# Sistemas de Informação



# Planejamento de Capacidade e Avaliação de Sistemas Computacionais

Aula 4: Intervalo de Confiança

Prof. Fábio Leandro Rodrigues Cordeiro, Me.



# Sumário

- Geração de Resultados Confiáveis
- Comparação de Alternativas
- Intervalo de Confiança
- Determinando o Tamanho da Amostra
- Referências







# Comparando alternativas

#### Conceito

- Uma premissa é que sempre estamos comparando alternativas diferentes, sejam elas algoritmos, modelos, implementações etc.
- Geralmente um computador (sistema complexo) está sujeito a todo tipo de variação. Portanto, se utilizamos experimentação ou qualquer modelo matemático ou de simulação que tente ser preciso, cada alternativa deve ser testada diversas vezes, para minimizar as variações.





# Exemplo da Cache

#### **Exemplo anterior**

- No nosso exemplo de cache, não existe variação, pois a simulação testa a cache isoladamente de forma bastante simplificada.
- Mas se desejássemos simular a cache considerando todo o processador, a hierarquia de memória e o sistema operacional com os seus vários processos?







# Exemplo da Cache

- Variações e interferências possíveis:
  - □ A cache seria esvaziada a cada novo processo que fosse escalonado.
  - Existiriam duas caches separadas, uma para dados e outra para instruções.
  - A latência e largura de banda dos barramentos seriam fundamentais para o tempo de acesso a cache.
  - □ Os barramentos poderiam ser compartilhados, poderia ou não existir um controlador de DMA etc.
  - □ Tudo isso afetaria o tempo de execução de um programa na memória cache.







#### Gerando Resultados Confiáveis

#### RC

- Como podemos garantir que nenhuma interferência externa vai atrapalhar os nossos resultados?
  - Simples: testamos a mesma alternativa várias vezes para uma mesma configuração.
  - □ Argumento (Exemplo)
    - Se em todas as vezes que testarmos a alternativa, ocorrer uma falta de página, então ela deixou de ser uma interferência e passou a ser relevante e deve ser considerada.
    - Senão, mesmo que ela tenha ocorrido uma ou outra vez por acaso, a sua influência seria minimizada considerando todos os repetidos testes.







# Como evitar interferências não desejáveis

Em um simulador, onde temos total controle, permitimos apenas as variações desejadas, que fazem parte do experimento.

- Em um sistema real, onde temos baixo controle, podemos minimizar o problema desativando todos os hardwares e softwares desnecessários.
  - Ninguém deseja que no meio da execução de um programa importante, a impressora mostre uma mensagem de falta de papel.







# Intervalo de Confiança

#### IC

Ao testarmos uma mesma alternativa várias vezes para uma mesma configuração, podemos calcular o seu intervalo de confiança (IC).

- Porque utilizamos um IC?
  - Sumarizar o erro na média da amostra
  - Prover elementos para saber se a amostra é significativa
  - □ Permitir comparações à luz dos erros







# Intervalo de Confiança

#### IC

- O intervalo de confiança é dado pelas seguintes fórmulas:
  - □ Limite superior: M + d(nc)\*s
  - $\Box$  Limite inferior: M d(nc)\*s
  - Onde:
    - M = média da amostra
    - d = distribuição
      - □ T student (< 30 elementos) e Z normal (>= 30 elementos)
    - Nc = nível de confiança
    - S = erro padrão = desvio padrão/raiz(n. elementos)





# Intervalo de Confiança

- Suponha que desejamos comparar a eficiência de duas organizações de cache para um mesmo programa, considerando todos os aspectos do computador.
  - ☐ Métrica: Tempo em segundos
  - Organizações: Mapeamento Direto e Associativa 2-way
  - Número de Execuções (repetições): 8





#### Resultados obtidos



|       | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  |
|-------|----|----|----|----|----|----|----|----|
| MD    | 25 | 27 | 33 | 32 | 25 | 26 | 31 | 28 |
| 2-way | 28 | 21 | 19 | 20 | 26 | 28 | 19 | 20 |





#### Calculando Média e Desvio Padrão

## **Exemplo 1**

Como dizer que uma é melhor que a outra, já que cada hora deu um resultado diferente?

□ Precisamos calcular a média, o desvio padrão e finalmente o intervalo de

confiança

|       | Média  | Desvio   |
|-------|--------|----------|
| MD    | 28,375 | 2,997395 |
| 2-way | 22,625 | 3,739569 |

■ Mas e o Intervalo de confiança? Como calculá-lo?







# Calculando os Intervalos de Confiança

## **Exemplo 1**

- A distribuição é lida de uma tabela padrão.
- Então o cálculo fica assim, considerando um nível de confiança de 90%:
  - □ Para MD: 28,375 ± t[0.9;7] . 2,99/ $\sqrt{8}$ IC = (26,87 < x < 29,87)
  - □ Para 2-way: 22,625 ± t[0.9;7] . 3,73/ $\sqrt{8}$ IC = (20.75 < x < 24.49)

**Obs:** i) distribuição t usa nível de confiança, e n – 1 elementos; t[0.9;7] = 1.415





# Calculando os Intervalos de Confiança

- O que esses intervalos significam?
  - Que com 90% de certeza, o tempo médio do programa para a organização mapeamento direto está entre 26,87 e 29,87 segundos.
  - Mas quem é melhor? MD ou 2-way? Temos a impressão que é o 2-way, mas ainda precisamos calcular o intervalo de confiança da diferença dos dois para ter certeza.





# Calculando as Diferenças

## **Exemplo 1**

Basta subtrair uma linha pela outra.

|           | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  |
|-----------|----|----|----|----|----|----|----|----|
| MD        | 25 | 27 | 33 | 32 | 25 | 26 | 31 | 28 |
| 2-way     | 28 | 21 | 19 | 20 | 26 | 28 | 19 | 20 |
| Diferença | -3 | 6  | 14 | 12 | -1 | -2 | 12 | 8  |

- Média = 5,75 e Desvio = 6,45
- Intervalo de Confiança = (1,27 < x < 10,22)</p>





#### Analisando o Resultado

- O que significa o IC das diferenças?
  - □Se o intervalo contém zero, então as soluções não são diferentes, ou seja, precisa de mais testes para diferenciá-las.
  - Se o intervalo é positivo, neste exemplo, a segunda solução é a melhor.
  - □ Se o intervalo é negativo, neste exemplo, a primeira solução é a melhor.



#### Conclusão

- Neste exemplo, com 90% de confiança podemos afirmar que a solução com cache 2-way é melhor que mapeamento direto para o programa em questão.
- A maioria dos trabalhos na área estão sujeitos a variação e necessitam do cálculo dos intervalos de confiança.







#### **Dicas Gerais**

- Quantos testes fazer?
  - □ Comece com pouco < 10 e depois vai incrementando caso você não consiga diferenciar as soluções.
- E se tiver que comparar mais de dois?
  - As comparações são pareadas, logo você fará todas as combinações dois a dois.
- Qual o nível de confiança normalmente utilizado?
  - □ Na área, o mínimo é 90%, mas os mais comuns são 95% e 99%.
- Como diminuir o intervalo de confiança?
  - □ Realizar mais testes







#### Como escolher o tamanho da amostra?

Para uma exatidão de ± r%, use a seguinte fórmula:

$$n = \left(\frac{100zs}{r\overline{x}}\right)^2$$

- Onde z é a distribuição normal ou t; s é o desvio padrão; x é a média
- r é a exatidão, por exemplo, a média de uma amostra deu 10 e o desvio padrão 2. Se você quer uma variação de apenas 1 segundo, a exatidão seria de 1/10 = 10%. Ou seja, r controla o tamanho do intervalo.





#### Como escolher o tamanho da amostra?

- Suponha cinco execuções de um programa que gastaram: 22.5, 19.8, 21.1, 26.7 e 20.2 segundos
- Quantas execuções devem ser executadas para obter ± 5% de exatidão e num nível de confiança de 90%? x = 22.1, s = 2.8,  $t_{0.95:4} = 2.132$

$$n = \left(\frac{(100)(2.132)(2.8)}{(5)(22.1)}\right)^2 = 5.4^2 = 29.2$$





#### Como escolher o tamanho da amostra?

- Para calcular o r, geralmente analisamos o desvio padrão da amostra
- Caso ele esteja muito alto, calculamos o r em função do desvio desejado (não quer dizer que ele será alcançado)
- Se s = 10.0 e x = 20.0 (para uma amostra de tamanho 10) e desejamos que o desvio seja s = 5.0, então r =5/20 = 25%. Pois atualmente ele é de 50%.





#### Tamanho da amostra

#### Exercício

Baseado em um teste preliminar, a média do tempo de resposta de um programa é 20s e o erro padrão é 5. Quantas repetições são necessárias para conseguir um exatidão de 5% com confiança de 95%?

Onde  $z_{95\%} = 1.960$ 





# Comparativo

#### Exercício

Seis cargas de trabalho similares foram executadas em dois sistemas. As observações foram: {(5.4, 19.1), (16.6, 3.5), (0.6, 3.4), (1.4, 2.5), (0.6, 3.6), (7.3, 1.7)}.

Qual sistema é o melhor?





# Distribuição t

# Tabela de Distribuição t

| Table of Probabilities for Student's t-Distribution |       |       |       |       |       |        |        |        |
|-----------------------------------------------------|-------|-------|-------|-------|-------|--------|--------|--------|
| df                                                  | 0.600 | 0.700 | 0.800 | 0.900 | 0.950 | 0.975  | 0.990  | 0.995  |
| 1                                                   | 0.325 | 0.727 | 1.376 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 |
| 2                                                   | 0.289 | 0.617 | 1.061 | 1.886 | 2.920 | 4.303  | 6.965  | 9.925  |
| 3                                                   | 0.277 | 0.584 | 0.978 | 1.638 | 2.353 | 3.182  | 4.541  | 5.841  |
| 4                                                   | 0.271 | 0.569 | 0.941 | 1.533 | 2.132 | 2.776  | 3.747  | 4.604  |
| 5                                                   | 0.267 | 0.559 | 0.920 | 1.476 | 2.015 | 2.571  | 3.365  | 4.032  |
| 6                                                   | 0.265 | 0.553 | 0.906 | 1.440 | 1.943 | 2.447  | 3.143  | 3.707  |
| 7                                                   | 0.263 | 0.549 | 0.896 | 1.415 | 1.895 | 2.365  | 2.998  | 3.499  |
| 8                                                   | 0.262 | 0.546 | 0.889 | 1.397 | 1.860 | 2.306  | 2.896  | 3.355  |
| 9                                                   | 0.261 | 0.543 | 0.883 | 1.383 | 1.833 | 2.262  | 2.821  | 3.250  |
| 10                                                  | 0.260 | 0.542 | 0.879 | 1.372 | 1.812 | 2.228  | 2.764  | 3.169  |
| 11                                                  | 0.260 | 0.540 | 0.876 | 1.363 | 1.796 | 2.201  | 2.718  | 3.106  |
| 12                                                  | 0.259 | 0.539 | 0.873 | 1.356 | 1.782 | 2.179  | 2.681  | 3.055  |
| 13                                                  | 0.259 | 0.538 | 0.870 | 1.350 | 1.771 | 2.160  | 2.650  | 3.012  |
| 14                                                  | 0.258 | 0.537 | 0.868 | 1.345 | 1.761 | 2.145  | 2.624  | 2.977  |
| 15                                                  | 0.258 | 0.536 | 0.866 | 1.341 | 1.753 | 2.131  | 2.602  | 2.947  |
| 16                                                  | 0.258 | 0.535 | 0.865 | 1.337 | 1.746 | 2.120  | 2.583  | 2.921  |
| 17                                                  | 0.257 | 0.534 | 0.863 | 1.333 | 1.740 | 2.110  | 2.567  | 2.898  |
| 18                                                  | 0.257 | 0.534 | 0.862 | 1.330 | 1.734 | 2.101  | 2.552  | 2.878  |
| 19                                                  | 0.257 | 0.533 | 0.861 | 1.328 | 1.729 | 2.093  | 2.539  | 2.861  |
| 20                                                  | 0.257 | 0.533 | 0.860 | 1.325 | 1.725 | 2.086  | 2.528  | 2.845  |
| 21                                                  | 0.257 | 0.532 | 0.859 | 1.323 | 1.721 | 2.080  | 2.518  | 2.831  |
| 22                                                  | 0.256 | 0.532 | 0.858 | 1.321 | 1.717 | 2.074  | 2.508  | 2.819  |
| 23                                                  | 0.256 | 0.532 | 0.858 | 1.319 | 1.714 | 2.069  | 2.500  | 2.807  |
| 24                                                  | 0.256 | 0.531 | 0.857 | 1.318 | 1.711 | 2.064  | 2.492  | 2.797  |
| 25                                                  | 0.256 | 0.531 | 0.856 | 1.316 | 1.708 | 2.060  | 2.485  | 2.787  |
| 26                                                  | 0.256 | 0.531 | 0.856 | 1.315 | 1.706 | 2.056  | 2.479  | 2.779  |
| 27                                                  | 0.256 | 0.531 | 0.855 | 1.314 | 1.703 | 2.052  | 2.473  | 2.771  |
| 28                                                  | 0.256 | 0.530 | 0.855 | 1.313 | 1.701 | 2.048  | 2.467  | 2.763  |
| 29                                                  | 0.256 | 0.530 | 0.854 | 1.311 | 1.699 | 2.045  | 2.462  | 2.756  |
| 30                                                  | 0.256 | 0.530 | 0.854 | 1.310 | 1.697 | 2.042  | 2.457  | 2.750  |
| 40                                                  | 0.255 | 0.529 | 0.851 | 1.303 | 1.684 | 2.021  | 2.423  | 2.704  |
| 60                                                  | 0.254 | 0.527 | 0.848 | 1.296 | 1.671 | 2.000  | 2.390  | 2.660  |
| 120                                                 | 0.254 | 0.526 | 0.845 | 1.289 | 1.658 | 1.980  | 2.358  | 2.617  |





#### Referências

Jain, R. K., "The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation and Modeling", John Wiley & Sons, 1991.

Material da disciplina Métodos Quantitativos do professor Virgílio Almeida



