$=\frac{3\sqrt{2}}{2}-\frac{25\sqrt{2}}{2}=-11\sqrt{2}$

Present neatly. Justify for full credit. No Calculators.

Name SHVBLEKA / KEY Score _____ ~10 minutes / A

1. Find the first derivative of the given function[6 points]

a)

$$y = \sqrt{1 + \sqrt{1 + \sqrt{x}}}$$
b)

$$y = \sec(\sqrt{t^2 - 9})$$

2. [4 points]

Compute the second derivative of sin(g(x)) at x = 2, assuming that $g(2) = \frac{\pi}{4}$, g'(2) = 5, and g''(2) = 3.

1) a)
$$y = \left[1 + (1 + x''^2)^{1/2}\right]^{1/2}$$

$$\frac{dy}{dx} = \frac{1}{2} \left[1 + (1 + x''^2)^{1/2}\right]^{1/2} \cdot \left[0 + \frac{1}{2}(1 + x''^2)^{1/2} \cdot (0 + \frac{1}{2Y_x})\right]$$

$$= \frac{1}{2} \left[1 + (1 + x''^2)^{1/2}\right]^{1/2} \cdot \left[1 + (1 + x''^2)^{1/2} \cdot \frac{1}{2Y_x}\right]$$

$$= \frac{1}{2} \left[1 + (1 + x''^2)^{1/2}\right]^{1/2} \cdot \left[1 + (1 + x''^2)^{1/2} \cdot \frac{1}{2Y_x}\right]$$

$$= \frac{1}{2} \left[1 + (1 + x''^2)^{1/2}\right]^{1/2} \cdot \left[1 + (1 + x''^2)^{1/2}\right] \cdot \left[1 + (1 + x''^2)^{1/2}\right]$$

$$= \frac{1}{2} \left[1 + (1 + x''^2)^{1/2}\right] \cdot \left[1 + (1 + x''^2$$

www.CalculusQuestions.org

Present neatly. Justify for full credit. No Calculators.

Name __ SHUBLEKA KEY. Score _____ ~10 minutes / F

1. Find the first derivative of the given function[6 points]

a) $y = \sqrt{\sqrt{x+1}+1} = \left[(x+1)^{1/2} + 1 \right]^{1/2}$ b)

 $v = \cot^7(x^5)$

2. Calculate: $\frac{d}{dpenguin} \left(\tan^2 \left(\frac{penguin}{penguin + k} \right) \right)$ [4 points]

- (D a) $\frac{dy}{dx} = \frac{1}{2} \left((x+1)^{1/2} + 1 \right)^{-1/2} \cdot \frac{1}{2} (x+1)^{1/2} = \frac{1}{4} \frac{1}{\sqrt{1 + 1}} \cdot \frac{1}{\sqrt{1 + 1}}$ b) $\frac{dy}{dx} = 7 \cot^6(x^5) \cdot \left(-\csc^2(x^5) \right) \cdot 5x^4$ $= -35 x^4 \cdot \cot^6(x^5) \csc^2(x^5)$.
- $\frac{d}{dp}\left(\tan^2\left(\frac{P}{P+K}\right)\right) = 2 \cdot \tan\left(\frac{P}{P+K}\right) \cdot \sec^2\left(\frac{P}{P+K}\right) \cdot \frac{K}{(P+K)^2}$