Angewandte Statistik II

Dr. Uli Wannek

Skript erstellt von Alina Renz

Sommersemester 2018

Eberhard Karls Universität Tübingen Mathematisch-Naturwissenschaftliche Fakultät Wilhelm-Schickard-Institut für Informatik

Inhaltsverzeichnis

1	Line	are Modelle	3
	1.1	Zufallsvariable Y	3
	1.2	Einfaches Lineares Modell	3
	1.3	Additives und Interaktives Lineares Modell	6
	1.4	Kennwerte Linearer Modelle	7
	1.5	Generalisierte Lineare Modelle	8
	1.6	Fragestellung	9
	1.7	Lösung der Aufgabe	10
	1.8	Praktische Lösung mittels Python statsmodels	13
	1.9	Ergebnis lineare Modelle in Python	15
	1.10	Bestes Modell?	16
	1.11	Modell-Vergleich	18
	1.12	Deviance	21
2	Gene	eralisierte Lineare Modelle - GLM	23
	2.1	Motivation Generalisiertes Lineares Modell	23
	2.2	Generalisierte Lineare Modelle	27
	2.3	Exponentialfamilie	28
	2.4	IRLS	35

1 Lineare Modelle

1.1 Zufallsvariable Y

- Verteilung, Erwartungswert, Varianz, Form (Schiefe, Kurtosis,...)
- Parameter der Verteilung $(\mu, \sigma), (\lambda), ...$
 - Punktschätzer $(\hat{\mu}), (\hat{\theta}), \dots$
 - Konfidenzintervall
- Zusätzlich abhängig von einer Variablen X:

$$\mathcal{E}(Y_i) = \mu_i$$
$$Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$$

- mit der linearen Abhängigkeit

$$\mu_i = \mathbf{x}_i^T \boldsymbol{\beta}$$

- Ausprägungen
 - nominal, z.B. rot/grün/blau; f/m; Städte
 - ordinal, z.B. kein/etwas/viel; Schulabschluss
 - kardinal/metrisch, z.B. Dosis, Stimulusintensität, -Abstand, -Anzahl
 - speziell dichotom, z.B. ja/nein; klein/groß; 0/1

1.2 Einfaches Lineares Modell

$$Y = \beta_0 + \beta_1 X$$

- \bullet abhängige Variable: Zufallsvariable Y
 - (mehrfache) Messung/Realisierung, ergibt Wert y_i
 - response
 - fehlerbehaftet
- \bullet unabhängige Variable X
 - mit Wert x_i , vom Experimentator vorgegeben, 'control'
 - mit Wert x_i , fest, mitgemessen, 'covariate'
 - Vorhersage parameter 'predictor'

- Linearer Zusammenhang
 - kausale Abhängigkeit Y von X
 - Proportionalitätsfaktor β_1
 - y-Achsenabschnitt β_0 'intercept'
- Streuung zulassen

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

• Konventionen

Schrift	Bedeutung	Beispiel
Großbuchstaben	Zufallsvariable	\overline{Y}
Kleinbuchstaben	Realisierung einer Zufallsvariale, Messwert	x_i, y
\mathbf{fett}	Vektor oder Matrix	$\mathbf{X},\mathbf{y},\boldsymbol{\epsilon}$
Griechisch	Parameter	eta,μ
Hut $\hat{\ }$	Schätzer	$eta, \mu \ \widehat{eta}_0$
Index i	Index für Werte	x_i
$ \begin{array}{c} \operatorname{Index} \ _{j} \\ \operatorname{Index} \ ^{(m)} \end{array} $	Index für Parameter	β_j $h^{(m+1)}$
$\operatorname{Index}^{(m)}$	Index für Iteration	$b^{(m+1)}$

- Lineares Modell Matrix Schreibweise
 - Seien Y_i i.i.d. Zufallsvariablen mit normalverteilter Streuung ϵ

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \qquad \epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

$$\mathcal{E}(Y_i) = \mu_i = \beta_0 + \beta_1 X_i \qquad Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$$

- n-malige unabhängige, identische Wiederholung des Versuchs
 - * Messtupel (X_i, Y_i) mit $i \in [1 \dots n]$
 - * Erlaubte Streuung in Y_i
- Abhängige Variable Y

$$\mathbf{Y} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}$$

- Parametervektor β

$$\boldsymbol{eta} = egin{bmatrix} eta_0 \\ eta_1 \end{bmatrix}$$

- * bestimmt die Modell-Abhängigkeit $y_i \sim x_i$
- unabhängige Variable X
 - * Vektor $\mathbf{X} = [X_1, X_2, \dots, X_n]^T$
 - * erweitert um den y-Achsenabschnitt intercept

· Vektor
$$\mathbf{1} = [1, 1, \dots, 1]^T$$

 $- \Rightarrow \text{Designmatrix } \mathbf{X}$

$$\mathbf{X} = \begin{bmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix}$$

- * unabhängige Variablen in Spalten
- * Indikator- (Pseudo-) Variable für unabhängige Kategorien
- $\Rightarrow \text{Lineares Modell}$

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$$

$$\mathcal{E}(\mathbf{Y}) = \mathbf{X} \quad \boldsymbol{\beta}$$

$$\mathcal{E}(Y_i) = 1 \cdot \beta_0 + X_i \cdot \beta_1$$

- $-\epsilon$ Streuungen in y
 - * Messfehler
 - * Ungenauigkeiten
 - * Residuen: Abweichungen vom Modell

$$\mathbf{y} = \mathbf{X} \boldsymbol{\beta} + \epsilon$$

$$\mathcal{E}(\mathbf{y}) = \mathbf{X} \boldsymbol{\beta}$$

- Gesucht: Parameter des Modells $\boldsymbol{\beta}$
- Lösung dieser Aufgabe:

mittels Anpassen der Parameter durch iterative Anwendung von Matrixinversion aus Maximum-Likelihood-Prinzip / Kleinste-Quadrate-Schätzung

- Ergebnis: Parametervektor β
 - * Punktschätzer $\hat{\beta}$ mit Konfidenzintervall
 - * Signifikanz

1.3 Additives und Interaktives Lineares Modell

- Additives Lineares Modell
 - -k unabhängige Variablen X_j als Spalten der Länge n in die **Designmatrix** einfügen

$$\mathbf{X} = \begin{bmatrix} 1 & X_{11} & X_{12} & \dots & X_{1k} \\ 1 & X_{21} & X_{22} & \dots & X_{2k} \\ \vdots & & \ddots & & \vdots \\ 1 & X_{n1} & X_{n2} & \dots & X_{nk} \end{bmatrix}$$

- den **Parametervektor** erweitern zu

$$oldsymbol{eta} = egin{bmatrix} eta_0 \ eta_1 \ dots \ eta_k \end{bmatrix}$$

- ergibt das additive Lineare Modell

$$\mathcal{E}(\mathbf{Y}) = \mathbf{X}\boldsymbol{\beta}$$

- Interaktives Lineares Modell
 - -sind die unabhängigen Variablen X_l und X_m untereinander unabhängig, dann ist

$$x_{io} = x_{il} \cdot x_{im}$$

eine neue unabhängige Variable und kann als Spalte der Designmatrix hinzugefügt werden

- Interaktion: Beeinflussung von X_l auf X_m
- Designmatrix mit zusätzlichem Interaktions-Term

$$\mathbf{X} = \begin{bmatrix} 1 & x_{1,1} & \dots & x_{1,k} & x_{1,k+1} = x_{1,l} \cdot x_{1,m} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_{n,1} & \dots & x_{n,k} & x_{n,k+1} = x_{n,l} \cdot x_{n,m} \end{bmatrix}$$

- Schätzung der Parameter analog

$$\widehat{\boldsymbol{\beta}} = [\widehat{\beta}_0, \ \widehat{\beta}_1, \dots \widehat{\beta}_k, \ \widehat{\beta}_{lm}]^T$$

- Formelbeschreibung in patsy beispielweise
 - * 'y \sim x1: x2': beinhaltet eine Spalte mit Term x1 * x2 in Designmatrix
 - * 'y ~ x1 * x2 + x3': Abkürzung für: Spalte mit Termen 1, x1, x2, x1*x2 und x3

1.4 Kennwerte Linearer Modelle

• Einzelne Messwerte

$$Y_i = 1\beta_0 + X_{i1}\beta_1 + \dots + X_{ik}\beta_k + \epsilon_i$$

- mit Zufall/Streuung/Rauschen ("Homoskedastizitätsannahme", (Residuen-) Varianzhomogenität)

$$\epsilon \sim \mathcal{N}(0, \sigma^2)$$

- Dann

$$\mathcal{E}(Y_i) = \beta_0 + X_{i1}\beta_1 + \dots + X_{ik}\beta_k$$
$$Var(Y_i) = \sigma^2$$

- vektoriell
 - Erwartungswert

$$\mathcal{E}(\mathbf{Y}) = \boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}$$

- Varianz-Kovarianz-Matrix

$$\mathbf{V}_{jk} = \mathcal{E}((Y_j - \mu_j) \cdot (Y_k - \mu_k))$$

* im unabhängigen Fall

$$Var(Y_j) = V_{jj} = \sigma_j^2$$

$$Cov(Y_j, Y_k) = V_{jk} = 0 \quad \text{für } k \neq j$$

* im i.i.d.-Fall

$$Var(Y_j) = V_{jj} = \sigma^2$$

* Definition:

$$Cov(Y_j, Y_k) = \mathcal{E}\Big((Y_j - \mathcal{E}(Y_j)) \cdot (Y_k - \mathcal{E}(Y_k))\Big)$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) \cdot (x - \mathcal{E}(X)) \cdot (y - \mathcal{E}(Y)) \, dy \, dx$$

* daraus folgt im unabhängigen Fall (siehe oben):

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_X(x) \cdot f_Y(y) \cdot (x - \mathcal{E}(X)) \cdot (y - \mathcal{E}(Y)) \, dy \, dx = 0 \quad q.e.d.$$

1.5 Generalisierte Lineare Modelle

• Lineares Modell

$$egin{array}{ll} \mathbf{y} & = \mathbf{X}\,eta + \epsilon \ \mathcal{E}(\mathbf{y}) & = \mathbf{X}\,eta \end{array}$$

• Generalisiertes Lineares Modell mit Link-Funktion g

$$\mathcal{E}(\mathbf{Y}) = \boldsymbol{\mu}$$

 $g(\boldsymbol{\mu}) = \boldsymbol{\eta} = \mathbf{X}\boldsymbol{\beta}$

- insbesondere hilfreich mit
 - * kategorialer abhängiger Variable
 - * dichotomer abhängiger Variable
- Spezialfall
 - Link-Funktion Identität

$$\eta = g(\mu) = \mu$$

- Streuung Normalverteilung

$$f(\mathbf{Y}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^2}{2\sigma^2}\right)$$

- Dann ergibt sich

$$\mathcal{E}(\mathbf{Y}) = \mathbf{X}\boldsymbol{\beta}$$
$$Var(\mathbf{Y}) = \sigma^2$$

... das (einfache) Lineare Modell

- Fragestellungen
 - Das Modell ist festgelegt
 - * Theorie
 - * Erfahrung
 - * Vorversuch
 - Die Modell-Parameter
 - * sind unbekannt
 - * oder dienen der Überprüfung einer Theorie
 - * gilt es, aus Messungen von X_i und Y_i zu bestimmen
 - Schlussfolgerung
 - * Ist Y von X abhängig? (Signifikanz)
 - * Ist die Abhängigkeit stärker unter Versuchsbedingung A als unter B? (Vergleich)

1.6 Fragestellung

- Ziel: Parameter β
- Anpassung (fit) des Linearen Modells, so dass die Residuen minimiert werden.
- Erinnerung: Homoskedastizitätsannahme der Normalverteilten Residuen.
 - Summe der Abweichungsbeträge L_1

$$S_1(\mathbf{y}, \widehat{\mathbf{y}}) = \sum_{i=1}^n |y_i - \widehat{y}_i|$$

-Element der maximalen Aweichung L_{∞}

$$S_{\infty}(\mathbf{y}, \widehat{\mathbf{y}}) = max_i(|y_i - \widehat{y}_i|)$$

- Euklidische Abstandsquadratsumme ${\cal L}_2$

$$S_2(\mathbf{y}, \hat{\mathbf{y}}) = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

- Euklidische Norm: $||\mathbf{z}|| = \sqrt{S_2(\mathbf{z}, \mathbf{0})} = \sqrt{\mathbf{z}^T \mathbf{z}} = \sqrt{\sum_{i=1}^n z_i^2}$
- Quadratfehlersumme

$$RSS = S_2(\mathbf{y}, \hat{\mathbf{y}}) = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

- * Wird verwendet, wenn Gauß'sche Fehler vorhanden sind
- Gauß-Markov-Theorem
 - L_2 liefert die kleinste Varianz zu einem erwartungstreuen (unbiased)linearen Schätzer
 - Voraussetzung:
 - * unabhängige Parameter
 - * Fehler i.i.d. (independently identically distributed)
 - Nicht zwingend hier:
 - * Normalverteilung

1.7 Lösung der Aufgabe

Lösung 1: Kleinste Quadrate Schätzer

• Für das Lineare Modell

$$\hat{\mathbf{y}} = \mathcal{E}(\mathbf{Y}) = \mathbf{X}\boldsymbol{\beta}$$

• Speziell: Ausgleichsgerade

$$\hat{\mathbf{y}} = \mathcal{E}(\mathbf{Y}) = \beta_0 + \beta_1 \mathbf{x}$$

- Ansatz

$$S_2(\mathbf{y}, \widehat{\mathbf{y}}) = \sum_{i=1}^n r_i^2 = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i))^2 \stackrel{!}{=} min_{\beta_0, \beta_1}$$

- führt dank einfacher Rechnung zu

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

$$\widehat{\beta}_0 = \overline{y} - \widehat{\beta}_1 \overline{x}$$

- Residuenvarianz (bereits zwei Werte geschätzt, reduziert Freiheitsgrade)

$$\widehat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n \widehat{\epsilon}_i^2 = \frac{1}{n-2} \sum_{i=1}^n (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i)^2$$

Lösung 2: Matrix-Ansatz

$$y = X\beta + \epsilon$$

• Minimieren der Fehlerquadratsumme

$$S_2(\mathbf{y}, \widehat{\mathbf{y}}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \stackrel{!}{=} min_{\boldsymbol{\beta}}$$

- führt zu

$$\mathbf{X}^T \mathbf{v} = \mathbf{X}^T \mathbf{X} \boldsymbol{\beta}$$

- mit Lösung

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^T \ \mathbf{X})^{-1} \mathbf{X}^T \ \mathbf{y}$$

- Mit Gewichtung
 - Minimieren der Fehlerquadratsumme mit reziprok gewichteten Varianzen

$$S_2(\mathbf{y}, \widehat{\mathbf{y}}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T \mathbf{V}^{-1} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \stackrel{!}{=} min_{\boldsymbol{\beta}}$$

— (Varianz-Kovarianz-Matrix $\mathbf{V}; \ \mathbf{V}_{jk} = Cov(Y_j, Y_k)$) führt zu

$$\mathbf{X}^T \mathbf{V}^{-1} \mathbf{y} = \mathbf{X}^T \mathbf{V}^{-1} \mathbf{X} \boldsymbol{\beta}$$

- mit Lösung

$$\hat{\boldsymbol{\beta}} = \left(\mathbf{X}^T \mathbf{V}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{V}^{-1} \mathbf{y}$$

- Gilt für beliebige Dimensionen
 - hier mit 2x2 Matrix einfach
- Höherdimensional möglich, nur technisch schwer.
 - Dann iterativ zu bestimmen
- Numerisch instabil mit Kovarianzen
- Unlösbar oder stark fehlerbehaftet durch Gleitkommafehler
 - wenn unterbestimmt durch unglückliche Verteilung der Fehler
 - zu wenig Freiheitsgrade
- Implementiert in Python statsmodels.ols:
 - pinv: Moore-Penrose pseudoinverse
 - qr: Q-R-Zerlegung

Lösung 3: Maximum Likelihood Schätzer

• Ansatz über Verbund-Wahrscheinlichkeitsverteilung $f_{\theta}(\mathbf{y}) = \text{Likelihood } L_{\mathbf{y}}(\boldsymbol{\theta})$

$$L(\boldsymbol{\theta}|\mathbf{y}) = f(\mathbf{y}|\boldsymbol{\theta}) = \prod_{i=1}^{N} f(y_i|\boldsymbol{\theta})$$

- Daraus Log-Likelihood

$$l(\boldsymbol{\theta}|\mathbf{y}) := \log L(\boldsymbol{\theta}|\mathbf{y}) = \sum_{i=1}^{N} \log f(y_i|\boldsymbol{\theta})$$

- zu maximieren

$$l(\widehat{\boldsymbol{\theta}}) \stackrel{!}{=} max_{\boldsymbol{\theta}}$$

• Beispiel Normalverteilung

- Lineares Modell $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ $\boldsymbol{\mu} = \mathcal{E}(\mathbf{Y}) = \mathbf{X}\boldsymbol{\beta}$

- Normalverteilung $f(y_i|\mu_i,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i-\mu_i)^2}{2\sigma^2}\right)$

- Parametervektor $\boldsymbol{\theta} = [\beta_0, \beta_1, \sigma]^T$

- Log-Likelihood:

$$l(\boldsymbol{\theta}) = \sum_{i=1}^{N} \log f(y_i | \boldsymbol{\theta})$$

$$= \sum_{i=1}^{N} \log \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i - (\beta_0 + \beta_1 x_i))^2}{2\sigma^2}\right)$$

$$= -\frac{n}{2} \log 2\pi - n \log \sigma - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - (\beta_0 + \beta_1 x_i))^2$$

– Maximieren der Log-Likelihood führt zum Parametervektor-Schätzer $\hat{\boldsymbol{\theta}} = [\hat{\beta}_0, \hat{\beta}_1, \hat{\sigma}]^T$

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

$$\widehat{\beta}_0 = \overline{y} - \widehat{\beta}_1 \overline{x}$$

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i))^2$$

Vergleich der Lösungen

- Kleinste-Quadrate-Methode
 - Minimieren S_2 der Residuen
 - Findet Kleinste-Quadrate-Schätzer (least square, LSE) für Parameter
- Max-Likelihood-Methode
 - Maximiert Log-Likelihood
 - Findet Max-Likelihood-Schätzer (MLE) für Parameter
- Meist das selbe Ergenis
 - Bei Normalverteilung identisch

Anwendungsbeispiel: log(Gehirnmasse) ∼ log(Körpermasse)

- Designmatrix
 - Zeilen:
 - * Daten der einzelnen Tiere (i)
 - Spalten:
 - * unabhängige Variable 'Körpergewicht'
 - * Konstante für den y-Achsenabschnitt (intercept) β_0
- Designmatrix mit numpy: np.vstack((np.ones(len(x1)), x1)).T
- Berechne den Punktschätzer des Parametervektors aus Designmatrix und Datenvektor

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^T \ \mathbf{X})^{-1} \mathbf{X}^T \ \mathbf{y}$$

1.8 Praktische Lösung mittels Python statsmodels

- Homepage: http://www.statsmodels.org/stable/
- Beschreibung
 - GLS = Generalized least squares regression
 - OLS = Ordinary least square regression
 - GLM = Generalized linear models
 - * $\mathrm{fit} = \mathrm{smf.glm}(\mathrm{formula='log_BrainWt} \sim \mathrm{log_BodyWt'}, \; \mathrm{data=animalsdata}).\mathrm{fit}()$
 - * Ergebnis/Ausgabe:
 - · Parametervektorschätzer
 - · Standardabweichung
 - · z-Wert der Gauß-Statistik
 - · p-Wert dazu
 - · 95%-Konfidenzintervall
- Daten interpolieren, extrapolieren
 - Modell an die Daten anpassen (fit) ergibt den Parameter-Schätzer

 $\hat{oldsymbol{eta}}$

- Der vorhergesagte Wert $\hat{\mathbf{y}}$ ist

$$\hat{\mathbf{y}} = \mathbf{X} \hat{\boldsymbol{\beta}}$$

$$\hat{y}_i = (\mathbf{X}\hat{\boldsymbol{\beta}})_i = \sum_{j=0}^m x_{ij}\beta_j = 1\beta_0 + x_{i1}\beta_1 + x_{i2}\beta_2 + \dots + x_{im}\beta_m$$

1.8.1 Python statsmodels

- statsmodels.formula.glm.fit() beschreibt ein lineares Datenmodell
 - Eingabe Datensatz data =
 - * pandas.DataFrame mit Variablennamen
 - * unabhängige Variablen bzw. Designmatrix
 - * abhängigen Variablen
 - Eingabe Modell formula=
 - * patsy-Formel mit abhängiger Variable \sim unabhängiger Variablen
 - * 'y \sim x1 + x2 + x3'
 - * berücksichtigt bereits die Konstantenspalte der Designmatrix intercept

- $\cdot \Rightarrow \text{explizit ausschließen '} \sim -1'$
- statsmodels.GLM.fit()
 - Eingabe Daten
 - * exog: unabhängige Variablen in Spalten der Designmatrix X
 - · zusätzlich Konstante intercept anfügen sm.add constant(X)
 - · Bei Interaktion sind zusätzliche Spalten zu berechnen
 - * endog: abhängige Variable, gemessene Daten y
- statsmodels.___.fit()
 - Ausgabe Parametervektor
 - * Punktschätzer
 - · Standardabweichung
 - · Vertrauensintervall
 - · Z-Wert der Gauß-Statistik
 - · p-Wert
 - Ausgabe Statistiken und Kennzahlen
 - * ...
 - Ausgabe Fit-Werte
 - * fittedvalues: (als pandas-Daten-Series)
 - * resid_response: verbleibende Fehler (Series)
 - * predict(x): Zwischenwerte vorhersagen/extrapolieren
 - · x als DataFrame mit passend benannten Spalten

1.8.2 Python Pandas

- Python Pandas für Umgang mit Daten
 - Homepage: http://pandas.pydata.org/pandas-docs/stable/overview.html
 - Daten aus Datei einlesen read csv()
 - Variable vom Typ DataFrame
 - * Auswahl der in Spalten enthaltenen Variablen durch Namensstring
 - * Auswahl nach Kriterien, Index, Eigenschaften, ...
 - * Umfangreiche Methoden
 - · sortieren sort()
 - Beispiel: Abhängigkeit von Körpergewicht und Hirngewicht

- * Lösung? Zufällige Abweichungen zwischen Messung y_i und Modell-Vorhersage \hat{y}_i
- * Residuen

$$r_i = y_i - \widehat{y}_i$$

1.8.3 Python Patsy

- Designmatrix mit patsy
 - Homepage: http://patsy.readthedocs.io/en/latest/overview.html
 - Patsy erlaubt Formulierung
 - * des Modells
 - * der zu benutzenden Daten
 - Eingabe:
 - * y, X = patsy.dmatrices('yvar \sim xvar1 + xvar2', df)
 - * verwendet pandas DataFrame df
 - Ausgabe
 - * Designmatrix x als patsy.design_info.DesignMatrix, N*K Array, mit y-Achsenabschnittskonstante
 - * Gemessene Daten y als patsy.design_info.DesignMatrix, N*1 Array
 - Generelle Form: Innerhalb eines Strings $y \sim x$
 - * links der Tilde die abhängige Variable
 - * rechts die unabhängige Variablen
 - Anschaulich lassen sich die Namen der Datenfelder aus dem DataFrame benutzen

1.9 Ergebnis lineare Modelle in Python

- Daten lassen sich in DataFrames komfortabel bearbeiten
- lassen sich durch Patsy-Formel beschreiben
- Schätzer für Parameter lassen sich durch statsmodels.glm berechnen
- Rückgabewerte:
 - Kennzahlen
 - Statistik
 - Punktschätzer für Parameter (Steigung und Achsenabschnitt) und deren
 - Intervallschätzer
 - **–** ...

1.10 Bestes Modell?

- Ein perfekt passendes Modell muss nicht das beste sein
- Gleiche Versuchsbedingung, identische Zeile in Designmatrix: Streuung in $\mu_{i_1} = \mu_{i_2} = \dots$
- \Rightarrow Fehler zulassen

$$\mathbf{y} = \boldsymbol{\mu} + \boldsymbol{\epsilon}$$

- Theorie
- Ockham's razor

Verdichtung der Information

- Nicht von Interesse: alle einzelnen μ_i der abhängigen Variablen Y
- Von Interesse:
 - Einfluss der unabhängigen Variablen (erklärende Variablen, Pediktoren) X
 - * kategorial
 - * kontinuierlich
 - * Versuchsbedingungen $i \quad i \in [1 \dots n]$
 - zugehörige Parameter
 - * modellieren X, Gewichtung der Einflüsse
 - * Parameter $\beta_j \quad j \in [1 \dots k] \quad k \ll n$
- = das Modell

Ergebnis

- Modell = Entscheidung für Vereinfachung
- Es verbleiben Residuen

Residuen

• Verteilung der Residuen

$$Y_i = \mathbf{X}_i^T \boldsymbol{\beta} + \epsilon_i \qquad \qquad \epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

$$\mathcal{E}(Y_i) = \mu_i = \mathbf{X}_i^T \boldsymbol{\beta} \qquad \qquad Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$$

- Anforderung an Residuen
 - Modell soll gut abbilden, 'in der Mitte' \Rightarrow $\mathcal{E}(R) = 0$
 - Streuung in Verteilung hat dieselben Ursachen
 - * Lineares Modell, Gauß- Verteilung: $\Rightarrow Var(R) = const.$
 - * Gemäß Verteilung
 - Gutes Modell erklärt Messdaten
 - * Keine (wenig) Information in den Residuen:
 - \Rightarrow unabhängig, homoskedastisch
- Homoskedastizität und Unabhängigkeit
 - Systematische Abweichungen? \Rightarrow Auf den Grund gehen!

1.11 Modell-Vergleich

• Quadratfehlersumme, sum of squared residua, RSS

$$RSS = \sum_{i=1}^{n} r_i^2 = \sum_{i=1}^{n} (y_i - (\mathbf{X}\hat{\boldsymbol{\beta}})_i)^2$$

- Ist eine charakteristische Kennzahl
 - * Für Gauß-Verteilungen: standardisierte Quadratfehlersumme $\tilde{S} = \frac{RSS}{\sigma^2}$
 - * $\tilde{S} \sim \chi^2(n-p)$
- Abhängigkeit nur von
 - * n Werten der abhängigen Variablen
 - * n Werten der unabhängigen Variablen
 - * p geschätzte Parameterwerte
- je kleiner RSS, desto näher liegt das Modell an den Daten
- Schätzer für β
 - $\hat{\boldsymbol{\beta}}$ aus Max-Likelihood oder Kleinste-Quadtrate (k Komponenten)
- Schätzer für μ
 - $-\widehat{\mu}_i = \mathbf{X}_i^T \widehat{\boldsymbol{\beta}}$ aus dem linearen Modell
- Schätzer für $St\"{o}rparameter$ σ^2
 - Seien y_i Normalverteilt (mindestens näherungsweise; Zentraler Grenzwertsatz) dann ist mit

$$RSS = \sum_{i=1}^{N} r_i^2 = \sum_{i=1}^{N} (y_i - (\mathbf{X}\widehat{\boldsymbol{\beta}})_i)^2$$
$$\widehat{\sigma}^2 = \frac{1}{N-p} RSS$$

-ein erwartungstreuer Schätzer der Varianz σ^2 für das Lineare Modell

$$\mathcal{E}(\mathbf{Y}) = \mathbf{X}\boldsymbol{\beta}$$
 $Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$

$$\hat{\sigma}^2 = \frac{1}{N-p} \sum_{i=1}^{N} r_i^2 = \frac{1}{N-p} \sum_{i=1}^{N} (y_i - (\mathbf{X}\hat{\boldsymbol{\beta}})_i)^2$$

• Verteilung der standardisierten Fehlerquadratsumme

$$\frac{RSS}{\sigma^2} \sim \chi^2(N-p)$$

– Die Verteilung der Zufallsvariable Schätzer der Residuen-Varianz $\hat{\sigma}^2$ ist dann skaliert:

$$\hat{\sigma}^2 \sim \chi^2(ext{df} = N - p, ext{ scale} = rac{\sigma^2}{N})$$

- ... unter der Nullhypothese, dass das Modell korrekt ist!
- Problem 1: Woher kennen wir das wahre σ^2 ?
- Problem 2: Was ergibt die Berechnung mit dem Schätzer?
- Vergleich der beiden Modelle
 - Voraussetzung: Modelle bauen aufeinander auf, Modell B ist eine Erweiterung/Verallgemeinerung des einfacheren Modells A
 - Ist Modell B (hier $p_B = 3$ Parameter) angemessen?
 - * Nein \Rightarrow beide Modelle verwerfen
 - * Ja \Rightarrow vergleiche mit Modell A
 - Ist Modell A (hier $p_A = 2$ Parameter) angemessen?
 - * Nein \Rightarrow wähle Modell B
 - * Ja \Rightarrow Vergleich mit Modell B ergibt ...

Wiederholung Tests

- 1. Formulierung des Problems
- 2. Modellannahme
 - Welcher Art sind die Daten
 - Welche Verteilung wird erwartet
- 3. Aufstellen der Nullhypothese und der Alternativhypothese
 - Ziel soll es sein, die Nullhypothese ablehnen zu können
 - einseitiger Test
 - zweiseitiger Test
- 4. Festlegen des Signifikanzniveaus
 - zulässige Irrtumswahrscheinlichkeit α
- 5. Teststatistik / Prüfgröße aussuchen
 - verdichtet Information aus der Stichprobe
 - Verteilung unter H_A sollte sich deutlich von der unter H_0 unterscheiden
- 6. Verteilungsfunktion F bestimmen
 - theoretisch bestimmbar
 - asymptotisch bestimmbar
 - Simulation
- 7. Verwerfungsbereich
 - Statistik: Verteilung der Prüfgröße

- Hypothese: Richtung einseitig/zweiseitig
- Signifikanzniveau: Irrtumswahrscheinlichkeit α
- a) Verwerfungsbereich bestimmen
 - \bullet Wert für t der Teststatistik T aus Daten bestimmen
 - Tabelle oder berechnen
- oder

- b) p-Wert bestimmen
 - Tabelle oder berechnen
- 8. Entscheidung fällen
 - \bullet t im Verwerfungsbereich: Verwerfen der Nullhypothese
 - p außerhalb α : Verwerfen der Nullhypothese
 - sonst: H_0 nicht verwerfbar

Gauß-Test / t-Test

- Neue Differenz in Kategorien = Zusätzlicher Parameter
 - Modellannahme
 - Nullhypothese: Parameter IsMonkey ist nicht nötig, Einfluss $\beta_1 = 0$
 - Alternativhypotehse: Parameter IsMonkey ist relevant, Einfluss $\beta_1 \neq 0$
 - Teststatistik standardisierte Differenz $Gau\beta$ -Test für $\beta_{IsMonkey}$

$$Z = \frac{\overline{X_a} - \overline{X_b}}{\sqrt{S_a^2/n_a + S_b^2/n_b}} \sim \mathcal{N}(0, 1) = \varphi$$

- Verwerfungsbereich festlegen und bestimmen
 - * Zur Irrtumswahrscheinlichkeit $\alpha = 0.1\%$
- Wert der Statistik berechnen, p-Wert
- Ergebnis und Entscheidung
- Problem: kumulierter α -Fehler

F-Tests

• F-Test: Vergleich des Varianzenverhältnisses

$$F = \frac{SQE/(n_c - 1)}{SQR/(n - n_c)} \sim \mathcal{F}(n_c - 1, n - n_c)$$

• Siehe Varianzanalyse (ANOVA)

Vergleich der Likelihood

- Verhältnis der Likelihood $=\frac{L_A}{L_B}$
- Differenz der Log-Likelihood $log(L_A) log(L_B) = l_A l_B$
- Maximal mögliche Likelihood?
 - Vollständiges Modell $\hat{y}_i \equiv y_i$ mit Likelihood L_V
- Deviance
 - (Doppelter) Unterschied zur Log-Likelihood des vollständigen Modells

$$D := 2(l_V - l_A)$$

1.12 Deviance

Verallgemeinert die Quadratfehlersumme von Normalverteilten Modellen.

- Anwendung: Modellvergleich
 - Voraussetzung: Modelle bauen aufeinander auf (nested models)
- Definition

$$D(\widehat{\boldsymbol{\theta}}; \mathbf{y}) := 2(l(\widetilde{\boldsymbol{\theta}}; \mathbf{y}) - l(\widehat{\boldsymbol{\theta}}; \mathbf{y}))$$

- y Werte der abhängigen Variable
- $\hat{\boldsymbol{\theta}}$ Schätzer der Parameter
- $\tilde{\pmb{\theta}}$ Schätzer der Parameter eines vollständigen Modells $\hat{y}_i \equiv y_i$
- Beispiel Lineares Modell mit Normalverteilung(en)

$$l(\boldsymbol{\mu}; \mathbf{y}) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \mu_i)^2 - n \log(\sigma \sqrt{2\pi})$$

$$D = 2(l(\tilde{\boldsymbol{\mu}}; \mathbf{y}) - l(\hat{\boldsymbol{\mu}}; \mathbf{y}))$$
$$= \frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - \hat{\mu}_i)^2$$

- entspricht damit Pearsons standardisierter Quadratfehlersumme, also

$$D \sim \chi^2(n-k)$$

- Begründung: Abhängigkeiten der $\mu = \mathbf{X}\boldsymbol{\beta}$, es verbleiben k Komponenten, Freiheitsgrade in $\boldsymbol{\beta}$
- Verteilung $\sim \chi^2(k)$ mit Anzahl der zusätzlichen Parameter k zum erweiterten Modell
- auch für andere Verteilungen
 - näherungsweise χ^2 -verteilt

Scaled Deviance

Streuung σ ist unbekannt

• Die angegebene scaled Deviance ist aus den Daten berechenbar

$$D' = \sigma^2 D = \sum_{i=1}^{n} (y_i - \mu_i)^2$$

Unterscheidung

Unterscheiden sich die beiden Modelle?

• Unterschied in Deviance ΔD :

$$\Delta D(\widehat{\boldsymbol{\theta}}_A, \widehat{\boldsymbol{\theta}}_B; \mathbf{y}) = D(\widehat{\boldsymbol{\theta}}_A; \mathbf{y}) - D(\widehat{\boldsymbol{\theta}}_B; \mathbf{y}) = 2l(\widehat{\boldsymbol{\theta}}_B; \mathbf{y}) - 2l(\widehat{\boldsymbol{\theta}}_A; \mathbf{y}) > 0$$

- y Werte der abhängigen Variable
- $-\widehat{\boldsymbol{\theta}}_A$ Schätzer der Parameter (k_A Stk.) des einfachen Modells
- $-\widehat{\boldsymbol{\theta}}_{B}$ Schätzer der Parameter (k_{B} Stk.) des erweiterten Modells
- $-\Delta D \ge 0$
- Verteilung

$$\Delta D \sim \chi^2 (k_B - k_A)$$

- Fisher \mathcal{F} -Test für Deviance
 - Betrachte das Verhältnis

$$F = \frac{D_0 - D_1}{k - q} / \frac{D_1}{n - k} \sim \mathcal{F}(k - q, n - k)$$

- Unterschied?
 - * Nullhypothese: Modell A (alle Säugetiere) ist ebenso gut wie das bessere Modell B(Affen getrennt)
 - * Alternativhypothese: Modell B beschreibt den linearen Zusammenhang besser

Ergebnis

- Im Beispiel ist der Unterschied höchst signifikant ($\alpha = 0.1\%$)
 - t-Test/Gauß-Test für Parameter β_{IsMonkey}
 - Varianzanalyse für Residuen zwischen beiden Modellen
 - F-Test der Deviance zwischen beiden Modellen
- Unterschied in Deviance
 - in guter Näherung χ^2 -verteilt
- Die Deviance ist eine sinnvolle Erweiterung der Pearson Quadratfehlersumme
- Konzept der Deviance gilt auch für andere Verteilungen der Exponentialfamilie

2 Generalisierte Lineare Modelle - GLM

2.1 Motivation Generalisiertes Lineares Modell

- Problemstellung
 - Jet-Piloten erfahren unter besonderes hohen Beschleunigungskräften (bezogen auf die Erdbeschleunigung g) Blackouts
- Versuch
 - Glaister und Miller (1990) erzeugten ähnliche Symptome, indem sie den Körper der Versuchspersonen einem Luftunterdruck aussetzten
- Fragestellung
 - Hängt die Ohnmacht vom Alter ab?
- Ansatz
 - Linearer fit 'symptoms \sim age'
 - Problem: Linearer fit nicht aussagekräftig hier
- Lösung: Logit-Link
 - Wahrscheinlichkeit des Bernoulli-Ereignisses $\pi \in [0...1]$
 - Linearer Term $\eta = X\beta$
 - Link-Funktion **logit**

$$\mathcal{E}(\mathbf{Y}) = \boldsymbol{\pi}$$
 $g(\boldsymbol{\pi}) = \boldsymbol{\eta} = \mathbf{X}\boldsymbol{\beta}$ $\mathcal{E}(\mathbf{Y}) = \boldsymbol{\pi} = g^{-1}(\mathbf{X}\boldsymbol{\beta})$

* logit-Funktion

$$g^{-1}(\eta) = \text{logit}(\eta) = \frac{1}{1 + e^{-\eta}}$$

* Umkehrfunktion: logarithmisches Chancenverhältnis log-odds-ratio

$$\eta = g(\pi) = \ln \frac{\pi}{1 - \pi}$$

- Bernoulliverteilung
 - Wahrscheinlichkeitsverteilung des Ereignisses $y \in [0, 1]$

$$f(y|\pi) = \pi^y (1-\pi)^{1-y}$$
$$\mathcal{E}(y) = \pi$$

- Binomialverteilung
 - Wahrscheinlichkeitsverteilung der y = Anzahl der Erfolge mehrerer Bernoulli-Ereignisse

$$P(y|N,\pi) = \binom{N}{y} \pi^y (1-\pi)^{(N-y)} \qquad y \in \{0 \dots n\}$$
$$\mathcal{E}(y) = N\pi$$

- Ergebnis Link-Funktion: Eine Link Funktion $g(\mu)$
 - kann Anforderungen an Randbedingungen von Zufallsvariablen erfüllen
 - * ∞ -Problem \checkmark
 - * Verteilung der Streuung berücksichtigen \checkmark
 - erweitert das Lineare Modell
 - * verbindet lineare Vorhersage $\eta_i = \mathbf{x}_i^T \boldsymbol{\beta}$
 - * und zentralen Parameter der Wahrscheinlichkeitsverteilung μ_i
- Ergebnis 'Generalisiertes Lineares Modell'

$$g(\mu_i) = \mathbf{x}_i^T \boldsymbol{eta}$$
 $\mathcal{E}(Y_i) = \mu_i = g^{-1}(\mathbf{x}_i^T \boldsymbol{eta})$ $Y_i \sim f(\mu_i, \sigma^2, \dots)$

2.1.1 Kategoriale Variable und Residuen

- Beispieldaten: Allison, Cicchetti (1976) Sleep in mammals: ecological and constitutional correlates. Science 194: 732-734
 - Lineares Modell des Gehirn-Gewichts gegen das Körpergewicht
 - Interessant: Abweichungen vom Modell
 - * systematisch?
 - * Zufall (wie im Modell vorgesehen)?
- Ergebnis Residuen-Analyse
 - Systematische Abweichungen
 - * Ausreißer, Auffälligkeit
 - * Affen haben positive Residuen: eher kein Zufall
 - **Zufällige** Abweichungen
 - * Verteilung gemäß Modell: Streuung
- Erweitertes Modell
 - Affen als eigene Kategorie

- * Kategoriale Variable ['IsMonkey']
- * Anpassen der Designmatrix
- * Indikatorvariable c für Kategorie Affe ['IsMonkey']='no' = 0 und ['IsMonkey']='yes' = $1 \Rightarrow \beta_1$

$$\mathcal{E}(\mathbf{Y}) = \mathbf{X} \quad \boldsymbol{\beta}$$

$$\mathcal{E}(Y_i) = 1 \cdot \beta_0 + c_i \cdot \boldsymbol{\beta}_1 + X_i \cdot \beta_2$$

$$\begin{bmatrix} Y_1 \\ \vdots \\ Y_a \\ Y_{a+1} \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & 0 & X_1 \\ \vdots & \vdots & \vdots \\ 1 & 0 & X_a \\ 1 & 1 & X_{a+1} \\ \vdots & \vdots & \vdots \\ 1 & 1 & X_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \end{bmatrix}$$

- Ergebnis Kategoriale Variable
 - wirkt als Schalter
 - * Wert $X_{ij} \in [0, 1]$
 - * für Parameter β_i
 - Kategorien werden von Patsy automatisch erkannt (z.B. wenn String)
 - * erzwingen mit 'C(variable)'
 - fügt sich formal in Lineares Modell ein
 - erweiterbar auf mehrere Ausprägungen
 - * mehrere Spalten
 - * nicht Zahlen!

2.1.2 Modellvergleich

- Residuen der beiden Modelle
 - Modell A: $r_{Ai} = y_i \hat{\mu}_{Ai} = y_i (\mathbf{X}_A \hat{\boldsymbol{\beta}}_A)_i$
 - Modell B: $r_{Bi} = y_i \hat{\mu}_{Bi} = y_i (\mathbf{X}_B \hat{\boldsymbol{\beta}}_B)_i$
- Residuen gehören zu einem Modell
- Minimieren
 - Kleinste-Quadrate
 - Matrix Zerlegung
 - Maximum-Log-Likelihood
- Überprüfen, ob Modellvoraussetzungen erfüllt sind

- Scatter-Plot
- Histogramm

2.1.3 Verdichtung der Information

- Nicht von Interesse: alle einzelnen μ_i
- Von Interesse:
 - -Einfluss der unabhängigen Variablen ($\operatorname{\it erkl\"{a}\it rende}$ Variablen, Pediktoren) X
 - * kategorial
 - * kontinuierlich
 - * Versuchsbedingungen $i \quad i \in [1 \dots n]$
 - zugehörige Parameter
 - * modellieren X, Gewichtung der Einflüsse
 - * Parameter $\beta_j \quad j \in [1 \dots k] \quad k \ll n$

2.2 Generalisierte Lineare Modelle

Link-Funktion g

verbindet additiven Einfluss (η_i) der unabhängigen Variablen \mathbf{x}_i auf die (erwünschte) Verteilung der abhängigen Y_i um (μ_i)

 $g(\mu_i) = \eta_i = \mathbf{x}_i^T \boldsymbol{\beta}$

Beispiel Bernoulli-Verteilung

• Exponentiell abfallende Abhängigkeit

$$P(Y_i = 1) = e^{-\lambda t} = \pi$$

 $P(Y_i = 0) = 1 - e^{-\lambda t} = 1 - \pi$

• führt unter Verwendung der Link-Funktion

$$g(\pi) = \log(\pi) = -\lambda t$$

• auf eine lineare Abhängigkeit

$$g(E(Y)) = -\lambda t$$

• mit

$$\mathbf{x}_i = [t] \quad \boldsymbol{\beta} = [-\lambda]$$

• zum Generalisierten Linearen Modell

$$E(Y) = g^{-1}(x\beta)$$

Anwendung

- Biologie: Genetischer Stammbaum
- Linguistik: Abspaltung von Sprachen zum Zeitpunkt t mit gemeinsamem Wortschatz (=1) in unterschiedliche Entwicklung von Worten (=0)
- Physik: Spannung bei Kondensatorentladung über konstanten Widerstand

Modell und Fragestellung

- Gesucht sind die Parameter des Modells β
 - Verdichtung der Information
 - Signifikanz einer Teil-Abhängigkeit, Parameter β_i
 - Unterschiedliche Abhängigkeit bei anderen Daten
 - Unterschiedliche Modelle

2.3 Exponentialfamilie

Exponentialfamilie für Wahrscheinlichkeitsdichteverteilungen

$$f(y;\theta) = \exp(a(y)b(\theta) + c(\theta) + d(y))$$

Einige wichtige bekannte Verteilungen sind Mitglied der Exponentialfamilie

- Normalverteilung
 - Parameter θ ist μ
- Binomialverteilung
 - Der einzige interessierende Parameter bei gegebenem n ist π
 - $-y \in \{0 \dots n\}$
- Poissonverteilung
 - Der einzige interessierende Parameter ist λ .
 - $-y \in \mathbb{N}$

Sie haben

- Gemeinsame Eigenschaften
- Gemeinsame Methoden
- und lassen sich mittels GLM-Formalismus lösen

Implementiert in statsmodels glm

- Binomial ()
- Gamma ()
- Gaussian ()
- InverseGaussian ()
- NegativeBinomial ()
- Poisson ()

2.3.1 Allgemeine Eigenschaften der Exponentialfamilie

• Erwartungswert

$$\mathcal{E}(a(Y)) = -\frac{c'(\theta)}{b'(\theta)}$$

Varianz

$$Var(a(Y)) = \frac{b''(\theta)c'(\theta) - c''(\theta)b'(\theta)}{[b'(\theta)]^3}$$

2.3.2 Log-Likelihood-Funktion

• Exponentialfamilie

$$l(\theta; y) = \log(f_Y) = a(y) \cdot b(\theta) + c(\theta) + d(y)$$

Score Statistik ${\cal U}$

• Ableiten der Log-Likelihood-Funktion nach θ ergibt die score statistic U, als Funktion von Y eine Zufallsvariable

$$U(\theta; y) := \frac{\mathrm{d}l(\theta; y)}{\mathrm{d}\theta} = a(y) \cdot b'(\theta) + c'(\theta)$$

• mit Erwartungswert

$$\mathcal{E}(U) = 0$$

Information \mathcal{I}

• Varianz von U oder Information \mathcal{I}

$$\mathcal{I} := \operatorname{Var}(U) = (b'(\theta))^2 \cdot \operatorname{Var}(a(y)) = \frac{b''(\theta)c'(\theta)}{b'(\theta)} - c''(\theta)$$

• Aus dem Verschiebungssatz folgt mit $\mathcal{E}(U) = 0$

$$Var(U) = \mathcal{E}(U^2)$$

• Des Weiteren gilt

$$\mathcal{E}(U') = -\text{Var}(U)$$

• \Rightarrow Information

$$\mathcal{I} := \operatorname{Var}(U) = -\mathcal{E}(U')$$

2.3.3 Kanonische Verteilung

Verteilungen mit

$$a(Y) = Y$$

nennt man kanonisch

- Normalverteilung, Poissonverteilung, Binomialverteilung sind kanonisch
- Erwartungswert und Varianz für y haben eine einfache Form
- Der Parameter im zugehörigen Term $b(\theta)$ heißt natürlicher Parameter

Verteilung	natürlicher Parameter $b(\theta)$	Funktion $c(\theta)$	Funktion $d(y)$
Normal	$\frac{\mu}{\sigma^2}$	$-\frac{\mu^2}{2\sigma^2} - \frac{1}{2}\ln(2\pi\sigma^2)$	$-\frac{y^2}{2\sigma^2}$
Binomial	$\ln(\frac{\pi}{1-\pi})$	$n\ln(1-\pi)$	$\ln \binom{n}{y}$
Poisson	$\ln \lambda$	$-\lambda$	$-\ln y!$

Natürlicher Parameter

$$f(Y;\theta) = \exp(Y \cdot b(\theta) + c(\theta) + d(Y))$$

• Wählt man $b(\theta) = \theta$, dann heißt θ selbst der natürliche Parameter der Verteilung

$$f(Y;\theta) = \exp(Y\theta + c(\theta) + d(Y))$$

• Möchte man diesen natürlichen Parameter selbst linear vorhersagen

$$\theta = \mathbf{X}\boldsymbol{\beta}$$

• so wird aus der allgemeinen Link-Funktion g:

$$g(\mu) = \mathbf{X}\boldsymbol{\beta}$$

• die natürliche Link-Funktion

$$\theta = g(\mu)$$

Verteilung	natürlicher Param. $\theta = b(\theta)$	Erwartungswert	oder $\mu = g^{-1}(\theta)$
Normal	$\theta = \frac{\mu}{\sigma^2}$	$\mu = \mu$	$\mu = \sigma^2 \theta$
Binomial	$\theta = \ln(\frac{\pi}{1-\pi})$	$\mu = n\pi$	$\pi = \frac{e^{\theta}}{1+e^{\theta}}$
Poisson	$\theta = \ln \lambda$	$\mu = \lambda$	$\lambda = e^{\theta}$

Vereinfachungen

• Für kanonische Verteilung a(Y) = Y und natürlichen Parameter $b(\theta) = \theta$ ergibt sich

$$f(Y;\theta) = \exp(Y\theta + c(\theta) + d(Y))$$

• Erwartungswert

$$\mathcal{E}(a(Y)) = -\frac{c'(\theta)}{b'(\theta)}$$
$$\mathcal{E}(Y) = -c'(\theta)$$

• Varianz

$$\operatorname{Var}(a(Y)) = \frac{b''(\theta)c'(\theta) - c''(\theta)b'(\theta)}{[b'(\theta)]^3}$$
$$\operatorname{Var}(Y) = -c''(\theta)$$

Verteilung	natürlicher Param. $b(\theta)$	c	c'	c"
Normal	$\theta = \frac{\mu}{\sigma^2}$	$-\frac{\sigma^2\theta^2}{2} - \frac{1}{2}\ln(2\pi\sigma^2)$	$-\sigma^2\theta$	$-\sigma^2$
Binomial	$\theta = \ln(\frac{\pi}{1-\pi})$	$-n\ln(1+e^{\theta})$	$-\frac{e^{\theta}}{1+e^{\theta}}$	$-n\frac{e^{\theta}}{(1+e^{\theta})^2}$
Poisson	$\theta = \ln \lambda$	$-e^{\theta}$	$-e^{\dot{\theta}}$	$-e^{\theta}$

Natürlicher Parameter und kanonischer Link

• ... ist in GLM immer für die passende Verteilung implementiert

$$\mathcal{E}(Y) = -c'(\theta)$$

- Normal-, Poisson- und Binomialverteilung haben passende Parameter
- Andere Link-Funktionen sind ebenso gut möglich

2.3.4 Zusammengesetzte Wahrscheinlichkeitsverteilung - Skalarer Parameter θ

- Ein Satz unabhängiger, identisch verteilter (i.i.d.) Zufallsvariabler $\mathbf{Y} = [Y_1 \dots Y_N]^T$
- mit Wahrscheinlichkeitsverteilung $f(y_i, \theta)$ aus der kanonischen Exponentialfamilie
- hat eine gemeinsame Wahrscheinlichkeitsverteilung

$$f(\mathbf{Y}, \theta) = \prod_{i=0}^{n} \exp(y_i b(\theta) + c(\theta) + d(y_i))$$
$$= \exp(\sum_{i=0}^{n} y_i b(\theta) + \sum_{i=0}^{n} c(\theta) + \sum_{i=0}^{n} d(y_i))$$

• mit

$$\mathcal{E}(Y_i) = (\dots) = \mu$$

wobei

$$g(\mu_i) = \mathbf{x}_i^T \boldsymbol{\beta}$$

• als auch

$$\theta_i = fkt(\mathbf{x}_i^T \boldsymbol{\beta})$$

• mit unabhängigen β_j ; $j \in [1 ... k]$; $k \ll n$

Maximum-Likelihood-Schätzung

• Für kanonische Verteilungen mit a(y) = y gilt

$$\mathcal{E}(Y_i) = \mu_i \qquad g(\mu_i) = \eta_i$$

• Gesucht: Parameter θ

• Ansatz: Max-Log-Likelihood

$$l_i(\theta, y_i) = y_i \cdot b(\theta) + c(\theta) + d(y_i)$$
$$l(\theta, \mathbf{y}) = \sum_{i=0}^n l_i = \sum_{i=0}^n y_i b(\theta) + \sum_{i=0}^n c(\theta) + \sum_{i=0}^n d(y_i)$$
$$U = \frac{\mathrm{d}l}{\mathrm{d}\theta} \stackrel{!}{=} 0$$

- Ziel:
 - Parameter $\hat{\theta}$
 - Maximum der Log-Likelihood $l_{max} = l(\widehat{\theta})$
- Numerische Lösung mittels Iteration nach Newton-Raphson (siehe Folien)
 - Für Mitglieder der Exponentialfamilie wird eine gute Näherung U^\prime durch dessen Erwartungswert ersetzt

$$U' \leftarrow \mathcal{E}(U') = -\mathcal{I} = -\text{Var}(U)$$

- Damit iterative Lösung nach Newton-Raphson

$$\alpha^{(m)} = \alpha^{(m-1)} + \frac{U(\alpha^{(m-1)})}{\mathcal{I}(\alpha^{(m-1)})}$$

- Beispiel Ausfallwahrscheinlichkeit
 - Weibull-Verteilung

$$f(y, \lambda, \theta) = \frac{\lambda y^{\lambda - 1}}{\theta^{\lambda}} \exp\left(-\left(\frac{y}{\theta}\right)^{\lambda}\right)$$

- mit
 - * y > 0 Zeit bis zum Ausfall
 - * Parameter λ Form der Verteilung, hier $\lambda = 2$
 - · $\lambda=1$ wäre Exponentialverteilung mit konstanter Ausfallrate
 - · Rayleigh-Verteilung; für gedächtnisbehaftete Lebensdauerverteilung
 - * Parameter θ Skalierung. \Rightarrow Diesen gilt es zu schätzen.
- Darstellung als Exponentialfamilienmitglied:
 - * $a(y) = y^{\lambda}$ (nicht kanonisch für $\lambda \neq 1$; wir benutzen $\lambda = 2$)

$$* b(\theta) = -\theta^{-\lambda}$$

$$* c(\theta) = \log \lambda - \lambda \log \theta$$

$$* d(y) = (\lambda - 1) \log y$$

- * mit einem $St\"{o}rparameter \lambda$
- Log-Likelihood
 - * damit kann U berechnet werden
 - * \mathcal{I} als Näherung $U' \leftarrow \mathcal{E}(U')$
 - · im Falle der Weibull-Verteilung geschlossen lösbar
 - * Damit Scoring Methode
- Ergebnis der Score Methode
 - Für die Verteilung aus der Exponentialfamilie

$$f_Y(y|\theta) = \exp(a(y)b(\theta) + c(\theta) + d(y))$$

-führt die iterative Anpassung des Verteilungsparameters θ durch die scoring Methode

$$\theta^{(m)} = \theta^{(m-1)} + \frac{U^{(m-1)}}{\mathcal{I}^{(m-1)}}$$

- mit der *Score Statistik U* (erste Ableitung des Log-Likelihood)

$$U(\theta, y) := \frac{\mathrm{d}l}{\mathrm{d}\theta} = a(y) \cdot b'(\theta) + c'(\theta)$$

- und der Information Information \mathcal{I} (genäherte zweite Ableitung)

$$\mathcal{I} := \operatorname{Var}(U) = \mathcal{E}(U') = \frac{b''(\theta)c'(\theta)}{b'(\theta)} - c''(\theta)$$

- in wenigen Schritten zum Ergebnis
- Die Methode lässt sich auf mehrdimensionale Parametervektoren $\boldsymbol{\theta}$ erweitern.

2.3.5 Zusammengesetzte Wahrscheinlichkeitsverteilung - Parametervektor β

• Mehrdimensional: Scoring Methode iterative Lösung

$$oldsymbol{eta}^{(m)} = oldsymbol{eta}^{(m-1)} + \left(\mathcal{I}(oldsymbol{eta}^{(m-1)})
ight)^{-1} \mathbf{U}(oldsymbol{eta}^{(m-1)})$$

- Parameter $\alpha \Rightarrow$ Parameter vektor β
- Score-Funktion $U \Rightarrow$ Score-Vektor **U**
 - * Gradientenvektor der Log-Likelihood $\mathbf{U} := \nabla l$

- * mit $U_j = \frac{\partial l}{\partial \beta_j}$
- Information $\mathcal{I} \Rightarrow$ Informations-Matrix \mathcal{I}
- Modell-Parameter
 - Datentupel y_i, X_{ij} , Erwartungswerte μ_i und Verteilungs-Parameter θ_i mit $i \in [1 \dots n]$
 - Verdichtete Information in Parametervektor $\boldsymbol{\beta}$
 - Komponenten β_j mit $j \in [1 \dots p]$ mit i.A. $p \ll n$
- Ableitung für Max-Log-Likelihood-Schätzer
 - Berechnung unter Verwendung des Erwartungswerts
 - Umkehrfunktion
 - Kettenregel
 - $\Rightarrow 1$. Teilergebnis:
 - * Damit ergibt sich die vektorielle score-Funktion

$$U_{j} = \sum_{i=1}^{n} \left(\frac{y_{i} - \mu_{i}}{\operatorname{Var}(Y_{i})} x_{ij} \frac{\partial \mu_{i}}{\partial \eta_{i}} \right)$$

ausgedrückt durch zugängliche Größen

• Information

$$\mathcal{I} := \operatorname{Var}(U) = -\mathcal{E}(U')$$

– Im mehrdimensionalen Fall ist die
 die Information ${\mathcal I}$ die Varianz-Kovarianz-Matrix der Score-Funktion U

$$\mathcal{I}_{jk} = \mathcal{E}(U_j \ U_k)$$

- $\Rightarrow 2$. Teilergebnis:
 - * Damit ergibt sich die Informationsmatrix

$$\mathcal{I}_{jk} = \sum_{i=1}^{n} \frac{x_{ij} x_{ik}}{\operatorname{Var}(Y_i)} \left(\frac{\partial \mu_i}{\partial \eta_i}\right)^2$$

- Zwischenergebnis
 - Für die **Scoring Methode** ergibt sich

$$\mathbf{b}^{(m)} = \mathbf{b}^{(m-1)} + (\mathcal{I}^{(m-1)})^{-1} \mathbf{U}^{(m-1)}$$

- mit dem Schätzer für den Parametervektor

$$\mathbf{b} = [\beta_1, \dots, \beta_k]^T$$

- der Inversen Informationsmatrix

$$\mathcal{I}^{-1}$$

- und dem *score*-Vektor

 \mathbf{U}

• Erweiterung

$$\mathcal{I}^{(m-1)}\mathbf{b}^{(m)} = \mathcal{I}^{(m-1)}\mathbf{b}^{(m-1)} + \mathbf{U}^{(m-1)}$$

2.4 IRLS

Zu lösendes Gleichungssystem

$$\mathbf{X}^T \mathbf{W} \mathbf{X} \mathbf{b}^{(m)} = \mathbf{X}^T \mathbf{W} \mathbf{z}$$

hat die selbe Form, wie die Normalengleichungen für ein lineares Modell

$$\mathbf{X}^T \mathbf{V}^{-1} \mathbf{X} \boldsymbol{\beta} = \mathbf{X}^T \mathbf{V}^{-1} \mathbf{y}$$

- Vergleiche: Kleinste Quadrate Methode
- Designmatrix X
- Gewichtungsmatrix $\mathbf{W}^{(m-1)}$
- Zielvektor $\mathbf{z}^{(m-1)}$
- Lösung muss iterativ gewonnen werden
 - Sowohl **z**
 - als auch W
 - hängen über μ und $Var(Y_i)$ von $\mathbf{b}^{(m-1)}$ ab

2.4.1 iterative reweighted least squares, IRLS

• wird in GLM der Python statsmodels verwendet

Algorithmus

- 1. Finde einen Startwert $\mathbf{b}^{(0)}$
- 2. Berechne damit \mathbf{z} und \mathbf{W}
- 3. Löse $\mathbf{X}^T \mathbf{W} \mathbf{X} \mathbf{b}^{(m)} = \mathbf{X}^T \mathbf{W} \mathbf{z}$

$$\mathbf{b}^{(m)} = \left(\mathbf{X}^T \mathbf{W} \mathbf{X} \right)^{-1} \mathbf{X}^T \mathbf{W} \mathbf{z}$$

- und wiederhole 2. und 3. bis
- 4. Abbruch bei Konvergenz

Ergebnis IRLS

$$\mathbf{X}^T \mathbf{W}^{(m-1)} \mathbf{X} \mathbf{b}^{(m)} = \mathbf{X}^T \mathbf{W}^{(m-1)} \mathbf{z}^{(m-1)}$$

• mit mehrdimensionaler Iterative Reweighted Least Squares-Methode lösbar

$$\mathbf{b}^{(m)} = \left(\mathbf{X}^T \mathbf{W}^{(m-1)} \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{W}^{(m-1)} \mathbf{z}^{(m-1)}$$

- konvergiert in wenigen Schritten zum Schätzer $\mathbf{b} = \hat{\boldsymbol{\beta}}$

2.4.2 Implementierung Python statsmodels GLM

- kann Generalized Linear Models mit verschiedenen Verteilungsfamilien aus der Exponentialfamilie
- benutzt IRLS um den Parametervektor β des Modells zu bestimmen
- liefert Ergebnis
 - .predict
 - .fittedvalues
 - .params
- Verwendung der Likelihood
 - Wahrscheinlichkeitsverteilung der Daten aus Sicht der Parameter
- Log-Likelihood
 - für Punkt-Schätzung von Parametern mittels Maximierung
 - für Intervall-Schätzung bei genäherter Verteilungsstatistik
 - Score Statistik **U** und
 - Informationsmatrix \mathcal{I}
 - * IRLS