relational algebra

관계대수

- 관계형 대수(relational algebra)
 - 관계형 데이터 언어는 관계형 대수를 기초로 만들어진다
 - 관계형 대수는 릴레이션들을 처리하기 위한 연산(operation)들
 - 단일 릴레이션(단항연산자)이나 두 개의 릴레이션(이항연산자)을 입력으로 받아 하나의 결과 릴레이션을 생성함
 - 질의를 기술하는데 사용함
 - 릴레이션의 대한 연산의 결과도 릴레이션
 - 관계 대수 연산의 종류
 - 수학적 집합 연산
 - 관계 데이터베이스를 위한 연산

- 집합 연산자
 - 곱집합을 제외한 합집합, 교집합, 차집합 연산은 두 릴레이션 합병 가능
 - 합병 가능(union-compatible)이란 두 릴레이션 R과 S가 있을 때, 두 릴레이션의 차수(속성의 수)가 같고 대응되는 애트리뷰트의 도메인이 같다는 것을 의미한다

- 합집합 (Union, U)
 - 두 개의 릴레이션을 합하여 하나의 릴레이션을 반환
 - 수학적 정의
 - RUS = $\{t \mid t \in R \ V \ t \in S\}$
 - 합집합의 예

번호	이름
100	정소화
200	김선우
300	고명석

번호	이름
100	정소화
200	김선우
300	고명석
101	채광주
102	김수진

SELECT 번호, 이름 FROM R UNION [ALL]

SELECT 번호, 이름 FROM S;

- 교집합 (Intersect, n)
 - 두 릴레이션이 공통으로 가기 있는 투플을 반환
 - 수학적 정의
 - $R \cap S = \{t \mid t \in R \land t \in S\}$
 - 교집합의 예

R

번호	이름
100	정소화
200	김선우
300	고명석

RNS

S

번호	이름
100	정소화
101	채광주
102	김수진

번호	이름
100	정소화

INNER JOIN....

SELECT 번호, 이름 FROM R INTERSECT SELECT 번호, 이름 FROM S;

- 차집합 (Difference, -)
 - 첫번째 릴레이션에는 속하고 두번째 릴레이션에는 속하는 않는 투플을 반환
 - 수학적 정의
 - R-S = $\{t \mid t \in \mathbb{R} \land t \notin S\}$
 - 차집합의 예

R

번호	이름
100	정소화
200	김선우
300	고명석

S

S-R

번호	이름
100	정소화
101	채광주
102	김수진

SELECT 번호, 이름 FROM R

EXCEPT

SELECT 번호, 이름 FROM S;

SELECT 번호, 이름 FROM S

EXCEPT

SELECT 번호, 이름 FROM R;

R-S

번호	이름
200	김선우
300	고명석

번호	이름
101	채광주
102	김수진

- 곱집합 (Cartesian Product, ×)
 - 다른 집합 연산자와는 달리 곱집합은 합병 가능할 필요는 없다.
 - 결과 릴레이션의 차수 : 두 릴레이션 속성의 합
 - 결과 릴레이션의 카디넬리티 : 두 릴레이션 투플의 곱
 - 수학적 정의
 - RXS $\{rs|rER \land s \in S\}$
 - 곱집합의 예

■ 곱집합 (Cartesian Product, ×)

- 셀렉션(트) 연산자 **σ**
 - 원하는 데이터를 행(튜플)으로 출력함
 - 관계 대수식
 - σ_{<선택조건>}(R)
 - 데이터 언어적 표현 : 릴레이션 where 조건식

■ 셀렉션(트) 연산자 σ

학생 릴레이션에서 학과가 "컴퓨터"인 투플을 찾아라. 관계대수 σ학과='컴퓨터'(학생)

SQL SELECT *
FROM 학생
WHERE 학과='컴퓨터';

학생 릴레이션에서 나이가 30보다 많고 성별이 "남"인 투플을 찾아라.

관계대수	σ나이>30∧성별="남"(학생)
SQL	SELECT * FROM 학생 WHERE 나이>30 AND 성별='남';

■ 프로젝션 연산자 □

- 원하는 데이터를 수직적으로 출력함
- 결과 릴레이션은 애트리뷰트 리스트에 명시된 R의 애트리뷰트들만 가짐
- 셀렉션의 결과 릴레이션에는 중복 투플이 존재할 수 없지만, 프로젝션 연산의 결과 릴레이션에는 중복된 투플들이 존재할 수 있음 -> 중복 제거
- 관계 대수식
 - П_{<애트리뷰트 리스트>}(R)
 - 데이터 언어적 표현 : 릴레이션[속성리스트]
 - $\Pi_{TITLE, SALARY}(EMP) >> EMP[TITLE, SALARY]$

■ 프로젝션 연산자 □

생산품 릴레이션에서 판매가가 8,000원을 초과하는 모든 생산품코드를 찾아라

관계대수	π생산품코드(σ판매가>8000(생산품))
SQL	SELECT 생산품코드 FROM 생산품 WHERE 판매가>8000;

직급이 사원인 이름과 월급을 검색

관계대수	Π _{EMPNAME, SALARY} (σ _{TITLE='사원'} (EMP))
SQL	SELECT EMPNAME, SALARY FROM EMP WHERE TITLE='사원';

■ 조인(join) 연산자 ⋈

대출, 고객 릴레이션에서 "혜화" 지점에 대출이 있는 모든 고객들의 이름을 찾아라.	
관계대수	π이름((σ지점명="혜화"(대출))⋈n고객)
SQL	SELECT 고객.이름 FROM 고객, 대출 WHERE 고객.대출번호=대출.대출번호 AND 대출.지점명='혜화':

- 조인(join) 연산자 ⋈
 - 두 릴레이션을 조합하여 결과 릴레이션을 구성
 - 조인 속성의 값이 같은 투플만 연결하여 생성된 투플을 결과 릴레이션에 포함
 - 조인 속성 : 두 릴레이션이 공통으로 가지고 있는 속성
 - 표현법: R1 × R2
 - 조인 연산의 구분
 - 기본연산 : 세타조인(⋈), 동등조인(⋈), 자연조인(⋈)
 - 확장된 조인 연산 : 세미조인(⋉, ⋈), 외부조인(⋈, ⋈, ⋈)

- 자연조인(natural join)
 - 동등조인에서 조인에 참여한 속성이 두 번 나오지 않도록 두 번째 속성을 제거한 결과를 반환함
 - 형식 : R ⋈ N(r, s) S

고객과 고객의 주문 사항을 모두 보여주되 같은 속성은 한 번만 표시하시오.

관계대수	고객 ⋈ N(고객.고객번호=주문.고객번호) 주문
SQL	SELECT * FROM 고객, 주문 WHERE 고객.고객번호=주문.고객번호';

■ 다음 세 개의 릴레이션 스키마를 보고 각 물음에 답하시오.

학생(<u>학번</u>, 이름, 학년) 과목(<u>과목번호</u>, 과목이름) 수강(<u>학번</u>, <u>과목번호</u>, 중간성적, 기말성적, 학점)

- 1. 모든 과목의 이름을 검색하는 질의문을 관계 대수로 표현하시오.
- 2. 1학년 학생의 학번과 이름을 검색하는 질의문을 관계 대수로 표현하시오.
- 3. 중간성적이 80점 이상이고 기말성적이 70점 이상인 학생의 학번과 수강한 과목번호, 학점을 검색하는 질의문을 관계 대수로 표현하시오.
- 4. 3번 과목에서 A0 학점을 받은 학생의 이름과 학년을 검색하는 질의문을 관계 대수로 표현하시오.