Python – ESP32 (Aula 3)

Instrumentação Eletrotecnia Aplicada

IEA 2021-2022

A Borges

Conceitos gerais

- Python
- Python instalação
- IDE : Integrated Development Environment (Ambiente de Desenvolvimento Integrado)

Python

- Linguagem generalista, possível de utilizar num vasto conjunto de disciplinas: biologia, química, finanças, analise numérica, robótica, etc;
- www.python.org
- Linguagens de alto nível (C, C++, Visual Basic, etc)
- Linguagens interpretadas (Python, Matlab, etc)
- Linguagens gráficas (LabVIEW)

Thonny - Instalação

1. Instalação Python (Windows)

https://www.python.org/downloads/release/python-3102/

2. Instalação do IDE Pythom-ESP32

https://thonny.org

MicroPython (Thonny) - Instalação

3. Instalar o **Drive do ESP32**

https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers

CP210x Windows Drivers

Confirmar no **Gestor de Disposit**ivos se está corretamente instalado e associado a uma porta série (**COM3**... Por exemplo)

4. Dowload Firmware (ESP32)

https://micropython.org/download/esp32/

5. Instalação plug-ins

Tools -> Manage plug-ins -> esptool

https://pypi.org/project/esptool/

na linha de comandos do Windows, instalar o Esptools

pip install esptool

6. Selecionar MicroPython(ESP32)

Tools -> Interpreter -> MicroPython(ESP32)

Selecionar a porta e eventualmente realizar o upload do firmware

Firmware

Releases

v1.17 (2021-09-02) .bin [.elf] [.map] [Release notes] (latest) v1.16 (2021-06-23) .bin [.elf] [.map] [Release notes] v1.15 (2021-04-18) .bin [.elf] [.map] [Release notes] v1.14 (2021-02-02) .bin [.elf] [.map] [Release notes] v1.13 (2020-09-02) .bin [.elf] [.map] [Release notes] v1.12 (2019-12-20) .bin [.elf] [.map] [Release notes]

Nightly builds

v1.17-333-gcf258c898 (2022-01-15) .bin [.elf] [.map] v1.17-330-g895738625 (2022-01-14) .bin [.elf] [.map] v1.17-325-gf2ccf87e0 (2022-01-13) .bin [.elf] [.map] v1.17-322-qb47b245c2 (2022-01-12) .bin [.elf] [.map]

Firmware (Compiled with IDF 3.x)

Releases

```
v1.14 (2021-02-02) .bin [.elf] [.map] [Release notes] (latest) v1.13 (2020-09-02) .bin [.elf] [.map] [Release notes] v1.12 (2019-12-20) .bin [.elf] [.map] [Release notes] v1.11 (2019-05-29) .bin [.elf] [.map] [Release notes] v1.10 (2019-01-25) .bin [.elf] [.map] [Release notes] v1.9.4 (2018-05-11) .bin [.elf] [.map] [Release notes]
```


IEA 2021-2022 A Borges – M Santos

Python – ESP32 (Aula 3)

MicroPython

IEA 2021-2022

A Borges

MicroPyhon (ESP32):

Tools -> Options... -> Interpreter -> Seleccionar MicroPython (ESP32)

MicroPyhon (ESP32): Diagrama

IEA 2021-2022 A Borges – M Santos

Resumo Instruções

```
print ('Hello World')
print ('\n')
A = input ('Qual o seu animal de estimação?')
Funções de conversão: int(), float(), str(), bool()
Operações matemática:
                             + - * / //(div inteira) % (resto) ** (exp)
Operadores lógicos:
                             not and or
Instruções de comparação:
                             == != > < >= <=
if <cond 1>:
                            try:
  #
                            except:
elif <cond 2>:
                            else:
else:
while <cond>:
  break
```

```
def <nomefunção> (param in):
     # função
     return <par1, par 2, etc>
 x1, x2, etc = nomefunção (par in)
for aux in range(1,10,2):
   print (aux)
from time import sleep
sleep(1)
from datetime import datetime
now = datetime.now()
current_time = now.strftime("%Y-%M-%d %H:%M:%S")
# Abertura ficheiro
f = open ("Demo2.txt","w") # outros acessos: a, x
f.write ('Escreve uma linha em ficheiro de texto... \n')
f.write ('escreve outra linha em ficheiro de texto... \n')
f.close
# Visualiza o que escreveu em ficheiro de texto
f = open ("Demo2.txt","r")
xx = f.read()
print (xx)
f.close
```


Leitura data e hora (MicroPython)

```
import utime as time

# Read date and time
aux = time.gmtime()
print (aux)

# format date and time
name = '{:04d}-{:02d}-{:02d} {:02d}:{:02d}:{:02d} '.format(aux[0],aux[1],aux[2],aux[3],aux[4],aux[5],)
print (name)

[Resultado]
>>> print (aux)
(2022, 3, 12, 20, 20, 54, 5, 71)
```

Exemplo 1

```
# Leitura da Data-Hora MicroPython
# 12 Março 2022
import utime as time
now = time.gmtime()
ff = '{:04d}-{:02d}-{:02d} {:02d}:{:02d}:.format(now[0],now[1],now[2],now[3],now[4],now[5])
print ( ff )
```


MicroPyhon: Pisca Pisca

Exemplo 2

```
# Led pisca/pisca
# 19 Março 2022

from time import sleep
from machine import Pin

# configuração pin de saída
led = Pin ( 2,Pin.OUT )
led.value ( True )

xx = input ( 'Digite uma tecla para iniciar :' )
aux = 0
while True:
    led.value ( not led.value() )
    sleep ( 0.5 )
    aux = aux + 1
    print ( aux, ' -> ', bool(led.value()) )
```


Notas:

Pisca de 0,5 segundos - ciclo infinito

MicroPyhon: Semáforos (Exercício 3)

Funcionamento do Semáforo:

Implementar um semáforo:

- Verde (GPIO 2): 10 segundos
- Amarelo (GPIO 4): 2 segundos
- Vermelho (GPIO 5): 3 segundos

Utilizar um contador (aux) e uma pausa de 0,5 segundo (sleep)

Apresentar na janela de comando o estado dos semáforos:

```
MicroPython v1.18 on 2022-01-17; ESP32 module with ESP32
Type "help()" for more information.
>>> %Run -c $EDITOR_CONTENT
  Digite uma tecla para iniciar...
  Estado: 01 - S Verde: True - S Am: False - S Vermelho: False
  Estado: 02 - S Verde: True - S Am: False - S Vermelho: False
  Estado: 03 - S Verde: True - S Am : False - S Vermelho: False
  Estado: 04 - S Verde: True - S Am: False - S Vermelho: False
  Estado: 05 - S Verde: True - S Am : False - S Vermelho: False
  Estado: 06 - S Verde: True - S Am: False - S Vermelho: False
  Estado : 07 - S Verde : True - S Am : False - S Vermelho : False
  Estado: 08 - S Verde: True - S Am: False - S Vermelho: False
  Estado: 09 - S Verde: True - S Am: False - S Vermelho: False
  Estado : 10 - S Verde : True - S Am : False - S Vermelho : False
  Estado : 11 - S Verde : True - S Am : False - S Vermelho : False
  Estado : 12 - S Verde : True - S Am : False - S Vermelho : False
  Estado : 13 - S Verde : True - S Am : False - S Vermelho : False
  Estado : 14 - S Verde : True - S Am : False - S Vermelho : False
  Estado : 15 - S Verde : True - S Am : False - S Vermelho : False
  Estado : 16 - S Verde : True - S Am : False - S Vermelho : False
  Estado : 17 - S Verde : True - S Am : False - S Vermelho : False
  Estado : 18 - S Verde : True - S Am : False - S Vermelho : False
  Estado : 19 - S Verde : True - S Am : False - S Vermelho : False
  Estado : 20 - S Verde : True - S Am : False - S Vermelho : False
  Estado : 21 - S Verde : True - S Am : False - S Vermelho : False
  Estado : 22 - S Verde : False - S Am : True - S Vermelho : False
  Estado : 23 - S Verde : False - S Am : True - S Vermelho : False
  Estado : 24 - S Verde : False - S Am : True - S Vermelho : False
  Estado : 25 - S Verde : False - S Am : True - S Vermelho : False
  Estado : 26 - S Verde : False - S Am : True - S Vermelho : False
```


IEA 2021-2022 A Borges – M Santos

MicroPyhon: Leitura Entradas Digitais

Exemplo 4

```
GIOP2
```


MicroPyhon: Semáforos (Exercício 5)

Funcionamento do Semáforo:

Implementar um semáforo:

- Verde (GPIO 2): 10 segundos
- Amarelo (GPIO 4): 2 segundos
- Vermelho (GPIO 5): 3 segundos

Utilizar um contador (aux) e uma pausa de 0,5 segundo (sleep)

Apresentar na janela de comando o estado dos semáforos:

Alterar o exercício 3, para funcionar apenas enquanto a entrada GPIO 15 – estiver ligada.

O ciclo só deve terminar, quando o contador (Estado)>30 e a entrada GPIO 15 estiver desligada. Utilizar uma variável booleana auxiliar (ciclo)

```
>>> %Run -c $EDITOR CONTENT
  Digite uma tecla para iniciar...
  Estado: 01 - Button 1 (Ligado) - S Verde: True - S Am: False - S Vermelho: False
  Estado: 02 - Button 1 (Ligado) - S Verde: True - S Am: False - S Vermelho: False
  Estado: 03 - Button 1 (Ligado) - S Verde: True - S Am: False - S Vermelho: False
  Estado: 04 - Button 1 (Ligado) - S Verde: True - S Am: False - S Vermelho: False
  Estado : 05 - Button 1 (Ligado) - S Verde : True - S Am : False - S Vermelho : False
  Estado : 06 - Button 1 (Ligado) - S Verde : True - S Am : False - S Vermelho : False
  Estado: 07 - Button 1 (Ligado) - S Verde: True - S Am: False - S Vermelho: False
  Estado: 08 - Button 1 (Ligado) - S Verde: True - S Am: False - S Vermelho: False
  Estado: 09 - Button 1 (Ligado) - S Verde: True - S Am: False - S Vermelho: False
  Estado : 10 - Button 1 (Ligado) - S Verde : True - S Am : False - S Vermelho : False
  Estado : 11 - Button 1 (Ligado) - S Verde : True - S Am : False - S Vermelho : False
  Estado : 12 - Button 1 (Ligado) - S Verde : True - S Am : False - S Vermelho : False
  Estado: 13 - Button 1 (Ligado) - S Verde: True - S Am: False - S Vermelho: False
  Estado : 14 - Button 1 (Ligado) - S Verde : True - S Am : False - S Vermelho : False
  Estado: 15 - Button 1 (Ligado) - S Verde: True - S Am: False - S Vermelho: False
  Estado: 16 - Button 1 (Ligado) - S Verde: True - S Am: False - S Vermelho: False
  Estado: 17 - Button 1 (Ligado) - S Verde: True - S Am: False - S Vermelho: False
  Estado: 18 - Button 1 (Ligado) - S Verde: True - S Am: False - S Vermelho: False
  Estado: 19 - Button 0 (Ligado) - S Verde: True - S Am: False - S Vermelho: False
  Estado: 20 - Button 0 (Desligado) - S Verde: True - S Am: False - S Vermelho: False
  Estado : 21 - Button 0 (Desligado) - S Verde : True - S Am : False - S Vermelho : False
  Estado: 22 - Button 0 (Desligado) - S Verde: False - S Am: True - S Vermelho: False
```


IEA 2021-2022 A Borges – M Santos

MicroPyhon: Leitura Entrada Analógica

- ADC Analogic Digital Converter
- Conversor analógico digital 0 a 3.3 V
- 12 Bits 2¹² 4096 pontos
- Corresponde a 3.3 V / 4096 = 0,000805 V

Programa para leitura entrada analógica:

from machine import Pin, ADC

```
pot = ADC(Pin(33))  # criação do objeto
pot.atten (ADC.ATTN_11DB)  # full range 3.3V

xx = pot.read()
print ('Valor ADC : ', xx )
```

Exercício 6:

Ciclo com 100 leituras da entrada analógica, visualização do valor numérico e do valor convertido para tensão.

MicroPyhon: Conversão Tensão de entrada (ddp) em °C

$$T = a_0 + a_1 v + a_2 v^2 \dots + a_9 v^9 = \sum_{i=0}^{9} a_i v^i$$

Sensores para a medição de temperatura:

- Termopares podem utilizar-se diferentes tipos de termopares, em função dos materiais utilizados (por exemplo Tipo K, Tipo J, etc.).
- Sondas de temperaturas resistivas (Ex. PT100)
- PTC e NTC (Sensores de temperatura baseados em materiais semicondutores)

Tabela de tensões vs temperatura para um termopar tipo J, expressa em mV. A junção de referência está a 0°C

°C	0	1	2	3	4	5	6	7	8	9	10
0	0.000	0.050	0.101	0.151	0.202	0.253	0.303	0.354	0.405	0.456	0.507
10	0.507	0.558	0.609	0.660	0.771	0.762	0.813	0.865	0.916	0.967	1.019
20	1.019	1.070	1.122	1.174	1.225	1.277	1.329	1.381	1.432	1.484	1.536
30	1.536	1.588	1.640	1.693	1.745	1.797	1.849	1.901	1.954	2.006	2.058
40	2.058	2.111	2.163	2.216	2.268	2.321	2.374	4.426	2.479	2.532	2.585
50	2.585	2.638	2.691	2.743	2.796	2.849	2.902	2.956	3.009	3.062	3.115
60	3.115	3.168	3.221	3.275	3.328	3.381	3.435	3.488	3.542	3.595	3.649
70	3.649	3.702	3.756	3.809	3.863	3.917	3.971	4.024	4.078	4.132	4.186
80	4.186	4.239	4.293	4.347	4.401	4.455	4.509	4.563	4.617	4.671	4.725
90	4.725	4.780	4.834	4.888	4.942	4.996	5.050	5.105	5.159	5.213	5.268
100	5.268	5.322	5.376	5.431	5.485	5.540	5.594	5.649	5.703	5.758	5.812

Coeficientes para diversos tipos de termopares

Exac.	Tipo E	Tipo J	Tipa K	Tipo R	Tipo S	Tipo T
	- 100/1000° C	0/7 60° C	0/1370°C	0/1000°C	0/1750°C	- 160/400° C
	± 0,5° C	± 0,1°C	± 0,7°C	± 0,5°C	± 1°C	± 0,5° C
30 31 32 33 34 35 36 37 38	0,1049673 17189,453 282639,08 12695339,5 - 4487/3085 1,1086E + 10 - 1,76807E + 11 1,771842E + 12 - 9,19278E + 12 2,06132E + 13	- 0,0488683 19873,145 - 218614,54 11569199,8 - 264917531 2018441314	0,2265846 24152,109 67233,425 2210340,7 - 860963915 4,83506E + 10 - 1,18452E + 12 1,38690E + 13 - 6,33708E + 13	0,2636329 179075,491 - 48840341,37 1,90002E + 10 - 4,8270E + 12 7,6209 1E + 14 - 7,20026E + 16 3,71496E + 18 - 8,03104E + 19	0,9277632 169526,51 - 31568364 8990730663 - 1,6356E + 12 1,83027E + 14 - 1,3724E + 16 6,1750E + 17 - 1,56105E + 19 1,69535E + 20	0,1008609 25727,944 - 767345,93 78025596 - 9247486589 6,97688E + 11 - 2,6619E + 13 3,9408E + 14

IEA

MicroPyhon: Conversão Tensão de entrada (ddp) em °C

Conversão mV -> °C (utilização de um termopar tipo J)

- O sinal deve ser amplificado de 15mV (para temperaturas entre os 0 e os 300°C) -> 3,3V (tensão máxima da entrada do ESP32, com uma resolução de 12 bits, ou seja de 0 a 3,3V, corresponde uma variação entre os 0 e 4095)
- Utilizar um ganho de 200
- Na simulação não teremos este valor, simular com : AnalogIn [0..4095] = (In*4095)/3300 ;
- Converter em mV(0..3300mV] = (3300*AnalogIn)/4095;
- Converter no valor original sem amplificação: mV(2) = mV/200;
- Utilizar este valor no polinómio de conversão

$$T = a_0 + a_1 v + a_2 v^2 \dots + a_9 v^9 = \sum_{i=0}^{9} a_i v^i$$

Exercício 7:

Implementar o polinómio de conversão mV em °C

MicroPyhon: Conversão Tensão de entrada (ddp) em °C

$$T = a_0 + a_1 v + a_2 v^2 \dots + a_9 v^9 = \sum_{i=0}^{9} a_i v^i$$

Exercício 7:

Implementar o polinómio de conversão mV em °C

- O valor do termopon de 0..10m√,
 e' amplificado 200*
- · A ldp (TENSAT) 0. 3.3V DEVE STA VIVINIDA POR 200, PARA PODERMOS APLICAR O POLINÓRIO DE CONVENSA

PRG DE CONVERSÃO

- 1. LEITURA DA TENÇAT [V]

 [XX]

 2. DIN 1847 PELO CANHO [/200] [V= XX/200]
- 3. Allicació do POLINOMO DE CONVENCAT

$$C = a_0 + a_1 * V + a_2 * (V * * * 2) + ...$$

$$a_3 * (V * 3) + a_4 * (V * * 4) + ...$$

IEA 2021-2022

Python – ESP32

Notas Várias

IEA 2021-2022

A Borges

Sistemas de numeração

Sistemas de numeração:

Decimal (Base 10: 0,1,2,3,4,5,6,7,8,9);

 $1998 = 1*10^{3} + 9*10^{2} + 9*10^{1} + 8*10^{0}$

Binário (Base 2: 0,1);

Octal (Base 8: 0,1,2,3,4,5,6,7);

O Hexadecimal (Base 16: 0,..9,A,B,C,D,E,F)

- Bit unidade mínima de informação dos sistemas digitais;
 - **B**inary Dig**it** (BIT) (0 1) (2¹)
- Byte 8 bits -> (256 = 28)
- 1 Byte = 8 bits
- 1 Kbyte = 1024 bytes
- 1 Mbyte = 1024 Kbytes
- 1 Gbyte = 1024 Mbytes
- 1 Tbyte = 1024 Gbytes

Sistemas de numeração

Conversão de binária/decimal:

Conversão Binária->Decimal

Conversão Decimal->Binária

Bibliografia

Learn to Program with Python 3 - A Step-by-Step Guide to Programming -Second Edition

https://www.zerynth.com/zsdk/

[IDE-Zerinth]

https://www.open-electronics.org/python-on-esp32-easy-for-beginners-powerful-for-professionals/

https://thonny.org

https://www.w3schools.com/python/

https://docs.micropython.org

https://wokwi.com [Simulação de circuitos]

