Lecture 14: Kernel Methods

3rd October 2022

Lecturer: Abir De Scribe: Group 29 and Group 30

1 Recap: SVM formulation

Recall the discussion of earlier classes

$$w_{svm}^* = \frac{\sum_{i}^{|D|} \alpha_i y_i x_i}{2\lambda}$$

This is linear in x, and the $dim(x)=dim(w)<\infty$ To generalise this, suppose we make it non-linear in x, but it's linear in some $\phi(x)$ which can be ∞ -dimensional. Previously the similarity mechanism involved x_i^Tx . The new similarity mechanism uses the kernel formulation $K(x_i,x)$ for e.g $K(x_i,x)=e^{-||x_i-x||^2}$. Formally, this new "similarity measure" must have some properties, which are discussed later.

2 Mathematics

We continue with our discussion on kernel methods/tricks in this lecture with more rigorous mathematics.

2.1 Inner Product Space

An inner product space (over reals) is a vector space V and an inner product, which is a mapping

$$\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V} \to \mathcal{R}$$

that has the following properties $\forall x,y,z\in\mathcal{V}$ and $a,b\in\mathcal{R}$:

- Symmetry: $\langle x, y \rangle = \langle y, x \rangle$
- Linearity: $\langle ax+by,z\rangle=a\langle x,z\rangle+b\langle y,z\rangle$
- Positive-definiteness: $\langle x,x\rangle \geq 0$ and $\langle x,x\rangle = 0 \iff x=0$

For an inner product space, we define norm as $\|x\| = \sqrt{\langle x, x \rangle}$

2.2 Hilbert Space

A *Hilbert Space* is an inner product space that is complete and seperable with respect to the norm defined by the inner product. A space is called complete if all Cauchy Sequences in the space converge. Examples of Hilbert spaces include:

- 1. \mathbb{R}^n is an Hilbert space for the Euclidean norm. The dot-product is defined as with $\langle a, b \rangle = a^T b$, the vector dot product of a and b.
- 2. The space l_2 of square summable sequences, with inner product $\langle x,y\rangle=\sum_{i=0}^{\infty}x_iy_i$

Definition 2.1. Kernel

Let \mathcal{X} be a non-empty set. A function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a kernel if there exists a Hilbert space \mathcal{H} and a feature map $\phi: \mathcal{X} \to \mathcal{H}$ such that $\forall x, x' \in \mathcal{X}$,

$$K(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}$$

If we are given a function of two arguments, K(x, x'), the following can be used to determine if it is a valid kernel.

- 1. Find a feature map. But this may not be obvious sometimes, and the feature map may not be unique.
- 2. Can use a direct property of the function which is positive definiteness. The following lemma gives a sufficient and necessary condition.

Lemma 2.2. Let \mathcal{H} be a Hilbert space, \mathcal{X} a non-empty set and $\phi: \mathcal{X} \to \mathcal{H}$. A symmetric function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ implements an inner product in \mathcal{H} if and only if it is positive semidefinite; namely $\forall (x_1, \ldots, x_n) \in \mathcal{X}^n$, the Gram matrix $G_{i,j} = K(x_i, x_j)$, is a positive semidefinite matrix.

Proof. \implies (If K implements an inner product then the Gram matrix is positive semidefinite)

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j K(x_i, x_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} \langle a_i \phi(x_i), a_j \phi(x_j) \rangle_{\mathcal{H}}$$
$$= ||\sum_{i=1}^{n} a_i \phi(x_i)||_{\mathcal{H}}^2 \ge 0$$

 \iff For this direction, define the space of functions over \mathcal{X} as $\mathbb{R} = \{f : \mathcal{X} \to \mathbb{R}\}$ For each $x \in \mathcal{X}$ let $\phi(x)$ be the function $x \mapsto K(\cdot, x)$. Define a vector space by taking all linear combinations of elements of the form $K(\cdot, x)$. Define an inner product on this vector space to be

$$\langle \sum_{i} \alpha_{i} K(\cdot, x_{i}), \sum_{j} \beta_{j} K(\cdot, x'_{j}) \rangle = \sum_{i,j} \alpha_{i} \beta_{j} K(x_{i}, x'_{j})$$

This is a valid inner product since it is symmetric (because K is symmetric), it is linear, and it is positive definite. Clearly,

$$\langle \phi(x), \phi(x') \rangle = \langle K(\cdot, x), K(\cdot, x') \rangle = K(x, x').$$

2.3 Projection Theorem & Properties

Theorem 2.3. Let \mathcal{H} be a Hilbert space and \mathcal{M} be a closed subspace of \mathcal{H} . Then for any $x \in \mathcal{H}$, there exists a unique $m_0 \in \mathcal{M}$ for which

$$||x - m_0|| \le ||x - m|| \forall m \in \mathcal{M}$$

This m_0 is called the projection of x onto \mathcal{M} . Furthermore, $m_0 \in \mathcal{M}$ is the projection of x onto M iff

$$x-m_0\perp\mathcal{M}$$

Theorem 2.4. Let \mathcal{M} be a closed subspace of \mathcal{H} . For any $x \in \mathcal{H}$, let m_0 be the projection of x onto \mathcal{M} . Then

$$||m_0|| \le ||x||$$

with equality only when $m_0 = x$.

3 Generalised objective function

Consider

$$\min_{w} \ l(\{w^T \phi(x_i)\}_{i \in D}, \{y_i\}_{i \in D}) + \lambda R(||w||)$$
 (1)

where $l: \mathbb{R}^{|D|} \to \mathbb{R}$ is an arbitrary function and $R: \mathbb{R}_+ \to \mathbb{R}$ is a monotonically non-decreasing function.

Theorem 3.1. Representer Theorem

Assume that ϕ is a mapping from \mathcal{X} to a Hilbert space. Then, there exists a vector $\alpha \in \mathbb{R}^{|D|}$ such that $w = \sum_{i=1}^{|D|} \alpha_i \phi(x_i)$ is an optimal solution of equation 1

Proof. Let w^* be an optimal solution of Equation 1. Because w^* is an element of a Hilbert space, we can rewrite w^* as

$$w* = \sum_{i=1}^{|D|} \alpha_i \phi(x_i) + u$$

where $\langle u, \phi(x_i) \rangle = 0$ for all i. Set $w = w^* - u$. Clearly, $||w^*||^2 = ||w||^2 + ||u||^2$, thus $||w|| < ||w^*||$. Since R is non-decreasing we obtain that $R(||w||) < R(||w^*||)$. Additionally, for all i we have that

$$\langle w, \phi(x_i) \rangle = \langle w^* - u, \phi(x_i) \rangle = \langle w^*, \phi(x_i) \rangle,$$

hence

$$l(\{w^T \phi(x_i)\}_{i \in D}, \{y_i\}_{i \in D}) = l(\{w^{*T} \phi(x_i)\}_{i \in D}, \{y_i\}_{i \in D})$$

We have shown that the objective of Equation 1 at w cannot be larger than the objective at w^* and therefore w is also an optimal solution. Since $w = \sum_{i=1}^{|D|} \alpha_i \phi(x_i)$ we conclude our proof.

Form of f is

$$f(x) = w^{*T} \phi(x_i)$$
$$= \sum_{i=1}^{|D|} \alpha_i \phi^T(x_i) \phi(x)$$

Here $\phi^T(x_i)\phi(x)$ is like a similarity measure If $\phi(\cdot)$ is ∞ -dimensional, we can write it as

$$f(x) = \sum_{i=1}^{|D|} \alpha_i \sum_{j=0}^{\infty} \phi(x_i)[j] \phi(x)[j]$$

Hence, if $\phi(\cdot)$ is ∞ -dimensional, it is not feasible to code w as it has the same dimension as ϕ . So, we try to represent the objective function in functional form or through the kernel formulation.

3.1 Objective in terms of Kernel

Writing $w = \sum_{j=1}^{|D|} \alpha_j \phi(x_j)$, we have that for all i

$$\langle w, \phi(x_i) \rangle = \langle \sum_{j=1}^{|D|} \alpha_j \phi(x_j), \phi(x_i) \rangle = \sum_{j=1}^{|D|} \alpha_j \langle \phi(x_j), \phi(x_i) \rangle.$$

Similarly,

$$||w||^2 = \langle \sum_{j=1}^{|D|} \alpha_j \phi(x_j), \sum_{j=1}^{|D|} \alpha_j \phi(x_j) \rangle = \sum_{i,j=1}^{|D|} \alpha_i \alpha_j \langle \phi(x_i), \phi(x_j) \rangle.$$

Let $K(x, x') = \langle \phi(x), \phi(x') \rangle$ be a function that implements the kernel function with respect to the feature space. Hence, instead of solving Equation 1, we can solve the equivalent problem

$$\min_{\alpha \in \mathbb{R}^{|D|}} l(\{\sum_{j=1}^{|D|} \alpha_j K(x_j, x_i)\}_{i \in D}, \{y_i\}_{i \in D}) + \lambda R(\sqrt{\sum_{i,j=1}^{|D|} \alpha_i \alpha_j K(x_j, x_i)})$$
(2)

3.2 Objective in terms of functional form

$$f(x) = \sum_{i} \alpha_i K(x_i, x)$$

Function f forms a vector space

$$f_1, f_2 \in V \implies af_1 + bf_2 \in V$$

$$0 \in V$$
, by putting $\alpha_i = 0 \quad \forall i$

Now define an inner product

$$\langle f, g \rangle_H = \sum \alpha_i^f \alpha_j^g K(x_i, x_j) \tag{3}$$

From the properties of inner product space, for 3 to be true, $\sum_{i,j} \alpha_i \alpha_j K(x_i,x_j) \geq 0$ and $K(x_i,x_j) = K(x_j,x_i) \quad \forall i,j$

These are in accordance with the earlier lemma which we proved.

$$||w||^{2} = \langle w, w \rangle$$

$$= \langle \sum_{i=1}^{|D|} \alpha_{i} \phi(x_{i}), \sum_{i=1}^{|D|} \alpha_{j} \phi(x_{j}) \rangle = \sum_{i,j=1}^{|D|} \alpha_{i} \alpha_{j} \langle \phi(x_{i}) \phi(x_{j}) \rangle$$

$$= \sum_{i,j} \alpha_{i} \alpha_{j} K(x_{i}, x_{j}) = \langle f, f \rangle$$

$$= ||f||^{2}$$

Hence, the objective function becomes

$$\min_{y} \ l(\{f(x_i)\}_{i \in D}, \{y_i\}_{i \in D}) + \lambda R(||f||)$$

4 Kernel Matrix & Prediction function

4.1 Kernel Matrix

We define $k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$.

Definition 4.1. We define the kernel matrix for a kernel k on a set $\{x_1, ..., x_n\}$ is

$$K = (k(x_i, x_j))_{i,j} = \begin{pmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{pmatrix} \in \mathcal{R}^{n \times n}$$

4.2 Prediction Function

Consider the minimizer $w = \sum_{i=1}^{n} \alpha_i \phi(x_i)$ according to the representer theorem. Then for a given x, we define the prediction function as

$$f(x) = \langle w, \phi(x) \rangle$$

$$= \sum_{i=1}^{n} \alpha_i \langle \phi(x_i), \phi(x) \rangle$$

$$= \sum_{i=1}^{n} \alpha_i k(x_i, x)$$

5 Different forms of Objective Function

5.1 In terms of Kernel Matrix and α

Consider $w = \sum_{i=1}^{n} \alpha_i \phi(x_i)$. Then we have for norm

$$||w||^2 = \sum_{i,j=1}^n \alpha_i \alpha_j k(x_i, x_j)$$
$$= \alpha^T K \alpha$$

Similarly, predictions on the training points have a particular simple form:

$$\begin{pmatrix} f(x_1) \\ \vdots \\ f(x_n) \end{pmatrix} = \begin{pmatrix} \alpha_1 k(x_1, x_1) + \dots + \alpha_n k(x_1, x_n) \\ \vdots \\ \alpha_1 k(x_n, x_1) + \dots + \alpha_n k(x_n, x_n) \end{pmatrix}$$
$$= \begin{pmatrix} k(x_1, x_1) & \dots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \dots & k(x_n, x_n) \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$
$$= K\alpha$$

Hence our generalised objective function can be reduced to using the knowledge that minimizer lies in the span of $\phi(x_1), ..., \phi(x_n)$

$$\min_{\alpha \in \mathcal{R}^n} R(\sqrt{\alpha^T K \alpha}) + L(K\alpha)$$

This is the kernelized objective function

5.2 In terms of prediction function

Recall that $f(\cdot) = \sum_{i=1}^m \alpha_i k(\cdot, x_i)$. Now we define a dot product of f and another function $g(\cdot) = \sum_i^{m'} \beta_j k(\cdot, x_j')$ as follows

$$\langle f, g \rangle := \sum_{i}^{m} \sum_{j}^{m'} \alpha_{i} \beta_{j} k(x_{i}, x'_{j})$$

Now we try to find the condition on kernel k, such that f belongs to Hilbert space so that we can define norm of f.

Symmetry can be seen as follows:

$$\langle f, g \rangle = \sum_{j=1}^{m'} \beta_j f(x'_j) = \sum_{i=1}^m \alpha_i g(x_i)$$

This implies $\langle f, g \rangle = \langle g, f \rangle$ if $k(x_i, x_j) = k(x_j, x_i)$.

Positive definiteness can be seen as follows:

$$\langle f, f \rangle = \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} k(x_{i}, x_{j}) \ge 0 \ \forall \alpha_{i}, \alpha_{j} \in \mathcal{R}$$

This property holds true when the kernel matrix K is positive semi-definite.

Similarly, linearity is also true without any further assumption on the kernel. Hence $||f||^2 = \langle f, f \rangle = \sum_i \sum_j \alpha_i \alpha_j k(x_i, x_j) = ||w||^2$. Hence we can substitute $||w||^2$ with $||f||^2$ with the given properties of K. Hence our generalised loss function becomes

$$\min_{f} R(\|f\|) + L(f(x_1), f(x_2), ..., f(x_n))$$

Note: If $\forall x | f(x) | \leq M_x ||f||_H$ then $\exists f(x) = \sum_i \alpha_i k(x_i, x)$

5.3 Need for such substitution

If $\phi(x)$ has a very large or ∞ dimension, it is impossible to code w as it has the same dimension as $\psi(x)$. So we can either go with the kernel matrix or make our analysis on the prediction function, both of which are independent of the dimension of $\phi(x)$. This is a useful tool for analysing the correctness of RBF kernel where $\phi(x)$ is of infinite dimension.

6 Reproducing kernel Hilbert spaces

For a Hilbert space \mathcal{H} of real-valued functions on \mathcal{X} , and for any point $x \in \mathcal{X}$, the evaluation functional at x is defined as the map $L_x : \mathcal{H} \mapsto \mathbb{R}$ such that for all functions $f \in \mathcal{H}$,

$$L_x(f) = f(x). (4)$$

In this setting, \mathcal{H} is called a reproducing kernel Hilbert space if for all $x \in \mathcal{X}$, L_x is bounded, i.e. there is some finite constant M such that

$$|L_x(f)| = |f(x)| \le M||f||_{\mathcal{H}}.$$
 (5)

(Equivalently, for all $x \in \mathcal{X}$, L_x is continuous at any $f \in \mathcal{H}$.)

7 Example problem

7.1 Problem Statement

Consider the functions $h: \mathbb{N} \to [1 \dots m]$ and $\mathcal{E}: \mathbb{N} \to \pm 1$

$$a^{h,\mathcal{E}}(x)[i] = \sum_{j \text{ s.t } h(i)=j} \mathcal{E}(j)x_j$$

Then prove that

$$\underset{h,\mathcal{E}\sim\ \mathcal{U}(.)}{\mathbb{E}}[\langle a^{h,\mathcal{E}}(x), a^{h,\mathcal{E}}(x')\rangle] = \langle x, x'\rangle$$

7.2 Solution

$$\mathbb{E}_{h,\mathcal{E}\sim\ \mathcal{U}(.)}[\langle a^{h,\mathcal{E}}(x),a^{h,\mathcal{E}}(x')\rangle] = \mathbb{E}_{h,\mathcal{E}\sim\ \mathcal{U}(.)}[\sum_{j;h(i)=j}\sum_{j';h(i)=j'}\mathcal{E}(j)\mathcal{E}(j')x_jx'_{j'}]$$

Note that since h and $\mathcal E$ are sampled from uniform distributions, for $j \neq j'$

$$\mathbb{E}[\mathcal{E}(j)\mathcal{E}(j')]=0$$
 and when $j=j', \mathbb{E}[\mathcal{E}(j)\mathcal{E}(j)]=1$

Therefore the expectation simplifies to

$$\underset{h,\mathcal{E}\sim \ \mathcal{U}(.)}{\mathbb{E}} \left[\sum_{j=j'} (1) * x_j x'_{j'} + 0 \right] = \mathbb{E} \left[\sum_j x(j) x'(j) \right] = \mathbb{E} \left[\langle x, x' \rangle \right] = \langle x, x' \rangle$$

8 Mercer's Theorem

Theorem 8.1. A "symmetric" function k(x, x') can be expressed as an inner product

$$k(x,x') = \langle \psi(x), \psi(x') \rangle$$

for some ψ if and only if K (kernel matrix) is positive semi-definite (and symmetric).