

ZB32L030

ARM® Cortex®-M0+ 32 Micro-Controller Datasheet

Version R2.2 4/27, 2022

产品特性

■ ARM® Cortex®-M0+ 内核

- ➤ 32K/64K字节嵌入式Flash, 具有擦写保护功能
- ➤ 8K字节SRAM
- ▶ 最高运行到24MHz
- ▶ 一个24位系统定时器
- > 支持低功耗睡眠模式
- 内建单周期32位硬件乘法器
- ➤ 4.3us 唤醒时间@Fcpu=24Mhz

■ 工作条件

- ▶ 宽电压工作范围2.5V至5.5V
- ▶ 宽工作频率8高至24MHz
- ➤ 工作温度: -40°C至+85°C

■ 时钟源

◆ 4路可选时钟源

- ▶ 外部4MHz~24MHz高速晶振
- ▶ 外部32.768KHz晶振
- ▶ 内部4MHz~24MHz高速时钟
- ▶ 内部低速38.4KHz/32.768KHz时钟
- ▶ 支持硬件时钟监视

♦ RTC

- ➤ 支持RTC计数(秒/分/小时)及万年历功能 (日/月/年)
- ▶ 支持闹铃功能寄存器(秒/分/小时/日/月/年)
- ▶ 支持RTC从Deep Sleep模式唤醒系统

■ 电源管理

- POR,PDR,LVR
- 两种低功耗工作模式: Sleep、Deep Sleep Mode
- ▶ 低电压检测,可配置为中断或复位
- ▶ 唤醒@sleep:所有中断源都可唤醒
- → 唤醒@Deep sleep: 所有GPIO PIN 与 RTC(低速时钟工作)

■ 中断

- ▶ 嵌套向量中断控制器(NVIC)用于控制32 个中断源。
 - 每个中断源可设置为4个优先级
- > 支持串行调试(SWD)带2个观察点/4个断点

■ 通用I/O引脚

▶ 在48-Pin封装下40个I/O

■ 内置ISP Bootloader

▶ 支持通过UART,SPI,I2C 进行程序升级.

■ 定时器/计数器

- ▶ 通用定时器:4X16 bits
- ▶ 高级定时器:3X16 bits,1X24bits(SysTick)
- 可编程的计数器:1X16 bits
- ▶ 看门狗计数器: WWDTX1,IWDTX1
- ▶ 基础定时器: 2X16bits
- ▶ 低功耗定时器:1X16bits

■ 蜂鸣器频率发生器

→ 可产生5个1KHz, 2KHz, 4KHz的蜂鸣信

■通信接口

- > UART0,1,2,3标准通讯接口
- 支持低速时钟的超低功耗LPUART
- SPIX2 标准通讯接口,最高达20Mbps
- I2CX2标准通讯接口,主模式最高支持 1Mbps,从模式最高支持800Kbps
- > One-Wire通讯接口

ADC

- ▶ 12位1Msps采样速率, 12位SAR型ADC
- 24通道: 16路的外部引脚, 2路的OPA 输出, 1路的1/3*VDD,1路的BGR 1.2V,1路的DAC
- ▶ 外部参考电压: VDD,GPIO(PB01) PIN
- ▶ 内置参考电压: 2.5V

■ PWM

- ▶ 支持最多6个独立出口
- ▶ 支持最多3个互补式出口

■ DAC(6-bits)X2

- 运算放大器(OPA)X2
- 电压比较器(VCX2) / 低电压检测器 (LVD)
- 硬件CRC-16模块
- 16字节(128位)的芯片唯一ID (UID)
- 开发工具
 - ▶ SWD全功能的嵌入式调试解决方案
- 封装形式: QFN32, LQFP48/44/32 TSSOP28.

目录

产品特	寺性2
目录.	3
图索	5 5
表索克	5 5
[1]	简介6
[2]	
	2.1 设备概述7
	2.2 内部框图结构8
	2.3 引脚定义9
	2.4 引脚功能配置11
	2.5 复用引脚功能说明14
	2.6 模块与引脚信号说明16
	2.7 串行接口说明
[3]	储存器映像19
[4]	典型应用线路图
[5]	电气特性21
	5.1 测试条件
	5.1-1 最小和最大数值21
	5.1-2 典型数值
	5.2 绝对最大额定值22
	5.3 工作条件
	5.3-1 通用工作条件
	5.3-2 上电和掉电时的工作条件23
	5.3-3 内嵌复位和 LVD 模块特性24
	5.3-4 内置的参考电压
	5.3-5 供电电流特性
	5.3-6 从低功耗模式唤醒的时间
	5.3-7 外部时钟源特性
	5.3-7.1 低速外部时钟 LXT
	5.3-7.2 高速外部时钟 HXT
	5.3-8 內部时钟源特性30
	5.3-8.1 内部 HIRC 振荡器30

	5.3-8.2 内部 SIRC 振荡器	30
	5.3-9 Flash 特性	30
	5.3-10 电磁敏感特性	31
	5.3-10.1 ESD 特性	31
	5.3-10.2 静态栓锁 (Static Latch-up)	31
	5.3-11 I/O Port 特性	31
	5.3-11.1 Output 特性 — Port PA,PB,PC,PD	31
	5.3-11.2 Input 特性— Port PA,PB,PC,PD	
	5.3-11.3 Port Leakage 特性 — Port PA,PB,PC,PD	32
	5.3-11.4 Port 外部输入采样要求 — Timer Gate/Timer Clock	32
	5.3-12 ADC 特性	
	5.3-12.1 ADC 输入阻抗	34
	5.3-13 VC 特性	
	5.3-14 OPA 特性	36
	5.3-15 TIM 定时器特性	
	5.3-16 通信接口	
	5.3-16.1 I2C 特性	
	5.3-16.2 SPI 特性	
[6]	封装特性	
	6.1 TSSOP28 封装	41
	6.2 QFN32 封装	
	6.3 LQFP32 封装	
	6.4 LQFP44 封装	
	6.5 LQFP48 封装	
	6.6 丝印说明	46
	6.6-1 TSSOP28	46
	6.6-2 QFN32	46
	6.6-3 LQFP48錯誤! 尚未定義	
[7]	型号命名	
[8]	产品选型表	
[9]	版太修订纪录	50

图索引

Figure 1 Block Diagram	8
Figure 2 ZBM32L030 LQFP48	9
Figure 3 ZBM32L030 LQFP32	10
Figure 4 ZBM32L030 TSSOP28	10
Figure 5 储存器映像图	19
Figure 6 典型应用线路图	20
Figure 7 SPI 时序图	38
Figure 8 SPI 时序图(主机模式)	40
Figure 9 SPI 时序图(从机模式 CPHA=0)	40
Figure 10 SPI 时序图(从机模式 CPHA=1)	40
表索引	
Table 1 ZBM32L030 芯片特性与周边配备	7
Table 2 引脚功能说明表	13
Table 3 选择芯片引脚表	15
Table 4 模块与引脚信号说明表	17
Table 5 串行接口说明表	18

【1】 简介

ZBM32L030 是一款内嵌 32 位 ARM® Cortex®-M0+内核的超低功耗和宽电压工作范围(2.5V ~ 5.5V)的微控制器, 最高可运行在 24MHz, 内置 32K/64K 字节的嵌入式 Flash, 8K 字节的 SRAM 和DMA(支持6路),集成了 12 位 1Msps 高精度 SAR 型 ADC(16 channel)、DAC(6-bits)、OPAX2,、RTC、比较器X2、多路 UARTX4、LPUART、SPIX2、I2CX2 和 PWMx (最多可达6个独立出口或3个互补式出口)等丰富的外设接口,具有高整合度、高抗干扰、高可靠性的特点。

ZBM32L030 系列具有宽电压工作范围、低功耗、低待机电流、高集成度外设、高操作效率、快速唤醒及高性价比等优势,广泛适用于下列应用:

小家电、充电器、遥控器、电子烟、燃气报警器、数显表、温控器、记录仪、电机驱动、智能门锁、智能传感器、智能家居以及智慧城市等。

【2】 描述

2.1 设备概述

		ZB32L030XXX	ZB32L030XXX	ZB32L030XXX				
	引脚数	48	32	32				
	GPIO	44	28	28				
MCU	内核	Cortex M0+						
	频率	24Mhz						
	Flash		64K Bytes					
	SRAM	8K Bytes						
Timer	基础 (16-bits)	2X16 bits(T10,T12) / 1X32 bits						
	通用(16-bits)	,	4 (T2,T2A,T2B,T2	C)				
	高级(16 bits)		3(T1,T1A,T1B)					
	编程		2					
	SysTick(24 bits)		1					
	省电(LPTIMER)		1					
RTC/SYS	STICK/IWDG/WWDG		1/1/1/1					
	AWK	1						
	[作电压范围	2.5~5.5V						
	工作温度		-40~85 °C					
	调试功能	SWD						
	唯一标识符		16 Byts					
通信	UART	4	2	2				
界面	LPUART	1	1	1				
71 144	SPI	2(16/20Mhz)	1(16/20Mhz)	1((16/20Mhz)				
	I2C	2	2	2				
	比较器	2	2	2				
	内部高速晶振	HIRC	: 4/8/16/22.12(11.059N					
时钟	内部低速晶振		SIRC: 32.8/38.4KHz	7				
	外部高速晶振		HXT :4M~24MHz					
	外部低速晶振		LXT :32.768MHz					
	40 Pite A/D	16 CH	 10 CH	10 CH				
	12 Bits A/D OPAX2	16 CH 2	10 CH	10 CH 2				
		۷	1					
	蜂鸣器							
\	封装	LQP48	LQFP32	QFN32				

Table 1 ZBM32L030 芯片特性与周边配备

2.2 内部框图结构

Figure 1 Block Diagram

Note: S*: Maximum channels for Single output; C*: Maximum channels for complement output.

1*: is UART0,UART1,UART2,UART3

2.3 引脚定义

Figure 2 ZBM32L030 LQFP48

Figure 3 ZBM32L030 LQFP32

Figure 4 ZBM32L030 TSSOP28

2.4 引脚功能配置

48/32 Pin Num	Pin Name	Power WKUP, XTAL ISP	UARTX4 LPUART	SPIX2 I2CX2	TIM2, PCA, LPTIM	TIM2A, TIM1	TIM2B TIM1A	TIM2C TIM1B	ADC, VCX2, OPAX2	Clock IR LVD SWD
1/1	VCA P	Р								
2	PC13	WKUP					T2B_CH 4	T2C_CH 1		LVDIN0
3	PB05	XTLI								
4	PB04	XTLO								
5/2	PA01	XTHI	TXD_1	SDA_0		T4 0114				
6/3 7/4	PA02 NRS	XTHO	RXD_1	SCL_0		T1_CH1				
7/4	T									
8	AVSS	G								
9/5	AVD D	Р								
10/6	PA00	WKUP			T2_CH1 T2_ETR	T1_CH1 T2A_CH 1		T2C_ET R	AIN0 VC0_P4 VC0_N0 VC0_O VC0_P0 VC0_N4	
11/7	PD00	WKUP		MOSI_ 1	T2_CH2	T1_CH1 N T2A_CH 2 T2A_ET R			AIN1 VC0_P5 VC0_N1 VC0_P1 VC0_N5	
12/8	PA14	WKUP	TXD_1	MISO_1	T2_CH3	T1_CH1 T2A_CH 1	T2B_CH 1		AIN2 VC0_P6 VC0_N2 VC0_P2 VC0_O	
13/9	PA03	WKUP	RXD_1	CS_1	T2_CH4	T1_CH1 N T2A_CH 2	T1A_CH 1	T1B_CH 1 T2C_CH 1	AIN3 VC0_P7 VC0_N3 VC0_P3	
14/10	PA04	WKUP	TXD_1	CS_0	PCA_CH4	T2A_CH 3	T2B_ET R T1A_CH 1	T1B_CH 1N T2C_CH 2	AIN4 VC0_P8 VC0_N4 VC0_P4	
15/11	PA05	WKUP	CTS_3(1*)	CLK_0	T2_CH1 T2_ETR PCA_ECI	T2A_CH 4	T1A_CH 1N		AIN5 VC0_P9 VC0_N5 VC0_P5	LVDO
16/12	PA06	WKUP	RTS_3(1*)	MISO_ 0	PCA_CH0	T2A_CH 1		T1B_CH 1	AIN6 VC0_P10 VC0_N6 VC0_O	
17/13	PA07	WKUP	TXD_3(1*)	MOSI_ 0	PCA_CH1	T1_CH1	T2B_CH 1	T1B_CH 1N T2C_CH 1	AIN7 VC0_P11 VC0_N7 VC0_O	
18/14	PB00	WKUP	RXD_3(1*)		PCA_CH2		T1A_CH 1	T2C_CH 2	AIN8 VC0_N1 0 VC0_N6	MCO
19/15	PB01	WKUP			PCA_CH3		T1A_CH 1N	T2C_CH 3	AIN9 EXVREF VC0_P6 VC0_N7	
20	PB02	WKUP			PCA_ECI,	T1_CH1	T1A_BK	T1B_BK	AIN16	

48/32 Pin	Pin Name	Power WKUP,	UARTX4 LPUART	SPIX2 I2CX2	TIM2, PCA,	TIM2A, TIM1	TIM2B TIM1A	TIM2C TIM1B	ADC, VCX2,	Clock IR
Num		XTAL ISP			LPTIM				OPAX2	LVD SWD
					LPT_TOG	T1_BK			VC0_P7 VC0_N8 OP2_INN	
21	PB10	WKUP	TX_LP	CLK_1 SCL_1		T1_CH1 T2A_CH 1		T2C_CH 1	AIN17 VC0_P8 OP2_INP	
22	PB11	WKUP	RX_LP	SDA_1		T1_CH1 N		T1B_CH 1	AIN18 OP2_O	
23/16	VSS	G								
24/17	VDD	Р								
25	PB12	WKUP	TXD_2(1*)	CS_1		T1_BK		T1B_CH 1	AIN19 VC0_P9	
26	PB13	WKUP	RXD_2(1*)	CLK_1 SCL_1		T1A_CH 1N		T2C_CH 1 T1B_CH 1N	AIN20 VC0_P10 OP1_INP	
27	PB14	WKUP	CTS_2(1*)	MISO_ 1 SDA_1	T2_CH1	T1_CH1	T1A_BK	T2C_CH 1	AIN21 VC0_P11 OP1_O	
28	PB15	WKUP	RTS_2(1*)	MOSI_ 1	T2_CH2	T1_CH1 N		T2C_CH 2	AIN22 OP1_INN	
29/18	PA08	WKUP	TXD_0		T2_CH3	T1_CH1		T2C_CH 3		
30/19	PA09	WKUP	TXD_0	SCL_0	T2_CH4	T1_CH1 N T1_BK	/ T1A_CH 1	T2C_CH 4		
31/20	PA10	WKUP	RXD_0	SDA_0		T1_CH2	T1A_CH 1	T1B_CH 1 T2C_CH 1 T1B_BK		
32/21	PC05	WKUP		SCL_1 MISO_ 0		T1_CH2 N	T1A_CH 1N	_	VC0_O	MCO
33/22	PC06	WKUP		SDA_1 MOSI_ 0		T1_CH3	T1A_CH 2	T1B_CH 1 T2C_ET R	VC0_O	
34/23	PC07	WKUP	RXD_0			T1_CH3 N	T1A_CH 2N	T1B_CH 1N T2C_ET R		SWDIO LVD_O
35	PD06	WKUP		SCL_1		T1_CH4	T1A_CH 3	T1B_CH 2		
35 36	VSS PD07	G		SDA_1			T1A_CH	T1B_CH		
36	VDD	Р		SDA_I			3N	2N		
37/24	PD01	WKUP	TXD_0 TXD_1			T2A_CH 1	T1A_CH 4	T1B_CH 3		SWCL K LVD_O MCO
38/25	PA15	WKUP	RXD_1	CS_0	T2_ETR T2_CH1	T2A_CH 2 T1_CH1		T1B_CH 3N T2C_CH 4		
39/26	PB03	WKUP		CLK_0	T2_CH2	T2A_CH		T2C_CH	VC0_N9	

48/32 Pin Num	Pin Name	Power WKUP, XTAL ISP	UARTX4 LPUART	SPIX2 I2CX2	TIM2, PCA, LPTIM	TIM2A, TIM1	TIM2B TIM1A	TIM2C TIM1B	ADC, VCX2, OPAX2	Clock IR LVD SWD
					LPT_Gate	3 T1_CH1 N		3 T1B_CH 1		
40/27	PC15	WKUP		MISO_ 0	PCA_CH0 LPT_ETR	T2A_CH 4		T2C_CH 2 T1B_CH 1N T1B_BK	VC0_P12 VC0_P12 VC0_N1 0	
41/28	PC14	WKUP		MOSI_ 0	PCA_CH1 LPT_Gate	T1_BK		T2C_CH 1	VC0_P13 VC0_P13	
42/29	PB06	WKUP	TXD_0	SCL_0	T2_CH1 LPT_ETR LPT_TOG	T1_CH1 T2A_CH 2			VC0_P14 VC0_P14	
43/30	PB07	WKUP	RXD_0	SDA_0	T2_CH2 LPT_TOG N	T1_CH1 N	T2B_CH 1	T1B_CH 1	VC0_P15 VC0_P15	LVD_IN2
44/31	PD03	BOOT0								
45	PB08	WKUP	TXD_0	SCL_0		T2A_CH 1	T2B_CH 2	T2C_CH 2 T1B_CH 1N		LVD_IN1
46	PB09	WKUP	RXD_0	SDA_0 CS_1			T2B_CH 3	T1B_CH 4		
47/32	VSS	G								
48	VDD	Р								

Table 2 引脚功能说明表

Note: (1*) ,PIN Different from HC,ST.(64/48)

2.5 复用引脚功能说明

48/32					GPIOX_A	AFR[i+3:i]				
Pin Num	0	1	2	3	4	5	6	7	8	F/Config
1/1	VCAP	P	P	Р	Р	Р	Р	Р	Р	Р
2	PC13			T2C_CH 1		T2B_CH 4				LVDIN0
3	PB05									XTLI
4	PB04									XTLO
5/2	PA01	SDA_0		TXD_1						XTHI
6/3	PA02	SCL_0	T1_CH1	RXD_1				,		XTHO
7/4	NRST									0.4
8	AVSS	G	G	G	G	G	G	G		G
9/5 10/6	AVDD PA00	P TIMAO T	P T4 CH4	P CLIA	P To ETD	P CU	P	P	VC0_	AIN0
		TIM10_T OG	T1_CH1	T2_CH1	T2_ETR	T2A_CH 1	T2C_ET R		0	VC0_P4 VC0_N0 VC0_P0 VC0_N4
11/7	PD00	TIM10_T OGN	T1_CH1 N	T2_CH2		T2A_CH 2	T2A_ET R	MOSI_1	TIM11_ TOGN	AIN1 VC0_P5 VC0_N1 VC0_P1 VC0_N5
12/8	PA14	TXD_1	T1_CH1	T2_CH3	T2A_CH1	T2B_CH 1	TIM11_TO	MISO_1	VC1_ O	VC0_P6 VC0_N2 VC0_P2
13/9	PA03	RXD_1	T1_CH1 N	T1A_CH1	T1B_CH1	T2A_CH 2	T2_CH4	CS_1	T2C_ CH1	AIN3 VC0_P7 VC0_N3 VC0_P3
14/10	PA04	CS_0	TXD_1	PCA_CH 4	T1A_CH1	T1B_CH 1N	T2A_CH 3	T2B_ET R	T2C_ CH2	AIN4 VC0_P8 VC0_N4 VC0_P4
15/11	PA05	CLK_0	PCA_E CI	T2_ETR	T1A_CH1 N	T2_CH1	T2A_CH 4	LVDO	CTS_3	AIN5 VC0_P9 VC0_N5 VC0_P5
16/12	PA06	MISO_0	PCA_C H0		T1B_CH1	T2A_CH 1		VC0_O	RTS_3	AIN6 VC0_P10 VC0_N6
17/13	PA07	MOSI_0	PCA_C H1	T1_CH1	T1B_CH1 N	T2B_CH 1	T2C_CH 1	VC1_O	TXD_3	AIN7 VC0_P11 VC0_N7
18/14	PB00	PCA_CH 2		T1A_CH1	TIM11_G		T2C_CH 2	MCO	RXD_ 3	AIN8 VC0_N10 VC0_N6
19/15	PB01	PCA_CH 3		T1A_CH1 N	TIM11_EX T		T2C_CH 3			AIN9 EXVREF VC0_P6 VC0_N7
20	PB02		PCA_E CI	LPT_TO G	T1_CH1	T1_BK	T1A_BK	T1B_BK		AIN16 VC0_P7 VC0_N8 OP2_INN
21	PB10	SCL_1	CLK_1	T1_CH1		T2A_CH 1	T2C_CH 1		TX_LP	AIN17 VC0_P8 OP2_INP
22	PB11	SDA_1		T1_CH1N		T1B_CH1			RX_LP	AIN18

48/32		GPIOX_AFR[i+3:i]										
Pin Num	0	1	2	3	4	5	6	7	8	F/Config		
										OP2_O		
23/16	VSS	G P										
24/17 25	VDD PB12	CS_1	T1B_CH 1		T1_BK		LXT_out		TXD_2	AIN19 VC0_P9 OP1_INN		
26	PB13	CLK_1	SCL_1	T1A_CH1 N	T1B_CH1 N		HXT_out	T2C_CH 1	RXD_ 2	AIN20 VC0_P10 OP1_INP		
27	PB14	MISO_1	SDA_1	T1_CH1	T2_CH1	T1A_BK	LIRC_out	T2C_CH 1	CTS_2	AIN21 VC0_P11 OP1_O		
28	PB15	MOSI_1	T1_CH1 N	T2_CH2	T2C_CH2		HIRC_ou		RTS_2	AIN22 OP0_INN		
29/18	PA08	TXD_0	T4 6:::	T1_CH1	T2_CH3	T4 511	BEEP	T2C_CH3	00: 5			
30/19	PA09 (BOO T1)	TXD_0	T1_CH1 N	T1A_CH1	T2_CH4	T1_BK	1-Wire	T2C_CH 4	SCL_0			
31/20	PA10	RXD_0	T1_CH2	T1A_CH1	T1B_CH1	T1B_BK	RTC_1hz	T2C_CH 1	SDA_ 0			
32/21	PC05	TIM10_E XT	MISO_0	T1_CH2N	T1A_CH1N		MCO	VC0_O	SCL_1			
33/22	PC06	TIM10_ G	MOSI_0	T1_CH3	T1A_CH2	T1B_CH 1	T2C_ET R	VC1_O	SDA_ 1			
34/23	PC07		RXD_0	T1_CH3	T1A_CH2	T1B_CH 1N	T2C_ET R	LVD_O		SWDIO (Config)		
35	PD06	SCL_1		T1_CH4	T1A_CH3	T1B_CH 2				χ =		
36	PD07	SDA_1			T1A_CH3 N	T1B_CH 2N						
37/24	PD01	TXD_1	TXD_0	T1A_CH4	T1B_CH3	T2A_CH 1	LVD_O	MCO		SWCLK (Config)		
38/25	PA15	CS_0	RXD_1	T1_CH1	T1B_CH3 N	T2_ETR	T2_CH1	T2A_CH 2	T2C_ CH4			
39/26	PB03	CLK_0	LPT_GA TE		T1_CH1N	T1B_CH 1	T2_CH2	T2A_CH 3	T2C_ CH3	VC0_N9		
40/27	PC15	MISO_0		PCA_CH 0	LPT_ETR	T1B_CH 1N	T2A_CH 4	T1B_BK	T2C_ CH2	VC0_P12 VC0_P12 VC0_N10		
41/28	PC14	MOSI_0		LPT_GAT E	PCA_CH1	T1_BK		T2C_CH 1		VC0_P13 VC0_P13		
42/29	PB06	SCL_0	TXD_0	LPT_ETR	LPT_TOG	T1_CH1	T2A_CH 2	T2_CH1		VC0_P14 VC0_P14		
43/30	PB07	SDA_0	RXD_0	LPT_TO GN	T1_CH1N	T1B_CH 1	T2_CH2	T2B_CH 1		VC0_P15 VC0_P15 LVD_IN2		
44/31	PD03 (BOO T0)											
45	PB08	SCL_0	TXD_0	T1B_CH1 N	T2A_CH1	T2B_CH 2	T2C_CH 2			LVD_IN1		
46	PB09	SDA_0	RXD_0	CS_1		T2B_CH3	T1B_CH4					
47/32	VSS	G										
48	VDD	Р										

Table 3 选择芯片引脚表

2.6 模块与引脚信号说明

模块功能	引脚名称	说明
Power	VDD	电源
	AVDD	电源
	VCAP	LDO 内核供电
		(仅限内部电路使用,外部连接电容至少 1uf)
Ground	VSS	接地
	AVSS	接地
GPIO (x=0~15)	PAx,PBx,PCx,PDx	PAx 通用数字输入/输出引脚
NRST	NRST	复位输入端口,低有效,芯片复位
ADC	AIN0~AIN23	ADC 输入通道 0~23
	EXVREF	ADC 外部参考电压
OPA	OPx_INN	OPA 负端输入
X=0,1,2	OPx_INP	OPA 负端输入
	OPx_O	OPA 输出
VC	VCxN0~VCxN11	选择 VC0 ,VC1 负端输入
X=0,1	VCxP0~VCxP11	选择 VC0,VC1 正端输入
	VCx_O	VC0,VC1 比较输出
LVD	LVDINO	电压侦测输入选择 0
	LVDIN1	电压侦测输入选择 1
	LVDIN2	电压侦测输入选择 2
	LVD_O	电压侦测输出
ISP	BOOT0	当复位时 BOOTO (PD03) 管脚为高电平,芯片工
.0.	20010	作于 ISP 编程模式,可通过 ISP 协议对 FLASH 进
		行
		编程。
		当复位时 BOOT0 (PD03) 管脚为低电平,芯片工
		作于用户模式,芯片执行 FLASH 内的程序代码,
		可通过 SWD 协议对 FLASH 进行编程。
WKUP	WKUP_0~WKUP_5	外部唤醒脚位
LPUART	CTS LP	LPUART CTS
<u></u>	RTS_LP	LPUART RTS
	TXD_LP	LPUART 数据发送端
	RXD_LP	LPUART 数据接收端
UART	CTS_x	UARTx CTS
x=0,1,2,3	RTS_x	UARTx RTS
	TXD_x	UARTx 数据发送端
	RXD_x	UARTx 数据接收端
SPI	MISO_x	SPI 模块主机输入从机输出数据信号
x=0,1	MOSI_x	SPI 模块主机输出从机输入数据信号
	SCK_x	SPI 模块时钟信号
	CS_x	SPI片选择致能
I2C	SDA_x	I2C 模块数据信号
x=0,1	SCL_x	I2C 模块时钟信号
通用定时器	Tx_CH1,2,3,4	Timer x 的捕获输入/比较输出/PWM 输出
TIMx		Ch1,2,3,4
X=2,2A,2B,2C	Tx_ETR	Timerx 的外部计数输入信号
可编程计数阵列	PCA_ECI	外部时钟输入信号

模块功能	引脚名称	说明				
PCA	PCA_CH0~PCA_CH4	捕获输入/比较输出/PWM 输出 0~4				
高级定时器	TIM1_CH1,2,3,4	TIM1 PWM 输出 channel 1/2/3/4				
Advanced	TIM1_CH1N,2N,3N	TIM1 PWM 输出 反相 channel 1N/2N/3N				
Timer1,1A,1B	TIM1_BKIN	TIM1 刹车信号输入				
	TIM1A_CH1,2,3,4	TIM1 PWM 输出 channel 1/2/3/4				
	TIM1A_CH1N,2N,3N	TIM1 PWM 输出 反相 channel 1N/2N/3N				
	TIM1A_BKIN	TIM1 刹车信号输入				
	TIM1B_CH1,2,3,4	TIM1 PWM 输出 channel 1/2/3/4				
	TIM1B_CH1N,2N,3N	TIM1 PWM 输出 反相 channel 1N/2N/3N				
	TIM1B_BKIN	TIM1 刹车信号输入				
低功耗定时器	LP_ETR	LP Timer 的外部计数输入信号				
LPTimer	LP_GATE	LP Timer 的门控信号				
	LP_TOG	比较输出正端				
	LP_TOGN	比较输出负端				

Table 4 模块与引脚信号说明表

2.7 串行接口说明

Number	0	1	2	3	4	5	6
Serial							
I2C	SCL_0, SDA_0	SCL_1 SDA_1					
SPI	CS_0 CLK_0 MISO_0, MOSI_0	CS_1 CLK_1 MISO_1, MOSI_1					
UART	CTS_0, RTS_0, TXD_0, RXD_0	CTS_1, RTS_1, TXD_1, RXD_1	CTS_2, RTS_2, TXD_2, RXD_2	CTS_3, RTS_3, TXD_3, RXD_3			
LPUART	CTS_LP, RTS_LP, TXD_LP, RXD_LP						
PWM 独立 输出	T1_CH1/ T1_CH2/ T1_CH3/ T1_CH4/ PCA_CH0/ PCA_CH1/ PCA_CH2/ PCA_CH3/	T1A_CH1/ T1A_CH2/ T1A_CH3/ T1A_CH4/	T1B_CH1/ T1B_CH2/ T1B_CH3/ T1B_CH4/	T2_CH1/ T2_CH2/ T2_CH3/ T2_CH4/	T2A_CH1/ T2A_CH2/ T2A_CH3/ T2A_CH4/	T2B_CH1/ T2B_CH2/ T2B_CH3/ T2B_CH4/	T2C_CH1/ T2C_CH2/ T2C_CH3/ T2C_CH4/
PWM	PCA_CH4/	T1A_CH1,1N/	T1B_CH1,1N/				
互补输出	T1_CH2,2N/ T1_CH3,3N/	T1A_CH2,2N/ T1A_CH3,3N/	T1B_CH2,2N/ T1B_CH3,3N/				

Table 5 串行接口说明表

Note: PWM 互补输出: Tx_CH1 Positive ,Tx_CHB1N Negative

【3】 储存器映像

Figure 5 储存器映像图

【4】 典型应用线路图

Figure 6 典型应用线路图

【5】 电气特性

5.1 测试条件

除非特别说明, 所有的电压都以 VSS 为基准。

5.1-1 最小和最大数值

除非特别说明,在生产线上通过对 100%的产品在环境温度 TA=25°C 和 TA=Top,Max 下执行的测试(Top,Max 与选定 Part Number 所对应的的温度范围匹配),所有最小和最大值将在最坏的环境温度、供电电压和时钟频率条件下得到保证。

在每个表格下方的注解中说明为通过综合评估、设计模拟和/或工艺特性得到的数据,不会在生产线上进行测试;在综合评估的基础上,最小和最大数值是通过样本测试后,取其平均值再加减三倍的标准分布(平均±3Σ)得到。

5.1-2 典型数值

除非特别说明,典型数据是基于 $T_A=25^{\circ}$ C 和 $VDD=3.3V(2.5V \leq VDD \leq 5.5V$ 电压范围)。这些数据仅用于设计指导而未经测试。

典型的 ADC 精度数值是通过对一个标准的批次采样, 在所有温度范围下测试得到, 95%产品的误差小于等于给出的数值(平均 $\pm 2\Sigma$)

5.2 绝对最大额定值

符号	参数描述	条件	最小值	典型值	最大值	单位
VDD-VSS	· 外部电源电压		2.5		5.5	V
AVDD-AVSS	外即电源电压		2.5	3.3		V
Vio	IO 的电压		-0.3		VDD+0.3	V
Tstg	存储温度		-40	25	150	°C
TOP	工作温度		-40	25	85	°C
FCPU	CPU 工作频率		32.768K	4M	24M	Hz
VESD, HBM	参见5.3.12					
V _{ESD} , CDM	参见5.3.12					
VESD, MM	参见5.3.12					

注意

- 1. 温度测试方: CP 阶段测试高温 85℃, 低温-40℃ 和高温 85℃ 的 chip level 测试仅在实验室和 Production Quality Qualification 时测试
- 2. 频率测试方法法: CP 阶段测试 24MHz 频率, Final Test 只关注于封装工艺的缺陷

5.3 工作条件

5.3-1 通用工作条件

符号	参数描述	条件	最小值	最大值	单位	参考
VDD	电源电压	-	2.5	5.5	V	
Cs	VCAP 电容	-	0.47	2.2	μF	推荐 1.0μF
Тор	工作温度		-40	85	°C	

注意:

- 1. 推荐工作条件是确保半导体芯片正常工作的条件。在推荐工作条件的范围内,电气特性的所有规格值 均可得到保证。 务必在推荐工作条件下使用半导体芯片。超出该条件的使用可能会影响半导体的可 靠性。
- 2. 对于本数据手册中未记载的项目、使用条件或逻辑组合的使用,本公司不做任何保障。如果用户考虑 在所列条件之外 使用本芯片,请事前联系销售代表。

5.3-2 上电和掉电时的工作条件

符号	参数	条件	最小值	典型值	最大值	单位
V _{POR} V _{BOR}	POR 释放电压(上电过程) BOR 检测电压(掉电过程)		2.2	2.25	2.3	٧

注:由设计保证,不在生产中测试

5.3-3 内嵌复位和 LVD 模块特性

符号	参数	条件		最小值	典型值	最大值	单位
		LVD_CR[2:0] 000 (4.4V)	=				
		LVD_CR[2:0] 001 (4.0V)	=				
		LVD_CR[2:0] 010 (3.6V)	=				
	VDD	LVD_CR[2:0] 011 (3.3V)	=				
Vleve	Detectable threshold	LVD_CR[2:0] 100 (3.1V)	=				V
		LVD_CR[2:0]	=				
		101 (2.9V) LVD_CR[2:0] 110 (2.7V)	=				
V		LVD_CR[2:0] 111 (2.5V)	=				
I _{comp}	Detector's current			1	1.5	2	μΑ
Tresponse	Detector's response time when VDD fall below or rise above the threshold			30	50	80	μs
T _{setup}	Detector's setup time when ENABLE.VDD unchanged.			3	5	10	μs

注:数据基于考核结果,不在生产中测试

5.3-4 内置的参考电压

符号	参数	条件	最小值	典型值	最大值	单位
V _{CAP}	Internal 2.5V Reference Voltage	常 温 25℃ 3.3V	2.55*(1-1%)	2.55V	2.55*(1+1%)	V
V _{CAP}	Internal 2.5V Reference Voltage	-40~85°C; 2.8~5.5V	2.55*(1-2%)	2.55V	2.55*(1+2%)	V[1]

注: 1. 数据基于测试分析结果,不在生产中测试。

5.3-5 供电电流特性

符号	参数		 条件		典型值	最大值	单位
ב ניו	少奴		ホ ロ	48.4	大王坦	双八旦	十四
I _{DD} (Run	All Peripherals			4M			
Mode in	clock OFF, Run	V _{core} =1.2V	Clocksource:HIRC	8M			μA
RAM)	while(1) in RAM	VDD=2.5V-5.5V		16M			ļ '
-				24M			
	All Peripherals			4M			
	clock ON, Run	V _{core} =1.2V	Clocksource:HIRC	8M			μA
	while(1) in Flash	VDD=2.5V-5.5V		16M			P \
				24M			
	All Peripherals			4M			
	clock OFF, Run	V _{core} =1.2V	Clocksource:HIRC	8M			μA
I _{DD} (Run	while(1) in Flash	VDD=2.5V-5.5V		16M			μ, ,
Mode in	. ,			24M			
FLASH)	All Peripherals			Ta=-40°C			
,	clock ON, Run	V _{core} =1.2V	Clocksource:LXT32.76	Ta=25°C			
	while(1) in Flash	VDD=2.5V-5.5V	8KHzDriver=1	Ta=50°C			μA
	- ()			Ta=85°C			
	All Peripherals			Ta=-40°C			
	clock OFF, Run	V _{core} =1.2V	Clocksource:LXT32.76	Ta=25°C			μΑ
	while(1) in Flash	VDD=2.5V-5.5V	8KHzDriver=1	Ta=50°C			
				Ta=85°C			
				4M			
	All Peripherals	V _{core} =1.2V	Clocksource:HIRC	8M			μΑ
clo	clock ON	VDD=2.5V-5.5V	Oldonoodioo.i iii to	16M			μ, ,
				24M			
		55.5	Clocksource:HIRC	4M			- - μΑ
				8M			
l	clock OFF	VDD=2.5V-5.5V	Ciocitocaroca in Co	16M			μ, ,
I _{DD} (Sleep				24M			
Mode)				Ta=-40°C			
,	All Peripherals	V _{core} =1.2V	Clocksource:LXT32.76	Ta=25°C			μΑ
	clock ON	VDD=2.5V-5.5V	8KHzDriver=1	Ta=50°C			
				Ta=85°C			
				Ta=-40°C			
	All Peripherals	V _{core} =1.2V	Clocksource:LXT32.76	Ta=25°C			
	clock OFF	VDD=2.5V-5.5V	8KHzDriver=1	Ta=50°C			μA
				Ta=85°C			
	All Peripherals			Ta=-40°C			
	clock OFF, except RTC,	V _{core} =1.2V	Clocksource:LIRC32.76	Ta=25°C			μA
	IWDG, LPTIM,	VDD=2.5V-5.5V	8KHz	Ta=50°C			μΛ
	AWK			Ta=85°C			
				Ta=-40°C			
I _{DD} (Deep Sleep	D (Deep All Peripherals	V _{core} =1.2V	Clocksource:LIRC32.76	Ta=25°C			
Mode)	clock OFF, except RTC	VDD=2.5V-5.5V	8KHz	Ta=50°C			μA
	except KTC			Ta=85°C]
	All Peripherals			Ta=-40°C			
	clock OFF,	V _{core} =1.2V		Ta=25°C			μA
	except IWDG	VDD=2.5V-5.5V	8KHz	Ta=50°C			
				Ta=85°C			

符号	参数		条件			最大值	单位
	All Devinberale			Ta=-40°C			
	All Peripherals clock OFF,	V _{core} =1.2V	Clocksource:LIRC32.76	Ta=25°C			μΑ
	except LPTIM	VDD=2.5V-5.5V	8KHz	Ta=50°C			
	CXCCPt El Tilvi			Ta=85°C			
		Davida kanala	ore =1.2V Clocksource:LIRC32.76	Ta=-40°C			
	All Peripherals	V _{core} =1.2V		Ta=25°C			
	clock OFF, except AW	VDD=2.5V-5.5V	8KHz	Ta=50°C			μA
	except Avv			Ta=85°C			
				Ta=-40°C	0.5	0.5	
		V _{core} =1.2V		Ta=25°C	0.9	1.0	
		VDD=2.5V-5.5V		Ta=50°C	1.8	2.4	μA
	125=2.61			Ta=85°C	8	11	

注:

- 1. 数据基于 TT Wafer 考核结果,不在生产中测试
- 2. 除非特别说明, 典型值 (Typ) 是在 Ta=25°C, VDD=3.3V 的条件下测得
- 3. 除非特别说明, 最大值 (Max) 是在 Ta=-40°C~85°C, VDD=2.5V~5.5V 的条件下测得的最大值
- 4. 使用 LXT 32.768KHz 时,外部晶振并联了一个 3MΩ 电阻。

5.3-6 从低功耗模式唤醒的时间

唤醒时间是芯片由外部中断唤醒,从深度睡眠模式唤醒的时间。时钟源是 HIRC。VDD=3.3V

符号	参数	条件	最小值	典型值	最大值	单位
Twakeup	Deep sleep mode to active mode	HIRC Frequency: 4MHz 8MHz 16MHz 22.12MHz 24MHz				ha

注: 数据基于考核结果, 不在生产中测试

5.3-7 外部时钟源特性

5.3-7.1 低速外部时钟 LXT

符号	参数	条件	最小值	典型值	最大值	单位
FSCLK	Crystal frequency		32.75	32.768	32.78	KHz
ESRsclk	Supported crystal equivalent series resistance		40	65	85	KOhm
CSCLK(1)	Supported crystal external external load range	There are two Csclk on 2 crystal pins respectively		12		pF
Idd ₍₂₎	Current consumption when stable	ESR=65KOhm Csclk=12pF	200	250	350	nA
DCsclk	Duty cycle		40	50	60	%
Tstart(3)	Start-up time	ESR=65KOhm Csclk=12pF 40%~60% duty cycle reached		2		s

Note:

- 1. 建议使用晶体给出参考值
- 2. RCC_LXTCR.LXTDRV=0011, ESR=65K
- 3. 数据基于考核结果,不在生产中测试

5.3-7.2 高速外部时钟 HXT

符号	参数	条件	最小值	典型值	最大值	单位
F _{FCLK}	Crystal frequency		4	16	24	MHz
ESR _{FCLK}	Supported crystal equivalent series resistance		30	60	1500	Ohm
C _{FCLK} ⁽¹⁾	Supported crystal external external load range	There are 2 CFCLK on 2 crystal pins individually		12		pF
Idd ⁽²⁾	Supported crystal external external load range	24MHz Xtal ESR=30Ohm CFCLK=12pF		300		μΑ
DCFCLK	Duty cycle		40	50	60	%
T _{start}	Start-up time	24MHz	191.66	234.53	339.00	μs

Note:

- 1. 建议使用晶体给出参考值
- 2. Current consumption could vary with oscillating frequency, RCC_HXTCR.HXTDRV=110.
- 3. 数据基于考核结果,不在生产中测试

5.3-8 内部时钟源特性

5.3-8.1 内部 HIRC 振荡器

符号	参数	条件	最小值	典型值	最大值	单位
FMCLK	Internal RC Oscillation frequency		4.0	4.0 8.0 16.0 24	24	MHz
	Start-up time Not	F _{MCLK} =4MHz				μs
T _{Mstart} (1)	including software calibration	FMCLK=8MHz				μs
I Mstart 7		F _{MCLK} =16MHz				μs
	Calibration	F _{MCLK} =24MHz				μs
		F _{MCLK} =4MHz				μA
l	Current consumption	FMCLK=8MHz				μΑ
IMCLK	Current consumption	F _{MCLK} =16MHz				μΑ
		F _{MCLK} =24MHz				μΑ
DCMCLK	Duty cycle				_	%
D _{evM}	Frequency Deviation	VDD = 2.5V ~ 5.5V Ta = -40°C ~ 85°C	-2.5		+2.5	%

注: 数据基于考核结果, 不在生产中测试

5.3-8.2 内部 SIRC 振荡器

符号	参数	条件	最小值	典型值	最大值	单位
FACLK	Internal RC Oscillation frequency					KHz
T _{Astart} ⁽¹⁾	Start-up time					μs
IACLK	Current consumption					
DCACLK	Duty cycle					%
D _{evA}	Frequency Deviation	VDD = 2.5V ~ 5.5V Ta = -40°C ~ 85°C	-2.5		+2.5	%

注:数据基于考核结果,不在生产中测试

5.3-9 Flash 特性

符号	参数	条件	最小值	典型值	最大值	单位
ECflash	Sector Endurance		20k			cycles
RET _{flash}	Data Retention		20			Years
T _{prog}	Byte/Half Word/Word Program Time		30	45	60	μs
TSector-erase	Sector Erase Time		3.5	3.7	4.5	ms
TChip-erase	Chip Erase Time		20	30	40	ms

5.3-10 电磁敏感特性

5.3-10.1 ESD 特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{ESD} , H _{BM}	ESD @ Human Body Mode		8			KV
V _{ESD} , CDM	ESD @ Charge Device Mode		1.5			KV
V _{ESD} , MM	ESD @ Machine Mode		400		•	V
Latchup	Latch up current		100			mA

5.3-10.2 静态栓锁 (Static Latch-up)

为了评估栓锁性能,需要在3个样品上进行2个互补的静态栓锁测试:

- 为每个电源引脚,提供超过极限的供电电压。
- 在每个输入、输出和可配置的 I/O 引脚上注入电流。

这个测试符合 EIA/JESD78A 集成电路栓锁标准。

符号	参数	条件	类型
LU	Static latch-up class	TA = +25 °C conforming to JESD78A	Class I Leve

5.3-11 I/O Port 特性

5.3-11.1 Output 特性 — Port PA,PB,PC,PD

符号	参数	条件	最小值	最大值	单位
Vон	High level output	Sourcing 4 mA, VDD = 3.3 V (see Note 1)	VDD-0.2		V
vol	voltage Source Current	Sourcing 6 mA, VDD = 3.3 V (see Note 2)	VDD-0.3		
Vol	Low level output	Sinking 4 mA, VDD = 3.3 V (see Note 1)		VSS+0.2	\/
VOL	voltage Sink Current	Sinking 6 mA, VDD = 3.3 V (see Note 2)		VSS+0.3	\ \
	High level output	Sourcing 8 mA, VDD = 3.3 V (see Note 1)	VDD-0.2		
Vohd	voltage Double Source Curre	Sourcing 12 mA, VDD = 3.3 V (see Note 2)	VDD-0.3		V
	Low level output	Sinking 8 mA, VDD = 3.3 V (see Note 1)		VSS+0.2	
Vold	voltage Double Sink Current	Sinking 12 mA, VDD = 3.3 V (see Note 2)		VSS+0.3	V

Note:

- 1. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed 40 mA to satisfy the maximum specified voltage drop.
- 2. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed 100 mA to satisfy the maximum specified voltage drop.
- 3. 由综合评估得出,不在生产中测试。

5.3-11.2 Input 特性 — Port PA,PB,PC,PD

符号	参数	条件	最小值	典型值	最大值	单位
	Desitive going input	VDD=2.5	1.4			V
V _{IT+}	Positive-going input threshold voltage	VDD=3.3	1.8			V
	l lifestiold voltage	VDD=5.5	3			V
	Negative-going input threshold voltage	VDD=2.5			0.9	V
		VDD=3.3			1.3	V
		VDD=5.5			2.4	V
	Input valtage byeteresis	VDD=2.5		0.5		V
V _{hys}	Input voltage hysteresis (VIT+ - VIT-)	VDD=3.3		0.5		٧
(VII+-VII-)	(VII+-VII-)	VDD=5.5		0.6		V
Rpullhigh	Pullup Resistor	Pullup enable	40	50	60	Kohm
Cinput	Input Capacitance			5		pf

注: 由综合评估得出, 不在生产中测试。

5.3-11.3 Port Leakage 特性 — Port PA,PB,PC,PD

符号	参数	条件	最小值	最大值	单位
l _{lkg}	Leakage current	See Note 1, 2	2.5V / 3.6V	±50	nA

Notes:

- 1. The leakage current is measured with VSS or VDD applied to the corresponding pin(s), unless otherwise noted.
- 2. The port pin must be selected as input.
- 3. 由综合评估得出,不在生产中测试。

5.3-11.4 Port 外部输入采样要求 — Timer Gate/Timer Clock

符号	参数	条件	最小值	最大值	单位
T(int)	External interrupt timing	External trigger signal for the interrupt flag(see Note 1)	30		ns
T(cap)	Timer Captuter timing	TIM1/TIM2 capture pulse width Fsystme =4MHz	0.5		μs
fext	Timer clock frequency applied to pin	TIM1,TIM2,TIM10,TIM11 external clock input Fsystme =4MHz	0	f _{TIMxCLK} /4	MHz
T(PCA)	PCA clock frequency applied to pin	PCA external clock input Fsystme =4MHz	0	f _{PCACLK} /4	MHz

Note:

- 1. The external signal sets the interrupt flag every time the minimum t(int) parameters are met. It may be set even with trigger signals shorter than t(int).
- 2. 由综合评估得出,不在生产中测试。

5.3-12 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{ADCIN}	Input voltage range	Single ended	0		VDD	V
V _{REF}	ADC reference Voltage			VDD		V
I _{ADC}			0.7	0.9	1.2	mA
CADCIN	ADC input capacitance		3.5	4	4.5	pF
FADCCLK	ADC clock Frequency		0.5	4	16	MHz
TADCSTART	Startup time of ADC bias current		2	3	4	μs
TADCCONV	Conversion time		16	16	20	cycles
ENOB			9.5	10	10.4	Bit
DNL	Differential non-linearity		-2	±1	2	LSB
INL	Integral non-linearity		-3	±1	3	LSB
Eo	Offset error		-2	±1	2	LSB
Eg	Gain error		-2	±1	2	LSB

注:由设计保证,不在生产中测试

5.3-12.1 ADC 输入阻抗

ADC 典型应用图请参考如图(A).

图(A).ADC 典型应用图

- 1. Cparastic 为 PCB 上的电容,其电容值大小取决于 PCB 线路配置(大约 7pF)。若电容值过大将会降低 ADC 精准度,或需降低 ADC clock 频率来维持 ADC 精准度。
- 2. 表二.Rain 为参考表(B)与图 A 中 Cabc 与 Radc 所得

表(B). RAIN对应 FADCCLK

t₅(µs)	f _{ADCCLK} (Hz)	SAM	$R_{AIN}(k\Omega)$
0.167	24M	4	0.05
0.333	12M	4	0.5
0.667	6M	4	2.0
2.67	3M	8	10
5.33	1.5M	8	20
10.7	0.75M	8	40
21.3	0.375M	8	50

5.3-13 VC 特性

符号	参数	条件	最小值	典型值	最大值	单位
Vin	Input voltage range		0		5.5	V
Vincom	Input common mode range		0		5.5	V
V _{offset}	Input offset		-10	±5	+10	mV
I _{comp}	Comparator's current			12		μΑ
Tresponse	Comparator's response			5		μs

注: 数据基于考核结果, 不在生产中测试

5.3-14 OPA 特性

 $V_{OP1_O} = V_{DACO} + (V_{OP1_INP} - V_{OP1_INN}) *GAIN GAIN=R2/R1=16$

 $V_{OP2_O} = User Define$.

OPA1: (AVDD=2.5V ~ 5.5 V, AVSS=0 V, Ta=- 40°C ~ +85°C)

符号	参数	工作条件	最小值	典型值	最大值	单位
Vi	输入电压		0	-	AVDD	V
Vo	输出电压 ⁽¹⁾		0.1	-	AVDD-0.1	V
lo	输出电流 ⁽¹⁾					mA
RL	负载电阻 ⁽¹⁾					Ohm
Zin	输入阻抗			20K		Ohm
Tstart	初始化时间 ⁽²⁾					us
	*	Vic=AVCC/2, Vo=AVCC/2,		\wedge		
Vio	输入失调电压	RL=10KΩ, Rs=50Ω				mV
PM	相位范围 ⁽¹⁾	RL=10KΩ, CL=20pF	1			deg
GM	增益范围 ⁽²⁾	RL=10KΩ, CL=20pF				dB
UGBW	单位增益带宽(1)	CL=20pF				MHz
SR	压摆率 ⁽¹⁾	CL=15pF				V/us
CMRR	共模抑制比 ⁽¹⁾					dB

5.3-15 TIM 定时器特性

符号	参数	条件	最小值	最大值	单位
T(int)	External interrupt timing	External trigger signal for the interrupt flag(see Note 1)	30		ns
T(cap)	Timer Captuter timing	TIM1/TIM2 capture pulse width Fsystme =4MHz	0.5		μs
fEXT	Timer clock frequency applied to pin	TIM1,TIM2,TIM10,TIM11 external clock input Fsystme =4MHz	0	fTIMxCLK /4	MHz
T(PCA)	PCA clock frequency applied to pin	PCA external clock input Fsystme =4MHz	0	fPCACLK /4	MHz

Note:

1. The external signal sets the interrupt flag every time the minimum t(int) parameters are met. It may be set even with

trigger signals shorter than t(int).

3. 由综合评估得出,不在生产中测试。

5.3-16 通信接口

5.3-16.1 I2C 特性

符号	参数	标准模式	; (100K)	快速模式	(400K)	高速模式	犬 (1M)	单位
		最小值	最大值	最小值	最大值	最小值	最大值	
tSCLL	SCL 时钟低时间							us
tSCLH	SCL 时钟高时间							us
tSU.SDA	SDA 建立时间				~ `			ns
tHD.SDA	SDA 保持时间							us
tHD.STA	开始条件保持时间							us
tSU.STA	重复的开始条件建立时间							us
tSU.STO	停止条件建立时间							us
tBUF	总线空闲(停止条件至开始条件)							us

Figure 7 SPI 时序图

5.3-16.2 SPI 特性

符号	参数	条件	最小值	最大值	单位
	串行时钟的周期(頻率)	主机模式			ns
t _{c(SCK)}	中11 时 77 日 77日 791 (792年)				(MHz)
		从机模式			ns
					(MHz)
tw(SCKH)	串行时钟的高电平时间	主机模式			ns
		从机模式			ns
tw(SCKL)	串行时钟的低电平时间	主机模式			ns
		从机模式			ns
t _{su(SSN)}	从机选择的建立时间	从机模式			ns
t _{h(SSN)}	从机选择的保持时间	从机模式			ns
t _{v(MO)}	主机数据输出的生效时间 (output Data Valid Time)	fpclk = 32MHz			ns
t _{h(MO)}	主机数据输出的保持时间	f _{PCLK} = 32MHz			ns
	(output Data Hold Time)				
$t_{v(SO)}$	从机数据输出的生效时间	f _{PCLK} = 16MHz			ns
t _{h(SO)}	从机数据输出的保持时间	f _{PCLK} = 16MHz			ns
t _{su(MI)}	主机数据输入的建立时间 Data input setup time	•			ns
t _{h(MI)}	主机数据输入的保持时间				ns
***(IVII)	Data input hold time				
t _{su(SI)}	从机数据输入的建立时间				ns
	Data input setup time				
th(SI)	从机数据输入的保持时间 Data input hold time			-	ns
	Data input noid time	l			

Note:由设计保证,不在生产中测试

Figure 8 SPI 时序图(主机模式)

Figure 9 SPI 时序图 (从机模式 CPHA=0)

Figure 10 SPI 时序图(从机模式 CPHA=1)

【6】 封装特性

6.1 TSSOP28 封装

Bottom View

CVMPOL	SYMBOL MILIMETERS		S	INCHES			
STIVIDUL	MIN	TYP	MAX	MIN	TYP	MAX	
Α			1.20	1	-	0.047	
A1	0.05		0.15	0.002	1	0.006	
A2	0.80	1.00	1.05	0.031	0.039	0.041	
A3	0.39	0.44	0.49	0.015	0.017	0.019	
b	0.18		0.30	0.007	ì	0.012	
С	0.14	1	0.18	0.006	1	0.007	
D	9.60	9.70	9.80	0.378	0.382	0.386	
E1	4.30	4.40	4.50	0.169	0.173	0.177	
E	6.20	6.40	6.60	0.244	0.252	0.260	
е		0.65BSC			0.026BSC		
L	0.45		0.75	0.018		0.030	
L1		1.00REF			0.039REF		
θ	0		8°	0.000		8°	

6.2 QFN32 封装

SYMBOL	ı	VILIMETER	S		INCHES	
STIVIDUL	MIN	TAb	MAX	MIN	TYP	MAX
Α	0.70	0.75	0.80	0.028	0.030	0.031
A1	0	0.02	0.05	0	0.001	0.002
Ь	0.18	0.25	0.30	0.007	0.010	0.012
С	0.18	0.20	0.25	0.007	0.008	0.010
D	4.90	5.00	5.10	0.193	0.197	0.201
D1	3.55	3.65	3.75	0.140	0.144	0.148
е		0.50REF		O.O2REF		
Nd		3.50REF		0.138REF		
E	4,90	5.00	5.10	0.193	0.197	0.201
E1	3.55	3.65	3.75	0.140	0.144	0.148
L	0.30	0.38	0.45	0.012	0.015	0.018

6.3 LQFP32 封装

SYMBOL	MILIMETERS		S 🌘	INCHES		
STIVIBUL	MIN	TYP	MAX	MIN	TYP	MAX
Α		-	1.60	1		0.063
A1	0.05		0.15	0.002		0.006
A2	1.35	1.40	1.45	0.053	0.055	0.057
A3	0.59	0.64	0.69	0.023	0.025	0.027
b	0.31	+	0.43	0.012		0.017
D	8.80	9.00	9.20	0.346	0.354	0.362
D1	6.90	7.00	7.10	0.272	0.276	0.280
E	8.80	9.00	9.20	0.346	0.354	0.362
E1	6.90	7.00	7.10	0.272	0.276	0.280
6		0.80 BSC			0.0315 BSC	
1	0.45		0.75	0.018		0.030
11		1.00 REF			0.039 REF	
θ	0.00		7°	0		7°

6.4 LQFP44 封装

SYMBOL	MILIMETERS			INCHES		
STIVIBUL	MIN	TYP	MAX	MIN	TYP	MAX
Α			1.60		1	0.063
A1	0.05		0.15	0.002		0.006
A2	1.35	1.40	1.45	0.053	0.055	0.057
A3	0.59	0.64	0.69	0.023	0.025	0.027
b	0.275		0.325	0.011		0.013
D	11.80	12.00	12.20	0.465	0.472	0.480
D1	9.90	10.00	10.10	0.390	0.394	0.398
E	11.80	12.00	12.20	0.465	0.472	0.480
E1	9.90	10.00	10.10	0.390	0.394	0.398
e		0.80 BSC			0.0315 BSC	
L	0.45		0.75	0.018		0.030
L1		1.00 REF			0.039 REF	
θ	0.00		7°	0		7°

6.5 LQFP48 封装

SYMBOL	MILIMETERS			INCHES		
3 TIVIBUL	MIN	TYP	MAX	MIN	TYP	MAX
Α			1.60			0.063
A1	0.05		0.15	0.002		0.006
A2	1.35	1.40	1.45	0.053	0.055	0.057
A3	0.59	0.64	0.69	0.023	0.025	0.027
b	0.17		0.27	0.007		0.011
D	8.80	9.00	9.20	0.346	0.354	0.362
D1	6.90	7.00	7.10	0.272	0.276	0.280
E	8.80	9.00	9.20	0.346	0.354	0.362
E1	6.90	7.00	7.10	0.272	0.276	0.280
е		0.50 BSC	•	0.020 BSC		
L	0.45		0.75	0.018		0.030
L1		1.00 REF		0.039 REF		
θ	0.00		7°	0		7°

6.6 丝印说明

6.6-1 TSSOP28

6.6-2 QFN32

6.6-3 LQFP32

6.6-3 LQFP48

【7】 型号命名

6 = -40 - 85°C

【8】 产品选型表

【9】 版本修订纪录

Version	Date.	Description	
R2.0	2021-0806	Release datasheet	
R2.1	2022-0301	Modified (1)Table4,5 (2) Add SPI 时序图	
R2.2	2022-0427	Updated (1) Block Diagram	

