

Business understanding

- The client is a housing planner
 - Must set prices and wants to use market data
 - It is necessary to know the impact on the housing price of various real estate metrics

Data understanding

- Housing data from a Northwestern county.
- Key variables: price, square footage and quality.
- Each row of data represents a different house sold.
 - Within past few years
 - About 30,000 in data set.
- nearly all observations within Greater Seattle, outliers cut.
 - high price center zone

Modelling Overview

- Baseline model
 - 'sqft_living'
- Second model:
 - Add to previous, variables with price correlation greater than .25 and sqft_living correlation less than .75 to increase rsquared
- Third Model:
 - Log price/sqft living variables
 - Based on non-linearity issues (in residual plots and part regress) and non- normal issues in histograms
- Fourth Model:
 - More log tranformed variables (sqft_patio,sqft_garage)
 - to improve on linearity issue and heteroskedaticity issues and non-normality issues and to improve rsquared.
- Final model:
 - Log all numerical variables from prior model
 - Add categorical variables Waterfront and Jumbo to increase rsquared.
 - to improve on non-normality(despite improvement) and some heteroskedaticity

Results of iterative model process

 Final model heteroskedacities, linearity, and normality of residuals are improved from the baseline model.

- Residual plot appears normally distributed, and is improved from previous model, however J-B test still failed suggesting non-normality.
- Multicollinearity is low, all correlations below .75.

Final model

OLS Regression Results

Dep. Variable:	y_drop_X4	R-squared:	0.514
		Adj. R- squared:	0.514
		F-statistic:	2396
		Prob (F- statistic):	0
	coef	P> t	
const	7.0719	0	
sqft_living_log	0.4832	0	
sqft_garage_log	-0.1035	0	
sqft_patio_log	0.0355	0	
WaterFront_Yes	0.3019	0	
grade_num_log	1.6657	0	
view_num_log	0.1033	0	
Jumbo	0.5701	0	
Skew:	-1.084	Jarque-Bera (JB):	37618.359
Kurtosis:	10.233	Prob(JB):	0

Results

- Model Evaluation
 - **Rsq is 0.51** compared to baseline of 0.38 and previous model of 0.46. This means the model accounts for **51% of the variation** in the dependent variable.
 - The mean squared error of the model is about **0.41**. This is a measure of how far off the predictions of log(price) are from the actual log(price).
- Interpretation of coefficients: All seven predictor variables significant
 - Jumbo area: 76.84% in price
 - WaterFront properties: 39.68% in price
 - For each 1% increase in grade num log: 1.78% in price
 - For each 1% increase in sqft_living_log: 0.50% in price

Next Steps

- Establish a better interpretation of the mean squared error.
- Further analyze the negative coefficient of garage size variable.
- Testing interaction variables (e.g. differing lot sizes and house sizes for different geographic areas.)

Thank you/Questions?