Matrius i vectors (grup de matí)

Curs 2018–2019

8.1 Fórmula de Grassmann

Anem a demostrar la igualtat següent, anomenada fórmula de Grassmann:

Teorema 8.1. Donats dos subespais F i G d'un espai vectorial E de dimensió finita, es compleix

$$\dim(F+G) = \dim F + \dim G - \dim(F \cap G).$$

Demostració. Suposem que dim F = k i dim $G = \ell$. Si k = 0, llavors tenim $F = \{0\}$, F + G = G, $F \cap G = \{0\}$ i la fórmula es compleix; i si $\ell = 0$, passa el mateix.

Escollim una base v_1, \ldots, v_k de F i una base w_1, \ldots, w_ℓ de G. Aleshores

$$F + G = \langle v_1, \dots, v_k, w_1, \dots, w_\ell \rangle. \tag{8.1}$$

Per tant, $\dim(F+G) = k + m$ amb $0 \le m \le \ell$.

Podem reduir el conjunt de generadors de (8.1) fins que $v_1, \ldots, v_k, w_1, \ldots, w_m$ sigui una base de F + G (canviant, si cal, l'ordre de w_1, \ldots, w_ℓ). És possible anar eliminant vectors de la base de G perquè en qualsevol relació de dependència entre els vectors de (8.1) els coeficients dels vectors w_1, \ldots, w_ℓ no poden ser tots zero, ja que v_1, \ldots, v_k són linealment independents.

Com que $v_1, \ldots, v_k, w_1, \ldots, w_m$ és una base de F + G, els vectors w_{m+1}, \ldots, w_ℓ són combinacions lineals d'ells:

$$w_{m+1} = a_{m+1}^1 v_1 + \dots + a_{m+1}^k v_k + b_{m+1}^1 w_1 + \dots + b_{m+1}^m w_m$$

$$\vdots$$

$$w_{\ell} = a_{\ell}^1 v_1 + \dots + a_{\ell}^k v_k + b_{\ell}^1 w_1 + \dots + b_{\ell}^m w_m.$$

Si canviem $w_{m+1}, \ldots, w_{\ell}$ per

$$w'_{m+1} = w_{m+1} - (b_{m+1}^1 w_1 + \dots + b_{m+1}^m w_m)$$

$$\vdots$$

$$w'_{\ell} = w_{\ell} - (b_{\ell}^1 w_1 + \dots + b_{\ell}^m w_m),$$

resulta que $w_1, \ldots, w_m, w'_{m+1}, \ldots, w'_{\ell}$ segueix essent una base de G, i ara tenim que $w'_{m+1}, \ldots, w'_{\ell}$ també són vectors de F, ja que

$$w'_{m+1} = a^{1}_{m+1}v_{1} + \dots + a^{k}_{m+1}v_{k}$$

$$\vdots$$

$$w'_{\ell} = a^{1}_{\ell}v_{1} + \dots + a^{k}_{\ell}v_{k}.$$
(8.2)

Per tant, $\langle w'_{m+1}, \dots, w'_{\ell} \rangle \subseteq F \cap G$. Si comprovem la inclusió contrària, resultarà que $\dim(F \cap G) = \ell - m$, tal com ens calia demostrar.

Sigui doncs u un vector de $F \cap G$ qualsevol. Com que $u \in F$ i $u \in G$, podem escriure

$$u = c^{1}v_{1} + \dots + c^{k}v_{k}$$

$$u = d^{1}w_{1} + \dots + d^{m}w_{m} + d^{m+1}w'_{m+1} + \dots + d^{\ell}w'_{\ell}.$$

Tenint en compte (8.2), la segona expressió es pot reescriure com

$$u = d^{1}w_{1} + \dots + d^{m}w_{m} + e^{1}v_{1} + \dots + e^{k}v_{k}$$

per a alguns nombres reals e^1, \ldots, e^k . Aleshores, restant-hi la primera expressió,

$$0 = d^{1}w_{1} + \dots + d^{m}w_{m} + (e^{1} - c^{1})v_{1} + \dots + (e^{k} - c^{k})v_{k}.$$
(8.3)

Com que $v_1, \ldots, v_k, w_1, \ldots, w_m$ són linealment independents, tots els coeficients en l'expressió (8.3) són iguals a zero. En particular $d^1 = 0, \ldots, d^m = 0$. Per tant,

$$u = d^{m+1}w'_{m+1} + \dots + d^{\ell}w'_{\ell}$$

i això demostra que $u \in \langle w'_{m+1}, \dots, w'_{\ell} \rangle$, tal com ens calia.

8.2 Suma directa

Quan $F \cap G = \{0\}$, es diu que la suma F + G és una suma directa i es denota per $F \oplus G$. Llavors la fórmula de Grassmann ens diu que

$$\dim(F \oplus G) = \dim F + \dim G.$$

La propietat fonamental de la suma directa és la següent:

Proposició 8.2. Donats dos subespais F i G d'un espai vectorial E, es compleix $F \cap G = \{0\}$ si i només si tot vector $u \in F + G$ es pot escriure de manera única com u = v + w amb $v \in F$ i $w \in G$.

Demostració. Suposem primer que $F \cap G = \{0\}$ i suposem que hi ha un vector u que s'escriu com u = v + w amb $v \in F$ i $w \in G$ i també com u = v' + w' amb $v' \in F$ i $w' \in G$. Llavors

$$0 = u - u = (v + w) - (v' + w') = (v - v') + (w - w').$$

Per tant, $v - v' \in F \cap G$, la qual cosa implica que v - v' = 0, d'on v = v'. Llavors també w - w' = 0 i d'aquí w = w'.

Recíprocament, si tot vector de F+G es descompon com suma d'un vector de F i un vector de G de manera única, podem considerar un vector $u \in F \cap G$ qualsevol i escriure'l com u = u + 0 = 0 + u. Aleshores, per hipòtesi, u = 0.

Quan $F \oplus G = E$, es diu que G és un subespai suplementari de F (i que F és un subespai suplementari de G). Qualsevol subespai F d'un espai vectorial E admet algun suplementari, que en general no és únic. Per demostrar-ho, escollim una base v_1, \ldots, v_k de F i completem aquesta base a una base $v_1, \ldots, v_k, w_{k+1}, \ldots, w_n$ de E. Aleshores $G = \langle w_{k+1}, \ldots, w_n \rangle$ és un suplementari de F, ja que dim G = n - k i la fórmula de Grassmann ens assegura que $F \cap G = \{0\}$.