**Departamento Metal Mecânico** Curso Técnico de Manutenção Automotiva



## Eletricidade I

eduardo.fontanella@ifsc.edu.br

Elaborado: Prof Jonathan Razzini

Prof. Eduardo Fontanella



## Eletricidade - É o movimento de elétrons em um condutor.





### A eletricidade pode ser criada de várias formas:

- Fricção
- Calor
- Luz
- Pressão
- Ação química
- Magnetismo

## Eletricidade



### Matéria

É tudo aquilo que nos cerca e que ocupa um lugar no espaço.

### Molécula

É a menor partícula em que se pode dividir uma substância de modo que ela mantenha as mesmas características da substância que a originou.





- São partículas infinitamente pequenas que constituem a molécula.
- O átomo é formado por uma parte central chamada núcleo e uma parte periférica formada pelos elétrons e denominado eletrosfera.



- Elétrons: são cargas negativas ( )
- Prótons: São cargas positivas ( + )
- Nêutrons: São cargas neutras.



## Eletricidade estática

• É o acumulo de cargas em um material qualquer, condutor, semicondutor ou isolante.



https://www.youtube.com/watch?v=Jm0vCDFYysk



### Eletricidade dinâmica

- É o fluxo de cargas elétricas que se desloca através de um condutor.
- Para que este fenômeno ocorra, é necessário, uma fonte de energia, um consumidor e os condutores fechando o circuito.







### Materiais elétricos

- Os materiais elétricos podem ser classificados em:
  - Condutores
  - Isolantes
  - Semicondutores

### **Isolantes Elétricos**

- · São materiais que impedem a passagem da corrente elétrica.
- A mica, o plástico, a borracha, a cerâmica são exemplos de isolantes elétricos.



### **Condutores**

- São materiais que permitem a passagem da corrente elétrica sem nenhuma restrição (idealmente).
- Todos os metais, geralmente, são bons condutores de eletricidade.
- Os condutores utilizados na indústria, em geral, são constituídos de cobre ou de alumínio.
- A resistência, maior ou menor, que apresenta um condutor, à passagem das cargas elétricas, dependem do:
  - Comprimento (L)
  - Diâmetro (d) (área ou seção do condutor)
  - Material do condutor



## **Condutores**

| MATERIAL | RESISTIVIDADE (Ω.m)                         |
|----------|---------------------------------------------|
| Prata    | 1,6 x 10 <sup>-8</sup>                      |
| Cobre    | 1,7 x 10 <sup>-8</sup>                      |
| Ouro     | 2,4 x 10 <sup>-8</sup>                      |
| Alumínio | 2,8 x 10 <sup>-8</sup>                      |
| Chumbo   | 2,2 x 10 <sup>-7</sup>                      |
| Vidro    | 1 x 10 <sup>10</sup> a 1 x 10 <sup>14</sup> |
| Borracha | ≈ 10 <sup>13</sup>                          |



### Semicondutores

- São aqueles que apresentam características de isolante ou de condutor, dependendo da forma como se apresenta sua estrutura química.
- Os semicondutores são utilizados na fabricação de dispositivos eletrônicos, tais como diodos, LEDs, transistores, etc.





### Tensão

- Tensão é a força que impulsiona o movimento dos elétrons.
- Essa força ou pressão é denominado de tensão elétrica ou diferença de potencial elétrico (ddp).
- É sempre uma tensão que gerará o movimento dos elétrons.







Representação de tensão •

U ou V

Unidade de tensão

V (Volt)

### Exemplo:

- A tensão de uma bateria para veículos é de 12V.
- A tensão de uma bateria veículos pesados é de 24V.
- Para valores de tensão muito pequeno se utiliza um submúltiplo do volt que é o milivolt (mV).
  - Exemplo: 0.5V = 500mV
- Para valores de tensão muito grande se utiliza o múltiplo do volt que é o quilovolt (k**V**).
  - Exemplo: 10000V = 10kV



## Tensão alternada





### Corrente elétrica

- É a quantidade de carga elétrica (fluxo de energia elétrica) que circula pelos condutores em um determinado intervalo de tempo.
- Para que haja corrente elétrica, é necessário que haja ddp e que o circuito esteja fechado.

Representação de corrente elétrica

Unidade de corrente elétrica A (ampère)



- Para valores de corrente elétrica muito pequeno se utiliza um submúltiplo do Ampère que é o miliampère (mA).
  - Exemplo: 0.1A = 100mA
- Exemplo:
  - A corrente consumida pelo motor de partida está em torno de 100 ampères (100A) ou até 150A, dependendo do tamanho do motor.
  - A corrente consumida por uma lâmpada indicada no painel é de aproximadamente 0.1A = 100 mA.
- Tipos de Corrente Elétrica
  - Corrente alternada
  - Corrente contínua



# Tipos de corrente elétrica

#### Corrente contínua

- Fluxo ordenado de elétrons sempre em uma direção;
- Presente na maioria dos circuitos elétricos do veículo;



#### **Corrente alternada**

- Fluxo de elétrons varia a sua direção de movimento ao longo do tempo;
- Tipo de corrente elétrica gerada no alternador;





### Lei de ohm

 George Simon Ohm estudou a corrente elétrica e definiu uma relação entre tensão, corrente e resistência.

$$U = R * I$$

U – Tensão

R – Resistência

I – Corrente







### Lei de ohm

 George Simon Ohm estudou a corrente elétrica e definiu uma relação entre tensão, corrente e resistência

$$U = R * I$$

U – Tensão

R – Resistência

I – Corrente







### Lei de ohm

 George Simon Ohm estudou a corrente elétrica e definiu uma relação entre tensão, corrente e resistência

$$U = R * I$$

U – Tensão

R – Resistência

I – Corrente







### Potência elétrica

A potência elétrica consumida por uma carga pode calculada pela formula

$$P = U * I$$

P – Potência

U – Tensão

I – Corrente

E se aumentarmos a potência da lâmpada?







### Potência elétrica

A potência elétrica consumida por uma carga pode calculada pela formula

$$P = U * I$$

P – Potência

U – Tensão

I – Corrente

Podemos trocar uma lâmpada halógena por uma de LED?







### Potência elétrica

A potência elétrica consumida por uma carga pode calculada pela formula

$$P = U * I$$

P – Potência

U – Tensão

I – Corrente

Porque precisamos de amplificador para som potente?





**Departamento Metal Mecânico** Curso Técnico de Manutenção Automotiva



# Podemos levar choque elétrico no carro?





# Choque elétrico

- É a perturbação de natureza e efeitos diversos que se manifesta no organismo humano ou animal quando este é percorrido por uma corrente elétrica.
- A proteção contra choques elétricos é regulamentada nas normas:
  - NBR 5410-2004 da ABNT
  - Normas regulamentadoras 10 e 18 do Ministério do Trabalho



# Efeito da corrente elétrica

- O efeito da corrente depende:
  - Intensidade da corrente;
  - Tempo de exposição;
  - Percurso através do corpo humano;
  - Condições orgânicas do indivíduo.



# Passagem da corrente pelo corpo





# Efeitos da passagem de corrente

#### Efeitos fisiológicos diretos da eletricidade

| INTENSIDADE | EFEITO                 | CAUSAS                                                                         |          |
|-------------|------------------------|--------------------------------------------------------------------------------|----------|
| 1 a 3 mA    | Percepção              | A passagem da corrente provoca formigamento. Não existe perigo.                | () Z →   |
| 3 a 10 mA   | Eletrização            | A passagem da corrente provoca movimentos.                                     |          |
| 10 mA       | Tetanização            | A passagem da corrente provoca contrações musculares, agarramento ou repulsão. |          |
| 25 mA       | Parada Respiratória    | A corrente atravessa o cérebro.                                                | <b>7</b> |
| 25 a 30 mA  | Asfixia                | A corrente atravessa o tórax.                                                  | BO       |
| 60 a 75 mA  | Fibrilação Ventricular | A corrente atravessa o coração.                                                |          |



## Efeitos da passagem de corrente

#### Efeitos fisiológicos indiretos da eletricidade

| EFEITO                       | CAUSAS                                                                           |                                    |
|------------------------------|----------------------------------------------------------------------------------|------------------------------------|
| Transtornos Cardiovasculares | O choque elétrico afeta o ritmo cardíaco: infarto, taquicardia etc               |                                    |
| Queimaduras Internas         | A energia dissipada produz<br>queimaduras internas:<br>coagulação, carbonização. |                                    |
| Queimaduras Externas         | Produzidas por arco elétrico a 4000°C.                                           |                                    |
| Outros Transtornos           | Consequências da passagem<br>da corrente                                         | Auditivo, ocular<br>nervoso, renal |