3.6 亚铁磁性的"分子场"理论

- 一. 亚铁磁性的发现
- 二. 尖晶石的结构特点
- 三. 亚铁磁分子场理论
- 四. 和实验结果的比较
- 五. 石榴石结构亚铁磁性的发现
- 六. 铁氧体分子磁距的计算

一. 亚铁磁性的发现

亚铁磁性的发现过程和反铁磁性不同,1947年前后,为了 寻找电阻率高的强磁体,人们陆续发现一些氧化物中也具有类 似铁磁性的宏观表现(通称铁氧体)、却不能用铁磁性的结构 模型及相关理论来解释。这些氧化物具有尖晶石结构,其分子 式为: MO · Fe₂O₃, 其中 M 代表某种二价金属, 例如: Zn, Cd, Fe,Ni,Co,Mn等。以Fe₃O₄为例,它具有铁磁体磁化率高的特征, 但其分子磁矩只有 $4\mu_{\rm R}$ 而不是预期的 $14\mu_{\rm R}$ 。除此之外,在居里 温度以上,磁化率倒数随温度的变化也不同于铁磁性,具有沿 温度轴方向凹下的双曲线形式,此双曲线从高温起的渐近线同 温度轴相交于负的绝对温度值。

见Neel 获奖报告: 磁学与定域分子场 (1970)

于是, Neel 在1948年以尖晶石结构为例, 将反铁磁"分子场" 理论推广,首次正确的解释了这些困惑,并命名这类化合物所 具有的磁性为亚铁磁性(Ferrimagnetism—来源于这类化合物 的名称: Ferrite (铁氧体))。 Neel建立了亚铁磁"分子场" 理论,全面分析了这类化合物可能具有的磁性质,预见到了亚 铁磁性一些当时实验上尚未发现的磁性质,在后来的实验中它 们都陆续被证实。所以也可以认为亚铁磁性是Neel发现的。亚 铁磁理论的建立极大地推动了氧化物磁性材料的研究和开发, 在理论和实践上都具有重大意义。

在Neel亚铁磁理论之前,也曾有些其它观点试图解释这些 困惑,但都未获得成功。

[&]quot;for fundamental work and discoveries concerning antiferromagnetism and ferrimagnetism which have led to important applications in solid state physics"

二.尖晶石的结构特点

尖晶石: MgAl₂O₄

立方晶系, 面心点阵

空间群: O_h⁷(F3dm)

每一晶胞容纳:

24个阳离子,

32个阴离子,

相当于8个分子

8tetra-(A) + 16octa-(B)

AB₂O₄ spinel The red cubes are also contained in the back half of the unit cell

http://www.tf.uni-kiel.de/matwis/amat/def_en/kap_2/illustr/spinel.gif

见姜书2.4节

56个原子的具体位置坐标:

```
A \stackrel{\triangle}{\square}: 000, 0\frac{1}{2}\frac{1}{2}, \frac{1}{2}0\frac{1}{2}, \frac{1}{2}\frac{1}{2}0, \frac{1}{4}\frac{1}{4}\frac{1}{4}, \frac{1}{4}\frac{3}{4}\frac{3}{4}, \frac{3}{4}\frac{1}{4}\frac{3}{4}, \frac{3}{4}\frac{3}{4}\frac{1}{4}.
B \stackrel{\triangle}{\square}: \frac{1}{8}\frac{5}{8}\frac{1}{8}, \frac{5}{8}\frac{1}{8}\frac{1}{8}, \frac{3}{8}\frac{7}{8}\frac{1}{8}, \frac{73}{8}\frac{1}{8}, \frac{3}{8}\frac{5}{8}\frac{3}{8}, \frac{5}{8}\frac{3}{8}\frac{3}{8}, \frac{5}{8}\frac{1}{8}\frac{3}{8}, \frac{71}{8}\frac{3}{8}\frac{1}{8}, \frac{1}{8}\frac{7}{8}\frac{7}{8}\frac{7}{8}\frac{7}{8}\frac{7}{8}\frac{7}{8}\frac{7}{8}\frac{7}{8}\frac{7}{8}\frac{7}{8}\frac{7}{8}\frac{7}{8}\frac{7}{8}\frac{7}{8}\frac{7}{8}\frac{7}{8}\frac{7}{8}\frac{7}{8}\frac{7}{8}\frac{7}{8}\frac{7}{8}\frac{1}{8}\frac{1}{8}\frac{3}{8}\frac{1}{8}\frac{1}{8}\frac{3}{8}\frac{1}{8}\frac{1}{8}\frac{3}{8}\frac{1}{8}\frac{1}{8}\frac{3}{8}\frac{1}{8}\frac{1}{8}\frac{3}{8}\frac{1}{8}\frac{1}{8}\frac{3}{8}\frac{1}{8}\frac{1}{8}\frac{1}{8}\frac{7}{8}\frac{1}{8}\frac{1}{8}\frac{1}{8}\frac{3}{8}\frac{1}{8}\frac{1}{8}\frac{3}{8}\frac{1}{8}\frac{1}{8}\frac{1}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{1}{8}\frac{1}{8}\frac{1}{8}\frac{3}{8}\frac{3}{8}\frac{1}{8}\frac{1}{8}\frac{1}{8}\frac{1}{8}\frac{3}{8}\frac{3}{8}\frac{1}{8}\frac{1}{8}\frac{1}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8}\frac{3}{8
```

以上摘自: 铁氧体物理学一书p20

具有尖晶石结构的磁性氧化物的化学式可以表示为:

MO Fe₂O₃,其中M代表二价阳离子,一般是:Zn,Cd,

Fe, Ni, Cu, Co, Mg等。例如: MnFe₂O₄, FeFe₂O₄, CoFe₂O₄, NiFe₂O₄, CuFe₂O₄ 等。

尖晶石中的原子分布:一个晶胞可以分成两组8个小单位,相间排列,图中给出其中一组的原子排列(只有前排两个单位),下面一张图更清楚地表现出**尖晶石中存在着两种不同的阳原子位置,四面体位置(A位)和八面体位置(B位)**。

取自《无机结构化学》p356

以Fe₃O₄为例,按它的阳离子位置不同可以表示为:

Fe⁺³ 3d⁵ S=
$$\frac{5}{2}$$
 $\mu_a=5\mu_B$ Fe⁺² 3d⁶ S=2 $\mu_a=4\mu_B$

接铁磁排列,分子磁距应为(5+4)+5=14 $\mu_{\rm B}$,

按反铁磁排列,分子磁距为(5+4)-5=4 $\mu_{\rm B}$,

实验测定为 $4.1\mu_{\rm R}$

所以,如假定A、B位置上的原子磁矩反平行排列, 即可很好地解释磁矩实验值。

三. 亚铁磁分子场理论

为了使分析简单而全面, Neel 考虑了只有一种磁性离 子和一种非磁性离子存在的尖晶石结构:

$$\Big(Fe_{x_{A}}^{\scriptscriptstyle{+3}}X_{1\text{-}x_{A}}^{\scriptscriptstyle{+2}}\Big)\!\!\left[Fe_{x_{B}}^{\scriptscriptstyle{+3}}X_{2\text{-}x_{B}}^{\scriptscriptstyle{+2}}\right]\!O_{_{4}}$$

其中 X 代表一种非磁性二价离子, $x_A+x_B=2$

此时作用在A,B 位置上的定域分子场可以写作:

$$\overrightarrow{H}_{mA} = x_A \lambda_{AA} \overrightarrow{M}_A + x_B \lambda_{AB} \overrightarrow{M}_B$$

$$\overrightarrow{H}_{mB} = x_A \lambda_{BA} \overrightarrow{M}_A + x_B \lambda_{BB} \overrightarrow{M}_B$$

Neel假定 M_{Λ} 和 M_{B} 反平行排列,其分子场系数 $\lambda_{\Lambda B}$ 应为负。

$$\lambda_{AA}$$
, λ_{BB} 可正可负,但都小于 λ_{AB} 令: $a = \frac{\lambda_{AA}}{|\lambda_{AB}|}, b = \frac{\lambda_{BB}}{|\lambda_{AB}|}$

$$a = \frac{\lambda_{AA}}{|\lambda_{AB}|}, b = \frac{\lambda_{BB}}{|\lambda_{AB}|}$$

于是:
$$\{ \overrightarrow{H}_{mA} = \lambda \left(-x_B \overrightarrow{M}_B + ax_A \overrightarrow{M}_A \right)$$

$$\overrightarrow{H}_{mB} = \lambda \left(-x_A \overrightarrow{M}_A + bx_B \overrightarrow{M}_B \right)$$

$$M_{mol} = x_A M_A + x_B M_B$$

仍借用Langevin 顺磁理论

$$\begin{cases}
M_A = Ng_J J \mu_B B_J(\alpha_A) \\
M_B = Ng_J J \mu_B B_J(\alpha_B)
\end{cases}$$

$$\alpha_{A} = \frac{\mu_{0}g_{J}J\mu_{B}}{k_{B}T} \left(\overrightarrow{H} + \overrightarrow{H}_{mA} \right)$$

$$\alpha_{B} = \frac{\mu_{0}g_{J}J\mu_{B}}{k_{B}T} \left(\overrightarrow{H} + \overrightarrow{H}_{mB} \right)$$

其中N是阿伏伽德罗常数,A,B 位置中的磁性离子都是一样的 Fe^{+3} ,所以都用 J 和 g。

体会

这是一个聪明的设计,仍只取一种磁性离子,通过含量不同,就把反铁磁性的分子场理论推广到不等价的磁格子中,有限的四种分子场系数导出了亚铁磁性的基本特征,保持了分子场理论简明特征。

如果我们考虑比较接近多数实际情况的材料,含有两种磁性离子的铁氧体,就必须引入至少 10 个不同的分子场系数 , $4 \wedge \lambda_{AB}$, $3 \wedge \lambda_{AA}$, $3 \wedge \lambda_{AB}$ 。 这会使数学形式变得无益的繁琐,有人也曾加以不太适当的简化来处理,其结果意义并不大,总之: Neel 的上述理论结果完全可以容许定性地讨论比上述简单模型更为复杂的模型。

参考: 铁氧体物理学P90

1. 高温下的磁化率温度关系

高温下 $H \parallel M_A, M_B$,和反铁磁性同样的方法可以给出:

$$\frac{1}{\chi_m} = \frac{H}{M} = \frac{T}{C_m} + \frac{1}{\chi_0} - \frac{\rho}{T - \theta}$$

这是一双曲函数, 其渐近线是:

它与温度轴的交点在:

$$\frac{1}{\chi_m} = \frac{T}{C_m} + \frac{1}{\chi_0}$$

$$-T_P' = -\frac{C_m}{\chi_0}$$
 处,于是有: $\chi_m = \frac{C_m}{T + T_P'}$

$$\chi_m = \frac{C_m}{T + T_P}$$

各常数定义见姜书P102

$$\frac{1}{\chi_m} = \frac{T}{C_m} + \frac{1}{\chi_0}$$

2. 低温下 $(T < T_N)$ 自发磁化强度温度关系

低于居里温度的自发磁化情况与铁磁性情况相类似,仍然可以通过做图法求出,但这里的 M 是A,B两种位置原子磁矩取向的代数和,而且和磁性离子在 A,B 两种位置中的相对数量以及 a,b 的正、负及数值大小有关,因而情况要复杂的多,通过合理分析,给出6 种可能的形式。

Q,P和N型符合一般规律是亚铁磁性的可能结果,其中完全不同于铁磁性的P型和N型也都在后来的实验中被发现了。另外三种形式存在着:

$$\lim_{T\to 0K} \frac{dM}{dT} \neq 0$$
 在Neel 模型中,这意味着 0 K 时,有一个次晶格的磁化强度仍未饱和。

图 2.48 $\alpha-\beta$ 平面上各个区域中自发磁化 M。与温度关系示意图。

说明: $E\lambda_{AB}(<0)$ 的作用占有充分优势时,低温下会出现 M_A 和 M_B 反平行,并且在 T=0 K 时各自饱和磁化。但仍不能忽视 λ_{AA} 、 λ_{BB} 的作用,由于它们的存在,M-T曲线出现了不同的类型。实际上,我们只便于用图解法或数值计算来绘出各种可能的类型,而没有涉及细节,M-T曲线的形状受 x_A , x_B 以及 a,b 取值的影响,下图给出了取值和类型的关系。

图 2.52 亚铁磁体的 M_s -T 曲线类型.

亚铁磁体的自发磁化强度和磁化率倒数与温度 的关系的各种可能的类型 该图摘自Neel报告(1970)

抵消点现象

Neel 预见到的N型曲线最早在1953年由Gorte在研究 Li_{0.5}Fe_{2.5-x}Cr_xO₄系统时所证实。相关的抵消点现象是特别值 得关注的,随着温度的提高,原来磁矩较大的次点阵下降较快,而原来磁矩较小的次点阵,下降较慢,通过抵消点后,磁矩反而超过原来较大的次点阵,这会造成磁体在外磁场中反向。实验中可以明显地看到磁体在抵消点前后的转向。

在抵消点温度,虽然磁化强度也为零,但和居里温度点是不同的,超过居里温度后,自发磁化强度一直都会为零,但超过抵消点温度后,自发磁化强度又会不为零。两者的差异还表现在其它物理性质上。

四. 和实验结果的比较

冬

见Kittel书P234

磁铁矿 FeO·Fe2O3 的磁化率倒数的实验曲线。

图 2.46 $1/\chi_m$ -T 曲线,实线为实验结果,虚线是理论部分。

见戴书p176, 姜书p103

Fallot 实验结果(1951)见戴书p175

几种铁氧体饱和磁化强度温度关系的实测结果

见姜书p107

0.8

 $T/T_{\rm e}$

五. 石榴石结构亚铁磁性的发现

法国Strasbourg的科学家从1950年开始在烧结等分子的 Fe_2O_3 和 A_2O_3 (A为三价稀土元素)化合物时,得到了一种新的强磁性物质,其居里温度在520~740 K之间,属于石榴石结构。一般分子式记作: $A_3Fe_5O_{12}$ 这类化合物的发现为磁性材料的超高频(微波波段)应用开辟了广阔前景。

这类化合物一些奇特的性质可以得到有三个次点阵的亚铁磁理论严格而简明的解释,这是由Pauthenet1959年完成的,由此,Neel的定域分子场理论逐步得到了广泛承认。

尽管定域分子场理论还有些简单和粗糙,但把大量的已知的实验事实联系起来并因此发现了一系列新的现象之后, 这种方法带来了无可争辩的成就,值得我们学习和应用。 Neel 在评述分子场理论时指出: 分子场理论只是一种近似,甚至是在最简单的情况下,即在由自旋为1/2的同种原子组成并且只有最近邻存在相互作用的简立方点阵的情况下,问题的严格解也还没有找到。何况石榴石情形,每个晶胞有160个原子,至少有6个不同的耦合常数,因此把分子场理论的简单性和它所获得的成功相比较时,对它不完满的地方也就可以理解了。之所以采用分子场理论,是因为尚未找到更为严格、但可以求解的方法。

Neel 还指出,也不宜将定域分子场方法应用到大量次点阵组成的体系中,因为方法的主要优点——简单——便完全丧失了。

摘自Neel报告(1970)

石榴石的结构

立方晶系,

体心立方点阵,

空间群:

$$O_h^{10}$$
 (Ia3d)

每个晶胞含有8个分子式:

$$A_3 Fe_5 O_{12}$$

Fe离子占据24个 四面体中心(d)和 16个八面体中心 (a),

24个稀土离子占据的位置也有8个氧离子(c)。

图 2.7 Y₃Fe₃O₁₂ 中三种阳离子的相对位置(依照文献[28])。

○ Fe³+(a 位)(00½);
 ○ Fe³+(d 位)(0¾);
 ○ Y³+(¼½) 和 (0¼⅓);
 ○ O²- 在图中多面体的共同顶点。

石榴石型铁氧体的磁化强度对温度的曲线(依照文献[11])。

在掺 Ga 的 YIG 中, 自发磁化强度和次晶格的磁化强度的温度依赖性的计算机模拟:

(a) $Y_3Fe_5O_{12}(R-型)$; (b) $Y_3Ga_.5Fe_{4.5}O_{12}(Q-型)$ (c) $Y_3Ga_{1.1}Fe_{3.9}O_{12}(P-型)$; (d) $Y_3Ga_2Fe_3O_{12}(N-型)$ 。假定 $J_{AA}=8.45\text{cm}^{-1}$, $J_{BB}=11.86\text{cm}^{-1}$; $J_{AB}=25.36\text{cm}^{-1}$ 10

发现亚铁磁性并得到广泛应用的晶体结构还有:

磁铅石: 六方晶系, 空间群为 $D_{6h}^{1}(C6/mmm)$

典型成分有: BaFe₁₂O₁₉, SrFe₁₂O₁₉, PbFe₁₂O₁₉,

这类结构比较复杂,难以用少量的次晶格来描述。由于 其各向异性大,因而多为良好的永磁材料,

表 2-2 铁氧体材料按晶格结构的分类

结构类型	晶系	例 子	主要应用
尖晶石型	立方	NiFe ₂ O ₄	软磁、旋磁、矩磁、压磁材料
磁铅石型	六角	BaFe ₁₂ O ₁₉	永磁、旋磁和甚高频软磁材料
石榴石型	立方	Y_3 Fe $_5$ O $_{12}$	旋磁、磁泡、磁声、磁光材料
钙钛石型	立方1)	LaFeO ₃	磁泡材料
钛铁石型	三角	MnNiO ₃	目前尚无实用价值
氯化钠型	四方	EuO	强磁半导体、磁光材料
金红石型	四角	CrO ₂	磁记录介质

¹⁾ 严格地讲,应属于有畸变的类钙钛石结构,已非立方晶系。

六. 铁氧体分子磁距的计算

尖晶石结构: $Fe_{\alpha}M_{1-\alpha}[M_{\alpha}Fe_{2-\alpha}]O_4$

MO Fe_2O_3 $\mu_m = 10(1-\alpha) + (2\alpha-1)\mu_M$

占位倾向: ← A位 B位

Zn,Cd,Ga⁺³,In⁺³Ge⁺⁴,Fe⁺³,Fe,Cu,Co,Ti⁺⁴,Ni,Cr⁺³

表 3.3 若干单一铁氧体的饱和磁矩的实测值和简单的 反平行假设的计算值的比较

XFe ₂ O ₄	2S _X	$m_{ m exp}$	E eff	gelf Sx
MnFe₂O₄	5	4.6-5.0	2.00	5
Fe ²⁺ Fe ₂ O ₄	4	4.1	2.06	4.12
CoFe ₂ O ₄	3	3.7	2.7	4.1
NiFe ₂ O ₄	2	2.3	2.25	2.25
CuFe ₂ O ₄	1	1.3	2.15	1.08
(Li _{0.5} Fe _{0.5})Fe ₂ O ₄	2.5	2.5—2.6	2.08	2.6
Fe(Fe _{5/3} $\square_{1/3}$)O*	(3.33)	3.15		
MgFe ₂ O ₄	0	1.1	2.05	0

^{*} 即 Y-Fe₂O₃, 这里引的是 W. E. Henry 与 M. J. Boehm 所测的数据样品, 含有 1.7% 的 Fe2+

表 2.2 A、B 晶位(间隙)可能容纳球体的最大半径(Å) (计算时引用氧离子半径=1.32Å)

u	a = 8	.10 Å	a=8	.30 Å	$a = 8.40 \mathrm{\AA}$		
	A	В	A	В	Á	В	
0.375	0.43	0.70	0.47	0.76	0.50	0.78	
0.381	0.51	0.65	0.55	0.76	0.58	0.73	
0.3875	0.59	0.59	0.64	0.64	0.67	0.67	

表2.3 离子半径(Å)

价 1		2		3			4		6	
	Li	0.78	Mg	0.78	Al	0.57	Ti	0.69	Мо	0.62
2)	Na	0.98	Zn	0.82	Sc	0.83	Ge	0.44	w	0.63
P	Ag	1.13	Cd	1.03	Ga	0.62	Sn	0.74		
			Ca	1.06	In	0.93	V	0.61	(A)	
			Mn	0.91	Rh	0.68	Mn	0.52		
			Fe	0.83	Cr	0.64				
			Co	0.82	Mn	0.70			.00	
	4 9 9		Ni	0.78	Fe	0.67		*		
- 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12			Cu	0.85	Co	0.47		见《铂	' 坐 <i>気 </i>	物理》

复合铁氧体的分子磁距

Zn离子有强烈的 占有 A 位倾向, 把 A 位中的Fe⁺³ 挤到B位,

$$Zn_{\alpha}Fe_{1-\alpha}[X_{1-\alpha}Fe_{1+\alpha}]O_{4}$$

$$\mu_{m}=\mu_{B}-\mu_{A}$$

$$=10\alpha+(1-\alpha)\mu_{X}$$

$$(Fe_3^{+3})[Fe_2^{+3}]{A_3^{+3}}O_{12}$$

24tetra 16octa 24dodeca

四面体位;八面体位;12面体位;

分子磁距
$$\mu_m = \frac{1}{8}(24\mu_A - 8\mu_{Fe}) = |3\mu_A - 5\mu_{Bohr}|$$

表 2-7 石榴石型铁氧体的分子饱和磁矩

A 元素	Y	Gd	Tb	Dy	Но	Er	Ţm	Yb	Lu
m(实验)	4.72	15.2	15.7	16.3	13.8	11.6	1.0	~0	4.16
$s_{\mathbf{A}}$	0	7/2	6/2	5/2	4/2	3/2	2/2	1/2	0
$L_{\mathbf{A}}$	0	0	3	7 . 5 ₁	6	i., 6	5	3.7	0
$ 6s_A-5 $	5	16	13	10	7	4	1	2	5
$3(gJ)_A-5$	5	16	22	25	25	22	16	7	<u>.</u> } 5

以下三表说明Neel亚铁磁性理论可以很好地解释铁氧体的分子磁距

(a) 尖晶石铁氧体

化合物	结构类型	! Curie 点	Curie 点 离子磁矩 (μ _B)					
Linear Months of the Control of the	denier subsidier words is in mee'r licum y d	$T_{\rm c}/{ m K}$	A 位	B 位 净值		$\mu_0 M_{ m s}/{ m T}$		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	hii.		; i ,		理论值	实验值		
MnFe ₂ O ₄	I	575	-(1+4)	1+9	5	46~5	0.52	
Fe_3O_4	I	860	- 5	4+5	4	4.1	0.65	
$CoFe_2O_4$	I	790	-5	3+5	3	3.7	0.58	
NiFe ₂ O ₄	I	865	-5	2+5	2	2.3	0.43	
$CuFe_2O_4$	I	728	-5	1+5	1	1.3		
$\mathrm{Li_{0.5}Fe_{2.5}O_4}$	I	943	-5	0+7.5	2.5	2.5~3	0.43	
$MgFe_2O_4$	I	700	5	0+5	0	1.1	0.12	

(b) 石榴石铁氧体

化合物	Curie 点	补偿温度	零	温每分子式磁矩	室温饱和磁化强度	
). Att	$T_{ m c}/{ m K}$	T^*/K	Ą	建论值	实验值	$\mu_0 M_{ m s}/{ m T}$
			3(2S) - 5	3(L+2S)-5		
Y ₃ Fe ₅ O ₁₂	560		5	5	4.96	0.18
$GdFe_5O_{12}$	564	290	16	16	15.2	0.013
$\mathrm{DyFe_5O_{12}}$	563	220	10	25	17.2	0.042

(c) 六角磁铅石铁氧体

类型	化合物	$T_{\mathtt{c}}$	零温每分	·子式磁矩	室温饱和磁化强度	
			理论值	实验值	$\mu_0 M_{ m s}/{ m T}$	
BaM	BaFe ₁₂ O ₁₉		20	19.9	0.48	
SrM	SrFe ₁₂ O ₁₉		20	20.2	0.48	
PbM	PbFe ₁₂ O ₁₉		20	19.6	0.43	
BaW	$Ba_2Fe_2^{2+}Fe_{16}^{3+}O_{27}$		28	27.6	0.52	
BaX	$\mathrm{Ba_{2}Fe_{2}^{2+}Fe_{16}^{3+}O_{27}}$		48	47.5	0.26	

以上三表取自冯端等《凝聚态物理上卷》p523

习题三

- 3.6 试给出($Ni_{1-X}Zn_X$) Fe_2O_4 铁氧体分子磁距随Zn含量X变化的理论曲线。
- 3.7 已知 NiFe₂O₄为尖晶石结构,晶格常数 $a=8.34\times10^{-10}$ m,试给出 0 K 时饱和磁化强度的数值。