

Universidad Nacional de Ingeniería Escuela Profesional de Matemática Ciclo 2023-1

[Análisis y Modelamiento Numérico I - CM4F1] [Prof: Los Profesores]

UNI, 12 de julio de 2023

Examen Final

1. Suponga que

$$f(x) = \begin{cases} e^{-1/x^2} & \text{si } x \neq 0\\ 0 & \text{si } x = 0. \end{cases}$$

La función es continua en \mathbb{R} , de hecho f es de clase $C^{\infty}(\mathbb{R})$, y 0 es la única raíz de f. Demuestre que si $x_0 = 10^{-4}$, se necesitan más de cien millones de iteraciones del método de Newton para llegar por debajo de 5×10^{-5} . [5 ptos]

2. Dado el siguiente sistema,

$$f_1(x, y, z) = x^2 - x + y^2 + z^2 - 5 = 0$$

$$f_2(x, y, z) = x^2 + y^2 - y + z^2 - 4 = 0$$

$$f_3(x, y, z) = x^2 + y^2 + z^2 + z - 6 = 0.$$

Resolver el sistema utilizando el método de punto fijo con punto inicial $P_0 = [0\ 0\ 0]^t$, aproximación y analice su convergencia. [5 ptos]

3. Dada la siguiente tabla de valores, para la Temperatura T (°C) y densidad del agua ρ (kg/m^3) Código

T	50	60	65	68	75	80
ρ	988	985.7	980.5	?	974.5	971.6

Mediante un polinomio cuadrático del método de interpolación de la forma de Newton con diferencias divididas halle la aproximación de la densidad ρ del agua para T=68. [5 ptos]

4. Dado 9 puntos $(x_i, f(x_i))$ con $x_i = 4 - i, i = 0, \dots, 8$ y

$$f(x) = \frac{x^2}{\sqrt{x^2 + 1}}.$$

Mediante la interpolación de Lagrange, grafique la función exacta y la aproximada obtenida mediante la interpolación de Lagrange. [5 ptos]