Chapter 8 Basic RL and RC Circuits

The Source-Free RL Circuit

Applying KVL:

$$\frac{di}{dt} + \frac{R}{L}i = 0$$

We can solve for the *natural response* if we know the *initial condition* $i(0)=I_{0}$:

$$i(t)=I_0e^{-Rt/L}$$
 for t>0

Example: RL with a Switch

Show that the voltage v(t) will be -12.99 volts at t=200 ms.

The Exponential Response

The Source-Free RC Circuit

Applying KCL:

$$\frac{dv}{dt} + \frac{1}{RC}v = 0$$

We can solve for the *natural response* if we know the *initial condition* $v(0)=V_0$

$$v(t) = V_0 e^{-t/RC}$$
 for $t > 0$

RC Natural Response

The Source Free RC Circuit

Show that the voltage v(t) is 321 mV at t=200 μ s.

General RL Circuits

The time constant of a single-inductor circuit will be $\tau = L/R_{eq}$ where R_{eq} is the resistance seen by the inductor.

Example:
$$R_{eq} = R_3 + R_4 + R_1 R_2 / (R_1 + R_2)$$

General RC Circuits

The time constant of a single-capacitor circuit will be $\tau = R_{eq}C$ where R_{eq} is the resistance seen by the capacitor.

Example:
$$R_{eq} = R_2 + R_1 R_3 / (R_1 + R_3)$$

1st Order Response Observations

- The voltage on a capacitor or the current through a inductor is the same *prior to* and *after* a switch at t=0.
- Resistor voltage (or current) prior to the switch $v(0^-)$ can be different from the voltage after the switch $v(0^+)$.
- All voltages and currents in an RC or RL circuit follow the same natural response $e^{-t/\tau}$.

Example: L and R Current

Find $i_I(t)$ and $i_L(t)$ for t>0.

Answer: $\tau = 20 \text{ } \mu\text{s}$; $i_I = -0.24e^{-t/\tau}$, $i_L = 0.36e^{-t/\tau}$ for t > 0

The Unit Step Function

The unit-step function u(t) is a convenient notation to respresent change:

Switches and Steps

The unit step models a double-throw switch.

 A single-throw switch is open circuit for t<0, not short circuit.

Modeling Pulses using u(t)

Rectangular pulse

Pulsed sinewave:

Driven RL Circuits

The two circuits shown both have *i*(*t*)=0 for *t*<0 and are also the same for *t*>0. Both are similar

• We now have to find both the *natural response* and and the *forced response* due to the source V_0

Driven RL Circuits

The total response is the combination of the transient/natural response and the forced response:

$$i(t) = \frac{V_0}{R} \left(1 - e^{-Rt/L}\right) u(t)$$

Driven RL Circuits

$$i(t) = \frac{V_0}{R} \left(1 - e^{-Rt/L} \right) u(t)$$

Example: RL Circuit with Step

Example: Voltage Pulse

Driven RC Circuits (part 1 of 2)

$$v_C = 20 + 80e^{-t/1.2} \text{ V} \text{ and } i = 0.1 + 0.4e^{-t/1.2} \text{ A}$$

Driven RC Circuits (part 2 of 2)

$$v_C = 20 + 80e^{-t/1.2} V$$

$$i=0.1 + 0.4e^{-t/1.2}$$
 A

RL Driven Circuit

- 1. With all independent sources zeroed out, simplify the circuit to determine $R_{\rm eq}$, $L_{\rm eq}$, and the time constant $\tau = L_{\rm eq}/R_{\rm eq}$.
- 2. Viewing L_{eq} as a short circuit, use dc analysis methods to find $i_L(0^-)$, the inductor current just prior to the discontinuity.
- 3. Again viewing $L_{\rm eq}$ as a short circuit, use dc analysis methods to find the forced response. This is the value approached by f(t) as $t \to \infty$; we represent it by $f(\infty)$.
- 4. Write the total response as the sum of the forced and natural responses: $f(t) = f(\infty) + Ae^{-t/\tau}$.
- 5. Find $f(0^+)$ by using the condition that $i_L(0^+) = i_L(0^-)$. If desired, L_{eq} may be replaced by a current source $i_L(0^+)$ [an open circuit if $i_L(0^+) = 0$] for this calculation. With the exception of inductor currents (and capacitor voltages), other currents and voltages in the circuit may change abruptly.
- 6. $f(0^+) = f(\infty) + A$ and $f(t) = f(\infty) + [f(0^+) f(\infty)] e^{-t/\tau}$, or total response = final value + (initial value final value) $e^{-t/\tau}$.

RC Driven Circuit

- 1. With all independent sources zeroed out, simplify the circuit to determine $R_{\rm eq}$, $C_{\rm eq}$, and the time constant $\tau = R_{\rm eq}C_{\rm eq}$.
- 2. Viewing C_{eq} as an open circuit, use dc analysis methods to find $v_C(0^-)$, the capacitor voltage just prior to the discontinuity.
- 3. Again viewing $C_{\rm eq}$ as an open circuit, use dc analysis methods to find the forced response. This is the value approached by f(t) as $t \to \infty$; we represent it by $f(\infty)$.
- 4. Write the total response as the sum of the forced and natural responses: $f(t) = f(\infty) + Ae^{-t/\tau}$.
- 5. Find $f(0^+)$ by using the condition that $v_C(0^+) = v_C(0^-)$. If desired, C_{eq} may be replaced by a voltage source $v_C(0^+)$ [a short circuit if $v_C(0^+) = 0$] for this calculation. With the exception of capacitor voltages (and inductor currents), other voltages and currents in the circuit may change abruptly.
- 6. $f(0^+) = f(\infty) + A$ and $f(t) = f(\infty) + [f(0^+) f(\infty)]e^{-t/\tau}$, or total response = final value + (initial value final value) $e^{-t/\tau}$.