TRƯỜNG ĐẠI HỌC GIAO THÔNG VẬN TẢI THÀNH PHỐ HỒ CHÍ MINH KHOA CƠ BẢN – BỘ MÔN TOÁN

BÀI GIẢNG ĐẠI SỐ TUYẾN TÍNH

CHƯƠNG III. GIÁ TRỊ RIÊNG, VECTƠ RIÊNG VÀ CHÉO HÓA MA TRẬN

§1. Giá trị riêng và vectơ riêng

ThS. Đinh Tiến Dũng

NỘI DUNG CHƯƠNG III

- 1. Trị riêng, véctơ riêng của ma trận
- 2. Bài toán chéo hóa ma trận.
- 3. Ứng dụng chéo hóa tính lũy thừa ma trận.
- 4. Chéo hóa ma trận đối xứng bởi ma trận trực giao.

CHƯƠNG III. GIÁ TRỊ RIÊNG, VECTƠ RIÊNG VÀ CHÉO HÓA MA TRẬN

§1. Giá trị riêng và vectơ riêng

I. CÁC KHÁI NIỆM

1. Định nghĩa

Số thực λ được gọi là trị riêng của ma trận vuông A, nếu tồn tại véctơ x khác vecto không, sao cho:

$$A[x] = \lambda[x].$$

Khi đó, vécto x được gọi là vécto riêng của ma trận vuông A tương ứng với trị riêng λ .

* Chú ý: Kí hiệu [x] là toạ độ của x viết dạng cột [x] = $\begin{bmatrix} x_2 \\ \dots \\ x_n \end{bmatrix}$.

II. CÁCH TÌM TRỊ RIÊNG, VÉCTƠ RIÊNG CỦA MA TRẬN

Giả sử λ là trị riêng của ma trận vuông A (cấp n)

$$\Leftrightarrow \exists x = (x_1, \dots, x_n) \neq \theta : A[x] = \lambda[x]$$

$$\Leftrightarrow \exists x = (x_1, \dots, x_n) \neq \theta : A[x] - \lambda[x] = \theta$$

$$\Leftrightarrow \exists x = (x_1, \dots, x_n) \neq \theta : (A - \lambda I_n) \cdot [x] = \theta(*)$$

 \Leftrightarrow Hệ thuần nhất (*) có ng_0 không tầm thường.

$$\Leftrightarrow det(A - \lambda I_n) = 0$$

Tóm lại, muốn tìm giá trị riêng và vectow riêng của ma trận A vuông cấp n ta làm như sau:

- B1: Giải phương trình: $det(A \lambda I_n) = 0$ (ẩn số λ).
- B2: Với mỗi giá trị riêng λ tìm được, ta tìm vectow riêng [x] là các nghiệm không tầm thường của hệ $[x_1]$

$$(A - \lambda I_n).[x] = \theta, \ v \acute{o}i \ [x] = \begin{vmatrix} x_2 \\ \dots \\ x_n \end{vmatrix}.$$

Một số khái niệm liên quan

- $det(A \lambda I_n) = 0$ gọi là phương trình đặc trưng của ma trận vuông A (cấp n). Đây là phương trình đại số bậc n, ẩn số λ .
- $P_A(\lambda) = det(A \lambda I_n)$ gọi là đa thức đặc trưng của A.
- Nếu λ là nghiệm đơn thì ta nói λ có bội đại số bằng 1.
- Nếu λ là nghiệm kép thì ta nói λ có bội đại số bằng 2.
- Nếu λ là nghiệm bội m thì ta nói λ có bội đại số bằng m.
- Với mỗi trị riêng λ_k , ta lập được một hệ phương trình tuyến tính thuần nhất $(A \lambda_k I_n)[x] = \theta$. Tập nghiệm của hệ khi đó lập thành một không gian vectơ con và gọi là không gian con riêng ứng với giá trị riêng λ_k . Ký hiệu: $E(\lambda_k)$ hay E_{λ_k} .

***VD:** Cho $A = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{pmatrix}$. Tìm trị riêng, cơ sở, số chiều của các không gian con riêng ứng với mỗi giá trị riêng tìm được.

Giải:

Phương trình đặc trưng của A:

$$det(A - \lambda I_3) = 0 \Leftrightarrow det\begin{pmatrix} 3 - \lambda & 1 & 1 \\ 2 & 4 - \lambda & 2 \\ 1 & 1 & 3 - \lambda \end{pmatrix} = 0$$

$$\Leftrightarrow (\lambda - 2)^{2}(\lambda - 6)^{1} = 0 \Leftrightarrow \lambda_{1} = 2; \lambda_{2} = 6.$$

Các trị riêng của A là: $\lambda_1 = 2$ (BDS = 2); $\lambda_2 = 6$ (BDS = 1).

• Không gian con riêng ứng $với \lambda_1 = 2$ là tập nghiệm của hệ phương trình:

$$(A - \lambda_1 I_3)[x] = 0 \Leftrightarrow \begin{pmatrix} 3 - 2 & 1 & 1 \\ 2 & 4 - 2 & 2 \\ 1 & 1 & 3 - 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

$$(x_1 = -a - b)$$

$$\Leftrightarrow x_1 + x_2 + x_3 = 0 \Leftrightarrow \begin{cases} x_1 = -a - b \\ x_2 = a \\ x_3 = b \end{cases} (a, b \in \mathbb{R})$$

Không gian con riêng ứng với $\lambda_1 = 2$ là:

$$E_{\lambda_1} = \{(-a - b; a; b)/a, b \in R\}$$

$$= \{(-a; a; 0) + (-b; 0; b)/a, b \in R\}$$

$$= \{a(-1; 1; 0) + b(-1; 0; 1)/a, b \in R\}$$

$$= span\{e_1 = (-1; 1; 0), e_2 = (-1; 0; 1)\}.$$

 $D\tilde{e}$ thấy: $\{e_1, e_2\}$ đltt nên nó là một cơ sở của E_{λ_1} .

Do đó
$$dim(E_{\lambda_1})=2$$
.

• Không gian con riêng ứng $với \lambda_2 = 6$ là tập nghiệm của hệ phương trình:

$$(A - \lambda_{2}I_{3})[x] = 0 \Leftrightarrow \begin{pmatrix} 3 - 6 & 1 & 1 \\ 2 & 4 - 6 & 2 \\ 1 & 1 & 3 - 6 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = 0$$

$$\Leftrightarrow \begin{cases} -3x_{1} + x_{2} + x_{3} = 0 \\ 2x_{1} - 2x_{2} + 2x_{3} = 0 \end{cases} \Leftrightarrow \begin{cases} x_{1} + x_{2} - 3x_{3} = 0 \\ 2x_{1} - 2x_{2} + 2x_{3} = 0 \end{cases}$$

$$\xrightarrow{-2.d_{1} + d_{2} \to d_{2}} \begin{cases} x_{1} + x_{2} - 3x_{3} = 0 \\ -3x_{1} + x_{2} + x_{3} = 0 \end{cases}$$

$$\xrightarrow{-2.d_{1} + d_{2} \to d_{2}} \begin{cases} x_{1} + x_{2} - 3x_{3} = 0 \\ -4x_{2} + 8x_{3} = 0 \end{cases}$$

$$\xrightarrow{-1} \begin{pmatrix} 4x_{2} + 8x_{3} = 0 \\ 4x_{2} - 8x_{3} = 0 \end{cases}$$

$$\xrightarrow{-1} \begin{pmatrix} x_{0} \land d_{3} \\ x_{2} - 2x_{3} = 0 \end{cases} \Leftrightarrow \begin{cases} x_{1} = a \\ x_{2} = 2a \quad (a \in \mathbb{R}). \\ x_{3} = a \end{cases}$$

• Không gian con riêng ứng với $\lambda_2 = 6$ là:

$$E_{\lambda_2} = \{(a; 2a; a)/a \in R\}$$

$$= \{a(1; 2; 1)/a \in R\}$$

$$= span\{e_3 = (1; 2; 1)\}.$$

Dễ thấy: $\{e_3\}$ là hệ gồm một vectơ khác vectơ-không nên nó đltt. Vậy $\{e_3\}$ là một cơ sở của E_{λ_2} .

Do đó $dim(E_{\lambda_2}) = 1$.

BÀI TẬP NHÓM

Cho ma trận
$$A = \begin{pmatrix} 3 & 0 & 0 \\ 2 & 4 & 0 \\ 1 & 1 & 3 \end{pmatrix}$$
. Tìm trị riêng, cơ sở, số chiều của các kgian con riêng ứng với các giá trị riêng tìm được.

* Chú ý: Cách tính nhanh đa thức đặc trưng của ma trận cấp ba

Cho
$$A = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}$$
. Khi đó đa thức đặc trưng của A có dạng $P_A(\lambda) = -\lambda^3 + m\lambda^2 - n\lambda + p$. Với $p = \det A$
$$n = \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} + \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} + \begin{vmatrix} a_1 & a_3 \\ c_1 & c_3 \end{vmatrix}$$
$$m = a_1 + b_2 + c_3$$

VD:
$$A = \begin{pmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{pmatrix}$$
. $Ta \ coist \ p = 32, n = 3. \begin{vmatrix} 4 & 2 \\ 2 & 4 \end{vmatrix} = 36, m = 12$

$$\Rightarrow P_A(\lambda) = -\lambda^3 + m\lambda^2 - n\lambda + p = -\lambda^3 + 12\lambda^2 - 36\lambda + 32$$

BÀI TẬP VỀ NHÀ

Câu 1: Cho ma trận $A = \begin{pmatrix} 4 & 0 & -1 \\ 7 & -3 & -1 \end{pmatrix}$. Tìm trị riêng, cơ sở, số chiều của các kgian con riêng ứng với các giá trị riêng tìm đựcc.

Câu 2: Cho ma trận $A = \begin{pmatrix} -1 & -2 & -2 \\ 2 & 3 & 2 \\ -1 & -2 & -2 \end{pmatrix}$. Tìm trị riêng, cơ sở, số chiều của các kgian con riêng ứng với các giá trị riêng tìm đực.

Câu 3: Cho ma trận $A = \begin{pmatrix} 3 & 2 & 1 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$. Tìm trị riêng, cơ sở, số chiều của các kgian con riêng ứng với các giá trị riêng tìm đựoc.