Neural Networks

Matt R

April 12, 2022

Contents

Ι	Ne	eural Networks and Deep Learning	3
1	Log	gistic Regression	4
	1.1	The Gradient	5
	1.2	Vectorization in Python	6
2	Net	ural Networks: A Single Hidden Layer	11
	2.1	Backward Propagation	13
	2.2	Activation Functions	17
		2.2.1 The Sigmoid Function	17
		2.2.2 The Hyperbolic Tangent Function	18
		2.2.3 The Rectified Linear Unit Function	18
		2.2.4 The Softmax Function	19
	2.3	Binary Classification - An Example	20
		2.3.1 Random Initialization	21
	2.4	Vectorization in Python	22
3	Dee	ep Neural Networks	29
	3.1	Backward Propagation	29
	3.2	Vectorization in Python	30
II	T.	mproving Deep Neural Networks: Hyperparam-	
		Funing, Regularization, and Optimization	38

4	Training, Development and Test Sets	3	39	
	1.1 Python Implementation	4	41	
5	Regularization			
	5.1 Python Implementation	4	43	
	5.2 (Inverted) Dropout Regularization	4	⁴⁷	
	5.2.1 Python Implementation	4	48	
	5.3 Data Augmentation	5	53	
	Early Stopping	5	53	
6	Gradients and Numerical Remarks			
	3.1 Numerical Gradient Checking	5	54	
	3.2 Python Implementation	5	55	
7	Gradient Descent			
	7.1 Weighted Averages	5	58	
	7.2 Gradient Descent with Momentum	6	30	
	7.3 Root Mean Squared Propagation (RMSProp)	6	62	
	7.4 Adaptive Moment Estimation: The Adam Algorithm	6	33	
	7.5 Learning Rate Decay	6	35	
	7.6 Python Implementation	6	₅₅	
8	Гuning Hyper-Parameters	7	73	
	Python Implementation	7	74	
9	Batch Normalization			
	9.1 Backward Propagation	7	77	
	9.2 Inferencing	8	33	
	9.3 Algorithm Outline	8	34	
	9.4 Python Implementation	8	35	
10	Multi-Class Softmax Regression	8	36	
Re	References			

Part I Neural Networks and Deep Learning

1 Logistic Regression

We begin with a review of binary classification and logistic regression. To this end, suppose we have we have training examples $x \in \mathbb{R}^{m \times n}$ with binary labels $y \in \{0,1\}^{1 \times n}$. We desire to train a model which yields an output a which represents

$$a = \mathbb{P}(y = 1|x).$$

To this end, let $\sigma: \mathbb{R} \to (0,1)$ denote the sigmoid function, i.e.,

$$\sigma(z) = \frac{1}{1 + e^{-z}},$$

and let $w \in \mathbb{R}^m$, $b \in \mathbb{R}$, and let

$$a = \sigma(w^T x + b).$$

To analyze the accuracy of model, we need a way to compare y and a, and ideally this functional comparison can be optimized with respect to (w, b) in such a way to minimize the error. To this end, we note that

$$\mathbb{P}(y|x) = a^y (1-a)^{1-y},$$

or rather

$$\mathbb{P}(y = 1|x) = a, \qquad \mathbb{P}(y = 0|x) = 1 - a,$$

so $\mathbb{P}(y|x)$ represents the corrected probability. Now since we want

$$a \approx 1$$
 when $y = 1$,

and

$$a \approx 0$$
 when $y = 0$,

and $0 \le a \le 1$, any error using differences won't be refined enough to analyze when tuning the model. Moreover, since introducing the sigmoid function, our usual mean-squared-error function won't be convex. This leads us to apply the log function, which when restricted to (0,1) is a bijective mapping of $(0,1) \to (-\infty,0)$. This leads us to define our log-loss function

$$L(a, y) = -\log(\mathbb{P}(y|x))$$

= $-\log(a^{y}(1-a)^{1-y})$
= $-[y\log(a) + (1-y)\log(1-a)],$

and finally, since we wish to analyze how our model performs on the entire training set, we need to average our log-loss functions to obtain our cost function $\mathbb J$ defined by

$$\mathbb{J}(w,b) = \frac{1}{n} \sum_{j=1}^{n} \mathbb{L}(a_j, y_j)
= -\frac{1}{n} \sum_{j=1}^{n} \left[y_j \log(a_j) + (1 - y_j) \log(1 - a_j) \right]
= -\frac{1}{n} \sum_{j=1}^{n} \left[y_j \log(\sigma(w^T x_j + b)) + (1 - y_j) \log(1 - \sigma(w^T x_j + b)) \right].$$

1.1 The Gradient

To compute the gradient of our cost function \mathbb{J} , we first write \mathbb{J} as a sum of compositions as follows: We have the log-loss function considered as a map $\mathbb{L}:(0,1)\times\mathbb{R}\to\mathbb{R}$,

$$\mathbb{L}(a, y) = -[y \log(a) + (1 - y) \log(1 - a)],$$

we have the sigmoid function $\sigma: \mathbb{R} \to (0,1)$ with $\sigma(z) = a$ and $\sigma'(z) = a(1-a)$, and we have the collection of affine-functionals $\phi_x: \mathbb{R}^m \times \mathbb{R} \to \mathbb{R}$ given by

$$\phi_x(w,b) = w^T x + b,$$

for which we fix an arbitrary $x \in \mathbb{R}^m$ and write $\phi = \phi_x$, and set $z = \phi(w, b)$. Finally, we introduce the auxiliary function $\mathcal{L} : \mathbb{R}^m \times \mathbb{R} \to \mathbb{R}$ given by

$$\mathcal{L}(w,b) = \mathbb{L}(\sigma(\phi(w,b)), y).$$

Then by the chain rule, we have that

$$d\mathcal{L} = d_a \mathbb{L}(a, y) \circ d\sigma(z) \circ d_w \phi(w, b)$$

$$= \left[-\frac{y}{a} + \frac{1 - y}{1 - a} \right] \cdot a(1 - a) \cdot \begin{bmatrix} x^T & 1 \end{bmatrix}$$

$$= \left[-y(1 - a) + a(1 - y) \right] \cdot \begin{bmatrix} x^T & 1 \end{bmatrix}$$

$$= (a - y) \begin{bmatrix} x^T & 1 \end{bmatrix}$$

Composition turns into matrix multiplication in the tangent space. Moreover, for function $f: \mathbb{R}^N \to \mathbb{R}$ in Euclidean space, we have that $\nabla f = (df)^T$, and hence that

$$\nabla \mathcal{L}(w, b) = (a - y) \begin{bmatrix} x \\ 1 \end{bmatrix},$$

or rather

$$\partial_w \mathbb{L}(a, y) = (a - y)x, \qquad \partial_b \mathbb{L}(a, y) = a - y.$$

Finally, since our cost function $\mathbb J$ is the sum-log-loss, we have by linearity that

$$\partial_w \mathbb{J}(w, b) = \frac{1}{n} \sum_{j=1}^n (a_j - y_j) x_j$$
$$= \frac{1}{n} ((a - y) \cdot x^T)^T$$
$$= \frac{1}{n} x \cdot (a - y)^T$$

and

$$\partial_b \mathbb{J}(w,b) = \frac{1}{n} \sum_{j=1}^n (a_j - y_j).$$

1.2 Vectorization in Python

Here we include the general code to train a model using logistic regression without regularization and without tuning on a cross-validation set.

```
import copy

import numpy as np

def sigmoid(z):
    """

Parameters
    ------

z : array_like

Returns
    -----

Returns
    sigma : array_like

"""

sigma = (1 / (1 + np.exp(-z)))
```

```
return sigma
17
18
19 def cost_function(x, y, w, b):
20
      Parameters
21
22
      x : array_like
23
           x.shape = (m, n) with m-features and n-examples
24
25
      y : array_like
           y.shape = (1, n)
26
      w : array_like
           w.shape = (m, 1)
28
      b : float
29
30
      Returns
31
       -----
32
      J : float
33
           The value of the cost function evaluated at (w, b)
34
      dw : array_like
35
           dw.shape = w.shape = (m, 1)
36
           The gradient of J with respect to w
37
      db : float
38
           The partial derivative of J with respect to b
39
40
41
      # Auxiliary assignments
42
      m, n = x.shape
43
      z = w.T @ x + b
      assert z.size == n
45
      a = sigmoid(z).reshape(1, n)
46
      dz = a - y
47
48
      # Compute cost J
49
      J = (-1 / n) * (np.log(a) @ y.T + np.log(1 - a) @ (1 - y).T)
50
51
      # Compute dw and db
52
      dw = (x @ dz.T) / m
53
      assert dw.shape == w.shape
54
      db = np.sum(dz) / m
55
56
      return J, dw, db
57
58
59 def grad_descent(x, y, w, b, alpha=0.001, num_iters=2000, print_cost=False):
      11 11 11
60
61
      Parameters
62
      x, y, w, b : See cost_function above for specifics.
```

```
w and b are chosen to initialize the descent (likely all components 0)
64
       alpha : float
65
           The learning rate of gradient descent
66
       num_iters : int
67
           The number of times we wish to perform gradient descent
68
69
       Returns
70
       _____
71
       costs : List[float]
72
           For each iteration we record the cost-values associated to (w, b)
73
       params : Dict[w : array_like, b : float]
           w : array_like
75
                Optimized weight parameter w after iterating through grad descent
76
           b : float
77
                Optimized bias parameter b after iterating through grad descent
78
       grads : Dict[dw : array_like, db : float]
79
80
           dw : array_like
               The optimized gradient with repsect to w
81
           db : float
82
                The optimized derivative with respect to b
83
84
       costs = []
86
       w = copy.deepcopy(w)
87
       b = copy.deepcopy(b)
88
       for i in range(num_iters):
           J, dw, db = cost_function(x, y, w, b)
90
           w = w - alpha * dw
91
           b = b - alpha * db
92
93
           if i % 100 == 0:
94
                costs.append(J)
95
                if print_cost:
96
                    idx = int(i / 100) - 1
                    print(f'Cost_after_iteration_{i}:_{costs[idx]}')
98
99
       params = \{'w' : w, 'b' : b\}
100
       grads = {'dw' : dw, 'db' : db}
101
102
       return costs, params, grads
103
104
105 def
       predict(w, b, x):
106
107
       Parameters
108
       w : array_like
109
           w.shape = (m, 1)
110
```

```
b : float
111
       x : array_like
112
            x.shape = (m, n)
113
114
       Returns
115
       _____
116
       y_predict : array_like
117
            y_pred.shape = (1, n)
118
            An array containing the prediction of our model applied to training
119
            data x, i.e., y_pred = 1 or y_pred = 0.
120
122
       m, n = x.shape
123
       # Get probability array
124
       a = sigmoid(w.T @ x + b)
125
       \# Get boolean array with False given by a < 0.5
126
127
       pseudo_predict = \sim (a < 0.5)
       # Convert to binary to get predictions
128
       y_predict = pseudo_predict.astype(int)
129
130
       return y_predict
131
132
133 def model(x_train,
              y_train,
134
              x_test,
135
              y_test,
136
              learning_rate=0.001,
137
              num_iters=2000, accuracy=False):
138
139
       Parameters:
140
141
       x_train, y_train, x_test, y_test : array_like
142
            x_{train.shape} = (m, n_{train})
143
            y_{train.shape} = (1, n_{train})
144
            x_{test.shape} = (m, n_{test})
145
            y_{test.shape} = (1, n_{test})
146
       learning_rate : float
147
            The learning rate for gradient descent
148
       num_iters : int
149
            The number of times we wish to perform gradient descent
150
       accuracy : Boolean
151
            Use True to print the accuracy of the model
152
153
       Returns:
154
       d : Dict
            d['costs'] : array_like
156
                The costs evaluated every 100 iterations
157
```

```
d['y_train_preds'] : array_like
158
                Predicted values on the training set
159
           d['y_test_preds'] : array_like
160
                Predicted values on the test set
161
           d['w'] : array_like
162
                Optimized parameter w
163
           d['b'] : float
                Optimized parameter b
165
           d['learning_rate'] : float
166
                The learning rate alpha
167
           d['num_iters'] : int
168
                The number of iterations with which gradient descent was performed
169
170
       ,, ,, ,,
171
172
       m = x_{train.shape[0]}
173
174
       # initialize parameters
       w = np.zeros((m, 1))
175
       b = 0.0
176
       # optimize parameters
177
       costs, params, grads = grad_descent(x_train, y_train, w, b, learning_rate, num_
178
       w = params['w']
179
       b = params['b']
180
       # record predictions
181
       y_train_preds = predict(w, b, x_train)
182
       y_test_preds = predict(w, b, x_test)
       # group results into dictionary for return
184
       d = {'costs' : costs,
185
             'y_train_preds' : y_train_preds,
186
             'y_test_preds' : y_test_preds,
187
             'W': W,
188
             'b' : b,
189
             'learning_rate' : learning_rate,
190
             'num_iters' : num_iters}
191
192
       if accuracy:
193
           train_acc = 100 - np.mean(np.abs(y_train_preds - y_train)) * 100
194
195
           test_acc = 100 - np.mean(np.abs(y_test_preds - y_test)) * 100
```

2 Neural Networks: A Single Hidden Layer

Suppose we wish to consider the binary classification problem given the training set (x, y) with $x \in \mathbb{R}^{m_0 \times n}$ and $y \in \{0, 1\}^{1 \times n}$. Usually with logistic regression we have the following type of structure:

$$[x^1,...,x^{m_0}] \stackrel{\varphi}{\longrightarrow} [z] \stackrel{g}{\longrightarrow} [a] \stackrel{=}{\longrightarrow} \hat{y},$$

where

$$z = \varphi(x) = w^T x + b,$$

is our affine-linear transformation, and

$$a = g(z) = \sigma(z)$$

is our sigmoid function. Such a structure will be called a *network*, and the [a] is known as the *activation node*. Logistic regression can be too simplistic of a model for many situations, e.g., if the dataset isn't linearly separable (i.e., there doesn't exist some well-defined decision boundary built from a linear-surface), then logistic regression won't give a high-accuracy model. To modify this model to handle more complex situations, we introduce a new "hidden layer" of nodes with their own (possibly different) activation functions. That is, we consider a network of the following form:

$$\underbrace{\begin{bmatrix} x^1 \\ \vdots \\ x^{m_0} \end{bmatrix}}_{\text{Laver 0}} \xrightarrow{\varphi^{[1]}} \underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[1]m_1} \end{bmatrix}}_{\text{Laver 1}} \xrightarrow{g^{[1]}} \underbrace{\begin{bmatrix} a^{[1]1} \\ \vdots \\ a^{[1]m_1} \end{bmatrix}}_{\text{Laver 2}} \xrightarrow{\varphi^{[2]}} \underbrace{[z^{[2]}]}_{\text{Layer 2}} \xrightarrow{g^{[2]}} \hat{y},$$

where

$$\varphi^{[1]}: \mathbb{R}^{m_0} \to \mathbb{R}^{m_1}, \qquad \varphi^{[1]}(x) = W^{[1]}x + b^{[1]},
\varphi^{[2]}: \mathbb{R}^{m_1} \to \mathbb{R}, \qquad \varphi^{[2]}(x) = W^{[2]}x + b^{[2]},$$

and $W^{[1]} \in \mathbb{R}^{m_1 \times m_0}, W^{[2]} \in \mathbb{R}^{1 \times m_1}, b^{[1]} \in \mathbb{R}^{m_1}, b^{[2]} \in \mathbb{R}$, and $g^{[\ell]}$ is a broad-casted activator function (e.g., the sigmoid function $\sigma(z)$, or $\tanh(z)$, or $\operatorname{ReLU}(z)$). Such a network is called a 2-layer neural network where x is the input layer (called layer-0), $a^{[1]}$ is a hidden layer (called layer-1), and $a^{[2]}$ is the output layer (called layer-2).

Definition 2.1. Suppose $g : \mathbb{R} \to \mathbb{R}$ is any function. Then we say $G : \mathbb{R}^m \to \mathbb{R}^m$ is the **broadcast** of g from \mathbb{R} to \mathbb{R}^m if

$$G(v) = G(v^i e_i)$$
$$= g(v^i)e_i,$$

where $v \in \mathbb{R}^m$ and $\{e_i : 1 \le i \le m\}$ is the standard basis for \mathbb{R}^m . In practice, we will write g = G for a broadcasted function, and let the context determine the meaning of g.

castingDifferential

Lemma 2.2. Suppose $g: \mathbb{R} \to \mathbb{R}$ is any smooth function and $G: \mathbb{R}^m \to \mathbb{R}^m$ is the broadcasting of g from \mathbb{R} to \mathbb{R}^m . Then the differential $dG_z: T_z\mathbb{R}^m \to T_{G(z)}\mathbb{R}^m$ is given by

$$dG_z(v) = [g'(z^i)] \odot [v^i],$$

where \odot is the Hadamard product (also know as component-wise multiplication), and has matrix-representation in $\mathbb{R}^{m \times m}$ given by

$$[dG_z]_j^i = \delta_j^i g'(z^i).$$

Proof: We calculate

$$dG_z(v) = \frac{d}{dt}\Big|_{t=0} G(z+tv)$$

$$= \frac{d}{dt}\Big|_{t=0} (g(z^i+tv^i))$$

$$= (g'(z^i)v^i)$$

$$= [g'(z^i)] \odot [v^i],$$

and letting $e_1, ... e_m$ denote the usual basis for $T_z \mathbb{R}^m$ (identified with \mathbb{R}^m), we see that

$$dG_z(e_j) = [g'(z^i)] \odot e_j$$

= $g'(z^j)e_j$,

from which conclude that dG_z is diagonal with (j, j)-th entry $g'(z^j)$ as desired.

Returning to our network, let us lay out all of these functions explicitly (in the Smooth Category) as to facilitate our later computations for our cost function and our gradients. To this end:

$$\varphi^{[1]}: \mathbb{R}^{m_0} \to \mathbb{R}^{m_1}, \qquad d\varphi^{[1]}: T\mathbb{R}^{m_0} \to T\mathbb{R}^{m_1},
z^{[1]} = \varphi^{[1]}(x) = W^{[1]}x + b^{[1]}, \qquad d\varphi^{[1]}_x(v) = W^{[1]}v;$$

$$\begin{split} g^{[1]} : \mathbb{R}^{m_1} &\to \mathbb{R}^{m_1}, & dg^{[1]} : T\mathbb{R}^{m_1} \to T\mathbb{R}^{m_1}, \\ a^{[1]} &= g^{[1]}(z^{[1]}), & \frac{\partial a^{[1]\mu}}{\partial z^{[1]\nu}} = \delta^{\mu}_{\nu} g^{[1]\prime}(z^{[1]\mu}); \\ \varphi^{[2]} : \mathbb{R}^{m_1} &\to \mathbb{R}^{m_2}, & d\varphi^{[2]} : T\mathbb{R}^{m_1} \to T\mathbb{R}^{m_2}, \\ z^{[2]} &= \varphi^{[2]}(a^{[1]}) = W^{[2]}a^{[1]} + b^{[2]}, & d\varphi^{[2]}_{a^{[2]}}(v) = W^{[2]}v; \\ g^{[2]} : \mathbb{R}^{m_2} &\to \mathbb{R}^{m_2}, & dg^{[2]} : T\mathbb{R}^{m_2} \to T\mathbb{R}^{m_2}, \\ a^{[2]} &= g^{[2]}(z^{[2]}), & \frac{\partial a^{[2]\mu}}{\partial z^{[2]\nu}} = \delta^{\mu}_{\nu} g^{[2]\prime}(z^{[2]\mu}). \end{split}$$

That is, given an input $x \in \mathbb{R}^{m_0}$, we get a predicted value $\hat{y} \in \mathbb{R}^{m_2}$ of the form

$$\hat{y} = g^{[2]} \circ \varphi^{[2]} \circ g^{[1]} \circ \varphi^{[1]}(x).$$

This compositional function is known as forward propagation.

2.1 Backward Propagation

Since we wish to optimize our model with respect to our parameter $W^{[\ell]}$ and $b^{[\ell]}$, we consider a generic loss function $\mathbb{L}: \mathbb{R}^{m_2} \times \mathbb{R}^{m_2} \to \mathbb{R}$, $\mathbb{L}(\hat{y}, y)$, and by acknowledging the potential abuse of notation, we assume y is fixed, and consider the aforementioned as a function of a single-variable

$$\mathbb{L}_y: \mathbb{R}^{m_2} \to \mathbb{R}, \qquad \mathbb{L}_y(\hat{y}) = \mathbb{L}(\hat{y}, y).$$

We also define the function

backPropDerivation

$$\Phi(A, u, \xi) = A\xi + u,$$

and note that we're suppressing a dependence on the layer ℓ which only affects our domain and range of Φ (and not the actual calculations involving the derivatives). Moreover, in coordinates we see that

$$\frac{\partial \Phi^{i}}{\partial A^{\mu}_{\nu}} = \frac{\partial}{\partial A^{\mu}_{\nu}} (A^{i}_{j} \xi^{j} + u^{i})$$
$$= (\delta^{i}_{\mu} \delta^{\nu}_{j} \xi^{j})$$
$$= \delta^{i}_{\mu} \xi^{\nu};$$

$$\frac{\partial \Phi^{i}}{\partial u^{\mu}} = \frac{\partial}{\partial u^{\mu}} (A_{j}^{i} \xi^{j} + u^{i})$$
$$= \delta_{\mu}^{i};$$

and

$$\frac{\partial \Phi^{i}}{\xi^{\mu}} = \frac{\partial}{\partial \xi^{\mu}} (A_{j}^{i} \xi^{j} + u^{i})$$
$$= A_{j}^{i} \delta_{\mu}^{j}$$
$$= A_{u}^{i}.$$

We now define the compositional function

$$F: \mathbb{R}^{m_2 \times m_1} \times \mathbb{R}^{m_2} \times \mathbb{R}^{m_1 \times m_0} \times \mathbb{R}^{m_1} \times \mathbb{R}^{m_0} \to \mathbb{R}$$

given by

$$F(C,c,B,b,x) = \mathbb{L}_y \circ g^{[2]} \circ \Phi \circ (\mathbb{1}_{\mathbb{R}^{m_2 \times m_1}} \times \mathbb{1}_{\mathbb{R}^{m_2}} \times (g^{[1]} \circ \Phi))(C,c,B,b,x).$$

We first introduce an error term $\delta^{[2]} \in \mathbb{R}^{m_2}$ defined by

$$\delta^{[2]} := \nabla (\mathbb{L}_y \circ g^{[2]})(z^{[2]})$$
$$= (d\mathbb{L}_y \circ g^{[2]})_{z^{[2]}})^T.$$

Now we calculate the gradient $\frac{\partial F}{\partial C}$ in coordinates by

$$\frac{\partial F}{\partial C_{\nu}^{\mu}} = \frac{\partial}{\partial C_{\nu}^{\mu}} \left[\mathbb{L}_{y} \circ g^{[2]} \circ \Phi(C, c, a^{[1]}) \right]
= \sum_{j=1}^{m_{2}} \delta^{[2]j} \frac{\partial}{\partial C_{\nu}^{\mu}} (C_{i}^{j} a^{[1]i} + c^{j})
= \sum_{j=1}^{m_{2}} \delta^{[2]j} \delta_{\mu}^{j} a^{[1]\nu}
= \delta^{[2]}{}_{\mu} a^{[1]\nu}
= [a^{[1]} \delta^{[2]T}]_{\mu}^{\nu}$$

and hence that

$$\frac{\partial F}{\partial C} = \left[\frac{\partial F}{\partial C_{\nu}^{\mu}}\right]^{T}$$
$$= \left[\delta_{\mu}^{[2]} a^{[1]\nu}\right]^{T}$$
$$= \delta^{[2]} a^{[1]T}.$$

Moreover, we also calculate

$$\frac{\partial F}{\partial c^{\mu}} = \sum_{j=1}^{m_2} \delta^{[2]j} \delta^j_{\mu},$$

and hence that

$$\frac{\partial F}{\partial c} = \delta^{[2]}$$
.

Next we introduce another error term $\delta^{[1]} \in \mathbb{R}^{m_1}$ defined by

$$\delta^{[1]} = [dg_{\tau^{[1]}}^{[1]}]^T C^T \delta^{[2]}$$

with coordinates

$$\begin{split} (\delta^{[1]\mu})^T &= \sum_{i=1}^{m_2} \sum_{j=1}^{m_1} \delta^{[2]i} C^i_j g^{[1]\prime}(z^{[1]j}) \delta^j_\mu \\ &= \sum_{i=1}^{m_2} \delta^{[2]i} C^i_\mu g^{[1]\prime}(z^{[1]\mu}) \end{split}$$

 $d_{z^{[1]}}F$

and now calculate the gradient $\frac{\partial F}{\partial B}$ in coordinates by

$$\begin{split} \frac{\partial F}{\partial B^{\mu}_{\nu}} &= \frac{\partial}{B^{\mu}_{\nu}} \left[\mathbb{L}_{y} \circ g^{[2]} \circ \Phi(C, c, g^{[1]}(Bx + b)) \right] \\ &= \sum_{j=1}^{m_{2}} \delta^{[2]j} \sum_{\rho=1}^{m_{1}} \frac{\partial \Phi^{j}}{\partial \xi^{\rho}} \sum_{\lambda=1}^{m_{1}} \frac{\partial a^{[1]\rho}}{\partial z^{[1]\lambda}} \frac{\partial \Phi^{\lambda}}{\partial B^{\mu}_{\nu}} \\ &= \sum_{j=1}^{m_{2}} \delta^{[2]j} \sum_{\rho=1}^{m_{1}} \frac{\partial \Phi^{j}}{\partial \xi^{\rho}} \sum_{\lambda=1}^{m_{1}} \delta^{\rho}_{\lambda} g^{[1]'}(z^{[1]\rho}) \delta^{\lambda}_{\mu} x^{\nu} \\ &= \sum_{j=1}^{m_{2}} \delta^{[2]j} \sum_{\rho=1}^{m_{1}} \frac{\partial \Phi^{j}}{\partial \xi^{\rho}} \delta^{\rho}_{\mu} g^{[1]'}(z^{[1]\rho}) x^{\nu} \\ &= \sum_{j=1}^{m_{2}} \delta^{[2]j} \sum_{\rho=1}^{m_{1}} C^{j}_{\rho} \delta^{\rho}_{\mu} g^{[1]'}(z^{[1]\rho}) x^{\nu} \\ &= \sum_{j=1}^{m_{2}} \delta^{[2]j} C^{j}_{\mu} g^{[1]'}(z^{[1]\mu}) x^{\nu} \\ &= \delta^{[1]}_{\mu} x^{\nu} \\ &= \left[x \delta^{[1]T} \right]^{\nu}_{\mu}, \end{split}$$

and hence that

$$\frac{\partial F}{\partial B} = \left[\frac{\partial F}{\partial B^{\mu}_{\nu}}\right]^{T}$$
$$= \delta^{[2]} x^{T}.$$

Moreover, from the above calculation, we immediately see that

$$\frac{\partial F}{\partial b^{\mu}} = \delta^{[1]}.$$

In summary, we've computed the following gradients

$$\frac{\partial F}{\partial W^{[2]}} = \delta^{[2]} a^{[1]T}$$
$$\frac{\partial F}{\partial b^{[2]}} = \delta^{[2]}$$
$$\frac{\partial F}{\partial W^{[1]}} = \delta^{[1]} x^{T}$$
$$\frac{\partial F}{\partial b^{[1]}} = \delta^{[1]},$$

where

$$\begin{split} \delta^{[2]} &= [d(\mathbb{L}_y \circ g^{[2]})_{z^{[2]}}]^T \\ \delta^{[1]} &= [dg_{z^{[1]}}^{[1]}]^T C^T \delta^{[2]}. \end{split}$$

Finally, we recall that our cost function \mathbb{J} is the average sum of our loss function \mathbb{L} over our training set, we get that

$$\mathbb{J}(W^{[2]}, b^{[2]}, W^{[1]}, b^{[1]}) = \frac{1}{n} \sum_{i=1}^{n} F(W^{[2]}, b^{[2]}, W^{[1]}, b^{[1]}, x_j),$$

and hence that

$$\begin{split} \frac{\partial \mathbb{J}}{\partial W^{[2]}} &= \frac{1}{n} \sum_{j=1}^{n} \delta^{[2]}{}_{j} a^{[1]}{}_{j}{}^{T} = \frac{1}{n} \delta^{[2]} a^{[1]T} \\ \frac{\partial \mathbb{J}}{\partial b^{[2]}} &= \frac{1}{n} \sum_{j=1}^{n} \delta^{[2]}{}_{j} \\ \frac{\partial \mathbb{J}}{\partial W^{[1]}} &= \frac{1}{n} \sum_{j=1}^{n} \delta^{[1]}{}_{j} x_{j}^{T} = \frac{1}{n} \delta^{[1]} x^{T} \\ \frac{\partial \mathbb{J}}{\partial b^{[1]}} &= \frac{1}{n} \sum_{j=1}^{n} \delta^{[1]}{}_{j} \end{split}$$

2.2 Activation Functions

There are mainly only a handful of activating functions we consider for our non-linearity conditions.

2.2.1 The Sigmoid Function

We have the sigmoid function $\sigma(z)$ given by

$$\sigma : \mathbb{R} \to (0,1), \qquad \sigma(z) = \frac{1}{1 + e^{-z}}.$$

We note that since

$$1 - \sigma(z) = 1 - \frac{1}{1 + e^{-z}}$$
$$= \frac{e^{-z}}{1 + e^{-z}}$$

$$\sigma'(z) = \frac{e^{-z}}{(1 + e^{-z})^2}$$

$$= \frac{1}{1 + e^{-z}} \cdot \frac{e^{-z}}{1 + e^{-z}}$$

$$= \sigma(z)(1 - \sigma(z))$$

Moreover, suppose that $g: \mathbb{R}^m \to \mathbb{R}^m$ is the broadcasting of σ from \mathbb{R} to \mathbb{R}^m , then for $z = (z^1, ..., z^m) \in \mathbb{R}^m$, we have that

$$g(z) = (\sigma(z^i)),$$

and $dg_z: T_z\mathbb{R}^m \to T_{g(z)}\mathbb{R}^m$ given by

$$dg_z(v) = \frac{d}{dt} \Big|_{t=0} g(z + tv)$$

$$= \frac{d}{dt} \Big|_{t=0} (\sigma(z^i + tv^i))$$

$$= (\sigma'(z^i)v^i)$$

$$= (\sigma(z^i)(1 - \sigma(z^i))v^i)$$

$$= g(z) \odot (1 - g(z)) \odot v,$$

where \odot represents the Hadamard product (or component-wise multiplication); or rather, as as a matrix in $\mathbb{R}^{m \times m}$,

$$[dg_z]^{\mu}_{\nu} = \delta^{\mu}_{\nu} \sigma(z^{\mu}) (1 - \sigma(z^{\mu})).$$

2.2.2 The Hyperbolic Tangent Function

We have the hyperbolic tangent function tanh(z) given by

$$\tanh : \mathbb{R} \to (-1, 1), \qquad \tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}.$$

We then calculate

$$\tanh'(z) = \frac{(e^z + e^{-z})(e^z + e^{-z}) - (e^z - e^{-z})(e^z - e^{-z})}{(e^z + e^{-z})^2}$$
$$= \frac{(e^z + e^{-z})^2}{(e^z + e^{-z})^2} - \frac{e^z - e^{-z})^2}{(e^z + e^{-z})^2}$$
$$= 1 - \tanh^2(z).$$

Suppose $g: \mathbb{R}^m \to \mathbb{R}^m$ is the broadcasting of tanh from \mathbb{R} to \mathbb{R}^m , then for $z = (z^1, ..., z^m) \in \mathbb{R}^m$, we have that

$$g(z) = (\tanh(z^i)),$$

and $dg_z: T_z\mathbb{R}^m \to T_{g(z)}\mathbb{R}^m$ given by

$$dg_z(v) = [\tanh'(z^i)] \odot [v^i]$$

= $[1 - \tanh^2(z^i)] \odot [v^i]$
= $\delta_i^i (1 - \tanh^2(z^i)) v^j$.

2.2.3 The Rectified Linear Unit Function

We have the leaky-ReLU function $ReLU(z; \beta)$ given by

$$ReLU : \mathbb{R} \to \mathbb{R}, \qquad ReLU(z; \beta) = \max\{\beta z, z\},\$$

for some $\beta > 0$ (typically chosen very small).

We have the rectified linear unit function ReLU(z) given by setting $\beta=0$ in the leaky-ReLu function, i.e.,

$$ReLU : \mathbb{R} \to [0, \infty), \qquad ReLU(z) = ReLU(z; \beta = 0) = \max\{0, z\}.$$

We then calculate

$$ReLU'(z;\beta) = \begin{cases} \beta & z < 0\\ 1 & z \ge 0 \end{cases}$$
$$= \beta \chi_{(-\infty,0)}(z) + \chi_{[0,\infty)}(z),$$

where

$$\chi_A(z) = \begin{cases} 1 & z \in A \\ 0 & z \notin A \end{cases},$$

is the indicator function.

Suppose $g: \mathbb{R}^m \to \mathbb{R}^m$ is the broadcasting of ReLU from \mathbb{R} to \mathbb{R}^m . Then for $z = (z^1, ..., z^m) \in \mathbb{R}^m$, we have that

$$g(z) = \text{ReLU}(z^i; \beta)$$

and $dg_z: T_z\mathbb{R}^m \to T_{g(z)}\mathbb{R}^m$ given by

$$dg_z(v) = [\operatorname{ReLU}'(z^i; \beta)] \odot [v^i]$$

= $\delta_i^i(\beta \chi_{(-\infty,0)}(z^i) + \chi_{[0,\infty)}(z^i))v^j$.

2.2.4 The Softmax Function

We finally have the softmax function softmax(z) given by

softmax:
$$\mathbb{R}^m \to \mathbb{R}^m$$
, softmax $(z) = \frac{1}{\sum_{j=1}^m e^{z^j}} \begin{pmatrix} e^{z^1} \\ e^{z^2} \\ \vdots \\ e^{z^m} \end{pmatrix}$,

which we typically use on our outer-layer to obtain a probability distribution over our predicted labels. Let

$$S^i = x^i \circ \operatorname{softmax}(z),$$

denote the *i*-th component of softmax(z), and so we calculate

$$\begin{split} \frac{\partial S^i}{\partial z^j} &= \frac{\partial}{\partial z^j} \left[\left(\sum_{k=1}^m e^{z^k} \right)^{-1} e^{z^i} \right] \\ &= -\left(\sum_{k=1}^m e^{z^k} \right)^{-2} \left(\sum_{k=1}^m e^{z^k} \delta^k_j \right) e^{z^i} + \left(\sum_{k=1}^m e^{z^k} \right)^{-1} e^{z^i} \delta^i_j \\ &= -\left(\sum_{k=1}^m e^{z^k} \right)^{-2} e^{z^j} e^{z^i} + S^i \delta^i_j \\ &= -S^j S^i + S^i \delta^i_j \\ &= S^i (\delta^i_j - S^j). \end{split}$$

That is, as a map $dS_z: T_z\mathbb{R}^m \to T_{S(z)}\mathbb{R}^m$, we have that

$$dS_z = [S^i(\delta^i_j - S_j)]^i_j,$$

and we make note that dS_z is symmetric.

2.3 Binary Classification - An Example

We return the network given by

$$\underbrace{\begin{bmatrix} x^1 \\ \vdots \\ x^{m_0} \end{bmatrix}}_{\text{Layer 0}} \xrightarrow{\varphi^{[1]}} \underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[1]m_1} \end{bmatrix}}_{\text{Layer 1}} \xrightarrow{g^{[1]}} \underbrace{\begin{bmatrix} a^{[1]1} \\ \vdots \\ a^{[1]m_1} \end{bmatrix}}_{\text{Layer 2}} \xrightarrow{\varphi^{[2]}} \underbrace{[z^{[2]}]}_{\text{Layer 2}} \xrightarrow{g^{[2]}} \hat{y},$$

and show how such a model would be trained using python below. We assume layer-2 has the sigmoid function (since it's binary classification) as an activator and our hidden layer has the ReLU function as activators.

We note that $m_2 = 1$ since we're dealing with a single activator in this layer, and

$$a^{[2]} = q^{[2]}(z^{[2]}) = \sigma(z^{[2]}).$$

with

$$d(g^{[2]})_{z^{[2]}} = \sigma'(z^{[2]}) = \sigma(z^{[2]})(1 - \sigma(z^{[2]})) = a^{[2]}(1 - a^{[2]}).$$

In layer-1, we have that

$$a^{[1]} = g^{[1]}(z^{[1]}) = \text{ReLU}(z^{[1]}),$$

with

$$d(g^{[1]})_{z^{[1]}} = \left[\delta^{\mu}_{\nu} \chi_{[0,\infty)}(z^{[1]\mu})\right]^{\mu}_{\nu}.$$

Finally, we choose our loss function $\mathbb{L}(\hat{y}, y)$ to be the log-loss function (since we're using the sigmoid activator on the outer-layer), i.e.,

$$\mathbb{L}(\hat{y}, y) = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y}),$$

or rather

$$\mathbb{L}(x,y) = -y\log(a^{[2]}) - (1-y)\log(1-a^{[2]}).$$

We then have the cost function \mathbb{J} given by

$$\mathbb{J}(W^{[2]}, b^{[2]}, W^{[1]}, b^{[1]}) = \frac{-1}{n} \sum_{j=1}^{n} \left(y_j \log(a^{[2]}_j) + (1 - y_j) \log(1 - a^{[2]}_j) \right) \\
= \frac{-1}{n} \left(\left\langle y, \log(a^{[2]}) \right\rangle + \left\langle 1 - y, \log(1 - a^{[2]}) \right\rangle \right)$$

Moreover, when using backpropagation, we see that

$$\delta^{[2]_{j}^{T}} = d(\mathbb{L}_{y_{j}})_{a^{[2]}} \cdot d(g^{[2]})_{z^{[2]_{j}}}$$

$$= \left(-\frac{y_{j}}{a^{[2]_{j}}} + \frac{1 - y_{j}}{1 - a^{[2]_{j}}}\right) \cdot \left(a^{[2]_{j}}(1 - a^{[2]_{j}})\right)$$

$$= a^{[2]_{j}} - y_{j},$$

or rather

$$\delta^{[2]} = a^{[2]} - y.$$

Similarly, we compute

$$\begin{split} \delta^{[1]}{}_{j}^{T} &= \delta^{[2]}{}_{j}^{T} W^{[2]} [dg^{[1]}_{z^{[1]}{}_{j}}] \\ &= \delta^{[2]}{}_{j}^{T} W^{[2]} [\delta^{\mu}_{\nu} \cdot \chi_{[0,\infty)}(z^{[1]}{}_{i}^{\mu})] \end{split}$$

2.3.1 Random Initialization

In the section that follows, we see that to begin gradient descent for a shallow neural network, we initialize our parameters $b^{[\ell]}$ to be 0, but choose an arbitrarily small, but nonzero initialization for $W^{[\ell]}$. Let's see why we choose $W^{[\ell]}$ to be nonzero. Indeed, suppose we initialize with $b^{[\ell]} = 0$ and $W^{[\ell]} = 0$. Then we see that

$$\delta^{[1]T} = \delta^{[2]}W^{[2]}dg_{z^{[1]}}^{[1]} = 0,$$

and so

$$\frac{\partial \mathbb{J}}{\partial W^{[1]}} = \frac{1}{n} \delta^{[1]} x^T = 0.$$

Then we conclude that our parameter $W^{[1]}$ remains at 0 during every iteration which is enough reason to not initialize $W^{[2]}$ at 0. Similarly, since

$$a^{[1]} = \tanh(W^{[1]}x + b^{[1]}) = \tanh(0) = 0,$$

we reach a similar conclusion about $W^{[1]}$ and $W^{[2]}$, respectively.

2.4 Vectorization in Python

```
1 import copy
з import numpy as np
5 import activators
6 from activators import ACTIVATORS
8 # Preliminary functions for our model
9 def dim_retrieval(x, y, hidden_sizes):
      Parameters
11
      -----
12
      x : array_like
13
           x.shape = (layers[0], n)
14
      y : array_like
15
           y.shape = (layers[L], n)
16
      hidden_sizes : List[int]
17
           hidden_sizes[i-1] = The number nodes layer i
18
      Returns
19
      -----
20
      n : int
21
          The number of training examples
22
      layers : List
           layer[1] = # nodes in layer 1
24
25
      ,, ,, ,,
26
      m, n = x.shape
27
      assert(y.shape[1] == n)
28
29
      K = y.shape[0]
      layers = [m]
30
      layers.extend(hidden_sizes)
31
      layers.append(K)
32
33
34
      return n, layers
35
_{36} ## Initialize parameters using the size of each layer
37 def initialize_parameters_random(layers):
38
      Parameters
39
      _____
      layers : List[int]
41
           layers[1] = # nodes in layer 1
      Returns
43
44
      -----
      params : Dict[Dict]
```

```
w[l] : array_like
46
               dwl.shape = (layers[1], layers[1-1])
47
           b[l] : array_like
48
               dbl.shape = (layers[l], 1)
49
       11 11 11
50
      w = \{\}
51
      b = \{ \}
       for 1 in range(1, len(layers)):
53
           w[l] = np.random.randn(layers[l], layers[l - 1]) * 0.01
           b[1] = np.zeros((layers[1], 1))
55
       params = \{'w' : w, 'b' : b\}
56
       return params
57
58
59 def forward_propagation(x, params):
60
      Parameters
61
       _____
62
      x : array_like
63
           x.shape = (m_x, n)
64
       params : Dict[Dict]
65
           w[l] : array_like
66
               w[l].shape = (layers[l], layers[l-1])
           b[l] : array_like
68
               b[1].shape = (layers[1], 1)
69
       Returns
70
       _____
      a2 : array_like
72
           a2.shape = (m_y, n)
73
       cache : Dict
74
           cache['z1'] : array_like
75
                z1.shape = (m_h, n)
76
           cache['a1'] : array_like
77
                a1.shape = (m_h, n)
78
           cache['z2'] : array_like
79
                z2.shape = (m_y, n)
80
           cache['a2'] = a2
81
       ,, ,, ,,
82
83
      # Retrieve parameters
84
      w = params['w']
85
      b = params['b']
      w1 = w[1]
87
      b1 = b[1]
88
      w2 = w[2]
89
      b2 = b[2]
91
      # Auxiliary computations
```

```
z1 = w1 @ x + b1
93
       a1, _1 = activators.tanh(z1)
94
       z2 = w2 @ a1 + b2
95
       a2, _2 = activators.sigmoid(z2)
96
97
       assert(a1.shape == (w1.shape[0], x.shape[1]))
98
       assert(a2.shape == (w2.shape[0], a1.shape[1]))
100
       cache = {'z1' : z1},
101
                 'a1' : a1,
102
                 'z2' : z2,
103
                 'a2' : a2}
104
105
       return a2, cache
106
107
108 def compute_cost(a2, y):
109
       Parameters
110
       _____
111
       a2 : array_like
112
           a2.shape = (m_y, n)
113
       y : array_like
114
            y.shape = (m_y, n)
115
       Returns
116
       _____
117
       cost : float
118
           The cost evaluated at y and a2
119
120
       n = y.shape[1]
121
       cost = (-1 / n) * (np.sum(y * np.log(a2)) + np.sum((1 - y) * np.log(1 - a2)))
122
       cost = float(np.squeeze(cost)) # Makes sure we return a float
123
124
       return cost
125
126
127 def backward_propagation(params, cache, x, y):
128
       Parameters
129
       _____
130
       params : Dict[Dict]
131
           w[l] : array_like
132
                dwl.shape = (layers[1], layers[1-1])
133
           b[l] : array_like
134
                dbl.shape = (layers[1], 1)
135
       cache : Dict
136
            cache['z1'] : array_like
137
                z1.shape = (m_h, n)
138
            cache['a1'] : array_like
139
```

```
a1.shape = (m_h, n)
140
            cache['z2'] : array_like
141
                z2.shape = (m_y, n)
142
            cache['a2'] = a2
143
       x : array_like
144
            x.shape = (m_x, n)
145
       y : array_like
            y.shape = (m_y, n)
147
148
       Returns
       _____
149
       grads : Dict
150
            grads['dw2'] : array_like
151
                dw2.shape = (m_y, m_h)
152
            grads['db2'] : array_like
153
                db2.shape = (m_y, 1)
154
            grads['dw1'] : array_like
155
156
                dw1.shape = (m_h, m_x)
            grads['db1'] : array_like
157
                db1.shape = (m_h, 1)
158
       ,, ,, ,,
159
       # Retrieve parameters
160
       w = params['w']
161
       w1 = w[1]
162
       w2 = w[2]
163
164
       # Set dimensional constants
165
       m_x, n = x.shape
166
167
       m_y, m_h = w2.shape
168
       # Retrieve node outputs
169
       a1 = cache['a1']
170
       a2 = cache['a2']
171
172
       # Auxiliary Computations
173
       delta2 = a2 - y
174
       assert(delta2.shape ==(m_y, n))
175
       d_{tanh} = 1 - (a1 * a1)
176
       assert(d_tanh.shape == (m_h, n))
177
       delta1 = (w2.T @ delta2) * d_tanh
178
       assert(delta1.shape == (m_h, n))
179
180
       # Gradient computations
181
       dw = \{\}
182
       db = \{\}
183
       dw[2] = (1 / n) * delta2 @ a1.T
184
       db[2] = (1 / n) * np.sum(delta2, axis=1, keepdims=True)
185
       dw[1] = (1 / n) * delta1 @ x.T
186
```

```
db[1] = (1 / n) * np.sum(delta1, axis=1, keepdims=True)
187
188
       # Combine and return dict
189
       grads = {'dw' : dw, 'db' : db}
190
       return grads
191
192
193 def update_parameters(params, grads, learning_rate=1.2):
194
195
       Parameters
       -----
196
       params : Dict
197
            params['w2'] : array_like
198
                w2.shape = (m_y, m_h)
199
            params['b2'] : array_like
200
                b2.shape = (m_y, 1)
201
            params['w1'] : array_like
202
203
                w1.shape = (m_h, m_x)
            params['b1'] : array_like
204
                b1.shape = (m_h, 1)
205
       grads : Dict
206
            grads['dw2'] : array_like
207
                dw2.shape = (m_y, m_h)
208
            grads['db2'] : array_like
209
                db2.shape = (m_y, 1)
210
            grads['dw1'] : array_like
211
                dw1.shape = (m_h, m_x)
212
            grads['db1'] : array_like
213
214
                db1.shape = (m_h, 1)
       learning_rate : float
215
            Default = 1.2
216
       Returns
217
       -----
218
       params : Dict
219
            params['w2'] : array_like
220
                w2.shape = (m_y, m_h)
221
            params['b2'] : array_like
222
                b2.shape = (m_y, 1)
223
224
            params['w1'] : array_like
                w1.shape = (m_h, m_x)
225
            params['b1'] : array_like
226
                b1.shape = (m_h, 1)
227
228
       # Retrieve parameters
229
       w = copy.deepcopy(params['w'])
230
       b = params['b']
232
       # Retrieve gradients
```

```
dw = grads['dw']
234
       db = grads['db']
235
236
       # Perform update
237
       w[2] = w[2] - learning_rate * dw[2]
238
       b[2] = b[2] - learning_rate * db[2]
239
       w[1] = w[1] - learning_rate * dw[1]
240
       b[1] = b[1] - learning_rate * db[1]
241
242
       # Combine and return dict
243
       params = \{'w' : w, 'b' : b\}
       return params
245
246
247
248 # The main neural network training model
       model(x, y, hidden_sizes, num_iters=10000, print_cost=False):
250
       Parameters
251
       _____
252
       x : array_like
253
           x.shape = (m_x, n)
254
       y : array_like
255
            y.shape = (m_y. n)
256
       hidden_sizes : int
257
           Number of nodes in the single hidden layer
258
       num_iters : int
259
           Number of iterations with which our model performs gradient descent
260
       print_cost : Boolean
^{261}
           If True, print the cost every 1000 iterations
262
       Returns
263
264
       params : Dict[Dict[array_like]]
265
            params['w'][2] : array_like
266
                w[2].shape = (m_y, m_h)
267
            params['b'][2] : array_like
268
                b[2].shape = (m_y, 1)
269
            params['w'][1] : array_like
270
                w[1].shape = (m_h, m_x)
271
            params['b'][1] : array_like
272
                b[1].shape = (m_h, 1)
273
       ,, ,, ,,
274
       # Set dimensional constants
275
276
       n, layers = dim_retrieval(x, y, hidden_sizes)
       # initialize parameters
277
       params = initialize_parameters_random(layers)
278
279
       # main loop for gradient descent
280
```

```
for i in range(num_iters):
281
            a2, cache = forward_propagation(x, params)
282
            cost = compute_cost(a2, y)
283
            grads = backward_propagation(params, cache, x, y)
284
            params = update_parameters(params, grads)
285
286
            if print_cost and i % 1000 == 0:
287
                print(f'Cost_after_iteration_{i}:_{cost}')
288
289
       return params
290
291
292 # Using our model to obtain predictions
293 def predict(params, x):
294
       Parameters
295
       ------
296
       params : Dict
297
           params['w2'] : array_like
298
                w2.shape = (m_y, m_h)
299
            params['b2'] : array_like
300
                b2.shape = (m_y, 1)
301
            params['w1'] : array_like
302
                w1.shape = (m_h, m_x)
303
            params['b1'] : array_like
304
                b1.shape = (m_h, 1)
305
       x : array_like
306
           x.shape = (m_x, n)
307
308
       Returns
309
       _____
310
       predictions : array_like
311
           predictions.shape = (m_y, n)
312
313
       a2, _ = forward_propagation(x, params)
314
       predictions = np.zeros(a2.shape)
315
       predictions[~(a2 < 0.5)] = 1
316
317
       return predictions
318
```

3 Deep Neural Networks

In this section we discuss a general "deep" neural network, which consist of L layers. That is, we have a network of the form:

$$\underbrace{\begin{bmatrix} x^{1} \\ \vdots \\ x^{m_{0}} \end{bmatrix}}_{\text{Layer 0}} \xrightarrow{\varphi^{[1]}} \underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[1]m_{1}} \end{bmatrix}}_{\text{Layer 1}} \xrightarrow{\varphi^{[2]}} \underbrace{\begin{bmatrix} z^{[2]1} \\ \vdots \\ z^{[2]m_{2}} \end{bmatrix}}_{\text{Layer 2}} \xrightarrow{\varphi^{[3]}} \cdots$$

$$\underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[1]m_{1}} \end{bmatrix}}_{\text{Layer 1}} \xrightarrow{\varphi^{[1]}} \underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[2]m_{2}} \end{bmatrix}}_{\text{Layer 2}} \xrightarrow{\varphi^{[1]}} \underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[L]1} \end{bmatrix}}_{\text{Layer L}} \xrightarrow{\varphi^{[1]}} \underbrace{\begin{bmatrix} z^{[L]1} \\ \vdots \\ z^{[L]m_{L}} \end{bmatrix}}_{\text{Layer L}} \xrightarrow{\varphi^{[1]}} \underbrace{\begin{bmatrix} \hat{y}^{1} \\ \vdots \\ \hat{y}^{m_{L}} \end{bmatrix}}_{\text{Layer L}},$$

where

 $m_{\ell} := \text{ the number of nodes in layer-}\ell,$

$$\varphi^{[\ell]}: \mathbb{R}^{m_{\ell-1}} \to \mathbb{R}^{m_{\ell}}, \qquad \varphi^{[\ell]}(\xi) = W^{[\ell]}\xi + b^{[\ell]}, \qquad W^{[\ell]} \in \mathbb{R}^{m_{\ell} \times m_{\ell-1}}, b \in \mathbb{R}^{m_{\ell}},$$

and

$$g^{[\ell]}: \mathbb{R}^{m_\ell} \to \mathbb{R}^{m_\ell},$$

is a broadcasted activation function determined by the layer- ℓ .

As with a shallow network, our functional composition to obtain $a^{[L]}$ is known as forward propagation.

3.1 Backward Propagation

As the general derivation for backpropagation can be easily (if not tediously) generalized from Section 2.1 using induction, we give the general outline for computational purposes.

Let $\mathbb{L}: \mathbb{R}^{m_L} \times \mathbb{R}^{m_L} \to \mathbb{R}$ be a generic loss function, and suppose our cost function is given by the usual

$$\mathbb{J}(W,b) = \frac{1}{n} \sum_{j=1}^{n} \mathbb{L}(\hat{y}_j, y_j).$$

Then from previous computations, we have the following gradients for any

 $\ell \in \{1, 2, ..., L\}$, that

$$\begin{split} \frac{\partial \mathbb{J}}{\partial W^{[\ell]}} &= \frac{1}{n} \delta^{[\ell]} a^{[\ell-1]T} \\ \frac{\partial \mathbb{J}}{\partial b^{[\ell]}} &= \frac{1}{n} \sum_{j=1}^n \delta^{[\ell]}{}_j \end{split}$$

where we impose the notation of

$$a^{[0]} := x.$$

So we need only give a full characterization of $\delta^{[\ell]}$.. To this end, we define recursively starting at layer-L by

$$\begin{split} \delta^{[L]T} &:= d(\mathbb{L}_y)_{a^{[L]}} \cdot dg_{z^{[L]}}^{[L]}, \\ \delta^{[L-1]T} &:= \delta^{[L]T} \cdot W^{[L]} \cdot dg_{z^{[L-1]}}^{[L-1]}, \\ & \vdots \\ \delta^{[\ell]T} &:= \delta^{[\ell+1]T} W^{[\ell+1]} dg_{z^{[\ell]}}^{[\ell]}, \\ & \vdots \\ \delta^{[1]T} &:= \delta^{[2]T} W^{[2]} dg_{z^{[1]}}^{[1]}, \end{split}$$

as desired.

3.2 Vectorization in Python

We implement a neural network with an arbitrary number of layers and nodes, with the ReLU function as the activator on all hidden nodes and the sigmoid function on the output layer for binary classification with the log-loss function.

```
import copy
import numpy as np
import utils
import activators
from activators import ACTIVATORS

## Auxiliary functions for model composition
```

```
11
12
13 def initialize_parameters(layers):
14
      Parameters
15
16
      layers : List[int]
17
           layers[l] = # nodes in layer 1
18
      Returns
19
      -----
20
      params : Dict[Dict]
21
           w[l] : array_like
22
               dwl.shape = (layers[l], layers[l-1])
23
           b[1] : array_like
24
               dbl.shape = (layers[l], 1)
25
      ,, ,, ,,
26
      W = \{\}
      b = \{ \}
28
      for 1 in range(1, len(layers)):
29
           w[1] = np.random.randn(layers[1], layers[1 - 1]) * 0.01
30
           b[1] = np.zeros((layers[1], 1))
31
      params = \{'w' : w, 'b' : b\}
32
      return params
33
34
35 ## Compute activation unit
  def linear_activation_forward(a_prev, w, b, activator):
36
37
      Parameters
38
39
      a_prev : array_like
40
           a_prev.shape = (layers[1], n)
41
      w : array_like
42
           w.shape = (layers[l+1], layers[l])
43
      b : array_like
44
           b.shape = (layers[l+1], 1)
45
      activator : str
46
           activator = 'relu', 'sigmoid', or 'tanh'
47
48
      Returns
49
       _____
50
      z : array_like
51
           z.shape = (layer\_dims[l+1], n)
52
53
      a : array_like
           a.shape = (layer_dims[l+1], n)
54
55
      assert activator in ACTIVATORS, f'{activator}_is_not_a_valid_activator.'
56
57
```

```
z = w @ a_prev + b
58
       if activator == 'relu':
59
           a, _ = activators.relu(z)
60
       elif activator == 'sigmoid':
61
           a, _ = activators.sigmoid(z)
62
       elif activator == 'tanh':
63
           a, _ = activators.tanh(z)
65
66
       assert(z.shape == a.shape)
       return z, a
67
68
69 def forward_propagation(x, params, activators):
70
       Parameters
71
       ------
72
       x : array_like
73
           x.shape = (layers[0] n)
74
       params : Dict[Dict]
75
           params['w'][1] : array_like
76
                wl.shape = (layers[1], layers[1-1])
77
           params['b'][1] : array_like
78
                bl.shape = (layers[l], 1)
       activators : List[str]
80
           activators[1] = activation function of layer 1+1
81
       Returns
82
       _____
       cache : Dict[Dict]
84
           cache['z'][1] : array_like
85
                z[1].shape = (layers[1], n)
86
           cache['a'][1] : array_like
87
                a[1].shape = (layers[1], n)
88
       11 11 11
89
       # Retrieve parameters
90
       w = params['w']
       b = params['b']
92
       L = len(w) # Number of layers excluding output layer
93
       n = x.shape[1]
94
       # Set empty caches
95
       a = \{\}
96
       z = \{\}
97
       # Initialize a
       a[0] = x
99
       for l in range(1, L + 1):
100
           z[1], a[1] = linear_activation_forward(a[1 - 1], w[1], b[1], activators[1 -
101
102
       cache = \{'a' : a, 'z' : z\}
103
       return cache
104
```

```
105
106 # Compute the cost
107 def compute_cost(y, cache):
108
       Parameters
109
110
       y : array_like
111
            y.shape = (layers[-1], n)
112
       cache : Dict[Dict]
113
            cache['z'][1] : array_like
114
                z[1].shape = (layers[1], n)
115
            cache['a'][l] : array_like
116
                a[1].shape = (layers[1], n)
117
118
       Returns
119
120
121
       cost : float
            The cost evaluated at y and aL
122
123
       ## Retrieve parameters
124
       n = y.shape[1]
125
       a = cache['a']
126
       L = len(a)
127
       aL = a[L - 1]
128
129
       cost = (-1 / n) * (np.sum(y * np.log(aL)) + np.sum((1 - y) * np.log(1 - aL)))
130
       cost = float(np.squeeze(cost))
131
132
       return cost
133
134
135 def linear_activation_backward(delta_next, z, w, activator):
136
       Parameters
137
       _____
138
       delta_next : array_like
139
            delta_next.shape = (layers[1+1], n)
140
       z : array_like
141
            z.shape = (layers[l+1], n)
142
       w : array_like
143
            w.shape = (layers[l+1], layers[l])
144
       activator : str
145
            activator = 'relu', 'sigmoid', or 'tanh'
146
147
       Returns
148
149
       delta : array_like
150
            delta.shape = (layers[1], n)
151
```

```
,, ,, ,,
152
       assert activator in ACTIVATORS, f'{activator}_is_not_a_valid_activator.'
153
154
       n = delta_next.shape[1]
155
156
       if activator == 'relu':
157
            _, dg = activators.relu(z)
       elif activator == 'sigmoid':
159
           _, dg = activators.sigmoid(z)
160
       elif activator == 'tanh':
161
           _, dg = activators.tanh(z)
162
163
       da = w.T @ delta_next
164
       assert(da.shape == (w.shape[1], n))
165
       delta = da * dg
166
       assert(delta.shape == (w.shape[1], n))
167
168
       return delta
169
170 def backward_propagation(x, y, params, cache, activators):
171
       Parameters
172
173
       x : array_like
174
           x.shape = (layers[0], n)
175
       y : array_like
176
            y.shape = (layers[-1], n)
177
       params : Dict[Dict[array_like]]
178
            params['w'][1] : array_like
179
                w[1].shape = (layers[1], layers[1-1])
180
            params['b'][1] : array_like
181
                b[1].shape = (layers[1], 1)
182
       cache : Dict[Dict[array_like]]
183
            cache['a'][1] : array_like
184
                a[1].shape = (layers[1], n)
185
            cache['z'][1] : array_like
186
                z[1].shape = (layers[1], n)
187
       activators : List[str]
188
            activators[1] = activation function of layer 1+1
189
       Returns
190
       _____
191
       grads : Dict[Dict]
192
            grads['dw'][1] : array_like
193
                dw[1].shape = w[1].shape
194
            grads['db'][1] : array_like
195
                db[1].shape = b[1].shape
196
       11 11 11
197
       ## Retrieve parameters
```

```
a = cache['a']
199
                   z = cache['z']
200
                   w = params['w']
201
                   n = x.shape[1]
202
                   L = len(z)
203
204
                   ## Compute deltas
205
                   delta = {}
206
                   delta[L] = a[L] - y
207
                   for 1 in reversed(range(1, L)):
208
                               delta[1] = linear_activation_backward(delta[1 + 1], z[1], w[1 + 1], activatorial value | val
209
210
                   ## Compute gradients
^{211}
                   dw = \{\}
212
                   db = \{\}
213
                   for l in range(1, L + 1):
214
                               db[1] = (1 / n) * np.sum(delta[1], axis=1, keepdims=True)
215
                               assert(db[1].shape == (w[1].shape[0], 1))
216
                               dw[1] = (1 / n) * delta[1] @ a[1 - 1].T
217
                               assert(dw[1].shape == w[1].shape)
218
                   grads ={'dw' : dw, 'db' : db}
219
                   return grads
220
221
222 def update_parameters(params, grads, learning_rate=0.01):
223
224
                   Parameters
                    _____
225
                   params : Dict[Dict]
226
                               params['w'][1] : array_like
227
                                          w[1].shape = (layers[1], layers[1-1])
228
                               params['b'][1] : array_like
229
                                          b[1].shape = (layers[1], 1)
230
                   grads : Dict[Dict]
231
                               grads['dw'][1] : array_like
232
                                          dw[1].shape = w[1].shape
233
                               grads['db'][1] : array_like
234
                                          db[1].shape = b[1].shape
235
                   learning_rate : float
236
                               Default: 0.01
237
                               The learning rate for gradient descent
238
239
                   Returns
240
241
                   params : Dict[Dict]
242
                               params['w'][1] : array_like
243
                                          w[1].shape = (layers[1], layers[1-1])
244
                               params['b'][1] : array_like
^{245}
```

```
b[1].shape = (layers[1], 1)
246
       ,, ,, ,,
247
       ## Retrieve parameters
248
       w = copy.deepcopy(params['w'])
249
       b = copy.deepcopy(params['b'])
250
       L = len(w)
251
       ## Retrieve gradients
253
       dw = grads['dw']
254
       db = grads['db']
255
256
       ## Perform update
257
       for l in range(1, L + 1):
258
            w[1] = w[1] - learning_rate * dw[1]
259
            b[1] = b[1] - learning_rate * db[1]
260
261
       params = \{'w' : w, 'b' : b\}
262
       return params
263
264
265
266 ## The main model for training our parameters
{\tt 267} \ \textbf{def} \ {\tt model(x, y, hidden\_layer\_sizes, activators, num\_iters=10000, print\_cost=False):}
       11 11 11
268
       Parameters
269
       -----
270
271
       x : array_like
            x.shape = (layers[0], n)
272
       y : array_like
273
            y.shape = (layers[-1], n)
274
       hidden_layer_sizes : List[int]
275
            The number nodes layer 1 = hidden_layer_sizes[1-1]
276
       activators : List[function]
277
            activators[1] = activation function of layer 1+1
278
       num_iters : int
279
            Number of iterations with which our model performs gradient descent
280
       print_cost : Boolean
281
            If True, print the cost every 1000 iterations
282
283
       Returns
284
       _____
285
       params : Dict[Dict]
286
            params['w'][1] : array_like
287
288
                w[1].shape = (layers[1], layers[1-1])
            params['b'][1] : array_like
289
                b[1].shape = (layers[1], 1)
       cost : float
291
            The final cost value for the optimized parameters returned
292
```

```
11 11 11
293
       ## Set dimensions and Initialize parameters
294
       n, layers = utils.dim_retrieval(x, y, hidden_layer_sizes)
^{295}
       params = utils.initialize_parameters_random(layers)
296
297
       ## main loop
298
       for i in range(num_iters):
           cache = forward_propagation(x, params, activators)
300
           cost = compute_cost(cache, y)
301
           grads = backward_propagation(x, y, params, cache, activators)
302
           params = update_parameters(params, grads, 0.1)
303
304
           if print_cost and i % 1000 == 0:
305
                print(f'Cost_after_iteration_{i}:_{cost}')
306
```

Part II
Improving Deep Neural
Networks: Hyperparameter
Tuning, Regularization, and
Optimization

4 Training, Development and Test Sets

Let $\mathbb{D} = \{(x_j, y_j) \in \mathbb{R}^m \times \mathbb{R}^K : 1 \leq j \leq N\}$ denote a dataset. Then we partition \mathbb{D} into three distinct sets

$$\mathbb{D} = \mathbb{X} + \mathcal{D} + \mathcal{T}.$$

where \mathbb{X} is called our training set, \mathcal{D} is called our development, or cross-validation set, and \mathcal{T} is called our test set. We make this partition randomly, however, if $N = |\mathbb{D}| \leq 10^4$, we see a partition being divided accordingly to the following ratios:

$$n_X := |\mathbb{X}| \approx \frac{3}{5}N,$$

$$n_D := |\mathcal{D}| \approx \frac{1}{5}N,$$

and

$$n_T := |\mathfrak{T}| \approx \frac{1}{5}N.$$

If however, we have a very large dataset (i.e., $N > 10^4$), then we assume a much smaller ratio of something similar to

$$\frac{n_X}{N} \approx 0.98, \qquad \frac{n_D}{N} \approx 0.01, \qquad \frac{n_T}{N} \approx 0.01.$$

In general, we use our training set \mathbb{X} to train our parameters $W^{[\ell]}$ and $b^{[\ell]}$, we use our development set \mathcal{D} to tune our hyper-parameters (i.e., learning rate, number of layers, number of nodes per layer, activation function, number of iterations to perform gradient descent, regularization parameters, etc), and we use our test set \mathcal{T} to evaluate the accuracy of our model. Since we're partitioning our dataset to better increase the accuracy of our model, we need to define an error function. To this end, define $\mathcal{E}: 2^{\mathbb{D}} \to [0,1]$ by

$$\mathcal{E}(\mathcal{A}) = \frac{1}{|\mathcal{A}|} \sum_{(x,y) \in \mathcal{A}} \varepsilon(x,y),$$

where $\varepsilon : \mathbb{D} \to \{0,1\}$ is defined by

$$\varepsilon(x,y) = \begin{cases} 1 & \text{if } y = \hat{y}(x) \\ 0 & \text{else.} \end{cases}$$

From our partition and error function we can make several claims of the fitting of our model to our data. Indeed, let $\epsilon > 0$ be a small percentage (with exact value depending on specific examples), then:

- If $\mathcal{E}(\mathbb{X}) < \epsilon$ and $\mathcal{E}(\mathbb{X}) < \mathcal{E}(\mathcal{D}) \lesssim 10\epsilon$, then we say our model has high variance since our model is overfitting the data.
- If $\mathcal{E}(\mathbb{X}) \approx \mathcal{E}(\mathcal{D}) \gtrsim 10\epsilon$, then we say our model has high bias since our model is underfitting the data.
- If $10\epsilon \lesssim \mathcal{E}(\mathbb{X}) \ll \mathcal{E}(\mathcal{D})$, then we say our model has both high bias (since it doesn't fit our training data well) and high variance (because the model fits the training data better than the development data).
- If $\mathcal{E}(\mathbb{X})$, $\mathcal{E}(\mathcal{D}) < \epsilon$, then we say the model has both low bias and low variance.

Remark 4.1. The interpretations of our error percentage is based on two crucial assumptions:

- \mathcal{D} and \mathcal{T} come from samplings with the same distribution of outputs (i.e., if we're determining whether a collection of images contain a cat, we should never have that \mathcal{D} is mostly cat pictures, and \mathcal{T} is mostly non-cat pictures).
- The optimal error for the model is approximately 0%. That is, if a human were looking at the data, they could determine the correct response with negligible error. This is sometimes called the Bayes error.

If either of these assumptions fail to hold, other methods of analysis may be required to obtain meaningful insights for the performance of our model.

A methodology for using errors could be as follows

- 1. Check $\mathcal{E}(\mathbb{X})$ for high bias.
 - a. If "Yes", then we can try a bigger network, we can train longer, or we can change the neural network architecture. Then we return to (1.).
 - b. If "No", then we move to (2.).
- 2. Check $\mathcal{E}(\mathcal{D})$ for high variance.
 - a. If "Yes", then we can try to get more data, try regularization, or try changing the neural network architecture. Then we return to (1.).
 - b. If "No", then we're done.

4.1 Python Implementation

To implement a partitioning we could do something like the following:

```
1 import numpy as np
2 from sklearn.utils import shuffle
4 def partition_data(x, y, train_ratio):
      Parameters
6
      -----
      x : array_like
          x.shape = (m, N)
      y : array_like
10
          y.shape = (k, N)
11
      train_ratio : float
12
13
          0<=train_ratio<=1</pre>
14
      Returns
15
      -----
16
      train : Tuple[array_like]
17
      dev : Tuple[array_like]
      test : Tuple[array_like]
19
      11 11 11
      ## Shuffle the data
21
      x, y = shuffle(x.T, y.T) #
      x = x.T
23
      y = y.T
25
      ## Get the size of partitions
      N = x.shape[1]
27
      N_train = int(train_ratio * N)
      N_mid = (N - N_train) // 2
29
30
      ## Create partitions
31
      train = (x[:,:N_train], y[:,:N_train])
32
      dev = (x[:, N_train:N_train+N_mid], y[:, N_train:N_train+N_mid])
      test = (x[:,N_train+N_mid:], y[:,N_train+N_mid:])
34
      assert(x.all() == np.concatenate([train[0], dev[0], test[0]], axis=1).all())
36
      assert(y.all() == np.concatenate([train[1], dev[1], test[1]], axis=1).all())
37
38
      return train, dev, test
```

5 Regularization

Suppose we're training an L-layer neural network with dataset $\{(x_j, y_j)\} \subset \mathbb{R}^{m_0} \times \mathbb{R}^{m_L}$ with N examples. Assuming a generic loss function $\mathbb{L} : \mathbb{R}^{m_L} \times \mathbb{R}^{m_L} \to \mathbb{R}$, then we have our cost function \mathbb{J} defined on our one-parameter families of parameters W and b given by

$$\mathbb{J}(W,b) = \frac{1}{N} \sum_{j=1}^{N} \mathbb{L}(\hat{y}_j, y_j).$$

If our model suffers from overfitting the training set, it's reasonable to impose constraints on the parameters W and/or b. That is, define the function

$$R(W) = \frac{\lambda}{2N} \sum_{\ell=1}^{L} \|W^{[\ell]}\|_F^2,$$

for some $\lambda > 0$, where $\|\cdot\|_F$ represents the Frobenius norm on matrices, and we define the regularized cost function \mathbb{J}^R given by

$$\mathbb{J}^{R}(W,b) = \mathbb{J}(W,b) + R(W)
= \frac{1}{N} \sum_{j=1}^{N} \mathbb{L}(\hat{y}_{j}, y_{j}) + \frac{\lambda}{2N} \sum_{\ell=1}^{L} \|W^{[\ell]}\|_{F}^{2}.$$

Adding such an R(W) to our cost function is known as L^2 -regularization. We note that by linearity we have the following equalities amongst gradients:

$$\frac{\partial \mathbb{J}^R}{\partial b^{[\ell]}} = \frac{\partial \mathbb{J}}{\partial b^{[\ell]}}$$

and

$$\frac{\partial \mathbb{J}^R}{\partial W^{[\ell]}} = \frac{\partial \mathbb{J}}{\partial W^{[\ell]}} + \frac{\lambda}{N} W^{[\ell]}.$$

The idea behind regularization is that we're now minimizing

$$\min_{W,b} \mathbb{J}^{R}(W,b) = \min_{W,b} \left\{ \mathbb{J}(W,b) + R(W) \right\},\,$$

and so for suitably chosen $\lambda > 0$, it forces $||W^{[\ell]}||_F$ to be small, along with minimizing the cost \mathbb{J} . This balancing-act of minimizing the two functions simultaneously helps with overfitting the data.

A typical usage of regularization would be similar to the following outline:

- i. Partition our dataset $\mathbb{D} = \mathbb{X} \cup \mathcal{D} \cup \mathcal{T}$.
- ii. Give a set Λ of potential regularization parameters.
- iii. For each $\lambda \in \Lambda$, we first train on X, that is, we obtain

$$(W, b) = \arg\min_{W, b} \mathbb{J}^{R}(W, b)$$

$$= \arg\min_{W, b} \left\{ \frac{1}{n_{X}} \sum_{(x, y) \in \mathbb{X}} \mathbb{L}(\hat{y}, y) + \frac{\lambda}{2n_{X}} \sum_{\ell=1}^{L} \|W^{[\ell]}\|_{F}^{2} \right\}$$

which dependent on λ .

- iv. Then using the aforementioned $(W, b) = (W, b)(\lambda)$, we evaluate $\mathcal{E}_{\lambda}(\mathbb{X})$ and $\mathcal{E}_{\lambda}(\mathcal{D})$.
- v. After finding $\mathcal{E}_{\lambda}(\mathbb{X})$ and $\mathcal{E}_{\lambda}(\mathcal{D})$ for each $\lambda \in \Lambda$, we choose our desired λ and hence our desired parameters W and b.
- vi. We evaluate our model on \mathcal{T} to determine the overall accuracy.

5.1 Python Implementation

```
1 import numpy as np
3 import utils
4 import activators
6 def forward_propagation(x, params, activators):
      Parameters
      x : array_like
10
          x.shape = (layers[0] n)
11
      params : Dict[Dict]
12
           params['w'][1] : array_like
13
               wl.shape = (layers[1], layers[1-1])
14
           params['b'][1] : array_like
15
               bl.shape = (layers[l], 1)
16
      activators : List[str]
17
           activators[1] = activation function of layer 1+1
18
      Returns
19
20
      cache : Dict[Dict]
```

```
cache['z'][1] : array_like
22
               z[1].shape = (layers[1], n)
23
           cache['a'][1] : array_like
24
               a[1].shape = (layers[1], n)
25
26
      # Retrieve parameters
27
      w = params['w']
      b = params['b']
29
      L = len(w) # Number of layers excluding output layer
      n = x.shape[1]
31
      # Set empty caches
      a = \{ \}
33
      z = \{\}
34
      # Initialize a
35
      a[0] = x
36
      for l in range(1, L + 1):
37
           z[1], a[1] = utils.linear_activation_forward(a[1 - 1], w[1], b[1], activator
38
39
      cache = \{'a' : a, 'z' : z\}
40
      return cache
41
42
43 def compute_cost(y, params, cache, lambda_=0.0):
44
      Parameters
45
      -----
46
      y : array_like
47
           y.shape = (layers[-1], n)
48
      params : Dict[Dict[array_like]]
           params['w'][1] : array_like
50
               w[1].shape = (layers[1], layers[1-1])
51
           params['b'][1] : array_like
52
               b[1].shape = (layers[1], 1)
53
      cache : Dict[Dict[array_like]]
54
           cache['z'][1] : array_like
55
               z[1].shape = (layers[1], n)
56
           cache['a'][1] : array_like
57
               a[1].shape = (layers[1], n)
      lambda_ : float
59
           Default: 0.0
60
61
      Returns
62
       _____
63
      cost : float
64
           The cost evaluated at y and aL
65
      ## Retrieve parameters
67
      n = y.shape[1]
```

```
a = cache['a']
69
       w = params['w']
70
       L = len(a)
71
       aL = a[L - 1]
72
73
       ## Regularization term
74
       R = 0
       for l in range(1, L):
76
           R += np.sum(w[1] * w[1])
77
       R *= (lambda_ / (2 * n))
78
       ## Unregularized cost
80
       J = (-1 / n) * (np.sum(y * np.log(aL)) + np.sum((1 - y) * np.log(1 - aL)))
81
82
       ## Total Cost
83
       cost = J + R
84
       cost = float(np.squeeze(cost))
85
       return cost
86
87
88 def backward_propagation(x, y, params, cache, activators, lambda_=0.0):
89
90
       Parameters
       _____
91
       x : array_like
92
           x.shape = (layers[0], n)
93
       y : array_like
           y.shape = (layers[-1], n)
95
       params : Dict[Dict[array_like]]
           params['w'][1] : array_like
97
                w[1].shape = (layers[1], layers[1-1])
98
           params['b'][1] : array_like
99
                b[1].shape = (layers[1], 1)
100
       cache : Dict[Dict[array_like]]
101
           cache['a'][1] : array_like
102
                a[1].shape = (layers[1], n)
103
           cache['z'][1] : array_like
104
                z[1].shape = (layers[1], n)
105
       activators : List[str]
106
           activators[l] = activation function of layer 1+1
107
       lambda_ : float
108
           Default: 0.0
109
110
111
       Returns
       -----
112
       grads : Dict[Dict]
113
           grads['dw'][l] : array_like
114
                dw[1].shape = w[1].shape
115
```

```
grads['db'][1] : array_like
116
                db[1].shape = b[1].shape
117
118
       ## Retrieve parameters
119
       a = cache['a']
120
       z = cache['z']
121
       w = params['w']
       n = x.shape[1]
123
       L = len(z)
124
125
       ## Compute deltas
126
       delta = {}
127
       delta[L] = a[L] - y
128
       for 1 in reversed(range(1, L)):
129
            delta[1] = utils.linear_activation_backward(delta[1 + 1], z[1], w[1 + 1], a_0
130
131
       ## Compute gradients
132
       dw = \{\}
133
       db = \{\}
134
       for l in range(1, L + 1):
135
            db[1] = (1 / n) * np.sum(delta[1], axis=1, keepdims=True)
136
            assert(db[1].shape == (w[1].shape[0], 1))
137
            dw[1] = (1 / n) * (delta[1] @ a[1 - 1].T + lambda_ * w[1])
138
            assert(dw[1].shape == w[1].shape)
139
       grads ={ 'dw' : dw, 'db' : db}
140
       return grads
141
142
143
144 def model(x, y,
              hidden_layer_sizes,
145
              activators,
146
              lambda_=0.0,
147
              num_iters=1e4,
148
              print_cost=False):
149
150
       Parameters
151
       -----
152
       x : array_like
153
            x.shape = (layers[0], n)
154
       y : array_like
155
            y.shape = (layers[-1], n)
156
       hidden_layer_sizes : List[int]
157
            The number nodes layer 1 = hidden_layer_sizes[1-1]
158
       activators : List[str]
159
            activators[1] = activation function of layer 1+1
160
       lambda_ : float
161
            The regularization parameter
162
```

```
Default: 0.0
163
       num iters : int
164
           Number of iterations with which our model performs gradient descent
165
           Default: 10000
166
       print_cost : Boolean
167
           If True, print the cost every 1000 iterations
168
           Default: False
170
       Returns
171
       _____
172
       params : Dict[Dict]
173
           params['w'][1] : array_like
174
               w[1].shape = (layers[1], layers[1-1])
175
           params['b'][1] : array_like
176
                b[1].shape = (layers[1], 1)
177
       cost : float
178
           The final cost value for the optimized parameters returned
179
180
       ## Set dimensions and Initialize parameters
181
       n, layers = utils.dim_retrieval(x, y, hidden_layer_sizes)
182
       params = utils.initialize_parameters_random(layers)
183
       # main gradient descent loop
185
       for i in range(num_iters):
186
           cache = forward_propagation(x, params, activators)
187
           cost = compute_cost(y, params, cache, lambda_)
           grads = backward_propagation(x, y, params, cache, activators, lambda_)
189
           params = utils.update_parameters(params, grads)
190
191
           if print_cost and i % 1000 == 0:
192
                print(f'Cost_after_iteration_{i}:_{cost}')
193
194
       return params, cost
195
```

5.2 (Inverted) Dropout Regularization

For illustrative purposes, suppose we have a 3-layer neural network of the following form:

$$\underbrace{\begin{bmatrix} x^1 \\ \vdots \\ x^{m_0} \end{bmatrix}}_{\text{Layer 0}} \xrightarrow{\varphi^{[1]}} \underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[1]m_1} \end{bmatrix}}_{\text{Layer 1}} \xrightarrow{g^{[1]}} \underbrace{\begin{bmatrix} a^{[1]1} \\ \vdots \\ a^{[1]m_1} \end{bmatrix}}_{\varphi^{[2]}} \xrightarrow{\varphi^{[2]}} \underbrace{\begin{bmatrix} z^{[2]1} \\ \vdots \\ z^{[2]m_2} \end{bmatrix}}_{\text{Layer 2}} \xrightarrow{g^{[2]}} \underbrace{\begin{bmatrix} a^{[2]1} \\ \vdots \\ a^{[2]m_2} \end{bmatrix}}_{\varphi^{[3]}} \text{ output,}$$

Let Q_0, Q_1, Q_2 denote the collection of all nodes in Layers 0, 1, 2, respectively. Let $p_0, p_1, p_2 \in [0, 1]$, and define a probability distribution \mathbb{P}_{ℓ} on Q_{ℓ} by

$$\mathbb{P}_{\ell}(q=1) = p_{\ell}, \qquad \mathbb{P}_{\ell}(q=0) = 1 - p_{\ell},$$

where q=1 represents the node existing in layer- ℓ , and q=0 represents the dropping of the node from layer- ℓ . That is we're effectively reducing the number of nodes throughout the network, thus simplifying the network and reducing the amount of influence of any single feature or node on the entire model. That is, we would implement a methodology similar to the following:

i. For each layer ℓ and each training example x_j define the "dropout vector" $D^{[\ell]}{}_j$ by

$$D^{[\ell]}{}_j = \begin{bmatrix} d^1_j \\ \vdots \\ d^{m_\ell}_j \end{bmatrix},$$

where

$$d_j^i = \begin{cases} 1 & \text{if } \mathbb{P}(q^i) \le p_\ell \\ 0 & \text{if } \mathbb{P}(q^i) > p_\ell \end{cases}.$$

ii. During forward propagation, we redefine

$$a^{[\ell]} \mapsto \frac{a^{[\ell]} \odot D^{[\ell]}}{p_\ell}.$$

iii. During backward propagation, we define

$$\delta^{[\ell]} \mapsto \frac{\delta^{[\ell]} \odot D^{[\ell]}}{p_\ell}.$$

iv. Then perform gradient descent, etc with these new values.

5.2.1 Python Implementation

We see here the use of inverted dropout regularization in a general neural network.

```
1 import numpy as np
3 import utils
5 def dropout_matrices(layers, num_examples, keep_prob):
      Parameters
      _____
      layers : List[int]
          layers[1] = number of nodes in layer 1
10
      num_examples : int
11
          The number of training examples
12
      keep_prob : List[float]
13
          keep_prob[1] = The probabilty of keeping a node in layer 1
14
15
      Returns
16
      _____
17
      D : Dict[array_like]
          D[1].shape = (layers[1], num_ex)
19
          D[1] = a Boolean array
20
21
      np.random.seed(1)
22
      L = len(layers)
23
      D = \{\}
24
      for l in range(L - 1):
25
          D[1] = np.random.rand(layers[1], num_examples)
          D[1] = (D[1] < keep_prob[1]).astype(int)
27
          assert(D[1].shape == (layers[1], num_examples))
      return D
29
30
31
32
33 def forward_propagation(x, params, activators, D, keep_prob):
34
      Parameters
35
      _____
36
      x : array_like
37
          x.shape = (layers[0] n)
38
      params : Dict[Dict]
39
          params['w'][1] : array_like
40
               wl.shape = (layers[1], layers[1-1])
41
          params['b'][1] : array_like
42
               bl.shape = (layers[l], 1)
43
      activators : List[str]
44
          activators[1] = activation function of layer 1+1
      D : Dict[array_like]
46
          D[1].shape = (layer_dims[1], num_ex)
```

```
D[1] = a Boolean array
48
      keep_prob : List[float]
49
           keep_prob[1] = The probabilty of keeping a node in layer 1
50
51
      Returns
52
       _____
53
      cache : Dict[Dict]
           cache['z'][1] : array_like
55
               z[1].shape = (layers[1], n)
           cache['a'][l] : array_like
57
               a[1].shape = (layers[1], n)
59
      # Retrieve parameters
60
      w = params['w']
61
      b = params['b']
62
      L = len(w) # Number of layers including input layer
63
64
      n = x.shape[1]
      # Set empty caches
66
      a = \{\}
67
      z = \{\}
68
      # Dropout on layer 0
      a[0] = x
70
      a[0] = a[0] * D[0]
71
      a[0] /= keep_prob[0]
72
      # Loop through hidden layers
      for l in range(1, L):
74
           zl, al = utils.linear_activation_forward(a[1 - 1], w[1], b[1], activators[1]
75
           al = al * D[1]
76
           al /= keep_prob[1]
77
           z[1] = z1
78
           a[1] = a1
79
80
      # Output layer
      z[L], a[L] = utils.linear_activation_forward(a[L - 1], w[L], b[L], activators[-
82
83
      cache = \{'z' : z, 'a' : a\}
84
85
      return cache
86
87 def backward_propagation(x, y, params, cache, activators, D, keep_prob):
88
      Parameters
89
90
      x : array_like
91
           x.shape = (layers[0], n)
      y : array_like
93
           y.shape = (layers[-1], n)
```

```
params : Dict
 95
                                params['w'][1] : array_like
 96
                                           w[1].shape = (layers[1], layers[1-1])
 97
                                params['b'][1] : array_like
 98
                                           b[1].shape = (layers[1], 1)
 99
                    cache : Dict
100
                                cache['a'][1] : array_like
                                            a[1].shape = (layers[1], n)
102
                                cache['z'][1] : array_like
103
                                            z[1].shape = (layers[1], n)
104
                    activators : List[str]
105
                                activators[1] = activation function of layer 1+1
106
                    D : Dict[array_like]
107
                               D[1].shape = (layer[1], num_ex)
108
                                D[1] = a Boolean array
109
                    keep_prob : List[float]
110
                                keep_prob[1] = The probabilty of keeping a node in layer 1
111
112
                    Returns
113
114
                    grads : Dict[Dict]
115
                                grads['dw'][1] : array_like
116
                                            dw[1].shape = w[1].shape
117
                                grads['db'][1] : array_like
118
                                            db[1].shape = b[1].shape
119
120
                    ## Retrieve parameters
121
                    a = cache['a']
122
                    z = cache['z']
123
                    w = params['w']
124
                    n = x.shape[1]
125
                    L = len(z)
126
127
                    ## Compute deltas
128
                    delta = \{\}
129
                    delta[L] = a[L] - y
130
                    for 1 in reversed(range(1, L)):
131
                                deltal = utils.linear_activation_backward(delta[1 + 1], z[1], w[1 + 1], activation_backward(delta[1 + 1], activation_backward(delta[1 + 1], z[1], w[1 + 1], activation_backward(delta[1 + 1], z[1], w[1 + 1], w[1 + 1]
132
                                deltal = deltal * D[1]
133
                                deltal /= keep_prob[1]
134
                                delta[1] = deltal
135
136
                    ## Compute gradients
137
                    dw = \{\}
138
                    db = \{\}
139
140
                    for l in range(1, L + 1):
141
```

```
db[1] = (1 / n) * np.sum(delta[1], axis=1, keepdims=True)
142
           assert(db[1].shape == (w[1].shape[0], 1))
143
           dw[1] = (1 / n) * delta[1] @ a[1 - 1].T
144
           assert(dw[1].shape == w[1].shape)
145
       grads = {'dw' : dw, 'db' : db}
146
       return grads
147
149 def model(x, y,
                hidden_sizes,
150
                activators,
151
                keep\_prob = 1.0,
152
                num_iters=2500,
153
                learning_rate=0.1,
154
                print_cost=False):
155
156
       Parameters
157
       _____
158
       Parameters
159
       _____
160
       x : array_like
161
           x.shape = (layers[0], n)
162
       y : array_like
163
           y.shape = (layers[-1], n)
164
       hidden_sizes : List[int]
165
           The number nodes layer 1 = hidden_sizes[1-1]
166
       activators : List[function]
167
           activators[1] = activation function of layer 1+1
168
       keep_prob : List[float] | float
169
           keep_prob[1] = The probabilty of keeping a node in layer 1
170
           keep_prob = The same probability for all input and hidden layers
171
       num_iters : int
172
           Number of iterations with which our model performs gradient descent
173
       learning_rate : float
174
           The learning rate for gradient descent
175
       print_cost : Boolean
176
           If True, print the cost every 1000 iterations
177
178
       Returns
179
       _____
180
       params : Dict[Dict]
181
           params['w'][1] : array_like
182
                w[1].shape = (layers[1], layers[1-1])
183
184
           params['b'][1] : array_like
                b[1].shape = (layers[1], 1)
185
       cost : float
           The final cost value for the optimized parameters returned
187
188
```

```
## Retrieve parameters
189
       n, layers = utils.dim_retrieval(x, y, hidden_sizes)
190
       params = utils.initialize_parameters_random(layers)
191
192
       ## Expand keep_prob to a list if it's a single float
193
       if isinstance(keep_prob, float):
194
           keep_prob = [keep_prob] * (len(layers) - 1)
       ## Main gradient descent loop
196
       for i in range(num_iters):
197
           D = dropout_matrices(layers, n, keep_prob)
198
           cache = forward_propagation(x, params, activators, D, keep_prob)
199
           cost = utils.compute_cost(y, cache)
200
           grads = backward_propagation(x, y, params, cache, activators, D, keep_prob)
201
           params = utils.update_parameters(params, grads, learning_rate)
202
203
           if print_cost and i % 1000 == 0:
204
               print(f'Cost_after_iteration_{i}:_{cost}')
205
206
       return params, cost
207
```

5.3 Data Augmentation

This section requires work.

There are few other regularization techniques. One of the simplest techniques is data augmentation, i.e., transforming data you currently have into related but different example to gather a larger dataset (e.g., flipping or distorting images to obtain other relevant images).

5.4 Early Stopping

This section requires work.

Another technique is stop the training early (fewer iterations) before the model develops higher variance.

6 Gradients and Numerical Remarks

This section requires work. See "He Initialization" and "Xavier Initialization"

We first remark, that by our use of gradient descent, there are few outlier cases which may occur. Namely our gradients may explode or vanish. One way to attempt to fix such a situation to impose a normalization on our weights depending on our activation functions.

• If $g^{[\ell]} = \text{ReLU}$, then we wish to impose the requirement that

$$\mathbb{E}[(W^{[\ell]2})] = \frac{1}{m_{\ell-1}}.$$

6.1 Numerical Gradient Checking

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is a smooth function. Then, we recall the definition of the partial derivative

$$\frac{\partial f}{\partial x^j} = \lim_{h \to 0} \frac{f(x + he_j) - f(x)}{h}$$
$$= \lim_{\epsilon \to 0^+} \frac{f(x + \epsilon e_j) - f(x - \epsilon e_j)}{2\epsilon},$$

and so for sufficiently small $\epsilon > 0$, we have the approximation

$$\frac{\partial f}{\partial x^j} \approx \frac{f(x + \epsilon e_j) - f(x - \epsilon e_j)}{2\epsilon}.$$

Define the approximation function $F: \mathbb{R}^n \times (0,1) \to \mathbb{R}^n$ by

$$F(x,\epsilon) = \frac{1}{2\epsilon} \begin{bmatrix} f(x+\epsilon e_1) - f(x-\epsilon e_1) \\ \vdots \\ f(x+\epsilon e_n) - f(x-\epsilon e_n) \end{bmatrix}.$$

Then we may check that our gradient computation $\nabla f(x)$ is correct by checking that

$$\frac{\|F(x,\epsilon) - \nabla f(x)\|_2}{\|F(x,\epsilon)\|_2 + \|\nabla f(x)\|_2} \approx 0.$$

6.2 Python Implementation

```
_{1} ## f(x) = x_1*x_2*...*x_n
2 def fctn(x):
      n = x.shape[0]
3
      y = np.prod(x)
      grad = np.zeros((n, 1))
      for i in range(n):
           omit = 1 - np.eye(1, n, i).T
           omit = np.array(omit, dtype=bool)
           grad[i, 0] = np.prod(x, where=omit)
9
      return y, grad
10
11
12 def gradient_check(grad, f, x, epsilon=1e-3):
13
      Parameters
14
      -----
15
      grad : array_like
16
           grad.shape= (n, 1)
17
      f : function
18
           The function to check.
      x : array_like
20
           x.shape = (n, 1)
21
      epsilon : float
22
           Default 0.001
      Returns
24
      error : float
25
26
      11 11 11
27
      n = x.shape[0]
28
29
      y_diffs = []
      for i in range(n):
30
           e = np.eye(1, n, i).T
31
           x_plus = x + epsilon * e
32
           x_minus = x - epsilon * e
33
           y_plus, _ = f(x_plus)
           y_{minus}, = f(x_{minus})
35
           y_diffs.append(y_plus - y_minus)
36
      y_diffs = np.array(y_diffs).reshape(n, 1)
37
      y_diffs = y_diffs / (2 * epsilon)
39
      error = (np.linalg.norm(y_diffs - grad)
                   / (np.linalg.norm(y_diffs) + np.linalg.norm(grad)))
41
      return error
```

7 Gradient Descent

So far in our implementation of gradient descent, we use the entire training set for every iteration of gradient descent. This method is called batch gradient descent. Gradient descent has many downfalls. Indeed, since we're typically working in a very high dimensional space, the majority of the critical points for our cost function are actually saddle points (these can be thought of as plateaus of the loss-manifold). These pitfalls (amongst others) are what we wish to overcome. To this end, we first consider a modification of batch gradient descent by partitioning the training set into smaller "mini-batches" and using each mini-batch recursively throughout the iterative process.

That is, suppose we have training set \mathbb{X} with $|\mathbb{X}| = n$, where n is very large (e.g., n = 5000000). We fix a batch size b (e.g., b = 5000), and partition \mathbb{X} into (e.g., 1000 distinct) mini-batches

$$\left\{ \mathbb{X}^k : 1 \le k \le \left\lceil \frac{n}{b} \right\rceil \right\}, \qquad \mathbb{X} = \bigcup_{k=1}^{\left\lceil \frac{n}{b} \right\rceil} \mathbb{X}^k,$$

where $\lceil \frac{n}{b} \rceil$ denote the ceiling function. If we shuffle \mathbb{X} and partition during each epoch (i.e., each iteration) so our loss-manifold changes during each batch iteration within each epoch, we can then perform gradient descent in the following manner:

- 1. For $0 \le i < \text{num_iters}$:
 - a. Let $B = \left\lceil \frac{n}{b} \right\rceil$, and generate batches $\{\mathbb{X}^k\}$.
 - b. For $1 \le k \le B$:
 - i. Perform forward propagation on \mathbb{X}^k :

$$\begin{split} a^{[0]} &= x(\mathbb{X}^k) \\ z^{[\ell]} &= W^{[\ell]} a^{[\ell-1]} + b^{[\ell]} \\ a^{[\ell]} &= g^{[\ell]} (z^{[\ell]}) \end{split}$$

ii. Evaluate the cost \mathbb{J}^k on \mathbb{X}^k :

$$\mathbb{J}^{k}(W,b) = \frac{1}{|\mathbb{X}^{k}|} \sum_{(x,y) \in \mathbb{X}^{k}} \mathbb{L}(\hat{y},y) + \frac{\lambda}{2|\mathbb{X}^{k}|} \sum_{\ell=1}^{L} \|W^{[\ell]}\|_{F}^{2}.$$

iii. Perform backward propagation on \mathbb{X}^k :

$$\frac{\partial \mathbb{J}^k}{\partial W^{[\ell]}} = \frac{1}{|\mathbb{X}^k|} \delta^{[\ell]} a^{[\ell-1]T} + \frac{\lambda}{|\mathbb{X}^k|} W^{[\ell]}$$
$$\frac{\partial \mathbb{J}^k}{\partial b^{[\ell]}} = \frac{1}{|\mathbb{X}^k|} \sum_{\rho \sim \mathbb{X}^k} \delta^{[\ell]}{}_{\rho}$$

iv. Perform gradient descent:

$$\begin{split} W^{[\ell]} &:= W^{[\ell]} - \alpha \frac{\partial \mathbb{J}^k}{\partial W^{[\ell]}} \\ b^{[\ell]} &:= b^{[\ell]} - \alpha \frac{\partial \mathbb{J}^k}{\partial b^{[\ell]}} \end{split}$$

We make several remarks about mini-batch gradient descent:

- Batch gradient descent doesn't always decrease (e.g., our learning rate is too large). Mini-batch may oscillate rapidly, but the general direction should move towards a minimum.
- If b = n, then we fully recover batch gradient descent. This is typically too computationally expensive since we use the full training set for each iteration.
- If b = 1, then we recover stochastic gradient descent, i.e., we train our model on a different example during each iteration. We lose all the speed related to vectorization, since we're dealing with single examples during each iteration.
- Choose 1 < b < n is typically always the best solution, since it deals with both of the aforementioned problems.
- \bullet Due to the nature of a computer's internal structure, it's typically better to choose a batch size b for the form

$$b = 2^{p}$$
.

for some $p \in \{6, 7, 8, 9, 10\}$ (usually p < 10).

ullet Choose a batch size b that ensures your computer's CPU/GPU can hold a dataset of that size.

7.1 Weighted Averages

Suppose $x_t \in \mathbb{R}^m$ is some collection of data indexed by t which we may consider a time-variable, that is, after each successive unit of time (say for example, each day), our collection adds a new data point. That is, the collection

$$\{x_t \in \mathbb{R}^m : 1 \le t \le T\}$$

has variable T.

Then if X is the random vector associated to x, our usual mean μ is given by

$$\mu(T) := \mathbb{E}[X] = \frac{1}{T} \sum_{t=1}^{T} x_t.$$

Since our collection of data is growing and evolving over time, it's reasonable in many applications to have the most recent data points affect a model more than older data points. That is, we wish to impose a "weight" on more recent data points.

One way (and likely the most trivial) to achieve such a weighing is to have only the most recent k examples affect our model. That is, for fixed $k \in \mathbb{N}$, and $t \geq k$, define the vector $\hat{x}_{t+1} \in \mathbb{R}^m$ by

$$\hat{x}_{t+1} = \frac{1}{k} \sum_{j=t-mk+1}^{t} x_j.$$

Then \hat{x}_{t+1} represents the mean of the most recent k-examples. This may be interpreted as the "predicted-value" for x_{t+1} . This predictive model is known as a *simple moving average*, or SMA.

The simple moving average satisfies our weight requirement of focusing more on the most recent data, however, older data, though being less relevant, should still affect our model, but in a reduced form. The simple model does not satisfy this more refined requirement. Let's modify the simple model as follows: Fix $\beta_1 \in [0,1)$ and we initialize a $V_0 = 0 \in \mathbb{R}^m$, and define recursively the vector $V_t \in \mathbb{R}^m$ given by

$$V_t = \beta_1 V_{t-1} + (1 - \beta_1) x_t.$$

We claim that V_t can be interpreted as the next predicted value \hat{x}_{t+1} . Indeed,

expanding our recursive definition

$$V_{t} = \beta_{1}V_{t-1} + (1 - \beta_{1})x_{t}$$

$$= \beta_{1}(\beta_{1}V_{t-2} + (1 - \beta_{1})x_{t-1}) + (1 - \beta_{1})x_{t}$$

$$= \beta_{1}^{2}V_{t-2} + (1 - \beta_{1})(\beta_{1}x_{t-1} + x_{t})$$

$$= \beta_{1}^{2}(\beta_{1}V_{t-3} + (1 - \beta_{1})x_{t-2}) + (1 - \beta_{1})(\beta_{1}x_{t-1} + x_{t})$$

$$= \beta_{1}^{3}V_{t-3} + (1 - \beta_{1})(\beta_{1}^{2}x_{t-2} + \beta_{1}x_{t-1} + x_{t})$$

$$\vdots$$

$$= \beta_{t}^{t}V_{0} + (1 - \beta_{1})\sum_{j=0}^{t-1}\beta_{j}^{j}x_{t-j}$$

$$= (1 - \beta_{1})\sum_{j=0}^{t-1}\beta_{j}^{j}x_{t-j}.$$

Moreover, if we define a probability distribution \mathbb{P} as given by

$$\mathbb{P}(X = x_j) = (1 - \beta_1)\beta_1^j,$$

then we immediately see that V_t is the weighted-average over the last t-days, and hence may be interpreted as the predicted-value \hat{x}_{t+1} as desired. Finally, since

$$1 - \beta_1 = \frac{1}{\frac{1}{1 - \beta_1}},$$

we may interpret $\frac{1}{1-\beta_1}$ as the size of the relevant sampling, i.e., V_t is the average of x over the previous $\frac{1}{1-\beta_1}$ days (assuming our time-units are measured in days). This predictive model is known as an *exponentially moving* average, or EMA.

Remark 7.1. We note that since we initialize our EMA with $V_0 = 0$, that our predictive model is very bad for small t. This usually is irrelevant for many models, but if we need to correct for bias, we may make the modification of

$$V_t = \frac{\beta_1 V_{t-1} + (1 - \beta_1) x_t}{1 - \beta_1^t}.$$

Indeed, since $\beta_1 \in [0,1)$, we note that

$$\frac{1}{1-\beta_1} = \sum_{j=0}^{\infty} \beta_1^j$$

$$= \sum_{j=t}^{\infty} \beta_t^j + \sum_{j=0}^{t-1} \beta_1^j$$

$$= \beta_1^t \sum_{j=0}^{\infty} \beta_1^j + \sum_{j=0}^{t-1} \beta_1^j$$

$$= \frac{\beta_1^t}{1-\beta_1} + \sum_{j=0}^{t-1} \beta_1^j,$$

and so

$$\sum_{j=0}^{t-1} \beta_1^j = \frac{1 - \beta_1^t}{1 - \beta_1}.$$

We then see that

$$V_{t} = \frac{\beta_{1}V_{t-1} + (1 - \beta_{1})x_{t}}{1 - \beta_{1}^{t}}$$

$$= \frac{(1 - \beta_{1})\sum_{j=0}^{t-1}\beta_{1}^{j}x_{t-j}}{1 - \beta_{1}^{t}}$$

$$= \frac{\sum_{j=0}^{t-1}\beta_{1}^{j}x_{t-j}}{\sum_{j=0}^{t-1}\beta_{1}^{j}},$$

which is the explicit definition of a weighted-average.

7.2 Gradient Descent with Momentum

Gradient descent has an issue with potentially plateauing during areas with a flat gradient, or bouncing around drastically before arriving at a minimum. One reason for this is that each iterative step only depends on the previous value of the gradient (or rather, the most recently updated parameter). The algorithm doesn't see larger trends, and so this leads to give our algorithm more history of the movements. We do this by using EMA.

We first recall our gradient descent algorithm:

1. We initialize $W^{\{0\}}$ and $b^{\{0\}}$.

- 2. For $0 \le i < \text{num_iters}$:
 - a. Let $B = \left\lceil \frac{n}{b} \right\rceil$, and generate batches $\{X^k\}$.
 - b. For $1 \le k \le B$:
 - i. Apply forward propagation on \mathbb{X}^k .
 - ii. Compute the cost \mathbb{J} on \mathbb{X}^k .
 - iii. Apply backward propagation on \mathbb{X}^k to obtain

$$\frac{\partial \mathbb{J}}{\partial W}^{\{t\}}, \qquad \frac{\partial \mathbb{J}}{\partial b}^{\{t\}}.$$

iv. We update parameters

$$W^{\{t\}} = W^{\{t-1\}} - \alpha \frac{\partial \mathbb{J}}{\partial W}^{\{t\}}$$
$$b^{\{t\}} = b^{\{t-1\}} - \alpha \frac{\partial \mathbb{J}^{\{t\}}}{\partial b}^{\{t\}}$$

Using this formulation of gradient descent, we insert EMA applied to the sequences of gradients depending on the iteration t := i + k. That is, we have the following algorithm:

- 1. Initialize our parameters $W^{\{0\}}$ and $b^{\{0\}}$. Initialize $V_W^{\{0\}} = V_b^{\{0\}} = 0$. Fix a momentum hyper-parameter $\beta_1 \in [0,1)$.
- 2. For $0 \le i < \mathsf{num_iters}$:
 - a. Let $B = \left\lceil \frac{n}{b} \right\rceil$, and generate batches $\{\mathbb{X}^k\}$.
 - b. For $1 \le k \le B$:
 - i. Apply forward propagation on \mathbb{X}^k .
 - ii. Compute the cost \mathbb{J} on \mathbb{X}^k .
 - iii. Apply backward propagation on \mathbb{X}^k to obtain

$$\frac{\partial \mathbb{J}}{\partial W}^{\{t\}}, \qquad \frac{\partial \mathbb{J}}{\partial b}^{\{t\}}.$$

iv. Define

$$V_W^{\{t\}} = \beta_1 V_W^{\{t-1\}} + (1 - \beta_1) \frac{\partial \mathbb{J}}{\partial W}^{\{t\}}$$
$$V_b^{\{t\}} = \beta_1 V_b^{\{t-1\}} + (1 - \beta_1) \frac{\partial \mathbb{J}}{\partial b}^{\{t\}}$$

v. We update parameters

$$W^{\{t\}} = W^{\{t-1\}} - \alpha V_W^{\{t\}}$$

$$b^{\{t\}} = b^{\{t-1\}} - \alpha V_b^{\{t\}}$$

7.3 Root Mean Squared Propagation (RMSProp)

One of the main drawbacks to gradient descent with momentum is the uniformity of the modification regardless of the direction. That is, suppose our desired minimum is in the \vec{b} direction, but the gradient $\partial_b \mathbb{J}$ is small while the gradient $\partial_W \mathbb{J}$ is large. As a result, our steps will oscillate wildly in the \vec{w} direction, while moving very slowing in the \vec{b} direction to our desired minimum. This as a whole can be very computationally slow, and is undesired.

The main idea for fixing these oscillatory issues is have a variable learning rate α which also depends on the direction. That is, if $\partial_W \mathbb{J}$ is large, and not in our desired direction of motion, we would like our update for W to be small, and vice-versa if $\partial_b \mathbb{J}$ is small. Moreover, we wish to exaggerate the magnitudes of these vectors so we ensure our algorithm works efficiently. That is, we relate some vector S via

$$S \sim \frac{\partial \mathbb{J}^2}{\partial W},$$

where we're taking that Hadamard-square (i.e., component-wise product with itself). Then we perform step via

$$W = W - \alpha \frac{1}{\sqrt{S}} \odot \frac{\partial \mathbb{J}}{\partial W},$$

where where taking the Hadamard-root. Note that this root is necessary for our update to make sense (consider the units involved in such an equation), but it does introduce the potential to divide by zero (which we'll fix by a small. Moreover, we would like use the history of gradients as in EMA to further our refinement of the descent algorithm. To this end, we have the following *RMSProp algorithm*:

- 1. Initialize our parameters $W^{\{0\}}$ and $b^{\{0\}}$. Initialize $S_W^{\{0\}} = S_b^{\{0\}} = 0$. Fix a momentum $\beta_2 \in [0,1)$ and let $\epsilon > 0$ be sufficiently small ($\epsilon = 10^{-8}$ is a good starting point).
- 2. For $0 \le i < \mathsf{num_iter}$:

a. Let $B = \left\lceil \frac{n}{b} \right\rceil$, and generate batches $\{X^k\}$

b. For $1 \le k \le B$:

i. Apply forward propagation on \mathbb{X}^k .

ii. Compute the cost \mathbb{J} on \mathbb{X}^k .

iii. Apply backward propagation on \mathbb{X}^k to obtain

$$\frac{\partial \mathbb{J}}{\partial W}^{\{t\}}, \qquad \frac{\partial \mathbb{J}}{\partial b}^{\{t\}}.$$

iv. Define

$$S_W^{\{t\}} = \beta_2 S_W^{\{t-1\}} + (1 - \beta_2) \left(\frac{\partial \mathbb{J}}{\partial W}^{\{t\}}\right)^2$$
$$S_b^{\{t\}} = \beta_2 S_b^{\{t-1\}} + (1 - \beta_2) \left(\frac{\partial \mathbb{J}}{\partial b}^{\{t\}}\right)^2$$

v. Update parameters via

$$\begin{split} W^{\{t\}} &= W^{\{t-1\}} - \alpha \frac{\frac{\partial \mathbb{J}}{\partial W}^{\{t\}}}{\sqrt{S_W^{\{t\}}} + \epsilon} \\ b^{\{t\}} &= b^{\{t-1\}} - \alpha \frac{\frac{\partial \mathbb{J}}{\partial b}^{\{t\}}}{\sqrt{S_b^{\{t\}}} + \epsilon} \end{split}$$

7.4 Adaptive Moment Estimation: The Adam Algorithm

We first note that with the momentum algorithm utilizing the EMA as it does, that it is an algorithm of the first moment (i.e., the mean of the gradients). Similarly, with RMSProp utilizing the square of the gradient as it does, we say it is an algorithm of the second moment (i.e., the uncentered variance of the gradients). Our goal it utilize both gradient descent with momentum and RMSProp simultaneously to optimize our parameters. This combination of algorithms is called the *Adam algorithm* and is implemented as follows:

1. Initialize our parameters $W^{\{0\}}$ and $b^{\{0\}}$. Initialize $V_W^{\{0\}} = V_b^{\{0\}} = 0$ and $S_W^{\{0\}} = S_b^{\{0\}} = 0$. Fix our constants of momenta $\beta_1, \beta_2 \in [0, 1)$ and let $\epsilon > 0$ be sufficiently small.

2. For $0 \le i < \mathsf{num_iters}$:

a. Let $B = \left\lceil \frac{n}{b} \right\rceil$, and generate batches $\{\mathbb{X}^k\}$

b. For $1 \le k \le B$:

i. Apply forward propagation on \mathbb{X}^k .

ii. Compute the cost \mathbb{J} on \mathbb{X}^k .

iii. Apply backward propagation on \mathbb{X}^k to obtain

$$\frac{\partial \mathbb{J}}{\partial W}^{\{t\}}, \qquad \frac{\partial \mathbb{J}}{\partial b}^{\{t\}}.$$

iv. Define

$$V_{W}^{\{t\}} = \beta_{1} V_{W}^{\{t-1\}} + (1 - \beta_{1}) \frac{\partial \mathbb{J}}{\partial W}^{\{t\}},$$

$$V_{b}^{\{t\}} = \beta_{1} V_{b}^{\{t-1\}} + (1 - \beta_{1}) \frac{\partial \mathbb{J}}{\partial b}^{\{t\}},$$

and define

$$S_W^{\{t\}} = \beta_2 S_W^{\{t-1\}} + (1 - \beta_2) \left(\frac{\partial \mathbb{J}}{\partial W}^{\{t\}}\right)^2,$$

$$S_b^{\{t\}} = \beta_2 S_b^{\{t-1\}} + (1 - \beta_2) \left(\frac{\partial \mathbb{J}}{\partial b}^{\{t\}}\right)^2.$$

v. Utilize bias correction via:

$$\hat{V}_{W}^{\{t\}} = \frac{V_{W}^{\{t\}}}{1 - \beta_{1}^{t}}$$

$$\hat{V}_{b}^{\{t\}} = \frac{V_{b}^{\{t\}}}{1 - \beta_{1}^{t}}$$

$$\hat{S}_{W}^{\{t\}} = \frac{S_{W}^{\{t\}}}{1 - \beta_{2}^{t}}$$

$$\hat{S}_{b}^{\{t\}} = \frac{S_{b}^{\{t\}}}{1 - \beta_{2}^{t}}$$

vi. Update the parameters:

$$\begin{split} W^{\{t\}} &= W^{\{t-1\}} - \alpha \frac{\hat{V}_W^{\ \{t\}}}{\sqrt{\hat{S}_W^{\ \{t\}}} + \epsilon} \\ b^{\{t\}} &= b^{\{t-1\}} - \alpha \frac{\hat{V}_b^{\ \{t\}}}{\sqrt{\hat{S}_b^{\ \{t\}}} + \epsilon} \end{split}$$

We note that though we may still need to tune the hyper-parameter α , the hyper-parameters β_1, β_2 and ϵ typically work quite well with default values of

$$\beta_1 = 0.9, \qquad \beta_2 = 0.999, \qquad \epsilon = 10^{-8}.$$

7.5 Learning Rate Decay

Finally, one further method we may utilize in our optimization problem, is the idea of slowly reducing our learning rate α . That is, if i is our epoch iteration, and $\eta > 0$ is a fixed decay rate, we can define new learning rates in many ways. That is, for $\alpha = \alpha(i)$ we can define

$$\alpha(i) = \frac{1}{1 + \eta i} \alpha_0,$$

•

$$\alpha(i) = \alpha_0 \eta^i,$$

•

$$\alpha(i) = \frac{\eta}{\sqrt{i}}\alpha_0.$$

One could also implement a "manual decay", but this should only be used under ideal circumstances.

7.6 Python Implementation

```
import copy

import numpy as np
from sklearn.utils import shuffle
```

```
6 import utils
8 def get_batches(x, y, b):
9
      Parameters
10
       _____
11
      x : array_like
12
           x.shape = (m, n)
13
      y : array_like
           y.shape = (k, n)
15
      b : int
16
17
      Returns
18
       -----
19
      batches : List[Dict]
20
           batches[i]['x'] : array_like
21
               x.shape = (m, b) # except last batch
               y.shape = (k, b) # except last batch
23
24
      ,, ,, ,,
25
      m, n = x.shape
26
      ## Shuffle the data
27
      x, y = \text{shuffle}(x.T, y.T) \# \text{Only shuffles rows, so transpose is needed}
28
      x = x.T
29
      y = y.T
30
31
      B = int(np.ceil(n / b))
32
      batches = []
      for i in range(B):
34
           x_{temp} = x[:,(b * i):(b * (i + 1))]
35
           y_{temp} = y[:,(b * i):(b * (i + 1))]
36
           batches.append({'x' : x_temp, 'y' : y_temp})
37
      # Slicing automatically ends at the end of
38
      # the list if the stop is outside the index
39
      return batches
40
41
42 def initialize_momenta(layers):
43
      Parameters
44
       -----
45
      layers : List[int]
46
           layers[1] = # nodes in layer 1
47
48
      Returns
       -----
49
      v : Dict[Dict[array_like]]
      s : Dict[Dict[array_like]]
51
```

```
vw = \{\}
53
      vb = \{\}
54
      sw = \{\}
55
      sb = \{\}
56
      for l in range(1, len(layers)):
57
           vw[1] = np.zeros((layers[1], layers[1 - 1]))
58
           sw[1] = np.zeros((layers[1], layers[1 - 1]))
           vb[l] = np.zeros((layers[l], 1))
60
           sb[1] = np.zeros((layers[1], 1))
61
62
      v = \{'w' : vw, 'b' : vb\}
63
      s = \{'w' : sw, 'b' : sb\}
64
65
      return v, s
66
67
68 def learning_rate_decay(epoch, learning_rate=0.01, decay_rate=0.0):
69
      Parameters
70
       _____
71
      eposh : int
72
      learning_rate : float
73
           Default: 0.01
      decay_rate : float
75
           Default: 0.0 - Returns a constant learning_rate
76
77
      Returns
       _____
79
      learning_rate : float
80
81
      learning_rate = (1 / (1 + epoch * decay_rate)) * learning_rate
82
      return learning_rate
83
84
85 def corrected_momentum(v, grads, update_iter, beta1=0.0):
86
      Parameters
87
88
      v : Dict[Dict[array_like]]
89
           v['w'][1].shape = w[1].shape
90
           v['b'][1].shape = b[1].shape
91
      grads : Dict[Dict]
92
           grads['w'][l] : array_like
93
               dw[1].shape = w[1].shape
94
           grads['b'][l] : array_like
95
               db[1].shape = b[1].shape
96
      update_iter : int
      beta1 : float
98
           Default: 0.0 - Returns grads
```

```
Usual: 0.9
100
101
       Returns
102
       _____
103
       v : Dict[Dict[array_like]]
104
            v['w'][1].shape = dw[1].shape
105
            v['b'][1].shape = db[1].shape
106
107
       ## Retrieve velocities and gradients
108
       vw = v['w']
109
       vb = v['b']
110
       dw = grads['w']
111
       db = grads['b']
112
       L = len(dw)
113
114
       for l in range(1, L + 1):
115
            vw[1] = beta1 * vw[1] + (1 - beta1) * dw[1]
116
            vw[l] /= (1 - beta1 ** update_iter)
117
            assert(vw[1].shape == dw[1].shape)
118
            vb[1] = beta1 * vb[1] + (1 - beta1) * db[1]
119
            vb[1] /= (1 - beta1 ** update_iter)
120
            assert(vb[1].shape == db[1].shape)
121
122
       v = \{'w' : vw, 'b' : vb\}
123
       return v
124
125
126 def corrected_rmsprop(s, grads, update_iter, beta2=0.999):
127
       Parameters
128
       _____
129
       s : Dict[Dict[array_like]]
130
            s['w'][1]. shape = w[1]. shape
131
           s['b'][1].shape = b[1].shape
132
       grads : Dict[Dict]
133
            grads['w'][1] : array_like
134
                dw[1].shape = w[1].shape
135
            grads['b'][l] : array_like
136
137
                db[1].shape = b[1].shape
       update_iter : int
138
       beta2 : float
139
           Default: 0.999
140
141
142
       Returns
       -----
143
       s : Dict[Dict[array_like]]
            s['w'][1].shape = w[1].shape
145
            s['b'][1]. shape = b[1]. shape
146
```

```
11 11 11
147
       ## Retrieve accelerations and gradients
148
       sw = s['w']
149
       sb = s['b']
150
       dw = grads['w']
151
       db = grads['b']
152
       L = len(dw)
154
       for l in range(1, L + 1):
155
            sw[1] = beta2 * sw[1] + (1 - beta2) * (dw[1] * dw[1])
156
            sw[1] /= (1 - beta2 ** update_iter)
157
            assert(sw[1].shape == dw[1].shape)
158
            sb[1] = beta2 * sb[1] + (1 - beta2) * (db[1] * db[1])
159
            sb[1] /= (1 - beta2 ** update_iter)
160
            assert(sb[1].shape == db[1].shape)
161
162
       s = \{'w' : sw, 'b' : sb\}
163
       return s
164
165
166
167 def update_parameters_adam(params, grads, epoch, batch_iter, v, s, momenta=[1e-8, 0
168
       Parameters
169
170
       params : Dict[Dict]
171
            params['w'][1] : array_like
172
                w[l].shape = (layers[l], layers[l-1])
173
            params['b'][1] : array_like
174
                b[1].shape = (layers[1], 1)
175
       grads : Dict[Dict]
176
            grads['dw'][1] : array_like
177
                dw[1].shape = w[1].shape
178
            grads['db'][1] : array_like
179
                db[1].shape = b[1].shape
180
       epoch : int
181
       batch_iter : int
182
       learning_rate : float
183
            Default: 0.01
184
       momenta : List[float]
185
            momenta[0] = epsilon
186
                Default: 10^{-8}
187
            momenta[1] = beta_1
188
                Default: 0.9
189
            momenta[2] = beta_2
190
                Default: 0.999
191
192
       Returns
193
```

```
194
       params : Dict[Dict]
195
            params['w'][1] : array_like
196
                w[1].shape = (layers[1], layers[1-1])
197
            params['b'][1] : array_like
198
                b[1].shape = (layers[1], 1)
199
200
       update_iter = epoch + batch_iter
201
202
       ## Retrieve parameters
       w = copy.deepcopy(params['w'])
203
       b = copy.deepcopy(params['b'])
204
       L = len(w)
205
206
       ## Update velocites and accelerations
207
       v = corrected_momentum(v, grads, update_iter, momenta[1])
208
       vw = v['w']
209
210
       vb = v['b']
       s = corrected_rmsprop(s, grads, update_iter, momenta[2])
211
       sw = s['w']
212
       sb = s['b']
213
214
       ## Update learning rate
215
       learning_rate = learning_rate_decay(epoch, alpha0, decay_rate)
216
217
       ## Perform update
218
       for l in range(1, L + 1):
219
           w[1] = w[1] - learning_rate * vw[1] / (np.sqrt(sw[1]) + momenta[0])
220
           b[1] = b[1] - learning_rate * vb[1] / (np.sqrt(sb[1]) + momenta[0])
221
222
       params = \{'w' : w, 'b' : b\}
223
       return params
224
225
226 def model(x, y,
            hidden_layer_sizes,
227
            activators,
228
            batch_size,
229
            lambda_=0.0,
230
231
            num_iters=10000,
            print_cost=False):
232
233
       Parameters
234
       _____
235
236
       x : array_like
           x.shape = (layers[0], n)
237
       y : array_like
238
            y.shape = (layers[-1], n)
239
       hidden_layer_sizes : List[int]
^{240}
```

```
The number nodes layer 1 = hidden_layer_sizes[1-1]
241
       activators : List[str]
242
           activators[1] = activation function of layer 1+1
243
       batch_size : int
244
       lambda_ : float
^{245}
           The regularization parameter
246
           Default: 0.0
247
       num_iters : int
248
           Number of iterations with which our model performs gradient descent
249
           Default: 10000
250
       print_cost : Boolean
251
           If True, print the cost every 1000 iterations
252
           Default: False
253
254
       Returns
255
       -----
256
257
       params : Dict[Dict]
           params['w'][1] : array_like
258
                w[l].shape = (layers[l], layers[l-1])
259
           params['b'][1] : array_like
260
                b[1].shape = (layers[1], 1)
261
       cost : float
262
           The final cost value for the optimized parameters returned
263
264
       n, layers = utils.dim_retrieval(x, y, hidden_layer_sizes)
265
       params = utils.initialize_parameters_random(layers)
266
       v, s = initialize_momenta(layers)
267
268
269
       ## main descent loop
270
       for i in range(num_iters):
271
           batches = get_batches(x, y, batch_size)
272
           ## batch loop
273
           batch_iter = 1
274
           cost = 0
275
           for batch in batches:
276
                x = batch['x']
277
                y = batch['y']
278
                cache = utils.forward_propagation(x, params, activators)
279
                cost += utils.compute_cost(y, params, cache)
280
                grads = utils.backward_propagation(x, y, params, cache, activators)
281
                params = update_parameters_adam(params,
282
283
                                             grads,
                                             i,
284
                                             batch_iter,
                                             ٧,
286
287
                                             S,
```

```
momenta=[1e-8, 0.9, 0.999],
288
                                            learning_rate=0.01,
289
                                             decay_rate = 0.0
290
               batch_iter += 1
291
292
           if print_cost and i % 1000 == 0:
293
               print(f'Cost_after_iteration_{i}:_{cost}')
294
295
       return params, cost
296
```

8 Tuning Hyper-Parameters

Suppose that we have the dataset \mathbb{D} with the usual partition of

$$\mathbb{D} = \mathbb{X} \cup \mathcal{D} \cup \mathcal{T}.$$

Furthermore, suppose we impose a neural network architecture which has a collection of hyper-parameters (relabeled as):

$$\eta_1, \eta_2, ... \eta_K$$
.

The naive method of hyper-parameter tuning would instinctively be something of the form: Let $[d_i, d_i + k_i \Delta_i]$ denote an interval for which we require

$$\eta_i \in [d_i, d_i + k_i \Delta_i],$$

with an even-partition of

$$d_i < d_i + \Delta_i < d_i + 2\Delta_i < \cdots < d_i + k_i \Delta_i$$

of length Δ_i . This collection forms a "grid" in \mathbb{R}^K for which each point of the grid gives us a full collection of hyper-parameters which we can then use to train our model. However, if certain hyper-parameters do not affect our model's accuracy very much, we've added at least a full dimension of validation which is not needed. A more randomized approach would be best to determine such a hyper-parameter characterization must faster. Thus a random collection of points H_i for which we constrain $\eta_i \in H_i$.

How should we implement this set H_i ? Suppose for example, we wish to find

$$\eta_i \in [0.0001, 1],$$

but the majority of the random points will likely be in [0.1, 1]. Suppose we partition the interval

$$[0.0001, 1] = 0.0001 < 0.001 < 0.01 < 0.1 < 1$$
$$= 10^{-4} < 10^{-3} < 10^{-2} < 10^{-1} < 10^{0}.$$

This suggests we obtain a distribution of points using a logarithmic (in base 10) scale. Indeed, let

$$p\in [0,1],$$

be a random point. Then letting $r=-4p\in[-4,0],$ we obtain another random point, and let

$$H_i = \{10^{-4p} : p \in \text{rand}([0,1])\},\$$

for some prescribed set-cardinality. This allows us to choose more appropriately scaled-options for our hyper-parameters.

Remark 8.1. Suppose we're using exponentially moving averages and have a hyper-parameter $\beta_1 \in [0,1)$. If we do not use a log-scale, then the sensitivity of our model with respect to β_1 when $\beta_1 \approx 1$ is very strong. Indeed, we recall that when $\beta_1 = 0.999$, this corresponds to averaging over the previous 1000 days. And it we change β_1 slightly to

$$\beta_1 = 0.9995$$
.

then we've changed the interpretation of our model to the previous 2000 days. A subtle change for β_1 , but a drastic change to our model. The log-scale fixes this issue immediately.

We finally note that our hyper-parameters can become *stale* over time. That is, suppose we've trained a neural network, and tuned the hyper-parameters to allow an acceptable accuracy for our model. As the model refines over time, with more data being inserted to train on, it's import to re-test our hyper-parameters to make sure our model hasn't opened up to a better choice of one (or some or all) of the hyper-parameters we've previously tuned.

8.1 Python Implementation

```
1 def hyperparameter_scale(k, p):
2
      Parameters
3
      -----
4
      k : int
          The number random points to generate
6
      p: int
          The smallest magnitude for our log-scale
      Returns
10
      _____
11
      hypers : List[float]
12
          The list of hyper-parameters with which to tune
13
14
      hypers = []
15
      for _ in range(k):
16
          r = p * np.random.rand()
17
          hypers.append(10 ** r)
18
      return hypers
```

9 Batch Normalization

See [1].

We recall feature-normalization: Suppose $x \in \mathbb{R}^{m \times n}$ is some training data, and let

$$\mu = \mathbb{E}[X], \qquad \sigma^2 = \mathbb{E}[(X - \mu)^2],$$

denote the mean and variance of the random-vector representation X of x, respectively. Then we consider the map

$$x_j \mapsto \frac{x_j - \mu}{\sigma} =: \hat{x}_j,$$

to be the *normalization* of x_i .

This definition is so "vanilla", that it should be clear that this can be easily applied to each hidden-layer (we shall not use it on the output layer) of a neural network as well. However, we first note that there is an ambiguous choice amongst the implementation, namely, do we normalize $z^{[\ell]}$ or $a^{[\ell]}$, i.e., does normalization occur before or after we compute the activation unit. It seems more common to apply normalization to $z^{[\ell]}$, so that is what we do here without further mention of this choice.

Let $\gamma, \beta \in \mathbb{R}^m$, if we consider the map

$$\hat{x}_j \mapsto \gamma \odot \hat{x}_j + \beta := \tilde{x}_j,$$

we can see fairly trivially that we can recover x_j (thus allowing for identity activation units), indeed, let $\gamma = \sigma$ and $\beta = \mu$, and hence

$$\tilde{x}_{j} = \gamma \odot \hat{x}_{j} + \beta$$

$$= \gamma \odot \frac{x_{j} - \mu}{\sigma} + \beta$$

$$= x_{j} - \mu_{\beta}$$

$$= x_{j}$$

as desired. Moreover, we see that we can actually control what mean and variance we wish to impose on our input-vectors x. Indeed, let \hat{x} denote the

normalized x, and consider

$$\mathbb{E}[\gamma \odot \hat{X} + \beta] = \frac{1}{n} \sum_{j=1}^{n} (\gamma \odot \hat{x}_j + \beta)$$
$$= \gamma \odot \mathbb{E}[\hat{X}] + \beta$$
$$= 0 + \beta$$
$$= \beta,$$

and so the new mean would be given by β . Similarly,

$$\mathbb{E}[(\gamma \odot \hat{X} + \beta - \beta)^2] = \frac{1}{n} \sum_{j=1}^n (\gamma \odot \hat{x}_j)^2$$

$$= \frac{1}{n} \sum_{j=1}^n (\gamma^2 \odot \hat{x}_j^2)$$

$$= \gamma^2 \odot \mathbb{E}[(\hat{X} - 0)^2]$$

$$= \gamma^2 \odot 1$$

$$= \gamma^2$$

and so we see the new variance would be given by γ^2 . Thus, we see that by composition, the act of normalization can be characterized by the new parameters γ and β , and is mathematically-superfluous to consider both, but for computational considerations and algorithmic stability it shall be beneficial to keep both. That is, suppose we're training on some batch \mathbb{X}^k and focused on layer- ℓ , with parameters $\gamma^{[\ell]}, \beta^{[\ell]} \in \mathbb{R}^{m_\ell}$ and some $\epsilon > 0$, arbitrarily small and prescribed for numerical stability, we define the batch-normalization map $BN_{\gamma^{[\ell]},\beta^{[\ell]}}: \mathbb{R}^{m_\ell} \to \mathbb{R}^{m_\ell}$ given by the compositional-map

$$\begin{split} z^{[\ell]} &\mapsto \frac{1}{|\mathbb{X}^k|} \sum_{x \in \mathbb{X}^k} z^{[\ell]} =: \mu^{[\ell]}; \\ (z^{[\ell]}, \mu^{[\ell]}) &\mapsto \frac{1}{|\mathbb{X}^k|} \sum_{x \in \mathbb{X}^k} (z^{[\ell]} - \mu^{[\ell]})^2 =: \sigma^{[\ell]2}; \\ (z^{[\ell]}, \mu^{[\ell]}, \sigma^{[\ell]}, \epsilon) &\mapsto \frac{z^{[\ell]} - \mu^{[\ell]}}{\sqrt{\sigma^{[\ell]2} + \epsilon}} =: \hat{z}^{[\ell]}; \\ (\hat{z}^{[\ell]}, \gamma^{[\ell]}, \beta^{[\ell]}) &\mapsto \gamma^{[\ell]} \odot \hat{z}^{[\ell]} + \beta^{[\ell]} =: \tilde{z}^{[\ell]}. \end{split}$$

Suppose we have an L-layer neural network, each layer with m_{ℓ} nodes, and we focus on the ℓ -th layer specifically to expand:

$$\cdots \xrightarrow{\varphi^{[\ell]}} \underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[1]m_{\ell}} \end{bmatrix}}^{BN_{\gamma^{[\ell]}},\beta^{[\ell]}} \xrightarrow{\begin{bmatrix} \tilde{z}^{[\ell]1} \\ \vdots \\ \tilde{z}^{[\ell]}_{m_{\ell}} \end{bmatrix}}^{g^{[\ell]}} \xrightarrow{\begin{bmatrix} a^{[1]1} \\ \vdots \\ a^{[1]m_{\ell}} \end{bmatrix}}^{\varphi^{[\ell+1]}} \xrightarrow{\cdots}$$

$$\xrightarrow{\text{Laver } \ell}$$

The procedure for forward propagation should be immediately obvious from the closer look at layer- ℓ . However, we notice that

$$a^{[\ell-1]} \mapsto \gamma^{[\ell]} \odot \frac{W^{[\ell]} a^{[\ell-1]} + b^{[\ell]} - \mu^{[\ell]}}{\sqrt{\sigma^{[\ell]2} + \epsilon}} + \beta^{[\ell]}$$
$$= \frac{\gamma^{[\ell]}}{\sqrt{\sigma^{[\ell]2} + \epsilon}} (W^{[\ell]} a^{[\ell-1]} - \mu^{[\ell]}) + \beta^{[\ell]},$$

after absorbing the $b^{[\ell]}$ into the parameter $\beta^{[\ell]}$. That is, we have 3 trainable parameters given by $W^{[\ell]} \in \mathbb{R}^{m_{\ell} \times m_{\ell-1}}, \, \gamma^{[\ell]}, \beta^{[\ell]} \in \mathbb{R}^{m_{\ell}}$.

9.1 Backward Propagation

We now show how batch normalization affects the backward propagation algorithm. For illustrative purposes, we assume a 2-layer neural network with arbitrary activation functions and generic loss function. We recall the setup (without bias $b^{[\ell]}$) used in Section 2.1

$$\underbrace{\begin{bmatrix} x^1 \\ \vdots \\ x^{m_0} \end{bmatrix}}_{\text{Layer 0}} \xrightarrow{\Phi^{[1]}} \underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[1]m_1} \end{bmatrix}}_{\text{Example 1}} \xrightarrow{BN_{\gamma,\beta}} \underbrace{\begin{bmatrix} \tilde{z}^{[\ell]1} \\ \vdots \\ \tilde{z}^{[\ell]}_{m_\ell} \end{bmatrix}}_{\text{Layer 1}} \xrightarrow{\Phi^{[2]}} \cdots$$

$$\underbrace{\begin{bmatrix} z^{[2]1} \\ \vdots \\ z^{[2]m_2} \end{bmatrix}}_{\text{Layer 2}} \xrightarrow{\Phi^{[2]}} \underbrace{\begin{bmatrix} a^{[2]1} \\ \vdots \\ a^{[2]m_2} \end{bmatrix}}_{\text{Example 2}} \xrightarrow{\Phi^{[2]}} \underbrace{\begin{bmatrix} \hat{y}^1 \\ \vdots \\ \hat{y}^{m_2} \end{bmatrix}}_{\text{Interval 2}},$$

where

$$\Phi^{[1]}: \mathbb{R}^{m_1 \times m_0} \times \mathbb{R}^{m_0} \to \mathbb{R}^{m_1}, \qquad \Phi^{[1]}(A, x) = Ax;$$

and

$$\Phi^{[2]}: \mathbb{R}^{m_2 \times m_1} \times \mathbb{R}^{m_2} \times \mathbb{R}^{m_1} \to \mathbb{R}^{m_2}, \qquad \Phi^{[2]}(A, b, x) = Ax + b.$$

Define the compositional function

$$G: \mathbb{R}^{m_2 \times m_1} \times \mathbb{R}^{m_2} \times \mathbb{R}^{m_1} \times \mathbb{R}^{m_1} \times \mathbb{R}^{m_1 \times m_0} \times \mathbb{R}^{m_0} \to \mathbb{R},$$

given by

$$G(B, b, \gamma, \beta, A, x) = \mathbb{L}_y \circ g^{[2]} \circ \Phi^{[2]}(B, b, g^{[1]} \circ BN_{\gamma,\beta}(\Phi^{[1]}(A, x))).$$

This leads to compute some auxiliary differentials before continuing further.

Lemma 9.1. For $N \in \mathbb{N}$, we define the expectation function $\mathbb{E} : \mathbb{R}^N \to \mathbb{R}$ given by

$$\mathbb{E}[(x_1, ..., x_N)] = \frac{1}{N} \sum_{j=1}^{N} x_j.$$

Let $z = \{z_1, ..., z_N\} \subset \mathbb{R}$ be fixed, and define the mean

$$\mu := \mathbb{E}[z] = \frac{1}{N} \sum_{j=1}^{N} z_j.$$

Then as a differential, we have that $d\mathbb{E}_z: T_z\mathbb{R}^N \to T_\mu\mathbb{R}$ given by

$$d\mathbb{E}_z = \frac{1}{N} \sum_{j=1}^{N} dx_j |_{x=z}, \qquad d\mathbb{E}_z(v) = \frac{1}{N} \sum_{j=1}^{N} v^j.$$

Moreover, for $\alpha = 1, ..., N$, let $\iota_{z_{\alpha}} : \mathbb{R} \to \mathbb{R}^{N}$ denote the inclusion

$$\iota_{z_{\alpha}}(x) = (z_1, ..., z_{\alpha-1}, x, z_{\alpha+1}, ..., z_N).$$

Then the differentials

$$d_{\alpha}\mathbb{E}_{z_{\alpha}} := d(\mathbb{E} \circ \iota_{z_{\alpha}})_{z_{\alpha}} : T_{z_{\alpha}}\mathbb{R} \to T_{\mu}\mathbb{R},$$

are given by

$$d_{\alpha}\mathbb{E}_{z_{\alpha}} = d(\mathbb{E} \circ \iota_{z_{\alpha}})_{z_{\alpha}}$$
$$= d\mathbb{E}_{z} \cdot d(\iota_{z_{\alpha}})_{z_{\alpha}}$$
$$= \frac{1}{N} dx_{z_{\alpha}}.$$

Since we don't use batch normalization on the output layer, the bias term still exists.

Similarly, we define the variance function $\mathbb{V}: \mathbb{R}^N \to \mathbb{R}$ given by

$$\mathbb{V}[(x_1, ..., x_N)] = \frac{1}{N} \sum_{j=1}^{N} (x_j - \mathbb{E}[(x_1, ..., x_N)])^2.$$

For fixed z, define the variance

$$\sigma^2 = \mathbb{V}[z].$$

Then as a differential, we have that $d\mathbb{V}_z: T_z\mathbb{R}^N \to T_{\sigma^2}\mathbb{R}$ given by

$$d\mathbb{V}_z = \frac{2}{N} \sum_{j=1}^{N} (z_j - \mu) dx^j \big|_{x=z}, \qquad d\mathbb{V}_z(v) = \frac{2}{N} \sum_{j=1}^{N} (z_j - \mu) v^j.$$

Moreover, for $\alpha = 1, ..., N$, the differentials

$$d_{\alpha} \mathbb{V}_{z_{\alpha}} := d(\mathbb{V} \circ \iota_{z_{\alpha}})_{z_{\alpha}} : T_{z_{\alpha}} \mathbb{R} \to T_{\sigma^{2}} \mathbb{R}$$

are given by

$$\begin{aligned} d_{\alpha} \mathbb{V}_{z_{\alpha}} &= d(\mathbb{V} \circ \iota_{z_{\alpha}})_{z_{\alpha}} \\ &= d\mathbb{V}_{z} \cdot d(\iota_{z_{\alpha}})_{z_{\alpha}} \\ &= \frac{2}{N} (z_{\alpha} - \mu) dx_{z_{\alpha}} \end{aligned}$$

Proof: Immediate from direct calculation.

Corollary 9.2. For $\alpha = 1, ..., N$, let $\mathcal{N}_{\alpha} : \mathbb{R}^{m \times N} \to \mathbb{R}^m$ denote the α -th component of the vector-valued, normalization transformation. That is,

$$\hat{x}_{\alpha} = \mathcal{N}_{\alpha}(x_1, ..., x_N),$$

with

$$\hat{x}_{\alpha}^{i} = \frac{\pi_{\alpha}(x^{i}) - \mathbb{E}[x^{i}]}{(\mathbb{V}[x^{i}] + \epsilon)^{\frac{1}{2}}},$$

where $\pi_{\alpha}: \mathbb{R}^{N} \to \mathbb{R}$ is the projection onto the α -th coordinate

$$\pi_{\alpha}(x_1,...,x_N) = x_{\alpha}.$$

Fix $z_1, ..., z_N \in \mathbb{R}^m$, let $\mu = \mathbb{E}[z] \in \mathbb{R}^m$ denote vector-mean and let $\sigma^2 = \mathbb{V}[z] \in \mathbb{R}^m$ denote the component-wise, vector-variation (i.e., $(\sigma^2)^i = \mathbb{V}[z^i]$). Then the differentials

$$d_{\alpha}(\mathcal{N}_{\alpha})_{z_{\alpha}} := d(\mathcal{N}_{\alpha} \circ \iota_{z_{\alpha}})_{z_{\alpha}} : T_{z_{\alpha}} \mathbb{R}^m \to T_{\hat{z}_{\alpha}} \mathbb{R}^m$$

are given by the diagonal matrices

$$d_{\alpha}(\mathcal{N}_{\alpha})_{z_{\alpha}} = \left(\frac{1 - \frac{1}{N}}{\sqrt{(\sigma^2)^i + \epsilon}} - \frac{1}{N} \frac{(z_{\alpha}^i - \mu^i)^2}{((\sigma^2)^i + \epsilon)^{\frac{3}{2}}}\right) \delta_j^i.$$

Proof: We compute directly after noting that

$$d_{\alpha}(\mathcal{N}_{\alpha})_{z_{\alpha}} = \begin{bmatrix} d_{\alpha}(\hat{x}_{\alpha}^{1})_{z_{\alpha}^{1}} & \cdots & 0 \\ 0 & \ddots & 0 \\ 0 & \cdots & d_{\alpha}(\hat{x}_{\alpha}^{m})_{z_{\alpha}^{m}} \end{bmatrix}$$

To this end, fix $1 \le i \le m$ and we compute

$$\begin{split} d_{\alpha}(\hat{x}_{\alpha}^{i})_{z_{\alpha}^{i}} &= d_{\alpha}(\mathcal{N}_{\alpha}^{i})_{z_{\alpha}^{i}} \\ &= \frac{d_{\alpha}(\pi_{\alpha})_{z_{\alpha}^{i}} - d_{\alpha}\mathbb{E}_{z_{\alpha}^{i}}}{\sqrt{(\sigma^{2})^{i} + \epsilon}} - \frac{z_{\alpha}^{i} - \mu^{i}}{2((\sigma^{2})^{i} + \epsilon)^{\frac{3}{2}}} d_{\alpha}\mathbb{V}_{z_{\alpha}^{i}} \\ &= \frac{dx_{z_{\alpha}^{i}} - \frac{1}{N}dx_{z_{\alpha}^{i}}}{\sqrt{(\sigma^{2})^{i} + \epsilon}} - \frac{z_{\alpha}^{i} - \mu^{i}}{2((\sigma^{2})^{i} + \epsilon)^{\frac{3}{2}}} \left(\frac{2}{N}(z_{\alpha}^{i} - \mu^{i})dx_{z_{\alpha}^{i}}\right) \\ &= \left(\frac{1 - \frac{1}{N}}{\sqrt{(\sigma^{2})^{i} + \epsilon}} - \frac{(z_{\alpha}^{i} - \mu^{i})^{2}}{N((\sigma^{2})^{i} + \epsilon)^{\frac{3}{2}}}\right) dz_{\alpha}^{i}, \end{split}$$

as desired.

Proposition 9.3. Let $\mathcal{N}: \mathbb{R}^{m \times N} \to \mathbb{R}^{m \times N}$ denote the usual normalization transformation with $\hat{x}_{\alpha} = \mathcal{N}_{\alpha}(x)$. Let $BN: \mathbb{R}^{m} \times \mathbb{R}^{m} \times \mathbb{R}^{m \times N} \to \mathbb{R}^{m \times N}$ denote the batch normalization transformation $[x_{j}] \mapsto [\tilde{x}_{j}]$, i.e.,

$$\tilde{x}_j^i = \gamma^i \hat{x}_j^i + \beta^i,$$

where $x^i \in \mathbb{R}^N$. Moreover, given $\gamma, \beta \in \mathbb{R}^m$, for $\alpha \in \{1, ..., N\}$, let

$$BN_{\alpha}^{\gamma,\beta}: \mathbb{R}^{m\times N} \to \mathbb{R}^m$$

denote

$$BN_{\alpha}^{\gamma,\beta}(x) = \gamma \odot \mathcal{N}_{\alpha}(x) + \beta.$$

Fix $z_1, ..., z_N \in \mathbb{R}^m$, and let

$$\hat{z}_{\alpha} = \mathcal{N}_{\alpha}(z_1, ..., z_N) \in \mathbb{R}^m, \qquad \mu^i = \mathbb{E}[z^i] \in \mathbb{R}, \qquad (\sigma^2)^i = \mathbb{V}[z^i] \in \mathbb{R}.$$

For $\alpha \in \{1,...,N\}$, $z \in \mathbb{R}^{m \times N}$ and for $\gamma, \beta \in \mathbb{R}^m$, we have the differentials:

• $d(BN_{\alpha}^{\beta,z})_{\gamma}: T_{\gamma}\mathbb{R}^m \to T_{\tilde{z}}\mathbb{R}^m$, is given by

$$d(BN_{\alpha}^{\beta,z})_{\gamma}(v) = \hat{z}_{\alpha} \odot v, \qquad \frac{\partial \tilde{z}_{\alpha}^{i}}{\partial \gamma^{j}} = \hat{z}_{\alpha}^{i} \delta_{j}^{i}.$$

• $d(BN_{\alpha}^{\gamma,z})_{\beta}: T_{\beta}\mathbb{R}^m \to T_{\tilde{z}}\mathbb{R}^m$ is given by

$$d(BN_{\alpha}^{\gamma,z})_{\beta}(v) = v, \qquad \frac{\partial \tilde{z}_{\alpha}^{i}}{\partial \beta^{j}} = \delta_{j}^{i}.$$

• $d(BN_{\alpha}^{\gamma,\beta})_{\hat{z}_{\alpha}}: T_{\hat{z}_{\alpha}}\mathbb{R}^{m} \to T_{\tilde{z}}\mathbb{R}^{m}$ is given by

$$d(BN_{\alpha}^{\gamma,\beta})_{\hat{z}_{\alpha}}(v) = \gamma \odot v, \qquad \frac{\partial \tilde{z}_{\alpha}^{i}}{\partial \hat{z}_{\alpha}^{j}} = \gamma^{i} \delta_{j}^{i}.$$

• $d_{\alpha}(BN_{\alpha}^{\gamma,\beta})_{z_{\alpha}} := d(BN_{\alpha}^{\gamma,\beta} \circ \iota_{z_{\alpha}})_{z_{\alpha}} : T_{z_{\alpha}}\mathbb{R}^{m} \to T_{\tilde{z}_{\alpha}}\mathbb{R}^{m} \text{ is given by}$ $d_{\alpha}(BN_{\alpha}^{\gamma,\beta})_{z_{\alpha}} = (\gamma \odot)d_{\alpha}(\mathcal{N}_{\alpha})_{z_{\alpha}},$

$$\frac{\partial \tilde{z}_{\alpha}^{i}}{\partial z_{\alpha}^{j}} = \gamma^{i} \left(\frac{1 - \frac{1}{N}}{\sqrt{(\sigma^{2})^{i} + \epsilon}} - \frac{(z_{\alpha}^{i} - \mu^{i})^{2}}{N((\sigma^{2})^{i} + \epsilon)^{\frac{3}{2}}} \right) \delta_{j}^{i}$$

Proof: Follows immediately from the previous Corollary.

We now return to considering the compositional function

$$G: \mathbb{R}^{m_2 \times m_1} \times \mathbb{R}^{m_2} \times \mathbb{R}^{m_1} \times \mathbb{R}^{m_1} \times \mathbb{R}^{m_1 \times m_0} \times \mathbb{R}^{m_0} \to \mathbb{R},$$

given by

$$G(B, b, \gamma, \beta, A, x_{\alpha}) = \mathbb{L}_{y} \circ g^{[2]} \circ \Phi^{[2]}(B, b, g^{[1]} \circ BN_{\alpha}^{\gamma, \beta}(\Phi^{[1]}(A, x))).$$

We compute (and since $\alpha \in \{1, ..., N\}$ is fixed, we ignore implied summation for the moment)

 $d_{B}G_{B}(V) = d_{B}(\mathbb{L}_{y} \circ g^{[2]} \circ \Phi^{[2]})_{B}(V)$ $= \frac{d}{dt} \Big|_{t=0} \mathbb{L}_{y} \circ g^{[2]}((B+tV)a^{[1]}_{\alpha} + b)$ $= (\delta^{[2]}_{\alpha}^{T})_{\rho} \frac{d}{dt} \Big|_{t=0} \left[(B_{\lambda}^{\rho} + tV_{\lambda}^{\rho})a^{[1]_{\lambda}^{\lambda}} + b^{\rho}) \right]$ $= (\delta^{[2]}_{\alpha}^{T})_{\rho}V_{\lambda}^{\rho}a^{[1]_{\alpha}^{\lambda}}$ $= (a^{[1]}_{\alpha}\delta^{[2]}_{\alpha}^{T})_{\rho}^{\lambda}V_{\lambda}^{\rho},$

and hence

$$d_B G_B = a^{[1]}{}_{\alpha} \delta^{[2]}{}_{\alpha}{}^T, \qquad \frac{\partial G}{\partial B} = \delta^{[2]}{}_{\alpha} a^{[1]}{}_{\alpha}{}^T.$$

•

$$d_b G_b(v) = d_B(\mathbb{L}_y \circ g^{[2]} \circ \Phi^{[2]})_b(v)$$

$$= (\delta^{[2]}{}_{\alpha}{}^T)_{\rho} \left. \frac{d}{dt} \right|_{t=0} \left[B_{\lambda}^{\rho} a^{[1]}{}_{\alpha}^{\lambda} + (b^{\rho} + tv^{\rho}) \right]$$

$$= \delta^{[2]}{}_{\alpha}{}^T v$$

yielding

$$d_b G_b = \delta^{[2]}{}_{\alpha}{}^T, \qquad \frac{\partial G}{\partial b} = \delta^{[2]}{}_{\alpha}.$$

ullet

$$\begin{split} d_{\gamma}G_{\gamma}(\xi) &= d_{\gamma}(\mathbb{L}_{y} \circ g^{[2]} \circ \Phi^{[2]}(B, b, g^{[1]} \circ BN_{\alpha}^{\beta, z^{[1]}_{\alpha}}))_{\gamma}(\xi) \\ &= (\delta^{[2]}_{\alpha}^{T}) \cdot B \cdot dg_{\bar{z}^{[1]}_{\alpha}}^{[1]}(\hat{z}_{\alpha} \odot \xi) \\ &= (\delta^{[2]}_{\alpha}^{T}) \cdot B \cdot dg_{\bar{z}^{[1]}_{\alpha}}^{[1]} \mathrm{diag}(\hat{z}_{\alpha}^{[1]}) \xi \\ &= \delta^{[1]}_{\alpha}^{T} \mathrm{diag}(\hat{z}^{[1]}_{\alpha}) \xi, \end{split}$$

and so

$$d_{\gamma}G_{\gamma} = \delta^{[1]}{}_{\alpha}{}^{T}\operatorname{diag}(\hat{z}^{[1]}{}_{\alpha}), \qquad \frac{\partial G}{\partial \gamma} = \operatorname{diag}(\hat{z}^{[1]}{}_{\alpha})\delta^{[1]}{}_{\alpha}.$$

$$d_{\beta}G_{\beta}(\eta) = d_{\beta}(\mathbb{L}_{y} \circ g^{[2]} \circ \Phi^{[2]}(B, b, g^{[1]} \circ BN_{\alpha}^{\gamma, z^{[1]}_{\alpha}}))_{\beta}(\eta)$$

= $\delta^{[1]}{}_{\alpha}{}^{T}\eta$,

thus

$$d_{\beta}G_{\beta} = \delta^{[1]}{}_{\alpha}{}^{T}, \qquad \frac{\partial G}{\partial \beta} = \delta^{[1]}{}_{\alpha}.$$

 $d_A G_A(V) = \delta^{[1]}{}_{\alpha}{}^T \cdot d_{\alpha} (BN_{\alpha}^{\gamma,\beta})_{z^{[1]}{}_{\alpha}} d\Phi_A^{[1]}(V)$ $= \delta^{[1]}{}_{\alpha}{}^T \operatorname{diag}(\gamma) d_{\alpha} (\mathcal{N}_{\alpha})_{z^{[1]}{}_{\alpha}} V x_{\alpha},$

and hence

$$d_{A}G_{A} = x_{\alpha}\delta^{[1]}{}_{\alpha}{}^{T}\operatorname{diag}(\gamma)d_{\alpha}(\mathcal{N}_{\alpha})_{z^{[1]}{}_{\alpha}},$$
$$\frac{\partial G}{\partial A} = \operatorname{diag}(\gamma)d_{\alpha}(\mathcal{N}_{\alpha})_{z^{[1]}{}_{\alpha}}\delta^{[1]}{}_{\alpha}x_{\alpha}{}^{T}.$$

Finally, since

$$\mathbb{J}(W^{[2]}, b^{[2]}, \gamma, \beta, W^{[1]}) = \frac{1}{N} \sum_{\alpha=1}^{N} G(W^{[2]}, b^{[2]}, \gamma, \beta, W^{[1]}, x_{\alpha}),$$

we've described our desired gradients after summation.

9.2 Inferencing

We note that in our computation for forward propagation, that our normalization transforms change with out batches. This leads to ambiguity when predicting a label for a new example. One fix would be to average our means and variances over our batches. That is, suppose during our iteration process, we have training-batches of the form $\{\mathbb{X}^k : 1 \leq k \leq K\}$, where each \mathbb{X}^k has cardinality $|\mathbb{X}^k| = n$. Then for each hidden-layer $\ell \in \{1, ..., L-1\}$, we obtain the means

$$\mu^{[\ell]}_k = \frac{1}{n} \sum_{x \in \mathbb{X}^k} z^{[\ell]},$$

and the variances

$$\sigma^{2^{[\ell]}}{}_k = \frac{1}{n} \sum_{z \in \mathbb{X}^k} (z^{[\ell]} - \mu^{[\ell]}{}_k)^2.$$

That is, for each hidden-layer ℓ , we have the collection

$$\{\mu^{[\ell]}_k : 1 \le k \le K\}$$

from which we average again to obtain

$$\mu^{[\ell]} := \frac{1}{K} \sum_{k=1}^{K} \mu^{[\ell]}_{k},$$

and the collection

$$\{\sigma^{2^{[\ell]}}_{k}: 1 \le k \le K\},\$$

from which we use the unbiased estimate

$$\sigma^{2[\ell]} := \frac{n}{n-1} \frac{1}{K} \sum_{k=1}^{K} \sigma^{2[\ell]}_{k}.$$

These quantities are what we use when computing the batch-normalization transforms of the hidden units for new examples.

9.3 Algorithm Outline

Suppose we have a training set \mathbb{X} with which we wish to train a binary classification via an L-layer neural network. Let $N=|\mathbb{X}|$ and let $n=2^p$ be the batch size with $K=\lceil \frac{N}{n} \rceil$ batches per epoch. Then our algorithm would be as follows:

- 1. Set hyper-parameters. Initialize parameters.
- 2. For $0 \le i \le \text{num_iters}$:
 - a. Generate batches $\{X^k : 1 \le k \le K\}$.
 - b. For $1 \le k \le K$:
 - i. Perform forward propagation on \mathbb{X}^k :

 $z^{[1]} = W^{[1]}x$ • For $\ell \in \{1,...,L-1\}$: $- z^{[\ell]} = W^{[\ell]}a^{[\ell-1]}$

$$\mu^{[\ell]}{}_k = \frac{1}{n} \sum_{x \in \mathbb{X}^k} z^{[\ell]}$$

$$\sigma^{2[\ell]}{}_k = \frac{1}{n} \sum_{x \in \mathbb{X}^k} (z^{[\ell]} - \mu^{[\ell]}{}_k)^2$$

$$\hat{z}^{[\ell]} = (\sigma^{2[\ell]}{}_k + \epsilon)^{-\frac{1}{2}} \odot (z^{[\ell]} - \mu^{[\ell]}{}_k)$$

$$\hat{z}^{[\ell]} = \gamma^{[\ell]} \odot \hat{z}^{[\ell]} + \beta^{[\ell]}$$

$$a^{[\ell]} = g^{[\ell]} (\tilde{z}^{[\ell]})$$

$$z^{[L]} = W^{[L]} a^{[L-1]} + b$$

- ii. Compute cost \mathbb{J} on \mathbb{X}^k .
- iii. Apply backwards propagation on \mathbb{X}^k to obtain

$$\frac{\partial \mathbb{J}}{\partial W^{[\ell]}}, \quad \frac{\partial \mathbb{J}}{\partial b}, \quad \frac{\partial \mathbb{J}}{\partial \gamma^{[\ell]}}, \quad \frac{\partial \mathbb{J}}{\partial \beta^{[\ell]}}.$$

- iv. Update parameters.
- 3. Compute

$$\begin{split} \boldsymbol{\mu}^{[\ell]} &= \mathbb{E}[\boldsymbol{\mu}^{[\ell]}_k], \\ \boldsymbol{\sigma}^{2[\ell]} &= \frac{n}{n-1} \mathbb{E}[\boldsymbol{\sigma}^{2[\ell]}_k] \end{split}$$

4. Return

$$W^{[\ell]}, \quad b, \quad \gamma^{[\ell]}, \quad \beta^{[\ell]}, \quad \mu^{[\ell]}, \quad \sigma^{2[\ell]}.$$

9.4 Python Implementation

Work in Progress

10 Multi-Class Softmax Regression

Thus far, we've mostly been dealing with binary classification problems, that is, our true label y takes values in $\{0,1\}$, where y=1 represents when the object in question represents our desired classification, and y=0 when it does not. However, in many examples we wish to expand upon this, for example, instead of knowing whenever an image contains a cat (y=1) or it doesn't contain a cat (y=0), maybe we would like to have a table of the following

Table 1: ClassificationyLabely=0None of the followingy=1Caty=2Dogy=3Birdy=4Elephanty=5Bear

That is, we have a total of 6 classes we wish to distinguish. If we were to train a neural network for this classification problem, the only time this needs to be considered is on the output layer. With this in mind, we shall only consider the simple regression problem

$$\begin{bmatrix} x^1 \\ \vdots \\ x^m \end{bmatrix} \xrightarrow{Wx+b} \begin{bmatrix} z^1 \\ \vdots \\ z^C \end{bmatrix} \xrightarrow{g(z)} \begin{bmatrix} a^1 \\ \vdots \\ a^C \end{bmatrix} \longrightarrow \hat{y},$$

where C is the number of labels in our classification.

First, we need to *one-hot encode* our labels. That is, if our labels are given by

$$\{0, 1, ..., C - 1\},\$$

then we consider the basis vectors in \mathbb{R}^C

$$\{e_1, ..., e_C\},\$$

which clearly admits a bijection

$$\{0, 1, ..., C-1\} \xrightarrow{\cong} \{e_1, ..., e_C\}, \qquad i \mapsto e_{i+1}.$$

Thus, we've effectively mapped our true labels

$$y \in \{0, 1, ..., C - 1\}^N \mapsto y \in \mathbb{R}^{C \times N}$$

where

$$(y=i) \mapsto (y=e_{i+1}).$$

Next, we need to decide which type of nonlinearity $g: \mathbb{R}^C \to \mathbb{R}^C$ to impose. To this end, we would like a^i to satisfy

$$a^i = \mathbb{P}(y = i - 1),$$

then we can declare a prediction via

$$i_0 = \arg \max_i a^i, \qquad \hat{y} = e_{i_0} \leftrightarrow \hat{y} = i_0 - 1.$$

That is, we would like our target output vector $a \in \mathbb{R}^C$ to be a probability distribution, i.e.,

$$0 \le a^i \le 1, i \in \{1, ..., C\},\$$

and

$$\sum_{i=1}^{C} a^i = 1.$$

This leads us to letting g be the softmax function, i.e.,

$$g(z^1,...,z^C) = \frac{1}{\sum_{i=1}^C e^{z^i}} \begin{bmatrix} e^{z^1} \\ \vdots \\ e^{z^C} \end{bmatrix}.$$

Finally, we need to define a cost function $\mathbb{L}: \mathbb{R}^C \times \mathbb{R}^C \to \mathbb{R}$ with which we can compare our true value to our predicted value. To this end, we consider the cross-entropy function \mathbb{L} defined by

$$\mathbb{L}(a_j, y_j) = -\sum_{i=1}^C y_j^i \log a_j^i.$$

We note that since $y_j = e_k$ for some $k \in \{1, ..., C\}$, that this sum is actually a single element. Moreover, when C = 2, we recover our log-loss function for the sigmoid activation. This finally yields a cost function

$$J(W, b) = -\frac{1}{N} \sum_{j=1}^{N} \sum_{i=1}^{C} y_j^i \log a_j^i$$
$$= -\frac{1}{N} (y : \log a),$$

where

$$A: B = \langle A, B \rangle_F = \operatorname{tr}(A^T B),$$

is the Frobenius norm on $\mathbb{R}^{C \times N}$.

To minimize our cost, we first note

$$\frac{\partial \mathbb{L}_{y} \circ g}{\partial z^{\mu}} = \sum_{i=1}^{C} \frac{\partial \mathbb{L}_{y}}{\partial a^{i}} \frac{\partial S^{i}}{\partial z^{\mu}}$$

$$= -\sum_{i=1}^{C} \frac{y^{i}}{a^{i}} a^{i} (\delta^{i}_{\mu} - a^{\mu})$$

$$= -\sum_{i=1}^{C} y^{i} (\delta^{i}_{\mu} - a^{\mu})$$

$$= -y^{\mu} + a^{\mu} \sum_{i=1}^{C} y^{i}$$

$$= a^{\mu} - y^{\mu},$$

then we see that

$$\begin{split} \frac{\partial z^{\mu}}{\partial W^{\alpha}_{\beta}} &= \frac{\partial}{\partial W^{\alpha}_{\beta}} (W^{\mu}_{k} x^{k} + b^{\mu}) \\ &= \sum_{k=1}^{m} \delta^{\mu}_{\alpha} \delta^{\beta}_{k} x^{k} \\ &= \delta^{\mu}_{\alpha} x^{\beta}, \end{split}$$

and

$$\frac{\partial z^{\mu}}{\partial b^{\alpha}} = \delta^{\mu}_{\alpha}.$$

Hence,

$$\frac{\partial \mathbb{L}_y}{\partial W_\beta^\alpha} = \sum_{\mu=1}^C (a^\mu - y^\mu) \delta_\alpha^\mu x^\beta$$
$$= x(a-y)^T,$$

yielding a gradient of

$$\frac{\partial \mathbb{L}_y}{\partial W} = (a - y)x^T,$$

and similarly

$$\frac{\partial \mathbb{L}_y}{\partial b^{\alpha}} = \sum_{\mu=1}^C (a^{\mu} - y^{\mu}) \delta_{\alpha}^{\mu}$$
$$= a^{\alpha} - y^{\alpha},$$

and so

$$\frac{\partial \mathbb{L}_y}{\partial b} = a - y.$$

Finally, we conclude that

$$\frac{\partial \mathbb{J}}{\partial W} = \frac{1}{N} \sum_{j=1}^{N} (a_j - y_j)(x_j)^T = \frac{1}{N} (a - y) x^T,$$

and

$$\frac{\partial \mathbb{J}}{\partial b} = \frac{1}{N} \sum_{j=1}^{N} (a_j - y_j).$$

We remark that for a deep neural network, the backwards propagation follows a similar path backwards through the network since we have the aforementioned differentials.

References

[1] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.