Teoretická informatika (TIN) – 2022/2023 Úkol 1

(max. zisk 5 bodů – 10 bodů níže odpovídá 1 bodu v hodnocení předmětu)

1. Uvažte NKA M_3 nad abecedou $\Sigma = \{a, b, c\}$ z obrázku 1:

Obrázek 1: NKA M₃

- (a) Řešením rovnic nad regulárními výrazy sestavte k tomuto automatu ekvivalentní regulární výraz.
- (b) Sestrojte relaci pravé kongruence \sim s konečným indexem takovou, že $L(M_3)$ je sjednocením některých tříd rozkladu $\{a,b,c\}^*/_{\sim}$.

15 bodů

2. Mějme jazyk L_1 nad abecedou $\{a,b,c\}$ definovaný následovně:

$$L_1 = \{ w \mid w \in \{a, b, c\}^* \land \#_a(w) > \#_b(w) \}$$

Sestrojte jazyk L_2 takový, že $L_1 \cap L_2 \in \mathcal{L}_3$ a zároveň $L_1 \cup L_2 \in \mathcal{L}_3$. Dále rozhodněte a dokažte, zda L_2 je, či není, regulární. Pro důkaz regularity sestrojte příslušný konečný automat, nebo gramatiku. Pro důkaz neregularity použijte pumping lemma.

Dokažte, že jazyk L_1 není regulární.

15 bodů

3. Uvažujme jazyk L_s , jehož slova jsou n-tice binárních čísel 1 oddělené znakem #. Konkrétněji, jazyk L_s obsahuje slova tvaru $w_1 \# w_2 \# \dots \# w_n \#$, kde $w_1, \dots, w_n \in \{0,1\}^+$ jsou binární čísla. Tato slova odpovídají regulárnímu výrazu $R = ((0+1)(0+1)^* \#)^*$. Uvažujme dále omezení, že alespoň jedno číslo ve slově $w_1 \# w_2 \# \dots \# w_n \#$ je sudé—tedy jeho poslední znak je 0. Formálně zapsáno:

$$L_s = \{ w \in \{0, 1, \#\}^* \mid w \in \mathcal{L}(R) \land w \in \mathcal{L}((0 + 1 + \#)^* 0 \# (0 + 1 + \#)^*) \}$$

- (a) Sestrojte nedeterministický konečný automat M_1 přijímající jazyk L_s (není nutné použít algoritmický postup).
- (b) Automat M_1 převeď te algoritmicky na deterministický konečný automat M_2 .

20 bodů

 $^{^1}$ Jako binární číslo budeme chápat libovoný řetězec nad abecedou $\{0,1\}$. Číslo tak může obsahovat počáteční nuly.