Estatística Inferencial

Prof. Wagner Hugo Bonat

Departamento de Estatística Universidade Federal do Paraná

Importância das distribuições multivariadas

- Descrevem o comportamento conjunto de várias variáveis aleatórias.
- Permite analisar de forma simultânea várias variáveis aleatórias.
- Investigar a relação entre elas.
- Usar a informação de uma para inferir sobre a outra.
- Descrever estruturas de dependência temporal, espacial, genética, etc.
- Condensar a informação de várias variáveis em um número reduzido de fatores latentes.

Figura 1. Correlação entre os escores para os estilos de aprendizado determinados para os alunos de Estatística Básica.

Características de uma v.a. Multinomial

- ▶ **Generalização** da distribuição Binomial.
 - ▶ Binomial: 2 resultados mutuamente exclusivos $\{0,1\}.$
 - ► Multinomial: k resultados mutuamente exclusivos.
- ▶ Condições:
 - ► Suponha *n* ensaios **independentes** que podem apresentar, em cada, apenas um de k possíveis resultados $\{O_1, O_2, \ldots, O_k\}$.
 - ightharpoonup Sejam p_1, p_2, \ldots, p_k , com $\sum p_i = 1$, as probabilidades de observar O_1, O_2, \ldots, O_k respectivamente, que se mantém constantes.
 - ► Seja Y_i o **número de vezes** que o resultado O_i ocorre nos n ensaios.
 - Dessa forma. $\{Y_1, \ldots, Y_k\} \sim \text{Multinomial}(p_1, \ldots, p_k, n).$

Exemplos de uma v.a. Multinomial

1. Resultado do arremesso da bola à cesta:

{errou, fez 1, fez 2, fez 3 pontos}.

2. Ação resultado de uma propaganda direta por email

{não viu. acessou, wishlist, compra}.

3. Categoria de veículo alugado por cliente em um site

{SUV. Sedan, Hatch, Utilitário, ...}.

4. Classificação de um estudante em relação à área do Curso

{Exatas, Humanas, Biológicas}.

- 5. Signo de uma pessoa.
- 6. Dia da semana de acidente de trabalho.
- 7. Grau de uma infração de trânsito.
- 8. Estado civil de uma pessoa.

A distribuição Multinomial

Satisfeitas as condições apresentadas anteriormente, tem-se que a distribuição do vetor aleatório $\{Y_1, \dots, Y_k\}$ é dada por

$$p(y_1, \dots, y_k) = \frac{n!}{y_1! \cdot \dots \cdot y_k!} \cdot p_1^{y_1} \cdot \dots \cdot p_k^{y_k}$$
$$= \frac{n!}{\prod_{i=1}^k y_i!} \cdot \prod_{i=1}^k p_i^{y_i}.$$

Esperança e variância para cada componente i é dado por

$E(O_i) = p_i$	logo	$E(Y_i) = n \cdot p_i.$
$V(O_i) = p_i(1 - p_i)$	logo	$V(Y_i) = n \cdot p_i (1 - p_i).$

j	01	O_2	 O_k
1		1	
2	1		
3		1	
:			1
n		1	
Soma	Y_1	Y_2	 Y_k
	1	William P.	(1550) 1070) III

Exemplo: bolas de gude

Em uma urna há 2 bolas vermelhas, 3 verdes e 5 azuis. São selecionadas 4 bolas ao acaso da urna com reposição. Qual a probabilidade de retirar 2 verdes e 2 azuis.

Figura 2. Bolas de gude. Fonte: https://cutt.ly/QhzaxK8.

Solução

- ▶ São n = 4 ensaios independentes.
- ► As probabilidades são:

$$p_1 = \frac{2}{10}$$
, $p_2 = \frac{3}{10}$ e $p_3 = \frac{5}{10}$.

 Deseja-se a probabilidade do resultado

$$y_1 = 0$$
, $y_2 = 2$ e $y_3 = 2$.

Usando a função de probabilidade, temse

$$p(0,2,2) = \frac{4!}{0! \cdot 2! \cdot 2!} \cdot 0.2^{0} \cdot 0.3^{2} \cdot 0.5^{2}$$
$$= 0.135$$

Diferença entre Multinomial e Binomiais

Ícone retirado do https://www.flaticon.com/authors/photo3idea-studio

Branco

Características de um v.a. Normal Multivariada

- Um conjunto de variáveis contínuas não limitadas.
- ► Individualmente as variáveis são Normais, portanto simétricas.
- Variáveis apresentam relação linear entre si.
- Resultam da combinação de muitos fatores de pequena contribuição.
 - Características genéticas e morfológicas.
 - ► Traços latentes.
 - Índices econômicos.

Figura 3. Diagramas de dispersão para 4 variáveis contínuas.

Exemplos de v.a. com distribuição Normal Multivariada

- ▶ Peso de massa seca, altura de planta e altura da primeira espiga em uma planta de milho.
- ▶ Peso, comprimento e circunferência de uma banana.
- Comprimentos no crânio de um fóssil ou animal.
- Variação de um conjunto de índices econômicos ou mercadorias: e.g. combustível.
- ► Traço latente para resolução de problemas de física, matemática, química, etc.

Figura 4. Distâncias medidas em um peixe para estudo morfométrico. Fonte: https://cutt.ly/AhlsOWo.

Importância da Normal Multivariada

- Modelar a estrutura de correlação ou dependência.
 - ► Modelos de séries temporais: correlação entre datas.
 - Modelos geoestatísticos: correlação entre pontos no espaço.
 - Modelos genéticos: correlação entre características.
- ► Técnicas de análise multivariada.
 - Análise de discriminante linear.
 - Análise fatorial exploratória e confirmatória
 - Análise de correlação canônica.
 - ► Análise de variância multivariada.

Figura 5. Gráfico de valores observados de matéria orgânica do solo e o mapa com a predição para todo o terreno.

A distribuição Normal Multivariada

Um vetor aleatório contínuo Y $(p \times 1)$ tem distribuição Normal multivariada se sua densidade conjunta é dada por

$$f(\mathbf{y}) = \left(\frac{1}{2\pi}\right)^{p/2} \det(\Sigma)^{-1/2} \exp\left\{-\frac{1}{2}(\mathbf{y} - \boldsymbol{\mu})^{\top} \Sigma^{-1}(\mathbf{y} - \boldsymbol{\mu})\right\},\,$$

em que

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_p \end{bmatrix}, \quad \boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_p \end{bmatrix} \quad \mathbf{e} \quad \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & \dots & \sigma_{1p} \\ \vdots & \ddots & \vdots \\ \sigma_{p1} & \dots & \sigma_p^2 \end{bmatrix}.$$

Denotamos por Y $\sim N_p(\mu, \Sigma)$.

A média e variância do vetor aleatório são dados por

$$E(Y) = \mu$$
 e $V(Y) = \Sigma$.

Distribuições marginais e condicionais (caso bivariado)

Distribuição marginal: A distribuição marginal de cada elemento de um vetor aleatório Normal é também Normal. Isto é.

$$Y_i \sim N(\mu_i, \sigma_i^2)$$
 $i \in \{1, 2\}.$

Distribuição condicional: A distribuição condicional de cada elemento de um vetor aleatório em relação ao outro tambem é Normal. Isto é,

$$Y_i | Y_j = y_j \sim N(\mu_{i|j}, \sigma_{i|j}^2), \qquad i \neq j \in \{1, 2\},$$

em que

$$\mu_{i|j} = \mu_i + \frac{\sigma_{ij}}{\sigma_j^2} (y_j - \mu_j)$$
 e $\sigma_{i|j}^2 = \sigma_i^2 - \frac{\sigma_{ij} \cdot \sigma_{ji}}{\sigma_j^2}$.

Exemplo: altura de mães e filhas

A altura de mães e filhas adultas segue distribuição Normal bivariada com parâmetros

$$\mu = \begin{bmatrix} 165 \\ 165 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 49 & 35 \\ 35 & 49 \end{bmatrix}.$$

- Dado que uma mãe tem 172 cm de altura, qual a estatura esperada para a filha quando adulta?
- Qual a probabilidade da filha ter mais de 180 cm?

Figura 6. Mãe com sua filha. Foto de Pixabay no Pexels.

Solução

A altura esperada para a filha é

$$\mu_{f|m} = \mu_f + \frac{\sigma_{fm}}{\sigma_m^2} (y_m - \mu_m)$$
$$= 165 + \frac{35}{49} (172 - 165) = 170.$$

▶ A variância de $Y_f|Y_m = 172$ é

$$\sigma_{f|m}^2 = \sigma_f^2 - \frac{\sigma_{fm} \cdot \sigma_{mf}}{\sigma_m^2}$$

$$= 49 - \frac{35 \cdot 35}{49} = 47.57.$$

E assim, $P(Y_f > 180 | Y_m = 172) = 0.074$.

Figura 7. Distribuição Normal bivariada para o problema da altura de mães e filhas.

Figura 8. Distribuição Normal bivariada para o problema da altura de mães e filhas.

Distribuições marginais e condicionais (caso geral)

Considere a partição do vetor aleatório Y em dois subvetores complementares de tamanho p e q. Ou seja,

$$\mathbf{Y} = \begin{bmatrix} \mathbf{Y}_p \\ \mathbf{Y}_q \end{bmatrix}, \quad \boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}_p \\ \boldsymbol{\mu}_q \end{bmatrix}, \quad \boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{pp} & \boldsymbol{\Sigma}_{pq} \\ \boldsymbol{\Sigma}_{qp} & \boldsymbol{\Sigma}_{qq} \end{bmatrix}.$$

Distribuição marginal: A distribuição marginal de Y_n é Normal. Isto é,

$$Y_p \sim N_p(\mu_p, \Sigma_{pp})$$

Distribuição condicional: A distribuição condicional de Y_p em relação à Y_q é Normal. Isto é,

$$\mathbf{Y}_p|\mathbf{Y}_q=\mathbf{y}_q\sim \mathbb{N}_p(\pmb{\mu}_{p|q},\pmb{\Sigma}_{p|q})$$
, em que $\pmb{\mu}_{p|q}=\pmb{\mu}_p+\pmb{\Sigma}_{pq}\pmb{\Sigma}_{qq}^{-1}(\mathbf{y}_q-\pmb{\mu}_q)$ e $\pmb{\Sigma}_{p|q}=\pmb{\Sigma}_{pp}-\pmb{\Sigma}_{pq}\pmb{\Sigma}_{qq}^{-1}\pmb{\Sigma}_{qp}$.

Algumas propriedades

- Correlação 0 (zero) implica em independência.
- Variáveis individualmente apresentarem distribuição Normal não implica em distribuição Normal conjunta.

Figura 9. Gráficos da densidade da Normal bivariada com diferentes valores para a correlação.

Motivação

- ▶ Sejam $Y_1, Y_2, ..., Y_n$ variáveis aleatórias (v.a) independentes e idênticamente distribuídas (iid) com $E(Y_i) = \mu$ e $V(Y_i) = \sigma^2$.
- ightharpoonup Objetivo: Baseado em um conjunto de realizações de Y_i estimar o valor μ .
- ightharpoonup Estratégia simples: Usar a versão empírica de μ , i.e.

$$\hat{\mu} = \sum_{i=1}^{n} \frac{Y_i}{n}.$$

- \triangleright $\hat{\mu}$ é uma variável aleatória?
- ▶ Qual a esperança de $\hat{\mu}$?
- ▶ Qual a variância de $\hat{\mu}$?
- Qual é a distribuição de probabilidade de $\hat{\mu}$?

Sequência de v.a's

▶ **Definição (Sequência de v.a's):** Sejam $X_1, X_2, ..., X_n$ v.a's com função de probabilidade (fp) ou função densidade de probabilidade (fdp) $f(X, \theta)$. Para uma função $q(\cdot)$ define-se uma sequência de v.a's como.

$$Y_1 = g(X_1)$$

$$Y_2 = g(X_1, X_2)$$

$$\vdots$$

$$Y_n = g(X_1, \dots, X_n).$$

- Estatísticas amostrais são funções do tamanho da amostra e podem ser tratadas como sequência de v.a's.
- Exemplos: Média e variância amostral.

Convergência em probabilidade

Convergência em probabilidade: Seja Y_1, \ldots, Y_n uma sequência de v.a's. Dizemos que Y_n converge em probabilidade para uma constante ou v.a Y, se $\forall \epsilon > 0$, tem-se

$$\lim_{n\to\infty} P(|Y_n - Y| > \epsilon) = 0.$$

- Notação: $Y_n \stackrel{P}{\rightarrow} Y$.
- ▶ Observações:
 - 1. $Y_n \stackrel{P}{\to} Y$ é equivalente a $(Y_n Y) \stackrel{P}{\to} 0$.
 - 2. Para vetores aleatórios, tem-se

$$\boldsymbol{Y}_n = (Y_{n1}, \dots, Y_{nk})^{\mathsf{T}}, \boldsymbol{Y}_n \stackrel{P}{\to} \boldsymbol{Y}$$
 se $Y_{ni} \stackrel{P}{\to} \boldsymbol{Y}_i$ para $i = 1, \dots, n$.

Desigualdades

▶ **Markov:** Seja Y uma v.a não negativa com $E(Y) = \mu$ e $\epsilon > 0$. Então,

$$P(Y \ge \epsilon) \le \frac{E(Y)}{\epsilon}$$
.

- ▶ Demonstração.
- ► Chebyshev: Seja Y qualquer v.a com $E(Y) = \mu$ e $V(Y) = \sigma^2$ ambos finitos. Então, para todo $\epsilon > 0$

$$P(|Y - \mu| > \epsilon) \le \frac{V(Y)}{\epsilon^2} = \frac{\sigma^2}{\epsilon^2}.$$

- Demonstração.
- ▶ Corolário: Seja $\psi(\cdot)$ uma função monotônica. então

$$P(\psi(|Y|) > \psi(\epsilon)) \le \frac{E(\psi(Y))}{\psi(\epsilon)}.$$

Lei dos Grandes Números: Chebyshev

▶ **Teorema**: Seja Y_1, \ldots, Y_n v.a. iid com $E(Y_i) = \mu$ e $V(Y_i) = \sigma^2$ ambos finitos. Então,

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \xrightarrow{P} E(Y_i) = \mu.$$

- ► Demonstração.
- Ilustração computacional.

Lei dos Grandes Números: Kolmogorov

▶ **Teorema**: Seja Y_1, \ldots, Y_n v.a. iid com $E(|Y_i|) < \infty$ e $E(Y_i) = \mu$. Então,

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \xrightarrow{P} E(Y_i) = \mu.$$

- ► Condição $E(|Y_i|) < \infty$ significa que $E(|Y_i|) = \int |y_i| f(y_i, \theta) dy_i < \infty$.
- Controla as caudas da distribuição.
- ► Caudas não podem ser muito pesadas, tal que $\mathbb{E}(|Y_i|) = \infty$, mas ainda podem ser pesadas a ponto de $E(Y_i^2) = \infty$.
- ► Kolmogorov não requer que V(Y_i) exista.
- Kolmororov cobre distribuições com caudas pesadas como a t-Student.
- Demonstração é trabalhosa em sua forma geral.
- Ilustração computacional.

Manipulação de limites e convergência em probabilidade

- **Teorema de Slutsky**: Sejam Y_n e Z_n sequências de v.a's e sejam b, c e d constantes.
 - ► Se $Y_n \xrightarrow{P} c$ então $hY_n \xrightarrow{P} hc$
 - ► Se $Y_0 \xrightarrow{P} c$ e $Z_0 \xrightarrow{P} d$ então $Y_0 + Z_0 \xrightarrow{P} c + d$
 - ▶ Se $Y_n \xrightarrow{P} c$ e $Z_n \xrightarrow{P} d$ então $\frac{Y_n}{Z} \xrightarrow{P} \frac{c}{d}$ desde que $d \neq 0$ e $Y_n Z_n \xrightarrow{P} cd$.
 - ▶ Se $Y_n \stackrel{P}{\to} c$ e $h(\cdot)$ é uma função contínua então $h(Y_n) \stackrel{P}{\to} h(c)$.
- ▶ Demonstração (ver Magalhães (2006) Ed.2 pag 319).

Convergência em distribuição

▶ Seja Y_1, \ldots, Y_n uma sequência de v.a. Dizemos que Y_n converge em distribuição para uma v.a Y e escrevemos $Y_n \stackrel{D}{\rightarrow} Y$ se

$$F_{Y_n}(y) = P(Y_n \le y) \to F_Y(y) = P(Y \le y), \quad n \to \infty$$

- ▶ Na maioria das aplicações Y será normal ou qui-quadrado.
- Convergência em distribuição em geral é demonstrada via Teorema Central do Limite.
- \triangleright Se n é grande usamos a distribuição de Y como uma aproximação para a distribuição de Y_n.
- ▶ Distribuição exata de Y_n em geral é dificil de se obter.

Função geradora de momentos

- ▶ **Proposição 1**: Se X e Y são v.a independentes com fgm $M_X(t)$ e $M_Y(t)$. Seja Z = X + Y, então $M_Z(t) = M_X(t)M_Y(t)$.
- ▶ **Proposição 2**: Se X é uma v.a com fgm $M_X(t)$ e Y = a + bX, então $M_Y(t) = e^{at}M_X(bt)$.
- **Teorema da Continuidade de Levy**: Seja F_n uma sequência de funções de distribuições acumuladas com correspondentes funções geradoras de momentos $M_n(t)$. Seja F uma cdf com fgm M(t). Se $M_n(t) \to M(t)$ $\forall t$ em um intervalo aberto contendo zero, então $F_n(y) \to F_Y(y) \quad \forall y$.
- Função geradora de momentos distribuição normal padrão $M_{ij}(t) = e^{t^2/2}$.
- ightharpoonup Exponencial $e^x = \lim_{n \to \infty} [1 + (x/n)]^n$.

Séries de Taylor

- \triangleright Suponha que uma função f(x) é derivável (n + 1) vezes em um intervalo contendo $x = x_0$.
- Expansão em **Série de Taylor** de f(x) em torno de $x = x_0$ consiste em reescrever f(x)da seguinte forma:

$$f(x) = f(x_0) + (x - x_0) \frac{df(x)}{dx} \Big|_{x = x_0} + \frac{(x - x_0)^2}{2!} \frac{d^2 f(x)}{dx^2} \Big|_{x = x_0} + \frac{(x - x_0)^3}{3!} \frac{d^3 f(x)}{dx^3} \Big|_{x = x_0} + \dots + \frac{(x - x_0)^n}{n!} \frac{d^n f(x)}{dx^n} \Big|_{x = x_0} + e_n(x)$$

onde o termo $e_n(x)$ é chamado de resíduo ou erro, e dado por

$$e_n(x) = \frac{(x - x_0)^{n+1}}{(n+1)!} \frac{d^{n+1}f(x)}{dx^{n+1}} |_{x=\epsilon}$$

sendo ϵ um valor entre x e x_0 .

Teorema Central do Limite

▶ **Teorema Lindeberg-Levy**: Seja Y_1, \ldots, Y_n v.a's iid com $E(Y_i) = \mu$ e $V(Y_i) = \sigma^2 < \infty$. Então.

$$\sqrt{n}\left(\frac{\bar{Y}-\mu}{\sigma}\right) \xrightarrow{D} Z \sim N(0,1), \text{ para } n \to \infty.$$

▶ Isso significa que, para todo $y \in \Re$,

$$P(Y_n \le y) \to \Phi(y)$$
 quando $n \to \infty$,

onde

$$\Phi(y) = \int_{-\infty}^{y} \phi(z)dz$$
 e $\phi(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z^2\right)$.

► Forma alternativa: $\overline{Y} \sim \mathcal{N}(\mu, \sigma^2/n)$.

Teorema Central do Limite (versão multivariada)

▶ **Teorema Lindeberg-Levy multivariado**: Sejam Y_1, \ldots, Y_n vetores aleatórios p-dimensionais com $E(Y_i) = \mu$ e $V(Y_i) = [(Y_i - \mu)(Y_i - \mu)^\top] = \Sigma$, onde Σ é não-singular. Denote $\Sigma^{-1} = \Sigma^{-\frac{1}{2}}\Sigma^{-\frac{1}{2}}$. Então,

$$\sqrt{n}\Sigma^{-\frac{1}{2}}(\bar{Y}-\mu)\stackrel{\bar{D}}{\rightarrow}Z\sim \mathcal{N}(\mathbf{0},I),$$

onde $N(\mathbf{0}, \mathbf{I})$ denota uma distribuição normal multivariada com média zero e matriz de covariância identidade,

$$f(\mathbf{z}) = (2\pi)^{-p/2} \exp\left(-\frac{1}{2}\mathbf{z}^{\top}\mathbf{z}\right).$$

► Formas alternativas

$$\sqrt{n}(\bar{Y} - \mu) \sim \mathcal{N}(\mathbf{0}, \Sigma)$$

 $\bar{Y} \sim \mathcal{N}(\mu, n^{-1}\Sigma).$

Teorema Central do Limite

Teorema Lindeberg-Feller: Seja Y_1, \ldots, Y_n v.a independentes $E(Y_i) = \mu_i$ e $V(Y_i) = \sigma_i^2 < \infty$. Defina, $\overline{\mu}_n = n^{-1} \sum_{i=1}^n \mu_i \in \overline{\sigma}_n^2 = n^{-1} \sum_{i=1}^n \sigma_i^2$. Suponha que

$$\lim_{n \to \infty} \max_{i} \frac{\sigma_{i}^{2}}{n \bar{\sigma}_{n}^{2}} = 0$$

$$\lim_{n \to \infty} \bar{\sigma}_{n}^{2} = \bar{\sigma}^{2} < \infty.$$

Então

$$\sqrt{n}\left(\frac{\bar{Y}-\bar{\mu}_n}{\bar{\sigma}_n^2}\right)\stackrel{D}{\to} Z\sim N(0,1).$$

▶ De forma equivalente.

$$\sqrt{n}(\overline{Y}-\bar{\mu}_n)\stackrel{D}{\to} \mathcal{N}(0,\overline{\sigma}_n^2).$$

Teorema Central do Limite

▶ **Teorema Liapounov**: Sejam Y_1, \ldots, Y_n v.a independentes $E(Y_i) = \mu_i$ e $V(Y_i) = \sigma_i^2 < \infty$. Suponha que

$$\mathsf{E}[|Y_i - \mu_i|^{2+\delta}] \le M < \infty$$

para algum $\delta > 0$. Se $\bar{\sigma}_n^2$ é positiva e finita para todo n suficientemente grande, então

$$\sqrt{n}\left(\frac{\overline{Y}-\overline{\mu}_n}{\overline{\sigma}_n}\right) \stackrel{D}{\to} Z \sim N(0,1).$$

Equivalentemente.

$$\sqrt{n}(\overline{Y}-\overline{\mu}_n)\stackrel{D}{\to} \mathcal{N}(0,\overline{\sigma}^2).$$

Liapounov é equivalente a Lindeberg-Feller só que mais simples de entender e verificar na prática.

Resultados para manipular TCL's

▶ **Teorema Slutsky**: Sejam Y_n e Z_n sequência de v.a tais que $Y_n \stackrel{D}{\to} Y$ e $Z_n \stackrel{P}{\to} c$, onde Y é uma v.a e c é uma constante. Então, os seguintes resultados valem quando $n \to \infty$:

- $ightharpoonup Z_n Y_n \stackrel{D}{\to} c Y.$
- $ightharpoonup \frac{Y_n}{Z_n} \stackrel{D}{\to} \frac{Y}{c}$ desde que $c \neq 0$.
- $Y_n + Z_n \xrightarrow{D} Y + c.$

Exercício

- 1. Seja Y_1, \ldots, Y_n v.a iid com $E(Y_i) = \mu$ e $V(Y_i) = \sigma^2 < \infty$.
 - a) Mostre que $\overline{\sigma}^2 \stackrel{P}{\to} \sigma^2$ onde $\overline{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i \mu)^2$.
 - b) Obtenha a distribuição aproximada de $\overline{\sigma}^2$.
 - c) Faça uma ilustração computacional da distribuição aproximada conforme o tamanho da amostra cresce. Use n=50,250 e 1000.
 - d) Compare computacionalmente a distribuição aproximada com a distribuição exata apresentada na semana 3.