Inhoudsopgave

Inho	oudsopga	ve1	
Mijr	n stagepla	aats2	
1		gecontract	
	1.1		
	1.2	Input	
	1.3	Output	
	1.4	Criteria om succes te meten	
	1.5	Wat zal jouw stage-ondracht niet realiseren?	
	1.6	Planning	
2	Stageverslag		
	2.1	Verslag stageweek 1 & 2	
3	Tussent	ussentijdse evaluatie	
	3 1	Verslag	
	3.2		
4	Eindreflectie		

Mijn stageplaats

Stagebedrijf: HITlab

Adres: Graaf Karel de Goedelaan 32

Stagebegeleider bedrijf: Demanet Jelle

Contactgegevens: jelle.demanet@gmail.com

Stagebegeleider Howest: Segers Nathan

Website: http://www.hitlab.be/

1 Mijn stagecontract

Deze gegevens worden ook aangevuld op https://stage.howest.be

1.1 Stage-opdracht

Bij het HITlab verwerken ze data van zowel vaste als mobiele eyetrackers, het manueel labelen hiervan is een tijdrovend proces. Het project bestaat daarom uit het automatiseren hiervan. Via AI objectherkenning kunnen Area of Interests automatisch gelabeld worden. De huidige software die het HITlab gebruikt heeft nog andere tekortkomingen, er kunnen geen heatmaps mee gemaakt worden die aan de eisen voldoen. Dit project zal deze functionaliteit dan ook uitbreiden in de vorm van Python code.

1.2 Input

De data komt uit de Tobii Pro Labs software in de vorm van een .tsv data export. Alle software zal zodanig geschreven worden opdat ze kunnen draaien op de aanwezige hardware in het HITlab. De software zal voornamelijk bestaan uit python code en enkele ipython notebooks.

1.3 Output

Een programma geschreven in python dat met behulp van object herkenning eyetracking automatisch data kan labelen alsook heatmaps kan maken. De user zal deze software kunnen bedienen door middel van een grafische interface.

1.4 Criteria om succes te meten

Op het einde van de stage zal ik minstens volgende zaken gemaakt hebben.

Installatie en gebruikershandleiding Python scripts om:

tsv eyetracking data te parsen heatmaps te maken en overlayen op video files eyetracking data automatisch te labelen door object herkenning

1.5 Wat zal jouw stage-opdracht niet realiseren?

Mijn opdracht is voldoende afgebakend.

1.6 Planning

heatmap scripts + tsv parsing	04/03/2022
Verschillende object herkenning Al testen en vergelijken	11/03/2022
Area of Interests tracking in mobiele eyetracking videos + tussentijdse evaluatie	29/04/2022
eyetracking data automatisch labelen	20/05/2022
GUI maken + tijd voorzien voor onverwachte problemen / bugs	10/06/2022

2 Stageverslag

2.1 Verslag stageweek 1 & 2

Realisaties

Tijdens de eerste week van mijn stage heb mij vooral ingelezen bij HITlab en mijn stageopdracht beter kunnen begrijpen aan de hand van real world data. Ik heb de eerste dagen vooral research gedaan naar hoe eyetracking effectief werkt. Meer daarover in het research hoofdstuk.

De 2^{de} week heb ik al een paar mooie dingen kunnen maken. Ik heb al verschillende miniprojectjes gemaakt die de basis zullen vormen voor mijn stageopdracht.

Naam	Wat het doet	Waarom ik het heb gemaakt	Werkt het al?
Blinkdetector	Detecteert oogknippers en logt die naar de console	Eerste test met de pupil labs core eyetracker en API	√
EyetrackingEffnet	Annoteert objecten in een video van de world camera van de pupil core bril	Word gebruikt door mij om de verschillende efficientnet architecturen te testen op snelheid en accuraatheid	√
EffNet	Gebruikt google's automl modellen om object herkenning te doen	Eerste implementatie van efficientnet, dit projectje heb ik gebruikt om vertrouwd te geraken met de werkwijze en de API	√
VasteEyetrackerHeatmap	Creert een heatmap en projecteert deze over de video die de proefpersoon heeft bekeken	Hiermee kan HITlab heatmaps genereren op basis van Tobii Pro Labs tsv exports. Dit zal uitgebreid worden om ook heatmaps van mobiele eyetracking data te maken	✓ (hier en daar nog een paar kleine aanpassingen nodig)
MovingEyetrackerHeatmap	Dit project zal heatmaps kunnen maken van bewegende eyetracking data	Dit is eigenlijk het einddoel van mijn stage, er is nog heel veel werk aan.	×

Figuur 1 - Optimazing Code

Iets wat ik op school nog niet heb moeten doen is code optimaliseren op snelheid. Op figuur 1 zie je hoelang elke functie call er over doet om uitgevoerd te worden. Hieruit kan je dan afleiding waar je je code moet herschrijven.

Ik heb ook al verschillende meetings kunnen meedoen. Bij een daarvan ben ik naar <u>Waak</u> geweest, zij zijn bezig om met behulp van eyetracking een test te ontwikkelen die hun medewerkers kan helpen ondersteunen, bijvoorbeeld bij het maken van duidelijkere instructies. De eyetracker die ze daarvoor gebruiken is een mobiele eyetracker van Tobii.

Ik heb ook samengezeten met studenten van UHasselt. Zij gebruiken ook een Tobii eyetracker en hadden daar enkele problemen mee.

Research

De eyetrackers waar ik mee werk gebruiken 2 principes om je ogen te tracken, het dark en bright puil effect (figuur 2). Ze zenden infrarood licht in je ogen en meten de weerspiegeling. Afhankelijk van de weerkaatsingshoek wordt bepaald waar je naar kijkt.

Je hebt meerdere soorten oogbewegingen. Voor mijn project ben ik vooral geïnteresseerd in fixaties, dit zijn momenten waarin je ogen op 1 vast punt fixeren om informatie te verwerken. Deze fixatiepunten gebruik ik om heatmaps te plotten.

Figuur 2 – Dark vs Bright pupil effect

Voor heatmaps te maken van data afkomstig van mobiele eyetrackers is er nogal veel wiskunde nodig. Bij een vaste eyetracker heb je geen 'ego motion'.

Alle datapunten vallen binnen hetzelfde vlak en zijn daar gemakkelijk op te plotten. Het is ook onmogelijk om uit 2d videobeelden de 3d bewegingen van de camera te verkrijgen. Het proces om uit beelden beweging en oriëntatie in te schatten heet Visual Odometry.

Er zijn verschillende methodes om de beweging te verkrijgen, waaronder <u>optical flow</u>. Waarbij de verschuiving van elke pixel gemeten wordt en op die manier een vectorveld kan worden gemaakt (zie figuur 2).

Er is ook veel Al-research over Visual Odometry. De meeste projecten werken met stereocamera's omdat je dan dieptezicht hebt. De mobiele eyetrackers waar ik mee werk hebben maar 1 camera, dit is een extra moeilijkheid.

Een aanpak die ik wel interessant vind heet <u>Unsupervised Structure-from-motion (SfM)</u>. Echter ga ik het eerst proberen met de opency library van python. Hier zitten functies in de onder andere de transformatie en translatie matrices kunnen bereken van 2 frames. Die matrices kan ik dan toepassen op de datapunten.

Figuur 3 – Vector field from optical flow

Feedback

Voor mijn eerste project dat met data van een vaste eyetracker heatmaps maakt kreeg ik als feedback dat dit nog niet helemaal accuraat was. Verschillende punten werd fout geprojecteerd op de video. Ondertussen is dat al verbeterd maar het is nog niet perfect.

Planning voor de komende twee weken

De volgende twee weken ga ik focussen op de heatmaps van een mobiele eyetracker, dit is niet zoals de originele planning maar ik heb ondervonden dat dit een stuk moeilijker is dan gedacht. Daarom wil ik dit deel eerst afhebben voor ik verder ga.

3 Tussentijdse evaluatie

Halverwege de stageperiode zit je samen met jouw stagebegeleider. Je bespreekt de voorbije periode. Gebruik onderstaande vragen om jouw stage te evalueren.

- Hoe is het inwerken in de stage-opdracht verlopen?
- Welke technische aspecten verliepen moeilijker dan verwacht?
- Kon je zich snel inwerken in de technologie? Waar is nog meer research nodig?
- Kon de vooropgestelde timing behouden blijven?
- Verloopt de communicatie vlot? Kan je met jouw vragen vlot bij iemand terecht?
- Krijg je voldoende feedback?
- Is er ruimte voor uitbreidingen aan jouw stage-opdracht?

3.1 Verslag

<Maak van jouw tussentijdse evaluatie een kort verslag.>

3.2 Werkpunt

<Spreek met jouw stagebegeleider minimaal één werkpunt af waar je in de komende periode aan zal werken. Dat kan ook over niet-technische aspecten gaan (voorbeelden: meer aan de planning houden, duidelijker communiceren, sneller feedback vragen, meer open staan voor suggesties, beter verslaggeving, etc.). Sta ook even stil hoe je dat zal verbeteren.>

4 Eindreflectie

<Bespreek de eindrealisatie:

- Welke aspecten van jouw stage-opdracht zijn afgerond?
- Welke zaken zijn niet gerealiseerd?
- Welke zaken zijn anders verlopen dan verwacht?
- Wat heb je bijgeleerd?
- Zijn er extra zaken bij jouw takenpakket bijgekomen?
- Schrijf hier ook een dankwoord aan jouw stagebedrijf>