

Predicting small RNAs in bacteria via sequence learning ensemble method

Wen Zhang, Jingwen Shi, Guifeng Tang, Wenjian Wu, Xiang Yue, Dingfang Li

Presenter: Xiang Yue (Supervised by Prof. Wen Zhang)

Biomedical Big Data Mining Lab (BBDM-Lab)
Wuhan University, P.R China

Background 1

Method

2

Results

4

Conclusion

Background

What's sRNA?

- ☐ Small non-coding RNAs (sRNAs) exist in bacteria.
- ☐ Acting as functional RNAs
- **□** Samples:

GTTACAGGACGACCTGTAAAC GCTATTCTCACCGGGGACGGC CCC

□ typical size : 50-500 nucleotides

Topic

- □ sRNAs play important roles in various physiological processes, including growth, development, cell proliferation, differentiation, metabolic reactions and carbon metabolism
- ☐ The identification of sRNAs is the prerequisite for understanding biological mechanisms
- ☐ The prediction of sRNAs is an important task and is a kind of supervised binary classification problem

Feature extraction

Diverse features bring diverse information

Primary sequence features

Secondary structure features

Physicochemical properties

• • •

Model construction

Based on decision tree

Decision tree Random forest

Based on perceptron

Neural network

Deep learning

Based on statistical method

SVM

EM

0 0

Ensemble strategy

2.1 Datasets

Table 1. Datasets

Species	Datasets	N(P): N(N)	Positive instances	Negative instances
SLT2	Balanced	1:1	182	182
	Imbalanced	1:2	182	364
		1:3	182	566
		1:4	182	728
		1:5	182	910

2.2 Feature extraction

Table 2. sRNA sequence-derived features

Features	Index	Dimensions			
Spectrum Profile	F1~F5	4、16、64、256、1024			
Mismatch profile	F6~F8	64、256、1024			
Reverse compliment k-mer	F9~F13	4、16、64、256、1024			
Pseudo nucleotide composition features	F14~F17	Concerned with the sequence length			

■ Each sequence-derived feature can be used to construct a individual feature-based prediction model by machine learning methods. Here, seventeen classifiers can be obtained.

2.3 Models

2.3.1. Individual sequence-derived feature-based model by machine learning method

TAGG...ACAT
$$\rightarrow x=(x_1, x_2, ..., x_d)$$

$$y = f(x), x \in R^d; y \in [0,1].$$

 \square The function f is obtained by machine learning, such as support vector machine, random forest, deep belief network, neural network, and so on.

2.3 Models

2.3.2. The Sequence Learning Ensemble Method (SLEM)

 \square Considering the set of classifiers: $\{f_1, f_2, ..., f_n\}$, the ensemble model is defined as:

$$F(x) = \sum_{i=1}^{N} w_i f_i(x)$$

$$\sum_{i=1}^{N} w_i = 1, \ w_i \ge 0$$

 \square Here, we adopt genetic algorithm(GA) to search the optimal weights $(W_1, W_2, ..., W_n)$

2.3 Models

SLEM:

- 5-fold cross validation (5-CV) is adopted
- ☐ The prediction models are constructed on the train sets, and the weights are optimized on the validation set via GA. Finally, the prediction is made on the testing set.

Table 3. The performance of individual feature-based models constructed by RF on benchmark SLT2 datasets

Index	AUC				ACC					
	Balanced	Imbalanced			Balanced	Imbalanced				
	1:1	1:2	1:3	1:4	1:5	1:1	1:2	1:3	1:4	1:5
F 1	0.683	0.706	0.729	0.724	0.741	0.629	0.728	0.799	0.835	0.865
F2	0.826	0.841	0.856	0.866	0.866	0.763	0.794	0.841	0.869	0.887
F3	0.904	0.911	0.917	0.926	0.930	0.823	0.827	0.863	0.876	0.890
F4	0.922	0.931	0.927	0.934	0.931	0.856	0.842	0.854	0.869	0.883
F5	0.914	0.899	0.873	0.866	0.863	0.848	0.831	0.844	0.863	0.880
F6	0.767	0.797	0.819	0.832	0.843	0.708	0.777	0.829	0.854	0.876
F7	0.880	0.893	0.905	0.912	0.922	0.802	0.816	0.852	0.873	0.892
F8	0.917	0.923	0.928	0.934	0.939	0.840	0.836	0.858	0.874	0.889
F9	0.639	0.649	0.664	0.683	0.689	0.608	0.689	0.749	0.803	0.832
F10	0.842	0.838	0.863	0.873	0.877	0.771	0.800	0.843	0.871	0.892
F11	0.923	0.921	0.933	0.938	0.941	0.847	0.866	0.883	0.898	0.905
F12	0.940	0.947	0.946	0.953	0.955	0.874	0.875	0.884	0.896	0.908
F13	0.940	0.928	0.923	0.926	0.921	0.876	0.862	0.875	0.893	0.904
F14	0.900	0.885	0.885	0.884	0.883	0.829	0.814	0.843	0.871	0.887
F15	0.928	0.920	0.922	0.925	0.919	0.852	0.848	0.874	0.885	0.897
F16	0.905	0.895	0.896	0.889	0.888	0.826	0.836	0.860	0.876	0.893
F17	0.903	0.900	0.901	0.905	0.898	0.814	0.827	0.866	0.884	0.901

Table 4. the performance of SLEM on the balanced and imbalanced datasets

Datasets	N(P): N(N)	AUC	ACC	SN	SP
Balanced	1:1	0.950	0.893	0.863	0.923
	1:2	0.951	0.861	0.615	0.984
Turkalanaad	1:3	0.949	0.873	0.513	0.993
Imbalanced	1:4	0.956	0.885	0.445	0.996
	1:5	0.958	0.898	0.405	0.997

Table 5. performance measures of different methods on balanced and imbalanced SLT2

Dataset	Ratio	Method	AUC	ACC	SN	SP
	1:1	Carter's method	0.566	0.511	0.264	0.758
Balanced		Barman's method	0.938	0.882	0.846	0.918
		SLEM	0.950	0.893	0.863	0.923
	1:2	Carter's method	0.602	0.678	0.033	1.000
		Barman's method	0.937	0.884	0.851	0.916
		SLEM	0.951	0.861	0.615	0.984
	1:3	Carter's method	0.619	0.757	0.030	1.000
		Barman's method	0.944	0873	0.818	0.927
Imbalanced		SLEM	0.949	0.873	0.513	0.993
Imparanceu	1:4	Carter's method	0.627	0.805	0.025	1.000
		Barman's method	0.944	0.874	0.818	0.929
		SLEM	0.956	0.885	0.445	0.996
	1:5	Carter's method	0.636	0.835	0.011	1.000
		Barman's method	0.943	0.875	0.884	0.865
		SLEM	0.958	0.898	0.405	0.997

Conclusion

- The sequence learning ensemble method(SLEM) can automatically determine the importance of different information resources and produce high-accuracy performances
- □ Compared with other state-of-the-art methods, the SLEM can lead to better performances. Therefore, the SLEM has a great potential for sRNA prediction

Q & A

Thanks!

