FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Počítačové komunikácie a siete – 2. projekt Variant ZETA: Sniffer paketov

Obsah

1	Úvod	2
2	Základná problematika	2
3	Štruktúra kódu a implementácia	2
	Testovanie funkcionality 4.1 Správnosť zachytávania paketov	
Li	teratúra	4

1 Úvod

Táto dokumentácia má za účel poskytnúť základný prehľad o riešenom probléme, implementácií jeho riešenia, využívaných knižniciach a o už existujúcich prostriedkoch s obdobným využitím.

2 Základná problematika

Centrálnym prvkom projektu, ku ktorému táto dokumentácia náleží, je **analyzátor paketov** (angl. aj *packet sniffer*). Takýto program alebo zariadenie skúži na sledovanie, zachytávanie a zaznamenávanie sieťovej prevádzky na určitej digitálnej sieti (preložené z [3]). V tomto projekte je využívaný na nájdenie aktívnych sieťových rozhraní a zachytávanie, filtrovanie a základnú analýzu paketov na konkrétnom rozhraní.

Sieťové rozhranie je prepojenie medzi počítačom a súkromnou alebo verejnou sieťou (preložené z [1]). Paket je malý blok dát prenášaný v sieti, ktorý sa skladá z hlavičky a samotných prenášaných dát. Táto hlavička obsahuje informácie, ako napr. zdrojovú a cieľovú adresu paketu, jeho veľkosť a použitý protokol. Protokol definuje formát dát paketu, t. j. stanovuje, na ktorých bajtoch sa nachádzajú určité informácie. Každá z vrstiev modelu OSI (abstraktná štruktúra komunikačných a počítačových sieťových protokolov [2]) má vlastný balík protokolov. Paket môže obsahovať viacero hlavičiek protokolov na rôznych vrstvách v súlade s tým, pod ktorú vrstvu spadá. My, na základe zadania, začneme od ethernetového rámca, z ktorého hlavičky zistíme, ktorý protokol sieťovej vrstvy bol použitý, t. j. aký formát ďalšej hlavičky máme očakávať. Z týchto hlavičiek potom zistíme, či na výstupe máme zahrnúť IPv4, IPv6 alebo MAC adresu, prípadne port, rovnako ako to, na ktorých bajtoch tieto informácie nájdeme.

Na analýzu paketov budeme využívať **promisku**itný režim sieťovej karty, čo znamená, že budeme zachytávať aj sieťovú komunikáciu, ktorá nie je priamo určená našemu zariadeniu [4].

3 Štruktúra kódu a implementácia

Funkcionalitu programu **ipk-sniffer** je v základe možné rozdeliť na spracovanie argumentov príkazového riadka, výpis dostupných sieťových rozhraní a zachytávanie a analýzu paketov na zvolenom rozhraní. Na základné operácie s rozhraniami a paketmi

sa využíva knižnica pcap¹.

Na základe argumentov príkazového riadka, spracovaných pomocou štandardnej knižnice getopt², sa zvolí činnosť analyzátora-výpis rozhraní alebo analýza paketov, a zostaví sa filter na ich zachytávanie. Tieto argumenty, spracované funkciou Options::get_opts, sú uložené v objekte triedy Options. Zoznam názvov dostupných rozhraní sa získa pomocou funkcie pcap_findalldevs. Tento zoznam sa následne iteruje, názvy rozhraní sa vypíšu na štandardný výstup a zoznam sa uvoľní.

V prípade analýzy paketov sa najskôr získa "rukoväť" (ďalej angl. handle) v promiskuitnom móde na zachytávanie paketov na špecifikovanom sieťovom rozhraní a vygeneruje, skompiluje a aplikuje sa na ňu filter na základe údajov objektu triedy Options. Následne sa zachytí a spracuje zvolený počet paketov.

Z hlavičky zachyteného paketu sa získa časová značka a jeho veľkosť v bajtoch. Tento paket sa interpretuje ako ethernetový rámec a na základe hodnoty atribútu EtherType³ sa zistí, či obsahuje IPv4 datagram alebo rámec IPv6 či ARP a získa sa príslušná hlavička. V prípade IPv4 alebo IPv6 sa získa a dekóduje zdrojová a cieľová IP adresa paketu a pri protokoloch TCP a UDP aj príslušná dvojica portov; v prípade ARP sa z hlavičky ethernetového paketu zistí dvojica MAC adries. Údaje popísané v tomto odstavci sa vypíšu na štandardný výstup ako hlavička výpisu zachyteného paketu.

Samotné dáta zachyteného paketu sú po 16 bajtoch na riadok vypísané ako hexadecimálne hodnoty spolu so svojou ASCII reprezentáciou. Prefix každého riadka predstavuje hexadecimálny ofset jeho prvého bajtu.

4 Testovanie funkcionality

Priebežné testovanie implementovaného programu bolo vykonávané za použitia open-source analyzátora paketov **Wireshark 3.2.3** [5]. Finálne testovanie pozostávalo z niekoľkých testovacích prípadov, ktoré zahŕňali spustenie oboch nástrojov, lokalizáciu zaujímavého úseku paketov, vyexportovanie skúmaných dát a ich porovnanie.

¹ https://www.tcpdump.org/manpages/pcap.3pcap.html

 $^{^2\,}https://man7.org/linux/man-pages/man3/getopt.3.html$

 $^{^3}$ https://en.wikipedia.org/wiki/Ethernet_frame#Types

Vo.	▼ Time	Source	Destination	Protocol	Length
	2194 22:15:10.437	192.168.100.118	91.189.92.17	TCP	66
	2195 22:15:15.412	fe80::4ec5:3eff:fe2e:d210	ff02::1	ICMPv6	102
	2196 22:15:15.413	fe80::4ec5:3eff:fe2e:d210	ff02::1	ICMPv6	102
	2197 22:15:15.413	fe80::4ec5:3eff:fe2e:d210	ff02::1	ICMPv6	102
	2198 22:15:15.413	fe80::4ec5:3eff:fe2e:d210	ff02::1	ICMPv6	102
	2199 22:15:15.593	192.168.100.118	221.158.204.116	UDP	136
	2200 22:15:15.911	221.158.204.116	192.168.100.118	UDP	341
	2201 22:15:20.920	ZyxelCom_2e:d2:10	LiteonTe_66:e9:47	ARP	42
	2202 22:15:20.920	LiteonTe_66:e9:47	ZyxelCom_2e:d2:10	ARP	42
	2203 22:15:23.981	192.168.100.118	41.246.26.225	UDP	136
	2204 22:15:25.453	fe80::4ec5:3eff:fe2e:d210	ff02::1	ICMPv6	102
	2205 22:15:25.453	fe80::4ec5:3eff:fe2e:d210	ff02::1	ICMPv6	102
	2206 22:15:25.453	fe80::4ec5:3eff:fe2e:d210	ff02::1	ICMPv6	102
	2207 22:15:25.453	fe80::4ec5:3eff:fe2e:d210	ff02::1	ICMPv6	102
	2208 22:15:29.241	192.168.100.118	41.246.26.225	UDP	136
	2209 22:15:34.253	LiteonTe_66:e9:47	ZyxelCom_2e:d2:10	ARP	42
	2210 22:15:34.255	ZyxelCom_2e:d2:10	LiteonTe_66:e9:47	ARP	42
	2211 22:15:35.492	fe80::4ec5:3eff:fe2e:d210	ff02::1	ICMPv6	102
	2212 22:15:35.492	fe80::4ec5:3eff:fe2e:d210	ff02::1	ICMPv6	102
	2213 22:15:35.492	fe80::4ec5:3eff:fe2e:d210	ff02::1	ICMPv6	102
	2214 22:15:35.493	fe80::4ec5:3eff:fe2e:d210	ff02::1	ICMPv6	102
	2215 22:15:38.416	192.168.100.219	192.168.100.255	UDP	86
	2216 22:15:40.241	192.168.100.118	41.246.26.225	UDP	136
	2217 22:15:41.263	41.246.26.225	192.168.100.118	ICMP	164

Obr. 1: Skúmaný úsek paketov – Wireshark

Obr. 2: Časť skúmaného úseku paketov-ipk-sniffer

4.1 Správnosť zachytávania paketov

Prvý testovací prípad skúma, či implementovaný analyzátor zachytáva rovnaké pakety. Zvolíme si prvé 4 pakety skúmaného úseku a porovnáme ich časovú značku a veľkosť. WS – Wireshark, IPK – ipk-sniffer.

WS čas	IPK čas	WS veľkosť	IPK veľkosť
22:15:10.437	22:15:15.437+02:00	66	66
22:15:15.412	22:15:15.412+02:00	102	102
22:15:15.413	22:15:15.413+02:00	102	102
22:15:15.413	22:15:15.413+02:00	102	102

Tabuľka 1: Porovnanie zachytených paketov

Zdá sa, že obidva analyzátory zachytávajú rovnaké pakety. Ďalej teda budeme testovať ich obsah.

4.2 Správnosť obsahu paketov

V rámci tohoto testovacieho prípadu si zvolíme niekoľko paketov zo skúmaného úseku s rôznymi protokolmi a porovnáme ich obsahy v hexadecimálnej aj ASCII reprezentácií.

No.	▼ Tin	ne		Source	Destination	Protocol	Length
	2194 22		9.437	192.168.100.118	91.189.92.17	TCP	
	2195 22	2:15:1	5.412	fe80::4ec5:3eff:fe2e:d210	ff02::1	ICMPv6	102
	2196 22	2:15:1	5.413	fe80::4ec5:3eff:fe2e:d210		ICMPv6	102
	2197 22	2:15:1	5.413	fe80::4ec5:3eff:fe2e:d210	ff02::1	ICMPv6	102
				fe80::4ec5:3eff:fe2e:d210	ff02::1	ICMPv6	102
	2199 22	2:15:1	5.593	192.168.100.118	221.158.204.116	UDP	136
				221.158.204.116	192.168.100.118	UDP	341
				ZyxelCom_2e:d2:10	LiteonTe_66:e9:47		42
				LiteonTe_66:e9:47	ZyxelCom_2e:d2:10	ARP	42
				192.168.100.118	41.246.26.225	UDP	136
				fe80::4ec5:3eff:fe2e:d210		ICMPv6	102
				fe80::4ec5:3eff:fe2e:d210		ICMPv6	102
				fe80::4ec5:3eff:fe2e:d210		ICMPv6	102
				fe80::4ec5:3eff:fe2e:d210	ff02::1	ICMPv6	102
				192.168.100.118	41.246.26.225	UDP	136
				LiteonTe_66:e9:47	ZyxelCom_2e:d2:10		42
				ZyxelCom_2e:d2:10	LiteonTe_66:e9:47	ARP	42
				fe80::4ec5:3eff:fe2e:d210		ICMPv6	102
				fe80::4ec5:3eff:fe2e:d210	ff02::1	ICMPv6	102
				fe80::4ec5:3eff:fe2e:d210	ff02::1	ICMPv6	102
				fe80::4ec5:3eff:fe2e:d210	ff02::1	ICMPv6	102
				192.168.100.219	192.168.100.255	UDP	86
				192.168.100.118	41.246.26.225	UDP	136
	2217 22		1.263	41.246.26.225	192.168.100.118		164

Obr. 3: Zvolené pakety (tmavo modré) – Wireshark

Porovania boli vykonané príkazom⁴ wdiff {protocol} {protocol}_ws | colordiff. Z výsledkov tohoto testovacieho prípadu na obr. 4 a 5 vidíme, že výstup programu *ipk-sniffer* sa od dát zachytených programom *Wireshark* líši jedine vo výpise hlavičky a vo formáte ofsetu na začiatku riadku.

Obr. 4: Výsledky porovnávania dát paketov – 1. časť

⁴wdiff-GNU nástroj na porovnávanie súborov po slovách; colordiff-https://linux.die.net/man/1/colordiff

```
| wdiff (cmpv6 \texpv6 \texpv6
```

Obr. 5: Výsledky porovnávania dát paketov – 2. časť

Literatúra

- [1] What Is a Network Interface?—The Java™ Tutorials. [online], 2021. URL https://docs.oracle.com/javase/tutorial/networking/nifs/definition.html.
- [2] Model OSI-Wikipedia. [online], 2021. URL https://sk.wikipedia.org/wiki/Model_OSI.
- [3] What is a Packet Analyzer? Definition from Techopedia. [online], 2021. URL https://www.techopedia.com/definition/25323/packet-analyzer.
- [4] Promiskuitní režim-Wikipedia. [online], 2021. URL https://cs.wikipedia.org/wiki/Promiskuitn%C3%AD_re%C5%BEim.
- [5] Wireshark. [online], 2021. URL https://www.wireshark.org/.