Data Science and Machine Learning with Python: From Fundamentals to Advanced Techniques

Learning Agenda:

- Python Fundamentals and Data Analysis with Libraries
- Mathematics for Machine Learning
- Introduction to Databases and SQL &NoSQL, Web Scraping Techniques and Tools
- Fundamentals of Machine Learning
- Deep Learning and Neural Networks
- Natural Language Processing Fundamentals
- Computer Vision and Image Processing
- Big Data Analytics and MLOps

Module no 01: Python Fundamentals and Data Analysis with Libraries

Week 1 & 2:

- Introduction to Python programming language and Python Environment:
 - Installation of Python and Jupyter Notebook
 - Basic syntax and data types
 - Control flow statements: if-else, loops
 - Functions and modules
 - File handling and input/output operations

Week 3:

- Basics of NumPy for numerical computing:
 - Introduction to arrays and multidimensional arrays
 - Array creation, indexing, and slicing
 - Mathematical operations and broadcasting
 - Array manipulation and reshaping
 - Array aggregation and statistical functions

Week 4 & 5:

- Pandas for data manipulation and analysis:
 - Introduction to pandas Series and DataFrame
 - Data cleaning and preprocessing
 - Data selection and filtering
 - Data aggregation and group operations
 - Handling missing data and duplicates

Week 6:

- Data visualization using Matplotlib, Seaborn, and Plotly:
 - Introduction to data visualization and its importance
 - Basic plotting with Matplotlib: line plots, scatter plots, bar plots
 - Customizing plots: labels, titles, legends, colors
 - Statistical data visualization with Seaborn: histograms, box plots, heatmaps
 - Interactive visualizations with Plotly: line plots, scatter plots, bar plots

Week 7:

- Symbolic mathematics with SymPy:
 - Introduction to symbolic mathematics and its applications
 - Symbolic expressions and variables
 - Manipulating and simplifying symbolic expressions
 - Solving equations and systems of equations

• Calculus operations: differentiation, integration, limits

Week 8:

- Scientific computing with SciPy:
 - Introduction to SciPy library and its modules
 - Linear algebra operations: matrix operations, eigenvalues, eigenvectors
 - Numerical integration and solving differential equations
 - Statistical functions and hypothesis testing
 - Optimization algorithms and curve fitting

Module no 02: Mathematics for Machine Learning

Week 1 & 2:

- Foundation of linear algebra:
 - Vectors and vector spaces
 - Matrices and matrix operations
 - Systems of linear equations and their solutions
 - Vector spaces, subspaces, and bases
 - Linear transformations and their properties

Week 3 & 4:

- Fundamental of calculus concepts and techniques:
 - Limits, continuity, and differentiability
 - Derivatives and their applications
 - Rules of differentiation: chain rule, product rule, quotient rule
 - Optimization problems and applications of derivatives
 - Integration and techniques of integration
 - Applications of integration: area, volume, and definite integrals

Week 5 & 6:

- Introduction to probability theory and statistics:
 - Probability basics: sample space, events, and probability measures
 - Combinatorics and counting principles
 - Probability distributions: discrete and continuous distributions
 - Central limit theorem and the normal distribution
 - Statistical inference: estimation and hypothesis testing
 - Introduction to regression analysis and correlation

Week 7 & 8:

- Optimization algorithms for machine learning:
 - Introduction to optimization problems in machine learning
 - Unconstrained optimization: gradient descent, Newton's method
 - Constrained optimization: Lagrange multipliers, KKT conditions
 - Convex optimization and convexity in machine learning
 - Stochastic optimization: stochastic gradient descent, mini-batch gradient descent
 - Hyperparameter tuning and model selection

Module no 03: Introduction to Databases and SQL & NoSQL, Web Scraping Techniques and Tools

Week 1:

- Introduction to databases and their importance in data storage:
 - Overview of different types of databases: relational, NoSQL, etc.
 - Understanding the role of databases in data management
 - Exploring popular database management systems (DBMS)

Week 2:

- SQL for relational databases:
 - Introduction to structured query language (SQL)
 - Creating and manipulating database tables
 - Querying data using SELECT, INSERT, UPDATE, DELETE statements
 - Joining tables and performing advanced SQL operations

Week 3:

- NoSQL databases and their advantages:
 - Introduction to NoSQL databases (e.g., MongoDB)
 - Understanding the key-value, document, columnar, and graph database models
 - Working with NoSQL databases using their respective query languages

Week 4:

- Data Scraping:
 - Understanding the basics of data scraping
 - Introduction to web scraping and its applications
 - Working with Beautiful Soup for web scraping:
 - Parsing HTML and XML documents
 - Navigating and extracting data from web pages

Week 5:

- Scrapy for advanced web scraping tasks:
 - Overview of the Scrapy framework
 - Creating a Scrapy project and defining spiders
 - Extracting structured data from websites
 - Handling pagination, forms, and dynamic content

Week 6:

- Selenium for dynamic web scraping:
 - Introduction to Selenium WebDriver
 - Automating browser interactions for web scraping
 - Handling JavaScript-driven websites and AJAX requests
 - Extracting data from dynamically generated web pages

Week 7 & 8:

- Understanding of tools like Webhose.io and Google Custom Search API:
 - Introduction to Webhose.io for accessing web data and news articles
 - Utilizing the Google Custom Search API for targeted web searches
 - Integrating additional scraping tools into data collection pipelines

Module no 04: Fundamentals of Machine Learning

Week 1:

- Introduction to machine learning concepts and algorithms:
 - Understanding the fundamentals of machine learning
 - Differentiating between supervised, unsupervised, and reinforcement learning
 - Overview of the machine learning workflow

Week 2:

- Supervised learning algorithms:
 - Linear regression and logistic regression
 - Decision trees and random forests
 - Support vector machines (SVM)
 - Evaluation metrics for supervised learning models

Week 3:

- Unsupervised learning algorithms:
 - Clustering algorithms (k-means, hierarchical clustering)
 - Dimensionality reduction techniques (PCA, t-SNE)
 - Anomaly detection algorithms
 - Evaluation metrics for unsupervised learning models

Week 4:

- Reinforcement learning:
 - Introduction to reinforcement learning concepts
 - Markov decision processes (MDPs)
 - Q-learning and policy gradient methods
 - Application areas of reinforcement learning

Week 5:

- Building machine learning models:
 - Data preprocessing and feature engineering techniques
 - Splitting datasets into training and testing sets
 - Implementing machine learning algorithms using Python and scikit-learn
 - Hyperparameter tuning and model selection

Week 6:

Evaluating machine learning models:

- Performance evaluation metrics (accuracy, precision, recall, F1-score)
- Cross-validation techniques
- Overfitting, underfitting, and bias-variance tradeoff
- Model interpretation and explainability

Week 7:

- Advanced topics in machine learning:
 - Ensemble learning methods (bagging, boosting, stacking)
 - Deep learning overview and neural networks
 - Transfer learning and pre-trained models
 - Handling imbalanced datasets and class imbalance

Week 8:

- Project and practical applications:
 - Applying machine learning algorithms to real-world datasets
 - Designing and implementing end-to-end machine learning pipelines
 - Presenting and interpreting machine learning results
 - Kaggle Competitions

Module no 05: Deep Learning and Neural Networks

Week 1 & 2:

- Fundamentals of deep learning:
 - Introduction to artificial neural networks (ANN)
 - Activation functions and backpropagation
 - Optimization algorithms for training deep models
 - Regularization techniques (dropout, weight decay)
- Deep Learning Frameworks and Tools:
 - Introduction to popular deep learning frameworks (TensorFlow, Keras)
 - Hands-on experience with building and training deep learning models
 - Using pre-trained models and transfer learning in deep learning projects
 - Deployment considerations for deep learning models

Week 3:

- Convolutional Neural Networks (CNN):
 - Understanding convolutional layers and filters
 - Pooling and stride operations
 - CNN architectures (LeNet, AlexNet, VGG, ResNet)
 - Transfer learning with pre-trained CNN models

Week 4:

- Recurrent Neural Networks (RNN):
 - Introduction to sequential data and time series analysis
 - Understanding the architecture of RNNs and their variations (LSTM, GRU)
 - Training and predicting with RNN models
 - Applications of RNNs in natural language processing and speech recognition

Week 5:

- Autoencoders:
 - Introduction to unsupervised learning and dimensionality reduction
 - Understanding the architecture and training of autoencoders
 - Applications of autoencoders in data compression and anomaly detection
 - Variational Autoencoders (VAE) for generating new data samples

Week 6:

- Generative Adversarial Networks (GAN):
 - Understanding the concept of generative modeling
 - Exploring the architecture of GANs (generator and discriminator)

- Training GAN models and generating synthetic data
- Applications of GANs in image synthesis and style transfer

Week 7:

- Advanced topics in deep learning:
 - Advanced activation functions (ReLU, PReLU, ELU)
 - Batch normalization and layer normalization
 - Hyperparameter tuning in deep learning models
 - Handling overfitting and improving generalization

Week 8:

- Project and practical applications:
 - Applying deep learning techniques to real-world problems
 - Implementing deep learning architectures for specific tasks (image classification, text generation)
 - Fine-tuning and optimizing deep learning models
 - Kaggle Competitions

Module no 06: Natural Language Processing Fundamentals

Module no 07: Computer Vision and Image Processing

Module no 08: MLOps and Big Data Analytics

Week 1:

- MLOps Introduction:
 - Introduction to MLOps and its significance
 - Deploying machine learning models at scale
 - Model versioning and tracking
 - Monitoring and performance evaluation of deployed models

Week 2:

- Continuous Integration and Continuous Deployment (CI/CD) for Model Deployment:
 - Understanding CI/CD pipelines in machine learning projects
 - Automated testing and model evaluation in CI/CD pipelines
 - Implementing CI/CD pipelines using tools like Jenkins or Github
 - Best practices for efficient model deployment and management

Week 3:

- Big Data and its Challenges:
 - Understanding the characteristics and challenges of big data
 - Introduction to distributed computing frameworks (Hadoop, Spark)
 - Data processing with Hadoop and MapReduce

Week 4:

- Apache Spark for Big Data Analytics:
 - Exploring Apache Spark and its ecosystem
 - Distributed data processing with Spark RDDs and DataFrames
 - Performing big data analytics tasks with Spark
 - Handling large-scale data using Spark's advanced features

For further inquiries, please do not hesitate to contact:

Ehtisham Sadiq

03054661042

https://www.linkedin.com/in/ehtisham-sadiq/