

Available online at www.sciencedirect.com

LINEAR ALGEBRA AND ITS APPLICATIONS

LSEVIER Linear Algebra and its Applications 407 (2005) 105–116

www.elsevier.com/locate/laa

r-Indecomposable and r-nearly decomposable matrices $^{\Leftrightarrow}$

Lihua You ^a, Bolian Liu ^a, Jian Shen ^{b,*}

a Department of Mathematics, South China Normal University, Guangzhou 510631, PR China
 b Department of Mathematics, Texas State University, San Marcos, TX 78666, USA
 Received 7 January 2002; accepted 26 April 2005

Submitted by R.A. Brualdi

Abstract

Let n, r be integers with $0 \le r \le n-1$. An $n \times n$ matrix A is called r-partly decomposable if it contains a $k \times l$ zero submatrix with k+l=n-r+1. A matrix which is not r-partly decomposable is called r-indecomposable (shortly, r-inde). Let E_{ij} be the $n \times n$ matrix with a 1 in the (i, j) position and 0's elsewhere. If A is r-indecomposable and, for each $a_{ij} \ne 0$, the matrix $A - a_{ij}E_{ij}$ is no longer r-indecomposable, then A is called r-nearly decomposable (shortly, r-nde). In this paper, we derive numerical and enumerative results concerning r-nde matrices of 0's and 1's. We also obtain some bounds on the index of convergence of r-inde matrices, especially for the adjacency matrices of primitive Cayley digraphs and circulant matrices. Finally, we propose an open problem for further research. © 2005 Elsevier Inc. All rights reserved.

AMS classification: 15A36; 05C20; 05C50

Keywords: Partly decomposable; Indecomposable; Nearly decomposable; Primitive matrix; Exponent; Cayley digraph

^{*} Research supported by National Natural Science Foundation of China (no. 10331020) and NNSF of Guangdong Province (no. 04010389).

^{*} Corresponding author.

E-mail addresses: ylhua@scnu.edu.cn (L. You), liubl@scnu.edu.cn (B. Liu), js48@txstate.edu (J. Shen).

1. Introduction

Let B_n denote the set of all matrices of order n over the Boolean algebra $\{0, 1\}$. Let $J_n \in B_n$ be the matrix whose entries are all equal to 1, and let $E_{ij} \in B_n$ be the matrix with a 1 in the (i, j) position and 0's elsewhere. There is a one to one correspondence between B_n and all digraphs D = (V, E) with vertex set $V = \{1, 2, ..., n\}$ and arc set $E = \{(i, j) \in V \times V : a_{ij} = 1\}$. The digraph D corresponding to $A \in B_n$ is called the *associated digraph* of A, denoted by D(A); and the matrix A corresponding to D is called the *adjacency matrix* of D, denoted by A(D). A digraph D is *strong* if, for any two vertices x and y, D contains a path from x to y and a path from y to x. A matrix $A \in B_n$ is *irreducible* if its associated digraph is strong.

Let n, r be integers with $0 \le r \le n-1$. An $n \times n$ matrix A is called r-partly decomposable if it contains a $k \times l$ zero submatrix with k+l=n-r+1. A matrix which is not r-partly decomposable is called r-indecomposable (shortly, r-inde). If a matrix A is r-inde and, for each $a_{ij} \ne 0$, the matrix $A = a_{ij}E_{ij}$ is no longer r-indecomposable, then A is called r-nearly decomposable (shortly, r-nde). In particular, a 0-inde matrix is called a Hall matrix, and a 1-inde (resp. 1-nde) matrix is called a fully indecomposable (resp. nearly decomposable) matrix. If A is r-inde (resp. r-nde), its associated digraph D(A) is called r-inde (resp. r-nde).

A matrix A is said to have a positive diagonal if there exists a permutation φ of $\{1, 2, \ldots, n\}$ such that all entries $a_{1\varphi(1)}, a_{2\varphi(2)}, \ldots, a_{n\varphi(n)}$ are positive. If $a_{ii} > 0$ for all i, then A is said to have a positive main diagonal, denoted by $I \leq A$.

Let $A=(a_{ij})\in B_n$, and let s and t be integers with $1\leqslant s,t\leqslant n$. For $1\leqslant i_1< i_2<\cdots< i_s\leqslant n$ and $1\leqslant j_1< j_2<\cdots< j_t\leqslant n$, we write $\alpha=(i_1,i_2,\ldots,i_s)$ and $\beta=(j_1,j_2,\ldots,j_t)$. Let $A[i_1,i_2,\ldots,i_s|j_1,j_2,\ldots,j_t]=A[\alpha|\beta]$ denote the submatrix of A whose (p,q) entry is $a_{i_pj_q}$; that is, $A[\alpha|\beta]$ is obtained from A by deleting those rows not indexed in α and columns not indexed in β . Similarly, $A[\alpha|\beta)$ denotes the matrix obtained from A by deleting the rows not indexed in α and columns indexed in β . The matrices $A(\alpha|\beta]$ and $A(\alpha|\beta)$ are defined analogously. Let $\lfloor x \rfloor$ denote the maximum integer s such that $s \leqslant x$, and let $\lceil x \rceil$ denote the least integer s such that $s \geqslant x$.

Let $n \ge m \ge 1$ be integers and let $A = (a_{ij}) \in B_{m \times n}$. The permanent of A is

$$Per(A) = \sum_{(i_1, i_2, \dots, i_m) \in P_m^n} a_{1i_1} a_{2i_2} \dots a_{mi_m},$$

where P_m^n is the set of all *m*-permutations of $\{1, 2, ..., n\}$.

For an $n \times n$ Boolean matrix A, the behavior of the sequence A, A^2 , A^3 , ... mainly depends on two parameters: the period of A and the index of convergence of A. The period of A, denoted by p(A), is the least positive integer p such that $A^{l+p} = A^l$ for some l, and the index of convergence of A, denoted by k(A), is the least value of l for which $A^{l+p} = A^l$ holds. If A is irreducible with $A \neq [0]$ and p(A) = 1, we call A primitive, and in which case the index of convergence of A is

called the exponent of A, denoted by $\exp(A)$. It is well known that A is primitive if and only if there exists a positive integer k such that $A^k = J$.

Let $\sigma(A)$ be the number of entries of A equal to 1, and let m(D) be the number of arcs in D(A). Then $\sigma(A) = m(D)$. Let

$$f(n,r) = \max\{\sigma(A) : A \in B_n \text{ is } r\text{-nde}\}\$$

and

$$g(n, r) = \min{\{\sigma(A) : A \in B_n \text{ is } r\text{-nde}\}}.$$

Clearly, a matrix $A \in B_n$ is (n-1)-inde or (n-1)-nde if and only if A = J. So throughout the paper we always assume r < n-1 and only discuss this non-trivial case. In [1], Brualdi and Hedrick derived some structural, numerical, and enumerative results concerning nearly decomposable matrix of 0's and 1's. For r = 1 (and n > r + 1 = 2), they proved that

$$f(n, 1) = 3n - 3$$
 and $g(n, 1) = 2n$.

In this paper, we continue the study of the two functions f(n, r) and g(n, r) for $r \ge 2$. The paper is organized as follows. In Section 2, we give some sufficient and necessary conditions on r-inde matrices by means of permanent and r-connected digraph (r-irreducible matrix), and give some examples for r-inde matrices. In Section 3, we prove that g(n, r) = n(r + 1) and that

$$f(n,r) \geqslant f'(n,r) = \begin{cases} \left\lfloor \frac{(n+r+1)^2}{4} \right\rfloor & \text{if } n < 3r, \\ (n-r)(2r+1) & \text{if } n \geqslant 3r. \end{cases}$$

Moreover, for each i with $g(n, r) \le i \le f'(n, r)$, we construct an r-nde matrix $A \in B_n$ with $\sigma(A) = i$. This extends a result [1, Theorem 3.4] for r = 1 by Brualdi and Hedrick. In Section 4, we discuss the exponent of r-inde and r-nde matrices and provide a new and simpler proof for a result [4, Theorem 2.1] by Huang. In Section 5, we propose an open problem on r-nde matrices as a suggestion for further research.

2. r-Indecomposable matrices

Theorem 2.A (Frobenius-Konig). The permanent of an $n \times n$ non-negative matrix A is zero if and only if A contains an $s \times t$ zero submatrix with s + t = n + 1.

Lemma 2.1. Suppose $0 \le r \le n-1$ and $A \in B_n$. Then the following are equivalent.

- (i) *The matrix A is r-inde*.
- (ii) For each k with $1 \le k \le n-r$, the matrix A does not have any $k \times l$ zero submatrix with k+l=n-r+1.
- (iii) For each k with $1 \le k \le n r$, every $k \times n$ submatrix of A has at least k + r non-zero columns.

(iv) For each subset $S \subseteq V(D(A))$ with $1 \le |S| = k \le n - r$, the inequality $|N(S)| \ge k + r$ holds, where $N(S) = \{v \in V(D(A)) : \text{ there is an arc } (u, v) \text{ for some } u \in S\}$ is the set of out-neighbors of S in D(A).

Proof. (i) \iff (ii) follows from the definition of r-indecomposability. The matrix interpretation of (ii) is equivalent to (iii). The graph interpretation of (iii) is equivalent to (iv). \Box

It is evident that an r-inde matrix is a 1-inde matrix for any $r \ge 1$, and a 1-inde matrix is primitive. Let $B_{n,r}$ be the set of all r-inde matrices of order n.

Lemma 2.2. $\{J\} = B_{n,n-1} \subset B_{n,n-2} \subset \cdots \subset B_{n,2} \subset B_{n,1} \subset B_{n,0}$, and every r-inde matrix with $r \ge 1$ is primitive.

Theorem 2.1. An $n \times n$ non-negative matrix A is r-inde if and only if $Per(A(\alpha|\beta)) > 0$ for any $\alpha, \beta \subseteq \{1, 2, ..., n\}$ with $|\alpha| = |\beta| = r$.

Proof. " \Longrightarrow " Suppose otherwise $\operatorname{Per}(A(\alpha|\beta)) = 0$ for some α and β . Then by Theorem 2.A, the submatrix $A(\alpha|\beta)$ and thus A contain an $s \times t$ zero submatrix with s + t = (n - r) + 1, a contradiction to the r-indecomposability of A.

" \Leftarrow " Suppose A has an $s \times t$ zero submatrix C such that s + t = n - r + 1. Then $s, t \leq n - r$. Thus C is a submatrix of $A(\alpha|\beta)$ for some $\alpha, \beta \subseteq \{1, 2, ..., n\}$ with $|\alpha| = |\beta| = r$. By Theorem 2.A, we have $Per(A(\alpha|\beta)) = 0$, a contradiction. Therefore A is r-inde. \square

Let $r \ge 1$. A digraph D with at least r+1 vertices is called r-connected if each digraph obtained from D by removing any r-1 vertices is strong. Thus an r-connected digraph has the property that, for any r+1 distinct vertices $i_1, i_2, \ldots, i_r, i_{r+1}$, there exists a path from i_1 to i_{r+1} without containing i_2, \ldots, i_r .

Theorem 2.2. Suppose $r \ge 1$ and $I_n \le A \in B_n$. Then A is r-inde if and only if D(A) is r-connected.

Proof. " \Longrightarrow " Suppose *A* is *r*-inde. By Theorem 2.1, $A(\alpha|\beta)$ is 1-inde for any $\alpha = \beta \subseteq \{1, 2, ..., n\}$ with $|\alpha| = |\beta| = r - 1$. So D(A) is *r*-connected.

" \longleftarrow " Suppose A is r-partly decomposable. Then there exists a $p \times q$ zero submatrix C with p+q=n-r+1. Since $I_n \leqslant A$, the zero submatrix C does not contain any entry on the main diagonal. Thus, there exist $i_1, i_2, \ldots, i_p, j_1, j_2, \ldots, j_{r-1} \in \{1, 2, \ldots, n\}$ such that $A[i_1, i_2, \ldots, i_p | i_1, i_2, \ldots, i_p, j_1, j_2, \ldots, j_{r-1}) = C$. Then the digraph obtained from D(A) by removing the r-1 vertices corresponding to the j_1 th, j_2 th, \ldots, j_{r-1} th rows of A is not strong, a contradiction to the r-connectedness of D(A). \square

A matrix $A \in B_n$ is called r-reducible if by taking a simultaneous row permutation and column permutation, A is similar to the form $\begin{bmatrix} A_{11} & A_{12} & O \\ A_{21} & A_{22} & A_{23} \end{bmatrix}$, where A_{11} and $\begin{bmatrix} A_{22} & A_{23} \end{bmatrix}$ are square matrices of order at least one and the size of O is $p \times (n-r+1-p)$. If A is not r-reducible, then A is called r-irreducible. The property of r-irreducibility has the following interpretation in terms of its associated digraph.

Lemma 2.3. Suppose $r \ge 1$. Then a matrix A is r-irreducible if and only if its associated digraph D is r-connected.

Proof. " \iff " Suppose A is r-reducible. Then A contains a $p \times (n-r+1-p)$ zero submatrix. Without loss of generality, we suppose the rows of the zero submatrix correspond to vertices $1, 2, \ldots, p$ and the columns correspond to vertices $p+r, \ldots, n$. Let D_1 be obtained from D by deleting vertices $p+1, \ldots, p+r-1$. Then the adjacency matrix of D_1 is reducible. Thus D_1 is not strong, a contradiction. " \implies " Suppose that D is not r-connected. Then there exists a non-strong digraph D_1 obtained from D by removing r-1 vertices. Let A_1 be the adjacency matrix of D_1 . Then there exists a permutation matrix P such that $PA_1P^{-1}=\begin{bmatrix}A_{11} & O\\ C & B\end{bmatrix}$, where A_{11} and P are square matrices of order at least one and P is a P in P in P is a positive matrix. Thus P is P in P in

It is easy to see that the property of r-indecomposability is preserved under row permutations and column permutations. Suppose A is r-inde. Then there exist permutation matrices P and Q such that PAQ has a positive main diagonal and PAQ is r-inde.

Theorem 2.3. A matrix A is r-inde if and only if there exist permutation matrices P and Q such that PAQ is r-irreducible and PAQ has a positive main diagonal.

Now we show some examples of digraphs with high indecomposability. Let G be a multiplicative group with identity element e, and let $A = \{a_1, \ldots, a_k\}$ be a subset of G. The (right) Cayley digraph is the digraph Cay(G, A) = (V, E) where V = G and $E = \{(x, y) : x^{-1}y \in A\}$. Thus Cay(G, A) is regular of outdegree k = |A|.

Lemma 2.4 (Shen and Gregory [3]). Let $A = \{a_1, ..., a_k\}$ be a subset of an Abelian group G. Then Cay(G, A) is primitive if and only if $Cay(G, A_1)$ is strong, where $A_1 = \{a_i a_1^{-1} : 1 \le i \le k\}$.

Lemma 2.5 (Hamidoune [2]). Any loopless strong vertex-transitive digraph with outdegree k is $(\lfloor k/2 \rfloor + 1)$ -connected.

Theorem 2.4. Let $A = \{a_1, ..., a_k\}$ be a subset of an Abelian group G. Suppose Cay(G, A) is primitive. Then Cay(G, A) is $\lceil k/2 \rceil$ -indecomposable.

Proof. Let $A_1 = \{a_i a_1^{-1} : 1 \le i \le k\}$. Let M_1 and M_2 be the adjacency matrices of $\operatorname{Cay}(G,A)$ and $\operatorname{Cay}(G,A_1)$, respectively. Then $M_2 = M_1 P$, where P is the permutation matrix for $\sigma: g \to g a_1^{-1}$; that is, an entry of P is 1 if and only if this entry has row index g and column index $g a_1^{-1}$ for some $g \in G$. This implies that M_2 can be obtained from M_1 by permuting columns of M_1 . Thus M_1 and M_2 have the same indecomposability, so do $\operatorname{Cay}(G,A)$ and $\operatorname{Cay}(G,A_1)$. Since $\operatorname{Cay}(G,A)$ is primitive, by Lemma 2.4, we know that $\operatorname{Cay}(G,A_1)$ is strong. Then, by Lemma 2.5, The digraph $\operatorname{Cay}(G,A_1)$ is $\lfloor (k-1)/2 \rfloor + 1 = \lceil k/2 \rceil$ -connected. Since $\operatorname{Cay}(G,A_1)$ has a loop at each vertex, by Theorem 2.2, it is $\lceil k/2 \rceil$ -inde. Therefore, the digraph $\operatorname{Cay}(G,A)$ is $\lceil k/2 \rceil$ -inde. \square

Note that Theorem 2.4 may not hold for non-Abelian Cayley digraphs since Lemma 2.4 does not hold for non-Abelian Cayley digraphs. Nevertheless, the techniques in Theorem 2.4 work for non-Abelian Cayley digraphs. That is, for any group G (Abelian or non-Abelian), the Cayley digraphs $\operatorname{Cay}(G,A)$ and $\operatorname{Cay}(G,A_1)$ have the same indecomposability. Furthermore, if $\operatorname{Cay}(G,A_1)$ is strong, then $\operatorname{Cay}(G,A)$ is $\lceil k/2 \rceil$ -indecomposable.

3. Bounds on the number of 1's in r-nde matrices

Let $\sigma(A)$ be the number of entries of A equal to 1, and let m(D) be the number of arcs in D(A). Then $\sigma(A) = m(D)$. Let $f(n,r) = \max\{\sigma(A) : A \in B_n \text{ is } r\text{-nde}\}$ and $g(n,r) = \min\{\sigma(A) : A \in B_n \text{ is } r\text{-nde}\}$.

Example 3.1. Let N be the adjacency matrix of the Cayley digraph $Cay(Z_n, \{1, 2, ..., r+1\})$. Then N is r-nde with $\sigma(N) = n(r+1)$.

Proof. Since there exists a permutation matrix P such that M = NP with $D(M) = \operatorname{Cay}(Z_n, \{0, 1, 2, \dots, r\})$, it suffices to prove M is r-nde. By Theorem 2.2, it suffices to prove $\operatorname{Cay}(Z_n, \{0, 1, 2, \dots, r\})$ is r-connected. We use induction to prove the latter statement. For r = 1, certainly $\operatorname{Cay}(Z_n, \{0, 1\})$ is 1-connected. Now suppose $\operatorname{Cay}(Z_{n-1}, \{0, 1, 2, \dots, r-1\})$ is (r-1)-connected. We observe that the removal of any vertex from $\operatorname{Cay}(Z_n, \{0, 1, 2, \dots, r\})$ results a superdigraph of $\operatorname{Cay}(Z_{n-1}, \{0, 1, 2, \dots, r-1\})$ on the same vertex set. Thus the resultant superdigraph is (r-1)-connected. This implies that $\operatorname{Cay}(Z_n, \{0, 1, 2, \dots, r\})$ is r-connected. \square

The following lemma follows from the above example and the fact that an r-inde matrix has at least r + 1 1's in each row and each column.

Lemma 3.1. g(n, r) = n(r + 1).

Definition 3.1. Suppose $M \in B_{n-t}$ is an (r-t)-nde matrix with $\sigma(M) = (r-t+1)(n-t)$. We define

$$A_t = \begin{bmatrix} O_{t \times t} & J_{t \times (n-t)} \\ \overline{J_{(n-t) \times t}} & M_{(n-t) \times (n-t)} \end{bmatrix}.$$

Clearly, $\sigma(A_t) = (n-t)(r+1+t)$.

Lemma 3.2. Suppose $n \ge r + 2p$, $1 \le p \le r$. Then A_1, A_2, \ldots, A_p are r-nde.

Proof. First, we want to prove that A_t is r-inde for all t, $1 \le t \le p$. Let Y = V(D(M)), $X = V(D(A_t)) - V(D(M))$. Then |Y| = n - t, |X| = t. Let $S \subseteq V(D(A_t))$ with $1 \le |S| = k \le n - r$.

Case 1: $S \subseteq X$. Then $k \leq t$ and

$$|N(S)| = |Y| = n - t \ge (r + 2p) - t = r + p + (p - t) \ge r + p \ge r + k.$$

Case 2: $S \subseteq Y$. Since M is (r-t)-nde, by Lemma 2.1, we have $|N(S) \cap Y| \ge |S| + r - t$. Thus

$$|N(S)| \ge |S| + r - t + |X| = |S| + r - t + t = k + r.$$

Case 3: $S = S_1 \cup S_2$, where $S_1 \subseteq X$, $S_2 \subseteq Y$. Then

$$|N(S)| = |N(S_1) \cup N(S_2)| = |Y| + |X| = n \geqslant k + r.$$

Thus, by Lemma 2.1, A_t is r-inde. Furthermore, A_t is r-nde since, for each non-zero (i, j) entry of A_t , either row i or column j contains exactly (r + 1) 1's. \square

Let
$$f'(n,r) = \begin{cases} \left\lfloor \frac{(n+r+1)^2}{4} \right\rfloor & \text{if } n < 3r, \\ (n-r)(2r+1) & \text{if } n \geqslant 3r. \end{cases}$$

Theorem 3.1. Let f(n,r) and f'(n,r) be defined as above, where n > r + 1, then $f(n,r) \ge f'(n,r)$.

Proof. Let $p = \min\{r, \lfloor (n-r)/2 \rfloor\}$. Then $n \ge r+2p$ and $p \le r$. By Lemma 3.2, the matrix A_p is r-nde. Thus $f(n,r) \ge \sigma(A_p) = (n-p)(r+p+1) = f'(n,r)$. \square

Now we want to show that, for any integer i with $g(n, r) \le i \le f'(n, r)$, there is always an r-nde matrix A with order n and $\sigma(A) = i$. We make use of a particular class of matrices from Definition 3.1. Let N be the adjacency matrix of

Cay(Z_{n-t} , {1, 2, ..., r-t+1}). Then Example 3.1 shows that N is (r-t)-nde with $\sigma(N) = (n-t)(r-t+1)$. Let

$$C_t = \left\lceil \frac{O_{t \times t}}{J_{(n-t) \times t}} \, \frac{J_{t \times (n-t)}}{N} \right\rceil.$$

By Lemma 3.2, C_t is r-nde if $n \ge r + 2t$ and $1 \le t \le r$. For a fixed integer l with $t + 1 \le l \le n$, we define a matrix $D = (d_{ij}) \in B_n$ as follows:

$$d_{ij} = \begin{cases} 0 & \text{if either } i = l, j = t \text{ or } i = t, j = l, \\ 1 & \text{if } i = j = l, \\ c_{ij} & \text{otherwise.} \end{cases}$$

We say that D is obtained from C_t by the (l, t)-interchanges.

Lemma 3.3. Suppose $n \ge r + 2t$, $1 \le t \le r$ and $n \ge r + t + 2$. Let $D \in B_n$ be obtained from C_t by the $\langle i, t \rangle$ -interchanges where $t + 1 \le i \le n$. Then D is r-nde.

Proof. Suppose on the contrary that D is r-partly decomposable. Then D contains an $s \times (n-r+1-s)$ zero submatrix. Since $n-t-1 \geqslant r+1$, every row and column of D has at least r+1 positive entries. Thus $s\geqslant 2$ and $n-r+1-s\geqslant 2$. Since C_t is r-inde and it differs from D only in the (i,t),(t,i) and (i,i) positions, the zero submatrix contains $d_{i,t}$ or $d_{t,i}$. Without loss of generality, we suppose the zero submatrix contains $d_{i,t}$. But since $d_{i,1}=d_{i,2}=\cdots=d_{i,t-1}=1$, $d_{i,i}=d_{i,i+1}=\cdots=d_{i,i+(r-t)+1}=1$, the $s\times (n-r+1-s)$ zero submatrix is contained in $D[1,2,\ldots,n|1,2,\ldots,t-1,i,i+1,\ldots,i+(r-t)+1)$, where addition is taken modulo n-t. However, this implies that the submatrix F obtained from C_t by deleting columns $1,2,\ldots,t-1,t,i,i+1,\ldots,i+(r-t)+1$ would contain an $(s+1)\times (n-r-s)$ zero submatrix, since all entries in row i-1 of F are zero. This shows that C_t contains the zero submatrix F, a contradiction to the r-indecomposability of C_t . Thus D is r-inde. We observe that, for any non-zero (i,j) entry of D, either row i or column i of i has exactly i

We construct a series of matrices from C_t as follows:

- 1. The matrix $L_{1,t}$ is obtained from C_t by the $\langle n, t \rangle$ -interchanges.
- 2. For each $i \in \{1, 2, ..., i_t 1\}$ with $i_t = \min\{\lfloor \frac{n-t}{2} \rfloor, n-t-r-1\}$, the matrix $L_{2i+1,t}$ is obtained from $L_{2i-1,t}$ by the (n-2i,t)-interchanges.

The following lemma can be proved similarly by applying the same proof techniques shown in Lemma 3.3.

Lemma 3.4. For any $i \in \{1, 2, ..., i_t\}$ with $i_t = \min\{\lfloor \frac{n-t}{2} \rfloor, n-t-r-1\}$, the matrix $L_{2i-1,t}$ is r-nde and $\sigma(C_t) - \sigma(L_{2i-1,t}) = i$.

We define
$$i_t = \min\{\lfloor \frac{n-t}{2} \rfloor, n-t-r-1\}$$
 and $i_t' = \begin{cases} i_t - 1 & \text{if } i_t = \lfloor \frac{n-t}{2} \rfloor, \\ i_t & \text{otherwise.} \end{cases}$

Lemma 3.5. Suppose $n \ge r + 2t$, $2 \le t \le r$ and $1 \le i \le t$. Let D be obtained from $L_{2i_t-1,t}$ by the (n-2i+1,t-1)-interchanges. Then D is r-nde.

Proof. Suppose on the contrary that D is r-partly decomposable. Then D contains an $s \times (n-r+1-s)$ zero submatrix. Since $n-t-i_t \ge r+1$, every row and column of D has at least r + 1 positive entries. Also one can easily verify that every $2 \times n$ submatrix of D has at least r + 2 non-zero columns and every $n \times 2$ submatrix of D has at least r + 2 non-zero rows. Thus $s \ge 3$ and $n - r + 1 - s \ge 3$ 3. Since $L_{2i_t-1,t}$ is r-inde and it differs from D only in the (n-2i+1,t-1), (t-1, n-2i+1) and (n-2i+1, n-2i+1) positions, the zero submatrix contains $d_{n-2i+1,t-1}$ or $d_{t-1,n-2i+1}$. Without loss of generality, we suppose the zero submatrix contains $d_{n-2i+1,t-1}$. But since $d_{n-2i+1,1} = d_{n-2i+1,2} = \cdots = d_{n-2i+1,t-2} = \cdots$ $d_{n-2i+1,t} = 1, d_{n-2i+1,n-2i+1} = d_{n-2i+1,n-2i+1+1} = \dots = d_{n-2i+1,n-2i+1+(r-t)+1}$ = 1, the $s \times (n-r+1-s)$ zero submatrix is contained in D[1, 2, ..., n|1, 2, ..., $t-2, t, n-2i+1, n-2i+1+1, \dots, n-2i+1+(r-t)+1$). However, this implies that the submatrix F obtained from $L_{2i_t-1,t}$ by deleting columns 1, 2, ..., t – $2, t - 1, t, n - 2i, n - 2i + 1, n - 2i + 1 + 1, \dots, n - 2i + 1 + (r - t) + 1$ would contain an $(s + 2) \times (n - r - s - 1)$ zero submatrix, since all entries in rows n - 2iand n-2i-1 of F are zero. This is a contradiction to the r-indecomposability of $L_{2i_t-1,t}$. Thus D is r-inde. Furthermore, D is r-nde since, for each non-zero (i, j)entry of D, either row i or column j has exactly (r + 1) 1's. \square

We construct a series of r-nde matrices from $L_{2i_t-1,t}$ as follows:

- 1. The matrix $L_{2,t}$ is obtained from $L_{2i_t-1,t}$ by the (n-1,t-1)-interchanges.
- 2. For each $i \in \{1, 2, ..., i'_t 1\}$, the matrix $L_{2i+2,t}$ is obtained from $L_{2i,t}$ by the (n-2i-1, t-1)-interchanges.

Lemma 3.6. Suppose $n \ge r + 2t$, $2 \le t \le r$ and $1 \le i \le t$. Then $L_{2i,t}$ is r-nde and

$$\sigma(C_t) - \sigma(L_{2i'_t,t}) = i_t + i'_t$$

$$= \begin{cases} 2\lfloor \frac{n-t}{2} \rfloor - 1 & \text{if } \lfloor \frac{n-t}{2} \rfloor \leqslant n - t - r - 1, \\ 2(n - t - r - 1) & \text{if } \lfloor \frac{n-t}{2} \rfloor > n - t - r - 1. \end{cases}$$

For $n \ge r + 2t$ with t = 1, we have the following construction:

- 1. The $L_{1,1}$ is obtained from C_1 by the $\langle n, 1 \rangle$ -interchanges.
- 2. For each $i \in \{1, 2, ..., n r 3\}$, the matrix $L_{i+1,1}$ is obtained from $L_{i,1}$ by the (n i, 1)-interchanges.

Lemma 3.7. Suppose $n \ge r + 2t$ with t = 1. Then, for each $i \in \{1, 2, ..., n - r - 2\}$, $L_{i,1}$ is r-nde and $\sigma(C_1) - \sigma(L_{i,1}) = i$.

Brualdi and Hedrick [1, Theorem 3.4] showed that for each i with $g(n, 1) \le i \le f'(n, 1)$ and $n \ge 2$, there is always a 1-nde matrix A with order n and $\sigma(A) = i$. Our next theorem extends their result.

Theorem 3.2. For any $r \in \{1, 2, ..., n-2\}$ and any $i \in [g(n, r), f'(n, r)]$, there exists an r-nde matrix A with order n and $\sigma(A) = i$.

Proof. Case 1: r = 1. Then, by Lemma 3.7, $C_1, L_{1,1}, L_{2,1}, \ldots, L_{n-3,1}$ are all 1-nde matrices and the number of positive entries in these matrices cover the entire interval from 2n to 3n - 3.

Case 2: $r \ge 2$. Let positive integer $p = \min\{r, \lfloor (n-r)/2 \rfloor\}$. Then $n \ge r + 2p$ and $1 \le p \le r$. By Lemmas 3.4 and 3.6, the following matrices are all r-nde:

$$C_p, L_{1,p}, L_{3,p}, \dots, L_{2i_p-1,p}, L_{2,p}, L_{4,p}, \dots, L_{2i'_p,p};$$
 $C_{p-1}, L_{1,p-1}, L_{3,p-1}, \dots, L_{2i_{p-1}-1,p-1}, L_{2,p-1}, L_{4,p-1}, \dots, L_{2i'_{p-1},p-1};$
 $\dots;$
 $C_2, L_{1,2}, L_{3,2}, \dots, L_{2i_2-1,2}, L_{2,2}, L_{4,2}, \dots, L_{2i'_2,2};$
 $C_1, L_{1,1}, L_{2,1}, \dots, L_{n-r-2,1}.$

Since

$$\begin{split} \sigma(C_t) - \sigma(C_{t-1}) &= n - 2t - r \\ &\leqslant \begin{cases} 2\lfloor \frac{n-t}{2} \rfloor - 1 & \text{if } \lfloor \frac{n-t}{2} \rfloor \leqslant n - t - r - 1, \\ 2(n - t - r - 1) & \text{if } \lfloor \frac{n-t}{2} \rfloor > n - t - r - 1, \end{cases} \end{split}$$

by Lemma 3.6, $\sigma(L_{2i'_t,t}) \leqslant \sigma(C_{t-1})$ for any $2 \leqslant t \leqslant p$. So the number of positive entries in the above sequence of matrices cover the entire interval [g(n,r), f'(n,r)]. \square

4. The exponents of r-inde and r-nde matrices

The product of r-inde matrices behaves nicely with respect to the indecomposability. This quickly leads to some upper bounds on the index of convergence of r-inde matrices.

Lemma 4.1. Suppose A_1 , $A_2 \in B_n$ are r_1 -inde and r_2 -inde, respectively. Then the product A_1A_2 is r-inde, where $r = \min\{n-1, r_1+r_2\}$.

Proof. Let v be a row vector of length n with all entries non-negative. Let |v| be the number of positive entries in v. Then, by Lemma 2.1(iv), it is easy to see that a matrix A is r-inde if and only if $|vA| \ge \min\{n, |v| + r\}$ for all such v with |v| > 0. Since A_1 , A_2 are r_1 -inde and r_2 -inde, respectively, we have $|vA_1A_2| \ge \min\{n, |vA_1| + r_2\} \ge \min\{n, |v| + r_1 + r_2\}$. Therefore A_1A_2 is r-inde, where $r = \min\{n - 1, r_1 + r_2\}$. \square

Corollary 4.1. Suppose $r \ge 1$ and A is r-inde. Then $\exp(A) \le \lceil (n-1)/r \rceil$.

Proof. Let $k = \lceil (n-1)/r \rceil$. Then $rk \ge n-1$. Since A is r-inde, by Lemma 4.1, the matrix A^k is $\min\{n-1, rk\} = (n-1)$ -inde. Thus $A^k = J$. \square

The following corollary follows from Theorem 2.4 and Corollary 4.1.

Corollary 4.2. Let $A = \{a_1, \ldots, a_k\}$ be a subset of an Abelian group G. Suppose Cay(G, A) is primitive. Then $exp(Cay(G, A)) \leq \lceil \frac{n-1}{\lceil k/2 \rceil} \rceil$.

Let

$$P = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 1 & 0 & 0 & \dots & 0 \end{bmatrix}_{n \times n}.$$

A circulant Boolean matrix is a matrix of the form $C = P^{a_1} + P^{a_2} + \cdots + P^{a_k}$ ($0 \le a_1 < a_2 < \cdots < a_k < n$). We denote it by $C\langle a_1, a_2, \ldots, a_k; n \rangle$ for convenience. The set of all circulants of order n forms a multiplicative semigroup C_n with $|C_n| = 2^n$. The following corollary was originally proved by Huang by using several lemmas. Now we can see that it follows immediately from Corollary 4.2 since the associated digraph of $C\langle a_1, a_2, \ldots, a_k; n \rangle$ is $Cay(Z_n, \{a_1, a_2, \ldots, a_k\})$.

Corollary 4.3. (Huang [4, Theorem 2.1]) Suppose $C = C\langle a_1, a_2, \dots, a_k; n \rangle$ is primitive. Then either $\exp(C) = n - 1$ or $\exp(C) \leq \lfloor \frac{n}{2} \rfloor$.

5. Further research

We proved $f(n,r) \ge f'(n,r)$ in Theorem 3.1. For r=1 and $n \ge 2$, Brualdi and Hedrick [1, Theorems 3.3, 3.4] confirmed that f(n,r) = f'(n,r). Now it is natural to ask the following question:

Question. Does f(n, r) = f'(n, r) hold for all $n > r + 1, r \ge 2$?

References

- [1] R.A. Brualdi, M.B. Hedrick, A unified treatment of nearly reducible and nearly decomposable matrices, Linear Algebra Appl. 24 (1979) 51–73.
- [2] Y.O. Hamidoune, Quelques problèmes de connexité dans les graphes orientés, J. Comb. Theory, Ser. B 30 (1981) 1–10.
- [3] J. Shen, D.A. Gregory, Exponents of vertex-transitive digraphs, Discrete Math. 212 (2000) 245–255.
- [4] D. Huang, On circulant Boolean matrices, Linear Algebra Appl. 136 (1990) 107–117.

Further reading

- N.C. de Bruijn, P. Erdös, On a combinatorial problem, Indag. Math. 10 (1948) 421–423.
- H. Minc, On lower bounds for permanents of (0, 1) matrices, Proc. Amer. Math. Soc. 22 (1969) 117–123.
- R. Sinkhorn, Concerning a conjecture of Marshall Hall, Proc. Amer. Math. Soc. 21 (1969) 197–201.
- R. Sinkhorn, P. Knopp, Problems involving diagonal products in nonnegative matrices, Trans. Amer. Math. Soc. 136 (1969) 67–75.
- H. Minc, Nearly decomposable matrices, Linear Algebra and Appl. 5 (1972) 181–187.
- M. Hedrick, R. Sinkhorn, A special class of irreducible matrices—the nearly reducible matrices, Proc. Amer. Math, Soc. 24 (1970) 388–393.
- R.A. Brualdi, S.V. Parter, H. Schneider, The diagonal equivalence of a matrix to a stochastic matrix, J. Math. Anal. Appl. 16 (1966) 31–50.
- K.H. Kim-Butler, J.R. Krabill, Circulant Boolean relation matrices, Czechoslovak Math. J. 24 (1974) 247–251.
- S. Schwarz, Circulant Boolean relation matrices, Czechoslovak Math. J. 24 (1974) 252–253.
- Q. Pan, The exponent set of class of nearly decomposable matrices, Appl. Math. A J. Chinese Universities 6 (3) (1991).
- H. Minc, Nonnegative matrices, John Wiley and Sons, New York, 1988.
- R.A. Brualdi, H.J. Ryser, Combinatorial Matrix Theory, Cambridge University, Press, 1991.
- B. Liu and H. Lai, Matrices in Combinatorics and Graph Theory, Kluwer Academic, 2000.