Linear Temporal Logic (LTL)

Kripke structure:

- ▶ additional assumption: each state has at least one successor ⇒ infinite processes!
- some computation paths:

$$s_0 \rightarrow s_1 \rightarrow s_0 \rightarrow s_1 \rightarrow \dots$$

 $s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_2 \rightarrow \dots$
 $s_0 \rightarrow s_2 \rightarrow s_2 \rightarrow \dots$

LTL formulas are interpreted over computation paths

Syntax of LTL

Fix a set *Prop* of atomic propositions.

LTL formulas are of two kinds:

- path formulas:
 - \triangleright tt, p where p is an atomic proposition
 - if f and g are path formulas, then so are:

```
\neg f not f

f \land g f and g

\mathbf{X} f at the neXt point in time, f

\mathbf{F} f at some point in the Future, f

\mathbf{G} f \mathbf{G} Globally (at all future points) f

f \lor \mathbf{U} g f \lor \mathbf{U} \mathsf{ntil} g
```

state formulas:

A f along All computation paths, f holds

binding priorities: unary operators ; U ; \wedge and \vee ; \rightarrow

Semantics of LTL

Fix a Kripke structure M = (S, R, V).

The semantics of LTL defines:

• when a computation path π through M satisfies a path formula f,

Notation: $\pi \models f$ if π satisfies f

 \blacktriangleright when a state s of M satisfies a state formula ϕ .

Notation: $s \models \phi$ if s satisfies ϕ

Meaning of Temporal Operators (Pictorially)

Let $s_0 \longrightarrow s_1 \longrightarrow s_2 \longrightarrow \dots$ be a computation path.

$s_0 \rightarrow \dots$	$s_0 \rightarrow \dots$	$s_1 \rightarrow \dots$		$s_i o \dots$	
X f		f			
F f				f	
G f	f	f	f	f	f
f U g	f	f	f	g	

Note:

ightharpoonup f here is a path formula, so it is itself interpreted over *paths*!!

Semantics of LTL (Cont'd)

- Given $\pi = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots$, let $\pi^i = s_i \rightarrow s_{i+1} \rightarrow \ldots$
- Now define when a path formula f holds in a path π :

$$\pi \models \mathsf{tt}$$
 $\pi \models p$ iff $p \in V(s_0)$
 $\pi \models \neg f$ iff $\pi \models f$ does not hold

 $\pi \models f \land g$ iff $\pi \models f$ and $\pi \models g$
 $\pi \models \mathbf{X} f$ iff $\pi^1 \models f$
 $\pi \models \mathbf{F} f$ iff there exists i s.t. $\pi^i \models f$
 $\pi \models \mathbf{G} f$ iff $\pi^i \models f$ for all $i \geq 0$
 $\pi \models f \cup g$ iff there exists i s.t. $\pi^0 \models f, \ldots, \pi^{i-1} \models f, \pi^i \models g$

▶ Finally, define when a state formula A f holds in a state $s \in S$:

$$s \models \mathbf{A} f$$
 iff $\pi \models f$ for all paths π starting in s

Semantics of LTL – Example

$$s_0
ightharpoonup s_1
ightharpoonup s_0
ightharpoonup s_1
ightharpoonup s_1
ightharpoonup ... \models \mathbf{K} c$$
 $s_0
ightharpoonup s_1
ightharpoonup s_1
ightharpoonup s_1
ightharpoonup s_2
ightharpoonup s_2
ightharpoonup s_2
ightharpoonup ... \models \mathbf{G} c$
 $s_0
ightharpoonup s_1
ightharpoonup s_2
ightharpoonup s_2
ightharpoonup ... \models \mathbf{F} \mathbf{G} c$
 $s_0
ightharpoonup s_1
ightharpoonup s_2
ightharpoonup s_2
ightharpoonup ... \models \mathbf{b} \mathbf{U} c$
 $\pi \models \mathbf{G} \mathbf{F} c$ for any π

Note:

 $\blacktriangleright \pi \models \mathbf{G} \mathbf{F} f$ iff f occurs infinitely often along π .

Semantics of LTL – Example

$$s_0 \models A F a$$

$$s_0 \models A G \neg (a \land c)$$

$$s_1 \not\models A G c$$

$$s_2 \models A G c$$

$$s_0 \not\models A G F a$$

$$s_0 \models A (G F a \rightarrow G F c)$$

$$s_1 \models A (b \cup c)$$

$$s_2 \models A (b \cup c)$$

$$s_0 \models A X (b \cup c)$$

Note:

- ▶ $s \models A G f$ iff f holds in all states reachable from s (including s).
- ▶ $s \models A G F f$ iff f occurs infinitely often along every path from s.

Some LTL Patterns

- invariance (always): A G p
 "p remains invariantly true throughout every path"
- guarantee (eventually): A F p
 "p will eventually become true in every path"
- stability (non-progress): A F G p
 "there is a point in every path where p will become invariantly true"
- ► recurrence (progress): A G F p
 - "if p happens to be false at any given point in a path, it is always guaranteed to become true again later"

Same as: "p holds infinitely often"

Some LTL Patterns

- response: $\mathbf{A} \ \mathbf{G} \ (p \to \mathbf{F} \ q)$ "any state satisfying p is eventually followed by a state satisfying q"
- ▶ precedence: A G $(p \rightarrow q \mathbf{U} r)$ "from any state satisfying p, the system will continuously satisfy property q until property r becomes true"
- ▶ correlation: \mathbf{A} (\mathbf{F} $p \to \mathbf{F}$ q)

 "if p holds at some point in the future, so does q"

Back to Mutual Exclusion

Atomic propositions:

```
c_0\,,\,c_1 (critical state)

n_0\,,\,n_1 (non-critical state)

t_0\,,\,t_1 (trying to enter critical state)
```

mutual exclusion: at most one process in critical section at any time

A G
$$\neg$$
($c_0 \land c_1$)

▶ absence of starvation: whenever a process tries to enter its critical section, it will eventually do so

$$\mathsf{A}\;\mathsf{G}\;((t_0\to\;\mathsf{F}\;c_0)\land(t_1\to\;\mathsf{F}\;c_1))$$

Mutual Exclusion: Checking Correctness

- ▶ A G $\neg(c_0 \land c_1)$

 Need to check that $\neg(c_0 \land c_1)$ is true at all states reachable from the initial states.
- ▶ A G $((t_0 \to \mathsf{F} c_0) \land (t_1 \to \mathsf{F} c_1))$ × \checkmark Need fairness constraints for the property to hold.