	Uiteah
Name:	
Roll No.:	A grant of Exemplify and Exempl
Invigilator's Signature :	

CS/B.Tech(N)/SEM-1/M-101/2012-13 2012

MATHEMATICS-I

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following : $10 \times 1 = 10$
 - i) The sequence $\left\{ (-1)^n \frac{1}{n} \right\}$ is
 - a) Convergent
- b) Oscillatory
- c) Divergent
- d) none of these.
- ii) The matrix $\left[\begin{array}{ccc} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{array} \right] is$
 - a) Symmetric
- b) Skew-symmetric
- c) Singular
- d) Orthogonal.

1151 (N) [Turn over

CS/B.Tech(N)/SEM-1/M-101/2012-13

The value of
$$t$$
 for which $\overrightarrow{f} = (x + 3y) \hat{i} + (y - 2z) \hat{j} + (x + tz) \hat{k}$ i

solenoidal is

a) 2

b) - 2

 \mathbf{c}) (

d) 1.

iv) The series $\sum \frac{1}{n^p}$ is convergent if

a) $p \ge 1$

b) $p \le 1$

c) p > 1

d) p < 1.

v) The two eigenvalues of the matrix

$$A = \begin{bmatrix} 2 & -2 & 2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix} \text{ are 2 and - 2. The third}$$

eigenvalue is

a) 1

b) 0

c) 3

d) 2.

vi) If Rolles theorem is applicable to $f(x) = x(x^2 - 1)$ in [0, 1], then c =

a) 1

b) (

c) $-\frac{1}{\sqrt{3}}$

d) $\frac{1}{\sqrt{3}}$.

a) 0

b) 2

c) $\frac{1}{2}$

d) none of these.

viii) n-th derivative of $\sin(5x + 3)$ is

- a) $5^n \cos(5x + 3)$
- b) $5^n \sin\left(\frac{n\pi}{2} + 5x + 3\right)$
- c) $5^n \cos\left(\frac{n\pi}{2} + 5x + 3\right)$
- d) none of these.
- ix) The value of $\int\limits_C$ ($x\mathrm{d}x$ $\mathrm{d}y$) where C is a line joining

(0,1) to (1,0) is

a) 0

b) $\frac{3}{2}$

c) $\frac{1}{2}$

d) $\frac{2}{3}$.

x) The value of
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^7 \theta \, d\theta \text{ is }$$

a) 0

b) $\frac{6.4.2}{7.5.3.1}$

c) $\frac{6!}{7!}$

d) none of these.

- xi) The characteristic equation of a matrix A is $X^3 + 3X^2 + 5X + 9 = 0$, then determinant of the matrix is
 - a) 7

b) 5

c) 6

- d) 9.
- xii) Let A and B be two square matrices and A^{-1} , B^{-1} , exists. Then $(AB)^{-1}$ is
 - a) $A^{-1}B^{-1}$
- b) $B^{-1}A^{-1}$

c) AB

d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

2. Verify Rolles theorem for the function

$$f(x) = |x|, -1 \le x \le 1.$$

- 3. A and B are orthogonal matrix and |A| + |B| = 0. Prove that A + B is singular.
- 4. Find the n^{th} derivative of $\frac{x^2+1}{(x-1)(x-2)(x-3)}$.
- 5. Let

$$f(x, y) = \frac{xy}{x + y^2}, (x, y) \neq (0, 0)$$

$$= 0, (x, y) = (0, 0)$$

Evaluate f_{xy} (0, 0) and f_{yx} (0, 0).

6. Find $\overrightarrow{div} \overrightarrow{F}$ and $\overrightarrow{curl} \overrightarrow{F}$ where

$$\vec{F} = grad(x^3 + y^3 + z^3 - 3xyz).$$

$$3 \times 15 = 43$$

a) If $u = x^2 - 2y$, v = x + y + z, w = x - 2y + 3z, find $\frac{\partial (u, v, w)}{\partial (x, y, z)}$. 7.

b) Prove that
$$\begin{vmatrix} 1 & \alpha & \alpha^2 - \beta \gamma \\ 1 & \beta & \beta^2 - \gamma \alpha \\ 1 & \gamma & \gamma^2 - \alpha \beta \end{vmatrix} = 0.$$

c) If $v = f(x^2 + 2yz, y^2 + 2zx)$, prove that

$$\left(y^2-zx\right)\frac{\partial v}{\partial x}+\left(x^2-yz\right)\frac{\partial v}{\partial y}+\left(z^2-xy\right)\frac{\partial v}{\partial z}=0.$$

$$5 + 5 + 5$$

- 8. a) If $\theta = t^n e^{\frac{-r^2}{4t}}$, find what value of n will make $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \theta}{\partial r} \right) = \frac{\partial \theta}{\partial t}$.
 - b) Using mean value theorem prove that

$$0 < \frac{1}{x} \log \left(\frac{e^{x} - 1}{x} \right) < x.$$

c) If $I_n = \int_0^{\frac{\pi}{2}} x^n \sin x \, dx$ (n > 1), then show that $I_n + n(n-1)I_{n-2} = n\left(\frac{\pi}{2}\right)^{n-1}$. 5 + 5 + 5

CS/B.Tech(N)/SEM-1/M-101/2012-13

b) If
$$y = e^{\tan^{-1}x}$$
, then show that $(1 + x^2) y_{n+2} + (2nx + 2x - 1) y_{n+1} + n(n+1) y_n = 0$.

c) Find the extreme value of the function

$$f(x, y) = x^3 + y^3 - 3x - 12y + 20.$$
 5 + 5 + 5

10. a) If $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, then verify that A satisfies its

own characteristic equation. Hence find A^{-1} and A^{9} .

- b) If $u = \tan^{-1}\left(\frac{x^3 + y^3}{x y}\right)$, then show that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = (1 4 \sin^2 u) \sin 2u.$
- c) Given the system of equation :

$$x_1 + 4x_2 + 2x_3 = 1$$
, $2x_1 + 7x_2 + 5x_3 = k$, $4x_1 + mx_2 + 10x_3 = 2k + 1$. Find for what values of k and m , the system has (i) an unique solution, (ii) no solution (iii) many solution.

1151 (N)

Show that $\overrightarrow{\nabla} r^n = nr^{n-2} \overrightarrow{r}$,

where
$$\vec{r} = \vec{i}x + \vec{j}y + \vec{k}z$$
.

Verify Stokes theorem for c)

> $\vec{F} = (2x - y) \hat{i} - yz^2 \hat{j} - y^2 z \hat{k}$, where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and *C* is its boundary. 5 + 5 + 5