(a)
$$P(w_1) = \frac{40}{40+60} = 0.4$$
 $P(w_2) = \frac{60}{40+60} = 0.6$
 $P(w_1|x) = -x+2$ $(1 \le x \le 2)$ $P(w_2|x) = \frac{1}{6}x - \frac{1}{6}$ $(1 \le x \le 2)$
 $P(e) = 1 - P(w_1) \int_{R_1} P(x|w_1) dx - P(w_2) \int_{R_2} P(x|w_2) dx$
 $= P(w_1) \int_{R_2} P(x(w_1)) dx + P(w_2) \int_{R_1} P(x|w_2) dx$
 $= 0.4 \times \int_{x_1}^{2} (-x+2) dx + 0.6 \times \int_{1}^{x_1} (\frac{1}{6}x - \frac{1}{6}) dx$
 $= 0.4 \times (\frac{1}{2}) x^{12} - 2x^{1} + 2 + \frac{1}{12} + \frac$

(b) decide
$$w_1$$
 when $x \le 1.8$ decide w_2 when $x > 1.8$ according to (a).

$$p(e) = 0 + 0.04 = 0.04$$
.