Formson Long Arces
EBCS 6892
Vonen k 2

Pablem 1) X, ER X~N(WZ, JI) WERK W~N(O, X) Z, ER Z,~N(O, I) p(x/Wz, 3I)= (2ndI) exp[===[(X, WZ)(X, -WZ)] p(w) = (=) = expt-== +ac (ww)] p(2) = (210) Exp[===1] In order to find W'= 30 map / p(x,, x, w) Note short (np(x,,,,xn, w)= fq(2n) In P(x,,,xn,w,zn) dzn

gle) Kerp [- + (WW)+02 & (XXXV - 2X, WZn + Z, ZN)] dexp[-trace(ww)+3 = = (= xnw) (= - xnw) (= - xnw) Which is a Normal distribution with Then, we need to like the eggedation of the joint. L(w) = Eglap(+, x,w) p(z,x,w) < P(w) to p(x, |w, zn) p(zn) 4 / (21) * exp[= + zn zn] * exp[= = zn zn] =/n[[]]() (2元) (2元) (0) exp[元 trace(UTL) [(元(N-Wan))]) - 三元元元] $= \ln \left(\frac{1}{\lambda^{2}} \left(\frac{2\pi}{2\pi} \right)^{-\alpha (d+i)} \right) + \frac{1}{2\pi} \left(\frac{\pi}{2} \left(\frac{1}{\lambda} \right) \right) \right) \right) \right) \right) \right) \right) \right)}{2\pi \left(\frac{1}{\lambda} \left(\frac{1$ = Etandants - Strace(UTW) - ZEI (F. (Xn-WtN (Xn-WAN)) - ZEI ZNZn = Elostants - 2 trace(WW) = = [XnXn+ = [XnVn+ = = trace(WW) = zn = n]

(W) = constants - 2 trace(WW) - = = [XnXn+ = [XnVE[zn] - zn trace(WW)] = [Znzn] $\frac{1}{2}(\omega) = 0 = -\lambda \omega - \frac{1}{2} \frac{E(z_n z_n)}{E(z_n z_n)} + \frac{1}{2} \chi_n E(z_n)$ $\frac{1}{2} \frac{1}{2} \chi_n E(z_n) = \frac{1}{2} \chi_n E(z_n)$ $\frac{1}{2} \frac{1}{2} \frac{1}{2} \chi_n E(z_n) = \frac{1}{2} \frac{1}$

Thus, we have both the E-stap of the M-stap. The next step that is left-is to verify convergence by calculating Ing(Vy, xn, w) and ensum that as to so the term is more about my memories. To calculate he by Inp(X,,,,X,W)=/1/9(2n) p(X,,,,X,W,Zn) dzn = ELInp(X,,,,Xn,W, Zn) = -全 trace(WW)-左至XXX+左至XXWV* 云 trace(WW)是 E* This EM algorithm can be implemented by the following: 1. Fratistic W. as a (dxk) matrix wild zeroes.

2. For prations t=1,2,... Tw ZXTW

a- Calculate \[\flace{1} \frac{1}{2} \] = \frac{1}{\tau_{\text{accomp}} \text{Trace} \text{Comptall} b. - Update Wit as West = INE(Zn) (M-8trp). C. Colculde Inge (Xyon Xn, W) and stop when Inge () - Inge () < E Forzone smill E>0.

Problem 2

a. See Python code attached.

b.

C.

	Actual = 4	Predicted = 9
Predicted = 4	930	52
Predicted = 9	77	932

d. Misclassified digits

e. Most ambiguous predictions

f. Reconstructed w_t

