Sprawy organizacyjne

10 wykładów,

Jak można się ze mną skontaktować

dr Barbara Przebieracz Bankowa 14, p.568 barbara.przebieracz@us.edu.pl www.math.us.edu.pl/bp

Zaliczenie wykładu: ocena z wykładu jest średnią oceny z ćwiczeń(materiał wykładów 1-5) i z egzaminu (materiał wykładów 6-10) obecność na wykładzie może podwyższyć ocenę z egzaminu (10 obecności (w tym ostatnie 5)- 40 punktów, 9 obecności (w tym ostatnie 5) - 30 punktów, 8 obecności (w tym ostatnie 5)- 20 punktów, 7 obecności (w tym ostatnie 5) - 10 punktów. Skala: 0-50 ndst, 50-60 dst, 60-70 dst+, 70-80 db, 80-90 db+, 90-100 bdb.

Plan wykładu

- 1. Funkcje elementarne, własności funkcji, złożenia funkcji, funkcja odwrotna.
- 2. Ciągi i ich granice.
- 3. Granica funkcji, ciągłość funkcji.
- 4. Pochodna funkcji i jej zastosowania.
- 5. Całka nieoznaczona i oznaczona Riemanna.
- 6. Liczby zespolone i elementy algebry liniowej.
- 7. Rachunek różniczkowy i całka Riemanna w \mathbb{R}^n .
- 8. Równania różniczkowe zwyczajne.
- 9. Rachunek prawdopodobieństwa.
- 10. Statystyka.

Zacznijmy od powtórki...

Elelementy rachunku zdań. Alternatywa.

Zdanie ma wartość logiczną 1, gdy jest prawdziwe, a 0, gdy jest fałszywe.

Jeśli p i q są zdaniami, to $p \lor q$ nazywamy **alternatywą** zdań p, q, czytamy: p lub q. Wartość logiczna zdania $p \lor q$ zależy od wartości logicznych zdań p i q następująco:

р	q	$p \lor q$
1	1	1
1	0	1
0	1	1
0	0	0

Elelementy rachunku zdań. Koniunkcja.

Zdanie ma wartość logiczną 1, gdy jest prawdziwe, a 0, gdy jest fałszywe.

Jeśli p i q są zdaniami, to

 $p \land q$ nazywamy **koniunkcją** zdań p, q, czytamy: p i q. Wartość logiczna zdania $p \land q$ zależy od wartości logicznych zdań p i q następująco:

р	q	$p \wedge q$
1	1	1
1	0	0
0	1	0
0	0	0

Elelementy rachunku zdań. Implikacja.

Zdanie ma wartość logiczną 1, gdy jest prawdziwe, a 0, gdy jest fałszywe.

Jeśli p i q są zdaniami, to

 $p\Rightarrow q$ nazywamy **implikacją** zdań p(poprzednik implikacji), q(następnik implikacji), czytamy: jeżeli p, to q. Wartość logiczna zdania $p\Rightarrow q$ zależy od wartości logicznych zdań p i q następująco:

р	q	$p \Rightarrow q$
1	1	1
1	0	0
0	1	1
0	0	1

Elelementy rachunku zdań. Równoważność.

Zdanie ma wartość logiczną 1, gdy jest prawdziwe, a 0, gdy jest fałszywe.

Jeśli p i q są zdaniami, to

 $p\Leftrightarrow q$ nazywamy **równoważnością** zdań p,q, czytamy: p wtedy i tylko wtedy, gdy q. Wartość logiczna zdania $p\Leftrightarrow q$ zależy od wartości logicznych zdań p i q następująco:

р	q	$p \Leftrightarrow q$
1	1	1
1	0	0
0	1	0
0	0	1

Elelementy rachunku zdań. Negacja.

Zdanie ma wartość logiczną 1, gdy jest prawdziwe, a 0, gdy jest fałszywe.

Jeśli p jest zdaniem, to $\sim p$ nazywamy **negacją** zdania p, czytamy: nieprawda, że p. Wartość logiczna zdania $\sim p$ zależy od wartości logicznej zdania p następująco:

р	\sim p
1	0
0	1

Elementy rachunku zdań. Tautologie.

Tautologie, to zdania złożone, których wartość logiczna wynosi zawsze 1, niezależnie od wartości logicznych zdań, z których są złożone.

Przykłady tautologii

$$[\sim (p \lor q)] \Leftrightarrow [(\sim p) \land (\sim q)]$$

$$[\sim (p \land q)] \Leftrightarrow [(\sim p) \lor (\sim q)]$$

$$[\sim (p \Rightarrow q)] \Leftrightarrow [p \land \sim q]$$

$$[p \Leftrightarrow q] \Leftrightarrow [(p \Rightarrow q) \land (q \Rightarrow p)]$$

$$[p \Rightarrow q] \Leftrightarrow [(\sim q) \Rightarrow (\sim p)]$$

Kwantyfikatory

$$\forall_{x \in X} \phi(x), \quad \bigwedge_{x \in X} \phi(x)$$

czytamy: dla każdego x ze zbioru X zachodzi $\phi(x)$.

$$\exists_{x \in X} \phi(x), \quad \bigvee_{x \in X} \phi(x)$$

czytamy: istnieje taki x ze zbioru X, że zachodzi $\phi(x)$.

Przykłady praw logicznych dotyczących kwantyfikatorów

$$\sim \forall_{x \in X} \, \phi(x) \Leftrightarrow \exists_{x \in X} \sim \phi(x)$$

$$\sim \exists_{x \in X} \phi(x) \Leftrightarrow \forall_{x \in X} \sim \phi(x)$$

Elementy rachunku zbiorów

```
x \in A czytamy: x należy do zbioru A, x jest elementem zbioru
Α.
Ø- zbiór pusty.
A \subset B: A jest podzbiorem zbioru B, czyli \forall_x x \in A \Rightarrow x \in B.
Niech X bedzie pewną przestrzenią, A, B \subset X,
suma zbiorów: A \cup B = \{x \in X; x \in A \lor x \in B\},\
iloczyn(przekrój, część wspólna) zbiorów:
A \cap B = \{x \in X; x \in A \land x \in B\},\
różnica zbiorów: A \setminus B = \{x \in X; x \in A \land x \notin B\},\
dopełnienie zbioru: A' = X \setminus A,
iloczyn kartezjański zbiorów: A \times B = \{(x, y); x \in A \land y \in B\},\
zbiór potęgowy: \mathcal{P}(A) = 2^A = \{B \subset X; B \subset A\}.
```

Oznaczenia

```
\begin{array}{l} \mathbb{N} = \{1,2,3,\ldots\} - \text{ zbi\'or liczb naturalnych}, \\ \mathbb{N}_0 = \{0,1,2,3,\ldots\} - \text{ zbi\'or liczb naturalnych z zerem}, \\ \mathbb{Z} = \{\ldots,-3,-2,-1,0,1,2,3,\ldots\} - \text{ zbi\'or liczb całkowitych}, \\ \mathbb{Q} = \{\frac{\rho}{q}; \ \rho \in \mathbb{Z}, q \in \mathbb{N}\} - \text{ zbi\'or liczb wymiernych}, \\ \mathbb{R} - \text{ zbi\'or liczb zespolonych}. \end{array}
```

Funkcje. Podstawowe pojęcia.

nazwa funkcji dziedzina przeciwdziedzina

 $f(X) = \{f(x) \in Y; x \in X\}$ – zbiór wartości funkcji. $(f(X) \subset Y)$. Funkcja $f: X \to Y$ jest różnowartościowa (injekcją), gdy

$$\forall_{x,y\in X}\ x\neq y\Rightarrow f(x)\neq f(y).$$

Piszemy $f: X \xrightarrow{1-1} Y$.

Funkcja $f: X \to Y$ jest na (surjekcją), gdy

$$f(X) = Y$$
.

Piszemy $f: X \stackrel{na}{\longrightarrow} Y$.

Funkcja $f: X \to Y$ jest bijekcją, gdy jest różnowartościowa i na.

Wykład 1

Monotoniczność

Niech $X \subset \mathbb{R}$. Funkcja $f \colon X \to \mathbb{R}$ jest (silnie) rosnąca w zbiorze $A \subset X$, gdy

$$\forall_{x,y \in A} \, x < y \Rightarrow f(x) < f(y).$$

Niech $X \subset \mathbb{R}$. Funkcja $f \colon X \to \mathbb{R}$ jest słabo rosnąca (niemalejąca) w zbiorze $A \subset X$, gdy

$$\forall_{x,y \in A} \, x < y \Rightarrow f(x) \leq f(y).$$

Niech $X \subset \mathbb{R}$. Funkcja $f \colon X \to \mathbb{R}$ jest (silnie) malejąca w zbiorze $A \subset X$, gdy

$$\forall_{x,y \in A} \, x < y \Rightarrow f(x) > f(y).$$

Niech $X \subset \mathbb{R}$. Funkcja $f \colon X \to \mathbb{R}$ jest słabo malejąca (nierosnąca) w zbiorze $A \subset X$, gdy

$$\forall_{x,y \in A} \, x < y \Rightarrow f(x) \geq f(y).$$

Wypukłość/wklęsłość

Funkcja $f:(a,b)\to\mathbb{R}$ jest wypukła, gdy

$$\forall_{x,y\in(a,b)}\forall_{\lambda\in[0,1]}f((1-\lambda)x+\lambda y)\leq (1-\lambda)f(x)+\lambda f(y).$$

Funkcja $f:(a,b)\to\mathbb{R}$ jest wklęsła, gdy

$$\forall_{x,y\in(a,b)}\forall_{\lambda\in[0,1]}f((1-\lambda)x+\lambda y)\geq (1-\lambda)f(x)+\lambda f(y).$$

Funkcja wypukła/wklęsła

Niech $D \subset \mathbb{R}$ i niech $f : D \to \mathbb{R}$.

• Mówimy, że f jest parzysta, gdy

$$\forall_{x \in D} - x \in D \land f(x) = f(-x).$$

Mówimy, że f jest nieparzysta, gdy

$$\forall_{x \in D} - x \in D \wedge f(-x) = -f(x).$$

• Mówimy, że f jest **okresowa o okresie** $T \neq 0$, gdy

$$\forall_{x \in D} \ x + T \in D \ \land \ f(x) = f(x + T).$$

Niech $D \subset \mathbb{R}$ i niech $f \colon D \to \mathbb{R}$.

Mówimy, że f jest parzysta, gdy

$$\forall_{x \in D} - x \in D \land f(x) = f(-x).$$

Mówimy, że f jest nieparzysta, gdy

$$\forall_{x \in D} - x \in D \wedge f(-x) = -f(x).$$

• Mówimy, że f jest **okresowa o okresie** $T \neq 0$, gdy

$$\forall_{x \in D} \ x + T \in D \land f(x) = f(x + T).$$

Niech $D \subset \mathbb{R}$ i niech $f \colon D \to \mathbb{R}$.

Mówimy, że f jest parzysta, gdy

$$\forall_{x \in D} - x \in D \wedge f(x) = f(-x).$$

Mówimy, że f jest nieparzysta , gdy

$$\forall_{x \in D} - x \in D \wedge f(-x) = -f(x).$$

• Mówimy, że f jest **okresowa o okresie** $T \neq 0$, gdy

$$\forall_{x \in D} \ x + T \in D \land f(x) = f(x + T).$$

Niech $D \subset \mathbb{R}$ i niech $f \colon D \to \mathbb{R}$.

Mówimy, że f jest parzysta, gdy

$$\forall_{x \in D} - x \in D \wedge f(x) = f(-x).$$

Mówimy, że f jest nieparzysta , gdy

$$\forall_{x \in D} - x \in D \wedge f(-x) = -f(x).$$

• Mówimy, że f jest **okresowa o okresie** $T \neq 0$, gdy

$$\forall_{x \in D} x + T \in D \land f(x) = f(x + T).$$

Funkcja parzysta

Funkcja nieparzysta

Funkcja okresowa

Wykład 1

definicja złożenia funkcji

Niech dane będą odwzorowania $f: X \to Y$ i $g: Y \to Z$.

Odwzorowanie $g \circ f \colon X \to Z$ dane wzorem $g \circ f(x) = g(f(x))$ nazywamy **złożeniem** (**superpozycją**) odwzorowań f i g. Funkcja f jest funkcją wewnętrzną, a g zewnętrzną tego złożenia.

Przykład 1

Niech
$$f(x) = \sin x$$
, a $g(x) = x^2 + 3x - 5$. Wtedy $g \circ f(x) = g(\sin x) = \sin^2 x + 3\sin x - 5$, $f \circ g(x) = f(x^2 + 3x - 5) = \sin(x^2 + 3x - 5)$.

Funkcja
$$f(x) = \sqrt{3^x}$$
 jest złożeniem funkcji $g(x) = 3^x$ i $h(x) = \sqrt{x}$, tj. $f = h \circ g$.

definicja złożenia funkcji

Niech dane będą odwzorowania $f: X \to Y$ i $g: Y \to Z$.

Odwzorowanie $g \circ f \colon X \to Z$ dane wzorem $g \circ f(x) = g(f(x))$ nazywamy **złożeniem** (**superpozycją**) odwzorowań f i g.

Funkcja f jest funkcją wewnętrzną, a g zewnętrzną tego złożenia.

Przykład 1

Niech
$$f(x) = \sin x$$
, a $g(x) = x^2 + 3x - 5$. Wtedy $g \circ f(x) = g(\sin x) = \sin^2 x + 3\sin x - 5$, $f \circ g(x) = f(x^2 + 3x - 5) = \sin(x^2 + 3x - 5)$.

Funkcja
$$f(x) = \sqrt{3^x}$$
 jest złożeniem funkcji $g(x) = 3^x$ i $h(x) = \sqrt{x}$, tj. $f = h \circ g$.

definicja złożenia funkcji

Niech dane będą odwzorowania $f: X \to Y$ i $g: Y \to Z$. Odwzorowanie $g \circ f: X \to Z$ dane wzorem $g \circ f(x) = g(f(x))$ nazywamy **złożeniem** (**superpozycją**) odwzorowań f i g. Funkcja f jest funkcją wewnętrzną, a g zewnętrzną tego złożenia.

Przykład 1

Niech
$$f(x) = \sin x$$
, a $g(x) = x^2 + 3x - 5$. Wtedy $g \circ f(x) = g(\sin x) = \sin^2 x + 3\sin x - 5$, $f \circ g(x) = f(x^2 + 3x - 5) = \sin(x^2 + 3x - 5)$.

Funkcja
$$f(x) = \sqrt{3^x}$$
 jest złożeniem funkcji $g(x) = 3^x$ i $h(x) = \sqrt{x}$, tj. $f = h \circ g$.

definicja złożenia funkcji

Niech dane będą odwzorowania $f: X \to Y$ i $g: Y \to Z$. Odwzorowanie $g \circ f: X \to Z$ dane wzorem $g \circ f(x) = g(f(x))$ nazywamy **złożeniem** (**superpozycją**) odwzorowań f i g. Funkcja f jest funkcją wewnętrzną, a g zewnętrzną tego złożenia.

Przykład 1

Niech
$$f(x) = \sin x$$
, a $g(x) = x^2 + 3x - 5$. Wtedy $g \circ f(x) = g(\sin x) = \sin^2 x + 3\sin x - 5$, $f \circ g(x) = f(x^2 + 3x - 5) = \sin(x^2 + 3x - 5)$.

Funkcja
$$f(x) = \sqrt{3^x}$$
 jest złożeniem funkcji $g(x) = 3^x$ i $h(x) = \sqrt{x}$, tj. $f = h \circ g$.

definicja złożenia funkcji

Niech dane będą odwzorowania $f: X \to Y$ i $g: Y \to Z$. Odwzorowanie $g \circ f: X \to Z$ dane wzorem $g \circ f(x) = g(f(x))$ nazywamy **złożeniem** (**superpozycją**) odwzorowań f i g. Funkcja f jest funkcją wewnętrzną, a g zewnętrzną tego złożenia.

Przykład 1

Niech
$$f(x) = \sin x$$
, a $g(x) = x^2 + 3x - 5$. Wtedy $g \circ f(x) = g(\sin x) = \sin^2 x + 3\sin x - 5$, $f \circ g(x) = f(x^2 + 3x - 5) = \sin(x^2 + 3x - 5)$.

Funkcja
$$f(x) = \sqrt{3^x}$$
 jest złożeniem funkcji $g(x) = 3^x$ i $h(x) = \sqrt{x}$, tj. $f = h \circ g$.

definicja złożenia funkcji

Niech dane będą odwzorowania $f: X \to Y$ i $g: Y \to Z$. Odwzorowanie $g \circ f: X \to Z$ dane wzorem $g \circ f(x) = g(f(x))$ nazywamy **złożeniem** (**superpozycją**) odwzorowań f i g. Funkcja f jest funkcją wewnętrzną, a g zewnętrzną tego złożenia.

Przykład 1

Niech
$$f(x) = \sin x$$
, a $g(x) = x^2 + 3x - 5$. Wtedy $g \circ f(x) = g(\sin x) = \sin^2 x + 3\sin x - 5$, $f \circ g(x) = f(x^2 + 3x - 5) = \sin(x^2 + 3x - 5)$.

Funkcja
$$f(x) = \sqrt{3^x}$$
 jest złożeniem funkcji $g(x) = 3^x$ i $h(x) = \sqrt{x}$, tj. $f = h \circ g$.

definicja złożenia funkcji

Niech dane będą odwzorowania $f: X \to Y$ i $g: Y \to Z$. Odwzorowanie $g \circ f: X \to Z$ dane wzorem $g \circ f(x) = g(f(x))$ nazywamy **złożeniem** (**superpozycją**) odwzorowań f i g. Funkcja f jest funkcją wewnętrzną, a g zewnętrzną tego złożenia.

Przykład 1

Niech
$$f(x) = \sin x$$
, a $g(x) = x^2 + 3x - 5$. Wtedy $g \circ f(x) = g(\sin x) = \sin^2 x + 3\sin x - 5$, $f \circ g(x) = f(x^2 + 3x - 5) = \sin(x^2 + 3x - 5)$.

Funkcja
$$f(x) = \sqrt{3^x}$$
 jest złożeniem funkcji $g(x) = 3^x$ i $h(x) = \sqrt{x}$, tj. $f = h \circ g$.

Funkcja odwrotna

Niech $f: X \xrightarrow{1-1} Y$. Funkcję $f^{-1}: f(X) \to X$ określoną następująco:

$$f^{-1}(y) = x \Leftrightarrow f(x) = y,$$

nazywamy funkcją odwrotną do funkcji f.

Wielomianem stopnia $n, n \in \mathbb{N}_0$, nazywamy funkcję $W \colon \mathbb{R} \to \mathbb{R}$ postaci $W(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$, gdzie $a_n \neq 0$. Funkcję W(x) = 0 nazywamy wielomianem zerowym.

- wielomiany stopnia zero (funkcje stałe, niezerowe): $W(x) = a_0, a_0 \neq 0$
- wielomiany stopnia jeden (funkcje liniowe, niestałe): $W(x) = ax + b, a \neq 0$
- wielomiany stopnia dwa (funkcje kwadratowe): $W(x) = ax^2 + bx + c$, $a \neq 0$
- wielomiany wyższych stopni, np. $W(x) = x^3 x$, $W(x) = (x^2 4)(x^3 3x^2 + x 3)$

Wielomianem stopnia $n, n \in \mathbb{N}_0$, nazywamy funkcję $W \colon \mathbb{R} \to \mathbb{R}$ postaci $W(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$, gdzie $a_n \neq 0$. Funkcję W(x) = 0 nazywamy wielomianem zerowym.

- wielomiany stopnia zero (funkcje stałe, niezerowe):
 - $W(x) = a_0, a_0 \neq 0$
- wielomiany stopnia jeden (funkcje liniowe, niestałe): W(x) = ax + b, $a \neq 0$
- wielomiany stopnia dwa (funkcje kwadratowe): $W(x) = ax^2 + bx + c$. $a \neq 0$
- wielomiany wyższych stopni, np. $W(x) = x^3 x$, $W(x) = (x^2 4)(x^3 3x^2 + x 3)$

Wielomianem stopnia $n, n \in \mathbb{N}_0$, nazywamy funkcję $W \colon \mathbb{R} \to \mathbb{R}$ postaci $W(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$, gdzie $a_n \neq 0$. Funkcję W(x) = 0 nazywamy wielomianem zerowym.

- wielomiany stopnia zero (funkcje stałe, niezerowe): $W(x) = a_0, a_0 \neq 0$
- wielomiany stopnia jeden (funkcje liniowe, niestałe): W(x) = ax + b, $a \neq 0$
- wielomiany stopnia dwa (funkcje kwadratowe): $W(x) = ax^2 + bx + c, a \neq 0$
- wielomiany wyższych stopni, np. $W(x) = x^3 x$, $W(x) = (x^2 4)(x^3 3x^2 + x 3)$

Wielomianem stopnia $n, n \in \mathbb{N}_0$, nazywamy funkcję $W \colon \mathbb{R} \to \mathbb{R}$ postaci $W(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$, gdzie $a_n \neq 0$. Funkcję W(x) = 0 nazywamy wielomianem zerowym.

- wielomiany stopnia zero (funkcje stałe, niezerowe): $W(x) = a_0, a_0 \neq 0$
- wielomiany stopnia jeden (funkcje liniowe, niestałe): $W(x) = ax + b, a \neq 0$
- wielomiany stopnia dwa (funkcje kwadratowe): $W(x) = ax^2 + bx + c$, $a \neq 0$
- wielomiany wyższych stopni, np. $W(x) = x^3 x$, $W(x) = (x^2 4)(x^3 3x^2 + x 3)$

Wielomianem stopnia $n, n \in \mathbb{N}_0$, nazywamy funkcję $W \colon \mathbb{R} \to \mathbb{R}$ postaci $W(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$, gdzie $a_n \neq 0$. Funkcję W(x) = 0 nazywamy wielomianem zerowym.

- wielomiany stopnia zero (funkcje stałe, niezerowe): $W(x) = a_0, a_0 \neq 0$
- wielomiany stopnia jeden (funkcje liniowe, niestałe): W(x) = ax + b, $a \neq 0$
- wielomiany stopnia dwa (funkcje kwadratowe): $W(x) = ax^2 + bx + c$, $a \neq 0$
- wielomiany wyższych stopni, np. $W(x) = x^3 x$, $W(x) = (x^2 4)(x^3 3x^2 + x 3)$

Funkcje stałe

Funkcje liniowe

Funkcje kwadratowe

Wielomiany wyższych stopni

Wielomiany wyższych stopni

Wielomiany wyższych stopni

Niech $P,Q:\mathbb{R}\to\mathbb{R}$, będą wielomianami, $Q\neq 0$. Oznaczmy

 $Z = \{x \in R : Q(x) = 0\}.$

Funkcję $R(x) = \frac{P(x)}{Q(x)}$ określoną dla $x \in \mathbb{R} \setminus Z$, nazywamy funkcją wymierną.

W szczególności, gdy P i Q są funkcjami liniowymi, tj. P(x) = ax + b, Q(x) = cx + d, przy czym $ad - bc \neq 0$, taką funkcję wymierną nazywmy homografią. Wykresem funkcji homograficznej $R(x) = \frac{ax+b}{cx+d}$, gdy $c \neq 0$ jest hiperbola.

Niech $P, Q: \mathbb{R} \to \mathbb{R}$, będą wielomianami, $Q \neq 0$. Oznaczmy $Z = \{x \in R: \ Q(x) = 0\}$.

Funkcję $R(x) = \frac{P(x)}{Q(x)}$ określoną dla $x \in \mathbb{R} \setminus Z$, nazywamy funkcją wymierną.

W szczególności, gdy P i Q są funkcjami liniowymi, tj. P(x) = ax + b, Q(x) = cx + d, przy czym $ad - bc \neq 0$, taką funkcję wymierną nazywmy homografią. Wykresem funkcji homograficznej $R(x) = \frac{ax+b}{cx+d}$, gdy $c \neq 0$ jest hiperbola.

Niech $P,Q\colon\mathbb{R}\to\mathbb{R}$, będą wielomianami, $Q\neq 0$. Oznaczmy $Z=\{x\in R:\ Q(x)=0\}.$ Funkcję $R(x)=\frac{P(x)}{Q(x)}$ określoną dla $x\in\mathbb{R}\setminus Z$, nazywamy funkcją wymierną.

W szczególności, gdy P i Q są funkcjami liniowymi, tj. P(x) = ax + b, Q(x) = cx + d, przy czym $ad - bc \neq 0$, taką funkcję wymierną nazywmy homografią. Wykresem funkcji homograficznej $R(x) = \frac{ax+b}{cx+d}$, gdy $c \neq 0$ jest hiperbola.

Niech $P, Q: \mathbb{R} \to \mathbb{R}$, będą wielomianami, $Q \neq 0$. Oznaczmy $Z = \{x \in R: Q(x) = 0\}$.

Funkcję $R(x) = \frac{P(x)}{Q(x)}$ określoną dla $x \in \mathbb{R} \setminus Z$, nazywamy funkcją wymierną.

W szczególności, gdy P i Q są funkcjami liniowymi, tj.

P(x) = ax + b, Q(x) = cx + d, przy czym $ad - bc \neq 0$, taką funkcję wymierną nazywmy homografią. Wykresem funkcji homograficznej $R(x) = \frac{ax+b}{cx+d}$, gdy $c \neq 0$ jest hiperbola.

Funkcja homograficzna

Definicja potęgi o wykładniku wymiernym.

Niech $a \in (0, \infty)$.

- $a^0 := 1$,
 - $a^{n+1} := a^n \cdot a$, dla $n \in \mathbb{N}_0$,
- $a^{-n} := \frac{1}{a^n}$, dla $n \in \mathbb{N}$,
- $a^{\frac{p}{q}} := \sqrt[q]{a^p}$, dla $p \in \mathbb{Z}$, $q \in \mathbb{N}$.

$$a^{x} \cdot a^{y} = a^{x+y}$$

•
$$a^{x} : a^{y} = a^{x-y}$$

$$(a^{x})^{y} = a^{xy}$$

Definicja potęgi o wykładniku wymiernym.

Niech $a \in (0, \infty)$.

- $a^0 := 1$,
- $a^{n+1} := a^n \cdot a$, dla $n \in \mathbb{N}_0$,
- $a^{-n} := \frac{1}{a^n}$, dla $n \in \mathbb{N}$,
- $a^{\frac{p}{q}} := \sqrt[q]{a^p}$, dla $p \in \mathbb{Z}$, $q \in \mathbb{N}$.

- $\bullet \ a^{x} \cdot a^{y} = a^{x+y}$
- $a^{x} : a^{y} = a^{x-y}$
- $(a^x)^y = a^{xy}$

Definicja potęgi o wykładniku wymiernym.

Niech $a \in (0, \infty)$.

- $a^0 := 1$,
- $a^{n+1} := a^n \cdot a$, dla $n \in \mathbb{N}_0$,
- $a^{-n} := \frac{1}{a^n}$, dla $n \in \mathbb{N}$,
- $a^{\frac{p}{q}}:=\sqrt[q]{a^p}$, dla $p\in\mathbb{Z}$, $q\in\mathbb{N}$.

- $a^{x} \cdot a^{y} = a^{x+y}$
- $a^{x} : a^{y} = a^{x-y}$
- $(a^{x})^{y} = a^{xy}$

Definicja potęgi o wykładniku wymiernym.

Niech $a \in (0, \infty)$.

- $a^0 := 1$,
- $a^{n+1} := a^n \cdot a$, dla $n \in \mathbb{N}_0$,
- $a^{-n} := \frac{1}{a^n}$, dla $n \in \mathbb{N}$,
- $a^{\frac{p}{q}}:=\sqrt[q]{a^p}$, dla $p\in\mathbb{Z},\,q\in\mathbb{N}$.

- $a^{x} \cdot a^{y} = a^{x+y}$
- $a^{x} : a^{y} = a^{x-y}$
- $(a^{x})^{y} = a^{xy}$

Definicja potęgi o wykładniku wymiernym.

Niech $a \in (0, \infty)$.

- $a^0 := 1$,
- $a^{n+1} := a^n \cdot a$, dla $n \in \mathbb{N}_0$,
- $a^{-n} := \frac{1}{a^n}$, dla $n \in \mathbb{N}$,
- $a^{\frac{p}{q}}:=\sqrt[q]{a^p}$, dla $p\in\mathbb{Z}$, $q\in\mathbb{N}$.

- $\bullet \ a^{x} \cdot a^{y} = a^{x+y}$
- $a^{x} : a^{y} = a^{x-y}$
- $(a^{x})^{y} = a^{xy}$

Definicja potęgi o wykładniku wymiernym.

Niech $a \in (0, \infty)$.

- $a^0 := 1$,
- $a^{n+1} := a^n \cdot a$, dla $n \in \mathbb{N}_0$,
- $a^{-n} := \frac{1}{a^n}$, dla $n \in \mathbb{N}$,
- $a^{\frac{p}{q}}:=\sqrt[q]{a^p}$, dla $p\in\mathbb{Z}$, $q\in\mathbb{N}$.

- $\bullet \ a^{x} \cdot a^{y} = a^{x+y}$
- $a^{x} : a^{y} = a^{x-y}$
- $(a^{x})^{y} = a^{xy}$

Definicja potęgi o wykładniku wymiernym.

Niech $a \in (0, \infty)$.

- $a^0 := 1$,
- $a^{n+1} := a^n \cdot a$, dla $n \in \mathbb{N}_0$,
- $a^{-n} := \frac{1}{a^n}$, dla $n \in \mathbb{N}$,
- $a^{\frac{p}{q}}:=\sqrt[q]{a^p}$, dla $p\in\mathbb{Z}$, $q\in\mathbb{N}$.

- $\bullet \ a^{x} \cdot a^{y} = a^{x+y}$
- $a^{x}: a^{y} = a^{x-y}$
- $a^x)^y = a^{xy}$

Twierdzenie

Jeśli funkcja $f \colon \mathbb{R} \to \mathbb{R}$ spełnia równanie

$$f(x)f(y) = f(x+y)$$
 dla $x, y \in \mathbb{R}$

oraz $a := f(1) \neq 0$, to $f(r) = a^r$ dla $r \in \mathbb{Q}$.

Twierdzenie

- Dla dowolnego a > 1 istnieje dokładnie jedna funkcja rosnąca $f_a \colon \mathbb{R} \to \mathbb{R}$ spełniająca równanie f(x)f(y) = f(x+y) i taka, że $f_a(1) = a$.
- Dla dowolnego $a \in (0,1)$ istnieje dokładnie jedna funkcja malejąca $f_a \colon \mathbb{R} \to \mathbb{R}$ spełniająca równanie f(x)f(y) = f(x+y) i taka, że $f_a(1) = a$.

$$a^{x} := f_{a}(x)$$
, dla $a \in (0,1) \cup (1,\infty)$, $x \in \mathbb{R}$

Twierdzenie

Jeśli funkcja $f \colon \mathbb{R} \to \mathbb{R}$ spełnia równanie

$$f(x)f(y) = f(x+y)$$
 dla $x, y \in \mathbb{R}$

oraz $a := f(1) \neq 0$, to $f(r) = a^r$ dla $r \in \mathbb{Q}$.

Twierdzenie

- Dla dowolnego a > 1 istnieje dokładnie jedna funkcja rosnąca $f_a \colon \mathbb{R} \to \mathbb{R}$ spełniająca równanie f(x)f(y) = f(x+y) i taka, że $f_a(1) = a$.
- Dla dowolnego $a \in (0,1)$ istnieje dokładnie jedna funkcja malejąca $f_a \colon \mathbb{R} \to \mathbb{R}$ spełniająca równanie f(x)f(y) = f(x+y) i taka, że $f_a(1) = a$.

$$a^{x}:=f_{a}(x)$$
, dla $a\in(0,1)\cup(1,\infty)$, $x\in\mathbb{R}$

Twierdzenie

Jeśli funkcja $f \colon \mathbb{R} \to \mathbb{R}$ spełnia równanie

$$f(x)f(y) = f(x+y)$$
 dla $x, y \in \mathbb{R}$

oraz $a := f(1) \neq 0$, to $f(r) = a^r$ dla $r \in \mathbb{Q}$.

Twierdzenie

- Dla dowolnego a > 1 istnieje dokładnie jedna funkcja rosnąca $f_a \colon \mathbb{R} \to \mathbb{R}$ spełniająca równanie f(x)f(y) = f(x+y) i taka, że $f_a(1) = a$.
- Dla dowolnego $a \in (0,1)$ istnieje dokładnie jedna funkcja malejąca $f_a \colon \mathbb{R} \to \mathbb{R}$ spełniająca równanie f(x)f(y) = f(x+y) i taka, że $f_a(1) = a$.

 $a^{x} := f_{a}(x)$, dla $a \in (0, 1) \cup (1, \infty)$, $x \in \mathbb{R}$

Twierdzenie

Jeśli funkcja $f \colon \mathbb{R} \to \mathbb{R}$ spełnia równanie

$$f(x)f(y) = f(x+y)$$
 dla $x, y \in \mathbb{R}$

oraz $a := f(1) \neq 0$, to $f(r) = a^r$ dla $r \in \mathbb{Q}$.

Twierdzenie

- Dla dowolnego a > 1 istnieje dokładnie jedna funkcja rosnąca $f_a \colon \mathbb{R} \to \mathbb{R}$ spełniająca równanie f(x)f(y) = f(x+y) i taka, że $f_a(1) = a$.
- Dla dowolnego $a \in (0,1)$ istnieje dokładnie jedna funkcja malejąca $f_a \colon \mathbb{R} \to \mathbb{R}$ spełniająca równanie f(x)f(y) = f(x+y) i taka, że $f_a(1) = a$.

$$a^{x} := f_{a}(x)$$
, dla $a \in (0,1) \cup (1,\infty)$, $x \in \mathbb{R}$

Funkcje elementarne. Funkcja logarytmiczna.

przypomnienie

Jeśli funkcja $f\colon X\to Y$ jest różnowartościowa, to funkcję $f^{-1}\colon f(X)\to X$ zdefiniowaną przez warunek

$$f^{-1}(y) = x \Leftrightarrow f(x) = y$$

nazywamy funkcją odwrotną do funkcji f.

Funkcja logarytmiczna

Funkcję odwrotną do funkcji wykładniczej $f(x)=a^x$ nazywamy funkcją logarytmiczną o podstawie a i oznaczamy \log_a . To znaczy

$$\log_a y = x \Leftrightarrow a^x = y.$$

Bezpośrednio z definicji otrzymujemy też:

$$\log_a a^x = x$$
, dla $x \in \mathbb{R}$, $a^{\log_a x} = x$, dla $x \in (0, \infty)$.

Funkcje elementarne. Funkcja logarytmiczna.

przypomnienie

Jeśli funkcja $f\colon X\to Y$ jest różnowartościowa, to funkcję $f^{-1}\colon f(X)\to X$ zdefiniowaną przez warunek

$$f^{-1}(y) = x \Leftrightarrow f(x) = y$$

nazywamy funkcją odwrotną do funkcji f.

Funkcja logarytmiczna

Funkcję odwrotną do funkcji wykładniczej $f(x)=a^x$ nazywamy funkcją logarytmiczną o podstawie a i oznaczamy \log_a . To znaczy

$$\log_a y = x \Leftrightarrow a^x = y.$$

Bezpośrednio z definicji otrzymujemy też:

$$\log_a a^x = x$$
, dla $x \in \mathbb{R}$, $a^{\log_a x} = x$, dla $x \in (0, \infty)$.

Funkcje elementarne. Funkcja logarytmiczna.

przypomnienie

Jeśli funkcja $f\colon X\to Y$ jest różnowartościowa, to funkcję $f^{-1}\colon f(X)\to X$ zdefiniowaną przez warunek

$$f^{-1}(y) = x \Leftrightarrow f(x) = y$$

nazywamy funkcją odwrotną do funkcji f.

Funkcja logarytmiczna

Funkcję odwrotną do funkcji wykładniczej $f(x) = a^x$ nazywamy funkcją logarytmiczną o podstawie a i oznaczamy \log_a . To znaczy

$$\log_a y = x \Leftrightarrow a^x = y.$$

Bezpośrednio z definicji otrzymujemy też:

$$\log_a a^x = x$$
, dla $x \in \mathbb{R}$, $a^{\log_a x} = x$, dla $x \in (0, \infty)$.

wykres funkcji logarytmicznej i wykładniczej

Własności funkcji logarytmicznej

$$D_f = (0, \infty)$$

$$f(D_f) = \mathbb{R}$$

gdy a>0: f jest rosnąca i wklęsła gdy $a\in(0,1)$: f jest malejąca i wypukła prosta x=0 jest asymptotą pionową (prawostronną)

- $\bullet \log_a b + \log_a c = \log_a(bc),$
- $\bullet \log_a b \log_a c = \log_a (b:c),$
- $\log_{a^b} c = \frac{1}{b} \log_a c$,
- $\bullet \log_a b = \frac{\log_c b}{\log_c a},$

- $\bullet \log_a b + \log_a c = \log_a(bc),$
- $\bullet \log_a b \log_a c = \log_a (b : c),$
- $\log_{a^b} c = \frac{1}{b} \log_a c$,
- $\bullet \log_a b = \frac{\log_c b}{\log_c a},$
- $\bullet \log_a b = \frac{1}{\log_b a}.$

- $\bullet \log_a b + \log_a c = \log_a(bc),$
- $\bullet \log_a b \log_a c = \log_a (b:c),$

- $\bullet \log_a b = \frac{\log_c b}{\log_c a},$
- $\bullet \log_a b = \frac{1}{\log_b a}.$

- $\bullet \log_a b + \log_a c = \log_a(bc),$
- $\bullet \log_a b \log_a c = \log_a (b : c),$

- $\bullet \log_a b = \frac{\log_c b}{\log_c a},$

- $\bullet \log_a b + \log_a c = \log_a(bc),$
- $\bullet \log_a b \log_a c = \log_a (b:c),$

- $\bullet \log_a b = \frac{\log_c b}{\log_c a},$
- $\bullet \log_a b = \frac{1}{\log_b a}.$

- $\bullet \log_a b + \log_a c = \log_a(bc),$
- $\bullet \log_a b \log_a c = \log_a (b:c),$
- $\bullet \log_a b^c = c \log_a b,$
- $\bullet \log_a b = \frac{\log_c b}{\log_c a},$
- $\log_a b = \frac{1}{\log_b a}$.

Funkcje elementarne. Funkcje trygonometryczne.

$$\arcsin x := (\sin |_{[\frac{-\pi}{2}, \frac{\pi}{2}]})^{-1}(x)$$

$$arc cos x := (cos \mid_{[0,\pi]})^{-1}(x)$$

$$arctg x := (tg \mid_{(\frac{-\pi}{2}, \frac{\pi}{2})})^{-1}(x)$$

$$arcctg x := (ctg \mid_{(0,\pi)})^{-1}(x)$$

$$\arcsin x := (\sin |_{[\frac{-\pi}{2}, \frac{\pi}{2}]})^{-1}(x)$$

$$\arccos x := (\cos|_{[0,\pi]})^{-1}(x)$$

$$arctg x := (tg \mid_{(\frac{-\pi}{2}, \frac{\pi}{2})})^{-1}(x)$$

$$arcctg x := (ctg \mid_{(0,\pi)})^{-1}(x)$$

Definicja

$$\arcsin x := (\sin |_{[\frac{-\pi}{2}, \frac{\pi}{2}]})^{-1}(x)$$

$$\arccos x := (\cos|_{[0,\pi]})^{-1}(x)$$

$$arctg x := (tg \mid_{(\frac{-\pi}{2}, \frac{\pi}{2})})^{-1}(x)$$

$$arcctg x := (ctg \mid_{(0,\pi)})^{-1}(x)$$

$$\arcsin x := (\sin |_{[\frac{-\pi}{2}, \frac{\pi}{2}]})^{-1}(x)$$

$$\arccos x := (\cos|_{[0,\pi]})^{-1}(x)$$

$$arctg x := (tg \mid_{(\frac{-\pi}{2}, \frac{\pi}{2})})^{-1}(x)$$

$$arcctg x := (ctg \mid_{(0,\pi)})^{-1}(x)$$

$$\arcsin x := (\sin |_{[\frac{-\pi}{2}, \frac{\pi}{2}]})^{-1}(x)$$

$$\arccos x := (\cos|_{[0,\pi]})^{-1}(x)$$

$$arctg x := (tg \mid_{(\frac{-\pi}{2}, \frac{\pi}{2})})^{-1}(x)$$

$$arcctg x := (ctg \mid_{(0,\pi)})^{-1}(x)$$

Funkcje cyklometryczne. Arcsin.

Funkcje cyklometryczne. Arccos.

Funkcje cyklometryczne. Arctg.

Funkcje cyklometryczne. Arcctg.

$$g(x) = f(x) + b$$

$$(x, y) \in \mathbf{gr}f \Leftrightarrow (x, y + b) \in \mathbf{gr}g$$

$$g(x)=f(x-a)$$

$$(x,y) \in \operatorname{gr} f \Leftrightarrow (x+a,y) \in \operatorname{gr} g$$

$$g(x) = f(-x)$$

$$(x, y) \in \mathsf{gr} f \Leftrightarrow (-x, y) \in \mathsf{gr} g$$

$$g(x) = -f(x)$$

$$(x, y) \in \mathbf{gr} f \Leftrightarrow (x, -y) \in \mathbf{gr} g$$

$$g(x) = f(kx)$$

$$(x,y) \in \operatorname{gr} f \Leftrightarrow (\frac{1}{k}x,y) \in \operatorname{gr} g$$

$$g(x) = kf(x)$$

$$(x, y) \in grf \Leftrightarrow (x, ky) \in grg$$

