Алгоритмы теории чисел

Рыжичкин Кирилл

Февраль 2024

Оглавление

	ъве,	дение	3								
1	Про	остейшие алгоритмы теории чисел	4								
	1.	Простые числа	4								
	2.	НОД и НОК двух чисел	6								
		2.1. Алгоритм Евклида	6								
	3.	НОД и НОК n чисел									
	4.	Расширенный алгоритм Евклида									
	5.	Линейные диофантовы уравнения с двумя неизвестными	11								
		5.1. Алгоритм решения линейного диофантова уравнения с двумя неиз-									
		вестными	11								
	6.	Количество/сумма делителей числа	13								
	7.	Степень вхождения простого числа в факториал	15								
	8.	Решето Эратосфена	16								
2	Mo,	дульная арифметика	18								
	1.	Сравнения по модулю	18								
		1.1. Свойства сравнений	18								
	2.	Обратный элемент в кольце вычетов по модулю	18								
		2.1. Существование и единственность	19								
		2.2. Нахождение обратного элемента	19								
	3.	Линейные сравнения с неизвестной	20								
	4.	Китайская теорема об остатках (KTO)	21								
		4.1. Алгоритм поиска решений	21								
		4.2. Пример работы алгоритма	23								
	5.	Функция Эйлера	23								
	6.	Теорема Эйлера	25								
	7.	Малая теорема Ферма	25								
	8.	Теорема Вильсона	26								
	9.	Представимость простого числа в виде суммы двух квадратов	26								
	10	Возвеление в степень по молулю	27								

Введение

Мир алгоритмов теории чисел представляет собой захватывающий путь в глубины математического мира, где числа становятся не только абстрактными сущностями, но и основой для разработки эффективных алгоритмов. Теория чисел, одна из старейших областей математики, занимается изучением свойств целых чисел и их взаимосвязей. Вместе с тем, алгоритмы теории чисел играют критическую роль в современном мире, находя применение в широком спектре областей, включая криптографию, компьютерные науки, теорию игр и многое другое.

Мы начнем с основных понятий, таких как простые числа, делители, наибольший общий делитель и модульная арифметика, и постепенно углубимся в более сложные темы, такие как теорема Эйлера, китайская теорема об остатках, алгоритмы факторизации и многое другое.

Глава 1

Простейшие алгоритмы теории чисел

1. Простые числа

Определение. Натуральное число p называется простым (англ. prime number), если p>1 и p не имеет натуральных делителей, отличных от 1 и p.

Определение. Натуральное число n > 1 называется составным (англ. composite number), если n имеет по крайней мере один натуральный делитель, отличный от 1 и n.

Согласно определениям, множество натуральных чисел разбивается на 3 подмножества:

- 1. Простые числа.
- 2. Составные числа.
- 3. Число 1, которое не причисляется ни к простым, ни к составным числам.

Отсюда сразу возникает идея реализации интуитивно понятного алгоритма проверки числа n на простоту: если n=1, вернуть false, иначе пройтись по всем числам от 2 до n - 1, и если ни на одно из них число не поделится, то вернуть true. Соответственно сложность такого алгоритма будет O(n).

Посмотрим на реализацию такого простейшего алгоритма:

```
bool isPrime(int n) {
    if (n == 1) {
        return false;
    }
    for (int i = 2; i < n; i++) {
        if (n % i == 0) {
            return false;
        }
    }
    return true;
}</pre>
```

Утверждение. Пусть $N=a\times b$, причем $a\leq b$. Тогда $a\leq \sqrt{N}\leq b$

```
Доказательство. Если a \le b < \sqrt{N}, то ab \le b^2 < N, но ab = N. А если \sqrt{N} < a \le b, то N < a^2 \le ab, но ab = N.
```

Из этого следует, что если число N не делится ни на одно из чисел $2,3,4,\ldots,\lfloor\sqrt{N}\rfloor$, то оно не делится и ни на одно из чисел $\lceil\sqrt{N}\rceil+1,\ldots,N-2,N-1$, так как если есть делитель больше корня (не равный N), то есть делитель и меньше корня (не равный 1). Поэтому в цикле for достаточно проверять числа не до N, а до корня. Соответственно сложность такого алгоритма будет уже $O(\sqrt{n})$:

```
bool isPrime(int n) {
    if (n == 1) {
        return false;
    }
    for (int i = 2; i * i <= n; i++) {
        if (n % i == 0) {
            return false;
        }
    }
    return true;
}</pre>
```

Однако и этот алгоритм вовсе не оптимален и на практике применяется разве что на маленьких числах. Более оптимальные алгоритмы проверки на простоту будут расмотрены в следующих главах.

2. НОД и НОК двух чисел

Определение. Наибольший общий делитель (НОД) двух натуральных чисел a u b это наибольшее натуральное число d, которое делит оба числа a u b без остатка. Обозначается как d = HOД(a,b).

Утверждение. Для любых двух натуральных чисел a > b верно следующее равенство:

$$HOД(a,b) = HOД(a-b,b).$$

Доказательство. n = HOД(a,b)— наибольший среди всех общих делителей чисел a и b, тогда a : n и b : n. Отсюда a - b : n, значит, n - делитель a - b и b, он не превосходит наибольшего из всех общих делителей чисел a - b и b, т.е. $n \le m = \text{HOД}(a,b)$. Аналогично, рассуждая получаем, что a - b : m и b : m = HOД(a,b). Отсюда a = (a - b) + b : m значит, m - делитель a и b, он не превосходит наибольшего и всех общих делителей чисел a и b, т.е. $m \le n = \text{HOД}(a,b)$. Таким образом получаем $m \le n \le m$, т.е. HOД(a,b) = n = m = HOД(a - b, b).

2.1. Алгоритм Евклида

- 1. **Инициализация**: Начнем с двух целых чисел a и b, где $a \ge b$.
- 2. **Шаг 1**: Разделим a на b и найдем остаток от деления. Пусть остаток обозначается как r. То есть, $a = bq_1 + r$, где q_1 частное, а r остаток.
- 3. **Шаг 2**: Если остаток r равен нулю, то HOД(a-b,b) равен b, и алгоритм завершается.
- 4. **Шаг 3**: Если остаток r не равен нулю, заменим a на b и b на r, и вернемся к **шагу** 1.
- 5. **Шаг 4**: Повторяем процесс, пока остаток r не станет равным нулю. Когда это произойдет, HOД(a,b) будет равен последнему ненулевому остатку, который был получен на предыдущем шаге.
- 6. **Вывод результата**: Когда остаток становится равным нулю, последнее значение b будет искомым HOД(a,b).

Алгоритм Евклида гарантирует, что за конечное число шагов мы получим $\mathrm{HOД}(a,b),$ так как на каждом шаге остаток уменьшается и стремится к нулю.

Реализация алгоритма на С++:

```
int64_t NumberTheory::Gcd(int64_t a, int64_t b) {
    while (b != 0) {
        int64_t temp = b;
        b = a % b;
        a = temp;
    }
    return a;
}
```

Определение. Наименьшее общее кратное (HOK) двух натуральных чисел a u b это наименьшее натуральное число l, которое делится на оба числа a u b без остатка. Обозначается как l = HOK(a, b).

Утверждение. $\forall a, b \in \mathbb{N} : HOД(a, b) \cdot HOK(a, b) = ab.$

Доказательство. Во время доказательства нам пригодится следующее простое свойство:

$$\min(n; m) + \max(n; m) = n + m.$$

Оно верно, т.к. $\min(n,m)$ совпадает с одним из чисел n или m, а $\max(n,m)$ с другим. Запишем каноническое разложение на простые множители чисел a и b :

$$a = p_1^{n_1} p_2^{n_2} \dots p_k^{n_k}$$
 и $b = p_1^{m_1} p_2^{m_2} \dots p_k^{m_k}$

(возможно, что степени некоторых простых нулевые, т.е. простое число входит в разложение одного из чисел a или b на простые множители, но не входит в разложение второго). Запишем теперь разложение НОД (a,b) и НОК (a,b):

$$\mathrm{HOД}(a,b) = p_1^{\min\{n_1,m_1\}} p_2^{\min\{n_2,m_2\}} \dots p_k^{\min\{n_k,m_k\}}$$
 $\mathrm{HOK}(a,b) = p_1^{\max\{n_1,m_1\}} p_2^{\max\{n_2,m_2\}} \dots p_k^{\max\{n_k,m_k\}}$

То есть

$$HOД(a,b) \cdot HOK(a,b) = \prod_{i=1}^{k} p_i^{\min\{n_i,m_i\} + \max\{n_i,m_i\}} =$$

в силу свойства, указанного в самом начале доказательства, получаем

$$= \prod_{i=1}^{k} p_i^{n_i + m_i} = \prod_{i=1}^{k} p_i^{n_i} \prod_{i=1}^{k} p_i^{m_i} = ab.$$

Отсюда алгоритм нахождения получается элементарным:

```
int64_t NumberTheory::Lcm(int64_t a, int64_t b) {
  return a * b / Gcd(a, b);
}
```

з. НОД и НОК п чисел

Алгоритм Евклида для нескольких чисел использует основное свойство наибольшего общего делителя: если d делит каждое из чисел a_1, a_2, \ldots, a_n , то d также делит и их НОД.

Ход алгоритма Евклида для п чисел:

- 1. **Инициализация:** Пусть у нас есть набор чисел a_1, a_2, \ldots, a_n .
- 2. Нахождение НОДа для первых двух чисел:

$$d_1 = \text{HOД}(a_1, a_2)$$

3. Обновление НОДа для следующих чисел:

Для каждого i = 3, 4, ..., n:

$$d_i = \text{HOД}(d_{i-1}, a_i)$$

4. Конечный результат:

Наибольший общий делитель всех чисел: $HOД(a_1, a_2, \ldots, a_n) = d_n$.

Поскольку d_1 является НОДом a_1 и a_2 , он является делителем обоих этих чисел. Следовательно, d_1 делит оба числа нацело.

Когда мы переходим к следующему числу a_i , мы находим НОД между текущим НО-Дом d_{i-1} и a_i . Это значит, что d_{i-1} делит a_i и d_{i-1} нацело. Поскольку d_{i-1} также является НОДом всех предыдущих чисел, он делит все предыдущие числа нацело. Таким образом, di-1 делит a_i и все предыдущие числа нацело.

Стало быть, после обработки всех чисел мы получаем d_n , который является НОДом всех чисел a_1, a_2, \ldots, a_n .

Реализация данного алгоритма на С++:

```
int64_t NumberTheory::Gcd(std::vector<int64_t> numbers) {
  int64_t res = numbers[0];
  for (int i = 1; i < numbers.size(); ++i) {
    res = Gcd(res, numbers[i]);
  }
  return res;
}</pre>
```

Абсолютно аналогично получается алгоритм для нахождения НОКа нескольких чисел:

```
int64_t NumberTheory::Lcm(std::vector<int64_t> numbers) {
  int64_t res = numbers[0];
  for (int i = 1; i < numbers.size(); ++i) {
    res = Lcm(res, numbers[i]);
  }
  return res;
}</pre>
```

4. Расширенный алгоритм Евклида

Утверждение. $\forall a, b \in \mathbb{Z} \mid HOД(a, b) = d, \exists x, y \in \mathbb{Z} : ax + by = d.$

Основная идея расширенного алгоритма Евклида заключается в том, что мы можем выразить НОД двух чисел a и b через их линейную комбинацию, то есть такие целые числа x и y, что ax + by = HOД(a,b). Это следует из того факта, что множество всех линейных комбинаций a и b образует идеал в кольце \mathbb{Z} , а значит, содержит их НОД.

Будем считать, что у нас есть структура ExtendedEuclideanResult, которая хранит HOД(a, b), а также коэффициенты x, y, torдa расширенный алгоритм Евклида на C++ будет выглядеть так:

```
struct ExtendedEuclideanResult {
  ExtendedEuclideanResult(int64_t gcd, int64_t x, int64_t y) :
    gcd(gcd), x(x), y(y) {}
 ~ExtendedEuclideanResult() = default;
 int64 t gcd;
 int64 t x;
  int64 ty;
  friend std::ostream& operator << (std::ostream& os, const
     ExtendedEuclideanResult& result) {
    os << "GCD:" << result.gcd << ",x:" << result.x << ",y:" <<
       result.y;
    return os;
 }
};
ExtendedEuclideanResult NumberTheory::ExtEuclide(int64_t a,
  int64_t b) {
  int64 t x = 0, y = 1, lastX = 1, lastY = 0, temp;
  while (b !=0) {
   int64_t quotient = a / b;
   int64 t remainder = a % b;
   a = b;
   b = remainder;
   temp = x;
   x = lastX - quotient * x;
    lastX = temp;
   temp = y;
   y = lastY - quotient * y;
   lastY = temp;
  }
 return ExtendedEuclideanResult(a, lastX, lastY);
}
```

Линейные диофантовы уравнения с двумя неизвестными

Пусть нам дано уравнение ax + by = c, где $a, b, c \in \mathbb{Z}$.

Заметим, что левая часть уравнения делится на HOД(a,b), значит c обязано делиться на HOД(a,b), чтобы решение существовало.

Если НОД $(a,b) \mid c$, то поделим обе части на этот НОД, получим новое уравнение a'x + b'y = c', где НОД(a',b') = 1.

Пусть мы угадали какое-то решение (x_0, y_0) этого уравнения. Так как $a'x_0 + b'y_0 = c'$, то для любой пары (x, y) получим $a'x + b'y = a'x_0 + b'y_0$. Получим $a'(x - x_0) = b'(y - y_0)$.

Так как HOД(a',b')=1, то $b\mid x-x_0$, обозначим $x-x_0=kb'$, тогда $y-y_0=ka'$.

В итоге получаем множество решений $(x,y)=(x_0+kb^{'},y_0-ka^{'}),$ где $k\in\mathbb{Z}.$

Угадать решение уравнения a'x + b'y = c', где HOД(a',b') = 1 можно с помощью алгоритма Евклида. Сначала найдем решение (x_0,y_0) уравнения a'x + b'y = 1 (это можно сделать в силу утверждения со стр. 9), тогда (cx_0,cy_0) - решение уравнения a'x + b'y = c'.

5.1. Алгоритм решения линейного диофантова уравнения с двумя неизвестными

- 1. **Проверка существования решений:** Проверим, делится ли правая часть уравнения на HOД(a,b), если да идём дальше, если нет решения отсутствуют.
- 2. **Нахождение одного частного решения:** Применяя алгоритм Евклида, находим частное решение (x_0, y_0) уравнения ax + by = c.
- 3. **Нахождение общего решения:** Общее решение линейного диофантова уравнения может быть представлено в виде

$$(x_0 + \frac{b}{\text{HOД}(a,b)}t, y_0 - \frac{a}{\text{HOД}(a,b)}t), t \in \mathbb{Z}$$

Так выглядит реализация данного алгоритма на С++:

```
struct DiophantusResult {
  DiophantusResult() = default;
  Diophantus Result (int 64\_t \ x\,, \ int 64\_t \ y\,, \ int 64\_t \ k\_1, \ int 64\_t
    k 2): x(x), y(y), k 1(k 1), k 2(k 2), s("good") {}
  ~DiophantusResult() = default;
  int64 t x = 0;
  int64 t y = 0;
  int64_t k_1 = 0;
  int64 t k 2 = 0;
  std::string s = "none";
  friend std::ostream& operator<<(std::ostream& os, const
     DiophantusResult& result) {
    std::string sign 1 = "+";;
    std::string sign 2 = "-";
    if (result.k 1 < 0) {
      sign 1 = "-";
    }
    if (result.k 2 < 0) {
      sign 2 = "+";
    }
    if (result.s = "good") {
      os << "(x,y)=" << "(" << result.x << sign 1 << std::abs(
         result.k 1) << "t," << result.y << sign 2 << std::abs(
         result.k 2) << "t)";
    }
    else {
      os << "None";
    return os;
```

```
};
DiophantusResult NumberTheory::Diophantus(int64_t a, int64_t b, int64_t c) {
   ExtendedEuclideanResult result = ExtEuclide(a, b);
   int64_t g = result.gcd;
   if (c % g != 0) {
      return DiophantusResult();
   }
   int64_t k = c / g;
   return DiophantusResult(k * result.x, k * result.y, b / g, a / g);
}
```

6. Количество/сумма делителей числа

Алгоритм нахождения количества/суммы делителей числа можно реализовать элементарным перебором делителей. Сложность такого алгоритма будет $\mathrm{O}(\sqrt{n})$.

Рассмотрим такие алгоритмы:

```
int64_t NumberTheory::DivisorsCount(int64_t n) {
    n = std::abs(n);
    int64_t count = 0;
    for (int64_t i = 1; i <= static_cast < int64_t > (std::sqrt(n));
        ++i) {
        if (n % i == 0) {
            count += (i == n / i) ? 1 : 2;
        }
    }
    return count;
}
```

```
int64_t NumberTheory:: DivisorsSum(int64_t n) {
    for (int64_t i = 1; i <= static_cast < int64_t > (std::sqrt(n));
        ++i) {
        if (n % i == 0) {
            sum += i;
            if (i != n / i) {
                 sum += n / i;
            }
        }
        return sum;
}
```

Однако количество/сумма делителей любого числа легко выражается через его разложение на простые множители. Соответственно если мы реализуем факторизацию со сложностью, меньшей чем $O(\sqrt{n})$, то получим более оптимальный алгоритм. Такие факторизации будут рассмотрены в следующих главах, а пока будем считать, что у нас есть такой алгоритм разложения на простые множители и получим формулы количества и суммы делителей числа.

Пусть дано целое число n с разложением на простые множители:

$$n = p_1^{a_1} \times p_2^{a_2} \times \ldots \times p_k^{a_k},$$

где p_1, p_2, \ldots, p_k - простые числа (не обязательно различные), а a_1, a_2, \ldots, a_k - их показатели степени.

Утверждение. Пусть $\tau(n)$ обозначает количество положительных делителей числа n. Тогда $\tau(n) = (a_1 + 1) \times (a_2 + 1) \times \ldots \times (a_k + 1)$.

$$d = p_1^{b_1} \times p_2^{b_2} \times \ldots \times p_k^{b_k},$$

где $0 \le b_i \le a_i$ для i = 1, 2, ..., k. Чтобы получить все делители числа n, мы можем взять каждый из k простых множителей и выбрать любую комбинацию показателей степени от 0 до a_i . Таким образом, общее количество делителей числа n:

$$\tau(n) = (a_1 + 1) \times (a_2 + 1) \times \ldots \times (a_k + 1) \tag{1.1}$$

Утверждение. Пусть $\sigma(n)$ обозначает сумму положительных делителей числа n. Тогда

$$\sigma(n) = \frac{p_1^{a_1+1} - 1}{p_1 - 1} \cdot \frac{p_2^{a_2+1} - 1}{p_2 - 1} \cdot \dots \cdot \frac{p_k^{a_k+1} - 1}{p_k - 1}$$
(1.2)

$$\sigma(n) = (1 + p_1 + p_1^2 + \ldots + p_1^{a_1}) \cdot (1 + p_2 + p_2^2 + \ldots + p_2^{a_2}) \cdot \ldots \cdot (1 + p_k + p_k^2 + \ldots + p_k^{a_k})$$

Сумма геометрической прогрессии имеет вид:

$$1 + p^1 + p^2 + \ldots + p^m = \frac{p^{m+1} - 1}{p - 1}$$

Подставляя это обратно в наше уравнение, получаем требуемое равенство.

7. Степень вхождения простого числа в факториал

Утверждение. Пусть $ord_p(n!)$ обозначает степень вхождения простого числа p в n!. Torda

$$ord_p(n!) = \sum_{i=1}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor \tag{1.3}$$

Доказательство.

$$n! = 1 \times 2 \times 3 \times \ldots \times (n-1) \times n$$

Каждый p-ый член этого произведения делится на p, т.е. даёт +1 к ответу, количество таких членов равно $\left|\frac{n}{p}\right|$.

Далее, заметим, что каждый p^2 -ый член этого ряда делится на p^2 , т.е. даёт ещё +1 к ответу (учитывая, что p в первой степени уже было учтено до этого); количество таких членов равно $\left\lfloor \frac{n}{p^2} \right\rfloor$.

И так далее, каждый p^i -ый член ряда даёт +1 к ответу, а количество таких членов равно $\left|\frac{n}{p^i}\right|$.

Таким образом,

$$\operatorname{ord}_p(n!) = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \ldots + \left\lfloor \frac{n}{p^i} \right\rfloor + \ldots$$

Реализация данного алгоритма на С++:

```
int64_t NumberTheory::PrimePowerInFactorial(int64_t n, int64_t p
) {
   int64_t res = 0;
   while (n) {
        n /= p;
        res += n;
   }
   return res;
}
```

Решето Эратосфена

Решето Эратосфена — достаточно эффективный алгоритм для нахождения всех простых чисел в отрезке от 1 до n за O(nloglogn). Ход алгоритма:

- 1. Начинаем с списка чисел от 2 до n.
- 2. Отмечаем первое простое число в списке (2) как простое.
- 3. Зачеркиваем все кратные двойке числа в списке (кроме самой двойки).
- 4. Переходим к следующему незачеркнутому числу в списке (3), отмечаем его как простое.
- 5. Зачеркиваем все кратные тройке числа в списке (кроме самой тройки).
- 6. Повторяем этот процесс для каждого незачеркнутого числа в списке, пока не достигнем \sqrt{n} .
- 7. Все оставшиеся незачеркнутые числа в списке считаются простыми.

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Таблица 1.1 – Иллюстрация решета Эратосфена

Реализация данного алгоритма на С++:

```
std:: vector < int 64\_t > \ Number Theory:: Sieve Of Eratos thenes (int 64\_t - n) = (int 64\_t - n)
   ) {
   std :: vector < bool > isPrime(n + 1, true);
   std::vector<int64_t> primes;
  for (int p = 2; p * p <= n; p++) {
     if (isPrime[p] == true) {
        for (int64_t i = p * p; i \le n; i += p)
           isPrime[i] = false;
     }
  }
  \label{eq:formula} \mbox{for } (\mbox{int} 64\mbox{$_{-}$t } \mbox{$p$} = 2; \mbox{$p$} <= n; \mbox{$p$} +\!\!\!\!\! +) \mbox{ } \{
     if (isPrime[p])
        primes.push_back(p);
  }
  return primes;
}
```

Глава 2

Модульная арифметика

1. Сравнения по модулю

Определение. Пусть a, b, u m — целые числа, rде m > 0. Мы говорим, что a сравнимо c b по модулю m, если m делит разность a - b, обозначается как

$$a \equiv b \pmod{m}$$

1.1. Свойства сравнений

- 1. Если $a \equiv b \pmod{m}$ и $b \equiv c \pmod{m}$, то $a \equiv c \pmod{m}$.
- 2. Если $a \equiv b \pmod{m}$, то $ak \equiv bk \pmod{m}$ для любого целого числа k.
- 3. Если $a \equiv b \pmod{m}$ и $c \equiv d \pmod{m}$, то $a + c \equiv b + d \pmod{m}$.
- 4. Если $a \equiv b \pmod{m}$ и $c \equiv d \pmod{m}$, то $ac \equiv bd \pmod{m}$.
- 5. Если $a \equiv b \pmod{m}$, то $a^k \equiv b^k \pmod{m}$ для любого натурального числа k.

2. Обратный элемент в кольце вычетов по модулю

Определение. Пусть а u m - целые числа, причем m > 1. Целое число a^{-1} называется обратным по модулю m элементом κ a, если выполняется условие:

$$aa^{-1} \equiv 1 \pmod{m}$$

2.1. Существование и единственность

Утверждение. Обратный по модулю п элемент к а существует тогда и только тогда, когда а и п взаимно просты.

Доказательство. (\Rightarrow) Предположим, что существует обратный по модулю n элемент к a. Тогда существует такое целое число b, что $ab \equiv 1 \pmod{n}$. Это означает, что существует такое целое число k, что ab = 1 + kn. Таким образом, 1 = ab - kn, что означает, что 1 является линейной комбинацией a и n. Следовательно, a и n взаимно просты по определению.

 (\Leftarrow) Теперь предположим, что a и n взаимно просты. По расширенному алгоритму Евклида существуют такие целые числа x и y, что ax+ny=1. Заметим, что $ax\equiv 1\pmod n$. Таким образом, x является обратным по модулю n элементом к a.

2.2. Нахождение обратного элемента

Пусть нам надо найти обратный к a элемент по модулю m, то есть мы ищем x такой, что

$$ax \equiv 1 \pmod{m}$$

Рассмотрим линейное диофантово уравнение at+my=1, левая часть при делении на m даёт остаток at, а правая — 1, то есть чтобы найти обратный к a элемент, нам достаточно найти коэффициент t с помощью расширенного алгоритма Евклида и взять его по модулю m.

Реализация на С++:

```
int64_t NumberTheory::ModInverse(int64_t a, int64_t m) {
    // no solutions
    if (a == 0 || Gcd(m, a) != 1) {
        return 0;
    }

    ExtendedEuclideanResult euclide = ExtEuclide(a, m);
    int64_t result = ((euclide.x % m) + m) % m;

    return result;
}
```

з. Линейные сравнения с неизвестной

Определение. Линейное сравнение по модулю m представляет собой уравнение вида $ax \equiv b \pmod{m}$, где $a, b, m \in \mathbb{Z}, m > 0$, ax - неизвестная переменная.

Обозначим d = HOД(a, m). Так как ax и b дают одинаковые остатки по модулю m, то b обязано делиться на d. Если b не делится на d, то сравнение решений не имеет. Если же b делится на d, то разделим обе части сравнения на d и перейдём к сравнению

$$a'x \equiv b' \pmod{m'} \tag{2.1}$$

Так как HOД(a', m') = 1, то существует элемент a'^{-1} , для которого верно

$$a'a'^{-1} \equiv 1 \pmod{m'} \tag{2.2}$$

Умножим сравнение (2.1) на a'^{-1} , тогда

$$x \equiv a^{'-1}b^{'} \pmod{m^{'}} \tag{2.3}$$

Соответственно решением исходного сравнения будут являться все x, дающие по модулю m' остаток $a'^{-1}b'$, и находящиеся в кольце $\mathbb{Z}/m\mathbb{Z}$. Окончательно получаем:

$$x \in \{a^{'-1}b' + km' \mid k \in \mathbb{Z}, \ 0 <= k < d\}$$
(2.4)

Реализация алгоритма решения линейного сравнения на С++:

```
std::vector<int64_t> NumberTheory::SolveLinearCongruence(int64_t
    a, int64_t b, int64_t m) {
    int64_t d = Gcd(a, m);
    if (b % d != 0)
        return std::vector<int64_t>{ 0 }; // no solutions
    a /= d;
    b /= d;
    m /= d;
    int64_t x_0 = ModInverse(a, m) * b % m;
    std::vector<int64_t> result { x_0 };
    for (int64_t k = 1; k < d; ++k) {
        result.push_back(x_0 + k * m);
    }
    return result;
}</pre>
```

4. Китайская теорема об остатках (КТО)

Теорема. Китайская теорема об остатках утверждает, что для любых целых чисел a_1, a_2, \ldots, a_n и модулей m_1, m_2, \ldots, m_n , если модули попарно взаимно простые (то есть, $HOД(m_i, m_j) = 1$ для всех $i \neq j$), то система сравнений:

$$x \equiv a_1 \pmod{m_1}$$

 $x \equiv a_2 \pmod{m_2}$
 \vdots
 $x \equiv a_n \pmod{m_n}$

имеет ровно одно решение x, которое можно найти c помощью алгоритма KTO.

4.1. Алгоритм поиска решений

1. Подготовка данных: Пусть дана система линейных сравнений:

$$x \equiv a_1 \pmod{m_1}$$

 $x \equiv a_2 \pmod{m_2}$
 \vdots
 $x \equiv a_n \pmod{m_n}$

- 2. **Нахождение общего модуля:** Вычисляем общий модуль M, который равен произведению всех модулей m_i .
- 3. Вычисление M_i и m_i : Для каждого i вычисляем $M_i = \frac{M}{m_i}$, и n_i обратное M_i по модулю m_i .
- 4. **Нахождение** x: Для каждого i вычисляем (изначально x = 0):

$$x = (x + a_i \cdot M_i \cdot n_i) \mod M$$

5. **Возврат результата:** Результат x является искомым числом, которое удовлетворяет всей системе линейных сравнений.

Пример реализации алгоритма КТО на С++:

```
struct ChineseRemainderTheoremResult {
  ChineseRemainderTheoremResult(int64 t res, int64 t mod) : res(
     res), mod(mod) {}
  ~ChineseRemainderTheoremResult() = default;
  int64_t res = 0;
  int64 \quad t \mod = 0;
  friend std::ostream& operator << (std::ostream& os, const
     ChineseRemainderTheoremResult& result) {
    os << "Solution: _x_=_" << result.res << "_(mod_" << result.
       \mod \ll ")";
    return os;
 }
};
ChineseRemainderTheoremResult NumberTheory::
   ChineseRemainderTheorem(const std::vector<int64 t>& r, const
  std::vector < int64 t > \& m) {
  int64 t n = r.size();
  int64 t M = std :: accumulate(m. begin(), m. end(), 1, std ::
     multiplies < int64 t > ());
  std :: vector < int64 t > Mod(n);
  std :: vector < int64 t > mod(n);
  for (int64 \ t \ i = 0; \ i < n; ++i)
    Mod[i] = M / m[i];
    mod[i] = ModInverse(Mod[i], m[i]);
  }
  int64 t x = 0;
  for (int i = 0; i < n; ++i) {
    x = (x + r[i] * Mod[i] * mod[i]) % M;
  }
  return ChineseRemainderTheoremResult(x, M);
}
```

4.2. Пример работы алгоритма

Для системы сравнений:

$$x \equiv 2 \pmod{3}$$

$$x \equiv 3 \pmod{5}$$

$$x \equiv 2 \pmod{7}$$

Шаги алгоритма КТО следующие:

- 1. Общий модуль $M = 3 \times 5 \times 7 = 105$.
- 2. $M_1 = 105/3 = 35$, $M_2 = 105/5 = 21$, $M_3 = 105/7 = 15$.
- 3. $m_1 = 35^{-1} \mod 3 = 2$, $m_2 = 21^{-1} \mod 5 = 1$, $m_3 = 15^{-1} \mod 7 = 1$.
- 4. $x = (2 \cdot 35 \cdot 2 + 3 \cdot 21 \cdot 1 + 2 \cdot 15 \cdot 1) \mod 105 = 23$.

Таким образом, решением системы является $x \equiv 23 \pmod{105}$.

Функция Эйлера

Определение. Функция Эйлера, обозначаемая как $\varphi(n)$, определяется как количество положительных целых чисел, меньших n и взаимно простых c ним.

Утверждение. Если $p \in \mathbb{P}$, то

$$\varphi(p) = p - 1$$

Доказательство. Простые числа взаимно просты со всеми числами, меньшими их самих.

Утверждение. Если $p \in \mathbb{P}$, $a \in \mathbb{N}$ то

$$\varphi(p^a) = p^a - p^{a-1}$$

Доказательство. С числом p^a не взаимно просты только числа вида pk $(k \in \mathbb{N})$, которых $\frac{p^a}{p} = p^{a-1}$ штук.

Утверждение. Если $HOД(a,b)=1,\ mo\ \varphi(ab)=\varphi(a)\varphi(b).$

Доказательство. Рассмотрим произвольное число $z \le ab$. Обозначим через x и y остатки от деления z на a и b соответственно. Тогда z взаимно просто с ab тогда и только тогда, когда z взаимно просто с a и с b по отдельности, или, что то же самое, x взаимно просто с a и y взаимно просто с b. Применяя китайскую теорему об остатках, получаем, что любой паре чисел x и y ($x \le a$, $y \le b$) взаимно однозначно соответствует число z ($z \le ab$), что и завершает доказательство.)

Утверждение. Для любого положительного целого числа n, функция Эйлера $\varphi(n)$ выражается следующим образом:

$$\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p} \right)$$

Доказательство. Пусть

$$n = \prod_{i=1}^{k} p_i^{a_i}$$

Тогда

}

$$\varphi(n) = \prod_{i=1}^k \varphi(p_i^{a_i}) = \prod_{i=1}^k (p_i^{a_i} - p_i^{a_i-1}) = \prod_{i=1}^k p_i^{a_i} \left(1 - \frac{1}{p_i}\right) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$$

Зная это соотношение и факторизацию числа, можно быстро находить значение функции Эйлера. Приведём алгоритм нахождения $\varphi(n)$, используя простейшую факторизацию сложностью $O(\sqrt{n})$:

```
int64_t NumberTheory::Phi(int64_t n) {
  int64_t result = n;

for (int64_t i = 2; i * i <= n; ++i)
  if (n % i == 0) {
    while (n % i == 0)
        n /= i;
    result -= result / i;
  }

if (n > 1)
  result -= result / n;

return result;
```

В дальнейшем, алгоритм можно будет оптимизировать, использовав другие реализации факторизации.

6. Теорема Эйлера

Теорема. Если $n \in \mathbb{N}$, $a \in \mathbb{Z}$, $HO\mathcal{A}(a,n) = 1$, $\varphi(n)$ - функция Эйлера, то

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

Доказательство. Пусть \mathbb{S} - множество всех чисел от 1 до n, которые взаимно просты с n. Положим $\mathbb{S} = \{a_1, a_2, \dots, a_{\varphi(n)}\}$. Рассмотрим множество $a\mathbb{S} = \{aa_1, aa_2, \dots, aa_{\varphi(n)}\}$.

Заметим, что все элементы множества $a\mathbb{S}$ также взаимно просты с n, так как они являются произведениями взаимно простых с n чисел a и a_i . Поскольку $a\mathbb{S}$ и \mathbb{S} содержат одинаковое количество элементов и каждый элемент $a\mathbb{S}$ взаимно прост с n, то $a\mathbb{S}$ содержит те же числа, что и \mathbb{S} , но в другом порядке. Перемножим все элементы множества $a\mathbb{S}$:

$$a \cdot a_1 \cdot a \cdot a_2 \cdot \ldots \cdot a \cdot a_{\phi(n)} = a^{\varphi(n)} \cdot (a_1 \cdot a_2 \cdot \ldots \cdot a_{\varphi(n)})$$

Так как a взаимно просто с n, то $a^{\varphi(n)}$ взаимно просто с n, значит

$$a^{\varphi(n)}(a_1 \cdot \ldots \cdot a_{\varphi(n)}) \equiv (a_1 \cdot \ldots \cdot a_{\varphi(n)}) \pmod{n}$$

Умножим обе части сравнения на $(a_1 \cdot \ldots \cdot a_{\varphi(n)})^{-1}$ (обратный элемент существует в силу того, что $HOД(a_1 \cdot \ldots \cdot a_{\varphi(n)}, n) = 1$, тогда получим требуемое:

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

Теорема Эйлера используется в алгоритмах шифрования, в алгоритмах генерации псевдослучайных чисел, позволяет эффективно находить обратные элементы в кольцах вычетов.

7. Малая теорема Ферма

Теорема. Если $p \in \mathbb{P}, a \in \mathbb{Z}, HOД(a, p) = 1, mo$

$$a^{p-1} \equiv 1 \pmod{p}$$

Доказательство. Положим n=p, тогда по теореме Эйлера: $a^{\varphi(p)}\equiv 1\pmod p, \ \varphi(p)=p-1,$ отсюда получаем $a^{p-1}\equiv 1\pmod p.$

Данная теорема пригодится нам в будущем для написания вероятностного теста на простоту.

Теорема Вильсона

Теорема. $p \in \mathbb{P} \Leftrightarrow (p-1)! \equiv -1 \pmod{p}$

Доказательство. Рассмотрим (p-1)! Множество ненулевых классов вычетов по простому модулю p по умножению \mathbb{Z}_p^{\times} является группой, и тогда (p-1)! - это произведение всех элементов группы \mathbb{Z}_p^{\times} . Поскольку \mathbb{Z}_p^{\times} - группа, то для каждого её элемента a существует единственный обратный элемент a^{-1} : $aa^{-1} \equiv 1 \pmod{p}$.

Соответствие $a \to a^{-1}$ разбивает группу на классы: если $a = a^{-1}$ (что равносильно $a^2 = 1$, то есть $a \in \{-1,1\}$, поскольку у уравнения второй степени может быть не более двух решений), то класс содержит один элемент a, в противном случае класс состоит из двух элементов - $\{a, a^{-1}\}$.

Значит, если класс содержит один элемент a, то произведение всех его элементов равно a, а если класс содержит 2 элемента, то произведение всех его элементов равно 1. Теперь в произведении (p-1)! сгруппируем элементы по классам, все произведения по 2-элементным классам просто равны 1:

$$(p-1)! \equiv \prod_{a^2=1} a \prod_{a^2 \neq 1} a \equiv \prod_{a^2=1} a \equiv (-1) \cdot 1 \equiv -1 \pmod{p}$$

9. Представимость простого числа в виде суммы двух квадратов

Утверждение. Если $p \in \mathbb{P}, p \equiv 1 \pmod{4}$, то $p = a^2 + b^2$, где $a, b \in \mathbb{Z}$.

Доказательство. По теореме Вильсона $(p-1)! \equiv -1 \pmod{p}$, зная, что p=4n+1, получим $(4n)!+1\equiv 0 \pmod{p}$. Следовательно $1\cdot 2\cdot \ldots \cdot (2n)\cdot (2n+1)\cdot \ldots \cdot (4n)+1\equiv 1\cdot 2\cdot \ldots \cdot (p-2n)\cdot \ldots \cdot (p-1)+1 \pmod{p}$ Положим N=(2n)!, тогда $N^2\equiv -1 \pmod{p}$

Рассмотрим пары чисел (m,s) такие, что $0 \le m,s \le \lfloor \sqrt{p} \rfloor$. Число таких пар равно $(\lfloor \sqrt{p} \rfloor + 1)^2 > p$. Значит по крайней мере для двух различных пар $(m_1,s_1), (m_2,s_2)$ остатки от деления $m_1 + Ns_1, m_2 + Ns_2$ на p будут одинаковыми, т.е. число a + Nb, где $a = m_1 - m_2, b = s_1 - s_2$, будет делится на p. При этом $|a| < \sqrt{p}, |b| < \sqrt{p}$. Но тогда число $a^2 - N^2b^2 = (a - Nb)(a + Nb)$ делится на p. Учитывая, что $N^2 \equiv -1 \pmod{p}$, получим, что $a^2 + b^2 \equiv 0 \pmod{p} \Leftrightarrow a^2 + b^2 = rp$, где $r \in \mathbb{N}$. Но $a^2 + b^2 < 2p \Leftrightarrow r = 1$, а значит $a^2 + b^2 = p$.

Проверка представимости простого числа в виде суммы двух квадратов в С++:

```
bool NumberTheory::CheckSumOfSquares(int64_t p) {
   if (IsPrime(p)) {
      if (p % 4 == 1) {
        return true;
      }
      return false;
   }
   else {
      throw std::invalid_argument("This_function_is_only_for_prime_numbers");
   }
}
```

10. Возведение в степень по модулю

}

В программировании, особенно в криптографии и математических задачах, часто требуется возводить большие числа в степень по модулю большого числ). Этот процесс может быть ресурсоёмким, и может привести к переполнению типов данных. Однако, существует эффективный алгоритм, который позволяет выполнять быстрое возведение в степень по модулю.

Давайте рассмотрим реализацию алгоритма возведения в степень по модулю на языке программирования C++:

```
int64_t NumberTheory::ModPow(int64_t base, int64_t exp, int64_t m)
    {
    int64_t result = 1;
    base %= m;

while (exp > 0) {
    if (exp & 1) {
        result = (result * base) % m;
    }
    base = (base * base) % m;
    exp >>= 1;
}
return result;
```