Environment for shape grammar transformations

autor : Joanna Mirochna

promotor: dr hab. Maciej Paszyński prof. n. AGH

Cel pracy

Celem jest stworzenie narzędzia, realizującego koncepcję dwuwymiarowych, jednomarkerowych Gramatyk Kształtu, według specyfikacji kształtu i koloru.

Problemy do rozwiązania, związanych ze specyfikacją kształtu

- Opracowanie odpowiedniego algorytmu, wyszukującego zbiór odcinków, spełniających dany wzorzec, w skończonym czasie
- Stworzenie algorytmu, dodającego w konkretnym miejscu, zbiór odcinków, określony przez regułę
- Znalezienie odpowiednich przykładów, na których można przetestować program

Odnajdywanie zbioru odcinków

- Wzorce są określane przez lewe strony reguł
- Odcinki należące go reguły i te należące do obrazu wejściowego, porównywane są ze sobą, poprzez sprawdzanie ich położenia, względem markera
- Przy porównaniu należy brać pod uwagę:
 - Odległość końców danego odcinka od markera
 - Skalę markera na obrazie wejściowym i regule
 - Obrót markera na obrazie wejściowym, względem jego obrotu, zdefiniowanego przez regułę

Odnajdywanie zbioru odcinków

- Dodatkowo należy rozważyć:
 - Rozpoznawanie kilku mniejszych odcinków jako jednego
 - Rozpoznawanie fragmentu odcinka dużego, jako osobny odcinek

Rozpoznawanie fragmentu odcinka dużego, jako osobny odcinek

System musi rozpoznać zaznaczone fragmenty odcinków, należących do obrazu wejściowego I, jako odcinki spełniające lewą stronę reguły 1.

Podmiana fragmentu obrazu wejściowego

- Podmiana fragmentu wejściowego polega na:
 - Zaaplikowaniu ewentualnych zmian względem lewej strony reguły dla markera. W tym jego:
 - Przesunięcie
 - Przeskalowanie
 - Obrót
 - Całkowite usunięcie
 - Dodaniu nowych linii, względem nowego położenia markera

Podmiana fragmentu obrazu wejściowego

Reguły, w których marker jest usuwany, obracany, przesuwany lub skalowany.

Podmiana fragmentu obrazu wejściowego

Zaaplikowanie reguły 2, przesuwającej i obracającej marker, na obraz wejściowy

Przykłady testowe

- Opracowanie przykładu, opisanego w literaturze
- Dopasowanie przykładów, używanych do testowania L-systemów do wymogów Gramatyk Kształtu

Przykład Gramatyk Kształtu z literatury

Zbiór trzech reguł, obrazu wejściowego oraz obrazu finalnego, pokazany jako przykład jednomarkerowych gramatyk kształtu w literaturze źródłowej.

Krzywa Hilberta – przykład L-systemów

- aksjomat: X
- reguly:

○**X**: -YF+XFX+FY-○**Y**: +XF-YFY-FX+

• kąt: 90 stopni

Źródło: Wikipedia. Data dostępu: 2018.06.11. Dostępny pod adresem:

https://commons.wikimedia.org/wiki/File:Hilbert_curve.png

Źródła

George Stiny and James Gips (1972). Shape Grammars and the Generative Specification of Painting and Sculpture. Information Processing 71, 1460-1465. North-Holland Publishing Company.

Tomasz Lubiński (2005). *algorytm.org. L-systemy. Data dostępu: 2018-02-11.* Dostępny pod adresem: http://www.algorytm.org/fraktale/l-systemy.html