E6893 Big Data Analytics:

Prediction of Stock Trend with Media Sentiment Analysis 201812-30

JILIANG MA (jm4750) LONG JIAO (lj2463) QINYUAN WEI (qw2264)

Overview

Data collection

- SNAP dataset
- Saved in HDFS

Pre-processing data

Cleaning and filtering the data

Data analysis

- Linear regression
- Random forest
- MLP

Presenting results

- Stock prediction
- Twitter
 Wordcloud

Technologies Used

Tools

Hadoop

Spark

Jupyter Notebook

sklearn(MLP, Random Forest, Linear Regression)

D3

Node.js

Dataset

- Historical stock price dataset
 - Microsoft, Nasdaq
 - Yahoo Finance
- Twitter7 dataset --from Stanford Large Network Data Collection(SNAP)
 - **25GB**
 - From June to December in 2009
 - 476 million tweets collected
 - Includes 17,069,982
 users, 476,553,560 tweets, 181,611,080 URLs, 49,293,684 Hashtags and 71,83
 5,017 retweets.

Algorithm

- Data Pre-processing:
 - Read data: (scala)
 - load into HDFS
 - read in spark:
 - Data parsing & filtering: (scala)
 - only keep tweets and dates
 - filter all data by target trademarks
 - Combine data by date: (python)
 - Merge tweets with stock prices:
 - fill the blank data

Algorithm

- Data processing and analysis
 - Sentiment Analysis

We use vader_lexicon in NLTK to execute the sentiment analysis, get the polarity for the Tweets of each day, which is how much positive, negative, neutral the Tweets are.

Date	Tweet	Prices	Negative	Neutral	Positive
o 20090701	I only use my credit card online, recent trans	24.040001	0.058	0.798	0.144
1 20090702	Microsoft's \Pink\" smartphone to be Microsof	23.370001	0.042	0.842	0.116
2 20090703	RT @Bob_do: Microsoft Changing Users' Default	23.370001	0.071	0.825	0.104
3 20090704	RT @arturogoga La publicidad de Microsoft, ca	23.370001	0.038	0.811	0.151
4 20090705	Get Rich on Microsoft Search engine Bing http	23.370001	0.044	0.836	0.119

Algorithm

- Data processing and analysis
 - For data processing, the parameters in the machine learning include polarity of the Tweets, the close stock price of pre-day, the close Nasdaq Composite Index of pre-day.
 - We use Linear Regression, Random Forest and MLP in sklearn in Python to process the data, and compare the result of these three algorithm.

Results

- Data visual
 - Draw word cloud of each month
 - Represent what people like to talk about Microsoft and its trademarks at that time

Word Cloud for December

Results

 Predict result (using 6-11th months as training set, 12th month as testing set)

Linear Regression

Random Forest

MLP

Results Evaluation

Root Mean Square Error:

$$ext{RMSD}(\mathbf{v},\mathbf{w}) = \sqrt{rac{1}{n}\sum_{i=1}^n \|v_i - w_i\|^2}$$

Mean Square Error:

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2.$$

Website

Website

Website

Demo

Future work

- Test on more companies/market prices
- Use twitter api to gather more data and test (recent years data)
- More indexes to prove the model is efficient

References

- 476 Million Twitter Tweets, J. Yang, J. Leskovec. Temporal Variation in Online Media. ACM International Conference on Web Search and Data Mining (WSDM '11), 2011. https://snap.stanford.edu/data/twitter7.html
- 2. Skuza, Micheal. Romanowski, Andrzej.(2015). Sentiment Analysis of Twitter Data within Big Data Distributed Environment for Stock Prediction DOI: 10.15439/2015F230 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7321604&tag=1
- Pagolu, S.Venkata. Reddy, N.Kamal. Panda, Ganapati (2016). Sentiment analysis of Twitter data for predicting stock market movements DOI: 10.1109/SCOPES.2016.7955659 http://ieeexplore.ieee.org/document/7955659/?part=1

Thanks!