Answers to Odd-Numbered Exercises

Chapter 1

Section 1.1, page 10

- **1.** The solution is $(x_1, x_2) = (-8, 3)$, or simply (-8, 3).
- 5. Replace Row 2 by its sum with -4 times Row 3, and then replace Row 1 by its sum with 3 times Row 3.
- **7.** The solution set is empty.
- **9.** (16, 21, 14, 4)
- 11. Inconsistent
- 13. (5,3,-1)
- 15. Inconsistent
- 17. Calculations show that the system is inconsistent, so the three lines have no point in common.
- **19.** $h \neq 2$
- **21.** All *h*
- 23. Mark a statement True only if the statement is always true. Giving you the answers here would defeat the purpose of the true-false questions, which is to help you learn to read the text carefully. The Study Guide will tell you where to look for the answers, but you should not consult it until you have made an honest attempt to find the answers yourself.
- **25.** k 2g + h = 0
- 27. The row reduction of

$$\begin{bmatrix} a & b & f \\ c & d & g \end{bmatrix} \text{ to } \begin{bmatrix} a & b & f \\ 0 & d - b(\frac{c}{a}) & g - f(\frac{c}{a}) \end{bmatrix}$$

shows that $d - b(\frac{c}{a})$ must be nonzero, since f and g are arbitrary. Otherwise, for some choices of f and g the second row could correspond to an equation of the form 0 = q, where q is nonzero. Thus $ad \neq bc$.

- 29. Swap Row 1 and Row 3; swap Row 1 and Row 3.
- **31.** Replace Row 3 by Row 3 + (-4)Row 1; replace Row 3 by Row 3 + (4)Row 1.
- 33. Review Practice Problem 1 and then write a solution. The Study Guide has a solution.

Section 1.2, page 21

1. Reduced echelon form: a and b. Echelon form: d. Not in echelon form: c.

3.
$$\begin{bmatrix} 1 & 2 & 0 & -8 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Pivot cols 1 and 3:
$$\begin{bmatrix} 1 & 2 & 4 & 8 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \end{bmatrix}$$
.

- 5. $\begin{bmatrix} \blacksquare & * \\ 0 & \blacksquare \end{bmatrix}$, $\begin{bmatrix} \blacksquare & * \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & \blacksquare \\ 0 & 0 \end{bmatrix}$
- 7. $\begin{cases} x_1 = -5 3x_2 \\ x_2 \text{ is free.} \\ x_3 = 3 \end{cases}$ 9. $\begin{cases} x_1 = 3 + 2x_3 \\ x_2 = 3 + 2x_3 \\ x_3 \text{ is free.} \end{cases}$
- 11. $\begin{cases} x_1 = \frac{2}{3}x_2 \frac{4}{3}x_3 \\ x_2 \text{ is free.} \end{cases}$

$$\int x_1 = 5 + 3x_5$$

- $x_2 = 1 + 4x_5$
- **13.** $\{x_3 \text{ is free.} \}$ $x_4 = 4 - 9x_5$

 x_5 is free.

Note: The Study Guide discusses the common mistake $x_3 = 0.$

- **15. a.** Consistent, with many solutions
 - b. Consistent, with many solutions
- **17.** All *h*
- **19.** a. Inconsistent when h = 2 and $k \neq 8$
 - **b.** Unique solution when $h \neq 2$
 - **c.** Many solutions when h = 2 and k = 8
- 21. Read the text carefully, and write your answers before you consult the Study Guide. Remember, a statement is true only if it is true in all cases.
- 23. Since there are four pivots (one in each column of the coefficient matrix), the augmented matrix must reduce to the form

$$\begin{bmatrix} 1 & 0 & 0 & 0 & a \\ 0 & 1 & 0 & 0 & b \\ 0 & 0 & 1 & 0 & c \\ 0 & 0 & 0 & 1 & d \end{bmatrix}$$

and so

$$x_1 = a$$

$$x_2 = b$$

$$x_3 = c$$

$$x_4 = d$$

A18 Answers to Odd-Numbered Exercises

No matter what the values of a, b, c and d, the solution exists and is unique.

- 25. If the coefficient matrix has a pivot position in every row, then there is a pivot position in the bottom row, and there is no room for a pivot in the augmented column. So, the system is consistent, by Theorem 2.
- 27. If a linear system is consistent, then the solution is unique if and only if every column in the coefficient matrix is a pivot column; otherwise, there are infinitely many solutions.
- 29. An underdetermined system always has more variables than equations. There cannot be more basic variables than there are equations, so there must be at least one free variable. Such a variable may be assigned infinitely many different values. If the system is consistent, each different value of a free variable will produce a different solution.
- 31. Yes, a system of linear equations with more equations than unknowns can be consistent. The following system has a solution ($x_1 = x_2 = 1$):

$$x_1 + x_2 = 2$$

$$x_1 - x_2 = 0$$

$$3x_1 + 2x_2 = 5$$

33.
$$p(t) = 1 + 3t + 2t^2$$

Section 1.3, page 32

1.
$$\begin{bmatrix} -4 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 5 \\ 4 \end{bmatrix}$

3.

5.
$$x_1 \begin{bmatrix} 3 \\ -2 \\ 8 \end{bmatrix} + x_2 \begin{bmatrix} 5 \\ 0 \\ -9 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \\ 8 \end{bmatrix},$$

$$\begin{bmatrix} 3x_1 \\ -2x_1 \\ 8x_1 \end{bmatrix} + \begin{bmatrix} 5x_2 \\ 0 \\ -9x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \\ 8 \end{bmatrix},$$

$$\begin{bmatrix} 3x_1 + 5x_2 \\ -2x_1 \\ 8x_1 - 9x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \\ 8 \end{bmatrix}$$

$$3x_1 + 5x_2 = 2$$

$$-2x_1 = -3$$

$$8x_1 - 9x_2 - 8$$

$$8x_1 - 9x_2 = 8$$

Usually the intermediate steps are not displayed.

7.
$$\mathbf{a} = \mathbf{u} - 2\mathbf{v}$$
, $\mathbf{b} = 2\mathbf{u} - 2\mathbf{v}$, $\mathbf{c} = 2\mathbf{u} - 3.5\mathbf{v}$, $\mathbf{d} = 3\mathbf{u} - 4\mathbf{v}$
Yes, every vector in \mathbb{R}^2 is a linear combination of \mathbf{u} and \mathbf{v} .

9.
$$x_1 \begin{bmatrix} 0 \\ 4 \\ -1 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 6 \\ 3 \end{bmatrix} + x_3 \begin{bmatrix} 5 \\ -1 \\ -8 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

- 11. No, **b** is *not* a linear combination of \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 .
- **13.** No, **b** is *not* a linear combination of the columns of A.
- **15.** h = 3
- 17. Noninteger weights are acceptable, of course, but some simple choices are $0 \cdot \mathbf{v}_1 + 0 \cdot \mathbf{v}_2 = \mathbf{0}$, and

$$1 \cdot \mathbf{v}_1 + 0 \cdot \mathbf{v}_2 = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}, \quad 0 \cdot \mathbf{v}_1 + 1 \cdot \mathbf{v}_2 = \begin{bmatrix} -4 \\ 0 \\ 1 \end{bmatrix}$$

$$1 \cdot \mathbf{v}_1 + 1 \cdot \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix}, \quad 1 \cdot \mathbf{v}_1 - 1 \cdot \mathbf{v}_2 = \begin{bmatrix} 7 \\ 1 \\ 1 \end{bmatrix}$$

- 19. Span $\{v_1, v_2\}$ is the set of points on the line through v_1 and $\mathbf{0}$, because \mathbf{v}_2 is a multiple of \mathbf{v}_1 .
- **21.** *Hint:* Show that $\begin{bmatrix} 2 & 2 & h \\ -1 & 1 & k \end{bmatrix}$ is consistent for all h and k. Explain what this calculation shows about Span $\{\mathbf{u}, \mathbf{v}\}$.
- 23. Before you consult your Study Guide, read the entire section carefully. Pay special attention to definitions and theorem statements, and note any remarks that precede or follow them.
- **25. a.** No, three
- **b.** Yes, infinitely many
- **c.** $\mathbf{a}_1 = 1 \cdot \mathbf{a}_1 + 0 \cdot \mathbf{a}_2 + 0 \cdot \mathbf{a}_3$
- **27. a.** $5\mathbf{v}_1$ is the output of 5 days of operation of mine #1.
 - **b.** The total output is x_1 **v**₁ + x_2 **v**₂, so x_1 and x_2 should satisfy $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 = \begin{bmatrix} 240 \\ 2824 \end{bmatrix}$.
 - **c.** [M] 1.73 days for mine #1 and 4.70 days for mine #2
- **29.** (17/14, -34/14, 16/14) = (17/14, -17/7, 8/7)
- 31. a.
 - **b.** Add 3.5 g at (0, 1), add 0.5 g at (8, 1), and add 2 g at
- **33.** Review Practice Problem 1 and then write a solution. The Study Guide has a solution.

Section 1.4, page 40

1. The product is not defined because the number of columns (2) in the 3×2 matrix does not match the number of entries (3) in the vector.

3. a.
$$A\mathbf{x} = \begin{bmatrix} 1 & 2 \\ -3 & 1 \\ 1 & 6 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \end{bmatrix} = -2 \cdot \begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix} + 3 \cdot \begin{bmatrix} 2 \\ 1 \\ 6 \end{bmatrix}$$
$$= \begin{bmatrix} -2 \\ 6 \\ -2 \end{bmatrix} + \begin{bmatrix} 6 \\ 3 \\ 18 \end{bmatrix} = \begin{bmatrix} 4 \\ 9 \\ 16 \end{bmatrix}$$

b.
$$A\mathbf{x} = \begin{bmatrix} 1 & 2 \\ -3 & 1 \\ 1 & 6 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \cdot (-2) + 2 \cdot (3) \\ (-3) \cdot (-2) + 1 \cdot (3) \\ 1 \cdot (-2) + 6 \cdot (3) \end{bmatrix}$$
$$= \begin{bmatrix} 4 \\ 9 \\ 16 \end{bmatrix}.$$

Show your work here and for Exercises 4–6, but thereafter perform the calculations mentally.

5.
$$2 \cdot \begin{bmatrix} 1 \\ -2 \end{bmatrix} - 1 \cdot \begin{bmatrix} 2 \\ -3 \end{bmatrix} + 1 \cdot \begin{bmatrix} -3 \\ 1 \end{bmatrix} - 1 \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -4 \\ 1 \end{bmatrix}$$

7.
$$\begin{bmatrix} 4 & -5 & 7 \\ -1 & 3 & -8 \\ 7 & -5 & 0 \\ -4 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ -8 \\ 0 \\ -7 \end{bmatrix}$$

9.
$$x_1 \begin{bmatrix} 5 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 4 \end{bmatrix} = \begin{bmatrix} 8 \\ 0 \end{bmatrix}$$
 and
$$\begin{bmatrix} 5 & 1 & -3 \\ 0 & 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 8 \\ 0 \end{bmatrix}$$

11.
$$\begin{bmatrix} 1 & 3 & -4 & -2 \\ 1 & 5 & 2 & 4 \\ -3 & -7 & 6 & 12 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -11 \\ 3 \\ 0 \end{bmatrix}$$

- 13. Yes. (Justify your answer.)
- **15.** The equation $A\mathbf{x} = \mathbf{b}$ is not consistent when $3b_1 + b_2$ is nonzero. (Show your work.) The set of \mathbf{b} for which the equation is consistent is a line through the origin—the set of all points (b_1, b_2) satisfying $b_2 = -3b_1$.
- 17. Only three rows contain a pivot position. The equation $A\mathbf{x} = \mathbf{b}$ does *not* have a solution for each \mathbf{b} in \mathbb{R}^4 , by Theorem 4.
- 19. The work in Exercise 17 shows that statement (d) in Theorem 4 is false. So all four statements in Theorem 4 are false. Thus, not all vectors in \mathbb{R}^4 can be written as a linear combination of the columns of A. Also, the columns of A do *not* span \mathbb{R}^4 .
- **21.** The matrix $[\mathbf{v}_1 \quad \mathbf{v}_2 \quad \mathbf{v}_3]$ does not have a pivot in each row, so the columns of the matrix do not span \mathbb{R}^4 , by Theorem 4. That is, $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ does not span \mathbb{R}^4 .
- **23.** Read the text carefully and try to mark each exercise statement True or False before you consult the *Study Guide*. Several parts of Exercises 29 and 30 are *implications* of the form

"If (statement 1), then (statement 2)" or equivalently,

"(statement 2), if (statement 1)"

Mark such an implication as True if (statement 2) is true in all cases when (statement 1) is true.

- **25.** $c_1 = -3, c_2 = -1, c_3 = 2$
- 27. The matrix equation can be written as $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 + c_4\mathbf{v}_4 + c_5\mathbf{v}_5 = \mathbf{v}_6$, where $c_1 = -3$,

$$c_2 = 1, c_3 = 2, c_4 = -1, c_5 = 2,$$
and
 $\mathbf{v}_1 = \begin{bmatrix} -3 \\ 5 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 5 \\ 8 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} -4 \\ 1 \end{bmatrix},$

$$\mathbf{v}_4 = \begin{bmatrix} 9 \\ -2 \end{bmatrix}, \quad \mathbf{v}_5 = \begin{bmatrix} 7 \\ -4 \end{bmatrix}, \quad \mathbf{v}_6 = \begin{bmatrix} 11 \\ -11 \end{bmatrix}$$

- **29.** *Hint:* Start with any 3×3 matrix *B* in echelon form that has three pivot positions.
- 31. Write your solution before you check the Study Guide.
- **33.** *Hint:* How many pivot columns does *A* have? Why?
- **35.** Suppose \mathbf{y} and \mathbf{z} satisfy $A\mathbf{y} = \mathbf{z}$. Then $5\mathbf{z} = 5A\mathbf{y}$. By Theorem 5(b), $5A\mathbf{y} = A(5\mathbf{y})$. So $5\mathbf{z} = A(5\mathbf{y})$, which shows that $5\mathbf{y}$ is a solution of $A\mathbf{x} = 5\mathbf{z}$. Thus the equation $A\mathbf{x} = 5\mathbf{z}$ is consistent.
- **37.** [M] The columns do not span \mathbb{R}^4 .
- **39.** [M] The columns span \mathbb{R}^4 .
- **41.** [M] Delete column 4 of the matrix in Exercise 39. It is also possible to delete column 3 instead of column 4.

Section 1.5, page 47

- 1. The system has a nontrivial solution because there is a free variable, x₃.
- **3.** The system has a nontrivial solution because there is a free variable, *x*₃.

5.
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$

7.
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} -9 \\ 4 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 8 \\ -5 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{9.} \ \mathbf{x} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$

11. Hint: The system derived from the reduced echelon form is

$$x_{1} - 4x_{2} + 5x_{6} = 0$$

$$x_{3} - x_{6} = 0$$

$$x_{5} - 4x_{6} = 0$$

$$0 = 0$$

The basic variables are x_1 , x_3 , and x_5 . The remaining variables are free. The *Study Guide* discusses two mistakes that are often made on this type of problem.

13.
$$\mathbf{x} = \begin{bmatrix} 5 \\ -2 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 4 \\ -7 \\ 1 \end{bmatrix} = \mathbf{p} + x_3 \mathbf{q}$$
. Geometrically, the

solution set is the line through $\begin{bmatrix} 5 \\ -2 \\ 0 \end{bmatrix}$ parallel to $\begin{bmatrix} 4 \\ -7 \\ 1 \end{bmatrix}$.

15. Let $\mathbf{u} = \begin{bmatrix} -5 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{p} = \begin{bmatrix} -2 \\ 0 \\ 0 \end{bmatrix}$. The solution of

the homogeneous equation is $\mathbf{x} = x_2 \mathbf{u} + x_3 \mathbf{v}$, the plane through the origin spanned by \mathbf{u} and \mathbf{v} . The solution set of the nonhomogeneous system is $\mathbf{x} = \mathbf{p} + x_2\mathbf{u} + x_3\mathbf{v}$, the plane through p parallel to the solution set of the homogeneous equation.

17. $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 8 \\ -4 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$. The solution set is the line through $\begin{bmatrix} 8 \\ -4 \\ 0 \end{bmatrix}$, parallel to the line that is the solution

set of the homogeneous system in Exercise 5.

19. $\mathbf{x} = \mathbf{a} + t\mathbf{b}$, where t represents a parameter, or

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \end{bmatrix} + t \begin{bmatrix} -5 \\ 3 \end{bmatrix}, \text{ or } \begin{cases} x_1 = -2 - 5t \\ x_2 = 3t \end{cases}$$

21.
$$\mathbf{x} = \mathbf{p} + t(\mathbf{q} - \mathbf{p}) = \begin{bmatrix} 3 \\ -3 \end{bmatrix} + t \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

23. It is important to read the text carefully and write your answers. After that, check the Study Guide, if necessary.

25. a.
$$A$$
w = A (**p** + **v**_h) = A **p** + A **v**_h = **b** + **0** = **b**
b. A **v**_h = A (**w** - **p**) = A **w** - A **p** = **b** - **b** = **0**

27. (Geometric argument using Theorem 6) Since the equation $A\mathbf{x} = \mathbf{b}$ is consistent, its solution set is obtained by translating the solution set of $A\mathbf{x} = \mathbf{0}$, by Theorem 6. So the solution set of $A\mathbf{x} = \mathbf{b}$ is a single vector if and only if the solution set of $A\mathbf{x} = \mathbf{0}$ is a single vector, and that happens if and only if $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

(*Proof using free variables*) If $A\mathbf{x} = \mathbf{b}$ has a solution, then the solution is unique if and only if there are no free variables in the corresponding system of equations, that is, if and only if every column of A is a pivot column. This happens if and only if the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

- **29.** a. When A is a 4×4 matrix with three pivot positions, the equation $A\mathbf{x} = \mathbf{0}$ has a free variable and hence has nontrivial solutions.
 - **b.** With three pivot positions, A does not have a pivot position in each of its four rows. By Theorem 4 in Section 1.4, the equation $A\mathbf{x} = \mathbf{b}$ does not have a solution for every possible b. The word "possible" in the exercise means that the only vectors considered in this case are those in \mathbb{R}^4 , because A has four rows.
- **31.** a. When A is a 3×2 matrix with two pivot positions, each column is a pivot column. So the equation $A\mathbf{x} = \mathbf{0}$ has no free variables and hence no nontrivial solution.
 - **b.** With two pivot positions and three rows, A cannot have a pivot in every row. So the equation $A\mathbf{x} = \mathbf{b}$ cannot have a solution for every possible **b** (in \mathbb{R}^3), by Theorem 4 in Section 1.4.

- 33. Your example should have the property that the sum of the entries in each row is zero. Why?
- **35.** One answer: $\mathbf{x} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$
- **37.** One answer is $A = \begin{bmatrix} 1 & -4 \\ 1 & -4 \end{bmatrix}$. The *Study Guide* shows how to analyze the problem in order to construct A. If **b** is any vector *not* a multiple of the first column of A, then the solution set of $A\mathbf{x} = \mathbf{b}$ is empty and thus cannot be formed by translating the solution set of $A\mathbf{x} = \mathbf{0}$. This does not contradict Theorem 6, because that theorem applies when the equation $A\mathbf{x} = \mathbf{b}$ has a nonempty solution set.
- **39.** Suppose $A\mathbf{v} = \mathbf{0}$ and $A\mathbf{w} = \mathbf{0}$. Then, since $A(\mathbf{v} + \mathbf{w}) = A\mathbf{v} + A\mathbf{w}$ by Theorem 5(a) in Section 1.4, $A(\mathbf{v} + \mathbf{w}) = A\mathbf{v} + A\mathbf{w} = \mathbf{0} + \mathbf{0} = \mathbf{0}$. Now, let c and d be scalars. Using both parts of Theorem 5, $A(c\mathbf{v} + d\mathbf{w}) =$ $A(c\mathbf{v}) + A(d\mathbf{w}) = cA\mathbf{v} + dA\mathbf{w} = c\mathbf{0} + d\mathbf{0} = \mathbf{0}.$

Section 1.6, page 54

- 1. The general solution is $p_G = .875p_S$, with p_S free. One equilibrium solution is $p_S = 1000$ and $p_G = 875$. Using fractions, the general solution could be written $p_{\rm G} = (7/8) p_{\rm S}$, and a natural choice of prices might be $p_{\rm S} = 80$ and $p_{\rm G} = 70$. Only the ratio of the prices is important. The economic equilibrium is unaffected by a proportional change in prices.
- 3. a. Distribution of Output from: F&P Man. Ser.

b.
$$\begin{bmatrix} .9 & -.1 & -.2 & 0 \\ -.8 & .9 & -.4 & 0 \\ -.1 & -.8 & .6 & 0 \end{bmatrix}$$

- **c.** [M] $p_{\text{F\&P}} \approx 30$, $p_{\text{M}} \approx 71$, $p_{\text{S}} = 100$.
- 5. a.

Distribution of Output from:

Ag. Man. Ser. Transp. Input Purchased by: Output .20 .35 .10 .20 Ag. .20 .10 .20 .30 Man. .30 .35 .50 .20 Ser. .20 .20 .30 Transp.

b. One solution is $p_A = 7.99$, $p_M = 8.36$, $p_S = 14.65$, and $p_{\rm T} = 10.00$.

c. Distribution of Output from:

Ag. Man. Ser. Transp.

Output	↓		↓	\	Input	Purchased by:
	.20	.35	.10	.20	-	Ag.
	.10	.10	.20	.30	-	Man.
	.40	.35	.50	.20	-	Ser.
	.30	.20	.20	.30	-	Transp.

d. One solution is $p_A = 7.81$, $p_M = 7.67$, $p_S = 15.62$, and $p_{\rm T} = 10.00$.

The campaign has benefited Services the most.

7.
$$3NaHCO_3 + H_3C_6H_5O_7 \rightarrow Na_3C_6H_5O_7 + 3H_2O + 3CO_2$$

9.
$$B_2S_3 + 6H_2O \rightarrow 2H_3BO_3 + 3H_2S$$

11. [M]
$$16\text{MnS} + 13\text{As}_2\text{Cr}_{10}\text{O}_{35} + 374\text{H}_2\text{SO}_4$$

 $\rightarrow 16\text{HMnO}_4 + 26\text{AsH}_3 + 130\text{CrS}_3\text{O}_{12} + 327\text{H}_2\text{O}$

13. a.
$$\begin{cases} x_1 = x_3 - 40 \\ x_2 = x_3 + 10 \\ x_3 \text{ is free} \\ x_4 = x_6 + 50 \\ x_5 = x_6 + 60 \\ x_6 \text{ is free} \end{cases}$$
 b.
$$\begin{cases} x_2 = 50 \\ x_3 = 40 \\ x_4 = 50 \\ x_5 = 60 \end{cases}$$

15.
$$\begin{cases} x_1 = 60 + x_6 \\ x_2 = -10 + x_6 \\ x_3 = 90 + x_6 \\ x_4 = x_6 \\ x_5 = 80 + x_6 \\ x_6 \text{ is free} \end{cases}$$

In order for the flow to be nonnegative, $x_6 \ge 10$

Section 1.7, page 60

Justify your answers to Exercises 1–22.

- 1. Lin. indep. **3.** Lin. depen.
- 5. Lin. indep. 7. Lin. depen.
- **9. a.** No *h* **b.** All *h*
- 11. h = -4**13.** All *h*
- 15. Lin. depen. 17. Lin. depen. 19. Lin. indep.
- 21. If you consult your Study Guide before you make a good effort to answer the true-false questions, you will destroy most of their value.

23.
$$\begin{bmatrix} \bullet & * \\ 0 & 0 \end{bmatrix}$$
, $\begin{bmatrix} 0 & \bullet \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

25. $\begin{bmatrix} \bullet & * \\ 0 & \bullet \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & \bullet \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$

27. All four columns of the 6×4 matrix A must be pivot columns. Otherwise, the equation $A\mathbf{x} = \mathbf{0}$ would have a free variable, in which case the columns of A would be linearly dependent.

29. A: Any 3×2 matrix with the second column a multiple of the first will have the desired property.

B: Any 3×2 matrix with two nonzero columns such that neither column is a multiple of the other will work. In this case, the columns form a linearly independent set, and so the equation $B\mathbf{x} = \mathbf{0}$ has only the trivial solution.

31.
$$\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

- 33. True, by Theorem 7. (The Study Guide adds another justification.)
- **35.** True, by Theorem 9.
- 37. True. A linear dependence relation among v_1 , v_2 , and v_3 may be extended to a linear dependence relation among \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , and \mathbf{v}_4 by placing a zero weight on \mathbf{v}_4 .
- **39.** You should be able to work this important problem without help. Write your solution before you consult the Study Guide.
- **41.** [M] Using the pivot columns of A,

$$B = \begin{bmatrix} 3 & -4 & 7 \\ -5 & -3 & -11 \\ 4 & 3 & 2 \\ 8 & -7 & 4 \end{bmatrix}$$

Other choices are possible.

43. [M] Each column of A that is not a column of B is in the set spanned by the columns of B.

Section 1.8, page 68

- 1. $\begin{bmatrix} 2 \\ -6 \end{bmatrix}$, $\begin{bmatrix} 2a \\ 2b \end{bmatrix}$ 3. $\mathbf{x} = \begin{bmatrix} 7 \\ 6 \\ 3 \end{bmatrix}$, unique solution
- **5.** $\mathbf{x} = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$, not unique **7.** a = 5, b = 6

13.

- 11. Yes, because the system represented by $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ is consistent.

A reflection through the origin

15.

A reflection through the line $x_1 = x_2$.

17.
$$\begin{bmatrix} 8 \\ 2 \end{bmatrix}$$
, $\begin{bmatrix} -3 \\ 9 \end{bmatrix}$, $\begin{bmatrix} 5 \\ 11 \end{bmatrix}$

$$\begin{bmatrix} 8 \\ 2 \end{bmatrix}, \begin{bmatrix} -3 \\ 9 \end{bmatrix}, \begin{bmatrix} 5 \\ 11 \end{bmatrix}$$
 19. $\begin{bmatrix} 13 \\ 7 \end{bmatrix}, \begin{bmatrix} 2x_1 - x_2 \\ 5x_1 + 6x_2 \end{bmatrix}$

21. Read the text carefully and write your answers before you check the Study Guide. Notice that Exercise 21(e) is a sentence of the form

"(statement 1) if and only if (statement 2)"

Mark such a sentence as True if (statement 1) is true whenever (statement 2) is true and also (statement 2) is true whenever (statement 1) is true.

23. a. When b = 0, f(x) = mx. In this case, for all x, y in \mathbb{R} and all scalars c and d,

$$f(cx + dy) = m(cx + dy) = mcx + mdy$$

= $c(mx) + d(my)$
= $c \cdot f(x) + d \cdot f(y)$

This shows that f is linear.

- **b.** When f(x) = mx + b, with b nonzero, $f(0) = m(0) + b = b \neq 0.$
- \mathbf{c} . In calculus, f is called a "linear function" because the graph of f is a line.
- 25. Hint: Show that the image of a line (that is, the set of images of all points on a line) can be represented by the parametric equation of a line.
- 27. Any point \mathbf{x} on the plane P satisfies the parametric equation $\mathbf{x} = s\mathbf{u} + t\mathbf{v}$ for some values of s and t. By linearity, the image $T(\mathbf{x})$ satisfies the parametric equation

$$T(\mathbf{x}) = sT(\mathbf{u}) + tT(\mathbf{v}) \quad (s, t \text{ in } \mathbb{R})$$

The set of images is just Span $\{T(\mathbf{u}), T(\mathbf{v})\}\$. If $T(\mathbf{u})$ and $T(\mathbf{v})$ are linearly independent, Span $\{T(\mathbf{u}), T(\mathbf{v})\}$ is a plane through $T(\mathbf{u})$, $T(\mathbf{v})$, and $\mathbf{0}$. If $T(\mathbf{u})$ and $T(\mathbf{v})$ are linearly dependent and not both zero, then Span $\{T(\mathbf{u}), T(\mathbf{v})\}\$ is a line through **0**. If $T(\mathbf{u}) = T(\mathbf{v}) = \mathbf{0}$, then Span $\{T(\mathbf{u}), T(\mathbf{v})\}\$ is $\{\mathbf{0}\}.$

29.

- 31. Hint: Since $\{v_1, v_2, v_3\}$ is linearly dependent, you can write a certain equation and work with it.
- **33.** One possibility is to show that T does not map the zero vector into the zero vector, something that every linear transformation does do: T(0,0) = (0,-3,0).
- **35.** Take **u** and **v** in \mathbb{R}^3 and let c and d be scalars. Then

$$c\mathbf{u} + d\mathbf{v} = (cu_1 + dv_1, cu_2 + dv_2, cu_3 + dv_3)$$

The transformation T is linear because

$$T(c\mathbf{u} + d\mathbf{v}) = (cu_1 + dv_1, 0, cu_3 + dv_3)$$

= $(cu_1, 0, cu_3) + (dv_1, 0, dv_3)$
= $c(u_1, 0, u_3) + d(v_1, 0, v_3)$
= $cT(\mathbf{u}) + dT(\mathbf{v})$

- **37.** [M] All multiples of (-1, -1, 1, 0)
- **39.** [M] Yes. One choice for x is (1, 2, 0, 0).

Section 1.9, page 78

$$\mathbf{1.} \begin{bmatrix} 3 & -5 \\ 1 & 2 \\ 3 & 0 \\ 1 & 0 \end{bmatrix}$$

3. $\begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}$ 5. $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

7.
$$\begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

11. The described transformation T maps e_1 into $-e_1$ and maps \mathbf{e}_2 into $-\mathbf{e}_2$. A rotation through π radians also maps \mathbf{e}_1 into $-\mathbf{e}_1$ and maps \mathbf{e}_2 into $-\mathbf{e}_2$. Since a linear transformation is completely determined by what it does to the columns of the identity matrix, the rotation transformation has the same effect as T on every vector in \mathbb{R}^2 .

13.

15.
$$\begin{bmatrix} 2 & -4 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 3 \end{bmatrix}$$

15.
$$\begin{bmatrix} 2 & -4 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 3 \end{bmatrix}$$
 17.
$$\begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$

19.
$$\begin{bmatrix} 1 & -5 & 4 \\ 0 & 1 & -6 \end{bmatrix}$$
 21. $\mathbf{x} = \begin{bmatrix} 7 \\ -4 \end{bmatrix}$

21.
$$\mathbf{x} = \begin{bmatrix} 7 \\ -4 \end{bmatrix}$$

23. Answer the questions before checking the Study Guide.

Justify your answers to Exercises 25-28.

- **25.** Not one-to-one and does not map \mathbb{R}^4 onto \mathbb{R}^4
- **27.** Not one-to-one but maps \mathbb{R}^3 onto \mathbb{R}^2

- **31.** *n*. (Explain why, and then check the *Study Guide*.)
- **33.** Hint: If e_i is the jth column of I_n , then Be_i is the jth column of B.
- **35.** *Hint:* Is it possible that m > n? What about m < n?
- 37. [M] No. (Explain why.)
- **39.** [M] No. (Explain why.)

Section 1.10, page 86

1. a. $x_1 \begin{bmatrix} 1.0 \\ 4 \\ 20 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 1.30 \\ 3 \\ 18 \\ 5 \end{bmatrix} = \begin{bmatrix} 295 \\ 9 \\ 48 \\ 8 \end{bmatrix}$, where x_1 is the

number of servings of Cheerios and x_2 is the number of servings of 100% Natural Cereal.

b.
$$\begin{bmatrix} 110 & 130 \\ 4 & 3 \\ 20 & 18 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 295 \\ 9 \\ 48 \\ 8 \end{bmatrix}. \text{ Mix 1.5 servings of}$$

Cheerios together with 1 serving of 100% Natural Cereal.

- 3. a. She should mix .99 serving of Mac and Cheese, 1.54 servings of broccoli, and .79 serving of chicken to get her desired nutritional content.
 - **b.** She should mix 1.09 servings of shells and white cheddar, .88 serving of broccoli, and 1.03 servings of chicken to get her desired nutritional content. Notice that this mix contains significantly less broccoli, so she should like it better.

5.
$$R\mathbf{i} = \mathbf{v}$$
,
$$\begin{bmatrix} 11 & -5 & 0 & 0 \\ -5 & 10 & -1 & 0 \\ 0 & -1 & 9 & -2 \\ 0 & 0 & -2 & 10 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \end{bmatrix} = \begin{bmatrix} 50 \\ -40 \\ 30 \\ -30 \end{bmatrix}$$
$$[\mathbf{M}]: \quad \mathbf{i} = \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \end{bmatrix} = \begin{bmatrix} 3.68 \\ -1.90 \\ 2.57 \\ -2.49 \end{bmatrix}$$

7.
$$R\mathbf{i} = \mathbf{v}, \begin{bmatrix} 12 & -7 & 0 & -4 \\ -7 & 15 & -6 & 0 \\ 0 & -6 & 14 & -5 \\ -4 & 0 & -5 & 13 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \end{bmatrix} = \begin{bmatrix} 40 \\ 30 \\ 20 \\ -10 \end{bmatrix}$$

$$[\mathbf{M}]: \quad \mathbf{i} = \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \end{bmatrix} = \begin{bmatrix} 11.43 \\ 10.55 \\ 8.04 \\ 5.84 \end{bmatrix}$$

9. $\mathbf{x}_{k+1} = M\mathbf{x}_k$ for k = 0, 1, 2, ..., where

$$M = \begin{bmatrix} .93 & .05 \\ .07 & .95 \end{bmatrix}$$
 and $\mathbf{x}_0 = \begin{bmatrix} 800,000 \\ 500,000 \end{bmatrix}$

The population in 2012 (for k = 2) is $\mathbf{x}_2 = \begin{bmatrix} 741,720 \\ 558,280 \end{bmatrix}$.

- **11. a.** $M = \begin{bmatrix} .98363 & .00167 \\ .01637 & .99833 \end{bmatrix}$
 - **b.** [**M**] $\mathbf{x}_6 = \begin{bmatrix} 30,754,500 \\ 229,449,000 \end{bmatrix}$
- 13. [M]
 - a. The population of the city decreases. After 7 years, the populations are about equal, but the city population continues to decline. After 20 years, there are only 417,000 persons in the city (417,456 rounded off). However, the changes in population seem to grow smaller each year.
 - **b.** The city population is increasing slowly, and the suburban population is decreasing. After 20 years, the city population has grown from 350,000 to about 370,000.

Chapter 1 Supplementary Exercises, page 88

- h. F i. T j. F k. T n. T o. T p. T q. F t. T u. F v. F w. F **r.** T y.
- Any consistent linear system whose echelon form is

$$\begin{bmatrix} \blacksquare & * & * & * \\ 0 & \blacksquare & * & * \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ or } \begin{bmatrix} \blacksquare & * & * & * \\ 0 & 0 & \blacksquare & * \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
or
$$\begin{bmatrix} 0 & \blacksquare & * & * \\ 0 & 0 & \blacksquare & * \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- **b.** Any consistent linear system whose reduced echelon form is I_3 .
- Any inconsistent linear system of three equations in three variables.
- **5.** a. The solution set: (i) is empty if h = 12 and $k \neq 2$; (ii) contains a unique soltution if $h \neq 12$; (iii) contains infinitely many solutions if h = 12 and k = 2.
 - **b.** The solution set is empty if k + 3h = 0; otherwise, the solution set contains a unique solution.

A24 Answers to Odd-Numbered Exercises

7. **a.** Set
$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ -5 \\ 7 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -4 \\ 1 \\ -5 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix}$, and
$$\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
. "Determine if \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 span \mathbb{R}^3 ."

Solution: No.

b. Set $A = \begin{bmatrix} 2 & -4 & -2 \\ -5 & 1 & 1 \\ 7 & -5 & -3 \end{bmatrix}$. "Determine if the columns of A span \mathbb{R}^3 ."

b. Set
$$A = \begin{bmatrix} 2 & -4 & -2 \\ -5 & 1 & 1 \\ 7 & -5 & -3 \end{bmatrix}$$
. "Determine if the column of A span \mathbb{R}^3 ."

c. Define $T(\mathbf{x}) = A\mathbf{x}$. "Determine if T maps \mathbb{R}^3 onto \mathbb{R}^3 ."

9.
$$\begin{bmatrix} 5 \\ 6 \end{bmatrix} = \frac{4}{3} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + \frac{7}{3} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ or } \begin{bmatrix} 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 8/3 \\ 4/3 \end{bmatrix} + \begin{bmatrix} 7/3 \\ 14/3 \end{bmatrix}$$

10. Hint: Construct a "grid" on the x_1x_2 -plane determined by \mathbf{a}_1 and \mathbf{a}_2 .

11. A solution set is a line when the system has one free

variable. If the coefficient matrix is 2×3 , then two of the columns should be pivot columns. For instance, take *]. Put anything in column 3. The resulting matrix will be in echelon form. Make one row replacement operation on the second row to create a matrix not in

echelon form, such as $\begin{bmatrix} 1 & 2 & 1 \\ 0 & 3 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 \\ 1 & 5 & 2 \end{bmatrix}$.

12. Hint: How many free variables are in the equation $A\mathbf{x} = \mathbf{0}$?

13.
$$E = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

- **15.** a. If the three vectors are linearly independent, then a, c, and f must all be nonzero.
 - **b.** The numbers a, \ldots, f can have any values.
- **16.** Hint: List the columns from right to left as v_1, \ldots, v_4 .
- 17. Hint: Use Theorem 7.
- **19.** Let *M* be the line through the origin that is parallel to the line through \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 . Then $\mathbf{v}_2 - \mathbf{v}_1$ and $\mathbf{v}_3 - \mathbf{v}_1$ are both on M. So one of these two vectors is a multiple of the other, say $\mathbf{v}_2 - \mathbf{v}_1 = k(\mathbf{v}_3 - \mathbf{v}_1)$. This equation produces a linear dependence relation: $(k-1)\mathbf{v}_1 + \mathbf{v}_2 - k\mathbf{v}_3 = \mathbf{0}$.

A second solution: A parametric equation of the line is $\mathbf{x} = \mathbf{v}_1 + t(\mathbf{v}_2 - \mathbf{v}_1)$. Since \mathbf{v}_3 is on the line, there is some t_0 such that $\mathbf{v}_3 = \mathbf{v}_1 + t_0(\mathbf{v}_2 - \mathbf{v}_1) = (1 - t_0)\mathbf{v}_1 + t_0\mathbf{v}_2$. So \mathbf{v}_3 is a linear combination of v_1 and v_2 , and $\{v_1, v_2, v_3\}$ is linearly dependent.

21.
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 23. $a = 4/5, b = -3/5$

25. a. The vector lists the numbers of three-, two-, and one-bedroom apartments provided when x_1 floors of

b.
$$x_1 \begin{bmatrix} 3 \\ 7 \\ 8 \end{bmatrix} + x_2 \begin{bmatrix} 4 \\ 4 \\ 8 \end{bmatrix} + x_3 \begin{bmatrix} 5 \\ 3 \\ 9 \end{bmatrix}$$

c. [M] Use 2 floors of plan A and 15 floors of plan B. Or, use 6 floors of plan A, 2 floors of plan B, and 8 floors of plan C. These are the only feasible solutions. There are other mathematical solutions, but they require a negative number (or a fractional number) of floors of one or two of the plans, which makes no physical sense.

Chapter 2

Section 2.1, page 100

1.
$$\begin{bmatrix} -4 & 0 & 2 \\ -8 & 10 & -4 \end{bmatrix}$$
, $\begin{bmatrix} 3 & -5 & 3 \\ -7 & 6 & -7 \end{bmatrix}$, not defined, $\begin{bmatrix} 1 & 13 \\ -7 & -6 \end{bmatrix}$

3.
$$\begin{bmatrix} 1 & 5 \\ -3 & 5 \end{bmatrix}, \begin{bmatrix} 6 & -15 \\ 9 & -6 \end{bmatrix}$$

5. a.
$$A\mathbf{b}_1 = \begin{bmatrix} -10 \\ 0 \\ 26 \end{bmatrix}$$
, $A\mathbf{b}_2 = \begin{bmatrix} 11 \\ 8 \\ 19 \end{bmatrix}$, $AB = \begin{bmatrix} -10 & 11 \\ 0 & 8 \\ 26 & -19 \end{bmatrix}$

b.
$$AB = \begin{bmatrix} -1 \cdot 4 + 3(-2) & -1(-2) + 3 \cdot 3 \\ 2 \cdot 4 + 4(-2) & 2(-2) + 4 \cdot 3 \\ 5 \cdot 4 - 3(-2) & 5(-2) - 3 \cdot 3 \end{bmatrix}$$
$$= \begin{bmatrix} -10 & 11 \\ 0 & 8 \\ 26 & -19 \end{bmatrix}$$

7.
$$3 \times 7$$
 9. $k = -2$

11.
$$AD = \begin{bmatrix} 5 & 6 & 6 \\ 10 & 12 & 10 \\ 15 & 15 & 12 \end{bmatrix}, DA = \begin{bmatrix} 5 & 10 & 15 \\ 6 & 12 & 15 \\ 6 & 10 & 12 \end{bmatrix}$$

Right-multiplication (that is, multiplication on the right) by D multiplies each column of A by the corresponding diagonal entry of D. Left-multiplication by D multiplies each row of A by the corresponding diagonal entry of D. The *Study Guide* tells how to make AB = BA, but you should try this yourself before looking there.

- **13.** Hint: One of the two matrices is Q.
- **15.** Answer the questions before looking in the *Study Guide*.

17.
$$\mathbf{b}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

- 19. The third column of AB is the sum of the first two columns of AB. Here's why. Write $B = [\mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3]$. By definition, the third column of AB is $A\mathbf{b}_3$. If $\mathbf{b}_3 = \mathbf{b}_1 + \mathbf{b}_2$, then $A\mathbf{b}_3 = A(\mathbf{b}_1 + \mathbf{b}_2) = A\mathbf{b}_1 + A\mathbf{b}_2$, by a property of matrix-vector multiplication.
- **21.** The columns of A are linearly dependent. Why?
- 23. Hint: Suppose x satisfies Ax = 0, and show that x must be

- 25. Hint: Use the results of Exercises 23 and 24, and apply the associative law of multiplication to the product CAD.

$$\mathbf{u}\mathbf{v}^{T} = \begin{bmatrix} -3a & -3b & -3c \\ 2a & 2b & 2c \\ -5a & -5b & -5c \end{bmatrix},$$

$$\mathbf{v}\mathbf{u}^T = \begin{bmatrix} -3a & 2a & -5a \\ -3b & 2b & -5b \\ -3c & 2c & -5c \end{bmatrix}$$

- **29.** Hint: For Theorem 2(b), show that the (i, j)-entry of A(B+C) equals the (i, j)-entry of AB+AC.
- **31.** *Hint*: Use the definition of the product $I_m A$ and the fact that $I_m \mathbf{x} = \mathbf{x}$ for \mathbf{x} in \mathbb{R}^m .
- **33.** Hint: First write the (i, j)-entry of $(AB)^T$, which is the (j,i)-entry of AB. Then, to compute the (i,j)-entry in B^TA^T , use the facts that the entries in row i of B^T are b_{1i}, \ldots, b_{ni} , because they come from column i of B, and the entries in column j of A^T are a_{i1}, \ldots, a_{in} , because they come from row j of A.
- 35. [M] The answer here depends on the choice of matrix program. For MATLAB, use the help command to read about zeros, ones, eye, and diag. For the TI-86, study the dim, fill, and iden instructions. The TI-86 does not have a "diagonal" command.
- 37. [M] Display your results and report your conclusions.
- **39.** [M] Display your results and report your conclusions.
- **41.** The matrices appear to approach the matrix

$$\begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix}.$$

Section 2.2, page 109

1.
$$\begin{bmatrix} 2 & -3 \\ -5/2 & 4 \end{bmatrix}$$

1.
$$\begin{bmatrix} 2 & -3 \\ -5/2 & 4 \end{bmatrix}$$
 3. $-\frac{1}{3} \begin{bmatrix} -3 & -3 \\ 6 & 7 \end{bmatrix}$ or $\begin{bmatrix} 1 & 1 \\ -2 & -7/3 \end{bmatrix}$

- 7. **a** and **b**: $\begin{bmatrix} -9 \\ 4 \end{bmatrix}$, $\begin{bmatrix} 11 \\ -5 \end{bmatrix}$, $\begin{bmatrix} 6 \\ -2 \end{bmatrix}$, and $\begin{bmatrix} 13 \\ -5 \end{bmatrix}$
- **9.** Write out your answers before checking the *Study Guide*.
- 11. The proof can be modeled after the proof of Theorem 5.
- 13. $AB = AC \Rightarrow A^{-1}AB = A^{-1}AC \Rightarrow IB = IC \Rightarrow B =$ C. No, in general, B and C can be different when A is not invertible. See Exercise 10 in Section 2.1.
- **15.** Hint: Apply the elementary matrices used to row reduce A to I, to the matrix [A, B].
- **17.** $D = C^{-1}B^{-1}A^{-1}$. Show that D works.
- **19.** After you find X = CB A, show that X is a solution.
- **21.** Hint: Consider the equation $A\mathbf{x} = \mathbf{0}$.

- 23. Hint: If Ax = 0 has only the trivial solution, then there are no free variables in the equation $A\mathbf{x} = \mathbf{0}$, and each column of A is a pivot column.
- **25.** *Hint:* Consider the case a = b = 0. Then consider the vector $\begin{bmatrix} -b \\ a \end{bmatrix}$, and use the fact that ad - bc = 0.
- **27.** Hint: For part (a), interchange A and B in the box following Example 6 in Section 2.1, and then replace B by the identity matrix. For parts (b) and (c), begin by writing

$$A = \begin{bmatrix} row_1(A) \\ row_2(A) \\ row_3(A) \end{bmatrix}$$

- **29.** $\frac{1}{3} \begin{bmatrix} -9 & 3 \\ -4 & 1 \end{bmatrix}$ **31.** $\begin{bmatrix} 8 & 3 & 1 \\ 10 & 4 & 1 \\ 7/2 & 3/2 & 1/2 \end{bmatrix}$
- **33.** The general form of A^{-1} is

$$A^{-1} = B = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ -1 & 1 & 0 & & 0 \\ 0 & -1 & 1 & & \\ \vdots & & & \ddots & \vdots \\ 0 & 0 & \cdots & -1 & 1 \end{bmatrix}.$$

Hint: For j = 1, ..., n, let \mathbf{a}_i , \mathbf{b}_i , and \mathbf{e}_i denote the jth columns of A, B, and I, respectively. Use the facts that $\mathbf{a}_{j} - \mathbf{a}_{j+1} = \mathbf{e}_{j}$ and $\mathbf{b}_{j} = \mathbf{e}_{j} - \mathbf{e}_{j+1}$ for $j = 1, \dots, n-1$, and $\mathbf{a}_n = \mathbf{b}_n = \mathbf{e}_n$.

- **35.** $\begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$. Find this by row reducing $\begin{bmatrix} A & \mathbf{e}_3 \end{bmatrix}$.
- **37.** $C = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & 0 \end{bmatrix}$
- **39.** [M] The deflections are .62, .66, and .52 inches, respectively.
- **41.** [M] .95, 6.19, 11.43, and 3.81 newtons, respectively

Section 2.3, page 115

The abbreviation IMT (here and in the Study Guide) denotes the Invertible Matrix Theorem (Theorem 8).

- 1. Invertible, by the IMT. Neither column of the matrix is a multiple of the other column, so they are linearly independent. Also, the matrix is invertible by Theorem 4 in Section 2.2 because the determinant is nonzero.
- **3.** Notice that A^T has a pivot in every column, so by IMT, A^T is invertible. Hence by IMT, A is also invertible.
- 5. Not invertible, by the IMT. Since this matrix has a column of zeros, its columns form a linearly dependent set and hence the matrix is not invertible.

7. Invertible, by the IMT. The matrix row reduces to

-1	-3	0	1
0	-4	8	0
0	0	3	0
0	0	0	1

and has four pivot positions.

- **9.** [M] The 4 × 4 matrix has four pivot positions, so it is invertible by the IMT.
- **11.** The *Study Guide* will help, but first try to answer the questions based on your careful reading of the text.
- **13.** A square upper triangular matrix is invertible if and only if all the entries on the diagonal are nonzero. Why?

Note: The answers below for Exercises 15–29 mention the IMT. In many cases, part or all of an acceptable answer could also be based on results that were used to establish the IMT.

- **15.** No, because statement (h) of the IMT is then false. A 4×4 matrix cannot be invertible when its columns do not span \mathbb{R}^4 .
- 17. If A has two identical columns, then its columns are linearly dependent. Part (e) of the IMT shows that A cannot be invertible.
- **19.** By statement (e) of the IMT, D is invertible. Thus the equation $D\mathbf{x} = \mathbf{b}$ has a solution for each \mathbf{b} in \mathbb{R}^7 , by statement (g) of the IMT. Can you say more?
- **21.** The matrix C cannot be invertible, by Theorem 5 in Section 2.2 or by the paragraph following the IMT. So statement (g) of the IMT is false and so is (h). The columns of C do not span \mathbb{R}^n .
- **23.** Statement (g) of the IMT is false for F, so statement (d) is false, too. That is, the equation $F\mathbf{x} = \mathbf{0}$ has a nontrivial solution.
- 25. Hint: Use the IMT first.
- **27.** Let W be the inverse of AB. Then ABW = I and A(BW) = I. Unfortunately, this equation by itself does not prove that A is invertible. Why not? Finish the proof before you check the *Study Guide*.
- **29.** Since the transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one, statement (f) of the IMT is true. Then statement (i) is also true and the transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n . Also, A is invertible, which implies that the transformation $\mathbf{x} \mapsto A\mathbf{x}$ is invertible, by Theorem 9.
- 31. Hint: If the equation Ax = b has a solution for each b, then A has a pivot in each row (Theorem 4 in Section 1.4).
 Could there be free variables in an equation Ax = b?
- **33.** *Hint:* First show that the standard matrix of T is invertible. Then use a theorem or theorems to show that $T^{-1}(\mathbf{x}) = B\mathbf{x}$, where $B = \begin{bmatrix} 7 & 9 \\ 4 & 5 \end{bmatrix}$.

- **35.** *Hint:* To show that T is one-to-one, suppose that $T(\mathbf{u}) = T(\mathbf{v})$ for some vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n . Deduce that $\mathbf{u} = \mathbf{v}$. To show that T is onto, suppose \mathbf{v} represents an arbitrary vector in \mathbb{R}^n and use the inverse S to produce an \mathbf{x} such that $T(\mathbf{x}) = \mathbf{y}$. A second proof can be given using Theorem 9 together with a theorem from Section 1.9.
- **37.** *Hint:* Consider the standard matrices of T and U.
- **39.** If T maps \mathbb{R}^n onto \mathbb{R}^n , then the columns of its standard matrix A span \mathbb{R}^n , by Theorem 12 in Section 1.9. By the IMT, A is invertible. Hence, by Theorem 9, T is invertible, and A^{-1} is the standard matrix of T^{-1} . Since A^{-1} is also invertible, by the IMT, its columns are linearly independent and span \mathbb{R}^n . Applying Theorem 12 in Section 1.9 to the transformation T^{-1} shows that T^{-1} is a one-to-one mapping of \mathbb{R}^n onto \mathbb{R}^n .
- 41. [M]
 - **a.** The exact solution of (3) is $x_1 = 3.94$ and $x_2 = .49$. The exact solution of review (4) is $x_1 = 2.90$ and $x_2 = 2.00$.
 - **b.** When the solution of (4) is used as an approximation for the solution in (3), the error in using the value of 2.90 for x_1 is about 26%, and the error in using 2.0 for x_2 is about 308%.
 - c. The condition number of the coefficient matrix is 3363. The percentage change in the solution from (3) to (4) is about 7700 times the percentage change in the right side of the equation. This is the same order of magnitude as the condition number. The condition number gives a rough measure of how sensitive the solution of $A\mathbf{x} = \mathbf{b}$ can be to changes in \mathbf{b} . Further information about the condition number is given at the end of Chapter 6 and in Chapter 7.
- **43.** [M] cond(A) \approx 69,000, which is between 10⁴ and 10⁵. So about 4 or 5 digits of accuracy may be lost. Several experiments with MATLAB should verify that \mathbf{x} and \mathbf{x}_1 agree to 11 or 12 digits.
- **45.** [M] Some versions of MATLAB issue a warning when asked to invert a Hilbert matrix of order about 12 or larger using floating-point arithmetic. The product AA^{-1} should have several off-diagonal entries that are far from being zero. If not, try a larger matrix.

Section 2.4, page 121

1.
$$\begin{bmatrix} A & B \\ EA + C & EB + D \end{bmatrix}$$
 3. $\begin{bmatrix} C & D \\ A & B \end{bmatrix}$

- 5. $Y = B^{-1}$ (explain why), $X = -B^{-1}A$, Z = C
- 7. $X = A^{-1}$ (why?), $Y = -BA^{-1}$, Z = 0 (why?)
- 9. $A_{21} = -B_{21}B_{11}^{-1}, A_{31} = -B_{31}B_{11}^{-1}, C_{22} = B_{22} B_{21}B_{11}^{-1}B_{12}$
- 11. You can check your answers in the Study Guide.
- **13.** *Hint:* Suppose *A* is invertible, and let $A^{-1} = \begin{bmatrix} D & E \\ F & G \end{bmatrix}$ Show that BD = I and CG = I. This implies that *B* and

C are invertible. (Explain why!) Conversely, suppose B and C are invertible. To prove that A is invertible, guess what A^{-1} must be and check that it works.

15. $G_{k+1} = \begin{bmatrix} X_k & \mathbf{x}_{k+1} \end{bmatrix} \begin{bmatrix} X_k^T \\ \mathbf{x}_{k+1}^T \end{bmatrix} = X_k X_k^T + \mathbf{x}_{k+1} \mathbf{x}_{k+1}^T$ = $G_k + \mathbf{x}_{k+1} \mathbf{x}_{k+1}^T$

Only the outer product matrix $\mathbf{x}_{k+1}\mathbf{x}_{k+1}^T$ needs to be computed (and then added to G_k).

17. The inverse of $\begin{bmatrix} I & 0 \\ X & I \end{bmatrix}$ is $\begin{bmatrix} I & 0 \\ -X & I \end{bmatrix}$. Similarly, $\begin{bmatrix} I & Y \\ 0 & I \end{bmatrix}$ has an inverse. From equation (7), one obtains

$$\begin{bmatrix} I & 0 \\ -X & I \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} I & -Y \\ 0 & I \end{bmatrix} = \begin{bmatrix} A_{11} & 0 \\ 0 & S \end{bmatrix} \tag{*}$$

If A is invertible, then the matrix on the right side of (*) is a product of invertible matrices and hence is invertible. By Exercise 13, A_{11} and S must be invertible.

- **19.** $W(s) = I_m C(A sI_n)^{-1}B$. This is the Schur complement of $A sI_n$ in the system matrix.
- **21.** a. $A^2 = \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}$ $= \begin{bmatrix} 1+0 & 0+0 \\ 2-2 & 0+(-1)^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

b.
$$M^2 = \begin{bmatrix} A & 0 \\ I & -A \end{bmatrix} \begin{bmatrix} A & 0 \\ I & -A \end{bmatrix}$$
$$= \begin{bmatrix} A^2 + 0 & 0 + 0 \\ A - A & 0 + (-A)^2 \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}$$

23. If A_1 and B_1 are $(k+1) \times (k+1)$ and lower triangular, then write $A_1 = \begin{bmatrix} a & \mathbf{0}^T \\ \mathbf{v} & A \end{bmatrix}$ and $B_1 = \begin{bmatrix} b & \mathbf{0}^T \\ \mathbf{w} & B \end{bmatrix}$, where A and B are $k \times k$ and lower triangular, \mathbf{v} and \mathbf{w} are in \mathbb{R}^k ,

A and B are $k \times k$ and lower triangular, \mathbf{v} and \mathbf{w} are in \mathbb{R}^n , and a and b are suitable scalars. Assume that the product of $k \times k$ lower triangular matrices is lower triangular, and compute the product A_1B_1 . What do you conclude?

25. Use Exercise 13 to find the inverse of a matrix of the form $B = \begin{bmatrix} B_{11} & 0 \\ 0 & B_{22} \end{bmatrix}$, where B_{11} is $p \times p$, B_{22} is $q \times q$, and B is invertible. Partition the matrix A, and apply your result twice to find that

$$A^{-1} = \begin{bmatrix} -5 & 2 & 0 & 0 & 0 \\ 3 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 3 & -4 \\ 0 & 0 & 0 & -5/2 & 7/2 \end{bmatrix}$$

- **27. a.**, **b.** The commands to be used in these exercises will depend on the matrix program.
 - **c.** The algebra needed comes from the block matrix equation

$$\begin{bmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{bmatrix}$$

where \mathbf{x}_1 and \mathbf{b}_1 are in \mathbb{R}^{20} and \mathbf{x}_2 and \mathbf{b}_2 are in \mathbb{R}^{30} . Then $A_{11}\mathbf{x}_1 = \mathbf{b}_1$, which can be solved to produce \mathbf{x}_1 . The equation $A_{21}\mathbf{x}_1 + A_{22}\mathbf{x}_2 = \mathbf{b}_2$ yields $A_{22}\mathbf{x}_2 = \mathbf{b}_2 - A_{21}\mathbf{x}_1$, which can be solved for \mathbf{x}_2 by row reducing the matrix $[A_{22} \quad \mathbf{c}]$, where $\mathbf{c} = \mathbf{b}_2 - A_{21}\mathbf{x}_1$.

Section 2.5, page 129

1.
$$L\mathbf{y} = \mathbf{b} \Rightarrow \mathbf{y} = \begin{bmatrix} -7 \\ -2 \\ 6 \end{bmatrix}, U\mathbf{x} = \mathbf{y} \Rightarrow \mathbf{x} = \begin{bmatrix} 3 \\ 4 \\ -6 \end{bmatrix}$$

3.
$$\mathbf{y} = \begin{bmatrix} 6 \\ 12 \\ 0 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} -5 \\ -4 \\ 0 \end{bmatrix}$$
 5. $\mathbf{y} = \begin{bmatrix} 1 \\ 3 \\ 1 \\ -4 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 38 \\ 16 \\ 8.5 \\ -4 \end{bmatrix}$

7.
$$LU = \begin{bmatrix} 1 & 0 \\ -3/2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 0 & 7/2 \end{bmatrix}$$

$$\mathbf{9.} \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 & 2 \\ 0 & 3 & 2 \\ 0 & 0 & 4 \end{bmatrix}$$

11.
$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 7 & 2 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

13.
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 4 & 5 & 1 & 0 \\ -2 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & -5 & -3 \\ 0 & -2 & 3 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

15.
$$\begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 5 & 2 \\ 0 & 3 & 2 & 3 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

17.
$$U^{-1} = \begin{bmatrix} 1/2 & -3/4 & -2 \\ 0 & -1/4 & -1 \\ 0 & 0 & -1/2 \end{bmatrix},$$

$$L^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -2 & -1 & 1 \end{bmatrix},$$

$$A^{-1} = \begin{bmatrix} 3 & 5/4 & -2 \\ 3/2 & 3/4 & -1 \\ 1 & 1/2 & -1/2 \end{bmatrix}$$

- **19.** Hint: Think about row reducing $\begin{bmatrix} A & I \end{bmatrix}$.
- **21.** *Hint:* Represent the row operations by a sequence of elementary matrices.
- **23. a.** Denote the rows of *D* as transposes of column vectors. Then partitioned matrix multiplication yields

$$A = CD = \begin{bmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_4 \end{bmatrix} \begin{bmatrix} \mathbf{v}_1^T \\ \vdots \\ \mathbf{v}_4^T \end{bmatrix}$$
$$= \mathbf{c}_1 \mathbf{v}_1^T + \cdots + \mathbf{c}_4 \mathbf{v}_4^T$$

b. A has 40,000 entries. Since C has 1600 entries and D has 400 entries, together they occupy only 5% of the memory needed to store A.

25. Explain why U, D, and V^T are invertible. Then use a theorem on the inverse of a product of invertible matrices.

29. a.
$$\begin{bmatrix} 1 + R_3/R_2 & -R_1 - R_3 - (R_1R_3)/R_2 \\ -1/R_2 & 1 + R_1/R_2 \end{bmatrix}$$

b.
$$A = \begin{bmatrix} 3 & -12 \\ -1/3 & 5/3 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & -6 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1/3 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$$

Set $R_1 = 2$ ohms, $R_2 = 3$ ohms, and $R_3 = 6$ ohms

31. [M]

$$\mathbf{a.} \ \ L = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -.25 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -.25 & -.0667 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -.2667 & -.2857 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -.2679 & -.0833 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -.2917 & -.2921 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -.2697 & -.0861 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -.2948 & -.2931 & 1 \end{bmatrix}$$

h v =

(3.9569, 6.5885, 4.2392, 7.3971, 5.6029, 8.7608, 9.4115, 12.0431)

$$\mathbf{c.} \quad A^{-1} = \begin{bmatrix} .2953 & .0866 & .0945 & .0509 & .0318 & .0227 & .0100 & .0082 \\ .0866 & .2953 & .0509 & .0945 & .0227 & .0318 & .0082 & .0100 \\ .0945 & .0509 & .3271 & .1093 & .1045 & .0591 & .0318 & .0227 \\ .0509 & .0945 & .1093 & .3271 & .0591 & .1045 & .0227 & .0318 \\ .0318 & .0227 & .1045 & .0591 & .3271 & .1093 & .0945 & .0509 \\ .0227 & .0318 & .0591 & .1045 & .1093 & .3271 & .0509 & .0945 \\ .0100 & .0082 & .0318 & .0227 & .0945 & .0509 & .2953 & .0866 \\ .0082 & .0100 & .0227 & .0318 & .0509 & .0945 & .0866 & .2953 \end{bmatrix}$$

Obtain A^{-1} directly and then compute $A^{-1} - U^{-1}L^{-1}$ to compare the two methods for inverting a matrix.

Section 2.6, page 136

1.
$$C = \begin{bmatrix} .10 & .60 & .60 \\ .30 & .20 & 0 \\ .30 & .10 & .10 \end{bmatrix}, \begin{cases} intermediate \\ demand \end{cases} = \begin{bmatrix} 60 \\ 20 \\ 10 \end{bmatrix}$$

3.
$$\mathbf{x} = \begin{bmatrix} 44.44 \\ 16.67 \\ 16.67 \end{bmatrix}$$
 5. $\mathbf{x} = \begin{bmatrix} 110 \\ 120 \end{bmatrix}$

7. a.
$$\begin{bmatrix} 1.6 \\ 1.2 \end{bmatrix}$$
 b. $\begin{bmatrix} 111.6 \\ 121.2 \end{bmatrix}$

c. *Hint:* Find a formula involving $(I - C)^{-1}$. See the *Study Guide*.

$$\mathbf{9.} \ \mathbf{x} = \begin{bmatrix} 82.8 \\ 131.0 \\ 110.3 \end{bmatrix}$$

11. *Hint*: Use properties of transposes to obtain $\mathbf{p}^T = \mathbf{p}^T C + \mathbf{v}^T$, so that $\mathbf{p}^T \mathbf{x} = (\mathbf{p}^T C + \mathbf{v}^T) \mathbf{x} = \mathbf{p}^T C \mathbf{x} + \mathbf{v}^T \mathbf{x}$. Now compute $\mathbf{p}^T \mathbf{x}$ from the production equation.

13. [M] x = (99576, 97703, 51231, 131570, 49488, 329554, 13835). The entries in x suggest more precision in the answer than is warranted by the entries in d, which appear to be accurate only to perhaps the nearest thousand. So a more realistic answer for x might be x = 1000 × (100, 98, 51, 132, 49, 330, 14).

15. $[\mathbf{M}] \mathbf{x}^{(12)}$ is the first vector whose entries are accurate to the nearest thousand. The calculation of $\mathbf{x}^{(12)}$ takes about 1260 flops, while row reduction of $[(I-C) \mathbf{d}]$ takes only about 550 flops. If C is larger than 20×20 , then fewer flops are needed to compute $\mathbf{x}^{(12)}$ by iteration than to compute the equilibrium vector \mathbf{x} by row reduction. As the size of C grows, the advantage of the iterative method increases. Also, because C becomes more sparse for larger models of the economy, fewer iterations are needed for reasonable accuracy.

Section 2.7, page 144

1.
$$\begin{bmatrix} 1 & .25 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 3.
$$\begin{bmatrix} 0 & -1 & -1 \\ 1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

5.
$$\begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0\\ 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

7.
$$\begin{bmatrix} 1/2 & -\sqrt{3}/2 & 3+4\sqrt{3} \\ \sqrt{3}/2 & 1/2 & 4-3\sqrt{3} \\ 0 & 0 & 1 \end{bmatrix}$$

See the Practice Problem.

9. A(BD) requires 800 multiplications. (AB)D requires 408 multiplications. The first method uses about twice as many multiplications. If D had 10,000 columns, the counts would be 80,000 and 40,008, respectively.

11. Use the fact that
$$\sec \varphi - \tan \varphi \sin \varphi = \frac{1}{\cos \varphi} - \frac{\sin^2 \varphi}{\cos \varphi} = \cos \varphi$$

13.
$$\begin{bmatrix} A & \mathbf{p} \\ \mathbf{0}^T & 1 \end{bmatrix} = \begin{bmatrix} I & \mathbf{p} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} A & \mathbf{0} \\ \mathbf{0}^T & 1 \end{bmatrix}$$
. First apply the linear transformation A , and then translate by \mathbf{p} .

15.
$$(12, -6, -3)$$
 17.
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/2 & -\sqrt{3}/2 & 0 \\ 0 & \sqrt{3}/2 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 25. Basis for Col A:
$$\begin{bmatrix} 1 \\ -1 \\ -2 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 2 \\ 2 \\ 6 \end{bmatrix}, \begin{bmatrix} -3 \\ 3 \\ 5 \\ -5 \end{bmatrix}$$

19. The triangle with vertices at (7, 2, 0), (7.5, 5, 0), and (5, 5, 0)

21. [M]
$$\begin{bmatrix} 2.2586 & -1.0395 & -.3473 \\ -1.3495 & 2.3441 & .0696 \\ .0910 & -.3046 & 1.2777 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Section 2.8, page 151

- 1. The set is closed under sums but not under multiplication by a negative scalar. (Sketch an example.)
- 3. The set is not closed under sums or scalar multiples.
- **5.** Yes. The system corresponding to $\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{w} \end{bmatrix}$ is consistent.
- 7. a. The three vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3
 - **b.** Infinitely many vectors
 - **c.** Yes, because $A\mathbf{x} = \mathbf{p}$ has a solution.
- **9.** No, because $A\mathbf{p} \neq \mathbf{0}$.
- 11. p = 4 and q = 3. Nul A is a subspace of \mathbb{R}^4 because solutions of $A\mathbf{x} = \mathbf{0}$ must have four entries, to match the columns of A. Col A is a subspace of \mathbb{R}^3 because each column vector has three entries.
- **13.** For Nul A, choose (1, -2, 1, 0) or (-1, 4, 0, 1), for example. For Col A, select any column of A.
- **15.** Let A be the matrix whose columns are the vectors given. Then A is invertible because its determinant is nonzero, and so its columns form a basis for \mathbb{R}^2 , by the IMT (or by Example 5). (Other reasons for the invertibility of A could be given.)
- 17. Let A be the matrix whose columns are the vectors given. Row reduction shows three pivots, so A is invertible. By the IMT, the columns of A form a basis for \mathbb{R}^3 .
- **19.** Let A be the 3×2 matrix whose columns are the vectors given. The columns of A cannot possibly span \mathbb{R}^3 because A cannot have a pivot in every row. So the columns are not a basis for \mathbb{R}^3 . (They are a basis for a plane in \mathbb{R}^3 .)
- **21.** Read the section carefully, and write your answers before checking the *Study Guide*. This section has terms and key concepts that you must learn now before going on.

23. Basis for Col A:
$$\begin{bmatrix} 4 \\ 6 \\ 3 \end{bmatrix}, \begin{bmatrix} 5 \\ 5 \\ 4 \end{bmatrix}$$
Basis for Nul A:
$$\begin{bmatrix} 4 \\ -5 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -7 \\ 6 \\ 0 \\ 1 \end{bmatrix}$$

25. Basis for Col A:
$$\begin{bmatrix} 1 \\ -1 \\ -2 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 2 \\ 2 \\ 6 \end{bmatrix}, \begin{bmatrix} -3 \\ 3 \\ 5 \\ -5 \end{bmatrix}$$
Basis for Nul A:
$$\begin{bmatrix} 2 \\ -2.5 \\ 1 \\ 0 \\ -4 \end{bmatrix}, \begin{bmatrix} -7 \\ .5 \\ 0 \\ -4 \end{bmatrix}$$

- 27. Construct a nonzero 3×3 matrix A, and construct **b** to be almost any convenient linear combination of the columns of A.
- **29.** *Hint:* You need a nonzero matrix whose columns are linearly dependent.
- **31.** If $\operatorname{Col} F \neq \mathbb{R}^5$, then the columns of F do not span \mathbb{R}^5 . Since F is square, the IMT shows that F is not invertible and the equation $F\mathbf{x} = \mathbf{0}$ has a nontrivial solution. That is, $\operatorname{Nul} F$ contains a nonzero vector. Another way to describe this is to write $\operatorname{Nul} F \neq \{\mathbf{0}\}$.
- **33.** If Nul $C = \{0\}$, then the equation $C\mathbf{x} = \mathbf{0}$ has only the trivial solution. Since C is square, the IMT shows that C is invertible and the equation $C\mathbf{x} = \mathbf{b}$ has a solution for each \mathbf{b} in \mathbb{R}^6 . Also, each solution is unique, by Theorem 5 in Section 2.2.
- **35.** If Nul *B* contains nonzero vectors, then the equation $B\mathbf{x} = \mathbf{0}$ has nontrivial solutions. Since *B* is square, the IMT shows that *B* is not invertible and the columns of *B* do not span \mathbb{R}^5 . So Col *B* is a subspace of \mathbb{R}^5 , but Col $B \neq \mathbb{R}^5$.
- **37.** [M] Display the reduced echelon form of A, and select the pivot columns of A as a basis for Col A. For Nul A, write the solution of $A\mathbf{x} = \mathbf{0}$ in parametric vector form.

Basis for Col A:
$$\begin{bmatrix} 3 \\ -7 \\ -5 \\ 3 \end{bmatrix}$$
, $\begin{bmatrix} -5 \\ 9 \\ 7 \\ -7 \end{bmatrix}$
Basis for Nul A: $\begin{bmatrix} -2.5 \\ -1.5 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 4.5 \\ 2.5 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -3.5 \\ -1.5 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

Section 2.9, page 157

1.
$$\mathbf{x} = 3\mathbf{b}_1 + 2\mathbf{b}_2 = 3\begin{bmatrix} 1 \\ 1 \end{bmatrix} + 2\begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 7 \\ 1 \end{bmatrix}$$

3.
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 5. $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$ 7. $[\mathbf{w}]_{\mathcal{B}} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 1.5 \\ .5 \end{bmatrix}$

9. Basis for Col *A*:
$$\begin{bmatrix} 1 \\ 3 \\ 2 \\ 5 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ 1 \\ -1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -6 \\ 5 \\ 9 \\ 14 \end{bmatrix}$; dim Col $A = 3$

Basis for Nul A:
$$\begin{bmatrix} -3\\1\\0\\0 \end{bmatrix}$$
; dim Nul $A = 1$

11. Basis for Col A:
$$\begin{bmatrix} 2 \\ 3 \\ 0 \\ -3 \end{bmatrix}, \begin{bmatrix} -5 \\ -8 \\ 9 \\ -7 \end{bmatrix}; \dim \operatorname{Col} A = 2$$

Basis for Nul A:
$$\begin{bmatrix} -2\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\0\\1\\0 \end{bmatrix} \begin{bmatrix} -1\\0\\-1\\0\\1 \end{bmatrix}; \operatorname{dim} \operatorname{Nul} A = 3$$

- **13.** The vectors \mathbf{v}_1 , \mathbf{v}_3 , and \mathbf{v}_4 form a basis for the given subspace, H. So, dimension H = 3.
- **15.** Col $A = \mathbb{R}^4$, because A has a pivot in each row, and so the columns of A span \mathbb{R}^4 . Nul A cannot equal \mathbb{R}^2 , because Nul A is a subspace of \mathbb{R}^6 . It is true, however, that Nul A is two-dimensional. Reason: The equation $A\mathbf{x} = \mathbf{0}$ has two free variables, because A has six columns and only four of them are pivot columns.
- 17. See the Study Guide after you write your justifications.
- **19.** The fact that the solution space of $A\mathbf{x} = \mathbf{0}$ has a basis of three vectors means that dim Nul A = 3. Since a 5×7 matrix A has seven columns, the Rank Theorem shows that rank $A = 7 \dim \text{Nul } A = 4$. See the *Study Guide* for a justification that does not explicitly mention the Rank Theorem.
- 21. A 9×8 matrix has eight columns. By the Rank Theorem, dim Nul A = 8 rank A. Since the rank is 7, dim Nul A = 1. That is, the dimension of the solution space of $A\mathbf{x} = \mathbf{0}$ is 1.
- 23. Create a 3×5 matrix A with two pivot columns. The remaining three columns will correspond to free variables in the equation $A\mathbf{x} = \mathbf{0}$. So the desired construction is possible.
- **25.** The p columns of A span Col A by definition. If dim Col A = p, then the spanning set of p columns is automatically a basis for Col A, by the Basis Theorem. In particular, the columns are linearly independent.
- **27. a.** *Hint:* The columns of *B* span *W*, and each vector \mathbf{a}_j is in *W*. The vector \mathbf{c}_j is in \mathbb{R}^p because *B* has *p* columns.
 - **b.** *Hint:* What is the size of C?
 - **c.** *Hint:* How are *B* and *C* related to *A*?
- **29.** [M] Your calculations should show that the matrix $[\mathbf{v}_1 \quad \mathbf{v}_2 \quad \mathbf{x}]$ corresponds to a consistent system. The \mathcal{B} -coordinate vector of \mathbf{x} is (2, -1).

Chapter 2 Supplementary Exercises, page 160

1. a. T b. F c. T d. F e. F f. F g. T h. T i. T j. F k. T l. F

- m. F n. T o. F p. T
- **3.** *I*
- 5. $A^2 = 2A I$. Multiply by A: $A^3 = 2A^2 A$. Substitute $A^2 = 2A - I$: $A^3 = 2(2A - I) - A = 3A - 2I$. Multiply by A again: $A^4 = A(3A - 2I) = 3A^2 - 2A$. Substitute the identity $A^2 = 2A - I$ again: $A^4 = 3(2A - I) - 2A = 4A - 3I$.
- 7. $\begin{bmatrix} 10 & -1 \\ 9 & 10 \\ -5 & -3 \end{bmatrix}$ 9. $\begin{bmatrix} -3 & 13 \\ -8 & 27 \end{bmatrix}$
- 11. **a.** $p(x_i) = c_0 + c_1 x_i + \dots + c_{n-1} x_i^{n-1}$ = $\operatorname{row}_i(V) \cdot \begin{bmatrix} c_0 \\ \vdots \\ c_{n-1} \end{bmatrix} = \operatorname{row}_i(V\mathbf{c}) = y_i$
 - **b.** Suppose x_1, \ldots, x_n are distinct, and suppose $V \mathbf{c} = \mathbf{0}$ for some vector \mathbf{c} . Then the entries in \mathbf{c} are the coefficients of a polynomial whose value is zero at the distinct points x_1, \ldots, x_n . However, a nonzero polynomial of degree n-1 cannot have n zeros, so the polynomial must be identically zero. That is, the entries in \mathbf{c} must all be zero. This shows that the columns of V are linearly independent.
 - **c.** *Hint*: When x_1, \ldots, x_n are distinct, there is a vector **c** such that V **c** = **y**. Why?
- **13.** a. $P^2 = (\mathbf{u}\mathbf{u}^T)(\mathbf{u}\mathbf{u}^T) = \mathbf{u}(\mathbf{u}^T\mathbf{u})\mathbf{u}^T = \mathbf{u}(1)\mathbf{u}^T = P$
 - **b.** $P^T = (\mathbf{u}\mathbf{u}^T)^T = \mathbf{u}^{TT}\mathbf{u}^T = \mathbf{u}\mathbf{u}^T = P$
 - c. $Q^2 = (I 2P)(I 2P)$ = I - I(2P) - 2PI + 2P(2P)= $I - 4P + 4P^2 = I$, because of part (a).
- **15.** Left-multiplication by an elementary matrix produces an elementary row operation:

$$B \sim E_1 B \sim E_2 E_1 B \sim E_3 E_2 E_1 B = C$$

So B is row equivalent to C. Since row operations are reversible, C is row equivalent to B. (Alternatively, show C being changed into B by row operations using the inverses of the E_i .)

- 17. Since B is 4×6 (with more columns than rows), its six columns are linearly dependent and there is a nonzero \mathbf{x} such that $B\mathbf{x} = \mathbf{0}$. Thus $AB\mathbf{x} = A\mathbf{0} = \mathbf{0}$, which shows that the matrix AB is not invertible, by the Invertible Matrix Theorem.
- **19.** [M] To four decimal places, as k increases,

$$A^{k} \rightarrow \begin{bmatrix} .2857 & .2857 & .2857 \\ .4286 & .4286 & .4286 \\ .2857 & .2857 & .2857 \end{bmatrix} \text{ and}$$

$$B^{k} \rightarrow \begin{bmatrix} .2022 & .2022 & .2022 \\ .3708 & .3708 & .3708 \\ .4270 & .4270 & .4270 \end{bmatrix}$$

or, in rational format,

$$A^{k} \rightarrow \begin{bmatrix} 2/7 & 2/7 & 2/7 \\ 3/7 & 3/7 & 3/7 \\ 2/7 & 2/7 & 2/7 \end{bmatrix} \text{ and }$$

$$B^{k} \rightarrow \begin{bmatrix} 18/89 & 18/89 & 18/89 \\ 33/89 & 33/89 & 33/89 \\ 38/89 & 38/89 & 38/89 \end{bmatrix}$$

Chapter 3

Section 3.1, page 167

- - **3.** −5 **5.** −23
- **7.** 4
- **9.** 10. Start with row 3.
- 11. -12. Start with column 1 or row 4.
- 13. 6. Start with row 2 or column 2.
- **15.** 1 **17.** −5
- **19.** ad bc, cb da. Interchanging two rows changes the sign of the determinant.
- **21.** -2, (18 + 12k) (20 + 12k) = -2. A row replacement does not change the value of a determinant.
- **23.** -5, k(4) k(2) + k(-7) = -5k. Scaling a row by a constant k multiplies the determinant by k.
- **25.** 1 **27.** *k* **29.** −1
- **31.** 1. The matrix is upper or lower triangular, with only 1's on the diagonal. The determinant is 1, the product of the diagonal entries.
- **33.** det $EA = \det \begin{bmatrix} c & d \\ a & b \end{bmatrix} = cb ad = (-1)(ad bc)$
- **35.** det $EA = \det \begin{bmatrix} a + kc & b + kd \\ c & d \end{bmatrix}$ = ad + kcd - bc - kdc = (+1)(ad - bc) $= (\det E)(\det A)$
- **37.** $5A = \begin{bmatrix} 15 & 5 \\ 20 & 10 \end{bmatrix}$; no
- **39.** Hints are in the *Study Guide*.
- 41. The area of the parallelogram and the determinant of $\begin{bmatrix} \mathbf{u} & \mathbf{v} \end{bmatrix}$ both equal 6. If $\mathbf{v} = \begin{bmatrix} x \\ 2 \end{bmatrix}$ for any x, the area is still 6. In each case the base of the parallelogram is unchanged, and the altitude remains 2 because the second coordinate of v is always 2.
- **43.** [M] In general, det(A + B) is not equal to det A + det B.
- 45. [M] You can check your conjectures when you get to Section 3.2.

Section 3.2, page 175

- 1. Interchanging two rows reverses the sign of the determinant.
- 3. A row replacement operation does not change the determinant.
- **5.** 3
- **7.** 0 **9.** 3
- **11.** 120

- **13.** 6
- **15.** 35
- **17.** −7
- **19.** 14

- 21. Invertible
- 23. Not invertible
- 25. Linearly independent
- **27.** See the *Study Guide*.
- **29.** −32
- **31.** *Hint:* Show that $(\det A)(\det A^{-1}) = 1$.
- **33.** *Hint:* Use Theorem 6.
- **35.** *Hint:* Use Theorem 6 and another theorem.
- **37.** $\det AB = \det \begin{bmatrix} 6 & 0 \\ 17 & 4 \end{bmatrix} = 24;$ $(\det A)(\det B) = 3 \cdot 8 = 24$
- **39. a.** −12
 - **b.** 500
- **d.** $\frac{1}{4}$
- **41.** det A = (a + e)d (b + f)c = ad + ed bc fc $= (ad - bc) + (ed - fc) = \det B + \det C$
- **43.** *Hint:* Compute det *A* by a cofactor expansion down column
- **45.** [M] See the *Study Guide* after you have made a conjecture about A^TA and AA^T .

Section 3.3, page 184

- **1.** $\begin{bmatrix} 5/6 \\ -1/6 \end{bmatrix}$ **3.** $\begin{bmatrix} 4 \\ 5/2 \end{bmatrix}$ **5.** $\begin{bmatrix} 3/2 \\ 4 \\ -7/2 \end{bmatrix}$
- 7. $s \neq \pm \sqrt{3}$; $x_1 = \frac{5s+4}{6(s^2-3)}$, $x_2 = \frac{-4s-15}{4(s^2-3)}$
- **9.** $s \neq 0, -1$; $x_1 = \frac{1}{3(s+1)}, x_2 = \frac{4s+3}{6s(s+1)}$
- **11.** adj $A = \begin{bmatrix} 0 & 1 & 0 \\ -3 & -1 & -3 \\ 3 & 2 & 6 \end{bmatrix}$, $A^{-1} = \frac{1}{3} \begin{bmatrix} 0 & 1 & 0 \\ -3 & -1 & -3 \\ 3 & 2 & 6 \end{bmatrix}$
- **13.** $\operatorname{adj} A = \begin{bmatrix} -1 & -1 & 5 \\ 1 & -5 & 1 \\ 1 & 7 & -5 \end{bmatrix}, A^{-1} = \frac{1}{6} \begin{bmatrix} -1 & -1 & 5 \\ 1 & -5 & 1 \\ 1 & 7 & -5 \end{bmatrix}$
- **15.** adj $A = \begin{bmatrix} 2 & 0 & 0 \\ 2 & 6 & 0 \\ -1 & -9 & 3 \end{bmatrix}, A^{-1} = \frac{1}{6} \begin{bmatrix} 2 & 0 & 0 \\ 2 & 6 & 0 \\ -1 & -9 & 3 \end{bmatrix}$
- 17. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then $C_{11} = d$, $C_{12} = -c$, $C_{21} = -b$, $C_{22} = \vec{a}$. The adjugate matrix is the transpose of cofactors:

$$\operatorname{adj} A = \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right]$$

Following Theorem 8, we divide by $\det A$; this produces the formula from Section 2.2.

- **19.** 8 **21.** 14 **23.** 22
- **25.** A 3×3 matrix A is not invertible if and only if its columns are linearly dependent (by the Invertible Matrix Theorem). This happens if and only if one of the columns is in the plane spanned by the other two columns, which is equivalent to the condition that the parallelepiped determined by these columns has zero volume, which in turn is equivalent to the condition that det A = 0.
- **27.** 24 **29.** $\frac{1}{2} | \det [\mathbf{v}_1 \ \mathbf{v}_2] |$
- **31. a.** See Example 5. **b.** $4\pi abc/3$
- 33. [M] In MATLAB, the entries in B inv(A) are approximately 10^{-15} or smaller. See the *Study Guide* for suggestions that may save you keystrokes as you work.
- **35.** [M] MATLAB Student Version 4.0 uses 57,771 flops for inv(A), and 14,269,045 flops for the inverse formula. The inv(A) command requires only about 0.4% of the operations for the inverse formula. The *Study Guide* shows how to use the flops command.

Chapter 3 Supplementary Exercises, page 185

The solution for Exercise 3 is based on the fact that if a matrix contains two rows (or two columns) that are multiples of each other, then the determinant of the matrix is zero, by Theorem 4, because the matrix cannot be invertible.

3. Make two row replacement operations, and then factor out a common multiple in row 2 and a common multiple in row 3.

$$\begin{vmatrix} 1 & a & b+c \\ 1 & b & a+c \\ 1 & c & a+b \end{vmatrix} = \begin{vmatrix} 1 & a & b+c \\ 0 & b-a & a-b \\ 0 & c-a & a-c \end{vmatrix}$$
$$= (b-a)(c-a) \begin{vmatrix} 1 & a & b+c \\ 0 & 1 & -1 \\ 0 & 1 & -1 \end{vmatrix}$$
$$= 0$$

- **5.** −12
- 7. When the determinant is expanded by cofactors of the first row, the equation has the form ax + by + c = 0, where at least one of a and b is not zero. This is the equation of a line. It is clear that (x1, y1) and (x2, y2) are on the line, because when the coordinates of one of the points are substituted for x and y, two rows of the matrix are equal and so the determinant is zero.

9.
$$T \sim \begin{bmatrix} 1 & a & a^2 \\ 0 & b-a & b^2-a^2 \\ 0 & c-a & c^2-a^2 \end{bmatrix}$$
. Thus, by Theorem 3,

$$\det T = (b-a)(c-a) \det \begin{bmatrix} 1 & a & a^2 \\ 0 & 1 & b+a \\ 0 & 1 & c+a \end{bmatrix}$$
$$= (b-a)(c-a) \det \begin{bmatrix} 1 & a & a^2 \\ 0 & 1 & b+a \\ 0 & 0 & c-b \end{bmatrix}$$
$$= (b-a)(c-a)(c-b)$$

- 11. Area = 12. If one vertex is subtracted from all four vertices, and if the new vertices are $\mathbf{0}$, \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 , then the translated figure (and hence the original figure) will be a parallelogram if and only if one of \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 is the sum of the other two vectors.
- **13.** By the Inverse Formula, $(\operatorname{adj} A) \cdot \frac{1}{\det A} A = A^{-1} A = I$. By the Invertible Matrix Theorem, $\operatorname{adj} A$ is invertible and $(\operatorname{adj} A)^{-1} = \frac{1}{\det A} A$.
- **15. a.** $X = CA^{-1}$, $Y = D CA^{-1}B$. Now use Exercise 14(c).
 - **b.** From part (a), and the multiplicative property of determinants,

$$\det \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \det [A(D - CA^{-1}B)]$$

$$= \det [AD - ACA^{-1}B]$$

$$= \det [AD - CAA^{-1}B]$$

$$= \det [AD - CB]$$

where the equality AC = CA was used in the third step.

- 17. First consider the case n=2, and prove that the result holds by directly computing the determinants of B and C. Now assume that the formula holds for all $(k-1) \times (k-1)$ matrices, and let A, B, and C be $k \times k$ matrices. Use a cofactor expansion along the first column and the inductive hypothesis to find det B. Use row replacement operations on C to create zeros below the first pivot and produce a triangular matrix. Find the determinant of this matrix and add it to det B to get the result.
- **19.** [M] Compute:

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{vmatrix} = 1, \quad \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \end{vmatrix} = 1,$$

$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 & 3 \\ 1 & 2 & 3 & 4 & 4 \\ 1 & 3 & 2 & 3 & 4 \\ 1 & 3 & 2 & 3 & 4 \\ 1 & 3 & 2 & 3 & 4 \\ 1 & 3 & 3 & 4 & 4 \\ 1 & 3 & 3 & 3 & 4 \\ 1 & 3 & 3 & 3 & 4 \\ 1 & 3 & 3 & 3 & 4 \\ 1 & 3 & 3 & 3 & 4 \\ 1 & 3 & 3 & 3 & 4 \\ 1 & 3 & 3 & 3 & 4 \\ 1 & 3 & 3 & 3 & 4 \\ 1 & 3 & 3 & 3 &$$

Conjecture:

$$\begin{vmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 2 & 2 & & 2 \\ 1 & 2 & 3 & & 3 \\ \vdots & & \ddots & \vdots \\ 1 & 2 & 3 & \dots & n \end{vmatrix} = 1$$

To confirm the conjecture, use row replacement operations to create zeros below the first pivot, then the second pivot, and so on. The resulting matrix is

$$\begin{vmatrix} 1 & 1 & 1 & \dots & 1 \\ 0 & 1 & 1 & & & 1 \\ 0 & 0 & 1 & & & 1 \\ \vdots & & & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{vmatrix}$$

which is an upper triangular matrix with determinant 1.

Chapter 4

Section 4.1, page 195

- 1. a. $\mathbf{u} + \mathbf{v}$ is in V because its entries will both be nonnegative.
 - **b.** Example: If $\mathbf{u} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ and c = -1, then \mathbf{u} is in V, but $c\mathbf{u}$ is not in V.
- **3.** Example: If $\mathbf{u} = \begin{bmatrix} .5 \\ .5 \end{bmatrix}$ and c = 4, then \mathbf{u} is in H, but $c\mathbf{u}$ is not in H.
- **5.** Yes, by Theorem 1, because the set is Span $\{t^2\}$.
- No, the set is not closed under multiplication by scalars that are not integers.
- **9.** $H = \text{Span } \{\mathbf{v}\}$, where $\mathbf{v} = \begin{bmatrix} -2 \\ 5 \\ 3 \end{bmatrix}$. By Theorem 1, H is a subspace of \mathbb{R}^3 .
- 11. $W = \text{Span} \{\mathbf{u}, \mathbf{v}\}$, where $\mathbf{u} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}$. By Theorem 1, W is a subspace of \mathbb{R}^3 .
- 13. a. There are only three vectors in $\{v_1, v_2, v_3\}$, and w is not one of them.
 - **b.** There are infinitely many vectors in Span $\{v_1, v_2, v_3\}$.
 - c. w is in Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ because $\mathbf{w} = \mathbf{v}_1 + \mathbf{v}_2$.
- **15.** W is not a vector space because the zero vector is not in W.

$$\mathbf{17.} \ \ S = \left\{ \begin{bmatrix} 2\\0\\-1\\0 \end{bmatrix}, \begin{bmatrix} -1\\3\\0\\3 \end{bmatrix}, \begin{bmatrix} 0\\-1\\3\\0 \end{bmatrix} \right\}$$

19. Hint: Use Theorem 1.

Warning: Although the Study Guide has complete solutions for every odd-numbered exercise whose answer here is only a "Hint," you must really try to work the solution yourself. Otherwise, you will not benefit from the exercise.

- **21.** Yes. The conditions for a subspace are obviously satisfied: The zero matrix is in *H*, the sum of two upper triangular matrices is upper triangular, and any scalar multiple of an upper triangular matrix is again upper triangular.
- 23. See the Study Guide after you have written your answers.
- **25.** 4 **27.** a. 8 b. 3 c. 5 d. 4
- 29. $\mathbf{u} + (-1)\mathbf{u} = 1\mathbf{u} + (-1)\mathbf{u}$ Axiom 10 = $[1 + (-1)]\mathbf{u}$ Axiom 8 = $0\mathbf{u} = \mathbf{0}$ Exercise 27

From Exercise 26, it follows that $(-1)\mathbf{u} = -\mathbf{u}$.

- **31.** Any subspace *H* that contains **u** and **v** must also contain all scalar multiples of **u** and **v** and hence must contain all sums of scalar multiples of **u** and **v**. Thus *H* must contain Span {**u**, **v**}.
- **33.** *Hint*: For part of the solution, consider \mathbf{w}_1 and \mathbf{w}_2 in H + K, and write \mathbf{w}_1 and \mathbf{w}_2 in the form $\mathbf{w}_1 = \mathbf{u}_1 + \mathbf{v}_1$ and $\mathbf{w}_2 = \mathbf{u}_2 + \mathbf{v}_2$, where \mathbf{u}_1 and \mathbf{u}_2 are in H, and \mathbf{v}_1 and \mathbf{v}_2 are in K.
- **35.** [M] The reduced echelon form of $[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{w}]$ shows that $\mathbf{w} = \mathbf{v}_1 2\mathbf{v}_2 + \mathbf{v}_3$. Hence \mathbf{w} is in the subspace spanned by $\mathbf{v}_1, \mathbf{v}_2$, and \mathbf{v}_3 .
- **37.** [M] The functions are cos 4*t* and cos 6*t*. See Exercise 34 in Section 4.5.

Section 4.2, page 205

- 1. $\begin{bmatrix} 3 & -5 & -3 \\ 6 & -2 & 0 \\ -8 & 4 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ -4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$ so **w** is in Nul A.
- 3. $\begin{bmatrix} 2 \\ -3 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -4 \\ 2 \\ 0 \\ 1 \end{bmatrix}$ 5. $\begin{bmatrix} 4 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 0 \\ 5 \\ 1 \\ 0 \end{bmatrix}$
- 7. W is not a subspace of \mathbb{R}^3 because the zero vector (0,0,0) is not in W.
- **9.** *W* is a subspace of \mathbb{R}^4 because *W* is the set of solutions of the system

$$p - 3q - 4s = 0$$
$$2p - s - 5r = 0$$

11. W is not a subspace because **0** is not in W. Justification: If a typical element (s - 2t, 3 + 3s, 3s + t, 2s) were zero, then 3 + 3s = 0 and 2s = 0, which is impossible.

13. $W = \operatorname{Col} A$ for $A = \begin{bmatrix} 1 & -6 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$, so W is a vector space by

Theorem 3.

- $\begin{array}{c|cccc}
 \mathbf{15.} & \begin{bmatrix} 0 & 2 & 1 \\ 1 & -1 & 2 \\ 3 & 1 & 0 \\ 2 & -1 & -1 \end{bmatrix}
 \end{array}$
- **17. a.** 2 **b.** 4
- **19. a.** 5
- **21.** The vector $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ is in Nul A and the vector $\begin{bmatrix} -3 \\ -9 \end{bmatrix}$ is in

Col A. Other answers are possible.

- **23.** w is in both Nul A and Col A.
- 25. See the Study Guide. By now you should know how to use
- **27.** Let $\mathbf{x} = \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & -3 & -3 \\ -2 & 4 & 2 \\ -1 & 5 & 7 \end{bmatrix}$. Then \mathbf{x} is in

Nul A. Since Nul A is a subspace of \mathbb{R}^3 , $10\mathbf{x}$ is in Nul A.

- **29.** a. A0 = 0, so the zero vector is in Col A.
 - b. By a property of matrix multiplication, $A\mathbf{x} + A\mathbf{w} = A(\mathbf{x} + \mathbf{w})$, which shows that $A\mathbf{x} + A\mathbf{w}$ is a linear combination of the columns of A and hence is in $\operatorname{Col} A$.
 - **c.** $c(A\mathbf{x}) = A(c\mathbf{x})$, which shows that $c(A\mathbf{x})$ is in Col A for all scalars c.
- **31.** a. For arbitrary polynomials \mathbf{p} , \mathbf{q} in \mathbb{P}_2 and any scalar c,

$$T(\mathbf{p} + \mathbf{q}) = \begin{bmatrix} (\mathbf{p} + \mathbf{q})(0) \\ (\mathbf{p} + \mathbf{q})(1) \end{bmatrix} = \begin{bmatrix} \mathbf{p}(0) + \mathbf{q}(0) \\ \mathbf{p}(1) + \mathbf{q}(1) \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{p}(0) \\ \mathbf{p}(1) \end{bmatrix} + \begin{bmatrix} \mathbf{q}(0) \\ \mathbf{q}(1) \end{bmatrix} = T(\mathbf{p}) + T(\mathbf{q})$$
$$T(c\mathbf{p}) = \begin{bmatrix} c\mathbf{p}(0) \\ c\mathbf{p}(1) \end{bmatrix} = c \begin{bmatrix} \mathbf{p}(0) \\ \mathbf{p}(1) \end{bmatrix} = cT(\mathbf{p})$$

So T is a linear transformation from \mathbb{P}_2 into \mathbb{P}_2 .

- **b.** Any quadratic polynomial that vanishes at 0 and 1 must be a multiple of $\mathbf{p}(t) = t(t-1)$. The range of T is \mathbb{R}^2 .
- **33.** a. For A, B in $M_{2\times 2}$ and any scalar c,

$$T(A+B) = (A+B) + (A+B)^{T}$$

$$= A+B+A^{T}+B^{T}$$
 Transpose property
$$= (A+A^{T}) + (B+B^{T}) = T(A) + T(B)$$

$$T(cA) = (cA) + (cA)^{T} = cA + cA^{T}$$

$$= c(A+A^{T}) = cT(A)$$

So T is a linear transformation from $M_{2\times 2}$ into $M_{2\times 2}$.

b. If B is any element in $M_{2\times 2}$ with the property that $B^T = B$, and if $A = \frac{1}{2}B$, then

$$T(A) = \frac{1}{2}B + (\frac{1}{2}B)^T = \frac{1}{2}B + \frac{1}{2}B = B$$

c. Part (b) showed that the range of T contains all B such that $B^T = B$. So it suffices to show that any B in the range of T has this property. If B = T(A), then by properties of transposes,

$$B^{T} = (A + A^{T})^{T} = A^{T} + A^{TT} = A^{T} + A = B$$

- **d.** The kernel of T is $\left\{ \begin{bmatrix} 0 & b \\ -b & 0 \end{bmatrix} : b \text{ real} \right\}$.
- **35.** *Hint*: Check the three conditions for a subspace. Typical elements of T(U) have the form $T(\mathbf{u}_1)$ and $T(\mathbf{u}_2)$, where \mathbf{u}_1 , \mathbf{u}_2 are in U.
- **37.** [M] w is in Col A but not in Nul A. (Explain why.)
- **39.** [M] The reduced echelon form of A is

$$\begin{bmatrix} 1 & 0 & 1/3 & 0 & 10/3 \\ 0 & 1 & 1/3 & 0 & -26/3 \\ 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Section 4.3, page 213

1. The 3×3 matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ has three pivot

positions. By the Invertible Matrix Theorem, A is invertible and its columns form a basis for \mathbb{R}^3 . (See Example 3.)

- **3.** This set does not form a basis for \mathbb{R}^3 . The set is linearly dependent and does not span \mathbb{R}^3 .
- **5.** This set does not form a basis for \mathbb{R}^3 . The set is linearly dependent because the zero vector is in the set. However,

$$\begin{bmatrix} 3 & -3 & 0 & 0 \\ -3 & 7 & 0 & -3 \\ 0 & 0 & 0 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 4 & 0 & -3 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$

The matrix has a pivot in each row and hence its columns span \mathbb{R}^3 .

7. This set does not form a basis for \mathbb{R}^3 . The set is linearly independent because one vector is not a multiple of the other. However, the vectors do not span \mathbb{R}^3 . The matrix

$$\begin{bmatrix} -2 & 6 \\ 3 & -1 \\ 0 & 5 \end{bmatrix}$$
 can have at most two pivots since it has only

two columns. So there will not be a pivot in each row.

9.
$$\begin{bmatrix} 2 \\ -1 \\ 1 \\ 0 \end{bmatrix}$$
 11.
$$\begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$$

13. Basis for Nul A: $\begin{bmatrix} -6 \\ -5/2 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -5 \\ -3/2 \\ 0 \\ 1 \end{bmatrix}$ Basis for Col A: $\begin{bmatrix} -2 \\ 2 \\ -3 \end{bmatrix}$, $\begin{bmatrix} 4 \\ -6 \\ 8 \end{bmatrix}$

- 15. $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4, \mathbf{v}_5\}$ 17. [M] $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_5\}$
- 19. The three simplest answers are $\{v_1, v_2\}, \{v_1, v_3\},$ and $\{\mathbf{v}_2, \mathbf{v}_3\}$. Other answers are possible.
- 21. See the Study Guide for hints.
- 23. Hint: Use the Invertible Matrix Theorem.
- **25.** No. (Why is the set not a basis for H?)
- 27. $\{\cos \omega t, \sin \omega t\}$
- **29.** Let *A* be the $n \times k$ matrix [$\mathbf{v}_1 \cdots \mathbf{v}_k$]. Since *A* has fewer columns than rows, there cannot be a pivot position in each row of A. By Theorem 4 in Section 1.4, the columns of A do not span \mathbb{R}^n and hence are not a basis for \mathbb{R}^n .
- **31.** Hint: If $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is linearly dependent, then there exist c_1, \ldots, c_p , not all zero, such that $c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p = \mathbf{0}$. Use this equation.
- 33. Neither polynomial is a multiple of the other polynomial, so $\{\mathbf{p}_1, \mathbf{p}_2\}$ is a linearly independent set in \mathbb{P}_3 .
- 35. Let $\{v_1, v_3\}$ be any linearly independent set in the vector space V, and let \mathbf{v}_2 and \mathbf{v}_4 be linear combinations of \mathbf{v}_1 and \mathbf{v}_3 . Then $\{\mathbf{v}_1, \mathbf{v}_3\}$ is a basis for Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$.
- **37.** [M] You could be clever and find special values of t that produce several zeros in (5), and thereby create a system of equations that can be solved easily by hand. Or, you could use values of t such as t = 0, 1, .2, ... to create a system of equations that you can solve with a matrix program.

Section 4.4, page 222

1.
$$\begin{bmatrix} 3 \\ -7 \end{bmatrix}$$

3.
$$\begin{bmatrix} -7 \\ 4 \\ 3 \end{bmatrix}$$

5.
$$\begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

1.
$$\begin{bmatrix} 3 \\ -7 \end{bmatrix}$$
 3. $\begin{bmatrix} -7 \\ 4 \\ 3 \end{bmatrix}$ 5. $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$ 7. $\begin{bmatrix} -1 \\ -1 \\ 3 \end{bmatrix}$

9.
$$\begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix}$$
 11. $\begin{bmatrix} 5 \\ 1 \end{bmatrix}$ **13.** $\begin{bmatrix} 2 \\ 6 \\ -1 \end{bmatrix}$

11.
$$\begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

13.
$$\begin{bmatrix} 2 \\ 6 \\ -1 \end{bmatrix}$$

- 15. The Study Guide has hints.
- 17. $\begin{bmatrix} 1 \\ 1 \end{bmatrix} = 5\mathbf{v}_1 2\mathbf{v}_2 = 10\mathbf{v}_1 3\mathbf{v}_2 + \mathbf{v}_3 = -\mathbf{v}_2 \mathbf{v}_3$ (infinitely many answers)
- **19.** *Hint*: By hypothesis, the zero vector has a unique representation as a linear combination of elements of S.
- 23. Hint: Suppose that $[\mathbf{u}]_{\mathcal{B}} = [\mathbf{w}]_{\mathcal{B}}$ for some \mathbf{u} and \mathbf{w} in V, and denote the entries in $[\mathbf{u}]_{\mathcal{B}}$ by c_1, \ldots, c_n . Use the definition of $[\mathbf{u}]_{\mathcal{B}}$.
- **25.** One possible approach: First, show that if $\mathbf{u}_1, \dots, \mathbf{u}_p$ are linearly *dependent*, then $[\mathbf{u}_1]_{\mathcal{B}}, \dots, [\mathbf{u}_p]_{\mathcal{B}}$ are linearly dependent. Second, show that if $[\mathbf{u}_1]_{\mathcal{B}}, \dots, [\mathbf{u}_p]_{\mathcal{B}}$ are linearly dependent, then $\mathbf{u}_1, \dots, \mathbf{u}_p$ are linearly dependent. Use the two equations displayed in the exercise. A slightly different proof is given in the Study Guide.

- 27. Linearly independent. (Justify answers to Exercises 27–34.)
- **29.** Linearly dependent.
- 31. a. The coordinate vectors $\begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix}$, $\begin{bmatrix} -3 \\ 5 \\ -7 \end{bmatrix}$, $\begin{bmatrix} -4 \\ 5 \\ -6 \end{bmatrix}$,
 - $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ do not span \mathbb{R}^3 . Because of the isomorphism

between \mathbb{R}^3 and \mathbb{P}_2 , the corresponding polynomials do not span \mathbb{P}_2 .

b. The coordinate vectors

span \mathbb{R}^3 . Because of the isomorphism between \mathbb{R}^3 and \mathbb{P}_2 , the corresponding polynomials span \mathbb{P}_2 .

- **33.** [M] The coordinate vectors
 - are a linearly dependent subset of \mathbb{R}^4 . Because of

the isomorphism between \mathbb{R}^4 and \mathbb{P}_3 , the corresponding polynomials form a linearly dependent subset of \mathbb{P}_3 , and thus cannot be a basis for \mathbb{P}_3 .

- **35.** [M] $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -5/3 \\ 8/3 \end{bmatrix}$ **37.** [M] $\begin{bmatrix} 1.3 \\ 0 \\ 0.8 \end{bmatrix}$

Section 4.5, page 229

- 7. No basis: dim is 0

- **13.** 2. 3

- **15.** 2, 3
- **17.** 0, 3
- 19. See the Study Guide.
- 21. Hint: You need only show that the first four Hermite polynomials are linearly independent. Why?
- **23.** $[\mathbf{p}]_{\mathcal{B}} = (3, 6, 2, 1)$
- **25.** Hint: Suppose S does span V, and use the Spanning Set Theorem. This leads to a contradiction, which shows that the spanning hypothesis is false.

A36 Answers to Odd-Numbered Exercises

- **27.** *Hint:* Use the fact that each \mathbb{P}_n is a subspace of \mathbb{P} .
- 29. Justify each answer.
 - a. True
- **b.** True
- c. True
- **31.** Hint: Since H is a nonzero subspace of a finite-dimensional space, H is finite-dimensional and has a basis, say, $\mathbf{v}_1, \dots, \mathbf{v}_p$. First show that $\{T(\mathbf{v}_1), \dots, T(\mathbf{v}_p)\}$ spans T(H).
- **33.** [M] a. One basis is $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{e}_2, \mathbf{e}_3\}$. In fact, any two of the vectors $\mathbf{e}_2, \dots, \mathbf{e}_5$ will extend $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ to a basis of \mathbb{R}^5 .

Section 4.6, page 236

- **1.** rank A = 2; dim Nul A = 2;
 - Basis for Col A: $\begin{bmatrix} 1 \\ -1 \\ 5 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 2 \\ -6 \end{bmatrix}$

Basis for Row A: (1, 0, -1, 5), (0, -2, 5, -6)

- Basis for Nul A: $\begin{bmatrix} 5/2 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -3 \\ 0 \\ \end{bmatrix}$
- **3.** rank A = 3; dim Nul A = 3;
 - Basis for Col A: $\begin{bmatrix} 2 \\ -2 \\ 4 \\ -2 \end{bmatrix}, \begin{bmatrix} 6 \\ -3 \\ 9 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ 3 \\ 3 \end{bmatrix}$

Basis for Row A: (2, 6, -6, 6, 3, 6), (0, 3, 0, 3, 3, 0), (0,0,0,0,3,0)

 $\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} \end{bmatrix}$ Basis for Nul A:

- **5.** 4, 3, 3
- 7. Yes; no. Since Col A is a four-dimensional subspace of \mathbb{R}^4 , it coincides with \mathbb{R}^4 . The null space cannot be \mathbb{R}^3 , because the vectors in Nul A have 7 entries. Nul A is a three-dimensional subspace of \mathbb{R}^7 , by the Rank Theorem.
- **9.** 3, no. Notice that the columns of a 4×6 matrix are in \mathbb{R}^4 , rather than \mathbb{R}^3 . Col A is a three-dimensional subspace of \mathbb{R}^4 .
- 13. 5, 5. In both cases, the number of pivots cannot exceed the number of columns or the number of rows.
- **15.** 4 **17.** See the *Study Guide*.
- 19. Yes. Try to write an explanation before you consult the Study Guide.
- 21. No. Explain why.
- 23. Yes. Only six homogeneous linear equations are necessary.

- 25. No. Explain why.
- **27.** Row A and Nul A are in \mathbb{R}^n ; Col A and Nul A^T are in \mathbb{R}^m . There are only four distinct subspaces because $\operatorname{Row} A^T = \operatorname{Col} A$ and $\operatorname{Col} A^T = \operatorname{Row} A$.
- **29.** Recall that dim Col A = m precisely when Col $A = \mathbb{R}^m$, or equivalently, when the equation $A\mathbf{x} = \mathbf{b}$ is consistent for all **b**. By Exercise 28(b), $\dim \operatorname{Col} A = m$ precisely when $\dim \operatorname{Nul} A^T = 0$, or equivalently, when the equation A^T **x** = **0** has only the trivial solution.
- 31. $\mathbf{u}\mathbf{v}^T = \begin{bmatrix} 2a & 2b & 2c \\ -3a & -3b & -3c \\ 5a & 5b & 5c \end{bmatrix}$. The columns are all multiples of \mathbf{u} , so Col $\mathbf{u}\mathbf{v}^T$ is one-dimensional, unless
- **33.** Hint: Let $A = [\mathbf{u} \ \mathbf{u}_2 \ \mathbf{u}_3]$. If $\mathbf{u} \neq \mathbf{0}$, then \mathbf{u} is a basis for Col A. Why?
- **35.** [M] *Hint:* See Exercise 28 and the remarks before Example
- **37.** [M] The matrices C and R given for Exercise 35 work here, and A = CR.

Section 4.7, page 242

a = b = c = 0.

- **1.** a. $\begin{bmatrix} 6 & 9 \\ -2 & -4 \end{bmatrix}$ b. $\begin{bmatrix} 0 \\ -2 \end{bmatrix}$

- **3.** (ii)
- 5. a. $\begin{bmatrix} 4 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & -2 \end{bmatrix}$ b. $\begin{bmatrix} 8 \\ 2 \\ 2 \end{bmatrix}$
- 7. $_{C \leftarrow B} = \begin{bmatrix} -3 & 1 \\ -5 & 2 \end{bmatrix}, \quad _{B \leftarrow C} = \begin{bmatrix} -2 & 1 \\ -5 & 3 \end{bmatrix}$
- **9.** $_{C \leftarrow \mathcal{B}} = \begin{bmatrix} 2 & 3 \\ 0 & -1 \end{bmatrix}, \quad _{\mathcal{B} \leftarrow \mathcal{C}} = \frac{1}{2} \begin{bmatrix} 1 & 3 \\ 0 & -2 \end{bmatrix}$
- 11. See the Study Guide.
- **13.** $_{C} \stackrel{P}{\leftarrow}_{\mathcal{B}} = \begin{bmatrix} 1 & 3 & 0 \\ -2 & -5 & 2 \\ 1 & 4 & 3 \end{bmatrix}, \quad [-1+2t]_{\mathcal{B}} = \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}$
- **15.** a. \mathcal{B} is a basis for V.
 - **b.** The coordinate mapping is a linear transformation.
 - c. The product of a matrix and a vector
 - **d.** The coordinate vector of \mathbf{v} relative to \mathcal{B}
- 17. a. [M]

$$P^{-1} = \frac{1}{32} \begin{bmatrix} 32 & 0 & 16 & 0 & 12 & 0 & 10 \\ & 32 & 0 & 24 & 0 & 20 & 0 \\ & & 16 & 0 & 16 & 0 & 15 \\ & & & 8 & 0 & 10 & 0 \\ & & & 4 & 0 & 6 \\ & & & 2 & 0 \\ & & & & 1 \end{bmatrix}$$

b.
$$\cos^2 t = (1/2)[1 + \cos 2t]$$

 $\cos^3 t = (1/4)[3\cos t + \cos 3t]$
 $\cos^4 t = (1/8)[3 + 4\cos 2t + \cos 4t]$
 $\cos^5 t = (1/16)[10\cos t + 5\cos 3t + \cos 5t]$
 $\cos^6 t = (1/32)[10 + 15\cos 2t + 6\cos 4t + \cos 6t]$

19. [M] *Hint:* Let \mathcal{C} be the basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. Then the columns of P are $[\mathbf{u}_1]_{\mathcal{C}}$, $[\mathbf{u}_2]_{\mathcal{C}}$, and $[\mathbf{u}_3]_{\mathcal{C}}$. Use the definition of \mathcal{C} -coordinate vectors and matrix algebra to compute \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 . The solution method is discussed in the *Study Guide*. Here are the numerical answers:

$$\mathbf{a.} \ \mathbf{u}_1 = \begin{bmatrix} -6 \\ -5 \\ 21 \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} -6 \\ -9 \\ 32 \end{bmatrix}, \ \mathbf{u}_3 = \begin{bmatrix} -5 \\ 0 \\ 3 \end{bmatrix}$$

$$\mathbf{b.} \ \mathbf{w}_1 = \begin{bmatrix} 28 \\ -9 \\ -3 \end{bmatrix}, \ \mathbf{w}_2 = \begin{bmatrix} 38 \\ -13 \\ 2 \end{bmatrix}, \ \mathbf{w}_3 = \begin{bmatrix} 21 \\ -7 \\ 3 \end{bmatrix}$$

Section 4.8, page 251

1. If $y_k = 2^k$, then $y_{k+1} = 2^{k+1}$ and $y_{k+2} = 2^{k+2}$. Substituting these formulas into the left side of the equation gives

$$y_{k+2} + 2y_{k+1} - 8y_k = 2^{k+2} + 2 \cdot 2^{k+1} - 8 \cdot 2^k$$
$$= 2^k (2^2 + 2 \cdot 2 - 8)$$
$$= 2^k (0) = 0 \text{ for all } k$$

Since the difference equation holds for all k, 2^k is a solution. A similar calculation works for $y_k = (-4)^k$.

- 3. The signals 2^k and $(-4)^k$ are linearly independent because neither is a multiple of the other. For instance, there is no scalar c such that $2^k = c(-4)^k$ for all k. By Theorem 17, the solution set H of the difference equation in Exercise 1 is two-dimensional. By the Basis Theorem in Section 4.5, the two linearly independent signals 2^k and $(-4)^k$ form a basis for H.
- 5. If $y_k = (-2)^k$, then

$$y_{k+2} + 4y_{k+1} + 4y_k = (-2)^{k+2} + 4(-2)^{k+1} + 4(-2)^k$$
$$= (-2)^k [(-2)^2 + 4(-2) + 4]$$
$$= (-2)^k (0) = 0 \text{ for all } k$$

Similarly, if $y_k = k(-2)^k$, then

$$y_{k+2} + 4y_{k+1} + 4y_k$$

$$= (k+2)(-2)^{k+2} + 4(k+1)(-2)^{k+1} + 4k(-2)^k$$

$$= (-2)^k [(k+2)(-2)^2 + 4(k+1)(-2) + 4k]$$

$$= (-2)^k [4k+8-8k-8+4k]$$

$$= (-2)^k (0) \quad \text{for all } k$$

Thus both $(-2)^k$ and $k(-2)^k$ are in the solution space H of the difference equation. Also, there is no scalar c such that $k(-2)^k = c(-2)^k$ for all k, because c must be chosen independently of k. Likewise, there is no scalar c such that $(-2)^k = ck(-2)^k$ for all k. So the two signals are linearly

independent. Since $\dim H = 2$, the signals form a basis for H, by the Basis Theorem.

- 7. Yes
- **9.** Yes
- No, two signals cannot span the three-dimensional solution space.
- **13.** $(\frac{1}{2})^k$, $(\frac{2}{2})^k$
- **15.** $(\frac{1}{2})^k$, $(-\frac{2}{3})^k$
- 17. $Y_k = c_1(.8)^k + c_2(.5)^k + 10 \to 10$ as $k \to \infty$
- **19.** $v_k = c_1(-2 + \sqrt{3})^k + c_2(-2 \sqrt{3})^k$
- **21.** 7, 5, 4, 3, 4, 5, 6, 6, 7, 8, 9, 8, 7; see figure:

- **23. a.** $y_{k+1} 1.01y_k = -450, y_0 = 10,000$
- **25.** $k^2 + c_1 \cdot (-4)^k + c_2$ **27.** $-2 + k + c_1 \cdot 2^k + c_2 \cdot (-2)^k$
- **29.** $\mathbf{x}_{k+1} = A\mathbf{x}_k$, where

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 2 & -6 & 8 & -3 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} y_k \\ y_{k+1} \\ y_{k+2} \\ y_{k+3} \end{bmatrix}$$

31. The equation holds for all k, so it holds with k replaced by k-1, which transforms the equation into

$$y_{k+2} + 5y_{k+1} + 6y_k = 0$$
 for all k

The equation is of order 2.

- **33.** For all k, the Casorati matrix C(k) is not invertible. In this case, the Casorati matrix gives no information about the linear independence/dependence of the set of signals. In fact, neither signal is a multiple of the other, so they are linearly independent.
- **35.** Hint: Verify the two properties that define a linear transformation. For $\{y_k\}$ and $\{z_k\}$ in \mathbb{S} , study $T(\{y_k\} + \{z_k\})$. Note that if r is any scalar, then the kth term of $r\{y_k\}$ is ry_k ; so $T(r\{y_k\})$ is the sequence $\{w_k\}$ given by

$$w_k = ry_{k+2} + a(ry_{k+1}) + b(ry_k)$$

37. *Hint:* Find $TD(y_0, y_1, y_2, ...)$ and $DT(y_0, y_1, y_2, ...)$.

c. 33%

Section 4.9, page 260

- 1. a. From:

 N M To:

 [.7 .6] News

 .3 .4 Music
- 3. a. From:

 H I To:

 [.95 .45] Healthy

 .05 .55] III

A38 Answers to Odd-Numbered Exercises

c. .925; use
$$\mathbf{x}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

5.
$$\begin{bmatrix} 5/14 \\ 9/14 \end{bmatrix}$$
 7. $\begin{bmatrix} 1/4 \\ 1/2 \\ 1/4 \end{bmatrix}$

- **9.** Yes, because P^2 has all positive entries.
- **11. a.** $\begin{bmatrix} 2/3 \\ 1/3 \end{bmatrix}$ **b.** 2/3
- **13. a.** $\begin{bmatrix} .9 \\ .1 \end{bmatrix}$ **b.** .10, no
- 15. [M] About 13.9% of the United States population
- 17. a. The entries in a column of P sum to 1. A column in the matrix P-I has the same entries as in P except that one of the entries is decreased by 1. Hence each column sum is 0.
 - **b.** By part (a), the bottom row of P I is the negative of the sum of the other rows.
 - c. By part (b) and the Spanning Set Theorem, the bottom row of P I can be removed and the remaining (n-1) rows will still span the row space.
 Alternatively, use part (a) and the fact that row operations do not change the row space. Let A be the matrix obtained from P I by adding to the bottom row all the other rows. By part (a), the row space is spanned by the first (n-1) rows of A.
 - **d.** By the Rank Theorem and part (c), the dimension of the column space of P-I is less than n, and hence the null space is nontrivial. Instead of the Rank Theorem, you may use the Invertible Matrix Theorem, since P-I is a square matrix.
- **19. a.** The product $S\mathbf{x}$ equals the sum of the entries in \mathbf{x} . For a probability vector, this sum must be 1.
 - **b.** $P = [\mathbf{p}_1 \quad \mathbf{p}_2 \quad \cdots \quad \mathbf{p}_n]$, where the \mathbf{p}_i are probability vectors. By matrix multiplication and part (a),

$$SP = \begin{bmatrix} S\mathbf{p}_1 & S\mathbf{p}_2 & \cdots & S\mathbf{p}_n \end{bmatrix} = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} = S$$

c. By part (b), $S(P\mathbf{x}) = (SP)\mathbf{x} = S\mathbf{x} = 1$. Also, the entries in $P\mathbf{x}$ are nonnegative (because P and \mathbf{x} have nonnegative entries). Hence, by (a), $P\mathbf{x}$ is a probability vector.

Chapter 4 Supplementary Exercises, page 262

- 1. a. T b. T c. F d. F e. T f. T g. F h. F i. T j. F k. F l. F m. T n. F o. T p. T q. F r. T s. T t. F
- **3.** The set of all (b_1, b_2, b_3) satisfying $b_1 + 2b_2 + b_3 = 0$.
- **5.** The vector \mathbf{p}_1 is not zero and \mathbf{p}_2 is not a multiple of \mathbf{p}_1 , so keep both of these vectors. Since $\mathbf{p}_3 = 2\mathbf{p}_1 + 2\mathbf{p}_2$, discard \mathbf{p}_3 . Since \mathbf{p}_4 has a t^2 term, it cannot be a linear combination of \mathbf{p}_1 and \mathbf{p}_2 , so keep \mathbf{p}_4 . Finally, $\mathbf{p}_5 = \mathbf{p}_1 + \mathbf{p}_4$, so discard \mathbf{p}_5 . The resulting basis is $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_4\}$.

- 7. You would have to know that the solution set of the homogeneous system is spanned by two solutions. In this case, the null space of the 18 × 20 coefficient matrix A is at most two-dimensional. By the Rank Theorem, dim Col A ≥ 20 2 = 18, which means that Col A = R¹⁸, because A has 18 rows, and every equation Ax = b is consistent.
- **9.** Let A be the standard $m \times n$ matrix of the transformation T.
 - **a.** If T is one-to-one, then the columns of A are linearly independent (Theorem 12 in Section 1.9), so $\dim \text{Nul } A = 0$. By the Rank Theorem, $\dim \text{Col } A = \text{rank } A = n$. Since the range of T is Col A, the dimension of the range of T is n.
 - **b.** If T is onto, then the columns of A span \mathbb{R}^m (Theorem 12 in Section 1.9), so dim Col A = m. By the Rank Theorem, dim Nul $A = n \dim \operatorname{Col} A = n m$. Since the kernel of T is Nul A, the dimension of the kernel of T is n m.
- 11. If S is a finite spanning set for V, then a subset of S—say S'—is a basis for V. Since S' must span V, S' cannot be a proper subset of S because of the minimality of S. Thus S' = S, which proves that S is a basis for V.
- 12. a. *Hint*: Any y in Col AB has the form y = ABx for some x.
- 13. By Exercise 9, rank $PA \le \operatorname{rank} A$, and rank $A = \operatorname{rank} P^{-1}PA \le \operatorname{rank} PA$. Thus rank $PA = \operatorname{rank} A$.
- **15.** The equation AB = 0 shows that each column of B is in Nul A. Since Nul A is a subspace, all linear combinations of the columns of B are in Nul A, so Col B is a subspace of Nul A. By Theorem 11 in Section 4.5, dim Col $B \le \dim \operatorname{Nul} A$. Applying the Rank Theorem, we find that

 $n = \operatorname{rank} A + \dim \operatorname{Nul} A \ge \operatorname{rank} A + \operatorname{rank} B$

- **17. a.** Let A_1 consist of the r pivot columns in A. The columns of A_1 are linearly independent. So A_1 is an $m \times r$ submatrix with rank r.
 - **b.** By the Rank Theorem applied to A_1 , the dimension of Row A is r, so A_1 has r linearly independent rows. Use them to form A_2 . Then A_2 is $r \times r$ with linearly independent rows. By the Invertible Matrix Theorem, A_2 is invertible.

19.
$$\begin{bmatrix} B & AB & A^2B \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -.9 & .81 \\ 1 & .5 & .25 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & -.9 & .81 \\ 0 & 1 & 0 \\ 0 & 0 & -.56 \end{bmatrix}$$

This matrix has rank 3, so the pair (A, B) is controllable.

21. [M] rank $\begin{bmatrix} B & AB & A^2B & A^3B \end{bmatrix} = 3$. The pair (A, B) is not controllable.

Chapter 5

Section 5.1, page 271

- 1. Yes
- 3. Yes, $\lambda = -2$
- **5.** Yes, $\lambda = -5$
- 7. Yes, $\begin{vmatrix} 1 \\ 1 \\ -1 \end{vmatrix}$
- 9. $\lambda = 1: \begin{bmatrix} 0 \\ 1 \end{bmatrix}; \quad \lambda = 3: \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- **11.** $\lambda = -1$: $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$; $\lambda = 7$: $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$
- **13.** $\lambda = 1$: $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$; $\lambda = 2$: $\begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$; $\lambda = 3$: $\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$

- **19.** 0. Justify your answer.
- 21. See the Study Guide, after you have written your answers.
- 23. Hint: Use Theorem 2.
- **25.** Hint: Use the equation $A\mathbf{x} = \lambda \mathbf{x}$ to find an equation involving A^{-1} .
- **27.** Hint: For any λ , $(A \lambda I)^T = A^T \lambda I$. By a theorem (which one?), $A^T - \lambda I$ is invertible if and only if $A - \lambda I$ is invertible.
- **29.** Let **v** be the vector in \mathbb{R}^n whose entries are all 1's. Then
- **31.** *Hint:* If A is the standard matrix of T, look for a nonzero vector \mathbf{v} (a point in the plane) such that $A\mathbf{v} = \mathbf{v}$.
- **33. a.** $\mathbf{x}_{k+1} = c_1 \lambda^{k+1} \mathbf{u} + c_2 \mu^{k+1} \mathbf{v}$
 - **b.** $A\mathbf{x}_k = A(c_1\lambda^k\mathbf{u} + c_2\mu^k\mathbf{v})$ $= c_1 \lambda^k A \mathbf{u} + c_2 \mu^k A \mathbf{v}$ Linearity $= c_1 \lambda^k \lambda \mathbf{u} + c_2 \mu^k \mu \mathbf{v}$ **u** and **v** are eigenvectors. $= \mathbf{x}_{k+1}$

37. [M]
$$\lambda = 5$$
: $\begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}$; $\lambda = 10$: $\begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix}$; $\lambda = 15$: $\begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$

39. [M]
$$\lambda = -4$$
: $\begin{bmatrix} 0 \\ 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$; $\lambda = -8$: $\begin{bmatrix} 6 \\ 3 \\ 3 \\ 2 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ -1 \\ 0 \\ 1 \end{bmatrix}$; $\lambda = 12$: $\begin{bmatrix} 0 \\ 0 \\ -1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$

Section 5.2, page 279

- 1. $\lambda^2 4\lambda 45$; 9. -5
- 3. $\lambda^2 3\lambda 40$: -5. 8
- 5. $\lambda^2 16\lambda + 48$; 4, 12
- 7. $\lambda^2 9\lambda + 32$; no real eigenvalues
- **9.** $-\lambda^3 + 10\lambda^2 33\lambda + 36$
- **11.** $-\lambda^3 + 8\lambda^2 19\lambda + 12$
- **13.** $-\lambda^3 + 18\lambda^2 95\lambda + 150$ **15.** 2, 3, 5, 5
- **17.** 3, 3, 1, 1, 0
- **19.** *Hint:* The equation given holds for all λ .
- 21. The Study Guide has hints.
- **23.** Hint: Find an invertible matrix P such that $RQ = P^{-1}AP$.
- **25.** a. $\{\mathbf{v}_1, \mathbf{v}_2\}$, where $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ is an eigenvector for $\lambda = .3$
 - **b.** $\mathbf{x}_0 = \mathbf{v}_1 \frac{1}{14}\mathbf{v}_2$
 - **c.** $\mathbf{x}_1 = \mathbf{v}_1 \frac{1}{14}(.3)\mathbf{v}_2, \mathbf{x}_2 = \mathbf{v}_1 \frac{1}{14}(.3)^2\mathbf{v}_2$, and $\mathbf{x}_k = \mathbf{v}_1 - \frac{1}{14}(.3)^k \mathbf{v}_2$. As $k \to \infty$, $(.3)^k \to 0$ and
- **27. a.** $A\mathbf{v}_1 = \mathbf{v}_1$, $A\mathbf{v}_2 = .5\mathbf{v}_2$, $A\mathbf{v}_3 = .2\mathbf{v}_3$. (This also shows that the eigenvalues of A are 1, .5, and .2.)
 - **b.** $\{v_1, v_2, v_3\}$ is linearly independent because the eigenvectors correspond to distinct eigenvalues (Theorem 2). Since there are 3 vectors in the set, the set is a basis for \mathbb{R}^3 . So there exist (unique) constants such that

$$\mathbf{x}_0 = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3$$

Then

$$\mathbf{w}\mathbf{x}_0 = c_1 \mathbf{w}^T \mathbf{v}_1 + c_2 \mathbf{w}^T \mathbf{v}_2 + c_3 \mathbf{w}^T \mathbf{v}_3 \tag{*}$$

Since \mathbf{x}_0 and \mathbf{v}_1 are probability vectors and since the entries in \mathbf{v}_2 and in \mathbf{v}_3 each sum to 0, (*) shows that $1 = c_1$.

c. By part (b),

$$\mathbf{x}_0 = \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3$$

Using part (a),

$$\mathbf{x}_k = A^k \mathbf{x}_0 = A^k \mathbf{v}_1 + c_2 A^k \mathbf{v}_2 + c_3 A^k \mathbf{v}_3$$

= $\mathbf{v}_1 + c_2 (.5)^k \mathbf{v}_2 + c_3 (.2)^k \mathbf{v}_3$
 $\rightarrow \mathbf{v}_1 \text{ as } k \rightarrow \infty$

29. [M] Report your results and conclusions. You can avoid tedious calculations if you use the program gauss discussed in the *Study Guide*.

Section 5.3, page 286

1.
$$\begin{bmatrix} 226 & -525 \\ 90 & -209 \end{bmatrix}$$
 3. $\begin{bmatrix} a^k & 0 \\ 2(a^k - b^k) & b^k \end{bmatrix}$

5.
$$\lambda = 2$$
: $\begin{bmatrix} -1\\1\\-1 \end{bmatrix}$; $\lambda = 3$: $\begin{bmatrix} 1\\-1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\-1\\1 \end{bmatrix}$

When an answer involves a diagonalization, $A = PDP^{-1}$, the factors P and D are not unique, so your answer may differ from that given here.

7.
$$P = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

9. Not diagonalizable

11.
$$P = \begin{bmatrix} 1 & -1 & -1 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 5 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

13.
$$P = \begin{bmatrix} -1 & 2 & 1 \\ -1 & -1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

15.
$$P = \begin{bmatrix} -1 & -1 & -1 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

17. Not diagonalizable

19.
$$P = \begin{bmatrix} 1 & 3 & -1 & -1 \\ 0 & 2 & -1 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

- **21.** See the *Study Guide*.
- 23. Yes. (Explain why.)
- **25.** No, *A* must be diagonalizable. (Explain why.)
- **27.** *Hint:* Write $A = PDP^{-1}$. Since A is invertible, 0 is not an eigenvalue of A, so D has nonzero entries on its diagonal.
- **29.** One answer is $P_1 = \begin{bmatrix} 1 & 1 \\ -2 & -1 \end{bmatrix}$, whose columns are eigenvectors corresponding to the eigenvalues in D_1 .
- **31.** *Hint:* Construct a suitable 2×2 triangular matrix.

33. [M]
$$P = \begin{bmatrix} 2 & 0 & -1 & 1 \\ 7 & -1 & 0 & -4 \\ 7 & 0 & 2 & 0 \\ 0 & 1 & 0 & 3 \end{bmatrix},$$
$$D = \begin{bmatrix} -12 & 0 & 0 & 0 \\ 0 & -12 & 0 & 0 \\ 0 & 0 & 13 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix}$$

35. [M]
$$P = \begin{bmatrix} 2 & 1 & -3 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 2 & 0 & 1 \end{bmatrix},$$
$$D = \begin{bmatrix} 7 & 0 & 0 & 0 & 0 \\ 0 & 7 & 0 & 0 & 0 \\ 0 & 0 & 7 & 0 & 0 \\ 0 & 0 & 0 & -14 & 0 \\ 0 & 0 & 0 & 0 & -14 \end{bmatrix}$$

Section 5.4, page 293

1.
$$\begin{bmatrix} 3 & -1 & 0 \\ -5 & 6 & 4 \end{bmatrix}$$

3. a.
$$T(\mathbf{e}_1) = \mathbf{b}_3$$
, $T(\mathbf{e}_2) = -\mathbf{b}_1 - 2\mathbf{b}_2$, $T(\mathbf{e}_3) = 2\mathbf{b}_1 + 3\mathbf{b}_3$

b.
$$[T(\mathbf{e}_1)]_{\mathcal{B}} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, [T(\mathbf{e}_2)]_{\mathcal{B}} = \begin{bmatrix} -1 \\ -2 \\ 0 \end{bmatrix}, [T(\mathbf{e}_3)]_{\mathcal{B}} = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}$$

c.
$$\begin{bmatrix} 0 & -1 & 2 \\ 0 & -2 & 0 \\ 1 & 0 & 3 \end{bmatrix}$$

- **5. a.** $9-3t+t^2+t^3$
 - **b.** For any **p**, **q** in \mathbb{P}_2 and any scalar c,

$$T[\mathbf{p}(t) + \mathbf{q}(t)] = (t+3)[\mathbf{p}(t) + \mathbf{q}(t)]$$

$$= (t+3)\mathbf{p}(t) + (t+3)\mathbf{q}(t)$$

$$= T[\mathbf{p}(t)] + T[\mathbf{q}(t)]$$

$$T[c \cdot \mathbf{p}(t)] = (t+3)[c \cdot \mathbf{p}(t)] = c \cdot (t+3)\mathbf{p}(t)$$

$$= c \cdot T[\mathbf{p}(t)]$$

$$\mathbf{c.} \begin{bmatrix} 3 & 0 & 0 \\ 1 & 3 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

7.
$$\begin{bmatrix} 3 & 0 & 0 \\ 5 & -2 & 0 \\ 0 & 4 & 1 \end{bmatrix}$$

- 9. a. $\begin{bmatrix} 2 \\ 5 \\ 8 \end{bmatrix}$
 - **b.** *Hint:* Compute $T(\mathbf{p} + \mathbf{q})$ and $T(c \cdot \mathbf{p})$ for arbitrary \mathbf{p} , \mathbf{q} in \mathbb{P}_2 and an arbitrary scalar c.

c.
$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

11.
$$\begin{bmatrix} -2 & -2 \\ 0 & -1 \end{bmatrix}$$
 13. $\mathbf{b}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$

15.
$$\mathbf{b}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

- 17. **a.** A**b**₁ = 3**b**₁, so **b**₁ is an eigenvector of A. However, A has only one eigenvalue, $\lambda = 3$, and the eigenspace is only one-dimensional, so A is not diagonalizable.
 - $\mathbf{b.} \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$
- **19.** By definition, if A is similar to B, there exists an invertible matrix P such that $P^{-1}AP = B$. (See Section 5.2.) Then B is invertible because it is the product of invertible matrices. To show that A^{-1} is similar to B^{-1} , use the equation $P^{-1}AP = B$. See the *Study Guide*.
- 21. Hint: Review Practice Problem 2.
- **23.** *Hint:* Compute $B(P^{-1}\mathbf{x})$.
- **25.** Hint: Write $A = PBP^{-1} = (PB)P^{-1}$, and use the trace property.
- **27.** For each j, $I(\mathbf{b}_j) = \mathbf{b}_j$. Since the standard coordinate vector of any vector in \mathbb{R}^n is just the vector itself, $[I(\mathbf{b}_j)]_{\mathcal{E}} = \mathbf{b}_j$. Thus the matrix for I relative to \mathcal{B} and the standard basis \mathcal{E} is simply $[\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_n]$. This matrix is precisely the *change-of-coordinates* matrix $P_{\mathcal{B}}$ defined in Section 4.4.
- **29.** The \mathcal{B} -matrix for the identity transformation is I_n , because the \mathcal{B} -coordinate vector of the j th basis vector \mathbf{b}_j is the j th column of I_n .
- **31.** [M] $\begin{bmatrix} -7 & -2 & -6 \\ 0 & -4 & -6 \\ 0 & 0 & -1 \end{bmatrix}$

Section 5.5, page 300

1.
$$\lambda = 2 + i, \begin{bmatrix} -1 + i \\ 1 \end{bmatrix}; \quad \lambda = 2 - i, \begin{bmatrix} -1 - i \\ 1 \end{bmatrix}$$

3.
$$\lambda = 3 + 2i$$
, $\begin{bmatrix} -1 - i \\ 4 \end{bmatrix}$; $\lambda = 3 - 2i$, $\begin{bmatrix} -1 + i \\ 4 \end{bmatrix}$

5.
$$\lambda = 4 + i, \begin{bmatrix} 1 - i \\ 2 \end{bmatrix}; \quad \lambda = 4 - i, \begin{bmatrix} 1 + i \\ 2 \end{bmatrix}$$

7.
$$\lambda = \sqrt{3} \pm i$$
, $\varphi = \pi/6$ radian, $r = 2$

9.
$$\lambda = \pm 2i$$
, $\varphi = -\pi/2$ radians, $r = 2$

11.
$$\lambda = -\sqrt{3} \pm i$$
, $\varphi = -5\pi/6$ radian, $r = 2$

In Exercises 13–20, other answers are possible. Any P that makes $P^{-1}AP$ equal to the given C or to C^T is a satisfactory answer. First find P; then compute $P^{-1}AP$.

13.
$$P = \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}, C = \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$$

15.
$$P = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix}$$

17.
$$P = \begin{bmatrix} 1 & 2 \\ 0 & -5 \end{bmatrix}, C = \begin{bmatrix} -3 & 4 \\ -4 & -3 \end{bmatrix}$$

19.
$$P = \begin{bmatrix} 2 & -1 \\ 2 & 0 \end{bmatrix}, C = \begin{bmatrix} .96 & -.28 \\ .28 & .96 \end{bmatrix}$$

21.
$$\mathbf{y} = \begin{bmatrix} 2 \\ -1 + 2i \end{bmatrix} = \frac{-1 + 2i}{5} \begin{bmatrix} -2 - 4i \\ 5 \end{bmatrix}$$

- 23. a. Properties of conjugates and the fact that $\overline{\mathbf{x}}^T = \overline{\mathbf{x}^T}$;
 - **b.** $\overline{A}\overline{\mathbf{x}} = A\overline{\mathbf{x}}$ and A is real; (c) because $\mathbf{x}^T A\overline{\mathbf{x}}$ is a scalar and hence may be viewed as a 1×1 matrix; (d) properties of transposes; (e) $A^T = A$, definition of q
- **25.** *Hint*: First write $\mathbf{x} = \operatorname{Re} \mathbf{x} + i (\operatorname{Im} \mathbf{x})$.

27. [M]
$$P = \begin{bmatrix} -1 & 1 & -1 & -1 \\ 0 & -1 & 0 & 2 \\ 1 & 0 & 0 & -2 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} -2 & 5 & 0 & 0 \\ -5 & -2 & 0 & 0 \\ 0 & 0 & -4 & 10 \\ 0 & 0 & -10 & -4 \end{bmatrix}$$

Other choices are possible, but C must equal $P^{-1}AP$.

Section 5.6, page 309

- **1. a.** *Hint:* Find c_1 , c_2 such that $\mathbf{x}_0 = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2$. Use this representation and the fact that \mathbf{v}_1 and \mathbf{v}_2 are eigenvectors of A to compute $\mathbf{x}_1 = \begin{bmatrix} 49/3 \\ 41/3 \end{bmatrix}$.
 - **b.** In general, $\mathbf{x}_k = 5(3)^k \mathbf{v}_1 4(\frac{1}{3})^k \mathbf{v}_2$ for $k \ge 0$.
- **3.** When p = .2, the eigenvalues of A are .9 and .7, and

$$\mathbf{x}_k = c_1 (.9)^k \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 (.7)^k \begin{bmatrix} 2 \\ 1 \end{bmatrix} \to \mathbf{0} \quad \text{as } k \to \infty$$

The higher predation rate cuts down the owls' food supply, and eventually both predator and prey populations perish.

- **5.** If p = .325, the eigenvalues are 1.05 and .55. Since 1.05 > 1, both populations will grow at 5% per year. An eigenvector for 1.05 is (6, 13), so eventually there will be approximately 6 spotted owls to every 13 (thousand) flying squirrels.
- **7. a.** The origin is a saddle point because *A* has one eigenvalue larger than 1 and one smaller than 1 (in absolute value).
 - **b.** The direction of greatest attraction is given by the eigenvector corresponding to the eigenvalue 1/3, namely, \mathbf{v}_2 . All vectors that are multiples of \mathbf{v}_2 are attracted to the origin. The direction of greatest repulsion is given by the eigenvector \mathbf{v}_1 . All multiples of \mathbf{v}_1 are repelled.
 - c. See the Study Guide.
- **9.** Saddle point; eigenvalues: 2, .5; direction of greatest repulsion: the line through (0,0) and (-1,1); direction of greatest attraction: the line through (0,0) and (1,4)
- **11.** Attractor; eigenvalues: .9, .8; greatest attraction: line through (0, 0) and (5, 4)
- **13.** Repeller; eigenvalues: 1.2, 1.1; greatest repulsion: line through (0, 0) and (3, 4)

15.
$$\mathbf{x}_k = \mathbf{v}_1 + .1(.5)^k \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix} + .3(.2)^k \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \rightarrow \mathbf{v}_1 \text{ as } k \rightarrow \infty$$

17. a.
$$A = \begin{bmatrix} 0 & 1.6 \\ .3 & .8 \end{bmatrix}$$

- **b.** The population is growing because the largest eigenvalue of A is 1.2, which is larger than 1 in magnitude. The eventual growth rate is 1.2, which is 20% per year. The eigenvector (4, 3) for $\lambda_1 = 1.2$ shows that there will be 4 juveniles for every 3 adults.
- c. [M] The juvenile-adult ratio seems to stabilize after about 5 or 6 years. The Study Guide describes how to construct a matrix program to generate a data matrix whose columns list the numbers of juveniles and adults each year. Graphing the data is also discussed.

Section 5.7, page 317

1.
$$\mathbf{x}(t) = \frac{5}{2} \begin{bmatrix} -3 \\ 1 \end{bmatrix} e^{4t} - \frac{3}{2} \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{2t}$$

- 3. $-\frac{5}{2} \begin{bmatrix} -3\\1 \end{bmatrix} e^t + \frac{9}{2} \begin{bmatrix} -1\\1 \end{bmatrix} e^{-t}$. The origin is a saddle point. The direction of greatest attraction is the line through (-1, 1) and the origin. The direction of greatest repulsion is the line through (-3, 1) and the origin.
- 5. $-\frac{1}{2}\begin{bmatrix} 1\\3 \end{bmatrix}e^{4t} + \frac{7}{2}\begin{bmatrix} 1\\1 \end{bmatrix}e^{6t}$. The origin is a repeller. The direction of greatest repulsion is the line through (1, 1) and the origin.

7. Set
$$P = \begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix}$$
 and $D = \begin{bmatrix} 4 & 0 \\ 0 & 6 \end{bmatrix}$. Then $A = PDP^{-1}$. Substituting $\mathbf{x} = P\mathbf{y}$ into $\mathbf{x}' = A\mathbf{x}$, we have
$$\frac{d}{dt}(P\mathbf{y}) = A(P\mathbf{y})$$
$$P\mathbf{y}' = PDP^{-1}(P\mathbf{y}) = PD\mathbf{y}$$

Left-multiplying by P^{-1} gives

$$\mathbf{y}' = D\mathbf{y}, \quad \text{or} \quad \begin{bmatrix} y_1'(t) \\ y_2'(t) \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 6 \end{bmatrix} \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix}$$

9. (complex solution):
$$c_1 \begin{bmatrix} 1-i \\ 1 \end{bmatrix} e^{(-2+i)t} + c_2 \begin{bmatrix} 1+i \\ 1 \end{bmatrix} e^{(-2-i)t}$$

$$c_1 \begin{bmatrix} \cos t + \sin t \\ \cos t \end{bmatrix} e^{-2t} + c_2 \begin{bmatrix} \sin t - \cos t \\ \sin t \end{bmatrix} e^{-2t}$$

11. (complex):
$$c_1 \begin{bmatrix} -3+3i \\ 2 \end{bmatrix} e^{3it} + c_2 \begin{bmatrix} -3-3i \\ 2 \end{bmatrix} e^{-3it}$$
 (real):
$$c_1 \begin{bmatrix} -3\cos 3t - 3\sin 3t \\ 2\cos 3t \end{bmatrix} + c_2 \begin{bmatrix} -3\sin 3t + 3\cos 3t \\ 2\sin 3t \end{bmatrix}$$
 The trajectories are ellipses about the origin.

13. (complex):
$$c_1 \begin{bmatrix} 1+i \\ 2 \end{bmatrix} e^{(1+3i)t} + c_2 \begin{bmatrix} 1-i \\ 2 \end{bmatrix} e^{(1-3i)t}$$
 (real): $c_1 \begin{bmatrix} \cos 3t - \sin 3t \\ 2\cos 3t \end{bmatrix} e^t + c_2 \begin{bmatrix} \sin 3t + \cos 3t \\ 2\sin 3t \end{bmatrix} e^t$

15. [M]
$$\mathbf{x}(t) = c_1 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} e^{-2t} + c_2 \begin{bmatrix} -6 \\ 1 \\ 5 \end{bmatrix} e^{-t} + c_3 \begin{bmatrix} -4 \\ 1 \\ 4 \end{bmatrix} e^{t}$$

The origin is a saddle point. A solution with $c_3 = 0$ is attracted to the origin. A solution with $c_1 = c_2 = 0$ is repelled.

17. [M] (complex):

$$c_{1} \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix} e^{t} + c_{2} \begin{bmatrix} 23 - 34i \\ -9 + 14i \end{bmatrix} e^{(5+2i)t} +$$

$$c_{3} \begin{bmatrix} 23 + 34i \\ -9 - 14i \\ 3 \end{bmatrix} e^{(5-2i)t}$$

$$(real): c_{1} \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix} e^{t} + c_{2} \begin{bmatrix} 23\cos 2t + 34\sin 2t \\ -9\cos 2t - 14\sin 2t \\ 3\cos 2t \end{bmatrix} e^{5t} +$$

$$c_{3} \begin{bmatrix} 23\sin 2t - 34\cos 2t \\ -9\sin 2t + 14\cos 2t \\ 3\sin 2t \end{bmatrix} e^{5t}$$

The origin is a repeller. The trajectories spiral outward, away from the origin

19. [**M**]
$$A = \begin{bmatrix} -2 & 3/4 \\ 1 & -1 \end{bmatrix}$$
, $\begin{bmatrix} v_1(t) \\ v_2(t) \end{bmatrix} = \frac{5}{2} \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-.5t} - \frac{1}{2} \begin{bmatrix} -3 \\ 2 \end{bmatrix} e^{-2.5t}$

21. [M]
$$A = \begin{bmatrix} -1 & -8 \\ 5 & -5 \end{bmatrix}$$
, $\begin{bmatrix} i_L(t) \\ v_C(t) \end{bmatrix} = \begin{bmatrix} -20\sin 6t \\ 15\cos 6t - 5\sin 6t \end{bmatrix} e^{-3t}$

Section 5.8, page 324

- **1.** Eigenvector: $\mathbf{x}_4 = \begin{bmatrix} 1 \\ .3326 \end{bmatrix}$, or $A\mathbf{x}_4 = \begin{bmatrix} 4.9978 \\ 1.6652 \end{bmatrix}$;
- **3.** Eigenvector: $\mathbf{x}_4 = \begin{bmatrix} .5188 \\ 1 \end{bmatrix}$, or $A\mathbf{x}_4 = \begin{bmatrix} .4594 \\ .9075 \end{bmatrix}$;
- 5. $\mathbf{x} = \begin{bmatrix} -.7999 \\ 1 \end{bmatrix}, A\mathbf{x} = \begin{bmatrix} 4.0015 \\ -5.0020 \end{bmatrix};$ estimated $\lambda = -5.0020$
- \mathbf{x}_k : $\begin{bmatrix} .75 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ .9565 \end{bmatrix}$, $\begin{bmatrix} .9932 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ .9990 \end{bmatrix}$, $\begin{bmatrix} .9998 \\ 1 \end{bmatrix}$
- **9.** [M] $\mu_5 = 8.4233$, $\mu_6 = 8.4246$; actual value: 8.42443 (accurate to 5 places)

- **11.** μ_k : 5.8000, 5.9655, 5.9942, 5.9990 (k = 1, 2, 3, 4); $R(\mathbf{x}_k)$: 5.9655, 5.9990, 5.99997, 5.999993
- 13. Yes, but the sequences may converge very slowly.
- **15.** Hint: Write $A\mathbf{x} \alpha \mathbf{x} = (A \alpha I)\mathbf{x}$, and use the fact that $(A \alpha I)$ is invertible when α is *not* an eigenvalue of A.
- **17.** [M] $v_0 = 3.3384$, $v_1 = 3.32119$ (accurate to 4 places with rounding), $v_2 = 3.3212209$. Actual value: 3.3212201 (accurate to 7 places)
- **19.** [M] **a.** $\mu_6 = 30.2887 = \mu_7$ to four decimal places. To six places, the largest eigenvalue is 30.288685, with eigenvector (.957629, .688937, 1, .943782).
 - **b.** The inverse power method (with $\alpha=0$) produces $\mu_1^{-1}=.010141, \,\mu_2^{-1}=.010150.$ To seven places, the smallest eigenvalue is .0101500, with eigenvector (-.603972, 1, -.251135, .148953). The reason for the rapid convergence is that the next-to-smallest eigenvalue is near .85.
- **21.** a. If the eigenvalues of A are all less than 1 in magnitude, and if $\mathbf{x} \neq \mathbf{0}$, then $A^k \mathbf{x}$ is approximately an eigenvector for large k.
 - **b.** If the strictly dominant eigenvalue is 1, and if \mathbf{x} has a component in the direction of the corresponding eigenvector, then $\{A^k\mathbf{x}\}$ will converge to a multiple of that eigenvector.
 - c. If the eigenvalues of A are all greater than 1 in magnitude, and if \mathbf{x} is not an eigenvector, then the distance from $A^k \mathbf{x}$ to the nearest eigenvector will increase as $k \to \infty$.

Chapter 5 Supplementary Exercises, page 326

- 1. a. T b. F c. T d. F e. T f. T g. F h. T i. F j. T k. F l. F m. F n. T o. F p. T q. F r. T s. F t. T u. T v. T w. F x. T
- 3. a. Suppose $A\mathbf{x} = \lambda \mathbf{x}$, with $\mathbf{x} \neq \mathbf{0}$. Then $(5I A)\mathbf{x} = 5\mathbf{x} A\mathbf{x} = 5\mathbf{x} \lambda \mathbf{x} = (5 \lambda)\mathbf{x}.$

The eigenvalue is $5 - \lambda$.

b.
$$(5I - 3A + A^2)\mathbf{x} = 5\mathbf{x} - 3A\mathbf{x} + A(A\mathbf{x})$$

= $5\mathbf{x} - 3\lambda\mathbf{x} + \lambda^2\mathbf{x}$
= $(5 - 3\lambda + \lambda^2)\mathbf{x}$.

The eigenvalue is $5 - 3\lambda + \lambda^2$.

5. Suppose $A\mathbf{x} = \lambda \mathbf{x}$, with $\mathbf{x} \neq \mathbf{0}$. Then

$$p(A)\mathbf{x} = (c_0I + c_1A + c_2A^2 + \dots + c_nA^n)\mathbf{x}$$

= $c_0\mathbf{x} + c_1A\mathbf{x} + c_2A^2\mathbf{x} + \dots + c_nA^n\mathbf{x}$
= $c_0\mathbf{x} + c_1\lambda\mathbf{x} + c_2\lambda^2\mathbf{x} + \dots + c_n\lambda^n\mathbf{x} = p(\lambda)\mathbf{x}$

So $p(\lambda)$ is an eigenvalue of the matrix p(A).

7. If $A = PDP^{-1}$, then $p(A) = Pp(D)P^{-1}$, as shown in Exercise 6. If the (j, j) entry in D is λ , then the (j, j) entry in D^k is λ^k , and so the (j, j) entry in p(D) is $p(\lambda)$. If p is the characteristic polynomial of A, then $p(\lambda) = 0$

for each diagonal entry of D, because these entries in D are the eigenvalues of A. Thus p(D) is the zero matrix. Thus $p(A) = P \cdot 0 \cdot P^{-1} = 0$.

- 9. If I A were not invertible, then the equation $(I A)\mathbf{x} = \mathbf{0}$ would have a nontrivial solution \mathbf{x} . Then $\mathbf{x} A\mathbf{x} = \mathbf{0}$ and $A\mathbf{x} = 1 \cdot \mathbf{x}$, which shows that A would have 1 as an eigenvalue. This cannot happen if all the eigenvalues are less than 1 in magnitude. So I A must be invertible.
- 11. a. Take \mathbf{x} in H. Then $\mathbf{x} = c\mathbf{u}$ for some scalar c. So $A\mathbf{x} = A(c\mathbf{u}) = c(A\mathbf{u}) = c(\lambda\mathbf{u}) = (c\lambda)\mathbf{u}$, which shows that $A\mathbf{x}$ is in H.
 - b. Let x be a nonzero vector in K. Since K is one-dimensional, K must be the set of all scalar multiples of x. If K is invariant under A, then Ax is in K and hence Ax is a multiple of x. Thus x is an eigenvector of A.
- **13.** 1, 3, 7
- **15.** Replace a by $a \lambda$ in the determinant formula from Exercise 16 in Chapter 3 Supplementary Exercises:

$$\det(A - \lambda I) = (a - b - \lambda)^{n-1} [a - \lambda + (n-1)b]$$

This determinant is zero only if $a - b - \lambda = 0$ or $a - \lambda + (n - 1)b = 0$. Thus λ is an eigenvalue of A if and only if $\lambda = a - b$ or $\lambda = a + (n - 1)b$. From the formula for $\det(A - \lambda I)$ above, the algebraic multiplicity is n - 1 for a - b and 1 for a + (n - 1)b.

17. $\det(A - \lambda I) = (a_{11} - \lambda)(a_{22} - \lambda) - a_{12}a_{21} = \lambda^2 - (a_{11} + a_{22})\lambda + (a_{11}a_{22} - a_{12}a_{21}) = \lambda^2 - (\operatorname{tr} A)\lambda + \det A$. Use the quadratic formula to solve the characteristic equation:

$$\lambda = \frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^2 - 4 \det A}}{2}$$

The eigenvalues are both real if and only if the discriminant is nonnegative, that is, $(\operatorname{tr} A)^2 - 4 \det A \geq 0$. This inequality simplifies to $(\operatorname{tr} A)^2 \geq 4 \det A$ and $\left(\frac{\operatorname{tr} A}{2}\right)^2 \geq \det A$.

19.
$$C_p = \begin{bmatrix} 0 & 1 \\ -6 & 5 \end{bmatrix}$$
; $\det(C_p - \lambda I) = 6 - 5\lambda + \lambda^2 = p(\lambda)$

21. If p is a polynomial of order 2, then a calculation such as in Exercise 19 shows that the characteristic polynomial of C_p is $p(\lambda) = (-1)^2 p(\lambda)$, so the result is true for n = 2. Suppose the result is true for n = k for some $k \ge 2$, and consider a polynomial p of degree k + 1. Then, expanding $\det(C_p - \lambda I)$ by cofactors down the first column, the determinant of $C_p - \lambda I$ equals

$$(-\lambda) \det \begin{bmatrix} -\lambda & 1 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & & & 1 \\ -a_1 & -a_2 & \cdots & -a_k - \lambda \end{bmatrix} + (-1)^{k+1} a_0$$

A44 Answers to Odd-Numbered Exercises

The $k \times k$ matrix shown is $C_q - \lambda I$, where $q(t) = a_1 + a_2 t + \cdots + a_k t^{k-1} + t^k$. By the induction assumption, the determinant of $C_q - \lambda I$ is $(-1)^k q(\lambda)$. Thus

$$\det(C_p - \lambda I) = (-1)^{k+1} a_0 + (-\lambda)(-1)^k q(\lambda)$$

= $(-1)^{k+1} [a_0 + \lambda(a_1 + \dots + a_k \lambda^{k-1} + \lambda^k)]$
= $(-1)^{k+1} p(\lambda)$

So the formula holds for n = k + 1 when it holds for n = k. By the principle of induction, the formula for $\det(C_p - \lambda I)$ is true for all $n \ge 2$.

- 23. From Exercise 22, the columns of the Vandermonde matrix V are eigenvectors of C_p , corresponding to the eigenvalues $\lambda_1, \lambda_2, \lambda_3$ (the roots of the polynomial p). Since these eigenvalues are distinct, the eigenvectors form a linearly independent set, by Theorem 2 in Section 5.1. Thus V has linearly independent columns and hence is invertible, by the Invertible Matrix Theorem. Finally, since the columns of V are eigenvectors of C_p , the Diagonalization Theorem (Theorem 5 in Section 5.3) shows that $V^{-1}C_pV$ is diagonal.
- 25. [M] If your matrix program computes eigenvalues and eigenvectors by iterative methods rather than symbolic calculations, you may have some difficulties. You should find that AP PD has extremely small entries and PDP^{-1} is close to A. (This was true just a few years ago, but the situation could change as matrix programs continue to improve.) If you constructed P from the program's eigenvectors, check the condition number of P. This may indicate that you do not really have three linearly independent eigenvectors.

Chapter 6

Section 6.1, page 336

1. 5, 8,
$$\frac{8}{5}$$
 3. $\begin{bmatrix} 3/35 \\ -1/35 \\ -1/7 \end{bmatrix}$ **5.** $\begin{bmatrix} 8/13 \\ 12/13 \end{bmatrix}$

7.
$$\sqrt{35}$$
 9. $\begin{bmatrix} -.6 \\ .8 \end{bmatrix}$ 11. $\begin{bmatrix} 7/\sqrt{69} \\ 2/\sqrt{69} \\ 4/\sqrt{69} \end{bmatrix}$

- 13. $5\sqrt{5}$ 15. Not orthogonal 17. Orthogonal
- Refer to the Study Guide after you have written your answers.
- 21. Hint: Use Theorems 3 and 2 from Section 2.1.

23.
$$\mathbf{u} \cdot \mathbf{v} = 0$$
, $\|\mathbf{u}\|^2 = 30$, $\|\mathbf{v}\|^2 = 101$, $\|\mathbf{u} + \mathbf{v}\|^2 = (-5)^2 + (-9)^2 + 5^2 = 131 = 30 + 101$

- **25.** The set of all multiples of $\begin{bmatrix} -b \\ a \end{bmatrix}$ (when $\mathbf{v} \neq \mathbf{0}$)
- 27. Hint: Use the definition of orthogonality.
- **29.** *Hint:* Consider a typical vector $\mathbf{w} = c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p$ in W.

- **31.** *Hint*: If \mathbf{x} is in W^{\perp} , then \mathbf{x} is orthogonal to every vector in W.
- 33. [M] State your conjecture and verify it algebraically.

Section 6.2, page 344

- 1. Not orthogonal 3. Not orthogonal 5. Orthogonal
- Show u₁·u₂ = 0, mention Theorem 4, and observe that two linearly independent vectors in R² form a basis. Then obtain

$$\mathbf{x} = \frac{39}{13} \begin{bmatrix} 2 \\ -3 \end{bmatrix} + \frac{26}{52} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = 3 \begin{bmatrix} 2 \\ -3 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

9. Show $\mathbf{u}_1 \cdot \mathbf{u}_2 = 0$, $\mathbf{u}_1 \cdot \mathbf{u}_3 = 0$, and $\mathbf{u}_2 \cdot \mathbf{u}_3 = 0$. Mention Theorem 4, and observe that three linearly independent vectors in \mathbb{R}^3 form a basis. Then obtain

$$\mathbf{x} = \frac{5}{2}\mathbf{u}_1 - \frac{27}{18}\mathbf{u}_2 + \frac{18}{9}\mathbf{u}_3 = \frac{5}{2}\mathbf{u}_1 - \frac{3}{2}\mathbf{u}_2 + 2\mathbf{u}_3$$

11.
$$\begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
 13. $\mathbf{y} = \begin{bmatrix} -4/5 \\ 7/5 \end{bmatrix} + \begin{bmatrix} 14/5 \\ 8/5 \end{bmatrix}$

15.
$$\mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} .6 \\ -.8 \end{bmatrix}$$
, distance is 1

17.
$$\begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix}, \begin{bmatrix} -1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{bmatrix}$$

- **19.** Orthonormal **21.** Orthonormal
- 23. See the Study Guide.
- **25.** Hint: $\|U\mathbf{x}\|^2 = (U\mathbf{x})^T (U\mathbf{x})$. Also, parts (a) and (c) follow from (b).
- **27.** *Hint:* You need two theorems, one of which applies only to *square* matrices.
- **29.** *Hint:* If you have a candidate for an inverse, you can check to see whether the candidate works.
- 31. Suppose $\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$. Replace \mathbf{u} by $c\mathbf{u}$ with $c \neq 0$; then

$$\frac{\mathbf{y} \cdot (c\mathbf{u})}{(c\mathbf{u}) \cdot (c\mathbf{u})}(c\mathbf{u}) = \frac{c(\mathbf{y} \cdot \mathbf{u})}{c^2\mathbf{u} \cdot \mathbf{u}}(c)\mathbf{u} = \hat{\mathbf{y}}$$

33. Let $L = \text{Span} \{\mathbf{u}\}$, where \mathbf{u} is nonzero, and let $T(\mathbf{x}) = \text{proj}_L \mathbf{x}$. By definition,

$$T(\mathbf{x}) = \frac{\mathbf{x} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} = (\mathbf{x} \cdot \mathbf{u})(\mathbf{u} \cdot \mathbf{u})^{-1} \mathbf{u}$$

For \mathbf{x} and \mathbf{y} in \mathbb{R}^n and any scalars c and d, properties of the inner product (Theorem 1) show that

$$T(c\mathbf{x} + d\mathbf{y}) = [(c\mathbf{x} + d\mathbf{y}) \cdot \mathbf{u}](\mathbf{u} \cdot \mathbf{u})^{-1}\mathbf{u}$$

$$= [c(\mathbf{x} \cdot \mathbf{u}) + d(\mathbf{y} \cdot \mathbf{u})](\mathbf{u} \cdot \mathbf{u})^{-1}\mathbf{u}$$

$$= c(\mathbf{x} \cdot \mathbf{u})(\mathbf{u} \cdot \mathbf{u})^{-1}\mathbf{u} + d(\mathbf{y} \cdot \mathbf{u})(\mathbf{u} \cdot \mathbf{u})^{-1}\mathbf{u}$$

$$= cT(\mathbf{x}) + dT(\mathbf{y})$$

Thus T is linear.

Section 6.3, page 352

1.
$$\mathbf{x} = -\frac{8}{9}\mathbf{u}_1 - \frac{2}{9}\mathbf{u}_2 + \frac{2}{3}\mathbf{u}_3 + 2\mathbf{u}_4; \quad \mathbf{x} = \begin{bmatrix} 0 \\ -2 \\ 4 \\ -2 \end{bmatrix} + \begin{bmatrix} 10 \\ -6 \\ -2 \\ 2 \end{bmatrix}$$

3.
$$\begin{bmatrix} -1 \\ 4 \\ 0 \end{bmatrix}$$
 5.
$$\begin{bmatrix} -1 \\ 2 \\ 6 \end{bmatrix} = \mathbf{y}$$

7.
$$\mathbf{y} = \begin{bmatrix} 10/3 \\ 2/3 \\ 8/3 \end{bmatrix} + \begin{bmatrix} -7/3 \\ 7/3 \\ 7/3 \end{bmatrix}$$
 9. $\mathbf{y} = \begin{bmatrix} 2 \\ 4 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ -1 \\ 3 \\ -1 \end{bmatrix}$

11.
$$\begin{bmatrix} 3 \\ -1 \\ 1 \\ -1 \end{bmatrix}$$
 13. $\begin{bmatrix} -1 \\ -3 \\ -2 \\ 3 \end{bmatrix}$ 15. $\sqrt{40}$

17. a.
$$U^{T}U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, UU^{T} = \begin{bmatrix} 8/9 & -2/9 & 2/9 \\ -2/9 & 5/9 & 4/9 \\ 2/9 & 4/9 & 5/9 \end{bmatrix}$$

b. $\operatorname{proj}_{W} \mathbf{y} = 6\mathbf{u}_{1} + 3\mathbf{u}_{2} = \begin{bmatrix} 2 \\ 4 \\ 5 \end{bmatrix}, (UU^{T})\mathbf{y} = \begin{bmatrix} 2 \\ 4 \\ 5 \end{bmatrix}$

19. Any multiple of
$$\begin{bmatrix} 0 \\ 2/5 \\ 1/5 \end{bmatrix}$$
, such as $\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$

21. Write your answers before checking the Study Guide.

23. *Hint:* Use Theorem 3 and the Orthogonal Decomposition Theorem. For the uniqueness, suppose $A\mathbf{p} = \mathbf{b}$ and $A\mathbf{p}_1 = \mathbf{b}$, and consider the equations $\mathbf{p} = \mathbf{p}_1 + (\mathbf{p} - \mathbf{p}_1)$ and $\mathbf{p} = \mathbf{p} + \mathbf{0}$.

Section 6.4, page 358

1.
$$\begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$$
, $\begin{bmatrix} -1 \\ 5 \\ -3 \end{bmatrix}$ **3.** $\begin{bmatrix} 2 \\ -5 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 3/2 \\ 3/2 \end{bmatrix}$

5.
$$\begin{bmatrix} 1 \\ -4 \\ 0 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 5 \\ 1 \\ -4 \\ -1 \end{bmatrix}$ 7. $\begin{bmatrix} 2/\sqrt{30} \\ -5/\sqrt{30} \\ 1/\sqrt{30} \end{bmatrix}$, $\begin{bmatrix} 2/\sqrt{6} \\ 1/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}$

9.
$$\begin{bmatrix} 3 \\ 1 \\ -1 \\ 3 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 3 \\ 3 \\ -1 \end{bmatrix}$, $\begin{bmatrix} -3 \\ 1 \\ 1 \\ 3 \end{bmatrix}$ 11. $\begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 0 \\ 3 \\ -3 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 0 \\ 2 \\ 2 \\ -2 \end{bmatrix}$

$$13. R = \begin{bmatrix} 6 & 12 \\ 0 & 6 \end{bmatrix}$$

15.
$$Q = \begin{bmatrix} 1/\sqrt{5} & 1/2 & 1/2 \\ -1/\sqrt{5} & 0 & 0 \\ -1/\sqrt{5} & 1/2 & 1/2 \\ 1/\sqrt{5} & -1/2 & 1/2 \\ 1/\sqrt{5} & 1/2 & -1/2 \end{bmatrix},$$

$$R = \begin{bmatrix} \sqrt{5} & -\sqrt{5} & 4\sqrt{5} \\ 0 & 6 & -2 \\ 0 & 0 & 4 \end{bmatrix}$$

17. See the Study Guide.

19. Suppose \mathbf{x} satisfies $R\mathbf{x} = \mathbf{0}$; then $QR\mathbf{x} = Q\mathbf{0} = \mathbf{0}$, and $A\mathbf{x} = \mathbf{0}$. Since the columns of A are linearly independent, \mathbf{x} must be zero. This fact, in turn, shows that the columns of R are linearly independent. Since R is square, it is invertible, by the Invertible Matrix Theorem.

21. Denote the columns of Q by $\mathbf{q}_1, \dots, \mathbf{q}_n$. Note that $n \leq m$, because A is $m \times n$ and has linearly independent columns. Use the fact that the columns of Q can be extended to an orthonormal basis for \mathbb{R}^m , say, $\{\mathbf{q}_1, \dots, \mathbf{q}_m\}$. (The *Study Guide* describes one method.) Let $Q_0 = [\mathbf{q}_{n+1} \cdots \mathbf{q}_m]$ and $Q_1 = [Q Q_0]$. Then, using partitioned matrix multiplication, $Q_1 \begin{bmatrix} R \\ 0 \end{bmatrix} = QR = A$.

23. Hint: Partition R as a 2×2 block matrix.

25. [**M**] The diagonal entries of *R* are 20, 6, 10.3923, and 7.0711, to four decimal places.

Section 6.5, page 366

1. a.
$$\begin{bmatrix} 6 & -11 \\ -11 & 22 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -4 \\ 11 \end{bmatrix}$$
 b. $\hat{\mathbf{x}} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$

3. a.
$$\begin{bmatrix} 6 & 6 \\ 6 & 42 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ -6 \end{bmatrix}$$
 b. $\hat{\mathbf{x}} = \begin{bmatrix} 4/3 \\ -1/3 \end{bmatrix}$

5.
$$\hat{\mathbf{x}} = \begin{bmatrix} 5 \\ -3 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$
 7. $2\sqrt{5}$

9. a.
$$\hat{\mathbf{b}} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
 b. $\hat{\mathbf{x}} = \begin{bmatrix} 2/7 \\ 1/7 \end{bmatrix}$

11. a.
$$\hat{\mathbf{b}} = \begin{bmatrix} 3 \\ 1 \\ 4 \\ -1 \end{bmatrix}$$
 b. $\hat{\mathbf{x}} = \begin{bmatrix} 2/3 \\ 0 \\ 1/3 \end{bmatrix}$

13.
$$A\mathbf{u} = \begin{bmatrix} 11 \\ -11 \\ 11 \end{bmatrix}$$
, $A\mathbf{v} = \begin{bmatrix} 7 \\ -12 \\ 7 \end{bmatrix}$, $\mathbf{b} - A\mathbf{u} = \begin{bmatrix} 0 \\ 2 \\ -6 \end{bmatrix}$, $\mathbf{b} - A\mathbf{v} = \begin{bmatrix} 4 \\ 3 \\ -2 \end{bmatrix}$. No, \mathbf{u} could not possibly be a least-squares solution of $A\mathbf{x} = \mathbf{b}$. Why?

15.
$$\hat{\mathbf{x}} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$$
 17. See the *Study Guide*.

A46 Answers to Odd-Numbered Exercises

- **19.** a. If $A\mathbf{x} = \mathbf{0}$, then $A^T A \mathbf{x} = A^T \mathbf{0} = \mathbf{0}$. This shows that Nul A is contained in Nul $A^T A$.
 - **b.** If $A^T A \mathbf{x} = \mathbf{0}$, then $\mathbf{x}^T A^T A \mathbf{x} = \mathbf{x}^T \mathbf{0} = 0$. So $(A \mathbf{x})^T (A \mathbf{x}) = 0$ (which means that $||A \mathbf{x}||^2 = 0$), and hence $A \mathbf{x} = \mathbf{0}$. This shows that Nul $A^T A$ is contained in Nul A.
- **21.** *Hint:* For part (a), use an important theorem from Chapter 2
- **23.** By Theorem 14, $\hat{\mathbf{b}} = A\hat{\mathbf{x}} = A(A^TA)^{-1}A^T\mathbf{b}$. The matrix $A(A^TA)^{-1}A^T$ occurs frequently in statistics, where it is sometimes called the *hat-matrix*.
- **25.** The normal equations are $\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \end{bmatrix}$, whose solution is the set of (x, y) such that x + y = 3. The solutions correspond to points on the line midway between the lines x + y = 2 and x + y = 4.

Section 6.6, page 374

- 1. y = .9 + .4x
- 3. y = 1.1 + 1.3x
- **5.** If two data points have different *x*-coordinates, then the two columns of the design matrix *X* cannot be multiples of each other and hence are linearly independent. By Theorem 14 in Section 6.5, the normal equations have a unique solution.
- 7. **a.** $\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where $\mathbf{y} = \begin{bmatrix} 1.8 \\ 2.7 \\ 3.4 \\ 3.8 \\ 3.9 \end{bmatrix}$, $X = \begin{bmatrix} 1 & 1 \\ 2 & 4 \\ 3 & 9 \\ 4 & 16 \\ 5 & 25 \end{bmatrix}$,

$$\boldsymbol{\beta} = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}, \boldsymbol{\epsilon} = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \end{bmatrix}$$

- **b.** [**M**] $y = 1.76x .20x^2$
- 9. $\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where $\mathbf{y} = \begin{bmatrix} 7.9 \\ 5.4 \\ -.9 \end{bmatrix}$, $X = \begin{bmatrix} \cos 1 & \sin 1 \\ \cos 2 & \sin 2 \\ \cos 3 & \sin 3 \end{bmatrix}$,
 - $\boldsymbol{\beta} = \begin{bmatrix} A \\ B \end{bmatrix}, \boldsymbol{\epsilon} = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \end{bmatrix}$
- 11. [M] $\beta = 1.45$ and e = .811; the orbit is an ellipse. The equation $r = \beta/(1 e \cdot \cos \vartheta)$ produces r = 1.33 when $\vartheta = 4.6$.
- **13.** [M] a. $y = -.8558 + 4.7025t + 5.5554t^2 .0274t^3$ b. The velocity function is

$$v(t) = 4.7025 + 11.1108t - .0822t^2$$
, and $v(4.5) = 53.0$ ft/sec.

- **15.** *Hint:* Write X and y as in equation (1), and compute X^TX and X^Ty .
- **17. a.** The mean of the *x*-data is $\bar{x} = 5.5$. The data in mean-deviation form are (-3.5, 1), (-.5, 2), (1.5, 3),

and (2.5, 3). The columns of X are orthogonal because the entries in the second column sum to 0.

b.
$$\begin{bmatrix} 4 & 0 \\ 0 & 21 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} 9 \\ 7.5 \end{bmatrix},$$
$$y = \frac{9}{4} + \frac{5}{14}x^* = \frac{9}{4} + \frac{5}{14}(x - 5.5)$$

19. Hint: The equation has a nice geometric interpretation.

Section 6.7, page 382

- **1. a.** 3, $\sqrt{105}$, 225 **b.** All multiples of $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$
- **3.** 28 **5.** $5\sqrt{2}$, $3\sqrt{3}$ **7.** $\frac{56}{25} + \frac{14}{25}$
- **9. a.** Constant polynomial, p(t) = 5**b.** $t^2 - 5$ is orthogonal to p_0 and p_1 ; values: (4, -4, -4, 4); answer: $q(t) = \frac{1}{4}(t^2 - 5)$
- 11. $\frac{17}{5}t$
- 13. Verify each of the four axioms. For instance:
 - 1. $\langle \mathbf{u}, \mathbf{v} \rangle = (A\mathbf{u}) \cdot (A\mathbf{v})$ Definition = $(A\mathbf{v}) \cdot (A\mathbf{u})$ Property of the dot product = $\langle \mathbf{v}, \mathbf{u} \rangle$ Definition
- 15. $\langle \mathbf{u}, c\mathbf{v} \rangle = \langle c\mathbf{v}, \mathbf{u} \rangle$ Axiom 1 = $c \langle \mathbf{v}, \mathbf{u} \rangle$ Axiom 3 = $c \langle \mathbf{u}, \mathbf{v} \rangle$ Axiom 1
- 17. Hint: Compute 4 times the right-hand side.
- 19. $\langle \mathbf{u}, \mathbf{v} \rangle = \sqrt{a}\sqrt{b} + \sqrt{b}\sqrt{a} = 2\sqrt{ab},$ $\|\mathbf{u}\|^2 = (\sqrt{a})^2 + (\sqrt{b})^2 = a + b$. Since a and b are nonnegative, $\|\mathbf{u}\| = \sqrt{a + b}$. Similarly, $\|\mathbf{v}\| = \sqrt{b + a}$. By Cauchy–Schwarz, $2\sqrt{ab} \le \sqrt{a + b}\sqrt{b + a} = a + b$. Hence, $\sqrt{ab} \le \frac{a + b}{2}$.
- **21.** 0 **23.** $2/\sqrt{5}$
- **25.** 1, t, $3t^2 1$
- **27.** [M] The new orthogonal polynomials are multiples of $-17t + 5t^3$ and $72 155t^2 + 35t^4$. Scale these polynomials so their values at -2, -1, 0, 1, and 2 are small integers.

Section 6.8, page 389

- 1. $y = 2 + \frac{3}{2}t$
- 3. $p(t) = 4p_0 .1p_1 .5p_2 + .2p_3$ = $4 - .1t - .5(t^2 - 2) + .2(\frac{5}{6}t^3 - \frac{17}{6}t)$ (This polynomial happens to fit the data exactly.)
- 5. Use the identity $\sin mt \sin nt = \frac{1}{2} [\cos(mt nt) \cos(mt + nt)]$
- 7. Use the identity $\cos^2 kt = \frac{1 + \cos 2kt}{2}$.
- 9. $\pi + 2\sin t + \sin 2t + \frac{2}{3}\sin 3t$ [*Hint*: Save time by using the results from Example 4.]
- **11.** $\frac{1}{2} \frac{1}{2} \cos 2t$ (Why?)

- 13. Hint: Take functions f and g in $C[0, 2\pi]$, and fix an integer $m \ge 0$. Write the Fourier coefficient of f + g that involves $\cos mt$, and write the Fourier coefficient that involves $\sin mt (m > 0)$.
- **15.** [M] The cubic curve is the graph of $g(t) = -.2685 + 3.6095t + 5.8576t^2 .0477t^3$. The velocity at t = 4.5 seconds is g'(4.5) = 53.4 ft/sec. This is about .7% faster than the estimate obtained in Exercise 13 in Section 6.6.

Chapter 6 Supplementary Exercises, page 390

- 1. a. F b. T c. T d. F e. F f. T g. T h. T i. F j. T k. T l. F m. T n. F o. F p. T q. T r. F s. F
- 2. *Hint*: If $\{\mathbf{v}_1, \mathbf{v}_2\}$ is an orthonormal set and $\mathbf{x} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2$, then the vectors $c_1\mathbf{v}_1$ and $c_2\mathbf{v}_2$ are orthogonal, and

$$\|\mathbf{x}\|^2 = \|c_1\mathbf{v}_1 + c_2\mathbf{v}_2\|^2 = \|c_1\mathbf{v}_1\|^2 + \|c_2\mathbf{v}_2\|^2$$
$$= (|c_1|\|\mathbf{v}_1\|)^2 + (|c_2|\|\mathbf{v}_2\|)^2 = |c_1|^2 + |c_2|^2$$

(Explain why.) So the stated equality holds for p = 2. Suppose that the equality holds for p = k, with $k \ge 2$, let $\{\mathbf{v}_1, \dots, \mathbf{v}_{k+1}\}$ be an orthonormal set, and consider $\mathbf{x} = c_1\mathbf{v}_1 + \dots + c_k\mathbf{v}_k + c_{k+1}\mathbf{v}_{k+1} = \mathbf{u}_k + c_{k+1}\mathbf{v}_{k+1}$, where $\mathbf{u}_k = c_1\mathbf{v}_1 + \dots + c_k\mathbf{v}_k$.

3. Given \mathbf{x} and an orthonormal set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n , let $\hat{\mathbf{x}}$ be the orthogonal projection of \mathbf{x} onto the subspace spanned by $\mathbf{v}_1, \dots, \mathbf{v}_p$. By Theorem 10 in Section 6.3,

$$\hat{\mathbf{x}} = (\mathbf{x} \cdot \mathbf{v}_1)\mathbf{v}_1 + \dots + (\mathbf{x} \cdot \mathbf{v}_p)\mathbf{v}_p$$

By Exercise 2, $\|\hat{\mathbf{x}}\|^2 = |\mathbf{x} \cdot \mathbf{v}_1|^2 + \dots + |\mathbf{x} \cdot \mathbf{v}_p|^2$. Bessel's inequality follows from the fact that $\|\hat{\mathbf{x}}\|^2 \le \|\mathbf{x}\|^2$, noted before the statement of the Cauchy–Schwarz inequality, in Section 6.7.

- 5. Suppose $(U\mathbf{x}) \cdot (U\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ for all \mathbf{x}, \mathbf{y} in \mathbb{R}^n , and let $\mathbf{e}_1, \dots, \mathbf{e}_n$ be the standard basis for \mathbb{R}^n . For $j = 1, \dots, n, U\mathbf{e}_j$ is the jth column of U. Since $\|U\mathbf{e}_j\|^2 = (U\mathbf{e}_j) \cdot (U\mathbf{e}_j) = \mathbf{e}_j \cdot \mathbf{e}_j = 1$, the columns of U are unit vectors; since $(U\mathbf{e}_j) \cdot (U\mathbf{e}_k) = \mathbf{e}_j \cdot \mathbf{e}_k = 0$ for $j \neq k$, the columns are pairwise orthogonal.
- 7. *Hint*: Compute $Q^T Q$, using the fact that $(\mathbf{u}\mathbf{u}^T)^T = \mathbf{u}^{TT}\mathbf{u}^T = \mathbf{u}\mathbf{u}^T$.
- 9. Let W = Span {u, v}. Given z in Rⁿ, let ẑ = proj_W z. Then ẑ is in Col A, where A = [u v], say, ẑ = Ax̂ for some x̂ in R². So x̂ is a least-squares solution of Ax = z. The normal equations can be solved to produce x̂, and then ẑ is found by computing Ax̂.
- 11. Hint: Let $\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 1 \\ -2 \\ 5 \end{bmatrix}$, and $A = \begin{bmatrix} \mathbf{v}^T \\ \mathbf{v}^T \\ \mathbf{v}^T \end{bmatrix} = \begin{bmatrix} 1 & -2 & 5 \\ 1 & -2 & 5 \\ 1 & -2 & 5 \end{bmatrix}$. The given set of

equations is $A\mathbf{x} = \mathbf{b}$, and the set of all least-squares solutions coincides with the set of solutions of $A^T A \mathbf{x} = A^T \mathbf{b}$ (Theorem 13 in Section 6.5). Study this equation, and use the fact that $(\mathbf{v}\mathbf{v}^T)\mathbf{x} = \mathbf{v}(\mathbf{v}^T\mathbf{x}) = (\mathbf{v}^T\mathbf{x})\mathbf{v}$, because $\mathbf{v}^T\mathbf{x}$ is a scalar.

- 13. a. The row-column calculation of $A\mathbf{u}$ shows that each row of A is orthogonal to every \mathbf{u} in Nul A. So each row of A is in $(\text{Nul }A)^{\perp}$. Since $(\text{Nul }A)^{\perp}$ is a subspace, it must contain all linear combinations of the rows of A; hence $(\text{Nul }A)^{\perp}$ contains Row A.
 - **b.** If rank A = r, then dim Nul A = n r, by the Rank Theorem. By Exercise 24(c) in Section 6.3,

$$\dim \operatorname{Nul} A + \dim(\operatorname{Nul} A)^{\perp} = n$$

So dim(Nul A) $^{\perp}$ must be r. But Row A is an r-dimensional subspace of (Nul A) $^{\perp}$, by the Rank Theorem and part (a). Therefore, Row A must coincide with (Nul A) $^{\perp}$.

- **c.** Replace A by A^T in part (b) and conclude that Row A^T coincides with (Nul A^T) $^{\perp}$. Since Row A^T = Col A, this proves (c).
- **15.** If $A = URU^T$ with U orthogonal, then A is similar to R (because U is invertible and $U^T = U^{-1}$) and so A has the same eigenvalues as R (by Theorem 4 in Section 5.2), namely, the n real numbers on the diagonal of R.
- 17. [M] $\frac{\|\Delta \mathbf{x}\|}{\|\mathbf{x}\|} = .4618$, $\operatorname{cond}(A) \times \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|} = 3363 \times (1.548 \times 10^{-4}) = .5206$. Observe that $\|\Delta \mathbf{x}\|/\|\mathbf{x}\|$ almost equals $\operatorname{cond}(A)$ times $\|\Delta \mathbf{b}\|/\|\mathbf{b}\|$.
- **19.** [M] $\frac{\|\Delta \mathbf{x}\|}{\|\mathbf{x}\|} = 7.178 \times 10^{-8}, \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|} = 2.832 \times 10^{-4}.$

Observe that the relative change in \mathbf{x} is *much* smaller than the relative change in \mathbf{b} . In fact, since

$$cond(A) \times \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|} = 23,683 \times (2.832 \times 10^{-4}) = 6.707$$

the theoretical bound on the relative change in \mathbf{x} is 6.707 (to four significant figures). This exercise shows that even when a condition number is large, the relative error in a solution need not be as large as you might expect.

Chapter 7

Section 7.1, page 399

- 1. Symmetric 3. Not symmetric 5. Not symmetric
- **7.** Orthogonal, $\begin{bmatrix} .6 & .8 \\ .8 & -.6 \end{bmatrix}$ **9.** Not orthogonal
- 11. Orthogonal, $\begin{bmatrix} 2/3 & 0 & \sqrt{5}/3 \\ 2/3 & 1/\sqrt{5} & -4/\sqrt{45} \\ 1/3 & -2/\sqrt{5} & -2/\sqrt{45} \end{bmatrix}$

13.
$$P = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}, D = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$$

15.
$$P = \begin{bmatrix} -4/\sqrt{17} & 1/\sqrt{17} \\ 1/\sqrt{17} & 4/\sqrt{17} \end{bmatrix}, D = \begin{bmatrix} 17 & 0 \\ 0 & 0 \end{bmatrix}$$

17.
$$P = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{6} & -1/\sqrt{2} \\ 1/\sqrt{3} & -2/\sqrt{6} & 0 \\ 1/\sqrt{3} & 1/\sqrt{6} & 1/\sqrt{2} \end{bmatrix},$$

$$D = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

19.
$$P = \begin{bmatrix} -1/\sqrt{5} & 4/\sqrt{45} & -2/3 \\ 2/\sqrt{5} & 2/\sqrt{45} & -1/3 \\ 0 & 5/\sqrt{45} & 2/3 \end{bmatrix},$$

$$D = \begin{bmatrix} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

21.
$$P = \begin{bmatrix} .5 & -.5 & -1/\sqrt{2} & 0 \\ .5 & .5 & 0 & -1/\sqrt{2} \\ .5 & -.5 & 1/\sqrt{2} & 0 \\ .5 & .5 & 0 & 1/\sqrt{2} \end{bmatrix},$$

$$D = \begin{bmatrix} 9 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

23.
$$P = \begin{bmatrix} 1/\sqrt{3} & -1/\sqrt{2} & -1/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} & -1/\sqrt{6} \\ 1/\sqrt{3} & 0 & 2/\sqrt{6} \end{bmatrix},$$

$$D = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

25. See the *Study Guide*.

27.
$$(B^T A B)^T = B^T A^T B^{TT}$$
 Product of transposes in reverse order $= B^T A B$ Because A is symmetric

The result about B^TB is a special case when A = I. $(BB^T)^T = B^{TT}B^T = BB^T$, so BB^T is symmetric.

- **29.** *Hint:* Use an orthogonal diagonalization of *A*, or appeal to Theorem 2.
- 31. The Diagonalization Theorem in Section 5.3 says that the columns of P are (linearly independent) eigenvectors corresponding to the eigenvalues of A listed on the diagonal of D. So P has exactly k columns of eigenvectors corresponding to k. These k columns form a basis for the eigenspace.

33.
$$A = 8\mathbf{u}_1\mathbf{u}_1^T + 6\mathbf{u}_2\mathbf{u}_2^T + 3\mathbf{u}_3\mathbf{u}_3^T$$

$$= 8 \begin{bmatrix} 1/2 & -1/2 & 0 \\ -1/2 & 1/2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$+ 6 \begin{bmatrix} 1/6 & 1/6 & -2/6 \\ 1/6 & 1/6 & -2/6 \\ -2/6 & -2/6 & 4/6 \end{bmatrix}$$

$$+ 3 \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix}$$

35. Hint: $(\mathbf{u}\mathbf{u}^T)\mathbf{x} = \mathbf{u}(\mathbf{u}^T\mathbf{x}) = (\mathbf{u}^T\mathbf{x})\mathbf{u}$, because $\mathbf{u}^T\mathbf{x}$ is a scalar.

Section 7.2, page 406

- **1. a.** $5x_1^2 + \frac{2}{3}x_1x_2 + x_2^2$ **b.** 185 **c.** 16
- **3. a.** $\begin{bmatrix} 10 & -3 \\ -3 & -3 \end{bmatrix}$ **b.** $\begin{bmatrix} 5 & 3/2 \\ 3/2 & 0 \end{bmatrix}$
- 5. a. $\begin{bmatrix} 8 & -3 & 2 \\ -3 & 7 & -1 \\ 2 & -1 & -3 \end{bmatrix}$ b. $\begin{bmatrix} 0 & 2 & 3 \\ 2 & 0 & -4 \\ 3 & -4 & 0 \end{bmatrix}$

7.
$$\mathbf{x} = P\mathbf{y}$$
, where $P = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$, $\mathbf{y}^T D\mathbf{y} = 6y_1^2 - 4y_2^2$

In Exercises 9–14, other answers (change of variables and new quadratic form) are possible.

- 9. Positive definite; eigenvalues are 7 and 2 Change of variable: $\mathbf{x} = P\mathbf{y}$, with $P = \frac{1}{\sqrt{5}} \begin{bmatrix} -1 & 2\\ 2 & 1 \end{bmatrix}$ New quadratic form: $7y_1^2 + 2y_2^2$
- 11. Indefinite; eigenvalues are 7 and -3Change of variable: $\mathbf{x} = P\mathbf{y}$, with $P = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ New quadratic form: $7y_1^2 - 3y_2^2$
- 13. Positive semidefinite; eigenvalues are 10 and 0

 Change of variable: $\mathbf{x} = P\mathbf{y}$, with $P = \frac{1}{\sqrt{10}} \begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix}$ New quadratic form: $10y_1^2$
- **15.** [M] Negative semidefinite; eigenvalues are 0, -6, -8, -12 Change of variable: $\mathbf{x} = P\mathbf{y}$;

$$P = \begin{bmatrix} 3/\sqrt{12} & 0 & -1/2 & 0\\ 1/\sqrt{12} & -2/\sqrt{6} & 1/2 & 0\\ 1/\sqrt{12} & 1/\sqrt{6} & 1/2 & -1/\sqrt{2}\\ 1/\sqrt{12} & 1/\sqrt{6} & 1/2 & 1/\sqrt{2} \end{bmatrix}$$

New quadratic form: $-6y_2^2 - 8y_3^2 - 12y_4^2$

17. [M] Indefinite; eigenvalues are 8.5 and -6.5 Change of variable: $\mathbf{x} = P\mathbf{y}$;

$$P = \frac{1}{\sqrt{50}} \begin{bmatrix} 3 & -4 & 3 & 4\\ 5 & 0 & -5 & 0\\ 4 & 3 & 4 & -3\\ 0 & 5 & 0 & 5 \end{bmatrix}$$

New quadratic form: $8.5y_1^2 + 8.5y_2^2 - 6.5y_3^2 - 6.5y_4^2$

- **19.** 8 **21.** See the *Study Guide*.
- 23. Write the characteristic polynomial in two ways:

$$\det(A - \lambda I) = \det\begin{bmatrix} a - \lambda & b \\ b & d - \lambda \end{bmatrix}$$
$$= \lambda^2 - (a + d)\lambda + ad - b^2$$

and

$$(\lambda - \lambda_1)(\lambda - \lambda_2) = \lambda^2 - (\lambda_1 + \lambda_2)\lambda + \lambda_1\lambda_2$$

Equate coefficients to obtain $\lambda_1 + \lambda_2 = a + d$ and $\lambda_1 \lambda_2 = ad - b^2 = \det A$.

- **25.** Exercise 27 in Section 7.1 showed that B^TB is symmetric. Also, $\mathbf{x}^TB^TB\mathbf{x} = (B\mathbf{x})^TB\mathbf{x} = \|B\mathbf{x}\|^2 \ge 0$, so the quadratic form is positive semidefinite, and we say that the matrix B^TB is positive semidefinite. *Hint:* To show that B^TB is positive definite when B is square and invertible, suppose that $\mathbf{x}^TB^TB\mathbf{x} = 0$ and deduce that $\mathbf{x} = \mathbf{0}$.
- 27. *Hint:* Show that A + B is symmetric and the quadratic form $\mathbf{x}^T(A + B)\mathbf{x}$ is positive definite.

Section 7.3, page 413

1.
$$\mathbf{x} = P\mathbf{y}$$
, where $P = \begin{bmatrix} 1/3 & 2/3 & -2/3 \\ 2/3 & 1/3 & 2/3 \\ -2/3 & 2/3 & 1/3 \end{bmatrix}$

3. a. 9 **b.**
$$\pm \begin{bmatrix} 1/3 \\ 2/3 \\ -2/3 \end{bmatrix}$$
 c. 6

5. a. 7 **b.**
$$\pm \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$
 c. 3

7.
$$\pm \begin{bmatrix} 1/3 \\ 2/3 \\ 2/3 \end{bmatrix}$$
 9. $5 + \sqrt{5}$ 11.

13. Hint: If m = M, take $\alpha = 0$ in the formula for \mathbf{x} . That is, let $\mathbf{x} = \mathbf{u}_n$, and verify that $\mathbf{x}^T A \mathbf{x} = m$. If m < M and if t is a number between m and M, then $0 \le t - m \le M - m$ and $0 \le (t - m)/(M - m) \le 1$. So let $\alpha = (t - m)/(M - m)$. Solve the expression for α to see that $t = (1 - \alpha)m + \alpha M$. As α goes from 0 to 1, t goes from m to M. Construct \mathbf{x} as in the statement of the exercise, and verify its properties.

15. [M] a. 7.5 b.
$$\begin{bmatrix} .5 \\ .5 \\ .5 \\ .5 \end{bmatrix}$$
 c. $-.5$

17. [M] a.
$$-4$$
 b.
$$\begin{bmatrix} -3/\sqrt{12} \\ 1/\sqrt{12} \\ 1/\sqrt{12} \\ 1/\sqrt{12} \end{bmatrix}$$
 c. -10

Section 7.4, page 423

1. 3, 1 **3.** 3, 2

The answers in Exercises 5–13 are not the only possibilities.

$$\mathbf{5.} \ \begin{bmatrix} -3 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

7.
$$\begin{bmatrix} 1/\sqrt{5} & -2/\sqrt{5} \\ 2/\sqrt{5} & 1/\sqrt{5} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5} \\ -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$$

9.
$$\begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 0 & 0 & 1\\ 1/\sqrt{2} & 1/\sqrt{2} & 0 \end{bmatrix} \begin{bmatrix} 3\sqrt{10} & 0\\ 0 & \sqrt{10}\\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5}\\ -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$$

11.
$$\begin{bmatrix} -1/3 & 2/3 & 2/3 \\ 2/3 & -1/3 & 2/3 \\ 2/3 & 2/3 & -1/3 \end{bmatrix} \begin{bmatrix} 3\sqrt{10} & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 3/\sqrt{10} & -1/\sqrt{10} \\ 1/\sqrt{10} & 3/\sqrt{10} \end{bmatrix}$$

13.
$$\begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}$$

$$= \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix}$$

$$\times \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ -1/\sqrt{18} & 1/\sqrt{18} & -4/\sqrt{18} \\ -2/3 & 2/3 & 1/3 \end{bmatrix}$$

15. a. rank
$$A = 2$$

b. Basis for Col A:
$$\begin{bmatrix} .40 \\ .37 \\ -.84 \end{bmatrix}, \begin{bmatrix} -.78 \\ -.33 \\ -.52 \end{bmatrix}$$
Basis for Nul A:
$$\begin{bmatrix} .58 \\ -.58 \\ .58 \end{bmatrix}$$

(Remember that V^T appears in the SVD.)

- 17. Let $A = U \Sigma V^T = U \Sigma V^{-1}$. Since A is square and invertible, rank A = n, and all the entries on the diagonal of Σ must be nonzero. So $A^{-1} = (U \Sigma V^{-1})^{-1} = V \Sigma^{-1} U^{-1} = V \Sigma^{-1} U^T$.
- **19.** Hint: Since U and V are orthogonal,

$$A^{T}A = (U \Sigma V^{T})^{T} U \Sigma V^{T} = V \Sigma^{T} U^{T} U \Sigma V^{T}$$
$$= V(\Sigma^{T} \Sigma) V^{-1}$$

Thus V diagonalizes $A^{T}A$. What does this tell you about V?

- 21. Let $A = U \Sigma V^T$. The matrix PU is orthogonal, because P and U are both orthogonal. (See Exercise 29 in Section 6.2.) So the equation $PA = (PU) \Sigma V^T$ has the form required for a singular value decomposition. By Exercise 19, the diagonal entries in Σ are the singular values of PA.
- 23. Hint: Use a column–row expansion of $(U\Sigma)V^T$.

25. *Hint:* Consider the SVD for the standard matrix of T—say, $A = U \Sigma V^T = U \Sigma V^{-1}$. Let $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and $\mathcal{C} = \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$ be bases constructed from the columns of V and U, respectively. Compute the matrix for T relative to \mathcal{B} and \mathcal{C} , as in Section 5.4. To do this, you must show that $V^{-1}\mathbf{v}_j = \mathbf{e}_j$, the jth column of I_n .

27. [M]
$$\begin{bmatrix} -.57 & -.65 & -.42 & .27 \\ .63 & -.24 & -.68 & -.29 \\ .07 & -.63 & .53 & -.56 \\ -.51 & .34 & -.29 & -.73 \end{bmatrix}$$

$$\times \begin{bmatrix} 16.46 & 0 & 0 & 0 & 0 \\ 0 & 12.16 & 0 & 0 & 0 \\ 0 & 0 & 4.87 & 0 & 0 \\ 0 & 0 & 0 & 4.31 & 0 \end{bmatrix}$$

$$\times \begin{bmatrix} -.10 & .61 & -.21 & -.52 & .55 \\ -.39 & .29 & .84 & -.14 & -.19 \\ -.74 & -.27 & -.07 & .38 & .49 \\ .41 & -.50 & .45 & -.23 & .58 \\ -.36 & -.48 & -.19 & -.72 & -.29 \end{bmatrix}$$

29. [**M**] 25.9343, 16.7554, 11.2917, 1.0785, .00037793; $\sigma_1/\sigma_5 = 68,622$

Section 7.5, page 430

1.
$$M = \begin{bmatrix} 12\\10 \end{bmatrix}; B = \begin{bmatrix} 7 & 10 & -6 & -9 & -10 & 8\\2 & -4 & -1 & 5 & 3 & -5 \end{bmatrix};$$

 $S = \begin{bmatrix} 86 & -27\\-27 & 16 \end{bmatrix}$

3.
$$\begin{bmatrix} .95 \\ -.32 \end{bmatrix}$$
 for $\lambda = 95.2$,
$$\begin{bmatrix} .32 \\ .95 \end{bmatrix}$$
 for $\lambda = 6.8$

- **5.** [M] (.130, .874, .468), 75.9% of the variance
- 7. $y_1 = .95x_1 .32x_2$; y_1 explains 93.3% of the variance.
- **9.** $c_1 = 1/3$, $c_2 = 2/3$, $c_3 = 2/3$; the variance of y is 9.
- 11. a. If w is the vector in \mathbb{R}^N with a 1 in each position, then

$$\begin{bmatrix} \mathbf{X}_1 & \cdots & \mathbf{X}_N \end{bmatrix} \mathbf{w} = \mathbf{X}_1 + \cdots + \mathbf{X}_N = \mathbf{0}$$

because the X_k are in mean-deviation form. Then

$$\begin{bmatrix} \mathbf{Y}_1 & \cdots & \mathbf{Y}_N \end{bmatrix} \mathbf{w}$$

$$= \begin{bmatrix} P^T \mathbf{X}_1 & \cdots & P^T \mathbf{X}_N \end{bmatrix} \mathbf{w} \quad \text{By definition}$$

$$= P^T \begin{bmatrix} \mathbf{X}_1 & \cdots & \mathbf{X}_N \end{bmatrix} \mathbf{w} = P^T \mathbf{0} = \mathbf{0}$$

That is, $\mathbf{Y}_1 + \cdots + \mathbf{Y}_N = \mathbf{0}$, so the \mathbf{Y}_k are in mean-deviation form.

b. *Hint:* Because the X_j are in mean-deviation form, the covariance matrix of the X_j is

$$1/(N-1)[\mathbf{X}_1 \quad \cdots \quad \mathbf{X}_N][\mathbf{X}_1 \quad \cdots \quad \mathbf{X}_N]^T$$

Compute the covariance matrix of the Y_j , using part (a).

13. If
$$B = \begin{bmatrix} \hat{\mathbf{X}}_1 & \cdots & \hat{\mathbf{X}}_N \end{bmatrix}$$
, then

$$S = \frac{1}{N-1}BB^{T} = \frac{1}{N-1} \begin{bmatrix} \hat{\mathbf{X}}_{1} & \cdots & \hat{\mathbf{X}}_{n} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{X}}_{1}^{T} \\ \vdots \\ \hat{\mathbf{X}}_{N}^{T} \end{bmatrix}$$
$$= \frac{1}{N-1} \sum_{k=1}^{N} \hat{\mathbf{X}}_{k} \hat{\mathbf{X}}_{k}^{T} = \frac{1}{N-1} \sum_{k=1}^{N} (\mathbf{X}_{k} - \mathbf{M}) (\mathbf{X}_{k} - \mathbf{M})^{T}$$

Chapter 7 Supplementary Exercises, page 432

- 1. a. T b. F c. T d. F e. F f. F g. F h. T i. F j. F k. F l. F m. T n. F o. T p. T g. F
- 3. If rank A = r, then dim Nul A = n r, by the Rank Theorem. So 0 is an eigenvalue of multiplicity n r. Hence, of the n terms in the spectral decomposition of A, exactly n r are zero. The remaining r terms (corresponding to the nonzero eigenvalues) are all rank 1 matrices, as mentioned in the discussion of the spectral decomposition.
- If Av = λv for some nonzero λ, then v = λ⁻¹Av = A(λ⁻¹v), which shows that v is a linear combination of the columns of A.
- 7. Hint: If A = R^TR, where R is invertible, then A is positive definite, by Exercise 25 in Section 7.2. Conversely, suppose that A is positive definite. Then by Exercise 26 in Section 7.2, A = B^TB for some positive definite matrix B. Explain why B admits a QR factorization, and use it to create the Cholesky factorization of A.
- **9.** If A is $m \times n$ and \mathbf{x} is in \mathbb{R}^n , then $\mathbf{x}^T A^T A \mathbf{x} = (A \mathbf{x})^T (A \mathbf{x}) = \|A \mathbf{x}\|^2 \ge 0$. Thus $A^T A$ is positive semidefinite. By Exercise 22 in Section 6.5, rank $A^T A = \operatorname{rank} A$.
- **11.** Hint: Write an SVD of A in the form $A = U \Sigma V^T = PQ$, where $P = U \Sigma U^T$ and $Q = UV^T$. Show that P is symmetric and has the same eigenvalues as Σ . Explain why Q is an orthogonal matrix.
- 13. a. If $\mathbf{b} = A\mathbf{x}$, then $\mathbf{x}^+ = A^+\mathbf{b} = A^+A\mathbf{x}$. By Exercise 12(a), \mathbf{x}^+ is the orthogonal projection of \mathbf{x} onto Row A.
 - **b.** From (a) and then Exercise 12(c), $A\mathbf{x}^+ = A(A^+A\mathbf{x}) = (AA^+A)\mathbf{x} = A\mathbf{x} = \mathbf{b}$.
 - **c.** Since \mathbf{x}^+ is the orthogonal projection onto Row A, the Pythagorean Theorem shows that $\|\mathbf{u}\|^2 = \|\mathbf{x}^+\|^2 + \|\mathbf{u} \mathbf{x}^+\|^2$. Part (c) follows immediately.

15. [M]
$$A^{+} = \frac{1}{40} \cdot \begin{bmatrix} -2 & -14 & 13 & 13 \\ -2 & -14 & 13 & 13 \\ -2 & 6 & -7 & -7 \\ 2 & -6 & 7 & 7 \\ 4 & -12 & -6 & -6 \end{bmatrix}, \hat{\mathbf{x}} = \begin{bmatrix} .7 \\ .7 \\ -.8 \\ .8 \\ .6 \end{bmatrix}$$

The reduced echelon form of $\begin{bmatrix} A \\ \mathbf{x}^T \end{bmatrix}$ is the same as the reduced echelon form of A, except for an extra row of

zeros. So adding scalar multiples of the rows of A to \mathbf{x}^T can produce the zero vector, which shows that \mathbf{x}^T is in Row A.

Basis for Nul A:
$$\begin{bmatrix} -1\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1\\0 \end{bmatrix}$$

Chapter 8

Section 8.1, page 442

- 1. Some possible answers: $\mathbf{y} = 2\mathbf{v}_1 1.5\mathbf{v}_2 + .5\mathbf{v}_3$, $\mathbf{y} = 2\mathbf{v}_1 2\mathbf{v}_3 + \mathbf{v}_4$, $\mathbf{y} = 2\mathbf{v}_1 + 3\mathbf{v}_2 7\mathbf{v}_3 + 3\mathbf{v}_4$
- 3. $\mathbf{y} = -3\mathbf{v}_1 + 2\mathbf{v}_2 + 2\mathbf{v}_3$. The weights sum to 1, so this is an affine sum.
- 5. a. $\mathbf{p}_1 = 3\mathbf{b}_1 \mathbf{b}_2 \mathbf{b}_3 \in \text{aff } S \text{ since the coefficients sum to } 1.$
 - **b.** $\mathbf{p}_2 = 2\mathbf{b}_1 + 0\mathbf{b}_2 + \mathbf{b}_3 \notin \text{aff } S \text{ since the coefficients do not sum to 1.}$
 - **c.** $\mathbf{p}_3 = -\mathbf{b}_1 + 2\mathbf{b}_2 + 0\mathbf{b}_3 \in \text{aff } S \text{ since the coefficients}$
- 7. **a.** $\mathbf{p}_1 \in \operatorname{Span} S$, but $\mathbf{p}_1 \notin \operatorname{aff} S$
 - **b.** $\mathbf{p}_2 \in \operatorname{Span} S$, and $\mathbf{p}_2 \in \operatorname{aff} S$
 - **c.** $\mathbf{p}_3 \notin \operatorname{Span} S$, so $\mathbf{p}_3 \notin \operatorname{aff} S$
- **9.** $\mathbf{v}_1 = \begin{bmatrix} -3 \\ 0 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$. Other answers are possible.
- 11. See the Study Guide.
- 13. Span $\{\mathbf{v}_2 \mathbf{v}_1, \mathbf{v}_3 \mathbf{v}_1\}$ is a plane if and only if $\{\mathbf{v}_2 \mathbf{v}_1, \mathbf{v}_3 \mathbf{v}_1\}$ is linearly independent. Suppose c_2 and c_3 satisfy $c_2(\mathbf{v}_2 \mathbf{v}_1) + c_3(\mathbf{v}_3 \mathbf{v}_1) = \mathbf{0}$. Show that this implies $c_2 = c_3 = 0$.
- **15.** Let $S = \{\mathbf{x} : A\mathbf{x} = \mathbf{b}\}$. To show that S is affine, it suffices to show that S is a flat, by Theorem 3. Let $W = \{\mathbf{x} : A\mathbf{x} = \mathbf{0}\}$. Then W is a subspace of \mathbb{R}^n , by Theorem 2 in Section 4.2 (or Theorem 12 in Section 2.8). Since $S = W + \mathbf{p}$, where \mathbf{p} satisfies $A\mathbf{p} = \mathbf{b}$, by Theorem 6 in Section 1.5, S is a translate of W, and hence S is a flat.
- 17. A suitable set consists of any three vectors that are not collinear and have 5 as their third entry. If 5 is their third entry, they lie in the plane z = 5. If the vectors are not collinear, their affine hull cannot be a line, so it must be the plane.
- 19. If $\mathbf{p}, \mathbf{q} \in f(S)$, then there exist $\mathbf{r}, \mathbf{s} \in S$ such that $f(\mathbf{r}) = \mathbf{p}$ and $f(\mathbf{s}) = \mathbf{q}$. Given any $t \in \mathbb{R}$, we must show that $\mathbf{z} = (1 t)\mathbf{p} + t\mathbf{q}$ is in f(S). Now use definitions of \mathbf{p} and \mathbf{q} , and the fact that f is linear. The complete proof is presented in the *Study Guide*.
- **21.** Since *B* is affine, Theorem 1 implies that *B* contains all affine combinations of points of *B*. Hence *B* contains all affine combinations of points of *A*. That is, aff $A \subset B$.
- **23.** Since $A \subset (A \cup B)$, it follows from Exercise 22 that aff $A \subset \text{aff } (A \cup B)$. Similarly, aff $B \subset \text{aff } (A \cup B)$, so $[\text{aff } A \cup \text{aff } B] \subset \text{aff } (A \cup B)$.

25. To show that $D \subset E \cap F$, show that $D \subset E$ and $D \subset F$. The complete proof is presented in the *Study Guide*.

Section 8.2, page 452

- 1. Affinely dependent and $2\mathbf{v}_1 + \mathbf{v}_2 3\mathbf{v}_3 = \mathbf{0}$
- 3. The set is affinely independent. If the points are called \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , and \mathbf{v}_4 , then $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ is a basis for \mathbb{R}^3 and $\mathbf{v}_4=16\mathbf{v}_1+5\mathbf{v}_2-3\mathbf{v}_3$, but the weights in the linear combination do not sum to 1.
- 5. $-4\mathbf{v}_1 + 5\mathbf{v}_2 4\mathbf{v}_3 + 3\mathbf{v}_4 = \mathbf{0}$
- 7. The barycentric coordinates are (-2, 4, -1).
- **9.** See the *Study Guide*.
- 11. When a set of five points is translated by subtracting, say, the first point, the new set of four points must be linearly dependent, by Theorem 8 in Section 1.7, because the four points are in \mathbb{R}^3 . By Theorem 5, the original set of five points is affinely dependent.
- 13. If $\{\mathbf{v}_1, \mathbf{v}_2\}$ is affinely dependent, then there exist c_1 and c_2 , not both zero, such that $c_1 + c_2 = 0$ and $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = \mathbf{0}$. Show that this implies $\mathbf{v}_1 = \mathbf{v}_2$. For the converse, suppose $\mathbf{v}_1 = \mathbf{v}_2$ and select specific c_1 and c_2 that show their affine dependence. The details are in the *Study Guide*.
- **15.** a. The vectors $\mathbf{v}_2 \mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\mathbf{v}_3 \mathbf{v}_1 = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$ are not multiples and hence are linearly independent. By Theorem 5, S is affinely independent.
 - **b.** $\mathbf{p}_1 \leftrightarrow \left(-\frac{6}{8}, \frac{9}{8}, \frac{5}{8}\right), \mathbf{p}_2 \leftrightarrow \left(0, \frac{1}{2}, \frac{1}{2}\right), \mathbf{p}_3 \leftrightarrow \left(\frac{14}{8}, -\frac{5}{8}, -\frac{1}{8}\right), \mathbf{p}_4 \leftrightarrow \left(\frac{6}{8}, -\frac{5}{8}, \frac{7}{8}\right), \mathbf{p}_5 \leftrightarrow \left(\frac{1}{4}, \frac{1}{8}, \frac{5}{8}\right)$
 - **c.** \mathbf{p}_6 is (-, -, +), \mathbf{p}_7 is (0, +, -), and \mathbf{p}_8 is (+, +, -).
- 17. Suppose $S = \{\mathbf{b}_1, \dots, \mathbf{b}_k\}$ is an affinely independent set. Then equation (7) has a solution, because \mathbf{p} is in aff S. Hence equation (8) has a solution. By Theorem 5, the homogeneous forms of the points in S are linearly independent. Thus (8) has a unique solution. Then (7) also has a unique solution, because (8) encodes both equations that appear in (7).

The following argument mimics the proof of Theorem 7 in Section 4.4. If $S = \{\mathbf{b}_1, \dots, \mathbf{b}_k\}$ is an affinely independent set, then scalars c_1, \dots, c_k exist that satisfy (7), by definition of aff S. Suppose \mathbf{x} also has the representation

$$\mathbf{x} = d_1 \mathbf{b}_1 + \dots + d_k \mathbf{b}_k$$
 and $d_1 + \dots + d_k = 1$ (7a)

for scalars d_1, \ldots, d_k . Then subtraction produces the equation

$$\mathbf{0} = \mathbf{x} - \mathbf{x} = (c_1 - d_1)\mathbf{b}_1 + \dots + (c_k - d_k)\mathbf{b}_k$$
 (7b)

The weights in (7b) sum to 0 because the c's and the d's separately sum to 1. This is impossible, unless each weight in (8) is 0, because S is an affinely independent set. This proves that $c_i = d_i$ for i = 1, ..., k.

- 19. If $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ is an affinely dependent set, then there exist scalars c_1 , c_2 , and c_3 , not all zero, such that $c_1\mathbf{p}_1 + c_2\mathbf{p}_2 + c_3\mathbf{p}_3 = \mathbf{0}$ and $c_1 + c_2 + c_3 = 0$. Now use the linearity of f.
- **21.** Let $\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$, and $\mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$. Then $\det\begin{bmatrix} \tilde{\mathbf{a}} & \tilde{\mathbf{b}} & \tilde{\mathbf{c}} \end{bmatrix} = \det\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ 1 & 1 & 1 \end{bmatrix} =$

 $\det \begin{bmatrix} a_1 & a_2 & 1 \\ b_1 & b_2 & 1 \end{bmatrix}, \text{ by the transpose property of the}$

determinant (Theorem 5 in Section 3.2). By Exercise 30 in Section 3.3, this determinant equals 2 times the area of the triangle with vertices at a, b, and c.

23. If $\begin{bmatrix} \tilde{\mathbf{a}} & \tilde{\mathbf{b}} & \tilde{\mathbf{c}} \end{bmatrix} \begin{vmatrix} s \\ t \end{vmatrix} = \tilde{\mathbf{p}}$, then Cramer's rule gives $r = \det \begin{bmatrix} \tilde{\mathbf{p}} & \tilde{\mathbf{b}} & \tilde{\mathbf{c}} \end{bmatrix} / \det \begin{bmatrix} \tilde{\mathbf{a}} & \tilde{\mathbf{b}} & \tilde{\mathbf{c}} \end{bmatrix}$. By Exercise 21, the numerator of this quotient is twice the area of \triangle **pbc**, and the denominator is twice the area of $\triangle abc$. This proves the formula for r. The other formulas are proved using Cramer's rule for s and t.

Section 8.3, page 459

- 1. See the Study Guide.
- 3. None are in conv S.
- **5.** $\mathbf{p}_1 = -\frac{1}{6}\mathbf{v}_1 + \frac{1}{3}\mathbf{v}_2 + \frac{2}{3}\mathbf{v}_3 + \frac{1}{6}\mathbf{v}_4$, so $\mathbf{p}_1 \notin \text{conv } S$. $\mathbf{p}_2 = \frac{1}{3}\mathbf{v}_1 + \frac{1}{3}\mathbf{v}_2 + \frac{1}{6}\mathbf{v}_3 + \frac{1}{6}\mathbf{v}_4$, so $\mathbf{p}_2 \in \text{conv } S$.
- 7. a. The barycentric coordinates of \mathbf{p}_1 , \mathbf{p}_2 , \mathbf{p}_3 , and \mathbf{p}_4 are, respectively, $(\frac{1}{3}, \frac{1}{6}, \frac{1}{2}), (0, \frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, -\frac{1}{4}, \frac{3}{4}),$ and
 - **b.** \mathbf{p}_3 and \mathbf{p}_4 are outside conv T. \mathbf{p}_1 is inside conv T. \mathbf{p}_2 is on the edge $\overline{\mathbf{v}_2\mathbf{v}_3}$ of conv T.
- **9.** \mathbf{p}_1 and \mathbf{p}_3 are outside the tetrahedron conv S. \mathbf{p}_2 is on the face containing the vertices v_2 , v_3 , and v_4 . p_4 is inside conv S. \mathbf{p}_5 is on the edge between \mathbf{v}_1 and \mathbf{v}_3 .
- 11. See the Study Guide.
- 13. If $\mathbf{p}, \mathbf{q} \in f(S)$, then there exist $\mathbf{r}, \mathbf{s} \in S$ such that $f(\mathbf{r}) = \mathbf{p}$ and $f(\mathbf{s}) = \mathbf{q}$. The goal is to show that the line segment $\mathbf{y} = (1 - t)\mathbf{p} + t\mathbf{q}$, for $0 \le t \le 1$, is in f(S). Use the linearity of f and the convexity of S to show that y = f(w) for some w in S. This will show that y is in f(S)and that f(S) is convex.
- **15.** $\mathbf{p} = \frac{1}{6}\mathbf{v}_1 + \frac{1}{2}\mathbf{v}_2 + \frac{1}{3}\mathbf{v}_4$ and $\mathbf{p} = \frac{1}{2}\mathbf{v}_1 + \frac{1}{6}\mathbf{v}_2 + \frac{1}{3}\mathbf{v}_3$.
- 17. Suppose $A \subset B$, where B is convex. Then, since B is convex, Theorem 7 implies that B contains all convex combinations of points of B. Hence B contains all convex combinations of points of A. That is, conv $A \subset B$.
- **19. a.** Use Exercise 18 to show that conv A and conv B are both subsets of conv $(A \cup B)$. This will imply that their union is also a subset of conv $(A \cup B)$.

- **b.** One possibility is to let A be two adjacent corners of a square and let B be the other two corners. Then what is $(\operatorname{conv} A) \cup (\operatorname{conv} B)$, and what is $\operatorname{conv} (A \cup B)$?
- 21.
- **23.** $\mathbf{g}(t) = (1-t)\mathbf{f}_0(t) + t\mathbf{f}_1(t)$ = $(1-t)[(1-t)\mathbf{p}_0 + t\mathbf{p}_1] + t[(1-t)\mathbf{p}_1 + t\mathbf{p}_2]$ = $(1-t)^2$ **p**₀ + 2t(1-t)**p**₁ + t^2 **p**₂.

The sum of the weights in the linear combination for \mathbf{g} is $(1-t)^2 + 2t(1-t) + t^2$, which equals $(1-2t+t^2) + (2t-2t^2) + t^2 = 1$. The weights are each between 0 and 1 when $0 \le t \le 1$, so $\mathbf{g}(t)$ is in conv $\{{\bf p}_0, {\bf p}_1, {\bf p}_2\}.$

Section 8.4, page 467

- 1. $f(x_1, x_2) = 3x_1 + 4x_2$ and d = 13
- 3. a. Open
 - b. Closed
- c. Neither

- d. Closed
- e. Closed
- 5. a. Not compact, convex
 - **b.** Compact, convex
 - c. Not compact, convex
 - d. Not compact, not convex
 - e. Not compact, convex
- 7. **a.** $\mathbf{n} = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$ or a multiple
 - **b.** $f(\mathbf{x}) = 2x_2 + 3x_3, d = 11$
- **9. a.** $\mathbf{n} = \begin{bmatrix} 3 \\ -1 \\ 2 \\ 1 \end{bmatrix}$ or a multiple
 - **b.** $f(\mathbf{x}) = 3x_1 x_2 + 2x_3 + x_4, d = 5$
- 11. \mathbf{v}_2 is on the same side as $\mathbf{0}$, \mathbf{v}_1 is on the other side, and \mathbf{v}_3 is in H.
- 13. One possibility is $\mathbf{p} = \begin{bmatrix} 32 \\ -14 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} 10 \\ -7 \\ 1 \\ 0 \end{bmatrix}$,
- **15.** $f(x_1, x_2, x_3) = x_1 3x_2 + 4x_3 2x_4$, and d = 5
- **17.** $f(x_1, x_2, x_3) = x_1 2x_2 + x_3$, and d = 0
- **19.** $f(x_1, x_2, x_3) = -5x_1 + 3x_2 + x_3$, and d = 0

- 21. See the Study Guide.
- **23.** $f(x_1, x_2) = 3x_1 2x_2$ with d satisfying 9 < d < 10 is one possibility.
- **25.** f(x, y) = 4x + 1. A natural choice for d is 12.75, which equals f(3, .75). The point (3, .75) is three-fourths of the distance between the center of $B(\mathbf{0}, 3)$ and the center of $B(\mathbf{p}, 1)$.
- **27.** Exercise 2(a) in Section 8.3 gives one possibility. Or let $S = \{(x, y) : x^2y^2 = 1 \text{ and } y > 0\}$. Then conv *S* is the upper (open) half-plane.
- **29.** Let $\mathbf{x}, \mathbf{y} \in B(\mathbf{p}, \delta)$ and suppose $\mathbf{z} = (1 t)\mathbf{x} + t\mathbf{y}$, where $0 \le t \le 1$. Then show that

$$\|\mathbf{z} - \mathbf{p}\| = \|[(1 - t)\mathbf{x} + t\mathbf{y}] - \mathbf{p}\|$$
$$= \|(1 - t)(\mathbf{x} - \mathbf{p}) + t(\mathbf{y} - \mathbf{p})\| < \delta.$$

Section 8.5, page 479

- **1. a.** m = 1 at the point \mathbf{p}_1 **b.** m = 5 at the point \mathbf{p}_2
 - **c.** m = 5 at the point \mathbf{p}_3
- 3. a. m = -3 at the point \mathbf{p}_3
 - **b.** m = 1 on the set conv $\{\mathbf{p}_1, \mathbf{p}_3\}$
 - c. m = -3 on the set conv $\{\mathbf{p}_1, \mathbf{p}_2\}$
- 5. $\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 5 \\ 0 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 5 \end{bmatrix} \right\}$
- 7. $\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 7 \\ 0 \end{bmatrix}, \begin{bmatrix} 6 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 6 \end{bmatrix} \right\}$
- **9.** The origin is an extreme point, but it is not a vertex. Explain why.

11. One possibility is to let S be a square that includes part of the boundary but not all of it. For example, include just two adjacent edges. The convex hull of the profile P is a triangular region.

13. a.
$$f_0(C^5) = 32$$
, $f_1(C^5) = 80$, $f_2(C^5) = 80$, $f_3(C^5) = 40$, $f_4(C^5) = 10$, and $32 - 80 + 80 - 40 + 10 = 2$.

b.						
		f_0	f_1	f_2	f_3	f_4
	S^1	2				
	S^2	4	4			
	S^3	8	12	6		
	S ⁴	16	32	24	8	
	S^5	32	80	80	40	10

For a general formula, see the Study Guide.

- **15.** a. $f_0(P^n) = f_0(Q) + 1$
 - **b.** $f_k(P^n) = f_k(Q) + f_{k-1}(Q)$
 - **c.** $f_{n-1}(P^n) = f_{n-2}(Q) + 1$
- 17. See the Study Guide.
- 19. Let S be convex and let $\mathbf{x} \in cS + dS$, where c > 0 and d > 0. Then there exist \mathbf{s}_1 and \mathbf{s}_2 in S such that $\mathbf{x} = c\mathbf{s}_1 + d\mathbf{s}_2$. But then

$$\mathbf{x} = c\mathbf{s}_1 + d\mathbf{s}_2 = (c+d)\left(\frac{c}{c+d}\mathbf{s}_1 + \frac{d}{c+d}\mathbf{s}_2\right).$$

Now show that the expression on the right side is a member of (c + d)S.

For the converse, pick a typical point in (c + d)S and show it is in cS + dS.

21. *Hint:* Suppose *A* and *B* are convex. Let $\mathbf{x}, \mathbf{y} \in A + B$. Then there exist $\mathbf{a}, \mathbf{c} \in A$ and $\mathbf{b}, \mathbf{d} \in B$ such that $\mathbf{x} = \mathbf{a} + \mathbf{b}$ and $\mathbf{y} = \mathbf{c} + \mathbf{d}$. For any t such that $0 \le t \le 1$, show that

$$\mathbf{w} = (1-t)\mathbf{x} + t\mathbf{y} = (1-t)(\mathbf{a} + \mathbf{b}) + t(\mathbf{c} + \mathbf{d})$$

represents a point in A + B.

Section 8.6, page 490

- **1.** The control points for $\mathbf{x}(t) + \mathbf{b}$ should be $\mathbf{p}_0 + \mathbf{b}$, $\mathbf{p}_1 + \mathbf{b}$, and $\mathbf{p}_3 + \mathbf{b}$. Write the Bézier curve through these points, and show algebraically that this curve is $\mathbf{x}(t) + \mathbf{b}$. See the *Study Guide*.
- 3. a. $\mathbf{x}'(t) = (-3 + 6t 3\mathbf{t}_2)\mathbf{p}_0 + (3 12t + 9t^2)\mathbf{p}_1 + (6t 9t^2)\mathbf{p}_2 + 3t^2\mathbf{p}_3$, so $\mathbf{x}'(0) = -3\mathbf{p}_0 + 3\mathbf{p}_1 = 3(\mathbf{p}_1 \mathbf{p}_0)$, and $\mathbf{x}'(1) = -3\mathbf{p}_2 + 3\mathbf{p}_3 = 3(\mathbf{p}_3 \mathbf{p}_2)$. This shows that the tangent vector $\mathbf{x}'(0)$ points in the direction from \mathbf{p}_0 to \mathbf{p}_1 and is three times the length of $\mathbf{p}_1 \mathbf{p}_0$. Likewise, $\mathbf{x}'(1)$ points in the direction from \mathbf{p}_2 to \mathbf{p}_3 and is three times the length of $\mathbf{p}_3 \mathbf{p}_2$. In particular, $\mathbf{x}'(1) = \mathbf{0}$ if and only if $\mathbf{p}_3 = \mathbf{p}_2$.
 - **b.** $\mathbf{x}''(t) = (6-6t)\mathbf{p}_0 + (-12+18t)\mathbf{p}_1 + (6-18t)\mathbf{p}_2 + 6t\mathbf{p}_3$, so that $\mathbf{x}''(0) = 6\mathbf{p}_0 12\mathbf{p}_1 + 6\mathbf{p}_2 = 6(\mathbf{p}_0 \mathbf{p}_1) + 6(\mathbf{p}_2 \mathbf{p}_1)$ and $\mathbf{x}''(1) = 6\mathbf{p}_1 12\mathbf{p}_2 + 6\mathbf{p}_3 = 6(\mathbf{p}_1 \mathbf{p}_2) + 6(\mathbf{p}_3 \mathbf{p}_2)$ For a picture of $\mathbf{x}''(0)$, construct a coordinate system with the origin at \mathbf{p}_1 , temporarily, label \mathbf{p}_0 as $\mathbf{p}_0 \mathbf{p}_1$, and label \mathbf{p}_2 as $\mathbf{p}_2 \mathbf{p}_1$. Finally, construct a line from

this new origin through the sum of $\mathbf{p}_0 - \mathbf{p}_1$ and $\mathbf{p}_2 - \mathbf{p}_1$, extended out a bit. That line points in the direction of $\mathbf{x}''(0)$.

5. a. From Exercise 3(a) or equation (9) in the text,

$$\mathbf{x}'(1) = 3(\mathbf{p}_3 - \mathbf{p}_2)$$

Use the formula for $\mathbf{x}'(0)$, with the control points from $\mathbf{y}(t)$, and obtain

$$\mathbf{y}'(0) = 3\mathbf{p}_3 + 3\mathbf{p}_4 = 3(\mathbf{p}_4 - \mathbf{p}_3)$$

For C^1 continuity, $3(\mathbf{p}_3 - \mathbf{p}_2) = 3(\mathbf{p}_4 - \mathbf{p}_3)$, so $\mathbf{p}_3 = (\mathbf{p}_4 + \mathbf{p}_2)/2$, and \mathbf{p}_3 is the midpoint of the line segment from \mathbf{p}_2 to \mathbf{p}_4 .

- **b.** If $\mathbf{x}'(1) = \mathbf{y}'(0) = \mathbf{0}$, then $\mathbf{p}_2 = \mathbf{p}_3$ and $\mathbf{p}_3 = \mathbf{p}_4$. Thus, the "line segment" from \mathbf{p}_2 to \mathbf{p}_4 is just the point \mathbf{p}_3 . [*Note:* In this case, the combined curve is still C^1 continuous, by definition. However, some choices of the other "control" points, \mathbf{p}_0 , \mathbf{p}_1 , \mathbf{p}_5 , and \mathbf{p}_6 , can produce a curve with a visible corner at \mathbf{p}_3 , in which case the curve is not G^1 continuous at \mathbf{p}_3 .]
- Hint: Use x"(t) from Exercise 3 and adapt this for the second curve to see that

$$\mathbf{y}''(t) = 6(1-t)\mathbf{p}_3 + 6(-2+3t)\mathbf{p}_4 + 6(1-3t)\mathbf{p}_5 + 6t\mathbf{p}_6$$

Then set $\mathbf{x}''(1) = \mathbf{y}''(0)$. Since the curve is C^1 continuous at \mathbf{p}_3 , Exercise 5(a) says that the point \mathbf{p}_3 is the midpoint of the segment from \mathbf{p}_2 to \mathbf{p}_4 . This implies that $\mathbf{p}_4 - \mathbf{p}_3 = \mathbf{p}_3 - \mathbf{p}_2$. Use this substitution to show that \mathbf{p}_4 and \mathbf{p}_5 are uniquely determined by \mathbf{p}_1 , \mathbf{p}_2 , and \mathbf{p}_3 . Only \mathbf{p}_6 can be chosen arbitrarily.

9. Write a vector of the polynomial weights for $\mathbf{x}(t)$, expand the polynomial weights, and factor the vector as $M_B \mathbf{u}(t)$:

$$\begin{bmatrix} 1 - 4t + 6t^2 - 4t^3 + t^4 \\ 4t - 12t^2 + 12t^3 - 4t^4 \\ 6t^2 - 12t^3 + 6t^4 \\ 4t^3 - 4t^4 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -4 & 6 & -4 & 1 \\ 0 & 4 - 12 & 12 & -4 \\ 0 & 0 & 6 - 12 & 6 \\ 0 & 0 & 0 & 4 & -4 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ t^2 \\ t^3 \\ t^4 \end{bmatrix}$$

$$M_B = \begin{bmatrix} 1 & -4 & 6 & -4 & 1 \\ 0 & 4 - 12 & 12 & -4 \\ 0 & 0 & 6 - 12 & 6 \\ 0 & 0 & 0 & 4 & -4 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- 11. See the Study Guide.
- 13. a. *Hint*: Use the fact that $\mathbf{q}_0 = \mathbf{p}_0$.
 - **b.** Multiply the first and last parts of equation (13) by $\frac{8}{3}$ and solve for $8\mathbf{q}_2$.
 - **c.** Use equation (8) to substitute for $8\mathbf{q}_3$ and then apply part (a).
- **15.** a. From equation (11), $\mathbf{y}'(1) = .5\mathbf{x}'(.5) = \mathbf{z}'(0)$.
 - **b.** Observe that $\mathbf{y}'(1) = 3(\mathbf{q}_3 \mathbf{q}_2)$. This follows from equation (9), with $\mathbf{y}(t)$ and its control points in place of $\mathbf{x}(t)$ and its control points. Similarly, for $\mathbf{z}(t)$ and its control points, $\mathbf{z}'(0) = 3(\mathbf{r}_1 \mathbf{r}_0)$. By part (a), $3(\mathbf{q}_3 \mathbf{q}_2) = 3(\mathbf{r}_1 \mathbf{r}_0)$. Replace \mathbf{r}_0 by \mathbf{q}_3 , and obtain $\mathbf{q}_3 \mathbf{q}_2 = \mathbf{r}_1 \mathbf{q}_3$, and hence $\mathbf{q}_3 = (\mathbf{q}_2 + \mathbf{r}_1)/2$.
 - **c.** Set $\mathbf{q}_0 = \mathbf{p}_0$ and $\mathbf{r}_3 = \mathbf{p}_3$. Compute $\mathbf{q}_1 = (\mathbf{p}_0 + \mathbf{p}_1)/2$ and $\mathbf{r}_2 = (\mathbf{p}_2 + \mathbf{p}_3)/2$. Compute $\mathbf{m} = (\mathbf{p}_1 + \mathbf{p}_2)/2$. Compute $\mathbf{q}_2 = (\mathbf{q}_1 + \mathbf{m})/2$ and $\mathbf{r}_1 = (\mathbf{m} + \mathbf{r}_2)/2$. Compute $\mathbf{q}_3 = (\mathbf{q}_2 + \mathbf{r}_1)/2$ and set $\mathbf{r}_0 = \mathbf{q}_3$.
- 17. a. $\mathbf{r}_0 = \mathbf{p}_0, \mathbf{r}_1 = \frac{\mathbf{p}_0 + 2\mathbf{p}_1}{3}, \mathbf{r}_2 = \frac{2\mathbf{p}_1 + \mathbf{p}_2}{3}, \mathbf{r}_3 = \mathbf{p}_2$
 - **b.** *Hint:* Write the standard formula (7) in this section, with \mathbf{r}_i in place of \mathbf{p}_i for i = 0, ..., 3, and then replace \mathbf{r}_0 and \mathbf{r}_3 by \mathbf{p}_0 and \mathbf{p}_2 , respectively:

$$\mathbf{x}(t) = (1 - 3t + 3t^2 - t^3)\mathbf{p}_0 + (3t - 6t^2 + 3t^3)\mathbf{r}_1 + (3t^2 - 3t^3)\mathbf{r}_2 + t^3\mathbf{p}_2$$
 (iii)

Use the formulas for \mathbf{r}_1 and \mathbf{r}_2 from part (a) to examine the second and third terms in this expression for $\mathbf{x}(t)$.

Index

Accelerator-multiplier model, 251n	writing solution set in parametric	eigenspace, 268
Adjoint, classical, 179	vector form, 46	eigenvectors, 282, 285
Adjugate, 179	Amps, 82	fundamental set of solutions, 312
Adobe Illustrator, 481	Analysis of data, 123	fundamental subspaces, 420-421
Affine combinations, 436–444	See also Matrix factorization	null space, 211–212, 231–232
definition of, 436	(decomposition)	orthogonal, 338-339, 354-356,
of points, 436-439, 441-442	Analysis of variance, 362–363	377–378
Affine coordinates, 447–451	Angles in \mathbb{R}^2 and \mathbb{R}^3 , 335	orthonormal, 342, 356-358, 397, 416
Affine dependence, 445, 451	Anticommutativity, 160	row space, 231–233
definition of, 444	Approximation, 269	solution space, 249
linear dependence and, 445–446, 452	Area	spanning set, 210
Affine hull (affine span), 437, 454	approximating, 183	standard, 148, 209, 217, 342
geometric view of, 441	determinants as, 180-182	subspace, 148–150
of two points, 446	ellipse, 184	two views, 212–213
Affine independence, 444–454	parallelogram, 180–181	Basis matrix, 485n
barycentric coordinates, 447–453	triangle, 185	Basis Theorem, 156, 227
definition of, 444	Argument of complex number, A6	Beam model, 104
Affine set, 439–441, 455	Associative law (multiplication), 97, 98	Bessel's inequality, 390
dimension of, 440	Associative property (addition), 94	Best approximation
intersection of, 456	Astronomy, barycentric coordinates in,	C[a,b],386
Affine transformation, 69	448n	Fourier, 387
Aircraft design, 91, 117	Attractor, 304, 313 (fig.), 314	\mathbb{P}^4 , 378–379
Algebraic multiplicity of an eigenvalue,	Augmented matrix, 4	to \mathbf{y} by elements of W , 350
276	Auxiliary equation, 248	Best Approximation Theorem, 350
Algebraic properties of \mathbb{R}^n , 27, 34	Average value, 381	Bézier basis matrix, 485
Algorithms	Axioms	Bézier curves, 460, 481–492
bases for $Col A$, $Row A$, $Nul A$,	inner product space, 376	approximations to, 487–488
230–233	vector space, 190	in CAD programs, 487
compute a B-matrix, 293		in computer graphics, 481, 482
decouple a system, 306, 315	B-coordinate vector, 154, 216–217	connecting two, 483–485
diagonalization, 283–285	B-coordinates, 216	control points in, 481, 482, 488–489
finding A-1, 107–108	B-matrix, 290	cubic, 460, 481–482, 484, 485, 492
finding change-of-coordinates matrix,	Back-substitution, 19–20	geometry matrix, 485
241	Backward phase, 17, 20, 125	matrix equations for, 485–486
Gram-Schmidt process, 354–360	Balancing chemical equations, 51, 54	quadratic, 460, 481–482, 492
inverse power method, 322–324	Band matrix, 131	recursive subdivision of, 488–490
Jacobi's method, 279	Barycentric coordinates, 447–451	tangent vectors and continuity, 483,
LU factorization, 124–127	in computer graphics, 449–451	491
QR algorithm, 279, 280, 324	definition of, 447	variation-diminishing property of, 488
reduction to first-order system, 250	physical and geometric interpretations	Bézier, Pierre, 481
row–column rule for computing AB ,	of, 448–449	Bézier surfaces, 486–489
96	Basic variable, 18	approximations to, 487–488
row reduction, 15–17	Basis, 148–150, 209, 225	bicubic, 487, 489
row-vector rule for computing $A\mathbf{x}$, 38	change of, 239–244	recursive subdivision of, 488–489
singular value decomposition,	change of, in \mathbb{R}^n , 241–242	variation-diminishing property of, 489
418–419	column space, 149–150, 211–212,	Bidiagonal matrix, 131
solving a linear system, 21	231–232	Bill of final demands, 132
steady-state vector, 257–258	coordinate systems, 216–222	Blending polynomials, 485n

I2 Index

Block matrix, 117	Cofactor expansion, 165–166, 172	3D, 140–142
diagonal, 120	Column space, 201–203	Condition number, 114, 116, 176, 391
multiplication, 118	basis for, 149–150, 211–212, 231–232	singular value decomposition, 420
upper triangular, 119	dimension of, 228, 233	Conformable partition, 118
Boundary condition, 252	least-squares problem, 360–362	Conjugate pair, 298, A4
Boundary point, 465	and null space, 202–204	Consistent system, 4, 7–8, 21
Bounded set, 465	subspace, 147–148, 201	matrix equation, 36
Branch current, 83	See also Fundamental subspaces	Constant of adjustment, positive, 251
Branches in network, 52, 82	Column-row expansion, 119	Constrained optimization, 408–414
B-splines, 484, 485, 490	Column(s)	eigenvalues, 409–410, 411–412
uniform, 491	augmented, 108	feasible set, 412
Budget constraint, 412–413	determinants, 172	indifference curve, 412–413
Budget tensuami, 112 116	operations, 172	See also Quadratic form
C (language), 39, 100	orthogonal, 364	Consumption matrix, 133, 134, 135
C[a, b], 196, 380–382, 386	orthonormal, 343–344	Continuity of quadratic/cubic Bézier
\mathbb{C}^n , 295	pivot, 14, 212, 233, A1	curves
CAD programs, 487	span \mathbb{R}^m , 37	geometric (G^0, G^1) continuity, 483
Cambridge Diet, 80–81, 86	sum, 134	parametric (C^0, C^1, C^2) continuity,
Caratheodory, Constantin, 457	vector, 24	483, 484
Caratheodory Theorem, 457–458	Comet, orbit of, 374	Continuous dynamical systems, 266,
Casorati matrix, 245–246	Communication Classes, 10.3	311–319
Cauchy–Schwarz inequality, 379–380	Commutativity, 98, 160	Continuous functions, 196, 205, 230,
Cayley–Hamilton Theorem, 326	Compact set, 465, 467	380–382, 387–388
Center of gravity (mass), 33	Companion matrix, 327	Contraction transformation, 66, 74
Center of projection, 142	Complement, orthogonal, 334–335	Contrast between Nul A and Col A,
CFD. See Computational fluid dynamics	Complex eigenvalues, 315–317	202–203
Change of basis, 239–244	Complex number, A3–A7	Control points, in Bézier curves, 460,
in \mathbb{R}^n , 241–242	absolute value of, A4	481, 482, 488–489
Change of variable	argument of, A6	Control system, 122, 189–190, 264, 301
for complex eigenvalue, 299	conjugate, A4	control sequence, 264
in differential equation, 315	geometric interpretation of, A5–A6	controllable pair, 264
in dynamical system, 306–307	polar coordinates, A6	Schur complement, 122
in principal component analysis, 427	powers of, A7	space shuttle, 189–190
in a quadratic form, 402–403	and \mathbb{R}^2 , A7	state vector, 122, 254, 264
Change-of-coordinates matrix, 219,	real and imaginary axes, A5	state-space model, 264
240–241	real and imaginary axes, A3	steady-state response, 301
Characteristic equation of matrix,	Complex root, 248, 277, 295	system matrix, 122
273–281, 295	-	transfer function, 122
Characteristic polynomial, 276, 279	See also Auxiliary equation; Eigenvalue	Controllability matrix, 264
Characterization of Linearly Dependent	Complex vector, 24n	•
Sets Theorem, 58, 60	•	Convergence, 135, 258–259
Chemical equations, 51, 54	real and imaginary parts, 297–298	See also Iterative methods
Cholesky factorization, 406, 432	Complex vector space, 190n, 295, 308	Convex combinations, 454–461
	Component of y orthogonal to u, 340	convex sets, 455–459, 466–467, 470–473
Classification of States and Pariodicity	Composition of linear transformations,	
Classification of States and Periodicity, 10.4	95, 128	definition of, 454
	Composition of mappings, 94, 140	weights in, 454–455
Closed set, 465, 466	Computational fluid dynamics (CFD), 91	Convex hull, 454, 472
Codomain, 63	Computer graphics, 138	of Bézier curve control points,
Coefficient	barycentric coordinates in, 449–451	488 (fig.)
correlation, 336	Bézier curves in, 481, 482	of closed set, 465, 466
filter, 246	center of projection, 142	of compact set, 465, 467
Fourier, 387	composite transformations, 140	geometric characterization of,
of linear equation, 2	homogeneous coordinates, 139,	456–457
matrix, 4	141–142	of open set, 465
regression, 369	perspective projections, 142–144	Convex set(s), 455–460
trend, 386	shear transformations, 139	disjoint closed, 466 (fig.)

extreme point of, 470–473	elementary matrix, 173-174	Dimension of a flat (or a set), 440
hyperplane separating, 466–467	geometric interpretation, 180, 275	Dimension (vector space), 153–160,
intersection of, 456	(fig.)	225–228
profile of, 470, 472	and inverse, 103, 171, 179–180	classification of subspaces, 226-227
See also Polytope(s)	linearity property, 173, 187	column space, 155, 228
Coordinate mapping, 216–217, 219–222,	multiplicative property, 173, 277	null space, 155, 228
239	$n \times n$ matrix, 165	row space, 233–234
Coordinate system(s), 153–155, 216–222	product of pivots, 171, 274	subspace, 155–156
change of basis, 239–244	properties of, 275	Directed line segment, 25
graphical, 217–218	recursive definition, 165	Direction
isomorphism, 220–222	row operations, 169–170, 174	of greatest attraction, 304, 314
polar, A6	symbolic, 464	of greatest repulsion, 304, 314
\mathbb{R}^n , 218–219	3×3 matrix, 164	Discrete dynamical systems, 301–311
Coordinate vector, 154, 216–217	transformations, 182-184	Discrete linear dynamical system.
Correlation coefficient, 336	triangular matrix, 167, 275	See Dynamical system
Cost vector, 31	volume, 180–182, 275	Discrete-time signal. See Signals
Counterexample, 61	See also Matrix	Disjoint closed convex sets, 466 (fig.)
Covariance	Diagonal entries, 92	Distance
matrix, 425-427, 429	Diagonal matrix, 92, 120, 281–288,	between vector and subspace,
Cramer's rule, 177–180	417–418	340–341, 351
Cross product, 464	Diagonal Matrix Representation	between vectors, 332-333
Cross-product term, 401, 403	Theorem, 291	Distortion, 163
Crystallography, 217–218	Diagonalizable matrix, 282	Distributive laws, 97, 98
Cube, 435, 436	distinct eigenvalues, 284–285	Dodecahedron, 435, 436
four-dimensional, 435	nondistinct eigenvalues, 285–286	Domain, 63
Cubic curve	orthogonally, 396	Dot product, 330
Bézier, 460, 481–482, 484, 485,	Diagonalization Theorem, 282	Duality, 9.4
491–492	Difference equation, 80, 84–85, 244–253	Dynamical system, 265–266
Hermite, 485	dimension of solution space, 249	attractor, 304, 314
Cubic splines, natural, 481	eigenvectors, 271, 279, 301	change of variable, 306-307
Current flow, 82	first-order, 250	decoupling, 312, 315
Current law, 83	homogeneous, 246, 247-248	discrete, 301–311
Curve-fitting, 23, 371–372, 378–379	linear, 246–249	eigenvalues and eigenvectors,
Curves. See Bézier curves	nonhomogeneous, 246, 249-250	266–273, 278–279, 301–311
	population model, 84–85	evolution of, 301
De Moivre's Theorem, A7	recurrence relation, 84, 246, 248	graphical solutions, 303–305
Decomposition	reduction to first order, 250	owl population model, 265–266,
eigenvector, 302, 319	signal processing, 246	307–309
force, 342	solution sets of, 247, 248–249, 250	predator-prey model, 302–303
orthogonal, 339–340, 348	(fig.)	repeller, 304, 314
polar, 432	stage-matrix model, 265–266	saddle point, 304, 305 (fig.), 314
singular value, 414–424	state-space model, 264	spiral point, 317
See also Factorization	See also Dynamical system; Markov	stage-matrix model, 265–266,
Decoupled system, 306, 312, 315	chain	307–309
Degenerate line, 69, 439	Differential equation, 204–205, 311–319	See also Difference equation;
Design matrix, 368	circuit problem, 312–313, 316–317,	Mathematical model
Determinant, 163–187, 274–275	318	E4- C-4-11:4- C
adjugate, 179	decoupled system, 312, 315	Earth Satellite Corporation, 394
area and volume, 180–182	eigenfunctions, 312	Eccentricity of orbit, 374 Echelon form, 12, 13
Casoratian, 245	initial value problem, 312	basis for row space, 231–233
characteristic equation, 276–277	solutions of, 312	2
cofactor expansion, 165–166, 172 column operations, 172	See also Laplace transform	consistent system, 21 determinant, 171, 274
Cramer's rule, 177–180	Differentiation, 205	
echelon form, 171	Digital signal processing. See Signal processing	flops, 20 LU factorization, 124–126
eigenvalues, 276, 280	Dilation transformation, 66, 71	pivot positions, 14–15
eigenvalues, 210, 200	Difation transformation, 00, 71	prvot positions, 14–13

I4 Index

Edges of polyhedron, 470	singular values, 415–416	Flat in \mathbb{R}^n , 440
Effective rank, 157, 236, 417	Equal matrices, 93	Flexibility matrix, 104
Eigenfunctions, 312, 315–316	Equation	Flight control system, 189–190
Eigenspace, 268–269	auxiliary, 248	Floating point arithmetic, 9
dimension of, 285, 397	characteristic, 276–277	Floating point operation (flop), 9, 20
orthogonal basis for, 397	difference, 80, 84–85, 244–253	Flow in network, 52–53, 54–55, 82
Eigenvalue, 266–273	differential, 204-205, 311-319	Force, decomposition, 342
characteristic equation, 276–277, 295	ill-conditioned, 364	Fortran, 39
complex, 277, 295–301, 307, 315–317	of a line, 45, 69	Forward phase, 17, 20
constrained optimization, 408	linear, 2–12, 45, 368–369	Fourier approximation, 387
determinants, 274–275, 280	normal, 329, 361–362, 364	Fourier coefficients, 387
diagonalization, 281-288, 395-397	parametric, 44–46	Fourier series, 387–388
differential equations, 312–314	price, 137	Free variable, 18, 21, 43, 228
distinct, 284–285	production, 133	Full rank, 237
dynamical systems, 278-279, 301	three-moment, 252	Function, 63
invariant plane, 300	vector, 24-34, 48	continuous, 380-382, 387-388
Invertible Matrix Theorem, 275	Equilibrium prices, 49–51, 54	eigenfunction, 312
iterative estimates, 277, 319-325	Equilibrium, unstable, 310	transfer, 122
multiplicity of, 276	Equilibrium vector, 257–260	trend, 386
nondistinct, 285–286	Equivalence relation, 293	utility, 412
and quadratic forms, 405	Equivalent linear systems, 3	The Fundamental Matrix, 10.5
and rotation, 295, 297, 299–300,	Euler, Leonard, 479	Fundamental solution set, 249, 312
308 (fig.), 317 (fig.)	Existence and Uniqueness Theorem,	Fundamental subspaces, 234 (fig.), 237,
row operations, 267, 277	21, 43	335 (fig.), 420–421
similarity, 277	Existence of solution, 64, 73	
strictly dominant, 319	Existence questions, 7–9, 20–21, 36–37,	Gauss, Carl Friedrich, 12n, 374n
triangular matrix, 269	64, 72, 113	Gaussian elimination, 12n
See also Dynamical system	Explicit description, 44, 148, 200-201,	General least-squares problem, 360
Eigenvector, 266–273	203	General linear model, 371
basis, 282, 285	Extreme point, 470–473	General solution, 18, 249–250
complex, 295, 299		Geometric continuity, 483
decomposition, 302, 319	Faces of polyhedron, 470	Geometric descriptions
diagonalization, 281-288, 395-397	Facet of polytope, 470	of \mathbb{R}^2 , 25–26
difference equations, 271	Factorization	of Span $\{u, v\}$, 30–31
dynamical system, 278–279, 301–311,	analysis of a dynamical system, 281	of Span $\{v\}$, 30–31
312–314	of block matrices, 120	Geometric point, 25
linear transformations and, 288–295	complex eigenvalue, 299	Geometry matrix (of a Bézier curve), 485
linearly independent, 270, 282	diagonal, 281, 292	Geometry of vector spaces, 435–492
Markov chain, 279	for a dynamical system, 281	affine combinations, 436–444
principal components, 427	in electrical engineering, 127–129	affine independence, 444–454
row operations, 267	See also Matrix factorization	convex combinations, 454–461
Electrical network model, 2, 82–83	(decomposition); Singular value	curves and surfaces, 481–492
circuit problem, 312, 316–317, 318	decomposition (SVD)	hyperplanes, 435, 440, 461–469
matrix factorization, 127–129	Feasible set, 412	polytopes, 469–481
minimal realization, 129	Feynman, Richard, 163	Geometry vector, 486
Elementary matrix, 106–107	Filter coefficients, 246	Givens rotation, 90
determinant, 173–174	Filter, linear, 246	Global Positioning System (GPS),
interchange, 173	low-pass, 247, 367	329–330
reflector, 390	moving average, 252	Gouraud shading, 487
row replacement, 173	Final demand vector, 132	Gradient, 462
scale, 173	Finite set, 226	Gram matrix, 432
Elementary reflector, 390	Finite-dimensional vector space, 226	Gram-Schmidt process, 354–360,
Elementary row operation, 6, 106, 107	subspace, 227–228	377–378
Elements (Plato), 435	First principal component, 393, 427	in inner product spaces, 377–378
Ellipse, 404	First-order difference equation.	Legendre polynomials, 383
area, 184	See Difference equation	in \mathbb{P}^4 , 378, 386

· W. 255 256	* 15	11
in \mathbb{R}^n , 355–356	Inequality	linear transformation, 113
Gram-Schmidt Process Theorem, 355	Bessel's, 390	matrix, 103, 106–107, 171
Graphics, computer.	Cauchy-Schwarz, 379–380	Invertible Matrix Theorem, 112–113,
See Computer graphics	triangle, 380 Infinite dimensional space, 226	156, 157, 171, 235, 275, 421
Heat conduction, 131	•	Isomorphic vector spaces, 155, 230
Hermite cubic curve, 485	Infinite set, 225n	Isomorphism, 155, 220–222, 249, 378n
Hermite polynomials, 229	Initial value problem, 312 Inner product, 101, 330–331, 376	Iterative methods
Hidden surfaces, 450	angles, 335	eigenspace, 320–321 eigenvalues, 277, 319–325
Hilbert matrix, 116	axioms, 376	formula for $(I - C)^{-1}$, 134–135, 137
Homogeneous coordinates, 139–140,	on $C[a, b]$, 380–382	inverse power method, $322-324$
141–142	evaluation, 380	Jacobi's method, 279
Homogeneous forms and affine	length/norm, 333, 377	power method, 319–322
independence, 445, 452	on \mathbb{P}^n , 377	QR algorithm, 279, 280, 324
Homogeneous form of \mathbf{v} in \mathbb{R}^n , 441–442	properties, 331	QK algorithm, 279, 260, 324
Homogeneous system, 43–44	Inner product space, 376–390	Jacobian matrix, 304n
difference equations, 246	best approximation in, 378–379	Jacobi's method, 279
in economics, 49–51	Cauchy–Schwarz inequality in,	Jordan form, 292
subspace, 148, 199	379–380	Jordan, Wilhelm, 12n
Hooke's law, 104	definition of, 376	Junctions, 52
Householder matrix, 390	distances in, 377	v uneurons, s 2
reflection, 161	in Fourier series, 387–388	k-crosspolytope, 480
Howard, Alan H., 80	Gram–Schmidt process in, 377–378	Kernel, 203–205
Hull, affine, 437, 454	lengths (norms) in, 377	k-face, 470
geometric view of, 441	orthogonality in, 377	Kirchhoff's laws, 82, 83
Hyperbola, 404	for trend analysis of data, 385–386	k-pyramid, 480
Hypercube, 477–479	triangle inequality in, 380	
construction of, 477–478	weighted least-squares, 383–385	Ladder network, 128-129, 130-131
Hyperplane(s), 435, 440, 461–469	Input sequence, 264	Laguerre polynomial, 229
definition of, 440	See also Control system	Lamberson, R., 265
explicit descriptions of, 462-464	Interchange matrix, 106, 173	Landsat image, 393–394, 429, 430
implicit descriptions of, 461-464	Interior point, 465	LAPACK, 100, 120
parallel, 462–464	Intermediate demand, 132	Laplace transform, 122, 178
separating sets of, 465–467	International Celestial Reference System,	Law of cosines, 335
supporting, 470	448n	Leading entry, 12–13
Hyperspectral image processing, 429	Interpolated colors, 449–450	Leading variable, 18n
	Interpolating polynomial, 23, 160	Least-squares fit
Icosahedron, 435, 436	Introduction and Examples, 10.1	cubic trend, 372 (fig.)
Identity matrix, 38, 97, 106	Invariant plane, 300	linear trend, 385–386
Ill-conditioned matrix, 114, 391	Inverse, 103	quadratic trend, 385–386
Ill-conditioned normal equation, 364	algorithm for, 107–108	scatter plot, 371
Image processing, multichannel,	augmented columns, 108	seasonal trend, 373, 375 (fig.)
393–394, 424–432	condition number, 114, 116	trend surface, 372
Image, vector, 63	determinant, 103	Least-squares problem, 329, 360–375
Imaginary axis, A5	elementary matrix, 106–107	column space, 360–362
Imaginary numbers, pure, A5	flexibility matrix, 104	curve-fitting, 371–372
Imaginary part	formula, 103, 179	error, 363–364
complex number, A3	ill-conditioned matrix, 114	lines, 368–370
complex vector, 297–298	linear transformation, 113	mean-deviation form, 370
Implicit definition of Nul A, 148, 200,	Moore–Penrose, 422	multiple regression, 372–373
204	partitioned matrix, 119, 122	normal equations, 329, 361–362, 370
Implicit description, 44, 263	product, 105	orthogonal columns, 364
Inconsistent system, 4, 8	stiffness matrix, 104–105	plane, 372–373
See also Linear system	transpose, 105	QR factorization, 364–365
Indexed set, 56, 208	Inverse power method, 322–324	residuals, 369
Indifference curve, 412–413	Invertible	singular value decomposition, 422

16 Index

Least-squares problem (<i>continued</i>) sum of the squares for error, 375, 383–384	in \mathbb{R}^n , 59 sets, 56, 208–216, 227 signals, 245–246	rotation, 67 (fig.), 72 shear, 65, 74, 139 similarity, 277, 292–293
weighted, 383–385	zero vector, 59	standard matrix, 71–72
See also Inner product space	Linear model. See Mathematical model	vector space, 203-205, 290-291
Least-squares solution, 330, 360, 422	Linear programming, 2	See also Isomorphism; Superposition
alternative calculation, 364–366	partitioned matrix, 120	principle
minimum length, 422, 433	Linear Programming-Geometric Method,	Linear trend, 387
QR factorization, 364–365	9.2	Linearity property of determinant
Left distributive law, 97	Linear Programming-Simplex Method,	function, 173, 187
Left singular vector, 417	9.3	Linearly dependent set, 56, 58, 60, 208
Left-multiplication, 98, 106, 107, 176, 358	Linear recurrence relation. <i>See</i> Difference equation	Linearly independent eigenvectors, 270, 282
Legendre polynomial, 383	Linear system, 2–3, 29, 35–36	Linearly independent set, 56, 57–58,
Length of vector, 331–332, 377	basic strategy for solving, 4-7	208–216
singular values, 416	coefficient matrix, 4	See also Basis
Leontief, Wasily, 1, 132, 137n	consistent/inconsistent, 4, 7–8	Long-term behavior
exchange model, 49	equivalent, 3	of a dynamical system, 301
input-output model, 132-138	existence of solutions, 7–9, 20–21	of a Markov chain, 256, 259
production equation, 133	general solution, 18	Loop current, 82
Level set, 462	homogeneous, 43–44, 49–51	Lower triangular matrix, 115, 124,
Line(s)	linear independence, 55–62	125–126, 127
degenerate, 69, 439	and matrix equation, 34–36	Low-pass filter, 247, 367
equation of, 2, 45	matrix notation, 4	LU factorization, 92, 124-127, 130, 323
explicit description of, 463	nonhomogeneous, 44-46, 234	
as flat, 440	over-/underdetermined, 23	$M_{m\times n}$, 196
geometric descriptions of, 440	parametric solution, 19-20, 44	Macromedia Freehand, 481
implicit equation of, 461	solution sets, 3, 18–21, 43–49	Main diagonal, 92
parametric vector equation, 44	and vector equations, 29	Maple, 279
of regression, 369	See also Linear transformation;	Mapping, 63
Span {v}, 30	Row operation	composition of, 94
translation of, 45	Linear transformation, 62–80, 85,	coordinate, 216-217, 219-222, 239
Line segment, 454	203–205, 248, 288–295	eigenvectors, 290-291
Line segment, directed, 25	B-matrix, 290, 292	matrix factorizations, 288-289
Linear combination, 27–31, 35, 194	composite, 94, 140	one-to-one, 75–77
affine combination. See Affine	composition of, 95	onto \mathbb{R}^m , 75, 77
combinations	contraction/dilation, 66, 71	signal processing, 248
in applications, 31	of data, 67–68	See also Linear transformation
weights, 27, 35, 201	determinants, 182–184	Marginal propensity to consume, 251
Linear dependence, 56–57, 58 (fig.), 208,	diagonal matrix representation, 291	Mark II computer, 1
444	differentiation, 205	Markov chain, 253-262
affine dependence and, 445-446, 452	domain/codomain, 63	convergence, 258
column space, 211-212	geometric, 72–75	eigenvectors, 279
row-equivalent matrices, A1	Givens rotation, 90	predictions, 256–257
row operations, 233	Householder reflection, 161	probability vector, 254
Linear difference equation. See	invertible, 113–114	state vector, 254
Difference equation	isomorphism, 220-222	steady-state vector, 257-260, 279
Linear equation, 2–12	kernel, 203–205	stochastic matrix, 254
See also Linear system	matrix of, 70-80, 289-290, 293	Markov Chains and Baseball Statistics,
Linear filter, 246	null space, 203-205	10.6
Linear functionals, 461, 466, 472	one-to-one/onto, 75–77	Mass-spring system, 196, 205, 214
maximum value of, 473	projection, 75	Mathematica, 279
Linear independence, 55-62, 208	properties, 65	Mathematical ecologists, 265
eigenvectors, 270	on \mathbb{R}^n , 291–292	Mathematical model, 1, 80-85
matrix columns, 57, 77	range, 63, 203–205	aircraft, 91, 138
in \mathbb{P}^3 , 220	reflection, 73, 161, 345-346	beam, 104

1	1 244 205	1 11 422
electrical network, 82	orthogonal, 344, 395	rank-revealing, 432
linear, 80–85, 132, 266, 302, 371	orthonormal, 344n	reduced LU, 130
nutrition, 80–82	orthonormal columns, 343–344	reduced SVD, 422
population, 84–85, 254, 257–258	partitioned, 117–123	Schur, 391
predator-prey, 302-303	Pauli spin, 160	similarity, 277, 292–293
spotted owl, 265–266	positive definite/semidefinite, 406	singular value decomposition, 130,
stage-matrix, 265–266, 307–309	powers of, 98–99	414–424
See also Markov chain	products, 94–98, 172–173	spectral, 130, 398–399
MATLAB, 23, 116, 130, 185, 262, 279,	projection, 398, 400	Matrix Games, 9.1
308, 323, 324, 327, 359	pseudoinverse, 422	Matrix inversion, 102–111
Matrix, 92–161	of quadratic form, 401	Matrix multiplication, 94–98
adjoint/adjugate, 179	rank of, 153–160	block, 118
anticommuting, 160	reduced echelon, 14	column-row expansion, 119
augmented, 4	regular stochastic, 258	and determinants, 172–173
band, 131	row equivalent, 6, 29n, A1	properties, 97–98
bidiagonal, 131	row space, 231-233	row-column rule, 96
block, 117	row-column rule, 96	See also Composition of linear
Casorati, 245–246	scalar multiple, 93–94	transformations
change-of-coordinates, 219, 240-241	scale, 173	Matrix notation. See Back-substitution
characteristic equation, 273-281	Schur complement, 122	Matrix of coefficients, 4, 37
coefficient, 4, 37	singular/nonsingular, 103, 113, 114	Matrix of observations, 424
of cofactors, 179	size of, 4	Matrix program, 23
column space, 201-203	square, 111, 114	Matrix transformation, 63–65, 71
column sum, 134	standard, 71–72, 95	See also Linear transformation
column vector, 24	stiffness, 104–105	Matrix-vector product, 34-35
commutativity, 98, 103, 160	stochastic, 254, 261-262	properties, 39
companion, 327	submatrix of, 117, 264	rule for computing, 38
consumption, 133, 137	sum, 93–94	Maximum of quadratic form, 408–413
controllability, 264	symmetric, 394–399	Mean, sample, 425
covariance, 425–427	system, 122	Mean square error, 388
design, 368	trace of, 294, 426	Mean-deviation form, 370, 425
diagonal, 92, 120	transfer, 128–129	Microchip, 117
diagonalizable, 282	transpose of, 99–100, 105	Migration matrix, 85, 254, 279
echelon, 14	tridiagonal, 131	Minimal realization, 129
elementary, 106–107, 173–174, 390	unit cost, 67	Minimal representation of polytope,
flexibility, 104	unit lower triangular, 124	471–472, 474–475
geometry, 485	Vandermonde, 160, 186, 327	Minimum length solution, 433
Gram, 432	zero, 92	Minimum of quadratic form, 408–413
Hilbert, 116	See also Determinant; Diagonalizable	Model, mathematical. <i>See</i> Mathematical
Householder, 161, 390	matrix; Inverse; Matrix	model
identity, 38, 92, 97, 106	factorization (decomposition);	Modulus, A4
ill-conditioned, 114, 364	Row operation; Triangular matrix	Moebius, A.F., 448
interchange, 173	Matrix equation, 34–36	Molecular modeling, 140–141
inverse, 103	Matrix factorization (decomposition), 92,	Moore-Penrose inverse, 422
invertible, 103, 105, 112–113	123–132	Moving average, 252
Jacobian, 304n	Cholesky, 406, 432	Muir, Thomas, 163
leading entry, 12–13	complex eigenvalue, 299–300	Multichannel image.
of a linear transformation, 70–80,	diagonal, 281–288, 291–292	See Image processing, multichannel
289–290	in electrical engineering, 127–129	Multiple regression, 372–373
migration, 85, 254, 279	full QR, 359	Multiplicative property of det, 173, 275
$m \times n, 4$	linear transformations, 288–295	Multiplicity of eigenvalue, 276
$m \wedge n$, \rightarrow multiplication, 94–98, 118–119	LU, 124–126	Multivariate data, 424, 428–429
nonzero row/column, 13	permuted LU, 127	1v10111 variate data, 727, 720-727
notation, 4	polar, 432	NAD (North American Datum), 329, 330
null space, 147–148, 198–201	QR, 130, 356–358, 364–365	National Geodetic Survey, 329
of observations, 424	rank, 130	Natural cubic splines, 481
51 00001 (attorio, 12 1		Timestal edote optimes, 101

18 Index

Negative definite quadratic form, 405	matrix, 344, 395	Parametric
Negative flow, in a network branch, 82	polynomials, 378, 386	continuity, 483, 484
Negative of a vector, 191	regression, 432	description, 19-20
Negative semidefinite form, 405	set, 338–339, 387	equation of a line, 44, 69
Network, 52–53	vectors, 333–334, 377	equation of a plane, 44
branch, 82	Orthogonal basis, 338–339, 377–378,	vector equation, 44–46
branch current, 83	397, 416	vector form, 44, 46
electrical, 82-83, 86-87, 127-129	for fundamental subspaces, 420–421	Partial pivoting, 17, 127
flow, 52–53, 54–55, 82	Gram-Schmidt process, 354–356, 377	Partitioned matrix, 91, 117–123
loop currents, 82, 86–87	Orthogonal complement, 334–335	addition and multiplication, 118-119
Nodes, 52	Orthogonal Decomposition Theorem,	algorithms, 120
Noise, random, 252	348	block diagonal, 120
Nonhomogeneous system, 44–46, 234	Orthogonal diagonalization, 396	block upper triangular, 119
difference equations, 246, 249–250	principal component analysis, 427	column–row expansion, 119
Nonlinear dynamical system, 304n	quadratic form, 402–403	conformable, 118
Nonsingular matrix, 103, 113	spectral decomposition, 398–399	inverse of, 119–120, 122
Nontrivial solution, 43	Orthogonal projection, 339–341,	outer product, 119
Nonzero column, 12	347–353	Schur complement, 122
Nonzero row, 12	geometric interpretation, 341, 349	submatrices, 117
Nonzero singular values, 416–417	matrix, 351, 398, 400	Partitions, 117
Norm of vector, 331–332, 377	properties of, 350–352	Paths, random, 163
Normal equation, 329, 361–362	onto a subspace, 340, 347–348	Pauli spin matrix, 160
ill-conditioned, 364	sum of, 341, 349 (fig.)	Pentatope, 476–477
Normal vector, 462	Orthogonality, 333–334, 343	Permuted LU factorization, 127
North American Datum (NAD), 329, 330	Orthogonally diagonalizable, 396	Perspective projection, 142–143
Null space, 147–148, 198–201	Orthonormal	Phase
basis, 149, 211–212, 231–232	basis, 342, 351, 356–358	backward, 17, 125
and column space, 202–203	columns, 343–344	forward, 17
dimension of, 228, 233–234	matrix, 344n	Physics, barycentric coordinates in, 448
eigenspace, 268	rows, 344	Phong shading, 487
explicit description of, 200–201	set, 342–344	Pivot, 15
linear transformation, 203–205	Outer product, 101, 119, 161, 238	column, 14, 149–150, 212, 233, A1
See also Fundamental subspaces;	Overdetermined system, 23	positions, 14–15
Kernel	Owl population model, 265–266,	product, 171, 274
Nullity, 233	307–309	Pixel, 393
Nutrition model, 80–82	307-307	Plane(s)
Nutrition model, 60–62	P, 193	geometric descriptions of, 440
Observation vector, 368, 424–425	\mathbb{P}_n , 192, 193, 209–210, 220–221	implicit equation of, 461
Octahedron, 435, 436	dimension, 226	Plato, 435
Ohm's law, 82	inner product, 377	Platonic solids, 435–436
Oil exploration, 1	standard basis, 209	Point(s)
One-to-one linear transformation,	trend analysis, 386	affine combinations of, 437–439,
76, 215	Parabola, 371	441–442
See also Isomorphism	Parallel	boundary, 465
One-to-one mapping, 75–77	line, 45	extreme, 470–473
Onto mapping, 75, 77	processing, 1, 100	interior, 465
Open ball, 465	solution sets, 45 (fig.), 46 (fig.), 249	Point masses, 33
-	Parallel flats, 440	Polar coordinates, A6
Open set, 465 OpenGL, 481	Parallel hyperplanes, 462–464	Polar decomposition, 432
•	* * *	-
Optimization, constrained.	Parallelegiped, 180, 275	Polygon, 435–436, 470
See Constrained optimization Orbit of a comet, 374	Parallelogram area of, 180–181	Polyhedron, 470
		regular, 435, 480
Ordered nois 24	law, for vectors, 337	Polynomial(s)
Orthogonal	region inside, 69, 183 rule for addition, 26	blending, 485n
Orthogonal eigenvectors, 395	Parameter vector, 368	characteristic, 276, 277 degree of, 192
CIECHVECTOIS, 333	i arailleter vector, 300	degree or, 192

Hermite, 229	See also Column-row expansion;	\mathbb{R}^n , 27
interpolating, 23, 160	Inner product	algebraic properties of, 27, 34
Laguerre, 229	Production equation, 133	change of basis, 241–242
Legendre, 383	Production vector, 132	dimension, 226
orthogonal, 378, 386	Profile, 470, 472	inner product, 330–331
in \mathbb{P}_n , 192, 193, 209–210, 220–221	Projection	length (norm), 331–332
set, 192	matrix, 398, 400	quadratic form, 401
trigonometric, 387	perspective, 142–144	standard basis, 209, 342
zero, 192	transformations, 65, 75, 161	subspace, 146–153, 348
Polytope(s), 469–481	See also Orthogonal projection	topology in, 465
definitions, See 470-471, 473	Proper subset, 440n	\mathbb{R}^2 and \mathbb{R}^3 , 24–27, 193
explicit representation of, 473	Properties	Random paths, 163
hypercube, 477–479	determinants, 169–177	Range of transformation, 63, 203–205,
implicit representation of, 473–474	inner product, 331, 376, 381	263
k-crosspolytope, 480	linear transformation, 65–66, 76	Rank, 153-160, 230-238
k-pyramid, 480	matrix addition, 93–94	in control systems, 264
minimal representation of, 471–472,	matrix inversion, 105	effective, 157, 417
474–475, 479	matrix multiplication, 97–98	estimation, 417n
simplex, 435, 475–477	matrix-vector product, Ax, 39-40	factorization, 130, 263-264
Population model, 84–85, 253–254,	orthogonal projections, 350–352	full, 237
257–258, 302–303, 307–309,	of \mathbb{R}^n , 27	Invertible Matrix Theorem, 157–158,
310	rank, 263	235
Positive definite matrix, 406	transpose, 99–100	properties of, 263
Positive definite quadratic form, 405	See also Invertible Matrix Theorem	See also Outer product
Positive semidefinite matrix, 406	Properties of Determinants Theorem, 275	Rank Theorem, 156, 233–234
PostScript® fonts, 484–485, 492	Pseudoinverse, 422, 433	Rank-revealing factorization, 432
Power method, 319–322	Public work schedules, 412–413	Rayleigh quotient, 324, 391
Powers of a complex number, A7	feasible set, 412	Ray-tracing method, 450–451
Powers of a matrix, 98–99	indifference curve, 412–413	Ray-triangle intersections, 450–451
Predator-prey model, 302-303	utility, 412	Real axis, A5
Predicted y-value, 369	Pure imaginary number, A5	Real part
Preprocessing, 123	Pythagorean Theorem, 334, 350	complex number, A3
Price equation, 137	Pythagoreans, 435	complex vector, 297–298
Price vector, 137		Real vector space, 190
Prices, equilibrium, 49–51, 54	QR algorithm, 279, 280, 324	Rectangular coordinate system, 25
Principal Axes Theorem, 403	QR factorization, 130, 356-358, 390	Recurrence relation. See Difference
Principal component analysis, 393–394,	Cholesky factorization, 432	equation
424, 427–428	full QR factorization, 359	Recursive subdivision of Bézier curves,
covariance matrix, 425	least squares, 364–365	surfaces, 488–489
first principal component, 427	QR Factorization Theorem, 357	Reduced echelon form, 13, 14
matrix of observations, 424	Quadratic Bézier curve, 460, 481-482,	basis for null space, 200, 231–233
multivariate data, 424, 428-429	492	solution of system, 18, 20, 21
singular value decomposition, 429	Quadratic form, 401-408	uniqueness of, A1
Probability vector, 254	change of variable, 402–403	Reduced LU factorization, 130
Process control data, 424	classifying, 405–406	Reduced singular value decomposition,
Product	cross-product term, 401	422, 433
of complex numbers, A7	indefinite, 405	Reduction to first-order equation, 250
dot, 330	maximum and minimum, 408-413	Reflection, 73, 345–346
of elementary matrices, 106, 174	orthogonal diagonalization, 402-403	Householder, 161
inner, 101, 330–331, 376	positive definite, 405	Reflector matrix, 161, 390
of matrices, 94–98, 172–173	principal axes of, geometric view of,	Regression
of matrix inverses, 105	403–405	coefficients, 369
of matrix transposes, 99-100	See also Constrained optimization;	line, 369
matrix-vector, 34	Symmetric matrix	multiple, 372–373
outer, 101, 119	Quadratic Forms and Eigenvalues	orthogonal, 432
scalar 101	Theorem 405–406	Regular polyhedra 435

I10 Index

D 1 11 1 400	0 1 405	1 400
Regular polyhedron, 480	Sample mean, 425	least-squares solution, 422
Regular solids, 434	Sample variance, 430–431	$m \times n$ matrix, 416–417
Relative change, 391	Samuelson, P.A., 251n	principal component analysis, 429
Relative error, 391	Scalar, 25, 190, 191	pseudoinverse, 422
See also Condition number	Scalar multiple, 24, 27 (fig.), 93–94, 190	rank of matrix, 417
Rendering graphics, 487	Scalar product. See Inner product	reduced, 422
Repeller, 304, 314	Scale a nonzero vector, 332	singular vectors, 417
Residual, 369, 371	Scale matrix, 173	Singular Value Decomposition Theorem,
Resistance, 82	Scatter plot, 425	417
RGB coordinates, 449–450	Scene variance, 393–394	Sink of dynamical system, 314
Riemann sum, 381	Schur complement, 122	Size of a matrix, 4
Right singular vector, 417	Schur factorization, 391	Solids, Platonic, 435–436
Right distributive law, 97	Second principal component, 427	Solution (set), 3, 18–21, 46, 248, 312
Right multiplication, 98, 176	Series circuit, 128	of $Ax = b$, 441
RLC circuit, 214–215	Set(s)	difference equations, 248-249, 271
Rotation due to a complex eigenvalue,	affine, 439–441, 455, 456	differential equations, 312
297, 299–300, 308 (fig.)	bounded, 465	explicit description of, 18, 44, 271
Rotation transformation, 67 (fig.), 72, 90,	closed, 465, 466	fundamental, 249, 312
140, 141–142, 144	compact, 465, 467	general, 18, 43, 44–45, 249–250,
Roundabout, 55	convex, 455–459	302–303, 315
Roundoff error, 9, 114, 269, 358, 417,	level, 462	geometric visualization, 45 (fig.), 46
420	open, 465	(fig.), 250 (fig.)
Row-column rule, 96	vector. See Vector set	homogeneous system, 43, 148,
Row equivalent matrices, 6, 13, 107,	Shear transformation, 65, 74, 139	247–248
277, A1	Shear-and-scale transformation, 145	minimum length, 433
notation, 18, 29n	Shunt circuit, 128	nonhomogeneous system, 44–46,
Row operation, 6, 169–170	Signal processing, 246	249–250
back-substitution, 19-20	auxiliary equation, 248	null space, 199
basic/free variable, 18	filter coefficients, 246	-
determinants, 169-170, 174, 275	fundamental solution set, 249	parametric, 19–20, 44, 46
echelon form, 13	linear difference equation, 246–249	row equivalent matrices, 6
eigenvalues, 267, 277	linear filter, 246	subspace, 148, 199, 248–249, 268, 312
elementary, 6, 106	low-pass filter, 247, 367	superposition, 83, 312
existence/uniqueness, 20–21	moving average, 252	triviałnontrivial, 43
inverse, 105, 107	reduction to first-order, 250	unique, 7–9, 21, 75
linear dependence relations, 150, 233	See also Dynamical system	See also Least-squares solution
pivot positions, 14–15	Signals	Source of dynamical system, 314
rank, 236, 417	control systems, 189, 190	Space shuttle, 189–190
See also Linear system	discrete-time, 191–192, 244–245	Span, 30, 36–37
Row reduction algorithm, 15–17	function, 189–190	affine, 437
backward phase, 17, 20, 125	noise, 252	linear independence, 58
forward phase, 17, 20	sampled, 191, 244	orthogonal projection, 340
See also Row operation	vector space, S, 191, 244	subspace, 156
Row replacement matrix, 106, 173	Similar matrices, 277, 279, 280, 282,	Spanning set, 194, 212
Row space, 231–233	292–293	Spanning Set Theorem, 210–211
basis, 231–233	See also Diagonalizable matrix	Span $\{\mathbf{u}, \mathbf{v}\}$ as a plane, 30 (fig.)
dimension of, 233	Similarity transformation, 277	Span $\{v\}$ as a line, 30 (fig.)
Invertible Matrix Theorem, 235	Simplex, 475–477	Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$, 30, 194
See also Fundamental subspaces	construction of, 475–476	Sparse matrix, 91, 135, 172
Row vector, 231	four-dimensional, 435	Spatial dimension, 425
Row-vector rule, 38	Singular matrix, 103, 113, 114	Spectral components, 425
220 1000011010, 50	Singular value decomposition (SVD),	Spectral decomposition, 398–399
S, 191, 244, 245–246	130, 414–424	Spectral dimension, 425
Saddle point, 304, 305 (fig.), 307 (fig.),	condition number, 420	Spectral factorization, 130
314	estimating matrix rank, 157, 417	Spectral Theorem, 397–398
Sample covariance matrix, 426	fundamental subspaces, 420–421	Spiral point, 317
		~r r,

C 1' 400	G 122	. 1
Splines, 490	System matrix, 122	in homogeneous coordinates, 139–140
B-, 484, 485, 490, 491	Tongant vactor 492 492 400 402	Transpose, 99–100
natural cubic, 481	Tangent vector, 482–483, 490–492	conjugate, 391n
Spotted owl, 265–266, 301–302,	Tetrahedron, 185, 435, 436	of inverse, 105
307–309	Theorem	of matrix of cofactors, 179
Square matrix, 111, 114	affine combination of points, 437–438	of product, 99
Stage-matrix model, 265–266, 307–309	Basis, 156, 227	properties of, 99–100
Standard basis, 148, 209, 241, 342	Best Approximation, 350	Trend analysis, 385–386
Standard matrix, 71–72, 95, 288	Caratheodory, 457–458	Trend surface, 372
Standard position, 404	Cauchy–Schwarz Inequality, 379	Triangle, area of, 185
State vector, 122, 254, 264	Cayley–Hamilton, 326	Triangle inequality, 380
State-space model, 264, 301	Characterization of Linearly	Triangular matrix, 5
Steady-state	Dependent Sets, 58, 60, 208	determinants, 167
heat flow, 131	Column-Row Expansion of AB, 119	eigenvalues, 269
response, 301	Cramer's Rule, 177	lower, 115, 125-126, 127
temperature, 11, 87, 131	De Moivre's, A7	upper, 115, 119–120
vector, 257-260, 266-267, 279	Diagonal Matrix Representation, 291	Tridiagonal matrix, 131
The Steady-State Vector and Google's	Diagonalization, 282	Trigonometric polynomial, 387
PageRank, 10.2	Existence and Uniqueness, 21, 43	Trivial solution, 43
Stiffness matrix, 104–105	Gram-Schmidt Process, 355	TrueType [®] fonts, 492
Stochastic matrix, 254, 261-262,	Inverse Formula, 179	71
266–267	Invertible Matrix, 112-113, 156-157,	Uncorrelated variable, 427
regular, 258	171, 235, 275, 421	Underdetermined system, 23
Strictly dominant eigenvalue, 319	Multiplicative Property (of det), 173	Uniform B-spline, 491
Strictly separate hyperplanes, 466	Orthogonal Decomposition, 348	Unique Representation Theorem, 216,
Submatrix, 117, 264	Principal Axes, 403	447
Subset, proper, 440n	Pythagorean, 334	Unique vector, 197
Subspace, 146–153, 193, 248	QR Factorization, 357	Uniqueness question, 7–9, 20–21, 64, 72
basis for, 148–150, 209	Quadratic Forms and Eigenvalues,	Unit cell, 217–218
column space, 147–148, 201	405–406	Unit consumption vector, 132
dimension of, 155–156, 226–227	Rank, 156, 233-234	Unit cost matrix, 67
eigenspace, 268	Row Operations, 169	Unit lower triangular matrix, 124
fundamental, 237, 335 (fig.), 420–421	Singular Value Decomposition, 417	Unit square, 72
homogeneous system, 200	Spanning Set, 210–211, 212	Unit vector, 332, 377, 408
intersection of, 197, 456	Spectral, 397–398	Unstable equilibrium, 310
linear transformation, 204 (fig.)	Triangle Inequality, 380	Upper triangular matrix, 115, 119–120
null space, 147–148, 199	Unique Representation, 216, 447	Utility function, 412
spanned by a set, 147, 194	Uniqueness of the Reduced Echelon	Culty function, 112
sum, 197	Form, 13, A1	Value added vector, 137
zero, 147, 193	Three-moment equation, 252	Vandermonde matrix, 160, 186, 327
See also Vector space	Total variance, 426	Variable, 18
Sum of squares for error, 375, 383–384	fraction explained, 428	basic/free, 18
Superposition principle, 66, 83, 312	Trace of a matrix, 294, 426	leading, 18n
Supporting hyperplane, 470	Trajectory, 303, 313	uncorrelated, 427
Surface normal, 487	Transfer function, 122	See also Change of variable
Surface rendering, 144	Transfer matrix, 128	Variance, 362–363, 375, 384n, 426
SVD. See Singular value decomposition	Transformation	sample, 430–431
	affine, 69	scene, 393–394
(SVD) Symbolic determinant, 464	codomain, 63	total, 426
Symmetric matrix, 324, 394–399	definition of, 63	Variation-diminishing property of Bézier
diagonalization of, 395–397	domain of, 63	curves and surfaces, 488 Vector(s), 24
positive definite/semidefinite, 405	identity, 290	
spectral theorem for, 397–398	image of a vector x under, 63	addition/subtraction, 24, 25, 26, 27
See also Quadratic form	range of, 63	angles between, 335–336
Synthesis of data, 123	See also Linear transformation	as arrows, 25 (fig.)
System, linear. See Linear system	Translation, vector, 45	column, 24

I12 Index

Vector(s) (continued)	steady-state, 257–260, 266–267, 279	of polynomials, 192, 377
complex, 24n	sum, 24	real, 190n
coordinate, 154, 216–217	tangent, 482–483	See also Geometry of vector spaces;
cost, 31	translations, 45	Inner product space; Subspace
decomposing, 342	unique, 197	Vector subtraction, 27
distance between, 332–333	unit, 132, 332, 377	Vector sum, 24
equal, 24	value added, 137	Vertex/vertices, 138
equilibrium, 257–260	weights, 27	of polyhedron, 470–471
final demand, 132	zero, 27, 59, 146, 147, 190, 191, 334	Vibration of a weighted spring, 196, 205,
geometry, 486	See also Eigenvector	214
image, 63	Vector addition, 25	Viewing plane, 142
left singular, 417	as translation, 45	Virtual reality, 141
length/norm, 331-332, 377, 416	Vector equation	Volt, 82
linear combinations, 27–31, 60	linear dependence relation, 56–57	Volume
linearly dependent/independent,	parametric, 44, 46	determinants as, 180–182
56–60	Vector set, 56–60, 338–346	ellipsoid, 185
negative, 191	indexed, 56	parallelepiped, 180–181, 275 tetrahedron, 185
normal, 462	linear independence, 208–216,	
normalizing, 332	225–228	Weighted least squares, 376, 383–385 Weights, 27, 35 as free variables, 201 Wire-frame approximation, 449 Wire-frame models, 91, 138
observation, 368, 424–425	orthogonal, 338-339, 395	
orthogonal, 333–334	orthonormal, 342–344, 351, 356	
parameter, 368	polynomial, 192, 193	
as a point, 25 (fig.)	Vector space, 189–264	
price, 137	of arrows, 191	
probability, 254	axioms, 191	Zero functional, 461
production, 132	complex, 190n	Zero matrix, 92
in \mathbb{R}^2 , 24–26	and difference equations, 248–250	Zero polynomial, 192
in \mathbb{R}^3 , 27	and differential equations, 204–205,	Zero solution, 43
in \mathbb{R}^n , 27	312	Zero subspace, 147, 193
reflection, 345–346	of discrete-time signals, 191–192	Zero vector, 27, 59
residual, 371	finite-dimensional, 226, 227–228	orthogonal, 334
singular, 417	of functions, 192, 380	subspace, 147
state, 122, 254, 264	infinite-dimensional, 226	unique, 191, 197