Université Sultan Moulay Slimane Ecole Supérieure de Technologie, Fkih Ben Salah :Filière; Génie Informatique- Informatique décisionnelle Année Universitaire 2022-2023

Série 1 Mathématiques

Exercice 1

Soient P et Q deux propositions. Montrer que les deux propositions suivantes sont équivalentes : $R = (\overline{P} \wedge Q) \vee (\overline{P} \wedge \overline{Q}) \vee (P \wedge Q), T = P \Longrightarrow Q.$

Exercice 2

En utilisant un raisonnement par contraposée, montrer que : $\forall n \in IN : 2^n - 1$ est premier \Longrightarrow n est premier

Exercice 3

Montrer par récurrence que : $1 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$

Exercice 4

Soit la suite $(u_n)_{n\in IN}$ définie par : $u_0=4, u_{n+1}=\frac{2u_n^2-3}{u_n+2}$.

- 1- Montrer que $\forall n \in IN : u_n > 3$.
- 2- Montrer que $\forall n \in IN : u_{n+1} 3 > \frac{3}{2}(u_n 3)$.
- 3- Montrer que $\forall n \in IN : u_n > (\frac{3}{2})^n + 3$.
- 4- La suite $(u_n)_{n\in IN}$ est- elle convergente?

Exercice 5

Soit $f: E \longrightarrow F$ une application, $A, B \in P(E)$ et $C, D \in P(F)$. Montrer les propriétés suivantes :

- $A \subset B \Longrightarrow f(A) \subset f(B)$
- $-f(A \cup B) = f(A) \cup f(B)$
- $f(A \cap B) \subset f(A) \cap f(B)$
- $-C \subset D \Longrightarrow f^{-1}(C) \subset f^{-1}(D)$
- $-f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$ $-f^{-1}(C \cap D) = f^{-1}(C) \cup f^{-1}(D)$
- $-f^{-1}(\overline{C} = \overline{f^{-1}(C)})$

Exercice 6

Donner un exemple du cas $f(A \cup B) \neq f(A) \cup f(B)$

Exercice 7

Soit E un ensemble et f une application de P(E) dans IR telle que pour toutes parties disjointes $A, B \in P(E)$, on a : $f(A \cup B) = f(A) + f(B)$

- 1- Montrer que $f(\emptyset) = 0$
- 2- Montrer que $\forall A, B \in P(E)$ on a $f(A \cap B) + f(A \cup B) = f(A) + f(B)$

Exercice 8

Soient $f: E \longrightarrow F$ et $g: F \longrightarrow G$ deux applications. Montrer les propriétés suivantes :

- 1- $g \circ f$ est injective $\Longrightarrow f$ est injective
- 2- $g \circ f$ est surjective $\Longrightarrow f$ est surjective
- 3- $g \circ f$ est surjective et g injective $\Longrightarrow f$ est surjective
- 1- $g \circ f$ est injective et f surjective $\Longrightarrow g$ est injective