Homework Set 4

Due date: March 9, 2016 at the beginning of class

Problem 1: Calculate the wavelength (λ) in μ m for maximum blackbody hemispherical spectral emissive power ($E_{\lambda,b}$) at T=750, 1500, 3000, and 5777 K.

$$(\lambda T)_{\text{max}} = C_3 = 2898 \text{ } \mu\text{m} \cdot \text{K}$$
$$\lambda = \frac{2898 \text{ } \mu\text{m} \cdot \text{K}}{T}$$

Temperature, K	Wavelength, μm
750	3.8640
1500	1.9320
3000	0.9660
5777	0.5016

Problem 2: Calculate the temperature of a blackbody if its maximum hemispherical spectral emissive power ($E_{\lambda,b}$) corresponds to $\lambda = 0.1, 1, 5$, and 10 μ m.

$$(\lambda T)_{\text{max}} = C_3 = 2898 \text{ } \mu\text{m} \cdot \text{K}$$
$$T = \frac{2898 \text{ } \mu\text{m} \cdot \text{K}}{\lambda}$$

Wavelength, μm	Temperature, K
0.1	28980
1	2898
5	579.6
10	289.8

Problem 3: Calculate the blackbody hemispherical spectral intensity ($I_{\lambda,b}$) for a blackbody at T = 5780 K at 2 μ m.

$$I_{b,\lambda} = \frac{C_1}{\pi \lambda^5 \left[\exp\left(\frac{C_2}{\lambda T}\right) - 1 \right]} = 1.5056 \times 10^6 \text{ W} \cdot \text{m}^{-2} \cdot \text{sr}^{-1}$$

Problem 4: Calculate the blackbody hemispherical spectral emissive power $(E_{\lambda,b})$ and the blackbody spectral intensity $(I_{\lambda,b})$ for T = 1000 K and $\lambda = 20$ µm.

$$E_{b,\lambda} = \frac{C_1}{\lambda^5 \left[\exp\left(\frac{C_2}{\lambda T}\right) - 1 \right]} = 111.01 \text{ W} \cdot \text{m}^{-2}$$

Problem 5: Calculate the wavelength of maximum emission from a blackbody at room temperature (assume 22 °C).

$$\lambda = \frac{2898 \text{ } \mu\text{m} \cdot \text{K}}{T} = 9.8187 \mu\text{m}$$

Problem 6: Calculate the temperature of a blackbody that radiates its maximum hemispherical spectral emissive power at the center of the visible spectrum (0.4-0.7 μ m).

$$T = \frac{2898 \ \mu \text{m} \cdot \text{K}}{\lambda} = 5269 \ \text{K}$$

Problem 7: Calculate the blackbody hemispherical total intensity ($I_{\lambda,b}$) at T = 1000 and 5780 K.

$$I_b = \frac{E_b}{\pi} = \frac{\sigma T^4}{\pi} \Rightarrow I_b (T = 1000 \text{ K}) = 18048 \text{ W} \cdot \text{m}^{-2} \cdot \text{sr}^{-1}$$

$$I_b = \frac{E_b}{\pi} = \frac{\sigma T^4}{\pi} \Rightarrow I_b (T = 5780 \text{ K}) = 2.0144 \times 10^7 \text{ W} \cdot \text{m}^{-2} \cdot \text{sr}^{-1}$$

Problem 8: Calculate the surface temperature of a blackbody radiating with a hemispherical total emissive power, $E_b = 10 \text{ kW/m}^2$.

$$E_b = \sigma T^4 \Rightarrow T = \sqrt[4]{\frac{E_b}{\sigma}} = 364.4 \text{ K}$$

Problem 9: Calculate the hemispherical total emissive power outside the atmosphere of Mercury. Assume the radius of the sun is 6.9599×10^8 m; the distance between the sun and Mercury is 6.98×10^{10} m; and the surface temperature of the sun is 5780 K.

For a control volume at the surface of the sun and orbit of mercury $\dot{E}_{
m in}=\dot{E}_{
m out}$

$$\dot{E}_{\rm in} = A_{\rm sun} \sigma T_{\rm sun}^4 = 4\pi r_{\rm sun}^2 \sigma T_{\rm sun}^4 = q_{\rm in} = q_{\rm out} = q_{\rm mercury}^{"} 4\pi \left(r_{\rm sun} + d_{\rm mercury}\right)^2$$

$$q_{\rm mercury}^{"} = \frac{r_{\rm sun}^2 \sigma T_{\rm sun}^4}{\left(r_{\rm sun} + d_{\rm mercury}\right)^2} = 6168.4 \text{ W} \cdot \text{m}^{-2}$$

Or in terms of solid angle:

$$I_{\rm sun} = \frac{\sigma T_{\rm sun}^4}{\pi}$$

Solid angle of the sun compared to Mercury's orbit:

$$\sin \theta_{\text{sun}} = \frac{r_{\text{sun}}}{d_{\text{sun}} + r_{\text{sun}}}$$

$$q_{\text{mercury}}'' = \int_{0}^{2\pi} \int_{0}^{0.01} I_{\text{sun}} \cos \theta \sin \theta d\theta d\phi = \pi I_{\text{sun}} \sin^{2} \theta \Big|_{0}^{\theta_{\text{sun}}} = \pi I_{\text{sun}} \frac{r_{\text{sun}}^{2}}{\left(r_{\text{sun}} + d_{\text{sun}}\right)^{2}} = \sigma T_{\text{sun}}^{4} \frac{r_{\text{sun}}^{2}}{\left(r_{\text{sun}} + d_{\text{sun}}\right)^{2}} = 6168.4 \text{ W} \cdot \text{m}^{-2}$$

Problem 10: The surface of a distant star has an effective blackbody temperature of 8000 K. What percentage of the radiant emission of the sun lies in the visible range (0.4-0.7 μ m)? What percentage is in the ultraviolet (0.2-0.4 μ m)? What percentage is in the infrared (0.7-1000 μ m)?

$$\begin{split} F_{0-0.2\mu\text{m}\cdot8000\,\text{K}} &= 0.019718 \\ F_{0-0.4\mu\text{m}\cdot8000\,\text{K}} &= 0.3181 \\ F_{0-0.7\mu\text{m}\cdot8000\,\text{K}} &= 0.7010 \\ F_{0-1000\mu\text{m}\cdot8000\,\text{K}} &= 1 \\ F_{0.4-0.7\mu\text{m}} &= F_{0-0.7\mu\text{m}\cdot8000\,\text{K}} - F_{0-0.4\mu\text{m}\cdot8000\,\text{K}} = 0.3829 \\ F_{0.2-0.4\mu\text{m}} &= F_{0-0.4\mu\text{m}\cdot8000\,\text{K}} - F_{0-0.2\mu\text{m}\cdot8000\,\text{K}} = 0.2984 \\ F_{0.7-1000\mu\text{m}} &= F_{0-0.1000\mu\text{m}\cdot8000\,\text{K}} - F_{0-0.7\mu\text{m}\cdot8000\,\text{K}} = 0.2990 \end{split}$$