Math 115 - Midterm 1+2 Definitions

- 1. **Theorem 2.25.** If the degree of the congruence $f(x) \equiv 0 \pmod{p}$ is $n \geq p$, then we can reduce the congruence by computing $\frac{f(x)}{x^p-x}$ by long division of polynomials and taking the remainder polynomial r(x) and we get that the solutions to $r(x) \equiv 0 \pmod{p}$ are precisely those of $f(x) \equiv 0 \pmod{p}$. We also note that the degree of $r(x) \equiv 0 \pmod{p}$ will be less than p.
- 2. **Theorem 2.26.** The congruence $f(x) \equiv 0 \pmod{p}$ of degree n has at most n solutions.
- 3. Corollary 2.27. If $f(x) \equiv 0 \pmod{p}$ has more than n solutions, then p divides each of the coefficients of f(x).
- 4. **Theorem 2.28.** If $F: \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$, then there exists an $f \in \mathbb{Z}[x]$ with degree at most p-1 such that $F(x) \equiv f(x) \pmod{p}$ for all residue classes $x \pmod{p}$.
- 5. **Theorem 2.29.** $f(x) \equiv 0 \pmod{p}$ of degree n has precisely n solutions iff $x^p x = q(x)f(x) + ps(x)$ where q(x) has degree p n and s(x) is either 0 or has degree less than n.
- 6. Corollary 2.30. If $d \mid (p-1)$, then the congruence $x^d \equiv 1 \pmod{p}$ has precisely d solutions.