CLAIMS

Now, therefore, the following is claimed:

1	1. A system for tracking vehicles, comprising:
2	means for receiving data identifying a particular location from a user interface
3	device;
4	means for automatically translating said received data received into a set of
5	location values;
6	means for storing said set of location values;
7	means for monitoring travel data associated with a vehicle based upon location
8	values produced by a location sensor coupled to said vehicle;
9	means for comparing said set of said location values produced by said location
10	sensor to said set of stored location values;
11	means for determining when said vehicle is within a predefined proximity of said
12	particular location; and
13	means for causing a notification communication to be transmitted to a user
14	communications device in response to a determination that said vehicle is within said
15	predefined proximity of said particular location.
1	2. The system of claim 1, further comprising means for displaying, via said
2	user interface, a map including symbols representing various locations, said particular
3	location associated with one of the symbols.
1	3. The system of claim 2, further comprising means for transmitting data
2	defining said map across the Internet to said user interface.
1	4. The system of claim 2, further comprising:
2	means for selecting said symbol associated with said particular location; and
3	means for transmitting said data identifying said particular location.

1	5. A system for tracking vehicles, comprising:
2	means for receiving data identifying a plurality of locations;
3	means for automatically defining a plurality of routes based on said data
4	identifying a plurality of locations;
5	means for associating each of said plurality of locations with one of said routes;
6	means for automatically translating said data identifying said plurality of locations
7	into location values;
8	means for storing a set of said location values, said set of location values
9	identifying a particular location;
10	means for monitoring travel of a vehicle based on location values produced by a
11	location sensor coupled to said vehicle;
12	means for comparing said set of said location values produced by said location
13	sensor to said set of stored location values;
14	means for determining when said vehicle is within a predefined proximity of said
15	particular location; and
16	means for causing a notification message to be transmitted to a user
17	communications device in response to a determination in said determining step that said
18	vehicle is within said predefined proximity of said particular location.
	$oldsymbol{\epsilon}$
1	6. The system of claim 5, further comprising:
2	means for displaying a map including at least one symbol, said one symbol
3	representing said location; and
4	means for enabling a user to select said one symbol,
5	wherein said received data includes data transmitted in response to a user
6	selection of said one symbol.

1	7. A method for a notification computer system, comprising the steps of:
2	displaying a map to a party;
3	enabling the party to identify one or more locations or one or more regions on the
4	map;
5	monitoring travel data associated with travel status of a mobile vehicle; and
6	causing a notification communication to a party communications device that is
7	remote from the notification computer system based upon the travel status in relation to
8	the identified locations or regions.
1	8. The method of claim 7, further comprising the step of providing the map
2	to the party over the Internet.
1	9. The method of claim 7, further comprising the step of commencing the
2	causing step when the vehicle has reached or is in a predefined proximity of the identified
3	one or more locations or one or more regions.
1	10. The method of claim 7, further comprising the step of disposing the
2	notification computer system on the mobile vehicle.
1	11. The method of claim 7, further comprising the step of disposing the
2	notification computer system at a location that is remote from the mobile vehicle and the
3	party communications device.
1	12. The method of claim 7, further comprising the step of providing another
2	map to the party communications device during the notification communication and
3	indicating on the map a location of the mobile vehicle.
1	13. The method of claim 7, further comprising the step of enabling the party to
2	enter a location where a delivery or pickup is to take place.

- 1 14. The method of claim 7, further comprising the step of generating the travel 2 data based upon checkpoint locations to be traversed by the mobile vehicle.
- 1 15. The method of claim 7, further comprising the step of providing a message 2 during the notification communication, the message indicative of the travel status of the 3 mobile vehicle.
 - 16. The notification computer system that implements the steps of claim 7.
- 1 17. The method of claim 9, wherein the predefined proximity is based upon a location, distance, or time.

1