Lab Report: Lab3 - Association Analysis -2

Udaya Shanker Mohanan Nair(udamo524), Dhanush Kumar Reddy Narayana Reddy(dhana004)

2025-03-27

Introduction

In this experiment, we explored how different clustering algorithms identify structure within the **Monk1** dataset, and why the clusters found may not align with the true class labels. We used both clustering and association rule analysis to examine the underlying logic of the data.

SimpleKMeans

SimpleKMeans in **Weka** is an implementation of the classic **K-Means** clustering algorithm. It partitions the data set into k clusters by minimizing the distance between data points and their assigned cluster centroids. It works best with numerical data and assumes that clusters are spherical and evenly sized.

SimpleKMeans with 2 Clusters

The SimpleKMeans algorithm was applied to the Monk1 dataset with $\mathbf{k} = \mathbf{2}$ clusters using the Euclidean distance metric. The algorithm converged after just 3 iterations, producing a within-cluster sum of squared errors of 358.0, indicating the compactness of clusters. The clustering process was efficient, taking only 0.01 seconds to complete. The resulting clusters contained 77 instances (62%) in Cluster 0, with 47 instances (38%) in Cluster 1. Analyzing the cluster centroids, we observe that Cluster 0 typically has values like attributes#1 = 1 and attributes#2 = 2, while Cluster 1 differs with features such as attributes#1 = 3, attributes #3 = 2, and attributes#6 = 1. These centroids reflect the average attribute values within each cluster, highlighting how the algorithm grouped instances based on numerical similarity.

```
kMeans
_____
Number of iterations: 3
Within cluster sum of squared errors: 358.0
Missing values globally replaced with mean/mode
Cluster centroids:
                           Cluster#
Attribute
               Full Data
                                              1
                   (124)
                               (77)
                                           (47)
                                   1
                                              3
attribute#1
                       1
attribute#2
                       3
                                  2
                                              3
attribute#3
                       1
                                              2
                                  1
                       3
attribute#4
                                  1
                                              3
                                              2
attribute#5
                       4
attribute#6
Time taken to build model (full training data): 0.01 seconds
=== Model and evaluation on training set ===
Clustered Instances
        77 (62%)
        47 ( 38%)
```

SimpleKMeans with 3 Clusters

The SimpleKmeans algorithm was executed with $\mathbf{k} = 3$ on the Monk1 dataset using Euclidean distance. It converged in just 3 iterations and achieved a within-cluster sum of squared errors of 314.0, which is slightly lower than the 2-cluster (358.0), indicating a tighter clustering. The instance were divided into Cluster 0:59(48%), Cluster 1:38(31%), and Cluster 2:27(22%). From the cluster centroids, we observe that each cluster emphasizes different combinations of attribute values- for example, attributes#1=1, in Cluster 0 vs attributes#1=3 in Cluster 1 - highlighting how the algorithm groups instances by numerical similarities. However, since clustering is unsupervised, these clusters don't necessarily align with the actual class labels of the data.

```
=== Run information ===

Scheme:weka.clusterers.SimpleKMeans -N 3 -A "weka.core.EuclideanDistance -R first-last" -I 500 -S 10

Relation: monk1-weka.filters.unsupervised.attribute.Remove-R7

Instances: 124

Attributes: 6

attribute#1
attribute#2
attribute#3
attribute#4
```

```
attribute#5
             attribute#6
Test mode: evaluate on training data
=== Model and evaluation on training set ===
kMeans
======
Number of iterations: 3
Within cluster sum of squared errors: 314.0
Missing values globally replaced with mean/mode
Cluster centroids:
                         Cluster#
              Full Data
                                0
                                                     2
Attribute
                                           1
                  (124)
                             (59)
                                        (38)
                                                   (27)
_____
                                           3
                                                     2
attribute#1
                      1
                                1
attribute#2
                     3
                                2
                                                     3
                                           1
attribute#3
                     1
                                1
                                           2
                                                     1
                     3
                                1
                                           3
                                                     2
attribute#4
attribute#5
                     4
                                3
                                           2
                                                     1
                                2
                                           1
                                                     1
attribute#6
                     2
Time taken to build model (full training data) : 0 seconds
=== Model and evaluation on training set ===
Clustered Instances
       59 (48%)
0
       38 (31%)
1
       27 ( 22%)
```

\mathbf{EM}

EM with 2 Clusters

The **Expectation-Maximization(EM)** algorithm was applied to the **Monk1 dataset** with the number of clusters set to 2. The model was trained on 124 instances with 6 attributes, using a probabilistic approach to assign instances based on likelihood. It completed in 0.04 seconds with a final log likelihood of -6.00606, indicating a moderate fit. The instances were nearly evenly distributed between Cluster 0 (48%) and Cluster 1 (52%). Cluster characteristics reveal notable differences in attribute distributions. For instance, **Cluster 0** had higher probabilities fro attributes#1 = 1 and attributes#2 = 3, while **Cluster 1** leaned more toward attributes#1 = 2 and attributes#2 = 1. Similarly, attribute#6 = 1 appeared more frequently in **Cluster 1**. Unlike KMeans, EM provides soft clustering, reflecting the underlying statistical patterns in the data rather than being rigid. partitions.

```
=== Run information ===
Scheme:weka.clusterers.EM -I 100 -N 2 -M 1.0E-6 -S 100
Relation: monk1-weka.filters.unsupervised.attribute.Remove-R7
Instances: 124
Attributes: 6
             attribute#1
            attribute#2
             attribute#3
             attribute#4
             attribute#5
             attribute#6
Test mode:evaluate on training data
=== Model and evaluation on training set ===
EM
Number of clusters: 2
             Cluster
               0
Attribute
              (0.5) (0.5)
_____
attribute#1
          29.4776 17.5224
 1
             11.643 32.357
             24.2423 14.7577
           65.3629 64.6371
 [total]
attribute#2
 1
             10.008 26.992
 2
             19.4842 24.5158
             35.8707 13.1293
 [total]
             65.3629 64.6371
attribute#3
             31.1592 35.8408
 1
 2
             33.2037 27.7963
             64.3629 63.6371
 [total]
attribute#4
 1
             17.2532 26.7468
 2
             16.5682 24.4318
 3
             31.5415 13.4585
 [total]
             65.3629 64.6371
attribute#5
 1
             13.9353 17.0647
 2
             19.0736 13.9264
 3
             10.9633 21.0367
             22.3906 13.6094
             66.3629 65.6371
 [total]
attribute#6
             25.2844 32.7156
 1
```

```
2 39.0785 30.9215
[total] 64.3629 63.6371

Time taken to build model (full training data): 0.04 seconds

=== Model and evaluation on training set ===

Clustered Instances

0 59 (48%)
1 65 (52%)

Log likelihood: -6.00606
```

EM with 3 Clusters

The **EM algorithm** was executed on the **Monk1 dataset** using 3 clusters, completing the training in 0.02 seconds with a slightly improved $log\ likelihood\ of\ -5.96262$ compared to the 2-cluster model. The 124 instances were divided into Cluster 0 (40%), Cluster 1 (17%), and Cluster 2 (43%). Cluster 1 is significantly smaller, capturing a more specific pattern in the data. Attribute distributions reveal distinct cluster behaviors: for example, attributes#1=2 is more dominant in **Cluster 2**, while attributes#1=3 show up strongly in **Cluster 0**. attributes#5=1 is highly concentrated in **Cluster 1**, hinting at a unique subgroup. Meanwhile, **Cluster 2** shows high values for attributes#2=1 and attributes#5=3, suggesting different attribute combinations. Compared to the 2-cluster model, this setup captures more granular structures, possibly reflecting underlying class-like separations in the Monk1 dataset more effectively through soft clustering.

```
=== Run information ===
Scheme:weka.clusterers.EM -I 100 -N 3 -M 1.0E-6 -S 100
Relation:
              monk1-weka.filters.unsupervised.attribute.Remove-R7
Instances:
              124
Attributes:
              attribute#1
              attribute#2
              attribute#3
              attribute#4
              attribute#5
              attribute#6
Test mode: evaluate on training data
=== Model and evaluation on training set ===
EM
Number of clusters: 3
              Cluster
Attribute
```

```
(0.4)
                        (0.2) (0.39)
attribute#1
 1
               24.2508 3.6254 20.1238
  2
                7.7929 10.2602
                                26.947
  3
               20.8313 14.2613 4.9074
  [total]
                52.875 28.1468 51.9782
attribute#2
  1
                8.5876 8.3912 21.0211
  2
               12.1224 10.3865 22.4911
  3
                32.165 9.3691 8.4659
  [total]
                52.875 28.1468 51.9782
attribute#3
               24.5556 15.7371 27.7073
  1
  2
               27.3194 11.4097 23.2709
  [total]
                51.875 27.1468 50.9782
attribute#4
               11.8655 14.0256 19.1089
  1
  2
               14.2182 8.5015 19.2803
  3
               26.7913 5.6197 13.5891
  [total]
                52.875 28.1468 51.9782
attribute#5
  1
                9.4906 17.4189 5.0905
  2
               16.8562 4.5329 12.6109
  3
                8.7413 3.5023 20.7564
  4
               18.7869 3.6927 14.5204
                53.875 29.1468 52.9782
  [total]
attribute#6
  1
               17.9585 16.5912 24.4502
  2
               33.9165 10.5555 26.528
                51.875 27.1468 50.9782
  [total]
Time taken to build model (full training data): 0.02 seconds
=== Model and evaluation on training set ===
Clustered Instances
0
        50 (40%)
        21 ( 17%)
1
2
        53 (43%)
Log likelihood: -5.96262
```

Association Analysis

The Assiociation analysis conducted using the Apriori algorithm on the Monk1 dataset, which consists of 124 instances and 6 attributes, aimed to identify strong relationships among attribute values. The algorithm was configured with a minimum support threshold of 5% and a minimum confidence of 0.9. Throughout 19 cycles, the analysis identified a total of 17 frequent 1-itemsets, 118 frequent 2-itemsets, 214

frequent 3-itemsets, and 14 frequent 4-itemsets. Among the discovered rules, the most significant one states that if attributes#2 equals 2, attribute#3 equal 1, and attributes#5 equal 4, then attributes#6 always 2. This rule was found in 6 instance and exhibited a perfect confidence of 1.0, indicating a strong and consistent relationship within the dataset. Such a rule can be particularly useful for predicting attributes values or uncovering patterns in the data.

```
=== Run information ===
              weka.associations.Apriori -N 19 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.05 -S -1.0 -c -1
Scheme:
              monk1-weka.filters.unsupervised.attribute.Remove-R7
Relation:
              124
Instances:
Attributes:
              attribute#1
              attribute#2
              attribute#3
              attribute#4
              attribute#5
              attribute#6
=== Associator model (full training set) ===
Apriori
Minimum support: 0.05 (6 instances)
Minimum metric <confidence>: 0.9
Number of cycles performed: 19
Generated sets of large itemsets:
Size of set of large itemsets L(1): 17
Size of set of large itemsets L(2): 118
Size of set of large itemsets L(3): 214
Size of set of large itemsets L(4): 14
Best rules found:
1. attribute#2=2 attribute#3=1 attribute#5=4 6 ==> attribute#6=2 6
                                                                        conf: (1)
```