

Lietuvos mokinių informatikos olimpiada

Resp. etapas (1) • 2017 m. sausio 27 d. • VIII-IX kl.

traukinys-jau

Traukinys

Dabar pats slidinėjimo sezonas! Traukinių stotis ūžia nuo slidinėti važiuojančių poilsiautojų. Bijodami nepavėluoti į traukinį, keleiviai sulipo į vagonus nežiūrėdami, kur yra laisvos vietos.

Kiekviename traukinio vagone yra poKsėdimų vietų, o iš viso traukinyje sėdimų vietų yra lygiai tiek, kiek keleivių – taip jau būna šiuo metų laiku.

Užduotis. Žinodami, kiek keleivių įlipo į kiekvieną iš vagonų, raskite, kiek mažiausiai vagonų keleiviai turės pereiti sumoje, kad kiekvienas keleivis galėtų atsisėsti.

Pradiniai duomenys. Pirmoje eilutėje pateikiami du sveikieji skaičiai: traukinio vagonų skaičius N ir kiekviename vagone esančių sėdimų vietų skaičius K. Antroje eilutėje pateikta N skaičių a_i , kur a_i – į i-tąjį vagoną įlipusių keleivių skaičius.

Laikykite, jog $a_1 + a_2 + \ldots + a_N = N \cdot K$.

Rezultatai. Išveskite vieną sveikąjį skaičių – kiek mažiausiai vagonų keleiviai turės pereiti sumoje, kad kiekvienas keleivis galėtų atsisėsti.

Pastaba: atsakymas gali būti skaičius viršijantis 32 bitų sveikojo skaičiaus ribas. Atsakymui saugoti naudokite 64 bitų tipo skaičių (long long C/C++, Int64 Pascal).

Pavyzdžiai.

Pradiniai	Rezultatai	Paaiškinimas
duomenys		
4 30	50	Šiame pavyzdyje traukinį sudaro keturi vagonai, ir kiekvie-
0 40 50 30		name vagone yra 30 sėdimų vietų. Kad visi galėtų atsisėsti:
		10 keleivių turės pereiti iš antrojo vagono į pirmą, 20 ke-
		leivių turės pereiti iš trečiojo vagono į pirmą. Taigi iš viso
		turės būti pereita $1 \cdot 10 + 2 \cdot 20 = 50$ vagonų.
		Šiuo atveju tai yra efektyviausias sprendimas.

Ribojimai. $1 \le N \le 1\ 000\ 000$, $1 \le K \le 1\ 000\ 000$.

Už testus, kuriems galioja $1 \le N \cdot K \le 1\,000\,000$, galima surinkti apie 40 taškų.