第八章

线性空间与线性变换

被性空间与核性变换

线性空间的基本性质、子空间

一、线性空间的基本性质

1. 零元素是惟一的.

证 设 Θ_1 , Θ_2 是线性空间V中的两个零元素,

即对任何 $\alpha \in V$,有 $\alpha + \Theta_1 = \alpha$, $\alpha + \Theta_2 = \alpha$.

于是
$$\Theta_2 + \Theta_1 = \Theta_2$$
, $\Theta_1 + \Theta_2 = \Theta_1$,

所以 $\Theta_1 = \Theta_1 + \Theta_2 = \Theta_2 + \Theta_1 = \Theta_2$.

2. 任一向量的负向量是惟一的, α 的负向量记作 $-\alpha$.

证 设
$$\beta$$
, γ 是 α 的负向量,

即 $\alpha + \beta = \Theta$, $\alpha + \gamma = \Theta$. 于是

$$\beta = \beta + \Theta = \beta + (\alpha + \gamma) = (\alpha + \beta) + \gamma = \Theta + \gamma = \gamma$$
.

3.
$$0\alpha = \Theta$$
, $(-1)\alpha = -\alpha$, $\lambda\Theta = \Theta$.

证
$$\alpha + 0\alpha = 1\alpha + 0\alpha = (1+0)\alpha = \alpha$$
,所以 $0\alpha = \Theta$.

$$\alpha + (-1)\alpha = 1\alpha + (-1)\alpha = [1 + (-1)]\alpha = 0\alpha = \Theta$$

所以
$$(-1)\alpha = -\alpha$$
.

$$\lambda\Theta = \lambda[\alpha + (-1)\alpha] = \lambda\alpha + (-\lambda)\alpha = [\lambda + (-\lambda)]\alpha = 0\alpha = \Theta.$$

4. 如果 $\lambda \alpha = \Theta$, 则 $\lambda = 0$ 或 $\alpha = \Theta$.

得
$$\frac{1}{\lambda}(\lambda\alpha) = \frac{1}{\lambda}\Theta = \Theta$$
 , 而 $\frac{1}{\lambda}(\lambda\alpha) = \left(\frac{1}{\lambda}\lambda\right)\alpha = 1\alpha = \alpha$,

所以 $\alpha = \Theta$.

二、子空间

1. 子空间的定义

设V是一个线性空间,L是V的一个非空子集,如果L

对于V中所定义的加法和数乘两种运算也构成一个线性空间,

则称 L 为 V 的子空间.

2. 子空间的判定

(i)
$$\alpha + \beta = \beta + \alpha$$
; (ii) $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$;

(iii)
$$\Delta V$$
 中存在零元素 Θ ,对任何 $\alpha \in V$,都有 $\alpha + \Theta = \alpha$;

(iv) 对任何
$$\alpha \in V$$
,都有 α 的负元素 $\beta \in V$,使 $\alpha + \beta = \Theta$;

(v)
$$1\alpha = \alpha$$
; (vi) $\lambda(\mu\alpha) = (\lambda\mu)\alpha$;

(vii)
$$(\lambda + \mu)\alpha = \lambda\alpha + \mu\alpha$$
; (viii) $\lambda(\alpha + \beta) = \lambda\alpha + \lambda\beta$,

线性空间V的非空子集L构成子空间的充分必要条件是:

L对于V中的线性运算封闭.

例.集合 $V = \{x = (0, x_2, \dots, x_n)^T | x_2, \dots, x_n \in R\} \subseteq R^n$ 对 R^n 中定义的向量的加法与数乘运算封闭, 是 R^n 的子空间.

谢谢