

## 《科学计算与数学建模》

## 课程作业 -1

| _  | 填空题 |
|----|-----|
| 一、 | 犑ℒ甦 |

- 1. 采用秦九韶算法计算 5 次多项式函数值至多需要\_\_\_\_次乘法和次加法。
- 2. 设x的相对误差为 2%,则x"的相对误差为\_\_\_\_。
- 3. 设观测数据  $x_1, x_2, x_3$  的绝对误差限为 0.001, 那么  $x_1 + x_2 x_3$  的绝对误差限为\_\_\_\_\_。
- 4. 设  $f(x)=x^2$ ,则 f(x) 关于节点  $x_0=0$ ,  $x_1=2$ ,  $x_2=4$  的二阶向前差分为\_\_\_\_\_。
- 5. 设S(x)是函数f(x)在区间[0,2]上的三次样条函数

$$S(x) = \begin{cases} 1 + 2x - x^2, & 0 \le x \le 1 \\ 2 + b(x - 1) + c(x - 1)^2 + (x - 1)^3, & 1 \le x \le 2 \end{cases}$$

- 6. Newton-Cotes 求积公式的系数和 $\sum_{k=0}^{n} C_k^{(n)}$  为\_\_\_\_\_\_。
- 7. 采用复合 Simpson 求积公式将步长缩小到原步长一半时,新近似值的余项约为原近似值的余项的\_\_\_\_\_倍。
- 8. n+1 个节点的 Gauss 求积公式的代数精度至少为\_\_\_\_。
- 9. 用列主元消去法解方程组  $\begin{cases} 4x_1 12x_2 + 3x_3 = 2 \\ -5x_1 + 6x_2 7x_3 = 3 \end{cases}$ , 进行第一次消元时, $-3x_1 x_2 + 2x_3 = -4$

应选择主元为\_\_\_\_。



## 二、计算题

1. 已知函数y = f(x)的函数值如下表

| х | -1 | 1 | 2  | 3  |
|---|----|---|----|----|
| у | 2  | 8 | 14 | 22 |

在区间[-1,3]上求三次样条函数S(x),使其满足边界条件

$$S''(-1) = 6$$
,  $S''(3) = 30$ .

2. 根据下列表中数据,利用最小二乘法拟合求出一个二次多项式  $P_2(x)$ ,并计算误差。

| х | 1   | 2    | 3    | 4    | 5    |
|---|-----|------|------|------|------|
| У | 6.1 | 16.8 | 34.1 | 57.1 | 85.8 |

3. 采用复合梯形公式计算积分

$$I = \int_0^1 \frac{10}{1 + x^2} \, dx$$

的近似值,使其误差不超过2×10<sup>-3</sup>(计算结果保留小数点后四位)。

4. 采用 Newton 法求解非线性方程

$$x^2 + x - 6 = 0$$

的一个根(要求:给出包含根的区间并合理选取可行初始点,写出 迭代前 3 步)。



5. 采用弦截法求解非线性方程

$$x^3 + 8x^2 - 20 = 0$$

的一个根, 当  $|x_k - x_{k-1}| < 10^{-3}$  时终止迭代(要求:给出包含根的区间并合理选取可行初始点)。

6. 采用列主元消去法求解线性方程组

$$\begin{cases} x_1 + 4x_2 + 11x_3 = 16 \\ 13x_1 + 5x_2 + 2x_3 = 20 \\ 2x_1 - 12x_2 + 3x_3 = -7 \end{cases}$$

(要求:需要给出详细的行交换、乘数值及计算步骤)。

7. 采用直接 LU 三角分解方法解线性方程组

$$\begin{cases} 2x_1 + x_3 = 1 \\ 20x_1 + x_2 + 9x_3 = 13 \\ 10x_1 + 7x_2 - x_3 = 25 \end{cases}$$