迪杰斯特拉算法

■ 引理8.5(最短路径性质):在带权图G中,若从x 到z的最短路径包含从x到y的路径P和从y到z的 路径Q,那么P是从x到y的最短路径,Q是从y 到z的最短路径。

Lemma 8.5 (Shortest path property) In a weighted graph G, suppose that a shortest path from x to z consists of path P from x to y followed by path Q from y to z. Then P is a shortest path from x to y, and Q is a shortest path from y to z. \Box

在带权图G中,若P是从x到y的最短路径,Q是从y到z的最短路径,P+Q是否为从x到z的最短路径, 路径?

定义

- 1. 边(y,z)的权值: w(yz)
- 2. 路径 $P = s, x_1, x_2, \dots, x_r, y$ 的路径长度 $w(P) = w(sx_1) + w(x_1x_2) + \dots + w(x_ry)$
- 3. 空路径长度为0

迪杰斯特拉算法

- 按路径长度递增的次序产生最短路径
- 设图G=(V,E), $V=\{v_0, v_1, \dots, v_{n-1}\}$, 源点 v_0 , 求 v_0 到其余各点的最短路径。
- 分析: 设 v_0 到 v_1 ,···, v_{n-1} 的最短路径分别为 P_1 , P_2 ,···, P_{n-1} . 若这n-1条路径中最短的一条为 P_i ($1 \le i \le n-1$),那么它一定是弧 $< v_0, v_i >$;
- 若这n-1条路径中第二短的一条为 P_j ($1 \le i \ne j \le n$ -1),那么它一定是弧 $< v_0, v_j >$ 或者是路径 $< v_0, v_i > < v_i, v_j >$;
- • • • •

改用优先队列存放fringe 顶点

最小优先队列

最小优先队列

最小优先队列

最小优先队列

最小优先队列

最小优先队列

最小优先队列

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

最小优先队列

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

最小优先队列

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

最小优先队列

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

最小优先队列

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

最小优先队列

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

最小优先队列

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

最小优先队列

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

最小优先队列

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

最小优先队列

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

最小优先队列

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

最小优先队列

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

最小优先队列

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

最小优先队列

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

最小优先队列

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

最小优先队列

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

最小优先队列

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

- 1. tree vertices: in the tree constructed so far,
- 2. fringe vertices: not in the tree, but adjacent to some vertex in the tree,
- 3. unseen vertices: all others.

4

dijkstraSSSP(G, n) // OUTLINE

Initialize all vertices as unseen.

Start the tree with the specified source vertex s; reclassify it as tree; define d(s, s) = 0.

Reclassify all vertices adjacent to s as fringe.

While there are fringe vertices:

Select an edge between a tree vertex t and a fringe vertex v such that (d(s,t) + W(tv)) is minimum;

Reclassify v as tree; add edge tv to the tree;

define d(s, v) = (d(s, t) + W(tv)).

Reclassify all unseen vertices adjacent to v as fringe.

1初始化一个空的最小优先队列(候选节点),加入出发点s 2从候选节点(最小优先队列)中选一个最小出队,将其加 到最短路径树上,确定了其最短路径 3更新候选节点

- 4 重复2、3直到队列为空

```
void shortestPaths(EdgeList[] adjInfo, int n, int s, int[] parent, float[] fringeWgt)
  int[] status = new int{n+1];
  MinPQ pq = create(n, status, parent, fringeWgt);
  insert(pq, s, -1, 0);
```

while (isEmpty(pq) == false)
 int v = getMin(pq);
 deleteMin(pq);
 updateFringe(pq, adjInfo[v], v);
return;


```
void updateFringe(MinPQ pq, EdgeList adjInfoOfV, int v)
   float myDist = pq.fringeWqt[v];
   EdgeList remAdj;
   remAdj = adjInfoOfV;
   while (remAdj \neq nil)
       EdgeInfo wInfo = first(remAdj);
       int w = winfo.to:
       float newDist = myDist + winfo.weight;
       if (pq.status[w] == unseen)
           insert(pq, w, v, newDist);
       else if (pq.status[w] == fringe)
           if (newDist < getPriority(pq, w))</pre>
               decreaseKey(pq, w, v, newDist);
       remAdj = rest(remAdj);
    return;
```


最小优先队列

最小优先队列

最小优先队列

迪杰斯特拉算法

- 设在G=(V, E, W)为带权无向图,且权值非负。令V¹⊆V, s∈V¹
- V¹是目前迪杰斯特拉算法已经加入最短路径树上的点的集合, s 是出发点
- 令d(s,y)为G中从s到y的最短距离
- □ 迪杰斯特拉算法执行过程中每个候选顶点z的当前的最好情况: $min\{d(s,y)+w(yz)|y\in V^1\}$,算法在最小优先队列中只保留每一 候选节点的最好情况
- □ 迪杰斯特拉算法每一次迭代从所有候选顶点选一个,相当于选择:
- $d(s,y)+w(yz)=\min\{d(s,y^*)+w(y^*z^*)\mid y^*\in V^1, z^*\in V^1\}$

Theorem 8.6 Let G = (V, E, W) be a weighted graph with nonnegative weights. Let V' be a subset of V and let s be a member of V'. Assume that d(s, y) is the shortest distance in G from s to y, for each $y \in V'$. If edge yz is chosen to minimize d(s, y) + W(yz) over all edges with one vertex y in V' and one vertex z in V - V', then the path consisting of a shortest path from s to y followed by the edge yz is a shortest path from s to z.

■ **定理**8.6: 设在G=(V, E, W) 为带权无向图,且权值非负。令 $V^1 \subseteq V$, $s \in V^1$ 。对每一 $y \in V^1$,令d(s,y)为G中从s到y的最短距离。 若边yz满足d(s,y)+w(yz)=min $\{d(s,y^*)$ + $w(y^*z^*)$ | $y^* \in V^1$, $z^* \in V$ - V^1 }。那么从s到y的最短路径+(y,z)为从s到z的最短路径。

- 令e=yz, 且s, x₁, x₂, ···, x_r, y为从s到y的最短路径(可能y=s)。
- 令P=s, x_1 , x_2 , …, x_r , y, z。 w(P)=d(s,y)+w(yz)。 假设P不是从s到z的最短路径,令P1=s, z_1 , z_2 , …, z_a , …, z为从s到z的一条最短路径。 z_a 是这条路径上第一个不在 V^1 中的顶点(可能 $z_a=z$)。
- 根据定理条件中e=yz的确定,可知 $w(P) = d(s,y) + w(yz) = d(s,y) + w(e) \le d(s,z_{a-1}) + w(z_{a-1}z_a) \cdots (1)$
- 根据定理8.5, $P1=s, z_1, z_2, \dots, z_a, \dots, z_b$ 从s到z的一条最短路径,则s, z_1, z_2, \dots, z_{a-1} 为从s到 z_{a-1} 的一条最短路径,其路径长度为d(s, z_{a-1})。
- 由于 s, z_1, z_2, \cdots, z_a 为路径P1的一部分,且该路径上的其余边权值非负,所以: $d(s, z_{a-1}) + w(z_{a-1}z_a) \le w(P1)$ ------(2)
- 由(1),(2)可得w(P) =d(s,y)+w(e)≤d(s, z_{a-1})+w($z_{a-1}z_a$)≤w(P1),与w(P)>w(P1) 矛盾,所以假设不成立,即P是从s到z的最短路径。

Theorem 8.7 Given a directed weighted graph G with nonnegative weights and a source vertex s, Dijkstra's algorithm computes the shortest distance (weight of a minimum-weight path) from s to each vertex of G that is reachable from s.

- 》 令迪杰斯特拉算法求出最短路径点的顺序为 $s=v_0, v_1, v_2, \dots, v_{n-1}$ 。下面证明算法循环了k次后,正确求出了从s到 $v_0, v_1, v_2, \dots, v_k$ 最短路径最短路径。
- > 对k采用数学归纳法证明。
- > 当k=0时, 从s到s的最短路径d(s,s)=0;
- 》 当k>0时,假设定理对k-1成立。根据定理8.6, $V^1 = \{v_0, v_1, v_2, ..., v_{k-1}\}$, $v_k = z$, 若d(s,y)+w(yv_k) = min {d(s,y)+w(y*v*_k) | y* \in V^1, $v^*_k \in V$ V^1 },则 $d(s,y)+w(yv_k)$ 是从s到 v_k 的最短路径长度→这也是算法求出的从s到 v_k 的最短路径长度。
- ▶ 若循环找不出候选边,算法结束,余下的距离均是∞。

Ch9.4 弗洛伊德算法

- 求每一对顶点之间的最短路径
- ■从v_i到v_j的所有可能存在的路径中,选出一条长度最短的路径。

Ch9.4 弗洛伊德算法

- 若 $\langle v_i, v_j \rangle$ 存在,则存在路径 (v_i, v_j)
- 若 $\langle v_i, v_1 \rangle, \langle v_1, v_j \rangle$ 存在,则存在路径 (v_i, v_1, v_j)
- 若 $(v_i,...,v_2), (v_2,...,v_j)$ 存在,则存在一条路径 $(v_i,...,v_2,...,v_j)$
- ...
- 依次类推,则 v_i至 v_j的最短路径应是上述这些路径中,路径长度最小者。

Ch9.4 弗洛伊德算法--顶点v;到顶点v;的最短路径

- 如果 $\langle v_i, v_i \rangle \in E(G)$,则从 v_i 到 v_i 存在一条路径(v_i, v_i);
- 该路径是否为最短路径尚需进行n次试探。
- 首先考虑路径(v_i,v₁,v_j),若其存在,比较路径(v_i,v₁,v_j) 和路径(v_i,v_j)的长度,取其中较小者为从v_i到v_j的中间顶 点序号不大于1的最短路径;
- 在路径上再加一个顶点v₂,若(v_i, ..., v₂)和(v₂, ..., v_j) 分别是当前找到的中间顶点的序号不大于2最短路径,那 么将(v_i, ..., v₂, ..., v_j)和已找到的中间结点的序号不 大于1的最短路径比较,取其中较小的为从v_i到v_j的中间顶 点序号不大于2的最短路径;
- 再增加一个顶点v₃,继续进行试探,依次类推。经过n次试探后可求得从顶点v_i到顶点v_i的最短路径。

 $D^{(k)}[l][l]$ 表示从 v_i 到 v_j 的中间顶点序号不大于k的最短路径的长度; $D^{(k)}[l][l]$ 表示从 v_i 到 v_j 的最短路径的长度

Ch9.4 弗洛伊德算法

■ 弗洛伊德算法递推地产生一个n阶矩阵序列:

$$D^{(0)}, D^{(1)}, ..., D^{(k)}, ..., D^{(n)}$$

$$D^{(0)}[i][j] = w_{ii};$$

$$D^{(k)}[i][j] = \min\{D^{(k-1)}[i[j], D^{(k-1)}[i][k] + D^{(k-1)}[k][j]\} \quad (1 \le k \le n)$$

$$w_{ij} = \begin{cases} w(v_i v_j) & i \neq j, v_i v_j \in E \\ \infty & i \neq j, v_i v_j \notin E \\ 0 & i = j \end{cases}$$

Lemma 9.3 For each k in $0, \ldots, n$, let $d_{ij}^{(k)}$ be the weight of a shortest simple path from v_i to v_j with highest-numbered intermediate vertex v_k , and let $D^{(k)}[i][j]$ be defined by Equation (9.3). Then, $D^{(k)}[i][j] \le d_{ij}^{(k)}$. \square

$$\begin{bmatrix} 0 & 4 & 11 \\ 6 & 0 & 2 \\ 3 & \infty & 0 \end{bmatrix}$$

$$D^{(0)} = \begin{bmatrix} 0 & 4 & 11 \\ 6 & 0 & 2 \\ 3 & \infty & 0 \end{bmatrix} D^{(1)} = \begin{bmatrix} 0 & 4 & 11 \\ 6 & 0 & 2 \\ 3 & 7 & 0 \end{bmatrix} D^{(2)} = \begin{bmatrix} 0 & 4 & 6 \\ 6 & 0 & 2 \\ 3 & 7 & 0 \end{bmatrix} D^{(3)} = \begin{bmatrix} 0 & 4 & 6 \\ 5 & 0 & 2 \\ 3 & 7 & 0 \end{bmatrix}$$

$$D^{(1)} = \begin{vmatrix} 0 & 4 & 11 \\ 6 & 0 & 2 \\ 3 & 7 & 0 \end{vmatrix}$$

$$D^{(2)} = \begin{bmatrix} 0 & 4 & 0 \\ 6 & 0 & 2 \\ 3 & 7 & 0 \end{bmatrix}$$

$$D^{(3)} = \begin{bmatrix} 0 & 4 & 0 \\ 5 & 0 & 2 \\ 3 & 7 & 0 \end{bmatrix}$$

弗洛伊德算法

Void allPairsShortestPaths(float[][] w,int n, float[][] D)

```
\begin{split} &\inf i,j,k; \\ &D=w; \\ & for(k=1;k\leq n;k++) \\ & for(i=1;i\leq n;i++) \\ & for(j=1;j\leq n;j++) \ D[i][j]=min(D[i][j],D[i][k]+D[k][j]) \end{split}
```

当边上的权值存在负数时,FLOY算法是否成立?

当边上的权值存在负数时,FLOY算法是否成立?

$$\begin{bmatrix} 0 & 2 & 4 & 3 \\ 3 & 0 & \infty & 3 \\ 5 & \infty & 0 & -3 \\ \infty & -1 & 4 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 2 & 4 & 3 \\ 3 & 0 & 7 & 3 \\ 5 & 7 & 0 & -3 \\ \infty & -1 & 4 & 0 \end{bmatrix} \begin{bmatrix} 0 & 2 & 4 & 3 \\ 3 & 0 & 7 & 3 \\ 5 & 7 & 0 & -3 \\ 2 & -1 & 4 & 0 \end{bmatrix} \begin{bmatrix} 0 & 2 & 4 & 1 \\ 3 & 0 & 7 & 3 \\ 5 & 7 & 0 & -3 \\ 2 & -1 & 4 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 4 & 1 \\ 3 & 0 & 7 & 3 \\ 5 & 7 & 0 & -3 \\ 2 & -1 & 4 & 0 \end{bmatrix}$$

As long as there are no negative-weight cycles, there is always a *simple* shortest path between any pair of nodes. Algorithm 9.4 is guaranteed to find the shortest simple path, regardless of whether weights are negative or not.