CLOUD COMPUTING ARCHITECTURE LAB

NAME- SHUBHI DIXIT

SAP ID- 500094571

BATCH-05

Experiment 4: Show how to use Application Load Balancer in <u>AWS</u>

Ques 1: Enumerate and differentiate different Load balancers in AWS?

Application	Network Load Gateway Load		Classic Load	
Load Balancer	Balancer	Balancer	Balancer	
Operates on the	It operates on	It operates on	It operates on	
7 th layer of OSI	the 4 th Layer of	layer 7 and 4 of	layer 7 or layer	
Model	OSI Model	OSI Model	4 of OSI Model	
Supports	Supports	Supports IP		
protocols like	protocols like		ТСР,НТТР,	
HTTP &	TCP,UDP,TLS		HTTPS,SSL/	
HTTPS			TLS	
Target type is	Target type is	Target type is	None	
IP, Instance	IP, Instance	IP		
,Lambda				
Provides	Provides	No backend	Provides	
backend server	backend server	server	backend server	
encryption	encryption	encryption	encryption	
Supports	Supports	Supports	Supports	
networks eg	networks eg	networks eg	networks eg	
VPC	VPC	VPC	VPC,EC2-	
			classic	

Provides all	Provides all	Provides all	Provides	
IAM	IAM	IAM	resource based	
Permissions	Permissions	Permissions	IAM	
			Permissions	
			only	
Supports	Supports	Supports	Doesn't	
websockets	websockets	websockets	support	
			websockets	
Doesn't	Provides zonal	Provides zonal	Doesn't	
provide zonal	isolation	isolation	provide zonal	
isolation			isolation	

Gateway Load Balancer Info

Ques 2: Explain:

- a). <u>Load Balancer</u>: A load balancer serves as the single point of contact for clients. The load balancer evenly distributes incoming application traffic across multiple targets, such as EC2 instances, in multiple Availability Zones. This increases the availability of your application. There are majorly 4 types of load balancer:-
 - Application Load Balancer
 - Network Load Balancer
 - Gateway Load Balancer
 - Classic Load Balancer
- b) <u>Target Groups</u>: Target groups route requests to one or more registered targets, such as EC2 instances, using the protocol and port number that you specify. You can register a target with multiple target groups. You can configure health checks on a per target group basis. Health checks are performed on all targets registered to a target group that is specified in a listener rule for your load balancer.

When you create each listener rule, you specify a target group and conditions. When a rule condition is met, traffic is forwarded to the corresponding target group.

c) Rules: Each listener has a default rule, and you can optionally define additional rules. Each rule consists of a priority, one or more actions, and one or more conditions. You can add or edit rules at any time

Default rule
 When you create a listener, you define actions for the default
rule. Default rules can't have conditions. If the conditions for
none of a listener's rules are met, then the action for the default
rule is performed
Rule priority
Each rule has a priority. Rules are evaluated in priority order,
from the lowest value to the highest value. The default rule is
evaluated last. You can change the priority of a nondefault rule
at any time. You cannot change the priority of the default rule
Rule actions
Each rule action has a type, an order, and the information
required to perform the action
authenticate-cognito
[HTTPS listeners] Use Amazon Cognito to authenticate
users.
• authenticate-oidc
[HTTPS listeners] Use an identity provider that is
compliant with OpenID Connect (OIDC) to authenticate

• fixed-response

Return a custom HTTP response

users.

• forward Forward requests to the specified target groups.

redirectRedirect requests from one URL to anotherRule conditions

Each rule condition has a type and configuration information. When the conditions for a rule are met, then its actions are performed

d) <u>Listeners</u>: A listener is a process that checks for connection requests, using the protocol and port that you configure. The rules that you define for a listener determine how the load balancer routes requests to its registered targets. Listeners support HTTP, HTTPS protocols and ports.

e) Load scheduling algorithms:

Load balancing methods are also known as algorithms for load balancing or scheduling methods as they specify the manner in which a server load is shared across a server pool. There are various load balancing methods available, and each method uses a particular criterion to schedule an incoming traffic. Some of the common load balancing methods are as follows:

• Round robin -- In this method, an incoming request is routed to each available server in a sequential manner.

- Weighted round robin -- Here, a static weight is preassigned to each server and is used with the round robin method to route an incoming request.
- Least connection -- This method reduces the overload of a server by assigning an incoming request to a server with the lowest number of connections currently maintained.
- Weighted least connection -- In this method, a weight is added to a server depending on its capacity. This weight is used with the least connection method to determine the load allocated to each server.
- Least connection slow start time -- Here, a ramp-up time is specified for a server using least connection scheduling to ensure that the server is not overloaded on startup.
- Agent-based adaptive balancing -- This is an adaptive method that regularly checks a server irrespective of its weight to schedule the traffic in real time.
- Fixed weighted -- In this method, the weight of each server is preassigned and most of the requests are routed to the server with the highest priority. If the server with the highest priority fails, the server that has the second highest priority takes over the services.
- Weighted response -- Here, the response time from each server is used to calculate its weight.

• Source IP hash -- In this method, an IP hash is used to find the server that must attend to a request.

EXPERIMENT-

Step 1: - Create two EC2 instances with appropriate configuration and provide them with a custom script as :-

```
#!/bin/bash
sudo su
yum update -y
yum install -y httpd
systemctl start httpd.service
systemctl enable httpd.service
echo "<h1> At $(hostname -f) </h1>" >
/var/www/html/index.html
```


Step 2: Initialize and launch both the instances [Rename for convenience]

Step 3: Create a target group and add the two instances created

Step 4:After naming the target group click on next, in step-ii, include the instances into the group by clicking "Include as pending below"

Step 5: Review the changes and click "create target group"

Step 6: Now go to load balancer and create an "Application load balancer"

Step 7: Now we assign a name to the load balancer

Step 8: In Network mapping, map at least two availability zones

Step 9: Assign the security group assigned in step 1

Step 10: In the listeners & routing column select the target group formed in step-5

Step 11: Click on "create load balancer"

Step 12: Copy the DNS of the load-balancer and paste it in a browser

[refresh the browser till you get the ip address of the 2nd server]

Q Search 🔲 🔘 👶 🧑 🙋 💢 🍃

Step 13: Delete the loadbalancer, and corresponding target-group

Network Load-Balancer

Step 1: Create two ec2 instances(or reuse) with the custom script and assign a target group as done previously

Step 2: Go to EC2-> Load balancers and click on "Network-loadbalancer"

Step 3: Assign a name and configuration to the loadbalancer

Step 4: In the mapping select at least two availability zones

Step 5: Select the target group created in step 1

Step 6: Review the loadbalancer and click on "Create loadbalancer"

Step 7: Go to the loadbalancer created and copy -paste the DNS in the browser

At ip-172-31-2-219. ap-northeast-1. compute. internal

At ip-172-31-1-48.ap-northeast-1.compute.internal

Step 8 : Delete the loadbalancer and corresponding instances and target-groups