Statistical Operations and Matrices (II)

Predictive Modeling & Statistical Learning

Gaston Sanchez

CC BY-SA 4.0

Geometry of the Data Matrix

Matrix Structure

Data

The analyzed data can be expressed in matrix format X:

$$\mathbf{X}_{n \times p} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$$

- ightharpoonup n objects in the rows
- p quantitative variables in the columns

Looking at Rows and Columns

Data Concerns

Two sides of the same coin

When the analyzed data can be expressed as a matrix with objects in rows, and variables in columns, we commonly care for two issues:

- Study the resemblance between objects
- Study the relationships among variables

Data Perspectives

looking at a data matrix from two perspectives

Objects Perspective

Objects as points in a *p*-dimensional space

Variables Perspective

Variables as points in a *n*-dimensional space

Raw Data

Raw Data Matrix

The analyzed data can be expressed in matrix format X:

$$\mathbf{X}_{n \times p} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$$

- n objects in the rows
- p quantitative variables in the columns

Data set mtcars

First 10 rows:

	mpg	cyl	disp	hp	drat	wt	qsec	٧s	am	gear	carb
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4

Let's use variables: mpg, disp, hp, and wt.

Raw values

Centering Data Matrix

Mean-Centered Data Matrix

A common operation consists of **centering** the data, which involves mean-centering the variables so that they all have mean zero.

Mean-Centered Data Matrix

The mean-centered (a.k.a. column centered) matrix X_C :

$$\mathbf{X_{C}} = \begin{bmatrix} x_{11} - \bar{x}_{1} & x_{12} - \bar{x}_{2} & \cdots & x_{1p} - \bar{x}_{p} \\ x_{21} - \bar{x}_{1} & x_{22} - \bar{x}_{2} & \cdots & x_{2p} - \bar{x}_{p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} - \bar{x}_{1} & x_{n2} - \bar{x}_{2} & \cdots & x_{np} - \bar{x}_{p} \end{bmatrix}$$

where \bar{x}_j is the mean of the j-th variable $(j=1,\ldots,p)$

Mean-Centered Data Matrix

Using matrix notation, the centering operation is expressed as:

$$\mathbf{X_C} = (\mathbf{I} - \frac{1}{n} \mathbf{1} \mathbf{1}^\mathsf{T}) \mathbf{X}$$

- ▶ I is the $n \times n$ identity matrix
- ▶ 1 is an $n \times 1$ vector of ones
- $I \frac{1}{n} \mathbf{1} \mathbf{1}^{\mathsf{T}}$ is sometimes called the *centering* operator

Centering Effects

What does mean-centering do to the cloud of points?

Centered values

Centering Matrices in R

Centering with scale()

```
X_centered <- scale(X, center = TRUE, scale = FALSE)</pre>
```

Or also like this:

```
centroid <- colMeans(X)
X_centered <- sweep(X, 2, centroid, FUN = "-")</pre>
```

Cloud of individuals

Raw (i.e. non-centered) variables

Cloud of individuals

Centered variables

Scaled Data Matrix

Scaled or Normalized Data Matrix

The scaled or *Normalized* matrix X_N :

$$\mathbf{X_{N}}_{n \times p} = \begin{bmatrix} a_{1}x_{11} & a_{2}x_{12} & \cdots & a_{p}x_{1p} \\ a_{1}x_{21} & a_{2}x_{22} & \cdots & a_{p}x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1}x_{n1} & a_{2}x_{n2} & \cdots & a_{p}x_{np} \end{bmatrix}$$

where a_j is a scaling factor for the j-th column

Some Scaling Options

Probably the most common scaling option is to divide by the standard deviation:

$$a_j = \frac{1}{sd_j} = 1/\sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2}$$

Scaling Matrices in R

Scaling with standard deviation

```
stdevs <- apply(X, 2, sd)

X_scaled <- scale(X, center = FALSE, scale = stdevs)</pre>
```


Scaled values

Some Scaling Options

Other typical scaling options are based on L_p -norms:

$$L_p$$
-norm = $\left(\sum_{i=1}^n |x_{ij}|^p\right)^{1/p}$

The most common L_p -norms are:

- $ightharpoonup L_1$ -norm: $\sum_{i=1}^n |x_{ij}|$
- $ightharpoonup L_2$ -norm: $\sqrt{\sum_{i=1}^n (x_{ij})^2}$
- $ightharpoonup L_{\infty}$ -norm: $max\{|x_{i1}|,\ldots,|x_{ip}|\}$

Some Scaling Options

Using L_p -norms, the scaling factors a_i are:

- ▶ L_1 -norm: $a_j = 1/\sum_{i=1}^n |x_{ij}|$
- ▶ L_2 -norm: $a_j = 1/\sqrt{\sum_{i=1}^n (x_{ij})^2}$
- ▶ L_{∞} -norm: $a_j = 1/max\{|x_{i1}|, \dots, |x_{ip}|\}$
- ▶ L_p -norm: $a_j = 1/(\sum_{i=1}^n |x_{ij}|^p)^{1/p}$

Scaled or Normalized Data Matrix

The scaling factors a_j can be put in a diagonal matrix $\mathbf{D_a}$

$$\mathbf{D_a} = \begin{bmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_p \end{bmatrix}$$

then the scaled or normalized data matrix is given by:

$$X_N = XD_a$$

Normalizing Effects

What does normalizing (i.e. scaling) do to the cloud of points?

Scaling Matrices in R

Scaling with L_1 -norm:

$$\sum_{i=1}^{n} |x_{ij}|$$

```
# L-1 norm
one_norms <- apply(X, 2, function(u) sum(abs(u)))

X_scaled <- scale(X, center = FALSE, scale = one_norms)</pre>
```


Scaling in R examples

Scaling with L_2 -norm

$$\sqrt{\sum_{i=1}^{n} (x_{ij})^2}$$

```
# L-2 norm
two_norms <- apply(X, 2, function(u) sqrt(sum(u*u)))
X_scaled <- scale(X, center = FALSE, scale = two_norms)</pre>
```


Scaling Matrices in R

Scaling with L_{∞} -norm

$$max\{|x_{i1}|,\ldots,|x_{ip}|\}$$

```
# L-inf norm
inf_norms <- apply(X, 2, function(u) max(abs(u)))

X_scaled <- scale(X, center = FALSE, scale = inf_norms)</pre>
```


Standardized Data Matrix

Standardized Data Matrix

The standardized matrix $\mathbf{X_S}$ is the mean-centered and scaled (by the standard deviation) matrix:

$$\mathbf{X_S} = \begin{bmatrix} \frac{x_{11} - \bar{x}_1}{sd_1} & \frac{x_{12} - \bar{x}_2}{sd_2} & \dots & \frac{x_{1p} - \bar{x}_p}{sd_p} \\ \frac{x_{21} - \bar{x}_1}{sd_1} & \frac{x_{22} - \bar{x}_2}{sd_2} & \dots & \frac{x_{2p} - \bar{x}_p}{sd_p} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{x_{n1} - \bar{x}_1}{sd_1} & \frac{x_{n2} - \bar{x}_2}{sd_2} & \dots & \frac{x_{np} - \bar{x}_p}{sd_p} \end{bmatrix}$$

- ullet \bar{x}_i is the mean of the j-th variable
- $ightharpoonup sd_j$ is the standard deviation of the j-th variable

Standardized values

Standardized Data Matrix

When the scaling factors a_j are the standard deviations sd_j , the scaling matrix $\mathbf{D}_{\underline{1}}$, is:

$$\mathbf{D}_{\frac{1}{sd}} = \begin{bmatrix} \frac{1}{sd_1} & 0 & \cdots & 0\\ 0 & \frac{1}{sd_2} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \frac{1}{sd_p} \end{bmatrix}$$

then the standardized data matrix $\mathbf{X_S}$

$$\mathbf{X_S} = \mathbf{X_C} \mathbf{D}_{\frac{1}{sd}} = (\mathbf{I} - \frac{1}{n} \mathbf{1} \mathbf{1}^\mathsf{T}) \mathbf{X} \mathbf{D}_{\frac{1}{sd}}$$

Standardizing Matrices in R

Standardizing with scale()

```
X_std <- scale(X, center = TRUE, scale = TRUE)
# equivalent to
X_std <- scale(X)</pre>
```

Objects and their weights

Weights of Objects

- We can assume that each object is associated to a weight
- ▶ Think of a weight as the "importance" of an observation
- Usually, we assume equal weights 1/n (i.e. equal importance)
- If we assume that objects come from a random sample, then the n objects have the same chance 1/n of being selected
- Sometimes, however, it is convenient to assume that each object has a general weight $w_i > 0$, such that $\sum_{i=1}^n w_i = 1$

Weights of Objects

We can consider a diagonal matrix of object weights D:

$$\mathbf{D}_{n \times p} = \begin{bmatrix} w_1 & 0 & \cdots & 0 \\ 0 & w_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & w_n \end{bmatrix}$$

In the more common case that all weights are equal, we have $\mathbf{D} = \frac{1}{n}\mathbf{I}$

Weights of Objects

The vector \mathbf{g} containing the means $\bar{X}_1, \bar{X}_2, \dots, \bar{X}_p$ of all variables can be written as:

$$g = X^\mathsf{T} D \mathbf{1}_n$$

where $\mathbf{1}_n$ is an $n \times 1$ vector of ones.

The vector g is also known as the **centroid** of the objects.

Centered Data Matrix

Using D and g we can write an expression to get a centered data matrix $\tilde{\mathbf{X}}$

$$\tilde{\mathbf{X}} = \mathbf{X} - \mathbf{1}\mathbf{g}^\mathsf{T} = (\mathbf{I} - \mathbf{1}\mathbf{1}^\mathsf{T}\mathbf{D})\mathbf{X}$$

Cross-Products

Data Matrix Products

There are two fundamental matrix products that play a crucial role when the data is in an $n \times p$ matrix X with objects in rows, and variables in columns (assume n > p):

$$X^{\mathsf{T}}X$$
 & XX^{T}

Minor Product Moment

$\mathbf{X}^\mathsf{T}\mathbf{X}$

- ▶ a.k.a. "minor product moment" (because is of size $p \times p$, assuming n > p)
- sum-of-squares and cross-products (SSCP) of columns
- made of inner products of the columns of X
- association matrix for the variables

Major Product Moment

XX^{T}

- ▶ a.k.a. "major product moment" (because is of size n × n, assuming n > p)
- sum-of-squares and cross-products of rows
- made of inner products of the rows of X
- association matrix for the objects

Covariance Matrix

If X is mean-centered, then

$$\frac{1}{n}\mathbf{X}^\mathsf{T}\mathbf{X}$$
 and $\frac{1}{n-1}\mathbf{X}^\mathsf{T}\mathbf{X}$

are the covariance matrices (population and sample flavors)

Correlation Matrix

If X is standardized, then

$$\frac{1}{n}\mathbf{X}^\mathsf{T}\mathbf{X}$$
 and $\frac{1}{n-1}\mathbf{X}^\mathsf{T}\mathbf{X}$

are the correlation matrices (population and sample flavors)