Морозов Д. І.

Спряженність транзитивно-стабільних автоморфізмів в $FAutT_2$

Роботу присвячено дослідженню спряженності транзитивно стабільних автоморфізмів кореневого однорідного дерева валентності 2 в групі скінченно-станових автоморфізмів цього дерева. Побудовано перетин класу спряженності в цій групі, що містить автоморфізм adding machine, з множиною транзитивно стабільних автоморфізмів.

Ключові слова: кореневе дерево, автоморфізм дерева, група скінченно-станових автоморфізмів, спряженність автоморфізмів

Відсутність на даний момент необхідної та достатньої умови спряженності автоморфізмів в групі скінченно-автоматних підстановок примушує при дослідженні рівняння спряженності використовувати певні достатні шарово-транзитивні Наприклад, автоморфізми a та b не спряжені, якщо факторпослідовність для a періодична, а для b - не періодична, або - якщо a та b мають різний Стабільно-транзитивні автоморфізми дуже близьки по своїх властивостях один до одного, тому цілий клас достатніх умов є не еффективним при дослідженні питання спряженності таких автоморфізмів. В роботі пропонується підхід, що дозволяє побудувати перетин класу спряженності в групі скінченно-автоматних підстановок, що містить автоморфізм adding machine, з множиною транзитивно стабільних автоморфізмів.

Означення 1. Означимо фактор n-го рівня шарово-транзитивного автоморфізма

$$a = (b, c) \circ \sigma$$

індуктивно. Фактором 1-го рівня для автоморфізму a называється автоморфізм $b \circ c$. Фактором n-го рівня автоморфізма a називається фактор 1-го рівня для фактора (n-1)-рівня автоморфізма a.

Означення 2. Фактор-послідовністью для автоморфізму $a \in AutZ_2$ назвемо послідовність $\{a_n\}$ автоморфізмів, в якій a_n дорівнює фактору n-го рівня для автоморфізму a.

Означення 3. Назвемо автоморфізм $x \in AutT_2$ транзитивно-стабільним, якщо фактор-послідовність для цього автоморфізму є стаціонарною.

Рекурсивно означимо множини W_x та R_x для шарово-транзитивного автоморфізму $x \in AutT_2$.

© Морозов Д. І., 2009

Означення 4. Тотожній автоморфізм id належить W_x . Нехай автоморфізм $t=(t_1,t_2)$ або автоморфізм $t=(t_1,t_2)\circ\sigma$ належить W_x . Тоді автоморфізм $x\circ t_2$ належить W_x .

Означення 5. Тотожній автоморфізм id належить R_x . Нехай автоморфізм $t=(t_1,t_2)$ або автоморфізм $t=(t_1,t_2)\circ\sigma$ належить R_x . Тоді автоморфізми t_1 та $x\circ t_2$ належать R_x .

Легко бачити, що W_x належить R_x .

Приклад 1. Обчислимо множини W_{ε} та R_{ε} для автоморфізма adding machine, що задається співвідношенням $\varepsilon = (id, \varepsilon) \circ \sigma$.

Обчислимо W_{ε} . Згідно рекурсивної процедури разом з id множині W_{ε} належить автоморфізм ε . Далі з ε отримаємо ε^2 , з ε^2 отримаємо ε^2 . Зрозуміло, що більше ніяких автоморфізмів в множині W_{ε} не має. Отже W_{ε} складається з автоморфізмів id, ε та ε^2 .

Обчислимо R_{ε} . Згідно рекурсивної процедури разом з id множині R_{ε} належать автоморфізми id та ε . Далі з ε отримаємо id та ε^2 , з ε^2 отримаємо ε та ε^2 . Зрозуміло, що більше ніяких автоморфізмів в множині R_{ε} не має. Отже R_{ε} складається з автоморфізмів id, ε та ε^2 .

Означення 6. Назвемо автоморфізм $x \in AutT_2$ регулярним, якщо множина R_x - скінченна.

Означення 7. Назвемо автоморфізм $x \in AutT_2$ слабко регулярним, якщо множина W_x -скінченна.

Оскільки W_x належить R_x , то регулярний автоморфізм є слабко регулярним. Згідно з прикладом 1 автоморфізм adding machine ε є регулярним.

Лема 1. Автоморфізм $b\in AutT_2$ є транзитивностабільним тоді, і тільки тоді, коли знайдеться $t\in AutT_2$, такий, що $b=(t,t^{-1}\circ b)\circ\sigma$

Доведення. \Rightarrow Нехай $b=(t,l)\circ\sigma$. Оскільки b - транзитивно-стабільний, то $b=t\circ l$, отже $l=t^{-1}\circ b$.

 $\Leftarrow b=(t,t^{-1}\circ b)\circ \sigma.$ Оскільки $t\circ t^{-1}\circ b=b,$ то b - транзитивно-стабільний.

Теорема 1. Нехай b - транзитивно-стабільний автоморфізм, що задається співвідношенням $b=(t,t^{-1}\circ b)\circ \sigma$. Тоді 0-розв'язком рівняння $\varepsilon^\chi=b$ є автоморфізм, що задається співвідношенням $a=(a,a\circ t)$

Доведення. Зауважимо, що для автоморфізму $a = (a, a \circ t)$

$$...000 * a = ...000$$

Дійсно,

$$x0*(a,b) = (x*a)0$$

Далі маємо

$$\begin{aligned} a^{-1} \circ \varepsilon \circ a &= (a, a \circ t)^{-1} \circ \varepsilon \circ (a, a \circ t) = \\ &= (a^{-1}, t^{-1} \circ a^{-1}) \circ (id, \varepsilon) \circ \sigma \circ (a, a \circ t) = \\ &= (a^{-1}, t^{-1} \circ a^{-1}) \circ (id, \varepsilon) \circ (a \circ t, a) \circ \sigma = \\ &= (t, t^{-1} \circ (a^{-1} \circ \varepsilon \circ a)) \circ \sigma \end{aligned}$$

Оскільки для шарово-транзитивних, а отже і для стабільно-транзитивних автоморфізмів α та β , 0-розв'язок рівняння $\alpha^{\chi}=\beta$ існує і єдиний, то, згідно з зауваженням та отриманною рівністю, автоморфізм $a=(a,a\circ t)$ є 0-розв'язком рівняння $\varepsilon^{\chi}=b$.

Природнім є питання, при яких t автоморфізм $a=(a,a\circ t)$ є скінченно-становим. Умова скінченно-становості автоморфізму t є необхідною. Дійсно, оскільки автоморфізм a є скінченно-становим, то його права проекція $\pi_R(a)=a\circ t$ є скінченно-становим автоморфізмом, і тому автоморфізм

$$t = a^{-1} \circ (a \circ t) = a^{-1} \circ \pi_{R}(a)$$

також ϵ скінченно-становим. Але ця умова не ϵ достатньою. Це показує наступні теорема та приклад:

Теорема 2. Автоморфізм $a=(a,a\circ t)$ є скінченно-становим тоді, і тільки тоді, коли t - регулярний.

Доведення. Нехай $\pi_L(a)$ ліва, а $\pi_R(a)$ - права проекція автоморфізму $a=(a,a\circ t)$. Тоді мають місце рівності:

$$\pi_L(a \circ f) = a \circ \pi_L(f)$$

$$\pi_R(a \circ f) = a \circ (t \circ \pi_R(f))$$

Тобто станами автоморфізму a є автоморфізми вигляду $\{a \circ x | x \in R_t\}$. Тому a є скінченностановим тоді, і тільки тоді, коли множина R_t є скінченною.

Приклад 2. Автоморфізм $a=(a,a\circ 3x)$ не є скінченно-становим.

Покажемо, що множина W_{3x} - нескінченна. Дійсно, вона містить нескінченну кількість автоморфізмів вигляду 3^nx+c_n . Отже автоморфізм x*t=3x є скінченно-становим (зі станами 3x,3x+1,3x+2), але не є слабкорегулярним, тому не є і регулярним. За теоремою 2 автоморфізм $a=(a,a\circ 3x)$ нескінченно-становий.

Наслідком теорем 1 та 2 є наступна теорема:

Теорема 3. Нехай b - транзитивно-стабільний автоморфізм, автоморфізм t - ліва проекція автоморфізма b. Автоморфізми ε та b спряженні в $FAutT_2$ тоді, і тільки тоді, коли t - регулярний.

Далі сформулюємо крітерій скінченностановості для транзитивно-стабільних автоморфізмів.

Теорема 4. Нехай b - транзитивно-стабільний автоморфізм, автоморфізм t - ліва проекція автоморфізма b. Автоморфізм b є скінченностановим тоді, і тільки тоді, коли t - слабко регулярний.

Доведення. Очевидно b та b^{-1} мають однакову кількість станів. Покладемо

$$b' = b^{-1} = (b^{-1} \circ t, t^{-1}) \circ \sigma$$

Кожен стан b' з вершиною, що належить кінцю ...000 має вигляд

$$b' \circ x \mid x \in W_t$$

Якщо множина W_t - скінчена, то інші стани мають вигляд,

$$t^{-1} \circ t_1 \circ \dots \circ t_N$$

(де t_i є підстанами автоморфізму t і кількість доданків обмежена деяким натуральним N, що залежить від $|W_t|$), або є підстанами таких станів.

Отже b є скінченно-становим тоді, і лише тоді, коли множина W_t є скінченою.

Як було зауважено регулярний автоморфізм є слабко регулярним. Цікаво отримати приклад слабко регулярного автоморфізму, який не є

регулярним. Згідно з теоремами 3 та 4 такий автоморфізм дозволяє побудувати приклад скінченно-станового стабільно-транзитивного автоморфізму, що не є спряженим з adding machine в $FAutT_2$. Побудувати слабко регулярний автоморфізм, який не є регулярним дозволяє наступна теорема.

Теорема 5. Скінченно-становий автоморфізм $t=(t_1,t_2)$ є слабко регулярним тоді і тільки тоді, коли автоморфізм t_2 є слабко регулярним. Доведення. Достатньо звернути увагу на те, що:

$$W_t = \{id, t, t \circ t_2, \ldots\} = id \cup \{t \circ x | x \in W_{t_2}\}$$

Тобто множини W_t та W_{t_2} скінченні або нескінченні одночасно.

Приклад 3. Згідно з прикладом 2 автоморфізм $t': x \to 3x$ не є регулярним, автоморфізм id

- 1. Коблиц Н. р-адические числа, р-адический анализ и дзета-функции / Коблиц Н. 1982-190 с.
- 2. Морозов Д.І. Спряженість автоморфізмів, що задаються лінійними функціями в групі скінченностанових автоморфізмів кореневого сферично-однорідного дерева.

 ϵ слабко регулярним. Тому автоморфізм t=(3x,id) ϵ слабко-регулярним автоморфізмом, що не ϵ регулярним.

Маємо приклад двох транзитивностабільних скінченно-станових автоморфізмів не спряженних в $FAutT_2$:

$$\varepsilon = (id, \varepsilon) \circ \sigma$$

$$b = ((3x, id), (\frac{1}{3}x, id) \circ b) \circ \sigma$$

Сформулюємо основний результат:

Перетин множини транзитивно-стабільних автоморфізмів з класом спряженності в групі скінченно-станових автоморфізмів, що містить adding machine, складається з транзитивностабільних автоморфізмів з регулярною лівою проекцією.

- / Вісник Київського ун-ту. Серія: фізикоматематичні науки. 2008.- вип.№1 С. 40-43.
- 3. Морозов Д.І. Централізатори шаровооднорідних автоморфізмів однорідного дерева валентності р.
 - / Вісник Київського ун-ту. Серія: фізикоматематичні науки. 2007.- вип.№4 С.52-54.

D. Morozov

Conjugacy of transitive-stable automorphisms in $FAutT_2$.

The work is devoted to the research of conjugacy of transitive-stable automorphisms of a rooted homogenious tree of valency 2 in a group of finite-state automorphisms of this tree. The intersection of the conjugacy class in this group has been built, containing adding machine automorphism, with the set of transitive-stable automorphisms.

Keywords: rooted tree, tree automorphism, group of finite-state automorphisms, automorphisms conjugacy