<u>Help</u>

sandipan_dey >

<u>Calendar</u> **Discussion** <u>Notes</u> <u>Course</u> <u>Progress</u> <u>Dates</u>

☆ Course / Unit 1: Functions of two variab... / Lecture 1: Level curves and partial derivati...

(3)

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

End My Exam

44:55:04

Explore

Examples

0:00 / 0:00 66 2.0x X CC

Start of transcript. Skip to the end.

PROFESSOR: So how to compute these things?

Oh, there's a piece of notation I haven't told you yet.

So another notation you will see,

I think this is what one uses a lot in physics

and this is what one uses a lot in applied math, which

is the same thing as physics but with different notations.

Video

Download video file

Transcripts

Download SubRip (.srt) file Download Text (.txt) file

To compute the partial derivative of $f\left(x,y
ight)$ with respect to x, we treat y as a constant and differentiate each term with respect to x only. To illustrate this, let's first think about derivatives in the single variable case.

In order to compute

$$\frac{d}{dx}\sin{(7x)}$$

we use the chain rule to obtain

$$\frac{d}{dx}\sin{(7x)} = \cos{(7x)} \cdot \frac{d}{dx}(7x) = 7\cos{(7x)}.$$

Now, let's say we want to compute

$$\frac{\partial}{\partial x}\sin\left(yx\right).$$

To do this, we use the chain rule as we did above, except now y is playing the role of 7. So we compute

$$rac{\partial}{\partial x} \sin{(yx)} = \cos{(yx)} \cdot rac{\partial}{\partial x} (yx) = y \cos{(yx)} \, .$$

This is what we mean when we say to treat y as a constant. Similarly, to compute the partial derivative of a function f(x,y) with respect to y, we treat x as a constant and differentiate each term with respect to y only.

Let's do some worked examples before you get the chance to practice on your own.

Example 11.1 Consider $f\left(x,y
ight)=x^2+3xy$. Then

$$f_x(x,y) = \frac{\partial}{\partial x}(x^2 + 3xy) \tag{2.12}$$

$$= \frac{\partial}{\partial x}x^2 + 3y\frac{\partial}{\partial x}x\tag{2.13}$$

$$=2x+3y \tag{2.14}$$

and

$$f_y(x,y) = \frac{\partial}{\partial y}(x^2 + 3xy) \tag{2.15}$$

$$=\frac{\partial}{\partial y}x^2+3x\frac{\partial}{\partial y}y\tag{2.16}$$

$$= 0 + 3x \tag{2.17}$$

$$=3x. (2.18)$$

Example 11.2 Let $g\left(x,t
ight)=\sin\left(x-10t
ight)$. Then

$$g_t(x,t) = \frac{\partial}{\partial t}\sin(x-10t)$$
 (2.19)

$$= \cos(x - 10t) \cdot \frac{\partial}{\partial t}(x - 10t) \tag{2.20}$$

$$= -10\cos(x - 10t) \tag{2.21}$$

and

$$g_x(x,t) = \frac{\partial}{\partial x} \sin(x - 10t)$$
 (2.22)

$$= \cos(x - 10t) \cdot \frac{\partial}{\partial x}(x - 10t) \tag{2.23}$$

$$=\cos\left(x-10t\right). \tag{2.24}$$

11. Computing partial derivatives

Topic: Unit 1: Functions of two variables / 11. Computing partial derivatives

Hide Discussion

Add a Post

Show all posts

×

n nacte in this tan

by recent activity ightharpoonup

There are no posts in this topic yet.

Previous

Next >

© All Rights Reserved

edX

<u>About</u>

<u>Affiliates</u>

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

<u>Donate</u>

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>