Series Resistance Effect

- The two *quasi-neutral regions* (p and n) have their own *bulk resistances*
- Denoted as r_p and r_n
- For small I_D , their effects are negligible
- However, for large I_D , the potential dropped across them reduces the actual voltage appearing across the junction of the diode
- Known as the Series Resistance Effect

• The *actual voltage* appearing across the *junction*:

$$\triangleright V_{D,eff} = V_D - I_D(r_p + r_n)$$

- ► V_D: *Diode terminal voltage*
- The *new diode I-V relation*:

$$> I_D = I_0 \exp(V_{D,eff}/V_T)$$

- Simultaneous solution of the above two equations would yield the Q-point
- In presence of r_p and r_n , V_D may exceed V_0 , but $V_{D,eff}$ would always be less than V_0

Diode Capacitances

- Two components:
 - > Depletion Capacitance C_{dep}
 - > Diffusion Capacitance C_{diff}
- Depletion Capacitance:
 - ➤ Due to *depletion charge dipole* across the *junction*
 - $ightharpoonup Expressed by: C_{dep} = C_{dep0}/(1 V_D/V_0)^{1/2}$
 - $C_{dep0} = C_{dep} \text{ for } V_D = 0$
 - > Present under both forward and reverse bias

 $\begin{tabular}{ll} & * C_{dep} & diverges \ as \ V_D \rightarrow V_0 \\ & * C_{dep} & in \ reverse \ bias < C_{dep} & in \ forward \ bias \\ & * Rule \ of \ Thumb : C_{dep} & in \ forward \ bias \ \approx 2C_{dep0} \\ \end{tabular}$

• Diffusion Capacitance:

- ➤ Due to *charge injection* in *both sides of the junction* (in the *quasi-neutral regions*)
- \triangleright *Expressed by*: $C_{diff} = I_D \tau / V_T$
 - τ: Injected carrier lifetime
- > Present only in forward bias, negligible in reverse bias
- \triangleright Much larger than C_{dep}
- Total Diode Capacitance C_D:

$$ightharpoonup C_{\text{dep}} + C_{\text{diff}}$$

Small-Signal Model

- Needed for ac analysis
- Electrical equivalent at the DC bias point
- Represented as a *network*, having various *circuit components* (*resistors*, *capacitors*, *current sources*, etc.)
- Also known as *incremental model*
- Evaluated at (I_{DQ}, V_{DQ})
- Appropriate for *small variations* of the *ac signal* around the *Q-point*