MAT137 Lecture 22 — Inverse Functions

Before next class:

Watch videos 4.3, 4.4

Worm up

A worm is crawling accross the table. The path of the worm looks something like this:

True or False?

The position of the worm is a function.

Worm function

A worm is crawling accross the table.

For any time t, let f(t) be the position of the worm. This defines a function f

- (A) What is the domain of f?
- (B) What is the codomain of f?
- (C) What is the range of f?

Function, number, or nonsense?

(I) f(g)(x)

Let f, g be functions. Let x be a number. Classify each expression as a **function**, **number**, or **nonsense**.

expression as a **function**, **number**, or **nonsense**.

(A)
$$f(x)$$
 (J) $f(g(x)f(x))$
(B) $f \circ g$ (K) e^x
(C) $f \circ (g(x))$ (L) $\ln x$
(D) $(f \circ g)(x)$ (M) $\ln (E) f(x) \circ g(x)$ (N) $\sin \circ e^x$

 $(R) \sin^2$

(F)
$$f(x)g(x)$$
 (O) $\sin \circ \ln$
(G) $f(g(x))$ (P) $(\ln \circ \sin)(e^x)$
(H) $f(g)$ (Q) $e^x \circ \sin$

Inverse function from a graph

Absolute value and inverses

Let

$$h(x) = x|x| + 1$$

(A) Calculate
$$h^{-1}(-8)$$
.

Absolute value and inverses

Let

$$h(x) = x|x| + 1$$

- (A) Calculate $h^{-1}(-8)$.
- (B) Sketch the graph of h.
- (C) Find an equation for h^{-1} .
- (D) Sketch the graph of h^{-1} .
- (E) Verify that
 - for every $t \in \boxed{???}$, $h(h^{-1}(t)) = t$.
 - for every $t \in \boxed{???}$, $h^{-1}(h(t)) = t$.

Composition and inverses

Assume for simplicity that all functions in this problem have domain \mathbb{R} .

Let f and g be functions. Assume they each have an inverse.

Is
$$(f \circ g)^{-1} = f^{-1} \circ g^{-1}$$
?

- If YES, prove it.
- If NO, fix the statement.

Composition and inverses

Assume for simplicity that all functions in this problem have domain \mathbb{R} .

Let f and g be functions. Assume they each have an inverse.

Is
$$(f \circ g)^{-1} = f^{-1} \circ g^{-1}$$
?

- If YES, prove it.
- If NO, fix the statement.

If you do not know how to start, experiment with the functions

$$f(x) = x + 1, \qquad g(x) = 2x.$$

MAT137 Lecture 23 — Inverse Functions II

Warmup:

f is defined so that for $t \in \mathbb{R}$, we have f(t) = (|t|, -|t|). g is defined so that for $t \in \mathbb{R}$, we have $g(t) = \pm |t|$.

For each of f and g, find a domain/codomain such that they are a function, or explain why you can't.

Before next class:

Watch videos 4.5, 4.7, 4.8, 4.9

Fill in the Blank

Given that f is an invertible function, fill in the blanks.

- (A) If f(-1) = 0, then $f^{-1}(0) = ---$.
- (B) If $f^{-1}(2) = 1$, then f(1) = ---.
- (C) If (2,3) is on the graph of f, then —— is on the graph of f^{-1} .
- (D) If is on the graph of f, then (-2,4) is on the graph of f^{-1} .

Where is the error?

• We know that
$$\left| (f^{-1})' = \frac{1}{f'} \right|$$

• Let $f(x) = x^2$, restricted to the domain $x \in (0, \infty)$

$$f'(x) = 2x$$
 and $f'(4) = 8$

• Then $f^{-1}(x) = \sqrt{x}$

$$(f^{-1})'(x) = \frac{1}{2\sqrt{x}}$$
 and $(f^{-1})'(4) = \frac{1}{4}$

• So
$$(f^{-1})'(4) \neq \frac{1}{f'(4)}$$

Derivatives of the inverse function

Let f be a one-to-one function. Let $a, b \in \mathbb{R}$ such that b = f(a).

(A) Obtain a formula for $(f^{-1})'(b)$ in terms of f'(a).

Hint: This was done in Video 4.4

Take $\frac{d}{dy}$ of both sides of $f(f^{-1}(y)) = y$.

- (B) Obtain a formula for $(f^{-1})''(b)$ in terms of f'(a) and f''(a).
 - (C) Challenge: Obtain a formula for $(f^{-1})'''(b)$ in terms of f'(a), f''(a), and f'''(a).

Assume for simplicity that all functions in this problem have domain \mathbb{R} . Prove the following theorem.

Theorem A

Let f and g be functions.

IF f and g are one-to-one,

THEN $f \circ g$ is one-to-one.

Suggestion:

- (A) Write the definition of what you want to prove.
- (B) Figure out the formal structure of the proof.
- (C) Complete the proof (use the hypotheses!)

MAT137 Lecture 24 — Exponentials and Logarithms

Before next class:

Watch videos 4.12, 4.13, 4.14

Computations - Exponentials and logarithms

Compute the derivative of the following functions:

(A)
$$f(x) = e^{\sin x + \cos x} \ln x$$

(B)
$$f(x) = \pi^{\tan x}$$

(C)
$$f(x) = \ln [e^x + \ln \ln \ln x]$$

(D)
$$f(x) = \log_{10}(2x + 3)$$

Logarithm and Absolute Value

The function F is defined by the equation

$$F(x) = \ln |x|$$
.

What is its derivative?

$$(A) F'(x) = \frac{1}{x}$$

(B)
$$F'(x) = \frac{1}{|x|}$$

(C) F is not differentiable

Logarithmic differentiation

Calculate the derivative of

$$g(x) = x^{\tan x}$$
.

More logarithmic differentiation

Calculate the derivative of

$$f(x) = (\sin x)^{\cos x} + (\cos x)^{\sin x}.$$

More logarithmic differentiation

Calculate the derivative of

$$f(x) = (\sin x)^{\cos x} + (\cos x)^{\sin x}.$$

What is wrong with this answer?

$$\ln f(x) = (\cos x) \ln(\sin x) + (\sin x)(\ln \cos x)$$

$$\frac{d}{dx} \left[\ln f(x) \right] = \frac{d}{dx} \left[(\cos x) \ln(\sin x) \right] + \frac{d}{dx} \left[(\sin x)(\ln \cos x) \right]$$

$$\frac{f'(x)}{f(x)} = -(\sin x) \ln(\sin x) + (\cos x) \frac{\cos x}{\sin x}$$

$$+ (\cos x) \ln(\cos x) + (\sin x) \frac{-\sin x}{\cos x}$$

$$f'(x) = f(x) \left[-(\sin x) \ln(\sin x) + (\cos x) \ln(\cos x) + \frac{\cos^2 x}{\sin x} - \frac{\sin^2 x}{\cos x} \right]$$

Cue Boss Music

Calculate the derivative of

$$h(x) = \sqrt[3]{\frac{\left(\sin^6 x\right)\sqrt{x^7 + 6x + 2}}{3^x \left(x^{10} + 2x\right)^{10}}}$$

MAT137 Lecture 25 — Inverse Trig

Before next class:

Watch videos 5.2, 5.3, 5.4

Definition of arctan

- (A) Sketch the graph of tan.
- (B) Prove that tan is not one-to-one.
- (C) Select the largest interval containing 0 such that the restriction of tan to it is one-to-one. We define arctan as the inverse of this restriction. Let $x, y \in \mathbb{R}$

$$arctan y = x \iff ???$$

- (D) What is the domain of arctan? What is the range of arctan? Sketch the graph of arctan.
- (E) Compute
 - (E) $\arctan(\tan(1))$ (E) $\arctan(\tan(-6))$ (E) $\arctan(\arctan(0))$
 - (E) $\arctan\left(\tan\left(\frac{\pi}{2}\right)\right)$ (E) $\tan\left(\arctan\left(10\right)\right)$

Trig-inverse-trig

Find simple expressions for these quantities and state the domain on which they are valid:

```
(A) \sin (\arccos x) (C) \sec (\arctan x)
(B) \sec (\arccos x) (D) \tan (\arccos x)
```

Trig-inverse-trig

Find simple expressions for these quantities and state the domain on which they are valid:

```
(A) \sin (\arccos x) (C) \sec (\arctan x)
(B) \sec (\arccos x) (D) \tan (\arccos x)
```

Hint: There are two standard ways to attack these problems:

- Use a trig identity
 e.g.: a trig identity relating sin and cos for (1)
- Or draw a right triangle with side lengths 1 and x e.g.: with an angle θ such that $\cos \theta = x$ for (1)

If you need to take a square root, you must justify which branch $\left(+ \text{ or } -\right)$ you are choosing.

Finding a Restricted Domain on which a Function is Invertible

- (A) Find the largest interval containing 0 on which f is invertible.
- (B) Find the largest interval containing 1 on which f is invertible.

Functions, inverses, and graphs

Sketch the graph of a function g satisfying all the following properties:

- (A) The domain of g is \mathbb{R} .
- (B) g is continuous everywhere except at -2.
- (C) g is differentiable everywhere except at -2 and 1.
- (D) g has an inverse function.
- (E) g(0) = 2
- (F) g'(0) = 2
- (G) $(g^{-1})'(-3) = -2$.

Functions, inverses, and graphs - 2

Draw the graph of a function f satisfying all of the following:

- (A) The domain of f is \mathbb{R} .
- (B) f is differentiable everywhere.
- (C) The restriction of f to $[0, \infty)$ is one-to-one, and its INVERSE has a vertical tangent line at 2.
- (D) The restriction of f to $(-\infty, 0]$ is one-to-one, and its INVERSE has derivative 2 at 2.

Assume for simplicity that all functions in this problem have domain \mathbb{R} . Prove the following theorem.

Theorem B

Let f and g be functions.

IF $f \circ g$ is one-to-one, THEN g is one-to-one.

Assume for simplicity that all functions in this problem have domain \mathbb{R} . Prove the following theorem.

Theorem B

Let f and g be functions.

IF $f \circ g$ is one-to-one, THEN g is one-to-one.

Suggestion:

(A) Transform the " $P \implies Q$ " theorem into an equivalent "(not Q) \implies (not P)" theorem. You will prove that one instead.

Assume for simplicity that all functions in this problem have domain \mathbb{R} . Prove the following theorem.

Theorem B

Let f and g be functions.

IF $f \circ g$ is one-to-one, THEN g is one-to-one.

Suggestion:

- (A) Transform the " $P \implies Q$ " theorem into an equivalent "(not Q) \implies (not P)" theorem. You will prove that one instead.
- (B) Write the definition of the hypotheses and of the conclusion.
- (C) Write the proof.

Assume for simplicity that all functions in this problem have domain \mathbb{R} .

Prove the following claim is FALSE with a counterexample.

Claim

Let f and g be functions.

IF $f \circ g$ is one-to-one,

THEN f is one-to-one.

Increasing and one-to-one

Definition

Let f be a function with domain D. We say that f is increasing on D when

$$\forall x_1, x_2 \in D, \quad x_1 < x_2 \implies f(x_1) < f(x_2).$$

(A) Prove that if a function is increasing, then it is one-to-one.

Increasing and one-to-one

Definition

Let f be a function with domain D. We say that f is increasing on D when

$$\forall x_1, x_2 \in D, \quad x_1 < x_2 \implies f(x_1) < f(x_2).$$

- (A) Prove that if a function is increasing, then it is one-to-one.
- (B) Use this to show that $g(x) = x^5 + 4x^3 + 2x + 1$ has an inverse.
- (C) Find $(g^{-1})'(1)$.

A different type of logarithm

Calculate the derivative of

$$f(x) = \log_{x+1}(x^2 + 1)$$

Note: This is a new function. We have not given you a formula for it yet, That is on purpose.

A different type of logarithm

Calculate the derivative of

$$f(x) = \log_{x+1}(x^2 + 1)$$

Note: This is a new function. We have not given you a formula for it yet, That is on purpose.

Hint: If you do not know where to start, remember the definition of logarithm:

$$\log_a b = c \iff a^c = b.$$

An Implicit Function

Find y' if $x^y = y^x$.

Derivative of arctan

Obtain (and prove) a formula for the derivative of arctan.

Hint: Call
$$f(t)$$
 = arctan t and differentiate

$$\forall t \in \dots$$
 $tan(f(t)) = t$

Computations - Inverse trig functions

Compute the derivatives of these functions, and simplify them as much as possible:

(A)
$$f(x) = \arcsin\left(x^{3/2}\right)$$

(B)
$$f(x) = 2x^2 \arctan(x^2) - \ln(x^4 + 1)$$

- (A) Complete: "We define arcsec as the inverse of the restriction of sec to ..." Hint: Sketch the graph of sec.
- (B) What are the domain and range of arcsec? Sketch its graph.
- (C) Obtain (and prove) a formula for the derivative of arcsec in the same way you did for arctan.
- (D) Now obtain the same formula in a different way: use $\sec x = \frac{1}{\cos x}$ to write arcsec in terms of arccos.