

PROGRESS PREDICTION 4°/5° WEEK

0000

Extract Features

Generate csv file with informaton generated from images

- 1. Metadata extracted SliceThickness and PixelSpacing
- 2. Make Lung mask
 - a. Normalize image → remove mean and divide by std
 - b. Renormalize washed images \rightarrow sub light/dark pixels with mean
 - c.K-means to separate foreground and background
 - d. Erosion → eliminate noise/small details with a 3x3 filter
 - e. Dilation → reconstruct principal areas through a 8x8 filter

••••

Extract Features

••••

- a. Label creation (skimage) \rightarrow assign labels for each portion
- b. Compute geometrical attributes (area, bounding box)
- c. Select good bounding boxes → eliminate too big/small areas
- d. Fill lung masks → 1 for lungs, 0 elsewhere
- e. Compute lung area
- f. Calculate tissue mask and extract features (lung without border)
- 3. Join extracted features to metadata and known data

Quantile definition

000

```
Avg_Tissue_30_60 = round((sum(num t pixels list))/len(num t pixels list))*pixel spacing,4)

#Conver Avg_Tissue_30_60 to quartiles

df["Avg_Tissue_30_60_Quartile"] = pd.qcut(df.Avg_Tissue_30_60, q = 4, labels = ['Q1','Q2','Q3','Q4'])
```

Uses Avg_tissue_30_60 to define quantile groups and define categorical values.

Computed through:

- num_t_pixels_list: list of the number of tissue pixels detected in image slices between 30% and 60% of the lung height
- pixel_spacing : metadata

So it's the average tissue area (in mm²).

Quantile definition

0000

```
Avg_Tissue_30_60 = round((sum(num_t_pixels_list))/len(num_t_pixels_list))*pixel_spacing,4)

#Conver Avg_Tissue_30_60 to quartiles

df["Avg_Tissue_30_60_Quartile"] = pd.qcut(df.Avg_Tissue_30_60, q = 4, labels = ['Q1','Q2','Q3','Q4'])
```

"pd.qcut" used to divide data into 4 groups with the same amount of data 4 groups based on percentiles (25,50,75).

labels=['Q1','Q2','Q3','Q4'] assigns quartile names:

- Q1: lowest 25% of average tissue areas
- Q2: 25–50%
- Q3: 50-75%
- Q4: top 25% (largest average tissue areas)

Modeling 1

o o o

For each patient p in the train set:

 Fits a linear regression and saves the slope (a), tab values and patient

Generates 5 folds and split patients between these 5 folds. For each iteration chooses 4 for training and 1 for validation.

Per iteration it builds a new efficient model (so for each iteration it trains the model on a slightly different training set). Per iteration each patient in the test set, gets slices and tabular values and predict a slope for each slice, choosing the slope through the quantile selected for that fold.

Modeling 1

Having the predicted slope, we can predict the FVC and Confidence for the week defined in the sample_submission csv. How:

```
fvc = A_test[p] * w + B_test[p]
sub.loc[sub.Patient_Week == k, 'FVC'] = fvc
sub.loc[sub.Patient_Week == k, 'Confidence'] = (P_test[p] - A_test[p] * abs(WEEK[p] - w) )
```

In the end we will have a different prediction for each iteration and an average will be made.

```
for i in range(N):
    sub["FVC"] += subs[i]["FVC"] * (1/N)
    sub["Confidence"] += subs[i]["Confidence"] * (1/N)
```

Preparation data

Prepare data:

- Add a train/test/val column
- Add minimum week column (earliest visit for patient)
- Baseline FVC column
- Baseline Percent column
- Add column to indicate time passed from baseline visit
- One-hot encoder for Sex and SmokingStatus
- Add image features extracted from image

Merge all data, handle outliers and noise and normalize.

Modeling 2

The models final output is formed by three values:

[y_lower, y_pred, y_upper]

Representing the lower quantile, median and upper quantile estimates of FVC for a patient at a given week.

The model uses a combined loss (mloss):

- qloss → encourages predictions for each quantile to bracket the true value correctly
- score → approximates the laplace log-likelihood

Modeling 2

5 Neural Networks, each work on a slightly different feature set:

Collects all predictions and search for optimal ensemble weights - in a brute-force way - across the 5 models.

Modeling 2

The final ouput FVC and Confidence is given by:

- FVC: median value (y_true)
- Confidence: y_upper y_lower

Then finally it blends the predictions to the first model:

- 40% image-based model
- 60% metadata model

Comparison to other approaches

• 5th Place:

Small network with only tabular data Inputs → [WeekInit, WeekTarget, WeekDiff, FVC, Percent, Age, Sex, CurrentlySmokes, Exsmoker, Never Smoked]

6th Place:

Each measurement in the dataset is treated as if it were a baseline measurement. A new feature week_passed is created and extracted image features as base data. Used 5 models and weighted them

[Lasso, Ridge, ElasticNet, SVM, NN] = [0.68573749, 0., 0., 0.07551167, 0.23750526]

• 9th Place:

Use of Concatenate Tile Pooling approach for 2D CT scans, aggregates information across multiple CT layers and assigns a single label to the entire scan.

Concatenate Tile Pooling

Instead of passing an entire image as an input, N tiles are selected from each image based on the number of tissue pixels and passed independently through the convolutional part.

The outputs of the convolutional part is concatenated in a large single map for each image preceding pooling and FC head.

0000

PREDICTION FOR WEEK 0

Clustering

Divide patients into clusters and adapt each linear regression to the cluster to define similar characteristics and get informations from multiple individuals

PREDICTION FOR WEEK 0

Different subsets of features starting from 9 features:

- fvc_slope
- fvc_mean
- fvc_std
- percent_mean
- Age
- Sex_encoded
- SmokingStatus_encoded
- n_observations
- weeks_range

Best one: Minimal (fvc_slope, sex, smokingstatus)

PREDICTION FOR WEEK 0

Formed clusters divide patients in:

Cluster	N_Patients	FVC_Slope_Avg	FVC_Mean	Age_Avg	Male_%	Smoking_Mode	N_with_Week0	FVC_intercept_
0	87	-1.94	2903.85	67.79	100	Ex-smoker	5	2963.51
1	23	-4.18	1765.79	66.61	0	Never smoked	1	1923.01
2	29	-14.12	2808.48	66.31	100	Ex-smoker	4	3225.92
3	23	-3.86	2936.48	67.09	100	Never smoked	6	3068.14
4	14	-2.37	2042.42	67.29	0	Ex-smoker	2	2122.44

Cluster 0: FVC slope \rightarrow -1.94

- Only Male
- 80 ex-smoker
- 7 currently smokes
- FVC Decline slow/stable
- MAE 1174.14
- $R^2 0.004$

Cluster 1: FVC slope \rightarrow -4.18

- Only Female
- 23 Never smoked
- FVC Decline moderate
- MAE 167.79
- $R^2 0.003$

Cluster 2: FVC slope → -14.12

- Only Male
- 26 ex-smoker
- 3 never smoked
- Rapid FVC decline
- MAE 456.58
- $R^2 0.055$

Cluster 3: FVC slope → -3.86

- Only Male
- 23 never smoked
- FVC Decline moderate
- MAE 532.50
- R^2 0.054

Cluster 4: FVC slope \rightarrow -2.37

- Only Female
- 12 ex-smoker
- 2 currently smokes
- FVC Decline slow/stable
- MAE 68.46
- $R^2 0.087$

Validation made on the 18 patients with week 0 so the values of MAE and R² are very apporoximate.

Comparison between methods:

- Cluster based on FVC_slope, Sex, Smoking Status
 - MAE : 622.04
- Individual (based on individual slope → not cluster)
 - MAE: 127.62
- Cluster based on all 9 features
 - MAE: 536.12

The MAE increases for the first method respect to where we have 9 features in the clusters, but the clusters become more interpretable.

Best approach between the three methods

- Hybrid Approach
 - Use individual method for patients with a good fit,
 - Use optimized clusters for patients with variable data, and far from week 0

Use individual method if MAE% value better than cluster:

- MAE%< 5 and distance from week 0 < 15 → personal high confidence
- MAE%<10 → personal medium confidence
- MAE%<12 → personal low confidence

else use cluster estimate → cluster optimized

With this new method:

- Personal high confidence (n=87)
 - Avg R²: 0.450
 - Distance week0: 6.7 weeks
 - Avg MAE: 67
- Personal medium confidence (n=49)
 - ∘ Avg R²: 0.358
 - Distance week0: 21.1 weeks
 - Avg MAE: 98.0
- Cluster optimized (n=20)
 - \circ Avg R²: 0.479
 - Distance week0: 46.5 weeks
 - Avg MAE: 74.2
- Personal low confidence (n=1)
 - Avg R²: 0.394
 - Distance week0: 13.0 weeks
 - Avg MAE: 128.3

Problem → Is it Reliable?

We work with predicted values of Week 0.

We'll have a final prediction of the progression based on a starting prediction, there could be a big error propagation.

Possible other ways:

- Work with predicted values at week 0 but weight data, giving much more importance to the 18 patients we know and less to the ones predicted (especially the ones with low confidence)
- Eliminate FVC at week 0 for everyone, use only CT scans as baseline (extracting from there the FVC?) therefore final output cannot be decline based on baseline FVC but a definite value
- Incorporate the prediction of the FVC baseline at time as an output of the model itself, so final output (FVC baseline, FVC 1year, FVC 2year, Progression Yes/No)