小番茄

時間序列模型之價格預測分析

第三組

B06607058 邴國榮

B07607001 鄭鈞瀚

B07607015 楊皓閔

B07607027 詹勳亞

有無數量與建立模型上的RMSE及最適模型

• 無數量

• RMSE = 0.2682

• 最適模型: ARMA(2,1)

Number of obs = 238

F(5, 233) = 6834.77

Prob > F = 0.0000

R-squared = 0.9932

Adj R-squared = 0.9931

Root MSE = .2682

有數量

• RMSE = 0.25614

• 最適模型: ARMA(2,1)

Number of obs = 238

F(6, 232) = 6248.66

Prob > F = 0.0000

R-squared = 0.9939

Adj R-squared = 0.9937

Root MSE = .25614

Outline

- 背景介紹
- 資料分析
 - 月均資料
 - · 分析過程(敘述統計、單根檢定、建立 ARIMA模型、樣本內外預測、結論)

B

背景介紹

A

C

為什麼選小番茄

- 資料齊全,沒有missing value的存在
- 國內一年四季都有產
- 小番茄很好吃

圖片來源:台灣好水果 TWFOOD

B

資料分析

C

資料分析

•農產品批發市場交易行情站(水果)

- 產品交易價量走勢圖

•日期別:月資料

日期:2000.01-2019.12

• 價量:平均價與交易量

•單位:公斤

•市場:全部市場

•產品:小番茄(一般)

月均資料

敘述統計(1)

. summarize ave_price_1 log_P1

Variable	Obs	Mean	Std. Dev.	Min	Max
ave_price_1 log_P1	240 240	27.32523 3.176793		6.358469 1.849788	68.26905 4.223456

敘述統計(2)

第一四分位數: 15.89299

中位數: 22.64355

第三四分位數: 38.27671

四分位距:22.38372

最小值: 6.358469

最大值: 68.26905

全距:61.910581

敘述統計(3)

box plot for "log_p"

第一四分位數:2.765868

中位數:3.119873

第三四分位數:3.644831

四分位距:0.878963

最小值:1.849788

最大值: 4.223456

全距:2.373668

敘述統計(4)

œ **9**. 4. ο, 0 4.5 3.5 2.5 2 3 Density kdensity log_P1

Histogram for "ave_price_1"

趨勢圖

• tsline log_P1 , name(unresi)

• 月均價格取對數後的趨勢圖

開始檢視資料是否為定態資料

- DICKEY-FULLER TEST
- PHILIPS-PERRON TEST
- KPSS TEST

單根檢定(1) DICKY-FULLER TEST

- 檢定是否有單根
- H0 = 有單根, H1 = 無單根
- Z(t) = -4.894 < 1% critical value
- Reject H0
- 此資料無單根

單根檢定(2) DICKY-FULLER TEST

• 檢定是否有時間趨勢

• H0 :
$$\beta$$
2 = 0 , H1 : β 2 \neq 0

$$\bullet P > |t| = 0.011 < 0.05$$

- 可看出有時間趨勢
- 檢定是否有shift term (常數項

• H0 :
$$\beta 0 = 0$$
 , H1 : $\beta 0 \neq 0$

- $\bullet P > |t| = 0.000 < 0.05$
- •可看出有shift term

單根檢定(3) PHILIPS-PERRON TEST

- Z(rho)
 - H0 = 有單根, H1 = 無單根
 - Z(rho) = -70.741 < 1% critical value
 - Reject H0
 - 此資料無單根
- Z(t)
 - H0 = 有單根, H1 = 無單根
 - Z(rho) = -6.257 < 1% critical value
 - Reject H0
 - 此資料無單根

2.57

5.36

0.011

0.000

trend

cons

.0010958

.7428352

.0004267

.1385191

.0019373

1.015981

.0002544

.4696899

趨勢檢定 KPSS TEST

- 檢定是否有時間趨勢
 - Ho: Trend stationary,
 H1: Not trend stationary
- 0.052 < 10% critical value
- Do not reject H0
- The data is trend stationary

```
Maxlag = 8
Autocovariances weighted by Bartlett kernel
Critical values for H0: log_P1 is trend stationary
            5%: 0.146 2.5%: 0.176 1%: 0.216
Lag order
             Test statistic
               .0653
               .0377
               .0296
                .027
               .0271
               .0293
               .0338
               .0412
                .052
```

定勢檢定 KPSS TEST

- 檢定是否為定態
 - H0: level stationary
 - H1: level unstationary
- 1.58 > 1% critical value
- Reject Ho
- 此資料為非定態

```
Maxlag = 8
Autocovariances weighted by Bartlett kernel
Critical values for H0: log P1 is level stationary
10%: 0.347 5% : 0.463 2.5%: 0.574 1% : 0.739
Lag order
            Test statistic
                4.42
                2.48
                1.87
                1.62
                1.51
                1.48
                1.5
                1.54
                1.58
```

單根檢定結論

	Dickey-Fuller	Philips-Perron	KPSS
單根	無	無	-
時間趨勢	有	有	有
是否定態	-	-	非定態

此資料無單根、有時間趨勢、非定態

 Table 7.1 Restrictions on the overarching model

Zero-mean stationary AR(1):	$\beta_0 = 0$	$ \beta_1 < 1$	$\beta_2 = 0$
Non-zero mean stationary AR(1):	$\beta_0 \neq 0$	$ \beta_1 < 1$	$\beta_2 = 0$
Random Walk (RW):	$\beta_0 = 0$	$\beta_1 = 1$	$\beta_2 = 0$
Random Walk with Drift (RWWD):	$\beta_0 \neq 0$	$\beta_1 = 1$	$\beta_2 = 0$
Deterministic Trend (DT):		$ \beta_1 <= 1$	$\beta_2 \neq 0$

判斷此資料為 DETERMINISTIC TREND

DETREND

Notice that the first-differenced model now has an MA unit root in the error terms. Never take first differences to remove a deterministic trend. Rather, regress X on time, and then work with the residuals. These residuals now represent X that has been linearly detrended.

DETREND

- 利用殘差項將本資料轉為定態資料
- reg log_P1 date
- predict r_log_P1, residuals
- tsline r_log_P1, name(resi)
- graph combine unresi resi, note("95%C.I.")

Try and Error

DICKY-FULLER TEST

- H0=有單根,H1=無單根
- Z(t)= -5.586 < 1% critical value
- reject H0
- H0 : $\beta 2 = 0$, H1 : $\beta 2 \neq 0$
- \bullet P > |t| = 0.490 > 0.05
- 無時間趨勢

PHILIPS-PERRON TEST

- Z(rho), Z(t)此資料無單根

- $H0: \beta 2 = 0, H1: \beta 2 \neq 0$
- P > |t| = 0.490 > 0.05
- 無時間趨勢

. pperron r_lo	og_P1 if date	< tm(2017m1), regre	ss trend			
Phillips-Perro	on test for un	nit root		Numb	er of obs	= 203	
·				Newe	y-West lags	= 4	
			— Inte	rpolated	Dickey-Fulle	r ——	
	Test	1% Crit	ical	5% Cri	tical 1	0% Critical Value	
	Statistic	Val	ue	Va	lue		
Z(rho)	-70.741	-28.087		-21.112		-17.843	
Z(t)	-6.257	-4.006		-3.436		-3.136	
MacKinnon appr	roximate p-val	lue for Z(t)	= 0.0000	ð			
r_log_P1	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]	
r_log_P1							
L1.	.7312148	.0481162	15.20	0.000	.6363346	.8260951	
_trend	.0002632	.0003806	0.69	0.490	0004872	.0010137	
_cons	0138124	.0445271	-0.31	0.757	1016152	.0739903	

KPSS TEST

- 檢定是否為定態
 - H0: level stationary
 H1: level unstationary
 - 0.286 < 10% critical value
- Do not reject Ho
- 此資料為定態

```
. kpss r log P1 if date < tm(2017m1), maxlag(8) notrend
KPSS test for r log P1
Maxlag = 8
Autocovariances weighted by Bartlett kernel
Critical values for H0: r log P1 is level stationary
10%: 0.347 5%: 0.463 2.5%: 0.574 1%: 0.739
Lag order
             Test statistic
                .389
                .225
                .176
                .159
                .159
                .171
                .195
                .232
                .286
```

ACF/PACF

- ac r_log_P1 if date <tm(2017m1), name(dac)
- pac r_log_P1 if date < tm(2017m1), name(dpac)
- graph combine dac dpac, note("95%C.I.")
- 結論:我們決定用ARMA(4,2)為基礎,建立arima模型

建立ARIMA模型(1)

- . qui arima r_log_P1 if date < tm(2017m1), arima(0,0,0) nolog noconstant
- . estat ic

Akaike's information criterion and Bayesian information criterion

Model	N	ll(null)	ll(model)	df	AIC	BIC
	204		-133.0337	1	268.0674	271.3855

Note: BIC uses N = number of observations. See [R] BIC note.

- . qui arima r_log_P1 if date < tm(2017m1), arima(0,0,1) nolog noconstant
- . estat ic

Model	N	ll(null)	ll(model)	df	AIC	BI
	204		-65.66813	2	135.3363	141.972

建立ARIMA模型(2)

- . qui arima r_log_P1 if date < tm(2017m1), arima(0,0,2) nolog noconstant
- . estat ic

Akaike's information criterion and Bayesian information criterion

Model	N	ll(null)	ll(model)	df	AIC	BIC
	204		-47.90831	3	101.8166	111.771

Note: BIC uses N = number of observations. See [R] BIC note.

- . qui arima r_log_P1 if date < tm(2017m1), arima(1,0,0) nolog noconstant
- . estat ic

Model	N	ll(null)	ll(model)	df	AIC	BIC
	204		-53.19988	2	110.3998	117.036

建立ARIMA模型(3)

- . qui arima r_log_P1 if date < tm(2017m1), arima(1,0,1) nolog noconstant
- . estat ic

Akaike's information criterion and Bayesian information criterion

Model	N	ll(null)	ll(model)	df	AIC	BIC
	204		-42.37674	3	90.75348	100.7078

Note: BIC uses N = number of observations. See [R] BIC note.

- . qui arima r_log_P1 if date < tm(2017m1), arima(1,0,2) nolog noconstant
- . estat ic

Model	N	ll(null)	ll(model)	df	AIC	BIC
	204		-39.76132	4	87.52264	100.7951

建立ARIMA模型(4)

- . qui arima r_log_P1 if date < tm(2017m1), arima(2,0,0) nolog noconstant
- . estat ic

Akaike's information criterion and Bayesian information criterion

Model	N	ll(null)	ll(model)	df	AIC	BIC
	204		-35.79925	3	77.5985	87.55286

Note: BIC uses N = number of observations. See [R] BIC note.

- . qui arima r_log_P1 if date < tm(2017m1), arima(2,0,1) nolog noconstant
- . estat ic

Model	N	ll(null)	ll(model)	df	AIC	BIC
	204		-22.52896	4	53.05792	66.3304

建立ARIMA模型(5)

- . qui arima r_log_P1 if date < tm(2017m1), arima(2,0,2) nolog noconstant
- . estat ic

Akaike's information criterion and Bayesian information criterion

Model	N	ll(null)	ll(model)	df	AIC	віс
	204		-22.19279	5	54.38557	70.97617

Note: BIC uses N = number of observations. See [R] BIC note.

- . qui arima r_log_P1 if date < tm(2017m1), arima(3,0,0) nolog noconstant
- . estat ic

Model	N	ll(null)	ll(model)	df	AIC	BIC
	204		-29.77257	4	67.54515	80.81763

建立ARIMA模型(6)

- . qui arima r_log_P1 if date < tm(2017m1), arima(3,0,1) nolog noconstant
- . estat ic

Akaike's information criterion and Bayesian information criterion

Model	N	ll(null)	ll(model)	df	AIC	BIC
	204		-22.30251	5	54.60502	71.19562

Note: BIC uses N = number of observations. See [R] BIC note.

- . qui arima r_log_P1 if date < tm(2017m1), arima(3,0,2) nolog noconstant
- . estat ic

Model	N	ll(null)	ll(model)	df	AIC	BIC
	204		-21.79659	6	55.59319	75.50191

建立ARIMA模型(7)

- . qui arima r_log_P1 if date < tm(2017m1), arima(4,0,0) nolog noconstant
- . estat ic

Akaike's information criterion and Bayesian information criterion

Model	N	11(null)	ll(model)	df	AIC	віс
-	204	-	-24.21457	5	58.42914	75.01974

- . qui arima r_log_P1 if date < tm(2017m1), arima(4,0,1) nolog noconstant
- . estat ic

Akaike's information criterion and Bayesian information criterion

Model	N	ll(null)	ll(model)	df	AIC	віс
-	204	-	-21.30933	6	54.61866	74.52738

- . qui arima r_log_P1 if date < tm(2017m1), arima(4,0,2) nolog noconstant
- . estat ic

Model	N	ll(null)	ll(model)	df	AIC	віс
-	204	-	-20.68557	7	55.37113	78.59797

- •比較AIC, BIC最小者
- 決定使用ARIMA(2,0,1)

樣本內及樣本外預測

● 利用one_head、dynamic、t0進行預測

```
    predict one head

(option xb assumed; predicted values)

    predict one res, residual

. predict dynamic, dynamic(tm(2017m1))
(option xb assumed; predicted values)

    predict dynamic res, dynamic(tm(2017n

. predict t0, t0(tm(2017m1))
(option xb assumed; predicted values)
(204 missing values generated)
```

樣本內及樣本外預測(1)

● 預測結果

實際值

估計值

. table period, contents (mean r_log_P1 mean one_head mean dynamic mean t0) format (%8.3f) row

period	mean(r_log_P1)	mean(one_head)	mean(dynamic)	mean(t0)
in sample out of sample	0.033 -0.185	0.018 -0.078	0.018 0.005	-0.066
Total	-0.000	0.003	0.016	-0.066

. table period, contents(sd r_log_P1 sd one_head sd dynamic sd t0) format(%8.3f)

period	sd(r_log_P1)	sd(one_head)	sd(dynamic)	sd(t0)
in sample	0.464	0.391	0.391	0.399
out of sample	0.467	0.392	0.286	

樣本內及樣本外預測(2)

. table period,contents(mean abs_one sd one_res mean abs_t0 sd t0_res) row format(%8.3f)

	MAE MSE		MAE	MSE
period	mean(abs_one)	sd(one_res)	mean(abs_t0)	sd(t0_res)
in sample out of sample	0.202 0.182	0.257 0.201	0.188	0.207
Total	0.199	0.253	0.188	0.207

One-step-ahead

樣本內及樣本外預測(3)

樣本內及樣本外預測(4)

- 資料可能偏誤因素
 - 資料在時間序列 上存在週期性 (Seasonality)
 - 未考慮價格的影響

ARIMA(2,0,1) 之方程式

- ARMA(2,1) with trend:
- $\log P_t = \beta_1 \log P_{t-1} + \beta_2 \log P_{t-2} + u_t + \gamma_1 u_{t-1} + \alpha t$
 - . twoway (tsline log_P1) (tsline xb2)
 - . /*Generate mse and mae*/
 - . reg log P1 lag1 log P1 lag2 log P1 one ahead lag1 r log P1 date, noconstant

Source	SS	df	MS	Number of obs	=	238
				F(5, 233)	=	6834.77
Model	2458.14903	5	491.629806	Prob > F	=	0.0000
Residual	16.7598588	233	.071930725	R-squared	=	0.9932
				Adj R-squared	=	0.9931
Total	2474.90889	238	10.3987768	Root MSE	=	.2682

log_P1	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
lag1_log_P1	10.8481	1.646151	6.59	0.000	7.60486	14.09134
lag2_log_P1	-9.846532	1.56515	-6.29	0.000	-12.93019	-6.762876
one_ahead	-11.53865	1.933207	-5.97	0.000	-15.34745	-7.729853
lag1_r_log_P1	8.515935	1.391011	6.12	0.000	5.775368	11.2565
date	0000538	.0006012	-0.09	0.929	0012383	.0011306

ARIMA(2,0,1) 之方程式

- ARMA(2,1) with trend:
- $logP_t = 10.848*logP_(t-1)-9.847*logP_(t-2)-11.539u_t+8.516*u_(t-1)$

```
. twoway (tsline log P1 ) (tsline xb2)
. /*Generate mse and mae*/
. reg log P1 lag1 log P1 lag2 log P1 one ahead lag1 r log P1 date, noconstant
                                                   Number of obs
      Source
                                  df
                     SS
                                                                            238
                                                    F(5, 233)
                                                                        6834.77
      Model
                2458.14903
                                      491.629806
                                                   Prob > F
                                                                         0.0000
    Residual
                16.7598588
                                      .071930725
                                                   R-squared
                                                                         0.9932
                                                   Adj R-squared
                                                                         0.9931
      Total
                2474.90889
                                      10.3987768
                                                   Root MSE
                                                                          .2682
      log P1
                     Coef.
                             Std. Err.
                                                 P>|t|
                                                            [95% Conf. Interval]
  lag1 log P1
                   10.8481
                             1.646151
                                          6.59
                                                 0.000
                                                             7.60486
                                                                        14.09134
 lag2 log P1
                 -9.846532
                              1.56515
                                         -6.29
                                                 0.000
                                                           -12.93019
                                                                       -6.762876
    one ahead
                 -11.53865
                             1.933207
                                         -5.97
                                                 0.000
                                                           -15.34745
                                                                       -7.729853
lag1 r log P1
                                         6.12
                  8-515935
                             1.391011
                                                 0.000
                                                           5.775368
                                                                       11.2565
                 -.0000538
                                         -0.09
                                                           -.0012383
                                                                        .0011306
         date
                             .0006012
                                                 0.929
```

- H0 : $\alpha = 0$, H1 : $\alpha \neq 0$
- P > |t| = 0.929 > 0.05
- 無時間趨勢
- 與原先不符合

ARIMA(2,0,1) - 估計

• 對價格估計(one-step-ahead) 。

ARIMA(2,0,1) – MSE & MAE

- reg log_P1 lag1_log_P1 lag2_log_P1 one_ahead lag1_r_log_P1, noconstant
- predict e,xb
- gen mse = (log_P1 -e)*(log_P1 -e)
- sum mse

- gen mae = abs(log_P1 -e)
- sum mae

MSE(Mean square error): 0.0704196

. gen mae = abs(log P1 -e)

```
      (2 missing values generated)

      . sum mae

      Variable
      Obs
      Mean
      Std. Dev.
      Min
      Max

      mae
      238
      .2081523
      .1649439
      .000083
      .774792
```

MAE(Mean absolute error): 0.2081523

加入數量(1)

- gen tonnes_Q1 = quantity_1/1000
- gen log_t_Q1 = log(tonnes_Q1)
- summarize log_t_Q1
- 沒有missing value

Variable	0bs	Mean	Std. Dev.	Min	Max
log_t_Q1	240	4.613669	1.534826	6348783	6.982008

加入數量(2)

twoway scatter log_P1 log_t_Q1

twoway (tsline log_P1) (tsline log_t_Q1)

由圖形推測兩者之間應該呈現線 性關係

加入數量(3)

- 不過預測未來價格時我們不會知道外來的產量,因此選擇使用前一期來做判斷:
- reg log_P1 lag1_log_t_Q1, noconstant
- R-squared = 0.8087 呈現高度相關
- H0 : $\beta = 0$, H1 : $\beta \neq 0$
- P > |t| = 0.000 < 0.05
- Reject H0
- 係數不等於0

	_					
. reg log_P1 l	ag1_log_t_Q1,	noconstan	t			
Source	SS	df	MS	Number of o	bs =	239
				F(1, 238)	=	1005.93
Model	2006.13055	1	2006.13055		=	0.0000
Residual	474.646505	238	1.99431305	R-squared	=	0.8087
				Adj R-squar	ed =	0.8079
Total	2480.77705	239	10.3798203		=	1.4122
10001	2400.77703	233	10.3730203	NOOL TISE	_	1.7122
1 84	c - c	51.1.5		nulul for	N c . c	T
10g_P1	Coet.	Sta. Err	. t	P> T [95	% Cont.	Intervalj
lag1_log_t_Q1	.5957411	.0187834	31.72	0.000 .55	87381	.6327441
log_P1 lag1_log_t_Q1	Coef. .5957411	Std. Err .0187834			% Conf. 87381	Interval

將前一期數量帶入並重新建立模型

- ARMA(2,1) with trend and quantity in previous period:
- $logP_t = \beta_1 * logP_(t-1) + \beta_2 * logP_(t-2) + u_t + \gamma_1 * u_(t-1) + \alpha * t + \zeta * log_Q(t-1)$

-				_			_
. reg log_P1 l	lag1_log_P1	lag2_log_P1	one_ahead 1	lag1_r_log_F	1 lag1_log	_t_Q1 date,	noconstant
Source	SS	df	MS	Number o		238	
				- F(6, 232	2) =	6248.66	
Model	2459.6883	6 6	409.94806	6 Prob > F	=	0.0000	
Residual	15.220528	7 232	.065605727	7 R-square	ed =	0.9939	
				- Adj R-so	quared =	0.9937	
Total	2474.9088	9 238	10.3987768	Root MSE	=	.25614	
log_P1	Coef	. Std. Err	. t	P> t	[95% Conf.	Interval]	
lag1_log_P1	15.2442	2 1.815267	8.40	0.000	11.66771	18.82074	
lag2_log_P1	-13.8052	8 1.703588	-8.10	0.000 -	17.16176	-10.4488	
one_ahead	-16.8466	4 2.146965	-7.85	0.000 -	21.07668	-12.6166	
lag1_r_log_P1	11.8831	8 1.499336	7.93	0.000	8.929129	14.83724	
lag1_log_t_Q1	084722	9 .0174906	-4.84	0.000	.1191837	0502621	

將前一期數量帶入並重新建立模型

• logP_t=
15.244*logP_(t-1)-13.805*logP_(t-2)-16.847*u_t+11.883*u_(t-1)-0.001*t-0.085ζ*log_Q(t-1)

. reg log P1 lag1 log P1 lag2 log P1 one ahead lag1 r log P1 lag1 log t Q1 date, noconstant df Number of obs Source SS MS 238 F(6, 232) 6248.66 Model Prob > F 0.0000 2459.68836 409.94806 Residual 15.2205287 .065605727 R-squared 0.9939 Adi R-squared 0.9937 Total 2474.90889 10.3987768 Root MSE .25614 238 log P1 Coef. Std. Err. P> |t| [95% Conf. Interval] t lag1 log P1 15.24422 1.815267 8.40 0.000 11.66771 18.82074 lag2 log P1 -13.80528 1.703588 -8.10 0.000 -17.16176 -10.4488one ahead -16.84664 2.146965 -7.85 0.000 -21.07668 -12.6166 lag1 r log P1 11.88318 1,499336 7.93 0.000 8.929129 14.83724 lag1 log t Q1 -.0847229 .0174906 -4.84 0.000 -.1191837 -.0502621 date -.0017369 .0006711 -2.590.010 -.0030592 -.0004147

ARIMA(2,0,1) with Q – MSE & MAE

- reg log_P1 lag1_log_P1 lag2_log_P1 one_ahead lag1_r_log_P1 lag1_log_t_Q1 date, noconstant
- predict e_1,xb
- gen mse_Q1 $= (log_P1 - e_1)*(log_P1 - e_1)$
- sum mse Q1
- gen mae Q1 = abs(log P1 e 1)
- sum mae Q1

前一期數量的加入減少了誤差

```
. gen mse Q1 = ( log P1 -e 1)*( log P1 -e 1)
(2 missing values generated)
. sum mse Q1
   Variable
                                          Std. Dev.
                      0bs
                                 Mean
                                                          Min
                                                                      Max
     mse Q1
                      238
                              .0639518
                                          .0936822
                                                     4.87e-07
                                                                 .5249112
```

MSE(Mean square error): 0.0639518

```
. gen mae Q1 = abs( log P1 -e 1)
(2 missing values generated)
```

. sum mae Q1

Variable	0bs	Mean	Std. Dev.	Min	Max
mae_Q1	238	.1985014	.1570114	.0006979	.7245076

MAE(Mean absolute error): 0.1985014

結論

- 單純樣本外預測,和現實偏差較大
- 預測的數值幅度較現實情況小
- 資料存在週期性(Seasonality)會影響到預測的判斷(ARMA不容 易藉由AC與PAC得到)
- 數量的有無會影響到模型的準確:有數量比起無數量更準確

謝謝聆聽

