Matematická logika

Ondřej Lengál

Fakulta informačních technologií Vysoké učení technické v Brně

SDĽ21

Logika

(Matematická) logika: oblast matematiky zabývající se univerzálními principy usuzování v různých formálních systémech

- usuzování: základní pravdy, odvozovací pravidla
- formální systém (příklady: algebra, geometrie, program. jazyk)

Logika a informatika

■ Logika je základní pilíř informatiky:

- hardware: výroková (Booleova) logika
- databáze: predikátová logika 1. řádu (SQL)
- programovací jazyky: teorie typů (logika vyššího řádu)
- softwarové inženýrství: predikátová logika 1. řádu
- verifikace: předchozí + temporální logiky (LTL/CTL), . . .
- umělá inteligence: predikátová logika 1. řádu, modální logiky, ...
- syntéza: predikátová logika 1./2. řádu
- kryptografie: interaktivní/pravděpodobnostní důkazové systémy, zero-knowledge důkazy (kryptoměny)
- řízení: fuzzy logika
- **>** ...

 $= \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} +$

3/34

Výroková (Booleova) logika

Výroková logika

Logika je jazyk, má tedy syntaxi a sémantiku.

Syntaxe: určuje, jak se vytvoří fráze jazyka:

$$\varphi ::= 0 \mid 1 \mid X \mid (\neg \varphi_1) \mid$$
$$(\varphi_1 \land \varphi_2) \mid (\varphi_1 \lor \varphi_2) \mid$$
$$(\varphi_1 \to \varphi_2) \mid (\varphi_1 \leftrightarrow \varphi_2)$$

ightharpoonup X je proměnná z množiny proměnných \mathbb{X} (spočetně ∞)

Příklad

- $((X \land (\neg Y)) \rightarrow Z)$ je formule
- $ightharpoonup X(Y \lor Z)$ **není** formule
- \triangleright $X \land Y \lor Z$ **není** formule
- Y je formule

(když je priorita jasná, závorky často vynecháváme)

SDL

Výroková logika — sémantika

Sémantika určuje co vytvořené fráze znamenají

Ohodnocení proměnných

• funkce $I: \mathbb{X} \to \{0,1\}$

■ příklad: $I = \{X \mapsto 1, Y \mapsto 0, \ldots\}$

Sémantika výrokové formule:

definována induktivně dle pravdivostní tabulky:

φ	$ \psi $	$\neg \varphi$	$\varphi \wedge \psi$	$\varphi \lor \psi$	$\varphi \rightarrow \psi$	$\varphi \leftrightarrow \psi$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Výroková logika — sémantika

Příklad

$$\varphi = ((X \land (\neg Y)) \to X)$$

X	Y	$\neg Y$	$X \wedge (\neg Y)$	φ
0	0			
0	1			
1	0			
1	1			

- Kolik existuje výrokových formulí nad proměnnými {X, Y}?
- Kolik existuje výrokových formulí nad proměnnými X?
- **Solik** existuje výrokových formulí nad proměnnými $\{X,Y\}$ s různou sémantikou? Tedy, kolik existuje různých logických binárních spojek?

Výroková logika — sémantika

Příklad

$$\psi = ((X \leftrightarrow Y) \to Z)$$

X	Y	Z	$X \leftrightarrow Y$	ψ
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

lacktriangle Kolik existuje výrokových formulí nad proměnnými $\{X,Y,Z\}$ s různou sémantikou?

Výroková logika — pojmy

model formule φ :

- \blacksquare je ohodnocení proměnných, které splňuje φ
- \blacksquare značíme $I \models \varphi$
- lacksquare opak (I nesplňuje φ) značíme $I \not\models \varphi$

splnitelnost (satisfiability):

- \blacksquare formule φ je splnitelná pokud má model
- \blacksquare tj. existuje ohodnocení proměnných I takové, že $I \models \varphi$

SDL

Výroková logika — pojmy

platnost (validity):

- formule φ je platná (tautologie) pokud $I \models \varphi$ pro všechna ohodnocení I
- \blacksquare značíme $\models \varphi$
- lacktriangle opaku (formule není platná) říkáme neplatnost (značíme $\not\models \varphi$)

kontradikce (nesplnitelnost, unsatisfiability):

- lacktriangle formule φ je kontradikce pokud nemá model
- lacktriangle tj. neexistuje ohodnocení proměnných I takové, že $I \models \varphi$
- **pozor**: $\models \neg \varphi$ není to samé jako $\not\models \varphi$

Platí následující dualita:

- lacktriangledown formule φ je platná právě když formule $\neg \varphi$ je nesplnitelná
- lacktriangle formule φ je splnitelná právě když formule $\neg \varphi$ je neplatná

Výroková logika — pojmy

logická ekvivalence:

- lacktriangledown formule φ a ψ jsou ekvivalentní pokud je I modelem φ právě když je modelem ψ
- lacktriangle neboli, když je formule $\varphi \leftrightarrow \psi$ tautologie
- lacksquare značíme $\varphi \Leftrightarrow \psi$

Jaký je rozdíl mezi $\varphi \leftrightarrow \psi$ a $\varphi \Leftrightarrow \psi$?

- $\varphi \leftrightarrow \psi$ je formule výrokové logiky
- $\blacksquare \varphi \Leftrightarrow \psi$ je tvrzení o formulích φ a ψ v metajazyce. **Není** to formule.

logický důsledek:

- lacktriangledown formule arphi pokud každý model arphi je i modelem ψ
- neboli, když je formule $\varphi \rightarrow \psi$ tautologie
- \blacksquare značíme $\varphi \Rightarrow \psi$

Podobně jako výše, $\varphi \rightarrow \psi$ a $\varphi \Rightarrow \psi$ **nejsou** to samé.

Výroková logika — Booleova algebra

 $(\{0,1\},\wedge,\vee,\neg,0,1)$ tvoří Booleovu algebru.

- rovnost = je definována jako logická ekvivalence ⇔
- \blacksquare např. $(X \wedge Y) \vee X = X$

Výroková logika — další ekvivalence

$$\begin{array}{cccc} X \to Y & \Leftrightarrow & \neg X \vee Y \\ X \to Y & \Leftrightarrow & \neg (X \wedge \neg Y) \\ X \leftrightarrow Y & \Leftrightarrow & (X \to Y) \wedge (Y \to X) \end{array}$$

$$X \Leftrightarrow \neg \neg X$$

(eliminace dvojité negace)

Výroková logika — normální formy

Disjunktivní normální forma (DNF, někdy též sum of products: SoP):

je disjunkce konjunkcí literálů:

$$\bigvee_{i} \bigwedge_{j} \ell_{i,j}$$

■ literál je proměnná (X) nebo její negace $(\neg X)$

Příklad

Nechť

$$\varphi \colon (P \vee \neg \neg Q) \wedge (R \to S).$$

Formule

$$\psi \colon (P \land \neg R) \lor (P \land S) \lor (Q \land \neg R) \lor (Q \land S)$$

je ekvivalentní formuli φ a je v DNF.

Výroková logika — normální formy

Konjunktivní normální forma (CNF, někdy též product of sums: PoS):

je konjunkce disjunkcí literálů

$$\bigwedge_i \bigvee_j \ell_{i,j}$$

Příklad

Nechť

$$\varphi \colon (P \land \neg \neg Q) \lor (R \to S).$$

Formule

$$\psi : (P \vee \neg R \vee S) \wedge (Q \vee \neg R \vee S)$$

je ekvivalentní formuli φ a je v CNF.

Predikátová logika 1. řádu

Predikátová logika

Predikátová logika 1. řádu (First-Order Logic, FOL)

- zabývá se tvrzeními o entitách, jejich vlastnostech a vztazích
- staví na výrokové logice
- interpretuje ("dívá se dovnitř") výroků
- uvažuje entity z univerza—tyto jsou označeny termy zkonstruovanými z proměnných a funkcí, např.
 - \blacktriangleright x, 5, f(x, 2), 40 + 2, fatherOf(motherOf(x)), head("abc"), sin(y)
- výroky jsou nahrazeny predikáty nad termy, např.
 - ightharpoonup x = y, even(x), p(x, y, z), isFatherOf(x, y)
- zavádí kvantifikátory pro vyjádření vlastností entit z univerza:
 - $\forall x$ univerzální kvantifikátor (všechny entity x splňují vlastnost)
 - $ightharpoonup \exists x$ existenční kvantifikátor (nějaká entita x splňuje vlastnost)

(v logice 2. a vyššího řádu se dá kvantifikovat přes relace; zde se tímto zabývat nebudeme)

Predikátová logika

Příklad

Všichni muži jsou smrtelní. Sokrates je muž. Tedy Socrates je smrtelný.

$$\big(\forall x (man(x) \rightarrow mortal(x)) \land man(Socrates)\big) \rightarrow mortal(Socrates)$$

Existuje nekonečně mnoho prvočísel.

$$\forall x \exists y \big(y > x \land \forall z (z \neq 1 \rightarrow \forall w (w \cdot z \neq y)) \big)$$

- Relace R je tranzitivní. $\forall x \forall y \forall z ((R(x,y) \land R(y,z)) \rightarrow R(x,z))$
- Uvažujme tabulky R[jmeno, id] a S[id, vek] v SQL databázi select R.jmeno from R join S on R.id = S.id where S.vek = 42

$$\exists z (R(x,z) \land S(z,42))$$

Velká Fermatova věta

$$\forall n \forall x \forall y (n > 2 \rightarrow \forall z (x^n + y^n \neq z^n))$$

Syntaxe:

Abeceda:

- logické spojky: ¬, ∧, ∨, →, ↔ (z výrokové logiky)
- ightharpoonup proměnné: $x, y, \ldots, x_1, x_2, \ldots$
- kvantifikátory: ∀, ∃
- závorky: (,)
- $ightharpoonup \mathcal{F}$: funkční symboly (s $_{/aritou}$): $f_{/2}$, $+_{/2}$, $\sin_{/1}$, $fatherOf_{/1}$, $\pi_{/0}$
 - nulární funkce (arita 0): konstanty
 - použití: f(a,3), +(40,2), $\sin(x)$, fatherOf(Luke), $\pi()$
 - často píšeme: 40 + 2 [pro +(40, 2)], π [pro $\pi()$], . . .
- \triangleright \mathcal{P} : predikátové symboly (s $_{/aritou}$): $p_{/3}$, $isJedi_{/1}$, $<_{/2}$
 - použití: p(a, x, 9), isJedi(Anakin), $<(x, \pi)$
 - často píšeme: $x < \pi$ [pro $<(x, \pi)$], ...
- "vestavěný" predikátový symbol rovnosti =/2
- Signatura $\langle \mathcal{F}, \mathcal{P} \rangle$ = funkční + predikátové symboly
 - může být chápána jako parametr, který se dosadí do šablony
- Jazyk: je jednoznačně dán signaturou

Signatura $\langle \mathcal{F}, \mathcal{P} \rangle$ = funkční + predikátové symboly

Příklad

- jazyk teorie uspořádání: (∅, {</2})</p>
 - žádný funkční symbol
 - jeden binární predikátový symbol <</p>
- jazyk teorie grup: $\langle \{\cdot_{/2}, e_{/0}\}, \emptyset \rangle$
 - binární funkční symbol · (grupová operace násobení)
 - nulární funkční symbol e pro neutrální prvek
- jazyk teorie množin: $\langle \emptyset, \{ \in_{/2} \} \rangle$
- jazyk teorie polí: $\langle \{([]_r)_{/2}, ([]_w)_{/3})\}, \emptyset \rangle$
 - binární funkční symbol čtení z pole $[]_r$, např., $A[i]_r$
 - lacktriangle ternární funkční symbol zápisu do pole $[]_w$, např., $A[i,y]_w$ (zápis y na index i v poli A)
- **j**azyk teorie seznamů: $\langle \{ cons_{/2}, car_{/1}, cdr_{/1} \}, \{ atom_{/1} \} \rangle$
- jazyk elementární (tzv. Peanovy) aritmetiky: $\langle \{S_{/1}, 0_{/0}, +_{/2}, \cdot_{/2}\}, \emptyset \rangle$

Gramatika:

- term (budou nabývat hodnot z univerza):
 - 1 Každá proměnná je term.
 - Pokud je $f_{/n}$ funkční symbol a t_1, \ldots, t_n jsou termy, pak i $f(t_1, \ldots, t_n)$ je term.
 - 3 Každý term vznikne konečným počtem užití pravidel 1 a 2.
- **příklady termů:** x, 5, f(x, 2), 40 + 2, car(cons(x, y)), head("abc"), sin(y)

Gramatika (pokr.):

- **a**tomická formule φ_{atom} :
 - $ightharpoonup p(t_1, \ldots, t_n)$ kde $p_{/n}$ je predikátový symbol a t_1, \ldots, t_n jsou termy
 - (platí i pro p "vestavěný" symbol rovnosti $=_{/2}$)
- formule:

$$\varphi ::= \varphi_{atom} \mid (\neg \varphi_1) \mid$$

$$(\varphi_1 \land \varphi_2) \mid (\varphi_1 \lor \varphi_2) \mid$$

$$(\varphi_1 \to \varphi_2) \mid (\varphi_1 \leftrightarrow \varphi_2) \mid$$

$$(\forall x \varphi_1) \mid (\exists x \varphi_1)$$

- kde x je proměnná z množiny proměnných X
- (závorky opět často vynecháváme)
- příklady formulí:
 - $\exists x(40 + x = 42 \land 40 \cdot x = 80),$
 - $\blacktriangleright \ \forall x(\tan(x) = \frac{\sin(x)}{\cos(x)}),$
 - ightharpoonup atom(car(cons(x, y))),
 - $\forall x(\exists y(x=y\cdot y\vee x=-y\cdot y))$

výskyty proměnných ve formuli:

- vázaný: výskyt v rozsahu platnosti kvantifikátoru
 - ▶ např. Bound $\exists x(x=4 \land \neg(y=5)) \] = \{x\}$
- volný: výskyt, který není vázaný žádným kvantifikátorem
 - ▶ např. FREE $[x=4 \land (\exists y(y=5))] = \{x\}$
- proměnná může mít ve formuli jak vázaný, tak i volný výskyt

Příklad

$$\forall x (p(f(x), y) \rightarrow \forall y(p(f(x), y)))$$

- x se vyskytuje jen vázané
- y se vyskytuje volné (antecedent) i vázané (konsekvent)
- lacktriangle často píšeme $arphi(x_1,\ldots,x_n)$ když $\mathsf{FREE} ig[arphiig] \subseteq \{x_1,\ldots,x_n\}$
 - $ightharpoonup x_1, \ldots, x_n$ slouží jako "rozhraní" k φ
- lacksquare φ je uzavřená (také *výrok*) když $\mathsf{FREE}[\varphi] = \emptyset$

Sémantika predikátové logiky:

- symboly jazyka dosud neměly žádný význam
- složitější než pro výrokovou logiku

Realizace (interpretace): $I = (D_I, \alpha_I)$: dává symbolům význam

- doména (univerzum diskurzu) D_I : neprázná množina
 - ▶ např., \mathbb{N} , $\{0, 1, 2, 3, 4\}$, \mathbb{R}^3 , People, List[\mathbb{N}], Σ^* , . . .
- **ohodnocení** α_I obsahující:
 - ightharpoonup pro každý funkční symbol $f_{/n}$ funkci $f_I: \overbrace{D_I \times \ldots \times D_I} o D_I$
 - např., $\alpha_I(+) = \{(0,0) \mapsto 0, (0,1) \mapsto 1, (1,0) \mapsto 1, (1,1) \mapsto 2, \ldots\}$
 - pro konstanty tedy 1 hodnotu, např., $\alpha_I(\pi) = \{() \mapsto 3.14\}$
 - lacktriangle pro každý predikátový symbol $p_{/n}$ relaci $p_I\subseteq \overbrace{D_I\times\ldots\times D_I}$
 - např., $\alpha_I(<) = \{(0,1), (0,2), (1,2), \ldots\}$
 - např., $\alpha_I(even) = \{0, 2, 4, ...\}$
 - např., $\alpha_I(edge) = \{(v_1, v_2), (v_2, v_3), \ldots\}$
 - ohodnocení proměnných z \mathbb{X} na hodnotu z D_I , např., $x \mapsto 42$

Predikátová logika — realizace

Příklad

Příklady realizací jazyka se signaturou $\langle \mathcal{F} = \{+_{/2}\}, \mathcal{P} = \emptyset \rangle$:

- Sčítání v \mathbb{N} : $I = (\mathbb{N}, \alpha_I)$ kde
 - $ightharpoonup \alpha_I(+) = (+_{\mathbb{N}})$ (sčítání přirozených čísel)
- Sčítání v \mathbb{R}^3 : $I=(\mathbb{R}^3,\alpha_I)$ kde
- Modulární sčítání v $\{0, 1, 2\}$: $I = (\{0, 1, 2\}, \alpha_I)$ kde

Predikátová logika— realizace

Příklad

Příklady realizací jazyka se signaturou $\langle \mathcal{F} = \{+_{/2}, \cdot_{/2}, *_{/1}\}, \mathcal{P} = \{E_{/1}\}\rangle$:

- Sjednocení, konkatenace a iterace množin řetězců nad Σ : $I = (2^{\Sigma^*}, \alpha_I)$ kde
- Disjunkce, konjunkce a negace v Booleově algebře: $I = (\{0,1\}, \alpha_I)$ kde
 - $\alpha_I(+) = \{(0,0) \mapsto 0, (0,1) \mapsto 1, (1,0) \mapsto 1, (1,1) \mapsto 1\}$
 - $\alpha_I(\cdot) = \{(0,0) \mapsto 0, (0,1) \mapsto 0, (1,0) \mapsto 0, (1,1) \mapsto 1\}$
 - $\alpha_I(^*) = \{0 \mapsto 1, 1 \mapsto 0\}$
 - $ightharpoonup \alpha_I(E) = \{0\}$

hodnota termu t **v realizaci** I: definována induktivně následujícím rozšířením $\alpha_I[t]$:

$$\alpha_I[f(t_1,\ldots,t_n)] \stackrel{\mathsf{def}}{=} \alpha_I[f](\alpha_I[t_1],\ldots,\alpha_I[t_n])$$

pro $f_{/n}$ ($\alpha_I[x]$ pro $x \in \mathbb{X}$ a $\alpha_I[c]$ pro konstantu $c_{/0}$ jsou již definovány v realizaci I)

Příklad

Uvažujme jazyk se signaturou $\langle \mathcal{F} = \{+_{/2}, S_{/1}, Z_{/0}\}, \mathcal{P} = \emptyset \rangle$ a následující term:

$$t: x + S(x+Z)$$

Určete hodnotu termu *t* v následujících realizacích:

$$\begin{array}{ll} \textbf{S} \check{\text{Citáni}} \ \textbf{v} \ \mathbb{N} \colon I = (\mathbb{N}, \alpha_I) \ \text{kde} \\ \alpha_I(+) = (+_{\mathbb{N}}) & \text{(s}\check{\text{Citáni}} \ \text{p\'irozen\'ych } \check{\text{Cisel}}) \\ \alpha_I(S) = \{x \mapsto x +_{\mathbb{N}} 1_{\mathbb{N}}\}_{x \in \mathbb{N}} & \text{(funkce n\'asledn\'ika)} \\ \alpha_I(Z) = 0_{\mathbb{N}} & \text{(nula)} \\ \alpha_I(x) = 42_{\mathbb{N}} & \end{array}$$

Příklad

Uvažujme jazyk se signaturou $\langle \mathcal{F} = \{+_{/2}, S_{/1}, Z_{/0}\}, \mathcal{P} = \emptyset \rangle$ a následující term:

$$t: x + S(x+Z)$$

Určete hodnotu termu *t* v následujících realizacích:

 $\begin{array}{ll} \blacksquare & \operatorname{Množinov\acute{e}} \ \operatorname{operace} \ \operatorname{v} \ 2^{\mathbb{N}} \colon I = (2^{\mathbb{N}}, \alpha_I) \ \operatorname{kde} \\ & \alpha_I(+) = (\cup) & \text{(sjednocen\'i množin)} \\ & \alpha_I(S) = \{x \mapsto x \cup \{1_{\mathbb{N}}\}\}_{x \in 2^{\mathbb{N}}} & \text{(p\'id\'an\'i prvku } 1_{\mathbb{N}} \ \operatorname{do mno\'ziny)} \\ & \alpha_I(Z) = \emptyset & \text{(pr\'azdn\'a mno\'zina)} \\ & \alpha_I(x) = \{1_{\mathbb{N}}, 42_{\mathbb{N}}\} \end{array}$

sémantika formule φ predikátové logiky:

- \blacksquare určuje, zda v dané realizaci I formule platí $(I \models \varphi)$, nebo ne $(I \not\models \varphi)$
- definována induktivně:
 - 1 pro predikátový symbol p_n a termy t_1, \ldots, t_n platí

$$I \models p(t_1, \dots, t_n)$$
 právě když $\alpha_I[p](\alpha_I[t_1], \dots, \alpha_I[t_n])$

(pro rovnost: $I \models t_1 = t_2$ právě když $\alpha_I[t_1]$ a $\alpha_I[t_2]$ značí stejný prvek z D_I)

pro výrokové spojky:

```
\begin{array}{ll} I\models\neg\psi & \text{právě když }I\not\models\psi \\ I\models\psi_1\wedge\psi_2 & \text{právě když }I\models\psi_1\text{ a zároveň }I\models\psi_2 \\ I\models\psi_1\vee\psi_2 & \text{právě když }I\models\psi_1\text{ nebo }I\models\psi_2 \\ I\models\psi_1\to\psi_2 & \text{právě když pokud }I\models\psi_1\text{ pak }I\models\psi_2 \\ I\models\psi_1\leftrightarrow\psi_2 & \text{právě když pokud }I\models\psi_1\text{ a zároveň }I\models\psi_2,\text{ nebo }I\not\models\psi_1\text{ a zároveň }I\not\models\psi_2 \end{array}
```

- 3 pro kvantifikátory:
 - variant $I \triangleleft \{x \mapsto v\}$ realizace I je realizace získaná z I nahrazením $x \mapsto ?$ za $x \mapsto v$ v α_I
 - $I \models \forall x \varphi$ právě když pro všechny prvky $v \in D_I$ platí $I \triangleleft \{x \mapsto v\} \models \varphi$ $I \models \exists x \varphi$ právě když existuje prvek $v \in D_I$ takový, že $I \triangleleft \{x \mapsto v\} \models \varphi$

model formule φ :

 \blacksquare je realizace I taková, že $I \models \varphi$

splnitelnost (satisfiability):

- \blacksquare formule φ je splnitelná pokud má model
- tj. existuje realizace I s doménou D_I a ohodnocením funkčních, predikátových symbolů a proměnných α_I takové, že $I \models \varphi$

logická platnost:

- formule φ je logicky platná pokud platí pro **všechny** realizace daného jazyka, tj. pro všechny domény a ohodnocení funkčních, predikátových symbolů a proměnných
- \blacksquare značíme $\models \varphi$
- (výroková logika: tautologie)

logická platnost:

- formule φ je logicky platná pokud platí pro **všechny** realizace daného jazyka, tj. pro všechny domény a ohodnocení funkčních, predikátových symbolů a proměnných
- \blacksquare značíme $\models \varphi$
- (výroková logika: tautologie)

Příklad

Je následující formule platná?

$$\varphi \colon 1 + 1 = 2$$

proč?

- \blacksquare existují realizace, kde φ neplatí
 - ▶ např., $I = \langle \mathbb{N}, \alpha_I \rangle$ kde $\alpha_I(+) = \{\dots, (1,1) \mapsto 3, \dots\}$
- většinou chceme omezit množinu uvažovaných realizací $\varphi \leadsto \text{teorie}$ (jazyk + axiomy)

logická ekvivalence:

- formule φ a ψ jsou logicky ekvivalentní jestliže pro libovolnou realizaci I daného jazyka platí $I \models \varphi$ právě když $I \models \psi$
- lacktriangleq neboli, když je formule $\varphi \leftrightarrow \psi$ logicky platná
- lacksquare značíme $\varphi \Leftrightarrow \psi$

logický důsledek:

- formule ψ je logickým důsledkem formule φ jestliže pokud pro realizaci I platí $I \models \varphi$, pak platí i $I \models \psi$
- lacktriangle neboli, když je formule $\varphi \rightarrow \psi$ logicky platná
- \blacksquare značíme $\varphi \Rightarrow \psi$

Predikátová logika — ekvivalence

$$\forall x(\neg\varphi) \quad \Leftrightarrow \quad \neg \exists x \varphi \\ \exists x(\neg\varphi) \quad \Leftrightarrow \quad \neg \forall x \varphi \\ (\forall x(\varphi(x))) \land (\forall y(\psi(y))) \quad \Leftrightarrow \quad \forall x(\varphi(x) \land \psi(x)) \qquad \text{pokud } x \notin \mathsf{FREE}[\psi] \\ (\exists x(\varphi(x))) \lor (\exists y(\psi(y))) \quad \Leftrightarrow \quad \exists x(\varphi(x) \lor \psi(x)) \qquad \text{pokud } x \notin \mathsf{FREE}[\psi] \\ \forall x \varphi \quad \Leftrightarrow \quad \varphi \qquad \qquad \mathsf{pokud } x \notin \mathsf{FREE}[\varphi] \\ \exists x \varphi \quad \Leftrightarrow \quad \varphi \qquad \qquad \mathsf{pokud } x \notin \mathsf{FREE}[\varphi] \\ \forall x(\varphi \lor \psi) \quad \Leftrightarrow \quad (\forall x \varphi) \lor \psi \qquad \qquad \mathsf{pokud } x \notin \mathsf{FREE}[\psi] \\ \exists x (\varphi \land \psi) \quad \Leftrightarrow \quad (\exists x \varphi) \land \psi \qquad \qquad \mathsf{pokud } x \notin \mathsf{FREE}[\psi] \\ \end{cases}$$