

# Peer-To-Peer Lending

Prepared By: Shelly Levy, Tom Saacks and Or Liberman

date 13 June 2023

### Step Guidelines:

Modeling and Evaluation

- Recap
- Classification model
- Regression model
- Selected Models

#### A snapshot of the data

- Data Preparation Completed (flexibility for future changes)
- 326,403 Instances
- 55 Features



#### Model Approach

- Classification model: Classifying 2% return loans
  - Logistic Regression, XGBoost, AdaBoost with decision tree
- Regression model: Numerical prediction of yield
  - Linear Regression, Polynomial Regression

• Select best model for implementation in 2 weeks



#### **Skewed Target Data Distribution**

#### Classification model:





#### Skewed Target Data Distribution

#### Regression model:

- Skewness: Highly skewed (-40.14)
- Shapiro-Wilk: Non-normal (p~0.0)





#### Data Normalization

- Min-Max Normalization
  - Outliers Challenge
- Standard Normalization
  - Non-normal Features Challenge

Robust Normalization



### Step Guidelines:

Modeling and Evaluation

- Recap
- Classification model
- Regression model
- Selected Models

#### Classification model:



|           | LG    | AdaBoost | XGBoost |  |
|-----------|-------|----------|---------|--|
| F1        | 0.722 | 0.604    | 0.586   |  |
| Recall    | 0.714 | 0.604    | 0.581   |  |
| Precision | 0.710 | 0.6045   | 0.581   |  |
| Accuracy  | 0.741 | 0.604    | 0.586   |  |

#### Classification model:

#### General Steps:

- Hyperparameter Tuning
- Features selection methods
- Skewness Handling
- AdaBoost with Logistic Regression
- Knn model

#### Classification model:



|           | LG       | AdaBoost<br>with LG | Knn      |
|-----------|----------|---------------------|----------|
| F1        | 0.725021 | 0.695193            | 0.724328 |
| Recall    | 0.739447 | 0.788454            | 0.784289 |
| Precision | 0.727746 | 0.621663            | 0.725432 |
| Accuracy  | 0.791447 | 0.788454            | 0.784289 |

### Step Guidelines:

Modeling and Evaluation

- Recap
- Classification model
- Regression model
- Selected Models

#### Regression model:

#### **Polynomial Regression**

|   |             | Model   | MSE      | R^2      |
|---|-------------|---------|----------|----------|
| 0 | PR Degree-2 | (70:30) | 0.007032 | 0.030277 |
| 1 | PR Degree-3 | (70:30) | 0.007140 | 0.015245 |
| 2 | PR Degree-2 | (80:20) | 0.007042 | 0.030021 |
| 3 | PR Degree-3 | (80:20) | 0.007182 | 0.011088 |

### Regression model:

#### <u>General Steps:</u>

- Hyperparameter Tuning
- Feature Selection
- Model training
- Model Evaluation
- Model Improvement
- Evaluation Metric

| Model_Name                                       | MSE     | R2_Score | Regularization | Alpha |
|--------------------------------------------------|---------|----------|----------------|-------|
| Polynomial Regression (degree=2) - all_featuers  | 0.00706 | 0.027781 | Ridge          | 10    |
| Polynomial Regression (degree=2) - all_featuers  | 0.00702 | 0.030425 | Lasso          | 0.01  |
| Polynomial Regression (degree=2) - best_featuers | 0.00733 | -0.00882 | Ridge          | 10    |
| Polynomial Regression (degree=2) - best_featuers | 0.00726 | -0.00029 | Lasso          | 10    |







### Step Guidelines:

Modeling and Evaluation

- Recap
- Classification model
- Regression model
- Selected Models

#### Selected Models:

Model Selection: Logistic Regression (Classification)

Polynomial Regression (Regression)

- Two-step Modeling Approach
- Deeper Insights, Accurate Predictions
- Business-Driven Determination: Opting for Single or Dual

Model Usage



#### Potential Pitfalls:

- Failure to balance skewed distribution while maintaining interpretability
- Ignoring market dynamics and external factors.
- Failure to address potential overfitting/underfitting issues
- Computational power limitations
- Model Assumptions



#### Nextsteps

- Business Perspective
- Financial Potential Analysis
- Existing Grade Model Comparison
- Addressing CFO Queries
- Best Model Selection





## Concluding Remarks and Q&A



