Final Val Method

1. Simple Linear Regression

SLR of **r2 value** = **0.974**

2. Multiple Linear Regression

MLR of r2 value = 0.9358

3. Support Vector Machine

SNO	Hyper	Linear(rvalue)	Rbf(Non linear	Poly(r value)	Sigmoid(r
	Parameter		value)		value)
1.	C10	-0.039	-0.056	-0.05	-0.054
2.	C100	0.0106	-0.056	-0.019	-0.030
3.	C500	0.592	-0.024	0.114	0.070
4.	C1000	0.7802	0.006	0.266	0.185
5.	C2000	0.876	0.067	0.481	0.397
6.	C3000	<mark>0.895</mark>	<mark>0.123</mark>	<mark>0.637</mark>	<mark>0.591</mark>

The SVM Regression use r2 value, Linear value and Hyper Parameter(c=3000)=0.895

4. Decision Tree

```
criterion{"squared_error", "friedman_mse", "absolute_error", "poisson"},
default="squared_error"
splitter{"best", "random"}, default="best"
max_featuresint, float or {"sqrt", "log2"}, default=None
```

S.No	CRITERION	MAXFEATURES	SPLITTER	RVALUE r2
1.	Squared_error	sqrt	best	-0.41
2.	Squared_error	log2	Best	0.337
3.	Squared_error	sqrt	random	-0.02
4.	Squared_error	log2	random	-0.245
5.	Friedman_mse	sqrt	best	0.672
6.	Friedman_mse	log2	Best	0.406
7.	Friedman_mse	sqrt	random	0.641
8.	Friedman_mse	log2	random	0.809
9.	absolute_error	<mark>sqrt</mark>	<mark>best</mark>	<mark>0.88</mark>
10.	absolute_error	log2	Best	-0.752
11.	absolute_error	sqrt	random	0.507
12.	absolute_error	log2	random	0.40
13.	poisson	sqrt	best	-0.36
14.	poisson	log2	Best	0.08

15.	poisson	sqrt	random	0.44
16.	poisson	log2	random	0.53

The Decision Tree use r2 value, criterion=absolute error, Maxfeatures = sqrt, splitter = best = 0.88

5.Random Forest

criterion{"squared_error", "absolute_error", "friedman_mse", "poisson"}, default="squared_error" max_features{"sqrt", "log2", None}, int or float, default=1.0

s.no	n_estimators	random state	criterion	max_features	r2
1.	100	0	squared_error	sqrt	0.759
2.	100	0	squared_error	log2	0.759
3.	100	0	absolute_error	sqrt	0.785
4.	100	0	absolute_error	log2	0.785
5.	100	0	friedman_mse	sqrt	0.760
6.	100	0	friedman_mse	log2	0.760
7.	100	0	poisson	sqrt	0.770
8.	100	0	poisson	log2	0.770
9.	<mark>100</mark>	0			<mark>0.946</mark>

The Random Forest use r2 value,n_estimators=100,randomstate=0 = **0.946**