Lecture 10

16

Α	В	
15	46	46 = 15 * 3 + 1
15	1	15 = 15 * 1 + 0
0	1	1

$$15^{-1} = 46 - 3 = 43$$

21

$$b' = v' = 7$$
, $k' = 4$, $r' = 4$, $\lambda' = 2$.

Suppose the starter block is $B = \{2, 4, 5, 6\}$;

-	2	4	5	6
2	0	5	4	3
4	2	0	6	5
5	3	1	0	6
6	4	2	1	0

Examining this table we see that each of the non-zero integers 1, 2, 3, 4, 5, 6 in \mathbb{Z}_7 occurs exactly twice in the off-diagonal positions and hence exactly twice as a difference. Hence, B is a difference set mod 7.

Then the blocks developed from B as a starter block, we have: $B+0=\{2,4,5,6\}$, $B+1=\{3,5,6,0\}$, $B+2=\{4,6,0,1\}$, $B+3=\{5,0,1,2\}$, $B+4=\{6,1,2,3\}$, $B+5=\{0,2,3,4\}$, $B+6=\{1,3,4,5\}$

28

-	0	1	3	9
0	0	12	10	4
1	1	0	11	5
3	3	2	0	7
9	9	8	6	0

Examining this table we see that each of the non-zero integers 1, 2, 3, 4, 5, 6,7,8,9,10,11,12 in Z13 occurs exactly once in the off-diagonal positions and hence exactly once as a difference. Hence, B is a difference set mod 13.

For that is a SBIBD, so the b = v = 13, k = r = 4, $\lambda = 1$;

```
B+0={0,1,3,9};

B+1={1,2,4,10};

B+2 = {2,3,5,11};

B+3 = {3,4,6,12};

B+4 = {4,5,7,0};

B+5={5,6,8,1};

B+6={6,7,9,2};

B+7={7,8,10,3};

B+11={11,12,1,7};

B+12={12,0,2,8}
```

32

We find two Steiner triple systems for a three one and a seven one;

Let $X=\{a0,a1,a2\}$, $Y=\{b0,b1,b2,b3,b4,b5,b6\}$ are the sets of varieties. Let $B1=\{(a0,a1,a2)\}$, $B2=\{(b0,b1,b3),(b1,b2,b4),(b2,b3,b5),(b3,b4,b6),(b4,b5,b0),(b5,b6,b1),(b6,b0,b2)\}$;

Then:

- 1. r = s = t, (0,5,3),(5,9,12),(9,3,15),(3,12,18),(12,15,0),(15,18,5),(18,0,9),(1,6,8),(6,10,13),(10,8,16), (8,13,19),(13,16,1),(16,19,6),(19,1,10). (2,7,4),(7,11,14),(11,4,17),(4,14,20),(14,17,2),(17,20,7), (20,2,11)
- 2. i = j = k, (0,1,2), (5,6,7), (9,10,11), (3,8,4), (12,13,14), (15,15,17), (18,19,20)
- 3. i,j,k is differnt from each other, r,s,t is different from each other,hence there are 42 triples. Including: (0,6,4),(0,7,8),(1,5,4),(1,7,3),(2,5,8),(2,6,3)...

So there are 70 triples in this system.

52

(1)Let L be an 3-by-6 Latin rectangle based on Z6.Define a bigraph $G = (X, \Delta, Y), X = \{x0, x1, ..., x5\}$ corresponds to columns 0, 1, ..., 5 of the rectangle L, $Y = \{0, 1, ..., 5\}$ is the elements on which L is based. $\Delta = \{(xi, j): j \text{ does not occur in column i of L}\}$. G has a perfect matching. Suppose the edges of a perfect matching are $\{(x0, i0), (x1, i1), ..., (x5, i5)\}$. Then 4-by-6 array obtained by adjoining i0, i1, ...,i5 as a new row is a Latin rectangle. Continue the process until the 6-by-6 Latin square is completed.

0	1	2	3	4	5
4	3	1	5	2	0
5	4	3	0	1	2
1	2	0	4	5	3

0	1	2	3	4	5
4	3	1	5	2	0
5	4	3	0	1	2
1	2	0	4	5	3
2	0	5	1	3	4

0	1	2	3	4	5
4	3	1	5	2	0
5	4	3	0	1	2
1	2	0	4	5	3
2	0	5	1	3	4
3	5	4	2	0	1

56

(1)Let L be a semi-Latin square of order 7 and index 4.

Define a bigraph $G = (X, \triangle, Y), X = \{x0, x1, ..., x6\}$ correspond to rows 0, 1, ..., 6 of the rectangle L, Y = $\{y0, y1, ..., y6\}$ correspond to columns of L. $\triangle = \{(xi, yj):$ the position at row i column j is unoccupied. Then G is 3-regular and has a perfect matching. This matching identifies the desired position for number 4. Continue to place other numbers 5, 6.... until L is completed.

0	2	1	4			3
2	0	4	1		3	
3		0	2	1		4
	3	2	0	4	1	
4		3		0	2	1
1	4			3	0	2
	1		3	0	4	0

0	2	1	4	5		3
2	0	4	1		3	5
3		0	2	1	5	4
5	3	2	0	4	1	
4	5	3		0	2	1
1	4		5	3	0	2
	1	5	3	0	4	0

0	2	1	4	5	6	3
2	0	4	1	6	3	5
3	6	0	2	1	5	4
5	3	2	0	4	1	6
4	5	3	6	0	2	1
1	4	6	5	3	0	2
6	1	5	3	0	4	0