SIGNAL PROCESSING Through GATE

EE1205-TA Group

 $Author:\ Sayyam\ Palrecha$

Copyright ©2024 by Sayyam Palrecha

 ${\rm https://creative commons.org/licenses/by-sa/3.0/}$

 $\quad \text{and} \quad$

 $\rm https://www.gnu.org/licenses/fdl-1.3.en.html$

Contents

In	troduction	
1	Harmonics	1
2	Filters	3
3	Z-transform	5
4	Systems	7
5	Sequences	g
6	Sampling	11
7	Contour Integration	13
8	Laplace Transform	15
9	Fourier transform	19

Introduction

This book provides solutions to signal processing problems in GATE.

Harmonics

Z-transform

Systems

Sampling

Contour Integration

Laplace Transform

8.1 A process described by the transfer function

$$G_p(s) = \frac{(10s+1)}{(5s+1)}$$

is forced by a unit step input at time t=0. The output value immediately after the unit step input (at $t=0^+$) is ? (Gate 2022 CH 34)

Solution:

Parameters	Description		
X(s)	Laplace transform of $x(t)$		
Y(s)	Laplace transform of $y(t)$		
$G_p(s) = \frac{Y(s)}{X(s)}$	Transfer function		
x(t) = u(t)	unit step function		

Table 8.1: Given parameters

$$G_p(s) = \frac{Y(s)}{X(s)} = \frac{(10s+1)}{(5s+1)}$$
(8.1)

$$u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s}$$
 (8.2)

From equation (8.2):

$$Y(s) = \frac{(10s+1)}{s(5s+1)} \tag{8.3}$$

$$= \frac{1}{s} + \frac{5}{5s+1} \tag{8.4}$$

Taking inverse laplace transformation,

$$\frac{1}{s} \stackrel{\mathcal{L}^{-1}}{\longleftrightarrow} u(t) \tag{8.5}$$

$$\frac{1}{s-c} \stackrel{\mathcal{L}^{-1}}{\longleftrightarrow} e^{ct} u(t) \tag{8.6}$$

$$y(t) = \left(1 + e^{\frac{-t}{5}}\right)u(t)$$
 (8.7)

$$y(0^+) = 2 (8.8)$$

Figure 8.1: Graph of y(t)

Fourier transform