Foglio 2 - Es 14/15

Esercizio 14

Punto uno

Il primo punto dell'esercizio ci chiede di dimostrare, per $k \in \{0, \dots N-1\}$, che vale:

$$p_{Bin(N,q)}(k+1) = rac{q}{1-q}rac{N-k}{k+1}p_{Bin(N,q)}(k)$$

Iniziamo sostituendo la distribuzione binomiale, $p_{Bin(N,q)}(k)$

$$p_{Bin(N,q)}(k+1) = inom{N}{k+1} q^{k+1} (1-q)^{N-k-1}$$

E riscriviamo $\binom{N}{k+1}$ come $\frac{N-k}{k+1}\binom{N}{k}$,ottenendo:

$$p_{Bin(N,q)}(k+1) = rac{N-k}{k+1}inom{N}{k}q^{k+1}(1-q)^{N-k-1}$$

Dividiamo per $p_{Bin(N,q)}(k)$:

$$rac{p_{Bin(N,q)}(k+1)}{p_{Bin(N,q)}(k)} = rac{N-k}{k+1} rac{q^{k+1}(1-q)^{N-k-1}}{q^k(1-q)^{N-k}}$$

E semplificando dimostriamo dunque la veridicità del primo punto

$$p_{Bin(N,q)}(k+1) = rac{N-k}{k+1} * rac{q}{1-q} * p_{Bin(N,q)}(k)$$

Punto due

Dimostriamo che

$$p_{Bin(N,q)}(k) = p_{Bin(N,1-q)}(N-k)$$

Riscriviamo $p_{Bin(N,1-q)}(N-k)$, come

$$p_{Bin(N,1-q)}(N-k) = inom{N}{N-k}(1-q)^{N-k}q^k$$

Essendo $\binom{N}{N-k}=\binom{N}{k}$, otteniamo

$$p_{Bin(N,1-q)}(N-k) = inom{N}{k} q^k (1-q)^{N-k} = p_{Bin(N,q)}(k)$$

Dimostrando il punto due.

Esercizio 15

Giustificazione matematica

Avendo N+M votanti e M votano per A, mentre N scelgono casualmente tra A e B, definendo S_N come gli indecisi che votano per A, quindi il numero di successi in N prove ripetute e indipendenti, questi sono rappresentabili tramite una distribuzione binomiale $Bin(N,\frac{1}{2})$.

Dunque per vincere

A deve valere $M+Bin(N,rac{1}{2})>rac{N+M}{2}$, quindi la probabilità tale per cui vinca A vale:

$$P(S_N+M>rac{N+M}{2})=P(S_N>rac{N-M}{2})=\sum_{k=rac{N-M}{2}+1}^N p_{Bin(N,rac{1}{2})}(k)$$

Commento codice Python

Per il calcolo del esempio tramite codice python ho dovuto approssimare la distribuzione binomiale a causa dell'instabilità con grandi N.

Ho utilizzato dunque una distribuzione normale standard che ci permette di approssimare $S_N=Bin(N,\frac{1}{2})$ con N(np,np(1-p)) cioè una distribuzione normale gaussiana di media np e varianza np(1-p)

Foglio 2 - Es 14/15 2