EINFÜHRUNG IN DIE KOMPLEXITÄTSTHEORIE Prof. Johannes Köbler WS 2019/20 15. Januar 2020

Übungsblatt 11

Abgabe der schriftlichen Lösungen bis 29. Januar 2020

Aufgabe 46 mündlich

Eine Sprache $S \subseteq \Sigma^*$ heißt sparse (kurz $S \in \mathsf{SPARSE}$), falls für ein Polynom p und alle n gilt: $||S \cap \Sigma^n|| \leq p(n)$. Sprachen $T \subseteq \{1\}^*$ heißen tally (kurz $T \in \mathsf{TALLY}$). Zeigen Sie:

$$P/poly = P(SPARSE) = P(TALLY).$$

Aufgabe 47 Zeigen Sie:

 $m\ddot{u}ndlich$

- (a) USAT ist in der Klasse $D^p = \{A \setminus B \mid A, B \in NP\}$ enthalten und hart für $UP \cup co-NP$.
- (b) Für jedes Orakel A gilt $\# \cdot \mathsf{P}^A = \# \mathsf{P}^A$ und $\oplus \cdot \mathsf{P}^A = \oplus \mathsf{P}^A$.
- (c) $\#P^A = \#P \Leftrightarrow A \in \mathsf{UP} \cap \mathsf{co-UP}$.
- (d) $\exists^p \cdot \mathsf{L} = \mathsf{NL} \Leftrightarrow \mathsf{PH} = \mathsf{NL}$.

Aufgabe 48 mündlich

Eine Funktion g heißt parsimonious reduzierbar auf eine Funktion h (kurz $g \leq_{par} h$), falls eine Funktion $f \in \mathsf{FL}$ existiert, so dass für alle x gilt: g(x) = h(f(x)).

(a) Zeigen Sie, dass folgende auf der Menge aller booleschen Formeln (mit Junktoren ¬, ∧ und ∨) definierte Funktion vollständig für #P unter parsimonious Reduktionen ist:

$$\#SAT : F(x_1, \dots, x_n) \mapsto |\{a \in \{0, 1\}^n \mid F(a) = 1\}|$$

- (b) Folgern Sie, dass \oplus SAT vollständig für \oplus P ist.
- (c) Zeigen Sie, dass Teil (a) für jede vollständige Basis von Junktoren (wie z. B. $\{\land, \neg\}, \{\overline{\land}\}\$ (NAND), $\{\rightarrow, 0\}$ oder $\{\land, \oplus, 1\}$) gilt.

Aufgabe 49 Zeigen Sie:

10 Punkte

- (a) Es gibt ein Orakel A mit $P^A \neq NP^A \neq co-NP^A$.
- (b) Es gibt ein Orakel B mit $L^B \neq NL^B \neq co-NL^B$.
- (c) Es gibt ein Orakel C mit $C \in \mathsf{L}^{det(C)} \setminus \mathsf{NL}^{strong(C)}$.
- (d) Es gilt

$$\mathsf{L} = \mathsf{NL} \Leftrightarrow \forall A : \mathsf{L}^{det(A)} = \mathsf{NL}^{det(A)}$$
$$\Leftrightarrow \forall A : \mathsf{L}^{strong(A)} = \mathsf{NL}^{strong(A)}$$