Université Laval Professeur: Leslie A. Rusch

GEL19962: Analyse des signaux

2002 Examen Partiel

Mercredi le 25 octobre 2002; Durée: 8h30 à 10h20 Une feuille documentation permise; aucune calculatrice permise

Problème 1 (13 points sur 40)

A. (9 points) Trouvez la transformée de Fourier de la fonction

$$f(t) = \begin{cases} -t & -1 < t < 0 \\ t & 0 < t < 1 \\ 0 & \text{ailleurs} \end{cases}$$

B. (4 points) Quelle est l'énergie DC comme pourcentage de l'énergie totale?

Problème 2 (11 points sur 40)

A. (7 points) Trouvez la transformée de Fourier de la fonction périodique donnée dans le graphique

- B. (4 points) Donnez un graphique du spectre d'amplitude de la transformée. Calculer au moins les coefficients pour les premiers, deuxièmes, et troisièmes harmoniques.
- C. (2 points bonus)

Trouvez la somme suivante

(i.e., un chiffre comme $\sqrt{7}$, 3π , 1.25, etc.)

$$\sum_{n=-\infty, n \text{ odd}}^{\infty} \frac{\left(-1\right)^{\frac{n+1}{2}}}{n} e^{jn\pi^{\frac{1}{2}}} = \sum_{k=-\infty}^{\infty} \frac{\left(-1\right)^{k+1}}{2k+1} e^{j(2k+1)\pi^{\frac{1}{2}}}$$

Problème 3 (16 points sur 40)

- A. (8 points) Trouvez la transformée de $f(t) = \frac{t}{1+t^2}$
- B. (8 points) Trouvez la transformée de $f(t) = \frac{t^2}{1+t^2}$
- C. (2 points bonus)

Est-ce que $f_1(t)$ et $f_2(t)$ sont de carré intégrable?

2002 Examen Partiel

Fonction	Transformée de Fourier
f(t)	$F(\omega)$
F(t)	$2\pi f(-\omega)$
f(t+a)	$e^{ja\omega}F(\omega)$
f(at)	$\frac{1}{ a }F\left(\frac{\omega}{a}\right)$
$e^{jbt}f(t)$	$F(\omega - b)$
$t^n f(t)$	$(j)^n \frac{d^n}{d\omega^n} F(\omega)$
$\frac{d^n}{dt^n}f(t)$	$\left(j\omega\right)^nF(\omega)$
$\operatorname{Rect}(t/ au)^{1}$	$ au\operatorname{Sa}(\omega au/2)$
$\operatorname{Tri}(t/\tau)$ 2	$ au \operatorname{Sa}^2\left(\omega au/2\right)$
δ(<i>t</i>)	1
1	2πδ(ω)
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
U(<i>t</i>)	$1/j\omega + \pi\delta(\omega)$
Sgn(t)	$2/j\omega$
$\delta_{T_0}(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT_0)$	$\omega_0 \sum_{n=-\infty}^{+\infty} \delta(\omega - n\omega_0)$
$e^{-eta t} \mathrm{U}(t)$	$\frac{1}{\beta + j\omega}$
$e^{-eta t }$	$\frac{2\beta}{\beta^2 + \omega^2}$

1 Rect $\left(\frac{t-t_0}{\tau}\right)$ rectangle de hauteur un, centré 2 Tri $\left(\frac{t-t_0}{\tau}\right)$ sur $t=t_0$, et de

$$_{2} \operatorname{Tri}\left(\frac{t-t_{0}}{\tau}\right)$$

triangle de hauteur un, centré sur $t=t_0$, avec un base de longueur 2τ .