Identification of exogenous disturbance signal sets

XYZ, A.Bemporad

Abstract—This work deals with uncertain linear models of dynamical systems, with the uncertainty modeled as an exogenous disturbance signal acting on the output. A method to identify the set within which this uncertainty lies is presented.

I. Introduction

Model predictive control schemes can be used to design controllers for systems with constraints. The schemes choose a control input by making predictions of the future evolution of the system. They use a model of the system being controlled to make these predictions. Very often, the model does not represent the system exactly, resulting in the predictions not being accurate. This can result in the system constraints being violated. To avoid this, robust model predictive control schemes have been proposed in literature. A review of the considerations to be made while developing such robust schemes can be found in [1]. In the current work, we deal with uncertainty descriptions.

Uncertainty descriptions are explicit characterizations of the uncertainty present within the model. Such a characterization helps in establishing bounds on the predictions made by the model, such that the real performance of the system lies within these bounds. The robust model predictive controller scheme should ensure constraint satisfaction for all possible predictions of the system evolution within these bounds.

II. PROBLEM STATEMENT

We consider a *multi-input multi-output* plant, generating an output signal $y(t) \in \mathbb{R}^{n_y}$ corresponding to the input signal $y(t) \in \mathbb{R}^{n_u}$, $t \in \mathbb{Z}^+$. We aim at synthesizing a controller that can make the output track a user-defined reference signal $r(t) \in \mathbb{R}^{n_y}$, while robustly respecting the polyhedral constraints $Hy(t) \leq h, t \in \mathbb{Z}^+$. Towards this end, we first perform an experiment to identify a model of the plant, the details of which are given in the next section.

III. OPEN-LOOP MODEL IDENTIFICATION

An ARX model of a open-loop dynamical system is identified, which is parameterized as follows:

$$A(q^{-1})y(t) = B(q^{-1})u(t) + w(t)$$

For this, the dataset $D_N = \{u(k), y(k); k \in 1, 2, ..., N\}$ obtained from open-loop experiments is utilized. Assuming the model

*This work was not supported by any organization

Sampath Kumar Mulagaleti and Alberto Bemporad IMT Studies with the School for Advanced Lucca. Francesco 19, 55100 Lucca, {s.mulagaleti,alberto.bemporad}@imtlucca.it

Fig. 1: ARX model

is invertible, it is rewritten as

$$y(t) = M(q^{-1})u(t) + D(q^{-1})w(t)$$
(1)

where the transfer functions are $M(q^{-1}) = B(q^{-1})/A(q^{-1})$ and $D(q^{-1}) = 1/A(q^{-1})$. Hence, the output y(t) is the sum of outputs of two systems, a schematic of which is shown here: If the dataset D_N is noise-free, the part $y_D(t)$ of the output y(t) that the model $M(q^{-1})$ does not capture can be attributed to model uncertainty. Hence, the uncertainty is modeled as an exogenous disturbance signal acting on the output. Robust model-based control schemes can utilize this model for controller synthesis, provided the uncertainty set the exogenous disturbance signal w(t) belongs to is available. In the next section, one such control scheme is discussed. Following that, a method to obtain the set in which w(t) lies is presented.

IV. ROBUST CONTROLLER DESIGN

For controller synthesis, we first convert the transfer function in Eq.(1) to state space form, and obtain the following equations:

$$\begin{bmatrix} x_M(t+1) \\ x_D(t+1) \end{bmatrix} = \begin{bmatrix} A_M & 0 \\ 0 & A_D \end{bmatrix} \begin{bmatrix} x_M(t) \\ x_D(t) \end{bmatrix} + \begin{bmatrix} B_M \\ 0 \end{bmatrix} u(t) + \begin{bmatrix} 0 \\ B_D \end{bmatrix} w(t)$$

$$y(t) = \begin{bmatrix} C_M & C_D \end{bmatrix} \begin{bmatrix} x_M(t) \\ x_D(t) \end{bmatrix} + D_M u(t) + D_D w(t)$$
(2)

where the states $x_M(t)$ and $x_D(t)$ belong to the system model M and the disturbance model D respectively. In a condensed way, they are written as:

$$x(t+1) = Ax(t) + B_U u(t) + B_W w(t) y(t) = Cx(t) + D_U u(t) + D_W w(t)$$
(3)

A robust reference governor can be designed to provide a control input u(t) that makes the output y(t) track a reference signal r(t). At each time step t, the controller solves the

optimization problem:

$$\min_{\vec{u}} \sum_{k=1}^{N_P} (\hat{y}(t+k) - r(t+k))^2$$
subject to
$$\hat{x}(t+k+1) = A\hat{x}(t+k) + B_U \vec{u}$$

$$\hat{y}(t+k) = C\hat{x}(t+k) + D_U \vec{u}$$

$$\hat{x}(t) = x(t)$$

$$(x(t), \vec{u}) \in \mathbb{O}_{N_P}$$

$$(5)$$

It reads the initial state x(t) of the system, and calculates a constant control input \bar{u} which is feasible with respect to the output admissible set \mathbb{O}_{N_P} of the system Eq.(2) defined as:

$$\mathbb{O}_{N_P} = \{ (x(t), \bar{u}) : y \in \mathbb{Y}, u(t+k) = \bar{u}, \forall w \in \mathbb{W} \\ \forall k \in \{1, 2, ..., N_P\} \}$$
(6)

where $y \in \mathbb{Y}$ denotes the future output sequence $\{y(t+k) \in \mathbb{Y}, k=1,...,N_P\}$ and $w \in \mathbb{W}$ denotes the future disturbance sequence $\{w(t+k) \in \mathbb{W}, k=0,...,N_P\}$. It is the set of initial states x(t) and a constant control input \bar{u} such that the future output trajectory of the system does not violate the constraints defined by \mathbb{Y} for any possible bounded disturbance sequence $w \in \mathbb{W}$, within the horizon time N_P .

At any future time instant t+k, given the initial state x(t) and a constant control input \bar{u} , the output y(t+k) is given by:

$$y(t+k) = CA^{k}x(t) + \left(C\sum_{j=0}^{k-1} A^{j}B_{U} + D_{U}\right)\bar{u} + C\sum_{j=0}^{k-1} A^{j}B_{W}w(t+k-1-j) + D_{W}w(t+k)$$
(7)

It is desired to constraint the output y(t+k) at a time instant t+k within the polyhedral set $Hy(t+k) \le h, h \in IR^{n_c}$. The output constraint set \mathbb{Y} represents a collection of these pointwise in time polyhedron constraints, and is written as:

$$\mathbb{Y} = \left\{ y : \begin{bmatrix} H & \cdot & \cdot & 0 \\ \cdot & H & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ 0 & \cdot & \cdot & H \end{bmatrix} \begin{bmatrix} y(t+1) \\ \cdot \\ y(t+N_P) \end{bmatrix} \le \begin{bmatrix} h \\ \cdot \\ h \end{bmatrix} \right\} = \left\{ y : \tilde{H}y \le \tilde{h} \right\}$$

Hence, the definition of set \mathbb{O}_{N_p} in Eq.(8) can be rewritten as:

$$\mathbb{O}_{N_P} = \left\{ (x(t), \bar{u}) : \tilde{H}y \le \tilde{h}, u(t+k) = \bar{u}, \forall w \in \mathbb{W} \\ \forall k \in \left\{ 1, 2, ..., N_P \right\} \right\}_{(\mathcal{O})}$$

Using the form in Eq.(7), the constraints can be enumerated as shown in Eq.(4). It is written in a simplified notation as:

$$\mathbb{O}_{N_P} = \left\{ (x(t), \bar{u}) : \tilde{H} \left(H_x x(t) + H_u \bar{u} + H_w w \right) \le \tilde{h} \right\} \quad (9)$$

Since the output feasibility should hold over all possible future disturbance sequences, we desire to calculate the set

$$\mathbb{O}_{N_P} = \{ (x(t), \bar{u}) : H_x x(t) + H_u \bar{u} \in \mathbb{Y} \sim D \mathbb{W} \sim .. \sim C A^{t+N_P-1} B \mathbb{W} \}$$
(10)

where \sim denotes P-subtraction of sets. Towards this end, we first rewrite (9) as:

$$\mathbb{O}_{N_{P}} = \left\{ (x(t), \bar{u}) : G_{x}(t) + G_{u}\bar{u} + G_{w}w \leq \tilde{h} \right\} \\
= \left\{ (x(t), \bar{u}) : G_{x}(t) + G_{u}\bar{u} + \begin{bmatrix} G_{w}^{1} \\ \vdots \\ G_{w}^{n_{c}N_{P}} \end{bmatrix} w \leq \begin{bmatrix} h_{Y}^{1} \\ \vdots \\ h_{Y}^{n_{c}N_{P}} \end{bmatrix} \right\}$$
(11)

where $G_x = \tilde{H}H_x$, $G_u = \tilde{H}H_u$ and $G_w = \tilde{H}H_w$. Row *i* of the matrix G_w is denoted as G_w^i , and element *i* of the vector \tilde{h} is denoted as h_Y^i . For polyhedral sets like in our case, performing P-subtractions results in the set:

$$\mathbb{O}_{N_{P}} = \{ (x(t), \bar{u}) : G_{x}x(t) + G_{u}\bar{u}) \leq h_{YW} \}
h_{YW}^{i} = h_{Y}^{i} - \sup_{w \in \mathbb{W}} G_{w}^{i} w$$
(12)

where h_{YW}^i is the element *i* of the vector h_{YW} .

To calculate this input feasible set, we need the disturbance sequence set \mathbb{W} . The calculation of this set is discussed in the next section.

V. CALCULATION OF \mathbb{W}

As discussed earlier, the part $y_D(t)$ of the output y(t) represents uncertainty modeled as an exogenous disturbance input. The signal $y_D(t)$ is generated by the model $D(q^{-1})$, whose state-space equations are written as

$$x_D(t+1) = A_D x_D(t) + B_D w(t) y_D(t) = C_D x_D(t) + D_D w(t)$$
(13)

A sample data set U_N of $y_D(t)$ can be obtained from D_N , by simulating the model $M(q^{-1})$ with the input signals u(k), as:

$$U_N = \{ y_D(k) = y(k) - M(q^{-1})u(k); k \in 1, 2, ..., N \}$$
 (14)

with the initial condition $x_M(0) = 0$.

$$x(t+1) = Ax(t) + B_U u(t) + B_W w(t) v(t) = Cx(t) + D_U u(t) + D_W w(t)$$
(15)

After collecting N data points of $y_D(k)$, an outer bounding polyhedral set \mathbb{Y}_D^N is constructed that encompasses the whole dataset U_N . As the number of data points in the experiment increase, we obtain $\mathbb{Y}_D^N \subseteq \mathbb{Y}_D^{N+1}$ since $\mathbb{Y}_D^{N+1} = \mathbb{Y}_D^N \cup \{y_D(N+1)\}$.

Assumption 1: In the limit of infinite data used to build U_N , the outer encompassing sets \mathbb{Y}_D^N converge to a steady set \mathbb{Y}_D^∞ .

Following assumption 1, \mathbb{Y}_D^{∞} is the largest set within which every possible exogenous disturbance $y_D(t)$ lies. That is, $y_D(t) \in \mathbb{Y}_D^{\infty} \, \forall \mathbf{Z}^+$. In a polyhedral form, this set defining the point wise in time values of $y_D(t)$ is written as $\mathbb{Y}_D^{\infty} = \{y_D(t) : H_D y_D(t) \leq h_D \, \forall t \in \mathbf{Z}^+\}$.

Since $y_D(t)$ lies within \mathbb{Y}_D^{∞} at each time instant t, we can define a sequence $y_D \in \mathbb{Y}_D$ starting from time instant t and going N_P time steps into the future $\{y_D(t+k) \in \mathbb{Y}_D, k = 1,...,N_P\}$ as:

$$\mathbb{Y}_{D} = \left\{ y_{D} : \begin{bmatrix} H_{D} & \cdot & \cdot & 0 \\ \cdot & H_{D} & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ 0 & \cdot & \cdot & H_{D} \end{bmatrix} \begin{bmatrix} y_{D}(t+1) \\ \cdot \\ y_{D}(t+N_{P}) \end{bmatrix} \le \begin{bmatrix} h_{D} \\ \cdot \\ h_{D} \end{bmatrix} \right\}$$

$$= \{ y_{D} : \tilde{H}_{D} y \le \tilde{h}_{D} \}$$

$$(17)$$

At any future time instant t + k from the current time instant t, given the model (13) and initial condition $x_D(t)$, the output $y_D(t+k)$ can be written as:

$$y_D(t+k) = C_D A_D^k x_D(t) + C_D \sum_{j=0}^{k-1} A_D^j B_D w(t+k-1-j) + D_D w(t+k)$$
(18)

Similar to before, we construct a set $\mathbb{O}_{N_P}^D$ defined as:

$$\mathbb{O}_{N_{P}}^{D} = \{(x_{D}(t), w) : y_{D} \in \mathbb{Y}_{D} \quad \forall k \in \{1, 2, ..., N_{P}\}\} \\
= \{(x_{D}(t), w) : \tilde{H}_{D}y_{D} \leq \tilde{h}_{D} \quad \forall k \in \{1, 2, ..., N_{P}\}\} \\$$
(19)

This is the set of initial conditions $x_D(t)$ and exogenous disturbance input sequence $\{w(t+k), k \in 0, 1, ..., N_P\}$, such that the output of the system (13) always stays inside the set defined by (17). Using the prediction of the output given by (18) in (19), the set $\mathbb{O}_{N_P}^D$ can be rewritten as (16), which is rewritten in (20) in a condensed form:

$$\mathbb{O}_{N_P}^D = \{ (x_D(t), w) : \tilde{H}_D(H_x^D x_D(t) + H_w w) \le \tilde{h}_D \}$$
 (20)

Hence, given an initial condition $x_D(t) = x_D$, we can calculate the set $\mathbb{W}(x_D)$ as:

$$\mathbb{W}(x_D) = \{ w : \tilde{H}_D H_w w \le \tilde{h}_D - \tilde{H}_D H_x^D x_D \}$$

= \{ w : \textit{G}w \le g_x(x_D) \} (21)

This is the largest set in which the disturbance input sequence $\{w(t+k), k \in 0, 1, ..., N_P\}$ can lie in, such that the corresponding output sequence $\{y_D(t+k), k \in 1, ..., N_P\}$ always lies within (17).

Assumption 2: The set \mathbb{O}_{N_P} as defined in (10) is non-empty for $\mathbb{W} = \mathbb{W}(x_D(t))$ for all possible $x_D(t)$.

To calculate the input feasible set \mathbb{O}_{N_P} by solving the equations in (12), we need the initial state x(t) of the system (2). This initial state includes $x_D(t)$. We can use this to first calculate the corresponding disturbance sequence set $\mathbb{W}(x_D)$, and set $\mathbb{W} = \mathbb{W}(x_D)$. Following this, we calculate the set \mathbb{O}_{N_P}

Algorithm 1 Robust MPC scheme

- 1: **Repeat** every sampling instant: t = 0, 1, ...
- 2: Read current state x(t), set $x_D = x_D(t)$
- 3: Calculate $\mathbb{W}(x_D)$ according to (21), set $\mathbb{W} = \mathbb{W}(x_D)$
- 4: Solve the linear programs in (12) to obtain \mathbb{O}_{N_P}
- 5: Use \mathbb{O}_{N_P} in (5) to obtain control input \bar{u}
- 6: Apply \bar{u} to the plant
- 7: Until end of run

as shown in (12). Assuming assumption 2 holds, the MPC scheme (5) to calculate the optimal control input \bar{u} . This procedure is summarized in Algorithm 1.

It should be noted that according to Algorithm 1, at each time step t, n_cN_P number of linear programs in (12) for the worst case disturbance sequences of w should be solved, before solving the quadratic program (5). This online computation might be infeasible in practical applications. In such applications, it is desirable to calculate the sets \mathbb{W} and \mathbb{O}_{N_P} offline.

To calculate these sets offline, we first define the set $\mathbb{X}^D = \{x_D : G_x^D x_D \leq g_x^D\}$. This is the set of all the initial conditions that the disturbance block with state-space model (13) can take. If the state-space model (13) is a non-minimal realization of the I/O model $y_D(t) = D(q^{-1})w(t)$, the state vector $x_D(t)$ at any time instant t is a collection of the previous outputs $y_D(t)$. This is because the model $D(q^{-1}) = 1/A(q^{-1})$ means that there is no dependence of current output $y_D(t)$ on past input sequence $\{w(k), k < t\}$. Following assumption 1, if we can build the set \mathbb{Y}_D^{∞} in which the output $y_D(t)$ can lie at any instant of time t, construction of the corresponding set \mathbb{X}^D becomes trivial, and follows along the lines of (17). Upon construction of \mathbb{X}^D , we can define the disturbance sequence set \mathbb{W}_{Ω} as:

$$\mathbb{W}_{\Omega} = \operatorname{proj}_{w}(\mathbb{O}_{N_{P}}^{D})$$

$$= \{ w : \exists x_{D}(t) \in \mathbb{X}^{D} : \tilde{H}_{D}(H_{x}^{D}x_{D}(t) + H_{w}w) \leq \tilde{h}_{D} \}$$
(22)

By setting $\mathbb{W} = \mathbb{W}_{\Omega}$ in (12), the set \mathbb{O}_{N_P} can be constructed offline. This set can be used to calculate the optimal control input \bar{u} by solving (5). These steps are summarized in Algorithm 2.

Proposition 1: Using Algorithm 2 instead of Algorithm 1 to compute \bar{u} results in conservative controller performance.

Proof: Let $\mathbb{O}^1_{N_P}$ and $\mathbb{O}^2_{N_P}$ be the two polyhedral sets constructed in Algorithm 1 and Algorithm 2 respectively. By construction, $\mathbb{W}(x_D(t)) \subseteq \mathbb{W}_\Omega \ \forall x_D(t) \in \mathbb{X}^D$. This means

Algorithm 2 Robust MPC scheme with projected set

- 1: Compute \mathbb{X}^D from \mathbb{Y}_D^{∞}
- 2: Perform set projection to compute \mathbb{W}_{Ω} according to (22)
- 3: Set $\mathbb{W} = \mathbb{W}_{\Omega}$, compute \mathbb{O}_{N_P} according to (12)
- **Repeat** every sampling instant: t = 0, 1, ...
- Read current state x(t)5:
- Use \mathbb{O}_{N_P} in (5) to obtain control input \bar{u} 6:
- 7: Apply \bar{u} to the plant
- 8: Until end of run

that in (12),

$$\sup_{w \in \mathbb{W}(x_D(t))} G_w^i w \le \sup_{w \in \mathbb{W}_{\Omega}} G_w^i w \quad \forall x_D(t) \in \mathbb{X}^D$$
 (23)

Since G_x and G_u in (12) are the same for $\mathbb{O}_{N_P}^1$ and $\mathbb{O}_{N_P}^2$, $\mathbb{O}_{N_P}^{N_P} \subseteq \mathbb{O}_{N_P}^1 \forall x_D(t) \in \mathbb{X}^D$. If Assumption 2 holds, the set $\mathbb{O}_{N_{P}}^{2}$ is non-empty. Hence, a feasible solution \bar{u} exists when (5) is solved, but it belongs to a smaller set resulting in a conservative solution.

This conservativeness arises because on propagating the system (18) with initial condition $x_D(t) \in \mathbb{X}^D$, the corresponding output sequence set is $y_D \in \mathbb{Y}_D^{\Omega} \supseteq \mathbb{Y}_D$.

Ideas: Say first N data points are collected. An outer bounding polyhedral set \mathbb{Y}_N^D is calculated, that encompasses all the points in U_N . Now, every point in U_N lies in this set. As the number of data points increase, we will obtain for sure $\mathbb{Y}_N^D \subseteq \mathbb{Y}_{N+1}^D$. Assuming we have infinite data, we have the largest set \mathbb{Y}_{∞}^D in which every possible $y_D(t)$ will lie. Let \mathbb{Y}_{∞}^D be a polyhedron $H_D y_D(t) \le h_D$. Then, starting at a timestep t, if we define $y_D \in \mathbb{Y}_D$ as the sequence $\{y_D(t+k) \in \mathbb{Y}_D, k = 0\}$ $1,...,N_P$ }, we can write the set \mathbb{Y}_D as:

$$\mathbb{Y}_D = \left\{ y_D : \begin{bmatrix} H_D & . & . & 0 \\ . & H_D & . & . \\ . & . & . & . \\ 0 & . & . & H_D \end{bmatrix} \begin{bmatrix} y_D(t+1) \\ . \\ y_D(t+N_P) \end{bmatrix} \le \begin{bmatrix} h_D \\ . \\ h_D \end{bmatrix} \right\} = \left\{ y_D : \tilde{H}_D y \le \tilde{h}_D \right\}$$
REFERENCES
$$\{ y_D : \tilde{H}_D y \le \tilde{h}_D \}$$
Survey," in Robustness in identification and control (A. Garulli and A. Tesi, eds.), (London), pp. 207–226, Springer London, 1999.

From this, we can expand in the same way by leaving the w sequence as it is. This will lead to a very similar set of equations. which at each time instant k is indicated as lying in a polyhedral set

$$y_D(k) \in \mathbb{Y}_N^D = \{ y_D : H_D y_D \le h_D \}$$
 (24)

In the limit of infinite data D_N , the set \mathbb{Y}_N^D approaches the actual exogenous disturbance output set \mathbb{Y}_N^D . Using this set, which is the output constraint set of the system described by Eq.(13), we calculate $\vec{\mathbb{W}}(x_D(t))$ at each time instant t. It is the set in which the sequence of disturbance inputs $\{w(t+k): k=0: N_P\}$ should lie in, such that the output constraint $\{y_D(t+k) \in \mathbb{Y}^D_{\infty} : k=0 : N_P\}$ of the disturbance model are respected.

To calculate $\mathbb{W}(x_D(t))$, we write the predicted output $y_D(t+$

k) of the disturbance model given the initial state $x_D(t)$ as:

$$y_D(t) = C_D x_D(t) + D_D w(t)$$
 if $k = 0$

$$y_{D}(t+k) = C_{D}A_{D}^{k}x_{D}(t) + C_{D}\sum_{j=0}^{k-1}A_{D}^{j}B_{D}w(t+k-1-j) + D_{D}w(t+k)$$
 if $k > 0$

Collecting the disturbance input sequences $\{w(t+k): k=$ $1: N_P$ in a vector \vec{w} , the set $\vec{\mathbb{W}}(x_D(t))$ can be written as: Hence, at each time step t, the state of the disturbance model $x_D(t)$ can be read, and the corresponding disturbance input set $\widetilde{\mathbb{W}}(x_D(t))$ can be calculated. Following this, the linear programs in Eq.(12), which are rewritten as follows are solved:

$$h_{YW}^i = h_Y^i - \sup_{\vec{w} \in \vec{\mathbb{W}}(x_D(t))} H_w^i \vec{w}$$
 (26)

Hence, the output admissible set \mathbb{O}_{N_P} is obtained, which is used in the controller solving the optimization problem described in Eq.(5) to calculate a robust optimal control input

Following this, write it in an algorithmic form, and write conditions for which the set \mathbb{O}_{N_P} will be non-empty. (Something about the size of W set .)

VI. USING THE PROJECTED SET

Instead of solving so many LPs before a QP, we can project the set W. For this, we need the set within which the state of the disturbance block can lie. This is possible to be obtained if we use a non-minimum realization as the state space model. When we have that, we can project within that subset and get a much more conservative thing. Have to write a theorem that projection is a good idea: The obtained set is larger than the original. Assumption that origin lies with W or something, so that it is feasible. Proof by doing minkowski difference: Sup over a larger feasible set leads to a larger number: But that should not break the feasibility of MPC.

A. Tesi, eds.), (London), pp. 207-226, Springer London, 1999.