11-017-2025

Agenda!

Logistic Regression

Implementation of LR

ROC, AUC

(row - validation

2 2mx +c -> signold - 0 plhreshold > 0.5 -> 0

height
$$\rightarrow$$
 tall \rightarrow 1 binary

 $0.2 \rightarrow \text{prob } \rightarrow \text{fall is } 20\%.$

Sigmoid $(2) \rightarrow \hat{y} \rightarrow \text{prob}$
 \rightarrow 0.8 \rightarrow prob \rightarrow fall is 80%.

$$\hat{y} = 80$$
 | mile - $(y - \hat{y})^2$

$$z=80$$
 $sigmoid(2) \rightarrow 0.8 = 9$
mse will not work

 $z=80$
 $z=80$
 $z=80$
 $z=9$
 $z=80$
 $z=9$
 $z=9$

To solve this prob, we need a different cost function.

(ogistic Regression:

$$\mathcal{J}(\beta) = -\frac{1}{m} \sum_{i=1}^{m} \left(\mathcal{J}_{i}^{*} \cdot \log(\mathcal{Y}_{i}^{*}) + (1-\mathcal{Y}_{i}^{*}) \cdot \log(1-\mathcal{Y}_{i}^{*}) \right)$$

$$(0) \text{ function } =$$

$$m=1, \ \, y=0 \ \, i \ \, y-pwd=0.9 \ \, \left(\ \, ca/e \ \, l \right)$$

$$= -\left(\ \, y_i \cdot log(\hat{y_i}) + \left(\ \, l-\hat{y_i} \right) \cdot \left(\ \, log(l-\hat{y_i}) \right) \right)$$

$$= -\left(\ \, 0 \cdot log(0.9) + \left(\ \, l-0 \right) \cdot \left(\ \, log(l-0.9) \right) \right)$$

$$= -\left(\ \, 0 + 1 \cdot log(0.1) \right)$$

$$= -\left(\ \, -2.3025 \right)$$

$$= 2.3025$$

MJE = 0.81

(ase 1
$$(y=0, y-pred=0.9)$$
: (ast $\%$ 2.30 25 (High lost)
case 2 $(y=0, y-pred=0.1)$: (ast $\%$ 0.10536 (10 ω (ast)

Flow of Logististic regression.

e) Doug

Out of content topic.

Data Card:

- into about duta
- 100r(c)
- yow & column)
- Features into range of each feature, it ype
- Missing values

Model card:

- performance

 link of test sort on which we did evaluation
- Joleon matrix
- -> date

Pipeline
$$\rightarrow$$
 Scaling \rightarrow [numerical (d)]

$$\frac{1}{2}, 3, 4, 5, 6, 7, 9, 9 \text{ remainder} = "drep"]$$

$$\frac{1}{2}, 3, 4, 5, 6, 7, 9, 9$$

$$\frac{1}{2}, 3, 4, 5, 6, 7, 9, 9$$
From from ()

$$Z = \frac{p_{redic} t}{Z = x_{redin} \cdot dot(weight)} + bigg$$

$$P = sigmoid(2)$$

$$= (p_{redic} t)$$

$$= (p_{redic} t)$$