Теория Меры 2: мера Лебега

2.1. Булевы алгебры

Определение 2.1. Решетка это множество L, наделенное алгебраическими бинарными операциями \wedge и \vee : $L \times L \longrightarrow L$, которые удовлетворяют следующим условиям.

- а. Идемпотентность: $a \wedge a = a \vee a = a$.
- б. Коммутативность: $a \wedge b = b \wedge a, a \vee b = b \vee a$.
- в. Ассоциативность: $a \wedge (b \wedge c) = (a \wedge b) \wedge c$, $a \vee (b \vee c) = (a \vee b) \vee c$.
- г. Абсорбция: $a \lor (a \land b) = a, \ a \land (a \lor b) = a.$

Задача 2.1. . Пусть (S, \preceq) частично упорядоченное множество, такое, что для любых x, y, задана **точная верхняя грань** (такой элемент $(x \lor y) \succeq x, y$, что любой $z \succeq x, y$ удовлетворяет $z \succeq (x \lor y)$) и **точная нижняя грань** (такой элемент $(x \land y) \preceq x, y$, что любой $z \preceq x, y$ удовлетворяет $z \preceq (x \land y)$). Докажите, что это решетка.

Задача 2.2 (!). Пусть L решетка. Введем на L соотношение $x \leq y$, если $x \wedge y = x$.

- а. Докажите, что $x \leq y$ тогда и только тогда, когда $x \vee y = y$.
- б. Докажите, что $x \leq y$ есть соотношение частичного порядка.
- в. Рассмотрим (L, \preceq) как частично упорядоченное множество. Докажите, что в нем есть точная верхняя и нижняя грань. Докажите, что они выражаются как $(x \lor y)$, $(x \land y)$.
- г. Докажите, что любую решетку можно получить из частично упорядоченного множества способом, описанным в задаче 2.1.

Задача 2.3. Пусть R факториальное кольцо. Постройте решетку, пользуясь операцией взятия наименьшего общего кратного и наибольшего общего делителя.

Задача 2.4. Рассмотрим такое соотношение частичного порядка на 2^S : $x \leq y$, если $x \in y$. Докажите, что в $(2^S, \leq)$ существуют точная верхняя и нижняя грань. Докажите, что соответствующие операции это пересечение и объединение множеств.

Определение 2.2. Булева алгебра это способ аксиоматизации операций пересечения и объединения в алгебре подмножеств. Булевы алгебры названы так по имени английского математика Джорджа Буля, 1815-1864.

Булева алгебра (A, \vee, \wedge) это решетка, удовлетворяющая следующим условиям

- а. Ограниченность снизу: в A есть элемент 0 такой, что $x \wedge 0 = 0$.
- б. Ограниченность сверху: в A есть элемент 1 такой, что $x \lor 1 = 1$.
- в. Дистрибутивность: $(a \lor b) \land c = (a \land c) \lor (a \land c)$.

- г. Существование дополнений: для любого $x \in A$ существует $\neg x$ такой, что $x \land \neg x = 0$, $x \lor \neg x = 1$.
- **Задача 2.5.** Докажите, что $0, 1, \neg x$ однозначно определяются структурой решетки на A.
- **Задача 2.6.** Докажите, что $\neg 0 = 1$, $\neg 1 = 0$.
- **Задача 2.7.** Докажите законы де Моргана: $\neg(a \lor b) = (\neg a) \land (\neg b), \neg(a \land b) = (\neg a) \lor (\neg b).$
- **Задача 2.8.** (двойственность булевых алгебр) Дана булева алгебра (A, \vee, \wedge) . Рассмотрим операции $\vee_1 := \wedge, \wedge_1 := \vee$. Докажите, что (A, \wedge, \vee) это тоже булева алгебра.
- Задача 2.9. Постройте булеву алгебру из двух элементов.
- **Задача 2.10.** Пусть R (коммутативное) кольцо, а V множество идемпотентов (элементов, удовлетворяющих $a^2=a$). Рассмотрим операции $e\vee f=e+f-ef,\ e\wedge f=ef$. Докажите, что это булева алгебра.
- **Определение 2.3.** Симметрическая разность в булевой алгебре задается по формуле $a \triangle b := (a \lor b) \land \neg (a \land b)$.
- Задача 2.11 (!). а. Докажите, что симметрическая разность ассоциативна.
 - б. Докажите, что операция \wedge дистрибутивна относительно симметрической разности.
 - в. Докажите, что (A, \land, \triangle) это кольцо (роль сложения выполняется \triangle , роль умножения \land).
 - г. Докажите, что все элементы полученного кольца суть идемпотенты.
- Задача 2.12 (!). Дано коммутативное кольцо R над $\mathbb{Z}/2\mathbb{Z}$, все элементы которого суть идемпотенты. Рассмотрим структуру булевой алгебры на множестве идемпотентов, определенную в задаче 2.10. Докажите, что R получается вышеописанным способом из этой булевой алгебры.
- **Определение 2.4. Идеалом** булевой алгебры называется замкнутое относительно операции \vee подмножество $I \subset A$, которое удовлетворяет $a \wedge i \in I$ для любого $a \in A, i \in I$.
- **Задача 2.13.** Дана булева алгебра A, у которой больше двух элементов. Докажите, что в A есть нетривиальный идеал.
- **Задача 2.14 (!).** Пусть (A, \land, \lor) булева алгебра, а $I \subset A$ идеал. Определим такое соотношение: $a \sim_I b$, если $a \triangle b \in I$. Докажите, что это соотношение эквивалентности. Докажите, что операции \land и \lor сохраняют классы эквивалентности, и индуцируют на множесте A' классов эквивалентности структуру булевой алгебры.
- **Определение 2.5.** В этих условиях A' называется факторалгеброй, и обозначается A/I. Идеал называется максимальным, если фактор по нему булева алгебра из двух элементов.
- Задача 2.15 (*). Дан нетривиальный идеал булевой алгебры. Докажите, что он содержится в максимальном.

Определение 2.6. Представлением, или же инъективным представлением булевой алгебры A называется инъективный гомоморфизм $A \longrightarrow 2^S$, определенный для какого-то множества S. Иначе говоря, представление булевой алгебры есть реализация ее в качестве подалгебры множеств.

Задача 2.16 (*). а. Докажите, что любая булева алгебра допускает инъективное представление.

б. Дана конечная булева алгебра. Докажите, что в ней 2^n элементов. Докажите, что она изоморфна алгебре всех подмножеств S, где S конечное множество из n элементов.

2.2. Внешняя мера

Вплоть до окончания этого листка, S это множество, а $\mathfrak{U} \subset 2^S$ кольцо подмножеств, содержащее S (такое кольцо называется **алгеброй подмножеств**, или же **подалгеброй подмножеств в** 2^S). Рассмотрим 2^S как булеву алгебру, с операциями $\vee = \cup$ и $\wedge = \cap$. Очевидно, \mathfrak{U} это булева подалгебра 2^S .

Рассмотрим функцию $\mu: \mathfrak{U} \longrightarrow \mathbb{R} \cup \{\infty\}$. На множестве $\mathbb{R} \cup \{\infty\}$ определена операция сложения, таким образом, что $x + \infty = \infty$ и $\infty + \infty = \infty$.

Определение 2.7. Функция $\mu: \mathfrak{U} \longrightarrow \mathbb{R} \cup \{\infty\}$ называется конечно-аддитивной мерой, если для любых непересекающихся $A, B \in \mathfrak{U}, \ \mu(A \coprod B) = \mu(A) + \mu(B)$. Мера называется неотрицательной, если к тому же $\mu(A) \geqslant 0$, для любого A.

Определение 2.8. В этих предположениях, пусть $X\subset S$ любое подмножество. Определим внешнюю меру $\mu^*(X)$ как

$$\mu^*(X) := \inf_{\{A_i\}} \sum \mu(A_i)$$

где инфимум берется по всем счетным наборам $\{A_i\} \subset \mathfrak{U}$, покрывающим X. Мы говорим, что X множество меры $\mathbf{0}$, если $\mu^*(X) = 0$. Мы говорим, что μ σ -аддитивна, если $\mu^*(A) = \mu(A)$ для любого $A \in \mathfrak{U}$.

Задача 2.17. Докажите, что $\mu^*(A \cup B) \leqslant \mu^*(A) + \mu^*(B)$.

Задача 2.18 (*). Приведите пример, когда внешняя мера неаддитивна (то есть не удовлетворяет $\mu^*(A \coprod B) = \mu^*(A) + \mu^*(B)$).

Задача 2.19 (!). Пусть A множество меры нуль. Докажите, что $\mu^*(A \cup B) = \mu^*(B \setminus A) = \mu^*(B)$.

Задача 2.20 (!). Докажите, что счетное объединение множеств меры нуль имеет меру нуль

Задача 2.21. Докажите, что множества меры нуль образуют булев идеал в булевой алгебре 2^S .

Задача 2.22 (*). Приведите пример континуального подмножества меры нуль на отрезке.

Задача 2.23. Задан диффеоморфизм из отрезка в отрезок, гладкий, в том числе, и на концах отрезка. Докажите, что он переводит множества меры нуль в множества меры нуль.

Задача 2.24. Задан диффеоморфизм из интервала в прямую. Докажите, что он переводит множества меры нуль в множества меры нуль.

2.3. Измеримые множества

Определение 2.9. Рассмотрим множества меры нуль как булев идеал в булевой алгебре 2^S . Если для $A, B \subset S$ имеет место $\mu^*(A \triangle B) = 0$, мы говорим A и B совпадают почти всюду.

Факторалгебра по идеалу множеств меры ноль называется алгебра подмножеств S с точностью до подмножеств меры нуль. На протяжении этого листка мы будем обозначать эту алгебру как $2^S/\sim$.

Задача 2.25. Зафиксируем $x \in S$. Предположим, что $\{x\} \in \mathfrak{U}$. Пусть мера подмножества $X \subset S$ задается $\mu(X) = 1$ если $x \in X$ и $\mu(X) = 0$ в противном случае. Найдите \mathfrak{U}/\sim .

Задача 2.26 (!). Определим функцию $d: 2^S \times 2^S \longrightarrow \mathbb{R}$ как $d(A,B) := \mu^*(A \triangle B)$. Докажите, что эта функция удовлетворяет неравенству треугольника: $d(A,B) \leq d(A,C) + d(B,C)$.

Задача 2.27 (!). Пусть $\mu^*(A_1 \triangle A_2) = 0$. Докажите, что $\mu^*(A_1 \triangle B) = \mu^*(A_2 \triangle B)$, для любого $B \in 2^S$.

Замечание. Из этой задачи следует, что функция $d(A,B) = \mu^*(A \triangle B)$ корректно определена на множестве $2^S/\sim$.

Определение 2.10. На протяжении этих лекций, **метрика** на множестве M есть отображение $M \times M \longrightarrow [0,\infty]$ удовлетворяющее стандартным условиям (симметричность, неравенство треугольника, и d(x,y) > 0 для $x \neq y$. От обычного определения, это отличается только тем, что мы разрешаем d(x,y) принимать значение ∞ .

Задача 2.28. Докажите, что функция $d(A,B) = \mu^*(A \triangle B)$ задает метрику на $2^S / \sim$.

Задача 2.29 (!). Рассмотрим пополнение $2^S/\sim$ относительно этой метрики. Докажите, что это тоже булева алгебра.

Определение 2.11. Пусть $\{X_i\}$ последовательность подмножеств в S. **Обратный предел** $\{X_i\}$ это множество

$$\lim_{\leftarrow} \{X_i\} := \bigcup_i \left(\cap_{j>i} X_j \right)$$

Задача 2.30. Докажите, что обратный предел последовательности $X_1, X_2, X_3, ...$ равен обратному пределу $X_n, X_{n+1}, X_{n+2}, ...,$ для любого $n \neq 1$.

Задача 2.31. Пусть $A\in 2^S$ и $\{X_i\}\subset 2^S,$ а $d(A,X_i)=\lambda_i.$ Докажите, что

$$d(A, \lim_{\leftarrow} \{X_i\}) \leqslant \sum_{i} \lambda_i.$$

Задача 2.32 (!). Пусть задана последовательность Коши $\{X_i\}$ в $2^S/\sim$. Докажите, что она сходится к $\lim\{X_i\}$.

Указание. Заменив $\{X_i\}$ на подпоследовательность, добейтесь того, чтобы

$$d(X_i, X_j) < 2^{-\min(i,j)}$$
.

Воспользовавшись предыдущей задачей, убедитесь, что

$$d(X_i, \lim_{\leftarrow} \{X_i\}) \leqslant \frac{1}{2^{i-1}}.$$

Определение 2.12. Множество $X \subset S$ называется **измеримым**, если оно лежит в пополнении \mathfrak{U}/\sim относительно метрики, определенной выше.

Задача 2.33 (!). Докажите, что измеримые множества образуют подалгебру в 2^S .

Задача 2.34 (**). Воспользовавшись аксиомой выбора, приведите пример неизмеримого подмножества в [0,1] (со стандартной мерой).

Задача 2.35 (!). (теорема Лебега) Докажите, что на измеримых множествах функция μ^* конечно аддитивна (удовлетворяет $\mu^*(A \mid B) = \mu^*(A) + \mu^*(B)$).

Указание. Воспользуйтесь тем, что алгебра измеримых множеств является пополнением $\mathfrak{U}/(\sim \cap \mathfrak{U})$, а там $\mu = \mu^*$ и аддитивна.

Определение 2.13. Пусть μ σ -аддитивна. В таком случае функция μ^* на алгебре измеримых множеств называется продолжением меры μ . Мы обозначаем ее за μ .

Задача 2.36 (!). Пусть $\{A_i\} \subset \mathfrak{U}$ счетная последовательность непересекающихся множеств, такая, что ряд $\sum \mu(A_i)$ сходится. Докажите, что объединение $\bigcup A_i$ измеримо.

Задача 2.37 (!). Докажите, что на измеримых множествах функция μ^* счетно аддитивна, то есть удовлетворяет $\mu^*(\coprod X_i) = \sum \mu^*(X_i)$.

2.4. Мера Лебега

Определение 2.14. Пусть $\mathfrak{W} \subset S$ - алгебра подмножеств. \mathfrak{W} называется σ -алгеброй, если она замкнута относительно счетных объединений: для любого счетного набора подмножеств $\{X_i\} \subset \mathfrak{W},$ объединение $\bigcup X_i$ принадлежит $\mathfrak{W}.$

Задача 2.38 (!). Пусть $\mathfrak{U}\subset 2^S$ - алгебра подмножеств, снабженная счетно-аддитивной и неотрицательной мерой $\mu:\ \mathfrak{U}\longrightarrow [0,\infty[$. Докажите, что алгебра измеримых подмножеств является σ -алгеброй.

Определение 2.15. Мерой на σ -алгебре $\mathfrak{W}\subset S$ называется счетно-аддитивная, неотрицательная функция $\mathfrak{W}\longrightarrow \mathbb{R}\cup \{\infty\}$.

Задача 2.39 (*). Приведите пример конечно-аддитивного, но не счетно-аддитивного отображения $\mathfrak{W} \stackrel{\mu}{\longrightarrow} [0,\infty]$. Докажите, что μ счетно-аддитивно тогда и только тогда, когда $\mu^*(A) = \mu(A)$ для любого $A \in \mathfrak{W}$.

Задача 2.40. Пусть S_1 , S_2 множества, снабженные алгебрами

$$\mathfrak{U}_i \subset 2^{S_i}, \quad i = 1, 2$$

и конечно-аддитивной неотрицательной мерой

$$\mu_i: \mathfrak{U}_i \longrightarrow [0,\infty].$$

Рассмотрим подалгебру $\mathfrak{U}_1 \times \mathfrak{U}_2$ в $2^{S_1 \times S_2}$, порожденную подмножествами вида $A_1 \times A_2$, где $A_i \in \mathfrak{U}_i$. На каждом таком подмножестве определим

$$\mu(A_1 \times A_2) := \mu_1(A_1)\mu_2(A_2).$$

- а. [!] Докажите, что μ можно продолжить до конечно-аддитивной неотрицательной меры на кольце $\mathfrak{U}_1 \times \mathfrak{U}_2$.
- б. [**] Докажите, что это продолжение σ -аддитивно, если μ_i σ -аддитивны.

Определение 2.16. Параллелепипед есть подмножество \mathbb{R}^n , вида $I_1 \times I_2 \times ... I_n$, где I_k - интервалы. Рассмотрим подалгебру $\mathfrak{U} \subset 2^{\mathbb{R}^n}$, порожденную счетными объединениями непересекающихся параллелепипедов. Мы будем называть эту алгебру множеств алгеброй, порожденной параллелепипедами. Продолжим функцию

$$\mu(I_1 \times I_2 \times ... I_n) \longrightarrow \prod |I_k|$$

до конечно-аддитивной неотрицательной меры μ на \mathfrak{U} . Пусть \mathfrak{M} обозначает пополнение \mathfrak{U} относительно $d(A,B):=\mu^*(A\triangle B)$, т.е. множество измеримых множеств, соответствующих \mathfrak{U} и μ . Элементы \mathfrak{M} называются измеримыми по Лебегу, а продолжение μ^* на \mathfrak{M} - мерой Лебега.

- Задача 2.41 (!). а. Докажите, что мера Лебега σ -аддитивна на алгебре, порожденной параллелепипедами.
 - б. Докажите, что каждое открытое подмножество \mathbb{R}^{n} измеримо.

Определение 2.17. Рассмотрим σ -алгебру, порожденную открытыми подмножествами \mathbb{R}^n . Ее элементы называются **борелевскими подмножествами**.

Задача 2.42 (!). Докажите, что борелевские подмножества в \mathbb{R}^n измеримы по Лебегу.

Задача 2.43 (!). Докажите, что для каждого измеримого множества $A \subset \mathbb{R}^n$ найдется борелевское множество $B \subset \mathbb{R}^n$, такое, что $\mu(B \triangle A) = 0$.

Задача 2.44 (*). Пусть $V \subset B \subset \mathbb{R}^n$ – ограниченное подмножество открытого шара. Докажите, что V измеримо тогда и только тогда, когда $\mu^*(V) + \mu^*(B \backslash V) = \mu(B)$.