STAT220 Oblig 4-5

Sigbjørn Fjelland

10/7/2020

```
Library in use:
library(tinytex)
library(matrixcalc)
library(shape)
library(diagram)
Problem 6.1
Vi har gitt transition matrix P:
library(matrixcalc)
P=matrix(c(0.7, 0.2, 0.1, 0.0, 0.6, 0.4, 0.5, 0.0, 0.5), nrow=3, ncol=3, byrow = TRUE)
dimnames(P)=list(c('0','1','2'), c('0','1','2'))
print(P)
##
       0
            1
                2
## 0 0.7 0.2 0.1
## 1 0.0 0.6 0.4
## 2 0.5 0.0 0.5
  a) Since P_{i,j}^m = P(x_{m+n} = j | x_n) and P^{(m)} = P^m:
     \Rightarrow P^{(3)} = P^3og vi får følgende matrise
P_3 = matrix.power(P,3)
print(P_3)
##
          0
                       2
                1
## 0 0.478 0.264 0.258
## 1 0.360 0.256 0.384
## 2 0.570 0.180 0.250
print(P_3[1,2])
## [1] 0.264
slik at: P(x_3 = 1 | x_0 = 0) = 0.264
samme egenskap gjelder også for P^{(3)} = P^3
P_4 = matrix.power(P,4)
print(P_4)
##
           0
## 0 0.4636 0.2540 0.2824
## 1 0.4440 0.2256 0.3304
## 2 0.5240 0.2220 0.2540
```

print(P_4[1,2])

[1] 0.254

og vi får da:

$$P(x_3 = 1 | x_0 = 0) = \underline{0.254}$$

b) As we se from the graphic presentation below, it is possible to go from any state to another trough one or more steps:

plotmat(P, box.size = 0.028, arr.lcol='blue')

from state 0: $0 \rightarrow 2 \rightarrow 1$

from state 1: $1 \to 0 \to 2$

from state 2:() $2 \rightarrow 1 \rightarrow 0$ and $1 \rightarrow 0$

It is therfore irreducible.

Periodicity: Since the period of a state is the largest d that satisfy following properties: - $p_{ii}^{(n)}=0$ whenever n is not deviceble by d. - The period i is shown by d(i). - If $P_{ii}^{(n)}=0$, for all $n>0 \to i=\infty$

 $\mathtt{and}\dots$

i is periodic if d(i) > 1 and aperiodic if di = 1

It is aperiodic since there are several sequences of steps to go from a state and back again $(i \to i)$, icluding the fact that all the states are self periodic the markov chain is aperiodic.

Transient or recurrent? \to It is recurrent! It might stop and loop at a position or between state 2 and 0 wich are comunicating, but eventually it will occure in any of the states by a certanty of 100% as in the formal definition: $f_{ii} = P(X_n = i, \text{ for some } n \ge |w_0 = i|)$ for any state i is Recurrent if $f_{ii} = 1$ and transient if Recurrent if $f_{ii} < 1$.

Problem 6.2

a) $G: Green \ R: Red$

We start initiatly at GR and pick a random ball with p=1/2. We are then sent to a state of RR or GG where the probability of being returned to State GR is 100%

```
library(matrixcalc)
A=matrix(c(0, 1, 0, 0.5, 0, 0.5, 0, 1, 0), nrow=3, ncol=3, byrow = TRUE)
dimnames(A)=list(c('GG','GR','RR'), c('GG','GR','RR'))
plotmat(A, box.size = 0.028, arr.lcol='blue')
```


Wich gives following matrix

```
print(A)
```

```
## GG GR RR
## GG 0.0 1 0.0
## GR 0.5 0 0.5
## RR 0.0 1 0.0
```

and following for picking red ball in the future entering the state of $GR \to P(X_n = j | X_0 = 1)$: #her må jeg få sendt ett spørsmål

print(A[2,])

```
## GG GR RR
## 0.5 0.0 0.5
```

b) d(GR) = 2 og d(GG) = d(RR) = 4 som gir største felles nevner 2 og dermed er den periodisk med periode 2.

Problem 6.3

a)

plotmat(B, box.size = 0.028, arr.lcol='blue')

b) As we se from the graph above:

Transient States:

State 1, 2, 3 and 4 will at some pint possibly loop, but ultimatly it will end up in state 5 where it will loop for a infinate time.

Recurrent States:

State 5 is self-recurrent

c) Communicating States:

$$(2 \leftrightarrow 4), (1 \leftrightarrow 1), (2 \leftrightarrow 2) \text{ and } (5 \leftrightarrow 5)$$