1) a)
$$h[n] = \frac{1}{4} S[n] + \frac{1}{4} S[n-1] + \frac{1}{4} S[n-2] + \frac{1}{4} S[n-2]$$

b) $H(\hat{\omega}) = \frac{1}{4} [1 + e^{-7\hat{\omega}} + e^{-72\hat{\omega}} + e^{-73\hat{\omega}})$
 $= \frac{1}{4} e^{-7\frac{3}{2}\hat{\omega}} (e^{7\frac{3}{2}\hat{\omega}} + e^{7\frac{1}{2}\hat{\omega}} + e^{-7\frac{1}{2}\hat{\omega}})$
 $= \frac{1}{4} e^{-7\frac{3}{2}\hat{\omega}} (cas(\frac{1}{2}\hat{\omega}) + cos(\frac{1}{2}\hat{\omega}))$

$$H(0.511) = 0$$

=) $y[n] = 5 + 4(0.769) cos (0.2111 - 0.311)$
 3.078

$$x_1[n]=0$$
 for $n\geq 0$
 $y_1[n]=\frac{1}{4}(x_1[n]+x_1[n-1]+x_1[n-2]+x_1[n-3])$

Since xI[n] = x[n] for n>0, + te Holded outputs will be the same when n-370

~	-1	0	1	2	3	4
1.2	4.029	6,809	7.927	7.927	6.803	2
ALUJ ALUJE		2,780	4.29	5.338	6.899	S
y, en J	0		1			

$$\chi(\pm)=\pm \frac{5}{2}$$

$$X(f) = 5 - 1$$

d)
$$X(t) = 2 + 4t^{-1} + 6t^{-2} + 4t^{-3} + 2t^{-4}$$

 $\times [n] = 28[n] + 48[n-1] + 68[n-2] + 48[n-3] + 18[n-4]$

e)
$$\chi(z) = 1 - 2z^{-1} + 3z^{-3} - z^{-5}$$

 $\chi(n) = \{[n] - 2\}[n-1] + 3\{[n-3] - 3[n-5]$

(3)
$$\theta H(z) = \frac{\chi(z)}{\chi(z)} = \frac{z^{-1}}{1-z^{-1}-z^{-2}} \rightarrow \theta - \chi[u] = \chi[u-1] + \chi[u-1]$$

poles of HIE) are at $2=(112)\pm(\sqrt{5}12)$. HIE) has a zero at 2=0. h[n] B causal, the ROC for HIE) has to be $1\pm1.7(412)+(\sqrt{5}12)$

$$\frac{(3)}{(1+1)} = \frac{1}{(1+1)} = \frac{1}{(1+1)^{2}} = \frac{1}{(1+1)^{2}}$$

- (4) a) $I[n] = I[n-2] \Rightarrow floor is a delay by 2$ y[n] = u[n-3] u[n-6]To find x[n] we read to "un-delay" y[n]. =) x[n] = u[n-1] u[n-4]
 - b) First difference FIR => h[n]= S[n]-S[n-1]

 The first -difference filter has a nontero output at n when x[n] 1x[n-1] are not equal.

 If y[n] = S[n] S[n-4], then the mout x[n] changes value at n=0 and n=4. At n=0, it jumps up by one; at n=4, it jumps down.
 - Tump up one by one
 - c) u pt averager $: y^{[n]} = \frac{1}{u} \left(x^{[n]} + x^{[n-1]} + x^{[n-2]} + x^{[n-3]} \right)$ If $y^{[n]} = -58 [n] 58 [n-2]$ $y^{[n]} = 0 = \frac{1}{u} \left(x^{[n]} + x^{[n-2]} + x^{[n-2]} + x^{[n-2]} \right) = \frac{1}{u} x^{[n]} 5$ $y^{[n]} = 0 = \frac{1}{u} \left(x^{[n]} + x^{[n]} + x^{[n-2]} + x^{[n-2]} \right) = x^{[n]} = -10$ $y^{[n]} = 0 = \frac{1}{u} \left(x^{[n]} + x^{[n]} + x^{[n]} + x^{[n]} + x^{[n]} \right) = x^{[n]} = -10$ $y^{[n]} = 0 = \frac{1}{u} \left(x^{[n]} + x^{[n]} + x^{[n]} + x^{[n]} + x^{[n]} \right) = x^{[n]} = -10$ $y^{[n]} = 0 = \frac{1}{u} \left(x^{[n]} + x^{[n]} + x^{[n]} + x^{[n]} + x^{[n]} \right) = x^{[n]} = -10$ $y^{[n]} = 0 = \frac{1}{u} \left(x^{[n]} + x^{[n]} + x^{[n]} + x^{[n]} + x^{[n]} \right) = x^{[n]} = -10$ $y^{[n]} = 0 = \frac{1}{u} \left(x^{[n]} + x^{[n]} + x^{[n]} + x^{[n]} + x^{[n]} \right) = x^{[n]} = -10$ $y^{[n]} = 0 = \frac{1}{u} \left(x^{[n]} + x^{[n]} + x^{[n]} + x^{[n]} + x^{[n]} \right) = x^{[n]} = -10$ $y^{[n]} = 0 = \frac{1}{u} \left(x^{[n]} + x^{[n]} + x^{[n]} + x^{[n]} + x^{[n]} \right) = x^{[n]} = -10$ $y^{[n]} = 0 = \frac{1}{u} \left(x^{[n]} + x^{[n]} + x^{[n]} + x^{[n]} + x^{[n]} \right) = x^{[n]} = -10$ $y^{[n]} = 0 = \frac{1}{u} \left(x^{[n]} + x^{[n]} + x^{[n]} + x^{[n]} + x^{[n]} \right) = x^{[n]} = -10$ $y^{[n]} = 0 = \frac{1}{u} \left(x^{[n]} + x^{[n]} + x^{[n]} + x^{[n]} + x^{[n]} \right) = x^{[n]} = -10$ $y^{[n]} = 0 = \frac{1}{u} \left(x^{[n]} + x^{[n]} + x^{[n]} + x^{[n]} + x^{[n]} \right) = x^{[n]} = -10$ $y^{[n]} = 0 = \frac{1}{u} \left(x^{[n]} + x^{[n]} + x^{[n]} + x^{[n]} + x^{[n]} \right) = x^{[n]} = -10$ $y^{[n]} = 0 = \frac{1}{u} \left(x^{[n]} + x^$

a)
$$b_1 = b_2 = 0$$
, $b_1 = b_2$

H(e)w) = $b_1 e^{-\int u^2 + b_2} e^{-2\int u} = 2 b_1 e^{-\int 3u d^2} cos(u) = 0$

[H(e)w) = 21bl | cos(u)21|

b)
$$b_1 = b_2 = 0$$
, $b_2 = b_3$
 $|H(e^{\pi u})| = b_1 + b_3 e^{-3\pi u} = 2b_0 e^{-3\pi u/2} \cos(3u/2)$
 $|H(e^{\pi u})| = 2|b_0|\cos(3u/2)|$

c)
$$b = b_1 = b_3$$

 $H(e^{\int u}) = b_1 + b_1 e^{-\int u} + b_2 e^{-\int u} + b_3 e^{-\int u} = 2b_0 e^{-\int u u |2}$
 $(2u(u)) = 2u(u) |2u(u)| |2u(u)|$

H(e) =
$$b_1 = b_2 = -b_3$$

H(e) = $b_1 = b_2 = -b_3$
H(e) = $b_2 = -b_3$
H(e) + $b_3 = -2$ + $b_4 = -3$ + $b_5 = -3$ + $b_6 = -3$ +

ecopys:

a) The system is stable because
$$\int |h(t)| dt \perp \infty$$

I $\int_{-\infty}^{+\infty} |h(t)| dt = \int_{0}^{12} |e^{-0.1(t-2)}| dt \perp \int_{0}^{12} dt = 10 \perp \infty$

$$(H(e^{\int \omega}) = \frac{1}{2\pi} (H_{\perp}(e^{\int \omega}) + \{2\pi \delta(\omega - \pi 12) + 2\pi \delta(\omega + \pi 12)\}$$

$$H_{1}(e^{\int u}) = \begin{cases} L, & |u| \leq L \\ 0, & we \leq L |u| \leq T \end{cases}$$

where
$$n_{L}[n] = \frac{sin (wen)}{\pi n}$$

a) when
$$w_c = \pi 15$$
, $h \ln 3 = 2 \frac{\epsilon m (\pi n 15)}{\pi n} cos(\pi n 12)$

b) when
$$wc = \pi 14$$
, $h \ln 3 = 2 \frac{sm (\pi n 14)}{\pi n}$ cos($\pi n 12$)

c) when
$$\omega c = T113$$
, $h[n] = 2 sm (TIN13) cos (TIN12)$

- 8) a) Linear, stable
 - b) menayless, theor, causal, stable
 - c) linear
 - d) theor, consal, stable
 - e) The invariant, linear, causal, stable
 - f) theor, stable
 - g) Time invariant, linear, causal

g) a)
$$H(2) = \frac{1}{1+2^{-5}}$$

b) FIVE POLES FIND roots of
$$2^{5}+1=0$$

$$2=e^{\sqrt{11}/5}, e^{\sqrt{2}\sqrt{11}/5}, e^{\sqrt{1}/5}, e^{-\sqrt{11}/5}, e^{-\sqrt{2}\sqrt{11}/5}$$

$$36^{\circ}$$
100°

- d) PERIOD=10 which can be determined from the plot above
- 10) wing the properties of Fourier Transform, we obtain $Y(\Gamma u) = X_1(\Gamma u) X_2(\Gamma u)$

Therefore Y(nu)=0 for |w| > 100011-7hB implies that
the Nyquist rate for y(t) is 2×100011=200011.
Therefore the sampling period T can at not be 2111 (2001)
=10-3 sec. Therefore we have to use 7×10-3 sec in order to
be able to recover y(t) from y(t).