CSE 402: DIGITAL SIGNAL PROCESSING

Credit Hours: 3 Contact Hours: 3

Grading: As per UET Rules

1. COURSE OUTLINE

This course introduces students with the digital processing of signals. The topics cover the analysis, design and implementation of discrete-time systems. The mathematical representation of digital signals, their properties and manipulations are studied. The paradigm for analysis of system is built and time domain and various transform domain techniques for the analysis of LTI systems are explored including z-transform and Fourier analysis. The concepts of frequency selective filters are developed along with the design of filters with given specification. Students are required to design, simulate their projects on MATLAB, Simulink and/or VisualDSP++.

1. WEEKLY COURSE OUTLINE:

Week #	Contents
Week 1	Introduction Introductory topics, classification of signals, analog-to-digital conversion
Week 2	Discrete Time Signals Representation of Discrete-time signals and their properties
Week 3	Discrete Time Systems Transformations of the independent variable, properties of discrete-time signals
Week 4	Analysis of Discrete Time Systems Time domain analysis of discrete-time systems using convolution sum and difference equations
Week 5	Analysis of Discrete Time Systems Time domain analysis of discrete-time systems using convolution sum and difference equations
Week 6	Z-Transform Computing z-transform, Properties of Region of Convergence for z-transform, Computing inverse z-transforms, Properties of z-transform

Week 7	Z-Transform			
	Computing z-transform, Properties of Region of Convergence for z-transform, Computing inverse z-transforms, Properties of z-transform			
Week 8	Z-Transform Applications			
	Analysis of LTI systems using z-transform			
	Midterm Examination			
Week 9	One-Sided Z-Transform			
	Computing one-sided z-transforms, Properties of one-sided z-transform, Analysis of LTI systems using one-sided z-transform			
Week 10	One-Sided Z-Transform			
	Computing one-sided z-transforms, Properties of one-sided z-transform, Analysis of LTI systems using one-sided z-transform			
Week 11	Frequency Analysis of Discrete Time Signals and Systems			
	Frequency domain representation of Discrete-time signals & systems and their properties			
Week 12	Frequency Analysis of Discrete Time Signals and Systems Frequency domain representation of Discrete-time signals & systems and its properties			
Week 13	Analysis of Discrete Time LTI Systems in Frequency Domain Response of LTI systems to sinusoidal & Exponential signals, Convolution in Frequency domain, frequency selective filters			
Week 14	Implementation of Discrete Time Systems Structures for FIR Systems and IIR Systems			
Week 15	Filter Design Techniques FIR Filter Design Linear phase filter design by windowing, Kaiser window Method			
Week 16	Filter Design Techniques IIR Filter Design			
	Filter design by impulse invariance, bilinear transformation			
Final Term Examination				

2. MAPPING OF CLOS WITH PLOS:

After completing this course, students will be able to:

CLO#	Course Learning Outcomes (CLOs)	Level of Learning (Bloom's Taxonomy)	Program Learning Outcomes (PLOs)
1	Explain the working of digital signal processing systems and classify discrete time signals and systems into different categories.	Cog-2 (Comprehension)	PLO1 (Engineering Knowledge)
2	Analyze the discrete-time Linear Time Invariant (LTI) Systems in time and frequency domains	Cog-4 (Analysis)	PLO2 (Problem Analysis)
3	Compare different implementations of LTI systems.	Cog-4 (Analysis)	PLO4 (Investigatio n)
4	Design filters with desired characteristics which can be used for real world engineering problems	Cog-5 (Evaluating)	PLO3 (Design/Dev elopment of Solutions)

3. MAPPING OF CLOs WITH COURSE ASSESSMENT TOOLS:

Course Assessment	CLOs				
Tools	CLO 1	CLO 2	CLO 3	CLO 4	
Assignments	✓	✓	✓	1	
Quizzes	✓	✓	✓	✓	
Project			✓	✓	
Midterm Exam	✓	✓	✓		
Final Exam		√	√	✓	

4. RESOURCES:

- TEXT BOOKS
 - Discrete-Time Signal Processing Alan V. Oppenheim and Ronald W. Schafer, 3rd Edition, Prentice-Hall Signal Processing Series
 - Digital Signal Processing: Principles, Algorithms and Applications by J.
 P. Proakis and D. G. Manolakis. 4th Edition, Prentice Hall.
- REFERENCE BOOKS

- Digital Signal Processing: A Practical Approach by Emanual C.Ifeachor, 2nd Edition, Prentice Hall.
- Digital Signal Processing: A Computer Based Approach, 3nd Edition, Sanjit K. Mitra, McGraw-Hill