

Институт за математику и информатику Природно-математички факултет Универзитет у Крагујевцу

Дипломски рад

Синхронизација календара за ownCloud платформу - OwnCloud календар конектор

Студент: Владимир Варагић Професор: др Милош Ивановић

Садржај

1	Увод	3
2	Преглед коришћених технологија	4
3	Радно окружење	6
4	OwnCloud пројекат 4.1 Calendar подапликација	7 8
5	OwnCloud календар конектор	10
		10
	5.1.1 Аутентификација	11
	5.1.2 Синхронизација догађаја на захтев	12
	5.1.3 Аутоматска синхронизација догађаја	13
	5.1.4 Преглед преузетих догађаја	14
		14
	5.2 Идеје за даљи развој	16

Листа скраћеница

- ullet API Application Programming Interface,
- BSD Berkeley Software Distribution,
- CalDAV Calendaring Extensions to WebDAV,
- GPL GNU Public Licence,
- IT Information Technology,
- MIT Massachusetts Institute of Technology,
- SVN Subversion,
- URL Uniform Resource Locator,
- Web-based Distributed Authoring and Versioning.

Увод

Технолошки развој, а посебно развој интернета, је довео до тога да је интернет постао саставни и готово неизоставни део свакодневног живота, а постојање и широка употреба мобилних уређаја (паметних телефона, нетбук рачунара, таблет рачунара,...) временом је развила потребу за сталним приступом приватним подацима и документима. Самим тим складиштење приватних података и докумената на кућним стоним рачунарима полако постаје превазиђено. Као алтернатива намеће се рачунарство у облаку.

Коришћењем рачунарства у облаку могуће је складиштити личне податке на приватном удаљеном серверу, при том имајући могућност приступа тим подацима са било које локације на интернету, употребом било ког мобилног уређаја, што се у великој мери преклапа са наведеним тенденцијама савременог друштва. Поред великог броја комерцијалних решења, попут Dropbox-а, развијена су и многобројна "отворена" решења која корисницима на једноставан и интуитиван начин обезбеђују већу контролу над подацима. Једно од таквих "отворених" решења је и OwnCloud.

Поред могућности складиштења приватних података, OwnCloud нуди и могућност вођења календара активности, односно неке врсте е-планера. Развој десктоп клијента који би имао функцију подсетника, а који би садржај наведеног календара активности користио као извор података, је тема овог рада. У наставку ће бити укратко описан садржај поглавља овог рада.

Поглавље *Преглед коришћених технологија* представља кратак опис технологија које су коришћене приликом развоја решења које је тема овог рада, док је нешто шири опис дат у поглављу *Радно окружење*.

Поглавље ownCloud укратко описује пројекат и апликацију чије сервисе дати десктоп клијент треба да користи. Опис десктоп клијента и приказ кључних делова програмског кода биће представљен у поглављу ownCloudCalendar.

Преглед коришћених технологија

У глобалу, сва софтверска решења можемо поделити у две категорије. Једну групу чине комерцијална решења, која су заштићена власничким лиценцама, док другу групу чине софтверска решења са, у већој или мањој мери, "отвореним" лиценцама, при чему је програмски код обично у потпусноти отворен и доступан. У свету софтвера отвореног кода постоји више различитих типова лиценци, а неке од познатијих су BSD, GPL и MIT[1] лиценце. Када се говори о отвореним лиценцама мора да се буде веома обазрив у смислу отворености и слободе коју лиценца као таква пружа. У склади са тим, потребно је напоменути да је решење које је тема овог рада у потпуности отворено и да је код доступан у целости.

Софтверски производи су временом постали све сложенији и све компликованији, што је довело до тога да један човек углавном не може сам да се бави имплементацијом неког софтверског решења у прихватљивом временском периоду, већ су на развоју софтвера ангажовани тимови људи. Из тог разлога, као нов изазов појавила се потреба за решењем које би омогућило да сви чланови тима могу паралелно да раде на развоју софтвера, не угрожавајући остале чланове тима. Као одговор на наведени проблем, појавили су се различити алати за контролу изворног кода. Дужи временски период Subversion је био најзаступљенији алат за контролу изворног кода, али у последње време Git[2] преузима примат, јер је заснован на другачијим принципима, тако да више задовољава потребе корисника. Као такав Git је био погодан за коришћење и у овом раду заједно са слободним и бесплатним Git репозиторијумом GitHub[3], који поред простора који пружа, даје и неопходну статистику везану за број учесника на пројекту, њихову активност итд.

У суштини, подела софтверских решења се може вршити по различитим карактеристикама: оперативним системима за које су развијани, пословним процесима које покриваји,
технологијама које су коришћене итд. Једна од битхин подела, која се огледа у потпуно
различитим концептима на којима су апликације засноване, јесте подела на десктоп и веб
апликације. У смислу наведене поделе, решење које је тема датог рада предстаља десктоп
апликацију. Постојање више различитих корисничких интерфејса или више верзија апликације за различите оперативне системе може се сматрати стандардом. С тим у вези, у
процесу развоја софтвера, појавила се и потреба за поделом логике и архитектуре уређења
самог софтверског решења. На овај начин обезбеђена је оптимизација програсмког кода,
као и могућност поновне употребе постојећег кода. У складу са наведеном поделом дато
решење можемо посматрати као двослојну апликацију, где један слој представља сам кориснички интерфејс, а други слој је задужен за "комуникацију" са OwnCloud платформом.

Један од водећих изазова у развоју десктоп апликација је да се нађе начин за превазилажење ограничења која су изазавана оперативним системима на којима те апликације треба да раде. Разлике у концептима и техничким специфичностима које постоје међу водећим оперативним системима утицале су на то да десктоп апликације развијене за једнм оперативни систем не могу да раде на другим операривним системима без одговарајућег прилагођавања. Како би се ова ограничења превазишла, јавила се потреба за развојем платформи које ће омогућити да десктоп апликације без проблема раде на свим оперативним системима. Једна од таквих платфотми је и XWT[4], о којој ће више речи бити речено у поглављу 3. Paðно окружење.

У развоју решења, које је тема датог рада, коришћене су и следеће готове компоненте са отвореним лиценцама:

- DDay.iCal[5] библиотека класа за рад са календаром за окружење .NET-а 2.0 и новије верзије,
- CalDAV[6] протокол за синхронизацију календара, који је такође детаљније описан у поглављу 3. $Padno\ oktopy жење$.

Радно окружење

OwnCloud пројекат

Рачунарство у облаку представља скуп ресурса, чији је задатак да омогући складиштење велике количине података или извршавање великог броја процеса. Основна карактеристика рачунарства у облаку је та да корисницима омогућава коришћење удаљених ресурса, при чему им није дозвољен физички приступ датим ресурсима. Пораст броја корисника са оваквим захтевима утицао је и на појаву великог броја комерцијалних платформи које нуде услугу рачунаарства у облаку, међу којима су *Amazon*, *Microsoft*, *Dropbox* и многе друге. Једно од таквих решења је и *ownCloud* [7] пројекат.

На почетку основна идеја *OwnCloud* пројекта је била да се обичном кориснику омогући да има приватно складиште на којем ће моћи да складишти своје податке. У међувремену, овај пројекат је добио много унапређења која нису директно везана за само складиштење података. Творац пројекта Франк Карличек је идеју о потреби решења са "отвореним" лиценцама изнео на скупу програмера и успео је да обезбеди неопходан број учесника који ће допринети развоју и популаризацији овог пројекта.

Слика 4.1: OwnCloud лого

Постоје три могућности за приступ подацима на ownCloud-u:

- Десктоп апликација омогућава кориснику да складишти и/или преузима податке са удаљених ресурса,
- WebDAV технологија погоднија од десктоп апликације, која се мора инсталирати на сваком рачунару, али са друге стране ограничава корисницима приступ само до података.
- Веб апликација нема ограничења као друге две опције. Дакле, омогућен је приступ свим погодностима које ownCloud портал нуди и које ће бити представљне у наставку.

Слика 4.2: Кориснички интерфејс ownCloud веб апликације

Као што се може видети на Слици 4.2, неке од основних функционалности су:

- Приказ листе фајлова и директоријума тренутно пријављеног корисника,
- Могућност додавања нових садржаја,
- Могућност брзе претраге садржаја,
- Листа доступних апликација,
- Могућност приступа приватним подацима корисника, као и могућност одјаве.

Поред могућности складиштења и приступа подацима *ownCloud* веб апликација нуди могућност коришћења њених подапликација:

- Вођење листе контаката,
- Дељење корисничких података између корисника истог складишта,
- Праћење активности корисника,
- Листа доступних апликација,
- Праћење календара, итд.

Посебна пажња биће посвећена Calendar подапликацији.

4.1 Calendar подапликација

Као што је већ раније поменуто, основна идеја и функција ownCloud апликације је била да омогући складиштење података корисника, што није било довољно атрактивно. Увођењем платформе за креирање нових сервиса (подапликација) овај проблем је превазиђен. Један од њих је и Calendar подапликација.

Слика 4.3: Кориснички интерфејс ownCloud Calendar подапликације

На Слици 4.3 су приказане све њене функционалности:

- 1. Начин приказа календара (дневни, недељни, месечни),
- 2. Креирање новог календара,
- 3. Приказ постојећих календара,
- 4. Приказ постојећих догађаја,
- 5. Администрација (унос, измена, брисање) догађаја.

Подапликација Calendar је прилично једноставна и интуитивна за коришћење.

OwnCloud календар конектор

У претходним поглављима описани су основни концепти технологија и окружења који су коришћени у развоју датог пројекта, са циљем да се читаоцу омогући да формира слику комплетног, заокруженог, решења. Сам пројекат, који је тема овог рада, може се посматрати као део тог решења. У овом поглављу фокус ће бити постављен на појашњења неких делова његове имплементације.

5.1 Жељене функционалности

Актуелна, званична, верзија ownCloud десктоп клијента обезбеђује само синхронизацију докумената који се налазе на ownCloud платформи. Основни циљ овог пројекта јесте да се развије решење, у виду мултиплатформског десктоп клијента, које би омогућило преузимање информација о креираним догађајима на ownCloud календару и приказ одговарајућих обавештења. Апликација има следећи скуп функционалности:

- синхронизација догађаја на захтев,
- аутоматска синхронизација догађаја,
- могућност управљања аутоматском синхронизацијом (потребна/није потребна, дефинисање временског интервала након којег ће се стартовати,...),
- преглед преузетих догађаја,
- приступ делу за администрацију догађаја на веб порталу ownCloud платформе,
- приказ одговарајућег обавештења, непосредно пре почетка неког догађаја.

Ток активности које треба да обезбеде ове функционалности описан је на дијаграму 5.1.

Слика 5.1: Дијаграм тока активности

На основу приказаног алгоритма може се стећи јасна и потпуна слика о начину рада саме апликације. У наставку ће бити детаљније објашњене неке интересантније функционалности и биће приказани делови програмског кода, док се комплетан код пројекта може погледати на одговарајућем репозиторијуму[8].

5.1.1 Аутентификација

Аутентификација корисника на веб портал ownCloud платформе одрађена је коришћењем класа WebClient, NetworkCredential које су саставни део .NET Framework-a. Подаци унети на форми за пријаву на систем (Слика 5.2), која се приказује након стартовања апликације, се прослеђују на верификацију.

Слика 5.2: Форма за пријаву на систем

Сви подаци на форми за пријаву су обавезни, па се у случају да неки податак није унет, прикаже одговарајући индикатор (Слика 5.3).

Слика 5.3: Форма за пријаву на систем

Такође, у случају да неки од података који се уносе приликом пријаве на апликацију (адреса сервера, корисничко име или лозинка) није исправан приказује се одговарајућа порука (Слика 5.4).

Слика 5.4: Форма за пријаву на систем

У супротном, ако су сви подаци исправни, корисник успешно приступа апликацији и приказује му се форма за синхронизацију догађаја са ownCloud календара.

5.1.2 Синхронизација догађаја на захтев

Као што је већ наведено у поглављу 4.1.1 Аутентификација, након успешног приступа апликацији кориснику се приказује форма за конфигурацију синхронизације (Слика 5.5).

Слика 5.5: Синхронизација догађаја са ownCloud календара

OwnCloud платформа омогућава кориснику да на порталу води више различитих календара тј. да календар дели у различите категорије.

Слика 5.6: OwnCloud календар

Са друге стране, синхронизацијом се у једном тренутку могу преузети само догађаји који су везани за једну категорију, тако да је назив календара обавезан податак приликом синхронизације. Такође, приликом покретања синхронизације ради се валидација исправности назива календара и уколико не постоји календар са унетим називом кориснику се прикаже одговарајућа порука. У супротном, ако је унет исправан назив календара, кориснику се приказују догађаји који постоје на наведеном календару. Сам приказ података о догађају биће детаљно описан у секцији 4.1.4 Преглед перузетих догађаја.

Методе којима се синхронизују подаци приказани су на слици 5.7.

```
private void btnSyncCalendar_Click(object sender, EventArgs e)

180
181
182
183
                          if (ValidateControls())
184
185
186
187
                               IICalendarCollection iCalCollection = GetCalendarEventsData();
                               if (iCalCollection == null)
188
189
190
191
192
193
194
195
196
197
198
                                        wMessage("There is no calendar with the name " + txtCalendarName.Text.Trim(), "ownCloud Calendar Sync Unavailable");
                                    int? syncTimerInterval = null;
if(!String.IsNullOrEmpty(txtTimerInterval.Text))
                                        syncTimerInterval = Convert.ToInt32(txtTimerInterval.Text);
                                    ventsList eventsList = new EventsList(iCalCollection, cbAutomaticSync.Checked, syncTimerInterval, txtCalendarName.Text, serverUrl, username, password, serverAddress)
200
201
202
                                      (eventsList.IsHiden
203
204
205
206
207
                                        HideForm();
                                        Show():
209
210
211
212
213
                      catch (Exception ex)
214
                          HandleException(ex);
215
108
109
110
111
112
113
114
115
                                                       cCalDavUrlExtension + username + cCalDavUrlExtensionSlash + txtCalendarName.Text.Trim().ToLower() + cCalDavUrlExtensionExport
                     return connector.ownCloudCalendar_GetEvents(serverUrl, username, password);
```

Слика 5.7: Методе за синхронизацију догађаја са *ownCloud* календара

5.1.3 Аутоматска синхронизација догађаја

Поред наведене функционалности за синхронизацију догађаја на захтев, омогућена је и функционалност аутоматске синхронизације догађаја. Уколико корисник жели да користи дату функционалност, потребно је да чекира опцију Automatic sync на форми за син-

хронизацију догађаја (Слика 5.5). Када је опција Automatic sync чекирана, податак Sync time interval је обавезан. Дакле, након дефинисања наведених података, апликација ће аутоматски синхронизовати догађаје са одговарајућег календара у наведеном временском интервалу. Времески интервал се дефинише у минутима и одговарајућом валидацијом онемогућено је да вредност овог податка буде било шта што није цео позитиван број.

5.1.4 Преглед преузетих догађаја

Када су сви обавезни подаци исправно унети, било да је у питању синхронизација догађаја на захтев, било да је у питању аутоматска синхронизација догађаја, кликом на дугме Sync now (Слика 5.8) прузимају се догађаји са одговарајућег календара и прикаже се форма са листом догађаја (Слика 5.9).

Слика 5.8: Синхронизација догађаја са ownCloud календара

Слика 5.9: Приказ преузетих догађаја

Са форме за Преглед преузетих догађаја (Слика 5.9) корисник у сваком тренутку може поново да покрене синхронизацију догађаја (кликом на дугме Sync now), без обзира на то да ли је функционалност аутоматске синхронизације изабрана или не. Корисник, такође, има могућност да са форме за Преглед преузетих догађаја (Слика 5.9), кликом на дугме Manage events приступи календару на веб порталу ownCloud платформе (Слика 5.6) и администрира (креира нове, ажурира постојеће, брише) догађаје.

5.1.5 Приказ нотификација

Поред описаних функционалности апликација има још једну, вероватно најзанимљивију функционалност, а то је приказ одговарајућих нотификација у вези са преузетим догађајима. Нотификације се приказују према унапред дефинисаним параметрима:

- први параметар (notificationMessageTimerInMinutes) представља временски период (у минутима) којим се дефинише колико минута пре стартовања догађаја приказати одговарајућу нотификацију,
- други параметар (notificationPingTimeInterval) представља времески период (у милисекундама) којим се дефинише колико често ће се проверавати да ли је први параметар достигао дефинисану вредност.

Ови параметри су конфигурабилни и део су конфигурационог фајла (Слика 5.10).

Слика 5.10: Конфигурациони фајл

Дакле, у складу са дефинисаним вредностима наведених параметара, апликација сваког минута проверава да ли постоји догађај који ће стартовати за 5 минута и у случају да такав догађај постоји, кориснику се прикаже одговарајућа нотификација (Слика 5.11).

Слика 5.11: Приказ нотификације

У наставку је приказана метода којом је дата функционалност имплементирана (Слика 5.12).

Слика 5.12: Метода за приказ нотификација

Поред функционалности описаних у претходним секцијама, споменућемо још нека својства апликације. Најпре, треба нагласити да је апликација Single instance, односно у једном тренутку могуће је покренути само једну инстанцу апликације. У случају да корисник покуша да покрене више инстанци апликације, то му неће бити дозвоњено и приказаће се одговарајућа порука. Такође, требало би напоменути да се кликом на дугме Close на форми за Приказ преузетих догађаја апликација не затвара, већ се само минимизује, тј. апликација је и даље покренута и иконица апликације налази се у таскбару (Слика 5.13).

Слика 5.13: Таскбар - приказ иконице

Десни клик на иконицу у таскбару нуди следеће опције (Слика 5.14):

- отварање форме за приказ преузетих догађаја,
- отварање форме за унос параметара синхронизације,
- одјава са апликације и приказ форме за пријаву,
- затварање апликације.

Слика 5.14: Додатне опције

5.2 Идеје за даљи развој

Иако је функционално исправна, постојећу верзију апликације треба посматрати само као полазни корак у развоју коначног производа. Актуелна верзија апликације има својеврсна ограничења условљена коришћеним API-има (нпр. немогућност синронизације више календара истовремено). Унапређења датих API-а или појава нових утицали би на то да се појави потреба за имплементацијом додатних функционалности. Са друге стране, постојећа верзија се такође може унапредити на више начина:

- побољшање корисничког интерфејса,
- предефинисани прикази догађаја (за разлику од актуелног приказа свих догађаја),
- ...

Библиографија

- [1] BSD, GPL и MIT лиценце, http://producingoss.com/en/license-choosing.html
- [2] GIT, https://git-scm.com/
- [3] Github, https://github.com/
- [4] XWT платформа, https://github.com/mono/xwt/tree/master/Xwt/Xwt
- [5] DDay.iCal an iCalendar class library, https://sourceforge.net/p/dday-ical/wiki/Home/
- [6] CalDav, http://caldav.calconnect.org/index.html
- [7] Званична страница OwnCloud пројекта, http://owncloud.org/
- [8] Репозиторијум ownCloud Calendar Synchronization апликације, https://own-cloud-calendar.googlecode.com/svn