

UNCLASSIFIED

ADA 0869

AR-001-755

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION **AERONAUTICAL RESEARCH LABORATORIES**

MELBOURNE, VICTORIA

ANALYSIS OF GROUND CALIBRATION DATA FROM STRAIN GAUGES ATTACHED TO THE AIRFRAME OF CT4A AIRTRAINER A19-031.

M.G.J. HIGGS

THE REPORT OF THE MATIONAL THE STATE OF STATE SERVICE TO SEEL THIS REPORT

Approved for Public Release.

C COMMONWEALTH OF AUSTRALIA 1979

11. COPY No

UNCLASSIFIED

DEPARTMENT OF DEFENCE DEPENCE SCIENCE AND TECHNOLOGY ORGANISATION AERONAUTICAL RESEARCH LABORATORIES

Structures Technical Memorandum 296

ANALYSIS OF GROUND CALIBRATION DATA FROM STRAIN GAUGES ATTACHED TO THE AIRFRAME OF CT4A AIRTRAINER A19-031.

M.G.J. HIGGS

SUMMARY

A CT4A Airtrainer airframe has been subjected to wing bending, wing torque, fin loading and tailplane loading.

The resulting strains are analysed herein.

POSTAL ADDRESS:- The Chief Superintendent, Aeronautical Research Laboratories, P.O. Box 4331, Melbourne, Victoria, Australia.

DOCUMENT CONTROL DATA SHEET

1.	DOCUMENT NUMBERS	2.	SECURITY CLASSIFICATION
a.	AR Number:	a.	Complete document:
	AR-001-755		UNCLASSIFIED
b.	Document Series and Number:	b.	Title in isolation:
•	Structures Technical Memorandum 296		UNCLASSIFIED
c.	Report Number:	c.	Summary in isolation:
	ARL-STRUC-TECH-MEMO-296		UNCLASSIFIED
3.	TITLE:		
	ANALYSIS OF GROUND CALIBRA		
	GAUGES ATTACHED TO THE AIR	FRAME	OF CT4A AIRTRAINER
	A19-031.		
4.	PERSONAL AUTHOR:	5.	DOCUMENT DATE:
			AUGUST, 1979
	HIGGS, M.G.J.	6.	TYPE OF REPORT AND PERIOD
			COVERED:
7.	CORPORATE AUTHOR(S):	8.	REFERENCE NUMBERS
	Aeronautical Research	a.	Task:
	Laboratories		
9.	COST CODE:	b.	Sponsoring Agency:
	24-1095		
10.	IMPRINT:	11.	COMPUTER PROGRAM(S)
	Aeronautical Research		(Title(s) and language(s))
	Laboratories, Melbourne		
12.	RELEASE LIMITATIONS (of the document	,	
		•	
	Approved for P	ublic	Release.
12-0		В	
13.	ANNOUNCEMENT LIMITATIONS (of the inf	ormat	ion on this page):
	No limitati	ons.	
	DESCRIPTORS:	15.	COSATI CODES:
14.	in tests CT4A airtrainer		0103
14. Stra			1402
Stra	s Horizontal tail		
Stra Wing	•		
	•		

The resulting strains are analysed herein.

CONTENTS

		PAGE NO
1.	INTRODUCTION	1
2.	SUMMARY OF TEST PROCEDURE	1
3.	DATA RECORDING AND ANALYSIS	2
4.	INTERPRETATION OF RESULTS	3
	4.1 WING BENDING	3
	4.2 WING TORQUE	3
	4.3 FIN LOADS	4
	4.4 TAILPLANE LOADS	4
5.	CONCLUSIONS	5
APP	ENDIX 1	6
TAB	LES	
FIG	ures	
DIS	TRIBUTION	

Acces	ion For	
NTIS		X
DDC TA		
Unanno		
Justif	cation_	
By	bution/	· ····································
DISCFI	buclony	
Avail	ability	Codes
	Avail and	l/or
Dist.	specia.	ì
n		
IM	1	
' '		
	`	

DTIC	
CELECTE	
JUL 23 1980	
D	

1. INTRODUCTION

As a preliminary to full scale fatigue testing, an RAAF CT4A Airtrainer has been ground calibrated at ARL. The analysis of the resulting strain gauge data is presented here.

2. SUMMARY OF TEST PROCEDURE

The ground calibration procedure is briefly summarised here.

Strain gauges fitted to various positions on the aircraft were used to obtain the strain responses for four loading cases. These were wing bending, wing torque, fin loading and tailplane loading. The gauge positions are shown in figure 1.

For loading purposes, the test aircraft was bolted to the floor at the nose undercarriage leg attachment point and at the rear cockpit (approximate fuselage station 3810 mm.). These constraints provided a high degree of rigidity in the vertical plane, and also some rigidity in rolling.

Wing bending loading was distributed over the wing surface through whiffle trees and applied to the wing by contour boards at alternate ribs (wing stations 940, 1410, 1943, 2477, 3010 and 3543 mm.). Half-wing weights estimated at 90 kg, and weights of whiffle trees, contour boards and hangers totalling 500 kg per side were balanced out. The zero g condition was estimated to correspond to a net downward load of 32 kg per side and the incremental load per g was calculated to be 298 kg. Torque loads were also applied through the same system with additional loads at the same stations at the leading and trailing edges. Loading distributions were estimated from the manufacturer's design data assuming an aircraft all up weight of 1090 kg.

When applying fin loads, the rudder was removed and single point loading was applied at the top hinge point. For tailplane loading, the elevators were removed and single point loads were applied at the outboard hinge points.

General views of the loading rig are shown in figs. 2(a) and (b).

For all cases except wing bending, the loading cycle (called a 'run') is illustrated in figure 3 and consisted of:-

- (a) Loading in prescribed increments in the negative direction from the reference condition, (called 0% maximum calibrated load, or m.c.l.) to 100% m.c.l.
- (b) Unloading to the reference condition using the same increments.
- (c) Repeating (a) in the positive direction

The prescribed increments were 20% m.c.l. For wing bending, loading was applied as in (a) to (d) above, but data was not recorded during either (a) or (d). The load increments were nominally 12.5% m.c.l.

Table 1 summarises the loading details. It is noted that several runs were applied for each case.

3. DATA RECORDING AND ANALYSIS

Table 2 gives the recording channel numbers for the strain gauges and other transducers fitted to the aircraft. The other transducers occupied channels 1 to 15 and 48 to 50: these were not relevant to the ground calibration. Also the strain gauges fitted to the flap mechanisms (channels 26 and 27) were not used in the ground calibration.

The calibration data were recorded as files on magnetic tape. A data file consisted of a number of blocks, each of which contained an identifier and 50 channels of output. The program CT4Z, (in Fortran IV), read this data and computed the linear regression statistics for each channel for:-

- (a) Either the loading or unloading phase of one 'half run' (the half run being defined as loading and unloading in one direction only).
- (b) Either the loading or unloading phases of more than one half run in a given direction (i.e. (a) combined over all runs).
- (c) As for (b), but with loading and umloading phases combined.
- (d) The loading and unloading phases in both directions combined over all runs.

The regressed variable, y, was in microstrain units

where S = reference strain (in computer units, ref

S = measured strain (c.u.)

F = strain calibration factor #1

For converting computer units to microstrain, see Table 3.

The linear regression analysis examined the significance of slope and offset variations between calibration loading runs of the same type.

4 INTERPRETATION OF RESULTS

4.1 WING BENDING

The wing bending gauge responses are presented in Table 4, which gives the strain increments based on the regression slopes for y on x. (as defined above), for each calibration loading.

Table 4 also compares the average total increment in the range -1 to +3g derived from the average linear regression expressions against the 'mean increment' defined as

l spar gauges, (other than 2BE), gave the highest out-

and F = strain calibration factor for j channel

The main spar gauges, (other than 2BE), gave the highest outputs of more than 180ue/g. The port and starboard equivalent gauges gave consistent outputs in most cases, the exceptions being stations 21SE and 22SE where the gauge outputs, (for 200% m.c.l.), were in the ratio of 0.55:1.

4.2 WING TORQUE

It was apparent from the strains measured during wing torque loading that considerable hysteresis occurred after change of direction of applied load. Strain gauge responses for the torque loading cases are shown in Tables 5(a)-(d). Tables 6(a)-(b) show the change of offset during each half run, which was evaluated to provide a measure of hysteresis.

The torque loading case applied a bending moment in addition to a pure torque. This moment included the 1.0g symmetric wing bending load, in addition to bending moment associated with the incremental torque loading. It is possible to derive the strain due to pure torque by subtracting the known bending moment response from the response to the combined loading case. This

was carried out using the procedure described in appendix 1. The derived strains attributed to pure torque are shown in Table 7. As one would expect, the strains in the main spar were very small. The most significant strain was measured at gauge 30SE at the rear of the root rib. The strains in Tables 6(a) and (b) may also be influenced by the 1g bending load cycle.

4.3 FIN LOADS

Strain increments derived from fin loading (for both +'ve and -'ve calibrations) are given in Tables 8(a) - (d). Fin spar gauges have significant response but longerons were not so. For gauges 33TE and 34TE, compression response is consistently greater than the tension response. Fin loading produced the largest hysteresis which is clearly illustrated in figure 4 where the gauge output, (microstrain), has been plotted against 7 m.c.l. for strain gauge 33TE. Also Tables 9(a) and (b) give the change of offset between the loading and unloading phases for the positive and negative calibrations.

Outputs from the fin strain gauges 33TE and 34TE for the loading phases of all runs are plotted in figure 5, which shows reasonable linearity and repeatibility between runs in spite of the hysteresis. The plotted microstrain values were obtained after subtracting the offset for the run concerned.

4.4 TATLPLANE LOADS

The tailplane loading case, (see Tables 10(a) - (d)), gave the least variation in gauge response between runs of all load cases, but the response of gauges 37BE and 38BE was greater for up loading than for down loading. The outputs from all gauges were non-linear; the symmetric port and starboard gauges indicated slight asymmetry in loading. Responses of gauges 36BE, 37BE and 38BE for run l are shown in figures 6(a) - (c).

The change of offset between loading and unloading phases is shown in Tables II(a) - (b). Values are usually consistent.

5 CONCLUSIONS

Relationships between strains and wing bending, fin and tailplane loads have been measured and relationships between strains and pure torque derived from the combined torque/bending moment case.

From the analysis it is concluded that:

- (a) Measured strains in the centre and inboard sections of the main spar (5BE, 9BE, 12BE, 10BE, and 5BE), are substantially higher than elsewhere.
- (b) For the wing bending load case, the strain vs. load slopes showed significant differences between positive and negative loading directions.
- (c) For torque loading, the largest strain was measured by gauge 30SE at the rear of the root rib.
- (d) Fin spar gauges have significant response and show considerable hysteresis. The longerons have insignificant response.
- (e) Tailplane spar gauges 37BE and 38BE are more responsive to up than down loading.

APPENDIX 1. PROCEDURE FOR DERIVING STRAINS DUE TO PURE TORQUE

As noted in the text, strains due to pure torque have been derived from the wing torque loading case by correcting for the effect of bending. The procedure was as follows:-

- l. Using figure 7, which is the spanwise bending moment distribution due to a 4g load increment (200% m.c.l.) applied in the wing bending load case, obtain the bending moment at the spanwise station for a strain gauge. Note the corresponding mean increment in strain, (as defined in section 4.1), and hence obtain the strain per unit bending moment.
- 2. Figure 8 gives the spanwise distributions of bending moment, (incremented from the 1.0g condition), applied during the torque loading case for both nose-down and nose-up directions. Use this figure for nose-up and nose-down loading separately, to obtain the bending moment at the strain gauge station for the torque loading.
- 3. Multiply this bending moment by the strain per unit bending moment from step 1 to give the strain due to bending.
- 4. Subtract the bending strain from the strain measured in the loading phase of the torque loading case, thereby giving the derived strain increment due to pure torque.

This procedure can be expressed as

where e = strain due to pure torque

= measured strain in torque loading case

M = bending moment due to 200% m.c.l. in b wing bending case

e = strain increment due to M b

The procedure was used for deriving strains due to pure torque at all wing strain gauges for the 100% nose-up and nose-down torque loading cases. The results are given in Table 7.

TABLE 1
SUMMARY OF CALIBRATION LOADING

Load Case No.	Load Case Description	Cal'bn Sign Conv'n	199% Maximum Calibrated Load (m.c.l.)	No. of Runs	No. c Load Level	
Ĭ	Ì		·		Ldg.	Unldg.
1ø1	Wing Bending Down Load	-	240 kg deadweight hung on each wing through hangers (nominally -1g)	3	-	9
1 ø 2	Wing Bending Up Load	+	954kg applied to each wing through whiffle tree (nominally +3g)	3	9	· -
1Ø3	Wing Torque Nose Up	-	102.14 kgf.m applied at the root rib	4	6	5
1Ø4	Wing Torque Nose Down	+	131.49 kgf.m applied at the root rib	4	6	5
3Ø5	Fin Load to Port	-	45.4 kg at the top rudder hinge point	3	6	5
3Ø6	Fin Load to St'bd	+	45.4 kg at the top rudder hinge point	3	6	5
2 ø 7	Down Loading of Tailplane	-	113.4 kg -(56.7 kg at each outboard hinge point)	2	6	5
2 ø 8	Up Loading of Tailplane	+	113.4 kg -(56.7kg at each outboard hinge point)	2	6	5

TABLE 2 DIRECTORY OF TRANSDUCER/STRAIN GAUGES

	CH.	QUANT ITY	RANGE	TRANS DUC ER	
	1	VERT ACCEL	+-10G	KISTLER QA110054	
	2	LAT ACCEL	+-2G	SCHAEVITZ LSB585	
	3	LONG ACCEL	+-2G	SCHAEVITZ	
	4	ROLL RATE	300 DEG/SEC	HONEYWELL GG4457	
	5	PITCH RATE	30 DEG/SEC	HONEYWELL GG4456	
	6	YAW RATE	100 DEG/SEC	HONEYWELL GG4457	
	7	INC IDENCE	360 DEG	ARL	
	8	SIDESLIP	360 DEG	ARL	
	9		+-10G	KISTLER QA110054	
	10	PT AFT ACCEL	+-10G	KISTLER QA110054	
	11	STBD FWD ACCEL		KISTLER QA110054	
	12	STBD AFT ACCEL		KISTLER QA110054	
	13		+-10G	KISTLER QA110054	
		TAIL ACCEL		KISTLER QA110054	
	14 15	FIN TIP ACCEL		KISTLER QA110054	
_	16	CC 5 RF WINC RF	ND - MAIN SPAR W		PORT WING
A	17	SC O BE WING BE	ND - MAIN SPAR W	S 42 (1067MM)	11 11
	18	SC 21 SF WING S	HEAR - FRONT SPA	R WS 26 (660MM)	11 11
1	19		END - ROOT RIB F		11 11
	20	SC 2 BE WING RE	ND - MATN SPAR W	S 112 (2845MM)	STBD WING
	21	SG A RE WING BE	ND - REAR SPAR W	rs 112 (2845MM) rs 112 (2845MM)	f1 11
-	22	SG 6 BE WING BE	ND - MAIN SPAR W	S 72 (1829MM)	11 11
	23	SG 8 BE WING BE	ND - REAR SPAR W	S 72 (1829MM)	11 17
	24			WS 42 (1067MM)	11 11
	25		END - REAR WS 14		11 11
	26	SG 57 BE PORT F		, - · · · ·	
1	27	SG 58 BE ST'BD			
ន	28		OMP - REAR SPAR	WS 42 (1067MM)	
g	29		ENS - REAR SPAR		
GAUGES	30		HEAR - FRONT SPA		
	31	SG 24 SE WING S	HEAR - REAR SPAR	WS 24 (610MM)	
AI	32	SG 26 SE WING S	HEAR - ROOT RIB	FS 71 (1803MM)	
STRAIN	33		END - ROOT FS 93		
Ŋ	34		HEAR - ROOT RIB		
	35	SG 32 RA WING S	HEAR WS 25 FS 93	(2362MM)	
İ	36		HEAR WS 25 FS 93		
- 1	37	SG 32 RC WING S	HEAR WS 25 FS 93	(2362MM)	
1	38		INSION - MAIN SPA		PORT SIDE
	39		insion - Main spa		STBD SIDE
	40	SG 36 BE TAILPI	ANE BEND - MAIN	SPAR TS 35 (889MM)	STBD
- 1	41	SG 37 BE TAILPI	ANE BEND - MAIN	SPAR TS 8 (203MM)	PORT
- 1	42	SG 38 BE TAILPL	ANE BEND - MAIN	SPAR TS 8 (203MM)	STBD
	43	SG 55 BE BENDIN	G-PITCH INPUT	(STICK)	
	44	SG 51 CE FUSE 1			
- 1	45	SG 52 CE FUSE I			
J	46		GE LONG-LH UPPER		
	47		GE LONG-RH UPPER	<u> </u>	
	48	DIGITAL L.S.M.			

A SHARE

- 49 ANALOG L.S.M.
- 50 PHASE/EVENT MARKER

TABLE 3
STRAIN CALIBRATION FACTORS

CHANNEL NO.	STRAIN GAUGE	STRAIN CAL'BN FACTOR
16	5BE	Ø.8388
17	9BE	1.1145
18	218E	Ø.48Ø6
19	27BE	Ø.46Ø2
2ø	2BE	Ø.579Ø
21	4BE	Ø.58Ø8
22	6BE	Ø.8443
23	8BE	1
	•	Ø.5818
24	1ØBE	1.1151
25	12BE	1.3382
26 - 27	_	-
28	18CE	Ø.5816
29	2 Ø TE	Ø.5618
3Ø	22SE	ؕ4797
31	24SE	ؕ4522
32	26SE	Ø.4752
33	28BE	Ø.4615
34	30SE	Ø.4749
35	32RA	ؕ4791
. 36	32RB	ؕ4771
37	32RC	ø . 4796
38	33TE	1.1511
39	34TE	1.1591
4Ø	36BE	ø.5866
41	37BE	1.1232
42	38BE	1.12Ø8
43	55BE	ø.3ø56
44	51CE	ؕ5662
45	52CE	Ø.5621
46	53TE	Ø.5565
47	54TE	ø.56ø8

TABLE 4 STRAIN RESPONSES FOR WING BENDING

	GAUGE		ZBE	4BE	SBE	6BE	8BE	9BE	1ØBE	12BE	1 9 CE	20TE	21SE	22SE	24SE	26SE	27BE	28BE	30SE	32RA	32RB	32RC
AVERAGE	MINIMUM MICROSTRAIN	(3C+ OI 1=)	282	246	746	722	478	L98	846	1196	49	499	-128	234	118	-374	-3,02	344	-343	351	375	-343
	AVERAGE	(9C+ OI 1-)	281	248	745	725	481	198	841	1196	-62	398	-127	-233	116	-376	-3\$4	345	-304	342	37.1	-333
	(Z : OE 1)	(4) 10 1-)(8)(+ 01 1+)	131.6	129.3	38%.4	354.9	237.7	433.2	417.8	595.3	-47.5	198.6	-68.3	111.4	62.5	-178.Ø	-163.9	-175.0	-149.5	157.8	189.2	-184.
M REGR. LINE	5 (*1.00	(81 + OT 1=)	147.2	118.2	364.0	369.8	245.9	434.6	423.0	600.2	-13.1	199.7	-59.5	-116.2	55.3	-198.3	-143.9	-172.0	-149.5	181.8	182.4	-149.7
MICROSTRAIN DERIVED FROM REGR.	E 1	(8) + (1) (8) (1) (1) (1)	134.1	128.4	379.0	358.2	239.8	431.2	419.6	597.5	-45.2	198.8	6-19-	-113.9	61.5	-181.6	-159.4	-186.6	156.5	162.3	189.6	-188.9
MICROSTRAIN	2	(8) + OT 1= 1	148.3	119.2	365.8	366.2	241.8	436.1	418.3	594.4	-17.9	197.7	-57.8	-123.2	53.7	-192.4	-142.1	-161.6	-149.8	183.1	185.5	-143.1
INCREMENTAL			133.4	129.1	381.5	357.5	239.3	435.2	419.9	6,010	-47.8	199.5	68.9	-112.9	63.0	-180.4	-162.Ø	175.4	151.5	161.1	188.4	-186.6
	1 mm 1 mm/	3C + 0t +18)(9+ 0t +28)	149.1	118.5	362,8	369.1	241.1	431.1	423.1	599.5	-15.6	198.7	-59.7	-12\$.1	51.7	-197.7	-139.2	169.4	156.0	179.6	178.9	147.3
	RUNICH		20	21	16	25	23	13	24	25	28	53	9	3,6	31	32	19	33	34	35	36	37
	STRAIN		2BE	4BE	SBE	6BE	8BE	ЭВЕ	1ØBE	12BE	18CE	20TE	21SE	22SE	24SE	26SE	27BE	28BE	30SE	32RA	32RB	32RC

TABLE 5 (a)

MEASURED MICROSTRAIN RESPONSES FOR WING TORQUE CASE-MOSE-UP LOADING PHASE

		100% INCREMENT	EMENT DERIVED	D FROM REGRESSION	SION LINE		
STRAIN	RUN	1	2	3	4	ALL RUNS	MICROSTRAIN /100 kgf.m
5BE	16	126	126	128	127	127.1	125
9BE	17	129	129	133	132	130.7	128
21SE	18	=	- 12	-7.5	6	- 9.8	18
27BE	19	- 8.7	- 8.1	-17	-17	-12.6	-12
2BE	20	51	49	52	52	51.2	5%
4BE	21	42	4	48	39	40.4	49
6BE	22	121	124	115	118	119.5	117
8BE	. 23	66	100	1,03	94	6*86	97
109日	. 24	126	130	118	121	123.7	121
12BE	. 25	151	155	138	140	145.7	143
18CE	. 58	-62	-63	-59	-59	9 . 69-	-59
20TE	59	118	119	112	116	116.4	114
· 22SE	3,6	-23	-20	-24	-21	-22.0	-22
24SE	. 31	16	17	15	15	15.9	16
565 E	32	-44	-48	-51	-34	-39.₩	-38
28班	33	- 3.2	L -	٠ ک	8	6.8	-
30SE	34	45	47	53	55	49.9	49
32RA	35	39	49	32	32	35.8	35
32RB	36	25	25	25	22	23.5	23
32RC	37	12	-14	- -		- 6.5	9 -
						-	

TABLE 5 (b)

NIASURED MICROSTRAIN RESPONDES FOR WING TORQUE CASE -NOSE-UP UNLOADING PHASE

	MICROSTRAIN /100 kgf.m	112	122		L -	47	42	1,009	16	112	138	-62	88	-19	17	4	4	57	69	39	6
	ALL RUNS	114.0	124.5	-11.3	9.1 -	48.0	42.4	111.3	98.8	114.0	140.8	-62.9	89.8	-18.9	17.8	-41.3	4.8	57.9	76.8	39.3	8.6 -
ION LINE *	4	112	124	-19 19	ω	20	45	1069	%	110	135	- 62	88	-24	17	-37	7	. 59	69	44	9 1
FROM REGRESSION LINE	3	115	127	116	6 -	49	43	110	10/3	114	139	-61	9 6	-19	17	-36	3	58	29	39	9 -
100% INCREMENT DERIVED	2	112	122	-12	- 7	47	45	111	66	112	140	- 64	68	-19	16	-43	7	61	71	37	ω
100% INCREM	1	116	125	-13	- 5	46	43	116	98	120	149	-65	93	-19	18	-49	-	54	9/	42	-15
	RUN	16	17	18	19	28	21	55	23	24	25	28	56	3,6	31	32	33	34	35	3 6	37
•	STRA IN GAUCE	SBE	9BE	21SE	27BE	2BE	4BE	6BE	SBE	10BE	12BE	18CE	20TE	2 2 SE	24SE	26SE	28BE	30SE	32RA	32RB	32BC

^{*} FOR UNLOADING THIS LINE WAS FITTED TO DATA FROM 80% - 0%.

TABLE 5 (c)

MEASURED MICROSTRAIN RESPONCES FOR HING TORGUE CASE-MOSE-DOWN LOADING PHASE

	MICROSTRAIN /100 kgf.m	-13	T 1	-16	-17	-14	-31	111	-12	2	1 4	+14	-22	-22	9 -	+35	-23	-51	٥ •	+25	-16
	ALL RUNS	-16.9	- 1.4	-21.0	-21.7	-18.3	-40.9	-14.6	-16.3	- 2.8	- 5.4	18.7	6-29.₽	-28.9	- 8.2	45.7	-29.6	-67.5	- 2.3	32.5	-21.0
ON LINE	4	-15	- 2	-23	-22	-20	-44	7	- 16	2	5 -	19	- 2 %	-27	6	42	-37	-72	9 -	24	-27
DERIVED FROM REGRESSION LINE	3	-16	-	-22	-24	-18	-40	7-	-14	-	~	19	-35	-33	6 -	70	-34	-74	2	37	-27
AT DERIVED	5	-17	-	-21	-25	-18	Ø17-	- 16	-16	5	L -	19	-33	-29	L -	49	-27	6 2	- 3	35	18
100% INCREMENT	-	-19	4	-19	-21	1 8	Ø5-	- 2¢	-19	6 -	-14	17	-28	-27	6 -	51	-21	-63	9	35	-13
	RUN CH	16	17	18	19	. 5 %	. 21	25	. 23	24	25	58	58	34	31	32	33	34	35	36	37
	STRAIN	SBE	9BE	21SE	27BE	2BE	787	6BE	8BE	10BE	12BE	18CE	20TE	22SE	: 24SE	[†] 26SE	1 28BE	3083	32Ri	32RB	32 RC

TABLE 5 (d)

MEASURED MICROSTRAII RESPONSES FOR THE TOROUE CASE-NOSE-JOAN UNLOLDING FRACE

	MICROSTRAIN /100 kgf.m	-13	- 2	-15	ω	-15	-30	7	-11	- 2	- 5	416	-33	-17	4	+34	7	-48	7	+2\$	-23
	ALL RUNS	-17.5	- 2.5	-19.6	-16.9	-19.4	-39.2	-15.8	-14.8	- 2.2	- 6.5	12.8	-43.3	-22.4	- 5.8	45.0	-14.9	-62.9	-14.9	26.1	-11.8
ION LINE	4	-21	9 -	-24	6 -	-19	-38	7	6 1	-	۲	13	-49	-22	\$	38	-17	-62	- 5	58	-20
100% INCREMENT DERIVED FROM REGRESSION LINE	3	-13		-22	6 -	-22	9 :7-	41-	-16	-	1 4	. 13	-46	-24	L -	, 43	-19	<i>-</i> 67	19	24	-12
ENT DERIVED	2	-18	- 2	-19	-13	-18	Ø7-	-17	1 8	5 -	ω •	13	-45	-24	9	49	-13	-64	-17	27	118
100% INCREM	1	- 18		18	-13	-19	-40	- 18	-17	- 5	7	12	-33	-20	- 5	22	-	-58	-19	27	9 -
	CH	16	17	18	19	20	21	22	23	24	25	. 58	29	38	31	32	33	34	35	36	37
	STRAIN GAUGE	5BE	, 9BE	21SE	27BE	2BE	4BE	6BE	8BE	10BE	12BE	16CE	20TE	22SE	24SE	26SE	26BE	30SE	32F.A	32EB	32EC

* FOR UNLOADING THIS LINE WAS FITTED TO DATA FROM 80% - 0%

TABLE 6 (a)

CHANGE OF OFFSET - WING TORQUE CASE - NOSE UP

		MICROSTRAIN						
STRAIN GAUGE	RUN CH	1	2	. 3	. 4	AVERAGE		
5BE	16	1ø.3	1Ø.8	14.3	13.5	12.2		
9BE	17	3.8	1.2	7.9	6.8	4.9		
21SE	18	1.1	_1.5	3.1	2 .ø	1.2		
2 7 BE	19	Ø.2	4.3	-1Ø.4	-7.1	-3.3		
2BE	2 ø	4.8	. 2.6	3.9	2.2	3.4		
4BE	21	-1.8	-2.7	-4.4	-4.Ø	-3.2		
6 B E	22	7.8	13.4	7.3	8.1	9.2		
8BE	23	-1.4	1.1	-1.5	-2.5	-1.1		
1ØBE	24	9•7	. 18.9	8.Ø	1Ø.1	11.7		
12BE	25	4.9	13.2	1.4	2.1	5.2		
18CE	28	-1.8	-1.7	-2.9	-2.2	-2.2		
2 ∲ TE	: 29	24.1	26.8	24.3	27.Ø	25.6		
22SE	3Ø	-4.4	1.2	-6.5	Ø.4	-2.3		
24SE	[*] 31	-3. 6	-1.8	-3.3	-2.2	-2.7		
26SE	32	2.1	-9 . 1	5.8	3.2	ø•5		
28BE	33	-3.9	-15.1	Ø.9	-3.1	-5.3		
3ØSE	34	-13.2	-17.9	-6.7	-2.1	-1Ø.Ø		
32RA	35	-41.Ø	-36.1	-38.7	-38.2	-38.5		
32RB	36	-21.7	-18.9	-2 ø. 2	-2¢.5	-2Ø.3		
32RC	37	5 .ø	-5.6	8.7	4.4	3.1		

TABLE 6 (b)

CHANGE OF OFFSET - WING TORQUE CASE - NOSE DOWN

		MICROSTRAIN					
STRAIN GAUGE	RUN	1	2	3	4	AVERAGE	
5BE	16	-1.9	1.9	-2.9	2.5	-ø. 1	
9BE	17	-1.9	3.8	-1.6	-\$. 4	9. \$	
21SE	18	-2.8	-4.6	-2.9	-7.1	-4.3	
27BE	19	-9 .ø	-12.3	-11.2	-12.3	-11.2	
2BE	2 ø	1.4	1.7	4.2	Ø.4	1.9	
4BE	21	-ø.7	Ø.4	-1.1	-5.9	-1.8	
6BE	22	-1.2	2.0	ø.8	-1.9	-\$. 1	
8BE	23	-7.7	-3.5	-4.8	-8.7	-6.2	
1 ø be	24	-1.8	2.9	-ø. 1	Ø.2	Ø.3	
12BE	25	1.0	6.4	6.7	-2.2	3.₽	
18CE	28	6.8	6.6	8.6	11.3	8.3	
2 ø te	29	-5.7	-1.8	5,1	2.9	Ø.1	
22SE	3Ø	-1Ø.3	-7.4	-12.5	· -4.1	-8.6	
24SE	31	-2.4	Ø.5	-1.2	-1,5	-1.2	
26se	3 2	-Ø. 2	-1.7	-ø. 2	4.5	ø.6	
28BE	33	-15,8	-18.4	-21.9	-23.9	-2Ø.ø	
3 0 SE	34	-11.7	6.2	-18.ø	-16 . ø	-13.ø	
32RA	35	15.7	17.6	23.3	1.1	14.4	
32RB	36	10.4	11.4	16.3	ø.1	9.6	
32R C	· 37	-1ø.6	-13.3	-18.9	-13.6	-14.1	

TABLE 7

DERIVED STRAIN RESPONSES FOR PURE WING TORQUE

	ſ	MICROSTRAIN				
		NO:	E DOWN	NOSE UP		
S TRAIN GAUGE	CHANNEL NO.	1 96 % m.c.l.	Microstrain /100 kgf.m	1 00% m.c.l.	Microstrain /199 kgf.m	
5BE	16	2	2	- 9	- 9	
9BE	17	2	2	- 18	~ 18	
21SE	18	- 21	-16	8	8	
27BE	19	- 22	-17	26	26	
2BE	2ø	- 4	-3	- 5	- .5	
4BE	21	-2 8	-22	- 9	-9	
6BE	22	1	1	-12	-12	
8BE	23	- 6	- 5	12	12	
1 <i>9</i> BE	24	-1	-1	-21	- 21	
12BE	25	-6	- 5	8	8	
18CE	28	2%	15	-5\$	-4 9	
20TE	29	-28	-21	48	47	
22SE	3Ø	-29	-2 2	1ø	1Ø	
24SE	31	- 8	6	ø	ø	
26SE	32	46	35	11	11	
28BE	33	-2 9	- 22	44	43	
3 9 6E	34	-6 6	- 51	91	89	
32RA	35	- 2	- 2	-11	-11	
32RB	36	33	25	- 27	- 27	
32RC	37	- 21	-16	40	39	

TABLES 8 (a) AND (b)

MICROSTRAIN RESPONSES - FIN LOADING TO PORT

(a) LOADING PHASE

333.2	!	3 -359.2 346.2	ALL RUNS	microstrain /1øø kg -785
	•			
333.2	343.8	346 2		
	1 2 , 2	740.2	341	754
4 -19.2	-21.2	-15.6	-18.7	-41
16.1	17.2	15.7	16.4	36
5 1ø.3	9.7	10.7	10.3	23
7 _8.1	-8.4	-9.8	-8.8	-19
	10.3	5 10.3 9.7	5 10.3 9.7 10.7	5 10.3 9.7 10.7 10.3

(b) UNLOADING PHASE

		100% INCREM	ENT DERIV	ED FROM F	REGR. LINE*	1
STRAIN GAUGE	RUN	1	2	3	ALL RUNS	MICROSTRAIN /100 kg
33TE	38	-3 12 . 8	-347.1	-344.2	-334	-738
34TE	3 9	294.9	322.8	32Ø.5	312	69 ø
51CE	44	-1\$.7	-12.7	-15.3	-12.9	-29
52CE	45	16.8	19.7	19.4	18.6	41
53TE	46	7.5	9.2	9.2	8.6	19
54TE	47	-8.9	-9.3	-1ø.1	-9.4	-21
					-	

^{*} FOR UNLOADING THIS LINE WAS FITTED TO DATA FROM 80% - 0%

TABLES 8 (c) AND (d)

MICROSTRAIN RESPONSES - FIN LOADING TO STARBOARD

(c) LOADING PHASE

	REGR. LINE	ED FROM F	ent deriv	100% INCREM		
MICROSTRAI /100 kg	ALL RUNS	3	2	1	CH RUN	STRAIN GAUGE
793	359	361.1	359.6	357.3	38	33TE
- 873	-3 95	-396.6	-395.4	-391.4	3 9	34TE
29	13 . ø	13.8	12.1	13.3	44	51CE
-3 9	-17.6	-17.3	-17.7	-17.6	45	52CE
-24	-11 . ø	-1ø.5	-11.1	-11.4	46	53TE
22	1ø.ø	9.5	1ø.2	10.3	47	54 T E

(d) UNLOADING PHASE

		100% INCRE	ment deri	VED FROM	REGR. LINE	*
STRAIN GAUGE	RUN	1	2	3	ALL RUNS	MICROSTRAIN /100 kg
33TE	38	337.9	339.ø	339.6	339	749
34TE	39	-359.9	-363.4	-364.5	-363	-8 ø 2
51CE	44	17.6	18.1	18.1	17.9	4ø
52CE	45	-19.4	-2Ø.2	-18.8	-19.5	-43
53TE	46	-1ø.3	- 9.7	-9.2	-9.7	-21
54TE	47	8.4	7.9	8.1	8.1	18
	1					

TABLE 9 (a)
CHANGE OF OFFSET - FIN LOADING TO PORT

		MICRO	MICROSTRAIN			
TRAIN AUGE	RUN CH	1	2	3	AVERAGE	
3TE	38	-24.6	-26.1	-3ø.2	- 27 . Ø	
4TE	39	3Ø.4	31.5	36.7	32.9	
1CE	44	-7. 5	-6. 4	-ø. 1	-4.7	
2CE	45	-1.5	- 3.2	-3.7	-2. 8	
3TE	46	2.6	1.7	2.8	2.4	
4TE	47	Ø.9	Ø.2	-ø.7	Ø.1	

TABLE 9 (b)
CHANGE OF OFFSET - FIN LOADING TO STARBOARD

		MICH	ROSTRAIN) :
STRAIN GAUGE	RUN CH	1	2	3	AVERAGE
33TE	3 8	3ø.ø	3ø.5	32.5	31 . ø
34TE	39	-49.1	- 49 .ø	- 5 Ø∙ 4	- 49•5
51CE	44	-4.3	-6.2	-4.6	- 5∙ø
52CE	45	2.5	2.6	2.3	2.5
5 3 TE	46	-2.1	-2.1	-2.5	-2.2
54TE	47	2.8	2.9	1.7	2.5

TABLES 10 (a) AND (b)

MICROSTRAIN RESPONSES TO DOWNLOADS ON TAILPLANE

(a) LOADING PHASE

100% INCR'T DERIVED FROM REGR. LINE

STRAIN GAUCE	RUN	1	2	ALL RUNS	MICROSTRAIN /1ØØ kg
36BE	40	-269.7	-269.8	-27Ø	-238
37BE	41	-3 95 . ∅	-394.1	- 395	- 348
38BE	42	-411.7	-411.7	- 412	- 363
51CE	44	- 56.4	- 58 . 4	- 57 • 4	- 51
52CE	45	- 61 . 2	- 61 . 4	-61.3	- 54
53TE	46	83.6	83.5	83.5	74
54TE	47	89.8	89.7	89.8	79

(b) UNLOADING PHASE

100% INCRT'T DERIVED FROM RECR. LINE*

STRAIN GAUGE	RUN	1	2	ALL RUNS	microstrain /100 kg
36BE	40	- 259 . 9	-259.9	-26 ø	- 229
37BE	41	-377.4	-3 76 . 8	- 377	-333
38BE	42	- 388.9	-388.4	-3 89	-3 43
51CE	44	- 52 • 4	-52.4	- 52.4	- 46
52CE	45	-6ø.7	-6ø.1	-6 ø. 4	-53
53TE	46	83.2	82.6	82.9	73
54TE	47	86.6	96.4	8 6.5	76

* FOR UNLOADING THIS LINE WAS FITTED TO DATA FROM 80% - 0%.

TABLES 10 (c) AND (d)

MICROSTRAIN RESPONSES TO UPLOADS ON TAILPLANE

(c) LOADING PHASE

		100% INCR'T.	DETIVED FROM	REGR. LINE	: 1
STRAIN GAUGE	RUN	1	2	ALL RUNS	MICHOSTRAIN /100 kg
36BE	4 ø	274.ø	278.1	276	243
37BE	41	454•9	457 . ø	456	4 ø 2
38BE	42	471.7	474.1	473	417
51CE	44	48.8	48.4	48.6	43
52CE	45	56.4	57.3	56.8	5ø
53TE	46	- 85•5	- 86.6	- 86 . 1	- 76
54TE	47	- 89•5	- 90 . 5	- 9¢•¢	- 79

(d) UNLOADING PHASE

		100% INCHIT.			
STRAIN GAUGE	RUN CH	1	2	ALL RUNS	MICROSTRAIN /100 kg
36BE	4 ø	249.3	253.7	252	222
37 BIS	41	439.7	443.1	441	389
38BE	42	448.9	453.4	451	398
51CE	44	5 ø. 1	51.2	. 5 ø •7	45
52CE	45	57.1	58.2	57.6	51
53TE	46	-84. 6	-86.3	-85.4	- 75
54TE	47	- 87•5	-88.3	-87.9	- 78

* FOR UNLOADING THIS LINE WAS FITTED TO DATA FROM 80% - 0%

TABLE 11 (a)
CHANGE OF OFFSET - TAILPLANE DOWN LOADING

STRAIN GAUGE	RUN CH	MICROSTRAIN	
		1	2
36BE	4ø	-4.8	-6.3
37BE	41	-12.9	-13.9
38BE	42	-20.6	-22.4
51CE	44	-4.8	-8.Ø
52CE	45	-ø.1	-1.3
53TE	46	1.2	1.6
54TE	47	4.8	5.1

TABLE 11 (b)
CHANGE OF OFFSET - TAILPLANE UP LOADING

STRAIN GAUGE		MICRO	MICROSTRAIN	
	RUN CH	1	2	
36BE	4Ø	10.1	11.5	
37BE	41	14.5	14.2	
38BE	42	23.2	22.6	
51CE	44	-ø. 1	-1.7	
52CE	45	-ø. 4	-ø.9	
53TE	46	-1.2	-1.2	
54TE	47	-3.9	-3.7	

FIG 1 CT4A - PLAN SHOWING GAUGE POSITION

FIG. 2(a): CT4A—FRONT VIEW SHOWING LOADING RIG

FIG. 2(b): CT4A—REAR VIEW SHOWING TAIL-PLANE LOADING ASSEMBLY

FIG. 3: ILLUSTRATION OF LOADING CASES

FIG. 5: STRAIN RESPONSE FOR FIN LOADING (LOADING PHASE ONLY)

The state of the s

THE PARTY

FIG. 6(a): STRAIN RESPONSE FOR TAIL-PLANE GAUGE 36BE

FIG. 8(b): STRAIN RESPONSE FOR TAIL-PLANE GAUGE 37BE

のはことはなるとはなりからいからなるないなから、はなり大きなりとはなるないので

FIG. 6(c): STRAIN RESPONSE FOR TAIL-PLANE GAUGE 38BE

FIG. 7: SPANWISE BENDING MOMENT DISTRIBUTION DUE TO 200% m.c.i. FOR WING BENDING CASE

FIG. 8: SPANWISE BENDING MOMENT DISTRIBUTION DUE TO 100% m.c.l. FOR NOSE UP AND NOSE DOWN WING TORQUE CASES

DISTRIBUTION

AUCMOATTA	COPY NO
AUSTRALIA	
Department of Defence	
Central Office	
Chief Defence Scientist	1
Deputy Chief Defence Scientist	2
Superintendent, Science and Technology Programs	3
Australian Defence Scientific and Technical Representative (UK)	4
Counsellor, Defence Science	5
Joint Intelligence Organisation	6 7
Defence Library	-
Assistant Secretary, D.I.S.B.	8-23
Aeronautical Research Laboratories	
Chief Superintendent	24
Library	25
Superintendent - Structures Division	26
Divisional File - Structures	27
M.C.J. Higgs	28
C.K. Rider	29
D.G. Ford	30
C.A. Patching	31
A.C. Payne	32 33
J. Grandage	
P.H. Townshend	34
R.P. Carey	35 36
E.S. Moody G. Foodall	36 37
A.K. Patterson	38
A.R. Incerson	30
Materials Research Laboratories	
Library	39
Defence Research Centre, Salisbury	
Library	40
Air Force Office	
Aircraft Research & Development Unit, Scientific Flight Group	41
Air Force Scientific Adviser	42
Technical Division Library	43
HO Support Command (SENGSO)	44
DOA-AF (John Wurf)	45
SPARES	46~55

