Lógica Computacional

Sumário

1	Introdução
	1.1 O que é Lógica ?
	1.2 Linguagem
	1.3 Uso e Mensão
2	Lógica Proposicional
3	Teoria de Provas
4	Tableaux Proposicional
5	Lógica de Primeira-Ordem
	5.1 Introdução
	5.2 Sintaxe
	5.3 Semântica
6	Tableaux de Primeira Ordem

1 Introdução

1.1 O que é Lógica?

- É a ciência que estuda a validade dos argumentos
- Estuda os métodos e pricípios para comprovar os argumentos
- Argumento : É uma sequência de fatos que é usado para concluir algo.
 - \hookrightarrow Pode ser expresso em linguagem natural ou linguagem formal
- Argumento Correto : É um argumento em que os fatos justificam, sem falhas, uma determinada conclusão

1.2 Linguagem

- Linguagem Natural: Uso cotidiano
 - → Prolixa
 - \hookrightarrow Ambiguidade
- Linguagem Formal : <u>Sistema simbólico</u> preciso e operacional de modo a evitar a ambiguidade e a loquacidade das linguagens naturais
 - \hookrightarrow Concisa
 - \hookrightarrow Exata
 - \hookrightarrow Exemplos: Matemática, Música, Relógio, Linguagens de Programação, \dots

Dimensões da Linguagem

- 1. Sintaxe : Ordem de como são escritas as palavras
- 2. **Semântica**: Significado que as palavras possuem

Exemplo : 2 + 2 = 4

- \hookrightarrow Estrutura matemática : sintaxe
- \hookrightarrow Valor : semântica
- 3. **Pragmática :** Sem relação com a sintaxe e semântica, significado atribuido por questões históricas, sociais e culturais.

Exemplo: Que horas são?

Metalinguagem

- Metalinguagem : É uma linguagem que explica qualquer outra linguagem
- Linguagem Objeto : É a linguagem da qual se fala

Ex₁: "House"é o mesmo que "casa"

- \hookrightarrow Metalinguagem : português
- \hookrightarrow Linguagem Objeto : inglês
- \hookrightarrow " " : Separar a metalinguagem da linguagem

 $\operatorname{Ex}_2: \int_a^b f(x) \, dx$

 \hookrightarrow Metalinguagem : português

 \hookrightarrow Linguagem Objeto : matemática

- Hierarquia infinita de metalinguagem : Para ter consistência na análise da linguagem é preciso que uma linguagem de <u>nível inferior</u> para explicá-la.
 - → Ou seja, dada uma linguagem-objeto precisamos de uma metalinguagem para explicá-la, que por sua vez precisa de uma metametalinguagem para explicá-la, e assim sucessivamente.

Exemplo : 2 + 2 = 4

Linguagem-objeto : "2 + 2 = 4" — uma sentença da linguagem da aritm'etica.

Metaliguagem : "A expressão '2+2=4' é verdadeira." — frase na linguagem natural (Português) descrevendo a sentença da linguagem-objeto.

Metametalinguagem : "A frase 'A expressão 2+2=4 é verdadeira' é uma afirmação correta sobre a linguagem da aritmética." — análise sobre a metalinguagem.

• Teoria : É um conjunto de explicações para descrever um fenômeno

• Metateoria : É a teoria que investiga, analisa ou descreve a própria teoria

1.3 Uso e Mensão

- Relacionados diretamente com os níveis da linguagem em que os termos aparecem.
- Usa-se um termo para afirmar certas coisas.
- Menciona-se um termo quando falamos à respeito dele próprio.

 \hookrightarrow Ex₁ : Gato é um animal bonitinho

 \hookrightarrow Ex₂ : "Gato" tem cinco letras

 $\hookrightarrow \mbox{ Ex}_3:$ "Lucas"
é um nome bíblico

- Número : É um certo tipo de objeto matemático
- Numeral : É o nome de um número
- Substituendos : São expressões que podem ser colocados no lugar de variáveis
- Valores da variáveis : É o domínio em que a variável está inserida.

Exemplos

Ex₁: "Rosa" é dissílaba.

Ex₂: Napoleão foi imperador da França.

Ex₃: A palavra "water" tem o mesmo significado que a palavra portuguesa "água"

 Ex_4 : "Logik" "não pode ser usada como sujeito de uma sentença do português.

Ex₅: "Pedro" não é o nome de Sócrates, mas é o nome de "Pedro".

Ex₆: O numeral "8" designa a soma de 4 mais 4.

 Ex_7 : 2+2 é igual a 3+1, mas "3+1" é diferente de "4"

Ex₈: A sentença nenhum gato é preto é falsa. A sentença "nenhum gato é preto" é falsa.

 Ex_9 : "Todavia" e "contudo", mas, não também têm o mesmo que significado que "mas", contudo, não, não.

2 Lógica Proposicional

3 Teoria de Provas

4 Tableaux Proposicional

5 Lógica de Primeira-Ordem

5.1 Introdução

- Extensão da Linguagem Proposicional (\mathcal{L}_p)
- \mathcal{L}_p é um fragmento da LPO
- \mathcal{L}_p não expressa adequadamente relações entre indivíduos
- Permite descrever propriedades de objetos e relações entre eles

Exemplos:

 Todo homem é mortal Sócrates é homem

04---4--4---4-1

Sócrates é mortal

- 2. Todas as pessoas têm um progenitor
- 3. Alguns progenitores têm mais de um filho
- 4. Minha sogra tem netos
- 5. Toda tia tem sobrinha ou sobrinho

Constantes e Funções

- Usamos constantes e funções para referenciar ou construir indivíduos únicos.
- Constantes são símbolos funcionais com zero argumentos.
- Funções são operadores que, a partir de um ou mais argumentos, retornam um único indivíduo.

Exemplos:

- 1. c = Sócrates
- 2. m(x) = x é mãe
- 3. f(x,y) = x é filho de y

Relações

- Relações (ou predicados) representam propriedades e associações entre indivíduos.
- Uma relação P^n tem <u>aridade n</u>, isto é, atua sobre n objetos.

Exemplos: $P^1 = \dots$ ser homem, $Q^2 = \dots$ amar ..., $R^3 = \dots$ estar entre ... e...

- 1. $P^{1}(c) = \text{Sócrates \'e homem}$
- 2. $Q^2(a,b) = \text{Romeu ama Julieta}$
- 3. $R^3(c_1, c_2, c_3) = S$ ão Paulo está entre Rio de Janeiro e Curitiba

Quantificadores e Variáveis

- ∀ : quantificador universal "para todo"
- ∃: quantificador existencial "existe pelo menos um"
- Variáveis são marcadores que representam indivíduos genéricos.

Exemplos:

- 1. H(x) = x é homem, M(x) = x é mortal $\forall x (H(x) \to M(x))$
- 2.
- 3. mover mais para a direita e colocar exemplos do caderno

5.2 **Sintaxe**

Definição. O conjunto de símbolos lógicos da Linguagem de Primeira-Ordem é dado pela união dos seguintes conjuntos:

- 1. $\mathcal{P} = \{P^{n_P}, Q^{n_Q}, R^{n_R}, \dots, P_1^{n_{P_1}}, Q_1^{n_{Q_1}}, R_1^{n_{R_1}}, \dots\};$ 2. $\mathcal{F} = \{f^{n_f}, g^{n_g}, h^{n_h}, \dots, f_1^{n_{f_1}}, g_1^{n_{g_1}}, h_1^{n_{h_1}}, \dots\};$
- 3. $C = \{a, b, c, \dots, a_1, b_1, c_1, \dots\};$
- 4. $\mathcal{V} = \{x, y, z, \dots, x_1, y_1, z_1, \dots \};$

```
5. {∀,∃};
6. {¬, ∧, ∨, →, ↔};
7. (e)
```

Definição. Os elementos do conjunto \mathcal{P} são chamados de *símbolos predicativos*

Definição. Os elementos do conjunto \mathcal{F} são chamados de símbolos funcionais

Definição. Os elementos do conjunto \mathcal{C} são chamados de *constantes*

Definição. Os elementos do conjunto \mathcal{V} são chamados de *variáveis*

Definição. Os elementos do conjunto $\{\forall,\exists\}$ são operadores ou conectivos unários chamados de quantificadores. O quantificador universal é denotado por \forall e o quantificador existencial é denotado por \exists

Definição. A aridade de um símbolo predicativo ou de um símbolo funcional é o número fixo de seus argumentos. A aridade de um símbolo predicativo ou funcional é indicado pelo índice superior.

Observação. Símbolos predicativos e funcionais têm número fixo de argumentos (aridade).

- Símbolos predicativos de <u>aridade zero</u> referem-se a preposições;
- Símbolos funcionais de <u>aridade zero</u> referem-se a indivíduos.

Definição. O conjunto de termos \mathcal{T} da Linguagem de Primeira-Ordem é definido indutivamente:

```
1. Se t \in \mathcal{V} \cup \mathcal{C}, então t \in \mathcal{T};
```

2. Se
$$f^n \in \mathcal{F}$$
 e $t_1, \ldots, t_n \in \mathcal{T}$, então $f(t_1, \ldots, t_n) \in \mathcal{T}$

Definição. A Linguagem de Primeira-Ordem, denotada por \mathcal{L}_{PO} , é dada pelo conjunto de suas fórmulas bem-formadas, denotado por $\text{FBF}_{\mathcal{L}_{PO}}$, o qual é obtido indutivamente por:

- $P^n(t_1, \ldots, t_n) \in \text{FBF}_{\mathcal{L}_{PO}}$, onde $P^n \in \mathcal{P}$, para $t_i \in \mathcal{T}, 0 \le i \le n, n \in \mathbb{N}$;
- Se $\varphi, \psi \in \text{FBF}_{\mathcal{L}_{PO}}$ e $x \in \mathcal{V}$, então $\neg \varphi, (\varphi \land \psi), (\varphi \lor \psi), (\varphi \to \psi), (\varphi \leftrightarrow \psi), \forall x \varphi, \exists x \varphi \in \text{FBF}_{\mathcal{L}_{PO}}$

Observação. Parênteses podem ser omitidos, se a leitura não for ambígua. A precedência dos operadores é dada por: $\neg, \land, \lor, \rightarrow, \leftrightarrow$.

Definição. Uma árvore sintática para φ , onde $\varphi \in \mathrm{FBF}_{\mathcal{L}_{PO}}$, é constituída de uma raiz com zero ou mais filhos, dependendo da estrutura (ou seja, da forma) de φ :

- 1. se t é um termo da forma u^0 , então a árvore sintática tem raiz rotulada por u^0 e tem zero filhos;
- 2. se t é um termo da forma $u^n(t_1, \ldots, t_n)$, n > 0, então a raiz é rotulada por u^n e tem n filhos, que são as raízes das árvores sintáticas para cada um dos termos t_1, \ldots, t_n ;
- 3. se φ é da forma $P^n(t_1, \ldots, t_n)$, então a raiz é rotulada por P^n e tem n filhos, que são raízes das árvores sintáticas para cada um dos termos t_1, \ldots, t_n ;
- 4. se φ é da forma $*\psi$, onde $*\in \{\neg, \forall x, \exists x\}$, para algum $x\in \mathcal{V}$, então a raiz é rotulada

por * e tem um único filho, que é a raiz da árvore sintática de ψ ;

5. se φ é da forma $(\psi * \chi)$, onde $* \in \{\land, \lor, \rightarrow, \leftrightarrow\}$, então a raiz é rotulada por * e tem dois filhos, onde o da esquerda é a raiz da árvore sintática de ψ e o da direita é a raiz da árvore sintática de χ .

Definição. Sejam $x \in \mathcal{V}$ e $\varphi \in \text{FBF}_{\mathcal{L}_{PO}}$. O *escopo* de $\forall x$ (ou $\exists x$) na fórmula $\forall x\psi$ (ou $\exists x\psi$) é φ , exceto por subfórmulas de φ na forma $\forall x\psi$ ou $\exists x\psi$.

Definição. Sejam $x \in \mathcal{V}$ e $\varphi \in \mathrm{FBF}_{\mathcal{L}_{PO}}$. A ocorrência de uma variável x em uma fórmula bem-formada $\forall x \varphi$ ou $\exists x \varphi$ é ligada se x ocorrer em φ .

Definição. Sejam $x \in \mathcal{V}$ e $\varphi \in \mathrm{FBF}_{\mathcal{L}_{PO}}$. A ocorrência de uma variável x em uma fórmula φ é *livre* se esta ocorrência de x não for ligada em qualquer subfórmula de φ .

Definição. Uma sentença é uma fórmula sem variáveis livres.

Definição. Sejam $t \in \mathcal{T}$, $x \in \mathcal{V}$ e $\varphi \in \mathrm{FBF}_{\mathcal{L}_{PO}}$. Nós denotamos por $\varphi[t/x]$ o resultado da substituição de todas as ocorrências livres de x em φ por t.

Definição. Sejam $t \in \mathcal{T}$, $x \in \mathcal{V}$ e $\varphi \in \mathrm{FBF}_{\mathcal{L}_{PO}}$. Nós dizemos que t é livre para a variável x na fórmula φ se as variáveis em t não se tornarem ligadas em $\varphi[t/x]$

Exemplos

exemplos do caderno e de alguns exercicios da lista

5.3 Semântica

Definição. Uma interpretação \mathcal{M} para o par $(\mathcal{P}, \mathcal{F})$ consiste de:

- um conjunto não-vazio \mathcal{A} (universo);
- uma função $f^M: \mathcal{A}^n \to \mathcal{A}$, para cada símbolo funcional $f^n \in \mathcal{F}$;
- um subconjunto $P^M \subseteq \mathcal{A}^n$, para cada símbolo predicativo $P^n \in \mathcal{P}$.

Definição. A função de avaliação v para uma interpretação $\mathcal{M} = (\mathcal{A}, \{f^M\}_{f \in \mathcal{F}}, \{P^M\}_{P \in \mathcal{P}})$ para $(\mathcal{P}, \mathcal{F})$ é o mapeamento de variáveis a valores do universo $v : \mathcal{V} \to \mathcal{A}$.

Definição. O valor de um termo t em uma interpretação \mathcal{M} é relativo à função de avaliação v e é definido indutivamente:

$$t^{M,v} = \begin{cases} v(t), & \text{se } t \in \mathcal{V} \\ f^{M,v}(t_1^{M,v}, \dots, t_n^{M,v}), & \text{se } t = f(t_1, \dots, t_n) \end{cases}$$

Definição. Sejam $\mathcal{M} = (\mathcal{A}, \{f^M\}_{f \in \mathcal{F}}, \{P^M\}_{P \in \mathcal{P}})$ uma interpretação para $(\mathcal{P}, \mathcal{F})$, v uma função de avaliação, $x \in \mathcal{V}$ e $\varphi, \psi \in \mathrm{FBF}_{\mathcal{L}_{PO}}$:

1.
$$\mathcal{M} \models_v P(t_1, \dots, t_n)$$
 se, e somente se, $(t_1^{M,v}, \dots, t_n^{M,v}) \in P^M$;

- 2. $\mathcal{M} \models_v \neg \varphi$ se, e somente se, $\mathcal{M} \not\models_v \varphi$;
- 3. $\mathcal{M} \models_v \varphi \land \psi$ se, e somente se, $\mathcal{M} \models_v \varphi$ e $\mathcal{M} \models_v \psi$;
- 4. $\mathcal{M} \models_v \varphi \lor \psi$ se, e somente se, $\mathcal{M} \models_v \varphi$ ou $\mathcal{M} \models_v \psi$ ou ambos;
- 5. $\mathcal{M} \models_v \varphi \to \psi$ se, e somente se, $\mathcal{M} \models_v \neg \varphi \lor \psi$;
- 6. $\mathcal{M} \models_v \forall x \varphi$ se, e somente se, $\mathcal{M} \models_v \varphi[a/x]$ para todo $a \in \mathcal{A}$;
- 7. $\mathcal{M} \models_v \exists x \varphi$ se, e somente se, $\mathcal{M} \models_v \varphi[a/x]$ para algum $a \in \mathcal{A}$.

Lema. Seja \mathcal{M} uma interpretação. Se φ é uma sentença, então:

$$\mathcal{M} \models_{v} \varphi \iff \mathcal{M} \models_{v'} \varphi$$

para todas as funções de avaliação v e v'.

Definição. Uma fórmula φ é satisfatível se existir uma interpretação \mathcal{M} e função de avaliação v tal que $\mathcal{M} \models_v \varphi$. Neste caso, dizemos que \mathcal{M}_v satisfaz φ ou que \mathcal{M}_v é um modelo para φ .

Definição. Uma sentença φ é satisfatível se existir uma interpretação \mathcal{M} tal que $\mathcal{M} \models \varphi$. Neste caso, dizemos que \mathcal{M} satisfaz φ ou é um modelo para φ .

Observação. Satisfatibilidade, tautologia, contradição, contingência, equivalência semântica, consequência de conjuntos, consequência lógica e validade já foram definidos.

Exemplos

6 Tableaux de Primeira Ordem