Relational Calculus

- An alternative to relational algebra.
- Declarative
 - describe the set of answers
 - without being explicit about how they should be computed
- One variant is called: Tuple Relational Calculus (TRC).
- Another variant: Domain Relational Calculus (DRC)
- Calculus has variables, constants, comparison ops, logical connectives and quantifiers.

Tuple Relational Calculus

- A TRC query has the form {T | p(T)}
 - T is a tuple variable
 - -p(T) is a formula that describes T
- Result: set of all tuples t to which p(T)
 evaluates to true when T = t
- Example: {S | S E Sailors 1\ S.rating > 7}

Tuple Relational Calculus

(Q11) Find all sailors with a rating above 7.

$$\{S \mid S \in Sailors \land S.rating > 7\}$$

(Q12) Find the names and ages of sailors with a rating above 7.

$$\{P \mid \exists S \in Sailors(S.rating > 7 \land P.name = S.sname \land P.age = S.age)\}$$

the form $P \in Relname$. The result of this query is a relation with two fields, name and age. The atomic formulas P.name = S.sname and P.age = S.age give values to the fields of an answer tuple P. On instances B1, R2, and S3, the answer is the set of tuples $\langle Lubber, 55.5 \rangle$, $\langle Andy, 25.5 \rangle$, $\langle Rusty, 35.0 \rangle$, $\langle Zorba, 16.0 \rangle$, and $\langle Horatio, 35.0 \rangle$. PURUSHOTHAM

(Q13) Find the sailor name, boat id, and reservation date for each reservation.

$$\{P \mid \exists R \in Reserves \ \exists S \in Sailors \\ (R.sid = S.sid \land P.bid = R.bid \land P.day = R.day \land P.sname = S.sname) \}$$

sname	bid	day
Dustin	101	10/10/98
Dustin	102	10/10/98
Dustin	103	10/8/98
Dustin	104	10/7/98
Lubber	102	11/10/98
Lubber	103	11/6/98
Lubber	104	11/12/98
Horatio	101	9/5/98
Horatio	102	9/8/98
Horatio	103	9/8/98

Figure 4.20 Answer to Query Q13

(Q1) Find the names of sailors who have reserved boat 103.

$$\{P \mid \exists S \in Sailors \ \exists R \in Reserves(R.sid = S.sid \land R.bid = 103 \land P.sname = S.sname)\}$$

(Q2) Find the names of sailors who have reserved a red boat.

$$\{P \mid \exists S \in Sailors \ \exists R \in Reserves(R.sid = S.sid \land P.sname = S.sname \land \exists B \in Boats(B.bid = R.bid \land B.color = 'red'))\}$$

(Q9) Find the names of sailors who have reserved all boats.

$$\{P \mid \exists S \in Sailors \ \forall B \in Boats \\ (\exists R \in Reserves(S.sid = R.sid \land R.bid = B.bid \land P.sname = S.sname))\}$$

(Q14) Find sailors who have reserved all red boats.

$$\{S \mid S \in Sailors \land \forall B \in Boats \\ (B.color = 'red' \Rightarrow (\exists R \in Reserves(S.sid = R.sid \land R.bid = B.bid)))\}$$

Domain Relational Calculus

• *Answer* includes all tuples $\langle x1, x2, ..., xn \rangle$ that make the *formula* $p(\langle x1, x2, ..., xn \rangle)$ be *true*.

Example: Find all sailors with a rating above 7

$$\{(I, N, T, A) \mid (I, N, T, A) \in Sailors \land T > 7\}$$

Giving each attribute a variable name

Ensures that I, N, T, and A are restricted to be fields of the same typle M

(Q11) Find all sailors with a rating above 7.

$$\{\langle I, N, T, A \rangle \mid \langle I, N, T, A \rangle \in Sailors \land T > 7\}$$

condition $\langle I, N, T, A \rangle \in Sailors$ ensures that the domain variables I, N, T, and A are restricted to be fields of the *same* tuple. In comparison with the TRC query, we can say T > 7 instead of S.rating > 7, but we must specify the tuple $\langle I, N, T, A \rangle$ in the result, rather than just S.

(Q1) Find the names of sailors who have reserved boat 103.

$$\{\langle N \rangle \mid \exists I, T, A(\langle I, N, T, A \rangle \in Sailors \land \exists D(\langle I, 103, D \rangle \in Reserves))\}$$

$$\exists \langle Ir, Br, D \rangle \in Reserves.$$

(Q2) Find the names of sailors who have reserved a red boat.

$$\{\langle N \rangle \mid \exists I, T, A(\langle I, N, T, A \rangle \in Sailors \\ \land \exists \langle I, Br, D \rangle \in Reserves \land \exists \langle Br, BN, red' \rangle \in Boats) \}$$