

Maharaja Education Trust (R), Mysuru

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE

An Autonomous Institute, affiliated Visvesvaraya Technological University, Belagavi Belawadi, Srirangapatna Taluk, Mandya – 571 477 Approved by AICTE, New Delhi |Recognized by Govt. of Karnataka|

Second Semester B.E Degree Examination, July/August-2024 Mathematics -II for CSE- Stream

Duration: 3 hrs

Max. Marks: 100

Note: 1. Answer five full questions choosing one complete question from each module.

2. M: Marks, L: Bloom's Level, C: Course outcome

SI.	Questions	M	C	L
No.	Module 1			
1 a)	Obtain the relationship between Beta and Gamma functions in the form	8	1	L2
,	$\beta(m,n) = \frac{\Gamma m * \Gamma n}{\Gamma m + n}$			
b)	By double integration, find the area bounded between the parabola $y^2 = 4x$ and the straight line $y = x$.	8	1	L1
c)	Solve the integral $\int_0^1 \int_0^2 \int_0^3 x^2 y^2 z^2 dx dy dz$.	4	2	L3
	OR .			,
2 a)	Find the solution of $\int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{\sin\theta}} * \int_0^{\frac{\pi}{2}} \sqrt{\sin\theta} \ d\theta$ in terms of Gamma function.	8	1	L2
b)	Changing into polar coordinates and solve $\int_0^a \int_0^{\sqrt{a^2-y^2}} y \sqrt{x^2+y^2} dx dy$.	8	2	L3
c)	Write the codes to find the volume of the tetrahedron bounded by the planes	4	4	L3
	$x = 0$, $y = 0$, $z = 0$ & $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$ using mathematical tools.			
	Module 2			
3 a)	Prove that the spherical coordinate system is orthogonal.	8	2	L2
b)	Find the directional derivative of $\phi = 4xz^3 - 3x^2y^2z$ at $(2, -1, 2)$ along $2i - 3j + 6k$.	8	1	L1
c)	Find the value of constant 'a' such that	4	1	L1
	$\vec{F} = (axy - z^3)i + (a - 2)x^2j + (1 - a)xz^2k$ is irrotational.			
	OR	- 120 101		
4 a)	Prove that the cylindrical coordinate system is orthogonal.	8	2	L2
b)	If $\vec{F} = \nabla(x^3 + y^3 + z^3 - 3xyz)$ find $div \vec{F}$ and $curl\vec{F}$.	8	1	Ll
c)	Using the Mathematical tools, write the codes to find the divergence of	4	4	L3
	$\vec{F} = x^2 y i + y z^2 j + x^2 z k at (1,1,1).$			
	Module 3			
5 a)	Define subspace. Prove that the subset $W = \{(x, y, z)/x = y = z\}$ in $V_3(R)$ is a subspace of \mathbb{R}^3 .	8	2	L2
b)	Define inner product space. Consider the vectors $u = (1,2,4)$ $v = (2,-3,5)$ and $w = (4,2,-3)$ in R^3 . Find i) $< u,v>, < u,w>, < v,w>, < u+v,w>$.	8	2	L1
c)	Find the basis and dimensions of the subspace spanned by the vectors, $\{(2,4,2), (1,-1,0), (1,2,1), (0,3,1)\}$ in $V(R^3)$.	4	2	LI
	OR			
6 a)	Define linearly independent and linearly dependent set. Show that the vectors	8	2	L2
,	The state of the s			- L

	$\{(1,-2,2),(3,0,4),(-2,2,-4)\}$ is linearly independent.		1	
b)	Find the matrix representation of linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by	8	2	L1
	T(x, y, z) = (2y + z, x - 4y, 3x) corresponding to the basis			
	$B = \{(1,1,1), (1,1,0), (1,0,0)\}.$			
c)	State and verify the Rank-Nullity theorem for the linear transformation defined by	4	2	L2
	T(x, y, z) = (x + 2y - z, y + z, x + y - 2z).			
	Module 4			
7a)	Use Simpson's $\left(\frac{1}{3}\right)^{rd}$ rule to estimate an integral $\int_0^1 \frac{dx}{1+x^2}$ by taking 4 equal strips	8	3	L3
	and hence deduce an approximate value of π .			
b)	Use Lagrange's interpolation formula to find $f(4)$ given $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	1	L1
	f(x) -4 2 14 158			
c)	Find a real root of the equation $x \log_{10} x - 1.2 = 0$ between (2,3) correct to three	4	3	L3
	decimal places by Regula-falsi method. Correct to two iterations only.			
	OR	and and		
8 a)	Use Simpson's $\left(\frac{3}{8}\right)^{th}$ rule to estimate an integral $\int_0^1 \frac{dx}{1+x}$ by taking 7 ordinates.	8	3	L3
b)		8	3	L3
	Use Newton's general interpolation formula find $f(8)&f(15)$ from the following			
	table.			
	x 4 5 7 10 11 13			
	f(x) 48 100 294 900 1210 2028			
- 0)	Use Newton-Raphson method to find the real root of the equation	4	1	L1
c)	$x\sin x + \cos x = 0$ near $x = \pi$. Correct to two iterations.	7	1	LI
	$\frac{xstnx + cosx}{\text{Module 5}}$			
9 a)		_ 8	3	L3
Jaj	Compute $y(1.4)$, given $\frac{dy}{dx} = 1 + \frac{y}{x}$ with $y(1) = 2 \& h = 0.2$ by Modified Euler's	- 0	3	LIS
	method.			
b)	Compute $y(0.4)$ by Milne's predictor and corrector formulae for $\frac{dy}{dx} = 2e^x - y$.	8	1	L3
	Given that $y(0) = 2$, $y(0.1) = 2.010$, $y(0.2) = 2.040$, $y(0.3) = 2.090$. Apply			
	corrector formula twice.			
c)	Use Runge-Kutta method of 4^{th} order find an approximate value of y at $x = 0.5$	4	1	L3
	correct to 4 decimal places. Given that $\frac{dy}{dx} = x + y$; $y(0.4) = 1$ and $h = 0.1$			
	OR	L		· · · · ·
10a)	Employ Taylor's series method, find the value of y at $x = 0.1$ given	8	3	L3
232)	$\frac{dy}{dx} = x^2 - y^2; y(0) = 1 \text{upto } 4^{\text{th}} \text{ derivative.}$ Use Runge-Kutta method of 4^{th} order find an approximate value of y at $x = 0.1$			
b)	Use Runge-Kutta method of 4^{th} order find an approximate value of y at $x = 0.1$	8	1	L3
	correct to 4 decimal places. Given that $\frac{dy}{dx} = 3e^x + 2y$; $y(0) = 0$ and $h = 0.1$.			
c)	Write the Mathematical tool codes to solve the differential equation	4	4	L3
	$\frac{dy}{dx} = x - y^2$ with $y(0) = 1$ using the Modified Euler's method at x = 0.1,0.2			