10. Problem sheet for **Statistical Data Analysis**

Exercise 1 (8 Points)

Let $A = U\Sigma V^t$ be the singular value decomposition of $A \in \mathbb{R}^{m\times n}$ with m < n and singular values $\sigma_1 \ge \cdots \ge \sigma_p$ für $p = \min(m, n)$. Let u_1, \ldots, u_m and v_1, \ldots, v_n denote the columns of U and V respectively. Show that

$$\mathbf{Ker}(A) = \langle v_{r+1}, \dots, v_n \rangle$$
 and $\mathbf{Im}(A) = \langle u_1, \dots, u_r \rangle$.

Exercise 2 (8 Points)

Determine the SVD of the matrix

$$A = \begin{bmatrix} -1 & -1 \\ 2 & 2 \\ -1 & 1 \end{bmatrix} \tag{1}$$

without the help of a computer and write down all the steps of the calculation.

1