Signal and Systems Notes (Midterm Exam)

Ch1 Signals and Systems

1.1 Comparison of CT & DT signals

	CT	DT
complex exponential signal	$x(t) = Ce^{at}$ $a = \sigma + j\omega$	$x[n] = Ce^{bn} = Ca^n$
periodic sinusoidal signal	$x(t) = A\cos(\omega_0 t + \phi)$	$x[n] = A\cos(\omega_0 n + \phi)$
periodic complex exponential signal	$x(t) = e^{j\omega_0 t}$	$x[n] = e^{j\omega_0 n}$
harmonically related periodic exponentials	$\phi_k(t) = e^{jk\omega_0 t}$ $k = 0, \pm 1, \pm 2$	$\phi_k[n] = e^{jk\omega_0 n}$ $\omega_0 = 2\pi/N$

1.2 Even and odd signals: $\mathcal{E}v(t) = \frac{1}{2}[x(t) + x(-t)]$; $\mathcal{O}d(t) = \frac{1}{2}[x(t) - x(-t)]$

1.3 Basic system properties

Memoryless: output depends only on the input at the same time. Invertibility & inverse: distinct inputs lead to distinct outputs. Causality: output depends only on input at present time & in the past. Stability: small inputs lead to responses that do not diverge. Time-invariant: behavior & characteristics are fixed over time. Linearity: linear system.

Ch2 Linear Time-Invariant System

2.1 Properties of LTI systems

Commutative: f * g = g * f

Distributive: f * (g + h) = f * g + f * h

Associative: f * (g * h) = (f * g) * h

Memoryless: $h(t) = 0, \forall t \neq 0 \implies h(t) = K\delta(t), \ y(t) = Kx(t)$

Invertibility: $x(t) \xrightarrow{h_1(t)} y(t) \xrightarrow{h_2(t)} w(t) = x(t) \Rightarrow h_1(t) * h_2(t) = \delta(t)$ Causality: $h(t) = 0, \forall t < 0 \Rightarrow y(t) = \int_0^\infty h(\tau)x(t-\tau)d\tau$

Stability: $\int_{-\infty}^{+\infty} |h(\tau)| d\tau < \infty$ (accumulator and \int is not stable)

Delay accumulation: $y[n] = x[n] * h[n] \Rightarrow x[n-j] * h[n-k] = y[n-k-j]$ Unit step response: running sum/integral of its impulse response

2.2 IIR (infinite impulse response) \Leftrightarrow FIR (finite impulse response)

2.3 Singularity function (unit doublet)

Differentiator: $u_1(t) \triangleq \frac{d}{dt}\delta(t) \Rightarrow \frac{d}{dt}x(t) = x(t) * u_1(t)$ $u_k(t) = k^{th}$ derivative of $\delta(t) \Rightarrow u_k(t) = u_1(t) * \cdots * u_1(t), k > 0$ Integrator: $u_{-1}(t) \triangleq \int_{-\infty}^{t} \delta(\tau) d\tau = u(t) \Rightarrow x(t) * u(t) = \int_{-\infty}^{t} x(\tau) d\tau$ $u_{-k}(t) = u(t) * \cdots * u(t) = \frac{t^{k-1}}{(k-1)!} u(t)$

Ch3 Fourier Series Representation of Periodic Signals

3.1 Eigenfunctions of LTI systems: e^{st} (CT) and z^n (DT).

CT: $y(t) = \int_{-\infty}^{+\infty} h(\tau)x(t-\tau)d\tau = e^{st} \int_{-\infty}^{+\infty} h(\tau)e^{-s\tau}d\tau = H(s)e^{st}$ DT: $y[n] = \sum_{k=-\infty}^{+\infty} h[k]x[n-k] = z^n \sum_{k=-\infty}^{+\infty} h[k]z^{-k} = H(z)z^n$

3.2 CT & DT periodic signals

	x(t)/x[n]	y(t)/y[n]	a_k
СТ	$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$\sum_{k} a_k H(s_k) e^{s_k t}$	$\frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$
DT	$\sum_{k=\langle N\rangle} a_k \phi_k[n]$	$\sum_{k} a_k H(z_k) z_k^{\ n}$	$\frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\omega_0 n}$

$$\phi_k[n] = e^{jk\omega_0 n} = e^{jk(2\pi/N)n}, \ k = 0, 1, \cdots, N-1, \ x[n+N] = x[n]$$

3.3 Euler's relation: $e^{j\theta} = \cos \theta + j \sin \theta$

$$\cos\theta = \frac{1}{2}(e^{j\theta} + e^{-j\theta}) \quad ; \quad \sin\theta = \frac{1}{2j}(e^{j\theta} - e^{-j\theta})$$

3.4 FS of periodic square wave

$$x(t) = \begin{cases} 1, & |t| < T_1 \\ 0, & T_1 < |t| < T/2 \end{cases} \Rightarrow a_0 = \frac{2T_1}{T}, \ a_k = \frac{2\sin(k\omega_0 T_1)}{k\omega_0 T}$$

3.5 Dirichlet convergence conditions:

#1: x(t) is absolutely integrable over any period $\Rightarrow \int_T |x(t)| dt < \infty$.

#2: x(t) is of bounded variation in any finite interval.

#3: x(t) has only finite number of discontinuities in any finite interval.

3.6 Properties of CT Fourier series

Property	Periodic signal	FS coefficients
Linearity	Ax(t) + By(t)	$Aa_k + Bb_k$
Time shifting	$x(t-t_0)$	$e^{-jk\omega_0t_0}a_k$
Frequency shifting	$e^{jM\omega_0 t} = e^{jM(2\pi/T)t}x(t)$	a_{k-M}
Time reversal	x(-t)	a_{-k}
Time scaling	$x(\alpha t)$ (period: T/α)	$a_k \ (\omega_0 \to \alpha \omega_0)$
Periodic convolution	$\int_t x(\tau)y(t-\tau)d\tau$	Ta_kb_k
Multiplication	z(t) = x(t)y(t)	$c_k = \sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
Differentiation	$\frac{d}{dt}x(t)$	$jk\omega_0a_k$
Integration	$\int_{-\infty}^{t} x(\tau)d\tau, a_0 = 0$	$\frac{1}{jk\omega_0}a_k$
Conjugate symmetry for real signals	$x^*(t)$	$\begin{aligned} a_{-k}^* &= a_k a_k = a_{-k} \\ \mathfrak{Re}\{a_k\} &= \mathfrak{Re}\{a_{-k}\} \\ \mathfrak{Im}\{a_k\} &= -\mathfrak{Im}\{a_{-k}\} \end{aligned}$
Real $\mathcal{E}v(t)$	x(-t) = x(t)	$a_{-k} = a_k$ a_k real and even
Real $\mathcal{O}d(t)$	x(-t) = -x(t)	$a_{-k} = -a_k$ a_k imaginary and odd

3.7 Properties of DT Fourier series

Property	Periodic signal	FS coefficients
Linearity	Ax[n] + By[n]	$Aa_k + Bb_k$
Time shifting	$x[n-n_0]$	$e^{-jk(2\pi/N)n_0}a_k$
Frequency shifting	$e^{jM(2\pi/N)n}x[n]$	a_{k-M}
Time reversal	x[-n]	a_{-k}
Time scaling	$x_{(m)}[n] = x[n/m]$ (if n is a multiple of m) $x_{(m)}[n] = 0 \text{ (else)}$	a_k/m viewed as periodic with period mN
Periodic convolution	$\sum_{r=\langle N\rangle} x[r]y[n-r]$	Na_kb_k
Multiplication	z[n] = x[n]y[n]	$c_k = \sum_{l = \langle N \rangle} a_l b_{k-l}$
First difference	x[n] - x[n-1]	$(1 - e^{-jk(2\pi/N)})a_k$
Running sum	$\sum_{k=-\infty}^{n} x[k], \ a_0 = 0$	$\frac{1}{1 - e^{-jk(2\pi/N)}} a_k$
Conjugate symmetry for real signals	$x^*[n]$	$a_{-k}^* = a_k a_k = a_{-k} $ $\Re \{a_k\} = \Re \{a_{-k}\}$ $\Im \{a_k\} = -\Im \{a_{-k}\}$
Real $\mathcal{E}v(t)$	x[-n] = x[n]	$a_{-k} = a_k \Rightarrow even$
Real $\mathcal{O}d(t)$	x[-n] = -x[n]	$a_{-k} = -a_k \Rightarrow odd$

3.8 Parseval's Relation: The total average power in a periodic signal equals the sum of the average powers in all of its harmonic components.

$$\frac{1}{T} \int_{T} |x(t)|^{2} dt = \sum_{k=-\infty}^{+\infty} |a_{k}|^{2} \quad \frac{1}{N} \sum_{n=\langle N \rangle} |x[n]|^{2} = \sum_{n=\langle N \rangle} |a_{k}|^{2}$$

3.9 Frequency response: take $s = j\omega$ and $z = e^{j\omega}$.

$$H(j\omega) = \int_{-\infty}^{+\infty} h(t)e^{-j\omega t}dt \quad H(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} h[n]e^{-j\omega n}$$

Ch4 The Continuous-Time Fourier Transform

4.1 CT Fourier transform pair

$$\begin{split} x(t) &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega \overset{\mathcal{F}}{\longleftrightarrow} X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt \\ a_k &= \frac{1}{\pi} X(j\omega)|_{\omega = k\omega_0} \end{split}$$

4.2 Properties of CT Fourier transform

Property	Aperiodic signal	Fourier transform
Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$
Time shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$
Frequency shifting	$e^{j\omega_0t}x(t)$	$X(j(\omega-\omega_0))$
Time reversal	x(-t)	$X(-j\omega)$
Time scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
Convolution	x(t) * y(t)	$X(j\omega)Y(j\omega)$
Integration	$\int_{-\infty}^{t} x(t)dt$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$
Multiplication	z(t) = x(t)y(t)	$\frac{1}{2\pi}X(j\omega)*Y(j\omega) = $ $\frac{1}{2\pi}\int_{-\infty}^{+\infty}X(j\theta)Y(j(\omega-\theta))d\theta$
Differentiation in time	$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$
Differentiation in frequency	tx(t)	$j\frac{d}{d\omega}X(j\omega)$
Conjugate symmetry for real signals	$x^*(t)$	$\begin{split} X(j\omega) &= X^*(-j\omega) \\ X(j\omega) &= X(-j\omega) \\ \lhd X(j\omega) &= -\lhd X(-j\omega) \\ \Re \{X(j\omega)\} &= \Re \{X(-j\omega)\} \\ \Im \{X(j\omega)\} &= -\Im \{X(-j\omega)\} \end{split}$
Real $\mathcal{E}v(t)$	x(t) = x(-t)	$X(j\omega) \Rightarrow \text{real \& even}$
Real $\mathcal{O}d(t)$	x(t) = -x(-t)	$X(j\omega) \Rightarrow \text{imaginary \& odd}$

4.3 Basic Fourier transform pair

Signal	Fourier transform	FS coefficients (if periodic)
$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta(\omega - k\omega_0)$	a_k
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0, \text{ otherwise}$
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{ otherwise}$
x(t) = 1	$2\pi\delta(\omega)$	$a_0 = 1$ $a_k = 0$, otherwise
$\sum_{n=-\infty}^{+\infty} \delta(t - nT)$	$\frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k
$x(t) = \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$rac{2\sin\omega T_1}{\omega}$	-
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	-
$\delta(t)$	1	-
u(t)	$\frac{1}{j\omega} + \pi\delta(\omega)$	-
$e^{-at}u(t)$	$\frac{1}{a+j\omega}$	ps. $\Re \{a\} > 0$
$te^{-at}u(t)$	$\frac{1}{(a+j\omega)^2}$	ps. $\Re \{a\} > 0$
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t)$	$\frac{1}{(a+j\omega)^n}$	ps. $\mathfrak{Re}\{a\} > 0$

4.4 Fourier transform for periodic signals

$$X(j\omega) = \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta(\omega - k\omega_0)$$
$$\sin(\pi\theta)$$

4.5 sinc Function:
$$\operatorname{sinc}(\theta) = \frac{\sin(\pi \theta)}{\pi \theta} \Rightarrow \frac{\sin(Wt)}{\pi t} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wt}{\pi}\right)$$

4.6 Periodic square wave:
$$x(t+T) = x(t)$$

$$x(t) = \begin{cases} 1, & |t| < T_1 \\ 0, & T_1 < |t| \le T/2 \end{cases} \xrightarrow{\mathcal{F}} \sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$$
 FS coefficients (if periodic): $\frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$

4.7 Parseval's relation for aperiodic signal

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(j\omega)|^2 d\omega$$

4.8 A useful class of LTI:
$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}$$
$$\Rightarrow H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = \frac{b_M (j\omega)^M + \dots + b_1 (j\omega) + b_0}{a_N (j\omega)^N + \dots + a_1 (j\omega) + a_0}$$

4.9 **Duality** Ex.
$$x(t-t_0) \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-j\omega t_0} X(j\omega) \Leftrightarrow e^{j\omega_0 t} x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j(\omega-\omega_0))$$

Ch5 The Discrete-Time Fourier Transform

5.1 CT Fourier transform pair

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n}$$
$$a_k = \frac{1}{N} X(e^{j\omega})|_{\omega = k\omega_0}$$

5.2 Properties of DT Fourier transform

Property	Aperiodic signal	Fourier transform
Linearity	ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$
Time shifting	$x[n-n_0]$	$e^{-j\omega n_0}X(e^{j\omega})$
Frequency shifting	$e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$
Time reversal	x[-n]	$X(e^{-j\omega})$
Time expansion	$ \begin{aligned} x_{\left(k\right)}[n] &= \\ \begin{cases} x[n/k], & if n = mk \\ 0, & if n \neq mk \end{aligned} $	$X(e^{jk\omega})$
Convolution	x[n]*y[n]	$X(e^{j\omega})Y(e^{j\omega})$
Multiplication	z[n] = x[n]y[n]	$\frac{1}{2\pi}X(e^{j\omega}) * Y(e^{j\omega}) =$ $\frac{1}{2\pi}\int_{2\pi}X(e^{j\theta})Y(e^{j(\omega-\theta)})d\theta$
Accumulation	$\sum_{k=-\infty}^{+\infty} x[k]$	$\frac{1}{1 - e^{-j\omega}} X(e^{j\omega}) + \pi X(e^{j0}) \sum_{k = -\infty}^{+\infty} \delta(\omega - 2\pi k)$
Differencing in time	x[n] - x[n-1]	$(1 - e^{-j\omega})X(e^{j\omega})$
Differentiation in frequency	nx[n]	$j\frac{d}{d\omega}X(e^{j\omega})$
Conjugate symmetry for real signals	$x^*[n]$	$\begin{array}{c} X(e^{j\omega}) = X^*(e^{-j\omega}) \\ X(e^{j\omega}) = X(e^{-j\omega}) \\ \lessdot X(e^{j\omega}) = - \lessdot X(e^{-j\omega}) \\ \Re \mathfrak{c}\{X(e^{j\omega})\} = \Re \mathfrak{c}\{X(e^{-j\omega})\} \\ \Im \mathfrak{m}\{X(e^{j\omega})\} = -\Im \mathfrak{m}\{X(e^{-j\omega})\} \end{array}$
Real $\mathcal{E}v[n]$	x[n] = x[-n]	$X(e^{j\omega}) \Rightarrow \text{real } \& \text{ even}$
Real $\mathcal{O}d[n]$	x[n] = -x[-n]	$X(e^{j\omega}) \Rightarrow \text{imaginary \& odd}$
Fourier transform for periodic signals		

5.3 Fourier transform for periodic signals

Fourier transform for periodic
$$X(e^{j\omega n}) = \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta(\omega - \frac{2\pi k}{N})$$

5.4 Parseval's relation for aperiodic signals

$$\sum_{n=-\infty}^{+\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(e^{j\omega})|^2 d\omega$$