Quantitative Social Science Methods, I, Lecture Notes: Research Designs for Causal Inference

Gary King¹
Institute for Quantitative Social Science
Harvard University

August 17, 2020

¹GaryKing.org

Components of Causal Estimation Error

Research Designs

Issues in Ideal Designs

Reference

- Kosuke Imai, Gary King, and Elizabeth Stuart.
 Misunderstandings among Experimentalists and
 Observationalists: Balance Test Fallacies in Causal Inference
 Journal of the Royal Statistical Society, Series A, 171, Part 2
 (2008): 1–22.
- http://j.mp/MisExpObs

Notation

- Sample n units from finite population size N (typically N ≫ n)
- Observed outcome variable: Y_i
- Sample selection: $I_i = 1$ if selected, 0 otherwise
- Treatment assignment: $T_i = 1$ if treated group, 0 if control
- (Assume: treated and control groups are each of size n/2)
- Potential outcomes: $Y_i(1)$ and $Y_i(0)$, Y_i when T_i is 1 or 0
- Fundamental problem of causal inference. Only one potential outcome is ever observed:

If
$$T_i = 0$$
, $Y_i(0) = Y_i$ $Y_i(1) = ?$
If $T_i = 1$, $Y_i(0) = ?$ $Y_i(1) = Y_i$

- (I_i, T_i, Y_i) are random; $Y_i(1)$ and $Y_i(0)$ are fixed.
- Quiz: How can Y_i be random when $Y_i(0)$ and $Y_i(1)$ are fixed?

Quantities of Interest

• Treatment Effect (for unit *i*):

$$TE_i = Y_i(1) - Y_i(0)$$

Population Average Treatment Effect

PATE
$$\equiv \frac{1}{N} \sum_{i=1}^{N} TE_i$$

· Sample Average Treatment Effect

$$SATE = \frac{1}{n} \sum_{i \in \{I_i = 1\}} TE_i$$

Decomposition of Causal Effect Estimation Error

· Difference in means estimator

$$D = \bar{Y}_1 - \bar{Y}_0 = \left(\frac{1}{n/2} \sum_{i \in \{I_i = 1, T_i = 1\}} Y_i\right) - \left(\frac{1}{n/2} \sum_{i \in \{I_i = 1, T_i = 0\}} Y_i\right).$$

- Pretreatment confounders: observed X; unobserved U
- Decomposition

$$\Delta = PATE - D$$
 (Estimation error)
= $\Delta_S + \Delta_T$
= $(\Delta_{S_X} + \Delta_{S_U}) + (\Delta_{T_X} + \Delta_{T_U})$

Error due to: Δ_S (sample selection), Δ_T (treatment imbalance), and each due to observed (X_i) and unobserved (U_i) covariates

Decomposing Selection Error

$$\Delta = \Delta_S + \Delta_T = \left(\Delta_{S_X} + \Delta_{S_U}\right) + \Delta_T$$

Definition

$$\Delta_S = PATE - SATE$$

$$= \frac{N-n}{N} (NATE - SATE), NATE: nonsample ATE$$

- Δ_S vanishes if
 - The sample is a census ($I_i = 1$ for all observations and n = N);
 - SATE = NATE (i.e., nothing to correct)
 - Switch quantity of interest from PATE to SATE (recommended!)
- $\Delta_{SX} = 0$ when empirical distribution of (observed) X is identical in population and sample:
 - $\widetilde{F}(X \mid I = 0) = \widetilde{F}(X \mid I = 1).$
- $\Delta S_U = 0$ when empirical distribution of (unobserved) U is identical in population and sample:

$$\widetilde{F}(U \mid I = 0) = \widetilde{F}(U \mid I = 1).$$

- Unverifiable: X unobserved out of sample; U unobserved
- Δ_{S_X} : vanishes if weighting on X (and examples exist in

Decomposing Treatment Imbalance

$$\Delta = \Delta_S + \Delta_T = \Delta_S + \left(\Delta_{T_X} + \Delta_{T_U}\right)$$

• Δ_{T_X} = 0: when X balanced between treateds and controls:

$$\widetilde{F}(X \mid T = 1, I = 1) = \widetilde{F}(X \mid T = 0, I = 1).$$

Verifiable; generated ex ante by blocking or ex post via matching or modeling

• Δ_{T_U} = 0: when *U* balanced between treateds and controls:

$$\widetilde{F}(U \mid T = 1, I = 1) = \widetilde{F}(U \mid T = 0, I = 1).$$

Unverifiable; Achieved only by assumption or, on average, by random treatment assignment

Alternative Quantities of Interest: For Matching

· Population average treatment effect on the treated

$$\mathsf{PATT} = \frac{1}{N^*} \sum_{i \in \{T_i = 1\}} \mathsf{TE}_i$$

 $(N^* = \sum_{i=1}^{N} T_i$: number of treated units in population)

· Sample average treatment effect on the treated

$$SATT = \frac{1}{n/2} \sum_{i \in \{I_i=1, T_i=1\}} TE_i$$

Analogous estimation error decomposition holds:

$$\Delta' = \mathsf{PATT} - D = \left(\Delta'_{S_X} + \Delta'_{S_U}\right) + \left(\Delta'_{T_X} + \Delta'_{T_U}\right)$$

- Quiz: Why PATT and SATT rather than PATE and SATE for matching?
- Quiz: How do they differ in randomized experiments?

Effects of Design Components on Estimation Error

$$\Delta = \Delta_S + \Delta_T = \left(\Delta_{S_X} + \Delta_{S_U}\right) + \left(\Delta_{T_X} + \Delta_{T_U}\right)$$

Design Choice	Δ_{S_X}		Δ_{T_X}	Δ_{T_U}
Random sampling	$\stackrel{\text{avg}}{=} 0$	$\stackrel{\text{avg}}{=} 0$		
Complete stratified random sampling	= 0	$\stackrel{\text{avg}}{=} 0$		
Focus on SATE rather than PATE	= 0	= 0		
Weighting for nonrandom sampling	= 0	= ?		
Large sample size	\rightarrow ?	\rightarrow ?	\rightarrow ?	\rightarrow ?
Random treatment assignment			$\stackrel{\text{avg}}{=} 0$	$\stackrel{\text{avg}}{=} 0$
Complete blocking			= 0	= ?
Exact matching			= 0	= ?
Assumption				
No selection bias	$\stackrel{\text{avg}}{=} 0$	$\stackrel{\text{avg}}{=} 0$		
Ignorability				$\stackrel{\text{avg}}{=} 0$
No omitted variables				= 0

Comparing Blocking (i.e., before) and Matching (i.e., after)

- Adding blocking (on pretreatment vars related to outcome) to random assignment: as or more efficient, and never biased
- Blocking: like regression adjustment, where functional form and the parameter values are known
- · Matching is like blocking, except:
 - to avoid selection error: change QOI from PATE to PATT/SATT
 - random treatment assignment following matching: impossible
 - Exact matching, unlike blocking: dependent on good matches in already-collected data
 - Worst case scenario: matching on wrong vars (like regression adjustment) can increase bias
- Adding matching to a parametric model: reduces model dependence and bias, and sometimes variance too
- · Quiz: Which is preferable: Matching or Blocking?

Components of Causal Estimation Error

Research Designs

Issues in Ideal Designs

Research Designs 12/25.

The Benefits of Major Research Designs: Overview

	Δ_{S_X}	Δ_{S_U}	Δ_{T_X}	Δ_{T_U}	
Ideal experiment	$\rightarrow 0$	$\rightarrow 0$	= 0	$\rightarrow 0$	-
Randomized clinicial trials					_
(Limited or no blocking)	# 0	≠ 0	$\stackrel{\text{avg}}{=} 0$	$\stackrel{\text{avg}}{=} 0$	
Randomized clinicial trials					
(Full blocking)	≠ 0	≠ 0	= 0	$\stackrel{\text{avg}}{=} 0$	_
Social Science					-
Field Experiment					• \rightarrow 0: $E(Q) = 0 \&$
(Limited or no blocking)	# 0	# 0	$\rightarrow 0$	$\rightarrow 0$	
Survey Experiment					$n \to \infty$
(Limited or no blocking)	$\rightarrow 0$	$\rightarrow 0$	$\rightarrow 0$	$\rightarrow 0$	
Observational Study					avg . T(O)
(Representative data set,					• $\stackrel{\text{avg}}{=} 0$: $E(Q) = 0$
Well-matched)	≈ 0	≈ 0	≈ 0	# 0	
Observational Study					_
(Unrepresentative but partially,					
correctable data, well-matched)	≈ 0	# 0	≈ 0	# 0	
Observational Study					_
(Unrepresentative data set,					
Well-matched)	≠ 0	# 0	≈ 0	≠ 0	_

Research Designs 13/25 •

The Ideal Experiment (according to the paper)

- Random selection from well-defined population
- large n
- blocking on all known confounders
- · random treatment assignment within blocks

•
$$E(\Delta_{S_X}) = 0$$
, $\lim_{n \to \infty} V(\Delta_{S_X}) = 0$

•
$$E(\Delta_{S_U}) = 0$$
, $\lim_{n \to \infty} V(\Delta_{S_U}) = 0$

- $\Delta_{T_X} = 0$
- $E(\Delta_{T_U}) = 0$, $\lim_{n \to \infty} V(\Delta_{T_U}) = 0$
- · Quiz: Is there an even more ideal experiment?
- Hint: How can we make $\Delta S_X = 0$?

Research Designs 14/25 .

An Even More Ideal Experiment (not in the paper)

- · Begin with a well-defined population
- New feature: Define sampling strata based on cross-classification of all known confounders
- Random sampling within strata
- (if strata sample ∝ population size, no weights needed)
- large n
- blocking on all known confounders
- random treatment assignment within blocks
- $\Delta_{S_X} = 0$
- $E(\Delta_{S_U}) = 0$, $\lim_{n \to \infty} V(\Delta_{S_U}) = 0$
- $\Delta_{T_Y} = 0$
- $E(\Delta_{T_U}) = 0$, $\lim_{n\to\infty} V(\Delta_{T_U}) = 0$
- · Wait, why wasn't this in the paper?

Research Designs 15/25.

Randomized Clinical Trials (Little or no Blocking)

- nonrandom selection
- small n
- · little or no blocking
- · random treatment assignment
- $\Delta_{S_X} \neq 0$
- $\Delta S_{II} \neq 0$
- $E(\Delta_{T_X})=0$
- $E(\Delta_{T_U}) = 0$

Research Designs 16/25 .

Randomized Clinical Trials (Full Blocking)

- · nonrandom selection
- small n
- Full blocking
- · random treatment assignment
- $\Delta_{S_X} \neq 0$
- $\Delta S_{II} \neq 0$
- $\Delta_{T_X} = 0$
- $E(\Delta_{T_U}) = 0$

Research Designs 17/25 .

Social Science Field Experiment

- nonrandom selection
- large n
- limited or no blocking
- · random treatment assignment
- $\Delta_{S_X} \neq 0$ or change PATE to SATE and $\Delta_{S_X} = 0$
- $\Delta_{S_{II}} \neq 0$ or change PATE to SATE and $\Delta_{S_{II}} = 0$
- $E(\Delta_{T_X}) = 0$, $\lim_{n\to\infty} V(\Delta_{T_X}) = 0$
- $E(\Delta_{T_U}) = 0$, $\lim_{n\to\infty} V(\Delta_{T_U}) = 0$

Research Designs 18/25.

Survey Experiment

- random selection
- large n
- limited or no blocking
- · random treatment assignment
- (only treatments: question wording changes)

•
$$E(\Delta_{S_X}) = 0$$
, $\lim_{n \to \infty} V(\Delta_{S_X}) = 0$

•
$$E(\Delta_{S_U}) = 0$$
, $\lim_{n \to \infty} V(\Delta_{S_U}) = 0$

•
$$E(\Delta_{T_X}) = 0$$
, $\lim_{n\to\infty} V(\Delta_{T_X}) = 0$

•
$$E(\Delta_{T_U}) = 0$$
, $\lim_{n\to\infty} V(\Delta_{T_U}) = 0$

Research Designs 19/25 •

Observational Study, well-matched

- · no stratification, nonrandom selection
- large n
- · no blocking, nonrandom treatment assignment
- $\Delta_{S_X} \approx 0$ if representative, corrected by weighting, or for estimating SATE; or $\neq 0$ otherwise
- $\Delta_{S_{II}} \neq 0$
- $\Delta_{T_X} \approx 0$ (due to matching well)
- $\Delta_{T_U} \neq 0$ except by assumption

Research Designs 20/25 •

Components of Causal Estimation Error

Research Designs

Issues in Ideal Designs

Issues in Ideal Designs 21/25.

What is the Best Design?

- · Ideal design: rarely feasible
- Effort in experimental studies: random assignment
- Effort in observational studies: knowing, measuring, and adjusting for *X* (via matching or modeling)
- Achilles heal of experiments: Δ_S , small n
- Achilles heal of observational studies: Δ_T
- Each design: accommodates best to its applications
- Quiz: Astronomers never randomize; is astronomy a science?

Issues in Ideal Designs 22/25.

Fallacies in Experimental Research

- Failure to block on all available confounders
 - incorrectly seen as requiring fewer assumptions (about what to block on)
 - In fact, blocking helps (except in strange situations)
 - · Blocking on relevant covariates is better, so choose carefully.
 - · "Block what you can and randomize what you cannot"
- t-test to check balance after random treatment assignment
 - blocking vars: balance exactly after treatment assignment; if you're checking, you missed an opportunity to increase efficiency
 - if vars become available after treatment assignment: t-test checks if randomization was done appropriately
 - randomization balances on average: any one random assignment is not balanced exactly (which is why its better to block)

Issues in Ideal Designs 23/25.

The Balance Test Fallacy in Matching Research

Quiz: randomly dropping observations reduces imbalance??

Issues in Ideal Designs 24/25.

The Balance Test Fallacy: Explanation

- Hypo tests: balance and power; only want balance
- Balance is observed: No need for superpopulation or inference
- Simple linear model (for intution):
 - Suppose $E(Y \mid T, X) = \theta + T\beta + X\gamma$
 - Bias in coefficient on T from regressing Y on T (without X): $E(\hat{\beta} \beta \mid T, X) = G\gamma$ (where G are coefficients from a regression X on a constant and T)
 - Imbalance: G, Importance: γ
 - If G = 0, bias=0
 - If $G \neq 0$, bias can be any size (due to γ)
 - To reduce bias: reduce G without limit
- · No threshold level is safe
- But prune too much, variance increases
- Quiz: Should we match on vars that do not influence *Y*?

Issues in Ideal Designs 25/25.