ECUACIONES DIFERENCIALES

Segundo del Grado en Matemáticas

Hugo Marquerie

Profesor: Salvador López Martínez
Facultad de Ciencias - Universidad Autónoma de Madrid
Segundo cuatrimestre 2023 - 2024

1 de Febrero, 2024

1 Tema 1: Introducción

1.1 Conceptos básicos

Definición 1.1 (Tipos de ecuaciones diferenciales).

- 1. Según el número de variables
 - (a) E. D. Ordinarias: Una variable $y \colon I \subset \mathbb{R} \longrightarrow \mathbb{R}$
 - (b) E. D. Parciales: Varias variables $u: \Omega \subset \mathbb{R}^n \longrightarrow \mathbb{R}$
- 2. Según las derivadas de mayor orden.

 $F\left(x,y,y',\ldots,y^{(n)}\right)=0$ es de orden $n\iff F$ es no constante en su variable n+2.

- 3. Según si la derivada de mayor orden se puede despejar o no.
 - (a) En forma normal $y^{(n)} = f(x, y, ..., y^{(n-1)})$.

 \iff por reducción de orden: $\begin{cases} y_j' = y^{(j)}, j = 1, \dots, n-1 \\ y_n' = f(x, y_1, \dots, y_{n-1}) \end{cases}$

Definición 1.2 (Solución de una EDO). Sea $I \subset \mathbb{R}$ un intervalo y $y: I \longrightarrow \mathbb{R}$ una función, y es solución de la EDO $F(x, y, y', \dots, y^{(n)}) = 0$ en I

 \iff \exists las derivadas de y hasta orden $n \land \forall x \in I : F\left(x, y(x), y'(x), \dots, y^{(n)}(x)\right) = 0$

Ejemplo 1.1. La familia de funciones $y(x) = Ce^x$ con $C \in \mathbb{R} \land x \in \mathbb{R} (=I)$ cumple la ecuación y' = y. Si además de la EDO, imponemos un dato incial $y(x_0) = y_0 \in \mathbb{R}$

$$\implies y(x_0) = y_0 = Ce^{x_0} \implies C = e^{-x_0}y_0$$

¿Existe alguna otra solución de $\{y'=y \wedge y(x_0)=y_0\}$? Para comprobarlo, basta con derivar:

$$\frac{\mathrm{d}}{\mathrm{d}x} (y(x)e^{-x}) = (y'(x) - y(x))e^{-x}$$

Si y' = y en $\mathbb{R} \implies \forall x \in \mathbb{R} : \frac{\mathrm{d}}{\mathrm{d}x} (y(x)e^{-x}) = 0 \implies \forall x \in \mathbb{R} : y(x)e^{-x} = C$

 $\implies y(x) = Ce^x \implies y(x) = \left(e^{-x_0}y_0\right)e^x$ es la única solución al sistema.

Ejemplo 1.2. $\left\{ y' = \frac{e^{-y^2}}{1+x^2} \wedge y(0) = 0 \right\}$ Supongamos que $\exists y \colon \mathbb{R} \longrightarrow \mathbb{R}$ derivable solución del problema de valores iniciales (PVI). Veamos que podemos decir de y:

1

- 1. Como sabemos $y(0) = 0 \implies y'(0) = \frac{e^{-(y(0))^2}}{1+0^2} = 1$
- 2. $\forall x \in \mathbb{R} : y'(x) > 0 \implies y$ es estrictamente creciente $\implies y$ es inyectiva.

$$y(0) = 0 \implies \forall x > 0 : y(x) < 0 \land \forall x < 0 : y(x) > 0$$

3.
$$y'' = \frac{(-2yy'2(1+x^2)-2x)e^{-y^2}}{(1+x^2)^2} = \frac{-2e^{-y^2}(ye^{-y^2}+x)}{(1+x^2)^2}$$

Si $x > 0 \implies y''(x) < 0$ y si $x < 0 \implies y''(x) > 0$

 $\implies y$ es convexa en $(-\infty,0)$ y cóncava en $(0,+\infty)$

$$4. \ y' \leq \frac{1}{1+x^2}$$
 Si $x > 0 \implies y(x) = \int_0^x y'(s) \, \mathrm{d}s \leq \int_0^x \frac{1}{1+s^2} \, \mathrm{d}s = \arctan x$ Si $x < 0 \implies -y(x) = \int_x^0 y'(s) \, \mathrm{d}s \leq \int_x^0 \frac{1}{1+s^2} \, \mathrm{d}s = -\arctan x$
$$\implies |y(x)| \leq |\arctan x| \leq \frac{\pi}{2} \implies y \text{ es constante.}$$

Como y es creciente y acotada $\implies \exists \lim_{x \to \infty} y(x) \land \exists \lim_{x \to -\infty} y(x).$

5. Si
$$y(x)$$
 es solución, entonces $z(x) = -y(-x)$ también lo es, porque:
$$z'(x) = y'(-x) = \frac{e^{-(y(-x))^2}}{1+(-x)^2} = \frac{e^{-(z(x))^2}}{1+x^2} \ _{\wedge} \ z(0) = 0$$

6. Si hay solo una solución, entonces $y(x) = z(x) = -y(-x) \iff y(x)$ es impar.

1.2 Algunos métodos de resolución de EDO

Ecuaciones tipo primitiva

Son del tipo y'(x) = f(x) y se resuelven integrando a ambos lados: $\int_{x_0}^x y'(s) ds = \int_{x_0}^x f(s) ds$

$$\iff y(x) - y(x_0) = \int_{x_0}^x f(s) \, ds \iff y(x) = y_0 + \int_{x_0}^x f(s) \, ds$$

1.2.2 Ecuaciones de variables separadas (o separables)

Definición 1.3. Sea una EDO de primer orden, es de variables separadas

$$\iff$$
 es de la forma $h(y)y' = f(x)$

Proposición 1.1. Si H, F son primitivas de h, f respectivamente, entonces la familia de funciones, definida implícitamente por H(y(x)) - F(x) = C, es solución de la EDO.

Demostración.

$$H(y(x)) - F(x) = C \iff (H(y(x)) - F(x))' = 0 \iff h(y(x))y'(x) - f(x) = 0$$

Ejemplo 1.3.
$$y' = \frac{1+x^4}{1+y^2} \implies (1+y^2)y' = 1+x^4$$

$$\left(h(y) = 1+y^2 \implies H(y) = y + \frac{y^3}{3}\right) \land \left(f(x) = 1+x^4 \implies F(x) = x + \frac{x^5}{5}\right)$$

$$H(y(x)) - F(x) = C \iff y + \frac{y^3}{3} - x - \frac{x^5}{5} = C$$

Determinamos unos datos iniciales $\begin{cases} y' = \frac{1+x^4}{1+y^2}, \\ y(x_0) = y_0 \end{cases} \text{ definimos } \Psi(x,y) = y + \frac{y^3}{3} - x - \frac{x^5}{5} - C$

$$\frac{\partial \Psi}{\partial y}(x_0, y_0) = 1 + y_0^2 > 0 \xrightarrow{TFIm} \exists$$
 un entorno I de x_0 tal que $y \colon I \longrightarrow \mathbb{R}$ es solución

Observación 1.1.

- 1. Las ecuaciones autónomas y'=f(y) son un tipo especial de ecuaciones separables donde $h(y)=\frac{1}{f(y)}$
- 2. En las ecuaciones separables, hay una cantidad que se conserva (a lo largo del tiempo).

05/02/2024

En general, si se conserva una cantidad de la forma F(x, y(x)), ¿qué ecuación satisface y?

$$\forall x \in I : g(x) := F(x, y(x)) = c$$

$$\forall x \in I : g'(x) = \frac{\partial F}{\partial x}(x, y(x)) + \frac{\partial F}{\partial y}(x, y(x))y'(x) = 0$$

1.2.3 Ecuaciones exactas

Definición 1.4 (EDO exacta). Sea
$$M(x,y(x)) + N(x,y(x))y' = 0$$
 una EDO, es exacta $\iff \exists F(x,y) : \nabla F = (M,N) \iff \frac{\partial F}{\partial x} = M \wedge \frac{\partial F}{\partial y} = N$

Observación 1.2.

- 1. y solución de EDO exacta $\implies F(x, y(x)) = C$
- 2. Un caso particular de EDO exactas son las de variables separadas.

Proposición 1.2. Sean $\Omega \subset \mathbb{R}^2$ un conjunto abierto y $M, N \in C^1(\Omega)$

$$\exists F \in C^2(\Omega) : \nabla F = (M, N) \iff \forall (x, y) \in \Omega : \frac{\partial M}{\partial y}(x, y) = \frac{\partial N}{\partial x}(x, y)$$

Demostración. $[\Longrightarrow]$ Suponemos que $\exists F \in C^2(\Omega) : \nabla F = (M, N)$

$$\implies \frac{\partial M}{\partial y} = \frac{\partial^2 F}{\partial y \, \partial x} = \frac{\partial^2 F}{\partial x \, \partial y} = \frac{\partial N}{\partial x} \text{ porque } F \in C^2(\Omega)$$

 $[\Leftarrow]$ Supongamos que $\frac{\partial M}{\partial u} = \frac{\partial N}{\partial x}$. Fijados $x_0, y_0 \in \Omega$, definimos

$$\forall (x,y) \in \Omega : F(x,y) := \int_{x_0}^x M(s,y) \, ds + \int_{y_0}^y N(x_0,s) \, ds$$

Por un lado, $\frac{\partial F}{\partial x}(x,y) = M(x,y)$

Por otro lado,
$$\frac{\partial F}{\partial y}(x,y) = \frac{\partial}{\partial y} \int_{x_0}^x M(s,y) \, ds + N(x_0,y) = \int_{x_0}^x \frac{\partial M}{\partial y}(s,y) \, ds + N(x_0,y)$$

$$= \int_{x_0}^x \frac{\partial N}{\partial x}(s,y) \, ds + N(x_0,y) = N(x,y) - N(x_0,y) + N(x_0,y) = N(x,y)$$

Ejemplo 1.4 (y + 2xy' = 0).

$$\implies M(x,y) = y \land N(x,y) = 2x \implies \frac{\partial M}{\partial y} = 1 \neq 2 = \frac{\partial N}{\partial x} \implies \text{no es exacta.}$$

Multiplicando por xy^3 , obtenemos $xy^4 + 2x^2y^3y' = 0$

$$\implies M(x,y) = xy^4 \wedge N(x,y) = 2x^2y^3 \implies \frac{\partial M}{\partial y} = 4xy^3 = \frac{\partial N}{\partial x} \implies \text{esta si es exacta.}$$

Y resolvemos:

$$F(x,y) := \int_{x_0}^x M(s,y) \, \mathrm{d}s + \int_{y_0}^y N(x_0,s) \, \mathrm{d}s = \int_{x_0}^x sy^4 \, \mathrm{d}s + \int_{y_0}^y 2x_0^2 s^3 \, \mathrm{d}s = \left[\frac{s^2}{2} y^4 \right]_{s=x_0}^{s=x} + \left[2x_0^2 \frac{s^4}{4} \right]_{s=y_0}^{s=y} = \frac{x^2 y^4}{2} - \frac{x_0^2 y^4}{2} + \frac{x_0^2 y^4}{2} - \frac{x_0^2 y_0^4}{2} = \frac{x^2 y^4}{2} - \frac{x_0^2 y_0^4}{2}$$

$$\{ F(x,y) = C \land F(x_0,y_0) = 0 \} \implies x^2 y^2 = x_0^2 y_0^4$$

Por ejemplo, si $x_0 > 0, y_0 > 0$, entonces, como y es continua, existe un entorno I de x_0 tal

que $I \subset (0, \infty), y(x) > 0$ en I. Con lo cual:

$$\forall x \in I : \sqrt{x}y(x) = \sqrt{x_0}y_0 \implies y(x) = \frac{\sqrt{x_0}y_0}{\sqrt{x}}$$

Definición 1.5 (Factor integrante). Sea p(x,y) + q(x,y)y' = 0 una EDO y $\mu(x,y)$ una función, μ es un factor integrante de la EDO

$$\iff \mu(x,y)p(x,y) + \mu(x,y)q(x,y)y' = 0 \text{ es exacta}$$

Definición 1.6 (EDO lineales de primer orden). Una EDO se denomina lineal de primer orden \iff es de la forma y' = a(x)y + f(x).

En realidad, las soluciones de esta EDO formarían un espacio afín, pero se le sigue llamando "lineal".

1.2.4 Comodín: cambios de variable

Definición 1.7 (Ecuaciones homogéneas). Sea una EDO de la forma y' = f(x, y) con $f: \Omega \longrightarrow \mathbb{R}, \Omega \subset \mathbb{R}^2$ abierto, es homogénea

$$\iff \forall (x,y) \in \Omega : \forall \lambda \in \mathbb{R} : (\lambda x, \lambda y) \in \Omega : f(\lambda x, \lambda y) = f(x,y)$$

Proposición 1.3. Sea y' = f(x, y) una EDO homogénea

 \implies el cambio de variable $u(x) = \frac{y(x)}{x}$ la transforma en una de variables separadas.

Demostración.

$$xu(x) = y(x) \implies u(x) + xu'(x) = y'(x) = f(x, y(x)) = f(x, xu(x))$$
$$\implies xu'(x) = f(1, u(x)) - u(x) \implies \frac{u'(x)}{f(1, u(x)) - u(x)} = \frac{1}{x}$$

Ejemplo 1.5 (4x - 3y + y'(2y - 3x) = 0). Hacemos el cambio de variable $u(x) = \frac{y(x)}{x}$ $\implies y' = \frac{3y - 4x}{2y - 3x} = f(x, y) \implies f(1, u) = \frac{3u - 4}{2u - 3}$ $\implies f(\lambda x, \lambda y) = \frac{3\lambda x - 4\lambda y}{2\lambda y - 3\lambda x} = \frac{3y - 4x}{2y - 3x} = f(x, y) \implies \text{es homogénea}$ $\implies \frac{u'}{\frac{3u - 4}{2u - 3} - u} = \frac{1}{x} \implies \frac{2u - 3}{-4 - 2u^2 + 6u}u' = \frac{1}{x}$ $\implies -\frac{1}{2}\log|u^2 - 3u + 2| - \log|x| = C_1 \implies |u^2 - 3u + 2| = \frac{C_2}{x^2}$

$$\Rightarrow \frac{(y(x))^2}{x} - \frac{3y(x)}{x} + 2 = \frac{C_2}{x^2} \Rightarrow \left| (y(x))^2 - 3y(x)x + 2x^2 \right| = C_2$$
$$\Rightarrow \left| y(x) = \frac{3x \pm \sqrt{9x^2 - 8x}}{2} \right|$$

Teorema 1.1 (Ejercicio 2.3). Sea $I \subset \mathbb{R}$ un intervalo abierto y sean $a, f: I \longrightarrow \mathbb{R}$ funciones continuas y $x_0 \in I \land y_0 \in \mathbb{R}$

$$\implies El\ PVI \begin{cases} y' = a(x)y + f(x), x \in I \\ y(x_0) = y_0 \end{cases} admite\ una\ única\ solución:$$
$$y(x) = y(x_0)e^{\int_{x_0}^x a(t)\,\mathrm{d}t} + \int_{x_0}^x f(s)e^{\int_{s_0}^x a(t)\,\mathrm{d}t} \,\mathrm{d}s$$

Demostración. $\forall x : f(x) = 0$, la EDO es lineal porque, si y, z son soluciones, entonces $\alpha y + \beta z$ es solución con $\alpha, \beta \in \mathbb{R}$.

$$(\alpha y + \beta z)' = \alpha y' + \beta z' = \alpha a(x)y + \beta a(x)z = a(x)(\alpha y + \beta z)$$

Además podemos encontrar un factor integrante:

$$y' - a(x)y = f(x) \text{ (que es exacta)} \implies (y' - a(x)y)e^{-\int_{x_0}^x a(s) \, ds} = f(x)e^{-\int_{x_0}^x a(s) \, ds}$$

$$\implies \frac{d}{dx} \left(y(x)e^{-\int_{x_0}^x a(s) \, ds} \right) = f(x)e^{-\int_{x_0}^x a(s) \, ds}$$

$$\implies \int_{x_0}^x \frac{d}{ds} \left(y(s)e^{-\int_{x_0}^s a(t) \, dt} \right) ds = \int_{x_0}^x f(s)e^{-\int_{x_0}^s a(t) \, dt} ds$$

$$\implies y(x)e^{-\int_{x_0}^x a(t) \, dt} - y(x_0) = \int_{x_0}^x f(s)e^{-\int_{x_0}^s a(t) \, dt} ds$$

$$\implies y(x) = y(x_0)e^{\int_{x_0}^x a(t) \, dt} + e^{\int_{x_0}^x a(t) \, dt} \int_{x_0}^x f(s)e^{-\int_{x_0}^s a(t) \, dt} ds$$

$$\implies y(x) = y(x_0)e^{\int_{x_0}^x a(t) \, dt} + \int_{x_0}^x f(s)e^{\int_{x_0}^x a(t) \, dt} - \int_{x_0}^s a(t) \, dt ds$$

$$\implies y(x) = y(x_0)e^{\int_{x_0}^x a(t) \, dt} + \int_{x_0}^x f(s)e^{\int_{x_0}^x a(t) \, dt} ds$$

$$\implies y(x) = y(x_0)e^{\int_{x_0}^x a(t) \, dt} + \int_{x_0}^x f(s)e^{\int_{x_0}^x a(t) \, dt} ds$$

Además, es única porque si y, z son soluciones del PVI, consideremos $\omega = y - z$

$$\Rightarrow \forall x \in I : \omega' = y' - z' = (a(x)y + f(x)) - (a(x)z + f(x)) = a(x)(y - z) = a(x)\omega$$

$$\Rightarrow \omega' = a(x)\omega = 0 \Rightarrow \frac{\mathrm{d}}{\mathrm{d}s} \left(\omega(x)e^{-\int_{x_0}^x a(s)\,\mathrm{d}s} \right) = (\omega' - \omega(x))e^{-\int_{x_0}^x a(s)\,\mathrm{d}s} = 0$$

$$\forall x \in I : \omega(x)e^{-\int_{x_0}^x a(s)\,\mathrm{d}s} = c \xrightarrow{x=x_0} c = 0 \Rightarrow y = z$$

1.3 Modelización

1.3.1 Crecimiento Malthusiano

$$x(t) := \text{Población a tiempo } t$$

El modelo asume que el espacio y loas recursos son ilimitados, y además, el crecimiento en cada instante es proporcional a la población en ese instante. En términos matemáticos:

$$\frac{x(t+h) - x(t)}{h} = ax(t) + o(1) \text{ donde } o(1) \xrightarrow{h \to 0} 0$$
$$\{x'(t) = ax(t) \land x(0) = x_0\} \implies x(t) = x_0 e^{at}$$

1.3.2 Decrecimiento radiactivo

x(t) := El número de núcleos a tiempo t

$$\{x'(t) = -kx(t) \land x(0) = x_0 \land k > 0\} \implies x(t) = x_0 e^{-kt}$$

1.3.3 Ley de enfriamiento de Newton

$$T(t) := \text{Temperatura del objeto a tiempo } t \wedge \begin{cases} T_{ext} := \text{Temperatura exterior} \\ T_0 := \text{Temperatura inicial} \\ k := \text{Constante de proporcionalidad} > 0 \end{cases}$$

El cambio en la temperatura de un cuerpo en un medio a temperatura constante es proporcional a la diferencia de temperatura entre ambos en cada instante.

$$\{T'(t) = -k(T(t) - T_{ext}) \wedge T(0) = T_0\} \implies T(t) = T_0 e^{\int_0^t (-k) \, ds} + \int_0^t k T_{ext} e^{\int_s^t (-k) \, dx} \, ds$$

$$\implies T(t) = T_0 e^{-kt} + \int_0^t k T_{ext} e^{-k(t-s)} \, ds = T_0 e^{-kt} + T_{ext} e^{-kt} (e^{kt} - 1)$$

$$\implies \boxed{T(t) = T_{ext} + e^{-kt} (T_0 - T_{ext})}$$

1.3.4 Crecimiento logístico

Si los recursos son limitados y hay que competir por ellos, el modelo Malthusiano 1.3.1 no parece razonable. Lo adecuado es suponer que la tasa de crecimiento depende de la población en cada instante.

$$x'(t) = a\left(1 - \frac{x(t)}{b}\right)x(t) \text{ con } a, b > 0$$

Soluciones:

1.
$$\forall t \in \mathbb{R} : x(t) = 0$$

2. $\forall t \in \mathbb{R} : x(t) = b$

3. Si hay solución $\forall t \in I : x(t) \in (0, b)$ $\Rightarrow \forall t \in I : \left(1 - \frac{x(t)}{b}\right) x(t) > 0 \Rightarrow \frac{x'}{\left(1 - \frac{x(t)}{b}\right)} x(t) = a$ $\Rightarrow \frac{x'b}{(b-x)x} = a \Rightarrow \frac{x'}{(b-x)} + \frac{x'}{x} = a \Rightarrow \int_0^t \left(\frac{x'(s)}{(b-x(s))} + \frac{x'(s)}{x(s)}\right) ds = \int_0^t a ds$ $\Rightarrow \int_0^t \frac{d}{ds} \left(-\log(b-x(s)) + \log(x(s))\right) ds = \int_0^t \frac{d}{ds} (as) ds$ $\Rightarrow -\log(b-x(t)) + \log(x(t) - (-\log(b-x_0) + \log(x_0)) = at$ $\Rightarrow \log\left(\frac{x(t)}{b-x(t)}\right) = \log\left(\frac{x_0}{b-x_0}\right) + at$ $\Rightarrow \frac{x(t)}{b-x(t)} = \frac{x_0}{b-x_0} e^{at} \Rightarrow x(t) = \frac{x_0}{b-x_0} b e^{at} - \frac{x_0}{b-x_0} x(t) e^{at}$ $\Rightarrow \left(1 + \frac{x_0}{b-x_0} e^{at}\right) x(t) = \frac{x_0}{b-x_0} b e^{at} \Rightarrow x(t) = \frac{\frac{x_0}{b-x_0} b e^{at}}{1 + \frac{x_0}{b-x_0} e^{at}}$ $\Rightarrow \forall t \in \mathbb{R} : \left[x(t) = \frac{x_0 \cdot b \cdot e^{at}}{b+x_0(e^{at}-1)}\right] \Rightarrow x' = a\left(1 - \frac{x}{b}\right) x$

1.3.5 Depredador / presa

Hay dos especies (por ejemplo, conejos y zorros), en un espacio muy grande donde hay alimento ilimitado para los conejos, mientras que los zorros solo se alimentan de conejos.

- C(t) es la población de conejos en tiempo t.
- Z(t) es la población de zorros en tiempo t.

Si no hubiera zorros $\implies C'(t) = \alpha C(t) \operatorname{con} \alpha > 0$

Si no hubiera conejos $\implies Z'(t) = -\beta Z(t)$ con $\beta < 0$

Si coexisten, los encuentros serían "malos" para los conejos y "buenos" para los zorros:

$$\begin{cases} C'(t) = \alpha C(t) - \gamma C(t) Z(t) \\ Z'(t) = -\beta Z(t) + \delta C(t) Z(t) \end{cases}$$

1.3.6 Catenaria

¿Qué forma toma un cable flexible, de densidad constante (ρ) , fijos sus extremos a la misma altura y sometido a la acción de la gravedad?

Como el cuerpo está en reposo,

$$T$$

$$\lambda \int_0^x \sqrt{1 + (y'(\tau))^2} d\tau = \frac{\rho g}{T_0} s = \tan \theta = y'(x)$$

$$\implies y''(x) = \lambda \sqrt{1 + (y'(x))^2}$$

Reducimos el orden de la EDO mediante el cambio de variable $y'=q \wedge q'=\lambda \sqrt{1+q^2}$ y usando el método de variables separadas obtenemos $q(x)=\sinh{(\lambda x+c)}$.

$$y'(0) = 0 \implies c = 0 \implies y'(x) = \sinh \lambda x$$

 $\implies y(x) = \int_0^x \sinh \lambda s \, ds \implies y(x) = \lambda \left(\cosh (\lambda x) - 1\right)$

Preguntas pertinentes:

- 1. ¿Qué sucede si la tensión inicial es muy grande?
- 2. ¿Es razonable aproximar esta curva como una parábola? (Al menos para cables de longitud pequeña)

1.3.7 Familias de curvas ortogonales

Ya hemos visto que es típico que las soluciones de una EDO de primer orden y' = f(x, y) formen una familia uniparamétrica de curvas dadas en forma explícita casi siempre.

Razonando de forma inversa, muchas veces es posible demostrar que la familia de curvas

$$\mathcal{F} = \{\Gamma_c\}_{c \in \mathbb{R}} \wedge \Gamma_c = \{(x, y) \in \mathbb{R}^2 : F(x, y, c) = 0\}$$

satisface (localmente) una EDO y' = f(x, y) de primer orden.

Definición 1.8 (EDO asociada). Esta EDO se denomina ecuación asociada a \mathcal{F} .

Ejemplo 1.6.
$$\mathcal{F} = \{\Gamma_c\}_{c \in \mathbb{R}} \wedge \Gamma_c = \{(x, y) \in \mathbb{R}^2 : F(x, y, c) = 0\}$$
 y definitions $F(x, y, c) = x^2 + y^2 + 2cx = (x + c)^2 + y^2 - c^2$

Si $y: I \longrightarrow \mathbb{R}$ es derivable, con $I \subset \mathbb{R}$ un intervalo abierto, y su gráfica está contenida en \mathcal{F} , entonces $\forall x \in I: x^2 + (y(x))^2 + 2cx = 0 \implies 2x + 2yy' + 2c = 0 \implies 2x^2 + 2xyy' + 2cx = 0 \implies x^2 + 2xyy' - y^2 = 0 \implies y' = \frac{y^2 - x^2}{2xy}$

Definición 1.9. Sean $\mathcal{F} = \{\Gamma_c\}_{c \in \mathbb{R}}$ y $\mathcal{C} = \{\sim \Gamma_c\}_{c \in \mathbb{R}}$ dos familias de curvas, son ortogonales $\iff \mathcal{F} \perp \mathcal{C} \iff \forall \left(\Gamma_{c_1}, \widetilde{\Gamma}_{c_2}\right) \in \mathcal{F} \times \mathcal{C} : \Gamma_{c_1} \cap \widetilde{\Gamma}_{c_2} \neq \phi : \text{se cortan perpendicularmente.}$

Proposición 1.4. Sea \mathcal{F} una familia de curvas con EDO asociada y' = f(x, y)

 \implies las soluciones de $z' = -\frac{1}{f(x,y)}$ forman una familia (C) de curvas ortogonal a \mathcal{F}

Demostración. Sean $I_1, I_2 \subset \mathbb{R}$ conjuntos abiertos con $I_1 \cap I_2 \neq \phi$ y sean $y \colon I_1 \longrightarrow \mathbb{R}$, $z \colon I_2 \longrightarrow \mathbb{R}$ dos funciones tales que $y(I_1) \in \mathcal{F} \wedge z(I_2) \in \mathcal{C}$.

$$\implies \forall x \in I_1 : y' = f(x, y) \land \forall x \in I_2 : z' = -\frac{1}{f(x, y)}$$

Como se cortan, $\exists x_0 \in I_1 \cap I_2 : y(x_0) = z(x_0)$

$$\implies y'(x_0) = f(x_0, y(x_0)) = f(x_0, z(x_0)) = -\frac{1}{z'(x_0)}$$

⇒ Las rectas tangentes a cada curva se cortan perpendicularmente

Ejemplo 1.7. Siguiendo el Ejemplo 1.6, podemos encontrar una familia de curvas ortogonal a $\mathcal{F}(\mathcal{C})$ tomando las soluciones de la EDO:

$$z' = \frac{2xz}{x^2 - z^2}$$
 que es homogénea.

$$\implies \mathcal{C} = \{\{(x, z) \in \mathbb{R}^2 : (z - c)^2 + x^2 = c^2\} : c \in \mathbb{R}\}$$

1.4 Análisis cualitativo y campos de pendientes

Definición 1.10 (Campo de pendientes). Sea una EDO y' = f(x, y), su campo de pendientes es el diagrama que asigna a cada punto $(x, y) \in \mathbb{R}^2$ un "pequeño" segmento con

pendiente igual a f(x, y). Claramente, si existen soluciones, entonces las curvas solución son tangentes a esos segmentos.

Ejemplo 1.8.

Definición 1.11 (Isoclina). Sea y' = f(x, y) una EDO, sus isoclinas son los conjuntos de la forma f(x, y) = c con $c \in \mathbb{R}$.

Ejemplo 1.9 $(x' = x^2 - t^2)$.

- 1. La función y=-x(-t) también es solución porque $\forall t\in\mathbb{R}:y'=x'(-t)=(-x(-t))^2-(-t)^2=(y(t))^2-t^2$
- 2. Existe $t \in \mathbb{R} : x(t) > -t$ Razonando por contradicción, supongamos que $\forall t \in \mathbb{R} : x(t) \leq -t$. En particular, $\forall t \geq 0 : x(t) \leq -t$. Entonces, $\forall t \geq 0 : x^2(t) \geq t^2$. Por tanto, $\forall t \geq 0 : x'(t) = x(t)^2 - t^2 \geq 0$. Integrando $x(t) - x(0) \geq 0$ Entonces $\forall t \geq 0 : x(0) \leq x(t) \leq -t$, pero tomando $t \geq -x(0)$, llegamos a una contradicción.
- 3. Si $x(t_0) = -t_0$ para algún $t_0 \in \mathbb{R}$, entonces $x(t) \geq -t$ para todo $t \geq t_0$.

Observación 1.3. Se puede pensar que b(t) = -t actúa como una barrera que no se puede atravesar. De hecho, b(t) es una isoclina (porque $b(t)^2 - t^2 = cte$). Estas son candidatas a barreras.

11

Definimos $\forall t \geq t_0 : \varphi(t) := x(t) - (-t) = x(t) + t$.

Por un lado, $\varphi(t_0) = x(t_0) - t_0 = 0$

Por otro lado, $\varphi'(t) = x'(t) + 1 = (x(t)^2 - t^2) + 1 \implies \varphi'(t_0) = 1 > 0$ Entonces, existe $\varepsilon > 0$: $\forall t \in (t_0, t_0 + \varepsilon)\varphi(t) > 0$.

Razonando por contradicción, supongamos que $\exists t_1 > t_0$ tal que $\varphi(t_1) = 0$. Podemos asumir que t_1 es el más pequeño que lo cumple y, por tanto, $\forall t \in (t_0, t_1) : \varphi(t) > 0$

$$\implies \varphi'(t_1) = x(t_1)^2 - t_1^2 + 1 = (-t_1)^2 - t_1^2 + 1 = 1 > 0$$

Ejemplo 1.10 ($x' = x^2 \arctan(x)$).

- 1. La fucknión $y: I \longrightarrow \mathbb{R}$ dada por y(t) = -x(t) es solución, porque $\forall t \in I: y'(t) = -x'(t) = -x^2 \arctan(x(t)) = (-x(t))^2 \arctan(-x(t)) = y(t)^2 \arctan(y(t))$
- 2. Sean $t_0 \in I, x_0 > 0$, con $x(t_0) = x_0$. Entonces, $\forall t \in (t_0, \infty) \cap I : x(t) > x_0$

Demostración. Sea $\varphi(t) = x(t) - x_0, \forall t \in [t_0, \infty) \cap I$.

Por un lado, $\varphi(t_0) = x(t_0) - x_0 = 0$.

Por otro lado, $\varphi'(t) = x'(t) = x(t)^2 \arctan(x(t)) > 0 \implies \varphi'(t_0) > 0.$

Razonando por contradicción, supongamos que $\exists t_1 \in I \cap (t_0, \infty)$ tal que $\varphi(t_1) = 0$. Podemos asumir que t_1 es el más pequeño que lo cumple y, por tanto, $\varphi'(t_1) \leq 0$, pero $\varphi'(t_1) = x'(t_1) = x(t_1)^2 \arctan(x(t_1)) = x_0^2 \arctan(x_0) > 0$

Observación 1.4. La función $b(t) = x_0 > 0$ cumple que $b'(t) < b(t)^2 \arctan(b(t))$. Es decir, es una *subsolución*.

3. Si $\exists t_0 \in I : x(t_0) = x_0 > 0$, entonces $\forall t \in I : x(t) \geq 0$.

Demostración. Supongamos que $\exists t_1 \in I : x(t_1) < 0$, entonces por 2., $t_1 < t_0$. Sea $t_2 \in (t_1, t_0)$ tal que $x(t_2) = 0$ y lo elijo de forma que $\forall t \in (t_1, t_2) : x(t) < 0$. Por el TVM, $\exists s \in (t_1, t_2) : x'(s) = \frac{x(t_2) - x(t_1)}{t_2 - t_1} = \frac{0 - x(t_1)}{t_2 - t_1} > 0$. Sin embargo, $x'(s) = x(s)^2 \arctan(x(s)) < 0$, lo cual es una contradicción.

4. Si $x(t_0) = x_0 > 0$ \wedge inf $(I) = -\infty$, entonces $\exists \lim_{t \to -\infty} x(t) = L \wedge L = 0$.

Demostración. Como x es creciente y acotada inferiormente, $\exists L$. La ecuación dice que también existe $\lim_{t\to-\infty} x'(t)$ con $\lim_{t\to-\infty} x'(t) = L^2 \arctan(L)$. Por otro lado, vamos a ver que $\lim_{t\to-\infty} x'(t) = 0$. En efecto, por el TVM, $\exists s \in (t,t-1): x'(s) = \frac{x(t)-x(t-1)}{t-(t-1)} = x(t) - x(t-1)$. Entonces, $\lim_{t\to-\infty} x'(t) = 0 \implies L^2 \arctan(L) = 0 \implies L = 0$.

5. $\sup(I) < \infty$

Demostración. Si $x(t_0) = x_0 > 0$, entonces $\forall t > t_0 : x(t) > x_0$. Por tanto, $\forall t > t_0 : x'(t) > x(t)^2 \arctan(x_0) = \lambda x(t)^2$ $\implies \forall t > t_0 : \frac{x'(t)}{x^2(t)} > \lambda \implies \int_{t_0}^t \frac{x'(s)}{x(s)^2} \, \mathrm{d}s > \lambda(t - t_0)$ $\implies \int_{x_0}^{x(t)} \frac{1}{r^2} \, \mathrm{d}r > \lambda(t - t_0) \implies -\frac{1}{x(t)} + \frac{1}{x_0} > \lambda(t - t_0)$ $\implies \frac{1}{x_0} > \lambda(t - t_0) \implies t < t_0 + \frac{1}{\lambda x_0}$

2 EDOs autónomas

Definición 2.1. Una ecuación diferencial ordinaria (EDO) de primer orden se dice autónoma si no depende explícitamente de la variable independiente. Es decir,

$$\iff$$
 es de la forma $y' = f(y)$

Proposición 2.1 (Propiedades de EDOs autónomas).

1. (Isoclinas) Todos los puntos de cada recta horizontal y = c pertenecen a la misma isoclina. ¡Cuidado! A veces una isoclina puede contener más de una recta horizontal.

Ejemplo 2.1 $(y' = y^2)$.

$$\{(x,y) \in \mathbb{R} : y^2 = c\} = \{(x,\sqrt{c}) : x \in \mathbb{R}\} \cup \{(x,-\sqrt{c}) : x \in \mathbb{R}\}$$

- 2. (Traslaciones) Si y es solución $\implies \forall c \in \mathbb{R} : w(x) := y(x+c)$ es solución.
- 3. (Soluciones triviales) Si $\exists a \in Dom(f) : f(a) = 0 \implies y(x) = a$ es solución.

Demostración.
$$y'(x) = 0 = f(a) = f(y(x))$$

22/02/2024

Teorema 2.1 (Existencia de soluciones). Sean $a \in [-\infty, \infty)$ \wedge $b \in (-\infty, \infty]$ \wedge $f:(a, b) \longrightarrow \mathbb{R}$ continua

Supongamos que
$$\forall x \in (a,b) : f(x) \neq 0 \ y \ que \begin{cases} a > -\infty \implies f(a) = 0 \\ b < \infty \implies f(b) = 0 \end{cases}$$

Sea
$$x_0 \in (a,b)$$
 definitions $\forall x \in (a,b) : F(x) := \int_{x_0}^x \frac{1}{f(s)} ds$

 $Si\ f(x) > 0\ en\ (a,b),\ definimos$

$$T_{-} := \lim_{x \to a^{+}} F(x) \in [-\infty, 0) \land T_{+} := \lim_{x \to b^{-}} F(x) \in (0, \infty]$$

Si f(x) < 0 en (a,b), intercambiamos T_- por T_+ .

$$\implies \exists x \colon (T_-, T_+) \longrightarrow (a, b) \ derivable \colon \begin{cases} x'(t) = f(x(t)) \\ x(0) = x_0 \end{cases}$$

Demostración. Supongamos sin pérdida de generalidad que $\forall x \in (a, b) : f(x) > 0$

$$\implies \forall x \in (a,b) : F'(x) = \frac{1}{f(x)} > 0 \implies F \text{ es creciente en } (a,b)$$

$$\implies F$$
tiene inversa en $(a,b)\implies \exists x:=F^{-1}\colon (T_-,T_+)\longrightarrow (a,b)$

Por un lado,
$$x'(t) = (F^{-1})'(t) = \frac{1}{F'(F^{-1}(t))} = \frac{1}{F'(x(t))}$$

Por otro lado,
$$F(x_0) = 0 \implies x_0 = F^{-1}(F(x_0)) = F^{-1}(0) = x(0)$$

Teorema 2.2 (Unicidad local). Sean $a \in [-\infty, \infty)$ $\land b \in (-\infty, \infty]$ $\land f: (a, b) \longrightarrow \mathbb{R}$ continua. Supongamos que $f(x) \neq 0$ en (a, b). Sea $x_0 \in (a, b)$, sea $I \subset \mathbb{R}$ un intervalo abierto tal que $0 \in I$ y sean $x: I \longrightarrow (a, b)$ $\land y: I \longrightarrow (a, b)$ cumpliendo

$$\begin{cases} x'(t) = f(x(t)) \\ y'(t) = f(y(t)) \\ x(0) = x_0 = y(0) \end{cases} \implies \forall t \in I : x(t) = y(t)$$

Demostración.

$$\forall s \in (a,b) : F(s) = \int_{x_0}^s \frac{1}{f(r)} dr \implies \forall t \in I : F(x(t)) = t = F(y(t))$$

$$\implies \forall t \in I : F^{-1}(F(x(t))) = F^{-1}(F(y(t))) \implies \forall t \in I : x(t) = y(t)$$

Corolario 2.1. En las condiciones del teorema de unicidad local, sea $a \in \mathbb{R}$: $f(a) := \lim_{x \to a^-} f(x) = 0$. Supongamos que

$$\forall k \in (a,b) : \lim_{x \to a^+} \int_k^x \frac{1}{f(s)} \, \mathrm{d}s = \begin{cases} -\infty \iff f > 0 \text{ en } (a,b) \\ \infty \iff f < 0 \text{ en } (a,b) \end{cases}$$

 $\implies \text{Para cada intervalo} \begin{cases} I = [0, t_0) \iff f > 0 \text{ en } (a, b) \\ I = (-t_0, 0] \iff f < 0 \text{ en } (a, b) \end{cases} \quad x = a \text{ es la única solución}.$

26/02/2024

27/02/2024

Ejemplo 2.2 $(y' = \sqrt{1 - y^2})$.

$$f \colon [-1,1] \longrightarrow \mathbb{R}_{\wedge} f(y) := \sqrt{1-y^2}_{\wedge} \begin{cases} f(y) > 0 \iff y \in (-1,1) \\ f(-1) = f(1) = 0 \end{cases}$$

Si $y(0) =: y_0 \in (-1, 1)$, entonces existe una única solución del PVI. Esa solución está definida en (T_-, T_+) , donde

$$T_{-} = \lim_{y \to -1^{+}} \int_{y_{0}}^{y} \frac{1}{\sqrt{1 - s^{2}}} ds = \lim_{y \to -1^{+}} \arcsin(y) - \arcsin(y_{0}) = -\frac{\pi}{2} - \arcsin(y_{0})$$
$$T_{+} = \lim_{y \to 1^{-}} \int_{y_{0}}^{y} \frac{1}{\sqrt{1 - s^{2}}} ds = \frac{\pi}{2} - \arcsin(y_{0})$$

Si $y_0 = 1$, $\lim_{y \to 1^-} \int_k^y \frac{1}{\sqrt{1 - s^2}} ds = \frac{\pi}{2} - \arcsin(k) \in \mathbb{R} \implies \exists \text{ un solución } \underline{\text{no trivial del PVI}}$ Si $y_0 = -1$, $\lim_{y \to -1^+} \int_k^y \frac{1}{\sqrt{1 - s^2}} ds \in \mathbb{R} \implies \exists \text{ un solución } \underline{\text{no trivial del PVI}}$

Por tanto, la solución general del PVI es

$$y_k(x) = \begin{cases} -1 & \iff x \le -\frac{\pi}{2} - k \\ \sin(x+k) & \iff x \in \left(-\frac{\pi}{2} - k, \frac{\pi}{2} - k\right) \\ 1 & \iff x \ge \frac{\pi}{2} - k \end{cases}$$

- 1. La única y_k que satisface $y_k(0) = 0 \in (-1,1)$ es $y_k(x) = y_0$
- 2. Las funciones y_k con $k > \frac{\pi}{2}$ cumplen $y_k(0) = 1$
- 3. Las funciones y_k con $k < -\frac{\pi}{2}$ cumplen $y_k(0) = -1$

Observación 2.1. Sea $a \in \mathbb{R}$, $b \in (-\infty, \infty]$: b > a y $f : [a, b) \longrightarrow \mathbb{R}$ continua tal que $\forall x \in (a, b) : f(x) \neq 0$ y f(a) = 0.

Supongamos que $\exists c > 0, \delta \in (0, b - a) : \forall s \in [a, a + \delta) : |f(s)| \le C(s - a)$

Vamos a comprobar que se cumplen las condiciones de unicidad para el PVI con $x(0) = x_0 = a$ tanto en el caso f > 0 como en el caso f < 0.

•
$$f > 0$$
 Queremos ver que $\lim_{z \to a^+} \int_{a+\delta}^z \frac{1}{f(s)} \, \mathrm{d}s = -\infty$

$$\int_{a+\delta}^z \frac{1}{f(s)} \, \mathrm{d}s = \int_{a+\delta}^z \frac{1}{|f(s)|} \, \mathrm{d}s = -\int_z^{a+\delta} \frac{1}{|f(s)|} \, \mathrm{d}s \le -\frac{1}{C} \int_z^{a+\delta} \frac{1}{s-a} \, \mathrm{d}s$$

$$\implies \int_{a+\delta}^z \frac{1}{f(s)} \, \mathrm{d}s \le -\frac{1}{C} \left(\log(\delta) - \log(z-a) \right)$$

$$\implies \lim_{z \to a^+} \int_{a+\delta}^z \frac{1}{f(s)} \, \mathrm{d}s \le -\infty \implies \text{Hay unicidad de PVI con } x(0) = a \text{ en } [0, \tilde{t})$$

•
$$f < 0$$
 De forma análoga $\lim_{z \to a^+} \int_{a+\delta}^z \frac{1}{f(s)} \, \mathrm{d}s = \dots = \infty$

Si f derivable con f' acotada

$$\implies \forall s \in [a, a + \delta) : |f(s)| = |f(s) - f(a)| = |f'(r)| |s - a| \le C(s - a)$$

04/03/2024

05/03/2024

Definición 2.2 (Estabilidad). Sea y una solución de un PVI, y es estable

 $\iff \forall \varepsilon > 0 : \exists \delta > 0 : y : [x_0, \infty) \longrightarrow \mathbb{R} : y_0^* \in (\alpha, \beta) : |y_0^* - y_0| < \delta \implies \forall x \ge x_0 : |y(x) - y^*(x)| < \varepsilon$ donde $y^* : [x_0, \infty) \longrightarrow \mathbb{R}$ es cualquier solución del PVI con $y^*(x_0) = y_0^*$.

Ejemplo 2.3.

$$\begin{cases} y' = 0 \\ y(x_0) = y_0 \end{cases}$$

Definición 2.3 (Estabilidad asintótica). Sea y una solución de un PVI, y es asintóticamente estable

$$\iff$$
 y es estable $\lim_{x \to \infty} |y(x) - y^*(x)| = 0$

donde $y^*: [x_0, \infty) \longrightarrow \mathbb{R}$ es cualquier solución del PVI con $y^*(x_0) = y_0^*$.

Ejemplo 2.4.

$$\begin{cases} y' = y(1-y) \\ y(x_0) = y_0 \end{cases} \implies \begin{cases} f(y) := y(1-y) \\ f(y) = 0 \iff y \in \{0, 1\} \end{cases}$$
 soluciones de equilibrio
$$\implies \forall y < 0 : f(y) < 0 \land \forall y \in (0, 1) : f(y) > 0 \land \forall y > 1 : f(y) < 0$$

$$y_0 < 0$$

$$\implies \forall y < 0 : F(y) = \int_{y_0}^y \frac{1}{s(1-s)} \, \mathrm{d}s \implies \forall y < 0 : F'(y) < 0$$

Tomamos $y \in (y_0, 0) \implies F(y) < F(y_0) = 0$

$$\implies s \ge y_0 \implies 0 < 1 - s \le 1 - y_0 \implies \frac{1}{1 - s} \ge \frac{1}{1 - y_0} \implies \frac{1}{(1 - s)s} \le \frac{1}{(1 - y_0)s}$$

$$\implies F(y) \le \frac{1}{1 - y_0} \int_{y_0}^{y} \frac{1}{s} \, ds = \frac{\log(-y) - \log(-y_0)}{1 - y_0} \implies \lim_{y \to 0^{-}} F(y) = -\infty$$

- 1. La única solución tal que $y(x_0) = y_0 < 0$ está definida globalmente hacia el pasado.
- 2. El equilibrio y = 0 es único "por abajo".

$$(y \to -\infty)$$

$$y < y_0 < 0 \implies 0 \le F(y) = -\int_y^{y_0} \frac{1}{s(1-s)} \, \mathrm{d}s = \int_y^{y_0} \frac{1}{s^2 - s} \, \mathrm{d}s \le \int_y^{y_0} \frac{1}{s^2} \, \mathrm{d}s = \frac{1}{y} - \frac{1}{y_0}$$

$$\implies 0 \le F(y) < -\frac{1}{y} \implies \left[\lim_{y \to -\infty} F(y) \in \mathbb{R} \right] \implies \text{Hay una asíntota}$$

 $y_0 > 1$ Si y es solución con $y(x_0) = y_0 > 1$, entonces z(x) = -y(-x) + 1 también es solución con $z(x_0) = 1 - y_0 < 0$.

Definición 2.4 (Bifurcación). Sea $f_{\mu} \colon \mathbb{R} \longrightarrow \mathbb{R}$ una función continua que depende de un parámetro $\mu \in \mathbb{R}$. El comportamiento cualitativo de la EDO $y' = f_{\mu}(y)$ puede cambiar dependiendo de la μ . Los valores de μ que dan lugar a un cambio de este tipo son los puntos de bifurcación.

Ejemplo 2.5
$$(y' = y(1 - y) - \mu)$$
.
$$f_{\mu}(y) = y(1 - y) - \mu = 0 \iff y^{2} - y + \mu = 0 \iff y = \frac{1 \pm \sqrt{1 - 4\mu}}{2}, \ \mu \leq \frac{1}{4}$$
Curvas de equilibrios: $\gamma_{1}(\mu) := \frac{1 + \sqrt{1 - 4\mu}}{2} \wedge \gamma_{2}(\mu) := \frac{1 - \sqrt{1 - 4\mu}}{2}, \ \mu \leq \frac{1}{4}$

$$\iff \begin{cases} \mu > \frac{1}{4} \text{ no hay equilibrios} \\ \mu < \frac{1}{4} \text{ hay dos equilibrios} \\ \mu = \frac{1}{4} \text{ es un punto de equilibrio} \end{cases}$$

07/03/2024

3 Tema 3: Teoremas fundamentales

3.1 Introducción

Sean $I\subset\mathbb{R},\ \Omega\subset\mathbb{R}$ dos intervalos abiertos y $f\colon I\times\Omega\longrightarrow\mathbb{R}^2$ una función continua.

Consideramos el PVI
$$\begin{cases} x' = f(t, x(t)), & t \in I \\ x(t_0) = \hat{x}, & \hat{x} \in \Omega \end{cases}$$
. Recordamos que si $f(t, x) = f(x)$, entonces

el PVI tiene solución en un entorno de t_0 : $x(t) = \hat{x} + \int_{t_0}^t f(s, x(s)) ds$.

Definimos el operador
$$\forall x \in \mathcal{C}(I,\Omega) : T[x] := x + \int_{t_0}^t f(s,x(s)) \, \mathrm{d}s \implies x = T[x].$$

$$x_0 = \hat{x} \wedge x_1 = T[x_0] = \hat{x} + \int_{t_0}^t f(s,\hat{x}) \, \mathrm{d}s \wedge \cdots \wedge x_{k+1} = T[x_k] = \hat{x} + \int_{t_0}^t f(s,x_k(s)) \, \mathrm{d}s$$

Ejemplo 3.1.
$$\{x' = x \land x(0) = 1\} \iff x(t) = 1 + \int_0^t x(s) \, ds$$

 $\implies x_0 = 1 \land x_1 = 1 + t \land \cdots x_k = \sum_{i=0}^k \frac{t^i}{i!} \implies x_k(t) \xrightarrow{k \to \infty} e^t$

Pero necesitamos formalizar todo esto.

- 1. Concepto de límite de series de funciones.
- 2. ¿Toda sucesión de Cauchy es convergente?

3.
$$\lim_{k \to \infty} \int_{t_0}^t f(s, x_k(s)) \, \mathrm{d}s \stackrel{?}{=} \int_{t_0}^t \lim_{k \to \infty} f(s, x_k(s)) \, \mathrm{d}s$$

4.
$$\lim_{k \to \infty} f(s, x_k(s)) \stackrel{?}{=} f\left(s, \lim_{k \to \infty} x_k(s)\right)$$

3.2 Conceptos de análisis

3.2.1 Convergencia puntual y uniforme

Definición 3.1 (Convergencia puntual). Sea $(f_k)_{k\in\mathbb{N}}$ una sucesión de funciones $f_k\colon I\longrightarrow\mathbb{R}$ con $I\subset\mathbb{R}$ abierto, (f_k) converge puntualmente a f

$$\iff \forall t \in I : \lim_{k \to \infty} f_k(t) = f(t)$$

Es decir, $\forall \varepsilon > 0 : \forall t \in I : \exists \kappa \in \mathbb{N} : \forall k \geq \kappa : |f_k(t) - f(t)| < \varepsilon$.

Ejemplo 3.2. La sucesión (f_k) definida a continuación converge puntualmente a f pero su límite es una función no continua.

$$\forall t \in \mathbb{R} : f_k(t) := \begin{cases} 0, & t < -\frac{1}{k} \\ k(t + \frac{1}{k}), & -\frac{1}{k} \le t < 0 \\ k(\frac{1}{k} - t), & 0 \le t < \frac{1}{k} \end{cases} \implies f_k(t) \xrightarrow{k \to \infty} \begin{cases} 0, & t \neq 0 \\ 1, & t = 0 \end{cases}$$

12/03/2024

Ejemplo 3.3.

$$x_k(t) := \begin{cases} 2k^2t, & t \in \left[0, \frac{1}{2k}\right) \\ 2k^2\left(\frac{1}{k} - t\right), & t \in \left[\frac{1}{2k}, \frac{1}{k}\right) \\ 0, & t \in \left[\frac{1}{k}, 1\right) \end{cases} \Longrightarrow \begin{cases} x_k(0) = 0 \land x_k(1) = 0 \\ t \in (0, 1] \implies x_k(t) \xrightarrow{k \to \infty} 0 \end{cases}$$

$$\lim_{k \to \infty} \int_0^1 x_k(t) dt \stackrel{?}{=} \int_0^1 \lim_{k \to \infty} x_k(t) dt:$$

$$\int_0^1 \lim_{k \to \infty} x_k(t) dt = \int_0^1 0 dt = 0 \neq \frac{1}{2} = \lim_{k \to \infty} \int_0^1 x_k(t) dt$$

Definición 3.2 (Convergencia uniforme). Sea $(f_k)_{k\in\mathbb{N}}$ una sucesión de funciones $f_k\colon I\longrightarrow\mathbb{R}$ con $I\subset\mathbb{R}$ abierto, (f_k) converge uniformemente a f

$$\iff \forall \varepsilon > 0 : \exists \kappa \in \mathbb{N} : \forall k \ge \kappa : \forall t \in I : |f_k(t) - f(t)| < \varepsilon$$

Es decir, $\forall \varepsilon > 0 : \exists \kappa \in \mathbb{N} : \forall k \ge \kappa : \sup_{t \in I} |x_k(t) - x(t)| \le \varepsilon$

Observación 3.1. Los dos ejemplos anteriores no convergen uniformemente.

• La convergencia uniforme implica convergencia puntual.

Proposición 3.1. Sea $(x_k)_{k\in\mathbb{N}}$ una sucesión de funciones uniformemente convergente a x.

$$\implies x \ continua$$

Demostración. Sea $\varepsilon > 0$, $t_0 \in I$. Buscamos $\delta > 0$ tal que, dado $t \in I$

$$|t - t_0| < \delta \implies |x(t) - x(t)| < \varepsilon$$

Para cada
$$k \in \mathbb{N}$$
, $|x(t) - x_k(t) + x_k(t) - x_k(t_0) + x_k(t_0) - x_k(t_0)| \le$
 $\le |x(t) - x_k(t)| + |x_k(t) - x_k(t_0)| + |x_k(t_0) - x(t_0)|$

Como (x_k) converge uniformemente a $x, \kappa = \kappa(\varepsilon) \in \mathbb{N}$ tal que

$$\forall \varepsilon > 0 : \exists \kappa \in \mathbb{N} : \forall k \ge \kappa : \forall t \in I : |x_k(t) - x(t)| < \frac{\varepsilon}{3}$$

Entonces, para $k = \kappa$, se tiene

$$|x(t) - x(t_0)| \le |x(t) - x(t_0)| + |x(t) - x_{\kappa}(t_0)| + |x_{\kappa}(t_0) - x(t_0)|$$

$$\le \frac{\varepsilon}{3} + |x_{\kappa}(t) - x_{\kappa}(t_0)| + \frac{\varepsilon}{3}$$

Como x_{κ} es continua, $\exists \delta > 0 : |t - t_0| < \delta \implies |x_{\kappa}(t) - x_{\kappa}(t_0)| < \frac{\varepsilon}{3}$. Entonces $|x(t) - x(t_0)| < \varepsilon$.

Proposición 3.2. Sea $(x_k)_{k\in\mathbb{N}}$ una sucesión de funciones continuas x_i : $(a,b) \longrightarrow \mathbb{R}$ que converge uniformemente a x: $(a,b) \longrightarrow \mathbb{R}$ donde $(a,b) \subset \mathbb{R}$ está acotado.

$$\implies \lim_{k \to \infty} \int_a^b x_k(t) dt = \int_a^b x(t) dt$$

13/03/2024

Ejemplo 3.4. Consideramos la sucesión $x_k(t) = \begin{cases} \frac{1}{k} & \text{si } t \leq k \\ 0 & \text{si } t > k \end{cases}$

$$\implies \int_0^\infty x_k(t) \, \mathrm{d}t = \int_0^k \frac{1}{k} \, \mathrm{d}t = 1 \, \lim_{k \to \infty} x_k(t) = 0$$

Sea $\mathcal{C}([a,b],\mathbb{R}) = \mathcal{C}([a,b]) := \{x \colon [a,b] \longrightarrow \mathbb{R} : x \text{ continua}\}$ el espacio vectorial de funciones continuas.

$$\forall x \in \mathcal{C}([a,b]): \|x\|_{\infty} := \max_{t \in [a,b]} |x(t)|$$

 $\implies \left(\mathcal{C}([a,b]),\left\|\cdot\right\|_{\infty}\right)$ es un espacio vectorial normado

 \implies también es métrico $\operatorname{cond}(x,y) := \|x-y\|_{\infty}$

$$d(x_k, x) = ||x_k - x||_{\infty} = \max_{t \in [a, b]} |x_k(t) - x(t)| \to 0 \iff x_k \to x \text{ unif.}$$

Teorema 3.1. Sean $a, b \in \mathbb{R} : a < b \implies \left(\mathcal{C}([a, b]), \|\cdot\|_{\infty} \right)$ es un espacio completo. Es decir, toda sucesión de Cauchy es convergente.

Demostración. Sea $(x_k)_{k\in\mathbb{N}}\subset([a,b])$ una sucesión de Cauchy. Esto significa que

$$\forall \varepsilon > 0 : \exists \kappa \in \mathbb{N} : (k, l \ge \kappa \implies ||k_k - x_l||_{\infty} < \varepsilon)$$

Recordemos que $||x_k - x_l||_{\infty} = \max_{t \in [a,b]} |x_k(t) - x_l(t)|$

Fijamos $\varepsilon > 0$ y $t \in [a, b]$

$$\implies \forall k, l \geq \kappa : |k_k(t) - x_l(t)| \leq ||x_k - x_l||_{\infty} < \varepsilon$$

Esto demuestra que la sucesión de números reales $(x_k(t))_{k\in\mathbb{N}}$ es de Cauchy. Como \mathbb{R} es completo, $\exists x(t) \in \mathbb{R} : x_k(t) \xrightarrow{k \to \infty} x(t)$.

Veamos que el límite es uniforme: En efecto, sean $k \geq \kappa, l \geq 1, k, l \in \mathbb{N}$.

$$\implies \forall t \in [a, b] : |x_k(t) - x_{k+l}(t)| \le ||x_k - x_{k+l}|| < \varepsilon \text{ porque } (x_k) \text{ es de Cauchy}$$

Haciendo tender $l \to \infty$

$$\implies \forall t \in [a, b] : \forall k \ge \kappa : |x_k(t) - x(t)| \le \varepsilon$$

Recordemos que $x \in \mathcal{C}([a,b])$ por ser límite de funciones continuas.

Definición 3.3 (Punto fijo). Sea $T: \mathcal{C}([a,b]) \longrightarrow \mathcal{C}([a,b])$ un operador, $x: [a,b] \longrightarrow \mathbb{R}$ es un punto fijo de $T \iff T[x] = x$.

Definición 3.4 (Contracción). Sea $C \subset X \land C \neq \phi$ donde $(X, \|\cdot\|)$ es un espacio vectorial normado y $T: C \longrightarrow C$ una aplicación, T es una contracción en C

$$\iff \exists \alpha \in (0,1) : \forall x, y \in C : ||T[x] - T[y]|| \le \alpha ||x - y||$$

Teorema 3.2. Sea $C \subset X \land C \neq \phi$ cerrado donde $(X, \|\cdot\|)$ es un espacio normado completo $y \ T \colon C \longrightarrow C$ una contracción $\implies \exists ! x \in C \colon T[x] = x$

Demostraci'on.

Observación 3.2. Claramente, toda contracción es continua (con respecto a la norma correspondiente). En efecto, si $(x_k)_{k\in\mathbb{N}}\subset C: x_k\xrightarrow{k\to\infty} x\in C$

$$\implies ||T[x_k] - T[x]|| \le \alpha ||x_k - x|| \xrightarrow{k \to \infty} 0$$

4 Ejercicios

4.1 Hoja 1

4.1.1 Conceptos básicos

4.1.2 Algunos métodos de resolución de EDOs

2.18

1.
$$yy'' + (y')^2 = 0$$

Resulta razonable buscar soluciones en forma de polinomios $y(x)=x^{\alpha}$ porque:

$$\implies y' = \alpha x^{(\alpha - 1)} \wedge y'' = \alpha(\alpha - 1)x^{(\alpha - 2)}$$

$$\implies x^{\alpha}\alpha(\alpha - 1)x^{(\alpha - 2)} + \alpha^2 x^{2(\alpha - 1)} = 0 \implies (2\alpha^2 - \alpha)x^{\alpha} = 0$$

$$\implies 2\alpha^2 - \alpha = 0 \implies \alpha(2\alpha - 1) = 0 \implies \alpha = 0 \vee \alpha = \frac{1}{2}$$

Opción 1: Integramos la EDO:

$$\int_{0}^{t} y(s)y''(s) \, ds + \int_{0}^{t} (y'(s))^{2} \, ds = 0$$

$$- \int_{0}^{t} (y'(s))^{2} \, ds + [y(s)y'(s)]_{s=0}^{t} + \int_{0}^{t} (y'(s))^{2} \, ds$$

$$\implies y(t)y'(t) - y(0)y'(0) = 0 \implies y(t)y'(t) = y(0)y'(0) =: C$$

$$\implies \int_{0}^{t} y(s)y'(s) \, ds = Ct \implies \frac{(y(t))^{2}}{2} - \frac{(y(0))^{2}}{2} = Ct$$

$$\implies y(t) = \sqrt{2Ct + (y(0))^{2}}$$

2.
$$xy'' = y' + (y')^2$$

No depende de $y \implies$ Hacemos un cambio de variable x=y': $\implies xz'=z+z^3$ que es de variables separadas.

3.
$$x^2y'' = 2xy' + (y')^2$$

Nuevamente hacemos un cambio de variable $z=y' \implies x^2z'=2xz+z^2$ $\forall x \neq 0: z'=2\frac{z}{x}+\left(\frac{z}{x}\right)^2 \implies \text{ mediante el cambio de variables } \omega=\frac{z}{x}$

Obtenemos una EDO de variables separadas en ω .

4.
$$2yy'' - (y')^2 = 1$$

Otra vez resulta razonable buscar soluciones de la forma $y(x) = Ax^2 + Bx + C$

4.1.3 Modelización

3.4 C(t) = "Cantidad de sal" en el tanque en el tiempo t.

$$C'(t) = 10 - \frac{1}{10}C(t) \implies \int_{C(0)}^{C(t)} \frac{1}{100 - y} \, \mathrm{d}y = \int_{0}^{t} \frac{1}{10} \, \mathrm{d}t$$

$$\implies \log(100 - C(t)) - \log(100 - C(0)) = -\frac{1}{10} \implies \log\frac{100 - C(t)}{100} = -\frac{t}{10}$$

$$\implies \frac{100 - C(t)}{100} = e^{-\frac{t}{10}} \implies C(t) = 100(1 - e^{-\frac{t}{10}})$$

$$\implies C(1) = 100(1 - e^{-\frac{1}{10}}) \wedge \lim_{t \to \infty} C(t) = 100$$

4.1.4 Análisis cualitativo y campos de pendientes

4.6
$$\forall t > \frac{5}{4} : \forall x \left(\frac{5}{4}\right) \in \left(-\sqrt{\frac{5}{4}}, -\frac{1}{2}\right) : x' = x^2 - t \implies -\sqrt{t} < x(t) < -\sqrt{t-1}$$

$$f_1(t) := -\sqrt{t} \land f_2 := -\sqrt{t-1} \implies f\left(\frac{5}{4}\right) = -\sqrt{\frac{5}{4}} \land f_2\left(\frac{5}{4} - 1\right) = -\frac{1}{2}$$

Sabemos que $\tilde{t} = \frac{5}{4} \implies -\sqrt{\tilde{t}} < x(\tilde{t}) < -\sqrt{\tilde{t}-1}$

⇒ Por contunuidad, al menos en un tiempo, estas cotas se siguen manteniendo.

Atendiendo a las isoclinas de este ejercicio ($\{x^2-t=C:C\in\mathbb{R}\}$), observamos que:

- $C=0 \implies x^2=t \implies x=\pm \sqrt{t}$ que es precisamente la cota inferior que buscábamos.
- $C = -1 \implies x^2 t = -1 \implies x = \pm \sqrt{t 1}$ que es la cota superior.

Inicialmente $x(t) > -\sqrt{t}$ "durante un rato".

- 1. Supongamos que $\exists t^* : x(t^*) = -\sqrt{t^*}$.
- 2. Por un lado, la isoclina nos dice que $x'(t^*) = 0$.

3. Por otro lado,
$$x'(t^*) \le \left[\frac{\mathrm{d}}{\mathrm{d}t}(-\sqrt{t})\right]_{t=t^*} = -\frac{1}{2}\frac{1}{\sqrt{t^*}} < 0.$$

4.7
$$\begin{cases} x' = x^2 + t^2, t > 0 \\ x(0) > 0 \end{cases}$$
 Sea $x : [0, T) \longrightarrow \mathbb{R}$ derivable.

1. Queremos ver si
$$\forall t \in [0,T) : x(t) > \frac{t^3}{3}$$

Como
$$x' \ge t^2 \implies \int_0^t x'(s) \, \mathrm{d}s \ge \int_0^t s^2 \, \mathrm{d}s \implies x(t) - x(0) \ge \frac{t^3}{3}$$

$$\implies \left[\forall t \in [0, T) : x(t) > \frac{t^3}{3} \right]$$

2. Queremos ver si
$$\forall t \in \left(\sqrt{3}, T\right), T > \sqrt{3} : x(t) > \frac{1}{\frac{4}{\sqrt{3}} - t}$$

$$\operatorname{Como} x' \ge x^2 \implies x^{-2}x' \ge 1 \implies \int_{\sqrt{3}}^t \frac{x'(s)}{x(s)^2} \, \mathrm{d}s \ge t - \sqrt{3}$$

$$\implies -\frac{1}{x(t)} + \frac{1}{x(\sqrt{3})} \ge t - \sqrt{3} \implies t \le \sqrt{3} + \frac{1}{x(\sqrt{3})} - \frac{1}{x(t)}$$

$$\implies t < \sqrt{3} + \frac{3}{\left(\sqrt{3}\right)^3} - \frac{1}{x(t)} = \sqrt{3} + \frac{1}{\sqrt{3}} - \frac{1}{x(t)} = \frac{4}{\sqrt{3}} - \frac{1}{x(t)}$$

$$\implies t < \frac{4}{\sqrt{3}} - \frac{1}{x(t)} \implies \frac{1}{x(t)} < \frac{4}{\sqrt{3}} - t \implies \forall t > \sqrt{3} : x(t) > \frac{1}{\frac{4}{\sqrt{3}} - t}$$

4.2 Hoja 2

1.1
$$\begin{cases} x' = f(x) \\ x(t_0) = x_0 \end{cases}$$
 tiene sol única.

1. Toda solución que no sea constante es estrictamente monótona.

 $\boldsymbol{Demostraci\'on}.$ Por contrarecíproco, veamos que

$$\exists t^*: x'(t) = 0 \implies x(t) \equiv C := x(t^*)$$
 Definimos $\forall t \in \mathbb{R}: y(t) = x(t^*)$. Por hipótesis, $f(C) = f(x(t^*)) = x'(t) = 0$
$$\implies y'(t) = \frac{\mathrm{d}}{\mathrm{d}t}(C) = 0 = f(C) = f(y(t)) \implies y \text{ es solución}$$

$$\begin{cases} y'(t) = f(y(t)) \\ y(t^*) = C \end{cases} \implies \text{Por unicidad, } x(t) = y(t) \equiv C$$

2. $\lim_{t\to\infty} x(t) = C_0 \implies u(t) \equiv C$ es solución.

Demostración. (a)
$$\lim_{t\to\infty} x'(t) = \lim_{t\to\infty} f(x(t)) = f\left(\lim_{t\to\infty} x(t)\right) = f(C_0)$$

(b) Veamos que $f(C_0) = 0$. Por contradicción, supongamos que $f(C_0) = A > 0$ $\implies \lim_{t \to \infty} x'(t) = A \implies \exists \, \tilde{t} : \forall t \geq \tilde{t} : x'(t) > \frac{A}{2}$

$$\implies \int_{\tilde{t}}^{t} x'(\tau) d\tau > \int_{\tilde{t}}^{t} \frac{A}{2} d\tau \implies x(t) - x\left(\tilde{t}\right) > \frac{A}{2}(t - \tilde{t})$$

$$\implies \lim_{t \to \infty} x(t) = \lim_{t \to \infty} \left(x\left(\tilde{t} + \frac{A}{2}\left(t - \tilde{t}\right)\right) \right) = \infty \longrightarrow \longleftarrow$$

(c)
$$u'(t) = \frac{\mathrm{d}}{\mathrm{d}t}(C_0) = 0 = f(C_0) = f(u(t)) \implies u$$
 es solución.

1.2 x' = f(x) La unicidad solo se puede perder cuando f(x) = 0

1.
$$f(x) := x' = \begin{cases} \sqrt{-x} & x < 0 \\ x^2 & x \ge 0 \end{cases}$$

Observación 4.1.

(a) $x \equiv 0$ es solución (f(0) = 0) y solo puede haber problemas de unicidad en x = 0.

(b) x(t) es estrictamente creciente si $x(t) \neq 0$

No habría unicidad en $x=0 \iff \lim_{x\to 0} \int_0^{x_0} \frac{1}{f(\tau)} \,\mathrm{d}\tau \in \mathbb{R} \text{ con } x_0 > x$ En nuestro caso, $\int_x^{x_0} \frac{1}{\tau^2} \,\mathrm{d}\tau = \frac{1}{x} - \frac{1}{x_0} \xrightarrow{x\to 0^+} \infty \implies \text{ hay unicidad por arriba.}$ Para la unicidad por abajo, $\int_{x_0}^x \frac{1}{\sqrt{-\tau}} \,\mathrm{d}\tau = -2\left(\sqrt{-x} - \sqrt{-x_0}\right) \xrightarrow{x\to 0^-} 2\sqrt{x_0} \in \mathbb{R}$ $\implies \text{ No hay unicidad por abajo.}$

Por tanto, podemos encontrar una solución de la siguiente forma:

$$y(t) := \begin{cases} -\frac{t^2}{4} & t < 0 \\ 0 & t \ge 0 \end{cases} \implies y'(t) = \begin{cases} -\frac{t}{2} & t < 0 \\ 0 & t \ge 0 \end{cases}$$

Es solución porque:

$$f(y(t)) = \begin{cases} f(-\frac{t^2}{4}) & t < 0 \\ f(0) & t \ge 0 \end{cases} = \begin{cases} \sqrt{-\left(-\frac{t^2}{4}\right)} & t < 0 \\ 0 & t \ge 0 \end{cases} = \begin{cases} -\frac{t}{2} & t < 0 \\ 0 & t \ge 0 \end{cases} = y'(t)$$

Por un lado, $x(t_0)=0 \implies \lim_{t\to\infty} x(t)=0$ por la unicidad por arriba. Por otro lado, si $x(t_0)<0$ sabemos que

- x(t) no decrece.
- x(t) está acotada por arriba por 0.

$$\implies \exists \lim_{t \to \infty} x(t) \le 0$$

Supongamos que $\exists A > 0 : \lim_{x(t)} = -A$.

Como x(t) no decrece,

$$\implies x(t) \le -A \implies x'(t) = \sqrt{-x(t)} \ge \sqrt{A} \implies x(t) \ge x(c) + \sqrt{A}t \xrightarrow{t \to \infty} \infty \longrightarrow \longleftrightarrow$$

$$\implies \lim_{t \to \infty} x(t) = 0$$

2.

1.3 $x' = f(t, x) \wedge x$ es solución.

f no depende de $t \iff \forall b \in \mathbb{R} : y(t) := x(t+b)$ es sol.

 $Demostraci\'on. \ (\Longrightarrow)$ Supongamos que f no depende de t.

$$\implies x' = f(x) \implies y(t) = x(t+b) \implies y'(t) = \frac{\mathrm{d}}{\mathrm{d}t}(x(t+b)) = x'(t+b)$$
$$\implies y'(t) = f(x(t+b)) = f(y(t))$$

(\iff) Supongamos que $\forall b \in \mathbb{R} : y(t) := x(t+b)$ es sol.

$$x' = f(t, x(t)) \implies y(t) = x(t+b)$$
 también es solución

$$x'(t+b) = f(t, x(t+b)) \implies x'(t) = f(t-b, x(t))$$

$$\implies \forall b \in \mathbb{R} : f(t-b,x(t)) = f(t,x(t))$$

En particular, $x(0) = x_0 \in \mathbb{R} \implies \forall b \in \mathbb{R} : \forall x_0 \in \mathbb{R} : f(-b, x_0) = f(0, x_0)$

 $\implies f$ no depende de su primera variable