Statystyka

Lista 5

Niech X_1, \ldots, X_m będą niezależnymi zmiennymi losowymi z rozkładu o ciągłej dystrybuancie F. Niech Y_1, \ldots, Y_n będą niezależnymi zmiennymi losowymi z rozkładu o ciągłej dystrybuancie G. Zakładamy, że wszystkie zmienne są niezależne. Rozważamy problem testowania hipotezy

$$H_0: F = G$$
 przeciwko alternatywie $H_1: F \neq G$ (1)

na poziomie istotności $\alpha = 0.05$.

Niech N=m+n, a $\mathbf{Z}=(Z_1,\ldots,Z_N)=(X_1,\ldots,X_m;Y_1,\ldots,Y_n)$ będzie wektorem połączonych prób. Niech R_i będzie rangą Z_i w próbie $\mathbf{Z},\ i=1,\ldots,N$. Klasyczna liniowa statystyka rangowa związana z funkcją wynikową $\varphi\in L_2(0,1)$ ma postać

$$T_{\varphi} = \sqrt{\frac{mn}{N}} \left\{ \frac{1}{m} \sum_{i=1}^{m} \varphi\left(\frac{R_i - 0.5}{N}\right) - \frac{1}{n} \sum_{i=m+1}^{N} \varphi\left(\frac{R_i - 0.5}{N}\right) \right\},\tag{2}$$

przy czym wybór funkcji φ determinuje czułość testu opartego na statystyce T_{φ} . Jeżeli $\varphi(u) = \varphi_1(u) = \sqrt{3}(2u-1)$, to otrzymujemy statystykę Wilcoxona. Wybór $\varphi(u) = \varphi_2(u) = \sqrt{48}(0.25 - |u-0.5|)$ prowadzi do statystyki Ansari-Bradley'a. Jeżeli $\int_0^1 \varphi(u) du = 0$, a $\int_0^1 \varphi^2(u) du = 1$, to przy prawdziwości hipotezy zerowej statystyka T_{φ} ma asymptotyczny rozkład standardowy normalny. Ponadto, H_0 odrzucamy na korzyść H_1 dla dużych wartości T_{φ}^2 .

W problemie testowania (H_0, H_1) innym klasycznym rozwiązaniem jest, na przykład, test Kołmogorowa-Smirnowa odrzucający H_0 dla dużych wartości statystyki

$$KS = \sqrt{\frac{mn}{N}} \sup_{x \in \mathbb{R}} |F_m(x) - G_n(x)|, \tag{3}$$

gdzie F_m oraz G_n są dystrybuantami empirycznymi w próbie X-ów i Y-ów, odpowiednio.

Celem ćwiczenia będzie badanie zachowania funkcji mocy wybranych rozwiązań problemu (1). Dokładniej, będziemy analizować

- (i) test Wilcoxona oparty na statystyce $W=T_{\varphi_1}^2,$
- (ii) test Ansari-Bradley'a oparty na statystyce $AB = T_{\varphi_2}^2$,
- (iii) test Lepage'a oparty na statystyce L = W + AB,
- (iv) test Kołmogorowa-Smirnowa oparty na statystyce KS.

Zadanie 1.

Wygeneruj m=n=20 obserwacji z rozkładu N(0,1). Na ich podstawie oblicz wartość statystyki W, AB, L i KS. Doświadczenie powtórz $10\,000$ razy. Wyznacz wartości krytyczne odpowiadających im testów prawostronnych. Czy taki sposób generowania wartości krytycznych jest poprawny? Odpowiedź uzasadnij.

Zadanie 2.

Wygeneruj m=n=20 obserwacji z rozkładu

- (a) normalnego z parametrem przesunięcia μ_1 i μ_2 oraz skali σ_1 i σ_2 , odpowiednio,
 - (i) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0.2$, $\sigma_2 = 1$,
 - (ii) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0.4$, $\sigma_2 = 1$,
 - (iii) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0.6$, $\sigma_2 = 1$,
 - (iv) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0.8$, $\sigma_2 = 1$,
 - (v) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 1.0$, $\sigma_2 = 1$,
 - (vi) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 1.2$, $\sigma_2 = 1$,
 - (vii) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 1.4$, $\sigma_2 = 1$,
- (b) logistycznego z parametrem przesunięcia μ_1 i μ_2 oraz skali σ_1 i σ_2 , odpowiednio,
 - (i) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0.2$, $\sigma_2 = 1$,
 - (ii) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0.4$, $\sigma_2 = 1$,
 - (iii) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0.6$, $\sigma_2 = 1$,
 - (iv) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0.8$, $\sigma_2 = 1$,
 - (v) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 1.0$, $\sigma_2 = 1$,
 - (vi) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 1.2$, $\sigma_2 = 1$,
 - (vii) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 1.4$, $\sigma_2 = 1$,
- (c) Cauchy'ego z parametrem przesunięcia μ_1 i μ_2 oraz skali σ_1 i σ_2 , odpowiednio,
 - (i) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0.0$, $\sigma_2 = 1$,
 - (ii) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0.5$, $\sigma_2 = 1$,
 - (iii) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 1.0$, $\sigma_2 = 1$,
 - (iv) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 1.5$, $\sigma_2 = 1$,
 - (v) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 2.0$, $\sigma_2 = 1$,
 - (vi) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 2.5$, $\sigma_2 = 1$,
 - (vii) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 3.0$, $\sigma_2 = 1$.

Na ich podstawie oblicz wartość statystyki W, AB, L i KS. Doświadczenie powtórz 10 000 razy. Oszacuj wartość funkcji mocy analizowanych testów. Narysuj wyestymowane funkcje mocy w zależności od parametru μ_2 . Przedyskutuj uzyskane wyniki.

Zadanie 3.

Wygeneruj m = n = 20 obserwacji z rozkładu

- (a) normalnego z parametrem przesunięcia μ_1 i μ_2 oraz skali σ_1 i σ_2 , odpowiednio,
 - (i) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0$, $\sigma_2 = 1.0$,
 - (ii) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0$, $\sigma_2 = 1.5$,
 - (iii) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0$, $\sigma_2 = 2.0$,
 - (iv) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0$, $\sigma_2 = 2.5$,
 - (v) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0$, $\sigma_2 = 3.0$,
 - (vi) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0$, $\sigma_2 = 3.5$,
 - (vii) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0$, $\sigma_2 = 4.0$,

- (b) logistycznego z parametrem przesunięcia μ_1 i μ_2 oraz skali σ_1 i σ_2 , odpowiednio,
 - (i) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0$, $\sigma_2 = 1.0$,
 - (ii) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0$, $\sigma_2 = 1.5$,
 - (iii) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0$, $\sigma_2 = 2.0$,
 - (iv) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0$, $\sigma_2 = 2.5$,
 - (v) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0$, $\sigma_2 = 3.0$,
 - (vi) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0$, $\sigma_2 = 3.5$,
 - (vii) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0$, $\sigma_2 = 4.0$,
- (c) Cauchy'ego z parametrem przesunięcia μ_1 i μ_2 oraz skali σ_1 i σ_2 , odpowiednio,
 - (i) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0$, $\sigma_2 = 1.0$,
 - (ii) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0$, $\sigma_2 = 2.0$,
 - (iii) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0$, $\sigma_2 = 3.0$,
 - (iv) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0$, $\sigma_2 = 4.0$,
 - (v) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0$, $\sigma_2 = 5.0$,
 - (vi) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0$, $\sigma_2 = 6.0$,
 - (vii) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0$, $\sigma_2 = 7.0$.

Na ich podstawie oblicz wartość statystyki W, AB, L i KS. Doświadczenie powtórz 10 000 razy. Oszacuj wartość funkcji mocy analizowanych testów. Narysuj wyestymowane funkcje mocy w zależności od parametru σ_2 . Przedyskutuj uzyskane wyniki.

Zadanie 4.

Wygeneruj m=n=20 obserwacji z rozkładu

- (a) normalnego z parametrem przesunięcia μ_1 i μ_2 oraz skali σ_1 i σ_2 , odpowiednio,
 - (i) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0.2$, $\sigma_2 = 1.0$,
 - (ii) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0.4$, $\sigma_2 = 1.5$,
 - (iii) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0.6$, $\sigma_2 = 2.0$,
 - (iv) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0.8$, $\sigma_2 = 2.5$,
 - (v) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 1.0$, $\sigma_2 = 3.0$,
 - (vi) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 1.2$, $\sigma_2 = 3.5$,
 - (vii) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 1.4$, $\sigma_2 = 4.0$,
- (b) logistycznego z parametrem przesunięcia μ_1 i μ_2 oraz skali σ_1 i σ_2 , odpowiednio,
 - (i) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0.2$, $\sigma_2 = 1.0$,
 - (ii) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0.4$, $\sigma_2 = 1.5$,
 - (iii) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0.6$, $\sigma_2 = 2.0$,
 - (iv) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0.8$, $\sigma_2 = 2.5$,
 - (v) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 1.0$, $\sigma_2 = 3.0$,
 - (vi) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 1.2$, $\sigma_2 = 3.5$,
 - (vii) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 1.4$, $\sigma_2 = 4.0$,

- (c) Cauchy'ego z parametrem przesunięcia μ_1 i μ_2 oraz skali σ_1 i σ_2 , odpowiednio,
 - (i) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0.0$, $\sigma_2 = 1.0$,
 - (ii) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 0.5$, $\sigma_2 = 2.0$,
 - (iii) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 1.0$, $\sigma_2 = 3.0$,
 - (iv) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 1.5$, $\sigma_2 = 4.0$,
 - (v) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 2.0$, $\sigma_2 = 5.0$,
 - (vi) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 2.5$, $\sigma_2 = 6.0$,
 - (vii) $\mu_1 = 0$, $\sigma_1 = 1$; $\mu_2 = 3.0$, $\sigma_2 = 7.0$.

Na ich podstawie oblicz wartość statystyki W, AB, L i KS. Doświadczenie powtórz 10 000 razy. Oszacuj wartość funkcji mocy analizowanych testów. Narysuj wyestymowane funkcje mocy w zależności od wektora parametrów (μ_2, σ_2). Przedyskutuj uzyskane wyniki.

Zadanie 5.

Wygeneruj m=n=50 obserwacji z rozkładu N(0,1). Na ich podstawie oblicz wartość statystyki W, AB, L i KS. Doświadczenie powtórz 10 000 razy. Wyznacz wartości krytyczne analizowanych testów prawostronnych.

Zadanie 6.

Wygeneruj m = n = 50 obserwacji z rozkładu

- (a) normalnego z parametrem przesunięcia μ_1 i μ_2 oraz skali σ_1 i σ_2 ,
- (b) logistycznego z parametrem przesunięcia μ_1 i μ_2 oraz skali σ_1 i σ_2 ,
- (c) Cauchy'ego z parametrem przesunięcia μ_1 i μ_2 oraz skali σ_1 i σ_2 .

W każdym przypadku dobierz parametry μ_1 i μ_2 oraz skali σ_1 i σ_2 , analogicznie jak w zadaniach 2, 3, 4, tak aby uzyskać moce w pełnym zakresie, ale nie były one zdegenerowane. Sporządź wykresy funkcji mocy w zależności od μ_2 , σ_2 oraz (μ_2 , σ_2), odpowiednio. Przedyskutuj uzyskane rezultaty.