Let $n \geq 2$ be a positive integer. Find the minimum m, so that there exists x_{ij} $(1 \le i, j \le n)$ satisfying: (1) For every $1 \le i, j \le n, x_{ij} = n$ $\max\{x_{i1}, x_{i2}, ..., x_{ij}\}\ \text{or}\ x_{ij} = \max\{x_{1i}, x_{2i}, ..., x_{ij}\}\ (2)\ \text{For every}\ 1 \le i \le n,$ there are at most m indices k with $x_{ik} = \max\{x_{i1}, x_{i2}, ..., x_{ik}\}$. (3) For every $1 \leq j \leq n$, there are at most m indices k with $x_{kj} = \max\{x_{1j}, x_{2j}, ..., x_{kj}\}$.