

QUÍMICA NIVEL SUPERIOR PRUEBA 1

Jueves 10 de mayo de 2007 (tarde)

1 hora

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.

							,		
0	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)			
٢		9 F 19,00	17 Cl 35,45	35 Br 79,90	53 I 126,90	85 At (210)		71 Lu 174,97	103 Lr (260)
9		8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)		70 Yb 173,04	102 No (259)
w		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93	101 Md (258)
4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19		68 Er 167,26	100 Fm (257)
ю		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93	99 Es (254)
	,			30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50	98 Cf (251)
.				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92	97 Bk (247)
riódica				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25	96 Cm (247)
Tabla periódica				27 Co 58,93	45 Rh 102,91	77 Ir 192,22		63 Eu 151,96	95 Am (243)
Ta				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35	94 Pu (242)
				25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92	93 N p (237)
	atómico	ento tómica		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 Nd 144,24	92 U 238,03
	Número atómico	Elemento Masa atómica		23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91	91 Pa 231,04
			l	22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12	90 Th 232,04
				21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)		**
7		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)		
1	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		

- 1. Una muestra de un hidrocarburo produce 1,5 moles de dióxido de carbono y 2,0 moles de agua por combustión completa. ¿Cuál es la fórmula molecular de este hidrocarburo?
 - A. C_2H_2
 - B. C_2H_4
 - $C. C_3H_4$
 - D. C_3H_8
- 2. Cuando se añadió un exceso de $BaCl_2(aq)$ a una muestra de $Fe(NH_4)_2(SO_4)_2(aq)$ para determinar la cantidad de moles de sulfato presentes, se obtuvieron $5,02\times10^{-3}$ moles de $BaSO_4$. ¿Cuántos moles de iones sulfato y iones hierro había en la muestra de $Fe(NH_4)_2(SO_4)_2$?

	Cantidad de iones sulfato /moles	Cantidad de iones hierro /moles
A.	$5,02 \times 10^{-3}$	$2,51 \times 10^{-3}$
B.	$10,04 \times 10^{-3}$	$5,02 \times 10^{-3}$
C.	$2,51 \times 10^{-3}$	5,02 × 10 ⁻³
D.	$10,04 \times 10^{-3}$	$2,51 \times 10^{-3}$

3. ¿Qué volumen de solución de ácido sulfúrico de concentración 0,500 mol dm⁻³ se requieren para reaccionar completamente con 10,0 g de carbonato de calcio de acuerdo con la siguiente ecuación?

$$\text{CaCO}_3(\textbf{s}) + \text{H}_2\text{SO}_4(\textbf{aq}) \rightarrow \text{CaSO}_4(\textbf{aq}) + \text{H}_2\text{O}(\textbf{l}) + \text{CO}_2(\textbf{g})$$

- A. 100 cm³
- B. 200 cm^3
- C. 300 cm³
- D. 400 cm³

			-4-	M0//4/CHEMI	/HPM/SPA/1Z0/XX
4.		onfiguración electrónica de un ion me nico del elemento?	tálico de transición	X^{2+} es [Ar]3d ⁹ .	¿Cuál es el número
	A.	27			
	B.	28			
	C.	29			
	D.	30			

- ¿Qué enunciados son correctos cuando se refieren al espectro de emisión del átomo de hidrógeno? 5.
 - I. Las líneas convergen a baja energía.
 - Las transiciones electrónicas n = 1 son responsables de las líneas en la región UV. II.
 - Las líneas se producen cuando los electrones se mueven de niveles energéticos mayores a menores.
 - Sólo I y II A.
 - В. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III
- **6.** ¿Qué enunciado es correcto para el grupo de los halógenos?
 - Todos los iones haluro son agentes reductores y los iones yoduro son los más débiles. A.
 - B. Todos los halógenos son agentes oxidantes y el cloro es el más fuerte.
 - C. Los iones cloruro se pueden oxidar a cloro por acción del bromo.
 - D. Los iones yoduro se pueden oxidar a yodo por acción del cloro.

- 7. ¿Cuáles de los siguientes enunciados son correctos?
 - I. Para los metales alcalinos, los puntos de fusión disminuyen desde $Li \rightarrow Cs$.
 - II. Para los halógenos, los puntos de fusión aumentan desde $F \rightarrow I$.
 - III. Para los elementos del periodo 3, los puntos de fusión diminuyen desde Na \rightarrow Ar.
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III
- 8. El compuesto [Co(NH₃)₅Br]SO₄ es isómero del compuesto [Co(NH₃)₅SO₄]Br. ¿Cuál es el estado de oxidación del cobalto en estos compuestos?

	$[Co(NH_3)_5Br]SO_4$	$[Co(NH_3)_5SO_4]Br$
A.	+3	+3
B.	+2	+1
C.	+3	+2
D.	+2	+3

- 9. ¿En qué opción los compuestos C_2H_4 , C_2H_2 and C_2H_6 están ordenados de forma **creciente** respecto de la longitud del enlace C-C?
 - A. C_2H_6 , C_2H_2 , C_2H_4
 - B. C_2H_4, C_2H_2, C_2H_6
 - C. C₂H₂, C₂H₄, C₂H₆
 - D. C_2H_4, C_2H_6, C_2H_2

- 10. ¿Qué compuesto contiene ambos enlaces, iónico y covalente?
 - A. MgCl₂
 - B. HCl
 - C. H₂CO
 - D. NH₄Cl
- 11. ¿En qué opción las especies BF_2^+ , BF_3 y BF_4^- están ordenadas de forma **creciente** respecto del ángulo de enlace F-B-F?
 - A. BF_3 , BF_4^- , BF_2^+
 - B. BF_4^-, BF_3, BF_2^+
 - C. $BF_{2}^{+}, BF_{4}^{-}, BF_{3}^{-}$
 - D. BF_2^+ , BF_3 , BF_4^-
- 12. ¿Qué molécula tiene forma plana cuadrada?
 - A. XeO₄
 - B. XeF₄
 - C. SF₄
 - D. SiF₄

	I	II	III	IV
A.	sp^2	sp^2	sp^3	sp^3
B.	sp^3	sp^3	sp^2	sp^2
C.	sp^2	sp ²	sp	sp
D.	sp ³	sp ³	sp	sp

- En un recipiente cerrado a 298 K, se colocan 1 mole de hidrógeno, 2 moles de oxígeno y 3 moles **14.** de dióxido de carbono. ¿Cuál es la relación de la energía cinética media de cada gas en dichas condiciones?
 - 1:2:3 A.
 - B. 3:2:1
 - C. 1:1:1
 - D. 1:2:1
- **15.** Considere las siguientes reacciones.

$$S(s) + 1\frac{1}{2}O_2(g) \rightarrow SO_3(g)$$
 $\Delta H^{\oplus} = -395 \text{ kJ mol}^{-1}$

$$\Delta H^{\ominus} = -395 \text{ kJ mol}^{-1}$$

$$SO_2(g) + \frac{1}{2}O_2(g) \to SO_3(g)$$
 $\Delta H^{\Theta} = -98 \text{ kJ mol}^{-1}$

$$\Delta H^{\oplus} = -98 \text{ kJ mol}^{-1}$$

¿Cuál es el valor de ΔH^{\ominus} (expresado en kJ mol⁻¹) para la siguiente reacción?

$$S(s) + O_2(g) \rightarrow SO_2(g)$$

- A. -297
- В +297
- C. -493
- D. +493

- **16.** ¿Qué enunciado es correcto para una reacción endotérmica?
 - A. Los enlaces de los productos son más fuertes que los enlaces de los reactivos.
 - B. Los enlaces de los reactivos son más fuertes que los enlaces de los productos.
 - C. La entalpía de los productos es menor que la de los reactivos.
 - D. La reacción es espontánea a temperatura baja, pero se torna no espontánea a temperatura elevada.
- 17. Considere la siguiente información.

Compuesto	$C_6H_6(1)$	$CO_2(g)$	$H_2O(1)$
$\Delta H_{\rm f}^{\Theta}$ / kJ mol ⁻¹	+49	-394	-286

$$C_6H_6(l) + 7\frac{1}{2}O_2(g) \rightarrow 6CO_2(g) + 3H_2O(l)$$

¿Qué expresión se puede usar para calcular el valor correcto de la variación de entalpía estándar de combustión para el benceno (l), expresado en kJ mol⁻¹?

A.
$$12(-394) + 6(-286) - 2(49)$$

B.
$$12(394) + 6(286) - 2(-49)$$

C.
$$6(-394) + 3(-286) - (49)$$

D.
$$6(394) + 3(286) - (-49)$$

- 18. ¿Qué ecuación representa la entalpía de red del óxido de magnesio?
 - A. $Mg(s) + \frac{1}{2}O_2(g) \rightarrow MgO(s)$

B.
$$Mg^{2+}(g) + O^{2-}(g) \to MgO(g)$$

C.
$$Mg^{2+}(g) + \frac{1}{2}O_2(g) \to MgO(s)$$

D.
$$Mg^{2+}(g) + O^{2-}(g) \rightarrow MgO(s)$$

19. A 25 °C, 100 cm³ de ácido clorhídrico de concentración 1,0 mol dm⁻³ se añaden a 3,5 g de carbonato de magnesio. Si la muestra de carbonato de magnesio se mantiene constante ¿qué combinación **no** aumentará la velocidad inicial de reacción?

	Volumen de HCl / cm ³	Concentración de HCl / mol dm ⁻³	Temperatura / °C
A.	200	1,0	25
B.	100	2,0	25
C.	100	1,0	35
D.	200	2,0	25

20. Considere la reacción

$$2I^{\scriptscriptstyle -}(aq) + H^{\scriptscriptstyle -}_2O^{\scriptscriptstyle -}_2(aq) + 2H^{\scriptscriptstyle +}(aq) \to I^{\scriptscriptstyle -}_2(aq) + 2H^{\scriptscriptstyle -}_2O\left(l\right)$$

En presencia de $S_2O_3^{2-}(aq)$ y solución de almidón, se determinó el tiempo necesario para la aparición del color azul a varias concentraciones de reactivos.

Experimento	[I ⁻] / mol dm ⁻³	$[\mathrm{H_2O_2}]$ / mol dm $^{-3}$	[H ⁺] / mol dm ⁻³	Tiempo / s
1	0,10	0,12	0,01	25
2	0,05	0,12	0,01	50
3	0,10	0,06	0,01	100

¿Cuál es el orden correcto con respecto al I $^-$ y $\rm H_2O_2?$

	I ⁻	$\mathrm{H_2O_2}$
A.	1	2
B.	1/2	<u>1</u> 4
C.	2	1
D.	2	4

2207-6125 Véase al dorso

- **21.** ¿Qué enunciado es correcto cuando se refiere al transcurso de una reacción dada con o sin catalizador?
 - A. La variación de entalpía de la reacción con catalizador es menor que la variación de entalpía de la reacción sin catalizador.
 - B. La variación de entalpía de la reacción con catalizador es mayor que la variación de entalpía de la reacción sin catalizador.
 - C. La variación de entalpía de la reacción con catalizador es igual a la variación de entalpía de la reacción sin catalizador.
 - D. La energía de activación de la reacción con catalizador es mayor que la energía de activación para la reacción sin catalizador.
- 22. Considere la siguiente reacción de equilibrio que se produce en un recipiente cerrado a 350 °C.

$$SO_2(g) + Cl_2(g) \rightleftharpoons SO_2Cl_2(g)$$
 $\Delta H^{\ominus} = -85 \text{ kJ}$

¿Qué enunciado es correcto?

- A. Disminuir la temperatura aumentará la cantidad de $SO_2Cl_2(g)$.
- B. Aumentar el volumen del recipiente aumentará la cantidad de SO₂Cl₂(g).
- C. Aumentar la temperatura aumentará la cantidad de SO₂Cl₂(g).
- D. Añadir un catalizador aumentará la cantidad de SO₂Cl₂(g).
- **23.** Un recipiente de reacción de 1,0 dm³ contiene inicialmente 6,0 moles de \mathbf{P} y 6,0 moles de \mathbf{Q} . En el equilibrio hay 4,0 moles de \mathbf{R} . ¿Cuál es el valor de K_c para la siguiente reacción?

$$P(g)+Q(g) \rightleftharpoons R(g)+S(g)$$

- A. 0,11
- B. 0,25
- C. 0,44
- D. 4,00

- 24. En recipientes separados, se hicieron reaccionar completamente soluciones de ácido clorhídrico (HCl (aq)) y ácido etanoico (CH₃COOH(aq)) de la misma concentración con 5,0 g de carbonato de calcio. ¿Qué enunciado es correcto?
 - A. El CH₃COOH(aq) reaccionó más lentamente porque tiene menor pH que el HCl(aq).
 - B. El volumen de CO₂(g) producido con el CH₃COOH(aq) es menor que el producido con HCl(aq).
 - C. El volumen de CO₂(g) producido con el CH₃COOH(aq) es mayor que el producido con HCl(aq).
 - D. El volumen de CO₂(g) producido con CH₃COOH(aq) es el mismo que el producido con el HCl(aq).
- **25.** El amoníaco (NH_3) en solución acuosa es una base débil cuya constante de ionización es K_b . ¿Cuál expresión es igual a la constante de ionización para la siguiente reacción?

$$NH_4^+(aq) + H_2O(1) \rightleftharpoons NH_3(aq) + H_3O^+(aq)$$

- A. $\frac{K_{\rm w}}{K_{\rm a}}$
- B. $\frac{K_a}{K_w}$
- C. $\frac{K_{\rm w}}{K_{\rm h}}$
- D. $\frac{K_b}{K_w}$
- **26.** Los valores de pK_a para cuatro ácidos son los siguientes.

W 4,87

X 4,82

Y 4,86

Z 4,85

¿Cuál es el orden correcto cuando estos ácidos se colocan de forma **creciente** respecto de su fuerza ácida?

A. X, Z, Y, W

B. X, Y, Z, W

C. W, Z, Y, X

D. W, Y, Z, X

- 27. Se diluyen 10 cm³ de solución de ácido nitrico (HNO₃) de concentración 0,01 mol dm⁻³ con 90 cm³ de agua. ¿Cuál es el pH de la solución resultante?
 - A. 1
 - B. 2
 - C. 3
 - D. 4
- **28.** Se titula una base de concentración 0,10 mol dm⁻³ con 25 cm³ de un ácido de concentración 0,10 mol dm⁻³. ¿Qué par base-ácido tendrá el mayor pH en el punto de equivalencia?
 - A. NaOH (aq) y CH₃COOH (aq)
 - B. $NaOH(aq) y HNO_3(aq)$
 - C. $NH_3(aq) y HNO_3(aq)$
 - D. NH₃(aq) y CH₃COOH(aq)
- 29. Considere las siguientes reacciones espontáneas.

Fe(s) + Cu²⁺ (aq)
$$\rightarrow$$
 Fe²⁺ (aq) + Cu(s)
Cu(s) + 2Ag⁺ (aq) \rightarrow Cu²⁺ (aq) + 2Ag(s)
Zn(s) + Fe²⁺ (aq) \rightarrow Zn²⁺ (aq) + Fe(s)

¿Cuál es la combinación correcta del agente oxidante más fuerte y el agente reductor más fuerte?

	Agente oxidante más fuerte	Agente reductor más fuerte
A.	Ag(s)	Zn(s)
B.	Ag ⁺ (aq)	Zn(s)
C.	Zn ²⁺ (aq)	Ag(s)
D.	Zn(s)	Ag ⁺ (aq)

- **30.** ¿Qué enunciado es correcto?
 - A. En una celda electrolítica las reacciones rédox espontáneas producen electricidad.
 - B. La electricidad se usa para llevar a cabo reacciones rédox no espontáneas en una pila.
 - C. La oxidación tiene lugar en el electrodo negativo en una pila y en el electrodo positivo en una celda electrolítica.
 - D. La oxidación tiene lugar en el electrodo negativo en una pila y la reducción tiene lugar en el electrodo positivo en una celda electrolítica.
- 31. Considere los potenciales de electrodo estándar de las siguientes reacciones:

$$\text{Sn}^{4+}(aq) + 2e^{-} \rightarrow \text{Sn}^{2+}(aq) + 0.15V$$

$$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq) + 0,77V$$

¿Cuál es el valor del potencial de la celda (expresado en volts) para la reacción espontánea?

- A. +1,69
- B. +1,39
- C. +0,92
- D. +0.62
- **32.** Si durante la electrólisis de agua acidificada se desprendieron 8,4 cm³ de hidrógeno gaseoso, ¿qué volumen de oxígeno gaseoso se desprendió?
 - A. $4,2 \text{ cm}^3$
 - B. 8,4 cm³
 - C. $12,6 \text{ cm}^3$
 - D. 16.8 cm^3

- 33. ¿Qué factores afectan la cantidad de metal formado durante la electrólisis?
 - I. Carga del ion metálico
 - II. Corriente
 - III. Tiempo
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III
- **34.** El nylon es un polímero de condensación formado por ácido hexanodioico y 1,6-diaminohexano. ¿Qué tipo de enlace presenta el nylon?
 - A. Amida
 - B. Ester
 - C. Amina
 - D. Carboxilo
- **35.** ¿Cuál es el nombre del siguiente compuesto de acuerdo con la IUPAQ?

- A. 3,3,4-trimetilhexano
- B. 3,4,4-trimetilhexano
- C. 4-etil-3,4-dimetilpentano
- D. 2-etil-2,3-dimetilpentano

36. ¿Cuántos átomos de carbono quirales hay en una molécula de glucosa?

- A. 1
- B. 2
- C. 3
- D. 4

37. Un compuesto orgánico X, reacciona con exceso de dicromato(VI) de potasio acidificado para formar el compuesto Y, que reacciona con carbonato de sodio para producir $CO_2(g)$.

&Cuál es una posible fórmula del compuesto X?

- A. CH₃CH₂COOH
- B. CH₃CH₂CH₂OH
- C. CH₃CH(OH)CH₃
- D. $(CH_3)_3COH$

- 38. ¿Cuál es la relación de las áreas comprendidas debajo de los picos del espectro de ¹H RMN del siguiente compuesto?

 CH₃CH(CH₃)CH₂CH₃
 - A. 3:1:3:2:3
 - B. 3:2:3:1:3
 - C. 3:1:3:5
 - D. 6:1:2:3
- **39.** ¿Qué afirmación es correcta con respecto a una reacción de sustitución nucleófila?
 - A. Los halógenoalcanos terciarios reaccionan más lentamente que los halógenoalcanos primarios.
 - B. La velocidad de hidrólisis del CH₃CH₂CH₂Cl es mayor que la del CH₃CH₂CH₂I.
 - C. Cuando se duplica la concentración de OH^- se duplica la velocidad de la reacción $S_{\rm N}^{}2$ pero no la de la reacción $S_{\rm N}^{}1$.
 - D. Los halógenoalcanos primarios generalmente siguen un mecanismo $S_{\rm N}1$ mientras que los halógenoalcanos terciarios siguen un mecanismo $S_{\rm N}2$.
- **40.** El espectro de masas de una molécula C_3H_6O presenta picos principales en valores de m/z de 58, 43 y 15. ¿Cuál es la fórmula estructural más probable de este compuesto?
 - A. CH₃CH₂CHO
 - B. CH₃COCH₃
 - C. CH₃CH₂OCH₃
 - D. CH₃CH₂CH₂OH