实验一、二--常用仪器使用及基本开关电路

实验报告

姓名:	吴志强	_学号: <u>313</u> 6	0101631	_专业: 软件]	二程 1402	
课程名	3称:逻辑与计算机设计基	基础实验	同组学生姓名: 黄迅	明明		
实验时	†间: 2015-09-17/24	实验地点:	紫金港东 4-509	指导老师:	施青松 洪奇军	

一、实验目的和要求

1.1 常用电子仪器的使用

- 1.1.1 认识常用电子器件
- **1.1.2** 学会数字示波器、数字信号发生器(函数信号发生器)、直流稳压电源、万用表等 仪器的使用
- 1.1.3 掌握用数字示波器来测量脉冲波形及幅度和频率的参数
- 1.1.4 掌握用数字示波器测量脉冲时序的上升沿和下降沿、延时等参数
- 1.1.5 掌握万用表测量电压、电阻及二极管的通断的判别

1.2 基本开关电路

- 1.2.1 掌握逻辑开关电路的基本结构
- 1.2.2 掌握二极管导通和截止的概念
- 1.2.3 用二极管、三极管构成简单逻辑门电路
- 1.2.4 掌握最简单的逻辑门电路构成

二、实验内容和原理

2.1 常用电子仪器的使用

- 2.1.1 实验内容
- 2.1.1.1 常用电子器件认识

- 2.1.1.2 用示波器测量正弦波信号
- **2.1.1.3** 测量 YB1638 型函数信号发生器输出电压
- 2.1.1.4 万用表测量实验箱中的直流电源
- 2.1.1.5 用万用表测量二极管的单向导电(通断)特性

2.1.2 实验原理

图表 1 认识电阻,用色环来识别阻值

2.1.2.1 用示波器测量正弦波信号

通过选择频率范围开关和频率调节旋钮使 YB1638 型函数信号发生器发出频率分别为 100Hz、10KHz 和 100KHz 的正弦波,用示波器测出上述信号的周期和频率,比较是否与刻度值相一致

2.1.2.2 测量 YB1638 型函数信号发生器输出电压

先让信号发生器输出 1KHz、1--3V 任意的正弦波信号,然后将信号发生器的输出接到示波器,用示波器测量幅值,然后用万用表交流档测量信号发生器输出的信号的幅值,最后折算有效值与万用表用交流档读取值有效值进行比较

2.1.2.3 万用表测量实验箱中的直流电源

先将红表笔插入 $V\Omega$ mA 插孔,黑表笔插入 COM 插孔。然后将功能开关量程置于直流量程,将测试笔连接到待测电路上,红表笔所接端的极性将同时显示在显示器上,最后用

示波器和万用表来测量实验台上的三组直流稳压电源的输出

2.1.2.4 用万用表测量二极管的单向导电(通断)特性

将表笔插入 "COM"插孔, 红表插入 "V Ω "插孔, 此时红表笔极性为 "+"。

将万用表功能量程开关置于二极管极性判断位置,把红黑表笔分别接到二极管的两极,如果显示屏上显示 0.6~0.7 的数字,此时二极管正向导通,显示的数字是 PN 结的电压,红表笔接的极是二极管的正极,黑表笔接的是负极。如果显示屏上显示的数字是"1",此时二极管反向截止,红表笔接的是二极管负极,黑表笔接的是正极。

2.2 基本开关电路

2.2.1 实验内容

- 2.2.1.1 用二极管实现正逻辑与门,并测量输入输出电压参数,分析其逻辑功能
- 2.2.1.2 用二极管实现正逻辑或门,并测量输入输出电压参数,分析其逻辑功能
- 2.2.1.3 用三极管反向特性实现正逻辑非门,测量输入输出电压参数,分析其逻辑功能
- 2.2.1.4 采用前面的与门和非门实现与非门,测量输入输出电压参数,分析其逻辑功能
- 2.2.1.5 三极管极性测量

2.2.2 实验原理

图表 2 常用逻辑电平标准

逻辑电平	V_{CC}/V	V_{OH}/V	V_{OL}/V	V_{IH}/V	V_{IL}/V	说明
TTL	5.0	≥ 2.4	≤ 0.4	≥ 2.0	≤ 0.8	输入脚悬
LVTTL	3.3	≥ 2.4	≤ 0.4	≥ 2.0	≤ 0.8	空时默认
LVTTL	2.5	≥ 2.0	≤ 0.2	≥ 1.7	≤ 0.7	为高电平
COMS	5.0	≥ 4.45	≤ 0.5	≥ 3.5	≤ 1.5	
LVCOMS	3.3	≥ 3.2	≤ 0.1	≥ 2.0V	≤ 0.7	输入阻抗 非常之大
LVCOMS	2.5	≥ 2.0	≤ 0.1	≥ 1.7	≤ 0.7	,
RS232	±12~15	-3 ~ −15	3~15	-3 ~ −15	3~15	负逻辑

2.2.2.1 用二极管实现正逻辑与门

• 当 *A*,*B*,*C* 都接地时3个二极管正向导通,输出*F*为低电平; 只要 *A*,*B*,*C*中存在接地,输出*F* 为低电平

C	В	A	F
\mathbf{L}	L	L	${f L}$
L	L	Н	L
${f L}$	Н	L	${f L}$
\mathbf{L}	Н	Н	${f L}$
Н	L	L	\mathbf{L}
H	L	Н	${f L}$
Н	Н	L	L
Н	Н	Н	Н

图表 3 与门电路图与逻辑关系

2.2.2.2 用二极管实现正逻辑或门

• 当输入A,B,C 都接地时,输出F 为低电平,只要A,B,C 中有接高电平,输出F为高电平

C	В	A	F
L	L	L	L
L	L	Н	Н
L	Н	L	Н
L	Н	Н	Н
Н	L	L	Н
Н	L	Н	Н
Н	Н	L	Н
Н	Н	Н	Н

图表 4 或门电路图与逻辑关系

2.2.2.3 用三极管反向特性实现正逻辑非门

- 当A点接高电平时,三极管 T_1 处于饱和状态, $V_{CE} \approx 0.3 \mathrm{V}$,输出F为低电平饱和
- 当A点接低电平时 $I_B=0$, R_C 上几乎没有电压降,三极管 T_1 处于截止状态,输出F电压接近 V_{CC} 为高电平

图表 5 非门电路图与逻辑关系

2.2.2.4 采用前面的与门和非门实现与非门

• 当输入A,B,C 均接高电平时, F_1 为高电平,三极管 T_1 进入 饱和导通状态。输入A,B,C 和输出F 的电平关系如右表

C	В	A	F
L	L	L	н
L	L	н	Н
L	н	L	н
L	н	н	н
н	L	L	н
н	L	н	н
н	н	L	н
н	н	н	L

图表 6 与非门电路图与逻辑关系

2.2.2.5 三极管极性测量

- 将万用表红表笔插入VΩmA插孔,黑表笔插入COM插孔,先判断被测三极管是PNP还是NPN型,定下基极b
- 将功能量程置于hFE位置,把三极管插入面板上三极管测试插座,基极b要插对,集电极c和发射极e随便插
- 从显示屏上读取hFE近似值,若该值较大, 说明三级管c,e极与插座上的c,e极对应;若 该值很小,说明这时的三极管c,e极插反, 应把c,e极对调后再读取hFE值

图表 7 三极管原理

三、主要仪器设备

3.1 常用电子仪器的使用

数字示波器RIGOL-DS162	1台
函数发生器 YB1638	1台
数字万用表	1只
逻辑电路设计实验箱	1台

3.2 基本开关电路

数字示波器 RIGOL-DS162	1台
三用表	1只
低频信号发生器	1台
逻辑电路实验箱	1台

四、操作方法与实验步骤

按照实验课程 PPT 上的使用说明和步骤来进行实验。

4.1 常用电子仪器的使用

4.1.1 用示波器测量正弦波信号

将信号发生器的频率通过频率波段开关、和微调旋钮调到你所需要的频率,并在数码管上显示可知道。信号发生器的输出信号线与示波器的信号连在一起,地线与地线连在一起。

4.1.2 测量 YB1638 型函数信号发生器输出电压

- **4.1.2.1** 将信号发生器输出接入万用表,红接正,负接负,万用表在 AC 档,并选用适当量程,通过调节幅度旋钮,使万用表显示 3V 有效值。
 - **4.1.2.2** 将信号发生器输出接入到示波器中,读取峰峰值,有效值 = $V_{r-r}/2\sqrt{2}$

4.1.3 万用表测量实验箱中的直流电源

- **4.1.3.1** 将红表笔插入 $V\Omega$ mA 插孔,黑表笔插入 COM 插孔。
- **4.1.3.2** 将功能开关量程置于直流量程,将测试笔连接到待测电路上,红表笔所接端的极性将同时显示在显示器上。
- **4.1.3.3** 用示波器和万用表来测量实验台上的三组直流稳压电源的输出,并记录测量结果。

4.1.4 用万用表测量二极管的单向导电(通断)特性

- **4.1.4.1** 将表笔插入 "COM"插孔,红表插入 "VΩ"插孔,此时红表笔极性为 "+"。
- **4.1.4.2** 将万用表功能量程开关置于"^十"位置,把红黑表笔分别接到二极管的两极,如果显示屏上显示 0.6~0.7 的数字,此时二极管正向导通,显示的数字是 PN 结的电压,红表笔接的极是二极管的正极,黑表笔接的是负极。如果显示屏上显示的数字是"1",此时二极管反向截止,红表笔接的是二极管负极,黑表笔接的是正极。

4.2 常用电子仪器的使用

4.2.1 用二极管实现正逻辑与门

- **4.2.1.1** 在实验箱中通过导线连接电路,检查二极管、电源电压和极性、电阻值等是否连接正确。
 - **4.2.1.2** Vcc 接实验箱中+5V 直流电源。
- **4.2.1.3** 输入高低电平通过开关 S14/S15/16/S17 产生。输入 A,B 的不同电平组合,用万用表或实验箱中的直流电压表测量 A,B 及对应输出 F 的电压值。最后判断逻辑关系是否满足 F=AB

4.2.2 用二极管实现正逻辑或门

- **4.2.2.1** 在实验箱中通过导线连接电路,检查二极管、电源电压和极性、电阻值等是否连接正确。
 - 4.2.2.2 Vcc 接实验箱中+5V 直流电源。
- **4.2.2.3** 输入高低电平通过开关 S14/S15/16/S17 产生。输入 A,B 的不同电平组合,用万用表或实验箱中的直流电压表测量 A,B 及对应输出 F 的电压值。最后判断逻辑关系是否满足 F = A + B

4.2.3 用三极管反向特性实现正逻辑非门

- **4.2.3.1** 根据右图在实验箱上连好电路,检查三极管及电源极性、电阻值是否等是否连接正确。
 - 4.2.3.2 将+5V 直流电源接入 VCC 端。
- **4.2.3.3** 输入 A 端的高、低电平用开关 S14/S15/16/S17 产生。测量 A 和输出端 F 对应的电压值。判断逻辑关系是否满足 $F = \overline{A}$

4.2.4 采用前面的与门和非门实现与非门

- 4.2.4.1 在实验箱上连好电路,检查二极管、三极管及电源极性、电阻值等是否正确。
- 4.2.4.2 将 +5V 直流电源接入 VCC。
- **4.2.4.3** 输入 A,B 端的高、低电平用开关 S14/S15/16/S17 产生。测量 A,B 及输出端 F 对应的电压值。判断逻辑关系是否满足 F = AB

4.2.5 三极管极性测量

- **4.2.5.1** 将万用表红表笔插入 V Ω mA 插孔,黑表笔插入 COM 插孔,先判断被测三极管 是 PNP 还是 NPN 型,定下基极 b。
- **4.2.5.2** 将功能量程置于 hFE 位置,把三极管插入面板上三极管测试插座,基极 b 要插对,集电极 c 和发射极 e 随便插。
- **4.2.5.3** 从显示屏上读取 hFE 近似值, 若该值较大, 说明三级管 c,e 极与插座上的 c,e 极对应, 若该值很小, 说明这时的三极管 c,e 极插反, 应把 c,e 极对调后再读取 hFE 值。

五、实验结果与分析

5.1 常用电子仪器的使用

5.1.1 用示波器测量正弦波信号

图表 8 实验数据记录

	函数发生器 输出	示波器读数	灵敏度	实测值
幅度		5.9 Div	1.00 V/Div	6.10 V
周期/频率	100Hz	5.0 Div	2.00 ms/Div	10.0 ms 100.0 Hz

幅度		6.0 Div	1.00 V/Div		6.10	V
周期/频率	10KHz	5.0 Div	20.00 µs	100.00 µs	10	kHz
幅度		6.0 Div	1.00 V/Div		6.10	٧
周期/频率	100KHz	5.0 Div	2.000 µs	10.000 µs	100	kHz

由实验数据可看出,虽然示波器的实测值与函数发生器输出值不完全相等,但误差并不是很大,在实验允许范围内。

5.1.2 测量 YB1638 型函数信号发生器输出电压

图表 9 实验数据记录

函数发生器输出 频率	示波器	读取值	折算有效值	万用表读取值
1 KHz	5.9 div	1.00 V/Div	2.09 V	1.98 V

由上表数据可知,示波器读数和万用表测得的函数发生器输出电压有一定差距,但是差距在实验允许范围内。

5.1.3 万用表测量实验箱中的直流电源

图表 10 实验数据记录

直流稳压电源输 出	示波器读数	灵敏度	示波器折 算值	万用表读数
+5V	4.6Div	1.00V/Div	4.6V	4.54V
+12V	6.0Div	2.00V/Div	12.0V	12.01V
-12V	-6.2Div	2.00V/Div	-12.4V	-12.04V

根据实验数据,万用表读数和示波器示数十分相近,几乎相等。

5.1.4 用万用表测量二极管的单向导电(通断)特性

图表 11 实验数据记录

	万用表示数
二极管正向导通	0.583
二极管反向截止	1

实验可知,当使用万用表测试二极管时,如果显示0.583 左右的数字,二极管正向导通,如果显示的数字是"1",此时二极管方向反了。

5.2 常用电子仪器的使用

5.2.1 用二极管实现正逻辑与门

图表 12 与门数据记录

V _A /V	V _B /V	V _F /V	F 逻辑
4.72	4.72	4.68	Н
4.68	0	0.53	L
0	4.67	0.53	L
0	0	0.50	L

观察上表可知,当输入 A,B 均为高电平时,输出 F 为高电平;只要A,B 中有一个接地,输出F 即为低电平,符合与门的逻辑关系。

5.2.2 用二极管实现正逻辑或门

图表 13 或门数据记录

V _A /V	V _B /V	V _F /V	F 逻辑
3.82	3.81	3.25	Н
3.26	0	2.71	Н
0	3.29	2.72	Н
0	0	0	L

由实验数据可知,输入 A,B 都接地时,输出 F 为低电平;只要 A,B 中有高电平,输出 F 为高电平,符合或门逻辑关系。

5.2.3 用三极管反向特性实现正逻辑非门

图表 14 非门数据记录

V _A /V	V _F /V	F 逻辑
2.76	0.01	L
0	4.65	Н

当A 点接高电平时,输出F 为低电平;当A 点接低电平时,输出F 电压为高电平,符合非门逻辑。

5.2.4 采用前面的与门和非门实现与非门

图表 15 与非门数据记录

V _A /V	V _B /V	V _F /V	F 逻辑
0	0	4.79	Н
0	4.93	4.66	Н
4.94	0	4.59	Н
4.95	4.93	0	L

当输入A,B均接高电平时,F为低电平;只要A,B中有一个接地,F为高电平,符合与非门逻辑关系。

5.2.5 三极管极性测量

实验室三极管是NPN型。

图表 16 hFE 数据记录

	hFE 近似值
测试—	180
测试二(交换 c,e	008

由实验结果可知,若hFE 值较大,在 180 左右时,说明三级管 c,e 极与插座上的 c,e 极对应;若该值很小接近于 0,说明这时的三极管 c,e 极插反了。

六、讨论、心得

实验一中学习到了示波器的初步操作,对示波器、信号发生器、万用表、二极管等稍有了解。

实验二中,我更清楚地明白了基本门电路的实现方法,对于之后的实验更有兴趣了。同时,更清楚地了解到二极管和三极管的基本原理。

两个实验中, 能够动手去做到一些事情, 给了我很好的体验。

两堂实验课我都是提前到达教室的,想要提前动手进行实验,但是却发现无从下手,等老师介绍了实验原理等再去做试验就顺畅了许多。这提醒我,实验之前一定要先弄清实验的原理,才能开始进行实验,这样将会极大地提高实验效率。