HARMONIC UNPAIRED IMAGE-TO-IMAGE TRANSLATION

ICLR 2019

Rui Zhang Google Cloud AI & Chinese Academy of Sciences

Beijing, China

zhangrui@ict.ac.cn

Tomas Pfister

Google Cloud AI Sunnyvale, USA

tpfister@google.com

Jia Li

Google Cloud AI Sunnyvale, USA

lijiali@google.com

한양대학교 AI Lab 유재창

Concepts

Image to Image translation

Source image를 target image로 변환시켜주는 기술

Concepts

Paired / Unpaired image

초기 I2I모델의 경우 Pair의 이미지 쌍이 존재 해야만 학습가능.

Concepts

Paired / Unpaired image

초기 I2I모델의 경우 Pair의 이미지 쌍이 존재 해야만 학습가능.

Style transfer와 같은 경우 Pair의 이미지쌍을 구하기 힘듦.

Paired I2I – Pix2Pix... Unpaired I2I – **CycleGAN**, DiscoGAN, DistanceGAN....

Cycle GAN

Cycle GAN

Loss function

$$\mathcal{L}_{GAN}(G, D_Y, X, Y) = \mathbb{E}_{\mathbf{y} \in Y}[\log D_Y(\mathbf{y})] + \mathbb{E}_{\mathbf{x} \in X}[\log(1 - D_Y(G(\mathbf{x})))]$$

$$\mathcal{L}_{GAN}(F, D_X, X, Y) = \mathbb{E}_{\mathbf{x} \in X}[\log D_X(\mathbf{x})] + \mathbb{E}_{\mathbf{y} \in Y}[\log(1 - D_X(F(\mathbf{y})))]$$

$$\mathcal{L}_{\text{cyc}}(G, F) = \mathbb{E}_{\mathbf{x} \in X} ||F(G(\mathbf{x})) - \mathbf{x}||_1 + \mathbb{E}_{\mathbf{y} \in Y} ||G(F(\mathbf{y})) - \mathbf{y}||_1$$

$$\mathcal{L}_{CycleGAN}(G, F) = \lambda_{GAN} \times \mathcal{L}_{GAN}(G, F) + \lambda_{cyc} \times \mathcal{L}_{cyc}(G, F)$$

Cycle GAN의 한계점

Cycle GAN의 한계점

Cycle GAN의 한계점

Reconstruct된 image는 input image space의 consistency가 지켜지지만 translation된 image는 inconsistency함.

Translation 과정에서 어느정도 변환 전의 data에 대한 특성을 유지할 수 있는 consistent한 mapping이 필요.

Method

Manifold learning의 관점으로 문제를 해결.

같은 그림의 비슷한 부분들은 비슷한 translation 이 일어난다.

비슷한 부분들은 Target image에서도 비슷한 의미를 가질 것이다.

$$w_{ij}(X) = \exp\{-Dist[\vec{x}(i), \vec{x}(j)]/\sigma^2\}$$

 \vec{x}_i is referred to as the feature vector of the *i*-th image patch in $\mathbf{x} \in X$ L1 distance as the Dist function

$$w_{ij}(X) = \exp\{-Dist[\vec{x}(i), \vec{x}(j)]/\sigma^2\}$$

 \vec{x}_i is referred to as the feature vector of the *i*-th image patch in $\mathbf{x} \in X$ L1 distance as the Dist function

Method

$$\mathcal{L}_{\text{Smooth}}(G, X, Y) = \mathbb{E}_{\mathbf{x} \in X} \left[\sum_{i,j} w_{ij}(X) \times Dist[G(\vec{x})(i), G(\vec{x})(j)] + \sum_{i,j} w_{ij}(G(X)) \times Dist[F(G(\vec{x}))(i), F(G(\vec{x}))(j)] \right]$$

$$\mathcal{L}_{\text{Smooth}}(F, Y, X) = \mathbb{E}_{\mathbf{y} \in Y} \left[\sum_{i,j} w_{ij}(Y) \times Dist[F(\vec{y})(i), F(\vec{y})(j)] + \sum_{i,j} w_{ij}(F(Y)) \times Dist[G(F(\vec{y}))(i), G(F(\vec{y}))(j)] \right]$$

$$\mathcal{L}_{Smooth}(G, F) = \mathcal{L}_{Smooth}(G, X, Y) + \mathcal{L}_{Smooth}(F, Y, X)$$

- Adversarial constraint는 translation된 이미지가 real 이미지와 구분 이 어렵게 만듦
- Circularity constraint는 cycle consistency를 보장
- Smoothness constraint는 patch들 사이의 similarity consistency를 보장

Method

$$\mathcal{L}_{\text{HarmonicGAN}}(G, F) = \mathcal{L}_{\text{CycleGAN}}(G, F) + \lambda_{\text{Smooth}} \times \mathcal{L}_{\text{Smooth}}(G, F)$$

Method

Image patch -> feature vector

1. VGG-16 network

Pre-trained VGGNet

2. Low-level soft histogram

$$\psi_b(\vec{x}_i(j)) = \max\{0, 1 - |\vec{x}_i(j) - \mu_b| \times w_b\}$$

$$\phi_h(X, i, b) = \phi_h(\vec{x}_i, b) = \sum_j \psi_b(\vec{x}_i(j))$$

Method

- 데이터 차원 축소 및 시각화 방법론.
- Bottom-right : source 에서 두 위치상의 patch -> target space 상의 distance ↓
- Bottom-left : source 에서 두 위치상의 patch -> target space 상의 distance↑

Visualization using t-SNE

Method	Flair \rightarrow T1			$T1 \rightarrow Flair$				
	MAE↓	MSE ↓	PSNR ↑	SSIM ↑	MAE↓	MSE ↓	PSNR ↑	SSIM↑
CycleGAN	10.47	674.40	22.35	0.80	11.81	1026.19	18.73	0.74
DiscoGAN	10.63	641.35	20.06	0.79	10.66	839.15	19.14	0.69
DistanceGAN	14.93	1197.64	17.92	0.67	10.57	716.75	19.95	0.64
UNIT	9.48	439.33	22.24	0.76	6.69	261.26	25.11	0.76
HarmonicGAN (ours)								
Histogram	6.38	216.83	24.34	0.83	5.04	163.29	26.72	0.75
VGG	6.86	237.94	24.14	0.81	4.69	127.84	27.22	0.76

Method	$Label \rightarrow Photo$			P	Photo \rightarrow Label		
	Pixel Acc. ↑	Class Acc. ↑	Class IoU ↑	Pixel Acc. ↑	Class Acc. ↑	Class IoU ↑	
CycleGAN	52.7	15.2	11.0	57.2	21.0	15.7	
DiscoGAN	45.0	11.1	7.0	45.2	10.9	6.3	
DistanceGAN	48.5	10.9	7.3	20.5	8.2	3.4	
UNIT	48.5	12.9	7.9	56.0	20.5	14.3	
HarmonicGAN (ours) Histogram VGG	52.2 55.9	14.8 17.6	10.9 13.3	56.6 59.8	20.9 22.1	15.7 17.2	

Table 3: User study on the BRATS dataset.

Table 4: User study on the horse to zebra dataset.

Metric	CycleGAN	DistanceGAN	HarmonicGAN
Prefer [%]↑	5	0	95
Mean Likert ↑	1.68	1.62	4.00
Std Likert	0.99	0.95	0.88

Metric	CycleGAN	DistanceGAN	HarmonicGAN
Prefer[%]↑	28	0	72
Mean Likert ↑	3.16	1.08	3.60
Std Likert	0.81	0.23	0.78

