

两个总体均值差的检验

授课教师: 陈雄强

浙江财经大学 数据科学学院

两个总体均值之差的检验

双侧检验和单侧检验

假设	研究的问题		
	双侧检验	左侧检验	右侧检验
$\mathbf{H_0}$	$\mu_1 - \mu_2 = 0$	$\mu_1 - \mu_2 \ge 0$	$\mu_1 - \mu_2 \leq 0$
\mathbf{H}_{1}	$\mu_1 - \mu_2 \neq 0$	$\mu_1 - \mu_2 < 0$	$\mu_1 - \mu_2 > 0$

两个总体均值之差的检验

分三种情形

□情形1: σ_1^2 和 σ_2^2 已知

□ 情形2: σ_1^2 和 σ_2^2 未知, σ_1^2 = σ_2^2 ,且n较小

□ 情形3: σ_1^2 和 σ_2^2 未知, $\sigma_1^2 \neq \sigma_2^2$, 且n较小

情形1: σ_1^2 和 σ_2^2 已知

z检验

- □ 假定:
 - >两个样本是独立随机样本;
 - \rightarrow 两个总体都是正态分布或大样本 $(n_1 \ge 30 \times 10^{-2} \times 10^{-2})$;
- □ 原假设: H_0 : μ_1 μ_2 =0; 备择假设: H_1 : μ_1 $\mu_2 \neq 0$
- □ 检验统计量为:

$$z = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

情形1: σ_1^2 和 σ_2^2 已知

z检验

□【例】根据历史资料得知,A、B两种机器生产 出的弹簧其抗拉强度的标准差分别为8公斤和10 公斤。从两种机器生产的产品中各抽取一个随机 样本,样本容量分别为 $n_1=32$, $n_2=40$,测得两个 样本的均值分别为50和44公斤。问这两种机器生 产的弹簧,平均抗拉强度是否有显著差别? $(\alpha =$ 0.05)

情形1: σ_1^2 和 σ_1^2 已知

z检验

1.提出原假设与备择假设:

$$H_0$$
: μ_1 - $\mu_2 = 0$; H_1 : μ_1 - $\mu_2 \neq 0$

2.构建检验统计量:

$$z = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$
$$= \frac{50 - 44 - 0}{\sqrt{\frac{64}{32} + \frac{100}{40}}} = 2.83$$

$\|3.$ 确定拒绝域($\alpha = 0.05$):

-1.96 ⁰ 1.96 ^Z

4.作出决策: 拒绝 H_0 , 表明两种机器生产的弹簧, 其抗拉强度有显著差异.

情形2: σ_1^2 和 σ_2^2 未知, $\sigma_1^2 = \sigma_2^2$,且n较小

t 检验

松验统计量
$$t = \frac{(\overline{x_1} - \overline{x_2}) - (\mu_1 - \mu_2)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$
$$s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$
$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

情形2: σ_1^2 和 σ_2^2 未知, $\sigma_1^2 = \sigma_2^2$,且n较小

t 检验

【例】欲研究A、B两种方法组装某种产品所用的时间是否相同。选取部分工人进行抽样分析。已知用两种工艺组装产品所用时间服从正态分布,且 $\sigma_1^2 = \sigma_2^2$ 。试问能否认为B方法比A方法组装更好? ($\alpha = 0.05$)

组装方法	A	B
工人数n	10	8
平均时间(分)	26.1	17.6
样本标准差	12	10.5

情形2: σ_1^2 和 σ_2^2 未知, $\sigma_1^2 = \sigma_2^2$,且n较小

t 检验

1.提出原假设与备择假设:

$$H_0: \mu_1 - \mu_2 \le 0$$
; $H_1: \mu_1 - \mu_2 > 0$

2.构建检验统计量:

$$t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
$$= \frac{26.1 - 17.6 - 0}{11.37 \sqrt{\frac{1}{10} + \frac{1}{8}}} = 1.576$$

3.确定拒绝域:

4.作出决策:无法拒绝H₀,没有证据表明用第二种方法组装更好。

情形3: $\sigma_1^2 \pi \sigma_2^2 + \pi \pi \pi \sigma_1^2 \neq \sigma_2^2$, 且n较小

t 检验

检验统计量
$$t = \frac{(\overline{x_1} - \overline{x_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \sim t(df')$$
 修正的自由度
$$df' = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{\left(s_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(s_2^2/n_2\right)^2}{n_2 - 1}}$$

情形1: σ_1^2 和 σ_2^2 已知

情形2: σ_1^2 和 σ_2^2 未知, $\sigma_1^2 = \sigma_2^2$,且n较小

情形3: $\sigma_1^2 \pi \sigma_2^2 \pi \pi$, $\sigma_1^2 \neq \sigma_2^2$,且n较小

谢 谢