W2 3-2 The data encryption standard (DES)

1. The Data Encryption Standard (DES)

历史简介:

- 1970年Feistel带领的团队设计了一个加密算法Lucifer
- 1973年IBM上交了Lucifer的变体
- 1976年NBS将DES作为标准,密钥长度56 bits,块长度64 bits
- 1997年DES被暴力破解
- 2000年NIST将Rijndael的AES代替DES
- DES曾作为商密用于银行等领域

2. DES: core idea - Feistel Network

DES的核心概念: feistel网络

Feistel网络是一个运用d个随机函数 f_1 - f_d (小f)来组建加密方法, f_1 , …, f_d : $\{0,1\}^n \to \{0,1\}^n$,这些函数将n bits输入映射到n bits输出上,均是随机的函数(可以不需要可逆)

Feistel期望用这d个函数构建一个可逆的函数,因此需要构建一个新函数F(大F), $F: \{0,1\}^{2n} \rightarrow \{0,1\}^{2n}$,将2n bits输入映射到2n bits输出上

Feistel的每一轮将2n bits输入分为左右两部分,右半部分既作为下一轮的左半部分,又作为轮函数 f_i (i=1、2、……d) 的输入,左半部分与轮函数fi的输出XOR后作为下一次迭代的右半部分,综上,有如下符号定义

$$R_i = f_i(R_{i-1}) \bigoplus L_{i-1}$$
$$L_{i-1} = R_{i-1}$$

其中i=1、2、.....d

对于任意的 $f_1, ..., f_d$: $\{0,1\}^n \to \{0,1\}^n$, Feistel网络的函数F: $\{0,1\}^{2n} \to \{0,1\}^{2n}$ 是可逆的,其逆如下图所示

3. Decryption circuit

如图所示,解密与加密有相似的结构,只是将轮函数f放在左侧,且要逆序使用轮函数f

Feistel网络在许多块加密中均有使用 (AES除外)

定理: 若f: $K \times \{0,1\}^n \to \{0,1\}^n$ 是一个安全的PRF,则3轮Feistel函数F: $K_3 \times \{0,1\}^{2n} \to \{0,1\}^{2n}$ 是一个安全的PRP

三轮加密, 每轮使用独立的密钥

4. DES: 16 round Feistel network

 $f_1, ..., f_{16}$: $\{0,1\}^{32} \rightarrow \{0,1\}^{32}$, $f_1(x) = F(k_1, x)$, 其中ki为第i轮的轮密钥,由初始密钥k计算得出

DES算法先对输入进行初始置换IP(initial permutation),之后过16轮Feistel网络,最后再做一次初试逆置换IP₋₁,最终输出结果

DES会将初始密钥k进行密钥扩展,将其扩展成16个48 bits的子密钥,每个子密钥用于每轮的轮函数解密算法中,只需要逆序使用这些轮密钥即可

5. The function $F(k_i, x)$

如图所示

- E盒: expand, 位扩展, 将一些位重复输出, 目的是将32 bits的部分扩展到48 bits, 以用于与轮密 钥XOR
- 扩展后的输入与轮密钥XOR后分为8个部分,每部分6 bits,作为各个S盒的输入
- S盒: function $\{0,1\}^6 \rightarrow \{0,1\}^4$, 将6 bits的输入转化为4 bits输出
- 最后将各个S盒的输出拼接成32 bits, 经过P盒置换后得到32 bits输出

6. The S-boxes

 $Si: \{0,1\}^6 \rightarrow \{0,1\}^4$,接收6 bits输入,输出4 bits

S ₅		Middle 4 bits of input															
		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Outer bits	00	0010	1100	0100	0001	0111	1010	1011	0110	1000	0101	0011	1111	1101	0000	1110	1001
	01	1110	1011	0010	1100	0100	0111	1101	0001	0101	0000	1111	1010	0011	1001	1000	0110
	10	0100	0010	0001	1011	1010	1101	0111	1000	1111	1001	1100	0101	0110	0011	0000	1110
	11	1011	1000	1100	0111	0001	1110	0010	1101	0110	1111	0000	1001	1010	0100	0101	0011

S盒将输入的6 bits中的最高位和最低位作为行,中间四位作为列,之后选择对应位置的4 bits输出

7、Example: a bad S-box choice

如果说S盒可以被表示一些等式如: $Si(x) = Ai \cdot x \pmod{2} \pmod{2}$ $points = Ai \cdot x \pmod{2}$

DES(k,m) =
$$64 \frac{832}{B} \cdot \begin{bmatrix} m \\ k_1 \\ k_2 \\ \vdots \\ k_{16} \end{bmatrix} = \begin{bmatrix} c \\ (mod 2) \end{bmatrix}$$

则DES(k,m₁) \oplus DES(k,m₂) \oplus DES(k,m₃) = DES(k,m1_{~ \oplus m}2 $_{\oplus$ m</sub>3~)

综上,若S盒全部都是线性的话,DES非常不安全,即便是差不多线性的(close to being linear)也不安全,只要有一定规模的输入即可以短时间内破解出密钥

8. Choosing the S-boxes and P-box

如果说随机选择S盒和P盒,会导致得到一个不安全的块密码

因此设计者对S盒和P盒的选择上有一定的要求:

- 必须非常的不像线性函数,即没有函数与S盒的大部分输出相同
- 为了防止攻击,还有其他一些规则如4到1映射规则(每个输出正好有四个前像)