Calculations of $2\nu\beta\beta$ Decay Nuclear Matrix Elements Using Ab-Initio Methods

Thesis Presentation

Didar Sedghi

McGill University Department of Physics Supervisor: Dr. Jason D. Holt

March 31, 2025

Overview

- 1. Neutrinos and the β -Decay
- 2. $2\nu\beta\beta$ and $0\nu\beta\beta$
- 3. Nuclear Matrix Elements (NMEs) and Half-Life
- 4. Ab-initio method vs Phenomenology
- 5. IMSRG
- 6. NMEs Results for ²²O & ⁴⁸Ca with Ab-Initio Methods
- 7. Concluding Remarks

1. Neutrinos and the β -Decay

 β -decay isospin changing nuclear decay governed by the weak nuclear force:

$$eta^-:\left|n,t_z=-rac{1}{2}
ight>
ightarrow\left|p,t_z=rac{1}{2}
ight>+e^-+(ar
u_e)$$

$$\beta^+:\left|p,t_z=\frac{1}{2}\right\rangle \rightarrow \left|n,t_z=-\frac{1}{2}\right\rangle + e^+ + (\nu_e)$$
 (2)

- Emission of β -particles, either an electron $\beta^-=e^-$ or a positron $\beta^+=e^+$ along with electron neutrinos ν_e and $\bar{\nu}_e$.
- Historically, neutrino emission was unknown.
- Postulated by Wolfgang Pauli in 1930 to explain the continuous energy spectra of the β -decay.
- We focus on β^- decay.

Neutrinos and the β -Decay

Q-reaction value for nuclear decays and reactions:

$$Q = T_f + T_i = (m_i - m_f)c^2 (3)$$

- Without neutrinos, expected narrow distribution: $Q \sim T_e \sim -m_e c^2$.
- ullet Observed continuous energy spectrum distribution: $Q\sim T_e+T_{ar
 u_e}$.
- Electron energy shared with another unidentified particle called the neutrino.

Neutrinos and the β -Decay

Neutrinos and the β -Decay

2. $2\nu\beta\beta$ and $0\nu\beta\beta$

• First theoretical postulation made by Maria Goeppert-Mayer in 1935.

$$2\nu\beta\beta:X(A,Z)\longrightarrow X(A,Z+2)+2e^-+2\bar{\nu}_e \tag{4}$$

• Important in the study of $0\nu\beta\beta$ decay.

2 uetaeta and 0 uetaeta

- Nuclear matrix element correlations for $2\nu\beta\beta$ and $0\nu\beta\beta$.
- Constraining of $0\nu\beta\beta$ NMEs values.
- Probing differences to phenomenological NMEs.
- Majorana or Dirac fermions?

3. Nuclear Matrix Elements (NMEs) and Half-Life

• Half-life equation for $2\nu\beta\beta$ decay given by Fermi's Golden Rule (perturbative weak interaction) is ¹:

$$\frac{1}{T_{1/2}^{2\nu}} = G^{2\nu} g_A^4 |\mathcal{M}^{2\nu}|^2 m_e^2 \tag{5}$$

• We only care about the relation between half-life $T_{1/2}^{2\nu}$ and NMEs $|\mathcal{M}^{2\nu}|$:

$$\frac{1}{T_{1/2}^{2\nu}} \propto |\mathcal{M}^{2\nu}|^2 \tag{6}$$

• Nuclear matrix element for $2\nu\beta\beta$ contributed by Gamow-Teller and Fermi transitions:

$$\mathcal{M}^{2\nu} = \mathcal{M}_{GT}^{2\nu} - \left(\frac{g_V}{g_A}\right)^2 \mathcal{M}_F^{2\nu} \tag{7}$$

¹Payne, C. G. (2018). Ab initio theory for two-neutrino and neutrinoless double-beta decay (T). University of British Columbia. Retrieved from https://open.library.ubc.ca/collections/ubctheses/24/items/1.0363101

Nuclear Matrix Elements (NMEs) and Half-Life

• General matrix element formulation for selection rules and probabilities.

$$\langle \Psi_f^{J^{\pi}} | \hat{\mathcal{O}} | \Psi_i^{I^{\pi}} \rangle \tag{8}$$

• Suppress Fermi contribution ²:

$$|\mathcal{M}_{GT}^{2\nu}| >> |\mathcal{M}_F^{2\nu}| \tag{9}$$

Fermi transition mismatch of isospins.

²Masaru Doi, Tsuneyuki Kotani, Eiichi Takasugi, Double Beta Decay and Majorana Neutrino, Progress of Theoretical Physics Supplement, Volume 83, March 1985, Pages 1–175,

Nuclear Matrix Elements (NMEs) and Half-Life

• Gamow-Teller transition contribution most significant ³:

$$\mathcal{M}^{2\nu} \approx \mathcal{M}_{GT}^{2\nu} = \sum_{k} \frac{\langle 0_{f}^{+} | \hat{\mathcal{O}}_{GT} | 1_{k}^{+} \rangle \langle 1_{k}^{+} | \hat{\mathcal{O}}_{GT} | 0_{i}^{+} \rangle}{E_{k} - [(E_{i} + E_{f})/2]}$$
(10)

- Gamow-Teller operator $\hat{\mathcal{O}}_{GT} = \sum_a \hat{\tau}_a^- \sigma_a$.
- Parent to daughter nuclei $0_i^+ \longrightarrow 1_k^+ \longrightarrow 0_f^+$

 $^{^3}$ P. Jokiniemi et al., *Neutrinoless $\beta\beta$ -decay nuclear matrix elements from two-neutrino $\beta\beta$ -decay data*, Phys. Rev. C, **107**(4), 2023.

4. Ab-initio method vs Phenomenology

- Theoretical nuclear phenomenology focuses on empirically motivated construction of nuclear theory.
- Liquid drop model, nuclear shell model, interacting boson model (IBM), etc
- Phenomenological methods fit nuclear potentials by appropriate mathematical functions to reproduce experiments.
- Lacks power to predict observables with no available data such as $0\nu\beta\beta$.

Ab-initio method vs Phenomenology

- Ab-initio; first principle or starting from the beginning.
- Essential idea: solve $\hat{H}|\Psi\rangle = E|\Psi\rangle$.
- Consider all nucleon-nucleon interactions and build from ground up.
- Apply appropriate approximations (e.g. valence-space and inert-core decoupling from \hat{H} using IMSRG.
- Use of χ EFT to describe effective theory for QCD and complicated many-body interactions in nuclei.
- QCD: quark-gluon degrees of freedom.
- χ EFT: nucleon-pion degrees of freedom.
- Nucleon-nucleon interactions for NN and 3N terms.

Ab-initio method vs Phenomenology

Figure: χ EFT interaction diagarams. Full lines are nucleons, dashed lines pions. ⁴

⁴Machleidt, R. and Sammarruca, F., *Chiral EFT based nuclear forces: achievements and challenges*, Physica Scripta, vol. 91, no. 8, 2016.

5. IMSRG

- Most quantum systems can be approximated using the quantum harmonic oscillator.
- Approximate nuclear potential interactions with quantum harmonic oscillator Hamiltonian $\hat{H}_{HO} = \frac{\hat{p}^2}{2m} + V_{HO}$ where $V_{HO} = \frac{1}{2}m\omega^2\mathbf{x}^2$.
- Given different $\hbar\omega$ values, we get different complete orthonormal basis sets $\{|\Psi_n\rangle\}$.

$$\hat{H}_{HO}(\omega)|\Psi_n\rangle_{\omega} = E_n^{HO}(\omega)|\Psi_n\rangle_{\omega} \tag{11}$$

• Energy splittings defined entirely by $\hbar\omega$:

$$E_n^{HO} = \hbar\omega \left(n + \frac{1}{2} \right) \tag{12}$$

• How to transform a Hamiltonian from the H.O. to the desired basis?

- IMSRG is a quantum many-body method for calculating nuclear interactions.
- Simplification of \hat{H} -Hamiltonian via continuous unitary transformation:⁵

$$\hat{H}(s) = \hat{U}(s)\hat{H}(0)\hat{U}^{\dagger}(s) \tag{13}$$

• $\hat{H}(s=0)$ starting Hamiltonian parametrized by s-flow parameter $s \in [0, \infty)$.

$$\hat{H}(s) = \hat{H}(s)_d + \hat{H}(s)_{od} \tag{14}$$

- As $s \longrightarrow \infty$, $\hat{H}(s) \longrightarrow \hat{H}(s)_d$ and $\hat{H}(s)_{od} \longrightarrow 0$.
- Hamiltonian becomes more "simplified" or diagonal.
- Suppression of undesired terms as $\hat{H}(s)_{od} \longrightarrow 0$.

⁵H. Hergert et al., *In-Medium Similarity Renormalization Group Approach to the Nuclear Many-Body Problem*, in *An Advanced Course in Computational Nuclear Physics*, Springer, 2017.

Find a unitary transformation $\hat{U}(s)$ that renders $\hat{H}(s) \longrightarrow \hat{H}(s)_d$ diagonal. After some tedious math...

Dynamical Flow Generator

$$\hat{\eta}(s) \equiv \frac{d\,\hat{U}(s)}{ds}\,\hat{U}^{\dagger}(s) = -\hat{\eta}^{\dagger}(s) \tag{15}$$

• Solve the following differential equation:

$$\frac{d}{ds}\hat{H}(s) = [\hat{\eta}(s), \hat{H}(s)] \tag{16}$$

• SRG flow equation describes **evolution** of $\hat{H}(s)$ under operation from $\hat{\eta}(s)$.

- Evolution of $\hat{H}(s)$ depends on $\hat{\eta}(s)$ generator.
- What $\hat{\eta}(s)$ generator is appropriate? Recall...

Desired Hamiltonian

$$\lim_{s \to \infty} \hat{H}(s) \to \hat{H}(s)_d, \lim_{s \to \infty} \hat{H}(s)_{od} \to 0$$
 (17)

• Wegner-Brockett proposed:

$$\hat{\eta}(s) \equiv [\hat{H}(s)_d, \hat{H}(s)_{od}] \tag{18}$$

• $\hat{\eta}(s)$ vanishes at two points: finite s due to degeneracy and $s \to \infty$.

• Other operators transform along:

$$\hat{\mathcal{O}}(s)_{GT} = \hat{U}(s)\hat{\mathcal{O}}(0)_{GT}\hat{U}^{\dagger}(s) \tag{19}$$

• $2n + 1 \le e_{max}$

6. NMEs Results for ²²O & ⁴⁸Ca with Ab-Initio Methods

• Oxygen-22 $2\nu\beta\beta$ decay.

$$^{22}O(0^+) \longrightarrow ^{22}F(1^+) \longrightarrow ^{22}Ne(0^+)$$
 (20)

• Calcium-48 $2\nu\beta\beta$ decay.

48
Ca $(0^+) \longrightarrow ^{48}$ Sc $(1^+) \longrightarrow ^{48}$ Ti (0^+) (21)

NMEs Results for ²²O & ⁴⁸Ca with Ab-Initio Methods

NMEs Results for ²²O & ⁴⁸Ca with Ab-Initio Methods

7. Concluding Remarks

- Important to study $2\nu\beta\beta$ NMEs to correlate and constrain $0\nu\beta\beta$ NMEs.
- First ab-initio calculations of $2\nu\beta\beta$ NMEs.
- Useful tool in probing and understanding neutrino and Beyond the Standard Model physics.

The End