Introduction to Algorithms

Priority Queues Quicksort

Priority Queues

- Heapsort is a nice algorithm, but in practice
 Quicksort (coming up) usually wins
- But the heap data structure is incredibly useful for implementing *priority queues*
 - \blacksquare A data structure for maintaining a set S of elements, each with an associated value or key
 - Supports the operations Insert(), Maximum(), and ExtractMax()
 - What might a priority queue be useful for?

Priority Queue Operations

- Insert(S, x) inserts the element x into set S
- Maximum(S) returns the element of S with the maximum key
- ExtractMax(S) removes and returns the element of S with the maximum key
- How could we implement these operations using a heap?

Implementing Priority Queues

```
HeapInsert(A, key) // what's running time?
    heap size[A] ++;
    i = heap size[A];
   while (i > 1 AND A[Parent(i)] < key)
       A[i] = A[Parent(i)];
        i = Parent(i);
   A[i] = key;
```

Implementing Priority Queues

```
HeapMaximum(A)
{
    // This one is really tricky:
    return A[1];
}
```

Implementing Priority Queues

```
HeapExtractMax(A)
    if (heap size[A] < 1) { error; }</pre>
    max = A[1];
    A[1] = A[heap size[A]]
    heap size[A] --;
    Heapify(A, 1);
    return max;
```

Quicksort

- Another divide-and-conquer algorithm
 - The array A[p..r] is *partitioned* into two nonempty subarrays A[p..q] and A[q+1..r]
 - ◆ Invariant: All elements in A[p..q] are less than all elements in A[q+1..r]
 - The subarrays are recursively sorted by calls to quicksort
 - Unlike merge sort, no combining step: two subarrays form an already-sorted array

Quicksort Code

```
Quicksort(A, p, r)
    if (p < r)
        q = Partition(A, p, r);
        Quicksort(A, p, q);
        Quicksort(A, q+1, r);
```

Partition

- Clearly, all the action takes place in the partition() function
 - Rearranges the subarray in place
 - End result:
 - Two subarrays
 - All values in first subarray \leq all values in second
 - Returns the index of the "pivot" element separating the two subarrays
- How do you suppose we implement this function?

Partition In Words

- Partition(A, p, r):
 - Select an element to act as the "pivot" (which?)
 - Grow two regions, A[p..i] and A[j..r]
 - ◆ All elements in A[p..i] <= pivot
 - All elements in $A[j..r] \ge pivot$
 - Increment i until A[i] >= pivot
 - Decrement j until A[j] <= pivot
 - Swap A[i] and A[j]
 - Repeat until $i \ge j$
 - Return j

Note: slightly different from book's partition()

Partition Code

```
Partition(A, p, r)
    x = A[p];
                                     Illustrate on
    i = p - 1;
                            A = \{5, 3, 2, 6, 4, 1, 3, 7\};
    j = r + 1;
    while (TRUE)
        repeat
            j--;
        until A[j] \le x;
                                       What is the running time of
        repeat
                                          partition()?
            i++;
        until A[i] >= x;
        if (i < j)
            Swap(A, i, j);
        else
            return j;
```

Partition Code

```
Partition(A, p, r)
    x = A[p];
    i = p - 1;
    j = r + 1;
    while (TRUE)
        repeat
             j--;
        until A[j] \le x;
        repeat
                                    partition () runs in O(n) time
             i++;
        until A[i] >= x;
        if (i < j)
            Swap(A, i, j);
        else
             return j;
```

Analyzing Quicksort

- What will be the worst case for the algorithm?
 - Partition is always unbalanced
- What will be the best case for the algorithm?
 - Partition is perfectly balanced
- Which is more likely?
 - The latter, by far, except...
- Will any particular input elicit the worst case?
 - Yes: Already-sorted input

Analyzing Quicksort

• In the worst case:

$$T(1) = \Theta(1)$$

$$T(n) = T(n-1) + \Theta(n)$$

Works out to

$$T(n) = \Theta(n^2)$$

Analyzing Quicksort

• In the best case:

$$T(n) = 2T(n/2) + \Theta(n)$$

• What does this work out to?

$$T(n) = \Theta(n \lg n)$$

Improving Quicksort

- The real liability of quicksort is that it runs in $O(n^2)$ on already-sorted input
- Book discusses two solutions:
 - Randomize the input array, OR
 - Pick a random pivot element
- How will these solve the problem?
 - By insuring that no particular input can be chosen to make quicksort run in $O(n^2)$ time

- Assuming random input, average-case running time is much closer to O(n lg n) than O(n²)
- First, a more intuitive explanation/example:
 - Suppose that partition() always produces a 9-to-1 split. This looks quite unbalanced!
 - The recurrence is thus: T(n) = T(9n/10) + T(n/10) + nUse n instead of O(n) for convenience (how?)
 - How deep will the recursion go? (draw it)

- Intuitively, a real-life run of quicksort will produce a mix of "bad" and "good" splits
 - Randomly distributed among the recursion tree
 - Pretend for intuition that they alternate between best-case (n/2 : n/2) and worst-case (n-1 : 1)
 - What happens if we bad-split root node, then good-split the resulting size (n-1) node?

- Intuitively, a real-life run of quicksort will produce a mix of "bad" and "good" splits
 - Randomly distributed among the recursion tree
 - Pretend for intuition that they alternate between best-case (n/2 : n/2) and worst-case (n-1 : 1)
 - What happens if we bad-split root node, then good-split the resulting size (n-1) node?
 - We fail English

- Intuitively, a real-life run of quicksort will produce a mix of "bad" and "good" splits
 - Randomly distributed among the recursion tree
 - Pretend for intuition that they alternate between best-case (n/2 : n/2) and worst-case (n-1 : 1)
 - What happens if we bad-split root node, then good-split the resulting size (n-1) node?
 - We end up with three subarrays, size 1, (n-1)/2, (n-1)/2
 - Combined cost of splits = n + n 1 = 2n 1 = O(n)
 - No worse than if we had good-split the root node!

- Intuitively, the O(n) cost of a bad split (or 2 or 3 bad splits) can be absorbed into the O(n) cost of each good split
- Thus running time of alternating bad and good splits is still O(n lg n), with slightly higher constants
- How can we be more rigorous?

- For simplicity, assume:
 - All inputs distinct (no repeats)
 - Slightly different partition() procedure
 - partition around a random element, which is not included in subarrays
 - ◆ all splits (0:n-1, 1:n-2, 2:n-3, ..., n-1:0) equally likely
- What is the probability of a particular split happening?
- Answer: 1/n

- So partition generates splits
 (0:n-1, 1:n-2, 2:n-3, ..., n-2:1, n-1:0)
 each with probability 1/n
- If T(n) is the expected running time,

$$T(n) = \frac{1}{n} \sum_{k=0}^{n-1} [T(k) + T(n-1-k)] + \Theta(n)$$

- What is each term under the summation for?
- What is the $\Theta(n)$ term for?

• So...

$$T(n) = \frac{1}{n} \sum_{k=0}^{n-1} [T(k) + T(n-1-k)] + \Theta(n)$$

$$= \frac{2}{n} \sum_{k=0}^{n-1} T(k) + \Theta(n)$$
 Write it on the board

- Note: this is just like the book's recurrence (p166), except that the summation starts with k=0
- We'll take care of that in a second

- We can solve this recurrence using the dreaded substitution method
 - Guess the answer
 - Assume that the inductive hypothesis holds
 - Substitute it in for some value < n
 - Prove that it follows for n

- We can solve this recurrence using the dreaded substitution method
 - Guess the answer
 - ◆ What's the answer?
 - Assume that the inductive hypothesis holds
 - Substitute it in for some value < n
 - Prove that it follows for n

- We can solve this recurrence using the dreaded substitution method
 - Guess the answer
 - ♦ $T(n) = O(n \lg n)$
 - Assume that the inductive hypothesis holds
 - Substitute it in for some value < n
 - Prove that it follows for n

- We can solve this recurrence using the dreaded substitution method
 - Guess the answer
 - ♦ $T(n) = O(n \lg n)$
 - Assume that the inductive hypothesis holds
 - ◆ What's the inductive hypothesis?
 - Substitute it in for some value < n
 - Prove that it follows for n

- We can solve this recurrence using the dreaded substitution method
 - Guess the answer
 - \bullet T(n) = O(n lg n)
 - Assume that the inductive hypothesis holds
 - ◆ $T(n) \le an \lg n + b$ for some constants a and b
 - Substitute it in for some value < n
 - Prove that it follows for n

- We can solve this recurrence using the dreaded substitution method
 - Guess the answer
 - \bullet T(n) = O(n lg n)
 - Assume that the inductive hypothesis holds
 - ◆ $T(n) \le an \lg n + b$ for some constants a and b
 - Substitute it in for some value < n
 - ◆ What value?
 - Prove that it follows for n

- We can solve this recurrence using the dreaded substitution method
 - Guess the answer
 - \bullet T(n) = O(n lg n)
 - Assume that the inductive hypothesis holds
 - ◆ $T(n) \le an \lg n + b$ for some constants a and b
 - Substitute it in for some value < n
 - The value *k* in the recurrence
 - Prove that it follows for n

- We can solve this recurrence using the dreaded substitution method
 - Guess the answer
 - \bullet T(n) = O(n lg n)
 - Assume that the inductive hypothesis holds
 - ◆ $T(n) \le an \lg n + b$ for some constants a and b
 - Substitute it in for some value < n
 - The value *k* in the recurrence
 - Prove that it follows for n
 - Grind through it...

$$T(n) = \frac{2}{n} \sum_{k=0}^{n-1} T(k) + \Theta(n)$$

The recurrence to be solved

$$\leq \frac{2}{n} \sum_{k=0}^{n-1} (ak \lg k + b) + \Theta(n)$$

Plug in inductive hypothesis

$$\leq \frac{2}{n} \left[b + \sum_{k=1}^{n-1} \left(ak \lg k + b \right) \right] + \Theta(n)$$
 Expand out the k=0 case

$$= \frac{2}{n} \sum_{k=1}^{n-1} (ak \lg k + b) + \frac{2b}{n} + \Theta(n)$$
 2b/n is just a constant, so fold it into $\Theta(n)$

$$= \frac{2}{n} \sum_{k=1}^{n-1} (ak \lg k + b) + \Theta(n)$$

Note: leaving the same recurrence as the book

$$T(n) = \frac{2}{n} \sum_{k=1}^{n-1} (ak \lg k + b) + \Theta(n)$$

$$= \frac{2}{n} \sum_{k=1}^{n-1} ak \lg k + \frac{2}{n} \sum_{k=1}^{n-1} b + \Theta(n)$$

$$= \frac{2a}{n} \sum_{k=1}^{n-1} k \lg k + \frac{2b}{n} (n-1) + \Theta(n)$$
Evaluate the summation:
$$b + b + \dots + b = b (n-1)$$

$$\leq \frac{2a}{n} \sum_{k=1}^{n-1} k \lg k + 2b + \Theta(n)$$
Since $n-1 < n$, $2b(n-1)/n < 2b$

This summation gets its own set of slides later

$$T(n) \le \frac{2a}{n} \sum_{k=1}^{n-1} k \lg k + 2b + \Theta(n)$$

The recurrence to be solved

$$\leq \frac{2a}{n} \left(\frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \right) + 2b + \Theta(n)$$
 We'll prove this later

$$= an \lg n - \frac{a}{4}n + 2b + \Theta(n)$$

Distribute the (2a/n) term

$$= an \lg n + b + \left(\Theta(n) + b - \frac{a}{4}n\right) \quad \text{Remember, our goal is to get}$$

$$T(n) \leq an \lg n + b$$

$$\leq an \lg n + b$$

Pick a large enough that an/4 dominates $\Theta(n)+b$

- So $T(n) \le an \lg n + b$ for certain a and b
 - Thus the induction holds
 - Thus $T(n) = O(n \lg n)$
 - Thus quicksort runs in O(n lg n) time on average (phew!)
- Oh yeah, the summation...

$$\sum_{k=1}^{n-1} k \lg k = \sum_{k=1}^{\lceil n/2 \rceil - 1} k \lg k + \sum_{k=\lceil n/2 \rceil}^{n-1} k \lg k$$

$$\leq \sum_{k=1}^{\lceil n/2 \rceil - 1} k \lg k + \sum_{k=\lceil n/2 \rceil}^{n-1} k \lg n$$

$$= \sum_{k=1}^{\lceil n/2 \rceil - 1} k \lg k + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k$$

Split the summation for a tighter bound

The lg k in the second term is bounded by lg n

Move the lg n outside the summation

$$\sum_{k=1}^{n-1} k \lg k \le \sum_{k=1}^{\lceil n/2 \rceil - 1} k \lg k + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k$$

The summation bound so far

$$\leq \sum_{k=1}^{\lceil n/2 \rceil - 1} k \lg(n/2) + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k$$
 The $\lg k$ in the first bounded by $\lg n/2$

The lg k in the first term is

$$= \sum_{k=1}^{\lceil n/2 \rceil - 1} k (\lg n - 1) + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k \frac{\lg n/2 = \lg n - 1}{k}$$

$$= (\lg n - 1)^{\lceil n/2 \rceil - 1} \sum_{k=1}^{n-1} k + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k \quad \text{Move (lg n - 1) outside the summation}$$

$$\sum_{k=1}^{n-1} k \lg k \le \left(\lg n - 1\right)^{\left\lceil n/2\right\rceil - 1} k + \lg n \sum_{k=\left\lceil n/2\right\rceil}^{n-1} K$$
 The summation bound so far

$$= \lg n \sum_{k=1}^{\lceil n/2 \rceil - 1} k - \sum_{k=1}^{\lceil n/2 \rceil - 1} k + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k \quad \text{Distribute the (lg } n - 1)$$

$$= \lg n \sum_{k=1}^{n-1} k - \sum_{k=1}^{\lceil n/2 \rceil - 1} k$$

$$= \lg n \left(\frac{(n-1)(n)}{2} \right) - \sum_{k=1}^{\lceil n/2 \rceil - 1} k$$
 The Guassian series

The summations overlap in range; combine them

$$\sum_{k=1}^{n-1} k \lg k \le \left(\frac{(n-1)(n)}{2}\right) \lg n - \sum_{k=1}^{\lfloor n/2 \rfloor - 1} k \qquad \text{The summation bound so far}$$

$$\le \frac{1}{2} \left[n(n-1) \right] \lg n - \sum_{k=1}^{\lfloor n/2 \rfloor - 1} k \qquad \text{Rearrange first term, place upper bound on second}$$

$$\le \frac{1}{2} \left[n(n-1) \right] \lg n - \frac{1}{2} \left(\frac{n}{2}\right) \left(\frac{n}{2} - 1\right) X \text{ Guassian series}$$

$$\le \frac{1}{2} \left(n^2 \lg n - n \lg n \right) - \frac{1}{8} n^2 + \frac{n}{4} \qquad \text{Multiply it}$$

all out

$$\sum_{k=1}^{n-1} k \lg k \le \frac{1}{2} \left(n^2 \lg n - n \lg n \right) - \frac{1}{8} n^2 + \frac{n}{4}$$

$$\le \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \text{ when } n \ge 2$$

Done!!!