I. Матричная функция

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Вычислите матричную функцию и её производную по заданному графу вычислений.

Входные данные

В первой строке содержится три целых положительных числа N, M, K ($1 \le M, K \le N \le 50$) — число вершин в графе вычислений, число входных параметров (вершин) и число выходных параметров (вершин). Далее следует N строк — описание вершин графа вычислений. i-я из этих строк содержит описание i-й вершины:

- $var\ r\ c\ (1 \le r, c \le 25)$ входной параметр функции, матрица состоящая из r строк и c столбцов.
- $tnh \ x \ (1 \le x < i)$ матрица из значений гиперболического тангенса вычисленного от соответствующих компонент матрицы полученной из x-й вершины графа вычислений.
- rlu α^{-1} x ($1 \le \alpha^{-1} \le 100$, $1 \le x < i$) матрица из значений функции параметрического линейного выпрямителя с параметром α вычисленной от соответствующих компонент матрицы полученной из x-й вершины графа вычислений. α^{-1} целое число. Производная в нуле равна единице.
- mul $a \ b \ (1 \le a, b < i)$ произведение матриц полученных из a-й b-й вершины графа вычислений соответственно.
- sum $len\ u_1\ u_2\ ...\ u_{len}\ (1\leq len\leq 10,\ \forall_{1\leq j\leq len}\ :\ 1\leq u_j< i)$ сумма матриц полученных из вершин u_1,u_2,\ldots,u_{len} графа вычислений.
- had $len\ u_1\ u_2\ ...\ u_{len}\ (1\leq len\leq 10,\ \forall_{1\leq j\leq len}\ :\ 1\leq u_j< i)$ произведение Адамара (покомпонентное) матриц полученных из вершин u_1,u_2,\ldots,u_{len} графа вычислений.

Гарантируется, что первые M вершин и только они имеют тип **var**. Последние K вершин считаются выходными. Гарантируется, что размеры матриц аргументов для каждой вершины согласованны.

Далее следует описание M матриц — входных параметров соответствующих вершин графа вычислений в порядке возрастания их индексов.

Затем следует описание K матриц — производных функции по соответствующим выходным вершинам в порядке возрастания их индексов. Обратите внимание, что производные вычислены только из некоторых скрытых вершин. Если какая-та выходная вершина зависит от другой выходной вершины, то соответствующую производную нужно досчитать.

Каждая строка, каждой матрицы расположена на отдельной строке. Матрицы состоят из целых чисел по модулю не превышающих 10.

Выходные данные

Выведите K матриц — значение параметров соответствующих выходных вершин графа вычисления в порядке возрастания их индексов. Затем выведите M матриц производных функции по соответствующим входным вершинам в порядке возрастания их индексов. Допустимая абсолютная и относительная погрешность 10^{-4} .

Пример

```
Скопировать
входные данные
6 3 1
var 1 3
var 3 2
var 1 2
mul 1 2
sum 2 4 3
rlu 10 5
-2 3 5
4 2
-2 0
2 1
4 - 2
-1 1
                                                                                                          Скопировать
выходные данные
0.0 - 0.1
-3.8 2.0 -1.9
2.0 - 0.2
-3.0 0.3
-5.00.5
-1.0 0.1
```

Примечание