Siamese recurrent networks can learn first-order logic reasoning and exhibit zero-shot generalization to novel expressions

Mathijs Mul Jelle Zuidema

May 3, 2019

► Entailment Recognition

- ► Entailment Recognition
- What is the logical relation between a pair of expressions?

- Entailment Recognition
- What is the logical relation between a pair of expressions?
 - ► Equivalence?
 - Some people are no logicians
 - ► Not all people are logicians

- Entailment Recognition
- What is the logical relation between a pair of expressions?
 - Equivalence?
 - Some people are no logicians
 - ► Not all people are logicians
 - ► Contradiction?
 - ► Some people are no logicians
 - All people are logicians

- Entailment Recognition
- What is the logical relation between a pair of expressions?
 - Equivalence?
 - Some people are no logicians
 - ► Not all people are logicians
 - Contradiction?
 - ► Some people are no logicians
 - All people are logicians
 - ► Independence?
 - Some people are no logicians
 - ► The moon is made of green cheese

- Entailment Recognition
- What is the logical relation between a pair of expressions?
 - ► Equivalence?
 - Some people are no logicians
 - Not all people are logicians
 - Contradiction?
 - ► Some people are no logicians
 - ► All people are logicians
 - ► Independence?
 - Some people are no logicians
 - ► The moon is made of green cheese
 - **.** . . .

Motivation

► Are recurrent neural networks capable of inferring entailment relations?

Motivation

- ► Are recurrent neural networks capable of inferring entailment relations?
- How do they perform in relation to symbolically guided models?
 - ▶ In particular: the recursive neural networks used by Bowman e.a. in 'Recursive neural networks can learn logical semantics' (2015)

Motivation

- Are recurrent neural networks capable of inferring entailment relations?
- How do they perform in relation to symbolically guided models?
 - ▶ In particular: the recursive neural networks used by Bowman e.a. in 'Recursive neural networks can learn logical semantics' (2015)
- ▶ Do they apply compositional generalization, or just memorization?

Approach

1. Define an artificial language $\ensuremath{\mathcal{L}}$

Approach

- 1. Define an artificial language $\mathcal L$
- 2. Deduce entailment relations between random pairs of sentences in \mathcal{L} , using first-order logic

Approach

- 1. Define an artificial language $\mathcal L$
- 2. Deduce entailment relations between random pairs of sentences in \mathcal{L} , using first-order logic
- 3. Test the models on the data thus generated

Asymmetric taxonomy of nouns:

Asymmetric taxonomy of nouns:

Binary predicates:

Quantifiers: {all, some}

- ▶ Quantifiers: {all, some}
- ▶ Adverbs: $\{not, \epsilon\}$

```
< ( ( all Europeans ) ( hate ( all Germans ) ) )
            ( ( all Romans ) ( hate ( some Europeans ) ) )
> ( ( some children ) ( like ( all Germans ) ) )
            ( ( all children ) ( love ( all Germans ) ) )
```

```
< (( all Europeans ) ( hate ( all Germans ) ) )
      (( all Romans ) ( hate ( some Europeans ) ) )
> (( some children ) ( like ( all Germans ) ) )
      (( all children ) ( love ( all Germans ) ) )
= (( some Italians ) ( ( not like ) ( all Romans ) ) )
      (( not all ) Italians ) ( like ( all Romans ) ) )
```

```
< ( ( all Europeans ) ( hate ( all Germans ) ) )
        ( ( all Romans ) ( hate ( some Europeans ) ) )
> ( ( some children ) ( like ( all Germans ) ) )
        ( ( all children ) ( love ( all Germans ) ) )
= ( ( some Italians ) ( ( not like ) ( all Romans ) ) )
        ( ( not all ) Italians ) ( like ( all Romans ) ) )
# ( ( ( not some ) Romans ) ( fear ( all children ) ) )
        ( ( all Germans ) ( like ( some ( not Europeans ) ) ) )
```

Only 0.07% of the data space is seen during training.

Recurrent network

Recurrent network

- Recurrent network
- ► Three types:
 - Simple Recurrent Network (SRN)
 - ► Gated Recurrent Unit (GRU)
 - Long Short-Term Memory (LSTM)

Baseline 1: Summing Neural Network (sumNN)

Baseline 2: Tree-Shaped Neural (Matrix) Networks (tRNN)

► Baseline 3: Tree-Shaped Neural Tensor Networks (tRNTN)

Testing accuracy

Testing accuracy

Testing accuracy

Negated sentence vectors (GRU)

Sentence vectors cluster according to verb...

... and second quantifier

Interpretation

▶ What is happening in the hidden units?

Interpretation

- What is happening in the hidden units?
- ▶ Diagnostic classification on best-performing GRU suggests awareness of:

Interpretation

- What is happening in the hidden units?
- ▶ Diagnostic classification on best-performing GRU suggests awareness of:
 - Semantic type

Interpretation

- What is happening in the hidden units?
- ▶ Diagnostic classification on best-performing GRU suggests awareness of:
 - Semantic type
 - Recursive depth

Interpretation

- What is happening in the hidden units?
- ▶ Diagnostic classification on best-performing GRU suggests awareness of:
 - Semantic type
 - ▶ Recursive depth
 - Position in sentence

- Generalization to unseen lengths
 - ► Training on sentences of lengths 5, 7 or 8
 - ▶ Testing on sentences of lengths 6 or 9

- Generalization to unseen lengths
 - ► Training on sentences of lengths 5, 7 or 8
 - ▶ Testing on sentences of lengths 6 or 9
 - ► Testing accuracy:

- One-shot learning
 - Train GRU with fixed GloVe embeddings
 - At testing time, replace words in data with unseen ones, and add corresponding word embeddings to models

- One-shot learning
 - Synonyms:

- One-shot learning
 - Synonyms:
 - ightharpoonup children ightarrow kids

- One-shot learning
 - Synonyms:
 - ightharpoonup children ightarrow kids
 - ightharpoonup love ightarrow adore

- ► One-shot learning
 - Synonyms:
 - ightharpoonup children ightarrow kids
 - ightharpoonup love ightarrow adore
 - ightharpoonup fear ightharpoonup dread

- One-shot learning
 - Synonyms:
 - ightharpoonup children ightarrow kids
 - ightharpoonup love ightarrow adore
 - ightharpoonup fear ightarrow dread
 - ▶ hate → detest

Synonyms

Synonyms

- One-shot learning
 - Ontological twins

Ontological twins

Ontological twins

