1 Review

Definition 1 Let $T: V \to W$ be a linear map between V, W inner product spaces, with inner products $\langle \cdot, \cdot \rangle_V$ and $\langle \cdot, \cdot \rangle_W$ respectively. We call a linear map $T^*: W \to V$ the adjoint of T and denote it with T^* if it has the following property:

$$\langle w, Tv \rangle_W = \langle T^*w, v \rangle_V \tag{1}$$

Theorem 1 Let V, W be finite dimensional inner product spaces and $T: V \to W$. Then the adjoint of T always exists, is a unique linear map. Let $v_1, ..., v_m$ and $w_1, ..., w_m$ be orthonormal bases for V and W. Then T^* is defined via:

$$T^* w_j = \langle Tv_1, w_j \rangle v_1 + \dots + \langle Tv_m, w_j \rangle v_m$$

$$= \sum_{i=1}^m \langle Tv_i, w_j \rangle v_i$$
(2)

Definition 2 An operator $T: V \to is$ called self adjoint (or Hermitian) if $T = T^*$

Definition 3 Let T be an operator over V. A vector $v \in V$ is called an eigenvector of T if $Tv = \lambda v$. The number λ is called the eigenvalue of v.

Theorem 2 The Spectral Theorem: Let V be a finite dimensional inner product space over \mathbb{C} . Let T be a self adjoint operator, then T has a basis of orthonormal eigenvectors with real eigenvalues.

2 Review of things you have not yet learned

Definition 4 Let X be a set. A metric on X is a function with the following properties

$$d: X \times X \to \mathbb{R} \tag{3}$$

- $i) \ d(x,y) \ge 0 \quad \forall x,y \in X$
- ii) Distance from point to self: d(x,y) = 0 if and only if x = y
- iii) Symmetry: d(x,y) = d(y,x)
- iv) Triangle Inequality: $d(x,z) \le d(x,y) + d(y,z) \quad \forall x,y,z \in X$

Theorem 3 Let V be an inner product space. Then we can define a metric using the norm induced by the inner product:

$$d(x,y) = ||x - y||$$

Definition 5 Let X be a metric space and $x_1, ..., x_n, ...$ be some sequence in X. A sequence x_i is called a Cauchy sequence if for any $\varepsilon > 0$ exists $N \in \mathbb{N}$ such that

$$\forall m, n \geq N \quad d(x_m, x_n) < \varepsilon$$

Definition 6 A vector space with a metric is called complete if any cauchy sequence has a limit.

Definition 7 Let V be a vector space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} with a metric. A set of linearly independent vectors $\{v_1, ..., v_i, ...\}$ is called a Schauder basis if for any $v \in V$ there exists a unique sequence α_i such that:

$$\sum_{j=1}^{n} \alpha_j v_j \xrightarrow{n \to \infty} v$$

Where we take the limit in the topology induced by the metric from the inner product (usual definition from fist year, where we replace | / with | / | / |).

Definition 8 An complete inner product space is called a Hilbert Space.

3 Suggested Exercises

- I) (Understanding the Adjoint) Let $T: V \to W$ be a linear map between two (potentially infinite dimensional) inner product spaces.
 - i) Suppose T^* exists. Prove that it must be unique. Hint: Note that w and v in the defining property are arbitrary. Use properties of inner product.
 - ii) Now suppose V and W are finite dimensional. Show that T^* as defined in equation (2) satisfies the property in (1).

iii)

- II) (Fun Facts) Let $T: V \to V$ be a linear operator, with V over \mathbb{C} .
 - (a) Without using the spectral theorem prove that the eigenvalues of a self adjoint operator are real.
 - (b) Without using the spectral theorem, prove that if T is self adjoint and u, v are its distinct eigenvectors, then u is orthogonal to v.
 - (c) Notice that

$$\langle Tu, w \rangle = \frac{\langle T(u+w), u+w \rangle - \langle T(u-w), u-w \rangle}{4} + \frac{\langle T(u+iw), u+iw \rangle - \langle T(u-iw), u-iw \rangle}{4}$$

Now use this to prove that if $\langle Tv, v \rangle = 0 \forall v$ then T = 0.

(d) Prove that T is self adjoint if and only if $\langle Tv, v \rangle \in \mathbb{R} \quad \forall v \in V$

III) (Spectral Theorem)

- i) Review the proof of the fact that any operator on V over \mathbb{C} with V finite dimensional, has a basis in which it is upper triangular
- ii) Review the Gram-Schmidt procedure
- iii) Prove that $_{\alpha}\mathcal{M}_{\alpha}(T^*) = _{\alpha}\mathcal{M}_{\alpha}(T)^{\dagger}$, where α is an orthonormal basis and \dagger means the conjugate and transpose of a matrix (i.e. you take the transpose and take complex conjugate of each entry).
- iv) Prove the Spectral Theorem
- v) Prove by direct computation that the eigenvalues of a Hermitian 2×2 matrix are real.

IV) (The Schauder Basis)

- i) Prove that any basis over finite dimensional V is also a Schauder basis 1 .
- ii) Let $v_1, ..., v_n, ...$ be an orthonormal Schauder basis. Then fix $v \in V$ with

$$v = \sum_{i=1}^{\infty} \alpha_i v_i$$

Prove that $\alpha_i = \langle v, v_i \rangle$

- iii) Now define $S_n = \sum_{i=1}^n \alpha_i v_i$. Prove that this is the vector $v \in \text{span}(v_1, ..., v_n)$ that has the minimal distance to v Hint: Compute the distance between v and S_n and then complete the square in an easy way somewhere. No need to expand v in terms of anything.
- V) Bonus Exercise: (l^2 space) We define l^2 to be the space of all square summable sequences:

$$l^2 = \{(x_1, ..., x_n, ...) \mid \sum_{i=1}^{\infty} |x_i|^2 < \infty\}$$

This is an inner product vector space (where addition is defined componentwise and multiplication is defined by multiplying all entries. The inner product is defined via:

$$\langle (x_1, ..., x_n, ...), (y_1, ..., y_n, ...) \rangle = x_1 \overline{y_1} + ... + x_n \overline{y_n} + ...$$

¹You can read more about complete metric spaces and separable Hilbert spaces in "Elements of the Theory of Functions and Functional Analysis" by Kolmogorov and Fomin.

- i) Write down an orthonormal Schauder basis for the space above. Prove that it is indeed a Schauder basis.
- ii) Use the Cauchy-Schwarz inequality over \mathbb{C}^n to show that the inner product above is well defined i.e. is finite (Hint: Use the Cauchy-Schwarz on finite dimensional subspaces and then take a limit.)
- iii) Prove that this is indeed a Hilbert Space.

VI) (Reading)

 \bullet Read Introduction and Statement of Postulates in Chapter III of Cohen-Tannoudji Quantum Mechanics Volume I & II upto the time evolution section (p.215-p.222)