Geometry Representation

Introduction to Computer Graphics
Yu-Ting Wu

1

Define the 3D World

Vector in 3D Space

Use to represent direction (e.g., movement) in the 3D world

5

Triangle Mesh

• We can define the geometry of an object by specifying the coordinates of the vertices and their adjacencies

Introduction to Computer Graphics 2022

Introduction to Computer Graphics 2022

10K triangles

6

• Using more triangles can lead to higher-quality meshes

Introduction to Computer Graphics 2022

• However, takes more time to render

7

Introduction to Computer Graphics 2022 **Surface Normal** • A surface normal is a vector that is perpendicular to a surface at a particular position • Represent the orientation of the face \rightarrow normal (n_x, n_y, n_z) → tangent → binormal 10

Introduction to Computer Graphics 2022 Point, Triangle, and Surface Normal

10,10,10 point (x, y, z)10,10,-10 triangle (p1, p2, p3) normal $(n_{x'}, n_{y'}, n_z)$ -10,-10,10 **3**0,-10,-10 -10,-10,-10

• Compute by averaging the surface normals of the faces that contain that vertex

Vertex Normal

12

• Can achieve much smooth shading than using triangle normals

Introduction to Computer Graphics 2022

3D Model Format

- · A model is often stored in a file
- · Common file format includes
 - Wavefront (*.obj)
 - Polygon file format (*.ply)
 - Filmbox (*.fbx)
 - MAX (*.max)

13

- Digital Asset Exchange File (*.dae)
- STereoLithography (*.stl)

Introduction to Computer Graphics 2022

Introduction to Computer Graphics 2022 Example: Wavefront OBJ File Format cube.obi Created by Morgan McGuire and released into the Public Domain of specify material file face data (adjacency, submesh) vertex position declaration vertex texture coordinate declaration

Transformation

Introduction to Computer Graphics 2022

Common Transformations

- Translation
- Scaling
- Rotation

Introduction to Computer Graphics 2022

World Space and World Coordinate (cont.)

- · Advantages for using "transformation"
 - Reuse model: design a model and use it in several scenes
 - Memory saving: store a 4x4 matrix instead of duplication of the entire models

22

22

Introduction to Computer Graphics 2022

2D Translation

• Given a point p(x, y) and a translation offset $T(t_x, t_y)$, the new point p'(x', y') after translation is p' = p + T

$$x' = x + t_x$$
$$y' = y + t_y$$

• Can be represented as Matrix-vector multiplication

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

24

13

23

Introduction to Computer Graphics 2022

2D Scaling

• Given a point p(x, y) and a scaling factor $S(s_x, s_y)$, the new point p'(x', y') after scaling is p' = Sp

$$x' = x * s_x$$
$$y' = y * s_y$$

• Matrix-vector multiplication

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

25

25

Introduction to Computer Graphics 2022

2D Rotation (cont.)

• Given a point p(x, y), rotate it with respect to the origin by θ and get the new point p'(x', y') after rotation

$$x = r\cos(\phi)$$
 $y = r\sin(\phi)$
 $x' = r\cos(\phi + \theta)$ $y' = r\sin(\phi + \theta)$

$$x' = r\cos(\phi + \theta)$$

$$= r\cos(\phi)\cos(\theta) - r\sin(\phi)\sin(\theta)$$

$$=x\cos(\theta)-y\sin(\theta)$$

$$y' = r\sin(\phi + \theta)$$

$$= x\sin(\phi)\cos(\theta) + r\cos(\phi)\sin(\theta)$$

$$=y\cos(\theta)+x\sin(\theta)$$

Introduction to Computer Graphics 2022

2D Rotation

• Given a point p(x, y), rotate it with respect to the origin by Θ and get the new point p'(x', y') after rotation

· First we define

26

26

Introduction to Computer Graphics 2022

2D Rotation (cont.)

• Given a point p(x, y), rotate it with respect to the origin by θ and get the new point p'(x', y') after rotation

$$x' = r\cos(\phi + \theta)$$

$$= x\cos(\theta) - y\sin(\theta)$$

$$y' = r\sin(\phi + \theta)$$

$$= y\cos(\theta) + x\sin(\theta)$$

· Matrix-vector multiplication

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

28

28

Introduction to Computer Graphics 2022

2D Translation, Scaling, and Rotation

• Translation $\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x' \\ y \\ 1 \end{bmatrix}$

• Scaling $\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$

• Rotation $\begin{bmatrix} x'\\y'\\1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix}$

- Using a 3x3 matrix allows us to perform all transformations using matrix/vector multiplications
 - We can also pre-multiply (concatenate) all the matrices
- We call the (x, y, 1) representation the homogeneous coordinate for (x, y)

29

29

Introduction to Computer Graphics 2022

Revisit 2D Scaling (cont.)

- Scaling about an arbitrary pivot point $Q(q_x, q_y)$
 - Translate the objects so that Q will coincide with the origin: $T(-q_{xy}-q_y)$
 - Scale the object: S(s_x, s_y)
 - Translate the object back: $T(q_x, q_y)$

Concatenation of matrices

• The final scaling matrix can be written as T(q)S(s)T(-q)

31

Introduction to Computer Graphics 2022

Revisit 2D Scaling

• The standard scaling matrix will only anchor at (0, 0)

• What if we want the object to be scaled w.r.t its center?

30

30

Introduction to Computer Graphics 2022

Revisit 2D Rotation

• The standard rotation matrix is used to rotate about the origin (0, 0)

 What if we want the object to be rotated w.r.t a specific pivot?

32

Introduction to Computer Graphics 2022

Introduction to Computer Graphics 2022

Revisit 2D Rotation (cont.)

• Rotate about an arbitrary pivot point $Q(q_x, q_y)$ by Θ • Translate the objects so that Q will coincide with the origin: $T(-q_x, -q_y)$ • Rotate the object: $R(\Theta)$ • Translate the object back: $T(q_x, q_y)$ • The final rotation matrix can be written as $T(q)R(\Theta)T(-q)$

Translation (3D) and Scaling (3D)

• A 3D transformation is represented as a 4x4 matrix, with homogeneous coordinate $\begin{bmatrix}
1 & 0 & t_x \\
0 & 1 & t_y \\
0 & 0 & 1
\end{bmatrix}
\longrightarrow
\begin{bmatrix}
1 & 0 & 0 & t_x \\
0 & 1 & 0 & t_y \\
0 & 1 & 0 & t_y \\
0 & 0 & 1 & t_z \\
0 & 0 & 0 & 1
\end{bmatrix}$ scaling $\begin{bmatrix}
s_x & 0 & 0 \\
0 & s_y & 0 \\
0 & 0 & 1
\end{bmatrix}
\longrightarrow
\begin{bmatrix}
s_x & 0 & 0 & 0 \\
0 & s_y & 0 & 0 \\
0 & 0 & s_z & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$ 2D
3D

Introduction to Computer Graphics 2022

Rotation (3D) $0 \cos\theta - \sin\theta = 0$ rotation w.r.t $0 \sin\theta$ $\cos\theta$ x-axis 0 $\cos(\theta)$ $-\sin(\theta)$ 0 0 rotation w.r.t $\sin(\theta)$ $\cos(\theta)$ $0 \cos\theta 0$ y-axis 0 0 0 $-\sin\theta = 0$ $\cos\theta = 0 = 0$ $\sin\theta$ rotation w.r.t z-axis 0 0 1 2D 3D

3D Transformation

Practice

34

- Scale w.r.t a given pivot point
- Rotate w.r.t a given pivot point

36

