# Inhaltsverzeichnis

| 1    | Einfacher Text Beispiel                            | 2 |
|------|----------------------------------------------------|---|
|      | V 1.1 Entwurf der Messschaltung                    | 2 |
| 2    | Ein bisschen Mathe                                 | 2 |
|      | V 2.1 Spielerei                                    | 2 |
|      | D 2.1Komplexe Zahlen und Einheiten                 | 2 |
| 3    | Quelle Zitieren                                    | 3 |
|      | V 3.1 Herleitung einer Formel für Ausgangsspannung | 3 |
| 4    | Bilder und Tabellen                                | 3 |
|      | V 4.1 Erinnerung zum Nachtragen                    | 3 |
|      | D 4.1Bild einfügen                                 |   |
|      | 4.1.1 Vorlage Kaskadenschaltung                    | 4 |
|      | D 4.2Bilder können auch Nebeneinander              | 4 |
|      | A 4.1 Tabelle                                      | 5 |
|      | D 4.1Funktion f(x) in Latex                        | 5 |
| 5    | Programmiersprachen sämtlicher Art                 | 6 |
|      | D 5.1Ja auch MATLAB                                | 6 |
| ı i: | teratur                                            | 7 |

30. April 2021 Seite 1 von 7

#### 1 Einfacher Text Beispiel

### V 1.1 Entwurf der Messschaltung

Wir haben uns für eine spannungsrichtige Messschaltung entschieden, da der  $2,33 \cdot 9000$  Widerstand der Spannungsmessung so hoch ist, dass er die Strommessung nur unwesentlich beeinflusst.

#### 2 Ein bisschen Mathe

### V 2.1 Spielerei

Die Spannung ist wie folgt definiert. Nach Gleichung 2.1 ergibt sich:

$$U = R \cdot I \tag{2.1}$$

$$\overline{u}_{\rm p} = \frac{t_{\rm i}}{T} \cdot (U_{\rm PH} - U_{\rm PL}) + U_{\rm PL} \tag{2.2}$$

$$= T_{\rm v} \cdot (U_{\rm PH} - U_{\rm PL}) + U_{\rm PL} \tag{2.3}$$

$$\underline{I}_1 \approx 742 \text{ mA} \cdot e^{-j \cdot 62,8^{\circ}} \tag{2.4a}$$

$$\underline{I}_2 \approx 897 \text{ mA} \cdot e^{-j(120^{\circ} - 60^{\circ})}$$
 (2.4b)

$$\underline{I}_3 \approx 544 \text{ mA} \cdot e^{-\text{j}155,8^{\circ}}$$
 (2.4c)

### D 2.1 Komplexe Zahlen und Einheiten

Komplexe zahlen 9,99+j88,8 9,99+j88,8  $\underline{U}_{12} = (8,854+j4,865)\,\mathrm{V}$  8,854  $\mu\mathrm{F}$ 

30. April 2021 Seite 2 von 7

#### 3 Quelle Zitieren

### V 3.1 Herleitung einer Formel für Ausgangsspannung

Die Kaskade kann in zwei Verdopplungsschaltungen nach [1, S. 42] aufgeteilt werden. Diese werden dann einzeln betrachtet.

#### 4 Bilder und Tabellen

# V 4.1 Erinnerung zum Nachtragen

Hier ist eine Referenz auf die Abbildung 4.1.



Abbildung 4.1: Diagramm der Spannungen an Quelle und Kondensator

30. April 2021 Seite 3 von 7

### D 4.1 Bild einfügen

# 4.1.1 Vorlage Kaskadenschaltung



Abbildung 4.2: 4C/4D Kaskade als Vorlage zur Versuchsanordnung

### D 4.2 Bilder können auch Nebeneinander







(b) 4C/4D Kaskade als Vorlage zur Versuchsanordnung

Abbildung 4.3: Gesamtdarstellung von irgendwas

30. April 2021 Seite 4 von 7

### A 4.1 Tabelle

|                                                            |                  | Ergebnis<br>der Wirkleistung<br>aus der Simulation<br>in Watt | berechnete<br>Wirkleistung<br>in Watt | Abweichungen | Abweichung<br>in % |
|------------------------------------------------------------|------------------|---------------------------------------------------------------|---------------------------------------|--------------|--------------------|
|                                                            | $P_{\mathrm{A}}$ | 15,500                                                        | 15,4954                               | 0,0046       | 0,0297             |
| $egin{array}{c} L_1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ | $P_{ m B}$       | 47,761                                                        | 47,7607                               | 0,0003       | 0,0006             |
|                                                            | $P_{\rm ges}$    | 63,261                                                        | 63,2561                               | 0,0049       | 0,0077             |
|                                                            | $P_{\mathrm{A}}$ | 38,398                                                        | 38,3972                               | 0,0008       | 0,0021             |
| $oxed{L_2}$ als Bezug                                      | $P_{ m B}$       | 24,863                                                        | 24,8624                               | 0,0006       | 0,0024             |
|                                                            | $P_{\rm ges}$    | 63,261                                                        | 63,2596                               | 0,0014       | 0,0022             |

Tabelle 4.1: The s column processes everything.

| Unit  | Unit  |
|-------|-------|
| $m^3$ | $m^3$ |
| kg    | kg    |

# D 4.1 Funktion f(x) in Latex



Abbildung 4.4: Diagramm aus Koordinaten

30. April 2021 Seite 5 von 7

# 5 Programmiersprachen sämtlicher Art

#### D 5.1 Ja auch MATLAB

```
syms x;
2
       c0 = 0;
3
       c1 = 1;
4
       c2 = 0.1;
5
       c3 = -0.05;
       X = 2; \% X = 1;
6
7
       Y1dach = c1*X + (3/4)*c3*X^3;
8
       Y2dach = (1/2)*c2*X^2;
9
       Y3dach = (1/4)*c3*X^3;
       Y1eff = (1/sqrt(2)) * Y1dach;
10
       Y2eff = (1/sqrt(2)) * Y2dach;
11
       Y3eff = (1/sqrt(2)) * Y3dach;
12
13
       Ygeseff = sqrt(Y1eff^2 + Y2eff^2 + Y3eff^2);
14
15
       k2 = Y2eff/Ygeseff
       k3 = Y3eff/Ygeseff
16
       kges = sqrt(k2^2 + k3^2)
17
```

30. April 2021 Seite 6 von 7

#### Geräteliste

| Gerät                      | Nummer                   |
|----------------------------|--------------------------|
| Multimeter Keysight U1241C | AMES_13, AMES_14,AMES_15 |
| Stelltrafo                 | 27-15                    |
| Stelltrafo                 | 29-24                    |
| Ringkerntrafo              | 97-24                    |
| Digitalmultimeter          | 40-24                    |

# Literatur

[1] Thomas Harriehausen und Dieter Schwarzenau. *Moeller Grundlagen der Elektrotechnik.* 23. Aufl. Wiesbaden: Springer Fachmedien Wiesbaden, 2013. ISBN: 978-3-834-81785-3.

30. April 2021 Seite 7 von 7