Anomaly Detection

Outline

- Introduction
- Aspects of Anomaly Detection Problem
- Applications
- Different Types of Anomaly Detection Techniques
- Case Study
- Discussion and Conclusions

What are Anomalies?

- Anomaly is a pattern in the data that does not conform to the expected behavior
 - Also referred to as outliers, exceptions, peculiarities, surprises, etc.
- Anomalies translate to significant (often critical) real life entities
 - Cyber intrusions: In the context of network and host security, "anomaly detection refers to identifying unexpected intruders or breaches"
 - Credit card fraud
 - Faults in mechanical systems

Simple Examples

- N₁ and N₂ are regions of normal behavior
- Points o₁ and o₂ are anomalies
- Points in region O₃ are also anomalies

Related problems

- Rare Class Mining
- Chance discovery
- Novelty Detection
- Exception Mining
- Noise Removal

Key Challenges

- Defining a representative normal region is challenging
- The boundary between normal and outlying behavior is often not precise
- Availability of labeled data for training/validation
- The exact notion of an outlier is different for different application domains
- Malicious adversaries
- Data might contain noise
- Normal behavior keeps evolving
- Appropriate selection of relevant features

Aspects of Anomaly Detection Problem

- Nature of input data
- Availability of supervision
- Type of anomaly: point, contextual, structural
- Output of anomaly detection
- Evaluation of anomaly detection techniques

Input Data

- Most common form of data handled by anomaly detection techniques is Record Data
 - Univariate
 - Multivariate

Engine Temperature 192 195 180 199 19 177 172 285 195 163

Input Data

- Most common form of data handled by anomaly detection techniques is Record Data
 - Univariate
 - Multivariate

Tid	SrcIP	Start time	Dest IP	Dest Port	Number of bytes	Attack
1	206.135.38.95	11:07:20	160.94.179.223	139	192	No
2	206.163.37.95	11:13:56	160.94.179.219	139	195	No
3	206.163.37.95	11:14:29	160.94.179.217	139	180	No
4	206.163.37.95	11:14:30	160.94.179.255	139	199	No
5	206.163.37.95	11:14:32	160.94.179.254	139	19	Yes
6	206.163.37.95	11:14:35	160.94.179.253	139	177	No
7	206.163.37.95	11:14:36	160.94.179.252	139	172	No
8	206.163.37.95	11:14:38	160.94.179.251	139	285	Yes
9	206.163.37.95	11:14:41	160.94.179.250	139	195	No
10	206.163.37.95	11:14:44	160.94.179.249	139	163	Yes

Input Data – *Nature of Attributes*

- Nature of attributes
 - Binary
 - Categorical
 - Continuous
 - Hybrid

Tid	SrcIP	Duration	Dest IP	Number of bytes	Internal
1	206.163.37.81	0.10	160.94.179.208	150	No
2	206.163.37.99	0.27	160.94.179.235	208	No
3	160.94.123.45	1.23	160.94.179.221	195	Yes
4	206.163.37.37	112.03	160.94.179.253	199	No
5	206.163.37.41	0.32	160.94.179.244	181	No

Input Data – Complex Data Types

- Relationship among data instances
 - Sequential
 - Temporal
 - Spatial
 - Spatio-temporal
 - Graph

Data Labels

- Supervised Anomaly Detection
 - Labels available for both normal data and anomalies
 - Similar to rare class mining
- Semi-supervised Anomaly Detection
 - Labels available only for normal data
- Unsupervised Anomaly Detection
 - No labels assumed
 - Based on the assumption that anomalies are very rare compared to normal data

Type of Anomalies

- Point Anomalies
- Contextual Anomalies
- Collective Anomalies

Point Anomalies

• An individual data instance is anomalous w.r.t. the data

Contextual Anomalies

- An individual data instance is anomalous within a context
- Requires a notion of context
- Also referred to as conditional anomalies*

^{*} Xiuyao Song, Mingxi Wu, Christopher Jermaine, Sanjay Ranka, Conditional Anomaly Detection, IEEE Transactions on Data and Knowledge Engineering, 2006.

Collective Anomalies

- A collection of related data instances is anomalous
- Requires a relationship among data instances
 - Sequential Data
 - Spatial Data
 - Graph Data
- The individual instances within a collective anomaly are not anomalous by themselves

Output of Anomaly Detection

Label

- Each test instance is given a normal or anomaly label
- This is especially true of classification-based approaches

Score

- Each test instance is assigned an anomaly score
 - Allows the output to be ranked
 - Requires an additional threshold parameter

Applications of Anomaly Detection

- Network intrusion detection
- Insurance / Credit card fraud detection
- Healthcare Informatics / Medical diagnostics
- Industrial Damage Detection
- Image Processing / Video surveillance
- Novel Topic Detection in Text Mining

•

Real World Anomalies

- Credit Card Fraud
 - An abnormally high purchase made on a credit card

- Cyber Intrusions
 - A web server involved in ftp traffic

Intrusion Detection

Intrusion Detection:

- Process of monitoring the events occurring in a computer system or network and analyzing them for intrusions
- Intrusions are defined as attempts to bypass the security mechanisms of a computer or network

Challenges

- Traditional signature-based intrusion detection systems are based on signatures of known attacks and cannot detect emerging cyber threats
- Substantial latency in deployment of newly created signatures across the computer system
- Anomaly detection can alleviate these limitations

Fraud Detection

- Fraud detection refers to detection of criminal activities occurring in commercial organizations
 - Malicious users might be the actual customers of the organization or might be posing as a customer (also known as identity theft).
- Types of fraud
 - Credit card fraud
 - Insurance claim fraud
 - Mobile / cell phone fraud
 - Insider trading
- Challenges
 - Fast and accurate real-time detection
 - Misclassification cost is very high

Healthcare Informatics

- Detect anomalous patient records
 - Indicate disease outbreaks, instrumentation errors, etc.
- Key Challenges
 - Only normal labels available
 - Misclassification cost is very high
 - Data can be complex: spatio-temporal

Industrial Damage Detection

- Industrial damage detection refers to detection of different faults and failures in complex industrial systems, structural damages, intrusions in electronic security systems, abnormal energy consumption, etc.
 - Example: Aircraft Safety
 - Anomalous Aircraft (Engine) / Fleet Usage
 - Anomalies in engine combustion data
 - Total aircraft health and usage management

Key Challenges

- Data is extremely huge, noisy and unlabelled
- Most of applications exhibit temporal behavior
- Detecting anomalous events typically require immediate intervention

Image Processing

- Detecting outliers in a image or video monitored over time
- Detecting anomalous regions within an image
- Used in
 - mammography image analysis
 - video surveillance
 - satellite image analysis
- Key Challenges
 - Detecting collective anomalies
 - Data sets are very large

1.When to Use Anomaly Detection Versus Supervised Learning

- Anomaly detection is often combined with pattern recognition—for example, using supervised learning
- However, it is sometimes unclear which approach to take when looking to develop a solution for a problem.
 - In many cases, it can be difficult to find a representative pool of positive examples that is sufficient for the algorithm to get a sense of what positive events are like.
 - Server breaches are sometimes caused by zero-day attacks or newly released vulnerabilities in software

When to Use Anomaly Detection Versus Supervised Learning

- By definition, the method of intrusion cannot be predicted in advance, and it is difficult to build a profile of every possible method of intrusion in a system.
- Because these events are relatively rare, this also contributes to the class imbalance problem that makes for difficult application of supervised learning.
- Anomaly detection is perfect for such problems.

2.Intrusion Detection with Heuristics

- Intrusion detection systems (IDSs) have been around since 1986 and are commonplace in security-constrained environments.
- Even today, using thresholds, heuristics, and simple statistical profiles remains a reliable way of detecting intrusions and anomalies.
 - For example, suppose that we define 10 queries per hour to be the upper limit of normal use for a certain database.
 - Each time the database is queried, we invoke a function is_anomaly(user) with the user's ID as an argument.
 - If the user queries the database for an 11th time within an hour, the function will indicate that access as an anomaly

How do we set the threshold?

3. Objectives for an optimal anomaly detection system

- Low false positives and false negatives
- Easy to configure, tune, and maintain
- Adapts to changing trends in the data
 - Seasonality is the tendency of data to show regular patterns due to natural cycles of user activity (e.g., low activity on weekends)
- Works well across datasets of different nature
- Resource efficient and suitable for real-time application
- Explainable alerts

4. Feature Engineering for Anomaly Detection

- As with any other task in machine learning, selecting good features for anomaly detection is of paramount importance
- We focus our feature engineering discussions on three domains:
 - host intrusion detection,
 - network intrusion detection, and
 - web application intrusion detection.

a. Host Intrusion Detection

- Developing an intrusion detection agent for hosts (e.g., servers, desktops, laptops, embedded systems),
 - you will likely need to generate your own metrics and might even want to perform correlations of signals collected from different sources.
- Basic system- and network-level statistics make for a good starting point

Some common signals of malwares that you can collect for features:

- Running processes
- Active/new user accounts
- Kernel modules loaded
- DNS lookups
- Network connections
- System scheduler changes
- Daemon/background/persistent processes
- Startup operations, launchd entries
- OS registry databases, .plist files
- Temporary file directories
- Browser extensions

Host Intrusion Detection: query

- We'll take a look at osquery, a popular OS instrumentation framework that collects and exposes low-level OS metrics,
 - making them available for querying through a SQL-based interface.
- Making scheduled queries through osquery can allow you to establish a baseline of host and application behavior,
 - thereby allowing the intrusion detector to identify suspicious events that occur unexpectedly

```
SELECT * FROM processes WHERE on_disk = 0;
```

Suppose that this query generates some data that looks like this:

```
2017-06-04T18:24:17+00:00 []
2017-06-04T18:54:17+00:00 []
2017-06-04T19:24:17+00:00 ["/tmp/YBBHNCA8J0"]
2017-06-04T19:54:17+00:00 []
```

b. Network Intrusion Detection

- Almost all forms of host intrusion instigate communication with the outside world.
- Most breaches are carried out with the objective of stealing some valuable data from the target,
 - so it makes sense to detect intrusions by focusing on the network.

Network Intrusion Detection

- For botnets,
 - remote command-and-control servers communicate with the compromised "zombie" machines to give instructions on operations to execute.
- For *APTs*,
 - hackers can remotely access the machines through a vulnerable or misconfigured service, allowing them shell and/or root access.
- For adware,
 - communication with external servers is required for downloading unsolicited ad content.
- For spyware,
 - results of the covert monitoring are often transmitted over the network to an external receiving server.

Network Intrusion Detection

- Network intrusion detection tools operate on the basic concept of inspecting traffic that passes between hosts.
- Snort is a popular open source IDS that sniffs packets and network traffic for realtime anomaly detection
 - It is the de facto choice for intrusion-detection monitoring, providing a good balance of usability and functionality

Network Intrusion Detection

- In extracting features for network intrusion detection, there is a noteworthy difference between extracting network traffic metadata and inspecting network traffic content.
 - The former is used in stateful packet inspection (SPI), working at the network and transport layers—OSI layers 3 and 4—and examining each network packet's header and footer without touching the packet context

Network Intrusion Detection: Deep packet inspection

- Deep packet inspection (DPI) is the process of examining the data encapsulated in network packets, in addition to the headers and footers
- This allows for the collection of signals and statistics about the network correspondence originating from the application layer
 - DPI is capable of collecting signals that can help detect spam, malware, intrusions, and subtle anomalies

Network Intrusion Detection: Deep packet inspection

- Bro: the earliest systems that implemented a passive network monitoring framework for network intrusion detection
- You can use Bro to detect suspicious activity in web applications by inspecting the strings present in the POST body of HTTP requests.
- For example, you can detect *SQL injections* and *cross-site scripting (XSS)* reflection attacks by creating a profile of the POST body content for a particular web application entry point

Features for network intrusion detection

- The Knowledge Discovery and Data Mining Special Interest Group (SIGKDD) from ACM
 - It holds the KDD Cup every year, posing a different challenge to participants.
- In 1999, the topic was "computer network intrusion detection"
 - the task was to "learn a predictive model capable of distinguishing between legitimate and illegitimate connections in a computer network."
- This artificial dataset is very old and has been shown to have significant flaws,
 - but the list of derived features provided by the dataset is a good source of example features to extract for network intrusion detection in your own environment

c. Web Application Intrusion Detection

- Inspecting HTTP server logs
 - can provide you with a similar level of information and
 - is a more direct way of obtaining features derived from web application user interactions.
- Standard web servers like *Apache, IIS, and Nginx* generate logs in the NCSA Common Log Format, also called access logs.

Web Application Intrusion Detection

- NCSA combined logs and error logs also record information about
 - the client's user agent, referral URL, and any server errors generated by requests
- Here is an example:
 - a record in the combined log format that includes the requestor's user agent and referral URL

```
123.123.123.123 - jsmith [17/Dec/2016:18:55:05 +0800] "GET /index.html HTTP/1.0" 200 2046 "http://referer.com/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.17.3) AppleWebKit/536.27.14 (KHTML, like Gecko) Chrome/55.0.2734.24 Safari/536.27.14"
```

Web Application Intrusion Detection

- Features extracted form log files:
 - IP-level access statistics,
 - URL string aberrations,
 - Decoded URL and HTML entities,
 - escaped characters,
 - null-byte string termination,
 - Unusual referrer patterns,
 - Sequence of accesses to endpoints,
 - User agent patterns.

Web Application Intrusion Detection

- Web logs provide enough information to detect different kinds of attacks on web applications, including, but not limited to,
 - XSS,
 - Injection,
 - CSRF,
 - Insecure Direct Object References,
 - etc

5. Anomaly Detection with Data and Algorithms

- Forecasting (supervised machine learning)
- Statistical metrics
- Unsupervised machine learning
- Goodness-of-fit tests
- Density-based methods

Taxonomy*

^{*} Anomaly Detection – A Survey, Varun Chandola, Arindam Banerjee, and Vipin Kumar, To Appear in ACM Computing Surveys 2008.

Forecasting (Supervised Machine Learning)

- Forecasting is a highly intuitive way of performing anomaly detection:
 - we learn from prior data and make a prediction about the future
- We can consider any substantial deviations between the forecasts and observations as anomalous
- This class of anomaly detection algorithms uses past data to predict current data, and measures how different the currently observed data is from the prediction

Forecasting (Supervised Machine Learning)

- In forecasting, it is important to define the following descriptors of time series
 - Trends
 - Seasons
 - Cycles

Forecasting (Supervised Machine Learning): ARIMA

- Using the ARIMA (autoregressive integrated moving average) family of functions is a powerful and flexible way to perform forecasting on time series.
- Autoregressive models are a class of statistical models that have outputs that are linearly dependent on their own previous values in combination with a stochastic factor.

Figure 3-2. CPU utilization over time

Figure 3-3. CPU utilization over time fitted with ARIMA model prediction

Forecasting (Supervised Machine Learning):

ARIMA

- ARIMA(p,d,q)
 - p = the number of autoregressive terms
 - d = the number of nonseasonal differences
 - q = the number of moving-average terms

The differencing (if any) must be *reversed* to obtain a forecast for the original series:

If
$$d = 0$$
: $\hat{Y}_t = \hat{y}_t$

If
$$d = 1$$
: $\hat{Y}_t = \hat{y}_t + Y_{t-1}$

If
$$d = 2$$
: $\hat{Y}_t = \hat{y}_t + 2Y_{t-1} - Y_{t-2}$

- Let Y denote the *original* series
- Let y denote the differenced (stationarized) series

No difference (d=0): $y_t = Y_t$

First difference (d=1): $y_t = Y_t - Y_{t-1}$

Second difference (d=2): $y_t = (Y_t - Y_{t-1}) - (Y_{t-1} - Y_{t-2})$

$$= Y_t - 2Y_{t-1} + Y_{t-2}$$

$$\hat{y}_{t} = \mu + \phi_{1} y_{t-1} + \dots + \phi_{p} y_{t-p}$$
AR terms (lagged values of y)

By convention, the AR terms are + and the MA terms are -

$$-\theta_1 e_{t-1} \dots -\theta_q e_{t-q}$$

MA terms (lagged errors)

Not as bad as it looks! Usually $p+q \le 2$ and either p=0 or q=0 (pure AR or pure MA model)

```
import pandas as pd
import pyflux as pf
from datetime import datetime
# Read in the training and testing dataset files
data_train_a = pd.read_csv('cpu-train-a.csv',
    parse dates=[0], infer datetime format=True)
data_test_a = pd.read_csv('cpu-test-a.csv',
    parse_dates=[0], infer_datetime_format=True)
# Define the model
model_a = pf.ARIMA(data=data_train_a,
                   ar=11, ma=11, inteq=0, target='cpu')
# Estimate latent variables for the model using the
# Metropolis-Hastings algorithm as the inference method
x = model a.fit("M-H")
# Plot the fit of the ARIMA model against the data
model a.plot fit()
```

Unsupervised Machine Learning Algorithms

- Supervised machine learning classifiers are typically used to solve problems that involve two or more classes.
- However, when used for anomaly detection, the modifications of these algorithms give them characteristics of unsupervised learning
- One-class SVM is an unsupervised algorithm that learns a decision function for novelty detection: classifying new data as similar or different to the training set

from sklearn.ensemble import IsolationForest

print('Number of errors: {}'.format(num_errors))

Density-Based Methods

- Density-based methods are well suited for high-dimensional datasets,
 - which can be difficult to deal with using the other classes of anomaly detection methods.
- The main idea behind all of them is to form a cluster representation of the training data, under the hypothesis that: outliers or anomalies will be located in low-density regions of this cluster representation.

Density-Based Methods

- k-NN is commonly considered a density-based method and is actually quite a popular way to measure the probability that a data point is an outlier.
- We can also use k-means clustering for anomaly detection in a similar way, using distances between the point and centroids as a measure of sample density.

6.Challenges of Using Machine Learning in Anomaly Detection

- Because of the high cost of classification errors, fully automated, end-to-end anomaly detection systems that are powered purely by machine learning are very rare
 - there is almost always a human in the loop to verify that alerts are relevant before any action is taken on them
- The semantic gap is a real problem with machine learning in many environments

7. Practical System Design Concerns

- Optimizing for Explainability
 - the semantic gap of alert explainability. Real issue!!!
 - More complex machine learning models can fit real-world data better, but they are very black-box—the decision-making processes are completely opaque to an external observer.
- Performance and scalability in real-time streaming applications
 - Using distributed machine learning libraries such as Apache Spark Mllib can help