Metropolis

A modern beamer theme

Matthias Vogelgesang

April 23, 2023

Center for modern beamer themes

Table of contents

- 1. Simple Proofs
- 2. Graph Examples
- 3. Complexity Theory
- 4. Conclusion

Simple Proofs

Irrationality of $\sqrt{2}$

Theorem

The square root of two is irrational.

The following proof uses the fundamental theorem of arithmetic.

Proof.

For the sake of contradiction, assume that $\sqrt{2}$ is rational. Hence, there are integers $m,n\neq 0$ such that $\sqrt{2}=\frac{m}{n}$ or rather $\sqrt{2}\cdot n=m$. Squaring both sides yields $2\cdot n^2=m^2$. Clearly a contradiction.

Infinitude of Primes

Theorem

There are infinitely many primes.

Lemma

The value of Riemann zeta function $\zeta(2)$ is trancendental, namely,

$$\zeta(2) = \prod_{p \in \mathbb{P}} \frac{1}{1 - \frac{1}{p^2}} = \frac{\pi^2}{6}.$$

Proof.

For the sake of contradiction, assume that there are only finitely many primes. Hence, $\zeta(2)$ is rational. Clearly a contradiction.

3

Graph Examples

Let $G = K_7$ be the complete graph with seven vertices. G has several properties.

Example

▶ There is no vertex cover with only five vertices.

Let $G = K_7$ be the complete graph with seven vertices. G has several properties.

Example

- ▶ There is no vertex cover with only five vertices.
- ightharpoonup G is not planar.

Let $G = K_7$ be the complete graph with seven vertices. G has several properties.

Example

- ▶ There is no vertex cover with only five vertices.
- ▶ *G* is not planar.
- ▶ *G* has an Eulerian cycle with length 21.

Let $G = K_7$ be the complete graph with seven vertices. G has several properties.

Example

- ▶ There is no vertex cover with only five vertices.
- ▶ G is not planar (only the K_1 , K_2 , K_3 , and K_4 are).
- ▶ *G* has an Eulerian cycle with length 21.

Complexity Theory

Turing (Cook) Reductions

Recall that sat and TAUT are **NP**-complete and **coNP**-complete, respectively.

Theorem

NP and **coNP** are indistinguishable with respect to Cook reductions.

Proof.

We show that SAT \leq_C TAUT and then TAUT \leq_C SAT. Let φ be a formula.

- 1. Note that φ is satisfiable *iff* $\neg \varphi$ is not a tautology.
- 2. Note that φ is a tautology *iff* φ is satisfiable and $\neg \varphi$ is not.

Hence, the respective oracles can be used as follows:

- 1: **procedure** SAT (ϕ)
- 2: **return** $\neg TAUT(\neg \varphi)$
- 3: end procedure

- 1: **procedure** TAUT (ϕ)
- 2: **return** SAT $(\varphi) \land \neg SAT(\neg \varphi)$
- 3: end procedure

Conclusion

Summary

Get the source of this theme and the demo presentation from

github.com/matze/mtheme

The theme *itself* is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Backup slides

Sometimes, it is useful to add slides at the end of your presentation to refer to during audience questions.

The best way to do this is to include the appendixnumberbeamer package in your preamble and call \appendix before your backup slides.

METROPOLIS will automatically turn off slide numbering and progress bars for slides in the appendix.

References i

T. Tantau.

The BEAMER class.