Tutorial Sheet - Solutions

Bipolar Junction Transistor

- 1. In a npn transistor, 10^8 holes/ μ s move from the base to the emitter region while 10^{10} electrons/ μ s move from the emitter to the base region. An ammeter reads the base current as $I_B = 16\mu$ A.
 - a) Determine the emitter current I_E and the collector current I_C .

The emitter current is found out as the net rate of flow of positive charge into the emitter region:

$$I_E = (1.602 \times 10^{-19} C / \text{hole})(10^8 holes / \mu s) - (-1.602 \times 10^{-19} C / electron)(10^{10} holes / \mu s)$$

$$= (1.602 \times 10^{-19} C / \text{hole})(10^{14} holes / s) - (-1.602 \times 10^{-19} C / electron)(10^{16} holes / s)$$

$$= 1.602 \times 10^{-5} + 1.602 \times 10^{-3}$$

$$I_E = 1.61802 mA$$

Further, by KCL,

$$I_C = I_E - I_B = 1.618 \times 10^{-3} - 16 \times 10^{-6} = 1.602 mA$$

Therefore, emitter current, $I_E = 1.618 \text{ mA}$ and collector current, $I_C = 1.602 \text{ mA}$

b) For the previous example, find the α and β , if the leakage currents are considered negligible, and the described charge flow is constant.

Given data: npn transistor, $I_B = 16\mu A$, $I_E = 1.618mA$, $I_C = 1.602m$

If we assume $I_{CBO} = I_{CEO} = 0$, then

$$\alpha = \frac{I_C}{I_E} = \frac{I_E - I_B}{I_E} = \frac{1.618 - 0.016}{1.618} = 0.9901$$
$$\beta = \frac{I_C}{I_B} = \frac{I_E - I_B}{I_B} = \frac{1.618 - 0.016}{0.016} = 100.125$$

$$\beta = \frac{\alpha}{1-\alpha}$$
 gives the same result.

Therefore, gains, $\alpha = 0.9901$ and $\beta = 100.125$

- 2. A BJT has α =0.99, Base current, I_B =25 μ A, Leakage current, I_{CBO} = 200nA Find the following parameters:
 - i. DC collector Current
 - ii. DC emitter Current
 - iii. % Error in the emitter current when the leakage current is neglected.
 - a) With $\alpha = 0.99$,

$$\beta = \frac{\alpha}{1 - \alpha} = \frac{0.99}{1 - 0.99} = 99$$

$$I_C = \beta I_B + (\beta + 1)I_{CBO} = 99(25 \times 10^{-6}) + (99 + 1)(200 \times 10^{-9}) = 2.495 mA$$

b) The dc emitter current (I_E) is

$$I_E = \frac{I_C - I_{CBO}}{\alpha} = \frac{2.495 \times 10^{-3} - 200 \times 10^{-9}}{0.99} = 2.52 \text{ mA}$$

c) Neglecting the leakage current, we have

$$I_C = \beta I_B = 99(25 \times 10^{-6}) = 2.475 mA$$

 $I_E = \frac{I_C}{\alpha} = \frac{2.475}{0.99} = 2.5 mA$

giving an emitter current error of

$$\frac{2.52 - 2.5}{2.52} \times 100\% = 0.793\%$$

3. In the circuit of Figure, β = 100; I_{BQ} = 20 μ A, V_{CC} =15 V and R_C = 3k. If I_{CBO} = 0, find (a) I_{EQ} b) V_{CEQ} . (c) Find V_{CEQ} if R_C is changed to 6 K Ω and all else remains the same.

a) From
$$\alpha = \frac{\beta}{1+\beta} = 0.9901$$

Now, with I_{CBO}=I_{CEO}=0, we get

$$I_{CQ} = \beta I_{BQ} = 2mA$$

$$I_{EQ} = \frac{I_{CQ}}{\alpha} = \frac{2mA}{0.9901} = 2.02mA$$

b) From an application of KVL around the collector circuit,

$$V_{CBQ} = V_{CC} - I_{CQ}R_C = 15 - (2mA \times 3k) = 9V$$

c) If IBO is unchanged, then ICO is unchanged.

$$V_{CRO} = V_{CC} - I_{CO}R_C = 15 - (2mA \times 6k) = 3V$$

4. For the emitter bias circuit shown below, determine collector current *Ic* (in mA). Assume $V_{BE} = 0.7 \text{ V}$

Consider the unit of I_C, I_B in mA

$$\begin{split} V_E &= I_E \ x \ (1 \ k\Omega) = (I_C + I_B) \ x \ 1 \ k\Omega = I_C + I_B = (1 + \beta) \ I_B = 51 I_B \\ V_B &= 20 - 430 \ I_B \\ V_B - V_E &= 0.7 \ V \\ & \Leftrightarrow \quad 20 - 430 \ I_B - 51 \ I_B = 0.7 \\ & \Leftrightarrow \quad I_C = 50 \ I_B = 2.006 \end{split}$$

5. The transistor in the given circuit should always be in the active region. Take $V_{CE(Sat)} = 0.2$ V, $V_{BE} = 0.7$ V. What is the maximum value of R_c in Ω which can be used?

5 -
$$R_S I_B = V_{BE} = 0.7$$

 $\Rightarrow I_C = 100 I_B = (100*4.3/2) \text{ mA} = 0.215 \text{ A}$

$$5 - R_C I_C = V_{CE} > 0.2$$

$$\Rightarrow$$
 R_C < 4.8/I_C = 22.32 Ω

6. In the circuit of given figure Vcc = 12 V, Vs = 2V, Rc = 4 k Ω , and R = 100 k Ω . The Ge transistor is characterized by β = 50; I_{CEO} = 0, and V = 0.2V. Find the value of R (in k Ω) that just results in saturation if the capacitor is replaced with a short circuit. V_{BE} for germanium transistor = 0.3 V

$$V_B = 2 - 100 I_S$$

$$I_C = \beta (I_S + (12 - 0.3)/R_B) = 12 - V_{CE} / 4$$

$$\Rightarrow$$
 R_B = 278.57 k Ω