Тема II. Линейные операторы

§1. Замена базиса

М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2021/2022 учебный год

Recap: линейные операторы

Определение

Пусть V,W – векторные пространства над полем F. Отображение $\mathcal{A}\colon V\longrightarrow W$ называется линейным оператором, если для любых векторов $\mathbf{x}_1,\mathbf{x}_2\in V$ и любого скаляра $t\in F$ выполняются равенства $\mathcal{A}(\mathbf{x}_1+\mathbf{x}_2)=\mathcal{A}(\mathbf{x}_1)+\mathcal{A}(\mathbf{x}_2)$ и $\mathcal{A}(t\mathbf{x}_1)=t\mathcal{A}(\mathbf{x}_1)$.

Recap: линейные операторы

Определение

Пусть V,W – векторные пространства над полем F. Отображение $\mathcal{A}\colon V\longrightarrow W$ называется линейным оператором, если для любых векторов $\mathbf{x}_1,\mathbf{x}_2\in V$ и любого скаляра $t\in F$ выполняются равенства $\mathcal{A}(\mathbf{x}_1+\mathbf{x}_2)=\mathcal{A}(\mathbf{x}_1)+\mathcal{A}(\mathbf{x}_2)$ и $\mathcal{A}(t\mathbf{x}_1)=t\mathcal{A}(\mathbf{x}_1)$.

Теорема существования и единственности линейного оператора

Пусть V – конечномерное векторное пространство над полем F, $P=\{\mathbf{p}_1,\mathbf{p}_2,\ldots,\mathbf{p}_n\}$ – базис пространства V, а $\mathbf{w}_1,\mathbf{w}_2,\ldots,\mathbf{w}_n$ – произвольные вектора из пространства W. Тогда существует, и притом только один, линейный оператор $\mathcal{A}\colon V\longrightarrow W$ такой, что $\mathcal{A}(\mathbf{p}_i)=\mathbf{w}_i$ для всех $i=1,2,\ldots,n$.

Recap: линейные операторы

Определение

Пусть V,W – векторные пространства над полем F. Отображение $\mathcal{A}\colon V\longrightarrow W$ называется *линейным оператором*, если для любых векторов $\mathbf{x}_1,\mathbf{x}_2\in V$ и любого скаляра $t\in F$ выполняются равенства $\mathcal{A}(\mathbf{x}_1+\mathbf{x}_2)=\mathcal{A}(\mathbf{x}_1)+\mathcal{A}(\mathbf{x}_2)$ и $\mathcal{A}(t\mathbf{x}_1)=t\mathcal{A}(\mathbf{x}_1)$.

Теорема существования и единственности линейного оператора

Пусть V – конечномерное векторное пространство над полем F, $P=\{\mathbf{p}_1,\mathbf{p}_2,\ldots,\mathbf{p}_n\}$ – базис пространства V, а $\mathbf{w}_1,\mathbf{w}_2,\ldots,\mathbf{w}_n$ – произвольные вектора из пространства W. Тогда существует, и притом только один, линейный оператор $\mathcal{A}\colon V\longrightarrow W$ такой, что $\mathcal{A}(\mathbf{p}_i)=\mathbf{w}_i$ для всех $i=1,2,\ldots,n$.

Итак, линейный оператор на конечномерном пространстве V однозначно определяется тем, как он действует на базисных векторах этого пространства. Если и пространство W конечномерно, то чтобы иметь полную информацию о линейном операторе, достаточно знать координаты образов этих векторов в некотором базисе пространства W.

Определение

Пусть V и W – векторные пространства над полем F, причем $\dim V=n>0$, $\dim W=k>0$. Пусть $P=\{\mathbf{p}_1,\mathbf{p}_2,\ldots,\mathbf{p}_n\}$ – базис пространства V, а $Q=\{\mathbf{q}_1,\mathbf{q}_2,\ldots,\mathbf{q}_k\}$ – базис пространства W.

Определение

Пусть V и W — векторные пространства над полем F, причем $\dim V=n>0, \ \dim W=k>0.$ Пусть $P=\{\mathbf{p}_1,\mathbf{p}_2,\ldots,\mathbf{p}_n\}$ — базис пространства V, а $Q=\{\mathbf{q}_1,\mathbf{q}_2,\ldots,\mathbf{q}_k\}$ — базис пространства W. Матрицей линейного оператора $\mathcal{A}\colon V\to W$ в базисах P и Q называется $k\times n$ -матрица, i-й столбец которой состоит из координат вектора $\mathcal{A}(\mathbf{p}_i)$ в базисе $Q,\ i=1,2,\ldots,n$.

Определение

Пусть V и W — векторные пространства над полем F, причем $\dim V=n>0$, $\dim W=k>0$. Пусть $P=\{\mathbf{p}_1,\mathbf{p}_2,\ldots,\mathbf{p}_n\}$ — базис пространства V, а $Q=\{\mathbf{q}_1,\mathbf{q}_2,\ldots,\mathbf{q}_k\}$ — базис пространства W. Матрицей линейного оператора $\mathcal{A}\colon V\to W$ в базисах P и Q называется $k\times n$ -матрица, i-й столбец которой состоит из координат вектора $\mathcal{A}(\mathbf{p}_i)$ в базисе $Q,\ i=1,2,\ldots,n$. Эта матрица обозначается $A_{P,Q}$ или просто A, если базисы зафиксированы.

Определение

Пусть V и W — векторные пространства над полем F, причем $\dim V=n>0$, $\dim W=k>0$. Пусть $P=\{\mathbf{p}_1,\mathbf{p}_2,\ldots,\mathbf{p}_n\}$ — базис пространства V, а $Q=\{\mathbf{q}_1,\mathbf{q}_2,\ldots,\mathbf{q}_k\}$ — базис пространства W. Матрицей линейного оператора $\mathcal{A}\colon V\to W$ в базисах P и Q называется $k\times n$ -матрица, i-й столбец которой состоит из координат вектора $\mathcal{A}(\mathbf{p}_i)$ в базисе $Q,\ i=1,2,\ldots,n$. Эта матрица обозначается $A_{P,Q}$ или просто A, если базисы зафиксированы.

Зная матрицу оператора, можно вычислить координаты образа произвольного вектора $\mathbf{x} \in V$ по координатам \mathbf{x} :

$$\left[\mathcal{A}(\mathbf{x})\right]_Q = A_{P,Q}[\mathbf{x}]_P.$$

Определение

Пусть V и W — векторные пространства над полем F, причем $\dim V=n>0$, $\dim W=k>0$. Пусть $P=\{\mathbf{p}_1,\mathbf{p}_2,\ldots,\mathbf{p}_n\}$ — базис пространства V, а $Q=\{\mathbf{q}_1,\mathbf{q}_2,\ldots,\mathbf{q}_k\}$ — базис пространства W. Матрицей линейного оператора $\mathcal{A}\colon V\to W$ в базисах P и Q называется $k\times n$ -матрица, i-й столбец которой состоит из координат вектора $\mathcal{A}(\mathbf{p}_i)$ в базисе $Q,\ i=1,2,\ldots,n$. Эта матрица обозначается $A_{P,Q}$ или просто A, если базисы зафиксированы.

Зная матрицу оператора, можно вычислить координаты образа произвольного вектора $\mathbf{x} \in V$ по координатам \mathbf{x} :

$$\left[\mathcal{A}(\mathbf{x})\right]_Q = A_{P,Q}[\mathbf{x}]_P.$$

Ясно, что матрицы одного и того же линейного оператора в разных базисах могут быть различными. Как они связаны между собой?

Определение

Пусть V и W — векторные пространства над полем F, причем $\dim V=n>0$, $\dim W=k>0$. Пусть $P=\{\mathbf{p}_1,\mathbf{p}_2,\ldots,\mathbf{p}_n\}$ — базис пространства V, а $Q=\{\mathbf{q}_1,\mathbf{q}_2,\ldots,\mathbf{q}_k\}$ — базис пространства W. Матрицей линейного оператора $\mathcal{A}\colon V\to W$ в базисах P и Q называется $k\times n$ -матрица, i-й столбец которой состоит из координат вектора $\mathcal{A}(\mathbf{p}_i)$ в базисе $Q,\ i=1,2,\ldots,n$. Эта матрица обозначается $A_{P,Q}$ или просто A, если базисы зафиксированы.

Зная матрицу оператора, можно вычислить координаты образа произвольного вектора $\mathbf{x} \in V$ по координатам \mathbf{x} :

$$\left[\mathcal{A}(\mathbf{x})\right]_Q = A_{P,Q}[\mathbf{x}]_P.$$

Ясно, что матрицы одного и того же линейного оператора в разных базисах могут быть различными. Как они связаны между собой? Как выбрать самую «простую» матрицу для данного оператора?

Определение

Пусть V — конечномерное векторное пространство над полем F, а $P=\{\mathbf{p}_1,\mathbf{p}_2,\ldots,\mathbf{p}_n\}$ и $Q=\{\mathbf{q}_1,\mathbf{q}_2,\ldots,\mathbf{q}_n\}$ — два базиса этого пространства. Матрицей перехода от базиса P к базису Q называется $n\times n$ -матрица, i-й столбец которой (для каждого $i=1,2,\ldots,n$) есть координатный столбец вектора \mathbf{q}_i в базисе P.

Определение

Пусть V — конечномерное векторное пространство над полем F, а $P=\{\mathbf{p}_1,\mathbf{p}_2,\ldots,\mathbf{p}_n\}$ и $Q=\{\mathbf{q}_1,\mathbf{q}_2,\ldots,\mathbf{q}_n\}$ — два базиса этого пространства. Матрицей перехода от базиса P к базису Q называется $n\times n$ -матрица, i-й столбец которой (для каждого $i=1,2,\ldots,n$) есть координатный столбец вектора \mathbf{q}_i в базисе P.

Матрица перехода от базиса P к базису Q обозначается через $T_{P \to Q}$.

Определение

Пусть V — конечномерное векторное пространство над полем F, а $P=\{\mathbf{p}_1,\mathbf{p}_2,\ldots,\mathbf{p}_n\}$ и $Q=\{\mathbf{q}_1,\mathbf{q}_2,\ldots,\mathbf{q}_n\}$ — два базиса этого пространства. Матрицей перехода от базиса P к базису Q называется $n\times n$ -матрица, i-й столбец которой (для каждого $i=1,2,\ldots,n$) есть координатный столбец вектора \mathbf{q}_i в базисе P.

Матрица перехода от базиса P к базису Q обозначается через $T_{P \to Q}$.

Принято базис P называть $\mathit{старым}$, а базис Q – $\mathit{новым}$.

Определение

Пусть V — конечномерное векторное пространство над полем F, а $P=\{\mathbf{p}_1,\mathbf{p}_2,\ldots,\mathbf{p}_n\}$ и $Q=\{\mathbf{q}_1,\mathbf{q}_2,\ldots,\mathbf{q}_n\}$ — два базиса этого пространства. Матрицей перехода от базиса P к базису Q называется $n\times n$ -матрица, i-й столбец которой (для каждого $i=1,2,\ldots,n$) есть координатный столбец вектора \mathbf{q}_i в базисе P.

Матрица перехода от базиса P к базису Q обозначается через $T_{P \to Q}$.

Принято базис P называть *старым*, а базис Q – *новым*. Итак, матрица перехода от старого базиса к новому строится из старых координат новых базисных векторов.

Через матрицу перехода можно связать между собой координаты одного и того же вектора в разных базисах.

Предложение (формула замены координат)

Пусть P и Q – два базиса пространства V . Тогда для любого $\mathbf{x} \in V$

$$[\mathbf{x}]_P = T_{P \to Q}[\mathbf{x}]_Q.$$

Через матрицу перехода можно связать между собой координаты одного и того же вектора в разных базисах.

Предложение (формула замены координат)

Пусть P и Q – два базиса пространства V . Тогда для любого $\mathbf{x} \in V$

$$[\mathbf{x}]_P = T_{P \to Q}[\mathbf{x}]_Q.$$

Доказательство. Пусть $P = \{\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n\}$, $Q = \{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n\}$,

$$T_{P \to Q} = (t_{ij}), \ [\mathbf{x}]_P = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \ [\mathbf{x}]_Q = \begin{bmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{bmatrix}.$$

Через матрицу перехода можно связать между собой координаты одного и того же вектора в разных базисах.

Предложение (формула замены координат)

Пусть P и Q – два базиса пространства V . Тогда для любого $\mathbf{x} \in V$

$$[\mathbf{x}]_P = T_{P \to Q}[\mathbf{x}]_Q.$$

Доказательство. Пусть $P = \{\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n\}$, $Q = \{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n\}$,

$$T_{P \to Q} = (t_{ij}), [\mathbf{x}]_P = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, [\mathbf{x}]_Q = \begin{bmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{bmatrix}.$$

Тогда $\mathbf{x} = x_1 \mathbf{p}_1 + x_2 \mathbf{p}_2 + \dots + x_n \mathbf{p}_n = x_1' \mathbf{q}_1 + x_2' \mathbf{q}_2 + \dots + x_n' \mathbf{q}_n.$

Через матрицу перехода можно связать между собой координаты одного и того же вектора в разных базисах.

Предложение (формула замены координат)

Пусть P и Q – два базиса пространства V . Тогда для любого $\mathbf{x} \in V$

$$[\mathbf{x}]_P = T_{P \to Q}[\mathbf{x}]_Q.$$

Доказательство. Пусть $P = \{\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n\}$, $Q = \{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n\}$,

$$T_{P \to Q} = (t_{ij}), [\mathbf{x}]_P = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, [\mathbf{x}]_Q = \begin{bmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{bmatrix}.$$

Тогда $\mathbf{x} = x_1 \mathbf{p}_1 + x_2 \mathbf{p}_2 + \dots + x_n \mathbf{p}_n = x_1' \mathbf{q}_1 + x_2' \mathbf{q}_2 + \dots + x_n' \mathbf{q}_n.$

Раскроем правую часть, выразив вектора \mathbf{q}_i через базис P.

$$x'_{1}\mathbf{q}_{1} + x'_{2}\mathbf{q}_{2} + \dots + x'_{n}\mathbf{q}_{n} = x'_{1}(t_{11}\mathbf{p}_{1} + t_{21}\mathbf{p}_{2} + \dots + t_{n1}\mathbf{p}_{n}) + x'_{2}(t_{12}\mathbf{p}_{1} + t_{22}\mathbf{p}_{2} + \dots + t_{n2}\mathbf{p}_{n}) + \dots + x'_{n}(t_{1n}\mathbf{p}_{1} + t_{2n}\mathbf{p}_{2} + \dots + t_{nn}\mathbf{p}_{n})$$

$$x'_{1}\mathbf{q}_{1} + x'_{2}\mathbf{q}_{2} + \dots + x'_{n}\mathbf{q}_{n} = x'_{1}(t_{11}\mathbf{p}_{1} + t_{21}\mathbf{p}_{2} + \dots + t_{n1}\mathbf{p}_{n}) + x'_{2}(t_{12}\mathbf{p}_{1} + t_{22}\mathbf{p}_{2} + \dots + t_{n2}\mathbf{p}_{n}) + \dots + x'_{n}(t_{1n}\mathbf{p}_{1} + t_{2n}\mathbf{p}_{2} + \dots + t_{nn}\mathbf{p}_{n}) = (t_{11}x'_{1} + t_{12}x'_{2} + \dots + t_{1n}x'_{n})\mathbf{p}_{1} + (t_{21}x'_{1} + t_{22}x'_{2} + \dots + t_{2n}x'_{n})\mathbf{p}_{2} + \dots + (t_{n1}x'_{1} + t_{n2}x'_{2} + \dots + t_{nn}x'_{n})\mathbf{p}_{n}.$$

$$x'_{1}\mathbf{q}_{1} + x'_{2}\mathbf{q}_{2} + \dots + x'_{n}\mathbf{q}_{n} = x'_{1}(t_{11}\mathbf{p}_{1} + t_{21}\mathbf{p}_{2} + \dots + t_{n1}\mathbf{p}_{n}) + x'_{2}(t_{12}\mathbf{p}_{1} + t_{22}\mathbf{p}_{2} + \dots + t_{n2}\mathbf{p}_{n}) + \dots + x'_{n}(t_{1n}\mathbf{p}_{1} + t_{2n}\mathbf{p}_{2} + \dots + t_{nn}\mathbf{p}_{n}) = (t_{11}x'_{1} + t_{12}x'_{2} + \dots + t_{1n}x'_{n})\mathbf{p}_{1} + (t_{21}x'_{1} + t_{22}x'_{2} + \dots + t_{2n}x'_{n})\mathbf{p}_{2} + \dots + (t_{n1}x'_{1} + t_{n2}x'_{2} + \dots + t_{nn}x'_{n})\mathbf{p}_{n}.$$

В силу единственности разложения вектора по базису, имеем

$$\begin{cases} x_1 = t_{11}x'_1 + t_{12}x'_2 + \dots + t_{1n}x'_n, \\ x_2 = t_{21}x'_1 + t_{22}x'_2 + \dots + t_{2n}x'_n, \\ \dots \\ x_n = t_{n1}x'_1 + t_{n2}x'_2 + \dots + t_{nn}x'_n. \end{cases}$$

$$x'_{1}\mathbf{q}_{1} + x'_{2}\mathbf{q}_{2} + \dots + x'_{n}\mathbf{q}_{n} = x'_{1}(t_{11}\mathbf{p}_{1} + t_{21}\mathbf{p}_{2} + \dots + t_{n1}\mathbf{p}_{n}) + x'_{2}(t_{12}\mathbf{p}_{1} + t_{22}\mathbf{p}_{2} + \dots + t_{n2}\mathbf{p}_{n}) + \dots + x'_{n}(t_{1n}\mathbf{p}_{1} + t_{2n}\mathbf{p}_{2} + \dots + t_{nn}\mathbf{p}_{n}) = (t_{11}x'_{1} + t_{12}x'_{2} + \dots + t_{1n}x'_{n})\mathbf{p}_{1} + (t_{21}x'_{1} + t_{22}x'_{2} + \dots + t_{2n}x'_{n})\mathbf{p}_{2} + \dots + (t_{n1}x'_{1} + t_{n2}x'_{2} + \dots + t_{nn}x'_{n})\mathbf{p}_{n}.$$

В силу единственности разложения вектора по базису, имеем

$$\begin{cases} x_1 = t_{11}x'_1 + t_{12}x'_2 + \dots + t_{1n}x'_n, \\ x_2 = t_{21}x'_1 + t_{22}x'_2 + \dots + t_{2n}x'_n, \\ \dots \\ x_n = t_{n1}x'_1 + t_{n2}x'_2 + \dots + t_{nn}x'_n. \end{cases}$$

Эта система эквивалентна матричному равенству $[\mathbf{x}]_P = T_{P o Q}[\mathbf{x}]_Q$.

Итак,
$$[\mathbf{x}]_P = T_{P o Q}[\mathbf{x}]_Q$$
 .

Итак,
$$[\mathbf{x}]_P = T_{P o Q}[\mathbf{x}]_Q$$
. Меняя ролями P и Q , имеем $[\mathbf{x}]_Q = T_{Q o P}[\mathbf{x}]_P$.

Итак, $[\mathbf{x}]_P = T_{P \to Q}[\mathbf{x}]_Q$. Меняя ролями P и Q, имеем $[\mathbf{x}]_Q = T_{Q \to P}[\mathbf{x}]_P$. Подставляя второе равенство в первое, получаем $[\mathbf{x}]_P = T_{P \to Q}T_{Q \to P}[\mathbf{x}]_P$.

Итак, $[\mathbf{x}]_P = T_{P o Q}[\mathbf{x}]_Q$. Меняя ролями P и Q, имеем $[\mathbf{x}]_Q = T_{Q o P}[\mathbf{x}]_P$. Подставляя второе равенство в первое, получаем $[\mathbf{x}]_P = T_{P o Q}T_{Q o P}[\mathbf{x}]_P$. Выбирая в качестве \mathbf{x} поочередно все вектора базиса P, получаем

$$\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = T_{P \to Q} T_{Q \to P} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad \dots, \quad \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} = T_{P \to Q} T_{Q \to P} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}.$$

Итак, $[\mathbf{x}]_P = T_{P o Q}[\mathbf{x}]_Q$. Меняя ролями P и Q, имеем $[\mathbf{x}]_Q = T_{Q o P}[\mathbf{x}]_P$. Подставляя второе равенство в первое, получаем $[\mathbf{x}]_P = T_{P o Q}T_{Q o P}[\mathbf{x}]_P$. Выбирая в качестве \mathbf{x} поочередно все вектора базиса P, получаем

$$\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = T_{P \to Q} T_{Q \to P} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} = T_{P \to Q} T_{Q \to P} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}.$$

Отсюда $E=T_{P o Q}T_{Q o P}E=T_{P o Q}T_{Q o P}.$ Мы доказали такой факт:

Итак, $[\mathbf{x}]_P = T_{P o Q}[\mathbf{x}]_Q$. Меняя ролями P и Q, имеем $[\mathbf{x}]_Q = T_{Q o P}[\mathbf{x}]_P$.

Подставляя второе равенство в первое, получаем $[{f x}]_P = T_{P o Q}T_{Q o P}[{f x}]_P.$ Выбирая в качестве ${f x}$ поочередно все вектора базиса P, получаем

$$\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = T_{P \to Q} T_{Q \to P} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} = T_{P \to Q} T_{Q \to P} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}.$$

Отсюда $E=T_{P o Q}T_{Q o P}E=T_{P o Q}T_{Q o P}.$ Мы доказали такой факт:

Предложение о матрице перехода

Пусть P и Q – два базиса пространства V. Матрица $T_{P \to Q}$ обратима и обратной к ней является матрица обратного перехода $T_{Q \to P}$.

Теорема (о замене матрицы)

Пусть V и W – конечномерные векторные пространства над полем F, P_1 и P_2 – базисы пространства V, Q_1 и Q_2 – базисы пространства W, а $\mathcal{A}\colon V\longrightarrow W$ – линейный оператор. Тогда

$$A_{P_2,Q_2} = T_{Q_2 \to Q_1} A_{P_1,Q_1} T_{P_1 \to P_2}.$$

Теорема (о замене матрицы)

Пусть V и W – конечномерные векторные пространства над полем F, P_1 и P_2 – базисы пространства V, Q_1 и Q_2 – базисы пространства W, а $\mathcal{A}\colon V\longrightarrow W$ – линейный оператор. Тогда

$$A_{P_2,Q_2} = T_{Q_2 \to Q_1} A_{P_1,Q_1} T_{P_1 \to P_2}.$$

otag доказательство. Для любого вектора $\mathbf{x} \in V$ имеем

$$[\mathcal{A}(\mathbf{x})]_{Q_2} = A_{P_2,Q_2}[\mathbf{x}]_{P_2}$$

Теорема (о замене матрицы)

Пусть V и W – конечномерные векторные пространства над полем F, P_1 и P_2 – базисы пространства V, Q_1 и Q_2 – базисы пространства W, а $\mathcal{A}\colon V\longrightarrow W$ – линейный оператор. Тогда

$$A_{P_2,Q_2} = T_{Q_2 \to Q_1} A_{P_1,Q_1} T_{P_1 \to P_2}.$$

 $\ensuremath{\mathcal{A}}$ оказательство. Для любого вектора $\mathbf{x} \in V$ имеем

$$[\mathcal{A}(\mathbf{x})]_{Q_2} = A_{P_2,Q_2}[\mathbf{x}]_{P_2} = A_{P_2,Q_2}T_{P_2 \to P_1}[\mathbf{x}]_{P_1}.$$

Теорема (о замене матрицы)

Пусть V и W – конечномерные векторные пространства над полем F, P_1 и P_2 – базисы пространства V, Q_1 и Q_2 – базисы пространства W, а $\mathcal{A}\colon V\longrightarrow W$ – линейный оператор. Тогда

$$A_{P_2,Q_2} = T_{Q_2 \to Q_1} A_{P_1,Q_1} T_{P_1 \to P_2}.$$

otag доказательство. Для любого вектора $\mathbf{x} \in V$ имеем

$$[\mathcal{A}(\mathbf{x})]_{Q_2} = A_{P_2,Q_2}[\mathbf{x}]_{P_2} = A_{P_2,Q_2}T_{P_2 \to P_1}[\mathbf{x}]_{P_1}.$$

С другой стороны,

$$[\mathcal{A}(\mathbf{x})]_{Q_2} = T_{Q_2 \to Q_1} [\mathcal{A}(\mathbf{x})]_{Q_1}$$

Теорема (о замене матрицы)

Пусть V и W – конечномерные векторные пространства над полем F, P_1 и P_2 – базисы пространства V, Q_1 и Q_2 – базисы пространства W, а $\mathcal{A}\colon V\longrightarrow W$ – линейный оператор. Тогда

$$A_{P_2,Q_2} = T_{Q_2 \to Q_1} A_{P_1,Q_1} T_{P_1 \to P_2}.$$

 $ot\hspace{-.1cm} \mathcal{A}$ оказательство. Для любого вектора $\mathbf{x} \in V$ имеем

$$[\mathcal{A}(\mathbf{x})]_{Q_2} = A_{P_2,Q_2}[\mathbf{x}]_{P_2} = A_{P_2,Q_2}T_{P_2 \to P_1}[\mathbf{x}]_{P_1}.$$

С другой стороны,

$$[\mathcal{A}(\mathbf{x})]_{Q_2} = T_{Q_2 \to Q_1} [\mathcal{A}(\mathbf{x})]_{Q_1} = T_{Q_2 \to Q_1} A_{P_1, Q_1} [\mathbf{x}]_{P_1}.$$

Теорема (о замене матрицы)

Пусть V и W – конечномерные векторные пространства над полем F, P_1 и P_2 – базисы пространства V, Q_1 и Q_2 – базисы пространства W, а $\mathcal{A}\colon V\longrightarrow W$ – линейный оператор. Тогда

$$A_{P_2,Q_2} = T_{Q_2 \to Q_1} A_{P_1,Q_1} T_{P_1 \to P_2}.$$

 $ot\hspace{-.1cm} \mathcal{A}$ оказательство. Для любого вектора $\mathbf{x} \in V$ имеем

$$[\mathcal{A}(\mathbf{x})]_{Q_2} = A_{P_2,Q_2}[\mathbf{x}]_{P_2} = A_{P_2,Q_2}T_{P_2 \to P_1}[\mathbf{x}]_{P_1}.$$

С другой стороны,

$$[\mathcal{A}(\mathbf{x})]_{Q_2} = T_{Q_2 \to Q_1} [\mathcal{A}(\mathbf{x})]_{Q_1} = T_{Q_2 \to Q_1} A_{P_1, Q_1} [\mathbf{x}]_{P_1}.$$

Итак, $A_{P_2,Q_2}T_{P_2 o P_1}[\mathbf{x}]_{P_1} = T_{Q_2 o Q_1}A_{P_1,Q_1}[\mathbf{x}]_{P_1}$.

Теорема (о замене матрицы)

Пусть V и W – конечномерные векторные пространства над полем F, P_1 и P_2 – базисы пространства V, Q_1 и Q_2 – базисы пространства W, а $\mathcal{A}\colon V\longrightarrow W$ – линейный оператор. Тогда

$$A_{P_2,Q_2} = T_{Q_2 \to Q_1} A_{P_1,Q_1} T_{P_1 \to P_2}.$$

$$[\mathcal{A}(\mathbf{x})]_{Q_2} = A_{P_2,Q_2}[\mathbf{x}]_{P_2} = A_{P_2,Q_2}T_{P_2 \to P_1}[\mathbf{x}]_{P_1}.$$

С другой стороны,

$$[\mathcal{A}(\mathbf{x})]_{Q_2} = T_{Q_2 \to Q_1} [\mathcal{A}(\mathbf{x})]_{Q_1} = T_{Q_2 \to Q_1} A_{P_1, Q_1} [\mathbf{x}]_{P_1}.$$

Итак, $A_{P_2,Q_2}T_{P_2\to P_1}[\mathbf{x}]_{P_1}=T_{Q_2\to Q_1}A_{P_1,Q_1}[\mathbf{x}]_{P_1}$. Выбирая в качестве \mathbf{x} поочередно вектора базиса P_1 , получаем $A_{P_2,Q_2}T_{P_2\to P_1}=T_{Q_2\to Q_1}A_{P_1,Q_1}$.

Теорема (о замене матрицы)

Пусть V и W – конечномерные векторные пространства над полем F, P_1 и P_2 – базисы пространства V, Q_1 и Q_2 – базисы пространства W, а $\mathcal{A}\colon V\longrightarrow W$ – линейный оператор. Тогда

$$A_{P_2,Q_2} = T_{Q_2 \to Q_1} A_{P_1,Q_1} T_{P_1 \to P_2}.$$

$$[\mathcal{A}(\mathbf{x})]_{Q_2} = A_{P_2,Q_2}[\mathbf{x}]_{P_2} = A_{P_2,Q_2}T_{P_2 \to P_1}[\mathbf{x}]_{P_1}.$$

С другой стороны,

$$[\mathcal{A}(\mathbf{x})]_{Q_2} = T_{Q_2 \to Q_1} [\mathcal{A}(\mathbf{x})]_{Q_1} = T_{Q_2 \to Q_1} A_{P_1, Q_1} [\mathbf{x}]_{P_1}.$$

Итак, $A_{P_2,Q_2}T_{P_2\to P_1}[\mathbf{x}]_{P_1}=T_{Q_2\to Q_1}A_{P_1,Q_1}[\mathbf{x}]_{P_1}$. Выбирая в качестве \mathbf{x} поочередно вектора базиса P_1 , получаем $A_{P_2,Q_2}T_{P_2\to P_1}=T_{Q_2\to Q_1}A_{P_1,Q_1}$. Умножая справа на матрицу $T_{P_1\to P_2}$, обратную к $T_{P_2\to P_1}$, получаем $A_{P_2,Q_2}=T_{Q_2\to Q_1}A_{P_1,Q_1}T_{P_1\to P_2}$.

Итак,
$$A_{P_2,Q_2} = T_{Q_2 o Q_1} A_{P_1,Q_1} T_{P_1 o P_2}$$
.

Итак, $\boxed{A_{P_2,Q_2} = T_{Q_2 o Q_1} A_{P_1,Q_1} T_{P_1 o P_2}}$.

Важный частный случай: V=W.

Итак,
$$A_{P_2,Q_2} = T_{Q_2 o Q_1} A_{P_1,Q_1} T_{P_1 o P_2}$$
 .

Важный частный случай: V=W. В этом случае $Q_1=P_1$ и $Q_2=P_2$, и пишут A_{P_1} вместо A_{P_1,P_1} и A_{P_2} вместо $A_{P_2,P_2}.$

Итак,
$$A_{P_2,Q_2} = T_{Q_2 o Q_1} A_{P_1,Q_1} T_{P_1 o P_2}$$
 .

Важный частный случай: V=W. В этом случае $Q_1=P_1$ и $Q_2=P_2$, и пишут A_{P_1} вместо A_{P_1,P_1} и A_{P_2} вместо A_{P_2,P_2} . С учетом этого получаем

$$A_{P_2} = T_{P_2 \to P_1} A_{P_1} T_{P_1 \to P_2} = T_{P_1 \to P_2}^{-1} A_{P_1} T_{P_1 \to P_2}.$$

Итак,
$$A_{P_2,Q_2} = T_{Q_2 o Q_1} A_{P_1,Q_1} T_{P_1 o P_2}$$
 .

Важный частный случай: V=W. В этом случае $Q_1=P_1$ и $Q_2=P_2$, и пишут A_{P_1} вместо A_{P_1,P_1} и A_{P_2} вместо A_{P_2,P_2} . С учетом этого получаем

$$A_{P_2} = T_{P_2 \to P_1} A_{P_1} T_{P_1 \to P_2} = T_{P_1 \to P_2}^{-1} A_{P_1} T_{P_1 \to P_2}.$$

Определение

Квадратные матрицы A и B над некоторым полем F называются подобными над F, если существует невырожденная квадратная матрица T над F такая, что $B=T^{-1}AT$.

Итак,
$$A_{P_2,Q_2} = T_{Q_2 o Q_1} A_{P_1,Q_1} T_{P_1 o P_2}$$
 .

Важный частный случай: V=W. В этом случае $Q_1=P_1$ и $Q_2=P_2$, и пишут A_{P_1} вместо A_{P_1,P_1} и A_{P_2} вместо A_{P_2,P_2} . С учетом этого получаем

$$A_{P_2} = T_{P_2 \to P_1} A_{P_1} T_{P_1 \to P_2} = T_{P_1 \to P_2}^{-1} A_{P_1} T_{P_1 \to P_2}.$$

Определение

Квадратные матрицы A и B над некоторым полем F называются подобными над F, если существует невырожденная квадратная матрица T над F такая, что $B=T^{-1}AT$.

Таким образом, все матрицы одного и того же линейного оператора $\mathcal{A}\colon V \to V$ подобны между собой.

Итак,
$$A_{P_2,Q_2} = T_{Q_2 o Q_1} A_{P_1,Q_1} T_{P_1 o P_2}$$
 .

Важный частный случай: V=W. В этом случае $Q_1=P_1$ и $Q_2=P_2$, и пишут A_{P_1} вместо A_{P_1,P_1} и A_{P_2} вместо A_{P_2,P_2} . С учетом этого получаем

$$A_{P_2} = T_{P_2 \to P_1} A_{P_1} T_{P_1 \to P_2} = T_{P_1 \to P_2}^{-1} A_{P_1} T_{P_1 \to P_2}.$$

Определение

Квадратные матрицы A и B над некоторым полем F называются подобными над F, если существует невырожденная квадратная матрица T над F такая, что $B=T^{-1}AT$.

Таким образом, все матрицы одного и того же линейного оператора $\mathcal{A}\colon V \to V$ подобны между собой.

Свойства линейных операторов выражаются теми свойствами матриц, которые *инвариантны относительно подобия*.

Итак,
$$A_{P_2,Q_2} = T_{Q_2 o Q_1} A_{P_1,Q_1} T_{P_1 o P_2}$$
 .

Важный частный случай: V=W. В этом случае $Q_1=P_1$ и $Q_2=P_2$, и пишут A_{P_1} вместо A_{P_1,P_1} и A_{P_2} вместо A_{P_2,P_2} . С учетом этого получаем

$$A_{P_2} = T_{P_2 \to P_1} A_{P_1} T_{P_1 \to P_2} = T_{P_1 \to P_2}^{-1} A_{P_1} T_{P_1 \to P_2}.$$

Определение

Квадратные матрицы A и B над некоторым полем F называются подобными над F, если существует невырожденная квадратная матрица T над F такая, что $B=T^{-1}AT$.

Таким образом, все матрицы одного и того же линейного оператора $\mathcal{A}\colon V \to V$ подобны между собой.

Свойства линейных операторов выражаются теми свойствами матриц, которые *инвариантны относительно подобия*.

Задача о выборе самой «простой» матрице для данного оператора равносильна задаче о выборе самой простой матрицы в каждом классе подобных между собой матриц.

