

In [46]	<pre>ax=df.iloc[0:13].plot(label="pre plt.legend(loc='upper right') plt.title("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show()</pre>	Original Vs Predicted(Training dataset) Original Vs Predicted(Training dataset) predicted_price actual_prize
	40 - 30 -	
In [47]:	20 - 10 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	4 6 8 10 12 index
In [47]	test_index=pd.DataFrame(y_test.r test_index MEDV 0 16.5 1 24.8 2 17.4 3 19.3 4 37.6	reset_index(),columns=['MEDV'])
In [48]:	147 14.9 148 21.9 149 18.5 150 30.8 151 14.6 152 rows × 1 columns : dft=pd.DataFrame(y_test_pred,col	umns=['predicted price'])
Out[48]	dft	dmins-[predicted_price])
In [49]	147 15.2 148 35.2 149 18.7 150 28.4 151 12.6 152 rows × 1 columns : dft['actual_prize']=test_index['dft	MEDV']
Out[49]	predicted_price actual_prize 1	
In [50]	<pre>148</pre>	redicted", figsize=(15,10), linewidth=3, color="rb") (Testing dataset)")
	plt.ylabel("values") plt.show() 45	Original Vs Predicted(Testing dataset) — predicted_price — actual_prize
	35 - Sales 30 - 25 -	
	20 - 15 - 2	4 6 8 10 12 index
	<pre># Import Random Forest Regressor from sklearn.ensemble import Ran # Create a Random Forest Regress reg = RandomForestRegressor() # Train the model using the trai reg.fit(X_train, y_train) : RandomForestRegressor()</pre>	domForestRegressor
In [53]	<pre>: print("Accuracy on Traing set: " print("Accuracy on Testing set: Accuracy on Traing set: 0.98167 Accuracy on Testing set: 0.8351 : # Model prediction on train data y_pred = reg.predict(X_train) : # Model Evaluation print('R^2:',metrics.r2_score(y_ print('MAE:',metrics.mean_absolumnint('MSE:',metrics.mean_square</pre>	", reg.score(X_test, y_test)) 58194725794 878286175581 train, y_pred)) te_error(y_train, y_pred))
	<pre>R^2: 0.9816758194725794 MAE: 0.8005988700564974 MSE: 1.379276271186442 RMSE: 1.1744259326098185 : # Predicting Test data with the y_test_pred = reg.predict(X_test) : # Model Evaluation print('R^2:',metrics.r2_score(y_</pre>	<pre>model test, y_test_pred))</pre>
In [57]	<pre>print('MAE:',metrics.mean_absolu print('MSE:',metrics.mean_square print('RMSE:',np.sqrt(metrics.me R^2: 0.8351878286175581 MAE: 2.4811776315789467 MSE: 17.209698848684212 RMSE: 4.14845740591418 : y_train train_index=pd.DataFrame(y_train train_index</pre>	<pre>ite_error(y_test, y_test_pred))</pre>
Out[57]	MEDV 0 23.9 1 18.2 2 21.7 3 13.5 4 50.0 349 7.2	
In [58]	df	'predicted_price'])
	predicted_price 0 23.092 1 18.831 2 19.957 3 13.852 4 48.002 349 8.062 350 31.247 351 12.667	
In [59]	352 21.895 353 20.025 354 rows × 1 columns : df['actual_prize']=train_index['df : predicted_price actual_prize 0 23.092 23.9	MEDV']
	0 23.092 23.9 1 18.831 18.2 2 19.957 21.7 3 13.852 13.5 4 48.002 50.0 349 8.062 7.2 350 31.247 30.3 351 12.667 12.8 352 21.895 22.6	
In [60]	353 20.025 20.5 354 rows × 2 columns : # Visualizing the differences be plt.scatter(y_train, y_pred) plt.xlabel("Prices") plt.ylabel("Predicted prices") plt.title("Prices vs Predicted plt.show() Prices vs Predicted prices	
	50 - 40 - 80 - 20 -	
In [61]	in 20 30 Prices ax=df.iloc[0:13].plot(label="preplet.legend(loc='upper right') plt.title("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show()	edicted", figsize=(15,10), linewidth=3, color="rb")
	40 -	actual_prize
	20 -	
In [62]	<pre>test_index=pd.DataFrame(y_test.r test_index MEDV 0 16.5</pre>	4 6 8 10 12 index eset_index(),columns=['MEDV'])
	1 24.8 2 17.4 3 19.3 4 37.6 147 14.9 148 21.9 149 18.5 150 30.8	
In [63] Out[63]	dft	.umns=['predicted_price'])
	2 19.332 3 17.260 4 46.642 147 15.462 148 41.664 149 19.759 150 26.616 151 15.068	
In [64]	<pre>152 rows × 1 columns dft['actual_prize']=test_index[' dft</pre>	MEDV']
Out[64]	2 19.332 17.4	
Out[64]	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6	
	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns	redicted", figsize=(15,10), linewidth=3, color="rb") (Testing dataset)") Original Vs Predicted(Testing dataset) predicted_price actual_prize
	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="prplt.legend(loc='upper right') plt.title("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show()	Original Vs Predicted(Testing dataset) — predicted_price
	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="prplt.legend(loc='upper right') plt.title("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 - 40 - 45 -	Original Vs Predicted(Testing dataset) — predicted_price
In [65]:	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="pr plt.legend(loc='upper right') plt.title("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 45 46 47 49 49 49 49 49 49 49 49 49 49 49 49 49	Original Vs Predicted(Testing dataset) Predicted price actual prize atual prize e models and then selected Random Forest Regression model as it is
In [65]: In [66]:	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="pr plt.legend(loc='upper right') plt.title("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 45 46 47 49 49 49 49 49 49 49 49 49 49 49 49 49	Original Vs Predicted(Testing dataset) Predicted price actual prize actual prize e models and then selected Random Forest Regression model as it is t prices 4.12628155, 1.6165014, 0.67288841, 1.42262747, 11.44443979304, 49.312
In [65]: In [66]:	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="prplt.legend(loc='upper right') plt.stitle("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 40 40 45 45 46 47 47 47 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	Original Vs Predicted(Testing dataset) Predicted price actual prize actual prize e models and then selected Random Forest Regression model as it is t prices 4.12628155, 1.6165014, 0.67288841, 1.42262747, 11.44443979304, 49.312
In [65]: In [67]:	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="prplt.legend(loc='upper right') plt.stitle("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 40 40 45 45 46 47 47 47 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	Original Vs Predicted(Testing dataset) Predicted price actual prize actual prize e models and then selected Random Forest Regression model as it is t prices 4.12628155, 1.6165014, 0.67288841, 1.42262747, 11.44443979304, 49.312
In [65]: In [67]:	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="prplt.legend(loc='upper right') plt.stitle("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 40 40 45 45 46 47 47 47 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	Original Vs Predicted(Testing dataset) Predicted price actual prize actual prize e models and then selected Random Forest Regression model as it is t prices 4.12628155, 1.6165014, 0.67288841, 1.42262747, 11.44443979304, 49.312
In [65]: In [67]:	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="prplt.legend(loc='upper right') plt.stitle("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 40 40 45 45 46 47 47 47 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	Original Vs Predicted(Testing dataset) Predicted price actual prize actual prize e models and then selected Random Forest Regression model as it is t prices 4.12628155, 1.6165014, 0.67288841, 1.42262747, 11.44443979304, 49.312
In [65]: In [67]:	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="prplt.legend(loc='upper right') plt.stitle("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 40 40 45 45 46 47 47 47 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	Original Vs Predicted(Testing dataset) Original Vs Predicted (Testing dataset) predicted price actual prize actual prize e models and then selected Random Forest Regression model as it is et prices 4.12628155, 1.6165014, 0.67288841, 1.42262747, 11.44443979304, 49.312
In [65]: In [67]:	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="prplt.legend(loc='upper right') plt.stitle("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 40 40 45 45 46 47 47 47 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	Original Vs Predicted(Testing dataset) Original Vs Predicted (Testing dataset) predicted price actual prize actual prize e models and then selected Random Forest Regression model as it is et prices 4.12628155, 1.6165014, 0.67288841, 1.42262747, 11.44443979304, 49.312
In [65]: In [67]:	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="prplt.legend(loc='upper right') plt.stitle("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 40 40 45 45 46 47 47 47 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	Original Vs Predicted(Testing dataset) Original Vs Predicted (Testing dataset) predicted price actual prize actual prize e models and then selected Random Forest Regression model as it is et prices 4.12628155, 1.6165014, 0.67288841, 1.42262747, 11.44443979304, 49.312
In [65]: In [67]:	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="prplt.legend(loc='upper right') plt.stitle("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 40 40 45 45 46 47 47 47 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	Original Vs Predicted(Testing dataset) Predicted price actual prize actual prize e models and then selected Random Forest Regression model as it is t prices 4.12628155, 1.6165014, 0.67288841, 1.42262747, 11.44443979304, 49.312
In [65]: In [67]:	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="prplt.legend(loc='upper right') plt.stitle("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 40 40 45 45 46 47 47 47 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	Original Vs Predicted(Testing dataset) Predicted price actual prize actual prize e models and then selected Random Forest Regression model as it is t prices 4.12628155, 1.6165014, 0.67288841, 1.42262747, 11.44443979304, 49.312
In [65]: In [67]:	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="prplt.legend(loc='upper right') plt.stitle("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 40 40 45 45 46 47 47 47 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	Original Vs Predicted(Testing dataset) Predicted price actual prize actual prize e models and then selected Random Forest Regression model as it is t prices 4.12628155, 1.6165014, 0.67288841, 1.42262747, 11.44443979304, 49.312
In [65]: In [67]:	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="prplt.legend(loc='upper right') plt.stitle("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 40 40 45 45 46 47 47 47 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	Original Vs Predicted(Testing dataset) Predicted price actual prize actual prize e models and then selected Random Forest Regression model as it is t prices 4.12628155, 1.6165014, 0.67288841, 1.42262747, 11.44443979304, 49.312
In [65]: In [67]:	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="prplt.legend(loc='upper right') plt.stitle("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 40 40 45 45 46 47 47 47 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	Original Vs Predicted(Testing dataset) Predicted price actual prize actual prize e models and then selected Random Forest Regression model as it is t prices 4.12628155, 1.6165014, 0.67288841, 1.42262747, 11.44443979304, 49.312
In [65]: In [66]:	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="prplt.legend(loc='upper right') plt.stitle("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 40 40 45 45 46 47 47 47 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	Original Vs Predicted(Testing dataset) Predicted price actual prize actual prize e models and then selected Random Forest Regression model as it is t prices 4.12628155, 1.6165014, 0.67288841, 1.42262747, 11.44443979304, 49.312
In [65]: In [66]:	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="prplt.legend(loc='upper right') plt.stitle("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 40 40 45 45 46 47 47 47 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	Original Vs Predicted(Testing dataset) Predicted price actual prize actual prize e models and then selected Random Forest Regression model as it is t prices 4.12628155, 1.6165014, 0.67288841, 1.42262747, 11.44443979304, 49.312
In [65]: In [66]:	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="prplt.legend(loc='upper right') plt.stitle("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 40 40 45 45 46 47 47 47 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	Original Vs Predicted(Testing dataset) Predicted price actual prize actual prize e models and then selected Random Forest Regression model as it is t prices 4.12628155, 1.6165014, 0.67288841, 1.42262747, 11.44443979304, 49.312
In [65]: In [67]:	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="prplt.legend(loc='upper right') plt.stitle("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 40 40 45 45 46 47 47 47 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	Original Vs Predicted(Testing dataset) Predicted price actual prize actual prize e models and then selected Random Forest Regression model as it is t prices 4.12628155, 1.6165014, 0.67288841, 1.42262747, 11.44443979304, 49.312
In [65]: In [66]:	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="prplt.legend(loc='upper right') plt.stitle("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 40 40 45 45 46 47 47 47 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	Original Vs Predicted(Testing dataset) Predicted price actual prize actual prize e models and then selected Random Forest Regression model as it is t prices 4.12628155, 1.6165014, 0.67288841, 1.42262747, 11.44443979304, 49.312
In [65]: In [66]:	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="prplt.legend(loc='upper right') plt.stitle("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 40 40 45 45 46 47 47 47 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	Original Vs Predicted(Testing dataset) Predicted price actual prize actual prize e models and then selected Random Forest Regression model as it is t prices 4.12628155, 1.6165014, 0.67288841, 1.42262747, 11.44443979304, 49.312
In [65]: In [66]:	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="prplt.legend(loc='upper right') plt.stitle("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 40 40 45 45 46 47 47 47 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	Original Vs Predicted(Testing dataset) Predicted price actual prize actual prize e models and then selected Random Forest Regression model as it is t prices 4.12628155, 1.6165014, 0.67288841, 1.42262747, 11.44443979304, 49.312
In [65]: In [66]:	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="prplt.legend(loc='upper right') plt.stitle("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 40 40 45 45 46 47 47 47 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	Original Vs Predicted(Testing dataset) Predicted price actual prize actual prize e models and then selected Random Forest Regression model as it is t prices 4.12628155, 1.6165014, 0.67288841, 1.42262747, 11.44443979304, 49.312
In [65]: In [66]:	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="prplt.legend(loc='upper right') plt.stitle("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 40 40 45 45 46 47 47 47 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	Original Vs Predicted(Testing dataset) Original Vs Predicted (Testing dataset) predicted price actual prize actual prize e models and then selected Random Forest Regression model as it is et prices 4.12628155, 1.6165014, 0.67288841, 1.42262747, 11.44443979304, 49.312
In [65]: In [66]:	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="prplt.legend(loc='upper right') plt.stitle("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 40 40 45 45 46 47 47 47 47 47 47 47 47 47 47 47 47 47	Original Vs Predicted(Testing dataset) Predicted price actual prize actual prize e models and then selected Random Forest Regression model as it is t prices 4.12628155, 1.6165014, 0.67288841, 1.42262747, 11.44443979304, 49.312
In [65]: In [66]:	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="prplt.legend(loc='upper right') plt.stitle("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 40 40 45 45 46 47 47 47 47 47 47 47 47 47 47 47 47 47	Original Vs Predicted(Testing dataset) Predicted price actual prize actual prize e models and then selected Random Forest Regression model as it is t prices 4.12628155, 1.6165014, 0.67288841, 1.42262747, 11.44443979304, 49.312
In [65]: In [66]:	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="prplt.legend(loc='upper right') plt.stitle("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 40 40 45 45 46 47 47 47 47 47 47 47 47 47 47 47 47 47	Original Vs Predicted(Testing dataset) Predicted price actual prize actual prize e models and then selected Random Forest Regression model as it is t prices 4.12628155, 1.6165014, 0.67288841, 1.42262747, 11.44443979304, 49.312
In [65]: In [66]:	2 19.332 17.4 3 17.260 19.3 4 46.642 37.6 147 15.462 14.9 148 41.664 21.9 149 19.759 18.5 150 26.616 30.8 151 15.068 14.6 152 rows × 2 columns : ax=dft.iloc[0:13].plot(label="prplt.legend(loc='upper right') plt.stitle("Original Vs Predicted plt.xlabel("index") plt.ylabel("values") plt.show() 45 40 40 45 45 46 47 47 47 47 47 47 47 47 47 47 47 47 47	Original Vs Predicted(Testing dataset) Predicted price actual prize actual prize e models and then selected Random Forest Regression model as it is t prices 4.12628155, 1.6165014, 0.67288841, 1.42262747, 11.44443979304, 49.312