

JOHNS HOPKINS

Main Purposes of Interaction

- Tell storyline (usually over time)
 - Time-based playback
 - Sequence of actions based playback
- Allow user to explore data (visual analytics)
 - 700m in on details
 - Create different views into data
 - Change/Filter values
 - Show connections between data (including to other datasets)

Shneiderman's Visualization Mantra

- Overview, zoom & filter, details on demand

Shneiderman's Taxonomy of Information Visualization Tasks

- **1. Overview**: see overall patterns, trends
- 2. Zoom: see a smaller subset of the data
- **3. Filter:** see a subset based on values, etc.
- 4. Detailed on demand: see values of objects when interactively selected
- **5. Relate:** see relationships, compare values
- **6. History**: keep track of actions and insights
- 7. Extract: mark and capture data

Interaction Techniques

- **Filtering**
- 2. Dynamic query
- 3. Selecting
- Direct manipulation 4.
- 5. Brushing
- 6. Details on demand
- Zoom

FILTERING

Filtering

- one of the basic interaction techniques often used in data visualization
- used to limit the amount of displayed information through filter criteria

Filtering

DYNAMIC QUERY

Dynamic Query

- Dynamic queries:
 - o continuously update the data that is filtered from the database
 - users adjusts sliders or select buttons to form simple queries or to find patterns or exceptions
 - work instantly within a few milliseconds
 - applies the principles of direct manipulation to the database
 - allows beginners a faster entrance without having much practice

Engineering for Professionals

- Idea: incremental algorithm
 - only deal with data items that changed state
- When slider moves:
 - Calculate slider delta
 - Search in data structure for data items in the delta region
 - If slider moved inward (filter out):
 - Erase data items from visualization
 - Else slider moved outward (filter in):
 - Draw data items on visualization

Sorted array of the data for each slider

- Need counter for each data item = # sliders that filter it
 - Attribute Explorer visualizes these counters too!
- O(delta)

- Multi-dimensional data structure
 - E.g.: K-d tree, quad-tree, ...
 - Recursively split space, store in tree structure
 - Enables fast range search, O()

- Multi-dimensional data structure
 - E.g.: K-d tree, quad-tree, ...
 - Recursively split space, store in tree structure

SELECTING

Basic Interaction Techniques

- Selecting
 - Mouse click
 - Mouseover / hover / tooltip

2010

300K ∰ 200K

300K ₩ 200K

300K

뽍 200K

- Lasso / drag
- Rearrange
 - Move
 - Sort
 - Delete

Selecting

Pop-up tooltips

Hovering mouse cursor brings up details of item

Mouse Selection

Slide adapted from John Stasko

Selecting

In TableLens you can move columns (attributes) left and right

Slide adapted from John Stasko

Sorting

Can sort data with respect to a particular attribute in Table Lens

DIRECT MANIPULATION

Direct Manipulation

- Direct manipulation
 - allows people to feel that they are directly controlling the objects represented by the computer.
 - an object on the screen remains visible while a user performs physical actions on the object.
 - when the user performs operations on the object, the impact of those operations on the object is immediately visible.

Direct Manipulation

© The Johns Hopkins University 2016, All Rights Reserved.