Data Structures Instructor: Hafiz Tayyeb javed

Week-08-Lecture-01
18. AVL Trees

Balanced and Unbalanced BST

Balanced Tree

- Want a (almost) complete tree after every operation
 - Tree is full except possibly in the lower right
- Maintenance of such as tree is expensive
 - For example, insert 2 in the tree on the left and then rebuild as a complete tree

AVL Trees – Good but not Perfect Balance

- Named after Adelson-Velskii and Landis
- Balance is defined by comparing the height of the two sub-trees
- Recall:
 - An empty tree has height –1
 - A tree with a single node has height 0

AVL Trees

- A binary search tree is said to be AVL balanced if:
 - The difference in the heights between the left and right sub-trees is at most 1, and
 - Both sub-trees are themselves AVL trees
- AVL trees with 1, 2, 3 and 4 nodes

An AVL Tree

Not an AVL Tree

AVL Trees – Balance Factor

- An AVL tree has balance factor calculated at every node
 - Height of the left subtree minus the height of the right subtree
 - For an AVL tree, the balances of the nodes are always -1, 0 or 1.

```
Height of node = h
Balance Factor (BF) = h_{left} - h_{right}
Empty height = -1
```


• Here is a larger AVL tree (42 nodes)

- The root node is AVL-balanced
 - Both sub-trees are of height 4 (i.e., at root BF = 0)

- All other nodes (e.g., AF and BL) are AVL balanced
 - The sub-trees differ in height by at most one

Consider this AVL tree

- Consider inserting 15 into this tree
 - In this case, the heights of none of the trees change
 - Tree remains balanced

• Consider inserting 42 into this tree

- Consider inserting 42 into this tree
 - Height of two sub-trees rooted at 44 and 38 have increased by one
 - The tree is still balanced

AVL Trees

To maintain the height balanced property of the AVL tree after insertion or deletion, it is necessary to perform a *transformation* on the tree so that

- 1) the in-order traversal of the transformed tree is the same as for the original tree (i.e., the new tree remains a binary search tree).
- 2) the tree after transformation is height balanced.

Transformation (Rotation) of AVL Trees

- Insert operations may cause balance factor to become 2 or –2 for some node
- Only nodes on the path from insertion point to root node have possibly change in height
- Follow the path up to the root, find the first node (i.e., deepest)
 whose new balance violates the AVL condition
 - Call this node a
- If a new balance factor (the difference h_{left}-h_{right}) is 2 or -2
 - Adjust tree by rotation around the node a

- If a tree is AVL balanced, for an insertion to cause an imbalance:
 - The heights of the sub-trees must differ by 1
 - The insertion must increase the height of the deeper sub-tree by 1

• Suppose we insert 23 into our initial tree

 The heights of each of the sub-trees from the insertion point to the root are increased by one

- Only two of the nodes are unbalanced, i.e., 17 and 36
 - Balance factor of 17 is -2
 - Balance factor of 36 is 2

We only have to fix the imbalance at the lowest node

Single Rotation in an AVL Tree

Right Rotation (RR) in an AVL Tree

- Node b becomes the new root
- Node b takes ownership of node a, as it's right child
- Node a takes ownership of node b's right child (or NULL if no child)
 - As left child of node a

Consider adding 6

 Height of each of the trees in the path back to the root are increased by one

- Height of each of the trees in the path back to the root are increased by one
 - Only root node (i.e., 36) violates the balancing factor

• To fix the imbalance, we perform right rotation of root (i.e., 36)

When to Perform Right Rotation (RR)

- Let the node that needs rebalancing be a
- Case RR
 - Insertion into left subtree of left child of node a
 - Left tree is heavy (i.e., h_{left} > h_{right})

When to Perform Right Rotation (RR)

Let the node that needs rebalancing be a

- Case RR
 - Insertion into left subtree of left child of node a (RR)
 - Left tree is heavy (i.e., h_{left} > h_{right})

Left Rotation (LL) in an AVL Tree

- Node b becomes the new root
- Node b takes ownership of node a as its left child
- Node a takes ownership of node b's left child (or NULL if no child)
 - As right child of node a

Left Rotation (LL) – Example

- Consider adding 67
 - To fix the imbalance, we perform left rotation of root (i.e., 36)

When to Perform Left Rotation (LL)

- Let the node that needs rebalancing be a
- Case LL
 - Insertion into right subtree of right child of node a
 - Right tree is heavy (i.e., $h_{left} < h_{right}$)

When to Perform Left Rotation (LL)

Let the node that needs rebalancing be a

- Case LL
 - Insertion into right subtree of right child of node a (LL)
 - Right tree is heavy (i.e., $h_{left} < h_{right}$)

Single Rotation may be Insufficient

- c becomes the new root.
- a takes ownership of c's left child as its right child, in this case, b.
- c takes ownership of a as its left child.

- a becomes the new root.
- c takes ownership of a's right child as its left child, b.
- a takes ownership of c as its right child.

Single Rotation May Be Insufficient

 The imbalance is just shifted to the other side

Right-Left Rotation (RL) or "Double Right"

- Perform a left rotation on the left subtree
- Node b becomes the new root
- Node b takes ownership of node c as its right child
- Node c takes ownership of node b's right child
 - As its left child

Right-Left Rotation (RL) or "Double Right" – Example

Continued...

Any Question So Far?

