ECU_1 LAYERED ARCHITECTURE

SYSTEM BLOCK DIAGRAM

ECU1 SEQUENCE DIAGRAM

CAN STATE MACHINE

ADC STATE MACHINE

GPT STATE MACHINE

LIGHT SWITCH STATE MACHINE

LIGHTS COMPONENT STATE MACHINE

BUZZER STATE MACHINE

DOOR SENSOR STATE MACHINE

SPEED SENSOR STATE MACHINE

ECU_2 LAYERED ARCHITECTURE

CALCULATION OF BUS LOAD

• Bus Load =
$$\frac{Total\ number\ of\ bits\ transfered\ per\ second}{Baudrate}*100\%$$
 (1)

- CAN Frame Size = 56 Bits
- Baud-rate = 1MBits/sec
- Total number of transferred bits = Number of frames transferred in second * CAN
 Frame Size , (2)
- For Task1 (Speed):
 - Period = 5Ms.
 - Number of Transferred frame = 1000 msec / 5 msec = 200 frames.
- For Task2 (Door):
 - Period = 10Ms.
 - o Number of Transferred frame = 1000 msec / 10 msec = 100 frames.
- For Task3 (Light Switch):
 - Period = 20 Ms.
 - Number of Transferred frame = 1000 msec / 20 msec = 50 frames.
- Total number of frames per second = 200+100+50 = 350 frames
- Substitute in equ(2):
 - Total number of transferred bits = 350 * 56 = 19600 Bits/Sec , (3)
- Substitute in equ(1):
 - $\circ Bus\ load = \frac{19600}{1000000} * 100\% \approx 2\%$

CALCULATING CPU LOAD

- For Task1 (Speed):
 - Period = 5Ms.
 - Execution time = X
 - Priority = 3
- For Task 2 (Door):
 - Period = 10Ms.
 - Execution time = Y
 - Priority = 2
- For Task3 (Light Switch):
 - Period = 20Ms.
 - Execution time = Z
 - Priority = 1
- Hyper Period = 20Ms
- CPU load = (Total Execution Time of all Tasks) / (Hyper Period)

CPU load = (4*X + 2*Y + Z) / Hyper-Period