

VFD Motor Control Introduction
Mackenzie Miller
Andrew Nguyen
Aidan Rader
Ryan Regan

Overview

- Problem Statement: A motor control system is needed for an AC induction motor. Traditional motor control systems cannot adjust to varying load demands, resulting in poor energy efficiency, excessive heat generation, and premature component failure.
- Solution Proposal: Develop a Variable Frequency Drive (VFD) motor control system to adjust frequency and voltage to load demands, resulting in improved motor controllability, optimized energy efficiency, enhanced safety, and extended component lifespan.

System Overview

System Overview

Optoelectronics

Mackenzie Miller

Accomplishments since the last presentation <12> hrs	Ongoing progress/problems and plans until the next presentation						
Solidified part numbers and added to part order sheet	Confirm with groupmates which connectors we want to use						
Ordered first round of parts	Finish PCB layout						
Finished PCB schematic	Start to route						
Started PCB layout	Validate PCB and resolve the errors						
	Order PCB						

Optoelectronics circuit

Microcontroller

Andrew Nguyen

Accomplishments since the last presentation <30> hrs

Ongoing progress/problems and plans until the next presentation

Updated parts order spreadsheet

Finalize USB to UART schematic.

Put proper symbol/footprints on schematic

Validate schematic and resolve all errors.

Created schematics for MCU, USB to UART interface, potentiometer, push buttons, LEDs, connectors/headers, temperature sensor, oscillator

Route and order PCB and all necessary parts

On final part of schematics/validating schematic for PCB routing and ensuring net labels are correct

Current MCU Schematic

Power

Aidan Rader

Accomplishments since the last presentation 28 hrs	Ongoing progress/problems and plans until the next presentation
-Completed subsystem introduction project (9 hrs) -Ordered parts (1.5 hrs) -Completed rectifier schematic (6.5 hrs) -Completed DC link calculations & schematic (3 hrs) -Completed power control schematic (3 hrs) -Started MCU power supply schematic (2 hrs) -Completed Project Update Presentation (3 hrs)	Ongoing: -MCU power supply schematic -Connector selection -Order more parts -PCB layout Plans: -Complete PCB layout -Complete PCB order -Complete PCB assembly

Power

Aidan Rader

Firmware

Ryan Regan

Accomplishments since the last presentation 2 0 hours	Ongoing progress/problems and plans until the next presentation
Working GUI demoRough outline of final project code	 Research and finish programming the modules and writing the commands necessary to demonstrate the potentiometer through dimming the RGB LEGS
 Implementation of buttons and LEDs on Development Board as well as print statements used for debugging Progress on setting up ADC 	- Determine a better toggling method of using the buttons to reduce potential user error if pressed too fast or too slow
(Analog-DC) and PWM (Pulse- Width Modulation) modules for use in programming the potentiometer	- Research on whether implementation of the GUI in MPLab is possible and/or necessary

VSCode GUI Demonstration

Screenshot of Current Firmware

```
25
      int main (void)
26 🗐 {
27
          SYSTEM Initialize(); // Initialize the system (clock, peripherals, etc.)
28
         printf("Hello, World!\r\n"); // Send a primary test string over UART1
30
31
          while (1)
32
33
34
              * Button usage
35
              if (BUTTON1_GetValue() == 0) { // in every loop, check for a button press
                  rLED Toggle(); // if buttonl, then toggle red
                  printf("Button 1 has been pressed, red LED toggled!\n\r");
39
40
             if (BUTTON2_GetValue() == 0) {
41
                  gLED Toggle(); // if button2, then toggle green
                  printf("Button 2 has been pressed, green LED toggled!\n\r");
              if (BUTTON3 GetValue() == 0) {
45
                  bLED Toggle(); // if button3, then toggle blue
‰
47
                  printf("Button 3 has been pressed, blue LED toggled!\n\r");
48
49
50
51
              * Potentiometer Usage (will be used as the main motor speed controller)
52
53
              //uint16_t potValue = ***ADC1_GetConversion***(POT GetValue());
54
55
              // Map the ADC value (0-1023 for 10-bit ADC) to PWM duty cycle (0-100%)
56
              //uint16 t dutyCycle = (potValue * 100) / 1023;
57
58
              //PWM1 LoadDutyValue(dutyCycle); // Adjust PWM duty cycle
              // Tachometer output reading
61
62
              // Display current Duty Cycle and Motor Speed in print functions
63
64
              __delay_ms(100); // delay 100ms before looping
65
```


Example Output of Firmware

Exexcution Plan 8/20/2024-12/5/2024																	
	8/20	8/27	9/3							10/22	10/29	11/5	11/12	11/19	11/26	12/3	Date
CONOPS Report																	9/15
FSR, ICD, Milestones, & Validation Plan													Not Sta	arted			9/26
Firmware: GUI Development/Testing													In Progress				9/24
Project Introduction Presentation													Completed				9/30
Opto electronics: Subsystem Introduction Project													Behind Schedule			10/7	
Microcontroller: Subsystem Introduction Project																	10/7
Parts Order 1																	10/8
Opto electronics: Schematic Layout																	10/14
Power: Subsystem Introduction Project																	10/14
Firmware: Subsystem Introduction Project																	10/15
Firmware: Develop Outline																	10/15
Microcontroller: Schematic Layout																	10/19
Power: DC Link Schematic Layout																	10/19
Power: Rectifier Schematic Layout																	10/20
Power: Power Control Schematic Layout																	10/21
Project Update Presentation																	10/21
Power: MCU Power Supply Schematic Layout																	10/22
Parts Order 2																	10/22
Fimware: Add Debug Print Statements to Outline																	10/22
Firmware: Write to Demo Each Component Needed																	10/22
Opto electronics: PCB Layout																	10/28
Microcontroller: PCB Layout																	10/28
Power: PCB Layout																	10/28
Opto electronics: Order PCB																	10/28
Microcontroller: Order PCB																	10/28
Power: Order PCB																	10/28
Firmware: Speed Control Logic Implementation																	10/29
Firmware: Validation/Debugging w/ Dev Board																	11/5
Opto electronics: PCB Assembly																	11/18
Microcontroller: PCB Assembly																	11/18
Power: PCB Assembly																	11/18
Final Presentation																	11/18
Opto electronics: Validation/Debugging																	11/26
Microcontroller: Validation/Debugging																	11/26
Power: Validation/Debugging		I	<u> </u>														11/26
Firmware: Validation/Debugging		$oxed{oxed}$	<u> </u>														11/26
Project Subsystem Demonstration																	11/26
Final Report			<u> </u>														12/5

Validation plan

Paragraph #	Test Name	Success Criteria	Methodology	Status	Responsible Engineer(s)			
3.2.1.1	Speed and Torque	Motor shall operate within speed range of ORPM to 180 ORPM	In put motor with voltage and check if it achieves ORPM and Olb-ft . Repeat for	Untested	Andrew, Ryan			
	Requirement	and torque range of Olb-ft to 0.729lb-ft.	300 RP M, 600 RP M, 900 RPM, 1200 RP M, 1500 RP M, 1800 RPM.					
3.2.1.2	Frequency	System shall operate within frequency range of 5Hz to 60 Hz.	Input system with frequency generator set to 5Hz and check if the motor runs	Untested	All			
	Requirement		smoothly. Repeat for 10Hz, 20Hz, 30Hz, 40Hz, 50Hz, 60Hz.					
3.2.1.3	Temperature	System shall operate within temperature range of 0°C to 70°C.	Place system in freezer set to 0°C and check if the motor runs smoothly. Repeat	Untested	ed All			
	Requirement		with oven set to 70 °C.					
3.2.3.2	Input Voltage Level	System input voltage shall be 208V _{AC} .	Measure with mutlimeter and check if the voltage is 208V _{AC} .	Untested	Aidan			
3.2.3.3	Input Noise and	System shall not exceed ripple range of 0 V to 0.165V.	Measure with mutlimeter and check if the voltage exceeds 0V to 0.165V.	Untested	Andrew			
	Ripple							
3.2.3.4	External Commands	External commands shall be documented in appropriate ICD.	Show to teaching team and check with them for approval.	Untested	All			
3.2.3.5	Visual Output	System shall display output measurements on GUI.	In put system with known values and check if the output measurements match.	Untested	Ryan			
			Repeat for six additional sets of known values.					
3.2.3.6	Connectors	System shall use terminal blocks for power and signal	Observe power and signal connections and check if they are are terminal blocks.	Untested	Mackenzie,			
		connections.			Andrew, Aidan			
3.2.3.7	Overtemperature	System shall automatically shut down if sensor exceeds	Place sensor in freezer set to -1°C and check if sensor is triggered. Repeat with oven	Untested	Mackenzie			
	Shutdown	temperature range of 0 °C to 70 °C.	set to 71°C.					
3.2.3.8	Built in Test	System shall generate and evaluate test signals to assess	Compare generated values with known values and check if the failure statuses	Untested	All			
		failure status.	match. Repeat for six additional sets of values.					
TBD	Inputs	The parameters are within the expected range.	Confirm that all electrical parameters (voltage, current, power) remain within safe	Untested	All			
			and expected ranges under varying conditions.					
TBD	Communication	Firmware is successfully uploaded, and system can	Verify that data transfer between the VFD controller and the PC is reliable and	Untested	Andrew, Ryan			
	Testing	communicate to PC.	supports functions like setting parameters and uploading firmware.					
TBD	Controller	Motor spins according to user defined parameters.	Validate that the system operates efficiently and delivers accurate motor control	Untested	AIL			
	Performance		across the expected range of operating conditions.					
TBD	MC U Voltage Step	MCU converts the voltage it is given to 3.3V.	Measure the voltage of the signals being sent to the MCU and measure that the MCU	Untested	Mackenzie,			
	Down		converts it to 3.3V.		Andrew			