Neural Collaborative Filtering

소프트웨어학부 2017012333 이수아

CONTETNS

배경지식

- Recommendation system
- Collaborative filtering
- explicit / implicit Dataset

연구주제

요약

결론

배경지식

Recommendation system

수많은 온라인 서비스 중에서 사용자의 취향을 파악하고 상품을 추천해 주는 시스템 즉, 사용자가 아직 소비하지 않은 아이템 (ex. 영화) 중 선호할 만한 것을 예측하는 것

배경지식

Collaborative filtering

추천 시스템에 사용되는 대표적인 알고리즘

사용자의 과거 평점 데이터 만으로 아직 평점을 남기지 않은 아이템들에 대한 평점을 예측하는 기법

M1	M2	M3	M4	M5
?	1	?	3	?
1	?	4	?	3
3	1	?	?	1
4	?	5	4	4

? : 사용자가 아직 평점을 남기지 않은 아이템

주어진 평점 데이터를 사용하여 예측 평점이 높은 아이템을 추천해주는 방식

배경지식

explicit Dataset

선호와 비선호를 명확하게 구분해준 데이터 셋

호불호에 따라 평점 매기는 것이 대표적인 예시

implicit Dataset

선호와 비선호의 구분 없이 행동의 빈도수만 기록한 데이터 셋

연구주제

Abstract

기존 MF에 기반한 Collaborative filtering은 user-item 공간의 latent feature들의 **inner product**를 통해 두 관계를 표현 user와 item간의 관계를 학습함에 있어 기존의 liner 방식에 기반한 MF의 한계를 지적

Inner product - Neural achitecture - Neural Collaborative Filtering(NCF)

Introduction

PRELIMINARIES

$$Y_{m,n}=egin{pmatrix} y_{1,1}&y_{1,2}&\cdots&y_{1,n}\ y_{2,1}&y_{2,2}&\cdots&y_{2,n}\ dots&dots&\ddots&dots\ y_{m,1}&y_{m,2}&\cdots&y_{m,n} \end{pmatrix}$$
 M, N : # users and it Y : user-item matrix

M, N: # users and items

 $where, \;\; y_{u,i} = \left\{ egin{array}{ll} 1, \; ext{if interaction(user u, item i) is observed} \ 0, \; ext{otherwise} \end{array}
ight.$

0은 상호작용이 없는 것이지, 해당 item을 **비선호** 한다는 의미는 X

Matrix factorization

 p_u,q_i : latent vector for user u and item i

저차원의 행렬 2개로 분해하여 표현하는 방법

$$\hat{y}_{u,i} = f(u,i|\mathbf{p}_u,\mathbf{q}_i) = \mathbf{p}_u\mathbf{q}_i^T = \sum_{k=1}^K p_{uk}q_{ki}$$

Limitation of MF

Jaccard coefficient를 사용하여 user i,j의 유사도 측정

$$s_{23}(0.66) > s_{12}(0.50) > s_{13}(0.40)$$

$$s_{41}(0.60) > s_{43}(0.40) > s_{42}(0.20)$$

Jaccard coefficient :
$$s_{ij} = \frac{|R_i| \cap |R_j|}{|R_i| \cup |R_j|}$$

 R_u : set of items for user u

NEURAL COLLABORATIVE FILTERING

Input layer: one-hot encoding vector

embedding layer: sparse vector dense vector

User latent vector = $P^T v_u^U$

Item latent vector = $Q^T v_i^I$

P,Q : latent factor matrix ; v : one-hot vector

NEURAL COLLABORATIVE FILTERING

Neural CF Layers: concatenate

DNN

Output Layer: $0 \leq \hat{y}_{u,i} \leq 1$

$$\hat{y}_{ui} = f(P^T v_u^U, Q_u^T | P, Q, \Theta_f) = \phi_{out} \left(\phi_x \left(\dots \phi_2 \left(\phi_1 \left(P^T v_u^U, Q^T v_i^I \right) \right) \dots \right) \right)$$

 ϕ_x : mapping function of x-th neural network

 ϕ_{out} : use logistic or probit function

Learning NCF

likelihood function

$$p(\mathcal{Y}, \mathcal{Y}^-|P,Q,\Theta_f) = \prod_{(u,i)\in\mathcal{Y}} \hat{m{y}}_{u,i} \quad \prod_{(u,j)\in\mathcal{Y}^-} (1-\hat{m{y}}_{u,j})$$

Loss function(BCEloss와 동일)

$$egin{aligned} L &= -log \, p(\mathcal{Y}, \mathcal{Y}^- | P, Q, \Theta_f) \ &= -\sum_{(u,i) \in \mathcal{Y}} y_{u,i} \, log \, \hat{y}_{u,i} - (\sum_{(u,j) \, in \mathcal{Y}^-} (1 - y_{u,i}) \, log \, (1 - \hat{y}_{u,j})) \end{aligned}$$

$$=-(\sum_{(u,i)\in\mathcal{Y}\cup\mathcal{Y}^-}(y_{u,i}~log~\hat{y}_{u,i}+(1-y_{u,i})~log~(1-\hat{y}_{u,i})))$$

$$y_{u,i} = 0 \text{ or } 1$$

$$0 \leq \hat{y}_{u,i} \leq 1$$

L을 최소화 하는 parameter 찾는다!

Generalized Matrix Factorization(GMF)

MF는 NCF의 특별한 케이스

User latent vector $\mathbf{p_u} = P^T v_u^U$

Item latent vector $\mathbf{q_i} = Q^T v_i^I$

NCF layer

 $\phi_1 = p_u \circ q_i$

output layer

$$\hat{y}_{ui} = a_{out}(h^T(p_u \circ q_i))$$

 a_{out} : activation function

 h^T : edge weights of the output layer

MF

 $a_{out} = identity function,$

$$h^T = [1, ..., 1]_{1*k}$$

GMF

 $a_{out} =$ sigmoid function,

$$h^T = [h_1, \dots, h_k]_{1*k}$$

Multi-Layer Perceptron (MLP)

non-linear하고 flexible하기 때문에 보다 복잡한 관계를 표현할 수 있다.

$$\mathbf{z}_1 = \phi_1(\mathbf{p}_u, \mathbf{q}_i) = egin{bmatrix} \mathbf{p}_u \ \mathbf{q}_i \end{bmatrix}, & \phi_1: p_u, q_i \text{ concatenate} \ \phi_2(\mathbf{z}_1) = a_2(\mathbf{W}_2^T\mathbf{z}_1 + \mathbf{b}_2), & \dots...$$

$$\phi_L(\mathbf{z}_{L-1}) = a_L(\mathbf{W}_L^T \mathbf{z}_{L-1} + \mathbf{b}_L),$$

$$\hat{y}_{ui} = \sigma(\mathbf{h}^T \phi_L(\mathbf{z}_{L-1})),$$

Fusion of GMF and MLP

서로 다른 embedding layer 사용

$$\begin{split} \phi^{GMF} &= \mathbf{p}_u^G \odot \mathbf{q}_i^G, \\ \phi^{MLP} &= a_L(\mathbf{W}_L^T(a_{L-1}(...a_2(\mathbf{W}_2^T \begin{bmatrix} \mathbf{p}_u^M \\ \mathbf{q}_i^M \end{bmatrix} + \mathbf{b}_2)...)) + \mathbf{b}_L), \\ \hat{y}_{ui} &= \sigma(\mathbf{h}^T \begin{bmatrix} \phi^{GMF} \\ \phi^{MLP} \end{bmatrix}), \end{split}$$

두 vector 차워이 다를 수 있음!

Neural matrix factorization(NeuMF)

: user-item간의 interaction 표현하기 위해 MF의 linearity 와 MLP의 non-linearity를 결합한 모델

Experiment

MovieLens, Pinterest 두개의 데이터로 학습

Pinterest 데이터의 경우 20개 이상 핀을 본 사용자만 데이터에 포함

처음 hyper parameter를 조정하기 위해 사용자 당 하나의 데이터만 추출해서 데이터셋을 만들었음

하나의 positive 당 4개의 negative sample을 뽑아서 학습에 사용

Ranked list의 성능은 Hit Ratio(적중률)과 Normalized Discounted Cumulative Gain(nDCG)으로 판단

GMF, MLP, NeuMF를 ItemPop, ItemKNN, BPR, eALS 방법을 사용하여 비교

Experiment

RQ1) 제안된 NCF 방법이 최첨단 implicit collaborative filtering method를 능가하는가?

RQ2) 우리가 제안한 optimization framework(log loss with negative sampling)는 recommendation task에서 어떻게 작동하나?

RQ3) hidden units의 더 깊은 layers가 user-item interaction data로부터 학습하는 데 더 도움이 되는가?

RQ1)

제안된 NCF 방법이 최첨단 implicit collaborative filtering method를 능가하는가?

Figure 4: Performance of HR@10 and NDCG@10 w.r.t. the number of predictive factors on the two datasets.

Figure 5: Evaluation of Top-K item recommendation where K ranges from 1 to 10 on the two datasets.

NeuMF가 eALS와 BPR을 크게 능가하여 최고의 성능을 달성

RQ2)

우리가 제안한 optimization framework(log loss with negative sampling)는 recommendation task에서 어떻게 작동하나?

Figure 6: Training loss and recommendation performance of NCF methods w.r.t. the number of iterations on MovieLens (factors=8).

(a) MovieLens — HR@10 (b) MovieLens — NDCG@10 (c) Pinterest — HR@10 (d) Pinterest — NDCG@10 Figure 7: Performance of NCF methods w.r.t. the number of negative samples per positive instance (factors=16). The performance of BPR is also shown, which samples only one negative instance to pair with a positive instance for learning.

BCELoss

3에서 6 사이가 optimal

RQ3)

hidden units의 더 깊은 layers가 user-item interaction data로부터 학습하는 데 더 도움이 되는가?

Table 3: HR@10 of MLP with different layers.

Factors	MLP-0	MLP-1	MLP-2	MLP-3	MLP-4			
MovieLens								
8	0.452	0.628	0.655	0.671	0.678			
16	0.454	0.663	0.674	0.684	0.690			
32	0.453	0.682	0.687	0.692	0.699			
64	0.453	0.687	0.696	0.702	0.707			
Pinterest								
8	0.275	0.848	0.855	0.859	0.862			
16	0.274	0.855	0.861	0.865	0.867			
32	0.273	0.861	0.863	0.868	0.867			
64	0.274	0.864	0.867	0.869	0.873			

MLP에서 레이어를 늘리면 더 잘 학습 ➡ DNN이 적절한 효과를 냄

Conclusion

NeuMF = GMF + MLP

GMF는 MF를 일반화한 모델, MLP는 DNN(deep neural network) 모델

- 논문에서 제시된 NCF(neural collaborative framework)로 표현 가능
 collaborative filtering의 핵심(user와 item의 상호작용 모델링)을 놓치지 않으면서 성능은 높인 방법
- Linear space에 기반한 기존 모델들이 갖는 한계를 DNN을 도입해 해결할 수 있었기 때문나아가 DNN에만 의존한 것이 아닌 두 모델을 통합함으로써 더 큰 성능 향상을 보일 수 있었다.

기존의 여러 모델들(Neural Tensor Network, Wide & Deep learning)과 아이디어는 비슷하지만 collaborative filtering의 아이디어를 실현한다는 점에서 가장 큰 contribution을 갖는다.

