Examenul național de bacalaureat 2022 Proba E. c)

Matematică *M_pedagogic*BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{8} = 2\sqrt{2}$, $\sqrt{18} = 3\sqrt{2}$	3 p
	$2\sqrt{2} + 3\sqrt{2} = 5\sqrt{2}$	2p
2.	$f(a) = 3a - 2, \ f(-a) = -3a - 2$	2p
	6a = 12, de unde obținem $a = 2$	3 p
3.	$\frac{20}{100}$ · $x = 28$ de lei, deci $\frac{x}{5} = 28$ de lei, unde x este prețul inițial al obiectului	3 p
	x = 140 de lei	2p
4.	$4^{2x-1} = 4^3$	2p
	2x-1=3, deci $x=2$	3p
5.	Panta unei drepte perpendiculare pe dreapta d este egală cu $-\frac{1}{2}$	3 p
	Ecuația dreptei care trece prin punctul A și este perpendiculară pe dreapta d este $x + 2y - 8 = 0$	2p
6.	$AC = \frac{BC}{2} = 5 \text{ cm}, AB = \sqrt{BC^2 - AC^2} = 5\sqrt{3} \text{ cm}$	3 p
	$\mathcal{A}_{\Delta ABC} = \frac{5 \cdot 5\sqrt{3}}{2} = \frac{25\sqrt{3}}{2} \text{ cm}^2$	2p

SUBIECTUL al II-lea (30 de puncte)

1.	$1*0=1\cdot 0-\sqrt{3}(1+0)+\sqrt{3}+3=$	2p
	$=0-\sqrt{3}+\sqrt{3}+3=3$	3p
2.	$x * y = xy - \sqrt{3}x - \sqrt{3}y + 3 + \sqrt{3} =$	3 p
	$= x\left(y - \sqrt{3}\right) - \sqrt{3}\left(y - \sqrt{3}\right) + \sqrt{3} = \left(x - \sqrt{3}\right)\left(y - \sqrt{3}\right) + \sqrt{3}, \text{ pentru orice numere reale } x \text{ si } y$	2p
3.	$(x-\sqrt{3})^2 + \sqrt{3} = 9 + \sqrt{3}$, deci $x - \sqrt{3} = \pm 3$	2p
	$x = 3 + \sqrt{3}$ sau $x = -3 + \sqrt{3}$	3 p
4.	$x*(\sqrt{3}+1)=(x-\sqrt{3})(\sqrt{3}+1-\sqrt{3})+\sqrt{3}=x$, pentru orice număr real x	2p
	$(\sqrt{3}+1)*x = (\sqrt{3}+1-\sqrt{3})(x-\sqrt{3})+\sqrt{3}=x$, pentru orice număr real x , deci $e=\sqrt{3}+1$ este elementul neutru al legii de compoziție ,,*"	3p
5.	$\sqrt{3} * x = (\sqrt{3} - \sqrt{3})(x - \sqrt{3}) + \sqrt{3} =$	2p
	$=0\cdot (x-\sqrt{3})+\sqrt{3}=\sqrt{3}$, pentru orice număr real x	3 p
6.	$\sqrt{3} * \sqrt{4} * \sqrt{5} * * \sqrt{2022} = \sqrt{3} * (\sqrt{4} * \sqrt{5} * * \sqrt{2022}) =$	3 p
	$=\sqrt{3}$	2p

Probă scrisă la matematică M_pedagogic

Barem de evaluare și de notare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

SUBIECTUL al III-lea (30 de puncte)

	•	
1.	$\det A = \begin{vmatrix} 1 & 0 \\ 3 & 1 \end{vmatrix} = 1 \cdot 1 - 3 \cdot 0 =$	3p
	=1-0=1	2p
2.	$A \cdot A - 2A = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 6 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 6 & 1 \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 6 & 2 \end{pmatrix} =$	3p
	$ = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I_2 $	2 p
3.	$A - aI_2 = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} - \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} = \begin{pmatrix} 1 - a & 0 \\ 3 & 1 - a \end{pmatrix}$	3p
	$\det(A - aI_2) = 0 \Leftrightarrow (1 - a)^2 = 0, \det a = 1$	2p
4.	$m \cdot (A+B) = \begin{pmatrix} 2m & 0 \\ 0 & 2m \end{pmatrix}, \det(m(A+B)) = 4m^2$	3p
	$m \cdot \det(A+B) = 4m$, deci $4m^2 = 4m$, de unde obținem $m = 0$ sau $m = 1$	2p
5.	$x \cdot A + y \cdot B = x \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} + y \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} x+y & 0 \\ 3x-3y & x+y \end{pmatrix}$	3p
	$ \begin{pmatrix} x+y & 0 \\ 3x-3y & x+y \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \text{ de unde obținem } x=y=1 $	2 p
6.	$A \cdot B = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	2p
	$B \cdot A = \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2 = A \cdot B$	3р