

Applicant: FREEMAN, Neville J. et al.

Atty. Ref.: 13485.0004.NPUS00

AMENDMENTS TO THE CLAIMS:

Please amend the claims to read as follows:

1. (Currently Amended) A device for housing a planar optical component for use in sensing, said

device comprising:

an optical assembly adapted to mount the planar optical component so as to define a longitudinal

path through the device in which the planar optical component is effectively exposed in free

space and including guiding means for correlating along said longitudinal path the position of

said planar optical component and of a source of electromagnetic radiation, whereby to expose

said planar optical component to said electromagnetic radiation along said longitudinal path

whilst substantially eliminating stray electromagnetic radiation, wherein the optical assembly

comprises a cavity which permits access to a face of the planar optical component or to a face of

a base with which the planar optical component is in intimate thermal contact whereby to enable

an inner temperature controller to be positioned in thermal contact with the planar optical

component for controlling the temperature of the planar optical component,

wherein the inner temperature controller is an inner Peltier assembly capable of adding heat to or

dissipating heat from the planar optical component, said inner Peltier assembly comprising an

inner Peltier mounted on an inner Peltier mount, and

a Peltier exhaust assembly which permits thermal transfer from an exhaust side of the inner

Peltier to the environment.

2-3. (Cancelled)

4. (Currently Amended) A device as claimed in claim 3 1 wherein the Peltier mount has a

concave underside to optimise thermal contact with the planar optical component or with a base

with which the planar optical component is in intimate thermal contact.

5. (Previously Amended) A device as claimed in claim 1 wherein the planar optical component is

2

a sensor.

H: 559513(BZQ101!,DOC)

Applicant: FREEMAN, Neville J. et al.

Atty. Ref.: 13485.0004.NPUS00

6. (Previously Amended) A device as claimed in claim 5 wherein the sensor is mounted on a

sensor base and is in intimate thermal contact therewith.

7. (Previously Amended) A device as claimed in claim 1 wherein the optical assembly and inner

temperature controller are contained within a conducting sleeve.

8. (Original) A device as claimed in claim 7 wherein the conducting sleeve comprises a copper

heat shroud.

9. (Original) A device as claimed in claim 8 wherein the copper heat shroud is provided with an

opening which is suitably disposed to coincide with the cavity in the optical assembly thereby

allowing the inner Peltier assembly to be inserted in the optical assembly after the optical

assembly has been inserted in the conducting sleeve.

10. (Previously Amended) A device as claimed in claim 8 wherein the heat shroud comprises an

integral laser module holder for inserting a laser module.

11. (Cancelled)

12. (Currently Amended) A device as claimed in claim 11 wherein the Peltier exhaust assembly

comprises: an exhaust plate positioned to allow thermal exchange with the environment.

13. (Currently Amended) A device as claimed in claim 11 1 wherein the Peltier exhaust assembly

comprises: means for thermally contacting the inner Peltier assembly with the exhaust plate.

14. (Original) A device as claimed in claim 13 wherein the means for thermally contacting the

inner Peltier assembly with the exhaust plate is a thermally conducting exhaust strip.

H: 559513(BZQ1011,DQC)

3

Applicant: FREEMAN, Neville J. et al.

Atty. Ref.: 13485.0004.NPUS00

15. (Currently Amended) A device as claimed in claim <u>11-1</u> wherein the Peltier exhaust assembly comprises: an exhaust guide capable of fitting over the insulating collar of a laser module.

16. (Original) A device as claimed in claim 15 wherein the exhaust guide defines a slot into which the thermally conducting exhaust strip may be inserted.

17. (Previously Amended) A device as claimed in claim 1 further comprising: an outer temperature controller which permits coarse temperature control of one or more of the group selected from the conducting sleeve, laser module, laser-module holder, the exterior parts of the optical assembly and the electronics.

18. (Original) A device as claimed in claim 17 wherein the outer temperature controller takes the form of an outer Peltier assembly.

19. (Original) A device as claimed in claim 18 comprising: means for urging the Peltier exhaust assembly onto the inner Peltier assembly.

20. (Original) A device as claimed in claim 19 wherein the means for urging is a restraining sleeve added outwardly of the heat shroud to force the Peltier exhaust assembly onto the inner Peltier assembly at a first end and the exhaust plate at the other.

21. (Original) A device as claimed in claim 20 wherein the outer Peltier assembly is provided externally of the restraining sleeve, said restraining sleeve provided with an aperture to enable exposure of an effective area of the conducting sleeve to achieve thermal contact with the outer Peltier assembly.

22. (Currently Amended) A device as claimed in claim 1 which is capable of sequential construction from a plurality of discrete assemblies, said assemblies being: an optical assembly contained within a conducting sleeve;

4

Applicant: FREEMAN, Neville J. et al.

Atty. Ref.: 13485.0004.NPUS00

an inner Peltier assembly comprising assembly comprising an inner Peltier; and

a Peltier exhaust assembly, wherein: (1) the inner Peltier assembly is housed within the cavity of

the optical assembly so as to achieve intimate thermal contact with the planar optical component

and (2) the Peltier exhaust assembly permits thermal transfer from the exhaust side of the inner

Peltier to the environment and is thermally isolated from the conducting sleeve.

23. (Original) A device as claimed in claim 22 further comprising a discrete outer Peltier

assembly in thermal contact with the conducting sleeve.

24. (Previously Amended) A device as claimed in claim 1 wherein the planar optical component

has a plurality of waveguides.

25. (Cancelled)

26. (Currently Amended) A process for constructing a device as defined in claim 1 for housing a

planar optical component for use in sensing, said device comprising an optical assembly adapted

to mount the planar optical component so as to define a longitudinal path through the device in

which the planar optical component is effectively exposed in free space and including guiding

means for correlating along said longitudinal path the position of said planar optical component

and of a source of electromagnetic radiation, whereby to expose said planar optical component to

said electromagnetic radiation along said longitudinal path whilst substantially eliminating stray

electromagnetic radiation, wherein the optical assembly comprises a cavity which permits access

to a face of the planar optical component or to a face of a base with which the planar optical

component is in intimate thermal contact whereby to enable an inner temperature controller to be

positioned in thermal contact with the planar optical component for controlling the temperature

of the planar optical component, the process comprising the steps of:

inserting an optical assembly in a conducting sleeve comprising an integral laser module

5

housing;

inserting a laser module into the laser module housing;

H: 559513(BZQ101!.DOC)

Applicant: FREEMAN, Neville J. et al.

Atty. Ref.: 13485.0004.NPUS00

housing an inner Peltier assembly in the cavity of the optical assembly so as to achieve thermal contact with the planar optical component; and

positioning a Peltier exhaust assembly in thermal isolation from the conducting sleeve so as to permit thermal transfer from the exhaust side of the inner Peltier to the environment.

27. (Original) A process as claimed in claim 26 comprising the additional steps of:

constructing an outer restraining sleeve;

constructing an outer casing; and

positioning an outer Peltier assembly on the outer casing or restraining sleeve whereby to achieve thermal contact with the conducting sleeve.

28. (New) A device for housing a planar optical component for use in sensing, said device comprising:

an optical assembly adapted to mount the planar optical component so as to define a longitudinal path through the device in which the planar optical component is effectively exposed in free space and including guiding means for correlating along said longitudinal path the position of said planar optical component and of a source of electromagnetic radiation, whereby to expose said planar optical component to said electromagnetic radiation along said longitudinal path whilst substantially eliminating stray electromagnetic radiation, wherein the optical assembly comprises a cavity which permits access to a face of the planar optical component or to a face of a base with which the planar optical component is in intimate thermal contact whereby to enable an inner temperature controller to be positioned in thermal contact with the planar optical component for controlling the temperature of the planar optical component,

wherein the optical assembly and inner temperature controller are contained within a conducting sleeve comprising a copper heat shroud,

and wherein the copper heat shroud is provided with an opening which is suitably disposed to coincide with the cavity in the optical assembly thereby allowing the inner temperature controller to be inserted in the optical assembly after the optical assembly has been inserted in the conducting sleeve.

H: 559513(BZQ101!.DOC) 6

Applicant: FREEMAN, Neville J. et al.

Atty. Ref.: 13485.0004.NPUS00

29. (New) A device as claimed in claim 9 wherein the inner temperature controller is an inner

Peltier assembly capable of adding heat to or dissipating heat from the planar optical component.

30. (New) A device as claimed in claim 29 wherein the inner Peltier assembly comprises: an

inner Peltier mounted on an inner Peltier mount.

31. (New) A device as claimed in claim 30, wherein the Peltier mount has a concave underside to

optimise thermal contact with the planar optical component or with a base with which the planar

optical component is in intimate thermal contact.

32. (New) A device as claimed in claim 28, wherein the heat shroud comprises an integral laser

module holder for inserting a laser module.

33. (New) A device as claimed in claim 30, further comprising a Peltier exhaust assembly which

permits thermal transfer from an exhaust side of the inner Peltier to the environment.

34. (New) A device as claimed in claim 33, wherein the Peltier exhaust assembly comprises: an

exhaust plate positioned to allow thermal exchange with the environment.

35. (New) A device as claimed in claim 33, wherein the Peltier exhaust assembly comprises:

means for thermally contacting the inner Peltier assembly with the exhaust plate.

36. (New) A device as claimed in claim 35, wherein the means for thermally contacting the inner

Peltier assembly with the exhaust plate is a thermally conducting exhaust strip.

37. (New) A device as claimed in claim 33, wherein the Peltier exhaust assembly comprises: an

exhaust guide capable of fitting over the insulating collar of a laser module.

Applicant: FREEMAN, Neville J. et al.

Atty. Ref.: 13485.0004.NPUS00

38. (New) A device as claimed in claim 37, wherein the exhaust guide defines a slot into which the thermally conducting exhaust strip may be inserted.

39. (New) A device for housing a planar optical component for use in sensing, said device comprising: an optical assembly adapted to mount the planar optical component so as to define a longitudinal path through the device in which the planar optical component is effectively exposed in free space and including guiding means for correlating along said longitudinal path the position of said planar optical component and of a source of electromagnetic radiation, whereby to expose said planar optical component to said electromagnetic radiation along said longitudinal path whilst substantially eliminating stray electromagnetic radiation, wherein the optical assembly comprises a cavity which permits access to a face of the planar optical component or to a face of a base with which the planar optical component is in intimate thermal contact whereby to enable an inner temperature controller to be positioned in thermal contact with the planar

an outer temperature controller which permits coarse temperature control of one or more of the group selected from the conducting sleeve, laser module, laser-module holder, the exterior parts of the optical assembly and the electronics, wherein the outer temperature controller takes the form of an outer Peltier assembly; and

optical component for controlling the temperature of the planar optical component;

means for urging the Peltier exhaust assembly onto the inner Peltier assembly wherein the means for urging is a restraining sleeve added outwardly of the heat shroud to force the Peltier exhaust assembly onto the inner Peltier assembly at a first end and the exhaust plate at the other.

40. (New) A device as claimed in claim 39, wherein the outer Peltier assembly is provided externally of the restraining sleeve, said restraining sleeve provided with an aperture to enable exposure of an effective area of the conducting sleeve to achieve thermal contact with the outer Peltier assembly.

41. (New) A device for housing a planar optical component for use in sensing, said device comprising: an optical assembly adapted to mount the planar optical component so as to define a

Applicant: FREEMAN, Neville J. et al.

Atty. Ref.: 13485.0004.NPUS00

longitudinal path through the device in which the planar optical component is effectively exposed in free space and including guiding means for correlating along said longitudinal path the position of said planar optical component and of a source of electromagnetic radiation, whereby to expose said planar optical component to said electromagnetic radiation along said longitudinal path whilst substantially eliminating stray electromagnetic radiation, wherein the optical assembly comprises a cavity which permits access to a face of the planar optical component or to a face of a base with which the planar optical component is in intimate thermal contact whereby to enable an inner temperature controller to be positioned in thermal contact with the planar optical component for controlling the temperature of the planar optical component,

wherein said device is capable of sequential construction from a plurality of discrete assemblies, said assemblies being:

an optical assembly contained within a conducting sleeve;

an inner Peltier assembly comprising an inner Peltier; and

a Peltier exhaust assembly, wherein: (1) the inner Peltier assembly is housed within the cavity of the optical assembly so as to achieve intimate thermal contact with the planar optical component and (2) the Peltier exhaust assembly permits thermal transfer from the exhaust side of the inner Peltier to the environment and is thermally isolated from the conducting sleeve.

H: 559513(BZQ101!.DOC) . 9