

(12)特許協力条約に基づいて公開された国際

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004 年4 月1 日 (01.04.2004)

PCT

(10) 国際公開番号 WO 2004/028073 A.1

(51) 国際特許分類7:

H04L 9/08

(21) 国際出願番号:

PCT/JP2003/012022

(22) 国際出願日:

2003 年9 月19 日 (19.09.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2002-276306 2002 年9 月20 日 (20.09.2002) J

(71) 出願人 (米国を除く全ての指定国について): パイオニア株式会社 (PIONEER CORPORATION) [JP/JP]; 〒153-8654 東京都 目黒区 目黒 1 丁目 4 番 1 号 Tokyo (JP). (72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 竹村 到\TAKE-MURA,Itaru) [JP/JP];\〒359-8522 埼玉県 所沢市 花園 4 丁目 2 6 1 0番地パイオニア株式会社 所沢工場内 Saitama (JP). 吉田 和幸(YOSHIDA,Kazuyuki) [JP/JP]; 〒359-8522 埼玉県 所沢市 花園 4 丁目 2 6 1 0番地パイオニア株式会社 所沢工場内 Saitama (JP).

(74) 代理人: 中村 聡延、外(NAKAMURA,Toshinobu et al.); 〒104-0031 東京都 中央区 京橋 1 丁目 1 6 番 1 0号 オークビル京橋 4 階 東京セントラル特許事務所内 Tokyo (JP).

(81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,

[続葉有]

(54) Title: KEY MANAGEMENT SYSTEM

(54) 発明の名称: 鍵管理システム

(57) Abstract: An information provider encrypts a content by a first encryption key so as to generate an encrypted content and encrypts a first decryption key corresponding to the first encryption key by a second encryption key so as to generate encrypted key information. The information provider provides the encrypted content and the encrypted key information in the form of a recording medium or the like to an information receiver. Moreover, the information provider has information for generating a second decryption key corresponding to the second encryption key in advance, uses it to acquire the first decryption key, and furthermore can decrypt and reproduce the content by using the first decryption key. The first decryption key and the second decryption key are distributed to the information receiver according to a key management method utilizing a tree structure in which an information receiver is allocated to a leaf. Here, the tree structure is divided into a plurality of hierarchies so as to define a plurality of partial trees and key information is allocated on the partial tree basis, thereby reducing the information amount of the key information to be held by the information receiver.

WO 2004/028073 A1

SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO. SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

請求の範囲の補正の期限前の公開であり、補正書受 領の際には再公開される。

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(57) 要約: 情報提供者は、コンテンツを第1の暗号鍵により暗号化して暗号化コンテンツを生成するとともに、第1の暗号鍵に対応する第1の復号鍵を、第2の暗号鍵により暗号化して暗号化鍵情報を生成する。そして、暗号化コンテンツ及び暗号化鍵情報を記録媒体その他の形態で情報受信者に提供する。また、情報提供者は、予め第2の暗号鍵に対応する第2の復号鍵を生成するための情報を有しており、それを用いて第1の復号鍵を取得し、さらに第1の復号鍵を用いてコンテンツを復号化して再生することができる。第1の復号鍵及び第2の復号鍵は、情報受信者をリーフに割り当てた木構造を利用した鍵管理方式に基づいて情報受信者に配布される。ここで、上記木構造を複数の階層に分割して複数の部分木を規定し、部分木単位で鍵情報の割り当てを行うことにより、情報受信者が保有すべき鍵情報の情報量を減少させることができる。

明細書

鍵管理システム

5 技術分野

本発明は、木構造を用い、特定の受信者の無効化機能を有する鍵管理方式に関する。

背景技術

10 映画、音楽などの著作物であるコンテンツの著作権を保護するために、情報を利用してコンテンツを暗号化して提供することが行われている。そのようなシステムの一例では、再生装置には複数のデバイス鍵を与え、記録媒体には暗号化されたコンテンツと、再生を許可された再生装置のみがコンテンツの復号鍵を生成できるようにした鍵生成情報とを記録する。再生を許可された再生装置は、鍵生の情報からコンテンツの復号鍵を生成し、その復号鍵を使用してコンテンツを復号して再生する。一方、再生を許可されていない(無効化された)再生装置は、コンテンツの復号鍵を生成できないので、暗号化されているコンテンツを再生することはできない。

このようなシステムで、鍵情報を管理するための手法として木構造を用いた鍵管理方式が提案されており、その例として「The Complete Subtree Method」、「The Subset Difference Method」などが知られている(例えば、Dalit Naor, Noni Naor, and Heff Lotspiech, "Revocation and Tracing Schemes for Stateless Receivers", Lecture Notes in Computer Science, Vol. 2139, pp. 41–62, 2001を参照。)。これらの方式では、コンテンツの復号鍵を生成するための鍵生成情報が不正に暴露されたり漏洩した場合には、その鍵生成情報を無効化するための処理が可能となっている。

また、上記のような方式に基づいてデジタルコンテンツの保護を行う方法も提案されている(例えば、中野稔久、他3名、"デジタルコンテンツ保護用鍵管理方式-木構造パターン分割方式-"、2002年暗号と情報セキュリティシンポジウ

ム講演論文集、2002年2月1日を参照。)。

上述の The Subset Difference Method においては、受信者は自分の属する全ての差分集合に割り当てられた鍵を保有しておかなければならないため、受信者側に多くの記憶容量を必要とする。疑似乱数生成器を用いることでこの情報量を削減することはできるのであるが、それでも The Complete Subtree Method と比較すると 1 〇倍以上の情報記憶容量が要求される。一方、The Complete Subtree Method については、受信者側に記憶すべき情報量は少ないが、受信者へ伝送される(情報の伝送に記録媒体を利用する場合には、記録媒体に記録される)鍵情報量が大きくなりすぎてしまう。

10

15

25

5

発明の開示

本発明が解決しようとする課題には、上記のものが一例として挙げられる。

請求項1に記載の発明は、鍵管理システムにおいて、複数の情報受信者をリーフに割り当てた木構造を規定する手段と、前記木構造を所定階層毎に分割して複数の部分木を規定する手段と、前記複数の部分木の各部分木に対して鍵情報の割り当てを行う手段と、を有することを特徴とする。

図面の簡単な説明

図1Aと1Bは、木構造を用いた鍵管理方式のモデルを示す図である。

20 図2は、鍵管理方式により用いる木構造の例を示す図である。

図3Aと3Bは、鍵管理方式により用いる木構造の例を示す図である。

図4は、階層分割を伴う鍵管理方式の木構造の例を示す図である。

図5は、階層分割を伴う鍵管理方式の木構造の例を示す図である。

図6は、階層分割を伴う鍵管理方式の木構造の例を示す図である。

図7は、階層分割を伴う鍵管理方式の木構造の例を示す図である。

図8は、複数の鍵管理方式における記憶媒体側と受信機側の鍵情報サイズを比較するグラフである。

図9は、本発明の実施例に係るコンテンツ記録システムの構成を示すブロック 図である。 WO 2004/028073

図10Aから10Eは、図9に示すコンテンツ記録システムの各部の信号内容を示す。

図11Aと11Bは、図9に示すコンテンツ記録システムの各部の信号内容を示す。

5 図12は、本発明の実施例に係るコンテンツ再生システムの構成を示すブロック図である。

図13Aと13Bは、図12に示すコンテンツ再生システムの各部の信号内容を示す。

図14Aから14Dは、図12に示すコンテンツ再生システムの各部の信号内 10 容を示す。

図15は、コンテンツ記録処理のフローチャートである。

図16は、コンテンツ記録処理における復号鍵の選択処理のフローチャートである。

図17は、コンテンツ再生処理のフローチャートである。

15 図18は、本発明の鍵管理方式により部分集合に鍵を割り当てる処理のフローチャートである。

発明を実施するための最良の形態

25

以下、図面を参照して本発明の好適な実施の形態について説明する。まず、鍵 20 管理方式について基礎的な説明を行い、続いて本発明の方式を説明する。

(1.1) 受信者の無効化機能を有する鍵管理方式

送信者が多数の受信者に対して同一の情報を伝送するシステムにおいて、信頼できる鍵管理機関が、あらかじめ全ての受信者に伝送情報を復号するための秘密情報を配布しておき、その秘密情報を持たない受信者が送信者からの情報を復号できないように、送信者側で情報を暗号化して伝送する方法がある。この場合に問題となるのは、全ての受信者が同一の秘密情報を保有している場合、悪意ある受信者が自分の保有する秘密情報を1回公開してしまえば、その後に伝送される情報は誰にでも復号が可能になってしまうことである。

この問題の対策として、鍵管理機関が受信者毎に異なる秘密情報を配布し、特

10

15

25

定の受信者の秘密情報が漏洩した場合、その受信者の保有していた秘密情報を用いても伝送された情報を復号できないようにする手法、即ち、受信者の無効化機能を有する鍵管理方式がある。本発明はそのような鍵管理方式を扱う。

ここでは、情報の伝送は特定の送信者から多数の受信者への片方向伝送のみであり、また受信者に最初に秘密情報(復号鍵等)を割り当てる以外は、受信者の保有する秘密情報を一切変更できないようなアプリケーションを想定している。

受信者の無効化機能を有する鍵管理方式を適用した情報配信システムの1つのモデルを図1Aに示す。図示のように、情報配信システムは、鍵管理機関1、情報送信者2及び情報受信者3の3つの要素から構成される。以下、各要素について説明する。

- 鍵管理機関

鍵管理機関1は、情報送信者2が伝送する伝送情報6(暗号文)を復号するための秘密情報(暗号文復号用鍵4aなど)を各受信者に割り当てる。また、鍵管理機関1は、伝送情報6を復号不可能にしたい受信者(今後、ある特定の受信者に対して、伝送される情報を復号できないようにすることを「受信者の無効化」と呼ぶ)の集合から、前記集合以外の受信者のみが復号できるような鍵情報4bを生成し、伝送情報6を暗号化するための鍵(暗号化用鍵情報5)とあわせて情報送信者への配送も行う。

ここで各受信者に割り当てる秘密情報(復号用鍵4aなど)と伝送情報6の暗 20 号化に用いられる鍵(暗号化用鍵情報5)の生成・保管・配送は安全に行われる ものと仮定する。

• 情報送信者

情報送信者 2 は、鍵管理機関 1 から配送された、伝送情報の暗号化用鍵情報 5 を用いて伝送情報 6 を暗号化し、無効化されていない受信者のみが復号できる鍵情報 4 b と一緒に伝送情報 6 (暗号文)を受信者に伝送する。

・情報受信者

無効化されていない受信者については、伝送情報 6 (暗号文)を受信したとき、 受信者が持つ秘密情報 (暗号文復号用の鍵 4 a 等)を使って受信した鍵情報 4 b を復号し、復号された鍵を用いて暗号文から伝送情報 6 を復号する。逆に無効化 されている受信者については、そのような受信者が複数結託しても、伝送情報に関して何の情報も得られない。また、ここでは多数の受信者の存在を想定している。

以下、上記構成要素について詳しく説明する。

Nを全ての受信者の集合とし、その要素数を | N | = N とする。Nの部分集合 Rを無効化したい受信者の集合とし、その要素数を | R | = r とする。受信者の 無効化機能を有する鍵管理方式の目的は、鍵管理機関(又は情報送信者)が受信 を許可した受信者、つまりRに含まれない全ての受信者 u ∈ N \ Rが伝送される 情報を復号でき、逆に受信を許可されていないRに含まれる受信者全てが結託し ても全く伝送情報を得られないようにすることである。

(a) 鍵管理機関

(i) 初期設定

15

20

受信者全体の集合 N の部分集合 S_1 、 S_2 、・・・、 S_m ($^{\vee}$ $^{\vee$

(ii) 鍵情報生成

- (1) 伝送情報 M の暗号化、復号化に用いる鍵(セッション鍵) K を選ぶ。

$$\underline{N} \setminus \underline{R} = \bigcup_{j=1}^{m} \underline{S}_{i_{j}}$$
 (1-1)

ここで、初期設定で上記部分集合に割り当てられてた暗号鍵をそれぞれ L;1、 Liz、・・・ Lim とする。

(3) 暗号鍵 L₁₁、L₁₂、・・・L_{1m}を用いてセッション鍵 K を m 回暗号化して式 (1-2) を生成、セッション鍵 K と一緒に情報送信者に配送する。

$$\left\langle i_1, i_2, \cdots, i_m, E_{enc}(K, L_{i_1}), E_{enc}(K, L_{i_2}), \cdots, E_{enc}(K, L_{i_m}) \right\rangle \qquad (1-2)$$

5

ここで、情報送信者へのセッション鍵の配送は安全に行われるものと仮定する。 また、E_{enc} は暗号化アルゴリズムである。本システムで用いられる暗号、復号化 アルゴリズムは2種類あり、以下にまとめる(ただし、2つのアルゴリズムに全 く同じものを使用しても構わない)。

- ・伝送情報Mの暗号化アルゴリズム F_{enc}、復号化アルゴリズム F_{dec}
 セッション鍵 K を用いて暗号文 C_K = F_{enc} (M、K) を生成する。高速性が要求される。
- ・セッション鍵暗号化アルゴリズム E_{enc}、復号化アルゴリズム E_{dec} セッション鍵の配送に用いる。 F_{enc} よりも暗号化アルゴリズムの安全性が要 15 求される。

(b)情報送信者

セッション鍵Kと特定の受信者のみが復号できる鍵情報を鍵管理機関から受け取り、セッション鍵Kを鍵として暗号化アルゴリズム Fenc を用いて伝送情報Mを暗号化して、暗号文

20

$$\left\langle \left[i_{1},i_{2},\cdots,i_{m},E_{enc}(K,L_{i_{1}}),E_{enc}(K,L_{i_{2}}),\cdots,E_{enc}(K,L_{i_{m}})\right],F_{enc}(M,K)\right\rangle \quad (1-3)$$

を伝送する。なお、式(1-3)の [] 内の部分を F_{enc} (M、K)のヘッダーと呼ぶことにする。

25 (c)情報受信者

受信者uは、情報送信者により暗号化された次の暗号文を受信する。

$$\langle [i_1, i_2, \cdots, i_m, C_1, C_2, \cdots, C_m], C_K \rangle$$
 (1-4)

- (1) $\mathbf{u} \in \mathbf{S}_{i,j}$ であるような \mathbf{i}_{j} を探索する。 ($\mathbf{u} \in \mathbf{R}_{j}$ の場合、存在しない。)
- (2) 自身の保有する秘密情報 I 』から L ; を求める。
- (3) K = E_{dec} (C_j、L_{ij}) を求める。
- (4) $M = F_{dec}$ (C_K 、K) を求める。
- 5 上記鍵管理方式を実現するアルゴリズムとして以下の方式がある。
 - The Logical Key Hierarchy Method
 - · CPRM Common Cryptographic Key Management
 - The Complete Subtree Method
 - · The Subset Difference Method
- 10 Tree Pattern Division Method

上記方式の違いとしては、(1) 受信者の部分集合 S_1 、・・・、 S_m の定義、(2) 各部分集合に対する鍵の割り当て方法、(3) 受信を許可する(無効化しない)受信者の集合 $N \setminus R$ の分割方法、(4) 各受信者 V が行う自分の属する部分集合 V 探索方法と、 V から鍵 V の求め方等が挙げられる。

- 15 各方式は以下の3つの観点から評価される。
 - ・伝送情報の量

暗号文 $F_{enc}(M \setminus K)$ に付加されるヘッダー量。一般に $N \setminus R$ を分割した部分集合の数mに比例する。

- 受信者が保有しておく秘密情報 I uの量
- 20 復号用の鍵等の秘密情報を受信者がどれだけ保持しておかなければならないか。
 - ・受信者が伝送された情報を復号するのに要する演算量
 - (1.2) 基礎となる方法 (The Subset Difference Method)
 - (1.2.1) 部分集合<u>S</u>, ・・・<u>S</u>, の定義

最初に受信者全体の集合Nの部分集合N0、・・・N0、を定義する。この部分集合 に対して暗号(復号)鍵、又は復号鍵を導けるような情報N1、・・・N1、を割り当 てることになる。N4 のリーフを持つN2 分木のリーフに各受信者を割り当てる(ここでN1 はN2 の冪であるとしている。)。

受信者の部分集合を次のように表す。2分木中の任意のノード v₁(ルートとリーフもノードに含まれる。)をルートとする部分木の全てのリーフに割り当てら

20

れた受信者の集合を S_i で表す。任意のノード v_i 以下のリーフに割り当てられた 受信者の集合 S_i とノード v_i をルートとする部分木中の(ルートを除く)ノード v_j をルートとする部分木の全てのリーフに割り当てられた受信者の集合 S_j $\subset S_i$ について、 S_i の要素から S_j の要素を引いた差分集合を $S_{i,j}$ とする。つまり、集 合 S_i に含まれる受信者のうち、集合 S_j に含まれていない受信者の集合を $S_{i,j}$ と する。図 2 は $S_{i,j}$ を示している。この差分集合に対して 1 つの鍵 $S_{i,j}$ を割り当て る。

(1.2.2) <u>N</u>\<u>R</u>の分割方法

次に受信を許可する(無効化しない)受信者の集合 $N \setminus R$ を、上記で定義され た差分集合 $S_{11,11}$ 、 $S_{12,12}$ 、・・・、 S_{1mJm} に分割する方法を説明する。 2 分末のルートと無効化したい受信者に相当する各リーフを結ぶ最短のパス上のノードのみで構成される部分木ST(R)を考える(このような部分木はRから一意に構成される)。 S T(R)については子ノードの存在しないノードをリーフと呼ぶことにする。以下のアルゴリズムをS T(R)がルートのノードのみになるまで繰り返し、 $N \setminus R$ を構成する差分集合を選択する。

- (1) 2つのリーフからルートへのパスの共通部分に存在するノードの中で、リーフとの距離が最小となるノードを2つのリーフの最小共通ノードと呼ぶことにする。ST(R)のリーフ v_1 、 v_2 を、それらの最小共通ノードv以下に他のリーフが存在しないように選ぶ。vの2つの子ノードの中で、vと v_1 のパス上に存在する子ノードを v_k 、vと v_2 のパス上に存在する子ノードを v_1 とする。(リーフがST(R)中に1つしか存在しない場合、 v_1 = v_2 、v= v_1 = v_2 として、vをST(R)のルートと考えればよい。)
- (2) $v_k \neq v_1$ ならば、 $\underline{N} \setminus \underline{R}$ を構成する差分集合に $\underline{S}_{k,1}$ を加える。 $v_1 \neq v_2$ ならば $N \setminus \underline{R}$ を構成する差分集合に $\underline{S}_{l,1}$ を加える。
- 25 (3) v より下に位置するノードを全て除去する。これによりv がリーフになる。 上記アルゴリズムを用いることにより、受信者の集合 $N \setminus R$ は、無効化したい 受信者数 $R \mid r$ のとき、最大 2r-1 の差分集合に分割される。
 - (1.2.3) 部分集合<u>S</u>、・・・<u>S</u>、への鍵の割り当て方法

次に、各差分集合に対する鍵の割り当て方法について説明する。各差分集合に

対して、一様に分布しており、互いに独立な値を持つ鍵を割り当てる。

(1.2.4) 受信者への秘密情報の割り当て方法

各受信者には自分の属する差分集合全ての鍵を配布しておかなければならない。これは受信者側に非常に多くの記憶量を必要とする。受信者 u は、自分の属する各部分木 T_k に対して(ここで T_k の変数 k は部分木の高さを表している。)、部分木 T_k 中に存在するノードの中で、 T_k のルートから u のパス上に存在するものを除く全てのノードの数に相当する鍵を保有しなければならない。受信者 u の属する部分木の数は log_2 N 個存在し、各部分木の高さは $1 \le k \le log_2$ N であるから、受信者が保有しなければならない鍵の数は式(2-1)のようになる。

$$1 + \sum_{k=1}^{\log_2 N} (2^{k+1} - k - 2) \tag{2-1}$$

10

15

20

25

5

(1, 2, 5) 部分集合<u>S</u>,、・・・、<u>S</u>, への鍵の割り当て方法(擬似乱数生成器を用いる場合)

受信者が保有しておく鍵を減らすため、各差分集合 $S_{i,j}$ に直接鍵を割り当てるのではなく、部分集合 S_{i} に対して1つのラベルを割り当て、差分集合 $S_{i,j}$ (\forall j、 S_{i})に割り当てる鍵 $L_{i,j}$ が、部分集合 S_{i} に割り当てられたラベルを用いて導けるようにしておく。このとき、差分集合 $S_{i,j}$ 内に存在する受信者のみが鍵 $L_{i,j}$ を導けるようにしなければならない。以下では、擬似乱数生成器を用いて、上記方法を実現する方法を示す。

 $G: \{0, 1\}^n \rightarrow \{0, 1\}^{3n}$ を入力長の3倍の長さを出力する擬似乱数生成器とする。擬似乱数生成器Gの入力をSとしたとき、出力される値を3等分した左側部分を $G_L(S)$ で表し、右側部分を $G_R(S)$ 、中央部分を $G_L(S)$ で表す。また、Gの入力として乱数を与えたときに出力される値と、出力と同じ長さの真の乱数を多項式時間の計算能力をもつ攻撃者に与えたとき、攻撃者は、有意な確率で両者を区別できないといった特性をGは満たしていなければならない。

ノードv」をルートとする部分木T」を考える。ノードv」にラベル LABEL、を割り当てる(簡単のため任意の部分木のリーフに割り当てられた受信者の集合への

ラベルの割り当てを、その部分木のルートノードにラベルを割り当てると表現する。つまり上記表現は次のようになる。「部分木T」中のリーフに割り当てられた受信者の集合S」にラベル LABEL」を割り当てる。」)。LABEL」。を、部分木T」中のノードップのラベルとする(割り当てられるラベルが多変数のパラメータを持つ(この場合 i と j の2 変数)場合、それは差分集合に対して割り当てられたラベルを示している。このとき、LABEL」,は ップをルートとする部分木のリーフに割り当てらた受信者の集合S」に割り当てられるのではなく、S」に含まれ、S」には含まれていない受信者の集合(差分集合)S」、に対して割り当てられる。)。LABEL」が差分集合S」、に割り当てられるラベルである。

LABEL、」を部分木T、のルートマ、に割り当てられたラベルLABEL、から擬似乱数法 成器 Gを用いて以下の導出規則により導く。ラベルを擬似乱数生成器の入力としたとき、その出力を次のように定義する。G、一左側の子ノードのラベル、GR 一右側の子ノードのラベル、GR 一入力ラベルの割り当てられたノードに割り当てる暗号(復号)鍵。この導出規則に拠れば、部分木T、中のある親ノードにラベルSが割り当てられたとき、その2つの子ノードのラベルは、G、(S)、GR(S)が割り当てられる。これより、マ、からマ」に至るパス上のノードに割り当てるラベルをGを用いて順次求めることで、マ、に割り当てられたラベルLABEL、から、部分木丁、中のノードマ、のラベルLABEL、」を求めることができる。

最後に LABEL,」をGの入力としたときの出力の中央部分 $G_{\mathbf{n}}$ (LABEL,」)を、差分 20 集合 $S_{\mathbf{n}}$ に割り当てる暗号(復号)鍵 $L_{\mathbf{n}}$ として用いる。図 $S_{\mathbf{n}}$ は割り当てるラベルと暗号(復号)鍵の生成方法を示す。

このような方法を用いれば、部分木中のあるノードのラベルが与えられたとき、その子孫ノード全てのラベルと暗号(復号)鍵を計算することができる。逆に、あるノード v」の先祖ノードのラベルを v,から求めることはできない。さらに、ノード v」の全ての子孫ノードのラベル(ただし、 v」自身のラベルは含まない)から暗号(復号)鍵 Li」を求めることはできない。部分木 T」のルートのラベルLABEL」を与えられたとき、差分集合 Si」に割り当てられる暗号(復号)鍵 Li」を計算するのに擬似乱数生成器 G を最大で log₂N+1回用いる。

(1.2.6) 受信者への秘密情報の割り当て方法(擬似乱数生成器を用いる場合)

10

15

25

各受信者 u が保有する秘密情報 I uの割り当て方法について説明する。受信者 u は、自分の属する各部分木T, に対して、T, のルートノード v , と、部分木T, 中のノードで u の先祖ノードでない全てのノード v , により決定される差分集合 S , , 」に割り当てられた暗号(復号)鍵 L , , 」を計算できなければならない。部分木T, のルートノード v , から u へのパスを考え、そのパスに直接ぶら下がるノードを v , i 、 v , z 、・・・ v , k とする(図 2 (b)参照)。つまり、それらはパスに隣接するノードの中で、 u の先祖ノードでないノードである。部分木T, 中で u の先祖でない任意のノード v , は、これらのノード v , i 、 v , z 、・・・、 v , k いずれかの子孫ノードである。ゆえに、受信者 u が I u として、 v , 1、 v , z 、・・・、 v , k に割り当てられたラベルを保有しておけば、最大 log 2 N+1 回擬似乱数生成器 G を用いて、部分木T, 中でパス上に存在しない任意ノード v , に割り当てられた復号鍵 L , . 」を計算することができる。

受信者 u を含む高さ k の部分木 T, 中に、受信者 u が保存しておかなければならないラベルは k 個あるから、これを u を含む各部分木について考えると、受信者 u があらかじめ保有しておかなければならない復号鍵(ラベル)の数は式(2-2)のようになる。

$$1 + \sum_{k=1}^{\log_2 N} k = 1 + \frac{(1 + \log_2 N) \log_2 N}{2} = \frac{1}{2} (\log_2 N)^2 + \frac{1}{2} \log_2 N + 1$$
 (2-2)

式 (2-2) で 1 が足されているのは、無効化する受信者が全く存在しない場合の 鍵が必要だからである。

20 (1.2.7) 複数の2分木を用いる方法

さらに受信者 u が保有する秘密情報 I u を減らす場合は、伝送情報 M の量とのトレードオフとなる。一つの方法として、2分木を高さの低い木に限定して複数用いる方法がある。木構造においてノードの位置する各層をレイヤと呼び、ルートの位置する層から順番に Layer(0)、Layer(1)、・・・と定義する。このとき、受信者をリーフに割り当てられた2分木を、Layer(b) に存在するノードをルートとする2 ^b 個の2分木に分割し、分割された2分木に対して The Subset Difference

WO 2004/028073

5

Method を適用する。このとき、Layer(0)~Layer(b-1)に存在するノードは使用しない。

これにより、受信者が保有しておく情報量 I 』を式(2-3)のように減らすことができる。しかし、伝送情報Mの量(無効化しない受信者をカバーする部分木の数)は、無効化したい受信者数を | R | = r とすると最大で 2 b + 2 r - 1 と増加する。

$$1 + \sum_{b=1}^{\log_2 N - b} k = \frac{1}{2} (\log_2 N - b)^2 + \frac{1}{2} (\log_2 N - b) + 1$$
 (2-3)

(1.3) 本実施形態による方法 (The Layer Division Subset Difference Method)(1.3.1) 部分集合 S₁、・・・、S₂の定義

最初に受信者全体の集合Nの部分集合N、・・・N、を定義する。この部分集合 10 に対して暗号(復号)鍵、又は復号鍵を導けるような情報 L₁、・・・L₄を割り当 てることになる。N枚のリーフを持つ2分木のリーフに各受信者を割り当てる(こ こでNは2の冪であるとしている。)。木構造においてノードの位置する各層を レイヤと呼び、ルートの位置する層から順番に Layer(0)、Layer(1)、・・・と定 義する。リーフの存在する層は Layer(log₂N)になる。図4に示すように2分木を 15 Layer(0)~Layer(d)、Layer(d)~Layer(2d)、・・・といったように d+1 階層ずつ のレイヤに分割する。図4では d=2 の場合を示している。分割された各層をマク ロレイヤと呼ぶことにし、ルートを含むマクロレイヤから順番に MacroLayer(0)、 MacroLayer(1)、・・・、MacroLayer(((log2N)/d-1)と定義する。各 MacroLayer(s)(0 ≦s≦ ((log₂N)/d-1)))は、全体の2分木を分割した高さ d の2^{sd} 個の部分木 20 T_h から構成される。全体で上記部分木 T_h は $(1-2^{\log_2 N})/(1-2^d)$))個存在することに なる。各部分木 T $_h$ $(0 \le h \le (2^d-2^{\log_2 N})/(1-2^d)))) を、リーフに受信者を割り当て$ た2分木と考え、The Subset Difference Method において定義された差分集合を 部分集合<u>S,、・・・S,</u>として定義し、暗号(復号)鍵L,、・・・L,を割り当て (実際には、部分木T,のリーフは、 s=(log₂N)/d−1 の場合 25 (MacroLayer((log₂N)/d-1)中の部分木) を除いて、全体の2分木で見た場合ただ

20

25

のノードであり、受信者が割り当てられているわけではない。そこで、ある任意の部分木丁,におけるリーフには、そのリーフに対応する全体の2分木中のノード以下に存在する全てのリーフに割り当てられた受信者の集合が割り当てられていると考える。)。

が分木 T_h 中の任意のノード v_1 をルートとする部分木 $T_{h,1}$ の全てのリーフに割り当てられた受信者の集合を S_1 で表す。ノード v_1 以下のリーフに割り当てられた受信者の集合 S_1 と $T_{h,1}$ 中の(ルートを除く)ノード v_1 をルートとする部分木 $T_{h,1}$ のリーフに割り当てられた受信者の集合 S_1 について、 S_1 の要素から S_1 の要素を引いた差分集合を $S_{1,1}$ とする。つまり、集合 S_1 に含まれる受信者のう た、集合 S_1 に含まれていない受信者の集合を $S_{1,1}$ とする。図 5 は $S_{1,1}$ を示している。この差分集合に対して 1 つの暗号(復号)鍵 $L_{1,1}$ を割り当てる。

(1.3.2) N\ Rの分割方法

次に受信を許可する(無効化しない)受信者の集合 $N \setminus R$ を、上記で定義された差分集合 $S_{i,j}$ に分割する方法を説明する。無効化したい受信者を割り当てられているリーフ、または無効化したい受信者を 1 つでも含むような受信者の集合を割り当てられているリーフを含む全ての部分木 T_h について以下の処理を行う。

無効化したい受信者を含む部分木 T_h について、部分木 T_h のルートと無効化したい受信者(又は無効化したい受信者を含む受信者の集合)に相当する各リーフを結ぶ最短のパス上のノードのみで構成される部分木 S T_h (R) を考える(このような部分木はRから一意に構成される)。S T_h (R) については子ノードの存在しないノードをリーフと呼ぶことにする。また、以下の(1)~(4)の処理において用いられているルートとリーフは、部分木 T_h 中のそれを表しているものとする。

- (2) $v_k \neq v_i$ ならば N\R を構成する差分集合に $S_{k,i}$ を加える。 $v_i \neq v_j$ ならば N\R を構成する差分集合に $S_{i,j}$ を加える。
- (3) v より下に位置する部分木 T h 中のノードを全て除去する。これにより、 v がリーフになる。
- 5 (4) ST_h(R)にルート以外のノードが存在する場合、上記(1)に戻る。ST_h(R)がルートのノードのみなった場合、無額化したい受信者を含む他の部分木T_hを選択し、上記(1)に戻って同様の処理を繰り返す。ST_h(R)がルートのノードのみなり、かつ無効化したい受信者を含む他の部分木T_hが存在しない場合、処理を終了する。
- 上記アルゴリズムにより構成された差分集合 $S_{1,1}$ の集合が $N \setminus R$ を構成する差分集合の集合である。 $N \setminus R$ の分割数($N \setminus R$ を構成する差分集合の数)の上限は、dの値により異なるが、例えば d=2 のとき(このとき、N は 4 の冪であると仮定している。)、無効化したい受信者数 |R| = r とすると式(3-1)のようになる。

$$1 + \sum_{i=1}^{r} f_{i}$$
 (3-1)

$$f_{j} = \begin{cases} \log_{4}(N) - 1 & (j = 1) \\ \log_{4}(N) & (j = 2) \\ \log_{4}(N/4^{i}) & (2 \cdot 4^{i-1} < j \le 4^{i}) \\ \log_{4}(N/4^{i}) - 1 & (4^{i} < j \le 2 \cdot 4^{i} \text{ かつ } j \text{ が奇数}) \\ \log_{4}(N/4^{i}) & (4^{i} < j \le 2 \cdot 4^{i} \text{ かつ } j \text{ が高数}) \\ -1 & (2 \cdot 4^{\log_{4}N - 1} < j \le 4^{\log_{4}N} = N) \end{cases}$$

ここでiはOくiくlog_aNを満たす整数である。

(1.3.3) 部分集合<u>S</u>1、・・・、<u>S</u>2への鍵の割り当て方法

次に各差分集合に対する鍵の割り当て方法について説明する。各差分集合 <u>Si</u>.」 20 に対して、一様に分布しており、互いに独立な値を持つ鍵を割り当てる。各受信 者には自分の属する差分集合に割り当てられた全ての鍵を配布しておく。

(1.3.4) 受信者への秘密情報の割り当て方法

受信者uを割り当てられたリーフと、全体の2分木のルートとのパス上に存在

するノードを含む各部分木T,について考える。このような部分木T,は各マクロ

レイヤ中に必ず1つ存在する。パス上のノードの中で部分木Tҕに含まれる任意の ノードを v , とし、 v , をルートとする部分木 T h , , のリーフに割り当てられた受信 者の集合を<u>S</u>,とする。部分木T_{Ⴙ.},中のノードであり、かつパス上に存在しないノ ードをv」とし、v」をルートとする部分木Tn.」のリーフに割り当てられた受信者 の集合を S_1 $\subset S_1$ とする。集合 S_1 に含まれ、集合 S_1 に含まれない受信者の集合(差 5 分集合)を $S_{1,1}$ で表す。このとき受信者 u は上記の全ての差分集合 $S_{1,1}$ に割り当 てられた鍵を保有しておく必要がある。受信者uの属する部分木Tkの数は、マク ロレイヤ数に等しいから log₂N/d 個存在する。部分木Tn の高さは d であるから、 部分木T。中に存在し、かつパス上のノードv、をルートとする部分木T。、はd個 存在する(ノードャ」が部分木T」のリーフに相当する場合は、受信者の集合を割 10 り当てる必要がないため除外している。)。部分木 T h. i の高さを k 、(1 ≦ k ≦ d)とすると、部分木 $T_{h,1}$ 中のノードで、かつパス上に存在しないノード v_j をル ートとする部分木T_{h.」}は { (2 ^{k+1}-1) - (k+1) } 個存在する。これより各 部分木 $T_{h,i}$ について、集合 S_j の数は $\{(2^{k+1}-1)-(k+1)\}$ 個である。よ って差分集合<u>S_{1.1}</u>の数は式 (3-2) のようになる。受信者 u は式 (3-2) に示すだ 15 けの個数の鍵を保有しておかなければならない。式(3-2)において1が足されて いるのは、無効化する受信者が全く存在しない場合の鍵が必要だからである。

$$1 + \frac{\log_2 N}{d} \sum_{k=1}^d (2^{k+1} - k - 2) = \frac{4(2^d - 1)\log_2 N}{d} - \frac{(d+5)\log_2 N}{2} + 1$$
 (3-2)

(1.3.2) 部分集合<u>S</u>,、・・・、<u>S</u>,への鍵の割り当て方法(擬似乱数生成器を 20 用いる場合)

受信者が保有しておく鍵を減らすため、The Subset Difference Method と同様に擬似乱数生成器を用いて差分集合への鍵の割り当てを行うこともできる。つまり、各差分集合 $S_{1...}$ に直接鍵を割り当てるのではなく、部分木 $T_{h...}$ のリーフに割り当てられた受信者の集合 $S_{1...}$ に対して1つのラベルを割り当てる。このとき、差分集合 $S_{1...}$ ($^{\vee}$ j、 $S_{...}$)に割り当てる鍵 $L_{1...}$ が、部分集合 $S_{...}$ に割り当てられたラベルを用いて導けるようにしておく。このとき、差分集合 $S_{1...}$ 内に存在する

25

受信者のみが鍵し、」を導けるようにしなければならない。以下では、擬似乱数生 成器を用いて、上記方法を実現する方法を示す。

 $G: \{0, 1\}^n \rightarrow \{0, 1\}^{3n}$ を入力長の3倍の長さを出力する擬似乱数生成器とする。擬似乱数生成器Gの入力をSとしたとき、出力される値を3等分した左側部分を $G_L(S)$ で表し、右側部分を $G_R(S)$ 、中央部分を $G_R(S)$ で表す。また、Gの入力として乱数を与えたときに出力される値と、出力と同じ長さの真の乱数を多項式時間の計算能力をもつ攻撃者に与えたとき、攻撃者は、有意な確率で両者を区別できないといった特性をGは満たしていなければならない。

ノードv、をルートとする MacroLayer(s) 中の部分木T。。、を考える。ルートノー 10 ドv, にラベル LABEL, を割り当てる (簡単のため任意の部分木のリーフに割り当て られた受信者の集合へのラベルの割り当てを、その部分木のルートノードにラベ ルを割り当てると表現する。つまり上記表現は次のようになる。「部分木Tы中 のリーフに割り当てられた受信者の集合Siにラベル LABELiを割り当てる。」)。 LABEL、」を、部分木T、中のノードv、のラベルとする(割り当てられるラベルが 15 2変数のパラメータを持つ場合、それは差分集合に対して割り当てられたラベル を示している。このとき、LABELi、」はv」をルートとする部分木のリーフに割り当 てらた受信者の集合<u>S</u>,に割り当てられるのではなく、<u>S</u>,に含まれ、<u>S</u>,には含ま れていない受信者の集合(差分集合) $\underline{S}_{i,j}$ に対して割り当てられる。)。LABEL $_{i,j}$ が差分集合Siiに割り当てられるラベルである。LABELiiを部分木Thiiのルート 20 v,に割り当てられたラベル LABEL,から擬似乱数生成器 G を用いて以下の導出規則 により導く。

ラベルを擬似乱数生成器の入力としたとき、その出力を次のように定義する。 G_L 一左側の子ノードのラベル、 G_R 一右側の子ノードのラベル、 G_R 一入力ラベル の割り当てられたノードに割り当てる暗号(復号)鍵。この導出規則に拠れば、部分木 $T_{h,1}$ 中のある親ノードにラベルSが割り当てられたとき、その2つの子ノードのラベルは、 G_L (S)、 G_R (S)が割り当てられる。これより、 V_1 から V_2 に至るパス上のノードに割り当てるラベルをGを用いて順次求めることで、 V_1 に割り当てられたラベル LABEL, から、部分木 $T_{h,1}$ 中のノード V_1 のラベル LABEL, 」

10

25

を求めることができる。最後に LABEL_{1.}」をGの入力としたときの出力の中央部分G $_{\mathbf{M}}$ (LABEL $_{1.}$ 」)を、差分集合 $_{\mathbf{S}_{1.}}$ 」に割り当てる暗号(復号)鍵 $_{\mathbf{L}_{1.}}$ として用いる。図6に差分集合 $_{\mathbf{S}_{1.}}$ に割り当てる鍵 $_{\mathbf{L}_{1.}}$ の割り当て例を示す。

このような方法を用いれば、部分木中のあるノードのラベルが与えられたとき、部分木内でのその子孫ノード全てのラベルと暗号(復号)鍵を計算することができる。逆に、あるノードッ」の先祖ノードのラベルを v 」から求めることはできない。さらに、ノードッ」の全ての子孫ノードのラベル(ただし、v 」自身のラベルは含まない)から暗号(復号)鍵 $L_{1,1}$ を求めることはできない。部分木 $T_{h,i}$ のルートのラベル $LABEL_i$ を与えられたとき、差分集合 $S_{1,1}$ に割り当てられる暗号(復号)鍵 $L_{1,1}$ を計算するのに擬似乱数生成器 G を最大で G G G 包用いる。

(1.3.6) 受信者への秘密情報の割り当て方法(擬似乱数生成器を用いる場合) 各受信者 u が保有する秘密情報 I u の割り当て方法について説明する。各マクロレイヤ中に 1 つずつ存在する u の属する部分木 T h について考える。部分木 T h のルートと u の割り当てられたリーフを結ぶパス上の d 個(リーフ部分のノードは数えていない。)のノードを v i とし、 v i をルートとする高さ k 、(1 ≤ k ≤ d)の部分木 T h i のノードの中で、パスに直接ぶら下がるノードを v i i 、 v i z 、・・・・ v i を表す(図7)。つまり、それらは部分木 T h i 中のノードの中で、パスに隣接し、かつ u の先祖ノードでないノードである。部分木 T h i 中のノードで、 u の先祖フードである・ は、これらのノード v i i 、 v i z 、・・・・ v i k のいずれかの子孫ノードである。ゆえに、受信者 u が I u として、 v i i 、 v i z 、・・・、 v i k に割り当てられたラベルを保有しておけば、最大 d+1 回擬似乱数生成器 G を用いて、部分木 T h i 中でパス上に存在しない任意ノード v j に割り当てられた復号鍵 L i i を計算することができる。

受信者 u を含む部分木 T_h の数は、マクロレイヤ数に等しいから log_2N/d であり、部分木 T_h 中にパス上のノードをルートとする部分木 $T_{h,i}$ は d 個存在する。高さ k の部分木 $T_{h,i}$ 中に受信者 u が保有しなければならないラベルは k 個あるから、これを u を含む各部分木 $T_{h,i}$ について考えると、受信者 u が保有しておかなければならない復号鍵(ラベル)の数は式(3-3)のようになる。

15

$$1 + \frac{\log_2 N}{d} \sum_{k=1}^{d} k = \frac{(d+1)\log_2 N}{2} + 1$$
 (3-3)

式 (3-3) において 1 が足されているのは、式 (3-2) と同様に無効化する受信者が全く存在しない場合の復号鍵が必要だからである。擬似乱数生成器を用いて差分集合への鍵の割り当てを行った場合、受信者の保有する秘密情報は復号鍵ではなく各部分木 $T_{h,1}$ に割り当てられたラベルであるが、受信者を全く無効化しない場合に用いる復号鍵については鍵そのものを保有することになる。

(1.3.7) 複数の2分木を用いる方法

さらに受信者 u が保有する秘密情報 I 』を減らす場合は、伝送情報 M の量とのトレードオフとなる。一つの方法として、2分木を高さの低い木に限定して複数用いる方法がある。受信者をリーフに割り当てられた2分木を、Layer(b)に存在するノードをルートとする2 ^b 個の2分木に分割し、分割された2分木に対して本方式を適用する。このとき、Layer(0) ~ Layer(b-1)に存在するノードは使用しない。これにより、受信者が保有しておく情報量 I 』を式(3-4)、式(3-5)のように減らすことができる。擬似乱数生成器を用いない場合の復号鍵(ラベル)保有数が、式(3-4)であり、擬似乱数生成器を用いる場合のそれが式(3-5)である。式(3-4)、式(3-5)において共に1が足されているのは、自身の割り当てられているリーフの属する2分木中に、無効化する受信者が全く存在しない場合の鍵が必要だからである。

$$1 + \frac{\log_2 N - b}{d} \sum_{k=1}^{d} (2^{k+1} - k - 2) = \frac{4(2^d - 1)(\log_2 N - b)}{d} - \frac{(d+5)(\log_2 N - b)}{2} + 1 \tag{3-4}$$

$$1 + \frac{\log_2 N - b}{d} \sum_{k=1}^{d} k = \frac{(d+1)(\log_2 N - b)}{2} + 1$$
 (3-5)

20 伝送情報Mの量(無効化しない受信者をカバーする部分木の数)の上限は、例として d=2 のときを考えると、無効化したい受信者数が | R | = r のとき式 (3-6) のようになる。

20

$$4^b + \sum_{i=1}^r f_i \tag{3-6}$$

$$f_{j} = \begin{cases} \log_{4}(N/4^{b}) - 1 & (0 < j \le 2 \cdot 4^{b} \text{ かつ } j \text{ が奇数}) \\ \log_{4}(N/4^{b}) & (0 < j \le 2 \cdot 4^{b} \text{ かつ } j \text{ が偶数}) \\ \log_{4}(N/4^{b+i}) & (2 \cdot 4^{b+i-1} < j \le 4^{b+i}) \\ \log_{4}(N/4^{b+i}) - 1 & (4^{b+i} < j \le 2 \cdot 4^{b+i} \text{ かつ } j \text{ が奇数}) \\ \log_{4}(N/4^{b+i}) & (4^{b+i} < j \le 2 \cdot 4^{b+i} \text{ かつ } j \text{ が偶数}) \\ -1 & (2 \cdot 4^{\log_{4}N-1} < j \le 4^{\log_{4}N} = N) \end{cases}$$

ここで iは Oくiくlog₄(N/4h)を満たす整数である。

(1.4) 各方式の性能比較

5 図 8 に受信者総数 |N|、無効化したい受信者数 |R| = r を一定にしたとき、各方式において受信者が保有しておく秘密情報と伝送するヘッダー量の関係を示す。図 8 に示すように、 $N=2^{30}=1,073,741$ 、824 = 10 億、 $r=2^{14}=16,384$ とし、各方式で用いる暗号化アルゴリズムの鍵長は全て 128bit とした。

横軸が受信者の保有しておく秘密情報量、縦軸が伝送するヘッダー量の上限を 10 表しており、グラフの左下にある方式ほど、伝送又は蓄える情報量が少ないため、 この 2 点に関しては優れた方式といえる。

実際のシステムの運用においては、受信者 u は自身が保有する秘密情報 I uから、どの復号鍵 (The Subset Difference Method、The Layer Division Subset Difference Method で擬似乱数生成器を使用する場合はラベル情報)を用いて、伝送されたヘッダー情報を復号するのかを決定する必要がある。その方法としては、例えば、全ての復号鍵で全てのヘッダー情報を復号する方法や、復号に使用すべき復号鍵の情報(ヘッダーの暗号化に使用した暗号鍵のインデックス情報)を付与する方法などが考えられる。この場合伝送される情報はさらにインデックス情報分増加することになるが、図8では考慮していない。

The Subset Difference Method は全部で 19点(丸で示す)プロットされているが、これは、変数 b をパラメータとしているためである。左の点から h = 18、17、・・・、1、0 となっており、一番右端の点が 2 分木を 1 つのみ用いた方式に相当する。また、差分集合へのラベルの割り当ては、擬似乱数生成器を用いた方式のみを表示

している。

5

New Method と書かれた方式が本発明の実施形態による方法(The Layer Division Subset Difference Method)であり、これは、差分集合へのラベルの割り当てに 擬似乱数生成器を用いていない。本発明の実施形態による方法で擬似乱数生成器を用いた方式は、New Method using PRNG と書かれた方式である。

それぞれ複数の点がプロットされているのは、変数 d をパラメータとしている ためで、左からd=1、2、・・・のときを表している。d=1 のときは擬似乱数生成 器を用いたラベルの割り当てを行っても(受信者が保有する秘密情報量削減とい う意味での) 性能は向上しないことがわかる。また、The Subset Difference Method と同様に b を変数とすることもできるが、ここでは各dについて、伝送するヘッ 10 ダー量が最小となるパラメータの中で、受信者の保有する秘密情報量が最も少な くなるような b のみを選択して、その場合のみを表示している。図8には表示し ていないが、d=1、b=0の場合、アルゴリズムがThe Complete Subtree Method と 完全に等価になる。d=16、b=14の場合は、The Subset Difference Methodのb=14 とした場合と等価になる(図8で2つの方式の結果が重なっている点)。The Tree 15 Pattern Division Method については、アルゴリズムに使用する木を2分木のみ でなく任意のn分木を用いる。そのため、図8には、左から使用する木を2分木、 3分木、4分木、5分木とした場合の結果を表示している。n分木のリーフに受信 者を割り当てるため、2分木、4分木を用いる場合を除いて、受信者総数は230= 4 15=1,073,741,824 にならない。よって、3 分木、5 分木については以下の値を用 20 いた。

- ・3分木:N=319=1,162,261,467≒10億
- ・5分木: N = 5 13=1, 220, 703, 125≒ 1 0 億

また、2分木のとき The Complete Subtree Method とアルゴリズムが完全に等価 25 である。

(1.5) 実施形態のコンテンツ配信システム

本発明の実施形態によるコンテンツ配信システムの概略構成を図1日に示す。 このシステムは、情報提供者7が各種の記憶媒体9をユーザに提供する。本実施 形態では、記憶媒体9は、例えばDVD-ROMなどの光ディスクを含む各種の

10

15

20

25

記録媒体とすることが可能である。ユーザは再生装置8を所持し、当該再生装置8により記録媒体9から情報を再生する。再生装置8は内部に復号鍵4aを有している。

ここで、情報提供者7は上記の鍵管理方式の3要素における情報送信者に対応 し、再生装置8は情報受信者に対応する。即ち、情報提供者7は、映像/音声な どのコンテンツ情報を暗号化用鍵情報5を使用して暗号化し、伝送情報6として 記録媒体9に記録する。また、情報提供者7は、無効化の対象となる再生装置8 によっては復号できないが、無効化の対象とならない再生装置8によれば復号可 能な鍵情報4bを記録媒体9に記録する。そして、情報提供者7は記録媒体9を 各再生装置8のユーザに提供する。

無効化の対象とならない再生装置8は、自己の有する復号用鍵4aで鍵情報4 bを復号して伝送情報6の復号鍵を取得し、これで伝送情報6を復号して映像/ 音声などの情報を再生することができる。一方、無効化の対象となる再生装置8 は、自己の復号用鍵4aにより記録媒体9内の鍵情報4bを復号することができ ないので、伝送情報6を復号する鍵を得ることができず、伝送情報6を再生する ことができない。こうして、本システムでは、記録媒体9上に記録された伝送情 報6を特定の再生装置8のみにより再生可能とする。

本発明では、上述の階層分割を伴う鍵管理方式(The Layer Division Subset Difference Method)に従って、再生装置8側の復号用鍵4a及び記録媒体9に記録される鍵情報4bを生成する。具体的には、ある再生装置8に対して、その再生装置を含むような全ての差分集合に割り当てられている復号鍵(または復号鍵を導けるようなラベル)と、当該再生装置が割り当てられたリーフの属する2分木のルートに割り当てられた復号鍵1つを当該再生装置に復号用鍵4aとして配布すればよい。こうして、記録媒体中9の鍵情報4bの情報量の増加を押さえつつ、再生装置8に保持しておく復号用鍵4aの情報量を大幅に減少させることができる。

次に、本発明の実施例に係るコンテンツ配信システムについて説明する。なお、このコンテンツ配信システムは、DVDなどの光ディスクを記録媒体として使用するものであり、ここでは特にDVD-ROMを例にとって説明する。このコン

15

20

25

テンツ配信システムでは、情報送信者はコンテンツの著作権者、光ディスク製造工場などに相当する。一方、情報受信者はコンテンツの再生機能を有する装置(再生装置)であり、ハードウェア又はソフトウェアにより構成されている。

なお、以下の実施例の説明において、Encryption()は暗号化アルゴリズム、Decryption()は復号化アルゴリズムを表すものとする。また、Encryption(引数 1、引数 2)は引数 2 を暗号鍵として引数 1 を暗号化した暗号文を表し、Decryption(引数 1、引数 2)は引数 2 を復号鍵として引数 1 を復号したデータを表す。また、記号"丨"は2つのデータの結合を表し、(データ A)丨(データ B)のように用いる。

10 (2.1) コンテンツ記録装置

まず、コンテンツ記録装置について説明する。図9はコンテンツをディスクに記録するコンテンツ記録装置50の構成を示すブロック図であり、情報送信者としての前述のディスク製造工場などに設けられるものである。また、コンテンツ記録装置50の各部の信号S1~S7の内容を図10A~10E及び図11A~11Bに示している。なお、ここでのコンテンツは、情報送信者から情報受信者へ送信される前述の伝送情報に対応するものである。

図9において、コンテンツ入力装置51はコンテンツを入力する装置であり、図10Aに示すように、コンテンツに対応する信号S1を出力する。コンテンツとしては、通常、音楽、映像などのマルチメディアデータが代表的であるが、ここでのコンテンツはそれらに限定されるものではなく、文書などのデータも含まれる。また、コンテンツ入力装置51としては、コンテンツのマスターデータが記録された磁気テープや、DVD-R、DVD-RW、DVD-ROM、DVD-RAMなどの記録媒体を読み込んで信号S1を出力する回路や、LAN、インターネットなどの通信回線を経由してアクセスし、そのデータをダウンロードして信号S1を出力する回路などが挙げられる。

復号鍵入力装置52はコンテンツ復号用の鍵Aを入力する装置であり、図10 Bに示すように、コンテンツ復号鍵Aである信号S2を出力する。コンテンツ復 号鍵Aは、情報送信者である著作権者、ディスク製造工場又は鍵管理機関により 決定される。

 $e^{-\alpha}(x) = (x_1, \dots, x_n) + e^{-\alpha}(x_n)$

暗号鍵入力装置53は、コンテンツ暗号鍵Aを入力する装置であり、図10Cに示すように、コンテンツ暗号鍵Aである信号S3を出力する。コンテンツ暗号鍵Aとコンテンツ復号鍵Aには、次の関係が成立することが要求される。

P = Decryption (Encryption (任意のデータP, コンテンツ暗号鍵A), コ 5 ンテンツ復号鍵A)

コンテンツ暗号化装置 5 4 は、コンテンツ暗号鍵 A (信号 S 3) を用いてコンテンツ(信号 S 1) を暗号化し、暗号化コンテンツである信号 S 4 を出力する。図 1 O D に示すように、信号 S 4 = Encryption (コンテンツ, コンテンツ暗号鍵A) である。

10 なお、この例ではコンテンツ暗号鍵 A を用いてコンテンツを直接暗号化しているが、コンテンツ自体を暗号化する必要は必ずしもない。例えば、コンテンツ自体は他の暗号鍵 C で暗号化し、暗号鍵 C に対応する復号鍵 C を上記のコンテンツ暗号鍵 A で暗号化して信号 S 4 として出力してもよい。つまり、ここでいう「コンテンツ暗号鍵を用いてコンテンツを暗号化する」とは、コンテンツの復号化に少なくともコンテンツ復号鍵 A を必要とするような方法でコンテンツを変換することを意味する。

暗号鍵入力装置 55 は、コンテンツ復号鍵 A を暗号化するための複数の暗号鍵 B_1 を入力する装置であり、N 個の暗号鍵 B_1 、 B_2 、・・・ B_{N-1} 、 B_N を、前述の階 層分割を伴う鍵管理方式のアルゴリズムに従って選択し、信号 S5 を出力する。

- 20 図10日に示すように、信号S5=暗号鍵B、一暗号鍵B、一・・・・・ 暗号鍵B、一・・・・ 暗号鍵B、一・・・・ 一暗号鍵B、で表される。これら複数の暗号鍵B、の組み合わせにより、コンテンツを再生することができる再生装置(上述した「無効化の対象とならない受信者」)が一意に決まる。よって、再生を許可する権限を持つ機関(鍵管理機関又は情報送信者)が暗号鍵B、を決定する。
- 25 鍵暗号化装置 5 6 は、信号 S 5 として得られる暗号鍵 B | を用いて、信号 S 2 として得られるコンテンツ復号鍵 A を暗号化し、それにヘッダー情報 Header (暗号鍵 B | を付加して信号 S 6 として出力する。図 1 1 A に示すように、

信号S6 =

Header (暗号鍵 B₁) | Encryption (コンテンツ復号鍵 A, 暗号鍵 B₁))

|Header (暗号鍵B₂)|Encryption(コンテンツ復号鍵A, 暗号鍵B₂))

| . . .

| Header (暗号鍵 B |) | Encryption (コンテンツ復号鍵 A . 暗号鍵 B |)

| - - -

Header (暗号鍵B_{N-1} | Encryption (コンテンツ復号鍵A, 暗号鍵B_{N-1})
 Header (暗号鍵B_N) | Encryption (コンテンツ復号鍵A, 暗号鍵B_N)
 で表される。なお、以下の説明では簡単のため、

信号S6=Header(暗号鍵B)|Encryption(コンテンツ復号鍵A,暗号鍵B)と表す。

10 記録信号生成装置 5 7 は、暗号化されたコンテンツと、複数の暗号鍵 B」で暗号化されたコンテンツ復号鍵 A の組み合わせとを合成して記録信号を生成する。より具体的には、記録信号生成装置 5 7 は、信号 S 4 = Encryption(コンテンツ・コンテンツ暗号鍵 A)と、信号 S 6 = Header(暗号鍵 B) | Encryption(コンテンツ復号鍵 A,暗号鍵 B)を結合し、それにエラー訂正符号を付加したものを信号 S 7 として出力する。よって、図 1 1 Bに示すように、信号 S 7 は、コンテンツ暗号鍵 A で暗号化したコンテンツ、N 個の暗号鍵 Biで暗号化されたコンテンツ復号鍵 A 及びヘッダーにエラー訂正符号を追加した信号であり、

S 7 = Header (暗号鍵B) | Encryption (コンテンツ復号鍵A, 暗号鍵B) | Encryption (コンテンツ, コンテンツ暗号鍵A) | ECC

20 で示される。なお、ECCはエラー訂正符号である。

記録装置58は、生成された記録信号S7を光ディスクDに記録し、又は、光 ディスクを製造するためのマスターディスクなどに記録信号S7をカッティング する)に記録する装置であり、通常レーザ光源やレーザ発信器などを備える。

(2.2) コンテンツ再生装置

25 次に、上述のようにしてコンテンツが記録された光ディスクロからコンテンツを再生するためのコンテンツ再生装置60について説明する。図12はコンテンツ再生装置60の構成を示すブロック図である。また、コンテンツ再生装置60の各部の信号の内容を図13A~13B及び図14A~14Dに示している。

図12において、情報読取装置61は光ピックアップなどの装置であり、光デ

ィスク D に記録されている情報を読み取って信号 S 1 1 を出力する。信号 S 1 1 は、図 1 3 A に示すように、

S 1 1 = Header (暗号鍵B) | Encryption (コンテンツ復号鍵A, 暗号鍵B) | Encryption (コンテンツ, コンテンツ暗号鍵A) | E C C

5 で表される。

10

15

20

エラー訂正装置62は、入力された信号S11のエラー訂正を行う装置であり、信号S11中のECCに基づいてエラー訂正処理を実行する。そして、エラー訂正後の信号を信号S12と う313に分けてそれぞれ鍵復号装置64及びコンテンツ復号装置65へ供給する。信号S12は暗号鍵B;で暗号化されたコンテンツ復号鍵Aのデータであり、S12=Header(暗号鍵B)|Encryption(コンテンツ復号鍵A,暗号鍵B)で示される。一方、信号S13はコンテンツ暗号鍵Aで暗号化されたコンテンツのデータであり、S13=Encryption(コンテンツ・コンテンツ暗号鍵A)で示される。

記憶装置 63 は、再生装置が保有する複数の復号鍵 B_1 、 B_2 、・・・、 B_1 、 B_{M-1} 、 B_M とそのヘッダ Header (B_1)、Header (B_2)、・・・、Header (B_3)、・・・、Header (B_1)、・・・、Header (B_{M-1})、Header (B_M)を保存しておく装置である。なお、ここでは記憶装置 63 は M 個の復号鍵を保有していると仮定する。また、鍵管理機関は、コンテンツ復号鍵 A の暗号化用の暗号鍵 B_1 と再生を許可されている再生装置の保有する復号鍵 B_1 のうちの少なくとも 1 つは次の関係が整理するように、予め再生装置に復号鍵 B_1 を配布している:

P = Decryption (Encryption (任意のデータ P, 暗号鍵 Bi), 復号鍵 Bj) さらに、ヘッダーについては、上記の関係の暗号鍵 B_i と復号鍵 B_j に付加されたヘッダーについて次の関係が成立するようにヘッダーの値が決定されている:

Header (暗号鍵B₁) = Header (暗号鍵B₁)

25 上記の関係が成立するように復号鍵B」とそのヘッダーを各再生装置に(再生装置製造時に)配布するのは、上述の鍵管理機関であり、その際にどの再生装置にどの復号鍵B」を配布するかの決定は、上述の階層分割を伴う鍵管理方式のアルゴリズムに従って行われる。なお、上述のアルゴリズム中の差分集合への鍵の割り当てにおいて、疑似乱数生成器が用いられる場合は、コンテンツ再生装置60の

WO 2004/028073

5

20

25

記憶装置 6 3 に保有されるのは復号鍵 B」 そのものではなく、復号鍵を計算するのに必要なラベル情報である。

記憶装置 6 3 は、図 1 4 Bに示すように、復号鍵 B₁ | 復号鍵 B₂ | ・・・ | 復号鍵 B₁ | 復号鍵 B₁ と、そのヘッダーHeader(復号鍵 B₁) | Header(復号鍵 B₂) | ・・・ | Header(復号鍵 B₁) | Header(復号鍵 B₂)

鍵復号装置 6 4 は、信号 S 1 2 = Header(復号鍵 B | Encryption(コンテンツ復号鍵 A , 暗号鍵 B) と、信号 S 1 4 = (復号鍵 B , | 復号鍵 B , | 復号鍵 B , | 復号鍵 B , | 1 を のヘッダーHeader(復号鍵 B ,) | Header(復号鍵 B ,) | Header(復号鍵 B ,) を 10 入力とし、光ディスク D から読み取った Header(暗号鍵 B ,) と再生装置が保有する Header(復号鍵 B ,) が一致するかを調べ、一致する時には復号鍵 B , を 用いて Encryption(コンテンツ復号鍵 A , 暗号鍵 B ,) を 復号する。つまり、コンテンツ復号鍵 A = Decryption(Encryption(コンテンツ復号鍵 A , 暗号鍵 B ,) , 復号鍵 B ,) となる。この処理を一致するヘッダーの組み合わせが見つかるように;及び;の組み合わせを変えて実行し、図 1 4 C に示すように信号 S 1 5 = コンテンツ復号鍵 A を出力する。一方、一致するヘッダーの組み合わせがない場合は、再生不可能として全ての処理を終了する。

なお、前述のように記憶装置 6 3 に復号鍵 B」 そのものではなく、復号鍵を計算するのに必要なラベル情報が保存されている場合は、鍵復号装置 6 4 がラベル情報から復号鍵を計算した上で同様の処理を行えばよい。こうして、復号されたコンテンツ復号鍵 A が信号 S 1 5 としてコンテンツ復号装置 6 5 へ供給される。

コンテンツ復号装置 6 5 は、図 1 4 A に示す信号 S 1 3 = Encryption(コンテンツ,コンテンツ暗号鍵 A)と、図 1 4 C に示す信号 S 1 5 = Decryption(Encryption(コンテンツ復号鍵 A,暗号鍵 B」),復号鍵 B」)=コンテンツ復号鍵 A を入力とし、信号 S 1 5 を用いて信号 S 1 3 を復号し、その結果、Decryption(Encryption(コンテンツ,コンテンツ暗号鍵 A),コンテンツ復号鍵 A)=コンテンツを信号 S 1 6 として出力する。再生装置 6 6 はコンテンツ復号装置 6 5 により復号されたコンテンツを再生する。こうして、再生を許可された再生装置のみによりコンテンツの再生が行われる。

10

15

25

(2.3) コンテンツ記録処理

次に、光ディスクDへのコンテンツ記録処理について図15を参照して説明する。図15はコンテンツ記録処理のフローチャートである。まず、複数存在する再生装置の中で、対象となる光ディスクDの再生を許可する1つ以上の再生装置を選択する(ステップS1)。この処理は、通常は鍵管理機関により行われるが、著作権者、ディスク製造工場などの情報送信者が行う場合もある。

次に、ステップS1で選ばれた、再生を許可する再生装置全てについて、少なくとも1つは復号鍵が存在し、かつ、再生を許可されていない装置については1つも復号鍵が存在しないような復号鍵の集合のうち最小となる集合を選択する(ステップS2)。

次に、コンテンツ復号鍵 A を決定し、ステップ S 2 で選択された復号鍵の集合に属する全ての復号鍵 B_jを、P = Decryption(Encryption(任意のデータ P_i 暗号鍵 B_j),復号鍵 B_j)を満たす暗号鍵 B_iを用いて暗号化し、Encryption(コンテンツ復号鍵 A_i 暗号鍵 B_i)を求める(ステップ S 3)。通常、この処理も鍵管理機関で行われるが、情報送信者が行う場合もある。

次に、ステップS3で選択されたコンテンツ暗号鍵Aを用いてコンテンツを暗号化し、Encryption(コンテンツ、コンテンツ暗号鍵A)を求める(ステップS4)。この処理は、通常、情報送信者が行う。

次に、ステップS3及びS4で求められた Encryption(コンテンツ復号鍵 A. 20 暗号鍵 B₁)及び Encryption(コンテンツ、コンテンツ暗号鍵 A)に対してエラー 訂正符号を付加する(ステップS5)。この処理は、情報送信者である著作権者、ディスク製造工場などで行われる。

そして、ステップS3、S4及びS5で計算された Encryption(コンテンツ復号鍵A, 暗号鍵B,)及び Encryption(コンテンツ, コンテンツ暗号鍵A)並びにエラー訂正符号を光ディスクDに記録する(ステップS6)。この処理はディスク製造工場など、情報送信者により行われる。こうして、暗号化されたコンテンツ及びその復号鍵の情報が光ディスクDに記録される。

次に、上記ステップS2における復号鍵の集合の選択処理について図16を参照して説明する。図16は、図15におけるステップS2の処理、即ち、再生を

WO 2004/028073

20

25

許可しない再生装置が与えられたとき、対象ディスクの再生を許可された再生装置の全てについて1つの復号(暗号)鍵が存在し、かつ、再生を許可されていない装置については1つも復号(暗号)鍵が存在しないような復号(暗号)鍵の集合のうち、最小となる集合を選択する処理を詳細に示すフローチャートである。

5 まず、複数の再生装置をそれぞれリーフに割り当てた 2 ^b 個の 2 分木から、無効化したい(再生を許可しない)再生装置の存在しない 2 分木について、そのルートに割り当てられた暗号鍵を暗号鍵 B₁ として選択する(ステップ S 2 1)。このとき、無効化したい再生装置の存在しない 2 分木は除去し、その後の処理の対象から除外する。

10 次に、2分木が存在するか否かを判定する(ステップS22)。存在する場合、無効化したい再生装置又は無効化したい再生装置を含む再生装置の集合の割り当てられているリーフ(この2種類のリーフをまとめて「無効化リーフ」と呼ぶ。)を含む任意の部分木T,を1つ選び、ST,(R)を構成する(ステップS23)。ここで、ST,(R)とは、部分木T,のルートと無効化リーフを結ぶ最短パス上のノードのみで構成される部分木のことである。また、ここで選択される部分木T,はどの2分木中に含まれていても構わない。つまり、ステップS21で除去されなかった全ての2分木が対象となっている。

次に、ST_h(R)中の2つの無効化リーフ v_1 、 v_j を、それらの共通ノード v_j 以下に他の無効化リーフが存在しないように選択する(ステップS24)。ここで共通ノードとは、2つの無効化リーフからルートへのパスの共通部分に存在するノードの中で無効化リーフとの距離が最小となるノードのことである。 v_j のの子ノードの中で、 v_j と v_j のパス上に存在する子ノードを v_k 、 v_j と v_j のパス上に存在する子ノードを v_k 、 v_j と v_j のパス上に存在する子ノードを v_j とする。(無効化リーフがST_h(R)中に1つしか存在しない場合、 v_j = v_j 、 v_j = v_k とし、 v_j はST_h(R)のルートとなっている。

次に、 $v_1 \neq v_k$ ならば、差分集合 $S_{k,1}$ に割り当てられた暗号鍵を B_1 の 1 つとして選択する(ステップ S 2 5)。同様に、 $v_1 \neq v_1$ の場合も差分集合 $S_{1,1}$ に割り当てられた暗号鍵を B_1 の 1 つとして選択する。差分集合への鍵の割り当てに疑似乱数生成器を用いている場合は、集合 S_k 、 S_1 に割り当てられたラベルから、前述

15

20

25

の方法により差分集合 $S_{k,i}$ 、 $S_{i,j}$ に割り当てられている暗号鍵を計算し、暗号鍵を B_i の 1 つとして選択する。

次に、ノードッより下に位置する部分木T,中のノードを全て除去し、 v を無効 化リーフとする (ステップ S 2 6)。次に、 S T, (R) 内のルートノードが無効 化リーフであるか否かを判定し (ステップ S 2 7)。ルートノードが無効化リーフである場合は、ルートノード以外に無効化リーフを含む他の部分木T, が全ての 2 分木中に存在するか否かを判定する (ステップ S 2 8)。存在する場合、処理はステップ S 2 3 に戻り、ルートノード以外に無効化リーフを含む他の部分木T, を選択し、同様の処理を繰り返す。

10 一方、ステップS27でST、(R) 内のルートノードが無効化リーフでな 判定された場合、処理はステップS24へ戻り他の無効化リーフを選択して同様 の処理を行う。

こうして、ルートノード以外に無効化リーフを含む他の部分木T」が全ての2分木中に存在しなくなったとき(ステップS28;No)、処理は終了する。コンテンツ復号鍵Aの暗号化に用いられる暗号鍵B」の集合は、ステップS21及びステップS25で選択され(又はラベルから計算)された暗号鍵となる。

(2.4) コンテンツ再生処理

次に、光ディスクロからのコンテンツ再生処理について説明する。図17はコンテンツ再生処理のフローチャートである。まず、光ディスクロから光ピックアップなどの読取装置61により記録情報が読み取られる(ステップS31)。次に、ステップS31で得られた信号に対してエラー訂正装置62によりエラー訂正を行う(ステップS32)。

次に、光ディスクD中に記録されているN個のヘッダーHeader(暗号鍵 B_1)の中に、再生装置が保有するM個の復号鍵 B_1 のヘッダーHeader(復号鍵 B_1)の少なくとも1つは一致するものが存在するか否かを調べる(ステップ S_1 33)。存在する場合、その再生装置は再生を許可されたものであることになり、一致した光ディスクD側のヘッダーHeader(暗号鍵 B_1)に対応する Encryption(コンテンツ復号鍵 A_1 暗号鍵 B_1)を、再生装置側のヘッダーHeader(復号鍵 B_1)に対応する復号鍵 A_1 で復号する(ステップ A_1 33)。つまり、コンテンツ復号鍵 A_1 4)。

20

25

(Encryption (コンテンツ復号鍵 A、暗号鍵 B_I), 復号鍵 B_J) という処理を行い、コンテンツ復号鍵 A を得る。

次に、ステップS34で復号されたコンテンツ復号鍵Aを用いて、光ディスク D上の暗号化コンテンツである Encryption (コンテンツ, コンテンツ暗号鍵A) 5 を復号する (ステップS35)。つまり、コンテンツ=Decryption (Encryption (コンテンツ, コンテンツ暗号鍵A), コンテンツ復号鍵A)という処理を行い、 コンテンツの復号を行う。そして、復号されたコンテンツを再生する (ステップ S36)。

なお、ステップS33で一致するヘッダーが見つからない場合は(ステップS 10 33; No)、その再生装置による再生が許可されていないことになり、コンテン ッの再生は行われず、処理は終了する。

(2.5) 差分集合への暗号鍵の割り当てに疑似乱数生成器を使用する場合 次に、本発明による階層分割を伴う鍵管理方式において差分集合へ暗号(復号) 鍵を割り当てる際に疑似乱数生成器を用いる場合の処理を図18のフローチャートを参照して説明する。

まず、2 $^{\text{b}}$ 個の各2分木のルートに独立な値をもつ暗号(復号)鍵を割り当てる(ステップS41)。次に、2 $^{\text{b}}$ 個の2分木中に含まれる全てのノードに独立な値を持つラベルを割り当てる(ステップS42)。但し、1台の再生装置のみが割り当てられているノード(リーフ)は除外される。そして、任意の部分木 T_h を選択し(ステップS43)、選択された部分木 T_h 中の任意のノード V_1 をルートとする部分木 $T_{h,1}$ を選択する(ステップS44)。

次に、ステップS44で選択された部分木 $T_{h,1}$ のルートノードに割り当てられた ラベル LABEL $_1$ (ステップS42で割り当てられている)を用いて、差分集合 $S_{1,*}$ に暗号 (復号)鍵 $L_{1,*}$ を割り当てる(ステップS45)。ここで、*は部分木 $T_{h,1}$ 中の任意のノード v_* を表す。(但し、 $T_{h,1}$ のルートノード v_* は除く)。各差分集合への暗号(復号)鍵の割り当ては以下のように行う。

始めに疑似乱数生成器 Gの入力をラベル LABEL $_{i,*}$ としたとき、その出力を 3 等分した左側部分を G_{k} (LABEL $_{i,*}$)、中央部分を G_{k} (LABEL $_{i,*}$)、右側部分を G_{k} (LABEL $_{i,*}$)で表す。このとき各出力を以下のように定義する。

10

25

G_L(LABEL_{i,*}) 入力ラベル LABEL_{i,*}の割り当てられたノードの左側の子ノードに割り当てるラベル

 G_{II} (LABEL $_{1,*}$) 入力ラベル LABEL $_{1,*}$ の割り当てられたノードに割り当てる暗号鍵 $L_{1,*}$ (これが差分集合 $\underline{S}_{1,*}$ に割り当てられる暗号(復号)鍵になる)

G_R(LABEL_{i,∗}) 入力ラベル LABEL_{i,∗}の割り当てられたノードの右側の子ノ ードに割り当てるラベル

部分木 T_{h, I} のルートノードに割り当てられたラベル LABEL, からその2つの子ノードのラベルを疑似乱数生成器 G を用いて割り当てる。この処理を次は子ノードのラベルを入力として行い、孫ノードのラベルを求める。以下、同様にして部分木 T_{h, I} 中の全てのノードにラベルを割り当てることができる。

最後に、部分木 $T_{h,1}$ 中の各ノードに割り当てられたラベル $LABEL_{i,*}$ を入力として $L_{i,*}=G_{M}$ ($LABEL_{i,*}$) を計算する。この値が差分集合 $S_{i,*}$ に割り当てられる暗号(復号)鍵である。

次に、ステップS43で選択された部分末 T_h中の部分末 T_{h.1}で、ステップS4 4で選択されていない部分木が存在するか否かを判定する(ステップS46)。 存在する場合はステップS44へ戻り、未だ選択されていない部分木 T_{h.1}を選択し、 同様の処理を行う。存在しない場合は、次に、2^b個の2分木中に存在する全ての 部分木 T_hの中で、ステップS43で選択されていない部分木 T_hが存在するか否か を判定する(ステップS47)。存在する場合は、ステップS43に戻り、まだ 20 選択されていない部分木 T_hを選択し、同様の処理を行う。一方、存在しない場合 は処理を終了する。

以上述べたように、本実施例においては、2分木を複数のレイヤに分割し、分割された各部分木に対して The Subset Difference Method を適用するので、記録媒体中の鍵情報量の増加を押さえつつ、再生装置の保有しておく復号鍵などの秘密学報を大幅に減少させることができる。

また、The Subset Difference Method において、各差分集合への復号(暗号) 鍵の割り当てに疑似乱数生成器を用いる場合、再生装置側で保有しているラベル 情報から復号鍵を求めるのに最大 log₂ (N) + 1回の(疑似乱数生成器の出力を 求めるという)演算を必要としていたが、本方式では最大 d + 1回で十分となる。 なお、dは部分木 T_h の高さである。よって、ラベル情報から復号鍵を効率的かつ迅速に得ることが可能となる。

産業上の利用可能性

5 本発明は、映画、音楽などの著作物であるコンテンツを暗号化し、ネットワークその他の情報通信路を介して配布する環境において、不正な処理を行った者などの特定の受信者を無効化することが可能なシステムを提供することができる。

請求の範囲

- 1. 複数の情報受信者をリーフに割り当てた木構造を規定する手段と、
- 前記木構造を所定階層毎に分割して複数の部分木を規定する手段と、
- 5 前記複数の部分木の各部分木に対して鍵情報の割り当てを行う手段と、 を有することを特徴とする鍵管理システム。
 - 2. 前記鍵情報の割り当てを行う手段は、

前記部分木のリーフに割り当てられた複数の情報受信者全てにより構成される 10 集合と、前記部分木中の特定のノード以下のリーフに割り当てられた情報受信者 との差分集合を、前記部分木中の全てのノードについて特定する手段と、

前記差分集合の各々に鍵情報を割り当てる手段と、

前記複数の情報受信者の各々に対して、当該情報受信者が属する全ての差分集 合に割り当てられた鍵情報を割り当てる手段と、

15 からなることを特徴とする請求の範囲第1項に記載の鍵管理システム。

3/18

<u>図</u>

5/18

図10A	信号S1	コンテンツ
図10B	信号S2	コンテンツ復号鍵A
図10C	信号S3	コンテンツ暗号鍵A
図10D	信号S4	エンクリプション(コンテンツ, コンテンツ暗号鍵A)
図10E	信号S5	暗号鍵B ₁ 暗号鍵B ₂ · · · · · · · · · · · · · · · · · ·

図11A

信号S6

ヘッダー	エンクリプション
(Header 暗号鍵B ₁)	(Encryption コンテンツ復号鍵A. 暗号鍵B,)
ヘッダー	エンクリプション
(Header 暗号鍵B ₂)	(Encryption コンテンツ復号鍵A, 暗号鍵B ₂)

ヘッダー	エンクリプション
(Header 暗号鍵B _{N-1})	(Encryption コンテンツ復号鍵A, 暗号鍵B _{k+1})
ヘッダー	エンクリプション
(Header 暗号鍵B _N)	(Encryption コンテンツ復号鍵A, 暗号鍵B _N)

図11B

信号S7

ヘッダー	エンクリプション
(Header 暗号鍵B ₁)	(Encryption コンテンツ復号鍵A, 暗号鍵B ₁)
ヘッダー	エンクリプション
(Header 暗号鍵B₂)	(Encryption コンテンツ復号鍵A, 暗号鍵B ₉)

ヘッダー	エンクリプション
(Header 暗号鍵B _{N-1})	(Encryption コンテンツ復号鍵A, 暗号鍵B _{N-1})
ヘッダー	エンクリプション
(Header 暗号鍵B _N)	(Encryption コンテンツ復号鍵A. 暗号鍵B _N)
エンクリプション (Encryption コンテンツ、コンテンツ暗号鍵A)	
エラーコレクティングコード (Error Correcting Code)	

12/18

図13A

ヘッダー エンクリプション
(Header 暗号鍵B₁) (Encryption コンテンツ復号鍵A, 暗号鍵B₂)

ヘッダー エンクリプション
(Header 暗号鍵B₂) (Encryption コンテンツ復号鍵A, 暗号鍵B₂)

信号S11

ヘッダー	エンクリプション
(Header 暗号鍵B _{N-1})	(Encryption コンテンツ復号鍵A, 暗号鍵B _{N-1})
ヘッダー	エンクリプション
(Header 暗号鍵B _N)	(Encryption コンテンツ復号鍵A, 暗号鍵B _N)
エンクリプション (Encryption コンテンツ, コンテンツ暗号鍵A)	
エラーコレクティングコード(Error Correcting Code)	

図13B

信号S12

ヘッダー	エンクリプション
(Header 暗号鍵B ₁)	(Encryption コンテンツ復号鍵A, 暗号鍵B ₁)
ヘッダー	エンクリプション
(Header 暗号鍵B ₂)	(Encryption コンテンツ復号鍵A, 暗号鍵B ₂)

ヘッダー	エンクリプション
(Header 暗号鍵B _{N-1})	(Encryption コンテンツ復号鍵A, 暗号鍵B _{N-1})
ヘッダー	エンクリプション
(Header 暗号鍵B _N)	(Encryption コンテンツ復号鍵A, 暗号鍵B _N)

図14A

信号S13

エンクリプション (Encryption コンテンツ, コンテンツ暗号鍵A)

図14B

信号S14

ヘッダー (Header 復号鍵B ₁)	復号鍵B ₁
ヘッダー (Header 復号鍵B ₁)	復号鍵B2

ヘッダー (Header 復号鍵B _{м-1})	復号鍵B _{м-1}
ヘッダー (Header 復号鍵B _M)	復号鍵B _M

図14C

信号S15

コンテンツ復号鍵A

図14D

信号S16

コンテンツ

