```
In [2]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
#from google.colab import files
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
\textbf{from sklearn.preprocessing import} \ \texttt{StandardScaler}
from sklearn.cluster import KMeans
In [4]:
iris=pd.read csv('E:\internship DS\Iris.csv')
In [5]:
iris.set_index('Id',inplace=True)
In [6]:
iris.info()
```

In [7]:

iris.describe()

memory usage: 7.0+ KB

Out[7]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

In [8]:

sns.pairplot(iris,hue='Species')

Out[8]:

<seaborn.axisgrid.PairGrid at 0x1e7b1406d48>

In [9]:

In [10]:

```
wcss=[]
for i in range(1,11):
    kmeans=KMeans(n_clusters=i,init='k-means++',random_state=5)
    kmeans.fit(iris_encoded)
    wcss.append(kmeans.inertia_)
plt.plot(range(1,11),wcss)
plt.title('Elbow method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
```

Out[10]:

```
Text(0, 0.5, 'WCSS')
```


In [11]:

```
kmeans=KMeans(n_clusters=3,init='k-means++',random_state=5)
cluster_no=kmeans.fit_predict(iris_encoded)
cluster_no
```

Out[11]:

In [12]:

```
plt.scatter(iris_encoded[cluster_no == 0, 0], iris_encoded[cluster_no == 0, 1], s = 100, c = 'red',
label = 'Cluster 1')
plt.scatter(iris_encoded[cluster_no == 1, 0], iris_encoded[cluster_no == 1, 1], s = 100, c = 'blue',
, label = 'Cluster 2')
plt.scatter(iris_encoded[cluster_no == 2, 0], iris_encoded[cluster_no == 2, 1], s = 100, c = 'green
', label = 'Cluster 3')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 300, c = 'yellow', la
bel = 'Centroids')
plt.title('Clusters of customers')
plt.xlabel('Sepal Length')
plt.ylabel('Sepal Width')
plt.legend()
plt.show()
```


In [13]:

```
plt.scatter(iris_encoded[cluster_no == 0, 0], iris_encoded[cluster_no == 0, 2], s = 100, c = 'red',
label = 'Cluster 1')
plt.scatter(iris_encoded[cluster_no == 1, 0], iris_encoded[cluster_no == 1, 2], s = 100, c = 'blue',
label = 'Cluster 2')
plt.scatter(iris_encoded[cluster_no == 2, 0], iris_encoded[cluster_no == 2, 2], s = 100, c = 'green
', label = 'Cluster 3')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 2], s = 300, c = 'yellow', la
bel = 'Centroids')
```

```
plt.title('Clusters of customers')
plt.xlabel('Sepal Length')
plt.ylabel('Petal Length')
plt.legend()
plt.show()
```


In [14]:

```
plt.scatter(iris_encoded[cluster_no == 0, 0], iris_encoded[cluster_no == 0, 3], s = 100, c = 'red',
label = 'Cluster 1')
plt.scatter(iris_encoded[cluster_no == 1, 0], iris_encoded[cluster_no == 1, 3], s = 100, c = 'blue',
, label = 'Cluster 2')
plt.scatter(iris_encoded[cluster_no == 2, 0], iris_encoded[cluster_no == 2, 3], s = 100, c = 'green
', label = 'Cluster 3')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 3], s = 300, c = 'yellow', la
bel = 'Centroids')
plt.title('Clusters of customers')
plt.xlabel('Sepal Length')
plt.ylabel('Petal Width')
plt.legend()
plt.show()
```


In [15]:

```
plt.scatter(iris_encoded[cluster_no == 0, 1], iris_encoded[cluster_no == 0, 2], s = 100, c = 'red',
label = 'Cluster 1')
plt.scatter(iris_encoded[cluster_no == 1, 1], iris_encoded[cluster_no == 1, 2], s = 100, c = 'blue',
    label = 'Cluster 2')
plt.scatter(iris_encoded[cluster_no == 2, 1], iris_encoded[cluster_no == 2, 2], s = 100, c = 'green',
    label = 'Cluster 3')
plt.scatter(kmeans.cluster_centers_[:, 1], kmeans.cluster_centers_[:, 2], s = 300, c = 'yellow', label = 'Centroids')
plt.title('Clusters of customers')
plt.xlabel('Sepal Width')
plt.ylabel('Petal length')
plt.legend()
plt.show()
```

61 i

In [16]:

```
plt.scatter(iris_encoded[cluster_no == 0, 1], iris_encoded[cluster_no == 0, 3], s = 100, c = 'red',
label = 'Cluster 1')
plt.scatter(iris_encoded[cluster_no == 1, 1], iris_encoded[cluster_no == 1, 3], s = 100, c = 'blue',
    label = 'Cluster 2')
plt.scatter(iris_encoded[cluster_no == 2, 1], iris_encoded[cluster_no == 2, 3], s = 100, c = 'green
', label = 'Cluster 3')
plt.scatter(kmeans.cluster_centers_[:, 1], kmeans.cluster_centers_[:, 3], s = 300, c = 'yellow', la
bel = 'Centroids')
plt.title('Clusters of customers')
plt.xlabel('Sepal Width')
plt.ylabel('Petal Width')
plt.legend()
plt.show()
```


In [17]:

```
plt.scatter(iris_encoded[cluster_no == 0, 2], iris_encoded[cluster_no == 0, 3], s = 100, c = 'red',
label = 'Cluster 1')
plt.scatter(iris_encoded[cluster_no == 1, 2], iris_encoded[cluster_no == 1, 3], s = 100, c = 'blue',
    label = 'Cluster 2')
plt.scatter(iris_encoded[cluster_no == 2, 2], iris_encoded[cluster_no == 2, 3], s = 100, c = 'green
', label = 'Cluster 3')
plt.scatter(kmeans.cluster_centers_[:, 2], kmeans.cluster_centers_[:, 3], s = 300, c = 'yellow', label = 'Centroids')
plt.title('Clusters of customers')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.legend()
plt.show()
```


In []: