Математическая статистика

Михайлов Максим

13 октября 2021 г.

Оглавление стр. 2 из 32

Оглавление

Лекц	ия 1	6 сентября	3
1	Opr	анизационные вопросы	3
2	Вве	дение	3
	2.1	Выборочная функция распределения	4
3	Пер	воначальная обработка статданных	5
Лекц	ия 2	13 сентября	7
4	Точ	ечные оценки	7
	4.1	Свойства статистических оценок	7
	4	.1.1 Состоятельность	7
	4	.1.2 Несмещённость	7
	4	.1.3 Эффективность	8
	4.2	Точечные оценки моментов	8
	4.3	Метод моментов	11
Лекц	ия 3	20 сентября	13
	4.4	Метод максимального правдоподобия	13
5	Hep	авенство Рао-Крамера	16
Лекц		18 сентября	18
6	Pacı	пределения в матстатистике	18
	6.0	Нормальное распределение	18
	6.1	Гамма-распределение	18
	6.2	Распределение "хи-квадрат"	19
	6.3	Распределение Стьюдента	19
	6.4	Распределение Фишера-Снедекора	19
7	Лин	ейные преобразования нормальных выборок	20
	7.1	Многомерные нормальные распределения	23
Лекц	ия 5	4 октября	25
8	Кваг	нтили распределений	25
	8.1	Квантили основных распределений в Excel	25
	8.2	Интервальные оценки	26
	8	.2.1 Интервальные оценки для нормального распеределения	26
Лекц	ия 6	11 октября	30
	8.3	Распределение Коши	30

Лекция 1

6 сентября

1 Организационные вопросы

Большая часть баллов зарабатывается индивидуальными заданиями, выполняемыми в Excel-30 баллов. Тест с большим числом вопросов -20 или 25 баллов.

2 Введение

Теория вероятности состоит в следующем: исследуется случайная величина с заданным распределением. Математическая статистика занимается обратным — даны данные, нужно приближенно найти числовые характеристики случайной величины и с некоторой уверенностью найти вид распределения. Матстатистика также исследует связанность случайных величин, их корреляцию. В идеале есть цель построить модель, которая по значениям одних случайных величин предсказывает другие.

Пусть проводится некоторое количество экспериментов, в ходе которых появились некоторые данные.

Определение. **Генеральная совокупность** — набор всех исходов проведенных экспериментов.

В реальности наблюдается некоторая выборка генеральной совокупности, ибо рассматривать всю совокупность нецелесообразно.

Определение. Выборочная совокупность — исходы наблюдаемых экспериментов.

Определение. Выборка называется **репрезентативной**, если её распределение совпадает с распределением генеральной совокупности.

Выборка может быть нерепрезентативной, как в примере с ошибкой выжившего. Мы считаем, что таких ошибок у нас нет и все выборки репрезентативны, ибо исправление

этих ошибок — задача конкретной области, в которой используется матстатистика.

Определение (после опыта). Пусть проведено n наблюдаемых независимых экспериментов, в которых случайная величина приняла значение $X_1, X_2 \dots X_n$. Набор¹ этих данных называется выборкой объема n.

Определение (до опыта). **Выборкой объема** n называется набор из n независимых одинаково распределенных случайных величин.

Пусть имеется выборка в смысле "после опыта" объема n. Её можно интерпретировать как следующую дискретную случайную величину:

Средневыборочное:

$$\overline{X} := \sum_{i=1}^{n} \frac{1}{n} X_i = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Выборочная дисперсия:

$$S^{2} = \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} \cdot \frac{1}{n} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

2.1 Выборочная функция распределения

$$F_n^*(z) \coloneqq rac{1}{n} \sum_{i=1}^n I(X_i < z) = rac{$$
число $X_i \in (-\infty,z)}{n}$

Примечание. I — индикатор:

$$I(X_i < z) = \begin{cases} 1, & X_i < z \\ 0, & X_i \ge z \end{cases}$$

Теорема 1.

$$\forall x \in \mathbb{R} \quad F_n^*(z) \xrightarrow[n \to \infty]{P} F(z)$$

Доказательство. Заметим, что

$$\mathbb{E}I(X_1 < z) = 1 \cdot P(X_1 < z) + 0 \cdot P(X_1 \ge z) = P(X_1 < z) = F(z)$$

¹ Или вектор.

, где F(z) — функция распределения X_1 . Заметим, что $F(z) \le 1 < \infty$, следовательно применим ЗБЧ Хинчина:

$$F_n^*(z) = \frac{\sum_{i=1}^n I(X_i < z)}{n} \xrightarrow{P} \mathbb{E}I(X_1 < z) = F(z)$$

Примечание. На самом деле имеется даже равномерная сходимость по вероятности — это теорема Гливенко-Кантелли:

$$\sup_{z \in \mathbb{R}} |F_n^*(z) - F(z)| \xrightarrow[n \to \infty]{P} 0$$

3 Первоначальная обработка статданных

Если отсортировать данные, то получим вариационный ряд: $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$. Если учесть повторяющиеся экземпляры, то получим частотный вариационный ряд:

$X_{(i)}$	$X_{(1)}$	$X_{(2)}$	 $X_{(k)}$	\sum
n_i	n_1	n_2	 n_k	n
p_i^*	$\frac{n_1}{n}$	$\frac{n_2}{n}$	 $\frac{n_k}{n}$	1

Определение. $h\coloneqq X_{\max}-X_{\min}$ — размах выборки

Допустим, что разбили интервал (X_{\min}, X_{\max}) на k интервалов, чаще всего одинаковой длины. Тогда $l_i = \frac{h}{k}$ — длина каждого интервала и интервальный ряд можно заменить интервальным вариационным рядом.

$$\begin{array}{c|ccccc}
i & l_1 & l_2 & \dots & l_k & \sum \\
m_i & m_1 & m_2 & \dots & m_k & n \\
\frac{m_i}{n} & \frac{m_1}{n} & \frac{m_2}{n} & \dots & \frac{m_k}{n} & 1
\end{array}$$

 m_i — число попавших в i-тый интервал данных.

По такой таблице можно построить **гистограмму**. На координатной плоскости построим прямоугольники с основаниями l_i и высотами $\frac{m_i}{nl_i}$. В результате получаем ступенчатую фигуру площади 1, которая и называется гистограммой.

Теорема 2. При $n\to\infty, k(n)\to\infty$, причем $\frac{k(n)}{n}\to 0$, гистограмма будет стремиться к плотности распределения:

$$\frac{m_i}{n} \xrightarrow{P} P(X_i \in l_i) = \int_{l_i} f(x) dx$$

² Применяются и другие разбиения, например равнонаполненное.

Чаще всего число интервалов берется по формуле Стёрджесса: $k\approx 1+\log_2 n$. Иногда $k\approx \sqrt[3]{n}$.

Примечание. Иногда выборка изображается в виде **полигона**: отображаются точки, соответствующие серединам интервалов и ставим точки на высоте $\frac{m_i}{n}$.

Лекция 2

13 сентября

4 Точечные оценки

Пусть имеется выборка объема $n{:}~X = \begin{pmatrix} X_1 & \dots & X_n \end{pmatrix}$

Определение. Статистикой называется измеримая функция $\theta^* = \theta^*(X_1, \dots, X_n)$.

Пусть требуется найти значение параметра θ случайной величины X по данной выборке. Оценку будем считать с помощью некоторой статистики θ^* .

4.1 Свойства статистических оценок

4.1.1 Состоятельность

Определение. Статистика $\theta^* = \theta^*(X_1, \dots, X_n)$ называется состоятельной оценкой параметра θ , если:

$$\theta^* \xrightarrow[n \to \infty]{P} \theta$$

4.1.2 Несмещённость

Определение. Статистика $\theta^* = \theta^*(X_1, \dots, X_n)$ называется несмещенной оценкой параметра θ , если

$$\mathbb{E}\theta^* = \theta$$

Примечание. То есть с равной вероятностью можем ошибиться как в меньшую, так и в большую сторону. Нет систематической ошибки.

Определение. Статистика $\theta^* = \theta^*(X_1, \dots, X_n)$ называется асимптотически несмещенной оценкой параметра θ , если

$$\mathbb{E}\theta^* \xrightarrow[n\to\infty]{} \theta$$

Примечание. То есть при достаточно большом объеме выборки ошибка исчезает, но при малом она может существовать.

4.1.3 Эффективность

Определение. Оценка θ_1^* не хуже оценки θ_2^* , если

$$\mathbb{E}(\theta_1^* - \theta)^2 \le \mathbb{E}(\theta_2^* - \theta)^2$$

или, если оценки несмещенные,

$$\mathbb{D}\theta_1^* \leq \mathbb{D}\theta_2^*$$

Определение. Оценка θ^* называется эффективной, если она не хуже всех остальных оценок.

Теорема 3. Не существует эффективной оценки в классе всех возможных оценок.

Теорема 4. В классе несмещённых оценок существует эффективная оценка.

4.2 Точечные оценки моментов

Определение. Выборочным средним $\overline{X_B}$ называется величина

$$\left[\overline{X_B} = \frac{1}{n} \sum_{i=1}^n X_i\right]$$

Определение. Выборочной дисперсией \mathbb{D}_B называется величина

$$\left[\mathbb{D}_B = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X_B})^2\right]$$

Определение. Исправленной выборочной дисперсией S^2 называется величина

$$S^2 = \frac{n}{n-1} \mathbb{D}_B$$

или

$$S^{2} = \frac{1}{n-1} \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X}_{B})^{2}$$

Определение. **Выборочным средним квадратическим отклонением** называется величина

$$\sigma_B = \sqrt{\mathbb{D}_B}$$

Определение. Исправленным выборочным средним квадратическим отклонением называется величина

$$S = \sqrt{S^2}$$

Определение. Выборочным k-тым моментом называется величина

$$\boxed{\overline{X^k} = \frac{1}{n} \sum_{i=1}^n X_i^k}$$

Определение. Модой M_0^* вариационного ряда называется варианта с наибольшей частотой:

$$M_0^* = X_i : n_i = \max_{1 \le j < n} n_j$$

Определение. **Медианой** M_e^* вариационного ряда называется значение варианты в середине ряда:

- 1. Если n=2k-1, то $M_e^*=X_k$
- 2. Если n=2k, то $M_e^*=rac{X_k+X_{k+1}}{2}$

Величина	Команда в Excel			
	Русский	Английский		
$\overline{X_B}$	СРЗНАЧ	AVERAGE		
\mathbb{D}_B	ДИСПР	VARP		
S^2	ДИСП	VAR		
σ_n	СТАНДОТКЛОНП	STDEVP		
S	СТАНДОТКЛОН	STDEV		
M_0^*	МОДА	MODE		
M_e^*	МЕДИАНА	MEDIAN		

Теорема 5. Выборочное среднее $\overline{X_B}$ является несмещенной состоятельной оценкой для математического ожидания, то есть:

- 1. $\mathbb{E}\overline{X_B} = \mathbb{E}X = a$ несмещенность
- 2. $\overline{X_B} \xrightarrow[n \to \infty]{P} \mathbb{E}X \text{состоятельность}$

Доказательство.

1.

$$\mathbb{E}\overline{X} = \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}X_{i} = \frac{1}{n}\cdot n\mathbb{E}X_{i} = \mathbb{E}X$$

2.

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} \xrightarrow[n \to \infty]{P} \mathbb{E}X$$

Это верно по закону больших чисел.

Теорема 6. Выборочный k-тый момент является несмещенной состоятельной оценкой для теоретического k-того момента, то есть:

- 1. $\mathbb{E}\overline{X^k} = X^k$
- 2. $\overline{X^k} \xrightarrow{P} \mathbb{E} X^k$

Доказательство. Следует из предыдущей теоремы, если в качестве случайной величины взять X^k .

Теорема 7.

- \mathbb{D}_B смещённая состоятельная оценка дисперсии
- S^2 несмещённая состоятельная оценка дисперсии

Доказательство.

$$\mathbb{D}_B = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 = \overline{X^2} - (\overline{X})^2$$

$$\mathbb{E}\mathbb{D}_{B} = \\ \mathbb{E}(\overline{X^{2}} - (\overline{X})^{2}) = \\ \mathbb{E}\overline{X^{2}} - \mathbb{E}(\overline{X})^{2} = \\ \mathbb{E}X^{2} - \mathbb{E}(\overline{X})^{2} = \\ \mathbb{D}\overline{X} = \\ \mathbb{E}(\overline{X})^{2} - (\mathbb{E}\overline{X})^{2} = \\ \mathbb{E}X^{2} - (\mathbb{D}\overline{X} + (\mathbb{E}\overline{X})^{2}) = \\ \mathbb{E}X^{2} - (\mathbb{E}X)^{2} - \mathbb{D}\overline{X} = \\ (\mathbb{E}X^{2} - (\mathbb{E}X)^{2}) - \mathbb{D}\overline{X} = \\ (\mathbb{E}X^{2} - (\mathbb{E}X)^{2}) - \mathbb{D}\overline{X} = \\ \mathbb{D}X - \mathbb{D}\overline{X} = \\ \mathbb{D}X - \mathbb{D}\overline{X} = \\ \mathbb{D}X - \mathbb{D}X = \\ \mathbb{D}X = \\ \mathbb{D}X - \mathbb{D}X = \\ \mathbb{D}X - \mathbb{D}X = \\ \mathbb{D}X -$$

$$\mathbb{D}X - \frac{1}{n^2} \cdot n \mathbb{D}X =$$

$$\mathbb{D}X - \frac{1}{n} \mathbb{D}X =$$

$$\frac{n-1}{n} \mathbb{D}X \neq \mathbb{D}X$$

$$\mathbb{E}S^2 = \mathbb{E}\left(\frac{n}{n-1} \mathbb{D}_B\right) = \frac{n}{n-1} \cdot \frac{n-1}{n} \mathbb{D}X = \mathbb{D}X$$

$$\mathbb{D}_B = \overline{X^2} - (\overline{X})^2 \xrightarrow{P} \mathbb{E}X^2 - (\mathbb{E}X)^2 = \mathbb{D}X$$

$$S^2 = \frac{n}{n-1} \mathbb{D}_B \xrightarrow{P} \underbrace{\frac{n}{n-1}}_{\rightarrow 1} \mathbb{D}X$$

Примечание. \mathbb{D}_B — асимптотически несмещённая оценка, т.к. при $n \to \infty$, $\frac{n-1}{n} \to 1$. Таким образом, при большой выборке можно игнорировать смещённость.

4.3 Метод моментов

Изобретен Карлом Пирсоном.

Пусть имеется выборка $(X_1\dots X_n)$ неизвестного распределения, при этом известен тип² распределения. Пусть этот тип определяется k неизвестными параметрами $\theta_1\dots\theta_k$. Теоретическое распределение задает теоретические k-тые моменты. Например, если распределение непрерывное, то оно задается плотностью $f(X,\theta_1\dots\theta_k)$ и $m_k=\int_{-\infty}^{+\infty}X^kf(x,\theta_1\dots\theta_k)dx=h_k(\theta_1\dots\theta_k)$. Метод моментов состоит в следующем: вычисляем выборочные моменты и подставляем их в эти равенства вместо теоретических. В результате получаем систему уравнений:

$$\begin{cases} \overline{X} = h_1(\theta_1 \dots \theta_k) \\ \overline{X^2} = h_2(\theta_1 \dots \theta_k) \\ \vdots \\ \overline{X^k} = h_k(\theta_1 \dots \theta_k) \end{cases}$$

Решив эту систему, мы получим оценки на $\theta_1 \dots \theta_k$. Эти оценки будут состоятельными³, но смещёнными.

Пример. Пусть $X \in U(a,b), \underline{a} < b$. Обработав статданные, получили оценки первого и второго момента: $\overline{X} = 2.25; \overline{X^2} = 6.75$

П

 $^{^{}_{1}}$ $n \ge 100$, например.

² Нормальное, показательное и т.д.

³ Если не придумывать специально плохие примеры

Решение. Плотность
$$f(x) = \begin{cases} 0, & x < a \\ \frac{1}{b-a}, & a \le x \le b \\ 0, & x > b \end{cases}$$

$$\mathbb{E}X = \int_a^b x f(x) dx = \int_a^b \frac{x}{b-a} = \frac{1}{b-a} \cdot \frac{x^2}{2} \Big|_a^b = \frac{b^2 - a^2}{2(b-a)} = \boxed{\frac{a+b}{2}}$$

$$\mathbb{E}X^2 = \int_a^b x^2 \cdot \frac{1}{b-a} dx = \frac{1}{b-a} \cdot \frac{x^3}{3} \Big|_a^b = \frac{b^3 - a^3}{3(b-a)} = \boxed{\frac{a^2 + ab + b^2}{3}}$$

$$\begin{cases} 2.25 = \frac{a+b}{2} \\ 6.75 = \frac{a^2 + ab + b^2}{3} \end{cases}$$

$$\begin{cases} a+b=4.5 \\ a^2 + ab + b^2 = 20.25 \end{cases}$$

$$\begin{cases} a+b=4.5 \\ ab=0 \end{cases}$$

Лекция 3

20 сентября

4.4 Метод максимального правдоподобия

Метод максимального правдоподобия состоит в том, чтобы подобрать параметры таким образом, чтобы вероятность получения данной выборки была наибольшей. Если распределение дискретное, то вероятность выборки

$$P_{\theta}(X_1 = x_1, X_2 = x_2 \dots X_n = x_n) = P_{\theta}(X_1 = x_1)P_{\theta}(X_2 = x_2)\dots P_{\theta}(X_n = x_n)$$

Для непрерывной величины аналогично.

Поэтому исследуем такую функцию:

Определение. Функцией правдоподобия называется функция $L(\overline{X}, \theta)$, зависящая от выборки и неизвестных параметров, равная:

• В случае дискретного распределения:

$$P_{\theta}(X_1 = x_1)P_{\theta}(X_2 = x_2)\dots P_{\theta}(X_n = x_n)$$

• В случае абсолютно непрерывного распределения:

$$f_{\theta}(x_1)f_{\theta}(x_2)\dots f_{\theta}(x_n) = \prod_{i=1}^n f_{\theta}(x_i)$$

Эту функцию неудобно исследовать, поэтому мы используем следующую функцию:

Определение. Логарифмическая функция правдоподобия:

$$M(\overline{X}, \theta) = \ln L(\overline{X}, \theta)$$

Т.к. логарифм — строго возрастающая функция, экстремумы обычной и логарифмической функций правдоподобия совпадают.

Определение. Оценкой максимального правдоподобия $\hat{\theta}$ называется значение θ , при котором функция правдоподобия достигает наибольшего значения.

Пример. Пусть $X_1 \dots X_n$ — выборка неизвестного распределения Пуассона с параметром $\lambda \colon X \in \Pi_\lambda, \, \lambda > 0$

$$\begin{split} P(X = x_i) &= \frac{\lambda^{x_i}}{x_i!} e^{-\lambda} \\ L(\overline{X}, \lambda) &= \prod_{i=1}^n \frac{\lambda^{x_i}}{x_i!} e^{-\lambda} = \frac{\lambda^{n \cdot \overline{X}}}{\prod_{i=1}^n x_i!} e^{-n\lambda} \\ \ln L(\overline{X}, \lambda) &= n \cdot \overline{X} \cdot \ln \lambda - \ln \prod_{i=1}^n x_i! - n\lambda \\ \frac{\partial \ln L(\overline{X}, \lambda)}{\partial \lambda} &= \frac{n\overline{X}}{\lambda} - n \end{split}$$

Приравняем производную к нулю, чтобы найти точки экстремума:

$$\frac{n\overline{X}}{\lambda} - n = 0 \Rightarrow \lambda = \overline{X}$$

Таким образом $\hat{\theta} = \overline{X} - \text{ОМП}$.

Пример. Пусть $X_1 \dots X_n$ — выборка неизвестного нормального распределения: $X \in N(a, \sigma^2), a \in \mathbb{R}, \sigma > 0$

$$f_{a,\sigma^2}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}}$$

$$L(\overline{X}, a, \sigma^2) = \prod_{i=1}^n \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x_i-a)^2}{2\sigma^2}} = \frac{1}{\sigma^n\sqrt{2\pi}}e^{-\frac{\sum (x_i-a)^2}{2\sigma^2}}$$

$$\ln L(\overline{X}, a, \sigma^2) = n\ln\sigma - \frac{n}{2}\ln(2\pi) - \frac{1}{2\sigma^2}\sum (x_i - a)^2$$

Не дописано

 Π ример. Пусть $X_1 \dots X_n$ — выборка равномерного распределения вида $U(0,\theta)$

1. Метод моментов.

$$\mathbb{E} = \frac{a+b}{2} = \frac{\theta}{2} \Rightarrow \theta = 2\overline{X}$$

2. Метод максимального правдоподобия.

$$f_{\theta}(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{\theta}, & x \in [0, \theta] \\ 0, & x > \theta \end{cases}$$

$$L(\overline{X}, \theta) = \prod_{i=1}^{n} f_{\theta}(x_i) = \begin{cases} 0, & \theta < \max x_i = X_{(n)} \\ \frac{1}{\theta^n}, & \theta \ge X_{(n)} \end{cases}$$

L достигает наибольшего значения при $\theta = X_{(n)}$.

Сравним полученные оценки.

1. $\theta^*=2\overline{X}$ — несмещённая оценка, т.к. $\mathbb{E}\theta^*=\mathbb{E}2\overline{X}=2\mathbb{E}\overline{X}=\theta$

$$\mathbb{E}(\theta^* - \theta) = \mathbb{D}(\theta^*) = \mathbb{D}2\overline{X} = 4\frac{1}{n}\mathbb{D}X = \frac{4}{n}\frac{\theta^2}{12} = \frac{\theta^2}{3n}$$

2. Изучим случайную величину $X_{(n)}$. Её функция распределения это

$$F_{X(n)}(x) = P(X_{(n)} < x) = P(X_1 < x) \dots P(X_n < x) = (F_X(x))^n$$

$$F_X(x) = \begin{cases} 0, & x < 0 \\ \frac{x}{\theta}, & x > 0 \end{cases} \Rightarrow F_{X_{(n)}}(x) = \begin{cases} 0, & x < 0 \\ x^{\frac{n}{\theta^n}}, & x \ge 0 \end{cases} \Rightarrow f_{X_{(n)}}(x) = \begin{cases} 0, & x < 0 \\ \frac{nx^{n-1}}{\theta^n}, & x \ge 0 \end{cases}$$

$$\mathbb{E}X_{(n)} = \int_0^\theta x \frac{nx^{n-1}}{\theta^n} dx = \frac{n}{\theta^n} \int_0^\theta x^n dx = \frac{n}{\theta^n} \frac{x^{n+1}}{n+1} \Big|_0^\theta = \frac{n\theta}{n+1}$$

Таким образом, оценка смещённая, но асимптотически несмещенная.

Заменим эту оценку на несмещённую оценку $\tilde{\theta}=\frac{n+1}{n}\hat{\theta}=\frac{n+1}{n}X_{(n)}$ — сходятся к θ с одинаковой скоростью.

$$\mathbb{E}\tilde{\theta}^{2} = \\ \mathbb{E}\left(\frac{n+1}{n}X_{(n)}\right)^{2} = \\ \frac{(n+1)^{2}}{n^{2}}\mathbb{E}X_{(n)}^{2} = \\ \frac{(n+1)^{2}}{n^{2}}\int_{0}^{\theta}x^{2}\frac{nx^{n-1}}{\theta^{n}}dx = \\ \frac{(n+1)^{2}}{n^{2}}\frac{n}{\theta^{n}}\frac{x^{n+2}}{n+2}\Big|_{0}^{\theta} = \frac{(n+1)^{2}}{n(n+2)}\theta^{2} \\ \mathbb{D}\tilde{\theta}^{2} = \mathbb{E}\tilde{\theta}^{2} - \mathbb{E}^{2}\tilde{\theta} = \frac{(n+1)^{2}}{n(n+2)}\theta^{2} - \theta^{2} = \theta^{2}\left(\frac{n^{2}+2n+1-n^{2}-2n}{n^{2}+2n}\right) = \frac{\theta^{2}}{n(n+2)}$$

Итак, сравним оценки.

$$\mathbb{D}\tilde{\theta} = \frac{\theta^2}{n(n+2)} < \frac{\theta^2}{3n} = \mathbb{D}\theta^*$$

Таким образом, оценка с помощью метода максимального правдоподобия лучше, её дисперсия стремится к нулю со скоростью $\frac{1}{n^2}$, а дисперсия первой оценки — со скоростью $\frac{1}{n}$. $\tilde{\theta} \to \theta$ со скоростью $\frac{1}{n}$, а $\theta^* \to \theta$ со скоростью $\frac{1}{\sqrt{n}}$

Следствие 7.1. Оценка математического ожидания $\overline{X}=2\theta$ не будет эффективной оценкой, т.к. можно показать, что в данном случае эффективной оценкой будет

$$\boxed{\mathbb{E}X = \frac{n+1}{n} \cdot \max\{X_1 \dots X_n\}}$$

Примечание. ОМП состоятельны, часто эффективны, но могут быть смещенными.

5 Неравенство Рао-Крамера

Пусть известно, что случайная величина $X \in \mathcal{F}_{\theta}$ — семейству распределений с θ .

Определение. Носителем семейства распределений \mathcal{F}_{θ} называется множество $C \subset \mathbb{R}$, такое что $\forall \theta \ P(X \in C) = 1$.

Обозначение.

$$f_{ heta}(x) = egin{cases} f_{ heta}(x), & \text{если распределение абсолютно непрерывное} \\ P_{ heta}(X=x), & \text{если распределение дискретноe} \end{cases}$$

Определение. Информацией Фишера называется величина

$$I(\theta) = \mathbb{E}\left(\frac{\partial \ln f_{\theta}(x)}{\partial \theta}\right)^2$$

, если она существует.

Определение. Семейство распределений \mathcal{F}_{θ} называется регулярным, если:

- 1. Существует носитель C семейства \mathcal{F}_{θ} , такой что $\forall x \in C$ функция $\ln f_{\theta}(x)$ непрерывно дифференцируема по θ .
- 2. $I(\theta)$ существует и непрерывна по θ .

Теорема 8 (неравенство Рао-Крамера). Пусть $X_1 \dots X_n$ — выборка объема n из регулярного семейства распределений \mathcal{F}_{θ} , θ^* — несмещенная оценка параметра θ , дисперсия которой ограничена на любом компакте в области θ .

Тогда

$$\boxed{\mathbb{D}\theta^* \ge \frac{1}{nI(\theta)}}$$

Спедствие 8.1. Если при условиях выше $\mathbb{D}\theta^* = \frac{1}{nI(\theta)}$, то $\theta^* - \mathfrak{g}$ фективная оценка. Это не всегда достижимо.

Пример. Пусть $X_1 \dots X_n$ — выборка нормального распределения $N(a,\sigma^2), a \in \mathbb{R}, \sigma^2 > 0$. Проверим эффективность оценки $a^* = \overline{X}$.

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}}$$

Рассмотрим носитель $C = \mathbb{R}$.

$$\ln f(x) = -\ln \sigma - \frac{1}{2}\ln(2\pi) - \frac{(x-a)^2}{2\sigma^2}$$
$$\frac{\partial \ln f(x)}{\partial a} = \frac{1}{2\sigma^2}2(x-a) = \frac{x-a}{\sigma}$$

Производная непрерывна по $a \ \forall a \in \mathbb{R}$

$$I(a) = \mathbb{E}\left(\frac{\partial \ln f(x)}{\partial a}\right)^2 = \mathbb{E}\left(\frac{x-a}{\sigma}\right)^2 = \frac{1}{\sigma^4}\mathbb{E}(X-\mathbb{E}X) = \frac{1}{\sigma^4}\mathbb{D}X = \frac{1}{\sigma^4}\sigma^2 = \frac{1}{\sigma^2}$$

Сравним обе части неравенства Рао-Крамера:

$$\mathbb{D}a^* = \mathbb{D}\overline{X} = \frac{1}{n}\mathbb{D}X = \frac{1}{n}\sigma^2 = \frac{\sigma^2}{n}$$

$$\mathbb{D}a^* = \frac{\sigma^2}{n} \stackrel{?}{=} \frac{1}{nI(a)} = \frac{1}{n\frac{1}{\sigma^2}} = \frac{\sigma^2}{n}$$

Таким образом, оценка эффективна.

Примечание. Исправленная дисперсия S^2 также является эффективной оценкой.

Определение. BLUE¹-оценка — лучшая оценка из оценок вида $\theta^* = \alpha_1 X_1 + \dots + \alpha_n X_n$.

¹ Best linear unbiased estimate.

Лекция 4

18 сентября

6 Распределения в матстатистике

6.0 Нормальное распределение

$$X \in N(a, \sigma^2)$$
:

$$\mathbb{E}X = a, \mathbb{D}X = \sigma$$

N(0,1) — стандартное нормальное распределение

6.1 Гамма-распределение

 $X \in \Gamma_{lpha,\lambda}$, если её плотность равна:

$$f(x) = \begin{cases} 0, & x \le 0\\ \frac{\alpha^{\lambda}}{\Gamma(\lambda)} x^{\lambda - 1} e^{-\alpha x}, & x > 0 \end{cases}$$

Свойства.

- 1. $\mathbb{E}\xi = \frac{\lambda}{\alpha}$, $\mathbb{D}\xi = \frac{\lambda}{\alpha^2}$
- 2. Если $\xi_1\in\Gamma_{\alpha,\lambda_1},\xi_2\in\Gamma_{\alpha,\lambda_2}$, то $\xi_1+\xi_2\in\Gamma_{\alpha,\lambda_1+\lambda_2}$
- 3. $\Gamma_{\alpha,1}=E_{\alpha}$ показательное распределение.
- 4. Если $X_i \in E_{lpha}$, то $\sum_{i=1}^n X_i \in \Gamma_{lpha,n}$
- 5. Если $X\in N(0,1)$, то $X^2\in \Gamma_{\frac{1}{2},\frac{1}{2}}$

Примечание. Гамма-распределение возникает в матстатистике как распределение квадрата стандартно нормально распределенной величины. Обобщим эту идею:

6.2 Распределение "хи-квадрат"

Определение. Распределение **хи-квадрат** с k степенями свободы называется распределение суммы k квадратов независимых стандартных нормальных величин.

$$\chi_k^2 = X_1^2 + X_2^2 + \dots + X_k^2, \quad X_i \in N(0, 1)$$

Обозначение. $\chi^2 \in H_k$

Свойства.

- 1. $\chi_k^2 \in \Gamma_{\frac{1}{2},\frac{k}{2}}$
- 2. $\chi_n^2 + \chi_m^2 = \chi_{n+m}^2$ по определению

3.
$$\mathbb{E}\chi_k^2 = \frac{\lambda}{\alpha} = \frac{\frac{k}{2}}{\frac{1}{2}} = k, \mathbb{D}\chi_k^2 = \frac{\lambda}{\alpha^2} = \frac{\frac{k}{2}}{\left(\frac{1}{2}\right)^2} = 2k$$

6.3 Распределение Стьюдента

Определение. Пусть случайные величины $X_0, X_1 \dots X_k$ — независимы и имеют стандартное нормальное распределение. Распределением Стьюдента с k степеней свободы называется распределение случайной величины

$$t_k = \frac{X_0}{\sqrt{\frac{1}{k}(X_1^2 + \dots + X_k^2)}} = \frac{X_0}{\sqrt{\frac{1}{k}\chi_k^2}}$$

Свойства.

- 1. $\mathbb{E}t_k = 0$
- 2. $\mathbb{D}t_k = \frac{k}{k-2}$

6.4 Распределение Фишера-Снедекора

Определение. Распределение $F_{m,n}$ называется распределением Фишера-Снидекора (или F-распределением) со степенями свободы m и n называется распределение случайной величины

$$f_{m,n} = \frac{\frac{\chi_m^2}{m}}{\frac{\chi_n^2}{n}}$$

, где χ^2_n и χ^2_m — независимые случайные величины с распределением χ^2 .

Свойства.

- 1. $\mathbb{E}f_{m,n} = \frac{n}{n-2}$
- 2. $\mathbb{D}f_{m,n} = \frac{2n^2(m+n-2)}{m(n-2)^2(n-4)}$

3.
$$F_{m,n}(x) = P(f_{m,n} < X) = P\left(\frac{1}{f_{m,n}} > \frac{1}{X}\right) = P\left(f_{m,n} > \frac{1}{X}\right) = 1 - F_{n,m}\left(\frac{1}{X}\right)$$

При $n,k,m \to \infty$ эти распределения слабо сходятся к нормальному. При n>30 они достаточно близки.

7 Линейные преобразования нормальных выборок

Пусть $\vec{X}=(X_1\dots X_n)$, где $X_i\in N(0,1)$ и независимы. Будем рассматривать линейные комбинации этого вектора. Пусть A — невырожденная матрица размера $n\times n$. Рассмотрим случайный вектор $\vec{Y}=A\vec{X}$, где координаты случайного вектора $Y_i=a_{i1}X_1+\dots+a_{in}X_n$. Будем исследовать, что из себя представляют Y_i и их совместное распределение.

Примечание. Если $\eta=a\xi+b$, то $f_{\eta}(\xi)=rac{1}{|a|}f_{\xi}\left(rac{\xi-b}{a}
ight)$

Теорема 9. Пусть случайный вектор \vec{X} имеет плотность распределения $f_{\vec{X}}(\vec{x})$ и A невырожденная матрица.

Тогда случайный вектор $\vec{Y} = A\vec{X} + \vec{b}$ имеет плотность

$$f_{\vec{Y}}(\vec{y}) = \frac{1}{|\det A|} \cdot f_{\vec{X}}(A^{-1}(\vec{y} - \vec{b}))$$

Примечание. $f_{\vec{X}}(\vec{x})$ — плотность \vec{X} , если $P(\vec{x} \in B) = \int \cdots \int_B f_{\vec{X}}(\vec{x}) d\vec{x}$

Доказательство.

$$P(\vec{y} \in B) = P(A\vec{x} + \vec{b} \in B)$$

$$= P(\vec{x} \in A^{-1}(\vec{y} - \vec{b}))$$

$$= \int \cdots \int_{A^{-1}(B - \vec{b})} f_{\vec{x}}(x) d\vec{x}$$

Сделаем замену $\vec{y} = A\vec{x} + \vec{b}$. Тогда $A^{-1}(B - \vec{b})$ перейдёт в B, \vec{x} перейдёт в $A^{-1}(\vec{y} - \vec{b}), \vec{y} \in B,$ $d\vec{x}$ перейдёт $|J|d\vec{y}$, где $J = |A^{-1}| = |A|^{-1}$

Итого:

$$= \int \cdots \int_{B} f(A^{-1}(\vec{y} - \vec{b})) \cdot \frac{1}{|\det A|} d\vec{y} \Rightarrow f_{\vec{Y}}(\vec{y}) = \frac{1}{|\det A|} f_{\vec{X}}(A^{-1}(\vec{y} - \vec{b}))$$

Определение. A = C — ортогональна, т.е. $C^T = C^{-1}$, $|\det C| = 1$

Теорема 10. Пусть дан случайный вектор $\vec{X} = (X_1 \dots X_n)$, где $\forall i \ X_i \in N(0,1)$ и X_i независимы, а C — ортогональная матрица.

Тогда координаты случайного вектора $\vec{Y} = C \vec{X}$ независимы и также имеют стандартное нормальное распределение.

Доказательство. Т.к. координаты $X_i \in N(0,1)$ и независимы, то плотность \vec{X} :

$$f_{\vec{X}}(\vec{x}) = \prod_{i=1}^{n} f_i(x_i) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} e^{-\frac{x_i^2}{2}} = \frac{1}{(2\pi)^{\frac{n}{2}}} e^{-\frac{1}{2}(X_1^2 + X_2^2 + \dots + X_n^2)} = \frac{1}{(2\pi)^{\frac{n}{2}}} e^{-\frac{1}{2}||\vec{X}||^2}$$

По предыдущей теореме:

$$f_{\vec{Y}}(\vec{y}) = f_{\vec{X}}(C^T \vec{y}) = \frac{1}{(2\pi)^{\frac{n}{2}}} e^{-\frac{1}{2}||C^T \vec{y}||^2} = \frac{1}{(2\pi)^{\frac{n}{2}}} e^{-\frac{1}{2}||\vec{y}||^2} = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y_i^2} = \prod_{i=1}^n f_i(y_i)$$

Следовательно, $Y_i \in N(0,1)$ и независимы.

Лемма 1 (Фишера). Пусть случайный вектор \vec{X} состоит из независимых стандартных нормальных случайных величин, $\vec{Y} = C\vec{X}$, где C — ортогональная матрица. Тогда $\forall k: 1 \leq k \leq n-1$ случайная величина

$$T(\vec{X}) = \left(\sum_{i=1}^{n} X_i^2\right) - Y_1^2 - \dots - Y_k^2$$

не зависит от случайного вектора $Y_1 \dots Y_k$ и имеет распределение H_{n-k}

Доказательство. Т.к. C ортогональна:

$$||\vec{Y}||^2 = ||C\vec{X}||^2 = ||\vec{X}||^2 = X_1^2 + \dots + X_n^2 = Y_1^2 + \dots + Y_n^2$$

Отсюда

$$T(\vec{X}) = \sum_{i=1}^{n} Y_i^2 - Y_1^2 - \dots - Y_k^2 = Y_{k+1}^2 + \dots + Y_n^2$$

 $Y_{k+1}\dots Y_n$ — независимы, имеют стандартное нормальное распределение и $T(\vec{X})\in H_{n-k}$

 $T(\vec{X})$ не зависит от $Y_1 \dots Y_k$, т.к. $Y_{k+1} \dots Y_n$ по предыдущей лемме от них не зависит. $\ \square$

Теорема 11 (основная).

- $X_1 \dots X_k$ независимы и имеют нормальное распределение с параметрами a и σ^2
- \overline{X} выборочное среднее

• S^2 — исправленное выборочное среднее

Тогда имеют место следующие распределения:

1.

$$\sqrt{n} \cdot \frac{\overline{X} - a}{\sigma} \in N(0, 1)$$

2.

$$\sum_{i=1}^{n} \left(\frac{X_i - a}{\sigma} \right)^2 = \frac{(n-1)S^2}{\sigma^2} \in H_{n-1}$$

3.

$$\sum_{i=1}^{n} \left(\frac{X_i - \overline{X}}{\sigma} \right)^2 = \frac{n\sigma^{2*}}{\sigma^2} \in H_n$$

4.

$$\sqrt{n} \cdot \frac{\overline{X} - a}{S} \in T_{n-1}$$

5. \overline{X} и S^2 — независимые случайные величины

Доказательство.

1.

$$X_i \in N(a, \sigma^2) \Rightarrow \sum_{i=1}^n X_i \in N(na, n\sigma^2) \Rightarrow \overline{X} \in N\left(a, \frac{\sigma^2}{n}\right) \Rightarrow \frac{\sqrt{n}}{\sigma}(\overline{X} - a) \in N(0, 1)$$

2. Верно, т.к. $\frac{X_i-a}{\sigma}\in N(0,1)$

3.

$$\sum_{i=1}^{n} \left(\frac{X_i - \overline{X}}{\sigma} \right)^2 = \sum_{i=1}^{n} \left(\frac{X_i - a}{\sigma} - \frac{\overline{X} - a}{\sigma} \right)^2$$
$$= \sum_{i=1}^{n} (z_i - \overline{z})^2$$

, где

$$z_i = \frac{X_i - a}{\sigma} \in N(0, 1), \overline{z} = \frac{\sum_{i=1}^n z_i}{n} = \frac{\sum x_i - na}{\sigma n} = \frac{\overline{X} - a}{\sigma}$$

Поэтому можем считать, что $X_i \in N(0,1)$. Применим лемму Фишера.

$$T(\vec{X}) = \sum_{i=1}^{n} (X_i - \overline{X}) = n(\overline{X^2} - (\overline{X})^2) = \sum_{i=1}^{n} X_i^2 - n(\overline{X})^2 = \sum_{i=1}^{n} X_i^2 - Y_1$$

, где

$$Y_1 = n(\overline{X})^2 = \sqrt{n}\overline{X} = \frac{1}{\sqrt{n}}X_1 + \dots + \frac{1}{\sqrt{n}}X_n$$

Так как длина строки $\frac{1}{\sqrt{n}},\dots,\frac{1}{\sqrt{n}}$ равна 1, поэтому эту строку можем дополнить до ортогональной матрицы C. Тогда Y_1 — первая координата случайного вектора $\vec{Y}=C\vec{X}$ и по лемме Фишера $T(\vec{X})\in H_{n-1}$

5. $T(\vec{X})=rac{(n-1)S^2}{\sigma^2}$ не зависит от $Y_1=\sqrt{n}\overline{X}\Rightarrow S^2$ и \overline{X} независимы.

4.

$$\sqrt{n}\frac{\overline{X}-a}{S}=\sqrt{n}\frac{\overline{X}-a}{\sigma}\cdot\frac{1}{\sqrt{\frac{(n-1)S^2}{\sigma^2}\cdot\frac{1}{n-1}}}=\frac{X_0}{\sqrt{\chi^2_{n-1}(n-1)}}\in T_{n-1}\text{ , т.к.:}$$

 $X_0\in N(0,1)$ по пункту 1, $\frac{(n-1)S^2}{\sigma^2}\in H_{n-1}$ по пункту 3 и X_0 не зависит от $\frac{(n-1)S^2}{\sigma^2}$ по пунтку 5.

Примечание. Эта часть была рассказана на пратике 29 сентября.

7.1 Многомерные нормальные распределения

Определение. Пусть случайный вектор $\vec{\xi} = (\xi_1 \dots \xi_n)$ имеет в средних $\vec{a} = (\mathbb{E}\xi_1 \dots \mathbb{E}\xi_n)$, K — симметричная положительно определенная метрица.

Вектор $\vec{\xi}$ имеет многомерное нормальное распределение с параметрами \vec{a} и K, если его плотность:

$$f_{\vec{\xi}}(\vec{x}) = \frac{1}{\sqrt{2\pi}^n \sqrt{\det K}} e^{-\frac{1}{2}((\vec{x} - \vec{a})^T K^{-1}(\overline{x} - \overline{a}))}$$

Примечание. $(\vec{x}-\vec{a})^T K^{-1}(\vec{x}-\vec{a})$ — положительно определенная квадратичная форма от $(x_1 \dots x_n)$

Свойства.

- 1. Пусть $\vec{\eta}$ состоит из независимых стандартных нормальных величин, B невырожденная матрица. Тогда $\vec{\xi} = B\vec{\eta} + \vec{a}$ имеет многомерное нормальное распределение с параметрами $\vec{a}, K = B^T B$
- 2. Пусть $\vec{\xi}$ имеет многомерное нормальное распределение с параметрами \vec{a} и K. Тогда $\eta = B^{-1}(\vec{\xi} \vec{a})$, где $B = \sqrt{K^1}$, состоит из независимы стандартных нормальных величин.
- 3. $K = cov(\xi_i, \xi_j)$

 $^{^{1}}$ B существует по задаче 3 из 4-ой практики.

4. Пусть $\vec{\xi}$ имеет многомерное нормальное распределение спараметрами \vec{a} и K. Координаты $\vec{\xi}$ независимы тогда и только тогда, когда они не кореллированы, т.е. K — диагональная.

Следствие 11.1. Если ξ,η — нормальные случайные величины и вектор (ξ,η) имеет ненулевую плотность, то ξ и η независимы тогда и только тогда, когда они не кореллированы, т.е. $r_{\xi,\eta}=0$.

Теорема 12 (многомерная центральная предельная теорема). Среднее арифметическое независимых одинаково распределенных случайных векторов слабо сходится к многомерному нормальному распределению.

Лекция 5

4 октября

8 Квантили распределений

Для простоты предполагаем, что все распределения непрерывные.

Определение (1). Число t_{γ} называется квантилем уровня γ , если $F(t_{\gamma}) = \gamma$.

С точки зрения геометрии $P(X \in \text{ область слева от } t_{\gamma}) = \gamma.$

Примечание.

- Медиана квантиль уровня $\frac{1}{2}$
- Квартили квантили уровня $\frac{1}{4}, \frac{2}{4}, \frac{3}{4}$
- Децили квантили уровня $\frac{1}{10}, \frac{2}{10}, \dots$

Примечание. Квантиль t_{γ} — значение обратной функции распределения: $t_{\gamma} = F^{-1}(\gamma)$

Определение (2 (альтернативное)). Число t_{α} называется квантилем уровня значимости α , если $F(t_{\alpha})=1-\alpha$.

Примечание. $\alpha = 1 - \gamma$

8.1 Квантили основных распределений в Excel

1. НОРМ.СТ.ОБР.

$$F_0(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{z^2}{2}} dx$$

Тогда НОРМ.СТ.ОБР.(x+0.5) — обратная функция функции Лапласа $\Phi(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-\frac{z^2}{2}}dz$

¹ Или квантилью.

2. (a) СТЬЮДЕНТ.ОБР. — обратная к функции распределения Стьюдента стандартной величины.

$$t_k = \frac{X_0}{\sqrt{\frac{1}{k}\chi_k^2}}$$

(b) СТЬЮДЕНТ.ОБР.2Х

Возвращает t_{α} , такое что $P(|X| > t_{\alpha}) = \alpha$. Отсюда $P(|X| < t_{\alpha}) = 1 - \alpha$ и применяем СТЬЮДЕНТ.ОБР.2X $(1 - \alpha, k)$

- 3. (a) XИ2.ОБР. возвращает квантиль t_{γ} в первом смысле для распределения χ^2 .
 - (b) XИ2.ОБР.ПХ возвращает квантиль t_{α}
- 4. (a) F.OБР. возвращает квантиль t_{γ} F-распределения
 - (b) F.ОБР.ПХ возвращает квантиль t_{α} F-распределения

8.2 Интервальные оценки

Недостаток точных оценок в том, что мы не знаем, насколько точная наша оценка.

Пусть требуется дать оценку неизвестного параметра θ .

Определение. Интервал $(\theta_\gamma^-,\theta_\gamma^+)$ называется доверительным интервалом для параметра θ надежности γ , если $P(\theta_\gamma^-<\theta<\theta_\gamma^+)=\gamma$

Примечание. Если θ — параметр дискретного распределения, то будет правильней написать $P(\theta_{\gamma}^- < \theta < \theta_{\gamma}^+) \geq \gamma$.

Примечание. Здесь случайные величины — интервальные оценки, а не θ . Поэтому более культурно говорить так: интервал $(\theta_{\gamma}^-, \theta_{\gamma}^+)$ накрывает неизвестный параметр θ с вероятностью γ .²

Примечание. В экономике γ берется 0.95, но можно брать и меньше - 0.9. Для чего-либо важного берется 0.99 или даже 0.999. Уровень надёжности выбирается в зависимости от решаемой задачи. Стандартные уровни: 0.9, 0.95, 0.99, 0.999.

8.2.1 Интервальные оценки для нормального распеределения

Пусть
$$X = (X_1 ... X_n)$$
 из $N(a, \sigma^2)$.

1. Доверительный интервал для параметра a при известном значении параметра σ^2 . По пункту 1 теоремы 11:

$$P\left(-t_{\gamma} < \sqrt{n}\frac{\overline{X} - a}{\sigma} < t_{\gamma}\right) = P\left(\left|\sqrt{n}\frac{\overline{X} - a}{\sigma}\right| < t_{\gamma}\right) = 2\Phi(t_{\gamma}) = \gamma$$

 $[\]overline{\,^2}$ А не " θ попадает в интервал $(\theta_\gamma^-,\theta_\gamma^+)$ с вероятностью γ "

, где $\Phi(x)=rac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-rac{z^2}{2}}dz$. Тогда t_γ — значение обратной к Φ в точке $\frac{\gamma}{2}$. ????

Осталось решить неравенство относительно a.

$$-t_{\gamma} < \sqrt{n} \frac{\overline{X} - a}{\sigma} < t_{\gamma}$$

$$-t_{\gamma} \cdot \frac{\sigma}{\sqrt{n}} < a - \overline{X} < t_{\gamma} \cdot \frac{\sigma}{\sqrt{n}}$$

$$\overline{X} - t_{\gamma} \cdot \frac{\sigma}{\sqrt{n}} < a < \overline{X} + t_{\gamma} \cdot \frac{\sigma}{\sqrt{n}}$$

Итак получили доверительный интервал для параметра a: $\left(\overline{X} - t_{\gamma} \cdot \frac{\sigma}{\sqrt{n}}, \overline{X} + t_{\gamma} \cdot \frac{\sigma}{\sqrt{n}}\right)$

2. Доверительный интервал для параметра a при неизвестном значении параметра σ^2 .

По пункту 4 теоремы 11:

$$P\left(-t_{\gamma} < \sqrt{n} \cdot \frac{\overline{X} - a}{S} < t_{\gamma}\right) = P\left(\left|\sqrt{n} \frac{\overline{X} - a}{S}\right| < t_{\gamma}\right) = 2F_{T_{n-1}}(t_{\gamma}) - 1 = \gamma$$

 $F_{T_{n-1}}(t_\gamma)=rac{1+\gamma}{2}$, т.е. t_γ — квантиль распределения Стьюдента T_{n-1} уровня $rac{1+\gamma}{2}$.

 Π римечание. Если ξ — симметрично, то $P(|\xi| < t) = 2F(t) - 1$

Доказательство.

$$P(|\xi| < t) = 2P(0 < \xi < t) = 2(F(t) - F(0)) = 2F(t) - 1$$

$$-t_{\gamma} < \sqrt{n} \frac{\overline{X} - a}{S} < t_{\gamma}$$

$$\overline{X} - t_{\gamma} \cdot \frac{S}{\sqrt{n}} < a < \overline{X} + t_{\gamma} \cdot \frac{S}{\sqrt{n}}$$

3. Доверительный интервал для параметра σ^2 при ???.

По пункту 2 теоремы 11 $\frac{(n-1)S^2}{\sigma^2}\in H_{n-1}$. Пусть χ_1^2 и χ_2^2 — квантили распределения H_{n-1} уровней $1-\frac{\gamma}{2}$ и $1+\frac{\gamma}{2}$. Тогда:

$$P\left(\chi_1^2 < \frac{(n-1)S^2}{\sigma^2} < \chi_2^2\right) = F_{H_{n-1}}(\chi_2^2) - F_{H_{n-1}}(\chi_1^2) = \left(1 + \frac{\gamma}{2}\right) - \left(1 - \frac{\gamma}{2}\right) = \gamma$$
$$\chi_1^2 < \frac{(n-1)S^2}{\sigma^2} < \chi_2^2$$

$$\frac{1}{\chi_2^2} < \frac{\sigma^2}{(n-1)S^2} \frac{1}{\chi_1^2}$$
$$\frac{(n-1)S^2}{\chi_2^2} < \sigma^2 < \frac{(n-1)S^2}{\chi_1^2}$$

Итак, доверительный интервал для параметра σ^2 надежности γ есть $\left(\frac{(n-1)S^2}{\chi_2^2}, \frac{(n-1)S^2}{\chi_1^2}\right)$, где χ_1^2 и χ_2^2 — квантили уровней $1-\frac{\gamma}{2}$ и $1+\frac{\gamma}{2}$. Следовательно, доверительный интервал для σ это $\left(\frac{\sqrt{n-1}S}{\chi_2}, \frac{\sqrt{n-1}S}{\chi_1}\right)$.

Этот интервал почти всегда не симметричен, можно его сделать симметричным, но мы этого делать не будем.

4. Доверительный интервал для парамтера σ^2 при известном параметре σ^{2*} По пункту 3 теоремы $\frac{n\sigma^{2*}}{\sigma^2}\in H_n$, где $\sigma^{2*}=\frac{1}{n}\sum_{i=1}^n(X_i-a)^2$. Пусть χ_1^2 и χ_2^2 — квантили распределения H_n уровней $1-\frac{\gamma}{2}$ и $1+\frac{\gamma}{2}$ соответственно.

$$P\left(\chi_{1}^{2} < \frac{n\sigma^{2*}}{\sigma^{2}} < \sigma_{2}^{2}\right) = F_{H_{n}}(\chi_{2}^{2}) - F_{H_{n}}(\chi_{1}^{2}) = \gamma$$

$$\chi_{1}^{2} < \frac{n\sigma^{2*}}{\sigma^{2}} < \chi_{2}^{2}$$

$$\frac{n\sigma^{2*}}{\chi_{2}^{2}} < \sigma^{2} < \frac{n\sigma^{2*}}{\chi_{1}^{2}}$$

Итак, доверительный интервал для σ^2 надежности γ это $\left(\frac{n\sigma^{2*}}{\chi_2^2}, \frac{n\sigma^{2*}}{\chi_1^2}\right)$, где χ_1^2 и χ_2^2 — квантили H_n уровней $1-\frac{\gamma}{2}$ и $1+\frac{\gamma}{2}$, $\sigma^{2*}=\frac{1}{n}\sum_{i=1}^n(X_i-a)^2$.

Для других распределений при малых объемах выборки нужно выводить формулы для каждой задачи. При больших объемах благодаря ЦПТ можно делать вид, что распределение нормальное.

Пример. $X\in N(a,\sigma^2)$, причём известно, что $\sigma=3$. В результате обработки выборки объема n=36 нашли $\overline{X}=4.1$. Найти доверительный интервал параметра a надежности $\gamma=0.95$.

Решение.
$$t_{\gamma}: 2\Phi(t_{\gamma})=0.95, \Phi(t_{\gamma})=0.475, t_{\gamma}=1.96$$

$$\overline{X}-t_{\gamma}\cdot\frac{\sigma}{\sqrt{n}}< a<\overline{X}+t_{\gamma}\cdot\frac{\sigma}{\sqrt{n}}$$

$$4.1-1.96\cdot\frac{3}{\sqrt{36}}< a<4.1+1.96\cdot\frac{3}{\sqrt{36}}$$

$$4.1-0.98< a<4.1+0.98$$

Ответ: (3.12, 5.08)

 $\mbox{\it Пример.}\ X\in N(a,\sigma^2).$ В результате обработки выборки объема n=25 нашли $\overline{X}=42.32, S=6.4.$ Найти доверительный интервал надежности $\gamma=0.95.$

Решение. По таблице двустороннего распределения Стьюдента $T_{n-1} \; t_{\gamma} = 2.064$

$$\overline{X} - t_{\gamma} \cdot \frac{S}{\sqrt{n}} < a < \overline{X} + t_{\gamma} \cdot \frac{S}{\sqrt{n}}$$

$$42.32 - 2.064 \cdot \frac{6.4}{\sqrt{25}} < a < 42.32 + 2.064 \cdot \frac{6.4}{\sqrt{25}}$$

$$42.32 - 2.642 < a < 42.32 + 2.642$$

$$39.678 < a < 44.962$$

Ответ: (39.678, 44.962)

Лекция 6

11 октября

Лекция ещё не записана.

Примечание. Следующий материал был рассказан на практике 13 октября.

8.3 Распределение Коши

Пусть дан источник некоторого излучения в точке (0,1), который равномерно посылает лучи во все стороны.

Случайная величина ξ — точка пересечения луча с осью OX.

Найти $F_{\xi}(x), f_{\xi}(x), \mathbb{E}\xi$.

Рис. 6.1: Источник

$$F_{\xi}(x) = P(\xi < x) = P(\xi < 0) + P(0 < \xi < x) = 0.5 + \frac{1}{\pi} \arctan x$$

$$f_{\xi}(x) = F'_{\xi}(x) = \frac{1}{\pi} \frac{1}{x^2 + 1}$$

$$\mathbb{E}\xi = \int_{-\infty}^{+\infty} x f_{\xi}(x) = \int_{-\infty}^{+\infty} x \frac{1}{\pi} \frac{1}{x^2 + 1} dx = \frac{1}{2\pi} \ln(1 + x^2) \Big|_{-\infty}^{+\infty}, \nexists$$

Пусть теперь источник сдвинут на θ по оси x. Тогда $f_{\xi}(x)=\frac{1}{\pi(1+(x-\theta)^2)}$. Попробуем оценить θ . \overline{X} не работает, т.к. оно убежит на бесконечность: $\mathbb{E}\frac{S_n}{n}=\mathbb{E}X$. Оценим с помощью медианы. По симметрии $\theta=\mathrm{Me}\xi$.

$$Me^* = \begin{cases} X_{(k+1)}, & n = 2k+1\\ \frac{X_{(k)} + X_{(k+1)}}{2}, & n = 2k \end{cases}$$

Теорема 13. Если $f(Me) \neq 0$, то $Me^* \stackrel{P}{\to} Me$, причём сходится со скоростью $\frac{1}{\sqrt{n}}$.

В целом при большом числе выбросов медиана помогает. Например, оценивать зарплату нужно по медиане, а не по среднему.

У медианы также есть свои недостатки: она сходится медленнее, чем выборочное среднее — эффективность обычно ниже на 20-30%, но бывают и случаи хуже.

Есть и другие оценки, например усечённое среднее. Выкидываются наименьшие и наибольшие k точек и считается выборочное среднее:

$$\frac{\sum\limits_{i=k+1}^{n-k}X_{(i)}}{n-2k}$$

Несложно заметить, что это нечто промежуточное между выборочным средним и медианой — если k=0, то получаем выборочное среднее, если $k=\frac{n-1}{2}$, то получаем медиану.

Другой пример: составим по исходной выборке выборку объема $\frac{n(n-1)}{2}$, состоящую из $\frac{X_i+X_j}{2}, 1 \leq i,j \leq n$. Среднее Уолша — медиана этой выборки. У этой оценки эффективность падает на $\approx 12\%$ относительно выборочного среднего.

Упражнение 1. Дано n призывников с вероятностью болезни p=0.01. Разбиваем призывников на группы по k человек в группе. Считаем, что $n \, \dot{\cdot} \, k$, т.е. групп $\frac{n}{k}$. В каждой группе:

- Если суммарный результат отрицательный, то 1 анализ.
- Иначе k+1 анализ.

Найти оптимиальное значение k и среднее значение числа анализов.

 $\it Peшение.~\xi_i$ — число анализов в $\it i$ -той группе.

$$P(\xi_i = 1) = (1 - p)^k \quad P(\xi_i = k + 1) = 1 - (1 - p)^k$$

$$\mathbb{E}\xi_i = (1 - p)^k + (k + 1)(1 - (1 - p)^k) = k + 1 - k(1 - p)^k$$

$$\xi = \frac{n}{k} \cdot \xi_i$$

$$\mathbb{E}\xi = n\left(1 + \frac{1}{k} - (1 - p)^k\right) = f(k)$$

Т.к. p мало, пусть оно $p \to 0$. $(1-p)^k \sim 1-pk$.

$$f(k) \sim n \left(\frac{1}{k} + pk\right)$$
$$f'(k) = n \left(-\frac{1}{k^2} + p\right) = 0$$
$$k = \frac{1}{\sqrt{p}} = 10$$
$$\mathbb{E}\xi \approx n \left(\frac{1}{10} + 0.01 \cdot 10\right) = 0.2n$$