Beschreibende Statistik

Lageparameter

Arithmetisches Mittel

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + \dots + a_n)$$

Das Arithmetische Mittel \bar{x} minimiert die

$$g(t) = \sum_{i=1}^{n} (x_i - t)^2$$

Geometrisches Mittel

$$\bar{x}_{geom} = \sqrt[n]{x_1 \cdot x_2 \cdot \dots \cdot x_n}$$

Median

$$\tilde{x} = \begin{cases} x_{\frac{n+1}{2}} &, ungerade \\ \frac{1}{2} \cdot (x_{\frac{n}{2}} + x_{\frac{n+1}{2}}) &, gerade \end{cases}$$

Der Median \tilde{x} minimiert die Funktion $g(t) = \sum_{i=1}^{n} |x_i - t|$

Streungsmaße

(empirische) Varianz

$$var = \sigma^2 = s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$

$$alternativ$$

$$var = \sigma^2 = \frac{n}{n-1} \cdot (\bar{x}^2 - \bar{x}^2)$$

Standardabweichung

$$\sigma = s_n = \sqrt{\sigma^2}$$
$$\sigma = s_n = \sqrt{s_n^2}$$

mittlere absolute Abweichung

$$\frac{1}{n}\sum_{i=1}^n|x_i-\tilde{x}| \text{ für Median}$$

$$\frac{1}{n}\sum_{i=1}^n|x_i-\bar{x}| \text{ für arithmetisches Mittel}$$

Kovarianz und Korrelationskoeffizient

Kovarianz

$$cov(x,y) = S_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x}) \cdot (y_i - \bar{y})$$

alternativ

$$cov(x,y) = S_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \cdot y_i - n \cdot \bar{x} \cdot \bar{y})$$

Korrelationskoeffizent

$$r_{xy} = \frac{S_{xy}}{S_x \cdot S_y}$$

 $r_{xy} = \frac{S_{xy}}{S_x \cdot S_y}$ Der Korrelationskoeffizent liegt immer zwischen $-1 \le r \le +1$. Je näher r_{xy} bei -1 (negative Korellation/Steigung), oder +1 (positive Steigung/Korrelation) liegt, desto genauer schmiegen sich die Messwerte an eine Gerade an. Bei r_{xy} nahe 0 gibt es keinen linearen Zusammenhang zwischen den Merkmalen.

Regressionsrechnung

Regressionsgerade

Variante 1
$$y = \bar{y} + \frac{S_{xy}}{\sigma_x^2} \cdot (x - \bar{x})$$
Variante 2
$$y = b + a \cdot x$$

$$a = \frac{S_{xy}}{\sigma_x^2} \text{ und } b = \bar{y} - a \cdot \bar{x}$$

Kleinste quadratische Abweichung

Die Parameter a, b, c, \dots werden so gewählt,

$$Q(a, b, c, ...) = \sum_{i=1}^{\text{dass}} (f_{a, b, c, ...}(x_i) - y_i)^2$$

minimal ist $f_{a,b,c...}(x_i)$ ist die Funktion dessen

Parameter gesucht werden Nullsetzen der partiellen Ableitungen:

$$\frac{\partial}{\partial a}Q(a,b) = 0$$
$$\frac{\partial}{\partial b}Q(a,b) = 0$$

Über die Ableitungen lassen sich die Parameter finden welche die vorgegebene Funktion am besten annähern

Vergleich ermittelter Kurven

Um Kurven zu vergleichen, einfach die ermittelten Parameter in die Q(a, b, c, ...)Funktion eingeben und Wert berechnen. Je kleiner der Wert desto besser passt die Kurve

Wahrscheinlichkeitstheorie

Wahrscheinlichkeitsräume

Der Wahrscheinlichkeitsbegriff

 $Ergebnismenge = \Omega$ Beispiel Würfel $\Omega = \{1, 2, 3, 4, 5, 6\}$ Ein Ereignis ist eine Teilmenge der Ergebnismenge $\emptyset \subseteq \Omega = \text{unmögliches Ereignis}$

 $\Omega \subseteq \Omega \cong \text{ sicheres Ereignis}$ $A = \{1, 2, 3\}$ Ereignis $A = \{4, 5, 6\}$ Gegenereignis

Elementarereignis

einelementige Teilmenge von Ω Ereignis, eine 3 werfen

$$B = \{3\} \\ P(\{3\}) = \frac{1}{6}$$

Laplace-Versuch

Jedes Elementarereignis ist gleich

wahrscheinlich
$$P(\{\omega_i\}) = \frac{1}{|\Omega|}$$
 $P(A) = \frac{|A|}{|\Omega|} = \frac{3}{6} = \frac{1}{2}$

Bedingte Wahrscheinlichkeit

Bedingte Wahrscheinlichkeit

Wahrscheinlichkeit für A unter der Bedingung B $P(A|B) = \frac{P(A \cap B)}{P(B)}$ $P(\bar{A}|B) = 1 - P(A|B)$

Formel von Bayes

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

Satz der totalen Wahrscheinlichkeit

$$P(A) = \sum_{i=1}^{n} (P(A|B_i) \cdot P(B_i))$$

Viel Felder Tafel \bar{A} A $P(\bar{A} \cap B)$ $P(A \cap B)$ P(B) \bar{B} $P(\bar{A} \cap \bar{B})$ $P(\bar{B})$ $P(A \cap \bar{B})$ $P(\bar{A})$ P(A)

Die Ränder sind immer die Summen der zugehörigen Zeilen oder Spalten

Allgemeine Regeln

$$P(A \cap B) = P(A|B) \cdot P(B) = P(B|A) \cdot P(A)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(\bar{A}) = 1 - P(A)$$

$$P(\bar{A} \cup \bar{B}) = P(\bar{A} \cap \bar{B})$$

$$P(\bar{A} \cap \bar{B}) = P(\bar{A} \cup \bar{B})$$

Wenn A und B unabhängig, dann gilt $P(A \cap B) = P(A) \cdot P(B)$ P(A|B) = P(A)

Zufallsvariablen

Eine Zufallsvariable ist eine Zuordnungsvorschrift die jedem möglichen Ergebnis eines Zufallsexperiments eine

$$X = k \, \widehat{=} \, \{\omega \in \Omega | X(\omega = k \}$$

$$X = 3 = \{ \omega \in \Omega | X(\omega = 3) \}$$

$$X \le k = \{\omega \in \Omega | X(\omega \le k)\}$$

Diskrete Verteilungen

Binomialverteilung

Mit zurücklegen, Wahrscheinlichkeit für jedes Ereignis gleich

 $X \sim B(n,p)$

n =: Stichprobenumfangp =: Wahrscheinlichkeit

(p muss bei Binomialverteilung fest bleiben)

$$P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n - k}$$
$$P(X \le k) = \sum_{i=0}^{k} \binom{n}{i} \cdot p^i \cdot (1 - p)^{n - i}$$

$$P(X > k) = 1 - P(X \le k)$$
Fings by Taggle approach page

Eingabe Taschenrechner

 $\binom{n}{k} \stackrel{\frown}{=} n |nCr| k$

Binomialverteilung approximieren

Die Binomialverteilung kann mit der Poisson Verteilung approximiert werden, dann gilt $\lambda = n \cdot p$

Die Binomialverteilung kann auch mit der Normalverteilung approximiert werden,

bedingung ist $X \sim B(n, p) \approx N(n \cdot p, n \cdot p \cdot (1 - p))$ falls gilt

 $n \cdot p \cdot (1-p) > 9$

Bei der approximation mit der Normalverteilung kann man eine Stetigkeitskorrektur verwenden um ein besseres Ergebnis zu erhalten $P(X \le k) \approx F_N(R+0,5)$ $P(X < k) \approx F_N(R - 0, 5)$ $P(a \le X \le b) \approx F_N(b+0.5) - F_N(a-0.5)$

Hypergeometrische Verteilung

Ohne zurücklegen, Wahrscheinlichkeit ändert sich nach jedem Ereignis $X \sim H(N, M, n)$ n =: StichprobenumfangN=: Gesamtzahl M=: Anzahl der Elemente mit der Eigenschaft $P(X = k) = \frac{\binom{M}{k} \cdot \binom{N-M}{n-k}}{\binom{N}{k}}$ $P(X \le k) = \sum_{i=0}^{k} \frac{\binom{M}{i} \cdot \binom{N-M}{n-i}}{\binom{N}{n}}$ $P(X > k) = 1 - P(X \le k)$

Hypergeometrische Vert. apporximieren

Die hypergeometrische Verteilung kann mit der Binomialverteilung approximiert werden. Dabei muss folgende Bedingung

$$\frac{\text{gelten}}{\frac{n}{N}} < 0,05$$

Poisson Verteilung

Schlüsselwörter sind Ereignisse pro Zeiteinheit, zum Beispiel Anrufe innerhalb bestimmter Zeitspanne

$$X \sim Pois(\lambda)$$

$$P(X = k) = \pi_{\lambda}(k) = \frac{\lambda^{k}}{k!} \cdot e^{-\lambda}$$

Geometrische Verteilung

$$X \sim Geom(n,p)$$

 $P(X = n) = (1-p)^{n-1} \cdot p$
Beispiel: Ein Würfel wird so lange gewürfelt
bis eine 6 Auftritt. Die Zufallsvariable X ist
gleich Anzahl der Würfe

Stetige Verteilungen

Dichtefunktion

Die Dichtefunktion ist ein Hilfsmittel zur

Beschreibung einer stetigen Wahrscheinlichkeitsverteilung

Bedingungen der Dichtefunkion

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

Die Dichtefunktion muss nicht stetig sein Die Dichtefunktion ist die Ableitung der Verteilungsfunktion F(x)

Verteilungsfunktion

Eine Verteilungsfunktion ist eine Funktion F, die jedem x einer Zufallsvariable X genau eine Wahrscheinlichkeit $P(X \leq x)$ zuordnet $F(x) \rightarrow P(X \le x)$

Bedingungen der Verteilungsfunktion Die Verteilungsfunktion **muss** stetig sein Die Verteilungsfunktion **muss** monoton

$$\lim_{\substack{x\to\infty\\x\to-\infty}}F(x)=1\\\lim_{\substack{x\to-\infty}}F(x)=0$$

Normalverteilung

 $X \sim N(\mu, \sigma^2)$ Ist $X \sim N(0,1)$ dann heißt sie

Standardnormalverteilt Jede Normalverteilung kann standardisiert werden, das heißt die Mitte der Kurve wird

auf den Nullpunkt gesetzt

Wenn $X \sim N(\mu, \sigma^2)$ verteilt ist dann ist die standardisierte Zufallsvariable $Z = \frac{x-\mu}{2} \sim N(0,1)$ standardnormalverteilt Ist die Zufallsvariable standardverteilt kann die Wahrscheinlichkeit aus der Tabelle

abgelesen werden
$$P(X \le k) = \Phi(k)$$

$$P(X = k) = \Phi(k) = 0$$

$$P(X \le -k) = 1 - \Phi(+k)$$
 allgemein gilt
$$X \sim N(\mu, \sigma^2)$$

$$P(X \le k) = \Phi(\frac{k-\mu}{\sigma})$$

$$P(a \le X \le b) = \Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma})$$

Quantile der Normalverteilung

Tabelliert ist das β -Quantil z_{β} der Normalverteilung N(0,1) $P(X \leq z_{\beta} = \beta)$ $z_{1-\beta} = -z_{\beta}$ Beispiel $\beta = 0.9 = z_{\beta} = 1.28155$

Exponentialverteilung

Eine exponentialverteilte Zufallsvariable T hat die Dichte

$$f(t) = \begin{cases} \lambda \cdot e^{-\lambda \cdot t} & , t \ge 0 \\ 0 & , t < 0 \end{cases}$$

und daraus eribt sich die Verteilungsfunktion $F(x) = P(T \le x) =$

$$= \int_{-\infty}^{x} f(t)dt = \begin{cases} 1 - e^{-\lambda \cdot x} &, x \ge 0 \\ 0 &, x < 0 \end{cases}$$

Die Exponentialverteilung ist Gedächtnislos

| Gleichverteilung (Rechteckverteilung)

$$f(t) = \begin{cases} \frac{1}{b-a} & , t \in [a,b] \\ 0 & , sonst \end{cases}$$

$$F(t) = \begin{cases} 0 & , t < a \\ \frac{t-a}{b-a} & , t \in [a, b] \\ 1 & , t > b \end{cases}$$

Erwartungswert und Varianz

Erwartungswert

Erwartungswert und Mittelwert sind prinzipiell gleichwertig, der Erwartungswert entspricht der theoretischen Erwartung, der Mittelwert entspricht den tatsächlichen Werten

Zufallsvariable mit diskreter Verteilung

$$\mu = E(X) = \sum_{i=0}^{n} (x_i \cdot p_i)$$

Zufallsvariable mit Dichtefunktion f

$$\mu = E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx$$

Exponentialverteilung mit Zufallsvariable T

$$E(T) = \sigma_T = \frac{1}{\lambda}$$

Für Binomialverteilung

$$\mu = E(X) = n \cdot p$$

Für geometrische Verteilung

$$\mu = E(X) = \frac{1}{p}$$

Für Poissonverteilung

$$\mu = E(X) = \lambda$$

Für Hypergeometrischeverteilung

$$E(S_n) = E(X_1 + \dots + X_n) = n \cdot E(X_1) = n \cdot \frac{M}{N}$$

Für Rechteckverteilung

$$E(T_i) = \frac{a+b}{2}$$

Allgemeine Regeln für den Erwartungswert

$$a, b \in \mathbb{R}$$

$$E(aX + b) = a \cdot E(X) + b$$

$$E(X + Y) = E(X) + E(Y)$$

$$E(aX + bY) = a \cdot E(X) + b \cdot E(Y)$$

Varianz

Zufallsvariable mit diskreter Verteilung

$$\sigma^2 = Var(X) = \sum (x_i - \mu)^2 \cdot p_i$$

Zufallsvariable mit Dichtefunktion f

$$Var(X) = E(X^2) - (E(X))^2$$

Exponential verteilung mit Zufallsvariable T

$$Var(T) = \frac{1}{\lambda^2}$$

Für Binomialverteilung

$$\sigma^2 = n \cdot p \cdot (1 - p)$$

Für geometrische Verteilung

$$\sigma^2 = \frac{1}{p^2} - \frac{1}{p}$$

Für Poissonverteilung

$$\sigma^2 = Var(X) = E(X^2) - E(X)^2 = \lambda$$

Für Hypergeometrischeverteilung

$$Var(S_n) = n \cdot \frac{M}{N} \cdot (1 - \frac{M}{N}) \cdot \frac{N-n}{N-1}$$

Für Rechteckverteilung

$$Var(T_i) = \frac{(b-a)^2}{12}$$

Allgemeine Regeln für Varianz

$$Var(X + Y) = Var(X) + Var(Y) + 2 \cdot cov(X, Y)$$

Unabhängiger Zufallsvariablen

Allgemeine Regeln

$$E(X \cdot Y) = E(X) \cdot E(Y)$$

$$Var(X + Y) = Var(X) + Var(Y)$$

Wichtige Sätze der Stochastik

Zentraler Grenzwertsatz

n groß (Anzahl der Zufallsvariablen) $n \ge 30$ X_i unabhängig und identisch verteilt $\widehat{}$ haben die gleiche Verteilung

$$E(X_i) = \mu$$

$$Var(X_i) = \sigma^2$$

$$\sum X_i \sim N(n \cdot \mu, n \cdot \sigma^2)$$

$$\frac{1}{n} \sum_{i=1}^{n} = \bar{x} \sim N(\mu, \frac{\sigma^2}{n})$$

Manche Verteilungen verhalten sich in der Summe anders, zum Beispiel die Rechteckverteilung ist nicht mehr R-Verteilt. Dann wird der Zentrale Grenzwertsatz verwendet

Induktive Statistik - Schätztheorie

Schätzfunktionen

Maximum-Likelihood-Schätzer

$$L(x_1,\ldots,x_n,\alpha) = \prod_{i=1}^n f(x_i)$$

$$f(x_i) \text{ muss eine Dichtefunktion sein}$$

$$\frac{\partial \ln L(x_1,\ldots,x_n,\alpha)}{\partial \alpha} = 0$$
 Die Funktion nach dem Parameter α ableiten und Nullsetzen Das Ergebnis ist der

Maximum-Likelihood-Schätzer

Konfidenzintervalle

Intervall für E(X) einer Normalverteilung

Bei bekannter Standardabweicheung

Ist
$$X \sim N(\mu, \sigma^2)$$
 verteilt, dann ist $Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

 $ar{X}=$ erwartungsstreuer Schätzer bei n unabhängigen Stichproben Ist lpha gegegeben, berechne das Quantil

Daraus erhält man das Konfidenzintervall
$$\begin{bmatrix} \bar{x} - z_{1-(\alpha/2)} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{1-(\alpha/2)} \cdot \frac{\sigma}{\sqrt{n}} \end{bmatrix}$$

Allgemeine Matheregeln

Potenzen und Logarithmen

Potenzgesetze

$$a^{0} = 1$$

$$a^{1} = a$$

$$a^{m} \cdot a^{n} = a^{m+n}$$

$$(a^n)^m = a^{n \cdot m}$$

$$a^n \cdot b^n = (a \cdot b)^n$$

$$\frac{a^n}{a^m} = a^{n-m}$$

$$a^{\frac{b}{n}} = \sqrt[n]{b}$$

$$\prod_{i=1}^{n} a^{x_i} = a^{\sum_{i=1}^{n} x_i}$$

$x = \log_a y \Leftrightarrow y = a^x$	
$\log 1 = 0$	
$\log x \cdot y = \log x + \log y$	
$-\log x = \log \frac{1}{x}$	
$\log \frac{x}{y} = \log x - \log y$	
$\log x^n = n \cdot \log x$	
$\log_a x = \frac{\log x}{\log a}$	
$\log\left(\prod^{n} x_{i}\right) = \sum^{n} \log x_{i}$	

Ableitungen und Integrale

Grundlegende Ableitungsregeln		
f(x)	f'(x)	
c = const	0	
x^n	$n \cdot x^{n-1}$	
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	
e^x	e^x	
a^x	$\ln a \cdot a^x$	
$\ln x$	$\frac{1}{x}$	
$\log_a x$	$\frac{1}{\ln a \cdot x}$	
$\sin x$	$\cos x$	
$\cos x$	$-\sin x$	
$\tan x$	$\frac{1}{\cos^2 x}$	
$\cot x$	$\frac{1}{\sin^2 x}$	

Verknüpfte Ableitungsregeln		
f(x)	f'(x)	
(f(x) + g(x))	(f'(x) + g'(x))	
$(f(x) \cdot g(x))$	$(f'(x)\cdot g(x)) + (f(x)\cdot g'(x))$	
$\frac{f(x)}{g(x)}$	$\frac{(f'(x)\cdot g(x)) - (f(x)\cdot g'(x))}{g(x)^2}$	
f(g(x))	$f'(g(x)) \cdot g'(x)$	

wichtige Stammfunktionen		
f(x)	F(x)	
$x^n, n \neq 1$	$\frac{1}{n+1} \cdot x^{n+1} + c$	
$\frac{1}{x}, x \neq 0$	$\ln x + c$	
\sqrt{x}	$\frac{2}{3} \cdot x^{\frac{3}{2}} + c$	
e^x	$e^x + c$	