This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

				The same				and the same		After which	
	***	Armer C							and a	*	
i Hi			X.				en γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ	er e	. 4.	* .	;:- ` . ti
.		kan.							e t		
						*A . A	7-1			Ž.	4
			(I_{2},\ldots,I_{n})				0 1 0 1				ý
							**				
						4.					
			s	a.							
					No. 1		ef de,				
, n											
											,
						i ,					
					4			6°	*		•
	a tagairtí agus agus agus agus agus agus agus agus		. *	1.			•				
			•			* .					
			-	w.							
	•			•		β°.					
								1			
		1.1°	٠.			* * *					
					we	*				4 4	
										*	
							*				
									A .		
											J.
								*			
	•								k.		
	,										* * * * * * * * * * * * * * * * * * * *
e e e e e e e e e e e e e e e e e e e		•		•							
								1			
									•		
	5.					4.				*	
	*	₹.		•		*					
•											
				V *							
			* ***			· •					
Section 1											
				* 18	.*		."				
						ye f			• .		
	**		a								
									•		
		-									
Š.	,						•	· ·			
	•	_2 4 .	a ==	1.0				-			
, e				4.			*		•		

® BUNDESREPUBLIK
DEUTSCHLAND

Offenlegungsschrift

(1) DE 3718177 A1

(5) Int. Cl. 4: B 23 K 15/00

> H 01 J 37/315 1 H 01 J 37/21

DEUTSCHES PATENTAMT

② Aktenzeichen:

P 37 18 177.7 29. 5. 87

22 Anmeldetag:43 Offenlegungstag:

15. 12. 88

(7) Anmelder:

Leybold AG, 6450 Hanau, DE

(72) Erfinder:

Schmidt, Ansgar, 5431 Bannberscheid, DE

Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

DE 35 05 857 A1 US 45 46 232

(A) Einrichtung für Elektronenstrahlfokussierung, insbesondere beim Elektronenstrahlschweißen

Die Erfindung betrifft eine Einrichtung für die Elektronenstrahlfokussierung, insbesondere beim Elektronenstrahlschweißen, bei welcher wenigstens ein Teil der vom zu schweißenden Werkstück (12) rückgestreuten Elektronen aufgefangen und der Fokussierungsstrom (I_F) in Abhängigkeit von der Menge der rückgestreuten Elektronen nachgeregelt wird. Hierbei wird der Fokussierungsstrom (I_F) zusätzlich in Abhängigkeit von einer vorgegebenen Größe, z. B. einer differenzierten Spannung (U_D), geregelt (Fig. 4).

Patentansprüche

1. Einrichtung für die Elektronenstrahlfokussierung, insbesondere beim Elektronenstrahlschweißen, bei welcher wenigstens ein Teil der vom zu schweißenden Werkstück rückgestreuten Elektronen aufgefangen und der Fokussierungsstrom in Abhängigkeit von der Menge der rückgestreuten Elektronen nachgeregelt wird, dadurch gekennzeichnet, daß der Fokussierungsstrom zusätzlich in 10 Abhängigkeit von einer vorgegebenen Größe geregelt wird.

2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß ein Differenzierer (14) vorgesehen ist, der eine elektrische Größe (U_M) , die von der An- 15 zahl der aufgefangenen und rückgestrahlten Elektronen abhängt, differenziert und als Istwert (UD) einem Regler (15) zuführt, der gleichzeitig mit ei-

nem Sollwert (U_{soll}) beaufschlagt wird.

3. Einrichtung nach Anspruch 1, dadurch gekenn- 20 zeichnet, daß ein digitaler Minimalwerterfasser vorgesehen ist, der bei einer elektrischen Größe (UM), die von der Anzahl der aufgefangenen und rückgestrahlten Elektronen abhängt, den Minimalwert dieser Größe (UM) auf digitale Weise ermittelt 25 und einem Regler (15) zuführt, der gleichzeitig mit einem Sollwert (Usoll) beaufschlagt wird.

Beschreibung

Die Erfindung betrifft eine Einrichtung für die Elektronenstrahlfokussierung, insbesondere beim Elektronenstrahlschweißen.

Beim Elektronenstrahlschweißen ist es wichtig, den Brennpunkt des Elektronenstrahls bezüglich der 35 Schweißnaht des zu schweißenden Werkstücks genau zu positionieren. Die Eigenschaften dieser Naht sind wesentlich davon abhängig, ob der Brennpunkt exakt auf der Werkstückoberfläche oder aber unter- bzw. oberhalb dieser Oberfläche liegt. Eine besondere 40 Schwierigkeit bei der Fokussierung des Elektronenstrahls tritt dann auf, wenn sich das Werkstück relativ zur Elektronenstrahlkanone bewegt, denn in diesem Fall muß, um eine bestimmte Lage des Brennpunkts beizubehalten, fortwährend nachfokussiert werden.

Es ist bereits eine Einrichtung zur automatischen Fokussierung eines Ladungsträgerstrahls bekannt, bei welcher der durch die Fokussierungslinse fließende Strom in seiner Stärke periodisch verändert wird. Gleichzeitig mit der periodischen Änderung der Linsenstromstärke 50 wird die Menge der vom Objekt ausgehenden Ladungsträger gemessen und bei Erreichen eines Extremwerts dieser Menge der in diesem Moment durch die Fokussierungslinse fließende Strom festgehalten (DE-AS 11 96 806 = US-PS 32 91 959). Bei dieser Einrichtung 55 wird von der Erkenntnis Gebrauch gemacht, daß die von einem Werkstück reflektierten Elektronen dann ein Minimum haben, wenn der optimale Fokussicrungszustand des Elektronenstrahls erreicht ist, d. h. wenn der Elektronenstrahl-Brennpunkt exakt auf der Werkstück- 60 gelung des Fokussierungsstroms einer Elektronen-Oberfläche liegt. Mit der bekannten Einrichtung ist es auch möglich, die Fokussierung so zu wählen, daß der engste Strahlquerschnitt in Richtung der Strahlachse in einer vorgegebenen Entfernung von der Werkstückoberfläche liegt. Dies geschieht dadurch, daß der beim 65 Messen der Menge der vom Objekt ausgehenden Ladungsträger entstehende Strom zeitlich verzögert wird.

Nachteilig ist hierbei indessen, daß bei einem sich

bewegenden Werkstück der Brennpunkt des Elektronenstrahls nicht fortwährend auf einem vorgegebenen Abstand von der Werkstückoberfläche gehalten werden kann, wenn die Oberfläche dieses Werkstücks merkliche Unebenheiten aufweist.

Mit einer weiteren bekannten Einrichtung zum Nahtschweißen eines Werkstücks mittels eines Ladungsträgerstrahls ist es möglich, den Brennpunkt des Strahls kontinuierlich auf die Oberfläche des Werkstücks in jeder Höhe nachzufokussieren (DE-PS 12 70 708 = US-PS 31 65 619). Diese Einrichtung gestattet es jedoch nicht, den Brennpunkt kontinuierlich auf einen vorgegebenen Punkt oberhalb oder unterhalb der Werkstückoberfläche zu fokussieren.

Weiterhin ist ein Verfahren zur Fokussierungsregelung eines von einem Strahlerzeugersystem auf ein zu schweißendes Werkstück gerichteten Elektronenstrahls bekannt, bei dem mittels einer Elektrode ein Teil des vom Strahlauftreffpunkt rückgestreuten Elektronenflusses aufgefangen und der Fokussierungsstrom so nachgeregelt wird, daß der Elektronenstrom bei einem Minimum liegt (DE-AS 19 41 255). Die Fangeinrichtung für die Elektroden ist hierbei von einem zylindrischen, an Masse gelegten Gehäuse gebildet, das an der Fokussierungsspule befestigt und konzentrisch zum Elektronenstrahl angeordnet ist.

Nachteilig ist auch bei diesem bekannten Verfahren, daß es keinen Weg zeigt, wie der Brennpunkt eines Ladungsträgerstrahls stets in einem definierten Abstand von der Werkstückoberfläche gehalten werden kann.

Der Erfindung liegt deshalb die Aufgabe zugrunde, eine Fokussierungseinrichtung für einen Ladungsträgerstrahl zu schaffen, mit dem es möglich ist, den Brennpunkt des Ladungsträgerstrahls exakt auf die Oberfläche eines Werkstücks oder auf einen vorgegebenen Punkt oberhalb oder unterhalb dieses Werkstücks zu legen, und zwar derart, daß der Abstand zwischen der jeweiligen Werkstückoberfläche und dem Brennpunkt auch bei unebenen und sich relativ zum Ladungsträgerstrahl bewegenden Werkstücken konstant gehalten wird.

Diese Aufgabe wird gemäß den Merkmalen des Patentanspruchs 1 gelöst.

Ein Ausführungsbeispiel der Erfindung ist in der 45 Zeichnung dargestellt und wird im folgenden näher beschrieben. Es zeigt

Fig. 1 eine graphische Darstellung des Zusammenhangs zwischen dem Fokussierungsstrom und der Meßspannung, die aufgrund von rückgestrahlten Elektronen bei Aluminium entsteht;

Fig. 2 eine graphische Darstellung des Zusammenhangs zwischen dem Fokussierungsstrom und der Meßspannung, die aufgrund von rückgestrahlten Elektronen bei Stahl entsteht:

Fig. 3 eine herkömmliche Anordnung für die Erfassung der vom Werkstück rückgestrahlten Elektronen beim Elektronenstrahlschweißen sowie zur Regelung des Fokussierungsstroms;

Fig. 4 eine erfindungsgemäße Anordnung für die Restrahlkanone.

In der Fig. 1 sind Meßkurven dargestellt, die den Zusammenhang zwischen den von einem Werkstück aus Aluminium rückgestrahlten Elektronen und dem Fokussierungsstrom einer Elektronenstrahlkanone zeigen. Die rückgestrahlten Elektronen werden hierbei beispielsweise mittels eines Rings erfaßt, der sich oberhalb der Auftreffstelle des Elektronenstrahls auf einem

Werkstück befindet und der eine Spannung abgibt, die der Zahl der auftreffenden Elektronen proportional ist. Zum Zeitpunkt tı sei der Elektronenstrahl exakt auf der Oberfläche eines zu schweißenden Materials fokussiert, wobei der durch die Fokussierungsspule fließende 5 Strom I_{Fopt} sei. Diesem Fokussierungsstrom I_{Fopt} entspricht eine Meßspannung Umoph die relativ gering ist. Wird nun der Fokussierungsstrom Ir abgesenkt, z. B. auf einen Wert IFmm so vergrößert sich die Meßspannung UM auf den Wert UMman was darauf hindeutet, daß sich 10 erzeugt der Elektronenstrahl 11 durch sein Auftressen die Zahl der zurückgestrahlten Elektronen vergrößert hat. Der Fig. 1 ist somit entnehmbar, daß bei exakter Fokussierung eines Elektronenstrahls auf einem Aluminium-Werkstück die Zahl der reflektierten Elektronen ein Minimum ist. Die jeweilige Meßspannung UM gibt 15 Fokussierungseinrichtung 10 steuert, bis sich eine optifolglich an, ob der Brennpunkt des Elektronenstrahls auf der Oberfläche des Werkstücks oder darüber bzw. darunter liegt.

In der Fig. 2 sind Meßkurven dargestellt, die zwar im wescntlichen denjenigen der Fig. 1 entsprechen, aber 20 nung, daß der Brennpunkt des Elektronenstrahls 11 bei einem Werkstück aus Stahl und nicht aus Aluminium aufgenommen wurden. Man erkennt hierbei wieder, daß bei optimaler Fokussierung, d. h. wenn der Brennpunkt des Elektronenstrahls auf der Werkstückoberfläche liegt, die Spannung UM den Wert UMopt einnimmt, wäh- 25 rend der zugehörige Fokussierungsstrom IF den Wert Iron hat. Wird jetzt der Fokussierungsstrom IF abgesenkt und damit der Brennpunkt des Elektronenstrahls unter die Oberfläche des Werkstücks gelegt, so ergibt sich bei einem Fokussierungsstrom IFmin eine Meßspan- 30 gleichmäßige Schweißnaht zu erhalten. nung U_{Mmax}, d. h. es werden zahlreiche Elektronen reflektiert. Bei darauffolgendem Anstieg des Fokussierungsstroms I_F bis zum Wert I_{Fo} geht die Spannung U_M auf ein Minimum U_{Mmin} zurück. Bei diesem Minimum schneidet der Brennpunkt des Elektronenstrahls, von 35 unterhalb der Werkstoff-Oberfläche kommend, diese Oberfläche, um sich dann oberhalb dieser Oberfläche zu befinden. Bei weiterer Erhöhung des Fokussierungsstroms IF bis auf IFmax nimmt die Zahl der reflektierten Elektronen wieder zu, was durch die Spannung U_{Mmax} 40 angedeutet wird.

Im Punkt I_{Fmax} bzw. U_{Mmax} bei $t = t_4$ liegt eine Überfokussierung vor, d. h. der Elektronenstrahl-Brennpunkt liegt über der Werkstück-Oberfläche. Wird nun der Fokussierungsstrom Ir abgesenkt, so sinkt auch die Meß- 45 spannung U_M wieder.

Die geringfügigen Phasenverschiebungen zwischen IF und UM sind meßtechnisch bedingt. Trotz dieser Verschiebungen ist klar zu erkennen, daß die jeweilige Meßspannung vom negativen oder positiven Abstand 50 des Elektronenstrahlbrennpunkts von der Werkstückoberfläche abhängt.

In der Fig. 3 ist eine herkömmliche Anordnung gezeigt, mit welcher die rückgestreuten Elektronen erfaßt und für die Regelung des Fokussierungsstroms herange- 55 zogen werden können. Die Anordnung umfaßt ein Ring 1, der auf negativem Potential liegt und aus einer Stromquelle 2 gespeist wird. Der Ring 1 ist zwischen einem Gitter 3, das auf dem positiven Potential einer Stromquelle 4 liegt, und einer Blende 5 angeordnet, die mit 60 Masse 6 verbunden ist. Die Einrichtung des vom Ring 1 aufgefangenen Elektronenstroms der rückgestreuten Elektronen umfaßt ein übliches Voltmeter 7, dem ein Widerstand 8 parallelgeschaltet ist. Ein Regler 9, der von der am Widerstand 8 abfallenden Spannung ge- 65 speist wird, ist mit einer Fokussierungseinrichtung 10 verbunden, die beispielsweise eine elektromagnetische Spule sein kann. Ein zu schweißendes Werkstück 12 ist

mit Masse 6 verbunden und befindet sich im Schußfeld eines Elektronenstrahlerzeugers 13.

Diese bekannte Anordnung arbeitet wie folgt: Nachdem man eine ungefähre Voreinstellung des Abstands zwischen dem Strahlerzeuger 13 und dem zu schwei-Benden Werkstück vorgenommen und die Schweißleistung sowie die Geschwindigkeit des Vorschubs gewählt hat, wird der Strahlerzeuger 13 in Betrieb gesetzt. Für den Fall, daß die aufgewandte Energie hoch ist, auf das zu schweißende Werkstück 12 eine Ionen- und Elektronenstrahlung, die teilweise von dem Ring 1 wieder aufgefangen wird. Die am Widerstand 8 abfallende Spannung wird dem Regler 9 zugeführt, welcher die male Fokussierung ergibt. Der Regler regelt den Fokussierungsstrom also so lange, bis die am Widerstand 8 abfallende Spannung ein Minimum wird.

Nachteilig ist bei der in der Fig. 3 gezeigten Anordstets auf die Oberfläche des Werkstücks 12 geregelt wird. Dies ist zwar für viele Anwendungsfälle ausreichend, genügt jedoch nicht bei speziellen Anwendungen, wo der Brennpunkt in einem definierten Abstand unter- oder oberhalb der Werkstückoberfläche gehalten werden muß, um bestimmte Eigenschaften der Schweißnaht zu erzielen. Beispielsweise ist es beim Tiefschmelzen erforderlich, den Brennpunkt unter die Werkstück-Oberfläche zu legen, um eine in der Breite

In der Fig. 4 ist eine erfindungsgemäße Anordnung dargestellt, mit der es möglich ist, den Brennpunkt eines Elektronenstrahls auf einen beliebigen Punkt ober- bzw. unterhalb der Werkstückoberfläche zu legen. Hierzu wird die am Widerstand 8 abfallende Spannung U_M in einem Differenzierer 14 differenziert und als Spannung Up auf einen Regler 15 gegeben, in dessen Rückkopplungszweig eine Reihenschaltung aus einem Widerstand 16 und einem Kondensator 17 liegt.

An einen zweiten Eingang des Reglers 15 ist ein Regelwiderstand 18 gelegt, der mit Gleichspannungspolaritäten $+ U_{soll}$ und $- U_{soll}$ in Verbindung steht. Der Regler 15 ist so ausgelegt, daß er den Fokussierungsstrom Ir so lange regelt, bis die differenzierte Spannung $U_{\mathcal{D}}$ gleich Null ist. Bei $U_D = 0$ hat U_M ein Minimum, d. h. der Brennpunkt des Strahls befindet sich in diesem Fall auf der Werkstück-Oberfläche. Damit dieser Brennpunkt nach oben oder unten verschoben werden kann, wird über den Regelwiderstand 18 eine Spannung Usoll auf den zweiten Eingang des Reglers 15 gegeben. Der Regler 15 regelt hierdurch nicht mehr auf ein tatsächliches Elektronenminimum, sondern auf ein fiktives Minimum.

Statt eines analogen Differenzierers 14 kann selbstverständlich auch ein digitaler Differenzierer vorgesehen sein, der das tatsächliche Minimum der rückgestreuten Elektronen erfaßt.

Nummer: Int. Cl.4:

Anmeldetag:

Offenlegungstag:

37 18 177 B 23 K 15/00

29. Mai 1987

15. Dezember 1988

3718177.

3718177

DOCID: <DE___3718177A1_I

