04: Linear Regression with Multiple Variables

Previous Next Index

Linear regression with multiple features

New version of linear regression with multiple features

- Multiple variables = multiple features
- In original version we had
 - \circ X = house size, use this to predict
 - \circ y = house price
- If in a new scheme we have more variables (such as number of bedrooms, number floors, age of the home)
 - $\circ x_1, x_2, x_3, x_4$ are the four features
 - x_1 size (feet squared)
 - x₂ Number of bedrooms
 - x_3 Number of floors
 - x₄ Age of home (years)
 - o y is the output variable (price)
- More notation
 - o n
- number of features (n = 4)
- \circ m
- number of examples (i.e. number of rows in a table)
- $\circ x^i$
- vector of the input for an example (so a vector of the four parameters for the ith input example)
- i is an index into the training set
- So
- x is an n-dimensional feature vector
- x³ is, for example, the 3rd house, and contains the four features associated with that house
- o xj
- The value of feature j in the ith training example
- So
 - x_2^3 is, for example, the number of bedrooms in the third house
- Now we have multiple features
 - What is the form of our hypothesis?
 - o Previously our hypothesis took the form;
 - $\bullet \ h_{\theta}(x) = \theta_{0} + \theta_{1}x$
 - Here we have two parameters (theta 1 and theta 2) determined by our cost function
 - One variable x
 - o Now we have multiple features
 - $\bullet \ h_\theta(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$
 - $\circ \ For \ example$
 - $h_{\theta}(x) = 80 + 0.1x_1 + 0.01x_2 + 3x_3 2x_4$
 - An example of a hypothesis which is trying to predict the price of a house
 - Parameters are still determined through a cost function
 - \circ For convenience of notation, $x_0 = 1$
 - For every example i you have an additional oth feature for each example
 - So now your **feature vector** is n + 1 dimensional feature vector indexed from 0
 - This is a column vector called x
 - Each example has a column vector associated with it
 - So let's say we have a new example called "X"
 - **Parameters** are also in a o indexed n+1 dimensional vector
 - This is also a column vector called θ
 - This vector is the same for each example
 - o Considering this, hypothesis can be written
 - $\bullet \ h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$
 - o If we do
 - $h_{\theta}(\mathbf{x}) = \theta^T \mathbf{X}$
 - θ^T is an $[1 \times n+1]$ matrix

1 von 9

- 04_Linear_Regression_with_multiple_variables
 - lacktriangleright In other words, because θ is a column vector, the transposition operation transforms it into a row vector
 - So before
 - θ was a matrix $[n + 1 \times 1]$
 - Now
 - θ^T is a matrix [1 x n+1]
 - Which means the inner dimensions of θ^T and X match, so they can be multiplied together as
 - [1 x n+1] * [n+1 x 1]
 - $\blacksquare = h_{\theta}(x)$
 - So, in other words, the transpose of our parameter vector * an input example X gives you a predicted hypothesis which is [1 x 1] dimensions (i.e. a single value)
 - This $x_0 = 1$ lets us write this like this
 - o This is an example of multivariate linear regression

Gradient descent for multiple variables

- Fitting parameters for the hypothesis with gradient descent
 - \circ Parameters are θ_0 to θ_n
 - \circ Instead of thinking about this as n separate values, think about the parameters as a single vector (θ)
 - Where θ is n+1 dimensional
- Our cost function is

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

• Similarly, instead of thinking of J as a function of the n+1 numbers, J() is just a function of the parameter vector \circ J(θ)

Repeat
$$\{$$
• Gradient descent $\implies \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$
 $\}$ (simultaneously update for every $j = 0, \dots, n$)

- Once again, this is
 - $\theta_i = \theta_i$ learning rate (a) times the partial derivative of J(θ) with respect to $\theta_{J(...)}$
 - We do this through a **simultaneous update** of every θ_i value
- Implementing this algorithm
 - \circ When n = 1

$$\begin{aligned} \text{Repeat } \big\{ \\ \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \\ &\underbrace{\frac{\partial}{\partial \theta_0} J(\theta)} \\ \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)} \\ & \text{(simultaneously update } \theta_0, \theta_1) \big\} \end{aligned}$$

- Above, we have slightly different update rules for θ_0 and θ_1
 - \circ Actually they're the same, except the end has a previously undefined $x_0^{(i)}$ as 1, so wasn't shown
- We now have an almost identical rule for multivariate gradient descent

New algorithm
$$(n \geq 1)$$
: Repeat $\left\{ \begin{array}{c} \sqrt{2 - 2 \sigma_j} & \sqrt{2 \sigma_j} \\ \theta_j := \theta_j - \alpha \sqrt{\frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}} \\ \text{(simultaneously update } \theta_j \text{ for } j = 0, \dots, n) \end{array} \right\}$

- What's going on here?
 - \circ We're doing this for each j (0 until n) as a simultaneous update (like when n = 1)
 - \circ So, we re-set θ_i to
 - θ_i minus the learning rate (a) times the partial derivative of of the θ vector with respect to θ_i
 - In non-calculus words, this means that we do
 - Learning rate
 - Times 1/m (makes the maths easier)
 - Times the sum of
 - The hypothesis taking in the variable vector, minus the actual value, times the j-th value in that variable vector for EACH example
 - o It's important to remember that

$$\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} = \frac{2}{2} \sqrt{3} \sqrt{9}$$

• These algorithm are highly similar

Gradient Decent in practice: 1 Feature Scaling

- Having covered the theory, we now move on to learn about some of the practical tricks
- · Feature scaling
 - o If you have a problem with multiple features
 - o You should make sure those features have a similar scale
 - Means gradient descent will converge more quickly
 - o e.g.
 - x1 = size (0 2000 feet)
 - x2 = number of bedrooms (1-5)
 - Means the contours generated if we plot θ_1 vs. θ_2 give a very tall and thin shape due to the huge range difference
 - o Running gradient descent on this kind of cost function can take a long time to find the global minimum

- Pathological input to gradient descent
 - o So we need to rescale this input so it's more effective
 - o So, if you define each value from x1 and x2 by dividing by the max for each feature
 - o Contours become more like circles (as scaled between o and 1)
- May want to get everything into -1 to +1 range (approximately)
 - o Want to avoid large ranges, small ranges or very different ranges from one another
 - Rule a thumb regarding acceptable ranges
 - -3 to +3 is generally fine any bigger bad

- -1/3 to +1/3 is ok any smaller bad
- Can do mean normalization
 - o Take a feature xi
 - Replace it by (x_i mean)/max
 - So your values all have an average of about o

• Instead of max can also use standard deviation

Learning Rate α

- Focus on the learning rate (α)
- Topics
 - o Update rule
 - Debugging
 - \circ How to chose α

Make sure gradient descent is working

- Plot min $J(\theta)$ vs. no of iterations
 - \circ (i.e. plotting $J(\theta)$ over the course of gradient descent
- If gradient descent is working then $J(\theta)$ should decrease after every iteration
- Can also show if you're not making huge gains after a certain number
 - o Can apply heuristics to reduce number of iterations if need be
 - \circ If, for example, after 1000 iterations you reduce the parameters by nearly nothing you could chose to only run 1000 iterations in the future
 - \circ Make sure you don't accidentally hard-code thresholds like this in and then forget about why they're their though!

- o Number of iterations varies a lot
 - 30 iterations
 - 3000 iterations
 - **3000 000 iterations**
 - Very hard to tel in advance how many iterations will be needed
 - Can often make a guess based a plot like this after the first 100 or so iterations
- $\circ \ Automatic \ convergence \ tests$
 - Check if $J(\theta)$ changes by a small threshold or less
 - Choosing this threshold is hard
 - So often easier to check for a straight line

- 04_Linear_Regression_with_multiple_variables
 - Why? Because we're seeing the straightness in the context of the whole algorithm
 - Could you design an automatic checker which calculates a threshold based on the systems preceding progress?
 - Checking its working
 - If you plot $J(\theta)$ vs iterations and see the value is increasing means you probably need a smaller α
 - Cause is because your minimizing a function which looks like this

• But you overshoot, so reduce learning rate so you actually reach the minimum (green line)

- \circ So, use a smaller α
- Another problem might be if $J(\theta)$ looks like a series of waves
 - Here again, you need a smaller α
- However
 - \circ If α is small enough, $J(\theta)$ will decrease on every iteration
 - $\circ\,$ BUT, if α is too small then rate is too slow
 - A less steep incline is indicative of a slow convergence, because we're decreasing by less on each iteration than a steeper slope
- Typically
 - $\circ\,$ Try a range of alpha values
 - Plot $J(\theta)$ vs number of iterations for each version of alpha
 - Go for roughly threefold increases
 - **0.001**, 0.003, 0.01, 0.03. 0.1, 0.3

Features and polynomial regression

- Choice of features and how you can get different learning algorithms by choosing appropriate features
- Polynomial regression for non-linear function
- Example
 - House price prediction
 - Two features
 - Frontage width of the plot of land along road (x₁)
 - Depth depth away from road (x₂)
 - o You don't have to use just two features
 - Can create new features
 - o Might decide that an important feature is the land area
 - So, create a new feature = frontage * depth (x_3)
 - $\bullet h(x) = \theta_0 + \theta_1 x_3$
 - Area is a better indicator
 - o Often, by defining new features you may get a better model
- Polynomial regression
 - o May fit the data better
 - $\circ \ \theta_0 + \theta_1 x + \theta_2 x^2$ e.g. here we have a quadratic function
 - o For housing data could use a quadratic function

- 04_Linear_Regression_with_multiple_variables
 - But may not fit the data so well inflection point means housing prices decrease when size gets really big
 - So instead must use a cubic function

- How do we fit the model to this data
 - \circ To map our old linear hypothesis and cost functions to these polynomial descriptions the easy thing to do is set
 - $\mathbf{x}_1 = \mathbf{x}$
 - $\bullet \ \mathbf{x_2} = \mathbf{x^2}$
 - $x_3 = x^3$
 - $\circ\,$ By selecting the features like this and applying the linear regression algorithms you can do polynomial linear regression
 - o Remember, feature scaling becomes even more important here
- Instead of a conventional polynomial you could do variable ^(1/something) i.e. square root, cubed root etc
- Lots of features later look at developing an algorithm to chose the best features

Normal equation

- For some linear regression problems the normal equation provides a better solution
- So far we've been using gradient descent
 - Iterative algorithm which takes steps to converse
- Normal equation solves θ analytically
 - o Solve for the optimum value of theta
- Has some advantages and disadvantages

How does it work?

- Simplified cost function
 - \circ J(θ) = a θ ² + b θ + c
 - θ is just a real number, not a vector
 - o Cost function is a quadratic function
 - o How do you minimize this?
 - Do

- Take derivative of $J(\theta)$ with respect to θ
- Set that derivative equal to o
- Allows you to solve for the value of θ which minimizes $J(\theta)$
- In our more complex problems;
 - \circ Here θ is an n+1 dimensional vector of real numbers
 - o Cost function is a function of the vector value
 - How do we minimize this function
 - Take the partial derivative of $J(\theta)$ with respect θ_i and set to o for every j
 - \bullet Do that and solve for θ_{0} to θ_{n}
 - This would give the values of θ which minimize $J(\theta)$
 - o If you work through the calculus and the solution, the derivation is pretty complex
 - Not going to go through here

■ Instead, what do you need to know to implement this process

Example of normal equation

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
x_1	x_2	x_3	x_4	y
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

- Here
 - \circ m = 4
 - o n = 4
- To implement the normal equation
 - Take examples
 - Add an extra column (x₀ feature)
 - Construct a matrix (X the design matrix) which contains all the training data features in an [m x n+1] matrix
 - o Do something similar for y
 - Construct a column vector y vector [m x 1] matrix
 - Using the following equation (X transpose * X) inverse times X transpose y $\theta = (X^T X)^{-1} X^T y$

$$\begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
2104 & 1416 & 1534 & 852 \\
5 & 3 & 3 & 2 \\
1 & 2 & 2 & 1 \\
45 & 40 & 30 & 36
\end{bmatrix}
X
\begin{bmatrix}
1 & 2104 & 5 & 1 & 45 \\
1 & 1416 & 3 & 2 & 40 \\
1 & 1534 & 3 & 2 & 30 \\
1 & 852 & 2 & 1 & 36
\end{bmatrix}
X
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
2104 & 1416 & 1534 & 852 \\
5 & 3 & 3 & 2 \\
1 & 2 & 2 & 1 \\
45 & 40 & 30 & 36
\end{bmatrix}
X
\begin{bmatrix}
460 \\
232 \\
315 \\
178
\end{bmatrix}$$

• If you compute this, you get the value of theta which minimize the cost function

General case

- Have m training examples and n features
 - ∘ The **design matrix** (X)
 - Each training example is a n+1 dimensional feature column vector
 - X is constructed by taking each training example, determining its transpose (i.e. column -> row) and using it for a row in the design A
 - This creates an [m x (n+1)] matrix

- Vector y
 - Used by taking all the y values into a column vector

13.07.2015 07:20

$$\theta = (X^T X)^{-1} X^T y$$

• What is this equation?!

$$\circ (\mathbf{X}^T * \mathbf{X})^{-1}$$

- What is this --> the inverse of the matrix $(X^T * X)$
 - i.e. $A = X^T X$
 - $A^{-1} = (X^T X)^{-1}$
- In octave and MATLAB you could do;

$$pinv(X'*x)*x'*y$$

- X' is the notation for X transpose
- pinv is a function for the inverse of a matrix
- In a previous lecture discussed feature scaling
 - o If you're using the normal equation then no need for feature scaling

When should you use gradient descent and when should you use feature scaling?

- o Gradient descent
 - Need to chose learning rate
 - Needs many iterations could make it slower
 - Works well even when n is massive (millions)
 - Better suited to big data
 - What is a big *n* though
 - 100 or even a 1000 is still (relativity) small
 - If n is 10 000 then look at using gradient descent
- o Normal equation
 - No need to chose a learning rate
 - No need to iterate, check for convergence etc.
 - Normal equation needs to compute $(X^TX)^{-1}$
 - This is the inverse of an n x n matrix
 - With most implementations computing a matrix inverse grows by O(n³)
 - So not great
 - Slow of n is large
 - Can be much slower

Normal equation and non-invertibility

- Advanced concept
 - Often asked about, but quite advanced, perhaps optional material
 - Phenomenon worth understanding, but not probably necessary
- When computing $(X^T X)^{-1} * X^T * y$
 - \circ What if (X^TX) is non-invertible (singular/degenerate)
 - Only some matrices are invertible
 - This should be quite a rare problem
 - Octave can invert matrices using
 - pinv (pseudo inverse)
 - This gets the right value even if (X^TX) is non-invertible
 - inv (inverse)
 - \circ What does it mean for (X^TX) to be non-invertible
 - Normally two common causes
 - Redundant features in learning model
 - - $x_1 = size in feet$
 - x_2 = size in meters squared
 - Too many features
 - e.g. $m \le n$ (m is much larger than n)

- m = 10
- n = 100
- Trying to fit 101 parameters from 10 training examplesSometimes work, but not always a good idea
- Not enough data
- Later look at why this may be too little data
- To solve this we

 - Delete features
 Use regularization (let's you use lots of features for a small training set)
- If you find (X^T X) to be non-invertible
 Look at features --> are features linearly dependent?
 - So just delete one, will solve problem

13.07.2015 07:20