CSE 311 Template

Rohan Mukherjee

March 9, 2023

1. Suppose for the sake of contradiction that Σ is regular. Then there is some DFA M that recognizes L.

let S be $\{0^{n}1^{n} \mid n \ge 0\}$.

Because the DFA is finite, and S is infinite, there are two strings $x \neq y \in S$ so that x, y go to the same state when read by M. So we see that $x = 0^a 1^a$ for some $a \geq 0$, and $y = 0^b 1^b$ for some $b \geq 0$. WLOG a > b.

Consider the string $z = 0^a$. We notice that $xz = 0^a 1^a 0^a$, and that $xy = 0^b 1^b 0^a$, so xz is of the form in Σ , while xy is not of the form in Σ .

Since $xz \in \Sigma$ while $yz \notin \Sigma$, M does not recognize L. But that's a contradiction! So Σ must be an irregular language.

- 6. Let $y \in f(A \cap B)$ be an arbitrary element in the image. By definition of the image, we see that there exists an $x \in A \cap B$ so that f(x) = y. Then clearly $x \in A$ and $x \in B$, which means that $f(x) \in f(A)$ by definition and at the same time $f(x) \in f(B)$. By the definition of intersection, $f(x) = y \in f(A) \cap f(B)$. As y was an arbitrary element of $f(A \cap B)$, we see that $f(A \cap B) \subseteq f(A) \cap f(B)$.
- 7. For a Husky Tree T, let P(T) := "if T has a purple root, then it has an even number of leaves \wedge if T has a gold root, then it has an odd number of leaves."

Base case: If T is a single gold node, then it clearly has an odd number of leaves (it has only 1 leaf, which is itself). As T is does not have a purple root, we see the other part of P holds vacuously, so P(T) holds.

Inductive Hypothesis: Let T_1 , T_2 be arbitrary Husky Trees, and suppose $P(T_1)$ and $P(T_2)$.

Inductive Step: There are three cases (without loss of generality): both T_1 and T_2 have gold roots, both T_1 and T_2 have purple roots, or T_1 has a gold root and T_2 has a purple root.

In the first case, by the recursive rule the new husky tree has a purple root with T_1 and T_2 as it's children. By our inductive hypothesis, T_1 and T_2 both have an odd number of leaves, and as odd + odd = even, the new tree has an even number of leaves. As this new tree does not have a gold root, the second part of P holds vacuously, so we see P(newtree) holds.

In the second case, by the recursive rule the new tree would be one with a purple root and T_1 , T_2 as its children. As in this case T_1 and T_2 have purple nodes, and as $P(T_1)$ and $P(T_2)$ hold true, we see that T_1 and T_2 both have an even number of leaves. The number of leaves of the new tree is equal to the sum of the number of leaves of T_1 and T_2 , which would be even + even, which is of course even. As this new tree does not have a gold root, the second part of P holds vacuously, So P(newtree) holds in this case.

Finally, in the last case T_1 has a gold root and T_2 has a purple root. The new tree would have a gold root and T_1 and T_2 as it's children. By the inductive hypothesis, T_1 has an odd number of leaves and T_2 has an even number of leaves. So the new tree would have odd + even = odd number of leaves. As the new tree does not have a purple root, the second part of P holds vacuously, which shows P(newtree).

Therefore, P(T) holds for every husky tree T by structural induction.

8. For a positive integer n, let $P(n) := \sum_{k=1}^{n} 4k - 3 = n(2n-1)$. We show P(n) for all $n \ge 1$ by induction.

Base case: $\sum_{k=1}^{1} 4k - 3 = 4 \cdot 1 - 3 = 1 = 1(2 \cdot 1 - 1)$, P(1) holds.

Inductive Hypothesis: Suppose P(w) for an arbitrary $w \ge 1$.

Inductive Step: We notice that

$$\sum_{k=1}^{w+1} 4k - 3 = \sum_{k=1}^{w} 4k - 3 + 4(w+1) - 3$$

$$= w(2w-1) + 4w + 4 - 3$$

$$= 2w^2 - w + 4w + 1$$

$$= 2w^2 + 3w + 1$$

$$= (w+1)(2w+1)$$

$$= (w+1)(2(w+1) - 1)$$
(Inductive Hypothesis)

Which shows P(w+1). So we conclude that P(n) holds for all $n \ge 1$.