Question Number	Answer		Mark
15(a)	MAX 2 for beta and 2 for gamma		3
	 Beta Beta particles are much less massive than alpha particles So beta might be deflected by the electrons (surrounding the nucleus of gold) Or Beta more penetrating 	(1) (1) (1)	
	 So beta less likely to interact / scatter / deflect Or Alpha has double the charge (of beta) So for alpha deflecting force will be more (for same separation) 	(1) (1) (1)	
	 Gamma Gamma isn't charged So gamma will not deflect at all (electrostatically) Or gamma will not experience any electrostatic force 	(1) (1)	
	Gamma more penetratingSo gamma less likely to interact	(1) (1)	
15(b)(i)	At least four straight radial lines between the two potential lines Equidistributed / equispaced At least one arrow pointing away from nucleus Example of diagram How the straight radial lines between the two potential lines Figure 1. The straight radial lines between the two potential lines Gold nucleus	(1) (1) (1) (1)	3
15(b)(ii)	 Measures the distance to both potential lines from centre of gold nucleus Use of V = Q/4πε_or This line is in the correct place as V × r is the same for each case 	(1) (1) (1) (1)	3
15(b)(:::)	Example of calculation Measures distance to $40 \text{ V} = 1 \text{ cm}$ and distance to $10 \text{ V} = 4 \text{ cm}$ So $k = 40 \times 1 = 40$ and $k = 10 \times 4 = 40$	(1)	3
15(b)(iii)	 Charge on alpha particle is 2e Use of potential difference = W/Q W = 60 (eV) Example of calculation Change in potential = 40 V -10 V = 30 V 	(1) (1) (1)	3
	Change in potential energy = $30 \text{ V} \times 2e = 60 \text{ eV}$ Total for question 15		12