that hierarchical (i.e., multi-level) specifications and subsetting do not necessarily perform better than a relatively simple single-level model with opponent-related factors. The results of this study provide insights regarding the performance of different modelling strategies, and should be informative to researchers in the field of crash severity.

8 1. Introduction

- Modelling the severity of injuries to victims of road crashes has been a preoccupation of transportation researchers, planners, auto insurance companies, governments, and the general public for decades. One of
- the earliest studies to investigate the severity of injuries conditional on a collision having occurred was by
- White and Clayton (1972). Kim et al. (1995) later stated that the "linkages between severity of injury and
- driver characteristics and behaviors have not been thoroughly investigated" (p. 470). Nowadays, there is a
- burgeoning literature on this subject, which often relies on multivariate analysis of crash severity to clarify
- 15 the way various factors can affect the outcome of an incident, and to discriminate between various levels of
- 16 injury.

Crash severity is an active area of research, and one where methodological developments have aimed at improving the reliability, accuracy, and precision of models (e.g., Savolainen et al., 2011; Bogue et al., 2017; Yasmin and Eluru, 2013). Of interest in this literature is how different parties in a crash interact to influence the severity of individual outcomes. The importance of these interactions has been recognized by numerous authors (e.g., Chiou et al., 2013; Lee and Li, 2014; Li et al., 2017; Torrao et al., 2014). Lee and Li (2014) for instance, note that "[for] two-vehicle crashes, most studies only considered the effects of one vehicle on driver's injury severity or the highest injury severity of two drivers. However, it is expected that driver's injury severity is not only affected by characteristics of his/her own vehicle, but also characteristics of a partner vehicle." More generally, the severity of the outcome depends, at least in part, on the characteristics of the parties, and a crash between two heavy vehicles is likely to have very different outcomes compared to crash where a heavy vehicle hits a pedestrian.

For the purpose of this paper, we define a party as one or more individuals travelling in a traffic unit that
becomes involved in a crash. Sometimes the traffic unit is a vehicle, and the party is a single individual (i.e. a
single occupant vehicle); but in other cases, a party could consist of several individuals (i.e., a driver and one
or more passengers). Other times, the individual is the traffic unit, for instance a pedestrian or a bicyclist.
An opponent is a different party that is involved in the same collision. In the literature, interactions between
parties in a collision are treated by means of different strategies, including the use of data subsetting, opponent
variables, and estimating models with hierarchical components. These strategies are not new, however, a
systematic comparison between them is missing from the literature. For this reason, the objective of this
paper is to empirically evaluate different strategies to model party interactions in crash severity in the context
of incidents involving two parties. More concretely, this research aims to:

- 1. Systematize the analysis of party interactions in crash severity models. Although every strategy considered here has been used in past research, in this paper they are organized in a way that clarifies their operation.
- 2. Present a data management workflow to prepare a dataset to implement analysis of opponent effects.
- 3. Provide evidence of the performance of different modelling strategies. In particular, the importance of considering opponent-level effects and the suitability of single-level models.
- 4. Present an example of reproducible research in crash severity analysis: all data and code are publicly available from the beginning of the peer-review process¹.
- For the assessment we use data from Canada's National Collision Database, a database that collects all

¹The source file for this paper is an 'R' Markdown document; all code and data necessary to reproduce the analysis are available from the following GitHub repository: https://github.com/paezha/Modelling-Participant-Interactions-in-Crash-Severity

police-reported collisions in the country. Using the most recent version of the data set (2017). Three levels
of crash severity (no injury/injury/fatality) are analyzed using ordered logit models, and covariates for the
parties in the crash and the conditions of the crash. For model assessment, we conduct an in-sample prediction
exercise using the estimation sample (i.e., nowcasting), and also an out-of-sample prediction exercise using
the data set corresponding to 2016 (i.e., backcasting). The models are assessed using predicted shares and
predicted classes of outcomes at the individual level, using an extensive array of verification statistics.

The rest of this paper is structured as follows. In Section 2 we discuss some background matters, and follow this with a concise review of the modelling strategies used to analyze crash severity 3. Section 4 describes the data requirements, data preprocessing, and the modelling strategies, along with the results of model estimation. The results of assessing the models and the discussion of these results is found in Section 5. We then present some additional thoughts about the applicability of this approach in Section 6 before offering some concluding remarks in Section 7.

Crash severity is often modeled using models for discrete outcomes. Analysts interested in crash severity

59 2. Background

60

have at their disposal an ample repertoire of models to choose from, including classification techniques from 61 machine learning (e.g., Iranitalab and Khattak, 2017; Chang and Wang, 2006; Effati et al., 2015; Khan et al., 2015), Poisson models for counts (e.g., Ma et al., 2008), unordered logit/probit models (e.g., Tay et al., 2011), as well as ordered logit/probit models (e.g., Rifaat and Chin, 2007), with numerous variants, such as random parameters/mixed logit (e.g., Aziz et al., 2013; Haleem and Gan, 2013), partial proportional odds models (e.g., Mooradian et al., 2013; Sasidharan and Menendez, 2014), and the use of copulas (e.g., Wang et al., 2015). Recent reviews of methods include Savolainen et al. (2011), Yasmin and Eluru (2013), and Mannering et al. (2016). Irrespective of the modelling framework employed, models of crash severity often include variables in several categories, as shown with examples in Table 1 (also see Montella et al., 2013). Many crash databases 70 and analyses also account for the multi-event nature of many crashes. Individuals in the crash may have had different roles depending on their situation, with some acting as operators of a vehicle (i.e., drivers, bicyclists), while others were passengers. They also may differ depending on what type of traffic unit they were, for example pedestrians, or operators/passengers of a vehicle. The multiplicity of roles makes for complicated 74 modelling decisions when trying to understand the severity of injuries; for example, what is the unit of analysis, the person, the traffic unit, or the collision? Not surprisingly, it is possible to find examples of studies that adopt different perspectives. A common simplifying strategy in model specification is to consider only drivers and/or only single-vehicle crashes (e.g., Kim et al., 2013; Gong and Fan, 2017; Lee and Li, 2014;
Osman et al., 2018). This strategy reduces the dimensions of the event, and it becomes possible, for example,
to equate the traffic unit to the person for modelling purposes.

The situation becomes more complex when dealing with events that involve two traffic units (e.g., Torrao et al., 2014; Wang et al., 2015) and multi-traffic unit crashes (e.g., Wu et al., 2014; Bogue et al., 2017).

Different strategies have been developed to study these, more complex events. A number of studies advocate the estimation of separate models for different parties, individuals, and/or situations. In this way, Wang and Kockelman (2005) estimated models for single-vehicle and two-vehicle crashes, while Savolainen and Mannering (2007) estimated models for single-vehicle and multi-vehicle crashes. More recently, Duddu et al. (2018) and Penmetsa et al. (2017) presented research that estimated separate models for at-fault and not-at-fault drivers. The strategy of estimating separate models relies on subsetting the data set, although it is possible to link the relevant models more tightly by means of a common covariance structure, as is the case of bivariate models (e.g., Chiou et al., 2013; Chen et al., 2019) or models with copulas (e.g., Rana et al., 2010; Shamsunnahar et al., 2014; Wang et al., 2015).

A related strategy to specify crash severity models is to organize the data in such a way that it is possible to introduce opponent effects. There are numerous examples of studies that consider at least some characteristics of the opposite party (or parties) in two- or multi-vehicle crashes. For example, Wang and Kockelman (2005) considered the type of the opposite vehicle in their model for two-vehicle collisions. Similarly, Torrao et al. (2014) included in their analysis the age, wheelbase, weight, and engine size of the opposite vehicle, while Bogue et al. (2017) used the body type of the opposite vehicle. Penmetsa et al. (2017) and Duddu et al. (2018) are two of the most comprehensive examples of using opponent's information, as they included attributes of individuals in the opposite party (their physical condition, sex, and age), as well as characteristics of the other party's traffic unit (the vehicle type of the opponent). The twin strategies of subsetting the sample and using the attributes of the opponent are not mutually exclusive, but neither are they used consistently together, as a scan of the literature reveals.

Another strategy is to introduce *hierarchical components* in the model, a technique widely used in the hierarchical or multi-level modelling literature. This involves considering observations as being nested at different levels: individuals nested in traffic units, which in turn are nested in accidents, as an example.

In this paper we consider three general modelling strategies, as follows:

• Strategy 1. Introducing opponent-related factors

106

107

109

- Strategy 2. Single-level model and multi-level (hierarchical) model specifications
- Strategy 3. Full sample and sample subsetting

Table 1: Categories of variables used in the analysis of crash severity with examples

Category	Examples
Human-factors	Attributes of individuals in the crash, e.g., injury status, age, gender, licensing status, professional driver status
Traffic unit-factors	Attributes of the traffic unit, e.g., type of traffic unit (pedestrian, car, motorcycle, etc.), maneuver, etc.
Environmental-factors	Attributes of the crash, e.g., location, weather conditions, light conditions, number of parties, etc.
Road-factors	Attributes of the road, e.g., surface condition, grade, geometry, etc.
Opponent-related factors	Attributes of the opponent, e.g., age of opponent, gender of opponent, opponent vehicle type, etc.

These are discussed in more detail in the following section.

3. Methods

110

111

113

117

119

122

3.1. Choice of model 112

Before describing the modelling strategies, it is important to explain our choice of model. There have already been comparisons between different models. Yasmin and Eluru (2013), for instance, conducted an extensive comparison of models for discrete outcomes in crash severity analysis, and found only small 115 differences in the performance of unordered models and ordered models; however, ordered models are usually 116 more parsimonious since only one latent functions needs to be estimated for all outcomes, as opposed to one for each outcome in unordered models. Bogue et al. (2017) also compared unordered and ordered models in 118 the form of the mixed multinomial logit and a modified rank ordered logit, respectively, and found that the ordered model performed best. To keep the empirical assessment manageable, in this paper we will consider 120 only the ordinal logit model, and will comment on potential extensions in Section 6.

The ordinal model is a latent-variable approach, whereby the severity of the crash (observed) is linked to an underlying latent variable that is a function of the variables of interest, as follows:

$$y_{itk}^* = \sum_{l=1}^{L} \alpha_l p_{itkl} + \sum_{m=1}^{M} \beta_m u_{tkm} + \sum_{q=1}^{Q} \kappa_q c_{kq} + \epsilon_{itk}$$
 (1)

The left-hand side of the expression above (y_{itk}^*) is a latent (unobservable) variable that is associated 124 with the severity of crash k $(k=1,\cdots,K)$ for individual i in traffic unit t. The right-hand side of the expression is split in four parts. The first part gathers $l=1,\cdots,L$ human-factors p for individual i in traffic 126 unit t and crash k; these could relate to the person (e.g., age, gender, and road user class). The second part gathers $m=1,\cdots,M$ attributes u related to traffic unit t in crash k; these could be items such as 128 maneuver or vehicle type. The third part gathers $q=1,\cdots,Q$ attributes c related to the crash k, including environmental-factors and road-factors, such as weather conditions, road alignment, and type of surface.

Lastly, the fourth element is a random term specific to individual i in traffic unit t and crash k. The function consists of a total of Z = L + M + Q covariates and associated parameters.

For conciseness, in what follows we will abbreviate the function as follows:

$$y_{itk}^* = \sum_{z=1}^Z \theta_z x_{itkz} + \epsilon_{itk} \tag{2}$$

The latent variable is not observed directly, but it is possible to posit a probabilistic relationship with the outcome y_{itk} (the severity of crash k for individual i in traffic unit t). Depending on the characteristics of the data and the assumptions made about the random component of the latent function different models can be obtained. For example, if crash severity is coded as a variable with three outcomes (e.g., property damage only/injury/fatal), we can relate the latent variable to the outcome as follows:

$$y_{itk} = \begin{cases} \text{fatality} & \text{if } y_{itk}^* > \mu_2 \\ \text{injury} & \text{if } \mu_1 < y_{itk}^* < \mu_2 \end{cases}$$

$$\text{PDO} & \text{if } y_{itk}^* < \mu_1$$

$$(3)$$

where μ_1 and μ_2 are estimable thresholds. Due to the stochastic nature of the latent function, the outcome of the crash is not fully determined. However, we can make the following probability statements:

$$P(y_{itk} = \text{PDO}) = 1 - P(y_{itk} = \text{injury}) - P(y_{itk} = \text{fatality})$$

$$P(y_{itk} = \text{injury}) = P(\mu_1 - \sum_{z=1} \theta_z p_{itkz} < \epsilon_{itk} < \mu_2 - \sum_{z=1} \theta_z p_{itkz})$$

$$P(y_{itk} = \text{fatality}) = P(\epsilon_{itk} < \mu_1 - \sum_{z=1} \theta_z p_{itkz})$$
(4)

If the random terms are assumed to follow the logistic distribution, the ordered logit model is obtained; if the normal distribution, then the ordered probit model. Estimation methods for these models are very well-established (e.g., Maddala, 1986; Train, 2009). There are numerous variations of the basic modelling framework above, including hierarchical models, bivariate models, multinomial models, and Bayesian models, among others (see Savolainen et al., 2011 for a review of methods).

3.2. Strategy 1: opponent-related factors

When opponent-related variables are included, the function is augmented as follows:

$$y_{itk}^* = \sum_{l=1}^{L} \alpha_l p_{itkl} + \sum_{m=1}^{M} \beta_m u_{tkm} + \sum_{q=1}^{Q} \kappa_q c_{kq} + \sum_{r=1}^{R} \delta_r o_{jvkr} + \epsilon_{itk}$$
 (5)

This function includes one additional summation compared to Equation 3. This summation gathers 148 $r=1,\cdots,R$ attributes o related to individual j in traffic unit v that was an opposite party to individual i in traffic unit t in crash k. These attributes could be individual characteristics of the operator of the opposite 150 traffic unit (such as age and gender) and/or characteristics of the opposite traffic unit (such as vehicle type or weight). To qualify as an opposite party, individual j must have been an individual in crash k but operating 152 traffic unit $v \neq t$. Sometimes the person is the traffic unit, as is the case of a pedestrian. And we exclude passengers of vehicles as opponents, since they do not operate the traffic unit. In case the opponent attributes 154 include only characteristics of the traffic unit, the condition for the traffic unit to be an opponent is that it 155 was part of crash k and was different from t. After introducing this new set of terms, the latent function now consists of a total of Z = L + M + Q + R covariates and associated parameters. 157

158 3.3. Strategy 2: hierarchical model specification

162

We can choose to conceptualize the event leading to the outcome as a hierarchical process. There are a few different ways of doing this. For example, the hierarchy could be based on individuals in traffic units. In this case, we can rewrite the latent function as follows:

$$y_{itk}^* = \sum_{m=1}^{M} \beta_m u_{tkm} + \sum_{q=1}^{Q} \kappa_q c_{kq} + \sum_{r=1}^{R} \delta_r o_{jvkr} + \epsilon_{itk}$$
 (6)

The coefficients of the traffic unit nest the individual attributes as follows. For any given coefficient m:

$$\beta_m = \sum_{l=1}^{L} \beta_{ml} p_{itkl} \tag{7}$$

Therefore, the corresponding term in the latent function becomes (assuming that $p_{itk1} = 1$, i.e., it is a constant term):

$$\beta_m u_{tkm} = (\beta_{m1} + \beta_{m2} p_{itk2} + \dots + \beta_{mL} p_{itkL}) u_{tkm}$$

$$= \beta_{m1} u_{tkm} + \beta_{m2} p_{itk2} u_{tkm} + \dots + \beta_{mL} p_{itkL} u_{tkm}$$
(8)

As an alternative, the nesting unit could be the interaction person-opponent, in which case the opponentlevel attributes are nested in the following fashion:

$$y_{itk}^* = \sum_{l=1}^{L} \alpha_l p_{itkl} + \sum_{m=1}^{M} \beta_m u_{tkm} + \sum_{q=1}^{Q} \kappa_q c_{kq} + \epsilon_{itk}$$
 (9)

with any person-level coefficient l that we wish to expand defined as follows:

$$\alpha_l = \sum_{r=1}^R \alpha_{lr} o_{jvkr} \tag{10}$$

with the same conditions as before, that $j \neq i$ is the operator of traffic unit $v \neq t$. The corresponding term in
the latent function is now (assuming that $o_{jvk1} = 1$, i.e., it is a constant term):

$$\alpha_{l}p_{itkl} = (\alpha_{l1} + \alpha_{l2}o_{jvk2} + \dots + \alpha_{lR}o_{jvkR})p_{itkl}$$

$$= \alpha_{l1}p_{itkl} + \alpha_{l2}o_{jvk2}p_{itkl} + \dots + \alpha_{lR}o_{jvkR}p_{itkl}$$
(11)

Discerning readers will identify this model specification strategy as Casetti's expansion method (Casetti, 1972; Roorda et al., 2010). This is a deterministic strategy for modelling contextual effects which, when augmented with random components, becomes the well-known multi-level modelling method (Hedeker and Gibbons, 1994, more on this in Section 6). It is worthwhile to note that higher-order hierarchical effects are possible; for instance, individual attributes nested within traffic units, which in turn are nested within collisions. We do not explore higher-level hierarchies further in the current paper.

3.4. Strategy 3: sample subsetting

The third model specification strategy that we will consider is subsetting the sample. This is applicable in conjunction with any of the other strategies discussed above. In essence, we define the latent function with restrictions as follows. Consider a continuous variable, e.g., age of person, and imagine that we wish to concentrate the analysis on older adults (e.g., Dissanayake and Lu, 2002). The latent function is defined as desired (see above), however, the following restriction is applied to the sample:

Age of individual
$$i$$
 in traffic unit t in crash $k = \begin{cases} \geq 65 & \text{use record } itk \\ < 65 & \text{do not use record } itk \end{cases}$ (12)

Suppose instead that we are interested in crashes by or against a specific type of traffic unit (e.g., pedestrians, Amoh-Gyimah et al., 2017):

Road user class of individual
$$i$$
 in traffic unit t in crash $k = \begin{cases} \text{Pedestrian} & \text{use record } itk \\ \text{Not pedestrian} & \text{do not use record } itk \end{cases}$ (13)

184 Or:

Road user class of individual j in traffic unit v in crash $k = \begin{cases} \text{Pedestrian} & \text{use record } jvk \\ \text{Not pedestrian} & \text{do not use record } jvk \end{cases}$ (14)

More generally, for any variable x of interest:

$$x_{itk} = \begin{cases} \text{Condition: TRUE} & \text{use record } itk \\ \text{Condition: FALSE} & \text{do not use record } itk \end{cases}$$
 (15)

Several conditions can be imposed to subset the sample in any way that the analyst deems appropriate or suitable.

4. Setting for empirical assessment

In this section we present the setting for the empirical assessment of the modelling strategies discussed in Section 3, namely matters related to data and model estimation.

191 4.1. Data for empirical assessment

206

To assess the performance of the various modelling strategies we use data from Canada's National Collision
Database (NCDB). This database contains all police-reported motor vehicle collisions on public roads in
Canada. Data are originally collected by provinces and territories, and shared with the federal government,
that proceeds to combine, track, and analyze them for reporting deaths, injuries, and collisions in Canada at
the national level. The NCDB is provided by Transport Canada, the agency of the federal government of
Canada in charge of transportation policies and programs, under the Open Government License - Canada
version 2.0 [https://open.canada.ca/en/open-government-licence-canada].

The NCDB is available from 1999. For the purpose of this paper, we use the data corresponding to 2017, which is the most recent year available as of this writing. Furthermore, for assessment we also use the data corresponding to 2016. Similar to databases in other jurisdictions (see Montella et al., 2013), the NCDB contains information pertaining to the collision, the traffic unit(s), and the person(s) involved in a crash. The definitions of variables in this database are shown in the Appendix at the end of this document, in Tables 11, 12, and 13. Notice that, compared to Table 1, environmental-factors variables and road-factors variables are gathered under a single variable class, namely collision-related, since they are unique for each crash.

Data are organized by person; in other words, there is one record per individual in a collision, be they drivers, passengers, pedestrians, etc. The only variable directly available with respect to opponents in a

collision is the number of vehicles involved (see models in Bogue et al., 2017). Therefore, the data needs to
be processed to obtain attributes of the opposing party for each individual in a collision. The protocol to do
this is described next.

211 4.2. Data preprocessing

To prepare the data for analysis, in particular for Strategy 1 (opponent-related factors), we apply an initial filter, whereby we scan the database to remove all records that are not a person (including parked cars and other objects) or that are missing information.

After the initial filter, the database is summarized to find the number of individual-level records that correspond to each collision (C_CASE). At this point, there are 32,298 collisions, involving only one (known) individual, there are 46,483 collisions involving two parties, 19,433 collisions with three parties, 8,250 collisions involving four parties, 3,783 collisions with five parties, 1,789 collisions with six parties, and 1,491 collisions involving seven or more parties These parties were possibly occupants in different vehicles or were otherwise their own traffic units (e.g., pedestrians). Accordingly, the sample includes 174,741 drivers, 61,403 passengers, 10,798 pedestrians, 5,286 bicyclists, and 6,564 motorcyclists.

The next step is to remove all collisions that involve only one party. This still leaves numerous cases 222 where multiple parties could have been in a single vehicle, for instance in a collision against a stationary 223 object. Therefore, we proceed to use the vehicle sequence number to find the number of vehicles involved in 224 each collision. This reveals that there are 20,732 collisions that involve only one vehicle but possibly multiple 225 individuals (i.e., driver and one or more passengers). In addition, there are 165,520 collisions involving two vehicles (and possibly multiple individuals). Finally, there are 40,242 collisions with three or more vehicles. 227 Once we have identified the number of vehicles in each collision, we select all cases that involve only two vehicles. The most common cases in two-vehicle collisions are those that include drivers (40,297 collisions; this 229 is reflective of the prevalence of single-occupant vehicles). This is followed by cases with passengers (14,120 230 collisions), pedestrians (5,204 collisions), bicyclists (2,238 collisions), and motorcyclists (1,016 collisions). The 231 distribution of individuals per traffic unit is as follows: 80,382 individuals are coded as being in V_ID = 232 1, 76,523 individuals are coded as being in V ID = 2, and 7,932 individuals are coded as pedestrians. In 233 addition, 683 individuals are coded as being in vehicles 3 through 9, despite our earlier filter to retain only 234 collisions with two vehicles. At this point we select only individuals assigned to vehicles 1 or 2, as well as pedestrians. As a result of this filter a number of cases with only one known individual need to be removed. 236 At this point we have a complete, workable sample of individual records of parties in two-vehicle collisions. There are two possible cases for the collisions, depending on the traffic units involved: 1) vehicle vs vehicle 238 collisions ("vehicle" is all motorized vehicles, including motorcycles/mopeds, as well as bicycles); and 2)

Table 2: Summary of opponent interactions and outcomes by road user class

		Road User C	lass of Opp	onent		Outcome		Proportion	n by Road	User Class
Road User Class	Driver	Pedestrian	Bicyclist	Motorcyclist	No Injury	Injury	Fatality	No Injury	Injury	Fatality
All opponents										
Driver	97582	7880	3799	2498	59180	52143	436	0.52953	0.46657	0.003901
Passenger	35359	1282	667	818	19308	18667	151	0.50643	0.48961	0.003961
Pedestrian	7880	0	0	0	145	7507	228	0.01840	0.95266	0.028934
Bicyclist	3799	1	0	40	49	3760	31	0.01276	0.97917	0.008073
Motorcyclist	2498	30	40	338	204	2598	104	0.07020	0.89401	0.035788
Opponent: Driv	er									
Driver	97582	0	0	0	45493	51657	432	0.46620	0.52937	0.004427
Passenger	35359	0	0	0	16672	18536	151	0.47151	0.52422	0.004270
Pedestrian	7880	0	0	0	145	7507	228	0.01840	0.95266	0.028934
Bicyclist	3799	0	0	0	43	3725	31	0.01132	0.98052	0.008160
Motorcyclist	2498	0	0	0	98	2299	101	0.03923	0.92034	0.040432
Opponent: Pede	estrian									
Driver	0	7880	0	0	7693	187	0	0.97627	0.02373	0.000000
Passenger	0	1282	0	0	1246	36	0	0.97192	0.02808	0.000000
Pedestrian	0	0	0	0	0	0	0	-	-	-
Bicyclist	0	1	0	0	0	1	0	0.00000	1.00000	0.000000
Motorcyclist	0	30	0	0	11	19	0	0.36667	0.63333	0.000000
Opponent: Bicy	clist									
Driver	0	0	3799	0	3706	93	0	0.97552	0.02448	0.000000
Passenger	0	0	667	0	649	18	0	0.97301	0.02699	0.000000
Pedestrian	0	0	0	0	0	0	0	-	-	-
Bicyclist	0	0	0	0	0	0	0	-	-	-
Motorcyclist	0	0	40	0	16	24	0	0.40000	0.60000	0.000000
Opponent: Mot	orcyclist									
Driver	0	0	0	2498	2288	206	4	0.91593	0.08247	0.001601
Passenger	0	0	0	818	741	77	0	0.90587	0.09413	0.000000
Pedestrian	0	0	0	0	0	0	0	-	-	-
Bicyclist	0	0	0	40	6	34	0	0.15000	0.85000	0.000000
Motorcyclist	0	0	0	338	79	256	3	0.23373	0.75740	0.008876

vehicle vs pedestrian collisions. To identify the opposite parties in each collision it is convenient to classify collisions by pedestrian involvement. In this way, we find that the database includes 16,636 collisions that are vehicle vs pedestrian (possibly multiple pedestrians), and 147,594 collisions that involve two vehicles. After splitting the database according to pedestrian involvement, we can now extract relevant information about the different parties in the collision. This involves renaming the person-level variables so that we can distinguish each individual by their party in a given record. Notice that when working with individuals in vehicles, only drivers are considered opposites in a collision.

Once the personal attributes of opposite operators in a given collision are extracted, their information is joined to the individual records by means of the collision unique identifier. As a result of this process, a new set of variables are now available for analysis: the age, sex, and road user class of the opposite driver, as well as the type of the opposite vehicle. A summary of opponent interactions and outcomes can be found in Table 2. The information there shows that the most common type of opponent for drivers are other drivers, followed by pedestrians. The only opponents of pedestrians, on the other hand, are drivers. Bicyclists and motorcyclists are mostly opposed by drivers, but occasionally by other road users as well. In terms of outcomes, we observe that virtually all fatalities occur when the opponent is a driver, and only very rarely

when the opponent is a motorcyclist. Injuries are also more common when the opponent is a driver, whereas
"no injury" is a relatively more frequent outcome when the opponent is a pedestrian or a bicyclist.

4.3. Model estimation

257

Before model estimation, the variables are prepared as follows. First, age is scaled from years to decades. 258 Secondly, new variables are defined to describe the vehicle type. Three classes of vehicle types are considered: 259 1) light duty vehicles (which in Canada include passenger cars, passenger vans, light utility vehicles, and light 260 duty pick up trucks); 2) light trucks (all other vehicles ≤ 4536 kg in gross vehicle weight rating); and heavy 261 vehicles (all other vehicles ≥ 4536 kg in gross vehicle weight rating). Furthermore, this typology of vehicle is 262 combined with the road user class of the individual to distinguish between drivers and passengers of light 263 duty vehicles, light trucks, and heavy vehicles, in addition to pedestrians, bicyclists, and motorcyclists. This is done for both the individual and the opponent. Variable interactions are calculated to produce hierarchical 265 variables. For example, for a hierarchical definition of traffic unit-level variables, age (and the square of age 266 to account for possible non-monotonic effects) are interacted with gender, road user class, and vehicle type. 267 For hierarchical opponent variables, age (and the square of age) are interacted with the age of opponent (and 268 the corresponding square). The variables thus obtained are shown in Table 3. As seen in the table, Models 1 269 and 2 are single-level models, and the difference between them is that Model 2 includes opponent variables. 270 Models 3 and 4, in contrast, are hierarchical models. Model 3 considers the hierarchy on the basis of the 271 traffic unit, while Model 4 considers the hierarchy on the basis of the opponent. 272

Models 1 through 4 are estimated using the full sample. As discussed above, a related modelling strategy is to subset the sample (e.g., Islam et al., 2014; Lee and Li, 2014; Torrao et al., 2014; Wu et al., 2014). In this 274 case we subset by a combination of traffic unit type of the individual (i.e., light duty vehicle, light truck, heavy vehicle, pedestrian, bicyclist, and motorcyclist) and vehicle type of the opponent (i.e., light duty vehicle, light 276 truck, heavy vehicle). This leads to an ensemble of eighteen models to be estimated using subsets of data 277 (see Table 3). By subsetting the sample, at least *some* opponent effects are incorporated implicitly. Models 1 278 and 2 are re-estimated using this strategy, dropping variables as necessary whenever they become irrelevant 279 (for instance, after filtering for pedestrians, no other traffic unit types are present in the subset of data). In 280 addition to variables that are no longer relevant in some data subsets, it is important to note that when using 281 some data subsets a few variables had to be occasionally dropped to avoid convergence issues. This tended to happen particularly with smaller subsets where some particular combination of attributes was rare as a result 283 of subsampling (e.g., in 2017 there were few or no collisions that involved a motorcyclist and a heavy vehicle in a bridge, or overpass, or viaduct). The process of estimation carefully paid attention to convergence issues 285 to ensure the validity of the models reported here.

Table 3: Summary of variables and model specification

Variable	Notes	Model 1 Single-level /No opponent	Model 2 Single-level /Opponent attributes	Model 3 Hierarchical: Traffic unit	Model 4 Hierarchical: Opponent attributes
Individual-level variables					
Age	In decades	✓	✓	✓	✓
Age Squared		✓	✓	✓	✓
Sex	Reference: Female	✓	✓	✓	✓
Use of Safety Devices	7 levels; Reference: No Safety Device	✓	✓	✓	✓
Traffic unit-level variables					
Passenger	Reference: Driver	✓	✓		✓
Pedestrian	Reference: Driver	✓	✓		✓
Bicyclist	Reference: Driver	✓	✓		✓
Motorcyclist	Reference: Driver	✓	✓		✓
Light Truck	Reference: Light Duty Vehicle	✓	✓		✓
Heavy Vehicle	Reference: Light Duty Vehicle	✓	✓		✓
Opponent variables					
Age of Opponent	In decades		✓	✓	
Age of Opponent Squared	In decades		√	√	
Sex of Opponent	Reference: Female		./	./	
Opponent: Light Duty Vehicle	Reference: Pedestrian/Bicyclist/Motorcyclist		√	√	✓
Opponent: Light Truck	Reference: Pedestrian/Bicyclist/Motorcyclist		√	√	V
Opponent: Heavy Vehicle	Reference: Pedestrian/Bicyclist/Motorcyclist		· /	· /	./
	received. I edestrian/ Dicyclist/ Wotorcyclist		•	•	•
Hierarchical traffic unit variables				,	
Light Truck Driver:Age				√	
Light Truck Driver:Age Squared				√	
Heavy Vehicle Driver: Age					
Heavy Vehicle Driver:Age Squared				√ √	
Light Truck Passenger:Age Light Truck Passenger:Age Squared:				√	
Heavy Vehicle Passenger: Age				√	
Heavy Vehicle Passenger: Age Squared				√	
Pedestrian:Age				√	
Pedestrian:Age Squared				√	
Bicyclist:Age				√	
Bicyclist:Age Squared				√	
Motorcyclist:Age				√	
Motorcyclist:Age Squared				./	
				•	
Hierarchical opponent variables					
Age:Age of Opponent					√
Age:Age of Female Opponent					√
Age:Age of Male Opponent Squared					√
Age:Age of Female Opponent Squared					√
Age Squared: Age of Male Opponent					√
Age Squared:Age of Female Opponent					v
Collision-level variables					
Crash Configuration	19 levels; Reference: Hit a moving object	✓.	✓.	√,	✓.
Road Configuration	12 levels; Reference: Non-intersection	✓	√	✓	√
Weather	9 levels; Reference: Clear and sunny	✓.	✓.	✓.	✓.
Surface	11 levels; Reference: Dry	✓.	✓.	√,	✓.
Road Alignment	8 levels; Reference: Straight and level	✓	✓.	✓.	✓.
Traffic Controls	19 levels; Reference: Operational traffic signals	✓.	✓.	✓.	✓.
Month	12 levels; Reference: January	✓	✓	✓	✓

5. Model assessment

In this section we report an in-depth examination of the performance of the models. We begin by inspecting the statistical goodness of fit of the models by means of Akaike's Information Criterion (AIC).

Next, we use the models to conduct in-sample predictions (i.e., nowcasting), using the same sample that was used to estimate the models, and out-of-sample predictions, using the data set corresponding to the year 2016 (i.e., backcasting). Predictions are commonly evaluated in two different ways in the literature. Some researchers analyze the outcome shares based on the predicted probabilities (e.g., Bogue et al., 2017; Yasmin and Eluru, 2013). This is a form of aggregate forecasting. Other researchers, in contrast, evaluate the classes of outcomes based on the individual-level predictions (e.g., Tang et al., 2019; Torrao et al., 2014). This is a

form of disaggregate forecasting.

297 5.1. Goodness of fit of models

318

319

321

We begin our empirical assessment by examining the results of estimating the models described above.

Tables 4 and 5 present some key summary statistics of the estimated models. Of interest is the goodness of

fit of the models, which in the case is measured with Akaike's Information Criterion (AIC). This criterion is

calculated as follows:

$$AIC = 2Z - 2\ln\hat{L} \tag{16}$$

where Z is the number of coefficients estimated by the model, and \hat{L} the maximized likelihood of the model. Since AIC penalizes the model fit by means of the number of coefficients, this criterion gives preference to more parsimonious models. The objective is to minimize the AIC, and therefore smaller values of this criterion represent better model fits. Model comparison can be conducted using the relative likelihood. Suppose that we have two models, say Model a and Model b, with $AIC_a \leq AIC_b$. The relative likelihood is calculated as:

$$e^{(AIC_a - AIC_b)/2} \tag{17}$$

The relative likelihood is interpreted as the probability that Model b minimizes the information loss as well as Model a.

Turning our attention to the models estimated using the full sample (Table 4), it is possible to see that, 310 compared to the base (single-level) model without opponent variables (Model 1), there are large and significant 311 improvements in goodness of fit to be gained by introducing opponent effects. However, the gains are not as 312 large when hierarchical specifications are used, even when the number of additional coefficients that need to 313 be estimated is not substantially larger (recall that the penalty per coefficient in AIC is 2). The best model 314 according to this measure of goodness of fit is Model 2 (single-level with opponent effects), followed by Model 315 4 (hierarchical opponent variables), Model 3 (hierarchical traffic unit variables with opponent effects), and 316 finally Model 1 (single-level without opponent effects). 317

It is important to note that the likelihood function of a model, and therefore the value of its AIC, both depend on the size of the sample, which is why AIC is not comparable across models estimated with different sample sizes. For this reason, the full sample models cannot be compared directly to the models estimated with subsets of data. The models in the ensembles, however, can be compared to each other (Table 5). As seen in the table, introducing opponent variables leads to a better fit in the case of most, but not all models.

Table 4: Summary of model estimation results: Full sample models

Model	Number of observations	Number of coefficients	AIC
Model 1. Single-level/No opponent	164,511	102	195,215
Model 2. Single-level/Opponent attributes	164,511	108	178,943
Model 3. Hierarchical: Traffic unit	164,511	118	181,333
Model 4. Hierarchical: Opponent)	164,511	111	179,018

The simplest model (single-level without opponent effects) is clearly the best fitting candidate in the case of 323 bicycle vs light truck collisions, bicycle vs heavy vehicle collisions, motorcyclist vs light duty vehicle collisions, 324 and motorcyclist vs heavy vehicle collisions. Model 1 is a statistical toss for best performance with two 325 competing models in the case of pedestrian vs heavy vehicle collisions. The relative likelihood of Model 326 1 compared to Models 2 and 3 in this case is 0.56, which means that these two models are 0.56 times as 327 probable as Model 1 to minimize the information loss. 328

329

331

332

333

334

335

337

339

340

341

342

Model 2 is the best fit in the case of light truck vs heavy vehicle collisions. This model is also tied for best fit with Model 2 in the case of pedestrian vs light duty vehicle and pedestrian vs light truck collisions, and 330 is a statistical toss with Model 4 in the case of heavy vehicle vs heavy vehicle collisions (relative likelihood is 0.592). Model 3 is the best fit in the case of light duty vehicle vs light duty vehicle collisions and heavy vehicle vs light duty vehicle. Model 4 is the best fit in the case of light duty vehicle vs light truck collisions, light duty vehicle vs heavy vehicle collisions, light truck vs light duty vehicle collisions, heavy vehicle vs light truck collisions, and motorcycle vs light truck collisions. This model is a statistical toss with Model 2 in the case of light truck vs light truck collisions, with a relative likelihood of 0.791.

These results give some preliminary ideas about the relative performance of the different modelling strategies. In the next subsection we delve more deeply into this question by examining the predictive performance of the various modelling strategies. The results up to this point indicate that different model specification strategies might work best when combined with subsampling strategies. For space reasons, from this point onwards, we will consider the ensembles of models for predictions and will not compare individual models within the ensembles; this we suggest is a matter for future research.

Table 5: Summary of model estimation results: Data Subset Models

		Mod Single-level/I			odel 2 oponent attributes	Mode Hierarchical:		Model 4 Hierarchical: Opponent	
Model	Number of observations	Number of coefficients	AIC	Number of coefficients	AIC	Number of coefficients	AIC	Number of coefficients	AIC
Light duty vehicle vs light duty vehicle	114,841	94	145,390	97	143,903	100	143,896	100	144,004
Light duty vehicle vs light truck	3,237	79	3,943	82	3,927	85	3,937	85	3,922
Light duty vehicle vs heavy vehicle	5,013	88	5,895	91	5,878	94	5,888	94	5,864
Light truck vs light duty vehicle	3,121	79	3,885	82	3,877	85	3,881	85	3,875
Light truck vs light truck	809	67	1,170	70	1,156	73	1,162	73	1,155
Light truck vs heavy vehicle	198	64	288	67	281	70	287	70	286
Heavy vehicle vs light duty vehicle	4,726	79	4,326	84	4,283	86	4,268	87	4,287
Heavy vehicle vs light truck	180	64	225	65	205	67	207	66	187
Heavy vehicle vs heavy vehicle	779	74	1,147	77	1,136	80	1,141	80	1,137
Pedestrian vs light duty vehicle	7,176	88	2,826	91	2,821	91	2,821	93	$2,\!827$
Pedestrian vs light truck	328	62	202	65	200	65	200	68	206
Pedestrian vs heavy vehicle	376	64	409	67	410	67	410	70	417
Bicyclist vs light duty vehicle	3,521	80	654	83	659	83	659	85	657
Bicyclist vs light truck	116	42	84	57	114	57	114	54	108
Bicyclist vs heavy vehicle	-	-	-	-	-	-	-	-	-
Motorcyclist vs light duty vehicle	2,298	78	1,367	81	1,373	81	1,373	84	1,373
Motorcyclist vs light truck	127	56	153	59	153	59	153	47	94
Motorcyclist vs heavy vehicle	62	43	88	45	90	46	92	51	102

Note:

There are zero cases of Bicyclist vs heavy vehicle in the sample

3 5.2. Outcome shares based on predicted probabilities

357

In this, and the following section, backcasting refers to the prediction of probabilities and classes of outcomes using the 2016 data set. When conducting backcasting, the data set is preprocessed in identical manner as the 2017 data set. In addition, the variables used in backcasting match exactly those in the models. This means that some variables were dropped when they were present in the 2016 data set but not in the models. This tended to happen in the case of relatively rare outcomes (e.g., in 2016, there was at least one collision between a heavy vehicle and a light duty vehicle in a school crossing zone; no such event was observed in 2017).

The shares of each outcome are calculated as the sum of the estimated probabilities for each observation:

$$\hat{S}_{PDO} = \sum_{itk} \hat{P}(y_{itk} = PDO)$$

$$\hat{S}_{injury} = \sum_{itk} \hat{P}(y_{itk} = injury)$$

$$\hat{S}_{fatality} = \sum_{itk} \hat{P}(y_{itk} = fatality)$$
(18)

where $\hat{P}(y_{itk} = h_w)$ is the estimated probability of outcome h_w for individual i in traffic unit t and crash k.

The estimated share of outcome h is \hat{S}_{h_w} .

The estimated shares can be used to assess the ability of the model to forecast for the population the total number of cases of each outcome. A summary statistic useful to evaluate the performance is the Average Percentage Error, or *APE* (see Bogue et al., 2017, p. 31), which is calculated for each outcome as follows:

$$APE_{h_w} = \left| \frac{\hat{S}_{h_w} - S_{h_w}}{S_{h_w}} \right| \times 100 \tag{19}$$

The Weighted Average Percentage Error (WAPE) aggregates the APE as follows:

$$WAPE = \frac{\sum_{w}^{W} APE_{h_w} \times S_{h_w}}{\sum_{w}^{W} S_{h_w}}$$
 (20)

The results of this exercise are reported in Table 6. Of the four full-sample models (Models 1-4), the

APE of Model 2 is lowest in the nowcasting exercise for every outcome, with the exception of Fatality, where

Model 4 produces a considerably lower APE. When the results are aggregated by means of the WAPE,

Model 2 gives marginally better results than Model 4. It is interesting to see that the four ensemble models

have lower APE values across the board in the nowcasting exercise, and much better WAPE than the full

sample models. However, once we turn to the results of the backcasting exercise, these results do not hold,

and it is possible to see that the Average Percentage Errors of the ensemble worsen considerably, particularly

in the case of Fatality. The Weighted Average Prediction Error of the ensemble models in the backcasting

Table 6: Predicted shares and average prediction errors (APE) by model (percentages)

]	No Injury			Injury			Fatality			
Model	Observed	Predicted	APE	Observed	Predicted	APE	Observed	Predicted	APE	WAPE	
In-sample (nowcasti	ing using 20	017 data set	, i.e., e	stimation d	ata set)						
Model 1	78886	79029.00	0.18	84675	84533.74	0.17	950	948.26	0.18	0.17	
Model 2	78886	78928.98	0.05	84675	84641.94	0.04	950	940.08	1.04	0.05	
Model 3	78886	79027.29	0.18	84675	84512.50	0.19	950	971.21	2.23	0.20	
Model 4	78886	78939.18	0.07	84675	84622.54	0.06	950	949.28	0.08	0.06	
Model 1 Ensemble	62413	62402.78	0.02	83564	83573.58	0.01	931	931.64	0.07	0.01	
Model 2 Ensemble	62417	62407.00	0.02	83595	83604.14	0.01	931	931.86	0.09	0.01	
Model 3 Ensemble	62411	62401.23	0.02	83596	83604.71	0.01	933	934.06	0.11	0.01	
Model 4 Ensemble	62405	62395.28	0.02	83578	83586.75	0.01	932	932.97	0.10	0.01	
Out-of-sample (back	kcasting usi	ng 2016 dat	a set)								
Model 1	96860	96364.67	0.51	101605	102002.59	0.39	1109	1206.74	8.81	0.50	
Model 2	96860	96361.41	0.51	101605	102112.08	0.50	1109	1100.51	0.77	0.51	
Model 3	96860	96354.01	0.52	101605	102086.18	0.47	1109	1133.82	2.24	0.51	
Model 4	96860	96325.85	0.55	101605	102136.72	0.52	1109	1111.43	0.22	0.54	
Model 1 Ensemble	77457	76822.49	0.82	100013	100580.60	0.57	1072	1138.91	6.24	0.71	
Model 2 Ensemble	77459	76799.11	0.85	100049	100630.48	0.58	1071	1149.41	7.32	0.74	
Model 3 Ensemble	77459	76786.76	0.87	100050	100644.29	0.59	1072	1149.95	7.27	0.75	
Model 4 Ensemble	77461	76766.08	0.90	100029	100630.21	0.60	1070	1163.71	8.76	0.78	

Note:

367

368

369

371

373

375

376

Model 1. Single-level/No opponent

Model 2. Single-level/Opponent attributes

Model 3. Hierarchical: Traffic unit

Model 4. Hierarchical: Opponent

exercise is also worse than for any of the full sample models. Excellent in-sample predictions but not as good out-of-sample predictions are often evidence of overfitting, as in the case of the ensemble models here.

In terms of backcasting, full sample Model 1 is marginally better than full sample Models 2 and 3, and better than full sample Model 4. The reason for this is the lower APE of Model 1 when predicting Injury, the most frequent outcome. However, the performance of Model 1 with respect to Fatality (the least frequent outcome) is the worst of all models. Whereas Model 4 has the best performance predicting Fatality, its performance with respect to other classes of outcomes is less impressive. Model 3 does better than Model 2 with respect to Injury, but performs relatively poorly when backcasting Fatality. Overall, Model 2 appears to be the most balanced, with good in-sample performance and competitive out-of-sample performance that is also balanced with respect to the various classes of outcomes.

5.3. Outcome frequency based on predicted classes

APE and WAPE are summary measures of the performance of models at the aggregated level. Aggregatelevel predictions (i.e., shares of outcomes) are of interest from a population health perspective. In other cases,
an analyst might be interested in the predicted outcomes at the individual level. In this section we examine
the frequency of outcomes based on predicted classes, using the same two settings as above: nowcasting and
backcasting.

The individual-level outcomes are examined using an array of verification statistics. Verification statistics
are widely used in the evaluation of predictive approaches were the outcomes are categorical, and are often

based on the analysis of *confusion matrices* (e.g., Provost and Kohavi, 1998; Beguería, 2006). Confusion matrices are cross-tabulations of *observed* and *predicted* classes. In a two-by-two confusion matrix there are four possible combinations of observed to predicted classes: hits, misses, false alarms, and correct non-events, as shown in Table 7. When the outcome has more than two classes, the confusion matrix is converted to a two-by-two table to calculate verification statistics.

Table 7: Example of a two-by-two confusion matrix

	Observed						
Predicted	Yes	No	Marginal Total				
Yes	Hit	False Alarm	Predicted Yes				
No	Miss	Correct Non-event	Predicted No				
Marginal Total	Observed Yes	Observed No					

The statistics used in our assessment are summarized in Table 8, including brief descriptions of their interpretation. The statistics evaluate different aspects of the performance of a model. Some are concerned with the ability of the model to be right, others are concerned with the ability of the model to match the observed outcomes, and yet others measure the ability of the model to not be wrong. These verification statistics are discussed briefly next.

Percent correct and percent correct by class PC and PC_c are relatively simple statistics, and are calculated as the proportion of correct predictions (i.e., hits and correct non-events) relative to the number of events, for the whole table PC or for one class only PC_c .

Bias (B) measures for each outcome class the proportion of total predictions by class (e.g., hits as well as false alarms) relative to the total number of cases observed for that class. For this reason, it is possible for predictions to have low bias (values closer to 1) but still do poorly in terms of hits.

Critical Success Index (CSI) evaluates forecasting skill while assuming that the number of correct nonevents is inconsequential for demonstrating skill. Accordingly, the statistic is calculated as the proportion of hits relative to the sum of hits plus false alarms plus misses.

Probability of False Detection (F) is the proportion of false alarms relative to the total number of times that the event is not observed. This statistic measures the frequency with which the model incorrectly predicts an event, but not when it incorrectly misses it. The Probability of Detection (POD), in contrast, measures the frequency with which the model correctly predicts a class, relative to the number of cases of that class.

The False Alarm Ratio (FAR) is the fraction of predictions by class that were false alarms evaluate a different way in which a model can make equivocal predictions. In this case, lower scores are better.

410

The last three verification statistics that we consider are skill scores that simultaneously consider different

aspects of prediction, and are therefore overall indicators of prediction skill. Heidke's Skill Score (HSS)is the fraction of correct predictions above those that could be attributed to chance. Peirce's Skill Score (PSS) combines the Probability of Detection (POD) of a model and its Probability of False Detection (F) to
measure the skill of a model to discriminate the classes of outcomes. Lastly, Gerrity Score (GS) is a measure
of the model's skill predicting the correct classes that tends to reward correct forecasts of the least frequent
class.

We discuss the results of calculating this battery of verification statistics, first for the nowcasting case (Table 9) and subsequently for the backcasting case (Table 10).

Table 8: Verification statistics

Statistic	Description	Notes
Percent Correct (PC)	Total hits and correct non-events divided by number of cases	Strongly influenced by most common category
Percent Correct by Class (PC_c)	Same as Percent Correct but by category	Strongly influenced by most common category
Bias(B)	Total predicted by category, divided by total observed by category	B > 1: class is overpredicted; $B < 1$: class is underpredicted
Critical Success Index (CSI)	Total hits divided by total hits + false alarms + misses	CSI = 1: perfect score; $CSI = 0$: no skill
Probability of False Detection (F)	Proportion of no events forecast as yes; sensitive to false alarms but ignores misses	F = 0: perfect score
Probability of Detection (POD)	Total hits divided by total observed by class	POD = 1: perfect score
False Alarm Ratio (FAR)	Total false alarms divided by total forecast yes by class; measures fraction of predicted yes that did not occur	FAR = 0: perfect score
Heidke Skill Score (HSS)	Fraction of correct predictions after removing predictions attributable to chance; measures fractional improvement over random; tends to reward conservative forecasts	HSS=1: perfect score; $HSS=0:$ no skill; $HSS<0:$ random is better
Peirce Skill Score (PSS)	Combines POD and F ; measures ability to separate yes events from no events; tends to reward conservative forecasts	PSS = 1: perfect score; $PSS = 0$: no skill
Gerrity Score (GS)	Measures accuracy of predicting the correct category, relative to random; tends to reward correct forecasts of less likely category	GS = 1: perfect score; $GS = 0$: no skill

5.3.1. Nowcasting: verification statistics

At first glance, the results of the verification statistics (Table 9) make it clear that no model under comparison is consistently a top performer from every aspect of prediction. Recalling Box's aphorism, all models are wrong but some are useful - in this case it just so happens that some models are more wrong than others in subtly different ways. That said, it is noticeable that the worst scores across the board tend to accrue to Model 1 in its full sample and ensemble versions. On the other hand, Model 2 (full sample) concentrates most of the best scores and second best scores of all the models, but also some of the worst scores for Fatality. Model 4, in contrast, has most of the second best scores and a few top scores, but not a single worst score.

Of all the models, Model 2 (full sample) performs best in terms of Percent Correct, followed by Model 4 428 (full sample). The worst performer from this perspective is Model 1 (full sample), with a PC score several 429 percentage points below the top models. The second score is Percent Correct by Class (PC_c) . This score is 430 calculated individually for each outcome class. Model 2 (full sample), has the best performance for outcomes 431 No Injury and Injury, and the second best score for Fatality. Model 4 (full sample) has the best score for 432 Fatality, and is second best for No Injury and Injury. Model 1 (full sample) has worst scores for No Injury 433 and Injury whereas its ensemble version has the worst score for Fatality. It is important to note that PC and PC_c are heavily influenced by the most common category, something that can be particularly appreciated 435 in the scores for Fatality. The scores for this class of outcome are generally high, despite the fact that the 436 number of hits are relatively low; the high values of PC_c in this case are due to the high occurrence of correct 437 non-events elsewhere in the table. 438

The models with the best performance in terms of *B* are Model 1 (full sample) for No Injury and Injury, and Model 3 (ensemble) for Fatality. Model 4 (full sample) is the second best performer for No Injury and Injury, and Model 4 (ensemble) is second best performer for Fatality. Model 1 (ensemble) has the worst bias for No Injury and Injury, whereas Model 2 (full sample) has the worst bias for Fatality.

No model performs uniformly best from the perspective of Critical Success Index (CSI). Model 2 (full sample) has the best CSI for No Injury, Model 2 (ensemble) has the best score for Injury, and Model 4 (ensemble) the best score for Fatality. On the other hand, Model 1 (ensemble) has the worst score for No Injury, Model 1 (full sample) the worst score for Injury, and Model 2 the worst score for Fatality. These scores indicates that the models are not particularly skilled at predicting the corresponding classes correctly, given the frequency with which they give false alarms or miss the class.

The lowest probability of false detection F in the case of No Injury is 19.17% for Model 2 (ensemble), with every other model having values lower than 21%, with the exception of Model 1 (full sample) that has a score of 26.46%. With respect to Injury, the lowest probabilities range 35.8% and 35.29% and 35.35% for Models 4 (full sample) and 2 (full sample). In contrast, the highest probability of false detection for Injury is 45.12% for Model 1 (ensemble). The scores for F for Fatality are all extremely low as a consequence of the very low frequency of this class of outcome in the sample.

As with some other verification statistics, no model is consistently a best performer in terms of *POD*.

Model 4 (full sample) has the highest probability of detection for No Injury (65.38%), followed by Model

2 (65.32%), whereas the worst probability of detection is by Model 1 (ensemble) with a score of 55.54%.

In terms of Injury, all models have *POD* higher than 79%, and the highest score is 80.67% for Model 2

(ensemble). The exception is Model 1 (full sample), which has a considerably lower *POD* of Injury with a

score of 73.36%. Lastly, in terms of Fatalities, all models have very low probabilities of detection, ranging

from a high of 4.94% in the case of Model 4 (ensemble) to a worst score of 0.11% in the case of Model 2 (full

sample).

Model 2 (full sample) has the best FAR statistic for No Injury, as only 25.05% of predictions for this class are false alarms. The next best score is by Model 4 (full sample), with only 25.23% of No Injury predictions being false alarms. The worst performance in this class is by Model 1 (ensemble), which produces almost a third of false alarms in its predictions of No Injury. In the case of Injury, the False Alarm Ratio ranges from a low of 29.15% by Model (ensemble), with every other model having scores lower than 30% except Model 1 (full sample), that gives almost 32% of false alarms. In terms of Fatality, the lowest FAR is also for Model 4 (ensemble) with only 17.86% of false alarms, whereas the worst performance is by Model 2 (full sample), which produces over 95% of false alarms.

The skill scores help to remove some of the ambiguity regarding the overall performance of a model. In this way, we know that Model 2 (full sample) does not do particularly well with the class Fatality - however, of all models, it tends to have the best overall performance. Its HSS, for example, suggests that it achieves 44.74% of correct predictions after removing correct predictions attributable to chance. In contrast, the lowest score is for Model 1 (ensemble), which only achieves 36.26% correct predictions after removing those attributable to chance. Model 2 (full sample) also has the highest PSS and the second highest PSS. Model 4 (full sample) has the highest PSS and the second highest PSS.

478 5.3.2. Backcasting: verification statistics

Table 10 presents the results of the verification exercise for the case of our out-of-sample predictions
(i.e., backasting). Qualitatively, the results are similar to those of the nowcasting experiments, but with a
somewhat weaker performance of the ensemble models. This, again, supports the idea that these models might
be overfitting the process, as discussed in reference to the aggregate forecasts (see Section 5.2). Models 2 (full

Table 9: Assessment of in-sample outcomes (nowcasting using 2017 data set, i.e., estimation data set)

Outcome			Predicted Observed Outcome				Verification Statistics									
	No Injury	Injury	Fatality	Percent Correct	Percent Correct by Class	Bias ¹	Critical Success Index ²	Probability of False Detection ³	Probability of Detection ⁴	False Alarm Ratio ⁵	Heidke Skill Score ⁶	Peirce Skill Score ⁷	Gerrit Score ⁸			
Model 1. Sir	ngle-level/N	lo oppon	ent													
No Injury	50652	22503	150		69.07	0.9293	0.4988	0.2646	0.6421	0.309						
Injury	28232	62121	797	68.55	68.64	1.0765	0.5463	0.3636	0.7336	0.3185	0.3725	0.3696	0.1902			
Fatality	2	51	3		99.39	0.0589	0.003	3e-04	0.0032	0.9464						
Model 2. Sir	ngle-level/O	pponent	attribute	\mathbf{s}												
No Injury	51530	17136	85		72.9	0.8715	0.5362	0.2011	0.6532	0.2505						
Injury	27356	67515	864	72.36	72.42	1.1306	0.598	0.3535	0.7973	0.2948	0.4474	0.4429	0.2265			
Fatality	0	24	1		99.41	0.0263	0.001	1e-04	0.0011	0.96						
Model 3. Hi	erarchical:	Traffic u	nit													
No Injury	51102	17297	79		72.55	0.8681	0.5309	0.2029	0.6478	0.2537						
Injury	27784	67337	868	72	72.04	1.1336	0.5942	0.3589	0.7952	0.2985	0.44	0.4356	0.2239			
Fatality	0	41	3		99.4	0.0463	0.003	3e-04	0.0032	0.9318						
Model 4. Hi	erarchical:	Opponer	nt													
No Injury	51574	17317	84		72.82	0.8744	0.5356	0.2032	0.6538	0.2523						
Injury	27312	67335	863	72.28	72.33	1.128	0.5967	0.3529	0.7952	0.295	0.4458	0.4414	0.226			
Fatality	0	23	3		99.41	0.0274	0.0031	1e-04	0.0032	0.8846						
Model 1 Ens	semble. Sing	gle-level	/No oppor	nent												
No Injury	34663	16435	63		69.88	0.8197	0.4393	0.1953	0.5554	0.3225						
Injury	27750	67119	829	69.31	69.35	1.1452	0.5985	0.4512	0.8032	0.2986	0.3626	0.3521	0.201			
Fatality	0	10	39		99.39	0.0526	0.0414	<u>1e-04</u>	0.0419	0.2041						
Model 2 Ens	semble. Sing	gle-level	Opponen	t attribut	es											
No Injury	35443	16145	60		70.62	0.8275	0.4508	0.1917	0.5678	0.3138						
Injury	26974	67437	829	70.05	70.08	1.1393	0.6054	0.4389	0.8067	0.2919	0.3784	0.3678	0.2106			
Fatality	0	13	42		99.39	0.0591	0.0445	1e-04	0.0451	0.2364						
Model 3 Ens	semble. Hie	rarchical	l: Traffic ı	ınit												
No Injury	35499	16203	60		70.62	0.8294	0.4512	0.1924	0.5688	0.3142						
Injury	26912	67380	828	70.04	70.09	1.1379	0.6052	0.4379	0.806	0.2916	0.3787	0.3681	0.2123			
Fatality	0	13	45		99.39	0.0622	0.0476	1e-04	0.0482	0.2241						
Model 4 Ens	semble Hin	rarchical	: Oppose	nt												
No Injury	35553	16297	Oppone 59		70.59	0.8318	0.4514	0.1935	0.5697	0.3151						
Injury	26852	67271	827	70.02	70.06	1.1361	0.6046	0.437	0.8049	0.2915	0.3783	0.3679	0.2127			
Fatality	0	10	46		99.39	0.0601	0.0488	1e-04	0.0494	0.1786						
Note:																
Bold numbers	: best scores:	underline	ed numbers	: second be	est scores: re	ed numbers	: worst sco	res								
	is overpredi			underpredi	cted;											
2 $CSI = 1$: pe	erfect score; (CSI = 0:	no skill;	-												
3 $F = 0$: perfe	ect score;															
4 POD = 1: p																
FAR = 0: p	erfect score;															
$^{6}HSS = 1: p$				HSS < 0: r	andom is be	tter;										
$^{7} PSS = 1: p$																
8 $GS = 1$: per	rfect score; G	S = 0: no	skill.													

Table 10: Assessment of out-of-sample outcomes (backcasting using 2016 data set)

Predicted	Obser	ved Outc	ome					Verification S	Statistics				
Outcome	No Injury	Injury	Fatality	Percent Correct	Percent Correct by Class	Bias ¹	Critical Success Index ²	Probability of False Detection ³	Probability of Detection ⁴	False Alarm Ratio ⁵	Heidke Skill Score ⁶	Peirce Skill Score ⁷	Gerrity Score ⁸
Model 1. Si	ngle-level/N	lo oppon	ent										
No Injury	61684	27447	184		68.53	0.9221	0.4955	0.269	0.6368	0.3094			
Injury	35171	74073	915	68.03	68.12	1.0842	0.538	0.3683	0.729	0.3276	0.3628	0.3604	0.1882
Fatality	5	85	10		99.4	0.0902	0.0083	5e-04	0.009	0.9			
Model 2. Si	ngle-level/C	pponent	attribute	s									
No Injury	62735	21013	106		72.32	0.8657	0.5317	0.2056	0.6477	0.2519			
Injury	34125	80569	996	71.81	71.86	1.1386	0.5893	0.3585	0.793	0.3036	0.4372	0.4335	0.224
Fatality	0	23	7		99.44	0.0271	0.0062	$\overline{1e-04}$	0.0063	0.7667			
Model 3. Hi	erarchical:	Traffic u	nit										
No Injury	62248	21133	107		72.01	0.8619	0.5271	0.2068	0.6427	0.2544			
Injury	34610	80433	996	71.5	71.55	1.1421	0.5862	0.3634	0.7916	0.3068	0.431	0.4274	0.2205
Fatality	2	39	6		99.43	0.0424	0.0052	2e-04	0.0054	0.8723			
Model 4. Hi	erarchical:	Opponer	nt										
No Injury	62788	21246	102		72.23	0.8686	0.5312	0.2078	0.6482	0.2537			
Injury	34071	80332	1000	71.72	71.77	1.1358	0.5878	0.358	0.7906	0.3039	0.4355	0.4318	0.2233
Fatality	1	27	7		99.43	0.0316	0.0062	<u>1e-04</u>	0.0063	0.8			
Model 1 En	semble. Sing	gle-level	/No oppor	nent									
No Injury	42896	20230	95		69.26	0.8162	0.4387	0.2011	0.5538	0.3215			
Injury	34546	79692	962	68.67	68.73	1.1519	0.588	0.4522	0.7968	0.3082	0.3539	0.3447	0.1831
Fatality	15	91	15		99.35	0.1129	0.0127	6e-04	0.014	0.876			
Model 2 En	semble. Sing	gle-level	Opponen	t attribute	es								
No Injury	43486	19937	95		69.76	0.82	0.4461	0.1981	0.5614	0.3154			
Injury	33953	80009	961	69.16	69.23	1.1487	0.5928	0.4446	0.7997	0.3038	0.3644	0.3551	0.1883
Fatality	20	103	15		99.34	0.1289	0.0126	7e-04	0.014	0.8913			
Model 3 En	semble. Hie	rarchical	: Traffic u	ınit									
No Injury	43527	20033	92		69.73	0.8218	0.446	0.199	0.5619	0.3162			
Injury	33914	79915	964	69.13	69.19	1.1474	0.5923	0.4441	0.7988	0.3038	0.3639	0.3546	0.1885
Fatality	18	102	16		99.34	0.1269	0.0134	7e-04	0.0149	0.8824			
Model 4 En	semble. Hie	rarchical	: Oppone	nt									
No Injury	43560	20160	94		69.67	0.8238	0.4458	0.2003	0.5623	0.3174			
Injury	33876	79762	959	69.07	69.14	1.1456	0.5914	0.4436	0.7974	0.304	0.3629	0.3538	0.1886
Fatality	25	107	17		99.34	0.1393	0.0141	7e-04	0.0159	0.8859			

Bold numbers: best scores; underlined numbers: second best scores; red numbers: worst scores

sample) and 4 (full sample) are again identified as the best overall performers, and particularly Model 2 (full 483 sample) performs somewhat more adroitly with respect to Fatality in backcasting than it did in nowcasting.

6. Further considerations 485

As discussed in Section 3, there is a rich selection of modelling approaches that are applicable to crash 486 severity analysis. Based on the literature, we limited our empirical assessment of modelling strategies to only 487 one model, namely the ordinal logit. On the other hand, since the modelling strategies discussed here all 488 relate to the specification of the latent function and data subsetting, it is a relatively simple matter to extend them to other modelling approaches. For example, take Expression 9 and add a random component μ_k as 490 follows:

 $^{^1}$ B>1: class is overpredicted; B<1: class is underpredicted; 2 CSI=1: perfect score; CSI=0: no skill;

³ F = 0: perfect score;

⁴ POD = 1: perfect score;

⁵ FAR = 0: perfect score;

 $^{^6}$ HSS=1: perfect score; HSS=0: no skill; HSS<0: random is better;

 $^{^{7}}$ PSS=1: perfect score; PSS=0: no skill; 8 GS=1: perfect score; GS=0: no skill.

$$y_{itk}^* = \sum_{l=1}^{L} \alpha_l p_{itkl} + \sum_{m=1}^{M} \beta_m u_{tkm} + \sum_{q=1}^{Q} \kappa_q c_{kq} + \sum_{r=1}^{R} \delta_r o_{jvkr} + \mu_k + \epsilon_{itk}$$
 (21)

The addition of the random component in this fashion would help to capture, when appropriate, unobserved
heterogeneity at the level of the crash (this is similar to the random intercepts approach in multi-level modelling;
also see Mannering et al., 2016). As a second example, take Expressions 6 to 11 and add a random component
to a hierarchical coefficient, to obtain:

$$\beta_m u_{tkm} = (\beta_{m1} + \beta_{m2} p_{itk2} + \dots + \beta_{mL} p_{itkL} + \mu_{mk}) u_{tkm}$$

$$= \beta_{m1} u_{tkm} + \beta_{m2} p_{itk2} u_{tkm} + \dots + \beta_{mL} p_{itkL} u_{tkm} + \mu_{mk} u_{tkm}$$

$$(22)$$

This is similar to the random slopes strategy in multi-level modelling.

We do not report results regarding other modelling strategies. On the one hand, more sophisticated modelling frameworks are generally capable of improving the performance of a model. On the other hand, 498 there are well-known challenges in the estimation of more sophisticated models (see Lenguerrand et al., 2006, p. 47, for a discussion of convergence issues in models with mixed effects; Mannering et al., 2016, p. 13, for 500 some considerations regarding the complexity and cost of estimating more complex models; and Bogue et 501 al., 2017, p. 27, on computational demands of models with random components). The additional cost and 502 complexity of more sophisticated modelling approaches would, in our view, have greatly complicated our 503 empirical assessment, particularly considering the large size of the sample involved in this research (a data set with over 164,000 records in the case of the full sample models). That said, we experimented with a model 505 with random components using monthly subsets of data to find that, indeed, estimation takes considerably longer, is more demanding in terms of fixing potential estimation quirks, and in the end resulted in variance 507 components that could not be reliably estimated as different from zero (results can be consulted in the source R Notebook). For this reason, we choose to leave the application of more sophisticated models as a matter 509 for future research.

⁵¹¹ 7. Concluding remarks

The study of crash severity is an important component of accident research, as seen from a large and vibrant literature and numerous applications. Part of this literature covers different modelling strategies that can be used to model complex hierarchical, multievent outcomes such as the severity of injuries following a collision. In this paper, our objective has been to assess the performance of different strategies to model opponent effects in two-vehicle crashes. In broad terms, three strategies were considered: 1) incorporating opponent-level variables in the model; 2) single- versus multi-level model specifications; and 3) sample

subsetting and estimation of separate models for different types of individual-opponent interactions. The
empirical evaluation was based on data from Canada's National Crash Database and the application of
ordered probit models. A suite of models that implemented the various strategies considered was estimated
using data from 2017. We then assessed the performance of the models using one information criterion (AIC).
Furthermore, the predictive performance of the models was assessed in terms of both nowcasting (in-sample
predictions) and backcasting (out-of-sample predictions), the latter using data from 2016.

524

525

527

529

531

532

533

534

535

536

537

538

The results of the empirical assessment strongly suggest that incorporating opponent effects can greatly improve the goodness-of-fit and predictive performance of a model. Two modelling strategies appear to outperform the rest: a relatively simple single-level modelling approach that incorporates opponent effects, and a hierarchical modelling approach with nested opponent effects. There was some evidence that subsetting the sample can improve the results in some cases (e.g., when modelling the severity of crashes involving active travelers or motorcyclists), but possibly at the risk of overfitting the process. It is well known that overfitting can increase the accuracy of in-sample predictions at the expense of bias in out-of-sample predictions. Alas, since the true data generating process is unknowable in this empirical research, it is not possible to assess the extent of estimator bias. It is also worthwhile noting that in this paper we did not compare individual models in our ensemble approach, but we suggest that this is an avenue for future research.

The results of this research should be informative to analysts interested in crashes involving two parties, since it provides some useful guidelines regarding the specification of opponent effects. Not only do opponent effects improve the goodness of fit and performance of models, they also add rich insights into their effects. The focus on this paper was on performance, and for space reasons it is not possible to include an examination of the best model without failing to do it justice. We plan to report the results of the best-fitting model in a future paper.

The analysis also opens up a few avenues for future research. First, for reasons discussed in Section 6, 540 we did not consider more sophisticated modelling approaches, such as models with random components, partial proportional odds, ranked ordered models, or multinomial models, to mention just a few possibilities. 542 Secondly, we only considered the performance of the models when making predictions for the full sample. That is, the submodels in the ensembles were not compared in detail, just their aggregate results when 544 predicting the full sample. However, the goodness-of-fit was not uniformly better for any one modelling 545 strategy when the data were subset, and it is possible that individual models perform better for a certain subset than competitors that are part of a better ensemble, overall. For this reason, we suggest that additional 547 work with ensemble approaches is warranted. Finally, it is clear that the models do not generally do well when predicting the least frequent class of outcome, namely Fatality. It would be worthwhile to further 540 investigate approaches for so-called imbalanced learning, a task that has received attention in the machine learning community (e.g., Haixiang et al., 2017; He and Garcia, 2009), and where Torrao et al. (2014) have already made some headway in crash severity analysis.

Finally, as an aside, this paper is, to the best of our knowledge, the first example of reproducible research in crash severity analysis. By providing the data and code for the analysis, it is our hope that this will allow other researchers to easily verify the results, and to extend them. A common practice in the machine learning community is to use canonical data set to demonstrate the performance of new techniques. Sharing code and data has remained relatively rare in transportation research, and we would like to suggest that the data sets used in this research could constitute one such canonical data set for future methodological developments.

559 Acknowledgments

553

555

557

558

This research was supported by a Research Excellence grant from McMaster University. The authors wish to express their gratitude to the Office of the Provost, the Faculty of Science, and the Faculty of Engineering for their generous support. The comments of four anonymous reviewers are also duly acknowledged: their feedback helped to improve the quality and clarity of presentation of this paper.

564 Appendix

565

Variable definitions in Canada's National Collision Database.

Table 11: Contents of National Collision Database: Collision-level variables

Variable	Description	Notes
C_CASE	Unique collision identifier	Unique identifier for collisions
C_{YEAR}	Year	Last two digits of year.
C_MNTH	Month	14 levels: January - December; unknown; not reported by jurisdiction.
C_{WDAY}	Day of week	9 levels: Monday - Sunday; unknown; not reported by jurisdiction.
C_HOUR	Collision hour	25 levels: hourly intervals; unknown; not reported by jurisdiction.
C_SEV	Collision severity	4 levels: collision producing at least one fatality; collision producing non-fatal injury; unknown; not reported by jurisdiction.
C_VEHS	Number of vehicles involved in collision	Number of vehicles: 1-98 vehicles involved; 99 or more vehicles involved;
		unknown; not reported by jurisdiction.

 $\label{thm:contents} \mbox{Table 11: Contents of National Collision Database: Collision-level variables $(continued)$}$

Variable	Description	Notes
C_CONF	Collision configuration	21 levels: SINGLE VEHICLE: Hit a moving object (e.g. a person or an
		animal); Hit a stationary object (e.g. a tree); Ran off left shoulder; Ran
		off right shoulder; Rollover on roadway; Any other single vehicle collision
		configuration; TWO-VEHICLES SAME DIRECTION OF TRAVEL:
		Rear-end collision; Side swipe; One vehicle passing to the left of the
		other, or left turn conflict; One vehicle passing to the right of the other,
		or right turn conflict; Any other two vehicle - same direction of travel
		configuration; TWO-VEHICLES DIFFERENT DIRECTION OF
		TRAVEL: Head-on collision; Approaching side-swipe; Left turn across
		opposing traffic; Right turn, including turning conflicts; Right angle
		collision; Any other two-vehicle - different direction of travel
		configuration; TWO-VEHICLES, HIT A PARKED VEHICLE: Hit a
		parked motor vehicle; Choice is other than the preceding values;
		unknown;not reported by jurisdiction.
C_RCFG	Roadway configuration	15 levels: Non-intersection; At an intersection of at least two public
		roadways; Intersection with parking lot entrance/exit, private driveway
		or laneway; Railroad level crossing; Bridge, overpass, viaduct; Tunnel or
		underpass; Passing or climbing lane; Ramp; Traffic circle; Express lane
		of a freeway system; Collector lane of a freeway system; Transfer lane of
		a freeway system; Choice is other than the preceding values;
		unknown;not reported by jurisdiction.
C_WTHR	Weather condition	10 levels: Clear and sunny; Overcast, cloudy but no precipitation;
		$Raining; \ Snowing, \ not \ including \ drifting \ snow; \ Freezing \ rain, \ sleet, \ hail;$
		Visibility limitation; Strong wind; Choice is other than the preceding
		values; unknown;not reported by jurisdiction.
C_RSUR	Road surface	12 levels: Dry, normal; Wet; Snow (fresh, loose snow); Slush, wet snow;
		Icy, packed snow; Debris on road (e.g., sand/gravel/dirt); Muddy; Oil;
		Flooded; Choice is other than the preceding values; unknown;not
		reported by jurisdiction.
C_RALN	Road alignment	9 levels: Straight and level; Straight with gradient; Curved and level;
		Curved with gradient; Top of hill or gradient; Bottom of hill or gradient;
		Choice is other than the preceding values; unknown; not reported by
		jurisdiction.

 $\begin{tabular}{ll} Table 11: Contents of National Collision Database: Collision-level variables $(continued)$ \\ \end{tabular}$

Variable	Description	Notes
C_TRAF	Traffic control	21 levels: Traffic signals fully operational; Traffic signals in flashing mode; Stop sign; Yield sign; Warning sign; Pedestrian crosswalk; Police officer; School guard, flagman; School crossing; Reduced speed zone; No passing zone sign; Markings on the road; School bus stopped with school bus signal lights flashing; School bus stopped with school bus signal lights not flashing; Railway crossing with signals, or signals and gates; Railway crossing with signs only; Control device not specified; No control present; Choice is other than the preceding values; unknown; not reported by jurisdiction.

Note:

 $Source\ NCDB\ available\ from\ https://open.canada.ca/data/en/data\ set/1eb9eba7-71d1-4b30-9fb1-30cbdab7e63a$ $Source\ data\ files\ for\ analysis\ also\ available\ from\ https://drive.google.com/open?id=12aJtVBaQ4Zj0xa7mtfqxh0E48hKCb_XV$

Table 12: Contents of National Collision Database: Traffic unit-level variables

Variable	Description	Notes
V_ID	Vehicle sequence number	Number of vehicles: 1-98; Pedestrian sequence number: 99; unknown.
V_{TYPE}	Vehicle type	21 levels: Light Duty Vehicle (Passenger car, Passenger van, Light utility
		vehicles and light duty pick up trucks); Panel/cargo van (<= 4536 KG
		GVWR Panel or window type of van designed primarily for carrying
		goods); Other trucks and vans (<= 4536 KG GVWR); Unit trucks (>
		$4536~\mathrm{KG}$ GVWR); Road tractor; School bus; Smaller school bus (< 25
		passengers); Urban and Intercity Bus; Motorcycle and moped; Off road
		$vehicles; \ Bicycle; \ Purpose-built \ motorhome; \ Farm \ equipment;$
		Construction equipment; Fire engine; Snowmobile; Street car; Data
		element is not applicable (e.g. dummy vehicle record created for
		pedestrian); Choice is other than the preceding values; unknown; not
		reported by jurisdiction.
V_{YEAR}	Vehicle model year	Model year; dummy for pedestrians; unknown; not reported by
		jurisdiction.

Note:

 $Source\ NCDB\ available\ from\ https://open.canada.ca/data/en/data\ set/1eb9eba7-71d1-4b30-9fb1-30cbdab7e63a$ $Source\ data\ files\ for\ analysis\ also\ available\ from\ https://drive.google.com/open?id=12aJtVBaQ4Zj0xa7mtfqxh0E48hKCb_XV$

Table 13: Contents of National Collision Database: Personal-level variables

Variable	Description	Notes
P_ID	Person sequence number	Sequence number: 1-99; Not applicable (dummy for parked vehicles); not reported by jurisdiction.
P_SEX	Person sex	5 levels: Male; Female; Not applicable (dummy for parked vehicles); unknown (runaway vehicle); not reported by jurisdiction.
P_AGE	Person age	Age: less than 1 year; 1-98 years old; 99 years or older; Not applicable (dummy for parked vehicles); unknown (runaway vehicle); not reported by jurisdiction.
P_PSN	Person position	Person position: Driver; Passenger front row, center; Passenger front row, right outboard (including motorcycle passenger in sidecar); Passenger second row, left outboard, including motorcycle passenger; Passenger second row, center; Passenger second row, right outboard; Passenger third row, left outboard;; Position unknown, but the person was definitely an occupant; Sitting on someone's lap; Outside passenger compartment; Pedestrian; Not applicable (dummy for parked vehicles); Choice is other than the preceding values; unknown (runaway vehicle); not reported by jurisdiction.
P_ISEV	Medical treatment required	6 levels: No Injury; Injury; Fatality; Not applicable (dummy for parked vehicles); Choice is other than the preceding values; unknown (runaway vehicle); not reported by jurisdiction.
P_SAFE	Safety device used	11 levels: No safety device used; Safety device used; Helmet worn; Reflective clothing worn; Both helmet and reflective clothing used; Other safety device used; No safety device equipped (e.g. buses); Not applicable (dummy for parked vehicles); Choice is other than the preceding values; unknown (runaway vehicle); not reported by jurisdiction.
P_USER	Road user class	6 levels: Motor Vehicle Driver; Motor Vehicle Passenger; Pedestrian; Bicyclist; Motorcyclist; Not stated/Other/Unknown.

Note:

 $Source\ NCDB\ available\ from\ https://open.canada.ca/data/en/data\ set/1eb9eba7-71d1-4b30-9fb1-30cbdab7e63a$

 $Source\ data\ files\ for\ analysis\ also\ available\ from\ https://drive.google.com/open?id=12aJtVBaQ4Zj0xa7mtfqxh0E48hKCb_XV$

References

- Amoh-Gyimah, R., Aidoo, E.N., Akaateba, M.A., Appiah, S.K., 2017. The effect of natural and built environmental characteristics on pedestrian-vehicle crash severity in ghana. International Journal of Injury Control and Safety Promotion 24, 459–468. doi:10.1080/17457300.2016.1232274
- Aziz, H.M.A., Ukkusuri, S.V., Hasan, S., 2013. Exploring the determinants of pedestrian-vehicle crash severity in new york city. Accident Analysis and Prevention 50, 1298–1309. doi:10.1016/j.aap.2012.09.034

- Beguería, S., 2006. Validation and evaluation of predictive models in hazard assessment and risk management. Natural Hazards 37, 315–329. doi:10.1007/s11069-005-5182-6
- Bogue, S., Paleti, R., Balan, L., 2017. A modified rank ordered logit model to analyze injury severity of occu-
- pants in multivehicle crashes. Analytic Methods in Accident Research 14, 22–40. doi:10.1016/j.amar.2017.03.001
- ⁵⁷⁶ Casetti, E., 1972. Generating models by the expansion method: Applications to geographic research.
- 577 Geographical Analysis 4, 81–91.
- ⁵⁷⁸ Chang, L.Y., Wang, H.W., 2006. Analysis of traffic injury severity: An application of non-parametric
- classification tree techniques. Accident Analysis and Prevention 38, 1019–1027. doi:10.1016/j.aap.2006.04.009
- 580 Chen, F., Song, M.T., Ma, X.X., 2019. Investigation on the injury severity of drivers in rear-end
- collisions between cars using a random parameters bivariate ordered probit model. International Journal of
- Environmental Research and Public Health 16. doi:10.3390/ijerph16142632
- ⁵⁸³ Chiou, Y.C., Hwang, C.C., Chang, C.C., Fu, C., 2013. Modeling two-vehicle crash severity by a bivariate
- generalized ordered probit approach. Accident Analysis and Prevention 51, 175–184. doi:10.1016/j.aap.2012.11.008
- Dissanayake, S., Lu, J.J., 2002. Factors influential in making an injury severity difference to older
- drivers involved in fixed object-passenger car crashes. Accident Analysis and Prevention 34, 609–618.
- doi:10.1016/s0001-4575(01)00060-4
- Duddu, V.R., Penmetsa, P., Pulugurtha, S.S., 2018. Modeling and comparing injury severity of at-fault and
- not at-fault drivers in crashes. Accident Analysis and Prevention 120, 55–63. doi:10.1016/j.aap.2018.07.036
- Effati, M., Thill, J.C., Shabani, S., 2015. Geospatial and machine learning techniques for wicked social
- science problems: Analysis of crash severity on a regional highway corridor. Journal of Geographical Systems
- ⁵⁹² 17, 107–135. doi:10.1007/s10109-015-0210-x
- Gong, L.F., Fan, W.D., 2017. Modeling single-vehicle run-off-road crash severity in rural areas: Ac-
- counting for unobserved heterogeneity and age difference. Accident Analysis and Prevention 101, 124–134.
- ⁵⁹⁵ doi:10.1016/j.aap.2017.02.014
- Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G., 2017. Learning from class-
- imbalanced data: Review of methods and applications. Expert Systems with Applications 73, 220–239.
- ⁵⁹⁸ doi:https://doi.org/10.1016/j.eswa.2016.12.035
- Haleem, K., Gan, A., 2013. Effect of driver's age and side of impact on crash severity along urban freeways:
- A mixed logit approach. Journal of Safety Research 46, 67–76. doi:10.1016/j.jsr.2013.04.002
- He, H., Garcia, E.A., 2009. Learning from imbalanced data. IEEE Transactions on knowledge and data
- engineering 21, 1263–1284.
- Hedeker, D., Gibbons, R.D., 1994. A random-effects ordinal regression-model for multilevel analysis.
- 604 Biometrics 50, 933–944.

- Iranitalab, A., Khattak, A., 2017. Comparison of four statistical and machine learning methods for crash
- 606 severity prediction. Accident Analysis and Prevention 108, 27–36. doi:10.1016/j.aap.2017.08.008
- Islam, S., Jones, S.L., Dye, D., 2014. Comprehensive analysis of single- and multi-vehicle large truck
- at-fault crashes on rural and urban roadways in alabama. Accident Analysis & Prevention 67, 148–158.
- 609 doi:https://doi.org/10.1016/j.aap.2014.02.014
- Khan, G., Bill, A.R., Noyce, D.A., 2015. Exploring the feasibility of classification trees versus ordinal
- discrete choice models for analyzing crash severity. Transportation Research Part C-Emerging Technologies
- 50, 86–96. doi:10.1016/j.trc.2014.10.003
- Kim, J.K., Ulfarsson, G.F., Kim, S., Shankar, V.N., 2013. Driver-injury severity in single-vehicle crashes
- in california: A mixed logit analysis of heterogeneity due to age and gender. Accident Analysis and Prevention
- 615 50, 1073–1081. doi:10.1016/j.aap.2012.08.011
- Kim, K., Nitz, L., Richardson, J., Li, L., 1995. PERSONAL and behavioral predictors of automobile
- crash and injury severity. Accident Analysis and Prevention 27, 469–481. doi:10.1016/0001-4575(95)00001-g
- Lee, C., Li, X.C., 2014. Analysis of injury severity of drivers involved in single- and two-vehicle crashes
- on highways in ontario. Accident Analysis and Prevention 71, 286–295. doi:10.1016/j.aap.2014.06.008
- Lenguerrand, E., Martin, J.L., Laumon, B., 2006. Modelling the hierarchical structure of road crash data
- application to severity analysis. Accident Analysis and Prevention 38, 43–53. doi:10.1016/j.aap.2005.06.021
- Li, L., Hasnine, M.S., Habib, K.M.N., Persaud, B., Shalaby, A., 2017. Investigating the interplay between
- the attributes of at-fault and not-at-fault drivers and the associated impacts on crash injury occurrence and
- ₆₂₄ severity level. Journal of Transportation Safety & Security 9, 439–456. doi:10.1080/19439962.2016.1237602
- Ma, J.M., Kockelman, K.M., Damien, P., 2008. A multivariate poisson-lognormal regression model for
- prediction of crash counts by severity, using bayesian methods. Accident Analysis and Prevention 40, 964–975.
- doi:10.1016/j.aap.2007.11.002
- Maddala, G.S., 1986. Limited-dependent and qualitative variables in econometrics. Cambridge university
- 629 press.
- Mannering, F., Shankar, V., Bhat, C.R., 2016. Unobserved heterogeneity and the statistical analysis of
- highway accident data. Analytic Methods in Accident Research 11, 1–16. doi:10.1016/j.amar.2016.04.001
- Montella, A., Andreassen, D., Tarko, A.P., Turner, S., Mauriello, F., Imbriani, L.L., Romero, M.A.,
- 633 2013. Crash databases in australasia, the european union, and the united states review and prospects for
- improvement. Transportation Research Record 128–136. doi:10.3141/2386-15
- Mooradian, J., Ivan, J.N., Ravishanker, N., Hu, S., 2013. Analysis of driver and passenger crash
- injury severity using partial proportional odds models. Accident Analysis and Prevention 58, 53–58.
- 637 doi:10.1016/j.aap.2013.04.022

- Osman, M., Mishra, S., Paleti, R., 2018. Injury severity analysis of commercially-licensed drivers in single-vehicle crashes: Accounting for unobserved heterogeneity and age group differences. Accident Analysis
- and Prevention 118, 289–300. doi:10.1016/j.aap.2018.05.004
- Penmetsa, P., Pulugurtha, S.S., Duddu, V.R., 2017. Examining injury severity of not-at-fault drivers in
- two-vehicle crashes. Transportation Research Record 164–173. doi:10.3141/2659-18
- Provost, F., Kohavi, R., 1998. Glossary of terms. Journal of Machine Learning 30, 271–274.
- Rana, T.A., Sikder, S., Pinjari, A.R., 2010. Copula-based method for addressing endogeneity in models of
- severity of traffic crash injuries application to two-vehicle crashes. Transportation Research Record 75–87.
- doi:10.3141/2147-10
- Rifaat, S.M., Chin, H.C., 2007. Accident severity analysis using ordered probit model. Journal of Advanced
- 648 Transportation 41, 91–114. doi:10.1002/atr.5670410107
- Roorda, M.J., Paez, A., Morency, C., Mercado, R., Farber, S., 2010. Trip generation of vulnerable
- populations in three canadian cities: A spatial ordered probit approach. Transportation 37, 525–548.
- doi:10.1007/s11116-010-9263-3
- Sasidharan, L., Menendez, M., 2014. Partial proportional odds model-an alternate choice for analyzing
- pedestrian crash injury severities. Accident Analysis and Prevention 72, 330–340. doi:10.1016/j.aap.2014.07.025
- Savolainen, P., Mannering, F., 2007. Probabilistic models of motorcyclists' injury severities in single- and
- multi-vehicle crashes. Accident Analysis and Prevention 39, 955–963. doi:10.1016/j.aap.2006.12.016
- Savolainen, P.T., Mannering, F., Lord, D., Quddus, M.A., 2011. The statistical analysis of highway
- 657 crash-injury severities: A review and assessment of methodological alternatives. Accident Analysis and
- 658 Prevention 43, 1666–1676. doi:10.1016/j.aap.2011.03.025
- Shamsunnahar, Y., Eluru, N., Pinjari, A.R., Tay, R., 2014. Examining driver injury severity in two vehicle
- crashes a copula based approach. Accident Analysis and Prevention 66, 120–135. doi:10.1016/j.aap.2014.01.018
- Tang, J.J., Liang, J., Han, C.Y., Li, Z.B., Huang, H.L., 2019. Crash injury severity analysis using a
- two-layer stacking framework. Accident Analysis and Prevention 122, 226–238. doi:10.1016/j.aap.2018.10.016
- Tay, R., Choi, J., Kattan, L., Khan, A., 2011. A multinomial logit model of pedestrian-vehicle crash
- 664 severity. International Journal of Sustainable Transportation 5, 233–249. doi:10.1080/15568318.2010.497547
- Torrao, G.A., Coelho, M.C., Rouphail, N.M., 2014. Modeling the impact of subject and opponent vehicles
- on crash severity in two-vehicle collisions. Transportation Research Record 53-64. doi:10.3141/2432-07
- Train, K., 2009. Discrete choice methods with simulation, 2nd Edition. ed. Cambridge University Press,
- 668 Cambridge.
- Wang, K., Yasmin, S., Konduri, K.C., Eluru, N., Ivan, J.N., 2015. Copula-based joint model of injury sever-
- ity and vehicle damage in two-vehicle crashes. Transportation Research Record 158–166. doi:10.3141/2514-17

- Wang, X.K., Kockelman, K.M., 2005. Use of heteroscedastic ordered logit model to study severity of occupant injury - distinguishing effects of vehicle weight and type, in: Statistical Methods; Highway Safety Data, Analysis, and Evaluation; Occupant Protection; Systematic Reviews and Meta-Analysis, Transportation
- Research Record. pp. 195–204.
- White, S., Clayton, S., 1972. Some effects of alcohol, age of driver, and estimated speed on the likelihood of driver injury. Accident Analysis & Prevention 4.
- Wu, Q., Chen, F., Zhang, G.H., Liu, X.Y.C., Wang, H., Bogus, S.M., 2014. Mixed logit model-based driver injury severity investigations in single- and multi-vehicle crashes on rural two-lane highways. Accident Analysis and Prevention 72, 105–115. doi:10.1016/j.aap.2014.06.014
- Yasmin, S., Eluru, N., 2013. Evaluating alternate discrete outcome frameworks for modeling crash injury severity. Accident Analysis & Prevention 59, 506–521. doi:https://doi.org/10.1016/j.aap.2013.06.040

CRediT Author Statement

5/8/2020

Antonio Paez: Conceptualization, Methodology, Validation, Formal analysis, Data Curation, Writing - Original Draft, Project Administration **Hanny Hassan:** Conceptualization, Writing - Review & Editing, Funding acquisition **Mark Ferguson:** Writing - Review & Editing **Saiedeh Razavi:** Conceptualization, Supervision, Funding acquisition