Recurrent Neural Networks

CS 287

(Based on Yoav Goldberg's notes)

Review: Continuous Bag-of-Bigrams Features?

Representation is counts of input bigrams,

- $ightharpoonup \mathcal{F}$; the vocabulary of the bigram language.
- ightharpoonup $\mathbf{x} = \sum_{i} \delta(f_{i})$

Example: Movie review input,

A sentimental mess

$$\begin{array}{lll} \mathbf{x} & = & v(\mathtt{word}:\mathtt{A}) + v_2(\mathtt{bigram}:\mathtt{A}:\mathtt{sentimental}) \\ \\ & + & v(\mathtt{word}:\mathtt{sentimental}) + v_2(\mathtt{bigram}:\mathtt{sentimental}:\mathtt{mess}) \\ \\ & + & v(\mathtt{word}:\mathtt{mess}) \end{array}$$

Review: Convolution Formally

Let our input be the embeddings of the full sentence, $\mathbf{X} \in \mathbb{R}^{n \times d^0}$

$$X = [v(w_1), v(w_2), v(w_3), \dots, v(w_n)]$$

Define a window model as $\mathit{NN}_{window}: \mathbb{R}^{1 imes (d_{\min} d^0)} \mapsto \mathbb{R}^{1 imes d_{\mathrm{hid}}}$,

$$NN_{window}(\mathbf{x}_{win}) = \mathbf{x}_{win}\mathbf{W}^1 + \mathbf{b}^1$$

The convolution is defined as $\mathit{NN}_{conv}: \mathbb{R}^{n \times d^0} \mapsto \mathbb{R}^{(n-d_{\min}+1) \times d_{\mathrm{hid}}}$,

$$extit{NN}_{conv}(\mathbf{X}) = anh egin{bmatrix} NN_{window}(\mathbf{X}_{1:d_{\mathrm{win}}}) \ NN_{window}(\mathbf{X}_{2:d_{\mathrm{win}}+1}) \ dots \ NN_{window}(\mathbf{X}_{n-d_{\mathrm{win}}:n}) \end{bmatrix}$$

Review: Pooling

- lacksquare Unfortunately $NN_{conv}: \mathbb{R}^{n imes d^0} \mapsto \mathbb{R}^{(n-d_{\mathrm{win}}+1) imes d_{\mathrm{hid}}}.$
- ▶ Need to map down to d_{out} for different n
- Recall pooling operations.
- ▶ Pooling "over-time" operations $f: \mathbb{R}^{n \times m} \mapsto \mathbb{R}^{1 \times m}$
 - 1. $f_{max}(\mathbf{X})_{1,j} = \max_{i} X_{i,j}$
 - 2. $f_{min}(\mathbf{X})_{1,j} = \min_{i} X_{i,j}$
 - 3. $f_{mean}(\mathbf{X})_{1,j} = \sum_{i} X_{i,j} / n$

$$f(\mathbf{X}) = \begin{vmatrix} \psi & \psi & \dots \\ \psi & \psi & \dots \\ \vdots & \vdots \\ \psi & \psi & \dots \end{vmatrix} = \begin{bmatrix} \dots \end{bmatrix}$$

Review: Convolution Diagram (Kim, 2014)

- $ightharpoonup n = 9, d_{\text{hid}} = 4, d_{\text{out}} = 2$
- ightharpoonup red- $d_{\rm win}=2$, blue- $d_{\rm win}=3$, (ignore back channel)

Quiz

Normally when we use a convolution layer we set $d_{\rm win}$ to a small constant. However you could also set it to degenerate values. Describe what model you get when you use the following variants on the standard convolution layer.

- lacktriangledown $d_{
 m win}=1$ with sparse word features and no pooling or non-linearity.
- same as above with sum-over-time pooling
- $d_{\text{win}} = n$ (length of sentence) and no pooling.

Answer

- ▶ This is simply an embedding layer! Here, the number of filters is the same as the embedding size $d_{\rm emb}$.
- This is a continuous bag-of-words model. The convolution acts as the embedding and then the pooling is the sum of the embeddings
- This is the same as a concatenation of the embedding features followed by a linear layer. The linear layer has different values for each position.

Representation of Sequence

Many tasks in NLP involve sequences

$$w_1, \ldots, w_n$$

Representations as matrix dense vectors X
 (Following YG, slight abuse of notation)

$$\mathbf{x}_1 = \mathbf{x}_1^0 \mathbf{W}^0, \dots, \mathbf{x}_n = \mathbf{x}_n^0 \mathbf{W}^0$$

Would like fixed-dimensional representation.

Pooling over time?

- ▶ Pooling-over-time gives a fixed-dimensional value.
- ► However has issues.
- ▶ How does convolution help here? What doesn't it do?

Text Classification

Consider this (contrived) example:

How can you not see this movie?

You should not see this movie.

- Would like to classify them differently, despite similar bigrams
- ► Generally want to have memory when making decisions.

Contents

Finite State Machines

Recurrent Neural Networks

Training RNNs

RNN Variants

Finite State Models

- ► Simple, classical way of representing memory
- ▶ Current state representation saves necessary past information.

Example: Email Address Parsing

Deterministic Finite State Machine Formally

- \triangleright S; set of possible states
- \triangleright Σ ; vocabulary
- ▶ $s_0 \in S$; start state
- ▶ $R: (S, \Sigma) \to S$; transition function
- ▶ Maps input $w_1, ..., w_n$ to states $s_1, ..., s_n$
- ▶ For all $i \in \{1, ..., n\}$

$$s_i = R(s_{i-1}, w_i)$$

Finite State Machines in NLP

- words to phonemes in speech
- n-gram language models
- manual part-of-speech taggers
- word morphology

Example: Morphology

Variants of State Machines

- \triangleright Acceptors; make decision based on final state s_n
- ▶ Transducers; apply function $y_i = O(s_i)$ to produce output at each intermediary state
- \triangleright Encoders; utilize last state s_n in another model

Also interesting:

- Ways to learn finite state machine structure
- Learning weighted finite state machines

Contents

Finite State Machines

Recurrent Neural Networks

Training RNNs

RNN Variants

Recurrent Neural Networks

- Motivation is to maintain history in the model
- ► Neural network models with "memory"
- ▶ However no longer finite in the same sense.

Hidden State

- $m \mathcal{S} = \mathbb{R}^{d_{
 m hid}}$; hidden state space
- $oldsymbol{\Sigma} = \mathbb{R}^{d_{ ext{in}}}$; input state space
- ▶ $s_0 \in S$; initial state vector
- lacksquare $R:(\mathbb{R}^{d_{ ext{in}}} imes\mathbb{R}^{d_{ ext{hid}}})\mapsto\mathbb{R}^{d_{ ext{hid}}};$ parameterized transition function
- ► How might we define *R*?

$$\textit{NN}_{\textit{elman}}(\mathbf{x},\mathbf{s}) = \mathsf{tanh}([\mathbf{x},\mathbf{s}]\mathbf{W} + \mathbf{b})$$

Hidden State

- $ightharpoonup \mathcal{S} = \mathbb{R}^{d_{ ext{hid}}}$; hidden state space
- $oldsymbol{\Sigma} = \mathbb{R}^{d_{\mathrm{in}}}$; input state space
- $ightharpoonup s_0 \in \mathcal{S}$; initial state vector
- lacksquare $R:(\mathbb{R}^{d_{ ext{in}}} imes\mathbb{R}^{d_{ ext{hid}}})\mapsto \mathbb{R}^{d_{ ext{hid}}}$; parameterized transition function
- ► How might we define *R*?

$$NN_{elman}(\mathbf{x}, \mathbf{s}) = tanh([\mathbf{x}, \mathbf{s}]\mathbf{W} + \mathbf{b})$$

Sequence Recurrence

- ► Can map from dense sequence to dense representation.
- $ightharpoonup x_1, \ldots, x_n \mapsto s_1, \ldots, s_n$
- ▶ For all $i \in \{1, ..., n\}$

$$\mathbf{s}_i = R(\mathbf{s}_{i-1}, \mathbf{x}_i; \theta)$$

 \triangleright θ is shared by all R

Example:

$$\mathbf{s}_4 = R(\mathbf{s}_3, \mathbf{x}_4)$$

= $R(R(\mathbf{s}_2, \mathbf{x}_3), \mathbf{x}_4)$
= $R(R(R(R(\mathbf{s}_0, \mathbf{x}_1), \mathbf{x}_2), \mathbf{x}_3), \mathbf{x}_4)$

RNN versus Convolution and Pooling

Using Recurrent Neural Networks

- ▶ Hidden states can be applied in different ways.
- ► Can be used similarly to finite machines
 - Acceptor
 - ► Transducer
 - Encoder

Using RNNs: Acceptor

► Simplest case, sentence acceptor:

$$boldy = O(\mathbf{s}_n) = \operatorname{softmax}(\mathbf{s}_n \mathbf{W} + \mathbf{b})$$

- lacksquare $O: \mathbb{R}^{d_{ ext{hid}}} \mapsto \mathbb{R}^{d_{ ext{out}}}$; final layer
- Can be applied to text classification-like tasks

Using RNNs: Acceptor Architecture

Using RNNs: Acceptor (LR version, YG)

Acceptor Versus Convolution

- ▶ In theory, acceptor can model arbitrarily long sequences.
- ▶ Memory allows it to incorporate long-range info.
- ► Convolution can be run in parallel, multiple dimensions
- Convolution is much shallower, easier to train

Contents

Finite State Machines

Recurrent Neural Networks

Training RNNs

RNN Variants

How do we learn the model?

- ▶ RNNs are trained with SGD and Backprop (surprise)
- ▶ Implementation can be complicated, mainly for efficiency.
- ► Called *backpropagation through time* (BPTT).

Training Acceptors

Training process:

- ▶ Run forward propagation.
- Run backward propagation.
- ► Update all weights

Weights θ of R are shared:

$$\frac{\partial L}{\partial \theta} = \sum_{i=1}^{n} \frac{\partial L(\dots R(\mathbf{x}_{i}, \mathbf{s}_{i-1}))}{\partial \theta}$$

- ► Run forward propagation.
- ► Run backward propagation.
- ▶ Update all weights (shared)

- ► Run forward propagation.
- ► Run backward propagation.
- ▶ Update all weights (shared)

- ► Run forward propagation.
- ► Run backward propagation.
- ▶ Update all weights (shared)

- ► Run forward propagation.
- ► Run backward propagation.
- ▶ Update all weights (shared)

- ► Run forward propagation.
- ► Run backward propagation.
- ▶ Update all weights (shared)

- ► Run forward propagation.
- ► Run backward propagation.
- ▶ Update all weights (shared)

- ► Run forward propagation.
- ► Run backward propagation.
- ▶ Update all weights (shared)

- ► Run forward propagation.
- ► Run backward propagation.
- ▶ Update all weights (shared)

- ► Run forward propagation.
- ► Run backward propagation.
- ▶ Update all weights (shared)

- ► Run forward propagation.
- ► Run backward propagation.
- Update all weights (shared)

Issues

- ► Can be inefficient, but batch/GPUs help.
- ▶ Model is much deeper than previous approaches.
 - ▶ This matters a lot, focus of next class.
- ▶ Variable-size model for each sentence.
 - Have to be a bit more clever in Torch.

Contents

Finite State Machines

Recurrent Neural Networks

Training RNNs

RNN Variants

RNN for Language Modeling

- Recent popularization of RNNs has been based on language modeling (Mikolov, 2012)
- ▶ In particular RNNs allow for non-Markovian models

$$p(w_i|w_1,\ldots,w_{i-1};\theta)=O(s_i)$$

► Compare this to the feed-forward windowed approach.

$$p(w_i|w_{i-n+1},\ldots,w_{i-1};\theta)=O(s_i)$$

RNN as Transducer

► Can reuse hidden state each time

$$p(w_i|w_1,...,w_{i-1};\theta) = O(\mathbf{s}_i) = O(R(\mathbf{s}_{i-1},\mathbf{x}_i))$$

 $p(w_{i+1}|w_1,...,w_i;\theta) = O(R(\mathbf{s}_i,\mathbf{x}_{i+1}))$

Transducers Formally

- ▶ Prediction next $\hat{\mathbf{y}}_i$ as we go
- ▶ For all $i \in \{1, ..., n\}$

$$\hat{\mathbf{y}}_i = O(\mathbf{s}_i) = \operatorname{softmax}(\mathbf{s}_i \mathbf{W} + \mathbf{b})$$

lacksquare $O: \mathbb{R}^{d_{ ext{hid}}} \mapsto \mathbb{R}^{d_{ ext{out}}}$

- Run forward propagation.
- ► Run backward propagation
- Update all weights (shared)

- Run forward propagation.
- ► Run backward propagation
- Update all weights (shared)

- Run forward propagation.
- ► Run backward propagation
- Update all weights (shared)

- Run forward propagation.
- ► Run backward propagation
- Update all weights (shared)

- Run forward propagation.
- ► Run backward propagation
- Update all weights (shared)

- Run forward propagation.
- ► Run backward propagation
- Update all weights (shared)

- Run forward propagation.
- ► Run backward propagation
- Update all weights (shared)

Bidirectional RNNs

- ▶ RNNs compute a prefix representation.
- ▶ But for tagging we used a bidirectional window.
- ▶ How can we get a postfix representation?

$$w_1 w_2 [w_3 w_4 w_5 w_6 w_7 w_8]$$

Bidirectional Models

▶ For all $i \in \{1, ..., n\}$

$$\mathbf{s}_i^f = R^f(\mathbf{s}_{i-1}, \mathbf{x}_i)$$

▶ For all $i \in \{1, ..., n\}$

$$\mathbf{s}_i^b = R^b(\mathbf{s}_{i+1}, \mathbf{x}_i)$$

▶ For all $i \in \{1, ..., n\}$

$$\hat{\mathbf{y}}_i = O([\mathbf{s}_i^b, \mathbf{s}_i^f]) = [\mathbf{s}_i^b, \mathbf{s}_i^f]\mathbf{W} + \mathbf{b}$$

Bidirection Models

Many applications:

- Tagging
- ► Handwriting Recognition (given full sentence)
- ► Speech Recognition (given full utterance)
- ► Machine Translation