1 2次元ベクトル基礎

 $\vec{a}(1,2)$, $\vec{b}(3,4)$, $\vec{c}(5,7)$, $\vec{d}(-1,-2)$, $\vec{e}(-3,-7)$ とする。以下の問いに答えよ。 ※ \hat{a} は \vec{a} を正規化したもの (単位ベクトル) とする。

$ec{a}-ec{b}=$	$\vec{a} + \vec{b} =$	$ec{ba} =$	$\vec{ab} =$
$ec{b}-ec{c}=$	$ec{b} + ec{c} =$	$ec{cb} =$	$\vec{bc} =$
$\vec{c} - \vec{d} =$	$\vec{c} + \vec{d} =$	$\vec{dc} =$	$\vec{cd} =$
$ec{d} - ec{e} =$	$\vec{d} + \vec{e} =$	$ec{ed} =$	$\vec{de} =$
$ ec{d} =$	$ \vec{c} =$	$ ec{b} =$	$ \vec{a} =$
$ ec{de} =$	$ \vec{cd} =$	$ ec{bc} =$	$ \vec{ab} =$
$\hat{d} =$	$\hat{c} =$	$\hat{b} =$	$\hat{a} =$
$\hat{de} =$	$\hat{cd} =$	$\hat{bc} =$	$\hat{ab} =$

2 内積となす角

 $\vec{a}(1,2)$, $\vec{b}(3,4)$, $\vec{c}(5,7)$, $\vec{d}(-1,-2)$, $\vec{e}(-3,-7)$ とする。以下の問いに答えよ。

$ec{a}\cdotec{b}=$	$ \vec{a} \vec{b} =$	$\cos \theta =$
$ec{b}\cdotec{c}=$	$ ec{b} ec{c} =$	$\cos \theta =$
$ec{c}\cdotec{d}=$	$ \vec{c} \vec{d} =$	$\cos \theta =$
$ec{d}\cdotec{e}=$	$ ec{d} ec{e} =$	$\cos \theta =$

3 垂直条件と射影ベクトル

 $\vec{a}(1,2)$, $\vec{b}(3,4)$, $\vec{c}(5,7)$, $\vec{d}(-1,-2)$, $\vec{e}(-3,-7)$ とする。以下の問いに答えよ。

- 1. \vec{a} と垂直になるベクトル
- \vec{b} と垂直になるベクトル
- 3. \vec{c} と垂直になるベクトル
- 4. \vec{d} と垂直になるベクトル
- \vec{e} と垂直になるベクトル
- 6. \vec{a} から \vec{b} への射影ベクトル
- 7. *i*から*c*への射影ベクトル
- 8. \vec{c} から \vec{d} への射影ベクトル
- 9. \vec{d} から \vec{e} への射影ベクトル
- 10. \vec{e} から \vec{a} への射影ベクトル

4 速度と加速度

初速度 $V_0(1,2)$, 初期位置を $P_0(3,4)$ とする。重力は存在しないとする。

- 1. 2 秒後の位置 P を求めよ。
- 2. 3 秒後の位置 P を求めよ。
- 3. 4 秒後の位置 P を求めよ。
- 4. 加速度 A(1,2) とする。2 秒後の速度 V を求めよ。
- 5. 加速度 A(2,3) とする。3 秒後の速度 V を求めよ。
- 6. 加速度 A(3,4) とする。4 秒後の速度 V を求めよ。
- 7. 加速度 *A*(1,2) とする。2 秒後の位置 *P* を求めよ。
- 8. 加速度 *A*(2,3) とする。3 秒後の位置 *P* を求めよ。
- 9. 加速度 *A*(3,4) とする。4 秒後の位置 *P* を求めよ。

5 放物線運動

初速度 $V_0(1,2)$, 初期位置を $P_0(3,4)$, 重力加速度を G(0,-9) とする。

- 1. 2 秒後の位置 *P* を求めよ。
- 2. 3 秒後の位置 P を求めよ。
- 3. 4 秒後の位置 P を求めよ。
- 4. 加速度 A(1,2) とする。2 秒後の速度 V を求めよ。
- 5. 加速度 *A*(2,3) とする。3 秒後の速度 *V* を求めよ。
- 6. 加速度 *A*(3,4) とする。4 秒後の速度 *V* を求めよ。
- 7. 加速度 A(1,2) とする。2 秒後の位置 P を求めよ。
- 8. 加速度 *A*(2,3) とする。3 秒後の位置 *P* を求めよ。
- 9. 加速度 *A*(3,4) とする。4 秒後の位置 *P* を求めよ。
- 10. $\theta = 60$ 度の方向に速さ 8 で打ち出した。V(x, y) の形に直せ。
- 11. $\theta = 60$ 度の方向に速さ 8 で打ち出した。何秒で頂点に着くか?
- 12. $\theta = 60$ 度の方向に速さ 8 で打ち出した。何秒で地面に着くか?

6 球の当たり判定

球 A の位置 (1,2), 球 B の位置 (12,16) とする。半径はそれぞれ 1,2 とする。

- 1. A だけが動くとする。2 秒後に当たる為の速度 V_a を求めよ。
- 2. B だけが動くとする。3 秒後に当たる為の速度 V_0 を求めよ。
- 3. $A ext{ b } B ext{ b 動き}$ 、 $B ext{ o 速度は } A ext{ o 速度の 2 倍とする。2 秒後に当たる際のそれぞれの速度を求めよ。$