

Algorithmen & Datenstrukturen

Komplexitätsanalyse

Wolfgang Auer

Komplexitätsanalyse

- Ziel
 - Möglichkeit zum Vergleich von verschiedenen Algorithmen, die dieselbe Aufgabe lösen
 - Bestimmung der Eigenschaften eines Algorithmus in Bezug auf:
 - Laufzeit
 - Speicherplatzbedarf
 - Statische Länge
 - ...
- Komplexität
 - Verhalten einer oder mehrerer Eigenschaften eines Algorithmus in Abhängigkeit von der Problemgröße

Laufzeitkomplexität

- Laufzeit = f (Problemgröße)Problemgrößen
 - Listenlänge (Sortieren, Suchen)
 - Länge eines Textes (Suchen)
 - Anzahl der Elemente von Matrizen
 - Grad eines Polynoms
- Verschiedene Fragestellungen
 - Laufzeit eines Algorithmus
 - Minimale Laufzeit einer ganzen Problemklasse (Sortieren, Multiplizieren, ...)
- Bestimmung der Laufzeit
 - Messung
 - Berechnung

Feinanalyse

- Bestimmung der Laufzeit eines Algorithmus anhand von gemessenen Ausführungszeiten elementarer
 Operationen
- Maschinen- und Compilerabhängige Werte

Operation	Zeit
Zuweisung	1
Vergleich	1.6
Addition	0.8
Subtraktion	0.8
Division	4.9
Einfache Indizierung	2.1
++ (Addition + Zuweisung)	1.8
Multiplikation	2.3

Beispiel: BinSearch (1)

Anzahl	Dauer	Const	u	V
1	3	3		
u + 1 (*)	1.6	1.6	1.6u	
u	1.6		1.6u	
u	6.7		6.7u	
u	3.7		3.7u	
1 (*)	1	1		
u - 1	3.7	-3.7	3.7u	
V	1.8			1.8v
u - 1 - v	1.8	-1.8	1.8u	-1.8v
		0.1	19,1u	

u..Anzahl der Schleifendurchläufe

v..Anzahl der Verzweigungen

(*) Annahme das gesuchte Element kommt vor

Beispiel: BinSearch (2)


```
BinSearch2(\downarrowlist, \downarrown, \downarrowx, \uparrowy) {
   imin = 1; imax = n;
   for (;;) {
       if (imin > imax) {
          y = 0;
          break;
       i = (imin + imax) / 2
       if (x < list[i]) {
          imax = i - 1;
       else if (x > list[i])
          imin = i + 1;
       else {
          y = i;
          break;
   } //end for
```

Anzahl	Dauer	Const	u	V
1	2	2		
u 0 (*)	1.6		1.6u	
u u v u - v u - v -1	6.7 3.7 1.8 3.7 1.8	-1.8	6.7u 3.7u 3.7u 1.8u	1.8v -3.7v -1.8v
1 (*)	1	1		
		1.2	17.5u	-3.7v

(*) Annahme das gesuchte Element kommt vor

Gegenüberstellung

• Annahme:
$$v = \frac{u}{2}$$

d.h. die Wahrscheinlichkeit, dass das gesuchte Listenelement links oder rechts vom Prüfelement vorkommt ist gleich groß

- T(BinSearch1) = 19.1u + 0.1
- T(BinSearch2) = 15.65u + 1.2

n	u	T(BinSearch1)	T(BinSearch2)
10	4	76,7	63.8
100	7	134.0	110.75
1000	10	191.3	157.7
10000	14	267.7	220,3

Zeitmessung

- Identische Fragestellung wie Feinanalyse
 - Wie oft werden bestimmte Programmzweige durchlaufen
 - Wie viel Zeit wird dafür benötigt
- Profiling dient hauptsächlich zum Auffinden des kritischen Pfads
- 1:50% Kurve

A&D, Komplexität, V1.0 Code in % Seite 8

Grobanalyse

- Weglassen der maschinen-abhängigen Faktoren
- Ausführungszeit von Anweisungen wird als konstant angesehen
- Bestimmen der Extremwerte und des Durchschnittswerts für die Laufzeit eines Algorithmus
 - best case
 - worst case
 - average case

Beispiel

- **Problem**
 - Geg.: Int-Feld der Länge n (n ≥ 1), das nur die Werte "1", "2" und "3" aufnehmen kann
 - Ges: Die Position des linkesten größten Elements

Lösung

```
PositionOfMax(\sqrt{n}, \sqrt{f}, \sqrt{pos}) { //f[1..n]
    pos = 1;
     i = 2;
     max = f[pos];
     while (i \le n) \&\& (max < 3)  {
          if (f[i] > max)
             max = f[i];
            pos = i;
        i++;
```

Anzahl der Schleifendurchläufe u

- minimal: u = 0, wenn f[1] = 3
- maximal: u = n 1, wenn f[n] = 3 ∨ 3 ∉ f
- durchschnittlich:

PositionOfMax


```
PositionOfMax(\sqrt{n}, \sqrt{f}, \sqrt{pos}) { // f[1..n]
  pos = 1; i = 2;
  max = f[pos];
  while (i \le n) \&\& (max < 3) {
      if (f[i] > max) {
         max = f[i];
         pos = i;
     <u>i++;</u>
```

Asymptotische Komplexität

- Ziel
 Angabe der Größenordnung der Zeitkomplexität eines
 Algorithmus in Abhängigkeit von der Eingabe
- Idee
 Abstraktion von Konstanten und Potenzen niederer
 Ordnung
 z.B.: O(an² + bn + c) = O(n²)
- Betrachtung der durchschnittlichen Laufzeit wird vernachlässigt
 - Bestimmung oft mathematisch kompliziert
 - Oftmals realistische Abschätzung der Eingabedaten schwierig

Θ-Notation

 Betrachtung der Laufzeit in Bezug auf eine untere und obere Schranke

$$g(n) = \Theta(f(n))$$

$$\Theta(f(n)) = \begin{cases} g(n) : \exists c_1, c_2, n_0 > 0 \\ \ni 0 \le c_1 f(n) \le g(n) \le c_2 f(n), \forall n \ge n_0 \end{cases}$$

$$g(n) = \Theta(f(n))$$

Ω -Notation

 Betrachtung der Laufzeit nur in Bezug auf eine untere Schranke

$$\Omega(f(n)) \supseteq \Theta(f(n))$$

$$g(n) = \Omega(f(n))$$

$$\Omega(f(n)) = \begin{cases} g(n) : \exists c, n_0 > 0 \\ \ni c f(n) \le g(n), \forall n \ge n_0 \end{cases}$$

O-Notation

Betrachtung der Laufzeit nur in Bezug auf eine obere Schranke $O(f(n)) \supseteq \Theta(f(n))$

$$g(n) = O(f(n))$$

$$O(f(n)) = \begin{cases} g(n) : \exists c, n_0 > 0 \\ \ni 0 \le g(n) \le cf(n), \forall n \ge n_0 \end{cases}$$

$$g(n) = O(f(n)) \Leftrightarrow \lim_{n \to \infty} \left| \frac{g(n)}{f(n)} \right| \leq c$$

A&D, Komplexität, V1.0

Dominanter Term und Koeffizienten

n	n ²	3n ² +4n
0	0	0
1	1	7
2	4	20
3	9	39
4	16	64
5	25	95

Einfluss des dominanten Terms

$$f(n) = \frac{3n^2 + 3n}{2}$$

		$3n^2$	
n	Formel	2	Anteil
1	3	1,5	50,00%
10	165	150	90,91%
100	15150	15000	99,01%
1000	1501500	1500000	99,90%

Dominanter Term ohne Koeffizienten

n	Formel	n^2	Anteil
1	2,5	1	40,00%
10	115	100	86,96%
100	10150	10000	98,52%
1000	1001500	1000000	99,85%

Komplexitätsklassen

O(1) Ideal

O(lg n) Sehr gut Erstrebenswert

O(n) Zufrieden stellend

O(n²) Unerwünscht

O(aⁿ) Katastrophal

