Einführung in Sage

Zusammenfassung Einheit 03

Hinweise: Textbausteine mit <name> weisen darauf hin, dass anstatt des Ausdrucks eine passende Variable eingefügt werden muss.

Die grün markierten Wörter Sind web-links zu der jeweiligen Dokumentation.

Mengen

• Deklaration Mengen - Set()

```
Set([<element1>,<element2>,...])
```

• Zugriff via Indizes (auch Intervalle möglich)

```
M2[1]; M2[1:4]
```

- Operationen auf Mengen
 - Mächtigkeit- cardinality()

```
<set>.cardinality()
```

- Schnitt mit einer Menge- intersection()

```
<set>.intersection(<set>)
```

- Vereinigung mit einer anderen Menge- union()

```
<set>.union(<set>)
```

Mengenminus- difference()

```
<set>.difference(<set>)
```

Potenzmenge- powerset()

```
powerset(<set>)
```

- Prüfen, ob ein Element in einer Menge ist

```
<element> in <set>
```

• Filtern nach einer Eigenschaft- filter()

```
M1 = filter(<f>,<set>)
```

Dabei muss die Funktion <f> einen Wahrheitswert zurück geben. M1 enthält dann alle Elemente von <set>, die <f> erfüllen.

Zahlen

- Gleitkommazahlen
 - Runden

abs()	Absolutbetrag
ceil()	Aufrunden
floor()	Abrunden
round()	Runden

- in Gleitkommazahl umwandeln

```
float(<expr>)
```

```
<expr>.n(digits=<number>)
```

Dabei ist die Angabe des Parameters digits optional.

- Komplexe Zahlen
 - Realteil einer Zahl

```
real(<expr>)
```

- Imaginärteil einer Zahl

```
imag(<expr>)
```

- Wurzel

```
sqrt(<expr>)
```

Körper und Gruppen

• Namen

NN	\mathbb{N}
ZZ	\mathbb{Z}
QQ	\mathbb{Q}
RR	\mathbb{R}
CC	\mathbb{C}

• Prüfen, ob ein Objekt ein Körper ist

```
is_field(<obj>)
```

Typen

• den Typ einer Variablen ermitteln

```
type(<var>)
```

• Typ des übergeordneten Elements (Elternobjekt)

```
parent(<var>)
```