

Ficha de Trabalho n.º 4 - Matemática A - 10.º Ano

POLINÓMIOS

"Conhece a Matemática e dominarás o Mundo." Galileu Galilei

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

1. Na figura está representado um paralelepípedo [ABCDEFGH].

Tal como a figura sugere, $\overline{AB} = 4$, $\overline{BC} = 3x + 1$ e $\overline{CG} = (x^3 - 7x - 6) \div (x + 2)$, com x > 3.

O volume do paralelepípedo é dado, em função de x por:

A
$$12x^3 + 12x^2 - 36x - 36$$

$$3x^3 - 5x^2 - 11x - 3$$

D
$$12x^3 - 36x^2 + 12$$

2. Sejam A, B e C três polinómios de graus n, p e q, respectivamente, com 0 < q < p < n tais que o polinómio $A \times B$ é divisível por C.

Qual é o grau do polinómio $(A \times B) \div C$?

$$A$$
 $n+p+q$

$$B \quad n-p+q$$

$$\bigcap$$
 $n+p-q$

$$\mathbf{D} \quad n-p-q$$

3. Considere o polinómio $p(x) = x^{12} - 2x^3 + 1$. Qual é o resto da divisão inteira de p por $2x + \sqrt[3]{24}$?

- **A** 76
- **B** 79

C 85

D 88

4. Seja k um número real tal que o polinómio p, definido por $p(x) = k^2 x^4 - 4kx^3 + 3x - 2$ é sempre de grau 4.

Qual é o valor de k de modo que o resto da divisão inteira de p por x-2 seja 4?

A 0

B 1

C 2

D 3

5. Sejam $a \in b$ dois números reais distintos e S o conjunto de todos os polinómios de grau três em que $a \in b$ são as suas duas únicas raízes.

Qual das seguintes proposições é falsa?

- lack A $\forall p \in S, p \text{ \'e divis\'ivel por } (x-a)^2 (x-b)$
- lacksquare $\forall p \in S, p \text{ \'e divisivel por } (x-a)(x-b)$

C $\forall p \in S, p \text{ \'e divis\'ivel por } x-a$

 \triangleright $\forall p \in S, p \in \text{divisível por } x-b$

6. Seja *p* um polinómio de grau 4 tais que:

•
$$p(-1) = p(1) = p(2) = 0$$

- 2 é raiz de multiplicidade 2
- o resto da divisão inteira de p por $x-3 \not = 16$

Qual é a expressão analítica do polinómio p?

A
$$x^4 - 4x^3 + 3x^2 + 4x$$

7. Sejam a e b dois números reais tais que o polinómio $p(x) = -x^3 + ax^2 - 3bx + 9$ é divisível por x + 3.

Qual é o valor de $(a+b)^3$?

- **A** -64
- **B** -27
- **C** 27

D 64

8. Considere o polinómio p definido por $p(x) = m(x-x^3) + n(x^2-1)$, com $m, n \in \mathbb{R} \setminus \{0\}$ e $m \neq n$.

Qual das seguintes afirmações é falsa?

A p é divisível por x-1

B p é divisível por x+1

C p é divisível por n-mx

D p é divisível por m-nx

9. Considere o polinómio p definido por $p(x) = kx^{2n} - x^{2n} + x^2 + 3$, com $k \in \mathbb{R} \setminus \{0,1\}$ e $n \in \mathbb{N}$.

Qual é o valor de n de modo que o resto da divisão inteira de p por x+2 seja igual a 64k-57

A 1

10. Considere o polinómio p definido por $p(x) = -2x^{2n+1} - 6x^{n+3} - x$

Qual pode ser o resto da divisão inteira de p por x+1?

D 10

11. Considere um polinómio p tais que o resto da divisão inteira de p por x-4 é 2 e o resto da divisão inteira de p por $x + 2 \, \acute{e} \, 1.$

Qual é o resto da divisão inteira de p por (x+4)(x+2)?

12. Sejam $a \in b$ dois números reais e A, $B \in C$ três polinómios definidos por:

- $A(x) = x^5 + ax^4 bx^3 + ax^2 + bx 2b$, $B(x) = x^3 + a$ e $C(x) = x^2 + (b-a)x b$

Sabe-se que $A = B \times C$. Quais podem ser o valores de a e de b?

A a = 2 e b = 2

B a = 4 e b = 2

C a = 2 e b = 4

13. Qual é o conjunto solução da inequação $x^5 > 4x^3$?

A
$$]-\infty,-2[\,\cup\,]0,2[$$

B
$$]-2,0[\,\cup\,]2,+\infty[$$

$$\begin{bmatrix} \mathbf{C} \end{bmatrix} - \infty, 0 \begin{bmatrix} \mathbf{O} \end{bmatrix} 2, +\infty \begin{bmatrix} \mathbf{C} \end{bmatrix}$$

14. Considere um polinómio p, de grau 2, tal que $p(x) < 0 \Leftrightarrow -3 < x < 2$.

Qual é o conjunto solução da inequação $(-2x^2 - 8x + 10) \times p(x) \le 0$?

A
$$[-5,-3] \cup [1,2]$$

B]
$$-\infty$$
, -3] \cup [$-1,2$] \cup [5 , $+\infty$ [

$$[\mathbf{C}] - \infty, -5] \cup [-3,1] \cup [2,+\infty[$$

$$D [-3,-1] \cup [2,5]$$

GRUPO II - ITENS DE RESPOSTA ABERTA

- **15.** Considere o polinómio p definido por $p(x) = -2x^3 + 4x^2 + x + 2$
 - **15.1.** Utilizando a regra de Ruffini, determine o quociente e o resto da divisão de p pelo polinómio 3x-4.
 - *15.2. Utilizando a regra de Ruffini, determine o quociente e o resto da divisão de p pelo polinómio $x^2 9$.
 - **15.3.** Verifique se 2 é raiz de multiplicidade 2 de *p* e decomponha-o num produto de polinómios irredutíveis.
 - **15.4.** Resolva a inequação p(x) > 0
 - **15.5.** Resolva em a inequação $p(x) \le 2-3x$.
- **16.** Seja p o polinómio cujo quociente e o resto da divisão inteira por $x^2 + 1$ é, respectivamente, 2x + 17 e 17x 31.
 - **16.1.** Calcule p(-7) e interprete o resultado obtido.
 - **16.2.** Determine os zeros de p e decomponha-o num produto polinómios irredutíveis.
 - **16.3.** Resolva a inequação $p(x) \le 0$.
 - **16.4.** Determine o conjunto solução da inequação $p(x) \times (9 x^2) > 0$.

- 17. Considere o polinómio p definido por $p(x) = 3x^3 + 2x^2 7x + 2$.
 - **17.1.** Utilizando a regra de Ruffini, determine o quociente e o resto da divisão de p pelo polinómio 2x + 6.
 - **17.2.** Mostre que o resto da divisão inteira de p por x+2 é zero, determine os zeros de p e decomponha-o num produto de polinómios irredutíveis.
 - **17.3.** Resolva a inequação p(x) > 0.
 - *17.4. Considere o polinómio q definido por $q(x) = x^2 + 11x + 18$. Sabe-se que o resto da divisão inteira de p e q por x+1 é igual.

Qual é o conjunto solução da inequação $p(x) \ge q(x)$?

18. Sejam m e n dois números reais não nulos. Considere o polinómios A, B e C definidos por:

$$A(x) = 2x^4 - mx^3 + nx^2 + mx - n - 2$$
,

$$B(x) = x^2 - 1$$

$$C(x) = 2x^2 - \frac{nx}{2} + 4m$$

- **18.1.** Utilizando o método dos coeficientes indeterminados, determine m e n de modo que $A(x) = B(x) \times C(x)$.
- **18.2.** Considere agora que o resto da divisão inteira de A por 2x-1 é $-\frac{15}{8}$.
 - a) Mostre que m = 2n.
 - b) Sabe-se também que 1 é raiz de multiplicidade 2 do polinómio A. Mostre que m=8 e n=4.
 - c) Decomponha A num produto de polinómios irredutíveis.
 - d) Resolva a inequação A(x) < 0.
- **18.3.** Determine B(x) e C(x) de modo que $A(x) = xB(x) + x^2B(x) + C(x)$, sendo B um polinómio de grau 2 e C um polinómio de grau inferior a 2.
- **8.4.** Determine o conjunto solução da equação $A(x) = -8x(x^2 x 1)$.
- **19.** Seja B um polinómio de grau 3. Sabe-se que o gráfico de B intersecta o eixo Ox nos pontos de abcissas -2, 1 e 3 e o eixo Oy no ponto de ordenada -1.
 - **19.1.** Determine o conjunto solução da inequação $2B(x) B(x)(x^2 x) \ge 0$.

- 19.2. Escreva a expressão analítica do polinómio B, apresentando-a na forma reduzida e ordenada.
- **20.** Considere o polinómio p definido por $p(x) = x^4 5x^2 + 4$.
 - **20.1.** Determine os zeros de p.
 - **20.2.** Resolva a inequação $p(x) \le 0$.
 - **20.3.** Seja q o polinómio definido por $q(x) = x(x^2 2x + 1) (\sqrt{2}x \sqrt{2})^2$

O polinómio $p \times q$ pode ser escrito na forma $(x-a)^m (x-b)^n (x+a)^p (x+b)^p$, com $a,b \in \mathbb{R}$, a < b e $m,n,p \in \mathbb{N}$.

Determine $a, b, m, n \in p$.

21. Sejam a e b dois números reais. Considere os polinómios p e q definidos por

$$p(x) = x^3 + x^2 - bx + b^3$$
 e $q(x) = -x^3 - x^2 - ax + a$

- *21.1. Seja a > b . Sabe-se que:
 - o resto da divisão inteira do polinómio p por x-a é 6
 - o resto da divisão inteira do polinómio q por $x+b \in 2$

Qual é o valor de a-b?

21.2. Suponha que o resto da divisão inteira de p e q por x é igual.

Qual é o conjunto solução da inequação $p(x)-q(x) \le 0$?

- **22.** Considere o polinómio q definido por $q(x) = 2x^{n+3} x^n + x^{2n-1} 2$, com $n \in \mathbb{N}$.
 - **22.4** Determine o resto da divisão inteira de q por x+1, no caso de n ser par.
 - **22.2.** Considere n=1.
 - a) Decomponha q num produto de polinómios irredutíveis.
 - **b)** Resolva a inequação $q(x) \ge 0$.

23. Considere um polinómio *B* de grau 3.

Sabe-se que B é divisível por $-x^2-3$ e que o resto da divisão inteira de B por 2x-2 e por x+5 é -20 e 28, respectivamente.

- **23.1.** Mostre que B é divisível por x+4 e escreva a sua expressão analítica, apresentando-a na forma reduzida e ordenada.
- **23.2.** Seja C um polinómio de grau 4 com três zeros, um deles o 1, tal que $C(x) < 0 \Leftrightarrow x < -2 \lor x > 5$

Determine o conjunto solução da inequação $B(x) \times C(x) < 0$.

- *24. Considere o polinómio p, definido por $p(x) = 2x^4 + 7x^3 9x$.
 - **24.1.** Sem determinar todos os zeros de p, decomponha-o num produto de polinómios irredutíveis.

Sugestão: coloque x em evidência e repare que $2x^3 + 7x^2 - 9 = 2x^3 + 6x^2 + x^2 - 9$

24.2. Determine A(x) e B(x) de modo que $p(x) = (3x^2 - 1)A(x) + B(x)$, sendo A um polinómio de grau 2 e B um polinómio de grau inferior a 2.

Resolva o exercício por dois métodos distintos, sendo um deles o método dos coeficientes indeterminados.

24.3. Resolva a inequação $p(x) \ge 4x^2 + 18x + 18$.

Sugestão: decomponha $4x^2 + 18x + 18$ num produto de polinómios irredutíveis.

- *25. Sejam p um polinómio de grau n, com $n \in \mathbb{N}$, e a, b e c três números reais distintos, raízes do polinómio p, de multiplicidades n_1 , n_2 e n_3 , respectivamente, com $n_1, n_2, n_3 \in \mathbb{N}$.
 - **25.1.** Considere n = 9, $n_1 = 2$ e $n_2 = 3$.

Indique, justificando, o(s) valor(es) que n_3 , multiplicidade de c, pode tomar, quando:

- não há restrições além das do enunciado.
- b) p é divisível por $x^3 + 1$ e $c \neq -1$.
- c) $a, b \in c$ são as únicas raízes reais de p.
- d) p é divisível por x^3 e a, b e c são números reais não nulos.

25.2. Consider agora que $p(x) = -3x^7 - 27x^6 - 60x^5 + 36x^4 + 111x^3 - 81x^2 + 168x - 144$.

Sabe-se que a = -4 e b = 1, eventualmente com multiplicidades superiores a 1.

- a) Determine o valor de c e decomponha p num produto de polinómios irredutíveis.
- b) Determine o conjunto solução da inequação $p(x) \le 0$.
- *26. O sinal de um polinómio p, de grau 3, é dado pela tabela seguinte:

х	∞	а		0		b	+∞
p(x)	+	0	-	0	+	0 ,	O-60

Considere o polinómio q, definido por $q(x) = x^2 - x - 6$.

Sabe-se que o conjunto solução da condição da inequação $p(x) \times q(x) \ge 0$ é $[-\infty, 0] \cup [1, 3]$.

- **26.1.** Mostre que a = -2 e b = 1.
- **26.2.** Decomponha o polinómio $B = p \times q$ num produto de polinómios irredutíveis, tendo em conta que o resto da divisão inteira de B por 2x-4 é 128.
- *27. Considere o polinómio p, definido por $p(x) = x^{2n+1} x^{2n} x + 1$, com $n \in \mathbb{N}$.
 - **27.1.** Determine o valor de $n \in \mathbb{N}$ de modo que p(2) + p(-2) = -510.
 - **27.2.** Mostre que $p(x) = (x-1)(x^n-1)(x^n+1)$.
 - **27.3.** Considere que *n* é um número natural par.

Determine o conjunto solução da inequação $p(x) \le 0$.

Adaptado do Caderno de Apoio do 10.º Ano

- 28. Considere os polinómios A, B e C tais que:
 - $A(x) = 2x^5 6x^4 8x^3 16x^2 + 48x + 64$
 - $B(x) = x^4 x^3 2x^2$
 - C é um polinómio de grau 4, cujos seus zeros são -3, -1, 2 e 5 e o resto da divisão inteira por x-1 é 8.

*28.1. Decomponha o polinómio A num produto de polinómios irredutíveis.

Sugestão: repare que $2x^5 - 6x^4 - 8x^3 = 2x^3(x^2 - 3x - 4)$.

- **28.2.** Resolva a inequação B(x) < 0. Apresente o resultado na forma de intervalo ou união de intervalos de números reias.
- **28.3.** Escreva a expressão analítica de *C*, apresentando-a na forma reduzida e ordenada.
- **28.4.** Determine os zeros do polinómio $A \times B \times C$, indicando as respectivas multiplicidades.
- *28.5. Determine o conjunto solução da inequação $C(x) \ge B(x)$.

SOLUCIONÁRIO

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

1. B 2. C 3. D 4. C 5. A 6. B 7. A

8. D 9. B 10. A 11. D 12. C 13. B 14. C

GRUPO II - ITENS DE RESPOSTA ABERTA

15.1. Quociente: $-\frac{2x^2}{3} + \frac{4x}{9} + \frac{7}{27}$; Resto: $\frac{82}{27}$

15.3. 2 não é raiz de raiz de multiplicidade 2 de p; $p(x) = (x-2)(-2x^2-1)$ **15.4.** $]-\infty,2[$

15.5. $\left[1-\sqrt{2},0\right] \cup \left[1+\sqrt{2},+\infty\right[$

16.1. p(-7) = 0; -7 é raiz de p, ou seja, p(x) é divisível por x + 7.

16.2. $p(x) = 2(x+7)(x+2)\left(x-\frac{1}{2}\right)$ **16.3.** $]-\infty,-7] \cup \left[-2,\frac{1}{2}\right]$

16.4.] $-\infty$, $-7[\cup]-3$, $-2[\cup \left|\frac{1}{2},3\right|$

17.1. Quociente: $\frac{3x^2}{2} - \frac{7x}{2} + 7$; Resto: -40 17.2. Zeros de p: $\left\{-2, \frac{1}{3}, 1\right\}$; $p(x) = 3(x+2)\left(x - \frac{1}{3}\right)(x-1)$

1.3. $\left] -2, \frac{1}{3} \right[\cup]1, +\infty[$ 17.4. $\left[-2, -1 \right] \cup \left[\frac{8}{3}, +\infty \right[$

18.1. m=1 e n=2 **18.2.** c) $A(x) = 2(x-1)^2(x+1)(x-3)$ **18.2.** d) $]-1,3[\setminus \{1\}]$

18.3. $B(x) = 2x^2 - 10x + 14$; C(x) = -6x - 6 **18.4.** $\{-\sqrt{3}, \sqrt{3}\}$

19.1. $[-2,-1] \cup [1,2] \cup [3,+\infty[$ **19.2.** $B(x) = -\frac{x^3}{6} + \frac{x^2}{3} + \frac{5x}{6} - 1$

20.1. Zeros de $p: \{-2,-1,1,2\}$ **20.2.** $[-2,-1] \cup [1,2]$

20.3. a=1, b=2, m=3, n=2 e p=1

21.1. 2

21.2. $]-\infty,-1]\cup\{0\}$

22.1.

22.2. a) $q(x) = 2(x-1)(x+1)(x^2+1)$

22.2. b) $]-\infty,-1] \cup [1,+\infty[$

23.1. $B(x) = -x^3 - 4x^2 - 3x - 12$

23.2. $]-\infty, -4[\cup]-2,1[\cup]1,5[$

24.1. $A(x) = 2x(x-1)(x+3)\left(x+\frac{3}{2}\right)$

24.2. $A(x) = \frac{2x^2}{3} + \frac{7x}{3} + \frac{2}{9}$; $B(x) = -\frac{20x}{3} + \frac{2}{9}$

24.3. $]-\infty,-3] \cup \left[-\frac{3}{2},-1\right] \cup \left[2,+\infty\right[$

25.1. a) 1, 2, 3 ou 4 **25.1. b)** 1 ou 2

25.1. a) 2 ou 4

25.2. a) c = -3; $p(x) = -3(x+4)^2(x-1)^2(x+3)(x^2+1)$

26.2. $B(x) = -4x(x-1)(x-3)(x+2)^2$

27.1. n = 4 **27.2.** $]-\infty,-1] \cup \{1\}$

28.1. $A(x) = 2(x+1)(x-2)(x-4)(x^2+2x+4)$

28.3. $C(x) = \frac{x^4}{4} - \frac{3x^3}{4} - \frac{15x^2}{4} + \frac{19x}{4} + \frac{15}{2}$

28.4. Zeros de $A \times B \times C$: -1 e 2 ambas de multiplicidade 3; 0 de multiplicidade 2; -3, 4 e 5 as três de multiplicidade 2.

28.5. [-1,2]

