Лекция 10. Совершенные дизъюнктивные и конъюнктивные нормальные формы (СДНФ и СКНФ) логических функций

Любая логическая функция эквивалентна некоторым стандартным композициям конъюнкций, дизъюнкций и отрицаний ее аргументов, называемым совершенными нормальными формами. Чтобы определить эти композиции, введем

Определение 1. Пусть x — некоторая логическая переменная со значениями из $E_2 = \{0,1\}$, а σ — число 0 или 1. Тогда положим

$$x^{\sigma} = \left\{ egin{array}{ll} ar{x}, & ext{если } \sigma = 0, \\ x, & ext{если } \sigma = 1, \end{array} \right.$$

T.e.
$$0^0 = 1$$
, $0^1 = 0$, $1^0 = 0$, $1^1 = 1$.

Далее пусть x_i $(i=1,\ldots,n)$ – логические переменные со значениями из E_2 , а σ_i $(i=1,\ldots,n)$ – некоторые значения переменных x_i . Тогда

$$x_i^{\sigma_i} = \begin{cases} \bar{x}_i, & \text{если } \sigma_i = 0, \\ x_i, & \text{если } \sigma_i = 1. \end{cases}$$

В этих обозначениях имеет место

Утверждение 1. Для любой логической функции n переменных x_1, \ldots, x_n справедлива формула

$$f(x_1, \dots, x_n) = \bigvee_{\sigma_1, \dots, \sigma_n: f(\sigma_1, \dots, \sigma_n) = 1} x_1^{\sigma_1} \wedge \dots \wedge x_n^{\sigma_n}.$$
 (1)

Упражнение 1 (д/з). Доказать утверждение 1.

Определение 2. Равенство (??) называется совершенной дизъюнктивной нормальной формой $(C\mathcal{Z}H\Phi)$ функции $f(x_1,\ldots,x_n)$.

Для того чтобы составить СДНФ для функции f, заданной табличным способом, нужно рассмотреть строки значений аргументов, для которых значение функции равно 1. Каждой строке соответствует элементарная конъюнкция вида $x_1^{\sigma_1} \wedge \cdots \wedge x_n^{\sigma_n}$, где σ_i $(i=1,\ldots,n)$ — значение переменной x_i в данной строке. СДНФ представляет собой дизъюнкцию этих элементарных конъюнкций.

Пример 1. Зададим некоторую логическую функцию трех переменных таблицей 1. Построим СДНФ для этой функции.

Таблица 1

x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Решение. Столбец значений функции содержит три единицы во второй, пятой и шестой строках. Вторая строка таблицы содержит значения $\sigma_1=0,\ \sigma_2=0$ и $\sigma_3=1$. Им соответствует элементарная конъюнкция $\bar{x}_1 \wedge \bar{x}_2 \wedge x_3$. Аналогично пятой строке соответствует $x_1 \wedge \bar{x}_2 \wedge \bar{x}_3$, а шестой – $x_1 \wedge \bar{x}_2 \wedge x_3$. Следовательно, СДНФ данной функции имеет вид

$$f(x_1, x_2, x_3) = (\bar{x}_1 \wedge \bar{x}_2 \wedge x_3) \vee (x_1 \wedge \bar{x}_2 \wedge \bar{x}_3) \vee (x_1 \wedge \bar{x}_2 \wedge x_3).$$

Упражнение 2 (д/з). Проверить эквивалентность полученной СДНФ исходной Φ функции.

Упражнение 3 (д/з). Построить СДН Φ для функции, заданной таблицей 2.

Таблица 2

x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Справедливо также

Утверждение 2. Для любой логической функции п переменных справедлива формула

$$f(x_1, \dots, x_n) = \bigwedge_{\sigma_1, \dots, \sigma_n: f(\sigma_1, \dots, \sigma_n) = 0} x_1^{1-\sigma_1} \vee \dots \vee x_n^{1-\sigma_n}.$$
 (2)

Упражнение 4 (д/з). Доказать утверждение 2.

Определение 2. Равенство (??) называется совершенной конъюнктивной нормальной формой $(CKH\Phi)$ функции $f(x_1, \ldots, x_n)$.

Для того чтобы составить СКН Φ для функции f, заданной табличным способом, нужно рассмотреть строки значений аргументов, для которых значение функции равно

0. Каждой такой строке соответствует элементарная дизъюнкция вида $x_1^{1-\sigma_1} \lor \cdots \lor x_n^{1-\sigma_n}$, где $\sigma_i \ (i=1,\ldots,n)$ – значение переменной x_i в данной строке и

$$x_i^{1-\sigma_i} = \begin{cases} \bar{x}_i, & \text{если } \sigma_i = 1, \\ x_i, & \text{если } \sigma_i = 0. \end{cases}$$

СКНФ представляет собой конъюнкцию этих элементарных дизъюнкций.

Пример 2. Построим СКНФ для функции из примера 1.

Таблица 1

x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Решение. Значения функции равны 0 для первой, третьей, четвертой, седьмой и восьмой строк, причем первой строке соответствует элементарная дизъюнкция $x_1 \lor x_2 \lor x_3$, третьей $-x_1 \lor \bar{x}_2 \lor x_3$, четвертой $-x_1 \lor \bar{x}_2 \lor \bar{x}_3$, седьмой $-\bar{x}_1 \lor \bar{x}_2 \lor x_3$ и восьмой $-\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3$. Следовательно, СКНФ данной функции имеет вид

$$f(x_1, x_2, x_3) = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \bar{x}_2 \lor x_3) \land (x_1 \lor \bar{x}_2 \lor \bar{x}_3) \land (\bar{x}_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3).$$

Упражнение 5 (д/з). Проверить эквивалентность полученной СКНФ исходной функции.

Упражнение 6 (д/з). Построить СКН Φ для функции, заданной таблицей 2.

Замечание 1. Способ задания логических функций полиномами Жегалкина, совершенными дизъюнктивными и конъюнктивными нормальными формами и другими композициями заданных функций называется формульным.