Exterior measure

• Definition 1.2.1

Let E be any subset of \mathbb{R}^d . The exterior measure(= outer measure) of E is defined by

$$m_*(E) = \inf \sum_{j=1}^\infty |Q_j|$$

where the infimum is taken over all countable covering $E\subset \bigcup_{j\in\mathbb{N}}Q_j$ by closed cube

• Remark 1.2.1

- 1. It is not sufficient to allow finite sums in the def of $m_{st}(E)$
- 2. The covering by cubes in the def of $m_*(E)$ can be replaced by coverings of rectangles or balls
- 3. The exterior measure of a point is zero
- 4. The exterior measure of a closed cube is equal to its volume $m_st(Q) = |Q|$
- 5. The exterior measure of a rectangle is equal to is volume
- 6. The exterior measure of \mathbb{R}^d is infinite
- ightarrow by rmk 3. and 6. m_* is a mapping function $\{E\subset \mathbb{R}^d\}
 ightarrow [0,\infty]$
- Theorem 1.2.1 (properties of exterior measure)
 - 1. for every $\epsilon>0$, there exists a covering $E\subset \bigcup_{j\in\mathbb{N}}Q_j$ s.t $\sum_j|Q_j|\leq m_*(E)+\epsilon$ (by def of infimum)
 - 2. (Monotonicity) if $E_1\subset E_2$, then $m_*(E_1)\leq m_*(E_2)$

$$pf$$
 i) Let $\{Q_{ij}\}$ be a coverings of $E_i.$ $E_i\subset\{Q_{ij}\}$ ii) \$E_1 \sub E_2 \rightharpoonup $\{Q_{2j}\}\subset\{Q_{1j}\}$ iii) $m_*(E_1)\leq m_*(E_2)$

3. (countable sub-additivity) if $E \subset igcup_{j=1}^N E_j$, then $m_*(E_1) \leq m_*(E_2)$

```
\begin{array}{l} pf \\ \text{i) When } m_*(E_j) = \infty \text{ for some } j \text{, the inequality holds} \\ \text{ii) Assume that } m_*(E_j) < \infty, j \in \mathbb{N} \\ \text{iii) } \sum_k |Q_{j,k}| \leq m_*(E_j) + \frac{\epsilon}{2^j} \text{ for covering } \{Q_{j,k}\} \text{ of } E_j \text{ (} \because \text{Thm 1.2.1-1}) \\ \text{iv) } E \subset \cup_j E_j \subset \cup_j \cup_k Q_{j,k} \\ \text{v) } m_*(E) \leq \sum_j \sum_k |Q_{j,k}| \leq \sum_j (m_*(E_j) + \frac{\epsilon}{2^j}) = \sum_j m_*(E_j) + \epsilon \end{array}
```

4. Let $E\subset \mathbb{R}^d$, $m_*(E)=\inf m_*(\mathcal{O})$ where the infimum is taken over all open sets $\mathcal{O}\supset E$

$$pf$$
 i) $m_*(E) \leq m_*(\mathcal{O})$ by monotonicity

- ii) We can choose closed covering $\sum_j |Q_j| \leq m_*(E) + rac{\epsilon}{2}$ by def of exterior measure
- iii) we can choose open cube $|Q_j^o| \leq |Q_j| + \frac{\epsilon}{2^{j+1}}$: volume of open set and closed set is same

iv) Set
$$\mathcal{O}=\bigcup_j Q_j^o$$
 then $m_*(\mathcal{O})\leq \sum_j |Q_j^o|\leq \sum_j |Q_j|+rac{\epsilon}{2}\leq m_*(E)+\epsilon$

- 5. If $E=E_1\cup E_2$, and $d(E_1,E_2)>0$, then $m_*(E)=m_*(E_1)+m_*(E_2)$
 - i) Let $d(E_1,E_2)=\delta>0$
 - ii) Then we can find covers of each E_j that has diameter less than δ -> It can be divided into which of the two sets are included. We can index it by J_1 and J_2

iii)
$$m_*(E_1) + m_*(E_2) \leq \sum_{J_1} |Q_j| + \sum_{J_2} |Q_j| = \sum_j |Q_j| \leq m_*(E) + \epsilon$$
 (\geq)

- iv) $m_*(E) \leq m_*(E_1) + m_*(E_2)$ by sub-additivity (\leq)
- 6. If a set E is countable union of almost disjoint cubes $E = \bigcup Q_j$, then $m_*(E) = \sum |Q_j|$
 - i) (\leq) holds because of sub-additivity
 - ii) Define $|Q_j| \leq |\tilde{Q_j}| + rac{\epsilon}{2_j}$ (a smaller cube contained in Q_j). and mutually disjoint

iii)
$$m_*(E) \geq m_*(\bigcup_j \tilde{Q_j}) = \sum_j |\tilde{Q_j}| \geq \sum_j Q_j - \epsilon$$
 (:: $item(5)$) $ightarrow$ (\geq) holds