CS 320 Interaction Design

1

DISCOVERY

Textbook:

S. Heim, The Resonant Interface:
HCI Foundations for Interaction Design [Chapter 4, continued]
Addison-Wesley, 2007

Outline

2

- What is Interaction Design?
- 2 Discovery Phase: Interretation

1 What is Interaction Design?

3

- Goals of Interaction Design
- Interdisciplinary Aspects
- Major Trends

Interaction Design

4

• Interaction Design (IxD) is about helping users make the best out of their experience with computer systems

"Designing interactive products to support the way people communicate and interact in their everyday and working lives"

[Price, Rogers, and Sharp, 2007]

"Interaction design defines the structure and behavior of interactive systems.

Interaction designers strive to create meaningful relationships between people and the products and services that they use, from computers to mobile devices to appliances and beyond"

[Wikipedia 2011]

The practice typically centers on "embedding information technology into the ambient social complexities of the physical world"

[M. McCullough, 2004]

Interaction Design and Related Disciplines

Interaction Design: Major Trends

Mobile applications, smart phones (small screens)

Tablet PCs, multi-touch devices (touch screens)

Virtual reality
(immersive environments)

2 Discovery Phase

- Discovery Phase = Collection + Interpretation
- Collection
 - **×**Observation
 - **Elicitation**
- Interpretation
 - **▼**Task analysis
 - Storyboarding
 - **▼**Use cases
 - ➤ Primary stakeholder profiles
 - **▼**Documentation

Interaction Design Process: DDE Framework

General DDE Framework [Heim 2007]

CS 320

Interaction Design Process: Discovery

• General DDE Framework [Heim 2007] - Discovery

CS 320

Interpretation

- Task Analysis
- Storyboarding
- Use Cases
- Primary Stakeholder Profiles
- Documentation

CS 320 March 9, 2011

Interpretation - Task Analysis

- 11
- Task analysis is a way of documenting how people perform tasks
- A task analysis includes various aspects of the workflow
- The analysis is used to explore the requirements of the proposed system and structure the results of the data collection phase

Interpretation - Task Analysis

12

Task decomposition

• A linear description of a process that captures the elements involved as well as the relevant contextual factors

Hierarchical task analysis (HTA)

 Provides a top-down, structured approach to documenting processes

- Identify the process
- Describe the process steps
- It is important to create a picture of the process segmented by the steps involved and to capture the dependencies among steps

- Task analysis items [e.g., schedule a team meeting]:
 - Goal— define the top-level goal for the analysis
 - ▼ Schedule a team meeting
 - Plans describe the order and conditions required to proceed with subtasks
 - Reserve the conference room and A/V equipment based on the team members' available dates and times
 - **Information**—include all the information needed to perform the task
 - Team members' contact information
 - **▼** Conference room schedule
 - Audio/visual equipment use procedures
 - Objects—include all the physical objects used to find the information
 - Conference room calendar
 - **▼** Team address book
 - ➤ A/V sign-up sheet

CS 320

- Task analysis items [e.g., schedule a team meeting]:
 - Methods—these are the various ways you can proceed
 - × E-mail
 - **▼** Instant messaging
 - Objectives—these are the subgoals (subtasks)
 - Contact team members
 - **Confirm responses**
 - **▼** Coordinate schedules
 - **▼** Schedule conference room
 - ➤ Schedule A/V equipment
 - Confirm team member attendance

- Task analysis items [e.g., schedule a team meeting]:
 - Procedures—these are the triggers that may initiate contingency activities
 - Coordinate team schedules
 - Check conference room schedule
 - ➤ Check A/V sign-up sheet
 - Contingencies—these describe what needs to be done if one of the methods does not work
 - Check email replies
 - Monitor team members' online presence to confirm using IM
 - Speak directly with team members in close proximity
 - * Phone members in other locations
 - Leave a note on a team member's desk

Interpretation - Task Analysis - HTA

- Hierarchical task analysis (HTA)
 - Start with a specific goal (task) and then add subgoals (subtasks) required to achieve that goal
 - Organize tasks and subtasks hierarchically (through decomposition)
 - An HTA is read as follows:
 - * A box on top of another box describes what we want to do (subgoal)
 - The box below another box describes how it is done
 - ➤ Plans control the flow between subgoals

Interpretation - Task Analysis - HTA

First part of the HTA of the "schedule a team meeting" task

Check email

replies

Interpretation - Task Analysis - HTA

Coordinate Schedules

Plan: Reserve the conference room and A/V equipment based on the team member's available dates and times

Confirm Meeting

Repeat: Contact Team Members, Confirm Responses

Second part of the HTA of the "schedule a team meeting" task

CS 320 March 9, 2011

Interpretation - Storyboarding

- Storyboarding involves using a series of pictures that describes a particular process or work flow
 - Can be used to study existing workflows or generate requirements
 - Can facilitate the process of task decomposition
 - Used to brainstorm alternative ways of completing tasks

- Use case modeling represents a structured approach for describing workflows and processes
 - Use cases depict the interaction between the users and the system
- Jacobson et al (1992)
- Incorporated into the Unified Modeling Language (UML) standard

CS 320 March 9, 2011

 The two main components of use case modeling are the actors and the use cases

• An actor:

- Is always external to the system
- Interacts directly with the system
- Represents a role played by people or things, not specific people or specific things

• According to Rumbaugh, a *use case* is "a specification of sequences of actions, including variant sequences and error sequences, that a system, subsystem, or class can perform by interacting with outside actors"

• Use cases:

- Are always started by an actor
- Are always written from an actor's point of view

Use case diagram of "schedule a meeting" process

CS 320

25

• The use case diagram shows the system boundary, the use cases internal to the system, and the actors external to the system, e.g. [Fig.4.6, Arlow & Neustadt 2005]

use case name	Use case:PaySalesTax
use case identifier {	ID: 1
brief description {	Brief description: Pay Sales Tax to the Tax Authority at the end of the business quarter.
the actors involved in the	Primary actors: Time
use case	Secondary actors: TaxAuthority
the system state before the use case can begin	Preconditions: 1. It is the end of the business quarter.
	Main flow: implicit time actor
the actual steps of the use case	 The use case starts when it is the end of the business quarter. The system determines the amount of Sales Tax owed to the Tax Authority. The system sends an electronic payment to the Tax Authority.
the system state when the use case has finished	Postconditions: 1. The Tax Authority receives the correct amount of Sales Tax.
alternative flows	Alternative flows: None.

11	00	case:	Ein/	4D	rad	LIGH
U	se	case.			roa	uci

ID: 3

Brief description:

The system finds some products based on Customer search criteria and displays them to the Customer.

Primary actors:

Customer

Secondary actors:

None.

Preconditions:

None.

Main flow:

- 1. The use case starts when the Customer selects "find product".
- 2. The system asks the Customer for search criteria.
- 3. The Customer enters the requested criteria.
- 4. The system searches for products that match the Customer's criteria.
- 5. If the system finds some matching products then
 - 5.1 For each product found
 - 5.1.1 The system displays a thumbnail sketch of the product.
 - 5.1.2 The system displays a summary of the product details.
 - 5.1.3 The system displays the product price.
- 6. Else
 - 6.1 The system tells the Customer that no matching products could be found.

Postconditions:

None.

Alternative flows:

None.

- There are diverse flows (paths) through a use case
 - Main flow: The main path through the use case is the one that is completed without any diversions from error conditions or other accidental circumstances
 - Alternative flows: Alternative paths describe the exception-handling capabilities of the system. They capture, for example:
 - Premature termination of a process
 - Possible error conditions
 - Unusual exercising of a use case

• Scenarios: Each unique path through the use case is called a scenario

CS 320

 Primary Stakeholder Profiles are used to define the target user

- The constructs covered include:
 - Context of use
 - Cognitive ability
 - Physical ability
 - Individual profile

Context of Use		
Motivation ☐ Discretionary ☐ Mandatory	Social Environment Public Personal	Technical Environment ☐ Networked ☐ Isolated
Frequency of Use Non-User Infrequent	☐ Colaborative ☐ Individual	☐ Wired ☐ Wireless
Frequent	☐ Work ☐ Entertainment	☐ Intranet ☐ Extranet
User Category ☐ Beginner ☐ Intermediate	☐ Synchronous ☐ Asynchronous	☐ Internet
☐ Expert	Physical Environment	□ PAN □ LAN □ MAN
Task Nature ☐ Mission Critical ☐ Calm	☐ Indoor☐ Outdoor	□WAN
	Auditory (Noise Level) 1 = Low 5 = High	☐ Fixed ☐ Mobile
Interaction Mode Direct Indirect	1 2 3 4 5	☐ Peripherals☐ Contained
	Visual Quality	
☐ Continuous ☐ Intermittent	1 = Poor 5 = Good 1 2 3 4 5	
	Haptic ☐ Constrained ☐ Free	

32

Context of use for a common office desktop system

Context of Use		
Motivation ☐ Discretionary ☑ Mandatory	Social Environment Public Personal	Technical Environment Networked ☐ Isolated
Frequency of Use Non-User Infrequent Frequent	✓ Colaborative✓ Individual✓ Work	✓ Wired ☐ Wireless ✓ Intranet
User Category ☐ Beginner ☐ Intermediate ☐ Expert	☐ Entertainment Synchronous Asynchronous	Extranet Internet
Task Nature Mission Critical Calm	Physical Environment Indoor Outdoor	MAN WWAN Fixed
Interaction Mode Direct Indirect	Auditory (Noise Level) 1 = Low 5 = High 1 2 3 4 5 Visual Quality	☐ Mobile ☑ Peripherals ☐ Contained
☐ Continuous ☐ Intermittent	1 = Poor 5 = Good 1 2 3 4 5 Haptic	
	□ Constrained Free	

CS 320 March 9, 2011

33

 The cognitive abilities of the target users affect the design

• The cognitive abilities of the target users may be specific (e.g., an educational game for a specific grade level) or more general (e.g., a web site for a broader audience)

34

MAXIM

Domain expertise may not correlate with computer literacy

Cognitive Ability	
Educational Level Elementary Middle School High School Undergraduate	Typing Skill (Words per Minute) Novice Intermediate Expert
☐ Graduate School ☐ Post Graduate	Domain Knowledge 1 = Novice 5 = Expert 1 2 3 4 5
Computer Literacy	
System	Cognitive Style
1 = Low 5 = High 1 2 3 4 5 Application 1 = Low 5 = High 1 2 3 4 5	☐ Visual ☐ Auditory ☐ Graphical ☐ Linguistic

- The human condition includes wide ranges of physical abilities
 - Visual
 - Auditory
 - Haptic

Pł	nysical A	Ability
Visual	Blind 20/200 20/100 20/70 20/50 20/40 20/30 20/25 20/20	Color Vision Trichromatic Protanomaly Deuteranomaly Auditory 1 = Deaf 5 = Normal 1 2 3 4 5 Haptic Disabled Fully Functional

CS 320

36

 There are situations when personal user information is required

Individual Profile			
Age □ Early Childhood □ Childhood	Occupation Interests		
☐ Preteen ☐ Teen ☐ Young Adult ☐ Adult ☐ Middle Age ☐ Senior	Country Region Language Ethnicity Religion Socio-Economic		
Gender Male Female			

CS 320 March 9, 2011

- Documentation as outcome of the Discovery phase consists of
 - Mission statement (project concept)
 - Requirements document
 - Project management document

Mission Statement

- Project goals
 - What needs will the new system address?
 - ➤ How will it address these needs?
 - What is the utility of the proposed system?
- Project scope
 - ➤ What does the proposed design include or exclude?
 - What are the external constraints such as time and finances?
 - Mow will you decide when it satisfies the design proposal?

- Requirements Document
 - Detailed requirements, on several levels of priorities (recommended, 3 levels)
 - **Functional**
 - × Non-functional
 - Inputs/outputs

CS 320

Project Management Document

- Definition of the tasks involved in the project
- People assigned to tasks
- Risk assessment
- Evaluation criteria and methods
- Implementation timeline
- Training
- Maintenance
- Future needs

Video Selection

• HCI videos

[Sketch furniture by Front] [High-speed robot hand]

[MIT's Nexi robot] [Honda Asimo] [Corning - glass]

[Augmented reality by Hitlab] - Nitish

[MS surface patient consultation] - Andrew

[Augmented maps] - Rakib

[Microsoft Kinect] - Warren and Parth

[BumpTop] - Nitish