[Year]

EXIT POLL PREDICTION

M.ABINAYA

CONTENTS

✓ PREDICTION OF ELECTION RESULT 05

LIST OF TABLES

LOGISTIC REGRESSION	33
LDA	34
KNN	35
NAÏVE BAYES	36

LIST OF FIGURES

UNIVARIANT ANALYSIS	10
BIVARIANT ANALYSIS	15
PAIRPLOT	20
HEATMAP	21
OUTLIERS	22
LOGISTIC REGRESSION :Confusion matix	25
ROC CURVE FOR ALL TRAINED DATA	37
ROC CURVE FOR ALL TEST DATA	38

PROBLEM 1:

You are hired by one of the leading news channels CNBE who wants to analyze recent elections. This survey was conducted on 1525 voters with 9 variables. You have to build a model, to predict which party a voter will vote for on the basis of the given information, to create an exit poll that will help in predicting overall win and seats covered by a particular party.

DATA INGESTION:

1.1) Read the dataset. Describe the data briefly. Interpret the inferences for each. Initial steps like head() .info(), Data Types, etc . Null value check, Summary stats, Skewness must be discussed.

<u>DESCRIPTIVE STATISTICS</u>:

HEAD:

ı	Unnamed:	0	vote	age	economic.cond.national	${\tt economic.cond.household}$	Blair	Hague	Europe	political.knowledge	gender
0		1	Labour	43	3	3	4	1	2	2	female
1		2	Labour	36	4	4	4	4	5	2	male
2		3	Labour	35	4	4	5	2	3	2	male
3		4	Labour	24	4	2	2	1	4	0	female
4		5	Labour	41	2	2	1	1	6	2	male

TAIL:

	Unnamed: 0	vote	age	${\tt economic.cond.national}$	${\tt economic.cond.household}$	Blair	Hague	Europe	${\tt political.knowledge}$	gender
1520	1521	Conservative	67	5	3	2	4	11	3	male
1521	1522	Conservative	73	2	2	4	4	8	2	male
1522	1523	Labour	37	3	3	5	4	2	2	male
1523	1524	Conservative	61	3	3	1	4	11	2	male
1524	1525	Conservative	74	2	3	2	4	11	0	female

DATA INFORMATION:

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1525 entries, Ø to 1524 Data columns (total 10 columns): # Column Non-Null Count Dtype 1525 non-null int64 1525 non-null object 1525 non-null int64 Unnamed: 0 0 1 vote age economic.cond.national 1525 non-null economic.cond.household 1525 non-null int64 int64 int64 1525 non-null 5 Blair 1525 non-null Hague 6 1525 non-null int64 1525 non-null int64 7 Europe 8 political.knowledge 9 gender 1525 non-null object dtypes: int64(8), object(2) memory usage: 119.3+ KB

DATA SUMMARY:

	count	mean	std	min	25%	50%	75%	max
Unnamed: 0	1525.0	763.000000	440.373894	1.0	382.0	763.0	1144.0	1525.0
age	1525.0	54.182295	15.711209	24.0	41.0	53.0	67.0	93.0
economic.cond.national	1525.0	3.245902	0.880969	1.0	3.0	3.0	4.0	5.0
economic.cond.household	1525.0	3.140328	0.929951	1.0	3.0	3.0	4.0	5.0
Blair	1525.0	3.334426	1.174824	1.0	2.0	4.0	4.0	5.0
Hague	1525.0	2.746885	1.230703	1.0	2.0	2.0	4.0	5.0
Europe	1525.0	6.728525	3.297538	1.0	4.0	6.0	10.0	11.0
political.knowledge	1525.0	1.542295	1.083315	0.0	0.0	2.0	2.0	3.0

NULL VALUES:

Unnamed: 0	0
vote	0
age	0
economic.cond.national	0
economic.cond.household	0
Blair	0
Hague	0
Europe	0
political.knowledge	0
gender	0
dtype: int64	

SKEWNESS:

WITTEN /	
Unnamed: 0	0.000000
age	0.144621
economic.cond.national	-0.240453
economic.cond.household	-0.149552
Blair	-0.535419
Hague	0.152100
Europe	-0.135947
political.knowledge	-0.426838
dtype: float64	

Check DUPLICATES:

```
dups=df.duplicated()
print("Total no of duplicate values = %d" % (dups.sum()))
df[dups]
```

Total no of duplicate values = 0

Unnamed: 0 vote age economic.cond.national economic.cond.household Blair Hague Europe political.knowledge gender

REMOVAL OF UNWANTED COLUMNS: "UNNAMED:0"

	vote	age	${\tt economic.cond.national}$	${\tt economic.cond.household}$	Blair	Hague	Europe	${\tt political.knowledge}$	gender
0	Labour	43	3	3	4	1	2	2	female
1	Labour	36	4	4	4	4	5	2	male
2	Labour	35	4	4	5	2	3	2	male
3	Labour	24	4	2	2	1	4	0	female
4	Labour	41	2	2	1	1	6	2	male
1520	Conservative	67	5	3	2	4	11	3	male
1521	Conservative	73	2	2	4	4	8	2	male
1522	Labour	37	3	3	5	4	2	2	male
1523	Conservative	61	3	3	1	4	11	2	male
1524	Conservative	74	2	3	2	4	11	0	female

- 1525 rows × 9 columns
- > Presence of 1525 Rows and 10 Columns in the dataset.
- > There are 8 Numerical and 2 Categorical variables.
- > There are no NULL values in the dataset.
- > There are no Duplicates in the dataset.
- > There are no missing values .
- ➤ After removal of unwanted column Unnamed:0 , now we have 1525 Rows and 9 Columns.
- > 812 females & 713 Males taken part in survey
- ➤ 1063 votes polled in favour of Labour party and 462 votes in favour of Conservative party.

1.2) Perform EDA (Check the null values, Data types, shape, Univariate, bivariate analysis). Also check for outliers (4 pts). Interpret the inferences for each (3 pts) Distribution plots(histogram) or similar plots for the continuous columns. Box plots. Appropriate plots for categorical variables. Inferences on each plot. Outliers proportion should be discussed, and inferences from above used plots should be there. There is no restriction on how the learner wishes to implement this but the code should be able to represent the correct output and inferences should be logical and correct.

EXPLORATORY ANALYSIS:

NULL VALUES:

```
Unnamed: 0
                            0
vote
                            0
economic.cond.national
economic.cond.household
                            О
Blair
                            0
Hague
                            0
Europe
                            0
political.knowledge
                            0
gender
dtype: int64
```

SHAPE:

```
df.shape
(1525, 9)
```

After removing unnamed: 0 column , we have 1525 Rows and 9 Columns in the dataset.

DATA TYPES:

```
Unnamed: 0
                            int64
                           object
vote
                            int64
age
economic.cond.national
                            int64
economic.cond.household
                            int64
Blair
                            int64
Hague
                            int64
Europe
                            int64
political.knowledge
                            int64
gender
                           object
dtype: object
```

UNIQUE VALUES:

```
df.gender.value_counts()

female 812
male 713
Name: gender, dtype: int64

df.vote.value_counts()

Labour 1063
Conservative 462
Name: vote, dtype: int64
```

- > 812 females & 713 Males taken part in survey
- > 1063 votes polled in favour of Labour party and 462 votes in favour of Conservative party.

UNIVARIATE ANALYSIS:

VOTE:

AGE:

EUROPE:

GENDER:

BLAIR:

HAGUE:

ECONOMIC.CONDN.NATIONAL:

ECONOMIC.CONDN.HOUSEHOLD:

POLITICAL KNOWLEDGE:

Histplot and Boxplot of variables :

INFERENCES:

- ➤ Out of 1525 , 1063 peoples vote in favour of Labour party in UK Election and 460 vote in favour of Conservative party.
- > People taken part in the survey are between 24 to 93 age group.
- > Out of 1525,338 people strongly support Brexit (Euroseptic) i.e) 22% people.
- > Here out of 1525 , 812 Females participated in the survey i.e) 53.2%
- ➤ Maximum number of people i.e) 624 provide 2 as highest rating to Conservative party and only 73 provide 5 as rating.
- > The average score of economic.condn.national is 3.245.
- ➤ The average score of economic.condn.household is 3.137.
- > In Blair , Rating 4 is higher than 2 whose value is 434.
- > The average political knowledge among 1525 voters is 1.54.
- ➤ In Hague , 2 is slightly higher than the 2nd highest variable 4 whose value is 557. The average score of 'Hague' is 2.75.
- ➤ In Europe ,11 is moderately higher than the 2nd highest variable 6 whose value is 207. The average score of 'Europe' is 6.740

BIVARIATE ANALYSIS:

GENDER Vs VOTE:

vote	gender	
Conservative	female	259
	male	203
Labour	female	553
	male	510

Name: gender, dtype: int64

- > From above we can say that Labour party has more vote than Conservative party.
- > Female votes are more than Male votes.
- > Female participation is slightly higher than Male.

VOTE Vs ECONOMIC.CONDN.NATIONAL:

vote	economic.cond.na	ational	
Conservative	3		200
	2		140
	4		92
	1		21
	5		9
Labour	4		450
	3		407
	2		117
	5		73
	1		16
Name: economi	c.cond.national,	dtype:	int64

- > Labour party has higher votes.
- > 82 people give a score of 5.Among them,73 voted for Labour party
- > 542 people gave a score of 4.Among them 450 voted for Labour party.
- ➤ 607 people gave a score of 3.Among them,407 people voted for Labour party.
- > 257 people gave a score of 2.Among them,117 people voted for Labour party
- > 17 people gave a score of 1. Among them , 16 voted for Labour party.

Vote Vs Age:

vote	gender	
Conservative	female	259
	male	203
Labour	female	553
	male	518
Name: gender,	dtype:	int64

- ➤ In every age group, labour party got more votes than conservative party.
- ➤ In both the genders, labour party got more votes than conservative party.

Vote vs Economic.cond.household:

vote	economic.cond.household	
Conservative	3	198
	2	126
	4	87
	1	28
	5	23
Labour	3	450
	4	353
	2	154
	5	69
	1	37
Name: economi	c.cond.household, dtype:	int64

- > On the whole, Labour party has got more votes than Conservative party.
- Out of 92 people who gave a score of 5, 69 people voted for labour party.
- ➤ Out of 65 people who gave a score of 1, 37 voted for the labour party and 28 voted for the conservative party.

HAGUE Vs EUROPE:

Those who strongly support (HAGUE = 5) Conservative party provide a maximum of 10 points for Brexit. so we conclude that conservative party supporters favours brexit more than labour party supporters.

Europe vs Hague:

Those who strongly support (blair = 5) labour party provide only a max of 5 point for brexit.

Vote vs Europe:

Out of 338 people who gave a score of 11, 166 people voted for the labour party and 172 people have voted for the conservative party.

PAIRPOLOT:

- > Blair, Europe and political.knowledge' variables are slightly left skewed.
- ➤ All other variables seem to be normally distributed.
- Also we can see that, there is mostly no correlation between the variables.

HEATMAP:

- > 'economic.cond.national' with 'economic.cond.household' have moderate positive correlation.
- > 'Blair' with 'economic.cond.national' and 'economic.cond.household' have moderate positive correlation.
- > 'Europe' with 'Hague' have moderate positive correlation.
- 'Hague' with 'economic.cond.national' and 'Blair' have moderate negative correlation.
- > 'Europe' with 'economic.cond.national' and 'Blair' have moderate negative correlation.

OUTLIERS:

Presence of Outliers only in economic.cond.national & economic.cond.household. It wont affect further proceedings so no need to treat it.

	count	mean	std	min	25%	50%	75%	max
age	1525.0	54.182295	15.711209	24.0	41.0	53.0	67.0	93.0
economic.cond.national	1525.0	3.245902	0.880969	1.0	3.0	3.0	4.0	5.0
economic.cond.household	1525.0	3.140328	0.929951	1.0	3.0	3.0	4.0	5.0
Blair	1525.0	3.334426	1.174824	1.0	2.0	4.0	4.0	5.0
Hague	1525.0	2.746885	1.230703	1.0	2.0	2.0	4.0	5.0
Europe	1525.0	6.728525	3.297538	1.0	4.0	6.0	10.0	11.0
political.knowledge	1525.0	1.542295	1.083315	0.0	0.0	2.0	2.0	3.0

1.3) Encode the data (having string values) for Modelling. Is Scaling necessary here or not?(2 pts), Data Split: Split the data into train and test (70:30) (2 pts). The learner is expected to check and comment about the difference in scale of different features on the bases of appropriate measure for example std dev, variance, etc. Should justify whether there is a necessity for scaling. Object data should be converted into categorical/numerical data to fit in the models. (pd.categorical().codes(), pd.get_dummies(drop_first=True)) Data split, ratio defined for the split, train-test split should be discussed.

DATA AFTER ENCODING:

	age	economic.cond.national	economic.cond.household	Blair	Hague	Europe	political.knowledge	vote_Labour	gender_male
0	43	3	3	4	1	2	2	1	0
1	36	4	4	4	4	5	2	1	1
2	35	4	4	5	2	3	2	1	1
3	24	4	2	2	1	4	0	1	0
4	41	2	2	1	1	6	2	1	1

Here we have encoded the vote column and gender column. Here in vote_Labour =1 means the voter votes in favour of Labour party and gender_male=1 means the person is Male.

DATA INFO:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1525 entries, 0 to 1524
Data columns (total 9 columns):
                              Non-Null Count Dtype
    Column
                              1525 non-null int64
 a
    age
    economic.cond.national 1525 non-null int64
 2
    economic.cond.household 1525 non-null
                              1525 non-null
                              1525 non-null
                                              int64
    Hague
    Europe
                             1525 non-null
    Europe 1525 non-null political.knowledge 1525 non-null
                                             int64
 6
    vote_Labour
                              1525 non-null
                                              uint8
                             1525 non-null
    gender_male
                                             uints
dtypes: int64(7), uint8(2)
memory usage: 86.5 KB
```

SCALING:

The data contains features varying in magnitudes, units and range between the 'age' column and other columns. We need to bring all features to the same level of magnitudes. This can be acheived by scaling.

Here we use Min Max sacling method , Data after scaling :

	count	mean	std	min	25%	50%	75%	max
economic.cond.household	1525.0	0.535082	0.232488	0.0	0.50	0.500000	0.750000	1.0
economic.cond.national	1525.0	0.561475	0.220242	0.0	0.50	0.500000	0.750000	1.0
Blair	1525.0	0.583607	0.293706	0.0	0.25	0.750000	0.750000	1.0
Hague	1525.0	0.436721	0.307676	0.0	0.25	0.250000	0.750000	1.0
Europe	1525.0	0.572852	0.329754	0.0	0.30	0.500000	0.900000	1.0
political.knowledge	1525.0	0.514098	0.361105	0.0	0.00	0.666667	0.666667	1.0

SPLIT THE DATA:

```
x=election.drop('vote_Labour',axis=1)
y=election.pop('vote_Labour')

x_train,x_test , y_train, y_test = train_test_split(x,y,test_size = .30 ,random_state = 1)
```

Here split the data into 70:30 ratio with random_state =1.

1.4) Apply Logistic Regression and LDA (Linear Discriminant Analysis) (2 pts). Interpret the inferences of both models (2 pts). Successful implementation of each model. Logical reason should be shared if any custom changes are made to the parameters while building the model. Calculate Train and Test Accuracies for each model. Comment on the validness of models (over fitting or under fitting)

LOGISTIC REGRESSION:

Classification report: Train data

	precision	recall	f1-score	support
0	0.77	0.69	0.73	332
1	0.87	0.91	0.89	735
accuracy			0.84	1067
macro avg	0.82	0.80	0.81	1067
weighted avg	0.84	0.84	0.84	1067

Confusion Matrix: Train data

Classification Report: Test data

	precision	recall	f1-score	support
0	0.70	0.65	0.68	130
1	0.87	0.89	0.88	328
accuracy			0.82	458
macro avg	0.78	0.77	0.78	458
weighted avg	0.82	0.82	0.82	458

Confusion matrix: Test data

OBSERVATION:

> ACCURACY:

• Train Data: 84 %

• Test Data: 82 %

> The error in the test data is slightly higher than the train data, which is absolutely fine because the error margin is low and the error in both train and test data is not too high. Thus, the model is not over-fitted or under-fitted.

LINEAR DISCRIMINANT ANALYSIS:

Train Data:

Classification Report : Confusion Matrix : Train Data

	precision	recall	f1-score	support	
0	0.70	0.76	0.73	308	
1	0.90	0.87	0.88	759	[[233 75]
accuracy			0.84	1067	[[233 /3]
macro avg	0.80	0.81	0.81	1067	[99 660]]
weighted avg	0.84	0.84	0.84	1067	[33 000]]

Test Data:

Classification Report:

Confusion Matrix:

	support	f1-score	recall	precision	
	125	0.67	0.69	0.66	0
[[86 39]	333	0.87	0.87	0.88	1
[AA 2001]	458	0.82			accuracy
[44 289]]	458	0.77	0.78	0.77	macro avg
	458	0.82	0.82	a 22	weighted avo

OBSERVATION REPORT:

> ACCURACY:

• Train Data: 84%

Test Data: 82%

> The model is not over-fitted or under-fitted. The error in the test data is slightly higher than the train data, which is absolutely fine because the error margin is low and the error in both train and test data is not too high. Thus, the model is not over-fitted or under-fitted.

1.5) Apply KNN Model and Naïve Bayes Model (2pts). Interpret the inferences of each model (2 pts). Successful implementation of each model. Logical reason should be shared if any custom changes are made to the parameters while building the model. Calculate Train and Test Accuracies for each model. Comment on the validness of models (over fitting or under fitting).

KNN MODEL:

Train Data:

Classification Report:

Confusion Matrix:

	support	t1-score	recall	precision	
	332	0.76	0.73	0.79	0
	735	0.90	0.91	0.88	1
[[244 88]					
[[277 00]	1067	0.86			accuracy
[63 672]]	1067	0.83	0.82	0.84	macro avg
[05 0/2]]	1067	0.86	0.86	0.86	weighted avg

Test Data:

Classification Report:

Confusion Matrix:

	precision	recall	f1-score	support	
0	0.61	0.62	0.62	130	
1	0.85	0.84	0.85	328	[[81 49]
accuracy			0.78	458	[51 277]]
macro avg	0.73	0.73	0.73	458	[31 2//]]
weighted avg	0.78	0.78	0.78	458	

Observation report:

> Accuracy:

Train Data: 86 %Test Data: 78 %

- Here we take K value as 5.
- As we can see, the train data has a 86% accuracy and test data has 78% accuracy. The difference is more than 5%. So, we can infer that the KNN model is over-fitted.

NAÏVE BAYES MODEL:

Train Data:

Classification Report : Confusion Matrix :

	precision	recall	f1-score	support	
0	0.74	0.72	0.73	332	
1	0.88	0.88	0.88	735	
accuracy			0.83	1067	[[240 92]
macro avg	0.81	0.80	0.80	1067	
weighted avg	0.83	0.83	0.83	1067	[86 649]]

Test Data:

Classification Report:

Confusion Matrix:

	support	f1-score	recall	precision	
	130	0.70	0.72	0.68	0
	328	0.88	0.87	0.89	1
[[94 36]	458	0.83			accuracy
[44 284]]	458	0.79	0.79	0.78	macro avg
[11 501]]	458	0.83	0.83	0.83	weighted avg

Obseravation Report:

> ACCURACY:

Train Data: 83.31%Test Data: 82.53 %

➤ The model is not over-fitted or under-fitted. The error in the test data is slightly higher than the train data, which is absolutely fine because the error margin is low and the error in both train and test data is not too high. Thus, the model is not over-fitted or under-fitted.

BAGGING MODEL:

DECISION TREE:

Train Data:

Classification Report:

	support	f1-score	recall	precision	
	332	1.00	1.00	1.00	0
	735	1.00	1.00	1.00	1
[[331 1]					
[[331 1]	1067	1.00			accuracy
[0 735]]	1067	1.00	1.00	1.00	macro avg
[[[[[[[[[[[[[[[[[[[[1067	1.00	1.00	1.00	weighted avg

Confusion Matrix:

Confusion Matrix:

Test Data:

Classification Report:

			support	†1-score	recall	precision	
			130	0.64	0.64	0.64	0
47	00	11	328	0.86	0.86	0.86	1
47	83	l l	458	0.80			accuracy
202	46	Г	458	0.75	0.75	0.75	macro avg
404	40		458	0.80	0.80	0.80	weighted avg

OBSERVATION:

> ACCURACY:

• Train Data: 100% • Test Data: 80%

- > Here in Train Dateset, the model is over-fitted.In Train dataset,the accuracy is 100% and test data accuracy is 80%. The difference is more than 10%. So, we can infer that the Decision tree model is over-fitted.
- > After using Bagging model, we still getting the model as over fitted.

RANDOM FOREST:

```
► GridSearchCV

► estimator: RandomForestClassifier

► RandomForestClassifier
```

```
RandomForestClassifier
RandomForestClassifier(max_depth=10, min_samples_leaf=25, min_samples_split=30, random_state=0)
```

Train Data:

Classification Report:

Confusion Matrix:

	support	f1-score	recall	precision	
	332	0.71	0.63	0.81	0
	735	0.89	0.93	0.85	1
[[208 124]	1067	0.84			accuracy
[48 687],]	1067	0.80	0.78	0.83	macro avg
[40 00/][1067	0.83	0.84	0.84	weighted avg

Test Data:

Classification Report:

Confusion Matrix:

	support	f1-score	recall	precision	
	130	0.68	0.63	0.75	0
[[82 48]	328	0.89	0.91	0.86	1
	458	0.83			accuracy
[28 300]]	458	0.79	0.77	0.80	macro avg
[20 300]]	458	0.83	0.83	0.83	weighted avg

OBSERVATION:

> ACCURACY:

Train Data: 84%Test Data: 83%

➤ The model is not over-fitted or under-fitted. The error in the test data is slightly higher than the train data, which is absolutely fine because the error margin is low and the error in both train and test data is not too high. Thus, the model is not over-fitted or under-fitted.

BOOSTING:

ADABOOSTING:

```
► GridSearchCV
► estimator: AdaBoostClassifier
► AdaBoostClassifier
```

```
* AdaBoostClassifier
AdaBoostClassifier(algorithm='SAMME', learning_rate=0.1, n_estimators=1000)
```

> ACCURACY:

• Train Data: 84%

• Test Data: 83%

> The model is not over-fitted. The values are good. Therefore, the model is a good model.

GRADIENT BOOSTING:

GradientBoostingClassifier
 GradientBoostingClassifier(random_state=1)

```
    DecisionTreeClassifier
    DecisionTreeClassifier(max_depth=5, min_samples_leaf=15, min_samples_split=70, random_state=0)
```

> ACCURACY:

Train Data: 89%

• Test Data: 81%

The model is not over-fitted. The values are better than AdaBoosting model. The model is a good model. On the whole, this is a good model.

1.7 Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model, classification report (4 pts) Final Model - Compare and comment on all models on the basis of the performance metrics in a structured tabular manner. Describe on which model is best/optimized, After comparison which model suits the best for the problem in hand on the basis of different measures. Comment on the final model.(3 pts)

	Performance Metrics	Train Data Test Data
	Accuracy	84% 82%
	Confusion Matrix	- 600 - 500 - 400 - 400 - 300 - 300 - 200 - 100 - 100 - 100
LOGISTIC REGRESSION	ROC CURVE	10 0.8 0.6 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	AUC SCORE	88.94 %
	Classification Report	precision recall f1-score support 0 0.77 0.69 0.73 332 0 0 0.70 0.65 0.68 130 1 0.87 0.91 0.89 735 1 0.87 0.89 0.88 328 accuracy
	F1 SCORE	89%

	Perfomance	Train Da	ata			Test	Test						
	Metrics					Data							
	Accuracy		840	%				82%					
	C ()												
	Confusion	_						[[86	391				
	Matrix		233	75									
		•						[44 2	[[882]				
			99	שטט.]]								
LDA													
	ROC Curve						1.0		10-0-0-0-0				
		1.0 -		10 10 0 1 - 10 10 1		****	0.8 -	AND THE PARTY OF T		and the same			
		0.8 -			-	part of the second	25			and the same of th			
		0.6 -			process of the same		0.6 -		and the same				
				and the same			0.4 -						
		0.4 -	and the second				0.2 -	Andrew Property					
		0.2 -	and the second				and the second						
		0.0 -					0.0	0.2 0.	.4 0.	6 0.8	1.0		
		0.0	0.2	0.4 (0.6 0.8	1.0							
	AUC Score												
			88.9	%				88	3.38 %	6			
	Classification				f1-score			precision	recall	f1-score	support		
	Report	0	0.70 0.90	0.76 0.87		308 759	0	0.66	0.69		125		
	-	1	0.30	0.07	0.00	755	1	0.88	0.87	0.87	333		
		accuracy	A 00	0.04	0.84	1067	accuracy			0.82	458		
		macro avg weighted avg	0.80 0.84	0.81 0.84		1067 1067	macro avg weighted avg	0.77 0.82	0.78 0.82		458 458		
							werBuren ava	0.02	0.02	0.02	730		
	F1 SCORE		R	8%				87%	6				
			0	<i>5 7</i> 0				07 /	J				

	Performnace	Train Data	Test
	Metrics		Data
	Accuracy	86 %	78%
	Confusion Matrix	[[244 88] [63 672]]	[[81 49] [51 277]]
KNN	ROC Curve	1.0 0.8 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.8 0.6 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	AUC Score	92.2%	82.9 %
	Classification	precision recall +1-score support	precision recall f1-score support
	Report	0 0.79 0.73 0.76 332 1 0.88 0.91 0.90 735	0 0.61 0.62 0.62 130 1 0.85 0.84 0.85 328
		accuracy 0.86 1067 macro avg 0.84 0.82 0.83 1067 weighted avg 0.86 0.86 0.86 1067	accuracy 0.78 458 macro avg 0.73 0.73 0.73 458 weighted avg 0.78 0.78 0.78 458
	F1 SCORE	90%	85%

	Performance	Train						Test					
	Metrics	Data				Data							
	Accuracy		83.3% 82.5%										
	Confusion		[[240	621					94	361			
	Matrix		[[240 [86 (-					[44 :	_]		
			[86 649]]										
NAÏVE BAYES	ROC CURVE	0.8 - 0.6 - 0.4 - 0.2 - 0.0	0.2	0.4 65 %	0.6	0.8 1.	0.8 - 0.6 - 0.4 - 0.2 - 0.0	0.2	0.4	0.6	0.8	1.0	
	Classification		precision	recall	f1-score	sunnort			precision	recall	f1.score	sunnort	
	Classification		hi cc131011	10011	12-20010	20pport			AI COTSTOIL	10011	12-20010	24PPVI C	
	Report	0	0.74	0.72	0.73	332		0	0.68	0.72		130	
		1	0.88	0.88	0.88	735		1	0.89	0.87	0.88	328	
		accuracy			0.83	1067		accuracy			0.83	458	
		macro avg	0.81	0.80	0.80	1067		macro avg		0.79	0.79	458	
		weighted avg	0.83	0.83	0.83	1067		weighted avg	0.83	0.83	0.83	458	
	F1 score		88%					8	38%				

ROC CURVE FOR TRAINED DATA OF ALL MODELS:

The tuning of the Gradient Boost model has improved the model further. The values are high. The better is better than the regular model.

ROC MODEL FOR ALL TEST DATA:

In all the models, tuned ones are better than the regular models. So, we compare only the tuned models and describe which model is the best/optimized.

Conclusion:

- There is no under-fitting or over-fitting in any of the tuned models.
- All the tuned models have high values and every model is good.
 But as we can see, the most consistent tuned model in both train and test data is the Gradient Boost model.

- 1.8) Based on your analysis and working on the business problem, detail out appropriate insights and recommendations to help the management solve the business objective. There should be at least 3-4 Recommendations and insights in total. Recommendations should be easily understandable and business specific, students should not give any technical suggestions. Full marks should only be allotted if the recommendations are correct and business specific.
 - ➤ Labour party has more than double the votes of conservative party.
 - ➤ Most number of people have given a score of 3 and 4 for the national economic condition and the average score is 3.24
 - Blair has higher number of votes than Hague and the scores are much better for Blair than for Hague.
 - On a scale of 0 to 3, about 30% of the total population has zero knowledge about politics.
 - People who gave a low score of 1 to a certain party, still decided to vote for the same party instead of voting for the other party. This can be because of lack of political knowledge among the people.
 - People who have higher Eurosceptic sentiment, has voted for the conservative party and lower the Eurosceptic sentiment, higher the votes for Labour party.
 - All models performed well on training data set as well as test dataset. The tuned models have performed better than the regular models.
 - > There is no over-fitting in any model except Random Forest and Bagging regular models
 - Gradient Boosting model tuned is the best/optimized model

RECOMENDATION:

- > Gathering more data will also help in training the models and thus improving the predictive powers
- Using Gradient Boosting model without scaling for predicting the outcome as it has the best optimized performance
- > We can also create a function in which all the models predict the outcome in sequence. This will helps in better understanding and the probability of what the outcome will be.
- > We can conclude that Labour party has more votes in the election from the given dataset because they got support due to Brexit and improvement in economic conditions of Nation and Household.

THANK YOU