בחינה ו

שאלה 1

A, B הוכח או הפרך את הטענות הבאות: $A \cap B = \{1\}$ קבוצות. נתון ש-

. אם $A \setminus B$ שקולה ל- A, אז A היא אינסופית.

. אינסופית B אינסופית $A \setminus B$ היא אינסופית $A \setminus B$

 $S\subseteq L$ או $S\subseteq K$ הוכח כי $P(S)\subseteq P(K)\cup P(L)$ - קבוצות כך שS,K,L הוכח כי S,K,L הוכח כי פוערה.

- א. A ששקולה ל- A ששקולה ל- A שחלקית ממש ל- A ששקולה ל- A נראה שהקבוצה $A \setminus B$ מקיימת תנאים אלה.
- מהגדרת ההפרש בין קבוצות נובע כי $A\setminus B\subseteq A$. מהנתון ידוע כי $A\cap B=\{1\}$, לכן מהגדרת ההפרש בין קבוצות נובע כי $A\setminus B\subseteq A$. (שכן, $A\setminus B\subseteq A$). מכאן ש- $A\setminus B$ (חלקית ממש!). מאחר ש- $A\setminus B$ שקולה ל- $A\setminus B$, נובע (לפי הגדרת "קבוצה אינסופית"), ש- $A\setminus B$ אינסופית.
 - 2. הטענה לא נכונה. נפריך אותה על-ידי דוגמה נגדית.

נגדיר $A\setminus B=\{1\}$ ו- $A\cap B=\{1\}$ אז $B=\{1\}$ ו- $A=\{1,2\}$ שקולה ל- $B=\{1,2\}$ ו- $A=\{1,2\}$ היא קבוצה סופית. לכן A ו- A מקיימות את כל נתוני הטעיף, אבל A היא קבוצה סופית.

- ב. לכל קבוצה S מתקיים $S \subseteq S$, לכן לכן $S \subseteq S$ ומן ההכלה הנתונה בשאלה, נובע כי $S \subseteq S$ מכאן ש- $S \subseteq S$ או $S \subseteq S$ או $S \subseteq S$ או $S \subseteq S$ או $S \subseteq S$ מכאן ש- $S \subseteq S$
- $\{x\}\in P(S)$ היו כאלה שהציעו את הפתרון הבא: נניח כי $x\in S$ אז $x\in S$ היו כאלה שהציעו את הפתרון הבא: נניח כי $x\}\in S$ אז $x\in S$ או $x\in S$ שייך ל- $x\in S$ ולא שייך ל- $x\in S$ או $x\in S$

שאלה 2

- ידוע שיש A מוגדרת פעולה בינרית * המקיימת את תכונת הסגירות. און איבר A מוגדרת פעולה בינרית $x\in A$ מתקיים איבר $e\in A$ כך שלכל $e\in A$ מתקיים x*e=x ביחס לפעולה e ביחס לפעולה e הבאה:
- פעולה או מגדירים פעולה . $M=\{3n/2\mid n\in\mathbb{N}\}=\{3/2,6/2,9/2,\ldots\}$ על קבוצה זו מגדירים פעולה . $a\Delta b=\frac{2}{3}ab$, $a,b\in M$ בינרית $a\Delta b=\frac{2}{3}ab$, $a,b\in M$ שבהגדרת מושג החבורה מקיימת פעולה זו. נמק את טענותיד.

תשובה:

ונגדיר $A = \{e,a\}$, א.נפריך את הטענה על-ידי דוגמה נגדית. נבחר למשל קבוצה בת שני איברים

*	e	a
e	e	e
а	a	e

עליה פעולה בינרית * כמתואר בטבלה. ברור שהפעולה מקיימת את תכונת הסגירות וכי לכל עליה פעולה בינרית * כמתואר בטבלה. ברור שהפעולה מקיימת את אינו נטרלי, כי x*e=x שכן, x*e=x . $e*a=e\neq a$

ב. 1. <u>סגירות</u>

, M מתקיים $a,b\in M$ אם $a,b\in M$ אם $a,b\in M$ מתקיים $a,b\in M$ מתקיים $a,b\in M$ נבדוק אם לכל $a\Delta b=\frac{2}{3}ab=\frac{2}{3}\cdot\frac{3n}{2}\cdot\frac{3k}{2}=\frac{3nk}{2}$: לכן $a=\frac{3k}{2}$ בי $a=\frac{3n}{2}$ טובע כי $a=\frac{3n}{2}$, ולכן תכונת הסגירות מתקיימת.

2. קיבוציות

$$(a\Delta b)\Delta c=\left(rac{2}{3}\,ab
ight)\Delta c=rac{2}{3}\left(rac{2}{3}\,ab
ight)\cdot c=rac{4}{9}\,abc$$
 מתקיים: $a,b,c\in M$ לכל $a\Delta(b\Delta c)=a\Delta\left(rac{2}{3}\,bc
ight)=rac{2}{3}\,a\!\left(rac{2}{3}\,bc
ight)=rac{4}{9}\,abc$,כמו-כן,

לכן, לכל a.b. הפעולה קיבוצית. a.b. מתקיים a.b. מתקיים a.b. לכן, לכל

3. קיו איבר נטרלי

אם $a \Delta e = a$ הוא צריך לקיים $a \in M$ אז, לכל $e \in M$ אם קיים איבר נטרלי $.e = \frac{3}{2}$ דבר שמחייב להיות $.e = \frac{3}{2}$ כעת, דבר שמחייב להיות איבר לכן, אם קיים איבר להיות להיות יש

: מתקיים
$$a\in M$$
 ולכל $\frac{3}{2}=\frac{3\cdot 1}{2}\in M$ אכן, אכן הוא נטרלי. הוא נטרלי.

. מכאן ש-
$$\frac{3}{2}$$
 הוא איבר נטרלי. $\frac{3}{2}\Delta a = \frac{2}{3} \cdot \frac{3}{2}a = a$ וכן $a\Delta \frac{3}{2} = \frac{2}{3} \cdot a \frac{3}{2} = a$

4. קיום איבר נגדי

עלינו לבדוק אם לכל $a\in M$ קיים $b\in M$ קיים $a\in M$ נבחר למשל את האיבר . $a\Delta b=\frac{3}{2}$ אז מתקיים $\Delta b=\frac{3}{2}$ כלומר, $a=\frac{3\cdot 2}{2}=3\in M$ כלומר, אם קיים עבורו נגדי $a=\frac{3\cdot 2}{2}=3\in M$ מכאן שלא לכל איבר של $a=\frac{3\cdot 2}{2}=3$ אבל אז $a=\frac{3\cdot 2}{2}$ אבל אז $a=\frac{3\cdot 2}{2}$ אוֹה מספר שלא שייך לקבוצה $a=\frac{3\cdot 2}{2}$ אבר נגדי.

שאלה 3

נתונות $n \in \mathbb{N}$ פונקציות מ- $n \in \mathbb{N}$ ל- $n \in \mathbb{N}$ ידוע כי g היא על וכי לכל f,g מתקיים f(g(n)) = 2n - 1

- על. הוכח כי f אינה פונקציה על.
- (9 נקי) ב. הוכח כי f היא פונקציה חד-חד-ערכית.
- . הדגם פונקציות f,g שמקיימות את נתוני השאלה. f,g

תשובה

א. אינטואיטיבית, ברור ש- f מתאימה לכל מספר טבעי מהצורה g(n), מספר אי-זוגי. מאחר אינטואיטיבית, מספר שר g(n) (שכן, g היא על), הרי ש- g(n) מספר טבעי הוא מהצורה לכל מספר טבעי הנה ההוכחה המדויקת: מספר אי-זוגי ולכן היא אינה פונקציה על. ועכשיו, הנה ההוכחה המדויקת:

g -ש מאחר ש- f(k)=2 -ש כך ש- $k\in {\bf N}$ כניח בדרך השלילה כי f היא פונקציה על. אז קיים g(n)=k -ש כך ש- $n\in {\bf N}$ כי מכאן על, קיים אל, קיים $n\in {\bf N}$ כך ש- $n\in {\bf N}$ נציב את בשוויון הקודם ונקבל כי g(n)=k -ש כלומר g(n)=k מכאן ש- g(n)=k - g(n)=k כלומר g(n)=k הוא מספר טבעי.

 $k_1=k_2$ -ש עלינו להוכיח עלינו $f(k_1)=f(k_2)$ ונניח כי ונניח עלינו להוכיח הוכיח ב. ב. נבחר מספרים

ערב זה לערב שהנתון היחיד בשאלה לגבי f(g(n)) = 2n-1 הוא ש- f(g(n)) = 2n-1 לכן, חייבים בשלב זה לערב את פונקציה g, כדי שנוכל להשתמש בו.)

. $g(n_2)=k_2$ -ו $g(n_1)=k_1$ -ש כידוע, $g(n_1)=k_1$ -ש כידוע, $g(n_2)=k_2$ היא פונקציה על, לכן קיימים $g(n_1)=k_1$ כידוע, $g(n_2)=k_2$ היא פונקציה על, לכן $g(n_1)=g(n_2)$ נקבל כי $g(n_1)=g(n_2)$ לכן $g(n_1)=g(n_2)$ לכן $g(n_1)=g(n_2)$ ולכן $g(n_1)=g(n_2)$

f -ש אככון, $k_1=k_2$ -ש גורר הוכחנו $f(k_1)=f(k_2)$, השוויון השוכל , $k_1,k_2\in \mathbf{N}$ שלכל שלכל הוכחנו היא פונקציה חד-חד-ערכית.

 $g: \mathbf{N} \to \mathbf{N}$ כך: לכל $g: \mathbf{N} \to \mathbf{N}$ ונגדיר $f: \mathbf{N} \to \mathbf{N}$ כך: לכל $f: \mathbf{N} \to \mathbf{N}$ ג. נגדיר $g: \mathbf{N} \to \mathbf{N}$ כך: לכל $g: \mathbf{N} \to \mathbf{N}$ מתקיים $g: \mathbf{N} \to \mathbf{N}$ כנדרש. g(n) = n

שאלה 4

תהי A איזומטריה של המישור ותהי A נקודה במישור. ידוע כי A היא נקודת שבת של $f \circ f$ וכי $f \circ f$

- $f \circ f$ א. הוכח כי f(A) נקודת שבת של
- ת. ב. הוכח ש- $f \circ f$ היא איזומטרית הזהות.
- . ג. האם יתכן ש- f סיבוב לא טריוויאלי? נמק תשובתך 7)

תשובה:

 $f(f \circ f)(f(A)) = f(A)$ א. עלינו להראות כי

נתון ש- A היא נקודת שבת של $f \circ f$ לכן, $(f \circ f)(A) = A$, ולכן

$$(f \circ f)(A) = A$$

 $f(f \circ f)(f(A)) = f(f(f(A))) = f((f \circ f)(A)f(A))$

 $f \circ f$ שבת שבת לקודת (f(A) נקודת שבת של

ב. נעיר קודם ש- האיזומטריה f o f שומרת מגמה. אכן, f o f היא הרכבה של איזומטריות f אשר שתיהן שומרות מגמה (כאשר f שומרת אותה) או שתיהן הופכות מגמה (כאשר f סלו, בכל מקרה, f o f שומרת מגמה. מכאן ש- f o f יכולה להיות הזזה, סיבוב לא טריוויאלי או הזהות.

 $f \circ f$ מצד שני ידוע ש- A היא נקודת שבת של $f \circ f$ (נתון!) וכן, ש- $f \circ f$ נקודת שבת שבת של מצד שני ידוע ש- $f \circ f$ (נתון!) וכן, ש- $f \circ f$ יש לפחות שתי נקודות שבת שונות. $f \circ f$ הוכח בסעיף א'). מאחר ש- $f \circ f$ להיזה אין נקודות שבת, לסיבוב לא טריוויאלי יש רק נקודת שבת אחת, לכן, בהכרח, $f \circ f$ היא איזומטרית הזהות.

ג. התשובה היא **כן**.

O- מיבוב ב- f (סיבוב ב- 180f קטיבוב המישור, ונבחר היא ניקח (סיבוב ב- 180fסביב נקודה מידה (סיבוב היא איזומטרית מו- fס היא איזומטרית מו- כמו-כן, fס היא מיבוב איזומטרית מידומטרית מיבוב איזומטרית מו- fסיבוב איזומטרית מו- fסיבוב איזומטרית מקיים כל תנאי השאלה.

שאלה 5

לפניך מערכת אקסיומות שמושגי היסוד בה הם: ״נקודה״, ״ישר״ (כקבוצה של נקודות), והיחס ״נמצאת על״.

- 1. יש לפחות שני ישרים.
- 2. כל נקודה נמצאת על ישר אחד לפחות.
- נמצאת עליו ואין לו פאינה על P נמצאת עליו ואין לו לכל נקודה P ולכל נקודה פאינה על . ℓ געותפת עם ℓ .
 - (6 נקי) א. הוכח כי המערכת חסרת סתירה.
 - (6 נקי) ב. הוכח כי המערכת אינה קטגורית.
 - (6 נקי) ג. הוכח כי המערכת תלויה.
 - נמצאת על שני ישרים A נמצאת על שני ישרים המשפט הבא: ייאם נקודה A נמצאת על שני ישרים אונים אז קיימת נקודה נוספת, B הנמצאת אף היא על שני ישרים שוניםיי.

תשובה:

- א. כדי להוכיח שהמערכת חסרת סתירה, יש להצביע על מודל אחד שמקיים את כל אקסיומות א. כדי להוכיח שהמערכת מודל שבו שתי נקודות b, a ושני ישרים b, a (ראה המחשה). ברור שאקסיומות 3,2,1 מתקיימות במודל זה.
- ג. כדי להוכיח שהמערכת תלויה, עלינו להראות שקיימת בה לפחות אקסיומה אחת שנובעת מן האקסיומות האחרות (כלומר, היא מתקיימת בכל מודל שמקיים את האקסיומות האחרות.נראה שאקסיומה 2 נובעת מן האקסיומות האחרות.

נבחר מודל שמקיים את אקסיומות 3,1, ונוכיח שגם אקסיומה 2 מתקיימת בו, כלומר, כל נקודה נמצאת על ישר אחד לפחות.

תהי P נמצאת עליו. מאקסיומה P נמצאת עליו. מאקסיומה P נמצאת עליו אז סיימנו. אם P אינה דוע שיש לפחות שני ישרים. יהי ℓ אחד מהם. אם ℓ נמצאת עליו אז סיימנו. אם ℓ אינה על ℓ אז לפי אקסיומה ℓ , קיים ישר אשר ℓ נמצאת עליו ואין לו נקודה משותפת עם ℓ . לכן, בכל מקרה קיים ישר אשר ℓ נמצאת עליו, כפי שרצינו להוכיח.

ד. נניח שבמודל כלשהו של המערכת, נקודה A נמצאת על שני ישרים שונים ℓ_1 ו- ℓ_2 מאחר. שאלה ישרים שונים, קיימת נקודה B ששייכת לאחד מהם, למשל ℓ_1 , אך אינה שייכת לאחר שאלה ישרים שונה מ- ℓ_2 (שכן, ℓ_3 שייכת לשני הישרים). מאחר ש- ℓ_3 אינה על ℓ_4 , הרי שלפי אקסיומה ℓ_4 , קיים ישר ℓ_4 אשר ℓ_3 נמצאת עליו ואין לו נקודה משותפת עם ℓ_4 . בפרט, הנקודה ℓ_4 ששייכת ל- ℓ_4 , לא נמצאת על ℓ_4 , ומכאן ש- ℓ_4 שונה גם מ- ℓ_4 . מאחר ש- ℓ_4 נמצאת על שני ישרים שונים, כפי שרצינו להוכיח.

שאלה 6

על-ידי כפל. $A = \{12\,,10\,,15\}$ א. תהי A^* הקבוצה הנוצרת מ- A^* א. תהי א. תהי הפרך את הטענה הבה:

2 -ב. כאשר מחלקים מספר n ב- 3 מקבלים שארית 2 וכאשר מחלקים אותו ב- 2 מקבלים שארית n מקבלים שארית n מחלקים שארית n ב- n נמק תשובתך.

תשובה:

-ש. עניח כי $r,s,t\in \mathbb{N}_0$ אז, לפי הגדרת A^* קיימים A^* , קיימים פר ש. $9000\in A^*$ א. נניח כי $9000=12^r10^s15^t$ בדוק נכונות השוויון הזה, נפרק את כל המספרים לגורמים . $9000=12^r10^s15^t$ בשוניים, ואז נוכל להשתמש במשפט היסודי של האריתמטיקה. נקבל: $2^3\cdot 3^2\cdot 5^3=2^{2r+s}\cdot 3^{r+t}\cdot 5^{s+t}$

המשפט היסודי של האריתמטיקה מבטיח כי לכל מספר ראשוני יש אותו מספר של הופעות

בכל אחד מאגפי השוויון, לכן, $\begin{cases} 2r+s=3\\ r+t=2\\ s+t=3 \end{cases}$ מחיסור שתי המשואות האחרונות נובע כי

לכן $r \neq 0$ - ואם נחבר אם נחבר s = -1 . ברור כאן ש- s = -1 לכן בשוויון האחרון, שבו כל המספרים טבעיים, המספר הראשוני s הוא גורם באגף שמאל, אך אינו גורם באגף ימין, בסתירה למשפט היסודי של האריתמטיקה.

.9000 ∉ A* : מסקנה

מאחר ששארית החילוק של n=3s+2 היא $s\in \mathbf{N}_0$ כך ש- $s\in \mathbf{N}_0$ אם s=n הוא $n=3s+2=3\cdot 2t+2=2(3t+1)$ מספר זוגי אז קיים $t\in \mathbf{N}_0$ כך ש- $t\in \mathbf{N}_0$ כך ש- $t\in \mathbf{N}_0$ מספר זוגי אז קיים $t\in \mathbf{N}_0$ כך ש- $t\in \mathbf{N}_0$ היא מספר אי-זוגי $t\in \mathbf{N}_0$ הטותר את הנתון כי שארית החילוק של $t\in \mathbf{N}_0$ ולכן: $t\in \mathbf{N}_0$ כלומר, קיים $t\in \mathbf{N}_0$ כך ש- $t\in \mathbf{N}_0$ ולכן: $t\in \mathbf{N}_0$ מכאן ששארית החילוק של $t\in \mathbf{N}_0$ ב- $t\in \mathbf{N}_0$ מכאן ששארית החילוק של $t\in \mathbf{N}_0$