

高知工科大学 経済・マネジメント学群

統計学 2

6. シミュレーション

ため 勇生

yanai.yuki@kochi-tech.ac.jp

このトピックの目標

- 5月10日(月)の目標
 - ▶ 乱数生成の方法を理解する!
 - ▶ for ループを理解する
- 5月13日 (木) の目標
 - ▶ 中心極限定理を理解する!
 - 統計学で正規分布(標準正規分布)ばかり使うのはなぜか?

乱数を利用する

乱数 (random numbers)

- 確率・統計を理解するには、乱数を使うのが一番
 - ▶ 実際に実験する
 - サイコロを振る、コインを投げる、etc.
 - ▶ 乱数表を使う
 - トRで乱数を生成する

Rで乱数を作る

- Rを乱数生成器 (random number generator) として 使う
 - ► Rで作れるのは擬似乱数 (pseudo-random numbers)
 - メルセンヌ・ツイスタ (Mersenne Twister) が利用されている

Rで生成できる乱数の例(1)

- ★ 基本形は r (random) + 分布名の最初の数文字
- 二項分布 (binomial distribution): rbinom()
- 正規分布 (normal distribution): rnorm()
- 一様分布 (uniform distribution): runif()
- ・カイ二乗分布 (chi-squared distribution): rchisq()
- t分布 (Student's t_distribution): rt()

Rで生成できる乱数の例 (2)

★ 特定の対象の集合から無作為(ランダム)に引く関数

sample()

forループ

for ループとは?

- Rで特定の計算を繰り返し行う場合に用いる方法の1つ
- 長所
 - ▶ コードがわかりやすい
 - 入れ子にできる
- 短所
 - コードが長くなる
 - ▶ 実行速度が遅くなりがち

forループの例

- 3行4列の行列Aの要素を順番に表示 (print) する
- for を使って、i行j列を順番に表示
 - ▶ まず、i を1に固定
 - i を 1, 2, 3, 4 と順番に動かす
 - ▶ 次に、i を2に固定
 - j を1, 2, 3, 4 と動かす
 - ▶ 最後に、i を 3 に固定
 - j を 1, 2, 3, 4 と動かす

```
A <- matrix(1:12, nrow = 3)

for (i in 1:3) {
   for (j in 1:4) {
     print(A[i, j])
   }
}</pre>
```

繰り返しの実行

- for ループ以外にも繰り返しを実現する方法はある
 - ▶ while ループ
 - ► apply, map などの関数(Rらしい関数)
 - 詳しくは、副読本 の「Rプログラミングの基礎」の章
 を参照

Rで実際にやってみよう!

- 授業のウェブページ
 - ▶ 乱数生成と中心極限定理
 - https://yukiyanai.github.io/jp/classes/stat2/ contents/R/rng-n-clt.html

このトピックの目標

- 5月10日 (月) の目標
 - ▶ 乱数生成の方法を理解する!
 - ▶ for ループを理解する
- 5月13日(木)の目標
 - ▶ 中心極限定理を理解する!
 - 統計学で正規分布(標準正規分布)ばかり使うのはな ぜか?

中心極限定理

正規分布ばかり使うのはなぜか

- ・確率分布は、正規分布だけではない
 - 例) 一樣分布、二項分布
- なぜ正規分布を使って統計的推定・検定を行うのか?
- → 中心極限定理

中心極限定理 (Central Limit Theorem; CLT)

- ・標本サイズ N が十分大きければ、元の確率分布によらず標本平均が近似的に正規分布に従う
 - ► 正規分布以外の確率分布に従う変数であっても、N が大きければ、正規分布を利用することができる
 - ► 極限に関する定理のなかで、統計学で中心的な役割を果たす定理
- ★ シミュレーションで示す

離散一樣分布

- バッグの中に番号が書かれたボールが10個入っている
 - 番号: 0, 1, 2, 3, 4,5, 6, 7, 8, 9
- この分布の平均 = (9-0)/2 = 4.5

平均値の推定

- バッグ内のボールに書かれた数を知らないとする
- ・バッグからボールを引いて、平均を当てたい(推定したい)
- \cdot バッグからボールを N 回引き、出た数の平均値を推定 に使う
- ただし、1度引いたボールはすぐにバッグの中に戻す (復元抽出法)

例:ボールを2回選ぶ

- •1回目の選び方:10通り
- 2回目の選び方:10通り
- →選び方は全部で 10×10 = 100 通り
- 2個のボールの合計: 0から18までの19通り
- 平均 = 合計 / 2 : {0, 0.5, 1, ..., 9} の19通り

合計	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
平均	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	7.5	8	8.5	9
確率	1/ 100	2/ 100	3/ 100	4/ 100	5/ 100	6/ 100	7/ 100	8/ 100	9/ 100	10/ 100	9/ 100	8/ 100	7/ 100	6/ 100	5/ 100	4/ 100	3/ 100	2/ 100	1/ 100

シミュレーション

- 「ボールを N 個選んで平均値を求める」という作業を 10,000 回繰り返してみる
- 平均値(推定値)の分布はどのような形になる?
- •1回の抽出で取り出す個数 (N) を増やすとどうなる?

ベルヌーイ分布

- コインを1回投げる
- \bullet 表が出る確率 θ は、

$$\theta = 0.8$$

• 裏が出る確率 $1 - \theta$ は $1 - \theta = 0.2$

表が出る確率の推定

- 表が出る確率を知らないとする
- コインをN 回投げ、表が出た割合を θ の推定値として使う

例:コインを2回投げる

- ・1回目の結果:2通り (表 or 裏)
- 2回目の結果:2通り (表 or 裏)
- →選び方は全部で 2×2=4 通り
- 表が出る回数: {0, 1, 2} の3 通り
- 割合 = 「表の回数 / 2」{0, 0.5, 1} の3通り

表が出る確率 θ = 0.8

1投目	裏	裏表	表		
2投目	裏	表裹	表		
表の回数	0	1	2		
平均	0	0.5	1		
確率	0.2x0.2 =0.04	0.2x0.8+0.8x0.2 =0.32	0.8x0.8 =0.64		

31

シミュレーション

- ・「コインをN 回投げて表の割合を求める」という作業を 10,000回繰り返してみる
- 平均値(推定値)の分布はどのような形になる?
- . 1回ごとに投げる回数 (N) を増やすとどうなる?

このトピックのまとめ

- Rを使うと、様々な方法で乱数を生成することができる
 - ▶ 確率・統計分布の理解に役立つ
 - シミュレーションができる
- 中心極限定理のおかげで正規分布を使った推論ができる

Rで実際にやってみよう!

- 授業のウェブページ
 - ▶ 乱数生成と中心極限定理
 - https://yukiyanai.github.io/jp/classes/stat2/ contents/R/rng-n-clt.html

次回予告

7. 統計的推定と仮説検定の基礎