Tweet Sentiment Analysis

Flatiron School Module 4 Project

By Shawn Sobieski and William Newton

Data and Methodology

Data and Methodology

- Data used for this project was obtained from Data.world
 - O https://data.world/crowdflower/brands-and-product-emotions
- Data consists of Tweets collected at a major-telecom provider sponsored tent at the SXSW music festival in Austin, Texas
- Data was labeled with either Positive, Negative, No Emotion, or Unclear sentiment
- If a brand or product was identified in the Tweet, it was labeled as either a Apple or Android Product

Goal:

Use the data set to build a model to predict sentiment in future tweets

model_#		model_type	train_accuracy	test_accuracy	train_test_diff	negative_recall	positive_recall	negative_f_1	positive_f-1	notes
0	1	Vanilla Logistic Regression	0.0	0.0	0.0	50.0	92.0	53.0	91.0	Vanilla model very basic, needs tuning
0	2	Vanilla Random Forest Classifier	0.0	0.0	0.0	38.0	97.0	51.0	93.0	Vanilla model very basic, needs tuning
0	3	SVM: Balanced Class Weights, Linear Kernel	81.3	76.4	4.9	67.0	78.0	47.0	85.0	Model overfits and class imbalance still causi
0	4	SVM: Balanced Class Weights, Linear Kernel, Gr	84.5	75.6	8.9	64.0	78.0	45.0	84.0	Model still overfits and less predictive for b
0	5	SVM: SMOTE	99.2	88.9	10.3	93.0	85.0	89.0	89.0	Model overfits but SMOTE has solved class imba
0	6	XGBoost RFC Vanilla	85.8	85.1	0.7	9.0	99.0	15.0	92.0	Model is basically guessing 1 every time
0	7	XGBoost, pos_scale_weight	86.1	85.4	0.7	11.0	99.0	47.0	92.0	Class imbalance still causing issues with model
0	8	XGBoost GridSearch	87.7	85.1	2.6	12.0	99.0	20.0	92.0	Class imbalance still causing issues with model
0	9	XGBoost SMOTE	89.8	89.2	0.6	80.0	98.0	88.0	90.0	SMOTE fixed class imbalance. Best performing b

model_#	model_type	train_accuracy	test_accuracy	train_test_diff	negative_recall	positive_recall	no_emotion_recall	negative_f_1	positive_f-1	no_emotion_f-1
1	SVM: Vanilla Linear Kernel Class Weight Balanced	93.0	66.6	26.4	34.0	58.0	75.0	38.0	57.0	75.0
2	SVM: GridSearch Balanced Class Weights	75.0	61.8	13.2	49.0	55.0	67.0	38.0	53.0	71.0
3	SVM: SMOTE	94.7	83.6	11.1	100.0	82.0	70.0	96.0	75.0	79.0
4	XGBoost multi:logistic	69.4	65.2	4.2	4.0	95.0	22.0	8.0	77.0	33.0
5	XGboost GridSearch	71.1	65.9	5.2	8.0	29.0	92.0	14.0	40.0	77.0
6	XGboost SMOTE	72.7	69.4	3.3	77.0	49.0	82.0	81.0	57.0	69.0
7	Vanilla NB Model	67.9	63.9	4.0	4.0	34.0	87.0	8.0	42.0	75.0
8	SMOTE NB Model	91.1	81.3	9.8	99.0	82.0	82.0	95.0	70.0	77.0

Recommendations

Recommendations

- Utilize this tool to quickly analyze future tweets at nearly 90% accuracy
- Investigate positive sentiment for products that draw successful buzz
- Investigate negative sentiment tweets for areas of needed improvement

Future Work

- Breaking down positive and negative tweets by even more granular product details
- eneralizable data by collecting from different sources and over a longer time frame in order to eventually reduce or eliminate the need for human labeling

Thank you!

Any Questions? Feel free to email us shsobieski@gmail will4856@gmail