

KARATINA UNIVERSITY

UNIVERSITY EXAMINATIONS

2023/2024 ACADEMIC YEAR

SPECIAL/SUPPLEMENTARY EXAMINATIONS FOR THE DEGREE OF:

Bsc. W/EDUCATION (P106)

Bed. SCIENCE (E101)

COURSE CODE: MAT 304

COURSE TITLE: FUNCTIONAL ANALYSIS I

DATE: 17th JULY, 2024 **TIME:** 12PM - 2PM

<u>INSTRUCTIONS</u>: See inside

INSTRUCTIONS

Answer $\underline{\mathbf{ALL}}$ questions in Section A and $\underline{\mathbf{ANY}}$ other $\underline{\mathbf{TWO}}$ from section B.

SECTION A

Answer **ALL** questions from this section

QUESTION ONE (30 marks)

- a) Give an example of incomplete normed linear space. (2 marks)
- b) Let X = C[0, 1]. Consider three metrics d_1 and d_{∞} defined as: $d_1(f, g) = \int_a^b |f(x) g(x)| dx \text{ and } d_{\infty}(f, g) = \max\{|f(x) g(x)|: a \le x \le b\}.$ On X = C[0, 1] take f(x) = x and $g(x) = x^3$. Calculate:
 - i) $d_1(f, g)$. (3 marks)
 - ii) $d_{\infty}(f,g)$. (3 marks)
- c) Let X = (0,1] and a metric be defined by d(x,y) = |x-y|. Let $x_n = \frac{1}{n}$ be a sequence in X. Determine if (X, d) is complete. (4 marks)
- d) Let be a vector space of all polynomials defined on the interval [a,b]. $x(t)=a_0+a_1t+a_2t^2+a_3t^3+\cdots+a_nt^n,\ n\geq 1$ and $t\in [a,b]$. Define an operator by $Tx=\frac{d}{dx}x(t)$. Show that T is not bounded. (5 marks)
- e) Consider the vector $\vec{u} = (11, 8, 7, -4, 6, -19)$. Determine the:
 - i) One norm. (2 marks)
 - ii) Two norm. (3 marks)
 - iii) Infinity norm. (3 marks)
- f) Show that every convergent sequence in a metric space (X, d) is Cauchy. (5 marks)

SECTION B

Answer ANY TWO questions from this section

QUESTION TWO (20 marks)

- a) Show that the differential operator is linear. (5 marks)
- b) Show that the differential operator is linear. (6 marks)
- c) Let $X = \mathbb{R}^n$ be the Euclidean vector space. Define on X the one norm on by $\|\vec{u}\|_1 = |u_1| + |u_2| + |u_3| + \cdots + |u_n|$. Show that $\|\vec{u}\|_1$ defines a norm. (9 marks)

QUESTION THREE (20 marks)

- a) i) Define the differential operator. (3 marks)
 - ii) Show that the differential operator is unbounded. (4 marks)
- b) i) Let (X, d) be a metric space. Define an open ball in relation to (X, d). (3 marks)
 - ii) Let \mathbb{R}^2 , d be the Euclidean metric in \mathbb{R}^2 . Find and describe $B_d((0,0),1)$. (4 marks)
- c) Let (X, d) be a metric space. Define $d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}$ for all $x, y \in X$. Show that $d_1(x, y)$ satisfies the symmetry and triangular inequality properties of a metric space. (6 marks)

QUESTION FOUR (20 marks)

- a) Define the term "norm of an operator". (3 marks)
- b) i) Define the term continuous function" for a function $f:V\to\mathbb{R} \text{ where }V\text{ is a metric space.} \tag{3 marks}$
 - ii) Give an example of a continuous function in a metric space $V = \mathbb{R}$. Show that this function is continuous. (4 marks)

c) Let $V = \mathbb{R}^2$. Let $(x, y) \in V$ with x and y written as $x = (\xi_1, \eta_1)$ and $y = (\xi_2, \eta_2)$. Let a metric on this set be defined by $d_{tc}(x, y) = \sqrt{|\xi_1 - \xi_2| + |\eta_1 - \eta_2|}$. Show that $d_{tc}(x, y)$ defines a metric on V. (10 marks)

QUESTION FIVE (20 marks)

- a) Show that the space of rational numbers is incomplete. (4 marks)
- b) Give an example of a complete normed space. (2 marks)
- c) Consider the operator $T: C[0,5] \to C[0,5]$ defined by $S(f(t)) = x^3 f(x)$. Show that T is:
 - i) Linear. (3 marks)
 - ii) Bounded. (3 marks)
- d) Define a Cauchy sequence in a normed space X (4 marks)
- e) Define a norm on a real vector space X. (4 marks)