SpaceX Launch Analysis Capstone Project

Name: Stefan McIntyre

• Date: July 2025

Executive Summary

- Objective: Analyze historical SpaceX launch data.
- Approach: Combined API calls.
- Outcome: Identified launch trends.
- Tools Used:
 - Python
 - Pandas
 - SQL
 - Folium

Introduction

- SpaceX revolutionized private aerospace.
- Questions:
 - What factors influence success?
 - Which sites are most reliable?
 - Can we predict outcomes?

Data Collection Methodology

- Sources: SpaceX REST API + Wikipedia
- Flow:
 - GET requests to API
 - Parse JSON
 - Scrape Wikipedia
 - Merge data
- GitHub: API Collection notebook

Data Wrangling

- Processed launch data:
 - Converted types, imputed values
 - Encoded categories
- Flow:
 - Inspect
 - Clean
 - Engineer features
 - Export clean data

EDA – Visual Analysis

- Plots:
 - Flight vs Launch Site
 - Payload vs Launch Site
 - Orbit Success Rate
 - Launch Trends
- GitHub: EDA Visuals

EDA – SQL Queries

- Queries:
 - Unique sites
 - NASA payload
 - Avg payload by booster
 - Landing outcomes
- GitHub: SQL Notebook

Interactive Maps – Folium

- Created:
 - Site markers
 - Outcome colors
 - Distance overlays
- GitHub: Folium Notebook

Interactive Dashboards — Plotly Dash

• Elements:

- Site success pie chart
- Payload vs Outcome
- GitHub: Dash App

Predictive Analytics (Classification)

- Models: LR, SVM, RF, DT
- Best: Decision Tree (83%)
- Metrics:
 - Precision: 0.85
 - Recall: 0.82
 - Confusion Matrix: 180 TP, 10 FN

Results & Conclusion

- Top Sites: CCAFS SLC 40, KSC LC 39A
- Payload trends
- Decision Tree performed best
- Future: Add weather, mission type

Appendix

- Code Snippets
- Extra Charts
- GitHub: Full repo