

Molecular Symmetry - Vibrational Spectroscopy Identification of IR & Raman Active Modes

Kristen Aviles | CHEM 411W | Feb. 3rd, 2025

Symmetry analysis allows a method to predict vibrational modes.

We can predict the number of vibrational modes by:

Linear 3N - 5

Nonlinear 3N - 6

But how many are IR active? How many are Raman active?

We can use **SYMMETRY** to answer this

First, we need to evaluate the symmetry operations

Second, we need to identify the point group

For example, lets use water:

Locate the corresponding character table:

	C _{2v}	Е	$C_{2}(z)$	$\sigma_{v(xz)}$	$\sigma_{v(yz)}$	linear functions, rotations	quadratic functions	l I
	A_1	+1	+1	+1	+1	Z	x^2, y^2, z^2	$\boxed{z^3, x^2z, y^2z}$
:	A_2	+1	+1	-1	-1	R _z	xy	xyz
	B_1	+1	-1	+1	-1	x, R _y	XZ	xz^2, x^3, xy^2
	B_2	+1	-1	-1	+1	y, R _x	yz	yz^2, y^3, x^2y

Third, we need to calculate the reducible representation

We must identify the contributions of each axis during each symmetry operation. If the axis stays pointed in the same direction: +1 contribution If the axis points in a different direction: -1 contribution

	E	C ₂	σ_{xz}	σ_{yz}
Original	X	X	Z X	Z X
Transformed				
Contribution				

Third, we need to calculate the reducible representation

We must identify the number of stationary atoms following each symmetry operation.

If the atom stays in the same position: +1 contribution

If the atom changes position: 0 contribution

White and grey still represent H atoms; slightly different colors to illustrate movement

Contribution

Third, we need to calculate the reducible representation

Now we take each contribution and multiply them. This affords us the reducible representation (Γ_{red})

	E	C ₂	σ_{xz}	σ_{yz}
Axis Contribution	3	-1	1	1
Atom Contribution	3	1	3	1
Reducible Representation $\Gamma_{\rm red}$				

Fourth, we need to calculate the irreducible representation

To calculate the irreducible representation, we use the formula:

$$a_i = \frac{1}{h} \sum_{R} [N * \Gamma_R \chi_i(R)]$$

C_{2v}	Е	C ₂ (z)	$\sigma_{v(XZ)}$	$\sigma_{v}(yz)$	linear functions, rotations	quadratic functions	1
A_1	+1	+1	+1	+1	Z	x^2, y^2, z^2	z^3 , x^2z , y^2z
A_2	+1	+1	-1	-1	R_z	xy	xyz
B_1	+1	-1	+1	-1	x, R _y	XZ	xz^2, x^3, xy^2
\mathbb{B}_2	+1	-1	-1	+1	y, R _x	yz	yz^2, y^3, x^2y

 a_i is the # of irreducible reps of a given type h is the order of the group N is the number of operations in the class Γ_R is the character of reducible representation $\chi_i(R)$ is the character of irreducible representations

$$h = 4$$

	Е	C_2	σ_{xz}	σ_{yz}
Γ_{red}	9	-1	3	1

Fourth, we need to calculate the irreducible representation

To calculate the irreducible representation, we use the formula:

$$a_i = \frac{1}{h} \sum_{R} [N * \Gamma_R \chi_i(R)]$$

C _{2v}	Е	C ₂ (z)	$\sigma_{V(XZ)}$	$\sigma_{v}(yz)$	linear functions, rotations	*	cubic functions
A_1	+1	+1	+1	+1	Z	x^2, y^2, z^2	z^3 , x^2z , y^2z

a_i is the # of irreducible reps of a given type
h is the order of the group
N is the number of operations in the class
Γ_R is the character of reducible representation
$\chi_i(R)$ is the character of irreducible representations

$$\begin{array}{|c|c|c|c|c|c|} \hline & E & C_2 & \sigma_{xz} & \sigma_{yz} \\ \hline \Gamma_{red} & \mathbf{9} & -\mathbf{1} & \mathbf{3} & \mathbf{1} \\ \hline \end{array}$$

$$h = 4$$

$$A_1 = \frac{1}{4}((1*9*1) + (1*-1*1) + (1*3*1) + (1*1*1)) = \frac{12}{4} = 3$$

Fourth, we need to calculate the irreducible representation

To calculate the irreducible representation, we use the formula:

C _{2v}	Е	C ₂ (z)	$\sigma_{V(XZ)}$	$\sigma_{v}(yz)$	linear functions, rotations	1 * 1	cubic functions
A_2	+1	+1	-1	-1	R_z	xy	xyz

a_i is the # of irreducible reps of a given type
h is the order of the group
N is the number of operations in the class
Γ_R is the character of reducible representation
$\chi_i(R)$ is the character of irreducible representations

$$\begin{array}{|c|c|c|c|c|c|} \hline E & C_2 & \sigma_{xz} & \sigma_{yz} \\ \hline \Gamma_{red} & 9 & -1 & 3 & 1 \\ \hline \end{array}$$

$$h = 4$$

$$A_1 = \frac{1}{4} ((1*9*1) + (1*-1*1) + (1*3*1) + (1*1*1)) = \frac{12}{4} = 3$$

$$A_2 = \frac{1}{4} ((1*9*1) + (1*-1*1) + (1*3*-1) + (1*1*-1)) = \frac{4}{4} = 1$$

Fourth, we need to calculate the irreducible representation

To calculate the irreducible representation, we use the formula:

C _{2v}	Е	C ₂ (z)	$\sigma_{v(XZ)}$	$\sigma_{v}(yz)$	linear functions, rotations	*	cubic functions
B_1	+1	-1	+1	-1	x, R _y	XZ	xz^2, x^3, xy^2

C_{2v}	Е	$C_2(z)$	$\sigma_{V}(XZ)$	$\sigma_{\rm v}({\rm yz})$	rotations	functions	functions
B_1	+1	-1	+1	-1	x, R _y	XZ	xz^2, x^3, xy^2
		_					

 a_i is the # of irreducible reps of a given type h is the order of the group *N* is the number of operations in the class Γ_R is the character of reducible representation $\chi_i(R)$ is the character of irreducible representations

$$h = 4$$

Fourth, we need to calculate the irreducible representation

To calculate the irreducible representation, we use the formula:

$a_i = \frac{1}{h} \sum [N *$	* $\Gamma_R \chi_i(R)$]
R	

C_{2v}	Е	C ₂ (z)	$\sigma_{v(XZ)}$	$\sigma_{v}(yz)$	linear functions, rotations	1 * 1	cubic functions
\mathbb{B}_2	+1	-1	-1	+1	y, R _x	yz	yz^2, y^3, x^2y

C_{2v}	Е	C ₂ (z)	$\sigma_{V(XZ)}$	$\sigma_{v}(yz)$	linear functions, rotations	1 * 1	cubic functions
$oxed{B_2}$	+1	-1	-1	+1	y, R _x	yz	$\boxed{yz^2, y^3, x^2y}$

a_i is the # of irreducible reps of a given type
h is the order of the group
N is the number of operations in the class
Γ_R is the character of reducible representation
$\chi_i(R)$ is the character of irreducible representations

$$\begin{array}{|c|c|c|c|c|c|} \hline E & C_2 & \sigma_{xz} & \sigma_{yz} \\ \hline \Gamma_{red} & 9 & -1 & 3 & 1 \\ \hline \end{array}$$

$$h = 4$$

$$A_1 = \frac{1}{4} ((1*9*1) + (1*-1*1) + (1*3*1) + (1*1*1)) = \frac{12}{4} = 3$$

$$A_2 = \frac{1}{4} ((1*9*1) + (1*-1*1) + (1*3*-1) + (1*1*-1)) = \frac{4}{4} = 1$$

$$B_1 = \frac{1}{4} ((1*9*1) + (1*-1*-1) + (1*3*1) + (1*1*-1)) = \frac{12}{4} = 3$$

$$B_2 = \frac{1}{4} ((1*9*1) + (1*-1*-1) + (1*3*-1) + (1*1*1)) = \frac{8}{4} = 2$$

Fourth, we need to calculate the irreducible representation

To calculate the irreducible representation, we use the formula:

$a_i = \frac{1}{h} \sum [N * \Gamma_R \chi_i(R)]$
R

C _{2v}	Е	C ₂ (z)	$\sigma_{v(xz)}$	$\sigma_{v}(yz)$	linear functions, rotations	*	cubic functions
$oxed{B_2}$	+1	-1	-1	+1	y, R _x	yz	yz^2, y^3, x^2y

K
a_i is the # of irreducible reps of a given type
h is the order of the group
N is the number of operations in the class
Γ_R is the character of reducible representation

	Е	C ₂	σ_{xz}	σ_{yz}
Γ_{red}	9	-1	3	1

$$\Gamma_{\text{irred}} = 3A_1 + 1A_2 + 3B_1 + 2B_2$$

Should equal 3 * atoms (3N = 9)

 $\chi_i(R)$ is the character of irreducible representations

Should equal 3 * atoms (3N = 9)3+1+3+2=9

$$A_1 = \frac{1}{4} ((1*9*1) + (1*-1*1) + (1*3*1) + (1*1*1)) = \frac{12}{4} = 3$$
 $A_2 = \frac{1}{4} ((1*9*1) + (1*-1*1) + (1*3*-1) + (1*1*-1)) = \frac{4}{4} = 1$
 $B_1 = \frac{1}{4} ((1*9*1) + (1*-1*-1) + (1*3*1) + (1*1*-1)) = \frac{12}{4} = 3$
 $B_2 = \frac{1}{4} ((1*9*1) + (1*-1*-1) + (1*3*-1) + (1*1*1)) = \frac{8}{4} = 2$

h = 4

Fifth, we need to calculate the vibrational modes

To calculate the vibrational modes, we need to subtract the translations and rotations:

To find these locate the linear functions and rotations.

Translations are denoted as x, y, or z

Rotations are denoted as R_{x} , R_{y} , or R_{z}

C_{2v}	Е	$C_{2}(z)$	$\sigma_{v(xz)}$	$\sigma_{v}(yz)$	linear functions, rotations	quadratic functions	cubic functions
A_1	+1	+1	+1	+1	Z	x^2, y^2, z^2	z^3, x^2z, y^2z
A_2	+1	+1	-1	-1	$R_{\rm Z}$	xy	xyz
B_1	+1	-1	+1	-1	x, R _y	XZ	xz^2, x^3, xy^2
B_2	+1	-1	-1	+1	y, R _x	yz	yz^2, y^3, x^2y

Should equal
$$3N-6 (3N-6 = 3)$$

 $2+1 = 3$

$$\Gamma_{\text{irred}} = 3A_1 + 1A_2 + 3B_1 + 2B_2$$
 $\Gamma_{\text{trans}} - 1A_1 - 1B_1 - 1B_2$
 $\Gamma_{\text{rot}} - 1A_2 - 1B_1 - 1B_2$
 $\Gamma_{\text{vib}} = 2A_1 + 1B_1$
 $\Gamma_{\text{vib}} = 2A_1 + 1B_1$

Lastly, we need to classify how many IR and Raman active vibrations occur

To find the IR and Raman active vibrations we need to locate the appropriate modes:

IR vibrations are denoted as x, y, and z in the linear functions column Raman vibrations are binary products denoted as xy, yz, xz, x^2 , y^2 , and z^2 in the quadratic functions column

C_{2v}	Е	$C_{2}(z)$	$\sigma_{V(XZ)}$	$\sigma_{v}(yz)$	linear functions, rotations	quadratic functions	cubic functions
A_1	+1	+1	+1	+1	Z	x^2 , y^2 , z^2	$\boxed{z^3, x^2z, y^2z}$
A_2	+1	+1	-1	-1	R _z	xy	xyz
B_1	+1	-1	+1	-1	x, R _y	XZ	xz^2, x^3, xy^2
B_2	+1	-1	-1	+1	y, R _x	yz	yz^2, y^3, x^2y

$$\Gamma_{\text{vib}} = 2A_1 + 1B_1$$

$$\Gamma_{IR} = 2A_1 + 1B_1$$

3 possible active vibrations

$$\Gamma_{\text{Raman}} = 2A_1 + 1B_1$$

3 possible active vibrations