Contrôle d'algèbre linéaire N°3

Durée : 1 heure 30 minutes Barème sur 15 points

NOM:		
	Groupe	
PRENOM:		

1. Dans le plan, muni d'une origine O et de la base canonique orthonormée $B_1 = (\vec{e_1}, \vec{e_2})$, on considère l'endomorphisme f donné par la relation :

$$f(\vec{x}) = (\vec{x} \cdot \vec{e}_1) \vec{e}_1 + 3 (\vec{x} \cdot \vec{e}_2) (\frac{4}{3} \vec{e}_1 + \vec{e}_2)$$

- a) Déterminer la matrice M_f de l'application linéaire f relativement à la base B_1 .
- b) Montrer que f admet une droite de points fixes et qu'un point P et son image P' déterminent une direction fixe \vec{v} . Calculer $f(\vec{v})$, en déduire la nature géométrique de f.

Soit p une projection orthogonale telle que son image est la droite (O, \vec{v}) . On note B_2 une base formée de vecteurs de $\operatorname{Im} p$ et $\operatorname{Ker} p$.

c) Relativement à la base B_2 , déterminer la matrice de p. A l'aide d'un changement de base, calculer la matrice de $f \circ p$ dans B_2 et en déduire directement une interprétation géométrique.

4 pts

3 pts

- **2.** Dans le plan, muni de la base canonique orthonormée $B = (\vec{e}_1, \vec{e}_2)$, on considère les trois endomorphismes suivants :
 - h: homothétie de centre O et de rapport k = 25,
 - r: rotation de centre O et d'angle $\varphi = Arcsin \frac{3}{5}$,
 - g est donné par sa matrice dépendant d'un paramètre $a \in \mathbb{R}$

$$M_g = \begin{pmatrix} -4 - 3a & 24 \\ -24 & a + 6 \end{pmatrix} \text{ par rapport à } B.$$

Déterminer la matrice de l'endomorphisme $l=g-h\circ r^{-2}$ par rapport à B et $a\in\mathbb{R}$ tel que l soit composée d'une homothétie et d'une symétrie.

3. Dans l'espace muni de la base canonique orthonormée $B=(\vec{e_1},\,\vec{e_2},\,\vec{e_3})$, on considère l'endomorphisme f défini par sa matrice M par rapport à B:

$$M = \begin{pmatrix} m & 1 & 1 \\ 1 & m & 1 \\ 2m+1 & 3 & m+2 \end{pmatrix}, \quad m \in \mathbb{R}$$

- a) Discuter en fonction du paramètre m, la dimension de $\operatorname{Im} f$ et $\operatorname{Ker} f$ (on ne demande pas leurs équations).
- b) On pose m=1 . Déterminer les équations de ${\rm \,Im}\, f$ et ${\rm \,Ker}\, f$. En déduire, en le justifiant, la nature géométrique de f . 3,5 pts
- 4. On note P_2 l'espace vectoriel des polynômes de degré plus petit ou égal à deux. On considère les bases suivantes de P_2 : $B_1 = (x^2 1; 4; x) ,$

$$B_1 = (x^2 - 1; 4; x),$$

 $B_2 = (x - 8; 12; 4x^2).$

a) Déterminer la matrice de passage P de la base B_1 à la base B_2 .

On munit \mathbb{R}^2 de la base canonique $E_1=(\vec{e_1}\,,\,\vec{e_2})$ et de la base $E_2=(\vec{u_1}\,,\,\vec{u_2})$ définie par $\int \,\vec{u_1}=-\,\vec{e_1}+2\,\vec{e_2}$

$$\begin{cases} \vec{u}_1 = -\vec{e}_1 + 2\vec{e}_2 \\ \vec{u}_2 = 3\vec{e}_2 \end{cases}$$

On considère l'application linéaire f de P_2 dans \mathbb{R}^2 dont la matrice associée est $A' = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 2 & 0 \end{pmatrix}$ par rapport à B_1 et E_2 .

- b) Déterminer la matrice de f relativement aux bases B_2 et E_1 .
- c) Soit $\overrightarrow{OP'}=12\overrightarrow{e_1}+6\overrightarrow{e_2}$.

 Déterminer les composantes de $f^{-1}(\overrightarrow{OP'})$ relativement à la base B_1 , puis relativement à la base canonique $B=(1,\,x,\,x^2)$ de P_2 .

4.5 pts