BIOSTAT 602 Biostatistical Inference Homework 01

Ashton Baker

Thursday January 12, 2017

1. A coin is twice as likely to turn up tails as heads. If the coin is tossed independently, what is the probability that the third head occurs on the 5th trial?

Solution. This implies that P(Heads) = 1/3 and P(Tails) = 2/3. The probability of 2 heads occurring in the first 4 trials is described by a binomial distribution:

$$\binom{4}{2}(1/3)^2(2/3)^2 = 8/27$$

Then, the probability of heads occurring on the 5th trial is 1/3, so the probability is

$$(8/27)(1/3) = 8/81$$

2. Suppose X and Y are two independent variables with unit variance. Let $Z = \alpha X + Y$, where $\alpha > 0$. If Cor(X, Z) = 1/3, then obtain the value of α .

Solution. By the definition of correlation,

$$Cor(X,Z) = \frac{Cov(X,Z)}{\sigma_X \sigma_Z} = 1/3$$

We can begin by finding Cov(X, Z). Note that because X and Y are independent, Cov(X, Y) = 0.

$$Cov (X, Z) = \mathbb{E} [XZ] - \mathbb{E} [X] \mathbb{E} [Z]$$

$$= \mathbb{E} \left[\alpha X^2 + XY \right] - \mathbb{E} [X] \mathbb{E} [\alpha X + Y]$$

$$= \alpha \mathbb{E} \left[X^2 \right] + \mathbb{E} [XY] - \alpha \mathbb{E} [X] \mathbb{E} [X] + \mathbb{E} [X] \mathbb{E} [Y]$$

$$= \alpha Var (X) + Cov (X, Y)$$

$$= \alpha$$

Because X and Y have unit variance,

$$\begin{split} \sigma_{Z} &= \sqrt{Var\left(Z\right)} \\ &= \sqrt{Var\left(\alpha X + Y\right)} \\ &= \sqrt{\alpha^{2}Var\left(X\right) + Var\left(Y\right) + 2\alpha Cov\left(X,Y\right)} \\ &= \sqrt{\alpha^{2} + 1} \end{split}$$

and $\sigma_X = 1$. So

$$\frac{Cov(X,Z)}{\sigma_X \sigma_Z} = 1/3$$

$$\frac{\alpha}{\sqrt{\alpha^2 + 1}} = 1/3$$

$$\alpha = \sqrt{\alpha^2 + 1}/3$$

$$9\alpha^2 = \alpha^2 + 1$$

$$\alpha^2 = 1/8$$

$$\alpha = \sqrt{1/8}$$

3. Let g(x), $x \ge 0$ be a valid pdf for a nonnegative random variable and define

$$f(x,y) = \frac{g(\sqrt{x^2 + y^2})}{2\pi\sqrt{x^2 + y^2}}$$

for $x, y \in \mathbb{R}$

(a) Show that f(x, y) is a valid pdf.

Solution. The function f depends on x and y only in terms of $r = \sqrt{x^2 + y^2}$. So f(x, y) = f(r), and

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = \int_{0}^{\infty} 2\pi r f(r) dr$$
$$= \int_{0}^{\infty} 2\pi r \frac{g(r)}{2\pi r} dr$$
$$= \int_{0}^{\infty} g(r) dr$$
$$= 1$$

So f is a valid pdf.

(b) Suppose that the pair (X, Y) has the pdf f(x, y). What is P(XY > 0)?

Solution. The region where XY > 0 is the union of quadrant 1 and quadrant 3. Due to the radial symmetry of f, P(XY > 0) = 1/2.

4. Given independent and identically distributed random samples $X_1, X_2, ..., X_n$, each with finite mean μ and finite variance σ^2 , define

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

$$W^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

(a) Show that $S^2 \xrightarrow{P} \sigma^2$

Solution. Note that

$$\begin{split} \frac{n-1}{n}S^2 &= \frac{1}{n}\sum_{i=1}^n (X_i - \overline{X})^2 \\ &= \frac{1}{n}\sum_{i=1}^n \left[(X_i - \mu) + (\mu - \overline{X}) \right]^2 \\ &= \frac{1}{n}\left[\sum_{i=1}^n (X_i - \mu)^2 + 2(\mu - \overline{X})\sum_{i=1}^n (X_i - \mu) + \sum_{i=1}^n (\overline{X} - \mu)^2 \right] \\ &= \frac{1}{n}\left[\sum_{i=1}^n (X_i - \mu)^2 + 2n(\mu - \overline{X})(\overline{X} - \mu) + n(\overline{X} - \mu)^2 \right] \\ &= \frac{1}{n}\sum_{i=1}^n (X_i - \mu)^2 - 2(\mu - \overline{X})^2 + (\overline{X} - \mu)^2. \end{split}$$

Note that $\mathbb{E}\left[(X_i-\mu)^2\right]=\sigma^2$, and $\mathbb{E}\left[\overline{X}-\mu\right]=0$, so by the Weak Law of Large Numbers, $\frac{1}{n}\sum_{i=1}^n(X_i-\mu)^2\xrightarrow{P}\sigma^2$ and $(X_i-\mu)^2\xrightarrow{P}0$. Therefore $(n-1)/nS^2\xrightarrow{P}\sigma^2$. However, $(n-1)/n\to 1$, so $S^2\xrightarrow{P}\sigma^2$.

(b) Derive the asymptotic distribution of $\frac{\sqrt{n}(\overline{X}-\mu)}{\sqrt{S^2}}$

Solution. Let

$$A_n = \frac{X_n - \mu}{\sqrt{\sigma^2 / n}}$$

$$B_n = \frac{\sigma^2}{S^2}$$

By the Central Limit Theorem, $A_n \stackrel{d}{\to} N(0,1)$. We have proved that $S^2 \stackrel{d}{\to} \sigma^2$, and since B_n applies a continuous transformation to S^2 , we have $B_n \stackrel{d}{\to} 1$. Then, by Slutsky's theorem,

$$\frac{\sqrt{n}(\overline{X} - \mu)}{\sqrt{S^2}} = A_n B_n \stackrel{d}{\to} N(0, 1)$$

(c) Use the Delta method to derive the asymptotic distribution of \overline{X}^2 after you normalize it appropriately. **Solution.** By the Central Limit Theorem, $\sqrt{n}(\overline{X} - \mu) \stackrel{d}{\to} N(0, \sigma^2)$. Then, define $g(x) = x^2$, so that $g^{(1)}(x) = 2x$ is continuous. If $\mu \neq 0$, then we can apply the Delta Method to obtain

$$\sqrt{n} \left[g(\overline{X}) - g(\mu) \right] \xrightarrow{d} N \left(0, \sigma^2 \left[g^{(1)}(\mu) \right]^2 \right)$$

$$\sqrt{n} \left[\overline{X}^2 - \mu^2 \right] \xrightarrow{d} N \left(0, 4\sigma^2 \mu^2 \right)$$

5. For two sets of random varibales $\{X_i\}$, i = 1, ..., n, and $\{Y_i\}$, j = 1, ..., m, show that

$$\operatorname{Cov}\left(\sum_{i=1}^{n} a_{i} X_{i}, \sum_{j=1}^{m} b_{j} Y_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j} \operatorname{Cov}\left(X_{i}, Y_{j}\right)$$

where a_i and b_i are arbitrary constants.

Solution.

$$\begin{split} \operatorname{Cov}\left(\sum_{i=1}^{n}\alpha_{i}X_{i},\sum_{j=1}^{m}b_{j}Y_{j}\right) &= \mathbb{E}\left[\left(\sum_{i=1}^{n}\alpha_{i}X_{i} - \mathbb{E}\left[\sum_{i=1}^{n}\alpha_{i}X_{i}\right]\right)\left(\sum_{j=1}^{m}b_{j}Y_{j} - \mathbb{E}\left[\sum_{j=1}^{m}b_{j}Y_{j}\right]\right)\right] \\ &= \mathbb{E}\left[\sum_{i=1}^{n}\alpha_{i}\left(X_{i} - \mathbb{E}\left[X_{i}\right]\right)\sum_{j=1}^{m}b_{j}\left(Y_{j} - \mathbb{E}\left[Y_{j}\right]\right)\right] \\ &= \mathbb{E}\left[\sum_{i=1}^{n}\sum_{j=1}^{m}\alpha_{i}b_{j}\left(X_{i} - \mathbb{E}\left[X_{i}\right]\right)\left(Y_{j} - \mathbb{E}\left[Y_{j}\right]\right)\right] \\ &= \sum_{i=1}^{n}\sum_{j=1}^{m}\alpha_{i}b_{j}\mathbb{E}\left[\left(X_{i} - \mathbb{E}\left[X_{i}\right]\right)\left(Y_{j} - \mathbb{E}\left[Y_{j}\right]\right)\right] \\ &= \sum_{i=1}^{n}\sum_{j=1}^{m}\alpha_{i}b_{j}\operatorname{Cov}\left(X_{i}, Y_{j}\right) \end{split}$$

- 6. Suppose $N \sim \text{Poisson}(\lambda)$. Given N = n > 0, X_1, \dots, X_N are iid and follow U[0, 1]. We define $X_0 = 0$ when N = 0.
 - (a) Given N=n, find the probability that X_0, X_1, \ldots, X_N are all less that t, where 0 < t < 1. **Solution.** Since each X_i is uniformly distributed, $P(X_i < t) = t$. If N=n, then because X_1, \ldots, X_n are independent, $P(X_1, \ldots, X_n < t) = P(X_1 < t) P(X_2 < t) \cdots P(X_n < t) = t^n$
 - (b) Find the (unconditional) probability that X_0, X_1, \dots, X_N are all less than t, where 0 < t < 1. **Solution.** In this case, we need to sum over all the possible values that N could take, weighted by the probability of observing each particular value n. So

$$P(X_1,...,X_N < t) = \sum_{n=0}^{\infty} P(N = n) P(X_1,...,X_n < t)$$
$$= \sum_{n=0}^{\infty} \frac{\lambda^n e^{-\lambda}}{n!} t^n$$
$$= e^{-\lambda(1-t)}$$

(c) Let $S_N = X_0 + X_1 + \cdots + X_N$. Compute $\mathbb{E}[S_N]$. Solution.

$$\mathbb{E}[S_N] = \sum_{n=0}^{\infty} P(N = n) \mathbb{E}[X_1 + \dots + X_n]$$
$$= \sum_{n=0}^{\infty} \left(\frac{\lambda^n e^{-\lambda}}{n!}\right) \left(\frac{n}{2}\right)$$
$$= \frac{\lambda}{2}$$