Computer-Linguistische Anwendungen

CLA | B.Sc. | LMU

Wiederholung: Lineare Algebra

Wiederholung: Lineare Algebra

Punkt Produkt / Skalarprodukt

Beispiel:

$$\vec{w}\cdot\vec{c}=\sum_{i}w_{i}c_{i}$$

$$\left(\begin{array}{c}w_1\\w_2\\w_3\end{array}\right)\cdot\left(\begin{array}{c}c_1\\c_2\\c_3\end{array}\right)=w_1c_1+w_2c_2+w_3c_3$$

Linear Algebra: C = AB

			В		
	Ш		1	-2	
			-1	2	
	1	1	0	0	
A	2	1	1	-2	

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$

 $C_{12} = A_{11}B_{12} + A_{12}B_{22}$
 $C_{21} = A_{21}B_{11} + A_{22}B_{21}$
 $C_{22} = A_{21}B_{12} + A_{22}B_{22}$

Linear Algebra: C = AB

			В		
			0.7	0.3	
			0.2	8.0	
	0	1	0.2	8.0	
A	0.2	8.0	0.3	0.7	
	0.3	0.7	0.35	0.65	

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$
 $C_{12} = A_{11}B_{12} + A_{12}B_{22}$
 $C_{21} = A_{21}B_{11} + A_{22}B_{21}$
 $C_{22} = A_{21}B_{12} + A_{22}B_{22}$
 $C_{31} = A_{31}B_{11} + A_{32}B_{21}$
 $C_{32} = A_{31}B_{12} + A_{32}B_{22}$

Linear Algebra: C = AB

			В		
			0.7	0.3	
			0.2	8.0	
	0	1	0.2	8.0	
A	0.2	8.0	0.3	0.7	
	0.3	0.7	0.35	0.65	

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$
 $C_{12} = A_{11}B_{12} + A_{12}B_{22}$
 $C_{21} = A_{21}B_{11} + A_{22}B_{21}$
 $C_{22} = A_{21}B_{12} + A_{22}B_{22}$
 $C_{31} = A_{31}B_{11} + A_{32}B_{21}$
 $C_{32} = A_{31}B_{12} + A_{32}B_{22}$

Wichtige Konzepte:

Euklidische Länge des Vektors \overrightarrow{d}

$$|\vec{d}| = \sqrt{\sum_{i=1}^n d_i^2}$$

Äquivalent ist: die Quadratwurzel des *Dot Products* von *d*

\overrightarrow{c} und \overrightarrow{d} sind orthogonal nur wenn

$$\sum_{i=1}^n c_i \cdot d_i = 0$$

Genau dann, wenn das dot product null ist.

Aufgabe:

V^T	d_1	d_2	d_3	d_4	d_5	d_6
1	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
2	-0.29	-0.53	-0.19	0.63	0.22	0.41
3	0.28	-0.75	0.45	-0.20	0.12	-0.33
4	0.00	0.00	0.58	0.00	-0.58	0.58
5	-0.53	0.29	0.63	0.19	0.41	-0.22

Show: column d_1 has unit length: $\sqrt{\sum_i d_{i1}^2} = 1$

Show: columns d_1 , d_2 are orthogonal: $\sum_i d_{i1} \cdot d_{i2} = 0$

Aufgabe:

V^T	d_1	d_2	d_3	d_4	d_5	d_6
1	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
2	-0.29	-0.53	-0.19	0.63	0.22	0.41
3	0.28	-0.75	0.45	-0.20	0.12	-0.33
4	0.00	0.00	0.58	0.00	-0.58	0.58
5	-0.53	0.29	0.63	0.19	0.41	-0.22

Show: column
$$d_1$$
 has unit length: $\sqrt{\sum_i d_{i1}^2} = 1$

Show: columns
$$d_1$$
, d_2 are orthogonal: $\sum_i d_{i1} \cdot d_{i2} = 0$

$$0.75^2 + 0.29^2 + 0.28^2 + 0.00^2 + 0.53^2 = 1.0059$$

$$-0.75*-0.28+-0.29*-0.53+0.28*-0.75+0.00*0.00+\\$$

$$-0.53 * 0.29 = 0$$

