印刷电路板入门

什么是 PCB?

印刷电路板(Printed circuit board,PCB)几乎会出现在每一种电子设备当中。如果在某样设备中有电子零件,那么它们也都是镶在大小各异的 PCB 上。除了固定各种小零件外,PCB 的主要功能是提供上头各项零件的相互电气连接。随着电子设备越来越复杂,需要的零件越来越多,PCB 上头的线路与零件也越来越密集了。

标准的 PCB 长得就像这样。裸板(上头没有零件)也常被称为「印刷线路板 Printed Wiring Board (PWB)」。

板子本身的基板是由绝缘隔热、并不易弯曲的材质所制作成。在表面可以看到的细小线路材料是铜箔,原本铜箔是覆盖在整个板子上的,而在制造过程中部份被蚀刻处理掉,留下来的部份就变成网状的细小线路了。这些线路被称作导线(conductor pattern)或称布线,并用来提供 PCB 上零件的电路连接。

PDF created with pdfFactory Pro trial versionw.pdffactory.com

导线(Conductor Pattern)

为了将零件固定在 PCB 上面,我们将它们的接脚直接焊在布线上。在最基本的 PCB (单面板)上,零件都集中在其中一面,导线则都集中在另一面。这么一来 我们就需要在板子上打洞,这样接脚才能穿过板子到另一面,所以零件的接脚是 焊在另一面上的。因为如此,PCB 的正反面分别被称为零件面(Component Side)与焊接面(Solder Side)。

如果 PCB 上头有某些零件,需要在制作完成后也可以拿掉或装回去,那么该零件安装时会用到插座(Socket)。由于插座是直接焊在板子上的,零件可以任意的拆装。下面看到的是 ZIF(Zero Insertion Force,零拨插力式)插座,它可以让零件(这里指的是 CPU)可以轻松插进插座,也可以拆下来。插座旁的固定杆,可以在您插进零件后将其固定。

ZIF 插座

如果要将两块 PCB 相互连结,一般我们都会用到俗称「金手指」的边接头(edge connector)。金手指上包含了许多裸露的铜垫,这些铜垫事实上也是 PCB 布线的一部份。通常连接时,我们将其中一片 PCB 上的金手指插进另一片 PCB 上合适的插槽上(一般叫做扩充槽 Slot)。在计算机中,像是显示卡,声卡或是其它类似的界面卡,都是借着金手指来与主机板连接的。

边接头(俗称金手指)

AGP 扩充槽

PCB上的绿色或是棕色,是阻焊漆(solder mask)的颜色。这层是绝缘的防护层,可以保护铜线,也可以防止零件被焊到不正确的地方。在阻焊层上另外会印刷上一层丝网印刷面(silk screen)。通常在这上面会印上文字与符号(大多是白色的),以标示出各零件在板子上的位置。丝网印刷面也被称作图标面(legend)。

有白色图标面的绿色 PCB

没有图标面的棕色 PCB

PCB 的种类

单面板(Single-Sided Boards)

我们刚刚提到过,在最基本的 PCB 上,零件集中在其中一面,导线则集中在另一面上。因为导线只出现在其中一面,所以我们就称这种 PCB 叫作*单面板(Single-sided*)。因为单面板在设计线路上有许多严格的限制(因为只有一面,布线间不能交叉而必须绕独自的路径),所以只有早期的电路才使用这类的板子。

单面 PCB 表面

单面 PCB 底面

双面板(Double-Sided Boards)

这种电路板的两面都有布线。不过要用上两面的导线,必须要在两面间有适当的电路连接才行。这种电路间的「桥梁」叫做*导孔(via*)。导孔是在 PCB 上,充满或涂上金属的小洞,它可以与两面的导线相连接。因为双面板的面积比单面板大了一倍,而且因为布线可以互相交错(可以绕到另一面),它更适合用在比单面板更复杂的电路上。

双面PCB表面

双面PCB底面

多层板(Multi-Layer Boards)

为了增加可以布线的面积,多层板用上了更多单或双面的布线板。多层板使用数片双面板,并在每层板间放进一层绝缘层后黏牢(压合)。板子的层数就代表了有几层独立的布线层,通常层数都是偶数,并且包含最外侧的两层。大部分的主机板都是 4 到 8 层的结构,不过技术上可以做到近 100 层的 PCB 板。大型的超级计算机大多使用相当多层的主机板,不过因为这类计算机已经可以用许多普通计算机的集群代替,超多层板已经渐渐不被使用了。因为 PCB 中的各层都紧密的结合,一般不太容易看出实际数目,不过如果您仔细观察主机板,也许可以看出来。

我们刚刚提到的导孔(via),如果应用在双面板上,那么一定都是打穿整个板子。不过在多层板当中,如果您只想连接其中一些线路,那么导孔可能会浪费一些其它层的线路空间。埋孔(Buried vias)和盲孔(Blind vias)技术可以避免这个问题,因为它们只穿透其中几层。盲孔是将几层内部 PCB 与表面 PCB 连接,不须穿透整个板子。埋孔则只连接内部的 PCB,所以光是从表面是看不出来的。

在多层板 PCB 中,整层都直接连接上地线与电源。所以我们将各层分类为信号 层(Signal),电源层(Power)或是地线层(Ground)。如果 PCB 上的零件需要不同的电源供应,通常这类 PCB 会有两层以上的电源与电线层。

零件封装技术

插入式封装技术(Through Hole Technology)

将零件安置在板子的一面,并将接脚焊在另一面上,这种技术称为「插入式(Through Hole Technology,THT)」封装。这种零件会需要占用大量的空间,并且要为每只接脚钻一个洞。所以它们的接脚其实占掉两面的空间,而且焊点也比较大。但另一方面,THT零件和SMT(Surface Mounted Technology,表面黏着式)零件比起来,与PCB连接的构造比较好,关于这点我们稍后再谈。像是排线的插座,和类似的界面都需要能耐压力,所以通常它们都是THT封装。

THT 零件(焊接在底部)

表面黏贴式封装技术(Surface Mounted Technology)

使用表面黏贴式封装(Surface Mounted Technology,SMT)的零件,接脚是焊在与零件同一面。这种技术不用为每个接脚的焊接,而都在 PCB 上钻洞。

表面黏贴式零件

表面黏贴式的零件,甚至还能在两面都焊上。

表面黏着式的零件焊在PCB上的同一面。

SMT 也比 THT 的零件要小。和使用 THT 零件的 PCB 比起来,使用 SMT 技术的 PCB 板上零件要密集很多。SMT 封装零件也比 THT 的要便宜。所以现今的 PCB 上大部分都是 SMT,自然不足为奇。

因为焊点和零件的接脚非常的小,要用人工焊接实在非常难。不过如果考虑到目前的组装都是全自动的话,这个问题只会出现在修复零件的时候吧。

设计流程

在 PCB 的设计中,其实在正式布线前,还要经过很漫长的步骤,以下就是主要设计的流程

系统规格

首先要先规划出该电子设备的各项系统规格。包含了系统功能,成本限制,大小,运作情形等等。

系统功能区块图

接下来必须要制作出系统的功能方块图。方块间的关系也必须要标示出来。

将系统分割几个 PCB

将系统分割数个 PCB 的话,不仅在尺寸上可以缩小,也可以让系统具有升级与交换零件的能力。系统功能方块图就提供了我们分割的依据。像是计算机就可以分成主机板、显示卡、声卡、软盘驱动器和电源等等。

决定使用封装方法,和各 PCB 的大小

当各 PCB 使用的技术和电路数量都决定好了,接下来就是决定板子的大小了。如果设计的过大,那么封装技术就要改变,或是重新作分割的动作。在选择技术时,也要将线路图的品质与速度都考量进去。

绘出所有 PCB 的电路概图

概图中要表示出各零件间的相互连接细节。所有系统中的 PCB 都必须要描出来,现今大多采用 CAD (计算机辅助设计,Computer Aided Design)的方式。下面就是使用 <u>CircuitMakerTM</u> 设计的范例。

PCB的电路概图

初步设计的仿真运作

为了确保设计出来的电路图可以正常运作,这必须先用计算机软件来仿真一次。 这类软件可以读取设计图,并且用许多方式显示电路运作的情况。这比起实际做 出一块样本 PCB,然后用手动测量要来的有效率多了。

将零件放上 PCB

零件放置的方式,是根据它们之间如何相连来决定的。它们必须以最有效率的方式与路径相连接。所谓有效率的布线,就是牵线越短并且通过层数越少(这也同时减少导孔的数目)越好,不过在真正布线时,我们会再提到这个问题。下面是总线在 PCB 上布线的样子。为了让各零件都能够拥有完美的配线,放置的位置是很重要的。

导线构成的总线

测试布线可能性,与高速下的正确运作

现今的部份计算机软件,可以检查各零件摆设的位置是否可以正确连接,或是检查在高速运作下,这样是否可以正确运作。这项步骤称为安排零件,不过我们不会太深入研究这些。如果电路设计有问题,在实地导出线路前,还可以重新安排零件的位置。

导出 PCB 上线路

在概图中的连接,现在将会实地作成布线的样子。这项步骤通常都是全自动的,不过一般来说还是需要手动更改某些部份。下面是 2 层板的导线模板。红色和蓝色的线条,分别代表 PCB 的零件层与焊接层。白色的文字与四方形代表的是网版印刷面的各项标示。红色的点和圆圈代表钻洞与导孔。最右方我们可以看到 PCB 上的焊接面有金手指。这个 PCB 的最终构图通常称为工作底片(Artwork)。

使用 CAD 软件作 PCB 导线设计

每一次的设计,都必须要符合一套规定,像是线路间的最小保留空隙,最小线路宽度,和其它类似的实际限制等。这些规定依照电路的速度,传送信号的强弱,电路对耗电与噪声的敏感度,以及材质品质与制造设备等因素而有不同。如果电流强度上升,那导线的粗细也必须要增加。为了减少 PCB 的成本,在减少层数的同时,也必须要注意这些规定是否仍旧符合。如果需要超过 2 层的构造的话,那么通常会使用到电源层以及地线层,来避免信号层上的传送信号受到影响,并且可以当作信号层的防护罩

导线后电路测试

为了确定线路在导线后能够正常运作,它必须要通过最后检测。这项检测也可以检查是否有不正确的连接,并且所有联机都照着概图走。

建立制作档案

因为目前有许多设计 PCB 的 CAD 工具,制造厂商必须有符合标准的档案,才能制造板子。标准规格有好几种,不过最常用的是 Gerber files 规格。一组 Gerber files 包括各信号、电源以及地线层的平面图,阻焊层与网板印刷面的平面图,以及钻孔与取放等指定档案。

电磁兼容问题

没有照 EMC(电磁兼容)规格设计的电子设备,很可能会散发出电磁能量,并且干扰附近的电器。EMC 对电磁干扰(EMI),电磁场(EMF)和射频干扰(RFI)等都规定了最大的限制。这项规定可以确保该电器与附近其它电器的正常运作。EMC 对一项设备,散射或传导到另一设备的能量有严格的限制,并且设计时要减少对外来 EMF、EMI、RFI等的磁化率。换言之,这项规定的目的就是要防止电磁能量进入或由装置散发出。这其实是一项很难解决的问题,一般大多会使用电源和地线层,或是将 PCB 放进金属盒子当中以解决这些问题。电源和地线层可以防止信号层受干扰,金属盒的效用也差不多。对这些问题我们就不过于深入了。

电路的最大速度得看如何照 EMC 规定做了。内部的 EMI,像是导体间的电流耗损,会随着频率上升而增强。如果两者之间的的电流差距过大,那么一定要拉长两者间的距离。这也告诉我们如何避免高压,以及让电路的电流消耗降到最低。布线的延迟率也很重要,所以长度自然越短越好。所以布线良好的小 PCB,会比大 PCB 更适合在高速下运作。

制造流程

PCB 的制造过程由玻璃环氧树脂(Glass Epoxy)或类似材质制成的「基板」 开始。

影像(成形/导线制作)

制作的第一步是建立出零件间联机的布线。我们采用负片转印(Subtractive transfer)方式将工作底片表现在金属导体上。这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。追加式转印(Additive Pattern transfer)是另一种比较少人使用的方式,这是只在需要的地方敷上铜线的方法,不过我们在这里就不多谈了。

如果制作的是双面板,那么 PCB 的基板两面都会铺上铜箔,如果制作的是多层板,接下来的步骤则会将这些板子黏在一起。

接下来的流程图,介绍了导线如何焊在基板上。

正光阻剂(positive photoresist)是由感光剂制成的,它在照明下会溶解(负光阻剂则是如果没有经过照明就会分解)。有很多方式可以处理铜表面的光阻剂,不过最普遍的方式,是将它加热,并在含有光阻剂的表面上滚动(称作干膜光阻剂)。它也可以用液态的方式喷在上头,不过干膜式提供比较高的分辨率,也可以制作出比较细的导线。

遮光罩只是一个制造中 PCB 层的模板。在 PCB 板上的光阻剂经过 UV 光曝光之前,覆盖在上面的遮光罩可以防止部份区域的光阻剂不被曝光(假设用的是正光阻剂)。这些被光阻剂盖住的地方,将会变成布线。

在光阻剂显影之后,要蚀刻的其它的裸铜部份。蚀刻过程可以将板子浸到蚀刻溶剂中,或是将溶剂喷在板子上。一般用作蚀刻溶剂的有,氯化铁(Ferric Chloride),碱性氨(Alkaline Ammonia),硫酸加过氧化氢(Sulfuric Acid + Hydrogen Peroxide),和氯化铜(Cupric Chloride)等。蚀刻结束后将剩下的光阻剂去除掉。这称作脱膜(Stripping)程序。

您可以由下面的图片看出铜线是如何布线的。

这项步骤可以同时作两面的布线。

钻孔与电镀

如果制作的是多层 PCB 板,并且里头包含埋孔或是盲孔的话,每一层板子在黏合前必须要先钻孔与电镀。如果不经过这个步骤,那么就没办法互相连接了。

在根据钻孔需求由机器设备钻孔之后,孔壁里头必须经过电镀(镀通孔技术,Plated-Through-Hole technology,PTH)。在孔壁内部作金属处理后,可以让内部的各层线路能够彼此连接。在开始电镀之前,必须先清掉孔内的杂物。这是因为树脂环氧物在加热后会产生一些化学变化,而它会覆盖住内部 PCB 层,所以要先清掉。清除与电镀动作都会在化学制程中完成。

多层 PCB 压合

各单片层必须要压合才能制造出多层板。压合动作包括在各层间加入绝缘层,以 及将彼此黏牢等。如果有透过好几层的导孔,那么每层都必须要重复处理。多层 板的外侧两面上的布线,则通常在多层板压合后才处理。

处理阻焊层、网版印刷面和金手指部份电镀

接下来将阻焊漆覆盖在最外层的布线上,这样一来布线就不会接触到电镀部份外了。网版印刷面则印在其上,以标示各零件的位置,它不能够覆盖在任何布线或是金手指上,不然可能会减低可焊性或是电流连接的稳定性。金手指部份通常会镀上金,这样在插入扩充槽时,才能确保高品质的电流连接。

测试

测试 PCB 是否有短路或是断路的状况,可以使用光学或电子方式测试。光学方式采用扫描以找出各层的缺陷,电子测试则通常用飞针探测仪(Flying-Probe)来检查所有连接。电子测试在寻找短路或断路比较准确,不过光学测试可以更容易侦测到导体间不正确空隙的问题。

零件安装与焊接

最后一项步骤就是安装与焊接各零件了。无论是 THT 与 SMT 零件都利用机器 设备来安装放置在 PCB 上。

THT 零件通常都用叫做波峰焊接(Wave Soldering)的方式来焊接。这可以让所有零件一次焊接上 PCB。首先将接脚切割到靠近板子,并且稍微弯曲以让零件能够固定。接着将 PCB 移到助溶剂的水波上,让底部接触到助溶剂,这样可以将底部金属上的氧化物给除去。在加热 PCB 后,这次则移到融化的焊料上,在和底部接触后焊接就完成了。

自动焊接 SMT 零件的方式则称为再流回焊接(Over Reflow Soldering)。里头含有助溶剂与焊料的糊状焊接物,在零件安装在 PCB 上后先处理一次,经过 PCB 加热后再处理一次。待 PCB 冷却之后焊接就完成了,接下来就是准备进行 PCB 的最终测试了。

节省制造成本的方法

为了让 PCB 的成本能够越低越好,有许多因素必须要列入考量:

- 板子的大小自然是个重点。板子越小成本就越低。部份的 PCB 尺寸已经成为标准,只要照着尺寸作那么成本就自然会下降。CustomPCB 网站上有一些关于标准尺寸的信息。
- 使用 SMT 会比 THT 来得省钱,因为 PCB 上的零件会更密集(也会比较小)。
- 另一方面,如果板子上的零件很密集,那么布线也必须更细,使用的设备也相对的要更高阶。同时使用的材质也要更高级,在导线设计上也必须要更小心,以免造成耗电等会对电路造成影响的问题。这些问题带来的成本,可比缩小 PCB 尺寸所节省的还要多。
- 层数越多成本越高,不过层数少的 PCB 通常会造成大小的增加。
- 钻孔需要时间,所以导孔越少越好。
- 埋孔比贯穿所有层的导孔要贵。因为埋孔必须要在接合前就先钻好洞。
- 板子上孔的大小是依照零件接脚的直径来决定。如果板子上有不同类型接脚的零件, 那么因为机器不能使用同一个钻头钻所有的洞,相对的比较耗时间,也代表制造成 本相对提升。
- 使用飞针式探测方式的电子测试,通常比光学方式贵。一般来说光学测试已经足够 保证 PCB 上没有任何错误。

总而言之,厂商在设备上下的工夫也是越来越复杂了。了解 PCB 的制造过程是很有用的,因为当我们在比较主机板时,相同效能的板子成本可能不同,稳定性也各异,这也让我们得以比较各厂商的能力。

好的工程师可以光看主机板设计,就知道设计品质的好坏。您也许自认没那么强,不过下次您拿到主机板或是显示卡时,不妨先鉴赏一下 PCB 设计之美吧!