CLASSIFICATION

11.20.2020

PROBLEM SETS

- * Problem set 5 was due today
- * **Problem set 6** is available today, will be due on December 4

BRAIN-MACHINE INTERFACE

- * suppose you want to build a machine that can help people with locked-in syndrome
- * you record EEG activity, and want to classify whether the person is thinking up or down

FMRI DECODING

* suppose that you've done an fMRI experiment where people viewed images of SHOES and BOTTLES

* now you want to use the pattern of fMRI responses to guess whether the stimulus was SHOES or BOTTLES

FMRI DECODING

* or! your subjects
watch videos, and then

you guess which objects or actions were present in each video clip based on the responses

* you want to classify each fMRI response into, e.g., "yes there was a face" or "no there was not a face"

- * a classifier is a function that guesses the "class" of a datapoint based on its features
- * here "class" is
 red or blue and
 each point has 2
 features (x and y
 axes)

- * there are MANY different types of classifiers
- * but they can broadly be divided into two families:
 - * linear classifiers
 - * non-linear classifiers

- * linear classifiers (A) separate the classes by using a straight line (or plane, or hyperplane) as the "decision boundary"
- * nonlinear classifiers (B) can separate the classes using an arbitrarily-shaped decision boundary

- * linear classifiers (e.g. logistic regression, linear SVM) are more appropriate when:
 - * you don't have a lot of data
 - * your data are high-dimensional (many features)
 - * your data are very noisy

- * nonlinear classifiers (e.g. RBF SVM) are more appropriate when:
 - * your data are low-dimensional (few features)
 - * your data are not very noisy
 - * linear classifiers work poorly :)

TRAINING CLASSIFIERS

- * just like regression models, classifiers should be trained on one dataset, and then tested on an *entirely separate* dataset
- * this controls for overfitting

TRAINING CLASSIFIERS

- * like regression models, many classifiers can also be regularized (see black curve, below)
- * this can directly reduce overfitting

EVALUATING CLASSIFIERS

- * classifiers can be evaluated by a few metrics
- * one is just the **percent correct**, but that doesn't always tell the whole story
- * a more sensitive way to test classifier performance is using receiver-operating characteristic (ROC) analysis

* suppose that your classifier outputs a real number for each datapoint

* (hopefully)
your two
classes tend to
have different
values

* you turn this
real value into
classification
by setting a
"criterion
value"

* everything above
 "criterion" is
 class A,
 everything below
 is class B

- * in ROC
 analysis, you
 check each
 possible
 criterion value
- * and compute the
 true positive
 (TP) and false
 positive (FP)
 rate for each

* you then plot the TP vs. FP rate to get an ROC curve

- * if the
 classifier is
 really bad, the
 ROC should look
 like a diagonal
 line
- * if it's really
 good, the ROC
 should look
 like a square

- * the area under
 the ROC curve
 (AUC) is a
 common metric
- * AUC tells you how likely the classifier is to correctly order two random points

NEXT TIME

* on Monday we'll go through some examples of using classification on fMRI data!

THE END