3 Teoretične osnove

3.1 Frekvenca vzorčenja

Pri vzorčenju signalov je zelo pomembna frekvenca vzorčenja f_{vz} . Upoštevati moramo Nyqistovo načela vzorčenja, ki pravi, da je potrebno periodične signale vzorčiti vsaj z 2x večjo frekvenco vzorčenja kot je frekvenca signala f_{sig} (Nyquist 1928), kot to predstavlja slika sl. 1.

$$f_{vz} = 2f_{sig} \tag{1}$$

V nasprotnem primeru laho dobimo nepravilno reprodukcijo merjenega signala (črtkana krivulja), kot to prikazuje slika sl. 2.

Slika 1: Pravilno vzorčenje sinusnega signala.

Slika 2: Primer reprodukcije (črtkana krivulja) podvzorčenega signala.

3.2 Digitalizacija

Merilni sistemi so opremljeni s t.i. analogno-digitalnimi pretvorniki (ang.: Analog-to-digital converter - ADC), ki pretvarjajo merjeno napetost v neko številsko vrednost. Zelo pogost primer je, ko zvezno napetostno območje od 0,0V-5,0V pretvorimo v številske vrednosti od 0 - 1024. Pri tej pretvorbi ključno vlogo prevzame ADC in njegova **resolucija**. Grafični prikaz take transformacije je prikazan na sliki sl. 3.

Slika 3: Prenosna funkcija ADC pretvorbe (Contributors 2019a).

3.3 Resolucija in ločljivost

Resolucija AD pretvornikov je določena s številom vseh možnih stanj pretvorbe N. Ker so AD pretvorniki napreave prirejene digitalnim tehnologijam, se njihovi podatki izražajo v dvojiški obliki (binarno). Tako naprimer AD pretvornik z 10-bitno pretvorbo lahko prikaže:

$$N=2^B (2)$$

možnih stanj.

Ločljivost pa je najmanjša razlika med sosednjima digitaliziranima vrednostima merjene količine. Ta vrednost je odvisna tako od števila možnih stanj N, kakor tudi od območja, ki ga pretvarjamo. Zato bi lahko enačbo en. 3 zapisali:

$$Locljivost = \frac{Obmocje}{N}$$
 (3)

3.3.1 NALOGA: Izračun frekvence, resolucije in ločljivosti AD pretvorbe

Glede na prejšnje podatke o mikrokrmilniku Atmega328 poiščite podatek o najvišji frekvenci vzorčenja f_{vz} analognih signalov in izračunajte najmanjši čas Δt med dvema vzorčenjema.

Izračunajte s kolikšno resolucijo lahko odčitavamo analogne signale z mikrokrmilnikom Atmega328.

Izračunajte kolikšna je ločljivost mikrokrmilnika Atmega328 pri odčitavanju analognih signalov.

3.4 Točnost in natančnost

Točnost (v različnih virih je poimenovana različno, ang.: validity) je lastnost merilnega sistema, ki predstavlja ustreznost prestavljene meritve glede na njeno realno merjeno vrednost. Navadno jo izražamo kot relativno napako ϵ v procentualni obliki (en. 4):

$$\epsilon = \frac{(\mu - \bar{x})}{\mu} \tag{4}$$

Kjer je μ realna merjena vrednost (to je parameter) in \bar{x} povprečna izmerjena vrednost.

Lahko pa točnost izrazimo tudi v absolutni obliki (en. 5):

$$e = \mu - \bar{x} \tag{5}$$

kjer je \bar{x} povprečna vrednost meritev in je tako statistično izmerjena količina (ni parameter).

Natančnost oz. Preciznost (zopet v različnih literaturah poimenovana različno, ang.: reliability) je sposobnost merilnega sistema reprodukcije iste merjene (referenčne) vrednosti z enakimi izmerjenimi vrednostmi. V mnogih primerih se izkaže, da gre v tem primeru za naključno napako merjenja in to vrednost lahko ponazarjamo s standardnim odklonom merilnega postopka (en. 10). V nekaterih primerih to vrednost podajamo tudi z intervalom zaupanja, pri katerem podamo tudi verjetnost meritve (en. 11).

V splošnem bi lahko točnost in natančnost predstavili z grafom na sliki [sl. 4](Contributors 2019c).

Slika 4: Točnost in natančnost mreitev.

3.5 Normalna porazdelitev

Kadar imamo v merilnem sistemu opravka z naključnimi napakami, meritve lahko predstavimo s krivuljo normalne porazdelitve - v splošenm imenovnane Gaussova porazdelitev. Zapišemo jo v obliki en. 6.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\bar{x})^2}{2\sigma^2}} \tag{6}$$

Kjer je μ povprečna vrednost populacije in σ standardni odklon populacije. Nekaj različnih krivulj lahko vidimo na sliki sl. 5 (Contributors 2019b).

Slika 5: Primeri normalne verjetnostne porazdelitve.

Koeficienta o sploščenosti in premaknjenosti normalne porazdelitve lahko izračunamo tudi z različnimi računalniškimi programi za obdelavo razpredelnic, kot sta na primer Microsoft Excel ali LibreOffice Calc.

Sploščenost

Pričakovan koeficient sploščenosti je okoli 0. Če je vrednost izven območja -2 < k < +2 privzamemo, da porazdelitev ni normalno sploščena.

=KURT(Range)

Premaknjenost

Pričakovana vrednost premaknjenosti je okoli 0. Če je vrednost > 0.5 govorimo o pozitivni premaknjenosti in je porazdelitev vzorca nagnjena v levo (in obratno).

=SKEW(Range)

Povprečna vrednost populacije (en. 7) in vzorca (en. 8)

$$\mu = \frac{\sum_{i=1}^{N} x_i}{N} \tag{7}$$

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{n} \tag{8}$$

=AVERAGE(Range)

Standardni odklon populacije (en. 9) in vzorca (en. 10)

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N - 1}} \tag{9}$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}} \tag{10}$$

=STDEV(Range)

** **

3.6 Ocenjevanje nepoznanega parametra μ

Iz grafa normalne porazdelitve, ki je prikazan na sl. 6, so razvidni deleži vsebovanih meritev v določenih območjih standardnih odkonov $(1\sigma, 2\sigma \text{ in } 3\sigma)$ za celotno populacijo.

Slika 6: Graf normalne porazdelitve z vključujočimi deleži meritev.

Na primer izkaže se, da je v območju $\mu\pm1\sigma$ kar 68% vseh meritev, v območju $\mu\pm2\sigma$ jih je 95% in v območju $\mu\pm3\sigma$ celo 99,7%.

Zato te iste verjetnosti veljajo tudi pri vzorčenju manjših vzorcev. Tako s **standardno napako ocene povprečne vrednosti** ($s_{\bar{x}}$) naših meritev lahko ocenimo interval ($\bar{x} \pm \alpha s_{\bar{x}}$) v katerem se dejanski parameter μ nahaja z neko verjetnostjo. Standardno napako ocene povprečne vrednosti lahko izračunamo po en. **11**:

$$s_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}},\tag{11}$$

STDEV(A2:A6)/SQRT(COUNT(A2:A6))

kjer je sicer σ standardni odklon celotne populacije, ki ga pogosto ne poznamo in ga zato nadomestimo s standardnim odklonom vzorca s (en. 10). Korekturni faktor $\sqrt{\frac{N-n}{N-1}}$ uporabljamo le, če poznamo N celotne populacije in pri izredno velikih vzorcih ($n>\frac{N}{100}$).

Tako območje $\bar{x}\pm\alpha s_{\bar{x}}$ imenujemo območje zaupanja. Najpogosteje se v praksi uporablja območje zaupanja s koef. $\alpha=1,96$, s katerim pričakujemo 95,00% gotovost, da naša izmerjena povprečna vrednost \bar{x} ustreza dejanskemu parametru μ .

```
=CONFIDENCE(Signif., Std.Dev., Sample Size)
```

Contributors, Wikipedia. 2019a. "Analog-to-Digital Converter." 2019. https://en.wikipedia.org/wiki/Analog-to-digital_converter.

- ——. 2019b. "Normal Distribution." 2019. https://en.wikipedia.org/wiki/Normal_distribution.
- ——. 2019c. "Točnost in Natančnost." 2019. https://sl.wikipedia.org/wiki/To%C4%8Dnost_in_natan%C4%8Dnost.

Nyquist, H. 1928. "Certain Topics in Telegraph Transmission Theory." *Transactions of the American Institute of Electrical Engineers* 47 (2): 617–44. https://doi.org/10.1109/t-aiee.1928.5055024.