Real and Complex Analysis Qualifying Exam — Fall 2013

Notation: $\mathbb{N} := \{1, 2, 3, ...\}, \mathbb{R} := \text{the real numbers and } \mathbb{C} := \text{the complex numbers, } \mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}, \Omega \text{ is a non-empty open connected subset of } \mathbb{C}, \text{ and } H(\Omega) \text{ is the set of all holomorphic functions in } \Omega. (X, \mathcal{M}, \mu) \text{ is a measure space. } |E| \text{ denotes the Lebesgue measure of the set } E.$

1. Let $\{f_n\}$ be a sequence of integrable functions on (X, \mathcal{M}, μ) such that $f_n \to f$ a.e., where $f \in L^1(\mu)$. Prove that

$$\int_{X} |f - f_n| d\mu \to 0$$

if and only if

$$\int_X |f_n| d\mu \to \int_X |f| d\mu.$$

- **2.** Prove that the measure μ on X is σ -finite if and only if there exists an $f \in L^1(\mu)$ such that f(x) > 0, for almost every $x \in X$.
- **3.** Suppose that $f \in L^1([0,1])$. Consider the two statements:
 - (a) For almost every x, f is continuous at x.
 - (b) There exists a continuous function g such that f = g almost every

For each of the possible implications $(a) \implies (b)$ and $(b) \implies (a)$, either prove the implication is true or provide a counterexample.

- **4.** Given $\varepsilon > 0$, find a compact set $K \subset [0,1]$ that contains no rationals and satisfies $|K| > 1 \varepsilon$.
- **5.** Suppose that $f \in L^1(\mu)$. Prove that to each $\varepsilon > 0$ there exists a $\delta > 0$ such that $\int_E |f| d\mu < \varepsilon$ whenever $\mu(E) < \delta$.
- **6.** Find a closed form in which "i" does not explicitly appear for the function f(z) represented by the series

$$\sum_{n=0}^{\infty} \sin(n) z^n$$

and deduce the radius of convergence of this series.

- 7. The functions $f_n \in H(\mathbb{D})$ are all bounded by $C < \infty$ and $f_n(z) \to 0$ for each $z \in \mathbb{D}$.
 - (i) Show that $f_n \to 0$ uniformly in \mathbb{D} may fail.
 - (ii) Show that $f_n \to 0$ uniformly in $r\mathbb{D}$ for each $0 \le r < 1$.
- **8.** Suppose f is holomorphic in a neighborhood of $\overline{\mathbb{D}}$ and $|f(0)| < \min\{|f(u)| : u \in \partial \mathbb{D}\}$. Prove that f has a zero in \mathbb{D} .
- **9.** Suppose $f \in H(\mathbb{C})$ maps \mathbb{R} into \mathbb{R} and the open upper half plane into itself. Show that $f'(x) \geq 0$ for all $x \in \mathbb{R}$.

Hint: Cauchy - Riemann equations.

10. Evaluate

$$\int_0^\infty \frac{\cos x}{1 + x^4} dx.$$

Hint: Consider the meromorphic function $\frac{e^{iz}}{1+z^4}$ and the semicircular contour with diameter [-R,R].