P.5 Geometry

Review of P.4 work on geometry (supplementary and complementary angles)

- 1. What are complementary angles and supplementary
- 2. What are supplementary angles?
- 3. What is the complement of
- a) 86⁰
- b) 40⁰

- 4. What is the supplement of 120°
- 5. Two complementary angles are x and 43° . What is the value of x.
- 6. 3y and 60° are supplementary angles. Find the value of y.

Work out the value of the missing angles below.

1.

2.

3.

5.

6.

7.

10.

REFERENCE:

- MK Bk. 5, Page 199 201
- MK BK. 7 page 202 205
- Fountain BK. 5 Page 206 208

Review: measuring and drawing angles. (Between 0 and 180°) A protractor:

A protractor is an instrument used to measure angles in degrees. It is divided into 180 small units. Each unit is called a degree. A protractor has an inner scale and an outer scale. The inner scale reads from right to left and the outer scale reads from left to right.

NB. There is a line segment which passes through the centre point of the protractor and joins the zeros of the two scales.

Measuring angles

Hint: Procedure.

- 1. Place the centre point on the vertex of the angle.
- 2. Adjust the line segment joining the zeros of the scales to fall on top of the arms of the angle.
- 3. The measure of the angle is given by the mark where the other arm crosses the scale.

Note: Different angles will be drawn and photocopied for each child to measure and label the angles.

Drawing angles using a protractor.

Procedure

1. Draw a line and on it mark a point A.

- 2. Place the protractor on the line so that the centre point comes on A and the line passes through the Zero marks of inner and outer scales. Mark a point.
- 3. Remove the protractor and draw a line from point A to the marked point.

REFERENCE:

- MK Bk. 5, Page 194.
- Primary level mathematics Bk. 6, 7 and 8 page 54 55.

Names of polygons

Name of polygon	No. of sides
Triangle	3
Quadrilaterals	4
Pentagon	5
Hexagon	6
Heptagon / Septagon	7
Octagon	8
Nonagon	9
Decagon	10
Nuo – decagon	11
Duo – decagon	12

Lines of symmetry

NB.

- 1. A line of symmetry divides a figure or an object into 2 equal parts such that when folded, the parts do not overlap but cover each other completely.
- 2. All regular polygons have the same number of lines of symmetry as the sides of the polygon.

A. TRIANGLES

1. Equilateral triangle

3 lines of symmetry.

2. Isosceles triangle

1 line of symmetry

3. Scalene triangle

No line of symmetry

B. QUADRILATERALS

4 lines of symmetry

2. Rectangle

2 lines of symmetry

5. Parallelogram

No line of symmetry.

C. OTHER (REGULAR) POLYGONS.

Example: A regular pentagon and regular hexagon.

6 lines of symmetry etc.

D. THE CIRCLE

Has very many lines of symmetry OR Has an infinite number of lines of symmetry.

NB: Hint on other shapes and letters.

REFERENCE: - Understanding MTC Book 5 page 190 – 191

- MK New edition page 185.

Review: The Circle

A. Parts of a circle

a) Name the lines:

- i) RO = _____
- ii) PQ = _____
- iii) ST = _____
- iv) PSTQR = _____

NB: i) Half of a circle is called a _____

ii) A quarter if a circle is called a _____

iii) The total distance around a circle is ______

B. Drawing circles

i) Using a pair of compasses and a ruler only, construct circles given radii.

- a) 3cm
- b) 3.5cm
- c) 5cm etc.

ii) Using a pair of compasses and a ruler, construct a circle given diameter.

Note: Hint on the proper calculation of radius and diameter given different units of measurement of wholes and decimals.

REFERENCE: - Primary Mathematics B. 6, 7, and 8 pg. 64.

- MK Bk. 5 pg 186

- Functional mathematics Book 5 page 203 – 4.

Parallel lines

These are lines which do not meet.

- They always remain the same distance apart at every point.
- They don't intersect when produced in either direction.
- They are shown with arrow head.

Drawing Parallel lines

- A) Using a ruler and a pencil.
 - i) Suspend the ruler on the flat surface (book)
 - ii) Without the ruler moving Use a pencil to draw lines on the two straight edges of the ruler.
 - iii) Remove the ruler the two lines are parallel.

B) Using a ruler and a set square.

Step I: Given the line AB

Step II: Place a set square along line AB.

Step III: Place a ruler along the hypotenuse side of the sets square.

Step IV: Drag the set square downwards along the ruler.

Step V: Draw a line CD on top of the set square AB is parallel to CD.

REFERENCE: - Understanding maths Book 5 page 187

- MK Bk. 5 page 177

- Supplementary Maths Bk. 6, 7 and 8 page 56.

Perpendicular lines

These are lines that meet at a right angle (90°)

Using a pencil and a set square.

In the figure below AB is perpendicular to CD.

Using symbols : AB L CD

Constructing perpendicular lines
Constructing a perpendicular line a t a point.
Example
Given a line marked ABC shown. Construct a perpendicular line at B.
Constructing a perpendicular line a t a point.
Using a ruler and a pair of compasses. Construct the following angles.
1. 60° 2. 90°

Bisecting angles

Bisect the following angles

Note: Bisecting an angle or line means dividing it into two equal parts.

Bisect the following angles.

Example: Bisect the reflex VOT.

Angles constructed by bisecting

a) 30⁰

b) 45⁰

c) 135⁰ 150⁰

Constructing a triangles of given sides. (SSS)

Example: Using a ruler and pair of compasses construct an equilateral triangle PQR with side 4cm.

<u>Sketch</u>

Example: Construct an Isosceles triangle of side 4cm, 3cm, 3cm.

<u>Sketch</u>

Example: Construct a scalene triangle MNO of 4cm, 3cm, and 5cm.

Sketch

Activity

- 1. Construct an equilateral triangle ABC whose one side is a) 5cm b) 3.5cm
- 2. Construct an isosceles triangle PQR such that PQ = PR = 4cm.
- 3. Construct a triangle such that AB = 6cm, AC = 5cm and BC = 4cm.

Constructing a triangle given one angle: (SAS)

Example: Using a pair of compasses and a ruler only, construct a triangle ABC such that BC = 6cm, AB = 5cm and \angle ABC = 60 $^{\circ}$.

Sketch

Constructing a triangle given two angles and one side.

Example: Construct a triangle ABC where line AB = 6cm, \angle A = 90°. \angle B = 30°. **Sketch**

REFERENCE: MK BK. 7 pages 263 - 264

Constructing squares and rectangles..

Example: Using a pair of compasses, construct a square of 5cm.

Sketch

Example: Using a ruler, pencil and a pair of compasses only. Construct a rectangle ABCD of length 6cm and width 3cm.

Constructing of Hexagon

Example: Construct a hexagon with side 3cm.

REFERENCE: MK BK. 7 pages 271 – 273.

Rotations and Compass directions.

A rotation is a change carried out on a fixed point and is described by giving the angle and directions of the turn.

Rotations can be anticlockwise or clockwise.

NB. The major cardinal points are further sub – divided.

NB: A quarter turn =
$$\frac{1}{4} \times 360^{\circ} = 90^{\circ}$$

A half turn = $\frac{1}{2} \times 360^{\circ} = 180^{\circ}$

Example 1: John was facing South and turned clockwise to face East. Through what angle did he turn?

Example 2: Okot was facing North and turned through an angle of 135⁰. What will be his new direction?

NB =
$$135 - 90$$

= 45°
Also: $45 + 45 + 45 = 135^{\circ}$

He will be facing South East.

REFERENCE: MK BK 5 page 190 – 192.