Vv285 Recitation Class 3

Yuxiang Chen

May 27, 2022

Outline

- Matrix
- 2 Matrices and System of Linear Equations
- Invertibility
- 4 Reference

Calculus of Linear Maps - Matrices

- **1** The column i of a matrix $A \in \operatorname{Mat}(n \times m; \mathbb{F})$ is the **image** of the standard basis b_i in \mathbb{R}^n . You may turn every linear maps to a equivalent map from \mathbb{R}^m to \mathbb{R}^n .
 - ? Suppose you have a linear map $L \in \mathcal{L}(U, V)$, you want to solve some properties of this map.
 - Map domain and codomain of a map to \mathbb{F}^n . This will be a linear process, you can define $\varphi_1 \in \mathcal{L}(U,X)$ and $\varphi_2 \in \mathcal{L}(V,Y)$, where X and Y are subspace of \mathbb{R}^n and \mathbb{R}^m .
 - \succ turn everything into basis and determine the image of basis in U. Write down the matrix A.
 - Analyse A instead of L. Then translate the properties of A back to L.

Calculus of Linear Maps - Matrices

- **1** The column i of a matrix $A \in \operatorname{Mat}(n \times m; \mathbb{F})$ is the **image** of the standard basis b_i in \mathbb{R}^n . You may turn every linear maps to a equivalent map from \mathbb{R}^m to \mathbb{R}^n .
 - ? Suppose you have a linear map $L \in \mathcal{L}(U, V)$, you want to solve some properties of this map.
 - Map domain and codomain of a map to \mathbb{F}^n . This will be a linear process, you can define $\varphi_1 \in \mathcal{L}(U,X)$ and $\varphi_2 \in \mathcal{L}(V,Y)$, where X and Y are subspace of \mathbb{R}^n and \mathbb{R}^m .
 - turn everything into basis and determine the image of basis in U. Write down the matrix A.
 - \triangleright Analyse A instead of L. Then translate the properties of A back to L.
- Matrix multiplication: row by column (practice this!)

Recap for this week

- Fredholm Alternative: equivalent to
 - \triangleright Either ker $L = \{0\}$, i.e, L is injective.
 - Or ker L is not trivial, i.e, L is not injective.
- **②** Matrix Rank: rank A = row rank A = col rank A (use the Adjoint of a matrix to prove it)

Short Comment - Matrix Ajoint (HW2)

Definition

V is finite dimensional with inner product and $A \in \mathcal{L}(V, V)$. The adjoint $A^* \in \mathcal{L}(V, V)$ is defined by:

$$\langle u, Av \rangle = \langle A^*u, v \rangle$$
 for all $u, v \in V$

Reminder

We don't need L to be endomorphism, we can also define the adjoint of T if $T \in \mathcal{L}(V, W)$. Then $T^* \in \mathcal{L}(W, V)$ and $\langle w, Tv \rangle = \langle T^*w, v \rangle$ for all $v \in V$ and $w \in W$

Short Comment - Matrix Ajoint (HW2)

Definition

V is finite dimensional with inner product and $A \in \mathcal{L}(V, V)$. The adjoint $A^* \in \mathcal{L}(V, V)$ is defined by:

$$\langle u, Av \rangle = \langle A^*u, v \rangle$$
 for all $u, v \in V$

Reminder

We don't need L to be endomorphism, we can also define the adjoint of T if $T \in \mathcal{L}(V, W)$. Then $T^* \in \mathcal{L}(W, V)$ and $\langle w, Tv \rangle = \langle T^*w, v \rangle$ for all $v \in V$ and $w \in W$

TASK

- Show A* is well-defined.
- ightharpoonup If $V = \mathbb{C}^n$, prove $A^* = \overline{A^T}$.
- ightharpoonup Show $(\operatorname{ran} A)^{\perp} = \ker A^*$ and $(\ker A)^{\perp} = \operatorname{ran} A^*$

Recap for this week

- Fredholm Alternative: equivalent to
 - ightharpoonup Either ker $L = \{0\}$, i.e, L is injective.
 - \triangleright Or ker L is not trivial, i.e, L is not injective.
- ② Matrix Rank: rank A = row rank A = col rank A
 - $ightharpoonup \operatorname{Mat}(m \times n; \mathbb{F})$ need to be a real vector space (why?)
 - Recap of this proof

Practice on calculating linear maps

TASK

Let $A \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3)$ which satisfies $A = A^*$ and $\{(x, 0, x) \in \mathbb{R}^3 : x \in \mathbb{R}\}$ is in the range of A, such that A(1, 0, 1) = (1, 0, 1)

- (a) Suppose dim ker A=2. Determine the matrix of A w.r.t standard basis on \mathbb{R}^3
- (b) Suppose that $V \subseteq \mathbb{R}^3$ is a subspace such that Ah = 2h for all $h \in V$. Show that $V \perp \{(x, 0, x) \in \mathbb{R}^3 : x \in \mathbb{R}\}$
- (a) Let $\{(x,0,-x) \in \mathbb{R}^3 : x \in \mathbb{R}\} \subseteq V$ and Ah = 2h for all $h \in V$. Give all possible representations of A (w.r.t standard basis on \mathbb{R}^3).

7 / 15

Invertible Matrices & Linear Maps

- **1** To verify whether a map (matrix) A is invertible or not, we need to verify that there exists a map B that $AB = \mathbb{I}$ and $BA = \mathbb{I}$ (in infinite dimensional situation, we must show the left inverse and right inverse both exists!)
 - ightharpoonup However, if A is on finite dimensional spaces, we only need to show $BA = \mathbb{I}$ or $AB = \mathbb{I}$
 - In finite dimensional spaces, $L \in \mathcal{L}(U, V)$ and dim $U = \dim V$, L's injectiveness \Leftrightarrow L's surjectiveness \Leftrightarrow L's bijective
 - ➤ If A is a square matrix, i.e, $A \in \operatorname{Mat}(n; \mathbb{F})$. Then A is invertible iff rank A = n

8 / 15

TASK

Suppose V is finite dimensional, U is a subspace of V, i.e, $U \subseteq V$, and $S \in \mathcal{L}(U, V)$. Prove that there exists an invertible operator $T \in \mathcal{L}(V, V)$ such that Tu = Su for every $u \in U$ if and only if S is injective.

Solution

¹ If S is not injective, any $T \in \mathcal{L}(V,V)$ such that Tu = Su would have non-trivial kernel, whence it cannot be invertible. Conversely, suppose that S is injective. Then the dimension formula says that $\dim ran S = \dim U$. Suppose that $\dim V = n$ and $\dim U = m$. Let $\mathcal{U} = \{u_1, ..., u_m\}$ be a basis for u and $\mathcal{W} = \{w_1, ..., w_m\}$ be a basis for v and v to a basis v to a basis v for v and v to a basis v for v and v to a basis v for v and v for v and v to a basis v for v and v for v for v and v for v and v for v for

$$T\left(\sum_{i=1}^{n}\alpha_{i}u_{i}\right)=S\left(\sum_{i=1}^{m}\alpha_{i}u_{i}\right)+\sum_{i=m+1}^{n}\alpha_{i}w_{i}.$$

Then ker $T = \{0\}$ (why?), so T is injective and thus is bijective. This completes our proof.

Yuxiang Chen

10 / 15

¹This proof is from Leyang Zhang

TASK

Suppose W is finite-dimensional and $T_1, T_2 \in \mathcal{L}(V, W)$. Prove that $\ker T_1 = \ker T_2$ if and only if there exists an invertible operator $S \in \mathcal{L}(W, W)$ s.t. $T_1 = S \circ T_2$.

Solution

```
We first prove (\Rightarrow):
Then we want to find a linear map s.t. T_1e = S(T_2e) for all e \in (V \setminus \ker T_1). Clearly, S \in \mathcal{L}(\operatorname{ran} T_2, \operatorname{ran} T_1). Since we have:
```

$$\ker T_1 = \ker T_2$$

$$(\Leftrightarrow) \dim \ker T_1 = \dim \ker T_2$$

$$(\Leftrightarrow) \dim V - \dim \ker T_1 = \dim V - \dim \ker T_2$$

$$(\Leftrightarrow) \dim \operatorname{ran} T_1 = \dim \operatorname{ran} T_2$$

Also, $\ker S = \{0\}$ (If there is some $v \in V \setminus \ker T_1$ s.t. $0 = S(T_2v) = T_1v \neq 0$, yielding a contradiction. Therefore, $\ker S = \{0\}$). Hence, S is injective thus invertible on $\mathcal{L}(\operatorname{ran} T_2, \operatorname{ran} T_1)$. By the conclusion from the last proof, we can extend S to an invertible linear map \tilde{S} on $\mathcal{L}(W,W)$ s.t. \tilde{S} equals to S on the latter one's domain.

The proof for (\Leftarrow) is relatively easy. Since $T_1e = S(T_2e)$ for all $e \in V$, thus is also true for $e \in \ker T_1$. Then $0 = T_1e = S(T_2e)$. Since $\ker S = \{0\}$, this requires $T_2e = 0 \Rightarrow e \in \ker T_2$. Therefore, $\ker T_1 = \ker T_2$.

If there is some $S \in \mathcal{L}(W,W)$ with $T_1 = S \circ T_2$, then $T_1h = 0$ if and only if $T_2h = 0$, if and only if $h \in \ker T_2$. Thus, $\ker T_1 = \ker T_2$. Conversely, suppose that $\ker T_1 = \ker T_2$. Let U be any subspace of V with $U \oplus \ker T_1 = V$. Let $\{u_1, ..., u_n\}$ be a basis of U. Note that T_1, T_2 restricted to U are invertible. Define

$$ilde{S}: span\{T_2(u_1),...,T_2(u_n)\} o span\{T_1(u_1),...,T_1(u_n)\}, ilde{S}\left(\sum_{i=1}^n lpha_i T_2(u_i)
ight)$$

It is clear that \tilde{S} is injective. Extend \tilde{S} to an invertible S on W as we do in the last question and we are done.

4 D > 4 D > 4 E > 4 E > E 990

TASK

²Suppose A, B are linear maps on finite dimensional vector spaces, prove that:

 $\mathbb{I} - AB$ invertible \Leftrightarrow $\mathbb{I} - BA$ invertible

References I

- VV285 slides from Horst Hohberger
- Linear Algebra Done Right from Axler
- Answer from Leyang Zhang
- Answer from Yiwen Tu

