Inside-out polytopes & a tale of seven polynomials

Matthias Beck, San Francisco State University

Thomas Zaslavsky, Binghamton University (SUNY)

math.sfsu.edu/beck/

arXiv: math.CO/0309330 & math.CO/0309331 & . . .

Chromatic polynomials of graphs

```
\Gamma = (V, E) – graph (without loops)
```

Proper k-coloring of Γ : mapping $x:V \to \{1,2,\ldots,k\}$ such that $x_i \neq x_j$ if there is an edge ij

Theorem (Birkhoff 1912, Whitney 1932) $\chi_{\Gamma}(k) := \# \text{ (proper } k\text{-colorings of } \Gamma)$ is a monic polynomial in k of degree |V|.

Inside-Out Polytopes

Chromatic polynomials of graphs

```
\Gamma = (V, E) – graph (without loops)
```

Proper k-coloring of Γ : mapping $x:V \to \{1,2,\ldots,k\}$ such that $x_i \neq x_j$ if there is an edge ij

Theorem (Birkhoff 1912, Whitney 1932) $\chi_{\Gamma}(k) := \# \text{ (proper } k\text{-colorings of } \Gamma)$ is a monic polynomial in k of degree |V|.

Theorem (Stanley 1973) $(-1)^{|V|}\chi_{\Gamma}(-k)$ equals the number of pairs (α, x) consisting of an acyclic orientation α of Γ and a compatible k-coloring. In particular, $(-1)^{|V|}\chi_{\Gamma}(-1)$ equals the number of acyclic orientations of Γ .

(An orientation α of Γ and a k-coloring x are compatible if $x_j \geq x_i$ whenever there is an edge oriented from i to j. An orientation is acyclic if it has no directed cycles.)

Flow polynomials

Nowhere-zero A-flow on a graph $\Gamma=(V,E)$: mapping $x:E\to A\setminus\{0\}$ (A an abelian group) such that for every node $v\in V$

$$\sum_{h(e)=v} x(e) = \sum_{t(e)=v} x(e)$$

 $egin{array}{lll} h(e) &:=& {\sf head} \ t(e) &:=& {\sf tail} \end{array} \ \ {\sf of the edge} \ e \ {\sf in a (fixed) orientation of } \Gamma$

Flow polynomials

Nowhere-zero A-flow on a graph $\Gamma=(V,E)$: mapping $x:E\to A\setminus\{0\}$ (A an abelian group) such that for every node $v\in V$

$$\sum_{h(e)=v} x(e) = \sum_{t(e)=v} x(e)$$

 $egin{array}{lll} h(e) &:=& {\sf head} \ t(e) &:=& {\sf tail} \end{array} \ \ {\sf of the edge} \ e \ {\sf in a (fixed) orientation of } \Gamma$

Nowhere-zero k-flow : \mathbb{Z} -flow with values in $\{1,2,\ldots,k-1\}$

Flow polynomials

Nowhere-zero A-flow on a graph $\Gamma=(V,E)$: mapping $x:E\to A\setminus\{0\}$ (A an abelian group) such that for every node $v\in V$

$$\sum_{h(e)=v} x(e) = \sum_{t(e)=v} x(e)$$

 $egin{array}{lll} h(e) &:=& {\sf head} \ t(e) &:=& {\sf tail} \end{array} \ \ {\sf of the edge} \ e \ {\sf in a (fixed) orientation of } \Gamma$

Nowhere-zero k-flow : \mathbb{Z} -flow with values in $\{1,2,\ldots,k-1\}$

Theorem

(Tutte 1954) $\overline{\varphi}_{\Gamma}(|A|) := \# (\text{nowhere-zero } A\text{-flows})$ is a polynomial in |A|. (Kochol 2002) $\varphi_{\Gamma}(k) := \# (\text{nowhere-zero } k\text{-flows})$ is a polynomial in k.

(Weak) semimagic squares

 $H_n(t)$ – number of nonnegative integral $n \times n$ -matrices in which every row and column sums to t

1	1	2
2	1	1
1	2	1

(Weak) semimagic squares

 $H_n(t)$ – number of nonnegative integral $n \times n$ -matrices in which every row and column sums to t

1	1	2
2	1	1
1	2	1

Theorem (Ehrhart, Stanley 1973, conjectured by Anand-Dumir-Gupta 1966) $H_n(t)$ is a polynomial in t of degree $(n-1)^2$ satisfying

$$H_n(0) = 1, \ H_n(-1) = H_n(-2) = \dots = H_n(-n+1) = 0,$$

and
$$H_n(-n-t) = (-1)^{n-1}H_n(t)$$
.

(Weak) semimagic squares

 $H_n(t)$ – number of nonnegative integral $n \times n$ -matrices in which every row and column sums to t

1	1	2
2	1	1
1	2	1

Theorem (Ehrhart, Stanley 1973, conjectured by Anand-Dumir-Gupta 1966) $H_n(t)$ is a polynomial in t of degree $(n-1)^2$ satisfying

$$H_n(0) = 1, \ H_n(-1) = H_n(-2) = \dots = H_n(-n+1) = 0,$$

and
$$H_n(-n-t) = (-1)^{n-1}H_n(t)$$
.

What about "classical" magic squares?

Ehrhart (quasi-)polynomials

 $\mathcal{P} \subset \mathbb{R}^d$ — convex rational polytope

For
$$t \in \mathbb{Z}_{>0}$$
 let $\operatorname{Ehr}_{\mathcal{P}}(t) := \# \left(\mathcal{P} \cap \frac{1}{t} \mathbb{Z}^d \right)$

Ehrhart (quasi-)polynomials

 $\mathcal{P} \subset \mathbb{R}^d$ – convex rational polytope

For
$$t \in \mathbb{Z}_{>0}$$
 let $\operatorname{Ehr}_{\mathcal{P}}(t) := \# \left(\mathcal{P} \cap \frac{1}{t} \mathbb{Z}^d \right)$

Theorem

(Ehrhart 1962) $\operatorname{Ehr}_{\mathcal{P}}(t)$ is a quasipolynomial in t of degree $\dim \mathcal{P}$ with leading term $\operatorname{vol} \mathcal{P}$ (normalized to $\operatorname{aff} \mathcal{P} \cap \mathbb{Z}^d$) and constant term $\operatorname{Ehr}_{\mathcal{P}}(0) = \chi(\mathcal{P}) = 1.$

(Macdonald 1971) $(-1)^{\dim \mathcal{P}} \operatorname{Ehr}_{\mathcal{P}}(-t)$ enumerates the interior lattice points in $t\mathcal{P}$.

(A quasipolynomial is an expression $c_d(t) t^d + \cdots + c_1(t) t + c_0(t)$ where c_0, \ldots, c_d are periodic functions in t.)

Characteristic polynomials of hyperplane arrangements

 $\mathcal{H} \subset \mathbb{R}^d$ – arrangement of affine hyperplanes

 $\mathcal{L}(\mathcal{H}) := \{ \bigcap \mathcal{S} : \mathcal{S} \subseteq \mathcal{H} \text{ and } \bigcap \mathcal{S} \neq \emptyset \}$, ordered by reverse inclusion

Characteristic polynomials of hyperplane arrangements

 $\mathcal{H} \subset \mathbb{R}^d$ – arrangement of affine hyperplanes

 $\mathcal{L}(\mathcal{H}) := \{ \bigcap \mathcal{S} : \mathcal{S} \subseteq \mathcal{H} \text{ and } \bigcap \mathcal{S} \neq \emptyset \}$, ordered by reverse inclusion

$$\text{M\"obius function } \mu(r,s) := \begin{cases} 0 & \text{if } r \not \leq s, \\ 1 & \text{if } r = s, \\ -\sum_{r \leq u < s} \mu(r,u) & \text{if } r < s. \end{cases}$$

Characteristic polynomial

$$p_{\mathcal{H}}(\lambda) := \sum_{s \in \mathcal{L}(\mathcal{H})} \mu\left(\mathbb{R}^d, s\right) \lambda^{\dim s}$$

Characteristic polynomials of hyperplane arrangements

 $\mathcal{H} \subset \mathbb{R}^d$ – arrangement of affine hyperplanes

 $\mathcal{L}(\mathcal{H}) := \{ \bigcap \mathcal{S} : \mathcal{S} \subseteq \mathcal{H} \text{ and } \bigcap \mathcal{S} \neq \emptyset \}$, ordered by reverse inclusion

$$\text{M\"obius function } \mu(r,s) := \begin{cases} 0 & \text{if } r \not \leq s, \\ 1 & \text{if } r = s, \\ -\sum_{r \leq u < s} \mu(r,u) & \text{if } r < s. \end{cases}$$

Characteristic polynomial

$$p_{\mathcal{H}}(\lambda) := \sum_{s \in \mathcal{L}(\mathcal{H})} \mu\left(\mathbb{R}^d, s\right) \lambda^{\dim s}$$

Theorem (Zaslavsky 1975) If $\mathbb{R}^d \not\in \mathcal{H}$ then the number of regions into which a hyperplane arrangement \mathcal{H} divides \mathbb{R}^d is $(-1)^d p_{\mathcal{H}}(-1)$.

Graph coloring a la Ehrhart

$$\chi_{K_2}(k) = k(k-1) \dots$$

$$k+1 \longrightarrow K_2$$

$$K_2$$

$$k+1$$

$$x_1 = x_2$$

Graph coloring a la Ehrhart

$$\chi_{K_2}(k) = k(k-1) \dots$$

$$k+1 \longrightarrow K_2$$

$$K_2$$

$$k+1$$

$$x_1 = x_2$$

$$\chi_{\Gamma}(k) = \#\left(\left((0,1)^V \setminus \bigcup \mathcal{H}(\Gamma)\right) \cap \frac{1}{k+1}\mathbb{Z}^V\right)$$

Stanley's Theorem a la Ehrhart

Write $(0,1)^V\setminus\bigcup\mathcal{H}(\Gamma)=\bigcup_j\mathcal{P}_j^\circ$, then by Ehrhart-Macdonald reciprocity

$$(-1)^{|V|}\chi_{\Gamma}(-k) = \sum_{j} \operatorname{Ehr}_{P_{j}}(k-1)$$

Inside-Out Polytopes

Stanley's Theorem a la Ehrhart

Write $(0,1)^V\setminus\bigcup\mathcal{H}(\Gamma)=\bigcup_j\mathcal{P}_j^\circ$, then by Ehrhart-Macdonald reciprocity

$$(-1)^{|V|}\chi_{\Gamma}(-k) = \sum_{j} \operatorname{Ehr}_{P_{j}}(k-1)$$

Greene's observation

region of $\mathcal{H}(\Gamma) \iff$ acyclic orientation of Γ $x_i < x_j \iff i \longrightarrow j$

Chromatic polynomials of signed graphs

 Σ – signed graph (without loops): each edge is labelled + or –

Proper k-coloring of Σ : mapping $x:V \to \{-k,-k+1,\ldots,k\}$ such that, if edge ij has sign ϵ then $x_i \neq \epsilon x_j$

Chromatic polynomials of signed graphs

 Σ – signed graph (without loops): each edge is labelled + or –

Proper k-coloring of Σ : mapping $x:V\to\{-k,-k+1,\ldots,k\}$ such that, if edge ij has sign ϵ then $x_i\neq\epsilon x_j$

Theorem (Zaslavsky 1982) $\chi_{\Sigma}(2k+1) := \# (\text{proper } k\text{-colorings of }\Sigma)$ and $\chi_{\Sigma}^*(2k) := \# (\text{proper zero-free } k\text{-colorings of }\Sigma)$ are monic polynomials of degree |V|. The number of compatible pairs (α,x) consisting of an acyclic orientation α and a k-coloring x of Σ is equal to $(-1)^{|V|}\chi_{\Sigma}(-(2k+1))$. The number in which x is zero-free equals $(-1)^{|V|}\chi_{\Sigma}^*(-2k)$. In particular, $(-1)^{|V|}\chi_{\Sigma}(-1)$ equals the number of acyclic orientations of Σ .

Signed-graph coloring a la Ehrhart

Theorem $\chi_{\Sigma}(2k+1)$ and $\chi_{\Sigma}^*(2k)$ are two halves of one inside-out quasipolynomial.

Signed-graph coloring a la Ehrhart

Theorem $\chi_{\Sigma}(2k+1)$ and $\chi_{\Sigma}^*(2k)$ are two halves of one inside-out quasipolynomial.

Open problem Is there a combinatorial interpretation of $\chi_{\Sigma}^*(-1)$?

Flow polynomials revisited

```
\begin{array}{lll} \varphi_{\Gamma}(k) &:= & \# \ (\text{nowhere-zero} \ k\text{-flows}) \\ \overline{\varphi}_{\Gamma}(|A|) &:= & \# \ (\text{nowhere-zero} \ A\text{-flows}) \end{array}
```

Theorem $(-1)^{|E|-|V|+c(\Gamma)}\varphi_{\Gamma}(-k)$ equals the number of pairs (τ,x) consisting of a totally cyclic orientation τ and a compatible (k+1) -flow x. In particular, the constant term $\varphi_{\Gamma}(0)$ equals the number of totally cyclic orientations of Γ .

(An orientation of Γ is totally cyclic if every edge lies in a coherent circle, that is, where the edges are oriented in a consistent direction around the circle. A totally cyclic orientation τ and a flow x are compatible if $x \geq 0$ when it is expressed in terms of τ .)

Inside-Out Polytopes

Matthias Beck

11

Flow polynomials revisited

```
\varphi_{\Gamma}(k) := \# (\mathsf{nowhere}\text{-}\mathsf{zero}\ k\text{-}\mathsf{flows})
\overline{\varphi}_{\Gamma}(|A|) := \# (\text{nowhere-zero } A\text{-flows})
```

Theorem $(-1)^{|E|-|V|+c(\Gamma)}\varphi_{\Gamma}(-k)$ equals the number of pairs (τ,x) consisting of a totally cyclic orientation au and a compatible (k+1)flow x. In particular, the constant term $\varphi_{\Gamma}(0)$ equals the number of totally cyclic orientations of Γ .

(An orientation of Γ is totally cyclic if every edge lies in a coherent circle, that is, where the edges are oriented in a consistent direction around the circle. A totally cyclic orientation τ and a flow x are compatible if $x \geq 0$ when it is expressed in terms of τ .)

Corollary
$$\varphi_{\Gamma}(0) = (-1)^{|E|-|V|+c(\Gamma)} \overline{\varphi}_{\Gamma}(-1)$$

∃ analogous theorems for signed graphs

Inside-Out Polytopes

Matthias Beck

Find a formula for, or a combinatorial interpretation of, the leading coefficient of φ_{Γ} .

Find a formula for, or a combinatorial interpretation of, the leading coefficient of φ_{Γ} .

Is there a combinatorial interpretation of $\overline{\varphi}_{\Gamma}(-k)$ for $k \geq 2$?

Find a formula for, or a combinatorial interpretation of, the leading coefficient of φ_{Γ} .

Is there a combinatorial interpretation of $\overline{\varphi}_{\Gamma}(-k)$ for $k \geq 2$?

For some graphs, both φ_{Γ} and $\overline{\varphi}_{\Gamma}$ have integral coefficients and φ_{Γ} is a multiple of $\overline{\varphi}_{\Gamma}$. Is there a general reason for these facts?

Inside-out counting functions

Inside-out polytope : $(\mathcal{P}, \mathcal{H})$

Multiplicity of $x \in \mathbb{R}^d$:

$$m_{\mathcal{P},\mathcal{H}}(x) := \begin{cases} \# \text{ closed regions of } \mathcal{H} \text{ in } \mathcal{P} \text{ that contain } x & \text{if } x \in \mathcal{P}, \\ 0 & \text{if } x \notin \mathcal{P} \end{cases}$$

Closed Ehrhart quasipolynomial
$$E_{P,\mathcal{H}}(t) := \sum_{x \in \frac{1}{t}\mathbb{Z}^d} m_{\mathcal{P},\mathcal{H}}(x)$$

Open Ehrhart quasipolynomial $E_{\mathcal{P},\mathcal{H}}^{\circ}(t):=\#\left(\frac{1}{t}\mathbb{Z}^d\cap[\mathcal{P}\setminus\bigcup\mathcal{H}]\right)$

Basic inside-out results

Theorem If $(\mathcal{P}, \mathcal{H})$ is a closed, full-dimensional, rational inside-out polytope, then $E_{\mathcal{P},\mathcal{H}}(t)$ and $E_{\mathcal{P}^{\circ},\mathcal{H}}^{\circ}(t)$ are quasipolynomials in t of degree $\dim \mathcal{P}$ with leading term $\operatorname{vol} P$, and with constant term $E_{\mathcal{P},\mathcal{H}}(0)$ equal to the number of regions of $(\mathcal{P},\mathcal{H})$. Furthermore,

$$E_{\mathcal{P}^{\circ},\mathcal{H}}^{\circ}(t) = (-1)^d E_{\mathcal{P},\mathcal{H}}(-t).$$

Basic inside-out results

Theorem If $(\mathcal{P}, \mathcal{H})$ is a closed, full-dimensional, rational inside-out polytope, then $E_{\mathcal{P},\mathcal{H}}(t)$ and $E_{\mathcal{P}^{\circ},\mathcal{H}}^{\circ}(t)$ are quasipolynomials in t of degree $\dim \mathcal{P}$ with leading term $\operatorname{vol} P$, and with constant term $E_{\mathcal{P},\mathcal{H}}(0)$ equal to the number of regions of $(\mathcal{P},\mathcal{H})$. Furthermore,

$$E_{\mathcal{P}^{\circ},\mathcal{H}}^{\circ}(t) = (-1)^d E_{\mathcal{P},\mathcal{H}}(-t).$$

Theorem $(\mathcal{P},\mathcal{H})$ is a closed, full-dimensional, rational inside-out polytope, then $E_{\mathcal{P},\mathcal{H}}^{\circ}(t) = \sum_{u \in \mathcal{L}(\mathcal{H})} \mu(\mathbb{R}^d,u) \; \mathrm{Ehr}_{\mathcal{P} \cap u}(t),$

and if \mathcal{H} is transverse to \mathcal{P}

$$E_{\mathcal{P},\mathcal{H}}(t) = \sum_{u \in \mathcal{L}(\mathcal{H})} |\mu(\mathbb{R}^d, u)| \operatorname{Ehr}_{\mathcal{P} \cap u}(t).$$

(\mathcal{H} is transverse to \mathcal{P} if every flat $u \in \mathcal{L}(\mathcal{H})$ that intersects \mathcal{P} also intersects P° , and \mathcal{P} does not lie in any of the hyperplanes of \mathcal{H} .)

Inside-Out Polytopes

Matthias Beck

(Strong) magic squares

 $\mathrm{Mag}_n(t)$ – number of nonnegative integral $n \times n$ -matrices with distinct entries in which every row and column sums to \boldsymbol{t}

4	3	8
9	5	1
2	7	6

(Strong) magic squares

 $\mathrm{Mag}_n(t)$ — number of nonnegative integral $n \times n$ -matrices with distinct entries in which every row and column sums to t

4	3	8
9	5	1
2	7	6

Corollary $Mag_n(t)$ is a quasipolynomial in t of degree n-2n-1.

Open problem Can anything be said about the period of Mag_n ? Even in the weak case, do we ever get a polynomial?

Enumeration of integer points with distinct entries

 $\mathcal{P} \subset \mathbb{R}^d$ – rational convex polytope, transverse to

 $\mathcal{H}:=\mathcal{H}[K_d]^{\mathrm{aff}\,\mathcal{P}}$ – arrangement corresponding to K_d , induced on $\mathrm{aff}\,\mathcal{P}$

Enumeration of integer points with distinct entries

 $\mathcal{P} \subset \mathbb{R}^d$ — rational convex polytope, transverse to

 $\mathcal{H}:=\mathcal{H}[K_d]^{\mathrm{aff}\,\mathcal{P}}$ – arrangement corresponding to K_d , induced on $\mathrm{aff}\,\mathcal{P}$

Theorem The number $E_{\mathcal{P}^{\circ},\mathcal{H}}^{\circ}(t)$ of integer points in $t\mathcal{P}^{\circ}$ with distinct entries is a quasipolynomial with constant term equal to the number of permutations of [d] that are realizable in \mathcal{P} . Furthermore, $(-1)^{\dim s} E_{\mathcal{P}^{\circ},\mathcal{H}}^{\circ}(-t) = E_{\mathcal{P},\mathcal{H}}(t) :=$ the number of pairs (x,σ) consisting of an integer point $x \in t\mathcal{P}$ and a compatible \mathcal{P} -realizable permutation σ of [d].

(The point $x \in \mathbb{R}^d$ and the permutation τ are compatible if $x_{\tau 1} < x_{\tau 2} < \cdots < x_{\tau d}$. τ is realizable in X if there exists a compatible $x \in X$.)

Enumeration of integer points with distinct entries

 $\mathcal{P} \subset \mathbb{R}^d$ – rational convex polytope, transverse to

 $\mathcal{H}:=\mathcal{H}[K_d]^{\mathrm{aff}\,\mathcal{P}}$ – arrangement corresponding to K_d , induced on aff \mathcal{P}

Theorem The number $E^{\circ}_{\mathcal{P}^{\circ},\mathcal{H}}(t)$ of integer points in $t\mathcal{P}^{\circ}$ with distinct entries is a quasipolynomial with constant term equal to the number of permutations of [d] that are realizable in $\mathcal P$. Furthermore, $(-1)^{\dim s} E^\circ_{\mathcal P^\circ,\mathcal H}(-t) =$ $E_{\mathcal{P},\mathcal{H}}(t) :=$ the number of pairs (x,σ) consisting of an integer point $x \in t\mathcal{P}$ and a compatible \mathcal{P} -realizable permutation σ of [d].

(The point $x \in \mathbb{R}^d$ and the permutation τ are compatible if $x_{\tau 1} < x_{\tau 2} < 1$ $\cdots < x_{\tau d}$. τ is realizable in X if there exists a compatible $x \in X$.)

Applications (strong) magic squares, rectangles, cubes, graphs, ...

When does $\mathcal{H}[K_d]$ change the denominator of \mathcal{P} ?

When does $\mathcal{H}[K_d]$ change the denominator of \mathcal{P} ?

If \mathcal{P} has integral vertices then $\operatorname{Ehr}_{\mathcal{P}}$ is a polynomial. What conditions on \mathcal{P} ensure that $E_{\mathcal{P},\mathcal{H}[K_d]}$ is also a polynomial? (It need not be: Consider the line segment \mathcal{P} from (0,1) to (1,0) and let $\mathcal{H}=\{x_1=x_2\}$.)

When does $\mathcal{H}[K_d]$ change the denominator of \mathcal{P} ?

If \mathcal{P} has integral vertices then $\operatorname{Ehr}_{\mathcal{P}}$ is a polynomial. What conditions on \mathcal{P} ensure that $E_{\mathcal{P},\mathcal{H}[K_d]}$ is also a polynomial? (It need not be: Consider the line segment \mathcal{P} from (0,1) to (1,0) and let $\mathcal{H} = \{x_1 = x_2\}$.)

The inside-out Ehrhart quasipolynomials for some magic and latin squares have striking symmetries (coefficients alternate in sign, the polynomials factor nicely, etc.). Explain.

When does $\mathcal{H}[K_d]$ change the denominator of \mathcal{P} ?

If \mathcal{P} has integral vertices then $\operatorname{Ehr}_{\mathcal{P}}$ is a polynomial. What conditions on \mathcal{P} ensure that $E_{\mathcal{P},\mathcal{H}[K_d]}$ is also a polynomial? (It need not be: Consider the line segment \mathcal{P} from (0,1) to (1,0) and let $\mathcal{H}=\{x_1=x_2\}$.)

The inside-out Ehrhart quasipolynomials for some magic and latin squares have striking symmetries (coefficients alternate in sign, the polynomials factor nicely, etc.). Explain.

The inside-out Ehrhart quasipolynomials for some magic and latin squares have much lower periods than predicted by their denominators. Explain.

When does $\mathcal{H}[K_d]$ change the denominator of \mathcal{P} ?

If \mathcal{P} has integral vertices then $\operatorname{Ehr}_{\mathcal{P}}$ is a polynomial. What conditions on \mathcal{P} ensure that $E_{\mathcal{P},\mathcal{H}[K_d]}$ is also a polynomial? (It need not be: Consider the line segment \mathcal{P} from (0,1) to (1,0) and let $\mathcal{H} = \{x_1 = x_2\}$.)

The inside-out Ehrhart quasipolynomials for some magic and latin squares have striking symmetries (coefficients alternate in sign, the polynomials factor nicely, etc.). Explain.

The inside-out Ehrhart quasipolynomials for some magic and latin squares have much lower periods than predicted by their denominators. Explain.

Compute Mag₄, Mag₅, ... (possibly using LattE and the Möbius function of the intersection lattice of $\mathcal{H}[K_d]$).

Latin squares and beyond

Covering cluster (X, \mathcal{L}) – a finite set X of points together with a family $\mathcal{L} \subseteq P(X)$ of lines

Latin labelling of (X, \mathcal{L}) – assignment of integers to X such that all entries in a line are distinct.

Inside-Out Polytopes

Latin squares and beyond

Covering cluster (X, \mathcal{L}) – a finite set X of points together with a family $\mathcal{L} \subseteq P(X)$ of lines

Latin labelling of (X, \mathcal{L}) – assignment of integers to X such that all entries in a line are distinct.

To make counting fun, we restrict the entries to the set (0,t). This corresponds to the inside-out polytope $([0,1]^X,\mathcal{H}[\Gamma_{\mathcal{L}}])$, where $\Gamma_{\mathcal{L}} = \bigcup_{L \in \mathcal{L}} K_L$. (Every graph is isomorphic to one of those.)

Inside-Out Polytopes

Matthias Beck

Latin squares and beyond

Covering cluster (X,\mathcal{L}) – a finite set X of points together with a family $\mathcal{L} \subseteq P(X)$ of lines

Latin labelling of (X, \mathcal{L}) – assignment of integers to X such that all entries in a line are distinct.

To make counting fun, we restrict the entries to the set (0,t). This corresponds to the inside-out polytope $\left([0,1]^X,\mathcal{H}[\Gamma_{\mathcal{L}}]\right)$, where $\Gamma_{\mathcal{L}} = \bigcup K_L$. (Every graph is isomorphic to one of those.) $L \in \mathcal{L}$

Example: latin rectangle – lines are rows & columns, $\Gamma_{\mathcal{L}} = K_m \times K_n$. Slightly more general are (partial) latin orthotopes with $\Gamma_{\mathcal{L}} = K_{m_1} \times \cdots \times K_{m_n}$ K_{m_i} (a "Hamming graph").

Stanley's Theorem and latinity

Theorem The number $L^{\circ}(t)$ of latin labellings of (X, \mathcal{L}) with values in (0, t) is a monic polynomial of degree |X| with constant term equal to the number of acyclic orientations of $\Gamma_{\mathcal{L}}$. Furthermore, $(-1)^{|X|}L^{\circ}(-t)$ enumerates pairs consisting of an acyclic orientation of $\Gamma_{\mathcal{L}}$ and a compatible latin labelling with values in [0, t].

Stanley's Theorem and latinity

Theorem The number $L^{\circ}(t)$ of latin labellings of (X, \mathcal{L}) with values in (0, t) is a monic polynomial of degree |X| with constant term equal to the number of acyclic orientations of $\Gamma_{\mathcal{L}}$. Furthermore, $(-1)^{|X|}L^{\circ}(-t)$ enumerates pairs consisting of an acyclic orientation of $\Gamma_{\mathcal{L}}$ and a compatible latin labelling with values in [0, t].

Magilatin squares – additional summation condition on the lines, e.g.

- set all line sums equal to each other;
- set all line sums equal to t.

Stanley's Theorem and latinity

Theorem The number $L^{\circ}(t)$ of latin labellings of (X, \mathcal{L}) with values in (0, t) is a monic polynomial of degree |X| with constant term equal to the number of acyclic orientations of $\Gamma_{\mathcal{L}}$. Furthermore, $(-1)^{|X|}L^{\circ}(-t)$ enumerates pairs consisting of an acyclic orientation of $\Gamma_{\mathcal{L}}$ and a compatible latin labelling with values in [0, t].

Magilatin squares – additional summation condition on the lines, e.g.

- set all line sums equal to each other;
- set all line sums equal to t.

Example: latin squares, with $t = \binom{n+1}{2}$

Note that the hyperplane arrangement gets more complicated, namely $\mathcal{H}[\Gamma_{\mathcal{L}}]^s$, where s is the subspace of \mathbb{R}^X determined by the line sum conditions.

The magic subspace of the covering cluster $([d], \mathcal{L})$ is defined by all line sums given by \mathcal{L} being equal.

A permutation σ of [d] defines a reverse dominance order on the power set P([d]) by $L \preccurlyeq_{\sigma} L'$ if, when L and L' are written in decreasing order according to σ , say $L = \{\sigma j_1, \ldots, \sigma j_l\}$ where $j_1 > \cdots > j_l$ and $L' = \{\sigma j'_1, \ldots, \sigma j'_{l'}\}$ where $j'_1 > \cdots > j'_{l'}$, then $l \leq l'$ and $j_1 \leq j'_1, \ldots, j_l \leq j'_l$.

Conjecture A permutation σ of [d] is realizable by a positive point in the magic subspace of the covering cluster $([d], \mathcal{L})$ if and only if \mathcal{L} is an antichain in the reverse dominance order due to σ .

Antimagic

$$f_1,\ldots,f_m\in(\mathbb{R}^d)^*$$
 – linear forms

 $A^{\circ}(t) := \#$ integer points $x \in (0, t)^d$ such that

$$f_j(x) \neq f_k(x)$$
 if $j \neq k$

Antimagic

$$f_1,\ldots,f_m\in(\mathbb{R}^d)^*$$
 – linear forms

 $A^{\circ}(t):=\#$ integer points $x\in(0,t)^d$ such that

$$f_j(x) \neq f_k(x)$$
 if $j \neq k$

Inside-out interpretation: $f(x) := (f_1, \dots, f_m)(x) \notin \bigcup \mathcal{H}[K_m] \subseteq \mathbb{R}^m$

Pullback $\mathcal{H}[K_m]^{\sharp} \subseteq \mathbb{R}^d$ obtained from $f^{-1}(h)$ for all $h \in \mathcal{H}[K_m]$

Antimagic: $x \in \mathbb{R}^d \setminus \bigcup \mathcal{H}[K_m]^{\sharp}$

Antimagic

$$f_1,\ldots,f_m\in(\mathbb{R}^d)^*$$
 – linear forms

 $A^{\circ}(t) := \#$ integer points $x \in (0, t)^d$ such that

$$f_j(x) \neq f_k(x)$$
 if $j \neq k$

Inside-out interpretation: $f(x) := (f_1, \dots, f_m)(x) \notin \bigcup \mathcal{H}[K_m] \subseteq \mathbb{R}^m$

Pullback $\mathcal{H}[K_m]^{\sharp} \subseteq \mathbb{R}^d$ obtained from $f^{-1}(h)$ for all $h \in \mathcal{H}[K_m]$

Antimagic: $x \in \mathbb{R}^d \setminus \bigcup \mathcal{H}[K_m]^{\sharp}$

Examples: antimagic graphs and relatives (bidirected antimagic graphs, node antimagic, total graphical antimagic), antimagic squares, cubes, etc.

Is there a combinatorial interpretation of the regions of $\mathcal{H}[K_m]^{\sharp}$?

Is there a combinatorial interpretation of the regions of $\mathcal{H}[K_m]^{\sharp}$?

What is the intersection-lattice structure of $\mathcal{H}[K_m]^{\sharp}$?

Is there a combinatorial interpretation of the regions of $\mathcal{H}[K_m]^{\sharp}$?

What is the intersection-lattice structure of $\mathcal{H}[K_m]^{\sharp}$?

Prove that every graph except K_2 is (strongly) antimagic, i.e., admits an antimagic labelling using the numbers $1, 2, \ldots, |E|$.

Is there a combinatorial interpretation of the regions of $\mathcal{H}[K_m]^{\sharp}$?

What is the intersection-lattice structure of $\mathcal{H}[K_m]^{\sharp}$?

Prove that every graph except K_2 is (strongly) antimagic, i.e., admits an antimagic labelling using the numbers $1, 2, \ldots, |E|$. If that's too hard, try trees.