Perceptrons

Building Blocks of complex neural networks

Deep Learning

- Deep Learning is a specialized subset of Machine learning
- Relies on a layered structure of algorithms called as Artificial Neural Network
- Deep learning models require a large amount of data to train, but requires little human intervention to function properly

The Deep Learning algorithm doesn't need a software engineer to identify features but is capable of automatic feature engineering through its neural network.

(Source: <u>softwaretestinghelp.com</u>)

Artificial Neuron

- Neural networks are a set of algorithms that have been developed to imitate the human brain in the way we identify patterns
- The most fundamental unit of a Deep Neural Network is called an artificial Neuron
- The inspiration for the neuron comes from our understanding on biological neurons, also called neural processing units

Artificial Neuron

Biological Neurons

Average human brain is estimated to have around 10¹¹ neurons.

- Neurons takes an input signal i.e., receives signals from other neurons through their dendrites
- Soma helps in the processing of the information in the neuron cell body
- The output/information is passed of the neuron to other neurons through axon
- Synapse is the point of connection between the axon branches and other neurons' dendrites

Image Source: https://maelfabien.github.io/

Neurons (Biological vs Artificial)

- Firing Rates of different input neurons combine to influence the firing rate of other neurons
- The activation corresponds to a "sort of" firing rate
- The weights between neurons model whether neurons excite or inhibit each other
- The activation function and bias model the thresholded behaviour of action potentials

Image Source: https://www.cs.toronto.edu/~lczhang/aps360 20191/lec/w02/term

McCulloch-Pitts Neuron

McCulloch (neuroscientist) and Pitts (logician) proposed a highly simplified computational model of the neuron (1943)

The output y = 0, if any x_i is inhibitory, otherwise

$$y = f(g(x)) = 1 \text{ if } g(x) \ge \theta$$
$$= 0 \text{ if } g(x) < \theta$$

$$g(x_1, x_2, ..., x_n) = g(x) = \sum_{i=1}^n x_i$$

$$x_1, x_2, x_3, x_4, \dots, x_n \in \{0, 1\}$$

Boolean Functions using MP Neurons

Boolean Functions using MP Neurons

McCulloch Pitts Neuron

McCulloch Pitts Neuron can be used to represent Boolean functions which are linearly separable

It produces a linear separability for Boolean functions, such that all inputs which produce a 1 lie on one side of the line (plane) and all points which produce a 0 lie on other side of the line

(plane)

X ₁	x ₂	AND	OR
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

McCulloch Pitts Neuron

- McCulloch Pitts Neuron can be used to represent Boolean functions which are linearly separable
- It produces a linear separability for Boolean functions, such that all inputs which produce a 1
 lie on one side of the line (plane) and all points which produce a 0 lie on other side of the line
 (plane)
- What about non-Boolean inputs?
- All the inputs are given equal weights? What if some inputs are more important?
- The threshold θ must be chosen by hand
- What about the data which are not linearly separable?

The Rosenblatt's Perceptron (1957)

Features:

- It can process non-Boolean inputs
- Different weights can be assigned to each input automatically
- The threshold θ is assigned automatically

$$y = 1 \text{ if } \sum_{i=0}^{n} w_{i} * x_{i} \ge 0$$

$$= 0 \text{ if } \sum_{i=0}^{n} w_{i} * x_{i} < 0$$

Minsky and Papert (1969)

Features:

- Introduction of the activation function
- Heaviside function is harsh (0.49 & 0.51 leading different values)
- Considers smooth, differentiable activation function

NOT Logical Function

NOT Function can be implemented with:

$$y = w_1.x_1 + w_0$$

$$\widehat{y} = \frac{1 \text{ if } y \ge 0}{0 \text{ if } y < 0}$$

Say:
$$w_1 = -1$$
, $w_0 = 0.5$

Case 1:
$$x_1 = 0$$
, $y = 0.5$, $\hat{y} = 1$
Case 2: $x_1 = 1$, $y = -0.5$, $\hat{y} = 0$

AND Logical Function

AND Function can be implemented with:

$$y = w_1 * x_1 + w_2 * x_2 + w_0$$

$$\widehat{y} = \frac{1 \text{ if } y \ge 0}{0 \text{ if } y < 0}$$

x_1	x_2	у	ŷ
0	0	-1.5	0
0	1	-0.5	0
1	0	-0.5	0
1	1	0.5	1

OR Logical Function

OR Function can be implemented with:

$$y = w_1 * x_1 + w_2 * x_2 + w_0$$

$$\widehat{y} = \frac{1 \text{ if } y \ge 0}{0 \text{ if } y < 0}$$

Say: <i>w</i> ₁	$= 1, w_2$	$= 1, w_0$	=-0.5
----------------------------	------------	------------	-------

x_1	x_2	у	ŷ
0	0	-0.5	0
0	1	0.5	1
1	0	0.5	1
1	1	1.5	1

XOR Logical Function

X ₁	X ₂	XOR
0	0	0
0	1	1
1	0	1
1	1	0

 $XOR(x_1,x_2) = AND(NOT(AND(x_1,x_2)),OR(x_1,x_2))$

A single perceptron cannot deal with nonlinear data, however a network of perceptrons can indeed deal with such data

XOR Logical Function

X ₁	X ₂	XOR
0	0	0
0	1	1
1	0	1
1	1	0

$$h_1 = w_{11} x_1 + w_{12} x_2 + w_{01}$$

= $20 \times x_1 + 20 \times x_2 + 10$

$$h_2 = w_{21} x_1 + w_{22} x_2 + w_{02}$$

= $-20 \times x_1 - 20 \times x_2 + 30$

$$y = w_1^h h_1 + w_2^h h_2 + w_0$$

$$\hat{y} = \sigma(y) = \sigma(20 \times h_1 + 20 \times h_2 - 30)$$

x_1	X ₂	h ₁	h ₂	У	$\widehat{\boldsymbol{y}}$
0	0	0	1	-10	0
0	1	1	1	10	1
1	0	1	1	10	1
1	1	1	0	-10	0

XOR Logical Function

X ₁	X ₂	h ₁	h ₂	ŷ
0	0	0	1	0
0	1	1	1	1
1	0	1	1	1
1	1	1	0	0

OR NAND AND

Multilayer Perceptrons

- The network contains 3 fully-connected layers
- The layer containing the inputs (x_1,x_2) is called the **input layer**
- The middle layer containing the 4 perceptrons is called the hidden layer
- The outputs of the 4 perceptrons in the hidden layer are denoted by (h_1, h_2, h_3, h_4)
- The final layer containing one output neuron is called the output layer

• How to learn w_i and b automatically?

Loss Function and Gradient Descent

Loss Function

- Also known as cost function, objective function, and error function
- The loss function provides the cost of being wrong, by measuring the quality of a particular set of parameters based on how well the output of the network agrees with the ground truth labels in the training data

Learning Process

- 1. Start with random values of w_i
- 2. Evaluate the goodness of the line, determined with a loss function, J(w)
- 3. The weights w_i is changed accordingly moving the line to a **better** position
 - Note: J(w) should be minimum when the training samples are correctly classified
- 4. Repeat 2 and 3 until $J(w) < \tau$
- ☐ Gradient Descent Algorithm

 X_2

 $y = w_0 + w_1 x_1 + w_2 x_2$

Gradient Descent in Action

Image Source: Kaggle

Gradient Descent in Action

Image Source: Kaggle