* * Exercice 1

- 1) Étudier la nature de l'intégrale $\int_0^{+\infty} \frac{\sin t}{t^{\alpha}} dt$ en fonction de la valeur de α .
- 2) Étudier la nature de l'intégrale $\int_0^{+\infty} \frac{\ln(1+t^{\alpha})}{t^{\beta}}$ en fonction des valeurs de α et β .
- 3) Étudier la nature de l'intégrale $\int_0^{+\infty} \frac{\sqrt{t} \sin(1/t^2)}{\ln(1+t)} \, \mathrm{d}t$
- 4) Étudier la nature de l'intégrale $\int_{2/\pi}^{+\infty} \ln\left(\cos\frac{1}{t}\right) dt$

Soit $\alpha \geq 1$. On pose pour tout $n \in \mathbb{N}$: $I_n = \int_0^{+\infty} e^{-\alpha t} t^n dt$

- 1) Calculer I_0
- 2) Soit $n \ge 1$. On suppose que I_{n-1} est convergente. Montrer que I_n est convergente à l'aide d'une intégration par partie et établir une relation entre I_{n-1} et I_n .
- 3) En déduire la convergence de l'intégrale I_n et la valeur de I_n en fonction de n et α pour tout $n \in \mathbb{N}$.

- 1) Montrer que pour tout réel x, l'intégrale $\int_x^{+\infty} e^{-t^2} dt$ est convergente. Dans la suite, on notera $f(x) = e^{x^2} \int_x^{+\infty} e^{-t^2} dt$
- 2) Justifier que f est de classe C^1 sur \mathbb{R} , et montrer que sa dérivée f' vérifie $\forall x \in \mathbb{R}$, f'(x) = -1 + 2xf(x)
- 3) Établir pour tout réel x > 0 l'inégalité 2x f(x) < 1
- 4) En déduire la limite de f(x) lorsque x tend vers $+\infty$

- Exercice 4 -

(ENSAE 2021) Pour tout $n \in \mathbb{N}$, on pose :

$$I_n = \int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^2)(1+x^n)}$$
 et $J_n = \int_0^{+\infty} \frac{x^n \,\mathrm{d}x}{(1+x^2)(1+x^n)}$

- 1) Justifier, pour tout $n \in \mathbb{N}$, la convergence des intégrales I_n et J_n .
- 2) Calculer, pour tout $n \in \mathbb{N}$, la somme $I_n + J_n$
- 3) Au moyen du changement de variable $u = \frac{1}{x}$, calculer, pour tout $n \in \mathbb{N}$, les intégrales I_n et J_n
- 4) La suite $\left(\int_0^1 \frac{x^n dx}{(1+x^2)(1+x^n)}\right)_{n \in \mathbb{N}}$ est-elle convergente? La série $\sum \int_0^1 \frac{x^n dx}{(1+x^2)(1+x^n)}$ est-elle convergente?

* * * Exercice 5

Soit f une fonction continue, positive et décroissante sur $[0; +\infty[$ telle que $\int_0^{+\infty} f(t) dt$ converge. Montrer que $f(x) \underset{x \to +\infty}{=} o\left(\frac{1}{x}\right)$.

Le résultat est-il encore vrai si f n'est pas décroissante?

Le but de cet exercice est de déterminer la valeur de l'intégrale de Gauss $\int_0^{+\infty} e^{-t^2} dt$.

On pose pour tout réel x, $f(x) = \int_0^1 \frac{e^{-x(1+t^2)}}{1+t^2} dt$.

- 1) Pour tout réel $t \in [0; 1]$, on note g_t la fonction définie pour tout réel $x \in \mathbb{R}$ par $g_t(x) = e^{-x(1+t^2)}$.
 - a) Montrer que pour tout $x \in [-\ln 2; \ln 2], |e^x 1| \le 2|x|$
 - b) En déduire que la fonction f est continue sur \mathbb{R} Indice : étudier la limite de f(x+h) f(x) lorsque h tend vers 0.
 - c) Montrer que pour tout x > 0, on a $e^{-2x} \int_0^1 \frac{dt}{1+t^2} \leqslant f(x) \leqslant e^{-x} \int_0^1 \frac{dt}{1+t^2}$. En déduire $\lim_{x \to +\infty} f(x)$

On admet dans la suite que f est dérivable sur \mathbb{R} et que $f'(x) = -\int_0^1 e^{-x(1+t^2)} dt$

- 2) Pour tout réel x, on pose $u(x) = f(x^2)$ et $\varphi(x) = u(x) + \left(\int_0^x e^{-t^2} dt\right)^2$ Montrer que φ est constante sur \mathbb{R} et déterminer sa valeur.
- 3) En déduire la valeur de $\int_0^{+\infty} e^{-t^2} dt$.

Montrer que $\int_0^{+\infty} \frac{\sin(t)}{t} dt$ converge mais que $\int_0^{+\infty} \left| \frac{\sin(t)}{t} \right| dt$ diverge.

Le coin de Khûbes

(ENS 2024) Soit f la fonction définie sur \mathbb{R} par la formule $f(x) = \exp\left(x - \frac{x^2}{2}\right)$.

- 1) Dresser le tableau de variations de f. On y indiquera notamment les limites de f en $-\infty$ et en $+\infty$.
- 2) Montrer qu'on a l'égalité $\int_0^{+\infty} x f(x) dx = 1 + \int_0^{+\infty} f(x) dx$.
- 3) Calculer $\int_{-\infty}^{+\infty} f(x) dx$. On pourra effectuer un changement de variable y = x + a pour un a bien choisi et admettre la valeur de l'intégrale de Gauss : $\int_{-\infty}^{+\infty} e^{-y^2/2} dx = \sqrt{2\pi}$
- 4) Calculer le développement limité de f(x) à l'ordre 3 pour x proche de 0. En déduire l'allure locale du graphe de f au voisinage de 0.

(ENS 2013) Pour tout réel $r \geq 1$, soit f_r la fonction définie sur [0,1[par :

$$f_r(x) = \frac{\exp(-rx)}{\sqrt{1-x}}$$

et l'on pose :

$$I(r) = \int_0^1 f_r(x) \, \mathrm{d}x$$

- 1) Dresser le tableau de variation complet de la fonction f_r .
- 2) Montrer que I(r) est une intégrale convergente pour tout réel $r \geq 1$.
- 3) On écrit dans la suite $I(r) = I_1(r) + I_2(r) + I_3(r)$, avec :

$$I_1(r) = \int_0^{r^{-2/3}} \exp(-rx) \, \mathrm{d}x \quad ; \quad I_2(r) = \int_0^{r^{-2/3}} \left(\frac{1}{\sqrt{1-x}} - 1\right) \exp(-rx) \, \mathrm{d}x \quad ; \quad I_3(r) = \int_{r^{-2/3}}^1 \frac{\exp(-rx)}{\sqrt{1-x}} \, \mathrm{d}x$$

4) Montrer que quand r tend vers $+\infty$ on a :

$$I_1(r) = \frac{1}{r} (1 + o(1))$$

5) Montrer que pour tout réel y strictement compris entre 0 et 1, on peut écrire :

$$1 \le \frac{1}{\sqrt{1-y}} \le 1 + \frac{y}{2(1-y)^{3/2}}$$

6) Montrer que pour tout $r \geq 1$, on a :

$$0 \le I_2(r) \le c_2 \left(1 - r^{-2/3}\right)^{-3/2} \frac{1}{r^{4/3}}$$

où c_2 est une constante dont on précisera la valeur.

7) Montrer que pour tout $r \ge 1$ on a :

$$0 \le I_3(r) \le c_3 \exp(-r^{1/3})$$

où c_3 est une constante dont on précisera la valeur.

8) En déduire que I(r) est équivalent à 1/r quand r tend vers $+\infty$.

