Основы ТЕРМОДИНАМИКИ

Молекулярно-кинетическое описание вещества (уже изучили). Макроскопические физические величины (давление, температура, etc.) – это средние характеристики по большому числу атомов или молекул (давление = передача импульса при ударах молекул о стенки; температура = кинетическая энергия на степень свободы).

СЛУЧАЙНЫЙ характер (беспорядочность) движения молекул \Rightarrow статистические закономерности. Распределение Максвелла; распределение Больцмана. На микро-уровне бывают флуктуации (броуновское движение), но в целом статистика работает верно \Rightarrow раздел теоретической физики СТАТИСТИЧЕСКАЯ ФИЗИКА.

Другой подход: не вникая в суть микро-процессов, описывать МАКРО-характеристики явлений, а именно — превращение ЭНЕРГИИ из одного вида в другой: ТЕРМОДИНАМИКА.

<u>Начала термодинамики</u>: совокупность постулатов (они являются именно постулатами, хотя и подтверждены экспериментально)

- 0. (Общее) Замкнутая система независимо от начального состояния в конце концов приходит к состоянию термодинамического равновесия и самостоятельно выйти из него не может; все части системы при этом будут иметь одинаковую температуру.
- 1. Закон сохранения энергии в применении к термодинамическим системам (запрет вечного двигателя 1 рода).
- 2. Ограничения на направление термодинамических процессов (запрет на самопроизвольную передачу тепла от холодных тел к горячим) = (запрет вечного двигателя 2 рода) закон возрастания энтропии.
- 3. Регулирует поведение энтропии вблизи абсолютного нуля температуры $(\lim_{T\to 0}S=0)$ теорема Нернста.

Ощущения тепла или холода — субъективны, зависят не только от температуры, но и от теплопроводности, и от теплоемкости. Для измерения T нужен контакт термометра с измеряемым телом. Тепло "перетекает" от горячего к холодному, как жидкость **теплород** (идея XVIII века). Идея была неверная, но привела к развитию калориметрических измерений (Георг Вильгельм Рихман, 1750, СПб, погиб в 1753 г. при экспериментах с атмосферным электричеством). Понятие о **количестве тепла Q**.

Если медный и свинцовый бруски одинаковой массы нагреть до одинаковой $T_{\rm Cu} = T_{\rm Pb} = T_i$ и опустить их в одинаковые сосуды с водой равной температуры T_0 , то вода в них нагреется до разной $T_1 \neq T_2$. Вывод: медь и свинец вмещают разное количество теплорода!!! (кол-во тепла Q)

Так же выяснилось, что передаваемое при теплообмене количество тепла $\Delta Q \propto$ массе бруска m и изменению температуры ΔT :

$$\Delta Q = c \cdot m \cdot \Delta T$$
 (c - теплоемкость)

Идея теплорода была очень удобна при вычислениях теплообмена, но не объясняла нагрева при трении (М.В.Ломоносов, 1744, СПб, на это указывал).

В начале XIX в. Румфорд (Benjamin Thompson, Count Rumford, London) и Дэви (Humphry Davy, London) показали, что нагрев при трении – это факт. Джоуль (James Joule, 1843, Manchester) измерил количественно эту связь: 1 калория эквивалентна 4.18 Дж.

Принято говорить о механическом эквиваленте тепла, поскольку и тепло Q, и работа A меняют внутреннюю энергию системы при ее переходе из одного состояния в другое. Поэтому в дальнейшем единицы измерения для Q и A будем использовать одни и те же.

Рассмотрим некую термодинамическую систему (газ в цилиндре с поршнем) в состоянии 1. Обозначим за U_1 ее внетреннюю энергию. Пусть над ней совершается какая-то работа dA_1 (мы сдавливаем поршень), и пусть ей путем прямого нагрева передается некое количество тепла dQ_1 (мы цилиндр еще и подогреваем).

Внутренняя энергия системы при этом изменится на величину $dU=dA_1+dQ_1$. Поскольку не система совершила работу, а внешние силы, то $dA_1{>}0$. Внешний нагрев также означает $dQ_1{>}0$. Таким образом, оба эти воздействия УВЕЛИЧИЛИ энергию системы.

Если затем система перейдет в состояние 2, отдав количество тепла dQ_2 в окружающее пространство (окружающий воздух нагрелся от контакта с цилиндром) и совершив работу dA_2 против внешних сил (поршень вернулся на прежнее место, преодолев наше сопротивление), то в итоге ее внутренняя энергия станет равной

$$U_2 = U_1 + dA_1 + dQ_1 - dA_2 - dQ_2$$

Здесь знаки "—" перед dA_2 и dQ_2 символизируют направление ПРОЧЬ ОТ СИСТЕМЫ, уменьшающее ее внутреннюю энергию.

Итак, изменение энергии системы при ее переходе из одного состояния в другое равно сумме механических эквивалентов всех внешних воздействий, ведущих к этому переходу.

В изолированной системе внешних воздействий нет. При взаимодействии частей системы друг с другом U системы сохраняется, хотя между частями энергия передается и переходит из одного вида в другой.

Пример: в термосе находится цилиндр с двумя поршнями и пружиной. Пружина была сжата и сдерживалась ниткой. Нитка лопнула!

 E_p сжатой пружины передастся поршням и превратится в их E_k . Они сожмут газ, его давление возрастет и остановит поршни. При этом, вся E_k поршней перейдет в E_p сжатого газа. Газ толкнет остановившиеся поршни назад, и они сожмут пружину. И так далее. До бесконечности это длиться не будет: ведь даже если нет трения между поршнем и цилиндром, то есть внутреннее трение в газе! Из-за этого трения газ будет каждый раз немного нагреваться, пока вся первоначальная энергия пружины не превратится в тепло. Ну, не вся, а почти вся. Ведь у **нагретого** газа давление выше, и \Rightarrow потенциальная энергия больше.

Равновесные и неравновесные системы.

Равновесное состояние: параметры = const без постороннего влияния. Пример: закрытая бутылка с вином — это 2-фазная равновесная система жидкости и насыщенных паров. Давление и температура в разных частях бутылки — одинаковы и не меняются со временем. соотношение m_L/m_G тоже постоянно.

Откупоренная бутылка – неравновесна. Жидкость все время испаряется.

<u>Другой пример:</u> включенный паяльник – неравновесная система. Его жало все время подогревается спиралью, а рукоятка охлаждается воздухом.

У выключенного паяльника жало остынет, температура везде сравняется, и система станет равновесной.

Любой процесс является изменением параметров и представляет собой ряд неравновесных состояний. Равновесный процесс состоял бы из равновесных состояний и должен быть бесконечно медленным. Реально такого не бывает. Но если реальный (неравновесный) процесс разложить на очень малые кусочки, то в пределах одного кусочка можно считать систему равновесной. Тогда в каждый момент можно считать, что у системы есть определенные параметры (p,V,T), которые меняются плавно и непрерывно,

Если система переходит из состояния 1 в 2, то КАКАЯ совершится РАБОТА? При малом изменении ΔV работа будет $\Delta A=p~\Delta V$, а на всем участке –

$$A_{1\to 2} = \int_{V_1}^{V_2} p(V) \ dV$$

При этом, конечно, должен соблюдаться ЗСЭ, поэтому изменение полной энергии системы

$$\Delta U_{1\to 2} = U_2 - U_1 = Q_{1\to 2} - A_{1\to 2}$$

где $Q_{1 o 2}$ – это приток тепла в систему извне.

Если мы хотим, чтобы энергия системы не изменилась, мы должны скомпенсировать совершенную ею работу соответствующим притоком тепла.

Чтобы сделать не одноразовый фокус с расширением газа, а регулярно работающую **тепловую машину**, нужен **циклический процесс**. Цикл (круг) – это такой процесс, после которого система возвращается в исходное состояние (все параметры принимают первоначальные значения).

Если мы пришли из состояния 1 в 2 по какой-то кривой, то работа, совершенная системой против внешних сил,

$$A_{1\to 1} = \int_{V_1}^{V_2} p'(V) \ dV = SI > 0$$

По 1НТД полная энергия системы будет

$$U_2 = U_1 + Q_{1\to 2} - A_{1\to 2} \tag{1}$$

где $Q_{1 o 2}$ – приток тепла к системе.

Надо теперь вернуться из 2 в 1 (можно по другому пути). Совершенная при этом работа будет отрицательной:

$$A_{2\to 1} = \int_{V_2}^{V_1} p''(V) \ dV = -S'' < 0$$

формально: потому, что идем налево. По смыслу: потому, что совершает работу <u>не система</u>, а <u>внешние силы</u>.

Снова должно соблюдаться $1 \text{HTД} \Rightarrow$ полная энергия системы:

 $U_1 = U_2 - Q_{2 \to 1} - A_{2 \to 1} \tag{2}$

где $Q_{2 o 1}$ – отток тепла от системы на возвратном участке.

Сложив уравнения (1) и (2), получим:

$$A \equiv A_{1\to 2} + A_{2\to 1} = S = Q_{1\to 2} - Q_{2\to 1}$$

т.е., суммарная работа A, совершенная системой, численно равна площади S, охватываемой графиком цикла и равна

разности подведенного к системе $(Q_{1\to 2})$ и отведенного от нее $(Q_{2\to 1})$ количества тепла.

В этом примере пути p'(V) и p''(V) разные, причем первый из них проходит выше \Rightarrow площадь S и, соответственно, работа A, положительна. Система превратила некое тепло в работу. Это – прямой цикл, а изображенный процесс – тепловая машина.

Особенности прямого цикла:

- Чтобы закачать тепло $Q_{1\to 2}$ в систему, должно присутствовать более горячее тело (нагреватель).
- Чтобы забрать тепло $Q_{2\to 1}$ от системы, должно присутствовать более холодное тело (холодильник).
- Не все тепло $Q_{1\to 2}$ превращается в работу; некоторая часть его $(Q_{2\to 1})$ должна вернуться вовне. Коэффициент полезного действия тепловой машины (к.п.д.):

$$\eta = \frac{A}{Q_{1\to 2}} = \frac{Q_{1\to 2} - Q_{2\to 1}}{Q_{1\to 2}}$$

Если возвратный путь p''(V) лежит выше прямого p'(V), то площадь S и

работа A будут отрицательными. Это значит, что система не тепло превращает в работу, а наоборот — работу внешних сил превращает в тепло. Раз кривая p'(V) лежит ниже, то происходит это расширение при более низком давлении и \Rightarrow при более низкой температуре. Но поскольку именно на

этом этапе система поглощает тепло, то температура нагревателя может быть ниже. Аналогично, сжатие с выделением тепла проходит при более высокой температуре \Rightarrow температура холодильника, забирающего это тепло у системы, может быть выше.

Такой цикл — это не прямой, а $\boxed{\mathbf{обратный}\ \mathbf{цикл}}$, а процесс — не тепловая, а $\boxed{\mathbf{холодильная}\ \mathbf{машинa}}$.

Если при термодинамическом процессе теплообмена между системой и окружающим миром нет, то это - адиабатический процесс. В реальности либо нужна супер-теплоизоляция, либо процесс должен течь настолько быстро, что теплообмен просто не успел бы произойти.

В адиабатическом процессе $\Delta U + \Delta A = 0$ (поскольку $\Delta Q \equiv 0$). Если система совершает работу, то $\Delta A > 0 \Rightarrow \Delta U < 0$. Если над системой совершают работу, то $\Delta A < 0 \Rightarrow \Delta U > 0$. Рассмотрим расширение 1 моля идеального газа:

$$\Delta A = p \ \Delta V; \qquad U = \frac{i}{2}kT \ N = \frac{i}{2}RT = C_V \ T \qquad \Rightarrow \ \Delta U = C_V \ \Delta T$$

тогда при <u>адиабатическом</u> расширении: $C_V \Delta T + p \Delta V = 0$. Отсюда следует:

- ullet при адиабатич. расширении $\Delta V>0 \quad \Rightarrow \quad \Delta T<0$ (газ охлаждается)
- ullet при адиабатическом сжатии $\Delta V < 0 \quad \Rightarrow \quad \Delta T > 0$ (газ нагревается)

Поскольку для идеального газа pV=RT, то получаем диф. уравнение:

$$rac{dV}{V} = -rac{C_V}{R} \cdot rac{dT}{T}$$
 или $d\left(rac{R}{C_V} \, \ln V
ight) = -d \left(\ln T
ight)$

Его решение – это

$$T \cdot V^{\frac{R}{C_V}} = \text{const.}$$

Вспомним, что $C_p=C_V+R$ и обозначим $C_p/C_V\equiv\gamma.$ Тогда $R/C_V=\gamma-1$, и можно решение переписать как

$$T \cdot V^{\gamma - 1} = \mathrm{const.}$$
 или $p \cdot V^{\gamma} = \mathrm{const.}$ (поскольку $p \ V = R \ T$).

Эта формула Пуассона заменяет для адиабатического процесса закон Бойля-Мариотта.

При адиабатическом переходе из состояния 1 в сост. 2

$$rac{T_2}{T_1} = \left(rac{V_1}{V_2}
ight)^{\gamma-1}$$
 или $rac{p_2}{p_1} = \left(rac{V_1}{V_2}
ight)^{\gamma}$

тогда как при изотермическом переходе

$$p \ V = \mathrm{const.}$$
 и $\frac{p_2}{p_1} = \frac{V_1}{V_2}$

Можно считать, что и **адиабата**, и **изотерма** – это как бы частные случаи политропы, причем для изотермы показатель политропы $\gamma=1$, а для адиабаты $\gamma=C_p/C_V>1$.

Вообще-то, в природе не бывает истинных адиабат и изотерм, поскольку невозможно идеально теплоизолировать систему, как и обеспечить 100% тепловой контакт. На самом деле, есть только политропы. Если $\gamma \simeq 1$, то это близко к изотерме, а если $\gamma \simeq C_p/C_V$, то к адиабате.

Кривая адиабатического процесса идет круче, чем изотермического. Объяснение простое: при расширении давление уменьшается, но при этом происходит остывание газа, и из-за этого давление падает еще больше.

Пример: азот при н.у. сжимают в 5 раз адиабатически или изотермически. Разница — ? Решение: азот = $N_2 \Rightarrow i=5$ степеней свободы $\Rightarrow \gamma = (i+2)/i=7/5=1.4$.

• изотермически:

$$\frac{p_5}{p_1} = \frac{V_1}{V_5}$$
 \Rightarrow $p_5 = p_1 \frac{V_1}{V_5} = 1 \text{am} \cdot 5 = 5 \text{am}$

• адиабатически:

$$\frac{p_5}{p_1} = \left(\frac{V_1}{V_5}\right)^{1.4} \implies p_5 = 1 \text{am} \cdot 5^{1.4} = 9.52 \text{am}$$

$$\frac{T_5}{T_1} = \frac{V_1}{V_5} \implies T_5 = T_1 \cdot \left(\frac{V_1}{V_5}\right)^{\gamma - 1} = 300 \text{K} \cdot 5^{0.4} = 571 \text{K} = 298^{\circ} \text{C}$$

• а если адиабатически сжать не в 5, а в 20 раз?

$$\frac{p_{20}}{p_1} = \left(\frac{V_1}{V_{20}}\right)^{1.4} \quad \Rightarrow \quad p_{20} = 1 \mathrm{am} \cdot 20^{1.4} = 66.3 \mathrm{am}$$

$$\frac{T_{20}}{T_1} = \frac{V_1}{V_{20}} \quad \Rightarrow \quad T_{20} = T_1 \cdot \left(\frac{V_1}{V_{20}}\right)^{\gamma - 1} = 300 \mathrm{K} \cdot 20^{0.4} = 994 \mathrm{K} = 721 ^\circ \mathrm{C}$$
 Двигатель Дизеля! (Rudolf Diesel, 1897, Berlin)

Как мы видели, для тепловой машины с прямым циклом только часть тепла, передаваемого ей нагревателем, превращается в работу; остальная же часть возвращается холодильнику. КПД при этом равен

 $\eta = rac{A}{Q_{1 o 2}} = rac{Q_{1 o 2} - Q_{2 o 1}}{Q_{1 o 2}}$

Хотелось бы, чтоб $\eta \to 1$, и тогда бы $Q_{2\to 1} = 0$, ничего не пришлось бы возвращать холодильнику, и он вообще стал бы не нужен! Получился бы двигатель, который просто все тепло окружающей среды превращал бы в работу (perpetuum mobile II рода).

Но долгое время ничего не получалось. В 1824 г. Сади Карно: "Pазмышления о движущей силе огня и о машинах, способных развивать эту силу". (Nicolas Leonard Sadi Carnot, 1796-1832, Paris). Умер от холеры, все было сожжено, больше никаких его работ не сохранилось. Главный вывод: избежать возврата $Q_{2\rightarrow 1}$ невозможно.

Позднее Клаузиус и Томсон это обобщили и получили 2НТД: невозможен такой периодический цикл, единственным результатом которого было бы получение работы за счет взятого количества тепла от одного источника.

Другая формулировка: невозможен perpetuum mobile II рода.

Тем не менее, надо к этому стремиться! В своих "Размышлениях" Карно рассмотрел цикл, который теперь так и называется: $\boxed{\text{цикл Kapho}}$. Займемся им подробнее. Цикл Карно — это 2 изотермы и 2 адиабаты. Идеальных изотерм и адиабат не бывает, но мы пока про это забудем. Почему вообще ИЗОТЕРМЫ? Потому что просто в это время $T_{\text{газа}} = T_{\text{нагревателя}} = \text{const.}$ Почему вообще АДИАБАТЫ? Потому что это — противоположность изотерм (в смысле теплообмена). И вообще, если никаких специальных хитростей не выдумывать, то в природе могут быть только политропы — все, что между изотермами и адиабатами.

Для осуществления цикла Карно нам нужен нагреватель с температурой T_1 , подводящий к газу тепло и заставляющий его расширяться изотермически, а также холодильник с температурой T_3 , забирающий выделяющееся тепло при изотермическом сжатии.

Итак, пусть 1 моль идеального газа – в состоянии 1 при p_1, V_1, T_1 .

- 1. Будем с помощью нагревателя поддерживать его при T_1 и дадим ему расширяться (изотермически) до состояния 2. На участке 1-2 газ получит тепло Q_{12} и совершит работу $A_{12}=Q_{12}$. (Поскольку $T_1=T_2$, и газ идеальный, то $U={\rm const.}$)
- 2. В точке 2 перестанем подогревать газ и разрешим ему расширяться адиабатически (без теплообмена) до точки 3. При этом он остынет до T_3 и совершит еще какую-то работу A_{23} .
- 3. Теперь начнем изотермически сжимать газ, а появляющееся тепло отводить с помощью холодильника. На пути 3-4 газ отдаст тепло Q_{34} и над ним совершится работа $A_{34}=Q_{34}$. (Снова $U={\rm const.}$)
- 4. В точке 4 продолжим сжимать газ, но уже без отвода тепла. Для этого потребуется еще какая-то работа A_{41} , и газ нагреется до T_1 .

В итоге, газ получит тепло

$$Q_{\Sigma} = Q_{12} - Q_{34} ,$$

а совершенная им суммарная работа, по 1НТД равная Q_{Σ} , составит

$$A_{\Sigma} = Q_{\Sigma} = A_{12} + A_{23} - A_{34} - A_{41} .$$

Вспомнив, что $A_{12}=Q_{12}$, а $A_{34}=Q_{34}$, с удивлением обнаружим, что

$$A_{23} = A_{41}$$
,

то есть, что в цикле Карно работа газа и работа внешних сил на адиабатических участках 2-3 и 4-1 компенсируют друг друга. (Это и в самом деле так; можно доказать через соответствующие интегралы).

Если же посчитать работу на изотермических участках 1-2 и 3-4, то получим:

$$A_{12} = \int_{V_1}^{V_2} p(V) \ dV = \int_{V_1}^{V_2} \frac{R \ T_1}{V} \ dV = R \ T_1 \left(\ln V_2 - \ln V_1 \right) = R \ T_1 \ \ln \frac{V_2}{V_1} \ .$$

Аналогично,

$$-A_{34} = \int_{V_3}^{V_4} p(V) \ dV = R \ T_3 \ \ln \frac{V_4}{V_3} \ .$$

Но мы знаем, что при адиабатических переходах

$$\frac{T_a}{T_b} = \left(\frac{V_b}{V_a}\right)^{\gamma - 1}$$

поэтому

$$\left(\frac{V_4}{V_1}\right)^{\gamma - 1} = \frac{T_1 = T_2}{T_4 = T_3} = \left(\frac{V_3}{V_2}\right)^{\gamma - 1} \qquad \Rightarrow \qquad \frac{V_4}{V_1} = \frac{V_3}{V_2} \qquad \Rightarrow \qquad \frac{V_4}{V_3} = \frac{V_1}{V_2}$$

КПД цикла Карно равен

$$\eta = \frac{A_{\Sigma}}{Q_{12}} = \frac{A_{12} - A_{34}}{A_{12}} = \frac{T_1 - T_3}{T_1}$$

и зависит только от разности температур нагревателя и холодильника!

Замечание: цикл Карно — идеализированный. Он — для идеального газа; он — для равновесных процессов \Rightarrow для обратимых процессов. В жизни все сложнее, и КПД только хуже. Поэтому цикл Карно надо рассматривать как ВЕРХНИЙ ПРЕДЕЛ для тепловых машин.

Любой произвольный цикл = набору k циклов Карно. \forall k-го цикла $T_{1k} \leq T_{\max}$ и $T_{2k} \geq T_{\min}$, поэтому как \forall k, так и для ВСЕГО цикла вцелом

$$\eta \le \frac{T_{\max} - T_{\min}}{T_{\max}}$$

Для обратимого цикла Карно:

$$\eta = \frac{T_1 - T_2}{T_1};$$
 $A = \eta \cdot Q_1;$
 $Q_2 = Q_1 - A = (1 - \eta) \cdot Q_1 = \frac{T_2}{T_1} \cdot Q_1$

откуда получаем интересное соотношение:

$$\frac{Q_2}{T_2} = \frac{Q_1}{T_1}$$

Если передаваемую в каком-то процессе от тела к телу величину S=Q/T назвать, например, "приведенным количеством тепла", то можно сказать, что в случае идеального обратимого цикла Карно приведенное количество тепла, получаемое рабочим телом (не важно — от нагревателя или от холодильника), равно приведенному количеству тепла, отдаваемому рабочим телом (опять-таки, не важно, куда). Какой в этом смысл?... Если приход ЧЕГО-ТО = расходу ЧЕГО-ТО, то ЭТО сохраняется. Это таинственная величина — ЭНТРОПИЯ.

Можно показать, что для НЕидеального цикла получаемое ЭТО > отдаваемого. Вообще, не только для циклов, но и для любых процессов в замкнутой системе энтропия НЕ УБЫВАЕТ (для обратимых процессов – остается постоянной).

Свойства ЭНТРОПИИ.

ullet Для любого (не кругового) процесса A o B энтропия системы изменяется на величину

$$\int_{A}^{B} \frac{dQ}{T} \qquad \Rightarrow \qquad S_{B} = S_{A} + \int_{A}^{B} \frac{dQ}{T}$$

где под Q понимается тепло, ПОЛУЧЕННОЕ системой.

• Для кругового обратимого процесса (обратимого цикла) $A \to B \to A$ энтропия системы не меняется:

$$\int_{A}^{B} \frac{dQ}{T} + \int_{B}^{A} \frac{dQ}{T} = \oint \frac{dQ}{T} = 0$$

• Для кругового НЕобратимого процесса (если там есть хотя бы один НЕобратимый участок) энтропия системы возрастает:

$$\oint \frac{dQ}{T} > 0$$

• Пример: 100 г воды охлаждаются от 15 то 0°С. Как изменится энтропия? Решение: считая, что объем не изменился, получим $dQ=m\cdot c\cdot dT$, где m – масса, а c – удельная теплоемкость. Тогда

$$S_B - S_A = \int_A^B \frac{dQ}{T} = \int_{T_1}^{T_2} m \ c \ \frac{dT}{T} = m \ c \ \ln\left(\frac{T_2}{T_1}\right) =$$

$$=100$$
 г $\cdot 1$ кал/г/град $\cdot \ln \frac{273}{288} = -5.34$ кал/град

минус получился потому, что энтропия уменьшилась!

- Для ЗАМКНУТОЙ системы она уменьшиться не может.
- Это все были слова об ИЗМЕНЕНИИ энтропии. А сама она чему равна? Теорема Нернста (ЗНТД):

$$S(T \to 0) = 0$$

Упругий шарик; маятник без трения; Цикл Карно; движение одной молекулы;

Необратимые процессы:

Необратимым является такой процесс, обратный которому может протекать лишь как звено более сложного процесса.

Для необратимого процесса характерно его направление. В положительном направлении процесс течет "сам собой" Работа — тепло (когда есть трение или неупругие процессы, т.е. ВСЕГДА). Перенос тепла от горячего тела к холодному. Расширение газа в пустоту (убираем перегородку):

Чтобы загнать газ назад, нужно совершить работу по его сжатию.

И вообще: переход в **отрицательном** направлении требует дополнительных внешних усилий, то есть, должен быть еще какой-то внешний процесс. Так, чтобы перегнать тепло от холодного к горячему (холодильная машина), нужен дополнительный положительный процесс, который совершил бы работу (она потом в виде тепла передается негревателю).

Вопрос: почему движение одной молекулы – обратимо, а многих молекул – нет?

Ответ: по законам статистики.

Пусть слева было n молекул, а справа 0. После убирания перегородки все перемешалось. Какова вероятность, что слева будет i, а справа j? Если фазовые объемы и плотность вероятности слева и справа равны, то для КАЖДОЙ молекулы вероятность быть слева или справа = по 50%. Ну, например, n=4. Присвоим молекулам имена: A, B, C, D - и посмотрим, какие могут быть варианты:

слева				справа				i	j	W_i
Α	В	C	D					4	0	1
Α	В	С					D	3	1	
Α	В		D			C		3	1	
Α		C	D		В			3	1	
	В	C	D	Α				3	1	4
Α	В					C	D	2	2	
Α		C			В		D	2	2	
	В	C		Α			D	2	2	
Α			D		В	C		2	2	
	В		D	Α		C		2	2	
		C	D	Α	В			2	2	6
Α					В	С	D	1	3	
	В			Α		C	D	1	3	
		C		Α	В		D	1	3	
			D		В			1	3	4
				Α	В	С	D	0	4	1

Всего получилось 16 возможностей $(16=2^n)$. Наиболее вероятен случай, когда i=j=n/2: 6/16=37.5%. W_i — термодинамическая вероятность (число микросостояний). Случай, когда все 4 молекулы сами собой соберутся в левой половине, — только ОДИН: $1/16\simeq6\%$. Если бы у нас было не 4 молекулы а, например, n=10, этот шанс еще уменьшился бы:

$$w = \frac{1}{2^{10}} = \frac{1}{1024} \simeq 0.1\%$$

А про МАКРО-количество и говорить нечего: при $n=10^{19}\,$

$$w = \frac{1}{2^{10\,000\,000\,000\,000\,000\,000}}$$

Необратимый процесс – такой, обратный которому маловероятен.

Вообще-то, кроме координат молекул надо и их скорости учитывать (вместо распределения по объему рассматривать распределение по ФАЗОВОМУ объему). Из статистики известно: система, предоставленная самой себе, стремится прийти к макросостоянию i, которое реализуется максимальным числом способов, т.е., к состоянию с максимальной W_i . Если вместо W_i использовать $S \equiv k \cdot \ln W_i$, то это уже будет аддитивная величина: при разбивке системы A на 2 системы B и C, $W_A = W_B \cdot W_C$, но $S_A = S_B + S_C$! И оказывается, что определенная таким способом вел-на S есть ни что иное, как ЭНТРОПИЯ! (Больцман доказал)

2НТД носит статистический характер.

Броуновские частицы настолько малы, что уже не подчиняются 2НТД. И вообще, ТЕРМОДИНАМИКА – для <u>больших</u> статистических ансамблей.

В космических масштабах она тоже неприменима: кто сказал, что Вселенная — это замкнутая система, что в ней должно быть равновесие, и что вообще наши модели можно распространять на нее? ("Тепловая смерть" Вселенной)