GA DSI 26 Project 3: Wine and Beer

By: Lim Zhi Yong

Task:

- Understand consumer patterns
- Identify if the consumer wants winemaking or homebrewing info
 - Train model with subreddit posts

Data Description

- 1,000 posts from each subreddit
 - r/winemaking
 - r/homebrewing
- Cleaned punctuation, stopwords, delimiters
- Considered both unigrams and bigrams

Notes

"wine"

"Wine" was top classified word for winemaking, but second in misclassified posts

Seeking advice

'first time' comes up relatively frequently

Usual suspects

- hop', 'malt', and 'keg' for beer
- 'grape', 'skin','age' for wine

Types

Wine has more types (strawberry, elderberry, banana) than beer (pale ale, ginger) in top 20

Overlapping words

- Sugar
- Yeast
- Ferment

Tokenize

Bigrams had more unique tokens than unigrams

Data Cleaning

- Missing values
- Vectorization

Modelling

Building models

Testing

Scoring models

Recommendations

Missing Values

There are different types of missing values:

- Duplicate posts were removed
- Null and removed texts were replaced with the empty string
- One deleted post was miscategorized, we removed it

1969 rows left

Data Cleaning

- Missing values
- Vectorization

Modelling

Building models

Testing

Scoring models

Recommendations

Modelling

- ♦ 8 models:
 - Logistic regression
 - Count
 - Tf-idf
 - > KNN classifier
 - Count
 - Tf-idf
 - > Naïve bayes
 - Count
 - Tf-idf
 - Random forest
 - Count
 - Tf-idf

- ROC-AUC to determine best models
- F1 score to compare baseline score
- Accuracy to determine whether overfit

Data Cleaning

- Missing values
- Vectorization

Modelling

Building models

Testing

Scoring models

Recommendations

models	vectorizer	accuracy score	auc score
Logistic Regression	count	0.897	0.961
Logistic Regression	tf-idf	0.917	0.975
KNN Classifier	count	0.720	0.851
KNN Classifier	tf-idf	0.580	0.655
Naïve Bayes	count	0.789	0.925
Naïve Bayes	tf-idf	0.789	0.925
Random Forest	count	0.890	0.964
Random Forest	tf-idf	0.888	0.966

Logistic Regression performed the best

Pipeline params:

- TfidfVectorizer(max_features=4000 , min_df=2, ngram_range=(1, 2)))
 - LogisticRegression(C=I, random_state=42, solver='liblinear')

Data Cleaning

- Missing values
- Vectorization

Modelling

Building models

Testing

Scoring models

Recommendations

Best Model

Features

- Wordnet lemmatizer
- Tf-idf vectorizer
- Logistic regression with ridge penalty

Limitations

- Spell check before lemmatizing
- Slightly overfit, could remove more stopwords

Thanks

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik

Please, keep this slide for the attribution