Ensembles

Accuracy and Calibration

Make a decision

Neural network predicts "stop sign" with 95% confidence. Will you stop?

Ensembles

Given what we know from training, what's the best guess for a new x'?

$$p(y'|x', D, \beta) = \int \underbrace{p(y'|x', \theta, \beta)}_{\text{aleatoric}} \underbrace{q(\theta \mid D, \beta)}_{\text{epistemic}} d\theta \approx \frac{1}{K} \sum_{k=1}^{S} p(y'|x', \theta_k, \beta)$$

Aleatoric uncertainty — irreducible, stems from our data

Epistemic — reducible, stems from our model

How to measure uncertainty?

How to measure uncertainty?

When the model is c confident, actual probability it is correct should also be c.

If the model predicts 100 samples with **confidence 0.8**, and is right on **80** of them, it is well-calibrated at **c** = **0.8**

$$\mathbb{P}(Y = \arg\max(\hat{p}(X)) \mid \max(\hat{p}(X)) = c) = c \quad \forall c \in [0,1]$$

Weighted average over the absolute difference between acc and confidence.

Sample (i)	Estimated probabilities (\hat{p}_i)			Predicted	True Label
	Class=C	Class=D	Class=T	Label (\hat{y}_i)	(y_i)
1	0.78	0.12	0.1	С	С
2	0.1	0.64	0.26	٥	D
3	0.04	0.04	0.92	T	D
4	0.58	0.3	0.12	С	С
5	0.05	0.51	0.44	٥	С
6	0.85	0.15	0	С	С
7	0.22	0.7	80.0	٥	D
8	0.63	0.34	0.03	С	Т
9	0.02	0.15	0.83	Т	Т

$$\mathsf{ECE} = \sum_{m=1}^{M} \frac{|B_m|}{n} \left| \mathsf{acc}(B_m) - \mathsf{conf}(B_m) \right|$$

$$\frac{1}{|B_m|} \sum_{i \in B_m} \mathbf{1}(\hat{y}_i = y_i)$$

$$\frac{1}{|B_m|} \sum_{i \in B_m} \hat{p}(x_i)$$

Step 1: Bin samples based on the maximum probability across classes

Sample (i)	Max estimated probabilities (\hat{p}_i)	Predicted Label (\hat{y}_i)	True Label (y_i)
1	0.78	C	С
2	0.64	٥	D
3	0.92	Т	D
4	0.58	С	С
5	0.51	٥	С
6	0.85	С	С
7	0.7	۵	D
8	0.63	С	Т
9	0.83	T	Т

$$acc(B_m) = \frac{1}{|B_m|} \sum_{i \in B_m} 1(\hat{y}_i = y_i)$$

Step 2: Accuracy is simply fraction of correctly predicted samples per bin

Sample (i)	Max estimated probabilities (\hat{p}_i)	Predicted Label (\hat{y}_i)	True Label (y_i)
	0.78	С	С
2	0.64	٥	D
3	0.92	T	D
4	0.58	С	С
5	0.51	0	С
6	0.85	С	С
7	0.7	٥	D
8	0.63	С	T
9	0.83	T	T

$$\operatorname{conf}(B_m) = \frac{1}{|B_m|} \sum_{i \in B_m} \hat{p}(x_i)$$

Step 3: Confidence is simply average of maximum estimated probabilities $\hat{\boldsymbol{p}}_i$ per bin

Sample (i)	Max estimated probabilities (\hat{p}_i)	Predicted Label (\hat{y}_i)	True Label (y_i)
	0.78	С	С
2	0.64	٥	D
3	0.92	T	D
4	0.58	С	С
5	0.51	0	С
6	0.85	С	С
7	0.7	٥	D
8	0.63	С	T
9	0.83	T	T

$$ECE = \sum_{m=1}^{M} \frac{|B_m|}{n} \left| acc(B_m) - conf(B_m) \right|$$

Substituting the values

Sample (i)	Max estimated probabilities (\hat{p}_i)	Predicted Label (\hat{y}_i)	True Label (y_i)
1	0.78	С	С
2	0.64	٥	D
3	0.92	T	D
4	0.58	С	С
5	0.51	0	С
6	0.85	С	С
7	0.7	٥	D
8	0.63	С	T
9	0.83	T	T

ECE =
$$0 + 0 + \frac{2}{9} \cdot \left| \frac{1}{2} - 0.545 \right| + \frac{4}{9} \cdot \left| \frac{3}{4} - 0.6875 \right| + \frac{3}{9} \cdot \left| \frac{2}{3} - 0.8667 \right| \approx 0.10445$$