General topology

The Problems

Autumn 2020

Subspaces of Euclidean space

Problem 1

Prove or disprove: every countable subspace $X \subset \mathbf{R}$ is discrete.¹

¹ A subspace $X \subseteq \mathbf{R}$ is *discrete* if and only if every subset $S \subseteq X$ is both open and closed.

Problem 2

Let $X \subseteq \mathbb{R}^n$ be a subspace. For every pair of subsets $S, T \in \mathbb{P}(X)$, write

$$d(S,T) = \inf\{d(s,t) : (s \in S) \land (t \in T)\}.$$

Suppose that $S, T \in P(X)$ are subsets with the property that d(S, T) = 0. Prove or provide counterexamples for each of the following claims:

- $S \cap T \neq \emptyset$;
- $S \cap \tau(T) \neq \emptyset$;
- $(S \cap \tau(T)) \cup (\tau(S) \cap T) \neq \emptyset$;
- $\tau(S) \cap \tau(T) \neq \emptyset$.

Problem 3

Define a map $e: [0,1] \to S^1$ as follows:

$$e(\theta) \coloneqq (\cos(2\pi\theta), \sin(2\pi\theta))$$
.

Show that *e* is a continuous bijection, but not a homeomorphism.

Problem 4

Prove or disprove: S^1 is homeomorphic to the subspace

$${z \in C : |z - 1||z + 1| = 1} \subset C$$
.

Problem 5

Which pairs of the following five subspaces of R are homeomorphic?

- R,
- [0,1],
- $[0, +\infty[,$
- $]-\infty,0]$, and
-]0,1[.

Prove that for any $n \in \mathbb{N}$, the subspace

$$B = \{ \boldsymbol{x} \in \boldsymbol{R}^n : \|\boldsymbol{x}\| < 1 \} \subset \boldsymbol{R}^n$$

is homeomorphic to \mathbb{R}^n .

Problem 7

For every integer $n \in \mathbb{N}^*$, let $X_n \subseteq \mathbb{C}$ be the subset given by

$$X_n\coloneqq \{z\in \pmb{C}: z^n=|z|^n\}\;.$$

Prove or disprove: if $m \neq n$, then X_m is not homeomorphic to X_n .

Notation. Let $k \le n$ be natural numbers. We will think of elements of \mathbf{R}^{nk} as $(n \times k)$ -matrices:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nk} \end{pmatrix}.$$

Using matrix multiplication, we may define a subspace

$$V(k,n) = \{A \in \mathbf{R}^{nk} : A^t A = I_k\} \subseteq \mathbf{R}^{nk}.$$

This is called the *Stiefel manifold*. If the columns of *A* are written as (v_1, \ldots, v_k) , then

$$V(k,n) = \{(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k) \in \boldsymbol{R}^{nk} : (\forall i,j)(\boldsymbol{v}_i \cdot \boldsymbol{v}_i = \delta_{ij})\},\,$$

where δ is the *Kronecker delta*:

$$\delta_{ij} \coloneqq \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

In particular, $V(1, n) \subseteq \mathbb{R}^n$ is the set of $\mathbf{v} \in \mathbb{R}^n$ such that $\|\mathbf{v}\| = 1$. In other words, $V(1, n) = S^{n-1}$.

Problem 8

Prove that the map $p: V(k,n) \to V(1,n) = S^{n-1}$ given by the assignment $(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k) \mapsto \boldsymbol{v}_1$ is continuous. For any $\boldsymbol{v} \in V(1,n)$, consider the inverse image $p^{-1}\{\boldsymbol{v}\}\subseteq V(k,n)\subseteq \boldsymbol{R}^{nk}$. Show that $p^{-1}\{\boldsymbol{v}\}$ is homeomorphic to V(k-1,n-1).

Notation. Define a subspace $C \subset [0,1]$ as follows. For every natural number n, set

$$C_n \coloneqq \bigcup_{k=0}^{3^{n-1}-1} \left(\left[\frac{3k}{3^n}, \frac{3k+1}{3^n} \right] \cup \left[\frac{3k+2}{3^n}, \frac{3k+3}{3^n} \right] \right) ,$$

and define

$$C := \bigcap_{n>1} C_n$$
.

The topological space *C* is called the *Cantor space*.

Problem 9

Prove that C is closed in [0,1]. What is the interior of C as a subspace of [0, 1]? That is, what is the largest open subset $U \subseteq [0, 1]$ such that $U \subseteq C$? $(Don't\ worry;\ we'll\ have\ a\ lot\ more\ questions\ about\ the\ Cantor\ space!)$