Using R for Statistics in Medical Research

Elrozy Andrinopoulou

e.andrinopoulou@erasmusmc.nl

Sten Willemsen

s.willemsen@erasmusmc.nl

25 February - 1 March 2019

Department of Biostatistics, Erasmus University Medical Center

- Create 2 vectors of size 50
 - Sex: takes 2 values 0 and 1
 - Age: takes values from 20 till 80 (hint: use sample())
 - convert "Sex" to a factor with levels 0: "female" and 1: "male"
 - define the new variable "AgeCat" as dichotomous with "Age" <= 50 to be 0 and 1 otherwise
 - convert "AgeCat" to a factor with levels 0: "young" and 1: "old"
 - overwrite "Age" variable by $\frac{Age-mean(Age)}{sd(Age)}$

Save your code

- Create a data.frame with the name "DF"
 - including the following vectors: "Sex," "Age", "AgeCat"
 - with names: "Gender", "StandardizedAge", "DichotomousAge"
 - What are the dimensions of the data.frame (hint: use dim())?

Practical 1.2.1 -extra

- Create 2 vectors of size 150
 - Treatment: takes 2 values 1 and 2
 - Weight: takes values from 50 till 100
 - convert "Treatment" to a factor with levels 1: "no" and 2: "yes"
 - overwrite "Weight" variable by "Weight"*1000
 - create a data.frame including "Treatment" and "Weight"

Practical 1.2.2 -extra

- Create a list called "my_list" with the following:
 - let: "a" to "i" (hint: use letters)
 - mat: matrix $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$
 - sex: factor taking the values "males" and "females" and length 50

- Using the data.frame "DF" from Practical 1
 - calculate the mean of the variable "StandardizedAge"
 - calculate the standard deviation of the variable "StandardizedAge"
 - calculate the frequencies of the variable "Gender" (hint: use function length() or table())
 - calculate the frequencies of the variable "DichotomousAge"

- Using the data.frame "DF" from Practical 1
 - calculate the mean of the variable "StandardizedAge" for males and females
 - show the crosstab including "Gender" and "DichotomousAge" (hint: use function table())
 - select all males that are young
 - select all females or old patients

Practical 2.2.1 -extra

- Using the data.frame "DF" from Practical 1
 - calculate the median of the variable "StandardizedAge"
 - calculate the median of the variable "StandardizedAge" for males and females
 - show the 2nd column of DF

- Create a function with the name "Descriptives" that
 - takes as values 2 vectors
 - calculates the min, median, max, mean, sd and length of both vectors
 - returns a matrix where rows indicate the statistic and columns the vectors (hind: to name the rows of the matrix use rownames())
- Use the function for the following vectors
 - vec1: sample "age" from 20 till 80 and with n = 100
 - vec2: sample "weight" from 60 till 100 and with n = 200

Practical 3.1.1 -extra

- Create a function with the name "Summaries" that
 - takes as value a data.frame that includes 2 columns: 1st categorical, 2nd continuous
 - calculates the mean and median per group (variable in 1st column) for the variable in the 2nd column
 - returns a matrix where rows indicate the mean/median and columns the groups
- Use the function for the data.frame that includes the following
 - vec1: sample "age" from 20 till 80 and with n = 100
 - vec2: sample "sex" takes 0 and 1, with n = 100 (convert also to a factor)

- Import the spss dataset: Cancer.sav
 - we are interested in testing if there is a difference in the average age between the 2 treatment groups (t-test)
 - we obtained the result, but it was nowhere saved! Save the result of the t-test in an object named 'res' for post processing
 - using indexing extract the p-value
 - using indexing extract the 95% CI

- We want to save those results for reporting in our paper. Create a data.frame with the name "Restest", with columns
 - mean1: mean for TRT = 0
 - mean2: mean for TRT = 1
 - diffres: difference of the means
 - lowCI: lower limit of confidence interval
 - upCl: upper limit of confidence interval
 - pVal: p-value of the test

- Using the dataset: Cancer.sav
 - create a dichotomous variable for "WEIGHIN": 0 if "WEIGHIN"
 mean("WEIGHIN") and 1 otherwise. Use the name "WEIGHINcat"
 - perform a t-test comparing "AGE" between the "TRT" groups
 - perform a t-test comparing "AGE" between the "WEIGHINcat" groups
 - create a vector with the name "results", including the p-values of the above tests
 - calculate the significance level after the bonferroni correction. Use the name "bonf.corr_alpha"
 - using an if statement, print whether the null hypothesis is rejected or not

Using the Cancer.sav dataset

- perform a regression analysis with dependent variable: WEIGHIN and independent: TRT use the name fm1
- perform a regression analysis with dependent variable: WEIGHIN and independent: TRT + STAGE use the name fm2
- compare the 2 models
- perform a regression analysis with dependent variable: WEIGHIN and independent: TRT + STAGE + AGE - use the name fm3
- include an interaction term of AGE and STAGE in the previous model use the name fm4

- Using the Cancer.sav dataset
 - create a function with the name "Pred" that takes as values: the treatment, stage and age of a new patient and returns the predicted weight using model fm4
 - Predict the weight of a new patient: treatment = 1, stage = 2 and age = 77
 - plot the weight vs the age per treatment group (xyplot with 2 figures). The x-axis will have the name "age", the y-axis will have the name "weight" and the main title will be "weight vs age"

Practical 4.5.1 -extra

- Create the following vectors of size 100
 - sex: takes 2 values 1 and 2
 - tr: takes 4 values 1 to 4
 - score: normal distribution with mean 20 and sd 5
- Create boxplots of score per sex and tr groups
- Replace the above vectors using n = 20 instead of 100
- Create new boxplots of score per sex and tr groups
- What can you say about the distrubution?

Practical 4.5.2 -extra

- Using the Cancer.sav dataset
 - what is the Pearson correlation between "WEIGHIN" and "AGE"?
 - perform the test, what is hypothesis and the decision?
 - create a scatterplot to support your findings
 - create a boxplot and investigate the col argument

- Using the Cancer.sav dataset, create a function "uniRegr" that
 - takes a data.frame and a vector with the names of the independent covariates as c(" ", " ", " ", ...)
 - performs univariable regression analysis of the outcome: "WEIGHIN" and each covariate (hint: use as.formula() and paste())
 - returns the estimate, std error and the p-values as a data.frame
- Using the Cancer.sav dataset, perform univariable regression analysis using the covariates "AGE", "STAGE" and "TRT"
- Save the results as "results_regr"

Practical 5.1.1 -extra

- Using the Cancer.sav dataset, create a function "uniLogRegr" that
 - takes a data.frame and a vector with the names of the independent covariates as c(" ", " ", " ", ...)
 - performs univariable logistic regression analysis of the outcome: "TRT" and each covariate (hint: use as.formula() and paste())
 - returns the estimate, std error and the p-values as a data.frame
- Using the Cancer.sav dataset, perform univariable logistic regression analysis using the covariates "AGE", "STAGE" and "WEIGHIN"
- Save the results as "results_log_regr"