Lecture 5. Asymptotic Theory ¹

We have seen,

- 1. In general, $E(\bar{X}_n) = \mu$, and $Var(\bar{X}_n) = \sigma^2/n$, where $\mu = E(X)$ and $\sigma^2 = Var(X)$.
- 2. Under Normality, $\bar{X}_n \sim N(\mu, \sigma^2/n)$.

Can we say more about the distribution without the normality assumption?

- One approach is the asymptotic approach.
- \bullet In large samples (sample size n is large), averaging make all distributions look similar.

There are several core tools:

- 1. Weak Law of Large Numbers (WLLN)
- 2. Central Limit Theorem (CLT)
- 3. Continuous Mapping Theorem (CMT)
- 4. Delta Method

1 WLLN

We first explore the WLLN. For this, we need to understand <u>convergence</u> in a probablistic sense. First, recall the convergence concept that you learned in calculus:

Definition (Calculus Convergence). A sequence $a_n \to a$ as $n \to \infty$, or in other words, the sequence converges to a, or $\lim_{n\to\infty} a_n = a$, if for all $\varepsilon > 0$ there is an $\bar{n} > \infty$ such that for all $n \ge \bar{n}$ we have $|a_n - a| \le \varepsilon$.

The calculus convergence is about a deterministic sequence. When we are considering a sequence of random variables (or in other words, a random sequence), a more appropriate convergence concept is convergence in probability:

Definition (Convergence in probability). A sequence of random variables $\{Z_n\}$ converges in probability to Z as $n \to \infty$, if for all $\varepsilon > 0$, we have

$$\lim_{n\to\infty} P(|Z_n - Z| \ge \varepsilon) = 0.$$

We write this as $Z_n \to_p Z$ as $n \to \infty$, or $p\lim_{n \to \infty} Z_n = Z$, or $|Z_n - Z| = o_p(1)$.

 $^{^{1}}$ This lecture note is largely adapted from Professor Bruce Hansen's handwritten notes, however, all errors are mine.

In general, the limit Z can be a random variable, but in most cases where we use the concept of convergence in probability, Z is a constant.

Weak Law of Large Numbers (WLLN). If $\{X_1, X_2, \dots, X_n, \dots\}$ is an i.i.d. sequence from F and $E(|X_i|) < \infty$. Then we have $\bar{X}_n \to_p \mu$ as $n \to \infty$.

This means that \bar{X}_n gets close to the parameter μ with high probabilitity when n gets large.

When an estimator converges in probability to the parameter that it is supposed to estimate, we say that the estimator is <u>consistent</u>:

Definition (Consistency). If an estimator $\hat{\theta}_n$ for θ satisfies $\hat{\theta}_n \to_p \theta$ as $n \to \infty$, then $\hat{\theta}_n$ is consistent for θ .

Consistency is a nice property. It says that if n is large enough, $\hat{\theta}_n$ should be very close to θ with high probability, and thus can be interpreted as θ .

The WLLN immediately implies that \bar{X}_n is a consistent estimator of μ .

We now prove the WLLN. The key ingredient of the proof is Chebyshev's inequality (or Markov's inequality), which we prove first.

Theorem (Markov's Inequality). For any random variable X with $E|X| < \infty$, and any $\lambda > 0$, we have

 $P(|X| \ge \lambda) \le \frac{E(|X|)}{\lambda}.$

Proof. Note that

$$\lambda P(|X| \ge \lambda) = \int_{|x| \ge \lambda} \lambda f(x) dx$$

$$\le \int_{|x| \ge \lambda} |x| f(x) dx$$

$$\le \int_{-\infty}^{\infty} |x| f(x) dx$$

$$= E(|X|).$$

Now divide both sides by λ and the conclusion of the theorem follows.

Theorem (Chebychev's Inequality). For any random variable X with $\mu = E(X)$ and $Var(X) < \infty$, and any $\lambda > 0$, we have

$$\Pr(|X - \mu| \ge \lambda) \le \frac{Var(X)}{\lambda^2}.$$

Proof. Note that $P(|X - \mu| \ge \lambda) = P(|X - \mu|^2 \ge \lambda^2)$. Now apply Markov's inequality and we will get the Chebychev's inequality.

Now we are ready to prove the WLLN stated above.

Proof of the WLLN. Take any $\varepsilon > 0$. Then since $E(\bar{X}) = \mu$ we have

$$P(|\bar{X}_n - \mu| \ge \varepsilon) = P(|\bar{X}_n - E\bar{X}_n| \ge \varepsilon) \le \frac{Var(\bar{X}_n)}{\varepsilon^2} = \frac{\sigma^2}{n\varepsilon^2},\tag{1}$$

using Chebyshev's inequality and $Var(\bar{X}_n) = \sigma^2/n$. Since $\sigma^2/\varepsilon^2 < \infty$, we have $\sigma^2/(n\varepsilon^2) \to 0$ as $n \to \infty$. Then by definition of convergence in probability, we have

$$\bar{X}_n \to_p \mu$$
.

Note that this proof assumes that $\sigma^2 < \infty$. This can be relaxed with more involved proof.

A nice property of convergence in probability is that it is preserved by continuous functions.

Theorem (Continuous Mapping Theorem (CMT)). If $Z_n \to_p z$ as $n \to \infty$ and $g(\cdot)$ is continuous at z then

$$g(Z_n) \to_p g(z)$$
 as $n \to \infty$.

Proof. Since g is continuous at z, for all $\varepsilon > 0$, we can find $\delta > 0$ such that if $|Z_n - z| < \delta$ then $|g(Z_n) - g(z)| \le \varepsilon$. That is, the event $|Z_n - z| < \delta$ (say we denote by A) implies the event $|g(Z_n) - g(z)| < \varepsilon$ (say we denote by B). We derived in the first couple of lectures that if $A \subseteq B$ then $P(A) \le P(B)$. Therefore,

$$P(|Z_n - z| < \delta) < P(|q(Z_n) - q(z)| < \varepsilon).$$

The left-hand side converges to 1 as $n \to \infty$ due to $Z_n \to_p z$. Therefore, the right-hand side (which cannot be bigger than 1) also converges to 1 as $n \to \infty$. That shows that

$$P(|g(Z_n) - g(z)| > \varepsilon) \to 0 \text{ as } n \to \infty.$$

This shows $g(Z_n) \to_p g(z)$.

Now we give a few examples where the CMT can be used.

Example. $\hat{\sigma}^2 \to_p \sigma^2$ as $n \to \infty$. To see why, consider that

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 - (\bar{X}_n - \mu)^2.$$
 (2)

Xiaoxia Shi

By WLLN, we have $\frac{1}{n}\sum_{i=1}^{n}(X_i-\mu)^2 \to_p E[(X_i-\mu)^2] = \sigma^2$, and $\bar{X}_n-\mu \to_p 0$. Then by CMT, we have

$$\hat{\sigma}^2 \to_n \sigma^2 - 0 = \sigma^2.$$

Example. $s^2 \to_p \sigma^2$ as $n \to \infty$. To see why, note that $s^2 = \frac{n}{n-1}\hat{\sigma}^2$. We have shown that $\hat{\sigma}_n^2 \to_p \sigma^2$. It is elementary that $n/(n-1) \to 1$. Therefore,

$$s^2 \to_p 1 \times \sigma^2 = \sigma^2$$
.

Example. $\hat{\sigma} \to \sigma$ and $s \to_p \sigma$. For both, we can simply use the continuity of the function $g(x) = \sqrt{x}$ at all points $x \ge 0$.

2 CLT

The WLLN does not provide a distributional approximation for \bar{X}_n . The CLT does. Before discussing the CLT, we first give a formal concept for distributional convergence:

Definition (Convergence in Distribution). A sequence of random variables/vectors Z_n converges in distribution to Z as $n \to \infty$ if

$$F_n(x) = P(Z_n \le x) \to F(x) = P(Z \le x),$$

at all points of continuity of F. We write this as $Z_n \to_d Z$ as $n \to \infty$.

In most applications, F is a continuous distribution, and Z is a random variable/vector (r.v.). The definition states that the distribution of Z_n gets close to the distribution of a r.v. Z.

In the special case that Z is actually a constant, Z = c, we have $Z_n \to_p c$ if and only if $Z_n \to_d c$.

What does it mean to say that a random variable is a constant? It means that the support of Z is a single point c and Pr(Z = c) = 1.

Now we can state the CLT:

Theorem (CLT-Single Variate). If X_i : $i=1,2,\ldots$ are i.i.d. with $E(X_i)=\mu$ and $Var(X_i)=\sigma^2<\infty$ and $\sigma^2>0$ then

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \to_d Z \sim N(0, 1).$$

Or equivalently,

$$\sqrt{n}(\bar{X}_n - \mu) \to_d N(0, \sigma^2).$$

<u>A Moment Based "Proof"</u>. Without loss of generality, assume that $\mu = 0$ and $\sigma^2 = 1$. According

to the calculations in previous lectures, we know

$$E(\bar{X}_n) = 0$$
 and $Var(\sqrt{n}\bar{X}_n) = 1$.

With more work, you could find that

$$E[(\sqrt{n}\bar{X}_n)^3] = \frac{1}{\sqrt{n}}E(X_i^3) \to 0,$$

and

$$E[(\sqrt{n}\bar{X}_n)^4] = \frac{E(X_i^4)}{n} + \frac{3(n-1)}{n} \to 3.$$

These moments match the same moments of $Z \sim N(0,1)...$

<u>Formal Proof Based on MGF</u>. Without loss of generality, assume that $\mu = 0$ and $\sigma^2 = 1$. Let $Z_n = n^{-1} \sum_{i=1}^n X_i$.

The MGF of Z_n is

$$M_n(t) = E \exp\left(\frac{t}{\sqrt{n}} \sum_{i=1}^n X_i\right)$$

$$= E\left[\Pi_{i=1}^n \exp\left(\frac{t}{\sqrt{n}} X_i\right)\right]$$

$$= \Pi_{i=1}^n E\left[\exp\left(\frac{t}{\sqrt{n}} X_i\right)\right] \quad \text{by i.i.d.}$$

$$= M(t/\sqrt{n})^n, \tag{3}$$

where M(t) is the MGF of X_i . Take logarithm on both sides, and we have

$$\log M_n(t) = n \log M(t/\sqrt{n}). \tag{4}$$

Let $m(t) = \log M(t)$. We know that

$$M(0) = 1$$

$$M'(0) = E(X_i) = 0$$

$$M''(0) = E(X_i^2) = 1.$$
(5)

This implies that

$$m(0) = \log(M(0)) = \log(1) = 0$$

 $m'(0) = \frac{M'(0)}{M(0)} = 0$

$$m''(0) = \frac{M''(0)}{M(0)} - \frac{(M'(0))^2}{M(0)^2} = 1$$
(6)

Then carry out a second order Taylor expansion and we get

$$\log(M_n(t)) = nm(t/\sqrt{n})$$

$$\approx n \left[m(0) + m'(0) \frac{t}{\sqrt{n}} + \frac{1}{2}m''(0) \left(\frac{t}{\sqrt{n}}\right)^2 \right]$$

$$= n(0 + 0 + \frac{t^2}{2n})$$

$$= t^2/2. \tag{7}$$

Hence, as $n \to \infty$,

$$\log M_n(t) \to t^2/2.$$

That implies that $M_n(t) \to \exp(t^2/2)$ as $n \to \infty$. The limit is the MGF of N(0,1). We can then conclude that $Z_n \to_d N(0,1)$.

Sometimes, the single-variate CLT is not sufficient. We also need the multi-variate CLT given below without proof.

Theorem. If $X_i : i = 1, 2, ...$ are i.i.d. random vectors, with $E(X_i) = \mu$ and $Var(X_i) = \Sigma$. Then

$$\sqrt{n}(\bar{X}_n - \mu) \to_d N(0, \Sigma).$$

3 Continuous Mapping Theorem and Delta Method

With the concept of convergence in distribution, we can discuss the more general version of the continuous mapping theorem (CMT):

Theorem (CMT). If $Z_n \to_d Z$ and $g(\cdot)$ is continuous then

$$g(Z_n) \to_d g(Z)$$
 as $n \to \infty$.

Proof under the additional assumption that g is strictly increasing. Consider the derivation

$$P(g(Z_n) \le x) = P(Z_n \le g^{-1}(x)) \to P(Z \le g^{-1}(x)) = P(g(Z) \le x). \tag{8}$$

This holds for all $x \in R$. Thus, $g(Z_n) \to_d g(Z)$.

Although our proof assumes monotonicity of g, the CMT holds without this additional assumption. The function g does not need to be $R \to R$. It can be $R^k \to R^p$ for two integers k and p. (A

more general proof uses measure theoretical concepts of convergence in distribution.)

Example. If $\sqrt{n}(\bar{X}_n - \mu) \to_d N(0, \sigma^2)$, then (with $g(x) = x^2/\sigma^2$):

$$\frac{n(\bar{X}_n - \mu)^2}{\sigma^2} \to_d N(0, 1)^2 = \chi_1^2.$$

When using the CMT with a vector Z_n that converges in distribution, it is in general not sufficient to just have the convergence in distribution of each elements of the random vector Z_n (marginal convergence). Thus it is useful to know when marginal convergence implies joint convergence:

Theorem. Suppose that the random vector $Z_{1n} \to_d Z_1$ and the random vector $Z_{2n} \to_p z_2$ for a constant vector z_2 . Then

$$\begin{pmatrix} Z_{1n} \\ Z_{2n} \end{pmatrix} \to_d \begin{pmatrix} Z_1 \\ z_2 \end{pmatrix}.$$

The theorem states that if one component of a random vector converges in distribution and the other component of it converges in probability to a **constant**, then the two components converge in distribution jointly. A special case is where the other component is a deterministic sequence that converges in the calculus sense.

Example. If $\sqrt{n}(\hat{\theta}_n - \theta) \to_d N(0, \sigma^2)$, then $\hat{\theta}_n \to_p \theta$ as $n \to \infty$. This is because

$$\hat{\theta}_n - \theta = \frac{1}{\sqrt{n}} (\sqrt{n}(\hat{\theta}_n - \theta)) \rightarrow_d 0 \times N(0, \sigma^2) = 0.$$

Here the g function is $R^2 \to R$: $g(z_1, z_2) = z_1 z_2$. In this Example $Z_{1n} = 1/\sqrt{n}$ and $Z_{2n} = \sqrt{n}(\hat{\theta}_n - \theta)$.

Example (t-statistic convergence). For an i.i.d. sample $X_i : i = 1, ..., X_n$, recall that the t-statistic is defined to be

$$t = \frac{\sqrt{n}(\bar{X}_n - \mu)}{s}.$$

The CLT implies that $\sqrt{n}(\bar{X}_n - \mu) \to_d N(0, \sigma^2)$ as $n \to \infty$ where $\sigma^2 = Var(X_i)$ and $\mu = E(X_i)$. For s, we have shown in the WLLN section that

$$s \to_p \sigma$$
.

Thereofre,

$$(\sqrt{n}(\bar{X}_n - \mu), s)' \to_d (N(0, \sigma^2), \sigma).$$

Then by the CMT,

$$t \to_d \frac{N(0, \sigma^2)}{\sigma} = N(0, 1).$$

Xiaoxia Shi

Another very useful technique is the Delta method. We introduce the single variate version first:

Theorem (Delta Method-Single Variate). If $\sqrt{n}(\hat{\theta}_n - \theta) \to_d N(0, \sigma^2)$, and $g(\cdot)$ is continuously differentiable in an open neighborhood of θ . Then

$$\sqrt{n}(q(\hat{\theta}_n) - q(\theta)) \rightarrow_d N(0, V),$$

where $V = (g'(\theta))^2 \sigma^2$.

Proof. Take a Taylor expansion of $g(\hat{\theta}_n)$ around θ , which is valid since $\hat{\theta}_n \to_p \theta$ and g is continuously differentiable:

$$g(\hat{\theta}_n) \approx g(\theta) + g'(\theta)(\hat{\theta}_n - \theta).$$

So,

$$\sqrt{n}(g(\hat{\theta}) - g(\theta)) \approx g'(\theta)\sqrt{n}(\hat{\theta}_n - \theta) \to_d g'(\theta)N(0, \sigma^2) = N(0, V). \tag{9}$$

More rigorously,

$$g(\hat{\theta}_n) = g(\theta) + g'(\theta_n^*)(\hat{\theta}_n - \theta),$$

where θ_n^* is a point on the line segment joining $\hat{\theta}_n$ and θ . Then $\theta_n^* \to_p \theta$, and $g'(\theta_n^*) \to_p g(\theta)$.

The Delta method is very important in econometrics because most parameters of interests are functions of other parameters (that are often some moments of the population).

For example, $\beta = h(\theta)$, where $\theta = Eg(X)$ for some functions $h(\cdot)$ and $g(\cdot)$. Then we can use the following estimator for β :

$$\hat{\beta}_n = h\left(\frac{1}{n}\sum_{i=1}^n g(X_i)\right) = h(\hat{\theta}_n),$$

where $\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n g(X_i)$.

By CLT, we have

$$\sqrt{n}(\hat{\theta}_n - \theta) \to_d N(0, \sigma^2),$$

where $\sigma^2 = Var(g(X_i))$.

Then by Delta Method,

$$\sqrt{n}(\hat{\beta}_n - \beta) \to_d N(0, V),$$

where $V = (g'(\theta))^2 \sigma^2$. This gives a constructive distributional approximation to the estimate $\hat{\beta}_n$.

The multi-variate version of the Delta-Method can be useful as well. An example is given in the next section.

Theorem (Delta Method-Multivariate). If $h: R^k \to R^p$ is continuously differentiable at $\theta \in R^k$, and $\sqrt{n}(\hat{\theta}_n - \theta) \to_d N(0, \Sigma)$. Then

$$\sqrt{n}(h(\hat{\theta}_n) - h(\theta)) \to_d N(0, V),$$

$$where \ V = H(\theta)\Sigma H(\theta)', \ and \ H(\theta) = \frac{\partial}{\partial \theta'}h(\theta) = \begin{pmatrix} \frac{\partial}{\partial \theta_1}h_1(\theta) & \frac{\partial}{\partial \theta_2}h_1(\theta) & \dots & \frac{\partial}{\partial \theta_k}h_1(\theta) \\ \frac{\partial}{\partial \theta_1}h_2(\theta) & \frac{\partial}{\partial \theta_k}h_2(\theta) & \dots & \frac{\partial}{\partial \theta_k}h_2(\theta) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial}{\partial \theta_1}h_p(\theta) & \frac{\partial}{\partial \theta_2}h_p(\theta) & \dots & \frac{\partial}{\partial \theta_k}h_p(\theta) \end{pmatrix}.$$

4 A Simple Moment-Based Estimation Technique

Suppose that $\theta = E(g(X_i))$, but our parameter of interest β is defined implicitly by the equation

$$h(\beta) = \theta$$
,

for a function $h: \mathbb{R}^k \to \mathbb{R}^k$. Assume that $h(\cdot)$ is bijective, continuously differentiable, and $H(\beta) = \frac{\partial}{\partial \beta'} h(\beta)$ is invertible. Then, a moment-based estimator for β is the solution to the equation:

$$h(\hat{\beta}_n) = \hat{\theta}_n.$$

By CLT, we have $\sqrt{n}(\hat{\theta}_n - \theta) \to_d N(0, \Sigma)$ where $\Sigma = Var(g(X_i))$. How do we obtain the asymptotic distribution of $\hat{\beta}_n$?

One way is to note that $\hat{\beta}_n = h^{-1}(\hat{\theta})$ and use the Multi-variate Delta Method to obtain

$$\sqrt{n}(\hat{\beta}_n - \beta) \to_d \frac{\partial}{\partial \theta'} h^{-1}(\theta) N(0, \Sigma) = \left(\frac{\partial}{\partial \beta'} h(\beta)\right)^{-1} N(0, \Sigma) = N(\mathbf{0}, H(\beta)^{-1} \Sigma (H(\beta)')^{-1}),$$

where the first equality holds by the implicit function theorem.

Alternatively, one could also conduct a Taylor expansion of $h(\hat{\beta}_n)$ around β :

$$h(\hat{\beta}_n) \approx h(\beta) + H(\beta)(\hat{\beta}_n - \beta).$$

Then

$$\sqrt{n}(\hat{\beta}_n - \beta) \approx -H(\beta)^{-1}(\hat{\theta}_n - \theta) \to_d N(\mathbf{0}, H(\beta)^{-1}\Sigma(H(\beta)')^{-1}).$$

Note that the \approx can be made exact by using $H(\beta_n^*)$ instead of $H(\beta)$ for a value β_n^* on the line segment connecting $\hat{\beta}_n$ and β . Then one can use the continuous differentiability of $h(\cdot)$ and the invertibility of $H(\beta)$ to yield the conclusion.

The later derivation gets us close to the theory for the more general moment-based estimator: the generalized method of moment (GMM) estimator, which will be covered in Econ 710.

5 Problems

- 1. For the following sequences, show $a_n \to 0$ as $n \to \infty$:
 - (a) $a_n = 1/n$
 - (b) $a_n = \frac{1}{n} \sin\left(\frac{n\pi}{2}\right)$.
- 2. Consider a random variable X_n with the probability function

$$X_n = \begin{cases} -n & \text{with probability } 1/n \\ 0 & \text{with probability } 1 - 2/n \\ n & \text{with probability } 1/n \end{cases}$$

- (a) Does $X_n \to_p 0$ as $n \to \infty$?
- (b) Calculate $E(X_n)$.
- (c) Calculate $Var(X_n)$.
- (d) Now suppose the distribution is

$$X_n = \begin{cases} 0 & \text{with probability } 1 - 1/n \\ n & \text{with probability } 1/n \end{cases}$$

Calculate $E(X_n)$.

- (e) Conclude that $X_n \to_p 0$ as $n \to \infty$ is not sufficient for $E(X_n) \to 0$.
- 3. A weighted sample mean takes the form $\bar{Y}^* = \frac{1}{n} \sum_{i=1}^n w_i Y_i$ for some non-negative constants w_i satisfying $\frac{1}{n} \sum_{i=1}^n w_i = 1$. Assume that $Y_i : i = 1, \ldots, n$ are i.i.d.
 - (a) Show that \bar{Y}^* is unbiased for $\mu = E(Y_i)$.
 - (b) Calculate $Var(\bar{Y}^*)$.
 - (c) Show that a sufficient condition for $\bar{Y}^* \to_p \mu$ is that $\frac{1}{n^2} \sum_{i=1}^n w_i^2 \to 0$. (Hint: use the Markov's or Chebyshev's Inequality).
 - (d) Show that the sufficient condition for the condition in part (c) is $\max_{i < n} w_i / n \to 0$.
- 4. Take a random sample $\{X_1, \ldots, X_n\}$. Which statistic converges in probability by the weak law of large numbers and continuous mapping theorem, assuming the moment exists?
 - (a) $\frac{1}{n} \sum_{i=1}^{n} X_i^2$.
 - (b) $\frac{1}{n} \sum_{i=1}^{n} X_i^3$.
 - (c) $\max_{i \leq n} X_i$.

- (d) $\frac{1}{n} \sum_{i=1}^{n} X_i^2 \left(\frac{1}{n} \sum_{i=1}^{n} X_i\right)^2$.
- (e) $\frac{\sum_{i=1}^{n} X_{i}^{2}}{\sum_{i=1}^{n} X_{i}}$, assuming $\mu = E(X_{i}) > 0$.
- (f) $1(\frac{1}{n}\sum_{i=1}^{n}X_{i}>0)$ where

$$1(a) = \begin{cases} 1 & \text{if } a \text{ is true} \\ 0 & \text{if } a \text{ is not true} \end{cases}$$

is called the indicator function of event a.

5. Take a random sample $\{X_1, \ldots, X_n\}$ where the support of X_i is a subset of $(0, \infty)$. Consider the sample geometric mean

$$\widehat{\mu} = (\prod_{i=1}^n X_i)^{1/n}$$

and population geometric mean

$$\mu = \exp(E(\log(X))).$$

Assuming that μ is finite, show that $\widehat{\mu} \to_p \mu$ as $n \to \infty$.

For all the problems below, let $X_i : i = 1, ..., n$ be an i.i.d. sample.

- 6. Let $\mu_k = E(X^k)$ for some integer $k \ge 1$.
 - (a) Write down the natural moment estimator $\hat{\mu}_k$ of μ_k .
 - (b) Find the asymptotic distribution of $\sqrt{n}(\hat{\mu}_k \mu_k)$ as $n \to \infty$, assuming that $E(X^{2k}) < \infty$.
- 7. Let $m_k = (E(X^k))^{1/k}$ for some integer $k \ge 1$.
 - (a) Write down the natural moment estimator \hat{m}_k of m_k .
 - (b) Find the asymptotic distribution of $\sqrt{n}(\hat{m}_k m_k)$ as $n \to \infty$, assuming that $E(X^{2k}) < \infty$.
- 8. Suppose $\sqrt{n}(\widehat{\mu} \mu) \to_d N(0, v^2)$ and set $\beta = \mu^2$ and $\widehat{\beta} = \widehat{\mu}^2$.
 - (a) Use the Delta Method to obtain an asymptotic distribution for $\sqrt{n}(\hat{\beta} \beta)$.
 - (b) Now suppose $\mu = 0$. Describe what happens to the asymptotic distribution from the previous part.
 - (c) Improve on the previous answer. Under the assumption $\mu = 0$, find the asymptotic distribution $n\widehat{\beta}$.
 - (d) Comment on the differences between the answers in parts (a) and (c).
- 9. Let X be distributed Bernoulli P(X=1)=p and P(X=0)=1-p for some unknown $p\in(0,1)$.

- (a) Show that p = E(X).
- (b) Write down the natural moment estimator \hat{p}_n of p.
- (c) Find $Var(\hat{p}_n)$.
- (d) Find the asymptotic distribution of $\sqrt{n}(\hat{p}-p)$ as $n\to\infty$.