Feedforward Neural Networks

Deep Learning CS 435/635

Course Instructor: Chandresh Al Lab Coordinator @IIT Indore

Course Content

Module I: History of Deep Learning, Sigmoid Neurons, Perceptrons, and learning algorithms. Multilayer Perceptrons (MLPs), Representation Power of MLPs,.

Module II: Feedforward Neural Networks. Backpropagation. first and second-order training methods. NN Training tricks, Regularization

Module III: Introduction to Autoencoders and their characteristics, relation to PCA, Regularization in autoencoders, and Types of autoencoders.

Module IV: Architecture of Convolutional Neural Networks (CNN), types of CNNs.

Module V: Architecture of Recurrent Neural Networks (RNN), Backpropagation through time. Encoder-Decoder Models, Attention Mechanism. Advanced Topics: Transformers and BERT.

Acknowledgement

 Neural Networks and Deep Learning course by Danna Gurari University of Colorado Boulder

Today's Topics

- Motivation for neural networks: need non-linear models
- Neural network architecture: hidden layers
- Neural network architecture: activation functions
- Neural network architecture: output units
- Programming tutorial

Today's Topics

- Motivation for neural networks: need non-linear models
- Neural network architecture: hidden layers
- Neural network architecture: activation functions
- Neural network architecture: output units
- Programming tutorial

Historical Context: Artificial Neurons

Recall: Vision for Perceptron

Frank Rosenblatt (Psychologist)

"[The perceptron is] the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence.... [It] is expected to be finished in about a year at a cost of \$100,000."

1958 New York Times article: https://www.nytimes.com/1958/07/08/archives/new-navy-device-learns-by-doing-psychologist-shows-embryo-of.html

Recall: Perceptron

Python Machine Learning; Raschka & Mirjalili

https://github.com/rasbt/python-machine-learning-book-2nd-edition/blob/master/code/ch02/ch02.ipynb

- Input: two binary values x₁ and x₂
- Output:
 - 1, when exactly one input equals 1
 - 0, otherwise

X ₁	X ₂	x ₁ XOR x ₂
0	0	?
0	1	?
1	0	?
1	1	?

- Input: two binary values x₁ and x₂
- Output:
 - 1, when exactly one input equals 1
 - 0, otherwise

X ₁	X ₂	x ₁ XOR x ₂
0	0	?
0	1	?
1	0	?
1	1	?

- Input: two binary values x₁ and x₂
- Output:
 - 1, when exactly one input equals 1
 - 0, otherwise

X ₁	X ₂	x ₁ XOR x ₂
0	0	0
0	1	?
1	0	?
1	1	?

- Input: two binary values x₁ and x₂
- Output:
 - 1, when exactly one input equals 1
 - 0, otherwise

X ₁	X ₂	x ₁ XOR x ₂
0	0	0
0	1	1
1	0	?
1	1	?

- Input: two binary values x₁ and x₂
- Output:
 - 1, when exactly one input equals 1
 - 0, otherwise

X_1	X ₂	x ₁ XOR x ₂
0	0	0
0	1	1
1	0	1
1	1	?

- Input: two binary values x₁ and x₂
- Output:
 - 1, when exactly one input equals 1
 - 0, otherwise

X ₁	X ₂	x ₁ XOR x ₂
0	0	0
0	1	1
1	0	1
1	1	0

Cannot solve XOR problem and so separate 1s from 0s with a perceptron (linear function):

X ₁	X ₂	x ₁ XOR x ₂
0	0	0
0	1	1
1	0	1
1	1	0

electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence.... [It] is expected to be finished in

Frank Rosenblatt
(Psychologia)

How can a machine be "conscious" when it can't solve the XOR problem?

Today's Topics

Motivation for neural networks: need non-linear models

Neural network architecture: hidden layers

Neural network architecture: activation functions

Neural network architecture: output units

Programming tutorial

Neural Networks: Connected Neurons

Biological Neural Network:

http://www.rzagabe.com/2014/11/03/an-introduction-to-artificial-neural-networks.html

Artificial Neural Network:

This is a 3-layer neural network (i.e., count number of hidden layers plus output layer)

each "hidden layer" uses outputs of units (i.e., neurons) and provides them as inputs to other units (i.e., neurons)

How does this relate to a perceptron?

 Unit: takes as input a weighted sum and applies an activation function

How does this relate to a perceptron?

 Unit: takes as input a weighted sum and applies an activation function

How does this relate to a perceptron?

 Unit: takes as input a weighted sum and applies an activation function

How does this relate to a perceptron?

 Unit: takes as input a weighted sum and applies an activation function

How does this relate to a perceptron?

 Unit: takes as input a weighted sum and applies an activation function

How does this relate to a perceptron?

 Unit: takes as input a weighted sum and applies an activation function

How does this relate to a perceptron?

 Unit: takes as input a weighted sum and applies an activation function

How does this relate to a perceptron?

 Unit: takes as input a weighted sum and applies an activation function

How does this relate to a perceptron?

 Unit: takes as input a weighted sum and applies an activation function

- Training goal: learn model parameters
- Layers are called "hidden" because algorithm decides how to use each layer to produce its output

How many weights are in this model?

- Input to Hidden Layer 1:
 - 3x4 = 12
- Hidden Layer 1 to Hidden Layer 2:
 - 4x4 = 16
- Hidden Layer 2 to Output Layer
 - 4x1 = 4
- Total:
 - 12 + 16 + 4 = 32

How many parameters are there to learn?

- Number of weights:
 - 32
- Number of biases:

•
$$4+4+1=9$$

- Total
 - 41

Fully Connected, Feedforward Neural Networks

- What does it mean for a model to be fully connected?
 - Each unit provides input to each unit in the next layer
- What does it mean for a model to be feedforward?
 - Each layer serves as input to the next layer with no loops

How Many Layers and Units Should be Used?

To be explored more in lab assignment set 1 and this course

Hidden Layers Alone Are NOT Enough to Model Non-Linear Functions

Key Observation: feedforward networks are just functions chained together e.g.,

- What is function for h₁?
 - $h_1 = w_1 x_1 + w_3 x_2 + b_1$
- What is function for h₂?
 - $h_2 = w_2 x_1 + w_4 x_2 + b_2$
- What is function for y?
 - $y = h_1 w_5 + h_2 w_6 + b_3$
 - $V = (W_1X_1 + W_2X_2 + b_1)W_5 + (W_2X_1 + W_4X_2 + b_2)W_6 + b_3$
 - $y = w_1 w_5 x_1 + w_3 w_5 x_2 + w_5 b_1 + w_2 w_6 x_1 + w_4 w_6 x_2 + w_6 b_2 + b_3$

Hidden Layers Alone Are NOT Enough to Model Non-Linear Functions

Key Observation: feedforward networks are just functions chained together e.g.,

- What is function for h₁?
 - $h_1 = w_1 x_1 + w_3 x_2 + b_1$
- What is function for h₂?
 - $h_2 = w_2 x_1 + w_4 x_2 + b_2$
- What is function for y?
 - $y = h_1 w_5 + h_2 w_6 + b_3$

Constant x linear function = linear function

A chain of LINEAR functions at any depth is still a LINEAR function!

Today's Topics

- Motivation for neural networks: need non-linear models
- Neural network architecture: hidden layers
- Neural network architecture: activation functions
- Neural network architecture: output units
- Programming tutorial

Key Idea: Use Connected Neurons to Non-linearly Transform Input into Useful Features for Predictions

Biological Neural Network:

http://www.rzagabe.com/2014/11/03/an-introduction-to-artificial-neural-networks.html

Artificial Neural Network:

Key Idea: Use Connected Neurons to Non-linearly Transform Input into Useful Features for Predictions

Biological Neuron:

Artificial Neurons (e.g., Perceptron):

Mimic a neuron firing, by having each unit apply a non-linear "activation" function to the weighted input

Non-Linear Activation Functions

• Each unit applies a non-linear "activation" function to the weighted input to

mimic a neuron firing Computationally faster

http://www.cs.utoronto.ca/~fidler/teaching/2015/slides/CSC411/10_nn1.pdf

• Non-linear function: separate 1s from 0s:

INPUT		OUTPUT
Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

• Non-linear function: separate 1s from 0s:

TU	OUTPUT
В	A XOR B
0	0
1	1
0	1
1	0
	B 0 1

• Non-linear function: separate 1s from 0s:

INPUT		OUTPUT
Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

• Non-linear function: separate 1s from 0s:

INPUT		OUTPUT
Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

• Non-linear function: separate 1s from 0s:

INPUT		OUTPUT
Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

• Non-linear function: separate 1s from 0s:

INPUT		OUTPUT
Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

• Non-linear function: separate 1s from 0s:

INPUT		OUTPUT
Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

• Non-linear function: separate 1s from 0s:

INF	TU	OUTPUT
Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

• Non-linear function: separate 1s from 0s:

INPUT		OUTPUT
Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

• Non-linear function: separate 1s from 0s:

INPUT		OUTPUT
Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

• Non-linear function: separate 1s from 0s:

INPUT		OUTPUT
Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

• Non-linear function: separate 1s from 0s:

INPUT		OUTPUT
Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

• Non-linear function: separate 1s from 0s:

INPUT		OUTPUT	
Α	В	A XOR B	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

• Non-linear function: separate 1s from 0s:

INPUT		OUTPUT	
Α	В	A XOR B	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function (ReLU(z) = max(0, z)) with these parameters:

Neural networks can solve XOR problem... and so model non-linear functions!

Activation Functions and Model Parameters (e.g., Sigmoid)

Weights determine curvature:

Biases determine shifted position:

Which Activation Functions Should be Used?

To be explored more in lab assignment set 1 and this course

Today's Topics

- Motivation for neural networks: need non-linear models
- Neural network architecture: hidden layers
- Neural network architecture: activation functions
- Neural network architecture: output units
- Programming tutorial

Desired Output Driven by Task

Linear (No Activation Function)

Desired Output Driven by Task

Sigmoid (for Binary Classification); aka – Logistic Regression

If $z \ge 0.5$, output 1; Else, output 0

Why not use z instead of $\sigma(z)$?

We want a probability in [0, 1]

What happens to the output as z becomes more positive?

e^-z approaches 0 so value approaches 1

What happens to the output as z becomes more negative?

e^-z becomes larger so value approaches 0

Figure Source: https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede

Figure Source: https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede

Converts vector of scores into a probability distribution that sums to 1

Useful tutorial: https://towardsdatascience.com/exploring-the-softmax-function-578c8b0fb15

Figure Source: https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede

	Scoring Function	
Dog	-3.44	
Cat	1.16	
Boat	-0.81	
Airplane	3.91	

Figure Source: https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede

Converts vector of scores into a probability distribution that sums to 1; e.g.,

 e^{z_i} $\sum_{j=1}^K e^{z_i}$

	Scoring Function	Unnormalized Probabilities	Normalized Probabilities
Dog	-3.44	0.0321	0.0006
Cat	1.16	3.1899	0.0596
Boat	-0.81	0.4449	0.0083
Airplane	3.91	49.8990	0.9315

Figure Source: https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede

	Scoring Function	Unnormalized Probabilities	Normalized Probabilities
Dog	-3.44	0.0321	0.0006
Cat	1.16	3.1899	0.0596
Boat	-0.81	0.4449	0.0083
Airplane	3.91	49.8990	0.9315

Desired Output Driven by Task

Desired Output Driven by Task

https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/

Today's Topics

- Motivation for neural networks: need non-linear models
- Neural network architecture: hidden layers
- Neural network architecture: activation functions
- Neural network architecture: output units
- Programming tutorial

Today's Topics

- Motivation for neural networks: need non-linear models
- Neural network architecture: hidden layers
- Neural network architecture: activation functions
- Neural network architecture: output units
- Programming tutorial

The End