

ĐẠI HỌC Y DƯỢC TP. HỒ CHÍ MINH BỘ MÔN NỘI TỔNG QUÁT

BÀI GIẢNG

ĐIỆN TÂM ĐÔ CƠ BẢN

BS CK1 TRÀN THANH TUÁN

Đối tượng: sinh viên Y khoa

TP. Hồ Chí Minh - 2014

GIỚI THIỆU

- ECG tâm đồ là một phương tiện quan trọng trong tim mạch giúp chẩn đoán các bệnh lý về rối loạn nhịp tim và những bất thường về cấu trúc.
- Để đọc ECG một cách chính xác và đầy đủ cần phải có cách tiếp cận thích hợp.

MỤC TIÊU

1. Hoạt động điện và sự dẫn truyền điện trong tim

2. Các bước phân tích một ECG

 Nắm được một số rối loạn, bất thường thường gặp trên ECG.

HOAT ĐỘNG ĐIỆN CỦA CƠ TIM

- Liên quan đến các ion Natri, Kali, canxi.
- Do sự chênh lệch nồng độ hai bên màng tạo nên hiệu điện thế giữa hai bên màng. (Điện thế nghỉ)

HOẠT ĐỘNG ĐIỆN CỦA CƠ TIM

 Sự di chuyển qua lại hai bên màng của các ion tạo nên điện thế động.

- Pha 0: Natri xâm nhập vào trong tế bào với số lượng lớn
- Pha 1
- Pha 2: canxi vào tế bào với tốc độ chậm
- Pha 3: Kali ra ngoài tế bào. Cuối pha 3, bơm Natri ra ngoài đưa Kali vào trong tế bào
- Pha 4: Điện thế nghỉ

ĐƯỜNG DẪN TRUYỀN TRONG TIM

- Giúp dẫn truyền xung động khắp tim
- Bao gồm:
 - Đường dẫn truyền trong nhĩ
 - Bộ nối nhĩ thất
 - Nút nhĩ thất
 - Bó His
 - Các nhánh
 - Mang Purkinje

GHI ĐIỆN TIM – ĐIỆN CỰC

GHI ĐIỆN TIM - LỊCH SỬ

PROTOGRAPH OF A COMPLETE ELECTROCARDIOGRAPH, SHOWING THE MANNER IN WHICH THE ELECTROCES ARE ATTACHED TO THE PATIENT, IN THIS CASE THE HANDS AND ONE FOOT BEING IMMERSED IN JARS OF SALT SOLUTION

GHI ĐIỆN TIM – NGÀY NAY

HÌNH ẢNH ĐIỆN TIM

SỰ TẠO THÀNH PHỨC BỘ SỐNG

SỰ TẠO THÀNH PHỨC BỘ SỐNG

QUI ƯỚC

- Sóng Dương đầu tiên là R
- Sóng âm trước sóng R là sóng Q
- Sóng âm đầu tiên sau sóng
 R là sóng S
- Sóng dương sau sóng R là sóng R'
- Sóng âm sau sóng R' là S'
- Không có sóng R là sóng QS

QUI ƯỚC

Đường đẳng điện đoạn T – P: cuối sóng T đầu sóng P.

CHUYỂN ĐẠO

- Giúp khảo sát tim ở các vị trí khác nhau
- Chuyển đạo trước ngực
- Chuyển đạo ngoại vi

CHUYỂN ĐẠO NGOẠI VI

CHUYỂN ĐẠO TRƯỚC NGỰC

HÌNH ẢNH ECG – máy 3 cần ghi

12 CHUYỀN ĐẠO CHUẨN

HÌNH ẢNH ECG – máy 4 cần ghi

CHUYỀN ĐẠO KÉO DÀI

CHUYỂN ĐẠO ĐẶC BIỆT

CHUYỂN ĐẠO BÊN PHẢI V3R, V4R CHUYỂN ĐẠO SAU LƯNG V7, V8,V9

PHÂN TÍCH ECG

Test millivon và thời gian

Các bước phân tích:

- 1. Loại nhịp tim là gì?
- 2. Đều hay không đều? Tần số tim bao nhiêu lần/ phút
- 3. Trục điện tim
- 4. Sóng P
- 5. Đoạn PR
- 6. Phức bộ QRS
- 7. Đoạn QT
- 8. Đánh giá tổn thương
- 9. Bất thường khác nếu có

TEST MILIVON – THỜI GIAN

TEST MILIVON - THỜI GIAN

Cường độ dòng điện 1mV – tương ứng 10mm. 1 ô nhỏ cao 1mm ứng với o,1 mV

Tốc độ chạy giấy là 25mm/s 1 ô rộng 1mm tương ứng với 0.04 giây

TEST MILIVON – THỜI GIAN

TEST MILIVON – THỜI GIAN

NHIP GÌ? – NHIP XOANG

NHIP GÌ? – NHIP XOANG

- Sóng P dương ở DI, DII, aVF
- Sóng P âm ở avR
- Sau mỗi sóng P là phức bộ QRS (tỉ lệ 1:1)

NHIP

Không có sóng P ở DI không phải là nhịp xoang hoặc là nhịp xoang nhưng mắc sai điện cực hoặc đảo ngược phủ tạng,

MẮC SAI ĐIỆN CỰC

NHIP ĐỀU

NHỊP KHÔNG ĐỀU DO HỘ HẤP

NHỊP KHÔNG ĐỀU BỆNH LÝ

Nhịp không đều:

- Chuyển đạo kéo dài đếm trong 1 phút hoặc đếm trong 30 ô lớn (6 giây) x 10.
- Ví dụ: 30 ô lớn có 9 đỉnh: tần số tim = 90 lần/ phút

Nhịp không đều:

• Tần số tim = $\frac{60(giây)}{\frac{a+b+c}{3}}$

Nhịp đều:

• Luật 300 : 300 / Số ô lớn

Nhịp đều:

1500/ số ô nhỏ
 Ví dụ : 1500 / 27 = 55 lần/ phút

XÁC ĐỊNH TẦN SỐ

Nhịp đều:

- Ví dụ: Phức bộ QRS nằm trong khoàng ô lớn số 3 và số 4. như vậy tần số tim trong khoảng 75 – 100 lần/ phút.
- Giữa ô số 3 và số 4 có 5 ô nhỏ, như vậy mỗi ô nhỏ tương ứng 5 nhịp/ phút.
 - Nhịp tiếp theo nằm ở ô nhỏ số 2 tính từ ô lớn số 4 thì tần số tim là $75 + (2 \times 5) = 85$ lần/ phút.

XÁC ĐỊNH TẦN SỐ

Tần số

- < 30 lần/ phút
- < 60 lần/phút
- 60 100 lần / phút
- > 100 lần/ phút

rất chậm

chậm

bình thường

nhanh

TẦN SỐ ? – KẾT LUẬN

TẦN SỐ ? - KẾT LUẬN

XÁC ĐỊNH TRỤC ĐIỆN TIM

	DI	aVF
Trung gian	Dương	Dương
Lệch trái	Dương	Âm
Lệch phải	Âm	Dương
Vô định	Âm	Âm

XÁC ĐỊNH TRỤC ĐIỆN TIM

KHẢO SÁT SÓNG P

Bình thường ở DII

• Thời gian : 0,08 – 0,12 giây

• Biên độ: 0,5 – 2mm

Ở V1 : sóng P có hai pha, pha dương và pha âm

Sự thay đổi của sóng P về biên độ thời gian giúp phát hiện sự thay đổi cấu trúc của buồng nhĩ trái hoặc nhĩ phải

Lớn nhĩ trái

Thời gian sóng P > 0,12 giây Sóng P hai đỉnh Pt > 0.06 mms

Lớn nhĩ phải

Biên độ sóng P > 2,5mm Pi > 0.04 mms

Đoạn PR

Tính từ đầu sóng P đến đầu phức bộ QRS

DII:

- Thời gian : 0,12 0,20 giây
- < 0,12 giây : Hội chứng kích thích sớm
- > 0,20 giây : Block nhĩ thất

Hội chứng kích thích sớm

PR = 0,08 giây Sóng Delta tại DII, V2,V3, V4, V5, V6

BLOCK A – V ĐỘ I

 $PR = 7 \hat{o} \text{ nhỏ } x 0,04 = 0,28 giây$

Phức bộ QRS

DII:

- Thời gian 0,08 0,12 giây
- Biên độ V1 V6 : chuyển đạo chuyển tiếp V3, V4

Phức bộ QRS RỘNG

QRS > 0,12 giây

Block nhánh phải

Block nhánh trái

Rối loạn dẫn truyền nội thất

BLOCK NHÁNH PHẢI HOÀN TOÀN

QRS > 0,12 giây rsR' ở V1, S rộng ở DI

BLOCK NHÁNH TRÁI

QRS > 0,12 giây S sâu V1, V2, V3, R rộng có móc, mất q ở V5, V6

BẤT THƯỜNG BIÊN ĐỘ QRS

Biên độ QRS cao

- + Lớn thất phải
- + Lớn thất trái

Biên độ QRS thấp

- + Thành ngực dầy
- + Tràn dịch màng ngoài tim

LỚN THẤT TRÁI


```
Trục trái
SV1 + RV5 > 35 mm (Solokov – Lyon )
```

LỚN THẤT PHẢI

Trục phải, RV1 > 6mm, RV1 + SV5/V6 > 11mm RaVR > 5 mm,

TRÀN DỊCH MÀNG NGOÀI TIM

Biên độ QRS < 5mm ở chuyển đạo ngoại vi và < 10 mm ở chuyển đạo trước ngực

ĐOẠN QT

Bắt đầu từ sóng Q đến hết sóng T

$$QTc = \frac{QT}{\sqrt{RR}}$$

$$QTc = QT + 1.75(RR - 60)$$

QTc < 0,44 giây ở nam

QTc < 0,46 giây ở nữ

Khi nhịp tim < 100 lần/ phút QT < 50% RR tương ứng

QT DÀI

Tần số tim 75 lần/ phút QT > 50% RR tương ứng

Sự thay đổi ST

Bắt đầu từ sóng S đến hết sóng T

Cách xác định đoạn ST

- + Đường đẳng điện (đoạn T-P)
- + Điểm J
- + Đo khoảng cách từ điểm J đến đường đẳng điện

Bất thường

- + ST chênh lên
- + ST chênh xuống

ST CHÊNH LÊN

ST chênh lên kéo dài 0,08s:

- + > 2mm ở chuyển đạo ngoại biên + V4 V6
- + > 1mm ở chuyển đạo trước ngực V1 V3

Nguyên nhân:

- + Hiện tượng tái cực sớm
- + Nhồi máu cơ tim cấp
- + Phình vách thất
- + Viêm màng ngoài tim

Hiện tượng tái cực sớm

Nhối máu cơ tim cấp

Phình vách thất

Viêm màng ngoài tim

ST CHÊNH XUỐNG

ST chênh xuống kéo dài 0,08s: > 1mm ở chuyển đạo.

Dấu hiệu của thiếu máu cơ tim. Có thể gặp trong phì đại thất, ngộ độc Digoxin...

ST CHÊNH XUỐNG

Sóng T

Bình thường

- + Dương DI, DII, V3, V4, V5, V6
- + Âm aVR
- + Thay đổi DIII, aVL, aVF, V1, V2

Biên độ không quá 5mm ở chuyển đạo ngoại vi và không quá 10mm ở chuyển đạo trước tim

Sóng T

Sóng T cao

- + Gợi ý bệnh mạch vành
- + Tăng Kali máu
- + Tai biến mạch máu não

Sóng T

Sóng T âm: thiếu máu cơ tim, hạ kali, suy giáp ...

Sóng Q bệnh lý

Sóng Q bệnh lý:

- + Sâu hơn 1/4 sóng R tương ứng
- + kéo dài hơn 0,04s

Thường gặp trong nhồi máu cơ tim cũ (sẹo nhồi máu cơ tim)

Sóng Q bệnh lý

TÓM TẮT

- Đọc ECG đầy đủ giúp chẩn đoán chính xác và tránh bỏ xót tổn thương
- Xác định loại nhịp, tần số, trục, sóng P, đoạn PR, phức bộ QRS, khoảng QT, đoạn ST – T.

