

CLASS: S.E.COMP SUBJECT :DEL

EXPT. NO.:1 DATE:

TITLE : BINARY ADDER AND SUBTRACTOR CIRCUITS

OBJECTIVE:

1. Design and Implement Full adder circuit using basic gates and universal logic gates

2. Design and Implement Full Subtractor circuit using basic gates and universal logic gates

APPARATUS:

Digital-Board, GP-4Patch-Cords, IC-74LS86, IC-74LS32, IC-74LS08 / IC-74LS04 and IC-74LS00 and Required Logic gates if any.

THEORY:

Binary Adder and subtractor are a combinational logic circuit which is used to perform binary addition and subtraction .Full adder is a little more difficult to implement than a half-adder. The full-adder has three inputs and two outputs. The first two inputs are A and B and the third input is an input carry designated as CIN. When full adder logic is designed we will be able to string eight of them together to create a byte-wide adder and cascade the carry bit from one adder to the next

The full subtractor is a combinational circuit with three inputs A,B,C and two output D and C'. A is the 'minuend', B is 'subtrahend', C is the 'borrow' produced by the previous stage, D is the difference output and C' is the borrow output.

PIN DIAGRAM:

PROCEDURE:

- 1. Make the connections as per the Logic circuit of Full adder circuit and Verify its Truth Table.
- 2. Make the connections as per the Logic circuit of Full subtractor circuit and Verify its Truth Table

Truth Table of Full adder circuit

Dec.Equ.	INPUT			OUTPUT	
	A	В	Cin	Sum	Carry
0	0	0	0	0	0
1	0	0	1	1	0
2	0	1	0	1	0
3	0	1	1	0	1
4	1	0	0	1	0
5	1	0	1	0	1
6	1	1	0	0	1
7	1	1	1	1	1

K-Map Simplification for Sum and Carry

Logic Diagram:

Design of Full subtractor circuit

Dec Equ		INPUT			OUTPUT	
	A	В	Cin	Difference	Borrow	
0	0	0	0	0	0	
1	0	0	1	1	1	
2	0	1	0	1	1	
3	0	1	1	0	1	
4	1	0	0	1	0	
5	1	0	1	0	0	
6	1	1	0	0	0	
7	1	1	1	1	1	

K-Map Simplification for Difference and Borrow

Logic Diagram:

Outcome:

After completion student will be able to understand working of full adder and full subtractor and design and implement the circuit by choosing appropriate ICs

REFERENCE:

- 1. R.P.Jain "Modern Digital Electronics" TMH 4th Edition
- 2. D.Leach, Malvino, Saha, "Digital Principles and Applications", TMH