中国科学技术大学数学科学学院

2016~2017 学年第一学期中考试试卷

■A 卷 □B 卷

课程名	称微	分方程	Ι								
考试时间2016.11.26							考试形式				
姓 名			_ 学	号			学 院	<u> </u>			
题号	_		=	四	五	六	七	八	九	十	总分
得分											

一. (10分) 求解如下方程

$$\begin{cases} u_t + uu_x = 0 \\ u|_{t=0} = x \end{cases}$$

二.(10分)求解如下方程

$$\begin{cases} u_x + u_y + 2u = 2x + y \\ u\big|_{y=0} = x \end{cases}$$

三. (35分) 求如下方程通解

(1)
$$(x + \sqrt{t^2 + x^2})dt - tdx = 0$$

(2)
$$xdt + (t^2 + t + x^2)dx = 0$$

(3)
$$x'' - 2x' - 15x = 1 + (t-1)e^{5t}$$
.

四. (20分) 求解如下线性微分方程组的初值问题

$$\begin{cases} \frac{dx}{dt} = x \\ \frac{dy}{dt} = 2x + y - 2z \\ \frac{dz}{dt} = 3x + 2y + z + e^t \cos t \\ x(0) = y(0) = z(0) = 1 \end{cases}$$

五. (10分)设f(t)在[0,+∞)上连续,且 $\lim_{t\to\infty} f(t)=0$,证明:方程

$$x'+4x=f(t)$$
的任一解 $x=x(t)$ 均满足 $\lim_{t\to +\infty} x(t)=0$.

六. (10 分) 写出初值问题 $x' = 2t \cos t + x^2$, x(0) = 0 的皮卡逼近序列 $\varphi_1(t), \varphi_2(t), \varphi_3(t)$, 并讨论解的存在区间.

七. (10分) 叙述微分方程组解的稳定性和渐近稳定性的定义,并用李雅普诺夫

直接方法讨论线性微分方程组 $\begin{cases} \frac{dx}{dt} = x + y \\ \frac{dy}{dt} = -2x \end{cases}$ 零解的稳定性.

- 八. (15 分) (1) 求边值问题 $\begin{cases} \frac{d^2y}{dt^2} + \lambda y = 0, 0 \le t \le 1 \\ y(0) = y(1) = 0 \end{cases}$ 的特征值及特征函数.
- (2) 求所有的 $a \in \mathbb{R}$,使得边值问题 $\begin{cases} \frac{d^2y}{dt^2} + \pi^2y = t + a, 0 \le t \le 1 \\ y(0) = y(1) = 0 \end{cases}$

的a,该边值问题的解是否唯一?

九. (20 分) 设初值问题 $\frac{dx}{dt} = f(x), x(0) = x_0$ 的解 $x = \varphi(t; x_0)$ 在 $[0, +\infty)$ 上存在, 其中 f(x) 在实数轴上连续可微.

- (1) 讨论 $\varphi(t;x_0)$ 关于 (t,x_0) 的连续性.
- (2) 若给定 x_0 且对任意自然数 k 成立 $|\varphi(k;x_0)-x_0| < M$, 其中 M>0 为常数. 证明: $\varphi(t;x_0)$ 在 $[0,+\infty)$ 上有界.
- 十. (10 分) 设 $\Omega \subset \mathbb{R}^2$ 为有界光滑区域, $b_i(x) \in C(\overline{\Omega})$, i = 1, 2. 设

 $u \in C^2(\Omega) \cap C(\overline{\Omega})$ 为方程 $\Delta u + \sum_{i=1}^2 b_i(x) \frac{\partial u}{\partial x_i} = 0$ 的解. 求证: $\max_{\overline{\Omega}} u = \max_{\partial \Omega} u$.