Hugo Marquerie 24/02/2025

Topología producto

Lema 1. Sean (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) dos espacios topológicos

 $\implies \mathcal{B} := \{U \times V : U \in \mathcal{T}_{X \land} V \in \mathcal{T}_{Y}\}$ es base de una topología de $X \times Y$.

Demostración: Basta probar las propiedades (a) y (b) de Prop-base-alguna-topologia/Proposición I

- (a) Sea $(x, y) \in X \times Y$, entonces $\exists U \in \mathcal{T}_X, V \in \mathcal{T}_Y : x \in U \land y \in V$. $\implies (x, y) \in U \times V \in \mathcal{B} \implies \forall (x, y) \in X \times Y : \exists B \in \mathcal{B} : (x, y) \in B$.
- (b) Sean $B_1 = U_1 \times V_1, B_2 = U_2 \times V_2 \in \mathcal{B}$ y sea $(x, y) \in B_1 \cap B_2$. $\implies (x, y) \in (U_1 \times V_1) \cap (U_2 \times V_2) = (U_1 \cap U_2) \times (V_1 \cap V_2) \in \mathcal{B}.$ Luego $\forall B_1, B_2 \in \mathcal{B} : \forall (x, y) \in B_1 \cap B_2 : \exists B \in \mathcal{B} : (x, y) \in B.$

Definición 1 (Topología producto). Sean (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) dos espacios topológicos, \mathcal{T} es la topología producto de $X \times Y$

 $\iff \mathcal{T}$ es la topología generada por la base $\mathcal{B} = \{U \times V : U \in \mathcal{T}_X \land V \in \mathcal{T}_Y\}$.

Referenciado en

- Prop-topologia-producto-hausdorff
- $\bullet \ {\tt Prop-topologia-producto-segundo-numerable}$
- Esp-proyectivo-real