1

Problem 12.13.1.10

EE22BTECH11010 - Aryan Bubna

question: A black and a red dice are rolled.

- (a) find the conditional probability of obtaining a sum greater than 9, given that the black dice resulted in a 5.
- (b) find the conditional probability of obtaining the sum 8, given that the red die resulted in a number less than 4.

Solution:

X_1	Black die
X_2	Red die

we know that

$$\Pr(X_1 = 5) = \frac{1}{6} \tag{1}$$

$$\Pr(X_2 < 4) = \frac{1}{2} \tag{2}$$

(a) The sum of X_1 and X_2 is greater than 9 such that $X_1 = 5$ is for only two cases, i.e (5,6), (5,5) respectively.

Therefore

$$Pr((X_1 + X_2 > 9), (X_1 = 5)) = \frac{2}{36}$$

$$= \frac{1}{18}$$
(3)

Hence

$$\Pr(X_1 + X_2 > 9 \mid X_1 = 5) = \frac{\Pr((X_1 + X_2 > 9), (X_1 = 5))}{\Pr(X_1 = 5)}$$

$$= \frac{\Pr((X_2 > 4), (X_1 = 5))}{\Pr(X_1 = 5)}$$

$$= \frac{\frac{1}{18}}{\frac{1}{6}}$$

$$= \frac{1}{2}$$
(8)

(b)

The sum of $X_1+X_2 = 8$ such that $X_2 < 4$ is possible for two cases (5,3),(6,2) out of 36 cases.

Therefore

$$Pr((X_1 + X_2 = 8), (X_2 < 4)) = \frac{2}{36}$$
 (9)
= $\frac{1}{18}$ (10)

Hence

$$\Pr(X_1 + X_2 = 8 \mid X_2 < 4) = \frac{\Pr((X_1 + X_2 = 8), (X_2 < 4))}{\Pr(X_2 < 4)}$$

(11)

$$=\frac{\frac{1}{18}}{\frac{1}{2}}\tag{12}$$

$$=\frac{1}{9}\tag{13}$$