

LINEAR AND NONLINEAR PROGRAMMING: MATH 404

Interior Point Methods for Linear Programming

University of Science and Technology at Zewail City Fall 2022

Prepared By Mariam Wagdy

201801585

Supervised By Dr. Ahmed Abdelamea

I. Table of Contents

I.	Table of Contents	2
II.		
III.		
	Central Path	
	Fixed alpha and sigma	
	Adaptive alpha	
	Adaptive alpha and sigma	
N	Mehrotra	17
IV.	Example 2 Mehrotra:	19
V.		
VI.	. Comparison	25
B	Example 1:	25
B	Example 2:	26
B	Example 3:	27
	I References	28

II. Introduction

The attracted files:

- 1. Initial: function, which takes (A, b, c) and returns x_0 , s_0 , λ_0 .
- 2. Main: tests different algorithms
- 3. CenPa: central Path function, which takes (A, b, c, alpha, sigma, decision) and returns p^* , d^* , and x^* , respectively.
 - A, b, and c stand for the problem matrices and vectors.
 - Alpha is step size, and is ignored if adaptive sizing option is used, but must be entered.
 - Sigma is centering parameter. It is used in adaptive sizing in the first iteration only.
 - Decision: whether sizing is fixed (0) or adaptive (1 or otherwise).
- 4. cenpa_previous_working_version: central path with adaptive sizing on alpha only using another method.
- 5. Mehrotra function: which takes (A, b, c, sigma) and returns p*, d*, and x*, respectively.

Stopping condition was constant for each method: μ <0.0001

III. Example 1:

Min
$$z = -2x_1 - x_2$$

S.t. $3x_1 + 4x_2 + x_3 = 6$
 $6x_1 + x_2 + x_4 = 3$
 $x_1, x_2, x_3, x_4 \ge 0$
 $X = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix}$
 $C = \begin{bmatrix} -2 - 1 & 0 & 0 \end{bmatrix}$
 $A = \begin{bmatrix} 3 & 4 & 1 & 0 \\ 6 & 1 & 0 & 1 \end{bmatrix}$
 $b = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$

Figure 1 A graphical representation of the feasible region, highlighting the vertices and the optimum point with respect to the maximum objective function contour. (Desmos | Graphing Calculator, n.d.)

Central Path

Fixed alpha and sigma

Figure 2 Feasible Region and path taken σ =0.5, α =0.5

Figure 3 Duality Test σ =0.5, α =0.5

Figure 4 Central path σ =0.5, α =0.5

Figure 5 duality measure mu function of iteration σ =0.5, α =0.5

Figure 6 Feasible Region and path taken σ =0, α =0.5

Figure 7 Duality Test σ =0, α =0.5

Figure 8 Central path σ =0, α =0.5

Figure 9 duality measure mu function of iteration σ =0, α =0.5

Adaptive alpha

A method of choosing maximum alpha was used by starting from maximum value (α =1) and checking if any value of $x_{k+1}^T s_{k+1} < 0$. If this condition is false, the algorithm continues. If it is true, the alpha is decreased by subtracting s small value e of it, and recalculating x and rechecking the condition.

Figure 10 Feasible Region and path taken σ =0.5

Figure 11 Duality Test σ =0.5

Figure 12 Central path σ =0.5

Figure 13 duality measure mu function of iteration $\sigma{=}0.5$

Adaptive alpha and sigma

Figure 14 Feasible Region and path taken $\sigma 0$ =0.5

Figure 15 Duality Test $\sigma 0=0.5$

Figure 16 Central path σ0=0.5

Figure 17 duality measure mu function of iteration $\sigma 0$ =0.5

Figure 18 Feasible Region and path taken $\sigma 0=0$

Figure 19 Duality Test σ0=0

Figure 20 Central path $\sigma 0=0$

Figure 21 duality measure mu function of iteration $\sigma = 0$

Figure 22 Feasible Region and path taken $\sigma 0=1$

Figure 23 Duality Test $\sigma 0=1$

Figure 24 Central path $\sigma 0=1$

Figure 25 duality measure mu function of iteration σ =1

Mehrotra

Figure 26 Feasible Region and path taken

Figure 27 Duality Test

Figure 28 duality measure μ function of iteration

IV. Example 2 Mehrotra:

Figure 29 A graphical representation of the feasible region, highlighting the vertices and the optimum point with respect to the maximum objective function contour (Desmos \mid Graphing Calculator, n.d.)

Figure 30 Feasible Region and path taken, manually enhanced

Figure 31 Duality Test

Figure 32 duality measure mu function of iteration

V. Example 3 Mehrotra:

$$\begin{array}{ll} \textit{Max} & z = 50x_1 + 100x_2 \\ s.t. & 2x_1 + x_2 \le 1250 \\ 2x_1 + 5x_2 \le 1000 \\ 2x_1 + 3x_2 \le 900 \\ x_2 \le 152 \\ x_1, x_2 \ge 0 \end{array}$$

Figure 33 A graphical representation of the feasible region, highlighting the vertices and the optimum point with respect to the maximum objective function contour (Desmos | Graphing Calculator, n.d.)

$$C = [-50 \quad -100 \quad 0 \quad 0 \quad 0 \quad 0]$$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 & 0 & 0 \\ 2 & 5 & 0 & 1 & 0 & 0 \\ 2 & 3 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}, \qquad b = \begin{bmatrix} 1250 \\ 1000 \\ 900 \\ 152 \end{bmatrix}$$

Figure 34 Feasible Region and path taken

Figure 35 Duality Test

Figure 36 duality measure mu function of iteration

VI. Comparison

Example 1:

Three samples were taken for each algorithm for better comparison.

Example 2:

Example 3:

VII. References

- [1] Matrix decomposition for solving linear systems (no date) Matrix decomposition for solving linear systems MATLAB. Available at: https://www.mathworks.com/help/matlab/ref/decomposition.html (Accessed: January 8, 2023).
- [2] Solve System of Linear Equations (no date) Solve System of Linear Equations MATLAB & Simulink. Available at: https://www.mathworks.com/help/symbolic/solve-a-system-of-linear-equations.html (Accessed: January 8, 2023).
- [3] Solve systems of linear equations (no date) Solve systems of linear equations Ax = B for x MATLAB mldivide \. Available at: https://www.mathworks.com/help/matlab/ref/mldivide.html (Accessed: January 8, 2023).