OAK LABS

Future engineer's JOURNAL

Team No. 1121 Aneesh, Supratiik, & Krishna

The Team

Aneesh - Mechanical Design, Arduino
Coding

 Designed CAD chassis and 3D-printed sensor housings.

Aneesh

- Programmed motor control and servo calibration.
- Integrated mechanical and electronic systems seamlessly.

Supratiik

Supratiik – GitHub Documentation, Raspberry Pi Coding

- Managed GitHub repository and version control.
- Developed obstacle detection and stereo vision algorithms.
- Created replication-ready documentation for future scalability.

Krishna

Krishna – Documentation, Arduino & Raspberry Pi Coding

- Integrated Arduino (sensors, steering)
 with Raspberry Pi (vision, decision making).
- Built computer vision pipeline using Python + OpenCV.
- Authored the Engineer's Journal and technical documentation.

TABLE OF CONTENTS

- Mobility Management
- Power & Sensing
- Obstacle Management
- Performance & Testing
- Team Roles
- GitHub & Documentation
- Engineering Factor

1. Mobility Management

Chassis Design

- Custom CADmodeled & 3Dprinted chassis
- Optimized weight distribution → low center of gravity & stability
- Structural rigidity validated through iterative load simulations

Propulsion System

- DC motors with L293D H-bridge motor driver
- Transmission ratio
 optimization
 tested for minimal
 wheel slippage
- Enhanced power transfer efficiency across gear ratios

Steering System

- High-torque servo motor with PWM control
- Calibrated
 geometry →
 balanced turning
 radius & response
 time
- Ensured smooth lane transitions during maneuvers
- EngineeringCalculationsaph text

Engineering Calculations

- Mechanical +
 electrical load
 calculations
 performed
- Considered torque, angular velocity, and traction coefficients

2.POWER & SENSE MANAGMENT

Power & Sense Management Power Architecture Dual-source: Li-ion battery for Arduino, power bank for Raspberry Pi. \bigcirc Energy audit ensured stable voltage and prevented brownouts. Perception System Stereo vision with dual webcams for lane detection & sign recognition. \bigcirc Depth estimation improved accuracy in feature extraction. \bigcirc Sensor Fusion HC-SR04 ultrasonic sensor for obstacle ranging. Combined with vision data for reliable detection. Wiring & Stability Structured wiring plan + Bill of Materials (BOM). \bigcirc Capacitor-based decoupling reduced noise and stabilized signals.

OBSTACLE MANAGEMENT

- Vision-Based Detection
- Python + OpenCV pipeline for obstacle segmentation
- NumPy computations enabled real-time matrix operations
- Decision-Making Algorithm
- Flowchart-based logic converted sensor data into avoidance maneuvers
- Fusion of vision + ultrasonic inputs for reliable decisions
- Safety & Reliability
- Failsafe stop protocol triggered on conflicting sensor signals
- Priority given to collision prevention over lane-following
- Ultrasonic Integration
- Arduino trigger-echo time-of-flight algorithm for precise ranging
- Millimeter-scale accuracy achieved during testing
- Performance Validation
- Avoidance maneuvers maintained lane alignment
- System proven robust under multi-variable test scenarios

GITHUB UTILIZATION

GitHub Utilization

- Repository Structure
 - /software Python and Arduino source code
 - /hardware CAD models, wiring diagrams, 3D-print files
 - /docs Engineer's Journal, schematics, testing protocols, performance logs
 - /media Photos, annotated diagrams, demonstration videos
- Version Control & Collaboration
 - Git used with descriptive commit messages (e.g., fix, feat, tune)
 - o Frequent commits by all team members demonstrate distributed collaboration
 - Ensures iterative refinement and traceability of changes
- Documentation & Replication
 - README.md includes setup instructions, architectural explanations, and replication guidelines
 - Supports knowledge transfer for future teams

ENGINEERING FACTOR

Engineering Factor

- Custom Architecture & Modularity
 - Integrated off-the-shelf components into a bespoke, scalable system
 - Guided by principles of modularity and expandability
- Chassis & Mechanical Design
 - 3D-printed chassis iteratively refined, reducing weight by 20%
 - Maintained structural rigidity while optimizing maneuverability
 - Adjusted mechanical elements to improve transmission efficiency

• Electrical & Sensor Optimization

- Power regulation circuits improved to mitigate instability
- Sensor suite designed for maximum field-of-view for lane detection and obstacle avoidance

• Iterative Engineering Cycle

- Early prototypes addressed overweight, energy inefficiency, and imbalance
- Final design achieved lightweight, reliable, and optimized autonomous platform
- Demonstrates analysis → prototyping → testing → refinement

THANK YOU