Assignment Project Exam Help

Anandha Gopalan

(with the pks to D. Rueckert, P. Pietzelch A. Tannerhaum and axgopala@imperial.ac.uk

Add WeChat powcoder

Capacity increases exponentially, but access speeds not so much Imperial College London

The Hard Drive

Sample Disk Specification

http://disctech.com/Seagate-ST3400832AS-SATA-Hard-Drive

Add WeChat powcoder Surface divided into 20 or more zones

- ullet Outer zones have more sectors per track ullet ensures that sectors have same physical length
- Zones hidden using virtual geometry

Disk Addressing

Physical hardware address: (cylinder, surface, sector)

Assignmenty Project Exam Help

Modern disks use logical sector addressing (or logical block addresses LBA)

- https://powcoder.com
- Makes disk management much easier
- Haps work a wind Blos imitations owcoder
 - 6 bits for sector, 4 bits for head, 14 bits for cylinder

Assignment Project Exam Help 1 KB = 2¹⁰ bytes = 1024 bytes vs 1 KB = 10³ bytes = 1000 bytes

 $\begin{array}{c} 1 \text{ MB} = 2^{20} \text{ bytes} \neq 1024^2 \text{ bytes vs } 1 \text{ MB} = 10^6 \text{ bytes} = 1000^2 \\ \text{bytes} & \begin{array}{c} 1000^2 \text{ bytes} \end{array} \end{array}$

 $1~\text{GB} = 2^{30}~\text{bytes} = 1024^3~\text{bytes}$ vs $1~\text{GB} = 10^9 \text{bytes} = 1000^3$

bytes

Add WeChat powcoder

If necessary, just make it consistent on the exam ©

Disk Formatting

Before a disk can be used, it must be formatted

Low level format Assignment Project Exam Help ECC Preamble Data

https://powcoder.com

- High level format Add thowe Chat powcoder
 - Free block list.
 - Root directory
 - Empty file system

Drive Geometry

Amount of cylinder skew depends on the drive geometry

Example Frozing Interpret Project Exam He Consider a 10,000 rpm drive with each track having 300 sectors

and track to track seek time of 800 μ sec

Time het for 1 to 100 \times 100 \times 200 \times 300 sectors per track \Rightarrow Time taken for 1 sector $=\frac{6ms}{300}=2$ \times

 $10^{-5} = 20 \ \mu s$

Track to the seek in the seek in one seek =
$$\frac{800}{20}$$
 = 40

Hence, cylinder skew = 40

Disk Delays II

Typical disk

Sector size

Signmentylia pojects Exam Help

Seek time (average) 8 ms

Rotation time (average latency) Coder com

Disk Scheduling . Add eek Me Chat powcoder

- Order pending disk requests with respect to head position

Seek time $\approx 2-3$ times larger than latency time \rightarrow more important to optimise

Disk Performance

Given

Assignementer Parkoject Exam Help

r - rotation speed in revolutions per second

See https://powcoder.com

Latency time (rotational delay) $t_{latency} = \frac{1}{2 \times r}$ Add WeChat powcoder Transfer time $t_{transfer} = \frac{b}{N \times r}$

$$t_{transfer} = \frac{b}{N \times r}$$

Total access time (t_{access})

 $t_{seek} + t_{latency} + t_{transfer}$

Disk Performance

Stignment Project Exam Help

512 byte sectors

320 sectors per track

File shttps://pawcoder.com

Calculate the time taken to:

- read file stored as compactly as possible on disk (i.e. file occupied in sectors) 8 diagent provided in the sectors/track = 2560 sectors)
- 2 read file with all sectors randomly distributed across disk

Example Problem

Answer: Disk Performance

Assignment Project Fix am Help

= 6 ms =Read 320 sectors

https://poweoder.com

Time to read next track = 3 ms + 6 ms = 9 ms

Total time = $19 \text{ ms} + 7 \times 9 \text{ ms} = 82 \text{ ms} = 0.082 \text{ seconds}$

Pead 1 sector $= 0.01875 \text{ ms} = \frac{512}{512 \times 320 \times (\frac{10000}{60})}$

Total = 13.01875 ms

Total time = $2560 \times 13.01875 \text{ ms} = 33.328 \text{ seconds}$

First Come First Served (FCFS)

No ordering of requests \rightarrow random seek patterns

OK for lightly-loaded disks

Assignment Project Exam Help

Queue: 98, 183, 37, 122, 14, 130, 60, 67 (head starts at 53)

Shortest Seek Time First (SSTF)

Order requests according to shortest seek distance from current head position

Discriminates against innermost/outermost tracks

Assignment urfare pene Exam Help

Queue: 98, 183, 37, 122, 14, 130, 60, 67 (head starts at 53)

If, when handling request at 14, new requests arrive for 50, 70, 100 \rightarrow long delay before 183 serviced

SCAN Scheduling

Choose requests which result in shortest seek time in preferred direction

 Only change direction when reaching outermost/innermost cylinder (or no further requests in preferred direction)

Assignment Project Exame Help

Long delays for requests at extreme locations

Queuer 98, 183, 37, 1/22, 14, 130, 60, 67 (head starts at 53 and direction is toward to ps. //powcoder.com

C-SCAN

Services requests in one direction only

When head reaches innermost request, jump to outermost request

Assignment redet of etete Exam Help May delay requests indefinitely (though less likely)

Queue: 98, 183, 37, 122, 14, 130, 60, 67 (head starts at 53)

N-Step SCAN

As for SCAN, but services only requests waiting when sweep began

- Requests arriving during sweep serviced during return sweep
- Doesn't delay requests indefinitely

I/O requests placed in request list

Assignment Project Exam Help

• bio structure: associates memory pages with requests

Block device drivers define request operation called by kernel

- . https://powc.gder.com
- Driver must perform all operations in list
- Davice drivers do not define read/write operations der nat powcoder

Some devices drivers (e.g. RAID) order their own requests

Bypass kernel for request list ordering

Default: variation of SCAN algorithm

Kernel attempts to merge requests to adjacent blocks

ASSISTMENT OF THE PROPERTY OF THE PROPER

Deadline scheduler: ensures reads performed by deadline

· Intitps://poweroder.com

Anticipatory scheduler: delay after read request completes

- Idaa: processwill issue another synchronous read operation being disquality nexpired at power of the power
- Reduces excessive seeking behaviour
- Can lead to reduced throughput if process does not issue another read request to nearby location
 - Anticipate process behaviour from past behaviour

Problem

• CPU performance doubling every 18 months

Assignment Project Exam 9 Help

• Use parallel disk $1/0 \rightarrow$ appears to OS as a single disk $\frac{1}{1}$ RAID (Redundant Array of Inexpensive Disks)

- Array of physical drives appearing as single virtual drive
- Steres that a dytybered over a ray in the wild of the parallel operation (called striping)

Use redundant disk capacity to respond to disk failure

ullet More disks o lower mean-time-to-failure (MTTF)

RAID Level 0 (Striping)

Use multiple disks and spread out data

Assignment Project Exam Help

No redundancy \rightarrow no fault tolerance

RAID Level 1 (Mirroring)

Mirror data across disks

Assignment by Project Exam Help Writes update both disks in parallel (slower)

High https://pow.coder.com

Parallel access by striping at bit-level

- Use Hamming error-correcting code (ECC)
- Series as including the reads/writes (The Land State of the Control of the Contro
 - But all disks participate in I/O requests (no concurrency)
- Only Lised In Property Company Coder.com
 - ECC disks become bottleneck

RAID Level 3 (Byte-level XOR)

Only single parity strip used

 $\bullet \ \mathsf{Parity} = \mathsf{data1} \oplus \mathsf{data2} \oplus \mathsf{data3} \dots$

Assignment Project Exam Help

Lower storage overhead than RAID Level 2

• But still only one I/O request can take place at a time https://powcoder.com

Parity strip handled on block basis

Assignment Project Exam Help

Parity disk tends to become bottleneck

• https://powcoder.com

Like RAID Level 4, but distribute parity

Most commonly used

Assignment Project Exam Help

Good storage efficiency/redundancy trade-off

 Reconstruction of failed disk non-trivial (and slow) owcoder.com block 0 block 1 block 2 block 3 P(0-3) block 6 block 4 block 7 block 9 block 8 block 12 P(12-15) block 13 block 14 block 15 block 16 block 17 block 18 P(16-19) block 19 RAID Summary

۱ ۵	Category	Level	Description	I/O Data Transfer	I/O Request rate (R/W)	n
7.5	Signing Steping	1611	Non-redundant			P
	Mirroring	1	Mirrored	+/0	+/0	
	Palattp	S2//	predundant via d	er.co:	m 0/0	
	access 1	3	Bit interleaved parity	++/++	0/0	
	Independent access	1 4	Block interdated parity	ОЩСС	ode <u>r</u>	
		5	Block interleaved distributed parity	+/-	+/- or 0	

better than single disk (+) / same (0) / worse (-)

Assignment Project Exam Help

Marked coursework will be returned in January

Provinteps: //powcoder.com

Feedback also possible through Mentimeter (94 41 03)

If time and possible estimate apowy coder