Lab 8: Data Augmentation

Olivier Binette

Friday October 9, 2020

Agenda

- ▶ Problem statement
- ► Go through the lab's tasks
- Office hours

Data points Y_1, Y_2, \ldots, Y_n coming from a **mixture model**:

$$Y_i \sim \sum_{j=1}^n w_j N(\mu_j, \varepsilon^2).$$

What does this mean?

- ▶ let Z_i be a random variable such that $\mathbb{P}(Z_i = j) = w_j$ for j = 1, 2, 3,
- ▶ let $Y_i \mid Z_i \sim N(\mu_{Z_i}, \varepsilon^2)$.

Data points Y_1, Y_2, \ldots, Y_n coming from a **mixture model**:

$$Y_i \sim \sum_{j=1}^n w_j N(\mu_j, \varepsilon^2).$$

What does this mean?

- ▶ let Z_i be a random variable such that $\mathbb{P}(Z_i = j) = w_j$ for j = 1, 2, 3,
- ▶ let $Y_i \mid Z_i \sim N(\mu_{Z_i}, \varepsilon^2)$.

Data points Y_1, Y_2, \ldots, Y_n coming from a **mixture model**:

$$Y_i \sim \sum_{j=1}^n w_j N(\mu_j, \varepsilon^2).$$

What does this mean?

- ▶ let Z_i be a random variable such that $\mathbb{P}(Z_i = j) = w_j$ for j = 1, 2, 3,
- ▶ let $Y_i \mid Z_i \sim N(\mu_{Z_i}, \varepsilon^2)$.

Data points Y_1, Y_2, \ldots, Y_n coming from a **mixture model**:

$$Y_i \sim \sum_{j=1}^n w_j N(\mu_j, \varepsilon^2).$$

What does this mean?

- ▶ let Z_i be a random variable such that $\mathbb{P}(Z_i = j) = w_j$ for j = 1, 2, 3,
- ▶ let $Y_i \mid Z_i \sim N(\mu_{Z_i}, \varepsilon^2)$.

Data points Y_1, Y_2, \ldots, Y_n coming from a **mixture model**:

$$Y_i \sim \sum_{j=1}^n w_j N(\mu_j, \varepsilon^2).$$

What does this mean?

- ▶ let Z_i be a random variable such that $\mathbb{P}(Z_i = j) = w_j$ for j = 1, 2, 3,
- ▶ let $Y_i \mid Z_i \sim N(\mu_{Z_i}, \varepsilon^2)$.

Data points Y_1, Y_2, \ldots, Y_n coming from a **mixture model**:

$$Y_i \sim \sum_{j=1}^n w_j N(\mu_j, \varepsilon^2).$$

What does this mean?

- ▶ let Z_i be a random variable such that $\mathbb{P}(Z_i = j) = w_j$ for j = 1, 2, 3,
- ▶ let $Y_i \mid Z_i \sim N(\mu_{Z_i}, \varepsilon^2)$.

In other words:

$$p(Y_i \mid w_{1:3}, \mu_{1:3}, \varepsilon^2) = \sum_{j=1}^3 w_j N(Y_i; \mu_j, \varepsilon^2)$$

and

$$p(Y_i | Z_i, w_{1:3}, \mu_{1:3}, \varepsilon^2) = N(Y_i; \mu_{Z_i}, \varepsilon^2)$$

Let's see what this mixture model could look like in an example.

```
Let \mu_1 = -5, \mu_2 = 0 and \mu_3 = 5, and let \varepsilon = 1. Let w_j = 1/3 for j = 1, 2, 3.
```

Now let's generate data from the mixture model:

```
n = 100
mu = c(-5, 0, 5)

Z = sample(1:3, size=n, replace=TRUE)
Y = rnorm(n, mean=mu[Z], sd=1)

hist(Y, breaks=20)
```

Let's see what this mixture model could look like in an example.

Let $\mu_1 = -5$, $\mu_2 = 0$ and $\mu_3 = 5$, and let $\varepsilon = 1$. Let $w_j = 1/3$ for j = 1, 2, 3.

Now let's generate data from the mixture model:

```
n = 100
mu = c(-5, 0, 5)

Z = sample(1:3, size=n, replace=TRUE)
Y = rnorm(n, mean=mu[Z], sd=1)
hist(Y, breaks=20)
```

Let's see what this mixture model could look like in an example.

```
Let \mu_1=-5, \mu_2=0 and \mu_3=5, and let \varepsilon=1. Let w_j=1/3 for j=1,2,3.
```

Now let's generate data from the mixture model:

```
n = 100
mu = c(-5, 0, 5)

Z = sample(1:3, size=n, replace=TRUE)
Y = rnorm(n, mean=mu[Z], sd=1)

hist(Y, breaks=20)
```


We have the model

$$Y_i \sim \sum_{j=1}^n w_j N(\mu_j, \varepsilon^2),$$

now we need priors on the unknown parameters μ_j , w_j and ε

Priors

For the means:

$$\mu_j \mid \mu_0, \sigma_0 \sim N(\mu_0, \sigma_0^2)$$
 $\mu_0 \sim N(0, 3)$
 $\sigma_0^2 \sim IG(2, 2)$

We have the model

$$Y_i \sim \sum_{j=1}^n w_j N(\mu_j, \varepsilon^2),$$

now we need priors on the unknown parameters μ_i , w_i and ε .

Priors

For the means:

$$\mu_j \mid \mu_0, \sigma_0 \sim N(\mu_0, \sigma_0^2)$$
 $\mu_0 \sim N(0, 3)$
 $\sigma_0^2 \sim IG(2, 2)$

We have the model

$$Y_i \sim \sum_{j=1}^n w_j N(\mu_j, \varepsilon^2),$$

now we need priors on the unknown parameters μ_j , w_j and ε .

Priors

For the means:

$$\mu_{j} \mid \mu_{0}, \sigma_{0} \sim N(\mu_{0}, \sigma_{0}^{2})$$

$$\mu_{0} \sim N(0, 3)$$

$$\sigma_{0}^{2} \sim IG(2, 2)$$

We have the model

$$Y_i \sim \sum_{j=1}^n w_j N(\mu_j, \varepsilon^2),$$

now we need priors on the unknown parameters μ_i , w_i and ε .

Priors

For the means:

$$\mu_{j} \mid \mu_{0}, \sigma_{0} \sim N(\mu_{0}, \sigma_{0}^{2})$$
 $\mu_{0} \sim N(0, 3)$
 $\sigma_{0}^{2} \sim IG(2, 2)$

We have the model

$$Y_i \sim \sum_{j=1}^n w_j N(\mu_j, \varepsilon^2),$$

now we need priors on the unknown parameters μ_i , w_i and ε .

Priors

For the means:

$$\mu_{j} \mid \mu_{0}, \sigma_{0} \sim N(\mu_{0}, \sigma_{0}^{2})$$
 $\mu_{0} \sim N(0, 3)$
 $\sigma_{0}^{2} \sim IG(2, 2)$

We have the model

$$Y_i \sim \sum_{j=1}^n w_j N(\mu_j, \varepsilon^2),$$

now we need priors on the unknown parameters μ_i , w_i and ε .

Priors

For the means:

$$\mu_{j} \mid \mu_{0}, \sigma_{0} \sim \mathcal{N}(\mu_{0}, \sigma_{0}^{2})$$
 $\mu_{0} \sim \mathcal{N}(0, 3)$
 $\sigma_{0}^{2} \sim IG(2, 2)$

Priors

For the mixture weights:

$$(w_1, w_2, w_3) \sim \mathsf{Dirichlet}(\mathbf{1})$$

which means that $p(w_1, w_2, w_3) \propto 1$.

Recall that, in general,

$$(w_1, w_2, w_3) \sim \mathsf{Dirichlet}(\alpha_1, \alpha_2, \alpha_3)$$

 $\Rightarrow p(w_1, w_2, w_3) \propto w_1^{\alpha_1 - 1} w_2^{\alpha_2 - 1} w_3^{\alpha_3 - 1}$

Priors

For the mixture weights:

$$(w_1, w_2, w_3) \sim \mathsf{Dirichlet}(\mathbf{1})$$

which means that $p(w_1, w_2, w_3) \propto 1$.

Recall that, in general,

$$(w_1, w_2, w_3) \sim \mathsf{Dirichlet}(\alpha_1, \alpha_2, \alpha_3)$$

 $\Rightarrow p(w_1, w_2, w_3) \propto w_1^{\alpha_1 - 1} w_2^{\alpha_2 - 1} w_3^{\alpha_3 - 1}$

Priors

For the mixture weights:

$$(w_1, w_2, w_3) \sim \mathsf{Dirichlet}(\mathbf{1})$$

which means that $p(w_1, w_2, w_3) \propto 1$.

Recall that, in general,

$$(w_1, w_2, w_3) \sim \mathsf{Dirichlet}(\alpha_1, \alpha_2, \alpha_3)$$

 $\Rightarrow p(w_1, w_2, w_3) \propto w_1^{\alpha_1 - 1} w_2^{\alpha_2 - 1} w_3^{\alpha_3 - 1}.$

Priors

For the variance:

$$\varepsilon^2 \sim IG(2,2)$$

This means that

$$au=1/arepsilon^2\sim\mathsf{Gamma}(2,2)$$

Priors

For the variance:

$$\varepsilon^2 \sim \textit{IG}(2,2)$$

This means that

$$\tau = 1/\varepsilon^2 \sim \mathsf{Gamma}(2,2)$$

In summary,

$$\begin{split} \rho(Y_i|\mu_1,\mu_2,\mu_3,w_1,w_2,w_3,\tau) &= \sum_{j=1}^3 w_i N(\mu_j,\tau^{-1}) \\ \mu_j|\mu_0,\sigma_0^2 &\sim N(\mu_0,\phi_0^{-1}) \\ \mu_0 &\sim N(0,3) \\ \phi_0 &\sim \mathsf{Gamma}(2,2) \\ (w_1,w_2,w_3) &\sim \mathit{Dirichlet}(\mathbf{1}) \\ \tau &\sim \mathsf{Gamma}(2,2), \end{split}$$

for i = 1, ... n.

Derive the joint posterior

 $p(w_1, w_2, w_3, \mu_1, \mu_2, \mu_3, \varepsilon^2, \mu_0, \sigma_0^2 | Y_{1:N})$ up to a normalizing constant.

Let's do the derivations using $\tau=1/\varepsilon^2$ and $\phi_0=1/\sigma_0^2$

$$\begin{split} & p(Y_{1:n}, \mu_{1:3}, \mu_{0}, \phi_{0}, w_{1:3}, \tau) \\ = & p(Y_{1:n} \mid \mu_{1:3}, w_{1:3}, \tau) p(\mu_{1:3}, \mu_{0}, \phi_{0}, w_{1:3}, \tau) \\ = & p(Y_{1:n} \mid \mu_{1:3}, w_{1:3}, \tau) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(w_{1:3}) p(\tau) \\ = & p(Y_{1:n} \mid \mu_{1:3}, w_{1:3}, \tau) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau) \\ = & \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau)\right) \left(\prod_{j=1}^{3} p(\mu_{j} \mid \mu_{0}, \phi_{0})\right) p(\mu_{0}) p(\phi_{0}) p(\tau). \end{split}$$

Derive the joint posterior

 $p(w_1, w_2, w_3, \mu_1, \mu_2, \mu_3, \varepsilon^2, \mu_0, \sigma_0^2 | Y_{1:N})$ up to a normalizing constant.

Let's do the derivations using $\tau=1/\varepsilon^2$ and $\phi_0=1/\sigma_0^2$.

$$\begin{split} & p(Y_{1:n}, \mu_{1:3}, \mu_0, \phi_0, w_{1:3}, \tau) \\ = & p(Y_{1:n} \mid \mu_{1:3}, w_{1:3}, \tau) p(\mu_{1:3}, \mu_0, \phi_0, w_{1:3}, \tau) \\ = & p(Y_{1:n} \mid \mu_{1:3}, w_{1:3}, \tau) p(\mu_{1:3} \mid \mu_0, \phi_0) p(\mu_0) p(\phi_0) p(w_{1:3}) p(\tau) \\ = & p(Y_{1:n} \mid \mu_{1:3}, w_{1:3}, \tau) p(\mu_{1:3} \mid \mu_0, \phi_0) p(\mu_0) p(\phi_0) p(\tau) \\ = & \left(\prod_{i=1}^n p(Y_i \mid \mu_{1:3}, w_{1:3}, \tau) \right) \left(\prod_{j=1}^3 p(\mu_j \mid \mu_0, \phi_0) \right) p(\mu_0) p(\phi_0) p(\tau). \end{split}$$

Derive the joint posterior

 $p(w_1, w_2, w_3, \mu_1, \mu_2, \mu_3, \varepsilon^2, \mu_0, \sigma_0^2 | Y_{1:N})$ up to a normalizing constant.

Let's do the derivations using $\tau=1/\varepsilon^2$ and $\phi_0=1/\sigma_0^2$.

$$\begin{split} & p(Y_{1:n}, \mu_{1:3}, \mu_0, \phi_0, w_{1:3}, \tau) \\ = & p(Y_{1:n} \mid \mu_{1:3}, w_{1:3}, \tau) p(\mu_{1:3}, \mu_0, \phi_0, w_{1:3}, \tau) \\ = & p(Y_{1:n} \mid \mu_{1:3}, w_{1:3}, \tau) p(\mu_{1:3} \mid \mu_0, \phi_0) p(\mu_0) p(\phi_0) p(w_{1:3}) p(\tau) \\ = & p(Y_{1:n} \mid \mu_{1:3}, w_{1:3}, \tau) p(\mu_{1:3} \mid \mu_0, \phi_0) p(\mu_0) p(\phi_0) p(\tau) \\ = & \left(\prod_{i=1}^n p(Y_i \mid \mu_{1:3}, w_{1:3}, \tau) \right) \left(\prod_{j=1}^3 p(\mu_j \mid \mu_0, \phi_0) \right) p(\mu_0) p(\phi_0) p(\tau). \end{split}$$

Derive the joint posterior

 $p(w_1, w_2, w_3, \mu_1, \mu_2, \mu_3, \varepsilon^2, \mu_0, \sigma_0^2 | Y_{1:N})$ up to a normalizing constant.

Let's do the derivations using $\tau=1/\varepsilon^2$ and $\phi_0=1/\sigma_0^2$.

$$\begin{split} & p(Y_{1:n}, \mu_{1:3}, \mu_{0}, \phi_{0}, w_{1:3}, \tau) \\ = & p(Y_{1:n} \mid \mu_{1:3}, w_{1:3}, \tau) p(\mu_{1:3}, \mu_{0}, \phi_{0}, w_{1:3}, \tau) \\ = & p(Y_{1:n} \mid \mu_{1:3}, w_{1:3}, \tau) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(w_{1:3}) p(\tau) \\ = & p(Y_{1:n} \mid \mu_{1:3}, w_{1:3}, \tau) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau) \\ = & \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau) \right) \left(\prod_{j=1}^{3} p(\mu_{j} \mid \mu_{0}, \phi_{0}) \right) p(\mu_{0}) p(\phi_{0}) p(\tau). \end{split}$$

Derive the joint posterior

 $p(w_1, w_2, w_3, \mu_1, \mu_2, \mu_3, \varepsilon^2, \mu_0, \sigma_0^2 | Y_{1:N})$ up to a normalizing constant.

Let's do the derivations using $\tau=1/\varepsilon^2$ and $\phi_0=1/\sigma_0^2$.

$$\begin{split} &p(Y_{1:n}, \mu_{1:3}, \mu_{0}, \phi_{0}, w_{1:3}, \tau) \\ =& p(Y_{1:n} \mid \mu_{1:3}, w_{1:3}, \tau) p(\mu_{1:3}, \mu_{0}, \phi_{0}, w_{1:3}, \tau) \\ =& p(Y_{1:n} \mid \mu_{1:3}, w_{1:3}, \tau) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(w_{1:3}) p(\tau) \\ =& p(Y_{1:n} \mid \mu_{1:3}, w_{1:3}, \tau) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau) \\ =& \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau)\right) \left(\prod_{j=1}^{3} p(\mu_{j} \mid \mu_{0}, \phi_{0})\right) p(\mu_{0}) p(\phi_{0}) p(\tau). \end{split}$$

Derive the joint posterior

 $p(w_1, w_2, w_3, \mu_1, \mu_2, \mu_3, \varepsilon^2, \mu_0, \sigma_0^2 | Y_{1:N})$ up to a normalizing constant.

Let's do the derivations using $\tau=1/\varepsilon^2$ and $\phi_0=1/\sigma_0^2$.

$$\begin{split} &p(Y_{1:n},\mu_{1:3},\mu_{0},\phi_{0},w_{1:3},\tau)\\ =&p(Y_{1:n}\mid\mu_{1:3},w_{1:3},\tau)p(\mu_{1:3},\mu_{0},\phi_{0},w_{1:3},\tau)\\ =&p(Y_{1:n}\mid\mu_{1:3},w_{1:3},\tau)p(\mu_{1:3}\mid\mu_{0},\phi_{0})p(\mu_{0})p(\phi_{0})p(w_{1:3})p(\tau)\\ =&p(Y_{1:n}\mid\mu_{1:3},w_{1:3},\tau)p(\mu_{1:3}\mid\mu_{0},\phi_{0})p(\mu_{0})p(\phi_{0})p(\tau)\\ =&\left(\prod_{i=1}^{n}p(Y_{i}\mid\mu_{1:3},w_{1:3},\tau)\right)\left(\prod_{j=1}^{3}p(\mu_{j}\mid\mu_{0},\phi_{0})\right)p(\mu_{0})p(\phi_{0})p(\tau). \end{split}$$

Derive the joint posterior

 $p(w_1, w_2, w_3, \mu_1, \mu_2, \mu_3, \varepsilon^2, \mu_0, \sigma_0^2 | Y_{1:N})$ up to a normalizing constant.

Let's do the derivations using $\tau=1/\varepsilon^2$ and $\phi_0=1/\sigma_0^2$.

$$\begin{split} &p(Y_{1:n},\mu_{1:3},\mu_{0},\phi_{0},w_{1:3},\tau)\\ =&p(Y_{1:n}\mid\mu_{1:3},w_{1:3},\tau)p(\mu_{1:3},\mu_{0},\phi_{0},w_{1:3},\tau)\\ =&p(Y_{1:n}\mid\mu_{1:3},w_{1:3},\tau)p(\mu_{1:3}\mid\mu_{0},\phi_{0})p(\mu_{0})p(\phi_{0})p(w_{1:3})p(\tau)\\ =&p(Y_{1:n}\mid\mu_{1:3},w_{1:3},\tau)p(\mu_{1:3}\mid\mu_{0},\phi_{0})p(\mu_{0})p(\phi_{0})p(\tau)\\ =&\left(\prod_{i=1}^{n}p(Y_{i}\mid\mu_{1:3},w_{1:3},\tau)\right)\left(\prod_{j=1}^{3}p(\mu_{j}\mid\mu_{0},\phi_{0})\right)p(\mu_{0})p(\phi_{0})p(\tau). \end{split}$$

Derive the joint posterior

 $p(w_1, w_2, w_3, \mu_1, \mu_2, \mu_3, \varepsilon^2, \mu_0, \sigma_0^2 | Y_{1:N})$ up to a normalizing constant.

Let's do the derivations using $\tau=1/\varepsilon^2$ and $\phi_0=1/\sigma_0^2$.

$$\begin{split} & p(Y_{1:n}, \mu_{1:3}, \mu_0, \phi_0, w_{1:3}, \tau) \\ = & p(Y_{1:n} \mid \mu_{1:3}, w_{1:3}, \tau) p(\mu_{1:3}, \mu_0, \phi_0, w_{1:3}, \tau) \\ = & p(Y_{1:n} \mid \mu_{1:3}, w_{1:3}, \tau) p(\mu_{1:3} \mid \mu_0, \phi_0) p(\mu_0) p(\phi_0) p(w_{1:3}) p(\tau) \\ = & p(Y_{1:n} \mid \mu_{1:3}, w_{1:3}, \tau) p(\mu_{1:3} \mid \mu_0, \phi_0) p(\mu_0) p(\phi_0) p(\tau) \\ = & \left(\prod_{i=1}^n p(Y_i \mid \mu_{1:3}, w_{1:3}, \tau) \right) \left(\prod_{j=1}^3 p(\mu_j \mid \mu_0, \phi_0) \right) p(\mu_0) p(\phi_0) p(\tau). \end{split}$$

The full joint:

$$\left(\prod_{i=1}^{n} p(Y_i \mid \mu_{1:3}, w_{1:3}, \tau)\right) \left(\prod_{j=1}^{3} p(\mu_j \mid \mu_0, \phi_0)\right) p(\mu_0) p(\phi_0) p(\tau).$$

And

$$p(Y_i \mid \mu_{1:3}, w_{1:3}, \tau) = \sum_{j=1}^{3} w_j N(Y_i; \mu_j, \tau),$$

$$p(\mu_j \mid \mu_0, \phi_0) = N(\mu_j; \mu_0, \phi_0^{-1}),$$

$$p(\mu_0) = N(\mu_0; 0, 3),$$

$$p(\phi_0) = \text{Gamma}(\phi_0; 2, 2),$$

$$p(\tau) = \text{Gamma}(\tau; 2, 2).$$

The full joint:

$$\left(\prod_{i=1}^{n} p(Y_i \mid \mu_{1:3}, w_{1:3}, \tau)\right) \left(\prod_{j=1}^{3} p(\mu_j \mid \mu_0, \phi_0)\right) p(\mu_0) p(\phi_0) p(\tau).$$

And

$$p(Y_i \mid \mu_{1:3}, w_{1:3}, \tau) = \sum_{j=1}^{3} w_j N(Y_i; \mu_j, \tau),$$

$$p(\mu_j \mid \mu_0, \phi_0) = N(\mu_j; \mu_0, \phi_0^{-1}),$$

$$p(\mu_0) = N(\mu_0; 0, 3),$$

$$p(\phi_0) = \text{Gamma}(\phi_0; 2, 2),$$

$$p(\tau) = \text{Gamma}(\tau; 2, 2).$$

The full joint:

$$\left(\prod_{i=1}^{n} p(Y_i \mid \mu_{1:3}, w_{1:3}, \tau)\right) \left(\prod_{j=1}^{3} p(\mu_j \mid \mu_0, \phi_0)\right) p(\mu_0) p(\phi_0) p(\tau).$$

$$p(Y_i \mid \mu_{1:3}, w_{1:3}, \tau) = \sum_{j=1}^{3} w_j N(Y_i; \mu_j, \tau),$$

$$p(\mu_j \mid \mu_0, \phi_0) = N(\mu_j; \mu_0, \phi_0^{-1}),$$

$$p(\mu_0) = N(\mu_0; 0, 3),$$

$$p(\phi_0) = Gamma(\phi_0; 2, 2),$$

$$p(\tau) = Gamma(\tau; 2, 2).$$

The full joint:

$$\left(\prod_{i=1}^{n} p(Y_i \mid \mu_{1:3}, w_{1:3}, \tau)\right) \left(\prod_{j=1}^{3} p(\mu_j \mid \mu_0, \phi_0)\right) p(\mu_0) p(\phi_0) p(\tau).$$

$$p(Y_i \mid \mu_{1:3}, w_{1:3}, \tau) = \sum_{j=1}^{3} w_j N(Y_i; \mu_j, \tau),$$

$$p(\mu_j \mid \mu_0, \phi_0) = N(\mu_j; \mu_0, \phi_0^{-1}),$$

$$p(\mu_0) = N(\mu_0; 0, 3),$$

$$p(\phi_0) = Gamma(\phi_0; 2, 2),$$

$$p(\tau) = Gamma(\tau; 2, 2).$$

The full joint:

$$\left(\prod_{i=1}^{n} p(Y_i \mid \mu_{1:3}, w_{1:3}, \tau)\right) \left(\prod_{j=1}^{3} p(\mu_j \mid \mu_0, \phi_0)\right) p(\mu_0) p(\phi_0) p(\tau).$$

$$p(Y_i \mid \mu_{1:3}, w_{1:3}, \tau) = \sum_{j=1}^{3} w_j N(Y_i; \mu_j, \tau),$$

$$p(\mu_j \mid \mu_0, \phi_0) = N(\mu_j; \mu_0, \phi_0^{-1}),$$

$$p(\mu_0) = N(\mu_0; 0, 3),$$

$$p(\phi_0) = \text{Gamma}(\phi_0; 2, 2),$$

$$p(\tau) = \text{Gamma}(\tau; 2, 2).$$

The full joint:

$$\left(\prod_{i=1}^{n} p(Y_i \mid \mu_{1:3}, w_{1:3}, \tau)\right) \left(\prod_{j=1}^{3} p(\mu_j \mid \mu_0, \phi_0)\right) p(\mu_0) p(\phi_0) p(\tau).$$

$$\begin{split} \rho(Y_i \mid \mu_{1:3}, w_{1:3}, \tau) &= \sum_{j=1}^3 w_j N(Y_i; \mu_j, \tau), \\ \rho(\mu_j \mid \mu_0, \phi_0) &= N(\mu_j; \mu_0, \phi_0^{-1}), \\ \rho(\mu_0) &= N(\mu_0; 0, 3), \\ \rho(\phi_0) &= \mathsf{Gamma}(\phi_0; 2, 2), \\ \rho(\tau) &= \mathsf{Gamma}(\tau; 2, 2). \end{split}$$

$$p(w_{1:3} \mid Y_{1:n}, \mu_{1:3}, \mu_{0}, \phi_{0}, \tau)$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau)\right) \left(\prod_{j=1}^{3} p(\mu_{j} \mid \mu_{0}, \phi_{0})\right) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau)\right)$$

$$\propto \prod_{i=1}^{n} \left(\sum_{j=1}^{3} w_{j} N(Y_{i}; \mu_{j}, \tau)\right)$$

$$p(w_{1:3} \mid Y_{1:n}, \mu_{1:3}, \mu_{0}, \phi_{0}, \tau)$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau)\right) \left(\prod_{j=1}^{3} p(\mu_{j} \mid \mu_{0}, \phi_{0})\right) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau)\right)$$

$$\propto \prod_{i=1}^{n} \left(\sum_{j=1}^{3} w_{j} N(Y_{i}; \mu_{j}, \tau)\right)$$

$$p(w_{1:3} \mid Y_{1:n}, \mu_{1:3}, \mu_{0}, \phi_{0}, \tau)$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau) \right) \left(\prod_{j=1}^{3} p(\mu_{j} \mid \mu_{0}, \phi_{0}) \right) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau) \right)$$

$$\propto \prod_{i=1}^{n} \left(\sum_{j=1}^{3} w_{j} N(Y_{i}; \mu_{j}, \tau) \right)$$

$$p(w_{1:3} \mid Y_{1:n}, \mu_{1:3}, \mu_{0}, \phi_{0}, \tau)$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau) \right) \left(\prod_{j=1}^{3} p(\mu_{j} \mid \mu_{0}, \phi_{0}) \right) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau) \right)$$

$$\propto \prod_{i=1}^{n} \left(\sum_{j=1}^{3} w_{j} N(Y_{i}; \mu_{j}, \tau) \right)$$

$$p(\mu_{j} \mid Y_{1:n}, \mu_{(-j)}, \mu_{0}, \phi_{0}, w_{1:3}, \tau)$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau) \right) \left(\prod_{j=1}^{3} p(\mu_{j} \mid \mu_{0}, \phi_{0}) \right) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau) \right) p(\mu_{j} \mid \mu_{0}, \phi_{0})$$

$$\propto \left(\prod_{i=1}^{n} \left(\sum_{j=1}^{3} w_{j} N(Y_{i}; \mu_{j}, \tau) \right) \right) p(\mu_{j} \mid \mu_{0}, \phi_{0})$$

$$p(\mu_{j} \mid Y_{1:n}, \mu_{(-j)}, \mu_{0}, \phi_{0}, w_{1:3}, \tau)$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau) \right) \left(\prod_{j=1}^{3} p(\mu_{j} \mid \mu_{0}, \phi_{0}) \right) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau) \right) p(\mu_{j} \mid \mu_{0}, \phi_{0})$$

$$\propto \left(\prod_{i=1}^{n} \left(\sum_{j=1}^{3} w_{j} N(Y_{i}; \mu_{j}, \tau) \right) \right) p(\mu_{j} \mid \mu_{0}, \phi_{0})$$

$$p(\mu_{j} \mid Y_{1:n}, \mu_{(-j)}, \mu_{0}, \phi_{0}, w_{1:3}, \tau)$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau) \right) \left(\prod_{j=1}^{3} p(\mu_{j} \mid \mu_{0}, \phi_{0}) \right) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau) \right) p(\mu_{j} \mid \mu_{0}, \phi_{0})$$

$$\propto \left(\prod_{i=1}^{n} \left(\sum_{j=1}^{3} w_{j} N(Y_{i}; \mu_{j}, \tau) \right) \right) p(\mu_{j} \mid \mu_{0}, \phi_{0})$$

$$p(\mu_{j} \mid Y_{1:n}, \mu_{(-j)}, \mu_{0}, \phi_{0}, w_{1:3}, \tau)$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau) \right) \left(\prod_{j=1}^{3} p(\mu_{j} \mid \mu_{0}, \phi_{0}) \right) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau) \right) p(\mu_{j} \mid \mu_{0}, \phi_{0})$$

$$\propto \left(\prod_{i=1}^{n} \left(\sum_{j=1}^{3} w_{j} N(Y_{i}; \mu_{j}, \tau) \right) \right) p(\mu_{j} \mid \mu_{0}, \phi_{0})$$

$$p(\tau \mid Y_{1:n}, \mu_{1:3}, \mu_{0}, \phi_{0}, w_{1:3})$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau)\right) \left(\prod_{j=1}^{3} p(\mu_{j} \mid \mu_{0}, \phi_{0})\right) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau)\right) p(\tau)$$

$$\propto \left(\prod_{i=1}^{n} \left(\sum_{j=1}^{3} w_{j} N(Y_{i}; \mu_{j}, \tau)\right)\right) \tau^{2-1} \exp\{-2\tau\}.$$

$$p(\tau \mid Y_{1:n}, \mu_{1:3}, \mu_{0}, \phi_{0}, w_{1:3})$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau)\right) \left(\prod_{j=1}^{3} p(\mu_{j} \mid \mu_{0}, \phi_{0})\right) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau)\right) p(\tau)$$

$$\propto \left(\prod_{i=1}^{n} \left(\sum_{j=1}^{3} w_{j} N(Y_{i}; \mu_{j}, \tau)\right)\right) \tau^{2-1} \exp\{-2\tau\}.$$

$$p(\tau \mid Y_{1:n}, \mu_{1:3}, \mu_{0}, \phi_{0}, w_{1:3})$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau)\right) \left(\prod_{j=1}^{3} p(\mu_{j} \mid \mu_{0}, \phi_{0})\right) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau)\right) p(\tau)$$

$$\propto \left(\prod_{i=1}^{n} \left(\sum_{j=1}^{3} w_{j} N(Y_{i}; \mu_{j}, \tau)\right)\right) \tau^{2-1} \exp\{-2\tau\}.$$

$$p(\tau \mid Y_{1:n}, \mu_{1:3}, \mu_{0}, \phi_{0}, w_{1:3})$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau)\right) \left(\prod_{j=1}^{3} p(\mu_{j} \mid \mu_{0}, \phi_{0})\right) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau)\right) p(\tau)$$

$$\propto \left(\prod_{i=1}^{n} \left(\sum_{j=1}^{3} w_{j} N(Y_{i}; \mu_{j}, \tau)\right)\right) \tau^{2-1} \exp\{-2\tau\}.$$

$$\begin{aligned}
&p(\mu_0 \mid Y_{1:n}, \mu_{1:3}, \phi_0, w_{1:3}, \tau) \\
&\propto \left(\prod_{i=1}^n p(Y_i \mid \mu_{1:3}, w_{1:3}, \tau) \right) \left(\prod_{j=1}^3 p(\mu_j \mid \mu_0, \phi_0) \right) p(\mu_0) p(\phi_0) p(\tau) \\
&\propto \left(\prod_{j=1}^3 p(\mu_j \mid \mu_0, \phi_0) \right) p(\mu_0) \\
&\propto \exp \left\{ -\frac{\phi_0}{2} \sum_{j=1}^3 (\mu_j - \mu_0)^2 \right\} \exp\{\mu_0^2/6\} \\
&\propto \exp \left\{ -\frac{1}{2} \left[(3\phi_0 + \frac{1}{3})\mu_0^2 - 2\mu_0\phi_0 \sum_{j=1}^3 \mu_j \right] \right\} \\
&\Rightarrow \mu_0 \mid -\sim N \left((3\phi_0 + \frac{1}{3})^{-1}\phi_0 \sum_{j=1}^3 \mu_j, (3\phi_0 + \frac{1}{3})^{-1} \right).
\end{aligned}$$

$$\rho(\mu_{0} \mid Y_{1:n}, \mu_{1:3}, \phi_{0}, w_{1:3}, \tau)$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau)\right) \left(\prod_{j=1}^{3} p(\mu_{j} \mid \mu_{0}, \phi_{0})\right) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

$$\propto \left(\prod_{j=1}^{3} p(\mu_{j} \mid \mu_{0}, \phi_{0})\right) p(\mu_{0})$$

$$\propto \exp \left\{-\frac{\phi_{0}}{2} \sum_{j=1}^{3} (\mu_{j} - \mu_{0})^{2}\right\} \exp \{\mu_{0}^{2}/6\}$$

$$\propto \exp \left\{-\frac{1}{2} \left[(3\phi_{0} + \frac{1}{3})\mu_{0}^{2} - 2\mu_{0}\phi_{0} \sum_{j=1}^{3} \mu_{j}\right]\right\}$$

$$\Rightarrow \mu_{0} \mid - \sim N \left((3\phi_{0} + \frac{1}{3})^{-1}\phi_{0} \sum_{j=1}^{3} \mu_{j}, (3\phi_{0} + \frac{1}{3})^{-1}\right).$$

$$\begin{split} & p(\mu_0 \mid Y_{1:n}, \mu_{1:3}, \phi_0, w_{1:3}, \tau) \\ & \propto \left(\prod_{i=1}^n p(Y_i \mid \mu_{1:3}, w_{1:3}, \tau) \right) \left(\prod_{j=1}^3 p(\mu_j \mid \mu_0, \phi_0) \right) p(\mu_0) p(\phi_0) p(\tau) \\ & \propto \left(\prod_{j=1}^3 p(\mu_j \mid \mu_0, \phi_0) \right) p(\mu_0) \\ & \propto \exp \left\{ -\frac{\phi_0}{2} \sum_{j=1}^3 (\mu_j - \mu_0)^2 \right\} \exp\{\mu_0^2/6\} \\ & \propto \exp \left\{ -\frac{1}{2} \left[(3\phi_0 + \frac{1}{3})\mu_0^2 - 2\mu_0\phi_0 \sum_{j=1}^3 \mu_j \right] \right\} \\ \Rightarrow & \mu_0 \mid - \sim N \left((3\phi_0 + \frac{1}{3})^{-1}\phi_0 \sum_{j=1}^3 \mu_j, (3\phi_0 + \frac{1}{3})^{-1} \right). \end{split}$$

$$\begin{split} & p(\mu_0 \mid Y_{1:n}, \mu_{1:3}, \phi_0, w_{1:3}, \tau) \\ & \propto \left(\prod_{i=1}^n p(Y_i \mid \mu_{1:3}, w_{1:3}, \tau) \right) \left(\prod_{j=1}^3 p(\mu_j \mid \mu_0, \phi_0) \right) p(\mu_0) p(\phi_0) p(\tau) \\ & \propto \left(\prod_{j=1}^3 p(\mu_j \mid \mu_0, \phi_0) \right) p(\mu_0) \\ & \propto \exp \left\{ -\frac{\phi_0}{2} \sum_{j=1}^3 (\mu_j - \mu_0)^2 \right\} \exp\{\mu_0^2/6\} \\ & \propto \exp \left\{ -\frac{1}{2} \left[(3\phi_0 + \frac{1}{3})\mu_0^2 - 2\mu_0\phi_0 \sum_{j=1}^3 \mu_j \right] \right\} \\ \Rightarrow & \mu_0 \mid - \sim N \left((3\phi_0 + \frac{1}{3})^{-1}\phi_0 \sum_{j=1}^3 \mu_j, (3\phi_0 + \frac{1}{3})^{-1} \right). \end{split}$$

$$\begin{split} & p(\mu_0 \mid Y_{1:n}, \mu_{1:3}, \phi_0, w_{1:3}, \tau) \\ & \propto \left(\prod_{i=1}^n p(Y_i \mid \mu_{1:3}, w_{1:3}, \tau) \right) \left(\prod_{j=1}^3 p(\mu_j \mid \mu_0, \phi_0) \right) p(\mu_0) p(\phi_0) p(\tau) \\ & \propto \left(\prod_{j=1}^3 p(\mu_j \mid \mu_0, \phi_0) \right) p(\mu_0) \\ & \propto \exp \left\{ -\frac{\phi_0}{2} \sum_{j=1}^3 (\mu_j - \mu_0)^2 \right\} \exp\{\mu_0^2/6\} \\ & \propto \exp \left\{ -\frac{1}{2} \left[(3\phi_0 + \frac{1}{3})\mu_0^2 - 2\mu_0\phi_0 \sum_{j=1}^3 \mu_j \right] \right\} \\ \Rightarrow & \mu_0 \mid - \sim N \left((3\phi_0 + \frac{1}{3})^{-1}\phi_0 \sum_{j=1}^3 \mu_j, (3\phi_0 + \frac{1}{3})^{-1} \right). \end{split}$$

$$p(\phi_{0} \mid Y_{1:n}, \mu_{1:3}, \mu_{0}, w_{1:3}, \tau)$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau)\right) \left(\prod_{j=1}^{3} p(\mu_{j} \mid \mu_{0}, \phi_{0})\right) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

$$\propto \left(\prod_{j=1}^{3} p(\mu_{j} \mid \mu_{0}, \phi_{0})\right) p(\phi_{0})$$

$$\propto \left(\prod_{j=1}^{3} \sqrt{\frac{\phi_{0}}{2\pi}} \exp\left\{-\frac{\phi_{0}}{2}(\mu_{0} - \mu_{j})^{2}\right\}\right) \phi_{0}^{2-1} \exp\left\{-2\phi_{0}\right\}$$

$$\propto \phi_{0}^{7/2-1} \exp\left\{-\phi_{0} \left(2 + \frac{1}{2} \sum_{j=1}^{3} (\mu_{0} - \mu_{j})^{2}\right)\right\}$$

$$p(\phi_{0} \mid Y_{1:n}, \mu_{1:3}, \mu_{0}, w_{1:3}, \tau)$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau)\right) \left(\prod_{j=1}^{3} p(\mu_{j} \mid \mu_{0}, \phi_{0})\right) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

$$\propto \left(\prod_{j=1}^{3} p(\mu_{j} \mid \mu_{0}, \phi_{0})\right) p(\phi_{0})$$

$$\propto \left(\prod_{j=1}^{3} \sqrt{\frac{\phi_{0}}{2\pi}} \exp\left\{-\frac{\phi_{0}}{2}(\mu_{0} - \mu_{j})^{2}\right\}\right) \phi_{0}^{2-1} \exp\left\{-2\phi_{0}\right\}$$

$$\propto \phi_{0}^{7/2-1} \exp\left\{-\phi_{0}\left(2 + \frac{1}{2}\sum_{j=1}^{3}(\mu_{0} - \mu_{j})^{2}\right)\right\}$$

$$\Rightarrow \phi_{0} \mid - \sim \text{Gamma}\left(7/2, 2 + \frac{1}{2}\sum_{j=1}^{3}(\mu_{0} - \mu_{j})^{2}\right)$$

$$p(\phi_{0} \mid Y_{1:n}, \mu_{1:3}, \mu_{0}, w_{1:3}, \tau)$$

$$\propto \left(\prod_{i=1}^{n} p(Y_{i} \mid \mu_{1:3}, w_{1:3}, \tau)\right) \left(\prod_{j=1}^{3} p(\mu_{j} \mid \mu_{0}, \phi_{0})\right) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

$$\propto \left(\prod_{j=1}^{3} p(\mu_{j} \mid \mu_{0}, \phi_{0})\right) p(\phi_{0})$$

$$\propto \left(\prod_{j=1}^{3} \sqrt{\frac{\phi_{0}}{2\pi}} \exp\left\{-\frac{\phi_{0}}{2}(\mu_{0} - \mu_{j})^{2}\right\}\right) \phi_{0}^{2-1} \exp\left\{-2\phi_{0}\right\}$$

$$\propto \phi_{0}^{7/2-1} \exp\left\{-\phi_{0}\left(2 + \frac{1}{2}\sum_{j=1}^{3}(\mu_{0} - \mu_{j})^{2}\right)\right\}$$

$$\Rightarrow \phi_{0} \mid - \sim \text{Gamma}\left(7/2, 2 + \frac{1}{2}\sum_{j=1}^{3}(\mu_{0} - \mu_{j})^{2}\right)$$

$$\begin{split} & p(\phi_0 \mid Y_{1:n}, \mu_{1:3}, \mu_0, w_{1:3}, \tau) \\ & \propto \left(\prod_{i=1}^n p(Y_i \mid \mu_{1:3}, w_{1:3}, \tau) \right) \left(\prod_{j=1}^3 p(\mu_j \mid \mu_0, \phi_0) \right) p(\mu_0) p(\phi_0) p(\tau) \\ & \propto \left(\prod_{j=1}^3 p(\mu_j \mid \mu_0, \phi_0) \right) p(\phi_0) \\ & \propto \left(\prod_{j=1}^3 \sqrt{\frac{\phi_0}{2\pi}} \exp\left\{ -\frac{\phi_0}{2} (\mu_0 - \mu_j)^2 \right\} \right) \phi_0^{2-1} \exp\{-2\phi_0\} \\ & \propto \phi_0^{7/2-1} \exp\left\{ -\phi_0 \left(2 + \frac{1}{2} \sum_{j=1}^3 (\mu_0 - \mu_j)^2 \right) \right\} \\ \Rightarrow & \phi_0 \mid - \sim \text{Gamma} \left(7/2, 2 + \frac{1}{2} \sum_{j=1}^3 (\mu_0 - \mu_j)^2 \right) \end{split}$$

$$\begin{split} & p(\phi_0 \mid Y_{1:n}, \mu_{1:3}, \mu_0, w_{1:3}, \tau) \\ & \propto \left(\prod_{i=1}^n p(Y_i \mid \mu_{1:3}, w_{1:3}, \tau) \right) \left(\prod_{j=1}^3 p(\mu_j \mid \mu_0, \phi_0) \right) p(\mu_0) p(\phi_0) p(\tau) \\ & \propto \left(\prod_{j=1}^3 p(\mu_j \mid \mu_0, \phi_0) \right) p(\phi_0) \\ & \propto \left(\prod_{j=1}^3 \sqrt{\frac{\phi_0}{2\pi}} \exp\left\{ -\frac{\phi_0}{2} (\mu_0 - \mu_j)^2 \right\} \right) \phi_0^{2-1} \exp\{-2\phi_0\} \\ & \propto \phi_0^{7/2-1} \exp\left\{ -\phi_0 \left(2 + \frac{1}{2} \sum_{j=1}^3 (\mu_0 - \mu_j)^2 \right) \right\} \\ \Rightarrow \phi_0 \mid - \sim \mathsf{Gamma} \left(7/2, 2 + \frac{1}{2} \sum_{j=1}^3 (\mu_0 - \mu_j)^2 \right) \end{split}$$

$$\begin{split} & p(\phi_0 \mid Y_{1:n}, \mu_{1:3}, \mu_0, w_{1:3}, \tau) \\ & \propto \left(\prod_{i=1}^n p(Y_i \mid \mu_{1:3}, w_{1:3}, \tau) \right) \left(\prod_{j=1}^3 p(\mu_j \mid \mu_0, \phi_0) \right) p(\mu_0) p(\phi_0) p(\tau) \\ & \propto \left(\prod_{j=1}^3 p(\mu_j \mid \mu_0, \phi_0) \right) p(\phi_0) \\ & \propto \left(\prod_{j=1}^3 \sqrt{\frac{\phi_0}{2\pi}} \exp\left\{ -\frac{\phi_0}{2} (\mu_0 - \mu_j)^2 \right\} \right) \phi_0^{2-1} \exp\{ -2\phi_0 \} \\ & \propto \phi_0^{7/2-1} \exp\left\{ -\phi_0 \left(2 + \frac{1}{2} \sum_{j=1}^3 (\mu_0 - \mu_j)^2 \right) \right\} \\ \Rightarrow & \phi_0 \mid - \sim \mathsf{Gamma} \left(7/2, 2 + \frac{1}{2} \sum_{j=1}^3 (\mu_0 - \mu_j)^2 \right) \end{split}$$

Where necessary, (re)-derive the full conditionals under the data augmentation scheme.

Data augmentation scheme:

▶ Same priors as before, but we decompose the likelihood:

$$Z_i \mid w_1, w_2, w_3 \sim Cat(3, \mathbf{w})$$

 $Y_i \mid Z_i, \mu_{1:3}, \tau \sim N(\mu_{Z_i}, 1/\tau)$

- \blacktriangleright The marginal distribution of Y_i is **unchanged**.
- \triangleright Using the variables Z_i helps derive full conditional distributions.

$$p(Y_i \mid Z_i, \mu_1, \mu_2, \mu_3, \varepsilon^2) = N(Y_i; \mu_{Z_i}, \varepsilon^2)$$

 $P(Z_i = j \mid w_{1:3}) = w_j.$

Where necessary, (re)-derive the full conditionals under the data augmentation scheme.

Data augmentation scheme:

▶ Same priors as before, but we decompose the likelihood:

$$Z_i \mid w_1, w_2, w_3 \sim \textit{Cat}(3, \mathbf{w})$$

 $Y_i \mid Z_i, \mu_{1:3}, \tau \sim \textit{N}(\mu_{Z_i}, 1/\tau)$

- ▶ The marginal distribution of Y_i is **unchanged**.
- \triangleright Using the variables Z_i helps derive full conditional distributions.

$$p(Y_i \mid Z_i, \mu_1, \mu_2, \mu_3, \varepsilon^2) = N(Y_i; \mu_{Z_i}, \varepsilon^2)$$

 $P(Z_i = j \mid w_{1:3}) = w_j.$

Where necessary, (re)-derive the full conditionals under the data augmentation scheme.

Data augmentation scheme:

▶ Same priors as before, but we decompose the likelihood:

$$Z_i \mid w_1, w_2, w_3 \sim Cat(3, \mathbf{w})$$

 $Y_i \mid Z_i, \mu_{1:3}, \tau \sim N(\mu_{Z_i}, 1/\tau)$

- ▶ The marginal distribution of Y_i is **unchanged**.
- \triangleright Using the variables Z_i helps derive full conditional distributions.

$$p(Y_i \mid Z_i, \mu_1, \mu_2, \mu_3, \varepsilon^2) = N(Y_i; \mu_{Z_i}, \varepsilon^2)$$

 $P(Z_i = j \mid w_{1:3}) = w_j.$

Where necessary, (re)-derive the full conditionals under the data augmentation scheme.

Data augmentation scheme:

▶ Same priors as before, but we decompose the likelihood:

$$Z_i \mid w_1, w_2, w_3 \sim Cat(3, \mathbf{w})$$

 $Y_i \mid Z_i, \mu_{1:3}, \tau \sim N(\mu_{Z_i}, 1/\tau)$

- ▶ The marginal distribution of Y_i is **unchanged**.
- \triangleright Using the variables Z_i helps derive full conditional distributions.

$$p(Y_i \mid Z_i, \mu_1, \mu_2, \mu_3, \varepsilon^2) = N(Y_i; \mu_{Z_i}, \varepsilon^2)$$

 $P(Z_i = j \mid w_{1:3}) = w_j.$

Where necessary, (re)-derive the full conditionals under the data augmentation scheme.

Data augmentation scheme:

▶ Same priors as before, but we decompose the likelihood:

$$Z_i \mid w_1, w_2, w_3 \sim \mathit{Cat}(3, \boldsymbol{w}) \ Y_i \mid Z_i, \mu_{1:3}, au \sim \mathit{N}(\mu_{Z_i}, 1/ au)$$

- ▶ The marginal distribution of *Y_i* is **unchanged**.
- ▶ Using the variables Z_i helps derive full conditional distributions.

$$p(Y_i \mid Z_i, \mu_1, \mu_2, \mu_3, \varepsilon^2) = N(Y_i; \mu_{Z_i}, \varepsilon^2)$$

 $P(Z_i = j \mid w_{1:3}) = w_j.$

Where necessary, (re)-derive the full conditionals under the data augmentation scheme.

Data augmentation scheme:

Same priors as before, but we decompose the likelihood:

$$Z_i \mid w_1, w_2, w_3 \sim \mathit{Cat}(3, \boldsymbol{w}) \ Y_i \mid Z_i, \mu_{1:3}, au \sim \mathit{N}(\mu_{Z_i}, 1/ au)$$

- ▶ The marginal distribution of Y_i is **unchanged**.
- ▶ Using the variables Z_i helps derive full conditional distributions.

$$p(Y_i \mid Z_i, \mu_1, \mu_2, \mu_3, \varepsilon^2) = N(Y_i; \mu_{Z_i}, \varepsilon^2)$$

 $P(Z_i = j \mid w_{1:3}) = w_j.$

Where necessary, (re)-derive the full conditionals under the data augmentation scheme.

Data augmentation scheme:

Same priors as before, but we decompose the likelihood:

$$Z_i \mid w_1, w_2, w_3 \sim \mathit{Cat}(3, \boldsymbol{w})$$

 $Y_i \mid Z_i, \mu_{1:3}, \tau \sim \mathit{N}(\mu_{Z_i}, 1/\tau)$

- ▶ The marginal distribution of Y_i is **unchanged**.
- ▶ Using the variables Z_i helps derive full conditional distributions.

$$p(Y_i \mid Z_i, \mu_1, \mu_2, \mu_3, \varepsilon^2) = N(Y_i; \mu_{Z_i}, \varepsilon^2)$$

 $P(Z_i = j \mid w_{1:3}) = w_j.$

Now the full joint becomes:

$$p(Y_{1:n}, Z_{1:n}, \mu_{1:3}, \mu_{0}, \phi_{0}, w_{1:3}, \tau)$$

$$= p(Y_{1:n} \mid Z_{1:n}, \mu_{1:3}, \tau) p(Z_{1:n}) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

$$= \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) w_{Z_{i}} \right) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

Now the full joint becomes:

$$p(Y_{1:n}, Z_{1:n}, \mu_{1:3}, \mu_{0}, \phi_{0}, w_{1:3}, \tau)$$

$$= p(Y_{1:n} \mid Z_{1:n}, \mu_{1:3}, \tau) p(Z_{1:n}) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

$$= \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) w_{Z_{i}} \right) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

Now the full joint becomes:

$$p(Y_{1:n}, Z_{1:n}, \mu_{1:3}, \mu_{0}, \phi_{0}, w_{1:3}, \tau)$$

$$= p(Y_{1:n} \mid Z_{1:n}, \mu_{1:3}, \tau) p(Z_{1:n}) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

$$= \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) w_{Z_{i}} \right) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

Full conditional of $w_{1:3}$:

$$\begin{split} & p(w_{1:3} \mid Z_{1:n}, Y_{1:n}, \mu_{1:3}, \mu_{0}, \phi_{0}, \tau) \\ & \propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) w_{Z_{i}} \right) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau) \\ & \propto \prod_{i=1}^{n} w_{Z_{i}} \\ & \propto w_{1}^{N_{1}} w_{2}^{N_{2}} w_{3}^{N_{3}} \\ & \Rightarrow w_{1:3} \sim \mathsf{Dirichlet}(N_{1} + 1, N_{2} + 1, N_{3} + 1) \end{split}$$
The $N_{j} = \sum_{i=1}^{n} \mathbb{I}(Z_{i} = j)$.

Full conditional of $w_{1:3}$:

$$p(w_{1:3} \mid Z_{1:n}, Y_{1:n}, \mu_{1:3}, \mu_{0}, \phi_{0}, \tau)$$

$$\propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) w_{Z_{i}} \right) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

$$\propto \prod_{i=1}^{n} w_{Z_{i}}$$

$$\propto w_{1}^{N_{1}} w_{2}^{N_{2}} w_{3}^{N_{3}}$$

$$\Rightarrow w_{1:3} \sim \text{Dirichlet}(N_{1} + 1, N_{2} + 1, N_{3} + 1)$$

76 / 95

Full conditional of $w_{1:3}$:

$$p(w_{1:3} \mid Z_{1:n}, Y_{1:n}, \mu_{1:3}, \mu_{0}, \phi_{0}, \tau)$$

$$\propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) w_{Z_{i}} \right) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

$$\propto \prod_{i=1}^{n} w_{Z_{i}}$$

$$\propto w_{1}^{N_{1}} w_{2}^{N_{2}} w_{3}^{N_{3}}$$

$$\Rightarrow w_{1:3} \sim \text{Dirichlet}(N_{1} + 1, N_{2} + 1, N_{3} + 1)$$

$$\Rightarrow N_{1:3} \sim \sum_{i=1}^{n} \pi_{i} \mathbb{I}(Z_{i} - i)$$

Full conditional of $w_{1:3}$:

$$\begin{split} & p(w_{1:3} \mid Z_{1:n}, Y_{1:n}, \mu_{1:3}, \mu_0, \phi_0, \tau) \\ & \propto \prod_{i=1}^n \left(N(Y_i; \mu_{Z_i}, \tau^{-1}) w_{Z_i} \right) p(\mu_{1:3} \mid \mu_0, \phi_0) p(\mu_0) p(\phi_0) p(\tau) \\ & \propto \prod_{i=1}^n w_{Z_i} \\ & \propto w_1^{N_1} w_2^{N_2} w_3^{N_3} \\ & \Rightarrow w_{1:3} \sim \mathsf{Dirichlet}(N_1 + 1, N_2 + 1, N_3 + 1) \end{split}$$

78 / 95

Full conditional of $w_{1:3}$:

$$\begin{split} & p(w_{1:3} \mid Z_{1:n}, Y_{1:n}, \mu_{1:3}, \mu_0, \phi_0, \tau) \\ & \propto \prod_{i=1}^n \left(N(Y_i; \mu_{Z_i}, \tau^{-1}) w_{Z_i} \right) p(\mu_{1:3} \mid \mu_0, \phi_0) p(\mu_0) p(\phi_0) p(\tau) \\ & \propto \prod_{i=1}^n w_{Z_i} \\ & \propto w_1^{N_1} w_2^{N_2} w_3^{N_3} \\ & \Rightarrow w_{1:3} \sim \mathsf{Dirichlet}(N_1 + 1, N_2 + 1, N_3 + 1) \end{split}$$
 where $N_j = \sum_{i=1}^n \mathbb{I}(Z_i = j)$.

$$\begin{aligned} & p(\mu_{j} \mid Y_{1:n}, Z_{1:n}, \mu_{(-j)}, \mu_{0}, \phi_{0}, w_{1:3}, \tau) \\ & \propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) w_{Z_{i}} \right) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau) \\ & \propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) \right) p(\mu_{j} \mid \mu_{0}, \phi_{0}) \\ & \propto \exp \left\{ \frac{-\tau}{2} \sum_{i: Z_{i} = j} (Y_{i} - \mu_{j})^{2} \right\} \exp \left\{ \frac{-\phi_{0}}{2} (\mu_{j} - \mu_{0})^{2} \right\} \\ & \propto \exp \left\{ \frac{-1}{2} \left[\mu_{j}^{2} (\tau N_{j} + \phi_{0}) - 2\mu_{j} (\tau \sum_{i: Z_{i} = j} Y_{i} + \phi_{0} \mu_{0}) \mu_{j} \right] \right\} \\ \Rightarrow \mu_{j} \mid - \sim N((\tau N_{j} + \phi_{0})^{-1} (\tau \sum_{i: Z_{i} = j} Y_{i} + \phi_{0} \mu_{0}), (\tau N_{j} + \phi_{0})^{-1}) \end{aligned}$$

$$\begin{split} & p(\mu_{j} \mid Y_{1:n}, Z_{1:n}, \mu_{(-j)}, \mu_{0}, \phi_{0}, w_{1:3}, \tau) \\ & \propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) w_{Z_{i}} \right) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau) \\ & \propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) \right) p(\mu_{j} \mid \mu_{0}, \phi_{0}) \\ & \propto \exp \left\{ \frac{-\tau}{2} \sum_{i: Z_{i} = j} (Y_{i} - \mu_{j})^{2} \right\} \exp \left\{ \frac{-\phi_{0}}{2} (\mu_{j} - \mu_{0})^{2} \right\} \\ & \propto \exp \left\{ \frac{-1}{2} \left[\mu_{j}^{2} (\tau N_{j} + \phi_{0}) - 2\mu_{j} (\tau \sum_{i: Z_{i} = j} Y_{i} + \phi_{0} \mu_{0}) \mu_{j} \right] \right\} \\ \Rightarrow & \mu_{j} \mid - \sim N((\tau N_{j} + \phi_{0})^{-1} (\tau \sum_{i: Z_{i} = j} Y_{i} + \phi_{0} \mu_{0}), (\tau N_{j} + \phi_{0})^{-1}) \end{split}$$

$$\begin{split} & p(\mu_{j} \mid Y_{1:n}, Z_{1:n}, \mu_{(-j)}, \mu_{0}, \phi_{0}, w_{1:3}, \tau) \\ & \propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) w_{Z_{i}} \right) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau) \\ & \propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) \right) p(\mu_{j} \mid \mu_{0}, \phi_{0}) \\ & \propto \exp \left\{ \frac{-\tau}{2} \sum_{i: Z_{i} = j} (Y_{i} - \mu_{j})^{2} \right\} \exp \left\{ \frac{-\phi_{0}}{2} (\mu_{j} - \mu_{0})^{2} \right\} \\ & \propto \exp \left\{ \frac{-1}{2} \left[\mu_{j}^{2} (\tau N_{j} + \phi_{0}) - 2\mu_{j} (\tau \sum_{i: Z_{i} = j} Y_{i} + \phi_{0} \mu_{0}) \mu_{j} \right] \right\} \\ \Rightarrow & \mu_{j} \mid - \sim N((\tau N_{j} + \phi_{0})^{-1} (\tau \sum_{i: Z_{i} = j} Y_{i} + \phi_{0} \mu_{0}), (\tau N_{j} + \phi_{0})^{-1}) \end{split}$$

$$\begin{split} & p(\mu_{j} \mid Y_{1:n}, Z_{1:n}, \mu_{(-j)}, \mu_{0}, \phi_{0}, w_{1:3}, \tau) \\ & \propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) w_{Z_{i}} \right) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau) \\ & \propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) \right) p(\mu_{j} \mid \mu_{0}, \phi_{0}) \\ & \propto \exp \left\{ \frac{-\tau}{2} \sum_{i: Z_{i} = j} (Y_{i} - \mu_{j})^{2} \right\} \exp \left\{ \frac{-\phi_{0}}{2} (\mu_{j} - \mu_{0})^{2} \right\} \\ & \propto \exp \left\{ \frac{-1}{2} \left[\mu_{j}^{2} (\tau N_{j} + \phi_{0}) - 2\mu_{j} (\tau \sum_{i: Z_{i} = j} Y_{i} + \phi_{0} \mu_{0}) \mu_{j} \right] \right\} \\ \Rightarrow \mu_{j} \mid - \sim N((\tau N_{j} + \phi_{0})^{-1} (\tau \sum_{i: Z_{i} = j} Y_{i} + \phi_{0} \mu_{0}), (\tau N_{j} + \phi_{0})^{-1}) \end{split}$$

$$\begin{split} & p(\mu_{j} \mid Y_{1:n}, Z_{1:n}, \mu_{(-j)}, \mu_{0}, \phi_{0}, w_{1:3}, \tau) \\ & \propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) w_{Z_{i}} \right) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau) \\ & \propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) \right) p(\mu_{j} \mid \mu_{0}, \phi_{0}) \\ & \propto \exp \left\{ \frac{-\tau}{2} \sum_{i: Z_{i} = j} (Y_{i} - \mu_{j})^{2} \right\} \exp \left\{ \frac{-\phi_{0}}{2} (\mu_{j} - \mu_{0})^{2} \right\} \\ & \propto \exp \left\{ \frac{-1}{2} \left[\mu_{j}^{2} (\tau N_{j} + \phi_{0}) - 2\mu_{j} (\tau \sum_{i: Z_{i} = j} Y_{i} + \phi_{0} \mu_{0}) \mu_{j} \right] \right\} \\ \Rightarrow & \mu_{j} \mid - \sim N((\tau N_{j} + \phi_{0})^{-1} (\tau \sum_{i: Z_{i} = j} Y_{i} + \phi_{0} \mu_{0}), (\tau N_{j} + \phi_{0})^{-1}) \end{split}$$

$$\begin{split} & p(\mu_{j} \mid Y_{1:n}, Z_{1:n}, \mu_{(-j)}, \mu_{0}, \phi_{0}, w_{1:3}, \tau) \\ & \propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) w_{Z_{i}} \right) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau) \\ & \propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) \right) p(\mu_{j} \mid \mu_{0}, \phi_{0}) \\ & \propto \exp \left\{ \frac{-\tau}{2} \sum_{i: Z_{i} = j} (Y_{i} - \mu_{j})^{2} \right\} \exp \left\{ \frac{-\phi_{0}}{2} (\mu_{j} - \mu_{0})^{2} \right\} \\ & \propto \exp \left\{ \frac{-1}{2} \left[\mu_{j}^{2} (\tau N_{j} + \phi_{0}) - 2\mu_{j} (\tau \sum_{i: Z_{i} = j} Y_{i} + \phi_{0} \mu_{0}) \mu_{j} \right] \right\} \\ \Rightarrow & \mu_{j} \mid - \sim N((\tau N_{j} + \phi_{0})^{-1} (\tau \sum_{i: Z_{i} = j} Y_{i} + \phi_{0} \mu_{0}), (\tau N_{j} + \phi_{0})^{-1}) \end{split}$$

$$p(\tau \mid Y_{1:n}, Z_{1:n}, \mu_{1:3}, \mu_{0}, \phi_{0}, w_{1:3})$$

$$\propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) w_{Z_{i}} \right) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

$$\propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) \right) p(\tau)$$

$$\propto \tau^{n/2} \exp \left\{ \frac{-\tau}{2} \sum_{i=1}^{n} (Y_{i} - \mu_{Z_{i}})^{2} \right\} \tau^{2-1} \exp\{-2\tau\}$$

$$\propto \tau^{2+n/2-1} \exp\{-\tau(2 + \frac{1}{2} \sum_{i=1}^{n} (Y_{i} - \mu_{Z_{i}})^{2})\}$$

$$\Rightarrow \tau \mid - \sim \text{Gamma}(2 + n/2, 2 + \sum_{i=1}^{n} (Y_{i} - \mu_{Z_{i}})^{2}/2)$$

$$\begin{split} & p(\tau \mid Y_{1:n}, Z_{1:n}, \mu_{1:3}, \mu_{0}, \phi_{0}, w_{1:3}) \\ & \propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) w_{Z_{i}} \right) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau) \\ & \propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) \right) p(\tau) \\ & \propto \tau^{n/2} \exp \left\{ \frac{-\tau}{2} \sum_{i=1}^{n} (Y_{i} - \mu_{Z_{i}})^{2} \right\} \tau^{2-1} \exp\{-2\tau\} \\ & \propto \tau^{2+n/2-1} \exp\{-\tau(2 + \frac{1}{2} \sum_{i=1}^{n} (Y_{i} - \mu_{Z_{i}})^{2})\} \\ & \Rightarrow \tau \mid - \sim \mathsf{Gamma}(2 + n/2, 2 + \sum_{i=1}^{n} (Y_{i} - \mu_{Z_{i}})^{2}/2) \end{split}$$

$$\begin{split} & p(\tau \mid Y_{1:n}, Z_{1:n}, \mu_{1:3}, \mu_{0}, \phi_{0}, w_{1:3}) \\ & \propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) w_{Z_{i}} \right) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau) \\ & \propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) \right) p(\tau) \\ & \propto \tau^{n/2} \exp \left\{ \frac{-\tau}{2} \sum_{i=1}^{n} (Y_{i} - \mu_{Z_{i}})^{2} \right\} \tau^{2-1} \exp\{-2\tau\} \\ & \propto \tau^{2+n/2-1} \exp\{-\tau(2 + \frac{1}{2} \sum_{i=1}^{n} (Y_{i} - \mu_{Z_{i}})^{2})\} \\ & \Rightarrow \tau \mid - \sim \mathsf{Gamma}(2 + n/2, 2 + \sum_{i=1}^{n} (Y_{i} - \mu_{Z_{i}})^{2}/2) \end{split}$$

$$\begin{split} & p(\tau \mid Y_{1:n}, Z_{1:n}, \mu_{1:3}, \mu_{0}, \phi_{0}, w_{1:3}) \\ & \propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) w_{Z_{i}} \right) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau) \\ & \propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) \right) p(\tau) \\ & \propto \tau^{n/2} \exp \left\{ \frac{-\tau}{2} \sum_{i=1}^{n} (Y_{i} - \mu_{Z_{i}})^{2} \right\} \tau^{2-1} \exp\{-2\tau\} \\ & \propto \tau^{2+n/2-1} \exp\{-\tau(2 + \frac{1}{2} \sum_{i=1}^{n} (Y_{i} - \mu_{Z_{i}})^{2})\} \\ & \Rightarrow \tau \mid - \sim \mathsf{Gamma}(2 + n/2, 2 + \sum_{i=1}^{n} (Y_{i} - \mu_{Z_{i}})^{2}/2) \end{split}$$

$$\begin{split} & p(\tau \mid Y_{1:n}, Z_{1:n}, \mu_{1:3}, \mu_{0}, \phi_{0}, w_{1:3}) \\ & \propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) w_{Z_{i}} \right) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau) \\ & \propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) \right) p(\tau) \\ & \propto \tau^{n/2} \exp \left\{ \frac{-\tau}{2} \sum_{i=1}^{n} (Y_{i} - \mu_{Z_{i}})^{2} \right\} \tau^{2-1} \exp\{-2\tau\} \\ & \propto \tau^{2+n/2-1} \exp\{-\tau(2 + \frac{1}{2} \sum_{i=1}^{n} (Y_{i} - \mu_{Z_{i}})^{2})\} \\ \Rightarrow \tau \mid - \sim \mathsf{Gamma}(2 + n/2, 2 + \sum_{i=1}^{n} (Y_{i} - \mu_{Z_{i}})^{2}/2) \end{split}$$

$$\begin{split} & p(\tau \mid Y_{1:n}, Z_{1:n}, \mu_{1:3}, \mu_{0}, \phi_{0}, w_{1:3}) \\ & \propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) w_{Z_{i}} \right) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau) \\ & \propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) \right) p(\tau) \\ & \propto \tau^{n/2} \exp \left\{ \frac{-\tau}{2} \sum_{i=1}^{n} (Y_{i} - \mu_{Z_{i}})^{2} \right\} \tau^{2-1} \exp\{-2\tau\} \\ & \propto \tau^{2+n/2-1} \exp\{-\tau(2 + \frac{1}{2} \sum_{i=1}^{n} (Y_{i} - \mu_{Z_{i}})^{2})\} \\ \Rightarrow \tau \mid - \sim \mathsf{Gamma}(2 + n/2, 2 + \sum_{i=1}^{n} (Y_{i} - \mu_{Z_{i}})^{2}/2) \end{split}$$

$$p(Z_{i} \mid Y_{1:n}, Z_{1:n}, \mu_{1:3}, \mu_{0}, \phi_{0}, w_{1:3}, \tau)$$

$$\propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) w_{Z_{i}} \right) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

$$\propto N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) w_{Z_{i}}$$

$$\Rightarrow P(Z_{i} = j \mid -) \propto w_{i} N(Y_{i}; \mu_{i}, \tau^{-1}).$$

$$p(Z_{i} \mid Y_{1:n}, Z_{1:n}, \mu_{1:3}, \mu_{0}, \phi_{0}, w_{1:3}, \tau)$$

$$\propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) w_{Z_{i}} \right) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

$$\propto N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) w_{Z_{i}}$$

$$\Rightarrow P(Z_{i} = j \mid -) \propto w_{j} N(Y_{i}; \mu_{j}, \tau^{-1}).$$

$$p(Z_{i} \mid Y_{1:n}, Z_{1:n}, \mu_{1:3}, \mu_{0}, \phi_{0}, w_{1:3}, \tau)$$

$$\propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) w_{Z_{i}} \right) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

$$\propto N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) w_{Z_{i}}$$

$$\Rightarrow P(Z_{i} = j \mid -) \propto w_{j} N(Y_{i}; \mu_{j}, \tau^{-1}).$$

$$p(Z_{i} \mid Y_{1:n}, Z_{1:n}, \mu_{1:3}, \mu_{0}, \phi_{0}, w_{1:3}, \tau)$$

$$\propto \prod_{i=1}^{n} \left(N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) w_{Z_{i}} \right) p(\mu_{1:3} \mid \mu_{0}, \phi_{0}) p(\mu_{0}) p(\phi_{0}) p(\tau)$$

$$\propto N(Y_{i}; \mu_{Z_{i}}, \tau^{-1}) w_{Z_{i}}$$

$$\Rightarrow P(Z_{i} = j \mid -) \propto w_{j} N(Y_{i}; \mu_{j}, \tau^{-1}).$$