

A NOTE ON THE VERY AMPLENES OF COMPLETE LINEAR SYSTEMS ON BLOWINGS-UP OF \mathbb{P}^3

CINDY DE VOLDER AND ANTONIO LAFACE

ABSTRACT. In this note we consider the blowing-up X of \mathbb{P}^3 along r general points of the anticanonical divisor of a smooth quadric in \mathbb{P}^3 . Given a complete linear system $\mathcal{L} = |dH - m_1E_1 - \dots - m_rE_r|$ on X , with H the pull-back of a plane in \mathbb{P}^3 and E_i the exceptional divisor corresponding to P_i , we give necessary and sufficient conditions for the very ampleness (resp. base point freeness and non-speciality) of \mathcal{L} . As a corollary we obtain a sufficient condition for the very ampleness of such a complete linear system on the blowing-up of \mathbb{P}^3 along r general points.

1. INTRODUCTION

In this note we work over an algebraically closed field of characteristic 0.

Let P_1, \dots, P_r be general points of the anticanonical divisor of a smooth quadric in \mathbb{P}^3 and choose some integers $m_1 \geq \dots \geq m_r \geq 0$. Consider the linear system \mathcal{L}' of surfaces of degree d in \mathbb{P}^3 having multiplicities at least m_i at P_i , for all $i = 1, \dots, r$. Let X denote the blowing-up of \mathbb{P}^3 alongs P_1, \dots, P_r , and let \mathcal{L} denote the complete linear system on X corresponding to \mathcal{L}' .

and the system is called *special* if $\dim(\mathcal{L}) > \max\{-1, \text{vdim}(\mathcal{L})\}$.

Let Z be a zero-dimensional subscheme of length 2 of X , then \mathcal{L} separates Z if there exists a divisor $D \in \mathcal{L}$ such that $Z \cap D \neq \emptyset$ but $Z \not\subset D$. The system \mathcal{L} on X is called very ample if it separates all such Z .

The very ampleness of line bundles of blowings-up of varieties has been studied by several authors, e.g. Stéphane Chauvin and the first author [2], Marc Coppens [3, 4], Brian Harbourne [8], Mauro C. Beltrametti and Andrew J. Sommese [1].

In theorem 5.1 (resp. theorem 4.1) we prove that such a system \mathcal{L} is very ample (resp. base point free) on X if and only if $m_r > 0$, $d \geq m_1 + m_2 + 1$ and $4d \geq m_1 + \dots + m_r + 3$ (resp. $d \geq m_1 + m_2$ and $4d \geq m_1 + \dots + m_r + 2$). A fundamental tool for proving these results is theorem 3.1 which states that a system \mathcal{L} with $2d \geq m_1 + \dots + m_4$ is non-special if $d \geq m_1 + m_2 - 1$ and $4d \geq m_1 + \dots + m_r$.

If $r \leq 8$, the points P_i are in general position on \mathbb{P}^3 and the dimension and base locus of \mathcal{L} on X can be determined using the results from [5, 6].

The techniques used in this note are a generalization of the ones in [5, 6] and make use of the results about complete linear systems on rational surfaces with irreducible anticanonical divisor (see [7, 8]).

2. PRELIMINARIES AND NOTATION

Let $\mathcal{L}_3(d)$ denote the complete linear system of surfaces of degree d in \mathbb{P}^3 . Consider a general quadric $\bar{Q} \in \mathcal{L}_3(2)$ in \mathbb{P}^3 and let $K_{\bar{Q}}$ denote the canonical class on \bar{Q} . Then we know that $-K_{\bar{Q}}$ is just the linear system on \bar{Q} induced by $\mathcal{L}_3(2)$, so we can consider $D_{\bar{Q}} \in -K_{\bar{Q}}$ which is smooth and irreducible.

Let P_1, \dots, P_r be general points of $D_{\bar{Q}}$ and choose integers $m_1 \geq \dots \geq m_r \geq 0$. By X_r we denote the blowing-up of \mathbb{P}^3 along the points P_1, \dots, P_r , E_0 denotes the pullback of a plane in \mathbb{P}^3 , by E_i ($i = 1, \dots, r$) we mean the exceptional divisor on X_r corresponding to P_i and $\pi : X_r \rightarrow \mathbb{P}^3$ denotes the projection map.

On \mathbb{P}^3 , we let $\mathcal{L}_3(d; m_1, \dots, m_r)$ denote the linear system of surfaces of degree d with multiplicities at least m_i at P_i for all $i = 1, \dots, r$ as well as the corresponding sheaf.

By abuse of notation, on X_r , $\mathcal{L}_3(d; m_1, \dots, m_r)$ also denotes the invertible sheaf $\pi^*(\mathcal{O}_{\mathbb{P}^3}(d)) \otimes \mathcal{O}_{X_r}(-m_1E_1 - \dots - m_rE_r)$ and the corresponding complete linear system $|dE_0 - m_1E_1 - \dots - m_rE_r|$.

Analogously, on \mathbb{P}^3 , $\mathcal{L}_3(d; m_1^{n_1}, \dots, m_t^{n_t})$ denotes the linear system of surfaces of degree d with multiplicities at least m_i at n_i of the points on D_Q as well as the corresponding sheaf. Again, the same notation is used to denote the associated complete linear system and invertible sheaf on X_r .

The virtual dimension of the linear system $\mathcal{L} = \mathcal{L}_3(d; m_1, \dots, m_r)$ on \mathbb{P}^3 as well as on X_r is defined as

$$\text{vdim}(\mathcal{L}) := \binom{d+3}{3} - \sum_{i=1}^r \binom{m_i+2}{3} - 1.$$

The expected dimension of \mathcal{L} is then given by

$$\text{edim}(\mathcal{L}) := \max\{-1, \text{vdim}(\mathcal{L})\}.$$

It is then clear that $\dim(\mathcal{L}) \geq \text{edim}(\mathcal{L}) \geq \text{vdim}(\mathcal{L})$, and the system \mathcal{L} is called *special* if $\dim(\mathcal{L}) > \text{edim}(\mathcal{L})$. The system \mathcal{L} is associated to the sections of the sheaf $\mathcal{O}_{\mathbb{P}^n}(d) \otimes \mathcal{I}_Z$, where $Z = \sum m_i p_i$ is the zero-dimensional scheme of fat points. From the cohomology exact sequence associated to

$$0 \longrightarrow \mathcal{L} \longrightarrow \mathcal{O}_{\mathbb{P}^n}(d) \longrightarrow \mathcal{O}_Z \longrightarrow 0,$$

we obtain that $h^i(\mathcal{L}) = 0$ for $i = 2, 3$. Therefore $v(\mathcal{L}) = h^0(\mathcal{L}) - h^1(\mathcal{L}) - 1$, so that a non-empty system is special if and only if $h^1(\mathcal{L}) > 0$.

Note that the strict transform Q_r of \bar{Q} on X_r is a divisor of $\mathcal{L}_3(2; 1^r)$, and Q_r is just the blowing-up of \bar{Q} along P_1, \dots, P_r . So $\text{Pic}(Q_r) = \langle f_1, f_2, e_1, \dots, e_r \rangle$, with f_1 and f_2 the pullbacks of the two rulings on \bar{Q} and e_1, \dots, e_r the exceptional curves. By $\mathcal{L}_{Q_r}(a, b; m_1, \dots, m_r)$ we denote the complete linear system $|af_1 + bf_2 - m_1e_1 - \dots - m_re_r|$, and, as before, if some of the multiplicities are the same, we also use the notation $\mathcal{L}_{Q_r}(a, b; m_1^{n_1}, \dots, m_t^{n_t})$.

Let B_s be the blowing-up of \mathbb{P}^2 along s general points of a smooth irreducible cubic, then $\text{Pic } B_s = \langle h, e'_1, \dots, e'_s \rangle$, with h the pullback of a line and e'_l the exceptional curves. By $\mathcal{L}_2(d; m_1, \dots, m_s)$ we denote the complete linear system $|dh - m_1e'_1 - \dots - m_se'_s|$. And again, as before, if some of the multiplicities are the same, we

also use the notation $\mathcal{L}_2(d; m_1^{n_t}, \dots, m_r^{n_t})$. Note that $-K_{B_s} = \mathcal{L}_2(3; 1^s)$ contains a smooth irreducible divisor which we will denote by D_{B_s} .

On B_s , a system $\mathcal{L}_2(d; m_1, \dots, m_s)$ is said to be in standard form if $d \geq m_1 + m_2 + m_3$ and $m_1 \geq m_2 \geq \dots \geq m_s \geq 0$; and it is called standard if there exists a base $\langle \tilde{h}, \tilde{e}_1, \dots, \tilde{e}_s \rangle$ of $\text{Pic } B_s$ such that $\mathcal{L}_2(d; m_1, \dots, m_s) = |\tilde{d}\tilde{h} - \tilde{m}_1\tilde{e}_1 - \dots - \tilde{m}_s\tilde{e}_s|$ is in standard form.

As explained in [5, §6], the blowing-up Q of the quadric along 1 general point can also be seen as a blowing-up of the projective plane along 2 general points, and

$$\mathcal{L}_Q(a, b; m) = \mathcal{L}_2(a + b - m; a - m, b - m).$$

So, in particular $-K_Q = \mathcal{L}_Q(2, 2; 1) = \mathcal{L}_2(3; 1^2) = -K_{B_2}$. Obviously, this means that our blowing-up Q_r can also be seen as a B_{r+1} and

$$\mathcal{L}_{Q_r}(a, b; m_1, m_2, \dots, m_r) = \mathcal{L}_2(a + b - m_1; a - m_1, b - m_1, m_2, \dots, m_r).$$

This implies in particular that we can apply the results from [7] and [8].

3. NON-SPECIALITY

Theorem 3.1. *Consider $\mathcal{L} = \mathcal{L}_3(d; m_1, \dots, m_r)$ on X_r with $2d \geq m_1 + m_2 + m_3 + m_4$ and $m_1 \geq m_2 \geq \dots \geq m_r \geq 0$. Then $h^1(\mathcal{L}) = 0$ if*

- (1) $d \geq m_1 + m_2 - 1$ and
- (2) $4d \geq m_1 + \dots + m_r$ if $r \geq 9$.

Proof. We will assume that $m_r > 0$, since otherwise we can work on $X_{r'}$ with $r' := \max\{i : m_i > 0\}$. If $r \leq 8$ then the points P_1, \dots, P_r are general points of \mathbb{P}^3 and the statement follows from [5, Theorem 5.3]. So we assume that $r \geq 9$ and consider the following exact sequence

$$0 \longrightarrow \mathcal{L}_3(d-2; m_1-1, \dots, m_r-1) \longrightarrow \mathcal{L} \longrightarrow \mathcal{L} \otimes \mathcal{O}_{Q_r} \longrightarrow 0$$

Then $\mathcal{L} \otimes \mathcal{O}_{Q_r} = \mathcal{L}_{Q_r}(d, d; m_1, \dots, m_r) = \mathcal{L}_2(2d - m_1; (d - m_1)^2, m_2, \dots, m_r)$. Proceeding as in the proof of [5, Lemma 5.2] it is easily seen that this is a standard class. Moreover $\mathcal{L}_2(2d - m_1; (d - m_1)^2, m_2, \dots, m_r).K_{B_{r+1}} = -4d + m_1 + \dots + m_r \leq 0$, so we can apply [7, Theorem 1.1 and Proposition 1.2] to obtain $h^1(\mathcal{L} \otimes \mathcal{O}_{Q_r}) = 0$. On the other hand, one can easily check that $\mathcal{L}' := \mathcal{L}_3(d-2; m_1-1, \dots, m_r-1)$ still satisfies the conditions of the theorem. Continuing like this until the residue class $\mathcal{L}' = \mathcal{L}_3(d'; m'_1, \dots, m'_{r'})$ is such that $r' \leq 8$. For this class we then know that $h^1(\mathcal{L}') = 0$ which gives us that $h^1(\mathcal{L}) = 0$. \square

4. BASE POINT FREENESS

Theorem 4.1. *Consider $\mathcal{L} = \mathcal{L}_3(d; m_1, \dots, m_r)$ on X_r with $m_1 \geq m_2 \geq \dots \geq m_r$. Then \mathcal{L} is base point free on X_r if and only if the following conditions are satisfied*

- (1) $m_r \geq 0$,
- (2) $d \geq m_1 + m_2$ and
- (2) $4d \geq m_1 + \dots + m_r + 2$ if $r \geq 8$.

Proof. First of all let us prove that the conditions are necessary. Obviously, if $m_r < 0$ then $m_r E_r \subset \text{Bs}(\mathcal{L})$; and if $d < m_1 + m_2$ then the strict transform of the line through P_1 and P_2 is contained in $\text{Bs}(\mathcal{L})$. Now assume that (1) and (2) are satisfied, but $4d \leq m_1 + \dots + m_r + 1$ and consider

$$0 \longrightarrow \mathcal{L}_3(d-2; m_1-1, \dots, m_r-1) \longrightarrow \mathcal{L} \longrightarrow \mathcal{L} \otimes \mathcal{O}_{Q_r} \longrightarrow 0 \quad (1)$$

Proceeding as before, one can check that $\mathcal{L} \otimes \mathcal{O}_{Q_r} = \mathcal{L}_2(2d-m_1; (d-m_1)^2, m_2, \dots, m_r)$ is standard and $\mathcal{L}_2(2d-m_1; (d-m_1)^2, m_2, \dots, m_r).(-K_{B_{r+1}}) = 4d - m_1 - \dots - m_r \leq 1$. Using the results from [7], we obtain that $\mathcal{L} \otimes \mathcal{O}_{Q_r}$ has base points, which will also be base points of \mathcal{L} .

Now assume that all three conditions are satisfied (as before, we may even assume $m_r > 0$). If $r \leq 8$, the result follows from [6, Theorem 6.2], so we assume that $r \geq 9$ and that the result holds for $r' < r$. Consider the exact sequence (1). As before, one can see that $\mathcal{L} \otimes \mathcal{O}_{Q_r} = \mathcal{L}_2(2d-m_1; (d-m_1)^2, m_2, \dots, m_r)$ is standard and since $\mathcal{L}_2(2d-m_1; (d-m_1)^2, m_2, \dots, m_r).K_{B_{r+1}} \leq -2$ we know that $\mathcal{L} \otimes \mathcal{O}_{Q_r}$ is base point free (see [7, Lemma 3.3(2)]). Also, because of theorem 3.1, we know that $h^1(\mathcal{L}_3(d-2; m_1-1, \dots, m_r-1)) = 0$, so \mathcal{L} induces the complete linear system $\mathcal{L} \otimes \mathcal{O}_{Q_r}$ on Q_r , which means in particular that \mathcal{L} has no base points on Q_r . On the other hand it is easily checked that $\mathcal{L}_3(d-2; m_1-1, \dots, m_r-1)$ still satisfies the conditions of the theorem. Continue like this until you have $r' < r$ for the residue class (i.e. repeat this reasoning m_r times). Denote $\mathcal{L}_3(d-2m_r; m_1-m_r, \dots, m_{r-1}-m_r)$ by \mathcal{L}' . We then know that $\mathcal{L}' + mQ_r \subset \mathcal{L}$. Since \mathcal{L} has no base points on Q_r , and since \mathcal{L}' is base point free by our induction hypothesis, we obtain that $\text{Bs}(\mathcal{L}) = \emptyset$. \square

5. VERY AMPLENESS

Theorem 5.1. *Consider $\mathcal{L} = \mathcal{L}_3(d; m_1, \dots, m_r)$ on X_r with $m_1 \geq m_2 \geq \dots \geq m_r$. Then \mathcal{L} is very ample on X_r if and only if the following conditions are satisfied*

- (1) $m_r > 0$,
- (2) $d \geq m_1 + m_2 + 1$ ($d \geq m_1 + 1$ if $r = 1$; $d \geq 1$ if $r = 0$) and
- (2) $4d \geq m_1 + \dots + m_r + 3$ if $r \geq 9$.

Proof. First of all let us note that the conditions are necessary. Obviously, if $m_r \leq 0$ then \mathcal{L} cannot separate on E_r ; and if $d \leq m_1 + m_2$ then \mathcal{L} cannot separate a zero-dimensional subscheme Z of length 2 of the strict transform of the line through P_1 and P_2 . In case $4d \leq m_1 + \dots + m_r + 2$, one can see that \mathcal{L} cannot separate Z if it is contained in D_{Q_r} .

Now assume that all three conditions are satisfied.

First of all consider the exact sequence

$$0 \longrightarrow \mathcal{L}_3(d; m_1+1, m_2, \dots, m_r) \longrightarrow \mathcal{L} \longrightarrow \mathcal{L} \otimes \mathcal{O}_{E_1} \longrightarrow 0$$

Because of Theorem 3.1 we know that $h^1(\mathcal{L}_3(d; m_1+1, m_2, \dots, m_r)) = 0$, so \mathcal{L} induces the complete linear system $\mathcal{L} \otimes \mathcal{O}_{E_1}$ on E_1 . Since $\mathcal{L} \otimes \mathcal{O}_{E_1} = \mathcal{L}_2(m_1)$, we see that \mathcal{L} separates on E_1 . Naturally, a similar reasoning can be done for any E_i , so \mathcal{L} separates on every E_i .

Moreover, one can easily check that $\mathcal{L}(E_i) := \mathcal{L}_3(d; m_1, \dots, m_{i-1}, m_i + 1, m_{i+1}, \dots, m_r)$ satisfies all the conditions of Theorem 4.1, so that $\mathcal{L}(E_i)$ is base point free on X_r . This means that \mathcal{L} can separate Z if $\exists i : Z \cap E_i \neq \emptyset$ but $Z \not\subset E_i$.

Combining the previous two results, we see that we now only need to show that \mathcal{L} separates Z with $Z \cap E_i = \emptyset$ for all $i = 1, \dots, r$.

In case $r = 0, 1$ or 2 , this is trivial.

Now let us assume that $r \geq 3$ and that the statement holds for $r' < r$.

First look at the case where $m_r = 1$ and consider the exact sequence

$$0 \longrightarrow \mathcal{L}_3(d-2; m_1 - 1, \dots, m_{r-1} - 1, 0) \longrightarrow \mathcal{L} \longrightarrow \mathcal{L} \otimes \mathcal{O}_{Q_r} \longrightarrow 0$$

Proceeding as before, one can easily see that $\mathcal{L} \otimes \mathcal{O}_{Q_r}$ is standard. Moreover, $4d - m_1 - \dots - m_r \geq 3$ (if $r \geq 9$ this is condition (3) and if $3 \leq r \leq 8$ this follows from (2)), so [8, Theorem 2.1] implies that $\mathcal{L} \otimes \mathcal{O}_{Q_r}$ is very ample. Since $h^1(\mathcal{L}_3(d-2; m_1 - 1, \dots, m_{r-1} - 1)) = 0$ (because of Theorem 3.1) we then obtain that \mathcal{L} separates on Q_r . Using Theorem 4.1 we also obtain that $\mathcal{L}' := \mathcal{L}_3(d-2; m_1 - 1, \dots, m_{r-1} - 1, 0)$ is base point free, which implies that \mathcal{L} separates Z if $Z \cap Q_r \neq \emptyset$. Let $r' = \max\{i : m_i > 1\}$ (or $r' = 0$ if all $m_i = 1$), then one can easily check that \mathcal{L}' satisfies all the conditions of the theorem on $X_{r'}$. So, using the induction hypothesis, we have that \mathcal{L}' is very ample on $X_{r'}$. But since Z on X_r is disjoint with all E_i , Z corresponds with a zero-dimensional subscheme on $X_{r'}$ (also disjoint with all E_i). So we may conclude that \mathcal{L} separates any Z .

Now we assume $m_r > 1$ and we assume that the statement holds for $m'_r < m_r$. Consider the exact sequence

$$0 \longrightarrow \mathcal{L}_3(d-2; m_1 - 1, \dots, m_r - 1) \longrightarrow \mathcal{L} \longrightarrow \mathcal{L} \otimes \mathcal{O}_{Q_r} \longrightarrow 0$$

Proceeding similarly as for the case $m_r = 1$ one can easily see that \mathcal{L} separates all Z . \square

Remark 5.2. One can also use Theorem 4.1 and [1, Theorem 2.1] to obtain a very ampleness result. However in this way only part of the complete class of very ample systems on X_r are obtained.

Remark 5.3. Let A_1, \dots, A_r be general points on \mathbb{P}^3 , let Y_r be the blowing-up of \mathbb{P}^3 along those r general points and let $\mathcal{L}_3(d; m_1, \dots, m_r)$ ($m_1 \geq m_2 \geq \dots \geq m_r$) denote the complete linear system $|dE_0 - m_1E_1 - \dots - m_rE_r|$ on Y_r . Since the very ampleness is an open property, Theorem 5.1 implies that $\mathcal{L}_3(d; m_1, \dots, m_r)$ is very ample on Y_r if $m_r > 0$, $d \geq m_1 + m_2 + 1$ ($d \geq m_1 + 1$ if $r = 1$; $d \geq 1$ if $r = 0$) and $4d \geq m_1 + \dots + m_r + 3$ if $r \geq 9$. Of course the third condition will now no longer be a necessary condition.

REFERENCES

- [1] Mauro C. Beltrametti and Andrew J. Sommese. Notes on Embeddings of Blowups. *J. Alg.*, 186:861–871, 1996.
- [2] Stéphane Chauvin and Cindy De Volder. Some very ample and base point free linear systems on generic rational surfaces. *Math. Nachr.*, 245:45–66, 2002.
- [3] Marc Coppens. Very ample linear systems on blowings-up at general points of projective spaces. *Canad. Math. Bull.*, 45(3):349–354, 2002.
- [4] Marc Coppens. Very ample linear systems on blowings-up at general points of smooth projective varieties. *Pacific J. Math.*, 202(2):313–327, 2002.

- [5] Cindy De Volder and Antonio Laface. On linear systems of \mathbb{P}^3 through multiple points. *Preprint*, math.AG/0311447, 2003.
- [6] Cindy De Volder and Antonio Laface. Base locus of linear systems on the blowing-up of \mathbb{P}^3 along at most 8 general points. *Preprint*, math.AG/0401244, 2004.
- [7] Brian Harbourne. Complete linear systems on rational surfaces. *Trans. Amer. Math. Soc.*, 289(1):213–226, 1985.
- [8] Brian Harbourne. Very ample divisors on rational surfaces. *Math. Ann.*, 272(1):139–153, 1985.
- [9] Antonio Laface and Luca Ugaglia. On a class of special linear systems of \mathbb{P}^3 . *Preprint*, math.AG/0311445, 2003.

DEPARTMENT OF PURE MATHEMATICS AND COMPUTERALGEBRA, GALGLAAN 2,
B-9000 GHENT, BELGIUM

E-mail address: cdv@cage.ugent.be

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DEGLI STUDI DI MILANO, VIA SALDINI 50,
20100 MILANO, ITALY

E-mail address: antonio.laface@unimi.it