GROUP-ANTIMAGIC LABELINGS OF GRAPHS

W.H. CHAN, RICHARD M. LOW, AND W.C. SHIU

ABSTRACT. Let A be a non-trivial abelian group. A connected simple graph G=(V,E) is A-antimagic if there exists an edge labeling $f:E(G)\to A\setminus\{0\}$ such that the induced vertex labeling $f^+:V(G)\to A$, defined by $f^+(v)=\Sigma$ $\{f(u,v):(u,v)\in E(G)\}$, is a one-to-one map. In this paper, we analyze the group-antimagic property for various classes of graphs.

1. Introduction

Let G be a connected simple graph. For any non-trivial abelian group A (written additively), let $A^* = A \setminus \{0\}$, where 0 is the additive identity of A (sometimes denoted by 0_A). Let a function $f: E(G) \to A^*$ be an edge labeling of G. Any such labeling induces a map $f^+: V(G) \to A$, defined by $f^+(v) = \sum_{uv \in E(G)} f(uv)$. If there exists an edge labeling f whose induced map f^+ on V(G) is one-to-one, we say that f is an A-antimagic labeling and that G is an A-antimagic graph. The integer-antimagic spectrum of a graph G is the set $IAM(G) = \{k: G \text{ is } \mathbb{Z}_k\text{-antimagic and } k \geq 2\}$.

The concept of the A-antimagicness property for a graph G naturally arises as a variation of the A-magic labeling problem (where the induced vertex labeling is a constant map). \mathbb{Z} -magic (or \mathbb{Z}_1 -magic) graphs were considered by Stanley [28, 29], where he pointed out that the theory of magic labelings could be studied in the general context of linear homogeneous diophantine equations. Doob [1, 2, 3] and others [7, 9, 15, 16, 25] have studied A-magic graphs and \mathbb{Z}_k -magic graphs were investigated in [4, 6, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20, 26].

2. Some algebraic properties of group-antimagic graphs

In this section, we will use the following notation. Let [G, A] denote the class of distinct A-antimagic labelings of G. Note that G is A-antimagic if and only if $[G, A] \neq \emptyset$. For any commutative ring R with unity, U(R) denotes the multiplicative group of units in R.

Date: March 25, 2013: Version: v.1.0d.

²⁰⁰⁰ Mathematics Subject Classification. 05C15.

Key words and phrases. Group-magic graph, antimagic graph.

Here, we begin to develop an algebraic framework from which groupantimagic graphs can be analyzed.

Theorem 1. Let A be a non-trivial abelian group, underlying some commutative ring R with unity. If $d \in U(R)$ and $f \in [G, A]$, then $df \in [G, A]$.

Proof. Suppose that f is an A-antimagic labeling of G. Consider an arbitrary vertex v (having label x under f). Let $|E_i|$ denote the number of edges labeled a_i , which are adjacent to v. Then, $x = \Sigma(a_i|E_i|)$; where $a_i \in A^*$. Let us examine what effect df has on the labeling of v. By multiplying every edge adjacent to v by d, we get the following relationship: $dx = d\Sigma(a_i|E_i|)$. The new induced labeling on v is dx. Also, since $d \in U(R)$, each edge adjacent to v in this new labeling is not equal to 0_A . Furthermore, the map $\mu_d: A \to A$ defined by $a \mapsto da$ is one-to-one. Thus, df induces a vertex labeling which is one-to-one. Hence, df is an A-antimagic labeling of G. \square

Corollary 1. If $d \in U(\mathbb{Z}_k)$ and $f \in [G, \mathbb{Z}_k]$, then $df \in [G, \mathbb{Z}_k]$.

Proof. Let $A = \mathbb{Z}_n$, the group of integers, modulo n. Now, apply Theorem 1.

It should be noted that in Theorem 1 and Corollary 1, f and df might yield the same group-antimagic labeling on G.

Theorem 2. Let A_1 be an abelian group which contains a subgroup isomorphic to A_2 . If graph G is A_2 -antimagic, then G is A_1 -antimagic.

Proof. Let $H \leq A_1$. Suppose that $f \in [G, A_2]$ and that $\phi : A_2 \to H$ is a group isomorphism. Now, let f induce the label x on a vertex v of G. Let $|E_i|$ denote the number of edges labeled a_i , which are adjacent to v. Then, $x = \Sigma(a_i|E_i|)$; where a_i varies through all the elements of A_2^* . Now, apply ϕ to the edges which are adjacent to v. Under this new labeling, we get the following relationship: $\phi(x) = \phi[\Sigma(a_i|E_i|)] = \Sigma\phi(a_i)|E_i|$. Since $a_i \neq 0_{A_2}$ and ϕ is a group isomorphism, no edge is labeled 0_{A_1} . The new induced labeling on v is $\phi(x)$. Hence, we have an A_1 -magic labeling of G.

Corollary 2. Let G be a \mathbb{Z}_k -antimagic graph, with k|n. Then, G is a \mathbb{Z}_n -antimagic graph.

The reader should observe that the converse of Corollary 2 is not true, for $k \geq |G|$. For example, Figure 1 gives a \mathbb{Z}_8 -antimagic labeling of $K_{1,3}$. However, it is clear that $K_{1,3}$ is not \mathbb{Z}_4 -antimagic (as the edges would have to be labeled 1, 2 and 3).

FIGURE 1. \mathbb{Z}_8 -antimagic labeling of $K_{1,3}$.

3. \mathbb{Z}_k -antimagic Labelings for Some Classes of Graphs

Lemma 1. A graph of order 4m+2, for all $m \in \mathbb{N}$, is not \mathbb{Z}_{4m+2} -antimagic.

Proof. Let G be a graph of order 4m+2, and let f and f^+ be a function from E(G) to \mathbb{Z}_{4m+2}^* and the induced map of f from V(G) to \mathbb{Z}_{4m+2} , respectively. If f is an \mathbb{Z}_{4m+2} -antimagic labeling, then

$$2 \cdot \left[\sum_{e \in E(G)} f(e) \right] \equiv \sum_{v \in V(G)} f^+(v) \equiv \sum_{j=0}^{4m+1} j \equiv 2m+1 \pmod{4m+2},$$

which is impossible.

Theorem 3. P_3 is \mathbb{Z}_k -antimagic, for all $k \geq 3$, and C_3 is not \mathbb{Z}_3 -antimagic, but \mathbb{Z}_k -antimagic, for all $k \geq 4$.

Proof. For P_3 , label the edges 1 and 2. For C_3 , label the edges 1, 2 and 3. C_3 is not \mathbb{Z}_3 -antimagic because all labels of the three edges must be distinct.

Theorem 4. P_{4m+r} and C_{4m+r} , for all $m \in \mathbb{N}$, are \mathbb{Z}_k -antimagic, for all $k \geq 4m+r$ if r=0,1,3. P_{4m+2} and C_{4m+2} , for all $m \in \mathbb{N}$, are \mathbb{Z}_k -antimagic, for all $k \geq 4m+3$.

Proof. Let $e_1, e_2, \ldots, e_{n-1}$ be edges of P_n , from left to right. A \mathbb{Z}_k -antimagic labeling of P_n can be obtained as follows.

Case 1
$$n = 4m$$
:
$$f(e_i) = \begin{cases} \frac{i+1}{2} & \text{if } i \text{ is odd;} \\ \frac{i}{2} & \text{if } i \text{ is even and } 2 \leq i \leq 2m-2; \\ \frac{i+2}{2} & \text{if } i \text{ is even and } 2m \leq i \leq 4m-2. \end{cases}$$
Case 2 $n = 4m+1$:
$$f(e_i) = \begin{cases} \frac{i}{2} & \text{if } i \text{ is even;} \\ \frac{i+3}{2} & \text{if } i \text{ is odd and } 1 \leq i \leq 2m-3; \\ \frac{i+5}{2} & \text{if } i \text{ is odd and } 2m-1 \leq i \leq 4m-1. \end{cases}$$
Case 3 $n = 4m+2$:
$$f(e_i) = \begin{cases} \frac{i+1}{2} & \text{if } i \text{ is odd;} \\ \frac{i+2}{2} & \text{if } i \text{ is even and } 2 \leq i \leq 2m-2; \\ \frac{i+4}{2} & \text{if } i \text{ is even and } 2m \leq i \leq 4m. \end{cases}$$

Case 4
$$n = 4m + 3$$
:
$$f(e_i) = \begin{cases} \frac{i}{2} & \text{if } i \text{ is even;} \\ \frac{i+1}{2} & \text{if } i \text{ is odd and } 1 \le i \le 2m - 1; \\ \frac{i+3}{2} & \text{if } i \text{ is odd and } 2m + 1 \le i \le 4m + 1. \end{cases}$$

Let e_1, e_2, \ldots, e_n be edges of C_n arranged in counter-clockwise direction. A \mathbb{Z}_k -antimagic labeling of C_n can be obtained as follows.

Case 1
$$n = 4m$$
:
$$f(e_i) = \begin{cases} i & \text{if } 1 \le i \le 2m; \\ 3 + 2(2m - \lceil \frac{i}{2} \rceil) & \text{if } 2m + 1 \le i \le 4m. \end{cases}$$
Case 2 $n = 4m + 1$:
$$f(e_i) = \begin{cases} i & \text{if } 1 \le i \le 2m; \\ 3 + 2(2m - \lceil \frac{i}{2} \rceil) & \text{if } 2m + 1 \le i \le 4m + 1. \end{cases}$$
Case 3 $n = 4m + 2$:
$$f(e_i) = \begin{cases} i & \text{if } 1 \le i \le 2m + 3; \\ 3 + 2(2m - \lceil \frac{i-2}{2} \rceil) & \text{if } 2m + 4 \le i \le 4m + 2. \end{cases}$$
Case 4 $n = 4m + 3$:
$$f(e_i) = \begin{cases} i & \text{if } 1 \le i \le 2m + 3; \\ 3 + 2(2m - \lceil \frac{i-3}{2} \rceil) & \text{if } 2m + 4 \le i \le 4m + 3. \end{cases}$$

 $0 \frac{1}{1} \frac{1}{1} \frac{3}{1} \frac{2}{1} \frac{4}{1} \frac{3}{1} \frac{$

FIGURE 2. \mathbb{Z}_k -antimagic labeling of P_7 , for $k \geq 7$.

FIGURE 3. \mathbb{Z}_k -antimagic labeling of P_{13} , for $k \geq 13$.

Theorem 5. Let G be a regular Hamiltonian graph of order 4m+r, $m \in \mathbb{N}$. G is \mathbb{Z}_k -antimagic, for all $k \geq 4m+r$ if r=0,1,3, and G is \mathbb{Z}_k -antimagic, for all $k \geq 4m+3$ if r=2.

Proof. Let G be a regular Hamiltonian graph of order 4m + r, and C be a Hamiltonian cycle of G. A group-antimagic labeling of G can be obtained by labeling the edges of G, using the method described in the proof of Theorem 4, and labeling all other edges of G with 1.

Corollary 3. All complete graphs and regular complete n-partite graphs of order 4m + r $(m \in \mathbb{N})$ are \mathbb{Z}_k -antimagic, for all $k \geq 4m + r$ if r = 0, 1, 3, and are \mathbb{Z}_k -antimagic, for all $k \geq 4m + 3$ if r = 2.

Proof. All complete graphs and regular complete n-partite graphs are regular and Hamiltonian. Thus by Theorem 5, the result follows immediately.

FIGURE 4. \mathbb{Z}_k -antimagic labeling of C_6 , for $k \geq 7$.

FIGURE 5. \mathbb{Z}_k -antimagic labeling of C_8 , for $k \geq 8$.

Lemma 2. Let $N_k = \{1, 2, ..., k-1\}$, where $k \geq 3$. Then, there exist $r (2 \leq r < k)$ distinct integers x_i in N_k , with $A_r = \sum_{i=1}^r x_i \equiv 0 \pmod{k}$ $\iff (1)$. k is odd and $r \neq k-2$ OR (2). k is even and $r \neq k-1$.

Proof. Note that $A_{k-1} = \sum_{i=1}^{k-1} x_i = \frac{k(k-1)}{2}$ is divisible by k if and only if k is odd. Clearly, if k is odd, then $A_{k-2} = \frac{k(k-1)}{2} - x$ (for every $x \in N_k$) is not divisible by k. If k is even, then the k-2 distinct terms from $N_k \setminus \left\{\frac{k}{2}\right\}$ add up to $\frac{k(k-1)}{2} - \frac{k}{2} = \frac{k(k-2)}{2}$, which is divisible by k. Finally, note that for all $k \geq 5$ ($2 \leq r \leq k-3$), the sum of the r (r even) distinct terms $1, 2, \ldots, \frac{r}{2}, k-\frac{r}{2}, \ldots, k-2, k-1$ is divisible by k. For all $k \geq 5$ ($2 \leq r \leq k-3$), the sum of the r (r odd) distinct terms $1, 2, \ldots, \frac{r-1}{2}, \lfloor \frac{k}{2} \rfloor - 1, \lceil \frac{k}{2} \rceil, k - \frac{r-1}{2}, \ldots, k-2$ is divisible by k.

It follows from Lemma 2 that, given integers r and k with $2 \le r < k$,

- (1) if r is even, there exist distinct integers x_1, x_2, \ldots, x_r in N_k such that $k \mid \sum_{i=1}^r x_i$.
- (2) if r is odd, then there exist distinct integers x_1, x_2, \ldots, x_r in N_k such $k \mid \sum_{i=1}^r x_i \iff r \leq k-3$.

Theorem 6. Let $n \geq 4$ and S_n denote the star graph having n-1 leaves. If n is odd, then S_n is \mathbb{Z}_k -antimagic, for all $k \geq n$. Otherwise, S_n is \mathbb{Z}_k -antimagic, for all $k \geq n+2$; but not \mathbb{Z}_n -antimagic nor \mathbb{Z}_{n+1} -antimagic.

- *Proof.* (i). n is odd: Then, r=n-1 is even. By Comment (1) following Lemma 2, there exist distinct integers $x_1, x_2, \ldots, x_{n-1} \in \mathbb{Z}_k^*$ (for any $k \geq n$) such that $\sum_{i=1}^{n-1} x_i \equiv 0 \pmod{k}$. Labeling the edges of S_n with $x_1, x_2, \ldots, x_{n-1}$ gives a \mathbb{Z}_k -antimagic labeling of S_n , for all $k \geq n$.
- (ii). n is even: Then, r=n-1 is odd. By Comment (2) following Lemma 2, there exist distinct integers $x_1, x_2, \ldots, x_{n-1} \in \mathbb{Z}_k^*$ such that $\sum_{i=1}^{n-1} x_i \equiv 0 \pmod{k} \iff n-1 \leq k-3 \iff k \geq n+2$. In these cases, labeling the edges of S_n with $x_1, x_2, \ldots, x_{n-1}$ gives a \mathbb{Z}_k -antimagic labeling of S_n , for $k \geq n+2$.

Finally, we show that if n is even, then S_n is not \mathbb{Z}_n -antimagic nor \mathbb{Z}_{n+1} -antimagic. If S_n were \mathbb{Z}_n -antimagic, then the central vertex v_0 of S_n (under the induced vertex map) would be labeled $f^+(v_0) = \sum_{x_i \in \mathbb{Z}_n^*} x_i = \frac{n(n-1)}{2} \not\equiv 0 \pmod{n}$ (since n is even). Thus, $f^+(v_0) = f^+(v_j)$, for some leaf v_j of S_n , hence giving us a contradiction. Now, if S_n were \mathbb{Z}_{n+1} -antimagic, the central vertex v_0 of S_n (under the induced vertex map) would be labeled $f^+(v_0) = (\sum_{i=1}^n i) - x \pmod{n+1}$, where x is the only element in \mathbb{Z}_{n+1}^* not assigned to an edge of S_n . Since n is even, $(\sum_{i=1}^n i) - x = \frac{n(n+1)}{2} - x \equiv -x \not\equiv x \pmod{n+1}$, as n+1 is odd. Hence, $f^+(v_0) = f^+(v_j)$, for some leaf v_j of S_n , thus giving us a contradiction.

Theorem 7. Let T be a tree of order n, having exactly one vertex of even degree. Then, $IAM(T) = \{k : k \ge n\}$.

Proof. Let T be a tree of order n with a unique vertex w of even degree. We now view T as a rooted tree with w being the root. Thus, every vertex of T is either a leaf or has an even number of children. Note that n=2m+1, for some $m\in\mathbb{N}$. With the exception of w, all of the vertices of T can be grouped into m pairs of brothers $\{u_i,v_i\}$, for $i=1,2,\ldots,m$. Now, take $k\geq n$. Let w_i be the parent of $\{u_i,v_i\}$, for $i=1,2,\ldots,m$. Label the edges u_iw_i and v_iw_i with i and k-i, respectively. Then, the induced vertex labeling on u_i and v_i are i and -i (mod k), respectively, for $i=1,2,\ldots,m$. Furthermore, the induced vertex labeling on w is 0 (mod k). Thus, T is \mathbb{Z}_k -antimagic, for all $k\geq n$.

FIGURE 6. \mathbb{Z}_k -antimagic labeling of a tree with one vertex of even degree, for $k \geq 11$.

Definition. Let $m \geq 2$. A rooted tree T is full m-ary if every vertex of T is either a leaf or has exactly m children.

Corollary 4. All full 2r-ary trees of order n are \mathbb{Z}_k -antimagic, for all $k \geq n$.

Proof. In a full 2r-ary tree, there is exactly one vertex of even degree. Thus, the claim follows immediately from Theorem 7.

Theorem 8. Let T be a tree of order n, having exactly two vertices of even degree. Then, T is \mathbb{Z}_k -antimagic, for all $k \geq n+1$.

Proof. Let T be a tree of order n with even-degree vertices v and w. Since the number of odd vertices must be even, n=2m for some $m\in\mathbb{N}$. Viewing T as a rooted tree (with root w), we see that v has an odd number of child(ren) while each of the vertices in $V(T)\setminus\{v\}$ is either a leaf or has an even number of children. Let v_0 be a particular son of v. Then, vertices in $V(T)\setminus\{w,v_0\}$ can be grouped into m-1 pairs of brothers $\{u_i,v_i\}$, for $i=1,2,\ldots,m-1$. Now, take $k\geq n+1$. Let w_i be the parent of $\{u_i,v_i\}$, for $i=1,2,\ldots,m-1$. Without loss of generality, set $v_1=v$. Label the edges u_iw_i and v_iw_i with i and k-i, respectively, and label vv_0 with $\lceil \frac{k}{2} \rceil$. Then, the induced vertex labelings on u_i and v_i are i and -i (mod k), respectively, for $i=1,2,\ldots,m-1$. Furthermore, the induced vertex labelings on u_1,v,v_0 and w are $1,\lceil \frac{k}{2}\rceil-1,\lceil \frac{k}{2}\rceil$ and $0\pmod{k}$, respectively. Thus, T is \mathbb{Z}_k -antimagic, for all $k\geq n+1$.

Definition. A tree is called a *double-star* if it has exactly 2 non-pendant vertices. Let x and y be the 2 non-pendant vertices of a double-star. We denote the double-star $S_{r,s}$, where r and s are the degrees of x and y respectively. x and y are called *centers* of $S_{r,s}$.

FIGURE 7. \mathbb{Z}_{11} -antimagic labeling of a tree with two vertices of even degree.

Theorem 9. Let $S_{r,s}$ be a double-star of order n, where $r \leq s$. If $n \equiv 2 \pmod{4}$, then $IAM(S_{r,s}) = \{k : k \geq n+1\}$. Otherwise, $IAM(S_{r,s}) = \{k : k \geq n\}$.

Proof. Let $S_{r,s}$ be a double-star of order $n, r \leq s$, and having centers x and y. Note that r + s = n. Let $\{x_1, \ldots, x_{r-1}\}$ and $\{y_1, \ldots, y_{s-1}\}$ be the two sets of leaves adjacent to x and y, respectively.

Case 1 $n \equiv 1$ or 3 (mod 4):

Here, exactly one vertex (x or y) in $S_{r,s}$ is of even degree. Thus, by Theorem 7, we see that $IAM(S_{r,s}) = \{k : k \geq n\}$.

Case 2 $n \equiv 2 \pmod{4}$ and both r and s are even:

By Lemma 1, $S_{r,s}$ is not \mathbb{Z}_n -antimagic. Since r and s are both even, we see that the centers s and s are the only vertices of even degree in $S_{r,s}$. Thus by Theorem 8, we see that $IAM(S_{r,s}) = \{k : k \geq n+1\}$.

Case 3 $n \equiv 2 \pmod{4}$ and both r and s are odd:

By Lemma 1, $S_{r,s}$ is not \mathbb{Z}_n -antimagic. Now, let $k \geq n+1$. If n=6, then label xy with 1, $\{xx_1, xx_2\}$ with $\{1,5\}$, and $\{yy_1, yy_2\}$ with $\{2,3\}$.

If $n \ge 10$, then label

- (a) xy with 1;
- (b) $\{xx_1, xx_2, \dots, xx_{r-1}\}\$ with $\{1, k-2\} \cup \{3, 4, \dots, \frac{r+1}{2}\} \cup \{k-\frac{r+1}{2}, k-\frac{r-1}{2}, \dots, k-3\};$
- (c) $\{yy_1, yy_2, \dots, yy_{s-1}\}\$ with $\{2, \frac{n}{2} 1, \frac{n}{2}, k \frac{n}{2}\} \cup \{\frac{r+3}{2}, \frac{r+5}{2}, \dots, \frac{n}{2} 2\} \cup \{k (\frac{n}{2} 2), k (\frac{n}{2} 3), \dots, k \frac{r+3}{2}\}.$

Case 4 $n \equiv 0 \pmod{4}$ and both r and s are even:

Let $k \geq n$. Label

- (a) xy with $\frac{n}{2}$;
- (b) $\{xx_1, xx_2, \dots, xx_{r-1}\}\$ with $\{k-\frac{n}{2}\}\cup\{1, 2, \dots, \frac{r}{2}-1\}\cup\{k-(\frac{r}{2}-1), k-(\frac{r}{2}-2), \dots, k-1\};$

(c)
$$\{yy_1, yy_2, \dots, yy_{s-1}\}\$$
 with $(\{\frac{r}{2}, \frac{r}{2} + 1, \dots, \frac{n}{2} - 1\} \cup \{k - (\frac{n}{2} - 1), k - (\frac{n}{2} - 2), \dots, k - \frac{r}{2}\}) \setminus \{\frac{n}{4}\}.$ Case 5 $n \equiv 0 \pmod{4}$ and both r and s are odd:

Let $k \geq n$. Label

- (a) xy with 1;
- (b) $\{xx_1, xx_2, \dots, xx_{r-1}\}\$ with $\{1, k-2\} \cup \{3, 4, \dots, \frac{r+1}{2}\} \cup \{k-\frac{r+1}{2}, k-\frac{r-2}{2}, \dots, k-3\};$
- (c) $\{yy_1, yy_2, \dots, yy_{s-1}\}\$ with $(\{2, \frac{n}{2}, k-1\} \cup \{\frac{r+3}{2}, \frac{r+5}{2}, \dots, \frac{n}{2}-1\} \cup \{k-(\frac{n}{2}-1), k-(\frac{n}{2}-2), \dots, k-\frac{r+3}{2}\}) \setminus \{\frac{n}{4}+1\}.$

FIGURE 8. \mathbb{Z}_{11} -antimagic labeling of $S_{5,5}$.

FIGURE 9. \mathbb{Z}_8 -antimagic labeling of $S_{4,4}$.

FIGURE 10. \mathbb{Z}_8 -antimagic labeling of $S_{3,5}$.

Figure 11. \mathbb{Z}_9 -antimagic labeling of $S_{3,5}$.

REFERENCES

- M. Doob, On the construction of magic graphs, Proc. Fifth S.E. Conference on Combinatorics, Graph Theory and Computing (1974), 361-374.
- [2] M. Doob, Generalizations of magic graphs, Journal of Combinatorial Theory, Series B, 17 (1974), 205-217.
- [3] M. Doob, Characterizations of regular magic graphs, Journal of Combinatorial Theory, Series B, 25 (1978), 94-104.
- [4] M.C. Kong, S-M Lee, and H. Sun, On magic strength of graphs, Ars Combinatoria, 45 (1997), 193-200.
- [5] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull., 13 (1970), 451-461.
- [6] S-M Lee, Yong-Song Ho and R.M. Low, On the integer-magic spectra of maximal planar and maximal outerplanar graphs, *Congressus Numerantium*, 168 (2004), 83-90.
- [7] S-M Lee, A. Lee, Hugo Sun, and Ixin Wen, On group-magic graphs, JCMCC, 38 (2001), 197-207.
- [8] S-M Lee and F. Saba, On the integer-magic spectra of two-vertex sum of paths, Congressus Numerantium, 170 (2004), 3-15.
- [9] S-M Lee, F. Saba, E. Salehi, and H. Sun, On the V_4 -group magic graphs, Congressus Numerantium, 156 (2002), 59-67.
- [10] S-M Lee, F. Saba, and G. C. Sun, Magic strength of the k-th power of paths, Congressus Numerantium, 92 (1993), 177-184.
- [11] S-M Lee and E. Salehi, Integer-magic spectra of amalgamations of stars and cycles, Ars Combinatoria, 67 (2003), 199-212.
- [12] S-M Lee, E. Salehi and H. Sun, Integer-magic spectra of trees with diameters at most four, JCMCC, 50 (2004), 3-15.
- [13] S-M Lee, L. Valdes, and Yong-Song Ho, On group-magic spectra of trees, double trees and abbreviated double trees, JCMCC, 46 (2003), 85-95.
- [14] R.M. Low and S-M Lee, On the integer-magic spectra of tessellation graphs, Australas. J. Combin., 34 (2006), 195-210.
- [15] R.M. Low and S-M Lee, On the products of group-magic graphs, Australas. J. Combin., 34 (2006), 41-48.
- [16] R.M. Low and S-M Lee, On group-magic eulerian graphs, JCMCC, 50 (2004), 141-148.
- [17] R.M. Low and L. Sue, Some new results on the integer-magic spectra of tessellation graphs, Australas. J. Combin., 38 (2007), 255-266.
- [18] E. Salehi, Zero-sum magic graphs and their null sets, Ars Combinatoria, 82 (2007), 41-53.

- [19] E. Salehi, On zero-sum magic graphs and their null sets, Bulletin of the Institute of Mathematics, Academia Sinica, 3 (2008), 255-264.
- [20] E. Salehi and P. Bennett, On integer-magic spectra of caterpillars, JCMCC, 61 (2007), 65-71.
- [21] J. Sedlácek, On magic graphs, Math. Slov., 26 (1976), 329-335.
- [22] J. Sedlácek, Some properties of magic graphs, in Graphs, Hypergraph, and Bloc Syst. 1976, Proc. Symp. Comb. Anal., Zielona Gora (1976), 247-253.
- [23] W.C. Shiu, P.C.B. Lam and S-M. Lee, Edge-magicness of the composition of a cycle with a null graph, Congressus Numerantium, 132 (1998), 9-18.
- [24] W.C. Shiu, P.C.B. Lam and S-M. Lee, On a Construction of Supermagic Graphs, JCMCC, 42 (2002), 147-160.
- [25] W.C. Shiu and R.M. Low, Group-magicness of complete N-partite graphs, JCMCC, 58 (2006), 129-134.
- [26] W.C. Shiu and R.M. Low, Integer-magic spectra of sun graphs, J. Comb. Optim., 14 (2007), 309-321.
- [27] W.C. Shiu and R.M. Low, Z_k-magic labelings of fans and wheels with magic-value zero, Australas. J. Combin., 45 (2009), 309-316.
- [28] R.P. Stanley, Linear homogeneous diophantine equations and magic labelings of graphs, Duke Math. J., 40 (1973), 607-632.
- [29] R.P. Stanley, Magic labeling of graphs, symmetric magic squares, systems of parameters and Cohen-Macaulay rings, Duke Math. J., 40 (1976), 511-531.
- [30] W.D. Wallis, Magic Graphs, Birkhauser Boston, (2001).

DEPARTMENT OF MATHEMATICS AND INFORMATION TECHNOLOGY, THE HONG KONG INSTITUTE OF EDUCATION, 10, LO PING ROAD, TAI PO, NEW TERRITORIES

E-mail address: waihchan@ied.edu.hk

Department of Mathematics, San Jose State University, San Jose, CA 95192, USA

E-mail address: richard.low@sjsu.edu

DEPARTMENT OF MATHEMATICS, HONG KONG BAPTIST UNIVERSITY, 224 WATERLOO ROAD, KOWLOON TONG, HONG KONG

E-mail address: wcshiu@hkbu.edu.hk