(DONNOT WRITE YOUR ANSWER IN THIS AREA)

WARNING: MISBEHAVIOR AT EXAM TIME WILL LEAD TO SERIOUS CONSEQUENCE.

SCUT Final Exam

Mathematical Analysis I Exam Paper A (2019-2020-1)

Notice:

- 1. Make sure that you have filled the form on the left side of seal line.
- 2. Write your answers on the exam paper.
- 3. This is a close-book exam.
- 4. The exam with full score of 100 points lasts 120 minutes.

Question No.	Ι	II	III	IV	Sum
Score					

I. Please fill the correct answers in the following blanks. $(4' \times 5 = 20')$

Score

$$1.\lim_{n\to\infty} \left(1+\frac{2}{n}\right)^n = \underline{\qquad}.$$

- 2. If $sin(x + y) = y^2 cos x$, then dy =______
- 3. The inflection points of the curve $f(x) = \frac{1}{2}x^2 + \frac{9}{10}(x-1)^{\frac{5}{3}}$ are ______.
- 4. Suppose f is continuous with the property that $|f(x)| \le x^2$ for all x, then $f'(0) = \underline{\hspace{1cm}}$
- 5. If f(x) is continuous, and $f(x) = \cos^4 x + \frac{1}{\pi} \int_0^{\frac{\pi}{2}} f(x) dx$, then f(x) = ______

6.
$$\lim_{x \to +\infty} \left(x - x^2 \ln \left(1 + \frac{1}{x} \right) \right).$$

$$7. \quad \lim_{x \to 3} \left(\frac{x}{x - 3} \int_3^x \frac{\sin t}{t} dt \right)$$

8. If $y = \arctan x$, find $y^{(n)}(0)$.

9. Evaluate the indefinite integral $\int \frac{1}{x^2 \sqrt{x^2 + 1}} dx$

10. (a) Find the tangent to the cycloid $x = a(\theta - \sin \theta)$, $y = a(1 - \cos \theta)$ (a > 0 is a constant)

at the point where
$$\theta = \frac{\pi}{3}$$
.

(b) Find the area under one arch of the cycloid.

III. Prove the following conclusions. ($8 \times 3 = 24$)

Score

11. Prove that $\lim_{x\to 3} x^2 = 9$ by using the ε , δ definition of limit.

12. Let
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
.

Find f'(x). Is f'(x) continuous at x = 0? Show your reasons.

13. Assume that f(x) is continuous on the closed interval [a,b], and f is differentiable in the open interval (a,b), 0 < a < b. Use Cauchy's mean value theorem to prove that there exists $\xi \in (a,b)$ such that

$$\frac{af(b)-bf(a)}{a-b}=f(\xi)-\xi f'(\xi).$$

Score

IV. Finish the following questions. $(10 \times 2 = 20)$

14. Find the volume of the solid obtained by rotating about y = 1 the region between y = x and $y = x^2$.

15. A sequence
$$\{a_n\}$$
 is given by $a_1 = \frac{1}{2}\left(a + \frac{1}{a}\right)$, $a_{n+1} = \frac{1}{2}\left(a_n + \frac{1}{a_n}\right)$ $(n = 1, 2, 3\cdots)$, $(a > 0)$.

Show that $\lim_{n\to +\infty} a_n$ exists and find it.