14 The diagram shows the paths of particles in a circular particle detector. There is a magnetic field acting at right angles to the plane of the paper. The diagram is drawn to scale. 1 cm on the diagram represents 10 cm in the particle detector.

An antiproton enters the detector and collides with a stationary proton at X. Several particles are produced. One particle is a kaon (K^0). The kaon then decays into two pions (π^+ and π^-) at Y.

(a) Determine the momentum of the negative pion.

magnetic flux density of field in the detector = $7.0 \,\mathrm{T}$

Momentum =

(b) State two ways that the diagram shows the kaon is neutral.				(2)
(a) The table above the above	C 41			
(c) The table shows the charge charge on the proton.	for the up quark	and the down quark	k as a fraction of th	le
	Quark	Charge		
	u	+2/3		
	d	-1/3		
Deduce the quark structure of	of the antiproton	and the negative pi	ion.	(2)
	Qua	ark structure of the	antiproton	
	Quark	structure of the neg	gative pion	
(d) Calculate the mass of a proton in GeV/c ² .				(3)
		Mass	=	GeV/c

(Total for Question 14 = 11 marks)