Week 3 Assignment

Subject: Foundations of Statistical Analysis & Machine Learning (CSC1181)

Answers

Importing The simpsons_episodes.csv:

```
episodes <- read.csv("simpsons_episodes.csv", header = TRUE)</pre>
```

1. Statistical Analysis of IMDb Ratings

a) Calculating Mean Rating:

```
mean_rating <- mean(episodes$imdb_rating, na.rm = TRUE)
mean_rating
Output: 7.386097</pre>
```

b) Calculating the standard deviation:

```
sd_rating <- sd(episodes$imdb_rating, na.rm = TRUE)
sd_rating
Output: 0.7324394</pre>
```

c) Normal Distribution Curve of IMDB Ratings

2. Probability Calculations

a) percentage of rating (imdb_rating) less or equal than 6:

```
prob_rating6 <- pnorm((6 - mean_rating)/sd_rating) * 100
paste0(round(prob_rating6, 2), "%")</pre>
```

Output: 2.92%

Output:

b) percentage of rating (imdb_rating) greater than 9: prob_rating9plus <- (1 - pnorm((9 - mean_rating)/sd_rating)) * 100</pre> paste0(round(prob_rating9plus, 2), "%") **Output:** 1.38% c) percentage of rating (imdb_rating) between 7 and 8: prob_rating7to8 <- (pnorm((8 - mean_rating)/sd_rating) -</pre> pnorm((7 - mean_rating)/sd_rating)) * 100 paste0(round(prob_rating7to8, 2), "%") Output: 50% d) percentage of viewers (us_viewers_in_millions) greater than 30: mean_viewers <- mean(episodes\$us_viewers_in_millions, na.rm = TRUE)</pre> sd_viewers <- sd(episodes\$us_viewers_in_millions, na.rm = TRUE)</pre> prob_viewers30plus <- (1 - pnorm((30 - mean_viewers)/sd_viewers)) * 100</pre> paste0(round(prob_viewers30plus, 2), "%") **Output:** 0.23% e) percentage of viewers(us_viewers_in_millions) less than 10:

prob_viewers10less <- pnorm((10 - mean_viewers)/sd_viewers) * 100
paste0(round(prob_viewers10less, 2), "%")</pre>

Output: 38.69%

f) percentage of viewers (us_viewers_in_millions) between 10 and 20:

Output: 51.13%