

Ampliación de Señales y Sistemas

Examen Final

Apellidos	• • • • •	
Nombre		
Titulación (marque con un círculo lo que corresponda): Tecnologías - Telemática - Sistemas - Doble Sistemas+ADE	-	Doble Teleco+Aero

Ejercicio 1 [1.5 puntos]

Considere una señal x[n] con periodo N=10 y el desarrollo en serie de Fourier que se muestra en la Figura 1.1, donde b es un número real mayor o igual que cero.

- (a) Indique si la señal x[n] es real. Justifique muy brevemente su respuesta (no más de tres líneas). [0.5 puntos]
- **(b)** Suponga que la potencia de la señal x[n] es 9 y calcule el valor de b. Recuadre el valor de b y justifique brevemente su respuesta. [0.5 puntos]
- **(c)** Suponga ahora que no conoce la potencia de x[n] pero que sí sabe que al convolucionar la señal x[n] con una señal w[n] (cuya transformada de Fourier se muestra en la Figura 1.2) se obtiene una señal y[n]=x[n]*w[n] constante de valor 10. Utilice la información de que y[n]=10 para calcular el valor de b. Recuadre el valor de b y justifique brevemente su respuesta. Nota: el resultado no tiene por qué ser el mismo que en el apartado anterior. $[0.5 \ puntos]$

Ejercicio 2 [1.5 puntos]

Suponga que tiene una señal x(t) con la respuesta en frecuencia indicada en la Figura 2.1.

Dicha señal se procesa con el esquema indicado en la Figura 2.2.

Figura 2.2

Donde:

- C/D es un conversor continuo a discreto (muestreador más paso de tren a secuencia) a una tasa de muestreo de T segundos.
- D/C es un conversor discreto a continuo (paso de tren a secuencia más filtro paso bajo) a una tasa de interpolación de T segundos.
- $\uparrow P$, indica interpolar $x_1[n]$ por un factor P, es decir, $x_2[n]$ representa el resultado de insertar P-1 ceros entre dos muestras sucesivas de x[n].
- \downarrow K , indica diezmar $x_3[n]$ por un factor K.

Suponga que ω_m =1000 π , T=1/4000, P=4, K=2, T'=1/2000 y dibuje las transfomadas de Fourier de las señales $x_2[n]$, $x_4[n]$, y(t). Etiquete claramente las figuras (ejes y amplitudes) y, si la señal en cuestión es periódica, indique claramente su periodo.

Ejercicio 3 [2 puntos]

Considere las siguientes secuencias de longitud finita:

$$x[n]=\delta[n]-\delta[n-1]+\delta[n-2]$$

$$x_1[n] = \delta[n] + \delta[n-3] - \delta[n-4]$$

Las DFTs de N puntos de ambas secuencias, X[k] y $X_1[k]$, respectivamente, están relacionadas por la ecuación:

$$X_1[k] = X[k]e^{j2k\frac{2\pi}{N}}$$

Siendo N una constante desconocida. ¿Se puede determinar un valor de N consistente con esa información? ¿Es único ese valor de N?. Si lo es justifique la respuesta. Si no lo es, encuentre otro valor de N que sea consistente con la información suministrada.

Ejercicio 4 [1.5 puntos]

A continuación se presentan las señales $x_1[n]$ y $x_2[n]$ que son la suma de dos sinusoides:

$$x_1[n] = \cos(\pi n/4) + \cos(17\pi n/64)$$

$$x_2[n] = \cos(\pi n/4) + 0.8\cos(21\pi n/64)$$

Se desea estimar el espectro de cada una de esas señales utilizando una DFT de 64 puntos con una ventana rectangular w[n] de 64 puntos. ¿Cuál de las dos DFTs tendría dos picos espectrales distinguibles tras el enventanado?. Justifique su respuesta.

Ejercicio 5 [3.5 puntos]

Considere el sistema LTI discreto dado por la siguiente ecuación en diferencias:

$$12y[n] + 5y[n-1] - 2y[n-2] = 36x[n] + 2x[n-1]$$

La función de transferencia, H(z), de dicho sistema puede tener una o más de las siguientes ROCs:

ROC-A:
$$|z| < 2/3$$
; ROC-B: $|z| < 1/4$; ROC-C: $|z| > 2/3$; ROC-D $|z| > 1/4$; ROC-E: $1/4 < |z| < 2/3$

(a) Determine H(z). [1 punto]

- **(b)** Dos de las cinco ROCs propuestas no son posibles. Indique cuáles son y por qué no pueden ser válidas. *[0.5 puntos]*
- **(c)** ¿Cuál de las cinco ROCs produce una respuesta al impulso bilateral?. Determine dicha respuesta al impulso para esa ROC. [0.75 puntos]
- **(d)** ¿Cuál de las cinco ROCs produce una respuesta al impulso causal?. Determine dicha respuesta al impulso para esa ROC. *[0.75 puntos]*
- **(e)** ¿Para qué ROC de las cinco propuestas puede existir la respuesta en frecuencia del sistema? Determine la expresión analítica de la respuesta en frecuencia para esa ROC. *[0.5 puntos]*