Using the Transformer

T5 (Raffel et al., 2019)

Learning goals

- Understand the improvements over BERT
- Dynamic Masking

GOOGLE'S T5 RAFFEL ET AL. (2019)

T5: Text-to-Text Transfer Transformer:

- A complete encoder-decoder Transformer architecture
- All tasks reformulated as text-to-text tasks
- From BERT-size up to 11 Billion parameters

Source: Raffel et al. (2019)

THE COLOSSAL CLEAN CRAWLED CORPUS (C4)

- Effort to measure the effect of quality, characteristics & size of the pre-training resources
- Common Crawl as basis, careful cleaning and filtering for English language
- Orders of magnitude larger (750GB) compared to commonly used corpora

Experiments (with respect to C4)

Data set	Size	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
₹ C4	745GB	83.28	19.24	80.88	71.36	26.98	39.82	27.65
C4, unfiltered	6.1TB	81.46	19.14	78.78	68.04	26.55	39.34	27.21
RealNews-like	35GB	83.83	19.23	80.39	72.38	26.75	39.90	27.48
WebText-like	17GB	84.03	19.31	81.42	71.40	26.80	39.74	27.59
Wikipedia	16GB	81.85	19.31	81.29	68.01	26.94	39.69	27.67
${\it Wikipedia} + {\it TBC}$	20GB	83.65	19.28	82.08	73.24	26.77	39.63	27.57
Number of tokens	Repeats	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
Full data set	0	83.28	19.24	80.88	71.36	26.98	39.82	27.65
2^{29}	64	82.87	19.19	80.97	72.03	26.83	39.74	27.63
2^{27}	256	82.62	19.20	79.78	69.97	27.02	39.71	27.33
2^{25}	1,024	79.55	18.57	76.27	64.76	26.38	39.56	26.80
2^{23}	4,096	76.34	18.33	70.92	59.29	26.37	38.84	25.81

Source: Raffel et al. (2019)

T5 - EXHAUSTIVE EXPERIMENTS

Performed experiments with respect to ..

- .. architecture, size & objective
- .. details of the Denoising objective
- .. fine-tuning methods & multi-taks learning strategies

Conclusions

- Encoder-decoder architecture works best in this "text-to-text" setting
- More data, larger models & ensembling all boost the performance
 - Larger models trained for fewer steps better than smaller models on more data
 - Ensembling: Using same base pre-trained models worse than complete separate model ensembles
- Different denoising objectives work similarly well
- Updating all model parameters during fine-tuning works best (but expensive)