

Königswinkel 10 32825 Blomberg

Germany

Phone: +49 (0) 52 35 95 00-0 Fax: +49 (0) 52 35 95 00-10

# **Test Report**

Report Number: F113961E2

Applicant:

**SICK AG** 

Manufacturer:

**SICK AG** 

Equipment under Test (EUT):

**RFU630** 

Laboratory (CAB) accredited by
Deutsche Gesellschaft für Akkreditierung mbH
in compliance with DIN EN ISO/IEC 17025
under the Reg. No. DGA-PL-105/99-22,
FCC Test site registration number 90877 and
Industry Canada Test site registration IC3469A-1



#### **REFERENCES**

- [1] ANSI C63.4-2009 American National Standard for Methods of Measuring of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
- [2] FCC CFR 47 Part 15 (August 2011) Radio Frequency Devices
- [3] FCC Public Notice DA 00-705 (March 2000)
- [4] RSS-210 Issue 8 (December 2010) Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment
- [5] RSS-Gen Issue 3 (December 2010) General Requirements and Information for the Certification of Radiocommunication Equipment

#### **TEST RESULT**

The requirements of the tests performed as shown in the overview (clause 4) were fulfilled by the equipment under test.

The complete test results are presented in the following.

| Test engineer:       | Thomas KÜHN   | Te U      | 06 December 2011 |
|----------------------|---------------|-----------|------------------|
| N                    | Name          | Signature | Date             |
| Authorized reviewer: | Bernd STEINER | B. Sher   | 06 December 2011 |
| 2                    | Name          | Signature | Date             |

0

#### RESERVATION

This test report is only valid in its original form.

Any reproduction of its contents in extracts without written permission of the accredited test laboratory PHOENIX TESTLAB GmbH is prohibited.

The test results herein refer only to the tested sample. PHOENIX TESTLAB GmbH is not responsible for any generalisations or conclusions drawn from these test results concerning further samples. Any modification of the tested samples is prohibited and leads to the invalidity of this test report. Each page necessarily contains the PHOENIX TESTLAB Logo and the TEST REPORT NUMBER.

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 2 of 70



| C | contents:                                                   | Page |
|---|-------------------------------------------------------------|------|
| 1 | IDENTIFICATION                                              | 5    |
|   | 1.1 Applicant                                               | 5    |
|   | 1.2 Manufacturer                                            | 5    |
|   | 1.3 Test laboratory                                         | 5    |
|   | 1.4 EUT (Equipment Under Test)                              | 6    |
|   | 1.5 Technical data of equipment                             | 6    |
|   | 1.6 Dates                                                   | 7    |
| 2 | OPERATIONAL STATES                                          | 7    |
| 3 | ADDITIONAL INFORMATION                                      | 8    |
| 4 | OVERVIEW                                                    | 8    |
| 5 | TEST RESULTS                                                | 9    |
|   | 5.1 20 dB bandwidth                                         | 9    |
|   | 5.1.1 Method of measurement (20 dB bandwidth)               | 9    |
|   | 5.1.2 Test results (20 dB bandwidth)                        | 10   |
|   | 5.2 Carrier frequency separation                            | 12   |
|   | 5.2.1 Method of measurement (carrier frequency separation)  | 12   |
|   | 5.2.2 Test results (carrier frequency separation)           | 13   |
|   | 5.3 Number of hopping frequencies                           | 15   |
|   | 5.3.1 Method of measurement (number of hopping frequencies) | 15   |
|   | 5.3.2 Test results (number of hopping frequencies)          | 16   |
|   | 5.4 Dwell time                                              | 17   |
|   | 5.4.1 Method of measurement (dwell time)                    | 17   |
|   | 5.4.2 Test results (dwell time)                             | 18   |
|   | 5.5 Maximum peak output power                               | 19   |
|   | 5.5.1 Method of measurement (maximum peak output power)     | 19   |
|   | 5.5.2 Test results (maximum peak output power)              | 20   |



| C | ontents (   | continued):                                                                     | Page   |
|---|-------------|---------------------------------------------------------------------------------|--------|
|   | 5.6 Radiate | ed emissions                                                                    | 22     |
|   | 5.6.1 Me    | ethod of measurement (radiated emissions)                                       | 22     |
|   | 5.6.2 Te    | st results (radiated emissions)                                                 | 27     |
|   | 5.6.2.1     | Preliminary radiated emission measurement with internal antenna                 | 27     |
|   | 5.6.2.2     | Final radiated emission measurement (30 MHz to 1 GHz) with internal antenna     | 35     |
|   | 5.6.2.3     | Final radiated emission measurement (1 GHz to 10 GHz) with internal antenna     | 38     |
|   | 5.6.2.4     | Preliminary radiated emission measurement with external patch antenna           | 40     |
|   | 5.6.2.5     | Final radiated emission measurement (30 MHz to 1 GHz) with external patch anter | ına48  |
|   | 5.6.2.6     | Final radiated emission measurement (1 GHz to 10 GHz) with external patch anten | na51   |
|   | 5.6.2.7     | Preliminary radiated emission measurement with external ULORA antenna           | 53     |
|   | 5.6.2.8     | Final radiated emission measurement (30 MHz to 1 GHz) with external ULORA ant   | enna61 |
|   | 5.6.2.9     | Final radiated emission measurement (1 GHz to 10 GHz) with external ULORA ant   | enna64 |
|   | 5.7 Conduc  | cted emissions on power supply lines (150 kHz to 30 MHz)                        | 66     |
|   | 5.7.1 Me    | ethod of measurement                                                            | 66     |
|   | 5.7.2 Te    | st results (conducted emissions on power supply lines)                          | 67     |
| 6 |             | PMENT AND ANCILLARIES USED FOR TESTS                                            |        |
| 7 | REPORT HI   | STORY                                                                           | 70     |
| 8 | LIST OF AN  | NEXES                                                                           | 70     |

Test engineer: Thomas KÜHN Date of issue: 06 December 2011 Report Number: Order Number: F113961E2 11-113961



## 1 IDENTIFICATION

## 1.1 Applicant

| Name:                                                          | SICK AG                        |
|----------------------------------------------------------------|--------------------------------|
| Address:                                                       | Merkurring 20<br>22143 Hamburg |
| Country:                                                       | Germany                        |
| Name for contact purposes:                                     | Mr. Michael REHSE              |
| Phone:                                                         | + 49 40 61 16 80 - 248         |
| Fax:                                                           | + 49 40 61 16 80 - 201         |
| eMail Address:                                                 | michael.rehse@sick.de          |
| Applicant represented during the test by the following person: | Mr. Michael REHSE              |

## 1.2 Manufacturer

| Name:                                                             | SICK AG                        |
|-------------------------------------------------------------------|--------------------------------|
| Address:                                                          | Merkurring 20<br>22143 Hamburg |
| Country:                                                          | Germany                        |
| Name for contact purposes:                                        | Mr. Michael REHSE              |
| Phone:                                                            | + 49 40 61 16 80 - 248         |
| Fax:                                                              | + 49 40 61 16 80 - 201         |
| eMail Address:                                                    | michael.rehse@sick.de          |
| Manufacturer represented during the test by the following person: | Mr. Michael REHSE              |

## 1.3 Test laboratory

The tests were carried out at: PHOENIX TESTLAB GmbH

Königswinkel 10 32825 Blomberg Germany

accredited by DGA Deutsche Gesellschaft für Akkreditierung mbH in compliance with DIN EN ISO/IEC 17025 under Reg. No. DGA-PL-105/99-22, FCC Test site registration number 90877 and Industry Canada Test site registration IC3469A-1.

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 5 of 70



## 1.4 EUT (Equipment Under Test)

| Test object: *      | UHF RFID reader                  |
|---------------------|----------------------------------|
| Model name: *       | RFU630                           |
| FCC ID: *           | WRMRFU630                        |
| IC: *               | 10066A-RFU630                    |
| Serial number: *    | 1144 1002                        |
| PCB identifier: *   | 4067209, 4067208-V626 and 406871 |
| Hardware version: * | 0000                             |
| Software version: * | T1.10RC02                        |

## 1.5 Technical data of equipment

| Channel 0  | RX: | 902.75 MHz | TX: | 902.75 MHz |
|------------|-----|------------|-----|------------|
| Channel 24 | RX: | 914.75 MHz | TX: | 914.75 MHz |
| Channel 49 | RX: | 927.25 MHz | TX: | 927.25 MHz |

| Rated RF output power: *      | 30 dBm                                                                                                                                                            | 30 dBm (conducted)           |  |  |  |  |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|--|
| Antenna type: *               | Internal or external (Kathrein type UHF RFID Ultra Low Range-Antenna (ULORA) or SICK type RFA 641-3440 UHF Antenna patch antenna)                                 |                              |  |  |  |  |
| Antenna gain: *               | 6 dBi (internal), 6.0 (patch antenna, cable loss included), -30 dBi (ULORA)                                                                                       |                              |  |  |  |  |
| Antenna connector: *          | Reverse TNC                                                                                                                                                       |                              |  |  |  |  |
| Adaptive frequency agility: * | Yes                                                                                                                                                               |                              |  |  |  |  |
| Modulation: *                 | PR-ASK / DSB-ASK                                                                                                                                                  |                              |  |  |  |  |
| Supply Voltage: *             | U <sub>nom</sub> =                                                                                                                                                | U <sub>nom</sub> = 24.0 V DC |  |  |  |  |
| Temperature range: *          | -30 °C to +60 °C                                                                                                                                                  |                              |  |  |  |  |
| Ancillary used for test:      | A switchbox typ CDB620-001 was used to connect the EUT to the power supply, AC / DC adaptor type MINI-PS-100-240AC/24DC/1 (conducted emissions on AC mains only). |                              |  |  |  |  |

<sup>\*</sup> declared by the applicant.

## The following external I/O cables were used:

| Identification                    | Conr                 | Length                  |       |
|-----------------------------------|----------------------|-------------------------|-------|
|                                   | EUT                  | Ancillary               |       |
| External antenna port             | RP-BNC               | RP-BNC                  | 1.0 m |
| Ethernet                          | 4-pin M12-connector  | -                       | 2.0 m |
| Power / RS422 and external Sensor | 17-pin M12-connector | SubD 15pin (CDB620-001) | 1.5 m |

<sup>\*:</sup> Length during the test if no other specified.

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 6 of 70



#### 1.6 Dates

| Date of receipt of test sample: | 02 November 2011 |
|---------------------------------|------------------|
| Start of test:                  | 24 November 2011 |
| End of test:                    | 30 November 2011 |

## 2 OPERATIONAL STATES

All tests were carried out with an unmodified sample with integral antenna and three external antenna ports.

During all tests the RFU630 was powered by an external 24.0 V DC power supply. During the emission measurement on the AC supply line the EUT was powered by an AC / DC adaptor type MINI-PS-100-240AC/24DC/1.

The operation mode could be chosen with the help of a laptop computer with a test-software, communicates with the EUT via the Ethernet line.

As declared by the applicant the output of the EUTs power amplifier is switched to a multiplexer that switched the power amplifier to one of the ports at the same time. Therefore no combiner was necessary for measurements on the antenna ports. All conducted measurements were carried out on antenna port 1, because there was no measurable difference to the other ports.

For all measurements the output power of the EUT was set to 30 dBm (maximum value).

All measurements were performed with DSB-ASK modulation, because pre-tests have shown that this modulation causes the worst case measurement results for every tested item.

The following operation modes were used during the tests:

| Operation mode | Description of the operation mode          |
|----------------|--------------------------------------------|
| 1              | Transmit on 902.750 MHz (channel 0)        |
| 2              | Transmit on 914.750 MHz (channel 24)       |
| 3              | Transmit on 927.250 MHz (channel 49)       |
| 4              | Transmit on all channels (hopping enabled) |
| 5              | Receive on 902.750 MHz (channel 0)         |
| 6              | Receive on 914.750 MHz (channel 24)        |
| 7              | Receive on 927.250 MHz (channel 49)        |





Test engineer: Thomas KÜHN Report Number: F113961E2

Date of issue: 06 December 2011 Order Number: 11-113961 page 7 of 70



## 3 ADDITIONAL INFORMATION

As declared by the applicant the EUT is available in different variants. For these variants the model name is extended as described below:

RFU630-13101 1 x internal antenna, 3 x external antennas RFU630-10101 1 x internal antenna, no external antenna RFU630-04101 no internal antenna, 4 x external antennas

The tests documented in this test report were carried out with an RFU630-13101.

As declared by the applicant the combination of antenna gain and cable loss will not exceed 6.0 dBi.

During the tests the EUT was not labelled as required by FCC / IC.

## **4 OVERVIEW**

| Application                   | Frequency range<br>[MHz] | FCC 47 CFR<br>Part 15 section | RSS 210, Issue 8 [4]<br>or | Status | Refer page |
|-------------------------------|--------------------------|-------------------------------|----------------------------|--------|------------|
| 00 10 1 1 1 1                 | 0 1                      | [2]                           | RSS-Gen, Issue 3 [5]       | - I    | 0.1        |
| 20 dB bandwidth               | General                  | 15.247 (a) (1) (i)            | A8.1 (c) [4]               | Passed | 9 et seq.  |
| Carrier frequency separation  | General                  | 15.247 (a) (1) (i)            | -                          | Passed | 12 et seq. |
| Number of hopping channels    | 902.0 – 928.0            | 15.247 (a) (1) (i)            | A8.1 (c) [4]               | Passed | 15 et seq. |
| Dwell time                    | 902.0 - 928.0            | 15.247 (a) (1) (i)            | A8.1 (c) [4]               | Passed | 17 et seq. |
| Maximum peak output power     | 902.0 – 928.0            | 15.247 (b) (2)                | A8.4 (1) [4]               | Passed | 19 et seq. |
| Radiated emissions            | 0.009 - 10,000           | 15.247 (d)                    | A8.5 [4]                   | Passed | 22 et seq. |
| (transmitter)                 |                          | 15.205 (a)                    | 2.5 [4]                    |        | ·          |
| ,                             |                          | 15.209 (a)                    | 7.2.2 [5]                  |        |            |
| Conducted                     | 0.15 - 30                | 15.207 (a)                    | 7.2.4 [5]                  | Passed | 66 et seq. |
| emissions on supply line      |                          |                               |                            |        |            |
| Radiated emissions (receiver) | 30 – 5,000               | 15.109 (a)                    | 6.1 [5]                    | Passed | Annex D    |

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 8 of 70



## **5 TEST RESULTS**

#### 5.1 20 dB bandwidth

## 5.1.1 Method of measurement (20 dB bandwidth)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be disenabled, the transmitter shall work with its maximum data rate.

The following spectrum analyser settings shall be used:

- Span: App. 2 to 3 times the 20 dB bandwidth, centred on the actual hopping channel.
- Resolution bandwidth: ≥ 1 % of the 20 dB bandwidth.
- Video bandwidth: ≥ the resolution bandwidth.
- Sweep: Auto.
- Detector function: peak.
- Trace mode: Max hold.

After trace stabilisation the marker shall be set on the signal peak. The first display line has to be set on this value. The second display line has to be set 20 dB below the first line (or the peak marker). The frequency lines shall be set on the intersection points between the second display line and the measured curve.

The measurement will be performed at the upper, the lower end and the middle of the assigned frequency band.

Test set-up:



 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 9 of 70



## 5.1.2 Test results (20 dB bandwidth)

| Ambient temperature | 21 °C | Relative humidity | 33 % |
|---------------------|-------|-------------------|------|
|---------------------|-------|-------------------|------|

## 113961\_107.wmf: 20 dB bandwidth at the lower end of the assigned frequency band:



## 113961\_106.wmf: 20 dB bandwidth at the middle of the assigned frequency band:



 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 10 of 70



page 11 of 70

## 113961 108.wmf: 20 dB bandwidth at the upper end of the assigned frequency band:



| Channel number          | Channel frequency [MHz] | 20 dB bandwidth [kHz] |
|-------------------------|-------------------------|-----------------------|
| 0                       | 902.750                 | 86.538                |
| 24                      | 914.750                 | 86.859                |
| 49                      | 927.250                 | 86.859                |
| Measurement uncertainty |                         | +0.66 dB / -0.72 dB   |

| -         |         |         | <br>-OT     |
|-----------|---------|---------|-------------|
| 1 1       | EQUIPME |         | <br>_ 🗸 ı : |
| 1 1 1 1 1 |         | 1 ()  1 | <br>_ 、     |

30

Test engineer: Thomas KÜHN Report Number: F113961E2
Date of issue: 06 December 2011 Order Number: 11-113961



## 5.2 Carrier frequency separation

## 5.2.1 Method of measurement (carrier frequency separation)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be enabled.

The following spectrum analyser settings shall be used:

- Span: Wide enough to capture the peaks of two adjacent channels.
- Resolution bandwidth: ≥ 1 % of the span.
- Video bandwidth: ≥ the resolution bandwidth.
- Sweep: Auto.

Test set-up:

- Detector function: peak.
- Trace mode: Max hold.

After trace stabilisation the marker and the delta marker function will be used to determine the separation between the peaks of two adjacent channel signals.

The measurement will be performed at the upper, the lower end and the middle of the assigned frequency band.

| • |     |                   |
|---|-----|-------------------|
|   | EUT | Spectrum analyser |

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 12 of 70



## 5.2.2 Test results (carrier frequency separation)

| Ambient temperature | 21 °C | Relative humidity | 33 % |
|---------------------|-------|-------------------|------|
|---------------------|-------|-------------------|------|

## 113961\_109\_.wmf: Channel separation at the lower end of the assigned frequency band:



## 113961 110.wmf: Channel separation at the middle of the assigned frequency band:



 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 13 of 70



## 113961\_111.wmf: Channel separation at the upper end of the assigned frequency band:



| Channel number          | Channel frequency [MHz] | Channel separation [kHz] | Minimum limit [kHz]          |
|-------------------------|-------------------------|--------------------------|------------------------------|
| 0                       | 902.750                 | 500.250                  | 86.538 (the 20 dB bandwidth) |
| 24                      | 914.750                 | 500.250                  | 86.859 (the 20 dB bandwidth) |
| 49                      | 927.250                 | 500.250                  | 86.859 (the 20 dB bandwidth) |
| Measurement uncertainty |                         |                          | <10 <sup>-7</sup>            |

Test: Passed

|  | MENT L |  |  |
|--|--------|--|--|
|  |        |  |  |

30

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 14 of 70



## 5.3 Number of hopping frequencies

## 5.3.1 Method of measurement (number of hopping frequencies)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be enabled.

The following spectrum analyser settings shall be used:

- Span: Equal to the assigned frequency band.
- Resolution bandwidth: ≥ 1 % of the span.
- Video bandwidth: ≥ the resolution bandwidth.
- Sweep: Auto.
- Detector function: Peak.Trace mode: Max hold.

After trace stabilisation the number of hopping channels could be counted. It might be possible to divide the span into some sub ranges in order to clearly show all hopping frequencies.

| Test set-up: |     |                   |
|--------------|-----|-------------------|
|              | EUT | Spectrum analyser |

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 15 of 70



## 5.3.2 Test results (number of hopping frequencies)

| Ambient temperature | 21 °C | Relative humidity | 33 % |
|---------------------|-------|-------------------|------|
|---------------------|-------|-------------------|------|

## 113961\_104.wmf: Number of hopping channels:



| Number of hopping channels Limit |             |
|----------------------------------|-------------|
| Operation mode 4                 |             |
| 50                               | At least 50 |

Test: Passed

| TEST EQUIPMENT USED FOR THE TEST: |  |
|-----------------------------------|--|
| 30                                |  |

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 16 of 70



#### 5.4 Dwell time

## 5.4.1 Method of measurement (dwell time)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be enabled.

The following spectrum analyser settings shall be used:

- Span: Zero, centred on a hopping channel.
- Resolution bandwidth: 1 MHz.
- Video bandwidth: ≥ the resolution bandwidth.
- Sweep: As necessary to capture the entire dwell time per hopping channel.
- Detector function: peak.
- Trace mode: Max hold.

The marker and delta marker function of the spectrum analyser will be used to determine the dwell time.

The measurement will be performed at the middle of the assigned frequency band.

If the EUT is possible to operate with different mode of operation (data rates, modulation formats etc.) the test will be repeated with every different operation mode of the EUT.

| Test | set-up: |
|------|---------|
|      |         |

| EUT | Spectrum analyser |
|-----|-------------------|
|     |                   |

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 17 of 70



## 5.4.2 Test results (dwell time)

| Ambient temperature | 21 °C | Relative humidity | 33 % |
|---------------------|-------|-------------------|------|
|---------------------|-------|-------------------|------|

## 113961\_116.wmf: Dwell time at the middle of the assigned frequency band:



The dwell time is calculated with the following formula:

Dwell time =  $t_{pulse} x n_{hops} / number of hopping channels x 20 s$ 

Where:

 $t_{\text{pulse}}$  is the measured pulse time (pls. refer the plots of the spectrum analyser above) [s],  $n_{\text{hops}}$  is the number of hops per second in the actual operating mode of the transmitter [1/s].

The hopping rate of the system is 2.5 hops per second and the system uses 50 channels.

| Channel number          | Channel frequency [MHz] | t <sub>pulse</sub><br>[ms] | Dwell time<br>[ms] | Limit<br>[ms] |
|-------------------------|-------------------------|----------------------------|--------------------|---------------|
| 25                      | 914.750                 | 399.359                    | 399.359            | 400           |
| Measurement uncertainty |                         | <10                        | 7                  |               |

| Test: | Passed |
|-------|--------|
|       |        |

| TEST EQUIPMENT USED FOR THE TEST: |  |
|-----------------------------------|--|
| 30                                |  |

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 18 of 70



## 5.5 Maximum peak output power

## 5.5.1 Method of measurement (maximum peak output power)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be disenabled.

The following spectrum analyser settings shall be used:

- Span: Approx. 5 times the 20 dB bandwidth, centred on a hopping channel.
- Resolution bandwidth: > the 20 dB bandwidth of the emission being measured.
- Video bandwidth: ≥ the resolution bandwidth.
- Sweep: Auto.
- Detector function: peak.
- Trace mode: Max hold.

After trace stabilisation the marker shall be set on the signal peak. The indicated level is the peak output power, which has to be corrected with the value of the cable loss and an external attenuation (if necessary).

The measurement will be performed at the upper and lower end and the middle of the assigned frequency band.

Test set-up:

EUT

Spectrum analyser

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 19 of 70



## 5.5.2 Test results (maximum peak output power)

| Ambient temperature | 21 °C | Relative hum | idity 33 % |
|---------------------|-------|--------------|------------|
|---------------------|-------|--------------|------------|

## 113961\_114.wmf: Maximum peak output power at the lower end of the assigned frequency band:



## 113961\_113.wmf: Maximum peak output power at the middle of the assigned frequency band:



 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 20 of 70



## 113961\_112.wmf: Maximum peak output power at the upper end of the assigned frequency band:



| Operation mode | Channel<br>number       | Channel frequency<br>[MHz] | Maximum peak<br>output power<br>[dBm] | Antenna gain<br>[dBi] | Peak power limit<br>[dBm] |
|----------------|-------------------------|----------------------------|---------------------------------------|-----------------------|---------------------------|
| 1              | 0                       | 902.750                    | 29.8                                  | 6.0                   | 30.0                      |
| 2              | 24                      | 914.750                    | 29.1                                  | 6.0                   | 30.0                      |
| 3              | 49                      | 927.250                    | 28.9                                  | 6.0                   | 30.0                      |
|                | Measurement uncertainty |                            |                                       | +0.66 d               | B / -0.72 dB              |

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

30

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961

 page 21 of 70



#### 5.6 Radiated emissions

## 5.6.1 Method of measurement (radiated emissions)

The radiated emission measurement is subdivided into four stages.

- A preliminary measurement carried out in a fully anechoic chamber with a fixed antenna height in the frequency range 30 MHz to 1 GHz.
- A final measurement carried out on an open area test side with reflecting ground plane and various antenna height in the frequency range 30 MHz to 1 GHz.
- A preliminary measurement carried out in a fully anechoic chamber with a variable antenna distance and height in the frequency range 1 GHz to 110 GHz.
- A final measurement carried out in a fully anechoic chamber with a fixed antenna height in the frequency range 1 GHz to 110 GHz.

All measurements will be carried out with the EUT working on the middle of the assigned frequency band.

#### Preliminary measurement (30 MHz to 1 GHz)

In the first stage a preliminary measurement will be performed in a fully anechoic chamber with a measuring distance of 3 meter. Tabletop devices will set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices will be placed directly on the turntable/ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2009 [1].

The frequency range 30 MHz to 1 GHz will be measured with an EMI Receiver set to MAX Hold mode and a resolution bandwidth of 100 kHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0  $^{\circ}$  to 360  $^{\circ}$ .

The resolution bandwidth of the EMI Receiver will be set to the following values:

| Frequency range   | Resolution bandwidth |
|-------------------|----------------------|
| 30 MHz to 230 MHz | 100 kHz              |
| 230 MHz to 1 GHz  | 100 kHz              |



 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 22 of 70



#### Procedure preliminary measurement:

Prescans were performed in the frequency range 30 MHz to 230 MHz and 230 MHz to 1 GHz. The following procedure will be used:

- 1. Monitor the frequency range at horizontal polarisation and a EUT azimuth of 0 °.
- 2. Manipulate the system cables within the range to produce the maximum level of emission.
- 3. Rotate the EUT by 360 ° to maximize the detected signals.
- 4. Make a hardcopy of the spectrum.
- 5. Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 6. Repeat 1) to 4) with the other orthogonal axes of the EUT (because of EUT is a module and might be used in a handheld equipment application).
- 7. Repeat 1) to 5) with the vertical polarisation of the measuring antenna.

#### Final measurement (30 MHz to 1 GHz)

A final measurement on an open area test site will be performed on selected frequencies found in the preliminary measurement. During this test the EUT will be rotated in the range of 0 ° to 360 °, the measuring antenna will be set to horizontal and vertical polarisation and raised and lowered in the range from 1 m to 4 m to find the maximum level of emissions.

The resolution bandwidth of the EMI Receiver will be set to the following values:

| Frequency range | Resolution bandwidth |  |
|-----------------|----------------------|--|
| 30 MHz to 1 GHz | 120 kHz              |  |



 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961



#### Procedure final measurement:

The following procedure will be used:

- 1) Measure on the selected frequencies at an antenna height of 1 m and a EUT azimuth of 23 °.
- 2) Move the antenna from 1 m to 4 m and note the maximum value at each frequency.
- 3) Rotate the EUT by 45 ° and repeat 2) until an azimuth of 337 ° is reached.
- 4) Repeat 1) to 3) for the other orthogonal antenna polarization.
- 5) Move the antenna and the turntable to the position where the maximum value is detected.
- 6) Measure while moving the antenna slowly +/- 1 m.
- 7) Set the antenna to the position where the maximum value is found.
- 8) Measure while moving the turntable +/- 45 °.
- 9) Set the turntable to the azimuth where the maximum value is found.
- 10) Measure with Final detector (QP and AV) and note the value.
- 11) Repeat 5) to 10) for each frequency.
- 12) Repeat 1) to 11) for each orthogonal axes of the EUT (because of EUT is a module and might be used in a handheld equipment application).

## Preliminary and final measurement (1 GHz to 110 GHz)

This measurement will be performed in a fully anechoic chamber. Tabletop devices will set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices will be placed directly on the turntable/ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2009 [1].

#### **Preliminary measurement (1 GHz to 110 GHz)**

The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The spectrum analyser set to MAX Hold mode and a resolution bandwidth of 100 kHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna, the antenna close to the EUT and while moving the antenna over all sides of the EUT. With the spectrum analyser in CLEAR / WRITE mode the cone of the emission should be found and than the measuring distance will be set to 3 m with the receiving antenna moving in this cone of emission. At this position the final measurement will be carried out.

The resolution bandwidth of the EMI Receiver will be set to the following values:

| Frequency range    | Resolution bandwidth |
|--------------------|----------------------|
| 1 GHz to 4 GHz     | 100 kHz              |
| 4 GHz to 12 GHz    | 100 kHz              |
| 12 GHz to 18 GHz   | 100 kHz              |
| 18 GHz to 26.5 GHz | 100 kHz              |
| 26.5 GHz to 40 GHz | 100 kHz              |
| 40 GHz to 60 GHz   | 100 kHz              |
| 50 GHz to 75 GHz   | 100 kHz              |
| 75 GHz to 110 GHz  | 100 kHz              |

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961





## Final measurement (1 GHz to 110 GHz)

The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1 MHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 ° to 360 ° in order to have the antenna inside the cone of radiation.

The resolution bandwidth of the EMI Receiver will be set to the following values:

| Frequency range    | Resolution bandwidth |
|--------------------|----------------------|
| 1 GHz to 4 GHz     | 1 MHz                |
| 4 GHz to 12 GHz    | 1 MHz                |
| 12 GHz to 18 GHz   | 1 MHz                |
| 18 GHz to 26.5 GHz | 1 MHz                |
| 26.5 GHz to 40 GHz | 1 MHz                |
| 40 GHz to 60 GHz   | 1 MHz                |
| 50 GHz to 75 GHz   | 1 MHz                |
| 75 GHz to 110 GHz  | 1 MHz                |

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 25 of 70





#### Procedure of measurement:

The measurements were performed in the frequency range 1 GHz to 4 GHz, 4 GHz to 12 GHz, 12 GHz to 18 GHz, 18 GHz to 26.5 GHz, 26.5 GHz to 40 GHz, 40 GHz to 60 GHz, 60 GHz to 75 GHz and 75 GHz to 110 GHz.

The following procedure will be used:

- 1) Monitor the frequency range at horizontal polarisation and move the antenna over all sides of the EUT (if necessary move the EUT to another orthogonal axis).
- 2) Change the antenna polarisation and repeat 1) with vertical polarisation.
- 3) Make a hardcopy of the spectrum.
- 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 5) Change the analyser mode to Clear / Write and found the cone of emission.
- 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3 m and the antenna will be still inside the cone of emission.
- 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarisation and azimuth and the peak and average detector, which causes the maximum emission
- 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.

Step 1) to 6) are defined as preliminary measurement.

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 26 of 70



## 5.6.2 Test results (radiated emissions)

## 5.6.2.1 Preliminary radiated emission measurement with internal antenna

| Ambient temperature | 21 °C | Relative humidity | 35 % |
|---------------------|-------|-------------------|------|
|---------------------|-------|-------------------|------|

Position of EUT: The EUT was set-up on a non-conducting table of a height of 0.8 m. The

distance between EUT and antenna was 3 m.

Cable guide: For detail information of test set-up and the cable guide refer to the pictures in

annex A of this test report.

Test record: All results are shown in the following.

Supply voltage: During all measurements the EUT was supplied with 24 V DC by an external

power supply.

Remark: As pre-tests have shown, the emissions in the frequency range 1 MHz to

30 MHz are not depending on the transmitter operation mode. Therefore the emissions in this frequency range were measured only with the transmitter

operates in operation mode 2.

## <u>Transmitter operates at the lower end of the assigned frequency band (operation mode 1)</u>

#### 113961 61.wmf: Spurious emissions from 30 MHz to 230 MHz (operation mode 1):



 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961



113961 60.wmf: Spurious emissions from 230 MHz to 1 GHz (operation mode 1, carrier notched):



The following frequencies were found outside the restricted bands during the preliminary radiated emission test:

- 62.500 MHz, 66.435 MHz, 200.000 MHz, 375.000 MHz and 902.750 MHz.

The following frequencies were found inside the restricted bands during the preliminary radiated emission test:

- 125.000 MHz and 250.000 MHz.

These frequencies have to be measured on the open area test site. The result is presented in the following.

113961 68.wmf: Spurious emissions from 1 GHz to 4 GHz (operation mode 1):



 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 28 of 70



113961 71.wmf: Spurious emissions from 4 GHz to 10 GHz (operation mode 1):



The following frequency was found inside the restricted bands during the preliminary radiated emission test:

- 2.70825 GHz.

The following frequency was found outside the restricted bands during the preliminary radiated emission test:

- 1.8055 GHz.

These frequencies have to be measured in a final measurement. The results were presented in the following.

TEST EQUIPMENT USED FOR THE TEST:

29, 31 - 36, 43, 44, 49, 55, 73, 75

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 29 of 70



## Transmitter operates on the middle of the assigned frequency band (operation mode 2)

#### 113961 99.wmf: Spurious emissions from 1 MHz to 30 MHz (operation mode 2):



No significant frequencies above the noise floor of the system were found during the preliminary radiated emission test, so no measurements were carried out on the outdoor test site.

## 113961 64.wmf: Spurious emissions from 30 MHz to 230 MHz (operation mode 2):



 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 30 of 70



113961 65.wmf: Spurious emissions from 230 MHz to 1 GHz (operation mode 2, carrier notched):



The following frequencies were found outside the restricted bands during the preliminary radiated emission test:

- 62.500 MHz, 66.4271 MHz, 200.000 MHz, 375.000 MHz and 914.750 MHz.

The following frequencies were found inside the restricted bands during the preliminary radiated emission test:

- 125.000 MHz and 250.000 MHz.

These frequencies have to be measured on the open area test site. The result is presented in the following.

113961 66.wmf: Spurious emissions from 1 GHz to 4 GHz (operation mode 2):



 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 31 of 70







No frequency was found inside the restricted bands during the preliminary radiated emission test.

The following frequency was found outside the restricted bands during the preliminary radiated emission test:

- 1.8295 GHz.

This frequency has to be measured in a final measurement. The results were presented in the following.

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 32 of 70



## <u>Transmitter operates on the upper end of the assigned frequency (operation mode 3)</u>

#### 113961 63.wmf: Spurious emissions from 30 MHz to 230 MHz (operation mode 3):



## 113961 62.wmf: Spurious emissions from 230 MHz to 1 GHz (operation mode 3, carrier notched):



The following frequencies were found outside the restricted bands during the preliminary radiated emission test:

- 62.500 MHz, 66.258 MHz, 200.000 MHz, 375.000 MHz and 927.250 MHz.

The following frequencies were found inside the restricted bands during the preliminary radiated emission test:

125.000 MHz and 250.000 MHz.

These frequencies have to be measured on the open area test site. The result is presented in the following.

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 33 of 70



113961 67.wmf: Spurious emissions from 1 GHz to 4 GHz (operation mode 3):



113961 69.wmf: Spurious emissions from 4 GHz to 10 GHz (operation mode 3):



No frequencies were found inside the restricted bands during the preliminary radiated emission test.

The following frequency was found outside the restricted bands during the preliminary radiated emission test:

- 1.8545 GHz.

This frequency has to be measured in a final measurement. The results were presented in the following.

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 34 of 70



## 5.6.2.2 Final radiated emission measurement (30 MHz to 1 GHz) with internal antenna

| Relative humidity | 29 %                |
|-------------------|---------------------|
| 3                 | C Relative humidity |

Position of EUT: The EUT was set-up on a non-conducting table of a height of 0.8 m. The

distance between EUT and antenna was 3 m.

Cable guide: For detail information of test set-up and the cable guide refer to the pictures in

annex A of this test report.

Test record: All results are shown in the following.

Supply voltage: During all measurements the EUT was supplied with 24 V DC by an external

power supply.

Test results: The test results were calculated with the following formula:

Result [dB $\mu$ V/m] = reading [dB $\mu$ V] + cable loss [dB] + antenna factor [dB/m]

The measured points and the limit line in the following diagrams refer to the standard measurement of the emitted interference in compliance with the above-mentioned standard. The measured points marked with an x are the measured results of the standard final measurement on the open area test site.

The results of the standard subsequent measurement on the open area test site are indicated in the table below. The limits as well as the measured results (levels) refer to the above mentioned standard while taking account of the specified requirements for a 3 m measuring distance.

The measurement time with the guasi-peak measuring detector is 1 second.

#### <u>Transmitter operates on the lower end of the assigned frequency (operation mode 1)</u>



Data record name: 113961Iff

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 35 of 70



## <u>Transmitter operates on the middle of the assigned frequency (operation mode 2)</u>



Data record name: 113961Imff

## Transmitter operates on the upper end of the assigned frequency (operation mode 3)



Data record name: 113961Ihff

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 36 of 70



## Result measured with the quasi-peak detector: (These values were marked in the diagrams by an $\mathbf{x}$ )

| Transmitter op | erates on th | e lower end  |              |                | / band (operation i |                |        |                                           |       |  |  |  |  |  |  |  |  |
|----------------|--------------|--------------|--------------|----------------|---------------------|----------------|--------|-------------------------------------------|-------|--|--|--|--|--|--|--|--|
|                | I            |              |              | ı              | outside restricted  |                |        | T                                         | I     |  |  |  |  |  |  |  |  |
| Frequency      | Result       | Limit        | Margin       | Readings       | Antenna factor      | Cable loss     | Height | Azimuth                                   | Pol.  |  |  |  |  |  |  |  |  |
| MHz            | dBµV/m       | dBµV/m       | dB           | dΒμV           | dB/m                | dB             | cm     | deg                                       |       |  |  |  |  |  |  |  |  |
| 62.500         | 26.3         | 105.0        | 78.7         | 19.3           | 6.1                 | 0.9            | 137.0  | 136.0                                     | Vert. |  |  |  |  |  |  |  |  |
| 66.435         | 19.6         | 105.0        | 85.4         | 12.6           | 6.1                 | 0.9            | 400.0  | 355.0                                     | Hor.  |  |  |  |  |  |  |  |  |
| 200.000        | 21.9         | 105.0        | 83.1         | 11.5           | 8.9                 | 1.5            | 103.0  | 19.0                                      | Vert. |  |  |  |  |  |  |  |  |
| 375.000        | 24.8         | 105.0        | 80.2         | 7.8            | 14.8                | 2.2            | 105.0  | 308.0                                     | Vert. |  |  |  |  |  |  |  |  |
| 902.750        | 125.0        | -            | -            | 99.1           | 22.5                | 3.4            | 151.0  | 16.0                                      | Vert. |  |  |  |  |  |  |  |  |
|                |              |              | Spuri        | ous emissions  | inside restricted b | ands           |        |                                           |       |  |  |  |  |  |  |  |  |
| Frequency      | Result       | Limit        | Margin       | Readings       | Antenna factor      | Cable loss     | Height | Azimuth                                   | Pol.  |  |  |  |  |  |  |  |  |
| MHz            | dBµV/m       | dBµV/m       | dB           | dΒμV           | dB/m                | dB             | cm     | deg                                       |       |  |  |  |  |  |  |  |  |
| 125.000        | 24.7         | 43.5         | 18.8         | 11.1           | 12.4                | 1.2            | 393.0  | 125.0                                     | Vert. |  |  |  |  |  |  |  |  |
| 250.000        | 25.2         | 46.0         | 20.8         | 11.3           | 12.1                | 1.8            | 100.0  | 218.0                                     | Vert. |  |  |  |  |  |  |  |  |
| Transmitter op | erates on th | ne middle of | the assigned | d frequency ba | and (operation mo   | de 2)          |        |                                           |       |  |  |  |  |  |  |  |  |
|                |              |              | Spurio       | ous emissions  | outside restricted  | bands          |        |                                           |       |  |  |  |  |  |  |  |  |
| Frequency      | Result       | Limit        | Margin       | Readings       | Antenna factor      | Cable loss     | Height | Azimuth                                   | Pol.  |  |  |  |  |  |  |  |  |
| MHz            | dBµV/m       | dBµV/m       | dB           | dBµV           | dB/m                | dB             | cm     | deg                                       |       |  |  |  |  |  |  |  |  |
| 62.500         | 25.8         | 105.3        | 79.5         | 18.8           | 6.1                 | 0.9            | 121.0  | 90.0                                      | Vert. |  |  |  |  |  |  |  |  |
| 66.271         | 24.6         | 105.3        | 80.7         | 17.6           | 6.1                 | 0.9            | 175.0  | 135.0                                     | Vert. |  |  |  |  |  |  |  |  |
| 200.000        | 22.1         | 105.3        | 83.2         | 11.7           | 8.9                 | 1.5            | 100.0  | 225.0                                     | Vert. |  |  |  |  |  |  |  |  |
| 375.000        | 24.4         | 105.3        | 80.9         | 7.4            | 14.8                | 2.2            | 225.0  | 110.0                                     | Vert. |  |  |  |  |  |  |  |  |
| 914.750        | 125.3        | -            | -            | 99.1           | 22.8                | 3.4            | 156.0  | 41.0                                      | Vert. |  |  |  |  |  |  |  |  |
|                | •            | •            | Spuri        | ous emissions  | inside restricted b | ands           |        | •                                         | •     |  |  |  |  |  |  |  |  |
| Frequency      | Result       | Limit        | Margin       | Readings       | Antenna factor      | Cable loss     | Height | Azimuth                                   | Pol.  |  |  |  |  |  |  |  |  |
| MHz            | dBµV/m       | dBμV/m       | dB           | dΒμV           | dB/m                | dB             | cm     | deg                                       |       |  |  |  |  |  |  |  |  |
| 125.000        | 24.4         | 43.5         | 19.1         | 10.8           | 12.4                | 1.2            | 387.0  | 180.0                                     | Vert. |  |  |  |  |  |  |  |  |
| 250.000        | 25.2         | 46.0         | 20.8         | 11.3           | 12.1                | 1.8            | 125.0  | 225.0                                     | Vert. |  |  |  |  |  |  |  |  |
| Transmitter op | erates on th | e upper end  | of the assig | gned frequenc  | y band (operation   | mode 3)        |        |                                           |       |  |  |  |  |  |  |  |  |
|                |              |              | Spurio       | ous emissions  | outside restricted  | bands          |        |                                           |       |  |  |  |  |  |  |  |  |
| Frequency      | Result       | Limit        | Margin       | Readings       | Antenna factor      | Cable loss     | Height | Azimuth                                   | Pol.  |  |  |  |  |  |  |  |  |
| MHz            | dBµV/m       | dBµV/m       | dB           | dBµV           | dB/m                | dB             | cm     | deg                                       |       |  |  |  |  |  |  |  |  |
| 62.500         | 26.0         | 106.8        | 8.08         | 19.0           | 6.1                 | 0.9            | 148.0  | 181.0                                     | Vert. |  |  |  |  |  |  |  |  |
| 66.258         | 25.3         | 106.8        | 81.5         | 18.3           | 6.1                 | 0.9            | 175.0  | 240.0                                     | Vert. |  |  |  |  |  |  |  |  |
| 200.000        | 22.1         | 106.8        | 84.7         | 11.7           | 8.9                 | 1.5            | 100.0  | 234.0                                     | Vert. |  |  |  |  |  |  |  |  |
| 375.000        | 24.4         | 106.8        | 82.4         | 7.4            | 14.8                | 2.2            | 112.0  | 110.0                                     | Vert. |  |  |  |  |  |  |  |  |
| 890.466        | 38.1         | 106.8        | 68.7         | 12.5           | 22.1                | 3.5            | 100.0  | 24.0                                      | Vert. |  |  |  |  |  |  |  |  |
| 927.250        | 126.8        | -            | -            | 100.0          | 23.4                | 3.4            | 100.0  | 45.0                                      | Vert. |  |  |  |  |  |  |  |  |
|                |              |              | Spuri        | ous emissions  | inside restricted b | ands           |        |                                           |       |  |  |  |  |  |  |  |  |
| Frequency      | Result       | Limit        | Margin       | Readings       | Antenna factor      | Cable loss     | Height | Azimuth                                   | Pol.  |  |  |  |  |  |  |  |  |
| MHz            | dBµV/m       | dBµV/m       | dB           | dΒμV           | dB/m                | dB             | cm     | deg                                       |       |  |  |  |  |  |  |  |  |
| 125.000        | 23.3         | 43.5         | 20.2         | 9.7            | 12.4                | 1.2            | 225.0  | 156.0                                     | Hor.  |  |  |  |  |  |  |  |  |
| 250.000        | 24.6         | 46.0         | 21.4         | 10.7           | 12.1                | 1.8            | 109.0  | 222.0                                     | Vert. |  |  |  |  |  |  |  |  |
| Me             | easurement   | uncertainty  |              |                |                     | +2.2 dB / -3.6 | dB     |                                           |       |  |  |  |  |  |  |  |  |
|                |              |              |              |                |                     |                |        | Measurement uncertainty +2.2 dB / -3.6 dB |       |  |  |  |  |  |  |  |  |

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

14 - 20

Test engineer: Thomas KÜHN
Date of issue: 06 December 2011 Report Number: Order Number: F113961E2 11-113961 page 37 of 70



## 5.6.2.3 Final radiated emission measurement (1 GHz to 10 GHz) with internal antenna

Ambient temperature 21 °C Relative humidity 35 %

Position of EUT: The EUT was set-up on a non-conducting table of a height of 0.8 m. The

distance between EUT and antenna was 3 m.

Cable guide: For detail information of test set-up and the cable guide refer to the pictures in

annex A of this test report.

Test record: All results are shown in the following.

Supply voltage: During all measurements the EUT was supplied with 24 V DC by an external

power supply.

Resolution bandwidth: For all measurements a resolution bandwidth of 1 MHz was used.

## <u>Transmitter operates at the lower end of the assigned frequency band (operation mode 1)</u>

#### Result measured with the peak detector:

| Frequency | Corr. Value                           | Limit  | Margin | Readings | Antenna factor | Preamp | Cable<br>loss | Height  | Pol.      | Restr.<br>Band |
|-----------|---------------------------------------|--------|--------|----------|----------------|--------|---------------|---------|-----------|----------------|
| GHz       | dBµV/m                                | dBµV/m | dB     | dΒμV     | 1/m            | dB     | dB            | cm      |           |                |
| 1.80550   | 37.7                                  | 105.0  | 67.3   | 34.7     | 26.5           | 26.5   | 3.0           | 150     | Hor.      | No             |
| 2.70825   | 2.70825 39.5 74.0 34.5 33.2 28.7 26.4 |        |        |          |                |        |               | 150     | Hor.      | Yes            |
|           | Measurement uncertainty               |        |        |          |                |        |               | +2.2 dB | / -3.6 dB |                |

#### Result measured with the average detector:

| Frequency | Corr. Value                           | Limit  | Margin | Readings | Antenna<br>factor | Preamp | Cable<br>loss | Height  | Pol.      | Restr.<br>Band |
|-----------|---------------------------------------|--------|--------|----------|-------------------|--------|---------------|---------|-----------|----------------|
| GHz       | dBμV/m                                | dBµV/m | dB     | dΒμV     | 1/m               | dB     | dB            | cm      |           |                |
| 1.80550   | 25.7                                  | 105.0  | 79.3   | 22.7     | 26.5              | 26.5   | 3.0           | 150     | Hor.      | No             |
| 2.70825   | 2.70825 26.8 54.0 27.2 20.5 28.7 26.4 |        |        |          |                   |        |               | 150     | Hor.      | Yes            |
|           | Measurement uncertainty               |        |        |          |                   |        |               | +2.2 dB | / -3.6 dB |                |

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 38 of 70



## <u>Transmitter operates at the middle of the assigned frequency band (operation mode 2)</u>

## Result measured with the peak detector:

| Frequency<br>GHz | Corr. Value<br>dBµV/m   | Limit<br>dBµV/m | Margin<br>dB | Readings<br>dB <sub>µ</sub> V | Antenna<br>factor<br>1/m | Preamp<br>dB | Cable<br>loss<br>dB | Height<br>cm | Pol.      | Restr.<br>Band |
|------------------|-------------------------|-----------------|--------------|-------------------------------|--------------------------|--------------|---------------------|--------------|-----------|----------------|
| 1.8295           | 39.5                    | 105.3           | 65.8         | 36.0                          | 26.7                     | 26.5         | 3.3                 | 150          | Vert.     | No             |
|                  | Measurement uncertainty |                 |              |                               |                          |              |                     | +2.2 dB      | / -3.6 dB |                |

## Result measured with the average detector:

| Frequency | Corr. Value             | Limit  | Margin | Readings | Antenna factor | Preamp | Cable loss | Height  | Pol.      | Restr.<br>Band |
|-----------|-------------------------|--------|--------|----------|----------------|--------|------------|---------|-----------|----------------|
| GHz       | dBµV/m                  | dBµV/m | dB     | dBµV     | 1/m            | dB     | dB         | cm      |           |                |
| 1.8295    | 28.0                    | 105.3  | 77.3   | 24.5     | 26.7           | 26.5   | 3.3        | 150     | Vert.     | No             |
|           | Measurement uncertainty |        |        |          |                |        |            | +2.2 dB | / -3.6 dB |                |

## Transmitter operates at the upper end of the assigned frequency band (operation mode 3)

## Result measured with the peak detector:

| Frequency<br>GHz | Corr. Value             | Limit<br>dBµV/m | Margin<br>dB | Readings<br>dBµV | Antenna<br>factor<br>1/m | Preamp<br>dB | Cable<br>loss<br>dB | Height<br>cm | Pol.      | Restr.<br>Band |
|------------------|-------------------------|-----------------|--------------|------------------|--------------------------|--------------|---------------------|--------------|-----------|----------------|
| 1.8545           | 41.3                    | 106.8           | 65.5         | 37.2             | 27.0                     | 26.5         | 3.6                 | 150          | Vert.     | No             |
|                  | Measurement uncertainty |                 |              |                  |                          |              |                     | +2.2 dB      | / -3.6 dB |                |

## Result measured with the average detector:

| Frequency | Corr. Value             | Limit  | Margin | Readings | Antenna factor | Preamp | Cable<br>loss | Height  | Pol.      | Restr.<br>Band |
|-----------|-------------------------|--------|--------|----------|----------------|--------|---------------|---------|-----------|----------------|
| GHz       | dBµV/m                  | dBµV/m | dB     | dBµV     | 1/m            | dB     | dB            | cm      |           |                |
| 1.8545    | 30.3                    | 106.8  | 76.5   | 26.2     | 27.0           | 26.5   | 3.6           | 150     | Vert.     | No             |
|           | Measurement uncertainty |        |        |          |                |        |               | +2.2 dB | / -3.6 dB |                |

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

29, 31 - 34, 36, 44, 49, 73

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 39 of 70



## 5.6.2.4 Preliminary radiated emission measurement with external patch antenna

| Ambient temperature | 21 °C | Relative humidity | 35 % |
|---------------------|-------|-------------------|------|
|---------------------|-------|-------------------|------|

Position of EUT: The EUT was set-up on a non-conducting table of a height of 0.8 m. The

distance between EUT and antenna was 3 m.

Cable guide: For detail information of test set-up and the cable guide refer to the pictures in

annex A of this test report.

Test record: All results are shown in the following.

Supply voltage: During all measurements the EUT was supplied with 24 V DC by an external

power supply.

Remark: As pre-tests have shown, the emissions in the frequency range 1 MHz to

30 MHz are not depending on the transmitter operation mode. Therefore the emissions in this frequency range were measured only with the transmitter

operates in operation mode 2.

## Transmitter operates at the lower end of the assigned frequency band (operation mode 1)

## 113961\_83.wmf: Spurious emissions from 30 MHz to 230 MHz (operation mode 1):



 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 40 of 70







The following frequencies were found outside the restricted bands during the preliminary radiated emission test:

- 62.500 MHz, 902.750 MHz and 912.072 MHz.

The following frequencies were found inside the restricted bands during the preliminary radiated emission test:

- 125.000 MHz and 250.000 MHz.

These frequencies have to be measured on the open area test site. The result is presented in the following.

113961\_72.wmf: Spurious emissions from 1 GHz to 4 GHz (operation mode 1):



 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 41 of 70



## 113961 77.wmf: Spurious emissions from 4 GHz to 10 GHz (operation mode 1):



No frequency was found inside the restricted bands during the preliminary radiated emission test.

The following frequency was found outside the restricted bands during the preliminary radiated emission test:

- 1.8055 GHz.

These frequencies have to be measured in a final measurement. The results were presented in the following.

TEST EQUIPMENT USED FOR THE TEST:

29, 31 - 36, 43, 44, 49, 55, 73, 75

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 42 of 70



## Transmitter operates on the middle of the assigned frequency band (operation mode 2)

#### 113961 98.wmf: Spurious emissions from 1 MHz to 30 MHz (operation mode 2):



No significant frequencies above the noise floor of the system were found during the preliminary radiated emission test, so no measurements were carried out on the outdoor test site.

## 113961 80.wmf: Spurious emissions from 30 MHz to 230 MHz (operation mode 2):



 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 43 of 70



113961 81.wmf: Spurious emissions from 230 MHz to 1 GHz (operation mode 2, carrier notched):



The following frequencies were found outside the restricted bands during the preliminary radiated emission test:

- 62.500 MHz, 909.346 MHz and 914.750 MHz.

The following frequencies were found inside the restricted bands during the preliminary radiated emission test:

- 125.000 MHz and 250.000 MHz.

These frequencies have to be measured on the open area test site. The result is presented in the following.

113961 73.wmf: Spurious emissions from 1 GHz to 4 GHz (operation mode 2):



 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 44 of 70



## 113961\_76.wmf: Spurious emissions from 4 GHz to 10 GHz (operation mode 2):



No frequency was found inside the restricted bands during the preliminary radiated emission test.

The following frequency was found outside the restricted bands during the preliminary radiated emission test:

- 1.8295 GHz.

This frequency has to be measured in a final measurement. The results were presented in the following.

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 45 of 70



## Transmitter operates on the upper end of the assigned frequency (operation mode 3)

#### 113961 79.wmf: Spurious emissions from 30 MHz to 230 MHz (operation mode 3):



#### 113961 78.wmf: Spurious emissions from 230 MHz to 1 GHz (operation mode 3, carrier notched):



The following frequencies were found outside the restricted bands during the preliminary radiated emission test:

- 62.500 MHz, 912.000 MHz, 894.126 MHz and 927.250 MHz.

The following frequencies were found inside the restricted bands during the preliminary radiated emission test:

125.000 MHz and 250.000 MHz.

These frequencies have to be measured on the open area test site. The result is presented in the following.

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 46 of 70



113961\_74.wmf: Spurious emissions from 1 GHz to 4 GHz (operation mode 3):



113961 75.wmf: Spurious emissions from 4 GHz to 10 GHz (operation mode 3):



No frequencies were found inside the restricted bands during the preliminary radiated emission test.

The following frequency was found outside the restricted bands during the preliminary radiated emission test:

- 1.8545 GHz.

This frequency has to be measured in a final measurement. The results were presented in the following.

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 47 of 70



## 5.6.2.5 Final radiated emission measurement (30 MHz to 1 GHz) with external patch antenna

| Ambient temperature 21 ° | Relative humidity | 29 % |
|--------------------------|-------------------|------|
|--------------------------|-------------------|------|

Position of EUT: The EUT was set-up on a non-conducting table of a height of 0.8 m. The

distance between EUT and antenna was 3 m.

Cable guide: For detail information of test set-up and the cable guide refer to the pictures in

annex A of this test report.

Test record: All results are shown in the following.

Supply voltage: During all measurements the EUT was supplied with 24 V DC by an external

power supply.

Test results: The test results were calculated with the following formula:

Result  $[dB\mu V/m]$  = reading  $[dB\mu V]$  + cable loss [dB] + antenna factor [dB/m]

The measured points and the limit line in the following diagrams refer to the standard measurement of the emitted interference in compliance with the above-mentioned standard. The measured points marked with an x are the measured results of the standard final measurement on the open area test site.

The results of the standard subsequent measurement on the open area test site are indicated in the table below. The limits as well as the measured results (levels) refer to the above mentioned standard while taking account of the specified requirements for a 3 m measuring distance.

The measurement time with the guasi-peak measuring detector is 1 second.

#### Transmitter operates on the lower end of the assigned frequency (operation mode 1)



Data record name: 113961Plff

Test engineer: Thomas KÜHN Report Number: F113961E2
Date of issue: 06 December 2011 Order Number: 11-113961 page 48 of 70



## <u>Transmitter operates on the middle of the assigned frequency (operation mode 2)</u>



Data record name: 113961Pmff

## Transmitter operates on the upper end of the assigned frequency (operation mode 3)



Data record name: 113961Phff

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 49 of 70



## Result measured with the quasi-peak detector: (These values were marked in the diagrams by an $\mathbf{x}$ )

| Transmitter or |                |              | -            |                | band (operation r   | mode 1)        |        |         |       |
|----------------|----------------|--------------|--------------|----------------|---------------------|----------------|--------|---------|-------|
|                |                |              |              |                | outside restricted  |                |        |         |       |
| Frequency      | Result         | Limit        | Margin       | Readings       | Antenna factor      | Cable loss     | Height | Azimuth | Pol.  |
| MHz            | dBµV/m         | dBµV/m       | dB           | dΒμV           | dB/m                | dB             | cm     | deg     |       |
| 62.500         | 23.2           | 102.5        | 79.3         | 16.2           | 6.1                 | 0.9            | 158.0  | 263.0   | Vert. |
| 902.750        | 122.5          | -            | 1            | 96.6           | 22.5                | 3.4            | 286.0  | 15.0    | Hor.  |
| 912.072        | 40.6           |              |              | 14.5           | 22.7                | 3.4            | 260.0  | 28.0    | Hor.  |
|                |                |              | Spuri        | ous emissions  | inside restricted b | ands           |        |         |       |
| Frequency      | Result         | Limit        | Margin       | Readings       | Antenna factor      | Cable loss     | Height | Azimuth | Pol.  |
| MHz            | dBµV/m         | dBµV/m       | dB           | dΒμV           | dB/m                | dB             | cm     | deg     |       |
| 125.000        | 27.1           | 43.5         | 16.4         | 13.5           | 12.4                | 1.2            | 175.0  | 250.0   | Vert. |
| 250.000        | 24.9           | 46.0         | 21.1         | 11.0           | 12.1                | 1.8            | 100.0  | 226.0   | Vert. |
| Transmitter or | perates on the | ne middle of | the assigned | d frequency ba | and (operation mod  | de 2)          |        |         |       |
|                |                |              | Spurio       | ous emissions  | outside restricted  | bands          |        |         |       |
| Frequency      | Result         | Limit        | Margin       | Readings       | Antenna factor      | Cable loss     | Height | Azimuth | Pol.  |
| MHz            | dBµV/m         | dBµV/m       | dB           | dΒμV           | dB/m                | dB             | cm     | deg     |       |
| 62.500         | 25.0           | 105.6        | 80.6         | 18.0           | 6.1                 | 0.9            | 158.0  | 245.0   | Vert. |
| 909.346        | 41.0           | 105.6        | 64.6         | 15.0           | 22.6                | 3.4            | 175.0  | 22.0    | Hor.  |
| 914.750        | 125.6          | -            | -            | 99.4           | 22.8                | 3.4            | 177.0  | 29.0    | Hor.  |
|                | JI.            | l.           | Spuri        | ous emissions  | inside restricted b | ands           |        | ı       | I.    |
| Frequency      | Result         | Limit        | Margin       | Readings       | Antenna factor      | Cable loss     | Height | Azimuth | Pol.  |
| MHz            | dBµV/m         | dBµV/m       | dB           | dΒμV           | dB/m                | dB             | cm     | deg     |       |
| 125.000        | 23.0           | 43.5         | 20.5         | 9.4            | 12.4                | 1.2            | 125.0  | 222.0   | Hor.  |
| 250.000        | 24.2           | 46.0         | 21.8         | 10.3           | 12.1                | 1.8            | 112.0  | 225.0   | Vert. |
| Transmitter or | perates on the | ne upper end | of the assig | ned frequenc   | y band (operation   | mode 3)        |        |         |       |
|                |                |              | Spurio       | ous emissions  | outside restricted  | bands          |        |         |       |
| Frequency      | Result         | Limit        | Margin       | Readings       | Antenna factor      | Cable loss     | Height | Azimuth | Pol.  |
| MHz            | dBµV/m         | dBµV/m       | dB           | dΒμV           | dB/m                | dB             | cm     | deg     |       |
| 62.500         | 18.2           | 104.1        | 85.9         | 11.2           | 6.1                 | 0.9            | 377.0  | 182.0   | Hor.  |
| 894.126        | 38.3           | 104.1        | 65.8         | 12.6           | 22.2                | 3.5            | 109.0  | 21.0    | Vert. |
| 912.000        | 48.0           | 104.1        | 56.1         | 21.9           | 22.7                | 3.4            | 175.0  | 34.0    | Hor.  |
| 927.250        | 124.1          | -            | -            | 97.3           | 23.4                | 3.4            | 178.0  | 44.0    | Hor.  |
|                | 1              |              | Spuri        |                | inside restricted b |                |        | 1       |       |
| Frequency      | Result         | Limit        | Margin       | Readings       | Antenna factor      | Cable loss     | Height | Azimuth | Pol.  |
| MHz            | dBµV/m         | dBµV/m       | dB           | dBµV           | dB/m                | dB             | cm     | deg     |       |
| 125.000        | 24.9           | 43.5         | 18.6         | 11.3           | 12.4                | 1.2            | 225.0  | 91.0    | Vert. |
| 250.000        | 24.6           | 46.0         | 21.4         | 10.7           | 12.1                | 1.8            | 100.0  | 213.0   | Vert. |
| M              | easurement     | uncertainty  |              |                |                     | +2.2 dB / -3.6 | 6 dB   |         |       |
|                |                |              |              |                |                     |                |        |         |       |

Test: Passed

| TEST | <b>EQUIPMEN</b> | T USED I | FOR THI | E TEST: |
|------|-----------------|----------|---------|---------|
|------|-----------------|----------|---------|---------|

14 - 20

Test engineer: Thomas KÜHN
Date of issue: 06 December 2011 F113961E2 11-113961 Report Number: Order Number: page 50 of 70



# 5.6.2.6 Final radiated emission measurement (1 GHz to 10 GHz) with external patch antenna

Ambient temperature 21 °C Relative humidity 35 %

Position of EUT: The EUT was set-up on a non-conducting table of a height of 0.8 m. The

distance between EUT and antenna was 3 m.

Cable guide: For detail information of test set-up and the cable guide refer to the pictures in

annex A of this test report.

Test record: All results are shown in the following.

Supply voltage: During all measurements the EUT was supplied with 24 V DC by an external

power supply.

Resolution bandwidth: For all measurements a resolution bandwidth of 1 MHz was used.

## <u>Transmitter operates at the lower end of the assigned frequency band (operation mode 1)</u>

## Result measured with the peak detector:

| Frequency | Corr. Value             | Limit  | Margin | Readings | Antenna<br>factor | Preamp | Cable<br>loss | Height  | Pol.      | Restr.<br>Band |
|-----------|-------------------------|--------|--------|----------|-------------------|--------|---------------|---------|-----------|----------------|
| GHz       | dBμV/m                  | dBµV/m | dB     | dΒμV     | 1/m               | dB     | dB            | cm      |           |                |
| 1.8055    | 38.1                    | 102.5  | 64.4   | 35.1     | 26.5              | 26.5   | 3.0           | 150     | Hor.      | No             |
|           | Measurement uncertainty |        |        |          |                   |        |               | +2.2 dB | / -3.6 dB |                |

#### Result measured with the average detector:

| Frequency | Corr. Value             | Limit  | Margin | Readings | Antenna<br>factor | Preamp | Cable<br>loss | Height | Pol.      | Restr.<br>Band |
|-----------|-------------------------|--------|--------|----------|-------------------|--------|---------------|--------|-----------|----------------|
| GHz       | dBµV/m                  | dBµV/m | dB     | dΒμV     | 1/m               | dB     | dB            | cm     |           | 24             |
| 1.8055    | 26.4                    | 102.5  | 76.1   | 23.4     | 26.5              | 26.5   | 3.0           | 150    | Hor.      | No             |
|           | Measurement uncertainty |        |        |          |                   |        |               |        | / -3.6 dB |                |

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961



## <u>Transmitter operates at the middle of the assigned frequency band (operation mode 2)</u>

## Result measured with the peak detector:

| Frequency<br>GHz | Corr. Value<br>dBµV/m   | Limit<br>dBµV/m | Margin<br>dB | Readings<br>dB <sub>µ</sub> V | Antenna<br>factor<br>1/m | Preamp<br>dB | Cable<br>loss<br>dB | Height<br>cm | Pol.      | Restr.<br>Band |
|------------------|-------------------------|-----------------|--------------|-------------------------------|--------------------------|--------------|---------------------|--------------|-----------|----------------|
| 1.8295           | 40.4                    | 105.6           | 65.2         | 36.9                          | 26.7                     | 26.5         | 3.3                 | 150          | Vert.     | No             |
|                  | Measurement uncertainty |                 |              |                               |                          |              |                     |              | / -3.6 dB |                |

## Result measured with the average detector:

| Frequency | Corr. Value             | Limit  | Margin | Readings | Antenna factor | Preamp | Cable loss | Height | Pol.      | Restr.<br>Band |
|-----------|-------------------------|--------|--------|----------|----------------|--------|------------|--------|-----------|----------------|
| GHz       | dBµV/m                  | dBµV/m | dB     | dΒμV     | 1/m            | dB     | dB         | cm     |           |                |
| 1.8295    | 29.3                    | 105.6  | 76.3   | 25.8     | 26.7           | 26.5   | 3.3        | 150    | Vert.     | No             |
|           | Measurement uncertainty |        |        |          |                |        |            |        | / -3.6 dB |                |

## Transmitter operates at the upper end of the assigned frequency band (operation mode 3)

## Result measured with the peak detector:

| Frequency | Corr. Value             | Limit  | Margin | Readings | Antenna factor | Preamp | Cable loss | Height | Pol.      | Restr.<br>Band |
|-----------|-------------------------|--------|--------|----------|----------------|--------|------------|--------|-----------|----------------|
| GHz       | dBµV/m                  | dBµV/m | dB     | dΒμV     | 1/m            | dB     | dB         | cm     |           |                |
| 1.8545    | 42.9                    | 104.1  | 61.2   | 38.8     | 27.0           | 26.5   | 3.6        | 150    | Vert.     | No             |
|           | Measurement uncertainty |        |        |          |                |        |            |        | / -3.6 dB | ·              |

## Result measured with the average detector:

| Frequency | Corr. Value | Limit    | Margin | Readings | Antenna factor | Preamp | Cable<br>loss | Height | Pol.  | Restr.<br>Band |
|-----------|-------------|----------|--------|----------|----------------|--------|---------------|--------|-------|----------------|
| GHz       | dBµV/m      | dBµV/m   | dB     | dBµV     | 1/m            | dB     | dB            | cm     |       |                |
| 1.8545    | 32.6        | 104.1    | 71.5   | 28.5     | 27.0           | 26.5   | 3.6           | 150    | Vert. | No             |
|           |             | Measurer |        | +2.2 dB  | / -3.6 dB      |        |               |        |       |                |

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

29, 31 - 34, 36, 44, 49, 73

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 52 of 70



## 5.6.2.7 Preliminary radiated emission measurement with external ULORA antenna

| Ambient temperature | 21 °C |  | Relative humidity | 35 % |
|---------------------|-------|--|-------------------|------|
|---------------------|-------|--|-------------------|------|

Position of EUT: The EUT was set-up on a non-conducting table of a height of 0.8 m. The

distance between EUT and antenna was 3 m.

Cable guide: For detail information of test set-up and the cable guide refer to the pictures in

annex A of this test report.

Test record: All results are shown in the following.

Supply voltage: During all measurements the EUT was supplied with 24 V DC by an external

power supply.

Remark: As pre-tests have shown, the emissions in the frequency range 1 MHz to

30 MHz are not depending on the transmitter operation mode. Therefore the emissions in this frequency range were measured only with the transmitter

operates in operation mode 2.

#### Transmitter operates at the lower end of the assigned frequency band (operation mode 1)

## 113961 85.wmf: Spurious emissions from 30 MHz to 230 MHz (operation mode 1):



Test engineer: Thomas KÜHN Report Number: F113961E2

Date of issue: 06 December 2011 Order Number: 11-113961 page 53 of 70







The following frequencies were found outside the restricted bands during the preliminary radiated emission test:

62.500 MHz and 902.750 MHz.

The following frequencies were found inside the restricted bands during the preliminary radiated emission test:

- 125.000 MHz.

These frequencies have to be measured on the open area test site. The result is presented in the following.

113961\_93.wmf: Spurious emissions from 1 GHz to 4 GHz (operation mode 1):



 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 54 of 70



## 113961 94.wmf: Spurious emissions from 4 GHz to 10 GHz (operation mode 1):



No frequency was found inside the restricted bands during the preliminary radiated emission test.

The following frequency was found outside the restricted bands during the preliminary radiated emission test:

1.8055 GHz.

These frequencies have to be measured in a final measurement. The results were presented in the following.

TEST EQUIPMENT USED FOR THE TEST:

29, 31 - 36, 43, 44, 49, 55, 73, 75

Test engineer: Thomas KÜHN
Date of issue: 06 December 2011 F113961E2 11-113961 Report Number: page 55 of 70 Order Number:



## <u>Transmitter operates on the middle of the assigned frequency band (operation mode 2)</u>

113961 97.wmf: Spurious emissions from 1 MHz to 30 MHz (operation mode 2):



No significant frequencies above the noise floor of the system were found during the preliminary radiated emission test, so no measurements were carried out on the outdoor test site.

113961 88.wmf: Spurious emissions from 30 MHz to 230 MHz (operation mode 2):



 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 56 of 70



113961 87.wmf: Spurious emissions from 230 MHz to 1 GHz (operation mode 2, carrier notched):



The following frequencies were found outside the restricted bands during the preliminary radiated emission test:

62.500 MHz, and 914.750 MHz.

The following frequencies were found inside the restricted bands during the preliminary radiated emission test:

- 125.000 MHz and 250.000 MHz.

These frequencies have to be measured on the open area test site. The result is presented in the following.

113961 92.wmf: Spurious emissions from 1 GHz to 4 GHz (operation mode 2):



 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 57 of 70







No frequency was found inside the restricted bands during the preliminary radiated emission test.

The following frequency was found outside the restricted bands during the preliminary radiated emission test:

- 1.8295 GHz.

This frequency has to be measured in a final measurement. The results were presented in the following.

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 58 of 70



## Transmitter operates on the upper end of the assigned frequency (operation mode 3)

#### 113961 89.wmf: Spurious emissions from 30 MHz to 230 MHz (operation mode 3):



## 113961 90.wmf: Spurious emissions from 230 MHz to 1 GHz (operation mode 3, carrier notched):



The following frequencies were found outside the restricted bands during the preliminary radiated emission test:

- 62.500 MHz, and 927.250 MHz.

The following frequencies were found inside the restricted bands during the preliminary radiated emission test:

125.000 MHz and 250.000 MHz.

These frequencies have to be measured on the open area test site. The result is presented in the following.

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 59 of 70



113961 91.wmf: Spurious emissions from 1 GHz to 4 GHz (operation mode 3):



113961 96.wmf: Spurious emissions from 4 GHz to 10 GHz (operation mode 3):



No frequencies were found inside the restricted bands during the preliminary radiated emission test.

The following frequency was found outside the restricted bands during the preliminary radiated emission test:

- 1.8545 GHz.

This frequency has to be measured in a final measurement. The results were presented in the following.

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 60 of 70



## 5.6.2.8 Final radiated emission measurement (30 MHz to 1 GHz) with external ULORA antenna

| Ambient temperature | 21 °C |  | Relative humidity | 29 % |
|---------------------|-------|--|-------------------|------|
|---------------------|-------|--|-------------------|------|

Position of EUT: The EUT was set-up on a non-conducting table of a height of 0.8 m. The

distance between EUT and antenna was 3 m.

Cable guide: For detail information of test set-up and the cable guide refer to the pictures in

annex A of this test report.

Test record: All results are shown in the following.

Supply voltage: During all measurements the EUT was supplied with 24 V DC by an external

power supply.

Test results: The test results were calculated with the following formula:

Result  $[dB\mu V/m]$  = reading  $[dB\mu V]$  + cable loss [dB] + antenna factor [dB/m]

The measured points and the limit line in the following diagrams refer to the standard measurement of the emitted interference in compliance with the above-mentioned standard. The measured points marked with an x are the measured results of the standard final measurement on the open area test site.

The results of the standard subsequent measurement on the open area test site are indicated in the table below. The limits as well as the measured results (levels) refer to the above mentioned standard while taking account of the specified requirements for a 3 m measuring distance.

The measurement time with the guasi-peak measuring detector is 1 second.

#### <u>Transmitter operates on the lower end of the assigned frequency (operation mode 1)</u>



Data record name: 113961Ulff

Test engineer: Thomas KÜHN Report Number: F113961E2

Date of issue: 06 December 2011 Order Number: 11-113961 page 61 of 70



## <u>Transmitter operates on the middle of the assigned frequency (operation mode 2)</u>



Data record name: 113961Umff

## Transmitter operates on the upper end of the assigned frequency (operation mode 3)



Data record name: 113961Uhff

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 62 of 70



## Result measured with the quasi-peak detector: (These values were marked in the diagrams by an $\mathbf{x}$ )

| Transmitter o | perates on th | ne lower end | of the assig   | ned frequency  | / band (operation i | mode 1)        |        |         |       |
|---------------|---------------|--------------|----------------|----------------|---------------------|----------------|--------|---------|-------|
|               |               |              | Spurio         | us emissions   | outside restricted  | bands          |        |         |       |
| Frequency     | Result        | Limit        | Margin         | Readings       | Antenna factor      | Cable loss     | Height | Azimuth | Pol.  |
| MHz           | dBµV/m        | dΒμV/m       | dB             | dΒμV           | dB/m                | dB             | cm     | deg     |       |
| 62.500        | 26.9          | 82.6         | 55.7           | 19.9           | 6.1                 | 0.9            | 100.0  | 315.0   | Vert. |
| 902.750       | 102.6         | -            | -              | 76.7           | 22.5                | 3.4            | 100.0  | 24.0    | Vert. |
|               |               |              | Spuri          | ous emissions  | inside restricted b | ands           |        |         |       |
| Frequency     | Result        | Limit        | Margin         | Readings       | Antenna factor      | Cable loss     | Height | Azimuth | Pol.  |
| MHz           | dBµV/m        | dBµV/m       | dB             | dΒμV           | dB/m                | dB             | cm     | deg     |       |
| 125.000       | 20.5          | 43.5         | 23.0           | 6.9            | 12.4                | 1.2            | 129.0  | 315.0   | Hor.  |
| Transmitter o | perates on th | ne middle of | the assigne    | d frequency ba | and (operation mod  | de 2)          |        |         |       |
|               |               |              | Spurio         | ous emissions  | outside restricted  | bands          |        |         |       |
| Frequency     | Result        | Limit        | Margin         | Readings       | Antenna factor      | Cable loss     | Height | Azimuth | Pol.  |
| MHz           | dBµV/m        | dBµV/m       | dB             | dBµV           | dB/m                | dB             | cm     | deq     |       |
| 62.500        | 27.2          | 77.8         | 50.6           | 20.2           | 6.1                 | 0.9            | 182.0  | 135.0   | Vert. |
| 914.750       | 97.8          | -            | -              | 71.6           | 22.8                | 3.4            | 142.0  | 1.0     | Vert. |
|               |               |              | Spuri          | ous emissions  | inside restricted b | ands           |        |         |       |
| Frequency     | Result        | Limit        | Margin         | Readings       | Antenna factor      | Cable loss     | Height | Azimuth | Pol.  |
| MHz           | dBµV/m        | dBµV/m       | dB             | dΒμV           | dB/m                | dB             | cm     | deg     |       |
| 125.000       | 20.4          | 43.5         | 23.1           | 6.8            | 12.4                | 1.2            | 377.0  | 57.0    | Hor.  |
| 250.000       | 21.9          | 46.0         | 24.1           | 8.0            | 12.1                | 1.8            | 115.0  | 92.0    | Vert. |
| Transmitter o | perates on th | ne upper end | l of the assiç | gned frequenc  | y band (operation   | mode 3)        |        |         |       |
|               |               |              | Spurio         | ous emissions  | outside restricted  | bands          |        |         |       |
| Frequency     | Result        | Limit        | Margin         | Readings       | Antenna factor      | Cable loss     | Height | Azimuth | Pol.  |
| MHz           | dBµV/m        | dBµV/m       | dB             | dΒμV           | dB/m                | dB             | cm     | deg     |       |
| 62.500        | 32.8          | 82.4         | 49.6           | 25.8           | 6.1                 | 0.9            | 166.0  | 215.0   | Vert. |
| 927.250       | 102.4         | -            | -              | 75.6           | 23.4                | 3.4            | 100.0  | 44.0    | Vert. |
|               |               |              | Spuri          | ous emissions  | inside restricted b | ands           |        |         |       |
| Frequency     | Result        | Limit        | Margin         | Readings       | Antenna factor      | Cable loss     | Height | Azimuth | Pol.  |
| MHz           | dBµV/m        | dBµV/m       | dB             | dΒμV           | dB/m                | dB             | cm     | deg     |       |
| 125.000       | 20.6          | 43.5         | 22.9           | 7.0            | 12.4                | 1.2            | 183.0  | 224.0   | Hor.  |
| 250.000       | 22.8          | 46.0         | 23.2           | 8.9            | 12.1                | 1.8            | 153.0  | 90.0    | Vert. |
| M             | easurement    | uncertainty  |                |                |                     | +2.2 dB / -3.6 | dB     |         |       |

Test: Passed

| TEST EQUIPMENT | USED FOR | THE | TEST: |
|----------------|----------|-----|-------|
|----------------|----------|-----|-------|

14 - 20

Test engineer: Thomas KÜHN
Date of issue: 06 December 2011 F113961E2 11-113961 Report Number: Order Number: page 63 of 70



## 5.6.2.9 Final radiated emission measurement (1 GHz to 10 GHz) with external ULORA antenna

Ambient temperature 21 °C Relative humidity 35 %

Position of EUT: The EUT was set-up on a non-conducting table of a height of 0.8 m. The

distance between EUT and antenna was 3 m.

Cable guide: For detail information of test set-up and the cable guide refer to the pictures in

annex A of this test report.

Test record: All results are shown in the following.

Supply voltage: During all measurements the EUT was supplied with 24 V DC by an external

power supply.

Resolution bandwidth: For all measurements a resolution bandwidth of 1 MHz was used.

## Transmitter operates at the lower end of the assigned frequency band (operation mode 1)

## Result measured with the peak detector:

| Frequency<br>GHz | Corr. Value             | Limit<br>dBµV/m | Margin<br>dB | Readings<br>dBµV | Antenna<br>factor<br>1/m | Preamp<br>dB | Cable<br>loss<br>dB | Height<br>cm | Pol.      | Restr.<br>Band |
|------------------|-------------------------|-----------------|--------------|------------------|--------------------------|--------------|---------------------|--------------|-----------|----------------|
| 1.8055           | 37.5                    | 82.6            | 45.1         | 34.5             | 26.5                     | 26.5         | 3.0                 | 150          | Vert.     | No             |
|                  | Measurement uncertainty |                 |              |                  |                          |              |                     |              | / -3.6 dB |                |

## Result measured with the average detector:

| Frequency<br>GHz | Corr. Value<br>dBµV/m   | Limit<br>dBµV/m | Margin<br>dB | Readings<br>dB <sub>µ</sub> V | Antenna<br>factor<br>1/m | Preamp<br>dB | Cable<br>loss<br>dB | Height<br>cm | Pol.              | Restr.<br>Band |  |  |
|------------------|-------------------------|-----------------|--------------|-------------------------------|--------------------------|--------------|---------------------|--------------|-------------------|----------------|--|--|
| 1.8055           | 25.6                    | 82.6            | 57.0         | 22.6                          | 26.5                     | 26.5         | 3.0                 | 150          | Vert.             | No             |  |  |
|                  | Measurement uncertainty |                 |              |                               |                          |              |                     |              | +2.2 dB / -3.6 dB |                |  |  |

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 64 of 70



## <u>Transmitter operates at the middle of the assigned frequency band (operation mode 2)</u>

## Result measured with the peak detector:

| Frequency | Corr. Value             | Limit  | Margin | Readings | Antenna<br>factor | Preamp | Cable<br>loss | Height | Pol.      | Restr.<br>Band |
|-----------|-------------------------|--------|--------|----------|-------------------|--------|---------------|--------|-----------|----------------|
| GHz       | dBµV/m                  | dBµV/m | dB     | dBµV     | 1/m               | dB     | dB            | cm     |           | Bana           |
| 1.8295    | 39.5                    | 77.8   | 38.3   | 36.0     | 26.7              | 26.5   | 3.3           | 150    | Hor.      | No             |
|           | Measurement uncertainty |        |        |          |                   |        |               |        | / -3.6 dB |                |

## Result measured with the average detector:

| Frequency | Corr. Value                          | Limit  | Margin | Readings | Antenna factor | Preamp | Cable loss | Height  | Pol.      | Restr.<br>Band |
|-----------|--------------------------------------|--------|--------|----------|----------------|--------|------------|---------|-----------|----------------|
| GHz       | dBµV/m                               | dBµV/m | dB     | dBµV     | 1/m            | dB     | dB         | cm      |           |                |
| 1.8295    | 1.8295 27.6 77.8 50.2 24.1 26.7 26.5 |        |        |          |                | 3.3    | 150        | Hor.    | No        |                |
|           | Measurement uncertainty              |        |        |          |                |        |            | +2.2 dB | / -3.6 dB |                |

## Transmitter operates at the upper end of the assigned frequency band (operation mode 3)

## Result measured with the peak detector:

| Frequency | Corr. Value                          | Limit  | Margin | Readings | Antenna factor | Preamp | Cable<br>loss | Height  | Pol.      | Restr.<br>Band |
|-----------|--------------------------------------|--------|--------|----------|----------------|--------|---------------|---------|-----------|----------------|
| GHz       | dBµV/m                               | dBµV/m | dB     | dBµV     | 1/m            | dB     | dB            | cm      |           |                |
| 1.8545    | 1.8545 43.8 82.4 38.6 39.7 27.0 26.5 |        |        |          |                | 3.6    | 150           | Hor.    | No        |                |
|           | Measurement uncertainty              |        |        |          |                |        |               | +2.2 dB | / -3.6 dB | •              |

## Result measured with the average detector:

| Frequency<br>GHz        | Corr. Value<br>dBµV/m | Limit<br>dBµV/m | Margin<br>dB | Readings<br>dBµV | Antenna<br>factor<br>1/m | Preamp<br>dB | Cable<br>loss<br>dB | Height<br>cm | Pol. | Restr.<br>Band |
|-------------------------|-----------------------|-----------------|--------------|------------------|--------------------------|--------------|---------------------|--------------|------|----------------|
| 1.8545                  | 33.6                  | 82.4            | 48.8         | 29.5             | 27.0                     | 26.5         | 3.6                 | 150          | Hor. | No             |
| Measurement uncertainty |                       |                 |              |                  |                          |              | +2.2 dB             | / -3.6 dB    |      |                |

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

29, 31 - 34, 36, 44, 49, 73

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 65 of 70



## 5.7 Conducted emissions on power supply lines (150 kHz to 30 MHz)

#### 5.7.1 Method of measurement

This test will be carried out in a shielded chamber. Tabletop devices will set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm above the ground plane. Floor-standing devices will be placed directly on the ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2009 [1].

The frequency range 150 kHz to 30 MHz will be measured with an EMI Receiver set to MAX Hold mode with peak and average detector and a resolution bandwidth of 9 kHz. A scan will be carried out on the phase (or plus pole in case of DC powered devices) of the AC mains network. If levels detected 10 dB below the appropriable limit, this emission will be measured with the average and quasi-peak detector on all lines.

| Frequency range   | Resolution bandwidth |
|-------------------|----------------------|
| 150 kHz to 30 MHz | 9 kHz                |



 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961
 page 66 of 70



## 5.7.2 Test results (conducted emissions on power supply lines)

| Ambient temperature | 21 °C |  | Relative humidity | 32 % |
|---------------------|-------|--|-------------------|------|
|---------------------|-------|--|-------------------|------|

Position of EUT: The EUT was set-up on a non-conducting table of a height of 0.8 m.

Cable guide: The cables of the EUT were fixed on the non-conducting table. For further

information of the cable guide refer to the pictures in annex A of this test report.

Test record: All results are shown in the following.

Supply voltage: During all measurements the EUT was supplied with 24.0 V DC by an AC / DC

adaptor type MINI-PS-100-240AC/24DC/1, which was supplied by 120 V AC /

60 Hz.

The curves in the diagram only represent for each frequency point the maximum measured value of all preliminary measurements, which were made for each power supply line. The top measured curve represents the peak measurement and the bottom measured curve the average measurement.



Data record name: 113961AC

Test engineer: Thomas KÜHN Report Number: F113961E2

Date of issue: 06 December 2011 Order Number: 11-113961 page 67 of 70



## Result measured with the quasipeak detector (marked in the diagram by an x):

| Frequency<br>MHz | Level<br>dBµV | Transducer<br>dB | Limit<br>dBµV | Margin<br>dB | Line | PE  |
|------------------|---------------|------------------|---------------|--------------|------|-----|
| 0.165300         | 55.1          | 1.1              | 65.2          | 10.1         | L1   | FLO |
| 0.207600         | 48.7          | 0.8              | 63.3          | 14.6         | L1   | FLO |
| 0.289500         | 39.9          | 0.7              | 60.5          | 20.6         | N    | FLO |
| 0.413700         | 36.9          | 0.7              | 57.6          | 20.7         | L1   | FLO |
| 18.882600        | 39.5          | 3.8              | 60.0          | 20.5         | L1   | FLO |
| 19.185900        | 38.6          | 3.9              | 60.0          | 21.4         | L1   | FLO |
| 19.283100        | 39.3          | 3.9              | 60.0          | 20.7         | L1   | FLO |
| 19.434300        | 38.6          | 3.9              | 60.0          | 21.4         | L1   | FLO |
| 19.538700        | 40.1          | 3.9              | 60.0          | 19.9         | L1   | FLO |
| 19.842000        | 40.4          | 4.0              | 60.0          | 19.6         | L1   | FLO |
| 20.752800        | 37.0          | 4.2              | 60.0          | 23.0         | L1   | FLO |

## Result measured with the average detector (marked in the diagram by an +):

| Frequency<br>MHz | Level<br>dBµV | Transducer<br>dB | Limit<br>dBµV | Margin<br>dB | Line | PE  |
|------------------|---------------|------------------|---------------|--------------|------|-----|
| 0.166200         | 45.8          | 1.1              | 55.1          | 9.4          | L1   | FLO |
| 0.206700         | 40.5          | 8.0              | 53.3          | 12.8         | L1   | FLO |
| 0.289500         | 32.5          | 0.7              | 50.5          | 18.0         | L1   | FLO |
| 0.330900         | 31.4          | 0.7              | 49.4          | 18.1         | N    | FLO |
| 0.372300         | 30.7          | 0.7              | 48.4          | 17.8         | L1   | FLO |
| 0.414600         | 33.5          | 0.7              | 47.6          | 14.1         | L1   | FLO |
| 18.893400        | 29.8          | 3.8              | 50.0          | 20.2         | L1   | FLO |
| 19.015800        | 30.9          | 3.8              | 50.0          | 19.1         | L1   | FLO |
| 19.166100        | 32.8          | 3.9              | 50.0          | 17.2         | L1   | FLO |
| 19.308300        | 30.4          | 3.9              | 50.0          | 19.6         | L1   | FLO |
| 19.433400        | 30.3          | 3.9              | 50.0          | 19.7         | L1   | FLO |
| 19.842000        | 31.2          | 4.0              | 50.0          | 18.8         | L1   | FLO |
| 19.967100        | 30.5          | 4.0              | 50.0          | 19.5         | L1   | FLO |

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

1 - 4, 20

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961

 page 68 of 70



## **6 TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS**

| No. | Test equipment             | Туре                       | Manufacturer                   | Serial No.        | PM. No. | Cal. Date              | Cal. due |
|-----|----------------------------|----------------------------|--------------------------------|-------------------|---------|------------------------|----------|
| 1   | Shielded chamber M47       | -                          | Albatross Projects             | B83117-C6439-T262 | 480662  | Weekly ve<br>(systen   |          |
| 2   | EMI Receiver               | ESIB 26                    | Rohde & Schwarz                | 1088.7490         | 481182  | 02/08/2010             | 02/2012  |
| 3   | LISN                       | NSLK8128                   | Schwarzbeck                    | 8128161           | 480138  | 05/07/2010             | 05/2012  |
| 4   | High pass filter           | HR 0.13-<br>5ENN           | FSY Microwave<br>Inc.          | DC 0109 SN 002    | 480340  | Weekly ve<br>(systen   |          |
| 14  | Open area test site        | -                          | Phoenix Test-Lab               | -                 | 480085  | Weekly ve<br>(systen   |          |
| 15  | Measuring receiver         | ESIB7                      | Rohde & Schwarz                | 100304            | 480521  | 03/15/2010             | 03/2012  |
| 16  | Controller                 | HD100                      | Deisel                         | 100/670           | 480139  | -                      | -        |
| 17  | Turntable                  | DS420HE                    | Deisel                         | 420/620/80        | 480087  | -                      | -        |
| 18  | Antenna support            | AS615P                     | Deisel                         | 615/310           | 480086  | -                      | -        |
| 19  | Antenna                    | CBL6111 D                  | Chase                          | 25761             | 480894  | 09/18/2008             | 09/2012  |
| 20  | EMI Software               | ES-K1                      | Rohde & Schwarz                | -                 | 480111  | -                      | -        |
| 29  | Fully anechoic chamber M20 | -                          | Albatross Projects             | B83107-E2439-T232 | 480303  | Weekly ve<br>(system   |          |
| 30  | Spectrum analyser          | FSU                        | Rohde & Schwarz                | 200125            | 480956  | 04/15/2010             | 04/2012  |
| 31  | Measuring receiver         | ESI 40                     | Rohde & Schwarz                | 100064            | 480355  | 03/17/2010             | 03/2012  |
| 32  | Controller                 | MCU                        | Maturo                         | MCU/043/971107    | 480832  | -                      | -        |
| 33  | Turntable                  | DS420HE                    | Deisel                         | 420/620/80        | 480315  | -                      | -        |
| 34  | Antenna support            | AS615P                     | Deisel                         | 615/310           | 480187  | -                      | -        |
| 35  | Antenna                    | CBL6112 B                  | Chase                          | 2688              | 480328  | 04/21/2011             | 04/2014  |
| 36  | Antenna                    | 3115 B                     | EMCO                           | 9609-4922         | 480184  | 09/28/2011             | 09/2014  |
| 43  | RF-cable No. 30            | RTK 081                    | Rosenberger                    | -                 | 410141  | Weekly ve<br>(system   |          |
| 44  | RF-cable No. 31            | RTK 081                    | Rosenberger                    | -                 | 410142  | Weekly ve<br>(systen   |          |
| 49  | Preamplifier               | JS3-<br>00101200-<br>23-5A | Miteq                          | 681851            | 480337  | Six month v<br>(systen |          |
| 55  | Loop antenna               | HFH2-Z2                    | Rohde & Schwarz                | 832609/014        | 480059  | 03/10/2010             | 03/2012  |
| 73  | High Pass Filter           | WHJS1000C<br>11/60EF       | Wainwright<br>Instruments GmbH | 1                 | 480413  | Weekly ve<br>(system   |          |
| 75  | High Pass Filter           | WHKX4.0/18<br>G-8SS        | Wainwright<br>Instruments GmbH | 1                 | 480587  |                        |          |

 Test engineer:
 Thomas KÜHN
 Report Number:
 F113961E2

 Date of issue:
 06 December 2011
 Order Number:
 11-113961

page 69 of 70



10 pages

## 7 REPORT HISTORY

| Report Number | Date             | Comment          |
|---------------|------------------|------------------|
| F113961E2     | 06 December 2011 | Document created |
|               |                  |                  |
|               |                  |                  |
|               |                  |                  |

## **8 LIST OF ANNEXES**

ANNEX A TEST SET-UP PHOTOS 10 pages

113961\_I.JPG: EUT with internal antenna, test set-up fully anechoic chamber 113961\_o.JPG: EUT with external patch antenna, test set-up fully anechoic chamber 113961\_w.JPG: EUT with external ULORA antenna, test set-up fully anechoic chamber 113961\_h1.JPG: EUT with internal antenna, test set-up fully anechoic chamber 113961\_t.JPG: EUT with external patch antenna, test set-up fully anechoic chamber 113961\_y.JPG: EUT with external ULORA antenna, test set-up fully anechoic chamber 113961\_d1.JPG: EUT with internal antenna, test set-up open area test site 113961\_c1.JPG: EUT with external patch antenna, test set-up open area test site 113961\_z.JPG: EUT with external ULORA antenna, test set-up open area test site

113961\_c1.JPG: EUT with external patch antenna, test set-up open area test site 113961\_z.JPG: EUT with external ULORA antenna, test set-up open area test site 113961\_j1.JPG: Test set-up shielded room

## ANNEX B INTERNAL PHOTOGRAPHS

113961\_15.JPG: RFU630, internal view 1 113961\_16.JPG: RFU630, internal view 2 113961\_22.JPG: RFU630, internal view 3 113961\_23.JPG: RFU630, internal view 4 113961\_19.JPG: RFU630, PCB 1, top view 113961\_18.JPG: RFU630, PCB 1, bottom view 113961\_20.JPG: RFU630, PCB 2, top view 113961\_21.JPG: RFU630, PCB 2, bottom view 113961\_24.JPG: RFU630, PCB 3, top view 113961\_25.JPG: RFU630, PCB 3, bottom view

#### ANNEX C EXTERNAL PHOTOGRAPHS 4 pages

113961\_12.JPG: RFU630, 3-D-view 1 113961\_11.JPG: RFU630, 3-D-view 2 113961\_13.JPG: RFU630, connector view 113961\_14.JPG: RFU630, type plate view

ANNEX D RESULTS OF THE RECEIVER MEASUREMENTS 12 pages

Test engineer: Thomas KÜHN Report Number: F113961E2

Date of issue: 06 December 2011 Order Number: 11-113961 page 70 of 70