形式语言与自动机理论 不可判定性

王春宇 chunyu@hit.edu.cn

> 计算学部 哈尔滨工业大学

2021 年 4 月

不可判定性

- 不可判定性
- 非递归可枚举的语言
- 递归可枚举但非递归的语言
- 语言类的关系

不可判定问题

定义

- 一个问题, 如果它的语言是递归的, 称为可判定问题, 否则称为不可判定问题.
 - 递归可枚举语言 图灵机所识别
 - 递归语言 保证停机的图灵机所识别

不可判定的问题

- 不存在保证停机的图灵机识别该问题的语言
- 不存在解决该问题的算法

不可判定性

- 不可判定性
- 非递归可枚举的语言
 - 第 i 个串
 - 图灵机编码与第 i 个图灵机
 - 对角化语言 L_d
- 递归可枚举但非递归的语言
- 语言类的关系

判定问题

"图灵机 M 接受输入 w 吗?"

第 i 个串 w_i

定义

将全部 $(0+1)^*$ 中的字符串按长度和字典序排序, 那么第 i 个串就是 w_i . 且刚好有

$$binary(i) = 1w_i.$$

即:

i	1	2	3	4	5	6	7	8	9	•••
binary(i)	1ε	10	11	100	101	110	111	1000	1001	•••
w_i	ε	0	1	00	01	10	11	000	001	•••

图灵机编码

将 $\Sigma = \{0,1\}$ 上的任意图灵机 M, 用二进制字符串编码

$$M = (Q, \Sigma, \Gamma, \delta, q_1, B, F)$$

- ① $Q = \{q_1, q_2, \dots, q_{|Q|}\}$, 开始状态为 q_1 , 终态为 q_2 且停机;
- ② $\Gamma = \{X_1, X_2, \dots, X_{|\Gamma|}\}$, 总有 $X_1 = 0$, $X_2 = 1$, $X_3 = B$;
- **3** 设带头移动方向 $D_1 = L$, $D_2 = R$;
- ④ 任意的转移 $\delta(q_i, X_j) = (q_k, X_l, D_m)$ 编码为

$$C = 0^i 10^j 10^k 10^l 10^m;$$

$$C_1 11 C_2 11 \cdots C_{n-1} 11 C_n$$
.

第 i 个图灵机 M_i

定义

如果图灵机 M 的编码为第 i 个串 w_i , 则称 M 是第 i 个图灵机 M_i .

- 任意图灵机 M, 都对应一个字符串 w;
- 任意字符串 w, 也都可以看作一个图灵机的编码;
- 如果编码不合法,则将其看作接受 Ø 且立即停机的图灵机.

非递归可枚举的语言

定义

使第 i 个串 w_i 不属于第 i 个图灵机 M_i 的语言 $\mathbf{L}(M_i)$ 的所有 w_i 的集合 \mathbf{L}_d , 称为对角化语言

$$L_d = \{ w_i \mid w_i \notin \mathbf{L}(M_i), \ i \ge 1 \}.$$

定理 45

 L_d 不是递归可枚举语言, 即不存在图灵机接受 L_d .

定理 45

 L_d 不是递归可枚举语言, 即不存在图灵机接受 L_d .

证明: (反证法) 假设存在识别 L_d 的图灵机 M, 那么 M 也可被编码, 不妨设它是第 i 个图灵机 $M_i = M$, 即 $\mathbf{L}(M_i) = L_d$.

那么, 考虑第 i 个串 w_i 是否会被 M_i 识别:

- ① 如果 $w_i \in \mathbf{L}(M_i) = L_d$, 那么由 L_d 的定义, 又有 $w_i \notin \mathbf{L}(M_i)$;
- ② 如果 $w_i \notin \mathbf{L}(M_i)$, 那么由 L_d 的定义, 又有 $w_i \in L_d = \mathbf{L}(M_i)$.

无论如何都会矛盾,因此假设不成立,不存在接受 L_d 的图灵机.

不可判定性

- 不可判定性
- 非递归可枚举的语言
- 递归可枚举但非递归的语言
 - 递归语言的封闭性
 - 通用语言与通用图灵机
- 语言类的关系

递归语言的封闭性

定理 46

如果 L 是递归的, 那么 \overline{L} 也是递归的.

证明:

定理 47

如果语言 L 和 \overline{L} 都是递归可枚举的, 那么 L 是递归的.

证明:

语言和它的补之间的关系

如果 L 和 \overline{L} 是一对互补的语言, 那么:

- ⋒ 两者都是递归的,或者
- 两者都不是递归可枚举的,或者

其中之一是递归可枚举的但不是递归的,而另一个不是递归可枚举的。

通用语言

定义

图灵机 M 和输入串 w 组成的有序对 (M,w), 可编码为 M111w.

定义

如果图灵机 M 接受串 w, 那么有序对 (M,w) 构成的语言 L_u , 称为通用语言 $L_u = \big\{ M111w \, \big| \, w \in \mathbf{L}(M) \big\}.$

定理 48

通用语言 L_u 不是递归的.

证明: 假设存在算法 A 识别 L_u 则可构造识别 L_d 的算法 B.

将 B 的输入 $w = w_i$ 转换为 $M_i 111w_i$ 交给 A 判断:

- 当 A 接受, 表示 w_i ∈ L(M_i), 则 B 拒绝;
- 当 A 拒绝,表示 w_i ∉ L(M_i),则 B 接受.

而由于 L_d 不是递归的, 所以 B 不可能存在, 所以 L_u 不可能是递归的.

通用图灵机

定理 49

通用语言 L_u 是递归可枚举的.

证明:

构造图灵机 U, 当输入 M111w 时, 用 3 条带模拟 M 处理串 w 的过程:

- 第1带装载 M 的编码;
- 2 第 2 带模拟 M 的带, 放置串 w;
- ❸ 第 3 带存储 M 的状态.

因为 M 接受 w 时会停机, 因此 U 可以识别 L_{u} .

定义

可以模拟其他任意图灵机 M 的图灵机 U, 称为通用图灵机.

通用图灵机的重要意义

- 识别 L_u 的通用图灵机 U, 可以模拟任意图灵机;
- 冯·诺伊曼通用数字电子计算机体系结构设计思想的灵感来源.
- 抽象理论的先期发展可以对实际问题有很大帮助.

通用图灵机的编号

• 罗杰·彭罗斯在《皇帝新脑》中以另一种编码给出了 $U = M_i$ 的 i 为:

(1654 位)

不可判定性

- 不可判定性
- 非递归可枚举的语言
- 递归可枚举但非递归的语言

1111

• 语言类的关系

语言类的关系

chunyu@hit.edu.cn
http://nclab.net/~chunyu

