Simulacije

1. *Buffonova igla*. Iglo dolžine ℓ mečemo na površino z narisanimi vzporednimi črtami, ki so na enaki razdalji t. Izračunajte verjetnost, da igla seka katero od črt. Pri tem ločite naslednje primere: $\ell = t$, $\ell < t$ in $\ell > t$.

Rešitev: Pozicijo igle določata parametra d in θ , pri čemer je d razdalja razpolovišča igle do najbližje črte in θ kot zasuka igle glede na vzporedne črte.

(a) $(\ell=t)$: Igla seka črto, kadar je izpolnjen pogoj

$$\frac{\ell}{2}\sin\theta > d.$$

Verjetnost izračunamo kot razmerje ploščin

pri tem je

$$A = \frac{t}{2} \int_0^{\pi} \sin \theta d\theta = t.$$

Od tod dobimo, da je verjetnost enaka $P = \frac{2}{\pi}$.

- (b) $(\ell < t)$: Podobno kot prej, le višina pravokotnika je enaka $\frac{t}{2}$, sinus pa doseže največjo vrednost $\frac{t}{2}$. Od tod dobimo $P = \frac{2\ell}{\pi t}$.
- (c) $(\ell > t)$: Označimo presečišči premice $y = \frac{t}{2}$ in funkcije $f(x) = \frac{\ell}{2}\sin\theta$ z θ_1 in θ_2 . Izračunamo $\theta_1 = \arcsin(t/2)$ in $\theta_2 = \pi \arcsin(t/2)$. Tedaj je ploščina krivočrtnega lika, ki leži pod grafom funkcije f in pravokotnikom enaka

$$A = (\theta_2 - \theta_1) \frac{t}{2} + 2 \int_0^{\theta_1} \frac{\ell}{2} \sin \theta d\theta$$
$$= (\pi - 2\arcsin(t/2)) \frac{t}{2} + \ell(1 - \cos \theta_1).$$

Ker je $\theta_1<\frac{\pi}{2}$, velja $\cos\theta_1=\sqrt{1-\sin^2\theta_1}$. Od tod sledi $A=(\pi-2\arcsin(t/2))\frac{t}{2}+\ell(1-\sqrt{1-(t/\ell)^2})$. Končno dobimo

$$P = 1 - \frac{2}{\pi} \arcsin(t/\ell) + \frac{2\ell}{\pi t} - \frac{2}{\pi t} \sqrt{\ell^2 - t^2}.$$