수학적 귀납법, 루프 불변 연세대 미래캠퍼스 고급 알고리즘 강의 1일차

이혜아

2022년 7월 6일

이혜아 수학적 귀납법, 루프 불변 2022년 7월 6일

수학적 귀납법

수학적 귀납법 (Mathematical Induction)

어떤 명제 P(n)이

- n = 1일 때 참이고,
- ② n = k일 때 참이면, n = k + 1일 때도 참

이면, P(n)은 모든 $n \ge 1$ 인 정수에 대해서 참이다.

수학적 귀납법의 다른 형태

강한 수학적 귀납법 (Strong Mathematical Induction)

어떤 명제 P(n)이

- ① n = 1일 때 참이고,
- ② $n \le k$ 일 때 참이면, n = k + 1일 때도 참이면, P(n)은 모든 $n \ge 1$ 인 정수에 대해서 참이다.

자연수의 정렬성 (Well-ordering principle)

공집합이 아닌 임의의 자연수의 부분집합은 최소원소를 가진다.

$$\forall X \subseteq \mathbb{N}, X \neq \phi \Rightarrow \exists x : \forall y \in X, x \leq y$$

3/12

|혜아 수학적 귀납법, 루프 불변 2022년 7월 6일

자연수의 정렬성 ⇒ 수학적 귀납법

자연수의 정렬성 ⇒ 수학적 귀납법

자연수의 정렬성을 이용하여 수학적 귀납법을 증명할 수 있다.

- 귀류법을 사용하자.
- 귀납법 성질을 만족하는 P(n)이 거짓인 n이 존재한다고 하자.
- $\phi \neq \{n \mid P(n) \cap J\}$ 에는 최소 원소 x가 있다.
 - x = 1이라면, P(1)이 성립한다는 것에 모순
 - x > 1이라면, P(x-1)은 참이고, $P(x-1) \Rightarrow P(x)$ 에 모순

연습문제

- ① (Hard) 수학적 귀납법 ⇒ 자연수의 정렬성
- ② (Hard) 수학적 귀납법 ⇒ 강한 수학적 귀납법

4 / 12

예시

가우스 합공식

$$1 + 2 + \cdots + n = \frac{n(n+1)}{2}$$

- 1 n = 1: $1 = \frac{1(1+1)}{2}$ 0| Γ +.
- ② $n = k \Rightarrow n = k + 1$ (k + 1인 경우를 k인 경우(귀납 가설)를 이용해 증명)

$$\underbrace{\frac{1+2+\cdots+k}{\text{귀납 가설 이용}}}_{\text{귀납 가설 이용}} + (k+1) = \frac{k(k+1)}{2} + \frac{2(k+1)}{2}$$
$$= \frac{(k+2)(k+1)}{2}$$
$$= \frac{(k+1)((k+1)+1)}{2}$$

- 변수가 여럿 있을 때. n은 자유롭게 골라도 된다.
- 수학적 귀납법은 n이 작은 경우를 **보조정리**로 사용하여 큰 경우를 해결하는 것이다.
- 수학적 귀납법과 "조건을 만족하지 않는 최소 반례"를 찾는 것은 같다.

연습문제

연습문제

- ② (Hard) 2" × 2" 격자에서 임의의 칸을 하나 뺀 나머지 부분을, 3칸을 차지하는 ¬자 모양의 타일을 이용해 겹치지 않게 덮을 수 있다.
 - 관련 문제: https://www.acmicpc.net/problem/14601
- ③ (Hard) 트리의 정점의 수는 간선의 수보다 하나 많다.
 - 증명 과정에서 이미 알고있는 트리의 성질을 증명 없이 이용하지 않도록 한다.

루프 불변

max의 정당성

배열 $A_{0...N-1}$ 이 주어질 때, 다음 코드는 올바르게 배열 A의 최댓값을 구한다. $(N \ge 1)$

- ② while $i \neq N$ do
 - if $M < A_i$ then $M \leftarrow A_i$ end if;
 - $i \leftarrow i + 1$

end while;

while의 성질

- 다음과 같은 while의 성질이 있다.
 - 임의로 루프를 탈출하는 goto나 break는 없다고 한다.
- while <조건> do <문장> end while; 이 있다고 하자.
- while문을 빠져나간 이후에 다음이 성립한다.
 - while문을 빠져나가지 못하고 무한루프를 돌 수도 있다.
- 루프 탈출: <조건>을 만족하지 않는다.
- ② 루프 불변: 아래 조건에서 <**루프 불변**>이 성립한다.
 - while문이 시작하기 전에 <루프 불변>이 성립한다.
 - <루프 불변>을 만족하는 상태에서 <문장>을 실행 하면, 실행 이후에 <루프 불변>을 만족한다.
 - 수학적 귀납법과 유사한 형태를 띈다.

루프 불변

- ② while $i \neq N$ do
 - if $M < A_i$ then $M \leftarrow A_i$ end if;
 - $i \leftarrow i + 1$

end while;

- 루프 불변: M은 $\{A_0, A_1, \cdots, A_{i-1}\}$ 의 최댓값이다.
 - 루프를 시작하기 전: M은 {A₀}의 최댓값이다.
 - ② 2-1 시행 이후: $M \in \{A_0, A_1, \dots, A_i\}$ 의 최댓값이다.
 - $\{A_0, A_1, \dots, A_{i-1}, A_i\}$ 의 A_i 가 아닌 최댓값이 있다면 if문을 들어가지 않고, 조건을 만족한다.
 - A;가 유일한 최댓값이라면, if문을 들어가서 조건을 만족한다.
 - ③ 2-2 시행 이후: M은 $\{A_0, A_1, \cdots, A_{i-1}\}$ 의 최댓값이다.
 - *i*가 1 증가했다.

max의 정당성 - 루프 불변

- ② while $i \neq N$ do
 - if $M < A_i$ then $M \leftarrow A_i$ end if;
 - $\mathbf{0}$ $i \leftarrow i + 1$

end while;

- 루프 불변: M은 $\{A_0, A_1, \cdots, A_{i-1}\}$ 의 최댓값이다.
- 루프 탈출: $i \neq N$ 이 성립하지 않는다. $\Rightarrow i = N$ 이다.
- 두 조건을 합치면, M은 $\{A_0, A_1, \cdots, A_{N-1}\}$ 의 최댓값이다.
- 루프 불변과 루프 탈출은, 프로그램의 정당성을 부여해준다.

연습문제

연습문제

- (Medium) 선택정렬이 올바름을 루프 불변을 이용해서 증명하여라.
- ② (Hard) 삽입정렬이 올바름을 루프 불변을 이용해서 증명하여라.
- ③ (Hard) 삽입정렬을 하는 중에 각 단계를 선택정렬을 하도록 하면, 배열은 올바르게 정렬되는가? 그 반대의 경우는 어떻게 되는가?