Learning Apache Spark with Python

CONTENTS

1	Prefa	ace	3
	1.1	About	3
	1.2	Motivation for this tutorial	4
	1.3	Copyright notice and license info	4
	1.4	Acknowledgement	5
	1.5	Feedback and suggestions	5
2	Why	Spark with Python?	7
	2.1	Why Spark?	7
	2.2	Why Spark with Python (PySpark)?	8
3	Conf	igure Running Platform 1	1
	3.1	Run on Databricks Community Cloud	1
	3.2	Configure Spark on Mac and Ubuntu	6
	3.3	Configure Spark on Windows	9
	3.4	PySpark With Text Editor or IDE	9
	3.5	PySparkling Water: Spark + H2O	6
	3.6	Set up Spark on Cloud	7
	3.7	PySpark on Colaboratory	8
	3.8	Demo Code in this Section	8
4	An I	ntroduction to Apache Spark 3	1
	4.1	Core Concepts	1
	4.2	Spark Components	2
	4.3	Architecture	4
	4.4	How Spark Works?	4
5	Prog	ramming with RDDs 3.	5
	5.1	Create RDD	5
	5.2	Spark Operations	9
	5.3	rdd.DataFrame vs pd.DataFrame 4	1
6	Statis	stics and Linear Algebra Preliminaries 5	9
	6.1	Notations	9
	6.2	Linear Algebra Preliminaries	
	6.3	Measurement Formula	

	6.4	Confusion Matrix	2
	6.5	Statistical Tests	3
7	Data	Exploration 6	5
	7.1	Univariate Analysis	
	7.2	Multivariate Analysis	
8	Data	Manipulation: Features 8	7
U	8.1	Feature Extraction	
	8.2	Feature Transform	
	8.3	Feature Selection	
	8.4	Unbalanced data: Undersampling	
9	Regre		
7	9.1	Linear Regression	
	9.2	Generalized linear regression	
	9.3	Decision tree Regression	
	9.4	Random Forest Regression	
	9.4	Gradient-boosted tree regression	
10		arization 16	
		Ordinary least squares regression	
		Ridge regression	
		Least Absolute Shrinkage and Selection Operator (LASSO)	
	10.4	Elastic net	8
11	Class	ification 16	9
	11.1	Binomial logistic regression	9
		Multinomial logistic regression	
	11.3	Decision tree Classification	
	11.4	Random forest Classification	
		Gradient-boosted tree Classification	
		XGBoost: Gradient-boosted tree Classification	
		Naive Bayes Classification	
12	Clust	ering 23.	4
14		K-Means Model	
12	DEM	Analysis 24	7
13		RFM Analysis Methodology	
		Demo	
		Extension	
	13.3	Extension	0
14		Mining 26.	
	14.1	Text Collection	
	14.2	Text Preprocessing	
	14.3	Text Classification	
	14.4	Sentiment analysis	
	14.5	N-grams and Correlations	/

	14.6	Topic Model: Latent Dirichlet Allocation	287				
15	Social Network Analysis 305						
	15.1	Introduction	306				
		Co-occurrence Network					
		Appendix: matrix multiplication in PySpark					
		Correlation Network					
16		Stock Portfolio Recommendations	313				
		Recommender systems					
		Alternating Least Squares					
	16.3	Demo	315				
17	Mont	te Carlo Simulation	323				
- /		Simulating Casino Win					
		Simulating a Random Walk					
	17.2	Simulating a Random Walk	. 52-				
18	Mark	xov Chain Monte Carlo	335				
	18.1	Metropolis algorithm	336				
	18.2	A Toy Example of Metropolis	336				
	18.3	Demos	337				
10	Norm	al Network	345				
19		Feedforward Neural Network					
	19.1	reedforward Neural Network	343				
20	Auto	mation for Cloudera Distribution Hadoop	349				
	20.1	Automation Pipeline	349				
	20.2	Data Clean and Manipulation Automation	349				
	20.3	ML Pipeline Automation	352				
	20.4	Save and Load PipelineModel	353				
	20.5	Ingest Results Back into Hadoop					
21		o PySpark Package	355				
		Package Wrapper					
	21.2	Pacakge Publishing on PyPI	357				
22	PvSp	ark Data Audit Library	359				
		Install with pip					
		Install from Repo					
	22.3	Uninstall					
	22.4	Test					
		Auditing on Big Dataset					
		- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.					
23		elin to jupyter notebook	37 1				
		How to Install					
	23.2	Converting Demos	372				
24	Mv (Cheat Sheet	377				

25	JDB(C Connection 3	81				
	25.1	JDBC Driver	81				
	25.2	JDBC read	81				
	25.3	JDBC write					
	25.4	JDBC temp_view					
26	Datal	bricks Tips	85				
	26.1	Display samples	85				
	26.2	Auto files download					
	26.3	delta format					
	26.4	mlflow					
27	PvSn	ark API	91				
_,	27 1	Stat API	-				
	27.1	Regression API					
	27.2	Classification API					
	27.4	Clustering API					
	27.4						
		Recommendation API					
	27.6	Pipeline API					
	27.7	Tuning API					
	27.8	Evaluation API	63				
28	Main	Reference	69				
Bil	Bibliography						
Py	Python Module Index						
Inc	lex	4	75				

WHY SPARK WITH PYTHON?

Chinese proverb

Sharpening the knife longer can make it easier to hack the firewood – old Chinese proverb

I want to answer this question from the following two parts:

2.1 Why Spark?

I think the following four main reasons from Apache SparkTM official website are good enough to convince you to use Spark.

1. Speed

Run programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk.

Apache Spark has an advanced DAG execution engine that supports acyclic data flow and in-memory computing.

Fig. 1: Logistic regression in Hadoop and Spark

2. Ease of Use

Write applications quickly in Java, Scala, Python, R.

Spark offers over 80 high-level operators that make it easy to build parallel apps. And you can use it interactively from the Scala, Python and R shells.

3. Generality

Combine SQL, streaming, and complex analytics.

Spark powers a stack of libraries including SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming. You can combine these libraries seamlessly in the same application.

Fig. 2: The Spark stack

4. Runs Everywhere

Spark runs on Hadoop, Mesos, standalone, or in the cloud. It can access diverse data sources including HDFS, Cassandra, HBase, and S3.

2.2 Why Spark with Python (PySpark)?

No matter you like it or not, Python has been one of the most popular programming languages.

Fig. 3: The Spark platform

Fig. 4: KDnuggets Analytics/Data Science 2017 Software Poll from kdnuggets.

CHAPTER

THREE

CONFIGURE RUNNING PLATFORM

Chinese proverb

Good tools are prerequisite to the successful execution of a job. - old Chinese proverb

A good programming platform can save you lots of troubles and time. Herein I will only present how to install my favorite programming platform and only show the easiest way which I know to set it up on Linux system. If you want to install on the other operator system, you can Google it. In this section, you may learn how to set up Pyspark on the corresponding programming platform and package.

3.1 Run on Databricks Community Cloud

If you don't have any experience with Linux or Unix operator system, I would love to recommend you to use Spark on Databricks Community Cloud. Since you do not need to setup the Spark and it's totally **free** for Community Edition. Please follow the steps listed below.

- 1. Sign up a account at: https://community.cloud.databricks.com/login.html
- 2. Sign in with your account, then you can creat your cluster(machine), table(dataset) and notebook(code).
- 3. Create your cluster where your code will run
- 4. Import your dataset

Note: You need to save the path which appears at Uploaded to DBFS: /File-Store/tables/05rmhuqv1489687378010/. Since we will use this path to load the dataset.

5. Create your notebook

