Simple Linear Regression

Ji Hun Kim

Applied Mathematics and Statistics at SUNY Korea

Online Courses

What they promise you will learn

What you actually learn

#10yearchallenge

Regression Model (Example)

Simple Linear Regression

Regression Model (Example)

• Multiple Linear Regression

Figure 3.2 (a) Three-dimensional plot of regression model $E(y) = 50 + 10x_1 + 7x_2 + 5x_1x_2$. (b) The contour plot.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

Regression Model (Example)

Polynomial Regression

Figure 7.1 An example of a quadratic polynomial.

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon$$

Regression

- Regression analysis is a statistical technique for investigating and modeling the relationship between a dependent variable and one or more independent variables.
 - Dependent variable is denoted by y.
 - Independent variables are denoted by $x_1, x_2, ... x_n$.
- In this class, we are talking about Simple Linear Regression.
- We cannot find out any cause-and-effect relationship between dependent variable and independent variable(s)

Terms

- X = independent / predictor variable(s) / feature / 독립변수
- Y = dependent / response variable / target / 종속변수
- $\beta_0 = \text{intercept}$; value of Y when X = 0. * β_0 and β_1 are also called regression coefficient.
- β_1 = slope; change in Y when X changes 1 unit.
- $\mathcal{E}_i = \text{random error}$ * Assume that the errors follow normal distribution with mean 0 and unknown σ^2 .
- e_i = residual
- n = number of observations
- i = i-th observation

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

Terms (Cont'd)

- When there is hat sign, it is our estimated value.
 - \hat{y}_i = estimation
 - $\hat{\beta}_0$ = estimated intercept
 - $\hat{\beta}_1$ = estimated slope
- Finding a regression line means finding the parameters β_0 and β_1 .

Simple Linear Regression

- A model with a single regressor x that has a relationship with a response y that is a straight line.
- Linear Model: $Y = \beta_0 + \beta_1 X + \varepsilon$
- Expectation:

$$E(Y|X) = E(\beta_0 + \beta_1 x + \epsilon) = \beta_0 + \beta_1 x \ (\because E(\epsilon) = 0)$$

Variance

$$Var(Y|X) = Var(\beta_0 + \beta_1 x + \epsilon) = Var(\epsilon) = \sigma^2$$

• When we calculate the expectation and variance, β_0 , β_1 and x are regarded as **constants**.

Simple Linear Regression

- Given sample, we want to minimize $(y_i \hat{y}_i)^2$ which is what we called residual sum of squares.
- →Least Squares Method (최소제곱법)

Least Squares Method (최소제곱법)

 We find the <u>cost function</u> (or loss function) using residual sum of squares.

$$S(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x))^2$$

Least Squares Method (최소제곱법)

Using partial derivative,

•
$$\frac{\partial}{\partial \beta_0} S(\beta_0, \beta_1) = -2 \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

•
$$\frac{\partial}{\partial \beta_1} S(\beta_0, \beta_1) = -2 \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) x_i = 0$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} \qquad \qquad \hat{\beta}_1 = \frac{\sum_{i=1}^n y_i x_i - \frac{1}{n} (\sum_{i=1}^n y_i) (\sum_{i=1}^n x_i)}{\sum_{i=1}^n x_i^2 - \frac{1}{n} (\sum_{i=1}^n x_i)^2}$$

- Therefore, $\hat{\beta}_0$ and $\hat{\beta}_1$ are the least-squares estimators of the intercept and the slope, respectively.
- Special case of gradient descent (we will study later on).

Applications 1. Data Analysis (survey, experiments)

표 22. 스포츠중계시청에 미치는 영향요인

	비표준화 계수		표준화 계수		0 0 1 1 1
	В	표준오차	베타	t	유의확원
상수항	1.634	0.295		5.536	0.000
배구토토 참여경협	0.175	0.048	0.244	3.678	0.000
동료친지와 즐김	0.179	0.064	0.180	2.771	0.006
취미와 여가생환	0.165	0.057	0.191	2.872	0.005
씨름관람경협	-0.191	0.048	-0.247	-3.962	0.000
주변사람의 긍정적시선	0.165	0.068	0.162	2.434	0.016
배당률에 의한 종목선택	0.115	0.053	0.138	2.155	0.032

종속변수: 문항 8-6

R 2=0.865, 수정된 R 2= 0.343, F값 변화량: 4.642(p-0.032)

Applications 2. Neural Network

$$F(x) = w_1 \cdot x_1 + w_2 \cdot x_2 + 1 \cdot b$$