Mid Semester Examination

Name of the Program: MCA

Semester: 3 Course Code: TMC302

Name of the Course: Automata Theory and Compiler Construction

Time: 1-1/2 Hour

Maximum Marks: 50

Note:

(i) Answer all the questions by choosing any one of the sub questions.

(ii) Each question carries 10 marks

(a)	(10 marks)						
876	Explain the term finite automata? How many types of finite automata? Explain with Suitable example.					COI	
			OR				
(b)	Design a DFA for the following language: (i) L= (ab U aba)* (ii) L= {a ⁿ b ^m m,n > 1} (iii) L= {a ⁿ b ^m m,n is an even number}						
Q2				(1	0 marks)		
(a)	Discuss and differentiate between moore and mealy machine. Design a moore machine which calculates a 1's compliments of binary number.					C01	
			OR				
(b)	Convert the following mealy machine into equivalent moore machine:						
		J/P a	O/P	И Р Ь	O/P		
	q0	q3	0	ql	1		
v	ql	9 0	1	q3	0		
	q2	q2	1	q2	0		
	gs	q1	0	q0	1,		
Q3				<u></u>	0 marks)		
CTP (250) 2	Construct the minimized DFA for the following NFA: $ \begin{array}{cccccccccccccccccccccccccccccccccc$						CO2
(a)	Construct the minin	0		→ (P))) <u>2</u>		
	→ (B)	° >(€	1 1 1 OR	→ (₹2)	2 NFA with	empty move:	
(a) (b)	Find out the NFA w	° >(€	1 1 1 OR	→ (₹2)	NFA with	empty move:	
	→ (B)	° >(€	1 1 OR nove for the	Following		empty move:	
(b) 24	Find out the NFA w	ithout empty r	1 1 OR nove for the	e following	marks)	empty move:	
(b)	→ (B)	ithout empty r	1 1 OR nove for the	e following	marks)	empty move:	CO2

(b)	Find the regular expression corresponding to the DFA:				
	6 0 1 2 63 00,1				
Q5	(10 marks)				
(a)	What do you mean by Pumping Lemma? Show that the language $L=\{ww^R \mid w \in (0,1)^* \}$ is not a regular language.				
2.2	OR				
(b)	Find the regular expression over $\Sigma = \{a, b\}$ for the following languages: (i) $L = \{b^m a b^n \mid m, n \geq 0\}$				

ofe for the question paper setters: (Assuming two units are covered)

Question paper should have questions from both the units covering the related COs

Sub questions (a) and (b) can be further divided if required