Introduction

- Jusqu'ici nous nous sommes contentés de définir la syntaxe des langages. Les formules n'ont encore aucune signification, en partie car nous n'avons pas donné de signification aux symboles des langages.
- Une signature ne donne qu'un ensemble de symboles, sans en donner d'interprétation.

Est-ce que la formule $\exists y \forall x P(x, y)$ est **vraie**?

Réponse

La valeur de vérité de la formule dépend de comment on *lit* le symbole *P* et du **domaine** de discours considéré.

Introduction

\bigcap Exemple 1

Domaine $= \mathbb{N}$ "il existe un entier naturel inférieur ou égal à tous les entiers"

 $P(x,y) = x \le y$ La formule est **vraie**

\bigcirc Exemple 2

Domaine $= \mathbb{N}$ "il existe un entier naturel inférieur à tous les entiers"

P(x,y) = x < y La formule est **fausse**

Remple 3

Domaine $= \mathbb{Z}$ "il existe un entier relatif inférieur à tous les entiers relatifs"

Introduction

But de la sémantique

Pour donner un sens aux formules, il faut fixer un sens aux symboles de la signature :

- Donner une signification aux symboles de prédicats (relations).
- Donner une signification et aux symboles de fonctions.
- Donner une signification et aux symboles de constantes.
- Fixer le domaine dans lequel les variables prennent valeur.

C'est l'objet de la notion de **structure**.

Structure

Soit $\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{R})$.

Structure

Une structure M de signature Σ est la donnée :

- d'un ensemble **non-vide** D, appelé ensemble de base, ou domaine de la structure,
- d'un élément, noté c^M , pour chaque symbole de constante $c \in \mathcal{C}$,
- d'une fonction, notée f^M , de $D^n \to D$ pour chaque symbole de fonction $f \in \mathcal{F}$ d'arité n,
- d'un sous-ensemble, noté R^M , de D^n pour chaque symbole de relation $R \in \mathcal{R}$ d'arité n.

Structure

Note:

- On dit que la constante c (respectivement la fonction f, la relation R) est interprétée par c^M (resp. f^M , R^M).
- Une structure est parfois aussi appelée une réalisation de la signature.

Exemple 1: $\Sigma = (\{c\}, \emptyset, \{(R, 1)\})$

Une structure de Σ est donnée par :

- Le domaine est les entiers natuels N.
- Le prédicat R est interprété par l'ensemble des nombres premiers,
- ullet La constante c est interprétée par le nombre 2.

Structure

\mathbf{Z} Exemple 2:

$$\Sigma = (\{c, d\}, \{(f, 1), (g, 2), (h, 2)\}, \{(R, 2)\}$$

On peut choisir par exemple la structure suivante :

$$M_1 = (\mathbb{N}, \{0, 1\}, \{s, +, \times\}, \{\leq\})$$

- On interprète le prédicat R comme l'ordre < sur les entiers,
- On interprète f comme la fonction s successeur, g comme +, et h $comme \times$,
- On interprète les constantes c et d comme 0 et 1.

Valuation

Etant donné un ensemble de variables \mathcal{V} et un domaine D,

Naluation

Une valuation pour les variables de \mathcal{V} dans D est une fonction $v: \mathcal{V} \to D$ qui attribue à chaque variable $x \in \mathcal{V}$, une valeur $v(x) \in D$.

On note v[x := a] la valuation v' telle que v'(x) = a et v'(y) = v(y) pour tout $y \neq x$.

On dira alors que $v^{'}$ est une variante en x de v.

Valeur d'un terme

Etant données une structure \mathcal{M} de signature $\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{R})$

Naleur d'un terme

la valeur d'un terme t , que l'on note $[t]_{\mathcal{M},v}$ est un élément de D défini par :

- pour toute constante $c \in \mathcal{C}$, $[c]_{\mathcal{M}_{v}} = c^{\mathcal{M}}$
- pour toute variable $x \in \mathcal{V}$, $[x]_{\mathcal{M},v} = v(x)$
- pour tout $f \in \mathcal{F}$ d'arité n, $[f(t_1, t_2, \dots, t_n)]_{\mathcal{M}, v} = f^{\mathcal{M}}([t_1]_{\mathcal{M}, v}, [t_2]_{\mathcal{M}, v}, \dots [t_n]_{\mathcal{M}, v})$

Valeur d'un terme

Soit la signature : $\Sigma = (\{c, d\}, \{(f, 1), (g, 2), (h, 2)\}, \{(R, 2)\})$ et une structure de $\Sigma : M_1 = (\mathbb{N}, \{0, 1\}, \{s, +, \times\}, \{\leq\})$

Soit une valuation v telle que v(x) = 3, v(y) = 4, v(z) = 6La valeur du terme $t_1 \equiv q(y, h(c, x))$:

$$[t_1]_{M_1,v} = 4 + (0 \times 3) = 4$$

La valeur du terme $t_2 \equiv f(g(d, h(y, z)))$:

$$[t_2]_{M_1,v} = (1 + (4 \times 6)) + 1 = 26$$

Valeur d'une formule atomique

Etant données une structure \mathcal{M} de signature $\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{R})$

Raleur d'unne formule atomique

la valeur $[\varphi]_{\mathcal{M},v}$ d'une formule atomique φ est définie par :

- Si le language est égalitaire et $\varphi \equiv t_1 = t_2$ alors φ est vraie si $[t_1]_{\mathcal{M},v} = [t_2]_{\mathcal{M},v}$
- Si $\varphi \equiv R(t_1, t_2, \dots, t_n)$, alors φ est vraie si $([t_1]_{\mathcal{M}, v}, [t_2]_{\mathcal{M}, v}, \dots [t_n]_{\mathcal{M}, v}) \in R^{\mathcal{M}}$

Valeur d'une formule atomique

Soit la signature :
$$\Sigma = (\{c, d\}, \{(f, 1), (g, 2), (h, 2)\}, \{(R, 2)\})$$
 et une structure de $\Sigma : M_1 = (\mathbb{N}, \{0, 1\}, \{s, +, \times\}, \{\leq\})$

Exemple:

Soit une valuation v telle que v(x) = 3, v(y) = 4, v(z) = 6La valeur de la formule $\varphi_1 \equiv R(y, g(d, x))$:

$$[\varphi_1]_{M_1,v} = 1 \text{ si } 4 \le (1+3)$$

La valeur de la formule $\varphi_2 \equiv R(f(h(y,z)), x)$:

$$[\varphi_2]_{M_{1,v}} = 1 \text{ si } ((4 \times 6) + 1) \le 3$$

Naleur d'unne formule

la valeur $[\varphi]_{\mathcal{M},v}$ d'une formule φ est définie par :

- Si $\varphi \equiv \neg \psi$ alors $[\varphi]_{\mathcal{M},v} = 1$ ssi $[\psi]_{\mathcal{M},v} = 0$
- Si $\varphi \equiv \varphi_1 \wedge \varphi_2$ alors $[\varphi]_{\mathcal{M},v} = 1$ ssi $[\varphi_1]_{\mathcal{M},v} = 1$ et $[\varphi_2]_{\mathcal{M},v} = 1$
- Si $\varphi \equiv \varphi_1 \vee \varphi_2$ alors $[\varphi]_{\mathcal{M},v} = 1$ ssi $[\varphi_1]_{\mathcal{M},v} = 1$ ou $[\varphi_2]_{\mathcal{M},v} = 1$
- Si $\varphi \equiv \varphi_1 \Rightarrow \varphi_2$ alors $[\varphi]_{\mathcal{M},v} = 0$ ssi $[\varphi_1]_{\mathcal{M},v} = 1$ et $[\varphi_2]_{\mathcal{M},v} = 0$
- Si $\varphi \equiv \varphi_1 \Leftrightarrow \varphi_2 \text{ alors } [\varphi]_{\mathcal{M},v} = 1 \text{ ssi } [\varphi_1]_{\mathcal{M},v} = [\varphi_2]_{\mathcal{M},v}$
- Si $\varphi \equiv \forall x \psi$ alors $[\varphi]_{\mathcal{M},v} = 1$ ssi pour tout $a \in D$, $[\psi]_{\mathcal{M},v[x:=a]} = 1$
- Si $\varphi \equiv \exists x \psi$ alors $[\varphi]_{\mathcal{M},v} = 1$ ssi il existe $a \in D$, $[\psi]_{\mathcal{M},v[x:=a]} = 1$

Remarque:

- On remarque que la valeur de $[\forall x\varphi]_{\mathcal{M},v}$ ou $[\exists x\varphi]_{\mathcal{M},v}$ ne dépend pas de v(x).
- Par suite, la valeur de $[\varphi]_{\mathcal{M},v}$ ou φ est une formule quelconque ne dépend pas de v(x) lorsque x est une variable **liée**.
- En particulier, si φ est une formule **close** (sans variables libre), alors $[\varphi]_{\mathcal{M},v}$ ne dépend pas de v et par conséquent on écrira $[\varphi]_{\mathcal{M}}$ à la place de $[\varphi]_{\mathcal{M},v}$ et $\mathcal{M} \models \varphi$ à la place de $\mathcal{M}, v \models \varphi$.

Soit la signature :
$$\Sigma=(\emptyset,\{(f,1)\},\{(P,2)\})$$
 et une structure de Σ : $M=(D,\emptyset,\{f^M\},\{P^M\})$

où: $D = \{a, b, c\},\$ $f^M(a) = a$, $f^M(b) = b$, $f^M(c) = a$, $P^M = \{(a, b), (b, c), (c, a)\}$

Soit formule $\varphi \equiv \forall x \exists y (P(x, f(y)) \lor P(y, f(x)))$

Calculer $[\varphi]_M$

$$D = \{a, b, c\}, f^{M}(a) = a, f^{M}(b) = b, f^{M}(c) = a, P^{M} = \{(a, b), (b, c), (c, a)\}, \varphi \equiv \forall x \exists y (P(x, f(y)) \lor P(y, f(x)))$$

Il faut considérer toutes les valuations possibles de x et de y :

Commencons par étudier les valeurs possibles de la sous-formule

$$\exists y (P(x, f(y)) \lor P(y, f(x))) :$$

$$[\exists y (P(x,f(y)) \lor P(y,f(x)))]_{M,v[x:=a]} = 1 \text{ car } [P(x,f(y)) \lor P(y,f(x))]_{M,v[x:=a,y:=b]} = 1.$$

Donc pour toute valuation v telle que v(x) = a, $[\exists y (P(x, f(y)) \lor P(y, f(x)))]_{M,v} = 1$

$$\left[\exists y (P(x,f(y)) \vee P(y,f(x)))\right]_{M,v[x:=b]} = 1 \text{ car } \left[P(x,f(y)) \vee P(y,f(x))\right]_{M,v[x:=b,y:=a]} = 1$$

Donc pour toute valuation v telle que v(x) = b, $[\exists y (P(x, f(y)) \lor P(y, f(x)))]_{M,v} = 1$

$$[\exists y (P(x,f(y)) \vee P(y,f(x)))]_{M,v[x:=c]} = 1 \text{ car } [P(x,f(y)) \vee P(y,f(x))]_{M,v[x:=c,y:=a]} = 1$$

Donc pour toute valuation v telle que v(x) = c, $[\exists y (P(x, f(y)) \lor P(y, f(x)))]_{M,v} = 1$

Donc pour toute valuation v, nous avons $M, v \models \exists y (P(x, f(y)) \lor P(y, f(x)))$, i.e., $M \models \varphi$

Etant données une structure \mathcal{M} de signature $\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{R})$

Modèle

Une structure \mathcal{M} satisfait la formule $F(x_1, \dots, x_k)$ si elle satisfait la formule close $\forall x_1 \dots \forall x_k F(x_1, \dots, x_k)$. Cette dernière formule est appelée la **clôture universelle** de F.

- On dit que \mathcal{M} est un **modèle** de F. On note $\mathcal{M} \models F$.
- ullet Une formule close F est **insatisfaisable** si elle n'a pas de modèle.
- Soit Γ un ensemble de formules closes. La structure \mathcal{M} est un modèle de Γ si $\mathcal{M} \models F$ pour tout $F \in \Gamma$.

Etant données une structure \mathcal{M} de signature $\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{R})$

Nalidité

Une formule close F est un **théorème** (ou une tautologie) si $\mathcal{M} \models F$ pour toute structure \mathcal{M} .

- Une formule F est dite **théorème** ou **valide** si sa clôture universelle est **valide**.
- On note $\models F$.

Exemple:

- La formule $\forall x P(x) \Rightarrow \exists y P(y)$ est valide.
- La formule $\exists y \forall x P(x, y) \Rightarrow \forall x \exists y P(x, y)$ est valide.
- La formule $\forall x \exists y P(x, y) \Rightarrow \exists y \forall x P(x, y)$ n'est valide.

Soit H est une tautologie du calcul propositionnel dont les variables sont parmis $\{p_1, p_2, \cdots, p_n\}$ et F_1, F_2, \cdots, F_n des formules du calcul des prédicats.

LA formule obtenue en substituant F_i à p_i $(i = 1, 2, \dots, n)$ dans H est une formule valide.

Exemple:

 $\bullet \ \forall x \exists y P(x,y) \lor \neg(\forall x \exists y P(x,y))$

Etant données une structure \mathcal{M} de signature $\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{R})$

Conséquence logique

Une formule close F est une **conséquence logique** d'un ensemble de formules closes Γ si tout modèle de Γ est un modèle de F.

• On note $\Gamma \models F$.

Etant données une structure \mathcal{M} de signature $\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{R})$

Conséquence logique

Une formule close F est une **conséquence logique** d'un ensemble de formules closes Γ si tout modèle de Γ est un modèle de F.

- On note $\Gamma \models F$.
- Une formule F n'est pas une **conséquence logique** d'un ensemble de formules closes Γ s'il existe une structure $\mathcal{M} : \mathcal{M} \models \Gamma$ et $\mathcal{M} \not\models F$.

Etant données une structure \mathcal{M} de signature $\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{R})$

Equivalence

Deux formules F et G sont **équivalents** si pour toute structure \mathcal{M} et pour toute valation v des éléments interprétant les variables de F et G elle prennent la même valeur de vérité.

- On note $F \equiv G$.
- Deux formules F et G sont **équivalents** ssi la formule $F \Leftrightarrow G$ est universellement valide.
- Deux formules F et G sont **équivalents** ssi $F \models G$ et $G \models F$.

Equivalences classiques

• Conversion des quantificateurs :

$$\neg \forall x F \equiv \exists x \neg F$$
$$\neg \exists x F \equiv \forall x \neg F$$

• Distribution des quantificateurs :

$$\exists x(F \lor G) \equiv \exists xF \lor \exists xG$$
$$\forall x(F \land G) \equiv \forall xF \land \forall xG$$
$$\exists x(F \Rightarrow G) \equiv \forall xF \Rightarrow \exists xG$$

• Permutation des quantificateurs de même sorte :

$$\exists x \exists y F \equiv \exists y \exists x F$$
$$\forall x \forall y F \equiv \forall y \forall x F$$

Equivalences classiques

 \bullet Passage: x n'est pas libre dans G

$$\forall xG \equiv \exists xG \equiv G$$

$$\forall x(F \land G) \equiv \forall xF \land G$$

$$\exists x(F \land G) \equiv \exists xF \land G$$

$$\forall x(F \lor G) \equiv \forall xF \lor G$$

$$\exists x(F \lor G) \equiv \exists xF \lor G$$

$$\forall x(F \Rightarrow G) \equiv \exists xF \Rightarrow G$$

$$\exists x(F \Rightarrow G) \equiv \forall xF \Rightarrow G$$

$$\forall x(G \Rightarrow F) \equiv G \Rightarrow \forall xF$$

$$\exists x(G \Rightarrow F) \equiv G \Rightarrow \exists xF$$

Les formules suivantes sont universellement valides :

$$\exists x(F \land G) \Rightarrow \exists xF \land \exists xG$$
$$(\forall xF \lor \forall xG) \Rightarrow \forall x(F \lor G)$$
$$(\exists xF \Rightarrow \forall xG) \Rightarrow \forall x(F \Rightarrow G)$$

