

背景 チェキの流行

- ●市場規模の成長
- 販売目標台数 (2018年度) 900万台

instax instax

- •累計販売台数 3,000万台以上
- 2013年から 4倍程度に

- ●成長の背景
- 国内外の10~20代の女性にターゲット
- アナログで思いを共有する「新鮮さ」

背景|触るチェキ

目的:さらなる販売促進

「撮る」「残す」「飾る」「贈る」に加えて

→ 「触れる」価値を提供

第1章:タッチチェキ 触って楽しむ写真

第 2 章: 点字 チェキ 見たいものを見せる

背景|触って楽しむ写真

- 手元に場面の**臨場感**を残す
- アナログならではの触る体験を

持った時に楽しいと思う写真をプリント

エンボス加工

エンボス加工

印刷物の表面に凹凸を付ける手法

一般には、

「型」を作る必要がある

⋈ : http://www.sakae-takumi.com/index/enbosu.html

エンボス加工

小型デバイスの内部で実現 → 透明なニスを盛る, 印刷

樹脂を塗布するために 走査的にヘッドを制御

凹凸の測定 (1)

ステレオカメラ 3Dレーザースキャナ

アイサイト

3Dレーザスキャナ

単眼カメラ

instax mini90

凹凸の測定 (2)

単眼カメラ

コストが安い

スマートフォンの写真への適用

問題点

深度予測の精度

単眼カメラ

instax mini90

凹凸の測定 (3)

深度予測精度の改善

深層学習の応用 Fully Convolutional Networks (FCN)

従来の機械学習を用いた深度予測より 高い精度で予測が可能

深度予測 (1)

単眼カメラ画像(RGB)

FCN(Fully convolutional networks)

Depth map

深度予測 (2)

ResNet-UpProj [1]

 $\boldsymbol{\chi}$

深度予測 (3)

CNN

- ・層を深くすることでより 高度で複雑な特徴を抽出可能
- ・勾配消失が起こり 学習が上手くいかない

Residual network (残差ネットワーク)

F(x)=H(x)-x を学習するよう定義 F(x):残差関数, H(x):学習したい関数, x:入力

深度予測 (4)

学習環境

• 学習画像

NYU-Depth v2 [1]

屋内画像のRGB-D画像データセット 学習画像 9.5万枚

Input image (RGB image)

Target image (Ground-truth)

深度予測 (5)

Learning phase

深度予測デモ

結果

入力画像

結果

考察

予測精度の改善 →屋外かつ有人の画像

想定されるシーンのデータ セットでの学習

セグメンテーション処理 の自動化

第1章: タッチチェキ 触って楽しむ写真

第 2 章: 点字 チェキ見たいものを見せる

背景|視覚障害者人口

○ 日本国内**:31.2万**人 (2009)

厚生労働省ホームページ: https://www.mhlw.go.jp/toukei/saikin/hw/shintai/06/index.html

○世界: 中~重度 2億1700万人失明 3600万人 (2017)

Bourne RRA, Flaxman SR, Braithwaite T, Cicinelli MV, Das A, Jonas JB, et al.; Vision Loss Expert Group. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and metaanalysis. Lancet Glob Health. 2017 Sep;5(9):e888–97

点字

視覚障害の方のニーズ

街中の文字を読みたい (レストランのメニュー・建物の看板など)

- スマホの読み上げ、施設内の音声案内 デメリット 情報が多いとき、記憶の負担が大きい
- 点字メリット確認したい個所をすぐに読める

点字

チェキの携帯性 エンボス加工

点字翻訳 チェキ

文字認識 · 点字変換

文字認識

Tesseract OCR

- ●概要
- オープンソースの文字認識ライブラリ
- Google がスポンサー
- 日本語を含む30ヶ国語以上を認識可能

Tesseract OCR

アルゴリズム

前処理

- 1. イメージを入力
- 2. 二值化処理

3. テキストラインの検出・スプライン近似

Volume 69, pages 872-879,

4. 文字の分割・抽出

Tesseract OCR

アルゴリズム

文字認識

5. 形状を多角形近似

Original Image

Outlines of components

Polygonal Approximation

6. 凹んだ頂点を候補に再分割

7. 壊れた断片を結合しつつ,マッチング

Prototype

Character to classify

Extracted Features

Match of Prototype To Features

Match of Features To Prototype

点字変換 (1)

点字変換 (2)

点字

情報量 6bit(2⁶)

$$2^2 \rightarrow () () \leftarrow 2^5$$

$$' \cup ' = 2^0 + 2^1$$
 $= 3$

文字を10進数に変換して辞書に登録

点字変換 (3)

テキスト認識& 点字変換デモ

テキスト認識・点字変換デモ

入力画像

出力結果

読み取った文字は"ふじふいるむ"

ふじふいるむ

正解(点字)

その他の応用:触地図

触地図

空間情報(壁・道の線) テキスト情報(場所の名称)の提示

- ・触って場所を把握可能
- 紙媒体で持ち運び活用

●入力:平面マップ

●出力:触地図

エッジ検出

文字認識

画像処理 (1)

エッジ検出

Canny フィルタを実行 → 凹凸の情報として利用
 入力画像 エッジ検出結果

画像処理 (2)

エッジ検出

文字認識

• テキスト情報を空間情報に点字で付加

その他

・位置情報の付加 (GPS)

課題

・情報の取捨選択

ビジネス規模

拡大される市場規模

「スマホ世代」の新たなニーズ獲得

15~29歳 国内人口: **1,800 万**人 (2017)

• 視覚障害者、その周りの方も対象に

世界の視覚障害者人口:2 億人以上