UNIT IV TUTORIAL 2

Answer all the questions

PART B

1. Find $F_s(e^{-5x} \sin 2x)$

2. Find $F_s(e^{-5x}\cos 2x)$

3. Find F_c (e^{-5x} sin2x)

4. Find $F_c(e^{-5x}\cos 2x)$

5. Find $F_s(xe^{-5x})$ and $F_c(xe^{-5x})$

6. State convolution of two functions in Fourier transforms.

7. If $F_c(e^{-a^2x^2}) = \frac{1}{a\sqrt{2}}e^{-\frac{s^2}{4a^2}}$, Find $F_c(e^{-9a^2x^2})$ using change of scale property.

PART C

8. Find $F_s(e^{-ax})$ and $F_c(e^{-ax})$ and hence derive the inversion formula.

9. Find $F_c(e^{-a^2x^2})$ and hence find If $F_s(xe^{-a^2x^2})$.

10. Find $F_s(\frac{e^{-ax}}{x})$ and use it to evaluate $\int_0^\infty tan^{-1}(\frac{x}{a}) \sin x \, dx$.

11.State and prove convolution theorem in fourier transforms.

12. Find the function if its sine transform is $\frac{e^{-as}}{s}$.

13. Find $F_c(\frac{1}{1+x^2})$.

14.Prove that $F_s(xf(x)) = -\frac{d}{ds}(F_c(s))$ and $F_c(xf(x)) = \frac{d}{ds}(F_s(s))$

UNIT IV TUTORIAL 3

Answer all the questions

PART B

- 1. Prove that $F(x^n f(x)) = (-i)^n \frac{d^n}{ds^n} (F(s))$.
- 2. Prove that $F(f^n(x)) = (-is)^n F(s)$.
- 3. StateParseval's identity for both sine and cosine transforms.

4. If
$$F_c(e^{-a^2x^2}) = \frac{1}{a\sqrt{2}}e^{-\frac{s^2}{4a^2}}$$
, find $F_s(f'(x))$ and $F_c(f''(x))$.

5. If $f(x) = e^{-3|x|}$, find $F(xe^{-3|x|})$ and $F(x^2e^{-3|x|})$.

PART C

- 6. $f(x) = \begin{cases} a |x|, & |x| < a \\ 0, & otherwise \end{cases}$, find the value of $\int_0^\infty \left(\frac{\sin t}{t}\right)^4 dt$.
- 7. Using Parseval's identity evaluate $\int_0^\infty \left(\frac{1}{x^2+a^2}\right) \left(\frac{1}{x^2+b^2}\right) dx$ and $\int_0^\infty \frac{x^2}{(x^2+a^2)^2} dx$
- 8. Solve the integral equation $\int_0^\infty f(x) \cos \alpha x \, dx = \begin{cases} 1-\alpha, & 0 \le \alpha \le 1 \\ 0, & \alpha > 1 \end{cases}$.
- 9. Solve the integral equation $\int_0^\infty f(x) \cos \alpha x \, dx = e^{-\alpha}$
- 10. Solve for f(x) if $\int_0^\infty f(x) \sin x \, dx = \begin{cases} 1, & 0 \le s < 1 \\ 2, & 1 \le s < 2. \\ 0, & s \ge 2 \end{cases}$
- 11 .Prove that $e^{-\frac{x^2}{2}}$ is self reciprocal under Fourier transforms.
- 12. Find the Fourier sine and cosine transforms of x^{n-1} and hence show that $\frac{1}{\sqrt{x}}$ is self reciprocal under both the transforms.
- 13. Find the Fourier transform of e^{-2x^2} and hence find $F(e^{-2(x-3)^2})$ and $F(e^{-2x^2}\cos 3x)$.

ANSWERS FOR THE QUESTIONS IN TUTORIAL 2.

1.
$$F_s(e^{-5x}\sin 2x) = \frac{1}{2} \{F_c(s-2) - F_c(s+2)\} = \frac{1}{2} \{\frac{\sqrt{2}}{\sqrt{\pi}} \frac{5}{(s-2)^2 + 25} - \frac{\sqrt{2}}{\sqrt{\pi}} \frac{5}{(s+2)^2 + 25} \}$$

2.
$$F_s(e^{-5x}\cos 2x) = \frac{1}{2} \{F_s(s+2) + F_s(s-2)\} = \frac{1}{2} \{\frac{\sqrt{2}}{\sqrt{\pi}} \frac{s+2}{(s+2)^2+25} + \frac{\sqrt{2}}{\sqrt{\pi}} \frac{s-2}{(s-2)^2+25} \}$$

3.
$$F_c(e^{-5x}\sin 2x) = \frac{1}{2} \{F_s(s+2) - F_s(s-2)\} = \frac{1}{2} \{\frac{\sqrt{2}}{\sqrt{\pi}} \frac{s+2}{(s+2)^2+25} + \frac{\sqrt{2}}{\sqrt{\pi}} \frac{s-2}{(s-2)^2+25} \}$$

4.
$$F_c(e^{-5x}\cos 2x) = \frac{1}{2} \left\{ F_c(s+2) + F_c(s-2) \right\} = \frac{1}{2} \left\{ \frac{\sqrt{2}}{\sqrt{\pi}} \frac{5}{(s+2)^2 + 25} + \frac{\sqrt{2}}{\sqrt{\pi}} \frac{5}{(s-2)^2 + 25} \right\}$$

7.
$$F_c(e^{-(3a)^2x^2}) = \frac{1}{3}F(\frac{s}{3}) = \frac{1}{3}\frac{1}{a\sqrt{2}}e^{-\frac{s^2}{36a^2}}$$

9.
$$F_c(e^{-a^2x^2}) = \frac{1}{a\sqrt{2}}e^{-\frac{s^2}{4a^2}}$$
 and $F_s(xe^{-a^2x^2}) = \frac{s}{2\sqrt{2}a^2}e^{-\frac{s^2}{4a^2}}$

10.
$$F_s(\frac{e^{-ax}}{x}) = \frac{\sqrt{2}}{\sqrt{\pi}} tan^{-1}(\frac{s}{a})$$
 and $\int_0^\infty tan^{-1}(\frac{s}{a}) \sin x \, dx = \frac{\pi}{2} e^{-a}$

12.
$$F^{-1}(\frac{e^{-as}}{s}) = \frac{\sqrt{2}}{\sqrt{\pi}} tan^{-1}(\frac{x}{a})$$
.

13.
$$F_c(\frac{1}{1+x^2}) = \frac{\sqrt{\pi}}{\sqrt{2}}e^{-s}$$

ANSWERS FOR THE QUESTIONS IN TUTORIAL 3

4.
$$F_c(e^{-a^2x^2}) = \frac{1}{a\sqrt{2}}e^{-\frac{s^2}{4a^2}}$$

$$F_s(f'(x)) = -s \frac{1}{a\sqrt{2}} e^{-\frac{s^2}{4a^2}}$$
 and $F_c(f''(x)) = -s^2 F_c(s) - \frac{\sqrt{2}}{\sqrt{\pi}} f'(0) = -s^2 \frac{1}{a\sqrt{2}} e^{-\frac{s^2}{4a^2}}$

5. If
$$f(x)=e^{-3|x|}$$
, then $F(e^{-3|x|})=\frac{1}{\sqrt{2\pi}}\frac{6}{9+s^2}$

$$F(xe^{-3|x|}) = \frac{i}{\sqrt{2\pi}} \frac{12s}{(9+s^2)^2}$$
 and $F(x^2e^{-3|x|}) = \frac{1}{\sqrt{2\pi}} \frac{108-36s^2}{(9+s^2)^3}$

6.
$$\int_0^\infty (\frac{\sin t}{t})^4 dt = \frac{\pi}{3}$$

7.
$$\int_0^\infty \left(\frac{1}{x^2+a^2}\right) \left(\frac{1}{x^2+b^2}\right) dx = \frac{\pi}{2ab(a+b)}$$
 and $\int_0^\infty \frac{x^2}{(x^2+a^2)^2} dx = \frac{\pi}{4a}$

8.
$$f(x) = \frac{4\sin^2(\frac{x}{2})}{\pi x^2}$$

9.
$$f(x) = \frac{2}{\pi} \frac{1}{1+x^2}$$

10 .f(x)=
$$\frac{2}{\pi} \frac{1 + \cos x - 2\cos 2x}{x}$$

13.
$$F(e^{-2x^2}) = \frac{1}{2} e^{-\frac{s^2}{8}}$$
.

$$F(e^{-2(x-3)^2}) = \frac{e^{i3s}}{\sqrt{2}} e^{-\frac{s^2}{8}} \text{ and } F(e^{-2x^2}\cos 3x) = \frac{1}{2} \left[\frac{1}{2} e^{-\frac{(s+2)^2}{8}} - \frac{1}{2} e^{-\frac{(s-3)^2}{8}} \right].$$