Problem 1. *There is no rational number whose square is* 2.

Proof. Assume, for contradiction, that there exist integers p and q satisfying

$$\frac{p}{q} = \sqrt{2},$$

where p/q is a rational number in lowest terms. By squaring, this is the same as $\frac{p^2}{q^2} = 2$, and by clearing denominators it is the same as

$$p^2 = 2q^2.$$

Thus p^2 is divisible by 2, an even number. This implies that p is also divisible by 2 and can be expressed in the form p=2k for some $k \in \mathbb{Z}$. If we substitute the p in $p^2=2q^2$ for 2k, we get

$$(2k)^2 = 4(k^2) = 2q^2$$

Further reducing this gives us

$$2(k^2) = q^2$$

This is a contradiction as the result implies that q^2 is also even and thus q is even. Therefore p and q are both even, contradiction the assumption that $\frac{p}{q}$ is in lowest terms.

Problem 2. (a) The negation of "For all real numbers satisfying a < b, there exists $n \in \mathbb{N}$ such that a + (1/n) < b" is "There exists a real number a, b satisfying a < b such that for all $n \in \mathbb{N}$, $a + (1/n) \ge b$.

- (b) The negation of "There exists a real number x > 0 such that x < 1/n for all $n \in \mathbb{N}$ " is "For all real numbers x > 0, there exists an $n \in \mathbb{N}$ such that $x \ge 1/n$.
- (b) The negation of "Between every two distinct real numbers there is a rational number" is "There exists $x, y \in \mathbb{R}$, where $x \neq y$, such that there is no $n \in \mathbb{Q}$ that satisfies x < n < y.

Problem 3. Suppose a and b are real numbers. Then

(a)
$$|a-b| \le |a| + |b|$$

Proof. Case 1: Suppose a > b, then |a - b| = a - b (since a - b > 0). If a > 0 is true, then |a - b| = a - b = |a| - b. Since $-b \le |b|$ (because -b = |b| if b is negative and $-b \le b = |b|$ if b is non-negative), we have

$$|a - b| = |a| - b \le |a| + |b|$$

. On the other hand, if a < 0, then

$$|a - b| = a - b \le |a| - b \le |a| + |b|$$

(since $a \leq |a|$, as before).

Case 2: Suppose b > a, then |a - b| = b - a (since b - a > 0). If b > 0 is also true, then $|a - b| = b - a \le b + |a|$ (since $-a \le |a|$). If $b \ge 0$, then |b| = b, so

$$|a - b| = b - a \le b + |a| = |a| + |b|$$

(since $-a \leq |a|$).

If b < 0, then since b > a, we have a < b < 0, so |a| = -a and |b| = -b. Thus

$$|a-b| = b-a = b + (-a) \le -b + (-a) = |b| + |a| = |a| + |b|$$

or more briefly

$$|a - b| \le |a| + |b|$$

Case 3: Suppose a=b, then $|a-b|=0 \le |a|+|b|$ Since absolute values are non-negative.

(b) $||a| - |b|| \le |a - b|$

Proof. Observe that a = (a - b) + b. It follows that

$$|a| = |(a - b) + b| \le |a - b| + |b|$$

by the triangle inequality. Subtracting |b| from the right and left sides of the inequality gives us $|a|-|b| \leq |a-b|$. Likewise observe that b=(b-a)-a. It follows that

$$|b| = |(b-a) + a| \le |b-a| + |a|$$

by the triangle inequality. Since |b-a|=|a-b|, subtracting |a| from either sides of the inequality above gives us $|b|-|a|\leq |a-b|$. Since ||a||-|b|| is either |a|-|b| or |b|-|a|, and both are at most |a-b|, it follows that $||a|-|b||\leq |a-b|$.

Problem 4. Give an example of each, or state that it is impossible.

(a) $f: \mathbb{N} \to \mathbb{N}$ that is one-to-one but not onto.

My Answer: The function f(n) = 2n is a mapping from $\mathbb{N} \to \mathbb{N}$ That is one-to-one since distinct n produce distinct even numbers, but not onto because it misses odd numbers.

(b) $f: \mathbb{N} \to \mathbb{N}$ that is onto but not one-to-one.

My Answer: The function $f(n) = \lfloor \frac{n+1}{2} \rfloor$ (For clarity's sake this is a floor function) is onto since every $m \in \mathbb{N}$ is hit, but not one-to one because f(1) = f(2) = 1.

(d) $f: \mathbb{N} \to \mathbb{Z}$ that is one-to-one and onto.

My Answer: The piecewise function

$$f(n) = \begin{cases} \frac{n}{2} & \text{If n is even} \\ -\frac{n-1}{2} & \text{If n is odd} \end{cases}$$

Is a mapping from $\mathbb{N} \to \mathbb{Z}$ that is both one-to-one and onto since it uniquely maps even n to non-negative integers and odd n to negative integers, this covers all of \mathbb{Z} .

Problem 5. There exists an infinite collection of sets A_1, A_2, A_3, \ldots with the properties that every A_i has an infinite number of elements, and $A_i \cap A_j = \emptyset$ for all $i \neq j$, and $\bigcup_{i=1}^{\infty} A_i = \mathbb{N}$.

Proof. A natural number is k-almost-prime if it has k prime factors where $k \in \mathbb{N}$. Let $A_1 \subseteq \mathbb{N}$ be the union of the sets $\{1\}$ and the set containing all k-almost-prime numbers $\{2,3,5,7,11,17,...\}$, where k=1 so that $A_1=\{1,2,3,5,7,11,17,...\}$. Let $A_2 \subset \mathbb{N}$ be the set containing all k-almost-prime numbers $\{4,6,9,10,14,15,21,22,...\}$, where k=2. Let $A_3 \subseteq \mathbb{N}$ be set containing all k-almost-prime numbers $\{8,12,18,20,27,28,30,...\}$, where k=3. Similarly let $A_k \subseteq \mathbb{N}$ be the set containing all k-almost-prime numbers for some $k \in \mathbb{N}$. Suppose $m \in \mathbb{N}$ and $m \in A_i \cap A_j$ for some $i,j \in \mathbb{N}$. Note that by the uniqueness of prime decompositions, m has a unique prime decomposition of a fixed length. Thus i=j. Since $A_n \subseteq \mathbb{N}$ for all $n \in \mathbb{N}$, it follows that $\bigcup_{n=1}^{\infty} A_n \subseteq \mathbb{N}$. Similarly by fundamental theorem of arithmetic, n has a unique prime decomposition of a fixed length m. Therefore $n \in A_m$ and $\mathbb{N} \subseteq \bigcup_{n=1}^{\infty} A_n$. Thus $\bigcup_{n=1}^{\infty} A_n = \mathbb{N}$.