Assignment #9

Elliot Smith 10/28/2018

Loading required package: stats4

Loading required package: evd

Warning: package 'evd' was built under R version 3.4.4

Problem 1

Part i

Part ii

Part iii

Part iv

Part v

Problem 2

$$\begin{split} & [\bar{y}_{\cdot j}|\theta_j,\sigma_j] \overset{indep}{\sim} N(\theta_j,\sigma_j^2), \qquad j=1,...,J \\ & [\theta_j|\mu,\sigma_\theta] \overset{iid}{\sim} N(\mu,\sigma_\theta^2), \qquad j=1,...,J \\ & p(\mu,\theta) = p(\mu)p(\theta), \qquad p(\mu) \propto 1, \qquad [\sigma_\theta] \sim Uniform(0,A), \qquad A=100 \end{split}$$

Part i - BDA Exercise 5.3

Part a

According to Formula 5.21 on BDA page 117, we have the following form for $p(\tau|y)$:

$$p(\tau|y) \propto p(\tau)V_{\mu}^{-1/2} \prod_{j=1}^{J} (\sigma_j^2 + \tau^2)^{-1/2} exp\left(-\frac{(\bar{y}_{\cdot,j} - \hat{\mu})^2}{2(\sigma_j^2 + \tau^2)}\right)$$

The following will allow us to substitute into the equation, from Formula 5.20 on BDA page 117:

$$\hat{\mu} = \frac{\sum_{j=1}^{J} \frac{1}{\sigma_j^2 + \tau^2} \bar{y}_{\cdot j}}{\sum_{j=1}^{J} \frac{1}{\sigma_j^2 + \tau^2}} V_{\mu}^{-1} = \sum_{j=1}^{J} \frac{1}{\sigma_j^2 + \tau^2}$$

Marginal Posterior Density

Histogram of post_sig_theta

schools	prob_max	A	В	С	D	Е	F	G	H
A	0.2661	_	0.6441	0.6865	0.6508	0.7424	0.7082	0.5322	0.6174
В	0.1037	0.3559	_	0.5761	0.5152	0.6382	0.5898	0.3791	0.4831
С	0.0807	0.3135	0.4239	_	0.4411	0.5517	0.5054	0.3245	0.418
D	0.0995	0.3492	0.4848	0.5589	_	0.625	0.5708	0.3741	0.4787
E	0.0488	0.2576	0.3618	0.4483	0.375		0.4504	0.2651	0.3642
F	0.0649	0.2918	0.4102	0.4946	0.4292	0.5496	_	0.3105	0.4009
G	0.2015	0.4678	0.6209	0.6755	0.6259	0.7349	0.6895		0.5962
Н	0.1348	0.3826	0.5169	0.582	0.5213	0.6358	0.5991	0.4038	_

Part b

Part c

BLAH BLAH

Part d

BLAH BLAH

Part ii

Part iii

Code Appendix