1. What is Statistics? Explain its main types.

Statistics is the branch of mathematics that deals with **collecting**, **organizing**, **analyzing**, **and interpreting data** to make decisions and predictions.

Types:

- 1. **Descriptive Statistics** Summarizes and describes data (e.g., mean, median, charts).
- 2. **Inferential Statistics** Makes predictions or generalizations about a population based on a sample (e.g., hypothesis testing).

2. Define population and sample with examples.

- **Population**: The entire group of individuals or data of interest. Example: All students in a school.
- **Sample**: A smaller group selected from the population for analysis. Example: 100 students chosen from the school for a survey.

3. Difference between descriptive and inferential statistics

- **Descriptive**: Describes data using numbers, graphs, and summaries. Example: Average height of 100 students = 160 cm.
- Inferential: Uses sample data to make predictions about the population. Example: Predicting the average height of all students in the school based on a sample.

4. Data types (qualitative vs quantitative, discrete vs continuous)

- Qualitative (Categorical): Non-numeric, descriptive data.
- Example: Gender (Male/Female), Colors.
- Quantitative (Numerical): Numeric values.
 - o **Discrete**: Countable numbers. Example: Number of students.
 - Continuous: Measurable values, can take decimals. Example: Height, Weight.

5. What is a variable in statistics? Give examples.

A **variable** is a characteristic that can take different values.

Examples: Age, salary, temperature, exam scores.

6. Define mean, median, and mode. How are they different?

- Mean: Arithmetic average.
- Median: Middle value when data is ordered.
- Mode: Most frequently occurring value.

Example: Data = [2, 3, 3, 5, 7]

- Mean = (2+3+3+5+7)/5 = 4
- Median = 3
- Mode = 3

7. How do you calculate the range of a dataset?

Range = Maximum value – Minimum value.

Example: For [4, 8, 15, 20], Range = 20 - 4 = 16.

8. What is the standard deviation, and why is it important?

Standard deviation (SD) measures the spread of data around the mean.

- Low SD \rightarrow Data is close to the mean.
- High SD → Data is widely spread.
 Important because it shows data variability.

9. Explain variance and how it relates to standard deviation.

Variance = Average of squared differences from the mean.

 $Variance = \sigma 2 \setminus \{Variance\} = \searrow ^2 Variance = \sigma 2$

Standard deviation is the **square root of variance**.

10. What is a frequency distribution? Give an example.

Frequency distribution shows how often each value (or range of values) occurs.

Example: Student test scores:

- $0-10 \rightarrow 2$ students
- $11-20 \rightarrow 5$ students
- $21-30 \rightarrow 8$ students

11. Explain the concept of normal distribution and its characteristics.

Normal distribution = Bell-shaped curve where data is symmetrically distributed around the mean.

Characteristics:

- Mean = Median = Mode.
- 68% of data within 1 SD, 95% within 2 SD, 99.7% within 3 SD (Empirical Rule).

12. What is skewness, and how does it affect data interpretation?

Skewness measures asymmetry in data.

- Positive skew (right-skewed): Tail is longer on the right.
- **Negative skew (left-skewed)**: Tail is longer on the left. It affects whether mean > median or mean < median.

13. What is kurtosis, and what does it tell us about a dataset?

Kurtosis measures the **peakedness or flatness** of a distribution.

- **High kurtosis**: More outliers, sharp peak.
- Low kurtosis: Flatter distribution.

14. Differentiate between probability and statistics.

• **Probability**: Starts with known data to predict outcomes. Example: Tossing a coin, probability of heads = 0.5.

• **Statistics**: Starts with data and makes inferences about the population. Example: Collecting coin toss data and estimating probability.

15. What is a z-score, and how is it calculated?

Z-score = Number of standard deviations a value is from the mean.

$$Z=X-\mu\sigma Z = \frac{X - \mu}{\sum_{x \in X} - \mu}$$

Example: If mean = 50, SD = 10, $X = 70 \rightarrow Z = (70-50)/10 = 2$.

16. Difference between population standard deviation and sample standard deviation

- **Population SD** (σ): Uses N (entire population).
- Sample SD (s): Uses n-1 (sample correction, Bessel's correction).

17. What is the Central Limit Theorem, and why is it important?

The CLT states that the sampling distribution of the sample mean becomes approximately **normal**, regardless of population distribution, if the sample size is large enough $(n \ge 30)$.

Important for hypothesis testing and confidence intervals.

18. What is correlation? Differentiate between positive and negative correlation.

Correlation measures the **strength and direction of a relationship** between two variables.

- **Positive correlation**: As one increases, the other increases (e.g., height vs weight).
- **Negative correlation**: As one increases, the other decreases (e.g., exercise vs body fat).

19. Difference between correlation and causation.

• **Correlation**: Two variables are related but not necessarily cause-effect.

• Causation: One variable directly affects the other. Example: Ice cream sales & drowning are correlated (summer), but ice cream doesn't cause drowning.

20. What is regression analysis, and when is it used?

Regression analysis is used to model the relationship between a **dependent** variable and one or more **independent** variables.

Example: Predicting house price (dependent) based on size, location, and rooms (independent).

21. Explain hypothesis testing and its steps.

Hypothesis testing is a statistical method to make decisions about population parameters using sample data.

Steps:

- 1. Formulate Null (H₀) and Alternative (H₁) hypotheses.
- 2. Choose significance level (α).
- 3. Calculate test statistic.
- 4. Find p-value or compare with critical value.
- 5. Accept or reject H₀.

22. What is a null hypothesis and an alternative hypothesis?

- Null Hypothesis (H₀): Assumes no effect or no difference. Example: "The new drug has no effect."
- Alternative Hypothesis (H₁): Assumes effect or difference exists. Example: "The new drug improves recovery."

23. Explain p-value in hypothesis testing.

The p-value measures the probability of getting results as extreme as observed if H₀ is true.

• Low p-value (≤ 0.05): Reject H₀ \rightarrow Evidence supports H₁.

• High p-value (> 0.05): Fail to reject H₀.

24. Difference between Type I and Type II errors.

- **Type I Error (False Positive):** Rejecting H₀ when it is true. Example: Saying a drug works when it doesn't.
- Type II Error (False Negative): Failing to reject H₀ when H₁ is true. Example: Saying a drug doesn't work when it actually does.

25. What is a confidence interval, and how is it interpreted?

A confidence interval (CI) gives a range of values within which the true population parameter lies with a certain probability (usually 95%).

Example: "The average height of students is 160–170 cm with 95% confidence."

26. Explain t-test and when to use it.

A **t-test** compares the means of two groups to see if they are significantly different.

Used when sample size is small (< 30) or population SD is unknown.

27. Explain chi-square test and its applications.

The **Chi-square test** checks if there is a significant association between categorical variables.

Example: Checking if gender and voting preference are related.

28. What is ANOVA, and when is it used?

ANOVA (Analysis of Variance): Compares the means of **3 or more groups** to check if at least one is significantly different.

Example: Comparing exam scores of students from three different teaching methods.

29. How do you handle missing data in statistics?

Methods:

- Remove rows with missing values (if few).
- Replace with mean/median/mode.
- Use regression or ML algorithms to predict missing values.
- Use advanced methods (Multiple Imputation, KNN imputation).

30. What is sampling bias, and how can it be reduced?

Sampling bias occurs when the sample is not representative of the population. Example: Only surveying young people to generalize about all ages.

How to reduce:

- Use random sampling.
- Increase sample size.
- Avoid selective data collection.