ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 34.11— 2012

Информационная технология

КРИПТОГРАФИЧЕСКАЯ ЗАЩИТА ИНФОРМАЦИИ

Функция хэширования

Издание официальное

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

- РАЗРАБОТАН Центром защиты информации и специальной связи ФСБ России с участием Открытого акционерного общества «Информационные технологии и коммуникационные системы» (ОАО «ИнфоТеКС»)
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 26 «Криптографическая защита информации»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 7 августа 2012 г. № 216-ст
 - 4 B3AMEH FOCT P 34.11-94

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

Содержание

1	Область применения	. 1
2	Нормативные ссылки	. 1
3	Термины, определения и обозначения	. 1
	3.1 Термины и определения	. 1
	3.2 Обозначения	. 2
4	Общие положения	. 3
5	Значения параметров	. 3
	5.1 Инициализационные векторы	. 3
	5.2 Нелинейное биективное преобразование множества двоичных векторов	. 3
	5.3 Перестановка байт	.4
	5.4 Линейное преобразование множества двоичных векторов	.4
	5.5 Итерационные константы. ,	. 4
6	Преобразования	. 5
7	Функция сжатия	.5
8	Процедура вычисления хэш-функции	. 6
	8.1 Этап 1	. 6
	8.2 9ran 2	. 6
	8.3 Этап 3	. 6
П	риложение А (справочное) Контрольные примеры	. 7
Б	иблиография	18

Введение

Настоящий стандарт содержит описание алгоритма и процедуры вычисления хэш-функции для любой последовательности двоичных символов, которые применяются в криптографических методах защиты информации, в том числе в процессах формирования и проверки электронной цифровой подписи.

Стандарт разработан взамен ГОСТ Р 34.11—94. Необходимость разработки настоящего стандарта вызвана потребностью в создании хэш-функции, соответствующей современным требованиям к криптографической стойкости и требованиям стандарта ГОСТ Р 34.10—2012 к электронной цифровой подписи.

Настоящий стандарт терминологически и концептуально увязан с международными стандартами ИСО 2382—2 [1], ИСО/МЭК 9796 [2—3], серии ИСО/МЭК 14888 [4—7] и серии ИСО/МЭК 10118 [8—11].

Примечание — Основная часть стандарта дополнена одним приложением: Приложение А (справочное) Контрольные примеры.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Информационная технология

КРИПТОГРАФИЧЕСКАЯ ЗАЩИТА ИНФОРМАЦИИ

Функция хэширования

Information technology. Cryptographic data security. Hash-function

Дата введения — 2013—01—01

1 Область применения

Настоящий стандарт определяет алгоритм и процедуру вычисления хэш-функции для любой последовательности двоичных символов, которые применяются в криптографических методах обработки и защиты информации, в том числе для реализации процедур обеспечения целостности, аутентичности, электронной цифровой подписи (ЭЦП) при передаче, обработке и хранении информации в автоматизированных системах.

Определенная в настоящем стандарте функция хэширования используется при реализации систем электронной цифровой подписи на базе асимметричного криптографического алгоритма по ГОСТ Р 34.10—2012.

Стандарт рекомендуется использовать при создании, эксплуатации и модернизации систем обработки информации различного назначения.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 34.10—2012 Информационная технология. Криптографическая защита информации. Процессы формирования и проверки электронной цифровой подписи

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства Российской Федерации по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины, определения и обозначения

В настоящем стандарте применены следующие термины с соответствующими определениями.

3.1 Термины и определения

3.1.1

заполнение (padding): Приписывание дополнительных бит к строке бит. [ИСО/МЭК 10118-1, статья 3.9]

ГОСТ Р 34.11-2012

3.1.2

инициализационный вектор (initializing value): Вектор, определенный как начальная точка работы функции хэширования.

[ИСО/МЭК 10118-1, статья 3.7]

3.1.3

сообщение (message): Строка бит произвольной конечной длины. [ИСО/МЭК 14888-1, статья 3.10]

3.1.4

функция сжатия (round-function): Итеративно используемая функция, преобразующая строку бит длиной L_1 и полученную на предыдущем шаге строку бит длиной L_2 в строку бит длиной L_2 . [ИСО/МЭК 10118-1, статья 3.10]

Примечание — В настоящем стандарте понятия «строка бит длиной L» и «двоичный вектор-строка размерности L» считаются тождественными.

3.1.5

хэш-код (hash-code): Строка бит, являющаяся выходным результатом хэш-функции. [ИСО/МЭК 14888-1, статья 3.6]

3.1.6

хэш-функция (collision-resistant hash-function): Функция, отображающая строки бит в строки бит фиксированной длины и удовлетворяющая следующим свойствам:

- 1) по данному значению функции сложно вычислить исходные данные, отображаемые в это значение;
- для заданных исходных данных сложно вычислить другие исходные данные, отображаемые в то же значение функции;
 - сложно вычислить какую-либо пару исходных данных, отображаемых в одно и то же значение. [ИСО/МЭК 14888-1, статьи 3.2, 3.7]

Примечание — В настоящем стандарте в целях сохранения терминологической преемственности по отношению к действующим отечественным нормативным документам и опубликованным научно-техническим изданиям установлено, что термины «хэш-функция», «криптографическая хэш-функция», «функция хэширования» и «криптографическая функция хэширования» являются синонимами.

3.1.7

электронная цифровая подпись (signature); ЭЦП: Строка бит, полученная в результате процесса формирования подписи.

[ИСО/МЭК 14888-1, статья 3.12]

Примечание — В настоящем стандарте в целях сохранения терминологической првемственности по отношению к действующим отечественным нормативным документам и опубликованным научно-техническим изданиям установлено, что термины «электронная подпись», «цифровая подпись» и «электронная цифровая подпись» являются синонимами.

3.2 Обозначения

В настоящем стандарте используются следующие обозначения:

- V* множество всех двоичных векторов-строк конечной размерности (далее векторы), включая пустую строку;
- |A| размерность (число компонент) вектора $A ∈ V^*$ (если A пустая строка, то |A| = 0);
- V_n множество всех n-мерных двоичных векторов, где n целое неотрицательное число; нумерация подвекторов и компонент вектора осуществляется справа налево, начиная с нуля;

операция покомпонентного сложения по модулю 2 двух двоичных векторов одинаковой размерности;

A||B конкатенация векторов $A, B ∈ V^*$, т. е. вектор из $V_{|A|+|B|}$, в котором левый подвектор

из $V_{|A|}$ совпадает с вектором A, а правый подвектор из $V_{|B|}$ совпадает с вектором B;

Аⁿ конкатенация n экземпляров вектора A;

 \mathbb{Z}_{2^n} кольцо вычетов по модулю 2^n ;

 \square операция сложения в кольце \mathbb{Z}_{2^n} ;

 $\mathrm{Vec}_n: \mathbb{Z}_{2^n} o V_n$ биективное отображение, сопоставляющее элементу кольца \mathbb{Z}_{2^n} его двоичное представление, т. е. для любого элемента z кольца \mathbb{Z}_{2^n} , представленного вычетом $z_0+2z_1+...+2^{n-1}$ z_{n-1} , где $z_i \in \{0,1\}, j=0,...,n-1$, выполнено равенство $\mathrm{Vec}_n(z)=z_{n-1}||...||z_1||z_0;$

 $\operatorname{Int}_n: V_n \to \mathbb{Z}_{2^n}$ отображение, обратное отображению Vec_n , т. е. $\operatorname{Int}_n = \operatorname{Vec}_n^{-1}$:

 $MSB_n: V^* \to V_n$ отображение, ставящее в соответствие вектору $z_{k-1}|| \dots ||z_1||z_0, \ k \ge n$, вектор

 $Z_{k-1} || ... || Z_{k-n+1} || Z_{k-n}$;

a: = b операция присваивания переменной a значения b;

Ф

Ф

произведение отображений, при котором отображение

действует первым;

M двоичный вектор, подлежащий хэшированию, $M ∈ V^*$, $|M| < 2^{512}$;

 $H: V^* \to V_n$ функция хэширования, отображающая вектор (сообщение) M в вектор (хэш-код)

H(M);

IV инициализационный вектор функции хэширования, $IV \in V_{512}$.

4 Общие положения

Настоящий стандарт определяет две функции хэширования $H: V^* \to V_n$ с длинами хэш-кода n = 512 бит и n = 256 бит.

5 Значения параметров

5.1 Инициализационные векторы

Значение инициализационного вектора IV для функции хэширования с длиной хэш-кода 512 бит равно 0⁵¹². Значение инициализационного вектора IV для функции хэширования с длиной хэш-кода 256 бит равно (0000001)⁸⁴.

5.2 Нелинейное биективное преобразование множества двоичных векторов

Нелинейное биективное преобразование множества двоичных векторов V_8 задается подстановкой

$$\pi = \text{Vec}_8 \pi' \text{Int}_8: V_8 \rightarrow V_8,$$
 (1)

где π' : $\mathbb{Z}_{2^8} \to \mathbb{Z}_{2^8}$.

Значения подстановки π' записаны ниже в виде массива $\pi' = (\pi'(0), \pi'(1), ..., \pi'(255))$:

"" = (252, 238, 221, 17, 207, 110, 49, 22, 251, 196, 250, 218, 35, 197, 4, 77, 233, 119, 240, 219, 147, 46, 153, 186, 23, 54, 241, 187, 20, 205, 95, 193, 249, 24, 101, 90, 226, 92, 239, 33, 129, 28, 60, 66, 139, 1, 142, 79, 5, 132, 2, 174, 227, 106, 143, 160, 6, 11, 237, 152, 127, 212, 211, 31, 235, 52, 44, 81, 234, 200, 72, 171, 242, 42, 104, 162, 253, 58, 206, 204, 181, 112, 14, 86, 8, 12, 118, 18, 191, 114, 19, 71, 156, 183, 93, 135, 21, 161, 150, 41, 16, 123, 154, 199, 243, 145, 120, 111, 157, 158, 178, 177, 50, 117, 25, 61, 255, 53, 138, 126, 109, 84, 198, 128, 195, 189, 13, 87, 223, 245, 36, 169, 62, 168, 67, 201, 215, 121, 214, 246, 124, 34, 185, 3, 224, 15, 236, 222, 122, 148, 176, 188, 220, 232, 40, 80, 78, 51, 10, 74, 167, 151, 96, 115, 30, 0, 98, 68, 26, 184, 56, 130, 100, 159, 38, 65, 173, 69, 70, 146, 39, 94, 85, 47, 140, 163, 165, 125, 105, 213, 149, 59, 7, 88, 179, 64, 134, 172, 29, 247, 48, 55, 107, 228, 136, 217, 231, 137, 225, 27, 131, 73, 76, 63, 248, 254, 141, 83,

170, 144, 202, 216, 133, 97, 32, 113, 103, 164, 45, 43, 9, 91, 203, 155, 37, 208, 190, 229, 108, 82, 89, 166, 116, 210, 230, 244, 180, 192, 209, 102, 175, 194, 57, 75, 99, 182).

5.3 Перестановка байт

Значения перестановки τ , заданной на множестве $\{0, ..., 63\}$, записаны ниже в виде массива $\tau = (\tau(0), \tau(1), ..., \tau(63))$:

 $\tau = (0, 8, 16, 24, 32, 40, 48, 56, 1, 9, 17, 25, 33, 41, 49, 57, 2, 10, 18, 26, 34, 42, 50, 58, 3, 11, 19, 27, 35, 43, 51, 59, 4, 12, 20, 28, 36, 44, 52, 60, 5, 13, 21, 29, 37, 45, 53, 61, 6, 14, 22, 30, 38, 46, 54, 62, 7, 15, 23, 31, 39, 47, 55, 63).$

5.4 Линейное преобразование множества двоичных векторов

Линейное преобразование I множества двоичных векторов V_{64} задается умножением справа на матрицу A над полем GF(2), строки которой записаны ниже последовательно в шестнадцатеричном виде. Строка матрицы с номером j, j = 0,...,63, записанная в виде $a_{j,15} ... a_{j,0}$, где $a_{j,1} \in \mathbb{Z}_{16}$, i = 0,...,15, есть $\text{Vec}_4(a_{j,15})||...||\text{Vec}_4(a_{j,0})$.

8e20faa72ba0b470	47107ddd9b505a38	ad08b0e0c3282d1c	d8045870ef14980e
6c022c38f90a4c07	3601161cf205268d	1b8e0b0e798c13c8	83478b07b2468764
a011d380818e8f40	5086e740ce47c920	2843fd2067adea10	14aff010bdd87508
0ad97808d06cb404	05e23c0468365a02	8c711e02341b2d01	46b60f011a83988e
90dab52a387ae76f	486dd4151c3dfdb9	24b86a840e90f0d2	125c354207487869
092e94218d243cba	8a174a9ec8121e5d	4585254f64090fa0	accc9ca9328a8950
9d4df05d5f661451	c0a878a0a1330aa6	60543c50de970553	302a1e286fc58ca7
18150f14b9ec46dd	0c84890ad27623e0	0642ca05693b9f70	0321658cba93c138
86275df09ce8aaa8	439da0784e745554	afc0503c273aa42a	d960281e9d1d5215
e230140fc0802984	71180a8960409a42	b60c05ca30204d21	5b068c651810a89e
456c34887a3805b9	ac361a443d1c8cd2	561b0d22900e4669	2b838811480723ba
9bcf4486248d9f5d	c3e9224312c8c1a0	effa11af0964ee50	f97d86d98a327728
e4fa2054a80b329c	727d102a548b194e	39b008152acb8227	9258048415eb419d
492c024284fbaec0	aa16012142f35760	550b8e9e21f7a530	a48b474f9ef5dc18
70a6a56e2440598e	3853dc371220a247	1ca76e95091051ad	0edd37c48a08a6d8
07e095624504536c	8d70c431ac02a736	c83862965601dd1b	641c314b2b8ee083

Здесь в одной строке записаны четыре строки матрицы A, при этом в строке с номером i, i = 0,...,15, записаны строки матрицы A с номерами 4i + j, j = 0,...,3, в следующем порядке (слева направо): 4i + 0, 4i + 1, 4i + 2, 4i + 3.

Результат умножения вектора $b = b_{63}...b_0 \in V_{64}$ на матрицу A есть вектор $c \in V_{64}$:

$$c = b_{63}(\text{Vec}_4(a_{0.15})||...||\text{Vec}_4(a_{0.0})) \oplus ... \oplus b_0(\text{Vec}_4(a_{63,15})||...||\text{Vec}_4(a_{63,0})),$$
 (2)

где
$$b_i(\text{Vec}_4(a_{63-i,15})\|..\|\text{Vec}_4(a_{63-i,0})) = \begin{cases} 0^{64}, & \text{если } b_i = 0, \\ \text{Vec}_4(a_{63-i,15})\|..\|\text{Vec}_4(a_{63-i,0})) & \text{если } b_i = 1, \end{cases}$$
 для всех $i = 0,...,63$.

5.5 Итерационные константы

Итерационные константы записаны в шестнадцатеричном виде. Значение константы, записанное в виде $a_{127}...a_0$, где $a_i \in \mathbb{Z}_{16}$, i = 0,...,127, есть $\text{Vec}_4(a_{127})||...||\text{Vec}_4(a_0)$:

 C_1 = b1085bda1ecadae9ebcb2f81c0657c1f2f6a76432e45d016714eb88d7585c4fc4b7ce09192676901 a2422a08a460d31505767436cc744d23dd806559f2a64507:

 C_2 = 6fa3b58aa99d2f1a4fe39d460f70b5d7f3feea720a232b9861d55e0f16b501319ab5176b12d699585cb561c2db0aa7ca55dda21bd7cbcd56e679047021b19bb7;

 C_3 = f574dcac2bce2fc70a39fc286a3d843506f15e5f529c1f8bf2ea7514b1297b7bd3e20fe490359eb1c1c93a376062db09c2b6f443867adb31991e96f50aba0ab2;

 C_4 = ef1fdfb3e81566d2f948e1a05d71e4dd488e857e335c3c7d9d721cad685e353fa9d72c82ed03d675d8b71333935203be3453eaa193e837f1220cbebc84e3d12e;

 $C_5 = 4 \text{bea} 6 \text{baca} d4747999a3f410c6 ca923637f151c1f1686104a359e35d7800fffbdbfcd1747253af5a3dfff00b723271a167a56a27ea9ea63f5601758fd7c6cfe57;}$

 $C_6 = {\tt ae4faeae1d3ad3d96fa4c33b7a3039c02d66c4f95142a46c187f9ab49af08ec6cffaa6b71c9ab7b40af21f66c2bec6b6bf71c57236904f35fa68407a46647d6e;}$

 C_7 = f4c70e16eeaac5ec51ac86febf240954399ec6c7e6bf87c9d3473e33197a93c9 0992abc52d822c37 06476983284a05043517454ca23c4af38886564d3a14d493;

 $C_8 = 9b1f5b424d93c9a703e7aa020c6e41414eb7f8719c36de1e89b4443b4ddbc49af4892bcb929b069069d18d2bd1a5c42f36acc2355951a8d9a47f0dd4bf02e71e;$

 $C_{\rm p} = 378f5a541631229b944c9ad8ec165fde3a7d3a1b258942243cd955b7e00d0984800a440bdbb2ceb17b2b8a9aa6079c540e38dc92cb1f2a607261445183235adb;$

 $C_{10} = abbedea680056f52382ae548b2e4f3f38941e71cff8a78db1fffe18a1b3361039fe76702af69334b7a1e6c303b7652f43698fad1153bb6c374b4c7fb98459ced;$

 C_{11} = 7bcd9ed0efc889fb3002c6cd635afe94d8fa6bbbebab076120018021148466798a1d71efea48b9ca efbacd1d7d476e98dea2594ac06fd85d6bcaa4cd81f32d1b:

 $C_{12} = 378 \mathrm{ee}767f11631 \mathrm{bad}21380 \mathrm{b}00449 \mathrm{b}17 \mathrm{acda}43 \mathrm{c}32 \mathrm{bcdf1d}77f82012 \mathrm{d}430219f9 \mathrm{b}5 \mathrm{d}80 \mathrm{ef}9 \mathrm{d}1891 \mathrm{c}c86 \mathrm{e}71 \mathrm{d}a4aa88 \mathrm{e}12852 \mathrm{fa}f417 \mathrm{d}5 \mathrm{d}9 \mathrm{b}21 \mathrm{b}9948 \mathrm{b}c924 \mathrm{a}f11 \mathrm{b}d720.$

6 Преобразования

При вычислении хэш-кода H(M) сообщения $M \in V^*$ используются следующие преобразования:

$$X[k]: V_{512} \rightarrow V_{512}, X[k](a) = k \oplus a, k, a \in V_{512};$$
 (3)

S:
$$V_{642} \rightarrow V_{512}$$
, $S(a) = S(a_{83}||...||a_0) = \pi(a_{63}||...||\pi(a_0)$, (4)

где $a = a_{63}||...||a_0 \in V_{512}, a_i \in V_8, i = 0,..., 63;$

$$P: V_{512} \rightarrow V_{512}, P(a) = P(a_{63}||...||a_0) = a_{\tau(63)}||...||a_{\tau(0)},$$
 (5)

где $a = a_{63} ||...|| a_0 \in V_{512}, a_i \in V_8, i = 0,..., 63;$

L:
$$V_{512} \rightarrow V_{512}$$
, $L(a) = L(a_7||...||a_0) = l(a_7)||...||l(a_0)$, (6)

где $a = a_7 ||...|| a_0 \in V_{512}, a_i \in V_{64}, i = 0,..., 7.$

7 Функция сжатия

Значение хэш-кода сообщения $M \in V^*$ вычисляется с использованием итерационной процедуры. На каждой итерации вычисления хэш-кода используется функция сжатия:

$$g_N: V_{512} \times V_{512} \rightarrow V_{512}, N \in V_{512},$$
 (7)

значение которой вычисляется по формуле

$$g_N(h, m) = E(LPS(h \oplus N), m) \oplus h \oplus m,$$
 (8)

где $E(K, m) = X[K_{+2}] LPSX[K_{+2}] ... LPSX[K_{2}] LPSX[K_{4}](m)$.

Значения $K_i \in V_{512}, i = 1,...,13$, вычисляются следующим образом:

$$K_s = K;$$
 (9)

$$K_i = LPS(K_{i-1} \oplus C_{i-1}), i = 2,...,13.$$
 (10)

Для краткости вместо g_{0} 512 будем использовать обозначение g_{0}

8 Процедура вычисления хэш-функции

Исходными данными для процедуры вычисления хэш-кода Н(М) является подлежащее хэшированию сообщение $M \in V^*$ и $IV \in V_{512}$ -инициализационный вектор.

Алгоритм вычисления функции H состоит из следующих этапов.

Присвоить начальные значения текущих величин:

```
1.1 h := IV:
```

1.2
$$N := 0^{512} \in V_{512}$$
;

1.3
$$\Sigma := 0^{512} \in V_{512}$$
;

1.4 Перейти к этапу 2.

8.2 **Этап 2**

Проверить условие |M| < 512.

При положительном исходе перейти к этапу 3.

В противном случае выполнить последовательность вычислений по 2.2—2.7.

2.2 Вычислить подвектор $m \in V_{512}$ сообщения M: M = M'||m. Далее выполнить последовательность вычислений:

```
2.3 h := g_N(h, m).
```

2.5
$$\Sigma := Vec_{512} (Int_{512}(\Sigma) \coprod Int_{512}(m)).$$

2.7 Перейти к шагу 2.1.

8.3 Этап 3

3.1
$$m := 0^{511-|M|}||1||M|$$

$$3.2 h := g_N(h, m).$$

3.3
$$N := Vec_{512}(Int_{512}(N) \coprod |M|).$$

3.4
$$\Sigma := Vec_{512}(Int_{512}(\Sigma) \coprod Int_{512}|m|).$$

3.5 $h := g_0(h, N).$

$$3.5 h := q_o(h, N)$$

3.6
$$h:=\begin{cases} g_0(h,\Sigma), & \text{для функции хэширования с длиной хэш-кода 512 бит;} \\ \mathsf{MSB}_{256}(g_0(h,\Sigma)), & \text{для функции хэширования с длиной хэш-кода 256 бит.} \end{cases}$$

3.7 Конец работы алгоритма

Значение величины h, полученное на шаге 3.6, является значением функции хэширования H(M).

Приложение А (справочное)

Контрольные примеры

Данное приложение носит справочный характер и не является частью настоящего стандарта.

Векторы из V^* записываются в шестнадцатеричном виде. Вектор $A \in V_{4n}$, записанный в виде $a_{n+1}...a_0$, где $a_i \in \mathbb{Z}_{16}, \ i = 0,...,n-1$, есть $\text{Vec}_4(a_{n-1})||...||\text{Vec}_4(a_0)$.

А.1 Пример 1

Необходимо вычислить хэш-код сообщения

 $M_1 = 3231303938373635343332313039383736353433323130393837363534333231303938373635343332313039383736353433323130$

А.1.1 Для функции хэширования с длиной хэш-кода 512 бит

Присваиваются значения:

$$h := IV = 0^{512};$$

 $N := 0^{512};$
 $N := 0^{512}$

Длина сообщения $|M_1| = 504 < 512$, поэтому происходит заполнение неполного блока:

Вычисляется значение $K := LPS(h \oplus N) = LPS(0^{512})$.

После преобразования S:

b383fc2eced4a574b36a6fc2eced4a574b36a6fc2eced4a574b36a6fc2eced4a574b36a6fc2eced4a574b36a6fc2eced4a574b36a6fc2eced4a574b36a6fc2

Затем выполняется преобразование Е(К, т):

Итерация 1

 K_1 = b383fc2eced4a574b385fc2eced4a574b365fc2eced4a574b365fc2eced4a574b366fc2eced4a574b366fc2eced4a574b56fc2eced4a574b5fc2eced4a574b56fc2eced4a574b56fc2eced4a574b5fc2eced4a574b5fc2eced4a574b5fc2eced4a574

$$X[K_1](m) =$$

b2b1cd1ef7ec924286b7cf1cffe49c4c84b5c91afde694448abbcb18fbe0964682b3c516f9e2904080b1cd1ef7ec924286b7cf 1cffe49c4c84b5c91afde69444

$$SX[K_1](m) =$$

4645d95fc0beec2c432f8914b62d4efd3e5e37f14b097aead67de417c220b0482492ac996667e0ebdf45d95fc0beec2c432f8914b62d4efd3e5e37f14b097aea,

$$PSX[K_1](m) =$$

46433ed624df433e452f5e7d92452f5ed98937e4acd989375f14f117995f14f1c0b64bc266c0b64bbe2d092067be2d09ec4e7ab0e0ec4e7a2cfdea48eb2cfdea.

$$LPSX[K_1](m) =$$

e60059d4d8e0758024c73f6f3183653f56579189602ae4c21e7953ebc0e212a0ce78a8df475c2fd4fc43fc4b71c01e35be46 5fb20dad2cf690cdf65028121bb9.

028ba7f4d01e7f9d5848d3af0eb1d96b9ce98a6de0917562c2cd44a3bb516188f8ff1cbf5cb3cc7511c1d6266ab47661b6f58 81802a0e8576e0399773c72e073,

ddf644e6e15f5733bff249410445536f4e9bd69e200f3596b3d9ea737d70a1d7d1b6143b9c9288357758f8ef78278aa155f4d717dda7cb12b211e87e7f19203d,

ddbf4eb3d17755b2f6f29bd9b658f4114449d6ea14f8d7e8e6419e733bef177ee104207d9c78dd7f5f450f709227a71957533 5a1888acb20336f96d735a1123d.

$$LPS(K_1 \oplus C_1) =$$

d0b00807642fd78f13f2c3ebc774e80de0e902d23aef2ee9a73d010807dae9c188be14f0b2da27973569cd2ba051301036f 728bd1d7eec33f4d18af70c46cf1e.

Итерация 2

 K_2 = d0b00807642fd78f13f2c3ebc774e80de0e902d23aef2ee9a73d010807dae9c188be14f0b2da27973569cd2ba051301036f728bd1d7eec33f4d18af70c46cf1e.

$$LPSX[K_2]LPSX[K_4](m) =$$

18e77571e703d19548075c574ce5e50e0480c9c5b9f21d45611ab86cf32e352ad91854ea7df8f863d46333673f62ff2d3efa e1cd966f8e2a74ce49902799aad4.

Итерация 3

 $K_3 = 9d4475c7899f2d0bb0e8b7dac6ef6e6b44ecf66716d3a0f16681105e2d13712a1a9387ecc257930e2d61014a$ 1b 5c9fc9e24e7d636eb1607e816dbaf927b8fca9.

$$LPSX[K_3] ... LPSX[K_4](m) =$$

03dc0a9c64d42543ccdb62960d58c17e0b5b805d08a07406ece679d5f82b70fea22a7ea56e21814619e8749b308214575 489d4d465539852cd4b0cd3829bef39.

Итерация 4

 K_4 = 5c283daba5ec1f233b8c833c48e1c670dae2e40cc4c3219c73e58856bd96a72fdf9f8055ffe3c004c8cde3b8bf78f95f3370d0a3d6194ac5782487defd83ca0f.

$$LPSX[K_A] ... LPSX[K_A](m) =$$

dbee312ea7301b0d6d13e43855e85db81608c780c43675bc93cfd82c1b4933b3898a35b13e1878abe119e4dffb9de 4889738ca74d064cd9eb732078c1fb25e04.

Итерация 5

 $K_5 = 109f33262731f9bd569cbc9317baa551d4d2964fa18d42c41fab4e37225292ec2fd97d7493784779046388469a$ e195c436fa7cba93f8239ceb5ffc818826470c.

$$LPSX[K_5]...LPSX[K_1](m) =$$

7fb3f15718d90e889f9fb7c38f527bec861c298afb9186934a93c9d96ade20df109379bb9c1a1ffd0ad81fce7b45ccd54501e7 d127e32874b5d7927b032de7a1.

Итерация 6

 K_8 = b32c9b02667911cf8f8a0877be9a170757e25026ccf41e67c6b5da70b1b874743e1135cfbefe244237555c676c153d99459bc382573aee2d85d30d99f286c5e7.

$$LPSX[K_8]...LPSX[K_1](m) =$$

95efa4e104f235824bae5030fe2d0f170a38de3c9b8fc6d8fa1a9adc2945c413389a121501fa71a65067916b0c06f6b87ce1 8de1a2a98e0a64670985f47d73f1.

Итерация 7

 K_7 = 8a13c1b195fd0886ac49989e7d84b08bc7b00e4f3f62765ece6050fcbabdc2346c8207594714e8e9c9c7aad694edc922d6b01e17285eb7e61502e634559e32f1,

$$LPSX[K_7]...LPSX[K_1](m) =$$

7ea4385f7e5e40103bfb25c67e404c7524eec43e33b1d06557469c604985430432b43d941b77ffd476103338e9bd5145d9c1e18b1f262b58a81dcefff6fc6535.

Итерация 8

 K_8 =52cec3b11448bb8617d0ddfbc926f2e88730cb9179d6decea5acbffd323ec3764c47f7a9e13bb1db56c34203477 3023d617ff01cc546728e71dff8de5d128cac.

$$LPSX[K_8]...LPSX[K_1](m) =$$

b2426da0e58d5cfe898c36e797993f902531579d8ecc59f8dd8a60802241a4561f290cf992eb398894424bf681636968c16 7e870967b1dd9047293331956daba.

Итерация 9

 $K_9 = f38c5b7947e7736d502007a05ea64a4eb9c243cb82154aa138b963bbb7f28e74d4d710445389671291d70103f48fd4d4c01fc415e3fb7dc61c6088afa1a1e735$,

$$LPSX[K_9]...LPSX[K_1](m) =$$

5e0c9978670b25912dd1ede5bdd1cf18ed094d14c6d973b731d50570d0a9bca215415a15031fd20ddefb5bc61b96671d69 02f49df4d2fd346ceebda9431cb075.

Итерация 10

 $K_{10} = 0740$ b3faa03ed39b257dd6e3db7c1bf56b6e18e40cdaabd30617cecbaddd618ea5e61bb4654599581dd30c24c1ab877ad0687948286cfefaa7eef99f6068b315.

$$LPSX[K_{10}] \dots LPSX[K_1](m) =$$

c1ddd840fe491393a5d460440e03bf451794e792c0c629e49ab0c1001782dd37691cb6896f3e00b87f71d37a584c35b9cd 8789fad55a46887e5b60e124b51a61.

Итерация 11

 K_{11} = 185811cf3c2633aec8cfdfcae9dbb29347011bf92b95910a3ad71e5fca678e45e374f088f2e5c29496e9695ce89 57837107bb3aa56441af11a82164893313116.

$$LPSX[K_{11}] ... LPSX[K_1](m) =$$

3f75beaf2911c35d575088e30542b689c85b6b1607f8b800405941f5ab7042847b9b08b58b4fbdd6154ed7b366fd3ee778ce647726ddb3c7d48c8ce8866a8435.

Итерация 12

 $K_{12} = 9d46bf66234a7ed06c3b2120d2a3f15e0fedd87189b75b3cd2f206906b5ee00dc9a1eab800fb8cc5760b251f4db5cdef427052fa345613fd076451901279ee4c$

$$LPSX[K_{12}] \dots LPSX[K_1](m) =$$

f35b0d889eadfcff73b6b17f33413a97417d96f0c4cc9d30cda8ebb7dcd5d1b0 61e620bac75b367370605f474ddc006003be c4c4d7ce59a73fbe6766934c55a2.

Итерация 13

 $K_{13} = 079104026b900d8d768b6e223484c9761e3c585b3a405a6d2d8565ada926c3f7782ef127cd6b98290bf612558b4b60aa3cbc28fd94f95460d76b621cb45be70.$

$$X[K_{13}]...LPSX[K_1](m) =$$

fc221dc8b814fc27a4de079d10097600209e5375776898961f70bded0647bd8f1664cfa8bb8d8ff1e0df3e621568b66aa075 064b0e81cce132c8d1475809ebd2.

Результат выполнения преобразования $g_{M}(h, m)$:

 $h = \text{fd}102\text{cf}8812\text{ccb}1191\text{ea}34\text{af}21394f3817a86641445aa9a626488adb33738ebd2754f6908cbbbac5d3ed0f522c50815c954135793fb1f5d905fee4736b3bdae2.}$

Изменяются значения переменных N и Σ:

 $\Sigma = 013231303938373635343332313039383736353433323130393837363534333231303938373635343332313039383736353433323130$

Результат выполнения преобразования $g_0(h, N)$:

h = 5c881fd924695cf196c2e4fec20d14b642026f2a0b1716ebaabb7067d4d597523d2db69d6d3794622147a14f19a66e7f9037e1d662d34501a8901a5de7771d7c.

Результат выполнения преобразования $g_0(h, \Sigma)$:

h = 486f64c1917879417fef082b3381a4e211c324f074654c38823a7b76f830ad00fa1fbae42b1285c0352f227524bc9ab16254288dd6863dccd5b9f54a1ad0541b.

Хэш-кодом сообщения M₁ является значение

 $H(M_1) = 486f64c1917879417fef082b3381a4e211c324f074654c38823a7b76f830ad00fa1fbae42b1285c0352f227524bc9ab16254288dd6863dccd5b9f54a1ad0541b.$

А.1.2 Для функции хэширования с длиной хэш-кода 256 бит

Присваиваются значения:

$$h := IV = (00000001)^{64};$$

 $N := 0^{512};$
 $\Sigma := 0^{512}.$

Длина сообщения $|M_1| = 504 < 512$, поэтому происходит заполнение неполного блока:

Вычисляется значение $K := LPS(h \oplus N) = LPS((00000001)^{64})$.

После преобразования S:

$$S(h \oplus N) =$$

eccescoses eccescoses eccescoses eccescoses eccescoses eccescoses eccescoses eccescoses eccescoses eccescos e

после преобразования Р:

после преобразования L:

Затем выполняется преобразование Е(К, т):

Итерация 1

$$X[K_t](m) =$$

22f7df708943682316f1dd72814b662d14f3db7483496e251afdd976854f6c2712f5d778874d6a2110f7df708943682316f1dd72814b662d14f3db7483496e25.

$$SX[K_1](m) =$$

65c061327951f35a99a6d819f5a29a0193d290ffa92ab25cf14b538aa8cc9d21f0f4fe6dc93a7818e9c061327951f35a99a6d 819f5a29a0193d290ffa92ab25c.

$$PSX[K_1](m) =$$

659993f1f0e99993c0a6d24bf4c0a6d261d89053fe61d8903219ff8a6d3219ff79f5a9a8c979f5a951a22acc3a51a22af39ab2 9d78f39ab25a015c21185a015c.

$$LPSX[K_1](m) =$$

e549368917a0a2611d5e08c9c2fd5b3c563f18c0f68c410d84ae9d5fbdfb934055650121b7aa6d7b3e7d09d46ac4358adaa 6ae44fa3b0402c4166d2c3eb2ef02,

92cdb59aaeb185fcc80ec1c1701e230a0caf98039e3e8f03528b56cdc5fe9be968b90ed1221c36148187c448141b8c0026b 39a767c0f1236fe458b1942dd1a12.

$$S(K_1 \oplus C_1) =$$

ecd95e282645a83930045858325f5afa2341dc110ad303110ef676d9ac63509bf3a3041b65148f93f5c986f293bb7cfcef922 88ac34df08f63c8f6362cd8f1f0.

$$PS(K_1 \oplus C_1) =$$

ec30230ef3f5ef63d90441f6a3c992c85e58dc76048628f6285811d91bf28a3626320aac6593c32c455fd36314bb4dd8a85a 03508f7cf0f139fa119b93fc8ff0,

18ee8f3176b2ebea3bd6cb8233694cea349769df88be26bf451cfab6a904a549da22de93a66a66b19c7e6b5eea633511e6 11d68c8401bfcd0c7d0cc39d4a5eb9.

Итерация 2

 K_2 = 18ee8f3176b2ebea3bd6cb8233694cea349769df88be26bf451cfab6a904a549da22de93a66a66b19c7e6b5ee a633511e611d68c8401bfcd0c7d0cc39d4a5eb9,

$$LPSX[K_2]LPSX[K_1](m) =$$

c502dab7e79eb94013fcd1ba64def3b916f18b63855d43d22b77fca1452f9866c2b45089c62e9d82edf1ef45230db9a23c9e 1c521113376628a5f6a5dbc041b2.

Итерация 3

 K_3 = aaa4cf31a265959157aec8ce91e7fd46bf27dee21164c5e3940bba1a519e9d1fce0913f1253e7757915000cd674be12cc7f68e73ba26fb00fd74af4101805f2d.

$$LPSX[K_3] \dots LPSX[K_1](m) =$$

8e5a4fe41fc790af29944f027aa2f10105d65cf60a66e442832bb9ab5020dc54772e36b03d4b9aa471037212cde93375226 552392ef4d83010a007e1117a07b5.

Итерация 4

 $K_4 = 61 \text{fe}0 \text{a}65 \text{cc}177 \text{a}f50235 \text{e}2 \text{a}\text{f} \text{a} \text{d} \text{e} \text{d}326 \text{a}5329 \text{a}2236747 \text{b}f8 \text{a}54228 \text{a} \text{e} \text{ca}9 \text{c}4585 \text{c} \text{d}801 \text{e} \text{a}9 \text{d} \text{d}743 \text{a}0 \text{d}98 \text{d}01 \text{e} \text{f}0602 \text{e} \text{c}168200311920839286}$

$$LPSX[K_4] ... LPSX[K_1](m) =$$

dee0b40df69997afef726f03bdc13cb6ba9287698201296f2fd8284f06d33ea4a850a0ff48026dd47c1e88ec813ed2eb11860 59d842d8d17f0bfa259e56655b1.

Итерация 5

 $K_5 = 9983685f4fd3636f1fd5abb75fbf26a8e2934314aa2ecb3ee4693c86c06c7d4e169bd540af75e1610a546acd63d960bad595394cc199bf6999a5d5309fe73d5a.$

$$LPSX[K_5] ... LPSX[K_1](m) =$$

675ea894d326432e1af7b201bc369f8ab021f6fa58da09678ffc08ef30db43a37f1f7347cb77da0f6ba30c85848896c3bac24 0ab14144283518b89a33d0caf07.

Итерация 6

 $K_8 = f05772$ ae2ce7f025156c9a7fbcc6b8fdf1e735d613946e32922994e52820ffea62615d907eb0551ad170990a86602088af98c83c22cdb0e2be297c13c0f7a156.

$$LPSX[K_6]...LPSX[K_1](m) =$$

1bc204bf9506ee9b86bbcf82d254a112aea6910b6db3805e399cb718d1b3319964459516967cee4e648e8cfbf81f56dc8da 6811c469091be5123e6a1d5e28c73.

Итерация 7

 $K_7 = 5ad144c362546e4e46b3e7688829fbb77453e9c3211974330b2b8d0e6be2b5acc89eb6b35167f159b7b005a43e5959a651a9b18cfc8e4098fcf03d9b81cfbb8d,$

$$LPSX[K_7]...LPSX[K_1](m) =$$

f30d791ed78bdee819022a3d78182242124efcdd54e203f23fb2dc7f94338ff955a5afc15ffef03165263c4fdb36933aa98201 6471fbac9419f892551e9e568b.

Итерация 8

 $K_8 = 6a6cec9a1ba20a8db64fa840b934352b518c638ed530122a83332fe0b8efdac9018287e5a9f509c78d6c746adcd5426fb0a0ad5790dfb73fc1f191a539016daa,$

$$LPSX[K_8]...LPSX[K_1](m) =$$

1fc20f1e91a1801a4293d3f3aa9e91560fcc3810bb15f3ee9741c9b87452519f67cb9145519884a24de6db736a5cb1430da 7458e5e51b80be5204ba5b2600177.

Итерация 9

 $K_9 = 99217036737aa9b38a8d6643f705bd51f351531f948f0fc5e35fa35fee9dd8bdbb4c9d580a224e9cd82e0e2069fc49ed367d5f94374435382b8fb6a8f5dd0409,$

$$LPSX[K_9]...LPSX[K_1](m) =$$

1a52f09d1e81515a36171e0b1a2809c50359bed90f2e78cbd89b7d4afa6d046655c96bdae6ee97055cc7e857267c2ccf28c8f5dd95ed58a9a68c12663bb28967.

Итерация 10

 $K_{10} = 906763$ c0fc89fa1ae69288d8ec9e9dda9a7630e8bfd6c3fed703c35d2e62aeaff0b35d80a7317a7f76f83022f2526791ca8fdf678fcb337bd74fe5393ccb05d2.

$$LPSX[K_{10}] \dots LPSX[K_1](m) =$$

764043744a0a93687e65aba8cfc25ec8714fb8e1bdc9ae2271e7205eaaa577c1b3b83e7325e50a19bd2d56b061b5de392 35c9c9fd95e071a1a291a5f24e8c774.

Итерация 11

 $K_{11} = 88$ ce996c63618e6404a5c8e03ee433854e2ae3eee68991bbbff3c29d38dadb6ed6a1dae9a6dc6ddf52ce34af272f96d3159c8c624c3fe6e13d695c0bfc89add5,

$$LPSX[K_{11}]...LPSX[K_{1}](m) =$$

9b1ce8ff26b445cb288c0aeccf84658eea91dbdf14828bf70110a5c9bd146cd9646350cff4e90e7b63c5cc325e9b441081935 f282d4648d9584f71860538f03b.

Итерация 12

 $K_{12} = 3e0a281ea9bd46063eec550100576f3a506aa168cf82915776b978fccaa32f38b55f30c79982ca45628e8365d8798477e75a49c68199112a1d7b5a0f7655f2db,\\$

$$LPSX[K_{12}]...LPSX[K_1](m) =$$

133aeecede251eb81914b8ba48dcbc0b8a6fc63a292cc49043c3d3346b3f0829a9cb71ecff25ed2a91bdcf8f649907c110cb76ff2e43100cdd4ba8a147a572f5.

Итерация 13

 K_{13} = f0b273409eb31aebe432fbae1867212262c848422b6a92f93f6cbab54ed18b8314b21cffc51e3fa319ff433e76ef6adb0ef9f5e03c907fa1fcf9eca06500bf03.

 $X[K_{13}] ... LPSX[K_1](m) =$

e3889d8e40960453fd26431450bb9d29e8a78e78024656697caf698125ee83aabd796d133a3bd28988428cb112766d1a1 e32831f12d36fad21b2440122a5cdf6.

Результат выполнения преобразования $g_N(h, m)$:

h = e3bbadbf78af3264c9137127608aa510de90ba4d3075665844965fb611dbb1998d48552a0c0ce6bcba71bc802a4f5b2d2a07b12c22e25794178570341096fdc7.

Изменяются значения переменных N и Σ:

 $\Sigma = 013231303938373635343332313039383736353433323130393837363534333231303938373635343332313039383736353433323130$

Результат выполнения преобразования $g_0(h, N)$:

h = 70f22bada4cfe18a6a56ec4b3f328cd40db8e1bf8a9d5f711d5efab11191279d715aab7648d07eddbf87dc79c805 16e6ffcbcf5678b0ac29ea00fa85c8173cc6.

Результат выполнения преобразования $g_0(h, \Sigma)$:

h = 00557be5e584fd52a449b16b0251d05d27f94ab76cbaa6da890b59d8ef1e159d2088e482e2acf564e0e9795a51 e4dd261f3f667985a2fcc40ac8631faca1709a.

Хэш-кодом сообщения М, является значение:

 $H(M_{\star}) = 00557$ be5e584fd52a449b16b0251d05d27f94ab76cbaa6da890b59d8ef1e159d.

А.2 Пример 2

Пусть необходимо вычислить хэш-код сообщения

 M_2 = fbe2e5f0eee3c820fbeafaebef20fffbf0e1e0f0f520e0ed20e8ece0ebe5f0f2f120fff0eeec20f120faf2fee5e2202ce8 f6f3ede220e8e6eee1e8f0f2d1202ce8f0f2e5e220e5d1.

А.2.1 Для функции хэширования с длиной хэш-кода 512 бит

Присваиваются значения:

$$h := IV = 0^{512};$$

 $N := 0^{512};$
 $\Sigma := 0^{512}.$

Длина сообщения $|M_2|$ = 576 > 512, поэтому сначала преобразуется часть сообщения

m: = fbeafaebef20fffbf0e1e0f0f520e0ed20e8ece0ebe5f0f2f120fff0eeec20f120faf2fee5e2202ce8f6f3ede220e8e6eee1e8f0f2d1202ce8f0f2e5e220e5d1.

Вычисляется эначение $K := LPS(h \oplus N) = LPS(0^{512})$.

После преобразования S:

b383fc2eced4a574b385fc2eced4a574b36a6fc2eced4a574b36a6fc2eced4a574b36a6fc2eced4a574b36a6fc2eced4a574b36a6fc2eced4a574b36a6fc2eced4a574b36a6fc2eced4a574b36a6fc

Затем выполняется преобразование Е (К, т):

Итерация 1

 K_1 = b383fc2eced4a574b36a6fc2eced4a574b36a6fc2eced4a574b36a6fc2eced4a574b36a6fc2eced4a574b36a6fc2eced4a574b36a6fc2eced4a574b36a6fc2eced4a574b36a6fc2eced4a574b36a6fc2eced4

$$X[K_1](m) =$$

486906c521f45a8f43621cde3bf44599936b10ce2531558642a303de2038858593790ed02b3685585b750fc32cf44d925d6 214de3c0585585b730ecb2cf440a5.

$$SX[K_1](m) =$$

f29131ac18e613035196148598e6c8e8de6fe9e75c840c432c731185f906a8a8de5404e1428fa8bf47354d408be63aecb79 693857f6ea8bf473d04e48be6eb00,

$$PSX[K_*](m) =$$

f251de2cde47b74791966f735435963d3114e911044d9304ac85e785e14085e418985cf9428b7f8be6e684068fe66ee613c 80ca8a83aa8eb03e843a8bfecbf00.

$$LPSX[K_1](m) =$$

909aa733e1f52321a2fe35bfb8f67e92fbc70ef544709d5739d8faaca4acf126e83e273745c25b7b8f4a83a7436f6353753cbbbe492262cd3a868eace0104af1.

028ba7f4d01e7f9d5848d3af0eb1d96b9ce98a6de0917562c2cd44a3bb516188f8ff1cbf5cb3cc7511c1d6266ab47661b6f58 81802a0e8576e0399773c72e073.

ddf644e6e15f5733bff249410445536f4e9bd69e200f3596b3d9ea737d70a1d7d1b6143b9c9288357758f8ef78278aa155f4d717dda7cb12b211e87e7f19203d.

$$PS(K_1 \oplus C_1) =$$

ddbf4eb3d17755b2f6f29bd9b658f4114449d6ea14f8d7e8e6419e733bef177ee104207d9c78dd7f5f450f709227a719575335a1888acb20336f96d735a1123d.

d0b00807642fd78f13f2c3ebc774e80de0e902d23aef2ee9a73d010807dae9c188be14f0b2da27973569cd2ba051301036f728bd1d7eec33f4d18af70c46cf1e.

Итерация 2

 K_2 = d0b00807642fd78f13f2c3ebc774e80de0e902d23aef2ee9a73d010807dae9c188be14f0b2da27973569cd2ba051301036f728bd1d7eec33f4d18af70c46cf1e.

$$LPSX[K_2]LPSX[K_1](m) =$$

301aadd761d13df0b473055b14a2f74a45f408022aecadd4d5f19cab8228883a021ac0b62600a495950c628354ffce1161c6 8b7be7e0c58af090ce6b45e49f16.

Итерация 3

 $K_3 = 9d4475c7899f2d0bb0e8b7dac6ef6e6b44ecf66716d3a0f16681105e2d13712a1a9387ecc257930e2d61014a1b5c9fc9e24e7d636eb1607e816dbaf927b8fca9.$

$$LPSX[K_3]...LPSX[K_1](m) =$$

9b83492b9860a93cbca1c0d8e0ce59db04e10500a6ac85d4103304974e78d32259ceff03fbb353147a9c948786582df78a 34c9bde3f72b3ca41b9179c2cceef3.

Итерация 4

 K_4 = 5c283daba5ec1f233b8c833c48e1c670dae2e40cc4c3219c73e58856bd96a72fdf9f8055ffe3c004c8cde3b8bf78f95f3370d0a3d6194ac5782487defd83ca0f.

$$LPSX[K_4]...LPSX[K_1](m) =$$

e638e0a1677cdea107ec3402f70698a4038450dab44ac7a447e10155aa33ef1bdaf8f49da7b66f3e05815045fbd39c991cb 0dc536e09505fd62d3c2cd00b0f57.

Итерация 5

 $K_5 = 109f33262731f9bd569cbc9317baa551d4d2964fa18d42c41fab4e37225292ec2fd97d7493784779046388469ae195c436fa7cba93f8239ceb5ffc818826470c,$

$$LPSX[K_5]...LPSX[K_1](m) =$$

1c7c8e19b2bf443eb3adc0c787a52a173821a97bc5a8efea58fb8b27861829f6dd5ff9c97865e08c1ac66f47392b578e2126 6e323a0aacedeec3ef0314f517c6.

Итерация 6

 K_8 = b32c9b02667911cf8f8a0877be9a170757e25026ccf41e67c6b5da70b1b874743e1135cfbefe244237555c676c153d99459bc382573aee2d85d30d99f286c5e7,

$$LPSX[K_8]...LPSX[K_1](m) =$$

48fecfc5b3eb77998fb39bfcccd128cd42fccb714221be1e675a1c6fdde7e31198b318622412af7e999a3eff45e6d61609a7f2 ae5c2ff1ab7ff3b37be7011ba2.

Итерация 7

 K_7 = 8a13c1b195fd0886ac49989e7d84b08bc7b00e4f3f62765ece6050fcbabdc2346c8207594714e8e9c9c7aad694edc922d6b01e17285eb7e61502e634559e32f1.

$$LPSX[K_7]...LPSX[K_1](m) =$$

a48f8d781c2c5be417ae644cc2e15a9f01fcead3232e5bd53f18a5ab875cce1b8a1a400cf48521c7ce27fb1e94452fb54de2 3118f53b364ee633170a62f5a8a9.

Итерация 8

 $K_8 = 52 \text{cec3b} 11448 \text{bb} 8617 \text{d0} \text{ddfbc} 926 \text{f2e} 88730 \text{cb} 9179 \text{d6} \text{decea} 5 \text{acbffd} 323 \text{ec} 3764 \text{c4} 777 \text{a9e} 13 \text{bb} 1 \text{db} 56 \text{c3} 42034773023 \text{d6} 17 \text{ff} 01 \text{cc} 546728 \text{e7} 1 \text{dff} 8 \text{de} 5 \text{d} 128 \text{cac}.$

$$LPSX[K_n]...LPSX[K_1](m) =$$

e8a31b2e34bd2ae21b0ecf29cc4c37c75c4d11d9b82852517515c23e81e906a451b72779c3087141f1a15ab57f96d7da6c 7ee38ed25befbdef631216356ff59c.

Итерация 9

 $K_9 = f38c5b7947e7736d502007a05ea64a4eb9c243cb82154aa138b963bbb7f28e74d4d710445389671291d70103f48fd4d4c01fc415e3fb7dc61c6088afa1a1e735$.

$$LPSX[K_0] ... LPSX[K_1](m) =$$

34392ed32ea3756e32979cb0a2247c3918e0b38d6455ca88183356bf8e5877e55d542278a696523a8036af0f1c2902e9cbc585de803ee4d26649c9e1f00bda31.

Итерация 10

 $K_{10} = 0740$ b3faa03ed39b257dd6e3db7c1bf56b6e18e40cdaabd30617cecbaddd618ea5e61bb4654599581dd30c24c1ab877ad0687948286cfefaa7eef99f6068b315,

$$LPSX[K_{10}] \dots LPSX[K_1](m) =$$

6a82436950177fea74cce6d507a5a64e54e8a3181458e3bdfbdbc6180c9787de7ccb676dd809e7cb1eb2c9ebd016561570 801a4e9ce17a438b85212f4409bb5e.

Итерация 11

 K_{11} = 185811cf3c2633aec8cfdfcae9dbb29347011bf92b95910a3ad71e5fca678e45e374f088f2e5c29496e9695ce8957837107bb3aa56441af11a82164893313116,

$$LPSX[K_{i+}]...LPSX[K_i](m) =$$

7b97603135e2842189b0c9667596e96bd70472ccbc73ee89da7d1599c72860c285f5771088f1fb0f943d949f22f1413c991eafb51ab8e5ad8644770037765aec.

Итерация 12

 $K_{12} = 9d46bf66234a7ed06c3b2120d2a3f15e0fedd87189b75b3cd2f206906b5ee00dc9a1eab800fb8cc5760b251f4db5cdef427052fa345613fd076451901279ee4c,$

$$LPSX[K_{+2}] \dots LPSX[K_{+}](m) =$$

39ec8a88db635b46c4321adf41fd9527a39a67f6d7510db5044f05efaf721db5cf976a726ef33dc4dfcda94033e741a463770 861a5b25fefcb07281eed629c0e.

Итерация 13

 $K_{13} = 0779104026b900d8d768b6e223484c9761e3c585b3a405a6d2d8565ada926c3f7782ef127cd6b98290bf612558b4b60aa3cbc28fd94f95460d76b621cb45be70.$

$$X[K_{13}]...LPSX[K_1](m) =$$

36959ac8fdda5b9e135aac3d62b5d9b0c279a27364f50813d69753b575e0718ab8158560122584464f72c8656b53f7aec0bccaee7cfdcaa9c6719e3f2627227e.

Результат выполнения преобразования $g_N(h, m)$:

h = cd7f602312faa465e3bb4ccd9795395de2914e938f10f8e127b7ac459b0c517b98ef779ef7c7a46aa7843b8889731f482e5d221e8e2cea852e816cdac407c7af.

Изменяются значения переменных N и Σ:

 Σ = fbeafaebef20fffbf0e1e0f0f520e0ed20e8ece0ebe5f0f2f120fff0eeec20f120faf2fee5e2202ce8f6f3ede220e8e6eee 1e8f0f2d1202ce8f0f2e5e220e5d1.

Длина оставшейся части сообщения меньше 512, поэтому происходит заполнение неполного блока.

Результат выполнения преобразования $g_N(h, m)$:

h = c544ae6efdf14404f089c72d5faf8dc6aca1db5e28577fc07818095f1df70661e8b84d0706811cf92dffb8f96e61493dc382795c6ed7a17b64685902cbdc878e.

Изменяются значения переменных N и Σ:

 $\Sigma = fbeafaebef20fffbf0e1e0f0f520e0ed20e8ece0ebe5f0f2f120fff0eeec20f120faf2fee5e2202ce8f6f3ede220e8e6eee1e8f0f2d1202ee4d3d8d6d104adf1.$

Результат выполнения преобразования $g_0(h, N)$:

h = 4deb6649ffa5caf4163d9d3f9967fbbd6eb3da68f916b6a09f41f2518b81292b703dc5d74e1ace5bcd3458af43bb456e837326088f2b5df14bf83997a0b1ad8d.

Результат выполнения преобразования $g_0(h, \Sigma)$:

h = 28fbc9bada033b1460642bdcddb90c3fb3e56c497ccd0f62b8a2ad4935e85f037613966de4ee00531ae60f3b5a47f8dae06915d5f2f194996fcabf2622e6881e.

Хэш-кодом сообщения М2 является значение:

 $H(M_2) = 28$ fbc9bada033b1460642bdcddb90c3fb3e56c497ccd0f62b8a2ad4935e85f037613966de4ee00531ae60f3b5a47f8dae06915d5f2f194996fcabf2622e6881e.

А.2.2 Для функции хэширования с длиной хэш-кода 256 бит

Присваиваются значения:

$$h := IV = (00000001)^{64};$$

 $N := 0^{512};$
 $\Sigma := 0^{512}$

Длина сообщения [M₂] = 576 > 512, поэтому сначала преобразуется часть сообщения

m: = fbeafaebef20fffbf0e1e0f0f520e0ed20e8ece0ebe5f0f2f120fff0eeec20f120faf2fee5e2202ce8f6f3ede220e8e6eee1e8f0f2d1202ce8f0f2e5e220e5d1.

Вычисляется значение $K := LPS(h \oplus N) = LPS((00000001)^{64})$.

После преобразования S:

после преобразования Р:

после преобразования L:

$$K := LPS(h \oplus N) =$$

Затем выполняется преобразование Е (К, т):

Итерация 1

$$X[K_1](m) =$$

d82f14ab5f5ba0eed3240eb0455bbff8032d02a05b9eafe7d2e511b05e977fe4033f1cbe55997f39cb331dad525bb7f3cd2406b042aa7f39cb351ca5525bbac4.

$$SX[K_1](m) =$$

8d4f93828747a76c49e204adc8473bd11101dda7470a415b832b77ad5dbc572d111f14950ce8570be4aecd9f0e472fd2d9e 231ad2c38570be46a14000e47a586.

$$PSX[K_1](m) =$$

8d49118311e4d9e44fe2012b1faee26a9304dd7714cd311482ada7ad959fad0087c8475d0c0e2c0e47470abce8473847a7 3b4157572f57a56cd15b2d0bd20b86,

$$LPSX[K_1](m) =$$

a3a72a2e0fb5e6f812681222fec037b0db972086a395a387a6084508cae13093aa71d352dcbce288e9a39718a727f6fd4c5da5d0bc10fac3707ccd127fe45475

$$K_1 \oplus C_1 =$$

92cdb59aaeb185fcc80ec1c1701e230a0caf98039e3e8f03528b56cdc5fe9be968b90ed1221c36148187c448141b8c0026b39a767c0f1236fe458b1942dd1a12.

$$S(K_1 \oplus C_1) =$$

ecd95e282645a83930045858325f5afa2341dc110ad303110ef676d9ac63509bf3a3041b65148f93f5c986f293bb7cfcef922 88ac34df08f63c8f6362cd8f1f0.

$$PS(K_1 \oplus C_1) =$$

ec30230ef3f5ef63d90441f6a3c992c85e58dc76048628f6285811d91bf28a3626320aac6593c32c455fd36314bb4dd8a85a 03508f7cf0f139fa119b93fc8ff0.

$$LPS(K_1 \oplus C_1) =$$

18ee8f3176b2ebea3bd6cb8233694cea349769df88be26bf451cfab6a904a549da22de93a66a66b19c7e6b5eea633511e6 11d68c8401bfcd0c7d0cc39d4a5eb9.

Итерация 2

 K_2 = 18ee8f3176b2ebea3bd6cb8233694cea349769df88be26bf451cfab6a904a549da22de93a66a66b19c7e6b5ee a633511e611d68c8401bfcd0c7d0cc39d4a5eb9.

$LPSX[K_2]LPSX[K_1](m) =$

9f50697b1d9ce23680db1f4d35629778864c55780727aa79eb7bb7d648829cba8674afdac5c62ca352d77556145ca7bc75 8679fbe1fbd32313ca8268a4a603f1.

Итерация 3

 $K_3 = aaa4cf31a265959157aec8ce91e7fd46bf27dee21164c5e3940bba1a519e9d1fce0913f1253e7757915000cd674be12cc7f68e73ba26fb00fd74af4101805f2d.$

$$LPSX[K_3] ... LPSX[K_1](m) =$$

4183027975b257e9bc239b75c977ecc52ddad82c091e694243c9143a945b4d853116eae14fd81b14bb47f2c06fd283cb6c 5e61924edfaf971b78d771858d5310.

Итерация 4

 K_4 = 61fe0a65cc177af50235e2afadded326a5329a2236747bf8a54228aeca9c4585cd801ea9dd743a0d98d01ef060 2b0e332067fb5ddd6ac1568200311920839286,

$LPSX[K_4] ... LPSX[K_1](m) =$

0368c884fcee489207b5b97a133ce39a1ebfe5a3ae3cccb3241de1e7ad72857e76811d324f01fd7a75e0b669e8a22a4d056ce6af3e876453a9c3c47c767e5712.

Итерация 5

 $K_5 = 9983685f4fd3636f1fd5abb75fbf26a8e2934314aa2ecb3ee4693c86c06c7d4e169bd540af75e1610a546acd63d960bad595394cc199bf6999a5d5309fe73d5a,$

$$LPSX[K_5]...LPSX[K_1](m) =$$

c31433ceb8061e46440144e65553976512e5a9806ac9a2c771d5932d5f6508c5b78e406c4efab98ac5529be0021b4d58fa 26f01621eb10b43de4c4c47b63f615.

Итерация 6

 K_6 = f05772ae2ce7f025156c9a7fbcc6b8fdf1e735d613946e32922994e52820ffea62615d907eb0551ad170990a866 02088af98c83c22cdb0e2be297c13c0f7a156,

$$LPSX[K_8]...LPSX[K_1](m) =$$

5d0ae97f252ad04534503fe5f52e9bd07f483ee3b3d206beadc6e736c6e754bb713f97ea7339927893eacf2b474a482cadd 9ac2e58f09bcb440cf36c2d14a9b6.

Итерация 7

 $K_7 = 5$ ad144c362546e4e46b3e7688829fbb77453e9c3211974330b2b8d0e6be2b5acc89eb6b35167f159b7b005a43e5959a651a9b18cfc8e4098fcf03d9b81cfbb8d,

$$LPSX[K_7]...LPSX[K_4](m) =$$

a59aa21e6ad3e330deedb9ab9912205c355b1c479fdfd89a7696d7de66fbf7d3cec25879f7f1a8cca4c793d5f2888407aecb 188bda375eae586a8cfd0245c317.

Итерация 8

 K_8 = 6a6cec9a1ba20a8db64fa840b934352b518c638ed530122a83332fe0b8efdac9018287e5a9f509c78d6c746adcd5426fb0a0ad5790dfb73fc1f191a539016daa,

$$LPSX[K_8]...LPSX[K_1](m) =$$

9903145a39d5a8c83d28f70fa1fbd88f31b82dc7cfe17b54b50e276cb2c4ac682b4434163f214cf7ce6164a75731bcea5819 e6a6a6fea99da9222951d2a28e01.

Итерация 9

 $K_9 = 99217036737aa9b38a8d6643f705bd51f351531f948f0fc5e35fa35fee9dd8bdbb4c9d580a224e9cd82e0e2069fc49ed367d5f94374435382b8fb6a8f5dd0409,$

$$LPSX[K_0] ... LPSX[K_1](m) =$$

330e6cb1d04961826aa263f2328f15b4f3370175a6a9fd6505b286efed2d8505f71823337ef71513e57a700eb1672a68557 8e45dad298ee2223d4cb3fda8262f.

Итерация 10

 $K_{10} = 906763 \\ cofc89 \\ fa1ae69288 \\ d8ec9e9 \\ dda9a7630 \\ e8bf \\ d6c3fed703c35 \\ d2e62 \\ aeaff \\ 0b35d80a7317a7f76f83022f2526791 \\ ca8fdf678f \\ cb337bd74fe5393 \\ ccb05d2.$

$$LPSX[K_{10}]...LPSX[K_1](m) =$$

ad347608443ab9c9bbb64f633a5749ab85c45d4174bfd78f6bc79fc4f4ce9ad1dd71cb2195b1cfab8dcaaf6f3a65c8bb0079847a0800e4427d3a0a815f40a644.

Итерация 11

 K_{11} = 88ce996c63618e6404a5c8e03ee433854e2ae3eee68991bbbff3c29d38dadb6ed6a1dae9a6dc6ddf52ce34af272f96d3159c8c624c3fe6e13d695c0bfc89add5,

$$LPSX[K_{11}] ... LPSX[K_1](m) =$$

a065c55e2168c31576a756c7ecc1a9129cd3d207f8f43073076c30e111fd5f119095ca396e9fb78a2bf4781c44e845e447b8fc75b788284aae27582212ec23ee.

Итерация 12

 $K_{12} = 3 \pm 0.00281 \pm 0.0046063 \pm 0.0057613 \pm 0.00663 \pm 0.00663$

$$LPSX[K_{12}] \dots LPSX[K_1](m) =$$

2a6549f7a5cd2eb4a271a7c71762c8683e7a3a906985d60f8fc86f64e35908b29f83b1fe3c704f3c116bdfe660704f3b9c8a1d0531baaffaa3940ae9090a33ab.

Итерация 13

 K_{13} = f0b273409eb31aebe432fbae1867212262c848422b6a92f93f6cbab54ed18b8314b21cffc51e3fa319ff433e76ef6adb0ef9f5e03c907fa1fcf9eca06500bf03,

$$X[K_{13}] ... LPSX[K_{1}](m) =$$

dad73ab73b7e345f46435c690f05e94a5cb272d242ef44f6b0a4d5d1ad8883318b31ad01f96e709f08949cd8169f25e09273 e8e50d2ad05b5f6de6496c0a8ca8.

Результат выполнения преобразования $g_N(h, m)$:

h = 203cc15dd55fcaa5b7a3bd98fb2408a67d5b9f33a80bb50540852b204265a2c1aaca5efe1d8d51b2e1636e34f5becc077d930114fefaf176b69c15ad8f2b6878.

Изменяются значения переменных N и Σ:

- $\Sigma = \text{fbeafaebef20fffbf0e1e0f0f520e0ed20e8ece0ebe5f0f2f120fff0eeec20f120faf2fee5e2202ce8f6f3ede220e8e6eee1e8f0f2d1202ce8f0f2e5e220e5d1.}$

Длина оставшейся части сообщения меньше 512, поэтому происходит заполнение неполного блока:

Результат выполнения преобразования $g_{N}(h, m)$:

h = a69049e7bd076ab775bc2873af26f098c538b17e39a5c027d532f0a2b3b56426c96b285fa297b9d39ae6afd8b90 01d97bb718a65fcc53c41b4ebf4991a617227

Изменяются значения переменных N и Σ:

- Σ = fbeafaebef20fffbf0e1e0f0f520e0ed20e8ece0ebe5f0f2f120fff0esec20f120faf2fee5e2202ce8f6f3ede220e8e6ee e1e8f0f2d1202ee4d3d8d6d104adf1.

Результат выполнения преобразования $g_0(h, N)$:

h = aee3bd55ea6f387bcf28c6dcbdbbfb3ddacc67dcc13dbd8d548c6bf808111d4b75b8e74d2afae960835ae6a5f03575559c9fd839783ffcd5cf99bd61566b4818.

Результат выполнения преобразования $g_0(h, \Sigma)$:

h = 508f7e553c06501d749a66fc28c6cac0b005746d97537fa85d9e40904efed29dc345e53d7f84875d5068e4eb743f0793d673f09741f9578471fb2598cb35c230.

Хэш-кодом сообщения М2 является значение:

 $H(M_2) = 508f7e553c06501d749a66fc28c6cac0b005746d97537fa85d9e40904efed29d.$

[1] MCO 2382-2:1976

Библиография*

Системы обработки информации. Словарь. Часть 2. Арифметические и логи-

	(ISO 2382-2:1976)	ческие операции (Data processing — Vocabulary — Part 2: Arithmetic and logic operations)	
[2]	ИСО/МЭК 9796-2:2010 (ISO/IEC 9796-2:2010)	Информационные технологии. Методы обеспечения безопасности. Схемы цифровой подписи, обеспечивающие восстановление сообщений. Часть 2. Механизмы на основе целочисленной факторизации (Information technology — Security techniques — Digital signatures with appendix — Part 2: Integer factorization based mechanisms)	
[3]	ИСО/МЭК 9796-3:2006 (ISO/IEC 9796-3:2006)	Информационные технологии. Методы обеспечения безопасности. Схемы цифровой подписи, обеспечивающие восстановление сообщений. Часть 3. Механизмы на основе дискретного логарифма (Information technology — Security techniques — Digital signature schemes giving message recovery — Part 3: Discrete logarithm based mechanisms)	
[4]	ИСО/МЭК 14888-1:2008 (ISO/IEC 14888-1:2008)	Информационные технологии. Методы защиты. Цифровые подписи с приложением. Часть 1. Общие положения (Information technology — Security techniques — Digital signatures with appendix — Part 1: General)	
[5]	ИСО/МЭК 14888-2:2008 (ISO/IEC 14888-2:2008)	Информационные технологии. Методы защиты. Цифровые подписи с приложением. Часть 2. Механизмы, основанные на разложении на множители (Information technology — Security techniques — Digital signatures with appendix — Part 2: Integer factorization based mechanisms)	
[6]	ИСО/МЭК 14888-3:2006 (ISO/IEC 14888-3:2006)	Информационные технологии. Методы защиты. Цифровые подписи с приложением. Часть 3. Механизмы на основе дискретного логарифма (Information technology — Security techniques — Digital signatures with appendix — Part 3: Discrete logarithm based mechanisms)	
[7]	ИСО/МЭК 14888-3:2006/Изм. 1:2010 (ISO/IEC 14888-3:2006/ Amd 1:2010)	Информационные технологии. Методы защиты. Цифровые подписи с приложением. Часть 3. Механизмы на основе дискретного логарифма. Изменение 1. Алгоритм русской цифровой подписи эллиптической кривой, алгоритм цифровой подписи Шнорра для эллиптической кривой, и полный алгоритм цифровой подписи Шнорра для эллиптической кривой (Information technology — Security techniques — Digital signatures with appendix — Part 3: Discrete logarithm based mechanisms. Amendment 1. Elliptic Curve Russian Digital Signature Algorithm, Schnorr Digital Signature Algorithm, Elliptic Curve Schnorr Digital Signature Algorithm, and Elliptic Curve Full Schnorr Digital Signature Algorithm)	
[8]	ИСО/МЭК 10118-1:2000 (ISO/IEC 10118-1:2000)	Информационные технологии. Методы защиты информации. Хэш-функции. Часть 1. Общие положения (Information technology — Security techniques — Hash-functions — Part 1: General)	
[9]	ИСО/МЭК 10118-2:2010 (ISO/IEC 10118-2:2010)	Информационные технологии. Методы защиты информации. Хэш-функции. Часть 2. Хэш-функции с использованием алгоритма шифрования <i>п</i> -битными блоками (Information technology — Security techniques — Hash-functions — Part 2: Hash-functions using an <i>n</i> -bit block cipher)	
[10]	ИСО/МЭК 10118-3:2004 (ISO/IEC 10118-3:2004)	Информационные технологии. Методы защиты информации. Хэш-функции. Часть 3. Выделенные хэш-функции (Information technology — Security techniques — Hash-functions — Part 3: Dedicated hash-functions)	
[11]	ИСО/МЭК 10118-4:1998 (ISO/IEC 10118-4:1998)	Информационные технологии. Методы защиты информации. Хэш-функции. Часть 4. Хэш-функции с применением арифметики в остаточных классах (Information technology — Security techniques — Hash-functions — Part 4: Hash-functions using modular arithmetic)	

Оригиналы международных стандартов ИСО/МЭК находятся во ФГУП «Стандартинформ» Федерального агентства по техническому регулированию и метрологии.

УДК 681.3.06:006.354

OKC 35.040

П85

OKCTY 5002

Ключевые слова: информационная технология, криптографическая защита информации, функция хэширования, хэш-функция, электронная цифровая подпись, асимметричный криптографический алгоритм, системы обработки информации, защита сообщений, подтверждение подписи

Редактор К.С. Савинова Технический редактор В.Н. Прусакова Корректор В.Е. Нестерова Компьютерная верстка Л.А. Круговой

Сдано в набор 18.12.2012. Подписано в печать 25.04.2013. Формат 60×841⁄к. Гарнитура Ариал. Усл. печ. л. 2.79. Уч. изд. л. 2.45. Тираж 103 экз. Зак. 448

Поправка к ГОСТ Р 34.11—2012 Информационная технология. Криптографическая защита информации. Функция хэширования

В каком месте	Напечатано	Должно быть	
Пункт 8.3, шаг 3.4	$\Sigma := Vec_{512} \left(Int_{512}(\Sigma) \bigoplus Int_{512}[m] \right);$	$\sum := Vec_{512} \; (Int_{512}(\sum) \; \boxplus \; Int_{512}(m));$	

(ИУС № 6 2018 г.)