DTIC FILE COPY

DLA-90-P90258

New York EDDS Site Transportation Cost Analysis for the Pooling Phase April - September 1989

OPERATIONS RESEARCH AND ECONOMIC ANALYSIS OFFICE

DEPARTMENT OF DEFENSE

DEFENSE LOGISTICS AGENCY

1990

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited DLA-90-P90258

New York EDDs Site Transportation Cost Analysis for the Pooling Phase April - September 1990

Mark Kleinhenz

DEPARTMENT OF DEFENSE
DEFENSE LOGISTICS AGENCY
OPERATIONS RESEARCH AND ECONOMIC ANALYSIS OFFICE
CAMERON STATION
ALEXANDRIA, VA 22304-6100

July 1990

DEFENSE LOGISTICS AGENCY

HEADQUARTERS CAMERON STATION ALEXANDRIA, VIRGINIA 22304-6100

DLA - LO

FOREWORD

The New York Enhanced DLA Distribution System (EDDS) Site Pooling Study is an analysis of the cost effectiveness of the EDDS pooling operations at the New York EDDS site in comparison with direct shipment to the customer. According to the pooling concept, shipments generated at a depot for delivery to a common geographical area are combined into truckload lots for shipment to the EDDS site. At the EDDS site shipments from one or more depots are consolidated for transshipment to like destinations. The consolidated shipments are delivered short-distances, in larger, less-thantruckload or truckload lots to the ultimate customer.

Comparison of the cost of EDDS pooling at New York with the cost of direct shipment to the customer showed the financial impact of the first 6 months of operation to be an estimated net dollar loss of \$431,441. Analysis showed that shipments were not being consolidated as required for the success of EDDS and that the outbound shipment rates from the New York EDDS site are too high.

Several scenarios were presented and their respective costs calculated to demonstrate under what conditions the EDDS concept can generate savings at the New York EDDS site. Recommendations were made to monitor EDDS site operator performance to ensure that maximum consolidation occurs and to negotiate a reduction in the EDDS outbound pooling rates to a level that is competitive with the depots' Guaranteed Traffic Rates.

CHRISTINE GALLO

Deputy Assistant Director Office of Policy and Plans

CONTENTS

<u>Title</u>	Pag	<u>'e</u>
Forwa	dii	i
Conte	its	v
List	f Tablesvi	. i
List	f Figuresi	.х
Execu	ive Summaryx	i
I.	Introduction	1
	A. Background	1
	B. Problem Statement	2
	C. Objectives	2
	D. Scope	2
	E. Assumptions	2
II.	Conclusions and Recommendations	2
	A. Conclusions	2
	B. Recommendations	3
III.	Methodology	3
	A. Calculation of Cost of Direct Shipments	3
	B. Calculation of Cost of EDDS Shipments	3
IV.	Analysis	4
	A. Results	4
	B. Scenarios	8
	1. Remove Civilian DODAACS From New York EDDS Program	8
	2. Breakeven Reduction In Pooling Rates	0
	3. Increase Consolidation1	1
	4. Increase Consolidation & Use Los Angeles EDDS Pooling Rates1	2
	5. Increase Consolidation & Use Mechanicsburg's Rates	2

LIST OF TABLES

Number	<u>Title</u>	<u>Page</u>
1	Direct Cost vs EDDS Cost	5
2	Comparison of Actual Shipment Data To Simulated Shipment Data	8
3	Direct Cost vs EDDS Cost With Civilian DODAACS Removed	9
4	Direct Cost vs EDDS Cost With 51% Reduction In Pooling Rates	10
5	Direct Cost vs EDDS Cost With 3 Days Consolidation	11
6	Comparison of EDDS Site Pooling Rates New York vs Los Angeles	12
7	Direct Cost vs EDDS Cost With 3 Days Consolidation And Los Angeles Pooling Rates	13
8	Direct Cost vs EDDS Cost Using The Mechanicsburg Rates Out of The New York EDDS Site	14
9	Direct Cost vs EDDS Cost Using The Mechanicsburg Rates And 3 Days Consolidation At The New York EDDS Site	15

LIST OF FIGURES

Number	<u>Title</u>	<u>Page</u>
1	Dollar Loss vs Freight Volume New York EDDS Site	6
2	Avg Weight vs Freight Volume New York EDDS Site	6
3	Avg Weight vs Avg Hold Time New York EDDS Site	6
4	Simulation Consolidation Results	<i></i> 6
5	Actual Wgt vs Simulated Wgt With Consolidation of 3	B Days7

EXECUTIVE SUMMARY

The Defense Logistics Agency's (DLA) Operations Research and Economic Analysis Management Support Office was tasked by the DLA Directorate of Supply Operations, Transportation Division, to provide an analysis of the savings/loss associated with the operation of the pooling phase of the Enhanced DLA Distribution System (EDDS) program for the New York EDDS region.

The objectives of the study were to estimate the cost of direct shipments from the 6 major DLA depots to customers, to calculate the cost of those same shipments under the EDDS program and compare the two.

The scope of the study was limited to shipments to the New York EDDS region from the 6 DLA depots. Data was for the period of April through September 1989, which represents the first 6 months of EDDS operation at New York.

The principal conclusion of the study was the cost in transportation dollars for EDDS pooling phase is estimated to have exceeded the cost of direct shipment by \$431,441 for the 6-month period studied.

Five different scenarios were proposed and examined to gain insight into the program changes required to produce a savings in transportation dollars at the New York EDDS site for pooled shipments. The one scenario producing modest savings, compared with direct shipment to the customer, was using the rate structure in effect for the Mechanicsburg Depot at the New York EDDS site with 3 days consolidation of shipments.

Recommendations were to maximize consolidation performance at the EDDS site and to negotiate a reduction in pooling rates to obtain a rate structure similar to that in effect at Defense Depot Mechanicsburg, PA.

I. <u>INTRODUCTION</u>. The Defense Logistics Agency's (DLA) Operations Research and Economic Analysis Management Support Office was tasked by the DLA Directorate of Supply Operations, Transportation Division, to provide an analysis of the savings/loss associated with the operation of the pooling phase of the Enhanced DLA Distribution System (EDDS) program for the New York EDDS region.

A. Background

The EDDS concept is made up of two transportation systems, Depot-to Customer (Pooling) and Vendor-to-Depot (Consolidation):

- 1. Depot-to-Customer (Pooling). This system will utilize the 5 commercial and 6 DLA EDDS sites. The first stage of EDDS was implemented with the establishment of the first 2 commercial operating EDDS sites in Los Angeles in December 1988 and New York in March 1989. The commercial EDDS sites in Chicago, Dallas, and Jacksonville will become operational in 1990. Pool distribution will be completed with the projected start up of the DLA sites in the fall of 1991.
- 2. Vendor-to-Depot (Consolidation). This system will also utilize the 5 commmercial and 6 DLA depot EDDS sites. Vendor consolidation is commencing at several sites including Los Angeles, New York, Chicago, Dallas, Jacksonville, Defense Depot Ogden, Utah, and Defense Depot Tracy, California. Full vendor consolidation is expected by fall 1991.

The EDDS program is believed to have the potential of generating a DLA-wide savings of \$30 million per year. Depot-to-customer savings were predicted as \$16 million and vendor-to-depot savings as \$14 million. These savings are generated from the reduced transportation costs associated with the consolidation of Less-than-Truckload (LTL) shipments into Truckload (TL) shipments. Depot-to-customer savings at the New York site alone were predicted to be in excess of \$1.3 million. The original study rated shipments using a rating program that used both parcel and commercial common carrier rates. First leg Guaranteed Traffic Program Rates were used for Truckload. Shipments were held for 3 days at the EDDS site then shipped. Projected consolidation was based upon date and Destination Cross Reference (DCR) addressing codes.

The principal purpose of EDDS is to reduce transportation costs while simultaneously maintaining the required level of customer service. Information is needed to estimate the magnitude of savings/loss DLA is experiencing as a result of the implementation of the depot pooling phase of EDDS. Such information can be used to identify changes required to improve operations.

^{1.} Myers, C., Enhanced DLA Distribution System (EDDS) "Pooling", DLA-LO Report No. 88-19, June 1988.

B. <u>Problem Statement</u>. Determine the magnitude of the savings/loss in transportation dollars that DLA is obtaining as a result of the implementation of the pooling phase of EDDS for the New York EDDS region.

C. Objectives

- 1. Calculate the cost of shipping direct under the Guaranteed Traffic Program (GTP) to customers in the New York EDDS region.
- 2. Calculate the cost of those same shipments under the EDDS pooled distribution method.
- ${\tt 3.}$ Compare the cost results of direct shipment with the EDDS cost results.

D. Scope

- 1. The depot shipment data was limited to the New York EDDS region for the third and fourth quarters of fiscal year 1989.
- 2. The EDDS site data consisted of all "pooled" data on the New York EDDS site files available (April through September 1989).
- 3. Order-ship times and on-time performance were not addressed; these issues will be addressed in a separate study.
- E. <u>Assumptions</u>. The following assumptions were made for building transportation units for direct shipment to the ultimate consignee.
- 1. Direct shipments could be developed from the EDDS site files by aggregating data by inbound Government Bill of Lading (GBL) and the consignee.
- 2. All shipments were moved by the prime carrier for the purpose of computing transportation cost.

II. CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions

- 1. The cost in transportation dollars for EDDS pooling phase is estimated to have exceeded the cost of direct shipment by \$431,441 for the 6-month period studied.
- 2. The level of consolidation at the EDDS site has been low. The volume of freight moving through the EDDS site has increased steadily over the 6-month period while the average weight for outbound GBLs has remained relatively constant. Secondly, the average hold time at the EDDS site varied; however, there was no corresponding affect on the average weight of a shipment as observed in the actual shipment data.

- 3. A simulation to increase the average weight of the outbound shipments illustrated that increased shipment weight does not significantly reduce the cost of pooling at the New York EDDS site under the current rate structure.
- 4. By increasing the level of consolidation to 3 days and using a rate structure similar to the rate structure in effect at Defense Depot Mechanicsburg, PA., EDDS can achieve a modest savings of \$70,520 over the 6-month period.

B. Recommendations

- o Maximize consolidation performance at the EDDS site.
- o Negotiate a reduction in pooling rates to obtain a rate structure similar to that in effect at Defense Depot Mechanicsburg, Pa.

III. <u>METHODOLOGY</u>

A. Calculation of Cost of Direct Shipments

- 1. The rates to estimate the cost of shipments without EDDS implementation were obtained from the current Guaranteed Traffic agreements in use at each of the 6 DLA depots. A data call was made to obtain the applicable tenders.
- 2. Based on the first previously stated assumption all shipments on the EDDS site tapes were aggregated by inbound GBL and consignee. Consignee may be identified by either the Destination Cross Reference Code (DCR) or Department of Defense Activity Address Code (DODAAC). Hereafter, DCR and DODAAC will be referred to as DCR. Using the rates obtained in III.A.1., all shipments were rated to obtain an estimate of the cost of moving LTL traffic direct to the customer.

B. Calculation of Cost of EDDS Shipments

- 1. Costing of Shipments From Depots To EDDS Site. Using the Material Release Order (MRO) files for the third and fourth quarters of fiscal year 1989 an average rate per hundredweight for shipping to the New York EDDS site was obtained for each depot. After aggregating the weight from the EDDS site files by depot and inbound GBL the average rate per hundredweight was applied to obtain an estimate of the transportation cost to the EDDS site.
- 2. Costing of Shipments From EDDS Site To Customers. Shipments were rolled-up by outbound GBL from the EDDS site to obtain shipment weight. Shipments were rated by weight for the applicable mileage group using the rates negotiated for the New York EDDS site pooled shipments.

IV. ANALYSIS

A. Results

Table 1 shows the results of the transportation cost comparison between direct shipment and the EDDS program. The columns of the table are arranged according to depot: Mechanicsburg, PA, (DDMP), Tracy, CA, (DDTC), Columbus, OH, (DDCO), Memphis, TN, (DDMT), Richmond, VA, (DDRV), and Ogden, UT, (DDOU). The "Direct Delivery Cost Estimate" is the cost of shipping from the depots direct to the customer. The next section breaks down the EDDS cost by inbound cost (transportation cost from depots to EDDS site), and the EDDS site cost (cost of consolidating shipments and transportation cost). The "Cost Analysis" section shows the net savings/loss. This format is also used to analyze the effect of various scenarios.

The estimated loss for the 6-month period April through September 1989 is \$431,441. The direct cost of \$572,686 is estimated to be the cost of moving freight under the existing GTP agreements in effect at the 6 major DLA depots. The cost of the EDDS program is composed of the inbound transportation cost of \$153,857 for the first leg (moving freight from the depots to the EDDS site) and the total EDDS site cost of \$850,270 for the second leg (moving freight from the EDDS site to regional customers). The cost of this second transportation leg is clearly the principal contributor to the transportation cost of the EDDS program. Interestingly, Table 1 shows that the second leg cost alone exceeds the direct cost for the period. This is surprising since the rates for the shorter distances composing the second leg should be lower than the rates for the longer distances which direct shipments must traverse.

Figure 1 reflects the relationship between the monthly dollar loss and the volume of freight handled at the EDDS site. The graph shows that the monthly loss is proportional to the volume of freight moved through the EDDS site. The loss was the smallest in April when the least amount of freight was handled and the loss was the largest in August when the volume of freight moved was at its highest level. The significance of this relationship is that increasing volume through the EDDS site will not result in any savings.

The next two figures present the relationship of volume and time with the average weight of an outbound GBL. Figure 2 displays the average weight of a GBL and the volume of freight on a monthly basis. The bar graph shows that the volume of freight moving through the EDDS site has tended to increase over the 6 month period. The line graph showing the average monthly weight for an outbound GBL, in contrast, is relatively flat throughout the period, fluctuating between 680 and 918 pounds. This fact is significant because average shipment size never progresses to higher weight categories having lower rates. Figure 3 shows the average weight for an outbound GBL and the average hold time at the EDDS site. The trends do not show the relationship expected between these two variables. For example,

Table 1
DIRECT COST VS EDDS COST

EDDS POINT:	New York,	NY					
DDMI	P DDTC	DDCO	DDMT	DDRV	DDOU		All Depots
*****	******	Direct D	elivery (Cost Estim	ate ***	******	*** *****
Weight 2757752	57929	338672	388869	1861891	156407		5561520
GBLs 4186	171	993	1104	3752	449		10655
Cost \$226,733	\$10,433	\$54,208	\$60,331	\$194,136	\$26,845		\$572,686
******	*****	**** ED	DS Cost 1	Estimate *	*****	*****	*********
Inbound Cost							
Weight 2757752	57929	338672	388869	1861891	156407		5561520
GBLs 189	37	53	74	91	89		533
Cost \$44,825	\$6,893	\$17,250	\$29,696	\$40,790	\$14,403		\$153,857
EDDS Site Cost Consolidation							
Weight 2757752	57929	338672	388869	1861891	156407	5561520	
Cost \$42,746	\$898	\$5,249	\$6,027	\$28,859	\$2,424	\$86,204	
Distribution							
No. Outbound GE	Ls					6966	
Transportation	Cost					\$764,066	
Total EDDS Site	Cost						\$850,270
Total Through-Put EDDS Cost \$1,004,127							

Cost Difference	(Direct -	EDDS)					(\$431,441)
() - Loss							

as hold time increased from May to June, an increase of approximately one day, the change in the average weight of a GBL would be expected to increase parallel to this increase in hold time. In fact no such increase in average weight occurred, with the average weight remaining relatively unchanged.

Figure 1

Dollar Loss vs Freight Volume

New York EDDS Site

Figure 2

Avg Weight vs Freight Volume

New York EDDS Site

Figure 3

Avg Weight vs Avg Hold Time

New York EDDS Site

Figure 4
Simulation Consolidation Results

A program was developed to simulate the building of outbound shipments at the EDDS site. This FORTRAN program built shipments for a specific DCR until an assigned consolidation period, e.g. 3 days, was reached. Consolidation time was defined as EDDS shipping date - EDDS receipt date. Figure 4 presents the result of a series of simulation runs. Average weight was plotted against consolidation time for the simulated shipments.

As consolidation time increases at the EDDS site, average shipment size becomes larger. This expected relationship stands in contrast to the lack of any clear relationship between these variables in the actual shipment data.

The paired bar graph, Figure 5, presents the output of the 3-day consolidation run and displays it along with the actual shipment data, according to weight category. This paired bar graph shows that the actual shipment weights are concentrated primarily in the lower weight categories. In contrast the simulated shipment weights are concentrated primarily in

Figure 5

Actual Wgt vs Simulated Wgt With Consolidation of 3 Days

the upper weight categories. The actual number of GBLs and the simulated number of GBLs are overlayed for each weight category. The figure shows that by consolidating for a 3-day period more weight can be shipped in the higher weight categories. The advantage of moving more weight in the heavier weight categories is that lower truckload rates may be applied. The numbers used to generate Figure 5 are shown in Table 2.

Table 2

COMPARISON OF ACTUAL SHIPMENT DATA
TO SIMULATED SHIPMENT DATA

Weight <u>Category</u>	Actu Total <u>Weight</u>	al Nbr <u>GBLs</u>	Simula Total <u>Weight</u>	ted Nbr <u>GBLs</u>
			- 	
Min	245006	3726	129743	1916
200	405570	1262	233395	730
500	542492	762	349464	501
1K	799851	564	495435	361
2K	1257539	404	951979	309
5K	1226522	176	1063186	152
10K	855042	64	1143827	85
20K	117949	5	385372	16
30K	68893	2	259855	8
40K	42656	1	549264	12
Total	5561520	6966	5561520	4090

B. Scenarios

To gain insight into the program changes required to make the EDDS pooling phase cost effective at the New York EDDS site, 5 scenarios were generated. The cost of each scenario was calculated and compared to the cost of direct shipment to the customer. The first scenario examined was to remove customers who are civilian agencies from the EDDS program.

1. Remove Civilian DODAACS From New York EDDS Program. The first scenario was to compare the cost of direct shipment with the EDDS shipment cost after removing all DODAACS beginning with a number. These DODAACS identify customers who are civilian agencies. The volume of traffic being sent to these customers is not believed to be cost effective for the EDDS program. Table 3 presents the results of eliminating these customers from EDDS. The total weight shipped dropped by 35,932 pounds from 5,561,520 pounds to 5,525,588 pounds. Comparing Table 3 to Table 1 it is apparent that both the total direct cost and the total EDDS cost have decreased slightly. The net result is that the loss for the 6-month period is reduced

from \$431,441 to \$429,445. Because the volume of freight being handled by the EDDS program for these DODAACs is a small fraction of the total volume of freight moving through the EDDS site the effect on the cost effectiveness of EDDS is negligible when these customers are eliminated from the EDDS program.

Table 3

<u>DIRECT COST VS EDDS COST</u>
<u>WITH CIVILIAN DODAACS REMOVED</u>

EDDS P	OINT:	New York,	NY					
	DDMP	DDTC	DDCO	DDMT	DDRV	DDOU		All Depots
*****	*****	*****	Direct D	elivery (Cost Estim	ate ***	*****	****
Weight	2736166	57853	338346	383154	1853712	156357		5525588
GBLs	4075	170	991	1087	3692	439		10454
Cost	\$222,385	\$10,392	\$54,127	\$59,436	\$191,775	\$26,465		\$564,580
*****	*****	*****	***** ED	DS Cost 1	Estimate *	*****	*****	*****
Inbound	d Cost							
Weight	2736166	57853	338346	383154	1853712	156357		5525588
GBLs	187	37	53	74	91	89		531
Cost	\$44,474	\$6,884	\$17,233	\$29,260	\$40,611	\$14,398		\$152,860
EDDS S	ite Cost							
Conso	lidation							
Weight	2736166	57853	338346	383154	1853712	156357	5525588	
Cost	\$42,411	\$897	\$5,244	\$5,939	\$28,733	\$2,424	\$85,647	
Distr	ibution							
No. Out	tbound GB	Ls					6771	
Transpo	ortation (Cost					\$755,518	
Total I	EDDS Site	Cost						\$841,165
Total Through-Put EDDS Cost \$994,025								
****	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	*****	****** ()	ost Analy	SIS XXXX	****		*****
Cost Di	Cost Difference (Direct - EDDS) (\$429,445)							
() - Loss								

2. <u>Breakeven Reduction In Pooling Rates.</u> This second scenario identifies the magnitude of discount required for EDDS to breakeven when compared with direct shipment to customer. Table 4 presents a comparison of the cost of direct shipment to the EDDS cost with a 51 percent across-the-board reduction in pooling rates. The results show that EDDS breaks even when such a reduction is applied.

Table 4

DIRECT COST VS EDDS COST

WITH 51 % REDUCTION IN POOLING RATES

EDDS P	OINT:	New York,	NY							
	DDMP	DDTC	DDCO	DDMT	DDRV	DDOU		All Depots		
******			Direct I	Delivery (Cost Estin	nate ****	*****	*****		
Weight	2757752	57929	338672	388869	1861891	156407		5561520		
GBLs	4186	171	993	1104	3752	449		10655		
Cost	\$226,733	\$10,433	\$54,208	\$60,331	\$194,136	\$26,845		\$572,686		
*****	**************************************									
Inboun	d Cost									
Weight	2757752	57929	338672	388869	1861891	156407		5561520		
GBLs	189	37	53	74	91	89		533		
Cost	\$44,825	\$6,893	\$17,250	\$29,696	\$40,790	\$14,403		\$153,857		
EDDS S	ite Cost									
Conso	lidation									
Weight	2757752	57929	338672	388869	1861891	156407	5561520			
Cost	\$42,745	\$898	\$5,249	\$6,027	\$28,859	\$2,424	\$86,204			
Distr	ibution									
No. Ou	tbound GB	Ls					6966			
Transp	ortation	Cost					\$330,426			
Total	EDDS Site	Cost					\$416,630			
Total	Through-P	ut EDDS Co	st					\$570,487		
*****	****	*****	****	Cost Analy	/sis ****	****	*****	*****		
Cost D	ifference	(Direct -	EDDS)	•				\$2,199		

() - Loss

3. Increase Consolidation. Table 5 displays the cost comparison between the direct shipment cost and the cost of the EDDS program assuming 3 days of consolidation and the current New York pooling rates. By consolidating, the total number of outbound GBLs has been reduced from 6966 to 4090 (Table 2). The figure shows that the cost of the second transportation leg of EDDS has been reduced by approximately \$79,000 but the EDDS program is still losing money in comparison to the direct program. This disappointing result can be understood by referring to Table 6.

Table 5

DIRECT COST VS EDDS COST
WITH 3 DAYS CONSOLIDATION

EDDS PO	INT:	New York,	NY					
	DDMP	DDTC	DDCO	DDMT	DDRV	DDOU		All Depots
*****	****	*****	Direct 1	Delivery	Cost Estim	nate ***	*****	*****
Weight	2757752	57929	338672	388869	1861891	156407		5561520
GBLs	4186	171	993	1104	3752	449		10655
Cost	\$226,733	\$10,433	\$54,208	\$60,331	\$194,136	\$26,845		\$572,686
*****	*****	*****	**** E]	DDS Cost	Estimate *	*****	** ** ****	*****
Inbound	d Cost							
Weight	2757752	57929	338672	388869	1861891	156407		5561520
GBLs	189	37	53	74	91	89		533
Cost	\$44,825	\$6,893	\$17,250	\$29,696	\$40,790	\$14,403		\$153,857
EDDS Si	ite Cost							
Consol	lidation							
Weight	2757752	57929	338672	388869	1861891	156407	5561520	
Cost	\$42,745	\$898	\$5,249	\$6,027	\$28,859	\$2,424	\$86,204	
Distr	ibution							
No. Out	No. Outbound GBLs 4090							
Transpo	ortation (Cost					\$685,500	
Total i	Total EDDS Site Cost \$771,704							

Total Through-Put EDDS Cost

\$925,561

() - Loss

Table 6 shows the pooling rates for New York and Los Angeles. Minimum weight indicates the minimum weight in the weight category, e.g. "999", includes all shipment weights from 999 pounds to 1998 pounds. The rates are expressed as cents per hundredweight. Comparing the two rate structures, the key observation is that there is comparatively little advantage for consolidating at the New York site. The pooling rate structure for Los Angeles shows a distinct drop in the rate per hundredweight at 4999 pounds and above. In comparison, the New York rate structure is set forth in such a manner that no such comparable drop in rates is offered. By consolidating at New York, cost is reduced but not significantly because there is little downward progression in the rate structure as shipment weight is increased.

Table 6

COMPARISON OF EDDS SITE POOLING RATES

NEW YORK VS LOS ANGELES

		New York		Los Angeles				
Minimum	1-200	201-400	> 400	1-200	201-400	> 400		
Wgt (Lbs)	<u>Miles</u>	<u>Miles</u>	<u>Miles</u>	<u>Miles</u>	<u>Miles</u>	Miles		
99	3000	3200	3200	3520	3520	3960		
199	1553	1970	2290	1840	1840	2070		
499	1428	1809	2111	942	1376	1738		
999	1368	1400	1656	942	1230	1554		
1999	1301	1349	1587	849	1085	1371		
4999	1287	1300	1496	483	589	689		
9999	1157	1261	1383	396	497	573		
19999	1108	1220	1333	295	337	398		
29999	1097	1198	1299	187	268	319		
39999	1068	1140	1212	146	235	280		

- 4. Increase Consolidation & Use Los Angeles EDDS Pooling Rates. To explore other possible changes in the pooling rate structure, the rate structure in effect at the Los Angeles site was used to rate the shipments built from the 3-day consolidation simulation. Table 7 shows the results of this effort. The second leg cost at the New York EDDS site is considerably reduced. Increasing the consolidation effort to 3 days and using a rate structure similar to that in effect at the Los Angeles site results in the EDDS cost breaking even with the estimated direct cost.
- 5. Increase Consolidation & Use Mechanicsburg's Rates. Table 8 presents the results of the scenario of applying the Mechanicsburg depot GTP rates to the shipments coming out of the New York EDDS site. This cost represents a 47.6 percent reduction in the cost obtained under the current pooling rate structure at New York (Table 1). However, compared to the cost of direct shipment, the new total cost of \$599,388 still represents a loss of \$26,702.

Table 7

DIRECT COST VS EDDS COST WITH 3 DAYS CONSOLIDATION AND LOS ANGELES POOLING RATES

EDDS PO	OINT:	New York,	NY					
	DDMP	DDTC	DDCO	DDMT	DDRV	DDOU		All Depots
******	*****	*****	Direct D	elivery	Cost Estim	nate ****	******	*****
Weight	2757752	57929	338672	388869	1861891	156407		5561520
GBLs	4186	171	993	1104	3752	449		10655
Cost	\$226,733	\$10,433	\$54,208	\$60,331	\$194,136	\$26,845		\$572,686
*****	*****	**** ***	**** ED	DS Cost	Estimate *	******	*****	*****
Inbound	l Cost							
Weight	2757752	57929	338672	388869	1861891	156407		5561520
GBLs	189	37	53	74	91	89		533
Cost	\$44,825	\$6,893	\$17,250	\$29,696	\$40,790	\$14,403		\$153,857
EDDS Si	te Cost							
Consol	lidation							
Weight	2757752	57929	338672	388869	1861891	156407	5561520	
Cost	\$42,475	\$898	\$5,249	\$6,027	\$28,859	\$2,424	\$86,204	
Distri	bution							
No. Out	bound GBI	_s					4090	
Transpo	rtation C	Cost					\$329,949	
Total E	EDDS Site	Cost						\$416,153
Total T	Through-Pu	it EDDS Co	st					\$570,010
*****	*****	****	***** C	ost Analy	ysis ****	*****	*****	*****
Cost Di	fference	(Direct -	EDDS)					\$2,676
() - Lo	ss							

Table 8

DIRECT COST VS EDDS COST USING
THE MECHANICSBURG RATES OUT OF THE NEW YORK EDDS SITE

EDDS POINT: New	York, NY						
DDMP	DDTC DDCO	DDMT	DDRV	DDOU		All Depots	
*******	**** Direct D	Delivery (Cost Estim	ate ****	*****	*****	
Weight 2757752	57929 338672	388869	1861891	156407		5561520	
GBLs 4186	171 993	1104	3752	449		10655	
Cost \$226,733 \$10	0,433 \$54,208	\$60,331	\$194,136	\$26,845		\$572,686	
*******	***** E[DS Cost E	Estimate *	*****	*****	*****	
Inbound Cost							
Weight 2757752	57929 338672	388869	1861891	156407		5561520	
GBLs 189	37 53	74	91	89		533	
Cost \$44,825 \$6	6,893 \$17,250	\$29,696	\$40,790	\$14,403		\$153,857	
EDDS Site Cost Consolidation							
Weight 2757752	57929 338672	388869	1861891	156407	5561520		
Cost \$42,475	\$898 \$5,249	\$6,027	\$28,859	\$2,424	\$86,204		
Distribution							
No. Outbound GBLs					6966		
Transportation Cost					\$359,327		
Total EDDS Site Cost	t					\$445,531	
Total Through Dut FI	DDS Cost					\$599,388	
Total Through-Put EI	DDS COSC					7777,300	

Cost Difference (Dir	rect - EDDS)					(\$26,702)	
() - Loss							

Table 9 presents the results of using Mechanicsburg depot's GTP rates and 3 days consolidation at the New York EDDS site. Under this modification of the above scenario EDDS achieves a modest savings estimated to be \$70,520 over the 6-month period.

Table 9

DIRECT COST VS EDDS COST USING THE MECHANICSBURG
RATES AND 3 DAYS CONSOLIDATION AT THE NEW YORK EDDS SITE

EDDS POI	NT:	New York,	NY					
	DDMP	DDTC	DDCO	DDMT	DDRV	DDOU		All Depots
*****	*****	*****	Direct D	elivery	Cost Estim	nate ***	*****	-
Weight	2757752	57929	338672	388869	1861891	156407		5561520
GBLs	4186	171	993	1104		449		10655
	226,733				\$194,136			\$572,686
				DC C	F-6464			
		******	rxxxx ED	DS Cost	Estimate *	*****	********	******
Inbound		57929	338672	388869	1861891	156407		5561520
Weight			53	74		136407		
GBLs	189	37						533
Cost	\$44,825	\$6,893	\$17,250	\$29,696	\$40,790	\$14,403		\$153,857
EDDS Sit	e Cost							
Consoli	dation							
Weight	2757752	57929	338672	388869	1861891	156407	5561520	
Cost	\$42,475	\$898	\$5,249	\$6,027	\$28,859	\$2,424	\$86,204	
Distrib	ution							
No. Outb	ound GB1	Ls					4090	
Transpor	tation (Cost					\$262,105	
Total ED	DS Site	Cost						\$348,309
Total Th	Total Through-Put EDDS Cost \$502,166							
*****	*****	*****	*****	ost Anal	ysis ****	*****	*****	*****
Coop Die	: .	/Dim	Co 1					670 520
	Cost Difference (Direct - Cost) \$70,520							
() - Loss								

In summary 5 scenarios were generated and the impact of each on the cost of the pooling phase at the New York EDDS site was computed. In two cases (scenarios 2 and 4) the EDDS program breaks even with direct shipment. Scenario 5 shows in what way the EDDS program could be modified in order to produce savings.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average. Nour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA. 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC. 2053.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED		DATES COVERED	
	July 1990	Final	
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
New York EDDS Site Transportation Cost Analysis for the Pooling Phase April – September 1989			
6. AUTHOR(S)			
Mark Kleinhenz			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER
HQ Defense Logistics Agency Operations Research and Economic Analysis Office (DLA-LO) Cameron Station			DLA-90-P90258
Alexandria, VA 22304-6100			
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSORING / MONITORING
HQ Defense Logistics Agency			AGENCY REPORT NUMBER
Cameron Station			
Alexandria, VA 22304-	-6100		
11. SUPPLEMENTARY NOTES			
		. -	
12a. DISTRIBUTION AVAILABILITY STATEMENT			12b. DISTRIBUTION CODE
Public Release; Unlimited Distribution			
			j
13. ABSTRACT (Maximum 200 word	(s)		
The New York Enhanced DLA Distribution System (EDDS) Site Pooling Study is an			
analysis of the cost effectiveness of the EDDS pooling operations at the New			
York EDDS site in comparison with direct shipment to the customer. According			
to the pooling concept, shipments generated at a depot for delivery to a			
common geographical area are combined into truckload lots for shipment to the EDDS site. At the EDDS site shipments from one or more depots are consolidated			
for transshipment to like destinations. The consolidated shipments are			
delivered short-distances, in larger, less-than-truckload or truckload lots to			
the ultimate customer. Several scenarios were presented and their respective			
costs calculated to demonstrate under what conditions the EDDS concept can generate savings at the New York EDDS site. Recommendations were made to			
monitor EDDS site operator performance to ensure that maximum consolidation			
occurs and to negoti	ate a reduction in the	EDDS outbound t	pooling rates to a
level that is competitive with the depots' Guaranteed Traffic Rates. 19.00000000000000000000000000000000000			
14. SUBJECT TERMS	1		15. NUMBER OF PAGES
Distribution B-14	Shipments, Cost Analy		16. PRICE CODE
vistribution, rooting ,	, suipments, cost Analy	SIS, TIEW IOEK	To. Fried Code
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIF OF ABSTRACT	ICATION 20. LIMITATION OF ABSTRACT
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	