Corollary 51.36. Let f be a closed proper convex function on \mathbb{R}^n . Then the minimal set of f is a non-empty bounded set iff f has no directions of recession. In particular, if f has no directions of recession, then the minimum inf f of f is finite and attained for some $x \in \mathbb{R}^n$.

Theorem 51.14 implies the following result which is very important for the design of optimization procedures.

Proposition 51.37. Let f be a proper and closed convex function over \mathbb{R}^n . The function h given by h(x) = f(x) + q(x) obtained by adding any strictly convex quadratic function q of the form $q(x) = x^{T}Ax + b^{T}x$ (where A is symmetric positive definite) is a proper closed strictly convex function such that $\inf h$ is finite, and there is a unique $x^* \in \mathbb{R}^n$ such that h attains its minimum in x^* (that is, $h(x^*) = \inf h$).

Proof. By Theorem 51.14 there is some affine form φ given by $\varphi(x) = c^{\top}x + \alpha$ (with $\alpha \in \mathbb{R}$) such that $f(x) \geq \varphi(x)$ for all $x \in \mathbb{R}^n$. Then we have

$$h(x) = f(x) + q(x) \ge x^{\mathsf{T}} A x + (b^{\mathsf{T}} + c^{\mathsf{T}}) x + \alpha$$
 for all $x \in \mathbb{R}^n$.

Since A is symmetric positive definite, by Example 51.12, the quadratic function Q given by $Q(x) = x^{T}Ax + (b^{T} + c^{T})x + \alpha$ has no directions of recession. Since $h(x) \geq Q(x)$ for all $x \in \mathbb{R}^{n}$, we claim that h has no directions of recession. Otherwise, there would be some nonzero vector u, such that the function $\lambda \mapsto h(x + \lambda u)$ is nonincreasing for all $x \in \text{dom}(h)$, so $h(x + \lambda u) \leq \beta$ for some β for all λ . But we showed that for λ large enough, the function $\lambda \mapsto Q(x + \lambda u)$ increases like λ^{2} , so for λ large enough, we will have $Q(x + \lambda u) > \beta$, contradicting the fact that h majorizes Q. By Corollary 51.36, h has a finite minimum x^{*} which is attained.

If f and g are proper convex functions and if g is strictly convex, then f+g is a proper function. For all $x, y \in \mathbb{R}^n$, for any λ such that $0 < \lambda < 1$, since f is convex and g is strictly convex, we have

$$f((1 - \lambda)x + \lambda y) \le (1 - \lambda)f(x) + \lambda f(y)$$

$$g((1 - \lambda)x + \lambda y) < (1 - \lambda)g(x) + \lambda g(y),$$

so we deduce that

$$f((1 - \lambda)x + \lambda y) + g((1 - \lambda)x + \lambda y) < ((1 - \lambda)(f(x) + g(x)) + \lambda(f(x) + g(x))),$$

which shows that f + g is strictly convex. Then, as f + q is strictly convex, it has a unique minimum at x^* .

We now come back to the problem of minimizing a proper convex function h over a nonempty convex subset C. Here is a nice characterization.

Proposition 51.38. Let h be a proper convex function on \mathbb{R}^n , and let C be a nonempty convex subset of \mathbb{R}^n .