

Team Presentation

Isabel Mora
Report and
algorithms

Andrea
Serna
Literature review

Mauricio
Toro
Data preparation

Problem Statement

Streets of Medellín:
Origin and
Destination

Constrained
Shortest
Paths

First Algorithm

Streets of Medellín, Origin and Destination Shortest path without exceeding a weighted-average risk of harassment *r*

Second Algorithm

Streets of Medellín, Origin and Destination Path with the lowest weighted-average risk of harassment without exceeding a distance d

Algorithm Explanation

Example Execution:

Source = A
Destination = E
Max Risk = 0.5

Shortest path from A to E without exceding av. risk of 0.5 A -> C -> B -> E

Vertex	Shortest Distance from A	Prev. Vertex	Average Weighted Risk
А	0	-1	0
В	∞, 12	С	0.27
С	∞, 5	А	0.2
D	∞, 11 , 10	A, C	0.4, 0.42
Е	∞, 26	В	0.34
F	œ		

Queue: {A, C, D, B, E}

Modified Dijkstra's Algorithm for the Constrained Shortest Path Problem

Example Output

Shortest path (red) -

Total Distance: 7323.31 meters

Average Risk: 0.741

Shortest path without exceeding risk of 0.65 (white) -

Total Distance: 7913.826 meters

Average Risk: 0.6

Path with lowest risk (yellow) - Total Distance: 4933.763 meters

Average Risk: 0.814

Path with lowest risk without excedding distance of 4700 meters (white) -

Total Distance: 4631.827 meters

Average Risk: 0.855

Algorithm Complexity

	Time Complexity	Memory Complexity
Modified Dijkstra's with Adjacency List	O((V + E) logV)	O(V + E) O(V*5) = O(V)

Time and memory complexity of the modified version of Dijkstra's algorithm, where V is the number of nodes and E is the number of edges in the graph. Specifically, V represents the intersections and E represents the streets in Medellin's map.

Shortest Path Results

Origin	Destination	Path	Maximum weighted-average risk of harassment
Universidad	Universidad de	d = 6142.57 m	0.77
EAFIT	Medellín	r = 0.758	
Universidad de	Universidad	d = 860.19 m	0.85
Antioquia	Nacional	r = 0.845	
Universidad	Universidad Luis	d = 1910.13 m	0.845
Nacional	Amigó	r = 0.842	

Path with shortest distance without exceeding a weighted average risk of harassment *r*.

Lowest Risk Results

Origin	Destination	Path	Maximum distance (meters)
Universidad	Universidad de	r = 0.719	7000
EAFIT	Medellín	d = 6183.71 m	
Universidad de	Universidad	r = 0.865	820
Antioquia	Nacional	d = 815.44 m	
Universidad	Universidad Luis	r = 0.849	1500
Nacional	Amigó	d = 1472.52	

Path with lowest weighted-average risk of harassment without exceeding a distance *d*.

Algorithm Execution Times

11.787 seconds

8.095 seconds

8.292 seconds

Future Work Directions

Web Development

- Graphical
 display of
 calculated
 paths
- Interactive user interface

Statistics

- Improve the numerical representation of sexual harassment risk
- Consider user demographics

Optimization

Bi-objective optimization

• • • • • •

Calculate
optimal path
based on risk
and distance
simultaneously.

S&M4

Traffic
Estimation

Predict ideal paths through simulations of different scenarios

.

Report Accepted on OSF.IO

lacksquare

Mora, I., Serna, A., & Toro, M. (2022, May 18). Prevention of Street Harassment Through Constrained Shortest Path Algorithms. Universidad EAFIT. https://doi.org/10.31219/osf.io/9fr32

