

Hardware

SIMS today

Digital eSIMS

IoT SAFE eSIMS

IoT Registry

IoT Registry Ecosystem

Device Identity Management

DNS & DNSSEC as the new IoT root of trust

Standards

GSMA

GSMA IoT SAFE

IEFT

DNSSEC

Value Proposition

Use Cases

Value to customers

SUBSCRIBER IDENTITY MODULE - SIM

- Tiny, portable memory chip (64k), stores mobile device user info.
- 17 digit code country code of origin, MNO, unique user ID
- Enables mobile device to connect with a GSM network
 & GSM networks to track usage

SIMS TODAY

Physical SIM

- Have a set of stored secure credentials
- Locked, mave to change SIM cards when changing providers
- Expensive bill of materials
- Limited control once deployed
- Hackable by having access to a password recovery text on the device
- Get damaged easily

eSIM

Embedded SIM (digital)

- Open ecosystem with multiple profiles
- Smaller power efficient devices
- Reduced cost
- Remote mamagement
- Better at withstanding vibrations and heat, so they can be soldered inside engines and still function

API In Scope #2, 4

API Out of Scope # 1,5,3,6,7

#3

ETSI, 3GPP & Global Platform for OTA SIM management or GSMA for remote SIM provisioning

#1, #5

Mozilla IoT Schema, Web of Things

#5

New EPP like IETF standard to be developed

#6,7

Existing CA specs.

ARCHITECTURE

Using the SIM as a 'Root of Trust' to Secure IoT Applications

ZERO TOUCH REMOTE eSIM PROVISIONING

eSIM

Building on the existing eSIM -> MNO trust model

middle attack proof solution **loT Client loT Server Application Application** (D)TLS IP Connection **loT Device Side** Backend **loT Device loT Server** Secure IoT Registry Middleware Middleware MNO SIM with **Provides IoT Security IoT Security DNSSEC** based Service SIM OTA Applet IoT device IoT SAFE attestation linked to the eSIM ID API defined by GSMA API already standardised De-facto APIs already exist

'Bad Actor' in the

 \bigcirc

SIMILARITIES BETWEEN

Domain Names & IoT Devices

IOT REGISTRY

Public Internet Ecosystem

IOT REGISTRY

Private Network Ecosystem

- Connects to correct MNO
- Pushes configuration / security certificates to the devices
- Provisioning/De-provisioning devices
- Changing MNO/service provider for devices
- Disconnecting from MNO

HARDWARE ROOT OF TRUST

Inherent Trust of a cryptographic system by the ecosystem

- Foundation on which all secure operations of an ecosystem use & depend on
- Provides a trusted execution environment (TEE) for software to run on
- Inherently trusted so must be secure by design
- Critical component of public key infrastructures (PKIs)
- Trust keys & cryptographic information to be authentic & authorized

INFO FOR THE IOT DEVICE TO CONNECT WITH THE ASP

Cloud IoT Application Service Provider Requirements

- Building the Registry Payload content
- Need the IoT device end point info.
 - o URL, port,
 - WiFi SSID + Password (encrypted)
 - o ASP CERT, etc...
 - ASP FQDN (that's DNS ;-)

Mobile Network Operator Integration

- Setup trusted connection
- Provide CIRA root certs
- Provide CIRA IoT Registry DoT service
- Enough info to send a Registry Payload to the IoT device

Enough information for the IoT device to connect with the ASP

Once IoT device is live on MNO Network

- Ask the IoT device via MNO to create a new key pair (public/private)
- MNO sends the IoT device CSR to the IoT registry to sign
- IoT Registry returns a signed CERT to the MNO & ASP
- MNO sends the signed CERT on the IoT eSIM

This is when we push the Registry Payload to the IoT Device

Mobile Network
Operators (MNO)

Over the air

provisioning

Registry Payload

- IoT registry CIRA profile
- IoT Registry related CERTs
- CIRA DoT Trusted Recursive CERT
- IANA root trust anchor
- CN Unique value per SIM linked with eUICCID (unique eSIM ID)

Pre-provisioned at SIM activation

Downloaded over-the-air

^{*} Private / Public Key pair generated on-board

Connect securely to the cloud/ASP

- Verify authenticity of Registry Payload with the unique IoT device 'IoT SAFE' private keys
- IoT Registry published a hash of the CERT in DNS w/DNSSEC
- Authenticity/identification of the IoT device can be verified with the signed CERT & via DNSSEC
- The IoT device can establish a connection to the ASP

Use Registry Payload information to connect to ASP (IoT device middleware must support this function!)

DEACTIVATION & DELETE

Very Important in Device Management

Deactivate - De-provisioned but still listed in the IoT Registry

Delete - Delete from the IoT Registry

A NEW ROOT OF TRUST - DNSSEC

Leveraging the public DNS & DNSSEC to validate

- Authentication of IoT SAFE Applet by eSIM ID
- Authenticity Registry Payload using IoT SAFE crypto functions
- TLSA DNSSEC based TLS Certificate authentication (ASP authentication)

VALUE PROPOSITION Features vs Benefits

Feature	IoT Device Manufacturer/Cloud Provider	Customers, 3rd Party Installers
Hardware Root of Trust	End-to-end, chip-to-cloud security	Peace of mind
IoT SAFE eSIM enabled IoT devices	Zero touch provisioning/ re- provisioning of credentials	Enhanced, inherent security
Always ON remote registration, activation & transfer	 Easy setup & lifecycle management Confirmed to belong to vendor 	Plug & play installation & setup
Remote turn off / wipe clean IoT device config	Granular control of credential provisioning	Effortless management of broken or stolen IoT devices

VALUE PROPOSITION Features vs Benefits

Feature	IoT Device Manufacturer/Cloud Provider	Customers, 3rd Party Installers
IoT Security at scale	Hassle free quick scaling	Unlimited options for products
Interoperability across different service providers	New business model	Leverage best value for service
Multiple profiles on one device	Competitive differentiator	Straightforward management

