I started my acquaintance with the Julia language by analyzing fictitious medical research. I chose the topic of healthcare because I would like to continue my thesis submitted at the bachelor's program, which examined the digitalization development of a nursing home, and the Julia language proves to be a good tool for this purpose.

Sample drawn from population admitted with skin and soft tissue infection due to diabetes mellitus

Classify infections into two groups by definiton:

- 1 Minor infection
- 2 Major infection

Descriptive statistics:

- 1. Count of number per group of infection
- 2. Count of number per group of gender
- 3. Mean of age
- 4. Summary of HbA1c and CRP
- 5. Age analysis and age distribution by type of infection
- 6. Age analysis and age distribution by type of gender
- 7. HbA1c analysis by type of infection and by gender
- 8. CRP analysis by type of infection and by gender

Importing packages

```
In [1]: using Pkg
In [2]: Pkg.add("IJulia")
        Pkg.add("DataFrames")
        Pkg.add("Gadfly")
        Pkg.add("StatsBase")
        Pkg.add("Distributions")
        Pkg.add("CSV")
            Updating registry at `C:\Users\Lenovo ThinkPad T450\.julia\registries\General.toml`
           Resolving package versions...
          No Changes to `C:\Users\Lenovo ThinkPad T450\.julia\environments\v1.9\Project.toml`
          No Changes to `C:\Users\Lenovo ThinkPad T450\.julia\environments\v1.9\Manifest.toml`
           Resolving package versions...
          No Changes to `C:\Users\Lenovo ThinkPad T450\.julia\environments\v1.9\Project.toml`
          No Changes to `C:\Users\Lenovo ThinkPad T450\.julia\environments\v1.9\Manifest.toml`
           Resolving package versions...
          No Changes to `C:\Users\Lenovo ThinkPad T450\.julia\environments\v1.9\Project.toml`
          No Changes to `C:\Users\Lenovo ThinkPad T450\.julia\environments\v1.9\Manifest.toml`
           Resolving package versions...
          No Changes to `C:\Users\Lenovo ThinkPad T450\.julia\environments\v1.9\Project.toml`
          No Changes to `C:\Users\Lenovo ThinkPad T450\.julia\environments\v1.9\Manifest.toml`
           Resolving package versions...
          No Changes to `C:\Users\Lenovo ThinkPad T450\.julia\environments\v1.9\Project.toml`
          No Changes to `C:\Users\Lenovo ThinkPad T450\.julia\environments\v1.9\Manifest.toml`
           Resolving package versions...
          No Changes to `C:\Users\Lenovo ThinkPad T450\.julia\environments\v1.9\Project.toml`
          No Changes to `C:\Users\Lenovo ThinkPad T450\.julia\environments\v1.9\Manifest.toml`
In [3]: using IJulia
```

using DataFrames

CODE - HbA1cAndCRPAnalysis 5/29/23, 4:33 PM

> using Gadfly using StatsBase using Distributions using CSV

Import dataset

In [4]: df = DataFrame(CSV.File("Raw_data.csv"))

Out[4]:

: 12	120×6 DataFrame									
R	low	PatientID	Cat1	Cat2	Var1	Var2	Var3			
	_	Int64	String1	String1	Float64	Float64	Float64			
	1	1	Α	С	38.2568	5.93913	35.0579			
	2	2	Α	С	17.8317	5.34754	21.131			
	3	8	Α	В	16.0218	6.60709	60.9436			
	4	9	Α	С	45.1158	6.00733	21.8797			
	5	16	Α	С	20.448	8.54819	20.6623			
	6	18	Α	В	28.3549	7.95642	33.1807			
	7	25	Α	С	22.4497	6.34618	40.2365			
	8	28	Α	В	48.4125	5.32583	28.8956			
	9	29	Α	С	40.0075	11.4189	71.5911			
	10	33	Α	С	20.7181	5.37768	27.4216			
	11	37	Α	В	17.0396	5.34168	24.3501			
	12	38	Α	В	42.6687	5.82284	52.361			
	13	41	Α	В	19.954	5.13911	93.1999			
	÷	:	:	÷	:	:	:			
	109	76	В	R	17.0029	5.39477	31.1297			
	110	78	В	L	55.3879	4.15304	40.0846			
	111	80	В	R	20.2205	6.36442	45.435			
	112	83	В	L	16.4172	3.84167	89.6969			
	113	84	В	R	47.6224	5.40032	47.4541			
	114	86	В	L	73.0229	3.38349	55.1737			
	115	92	В	R	16.4106	4.30351	87.7357			
	116	95	В	R	16.2801	3.37252	52.6018			
	117	101	В	L	16.8883	3.19598	60.1883			
	118	113	В	R	32.3537	3.38677	30.0157			
	119	115	В	R	20.1379	3.42731	44.6893			
	120	119		L	17.6144	3.45116	40.6947			

```
In [5]: #Making sure there are no NA-values and looking at the data types describe(df)

Out[5]: 6×7 DataFrame
```

-	Row	variable	mean	min	median	max	nmissing	eltype
		Symbol	Union	Any	Union	Any	Int64	DataType
	1	PatientID	60.5	1	60.5	120	0	Int64
	2	Cat1		Α		В	0	String1
	3	Cat2		В		Χ	0	String1
	4	Var1	27.9679	15.2356	22.6801	84.2378	0	Float64
	5	Var2	5.92121	3.01173	5.64241	15.5826	0	Float64
	6	Var3	51.95	20.3153	44.3042	147.397	0	Float64
4	(

Changing coded values

```
In [6]: #Changing the values of Cat1
        # A was Minor infections
        # B was Major infections
        nrows, ncols = size(df)
        for r in 1:nrows # Loop through all the rows
            infection_var = df[r, :Cat1] # variable creation
            if ismissing(infection_var)
                elseif infection_var == "A"
                df[!,:Cat1] = convert.(String31,df[!,:Cat1])
                df[r, :Cat1] = "Minor infection"
                 elseif infection_var == "B"
                df[!,:Cat1] = convert.(String31,df[!,:Cat1])
                 df[r, :Cat1] = "Major infection"
            else
            end
        end
In [7]: #Changing the values of Cat2
        for r in 1:nrows
            gender_var = df[r, :Cat2]
            if ismissing(gender var)
                 elseif gender_var == "C" || gender_var == "X" || gender_var == "R" # OR
                df[!,:Cat2] = convert.(String15,df[!,:Cat2])
                df[r, :Cat2] = "Female"
                 elseif gender_var == "L" || gender_var == "B" || gender_var == "F"
                df[!,:Cat2] = convert.(String15,df[!,:Cat2])
                 df[r, :Cat2] = "Male"
            else
            end
        end
In [8]: #Changing the values of Var1
        const fractional_digits = 0
        for r in 1:nrows
            age_var = df[r, :Var1]
            if ismissing(age_var)
```

```
df[!,:Var1] = floor.(df[:,:Var1], digits=fractional_digits)
             end
         end
In [9]: # Renaming the columns
         rename!(df, [:Cat1, :Cat2, :Var1, :Var2, :Var3] .=> [:Infection, :Gender, :Age, :HbA1c, :CRP])
         first(df)
Out[9]: DataFrameRow (6 columns)
         Row PatientID Infection
                                                    HbA1c CRP
                                    Gender Age
              Int64
                       String31
                                    String15 Float64 Float64 Float64
           1
                    1 Minor infection Female
                                               38.0 5.93913 35.0579
```

Descriptive statistics

```
In [10]: # 1. Count of number per group of infection
          inf_groups = combine(groupby(df, :Infection), d -> DataFrame(Number = size(d,1)))
Out[10]: 2×2 DataFrame
          Row Infection
                            Number
               String31
                            Int64
            1 Minor infection
                                 60
            2 Major infection
In [11]: # 2. Count of number per group of gender
          gender_groups = combine(groupby(df, :Gender), d -> DataFrame(Number = size(d,1)))
Out[11]: 2×2 DataFrame
          Row Gender Number
               String15 Int64
                            60
            1 Female
            2 Male
                            60
In [12]: # 3. Mean of age
          floor.(Int, mean(df.Age))
Out[12]: 27
```

```
HbA1c value Metabolic state
                  ≤5.6%
                           normal
              5.7-6.4%
                           prediabetes
                  ≥6.5%
                           diabetes
In [25]: # 4. Summary of HbA1c and CRP
          describe(df.HbA1c)
          Summary Stats:
          Length:
                         120
          Missing Count: 0
                         5.921205
          Mean:
          Minimum:
                         3.011733
         1st Quartile: 4.065523
                         5.642406
          Median:
         3rd Quartile: 6.839651
          Maximum:
                         15.582649
                         Float64
         Type:
         In general we can say that a C-reactive protein level below 10mg/l is considered within the normal range, while - it can even reach 1000mg/l - we are talking about a high CRP value
In [14]: # 4. Summary of HbA1c and CRP
          describe(df.CRP)
          Summary Stats:
          Length:
                         120
          Missing Count: 0
          Mean:
                         51.950031
          Minimum:
                         20.315296
         1st Quartile: 32.235514
                         44.304176
         Median:
         3rd Quartile:
                        64.858850
          Maximum:
                         147.397402
                         Float64
          Type:
           1. Age analysis by type of infection:
```

```
In [26]: #Using the GadfLy package
plot(df, x = "Infection", y = "Age", Geom.boxplot, Guide.title("Age analysis by type of infection"), Guide.xlabel("Type of infection"), Guide.ylabel("Age"))
```


Age distribution by type of infection:

In [27]: plot(df, x = "Age", color = "Infection", Geom.density, Guide.title("Age distribution by type of infection"), Guide.xlabel("Age"), Guide.ylabel("Distribution"))

1. Age analysis by gender:

In [17]: plot(df, x = "Gender", y = "Age", Geom.boxplot, Guide.title("Age analysis by gender"), Guide.xlabel("Gender"), Guide.ylabel("Age"), Theme(default_color=colorant"red"))

Age distribution by gender:

In [19]: plot(df, x = "Age", color = "Gender", Geom.density, Guide.title("Age distribution by gender"), Guide.xlabel("Age"), Guide.ylabel("Distribution"))

Out[19]:

1. HbA1c analysis by type of infection:

In [20]: plot(df, x = "Infection", y = "HbA1c", Geom.boxplot, Guide.title("HbA1c analysis by type of infection"), Guide.xlabel("Type of infection"), Guide.ylabel("HbA1c"))

HbA1c analysis by gender:

In [22]: plot(df, x = "Gender", y = "HbA1c", Geom.boxplot, Guide.title("HbA1c analysis by gender"), Guide.xlabel("Gender"), Guide.ylabel("HbA1c"), Theme(default_color = colorant"orange"))

Out[22]:

1. CRP analysis by type of infection:

In [23]: plot(df, x = "Infection", y = "CRP", Geom.boxplot, Guide.title("CRP analysis by type of infection"), Guide.xlabel("Type of infection"), Guide.ylabel("CRP"))

CRP analysis by gender:

In [24]: plot(df, x = "Gender", y = "CRP", Geom.boxplot, Guide.title("CRP analysis by gender"), Guide.xlabel("Gender"), Guide.ylabel("CRP"), Theme(default_color = colorant"green"))

Out[24]:

In []: