WHAT IS CLAIMED IS:

1	1. A delay locked loop (DLL) for compensating for a skew in a
2	synchronous dynamic random access memory, comprising:
3	a delay model means for delaying an external clock signal by the skew to
4	generate a delayed clock signal;
5	a control means, in response to the external clock signal and the delayed clock
6	signal, for generating control signals, wherein the control signal includes a control clock
7	signal, a delayed control signal, a replication signal and a replication enable signal;
8	a first voltage controlled oscillation means, in response to the control clock
9	signal and the delayed control signal, for generating a measurement oscillating signal;
10	a second voltage controlled oscillation means, in response to the replication
11	signal and the replication enable signal, for generating a replication oscillating signal;
12	a first means, in response to the measurement oscillating signal and the
13	replication oscillating signal, for generating a DLL clock, signal; and
14	a second means for comparing a phase difference between the DLL clock
15	signal and the external clock signal to generate a voltage control signal, wherein time periods
16	of the measurement oscillating signal and the replication oscillating signal are changed by the
17	voltage control signal.
1	2. The delay locked loop as recited in claim 1, wherein the control clock
2	signal is enabled to a high level from a first rising edge to a second rising edge of the external
3	clock signal.
5	olook olgitali
1	3. The delay locked loop as recited in claim 2, wherein the delayed
2	control signal is enabled to a low level from a first rising edge to a second rising edge of the
3	delayed clock signal.
1	4. The delay locked loop as recited in claim 3, wherein the measurement
2	oscillating signal is toggled while both the control clock signal and the delayed control signa
3	are enabled.
5	are chapted.
1	5. The delay locked loop as recited in claim 4, wherein the first voltage
2	controlled oscillation means includes:
3	a NOR gate have an input terminal receiving the delayed control signal;

4	a delay control unit for delaying an output signal of the NOR gate in respons	se
5	to the voltage control signal;	
6	a NAND gate for NANDing the control clock signal and an output signal of	
7	the delay control unit;	
8	a delay unit for delaying an output signal of the NAND gate, wherein an	
9	output signal of the delay unit is feedback to another input terminal of the NOR gate; and	
10	an inverter for inverting the output signal of the NAND gate to generate the	
11	measurement oscillating signal.	
1	6. The delay locked loop as recited in claim 4, wherein the second	
2	voltage controlled oscillation means includes:	
3	a NOR gate having an input terminal receiving the replication signal;	
4	a delay control unit for delaying an output signal of the NOR gate in respons	se
5	to the voltage control signal;	
6	a NAND gate for NANDing the replication enable signal and an output signs	al
7	of the delay control unit;	
8	a delay unit for delaying an output signal of the NAND gate, wherein an	
9	output signal of the delay unit is feedback to another input terminal of the NOR gate; and	
10	an inverter for inverting the output signal of the NAND gate to generate the	
11	replication oscillating signal.	
1	7. The delay locked loop as recited in claim 4, wherein the first means	
2	includes:	
3	a plurality of delay units for shifting a low level of the delayed control signa	1
4	to corresponding nodes in response to the measurement oscillating signal;	
5	a plurality of registers for storing shifted low levels on the nodes; and	
6	a delay replication unit, in response to an output signal of the registers, for	
7	shifting the replication signal according to the replication oscillating signal to generate the	
8	DLL clock signal.	
1	8. The: delay locked loop as recited in claim 7, wherein each register	
2	includes:	
3	a first inverter for receiving a voltage level of corresponding node to put an	
4	inverted signal:	

)	a transmission gate for transmitting inverted signar in response to the control
6	clock signal;
7	a storage unit for storing the an output signal for the transmission gate; and
8	a second inverter for inverting an output signal of the storage unit.
1	9. The delay locked loop as recited in claim 1, wherein the second means
2	includes:
3	a second delay mode for delaying the DLL clock signal by the skew to
4	generate a comparison clock signal;
5	a phase detector for comparing the phase difference to generate an up pulse
6	signal and a down pulse signal according to the phase difference;
7	a charge pump decreasing and increasing the voltage level of the voltage
8	control signal in response to the up pulse signal and the down pulse signal; and
9	a filter for removing high-frequency noise of the voltage control signal.
1	10. The delay locked loop as recited in claim 9, wherein the down pulse
2	signal is generated if the comparison clock signal precedes the external clock signal, thereby
3	decreasing the voltage level of the voltage control signal.