PSI-Scenariusz 1

Kacper Pawlikowski IS. Gr.3 W swoim programie zastosowałem Neuron McCullocha-Pittsa z dwoma wejściami. Dla każdego wejścia x_i perceptronu przypisana jest waga w_i . Dla stanów wejściowych liczymy sumę ważoną:

$$s=\sum_{i=1}^n x_i w_i + b$$

b-wartość odchylenia, odpowiada za nieliniowe przekształcenie wejść w wyjście Funkcję progowa unipolarna w postaci:

$$y = \begin{cases} 0 & dla & s < 0 \\ 1 & dla & s > 0 \end{cases}$$
 y-wyjście neuronu

użyłem jako funkcję aktywacji.

Skorzystałem z następującego algorytmu uczenia:

- Początkowe wagi zostały wylosowane z zakresu <-0.5, 0.5>
- Sprawdzam czy na podstawie przygotowanych danych wejściowych otrzymam oczekiwany wynik. Jeżeli nie:
 - Obliczam błąd: e=uzyskany_wynik oczekiwany_wynik
 - Modyfikuję wagi:
 Waga=Waga+współczynnik_uczenia*e*dana_wejściowa, oraz b=b+współczynnik_uczenia *e
- Procedurę powtarzam dla wszystkich przygotowanych zestawów danych (kolejność użycia zestawów jest losowa) a następnie sprawdzam błąd średniokwadratowy:

$$E = \frac{1}{2} \sum_{i=1}^{p} (d_i - y_i)^2$$

p-liczba przykładów do nauki d_i -oczekiwana odpowiedź perceptronu y_i -uzyskana odpowiedź

• Jeżeli e>0 to powtarzam proces uczenia

Dane do uczenia:

Neuron ma realizować procedurę OR

Dane wejściowe: $\{(0,0), (0,1), (1,0), (1,1)\}$

Dane wyjściowe: {0, 1, 1, 1}

Zależność pomiędzy współczynnikiem uczenia a ilością niezbędnych cykli uczenia

	ilość potrzebnych cykli uczenia									
ni	test 1	test 2	test 3	test 4	test 5	test 6	test 7	test 8	test 9	średnia
0,01	48	51	51	35	37	37	45	9	66	37,90
0,1	5	10	5	10	6	12	4	6	6	6,41
0,2	6	4	10	7	4	5	7	6	3	5,22
0,3	4	2	7	6	8	6	4	3	4	4,43
0,4	6	8	4	4	2	7	5	8	4	4,84
0,5	5	5	3	9	5	4	9	9	10	5,95
0,6	7	9	4	10	4	8	5	10	9	6,66

Błąd średniokwadratowy w kolejnych iteracjach:

Wnioski:

- Im współczynnik uczenia jest większy, tym większa poprawka wag jest wykonywana przy takiej samej wartości błędu. Dlatego dla małych wartości potrzeba znacznie więcej iteracji. Należy jednak pamiętać, że dla dużych wartości η poprawka wag może być za duża i nie przybliży nas do rozwiązania. W moim przypadku optymalna wartość współczynnika uczenia wynosiła ok 0,3.
- Początkowo zamierzałem wykonać funkcję XOR ale nigdy nie otrzymałem prawidłowych wyników. Doczytałem, że wiąże się to z tym, że pojedynczy neuron nie jest w stanie odróżnić zbiorów nieseparowalnych liniowo, czyli takich, że między punktami z odpowiedzią na tak i odpowiedzią negatywną nie da się poprowadzić prostej rozgraniczającej. Problem ten można rozwiązać poprzez zastosowanie sieci neuronów.
- W początkowej fazie nauki perceptronu błąd średniokwadratowy maleje regularnie natomiast gdy zbliża się do 0 to zaczyna się zachowywać w nie przewidywalny sposób. Dzieje się tak ponieważ na początku wartości wag znacząco różnią się od wymaganych. W późniejszej fazie dokonywane są już niewielkie korekty które znacząco wpływają na wynik.