Package 'ifm'

May 21, 2016

Title Set of functions for financial evaluation of Software Projects

Type Package

Version 1.0	
Date 2016-04-20	
Author Eber Schmitz	
Maintainer Alexandre Costa <afcosta@br.ibm.com> and Antoanne Pontes <antoanne@ufrj.br> and Eduardo Chiote <eduardochiote@gmail.com></eduardochiote@gmail.com></antoanne@ufrj.br></afcosta@br.ibm.com>	
Description R packeage with a set of functions for financial evaluation of Software Project.	
License LGPL (>= 2.1)	
<pre>URL https://github.com/afcosta-ibm/ifm</pre>	
BugReports https://github.com/afcosta-ibm/ifm/issues	
NeedsCompilation no	
RoxygenNote 5.0.1	
Imports igraph, XLConnect	
R topics documented:	
ifm-package	
cpm	
cpm.all.schedule	
discounted.csf	
draw.cfs	
draw.graph	7
excel.list.to.xls	
excel.xls.to.list	
ifir	
mmf.all.sequences	
mmf.get.breakeven	
mmf.get.selffunding	
mmf.max.npv	
mmf nny	1.4

_																													ر ح	ρ
	net.future.value . net.present.value schedules.1r																													16
Index																														17
ifm-	package	Set	of j	fur	ıct	ior	ıs.	fo	r fi	ine	ano	cia	ıl e	eve	alı	ıa	tio	n	of	Sc	oftv	va	re	P	ro,	— jec	cts			

cnm

Description

R packeage with a set of functions for financial evaluation of Software Project.

Details

2

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

~~ An overview of how to use the package, including the most important functions ~~

Author(s)

Eber Schmitz

Maintainer: Alexandre Costa <afcosta@br.ibm.com> and Antoanne Pontes <antoanne@ufrj.br> and Eduardo Chiote <eduardochiote@gmail.com>

References

~~ Literature or other references for background information ~~

See Also

~~ Optional links to other man pages, e.g. ~~

Examples

examples here...

cpm

The critical path method (CPM) is a step-by-step project management technique for process planning that defines critical and non-critical tasks with the goal of preventing time-frame problems and process bottlenecks#' activities are "critical," meaning that they have to be done on time or else the whole project will take longer.

Description

The Critical Path Method or Critical Path Analysis, is a mathematically based algorithm for scheduling a set of project activities.

CPM will get how long your complex project will take to complete and which activities are "critical," meaning that they have to be done on time or else the whole project will take longer.

cpm.all.schedule 3

Usage

```
cpm(activities.duration = c(1, 4, 5, 7, 2, 3, 1), activities.successors = list(c(2, 3), 4, c(4, 5), 6, 7, 7, c(0)))
```

Arguments

```
activities.duration
```

Vector with activities duration.

activities.successors

Vector with dependencies between activities.

Value

Returns list of EST (Early Start Time), EFT(Early Finish Time), LST(Lately Start Time), LFT (Lately Finish Time) using Forward Pass and Backward Pass

See Also

```
Other scheduling: cpm.all.schedule, mmf.all.sequences, mmf.get.breakeven, mmf.get.selffunding, mmf.npv
```

Examples

```
ex.cpm.activities.duration <- c(1,4,5,7,2,3,1)
ex.cpm.activities.successors <- list(c(2,3), 4, c(4,5), 6, 7, 7, c(0))
ex.cpm <- cpm(ex.cpm.activities.duration,
ex.cpm.activities.successors)
```

cpm.all.schedule

Generates all possible schedules for a cpm network

Description

Generates all possible schedules for a cpm network

Usage

```
cpm.all.schedule(est, slack)
```

Arguments

est early start time vector

slack activities slack

Value

Matrix with all mininum makespan (the time to complete all jobs) cpm start time schedules

See Also

```
Other scheduling: cpm, mmf.all.sequences, mmf.get.breakeven, mmf.get.selffunding, mmf.npv
```

4 discount.rate.vector

Examples

Description

Generate a vector with discount rate to be applied to each of the time periods.

Usage

```
discount.rate.vector(interest.rate, number.of.periods,
  begin.of.period = FALSE)
```

Arguments

interest.rate A number that represents the nominal Interest Rate, presented by year. number.of.periods

Times that interest rate should be applied.

begin.of.period

A boolean that represents if the Tax Rate will be applied at the begining of period. FALSE by default, represents that Tax Rate will be applied at second period .

Value

vector with discount rates

See Also

Other financial: discounted.csf, draw.cfs, ifir, net.future.value, net.present.value

discounted.csf 5

Examples

```
ex.disc.vector <- discount.rate.vector(0.0619, 12)</pre>
```

discounted.csf

The cash flows incomes/outcomes applying the Tax Rate to the present

Description

The cash flows incomes/outcomes applying the Tax Rate to the present time.

Usage

```
discounted.csf(cfs = c(-350, 100, 200, 150, 75), interest.rate = 0.0619, begin.of.period = FALSE)
```

Arguments

cfs

A vector with a series of cash flows.

interest.rate

A number that represents the nominal Interest Rate, presented by year.

begin.of.period

A boolean that represents if the Tax Rate will be applied at the begining of period. FALSE by default, the Tax Rate will be applied to the second period.

Value

The vector of cash flows incomes/outcomes applying the Tax Rate to the present time.

See Also

Other financial: discount.rate.vector, draw.cfs, ifir, net.future.value, net.present.value

```
ex.disc.csf <- discounted.csf(c(-350,100,200,150,75), 0.0619, FALSE)
```

6 draw.cfs

draw.cfs

Draw the graph of cash flow

Description

Draw the graph of cash flow in order to facilitate the study and the effects of the analysis of a certain application.

Cash flow is a mathematical concept that can be plotted in order to facilitate the study and the effects of the analysis of a certain

application, which may be an investment loan, finance, etc.

Normally a cash flow contains inputs and outputs of capital, marked in

the timeline starting at t = 0.

A typical example is the graph that represents a bank loan held by a form of business that shall return this loan in n equal installments over

the following months.

```
E1 E2 E3 ... En-1 En

I

0 1 2 3 ... n-1 n

I I I

V V V

S1 S2 S3 ... Sn-1 Sn
```

Is possible to note that the value is entered in the company's cash (cash was positive) and S1, S2, ..., Sn are the values of the parcels will leave

the company's cash (negative).

The fact that each arrow is pointing upward (positive) or down (negative), it is assumed by convention, and the cash flow will depend on who receives or pays the Capital at a certain time, and:

t = 0 indicates the current day;

Ek is the capital input at a time k;

Sk is the capital output at a time k.

Usage

```
draw.cfs(cfs, gt = "Cash Flow Graphic", to.file = FALSE,
    filename = "output/draw.cfs.graph.png")
```

Arguments

cfs A vector with a series of cash flows.

gt A title for the graph.

to.file Save or not the graph in the file

filename File's name

draw.graph 7

Value

A plot with cash flow series

See Also

Other financial: discount.rate.vector, discounted.csf, ifir, net.future.value, net.present.value

Examples

```
ex.cfs <- c(-2000,1000,1500,-500,500)
draw.cfs(ex.cfs,'My Cash Flow')
```

draw.graph

Draw the graph imported from the spreadsheet.

Description

This function is responsible for ploting the graph based on the edges and export the image to a file.

Usage

```
draw.graph(edges = c(1, 2, 1, 3, 2, 3))
```

Arguments

edges

- A vector defining the edges, the first edge points from the first element to the second, the second edge from the third to the fourth, etc.

Value

graph.image.path - The path to the generated graph file.

```
ex.graph.image.path <- draw.graph(c(1,2, 1,3, 2,3, 3,4))
```

8 excel.xls.to.list

excel.list.to.xls

Export the generated ifm package results to a spreadsheet.

Description

This function is responsible for reading a list of objects and export a spreadsheet with the results processed by the IFM package. The file contains:

- The raw data frame used to calculate the maxNPV, minSF and minBKE;
- The image oh the generated graph;
- The image oh the "Discounted Cash x Time" chart;
- The image oh the "MPV (ca\$h) x Schedulling ID" chart;
- The image on the "Self Funding (time) x Schedulling ID" chart;
- The image oh the "Breaking Event (time) x Schedulling ID" chart;

Arguments

```
list.ifm.result
```

The list with all results processed by the IFM package.

Value

file.path The path to the generated file.

See Also

```
Other utility: excel.xls.to.list
```

Examples

```
ex.file.path <- excel.list.to.xls(list.ifm.result)</pre>
```

excel.xls.to.list

Extract a list of variables from the spreadsheet to be used on the maxNPV function.

Description

This function is responsible for reading a spreadsheet representing the project, and return a list with the following information (in this order): The interest rate, the list of activities, the list of durations of activities, the list of predecessors of activities and the matrix that represents the cash flow series

Arguments

```
xls.spreadsheet.path
```

The complete path to the spreadsheet that represents the project.

ifir 9

Value

List of variables to be used on the maxNPV function.

See Also

```
Other utility: excel.list.to.xls
```

Examples

```
ex.sheet.data <- excel.xls.to.list("../resources/spreadsheet.xls")</pre>
```

ifir

Calculate the Inflation-free Interest Rate.

Description

Calculate the Inflation-free Interest Rate.

Usage

```
ifir(interest.rate = 0.1425, inflation.rate = 0.0759)
```

Arguments

```
interest.rate A number that represents the nominal Interest Rate, presented by year. inflation.rate A number that represents the Inflation Rate, presented by year.
```

Value

Returns the inflation-free interest rate

See Also

Other financial: discount.rate.vector, discounted.csf, draw.cfs, net.future.value, net.present.value

```
ex.ifir <- inflation.free.interest.rate(0.1425, 0.0759)</pre>
```

10 mmf.df.1r

Description

Generates the list of all possible MMF sequences (topsorts), constrained by the predecessors.

Usage

```
mmf.all.sequences(predecessors = 0)
```

Arguments

predecessors List of Predecessors - Zero for none. The index of the list of predecessors rep-

resents the id of MMF and the value.

in that position the id of MMF's predecessors. For instance, in list(0,1,2,3,1,5,c(4,6)),

we have for MMF 1, predecessor MMF 0; for MMF 2,

predecessor MMF 7, predecessors 4 and 6.

Value

List of all possible MMF sequences.

See Also

Other scheduling: cpm.all.schedule, cpm, mmf.get.breakeven, mmf.get.selffunding, mmf.npv

Examples

```
ex.activities.predecessors<-list(0,1,2,3,1,5,c(4,6)) ex.mmf.seq <- mmf.all.sequences(ex.activities.predecessors)
```

```
mmf.df.1r Generates a data frame with Sequence, Schedule, NPV, Breakeven and Self Funding
```

Description

Generates a data frame with Sequence, Schedule, NPV, Breakeven and Self Funding

Usage

```
mmf.df.1r(mmf.seq, mmf.sched, mmf.npv, npv.selffunding, npv.breakeven)
```

Arguments

```
mmf.seq A list of sequences
mmf.sched A list of schedules
mmf.nvp A list of NPV values
```

mmf.get.breakeven 11

Examples

```
ex.sheet.data <- excel.xls.to.list("resources/spreadsheet.xls")</pre>
ex.sheet.data.interest.rate <- ex.sheet.data[[1]]</pre>
ex.sheet.data.activities <- ex.sheet.data[[2]]</pre>
ex.sheet.data.durations <- ex.sheet.data[[3]]</pre>
ex.sheet.data.predecessors <- ex.sheet.data[[4]]</pre>
ex.sheet.data.cfs <- ex.sheet.data[[5]]</pre>
ex.mmf.seq <- mmf.all.sequences(ex.sheet.data.predecessors)</pre>
ex.mmf <- mmf.npv(ex.sheet.data.cfs,</pre>
                    ex.sheet.data.durations,
                    ex.mmf.seq,
                    ex.sheet.data.interest.rate)
ex.mmf.shedules <- ex.mmf[['shedules']]</pre>
ex.mmf.npv <- ex.mmf[['npv']]</pre>
ex.mmf.df.1r <- mmf.df.1r(ex.mmf.seq,</pre>
                            ex.mmf.schedules,
                            ex.mmf.npv,
                             ex.mmf.npv.selffunding,
                             ex.mmf.npv.breakeven)
```

mmf.get.breakeven

Get a list with all Breakeven points from CFS

Description

Get a list with all Breakeven points from CFS

Usage

```
mmf.get.breakeven(mmf.cfs)
```

Arguments

mmf.cfs A list with a vector with a series of cash flows for each MMF sechedule.

Value

A list with all Breakeven points for each MMF

See Also

```
Other scheduling: cpm.all.schedule, cpm, mmf.all.sequences, mmf.get.selffunding, mmf.npv
```

12 mmf.get.selffunding

Examples

mmf.get.selffunding Get a list with all Selffunding points from CFS

Description

Get a list with all Selffunding points from CFS

Usage

```
mmf.get.selffunding(mmf.cfs)
```

Arguments

mmf.cfs A list with a vector with a series of cash flows for each MMF sechedule.

Value

A list with all Selffunding points for each MMF

See Also

Other scheduling: cpm.all.schedule, cpm, mmf.all.sequences, mmf.get.breakeven, mmf.npv

```
ex.sheet.data <- excel.xls.to.list("resources/spreadsheet.xls")
ex.sheet.data.interest.rate <- ex.sheet.data[[1]]
ex.sheet.data.activities <- ex.sheet.data[[2]]
ex.sheet.data.durations <- ex.sheet.data[[3]]
ex.sheet.data.predecessors <- ex.sheet.data[[4]]
ex.sheet.data.cfs <- ex.sheet.data[[5]]
ex.mmf.seq <- mmf.all.sequences(ex.sheet.data.predecessors)</pre>
```

mmf.max.npv 13

mmf.max.npv

Return Max NPV

Description

this function identifies the sequence of activities and respectivies schedules where with the optimized NPV

Usage

```
mmf.max.npv(mmf.npv, mmf.seq, mmf.schedules)
```

Arguments

mmf.npv Vector of Net Present Value
mmf.seq Vector with the sequence of activities
mmf.sched Vector with the collection of possible schedules

Value

list with NPV, sequence and scheduleof the sequence with the maximum NPV

14 mmf.npv

mmf.npv	Calculates NPV for all schedules	
---------	----------------------------------	--

Description

Calculates NPV for all schedules

Usage

```
mmf.npv(cfs, durations, all.sequences, interest.rate, begin.of.period = FALSE)
```

Arguments

cfs A vector with a series of cash flows.

durations A vector with a list of activities durations.

all.sequences List of all possible MMF sequences.

interest.rate A number that represents the nominal Interest Rate, presented by year.

Value

A list with all shedules, all npv csf and sum of each npv.

See Also

Other scheduling: cpm.all.schedule, cpm, mmf.all.sequences, mmf.get.breakeven, mmf.get.selffunding

```
# Loading data from XLS
ex.sheet.data <- excel.xls.to.list("../resources/spreadsheet.xls")</pre>
ex.sheet.data.interest.rate <- ex.sheet.data[[1]]</pre>
ex.sheet.data.activities <- ex.sheet.data[[2]]</pre>
ex.sheet.data.durations <- ex.sheet.data[[3]]</pre>
ex.sheet.data.predecessors <- ex.sheet.data[[4]]</pre>
ex.sheet.data.cfs <- ex.sheet.data[[5]]</pre>
# Generating all possible implementation sequences
ex.mmf.seq <- mmf.all.sequences(ex.sheet.data.predecessors)</pre>
# Calculating NVP to all possible sequences
ex.mmf.npv <- mmf.max.npv(ex.sheet.data.cfs,</pre>
                             ex.sheet.data.durations,
                             ex.mmf.seq,
                             ex.sheet.data.interest.rate)
\mbox{\tt\#} Selecting sequence ID which \mbox{\tt max} NPV
ex.mmf.npv.max <- which.max(ex.mmf.npv[[3]])</pre>
ex.mmf.sched <- ex.mmf.npv[[1]]</pre>
ex.mmf.npv <- ex.mmf.npv[[2]]</pre>
ex.mmf.npv.sum <- ex.mmf.npv[[3]]</pre>
```

net.future.value

```
# Index of sequence with max NPV
# ex.mmf.npv.max <- which.max(ex.mmf.npv.sum)

# Value of max NPV
ex.mmf.npv.max.value <- ex.mmf.npv.sum[[ex.mmf.npv.max]]

# Sequence with best NPV
ex.mmf.npv.max.sequence <- ex.mmf.seq[ex.mmf.npv.max]

# Schedule of sequence with best NPV
ex.mmf.npv.max.sched <- ex.mmf.sched[ex.mmf.npv.max]</pre>
```

net.future.value

Net Future Value is a combination of different future values from different times, all which are put into one larger present value.

Description

Net Future Value is a combination of different future values from different times, all which are put into one larger present value.

Usage

```
net.future.value(cfs = c(-350, 100, 200, 150, 75), interest.rate = 0.0619, begin.of.period = TRUE)
```

Arguments

cfs A vector with a series of cash flows.

interest.rate A number that represents the nominal Interest Rate, presented by year. begin.of.period

A boolean that represents if the Tax Rate will be applied at the begining of period. FALSE by default.

Value

A future value of a cash flow series.

See Also

Other financial: discount.rate.vector, discounted.csf, draw.cfs, ifir, net.present.value

```
ex.nfv \leftarrow net.future.value(c(-350,100,200,150,75), 0.0619, TRUE)
```

16 schedules.1r

net.present.value

Difference between the present values of cash inflows and outflows

Description

calculates the difference between the present values of cash inflows and outflows.

Usage

```
net.present.value(cfs = c(-350, 100, 200, 150, 75), interest.rate = 0.0619,
  begin.of.period = TRUE)
```

Arguments

cfs A vector with a series of cash flows.

interest.rate A number that represents the nominal Interest Rate, presented by year.

begin.of.period

A boolean that represents if the Tax Rate will be applied at the begining of period. FALSE by default, the Tax Rate will be applied to the second period.

Value

The sum of cash flows incomes/outcomes applying the Tax Rate to the present time

See Also

Other financial: discount.rate.vector, discounted.csf, draw.cfs, ifir, net.future.value

Examples

```
ex.npv <- net.present.value(c(-350,100,200,150,75), 0.0619, TRUE)
```

schedules.1r

Generates all schedules for ONE resource, Denne Method.

Description

Generates all schedules for ONE resource, Denne Method.

Usage

```
schedules.1r(sequences, durations)
```

Arguments

sequences All sequences

durations Duration of activities

Index

*Topic activities	*Topic marketable
cpm, 2	mmf.all.sequences, 10
cpm.all.schedule,3	mmf.get.breakeven, 11
mmf.all.sequences, 10	mmf.get.selffunding, 12
mmf.npv, 14	mmf.npv, 14
*Topic breakeven	*Topic maxNPV
mmf.get.breakeven, 11	excel.list.to.xls,8
*Topic cash	excel.xls.to.list,8
discounted.csf, 5	*Topic minimum
draw.cfs, 6	${\tt mmf.all.sequences, 10}$
*Topic critical	mmf.get.breakeven, 11
cpm, 2	mmf.get.selffunding, 12
cpm.all.schedule, 3	mmf.npv, 14
*Topic discount	*Topic npv
<pre>discount.rate.vector, 4</pre>	mmf.max.npv, 13
*Topic draw ,	*Topic package
draw.cfs, 6	ifm-package, 2
*Topic drawGraph	*Topic path,
draw.graph, 7	cpm, 2
*Topic draw	cpm.all.schedule, 3
draw.graph,7	*Topic presentValue
*Topic excel	net.present.value, 16
excel.list.to.xls,8	*Topic project
excel.xls.to.list,8	cpm, 2
*Topic features ,	cpm.all.schedule, 3
mmf.all.sequences, 10	mmf.all.sequences, 10
mmf.get.breakeven, 11	mmf.npv, 14
mmf.get.selffunding, 12	*Topic rate ,
mmf.npv, 14	discount.rate.vector,4
*Topic flow	*Topic rate
discounted.csf, 5	discount.rate.vector,4
draw.cfs, 6	ifir,9
*Topic futureValue	*Topic scheduling,
net.future.value, 15	cpm, 2
*Topic graph	cpm.all.schedule, 3
draw.graph, 7	mmf.all.sequences, 10
*Topic inflation-free,	mmf.get.breakeven, 11
ifir,9	mmf.get.selffunding, 12
*Topic interest	mmf.npv, 14
discount.rate.vector,4	*Topic selffunding
ifir,9	mmf.get.selffunding, 12
*Topic list.to.xls	*Topic series
excel.list.to.xls,8	discounted.csf, 5

18 INDEX

```
draw.cfs, 6
*Topic xls.to.list
    excel.xls.to.list, 8
cpm, 2, 3, 10–12, 14
cpm.all.schedule, 3, 3, 10-12, 14
cpm_all_schedule(cpm.all.schedule), 3
critical.path.method(cpm), 2
critical_path_method(cpm), 2
disc (discount.rate.vector), 4
discount.rate.vector, 4, 5, 7, 9, 15, 16
discounted.csf, 4, 5, 7, 9, 15, 16
discounted_csf (discounted.csf), 5
discountedCsf (discounted.csf), 5
draw.cfs, 4, 5, 6, 9, 15, 16
draw.graph, 7
draw_cfs (draw.cfs), 6
draw_graph (draw.graph), 7
drawCfs (draw.cfs), 6
drawGraph (draw.graph), 7
excel.list.to.xls, 8, 9
excel.xls.to.list, 8,8
excel_list_to_xls (excel.list.to.xls), 8
excel_xls_to_list (excel.xls.to.list), 8
excelListToXls (excel.list.to.xls), 8
excelXlsToList (excel.xls.to.list), 8
genAllCpmSched (cpm.all.schedule), 3
IFIR (ifir), 9
IfIR (ifir), 9
ifir, 4, 5, 7, 9, 15, 16
ifm (ifm-package), 2
ifm-package, 2
inflation.free.interest.rate(ifir), 9
mmf.all.sequences, 3, 10, 11, 12, 14
mmf.df.1r, 10
mmf.get.breakeven, 3, 10, 11, 12, 14
mmf.get.selffunding, 3, 10, 11, 12, 14
mmf.max.npv, 13
mmf.npv, 3, 10–12, 14
mmf_all_sequences (mmf.all.sequences),
         10
mmf_npv (mmf.npv), 14
net.future.value, 4, 5, 7, 9, 15, 16
net.present.value, 4, 5, 7, 9, 15, 16
nfv (net.future.value), 15
npv (net.present.value), 16
schedules.1r, 16
```