Introduction to Number Theory

Math 110 | Winter 2023

Xu Gao March 8, 2023

What we have seen last time:

- Qudratic residues and non-residues
- Euler's theorem
- Method of Partnership
- · Wilson's theorem
- Legendre symbol

Today, we will move to the *reciprocity laws*.

What is a reciprocity law?

A **reciprocity law** would relate

- a property about the congruence class of a modulo m and
- a property about the congruence class of f(m) modulo g(a).

What important is that the roles of \underline{a} and \underline{m} are exchanged: in the second property, the congruence class only depends on \underline{m} , while the modulus only depends on \underline{a} .

Theorem 22.1 (First Quadratic Reciprocity Law)

Let p be an odd prime number. Then

be an odd prime number. Then

Congruence

$$\left(\frac{-1}{p}\right) = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{4}, \\ -1 & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

modulus

modulus

Proof. Corollary 21.10 tell us that -1 is a quadratic residue modulo p if and only if $p \equiv 1 \pmod{4}$, and it is a quadratic non-residue modulo p if and only if $p \equiv 3 \pmod{4}$. П

Theorem 22.2 (Second Quadratic Reciprocity Law)

Proof. We will use the method of partnership, investigating the following three products:

$$A = 1 \cdot 2 \cdot \dots \cdot \frac{p-3}{2} \cdot \frac{p-1}{2}, \qquad \text{(first half of } \Phi(p)\text{)}$$

$$B = 2 \cdot 4 \cdot \dots \cdot (p-3) \cdot (p-1), \qquad \text{(evens in } \Phi(p)\text{)}$$

$$C = 1 \cdot 3 \cdot \dots \cdot (p-4) \cdot (p-2). \qquad \text{(odds in } \Phi(p)\text{)}$$

$$X = 2^{\frac{p-1}{2}} \mod p \qquad X = 2^{\frac{p-1}{2}} \implies 2^{\frac{p-1}{2}} \mod p$$

The product B can be obtained from A by multiplying each factor by 2. Hence, $B = 2^{\frac{p-1}{2}}A$. The product C are related to B by the bijection $x \mapsto p - x$. Hence, $C = (-1)^{\frac{p-1}{2}}B$. Finally, if we replace each even factor x in A by p - x, we get C. Hence, $C = (-1)^{\lfloor \frac{p-1}{4} \rfloor}A$. (Note that there are $\lfloor \frac{p-1}{4} \rfloor$ evens in the first half of $\Phi(p)$.)

If we combine above, we get

$$(-1)^{\lfloor \frac{p-1}{4} \rfloor} \equiv (-1)^{\frac{p-1}{2}} \cdot 2^{\frac{p-1}{2}} \pmod{p}.$$

Therefore, by Euler's theorem,

$$\left(\frac{2}{p}\right) \equiv 2^{\frac{p-1}{2}} \equiv (-1)^{\lfloor \frac{p-1}{4} \rfloor + \frac{p-1}{2}} \pmod{p}.$$

We list all possibilities of the values:

<pre>p (mod 8)</pre>	$\frac{p-1}{2} \pmod{2}$	$\lfloor \frac{p-1}{4} \rfloor \pmod{2}$	$\left(\frac{2}{p}\right)$
1	D	0	1
3		D	-1
5	0	1	-1
7	1	1	

Then the statement follows.

Theorem 22.3 (Third Quadratic Reciprocity Law)

Let p and q be two distinct odd prime numbers. Then

Conf.
$$\frac{q}{p} \left(\frac{p}{q} \right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}.$$

$$mod.$$

We introduce $p^* := (-1)^{\frac{p-1}{2}} \cdot p$. Then the above formula tells us:

$$\left(\frac{q}{p}\right) = \left(\frac{p^*}{q}\right).$$

$$\left(\frac{n}{p}\right) = \left(\frac{-1}{p}\right)^{\frac{1}{2}(n)} \left(\frac{2}{p}\right)^{\frac{1}{2}(n)} \cdot \left(\frac{q}{p}\right)^{\frac{1}{2}(n)}$$
that the prime factorization of integers and the complete

Note that the prime factorization of integers and the complete multiplicativity of $(\frac{-}{p})$ together tells us that its value is completely determined by $(\frac{-1}{p})$, $(\frac{2}{p})$, and $(\frac{q}{p})$ (for prime q). Hence, the three quadratic reciprocity laws help us to completely translate quadratic residue problems in a reciprocal way.

Applications of Quadratic Reciprocity Laws

Applications of Quadratic Reciprocity Laws

Example 22.4

Is 10 a quadratic residue modulo 10337?

Since
$$10 = 2 \cdot 5$$
, $\left(\frac{10}{10337}\right) = \left(\frac{2}{10337}\right) \left(\frac{5}{10337}\right)$.

We can use the second quadratic reciprocity law to compute $(\frac{2}{10337})$:

$$10337 \equiv 337 \equiv 1 \pmod{8}$$
.

Hence, $(\frac{2}{10337}) = 1$.

We then use the third quadratic reciprocity law to compute $(\frac{5}{10337})$:

$$\left(\frac{5}{10337}\right) = \left(\frac{10337^*}{5}\right) = \left(\frac{10337}{5}\right) = \left(\frac{2}{5}\right) = -1, \qquad 2 = 4 \quad 0 = 0$$

$$2 = 2^{1} = 2^{1} = -1 \quad 2^{1} = 4 \quad 0 = 0$$

$$2 = 2^{1} = 2^{1} = -1 \quad 2^{1} = 4 \quad 0 = 0$$

here the last equality follows from the second quadratic reciprocity law. We conclude that 10 is a quadratic non-residue modulo 10337.

Irreducibility of modular polynomials

Example 22.5

Consider the integer polynomial $f(T) = T^2 - 2T + 4$. Modulo which prime p, the polynomial f(T) is irreducible.

We first complete the square:

$$f(T) = T^2 - 2T + 4 = (T - 1)^2 + 3.$$

Then f(T) is reducible modulo p

 \iff there is an integer a such that $(a-1)^2 + 3 \equiv 0 \pmod{p}$

 \iff -3 is a quadratic residue modulo p.

By looking at the contrapositive, we have

$$f(T)$$
 is irreducible modulo $p \iff \left(\frac{-3}{p}\right) = -1$.

Irreducibility of modular polynomials

$$\left(-\right)^{\frac{2}{2}} = -1 \qquad \left(\frac{\rho}{2}\right) = \left(\frac{\rho}{2}\right)$$

Note that $3^* = -3$. Hence, by the third reciprocity law,

$$\left(\frac{-3}{p}\right) = \left(\frac{p}{3}\right).$$

Among $\Phi(3) = \{1, 2\}$, 2 is the only quadratic non-residue. Hence,

$$\left(\frac{-3}{p}\right) = -1 \iff p \equiv 2 \pmod{3}$$

We thus conclude that $T^2 - 2T + 4$ is irreducible modulo p if and only if $p \equiv 2 \pmod{3}$.

Question

Given modulus m and $a \in \Phi(m)$, show that there are infinitely many prime numbers p such that

$$p \equiv a \pmod{m}$$
.

Using quadratic reciprocity laws, we can prove the following weak version:

Theorem 22.6

Fix an integer **a**. There are infinitely many prime numbers **p** such that $\left(\frac{a}{p}\right) = 1$.

Lemma 22.7

Let f(T) be a nonzero integer polynomial. Then there are infinitely many prime numbers p such that $p \mid f(n)$ for some integer n.

Proof. Suppose
$$f(T) = a_d T^d + \cdots + a_1 T + a_0$$
.

For the sake of contradiction, suppose p_1, \dots, p_r are all the prime numbers such that $p \mid f(n)$ for some integer n, saying $p_i \mid f(n_i)$.

Let $P = p_1 \cdots p_r$. Then for any integer x, we have

$$\frac{1}{a_0}f(a_0PT) = \frac{1}{a_0} \left(a_d(a_0PT)^d + \dots + a_1(a_0PT) + a_0 \right)$$

$$= a_d a_0^{d-1} P^d T^d + \dots + a_1 PT + 1.$$

$$\frac{1}{a_0}f(a_0PT) = \frac{1}{a_0} \left(a_d(a_0PT)^d + \dots + a_1(a_0PT) + a_0 \right)$$

$$= a_d a_0^{d-1} P^d T^d + \dots + a_1 PT + 1.$$

Note that the right-hand side is a nonzero integer polynomial with all non-constant coefficients being a multiple of P. Hence, there are integers x such that $\frac{1}{a_0}f(a_0Px)$ is an integer larger than 1 and coprime to P. But this implies that there must be a prime P distinct from P_1, \dots, P_r such that $P \mid f(a_0Px)$. A contradiction!

Proof. (Of theorem 22.6) Apply the lemma to $T^2 - a$. We see that there are infinitely many prime numbers p such that $p \mid n^2 - a$, namely $n^2 \equiv a \pmod{p}$, for some integer n. Among these primes, there are only finitely many can divide a. Hence, there are infinitely many prime numbers p such that $\left(\frac{a}{p}\right) = 1$.

Apply Quadratic Reciprocity Laws to Theorem 22.6, we have

- There are infinitely many prime numbers $\equiv 1 \pmod{4}$. **Proof.** Take a = -1 and note that $\left(\frac{-1}{p}\right) = 1 \Leftrightarrow p \equiv 1 \pmod{4}$.
- There are infinitely many prime numbers $\equiv 1 \pmod{3}$. **Proof.** Take a = -3 and note that $\left(\frac{-3}{p}\right) = 1 \Leftrightarrow p \equiv 1 \pmod{3}$.
- There are infinitely many prime numbers $\equiv \pm 1 \pmod{8}$. **Proof.** Take a = 2 and note that $\binom{2}{p} = 1 \Leftrightarrow p \equiv \pm 1 \pmod{8}$.

•