1-2.フーリエ(Fourier)級数の性質

1-2-1 関数の偶奇性とフーリエ級数展開係数

f(t)は周期Tの周期関数であり、1周期の波形が無限に連続している。

$$f(t) = f(t + nT)$$
 $n = 0, \pm 1, \pm 2, \pm 3...$

時間原点を適当に選ぶことによってtに関して偶関数もしくは奇関数とすることができる場合がある。

f(t) が偶関数の場合:

$$f(-t) = f(t) \, \text{Theorem } \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin n \frac{2\pi}{T} t dt \\
= \frac{2}{T} \left(\int_{-\frac{T}{2}}^{0} f(t) \sin n \frac{2\pi}{T} t dt + \int_{0}^{\frac{T}{2}} f(t) \sin n \frac{2\pi}{T} t dt \right) \\
= \frac{2}{T} \left(\int_{-\frac{T}{2}}^{0} f(t) \sin n \frac{2\pi}{T} t dt + \int_{0}^{\frac{T}{2}} f(t) \sin n \frac{2\pi}{T} t dt \right) = 0 \\
a_n = \frac{2}{T} \left(\int_{-\frac{T}{2}}^{0} f(t) \cos n \frac{2\pi}{T} t dt + \int_{0}^{\frac{T}{2}} f(t) \cos n \frac{2\pi}{T} t dt \right) \\
= \frac{2}{T} \left(\int_{0}^{\frac{T}{2}} f(t) \cos n \frac{2\pi}{T} t dt + \int_{0}^{\frac{T}{2}} f(t) \cos n \frac{2\pi}{T} t dt \right) = \frac{4}{T} \int_{0}^{\frac{T}{2}} f(t) \cos n \frac{2\pi}{T} t dt$$

f(t) が奇関数の場合:

$$\begin{split} \overline{f(-t)} &= -f(t) \, \, \text{This is } \, \frac{1}{2} \, \text{In } \, \text{In } \, \\ a_0 &= \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt = \frac{2}{T} \left(\int_{-\frac{T}{2}}^{0} f(t) dt + \int_{0}^{\frac{T}{2}} f(t) dt \right) = \frac{2}{T} \left(-\int_{0}^{\frac{T}{2}} f(t) dt + \int_{0}^{\frac{T}{2}} f(t) dt \right) = 0 \\ a_n &= \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos n \frac{2\pi}{T} t dt = \frac{2}{T} \left(\int_{-\frac{T}{2}}^{0} f(t) \cos n \frac{2\pi}{T} t dt + \int_{0}^{\frac{T}{2}} f(t) \cos n \frac{2\pi}{T} t dt \right) \\ &= \frac{2}{T} \left(-\int_{0}^{\frac{T}{2}} f(t) \cos n \frac{2\pi}{T} t dt + \int_{0}^{\frac{T}{2}} f(t) \cos n \frac{2\pi}{T} t dt \right) = 0 \\ b_n &= \frac{2}{T} \left(\int_{-\frac{T}{2}}^{0} f(t) \sin n \frac{2\pi}{T} t dt + \int_{0}^{\frac{T}{2}} f(t) \sin n \frac{2\pi}{T} t dt \right) \\ &= \frac{2}{T} \left(\int_{-\frac{T}{2}}^{0} f(-t) \sin n \frac{2\pi}{T} t dt + \int_{0}^{\frac{T}{2}} f(t) \sin n \frac{2\pi}{T} t dt \right) = \frac{4}{T} \int_{0}^{\frac{T}{2}} f(t) \sin n \frac{2\pi}{T} t dt \end{split}$$

1-2-2 非周期関数の扱い

(1)限定区間だけで定義された関数

関数 f(t) が区間 $-\frac{T}{2} \le t \le \frac{T}{2}$ でのみ定義されている場合、区間 $-\frac{T}{2} \le t \le \frac{T}{2}$ を 1 周期と考えてフーリエ級数で展開すると、級数はこの区間で f(t) に一致する。

フーリエ級数展開係数は任意の 1 周期で計算すればよいので、関数 f(t) の定義域は $-\frac{T}{2} \le t \le \frac{T}{2}$ であ

る必要はなく、任意の区間で定義されていればよい。また、その区間を1周期とみなして、フーリエ級 数展開すればよい。

$(2)-\infty \le t \le \infty$ で定義された非周期関数

区間 $-\infty \le t \le \infty$ で定義されているが周期関数ではない関数 g(t) について、局所区間における g(t) に注目して、この区間で g(t) をフーリエ級数で展開することができる。

すなわち、この区間を $t_1 \le t \le t$ 、として次のようにf(t)を考える。

$$f(t) = g(t)$$
$$f(t + nT) = g(t)$$

そうすると、f(t)は、 $T = t_2 - t_1$ を周期とする周期関数になり、フーリエ級数に展開することができる。 注目する区間 $t_1 \le t \le t_2$ において g(t) は f(t) と一致しているので、この区間において g(t) のフーリエ級数は、 f(t) のフーリエ級数と一致する。

(3)定義域の拡大

例えば、 $0 \le t \le t_0$ だけで定義されている関数 f(t) のフーリエ級数を考える。(1)の方法に従うと、関数を周期 $T = t_0$ の周期関数と見なしてフーリエ級数に展開することができる。しかし、 $-t_0 \le t \le 0$ における値を適当に定義して、 $-t_0 \le t \le t_0$ で定義された周期 $T = 2t_0$ の関数であると見なしてフーリエ級数に展開してもよい。この場合、 $-t_0 \le t \le 0$ における値は、関数が $-t_0 \le t \le t_0$ において偶関数または奇関数となるように定義すれば、展開係数を少なくすることができる。

1-2-3 フーリエ級数の収束について

区間 $-\frac{T}{2} \le t \le \frac{T}{2}$ で区分的に連続な周期関数(この区間で高々有限個の点を除いて連続、それらの点で片側極限値が存在する関数)を f(t) とする。このとき式(1.9.a)~(1.9.c)で表される級数は、右側および左側導関数 f'(t+0)、 f'(t-0) が存在する全ての点で

$$\frac{1}{2}\big(f(t-0)+f(t+0)\big)$$

に収束する。

1-2-4 フーリエ級数の数値シミュレーションとギブスの現象

(1)数値シミュレーション

次の関数について、展開項数を増やしながら収束の様子を数値シミュレーションで調べる。

(i)
$$f(t) = E|\sin \omega t| \implies f(t) = \frac{2E}{\pi} \left(1 + \sum_{m=1}^{\infty} \frac{2}{1 - 4m^2} \cos 2m\omega t \right)$$

図 1-1 全波整流波形のフーリエ級数

(ii)
$$f(t) = \begin{cases} -E & \left(-\frac{T}{2} \le t < 0\right) \\ E & \left(0 \le t < \frac{T}{2}\right) \end{cases} \longrightarrow f(t) = \frac{4E}{\pi} \sum_{m=1}^{\infty} \frac{1}{2m-1} \sin(2m-1)\omega t$$

図 1-2 矩形波のフーリエ級数

(2)ギブスの現象

f(t)が不連続な点においては、フーリエ級数は一様に収束せず、その点で跳躍現象がみられる。これをギブスの現象とよぶ。

例えば(1)(ii)の数値シミュレーションで展開項数を増やすともとの関数 f(t) に近づくが、不連続点 $t=-\frac{T}{2},0,\frac{T}{2}$ で f(t) の値が跳躍している様子が観察される。すなわち、これらの不連続点で

 $\frac{1}{2}(f(t_i-0)+f(t_i+0))$ に収束するのではなく、波形の上下に振幅の約 8.9%の飛びが起こる。ギブスの現

象は、各不連続点を中心とするある狭い区間で平均をとり、その平均値を不連続点における関数値とすることによって平滑化することができる。

1-2-5 フーリエ級数の項別微分

フーリエ級数が一様収束であるとき、各項ごとに積分することができるが、各項ごとに微分すること はいつも可能であるとは限らない。

[例]

区間 $-\pi \le t \le \pi$ で f(t) = t をフーリエ級数に展開すると次式を得る。

$$f(t) = t = 2\left(\sin t - \frac{1}{2}\sin 2t + \frac{1}{3}\sin 3t - \frac{1}{4}\sin 4t + \cdots\right)$$

これを項別に微分すると、左辺=1、右辺= $2(\cos t - \cos 2t + \cos 3t - \cos 4t + \cdots)$ となる。

一方、 $1 \neq 2(\cos t - \cos 2t + \cos 3t - \cos 4t + \cdots)$ であることは明白である。すなわち、項別に微分すると、いつも正しい結果を与えるとは限らない。

1-3.フーリエ級数の複素表現

オイラーの公式

$$e^{jx} = \cos x + j \sin x$$

$$e^{-jx} = \cos x - j \sin x$$
(1.10)

を用いて $\cos x$ 、 $\sin x$ を \exp 関数で表す。(電気工学の慣例で、虚数単位は $\sqrt{-1}=j$)

$$\cos x = \frac{e^{jx} + e^{-jx}}{2}$$

$$\sin x = \frac{e^{jx} - e^{-jx}}{2j}$$
(1.11)

これを、次のフーリエ級数に代入する。

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n \frac{2\pi}{T} t + \sum_{n=1}^{\infty} b_n \sin n \frac{2\pi}{T} t$$

$$= \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \frac{\exp(jn \frac{2\pi}{T} t) + \exp(-jn \frac{2\pi}{T} t)}{2} + \sum_{n=1}^{\infty} b_n \frac{\exp(jn \frac{2\pi}{T} t) - \exp(-jn \frac{2\pi}{T} t)}{2j}$$

$$= \frac{a_0}{2} + \sum_{n=1}^{\infty} \frac{a_n - jb_n}{2} \exp(jn \frac{2\pi}{T} t) + \sum_{n=1}^{\infty} \frac{a_n + jb_n}{2} \exp(-jn \frac{2\pi}{T} t)$$
(1.12)

ここで、 a_n 、 b_n の表現式でn (n=1,2,3,...)を-n とおくと、次のようになる。

$$a_{-n} = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos\left(-n\frac{2\pi}{T}t\right) dt = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos\left(n\frac{2\pi}{T}t\right) dt = a_n$$
 (1.13a)

$$b_{-n} = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin\left(-n\frac{2\pi}{T}t\right) dt = -\frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin\left(n\frac{2\pi}{T}t\right) dt = -b_n$$
 (1.13b)

したがって、

$$c_n = \frac{a_n - jb_n}{2} \tag{1.14}$$

とおくと、

$$c_{-n} = \frac{a_{-n} - jb_{-n}}{2} = \frac{a_n + jb_n}{2} \tag{1.15}$$

となる。

また、 $c_0 = \frac{a_0 - jb_0}{2} = \frac{a_0}{2}$ であるから、式(1.12)は次のようにまとめることができる。

$$f(t) = \sum_{n = -\infty}^{\infty} c_n \exp\left(jn\frac{2\pi}{T}t\right) \tag{1.16}$$

ここで c_n は次の式で与えられる。

$$c_{n} = \frac{a_{n} - jb_{n}}{2}$$

$$= \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos\left(n\frac{2\pi}{T}t\right) dt - \frac{j}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin\left(n\frac{2\pi}{T}t\right) dt$$

$$= \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \exp\left(-jn\frac{2\pi}{T}t\right) dt \qquad (n = 0, \pm 1, \pm 2, \cdots)$$

$$(1.17)$$

この c_n を用いて関数f(t)を式(1.16)のように級数展開することをフーリエ級数の複素表現という。

関数f(t)が実関数の場合、 a_n 、 b_n は全て実数となり、

$$c_n^* = \frac{a_n + jb_n}{2} = c_{-n}$$

であるから、式(1.16)は次のようになる。

$$f(t) = \sum_{n=-\infty}^{\infty} c_n \exp\left(jn\frac{2\pi}{T}t\right)$$

$$= c_0 + \sum_{n=1}^{\infty} \left(c_n \exp\left(jn\frac{2\pi}{T}t\right) + \left(c_n \exp\left(jn\frac{2\pi}{T}t\right)\right)^*\right)$$

$$= c_0 + \sum_{n=1}^{\infty} 2\operatorname{Re}\left[c_n \exp\left(jn\frac{2\pi}{T}t\right)\right]$$

$$\frac{2\pi}{T} = \omega$$
 ≥ 3 $\approx 10^{-4}$

$$f(t) = c_0 + \sum_{n=1}^{\infty} 2\operatorname{Re}[c_n \exp(jn\omega t)]$$
(1.18)