View

Edit

Not Trusted

Kernel

Cell

Model Fit in Linear Regression - Lab

Help

Introduction

Insert

In this lab, you'll learn how to evaluate your model results, and you'll learn methods to select the appropriate features using stepwise selection.

Objectives

You will be able to:

- Analyze the results of regression and R-squared and adjusted-R-squared
- Understand and apply forward and backward predictor selection

The Boston Housing Data once more

We pre-processed the Boston Housing Data the same way we did before:

- · We dropped "ZN" and "NOX" completely
- We categorized "RAD" in 3 bins and "TAX" in 4 bins
- We used min-max-scaling on "B", "CRIM" and "DIS" (and logtransformed all of them first, except "B")
- We used standardization on "AGE", "INDUS", "LSTAT" and "PTRATIO" (and logtransformed all of them first, except for "AGE")

```
In [1]: ▶ import pandas as pd
              import numpy as np
              from sklearn.datasets import load_boston
              boston = load boston()
              boston_features = pd.DataFrame(boston.data, columns = boston.feature_names)
              boston_features = boston_features.drop(["NOX","ZN"],axis=1)
              # first, create bins for based on the values observed. 3 values will result in 2 bins
              bins = [0,6, 24]
              bins_rad = pd.cut(boston_features['RAD'], bins)
              bins rad = bins rad.cat.as unordered()
              # first, create bins for based on the values observed. 4 values will result in 3 bins
              bins = [0, 270, 360, 712]
              bins_tax = pd.cut(boston_features['TAX'], bins)
              bins_tax = bins_tax.cat.as_unordered()
              tax_dummy = pd.get_dummies(bins_tax, prefix="TAX")
              rad_dummy = pd.get_dummies(bins_rad, prefix="RAD")
boston_features = boston_features.drop(["RAD","TAX"], axis=1)
              boston_features = pd.concat([boston_features, rad_dummy, tax_dummy], axis=1)
              age = boston_features["AGE"]
              b = boston_features["B"]
              logcrim = np.log(boston_features["CRIM"])
              logdis = np.log(boston_features["DIS"])
              logistat = np.log(boston_features["INDUS"])
logIstat = np.log(boston_features["LSTAT"])
              logptratio = np.log(boston_features["PTRATIO"])
              # minmax scaling
              boston_features["B"] = (b-min(b))/(max(b)-min(b))
              boston_features["CRIM"] = (logcrim-min(logcrim))/(max(logcrim)-min(logcrim))
boston_features["DIS"] = (logdis-min(logdis))/(max(logdis)-min(logdis))
              #standardization
              boston_features["AGE"] = (age-np.mean(age))/np.sqrt(np.var(age))
              boston_features["INDUS"] = (logindus-np.mean(logindus))/np.sqrt(np.var(logindus))
boston_features["LSTAT"] = (loglstat-np.mean(loglstat))/np.sqrt(np.var(loglstat))
              boston_features["PTRATIO"] = (logptratio-np.mean(logptratio))/(np.sqrt(np.var(logptratio)))
```

Perform stepwise selection

The code for stepwise selection is copied below.

```
- list-like with the target
                     initial_list - list of features to start with (column names of X)
                     threshold_in - include a feature if its p-value < threshold_in threshold_out - exclude a feature if its p-value > threshold_out
                     verbose - whether to print the sequence of inclusions and exclusions
                 Returns: list of selected features
                 Always set threshold_in < threshold_out to avoid infinite looping.
                 See https://en.wikipedia.org/wiki/Stepwise_regression for the details
                 included = list(initial_list)
                while True:
                     changed=False
                     # forward step
                     excluded = list(set(X.columns)-set(included))
                     new_pval = pd.Series(index=excluded)
                     for new_column in excluded:
                         model = sm.OLS(y, sm.add_constant(pd.DataFrame(X[included+[new_column]]))).fit()
                         new_pval[new_column] = model.pvalues[new_column]
                     best_pval = new_pval.min()
                     if best_pval < threshold_in:</pre>
                         best feature = new pval.idxmin()
                         included.append(best_feature)
                         changed=True
                         if verbose:
                             print('Add {:30} with p-value {:.6}'.format(best_feature, best_pval))
                     # backward step
                     model = sm.OLS(y, sm.add_constant(pd.DataFrame(X[included]))).fit()
                     # use all coefs except intercept
                     pvalues = model.pvalues.iloc[1:]
                     worst_pval = pvalues.max() # null if pvalues is empty
                     if worst_pval > threshold_out:
                         changed=True
                         worst_feature = pvalues.argmax()
                         included.remove(worst_feature)
                         if verbose:
                             print('Drop {:30} with p-value {:.6}'.format(worst_feature, worst_pval))
                     if not changed:
                         break
                 return included
             /Users/lore.dirick/anaconda3/lib/python3.6/site-packages/statsmodels/compat/pandas.py:56: FutureWarning: The pandas.core.dat
            etools module is deprecated and will be removed in a future version. Please use the pandas.tseries module instead.
              from pandas.core import datetools
In [3]:  X = boston_features
            y = pd.DataFrame(boston.target, columns= ["price"])
In [4]: M result = stepwise_selection(X, y, verbose = True)
             print('resulting features:')
            print(result)
            Add LSTAT
                                                  with p-value 9.27989e-122
            Add RM
                                                  with p-value 1.98621e-16
            Add PTRATIO
                                                  with p-value 2.5977e-12
            Add DIS
                                                  with p-value 2.85496e-09
            Add B
                                                  with p-value 2.77572e-06
            Add TAX_(0, 270]
                                                  with p-value 0.000855799
            Add CHAS
                                                  with p-value 0.00151282
            Add INDUS
                                                  with p-value 0.00588575
            resulting features:
            ['LSTAT', 'RM', 'PTRATIO', 'DIS', 'B', 'TAX_(0, 270]', 'CHAS', 'INDUS']
        Build the final model again in Statsmodels
In [5]: ► import statsmodels.api as sm
             X_fin = X[["LSTAT", "RM", "PTRATIO", "DIS", "B", "TAX_(0, 270]", "CHAS", "INDUS"]]
             X int = sm.add constant(X fin)
            model = sm.OLS(y,X_int).fit()
            model.summary()
   Out[5]: OLS Regression Results
                                                              0.776
                Dep. Variable:
                                      price
                                                 R-squared:
                      Model:
                                      OLS
                                            Adi. R-squared:
                                                              0.773
                               Least Squares
                     Method:
                                                 F-statistic:
                       Date: Mon. 15 Oct 2018 Prob (F-statistic): 2.69e-156
                                    21:15:33 Log-Likelihood:
                                                            -1461.3
                       Time:
                                                      AIC:
             No. Observations:
                                       506
                                                              2941
                 Df Residuals:
                                       497
                                                      BIC:
                                                              2979
                    Df Model:
                                         8
              Covariance Type:
                                  nonrobust
                                           t P>|t| [0.025 0.975]
                           coef std err
                                       1.742 0.082
                  const 4.8980 2.813
                                                   -0.628 10.424
                  LSTAT -5.5932
                                0.319 -17.538 0.000
                                                   -6.220 -4.967
                    RM 2.8294
                                0.386
                                       7.333 0.000
                                                   2.071 3.587
                PTRATIO -1.3265 0.226 -5.878 0.000 -1.770 -0.883
```

X - pandas.DataFrame with candidate features

```
DIS -9.1984
                          -6.898 0.000 -11.818 -6.579
        B 3.9052
                          4.195 0.000 2.076 5.734
                  0.931
TAX_(0, 270] 1.4418
                   0.552
                          2.614 0.009 0.358
                                              2.526
    CHAS 2.7988 0.791
                          3.539 0.000 1.245 4.353
    INDUS -0.9574 0.346 -2.766 0.006 -1.637 -0.277
    Omnibus: 114.307 Durbin-Watson: 1.088
Prob(Omnibus): 0.000 Jarque-Bera (JB): 482.579
               0.945
                           Prob(JB): 1.62e-105
              7.395
     Kurtosis:
                           Cond. No.
```

Where our stepwise procedure mentions that "CHAS" was added with a p-value of 0.00151282, but our statsmodels output returns a p-value of 0.000. What is the intuition behind this?

Use Feature ranking with recursive feature elimination

Use feature ranking to select the 5 most important features

Fit the linear regression model again using the 5 columns selected

```
In [8]: N selected_columns = X.columns[selector.support_ ]
linreg.fit(X[selected_columns],y)
Out[8]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
```

Now, predict \hat{y} using your model, you can use .predict() in scikit-learn

Now, using the formulas of R-squared and adjusted-R-squared below, and your Python/numpy knowledge, compute them and contrast them with the R-squared and adjusted-R-squared in your statsmodels output using stepwise selection. Which of the two models would you prefer?

$$\begin{split} SS_{residual} &= \sum (y - \hat{y})^2 \\ SS_{total} &= \sum (y - \bar{y})^2 \\ R^2 &= 1 - \frac{SS_{residual}}{SS_{total}} \\ R_{adj}^2 &= 1 - (1 - R^2) \frac{n - 1}{n - p - 1} \end{split}$$

Level up - Optional

dtype: float64

- Perform variable selection using forward selection, using this resource: https://planspace.org/20150423-forward_selection_with_statsmodels/. Note that this time features are added based on the adjusted-R-squared!
- Tweak the code in the stepwise_selection() -function written above to just perform forward selection based on the p-value.

Summary