ECN 7060, cours 12

William McCausland

2019-11-26

Introduction, estimation par intervalle

- Estimateur par intervalle [L(X), U(X)], estimation par intervalle [L(x), U(x)].
- Les propriétés fréquentistes concernent la probabilité de couvrage

$$P_{\theta}(L(X) \leq \theta \leq U(X)).$$

- \triangleright souvent une fonction de θ , pas toujours (idéalement non)
- restrictions sur le modèle pour obtenir cette non-dépendance
- coefficient de confiance $\inf_{\theta} P_{\theta}(L(X) \leq \theta \leq U(X))$.
- arbitrage : haute probabilité de couvrage v. intervalle court
- Les propriétés bayésiennes concernent la probabilité

$$P[L(x) \le \theta \le U(x)|x]$$
 ou $P[I \le \theta \le u|x]$

- ▶ Stratégie symmétrique : L(x) et U(x) sont les quantiles $\alpha/2$ et $1 \alpha/2$, U(x) L(x) pas forcément minimale
- ▶ Intervalle de haute probabilité *a posteriori* : U(x) L(x) minimale sous la contrainte $P[L(x) \le \theta \le U(x)|x] = 1 \alpha$.

Estimation par ensemble

- ▶ Estimateur par ensemble C(X), estimation par ensemble C(x).
- ▶ Probabilité d'intérêt fréquentiste : $P_{\theta}(\theta \in C(X))$.
- ▶ Probabilité d'intérêt bayésienne : $P(\theta \in C(x)|x)$.

Inversion d'une statistique test

- Résultat
 - Pour chaque θ_0 , soit $A(\theta_0)$ la région de non-rejet pour un test de niveau α de l'hypothèse nulle $H_0: \theta = \theta_0$.
 - ▶ Définez, pour chaque $x \in \mathcal{X}$, $C(x) = \{\theta : x \in A(\theta)\}$.
 - ▶ Notez que $x \in A(\theta) \Leftrightarrow \theta \in C(x)$.
 - ▶ Alors C(X) est une région de confiance avec coefficient de confiance (1α) .
- Preuve
 - Puisque le niveau du test est de α ,

$$P_{\theta}[X \notin A(\theta)] \leq \alpha.$$

Alors

$$P_{\theta}[\theta \in C(X)] = P_{\theta}[X \in A(\theta)] \ge (1 - \alpha).$$

Exemple gaussien, σ^2 connu

- ▶ Supposons que $X_1, ..., X_n \sim \operatorname{iid} N(\mu, \sigma^2)$, σ^2 connu.
- ▶ Statistique LRT pour H_0 : $\mu = \mu_0$ contre H_1 : $\mu \neq \mu_0$:

$$\lambda(x) = \frac{\exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu_0)^2\right]}{\exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \bar{x})^2\right]}$$

Puisque
$$\sum_{i=1}^{n} (x_i - \mu_0)^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 + n(\bar{x} - \mu_0)^2$$
, $\lambda(x) = \exp[-n(\bar{x} - \mu_0)^2/(2\sigma^2)]$.

▶ La loi de
$$\bar{X}$$
 est connue : $\bar{X} \sim N(\mu, \sigma^2/n)$

- ▶ Pour le test avec $A(\mu_0) = \{x : |\bar{x} \mu_0| \le z_{\alpha/2} \sigma / \sqrt{n} \}$, la probabilité de rejet quand $\mu = \mu_0$ est de α .
- Conditions équivalentes à $x \in A(\mu_0)$:

$$|\bar{x} - \mu_0| \le z_{\alpha/2} \sigma / \sqrt{n} \Leftrightarrow -z_{\alpha/2} \sigma / \sqrt{n} \le \mu_0 - \bar{x} \le z_{\alpha/2} \sigma / \sqrt{n}$$
$$\Leftrightarrow \bar{x} - z_{\alpha/2} \sigma / \sqrt{n} \le \mu_0 \le \bar{x} + z_{\alpha/2} \sigma / \sqrt{n}$$

Alors $P[\bar{X} - z_{\alpha/2}\sigma/\sqrt{n} \le \mu_0 \le \bar{X} + z_{\alpha/2}\sigma/\sqrt{n}] = 1 - \alpha$.

Quantités pivotales

- ▶ Une fonction $Q(X, \theta)$ est pivotale si sa distribution ne dépend pas de θ .
- ▶ Famille $f(x|\mu) = f_0(x \mu)$: $Q(X, \theta) = \bar{X} \mu$ est pivotale.
- Preuve :
 - ▶ Soit $Z_i \sim f_0(z)$. Sa distribution ne dépend pas de μ .
 - Si $X_i \sim f(x|\mu) = f_0(x \mu)$,

$$(X_1,\ldots,X_n)\sim (Z_1+\mu,\ldots,Z_n+\mu)$$

$$\bar{X} - \mu \sim \frac{1}{n} \sum_{i=1}^{n} (Z_i + \mu) - \mu = \bar{Z}$$

- ▶ La loi de \bar{Z} (et de $Q(X, \theta) = \bar{X} \mu$) ne dépend pas de μ .
- ► Famille $f(x|\sigma) = \frac{1}{\sigma}f(x/\sigma)$: $Q(X,\sigma^2) = \bar{X}/\sigma$ est pivotale.
- Famille $f(x|\mu, \sigma^2) = \frac{1}{\sigma} f_0((x-\mu)/\sigma)$: $Q_1(X, \theta) = (\bar{X} \mu)/\sigma$, $Q_2(X, \theta) = (\bar{X} \mu)/S$, $Q_3(X, \theta) = S/\sigma$ sont pivotales.

Utiliser une quantité pivotale pour construire un ensemble de confiance

- ▶ $C(X) = \{\theta \colon Q(X, \theta) \in A\}$ est un estimateur par ensemble de θ dont la probabilité $P_{\theta}(C(X))$ ne dépend pas de θ .
- ▶ Stratégie : trouver une quantité pivotale $Q(X, \theta)$ et un ensemble \mathcal{A} avec de bonnes propriétés (C(X)) petit, $P_{\theta}(C(X))$ grand).

Exemples gaussiens I

- ▶ Supposons que $X_1, ..., X_n \sim \operatorname{iid} N(\mu, \sigma^2)$.
- Quantités pivotales :
 - $ightharpoonup Z = \sqrt{n}(\bar{X} \mu)/\sigma \sim N(0, 1),$
 - $T_{n-1} = \sqrt{n}(\bar{X} \mu)/S \sim t(n-1).$
 - $(n-1)S^2/\sigma^2 \sim \chi_{n-1}^2$.
- Cas où σ^2 est connu :

$$1 - \alpha = P_{\theta}(-z_{\alpha/2} \le -Z \le z_{\alpha/2}) = P_{\theta}(C(X))$$

où C(X) est l'estimateur par ensemble suivant

$$C(X) = \{\mu \colon \bar{X} - z_{\alpha/2}\sigma/\sqrt{n} \le \mu \le \bar{X} + z_{\alpha/2}\sigma/\sqrt{n}\}.$$

Exemples gaussiens II

▶ Cas où σ^2 n'est pas connu, intervalle pour μ :

$$1 - \alpha = P_{\theta}(-t_{n-1,\alpha/2} \le -T_{n-1} \le t_{n-1,\alpha/2}) = P_{\theta}(C(X)),$$

οù

$$C(X) = \{\mu \colon \bar{X} - t_{n-1,\alpha/2} S / \sqrt{n} \le \mu \le \bar{X} + t_{n-1,\alpha/2} S / \sqrt{n}\}.$$

ightharpoonup Cas où σ^2 n'est pas connu, intervalle pour σ^2 :

$$1-\alpha = P_{\theta}(\chi_{n-1,1-\alpha/2} \le (n-1)S^2/\sigma^2\chi_{n-1}^2 \le \chi_{n-1,\alpha/2}) = P_{\theta}(C(X))$$

οù

$$C(X) = \left\{ \sigma^2 : \frac{(n-1)S^2}{\chi_{n-1,\alpha/2}} \le \sigma^2 \le \frac{(n-1)S^2}{\chi_{n-1,1-\alpha/2}} \right\}.$$

Pivot de la fonction de répartition

- ▶ Soit T une statistique avec fonction de répartition $F_T(t|\theta)$.
- Supposons que T est stochastiquement croissante en θ .
- ▶ C'est à dire que $F_T(t,\theta)$ est décroissante en θ .
- ▶ Pour t donné, soit $\theta_L(t)$ et $\theta_U(t)$ les solutions de

$$F_T(t|\theta_U(t)) = \alpha_1 \quad F_T(\theta_L(t)) = 1 - \alpha_2.$$

▶ Pour tous t, θ ,

$$\theta > \theta_U(t) \Leftrightarrow F_T(t,\theta) < \alpha_1$$

$$\theta < \theta_I(t) \Leftrightarrow F_T(t,\theta) > 1 - \alpha_2$$

Alors

$$\{t: \theta_L(t) \le \theta \le \theta_U(t)\} = \{t: \alpha_1 \le F_T(t|\theta) \le 1 - \alpha_2\},$$

$$P_{\theta}[\theta_L(T) \le \theta \le \theta_U(T)] = P_{\theta}[\alpha_1 \le F_T(T|\theta) \le 1 - \alpha_2] = 1 - \alpha_1 - \alpha_2.$$