	EAIiIB	Aleksander Lis	iecki	Rok	Grupa	Zespół						
	Informatyka	Natalia Materel	Natalia Materek II 2									
Ī	Pracownia	Temat:	Temat:									
	FIZYCZNA	FIZYCZNA										
	WFiIS AGH	Mosiek wneasi	Mostek Wheastone'a									
Ī	Data wykonania:	Data oddania:	Zwrot do poprawki:	Data oddania:	Data zaliczenia:	OCENA:						
	18.12.2016	21.12.2016										

Ćwiczenie nr 32: Mostek Wheastone'a

1 Cel ćwiczenia

Celem ćwiczenia było zapoznanie z zasadą działania mostka Wheatstone'a w oparciu o prądowe i napięciowe prawo Kirchoffa służące do opisu złożonych obwodów elektrycznych oraz metody pomiaru nieznanych oporów oraz ich połączeń szeregowych i równoległych zgodnie z prawem Ohma.

2 Wstęp teoretyczny

Mostek Wheatstone'a jest jednym z klasycznych sposobów dokładnego pomiaru nieznanego oporu elektrycznego. Załóżmy, że mamy nieznany opór R_x , znane opory R_a , R_b oraz regulowaną opornicę dekadową o oporze R_2 . Zestawiamy następujący obwód: do szeregowego połączenia oporów R_x , R_2 przyłączamy równolegle połączenie szeregowe R_a , R_b . Węzły pomiędzy wspomnianymi parami oporów łączymy galwanometrem. Po przyłożeniu do układu różnicy potencjałów możemy regulować R_2 tak, aby galwanometr wskazywał 0, czyli brak różnicy potencjałów, a co za tym idzie i brak przepływu prądu między odpowiednimi węzłami. Wtedy z praw Ohma i Kirchhoffa możemy wyprowadzić następujące wzory:

$$I_a \cdot R_a = I_x \cdot R_x \tag{1}$$

$$I_b \cdot R_b = I_d \cdot R_2 \tag{2}$$

gdzie

 I_a natężenie prądu na odcinku A[A]

 I_b natężenie prądu na odcinku B[A]

 R_a opór na odcinku A[Ω]

 R_b opór na odcinku B[Ω]

 R_x opór nieznany[Ω]

 R_2 opór regulowanej opornicy dekadowej[Ω]

Ze wzorów 1 i 2 wynika równość spadków napięć na odpowiednich oporach oraz równość odpowiednich natężeń prądów, czyli:

$$I_a = I_b$$

$$I_x = I_d$$

gdzie

 I_d natężenie [A]

 I_x natężenie [A]

Stąd można wyprowadzić wyrażenie na R_x :

$$R_x = R_a \frac{I_a}{I_x} = R_a \frac{I_b}{I_d} = R_2 \frac{R_a}{R_b}$$
 (3)

Ponieważ R_a i R_b są oporami odcinków tego samego jednorodnego drutu, ich wielkości są proporcjonalne do długości:

$$\frac{R_a}{R_b} = \frac{a}{b} = \frac{a}{l-a} \tag{4}$$

gdzie

a długość odcinka AD [m]

b długość odcinka DC [m]

Ostatecznie otrzymujemy, że:

$$R_x = R_2 \frac{a}{l - a} \tag{5}$$

gdzie

 R_2 opór wzorcowy $[\Omega]$

a zmierzona długość na listwie [m]

Dokładność pomiaru mostkiem Wheatstone'a z drutem oporowym zależy przede wszystkim od błędu wyznaczenia odległości a. Aby pomiar był najdokładniejszy należy tak dobrać opór R_2 , aby stan równowagi mostka można było uzyskać w przybliżeniu w połowie długości drutu oporowego.

3 Układ pomiarowy

Układ mostka Wheatstone'a pokazany został na rysunku ??. W skład obwodu wchodzą:

- Listwa z drutem oporowym, zaopatrzona w podziałkę milimetrową i kontakt ślizgowy umożliwiający zmiany długości odcinków a i b.
- Opornica dekadowa
- Zestaw oporników oznaczony symbolem R_x , umieszczony na płytce z pleksiglasu.
- ullet Mikroamperomierz G jako wskaźnik zerowania mostka. Jego czułość można regulować.
- Zasilacz.

4 Przebieg doświadczenia

Przy przeprowadzaniu eksperymentu skorzystano z układu pomiarowego, którego schemat przedstawia rysunek $\ref{eq:constraint}$. Pomiędzy punktami A i C znajduje się listwa z drutem oporowym o znanej długości. R_2 jest opornikiem wzorcowym o regulowanej wartości oporu, a R_x nieznanym oporem, którego wartość chcemy wyznaczyć. Zrównoważenie mostka polega na takim ustawieniu punktu D, aby dla zadanej wartości R_2 przez galwanometr nie płynął prąd.

- Ustawienie oporu wzorcowego na opornicy dekadowej.
- Zrównoważenie mostka przez ustawienie kontaktu ślizgowego tak, aby dla zadanej wartości oporu przez galwanometr nie płynął prąd.
- Odczytanie wartości a na której zatrzymano kontakt ślizgowy.
- Czynności od 1 do 3 powtórzono dziesięciokrotnie dla oporników R_{x1} , R_{x2} oraz tych samych oporników połączonych szeregowo i równolegle.
- Wyznaczenie wartości nieznanych oporów na podstawie wzoru 5.
- \bullet Wyznaczenie $R_{\text{\'sr}}$ jako sumy arytmetycznej oporów z poszczególnych dziesięciu prób.

5 Wyniki pomiarów

Tablica 1: Opornik R_{x1}

Opór wzorcowy	102	60	50	40	30	20	15	95	70	25
a[mm]	121	184	226	262	321	425	477	131	173	379
$R_{x_1}[\Omega]$		13,53								
$\overline{R}_{x_1} \approx \dots \mid u(\overline{R}_{x_1}) \approx \dots$										

Tablica 2: Opornik R_{x2}

Opór wzorcowy	25	35	30	20	15	10	5	8	12	18
a[mm]	453	362	383	504	550	669	746	671	607	494
$R_{x_1}[\Omega]$		19,86								
$\overline{R}_{x_2} \approx \dots \mid u(\overline{R}_x)$	$(r_2) \approx$									

Tablica 3: Połączenie szeregowe R_{x1} i R_{x2}

Opór wzorcowy	20	18	15	12	22	25	30	35	40	45
a[mm]	642	617	688	703	588	562	530	478	445	422
$R_{x_1}[\Omega]$		28,00								
$\overline{R} \approx \mid u(\overline{R}) \approx$										

6 Opracowanie wyników pomiarów

Aby obliczyć opór nieznany R_x korzystamy z powyższego wzoru 5 Listwa ma długość 100 [cm].

Tablica 4: Połączenie równoległe R_{x1} i R_{x2}

Opór wzorcowy	12	15	18	20	23	27	10	8	6	3
a[mm]	444	383	321	309	290	246	468	522	549	716
$R_{x_1}[\Omega]$	9,583	9,311	8,510	8,944	9,394	8,809	8,797	8,736	7,304	7,563
$\overline{R} \approx u(\overline{R}) \approx$,									

Niepewność typu A oporu R_x wyznaczamy z następującego wzoru:

$$u(R_x) = \sqrt{\frac{\sum (R_i - \overline{R}_x)^2}{n(n-1)}}$$
 (6)

gdzie

 $u(R_x)$ niepewność pomiaru oporu $[\Omega]$

 R_i opór z i -tej próby $[\Omega]$

 \overline{R}_x wartość średnia oporu $[\Omega]$

n liczba prób

Po podstawieniu odpowiednich wartości otrzymujemy:

$$u(R_{x_1}) = \sqrt{\frac{(\dots - \dots)^2 + \dots + (\dots - \dots)^2}{10(10 - 1)}} \approx \dots \Omega$$

$$u(R_{x_2}) = \sqrt{\frac{(\dots - \dots)^2 + \dots + (\dots - \dots)^2}{10(10 - 1)}} \approx \dots \Omega$$

$$u(R_{z_s}) = \sqrt{\frac{(\dots - \dots)^2 + \dots (\dots - \dots)^2}{10(10 - 1)}} \approx \dots \Omega$$

$$u(R_{z_r}) = \sqrt{\frac{(\dots - \dots)^2 + \dots (\dots - \dots)^2}{10(10 - 1)}} \approx \dots \Omega$$

gdzie

 $u(R_x 1)$ niepewność pomiaru oporu dla opornika R_{x1} [Ω]

 $u(R_x 2)$ niepewność pomiaru oporu dla opornika R_{x2} [Ω]

 $u(R_{z_s})$ niepewność pomiaru oporu dla oporników R_{x1} i R_{x2} połączonych szeregowo[Ω]

 $u(R_{z_r})$ niepewność pomiaru oporu dla oporników R_{x1} i R_{x2} połączonych równolegle $[\Omega]$

6.1 Połączenie szeregowe

Wartość oporu przy połączeniu szeregowym można też obliczyć na podstawie wzoru na opór zastępczy oraz wyznaczonych wartości R_{x_1} i R_{x_2}

$$R_{obl} = R_{x_1} + R_{x_2} \approx \dots \Omega$$

Niepewność dla wartości wyliczanych ze wzorów na opór zastępczy w obwodzie z połączeniem szeregowym wyznaczamy z prawa przenoszenia niepewności i opisujemy wzorem:

$$u(R_{obl}) = \sqrt{\left(\frac{\delta R_{z_s}}{\delta R_{x_1}}\right)^2 u(R_{x_1})^2 + \left(\frac{\delta R_{z_s}}{\delta R_{x_2}}\right)^2 u(R_{x_2})^2}$$

$$= \sqrt{u(R_{x_1})^2 + u(R_{x_2})^2}$$

$$\approx \dots \Omega$$

gdzie

 $u(R_{\mathbf{obl}})$ niepewność oporu ... $[\Omega]$

6.2 Połączenie równoległe

Wartość oporu przy połączeniu równoległym można też obliczyć na podstawie wzoru na opór zastępczy oraz wyznaczonych wartości R_{x_1} i R_{x_2}

$$R_{z_r} = \frac{R_{x_1}R_{x_2}}{R_{x_1}+R_{x_2}} \approx \dots \Omega$$

$$u(R_{obl}) = \sqrt{\left(\frac{\delta R_{z_r}}{\delta R_{x_1}}\right)^2 u(R_{x_1})^2 + \left(\frac{\delta R_{z_r}}{\delta R_{x_2}}\right)^2 u(R_{x_2})^2}$$

$$= \sqrt{\left(\frac{R_{x_1}}{R_{x_1} + R_{x_2}}\right)^4 u(R_{x_1})^2 + \left(\frac{R_{x_2}}{R_{x_1} + R_{x_2}}\right)^4 u(R_{x_2})^2}$$

$$\approx 0$$

6.3 Porównanie wartości z pomiarów i wyznaczonych ze wzorów

	Opory zmierzone	Opory ze wzoru	
Połączenie szeregowe	Ω	Ω	
Połączenie równoległe	Ω) Ω	

7 Wnioski

- Opory wyznaczone w ćwiczeniu mają zbliżone wartości do obliczonych ze wzorów, jednak
 nie mieszczą się/mieszcza sie? w granicach niepewności pomiarowych (nawet w granicach
 niepewności rozszerzonej dla współczynnika rozszerzenia k = 2.).
- Błędy mogą wynikać ze złego odczytania wartości z amperomierza, bądź złego odczytania długości drutu, lub niedokładności urządzeń pomiarowych.