

Author Index

Aduma, P.J., Gupta, S.V. and De Clercq, E., Antiherpes virus activity and effect on deoxyribonucleoside triphosphate pools of (E)-5-(2-bromovinyl)-2'-deoxycytidine in combination with deaminase inhibitors, 111

Alaghamandan, H.A., see Smee, D.F., 1

Alaghamandan, H.A., see Smee, D.F., 91

Alba, A.P.C., see De Fazio, G., 219

Alteri, E., see Lazdins, J., 175

Babu, J.R., see Schinazi, R.F., 265

Bartlett, M.L., see Smee, D.F., 1

Bernaerts, R., see Merta, A., 209

Bernstein, D.I., see Reuman, P.D., 103

Bernstein, D.I., see Stanberry, L.R., 227

Brachwitz, H., see Matthes, E., 273

Braitman, A., see Field, A.K., 43

Bravo, F., see Stanberry, L.R., 227

Burgin, C., see Lazdins, J., 175

Burke, R.L., see Ho, R.J.Y., 187

Cannon, D.L., see Schinazi, R.F., 265

Černý, J., Votruba, I., Vonka, V., Rosenberg, I., Otmar, M. and Holý, A., Phosphonylmethyl ethers of acyclic nucleoside analogues: inhibitors of HSV-1 induced ribonucleotide reductase, 253

Černý, J., see Holý, A., 295

Ceruzzi, M., see Draper, K.G., 151

Childs, F., see Stanberry, L.R., 227

Chou, T.-C., see Soike, K.F., 165

Chu, C.K., see Schinazi, R.F., 265

Clark, J.M., see Field, A.K., 43

Cload, P.A., see Mulder, J.W., 127

Colacino, J.M., see Tang, J., 313

Coutinho, R.A., see Mulder, J.W., 127

Dalrymple, J.M., see Malinski, F.J., 139

De Clercq, E., see Aduma, P.J., 111

De Clercq, E., see De Fazio, G., 219

De Clercq, E., see Holý, A., 295

De Fazio, G., Alba, A.P.C., Vicente, M. and De Clercq, E., Antiviral activity of S-adenosylhomocysteine hydrolase inhibitors against plant viruses, 219

De Wolf, F., see Mulder, J.W., 127

Desideri, N., see Superti, F., 201

Donelli, G., see Superti, F., 201

Draper, K.G., Ceruzzi, M., Kmetz, M.E. and Sturzenbecker, L.J., Complementary oligo- nucleotide sequence inhibits both Vmw65 gene expression and replication of herpes simplex virus, 151

Eghafona, N.O. and Emejuaiwe, S.O., (Avid) rosette-forming cells as evidence for cellular immunity following measles virus vaccination in monkeys: correlation with the presence of haemagglutination inhibitory antibodies, 75

Emejuaiwe, S.O., see Eghafona, N.O., 75

Eriksson, B.F.H., see Schinazi, R.F., 265

Feng, J.S., see Li, S.B., 237

Fiddian, A.P., see Mulder, J.W., 127

Field, A.K., Tuomari, A.V., McGeever-Rubin, B., Terry, B.J., Mazina, K.E., Haffey, M.L., Hagen, M.E., Clark, J.M., Braitman, A., Slusarchyk, W.A., Young, M.G. and Zahler, R., (1 α ,2 β ,3 α)-9-[23-bis(hydroxymethyl)-cyclobutyl]guanine [(1)-BHCG or SQ 33054]: a potent and selective inhibitor of herpesviruses, 43

Fong, C.K.Y., see Li, S.B., 237

Fox, J.J., see Soike, K.F., 165

Gangemi, J.D., see Lazdins, J., 175

Gloff, C.A., see Soike, K.F., 165

Goudsmit, J., see Mulder, J.W., 127

Gupta, S.V., see Aduma, P.J., 111

Haffey, M.L., see Field, A.K., 43

Hagen, M.E., see Field, A.K., 43

Harada, H., see Nagata, K., 11

Harrison, C.J., see Stanberry, L.R., 227

Hasegawa, A., see Ikeda, S., 327

Hasty, S.E., see Malinski, F.J., 139

Ho, R.J.Y., Burke, R.L. and Merigan, T.C., Physical and biological characterization of antigen presenting liposome formulations: relative efficacy for the treatment of recurrent genital HSV-2 in guinea pigs, 187

Holý, A., Votruba, I., Merta, A., Černý, J., Vesely, J., Vlach, J., Sedivá, K., Rosenberg, I., Otmar, M., Šrebábecký, H., Trávníček, M., Vonka, V., Snoeck, R. and De Clercq, E., Acyclic nucleotide analogues: synthesis, antiviral activity and inhibitory effects on some cellular and virus-encoded enzymes in vitro, 295

Holý, A., see Černý, J., 253

Holý, A., see Merta, A., 209

Holý, A., see Votruba, I., 287
 Homma, J.Y., see Ikeda, S., 327
 Horisberger, M.A., Schrenk, R., Staiger, S., Leyvraz, A.R. and Martinod, S., Induction of Mx-related protein in cat peripheral blood mononuclear cells after administration of recombinant human interferon hybrid, 53
 Hrebabecky, H., see Holý, A., 295
 Hrebabecky, H., see Merta, A., 209
 Hrebabecky, H., see Votruba, I., 287
 Hsiung, G.D., see Li, S.B., 237

Ikeda, S., Nishimura, C., Matsuura, M., Homma, J.Y., Kiso, M. and Hasegawa, A., Effect of acyl substituents of synthetic lipid A-subunit analogues on their immunomodulating antiviral activity (Short Communication), 327
 Ishihama, A., see Nagata, K., 11
 Ishitsuka, H., see Ninomiya, Y., 61

Jin, A., see Smee, D.F., 91
 Jolley, W.B., see Smee, D.F., 91
 Jones, M.M., see Smee, D.F., 1

Keely, S.P., see Reuman, P.D., 103
 Kiso, M., see Ikeda, S., 327
 Kmetz, M.E., see Draper, K.G., 151
 Konno, K., see Nagata, K., 11
 Kovacs, T., see Subramanian, M., 81

Lange, J.M.A., see Mulder, J.W., 127
 Langen, P., see Matthes, E., 273
 Larsen, S.H., see Tang, J., 313
 Lazdins, J., Alteri, E., Woods Cook, K., Burgin, C. and Gangemi, J.D., Use of human monocytes in the evaluation of antiviral drugs: quantitation of HSV-1 cytopathic effects, 175
 Lenard, J., see Subramanian, M., 81
 Lesiak, K., see Subramanian, M., 81
 Leyvraz, A.R., see Horisberger, M.A., 53
 Li, S.B., Yang, Z.H., Feng, J.S., Fong, C.K.Y., Lucia, H.L. and Hsiung, G.D., Activity of (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)-cytosine (HPMPC) against guinea pig cytomegalovirus infection in cultured cells and in guinea pigs, 237
 Lucia, H.L., see Li, S.B., 237

Maidhof, A., see Matthes, E., 273
 Malinski, F.J., Hasty, S.E., Ussery, M.A. and Dalrymple, J.M., Prophylactic ribavirin treatment of dengue type 1 infection in rhesus monkeys, 139
 Martinod, S., see Horisberger, M.A., 53
 Marziano, M.L., see Superti, F., 201

Matsuura, M., see Ikeda, S., 327
 Matthes, E., Langen, P., Brachwitz, H., Schröder, H.C., Maidhof, A., Weiler, B.E., Renneisen, K. and Müller, W.E.G., Alteration of DNA topoisomerase II activity during infection of H9 cells by human immunodeficiency virus type 1 in vitro: a target for potential therapeutic agents, 273
 Mazina, K.E., see Field, A.K., 43
 McGeever-Rubin, B., see Field, A.K., 43
 Merigan, T.C., see Ho, R.J.Y., 187
 Merta, A., Votruba, I., Rosenberg, I., Otmar, M., Hrebabecky, H., Bernaerts, R. and Holý, A., Inhibition of herpes simplex virus DNA polymerase by diphosphates of acrylic phosphonylmethoxyalkyl nucleotide analogues, 209
 Merta, A., see Holý, A., 295
 Merta, A., see Votruba, I., 287
 Mulder, J.W., De Wolf, F., Goudsmit, J., Cload, P.A., Coutinho, R.A., Fiddian, A.P., Schellekens, P.T., Van der Noordaa, J. and Lange, J.M.A., Long-term zidovudine treatment of asymptomatic HIV-1-infected subjects, 127
 Müller, W.E.G., see Matthes, E., 273

Nagata, K., Sakagami, H., Harada, H., Nonoyama, M., Ishihama, A. and Konno, K., Inhibition of influenza virus infection by pine cone antitumor substances, 11
 Nasr, M., see Schinazi, R.F., 265
 Ninomiya, Y., Shimma, N. and Ishitsuka, H., Comparative studies on the antirhinovirus activity and the mode of action of the rhinovirus capsid binding agents, chalcone amides, 61
 Nishimura, C., see Ikeda, S., 327
 Nonoyama, M., see Nagata, K., 11

Orsi, N., see Superti, F., 201
 Oswald, B.J., see Schinazi, R.F., 265
 Otmar, M., see Černý, J., 253
 Otmar, M., see Holý, A., 295
 Otmar, M., see Merta, A., 209
 Otmar, M., see Votruba, I., 287

Reece, A.L., see Stanberry, L.R., 227
 Renneisen, K., see Matthes, E., 273
 Reuman, P.D., Bernstein, D.I., Keely, S.P., Sherwood, J.R., Young, E.C. and Schiff, G.M., Influenza-specific ELISA IgA and IgG predict severity of influenza disease in subjects prescreened with hemagglutination inhibition, 103
 Revankar, G.R., see Smee, D.F., 1
 Robins, R.K., see Smee, D.F., 1
 Rosenberg, I., see Černý, J., 253

Rosenberg, I., see Holý, A., 295
 Rosenberg, I., see Merta, A., 209
 Rosenberg, I., see Votruba, I., 287

Saalmann, V., see Schinazi, R.F., 265
 Sakagami, H., see Nagata, K., 11
 Schellekens, P.T., see Mulder, J.W., 127
 Schiff, G.M., see Reuman, P.D., 103
 Schinazi, R.F., Chu, C.K., Babu, J.R., Oswald, B.J., Saalmann, V., Cannon, D.L., Eriksson, B.F.H. and Nasr, M., Anthraquinones as a new class of antiviral agents against human immunodeficiency virus (Short Communication), 265
 Schrenk, R., see Horisberger, M.A., 53
 Schröder, H.C., see Matthes, E., 273
 Sedivá, K., see Holý, A., 295
 Seganti, L., see Superti, F., 201
 Sharma, B.S., see Smee, D.F., 91
 Sherwood, J.R., see Reuman, P.D., 103
 Shimma, N., see Ninomiya, Y., 61
 Slusarchyk, W.A., see Field, A.K., 43
 Smee, D.F., Alaghmandan, H.A., Jin, A., Sharma, B.S. and Jolley, W.B., Roles of interferon and natural killer cells in the antiviral activity of 7-thia-8-oxoguanosine against Semliki Forest virus infections in mice, 91
 Smee, D.F., Bartlett, M.L., Alaghmandan, H.A., Jones, M.M., Revankar, G.R. and Robins, R.K., 4,6-Dibenzamidopyrazolo[3,4-d]pyrimidine is a highly selective inhibitor of cytomegalovirus adsorption to cells, 1
 Snoeck, R., see Holý, A., 295
 Soike, K.F., Chou, T.-C., Fox, J.J., Watanabe, K.A. and Gloff, C.A., Inhibition of Simian varicella virus infection of monkeys by 1-(2-deoxy-2-fluoro-1-β-D-arabinofuranosyl)-5-ethyluracil (FEAU) and synergistic effects of combination with human recombinant interferon-β, 165
 Spitzer, W., see Tang, J., 313
 Staiger, S., see Horisberger, M.A., 53
 Stanberry, L.R., Harrison, C.J., Bravo, F., Childs, F., Reece, A.L. and Bernstein, D.I., Recurrent genital herpes in the guinea pig augmented by ultraviolet irradiation: effects of treatment with acyclovir, 227
 Stein, M.L., see Superti, F., 201
 Sturzenbecker, L.J., see Draper, K.G., 151
 Subramanian, M., Kovacs, T., Lesiak, K., Torrence, P.F. and Lenard, J., Inhibition of the RNA polymerase of vesicular stomatitis virus ppp_nA'2'p5'A and related compounds, 81
 Superti, F., Seganti, L., Orsi, N., Desideri, N., Stein, M.L., Tinari, A., Marziano, M.L. and Donelli, G., In vitro effect of synthetic flavanoids on astrovirus infection (Short Communication), 201
 Sühnel, J., Evaluation of synergism or antagonism for the combined action of antiviral agents, 23
 Tang, J., Colacino, J.M., Larsen, S.H. and Spitzer, W., Virucidal activity of hypericin against enveloped and non-enveloped DNA and RNA viruses, 313
 Terry, B.J., see Field, A.K., 43
 Tinari, A., see Superti, F., 201
 Torrence, P.F., see Subramanian, M., 81
 Trávnicek, M., see Holý, A., 295
 Trávnicek, M., see Votruba, I., 287
 Tuomari, A.V., see Field, A.K., 43
 Ussery, M.A., see Malinski, F.J., 139
 Van der Noordaa, J., see Mulder, J.W., 127
 Vesely, J., see Holý, A., 295
 Vicente, M., see De Fazio, G., 219
 Vlach, J., see Holý, A., 295
 Vonka, V., see Černý, J., 253
 Vonka, V., see Holý, A., 295
 Votruba, I., Trávnicek, M., Rosenberg, I., Otmar, M., Merta, A., Šrebábecký, H. and Holý, A., Inhibition of avian myeloblastosis virus reverse transcriptase by diphosphates of acyclic phosphonylmethyl nucleotide analogues, 287
 Votruba, I., see Černý, J., 253
 Votruba, I., see Holý, A., 295
 Votruba, I., see Merta, A., 209
 Watanabe, K.A., see Soike, K.F., 165
 Weiler, B.E., see Matthes, E., 273
 Woods Cook, K., see Lazdins, J., 175
 Yang, Z.H., see Li, S.B., 237
 Young, E.C., see Reuman, P.D., 103
 Young, M.G., see Field, A.K., 43
 Zahler, R., see Field, A.K., 43

Subjec Index

Acyclic nucleotide analogue, N-(3-Hydroxy-2-phosphonylmethoxypropyl) derivates, N-(2-phosphonylmethoxyethyl) derivative, HPMPA, HPMPC, PMEA, 295

Acyclovir, Recurrent genital herpes, Herpes simplex virus, Guinea pig model, 227

(RS)-AHPA, SAH hydrolase inhibitor, (RS)-DHPA, C-c3Ado, Plant virus, TMV, PVX, 219

Antagonism, Synergism, Antiviral combination experiment, Isobole method, Mathematical modeling, 23

Anthraquinone, Anti-HIV-1 activity, Reverse transcriptase, Hypericin, 265

Anti-HIV-1 activity, Anthraquinone, Reverse transcriptase, Hypericin, 265

Antigen presentation, Immunotherapy, HSV, Liposome, Recurrence, 187

Antiherpes activity, (E)-5-(2-bromovinyl)-2'-deoxycytidine, Tetrahydrodeoxyuridine (deaminase inhibitor), dNTP pool, HSV-infected cell, 111

Antirhinovirus agent, Ro 09-0410, Chalcone amide, Binding site, Drug resistant HRV-2 subline, 61

Antiviral combination experiment, Synergism, Antagonism, Isobole method, Mathematical modeling, 23

Antiviral agent, Cytomegalovirus infection, Nucleoside analog, HPMPC, Cultured cell, Guinea pig, 237

2-5 As, Dinucleotide, Vesicular stomatitis virus, RNA polymerase, Inhibition of RNA synthesis, 81

Astrovirus, Synthetic flavanoid, 201

Asymptomatic HIV infection, HIV-1 p24 antigenemia, Zidovudine treatment, 127

Avian myeloblastosis virus, Reverse transcriptase, Retrovirus, PMEA, 287

G-BHCG, HSV-1, HSV-2, 43

Binding site, Antirhinovirus agent, Ro 09-0410, Chalcone amide, Drug resistant HRV-2 subline, 61

C-c3Ado, SAH hydrolase inhibitor, (RS)-AHPA, (RS)-DHPA, Plant virus, TMV, PVX, 219

Cat Mx protein, Interferon, Feline viral disease, 53

Cell-mediated immunity, Measles virus, 75

Chalcone amide, Antirhinovirus agent, Ro 09-0410, Binding site, Drug resistant HRV-2 subline, 61

CMV receptor, Human CMV, Mouse CMV, Monkey CMV, 1

Cultured cell, Cytomegalovirus infection, Antiviral agent, Nucleoside analog, HPMPC, Guinea pig, 237

Cytomegalovirus infection, Antiviral agent, Nucleoside analog, HPMPC, Cultured cell, Guinea pig, 237

(RS)-DHPA, SAH hydrolase inhibitor, (RS)-AHPA, C-c3Ado, Plant virus, TMV, PVX, 219

Dengue, Ribavirin, Rhesus monkey, 139

Differentiation, Human monocyte, Herpes simplex virus type 1, Interferon-, Poly I:C-LC, acyclovir, Viability index, Drug screening, 175

Dinucleotide, 2-5 As, Vesicular stomatitis virus, RNA polymerase, Inhibition of RNA synthesis, 81

DNA polymerase inhibition, Herpes simplex virus, Phosphonylmethoxyalkylpurine,-pyrimidine, HPMPA, PMEA, 209

DNA topoisomerase II activity, Hg cells, HIV-1, 273

Drug resistant HRV-2 subline, Antirhinovirus agent, Ro 09-0410, Chalcone amide, Binding site, 61

Drug screening, Human monocyte, Differentiation, Herpes simplex virus type 1, Interferon- α , Poly I:C-LC, acyclovir, Viability index, 175

(E)-5-(2-bromovinyl)-2'-deoxycytidine, Tetrahydrodeoxyuridine (deaminase inhibitor), Antiherpes activity, dNTP pool, HSV-infected cell, 111

Enveloped virus, Hypericin, Pseudohypericin, Virucidal agent, Non-enveloped virus, 313

FEAU, Hu rIFN, Simian varicella virus, Monkey, 165

Feline viral disease, Interferon, Cat Mx protein, 53

Guanosine analog, Nucleoside analog, Immune modulator, 91

Guinea pig model, Acyclovir, Recurrent genital herpes, Herpes simplex virus, 227

Guinea pig, Cytomegalovirus infection, Antiviral agent, Nucleoside analog, HPMPC, Cultured cell, 237

Herpes simplex virus, Oligonucleotide inhibition, 151

Herpes simplex virus type 1, Human monocyte, Differentiation, Interferon- α , Poly I:C-LC, acyclovir, Viability index, Drug screening, 175

Herpes simplex virus, DNA polymerase inhibition, Phosphonylmethoxyalkylpurine,-pyrimidine, HPMPA, PMEA, 209

Herpes simplex virus, Acyclovir, Recurrent genital herpes, Guinea pig model, 227

Hg cells, HIV-1, DNA topoisomerase II activity, 273

HIV-1 p24 antigenemia, Asymptomatic HIV infection, Zidovudine treatment, 127

HIV-1, Hg cells, DNA topoisomerase II activity, 273

HPMPA, DNA polymerase inhibition, Herpes simplex virus, Phosphonylmethoxyalkylpurine,-pyrimidine, PMEA, 209

HPMPA, HSV-1 encoded ribonucleotide reductase, Phosphonylmethyl derivative of acyclic nucleoside analog, PMEA, 253

HPMPA, N-(3-Hydroxy-2-phosphonylmethoxypropyl) derivate, N-(2-phosphonylmethoxyethyl) derivative, Acyclic nucleotide analogue, HPMPC, PMEA, 295

HPMPC, Cytomegalovirus infection, Antiviral agent, Nucleoside analog, Cultured cell, Guinea pig, 237

HPMPC, N-(3-Hydroxy-2-phosphonylmethoxypropyl) derivate, N-(2-phosphonylmethoxyethyl) derivative, Acyclic nucleotide analogue, HPMPA, PMEA, 295

HSV, Immunotherapy, Liposome, Recurrence, Antigen presentation, 187

HSV-1 encoded ribonucleotide reductase, Phosphonylmethyl derivative of acyclic nucleoside analog, HPMPA, PMEA, 253

HSV-1, (-)-BHCG, HSV-2, 43

HSV-2, (-)-BHCG, HSV-1, 43

HSV-infected cell, (E)-5-(2-bromovinyl)-2'-deoxycytidine, Tetrahydrodeoxyuridine (deaminase inhibitor), Antiherpes activity, dNTP pool, 111

Hu rIFN, FEAU, Simian varicella virus, Monkey, 165

Human CMV, Mouse CMV, Monkey CMV, CMV receptor, 1

Human monocyte, Differentiation, Herpes simplex virus type 1, Interferon- α , Poly I:C-LC, acyclovir, Viability index, Drug screening, 175

Hypericin, Anthraquinone, Anti-HIV-1 activity, Reverse transcriptase, 265

Hypericin, Pseudohypericin, Virucidal agent, Enveloped virus, Non-enveloped virus, 313

Immune modulator, Nucleoside analog, Guanosine analog, 91

Immunomodulator, Lipid A analogue, Interferon, Natural killer (NK) cell, 327

Immunotherapy, HSV, Liposome, Recurrence, Antigen presentation, 187

Influenza virus, Pine cone extract, RNA dependent RNA polymerase, Influenza, Nasal IgA, 103

Inhibition of RNA synthesis, 2-5 As, Dinucleotide, Vesicular stomatitis virus, RNA polymerase, 81

Interferon, Cat Mx protein, Feline viral disease, 53

Interferon- α , Human monocyte, Differentiation, Herpes simplex virus type 1, Poly I:C-LC, acyclovir, Viability index, Drug screening, 175

Interferon, Immunomodulator, Lipid A analogue, Natural killer (NK) cell, 327

Isobole method, Synergism, Antagonism, Antiviral combination experiment, Mathematical modeling, 23

Lipid A analogue, Immunomodulator, Interferon, Natural killer (NK) cell, 327

Liposome, Immunotherapy, HSV, Recurrence, Antigen presentation, 187

Mathematical modeling, Synergism, Antagonism, Antiviral combination experiment, Isobole method, 23

Measles virus, Cell-mediated immunity, 75

Monkey CMV, Human CMV, Mouse CMV, CMV receptor, 1

Monkey, FEAU, Hu rIFN, Simian varicella virus, 165

Mouse CMV, Human CMV, Monkey CMV, CMV receptor, 1

N-(2-phosphonylmethoxyethyl) derivative, N-(3-Hydroxy-2-phosphonylmethoxypropyl) derivate, Acyclic nucleotide analogue, HPMPA, HPMPC, PMEA, 295

N-(3-Hydroxy-2-phosphonylmethoxypropyl) derivative, N-(2-phosphonylmethoxyethyl) derivative, Acyclic nucleotide analogue, HPMPA, HPMPC, PMEA, 295

Nasal IgA, Influenza, 103

Natural killer (NK) cell, Immunomodulator, Lipid A analogue, Interferon, 327

Non-enveloped virus, Hypericin, Pseudohypericin, Virucidal agent, Enveloped virus, 313

dNTP pool, (E)-5-(2-bromovinyl)-2'-deoxycytidine, Tetrahydrodeoxyuridine (deaminase inhibitor), Antiherpes activity, HSV-infected cell, 111

Nucleoside analog, Immune modulator, Guanosine analog, 91

Nucleoside analog, Cytomegalovirus infection, Antiviral agent, HPMPC, Cultured cell, Guinea pig, 237

Oligonucleotide inhibition, Herpes simplex virus, 151

Phosphonylmethyl derivative of acyclic nucleoside analog, HSV-1 encoded ribonucleotide reductase, HPMPA, PMEA, 253

Pine cone extract, Influenza virus, RNA dependent RNA polymerase, 11

Plant virus, SAH hydrolase inhibitor, (RS)-AHPA, (RS)-DHPA, C-c3Ado, TMV, PVX, 219

PMEA, DNA polymerase inhibition, Herpes simplex virus, Phosphonylmethoxyalkylpurine,-pyrimidine, HPMPA, 209

PMEA, HSV-1 encoded ribonucleotide reductase, Phosphonylmethyl derivative of acyclic nucleoside analog, HPMPA, 253

PMEA, N-(3-Hydroxy-2-phosphonylmethoxypropyl) derivates, N-(2-phosphonylmethoxyethyl) derivative, Acyclic nucleotide analogue, HPMPA, HPMPC, 295

PMEA, Reverse transcriptase, Retrovirus, Avian myeloblastosis virus, 287

Phosphonylmethoxyalkylpurine,-pyrimidine, DNA polymerase inhibition, Herpes simplex virus, HPMPA, PMEA, 209

Poly I:C-LC, acyclovir, Human monocyte, Differentiation, Herpes simplex virus type 1, Interferon- α , Viability index, Drug screening, 175

Pseudohypericin, Hypericin, Virucidal agent, Enveloped virus, Non-enveloped virus, 313

PVX, SAH hydrolase inhibitor, (RS)-AHPA, (RS)-DHPA, C-c3Ado, Plant virus, TMV, 219

RNA dependent RNA polymerase, Influenza virus, Pine cone extract, 11

RNA polymerase, 2-5 As, Dinucleotide, Vesicular stomatitis virus, Inhibition of RNA synthesis, 81

Recurrence, Immunotherapy, HSV, Liposome, Antigen presentation, 187

Recurrent genital herpes, Acyclovir, Herpes simplex virus, Guinea pig model, 227

Retrovirus, Reverse transcriptase, PMEA, Avian myeloblastosis virus, 287

Reverse transcriptase, Anthraquinone, Anti-HIV-1 activity, Hypericin, 265

Reverse transcriptase, Retrovirus, PMEA, Avian myeloblastosis virus, 287

Rhesus monkey, Ribavirin, Dengue, 139

Ribavirin, Dengue, Rhesus monkey, 139

Ro 09-0410, Antirhinovirus agent, Chalcone amide, Binding site, Drug resistant HRV-2 sub-line, 61

SAH hydrolase inhibitor, (RS)-AHPA, (RS)-DHPA, C-c3Ado, Plant virus, TMV, PVX, 219

Simian varicella virus, FEAU, Hu rIFN, Monkey, 165

Synergism, Antagonism, Antiviral combination experiment, Isobole method, Mathematical modeling, 23

Synthetic flavanoid, Astrovirus, 201

Tetrahydrodeoxyuridine (deaminase inhibitor), (E)-5-(2-bromovinyl)-2'-deoxycytidine, Anti-herpes activity, dNTP pool, HSV-infected cell, 111

TMV, SAH hydrolase inhibitor, (RS)-AHPA, (RS)-DHPA, C-c3Ado, Plant virus, PVX, 219

Vesicular stomatitis virus, 2-5 As, Dinucleotide, RNA polymerase, Inhibition of RNA synthesis, 81

Viability index, Human monocyte, Differentiation, Herpes simplex virus type 1, Interferon-, Poly I:C-LC, acyclovir, Drug screening, 175

Virucidal agent, Hypericin, Pseudohypericin, Enveloped virus, Non-enveloped virus, 313

Zidovudine treatment, Asymptomatic HIV infection, HIV-1 p24 antigenemia, 127