

# 신경망 모델 실습

# 학습 내용

- 1. 회귀분석 결과의 평가
- 2. 인공신경망
- 3. QR Code 만들기



# 인공지능 실습

# \_복습

# 복습 문제 : ch5-1.csv 독립변수 중 food에 대한 회귀분석을 실시하고 그래프를 그리시오 (종속변수는 weight)

| OLS Regression Results                                                                         |                   |                                                |                                      |                       |                                                      |                 |                                                                           |  |
|------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------|--------------------------------------|-----------------------|------------------------------------------------------|-----------------|---------------------------------------------------------------------------|--|
| Dep. Variable Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Ty | Sa<br>ons:        | weig<br>Least Squar<br>at, 16 Nov 20<br>10:06: | DLS<br>res<br>324<br>:17<br>30<br>28 | Adj.<br>F-sta<br>Prob | uared: R-squared: atistic: (F-statistic): ikelihood: |                 | 9.770<br>0.770<br>9.762<br>93.81<br>1.94e-10<br>-78.279<br>160.6<br>163.4 |  |
| =========                                                                                      | coef              | std err                                        |                                      | t                     | P> t                                                 | [0.025          | 0.975]                                                                    |  |
| Intercept<br>food                                                                              | 78.1551<br>4.6684 | 6.169<br>0.482                                 |                                      | 2.669<br>9.686        | 0.000<br>0.000                                       | 65.519<br>3.681 | 90.791<br>5.656                                                           |  |
| Omnibus: Prob(Omnibus) Skew: Kurtosis:                                                         | :                 | 0.4                                            | 785<br>110<br>238<br>125             | Jarqu                 | . ,                                                  |                 | 2.054<br>1.239<br>0.538<br>128.                                           |  |



#### \_실습

```
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.formula.api as smf
w = pd.read_csv('ch5-1.csv')
w_n = w_i loc[:,1:5]
model_{lm} = smf.ols(_{lm})
result_lm = model_lm.fit()
result_lm.summary()
print(result_lm.summary())
```



### \_실습

```
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.formula.api as smf
w = pd.read_csv('ch5-1.csv')
w_n = w_i loc[:,1:5]
model_lm = smf.ols(formula = <u>'weight ~ food'</u>, data = w_n)
result_lm = model_lm.fit()
result_lm.summary()
print(result_lm.summary())
```



### \_회귀분석결과평가

#### 모델이 얼마나 쓸 만한지 평가하기

MAE(Mean of Absolute Error): 모델의 예측값과 실제값의 차이의 절대값의 평균

- **절대값을 취하기 때문에 가장 직관적으로 알 수 있는 지표**이다. (해석에 용이하다.)

MSE(Mean of Squared Error): 모델의 예측값과 실제값의 차이의 제곱값의 평균

- 제곱을 하기 때문에 MAE와는 다르게 모델의 예측값과 실제값 차이의 면적의(제곱)합 (평균제곱오차)



RMSE(Root Mean Squared Error): MSE에 루트를 씌워 사용한다.

- RMSE를 사용하면 오류 지표를 실제값과 유사한 단위로 다시 변환하여 해석을 쉽게한다.

**R-squared (Coefficient of determination, 결정계수)**: R-squared는 현재 사용하고 있는 x변수가 y변수의 분산을 얼마나 줄였는가 이다.

- y평균값 모델(기준모델)을 사용했을 때 대비 우리가 가진 x변수를 사용함으로서 얻는 성능 향상의 정도
- 값이 1에 가까우면 데이터를 잘 설명하는 모델이고 0에 가까울수록 설명을 못하는 모델이라고 생각할 수 있다.

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$
  $R^{2} = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$ 



### \_회귀분석결과평가

실제값, 예측값, 평균



$$SST = \sum (y_i - \bar{y})^2$$

$$SSR = \sum (y_i - \hat{y_i})^2$$

$$SSE = \sum (\hat{y_i} - \bar{y})^2$$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$
SST
SSE
SSR



# \_회귀분석결과평가

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$
  $R^{2} = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$ 

# R<sup>2</sup> (R squared)....







#### \_회귀분석 프로그래밍 실습 : 결과 평가

```
라이브러리 설치: pip install scikit-learn
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import numpy as np
predicted values = result Im.predict()
mse = mean_squared_error(w n['weight'], predicted values)
mae = mean_absolute_error(w n['weight'], predicted values)
rmse = np.sqrt(mse)
r squared = r2_score(w n['weight'], predicted values)
print("Mean Squared Error (MSE):", mse)
print("Mean Absolute Error (MAE):", mae)
print("Root Mean Squared Error (RMSE):", rmse)
print("R-squared:", r squared)
```



### \_회귀분석 프로그래밍 실습 : 결과 평가

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Mean Squared Error (MSE): 10.812834224598946

Mean Absolute Error (MAE): 2.713012477718354

Root Mean Squared Error (RMSE): 3.2882874303501732

R-squared: 0.7701353268580156



# \_인공신경망 개념

#### 인공신경망(ANN - Artificial Neural Network)

- · 인간의 뇌에는 수많은 뉴런이 존재하고 그 뉴런들은 시냅스로 서로 연결되어 있는데, 이를 신경망(Neural Network)이라고 부름
- · 인공신경망은 사람의 신경망 구조에서 착안해 만들어졌기 때문에 뉴런들의 연결, 즉 신경망을 인공적으로 흉내 낸 것





# \_다층퍼셉트론(MLP)

- · 퍼셉트론을 여러 층 쌓아 올린 다층퍼셉트론 Multi-Layer Perceptron(MLP) = 인공신경망(Artificial Neural Networks)
- · 다층 퍼셉트론의 구조는 입력층Input Layer과 은닉층Hidden Layer, 출력층Output Layer으로 구성
- · 은닉층은 데이터의 입출력 과정에서 직접적으로 보이진 않지만 숨겨진 특징을 학습하는 역할을 함





## \_인공신경망: 계산 방법

- 1. 입력 층에서 데이터 값을 입력 받음:x
- 2. 입력의 중요도에 따라 가중값 지정:w
- 3. 입력 x와 가중 값 w를 곱하여 누적한 값에 바이어스b를 더함





# \_인공신경망 : 계산 방법

4. 합한 값을 <u>활성화 함수</u>로 출력값을 계산 (계단함수 활용)





## \_다층퍼셉트론 계산 방법

여러 개의 입력값과 가중치 곱의 합을 활성화 함수로 계산해 여러 개 뉴런에서 출력





#### \_인공신경망 프로그래밍 실습

#### 1. 데이터 로딩

- import pandas as pd
- w = pd.read\_csv("ch7-1.csv")

#### 2. 데이터 분할

- 독립변수(원인) / 종속변수(결과) 분할
  - from sklearn.model\_selection import train\_test\_split
  - x\_data = w.iloc[:,0:2].values
  - y\_data = w.iloc[:,2].values

#### - 학습데이터 / 시험데이터 분할

- x\_train, x\_test, y\_train, y\_test = train\_test\_split(x\_data, y\_data, test\_size=0.2)
- print(len(pd.DataFrame(x\_train)), len(pd.DataFrame(x\_test)), end='₩n₩n')
- print(len(pd.DataFrame(y\_train)), len(pd.DataFrame(y\_test)), end='\text{\psi}n\text{\psi}n')



#### \_인공신경망 프로그래밍 실습

#### 3. 학습 수행 : 모델 구축

- from sklearn.neural\_network import MLPRegressor
- model\_mlp = <u>MLPRegressor().fit</u>(x\_train, y\_train)
- print(model\_mlp.get\_params(), end='₩n₩n')

#### 4. 예측값 생성

- y\_pred\_mlp = model\_mlp.predict(x\_test)
- print(y\_train, end='₩n₩n')
- print(y\_pred\_mlp, end='\text{\psi}n\text{\psi}n')

#### 5. 데이터 비교 확인

- df\_x\_test = pd.DataFrame(x\_test, columns=['egg\_weight','acc\_food'])
- df\_y\_pred = pd.DataFrame(y\_pred\_mlp, columns=['predict'])
- df\_y\_test = pd.DataFrame(y\_test , columns=['real'])
- df = pd.concat([df\_x\_test, df\_y\_test, df\_y\_pred], axis=1)
- print(df, end='\\\mu\n')

|    | egg_weight | acc_food | real | predict     |
|----|------------|----------|------|-------------|
| 0  | 52         | 9940     | 4060 | 3928.411748 |
| 1  | 64         | 10436    | 4098 | 4124.209883 |
| 2  | 56         | 9940     | 4074 | 3928.313133 |
| 3  | 66         | 10208    | 4114 | 4034.020601 |
| 4  | 75         | 10510    | 4130 | 4153.194649 |
| 5  | 71         | 10384    | 4127 | 4103.479067 |
| 6  | 71         | 10540    | 4134 | 4165.153787 |
| 7  | 69         | 10409    | 4135 | 4113.412144 |
| 8  | 57         | 9982     | 4079 | 3944.893211 |
| 9  | 63         | 10346    | 4102 | 4088.652968 |
| 10 | 72         | 10494    | 4131 | 4146.942998 |



### \_인공신경망 프로그래밍실습

- 6. 모델 성능 확인 : 회귀성능 지표 계산
  - from sklearn.metrics import mean\_squared\_error, mean\_absolute\_error, r2\_score
  - R2 = r2\_score(y\_test, y\_pred\_mlp)
  - print("R2 = ", R2, end=' $\forall$ n $\forall$ n')

$$R2 = -27.364223504883803$$



# RPA 실습

#### \_QR코드 만들기 프로그래밍

#### 1. 라이브러리 설치 및 불러오기

- pip install grcode
- import grcode

#### 2. QR코드 생성할 문자열

qr\_data = "www.naver.com"

#### 3. QR코드 이미지 생성

qr\_img = qrcode.make(qr\_data)

#### 4. 이미지 저장

경로 지정 : save\_path = 'qr\_data.png'

저장 : qr\_img.save(save\_path)



## \_QR코드 만들기 프로그래밍 실습

import grcode # pip install grcode

```
qr_data = 'www.naver.com'
qr_img = qrcode.make(qr_data)
```

```
save_path = 'qr_data.png'
qr_img.save(save_path)
```



# \_QR코드 만들기 프로그래밍 실습2

실습: 자신의 학번, 이름, 전공 정보를 입력 받아 그 정보에 대한 QR코드 만들기 my\_info\_data.png로 저장





