

A SHORT TAKEOFF PERFORMANCE COMPUTER PROGRAM

David Bruce Kobus
Aircraft and Crew Systems Technology Directorate
NAVAL AIR DEVELOPMENT CENTER
Warminster, Pennsylvania

25 NOVEMBER 1981

FINAL REPORT AIRTASK NO. ZRO20302 Work Unit No. GC172

Approved for Public Release; Distribution Unlimited

Prepared for NAVAL AIR SYSTEMS COMMAND Department of the Navy Washington, DC 20361

0120 82025

NOTICES

REPORT NUMBERING SYSTEM - The numbering of technical project reports issued by the Naval Air Development Center is arranged for specific identification purposes. Each number consists of the Center acronym, the calendar year in which the number was assigned, the sequence number of the report within the specific calendar year, and the official 2-digit correspondence code of the Command Office or the Functional Directorate responsible for the report. For example: Report No. NADC-78015-20 indicates the fifteeth Center report for the year 1978, and prepared by the Systems Directorate. The numerical codes are as follows:

OFFICE OR DIRECTORATE		
Commander, Naval Air Davelopment Center		
Technical Director, Naval Air Development Center		
Comptroller		
Directorate Command Projects		
Systems Directorate		
Sensors & Avionics Technology Directorate		
Communication & Navigation Technology Directorate		
Software Computer Directorate		
Aircraft & Crow Systems Technology Directorate		
Planning Assessment Resources		
Engineering Support Group		

PRODUCT ENDORSEMENT - The discussion or instructions concerning commercial products herein do not constitute an endorsement by the Government nor do they convey or imply the license or right to use such products.

APPROVED BY:

R. WOODS

DATE

MY

UNCLASSIFIED

RECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
	3. RECIPIENT'S CATALOG NUMBER	
NADC-81259-60 HD-A10980	6/	
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED	
A Share Takonfif Borfarmanaa Communay Brannay	Princip Denome	
A Short Takeoff Performance Computer Program	Final Report 5. PERFORMING ORG, REPORT NUMBER	
7. AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(s)	
DAVID BRUCE KOBUS		
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
Naval Air Development Center	AIRTASK NO. ZRO20302	
Aircraft & Crew Systems Technology Directorate	Work Unit No. GC172	
Warminster, PA 18974	12. REPORT DATE	
Naval Air Systems Command	25 November 1981	
Department of the Navy	13. NUMBER OF PAGES	
Washington, DC 20361	120	
14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office)	15. SECURITY CLASS. (of this report)	
	UNCLASSIFIED	
	154. DECLASSIFICATION/DOWNGRADING	
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for Public Release; distribution unlimit	ea.	
17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different fro	a Report)	
18. SUPPLEMENTARY NOTES		
G. JOTT BERNER PROPERTY NO.	ţ	
	Į.	
19. KEY WORDS (Continue on reverse elde if necessary and identify by block number)		
V/STOL	į	
Takeoff	}	
STO STO]	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)		
A short takeoff performance computer program has been developed by		
NAVAIRDEVCEN to be used for performance estimation and conceptual aircraft		
design.		
/ \		
	1	
	1	

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-LF-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (Then Date Entered)

SUMMARY

A computer program has been developed which is capable of analyzing the short takeoff of typical V/STOL aircraft configurations. This program can be used as a means for performance estimation as well as for assisting in aircraft conceptual design.

This program was written in FORTRAN for use on a CDC 6600 and uses five supporting subroutines. This report describes the analytical development and logic development for the program. In addition it includes a user description and complete listing of the program

Acception For
Bris erias
Dari and M
United the state of the state o
30 574 67 . 5
B*
Distribution/
Availability Codes
Avnil and/or
Dist Special

TABLE OF CONTENTS

	Page
SUMMARY	1
LIST OF FIGURES	3
LIST OF TABLES	3
LIST OF SYMBOLS	4
INTRODUCTION	6
DISCUSSION	
Theoretical Considerations	6
Program Description	9
Program Options	10
ACKNOWLEDGEMENTS	12
REFERENCES	13
APPENDIX A: Tabular Inputs	A-1
APPENDIX B: Example Case	B-1
APPENDIX C: Program Listings	C-1
APPENDIX D: Program Logic	D-1

LIST OF FIGURES

Figure No.		Page
1	Force Diagram	14
2	Data Input Deck Structure	15
Al	Drag Coefficient Tabular Input	A-2
A2	Lift Coefficient Tabular Input	A-3
A3	Gross Thrust Tabular Input	A-4
A4	Fuel Flow Tabular Input	A-5
A5	Moment Coefficient Tabular Input	A-6
A6	Moment of Inertia Tabular Input	A-7
A7	Induced Lift and Drag Tabular Input	A-8
A8	External Store and RAM Drag Tabular Input	A-9
A9	Center of Gravity Location Tabular Input	A-10
A10	Gross Thrust Loss Tabular Input	A-11
	LIST OF TABLES	
Table No.		Page
I	Fixed Input Variable List	16

LIST OF SYMBOLS

a _x , a _z	Longitudinal and vertical acceleration (m/sec ²) or ft/sec ²)
a/g	Normalized longitudinal acceleration
c_{D}	Drag coefficient
$c_\mathtt{L}$	Lift coefficient
c_{M}	Pitching moment coefficient
ם	Drag (N or 1b f)
$\mathbf{F}_{\mathbf{G}}$	Gross thrust (N or 1b f)
F_{G_F} , F_{GA}	Fore and aft engine gross thrust (N or 1b f)
F _{GH} , F _{GV}	Horizontal and vertical gross thrust (N or 1b f)
g	Acceleration due to gravity (9.8 m/sec^2 or 32.2 ft/sec^2)
I _{уусg}	Lateral moment of inertia (kg-m ² or slug-ft ²)
L	Lift (N or lb f)
Му	Lateral pitching moment (N-m or ft-lb f)
m	Aircraft mass (kg or lb)
R _F , R _A	Fore and aft gear wheel reaction force (N or 1b f)
RD _F , RDA	Fore and aft engine ram drag (N or 1b f)
S_x , S_z	Longitudinal and vertical distance (m or ft)
т	Time (sec)
v_x , v_z	Longitudinal and vertical velocity (m/sec or ft/sec)
WOD	Wind over deck
$w_{\mathbf{F}}$	Fuel flow (kg/hr or 1b/hr)
W	Aircraft weight (m*g)
α	Angle of attack (deg)
^a MG	Angular acceleration about main gear wheel (deg/sec^2)
Υ	Flight path angle (deg)

LIST OF SYMBOLS

Δ	Increment
^δ e	Control surface deflection angle (deg)
θj	Jet nozzle inclination angle (deg)
$\theta_{\mathbf{p}}$	Pitch Angle (deg)
μ	Coefficient of friction
Σ	Sum

INTRODUCTION

A methodology for predicting the short takeoff (STO) performance of Vertical or Short Takeoff and Landing (V/STOL) aircraft is essential for the preliminary design of these vehicles as the propulsion system may be sized by STO requirements. Since a wide range of VSTOL configurations may be of interest to the Navy, and each would have its own unique set of thrust and drag variations during the takeoff run, a generalized computer program offers the most feasible method of analyzing STO performance.

Several STO programs currently available in the technical community were examined for applicability. It was found that each program was developed for a specific configuration and did not provide the flexibility necessary to examine arbitrary V/STOL aircraft concepts. Since the existing programs could not be easily modified, it was necessary to develop a new program.

The resulting program can be utilized for performance estimation and for aircraft conceptual design. In the performance estimation mode, inputs are aircraft aerodynamics, propulsion data, takeoff gross weight (TOGW), and STO technique while outputs are time, distance, velocity, longitudinal acceleration, lift, drag, and horizontal and vertical gross thrust. These data can be calculated at the condition of liftoff, at some specified rate of climb (R/C), or at some specified sink distance. In the conceptual design mode, inputs are given design parameters such as takeoff distance, rate of climb at liftoff, and longitudinal acceleration (with or without one engine inoperative (OEI)), and outputs such as engine size and optimum STO technique can be determined.

DISCUSSION

Theoretical Considerations

This program utilizes an open form, time history, numerical integration. The forces included in this treatment are lift, drag, gross thrust, and friction. A force diagram is presented in Figure 1. The horizontal forces are summed and divided by the aircraft mass to yield a horizontal acceleration. This acceleration in turn is equated to the following kinematic formula:

$$a_{x} = \frac{\Delta V_{x}}{\Delta T} = \frac{1}{\Delta S_{x}} \frac{\Delta (V_{x}^{2})}{\Delta S_{x}}$$

Using time increments, a change in velocity and distance can be determined. More specifically, the basic equations are:

DRAG =
$$C_D*1/2\rho V^2S+D_{ENGINE\ RELATED} + D_{STORE} + D_{OEI} + D_{INDUCED}$$

where: D_{ENGINE RELATED} = ram drag, spillage drag, boattail drag, etc.

LIFT =
$$C_L*1/2\rho V^2S + L_{INDUCED}$$

Summing vertical gross thrust components:

$$F_{G_V} = F_{G_{F_V}} + F_{G_{A_V}}$$

$$F_{G_V} = F_{G_1}*SIN \beta_1 + F_{G_2}*SIN \beta_2$$

where: $F_{G1} = F_{GF}$ - fore engine gross thrust loss

 $F_{G_2} = F_{GA}$ - aft engine gross thrust loss

 $\beta_1 = \theta_{jF} + \theta_{D} + \text{engine datum angle}$

 $\beta_2 = \theta_{iA} + \theta_p + \text{engine datum angle}$

Summing horizontal gross thrust components:

$$F_{G_H} = F_{G_{F_H}} + F_{G_{A_H}}$$

 $F_{GH} = F_{G1} * \cos \beta_1 + F_{G2} * \cos \beta_2$

Balancing the vertical forces:

The change in velocity over a time increment ΔT is:

$$\Delta V_{x} = \Delta T * g * (F_{GH} - DRAG - \mu *BALANCE)/W$$

where: $\Delta V_x = V_{x2} - V_{x1}$

Finally, the distance gained over ΔT is:

$$\Delta S_{x} = 1/2*\Delta T*((V_{x_{2}}-WOD)^{2} - (V_{x_{1}}-WOD)^{2})/\Delta V_{x}$$

By using this technique the forces which vary as a function of time and angle can be accurately represented and, in addition, pilot technique can also be closely approximated. Also by using small time increments any procedural changes can be fitted through the input.

Increased program accuracy can be obtained by accounting for and by correcting a pitching moment inbalance. This is done through the following formula:

$$\Sigma$$
 My = $I_{yy_{CQ}} \alpha_{MG}$

By making use of the supplied aircraft moment of inertia and a power-on pitching moment, an angular acceleration about the main gear can be taken into account. The moment about the vehicle center of gravity is:

$$MOMENT = C_M * 1/20V^2*MAC$$

The fore gear wheel reaction force is therefore:

$$R_F = (BALANCE*\beta_3-MOMENT)/(LRF + \beta_3 + \cos \theta_p)$$

where: β_3 = LRA*cos θ_p + LRA* μ *sin θ_p + LR* μ *cos θ_p - LR*sin θ_p

See Table I for the definitions of LR, LRA, LRF and MAC.

If the supplied aerodynamic data is a function of control surface deflection, the deflection required to nullify any moments can be calculated. This is accomplished by the following algorithm:

initialize $\alpha,~\theta_{\mbox{\scriptsize $\dot{1}$}}$ and δe

 $C_{L} = f(\alpha, \delta e, \theta_{j})$ $C_{D} = f(C_{L}, \delta e, \theta_{j})$ $C_{M} = f(C_{L}, \delta e, \theta_{j})$

DRAG = f(C_D) + D_{ENGINE} RELATED + D_{STORE} + D_{OEI} + D_{INDUCED}

 $LIFT = f(C_L) + L_{INDUCED}$

 $MOMENT = f(C_M)$

 $F_{GV} = f(F_G, \theta_j, \theta_p)$

BALANCE = W - Lift - FGV

 $R_F = f$ (BALANCE, MOMENT)

iterate δe until $R_F = 0$

Rates of climb or sink can be calculated if the horizontal component of velocity is considered much larger than the vertical component (V_z < .02 V_x). Here the vertical acceleration is: $a_z = \Delta V_z$

and the vertical velocity is: $V_z = \frac{\Delta S_z}{\Delta T}$

Hence, climb or sink accelerations, velocities, and distances can be determined. For rate of climb velocity over the AT increment:

 $a_z = (-BALANCE)*g/w$

 $a_z = 1/2*(a_{z2} + a_{z1})$

To determine the incremental ROC:

 $\Delta ROC = \overline{a_z} * \Delta T$

For sink off the bow distance over the ΔT increment:

 $a_z = BALANCE*g/w$

 $\bar{a}_z = 1/2*(a_{z_2} + a_{z_1})$

 $\Delta V_z = \overline{a_z} * \Delta T$

$$v_{z_2} = v_{z_1} + \Delta v_z$$
 $\overline{v}_z = 1/2 * (v_{z_2} + v_{z_1})$

The incremental sink distance is:

$$\Delta SINK = \overline{V}_z *\Delta'i'$$

If an instantaneous ROC at liftoff is needed, the following formula is used:

$$a_{x} = (F_{GH} - DRAG - \mu*BALANCE)/W$$

Assuming a small flight path angle at liftoff:

$$ROC_{instantaneous} = V \sin \gamma = V\gamma$$

Where
$$V_Y = V *((LIFT + F_{GV} - W)/F_{GH})$$

The main program logic, which illustrates how all the above equations are implemented, is presented in Appendix D.

Program Description

In addition to the main program, which performs the computations on the dynamic equations, there are five supporting subroutines, as described below.

TAKE 5 - In the formulation of the STO computer program a four degree-of-freedom interpolation routine was developed from an earlier three degree-of-freedom routine (reference (a)). This was done to accommodate aerodynamic inputs which are a function of four variables.

This subroutine has two modes of operation. In the first mode, table data representing aerodynamic and propulsion characteristics are input and stored. Each table is assigned a predetermined reference number. In the second mode, table data is interpolated and extrapolated by the function SPLNQl for use in the dynamic calculations. TAKE5 subroutine logic is presented in Appendix D.

SPLNQ1 - This function is used to interpolate or extrapolate tabular data. The interpolation is calculated using a local curve fit scheme described in reference (b). Linear extrapolations are made using each end point slope of the local curve fit.

UPDATE - This subroutine is used to reshape data arrays into a form usuable by the function SPLNQ1.

SNEST - This is an iteration subroutine used to solve one degree-of-freedom problems. A slope intercept convergence technique is employed.

ATMOS - This is a 1962 standard atmosphere table which returns properties of density, pressure, temperature, and sound velocity for an input geometric altitude.

The data required for the program consists of a series of single-value, fixed inputs and multiple-valued tabular inputs. The form of the computer data deck necessary to make a run is presented in Figure 2.

The tabular data includes:

- Gross thrust as a function of Mach number and engine speedup time.
- Fuel flow as a function of Mach number and engine speedup time.
- Drag coefficient as a function of lift coefficient, control surface deflection, jet nozzle inclination, and velocity.
- Lift coefficient as a function of angle of attack, control surface deflection, jet nozzle inclination, and velocity.
 - Induced lift increment as a function of jet inclination angle
 - Induced drag increment as a function of jet inclination angle
- Pitching moment coefficient as a function of lift coefficient, control surface deflection, jet nozzle inclination, and velocity.
 - Aircraft moment of inertia as a function of aircraft mass.
- Distance from aircraft center of gravity to main gear wheel as a function of aircraft mass.
- Gross thrust loss relative to zero nozzle deflection gross thrust as a function of jet nozzle angle.
- Throttle dependent, ram, and external store drag as a function of Mach number.

These tabular inputs are graphically illustrated in Appendix A.

The fixed inputs consist of aircraft size and mass data, ambient conditions, initial thrust vector angles and control surface deflections, rotation rates for the nozzles and specification for events that may occur during the takeoff run (e.g. loss of an engine). Table I contains a fixed input variable list.

Program Options

Available to the user are two main options which concern the type of STO vehicle that can be approximated. First, is a Harrier type vehicle which maintains moment balance by a reaction control system, rotates its jet nozzles, and pitches up at a given rate and at a predetermined airspeed. Second, is a vehicle which maintains moment balance by a control surface deflection and has a fixed jet nozzle angle.

For vehicles using control surfaces to maintain moment balance on the ground, the program will search for the start of auto rotation (stick free pitch up) and either give information on the rotation of the aircraft about the aft wheel or attempt to correct this rotation by the deflection of a control surface. Pertinent tabular inputs for this vehicle type include:

$$C_M = f(C_L, \delta_e, \theta_j, V_X)$$

$$I_{yyCG} = f(m)$$
Distance from CG to aft wheel = f(m)

Fixed inputs concerned with this type of vehicle are LR, LRA, LRF, DELTAE, VSTARR, MAC, SEGMENT, IYYCG, XCG, YCG, DELMAX and ALPHMIN. Examination of the above data, by considering the descriptions made in Table I and Appendix A, will clearly illustrate the options available for this type of vehicle.

If a Harrier type vehicle is to be considered, the previously mentioned input can be ignored.

By viewing the form of the remaining tabular and fixed input, in Table I and Appendix A, it is seen that a wide variety of pilot techniques can be approximated. This is because any continuous or discontinuous tabular aerodynamic or propulsion function can be fitted. In addition, a large variety of fixed input switches are available for duplication of aircraft rotation and thrust deflection at any prescribed airspeed.

The following comments offer some additional options that can be implemented for a Harrier type vehicle.

- l. If a series of data cases are to be run, put the additional aircraft weights or velocities in ascending order. Set RUN not equal to zero for interpolated weight or set RUN and PSINT not equal to zero for interpolated pitch speed.
- 2. Apply variables RS, ALPHARR, ALPHAAR, ALPHA, PHI2, PHI2AR, and PS for desired rotation method. For the fore engine nozzle variation apply RSF, PHI1, PHIIAR, PHIIRR accordingly.
- 3. Set NOEDRAG not equal to zero and NOSTORE not equal to zero if engine related drags and store drags exist in reference table 33 (nos. 1 and 2) (see Appendix A). Set NODOEI not equal to zero if engine out drag exists in reference table 33 (no. 3).
- 4. For OEI at brake release, read in NEF = NEA = 0.5 or any appropriate scale down, or put in single engine tabular data inputs and add failed engine drag in store drag (reference table 33 (no. 2)). For OEI at liftoff, set EFAILA not equal to zero and OEILOSF to an appropriate front engine scale down value and add failed engine drag as additional drag (reference table 33 (no. 3)). Set OEITAB not equal to zero for OEI at liftoff when thrust, fuel flow, and drags (engine related and external store) for one engine out are supplied in tabular form (reference table 10, 11, and 33 (nos. 3 and 4)). Put in RAM for a constant ram drag scale down during OEI.

5. For dynamic R/C constraint, put in ROC limit. Set PHONY not equal to zero when instantaneous R/C is desired (fore and aft nozzle angles and aircraft pitch angle are set to maximum values for instantaneous R/C calculation). Set SINKD to bow height for sink calculations. (If PS, RS, and RSF have not been reached at SINKD, these variables will be set to the airspeed at SINKD). NOTE: rate of climb and sink estimates assume that the horizontal velocity is much greater than the vertical velocity.

ACKNOWLEDGEMENTS

A mention of appreciation is given by the author to Michael Caddy who developed the supporting subroutines and to John Cyrus for his technical concepts.

REFERENCES

- (a) Caddy, M. J., "TREAD/TLOOK Multipurpose Computer Routine for Interpolation and Extrapolation of Tabular Data," NAVAIRDEVCEN Report No. NADC-76366-30, 11 January 1977
- (b) Akima, Hiroshi, "Interpolation and Smooth Curve Fitting Based on Local Procedures," Institute for Telecommunication Sciences, 1 March 1972

FIGURE 1. Force Diagram (Ground Run)

FIGURE 2. Data Input Deck Structure

TABLE I
FIXED INPUT VARIABLE LIST

Variable Name	Description	Units	Default Value
ALPHA	Initial angle of attack (for CL-a curve)	deg.	
ALPHAAR	Pitch angle after rotation	deg.	0.0
ALPHARR	Pitch up rotation rate	deg/sec	0.0
ALPHMIN	Maximum angle of attack before auto rotation		
	control attempted	deg	0.0
ALT	Field altitude	m. or ft.	0.0
ANGFRL	Initial fuselage reference line angle (for		
	engine reference)	deg	0.0
DELMAX	Maximum control surface deflection angle		
	$(maximum \delta_e)$	deg	
DELTAE	Initial control surface deflection angle	deg	0.0
DISTMAX	Abort run if this takeoff distance is exceeded	m. or ft.	106
DT	Time integration increment	sec.	.05
EDATUM	Engine datum (with respect to fuselage		
	reference line)	d eg	0.0
EFAILA	If # zero, failure of one engine assumed at		
	liftoff		0.0
El	If # zero, two thrust vectors are present		0.0
FLDTEMP	Field ambient temperature	°C or °F	59.
IPRINT	If # zero, a time history of parameters will		
	be printed		0
IYYCG	Constant aircraft moment of inertia	kg-m ² or	
		slug-ft ²	
LR	Vertical distance from center of gravity (CG)	_	
_	to ground	m. or ft.	
LRA	Horizontaol distance from CG to aft wheel	m. or ft.	
LRF	Horizontal distance from CG to fore wheel	m. or ft.	
MAC	Mean aerodynamic chord	m. or ft.	
METRIC	If # zero, metric units present		0
MU	Wheel friction coefficient		.02
NEA	Number of lift cruise engines		1.
NEF	Number of lift engines	~	1.
NODOEI	If # zero, tabular engine out drag present	~~~~	0
NOEDRAG	If # zero, tabular throttle dependent drag		
*******	present (includes ram drag)	*	0
NOSTORE	If # zero, tabular external store drag data		_
	present	~	0
NPRINT	If # zero, tabular input will be printed		0
OEILOSF	Lift engine scale down when OEI occurs		.0
OEITAB	If # zero, OEI at liftoff assumed with		^
DIV T 1	tabular OEI data present	~=	0.
PHI1	Initial lift engine jet nozzle angle (with	3	0.0
DUTIAN	respect to engine datum)	deg	0.0
PHILAR	Lift engine nozzle angle after rotation	deg	0.0

TABLE I (Continued)

FIXED INPUT VARIABLE LIST

Variable Name	Description	Units	Default <u>Value</u>
PHI1RR PHI2	Lift engine nozzle rotation rate Initial lift cruise engine jet nozzle	deg/sec	0.0
PHI2AR	angle (with respect to engine datum) Lift cruise engine nozzle angle after	deg	0.0
	rotation	deg	0.0
PHI2RR	Lift cruise nozzle rotation rate	deg/sec	0.0
PHONY	<pre>If # zero, instantaneous R/C is calculated</pre>		0.0
PS	Pitch up aircraft speed	m/sec or	
••	- 200. Of allocato brook	ft/sec	0.0
PSINT	If \neq zero, and RUN \neq zero, will give	50,550	• • •
	interpolated pitch up speed		0.0
RAM	Ram drag scale factor for OEI; if		
	default value selected, tabular OEI ram		
	drag is used		1.
RDSCALE	Tabular ram drag scale factor		1.
REVTIME	Engine speed up time	sec	0.0
ROC	If # zero, dynamic liftoff characteristics	m/sec or	
	at this R/C will be given	ft/sec	0.0
RS	Airspeed which initiation of lift cruise	m/sec or	
	engine nozzle rotation occurs	ft/sec	0.0
RSF	Airspeed which initiation of lift engine	m/sec or	
	nozzle rotation occurs	ft/sec	0.0
RUN	IF # zero, STO distance to determine		
	interpolated TOGW	m or ft	0.0
S	Wing area	m^2 of ft ²	
SEGMENT	If default value used, no pitching moment		
	estimation is entered in calculations; if =		
	l, auto rotation included in estimates;		
	and if = 2, elevator correction to auto		
	rotation applied		0
SINKD	If # zero, this is bow distance for sink		
	calculations	m or ft	0.0
VSTARR	Maximum velocity before which a constant		
	linear extrapolation of aerodynamic	m/sec or	
	tabular data occurs	ft/sec	0.0
W	Aircraft mass	kg or 1b	
WOD	Wind over deck (+ for headwind, - for	m/sec or	
	tailwind)	ft/sec	0.0
XCG	Constant horizontal distance from CG to		
	main gear wheel (presumes no tabular CG	_	
	locations inputting)	m or ft	
YCG	Constant vertical distance from CG to main		
	gear wheel (supposes no tabular CG locations		
	inputted)	m or ft	

APPENDIX A

TABULAR INPUTS

A list of the tabular data inputs is presented in graphical form. An example of this data in numerical form can be found in Appendix B and reference (a).

Table Reference No. 13 $C_D = f(C_L, \delta_e, \theta_j, V_x)$

FIGURE Al. Drag Coefficient Tabular Input

 $\mathbf{c}^{\mathbf{r}}$

 $\mathsf{c}_\mathtt{L}$

Table Reference No. 14 $C_L = f(\alpha, \delta_e, \theta_j, Vx)$

FIGURE A2. Lift Coefficient Tabular Input

Table Reference No. 10 F_G =f (MACH, Engine Type, REVTIME)

REVTIME₂

FIGURE A3. Gross Thrust Tabular Input

Table Reference No. 11 NADC-81259-60 W_F =f (MACH, Engine Type, REVTIME) W_F REVTIME 2

MACH

REVTIME 1

2 = aft engine 1 = fore engine

 W_{F} (kg/hr or lb/hr) 4 = aft engine 3 = fore engine

FIGURE A4. Fuel Flow Tabular Input

FIGURE A5. Moment Coefficient Tabular Input

Table Reference No. 30 Iyycg = f(m)

FIGURE A6. Moment of Inertia Tabular Input

Table Reference No. 15 $\frac{\Delta L}{F_G}$, $\frac{\Delta D}{F_G}$ = f(θ _j)

FIGURE A7. Induced Lift and Drag Tabular Input

Table Reference No. 33 D = f(MACH, Drag Type)

FIGURE A8. External Store and Ram Drag Tabular Input

Reference Table No. 31 X_{CG} , $Y_{CG} = f(m)$

FIGURE A9. Center of Gravity Location Tabular Input

Reference Table No. 12 F_{GLoss}/F_{G} = $f(\theta_j, ENGINE TYPE)$ (No nozzle deflection)

FIGURE Alo. Gross Thrust Loss Tabular Input

APPENDIX B

EXAMPLE CASE

An example card deck and printout is presented. The required programs, supporting subroutines, and control cards to execute this program with any charge number under the NAVAIRDEVCEN KRONOS 2.1 operating system is illustrated. An explanation of the sample case is also presented.

Example Case

Card Deck

An example card deck listing, similar in form to the arrangement illustrated in Figure 2, is presented. As shown, three cases are to be run and they require less than 50,000 octal central memory core and ten octal seconds central processor unit time.

For the first case an aircraft, with a wing area of 430 square feet, is initially resting on the ground with a wing angle of attack and fuselage reference line at negative five degrees from the horizontal. The lift engine nozzle angle is set at 45 degrees while the cruise engine nozzle angle is set at five degrees. Both nozzle angles are with respect to the fuselage reference line (or to the engine datum line for the cruise engines). On examining the initial case's fixed inputs, at an airspeed of 66 ft/sec the vehicle will rotate its lift engine nozzles to 75 degrees at a rate of 15 degrees/sec and it will rotate its cruise engine nozzles to 54 degrees also at 15 deg/sec. At an airspeed of 80 ft/sec the aircraft will pitch up to 13 degrees at 5.9 deg/sec. This vehicle weighs 40,000 lbs. Additional fixed inputs state that the vehicle has a tabular ram drag input (NOEDRAG), two thrust vectors are present (E1), and the analysis is for a 90°F day (FLDTEMP). The default value of METRIC causes English units to be used. If the deck run exceeds 750 feet the case runs will be terminated. The variables RUN and PSINT are used, in combination, to interpolate or extrapolate the case values of PS. This is to determine the appropriate value of this variable for a deck run of 400 feet. The variable SINKD specifies the carrier bow length and signals for sink calculations to be done for this case. The IPRINT parameter indicates that a time history of pertinent parameters for this specific case will be printed.

Example tabular data includes C_L versus α , drag polars, engine thrusts, ram drag, and induced aerodynamics. The table numbers used for each table are predetermined as outlined in Appendix A. Notice that omitted input, such as fuel flow data, is assumed to be zero by the program.

The second and third fixed input cases switch off the sink calculations and the time history printout and change the lift and cruise nozzle rotation initiation airspeeds. These additional cases also change the airspeed in which the vehicle begins pitching up. Note that a maximum of one card is permitted for each additional case. For the additional cases a value for ROC causes dynamic rate of climb calculations to be made.

```
TEST-C850003-T10.
ACCCUNT.CHAMGE NUMBER.PASSHOOD.
GET.VTLI91.VTL192/UN=VT1494.
GET.VTLI91.VTL192/UN=VT1494.
GET.VTLI91.GO---SIFEL/STO
LOSET(L14=VTL182)
LOO.
ENO OF HECOPD
SOATA ALPHAME-5.SM430.PM1245.PM124R#54-OM12RR#15.ALPHARR#5.40.ALPHARR#13.
ANFFRL=-5.NOEDRACH1.Elm1.FLDTEM#490.PM11#65.DISTMAX#750.PM11AR#75.
PM11RR#15.MS464.PS#M0.RSF#66.##40000.IPRINT#1.PSINT#1.HIM#400.
SINKP#200.NPRINT#1.
                      EXAMPLE CASE
EXAMPLE CL VS. ALPHA TABLE
0.
0.
5.
        14
VEL 1
PHI2 3
DLTE 1
ALPH 3
                         20.
                                                   -4.
                                                                            ٥.
                                                                                                                                                       12.
                                                                                                                              8.
                                                                                                                                                                                16.
 CL
                                                   -.175
                                                                                                                                                       1.04
                                                                                                                                                                                1.375
DLTE 1
CL 8
                                                   .15
                                                                            .42
                                                                                                                              .46
                                                                                                                                                       1.2
                                                                                                                                                                                1.45
0L TE 1
                                                   .59
                                                                                                                              1.34
                                                                                                                                                       1.47
                                                                                                                                                                                1.56
EOT
EOT 13
OUMH
PHIZ
OLTE
CL
CD
EOT
                           EXAMPLE CRAS POLARS (POWER OFF) TABLE
                         .34159
                                                  .02938
                                                                                                                             1.2
                                                                                                     .6
.06533
                                                                                                                                                       1.4
                                                                            .03742
EOT 10
OUMM
TIME
SET MACH
FG
FG
FG
FG
FG
                         EXAMPLE ENGINE THRUST TABLE
                                                  2.
.05
14044.
29989.
11330.
24346.
                                                                                                    4.
.15
[4675.
31606.
12342.
2516).
                        0.
13755.
29437.
10994.
23734.
                                                                           .1
14332.
30538.
11565.
24958.
                                                                                                                             .7
15417.
32673.
13016.
27363.
FOT

OUMW
TIME
SET
MACH
PAND
HAND
HAND
HAND
                         EXAMPLE HAM DRAG TABLE
            1 2 5 5 5
                        0.
                                                 3.
.05
3946.
3862.
                                                                           .1
4123.
7031.
                                                                                                    .15
12240.
12023.
                                                                                                                             .7
14021.
14486.
FOT 15
UUMM 1
Y 1
SET 2
PH12 3
OFL 3
HH12 3
                      FXAMPLE INCUCED AEPONY-ANICS TABLE
                        7.
1.
1.
0.
.52
21.3
                                                 2.
50.
.12
44.5
-.031
                                                                           100.
.214
#4.7
```

HLANK CAMD
SDATA SINKH-0-ROC=1.67.PS=90.RS=76.RSF=76.IPPINI=04
SDATA SINKH-0-ROC=1.67.PS=100.RS=84.RSF=84.IPPINI=04
NOTE: MAXIMUM OF ONE CARD FOR FACE ADDITIONAL CASE.
END OF INFORMATION

Printout

The computer printout of the previously mentioned card deck is now presented. On the second page of the printout a loader map illustrating all the supporting subroutines and their individual core requirements is presented. On the bottom of this page the fixed inputs for the first case are shown. The variable NPRINT enables the tabular input to be printed in full on the following five successive pages. This data, in turn, is followed by a summary of core requirements for each table. Next, the output data begins with a time history of the first of three sample cases. Each element is a successive point in a time variance of parameters. These parameters include:

```
W - Aircraft mass (kg or lb) (English units for this example)
V - Vehicle airspeed (m/sec or ft/sec)
L - Lift force (N or 1bf)
DR - Drag force (N or 1bf)
RF - Nose gear reaction force (N or 1bf) (not used in this example)
EDRG - Engine related drags (N or 1bf)
FN2 - Cruise engines gross thrust (N or 1bf)
PH2I - Cruise engine nozzle angle (deg)
ALPHA - Angle of attack (deg)
T - Time (sec)
D2 - Distance (m or ft)
BALANCE - Lifting forces minus weight (N or 1bf)
PHII - Lift engine nozzle angle (deg)
FN1 - Lift engines gross thrust (N or lbf)
C<sub>L</sub> - Lift coefficient
C<sub>D</sub> - Drag coefficient
C<sub>M</sub> - Pitching moment coefficient (not used this example)
A/G - Normalized longitudinal acceleration
RHO - Atmospheric density (kg/m^3 \text{ or } slug/ft^3)
DELTAE - Control surface deflection angle (deg) (not used this example)
```

The following parameters were not printed in this listing because they were not used for this example case.

```
DALPHAD - Angle of attack increment caused by auto rotation (deg) IYYCG - Lateral aircraft moment of inertia (kg-m² or slug-ft²) XCG - Horizontal distance from CG to main gear wheel (m or ft) YCG - Vertical distance from CG to main gear wheel (m or ft) N - Iteration number for elevator correction to counter auto rotation RF - Nose gear reaction force during iteration (N or lbf) DELTAE - Control surface deflection during iteration (deg)
```

The following parameters are printed if dynamic rate of climb calculations are made. These parameters are printed only after liftoff.

```
ROC - Dynamic rate of climb (m/sec or ft/sec)
ACCY - Vertical dynamic acceleration (m/sec<sup>2</sup>)
```

Finally, the following parameters (which are used for this example case) are printed after liftoff when sink calculations are made.

ASINK - Sink acceleration (m/sec² or ft/sec²) (sink calculations cease when this value becomes zero)

VSINK - Sink velocity (m/sec or ft/sec)
DSINK - Sink distance (m or ft)

The time history printout concludes on the following page of output. After liftoff the appropriate sink parameters are shown. After the time history the final liftoff parameters are presented. These parameters include maximum sink height and time, distance, and airspeed at that sink height condition. Other characteristics at this condition include lift, drag, horizontal acceleration, gross thrust, and vertical gross thrust.

Since the IPRINT was switched off for the two additional cases no time history is printed. These cases were done with dynamic rate of climb calculations so instead of sink parameters the prescribed rate of climb along with the vertical height when this rate of climb is achieved is printed.

After all the cases are determined an extrapolation is made to estimate the pitchup airspeed and horizontal acceleration for a deck run of 400 feet.

KPONOS 2.1.1-107 81/03/30. OPE-4TING STSTEM OPE-110 = €1200.

***********	FEFEEFFEEEE	555555555	***********		VV	vv	11111111111
*************	EEEEEEEEEEE	\$\$\$\$\$\$\$\$\$\$\$\$\$	1111111111	*****	VV	VV	111111111111
11	EE	SS \$	TT	AA AA	VV	VV	11
TT	EE	SS	11	AA AA	VV	VV	it
7.7	EE	\$5	7.7	AA AA	VV	VV	11
TT	EE	5\$	TT	AA AA	VV	VV	11
11	EE	SS	TT	AA AA	VV	vv	I I
TT	EEEEEEEE	SSSSSSSSSS	TT	AA AA	vv	VV	11
11	EEEEEEFE	\$ \$\$ \$\$\$\$\$\$\$\$	TT	*****	٧v	vv	11
11	EE	5\$	tt	ARRARARARA	VV	VV	11
TT	EE	5\$	11	44 44	٧V	VV	11
11	EE.	55	ŤŤ	AA AA	VV	VV	11
TT	ĒĒ	5\$	11	AA AA	٧	V	ii
TT	EE	\$ 55	TT	AA AA	VV	VV	11
TT	EEEEEFFEEEE	55555555555	11	AA AA	VV	VV	111111111111
7.7	EEEEEFEEEEE	SSSSSSSSS	TT	AA AA	٧	v	111111111111

81/09/24. 14.54.07.

LOAD HAP - STU CYHER LOADER 1.4-485

81/09/28. 14.54.01.

PAGE

FWA OF THE LOAD LWA+1 OF THE LOAD

510

TRANSFER ACORESS -- STO

6206

PROGRAM ENTRY POINTS --

6296

PROGRAM AND RLOCK ASSIGNMENTS.

PLOCK	AUDRESS	LENGTH	FILE	DATE	PHOCSSA	٧ER	LEVEL	HARDWARE	COMMENTS
/PRINT/	111	1							
STO	112	11662	LGO	78/01/0	FTN	3.0	P380	6666	
/TSIZE/	11774	5671							
TAKES	17665	1353	JE-VTL 192	77/03/0	FTN	3.0	₽380	6666	
SPLNOI	21240	504	UE-VIE192	77/10/1	FTN	3.0	PORC	6666	
UPDATE	21744	135	OL-AILIES	75/07/1	FTN	3.0	P380	6666	
ATMOS.	22101	213	UL-VILI92	76/10/2	FTN	3,0	P380	6666	
SNEST	22314	110	JL =VTL IA2	75/06/1	FIN	3.0	P380	6666	
SYSTEMS	22424	1035	SI -FTN3L 18	80/09/02	COMPASS	3.6	485		
ACGOERS	23461	13	SL-FTN3LIB	A0/09/02	COMPASS	3,6	4A5		
RACKSPS	23474	334	SL-FTNJL IU	AP/09/02	COMPASS	3,6	485		
IFENOF'S	24030	57	SE-FTN3L18	90/99/02	COMPASS	3,6	485		
INPUTCS	24107	131	SL-FTN3L10	P0/09/02	COMPASS	3.6	485		
INPUTHS	24240	1171	SL-FTN3LIN	80/09/02	COMPASS	3.6	485		
OUTPICS	25431	74	SE-FTN3LIB	A9/09/02	COMPASS	3,6	485		
REWINHS	25525	52	SL-FINBLIA	80/09/02	COMPASS	3,6	485		
EXPE	25577	44	SL-FTN3L18	80/09/02	COMPASS	3.6	485		
SINCOSE	25643	55	SL-FTN3LIB	80/09/02	COMPASS	3.6	485		
SORTE	25720	55	SL-FTN3L18	80/09/02	COMPASS	3.6	485		
*TOYE	25742	7	SL-FTN3L1B	50/60/09	COMPASS	3.6	485		
KODERS	25751	1422	SL-FTN3LIB	80/09/02	COMPASS	3.6	485		
KRAKERS	27373	1525	SL-FTN3L18	80/09/02	COMPASS	3.6	485		
ALNLOGE	31120	37	SL-FTN3LIB	80/09/02	COMPASS	3.6	485		
GETBA	31157	17	SL-FTNJL 19	80/09/0					
5105	31176	1517	SL-FTN3LIB	0/60/04					

.106 CP SECONOS 467008 CM STORAGE USED

11 TABLE MOVES

I- EXAMPLE CL VS. ALOHA TABLE

AEF a	.0									
PHI2=	.0	CLTE=	•0							
		ALPH	80000E+01	40000E+01	.0	.40000E+01	.80000E+01	.12000E+02	-14000F+02	.20000E+02
		CL	48000E+00	17500E+00	.17500E +00	.45000E +00	.78000F+00	.10400E +01	13750F • 01	.14900F+01
∀ €L =	.0		-	-	• • • • • • • • • • • • • • • • • • • •		***********	***********	1131306.01	* 1 * 4006 * 01
PH12=	.50000E+02	CLIE*	. 0							
		ALOH	80000E+01	40000E+01	.0	.40000E+01	.80000E+01	.12n00E+02	.16000E+02	300000.03
		CL	13000E +00	.15000E+00	.42000F • 00	.69000E+00	.96000E+01			.20000E+05
VEL =	.0		***************************************		**2000. 00	*0.4405.400	. 400000 *011	.12000E+01	.14500E+01	.15700E+01
P ≈ 12 =	.90000E+02	CLIE .	.0							
		ALPH	80000E+01	40000E+01	.0	.40000E+01	.80000E+01	.12000E+02	1	
		CĹ	.34000E+00	.59000E+00	.86000F • 00	•11100E •01	.13400€ • 01		.16000E.05	.20000E+05
				13.0002-00	,500,000	**********	13-406.01	.14700E+01	.15600E+01	.15500E +01

13 EXAMPLE DRAG POLARS (POHER OFF) TABLE

10 FRAMPLE ENGINE THRUST TABLE

DUMMS	.0						
TIME =	.0	SET =	.10000E+01				
		MACH	.0	.50000E-01	.10000E+00	.15000E+00	.20000E+00
		FG	.13755E +05	.14044E+05	.14332E+05	14975F + 05	.15417E+05
DUMM#	. 3				01.13/20.03	******	
TIME =	.0	SET ±	.200006+01				
	-	MACH	.0	.50000E-G1	.10000E+90	.15000E+00	.20000E+00
		FG	.29477E+05	.299HAE +05	.3053HE+05	.31606E+05	.32673E+05
DUMM =	.0					************	1.5E013E103
1146=	.0	5ET =	.30000E+01				
		MACH	.0	.50000E-01	.1000QE .00	.15000E+00	.20000E+00
		FG	.10994E .05	.11330E+05	.11665E .05	123426+05	.13018E+05
DUMM =	_0					***************************************	*(30105.03
= 3+1T	-0	SET =	.40000E+01				
		MACH	• 0	.50000E-01	+10000E+00	.15000E +00	.20000E+00
		FG	.23774E .05	.243466+05	.24958E+05	.26161E+05	.27363E+05

33 EXAMPLE PAN OHAF TABLE

TIME:	.0	SET * MACH RAMD	.10000€+01 .0	.50000E-01	.10000E+00	.15000E+00 .12240E+05	.20000E+00
TIMES	.0	SET # Mach Ramo	.30000E+01 .0 .0	.50000E-0]	.10000E+00 .79310E+04	•15000E•00 •12023E•05	.20000E • 00

15 EXAMPLE INDUCED AERODYNAMICS TABLE

DUMME	.0				
Υ =	-0	SET =	.10000E+01		
		EH15	.0	.50000E+02	.10000E+03
	_	CEL	.20000E+01	.12000E+00	.21400E+00
DOMME	• 0				
Y =	.0	SET *	.20000E+01		
		PH12	.20300E+02	.44500E+02	-84700E+02
		CEL	5000E-01	31000E-01	.42000E-01

TARLE DATA INPUT SUMMARY S TARLES

TABLE NUMBER	REFFRENCE NUMBER	APRAY LOCATION
1	10.	217.
2	13.	178.
3	14.	61.
4	15.	373.
5	33.	316.

OATA STORAGE ALLOCATION 3000 OATA STORAGE NOT USED 2582

VSTOL TAKEOFF PERFORMANCE ESTIMATION

EXAMPLE CASE

.40000E +05

INITIAL GROUND RUN PARAMETERS

ASINK . VSINK . DSI						
\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$.400000+05 .50000+01 20000+00	.84970E+01 5000E+01 3947E-01	.13032E+04 .25000F+00	24404E+04 -15292E+01 .10483E+01	.2982RE • 05 .22429E • 02	.57810E+03 .45000E+02 .0	.29518F+05 .13798F+05
.40000E+05 .50000E+01 23089E+00	.16892E-02 5000E+01 .33947E-01	.12832F+04 .50000E+00 !!!!!	-,16716E+04 .51215E+01 .10369E+01	11111 .29821E+05 .22429E-02	.11518E-04 .45000E+02 .0	.29599F • 05 .13840E • 05
.400006.05 .500006.01 .00-39805	.25186E+02 50000E+01 .33947E-01	.124796+04 .750006+00	-,13042E+04 .10797E+02 .10255E+01	11111 .29829E • 05 .22429E = 02	.17221E+04 .45000E+02	.29679E+05 .13882F+05
.40000E-05 .50000E-01 23089E-00	.33799E+02 50000E+01 .33947E-01	.11980F+04 .10000F+01 .1111	73685E+03 .18532E+02 .10141E+01	.29852E+05 .29852E+02	.22900E • 04 .45000E • 02 .0	.29757F+05 .13923F+05
.40000E+05 .50000E+01 23089E+00	.415186.02 500006.01 .339476-01	.11339F.04 .12500F.01 .1111	16891E+03 .28304E+02 .10026E+01	1111 -29890E+05 -2429E+02	.28563E.04 .45000E.02	.29835F-05 .13964E-05
.4000E+05 .5000E+01 230A9E+00	.4945E.JZ 50000E.01 .3344E-01	.10560F+04 .15000F+01 .1711L	.00276-03 .49196-00 .49196-00	11111 .29942E • 05 .22429F • 02	.3~216E.04 .45000E.02	.29912F-05 .14004F-05
.50000E-05 .50000E-01 2300E-00	.57479E+02 50000E+01 .33947E-01	.96502E+03 .17500F+J1 [1111	.97133E+03 .53865E+02 .77938E+00	11111 .3000AE+05 .22429E-02	.39869E-04 .45000E-02	.29986F+05
.4000E+05 .5000E+01 230A9E+00	.65719E+02 50000E+01 .33947E+01	.86111F+03 .20000F+91 TTITI	.15422E+04 .09604E+02 .46755E+00	11111 50-304006. 50-395-55.	.45446E+04 .45000E+02	.140416.02
.#000VE+15 .87500E+V1 21161E+0V	.73Q46+42 50000E+0: .33705F+0;	.11342F+U4 .22500F+Ct 	.47311E+04 .47247E+02 .73703E+00	11111 .27135F+05 .22429E-02	.51025E+04 .40750E+02 .0	.30123F+05 .14115F+05
.40000F+05 .12500E+02 15467E+00	.80434E+02 47050E+0] .32045E-0]	.14937F+04 .250V0F+91 !!!!!	*4014E+00 *100H4E+03 *4011E+04		.563766+04 .525006+02	.301A3F+05 .14147F+05
.40000F+J5 .16250E+J2	.#7525E+02 32300E+01	./2332F+04 .27500F+01	. 174416.04	11111 .19627F+05	.614A7F+04 .55240F+32	.30/42F.05 .14174F.AC

```
.224296-02
                 -. J466ME-G1
                                                 .244JOE-01
                                                                                        11111
                                                                                                               .05141E+00
                                                                                                                                                                            . 0
                  .30301F+05
                   .20000E .02
                                                                                                                                                                                                           .14209F.05
                                                  .29017E-01
                                                                                        11111
                                                                                                               . 19463E . 00
                                                                                                                                              .22429E-02
                                                                                                                                                                             ٠.
                  .40000E+05
                                                 .10939E+03
                                                                                                              ..7722E -04
                                                                                                                                             11111
-10990E+05
                                                                                                                                                                            .70759E+04
                                                                                                                                                                                                          .303625.05
                                                                                                               -17589F +03
                                               --28000F+00
                                                                                .32500F +01
                                                                                                                                                                            .63750E+02
                                                                                                                                                                                                          .142416.05
                   .232ARE+00
                                                  .32481E-01
                                                                                                               .73048E+0U
                                                                                                                                              .22429E-02
.........
                                                                                                              .>3659E+04
                  .40000E+05
                                                 .10404E+03
                                                                               .53114F+04
                                                                                                                                                                           .74830E+04
.67500E+02
                                                                                                                                             11111
40+365876.
                                                                                                                                                                                                          .304246.05
                                                                                                               .201996.03
                                                                                                                                                                                                          .142736+05
                    .35522E .00
                                                   .36059E-01
                                                                                        11111
                                                                                                               .05930E+00
                                                                                                                                               .22429E-02
   .54556E+01
                                                                                                          .13639E+00
                                                                                                                                                      .34097F-02
11111 .76481E+04
SINK DATA
                                                                                                             .59320E+04
                                                                                .55542E +04
                   .40000E+05
                                                                                                                                                                                                           .304866+05
                   .31250E+02
.47494E+00
                                                  .26700E+01
                                                                                .37500F+01
                                                                                                               .22939F+01
                                                                                                                                              .26876E+04
                                                                                                                                                                            .71250E+02
                                                                                                                                                                                                           .14305F+05
                                                                                                               .58321E.00
                                                                                                                                              .22429E-02
                                                  .38411E-01
                                                                                        31111
                                                                                                                                                                             .0
                                                            A STANGE IS A STAN
                                                                                                         .108-7E+01
                                                                                                                                                              .17277F +00
                                                     E 15 .41502E+00 FT.
.25210E+03 FT.
.11553E+03 FT./SEC.
                VELOCITY =
                                                      -40000E+01 SEC.
               TIME = .40000E4
END METANT FOR THIS PHASE IS
                                                                                      ... GOOGE + 05 POUNDS HASS
               LIFTOFF CHARACTERISTICS
               HORIZONTAL ACCELERATION =
                                                                              .51570E+00 GIS
                                                                               .76359E+04 POUNDS FORCE
+63560E+04 POUNDS FORCE
+32863E+05 POUNDS FORCE
               LIFT =
                VERTICAL A-ROSS THRUST =
                HOPIZONTAL GROSS THRUST .
                                                                               .26984E+05 POUNDS FORCE
  SOATA SINKO=0.FOC=1.67.PS=90.RS=76.RSF=76.IPPINT=04
                105# =
                                            .40000E+05
                INITIAL GROUND PUN PARAMETERS
               VEHICLE IS AIRBORNE VEHICLE HAS A R/C OF VESTICAL HIERHT IS DISTANCE =
                                                                        .16700E . 01 FT./SFC.
                                                                    .36921E+00 FT.
                                                     .35474E+03 FT.
.13093E+03 FT./SEC.
                VELOCITY .
                                                       .40000E+01 SEC.
                END WEIGHT FOR THIS PHASE IS
                                                                                     ...ORDRE-OF POUNUS MASS
               LIFTOFF CHARACTERISTICS
                HORIZONTAL ACCELERATION .
                                                                              .36399F+00 (-15
                                                                              .11300E+05 MAI NOS FURCE
.81452F+04 MAINDS FURCE
.37272F+05 MAINDS FURCE
.22634F+05 MAINDS FURCE
                LIFT =
                VESTICAL GEOSS THURST &
                HCFIZONTAL ISHITS THRUST .
 STATA STARPED-WOCEL.A7.PS=100.A5ER4.ASER4.1PW141=95
                TOUR E
                                           . +0 JQ UF +05
               THEFTEL HAR MIN AND PARAMETERS
```

)

TESTAVI. HI/04/25.440405 2.1.1-545-025-4400.

.51.TEST*CH\$0000*110.
.51.ACCOUNT**N0134A.
.51. WASTE* DEVICET
.52.AF1**YILM1**JETLITZ/METVI1499.
.57.AFM**VILM1**LED***.SIHEL/SIO
.00.EDITING CCMPLETE.
.00**LDSETILMT**VILM2)
.00**CO**
.00**CO**
.00**CO**DUTER UNITS AT.100 P = 1.
.00**CM** 1**,373 N°*.
.00**CM** 1**,373 N°*.
.00**CM** 19*,474 N°*.
.00**IM** 19*,474 N°*.
.00**IM** SCHEDULED 00
.00**TAFES SCHEDULED 00
.00**SEFVICE CMARGE

\$ 2.20
.00**
.00**SUBTOTAL

\$ 3.17

APPENDIX C

Program Listings

A listing of the FORTRAN source code for the main STO program and a four degree-of-freedom interpolating subroutine TAKE5 is presented.

	997594H STC	7-/7-	321+1		FTN 4.0+423	:1/07	12	13,1:,43	PA	5 =	1
1	CSTC+++		_				0301				
				{TLS#1=6354148354			9003				
					• • • • • • • • • • • • • • • • • • • •						
			5 3M AFRIL 1971		••••••		3:04				
•				11, 2 J N JATA (33) + < (4			5306				
		IJATAC331					3367				
		**)4/24161.	/N24141			STJ	000:				
				TH BPC4 GAP + 45 J. 4 P S.	,LEVER,IYY,IYYIG		9003				
10		1:3:4 S:64:					0313				
					,LRA,LRE,REVTIME,DT,						
					CG, EL, DEL MAX, P 411,		3315				
					, AL P443À, AL P411À, AL T,						
1:]]]][],qetrii,ps,d]], [uko,r]s]ale,pam,pdou						
• -				:)			3015				
				JRASAN IST IN EARLY			0017				
		33340FL355					0313				
			\$ 344+1.				3019				
25	A to	ITEMENANGF	AFC: PHIPHIALDER	IGADSTORE AVATABLE	-51hq=11hq=14w=13=C+	STO	9326				
					-JE I - DE IL OSF - D.	573	9321				
	339	1.05-255-1	P-11148-P-11188-P	75 F= 36 FC + 78 A + 74 I 2 Y	-430-8364-84344-0.	STO	2500				
					.0=66=64713E=24=PLB		0223				
					s qz-z. s distama						
25			12144-02144-0-	4 435046641.			0325				
	170		CF CT DL 10.				3026				
		30.1Cap	,				0025				
		447(241,4			•		3329				
30		MAT (LAD ZA					3230				
		E 3=(+1) 60					3031				
	53 1:4	1:+1					0.32				
	49 1	TE (4,30)	16351			513	2033				
		MT 46,100				STO	0334				
35			19.12354(5).E1.	148) 37 13 60			0035				
		73 20					35				
		7) [[-1,1]	•				3037				
		STACE G					3336				
40		1212.TITLE					3334				
. •				X 7 7 3			0341				
		MATCRALC)					0342				
	33	T3 113					3343				
	93 85:	E CFI				CTZ	0044				
45		CATAC 45)C				STO	3045				
		0 30.1CGP1					0346				
		E3F(9)) 7					3347				
		45 40,100	RESD DATA				0346				
:0	117 842		1610 0414				0050				
٠.		AHAJALPHA				510					
		1=9411					3352				
			GF4.1+3.141>72	554/1300			0 /5 3				
			65 73 120				0354				
5 5	Let	E4-L+4+4U+	LA SOLEVER			STO	03:5				
	150 A-A					STO	3055				
	150	11JUST.ES.	146El Trise (C.	ITLE		313	3357				

	PADDRAM STD	74/74	3PT+1		FT4 4.0+42E	£1/0	/ 27.	15.19.43	PAGE	2
			/.lox.+vatol take	OFF PERFORMAN						
56		•//•3A1G	•//)				0357			
36	1033	41-0					3363			
		1 143.4					2362			
			1354 ****23.5*///	1)4.			0363			
			JAJ RUN PARAMETER			STO	3164			
6.5			OCI THIS 10.				0365			
			20614814/4138444							
			E,,746I,F440,/,101							
			YYCG, XCG, YCG+, / , 1 [hk,)		AE 4, /, 108, 4836, A		6979			
` 70			.C) ALT-ALT3343				0370			
			LT, AL, AZ, AZ, AŻ, AŻ				0371			
			.C) 33 TO 150	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			0072			
		4LT+3.260				570	0073			
	ASEA	5+3.2±06	39495				0074			
75		2-2.3769					0075			
			EM#+459.7				2376			
			FL3754/518.71				0077			
		.3*918.7// '3 170	APLJIER				0078			
e c			E42+273.16				0080			
			FLDT=4/200.16)				0081			
		3+288.16				STO	0362			
	170 EUAT	JP-EDATU	4+3.141592554/180				2033			
		.1741					0084			
95			.01 3-9.8				0085			
			(METRIC.ME.O) 53	161.4.3			0016			
		G36C	. & COUNT+1.25/01		-CO INT . #= [4]		8866			
	180 4424		• • 55041-41125701	, , , , , , , , , , , , , , , , , , ,			0367			
90			.GE. 1) J.1				0090			
	ราย4	T S	IF(T)U	I.GT.REVTIMED	TOJMOREVTIME	510	1600			
		15H4=					3345			
			E.01 GO TO 213				0093			
95			TAIRAN BUSSCH SHI				0094			
42		* PH11+ PH	.OJR.V.LT.R.jF}	63 10 170			1346			
			48144) P418 • P4814				2297			
			NGF 3L 1 = 3 . 14 15 + 265			212				
	C FOR ANY	FUTURE 1	TABLE LOOK UPS US	IE 2411		212	0099			
196			•••••	********	**		3103			
	190 1=44		GO TO 200				9161			
			PHI 2 - PHI 2 + 2 + 1 2 R R 4				0102			
			41243) P412 - P4124 GO T) 210	, w			6104			
105			ALPHARR®OT				0105			
•••			ALPHARRI ALPHA-AL	PHARR			010£			
	210 IF(E	1.NE.0.)	CALL TEDDS (DILL)	1424, 21, 1304,0	dfl)	STO	0107			
			1,4454,32,1704,0,	*4F2\$		\$73				
		AL JOHELO				\$10				
110		desement		C4- 31 - 730F	Eur	\$13	0110			
			MARCETTUS 1145 .O.Pugt, 56. Heap.o		#F71)		3112			
			2,041[,1,,3,,0,				0113			
			2,94[2,2.,3.,3.,1				0114			
				= -		3.0				

	P43\$#4# STO	74/74	321+1	FTM 4.6+423	91/09/2	6. 10.13.43	P43E	3
115	FM	.=(FN1-FL05	Stermi sentr	LFG) DFG) OFGTGTAL	sta at			
	FN	2-(FNZ-FLOS	54+FN23+HE4		210 CTS			
	C *****	* INDUCE	DAERC		STO JI			
	F.G.	TOTAL - FHI+F	NZ		\$77 31			
	ŭ 4,	r 10035(1)	* 5 4 [5 *] * * 3 * * 3 * * 5	LFG)	212 21			
154	TAL		** H1 2, 2, 1), 10, 10, 10	UP 0)	573 OL			
	311	- G = JL + G = F G T	JTAL & 30=5-33F3	*FGIJIAL	\$13 01			
		 21•P=12	************		10 672			
					210 OF			
125	73	ATT T T T T T T T T	. 41 3-44 - 0-1 745 - 0-1	314447 V3184410V31444	573 01			
125	- 41	. 7.775117	PAL - TAPUCE ACPPT		STO 31			
		LE IEJJSILS	**************************************	7. CL . DEL TAC. 2007 - USTAPAL.CHI	573 01			
	الد د	1 3 2 4 7 E 7 1 8 M C 1 3 a 4 B M C 7 B M C	25-1 141. 16151711 25-1 141. 16151765	4/187-	513 01			
	2.7	58° Neuso2	# 4 3 6 C	47.001	573 01			
130	- 1	1 71 334 633	. 44 * 4. 31 . 3 3 5	7,180. 04180. STURE)	573 31			
• • • •	ČĀ	1 11 335 (33	-4A2H-22-133	571271	513 01			
	6.31	ASSEDBAGES	DSCALE	*****	573 01			
	16	I ITEDRAG.ET	O-DASGE IC.		573 01			
			.0) DSTJRE.0		570 01			
132	16	GE I . NE . G	AND NEDDEL NE . D.	SCALL TLOOS(33, MACH, 3., 0., 0., OCEILOF	15T3 01	35		
	244	04+EDRAG+0	\$T088+3361L0F+80	FG	STO OL			
	91.	TC 1- CALPHA-	ALP 1401+3-141592	654/190.	ST0 31			
	AN	1 = P-111+P1T	SAFE & PLTAGE+FS	#P412+P1TC4+634TU4	ST0 31	36		
	L.	5+61+4++2+	4345		5T3 01	.39		
146	1.0	+>LFG			ST3 01	.40		
	FG	OF HISSING	NG 1) + FM 2 MS IN (ANG	21	STO OL	41		
	F G	4-FN1-C35(A	NG11+FN2+: 35 (ANG	2) 2)	573 01	.42		
	3 41	L44CE=a-L-F	G√		STJ 01	.43		
	24	•)[*G	# (F 3H-) <- 4U # 3 & L A	NCE1/#	STO GI	.44		
145	¥ 24	= V + D V			STO OI	.45		
	15	(SEGMENT.E 3	.3) GO TO 223		ST0 01	.46		
	ic e	4E4T+.5+CH+	V##2+A3+5+44C		570 01	.47		
	3 = 1	•{i_Ever#qal	ANG :- MO 4さりてきりつしき	AES	STO OF	. 48		
	I F	(PITCH+LE+0	.) 30 TO 220		\$10 01	.49		
150	AN	G 18 SS=LRA#C	35(21104)+404148	+314(b11c4)+F4+An+C32(b11c4)-F4+21H(PST0 01	.50		
	•110	: 4)			573 01	.51		
	3.5	• { 3 ALAN; E • A	42 45 22 - 404 = 41) / (LRF+A464ESS+CDS(PITCHI)	212 07	.52		
	220 32	•0•.5•01•11	AS-430)++5'-1A-	DD)**2,17DV	213 01	.53		
	15	LIPAINT. EO.	3.34.3.46.11 50	10 250	213 01	24		
155	40.	X = (+ 6 1 - 0 K -	TUTSALANCE 1/4	VER *SIN(PITCH)*LR**UPCJS(PITCH)*LR*SIN(LR**ANGHESS*CJS(PITCH)) DD)**2.3/DV TO 250 NZ ALANCE,PH11,FN1 A3*JELTAE	313 31	27		
	741	NI 230,6,V	1	NG ALANGS BANK BUN	310 01	70		
	• • • • • • • • • • • • • • • • • • • •	141 230,PHZ	I PALPMANT NUZNS	ALANCESPHILSPHI	213 07	.37		
	722 72	NI 240, LL,		ASPUELIAE	217 01	.75		
160	233 730	174112A9/12	# E 2 E 	4011	573 31	43		
100	240 F J		K, E12.5), /, Lio(1 .0) GD [7 260 61 TO 520	7(1)	570 01	. D. V		
	75	(RF.LE.J.)	63		570 01			
	240 (6)	TAALANCE . ST	.3 20. 351743.63	.n.) 25 Em 285	570 01			
	271	1.	\$ Jai-1	474. 48 10 234	ST3 01			
165	141	TAB-O-			570 01			
	2.3	SCALEORAM			STO 01			
	ī	PAMAEQ. 1.1	01 • 3 .		513 31			
	1.5	(RAME D. 1.)	32 • • •		572 OL			
	I F	PADNY. EG. 3	.1 43 13 14.		\$70 01			
170	9-1	LI-PHILAR S	P421-P41248 5 4	LP44=4L 24A42	STO OL			
	PR	141 270		· · - · - · · · · ·	10 012			

	233384# STO	74/74	321=1	FT	4 4.5+426	41/39/	/ Z E •	10.19.43	PAGE	4	
	270 Fü	.411113X,+1N .41113X,+1N	STANTANEDUS ROTA	TION AT GEI+)		0 ET2					
				334.3EI.4E.3.1 G	292	\$10					
175				1: [L 15# \$ 37 TO L6		570					
				F1+#F21*0T/360G.1		\$13					
			131 63 13 355 A1 60 13 310			0 072 0 CT2					
		INT 363	X1 00 11 310			\$10					
180			SE TERRINATED (D	ISTMAN EXCEEDEDIO!		STO					
		T) 730				STO					
			000) GD TD 410			0 CT2					
			0JR.RJC.E3.0.) 8 s drjct=drjc	33 11 330		\$13					
185		T= (-BALANCE)				STJ					
		TA- (AGY+AGYL				272					
		31 - DROCL + A GY				513 (
		090+00901=00 0094+H009=H				C T Z					
196				AT 320, DRGC, AGYA		\$10					
• • •	327 F3	A TATELX CLI	A. ACLIS ATAC ER	20.51)		STJ					
) 60 TJ 430			573 (
		T2 350				C12					
195			.A.D.SINKD.LE.D) 3.) 68 TD 433			ST3 (
• • •		THUE 31 - THUE				STO					
	53	L3 182	_			STO					
	360 IF	CHETRIC . NE . O	1 33 T3 380			STO					
200				, + FT. +, /, 10x, + VEL	30177 a 4.520.0	STO (
200				J.5. * SEC. *, /, 134,							
			EZD.5. POLNOS M			513 (
		T3 400	_			ST3 (
205		147 393,D,v,			20194 - 4.530	573 (
207				,*							
			E20.5. KIL JGRAM			STO					
			3) GC TO 630			510					
••.		TJ (500,610)), SEG4E4T			570					
216		147 423 84411101.411	IJ 4UCH TI4E+I			0 CT2					
		TJ 360	79 106-1 12 16-7			513					
		147 440				STO					
	440 F3	SV*(XCI)TAPR	HICLE IS AIRBORN	€ +)		\$73					
215	12	INK-104 FT. (detric-us-0	11 151 MED 4.	K, 151NK		CT2					
	İF	(SINKD.GT.O.) PRINT 450.35IN	K.ISINK		cra					
	450 F7	AMP, XCI)TAPP	ATEID NEIS MUPIK	NCE 15 . E20. 5. A101		510					
						STO					
220	463 F3	4941 (13X,00	EL AT PSEUD] LIF	T) F F • }		ST3 (
	ir IR	DC=10H FT-/5	DEI AT PSEUD) LIF 33 TO 493 SEC. 3) IROC+134 4./SE			513					
	Ĩ.ř	(4ETRIC. NE. 3	321.P PCI+3081 (c.		sto (
	7.4	4 41 4109 H CC P	1 4 36			STO					
225			HESLE HAS A RIC	JF *+625,410)		510 512					
		3C=104 FT. (4ETRIC_NE_0) [RGC+134 4.			212					
		INT 430 - RECH				STO					

	PRIJIRAM STO	74/74	Jer-1	FT4 4.5+428	97/04	/28.	10.15.43	PAGE	5
230	487 +344 490 63 8 562 PRIM	3 303	TPDESH JADITRE		570 573 573	0230			
	GJ T C ALP) e30 44 CORPEC		TATIONSSSSSSSSSSSSSSSSSS	\$13 \$13	0233 0234			
235	530 CALL	TL035(30 TL305(31	jûs Ab⊂sasasas YYI qo CqoOqoCqbql 231 qoCqoOqoslabq, 224 qoCqosqoSbq,	\$G\$	C72 C72 C72	0236 0237			
240):65 144	- 10G++2+Y	C3442 \$ ERA=123	, 46.J.)GG TO 531 % 4R=L2-f3G % 4RC=1. 46.J.)GG TO 531 % 4R=L2-f3G % 4RC=1.	C12	0239			
	346 <i>7</i> 46 <i>7</i> 4	HQUACHOAF O+AFQUA-A	182 +136		STO	0242 0243 0244			
245	540 FJR 4	PPINT.NE. AT(134,5(RINT 54C,ALPHA,DALPHAD,1YTCG,KCG,YCG BELDH LETTE TURE ETLA LETTE	513 513	0247			
256	256 356 356 356 356 356 356 356 356 356 3	TAE-1. 5	ITRIP-0	RCTAVELE YE POITATER AF.C.C.C.A.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C	513 513	0248 0249 0250 0251			
	IF(I 570 FORM	PRINT.NE. AT(10x,25	Q (L.Cā.L.Cra.C)	RINT 57C+N#RF#JELTAE 10X+E12+51)	\$10 \$10 \$10	0252			
255	580 CALL CALL	TL005114 TL005113	ISH 4 SATUSO LICE	H2I, VSTARR1,CL) , VSTARR1,CD)	573 078 172	0256 3257			
260)4+. 38+)	5+CD+4++2	ST34E+D361L3F+D		513 513 513	0259			
	3 A L A				510 510 510	0263 9264			
265	₹ ÷ •(TT SPCRPLEVER	00000000000000000000000000000000000000	EVER	573 573	0265 0266 3267 0268			
270	4 % G 4 4 £ T C +1	ESS-LRAGO P	:05(>ITC4)+4U+L4	3PIZ#%J-(FD719)2C3*U##FJ46FC7143M12#4		0269 0270			
	550 D2=3 15(1 15(1 000	+.5+0T+({ TRIP) 530 1 560,260	**************************************			0273 0274			
275		AT (13x, *E		CONTRACTOR		0276 0277			
			*********	******					
250	4GY =	AT(//,10x	**LIFTOFF CHARA PUFSHANABEF/4 ************************************						
201		***63. *({ ***	L+F3V-4)/=G+) 14			0284 0285			

	PROGRAM STG 74	/74 JPT+1	FTW 4.0+420	£1/u³/25. 10.18.43	P4úć	•
		C.E4.G1 34 T3 553		ST3 0286		
	1473-134			ST3 0287 ST3 0288		
	AH9=1>H9 66 1r154 386			513 0289		
240		JEFFERSTANTANEJUS RIC I	3 0,623,5,4131	573 0290		
	572 1F(4ETR)	2.NE.21 33 13 59.		573 3291		
	38 1 4 1 6 B	0.4Gt.L.JR.F3V.F34		573 0292		
	562 FJ44461	DESCRIPTION AFFICE SECRETO	TIDN =+,E20.5,+ G[S+,/,10x, CE+,/,10x,+DRAG ++,19x,E20.5,	573 0293		
	••LIFT ••	16x, E20.9, • PJUNDS FC4	CE+, /, 1CH, + DRAG -+, 191, E20.5,	310 0294		
195	** P3JA35	- PORTER, / 138, PV 1113AL		295 CT2 295 GT2		
	\$0 PZJACZ		46 3-333 14403115523131	573 3297		
	63 T3 71			570 3299		
	590 P914T 70	O. Aŭkal a JR ofivofû4		513 3299		
300	7CO FORMAT(1	DEFENDED ATTROPERED AND LEVERA	34322 145721 ++*557*2** +***10x*+3H*9 ++*16x*E53*2* 1134 +**E50*2** ([2****13x*	713 0300		
	**L1FT =*	149x1620.514 MEUTONS	** / * TOX * * DA MG * * * * 1 9 % * E 20 * 5 *	ST3 0331		
	NEUTCH	S +./,loc, verrical	34355 144UST **,2X,E23.5,	510 0302		
	MOTESA OF Motesa oo	2 49791779447KI 57KI	#F 68372 L44021E53.2.	5T3 0303 ST3 0304		
305		E.C.) GO TO 730		\$13 0305		
		ATE(ASDATA,D,ASA)		573 0366		
		.EQ13) CALL UPDATE (P	HDATA, D, PHRC)	ST3 0307		
		.LE.J.) GD TJ 723		50E0 CT2		
		(Z4.C.LTACPUS) 314	s an to 730	\$10 0307		
316		ATECRUSATA, D. T. G. G. T. A.		ST0 0310		
	733 PRINT 74			STD 0311 STD 0312		
	63 13 10	.1x,22(64 MEXT),/)		510 0313		
	750 [F(RJN.L			573 0314		
315		A(11.62.).) 32 TO 773		\$73 0315		
	PHR DC -SP	CPUSALTAGE 94112PPL		513 0316		
		O. PHR IC. IROC		\$70 0317		
			POLATED R/C 15 +>=20.5+A101	STO 0318		
32C		1[1,AGDATA,RUN]		\$10 6319 \$13 6320		
320		HOL(1,7)40ATA, RUN)	SZHS+(4)# & AP ZGNUǪ NO(*(6)			
		5.40.3.410.PSi41.64.3.1		2260 672		
	1(1)+64	H. 5 ((3)=134 KIL)GR	445 S K(4) 42H	573 0323		
	I=(PSINT	.69.0.1 33 T3 780		513 0324		
325		PS - \$ K(3)+104 4./SEC	•	STD 0325		
		C.NE.01 33 T3 783	_	\$10 0325		
		FEET & <(3)=134 FT./SE		75EC CT2 0320 C72		
			THIOS ATAC SYCEA SHT OF POINT			
330			6, 4THE4, 45, 4154, E23.5, 410, 43, 1,60			
		E HORIZONTAL ASCELERATI		510 0331		
	STOP			573 3332		
	211111111111		BUT CALCULATIONS	\$10 0333		
		.3) 63 T) 813		STO 0334		
335) RS=V S [F(RSF.GT.J.) RSF=V S Tu-	3335 3450 GT2		
		SINK & BSINKL-BSINK & D LANCE-G/B	214KF-3214K	570 0337		
		ASING+ASINKL)+.5		STO 0339		
		SINKL+ASINKA+OT		\$10 0339		
340		#SINK+VSINKLI*+5		STu 0343		
		TC+ANFIRVALINE		ST3 0341		
	IF(IPRIN	17.6E.O.440.J.E3.[] PRIM	T 920, ASINK, VSINK, OSINK	SPE0 CT2		

	PRISTAN STO	74/74	321-1	FT4 4.6+42s	#1/09/2f. Lu.19.43	PASE	7	
		447(1%,05) 13 340	INC JATA+,3[104,E25.5])	\$70 03+3 \$70 03++				
345		•••••	*****************					

SUSPOJET	NS TAKES	7-/74	3> 7-1		T4 4.5+42.	61/09/25.	10.18.43	Pláč	1
1	CTAKESI								
•			455611,d,C,Y,Z,F	-777		TAK 50001			
				AV TROEPENDENT FLO	21441-5- D46 3/77				
			/WHAR, TOATA (3007)			TAKSOUCA			
\$		THIFFINEPP				TA450305			
	31	TEASION ACL	001-1001-1-514115	\$(3)		TAKSOUCE			
		ETHERRAFI				TAKSJJO7			
		TA MPRIMI/7	,			TA453308			
10		TRY TREAS				TAKSOSUR			
10		ISEL=S PRT = hPR	144			TAK50010			
		(NT 3 L . VE . C)				TAK 50011			
		: •••1	33 15 25			TAKSODIZ			
		13 Helphma	A.			TAK50014			
15		ATA(41-0.				TAK50015			
	IL	Aif+1				T44 50010			
		AJ 30, IP,I				TAKSJJ17			
		RMAT (11)14	•75 1			TAK 5001 8			
	1					TAK50017			
20	IF NT		0) 33 73 110			TAKSODZO			
		BL = NT3 IF•TDATA(NT				TAKSOS21 TAKSOS22			
		ATACHTSL+30				TAK50023			
		(479L.LE.1)				TAK 50024			
25		53 LYRA-Z,				TAK50025			
	15	(ENIF.EQ.TO	ATA(LYRA-LI) SO T	ra 68		TAKSOSZÓ			
		MTINUE				TAKSOSZT			
		13 510				ESODE NAT			
••			TOATA(LIRA+29)			TAK50029			
3 C		IGEL-MRIGEL				TAKSJU30			
		139 IFM) ZLI S COOCC = maps				TAK50031 TAK50032			
		48 = L JC = 1				TAKSOOSE			
		73 18K-1,N	T3L			TAK50034			
35	LI	ITATAGE - APE	8<+331			TAKSOSSS			
			MERIA).CPA.(AISP	SEIJ (IPASEIJoTJo	A4-LI3RA	TAKSJOS6			
		NTINUE				TAK 50037			
		O-LIBRAN-ME				TAK50038			
40			LIBRAM, IZAR TDATA(NEKKAR)			TAK50339			
70		RA4=PERAK+1				TAK50040 TAK50041			
		SALINAR CP				TAK50042			
		SATATA CHE				TAK5JJ43			
	1 +	ILLOC.GT.IA	PIES) TOATALNEKKA	1R+301+LLDC-LED		TAK50044			
4.5		NTINUE				TAK50045			
		ATAILYRA+29				TAK50046			
		100 IBALT-				T4K50347			
		ATA{[BALT]=: C=4Eka4	0.			TAK50048			
5C		LUTERAT ∂L=NTBL-1				TAKSOO49			
,,		TJ 210				TAK53351			
		EMONMAX-LOS				TAK 50052			
		(4TBL.LE.1)	33 TO 143			TAK 50353			
	C+++ 4E	JRJER TABLE	REFERENCE NUMBER	1\$		TAK50354			
; ;	129 43					TAKSOSSS			
		130 L-2,NT	3L			TAKSOCSS			
	41	•L-1		·-		T4K50057			

,	CEPAT SPITLERD	75/75	751+7		FT4 4.0002:	11/03/26.	10-10-43	PASE	2
	K2•	L				TAK 33058			
	160	TDATACKLIACT	.T.TDATA(<2))	63 T3 130		TAKSOJSS			
e:		VERTACK!				T44 50060			
	174	T4 (41) - T041	[4(<2)			10COt NAT			
	TOA	T44421+X541	f É			SOCCEPAT			
		YE - TDATA(K)				TA4500E3			
			[]ATA(K2+3)]			TARSUGGE			
c o		T41K2+301+1	ISA/E			TAKSOCOS			
		14:=6				TAK 50066			
	130 00%	TINUE				TAK 50067			
	1-(16.05.5PCCH	G3 TG 120			TAKSOCOS			
	143 IF(II.LE.)) GO	7 7 473			T4450069			
70	IFO	MPRINT. ED. ()) 53 T3 15C			TAKSOOTO			
		MT 150				T4450071			
		74711-123				T4450072			
	156 941	NT 170+ NT36				T4K5J073			
	170 FJR					STAKSOS74			
7:	18,4	UN BIGATEE	1822 REFERENCI	E NJESER LI	CATION)	TAKSOO75			
				11674,144,10644)		T4450376			
			2,12x,f5.3,154	,F5.0)		TAKSOSTT			
		THE CCET TH				T4450078			
				AGE ALLICATION ,14,	JAFOTE AT ACHPS . X CE \				
80		I U\$E3				TAKSGOES			
				PP.1*C1.(51)2L1912		T4K 50361			
				ABLES HAVE BEEN REI	LACED+,515 X,F16.J,+				
		/. (8(5x,F10				TAK 50083			
			I, TOATA (M)), 4-:	1, [01]		TAK50084			
6.5						TAX 50085			
		URN				T4450086			
	210 IP+					TAKSUSET			
		MPHINT.EQ.C				TAK50088			
90		AT 30. IP.I	PRINT 220			TAK50089			
**		44TL//////				TAK53090			
	100		,			14450092			
		. 10				14450092			
	13=					TAK 50094			
95		230 ICL-1.5				TA450095			
• • •		(ICL) = 4H	•			TAK 50096			
	240 131					TAK SOC 97			
			(4(1),[=1,4)			TAK50098			
			4. (711. 7F10.)))		TAKSSOR			
100			1 60 T3 20	•		TA450100			
		*fcc+1				TAK 50101			
	156	ICC.LE.S) 1	01-(301)60			TA450102			
	16(13.64.10L)	QU TO 353			TAKSOLOS			
	160	13.NE.100(11 43 73 25	57		T4450104			
105	156	176.64.100	3)) 33 T3	350		TAK 50105			
	F JC	-LE				TAKSSICS			
	L+L	I.				TAKSOLGT			
	63	T3 283				TAKSOLCE			
	263 TOA	TAILOCI =N				TAK50109			
113	L=L	J:				TAK50110			
			(FE ET 00 (E			T4K53111			
		13.29.10014				TAK50112			
		17.WE.100(3	(1) 53	TO 330		ELLCENAT			
	L Y *	L				TAKSOLL4			

\$U543.	JTINE TAMES	74/74]PT+1		FTN 4.0+428	31/39/26.	10.13.43	PAGE	3
115	LZ+L					TAK50115			
		3 333				T4453116			
	235 17(1 Lfoi		22 13 333			TAK50117 TAK50118			
			11 ARINT 235-1.	GD(1), TDATA(L4)		TAK 50119			
120			.140,E13.*)	03(1)) 13214(24)		TAK5012			
•••				DD (21.TDATA(LZ), I	03(3).TOATA(LY)	T4450121			
•			14=, E13.5, 1X,4			TAK 50122			
	JF=0					T4450123			
	発用を					TA453124			
125	LF+L					TAKSO125			
	313 42-4					T4453126			
		- GT - 81 NP	• 5			TAK53127			
	404-	47 F+42				TAK50128			
130	15. 15.					TAK50124			
130			. 01 201hT 321.11	DD(41, (TDATA(I), 1		TAK50130			
			6,14,8£13.5)	00(4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		T4430132			
	LF+L		************			TAK50133			
		F+NP				TAK50134			
135	jē- j					T4450135			
	IFIY	PRINT. NE.	.0) PRINT 320,II	DD(51, {A{I}, I=JF, J	IE)	TAK50136			
	Jf = J	-				T4K30137			
		.GT.01 3				TA430135			
		40 1-1.4				TA450139			
14G		L 3C+1				TA<50140			
	340 IJAI Liot	A(LJC)-41	(1)			TAK53141 TAK50142			
			(5)) TDATA(LDC+	21=1		T4K50143			
		L+3*4+3	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,-1.		T4K53144			
145			111370,240			TA452145			
-			DATACLES			TA450140			
	1.13	:				TA450147			
	33 3	50 I-L-4				TAKSG148			
		LJC+1				TA450149			
153			(I+KJ)&TAC			TAK 30150			
		2 280				TAK50151			
		T 383, I1				T4K50152			
		3 43	(10000000000000000000000000000000000000	E DASK LEDA 1143FE	139TTH WOI FRANCE	TAK 30133			
155			#+1 \$ 60 TJ 270	3		TAK30155			
•••				•		TAKSOLSO			
						TAK30157			
	17(1	I.LE.31 4	RETURN			TA450159			
			REST TABLE			TA450159			
100		TBL+1				TAK50160			
	NL=1					TAK 50161			
	<-!-					T4K50162			
	XTAS					TAK50163			
165	KT+J 4C0 4T+4					TAK50165			
,			0 TO 470			TAK 50165			
			TA(K)).E3.3.) 3:	1 11 432		TAK50167			
			TA(K)).LT.J.) 3			1AK53168			
	NL.	• K				TAK50169			
176		7 429				TAK 59170			
	410 44+4					TAK50171			

•	SUBROJITINE TAKES 74/74 OP	f=1	FTN 4.5+428	41/04/28.	10-18-43	PAGE	•
	425 KOEH4-NL3/244L			TAK30172			
	43 73 403			T4450173			
	43u ILAST•K			TA450174			
179	f CE+#) # TATA (4+30)			TA430175			
	(11)ATAG1-54]			74<53176			
	I4-3-IH5+1Z+3			14430177			
	14-17			14453174			
	IZ1-1Z+INZ+1			TAK > 0179			
100				TAK30180			
	03 450 175-171, [22		14420187			
	(YI)ATACI+PHI			ZBICEPAT			
	14-3-144+11+3			TAK50183			
	IaeI4			TA450184			
185				TAK50185			
	IAS+IA+SeIMA			TAC30186			
	00 450 175-171-1	12		TAK 50187			
	(XI) ATACT = X+1			TAKSOLES			
	[4-3-[MX+[P+3			TAKSOLE9			
190		•		TAK 50193			
	1x2=[x+2=[h4			TAK50191			
	DO 440 IXS-IX1, 1			SPIOCHAT			
	FHL98-18XI) ATACT			TAK50193			
195	PIDATACT-E+PI=PI C++			74453194 74430195			
142		[(IX, IJAIA, X)		14K30143			
	450 IX-Id			TAK50197			
	CP 192=12513 ATACT	((17,1)414,1)		TAK50198			
	46C IY=IX F=XYZ=SPLMQ1(1Z.	****		74K30198			
206		10014067		TAK50200			
200					•		
	CF3			TAK 50201			

APPENDIX D

Program Logic

Flow charts for the main STO program and the subroutine TAKE5 are presented.

REVITME_ANGRESALPHMIN=EDRAG=DGTÖRE =V=T=ALT=D=E:=MF:=PH:1=PH:2= FN1=FN2=DLFG=DDFG =VGTARR=EDATUM=EFA:LA=0E1=0E1LDGF=0 IF(ICGUNT.NE.G) Ţ GS TD 90 lC=l RESO 30.1COPY FORMAT(281,68.7810) FORMAT(1X.281.68.7810) CONT. ON PO 96 2 OF D-3 34

CONT. ON PG 5

PG 4 OF 33

CONT. ON PD 9

PG 7 35 39

CONT. ON PO 10 D-10

PG 2 BE 33

PG 12 SF 39

CONT. ON PG 12 D-12

FG 12 OF 39

CONT. 3N PO 15 D-15

PG 14 OF 39

CONT. ON PO 17 D-17

21 D-18

er 20 0F 39

SCNT. ON PO 23

FG 26 CF

CONT. ON PG 35 D-35

PG 34 OF 33

D-36

PO 35 OF 33

CONT. 9N PG 37 D-37

EG 36 GF 39

CONT. ON PG 33 D-38

PG 37 0F 33

CONT. ON PO 39 D-39

CONT. ON PG 3 D-42

D-45

CONT. ON PG 7

PG 5 0F 22

CONT. ON PO S D-47

CONT. ON PG 9 D-48

. رئىيوس

CONT. ON PG 10 D-49

PG 9 0F 22

CONT. ON PO :1 D-50

CONT. ON PG 12

D-51

PO 11 DF 22

CONT. 9N PG 13 D-52

CONT. ON PO D~53

ed is at

CONT. ON PO 15

CONT. ON PG 19

D-57

0 17 OF 22

CONT. ON PO 19

EG 19 9F 22

CONT. 9N PO 20

PG 21 SF 22

END

NADC-81259-60

DISTRIBUTION LIST

Airtask No. ZR)20302

	No. of Copies
NAVAIR (AIR-954)	3
(2 for retention)	
(1 for AIR-53012B2)	
NAVAIRDEVCEN, Warminster, PA	15
(2 for 60014)	
(1 for 605)	
(1 for 6051)	
(1 for 6051:Herskovitz)	
(6 for 6051:Kobus)	
(1 for 6052:Caddy)	
(1 for 6052:Cyrus)	
(1 for 6053:Clark)	
(1 for 6093)	
	/

