

Vorläufiges Pflichtenheft

Blockchainmessgerät

Entwicklung eines DGUV Messgeräts mit Schnittstelle zur Solana Blockchain, um den Prüfprozesses und die Datenintegrität zu verbessern

Felix Feichter FTEE 2024-2026 TAR Nummer: folgt Projektbeteiligte II

Projektbeteiligte

Bearbeiter

Name	Anschrift	E-Mail-Adresse	Telefonnummer
Felix Feichter	Schönblickstr. 10 70794 Filderstadt	felix.feichter@icloud.com	+49 15154942348

Betrieblicher Betreuer

Name	Anschrift	E-Mail-Adresse	Telefonnummer
Catharina Colonius	Kohlhammerstr. 18-24 70771 Leinfelden	c.colonius@jwf.com	+49 711 79766-812

Schulischer Betreuer

Name	Anschrift	E-Mail-Adresse	Telefonnummer
Günther Buchholz	Heilbronner Str. 153 70191 Stuttgart	Bh@wss-stuttgart.de	-

Freigabe-/Sperrvermerk

Die vorliegende Technikerarbeit / dieses Pflichtenheft enthält vertrauliche Informationen und Daten der Firma JW Froehlich Maschinenfabrik GmbH sowie des Verfassers.

Die Einsichtnahme, Vervielfältigung und Weitergabe der Arbeit, auch in Teilen, ist ausschließlich mit schriftlicher Genehmigung des Verfassers und in Absprache mit der Firma JW Froehlich Maschinenfabrik GmbH gestattet.

Inhaltsverzeichnis IV

Inhaltsverzeichnis

Tal	bellenverzeichnis	V
Αb	kürzungsverzeichnis	VI
Glo	ossar	. VII
1	Projektbeschreibung	8
	1.1 Ausgangssituation (Ist-Zustand)	9
	1.2 Zielsetzung (Soll-Zustand)	. 10
	1.3 Rahmenbedingungen	. 10
	1.4 Umgebung	. 11
	1.4.1 Software	. 11
	1.4.2 Hardware	. 12
2	Anforderungen	. 13
	Abnahmekriterien (Testszenarien)	
4	Projektplanung	. 17
	4.1 Projektstrukturplan	. 17
	4.2 Arbeitspaket	. 18
	4.3 Zeitplan	. 20

Tabellenverzeichnis V

Tabellenverzeichnis

Tabelle 2.1: Liste der Anforderungen	13
Tabelle 3.1: Testfälle/Testszenarien	16

Abkürzungsverzeichnis VI

Abkürzungsverzeichnis

Abkürzung	Bedeutung
АР	Arbeitspaket
CAD	Computer Aided Design – computergestütztes Entwerfen
CSV	Comma-Separated Values – Textdateiformat für tabellarische Daten
DGUV	Deutsche Gesetzliche Unfallversicherung
GUI	Graphical User Interface – grafische Benutzeroberfläche
JSON	JavaScript Object Notation – textbasiertes Datenformat
PSP	Projektstrukturplan
TAR	Technikerarbeit
VS Code	Visual Studio Code – Quelltext-Editor
WSL	Windows Subsystem for Linux

Glossar

Glossar

Begriff	Erklärung
Arbeitspaket	Kleinste, nicht weiter teilbare Einheit im Projektstrukturplan, die eine klar definierte Aufgabe mit festgelegtem Ergebnis beschreibt.
Blockchain	Dezentral geführte, unveränderliche Datenbank, in der Informationen chronologisch und fälschungssicher gespeichert werden.
Gantt-Diagramm	Grafische Darstellung eines Projektplans, bei der Arbeitspakete mit Zeitachse visualisiert werden.
GitHub	Online-Plattform zur Versionsverwaltung und Projektveröffentlichung auf Basis von Git.
Inbetriebnahme	Prozess der erstmaligen Funktionsprüfung und Aktivierung eines fertiggestellten Systems.
Pflichtenheft	Dokument, in dem der Auftragnehmer beschreibt, wie die Anforderungen des Lastenhefts technisch umgesetzt werden.
Platinenlayout	Grafische Anordnung der elektronischen Bauteile und Leiterbahnen einer Leiterplatte.
Python	Programmiersprache, die für die Softwareentwicklung des Blockchainmessgeräts verwendet wird.
Raspberry Pi	Einplatinencomputer, der in diesem Projekt als zentrale Steuereinheit dient.
Solana	Blockchain-Plattform, die in diesem Projekt für die sichere Speicherung von Messdaten verwendet wird.
Technikerarbeit (TAR)	Abschlussarbeit eines staatlich geprüften Technikers, die ein eigenständig geplantes und durchgeführtes Projekt dokumentiert.

1 Projektbeschreibung

Die JW Froehlich Maschinenfabrik GmbH entwickelt anwendungsorientierte Montage- und Prüfsysteme für elektrische Antriebe, Batterien, Brennstoffzellen und deren Komponenten wie Inverter oder E-Kompressoren. Dabei reicht das Leistungsspektrum von mechanischer Sondermaschinenentwicklung über automatisierte Prüftechnik bis hin zur nutzerzentrierten Prüf- und Analysesoftware – insbesondere für die Anforderungen der Automobilindustrie, Medizintechnik und verwandter Branchen. Ergänzt wird das Angebot durch präzise Messtechnik, abgestimmt auf die jeweils eingesetzten Systeme.

Im Rahmen der zunehmenden Digitalisierung und der Forderung nach manipulationssicherer Prüfdokumentation entsteht im vorliegenden Projekt ein innovatives DGUV-Messgerät mit Blockchainanbindung. Es handelt sich um ein portables Messsystem zur Prüfung elektrischer Betriebsmittel gemäß DGUV-Vorschrift 3, dessen Ergebnisse direkt in der Solana-Blockchain gespeichert werden. Durch diese technologische Integration wird die Unveränderbarkeit, Authentizität und langfristige Nachvollziehbarkeit der Prüfprotokolle sichergestellt.

Dieses Projekt greift zentrale Unternehmensbereiche von JW Froehlich auf und erweitert diese sinnvoll:

- Es verknüpft Prüf- und Messtechnik mit moderner, blockchainbasierter Softwarearchitektur.
- Es unterstützt den Anspruch auf höchste Qualität und Nachvollziehbarkeit insbesondere im Hinblick auf Kundenzertifizierungen und Nachweise.
- Es reduziert administrativen Aufwand durch die automatisierte, dezentrale Protokollierung.
- Es bietet Potenzial für zukünftige Integration in bestehende Lecktestgeräte oder Prüfanlagen aus dem JW Froehlich-Portfolio.

Das Projekt unterstützt somit nicht nur interne Entwicklungsziele im Bereich Prüfdatensicherung und Digitalisierung, sondern stärkt auch die Wettbewerbsfähigkeit im internationalen Prüfanlagenmarkt. Gleichzeitig leistet es einen Beitrag zur Nachhaltigkeit durch die Reduktion papierbasierter Dokumentation und zur Sicherheit durch fälschungssichere Archivierung.

1.1 Ausgangssituation (Ist-Zustand)

Anlass für die Durchführung dieses Projekts:

Aktuell erfolgt die DGUV-Prüfung elektrischer Betriebsmittel mit einem bestehenden System (Gossen Metrawatt & ETC-Software), das in mehreren Aspekten den heutigen Anforderungen an Sicherheit, Nachvollziehbarkeit und Benutzerfreundlichkeit nicht gerecht wird.

- Die Messdaten werden unverschlüsselt auf dem Firmenserver gespeichert.
 Jeder Mitarbeitende kann vorhandene Protokolle einsehen, verändern oder löschen.
- Mit Rohdaten + PDF-Signatur können nachträglich Protokolle manipuliert werden. Fotografierte Unterschriften bieten keinen sicheren Nachweis der Authentizität.
- Prüfstrukturen müssen manuell durch den Elektriker erstellt werden, was mehrere Stunden in Anspruch nimmt.
- Das System erlaubt keine benutzerdefinierten Komponenten oder automatisierte Prüfstruktur-Vorlagen.
- Die derzeitige Software ist nicht intuitiv bedienbar und birgt Fehlerpotenzial:
 z. B. kann durch Fehlbedienung beim Export oder Speichern ein kompletter
 Messdatensatz verloren gehen.
- Eine direkte Datenbereitstellung für den Kunden ist nicht möglich, sondern nur manuell auf Anfrage.
- Es gibt keine eindeutige digitale Prüfer-Zuordnung.

Diese Probleme stellen ein Risiko für die Nachvollziehbarkeit, Prüfsicherheit und Effizienz im Tagesgeschäft dar und machen eine technologische Weiterentwicklung notwendig.

1.2 Zielsetzung (Soll-Zustand)

Ziel dieses Projekts ist, die Entwicklung eines prototypischen DGUV-Messsystems auf Basis eines Raspberry Pi, das eine fälschungssichere, benutzerfreundliche und datenschutzkonforme Erfassung sowie Archivierung von Prüfdaten ermöglicht. Die zentrale Anforderung besteht in der unveränderlichen Speicherung aller Messergebnisse auf der Solana-Blockchain, wodurch eine nachträgliche Manipulation ausgeschlossen wird und die Prüfdaten langfristig nachvollziehbar bleiben.

Die Bedienung erfolgt über eine grafische Benutzeroberfläche, die lokal auf dem Raspberry Pi läuft und sowohl die strukturierte Erstellung der Prüfumgebung als auch die Durchführung und Protokollierung der Messungen unterstützt.

Nach Abschluss der Messungen wird ein PDF-Protokoll generiert, das die relevanten Prüfdaten enthält und anschließend verschlüsselt über ArDrive gespeichert wird. Der Zugriff auf diese Protokolle ist ausschließlich autorisierten Nutzern vorbehalten.

Die Software wird modular aufgebaut, um perspektivisch Funktionen wie den Import von EPLAN-Strukturen in der Zukunft zu ermöglichen.

1.3 Rahmenbedingungen

Das Projekt wird im Rahmen einer Technikerarbeit durchgeführt. Die Umsetzung erfolgt innerhalb eines festgelegten Zeitraums und orientiert sich an den organisatorischen Abläufen der JW Froehlich Maschinenfabrik GmbH. Es gelten die Anforderungen der DGUV Vorschrift 3 sowie die unternehmensinternen Richtlinien zur Datensicherheit und zum Datenschutz. Die Nutzung externer APIs oder Systeme (z. B. Solana, ArDrive) muss konform mit den internen IT-Vorgaben erfolgen.

1.4 Umgebung

Der Prototyp dient ausschließlich zu Entwicklungs- und Evaluierungszwecken und ist ohne eine umfassende messtechnische und sicherheitstechnische Zertifizierung nicht als zugelassenes Prüfmittel einsetzbar.

Ein möglicher Nachfolger dieses Prototyps könnte – nach entsprechender Weiterentwicklung, Prüfung und Zertifizierung – als vollwertiges Messgerät im professionellen Prüfumfeld eingesetzt werden.

Mögliche Einsatzbereiche sind:

- Wiederkehrende elektrische Prüfungen nach DGUV Vorschrift 3 in Industrie- und Handwerksbetrieben
- Maschinen- und Anlagenprüfungen in Produktionsumgebungen
- Dokumentationssichere Prüfung in sensiblen Bereichen wie Medizintechnik oder Energieversorgung etc.

1.4.1 Software

Die Entwicklung des Prototyps erfolgt unter Verwendung der Programmiersprache Python in Kombination mit der Qt-Bibliothek (PyQt6) zur Erstellung der grafischen Benutzeroberfläche. Als Betriebssystem kommt "Raspberry Pi OS Desktop" zum Einsatz.

Für die Anbindung an die Solana-Blockchain wird das offizielle CLI-Tool von Solana verwendet. Die Dateispeicherung erfolgt verschlüsselt über die ArDrive-CLI. Weitere eingesetzte Tools sind Visual Studio Code (Entwicklung) und Git (Versionsverwaltung).

1.4.2 Hardware

Die Umsetzung des Prototyps erfolgt auf einem Raspberry Pi 5. Die Benutzeroberfläche wird über einen angeschlossenen Bildschirm bedient, der fest in ein individuelles Gehäuse integriert ist.

Das gesamte System wird in einem eigens entwickelten, 3D-gedruckten Gehäuse untergebracht, das neben dem Raspberry Pi auch die selbstgefertigte Elektronikplatine mit den Messkomponenten, den Akku zur mobilen Stromversorgung sowie den Bildschirm aufnimmt.

Die Herstellung der Platine erfolgt in der Adapterwerkstatt von JW Froehlich, wo auch Lötarbeiten und Bestückung durchgeführt werden.

Zur Benutzeridentifikation kommen USB-Sticks zum Einsatz, die als Schlüsselkarte fungieren und die verschlüsselten Wallet-Informationen der Prüfer enthalten. Eine direkte Anbindung von Messsignalen an die Elektronik erfolgt über analoge Eingänge.

2 Anforderungen 13

2 Anforderungen

Tabelle 2.1: Liste der Anforderungen

Nr.	Anforderungsbeschreibung	
F1000-2999	Hardware-Anforderungen	
F1000-1099	Gehäuse	
F1001	Das Gerät soll ein handliches, tragbares Gehäuse besitzen, das mobil wie ein Multimeter verwendet werden kann. Eventuell mit Umhängegurt.	
F1002	Das Gehäuse darf nicht zu leicht sein, um bei aufgestelltem Bildschirm nicht umzukippen.	
F1003	Ein 10-Zoll-Touchscreen soll im oberen Bereich des Gehäuses integriert sein.	
F1004	Der Bildschirm soll um ca. 90° kippbar sein, entweder stufenlos mit Feststellmechanik oder in fest einrastenden Positionen.	
F1005	Das Gehäuse muss über ausreichende Lüftungsschlitze oder -gitter zur passiven oder aktiven Kühlung verfügen.	
F1006	Lüfter dürfen nicht dauerhaft laut sein. Die Geräuschentwicklung muss minimiert werden.	
F1007	Ein USB-Slot soll an eine separate und sichere Stelle herausgeführt werden, an der später der USB-Stick bzw. die Schlüsselkarte zur Authentifizierung und Anmeldung eingesteckt wird.	
F1100-1199	Raspberry Pi	
F1101	Der Raspberry Pi 5 soll mit einer aktiven Kühlung ausgestattet werden, um das Desktop- Environment stabil zu betreiben.	
F1102	Alle Anschlüsse des Raspberry Pi (HDMI, USB-C, SD-Karte) sollen über kurze Verlängerungen nach außen ans Gehäuse geführt werden.	
F1103	Die Verbindung vom Raspberry Pi zum Akku und zu der Messkarte muss steckbar ausgeführt sein.	
F1200-F1299	Messkarte	
F1201	Die Messelektronik (ADC, Shunt, Referenzquelle etc.) soll auf einer selbstgefertigten Standard-Lochrasterplatine aufgebaut werden.	
F1202	Die Messelektronik soll einen Schutzleiterwiderstand mit einer Genauigkeit von mindestens $\pm 0,01~\Omega$ erfassen können.	
F1300-F1399	Akku	
F1301	Der Akku des Geräts soll eine Betriebsdauer von mindestens 2 Stunden ohne Nachladen ermöglichen.	

2 Anforderungen 14

Nr.	Anforderungsbeschreibung	
F2000-2999	Software-Anforderungen	
F2000-F2099	Sperrbildschirm & Anmeldung	
F2001	Die Software soll mit einem Sperrbildschirm starten, auf dem Benutzer sich registrieren oder anmelden können.	
F2002	Vor Abschluss der Registrierung muss ein Speicherort (USB-Stick) ausgewählt werden.	
F2003	Nach der Registrierung generiert die Software automatisch eine neue Solana- und ArDrive-Wallet auf dem Mainnet.	
F2004	Die Wallet-Verschlüsselung muss durch eine symmetrische AES-128-Verschlüsselung im CBC-Modus mit HMAC-Integritätsprüfung (Fernet) erfolgen.	
F2005	Die Schlüsseldateien sollen im Dateisystem versteckt und nur mit Benutzerrechten zugänglich sein.	
F2006	Beim Login müssen Benutzername, Passwort und die Schlüsseldatei angegeben werden.	
F2007	Die Software soll Fehlermeldungen anzeigen, wenn Eingaben falsch sind oder die Datei fehlt.	
F2100-F199	Dashboard	
F2101	Nach erfolgreichem Login erscheint die Startseite mit Informationen zu Softwareversion, Autor, WLAN-Status und Verbindung zu Solana und ArDrive.	
F2102	Im Dashboard werden die Solana und ArDrive Wallets des Prüfers als Text- und QR-Code angezeigt, damit sie aufgeladen werden können.	
F2200-F2299	Struktur-Editor	
F2201	Im Struktur-Editor kann der Benutzer eine Prüfstruktur mit Orten, Verbrauchern, RCDs, Sicherungen und Erdungen visuell erstellen.	
F2202	Die erstellte Struktur kann im softwareeigenen JSON-Format exportiert und gesichert werden.	
F2300-2399	Maschinen Manager	
F2301	Der Maschinenmanager-Tab soll ein Fenster mit Buttons für 'Import', 'Export' und 'Neue Maschinenliste' bereitstellen.	
F2302	Beim Anlegen einer neuen Maschinenliste wird auf dem USB-Stick des angemeldeten Prüfers ein Ordner namens 'Maschinen' erstellt, falls er nicht existiert.	
F2303	In diesem Ordner wird eine CSV-Datei erstellt, in der neue Maschinen mit interner Maschinen-Nr., Auftragsnummer, Kundenname, zugehörigem Solana-Wallet-PubKey und ArDrive TXID eingetragen werden.	
F2304	Die Solana-Wallet für eine Maschine wird temporär generiert. Nur der Public Key wird gespeichert, der Private Key wird danach gelöscht.	
F2305	Die Maschinenliste kann zusätzlich auf einen zentralen Firmenserver gespiegelt werden, um interne Zuordnung sicherzustellen.	

2 Anforderungen 15

Nr.	Anforderungsbeschreibung	
F2400-2499	Messen	
F2401	Im Mess-Tab wählt der Benutzer eine Struktur (Projekt) aus und kann einzelne Messpunkte anwählen.	
F2402	Die Messung wird per Knopf an der Messleitung gestartet, das Ergebnis angezeigt und nach Bestätigung gespeichert.	
F2403	Nach Speicherung wird ein Memo-Datensatz in die Solana-Blockchain gesendet, mit Infos wie Messwert, Messpunkt, Istwert, Sollwert	
F2404	Die Transaktion erfolgt an die ausgewählte Maschinenwallet.	
2500-2599	Ergebnisse	
F2501	Im Ergebnisse-Tab kann eine Maschinenwallet ausgewählt werden, deren Transaktionen analysiert werden sollen.	
F2502	Alle eingehenden Transaktionen werden aufgelistet und können als gültig oder ungültig markiert werden.	
F2503	Nur markierte Messwerte werden in die Abschlussliste übernommen, die durch eine zusätzliche Abschlusstransaktion bestätigt werden und somit wird in der Solana-Blockchain hinterlegt, welche Messungen vom Prüfer final verwendet werden.	
F2504	Die gültigen Messdaten sollen in eine lokal gespeicherten CSV-Datei exportiert werden, die später dazu genutzt wird, um das finale Protokoll zu generieren.	
2600-2699	PDF-Editor	
F2601	Im Protokoll-Tab wird eine Vorlage angezeigt, in der Kundendaten, Prüferdaten und Prüfvermerke eingetragen werden.	
F2602	Es soll eine Sektion für individuelle Anmerkungen und Prüftextbausteine geben (z. B. Sichtprüfung bestanden).	
F2603	Das Protokoll zeigt Prüfer- und Maschinenwallets an und enthält Felder für Unterschrift und Datum.	
F2604	Nach dem Ausfüllen wird die CSV Datei hinter das ausgefüllte Deckblatt gehängt und als PDF generiert.	
2700-2799	ArDrive	
F2701	Die erzeugte PDF kann im ArDrive-Tab verschlüsselt hochgeladen werden.	
F2702	Die Verschlüsselung erfolgt mit dem Kundenschlüssel (Kundensoftware) sowie einem oder mehreren Backup-Pubkeys.	
F2703	Die ArDrive-TXID wird als Memo an die Maschinenwallet auf Solana gesendet.	
2800-2899	Kundensoftware	
F2801	Die Kundensoftware soll einen Sperrbildschirm mit Registrierung, Passwort und USB- Schlüssel enthalten.	

Nr.	Anforderungsbeschreibung	
F2802	Beim Registrieren wird automatisch ein Kunden-PubKey erzeugt, mit dem später der Prüfer die PDF-Dateien verschlüsselt.	
F2803	Nach Login kann der Kunde einen ArDrive-Link eingeben, um das PDF in ein gewähltes Verzeichnis herunterzuladen.	

3 Abnahmekriterien (Testszenarien)

Tabelle 3.1: Testfälle/Testszenarien

Nr.	Beschreibung des Testszenarios	
1	Ein neuer Benutzer wird auf dem Sperrbildschirm registriert	
2	Anmeldung mit USB Stick	
3	Erstellen einer Maschinenwallet	
4	Erstellen einer Prüfstruktur im Editor	
5	Abspeichern der leeren Struktur	
6	Durchführen einer Messung	
7	Einsehen und Anwählen aller Messungen	
8	Erstellen eines PDF-Protokolls	
9	Hochladen in ArDrive	
10	Herunterladen der PDF über Kundensoftware	
11	Handlichkeit des Messgeräts	
12	Berührungsschutz vor elektrischen Komponenten	

4 Projektplanung

4.1 Projektstrukturplan

4.2 Arbeitspaket

AP1: Projektstart, Ziel- & Anforderungsdefinition mit Pflichtenhefterstellung

Zu Beginn des Projekts werden die übergeordneten Ziele des Blockchainmessgeräts festgelegt, die benötigten Ressourcen ermittelt und eine detaillierte Anforderungsanalyse durchgeführt. Ein wesentlicher Bestandteil dieser Phase ist die Recherche geeigneter Softwarelösungen und Blockchain-Technologien, um die optimale technische Basis für das Projekt zu bestimmen. Dabei werden verschiedene Plattformen hinsichtlich Sicherheit, Performance, Kosten und Implementierbarkeit bewertet.

Auf Grundlage dieser Erkenntnisse wird das Pflichtenheft erstellt, das alle Anforderungen dokumentiert, die geplanten technischen Lösungen beschreibt und als verbindliche Grundlage für alle folgenden Projektphasen dient.

AP2: Konstruktion von Software- und Hardwarekomponenten

In diesem Arbeitspaket werden die grundlegenden Software- und Hardwarekomponenten des Blockchainmessgeräts entworfen.

Auf der **Softwareseite** umfasst dies die Entwicklung der grafischen Benutzeroberfläche (GUI) inklusive Sperrbildschirm, Dashboard, Struktureditor, Messdurchführung, Protokolleditor und Einstellungsmenüs. Ziel ist die Erstellung einer bedienerfreundlichen, stabilen und sicheren Steuerungssoftware, die eine nahtlose Integration der Blockchain-Funktionen ermöglicht.

Auf der **Hardwareseite** beinhaltet diese Phase die CAD-Konstruktion des Gehäuses, die Erstellung des Platinenlayouts sowie die Ausarbeitung eines Stromlaufplans und einer vollständigen Materialliste.

AP3: Fertigung und Zusammenbau des Blockchainmessgeräts

In dieser Phase wird das Gerät auf Basis der zuvor erstellten Konstruktionsdaten hergestellt und montiert.

Zunächst wird die Messkarte (Platine) bestückt und gelötet, um die elektronische Basis des Systems zu schaffen. Anschließend erfolgt die Verdrahtung aller Komponenten wie Raspberry Pi, Akku, Schnittstellen und Bedienelemente. Parallel oder im Anschluss wird das Gehäuse mithilfe von 3D-Druckern gefertigt und nachbearbeitet.

Nach Abschluss dieser Arbeitsschritte liegt ein vollständig montiertes Gerät vor, das für die anschließende Inbetriebnahme und Tests bereit ist.

AP4: Inbetriebnahme und Funktionstests

Nach Abschluss der Fertigung wird das Blockchainmessgerät in Betrieb genommen. Hierbei erfolgt zunächst die Überprüfung aller elektrischen Verbindungen und die Sicherstellung, dass die Stromversorgung stabil und korrekt ausgelegt ist. Anschließend wird die Prüfsoftware aufgespielt und alle Funktionen Schritt für Schritt getestet – sowohl die Messfunktionen als auch die Blockchain-Integration. Dabei werden reale Testszenarien durchgespielt, um die Genauigkeit der Messungen, die Zuverlässigkeit der Datenübertragung sowie die Benutzerfreundlichkeit der Oberfläche zu prüfen.

Abschließend werden eventuelle Fehler behoben und Optimierungen vorgenommen, bis das Gerät vollständig einsatzbereit ist.

AP5: Laufende Projektdokumentation

Während der gesamten Konstruktions- und Aufbauphase wird der Projektfortschritt kontinuierlich dokumentiert.

Nach jedem abgeschlossenen Arbeitsschritt oder erreichten Meilenstein werden Fotos und ggf. kurze Videos erstellt, um den aktuellen Stand anschaulich festzuhalten. Diese Medien werden regelmäßig auf der GitHub-Projektseite veröffentlicht, um die Entwicklung transparent zu machen und die einzelnen Projektphasen nachvollziehbar darzustellen. Parallel dazu werden fortlaufend Notizen gesammelt, die für die abschließende Technikerarbeit (TAR) und die Projektdokumentation benötigt werden.

AP6: Übergabe & Projektabschluss

Nach der erfolgreichen Inbetriebnahme und Fertigstellung der finalen Projektdokumentation erfolgt die formale Übergabe des Blockchainmessgeräts an den Auftraggeber. Im Rahmen der Übergabe wird das Gerät vorgeführt, die wichtigsten Funktionen erläutert und auf Basis der Bedienungsanleitung eine kurze Einweisung durchgeführt. Der Auftraggeber hat die Möglichkeit, Rückfragen zu stellen und Feedback zu geben.

Im Anschluss wird gemeinsam eine Abnahmeprüfung durchgeführt, um zu bestätigen, dass alle im Pflichtenheft definierten Anforderungen erfüllt wurden. Eventuell notwendige kleine Anpassungen werden sofort umgesetzt.

Mit der schriftlichen Bestätigung der Abnahme gilt das Projekt als abgeschlossen. Alle Projektdaten, Quellcodes, CAD-Dateien und Dokumentationen werden archiviert, sodass eine spätere Wartung oder Weiterentwicklung problemlos möglich ist.

4.3 Zeitplan

∨ To-do

Aufgabe		Verantwor	Status ①	Fälligkeitsdat ①	Zeitleiste ①	Abhängig von ①
Kickoffmeeting Software-Konstruktion	<> ⊕	8		O Aug. 20	-	
Software Konstruktion	<> ⊕	8		O Aug. 31	Aug. 20 - 31	
Hardware Konstruktion	<> ⊕	8		O Sep. 3	Sep. 1 - 3	
Fertigung	<> ⊕	(8)		O Sep. 9	Sep. 4 - 9	Hardware Konstruktion Software Konstruktion
Inbetriebnahme	<> ⊕	(8)		O Sep. 14	Sep. 10 - 14	Fertigung
Dokumentation	♦ ⊕	(9)		O Sep. 21	Sep. 20 - 21	Inbetriebnahme