06	9b	During a storm, water flows into a 7000-litre tank at a rate of $\frac{dV}{dt}$ litres per minute,	
		where $\frac{dV}{dt} = 120 + 26t - t^2$ and t is the time in minutes since the storm began.	
		At what times is the tank filling at twice the initial rate?Find the volume of water that has flowed into the tank since the start of the storm as a function of t.	2 1
		(iii) Initially, the tank contains 1500 litres of water. When the storm finishes, 30 minutes after it began, the tank is overflowing. How many litres of water	2

(i) Initial means
$$t = 0$$
:

$$\frac{dV}{dt} = 120 + 26t - t^{2}$$

$$= 120 + 26(0) - (0)^{2}$$

$$= 120$$

$$\therefore \text{ initial rate is } 120 \text{ litres/minu}$$

∴ initial rate is 120 litres/minute Twice initial rate is 240 litres/minute

have been lost?

$$120 + 26t - t^{2} = 240$$

$$t^{2} - 26t + 120 = 0$$

$$(t - 6) (t - 20) = 0$$

$$t = 6 \text{ and } 20$$

.. after 6 minutes and after 20 minutes

(ii)
$$\frac{dV}{dt} = 120 + 26t - t^{2}$$

$$V = 120t + 13t^{2} - \frac{t^{3}}{3} + c$$
where $c = initial volume$

(iii)
$$V = 120t + 13t^2 - \frac{t^3}{3} + c$$

 $t = 0, V = 1500$
 $V = 120t + 13t^2 - \frac{t^3}{3} + 1500$
Let $t = 30$,
 $V = 120(30) + 13(30)^2 - \frac{(30)^3}{3} + 1500$
 $= 3600 + 11700 - 9000 + 1500$
 $= 7800$
Difference = $7800 - 7000$
 $= 800$

: 800 litres lost

Board of Studies: Notes from the Marking Centre

- (i) Most candidates were able to find the initial rate and then write $240 = 120 + 26t t^2$. Unfortunately many then made careless errors and were unable to factorise correctly. In better responses candidates changed the equation so that the coefficient of t^2 was positive. Candidates are reminded of the importance of basic algebra skills.
- (ii) This part was very poorly done. Many candidates correctly integrated and gave $V = 120t + 13 t^2 \frac{t^3}{3} + c$, but then either did not bother to evaluate c or incorrectly said that c was 1500. They did not appear to understand that V was the 'volume of water that has flowed into the tank since the start of the storm'.

Source: http://www.boardofstudies.nsw.edu.au/hsc_exams/

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies