Streaming - 1

Proportional Sampling, Reservoir Sampling, DGIM

What is a stream?

- In many data mining scenarios, we do not know the entire data set in advance
- Stream Management is important when the input rate is controlled externally:
 - Google queries
 - Twitter or Facebook status updates
- Input elements enter at a rapid rate, at one or more input ports (i.e., streams)
 - We call elements of the stream tuples
- The system cannot store the entire stream accessibly

We can think of the data as infinite and non-stationary (the distribution changes over time)

Scenarios

Mining query streams

 Google wants to know what queries are more frequent today than yesterday

Mining click streams

 Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour

Mining social network news feeds

• E.g., look for trending topics on Twitter, Facebook

Germany Trends · Change

#Tschernobyl

Trending for 4 hours now

#Rammstein

286 Tweets

#ProjectHomeHarryDay

174K Tweets

Verfassung

Trending for 2 hours now

#ehikarte

101 Tweets

Frau Holle

112 Tweets

Die Toten Hosen

Started trending in the last hour

Kolumne

Started trending in the last hour

Vorlesung

Trending for 2 hours now

Wartezimmer

Started trending in the last hour

Streaming Questions

- How do we sample from a stream? Given a stream of items:
 - How do we sample a fixed proportion of elements in the stream (say 1 in 10)?
 - Maintain a random sample of fixed size over a potentially infinite stream?
- How do we count elements in a stream?
 - How do we count the frequency of an item in the last n observed items?

Sampling a Fixed Proportion

Problem 1: Sampling fixed proportion

Sampling a Fixed Proportion

- Problem 1: Sampling fixed proportion
- Scenario: Search engine query stream
 - Stream of tuples: (user, query, time)
 - Answer questions such as: How often did a user run the same query in a single days
 - Have space to store 1/10th of query stream

Sampling a Fixed Proportion

- Problem 1: Sampling fixed proportion
- Scenario: Search engine query stream
 - Stream of tuples: (user, query, time)
 - Answer questions such as: How often did a user run the same query in a single days
 - Have space to store 1/10th of query stream
- Naïve solution:
 - Generate a random integer in [0..9] for each query
 - Store the query if the integer is 0, otherwise discard

Problem with Naïve Approach

Scenario: What fraction of queries by an user are duplicates?

Problem with Naïve Approach

- Scenario: What fraction of queries by an user are duplicates?
- Let each user issues x queries once and d queries exactly twice. (x + 2d queries in total)
 - Answer: d / (x+d)
- What is the expected number of repetitions in the sample produced by naive sampling?
 - x/10 singletons, 2d/10 duplicates

Problem with Naïve Approach

- Scenario: What fraction of queries by an user are duplicates?
- Let each user issues x queries once and d queries exactly twice. (x + 2d queries in total)
 - Answer: d / (x+d)
- What is the expected number of repetitions in the sample produced by naive sampling?
 - x/10 singletons, 2d/10 duplicates
 - But only d/100 pairs of duplicates (1/10).(1/10).d
- Of d duplicates 18d/100 appear exactly once
 - 18d/100 = ((1/10.9/10) + (9/10 + 1/10)).d
- Sample Answer: d/ (10x + 19d)
 - duplicates = d/100, overall (d/100) + (x/10) + (18d/100)

Solution:

- Pick 1/10th of users and take all their searches in the sample
- Use a hash function that hashes the user name or user id uniformly into
 10 buckets

Solution:

- Pick 1/10th of users and take all their searches in the sample
- Use a hash function that hashes the user name or user id uniformly into
 10 buckets

Solution:

Pick 1/10th of users and take all their searches in the sample

Use a hash function that hashes the user name or user id uniformly into

Solution:

Pick 1/10th of users and take all their searches in the sample

Use a hash function that hashes the user name or user id uniformly into

Solution:

Pick 1/10th of users and take all their searches in the sample

Use a hash function that hashes the user name or user id uniformly into

Generalized Solution

- Stream of tuples with keys:
 - Key is some subset of each tuple's components
 - e.g., tuple is (user, search, time); key is user
 - Choice of key depends on application

Generalized Solution

- Stream of tuples with keys:
 - Key is some subset of each tuple's components
 - e.g., tuple is (user, search, time); key is user
 - Choice of key depends on application
- To get a sample of a/b fraction of the stream:
 - Hash each tuple's key uniformly into b buckets
 - Pick the tuple if its hash value is at most a

Hash table with **b** buckets, pick the tuple if its hash value is at most **a**. **How to generate a 30% sample?**

Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets

- Problem 2: Fixed-size sample
- Suppose we need to maintain a random sample S of size exactly s tuples
 - E.g., main memory size constraint

- Problem 2: Fixed-size sample
- Suppose we need to maintain a random sample S of size exactly s tuples
 - E.g., main memory size constraint
- Why? Don't know length of stream in advance

- Problem 2: Fixed-size sample
- Suppose we need to maintain a random sample S of size exactly s tuples
 - E.g., main memory size constraint
- Why? Don't know length of stream in advance
- Suppose at time n we have seen n items
 - Each item is in the sample S with equal prob. s/n

- Problem 2: Fixed-size sample
- Suppose we need to maintain a random sample S of size exactly s tuples
 - E.g., main memory size constraint
- Why? Don't know length of stream in advance
- Suppose at time n we have seen n items
 - Each item is in the sample S with equal prob. s/n

How to think about the problem: say s = 2Stream: a x c y z k/c d/e g...

At **n= 5**, each of the first 5 tuples is included in the sample **S** with equal prob.

At n=7, each of the first 7 tuples is included in the sample **S** with equal prob.

Impractical solution would be to store all the *n* tuples seen so far and out of them pick *s* at random

Reservoir Sampling

- Algorithm (a.k.a. Reservoir Sampling)
 - Store all the first s elements of the stream to S
 - Suppose we have seen n-1 elements, and now the nth element arrives (n > s)
 - With probability s/n, keep the n^{th} element, else discard it
 - If we picked the n^{th} element, then it replaces one of the s elements in the sample s, picked uniformly at random

Reservoir Sampling

- Algorithm (a.k.a. Reservoir Sampling)
 - Store all the first s elements of the stream to S
 - Suppose we have seen *n-1* elements, and now the *nth* element arrives (*n > s*)
 - With probability s/n, keep the n^{th} element, else discard it
 - If we picked the n^{th} element, then it replaces one of the s elements in the sample s, picked uniformly at random
- Claim: This algorithm maintains a sample S
 with the desired property:

Reservoir Sampling

- Algorithm (a.k.a. Reservoir Sampling)
 - Store all the first s elements of the stream to S
 - Suppose we have seen n-1 elements, and now the nth element arrives (n > s)
 - With probability s/n, keep the n^{th} element, else discard it
 - If we picked the nth element, then it replaces one of the
 s elements in the sample S, picked uniformly at random
- Claim: This algorithm maintains a sample S
 with the desired property:
 - After *n* elements, the sample contains each element seen so far with probability *s/n*

- We prove this by induction:
 - Assume that after n elements, the sample contains each element seen so far with probability s/n
 - We need to show that after seeing element n+1 the sample maintains the property
 - Sample contains each element seen so far with probability s/(n +1)

We prove this by induction:

- Assume that after n elements, the sample contains each element seen so far with probability s/n
- We need to show that after seeing element n+1 the sample maintains the property
 - Sample contains each element seen so far with probability s/(n +1)

Base case:

- After we see n=s elements the sample S has the desired property
 - Each out of n=s elements is in the sample with probability s/s = 1

- Inductive hypothesis: After n elements, the sample S contains each element seen so far with prob. s/n
- Now element n+1 arrives
- Inductive step: For elements already in S, probability that the algorithm keeps it in S is:

- So, at time n, tuples in S were there with prob. s/n
- Time $n \rightarrow n+1$, tuple stayed in S with prob. n/(n+1)
- So prob. tuple is in **S** at time $n+1 = \frac{s}{n} \cdot \frac{n}{n+1} = \frac{s}{n+1}$

- Inductive hypothesis: After n elements, the sample S contains each element seen so far with prob. s/n
- Now element n+1 arrives
- Inductive step: For elements already in S, probability that the algorithm keeps it in S is:

$$\left(1 - \frac{S}{n+1}\right) + \left(\frac{S}{n+1}\right) \left(\frac{S-1}{S}\right) = \frac{n}{n+1}$$
Element n+1 discarded

Element n+1 discarded sample not picked

- So, at time *n*, tuples in *S* were there with prob. s/n
- Time $n \rightarrow n+1$, tuple stayed in S with prob. n/(n+1)
- So prob. tuple is in **S** at time $n+1 = \frac{s}{n} \cdot \frac{n}{n+1} = \frac{s}{n+1}$

Counting in a Stream - Windows

- A useful model of stream processing is that queries are about a window of length N – the N most recent elements received
- Interesting case: N is so large that the data cannot be stored in memory, or even on disk
 - Or, there are so many streams that windows for all cannot be stored

Amazon example:

- For every product X we keep 0/1 stream of whether that product was sold in the n-th transaction
- We want answer queries, how many times have we sold X in the last k sales
- Twitter example:
 - Use-case: tracking hashtags #sonyps4 #ps4 #xbox360

N = 6

N = 6

N = 6

N = 6

N = 6

Counting Bits (1)

- Problem:
 - Given a stream of 0s and 1s
 - Be prepared to answer queries of the form
 How many 1s are in the last k bits? where k ≤ N
- Obvious solution:
 Store the most recent N bits

Counting Bits (1)

Problem:

- Given a stream of 0s and 1s
- Be prepared to answer queries of the form
 How many 1s are in the last k bits? where k ≤ N

Obvious solution:

Store the most recent N bits

• When new bit comes in, discard the N+1st bit

Counting Bits (1)

Problem:

- Given a stream of 0s and 1s
- Be prepared to answer queries of the form
 How many 1s are in the last k bits? where k ≤ N
- Obvious solution:

Store the most recent N bits

• When new bit comes in, discard the N+1st bit

Counting Bits (2)

You can not get an exact answer without storing the entire window

- Real Problem:
 - What if we cannot afford to store N bits?
 - E.g., we're processing 1 billion streams and
 N = 1 billion

- But we are happy with an approximate answer
- Naive approach: Uniform assumption, interpolation

Data can be non-uniform. Distribution changes over time.

- Idea: Keep non-overlapping blocks with counts.
 - Memory: How do we block? How many blocks?
 - Accuracy: How do we provide guarantee on the count errors?

- Idea: Keep non-overlapping blocks with counts.
 - Memory: How do we block? How many blocks?
 - Accuracy: How do we provide guarantee on the count errors?

Each block contains a count = power of 2 Each block belongs to a interval

16 8 4 2 1 t-50

Each block encodes an interval

Each block contains a count = power of 2

Each block encodes an interval

Each block contains a count = power of 2

- Space overhead: O(log² N)
 - Number of buckets: log N
 - Max bits reqd. per bucket: log N (time stamps, count)

DGIM method- Counting

1/2 size of last bucket

DGIM method- Counting

- Find the number of 1's in the last k entries
- Find the affected buckets in the timespan of the query using timestamps
 - At most 1 bucket with inexact counts
 - Count all affected buckets (exact) + estimate the count in the last bucket (approximate)

1/2 size of last bucket

DGIM method- Accuracy

DGIM method- Accuracy

- Error rate of 50% in the worst case
- Proof insight: earliest affected bucket does not contribute more than 50% of the actual answer

$$\sum_{i} 2^{i} = 2^{i+1} - 1$$

DGIM method- Maintaining Buckets

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size
 - Earlier buckets are not smaller than later buckets
- Buckets disappear when their end-time is > N time units in the past

Updating Buckets (1)

 When a new bit comes in, drop the last (oldest) bucket if its end-time is prior to N time units before the current time

2 cases: Current bit is 0 or 1

If the current bit is 0:
 no other changes are needed

Updating Buckets (2)

- If the current bit is 1:
 - (1) Create a new bucket of size 1, for just this bit
 - End timestamp = current time
 - (2) If there are now three buckets of size 1,
 combine the oldest two into a bucket of size 2
 - (3) If there are now three buckets of size 2, combine the oldest two into a bucket of size 4
 - (4) And so on ...

Current state of the stream:

Current state of the stream:

Bit of value 0 arrives do nothing,1 arrives

Current state of the stream:

Bit of value 0 arrives do nothing,1 arrives

Two orange buckets get merged into a yellow bucket

10010101100010110 10101010101011 0 10101010111 0 1010101 1 10101 0 101 1001 0 1

Current state of the stream:

Bit of value 0 arrives do nothing,1 arrives

Two orange buckets get merged into a yellow bucket

Next bit 1 arrives

Current state of the stream:

Bit of value 0 arrives do nothing,1 arrives

Two orange buckets get merged into a yellow bucket

Next bit 1 arrives

Next bit 1 arrives Buckets get merged...

Current state of the stream:

Bit of value 0 arrives do nothing,1 arrives

Two orange buckets get merged into a yellow bucket

Next bit 1 arrives

Next bit 1 arrives Buckets get merged...

State of the buckets after merging

Further Reducing the Error

- Instead of maintaining 1 or 2 of each size bucket, we allow either r-1 or r buckets (r > 2)
 - Except for the largest size buckets; we can have any number between 1 and r of those
- What is the space requirement for r buckets?

Further Reducing the Error

- Instead of maintaining 1 or 2 of each size bucket, we allow either r-1 or r buckets (r > 2)
 - Except for the largest size buckets; we can have any number between 1 and r of those
- What is the space requirement for r buckets?
- Error is at most O(1/r)
- By picking r appropriately, we can tradeoff between number of bits we store and the error

Summary

- Sampling a fixed proportion of a stream
 - Sample size grows as the stream grows
- Sampling a fixed-size sample
 - Reservoir sampling
- Counting the number of 1s in the last N elements
 - Exponentially increasing windows
 - Extensions:
 - Number of 1s in any last k (k < N) elements
 - Sums of integers in the last N elements

Appendix Slides