

Série C - session 2011 : problème 2 - corrigé

Partie A: Etude de la fonction f définie par : $f(x) = e^{\frac{\hat{a}}{2}} - x - 1$

1- Calcul de $\lim_{x\to -\infty} f(x)$ et $\lim_{x\to +\infty} f(x)$

On a

$$\lim_{x \to -\infty} e^{\frac{x}{2}} = 0 \quad \text{donc} \quad \lim_{x \to \infty} f(x) = +\infty$$

En posant $X = \frac{x}{2}$, on a $\lim_{X \to +\infty} f(x) = \lim_{X \to +\infty} X(\frac{e^X}{X} - 2 - \frac{1}{X})$.

Or

$$\lim_{X \to +\infty} \frac{e^X}{X} - 2 - \frac{1}{X} = +\infty,$$

donc

$$\lim_{x \to +\infty} f(x) = +\infty$$

2.- a) Les variations de f.

Dérivée de f

On a

$$f'(x) = \frac{e^{\frac{x}{2}} - 2}{2}$$

f'(x) s'annule lorsque $e^{\frac{x}{2}} - 2 = 0$, c'est-à-dire x = 2ln2

b) Asymptote oblique

$$\lim_{X\to-\infty} (f(x)+x+1) = \lim_{X\to-\infty} e^{\frac{x}{2}} = 0.$$

Donc la droite d'équation y=-x-1 est une asymptote à la courbe de f au voisinage de $-\infty$.

c) Montrer que l'équation f(x) = 0 admet pour solutions 0 et α dans IR et $2<\alpha<3$.

f(0) = 0 donc 0 est une solution de l'équation f(x)=0

f est continue et strictement croissante sur]2ln2;+ ∞ [, donc c'est une bijection de]2ln2;+ ∞ [sur f(]2ln2;+ ∞ [) =]1 - 2ln2,+ ∞ [.

Comme $0 \in]1-2\ln 2$, $+\infty$ [, il existe un réel unique α dans] $2\ln 2$; $+\infty$ [tel que $f(\alpha)=0$ On a $f(3)\approx 0.48$ et $f(2)\approx -0.3$, donc $2<\alpha<3$

3 - Courbe représentative (unité graphique : 2 cm)

4.- a) Calcul de l'aire $A(\lambda)$

Unité d'aire :
$$\|\overrightarrow{i}\| \times \|\overrightarrow{j}\| = 2 \text{ cm} \times 2 \text{ cm} = 4 \text{ cm}^2$$

On a

$$A(\lambda) = \left| \int_{\lambda}^{-1} [f(x) - (-x - 1)] dx \right| \cdot 4 \text{ cm}^2$$
$$= \left| \int_{\lambda}^{-1} e^{\frac{x}{2}} dx \right| 4 \text{cm}^2 = \left[2e^{\frac{x}{2}} \right]_{\lambda}^{-1} 4 \text{cm}^2$$

Alors

$$A(\lambda) = 8 \left[e^{-\frac{1}{2}} - e^{\frac{\lambda}{2}} \right] cm^2$$

b) Calcul de $\lim_{\lambda \to -\infty} A(\lambda)$

$$\lim_{\lambda \to -\infty} A(\lambda) = 8e^{-\frac{1}{2}} \text{ cm}^2.$$

Partie B: Etude d'une suite

1 - Variations de la fonction g définie par $g(x) = 2 \ln (x + 1)$.

$$g'(x) = \frac{2}{x+1}$$

Les limites de g sont : $\lim_{x \to -1} g(x) = -\infty$ et $\lim_{x \to +\infty} g(x) = +\infty$

X	-1	+∞
g '(x)	+	_
g(x)		→ +∞

2 - Montrons que α est solution de l'équation g(x) = x.

On a

$$f(\alpha) = 0$$
 donc $e^{\frac{\alpha}{2}} - \alpha - 1 = 0$

C'est-à-dire

$$\alpha = 2\ln(\alpha + 1)$$

D'où α est solution de l'équation g(x) = x.

3 - Montrons que pour tout $\mathbf{x} \in [2; +\infty[, g(x) \in]2; +\infty[$

g est strictement croissante, donc pour tout $x \ge 2$, $g(x) \ge g(2)$ et $g(2) = 2 \ln 3 > 2$. Par conséquent, $g(x) \in \left]2; +\infty\right[$.

4 - a) Démontrons que pour tout $x \in [2; +\infty[$, on a $|g'(x)| \le \frac{2}{3}$

Pour tout $x \ge 2$, $x+1 \ge 3$, donc $0 < \frac{2}{x+1} \le \frac{2}{3}$. Ainsi $\left| g'(x) \right| \le \frac{2}{3}$ pour tout $x \in \left[2 ; +\infty \right[\left(\frac{1}{3} \right)]$

b) Démontrons que pour tout $n \in IN$, on a $\left|U_{n+1} - \alpha\right| \leq \frac{2}{3} \left|U_n - \alpha\right|$ et que $\left|U_n - \alpha\right| \leq \left(\frac{2}{3}\right)^n$

On a $\left|g'(x)\right| \leq \frac{2}{3}$ pour tout $x \in \left[2 ; +\infty\right[$ donc quels que soient a et b de $\left[2 ; +\infty\right[$, on a :

 $\left| g(b) - g(a) \right| \le \frac{2}{3} \left| b - a \right|$. (d'après le théorème des inégalités des accroissements finis)

Pour tout n de IN, $u_n \in [2; +\infty[$ et $\alpha \in [2; +\infty[$ donc $|g(u_n)-g(\alpha)| \leq \frac{2}{3}|u_n-\alpha|$

 $\text{Comme } g(u_n) = u_{n+1} \ \text{ et } g(\alpha) = \alpha \ \text{ on } \alpha : \left| u_{n+1} - \alpha \right| \leq \frac{2}{3} \left| u_n - \alpha \right|.$

On a donc:

$$\left|u_{n}-\alpha\right|\leq\frac{2}{3}\left|u_{n-1}-\alpha\right|$$

$$\left|u_{n-1}-\alpha\right|\leq\frac{2}{3}\left|u_{n-2}-\alpha\right|$$

....

$$\left|u_1-\alpha\right|\leq \frac{2}{3}\left|u_0-\alpha\right|$$

Par multiplication membre à membre on a, après simplification :

$$\left|u_n - \alpha\right| \le \left(\frac{2}{3}\right)^n \left|u_0 - \alpha\right|$$

 $\textit{Comme} \ \left|u_0 - \alpha\right| = \left|3 - \alpha\right| \ \text{et} \ 2 < \alpha < 3 \ \text{, donc} \ \left|3 - \alpha\right| < \left|3 - 2\right|. \ \textit{Ainsi} \ \left|u_0 - \alpha\right| \leq 1 \ \text{and} \ \left|1 - \alpha\right| < 1 \ \text{onc} \ \left|1 - \alpha\right| <$

D'où

$$\left|u_{n}-\alpha\right|\leq\left(\frac{2}{3}\right)^{n}$$
 pour tout entier naturel n.

Remarque: On peut aussi procéder par récurrence pour démontrer cette inégalité.

c) Montrons que la suite (Un) converge vers un réel l

$$0 \leq \frac{2}{3} \leq 1 \text{ donc } \lim_{n \to +\infty} \left(\frac{2}{3}\right)^n = 0 \text{. Alors } \lim_{n \to +\infty} \left| \ u_n - \alpha \ \right| \leq \lim_{n \to +\infty} \left(\frac{2}{3}\right)^n = 0$$

Donc (u_n) converge vers α .

d) Déterminons p \in IN tel que, pour tout n \in IN, n \geq p, on ait $\left|U_n-\alpha\right|\leq 10^{-4}$

On a
$$\left| u_n - \alpha \right| \le 10^{-4}$$
 dès que $\left(\frac{2}{3}\right)^n \le 10^{-4}$

$$\left(\frac{2}{3}\right)^n \le 10^{-4} \text{ lorsque } n \ln\left(\frac{2}{3}\right) \le \ln(10^{-4})$$

C'est-à-dire
$$n \ge \frac{-4 \ln 10}{\ln \left(\frac{2}{3}\right)} = 22.7$$
.

Donc, à partir de p =23, on a $\left| U_p - \alpha \right| \le 10^{-4}$.

Courbe représentative

3