Exme Éjor Novamo 17/18

1) · Veriéveis de Deciseo

$$2C_1$$
 - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer $\epsilon \omega$
 $2C_1$ - n^e de eximetres por refer ex

· Funça dichio

$$M_{im} Z = 0.5321 + 0.3522 + 0.7223$$

· Restrições

$$21 + 22 + 23 \le 1.5$$
 [quantidale méxime diénie)

 $321 + 22 + 0.923 \ge 8$ [mecosi Jalos diénies de feuro)

 $40021 + 1450022 + 321523 \ge 4500$ (necositales diénies de vitaire A)

 $0.122 + 23 \ge 2$ (necosidales diénies de vitaires B(2)

 $0.421 + 0.00522 + 0.0523 \ge 9.6$ (necosidales diénies de Auxo Folio

2) a) Mim
$$Z = -21 + 2x2$$
 - $2x - 2x2 - Mx4$
5. a
 $x_1 + 3x_2 > 6$ $x_1 + 3x_2 > 6$ $x_1 + 3x_2 > 6$ $x_1 - x_2 < 1$ $x_1 > 0, x_2 > 0$

	1 21	_2 K2	О 26 3	_M X4	O 7L 5	Ь		
\$ 29 -M	[1	3	- 1	1	6	6	(1)	SBNA 262 (0,0,0,6,1) 21/2 -6M
\$ x4 -M x5 0	1	-1	6	0	1	1 ×	(2)	22 -6M
Zj-G	- M - 1	-3M +2	M	0	0	-6M		

```
\frac{21}{22-2} \times \frac{2}{2} \times \frac{2}{3} \times \frac{2}{3} \times \frac{1}{3} \times 
               x_{11} 1 0 -1/4 1/4 3/4 9/4 (2)" = 3/4 (2)"
      25-9 0 0 1/4-1/4 5/4 -1/4
      Quano 66,00, x*-(9/4, 5/4,0,0,0) Z'x=-1/4 => Z*= 1/4
b) O objetivo de lévise do surde "M" e' form con que es
  antificis desponetim.
    Este lécrice atribuir às verieireis artificies do probleme um coficerte
      me furta objetivo isual a - h, sendo M uma constante positive
    muito elevate. Deste redo as anticiais peralizar-se forsemente
3)
 a) Max 2=-x1 + 4x2 = 4 (-4,0) (0,1)
                                                                                                                                                                                                                                                                    \int_{2}^{2} \int_{2}^{2} \left( -321 + 622 = 12 \right)
                  3x 1 + 2x2 \gg 12 (4,6) (0,6) (1)
                 -321 + 422 \leq 12 (-4, 0) (0,3) (2)
                                                                                                                                                                                                                                                                      1=5-
22=27
                     \chi_1 \leq 5 \quad (3)
                  212 0,2220
  5) Primely
                                                                                                                                       / Duce /
                                                                                                                                      Min 2d= 12U1 4 12U2 + 5 U3
    Max Z=-21+422
     5.6
             3x1 + 2x2 \ge 12 4 01
                                                                                                                                    301 -302 + 03 > -1
                -321 + 4x2 < 12 - V2
                                                                                                                                           2 U1 + 4U2 >
               21 65 4 03
                                                                                                                                             U1 <0, U2 >0, U3 >0
      21 7,01 2270
```


Neulure des soluções seix vélide

Custo de Solagio

Custo de transporte

211 z 6) 222 z 4 ; 223 z 2 ; 231 z 1 ; 232 z 3

1 andro stomo alt. 1

11

(1 (2 (3) 4 2 6 2 0 6 3 6 5 0 6 3 1 1 1 0 4

Célles 200042es

 $(1,2)=0+5 \le 6$

 $(1/3) \circ + \circ \leq \circ$

(2,1) 0 + 2 \leq 3 (3,3) - 1 + 0 \leq 0 (3,3)

Mim- 26,2,33=2

Quedo óhimo, no atato tem une
isualde, logo le un quedro óhimo
Atachio

ash de hangon de do quad no alteration

2 = 4x 2 + 2x 0 + 6x 5 + 3x 1 + 1x 4 = 45 um

 $2n^{2} = 1$; $213^{2} = 2$; $222^{2} = 6$; $231^{2} = 3$; $232^{2} = 1$; $232^{$

C) DO L1 vão 6 lotes 1erc C1

DO L2 vão 6 lotes 1erc C2

DO L3 vai 1 lote per C1 e 3 lotes 1erc C2.

O L2 dice (on 2 lotes excedentes.