

GW52 Datasheet

Revision History

Version	History	Date	Author
1	◆ Initial Version	2016/01/06	Kuo Fang
2	 Add Electrical Characteristics Add Reset timing and Power on /off sequence 	2016/01/20	Kuo Fang
3	 Modify: a. Block Diagram b. Wording c. Module PCB Pad & Stencil design recommendation d. Reflow Profile Technical change: a. Change BT output power: -3.3dBm to -2.5dBm Add part: a. Bluetooth power class: Class 2 b. Module Label Content c. Packing Drawing d. Packing Label Drawing e. Floor Life and Shelf Life (IPC J-STD-033B) 	2016/01/26	Kuo Fang
4	◆ Add 1.1 Ordering Information◆ Modify : Wording	2016/03/08	Joseph Lin

Table of Contents

1. Introduction		5
1.1 Ordering Information.		5
2. REFERENCE DOCUMENT		5
3. REQUIREMENT		ε
3.1 H/W Requirement		6
3.1.3 Host Interface -	SDIO Interface	8
3.1.4 UART Interface.		8
3.1.5 WLAN_RF		8
3.1.6 BT_RF		8
3.1.7 Digital Audio Int	terface	9
3.1.8 Sleep_CLK		9
3.1.9 Joint Test Actio	on Group (JTAG) and Test Interface	9
3.1.10 Antenna Diagn	nosis	9
3.1.11 Antenna Selec	rt	10
3.1.12 VCC_VIO		11
3.1.13 VCC_3V3		11
3.1.14 RF Subsystem	Requirement	11
3.1.14.1 Radio Sp	pecification 802.11B/G WLAN	11
3.1.14.2 Radio Sp	pecification 802.15 Bluetooth	12
3.1.15 BB Subsystem	n Requirement	13
3.1.15.1 PIN Assi	ignment	13
3.1.16 Critical Compo	onent Lists	14
3.1.17 Reset Timing a	and Power on /off Sequence	14
3.2 Electrical Characterist	tics	16
3.3 S/W Requirement		17
3.4 Mechanical Requirement	ent	17
3.4.1 Form factor		17
3.4.2 Dimension		17
3.4.3 Weight		17
3.4.4 Drawing		18
3.4.5 PCB Pad & Sten	ncil Design Recommendation	19
4. MAINTAINABILITY & QUALITY		20
4.1 Maintainability		20
4.2 Quality Target		20
5. ENVIRONMENTAL REQUIREMENT	ITS	20
5.1 Operating and Storage	e Requirements	20

Release Notice

☐ Product System (PS)

5.1.1 Temperature	20
5.1.2 Floor Life	20
5.1.3 Shelf Life	20
6. HANDLING REQUIREMENTS	20
7. Reflow Profile	21
8. MODULE LABEL CONTENT	22
9. Packing Drawing	23
10. PACKING LABEL DRAWING	24
11. CERTIFICATIONS	25
11.1. FCC Regulations:	25
12. CONTACT	26

1. Introduction

GW52 is built on the Marvell® 88W8787 low-cost highly-integrated IEEE 802.11b/g/n MAC/Baseband/RF WLAN and Bluetooth Baseband/RF system-on-chip (SoC). The module supports IEEE 802.11n with maximum data rates up to 72Mbps (20 MHz channel) and 150 Mbps (40MHz), 802.11g payload data rates of 6, 9, 12, 18, 24, 36, 48, and 54 Mbps, as well as 802.11b data rates of 1, 2, 5.5 and 11 Mbps for WLAN operation.

For Bluetooth operation, the module supports Bluetooth 3.0 + High Speed (HS) (also compliant with Bluetooth 2.1 + EDR).

For security, the 88W8787 supports the IEEE 802.11i security standard through implementation of the Advanced Encryption Standard (AES)/Counter Mode CBC-MAC Protocol (CCMP), and Wired Equivalent Privacy (WEP) with Temporal Key Integrity Protocol (TKIP) security mechanisms.

The module also supports Internet Protocol Security (IPsec) with DES/3DES/AES encryption and MD5/SHA-1 authentication as well as 802.11e Quality of Service (QoS). The module supports dual SDIO host interface for connecting the WLAN and Bluetooth to the host processor. For Bluetooth application the high-speed UART (up to 4MB/s, PCM/Inter-IC Sound (I2S), are supported too.

For better throughput of WLAN/BT the module provide different RF paths for WLAN and Bluetooth for two antennas. By using of two antennas with enough decoupling it enables to do without coexistence.

1.1 Ordering Information

Harman P/N	Qisda P/N	Descriptions
02932261	19.1.35RO2.001	D5 variant, Dual Antenna 802.11b/g/n + Bluetooth 3.0 Module

2. REFERENCE DOCUMENT

IEEE Std 802.11b-1999 (Supplement to ANSI/IEEE Std 802.11, 1999 Edition)

IEEE Std 802.11g.-2003 (Amendment to IEEE Std 802.11, 1999 Edition)

IEEE Std 802.11n -2009 (Amendment 5: Enhancements for Higher Throughput)

SIG Std Master Table of Contents & Compliance Requirements

3. REQUIREMENT

3.1 H/W Requirement

3.1.1 H/W Block Diagram

Crystal Frequency: 38.4 MHz

WLAN frequency:

Features	Description		
Frequency Band	2.401 – 2.473GHz		
Number of selectable Sub channels	11channels		
	(f=2412+n*5MHz,n=1,,11)		

Channel 12 and 13 of WiFi 2.4G band are permanently disabled

Bluetooth frequency:

, ,	
Features	Description
Frequency Band	2.401 – 2.480GHz
Number of selectable Sub	79 channels
channels	(f=2402+k MHz, k=0,,78)

3.1.2 System Interface

The form factor of GW52 module is 54 pins stamp hole.

The pin define of GW52 is shown in Figure 3-1 System Interface.

Figure 3-1 System Interface

3.1.3 Host Interface - SDIO Interface

The GW52 with SDIO interface which comply with the high speed mode of SDIO 1.2 specification. The host controller could use the SDIO bus to access data from the WLAN and/or Bluetooth device. There are two independent client drivers for WLAN and/or Bluetooth inside the host software. Due to both of WLAN and BT device share the same SDIO interface, the SDIO bus driver inside host software contain an arbitration scheme.

The SDIO interface supports 4-bit SDIO transfer modes at the full clock range of 0 to 50MHz.

Pin #	Signal Name	1/0	Signal Description	Supply
36	SD_CLK	I	SDIO clock	VCC_VIO
37	SD_CMD	I/O	SDIO command line	VCC_VIO
39	SD_DAT_0	I/O	SDIO data line bit 0	VCC_VIO
38	SD_DAT_1	I/O	SDIO data line bit 1	VCC_VIO
41	SD_DAT_2	I/O	SDIO data line bit 2	VCC_VIO
40	SD_DAT_3	I/O	SDIO data line bit 3	VCC_VIO

3.1.4 UART Interface

The GW52 module supports a high speed UART interface, compliant to the industry standard 16550 specification. (For debug only)

Pin #	Signal Name	I/O	Signal Description	Supply
45	UART_TX	0	UART serial data output	VCC_VIO
44	UART_RX	I	UART serial data input	VCC_VIO
46	UART_CTS	ı	UART Clear to send signal	VCC_VIO
43	UART_RTS	0	UART Ready to send signal	VCC_VIO

3.1.5 WLAN RF

WLAN antenna input/output. The pin is connected to WLAN antenna. The impedance of trace or antenna should be designed to 50 ohm.

3.1.6 BT RF

Bluetooth antenna input/output. The pin is connected to BT antenna. The impedance of trace or antenna should be designed to 50 ohm.

3.1.7 Digital Audio Interface

PCM interface supports continual transmission and reception of PCM data without processor overhead. The PCM support data rates from 64 KHz to 2.048MHz with multi-slot handshake and synchronization PCM encoding/decoding with A-law, μ -law, and linear voice.

Pin #	Signal Name	I/O	Signal Description	Supply
5	BT_PCM_CLK	I/O	PCM clock	VCC_VIO
7	BT_PCM_SYNC	I/O	PCM sync pulse	VCC_VIO
4	BT_PCM_DIN	I	PCM data input	VCC_VIO
6	BT_PCM_DOUT	0	PCM data output	VCC_VIO

3.1.8 Sleep_CLK

The sleep clock can be providing from external clock source.

External Sleep Clock Timing:

Symbol	Parameter	Min.	Тур.	Max	Units
CLK	Clock Frequency	32 or 32.768 -50ppm	32 or 32.768	32 or 32.768 +50ppm	KHz
THIGH	Clock high time	40			ns
TLOW	Clock low time	40			ns
TRISE	Clock rising time			5	ns
TFALL	Clock falling time			5	ns

3.1.9 Joint Test Action Group (JTAG) and Test Interface

JTAG is reserved for SW debug and failure analysis.

3.1.10 Antenna Diagnosis

Antenna Diagnosis circuit is used to detect the connection status between external antenna and GW52 RF ports. The reference schematics for antenna diagnosis circuit are shown in Figure 3-2. The R_{Antenna} is embedded in the external antenna and cross between signal line and ground. R_{Antenna} and R2 act as a voltage divider.

There are three kinds of antenna connection status can be detected:

- Antenna port is open
- Antenna port is connected correctly
- Antenna port is short-circuited to GND.

The relationship between supply voltage of antenna diagnosis circuit and measured voltage at point A are listed in Table 3-1.

Antenna	VCC_WLAN_ANT_DIAG=V1	WLAN_ANT_DIAG=V2
connection status	VCC_BT_ANT_DIAG	BT_ANT_DIAG
connected correctly	V1/2	V2/2
Open	V1	V2
Short-circuited to Ground	0 V	0V

Table 3-1

R1 and C act as a low pass filter for removing all frequencies above the Nyquist frequency. The resistor R1 can limit the current flowing into ADC if antenna connector is short-circuited to battery voltage. The recommended value for R_{Antenna} , R1 and C are listed in Table 3-2 Antenna interface.

Figure 3-2 Antenna interface

Antenna Diagnosis						
Min Typ Max Unit						
R _{Antenna}		51		K ohm		
Proposal low pass filter R1		51		K ohm		
Proposal low pass filter C		220		nF		

Table 3-2 Recommendation for R1 & C

3.1.11 Antenna Select

ANT_SEL_P & ANT_SELN are differential control signals.

ANT_SEL_N	ANT_SEL_P	Antenna
0	0	
0 (default)	1 (default)	Antenna 1
1	0	Antenna 0
1	1	

3.1.12 VCC_VIO

VCC_VIO is an external power supply for interface. (3.3V or 1.8V) VIO pin should be connected to the same supply.

3.1.13 VCC_3V3

The module draws all its power from the 3.3V supply.

3.1.14 RF Subsystem Requirement

3.1.14.1 Radio Specification 802.11B/G WLAN

Features		Description					
Frequency Band	2.4000 – 2.4835 GHz (2.4 GHz ISM Band)						
Number of selectable Sub	11 channels						
Channels	(f=2412+n*5MHz,n=0,,12)						
Modulation	OFDM,DSSS (Direct Sequence CCK,16QAM,64QAM	ce Spread Spe	ctrum), DBPSk	K,DQPSK,			
Supported rates	1, 2, 5.5, 11, 6, 9, 12, 18, 24,	36, 48, 54 Mbp	S				
Maximum receive level	-10dBm (with PER < 8%)						
	b Mode: 15±1.5 dBm @ 1, 2,	5.5, and 11Mb	ps				
Output Power	g Mode: 15±1.5 dBm @ 6, 9,	12, 18, 24, 36,	48 and 54Mb _l	os			
	n mode: 15±1.5 dBm @ MCS	60~7 HT20 & H	T40				
Carrier Frequency Accuracy	-2ppm~+2ppm in 25°℃						
	Data Rate	Minimum	Typical	Maximum			
	802.11b @ 1Mbps		-94dBm				
	802.11b @ 2Mbps		-91dBm				
	802.11b @ 5.5Mbps		-89dBm				
	802.11b @ 11Mbps		-86dBm				
	802.11g @ 6Mbps		-88dBm				
	802.11g @ 9Mbps		-87dBm				
	802.11g @ 12Mbps		-85dBm				
Sensitivity	802.11g @ 18Mbps		-84dBm				
Sensitivity	802.11g @ 24Mbps		-80dBm				
	802.11g @ 36Mbps		-77dBm				
	802.11g @ 48Mbps		-73dBm				
	802.11g @ 54Mbps		-72dBm				
	802.11n @HT20 MCS0		-82dBm				
	802.11n @HT20 MCS1		-79dBm				
	802.11n @HT20 MCS2		-77dBm				
	802.11n @HT20 MCS3		-74dBm				
	802.11n @HT20 MCS4		-70dBm				

802.11n @HT20 MCS5	-66dBm	
802.11n @HT20 MCS6	-65dBm	
802.11n @HT20 MCS7	-64dBm	
802.11n @HT40 MCS0	-79dBm	
802.11n @HT40 MCS1	-76dBm	
802.11n @HT40 MCS2	-74dBm	
802.11n @HT40 MCS3	-71dBm	
802.11n @HT40 MCS4	-67dBm	
802.11n @HT40 MCS5	-63dBm	
802.11n @HT40 MCS6	-62dBm	
802.11n @HT40 MCS7	-61dBm	

3.1.14.2 Radio Specification 802.15 Bluetooth

Features	Description
Frequency Band	2.4 GHz ISM Band
Number of selectable Sub	79 channels
Channels	(f=2402+k MHz, k=0,,78)
Modulation	FHSS (Frequency Hopping Spread Spectrum)
	GFSK, π/4-DQPSK, 8DPSK
Supported rates	1, 2, 3 Mbps
Maximum receive level	-10dBm (with PER < 8%)
Power Class	Class 2
	Channel 2402 :-2.5dBm~1dBm
Output Power	Channel 2441 :-2.5dBm~1dBm
	Channel 2479: -2.5dBm~1dBm
	1Mbps: -80dBm @ 0.1% BER
Sensitivity	2Mbps: -77dBm @ 0.01% BER
	3Mbps: -80dBm @ 0.01% BER

3.1.15 BB Subsystem Requirement

3.1.15.1 PIN Assignment

	5.1.15.1 PIN ASSIGNMENT						
Pin #	Signal Name	1/0	Signal Description	Supply	Remark		
			SDIO Interface	T	<u> </u>		
	SD_CLK	I	SDIO clock	VCC_VIO			
	SD_CMD	I/O	SDIO command line	VCC_VIO			
	SD_DAT_0	I/O	SDIO data line bit 0	VCC_VIO			
	SD_DAT_1	I/O	SDIO data line bit 1	VCC_VIO			
	SD_DAT_2	I/O	SDIO data line bit 2	VCC_VIO			
40	SD_DAT_3	I/O	SDIO data line bit 3	VCC_VIO			
		_	UART Interface				
	UART_TX	0	UART serial data output	VCC_VIO			
	UART_RX	I	UART serial data input	VCC_VIO			
	UART_CTS	I	UART Clear to send signal	VCC_VIO			
43	UART_RTS	0	UART Ready to send signal	VCC_VIO			
			WLAN and Bluetooth RF Interface	1	T		
	WLAN_RF	I/O	WLAN antenna	in/out			
2	BT_RF	I/O	Bluetooth antenna	in/out			
			Audio Interface - PCM	T	T		
	BT_PCM_CLK	I/O	PCM clock	VCC_VIO			
	BT_PCM_SYNC	I/O	PCM sync pulse	VCC_VIO			
	BT_PCM_DIN	I	PCM data input	VCC_VIO			
6	BT_PCM_DOUT	О	PCM data output	VCC_VIO			
			Control & Power Interface	_	<u> </u>		
52	RESETn	I	Reset signal	VCC_VIO	Active low		
	SLEEP_CLK	I	Sleep clock	VCC_VIO			
50	PDn	I	Full power down	VCC_VIO	Active low		
			Antenna Select	_			
48	ANT_SEL_P	Ο	Differential Antenna Select Positive output	VCC_3V0			
51	ANT_SEL_N	Ο	Differential Antenna Select Negative output	VCC_3V0			
			Antenna Diagnosis				
	VCC_BT_ANT_DIAG	I	External power for BT antenna diagnosis				
54	BT_ANT_DIAG	Ο	BT antenna diagnosis output				
20	VCC_WLAN_ANT_DIAG	Ι	External power for WLAN antenna diagnosis				
19	WLAN_ANT_DIAG		WLAN antenna diagnosis output				
	J	oint T	est Action Group (JTAG) and Test Interface	ce			
11	JTAG_TCK	Ι	JTAG Tset Clock	VCC_VIO			
12	JTAG_TDI	Ι	JTAG Tset Data Input	VCC_VIO			
13	JTAG_TDO	0	JTAG Test Data Output	VCC_VIO			
1.5	ITAC TMC CVC	т	JTAG Test Mode Select	VCC VIO			
13	JTAG_TMS_SYS	I	(Selects the System JTAG controller)	VCC_VIO			
			Power & Ground				
23,24,	VICC 2V2	Di	2 237				
32,33	VCC_3V3	PΙ	3.3V power input				
	VCC_3V0	РО	3.0V monitoring output		Leave unconnected.		
	VCC_1V8	РО	1.8V monitoring output		Leave unconnected.		
	VCC_VIO	PI	1.8/3.3V Host Interface Supply				
1,3,8,							
10,16,							
18,21,							
	GND	Р	Ground				
27,28,							
30,31,							
35,42,							
14, 49	NC		Not connected		Leave unconnected.		
× 19 17	<u> * ' ~</u>		1 tot connected		Leave anconnected.		

3.1.16 Critical Component Lists

Components	Product Name
BT/WIFI PROCESSOR SOC	Marvell -88W8787-A1-BRD2A000-P123
LDO REGULATOR IC	MAXIM - MAX4835ETT18BD2+T
POWER AMPLIFIER	MICROSEMI - LX5511LQ-TR
ANALOG SWITCH	SKYWORKS - AS179-92LF
EEPROM	MICROCHIP – 25AA080CT-I/MS
BANDPASS FILTER	TDK - DEA162450BT-1260B2
QUARTZ CRYSTAL	NDK - EXS00A-CS05684

3.1.17 Reset Timing and Power on /off Sequence

RESETn & PDn

The module can be reset anytime by pulling down the RESETn for at least 5ms. It is also possible to reset the module by PDn-RESETn sequence, the low duration for PDn should be at least 700ms.

Reset by RESETn

RESET timing						
min typ max unit						
t rst	5			ms		

Reset by RESETn & PDn

RESET timing						
	min	typ	max	unit		
tPD	700			ms		
tRST	5			ms		

Power on sequence

When power on the module, the external powers and PDn and RESETn have to meet the power sequence requirement, then the module can be powered on successfully and function well. The VCC_VIO can be rise before VCC_3V3 but the rising of VCC_VIO should not be later than VCC_3V3.

RESET timing						
	min	typ	max	unit		
RESETn to VCC_3V3, t PD	700			ms		
RESETn to PDn , t RST	5			ms		

Power off sequence

In order to power off the module, PDn and RESETn have to meet the power off sequence.

RESETn and PDn timing						
min typ max uni						
PDn to VCC_3V3, t PD	0			ms		
RESETn to VCC_3V3, t RST	500			us		

3.2 Electrical Characteristics

Absolute maximum ratings

Symbol	Parameter	Min.	Max.	Units
VCC_VIO	Power supply voltage with respect to VSS	0	4.2	V
VCC_3V3	Power supply voltage with respect to VSS	0	3.45	V
Tstg	Storage Temperature	-40	90	$^{\circ}\! \mathbb{C}$
Та	Ambient Temperature	-40	90	$^{\circ}\!\mathbb{C}$

Recommended operating conditions

Symbol	Parameter	Min.	Тур.	Max	Units
VCC VIO	Digital I/O power supply	1.62	1.8	1.98	V
VCC_VIO	Digital I/O power supply	2.97	3.3	3.63	V
VCC_3V3	Main power supply	3.15	3.3	3.45	V
I_VIO	Current Supply VCC_VIO			205	mA
I_3V3	Current Supply 3V3		285	400	mA

DC Characteristics

Symbol	Parameters	Mode	Min.	Тур.	Max	Units
Vih	Input High Voltage	1.8V	1.2		2.1	V
VIH	Input High Voltage	3.3V	2.3		3.6	V
VIL	Input Low Voltage	1.8V	-0.3		0.6	V
VIL	Input Low Voltage	3.3V	-0.3		1.1	V
V _{HYS}	Input hysteresis	1.8V	250			mV
VHYS	Input hysteresis	3.3V	400			mV
Vон	Output High Voltage	1.8V	1.22			V
VOH	Output High Voltage	3.3V	2.57			V
Vol	Output Low Voltage	1.8V			0.4	V
V OL	Output Low Voltage	3.3V			0.4	V
PDn	PDn input, High level		1.4		5.5	V
PDN	PDn input, Low level		-0.3		0.5	V

3.3 S/W Requirement

MFG Test SW: MFG-8787-WIFI-SD-BT-SD-WIN-X86-1.2.7.23-14.0.11.p57

(Software of GW52 is design and will managed by customer)

3.4 Mechanical Requirement

3.4.1 Form factor

54 Pins LGA, 1.6mm Pitch

3.4.2 Dimension

21mm (L) x 30mm (W) x 4mm (H)

3.4.3 Weight

Typ: 3.67 (g)

3.4.4 Drawing

Parameter	Description	Min.	Тур.	Max.	Units
А	Length	20.85	21	21.15	mm.
В	Width	29.85	30	30.15	mm.
С	Height	3.78	4	4.22	mm.
D	Pin To Pin Pitch	1.55	1.6	1.65	mm.
Е	Edge To Pin Center	1.25	1.4	1.55	mm.
F	Edge To Pin Center	3.95	4.1	4.25	mm.
G	Pin Width	0.8	1	1.2	mm.
Weight	Weight	3.49	3.67	3.85	g

С

3.4.5 PCB Pad & Stencil Design Recommendation

WiFi + BT Stencil Design

4. MAINTAINABILITY & QUALITY

4.1 Maintainability

Module cannot be reworked.

Qisda will analyze failures and update report to customer by 8D format.

4.2 Quality Target

The quality target for the delivered quality (0 Km-line failures) is zero defects. Quality target is complaint rate at delivery <50ppm.

5. Environmental Requirements

5.1 Operating and Storage Requirements

5.1.1 Temperature

Operating: - 40 to 90 °C Storage: - 40 to 90 °C

5.1.2 Floor Life

Ambient Condition: ≦30 °C/60% RH
Maximum Floor time: 168 hour (MSL 3)

5.1.3 Shelf Life

When stored in a noncondensing atmospheric environment of < 40°C/90% RH. (Moisture Barrier Bag)

6. HANDLING REQUIREMENTS

Do not touch any pin of module while assembling.

7. REFLOW PROFILE

Temperature setting (°C) Conveyor speed : 110cm/1minute											
Temperature region	Z1	Z2	Z3	Z4	Z5	Z6	Z 7	Z8	Z9	Z10	Z11
The temperature zone	135	145	155	170	190	200	210	240	250	255	240

8. Module Label Content

		2D Barcode Definition														
	242	200000 001	01	01	029322 61,	LICHRG#	YYYYMM DD,	PC#	GW52,	SN#	9J35R02001	A00,	MAC-AD R#	XXXXXX XXXXXX,	BLUE-TO OTH#	XXXXXX XXXXXX,
Digits	3	9	2	2	8+1	7	8+1	3	4+1	3	10	3+1	8	12+1	11	12+1
Desc.	Supplier	Harman Serial No.		Module	Harman PCBA Part. No.	Specified	Productio	Fixed Specified Key	Qisda Internal Project No.	Specified	Internal Part			\/\/ı⊢ı	Fixed Specified Key	BT MAC,

Label Location

A:3.35mm, B:8.25mm

9. PACKING DRAWING

No.	Item	Spec.	Qisda P/N
1	Carton	L355*W340*T386mm (pizza box * 5)	4D.1HR02.001
2	OOB Label	80 * 40 mm	4E.1HR03.001
3	Carton Label	80 * 40 mm	4E.1HR03.001
4	Caution Label	55 mm* 55mm Label Attention 56M31	4E.G3503.001
5	Taping Reel	PLATE Taping reel 13IN.	4B.1HR02.001
6	Cover Tap	COVER TAPE	4B.1HR01.001
7	Carrier Tap	CARRIER TAPE	4B.1HR03.001
8	Module	GW52	9J.35R02.001
9	Aluminum Bag	L460*W410*T0.15mm ALUMINUM BAG	4G.1HR01.001
10	Humidity Indicator	CARD HUMINITY INDICATOR GP	4J.G3501.002
11	Pizza Box	L356*W344*T61 mm	4D.1HR01.001
12	Desiccant Bag	Desiccant Bag 68 * 89	3H.09005.001

10. PACKING LABEL DRAWING

ATTENTION LABEL DRAWING(P/N:4E.G3503.001,55*55mm)

OOB LABEL CONTENT_P/N:4E.1HR03.001

^{***}Besides Marks, English Font: Arial, H=6 point Font: Arial, H=10 point

^{***}Scale 1:1

Item	Content	Remark
Reel ID	X code (R/A/B/C) + Year + Month + SN R = Reel A = Aluminum bag B = Pizza box C = Carton	SN is from 0001 ~ 9999 Ex: R2016120001
P/O No		Defined by Harman
Lot No	L + Year + Month + SN	(a) 5 pizza boxes are in 1 Lot. (b) SN is from 0001 ~ 9999 Ex: L2016120001
Model No	GW52	Qisda Model No.
Harman P/N	02932261	Defined by Harman
Part No	9J.35R02.001	Qisda Part No.
General	MOD-SM QIS BT/WLAN CWM-02B-BT2-SP	
Desc.	D5	
Quantity	400 pcs for each Reel 400 pcs for each Aluminum bag 400 pcs for each Pizza box 2000 pcs for each Carton	Quantity depend on real shipment quantity
EC	01	Started at 01
MSL	Level 3	

11. CERTIFICATIONS

11.1. FCC Regulations:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

This device has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- -Reorient or relocate the receiving antenna.
- -Increase the separation between the equipment and receiver.
- -Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- -Consult the dealer or an experienced radio/TV technician for help.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

RF Exposure Information

This Modular Approval is limited to OEM installation for mobile and fixed applications only. The antenna installation and operating configurations of this transmitter, including any applicable source-based time-averaging duty factor, antenna gain and cable loss must satisfy MPE categorical Exclusion Requirements of §2.1091.

The antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons, must not be collocated or operating in conjunction with any other antenna or transmitter, except in accordance with FCC multi-transmitter product procedures.

Release Notice

☐ Product System (PS)

The end user has no manual instructions to remove or install the device and a separate approval is required for all other operating configurations, including portable configurations with respect to 2.1093 and different antenna configurations.

This project uses monopole antenna for testing only, so the antenna type limitation. The antenna gain limits 2dBi. When the module is installed in the host device, the FCC ID label must be visible through a window on the final device or it must be visible when an access panel, door or cover is easily re-moved. If not, a second label must be placed on the outside of the final device that contains the following text: "Contains FCC ID: VRSGW52".

12. CONTACT

Qisda Corporation No.157,Shanying Rd., Gueishan Dist., Taoyuan City 333, Taiwan

Tel: +886 3 359 5000-2987

Fax: +886 3 359 3387 Website: Qisda.com