ENG1456 - Algoritmos Genéticos - Trabalho 1

Aluno: Matheus Carneiro Nogueira - 1810764

Professora: Karla Figueiredo

Sumário

1	Reproduzindo Resultados	1
2	GAP ideal	2
3	Taxas Crossover e Mutação	2
4	Tamanho da População	2

Resumo

Este documento consiste no relatório do trabalho 1 do módulo de Algoritmos Genéticos da disciplina ENG1456 da PUC-Rio. O objetivo deste trabalho é estudar diferentes modelos de Algoritmos Genéticos para a tentativa de otimização da função F6 apresentada em sala. Foi utilizado o programa GADEMO para gerar os modelos pedidos nos enunciados. Foram consultados os materiais de aula, o livro [1] e outros materiais devidamente referenciados.

1 Reproduzindo Resultados

Enunciado: Variando os parâmetros, execute Algoritmos Genéticos de modo a obter resultados semelhantes aos apresentados no livro texto. Os parâmetros usados no livro se encontram na tabela abaixo. Compare as curvas referentes à média de 20 rodadas de cada GA.

Incluir dois gráficos: um com GA1-1, GA2-1 e GA2-2 e outro com GA 2 -3 e GA2-4. Utilizar somente one-point-crossover.

GA	População	Total.Ind.	Crossover	Mutação	Nor mLinear	Elitismo	Stead-State
1-1	100	4000	65%	0.8%	NÃO	NÃO	NÃO
2-1	100	4000	65%	0.8%	Max=100/Min=1	NÃO	NÃO
2-2	100	4000	65%	0.8%	Max=100/Min=1	SIM	NÃO
2-3	100	4000	65%	0.8%	Max=100/Min=1	NÃO	C/Duplicados
2-4	100	4000	65%	0.8%	Max=100/Min=1	NÃO	S/Duplicados

Figura 1: Tabela com as especificações dos modelos

2 GAP ideal

Para os GAs que utilizam steady-state, determine o GAP (número de indivíduos substituídos a cada ciclo) ideal. Para isso, use um incremento de 5 indivíduos a cada tentativa, começando com um GAP=5. Não entregue os gráficos referentes aos testes de GAP.

3 Taxas Crossover e Mutação

Enunciado: Verifique o que acontece quando se roda o GA2-1 20 vezes com taxa de crossover muito baixa (pouca recombinação em torno de 10%) e alta taxa de mutação (muitas mudanças aleatórias em torno de 80%). Imprima o resultado (um gráfico), compare com o resultado do GA2-1 obtido no item 1 e explique brevemente o que acontece.

4 Tamanho da População

Enunciado: Analise o efeito do tamanho da população, obtendo as curvas de desempenho do GA2-2 (20 rodadas) para vários tamanhos de população (ex: 20, 50, 100, 150) e sempre com o mesmo número de gerações (total de indivíduos variável). Imprima as curvas para e tire conclusões sobre o efeito do tamanho da população no desempenho do algoritmo genético.

5 Convergência

Enunciado: Repita o GA2-1 e o GA2-2 (20 rodadas cada) modificando apenas o total de indivíduos criados para o 10000. Imprima as curvas em dois um gráficos separados, um para o GA2-1 e outro para o GA2-2, e verifique se é vantajoso todo esse esforço computacional, em outras palavras, determine o número de indivíduos para o qual cada algoritmo converge.

6 Crossover

Enunciado: Compare o efeito dos 3 tipos de crossover disponíveis na ferramenta, executando o GA2-1 (s/ elitismo) e o GA2-2 (c/elitismo) com apenas 2500 indivíduos (20 rodadas) para cada tipo de crossover, usando taxa de crossover 80%. Imprima as curvas em dois um gráficos separados , um para o GA2-1 e outro para o GA2-2, e tire conclusões a respeito da característica conservadora/destrutiva de cada crossover.

7 Normalização Linear

Enunciado: Repita o GA2-3COM gap = 75 para vários valores de máximo. Verifique o que acontece quando o valor de máximo aumenta e diminui (avalie para os valores 10, 50, 100, 200, 300). Imprima as curvas em apenas um gráfico e tire breves conclusões .

8 Gerais

Enunciado: Fazendo variações nos parâmetros e técnicas disponíveis no GADEMO, estude livremente o efeito de cada umdestes no desempenho de algoritmos genéticos. Destaque e explique uma importante constatação.

Referências

[1] L. Davis. *Handbook of Genetic Algorithms*. VNR Computer Library VNR Computer Library. Van Nostrand Reinhold, 1991.