NEW HEAT EXCHANGER MODELS FOR 2-PHASE COOLING

Dr. Peter Eschenbacher

Institute of System Dynamics and Control German Aerospace Center

Motivation

Vapor cycle Cooling

Air Cooling

main

HX

Condensation of Refrigerant

air + water

Condensa

cooling

channel

Condensation of humid air

humid air

in fresh air

channel

2 Media: Dry Air + Water Water in 2 Phases

humid air in fresh air channel

air + water

Condensation of humid air

Heat Transfer Coefficients during Phase Transitions

Modeling Approach:

Condenser:

Nußelt's Waterfilm Theory

Evaporator:

Empiric
Transition
due to Chen

Way of New Approach

Material Coefficients instead of Empirical Parameters

Modeling of Physical Processes:

Material Transport
Heat Transport
Phase Change (Condensation, Evaporation)

Discretization:

1 Type of Process per Cell

Discretization and Separation of Hot and Cold Channel

Idea:

Tin of wall has very high thermal conduction.

→ Wall takes temperature very fast + single wall temperature for each cell

Possible Structures of Heat Exchangers:

- Cross Flow
- Counter Flow
- Parallel Flow

Building a Cross Flow Heat Exchanger with Cell Elements

Film Condensation in Horizontal Condenser Tube

Liquid

$$T_W < T_{vap}^{sat} < T_{gas}$$

$$T_{liq} = T_{vap}^{sat}$$

Film around a tube

Film thickness δ determines the heat transfer rate

$$\dot{Q}_{cond} = \lambda_{liq} \frac{T_F^{sat} - T_W}{\delta} A_{wall}$$

Film flows to the bottom and fills the bottom

 $\chi \longrightarrow$

Process of Evaporation in a Horizontal Tube

Bubble Flow (Blasenströmung)

Plug Flow (Pfropfenströmung)

Slug Flow (Schwallströmung) Stratified Flow (Schichtenströmung)

(Ringströmung)
Wavy Flow
(Wellenströmung)

Annular Flow

Spray Flow (Sprühströmung)

Liquid

Subcooled Boiling (unterkühltes Sieden)

Bulk Boiling (Blasensieden)

Flow Boiling (Strömungssieden)

Gas

Condensation of Humid Air

Solved Problems

Literature

DLR

- Good Guess of Heat Transfer Coefficients
- Heat Transfer Coefficients vary with Phase State
- Free geometric Sizing
- Mass Calculation

Validation

Refrigerant:

Condensation and Evaporation:

Temperature and Enthalpy Deviations < 5%

Test Rig

Invitation for Beta-Testing

Use public Library

nieweber/ThermofluidStream at physicalApproachHEX (github.com)

with Package HeatExchangersPhysical

THANKS FOR YOUR ATTENTION!