Ejercicios resueltos de integración. 3a parte.

Juan Gabriel Gomila, Arnau Mir y Llorenç Valverde

Ejercicio 4

Calcular la longitud de la curva $y = f(x) = \sqrt{x}$ desde el punto (0,0) hasta el punto (4,2).

Solución

Hagamos un gráfico tal como hemos hecho anteriormente:

Solución

Hagamos un gráfico tal como hemos hecho anteriormente:

Solución

La longitud de la curva pedida será:

$$L = \int_0^4 \sqrt{1 + \left(\frac{1}{2\sqrt{x}}\right)^2} \, dx =$$

Solución

La longitud de la curva pedida será:

$$L = \int_0^4 \sqrt{1 + \left(\frac{1}{2\sqrt{x}}\right)^2} \, dx = \int_0^4 \sqrt{1 + \frac{1}{4x}} \, dx.$$

Solución

La longitud de la curva pedida será:

$$L = \int_0^4 \sqrt{1 + \left(\frac{1}{2\sqrt{x}}\right)^2} \, dx = \int_0^4 \sqrt{1 + \frac{1}{4x}} \, dx.$$

Fijarse que se trata de una integral impropia de segunda especie con una singularidad en x = 0.

Solución

La longitud de la curva pedida será:

$$L = \int_0^4 \sqrt{1 + \left(\frac{1}{2\sqrt{x}}\right)^2} \, dx = \int_0^4 \sqrt{1 + \frac{1}{4x}} \, dx.$$

Fijarse que se trata de una integral impropia de segunda especie con una singularidad en x = 0.

Para resolver la integral anterior hacemos el cambio de variable siguiente:

$$\sqrt{1+\frac{1}{4x}}=t,$$

Solución

La longitud de la curva pedida será:

$$L = \int_0^4 \sqrt{1 + \left(\frac{1}{2\sqrt{x}}\right)^2} \, dx = \int_0^4 \sqrt{1 + \frac{1}{4x}} \, dx.$$

Fijarse que se trata de una integral impropia de segunda especie con una singularidad en x = 0.

Para resolver la integral anterior hacemos el cambio de variable siguiente:

$$\sqrt{1+\frac{1}{4x}}=t, \Rightarrow x=\frac{1}{4(t^2-1)},$$

Solución

La longitud de la curva pedida será:

$$L = \int_0^4 \sqrt{1 + \left(\frac{1}{2\sqrt{x}}\right)^2} \, dx = \int_0^4 \sqrt{1 + \frac{1}{4x}} \, dx.$$

Fijarse que se trata de una integral impropia de segunda especie con una singularidad en x = 0.

Para resolver la integral anterior hacemos el cambio de variable siguiente:

$$\sqrt{1+\frac{1}{4x}}=t, \ \Rightarrow x=\frac{1}{4(t^2-1)}, \ \Rightarrow dx=-\frac{t}{2(t^2-1)^2}dt.$$

Solución

Los extremos de integración serán en la nueva variable t:

Solución

Los extremos de integración serán en la nueva variable t:

$$x = 0$$
: en este caso $t \to \infty$.

$$x = 4$$
: en este caso $t = \sqrt{1 + \frac{1}{16}} = \sqrt{\frac{17}{16}} = \frac{\sqrt{17}}{4}$.

Solución

Los extremos de integración serán en la nueva variable t:

$$x=0$$
: en este caso $t\to\infty$. $x=4$: en este caso $t=\sqrt{1+\frac{1}{16}}=\sqrt{\frac{17}{16}}=\frac{\sqrt{17}}{4}$.

La integral a calcular en la nueva variable t será:

$$L = \int_{\infty}^{\frac{\sqrt{17}}{4}} \left(-\frac{t^2}{2(t^2 - 1)^2} \right) dt =$$

Solución

Los extremos de integración serán en la nueva variable t:

$$x=0$$
: en este caso $t\to\infty$. $x=4$: en este caso $t=\sqrt{1+\frac{1}{16}}=\sqrt{\frac{17}{16}}=\frac{\sqrt{17}}{4}$.

La integral a calcular en la nueva variable t será:

$$L = \int_{\infty}^{\frac{\sqrt{17}}{4}} \left(-\frac{t^2}{2(t^2 - 1)^2} \right) dt = \frac{1}{2} \int_{\frac{\sqrt{17}}{4}}^{\infty} \frac{t^2}{(t^2 - 1)^2} dt.$$

Solución

Los extremos de integración serán en la nueva variable t:

$$x=0$$
: en este caso $t\to\infty$. $x=4$: en este caso $t=\sqrt{1+\frac{1}{16}}=\sqrt{\frac{17}{16}}=\frac{\sqrt{17}}{4}$.

La integral a calcular en la nueva variable t será:

$$L = \int_{\infty}^{\frac{\sqrt{17}}{4}} \left(-\frac{t^2}{2(t^2 - 1)^2} \right) dt = \frac{1}{2} \int_{\frac{\sqrt{17}}{4}}^{\infty} \frac{t^2}{(t^2 - 1)^2} dt.$$

Se trata de una integral racional en el que el grado del numerador es menor que el grado del denominador.

Solución

Por tanto, hemos de descomponer la función a integral de la forma siguiente usando que la descomposición del denominador es:

$$(t^2-1)^2=(t-1)^2\cdot(t+1)^2.$$

Solución

Por tanto, hemos de descomponer la función a integral de la forma siguiente usando que la descomposición del denominador es:

$$(t^2-1)^2=(t-1)^2\cdot(t+1)^2.$$

$$\frac{t^2}{(t^2-1)^2} = \frac{A_1}{t-1} + \frac{A_2}{(t-1)^2} + \frac{A_3}{t+1} + \frac{A_4}{(t+1)^2}.$$

Solución

Por tanto, hemos de descomponer la función a integral de la forma siguiente usando que la descomposición del denominador es:

$$(t^2-1)^2=(t-1)^2\cdot(t+1)^2.$$

$$\frac{t^2}{(t^2-1)^2} = \frac{A_1}{t-1} + \frac{A_2}{(t-1)^2} + \frac{A_3}{t+1} + \frac{A_4}{(t+1)^2}.$$

Los valores A_i son los siguientes:

Solución

Por tanto, hemos de descomponer la función a integral de la forma siguiente usando que la descomposición del denominador es:

$$(t^2-1)^2=(t-1)^2\cdot(t+1)^2.$$

$$\frac{t^2}{(t^2-1)^2} = \frac{A_1}{t-1} + \frac{A_2}{(t-1)^2} + \frac{A_3}{t+1} + \frac{A_4}{(t+1)^2}.$$

Los valores A_i son los siguientes:

$$A_1=\frac{1}{4},\ A_2=\frac{1}{4},\ A_3=-\frac{1}{4},\ A_4=\frac{1}{4}.$$

Solución

$$L \ = \ \frac{1}{2} \left[\frac{1}{4} \ln |t-1| - \frac{1}{4(t-1)} - \frac{1}{4} \ln |t+1| - \frac{1}{4(t+1)} \right]_{\frac{\sqrt{17}}{4}}^{\infty}$$

Solución

$$L = \frac{1}{2} \left[\frac{1}{4} \ln|t - 1| - \frac{1}{4(t - 1)} - \frac{1}{4} \ln|t + 1| - \frac{1}{4(t + 1)} \right]_{\frac{\sqrt{17}}{4}}^{\infty}$$

$$= \frac{1}{8} \left[\ln\left|\frac{t - 1}{t + 1}\right| - \frac{2t}{t^2 - 1} \right]_{\frac{\sqrt{17}}{4}}^{\infty}$$

Solución

$$L = \frac{1}{2} \left[\frac{1}{4} \ln|t - 1| - \frac{1}{4(t - 1)} - \frac{1}{4} \ln|t + 1| - \frac{1}{4(t + 1)} \right]_{\frac{\sqrt{17}}{4}}^{\infty}$$

$$= \frac{1}{8} \left[\ln\left|\frac{t - 1}{t + 1}\right| - \frac{2t}{t^2 - 1} \right]_{\frac{\sqrt{17}}{4}}^{\infty} = -\frac{1}{8} \left(\ln\left|\frac{\frac{\sqrt{17}}{4} - 1}{\frac{\sqrt{17}}{4} + 1}\right| - \frac{2 \cdot \frac{\sqrt{17}}{4}}{\frac{17}{16} - 1} \right)$$

Solución

$$\begin{split} L &= \frac{1}{2} \left[\frac{1}{4} \ln|t - 1| - \frac{1}{4(t - 1)} - \frac{1}{4} \ln|t + 1| - \frac{1}{4(t + 1)} \right]_{\frac{\sqrt{17}}{4}}^{\infty} \\ &= \frac{1}{8} \left[\ln\left|\frac{t - 1}{t + 1}\right| - \frac{2t}{t^2 - 1} \right]_{\frac{\sqrt{17}}{4}}^{\infty} = -\frac{1}{8} \left(\ln\left|\frac{\frac{\sqrt{17}}{4} - 1}{\frac{\sqrt{17}}{4} + 1}\right| - \frac{2 \cdot \frac{\sqrt{17}}{4}}{\frac{17}{16} - 1} \right) \\ &= \frac{1}{8} \left(8\sqrt{17} - \ln\left(\frac{\sqrt{17} - 4}{\sqrt{17} + 4}\right) \right) \end{split}$$

Solución

$$L = \frac{1}{2} \left[\frac{1}{4} \ln|t - 1| - \frac{1}{4(t - 1)} - \frac{1}{4} \ln|t + 1| - \frac{1}{4(t + 1)} \right]_{\frac{\sqrt{17}}{4}}^{\infty}$$

$$= \frac{1}{8} \left[\ln\left| \frac{t - 1}{t + 1} \right| - \frac{2t}{t^2 - 1} \right]_{\frac{\sqrt{17}}{4}}^{\infty} = -\frac{1}{8} \left(\ln\left| \frac{\frac{\sqrt{17}}{4} - 1}{\frac{\sqrt{17}}{4} + 1} \right| - \frac{2 \cdot \frac{\sqrt{17}}{4}}{\frac{17}{16} - 1} \right)$$

$$= \frac{1}{8} \left(8\sqrt{17} - \ln\left(\frac{\sqrt{17} - 4}{\sqrt{17} + 4}\right) \right) = \sqrt{17} - \frac{1}{8} \ln\left(\frac{\sqrt{17} - 4}{\sqrt{17} + 4}\right)$$

Solución

$$\begin{split} L &= \frac{1}{2} \left[\frac{1}{4} \ln|t-1| - \frac{1}{4(t-1)} - \frac{1}{4} \ln|t+1| - \frac{1}{4(t+1)} \right]_{\frac{\sqrt{17}}{4}}^{\infty} \\ &= \frac{1}{8} \left[\ln\left|\frac{t-1}{t+1}\right| - \frac{2t}{t^2-1} \right]_{\frac{\sqrt{17}}{4}}^{\infty} = -\frac{1}{8} \left(\ln\left|\frac{\frac{\sqrt{17}}{4}-1}{\frac{\sqrt{17}}{4}+1}\right| - \frac{2 \cdot \frac{\sqrt{17}}{4}}{\frac{17}{16}-1} \right) \\ &= \frac{1}{8} \left(8\sqrt{17} - \ln\left(\frac{\sqrt{17}-4}{\sqrt{17}+4}\right) \right) = \sqrt{17} - \frac{1}{8} \ln\left(\frac{\sqrt{17}-4}{\sqrt{17}+4}\right) \\ &\approx 4.6468. \end{split}$$