Optimization of Parameters for Semiempirical Methods II. Applications

James J. P. Stewart

Frank J. Seiler Research Laboratory, United States Air Force Academy, Colorado Springs, Colorado 80840

Received 13 June 1988; accepted 2 November 1988

MNDO/AM1-type parameters for twelve elements have been optimized using a newly developed method for optimizing parameters for semiempirical methods. With the new method, MNDO-PM3, the average difference between the predicted heats of formation and experimental values for 657 compounds is 7.8 kcal/mol, and for 106 hypervalent compounds, 13.6 kcal/mol. For MNDO the equivalent differences are 13.9 and 75.8 kcal/mol, while those for AM1, in which MNDO parameters are used for aluminum, phosphorus, and sulfur, are 12.7 and 83.1 kcal/mol, respectively. Average errors for ionization potentials, bond angles, and dipole moments are intermediate between those for MNDO and AM1, while errors in bond lengths are slightly reduced.

INTRODUCTION

The set of approximations developed by Dewar and Thiel used in the modified neglect of diatomic overlap (MNDO) method forms an excellent theoretical framework for modeling molecular systems. Earlier optimizations were limited by available computational power. Thus, the "optimized" parameters did not fully reflect the power of the theoretical model. Even the current parameters, while more completely optimized, are limited in that any errors in experimental data are reflected in the values of the parameters. Further, the large number of almost zero eigenvalues resulting from diagonalization of the parameter Hessian matrix indicate that insufficient constraints have been imposed to unambiguously define the global minimum in parameter space. Two avenues are open for resolving this problem. A systematic survey of physical phenomena such as hyperpolarizabilities, vibrational frequencies, higher ionization potentials (IP), activation barriers, etc. might reveal deficiencies in the parameters which could be rectified by reparameterization. Alternatively, the functional form of the parameters could be studied to determine if simpler functions, namely ones with fewer parameters, could be used. This may be relevant in the case of hydrogen, for example, in which the radii of the two gaussians are almost identical.

Nevertheless, as a member of the MNDO/AM1 family, the current parameter set is likely to prove a useful research tool. In order to allow future discussion of the parameter sets it is proposed that the new set be called MNDO-PM3, for modified neglect of diatomic overlap, parametric method 3, the first two being MNDO itself, and AM1, a reparameterized MNDO with modified corecore interaction terms.

APPLICATION TO SYSTEMS

Various sets of parameters were obtained using the new procedure for optimizing parameters for semiempirical methods (see the preceding article). In order to adequately assess the predictive power of these parameter sets, a large number of systems were examined, sampling as wide a range of chemistry as possible. As with MNDO¹, MINDO/3², and AM1³, the parameters were optimized to reproduce four gas-phase molecular properties: heats of formation, dipole moments, ionization potentials, and molecular geometries; only these quantities will be surveyed here. In most instances, calculated results will be compared with experiment; however, in a few cases, mostly involving geometries, the results of high-level ab initio calculations will be used. As the current parameter sets are derived for the MNDO theoretical method, of which AM1 is a de-

rivative, results from MNDO and AM1 calculations are presented for comparison. For the MNDO calculation, standard MNDO parameter sets were used for H¹, C¹, N¹, O¹, F⁴, Al⁵, Si⁶, P⁶, S⁷, Cl⁸, Br⁹, and I¹⁰, while for the AM1 calculation, only the AM1 parameter sets for H³, C³, N³, O³, F¹¹, Si¹², Cl¹¹, Br¹¹, and I¹¹ were used. For systems involving Al, P, and S, mixed parameter sets were used in the AM1 calculations. MNDO parameters were used for Al, P, and S, and AM1 parameters were used for all other elements. The resulting AM1 errors for compounds containing Al, P, or S were similar to those for MNDO. This allowed a full comparison of the new parameters with those of both MNDO and AM1. The assumption will be made that the experimental data are completely accurate, although, as we will see in the discussion, this assumption is questionable for a limited number of systems.

As a large amount of data is presented in the tables, they are structured to permit rapid location of any given compound. The position within any table involving individual compounds of a specific compound is determined only by its empirical formula in a manner similar to that in Cox and Pilcher. The occurrence and precedence of each element within the empirical formula is in the order $H > C > O > N > S > F > Cl > Br > I > Al > Si > P. Thus, <math display="inline">C_3H_8$ will occur before C_4H_6 , and CH_4S (thiomethane) will occur before HCl. The order of occurrence of a compound within a set having the same empirical formula is random.

CHOICE OF SURVEY MOLECULES

The choice of molecules to use in comparing parameter sets or methods is by no means obvious. MNDO was parameterized using 34 molecules for the C—H—N—O set¹ and up to a few tens of molecules for the other elements⁴-10, while for AM1 slightly over a hundred molecules were used in the parameterization of the C—H—N—O set.³ No hypervalent compounds were used for either MNDO or AM1. In the current parameterization, several hundred compounds were used at different times in the optimization. In general, any compound for which the properties were badly reproduced using the emerging parameter set was used in the

next stage of the optimization. In other words, the procedure for optimizing the parameters was designed so as to minimize errors for systems with large errors. As a result, differences between calculated and observed ΔH_f and errors in dipoles, IPs, and geometries using the new parameters could be expected to be lower than those for MNDO or AM1.

No valid conclusions regarding the "value" of any parameter set or method may be drawn from a knowledge of which molecules and ions were used in the parameterization and surveys. However, when a survey is carried out with only a small number of compounds, and the compounds used in the survey were also those used in the parameterization, the applicability of the parameters to a wider range of systems is suspect. This was not the case for the parameterization of MNDO, AM1, or the current MNDO-PM3. The value of any semiempirical method depends only on the ability of that method to reproduce experimental observations in a survey, not on the particular set of molecules used for optimizing the parameters. If the survey shows that the method achieves a certain level of accuracy, then it follows logically that the method will also be predictive.

Clearly, any survey cannot be exhaustive. In the ΔH_f survey presented here, for example, the homologous series of the alkanes is truncated at nonane. However, the predicted values for properties of many compounds not contained in the survey, among them decane and undecane, may reasonably be inferred by extrapolation from those represented here. Conversely, at present, very little may be inferred as to the predictive power of the new parameters when applied to any systems which are not represented in the survey. This is not true for MNDO, for which a large body of knowledge has been accumulated over the past several years.

All results presented here are for optimized geometries for which either the ΔH_f did not drop by more than 0.000001 kcal/mol over 10 cycles of optimization or the gradient norm had dropped below 0.02 kcal/mol/Å. In about 20% of the compounds surveyed the molecular geometries were defined using symmetry relations between bond lengths, bond angles, and torsion angles. Invoking symmetry relationships may unwittingly

constrain the geometry at an arbitrary point on the energy surface. To prevent this potential error, in each case in which symmetry was used the magnitude of the residual forces acting on all atoms was calculated. A prerequisite for symmetry to be used in the definition of any molecular geometry was that the scalar of the residual forces vector had to be below an arbitrarily defined preset limit.

HEATS OF FORMATION

Experimental and calculated values for the ΔH_f of gas-phase compounds are presented in Tables I and II and a statistical analysis is presented in Table III. For all elements except phosphorus, the standard state used is the most stable allotrope at 298 K. Because red phosphorus is not well characterized, recent compendia of thermochemical data, such as the NBS¹⁴ and JANAF¹⁵ tables, are now based on the white allotrope. To allow facile comparison of phosphorus data, the standard state for phosphorus used in this work is the white allotrope. This redefinition lowers the observed heats of formation by approximately 4.2 kcal/mol per phosphorus atom in the compound.

Many calculated heats of formation have been reported in the literature for MNDO¹⁶ and AM1³; however, in order to maintain internal consistency, all MNDO and AM1 results reported here were obtained by direct calculation using a modified version of MOPAC $4.00.^{17}$ Earlier calculated heats of formation were deemed unsuitable for two reasons. First, triangular conditions for the p-p two-electron one-center and $\pi-\pi$ two-electron two-center integrals were not imposed. This was corrected¹⁷ in 1983 by use of the expressions:

$$\langle pp'|pp'\rangle = 1/2(\langle pp|pp\rangle - \langle pp|p'p'\rangle)$$
 and

$$\langle \pi \pi' | \pi \pi' \rangle = 1/2(\langle \pi \pi | \pi \pi \rangle - \langle \pi \pi | \pi' \pi' \rangle)$$

which introduced changes in calculated ΔH_f of about 1 kcal/mol. Secondly, the Davidon-Fletcher-Powell optimization technique^{18,19} sometimes fails to locate stationary points on the potential energy hypersurface. To a large measure this has been corrected by the BFGS method.²⁰ The heat of association of water in forming the dimer was reported³ using the DFP optimizer as -3.5 kcal/mol,

with the BFGS optimizer a heat of dimerization of -5.5 kcal/mol is obtained. *Ab initio* calculations indicate that the heat of dimerization of water is about -5.5 kcal/mol.²¹

Ideally, in order for the standard deviation to be a useful guide to the probable difference between the experimental and calculated ΔH_f to be expected for a new molecule, the incidence of differences between calculated and experimental ΔH_f should fall on a normal distribution. This may be quantified by calculating the ratio of χ^2 (the significance) for the actual distribution to the average value expected by chance. For the new method, MNDO, and AM1 these ratios are 3.1, 8.5, and 9.7, respectively, indicating that the difference distribution obtained using the new method is significantly nearer to a normal distribution that those for either MNDO or AM1. For all three methods the majority of the large differences are positive, as can be seen in Figure 1.

SPECIFIC COMPOUNDS

While differences between calculated and observed ΔH_f for normal valent compounds are only slightly reduced, there is a dramatic reduction in the hypervalent compounds. This is most vividly demonstrated in the heats of formation of sulfuric acid and for the halogen pentafluorides. These results are obtained using the MNDO basis set, which does not include any "d" orbitals.

One phosphorus compound, P_4O_6 , is of particular interest. There have been two very different experimental values reported for $\Delta H_f(P_4O_6)$: -512 ±8 kcal/mol, 22 and -378 ± 6 kcal/mol,²³ based on red phosphorus, and -529.2 and -398.7 kcal/mol, based on white phosphorus. From mass spectral studies of the phosphorus oxides a value²⁴ of -405 ± 17 kcal/mol for $\Delta H_f(P_4O_6)$ was indicated. AM1 calculations indicate that the -398.7 kcal/mol value is more likely to be correct, while the new parameter set indicates the -529.2 kcal/mol value. The SINDO1 method, 25 which uses d orbitals, predicts $\Delta H_f(P_4O_6)$ to be -554.1 kcal/mol at 0 K. When the phosphorus parameters were optimized using -398.7 kcal/mol as the ΔH_f of P_4O_6 , the value of the error function, S, remained very high. To obtain a lower S the other experimental value had to be used.

Table I. Comparison of experimental and calculated heats of formation for normal-valent molecules.

		Hea forma			Differer	nce	
Empirical formula	Chemical name	Exp.	Calc.	MNDO-PM3	MNDO	AM1	Footnote
H	Hydrogen (+)	365.7	353.6	-12.1	-39.0	-50.8	a
$\overline{\mathrm{H}_2}$	Hydrogen	0.0	-13.4	-13.4	0.7	-5.2	b
CH	Methylidyne	142.4	146.8	4.4	1.2	2.6	c
CH_2	Methylene, triplet	92.3	75.6	-16.7	-15.0	-11.5	ď
CH_2	Methylene, singlet	99.8	113.2	13.4	7.6	$11.1 \\ -3.5$	d d
CH ₃ CH ₃	Methyl radical Methyl (+)	$\frac{34.8}{261.0}$	$29.8 \\ 256.5$	$-5.0 \\ -4.5$	$-9.0 \\ -17.1$	-3.5 -8.6	u e
CH_3 CH_4	Methane	-17.9	-13.0	4.9	5.9	9.1	f
C_2H_2	Acetylene	54.2	50.7	-3.5	3.7	0.6	d
C_2H_2 C_2H_3	Vinyl	59.6	63.3	3.7	4.2	5.2	ĥ
C_2H_3	Vinyl (+)	266.0	263.9	-2.1	-0.3	-4.5	h
C_2H_4	Ethylene	12.4	16.6	4.2	2.9	4.0	${f f}$
C_2H_4	Ethylene, radical cation	257.0	248.7	-8.3	-18.7	-13.1	i
C_2H_4	Methylmethylene	90.3	88.6	-1.7	-1.9	-2.6	j
C_2H_5	Ethyl radical	25.0	17.3	-7.7	-12.2	-6.9	k
C_2H_5	Ethyl (+) (classical)	216.0	222.5	6.5	3.7	0.8	l
C_2H_5	Ethyl (+) (nonclassical)	216.0	232.1	16.1	18.7	10.3	l
C_2H_6	Ethane	-20.2	-18.1	2.1	0.5	2.8	f
C_3 C_3H_3	Carbon, trimer Propynyl (+)	196.0 281.0	$206.6 \\ 275.3$	$10.6 \\ -5.7$	$24.3 \\ -15.6$	$16.4 \\ -7.3$	d i
C_3H_3	Cyclopropenyl (+)	257.0	269.8	12.8	15.5	19.4	i
C_3H_4	Allene	45.6	47.1	1.5	-1.7	0.5	f
C_3H_4	Cyclopropene	66.2	68.2	2.0	2.1	8.6	m
C_3H_4	Propyne	44.4	40.2	-4.2	-3.0	-1.0	$\overline{\mathbf{f}}$
C_3H_5	Allyl (+)	226.0	232.7	6.7	-4.6	0.2	i
C_3H_5	Allyl	40.0	39.6	-0.4	-4.6	-1.4	h
C_3H_5	Propenyl (+)	237.0	238.2	1.2	3.1	-3.3	i
C_3H_5	Cyclopropyl (+)	235.0	261.8	26.8	23.2	25.6	i
C_3H_6	Cyclopropane	12.7	16.3	3.5	-1.5	5.0	f
C_3H_6	Propene	4.9	6.4	1.5	0.1	1.7	f i
C_3H_7 C_3H_7	Propyl (+) 2-Propyl (+)	$208.0 \\ 192.0$	$214.4 \\ 197.3$	6.4 5.3	4.4 8.7	$-0.2 \\ -0.1$	l l
C_3H_7	i-Propyl (+)i-Propyl radical	16.8	5.5	-11.3	-15.4	-10.0	k
C_3H_8	Propane	-24.8	-23.6	1.2	-0.1	0.5	f
C_4H_2	Diacetylene	113.0	102.5	-10.5	-9.8	-6.9	n
C_4H_4	Vinylacetylene	72.8	66.4	-6.4	-7.2	-4.9	n
C_4H_6	1-Methylcycloprop-1-ene		57.4	-0.8	-4.5	6.5	f
C_4H_6	Bicyclobutane	51.9	69.2	17.3	12.2	26.2	\mathbf{f}
C_4H_6	1,2-Butadiene	38.8	38.0	-0.8	-5.3	-1.7	f
C_4H_6	1-Butyne	39.5	35.7	-3.8	-3.3		f
C_4H_6	2-Butyne	34.7	29.8	-4.9	-9.8	-2.7	f
C_4H_6	Cyclobutene	37.5	37.7	0.2	-6.5	8.3	m
$\mathrm{C_4H_6} \\ \mathrm{C_4H_6}$	Methylenecyclopropane	$\frac{47.9}{26.0}$	$\frac{44.5}{31.0}$	$\begin{array}{c} -3.4 \\ 5.0 \end{array}$	$-10.0 \\ 3.0$	$-0.2 \\ 3.9$	f f
C_4H_6 C_4H_7	1,3-Butadiene 2-Butenyl (+)	200.0	212.6	12.6	7.0	6.3	i
C_4H_7	Cyclobutyl (+)	213.0	225.6	12.6	8.4	13.2	i
C_4H_8	1-Butene	-0.2	1.8	2.0	0.6	0.6	$ar{\mathbf{f}}$
C_4H_8	cis-2-Butene	-1.9	-2.5	-0.6	-2.4	-0.3	${f f}$
C_4H_8	Cyclobutane	6.8	-3.8	-10.6	-18.7	-7.8	${f f}$
C_4H_8	Isobutene	-4.3	-3.3	1.0	2.3	3.1	f
C_4H_8	trans-2-Butene	-3.0	-3.8	-0.8	-2.1	-0.3	f
C_4H_9	<i>n</i> -Butyl (+)	201.0	208.0	7.0	5.8	-1.1	i
C_4H_9	1-Methyl propyl (+)	183.0	190.8	7.8	$11.0 \\ -11.7$	$\frac{1.0}{-7.4}$	i Ir
C₄H ₉	Isobutyl	$\frac{4.5}{176.0}$	$-5.9 \\ 178.7$	$\begin{array}{c} -10.4 \\ 2.7 \end{array}$	$-11.7 \\ 12.0$	$-7.4 \\ -1.2$	k i
C ₄ H ₉	Isobutyl (+) n-Butane	-30.4	-29.1	1.3	0.7	$-1.2 \\ -0.8$	\mathbf{f}^{1}
$C_4H_{10} \\ C_4H_{10}$	n-Butane Isobutane	$-30.4 \\ -32.4$	-29.1 -29.5	$\frac{1.3}{2.9}$	5.6	3.0	f
C_4H_{10} C_5H_5	Cyclopentadienyl (-)	-32.4 21.3	-25.5 15.9	-5.4	-2.4	3.9	0
C_5H_6	Cyclopentadiene	32.1	31.8	-0.3	0.0	5.0	m
C_5H_8	1,2-Dimethylcyclopropene	46.4	46.7	0.3	-7.2	8.2	p
C_5H_8	Methylene cyclobutane	29.1	19.7	-9.4	-18.2	-4.0	\mathbf{q}
C_5H_8	1,cis-3-Pentadiene	19.1	21.1	2.0	0.6	1.8	\mathbf{f}
C_5H_8	Cyclopentene	8.3	3.0	-5.3	-8.6	-5.3	m

Table I. (continued)

Empirical		Hea form	at of ation		Differer	nce	
formula	Chemical name	Exp.	Calc.	MNDO-PM3	MNDO	AM1	Footnote
C_5H_8	Bicyclo(2.1.0)-pentane	37.3	37.8	0.5	-7.1	8.8	p
C_5H_8	1,4-Pentadiene	25.3	26.6	1.3	-0.7	-0.5	f
C_5H_8	Spiropentane	44.3	43.1	-1.2	-10.6	6.2	f
${f C_5H_8} \ {f C_5H_9}$	1,trans-3-Pentadiene Cyclopentyl (+)	$18.1 \\ 188.0$	21.3	3.2	1.0	2.5	f
C_5H_{10}	1-Pentene	-5.3	$193.5 \\ -4.0$	5.5 1.3	$\begin{array}{c} 6.2 \\ 0.3 \end{array}$	$-2.1 \\ -1.4$	r f
C_5H_{10}	2-Methyl-1-butene	-8.6	-7.9	0.7	$\frac{0.3}{2.1}$	1.8	f
C_5H_{10}	2-Methyl-2-butene	-10.1	-12.2	-2.1	-0.4	0.1	f
C_5H_{10}	3-Methyl-1-butene	-6.6	-3.9	2.7	4.3	2.2	f
C_5H_{10}	cis-2-Pentene	-7.0	-7.7	-0.7	-2.3	-1.9	f
C_5H_{10}	cis-Dimethylcyclopropane	1.3	1.4	0.1	-3.4	3.5	p
C_5H_{10}	Cyclopentane	-18.3	-23.9	-5.6	-12.2	-10.5	m
$C_5H_{10} \\ C_5H_{11}$	trans-2-Pentene	$-7.9 \\ 194.0$	$-8.7 \\ 202.4$	$\begin{array}{c} -0.8 \\ 8.4 \end{array}$	-2.4	-1.8	f
C_5H_{11} C_5H_{11}	1-Pentyl (+) 2-Pentyl (+)	194.0 173.0	202.4 184.6	11.6	$7.9 \\ 15.5$	$-1.2 \\ 3.4$	i i
C_5H_{11}	2-Ethylisopropyl (+)	156.0	171.9	15.9	25.6	10.5	i
C_5H_{11}	Neopentyl (+)	188.0	171.8	-16.2	-6.4	-21.5	t
C_5H_{12}	2-Methylbutane	-36.8	-34.4	2.4	6.8	1.4	\mathbf{f}
$\mathrm{C_{5}H_{12}}$	Neopentane	-40.3	-35.8	4.5	15.7	7.5	f
C_5H_{12}	<i>n</i> -Pentane	-35.1	-34.5	0.6	0.7	-2.9	f
C_6H_6	Benzene	19.8	23.5	3.6	1.5	2.2	f
C_6H_6	Fulvene 1,3-Cyclohexadiene	$47.5 \\ 25.4$	$\frac{56.2}{20.4}$	$8.7 \\ -5.0$	$6.2 \\ -10.9$	$15.2 \\ -7.9$	f
$egin{array}{c} \mathrm{C_6H_8} \ \mathrm{C_6H_{10}} \end{array}$	2,3-Dimethyl-1,3-butadiene	$\frac{25.4}{10.8}$	$\frac{20.4}{14.0}$	-3.0 3.2	-10.9 4.3	6.6	f f
C_6H_{10}	Cyclohexene	-1.1	-4.9	-3.8	-8.8	-9 .0	f
C_6H_{10}	1,5-Hexadiene	20.1	21.1	1.0	-0.5	-2.3	f
$C_{6}^{0}H_{10}$	1,2-Dimethylcyclobutene	19.8	16.2	-3.6	-13.4	7.2	
C_6H_{10}	Bicyclopropyl	30.9	36.1	5.2	-2.2	8.6	p f
C_6H_{11}	1-Methylcyclopentyl (+)	165.0	174.5	9.5	13.6	2.4	i
C_6H_{11}	Cyclohexyl (+) Cyclohexane	177.0	186.1	9.1	9.9	-2.8	r
${f C_6 H_{12}} \\ {f C_6 H_{14}}$	n-Hexane	$-29.5 \\ -39.9$	$-31.0 \\ -39.9$	$-1.5 \\ 0.0$	$-5.3 \\ 0.8$	-9.0 -4.9	m f
$C_{6}H_{7}$	Benzyl (+)	216.0	227.4	11.4	$\frac{0.8}{2.0}$	6.1	u
C_7H_7	Tropylium (+)	209.0	221.0	12.0	-1.3	1.4	v
C_7H_8	Cycloheptatriene	43.2	42.5	-0.7	-9.4	-4.9	m
C_7H_8	Norbornadiene	59.7	58.8	-0.9	3.2	8.0	p f
C_7H_8	Toluene	12.0	14.1	2.1	1.6	2.4	
C_7H_{11}	2-Norbornyl (+)	182.0	208.5	26.5	31.1	21.0	i
C_7H_{12}	Norbornane	$-12.4 \\ -44.9$	$-13.7 \\ -45.3$	$-1.3 \\ -0.5$	$\frac{2.0}{1.0}$	$-2.0 \\ -6.8$	w
$\mathrm{C_{7}H_{16}} \\ \mathrm{C_{8}H_{8}}$	<i>n</i> -Heptane Cubane	$-44.9 \\ 148.7$	-45.3 113.8	-34.9	-49.6	$\frac{-0.8}{2.5}$	f f
C_8H_8	Styrene	35.3	39.2	3.9	$\frac{10.0}{2.3}$	$\frac{2.5}{3.4}$	f
C_8H_{10}	Ethylbenzene	7.2	9.5	2.3	1.6	1.5	$\dot{\mathbf{f}}$
C_8H_{14}	Bicyclo(2.2.2)-octane	-24.1	-27.8	-3.7	-2.2	-11.9	w
C_8H_{18}	n-Octane	-49.9	-50.8	-0.8	1.4	-8.6	f
C_9H_{20}	n-Nonane	-54.7	-56.2	-1.5	1.5	-10.7	f
$C_{10}H_8$	Azulene Naphthalene	$73.5 \\ 36.1$	$81.3 \\ 40.7$	7.8 4.6	$\begin{array}{c} -1.4 \\ 2.2 \end{array}$	$10.9 \\ 4.5$	f f
${ m C_{10}H_8} \ { m C_{10}H_{16}}$	Adamantane	-31.9	-34.6	-2.7	2.2 5.5	-11.3	I X
$C_{10}H_{10}$ $C_{14}H_{10}$	Anthracene	55.2	61.7	6.5	3.6	$\frac{11.5}{7.7}$	f
$C_{14}H_{10}$	Phenanthrene	49.5	55.0	5.5	6.2	7.9	$\dot{\mathbf{f}}$
HO	Hydroxide (-)	-33.2	-17.5	15.7	27.4	19.1	О
НО	Hydroxyl radical	9.5	3.0	-6.5	-9.0	-8.6	y
H_2O	Water	-57.8	-53.4	4.4	-3.1	-1.4	d
H_3O	Hydronium (+)	138.9	159.1	$\frac{20.2}{6.7}$	-4.7	$\frac{4.6}{20.7}$	d
CO CHO	Carbon monoxide HCO	$-26.4 \\ 10.4$	$-19.7 \\ -9.3$	$6.7 \\ -19.7$	$\begin{array}{c} 20.5 \\ -10.8 \end{array}$	$20.7 \\ -11.4$	d d
CHO	HCO (+)	199.0	-9.3 176.9	$-19.7 \\ -22.1$	-10.8 -14.1	-11.4 -11.5	
CH_2O	Formaldehyde	-26.0	-34.1	-8.1	-6.9	-5.5	y f
CH_2O	Hydroxymethylene (trans)	53.2	50.5	-2.8	-6.8	-5.0	
CH_2O	Hydroxymethylene (cis)	58.5	50.1	-8.4	-12.2	-11.3	j j
CH₃O	Methoxy (-)	-36.0	-37.9	-1.9	-3.7	-2.5	0
CH ₃ O	Methoxy	-0.5	-6.8	-6.3	0.3	-3.2	k

Table I. (continued)

Fii1			nt of ation		Differer	ice	
Empirical formula	Chemical name	Exp.	Calc.	MNDO-PM3	MNDO	AM1	Footnote
CH ₃ O	CH ₂ OH (+)	168.0	166.3	-1.7	-12.4	-6.7	i
CH₄O	Methanol	-48.1	-51.9	-3.8	-9.3	-8.9	f
C_2H_2O	Ketene	-11.4	-9.2	2.2	4.6	5.7	f
C_2H_2O	HCCOH	$36.0 \\ -39.7$	23.2	-12.8	-16.7	-11.5	j
C_2H_4O C_2H_4O	Acetaldehyde Ethylene oxide	$-39.7 \\ -12.6$	$-44.2 \\ -8.1$	$-4.5 \\ 4.5$	$^{-2.5}$ $^{-2.9}$	$-1.8 \\ 3.6$	f f
C_2H_5O	Ethoxy (-)	-47.5	-44.8	$\frac{4.0}{2.8}$	$\frac{2.3}{2.2}$	2.0	0
C_2H_6O	Ethanol		-56.8	-0.6	-6.8	-6.5	f
C_2H_6O	Dimethyl ether	-44.0	-48.3	-4.3	-7.2	-9.2	${f f}$
C_3H_6O	Acetone	-51.9	-53.3	-1.4	2.5	2.7	f
C_3H_6O	Propanal	-45.5	-49.3	-3.8	-2.5	-2.8	f
${ m C_3H_6O} \ { m C_3H_8O}$	Trimethylene oxide Isopropanol	$-19.3 \\ -65.1$	$-26.7 \\ -64.0$	$-7.5 \\ 1.1$	$^{-17.9}$ $^{-0.3}$	$-6.3 \\ -2.9$	$_{\mathbf{f}}^{\mathbf{f}}$
C_3H_8O	Propanol	-61.2	-63.6	-2.4	-6.3	-9.4	f
C_4H_4O	Furan	-8.3	-4.0	4.3	-0.3	11.3	f
C_4H_6O	2-Butenal	-24.0	-27.1	-3.1	-3.4	-1.6	$ar{\mathbf{f}}$
C_4H_6O	Divinyl ether	-3.3	-0.7	2.5	0.5	4.1	f
C_4H_8O	2-Butanone CH ₃ eclipsed	-57.0	-57.4	-0.4	2.9	1.9	Z
C₄H ₈ O	Butanal		-54.7	-5.8	-3.9	-6.2	f
C_4H_8O	Tetrahydrofuran	-44.0	-51.3	-7.3	-15.3	-14.4	f
$C_4H_{10}O \\ C_4H_{10}O$	Diethyl ether t-Butanol	$-60.3 \\ -74.7$	$-59.6 \\ -71.3$	$\begin{array}{c} 0.7 \\ 3.4 \end{array}$	$\begin{array}{c} 0.1 \\ 10.4 \end{array}$	$-4.7 \\ 3.1$	f f
C_5H_8O	Cyclopentanone	-14.7 -46.0	$-71.3 \\ -37.2$	8.8	9.6	9.9	f
$C_5H_{10}O$	Tetrahydropyran		-57.4	-4.0	-8.6	-13.7	f
$C_5H_{12}O$	3-Pentanol	-75.2	-73.8	1.4	1.7	-5.5	f
C_6H_5O	Phenoxy (-)	-40.5	-44.1	-3.6	-1.7	-0.5	0
C_6H_6O	Phenol	-23.0	-21.7	1.4	-3.6	0.8	${f f}$
$C_6H_{10}O$	Cyclohexanone	-54.0	-60.2	-6.1	-6.1	-9.3	f
C_7H_6O	Benzaldehyde		-10.6	-1.8	-0.8	-0.1	f
${ m C_7H_8O} \ { m C_{10}H_8O}$	Anisole 1-Naphthol	$-17.3 \\ -5.1$	$-14.6 \\ -4.1$	2.7 1.0	-0.4	$\frac{1.4}{2.9}$	f
$C_{10}H_8O$	2-Naphthol	-3.1 -10.1	-4.1	5.5	$-1.7 \\ 0.4$	6.3	${f f}$
O_2	Oxygen (singlet)	22.0	18.4	-3.6	-9.9	-21.3	aa
O_2	Oxygen (triplet)	0.0	-4.2	-4.2	-15.3	-27.0	b
H_2O_2	Hydrogen peroxide	-32.5	-40.8	-8.3	-5.7	-2.8	d
CO_2	Carbon dioxide	-94.1	-85.0	9.0	19.0	14.2	d
CHO ₂	Formic acid anion	-106.6	-110.9	-4.3	5.0	-2.8	0
CH_2O_2	Formic acid trans Glyoxal	-90.5	-94.4	-3.9	-2.1	-6.9	c
$egin{array}{l} \mathrm{C_2H_2O_2} \ \mathrm{C_2H_3O_2} \end{array}$	Acetic acid anion	$-50.7 \\ -122.5$	$-64.3 \\ -119.7$	$\begin{array}{c} -13.6 \\ 2.8 \end{array}$	$-10.7 \\ 12.5$	$-8.0 \\ 7.1$	f
$C_2H_4O_2$	Acetic acid	-122.3 -103.3	-102.0	1.3	$\overset{12.5}{2.2}$	0.3	o f
$C_2H_4O_2$	Methyl formate	-83.6	-87.0	-3.4	-1.9	-7.5	n
$C_2H_6O_2$	Dimethyl peroxide	-30.1	-34.1	-4.0	1.8	3.1	f
$C_2H_6O_2$	Ethylene glycol	-93.9	-95.2	-1.3	-12.2	-13.6	${f f}$
C_3O_2	Carbon suboxide	-22.4	-24.0	-1.6	-1.1	7.8	f
$C_3H_4O_2$	beta-Propiolactone	-67.6	-70.6	-3.0	-3.3	-3.4	f
$C_3H_6O_2$ $C_3H_6O_2$	Propionic acid Methyl acetate	$-108.4 \\ -97.9$	$-106.4 \\ -94.1$	2.0 3.8	2.1 4.3	$-0.7 \\ 1.5$	f
$C_3H_8O_2$	Dimethoxymethane	-83.3	$-34.1 \\ -87.4$	-4.1	-11.1	-20.0	n f
$C_4H_6O_2$	Diacetyl	-78.2	-83.4	-5.2	-0.6	3.3	f
$C_4H_{10}O_2$	Diethyl peroxide	-46.1	-40.0	6.1	7.0	7.7	f
$C_5H_8O_2$	Acetylacetone	-90.5	-91.6	-1.1	6.3	4.8	f
$C_6H_4O_2$	p-Benzoquinone	-29.3	-31.5	-2.3	-3.5	4.2	f
$C_7H_6O_2$	Benzoic acid	-70.1	-66.2	3.9	2.4	$\frac{2.1}{2.7}$	f
0^3	Ozone Malaic anhydride	$34.1 \\ -95.2$	$51.1 \\ -90.1$	17.0 5.1	14.4	$\begin{array}{c} 3.7 \\ 18.8 \end{array}$	ď
$\mathrm{C_4H_2O_3} \\ \mathrm{C_4H_6O_3}$	Maiaic annydride Acetic anhydride	-95.2 -137.1	-90.1 -135.0	$\frac{5.1}{2.1}$	$\begin{array}{c} 6.7 \\ 4.5 \end{array}$	18.8 5.4	f f
$C_2H_2O_4$	Oxalic acid	-175.0	-174.0	1.0	-0.1	$\frac{3.4}{2.6}$	f
H_2N	Amidogen	45.5	35.4	-10.1	-8.5	-7.1	d
H_3N	Ammonia	-11.0	-3.1	7.9	4.6	3.7	d
H_4N	Ammonium (+)	155.0	153.4	-1.6	9.6	-4.4	þЬ
CN	Cyanide	104.0	128.0	24.0	25.3	$10.4 \\ -1.3$	d d
CHN	Hydrogen cyanide	32.3	33.0	0.7	3.0	-1.3	u

Table I. (continued)

Empirical			nt of ation		Differer	nce	
formula	Chemical name	Exp.	Calc.	MNDO-PM3	MNDO	AM1	Footnote
CH_4N	Methyl amine anion	30.5	21.7	-8.8	-7.0	2.6	0
CH_4N	CH_3 —NH	37.0	27.3	-9.7	-4.3	-2.9	k
CH ₄ N	$CH_2 - NH_2 (+)$	178.0	185.3	7.3	8.8	-1.7	k
CH ₅ N	Methylamine	-5.5	-5.2	0.3	-2.1	-1.9	f
C_2H_3N	Acetonitrile	20.9	23.3	2.4	-1.7	-1.6	cc
C_2H_3N	Methyl isocyanide	35.6	54.7	19.1	24.8	14.8	cc
C_2H_5N	Ethyleneimine (Azirane)	30.2	31.6	1.4	-5.1	2.9	f
${ m C_2H_6N} \ { m C_2H_7N}$	Me_2N (-) Ethylamine	$24.7 \\ -11.4$	$7.8 \\ -12.5$	$^{-16.9}_{-1.1}$	-16.2	-2.3	0
C_2H_7N	Dimethylamine	-6.6	$-12.5 \\ -7.9$	$-1.1 \\ -1.3$	$^{-1.8}_{0.0}$	$-3.8 \\ 1.0$	f f
C_3H_3N	Acrylonitrile	44.1	50.2	6.1	-0.3	0.9	f
C_3H_5N	Ethyl cyanide	12.1	18.5	6.4	1.7	0.9	n
C_3H_9N	Isopropylamine	-20.0	-18.8	1.3	3.7	0.7	f
C_3H_9N	Trimethylamine	-6.6	-10.9	-4.3	3.8	4.9	f
C_3H_9N	n-Propylamine	-16.8	-17.9	-1.1	-1.4	-5.3	f
C_4H_5N	Pyrrole	25.9	27.1	1.2	6.6	14.0	\mathbf{f}
C_4H_9N	Pyrrolidine		-12.0	-11.2	-15.0	-9.6	\mathbf{f}
$C_4H_{11}N$	<i>t</i> -Butylamine	-28.9	-25.2	3.7	13.4	7.7	${f f}$
C_5H_5N	Pyridine	34.6	30.4	-4.2	-5.8	-2.6	f
C_6H_7N	Aniline	20.8	21.3	0.5	0.9	-0.3	f
C ₇ H ₅ N	Phenyl cyanide	51.5	58.5	7.0	0.5	1.9	f
NO	Nitrogen oxide	21.6	14.8	-6.8	-21.7	-20.4	ď
NO CNO	NO (+) NCO	237.0	238.2	1.2	-6.4	-8.8	d
CHNO	Hydrogen isocyanate	$38.1 \\ -24.3$	$32.4 \\ -15.3$	$\begin{array}{c} -5.7 \\ 9.0 \end{array}$	-1.0	0.8	d
CH ₃ NO	Formamide	$-24.5 \\ -44.5$	-15.3 -41.8	$\frac{9.0}{2.7}$	13.5 4.3	$\begin{array}{c} 9.1 \\ -0.3 \end{array}$	$rac{ ext{d}}{ ext{dd}}$
C_3H_7NO	Dimethylformamide		-44.6	1.2	8.4	8.9	f au
NO_2	Nitrogen dioxide	7.9	-1.0	-8.9	-12.5	-22.9	d
NO_2	Nitrogen dioxide (+)	233.0	208.4	-24.6	7.6	-11.9	k
HNO_2	Nitrous acid, trans	-18.8	-14.9	3.9	-21.9	-20.6	d
CH_3NO_2	Nitromethane	-17.9	-15.9	2.0	21.2	8.0	$\bar{\mathbf{f}}$
CH_3NO_2	Methyl nitrite		-9.1	6.7	-20.9	-16.0	f
$C_2H_5NO_2$	Nitroethane	-23.5	-20.9	2.6	20.2	6.6	f
$C_2H_5NO_2$	Glycine	-93.7	-96.0	-2.3	-2.0	-7.8	${f f}$
$C_3H_7NO_2$	1-Nitropropane	-30.0	-26.8	3.2	21.9	6.2	f
C ₃ H ₇ NO ₂	2-Nitropropane	-33.2	-27.1	6.1	26.9	11.6	f
$C_3H_7NO_2$	Alanine		-101.1	10.3	12.7	6.4	f
$C_4H_9NO_2$ $C_4H_9NO_2$	1-Nitrobutane 2-Nitrobutane	$-34.4 \\ -39.1$	-32.1	$\begin{array}{c} 2.3 \\ 7.2 \end{array}$	21.6	4.0	$egin{array}{c} \mathbf{f} \\ \mathbf{f} \end{array}$
$C_6H_5NO_2$	Nitrobenzene	-35.1 15.4	$-31.9 \\ 14.5$	-0.9	$\begin{array}{c} 29.0 \\ 20.4 \end{array}$	$\frac{10.9}{9.9}$	
$C_7H_7NO_2$	2-Nitrotoluene	9.3	4.7	-4.6	$20.4 \\ 20.6$	7.9	n ee
NO_3	Nitrate anion	-74.7	-93.3	-18.6	7.7	-14.2	ff
NO_3	Nitrate radical	17.0	22.9	5.9	27.9	16.2	d
HNO_3	Nitric acid	-32.1	-38.0	-5.9	14.6	-5.4	ď
CH_3NO_3	Methyl nitrate	-29.1	-32.4	-3.3	16.7	-2.2	\mathbf{f}
$C_2H_5NO_3$	Ethyl nitrate	-36.8	-36.4	0.5	18.9	-0.4	f
$C_2H_5NO_3$	Nitroethanol	-75.1	-61.4	13.7	29.0	10.5	gg
N_2	Nitrogen	0.0	17.6	17.6	8.3	11.2	b
H_2N_2	Diazene	36.0	37.8	1.8	-4.1	-4.5	hh
H_4N_2	Hydrazine	22.8	20.6	-2.1	-8.6	-9.1	d
CH_2N_2	Diazomethane	71.0	61.0	-10.0	-3.7	-8.4	f
${ m CH_2N_2} \ { m CH_6N_2}$	N=N-CH ₂₋	79.0	91.7	12.7	-6.6	7.8	ii
$C_1 I_6 I_2$ $C_2 N_2$	Methylhydrazine Cyanogen	$\frac{22.6}{73.8}$	17.9 77.5	$\begin{array}{c} -4.7 \\ 3.7 \end{array}$	$-8.2 \\ -7.2$	$-5.3 \\ -5.9$	f f
$C_2H_8N_2$	1,1-Dimethylhydrazine	$\frac{75.8}{20.0}$	15.1	-4.9	$-7.2 \\ -1.9$	-3.9 -4.0	f
$C_2H_8N_2$	1,2-Dimethylhydrazine	$\begin{array}{c} 20.0 \\ 22.0 \end{array}$	$15.1 \\ 15.6$	-4.9 -6.4	-7.0	-0.5	\mathbf{f}
C_4N_2	Dicyanoacetylene	126.5	128.1	1.6	-15.1	-6.7	\mathbf{f}
$C_4H_2N_2$	Fumaronitrile	81.3	86.0	4.7	-6.6	-5.3	f
$C_4H_4N_2$	Pyridazine	66.5	56.0	-10.5	-22.9	-11.2	f
$C_4H_4N_2$	Pyrimidine	47.0	38.0	-9.0	-12.0	-3.1	f
$C_4H_4N_2$	Pyrazine	46.9	39.3	-7.6	-9.1	-2.7	f
$C_6H_{14}N_2$	azo-n-Propane	8.6	5.8	-2.8	-6.0	4.3	ij
N_2O	Nitrous oxide	19.6	25.4	5.8	11.4	8.9	d

Table I. (continued)

T0		Hea forma			Differer	ıce	
Empirical formula	Chemical name	Exp.	Calc.	MNDO-PM3	MNDO	AM1	Footnote
$C_2H_6N_2O_2$	n-Nitrodimethylamine	-3.2	1.3	4.5	25.5	24.9	n
$C_6H_6N_2O_2$	Para nitroaniline	16.2	10.7	-5.5	19.4	5.3	f
N_2O_3	Dinitrogen trioxide	19.8	23.7	3.9	-6.1	2.1	d
N_2O_4	Dinitrogen tetroxide	2.2	8.3	6.2	27.8	22.9	d aa
$CH_2N_2O_4$ $C_2H_4N_2O_4$	Dinitromethane	$-13.3 \\ -24.1$	$-11.9 \\ -17.4$	$\begin{array}{c} 1.4 \\ 6.7 \end{array}$	$\frac{41.2}{47.3}$	$\begin{array}{c} 16.2 \\ 21.5 \end{array}$	gg
$C_2H_4N_2O_4$ $C_2H_4N_2O_4$	1,2-Dinitroethane	-24.1 -22.9	-17.4 -19.6	3.3	42.9	12.9	gg gg
$C_3H_6N_2O_4$	1,1-Dinitropropane	-25.9	-22.0	3.9	45.3	16.7	f
$C_3H_6N_2O_4$	1,3-Dinitropropane	-31.6	-26.6	5.0	44.5	12.8	gg
$C_3H_6N_2O_4$	2,2-Dinitropropane		-23.0	4.0	50.2	21.5	gg
$C_4H_8N_2O_4$	1,1-Dinitrobutane	-34.1	-27.2	6.9	48.9	18.1	gg
$C_4H_8N_2O_4$	1,4-Dinitrobutane	-38.9	-32.7	6.2	45.8	11.2	gg
$C_6H_4N_2O_4$	m-Dinitrobenzene	11.3	9.2	-2.1	43.9	21.8	f
N_2O_5	Dinitrogen pentoxide	2.7	-19.0	-21.7	31.5	3.0	d
N_3 HN_3	Azide Hydrazoic acid	$\frac{99.0}{70.3}$	$106.0 \\ 75.3$	$7.0 \\ 5.0$	$\frac{3.4}{2.8}$	$\begin{array}{c} 8.4 \\ 5.5 \end{array}$	у
CHN_3O_6	Trinitromethane	-3.2	-4.7	-1.5	61.9	$\frac{5.5}{28.2}$	cc kk
$C_2H_3N_3O_6$	1,1,1-Trinitroethane	-12.4	-10.0	$\frac{1.3}{2.4}$	68.8	33.5	gg
$C_3H_5N_3O_6$	1,1,1-Trinitropropane	-18.4	-8.1	10.3	76.0	36.9	gg gg
$C_7H_5N_3O_6$	2,4,6-Trinitrotoluene		3.3	-9.6	61.8	28.4	f
$C_3H_5N_3O_9$	Glycerol trinitrate	-88.6	-76.6	12.0	80.2	17.4	\mathbf{f}
CH_2N_4	[1 - H]Tetrazole	79.9	86.3	6.3	-26.1	29.7	f
CN_4O_8	Tetranitromethane	18.5	6.4	-12.1	76.5	34.6	gg
$C_5H_8N_4O_{12}$	Pentaerythritol tetranitrate		-98.2	-5.7	102.9	-2.8	f
S	S (-)	16.8	20.7	3.9	29.8	29.8	d
HS HS ⁻	HS (-) Ion	-17.1	-15.9	1.2	24.0	25.6	11
HS H ₂ S	Hydrogen sulfide	$33.3 \\ -4.9$	$38.2 \\ -0.9$	4.9	4.0 8.7	5.0	d a
CS	Hydrogen sulfide Carbon sulfide	$-4.9 \\ 67.0$	$-0.9 \\ 97.3$	$\begin{array}{c} 4.0 \\ 30.3 \end{array}$	37.5	$\frac{8.9}{32.9}$	d d
CH ₄ S	Thiomethanol	-5.4	-5.5	-0.1	-1.9	$\frac{32.9}{2.1}$	f
C_2H_4S	Thiirane	19.7	28.8	9.1	-0.9	12.6	f
C_2H_6S	Thioethanol	-11.0	-8.7	2.3	-2.4	2.4	$\hat{\mathbf{f}}$
C_2H_6S	Dimethyl thioether	-8.9	-11.0	-2.1	-8.1	-0.9	f
C_3H_6S	Thietane	14.6	7.5	-7.1	-19.7	-6.6	${f f}$
C_3H_8S	Isopropanthiol	-18.1	-13.3	4.8	1.9	5.2	d
C_3H_8S	1-Propanthiol	-16.2	-14.1	2.1	-1.9	0.8	f
C ₄ H ₄ S	Thiophene	$27.6 \\ -8.1$	$30.7 \\ -10.4$	$\begin{array}{c} 3.1 \\ -2.3 \end{array}$	$-1.1 \\ -16.0$	9.1	f f
C_4H_8S $C_4H_{10}S$	Tetrahydrothiophene Butanethiol	$-8.1 \\ -21.1$	$-10.4 \\ -19.5$	$-2.3 \\ 1.6$	-16.0 -1.8	$-7.9 \\ -1.1$	ı d
C_6H_6S	Thiophenol	26.9	$\frac{13.3}{27.7}$	0.8	-3.5	2.8	f
$C_6H_{12}S$	Cyclohexanethiol	-23.0	-20.6	2.4	-2.7	-4.2	m
SO	Sulfur monoxide (triplet)	1.2	-13.6	-14.8	3.0	20.8	d
CSO	Carbon oxysulfide	-33.8	-23.8	10.1	11.0	20.1	\mathbf{f}
C_2H_4SO	Thiolacetic acid	-43.5	-38.9	4.6	2.1	9.0	ii
CHNS	Hydrogen isothiocyanate	30.0	39.5	9.5	13.4	12.0	d
C_2H_3NS	Methyl isothiocyanate	38.3	36.1	-2.2	-1.4	4.3	cc
C_2H_3NS	Methyl thiocyanate	$\begin{array}{c} 27.1 \\ 30.8 \end{array}$	$28.3 \\ 28.7$	$\begin{array}{c} 1.2 \\ -2.1 \end{array}$	-4.0	2.9	CC
S_2 H_2S_2	Sulfur dimer Hydrogen disulfide	3.7	8.6	-2.1 -2.9	$\frac{4.0}{2.8}$	$\frac{4.0}{1.2}$	d cc
CS_2	Carbon disulfide	28.0	36.9	8.9	8.9	18.7	ď
$C_2H_6S_2$	Ethanedithiol-1,2	-2.2	1.2	3.4	-4.1	2.9	ď
$C_2H_6S_2$	2,3-Dithiabutane	-5.6	-4.8	0.8	-9.2	-1.7	$ar{\mathbf{f}}$
$C_2N_2S_2$	$S_2(CN)_2$	82.3	78.5	-3.8	-11.7	-3.9	${f f}$
H_2S_3	Hydrogen trisulfide	7.3	26.4	19.1	1.1	-0.7	cc
$C_2H_6S_3$	2,3,4-Trithiapentane	0.0	-6.9	-6.9	-13.2	-6.0	mm
$C_3H_4S_3$	1,3-Dithiolan-2-thione	22.7	40.4	17.7	-11.3	15.8	d
S ₄	Sulfur tetramer	34.8	55.2	20.4	11.0	11.0	d
H2S4 $ H2S5$	Hydrogen tetrasulfide Hydrogen pentasulfide	$10.6 \\ 13.8$	$\begin{array}{c} -0.3 \\ 2.0 \end{array}$	-10.9 -11.9	$\begin{array}{c} 0.0 \\ 66.2 \end{array}$	$-1.7 \\ -0.7$	cc cc
S_8	S ₈	$\frac{13.6}{24.0}$	18.2	-5.8	-0.7	-0.7	d
F F	Fluoride (-)	-61.0	-31.2	29.8	43.9	64.4	d
HF	Hydrogen fluoride	-65.1	-62.8	2.4	5.4	-9.1	ď
CF	Fluoromethylidyne	61.0	54.0	-7.0	-22.4	-23.0	d

Table I. (continued)

Empirical			at of ation		Differe	nce	
formula	Chemical name	Exp.	Calc.	MNDO-PM3	MNDO	AM1	Footnote
CH_2F	Fluoromethyl (+)	200.3	200.3	0.0	-17.5	-19.9	nn
CH_3F	Fluoromethane	-56.8	-53.8	3.0	-4.1	-4.2	00
$\mathrm{CH_3F}$	Trifluoromethane (+)	233.3	228.2	-5.1	-10.1	-29.3	nn
C_2HF	Fluoroacetylene	30.0	18.1	-11.9	-14.3	-14.8	d
C_2H_3F	Fluoroethylene	-32.5	-28.6	3.9	-2.0	-1.5	pp
C_2H_4F	CH_3CHF (+)	166.0	172.9	6.9	-1.3	-8.9	qq
$\mathrm{C_2H_5F}$	Fluoroethane	-62.9	-60.2	2.7	-2.2	-3.4	f
$\mathrm{C_3H_7F}$	2-Fluoropropane	-69.4	-66.8	2.6	2.8	-0.4	f
$\mathrm{C_6H_5F}$	Fluorobenzene		-20.2	7.5	2.5	4.4	f
OF	FO	26.1	21.2	-4.9	-4.4	-3.5	rr
HOF	Hypofluorous acid	-23.5	-29.2	-5.7	4.9	0.9	ss
COF	COF	-42.3	-55.0	-12.7	-7.7	-13.6	g
CHOF	HCOF	-90.0	-88.8	1.2	1.2	-2.9	d
C_2H_3OF	Acetyl fluoride	-106.4	-98.7	7.7	9.9	7.6	f
$C_7H_5O_2F$	p-Fluorobenzoic acid	-118.4	-108.9	9.5	5.3	6.4	f
CNF	Cyanogen fluoride	8.6	6.5	-2.1	-10.9	-13.0	d
NOF	Nitrosyl fluoride	-15.7	-3.3	12.4	-9.1	-10.8	d
SF	SF	-4.1	-11.6	-7.5	4.8	12.5	d
\mathbf{F}_2	Fluorine	0.0	-21.7	-21.7	7.3	-22.5	b
CF_2	Difluoromethylene Difluoromethyl (+) Difluoromethane	-45.0	-49.1	-4.1	-20.2	-23.0	g
CHF ₂	Diffuoromethyl (+)	142.4	145.5	3.1	-10.0	-20.5	nn
CH_2F_2	Diffuoromethane	-108.1	-103.8	4.4	-3.6	-8.0	f
CH_2F_2	Difluoromethane (+)	185.2	180.4	-4.8	-6.8	-33.6	nn
C_2F_2	Difluoroacetylenegem-Difluoroethylene	0.U	-11.6	-16.6	-26.0	-24.6	d f
$C_2H_2F_2$	gem-Dilluoroethylene	-80.5 107.0	$-73.0 \\ 122.2$	7.5 15.2	$-3.1 \\ 9.6$	$-2.2 \\ -1.7$	
$C_2H_3F_2$	0113012(1)	-118.8	-111.9	6.9	9.6 5.4	$-1.7 \\ 0.2$	$\mathbf{q}\mathbf{q}$
$C_2H_4F_2$	1,1-Difluoroethane o-Difluorobenzene	-116.8 -70.3	-63.1	7.2	-0.3	3.9	f f
$\mathrm{C_6H_4F_2} \ \mathrm{C_6H_4F_2}$	<i>m</i> -Difluorobenzene		-63.1	10.7	$-0.3 \\ 3.1$	6.1	f
$C_6H_4F_2$	p-Difluorobenzene	-73.3	-63.3	10.0	$\frac{3.1}{2.3}$	5.3	f
OF_2	Difluorine oxide	5.9	-4.8	-10.7	12.3	4.6	d
COF_2	Carbonyl fluoride		-141.6	11.1	14.1	6.4	f
NF ₂	•	-29.5	-31.0	-1.5	-14.1	4.3	uu
NF_2	NF ₂ (-) NF ₂	10.1	11.9	1.8	-24.9	-16.5	ď
$N_2 \tilde{F}_2$	cis-Difluorodiazene	16.4	28.0	11.6	-18.6	4.4	ď
N_2F_2	trans-Difluorodiazene Sulfur difluoride	19.4	29.2	9.8	-17.0	11.9	ď
SF ₂	Sulfur difluoride	-70.9	-91.9	-21.0	18.0	28.4	ď
S_2F_2	FSSF	-80.4	-73.8	6.6	39.1	49.7	d
S_2F_2	SSF ₂	-95.9	-56.1	39.8	111.4	110.0	d
CF_3	Trifluoromethyl (-)	-163.4	-178.8	-15.4	-15.4	-15.4	uu
CF_3	Trifluoromethyl	-112.4	-132.1	-19.7	-24.7	-30.4	d
CF_3	Trifluoromethyl (+)	99.3	99.6	0.3	1.6	-17.2	nn
CHF_3	Trifluoromethane	-166.3	-162.0	4.3	2.5	-6.2	f
CHF_3	Trifluoromethane (+)	151.9	149.4	-2.5	6.8	-30.7	nn
C_2HF_3	Trifluoroethylene	-117.3	-121.5	-4.2	-13.8	-13.3	f
$C_2H_2F_3$	$\mathrm{CF_{3}CH_{2}}.$	-123.6	-131.2	-7.6	-6.0	-7.8	vv
$C_2H_2F_3$	$CF_3CH_2(+)$	114.0	122.3	8.3	7.2	0.4	qq
$C_2H_2F_3$	$CH_2F.CF_2$ (+)	81.0	92.7	11.7	1.4	-11.9	qq
$C_2H_3F_3$	1,1,1-Trifluoroethane	-178.0	-172.3	5.7	13.6	5.4	f
$C_7H_5F_3$	Trifluoromethylbenzene	-143.2	-134.9	8.3	15.7	8.8	f
$C_2HO_2F_3$	Trifluoroacetic acid	-255.0	-244.0	11.0	16.9	12.3	f
NF_3	Nitrogen trifluoride	-31.6	-24.4	7.2	-2.6	-8.4	d
C_2NF_3	Trifluoroacetonitrile	-118.4	-115.1	3.3	5.2	-1.1	d
H_4F_4	Hydrogen fluoride tetramer	-282.9	-280.2	2.7	38.6	-30.2	d
CF ₄	Carbon tetrafluoride	-223.3	-225.1	-1.8	9.1	-2.4	f
C_2F_4	Tetrafluoroethylene	-157.9	-168.2	-10.3	-17.0	-16.9	f
COF ₄	Trifluoromethyl hypofluorite	-182.8	-187.3	-4.5	19.5	$5.1_{-7.8}$	d
N_2F_4	Tetrafluorohydrazine	$-2.0 \\ -192.5$	$-0.5 \\ -188.6$	$\frac{1.5}{3.9}$	-17.7	7.8	d f
C_6HF_5	Pentafluorobenzene Hexafluoroethane	-192.5 -321.2	-188.6 -317.8	3.9 3.4	$-9.2 \\ 21.6$	$\begin{array}{c} 0.5 \\ 8.0 \end{array}$	f d
$egin{array}{c} \mathrm{C_2F_6} \ \mathrm{C_6F_6} \end{array}$	Hexafluoroetnane Hexafluorobenzene	-321.2 -228.5	-317.8 -229.3	-0.8	-14.9	-2.6	a f
C_6 C_3 OF_6	Perfluoroacetone	-226.3 -325.2	-229.3 -340.0	-14.8	-14.9 3.3	-2.6 -6.4	ww
<u></u>	1 CITICOI OACEBOILE	020.2	0-10.0	17.0	0.0	0.4	VV VV

Table I. (continued)

			nt of ation		Differer	ıce	
Empirical formula	Chemical name	Exp.	Calc.	MNDO-PM3	MNDO	AM1	Footnote
SF ₆	Sulfur hexafluoride	-291.4	-304.6	-13.2	320.7	294.0	d
C_4F_8	Perfluorocyclobutane	-369.5	-379.2	-9.7	5.8	2.3	f
Cl	Chloride (-)	-55.9	-51.2	4.7	1.2	18.2	d
HCl	Hydrogen chloride	-22.1	-20.5	1.6	6.8	-2.5	d
CCl	Chloromethylidyne	111.3	105.3	-6.1	-3.9	-10.2	g
CHCl	Chloromethylene	80.0	83.2	3.2	0.9	-2.3	ď
CH ₃ Cl	Methyl chloride	-20.0	-14.7	5.3	-2.5	1.0	d
C ₂ HCl	Chloroacetylene	51.1	46.6	-4.5	1.5	$-3.3 \\ -2.7$	d d
C ₂ H ₃ Cl	Chloroethylene Chloroethane	$8.6 \\ -26.8$	$\begin{array}{c} 9.7 \\ -22.1 \end{array}$	1.1 4.7	$-3.7 \\ -2.0$	-2.7 0.6	a ff
C_2H_5Cl HOCl	Hypochlorous acid	-26.8 -17.8	-22.1 -34.3	-16.5	$-2.0 \\ 2.1$	-4.0	d
COCI	COCI	-17.8 -15.0	-34.3 -16.1	-1.1	-0.6	-0.4	d
C ₇ H ₅ OCl	Benzoyl chloride	-26.1	-18.4	7.7	2.7	10.4	f
CNCl	Cyanogen chloride	31.6	31.6	0.0	1.7	-7.0	d
NOCI	Nitrosyl chloride	12.4	4.5	-7.9	-16.6	-7.7	ď
SCl	SC1	41.8	28.6	-13.2	-25.3	-25.9	
FCl	Chlorine fluoride	-12.1	-21.7	-9.6	20.3	1.6	g d
HFCl	Hydrogen chloride fluoride (-).		-137.0	5.0	15.8	15.9	xx
CH_2FCl	Fluorochloromethane	-62.6	-57.5	5.0	-5.4	-2.7	d
COFCl	Carbonyl fluoride chloride	-102.0	-93.6	8.4	9.8	10.0	d
CHF_2Cl	Difluorochloromethane	-115.6	-109.7	5.9	1.2	1.4	\mathbf{f}
CF ₃ Cl	Trifluorochloromethane	-169.2	-169.3	-0.1	9.6	6.6	d
Cl_2	Chlorine	0.0	-11.6	-11.6	-10.7	-14.2	b
HCl_2	Hydrogen dichloride (–)	-142.0	-111.0	31.0	47.2	47.6	xx
CCl_2	Dichloromethylene	57.0	57.5	0.5	0.6	-8.5	d
$\mathrm{CH_2Cl_2}$	Dichloromethane	-23.0	-17.1	5.8	-5.1	-2.9	f
$C_2H_2Cl_2$	gem-Dichloroethylene	0.6	4.0	3.4	-3.2	-3.9	d
$C_2H_2Cl_2$	cis-Dichloroethylene	1.0	4.0	3.0	-3.6	-4.3	d
$C_2H_2Cl_2$	trans-Dichloroethylene	1.2	3.6	2.4	-4.9	-4.6	ď
$C_2H_4Cl_2$ $C_2H_4Cl_2$	1,1-Dichloroethane	-30.9	-26.5	4.4	-1.6	-0.2	ff
$C_{6}H_{4}Cl_{2}$	1,2-Dichloroethane o-Dichlorobenzene	$-31.0 \\ 7.1$	$-24.7 \\ 11.1$	$\begin{array}{c} 6.3 \\ 4.0 \end{array}$	$-5.4 \\ 1.5$	$\begin{array}{c} -2.8 \\ 2.1 \end{array}$	ff f
$C_6H_4Cl_2$	m-Dichlorobenzene	6.1	10.2	4.1	0.5	$\frac{2.1}{2.1}$	f
$C_6H_4Cl_2$	p-Dichlorobenzene	5.3	10.2	4.8	1.1	$\frac{2.1}{2.7}$	f
OCl_2	Chlorine monoxide	25.0	-16.2	-41.2	6.3	-5.5	ď
$COCl_2$	Carbonyl chloride	-52.6	-49.1	3.5	0.0	5.3	ď
SCl_2	Sulfur dichloride	-4.2	-10.9	-6.7	-19.7	-20.7	ď
S_2Cl_2	CISSCI	-4.0	-7.7	-3.7	-16.8	-17.6	ď
$CHFCl_2$	Fluorodichloromethane	-67.7	-62.0	5.7	-1.5	2.5	dd
CF_2Cl_2	Difluorodichloromethane	-117.5	-116.1	1.4	7.3	10.5	d
CCl_3	Trichloromethyl	21.0	1.6	-19.4	-20.5	-25.7	g
CHCl ₃	Chloroform	-24.7	-20.9	3.8	-4.3	-4.3	$\mathbf{d}\mathbf{d}$
C_2HCl_3	Trichloroethylene	-2.0	-2.3	-0.3	-4.4	-6.4	d
$C_2H_3Cl_3$	1,1,1-Trichloroethane	-35.5	-31.9	3.6	4.0	3.6	f
CFCl ₃	Fluorotrichloromethane	~69.0	-67.3	1.7	3.8	8.1	d
CCl ₄	Carbon tetrachloride	-22.9	-26.0	-3.1	-2.6	-5.2	d
C ₂ Cl ₄	Tetrachloroethylene	-2.7	-8.1	-5.4	-5.3	-9.7	f
C_2Cl_6	Hexachloroethane	-34.5	-36.5	-2.0	7.1	-1.3	f
C_6Cl_6 Br	Hexachlorobenzene	-8.6	-9.1	-0.5	6.0	0.8	f
HBr	Bromide (-) Hydrogen bromide	$-52.3 \\ -8.7$	$-56.2 \\ 5.3$	$\begin{array}{c} -3.9 \\ 14.0 \end{array}$	$14.8 \\ 12.4$	$31.9 \\ -1.8$	d d
HBr	HBr (+)	$\frac{-8.7}{261.1}$	5.3 274.7	14.0 13.6	12.4 16.8	$-1.8 \\ -12.3$	
CBr	Bromomethylidyne	125.9	138.4	13.6 12.5	1.6	$-12.3 \\ 0.9$	уу
CH ₃ Br	Bromomethane	-9.1	-2.0	7.1	-1.3	$\frac{0.9}{2.9}$	$_{\mathbf{f}}^{\mathbf{g}}$
C_2H_3Br	Bromoethylene	18.7	23.8	5.1	-2.9	-0.8	\mathbf{f}
C_2H_5Br	Bromoethane	-15.2	-11.4	3.8	-1.8	2.1	f
C_3H_5Br	3-Bromopropene	10.9	15.3	4.4	-2.1	1.5	ZZ
C_3H_7Br	1-Bromopropane	-20.5	-16.7	3.8	-1.5	0.6	f
C_3H_7Br	2-Bromopropane	-23.5	-20.9	2.6	2.8	5.6	aaa
C_6H_5Br	Bromobenzene	25.2	31.0	5.8	-1.3	1.5	\mathbf{f}
HOBr	Hypobromous acid COBR	-20.0	-33.9	-13.9	-2.7	-4.7	bbb
COBr		20.5	-10.2	-30.7	-28.8	-25.6	

Table I. (continued)

Empirical			at of ation		Differer	nce	
formula	Chemical name	Exp.	Calc.	MNDO-PM3	MNDO	AM1	Footnote
C ₂ H ₃ OBr	Acetyl bromide	-45.6	-43.5	2.1	2.4	11.3	f
C ₇ H ₅ OBr	Benzoyl bromide	-11.6	-7.7	4.0	0.7	12.9	\mathbf{f}
CNBr NOBr	Cyanogen bromide	43.3	53.7	10.4	-3.3	-10.8	f
SBr	Nitrosyl bromide SBr	19.6 56.1	$6.6 \\ 48.3$	$^{-13.0}_{-7.8}$	$-17.8 \\ -26.7$	1.7	d
FBr	Bromine fluoride	-14.0	-21.3	$-7.8 \\ -7.3$	-26.7 8.2	$-28.0 \\ 6.8$	g d
CF₃Br	Bromotrifluoromethane	-155.1	-157.9	-2.8	8.5	10.5	d d
ClBr	Bromine chloride	3.5	-3.2	-6.7	-13.0	-14.1	ď
ClBr	Bromine chloride (+)	261.0	247.6	-13.4	4.8	-14.6	ff
CCl_3Br	Trichlorobromomethane	-9.3	-14.1	-4.8	-5.8	-5.4	f
Br_2	Bromine	7.4	4.9	-2.5	-9.1	-12.7	d
Br_2	Bromine (+)	253.5	263.0	9.5	12.5	-7.7	yy
CH P	Dibromomethylene	84.3	104.9	20.6	7.8	5.7	g
$ m CH_2Br_2 \ COBr_2$	Dibromomethane Carbonyl bromide	$-3.5 \\ -20.1$	$7.9 \\ -25.3$	11.4	-1.6	2.5	ccc
SBr_2	Sulfur dibromide	-20.1 48.0	-25.3 24.9	$^{-5.2}_{-23.1}$	$-11.5 \\ -48.2$	$\begin{array}{c} 2.3 \\ -48.5 \end{array}$	f
S_2Br_2	S_2Br_2	25.1	$\frac{24.9}{21.8}$	-23.1 -3.3	-23.6	$-46.5 \\ -23.5$	g g
$C_2F_4Br_2$	1,2-Dibromotetrafluoroethane	-189.0	-191.3	-2.3	18.6	27.8	aaa
CBr ₃	Tribromomethyl	64.7	64.2	-0.5	-35.8	-37.8	g
CHBr_3	Bromoform	4.4	17.5	13.1	-1.3	2.0	ccc
CBr ₄	Carbon tetrabromide	35.1	32.9	-2.2	-21.3	-19.2	g
I	Iodide (-)	-46.5	-64.6	-18.1	40.1	44.3	d
HI_	Hydrogen iodide	6.3	28.8	22.5	9.4	1.6	d
CI	Iodomethylidyne	144.8	145.5	0.7	7.1	6.2	g f
CH₃I	Methyl iodide	3.4	9.4	6.0	-1.5	2.3	f
C_2H_5I	Iodoethane	$^{-2.0}_{22.8}$	$\begin{array}{c} 2.1 \\ 30.2 \end{array}$	$\frac{4.1}{7.4}$	$-2.5 \\ -3.3$	$0.9 \\ -0.4$	f f
$\mathrm{C_3H_5I} \ \mathrm{C_3H_5I}$	Allyl iodide E-1-Iodo-1-propene	$\begin{array}{c} 22.8 \\ 22.3 \end{array}$	25.4	3.2	-3.3 -7.8	$-0.4 \\ -2.6$	m
C_3H_5I	Z-1-Iodo-1-propene	$\frac{22.3}{20.7}$	$29.4 \\ 29.2$	8.6	-5.4	-0.2	m
C_3H_7I	1-Iodopropane	-7.1	-3.0	4.2	-2.2	-0.7	f
C_3H_7I	2-Iodopropane	-9.8	-5.3	4.5	2.3	4.1	$\dot{\mathbf{f}}$
C_4H_9I	1-Butyl iodide	-12.0	-8.3	3.7	-2.0	-2.7	f
C_4H_9I	2-Iodo-2-methylpropane	-17.2	-12.5	4.7	10.7	8.9	m
C_6H_5I	Iodobenzene	39.4	44.7	5.3	-6.9	-1.3	m
$C_6H_{11}I$	Iodocyclohexane	-11.9	-11.7	0.2	-5.0	-8.1	m
C_7H_7I	o-Iodotoluene	31.7	38.8	7.1	-4.7	0.1	m
C_7H_7I	m-Iodotoluene	$\frac{31.9}{29.1}$	35.3 35.3	$\frac{3.4}{6.2}$	$-7.1 \\ -4.4$	-1.4	m f
$\mathrm{C_7H_7I} \ \mathrm{C_7H_7I}$	<i>p</i> -Iodotoluene Benzyl iodide	$\frac{29.1}{25.1}$	37.6	12.5	$-4.4 \\ 3.6$	$\begin{array}{c} 1.3 \\ 5.8 \end{array}$	f
COI	COI	63.5	-2.9	-66.4	-62.5	-58.8	g
C_2H_3OI	Acetyl iodide	-30.2	-29.9	0.3	3.3	9.5	m
C_3H_5OI	1-Iodo-2-propanone	-31.2	-26.5	4.7	-1.6	0.2	m
C ₇ H ₅ OI	Benzoyl iodide	2.5	8.0	5.5	2.6	11.6	m
CNI	Cyanogen iodide	53.7	63.5	9.8	-14.1	-11.1	m
NOI	Nitrosyl iodide	26.8	18.2	-8.6	-5.9	5.5	d
SI	SI	73.1	58.0	-15.1	-26.4	-28.2	g
FI	Iodine fluoride	-22.6	-8.0	14.6	13.4	13.5	ď
CF₃I	Trifluoroiodomethane	$-140.5 \\ 4.6$	-137.9	$\begin{array}{c} 2.5 \\ 6.2 \end{array}$	$12.3 \\ -11.4$	$7.9 \\ -9.2$	$f m \\ d d$
ClI BrI	Iodine chloride Iodine bromide	9.8	$10.8 \\ 15.6$	5.9	$-11.4 \\ -2.5$	-3.2 -3.8	d d
\mathbf{I}_2	Iodine Bromide	14.9	$\frac{10.0}{20.7}$	5.8	6.3	4.9	d
$\overset{\mathbf{L}_{2}}{\operatorname{CI}_{2}}$	Diiodomethylene	120.4	121.6	1.2	-15.5	1.2	g
$\widetilde{\operatorname{CH}}_2 I_2$	Dijodomethane	27.0	33.5	6.5	-10.2	-5.5	уу
$C_2H_2I_2$	E-1,2-Diiodoethene	49.6	55.0	5.4	-14.3	-5.5	m
$C_2H_2I_2$	z-1,2-Diiodoethene	49.6	60.5	11.0	-14.5	-6.1	m
$\mathrm{C_2H_4I_2}$	1,2-Diiodoethane	16.0	23.3	7.4	-4.4	-0.2	m
$C_3H_6I_2$	1,2-Diiodopropane	8.5	20.8	12.3	-1.2	1.2	f
$C_4H_8I_2$	1,2-Diiodobutane	2.7	16.1	13.4	3.7	3.5	f
$C_6H_4I_2$	o-Diiodobenzene	60.2	73.8 1.5	13.7	-15.4	-6.1	m
$egin{array}{c} ext{COI}_2 \ ext{SI}_2 \end{array}$	Carbonyl iodide Sulfur diiodide	$9.6 \\ 81.9$	$-1.5 \\ 51.6$	$-11.1 \\ -30.3$	$-15.1 \\ -52.4$	$-3.0 \\ -55.9$	g
		59.0	46.3	-30.3 -12.7	$-32.4 \\ -26.7$	-30.9	g
S_2I_2	S_2I_2	24 11	40.3	- 1 2 1	- 2n /	3111	g

Table I. (continued)

formula Chemical name Exp. Calc. MNDO-PM3 MNDO AMI Foot CH ₃ Loafron tetraiodide 108.2 102.7 −5.5 −6.13 −54.0 g Al Al (+) 218.1 279.8 61.7 −24.2 −24.2 −24.2 Al O Al AlI AlI +1 218.1 279.8 61.7 −24.2 −24.2 24.2 Al O AlO AlO −64.4 −50.9 −15.7 15.2 −19.2 21.8 f AlO AlO −64.4 −50.9 −15.7 15.2 −19.2 21.8 f AlO AlO AlO −64.4 −50.9 −15.7 15.2 −19.2 21.8 f AlO AlO AlO −16.0 −64.4 −50.9 −55.7 −15.7 −15.2 −19.2 21.1 13.3 43.4 Al AlO AlO −14.0 −15.0 −15.0 −15.0 −13.3 −14.2 11.2 −12.2 0 −14.2 <th></th> <th></th> <th>Hea form</th> <th>it of ation</th> <th></th> <th>Differer</th> <th>nce</th> <th></th>			Hea form	it of ation		Differer	nce	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Empirical formula	Chemical name	Exp.	Calc.	MNDO-PM3	MNDO	AM1	Footnote
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CHI ₂	Iodoform	50.4	60.6	10.2	-18.4	-12.6	ccc
HAI	CI_4							g
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				70.1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Alo ()						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								d
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			130.0					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AIO ₂							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
AIOF AIFO		Aluminum nituida	195.0					
AIOF AIFO	AlF	Aluminum fluoride	-63.5			-20.1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ALC (1)	100.4					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{llllllllllllllllllllllllllllllllllll$		AlF_2 (-) ion	-217.0					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		AIF (+)	-166.0					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AlOF.	AIF_2 (+) AIF_0O (-) Ion	-311 6					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AlOF ₂	AlF ₂ O	-265.0					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AlF_4	AlF ₄ (-) Ion	-476.0		6.8			d
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Aluminum chloride	-12.3					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Aluminum chloride (+)	206.0					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		AICIU	-83.2					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Aicir	-111.0					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		AlClF _o						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$AlCl_2(-)$ ion	-115.0					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$AlCl_2$	Aluminum dichloride	-67.0		-1.2			d
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$AlCl_2(+)$	115.0					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		AlCl ₂ F	-189.0					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Aluminum trichloride	-139.7					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		All	-96.1 16.9					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			10.2					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Al_2O		-28.6		-37.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Al ₂ F ₆							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H_2Si	Silylene (singlet)		72.8	11.7			ddd
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								eee
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								ggg
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								ggg
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_2H_6Si	Vinylsilane	-1.9	19.7	21.6	8.2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								ggg
C_3H_9Si Trimethylsilyl0.8 -14.9 -14.1 -16.9 -22.1 gg								hhh
$C_3H_{10}Si$ Trimethylsilane -37.4 -37.3 0.1 -6.9 -1.9 m	$C_3H_{10}Si$	Trimethylsilane	$-0.8 \\ -37.4$	$-14.9 \\ -37.3$	$-14.1 \\ 0.1$	-16.9 -6.9		ggg m

Table I. (continued)

Dan mini 1			it of ation		Differer	nce	
Empirical formula	Chemical name	Exp.	Calc.	MNDO-PM3	MNDO	AM1	Footnote
$C_4H_{12}Si$	Diethylsilane	-43.6	-32.6	11.0	-0.5	7.3	iii
$C_4H_{12}^{12}Si$	Tetramethylsilane	-55.7	-53.7	2.0	-3.4	3.6	jij
$C_5H_{12}Si$	1,1-Dimethylsilacyclobutane	-33.7	-35.6	-1.9	-14.7	-3.5	m
$C_6H_{16}Si$	Triethylsilane	-39.5	-55.4	-15.9	-24.5	-15.2	iii
$C_8H_{20}Si$	Tetraethylsilane	-64.4	-77.9	-13.5	-17.8	-7.4	iii
SiO	Silicon monoxide	-23.9	-26.0	-2.1	1.3	21.8	g f
$C_3H_{10}SiO$	Trimethylsilicon hydroxide		-115.4	4.0	-2.5	8.9	
SiO_2	Silicon dioxide	-73.0	-88.9	-15.9	50.1	5.5	d
SiF	Silicon fluoride	1.7	-20.9	-22.6	-30.5	-27.8	ff
H₃SiF	Fluorosilane	-90.0	-77.4	12.6	-6.4	4.2	kkk
SiOF	SiOF	-136.1	-107.5	28.6	56.1	30.1	g
${f SiF}_2$	Silicon difluoride	-141.2	-154.9	-13.7	-23.7	-13.4	kkk
$ m H_2SiF_2$	Difluorosilane	-189.0	-175.2	13.8	-3.5	7.5	kkk
${ m SiOF}_2$	SiOF_{2}	-231.0	-229.4	1.6	42.4	10.3	d
${f SiF}_3$	Trifluorosilyl	-245.0	-260.3	-15.3	-3.9	-22.8	ggg
$HSiF_3$	Trifluorosilane	-287.0	-280.2	6.8	1.9	6.1	d
SiF ₄	Silicon tetrafluoride	-386.0	-390.6	-4.6	15.6	4.0	kkk
SiCl	Silicon chloride	45.3	29.8	-15.5	-15.6	-18.0	ff
H₃SiCl	Chlorosilane	-32.4	-27.6	4.8	-11.5	-5.3	kkk
C_2H_7SiCl	Chlorodimethylsilane	-69.9	-63.7	6.2	-3.1	-0.1	iii
C_3H_9SiCl	Chlorotrimethylsilane	-84.6	-81.6	3.0	-2.8	-0.2	\mathbf{f}
SiOCl	SiOCl	-86.7	-59.0	27.7	44.2	28.6	g
SiCl_2	Silicon dichloride	-40.6	-49.4	-8.8	-5.7	-6.1	kkk
H_2SiCl_2	Dichlorosilane	-75.3	-69.5	5.8	-8.2	-5.4	kkk
$\mathrm{CH_4SiCl_2}$	Dichloromethylsilane	-96.0	-88.9	7.1	-1.4	-2.5	f
$C_2H_6SiCl_2$	Dichlorodimethylsilane SiOCl ₂	-109.5	-108.1	1.4	-1.8	-5.8	m
SiOCl ₂	SiOCl ₂	-167.7	-121.2	46.5	73.6	49.4	g
SiCl ₃	Trichlorosilyl	-76.0	-94.8	-18.8	-13.5	-40.0	ggg
HSiCl ₃	Trichlorosilane	-119.3	-112.7	6.6	1.4	-5.8	kkk
CH ₃ SiCl ₃	Trichloromethylsilane	-131.2	-132.9	-1.7	0.6	-12.4	m
SiCl ₄	Silicon tetrachloride	-158.4	-156.4	2.0	10.8	-12.5	d ff
SiBr	Silicon bromide	50.0	41.0	$^{-9.0}_{-0.7}$	$\begin{array}{c} 7.8 \\ -2.7 \end{array}$	$-3.0 \\ -5.8$	lll
H ₃ SiBr	Bromosilane	$^{-15.3}_{-70.0}$	$-16.0 \\ -68.5$	1.5	$\frac{-2.7}{7.7}$	-3.6	f
C ₃ H ₉ SiBr SiOBr	Trimethylbromosilane SiOBr		-66.3 -47.1	$\begin{array}{c} 1.3 \\ 24.3 \end{array}$	42.8	31.1	
	Silicon dibromide	-71.4 -9.6	$-47.1 \\ -27.4$	-17.8	$\frac{42.8}{20.8}$	3.6	g kkk
$egin{aligned} ext{SiBr}_2 \ ext{H}_2 ext{SiBr}_2 \end{aligned}$	Dibromosilane	-43.2	-47.2	-4.0	$\frac{20.8}{11.2}$	-2.6	kkk
$SiOBr_2$	SiOBr ₂	-43.2 -137.4	-94.1	43.3	86.0	60.0	
$SiOD_{2}$ $SiBr_{3}$	Silicon tribromide	-56.1	-60.8	-4.7	41.1	-9.6	g
$HSiBr_3$	Tribromosilane	-72.5	-79.6	-7.1	30.1	$\frac{3.0}{2.3}$	g lll
SiBr ₄	Silicon tetrabromide	-99.3	-107.9	-8.6	48.9	4.8	ff
SiI	Silicon iodide	76.4	71.0	-5.4	15.5	4.1	g
H₃SiI	Iodosilane	-0.5	0.9	1.4	11.5	5.4	kkk
SiOI	SiOI	-53.3	-47.9	5.4	37.7	43.3	
SiI_2	Silicon diiodide	22.0	24.0	2.0	60.1	35.5	g kkk
$\mathbf{H_2SiI_2}$	Diiodosilane	-9.1	-12.4	-3.3	32.1	14.1	d
$SiOI_2$	SiOI ₂	-99.4	-50.2	49.2	89.7	80.7	g
SiI_3	Silicon triiodide	0.5	4.7	4.2	44.9	11.9	g
$\widetilde{\mathrm{HSiI}_3}$	Triiodosilane	-17.8	-9.0	8.8	51.9	21.7	kkk
SiI_4	Silicon tetraiodide	-26.4	-14.2	12.2	68.8	28.0	d
Si_2	Silicon dimer	140.9	135.7	-5.2	74.4	-1.4	g
H_6Si_2	Disilane	17.1	17.9	0.8	5.3	-0.9	mmm
$C_6H_{18}Si_2$	Hexamethyldisilane	-85.8	-83.2	2.7	12.1	19.7	m
$C_6H_{18}Si_2O$	Hexamethyldisiloxane	-185.8	-182.8	3.0	-8.8	18.1	\mathbf{f}
$C_6H_{19}Si_2N$	Hexamethyldisilazane	-113.9	-120.8	-6.9	-9.7	-4.1	$\dot{\mathbf{f}}$
Si_2Cl_6	Hexachlorodisilane	-243.5	-229.7	13.8	30.8	1.9	mmm
Si_2Br_6	Hexabromodisilane	-182.8	-164.7	18.1	116.9	38.9	g
Si_3	Silicon trimer	152.2	152.8	0.6	15.0	32.7	g
H_8Si_3	$\mathrm{Si}_{3}\mathrm{H}_{3}$	28.9	21.7	-7.2	2.9	-4.3	ff
HP	Phosphinidene	60.6	73.4	12.8	27.9	31.4	d
H_2P	Phosphino	30.1	29.3	-0.8	1.3	6.8	d

Table I. (continued)

Emminical		Hea form:			Differer	nce	
Empirical formula	Chemical name	Ехр.	Calc.	MNDO-PM3	MNDO	AM1	Footnote
$\overline{{\rm H_3P}}$	Phosphine	1.3	0.2	-1.1	2.6	8.3	
CP	Carbon phosphide	107.5	119.6	12.1	22.1	28.7	d
CHP	Methinophosphine	35.8	46.5	10.7	6.4	14.9	d
CH_5P	Methylphosphine	-7.0	-9.5	-2.5	-7.7	2.0	nnn
C_2H_7P	Ethylphosphine	-12.0	-11.7	0.3	-9.1	-0.2	nnn
C_2H_7P	Dimethylphosphine	-15.0	-19.6	-4.6	-17.1	-3.2	nnn
C_3H_9P	Trimethylphosphine	-22.5	-29.8	-7.3	-25.7	-8.1	f
$C_4H_{11}P$	Diethylphosphine	-25.0	-23.3	1.7	-20.0	-6.5	nnn
$C_6H_{15}P$	Triethylphosphine	-11.8	-36.7	-24.9	-53.0	-37.1	\mathbf{f}
PO		-2.9	-19.5	-16.6	-18.1	7.6	g
NP	Phosphorus nitride	25.0	32.9	7.9	8.9	25.3	g d
PF	Phosphorus fluoride	-20.8	-20.4	0.4	10.9	0.0	g
POF	POF	-111.8	-124.0	-12.2	-2.4	31.8	g
PF_2	Phosphorus difluoride	-119.0	-144.4	-25.4	-19.0	11.2	g g d
PF_3	Phosphorus trifluoride	-229.1	-252.2	-23.1	-0.2	40.5	ď
PCl	Phosphorus chloride	25.6	28.9	3.3	10.8	7.3	g
POC_1	POCÎ	-64.7	-76.4	-11.7	-10.1	14.2	g
PCl_2	Phosphorus dichloride	-21.3	-40.1	-18.8	-28.1	-31.5	g
PCl_3	Phosphorus trichloride	-69.0	-88.5	-19.5	-27.4	-31.5	g g d
PBr	Phosphorus bromide	43.0	34.9	-8.1	-13.6	-17.7	\mathbf{dd}
POBr	POBr	-50.2	-59.9	-9.7	-3.7	23.0	g
PBr_2	Phosphorus dibromide	6.7	0.4	-6.3	-16.0	-20.4	g
PBr_3	Phosphorus tribromide	-34.9	-28.2	6.7	-3.2	-4.9	g d
PI	PI, triplet	54.6	51.0	-3.6	-3.1	12.6	
POI	POI	-33.4	-43.6	-10.2	8.8	31.9	g
PI_2	Phosphorus diiodide	41.3	36.6	-4.7	-4.8	-8.6	g
PI_3	Phosphorus triiodide	25.1	31.3	6.2	-0.3	-7.4	g g g g g ff
P_2	Phosphorus dimer	42.8	32.0	-10.8	-1.7	-1.7	g
H_4P_2	$P_2H_4^-$	5.0	-3.7	-8.7	-7.9	-5.3	Ĭf
P_4	Phosphorus tetramer	31.1	42.9	11.8	5.1	5.1	
P_4O_6	Phosphorus trioxide	-529.2	-511.0	18.2	8.1	162.8	g d

- ^aR. C. Weast, (Ed.), *CRC Handbook of Chemistry and Physics*, 60th Edition, CRC Press, Boca Raton, FL, 1980. ^bElement in its standard state.
- °R. D. Levin and S. G. Lias, "Ionization Potentials and Appearance Potential Measurements," 1971–1981, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. 71, (1982), Cat. No. C13.48:71.
- ^dM. W. Chase, C. A. Davies, J. R. Downey, D. R. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables, Third Edition, *J. Phys. Chem. Ref. Data*, 14, Suppl. 1 (1985).
 - ^eM. T. Bowers, Gas Phase Ion Chemistry, Vol. 2, Academic Press, New York, 1979.
- ^fJ.O. Cox and G. Pilcher, *Thermochemistry of Organic and Organometallic Compounds*, Academic Press, New York, 1970.
 - ^gG. Ditter, U. Niemann, and Philips J., Research, 37, 1 (1982).
 - ^hF. P. Lossing, Can. J. Chem., 49, 357 (1971).
- ¹H. Halim, N. Heinrich, W. Koch, J. Schmidt, and G. Frenking, *J. Comp. Chem.*, 7, 93 (1986), reference therein. ¹S. Schroder and W. Thiel, *J. Am. Chem. Soc.*, 107, 4422 (1985). "BEST" ab-initio involving at least MP2 correction to 6-31G* wavefunctions.
- ^kJ. L. Franklin, J. G. Dillard, H. M. Rosenstock, J. T. Herron, K. Draxl, and F. H. Field, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand., No. 26 (1969).
 - ¹J. C. Traeger and R. G. McLoughlin, J. Am. Chem. Soc., 103, 3647 (1981).
 - ^mJ. B. Pedley and B. S. Iseard, ^aCATCH Tables of Silicon Compounds," University of Sussex, 1972.
- ⁿD. R. Stull, E. F. Westrum, Jr., and G. C. Sinke, *The Chemical Thermodynamics of Organic Compounds*, Wiley, New York, 1969.
 - ^oJ. E. Bartmess and R. T. McIver, Gas Phase Ion Chemistry, Academic Press, New York, 1979, Vol. II.
- ^pR. B. Turner, P. Goebel, B. J. Mallon, W. von E. Doering, J. F. Coburn, and M. Pomerantz, J. Am. Chem. Soc., 90, 4315, 1968.
- ^qW. D. Good, R. T. Moore, A. G. Osborn, and D. R. Douslin, J. Chem. Thermodyn., 6, 303 (1974).
- ^rJ. M. Harris, S. G. Shafer, and S. D. Worley, J. Comput. Chem., 3, 208 (1982).
- ⁸D. H. Aue and M. T. Bowers, Gas Phase Ion Chemistry, M. D. Bowers, (Ed.), Academic Press, New York, 1979.
- ^tF. P. Lossing and A. Maccol, Can. J. Chem., 54, 990 (1976).
- ^uJ. L. Abboud, W. J. Hehre, and R. W. Taft, J. Am. Chem. Soc., 94, 6072 (1972).
- ^vG. Vincow, H.J. Dauben, F.R. Hunter, and W.V. Volland, J. Am. Chem. Soc., 91, 2823 (1969).
- "P. v. R. Schleyer, J. E. Williams, and K. R. Blanchard, J. Am. Chem. Soc., 92, 3277, (1970).

- *Average value from two determinations: M. Mansson, N. Rapport, and E.F. Westrum, J. Am. Chem. Soc., 92, 7296 (1970); R. S. Butler, A. S. Carson, P. G. Laye, and W. V. Steele, J. Chem. Thermodyn., 3, 277 (1971).
- M. W. Chase, J. L. Curnutt, A. T. Hu, H. Prophet, A. N. Syverud, and L. C. Walker, J. Phys. Chem. Ref. Data, 3,
 - ²J. Chao and B. J. Zwolinski, J. Phys. Chem. Ref. Data, 5, 319 (1976).
- aaG. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, 2nd ed, Van Nostrand, New York, 1950.
 - P. Kebarle, R. Tamdagni, H. Kirooka, and T. B. McMahon, Int. J. Mass Spectrom. Ion Phys., 19, 71 (1976).
- ^{cc}D. D. Wagman, W. H. Ēvans, V. B. Parker, T. Hawlow, S. M. Bailey, and R. H. Schumm, Natl. Bur. Stand. (U.S.), Tech. Note, No 270-3 (1968) and "Errata in NBS Technical Note 270-8" (1981).
 - ddD. R. Stull and H. Prophet, Natl. Stand., Ref. Data Ser. (U.S., Natl. Bur. Stand.) NSRDS-NBS 37, 1971.
 eeJ. F. T. Berliner and O. E. May, J. Am. Chem. Soc., 48, 2630 (1926).
- D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall, J. Phys. Chem. Ref. Data Suppl., 11, 2, 1982.
 - ggB. I. Istomin and V. Palm, Reakts. Sposobnosi Org. Soedin., 10, 583 (1973).
- hhC. Willis, F.P. Lossing, and R.A. Back, Can. J. Chem., 54, 1 (1967). Note: S.N. Foner and R.L. Hudson, J. Chem. Phys., 68, 3162 (1978) give the heat of formation of diazine as 50.7 ± 2 kcals/mol.
- iiS. W. Benson, F. R. Cruickshank, D. M. Golden, G. R. Haugen, H. E. O'Neal, A. S. Rodgers, R. Shaw, and R. Walsh, Chem. Rev., 69, 279 (1969).

 ****JP.S. Engel, J. L. Wood, J. A. Sweet, and M. L. Margrave, J. Am. Chem. Soc., 96, 2381 (1974).

 - kkG. A. Carpenter, M. F. Zimmer, E. E. Baroody, and R. A. Robb, J. Chem. Eng. Data, 15, 553 (1970).
 - mmB. G. Hobrock, and R. W. Kiser, J. Phys. Chem., 67, 1283 (1963).
 - ⁿⁿR. J. Blint, T.B. McMahon, and J.L. Beauchamp, J. Am. Chem. Soc., **96**, 1269 (1974).
 - ^{oo}A. S. Rodgers, J. Chao, R. C. Wilhoit, and B. J. Zwolinski, J. Phys. Chem. Ref. Data, 3, 117 (1974).
 - ppR. F. Lake and H. Thompson, *Proc. R. Soc. London, Ser. A*, **315**, 323 (1970).
 - ^{qq}D. P. Ridge, J. Am. Chem. Soc., 97, 5670 (1975).
 - ¹⁷J. Berkowitz, P. M. Dehmer, and W. A. Chupka, J. Chem. Phys., 59, 925 (1973).
- *M. W. Chase, J. L. Curnutt, H. Prophet, R. A. McDonald, and A. N. Syverud, J. Phys. Chem. Ref. Data, 4, 1
 - ^{tt}J. Vogt and J. L. Beauchamp, J. Am. Chem. Soc., **97**, 6682 (1975).
 - uuP. W Harland and J. L. Franklin, J. Chem. Phys., 61, 1621 (1974).
 - vvE. C. Wu and A. S. Rodgers, J. Phys. Chem., 78, 2315 (1974).
 - wwA. S. Gordon, Int. J. Chem. Kinet., 4, 541 (1972).
 - xxJ. W. Larson and T.B. McMahon, J. Am. Chem. Soc., 107, 766 (1985).
 - yyNBS Technical Note 270-3, Jan. (1968).
- ²²D. C. Frost, C. A. McDowell, and D. A. Vroom, *J. Chem. Phys.*, **46**, 4255 (1967). W. J. Pietro, M. M. Francl, W. J. Hehre, D. J. DeFrees, J. A. Pople, and J. S. Binkley, *J. Am. Chem. Soc.*, **104**, 5039 (1982).
 - aaa Natl. Bur. Stand. Selected Values of Chemical and Thermodynamic Properties, Rossini, 1st Feb. (1952).
- bbb R. L. De Kock, B. R. Higginson, D. R. Lloyd, A. Breeze, D. W. J. Cruickshank, and D. R. Armstrong, Mol. Phys., 24, 1059 (1972).
 - S. A. Kudchadker and A. P. Kudchadker, J. Phys. Chem. Ref. Data, 4, 457 (1975).
 - ddd A. J. Vanderwielen, M. A. Ring, and H. E. O'Neal, J. Am. Chem. Soc., 97, 993 (1975).
 - eee M. M. Heaton, J. Chem. Phys., 67, 5396 (1977).
 - ffM. R. Nimlos and G. B. Ellison, J. Am. Chem. Soc., 108, 6522-6529 (1986).
 - gee R. Walsh, Acc. Chem. Res., 14, 246 (1981).
 - hhh W. C. Steele, L. D. Nichols, and F. G. A. Stone, J. Am. Chem. Soc., 84, 4441 (1962).
- iii J. B. Pedley and G. Rylance, "Sussex-N.P.L. Computer Analysed Thermochemical Data: Organic and Organometallic Compounds," Sussex University, 1977.
 - iiW. C. Steele, J. Chem. Thermodyn., 15, 595 (1983).
 - kkk R. Walsh, J. Chem. Soc.; Faraday I, 79, 2233 (1983).
 - IIIM. Farber and R.D. Srivastava, Chem. Phys. Lett., 60, 216 (1979).
 - mmP. Potzinger, A. Ritter, and J. Krause, Z. Naturforsch., Teil A, 30, 347, (1975).
 - ⁿⁿⁿY. Wada and R. W. Kiser, J. Phys., Chem., 68, 2290 (1964).

While this cannot be construed as proof, it indicated that the -529.2 value is likely to be more correct. Unfortunately, we see from this that different semiempirical methods can give very different results when applied to even relatively simple systems. This problem will not be resolved until accurate values for heats of formation are available from either high-level ab initio calculations²⁶ or new experimental measurements.

As we have seen, in a few instances very large differences between experimental and calculated ΔH_f were obtained using MNDO-PM3. In attempting to identify the source of these large differences it is useful to do a comparative analysis with similar compounds. However, in certain of these instances there are no closely related compounds available for comparison. In such cases it is informative to investigate hypothetical reactions of

Table II. Comparison of experimental and calculated heats of formation for hypervalent molecules.

			at of ation		Differer	nce	
Empirical formula	Chemical name	Ехр.	Calc.	MNDO-PM3	MNDO	AM1	Footnote
C_2H_6SO	Dimethyl sulfoxide	-36.1	-38.8	-2.7	40.0	41.2	
$C_4H_{10}SO$	Diethyl sulfoxide	-49.1	-46.6	2.5	41.5	42.1	a
SO_2	Sulfur dioxide	-71.0	-50.8	20.2	75.4	98.0	b
$C_2H_6SO_2$	Dimethyl sulfone	-89.1	-76.3	12.8	142.8	142.1	а
$C_4H_{10}SO_2$	Diethyl sulfone	-102.5	-80.8	21.7	143.1	142.0	a
SO_3 $C_2H_6SO_3$	Sulfur trioxide Dimethyl sulfite	$-94.6 \\ -115.5$	-104.8 -130.0	$-10.2 \\ -14.5$	$153.1 \\ 50.4$	$177.7 \\ 56.4$	b
H_2SO_4	Sulfuric acid	-115.5 -175.7	-130.0 -181.4	-14.5 -5.8	172.2	177.7	a b
$C_2H_6SO_4$	Dimethyl sulfate	-164.1	-172.1	-8.0	158.6	162.7	a
O_2F	Fluorine dioxide	3.0	12.9	9.9	21.1	6.0	b
NO_2F	Fluorine nitrite	-26.0	-25.6	0.4	26.7	4.7	b
NO_3F	Fluorine nitrate	2.5	-6.1	-8.6	25.5	11.2	b
SOF	SOF	-63.3	-74.4	-11.1	35.0	51.7	c
SO_2F	SO_2F	-113.2	-102.5	10.7	127.2	143.8	c
SOF_2	Thionyl fluoride	-130.0	-138.2	-8.2	84.3	96.1	b
SO_2F_2 NOF_3	Sulfuryl fluoride F ₃ NO	-181.3	-184.3	-3.0	203.3	211.4	b
SF ₃	Sulfur trifluoride	-39.0 -130.0	-26.6 -134.3	$12.4 \\ -4.3$	61.8 89.9	$24.4 \\ 97.1$	b
SOF ₃	SOF ₃	-185.1	-134.5 -176.5	-4.5 8.6	180.2	183.5	c c
SF ₄	Sulfur tetrafluoride	-182.4	-185.3	-2.9	135.9	138.9	b
SOF₄	SOF ₄	-235.5	-236.3	-0.8	269.1	255.4	c
SF_5	Sulfur pentafluoride (-)		-303.0	-12.0	159.4	169.0	ď
SF_5	Sulfur pentafluoride	-217.1	-232.5	-15.4	208.2	198.7	b
O_2Cl	Chlorine dioxide	25.0	1.5	-23.5	111.0	80.9	b
NO ₂ Cl	Nitryl chloride	2.9	-13.0	-15.9	14.4	11.7	b
SOC1	SOC1 SO ₂ C1	-17.4	-31.1	-13.7	1.5	17.6	c
SO₂Cl O₃FCl	Perchloryl fluoride	$^{-66.4}_{-5.1}$	$-57.3 \\ 14.6$	9.1 19.7	92.3	111.4	C L
F₃Cl	Chlorine trifluoride	$-3.1 \\ -38.0$	$\begin{array}{c} 14.6 \\ -22.1 \end{array}$	19.7 15.9	$328.4 \\ 116.7$	$251.6 \\ 58.2$	b b
F ₅ Cl	Chlorine pentafluoride	-54.0	-54.0	0.0	258.8	144.5	b
SOCl ₂	701 . 1 1 1 1 1	F0.0	-47.6	3.2	28.6	43.1	e
SO_2Cl_2	Sulfuryl chloride	-86.2	-62.3	23.9	79.9	99.0	b
SCl_3	Sulfur trichloride	8.8	-19.1	-27.9	-41.3	-37.5	c
$SOCl_3$		-47.5	-46.5	1.0	49.9	60.8	c
SCl ₄	Sulfur tetrachloride	-0.7	-19.8	-19.1	-32.6	-25.5	c
SOCl ₄	SOCl ₄	-55.7	-59.3	-3.6	22.7	33.6	С
${ m SCl}_5 \ { m SCl}_6$	Sulfur pentachloride Sulfur hexachloride	$-8.6 \\ -19.8$	9.2	17.8	4.3	11.4	C
OBr	BrO	-19.8 30.1	$\begin{array}{c} 10.3 \\ 20.8 \end{array}$	$ \begin{array}{r} 30.1 \\ -9.3 \end{array} $	138.1 5.3	$132.8 \\ 5.6$	c f
SOBr	SOBr	-4.3	-16.2	-11.9	$\frac{0.3}{2.2}$	21.1	c
SO_2Br	SO ₂ Br	-52.8	-42.9	9.9	89.5	112.7	c
F_3Br	Bromine trifluoride	-61.1	-47.1	14.0	84.0	82.6	b
F_5Br	Bromine pentafluoride	-102.5	-75.8	26.7	207.4	183.7	b
$SOBr_2$	Thionyl bromide	-11.5	-18.6	-7.1	16.1	37.7	c
SO_2Br_2	Sulfuryl bromide	-59.5	-46.2	13.3	127.9	149.5	c
SBr ₃	Sulfur tribromide	50.2	16.4	-33.8	-51.3	-48.4	c
$SOBr_3$	SOBr ₃	-8.6	-10.0	-1.4	41.4	59.5	c
SBr ₄ SOBr ₄	Sulfur tetrabromide SOBr₄	53.0 -3.3	$18.8 \\ -20.7$	$-34.2 \\ -17.4$	$-42.9 \\ 26.6$	$-34.1 \\ 38.3$	c
SBr ₅	Sulfur pentabromide	$-5.5 \\ 55.9$	-20.7 44.0	$-17.4 \\ -11.9$	23.5	28.1	c c
SBr ₆	Sulfur hexabromide	58.8	78.1	19.3	107.6	104.6	c
OI °	IO	41.8	31.0	-10.9	4.8	-4.9	f
SOI	SOI	12.7	-0.4	-13.1	7.0	20.6	c
SO_2I	$\mathrm{SO}_2\mathrm{I}$	-34.9	-32.0	2.9	64.5	86.7	c
$\mathbf{F}_{5}\mathbf{I}$	Iodine pentafluoride	-200.8	-202.9	-2.1	298.8	267.9	þ
F ₇ I	Iodine heptafluoride	-229.7	-225.4	4.3	334.9	274.1	b
	Thionyl iodide	21.5	11.1	-10.4	26.6	34.9	c
$SO_2I_2 SI_3$	Sulfuryl iodideSulfur triiodide	$-26.0 \\ 100.3$	$-30.0 \\ 54.7$	$-4.0 \\ -45.6$	$51.7 \\ -60.0$	$72.8 \\ -64.9$	c c
SOI_3	SOI ₃	40.4	23.8	-45.6 -16.6	1.7	-64.9 0.1	c
SI ₄	Sulfur tetraiodide	120.2	83.8	-36.4	-38.0	-42.0	c
SOI ₄	SOI ₄	60.0	27.6	-32.4	-17.0	-17.8	c
SI ₅	Sulfur pentaiodide	130.9	129.6	-1.3	-1.0	-12.2	c

Table II. (continued)

Empirical			nt of ation		Differer	nce	
Empirical formula	Chemical name	Exp.	Calc.	MNDO-PM3	MNDO	AM1	Footnote
$\overline{\mathrm{SI}_6}$	Sulfur hexaiodide	158.9	167.0	8.1	48.7	32.2	c
$C_4H_{12}SiF$	$SiMe_4F$ (-) C_{3v} symmetry	-147.5	-122.4	25.1	33.5	23.5	d
SiF_5	$SiF_5(-)$	-507.1	-504.4	2.7	17.7	3.6	d
SiF ₄ Cl	$SiF_4Cl(-)$	-465.3	-465.2	0.1	17.5	8.0	d
$SiCl_5$	SiCl ₅ (-)	-237.2	-254.6	-17.4	-19.3	-30.4	d
C_3H_9PO	Trimethylphosphine oxide	-102.2	-82.7	19.5	59.3	78.9	a
PO_2	Phosphorus dioxide	-71.0	-76.7	-5.7	24.0	61.8	c
$\mathrm{CH_5PO_3}$	Methylphosphonic acid	-240.5	-213.3	27.2	25.2	51.5	а
$C_2H_7PO_3$	Ethylphosphonic acid	-239.4	-218.5	20.9	19.9	43.4	а
$C_3H_9PO_3$	Trimethyl phosphite	-168.3	-192.2	-23.9	-38.0	-3.5	a
$C_6H_{15}PO_3$	Triethyl phosphite	-195.9	-208.5	-12.6	-27.5	3.3	а
${ m C_6H_{15}PO_4} \ { m C_2H_6PO_2F}$	Triethyl phosphate Methyl methylphosphono-	-284.5	-252.9	31.6	75.0	104.8	а
$C_3H_8PO_2F$	fluoridate Ethyl methylphosphono-	-197.3	-207.6	-10.3	51.4	80.5	g
	fluoridate	-205.8	-212.3	-6.5	53.9	82.6	g
$C_4H_{10}PO_2F$	n-Propyl methylphosphonofluoridate	-210.2	-217.4	-7.2	53.9	80.7	g
$C_4H_{10}PO_2F$	i-Propyl methylphosphono- fluoridate	-214.6	-216.7	-2.1	60.8	87.2	g
$C_5H_{12}PO_2F$	i-Propyl ethylphosphono- fluoridate	-219.8	-217.5	2.2	59.4	85.2	g
$\mathrm{C_5H_{12}PO_2F}$	s-Butyl methylphosphono- fluoridate	-220.1	-221.2	-1.1	63.2	86.8	
$\mathrm{C_5H_{12}PO_2F}$	n-Butyl methylphosphono-						g
$C_6H_{14}PO_2F$	fluoridate Neopentyl methylphosphono-	-215.1	-222.9	-7.8	53.8	78.4	g
	fluoridate	-224.2	-226.6	-2.4	70.4	87.8	g
POF_2	POF_2	-213.6	-188.9	24.7	61.7	99.0	c
CH_3POF_2	Methylphosphonodifluoride	-233.2	-225.3	7.9	86.1	119.8	g
POF_3	Phosphorus oxyfluoride	-289.5	-297.7	-8.2	90.0	132.2	h
PF_4	Phosphorus tetrafluoride (-)	-325.0	-332.1	-7.1	22.8	66.2	d
PF_4	Phosphorus tetrafluoride	-287.9	-303.9	-16.0	53.3	93.9	c
PF_5	Phosphorus pentafluoride	-381.1	-386.9	-5.8	132.3	166.3	b
PF_6	Phosphorus hexafluoride (-)	-522.0	-508.5	13.5	152.4	194.3	d
POCl ₂	POCl ₂	-109.9	-94.8	15.1	33.9	51.2	С
CH ₃ POCl ₂	Methylphosphonodichloride	-124.1	-128.9	-4.8	48.7	62.9	g
POCl ₃	Phosphorus oxychloride	-132.8	-140.2	$-7.4 \\ 30.8$	$53.2 \\ 62.6$	$58.7 \\ 53.6$	h b
PSCl ₃	Phosphorus thiochloride	-91.0	-60.2	-22.3	-22.7	-30.8	
PCl ₄	Phosphorus tetrachloride			$-22.3 \\ -22.0$	-22.7 47.7	-30.8 36.1	C h
PCl ₅	Phosphorus pentachloride	-89.6	-111.6	$\frac{-22.0}{27.5}$	$\frac{47.7}{26.4}$	70.1	h
POBr ₂	POBr ₂	-78.3 -97.0	$-50.8 \\ -80.2$	16.8	68.3	84.6	c b
POBr ₃	Phosphorus oxybromide	$-97.0 \\ -67.2$	-80.2 -7.8	59.4	85.7	83.3	_
$PSBr_3$ PBr_4	Phosphorus thiobromide Phosphorus tetrabromide	$-67.2 \\ -17.4$	-7.8 -17.4	0.0	-11.9	-10.7	b
		$-17.4 \\ -11.0$	$-17.4 \\ -27.1$	-16.1	$\begin{array}{c} -11.3 \\ 42.8 \end{array}$	-10.7 73.3	c
PBr_5 POI_2	${ m Phosphorus}$ pentabromide ${ m POI}_2$	-11.0 -40.1	$-27.1 \\ -35.2$	4.9	19.5	42.8	c c
POI ₂ POI ₃	Phosphorus oxyiodide	-39.7	$-33.2 \\ -8.3$	31.4	71.3	79.3	c
PI ₄	Phosphorus tetraiodide	-39.7 60.2	$-6.3 \\ 44.7$	-15.5	-36.1	-47.1	c
PI_5	Phosphorus pentaiodide	97.7	88.5	$\begin{array}{c} -13.3 \\ -9.2 \end{array}$	-36.1	-36.1	c
P_4O_{10}	Phosphorus pentoxide	-694.1	-712.6	-18.5	262.4	444.7	b
4 10	1 Hospitol us politoxide		. 12.0	10.0		117.1	

^aJ.O. Cox and G. Pilcher, *Thermochemistry of Organic and Organometallic Compounds*, Academic Press, New York, 1970.

^cG. Ditter and U. Niemann, Philips J. Res., 37, 1 (1982).

NBS Technical Note 270-3, Jan. 1968.

^bM. W. Chase, C. A. Davies, J. R. Downey, D. R. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables, Third Edition, J. Phys. Chem. Ref. Data 14, Suppl. 1 (1985).

^dJ. W. Larson and T.B. McMahon, J. Am. Chem. Soc., 107, 766 (1985).

^eD. D. Wagman, W. H. Evans, V. B. Parker, T. Hawlow, S. M. Bailey, and R. H. Schumm, Natl. Bur. Stand. (U.S.), Tech. Note, No 270-3 (1968) and "Errata in NBS Technical Note 270-8" (1981).

^gE. C. Penski and E. S. Domalski, CRDEC-TR-87063 (1987).

^hD. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall, *J. Phys. Chem. Ref. Data Suppl.* 11, 2, 1982.

Table III. Statistical analysis of difference between experimental and calculated heats of formation.

T	NT C	Aver	ages (unsi	gned)	Average (signed)			Root mean square		
Type of compounds	No. of compounds	PM3	MNDO	AM1	PM3	MNDO	AM1	РМЗ	MNDO	AM1
Hydrogen	465	6.3	12.9	11.2	1.5	4.8	5.0	8.6	24.1	23.5
Carbon	463	6.2	12.8	11.1	1.1	3.4	3.9	8.8	23.1	22.1
Nitrogen	118	6.9	18.8	9.9	0.2	10.1	4.1	9.4	26.9	12.9
Oxygen	255	9.7	31.7	33.5	0.1	25.0	28.8	13.9	54.7	61.3
Fluorine	148	8.9	41.9	46.6	1.5	34.1	38.4	12.0	80.3	79.7
Aluminum	46	14.7	23.9	38.6	2.6	6.7	33.2	21.2	34.2	53.3
Silicon	78	10.1	22.4	14.5	1.9	13.0	3.6	14.2	32.9	20.8
Phosphorus	71	12.5	37.3	53.6	-0.5	23.8	44.8	16.1	55.1	83.0
Sulfur	101	12.0	50.3	53.5	-1.4	36.9	41.5	16.2	79.8	81.7
Chlorine	105	9.6	23.0	22.3	0.2	12.8	10.6	13.3	51.1	41.4
Bromine	70	11.5	28.8	27.1	1.1	17.1	14.9	15.7	47.1	44.7
Iodine	77	10.7	30.3	27.3	0.2	12.9	11.8	15.9	61.1	54.0
Set of Compounds used in Refs. 3 and 16	138	4.4	6.2	5.5	0.0	-1.4	0.7	6.3	9.1	7.3
Compounds of C, H, N, O, only	276	5.7	11.2	7.5	0.4	3.8	1.4	7.9	18.5	10.5
Nitro compounds	29	5.2	39.6	15.7	2.5	38.1	14.5	6.2	44.1	18.5
Organophosphorus-V compounds	15	10.9	53.9	75.6	3.6	50.2	75.6	14.3	56.7	80.1
Normal valent compounds	657	7.8	13.9	12.7	0.7	3.3	3.7	11.4	25.1	24.3
Hypervalent	106	13.6	75.8	83.1	-0.8	67.2	74.7	17.3	104.5	110.0
All compounds	763	8.6	22.5	22.4	0.5	12.1	13.6	12.4	45.5	46.8
All compounds except Al, P, and S	547	7.1	15.5	11.5	0.9	6.6	2.9	10.1	35.1	26.5

these compounds involving reactants or products having accurately determined ΔH_f 's. These may be illustrated by reactions involving the radicals resulting from addition of a halide radical to carbon monoxide.

All three methods predict COBr and COI to be considerably more stable than that observed experimentally. As the ΔH_f of CO and heat of atomization of the halogens²⁷ (F: 18.9, Cl: 29.0, Br: 26.7, I: 25.5 kcal/mol) are known, the heats of the reactions

$$CO + X = COX$$
 and $COX + X = COX_2$

can be estimated (F: -34.8, -129.3; Cl: -17.6, -66.6; Br: 20.2, -67.3; I: 64.4, -79.4). For iodine this indicates that the two C—I bonds differ in strength by 143.8 kcal/mol. Computationally, these bonds are predicted to be of comparable strength. As with P_4O_6 , further work will be required to resolve this conflict.

The differences between the experimental and calculated values of ΔH_f for three of the oxyhalides of silicon are large and positive. This difference is vividly illustrated by investigating the metathetical reaction

$$SiX_4 + SiO_2 = SiOX_2 + SiOX_2$$

for which the calculated and experimental ΔH_f and ΔH_r are presented in Table IV. As these reactions are metathetic it is unlikely that the heats of reaction would be very large. As a result of the unexpectedly large value for the observed ΔH_r , and the small predicted ΔH_r , we postulate that the experimental ΔH_f for SiOCl₂, SiOBr₂, and SiOI₂ are incorrect, and that the correct values lie nearer to -121.2, -94.1, and -50.2 kcal/mol, respectively.

In certain cases involving homologous series the accuracy of prediction of related compounds are of interest. Thus, all the ΔH_f of the alkyl phosphines are reproduced accurately with the exception of triethylphosphine (Table V).

Large errors have been reported for the calculated MNDO and AM1 ΔH_f of nitro and polynitro organics. For 26 nitro-organic compounds and three organic nitrates, the average calculated differences in ΔH_f for PM3, MNDO, and AM1, respectively, are 5.2, 39.6, and 15.7 kcal/mol. It should be noted that for MNDO and AM1 the errors were systematic, and that by subtracting a constant for each nitro group a considerably improved result could be obtained.

Figure 1. Calculated and experimental heats of formation for all compounds surveyed.

HEATS OF HYDRATION

Most reactions of biochemical interest occur in aqueous media; therefore, the ability of a computational model to simulate condensed phase reactions is of interest. Experimental values for the successive heats of hydration of an ammonium ion are known.²⁹ A comparison with calculated results is given in Table VI. From this we see that

AM1 is significantly more accurate at modeling ammonium ion hydration than either MNDO or PM3.

HEATS OF ASSOCIATION AND HYDROGEN BONDING

The intermolecular stabilization due to molecules associating has proved difficult to accurately model using semiempirical meth-

Figure 1. (continued)

ods. The model must avoid the Scylla of having everything bind together so energetically that gases become stable relative to condensation at only extremely high temperatures, and the Charybdis of having such weak intermolecular forces that almost everything is predicted to be gaseous at 298 K.

Calculated values for the heat of association for various pairs of molecules are given in Table VII. For all three methods the heat of association of systems which are gaseous at 298 K is less than 0.1 kcal/mol. MNDO underestimates all intermolecular forces, while AM1 slightly overestimates the ozonewater bond, predicting it to be slightly more stable than the water dimer. Large basis set ab initio calculations indicate²¹ that in the water dimer the hydrogen bond is linear, that is, the O—H—O angle is 180°. Of the three semiempirical models the new method

is the only one to predict a water dimer to have an almost linear O—H—O bond. The various geometries predicted are shown in Figure 2.

GEOMETRIES

Molecular geometries are presented in Table VIII. A statistical analysis is given in Tables IX—XII. In general, errors in bond lengths are reduced, while some errors in bond angles are increased. There are too few dihedral data to generalize, but a superficial indication is that the dihedral error is intermediate between MNDO and AM1. In certain important cases, errors in interatomic distances are significantly decreased.

Many force constants for torsional bending are very low compared to bond length stretching. This implies that very large

Table IV. Heats of formation and reaction for silicon oxyhalide synthesis.

		$\Delta H_f(\mathrm{Exp})^\mathrm{a}$		$\Delta H_r(\mathrm{Exp})$		$\Delta H_f(\mathrm{Calc})$		$\Delta H_r(\mathrm{Calc})$
X F Cl Br I	SiX ₄ -386.0 -158.4 -99.3 -26.4	SiO ₂ -73.0 -73.0 -73.0 -73.0 -73.0	SiOX ₂ -231.0 -167.7 -137.4 -99.4	-3.0 -104.0 -102.5 -99.4	SiX_4 -390.6 -156.4 -107.9 -14.2	SiO ₂ -88.9 -88.9 -88.9 -88.9	SiOX ₂ -229.4 -121.2 -94.1 -50.2	20.7 2.9 8.6 2.7

^{*}For references, see Table I.

Table V. Heats of formation of methyl and ethyl phosphines (kcal/mol).

Compound	$\Delta H_f(\mathrm{Exp})^\mathrm{a}$	$\Delta H_f(\mathrm{Calc})$	Difference
PH ₃	1.3	0.2	-1.1
CH_3PH_2	-7.0	-9.5	-2.5
$(CH_3)_2PH$	-15.0	-19.6	-4.6
$(CH_3)_3P$	-22.5	-29.8	-7.3
C ₂ H ₅ PH ₂	-12.0	-11.7	+0.3
$(C_2H_5)_2PH$	-25.0	-23.3	+1.7
$(C_2H_5)_3P$	-11.8	-36.7	-24.9

^aFor references, see Table I.

changes in torsional angle can result from very small changes in energy. In consequence, it is likely that the largest errors in geometry will be in torsional angles. However, it is unlikely that any phenomena of chemical interest will be seriously affected by these errors: even if the torsion angles were accurately reproduced, from the low force constants, we may infer that the molecular geometry would (a) be subject to large librations or internal rotations at room temperature, and (b) in the course of a chemical reaction local forces could easily change the dihedral from its equilibrium position. The former consideration is important in studies of electronic phenomena such as ultraviolet (UV) visible absorption, where Boltzmann weighting of various conformations would be necessary.

Intramolecular hydrogen bonding distances in salicylaldoximes (Fig. 3), are poorly reproduced³⁰ by MNDO and AM1. Using the new parameter set, these distances are more accurately reproduced, as is shown in Table VIII.

The geometry of the amino group in paranitroaniline (PNA) is of interest. It is well established that the amino group in crystalline PNA is planar, while the geometry of gas-phase PNA has not yet been reported. The magnitude of the interaction of the NO₂ and NH₂ groups may be estimated by reference to the metathetic reaction

Table VI. Heats of hydration of ammonium ion.^a

	Heat of l	nydration	Error			
Hydration reaction	Exp.	Calc.	PM3	MNDO	AM1	
$\frac{1}{NH_4(+)} + H_2O = NH_4(+)H_2O$	-17.3	-13.5	3.8	8.8	2.0	
$NH_4(+)H_2O + H_2O = NH_4(+)(H_2O)_2$	-14.7	-9.3	5.4	6.8	1.6	
$NH_4(+)(H_2O)_2 + H_2O = NH_4(+)(H_2O)_3$	-13.4	-9.3	4.1	6.0	-1.5	

^eSource: P. Kebarle, Environmental Effects on Molecular Structure and Properties, B. Pullman, (Ed.), D. Reidel, Dodrecht, The Netherlands, 1976, p. 81.

Table VII. Heats of association.

A	Heat o	f association	n (kcal)
Associating molecules	PM3	MNDO	AM1
CO_2-CO_2	0.0	0.0	0.0
NH_3-H_2	0.0	0.0	0.0
$O_2 - O_2$	0.0	0.0	0.0
$H_2 - N_2$	0.0	0.0	0.0
H_2 — CO_2	0.0	0.0	0.0
H_2O-H_2O	-3.5	-1.0	-5.5
NH_3-NH_3	-0.9	-0.8	-2.4
$H_2O - H_2O (C_2v)$	-2.0	-1.0	-5.0
Benzene — Benzene	-3.8	0.0	-0.4
H_2O-H_2	-0.9	0.0	-1.1
H_2O-CH_4	-1.2	0.0	-1.2
CH_2O-H_2O	-1.6	-0.7	-3.7
H_2O-CH_2O	-1.6	-1.0	-4.0
H_2O-CH_3OH	-1.9	-0.9	-4.8
CH_3OH-H_2O	-1.5	-0.7	-2.7
CH_2O-CH_2O	-1.0	-0.8	-2.4
HCOOH—CH ₄	-2.3	0.1	-0.8
H_2O-CO_2	-0.9	-0.8	-2.7
$H_2O-HCOOH$	-5.3	-1.0	-7.4
H_2O-O_3	-1.8	-1.1	-6.8
HCOOH—HCOOH	-8.6	-1.7	-6.4
H_2O-NH_3	-1.1	-0.5	-2.7
$H_2O-C_5H_5N$	-1.7	-1.1	-3.1
NH_3-CO_2	-0.5	-0.4	-1.8
HCOOH—NH ₃	-5.3	-0.9	-4.1
NH ₂ CHO—NH ₂ CHO	-4.7	-2.1	-8.1
NH ₂ COOH—NH ₂ COOH	-1.9	-3.3	-9.0

	Aniline -	Nitro- + benzene	= Benzene	Para- + nitroaniline	ΔH_r
Exp.*	20.8	15.4	19.8	16.2	$-0.2 \\ -1.6$
Calc	21.3	14.5	23.5	10.7	

^{*}For references, see Table I.

For aniline, the out-of-plane angle, or the angle between the $\rm NH_2$ and $\rm C_6H_5N$ planes, is $37.5^{\circ} \pm 2^{\circ}.^{31}$ This, together with the fact that the calculated barrier to inversion of an — $\rm NH_2$ group in ammonia and methylamine is 5.4 and 5.7 kcal/mol at the MP3/6-31G*//3-21G* level³², and the very small experimental ΔH_r indicates that in the gas phase PNA is nonplanar. As molecular calculations are currently limited to gas-phase systems, the geometry of crystalline PNA cannot be

Figure 2. Calculated structures for water dimers.

calculated. However, in gas-phase PNA the —NH₂ group is predicted to be pyramidal.

STRUCTURE OF IODINE HEPTAFLUORIDE

The geometry of IF_7 is currently not known. It has been assumed, however, to be a bicapped pentagonal pyramid¹⁵. Attempts to obtain a stable structure of point group D_{5h} resulted both in very high energies and in the loss of the two axial fluorine atoms. The only stable geometry predicted for IF_7 is a distorted trigonal bipyramid in which a F_2 moiety is loosely associated at a distance of 2.8 Å from the iodine, as shown in Figure 4. As the geometry of IF_5 and the heats of formation of IF_5 and IF_7 (but not F_2)

are all reproduced accurately, we predict that the geometry of IF₇ is not a bicapped pentagonal pyramid, and it is likely that iodine is strongly coordinated to five fluorine atoms in a distorted trigonal bipyramid arrangement and weakly bound to a fluorine molecule.

DIPOLE MOMENTS

Dipole moments for 125 compounds are presented in Table XIII. The average difference between experimental and observed dipole moments is 0.38 Debye for PM3, and 0.45 and 0.35 Debye for MNDO and AM1, respectively. The dipole moment in hydrocarbons is due mainly to the atomic charges: only a small fraction is due to lone-pairs. It

Table VIII. Comparison of experimental and calculated molecular geometries.

Empirical		Geometric				Errors		
formula	Chemical name	variable	Exp.	Calc.	PM3	MNDO	AM1	Footnote
\mathbf{H}_2	Hydrogen	НН	0.741	0.699	-0.042	-0.078	-0.064	a
CH_2	Methylene, singlet	CH HCH	1.110	1.092	-0.018	-0.019	-0.007	a
CH_2	Methylene, triplet	CH	$102.4 \\ 1.029$	$103.7 \\ 1.064$	$\frac{1.3}{0.035}$	$8.7 \\ 0.024$	$8.1 \\ 0.034$	0
		HCH	144.7	144.7	0.0	4.9	3.6	a
CH₄	Methane	CH	1.094	1.087	-0.007	0.010	0.018	b
$egin{array}{c} C_2 \ C_2 H_2 \end{array}$	Carbon, dimer Acetylene	CC CC	1.242	1.189	-0.053	-0.073	-0.078	a
02112	Acetylene	CH	1.203 1.060	$1.190 \\ 1.064$	-0.013 0.004	-0.008 -0.009	-0.008 0.001	b
C_2H_4	Ethylene	CC	1.339	1.322	-0.017	-0.003	-0.013	b
		CH	1.086	1.086	0.000	0.003	0.012	
C_2H_6	Ethane	HCC	121.2	123.1	1.9	2.0	1.5	,
J2116	Ethane	CC CH	1.536 1.091	1.504 1.098	-0.032 0.007	$-0.015 \\ 0.018$	-0.036 0.026	b
		HCC	110.9	111.6	0.007	0.018	-0.020	
C_3H_4	Allene	CC	1.308	1.297	-0.011	-0.002	-0.010	c
		CH	1.087	1.086	-0.001	0.003	0.013	
C_3H_4	Cyclopropene	HCC	120.9	122.3	1.4	2.0	1.4	,
J3114	Сусторгорене	$egin{array}{c} \mathbf{C_2C_3} \\ \mathbf{C_1C_2} \end{array}$	1.509 1.296	$1.484 \\ 1.314$	$-0.025 \\ 0.018$	$0.003 \\ 0.032$	$-0.020 \\ 0.022$	d
		C_1H	1.072	1.073	0.001	-0.012	-0.003	
~	_	$\mathrm{HC_{1}C_{2}}$	149.9	151.5	1.6	1.7	2.0	
C_3H_4	Propyne	C_2C_1	1.206	1.191	-0.015	-0.009	-0.009	e
		$egin{array}{c} { m C_1H} \\ { m C_3C_3} \end{array}$	$1.056 \\ 1.459$	$1.064 \\ 1.433$	$0.008 \\ -0.026$	-0.005 -0.014	$0.004 \\ -0.032$	
		C_3C_3 C_3H	1.105	1.433	-0.020	0.006	0.032	
		HCC	111.0	110.7	-0.3	0.0	-0.5	
C_3H_6	Cyclopropane	CC	1.510	1.499	-0.011	0.016	-0.009	f
ч	D	CH	1.089	1.095	0.006	0.007	0.015	
C_3H_6	Propene	C = C $C - C$	$1.336 \\ 1.501$	$1.328 \\ 1.480$	-0.008 -0.021	$0.004 \\ -0.005$	-0.005 -0.025	g
		CCC	124.3	123.4	-0.9	2.6	0.020	
		C_3H	1.085	1.098	0.013	0.024	0.033	
		$\mathrm{HC_{3}C_{2}}$	111.2	112.9	1.7	1.8	0.7	
		$\mathrm{C_2H}\ \mathrm{HC_2C_1}$	1.090 119.0	1.097 120.8	$0.007 \\ 1.8$	$0.006 \\ 0.3$	0.013 1.9	
		HC_2C_1 HC_1	1.091	1.087	-0.004	-0.002	0.007	
		HC_1C_2	121.5	122.7	1.2	0.8	0.8	
C_3H_8	Propane	CC	1.526	1.512	-0.014	0.004	-0.019	g
		CCC	112.4	111.7	-0.7	3.0	-0.6	
		$\mathrm{C_2H}\ \mathrm{HC_2C_1}$	1.115 109.5	1.108 109.9	$-0.007 \\ 0.4$	$0.000 \\ -0.7$	$0.007 \\ 0.0$	
		C_1H	1.096	1.097	0.001	0.014	0.021	
		$\mathrm{HC_{1}C_{2}}$	111.8	111.4	-0.4	-1.5	-1.4	
C_4H_2	Diacetylene	C_1C_2	1.205	1.193	-0.012	-0.006	-0.006	h
		${ m C_2C_3} \ { m CH}$	$1.376 \\ 1.046$	$1.371 \\ 1.065$	$-0.005 \\ 0.019$	-0.008 0.004	$-0.020 \\ 0.014$	
C_4H_4	$CH_2=C=C=C$	CII	1.040	1.005	0.013	0.004	0.014	
344	$=CH_2$	CH	1.083	1.087	0.004	0.007	0.017	i
		C_1C_2	1.318	1.301	-0.017	-0.007	-0.016	
~ TT	X77141	C_2C_3	1.283	$1.267 \\ 1.332$	$-0.016 \\ -0.009$	$-0.013 \\ 0.004$	-0.017 -0.005	;
C_4H_4	Vinylacetylene	$egin{array}{c} \mathrm{C_3C_4} \ \mathrm{C_2C_3} \end{array}$	1.341 1.431	$\frac{1.332}{1.414}$	-0.009 -0.017	-0.004	-0.005	j
		$C_2C_3C_4$	123.1	122.5	-0.6	2.3	1.0	
		C_1C_2	1.208	1.193	-0.015	-0.010	-0.010	_
C_4H_6	Bicyclobutane	$\mathbf{C_1C_2}$	1.498	1.507	0.009	0.029	0.012	k
		$egin{array}{c} \mathrm{C_1C_3} \ \mathrm{C_2C_3C_1C_4} \end{array}$	$1.497 \\ 121.7$	$1.481 \\ 120.0$	-0.016 -1.7	$0.039 \\ 0.9$	-0.002 0.3	
		$C_2C_3C_1C_4$ C_1H	1.071	1.083	0.012	0.003	0.008	
		$\mathrm{C_2H}$	1.093	1.095	0.002	0.005	0.012	
C_4H_6	2-Butyne	$\mathrm{C_2C_3}$	1.213	1.193	-0.020	-0.013	-0.015	j
		${ m C_1C_2} \ { m CH}$	$1.467 \\ 1.115$	$1.432 \\ 1.098$	$-0.035 \\ -0.017$	-0.023 -0.004	-0.042 0.006	

Table VIII. (continued)

Empirical		Geometric				Errors		
Empirical formula	Chemical name	variable	Exp.	Calc.	РМ3	MNDO	AM1	Footnote
$\overline{\mathrm{C_4H_6}}$	1,3-Butadiene	$\overline{\mathrm{C_{1}C_{2}}}$	1.344	1.331	-0.013	0.000	-0.009	l
- 40	- ,	C_2C_3	1.467	1.456	-0.011	-0.002	-0.016	
		CCC	122.9	122.3	-0.6	2.8	0.5	
C_4H_8	1-Butene	C_2C_3	1.347	1.328	-0.019	-0.006	-0.016	m
		C_1C_2	1.508	1.489	-0.019	-0.003	-0.024	
O 11	0.11.4	CCC	123.8	122.6	-1.2 -0.006	$\frac{1.6}{0.001}$	$-0.4 \\ -0.005$	n
C_4H_8	Cyclobutane	CC CH	$1.548 \\ 1.105$	$\frac{1.542}{1.100}$	-0.005	0.001	0.005	n
C_4H_8	Isobutene	C_1C_2	1.330	1.333	0.003	0.018	0.006	0
C4118	Isobutene	C_2C_3	1.507	1.487	-0.020	0.002	-0.023	v
		$C_1C_2C_3$	122.4	122.1	-0.3	-0.5	0.0	
C_4H_{10}	n-Butane	C_1C_2	1.533	1.512	-0.021	-0.002	-0.026	e
4 10		C_2C_3	1.533	1.521	-0.012	0.007	-0.019	
		CCC	112.8	111.6	-1.2	2.0	-1.2	
C_4H_{10}	Isobutane	CC	1.525	1.520	-0.005	0.016	-0.011	p
C_5H_8	1,4-Pentadiene Cl	C = C	1.339	1.328	-0.011	0.001	-0.008	\mathbf{q}
		c-c	1.511	1.489	-0.022	-0.005	-0.027	
		C-C=C	115.5	123.1	7.6	$11.1 \\ -0.5$	$\begin{array}{c} 8.4 \\ 1.2 \end{array}$	
		$C-C-C$ $C_1-C_2-C_3-C$	113.1	$114.4 \\ -127.5$	$\frac{1.3}{-10.6}$	-0.5 9.6	-13.8	
		$C_1 - C_2 - C_3 - C$ $C_2 - C_3 - C_4 - C$	$\frac{4}{5}$ -4.3	14.2	18.5	110.0	16.2	
C_5H_8	1,4-Pentadiene C2	C = C	1.339	1.328	-0.011	0.001	-0.008	q
05118	1,110000000000	$\ddot{\mathrm{c}}-\ddot{\mathrm{c}}$	1.511	1.490	-0.021	-0.005	-0.025	1
		C-C=C	115.5	123.1	7.6	11.2	8.3	
		C-C-C	108.9	110.8	1.9	3.8	2.9	
		$C_1 - C_2 - C_3 - C$		-129.3	-7.1	15.1	-11.9	
C_5H_8	1,4-Pentadiene Cs	$\mathbf{C} = \mathbf{C}$	1.339	1.328	-0.011	0.001	-0.008	\mathbf{q}
		C-C	1.511	1.490	-0.021	-0.005	-0.025	
		C-C=C $C-C-C$	115.5	123.0	7.5	$\begin{array}{c} 11.1 \\ 3.7 \end{array}$	8.3	
		$C_1-C_2-C_3-C$	108.9	$111.1 \\ -132.2$	$2.2 \\ -3.6$	22.1	$3.0 \\ -5.3$	
C_5H_{12}	Neopentane	$\overset{C_1}{CC}$	1.539	1.527	-0.012	0.015	-0.018	f
051112	reopentane	CH	1.120	1.098	-0.022	-0.011	-0.004	
		HCC	110.0	111.3	1.3	1.7	0.3	
C_6H_6	Benzene	CC	1.399	1.391	-0.008	0.008	-0.004	r
		CH	1.084	1.095	0.011	0.006	0.016	
C_6H_6	Fulvene	C_3C_4	1.476	1.471	-0.005	0.000	0.000	
		C_2C_3	1.355	1.355	0.000	0.011	0.008	
		C_1C_2	1.470	1.478	0.008	0.021	0.013	
C_6H_{10}	Cyclohexene	C_1C_6	1.349 1.335	1.331	-0.018 -0.001	-0.004 0.011	-0.017 0.002	
C ₆ 11 ₁₀	Cyclonexene	$egin{array}{c} \mathbf{C_1C_2} \\ \mathbf{C_2C_3} \end{array}$	1.504	1.487	-0.001	0.000	-0.002	
		C_3C_4	1.515	1.521	0.006	0.026	0.002	
		C_4C_5	1.550	1.519	-0.031	-0.011	-0.036	
		$\mathrm{C_5^4C_4C_2C_1}$	21.8	27.8	6.0	-0.8	5.4	
$\mathrm{C_6H_{12}}$	Cyclohexane	\mathbf{CC}	1.536	1.521	-0.015	0.002	-0.021	u
		CCC	111.4	111.0	-0.4	2.7	-0.1	
		CCCC	46.3	56.0	9.7	0.0	8.9	
		CH CH'	1.121	1.107	-0.014	-0.007	0.000	
H_2O	Water	OH	1.121 0.957	1.108 0.951	-0.013 -0.006	-0.007 -0.014	$0.001 \\ 0.004$	
1120	Water	НОН	104.5	107.7	3.2	$\frac{-0.014}{2.3}$	-1.0	b
CO	Carbon monoxide	CO	1.128	1.135	0.007	0.035	0.043	v
CH_2O	Formaldehyde	CO	1.208	1.202	-0.006	0.008	0.019	
_	•	CH	1.116	1.091	-0.025	-0.010	-0.006	
		HCO	121.8	121.8	0.0	1.7	0.4	
CH_4O	Methanol	CO	1.425	1.395	-0.030	-0.034	-0.015	
		CH	1.094	1.097	0.003	0.025	0.025	
		HCO	108.5	112.2	3.7	3.8	2.4	
		OH COH	0.945 107.0	0.949 107.5	0.004	0.002	0.019	
		0011	107.0	107.5	0.5	4.6	0.2	

Table VIII. (continued)

Empirical		Geometric				Errors		
formula	Chemical name	variable	Exp.	Calc.	PM3	MNDO	AM1	Footnote
C_2H_2O	Ketene	CO	1.161	1.175	0.014	0.023	0.032	у
		CC	1.314	1.308	-0.006	0.005	-0.007	·
		CH	1.083	1.084	0.001	0.002	0.012	
G ** 0	75	HCC	118.7	122.0	3.3	3.0	2.7	
C_2H_6O	Dimethyl ether	CC	1.410	1.406	-0.004	-0.014	0.007	Z
CHO	A1	COC	111.3	114.1	2.8	8.7	1.6	
C_3H_4O	Acrolein	C_3C_2	1.335	1.330	-0.005	800.0	-0.001	aa
		C_2C_1	1.478	$1.479 \\ 123.6$	0.001	0.007	-0.010	
		CCC CO	$121.0 \\ 1.208$	1.211	$\frac{2.6}{0.003}$	$6.3 \\ 0.016$	$\frac{2.2}{0.026}$	
		OCC	1.208 124.0	124.0	0.003	1.5	0.020	
C_4H_4O	Furan	CO	1.362	1.378	0.016	0.005	0.033	bb
041140	1 ululi	ččo	106.6	106.9	0.3	1.0	0.0	DD
		C_3C_2	1.361	1.373	0.012	0.029	0.019	
		CCC	110.7	110.2	-0.5	-0.4	-0.6	
O_2	Oxygen, triplet state	00	1.216	1.169	-0.047	-0.082	-0.130	v
H_2O_2	Hydrogen peroxide	00	1.475	1.482	0.007	-0.179	-0.175	cc
		OH	0.950	0.945	-0.005	0.011	0.033	
		HOO	94.8	96.5	1.7	12.2	11.2	
		НООН	119.8	180.0	60.2	60.5	8.1	
H_4O_2	Water dimer	00	3.000	2.769	-0.231	0.905	-0.383	_
CO_2	Carbon dioxide	CO	1.162	1.181	0.019	0.024	0.027	b
$\mathrm{CH_2O_2}$	Formic acid	C=0	1.202	1.211	0.009	0.025	0.028	dd
		C-0	1.343	1.344	0.001	0.011	0.014	
		000	124.9	117.1	-7.8	-4.3	-7.3	
		OH HOC	0.972	0.953	-0.019	-0.023	-0.001	
		CH	$106.3 \\ 1.097$	$111.6 \\ 1.095$	$5.3 \\ -0.002$	$\frac{9.9}{0.008}$	4.3 0.006	
		HC—O	124.1	130.4	6.3	2.7	6.0	
$C_2H_2O_2$	trans Glyoxal	CO	1.207	1.207	0.000	0.013	0.022	aa
0211202	i and diyozai	$\widetilde{\operatorname{CC}}$	1.525	1.526	0.001	0.004	-0.017	uu
		CCO	121.2	120.5	-0.7	0.8	-0.2	
$C_6H_4O_2$	p-Benzoquinone	$\mathbf{C_1C_2}$	1.477	1.487	0.010	0.024	0.002	ee
	•	C_2C_3	1.322	1.335	0.013	0.027	0.016	
		CCC	121.1	121.6	0.5	1.0	0.8	
		CO	1.222	1.217	-0.005	0.004	0.014	
H_3N	Ammonia	NH	1.012	0.999	-0.013	-0.005	-0.014	a
~		HNH	106.7	108.1	1.4	-1.4	2.4	
CN	Cyanide	CN	1.175	1.157	-0.018	-0.022	-0.027	a
CN	Cyanide (+)	CN	1.290	1.355	0.065	-0.149	-0.164	a
CHN	Hydrogen cyanide	CN	1.154	1.156	0.002	0.006	0.006	ff
CH_5N	Methylamine	CH CN	$1.063 \\ 1.474$	$1.070 \\ 1.469$	$0.007 \\ -0.005$	-0.008 -0.014	$0.006 \\ -0.042$	CT CT
CH5N	Methylanine	NH	1.011	0.999	-0.003	-0.003	-0.042	gg
		HNC	112.0	109.8	-2.2	-2.2	-0.7	
		HNH	105.9	108.7	2.8	-0.4	3.1	
C_2H_3N	Acetonitrile	CC	1.458	1.440	0.018	-0.006	-0.019	hh
23-		CH	1.104	1.098	-0.006	0.006	0.016	
		HCC	109.5	110.4	0.9	1.1	0.6	
		CN	1.157	1.159	0.002	0.005	0.006	
C_2H_3N	Methyl isocyanide	CN—	1.424	1.433	0.009	0.000	-0.029	hh
		CH	1.101	1.097	-0.004	0.014	0.024	
		HCN	109.1	109.7	0.6	1.1	1.0	
		—CN	1.166	1.181	0.015	0.025	0.015	
C_3H_9N	Trimethylamine	CN	1.451	1.480	0.029	0.013	-0.006	ii
0.11.35	D 1	CNC	110.9	112.3	1.4	5.1	2.1	1
C_4H_5N	Pyrrole	CN	1.370	1.397	0.027	0.028	0.022	l
		$egin{array}{c} ext{CNC} \ ext{C}_3 ext{C}_2 \end{array}$	$107.7 \\ 1.382$	$109.7 \\ 1.390$	$\frac{2.0}{0.008}$	$\frac{2.0}{0.013}$	$\frac{1.1}{0.020}$	
		11	1.382	1.090	บ.บบอ	0.015	0.020	
		CCC						
		C_3C_2 C_4C_3	109.8 1.417	107.0 1.390	$-2.8 \\ -0.027$	$-2.4 \\ -0.022$	$-1.4 \\ -0.015$	

Table VIII. (continued)

Empirical		Geometric				Errors		
formula	Chemical name	variable	Ехр.	Calc.	PM3	MNDO	AM1	Footnote
CHNO	Hydrogen isocyanate	NH	0.987	0.985	-0.002	0.011	-0.002	а
		CN	1.207	1.251	0.044	0.042	0.025	
		CNH	128.1	123.7	-4.4	-7.9	-0.9	
		CO	1.171	1.181	0.010	0.014	0.031	
OII NO	T3	OCN	180.0	168.7	-11.3 0.037	-12.5 0.033	$-13.3 \\ -0.009$	##
CH₃NO	Formamide	CN NH	$1.376 \\ 1.002$	1.413 0.994	-0.008	-0.002	-0.009	Ü
		CH	1.102	1.102	0.000	0.002	0.012	
		CO	1.193	1.217	0.024	0.032	0.050	
		OCN	123.8	118.5	-5.3	-2.7	-1.9	
NO_2	Nitrogen dioxide	NO	1.197	1.181	-0.016	-0.023	-0.038	а
•	_	ONO	136.0	137.8	1.8	-2.8	0.4	
HNO_2	Nitrous acid (cis)	N-0	1.460	1.339	-0.121	-0.163	-0.169	а
		N=0	1.200	1.175	-0.025	-0.031	-0.038	
		ONO	114.0	113.3	-0.7	3.1	2.6	
		OH	0.980	0.960	-0.020	-0.017	0.003	
HNO	Nitroug agid (turns)	HON N—O	$103.0 \\ 1.460$	109.9 1.383	$6.9 \\ -0.077$	$16.7 \\ -0.148$	$12.5 \\ -0.141$	а
HNO_2	Nitrous acid (trans)	N=0 $N=0$	1.460 1.200	1.363	-0.077 -0.033	-0.148 -0.034	-0.141 -0.042	а
		ONO	118.0	109.1	-8.9	-4.7	-5.2	
		OH	0.980	0.950	-0.030	-0.022	-0.005	
		HON	105.0	104.6	-0.4	5.0	2.0	
$C_7H_7NO_2$	Salicylaldoxime	N(14)H(17)	1.834	1.847	0.013	0.940	0.302	kk
-, , 2		O(10)N(14)	2.626	2.684	0.058	0.781	0.298	
HNO_3	Nitric acid	N=0	1.206	1.203	-0.003	0.005	-0.011	a
		0 = N = 0	130.0	132.7	2.7	-3.5	-1.0	
		N0	1.405	1.410	0.005	-0.065	-0.072	
		OH	0.960	0.953	-0.007	0.002	0.022	
N.7	371	NOH	102.0	109.0	7.0	12.0	7.7	
N_2	Nitrogen	NN	1.094	1.098	0.004	0.010	0.012	v
H_4N_2	Hydrazine	NN	1.449	1.440 1.001	-0.009	-0.052	-0.071	а
		NH HNN	$1.022 \\ 112.0$	106.5	-0.021 -5.5	-0.001 -4.8	-0.008 -4.6	
		HNNH	90.0	180.3	90.3	90.2	90.2	
C_2N_2	Cyanogen	CN	1.154	1.159	0.005	0.008	0.008	b
02112	Cyanogen	CC	1.389	1.382	-0.007	-0.011	-0.005	D
$C_2H_6N_2$	Dimethyldiazene	NN	1.254	1.228	-0.026	-0.032	-0.030	b
- 0 -	ř	CN	1.474	1.467	-0.007	0.000	-0.022	
		CNN	111.9	119.3	7.4	5.0	7.9	
N_2O	Nitrous oxide	NN	1.128	1.124	-0.004	0.000	0.000	a
		NO	1.184	1.197	0.013	-0.003	-0.009	
$H_2N_2O_2$	NH_2-NO_2	NN	1.427	1.431	0.004	-0.020	-0.060	11
		NO	1.206	1.211	0.005	0.003	-0.002	
		NH ONO	1.005 130.1	$1.000 \\ 127.2$	$-0.005 \\ -2.9$	$\begin{array}{c} 0.013 \\ -6.0 \end{array}$	-0.003	
N_2O_3	Dinitrogen trioxide	NN	2.080	1.409	-2.9 -0.671	-0.706	$-6.1 \\ -0.728$	
11203	Dimerogen aroxide	NO	1.100	1.172	0.071	0.063	0.061	а
		NNO	110.0	118.2	8.2	11.0	12.8	
		NO'	1.180	1.268	0.088	0.079	0.101	
		O'NO'	134.0	150.4	16.4	14.8	13.5	
N_2O_4	Dinitrogen tetroxide	NN	1.750	1.759	0.009	-0.135	0.068	a
	_	NO	1.180	1.195	0.015	0.009	-0.008	
		ONN	113.2	114.6	1.4	2.1	1.0	
N_3	Azide	NN	1.181	1.174	-0.007	-0.007	-0.004	а
$C_3H_3N_3$	s-Triazine	CN	1.338	1.358	0.020	0.019	0.026	mm
пс	U.d	NCN	126.8	121.6	-5.2	-3.4	-1.1	
H_2S	Hydrogen sulfide	HS HSH	1.328	1.290	-0.038	-0.028	-0.011	a
CS	Carbon sulfide	CS	$92.2 \\ 1.534$	$93.5 \\ 1.447$	$\frac{1.3}{-0.087}$	$5.9 \\ -0.050$	6.6 -0.064	n
CH ₂ S	Thioformaldehyde	CS	1.611	1.539	-0.087 -0.072	-0.050 -0.074	-0.064 -0.088	nn ii
z~	ororardorry de	CH	1.011	1.095	0.002	-0.074	0.006	Ü
		HCS	121.6	126.1	4.5	2.4	1.6	

Table VIII. (continued)

Empirical		Geometric				Errors		
formula	Chemical name	variable	Exp.	Calc.	РМ3	MNDO	AM1	Footnote
CH ₄ S	Thiomethanol	CS	1.818	1.801	-0.017	-0.101	-0.104	00
		SH	1.329	1.306	-0.023	-0.027	-0.009	
		HSC	100.3	100.0	-0.3	2.1	1.0	
~ ** ~		HCSH	180.0	179.9	-0.1	-0.2	-0.1	
C_4H_4S	Thiophene	CS	1.714	1.725	0.011	-0.035	-0.037	$\mathbf{q}\mathbf{q}$
		CCS	92.2	91.4	-0.8	1.4	2.0	
		C_3C_2	1.370	1.366	-0.004	0.004	-0.003	
CCO	Caulan	CCC	111.5	112.1	0.6	0.4	-0.4	
CSO	Carbon oxysulfide	CO CS	1.159 1.559	1.176 1.504	$0.017 \\ -0.055$	$0.022 \\ -0.049$	$0.034 \\ -0.065$	rr
SO_2	Sulfur dioxide	SO	1.432	1.442	0.010	0.044	0.003	а
502	Sulful dioxide	oso	119.5	106.1	-13.4	-12.7	-16.6	a
SO_3	Sulfur trioxide	SO	1.430	1.384	-0.046	0.061	0.113	а
$H_2 \stackrel{\circ}{S} O_4$	Sulfuric acid	s-0	1.550	1.668	0.118	0.078	0.157	a
2 4		OH	0.970	0.947	-0.023	-0.023	-0.006	
		SOH	105.0	117.7	12.7	12.2	1.5	
		S=0	1.420	1.668	0.248	0.209	0.287	
NS	Sulfur nitride	SN	1.495	1.452	-0.043	-0.055	-0.054	a
C_2H_3NS	Methyl isothiocyanate	CS	1.597	1.498	-0.099	-0.088	-0.095	SS
		C = N	1.192	1.231	0.039	0.027	0.025	
		C-N	1.479	1.440	-0.039	-0.042	-0.072	
~	~	C-N=C	141.6	139.4	-2.2	-0.3	-1.0	
C_2N_2S	Sulfur dicyanide	CN	1.157	1.164	0.007	0.007	0.007	tt
		CS	1.701	1.664	-0.037	-0.071	-0.067	
		NCS	170.0	176.5	6.5	7.0	7.4	
C	C-16 1:	CSC	98.4	101.5	3.1	5.1	3.4	_
S_2 H_2S_2	Sulfur dimer	SS SS	1.889 2.055	$1.857 \\ 2.034$	$-0.032 \\ -0.021$	-0.114 -0.131	-0.114 -0.136	a
$\mathbf{n}_2 \mathbf{o}_2$	H_2S_2	SH	$\frac{2.033}{1.327}$	$\frac{2.034}{1.311}$	-0.021	-0.131 -0.023	-0.136 -0.005	uu
		HSS	91.3	103.2	11.9	11.2	9.9	
		HSSH	90.5	93.4	2.9	9.1	21.7	
CS_2	Carbon disulfide	CS	1.553	1.481	-0.072	-0.061	-0.070	pp
$C_2H_6S_2$	2,3-Dithiabutane	CS	1.810	1.804	-0.006	-0.085	-0.089	VV
- 2 0-2		SS	2.038	2.021	-0.017	-0.103	-0.108	
		CSS	102.8	109.2	6.4	5.2	3.4	
		CSSC	84.7	88.0	3.3	19.8	10.0	
		SSC	102.8	109.2	6.4	5.1	3.4	
S_6	S_6	SS	2.057	2.048	-0.009	-0.110	-0.110	ww
		SSS	102.2	107.5	5.3	2.9	2.9	
~		SSSS	74.5	64.6	-9.9	-5.1	-5.0	
S_8	S_8	SS	2.048	1.973	-0.075	-0.113	-0.113	XX
		SSS	107.9	116.0	8.1	0.4	0.4	
HF	Undragan fluorida	SSSS	$98.6 \\ 0.917$	$87.6 \\ 0.938$	$-11.0 \\ 0.021$	$-0.2 \\ 0.039$	-0.2	****
CF	Hydrogen fluoride Fluoromethylidyne	HF CF	1.266	1.259	-0.021	-0.003	-0.091 -0.007	уу
CHF	Fluoromethylene	CH	1.121	1.100	-0.021	-0.003	0.006	a a
OIII	Truoromethylene	CF	1.314	1.284	-0.030	-0.029	-0.023	а
		FCH	101.6	105.6	4.0	9.5	9.0	
CH_3F	Fluoromethane	CH	1.098	1.092	-0.006	0.020	0.023	ZZ
02-3-		CF	1.382	1.351	-0.031	-0.035	-0.007	
		FCH	108.5	108.6	0.1	2.1	1.0	
C_2H_3F	Fluoroethylene	CC	1.333	1.333	0.000	0.018	0.007	aaa
	•	CH(g)	1.076	1.093	0.017	0.023	0.028	
		CCH(g)	127.7	126.2	-1.5	-4.7	-3.8	
		CH(t)	1.085	1.085	0.000	0.002	0.011	
		CCH(t)	123.9	121.2	-2.7	-3.0	-3.1	
		CH(c)	1.090	1.086	-0.004	-0.003	0.006	
		CCH(c)	121.4	123.8	2.4	3.1	1.6	
		CF	1.348	1.338	-0.010	-0.024	0.003	
		FCC	121.0	122.0	1.0	2.3	2.2	

Table VIII. (continued)

Empirical		Geometric				Errors		
formula	Chemical name	variable	Exp.	Calc.	РМ3	MNDO	AM1	Footnote
C_3H_3F	Fluoroallene	$\mathbf{C_1C_2}$	1.301	1.310	0.009	0.019	0.012	bbb
		C_1H	1.083	1.094	0.011	0.016	0.022	
		HC_1C_2	124.3	124.8	0.5	-1.4	-1.4	
		C_1F	1.360 121.9	$1.340 \\ 122.2$	$-0.020 \\ 0.3$	-0.035 1.0	-0.008 1.8	
		$egin{array}{l} ext{FC}_1 ext{C}_2 \ ext{C}_2 ext{C}_3 \end{array}$	1.309	1.294	-0.015	-0.006	-0.014	
		C_3H	1.086	1.087	0.001	0.005	0.015	
		$\overset{\circ}{\mathrm{HC_3C_2}}$	120.8	122.3	1.5	2.1	1.5	
CNF	Cyanogen fluoride	CN	1.159	1.159	0.000	0.001	0.006	ccc
	271. 1.0 .1	CF	1.262	1.297	0.035	0.011	0.045	
NOF	Nitrosyl fluoride	NF NO	1.520	$1.367 \\ 1.162$	$-0.153 \\ 0.032$	$-0.215 \\ 0.031$	-0.153 0.018	a
		FNO	$1.130 \\ 110.2$	111.6	1.4	3.7	2.1	
\mathbf{F}_2	Fluorine	FF	1.412	1.350	-0.062	-0.146	0.015	а
H_2F_2	Hydrogen fluoride							
2 2	dimer	HF	0.920	0.939	0.019	0.036	-0.093	a
		$\mathbf{H}'\mathbf{F}$	1.870	1.743	-0.127	1.093	0.417	
C.P.	70101 11 1	H'FH	108.0	147.0	39.0	71.5	-18.1	
CF_2	Difluoromethylene	CF	1.300 104.9	1.298 106.3	-0.002 1.4	$0.004 \\ 3.4$	0.012 1.1	a
OF_2	F_2O	FCF OF	1.412	1.378	-0.034	-0.131	-0.058	a
Or ₂	F ₂ O	FOF	103.2	100.9	-2.3	5.9	-0.7	u.
COF_2	Carbonyl difluoride	CO	1.174	1.199	0.025	0.045	0.046	a
. •		\mathbf{CF}	1.312	1.322	0.010	0.004	0.016	
	~ · · · · · · · · · · · · · · · · · · ·	FCO	126.0	124.6	-1.4	-1.9	-1.5	
SF_2	Sulfur difluoride	SF	1.592	1.560	-0.032	-0.020	0.031	a
CSF_2	Thiocarbonyl	FSF	98.2	96.5	-1.7	1.3	-1.3	
CSF ₂	difluoride	CS	1.589	1.600	0.011	-0.014	-0.030	pp
	umuomuo	CF	1.315	1.338	0.023	0.006	0.027	FF
		FCS	126.5	128.9	2.4	-0.5	1.1	
SOF_2	Thionyl fluoride	SO	1.412	1.467	0.055	0.068	0.132	a
		SF	1.585	1.574	-0.011	0.023	0.058	
		FSO	106.8	101.0	-5.8	-3.9	-7.0	
SO_2F_2	Sulfuryl fluoride	FSF SF	$92.8 \\ 1.530$	93.9 1.547	1.1 0.017	$\frac{4.2}{0.080}$	$\frac{2.0}{0.111}$	а
SO ₂ F ₂	Sulfuryi Huoride	FSF	96.1	95.3	-0.8	1.7	1.1	а
		SO	1.405	1.400	-0.005	0.103	0.171	
		OSO	124.0	126.4	2.4	0.8	3.5	
S_2F_2	FSSF	SF	1.635	1.584	-0.051	-0.063	-0.006	
		SS	1.888	2.008	0.120	0.078	0.060	
		FSS FSSF	$108.3 \\ 87.9$	$112.0 \\ 87.4$	$3.7 \\ -0.5$	$-1.8 \\ -1.3$	$-2.1 \\ -0.8$	
S_2F_2	SSF_2	SS	1.860	1.919	0.059	0.035	0.019	а
O21 2	DDI 2	SF	1.598	1.592	-0.006	0.003	0.054	
		FSS	107.5	114.5	7.0	1.4	1.3	
		FSF	92.5	90.8	-1.7	3.9	0.2	
CHF_3	Trifluoromethane	CH	1.098	1.110	0.012	0.038	0.032	
		CF	1.333	1.346	$0.013 \\ 2.8$	$0.020 \\ 1.2$	$0.035 \\ 2.7$	
NF_3	Nitrogen trifluoride	FCH NF	$110.3 \\ 1.371$	$113.1 \\ 1.354$	-0.017	-0.056	-0.011	а
1 41 3	Millogen tillidoride	FNF	102.2	105.0	2.8	4.0	0.4	a
C_2NF_3	Trifluoroacetonitrile	CC	1.461	1.487	0.026	0.037	0.025	a
- •		\mathbf{CF}	1.335	1.350	0.015	0.020	0.036	
		CCF	111.4	113.4	2.0	0.5	2.1	
OE.	O-uk 4-4 0 11	CN	1.153	1.155	0.002	0.006	0.006	
CF_4	Carbon tetrafluoride	CF CC	1.321 1.311	1.337 1.355	$0.016 \\ 0.044$	$0.026 \\ 0.070$	$0.037 \\ 0.057$	
C_2F_4	Tetrafluoroethylene	CF	1.311	1.326	0.044	-0.001	0.037 0.021	
		FCC	123.8	125.1	1.3	0.001	1.6	
SF_4	Sulfur tetrafluoride	SF	1.545	1.633	0.088	0.061	0.112	a
•		FSF	101.6	81.0	-20.6	-13.0	-18.6	
		SF'	1.646	1.591	-0.055	-0.005	0.022	
		FSF'	87.8	81.0	-6.8	0.9	-4.8	

Table VIII. (continued)

Empirical		Geometric				Errors		
formula	Chemical name	variable	Exp.	Calc.	PM3	MNDO	AM1	Footnote
C_2F_6	Hexafluoroethane	CC	1.560	1.608	0.048	0.114	0.061	а
		CF	1.320	1.341	0.021	0.026	0.043	
~-	~	FCC	109.5	111.4	1.9	1.2	2.6	
SF ₆	Sulfur hexafluoride	SF	1.564	1.560	-0.004	0.091	0.110	а
HCl	Hydrogen chloride	HCl	1.275	1.268 1.100	-0.007 -0.020	0.073	0.009	a
CHCl	Chloromethylene	CH CCl	$1.120 \\ 1.689$	1.554	-0.020 -0.135	$-0.020 \\ 0.050$	$-0.010 \\ -0.042$	a
		CICH	103.4	115.5	12.1	6.0	7.7	
CH ₃ Cl	Chloromethane	CCl	1.781	1.764	-0.017	0.014	-0.040	a
3		CH	1.096	1.094	-0.002	0.006	0.016	
		HCCl	110.9	109.9	-1.0	-2.8	-2.6	
OCl	Chlorine monoxide	ClO	1.546	1.548	0.002	0.073	0.090	a
NOCl	NOCl	ClN	1.950	1.764	-0.186	-0.167	-0.219	а
		NO	1.170	1.156	-0.014	-0.033	-0.033	
NO O	NO GI	CNCl	114.0	118.9	4.9	3.5	5.4	_
NO_2Cl	NO_2Cl	ClN NOCl	$\frac{1.830}{1.210}$	1.818 1.197	-0.012 -0.013	-0.020 -0.019	-0.059 -0.024	a
FCl	Chlorine fluoride	ClF	1.628	1.197	-0.013	0.019	0.019	a
O ₃ FCl	ClO ₃ F	ClF	1.630	1.690	0.040	0.105	0.013	a
031 01	C1O31	ClO	1.460	1.453	-0.007	0.270	0.328	u
		OCIF	95.2	102.8	7.6	11.0	3.0	
CHF ₂ Cl	Chlorodifluoromethane		1.090	1.108	0.018	0.036	0.037	eee
-		CCl	1.740	1.822	0.082	0.099	0.069	
		CICH	107.0	109.9	2.9	-2.2	-1.8	
		CF	1.350	1.346	-0.004	-0.008	0.019	
		FCCl	110.5	110.1	-0.4	-0.4	1.9	
	G11	FCClH	120.0	122.6	2.6	1.0	2.0	
F_3Cl	Chlorine trifluoride	CUE	1 500	1.071	0.070	0.101	0.005	
	C2v	CIF	1.598	$1.671 \\ 1.671$	$0.073 \\ -0.027$	$0.101 \\ 0.001$	0.085	a
		ClF' FClF'	1.698 87.5	120.0	$\frac{-0.027}{32.5}$	32.5	-0.015 32.5	
Cl_2	Chlorine	ClCl	1.986	2.035	0.049	0.010	-0.068	a
CH ₂ Cl ₂	Dichloromethane	CCI	1.772	1.758	-0.014	0.014	-0.031	ddd
0112012		CICCI	111.8	107.9	-3.9	-0.6	1.2	
		CH	1.103	1.102	-0.001	0.000	0.010	
OCl_2	Cl_2O	ClO	1.701	1.700	-0.001	-0.018	0.032	a
		ClOCl	110.8	109.2	-1.6	2.1	0.3	
$COCl_2$	Carbonyl chloride	CO	1.166	1.198	0.032	0.034	0.056	a
		CCl	1.746	1.737	-0.009	0.014	-0.027	
aaı	0.16 1:11 :1	ClCO	124.4	124.2	-0.2	-0.5	-1.1	
SCl_2	Sulfur dichloride	SCI	2.015	2.031	0.016	-0.043	-0.090	a
SOCl ₂	Thionyl chloride	CISCI SO	$102.7 \\ 1.443$	$101.6 \\ 1.479$	$-1.1 \\ 0.036$	$\frac{3.6}{0.026}$	3.1 0.110	fff
30012	Thionyl chioride	SCI	2.076	2.080	0.004	-0.028	-0.110	111
		CISO	106.3	104.7	-1.6	0.3	-0.102	
S_2Cl_2	CISSCI	SCI	2.057	2.044	-0.013	-0.081	-0.131	a
- 2 2		SS	1.931	1.965	0.034	-0.011	-0.004	
		CISSCI	108.2	113.1	4.9	0.0	-0.3	
CF_2Cl_2	Dichlorofluoromethane		1.770	1.808	0.038	0.055	0.037	a
		CICCI	108.5	106.6	-1.9	-1.7	-1.8	
		CF	1.330	1.345	0.015	0.007	0.040	
OHO	Cl.1 C	FCCl	109.8	111.4	1.6	0.8	2.1	111
CHCl_3	Chloroform	CCI	1.782	1.753	-0.029	0.000	-0.034	$\mathbf{d}\mathbf{d}\mathbf{d}$
\mathbf{CFCl}_3	Trichlorofluoro-	CICH	107.5	110.4	2.9	1.1	0.2	
OF O13	methane	CF	1.330	1.349	0.019	-0.003	0.046	a
	memane	CCI	1.760	1.779	0.019	-0.003	0.046	а
CCl ₄	Carbon tetrachloride	CCI	1.760	1.747	-0.013	0.022	0.020	ddd
C_2Cl_6	Hexachloroethane	CC	1.550	1.512	-0.038	0.016	0.007	a
2 - −0		CCl	1.740	1.754	0.014	0.050	0.020	
		ClCC	109.0	110.2	1.2	2.4	0.7	
HBr	Hydrogen bromide	HBr	1.415	1.471	0.056	0.025	0.006	ggg

Table VIII. (continued)

17		Coomotrio				Errors		
Empirical formula	Chemical name	Geometric variable	Ехр.	Calc.	РМ3	MNDO	AM1	Footnote
CH ₃ Br	Bromomethane	CBr	1.933	1.951	0.018	-0.055	-0.028	pp
-		CH	1.086	1.090	0.004	0.016	0.024	
		HCBr	107.7	108.4	0.7	0.8	1.1	
C_2H_3OBr	Acetyl bromide	CC	1.516	1.477	-0.039	-0.001	-0.026	pp
		CBr	1.973	1.966 106.3	-0.007 -4.7	$-0.086 \\ 2.0$	-0.026 2.3	
		BrCC CO	$111.0 \\ 1.183$	1.185	0.002	0.026	0.042	
		cco	127.1	134.3	7.2	0.020	-3.0	
CNBr	Cyanogen bromide	BrC	1.789	1.796	0.007	-0.046	-0.029	а
01121	Cyanogen aremiae	CN	1.158	1.155	-0.003	0.003	0.006	
NOBr	BrNO	BrN	2.140	1.888	-0.252	-0.271	-0.218	pp
		NO	1.146	1.147	0.001	-0.007	-0.011	
		BrNO	114.5	120.8	6.3	4.4	8.0	
FBr	BrF	BrF	1.755	1.774	0.019	-0.029	0.022	a
F_3Br	Bromine trifluoride	BrF	1.721	1.786	0.065	0.036	0.087	a
		BrF'	1.806	1.786	-0.020 33.8	-0.049	0.010	
CF ₃ Br	Trifluorobromo-	FBrF'	86.2	120.0	00.0	33.8	-4.8	
Cr ₃ Dr	methane	CBr	1.909	1.960	0.051	0.029	0.134	a
	methane	CF	1.328	1.335	0.007	0.019	0.039	и
		FCBr	110.3	110.8	0.5	0.8	3.4	
F_5Br	Bromine pentafluoride	BrF(ax)	1.680	1.755	0.075	0.086	0.134	а
Ū	•	BrF(eq)	1.790	1.774	-0.016	-0.019	0.014	
ClBr	Bromine chloride	BrCl	2.136	2.176	0.040	-0.056	-0.072	a
Br_2	Bromine	BrBr	2.283	2.443	0.160	-0.115	-0.099	a
$\mathrm{CH_{2}Br_{2}}$	Dibromomethane	CH	1.079	1.095	0.016	0.023	0.031	pp
		HCH CD-	113.6	111.4	-2.2	-2.7	-3.3	
		CBr BrCH	$1.927 \\ 106.5$	$1.912 \\ 112.5$	-0.015 6.0	$-0.059 \\ 2.0$	-0.025 1.7	
C_2Br_4	Tetrabromoethylene	CC	1.362	1.450	0.088	-0.020	-0.018	pp
C ₂ DI ₄	Tetrabiomoetriylene	CBr	1.881	1.865	-0.016	-0.060	-0.024	PP
		BrCC	122.4	111.9	-10.5	1.3	0.0	
HI	Hydrogen iodide	HI	1.609	1.677	0.068	-0.042	-0.022	ggg
CH_3I	Iodomethane	CH	1.084	1.093	0.009	0.020	0.025	pp
		CI	2.132	2.028	-0.104	-0.117	-0.082	
		HCH	111.2	109.9	-1.3	-2.8	-1.4	
CNI	Cyanogen iodide	CN	1.159	1.155	-0.004	0.005	0.003	a
Tat	T. 3: G	CI	1.994	1.908	-0.086	-0.103	-0.067	_
FI CF ₃ I	Iodine fluoride Trifluoroiodomethane	IF CI	$1.906 \\ 2.130$	1.889 2.052	-0.017 -0.078	$-0.004 \\ -0.005$	-0.025 0.045	a a
Cr ₃ 1	Triffuorologomethane	CF	1.332	1.340	0.008	0.003	0.043	а
		FCI	110.6	112.1	1.5	1.9	3.5	
F_5I	Iodine pentafluoride	IF(ax)	1.844	1.867	0.023	0.139	0.087	hhh
- u -	P	IF(eq)	1.869	1.882	0.013	0.088	0.029	
		F(ax)IF(eq)	81.9	102.6	20.7	-3.8	-4.6	
$\mathbf{F}_{7}\mathbf{I}$	Iodine heptafluoride	IF(ax)	1.760	2.698	0.938	0.731	0.866	
017	T 10 13 13	IF(eq)	1.860	1.913	0.053	0.218	0.114	
ClI	Iodine chloride	ICl	2.327	2.192	-0.135	-0.065	-0.109	
BrI	Iodine bromide	IBr II	$2.485 \\ 2.666$	$2.561 \\ 2.668$	$0.076 \\ 0.002$	$-0.135 \\ -0.151$	-0.131 -0.128	
$egin{array}{c} I_2 \\ HAl \end{array}$	Iodine AlH	AlH	1.648	1.663	0.002	-0.222	-0.120	
AlO	AlO	AlO	1.618	1.533	-0.085	-0.143	-0.053	a
AlF	Aluminum fluoride	AlF	1.654	1.652	-0.002	-0.094	-0.077	a
AlF_3	Aluminum trifluoride	AlF	1.630	1.644	0.014	-0.038	-0.014	
AlF ₄	$AlF_4(-)$	AlF	1.690	1.688	-0.002	-0.041	-0.023	а
AlCl	Aluminum chloride	AlCl	2.130	1.947	-0.183	-0.055	-0.145	
$AlCl_3$	Aluminum trichloride	AlCl	2.060	1.966	-0.094	0.005	-0.064	
AlBr	Aluminum bromide	AlBr	2.295	2.292	-0.003	-0.093	-0.201	
AlBr ₃	Aluminum tribromide	AlBr	2.270	1.875	-0.395	-0.095	-0.161	
AlI_3	Aluminum triiodide	AlI AlAl	$2.499 \\ 2.467$	$2.487 \\ 2.554$	-0.012 0.087	-0.174 -0.175	-0.190 -0.175	
${ m Al}_2 { m Al}_2 { m O}$	Al_2 Al_2O	AlO	1.730	$\frac{2.554}{1.677}$	-0.053	-0.175 -0.124	-0.173 -0.012	
H_2Si	Silylene (singlet)	SiH	1.519	1.513	-0.006	-0.139	-0.062	
-	O	HSiH	92.1	94.9	2.8	5.2	8.9	340

Table VIII. (continued)

Empirical		Geometric				Errors		
formula	Chemical name	variable	Exp.	Calc.	РМЗ	MNDO	AM1	Footnote
H ₄ Si	Silane	SiH	1.481	1.488	0.007	-0.105	-0.020	а
$C_4H_{12}Si$	Tetramethylsilane	SiC	1.879	1.890	0.011	-0.064	-0.050	pp
SiN	Silicon nitride	SiN	1.572	1.464	-0.108	-0.021	-0.087	a
SiF_2	Difluorosilylene	SiF	1.591	1.575	-0.016	-0.013	0.021	a
		FSiF	101.0	95.3	-5.7	-4.1	-3.9	
$HSiF_3$	Trifluorosilane	SiH	1.447	1.507	0.060	-0.072	-0.007	a
		SiF	1.562	1.590	0.028	0.031	0.047	
		FSiH	110.6	112.6	2.0	3.0	1.2	
SiF ₄	Tetrafluorosilane	SiF	1.552	1.580	0.028	0.032	0.052	a
SiCl	Chlorosilylidyne	SiCl	2.063	1.946	-0.117	0.009	-0.077	а
$SiCl_2$	Dichlorosilylene	ClSiCl	109.7	101.9	-7.8	-4.2	-5.3	kkk
$SiCl_4$	Silicon tetrachloride	SiCl	2.017	2.041	0.024	0.063	0.022	a
H₃SiBr	Bromosilane	SiBr	2.210	1.901	-0.309	0.018	0.030	pp
· ·		SiH	1.481	1.491	0.010	-0.113	-0.016	T-T-
		HSiBr	107.9	108.3	0.4	-1.0	2.4	
SiBr₄	Silicon tetrabromide	SiBr	2.150	1.796	-0.354	0.040	0.093	a
H_3SiI	Iodosilane	SiI	2.437	2.012	-0.425	-0.051	-0.003	a
0 -		SiH	1.486	1.492	0.006	-0.116	-0.020	
		HSiI	108.5	108.0	-0.5	-0.1	1.3	
SiI ₄	Silicon tetraiodide	SiI	2.430	2.467	0.037	-0.097	-0.005	a
Si_2	Silicon dimer	SiSi	2.246	2.297	0.051	-0.259	-0.019	a
H_6Si_2	Disilane	SiSi	2.331	2.396	0.065	-0.158	0.086	ill
116012	Distance	SiH	1.492	1.487	-0.005	-0.113	-0.026	***
		HSiSi	110.3	109.7	-0.6	0.110	-0.7	
H₃P	Phosphine	PH	1.420	1.324	-0.096	-0.080	-0.054	а
1131	i nospinne	HPH	93.8	97.1	3.3	2.3	$\frac{0.054}{2.8}$	а
CP	Carbon phosphide	CP	1.562	1.389	-0.173	-0.145	-0.151	0
CHP	Methinophosphide	CP	1.502 1.542	1.409	-0.173	-0.145 -0.114		a
OIII	Metimophospinde	HC	1.067	1.068	0.001	-0.114 -0.010	-0.123 -0.003	a
C_3H_9P	Trimethylphosphine	CP	1.843	1.872	0.029	-0.010	-0.003	nn
C31191	rimemyiphospinie	CPC	98.9	100.6	1.7	-0.081 7.9	$\frac{-0.079}{2.2}$	pp
PO	Phosphorus oxide	PO	1.476	1.459	-0.017	-0.053		
NP	Phosphorus nitride	PN		1.414			-0.004	a
		PF	1. 49 1 1.570	1.558	-0.077	-0.093 -0.014	-0.091	a
PF_3	Phosphorus trifluoride				-0.012		0.024	а
DOE	Dh	FPF	97.8	95.8	-2.0	1.1	-1.3	_
POF_3	Phosphoryl fluoride	PF	1.520	1.529	0.009	0.034	0.071	a
		FPF	102.5	99.8	-2.7	-0.6	-0.9	
DOE	m · 1 1 1	PO	1.450	1.452	0.002	0.036	0.096	
PSF_3	Thiophosphoryl	DE.	1.500	1 500	0.000	0.007	0.051	
	fluoride	PF	1.530	1.539	0.009	0.027	0.071	a
		FPF	100.3	95.1	-5.2	-1.0	-3.0	
DE	T) 1	PS	1.870	1.934	0.064	0.105	0.063	
PF_5	Phosphorus	DD()	4	4 220	0.004	0.005	0.044	
	pentafluoride	PF(ax)	1.577	1.553	-0.024	0.025	0.044	a
D.C.I	TS1 1	PF(eq)	1.534	1.528	-0.006	0.039	0.071	
PCl_3	Phosphorus trichloride		2.039	2.064	0.025	-0.050	-0.100	а
DOI.	71 1	ClPCl	100.3	99.7	-0.6	4.9	4.4	
PCl_5	Phosphorus							
	pentachloride	PCl(ax)	2.190	2.093	-0.097	-0.078	-0.101	а
D.D.	753	PCl(eq)	2.040	2.052	0.012	-0.007	-0.054	
PBr_3	Phosphorus tribromide		2.220	2.150	-0.070	-0.131	-0.134	$\mathbf{p}\mathbf{p}$
_		BrPBr	101.0	101.3	0.3	4.7	6.2	
P_2	Phosphorus dimer	PP	1.894	1.715	-0.179	-0.200	-0.200	а
P_4	Phosphorus tetramer	PP	2.210	2.197	-0.013	-0.158	-0.158	а
P_4O_6	Phosphorus trioxide	PO	1.650	1.708	0.058	-0.046	0.031	a
		OPO	99.0	96.5	-2.5	-3.0	-1.9	

^aM. W. Chase, C. A. Davies, J. R. Downey, D. R. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables, Third Edition, J. Phys. Chem. Ref. Data, 14, Suppl. 1 (1985).

bG. Herzberg, Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules, Van Nostrand, New York, 1966.
cA. G. Maki and R. A. Toth, J. Mol. Spectr., 17, 136 (1965).
dW. M. Stigliani, V. W. Laurie, and J. C. Li, J. Chem. Phys., 62, 1890 (1975).
eR. A. Bonham, L. S. Bartell, J. Am. Chem. Soc., 81, 3491 (1959).

O. Bastiansen, F. N. Fritsch, and K. Hedberg, Acta Crystallogr., 17, 538 (1964). ⁸D. R. Lide and D. Christensen, J. Chem. Phys., 35, 1374 (1961). ^hJ. H. Callomon and B. P. Stoicheff, Can. J. Phys., **35**, 373 (1957). ¹A. Almenningen, O. Bastiansen, and M. Traetteberg, Acta Chem. Scand., 15, 1557 (1961).

¹T. Fukuyama, K. Kuchitsu, and Y. Morino, Bull. Chem. Soc. Jap., 42, 379 (1969).

¹K. W. Cox, M. D. Harmony, G. Nelson, and K. B. Wiberg, J. Chem. Phys., 50, 1976 (1969). W. Haugen and M. Traetteberg, Acta Chem. Scand., 20, 1226 (1966). ^mA. Almenningen, I. M. Anfinsen, and A. Haaland, Acta Chem. Scand., 24, 43 (1970). ⁿS. Meiboom and L. C. Snyder, *J. Chem. Phys.*, **52**, 3857 (1970). ^oL. R. H. Scharpen and V. W. Laurie, J. Chem. Phys., 39, 1972 (1963). ^pD. R. Lide, J. Chem. Phys., 33, 1519 (1960). ^qB. W. McCelland and K. Hedberg, J. Am. Chem. Soc., 109, 7304 (1987). ^rK. Tamagawa, T. Iijima, and M. Kimura, J. Mol. Struct., **30**, 243 (1976). P. A. Baron, R. D. Brown, F. R. Burden, P. J. Domaille, and J. E. Kent, J. Mol. Spectrosc., 43, 401 (1970). ^tJ. F. Chiang and S. H. Bauer, J. Am. Chem. Soc., 91, 1898 (1969). O. Bastiansen, L. Fernholt, H. M. Seip, H. Kambara, and K. Kuchitsu, J. Mol. Struct., 18, 163 (1973). G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, 2nd ed, Van Nostrand, New York, 1950. WK. Takagi and T. Oka, J. Phys. Soc. Jap., 18, 1174 (1963). ^xR. M. Lees and J. G. Baker, J. Chem. Phys., 48, 5299 (1968). A. P. Cox, L. F. Thomas, and J. Sheridan, Spectrochim. Acta, 15, 542 (1959). ²U. Blukis, P.H. Kasai, and R.J. Myers, J. Chem. Phys., 38, 2753 (1963). ^{aa}K. Kuchitsu, T. Fukuyama, and Y. Marino, J. Mol. Struct., 1, 463 (1968). bbB. Bak, D. Christensen, W.B. Dixon, L. Hansen-Nygarrd, J. Rastrup-Anderson, and M. Shottlander, J. Mol. Spectrosc., 9, 124 (1962). ^xW. C. Oelfke and W. Gordy, *J. Chem. Phys.*, **51**, 5336 (1969). ddG. H. Kwei and R. F. Curl, J. Chem. Phys., 32, 1592 (1960). ^{ee}J. Trotter, *Acta Crystallagr.*, **13**, 86 (1960). ^{fD}D. G. Lister, J. K. Tyler, J. H. Hog, and N. W. Larson, *J. Mol. Struct.*, **23**, 253 (1974). ggD. R. Lide, J. Chem. Phys., 27, 343 (1957). hhC. C. Costain, J. Chem. Phys., 29, 864 (1958). ⁱⁱJ. E. Wollrab and V. W. Laurie, J. Chem. Phys., **51**, 1580 (1969). ⁱⁱD. R. Johnson, F. J. Lovas, and W. H. Kirchhoff, J. Phys. Chem. Ref. Data, 1, 1011 (1972). kkJ.O. Morley, J. Chem. Soc. Perkin Trans. II, (1987) (in press). ¹¹J. K. Tyler, J. Mol. Spectrosc., 11, 39 (1963). mmJ. E. Lancaster and B. J. Stoicheff, Can. J. Phys., 34, 1016 (1965).
mL. E. Sutton, "Tables of Interatomic Distances and Configurations in Molecules and Ions," Special Publication No. 11 + 18, Chem. Soc., London (1958), (1965). [∞]R. W. Kilb, *J. Chem. Phys.*, **23**, 1736 (1955). pp.J. H. Callomon, E. Hirota, K. Kuchitsu, W.J. Lafferty, A.G. Maki, and C.S. Pote, Structure Data on Free Polyatomic Molecules, Landolt-Bornstein, New Series, Group II, Vol. 7, Springer, Berlin, 1976. qqB. Bak, D. Christensen, L. Hansen-Nygarrd, and J. Rastrup-Anderson, J. Mol. Spectrosc., 7, 58 (1961). ^{rr}J. K. G. Watson, J. Mol. Spectrosc., 48, 479 (1973). ssD. W. W. Anderson, D. W. H. Rankin, and A. Robertson, J. Mol. Struct., 14, 385 (1972). ttP. Rosmus, H. Stafast, and H. Bock, Chem. Phys. Lett., 34, 275 (1975). uuG. Winnewisser, M. Winnewisser, and W. Gordy, J. Chem. Phys., 49, 3465 (1968). vvR. Sutter, H. Driezler, and F.Z. Rudolph, Naturforschung A, 20, 1676 (1965). wwJ. Donohue, A. Caron, and E. Goldish, J. Am. Chem. Soc., 83, 3748 (1961). xxA. Caron and J. Donohue, Acta Crystallogr., 18, 562 (1965). yyG. A. Kuipers, D. F. Smith, and A. N. Nielsen, J. Chem. Phys., 25, 275 (1956). ²²J. L. Duncan, J. Mol. Struct., 6, 447 (1970). aaa J. L. Carlos, R. R. Karl, and S. H. Bauer, J. Chem. Soc., Faraday Trans., 2, 177 (1974).

bbbT. Ogata, K. Fujii, M. Yoshikawa, and F. Hirota, J. Am. Chem. Soc., 109, 7639 (1987).

ccc J. K. Tyler and J. Sheridan, Trans. Faraday Soc., 59, 2661 (1963).

ddd A. S. Rodgers, J. Chao, R. C. Wilhoit, and B. J. Zwolinski, J. Phys. Chem. Ref. Data, 3, 117 (1974). eeeS. S. Chen, A. C. Wilhoit, and B. J. Zwolinski, J. Phys. Chem. Ref. Data, 5, 571 (1975). ffI. Hargittai, Acta Chem. (Budapest), 49, 351 (1969). ggg K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure, IV. Constants for Diatomic Molecules, Van Nostrand, Reinhold, New York, 1979. hhh N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Pergamon Press, Oxford, 1984, p. 976. iiiD. R. Stull and H. Prophet, Natl. Stand., Ref. Data Ser. (U.S., Natl. Bur. Stand.) NSRDS-NBS 37, 1971. ⁱⁱⁱJ. H. Meadows and H. F. Schaefer III, *J. Am. Chem. Soc.*, **98**, 4383 (1976). kkk R. W. Davis and M. C. L. Gerry, J. Mol. Spectrosc., 60, 117 (1976). ^{III}K. C. Shotton, A. G. Lee, and W. J. Jones, J. Raman Spectrosc., 1, 243 (1973).

is curious that in order to reproduce the observed dipole for propyne (0.78D) the atomic charges would have to be markedly larger than that predicted by current semiempiri-

cal methods. Whether the charges should in fact be larger, or some limitation of semiempirical methods is resulting in an incorrect calculation of the dipole based on the charge

Table IX. Unsigned average errors in bond lengths in angstroms.

	Н	\mathbf{C}	N	O	F	Al	Si	P	S	Cl	Br	I
Н												
(PM3)	0.042											
(MNDO)	0.078											
(AM1)	0.064											
C	51	72										
(PM3)	0.009	0.017										
(MNDO)	0.010	0.014										
(AM1)	0.014	0.017										
N	7	21	8									
(PM3)	0.011	0.018	0.092									
(MNDO)	0.139	0.022	0.120									
(AM1)	0.051	0.025	0.122									
O	8	18	18	3								
(PM3)	0.014	0.012	0.034	0.095								
(MNDO)	0.014	0.021	0.085	0.389								
(AM1)	0.012	0.030	0.062	0.229								
F	3	19	2	1	1							
(PM3)	0.056	0.015	0.085	0.034	0.062							
(MNDO)	0.389	0.016	0.135	0.131	0.146							
(AM 1)	0.200	0.026	0.082	0.058	0.015							
Al				2	3	1						
(PM3)	0.015			0.069	0.006	0.087						
(MNDO)	0.222			0.133	0.058	0.175						
(AM1)	0.180			0.033	0.038	0.175						
Si		1	1		3		2					
(PM3)	0.016	0.011	0.108		0.024		0.058					
(MNDO)	0.110	0.064	0.021		0.025		0.209					
(AM1)	0.025	0.050	0.087		0.040		0.052	_				
P	1	3	1	3	5			2				
(PM3)	0.096	0.112	0.077	0.026	0.012			0.096				
(MNDO)	0.080	0.113	0.093	0.045	0.028			0.179				
(AM1)	0.054	0.118	0.091	0.044	0.056			0.179	_			
S	3	10	1	7	8			1	8			
(PM3)	0.026	0.047	0.043	0.074	0.033			0.064	0.046			
(MNDO)	0.026	0.063	0.055	0.084	0.043			0.105	0.087			
(AM1)	0.008	0.071	0.054	0.152	0.063	0	0	0.063	0.083			
(DMO)		10	2	3	4	2	2	3	3	1		
(PM3)	0.007	0.037	0.099	0.003	0.052	0.138	0.070	0.045	0.011	0.049		
(MNDO)	0.073	0.036	0.093	0.120	0.057	0.030	0.036	0.045	0.054	0.010		
(AM1)	0.009	0.033	0.139	0.150	0.042	0.105	0.049	0.085	0.108	0.068		
(PM3)	0.056	$\begin{array}{c} 6 \\ 0.019 \end{array}$	$\begin{array}{c} 1 \\ 0.252 \end{array}$		5 0.039	2	2	1		1	1	
(MNDO)						0.199	0.332	0.070		0.040	0.160	
(MNDO) (AM1)	0.025	0.056	0.271		0.044	0.094	0.029	0.131		0.056	0.115	
(AMI)	0.006	0.044	0.218		0.053	0.181	0.061	0.134		0.072	0.099	4
(PM3)	0.068	3			5	1	2			1	1	1
(MNDO)		0.089			0.209	0.012	0.231			0.135	0.076	0.002
	0.042	0.075			0.236	0.174	0.074			0.065	0.135	0.151
(AM1)	0.022	0.065			0.224	0.190	0.004			0.109	0.131	0.128

distribution is not clear. Whatever the reason, it appears that any charge distribution which would give rise to the experimentally observed dipole would be unacceptable, and more "realistic" charges would be preferable to those which would accurately reproduce the observed dipole moment. In consequence, the dipoles of nonconjugated hydrocarbons are too low, on average.

IONIZATION POTENTIALS

Table XIV lists the calculated and observed first ionization potentials for 256 compounds. In this report, only first ionization

potentials will be considered. The average differences in IPs between experimental and calculated values are 0.57, 0.78, and 0.61 eV for PM3, MNDO, and AM1, respectively. IPs for doublet and other open shell systems are not reported, but differences for these systems are likely to be of the same order as for closed-shell systems.

DISCUSSION

Bonding in Hypervalent Compounds

A more complete optimization of the parameters involved in MNDO/AM1 has re-

Table X. Signed average errors in bond lengths in angstroms.

(PM3) (MNDO) (AM1) (PM3) (MNDO) (AM1) (PM3) (MNDO) (AM1) (PM3) (MNDO) (AM1) (PM3) (MNDO) (AM1)	$\begin{array}{c} -0.04 \\ -0.08 \\ -0.06 \\ 51 \\ 0.00 \\ 0.01 \\ 7 \\ -0.01 \\ 0.14 \\ 0.04 \\ 8 \\ -0.01 \end{array}$	72 -0.01 0.00 -0.01 21 0.01 0.00 -0.01	8 -0.09 -0.12									
(MNDO) (AM1) C (PM3) (MNDO) (AM1) N (PM3) (MNDO) (AM1) O (PM3) (MNDO) (AM1)	$\begin{array}{c} -0.04 \\ -0.08 \\ -0.06 \\ 51 \\ 0.00 \\ 0.01 \\ 7 \\ -0.01 \\ 0.14 \\ 0.04 \\ 8 \\ -0.01 \end{array}$	$ \begin{array}{r} -0.01 \\ 0.00 \\ -0.01 \\ 21 \\ 0.01 \\ 0.00 \\ -0.01 \end{array} $	$-0.09 \\ -0.12$									
(AM1) (PM3) (MNDO) (AM1) (PM3) (MNDO) (AM1) (PM3) (MNDO) (AM1) (PM3) (MNDO) (AM1)	$\begin{array}{c} -0.06\\ 51\\ 0.00\\ 0.01\\ 0.01\\ 7\\ -0.01\\ 0.14\\ 0.04\\ 8\\ -0.01\\ \end{array}$	$ \begin{array}{r} -0.01 \\ 0.00 \\ -0.01 \\ 21 \\ 0.01 \\ 0.00 \\ -0.01 \end{array} $	$-0.09 \\ -0.12$									
(PM3) (MNDO) (AM1) N (PM3) (MNDO) (AM1) O (PM3) (MNDO) (AM1)	51 0.00 0.01 0.01 7 -0.01 0.14 0.04 8 -0.01	$ \begin{array}{r} -0.01 \\ 0.00 \\ -0.01 \\ 21 \\ 0.01 \\ 0.00 \\ -0.01 \end{array} $	$-0.09 \\ -0.12$									
(PM3) (MNDO) (AM1) N (PM3) (MNDO) (AM1) O (PM3) (MNDO) (AM1)	0.00 0.01 0.01 7 -0.01 0.14 0.04 8 -0.01	$ \begin{array}{r} -0.01 \\ 0.00 \\ -0.01 \\ 21 \\ 0.01 \\ 0.00 \\ -0.01 \end{array} $	$-0.09 \\ -0.12$									
(MNDO) (AM1) N (PM3) (MNDO) (AM1) O (PM3) (MNDO) (AM1)	0.01 0.01 7 -0.01 0.14 0.04 8 -0.01	$0.00 \\ -0.01 \\ 21 \\ 0.01 \\ 0.00 \\ -0.01$	$-0.09 \\ -0.12$									
(AM1) (PM3) (MNDO) (AM1) (PM3) (MNDO) (AM1)	0.01 7 -0.01 0.14 0.04 8 -0.01	$ \begin{array}{r} -0.01 \\ 21 \\ 0.01 \\ 0.00 \\ -0.01 \end{array} $	$-0.09 \\ -0.12$									
(PM3) (MNDO) (AM1) (PM3) (MNDO) (AM1)	$7 \\ -0.01 \\ 0.14 \\ 0.04 \\ 8 \\ -0.01$	$\begin{array}{c} 21 \\ 0.01 \\ 0.00 \\ -0.01 \end{array}$	$-0.09 \\ -0.12$									
(PM3) (MNDO) (AM1) O (PM3) (MNDO) (AM1)	$ \begin{array}{r} -0.01 \\ 0.14 \\ 0.04 \\ 8 \\ -0.01 \end{array} $	$0.01 \\ 0.00 \\ -0.01$	$-0.09 \\ -0.12$									
(MNDO) (AM1) O (PM3) (MNDO) (AM1)	$0.14 \\ 0.04 \\ 8 \\ -0.01$	$\begin{array}{c} 0.00 \\ -0.01 \end{array}$	-0.12									
(AM1) O (PM3) (MNDO) (AM1)	$0.04 \\ 8 \\ -0.01$	-0.01										
O (PM3) (MNDO) (AM1)	$8 \\ -0.01$											
(PM3) (MNDO) (AM1)	-0.01	10	-0.10									
(MNDO) (AM1)		18	18	3								
(AM1)		0.01	0.00	-0.09								
(AM1)	-0.01	0.02	0.02	0.21								
_	0.01	0.03	-0.01	-0.23								
F	3	19	2	1	1							
(PM3)	-0.03	0.00	-0.08	-0.03	-0.06							
(MNDO)	0.39	0.00	-0.14	-0.13	-0.15							
(AM1)	0.08	0.02	-0.08	-0.06	0.01							
A	1 1			2	3	1						
(PM3)	0.02			-0.07	0.00	0.09						
(MNDO)	-0.22			-0.13	-0.06	-0.18						
(AM1)	-0.18			-0.03	-0.04	-0.18						
Si	i 6	1	1		3		2					
(PM3)	0.01	0.01	-0.11		0.01		0.06					
(MNDO)	-0.11	-0.06	-0.02		0.02		-0.21					
(AM1)	-0.03	-0.05	-0.09		0.04		0.03					
P	1	3	1	3	5			2				
(PM3)	-0.10	-0.09	-0.08	0.01	0.00			-0.10				
(MNDO)	-0.08	-0.11	-0.09	-0.02	0.02			-0.18				
(AM1)	-0.05	-0.12	-0.09	0.04	0.06			-0.18				
S	3	10	1	7	8			1	8			
(PM3)	-0.03	-0.04	-0.04	0.06	-0.01			0.06	0.01			
(MNDO)	-0.03	-0.06	-0.05	0.08	0.02			0.11	-0.06			
(AM1)	-0.01	-0.07	-0.05	0.15	0.06			0.06	-0.06			
C	l 1	10	2	3	4	2	2	3	3	1		
(PM3)	-0.01	-0.01	-0.10	0.00	0.01	-0.14	-0.05	-0.02	0.00	0.05		
(MNDO)	0.07	0.04	-0.09	0.11	0.06	-0.02	0.04	-0.05	-0.05	0.01		
(AM1)	0.01	0.00	-0.14	0.15	0.03	-0.10	-0.03	-0.08	-0.11	-0.07		
B		6	1		5	2	2	1		1	1	
(PM3)	0.06	0.01	-0.25		0.02	-0.20	-0.33	-0.07		0.04	0.16	
(MNDO)	0.02	-0.05	-0.27		0.00	-0.09	0.03	-0.13		-0.06	-0.11	
(AM1)	0.01	0.00	-0.22		0.05	-0.18	0.06	-0.13		-0.07	-0.10	
I	1	3			5	1	2			1	1	1
(PM3)	0.07	-0.09			0.20	-0.01	-0.19			-0.14	0.08	0.00
(MNDO)	-0.04	-0.08			0.23	-0.17	-0.07			-0.07	-0.14	-0.15
(AM1)	-0.02	-0.03			0.21	-0.19	0.00			-0.11	-0.13	-0.13

sulted in a greater than 50% reduction in the differences between experimental and calculated values of ΔH_f . Most of the improvement is due to better prediction of hypervalent compounds, for example, SF₆ and $\rm H_2SO_4$. No hypervalent compounds were used in the parameterization of MNDO and only a few were used in parameterizing AM1. Hitherto, no purely 's-p' basis set model has proven successful in describing the bonding in hypervalent systems; "d" orbitals are normally considered essen-

tial. 6,25,33 Using the new parameter set, ΔH_f and geometries are reproduced with chemically useful accuracy. Thus we conclude that d orbitals are not essential for a description of the bonding in hypervalent compounds. This conclusion cannot be used to refute the assertion that d-orbital participation is important, only that within the MNDO framework s and p atomic orbitals are sufficient.

For the hypervalent compounds surveyed, no geometric quantities can be identified as resulting from the angular properties of d

Table XI. Average errors in calculated bond lengths.

In bonds		Av	erage error	(A)
involving	No.	PM3	MNDO	AM1
Hydrogen	84	0.005	0.014	0.008
Carbon	214	0.002	0.002	0.002
Nitrogen	62	0.013	0.017	0.015
Oxygen	63	0.006	0.016	0.012
Fluorine	59	0.011	0.022	0.015
Aluminum	12	0.044	0.074	0.075
Silicon	19	0.045	0.030	0.019
Phosphorus	20	0.030	0.041	0.041
Sulfur	41	0.008	0.013	0.015
Chlorine	33	0.021	0.020	0.029
Bromine	21	0.059	0.046	0.048
Iodine	15	0.055	0.063	0.058

orbitals; the only reason for invoking them is to explain the increased valency. The parameters for the s and p atomic orbitals in MNDO are adjusted to optimally reproduce experimental results. As a result, the s and p orbitals cannot be simply identified with a given principal quantum number (although an integer PQN is used as part of the definition of the Slater atomic orbitals). Rather, the s and p orbitals represent not only the assumed atomic orbitals but also all higher atomic orbitals including those of different angular quantum number right up to the continuum. In this respect, semiempirical methods differ from ab initio. Using ab initio methods d orbitals would be essential for describing the hypervalents; the s-p basis functions, being ab initio, could not perform the double duty of representing d orbitals.

Very few data are available for gas-phase organophosphorus V compounds, so the validity of the new parameters for the study of such compounds cannot be confirmed. In addition, all systems studied are gas phase, whereas reactions of biochemical interest occur mainly in the aqueous phase, although it has been postulated³⁴ that during the course of a biochemical reaction the reactive site may behave as if it were in the gas phase. Nevertheless, the available data are reproduced with sufficient accuracy to warrant consideration of using these parameters for the study of biochemically important systems.

N(14)
2.684 (1.834)
(2.626) (1.834)
(1.834)

Figure 3. Intermolecular distances in salicylaldoxime. All distances in Angstroms. Observed distance in parentheses.

CONCLUSION

The parameter set here has three limitations: in the limit, it is only as good as the reference data used; it cannot overcome any limitations in the algebraic form of the Hamiltonian (here MNDO/AM1); and it should be used with caution when applied to the prediction of any properties not used either in the parameterization or in subsequent surveys. In particular, when venturing into a new field of application, frequent comparison of calculated and experimental results is imperative.

Using the new optimization procedure described in the previous report, the task of optimizing parameters is relatively straight-

Figure 4. Calculated geometry for IF_7 .

Table XII. Average errors in molecular geometries.

Geometric parameter	No.	PM3	MNDO	AM1
Bond lengths (angstroms)	372	0.036	0.054	0.050
Angles (degrees)	158	3.932	4.342	3.281
Torsion angles (degrees)	16	14.875	21.619	12.494

Table XIII. Comparison of experimental and calculated dipole moments.

Emminia - 1		Dipole	moment		Errors		
Empirical formula	Chemical name	Exp.	Calc.	PM3	MNDO	AM1	Footnote
C_3H_4	Cyclopropene	0.45	0.39	-0.06	0.03	-0.09	а
C_3H_4	Propyne	0.78	0.36	-0.42	-0.66	-0.38	а
C_3H_6	Propene	0.37	0.23	-0.14	-0.33	-0.14	а
C_3H_8	Propane	0.08	0.01	-0.07	-0.08	-0.08	a
C_4H_6	Bicyclobutane	0.68	0.43	-0.25	-0.27	-0.26	а
C_4H_6	Cyclobutene	0.13	0.15	0.02	-0.05	0.04	a
C_5H_6	Cyclopentadiene	0.42	0.53	0.11	-0.24	0.11	a
C_5H_8	Cyclopentene	0.20	0.15	-0.05	-0.15	-0.03	а
C_6H_6	Fulvene	0.42	0.66	0.24	0.27	0.27	b
C_7H_8	Toluene	0.36	0.26	-0.10	-0.30	-0.10	а
H_2O	Water	1.85	1.74	-0.11	-0.07	0.01	а
20	Carbon monoxide	0.11	0.18	0.07	0.09	-0.05	а
CH ₂ O	Formaldehyde	2.33	2.16	-0.17	-0.17	-0.01	а
CH ₄ O	Methanol	1.70	1.49	-0.21	-0.22	-0.08	а
C ₂ H ₂ O C ₂ H ₄ O	Ketene	$\frac{1.42}{2.69}$	1.06	-0.36	-0.38	-0.07	а
C_2H_4O	Acetaldehyde	2.69 1.89	2.54	-0.15	-0.31	0.00	а
C_2H_6O	Ethylene oxide Ethanol	1.69	1.77	-0.12	0.03	0.02	a
C_2H_6O	Dimethyl ether	1.30	$1.45 \\ 1.25$	$-0.24 \\ -0.05$	-0.29	-0.14	a
C_3H_6O	Acetone	$\frac{1.30}{2.88}$	2.78		-0.03	0.13	a
C_4H_4O	Furan	2.66 0.66	$\begin{array}{c} 2.78 \\ 0.22 \end{array}$	$-0.10 \\ -0.44$	-0.37	0.04	a
$C_4H_{10}O$	Diethyl ether	1.15	1.33	-0.44 0.18	$-0.24 \\ 0.21$	-0.17	a
C_6H_6O	Phenol	$\frac{1.15}{1.45}$	1.33	-0.18	-0.21	$0.30 \\ -0.22$	a
C_7H_8O	Anisole	1.38	1.14	$-0.31 \\ -0.30$	-0.29 -0.31	$-0.22 \\ -0.13$	a
CH_2O_2	Formic acid	1.41	1.51	-0.30 0.10	0.08	$-0.13 \\ 0.07$	a
$C_2H_4O_2$	Acetic acid	1.74	1.83	0.10	-0.06	$0.07 \\ 0.12$	a a
$C_2H_4O_2$	Methyl formate	1.77	1.59	-0.18	-0.15	-0.12	a a
$C_3H_6O_2$	Propionic acid	1.75	1.81	0.16	-0.04	0.28	a a
$C_3H_6O_2$	Methyl acetate	1.72	1.82	0.10	0.03	0.03	a
O_3	Ozone	0.53	1.71	1.18	0.65	0.67	a
H_3N	Ammonia	1.47	1.55	0.08	0.28	0.38	a
CHN	Hydrogen cyanide	2.98	2.70	-0.28	-0.48	-0.62	a
CH ₅ N	Methylamine	1.31	1.40	0.09	0.17	0.18	a
C_2H_3N	Acetonitrile	3.92	3.21	-0.71	-1.29	-1.03	a
C_2H_3N	Methyl isocyanide	3.85	3.69	-0.16	-1.68	-1.02	a
C_2H_5N	Ethyleneimine (Azirane)	1.90	1.69	-0.21	-0.15	-0.15	a
C_2H_7N	Ethylamine	1.22	1.43	0.21	0.30	0.33	a
C_2H_7N	Dimethylamine	1.03	1.27	0.24	0.14	0.20	a
C_3H_3N	Acrylonitrile	3.87	3.25	-0.62	-0.90	-0.87	a
C_3H_9N	Trimethylamine	0.61	1.15	0.54	0.14	0.41	a
C_4H_5N	Pyrrole	1.74	2.18	0.44	0.07	0.21	c
C_5H_5N	Pyridine	2.22	1.94	-0.28	-0.26	-0.25	d
C_6H_7N	Aniline	1.53	1.30	-0.23	-0.07	0.01	a
CH_3NO	Formamide	3.73	3.12	-0.61	-0.62	-0.03	а
C_3H_7NO	Dimethylformamide	3.82	3.06	-0.76	-0.65	-0.27	а
HNO_2	Nitrous acid, trans	1.86	2.08	0.22	0.42	0.45	e
HNO_3	Nitric acid	2.17	2.32	0.15	0.61	0.40	a
$\mathrm{CH_2N_2}$	Diazomethane	1.50	1.92	0.42	-0.25	-0.17	a
$\mathrm{CH_2N_2}$	$N = N - CH_2 -$	1.59	1.87	0.28	-0.04	0.04	a
CH_6N_2	Methylhydrazine	1.66	0.32	-1.34	-1.42	-0.89	f
N ₂ O	Nitrous oxide	0.17	0.26	0.09	0.59	0.47	a
CH ₄ S	Thiomethanol	1.52	1.95	0.43	0.15	0.44	g
C_2H_6S	Thioethanol	1.52	1.98	0.46	0.11	0.44	g h
C_2H_6S	Dimethyl thioether	1.50	1.96	0.46	0.22	0.32	
C ₄ H ₄ S	Thiophene	0.53	0.67	0.14	0.36	0.32	g h
CSO	Carbon oxysulfide	0.71	0.38	-0.33	0.21	-0.18	
SO_2	Sulfur dioxide	1.57	3.63	2.06	1.90	2.06	g
$\mathrm{C_2H_6S_2}$	2,3-Dithiabutane	1.98	2.57	0.59	-0.02	0.26	g i
1r CH₃F	Hydrogen fluoride Fluoromethane	1.83	1.40	-0.43	0.16	-0.09	1
	Fluoromethane Fluoroacetylene	$\frac{1.86}{0.70}$	1.44	-0.42	-0.10	-0.24	j k
C_2HF C_2H_3F	Fluoroacetylene Fluoroethylene	1.43	$\frac{1.11}{1.37}$	$0.41 \\ -0.06$	$0.88 \\ 0.27$	$0.36 \\ -0.05$	k h
C_2H_5F	Fluoroethane	1.96	1.58	-0.38	-0.09	-0.27	h

Table XIII. (continued)

Emminical		Dipole	moment		Errors		
Empirical formula	Chemical name	Exp.	Calc.	PM3	MNDO	AM1	Footnote
HOF	Hypofluorous acid	2.23	1.68	-0.55	-0.42	-0.63	1
CHOF	HCOF	2.02	2.46	0.44	0.48	0.55	h
CNF	Cyanogen fluoride	2.17	1.63	-0.54	-1.28	-0.96	k
NOF	Nitrosyl fluoride	1.81	0.26	-1.55	-1.30	-1.43	h
NO_2F	Fluorine nitrite	0.47	0.89	0.42	0.19	0.35	g h
CH_2F_2	Difluoromethane	1.96	1.81	-0.15	0.26	0.08	
$C_2H_4F_2$	1,1-Difluoroethane	2.30	2.12	-0.18	0.20	-0.03	h
$C_6H_4F_2$	o-Difluorobenzene	2.59	2.74	0.15	0.77	0.09	m
OF ₂	Difluorine oxide	0.30	0.38	0.08	0.02	-0.19	h
COF_2	Carbonyl fluoride	0.95	$\frac{1.08}{0.63}$	0.13	-0.14	0.33	g
N_2F_2	cis-Difluorodiazene	0.16		$0.47 \\ 0.23$	-0.14	0.50	g j
CHF ₃	Trifluoromethane	$\frac{1.65}{1.30}$	1.88 1.49	$0.23 \\ 0.19$	$0.58 \\ 0.52$	$0.43 \\ 0.13$	
C_2HF_3	Trifluoroethylene	$\frac{1.30}{2.32}$	$\frac{1.49}{2.40}$	$0.19 \\ 0.08$	0.52 0.55	$0.13 \\ 0.27$	n h
$C_2H_3F_3$	1,1,1-Trifluoroethane	$\begin{array}{c} 2.32 \\ 2.28 \end{array}$	$\frac{2.40}{1.96}$	-0.32	$0.35 \\ 0.17$	-0.42	n h
C ₂ HO ₂ F ₃ NF ₃	Trifluoroacetic acid Nitrogen trifluoride	0.24	0.26	0.02	-0.04	-0.42 -0.20	h
C_2NF_3	Trifluoroacetonitrile	1.26	$0.20 \\ 0.32$	-0.02	-0.90	$-0.20 \\ -1.23$	0
C_2NF_3 COF_4	Trifluoromethyl hypofluorite	0.33	$0.32 \\ 0.28$	-0.05	-0.24	0.02	
HCl	Hydrogen chloride	1.12	1.38	0.05	0.24	0.02	p
C ₂ HCl	Chloroacetylene	0.44	0.14	-0.30	0.34	-0.17	q r
FCl	Chlorine fluoride	0.44	1.42	0.54	0.59	0.03	S
SCl ₂	Sulfur dichloride	0.36	0.59	0.34	0.40	-0.30	g
HBr	Hydrogen bromide	0.83	1.27	0.23	0.24	0.55	a
CH ₃ Br	Bromomethane	1.82	1.55	-0.27	-0.26	-0.34	a
C_2H_3Br	Bromoethylene	1.42	1.33	-0.09	-0.11	-0.12	s
C_2H_5Br	Bromoethane	2.03	1.85	-0.18	-0.37	-0.37	a
C_3H_7Br	1-Bromopropane	2.18	1.81	-0.37	-0.47	-0.48	a
C_6H_5Br	Bromobenzene	1.70	1.18	-0.52	-0.28	-0.25	a
OBr	BrO	1.61	3.32	1.71	0.38	0.75	t
C_2H_3OBr	Acetyl bromide	2.43	2.95	0.52	0.02	0.16	s
FBr	Bromine fluoride	1.42	2.25	0.83	0.68	0.04	s
CF_3Br	Bromotrifluoromethane	0.65	0.90	0.25	0.53	0.37	u
ClBr	Bromine chloride	0.52	0.06	-0.46	0.23	-0.07	v
CH_2Br_2	Dibromomethane	1.43	1.45	0.02	-0.06	-0.11	s
CHBr_3	Bromoform	0.99	0.96	-0.03	-0.08	-0.08	s
HI	Hydrogen iodide	0.44	0.97	0.53	0.57	0.83	a
CH_3I	Methyl iodide	1.65	1.44	-0.21	-0.28	-0.30	а
C_2H_5I	Iodoethane	1.91	1.83	-0.08	-0.50	-0.41	a
C_3H_7I	1-Iodopropane	2.04	1.78	-0.26	-0.57	-0.50	a
C_6H_5I	Iodobenzene	1.70	0.81	-0.89	-0.10	-0.27	а
$\mathbf{CF_{3}I}$	Trifluoroiodomethane	1.00	1.55	0.55	1.13	0.67	w
BrI	Iodine bromide	0.74	0.53	-0.21	-0.02	-0.11	v
CH_2I_2	Diiodomethane	1.62	1.20	-0.42	-0.47	-0.50	a
AlF	Aluminum fluoride	1.53	3.29	1.76	-1.22	-1.09	X
C ₂ H ₆ Si	Vinylsilane	0.66	0.24	-0.42	-0.12	-0.11	a
C ₂ H ₈ Si	Ethylsilane	0.81	0.37	-0.44	-0.71	-0.45	g
C_2H_8Si	Dimethylsilane	0.75	0.46	-0.29	-0.57	-0.30	а
$C_3H_{10}Si$	Trimethylsilane	0.52	0.37	-0.15	-0.35	-0.13	a
H ₂ SiF ₂	Difluorosilane Trifluorosilane	$\frac{1.54}{1.27}$	1.41	-0.13	0.69	0.03	a
HSiF ₃ H ₂ SiCl ₂	Dichlorosilane	$\frac{1.27}{1.18}$	$\frac{1.51}{2.68}$	$0.24 \\ 1.50$	$1.53 \\ 2.29$	0.28	a
HSiCl ₃	Trichlorosilane	0.86	$\frac{2.08}{2.38}$	1.50 1.52	2.29 1.87	$0.58 \\ 0.56$	a
H_2SiBr_2	Dibromosilane	1.43	$\frac{2.36}{3.09}$	1.66	1.90	0.38	a s
$C_6H_{19}Si_2N$	Hexamethyldisilazane	0.37	0.35	-0.02	-0.10	$0.36 \\ 0.24$	a
H_3P	Phosphine	0.58	1.18	0.60	0.77	$\frac{0.24}{1.61}$	a a
CH ₅ P	Methylphosphine	1.10	1.15	0.05	0.77	0.93	a h
C_2H_7P	Dimethylphosphine	1.23	1.16	-0.07	0.58	0.67	h
C_3H_9P	Trimethylphosphine	1.19	1.08	-0.11	0.74	0.56	h
PF ₃	Phosphorus trifluoride	1.03	2.25	1.22	1.41	1.06	a
POF_3	Phosphorus oxyfluoride	1.76	2.04	0.28	-0.56	0.18	a
				~ · · · · · ·			

- ^aR. D. Nelson, D. R. Lide, and A. A. Maryott, Nat. Stand. Ref. Data Set., Natl. Bur. Stand. No. 10 (1967).
- ^bP. A. Baron, R. D. Brown, F. R. Burden, P. J. Domaille, and J. E. Kent, *J. Mol. Spectrosc.*, **43**, 401 (1970). ^cL. Nygaard, J. T. Nielsen, J. Kirchheimer, G. Maltesen, J. Rastrup-Andersen, and G. O. Sorensen, *J. Mol Struct.*, **3**, 491 (1969).
 - ^dG.O. Sorensen, L. Mahler, and J. Rastrup-Andersen, J. Mol. Struct., 20, 119 (1974).
 - ^eA. P. Cox, A. H. Brittain, and D. J. Finnigan, Trans. Faraday Soc., 67, 2179 (1971).
 - R. P. Lattimer and M. D. Harmony, J. Phys. Chem., 53, 4575 (1970).
 - ^gA. L. McClellan, Tables of Experimental Dipole Moments, Vol. 2, Rahara Enterprises, El Cerrito, 1974.
 - ^hA. L. McClellan, Tables of Experimental Dipole Moments, Freeman, San Francisco, 1963.
 - ¹J. S. Muenter and W. Klemperer, J. Chem. Phys., **52**, 6033 (1970).
 - ¹C.S. Wofsy, J.S. Muenter, and W. Klemperer, J. Chem. Phys., 55, 2014 (1971).
 - ^kJ. K. Tyler and J. Sheridan, Trans. Faraday Soc., 59, 2661 (1963).
 - S. L. Rock, E. F. Pearson, E. H. Appleman, C. L. Norris, and W. H. Flygare, J. Chem. Phys., 59, 3940 (1973).
- ^mL. Nygaard, E. R. Hansen, R. Hansen, J. Rastrup-Anderson, and G. O. Sorensen, *Spectrochim. Acta, Part A*, 23, 2813 (1967).
 - ⁿA. Bhaumik, W. V. F. Brooks, and S. C. Dass, J. Mol. Struct., 16, 29 (1973).
 - P.B. Foreman, K.R. Chien, J.R. Williams, and S.G. Kukolich, J. Mol. Spectrosc., 52, 251 (1974).
 - P. Buckley and J. P. Weber, Can. J. Chem., 52, 942 (1974).
 - ^qG. Hojer and S. Meza, Acta Chem. Scand., 26, 3723 (1972).
 - P. Scharffenberg, Theo. Chim. Acta, 49, 115 (1978).
 - *CRC Handbook of Chemistry and Physics, 60th Edition, R. C. Weast, (Ed.), CRC Press, Boca Raton, FL, 1980.
 - ^tC. R. Byfleet, A. Carrington, and D. K. Russell, Mol. Phys., 10, 271 (1971).
 - ^uA. P. Cox, G. Duxbury, J. A. Hardy, and Y. Kawashima, J. Chem. Soc. Faraday 2, 76, 339 (1980).
 - VK. P. R. Nair, Kemiai Kozl., 52, 431 (1979).
- *K. H. Hellwege and A. M. Hellwege, *Molecular Constants from Microwave Spectroscopy*, Landolt-Bornstein, New Series II, Springer-Verlag, Berlin, Vol. 4, 1967.
 - *F.J. Lovas and E. Tiemann, J. Phys. Chem. Ref. Data, 3, 609 (1974).
 - ^yJ. R. Durig, L. Carreira, and J. M. Odom, J. Am. Chem. Soc., **96**, 2688 (1974).

forward. Once the onerous task of assembling a database of experimental results has been done, a full optimization of all parameters for an element requires only about 2—10 h on a VAX 11-780.

For many of the properties studied, the new parameter sets are significantly better than the original MNDO/AM1. In particular, differences between experimental and calculated ΔH_f for P(V), S(IV), S(VI), I(V), and I(VII) are considerably reduced. The energy of the hydrogen bond in water dimer is less than that obtained using AM1, but the geometry is more realistic.

Calculations made using these parameters should be useful in identifying potentially incorrect thermochemical data. Thus the reported experimental ΔH_f , -11.8 kcal/mol, of triethylphosphine is predicted to be inconsistent with the heats of formation of related systems. For this system the predicted ΔH_f is -36.7 kcal/mol.

In other instances related homologues are absent. Nonetheless, the high internal consistency of the computational model can be used to identify potentially incorrect experimental data. For several systems, such as $SiOX_2$ and COX, X = Cl, Br, or I, the experimental ΔH_f reported is predicted to be incorrect by a few tens of kcals/mol. Although the new parameters were derived from ex-

perimental data, and consequently are subject to inaccuracies in those data, they are internally consistent, and thus the prediction is made that the experimental ΔH_f of COI is too positive and that of three of the oxyhalides of silicon too negative.

As limitations in the generality of the method become apparent—limitations not revealed by the surveys presented here the parameters can more readily be reoptimized in an attempt to remove these limitations. The parameters may be reoptimized as significant amounts of new or improved experimental data become available or if significant improvements to the algebraic form of the Hamiltonian are developed. Although, as we have seen, optimization is now a more straightforward task, it should not be attempted lightly—a proliferation of parameter sets differing only slightly one from another would be undesirable. Rather, only when a significant increase in accuracy could be obtained, such as a drop in the average error of more than 30%, should a new parameter set be released for general use.

It is unlikely that any computational method will be able to reduce the average error to below about 4 kcal/mol for the set of compounds surveyed here; current experimental data are simply not accurate enough. Unfortunately, determination of the accu-

Table XIV. Comparison of experimental and calculated ionization potentials.

	Comparison of experimental and ca		n potential		Errors		
Empirical formula	Chemical name	Exp.	Calc.	PM3	MNDO	AM1	Footnote
$\overline{\mathrm{H_2}}$	Hydrogen	15.40	16.11	0.71	0.35	-0.48	a
CH_4	Methane	13.60	13.64	0.04	0.27	-0.29	b
C_2H_2	Acetylene	11.40	11.61	0.21	-0.39	0.10	a
C_2H_4	Ethylene	10.51	10.64	0.13	-0.34	0.04	а
C_2H_6	Ethane	12.00	11.98	-0.02	0.70	-0.23	a
C_3	Carbon, trimer	11.10	11.75	0.65	-0.06	0.23	a
$\mathrm{C_3H_4}$	Allene	10.07	10.18	0.11	-0.05	0.07	a
C_3H_4	Cyclopropene	9.86	9.88	0.02	0.02	-0.04	c
C_3H_4	Propyne	10.37	10.89	0.52	0.35	0.37	b
C_3H_6	Cyclopropane	11.00	11.78	0.78	0.43	0.48	b
C_3H_6	Propene	9.88	10.10	0.22	0.08	0.11	d
C_3H_8	Propane	11.50	11.51	0.01	0.84	-0.18	e
C_4H_2	Diacetylene	$10.17 \\ 9.15$	$10.47 \\ 9.72$	$0.30 \\ 0.57$	$-0.18 \\ 0.69$	$0.20 \\ 0.52$	a
$\mathrm{C_4H_6} \ \mathrm{C_4H_6}$	1,2-Butadiene 1-Butyne	$\frac{9.15}{10.20}$	10.77	$0.57 \\ 0.57$	$0.69 \\ 0.48$	$0.32 \\ 0.42$	a a
C_4H_6	2-Butyne	9.60	10.17	$0.37 \\ 0.74$	0.43	$0.42 \\ 0.57$	a a
C_4H_6	Cyclobutene	9.43	9.82	0.74	0.34	0.29	a
C_4H_6	1,3-Butadiene	9.08	9.47	0.39	0.04	0.25	b
C_4H_8	1-Butene	9.70	10.03	0.33	0.24	0.23	a
C_4H_8	Cyclobutane	10.70	11.02	0.32	1.11	0.29	a
C_4H_{10}	n-Butane	11.20	11.35	0.15	1.01	-0.03	a
C_4H_{10}	Isobutane	11.40	11.59	0.19	0.72	-0.11	e
C_5H_6	Cyclopentadiene	8.57	9.23	0.66	0.47	0.51	a
C_5H_8	Cyclopontono	9.18	9.52	0.34	0.54	0.26	a
C_5H_{10}	1-Pentene	7.90	10.15	2.25	2.07	2.09	a
C_5H_{10}	2-Methyl-1-butene	7.40	9.85	2.45	2.41	2.30	a
$\mathrm{C_5H_{10}}$	2-Methyl-2-butene	8.70	9.39	0.69	0.94	0.55	a
C_5H_{10}	3-Methyl-1-butene	9.60	10.26	0.66	0.38	0.49	a
C_5H_{10}	Cyclopentane	10.50	11.07	0.57	1.56	0.47	a
$C_{5}H_{12}$	2-Methylbutane	10.30	11.44	1.14	1.70	0.90	a
C_5H_{12}	Neopentane	11.30	12.06	0.76	0.82	0.23	e
C_5H_{12}	n-Pentane	10.30	11.30	1.00	1.86	0.81	а
C_6H_6	Benzene	9.25	9.75	0.50	0.14	0.40	а
$_{\rm CH_{10}}^{ m CH_{10}}$	Cyclohexene	10.30	9.59	-0.71	-0.55	-0.81	а
C_6H_{12}	Cyclohexane		11.29	0.99	1.44	0.64	a
${ m C_7H_8} \ { m C_7H_8}$	Cyclopheptatriene Toluene	$8.50 \\ 8.82$	$8.95 \\ 9.44$	$0.45 \\ 0.62$	$0.22 \\ 0.46$	$0.25 \\ 0.51$	a b
$C_{8}H_{10}$	Ethylbenzene	8.80	9.52	$0.62 \\ 0.72$	0.48	$0.51 \\ 0.58$	a
C_8H_{14}	Bicyclo(2.2.2)-octane	9.45	10.94	1.49	1.95	1.11	a
$C_{10}H_8$	Naphthalene	8.15	8.84	0.69	0.42	0.56	a
$C_{10}H_{16}$	Adamantane	9.60	10.85	1.25	1.67	0.83	a
$C_{14}H_{10}$	Anthracene	8.16	8.25	0.09	-0.11	-0.04	a
H_2O	Water	12.62	12.32	-0.30	-0.43	-0.16	b
CÕ	Carbon monoxide	14.01	13.03	-0.98	-0.58	-0.70	a
$\mathrm{CH_{2}O}$	Formaldehyde	10.10	10.63	0.53	0.94	0.68	a
$\mathrm{CH_{4}O}$	Methanol	10.96	11.14	0.18	0.46	0.17	a
C_2H_2O	Ketene	9.64	9.46	-0.18	-0.35	-0.04	a
$\mathrm{C_2H_4O}$	Acetaldehyde	10.21	10.71	0.50	0.67	0.51	a
C_2H_4O	Ethylene oxide	10.57	11.34	0.77	0.92	0.76	b
C_2H_6O	Ethanol	10.60	10.90	0.30	0.70	0.28	a
C_2H_6O	Dimethyl ether	10.04	10.69	0.65	1.00	0.57	а
C_3H_6O	Acetone	9.72	10.77	1.05	1.04	0.95	а
C_3H_6O	Propanol	10.00	10.62	0.62	0.81	0.59	а
C ₄ H ₄ O	Furan	8.88	9.38	0.50	0.26	0.44	а
C ₄ H ₆ O	2-Butenal Butanal	9.90	10.50	0.60	0.49	0.57	a
C_4H_8O		9.83	10.63	0.80	0.97	0.76	а
${ m C_4H_{10}O} \\ { m C_5H_{12}O}$	Diethyl ether 3-Pentanol	9.60	10.79	$\frac{1.19}{0.76}$	$\frac{1.18}{0.93}$	0.96	a
$C_5H_{12}O$ C_7H_6O	3-rentanoi Benzaldehyde	$10.16 \\ 9.70$	$10.92 \\ 10.05$	$0.76 \\ 0.35$	$0.93 \\ 0.04$	0.65	a
C_7H_8O	Anisole	9.70 8.40	9.11	$0.35 \\ 0.71$	$0.04 \\ 0.44$	$0.30 \\ 0.60$	a a
$C_{10}H_8O$	1-Napthol	7.80	8.59	0.71	$0.44 \\ 0.54$	0.69	a
$C_{10}H_8O$	2-Napthol	7.90	8.72	0.13	0.58	$0.03 \\ 0.74$	a
CO_2	Carbon dioxide	13.78	12.73	-1.05	-0.99	-0.57	b
$\widetilde{\mathrm{CH}}_{2}^{2}\mathrm{O}_{2}$	Formic acid	11.51	11.56	0.05	0.23	0.31	a
- 4-2							

Table XIV. (continued)

73		Ionization	potential		Errors		
Empirical formula	Chemical name	Exp.	Calc.	PM3	MNDO	AM1	Footnote
$C_2H_2O_2$	trans Glyoxal	10.59	10.57	-0.02	0.16	0.07	a
$C_2H_4O_2$	Acetic acid	10.80	11.44	0.64	0.77	0.82	a
$C_2H_4O_2$	Methyl formate	11.02	11.35	0.33	0.59	0.55	f
$C_2H_6O_2$	Dimethyl peroxide	10.60	10.77	0.17	0.09	0.29	a
C_3O_2	Carbon suboxide	10.60	10.22	-0.38	-0.53	-0.10	а
$C_3H_4O_2$	beta-Propiolactone	10.60	9.96	-0.64	-0.73	-0.54	a
$C_3H_6O_2$	Propionic acid		11.34	0.84	1.00	0.99	a
$C_3H_6O_2$	Methyl acetate	10.60	11.27	0.67	0.86	0.80	a
$C_5H_8O_2$	Acetylacetone	8.38	10.89	2.51	2.40	2.36	a
$C_7H_6O_2$	Benzoic acid	9.80	10.13	0.33	-0.03	0.28	a
O_3	Ozone	12.75	12.69	-0.06	-0.05	0.35	g
$C_4H_2O_3$	Malaic anhydride	10.84	11.71	0.87	0.86	1.18	a
$C_2H_2O_4$	Oxalic acid	11.20	11.67	0.47	0.59	0.76	a
H₃N CHN	Ammonia Hydrogen cyanide	10.85 13.60	$9.70 \\ 12.60$	$-1.15 \\ -1.00$	$0.34 \\ -0.19$	$-0.43 \\ 0.08$	b b
CHN CH ₅ N	Methylamine	9.60	9.40	-0.20	0.19	0.08 0.15	
C_2H_3N	Acetonitrile	12.21	12.33	0.12	0.58	$0.15 \\ 0.25$	a a
C_2H_3N	Methyl isocyanide	11.32	11.70	0.12	0.92	0.23	a
C_2H_5N	Ethyleneimine (Azirane)	9.90	9.92	0.02	0.32 0.78	0.41	a a
C_2H_5N	Ethylamine (Azirane)	9.50	9.50	0.02	1.01	0.39	a
C_2H_7N	Dimethylamine	8.93	9.22	0.29	1.11	0.46	h
C_3H_3N	Acrylonitrile		10.89	-0.02	-0.30	-0.05	a
C_3H_5N	Ethyl cyanide	11.90	12.01	0.11	0.69	0.09	a
C_3H_9N	Trimethylamine	8.54	9.07	0.53	1.05	0.58	ĥ
C_4H_5N	Pyrrole	8.21	8.93	0.72	0.35	0.45	a
C_5H_5N	Pyridine	9.67	10.10	0.43	0.02	0.26	a
C_6H_7N	Aniline	7.70	8.61	0.91	1.05	0.82	a
C_7H_5N	Phenyl cyanide	9.70	10.10	0.40	0.11	0.32	a
CHNO	Hydrogen isocyanate	11.60	10.59	-1.01	-0.50	-0.36	a
CH_3NO_2	Nitromethane	11.30	12.17	0.87	0.24	0.68	a
CH_3NO_2	Methyl nitrite	11.00	10.64	-0.36	0.42	0.19	а
$C_3H_7NO_2$	Alanine	8.10	9.88	1.78	2.71	2.27	a
$C_6H_5NO_2$	Nitrobenzene	9.90	10.60	0.70	0.41	0.66	a
N_2	Nitrogen	15.60	13.80	-1.80	-0.73	-1.28	a
CH_2N_2	Diazomethane	9.00	9.22	0.22	-0.33	-0.18	a
$\mathrm{CH_6N_2}$	Methylhydrazine	9.30	8.92	-0.38	0.36	-0.34	a
C_2N_2	Cyanogen	13.36	12.87	-0.49	-0.16	-0.05	а
$C_4H_4N_2$	Pyridazine	9.30	9.94	0.64	1.19	1.37	а
$C_4H_4N_2$	Pyrimidine	9.73	10.29	0.56	0.65	0.85	a
$C_4H_4N_2$	Pyrazine	9.90	10.16	0.26	0.12	0.35	а
N_2O_4	Dinitrogen tetroxide	11.40	11.61	0.21	0.65	-0.19	a
N_2O_5	Dinitrogen pentoxide	12.30	12.38	0.08	$0.88 \\ 0.20$	$\frac{1.32}{0.16}$	a ;
HS	Hydrogen sulfide	10.40	$9.79 \\ 9.63$	$-0.61 \\ -0.80$	$0.20 \\ 0.21$	$0.16 \\ 0.13$	i
H₂S CS	Hydrogen sulfide Carbon sulfide	$10.43 \\ 11.30$	10.60	-0.80 -0.70	$0.21 \\ 0.26$	$0.13 \\ 0.48$	j a
CH ₄ S	Thiomethanol	9.44	9.21	-0.70 -0.23	0.20	0.48	
C_2H_4S	Thomedianol	8.87	9.23	0.36	1.29	1.01	j j
C_2H_6S	Thioethanol	9.21	9.19	-0.02	1.07	0.72	k
C_2H_6S	Dimethyl thioether	8.65	8.88	0.23	1.42	0.94	j
C_3H_6S	Thiethane	8.65	8.95	0.30	1.36	0.93	ì
C_3H_8S	Isopropanthiol	9.14	9.22	0.08	1.12	0.78	a
C_3H_8S	1-Propanthiol	9.19	9.19	0.00	1.08	0.74	a
C_4H_4S	Thiophene	8.95	9.54	0.59	0.56	0.72	j
C_4H_8S	Tetrahydrothiophene	8.60	8.79	0.19	1.32	0.80	a
$C_4H_{10}S$	Butanethiol	9.15	9.19	0.04	1.12	0.78	a
C_6H_6S	Thiophenol	8.47	8.78	0.31	0.59	0.65	1
CSO	Carbon oxysulfide	11.20	10.71	-0.49	-0.14	0.03	a
C_2H_4SO	Thiolacetic acid	9.70	10.05	0.35	1.32	1.20	a
C_2H_6SO	Dimethyl sulfoxide	9.01	9.35	0.34	0.82	0.94	a
SO_2	Sulfur dioxide	12.30	10.55	-1.75	-0.51	-0.32	j j
SO ₃	Sulfur trioxide	11.00	12.91	1.91	2.06	2.25	j
CHNS C₂H₃NS	Hydrogen isothiocyanate Methyl isothiocyanate	9.94	9.38	-0.56	0.25	0.09	а
C_2H_3NS	Methyl thiocyanate	$9.37 \\ 9.96$	9.17	-0.20	0.51	0.34	a
		<i>5.5</i> 0	9.68	-0.28	0.81	0.52	а

Table XIV. (continued)

Empirical formula	Chemical name	Ionization potential		Errors			
		Exp.	Calc.	РМЗ	MNDO	AM1	Footnote
$\overline{\mathrm{H_2S_2}}$	Hydrogen disulfide	10.01	9.86	-0.15	0.72	0.34	m
$\widetilde{\mathrm{CS}_2}$	Carbon disulfide	10.08	9.83	-0.25	0.50	0.44	j
$C_2H_6S_2$	1,2-Ethanedithiol	9.00	9.32	0.32	1.43	1.13	a
$\mathrm{C_2H_6S_2}$	Ethanedithiol-1,2	9.30	9.32	0.02	1.13	0.83	1
$C_2H_6S_2$	2,3-Dithiabutane	8.71	9.40	0.69	1.50	1.28	j
$C_2N_2S_2$	S2(CN)2	11.05	10.56	-0.49	0.66	0.43	a
$C_3H_4S_3$	1,3-Dithiolan-2-thione	8.40	9.25	0.85	1.59	1.42	a
${f S_8} \ {f HF}$	S8	9.04	9.09	0.05	1.98	1.98	j
$\mathrm{CH_{3}F}$	Hydrogen fluoride Fluoromethane	$16.06 \\ 13.31$	16.14	0.08	-1.24	-1.97	n
C_{13} F C_{2} HF	Fluoroacetylene	13.31	$12.92 \\ 11.56$	$-0.39 \\ 0.26$	$-0.26 \\ -0.24$	$-1.21 \\ -0.15$	0
C_2H_3F	Fluoroethylene	10.58	10.60	0.20	-0.24 -0.41	-0.13	a
C_2H_5F	Fluoroethane	12.43	12.07	-0.36	0.18	-0.34 -0.85	a a
C_3H_7F	2-Fluoropropane	11.08	12.10	1.02	1.25	0.83	a a
C_6H_5F	Fluorobenzene	9.19	9.81	0.62	0.28	0.35	a
$C_7H_5O_2F$	p-Fluorobenzoic acid	9.90	10.16	0.26	-0.07	0.05	a
NOF	Nitrosyl fluoride	12.94	11.54	-1.40	-0.01	-0.42	p
NO_2F	Fluorine nitrite	13.51	13.37	-0.14	-0.52	-0.12	p
SF	SF	10.00	9.75	-0.25	0.79	0.62	a
$\mathrm{CH_2F_2}$	Difluoromethane	13.17	12.86	-0.31	-0.08	-1.15	0
$\mathrm{C_2F_2}$	Difluoroacetylene	11.20	11.54	0.34	-0.03	-0.27	a
$C_2H_2F_2$	gem-Difluoroethylene	10.72	10.54	-0.18	-0.54	-0.73	a
$C_2H_4F_2$	1,1-Difluoroethane	12.80	12.82	0.02	-0.07	-0.87	a
$\mathrm{C_6H_4F_2}$	$o ext{-} ext{Difluorobenzene}$	9.68	9.98	0.30	0.01	-0.05	a
$C_6H_4F_2$	m-Difluorobenzene	9.68	10.02	0.34	0.05	0.04	а
$C_6H_4F_2$	<i>p</i> -Difluorobenzene	9.30	9.87	0.57	0.26	0.19	а
OF_2	Difluorine oxide	13.26	13.47	0.21	0.26	-0.36	q
N_2F_2	trans-Difluorodiazene	13.40	11.91	-1.49	-0.40	-1.15	\mathbf{q}
SF_2	Sulfur difluoride	10.20	9.81	-0.39	1.07	0.72	а
SOF ₂	Thionyl fluoride	12.58	11.03	-1.55	0.09	-0.36	а
$SO_2F_2 S_2F_2$	Sulfuryl fluoride FSSF	13.04	13.10	0.06	0.77	0.40	а
CHF_3	Trifluoromethane	10.68 14.80	10.47	-0.21	1.03	0.73	a
C_2HF_3	Trifluoroethylene	10.54	$14.36 \\ 10.68$	$-0.44 \\ 0.14$	$-0.23 \\ -0.08$	-1.49	a
$C_2H_3F_3$	1,1,1-Trifluoroethane	13.80	14.38	0.14 0.58	-0.08 0.21	$-0.45 \\ -0.68$	a
$C_7H_5F_3$	Trifluoromethylbenzene	9.68	10.34	0.66	0.21	0.57	a
$C_2HO_2F_3$	Trifluoroacetic acid	12.00	12.47	0.47	0.33	0.37	a a
NF ₃	Nitrogen trifluoride	13.73	12.24	-1.49	0.70	-0.55	a
$\mathbf{CF_4}$	Carbon tetrafluoride	16.23	16.79	0.56	0.58	-0.91	a
$C_2\vec{F}_4$	Tetrafluoroethylene	10.50	10.84	0.34	0.42	-0.22	a
$\widehat{\mathrm{COF}_4}$	Trifluoromethyl hypofluorite	13.60	14.18	0.58	0.63	0.07	a
N_2F_4	Tetrafluorohydrazine	12.00	12.46	0.46	1.04	0.47	a
SF_4	Sulfur tetrafluoride	12.05	10.41	-1.64	1.01	0.00	а
C_6HF_5	Pentafluorobenzene	9.75	10.55	0.80	0.65	0.32	а
C_2F_6	Hexafluoroethane	14.60	14.48	-0.12	-0.10	-1.37	а
C_6F_6	Hexafluorobenzene	10.90	10.85	-0.05	-0.13	-0.53	a
C_3OF_6	Perfluoroacetone	12.10	12.71	0.61	0.90	0.24	а
SF ₆	Sulfur hexafluoride	15.70	16.39	0.69	0.19	-1.39	а
HCl	Hydrogen chloride	12.75	11.06	-1.69	0.25	-0.42	n
CH ₃ Cl	Methyl chloride	11.30	10.48	-0.82	0.94	0.04	а
C ₇ H ₅ OCl NOCl	Benzoyl chloride	9.90	10.29	0.39	0.12	0.34	а
NO ₂ Cl	Nitrosyl chloride Nitryl chloride	10.90	10.59	-0.31	1.07	0.66	а
FCl	Chlorine fluoride	$11.40 \\ 12.02$	$12.42 \\ 11.13$	$1.02 \\ -0.89$	1.61	1.54	а
CH ₂ FCl	Fluorochloromethane	11.74	10.85	-0.89	1.35	0.37	r
CHF ₂ Cl	Difluorochloromethane	12.60	11.36	-0.89 -1.24	$0.80 \\ 0.63$	$-0.16 \\ -0.32$	a
CF ₃ Cl	Trifluorochloromethane	10.30	11.88	$\frac{-1.24}{1.58}$	3.83	$\frac{-0.32}{2.94}$	a a
CH_2Cl_2	Dichloromethane	11.30	10.58	-0.72	1.19	0.09	a a
$COCl_2$	Carbonyl chloride	11.84	11.23	-0.61	0.86	0.53	a
SCl_2	Sulfur dichloride	9.70	9.60	-0.10	1.34	0.88	a
$SOCl_2$	Thionyl chloride	11.10	10.65	-0.45	1.45	0.91	a
SO_2Cl_2	Sulfuryl chloride	12.40	10.55	-1.85	-0.62	-0.64	a
S_2Cl_2	CISSCI	9.40	9.96	0.56	2.04	1.63	a
$CHFCl_2$	Fluorodichloromethane	12.00	10.99	-1.01	0.96	0.03	a
$\mathrm{CF_2Cl_2}$	Difluorodichloromethane	12.30	11.33	-0.97	1.06	0.21	а

Table XIV. (continued)

Empirical formula	Chemical name	Ionization potential		Errors			
		Exp.	Calc.	PM3	MNDO	AM1	Footnote
CHCl_3	Chloroform	11.48	10.84	-0.64	1.43	0.29	a
CFCl_3	Fluorotrichloromethane	11.90	11.16	-0.74	1.39	0.55	a
C_2Cl_6	Hexachloroethane	11.20	10.84	-0.36	1.88	0.98	a
HBr	Hydrogen bromide	11.71	12.13	0.42	0.39	-0.25	n
$\mathrm{CH_3Br}$	Bromomethane	10.53	11.01	0.48	1.03	0.27	a
C_2H_3Br	Bromoethylene	9.90	10.44	0.54	0.35	0.25	а
C_2H_5Br	Bromoethane	10.28	10.91	0.63	1.20	0.41	a
C_3H_7Br	1-Bromopropane	10.18	10.93	0.75	1.29	0.51	a
$\mathrm{C_{6}H_{5}Br}$	Bromobenzene	9.25	9.81	0.56	0.30	0.35	а
C_2H_3OBr	Acetyl bromide	10.55	11.20	0.65	0.88	0.63	s
$\mathrm{CF_3Br}$	Bromotrifluoromethane	12.10	12.23	0.13	1.15	0.23	a
Br_2	Bromine	10.70	11.24	0.54	0.96	0.24	a
CH_2Br_2	Dibromomethane	10.50	10.59	0.09	1.20	0.46	а
$C_2F_4Br_2$	1,2-Dibromotetrafluoroethane	14.44	12.00	-2.44	-1.65	-2.53	а
$CHBr_3$	Bromoform	10.50	10.84	0.34	1.37	0.57	а
CBr_4	Carbon tetrabromide	10.30	11.22	0.92	1.73	0.92	a
HI	Hydrogen iodide	10.39	9.97	-0.42	0.82	0.52	t
CH_3I	Methyl iodide	9.50	9.47	-0.03	1.35	1.01	а
C_2H_5I	Iodoethane	9.34	9.44	0.10	1.48	1.09	а
C_3H_5I	3-Iodo-propene	9.30	9.44	0.14	0.99	0.93	a
C_3H_7I	1-Iodopropane	9.27	9.45	0.18	1.53	1.16	a
C_3H_7I	2-Iodopropane	9.40	9.43	0.03	1.39	1.00	а
C_4H_9I	1-Butyl iodide	9.20	9.45	0.25	1.60	1.23	a
C_6H_5I	Iodobenzene	8.70	9.05	0.35	0.85	0.95	a
$C_6H_{11}I$	Iodocyclohexane	8.91	9.42	0.51	1.86	1.47	a
C_7H_7I	o-Iodotoluene	8.53	9.02	0.49	0.98	0.99	a
C_7H_7I	<i>m</i> -Iodotoluene	8.55	9.01	0.46	0.96	0.97	а
C_7H_7I	p-Iodotoluene	8.38	8.94	0.56	1.07	1.03	а
C_7H_7I	Benzyl iodide	8.91	9.35	0.44	0.55	0.60	a
CF_3I	Trifluoroiodomethane	10.45	10.28	-0.17	2.03	1.52	a
ClI	Iodine chloride	10.10	9.74	-0.36	1.48	1.02	u
BrI •	Iodine bromide	9.85	9.84	-0.01	1.43	0.99	u
	Iodine	9.34	9.53	0.19	1.53	1.33	v
$\mathrm{CH_{2}I_{2}}$	Diiodomethane	9.46	8.98	-0.48	$1.41 \\ 1.52$	$1.10 \\ 1.21$	a
$C_2H_4I_2$	1,2-Diiodoethane	9.50 9.76	9.66	$0.16 \\ 0.36$	$\begin{array}{c} 1.52 \\ 0.92 \end{array}$	0.43	a
C ₃ H ₉ Al	Trimethylaluminum		10.12	-0.39	-0.32	-0.43	w
C_2H_6Si	Vinylsilane	10.40	10.01	-0.39 -0.31	0.17	$-0.01 \\ 0.12$	a
C_2H_8Si	Ethylsilane	$10.95 \\ 11.20$	$10.64 \\ 10.65$	-0.51 -0.55	$0.19 \\ 0.27$	-0.12	j
C_2H_8Si	Dimethylsilane	10.80	10.65	-0.35 -0.29	0.27	-0.03	a a
C ₃ H ₁₀ Si	Trimethylsilane			0.29			
C ₄ H ₁₂ Si	Tetramethylsilane	$10.40 \\ 12.85$	$10.42 \\ 10.82$	-2.03	$0.94 \\ -0.63$	$0.52 \\ -1.24$	a
H₂SiF₂ SiF₄	Difluorosilane	12.85 15.81	15.19	-2.03 -0.62	0.02	-1.24 -1.09	X
	Silicon tetrafluoride	11.70	10.19 10.27	-0.02 -1.43	$0.02 \\ 0.82$	-0.14	у
H_2SiCl_2	Dichlorosilane Dichlorodimethylsilane	10.79	10.27	-0.52	1.43	0.70	X
$C_2H_6SiCl_2$	Silicon tetrachloride	10.79	10.27 11.23	-0.52 -0.56	$\frac{1.43}{2.02}$	1.19	a
SiCl ₄		8.66	8.38	-0.36 -0.28	1.03	0.83	S
$C_6H_{19}Si_2N$	Hexamethyldisilazane	9.98	8.67	$-0.28 \\ -1.31$	1.36	0.83 0.92	z t
$ m H_3P$ CP	Phosphine Carbon phosphide	10.50	10.90	0.40	1.06	1.31	
CHP	Methinophosphine	10.50	10.50	-0.05	0.44	0.63	a a
CH₅P	Methylphosphine Methylphosphine	9.72	8.66	-1.06	1.07	0.68	a
C_2H_7P	Dimethylphosphine	9.10	8.68	-0.42	1.14	0.00	a a
C_3H_9P	Trimethylphosphine	8.60	8.81	0.42 0.21	1.25	1.16	j
$C_3H_9PO_3$	Trimethyl phosphite	9.22	9.69	0.21 0.47	1.69	1.88	aa
PF_3	Phosphorus trifluoride	9.71	10.70	0.47	$\frac{1.03}{3.42}$	2.75	aa t
POF_3	Phosphorus oxyfluoride	$\frac{9.71}{12.77}$	$10.70 \\ 12.05$	-0.72	0.40	-0.05	a
PCl_3		10.50	12.03 10.42	-0.72 -0.08	1.67	$-0.03 \\ 0.92$	
$POCl_3$	Phosphorus trichloride		10.42 12.29				a
PCl_5	Phosphorus oxychloride	11.85		0.44	0.93	0.18	a
PGl_5 PBr_3	Phosphorus pentachloride	$10.80 \\ 10.00$	11.86	1.06	1.49	0.61	a
PI_3	Phosphorus tribromide Phosphorus triiodide	9.15	$10.84 \\ 9.97$	$0.84 \\ 0.82$	1.44	0.76	a
	Phosphorus dimer	$\frac{9.13}{10.62}$	9.97 8.91	-1.71	$\frac{1.29}{0.82}$	$\frac{1.02}{0.82}$	a
P_2							а

- ^aR. D. Levin and S. G. Lias, "Ionization Potentials and Appearance Potential Measurements," 1971–1981, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. 71, (1982), Cat. No. C13.48:71.
- ^bD. W. Turner, C. Baker, A.D. Baker, and C.R. Brundle, Molecular Photoelectron Spectroscopy, Wiley-Interscience, London, 1970.
 - °P. Bischof and E. Heilbronner, Helv. Chim. Acta, 53, 1677 (1970).
 - ^dA. Katrib and J. W. Rabalais, J. Phys. Chem., 77, 2358 (1973).
 - ^eJ. N. Murrell and W. Schmidt, J. Chem. Soc., Faraday Trans. 2, 68, 1709 (1972).
 - ^fD. A. Sweigart and D. W. Turner, J. Am. Chem. Soc., **94**, 5592 (1972).
 - ^gC. R. Brundle, Chem. Phys. Lett., 26, 25, (1974).
 - ^hJ. P. Maier and D. W. Turner, J. Chem. Soc., Faraday Trans. 2, **69**, 521 (1973).
- M. W. Chase, C. A. Davies, J. R. Downey, D. R. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables, Third Edition, J. Phys. Chem. Ref. Data 14, Suppl. 1 (1985).
- ¹H. M. Rosenstock, K. Draxel, B. W. Steiner, and J. T. Herron, "Energetics of Gaseous Ions," J. Phys. Ref. Data, 6, Suppl. 1 (1977).
 - ^kI. Omura, K. Higasi, and H. Baba, Bull. Chem. Soc. Japan, 29, 504 (1956).
 - ¹G. Gleiter and J. Spanget-Larsen, Topics in Current Chemistry, 86, 139 (1979).
 - ^mB. Solouki and H. Bock, *Inorg. Chem.*, **16**, 665 (1977).
- ⁿD. C. Frost, C. A. McDowell, and D. A. Vroom, J. Chem. Phys., 46, 4255 (1967). W.J. Pietro, M. M. Francl, W.J. Hehre, D.J. DeFrees, J. A. Pople, and J. S. Binkley, J. Am. Chem. Soc., 104, 5039 (1982).
 - ^oM. S. Banna, B. E. Mills, D. W. Davis, and D. A. Shirley, J. Chem. Phys., **61**, 4780 (1974).
- ^pD. C. Frost, S. T. Lee, C. A. McDowell, and N. P. C. Westwood, *J. Electron Spectrosc. Relat. Phenom.*, **7**, 331 (1975).
 - ^qC. F. Brundle, M. B. Robin, N. A. Kuebler, and H. Basch, J. Am. Chem. Soc., 94, 1451 (1972).
- ^rC. P. Anderson, G. Mamantov, W. E. Bull, F. A. Grimm, J. C. Carver, and T. A. Carlson, *Chem. Phys. Lett.*, **12**, 137 (1971).
- ⁸J. C. Green, M. L. H. Green, P. J. Joachim, A. F. Orchard, and D. W. Turner, *Philos. Trans. R. Soc. London, Ser. A*, 111, A268 (1970).
- ^tCRC Handbook of Chemistry and Physics, 60th Edition, R.C. Weast, (Ed.), CRC Press, Boca Raton, FL, 1980.
- ^uK. H. Hellwege and A. M. Hellwege, (Eds.), *Molecular Constants from Microwave Spectroscopy*, Landolt-Bornstein, New Series II, Springer-Verlag, Berlin, Vol. 4, 1967.
- ^vA. B. Cornforth, D. C. Frost, C. A. McDowell, J. L. Ragle, and I. A. Stonehouse, J. Chem. Phys., **54**, 2651 (1971). ^wG. K. Baker, M. F. Lappert, J. B. Pedley, G. J. Sharp, and N. P. C. Westwood, J. Chem. Soc. Dalton Trans., 1765, (1975)
- *D. C. Frost, F. G. Herring, A. Katrib, R. A. N. McLean, J. E. Drake, and N. P. C. Westwood, Can. J. Chem., 49, 4033 (1971).
 - ^yP. J. Bassett and D. R. Lloyd, J. Chem. Soc. A, 641 (1971).
- ²J. B. Pedley and G. Rylance, "Sussex-N.P.L. Computer Analysed Thermochemical Data: Organic and Organometallic Compounds," Sussex University, 1977.

racy of any given computational method, requires accurate thermochemical data as standards. Even more unfortunate, little effort appears to be committed to increasing the accuracy of existing thermochemical data, as is indicated by the dates of the latest determinations reported in recent thermochemical tables. 15, 16 With the steady advance in the accuracy of ab initio methods, there is a significant probability that within a few years the heats of formation calculated using such methods will become more accurate than experimental, and that semiempirical methods will be parameterized against high-level ab initio calculations rather than experimental values. Even now good ab initio calculations of molecular geometries are of an accuracy comparable with microwave data and significantly better than many single molecule geometries obtained from x-ray determinations.

Several deficiencies in the prediction of geometric variables have been corrected.

Even so, some problems still remain intractable. Cyclobutane, for example, is still persistently D_{4h} , in variance with experiment. However, as the purpose of this work has been to develop and demonstrate a rapid optimization procedure for semiempirical methods, sporadic deficiencies in the results are not too serious. It is possible that modification of the Hamiltonian, a relatively easy operation now that reparameterization is rapid, will allow correction of these faults.

Note added in proof. A recent article by K. Szalewicz, S.J. Cole, W. Kolos, and R.J. Bartlett, J. Chem. Phys. 89, 3662 (1988) on "Supermolecular Many-Body Perturbation Theory and Coupled-Cluster Calculations Including Triple Excitations" indicates that for the water dimer, the total interaction energy is -4.7 ± 0.35 kcal/mol.

The author wishes to thank Lt. Col. Chester J. Dymek of the Frank J. Seiler Research Laboratory, and Maj. Donn M. Storch of the Faculty of Chemistry, United States Air Force Academy for their enthusiastic suggestions and advice during the preparation of this article. Appreciation is also expressed for the

critical evaluation of the parameter sets by the research laboratories of Eastman Kodak and Prof. M.J.S. Dewar.

References

- M.J.S. Dewar and W. Thiel, J. Am. Chem. Soc., 99, 4899 (1977).
- R. C. Bingham, M.J.S. Dewar, and D. H. Lo, J. Am. Chem. Soc., 97, 1294 (1975).
- M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, and J.J.P. Stewart, J. Am. Chem. Soc., 107, 3902 (1985).
- M. J. S. Dewar and H. S. Rzepa, J. Am. Chem. Soc., 100, 58, (1987).
- L. P. Davis, R. M. Guidry, J. R. Williams, and M. J. S. Dewar, J. Comput. Chem., 4, 443 (1981).
- M. J. S. Dewar, J. Friedheim, G. Grady, E. F. Healy, and J. J. P. Stewart, Organometallics, 5, 375 (1986).
- M. J. S. Dewar and C. H. Reynolds, J. Comp. Chem., 7, 140 (1986).
- M. J. S. Dewar and H. S. Rzepa, J. Comp. Chem., 4, 158 (1983).
- M. J. S. Dewar and E. F. Healy, J. Comp. Chem., 4, 542 (1983).
- M. J. S. Dewar, E. F. Healy, and J. J. P. Stewart, J. Comp. Chem., 5, 358 (1984).
- 11. M.J.S. Dewar and E.G. Zoebisch, J. Mol. Struct., Theochem. (in press).
- 12. M.J.S. Dewar and C.X. Jie, Organometallics, 6, 1486 (1987).
- J. D. Cox and G. Pilcher, Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970.
- D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall, The NBS Tables of Chemical Thermodynamic Properties, Vol. 11, Natl. Bur. Std. (1982)
- M. W. Chase, Jr., C. A. Davies, J. R. Downey, D.J. Frurip, R. A. McDonald, and A. N. Syverud,

- JANAF Thermochemical Tables Third Edition, Vol. 14, Natl. Bur. Std. (1985).
- M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 99, 4907 (1977).
- J.J.P. Stewart, MOPAC, A Semi-Empirical Molecular Orbital Program, QCPE 455 (1983).
- R. Fletcher and M. J. D. Powell, Comput. J., 6, 163 (1963).
- 19. W. C. Davidon, Comput. J., 10, 406 (1968).
- C. G. Broyden, J. Inst. Math. App., 6, 222 (1970);
 R. Fletcher, Comp. J., 13, 317 (1970);
 D. Goldfarb, Math. Comput., 24, 23 (1970);
 D. F. Shanno, Math. Comput., 24, 647 (1970).
- 21. P. Hobza, G. Schneider, P. Carsky, and R. Zahradnik, J. Mol. Struct. (Theochem), 138, 377 (1986).
- S. B. Hartley and J. C. McCoubrey, *Nature (Lond.)* 198, 476 (1963).
- W. E. Koerner and F. Daniels, J. Chem. Phys., 20, 113 (1952).
- D.W. Muenow, O. M. Uy, and J. L. Margrave, J. Inorg. Nucl. Chem., 32, 3459 (1970).
- 25. K. Jug and J. Schulz, J. Comp. Chem., 9, 40 (1987).
- For example, 6-31G** with 2nd or 4th order Møller-Plesset corrections.
- R. C. Weast (Ed.), CRC Handbook of Chemistry and Physics, CRC Press, Inc., Boca Raton, FL, 1980, p. F-230.
- L. P. Davis, D. M. Storch, and R. M. Guidry, J. Energ. Mater., 5, 89 (1987).
- P. Kebarle, Environmental Effects on Molecular Structure and Properties, B. Pullman, (Ed.), D. Reidel, Dodrecht, 1976, p. 81.
- J. O. Morley, J. Chem. Soc. Perkin Trans. II (in press).
- D. G. Lister, J. K. Tyler, J. H. Hog, N. Larsen, J. Mol. Struct., 23, 253-264 (1974).
- 32. S. Yabushita and M. S. Gordon, *Chem. Phys. Lett.*, 117, 321-325 (1985).
- 33. M. J. S. Dewar, D. H. Lo, and C. A. Ramsden, J. Am. Chem. Soc., 97, 1311 (1975).
- M. J. S. Dewar and D. M. Storch, Proc. Natl. Acad. Sci., 82, 2225 (1985).