

Project Overview

Project Overview

- Kaggle Competition
- Predict housing prices in Moscow during July 2015 to May 2016 using data from August 2011 to June 2015
- Data includes housing transaction information (e.g. square meter, number of rooms and build year), neighborhood details and macroeconomic information

Machine Learning Checklist

- 1. Frame the Problem and Look at the Big Picture
- 2. Get The Data
- 3. Explore the Data
- 4. Prepare the Data
- 5. Short List Promising Models
- 6. Fine-Tune the System

Look at the Big Picture

Value to Sberbank

Mitigate Risk

Help avoid overlending (issuing mortgages in excess of the value of the home)

Valuation

Help banks value their portfolio

Predictions

 To give confidence to renters, developers and lenders when they sign a lease or purchase a building

Data Exploration

Data Overview

Housing Data

- Number of Observations
 - Training 30,471
 - o Test 7,662
- Number of Features 290

Macro Data

- Number of Observations 2,484
- Number of Features 100

Data Overview - Most Important Features

- Initial Thoughts
 - Square Meters
 - Number of Rooms
 - Build Year
 - Location

Data Overview - Most Important Features

Initial Thoughts

- Square Meters
- Number of Rooms
- Build Year
- Location

Housing Price

Distribution of Prices

Housing Price

Prices by District

Observations by District

Data Preparation

Missingness in Top Features

Data Inconsistencies

Data Inconsistencies

Imputations - KNN by Neighborhood

kindergarten km	11852
park km	11852
public_transport_station_km	11851
public transport station min walk	11852
water km	11851
mkad km	11852
ttk km	11852
sadovoe_km	11852
bulvar ring km	11852
kremlin km	11852
big roadl km	11852
big_road2_km	11852
railroad km	11852
oil chemistry km	11852
nuclear_reactor_km	11852
radiation_km	11852
power transmission line km	11852
thermal power plant km	11852
ts_km	11849
basketball_km	11852
hospice morgue km	11852
big_church_km	11852
church_synagogue_km	11852
mosque_km	11852
museum_km	11852
exhibition_km	11852
catering_km	11852

	count
kremlin_km	
20.549464	976
0.072897	603
23.373697	582
20.666814	364
22.222434	319
29.133765	288
25.735256	282
15.869044	275
21.609733	254
18.752843	232
25.595974	229
19.763938	215
22.567655	202

Feature Engineering & Insights

Feature Engineering

Sq_diff = Full_sq - Kitch_sq

Floor_ratio = Floor / Max_floor

Life_to_full = Life_sq / Full_sq

Kitch_to_full = Kitch_sq / Full_sq

Room_size = Life_sq / Num_room

Month = month of sale

Decline in Russian Housing Prices

Dealing with the Decline

Problem

- Housing prices declined in 2015 and 2016
- Model predicts values that are too high

Solutions

- Incorporate economic data
- Make downward adjustments to predicted values
- Adjust prices for fluctuations in the market based on a price index

Price Index

The Data

Russian government statistics on the monthly rental prices within Moscow

The Index

- 3 month rolling average of 3 bed, 2 bed and 1 bed rentals in Moscow
- Indexed to the start of the training data (August 2011)
- Averaged the 3 indices

The Application

- Adjust all prices in the training data for changes in the index (divide by index)
- Model predicts prices as if they occurred in August 2011
- Adjust the predicted values for the index (multiply by index)

Price Index

Price Index - Example

- Training Transaction
 - o Date April 2013
 - o Price RUB 5,693,972
 - o Index 1.13
 - o Adjusted Price RUB 5,038,913

Predicted Value

- Date April 2016
- o Price RUB 3,902,007
- o Index 1.06
- Adjusted Price RUB 4,136,127

Short-list Promising Models

KISS - OLS with 2 Variables

Features = full_sq, sub_area Response = log_price

Covariance Type:

OLS Regression Results

Dep. Variable:	log_price	R-squared:	0.574
Model:	OLS	Adj. R-squared:	0.572
Method:	Least Squares	F-statistic:	270.5
Date:	Tue, 30 May 2017	Prob (F-statistic):	0.00
Time:	18:13:54	Log-Likelihood:	-9345.5
No. Observations:	29096	AIC:	1.898e+04
Df Residuals:	28951	BIC:	2.018e+04
Df Model:	144		

nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	14.8414	0.022	682.397	0.000	14.799	14.884
full_sq	0.0146	9.91e-05	147.232	0.000	0.014	0.015
sub area Ajeroport	0.1418	0.037	3.827	0.000	0.069	0.214
sub area Akademicheskoe	0.2088	0.032	6.483	0.000	0.146	0.272
sub area Alekseevskoe	0.1792	0.040	4.427	0.000	0.100	0.258

Your submission scored 0.38249, which is not an improvement of your best score. Keep trying!

KISS - OLS with 7 Variables

nonrobust

Features = full_sq, floor, max_floor, life_to_full, kitch_to_life, product_type, sub_area Response = log_price

OLS	Regression	Results
-----	------------	---------

log_price	R-squared:	0.577
OLS	Adj. R-squared:	0.575
Least Squares	F-statistic:	265.3
Tue, 30 May 2017	Prob (F-statistic):	0.00
23:59:56	Log-Likelihood:	-9220.6
29096	AIC:	1.874e+04
28946	BIC:	1.998e+04
149		
	OLS Least Squares Tue, 30 May 2017 23:59:56 29096 28946	OLS Adj. R-squared: Least Squares F-statistic: Tue, 30 May 2017 Prob (F-statistic): 23:59:56 Log-Likelihood: 29096 AIC: 28946 BIC:

	coef	std err	t	P> t	[0.025	0.975]
Intercept	9.9379	0.021	462.806	0.000	9.896	9.980
full sq	0.0142	0.000	133.472	0.000	0.014	0.014
floor	0.0013	0.000	2.687	0.007	0.000	0.002
max floor	0.0050	0.000	10.345	0.000	0.004	0.006
life to full	-0.1116	0.024	-4.733	0.000	-0.158	-0.065
kitch to life	-0.1586	0.028	-5.650	0.000	-0.214	-0.104
product type Investment	4.9614	0.009	553.891	0.000	4.944	4.979
product type OwnerOccupier	4.9764	0.014	349.646	0.000	4.949	5.004

simple_linear_052716_log_multiples.csv

Covariance Type:

0.34644

Tree-Based Models

Decision Tree

Unrestrained Decision Trees are known to overfit as shown:

Accuracy on training set 1.000 Accuracy on test set 0.224 The severe overfitting of the unrestrained Decision Tree!!

Model with rank: 3
Mean validation score: 0.537 (std: 0.006)
Parameters: {'min_samples_split': 10, 'ma: eaf': 10}

Accuracy on training set 0.628
Accuracy on test set 0.568
No longer overfitting of the Decision Tree!!

Random Forest

Accuracy on training set 0.922 Accuracy on test set 0.581 Also overfitting of the unrestrained Random Forest!!

Accuracy on training set 0.947
Accuracy on test set 0.626
No longer overfitting of the Random Forest, as much!!

8 hrs to run with 3 cores processing!

XGBoost

- Log(Scaled Price / Meter Sq) as Target
- Fast Training time 1 min 43 sec
- Best Results
- Less Interpretable

```
xgb params = {
    'eta': 0.01,
    'max_depth': 5,
    'subsample': 0.7,
    'colsample bytree': 0.3,
    'objective': 'reg:linear',
    'eval metric': 'rmse',
    'silent': 1,
    'n jobs': -1
xgb.train(xgb params,
          dtrain,
          num_boost_round=1000,
          evals=[(dval, 'val')],
          early stopping rounds=20, verbose eval=20)
```

14	- 6	RunningWolf	7	0.31193	124	1mo
15	▲ 901	Chase Edge	9	0.31212	35	2mo
16	- 1092	yrtchn	A	0.31227	125	1mo

Future Work

Next Steps

- Model Ensembling
- Feature Engineering
- Time Series Analysis on Pricing Index
- Cluster Analysis on Neighborhoods

Questions