Introduction à la Programmation CUDA

Oguz Kaya

Maître de Conférences Université Paris-Saclay et l'Équipe ParSys du LRI, Orsay, France

Objectifs

- Faire connaissance avec l'architecture d'un GPU (vs. CPU)
- Compréhender le modèle d'exécution d'un programme CUDA
- Utiliser un multiple de blocs et threads dans un kernel CUDA
- Apprendre le syntaxe de base pour un programme CUDA
- Maîtriser l'allocation et le transfert de données entre CPU et GPU
- Élaborer ces concepts sur un exemple (multiplication d'un tableau)

- Architecture GPU vs CPU
- 2 Exécution d'un programme CUDA
- Syntaxe CUDA
- 4 Allocation mémoire et transfert de données
- Exemple

- Architecture GPU vs CPU
- 2 Exécution d'un programme CUDA
- 3 Syntaxe CUDA
- 4 Allocation mémoire et transfert de données
- 5 Exemple

Architecture CPU vs GPU

Architecture GPU vs CPU

00000

Un comparatif de l'architecture CPU et GPU

- Cache L1 potentiellement utilisable explicitement (shared memory)
- Cache L2 existe
- Pas de cache I 3
- Peu de circuit de contrôle complexe, notamment
 - Exécution out-of-order
 - Branch prediction
 - Instruction level parallelism (ILP)
 - Complex instruction decoder
- 10x (ou plus) plus de puissance de calcul pour une même zone de circulit-sachay

Vue d'ensemble CPU-GPU

Architecture GPII vs CPII

00000

Une vue d'ensemble d'un CPU avec un GPU

- Le CPU utilise le GPU comme un coprocesseur scientifique pour certains calculs adaptés au paradigme SIMD.
- Le CPU et le GPU sont tous les deux multi-cœurs et vectorielles avec une hiérarchie de mémoire particulière.
- Le transfert de donnés se fait sur le bus PCI express (32Go/s débit chaque direction pour PCle4).
- Ils n'ont pas accès directe (!) à la RAM de l'un l'autre.

Zoom sur l'architecture GPU

Architecture GPU vs CPU

Un GPU est un ensemble de N processeurs SIMD indépendants partageant une mémoire globale

- N streaming "multiprocesseurs" (SM)
- Chaque SM est un processeur SIMD ayant
 - k processeurs synchronisées (k = 32). autrement dit. cœurs GPU
 - 1 décodeur d'instructions partagé
 - 3 types de mémoires partagées entres toutes les k processeurs.
 - 32k 128K registres distribués entres les processeurs (63-255 propre à chaque thread)
 - Pour pouvoir bien exploiter chaque SM, il faut lancer au moins 32 threads (par bloc)

Quelques chiffres pour l'architecture GPU

Architecture GPU vs CPU

00000

Tesla Product	Tesla K40	Tesla M40	Tesla P100	Tesla V100
GPU	GK180 (Kepler)	GM200 (Maxwell)	GP100 (Pascal)	GV100 (Volta)
SMs	15	24	56	80
TPCs	15	24	28	40
FP32 Cores / SM	192	128	64	64
FP32 Cores / GPU	2880	3072	3584	5120
FP64 Cores / SM	64	4	32	32
FP64 Cores / GPU	960	96	1792	2560
Tensor Cores / SM	NA	NA	NA	8
Tensor Cores / GPU	NA	NA	NA	640
GPU Boost Clock	810/875 MHz	1114 MHz	1480 MHz	1530 MHz
Peak FP32 TFLOPS ¹	5	6.8	10.6	15.7
Peak FP64 TFLOPS ¹	1.7	.21	5.3	7.8
Peak Tensor TFLOPS ¹	NA	NA	NA	125

Certaines capacités de calculs n'évoluent pas de manière monotone

- Architecture GPU vs CPU
- 2 Exécution d'un programme CUDA
- Syntaxe CUDA
- 4 Allocation mémoire et transfert de données
- 5 Exemple

Principe d'exécution

Le programe s'exécute principalement sur le CPU avec des appels de fonctions GPU.

- Avant/après de lancer un kernel, il faut transférer les données
- Il faut minimiser les transferts de données pour l'efficacité
- Chaque appel de kernel est non-bloquant (i.e., CPU continue l'exécution), mais on peut le rendre blogant si on veut

Exécution d'une grille de blocs de threads

Le CPU lance l'exécution d'un kernel avec un ensemble de threads GPU.

- Threads idéntiques (exécutent le même code)
- Threads organisés en blocs (de taille 32-1024)
- Chaque bloc idéntique s'exécute sur un SM.
- Blocs organisés en grilles et répartis sur tous les SMs
- Il faut lancer suffisamment de blocs et threads pour que tout le domaine d'itération du problème est parcouru.

Exécution d'une grille de blocs de threads (cont.)

Le CPU lance l'exécution d'un kernel avec un ensemble de threads GPU.

- L'ordonnanceur de blocs répartit les blocs sur les différents SMs avec un ordonnancement dynamique.
- GPUs ayant différentes architectures pourront sans problème exécuter la même grille de blocs de threads (avec une répartition propre à son architecture, gérée par l'ordonnanceur).

Granularité de la grille et des blocs

Créer des blocs un nombre entier de warps Le CPU lance l'exécution d'un kernel avec un ensemble de threads GPU.

- Un décodeur d'instruction pilote 32 threads hardware (32 cœurs GPU)
- Chaque groupe de 32 threads consécutifs dans un bloc est appelé un warp
- L'ordonnanceur exécute chaque warp d'un bloc actif dans un SM

Granularité de la grille et des blocs (cont.)

Masquage du temps d'accès mémoires des warps

- Le GPU passe d'un warp à un autre très rapidement (car ils coexistent physiquemment dans le SM)
- Le GPU masque la latence des accès mémoire par multi-threading.
- Donc ne pas hésiter à créer un grand nombre de petits threads GPU par bloc et un grand nombre de blocs (c'est à dire, peu de travaille par chaque thread "léger").

Le choix du nombre de blocs et threads

Combien de blocs/grille et threads/bloc?

- L'ordonnanceur de threads souhaite avoir beaucoup de warps de threads en réserve pour recouvrir le temps d'accès à la mémoire
- L'ordonnanceur de blocs souhaite avoir beaucoup de blocs pas trop gros pour
 - avoir des blocs en réserve pour utiliser tous les SMs
 - recouvrement des temps d'accès mémoire entre blocs (un SM peut accueillir plusieurs blocs selon la disponibilité de ressources (registre, shared memory, etc.)
- En général, 128-256 threads/bloc marche bien (min=1, max=1024).
- Choix par expérimentation ou un outil du Nvidia

0000000

Exécution d'un kernel avec un certain nombre de threads et blocs

```
int threadsParBloc = 256:
int numBlocs = N / threadsParBloc;
kernelGPU<<<numBlocs, threadsParBloc>>>(arg1, arg2, ...)
```


- Architecture GPU vs CPU
- Exécution d'un programme CUDA
- Syntaxe CUDA
- 4 Allocation mémoire et transfert de données
- 5 Exemple

"Qualifiers" de CUDA

Un qualifier est un mot clé qui différentie les fonctions et les varibles $\mathsf{CPU}/\mathsf{GPU}$ dans un programme CUDA .

Fonctionnement des « qualifiers » de CUDA :

	device	<u>host</u> (default)	global
Fonctions	Appel sur GPU Exec sur GPU	Appel sur CPU Exec sur CPU	Appel sur CPU Exec sur GPU
Variables	device	constant	shared
	Mémoire globale <u>GPU</u>	Mémoire constante GPU	Mémoire partagée d'un multiprocesseur
	Durée de vie de l'application	Durée de vie de l'application	Durée de vie du <i>block</i> de threads
	Accessible par les codes <u>GPU</u> et CPU	Ecrit par code CPU, lu par code GPU	Accessible par le code GPU, sert à <i>cacher</i> la mémoire globale GPU

- Architecture GPU vs CPU
- Exécution d'un programme CUDA
- Syntaxe CUDA
- 4 Allocation mémoire et transfert de données
- 5 Exemple

Allocation d'un tableau sur GPU

```
#define N 1024

// Tableau statique sur le CPU
float TabCPU[N];

// Tableau statique global sur le GPU
--device_- float TabGPU[N];

// Tableau dynamique sur le CPU
float *TabCPU = (float *) malloc(N * sizeof(float));

// Tableau dynamique sur le GPU
float *TabGPU;
cudaError_t cuStat;
cuStat = cudaMalloc((void **) &TabGPU, N * sizeof(float));
```

- Le préfixe __device__ différentie la déclaration d'un tableau statique GPU et CPU.
- Le tableau statique GPU doit être déclaré en dehors des fonctions (comme variables globales)
- Tableau dynamique sur GPU est alloué à l'aide de la fonction cudaMalloc.

Copier un tableau dynamique entre CPU et GPU

```
// Transfert d'un tableau dynamique entre CPU et GPU
float *TabCPU;
float *TabGPU:
TabCPU = (float *) malloc (N * sizeof(float));
cudaError_t cuStat:
cuStat = cudaMalloc((void **) &TabGPU. N * sizeof(float)):
// Copier un tableau CPU dynamique dans un tableau GPU dynamique
cudaStat = cudaMemcpv(TabGPU, TabCPU, sizeof(float)*N.
    cudaMemcpvHostToDevice):
// Copier un tableau GPU dynamique dans un tableau CPU dynamique
cudaStat = cudaMemcpv(TabCPU. TabGPU. sizeof(float)*N.
    cudaMemcpvDeviceToHost):
```


- Architecture GPU vs CPU
- Exécution d'un programme CUDA
- 3 Syntaxe CUDA
- 4 Allocation mémoire et transfert de données
- 5 Exemple

Multiplier un tableau par blocs en CUDA

Multiplier chaque élément d'un tableau A[N] par un scalaire c.

```
#include <cstdio>
#include "cuda.h"
#define N 1024
float A[N]:
float c = 2.0:
-_device__ float dA[N]:
--global-- void multiplyArray(int n, float c)
  int elemParBlock = n / gridDim x
  int hegin = blockldy v * elemParBlock:
  int end:
  if (blockldx.x < gridDim.x - 1) {
    end = (blockIdx.x + 1) * elemParBlock;
  } else {
    end = n:
  for (int i = begin: i < end: i++) { dA[i] *= c: }
int main(int argc. char **argv)
  for (int i = 0; i < N; i++) { A[i] = i; }
  // Copier le tableau vers le GPU
  cudaMemcpvToSvmbol(dA, A, N * sizeof(float), 0.
      cudaMemcpvHostToDevice):
  multiplyArray <<<4.1>>>(N, c):
  // Recopier le tableau multiplie vers le CPU
  cudaMemcpyFromSymbol(A, dA, N * sizeof(float), 0,
      cuda MemcpvDeviceToHost):
  printf("%1f\n", A[2]):
  return 0:
```

- __device__ defini le tableau sur le GPU.
- __global__ defini la fonction sur le GPU.
 - Ce qui permet d'utiliser blockldx.x et gridDim.x par exemple
- On doit copier les données dans le GPU avant et après le calcul avec cudaMemcpy... (à venir).
- Chaque bloc exécute toujours le même code.
- L'exécution est différenciée par le **blockldx.x**.
- Avec P blocs, chaque bloc parcours N/P éléments consécutifs du tableau A[N].
- Attention au dernier bloc si P ne divise pas N.

Multiplier un tableau par blocs en CUDA (amélioré)

Multiplier chaque élément d'un tableau A[N] par un scalaire c.

```
#include <cstdio>
#include "cuda.h"
#define N 1024
float A[N]:
float c = 2.0:
--device-- float dA[N]:
__global__ void multiplyArray(int n, float c)
  int i = blockldx.x:
  dA[i] *= c:
int main(int argc, char **argv)
  for (int i = 0: i < N: i++) { A[i] = i: }
  // Copier le tableau vers le GPU
  cudaMemcpyToSymbol(dA. A. N * sizeof(float). 0.
      cudaMemcpvHostToDevice):
  multiplyArray <<< N. 1>>>(n. c):
  // Recopier le tableau multiplie vers le CPU
  cudaMemcovFromSymbol(A. dA. N * sizeof(float). 0.
      cudaMemcnyDeviceToHost ):
  printf("%1f\n" . A[2]):
  return 0:
```

- __global__ defini la fonction sur le GPU.
 - Ce qui permet d'utiliser blockldx.x
- Chaque bloc exécute toujours le même code.
- Chaque bloc effectue 1 opération, donc il faut lancer N blocs pour couvrir tout le tableau/domaine du calcul.
- L'exécution est différenciée par le blockldx.x.

Multiplier un tableau par blocs et threads en CUDA

Multiplier chaque élément d'un tableau A[N] par un scalaire c.

```
#include <cstdio>
#include "cuda.h"
#define N 1024
float A[N]:
float c = 2.0;
--device-- float dA[N]:
--global-- void multiplyArray(int n. float c)
  int i = threadldy x + blockldy x * blockDim x:
  if (i < n)
  dA[i] *= c;
int main(int argc, char **argv)
  for (int i = 0: i < N: i++) { A[i] = i: }
  // Copier le tableau vers le GPU
  cudaMemcpyToSymbol(dA, A, N * sizeof(float), 0,
      cudaMemcpvHostToDevice):
  int blockSize = 128:
  int numBlocks = N / blockSize:
  if (N % blockSize) numBlocks++:
  multiplyArray <<<(numBlocks. blockSize>>>(n. c):
  // Recopier le tableau multiplie vers le CPU
  cudaMemcpyFromSymbol(A, dA, N * sizeof(float), 0,
      cudaMemcpyDeviceToHost);
  printf("%lf\n", A[2]):
  return 0:
```

- __global__ defini la fonction sur le GPU.
 - Ce qui permet d'utiliser blockldx.x. blockDim.x et threadldx.x
- Chaque thread et bloc exécute toujours le même code.
- On utilise blockSize threads par bloc.
- Chaque thread effectue 1 opération, donc il faut lancer N / blockSize blocs pour couvrir tout le tableau/domaine du calcul.
- L'exécution est différenciée par le blockldx.x et threadIdx.x.
- Attention au dépassement du tableau (si N n'est pas divisible par blockSize)

Contact

Oguz Kaya Université Paris-Saclay and LRI, Paris, France oguz.kaya@Iri.com www.oguzkaya.com