

=> fil reg
FILE 'REGISTRY' ENTERED AT 09:10:32 ON 05 JUL 2005
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2005 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file
provided by InfoChem.

STRUCTURE FILE UPDATES: 4 JUL 2005 HIGHEST RN 853727-85-2
DICTIONARY FILE UPDATES: 4 JUL 2005 HIGHEST RN 853727-85-2

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH JANUARY 18, 2005

Please note that search-term pricing does apply when
conducting SmartSELECT searches.

*
* The CA roles and document type information have been removed from *
* the IDE default display format and the ED field has been added, *
* effective March 20, 2005. A new display format, IDERL, is now *
* available and contains the CA role and document type information. *
*

Crossover limits have been increased. See HELP CROSSOVER for details.

Experimental and calculated property data are now available. For more
information enter HELP PROP at an arrow prompt in the file or refer
to the file summary sheet on the web at:
<http://www.cas.org/ONLINE/DBSS/registryss.html>

=> d sta que 119
L9 STR
5
O
||
H2N---Ak---S---O
1 2 || 4
O
6

NODE ATTRIBUTES:
CONNECT IS M1 RC AT 4
DEFAULT MLEVEL IS ATOM
DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:
RING(S) ARE ISOLATED OR EMBEDDED
NUMBER OF NODES IS 6

STEREO ATTRIBUTES: NONE
L12 414 SEA FILE=REGISTRY CSS FUL L9
L13 STR

O—Ak
@7 8

VAR G1=OH/7
NODE ATTRIBUTES:
DEFAULT MLEVEL IS ATOM
DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:
RING(S) ARE ISOLATED OR EMBEDDED
NUMBER OF NODES IS 8

STEREO ATTRIBUTES: NONE
L15 375 SEA FILE=REGISTRY SUB=L12 CSS FUL L13
L16 STR

O—Ak
@7 8

VAR G1=OH/7
NODE ATTRIBUTES:
DEFAULT MLEVEL IS ATOM
DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:
RING(S) ARE ISOLATED OR EMBEDDED
NUMBER OF NODES IS 8

STEREO ATTRIBUTES: NONE
L17 22 SEA FILE=REGISTRY SUB=L15 CSS FUL L16
L18 12 SEA FILE=REGISTRY ABB=ON PLU=ON L17 AND (WITH OR CONJUGATE
OR PMS/CI OR NR>=1)
L19 10 SEA FILE=REGISTRY ABB=ON PLU=ON L17 NOT L18

=> d his

(FILE 'HOME' ENTERED AT 08:29:00 ON 05 JUL 2005)
SET COST OFF

FILE 'HCAPLUS' ENTERED AT 08:29:11 ON 05 JUL 2005
L1 1 S US20040058993/PN OR (US2003-601699# OR WO2001-JP11112 OR JP20
E AJINOMOTO/PA,CS
L2 9132 S E2-E4 OR AJINOMOTO?/PA,CS
E ISHIZAKI S/AU
L3 27 S E3,E4,E38
E SONOKO I/AU
E SONAKA I/AU

L4 26 S E3,E4
 E ICHIRO S/AU
 E IINO Y/AU

L5 53 S E3,E29
 E YUKIO I/AU
 SEL RN L1

FILE 'REGISTRY' ENTERED AT 08:31:56 ON 05 JUL 2005

L6 3 S E1-E3
 STR

L7 0 S L7 CSS
 STR L7

L8 0 S L9 CSS
 STR L9

L9 2 S L9
 414 S L9 CSS FUL
 SAV L12 KWON6016/A

L10 22 S L13 CSS SAM SUB=L12
 375 S L13 CSS FUL SUB=L12
 SAV L15 KWON6016A/A

L11 22 S L16 CSS FUL SUB=L15
 SAV L17 KWON6016B/A

L12 12 S L17 AND (WITH OR CONJUGATE OR PMS/CI OR NR>=1)
 10 S L17 NOT L18

L13 48 S L12 AND ESTER
 33 S L20 NOT PMS/CI

L14 15 S L21 AND NR>=1
 18 S L21 NOT L22
 SEL RN 7 8 13 14

L15 14 S L23 NOT E4-E7
 344 S L15 NOT L20
 1 S 107-35-7

L16 201 S 107-35-7/CRN
 159 S L25 NOT L26,L27
 16 S 56546-93-1 OR 56546-93-1/CRN

L17 143 S L28 NOT L29
 1 S 13881-91-9

L18 17 S 13881-91-9/CRN
 9 S L31,L32 NOT L19,L24

L19 125 S L30 NOT L31,L32
 117 S L34 NOT PMS/CI

L20 110 S L35 NOT (D OR T)/ELS
 34 S L36 AND NC>=2

L21 24 S L37 AND (NA OR CA OR LI OR K OR H3N OR AG)

L22 76 S L36 NOT L37

L23 70 S L39 NOT (11C# OR 13C# OR 14C# OR 35S# OR C11# OR C13# OR C14#
 69 S L40 NOT 15N

FILE 'HCAPLUS' ENTERED AT 08:48:05 ON 05 JUL 2005

L42 874 S L19 OR L24 OR L38 OR L41
 158 S AMINOMETHANESULFONIC ACID

L43 1 S AMINOMETHANESULPHONIC ACID

L44 61 S AMINOMETHANESULFONATE OR AMINOMETHANESULPHONATE

L45 942 S L42-L45
 3 S L1-L5 AND L46
 E TUMOR NECROSIS FACTOR/CT
 E E4+ALL
 E E2+ALL

L46 56749 S E3,E4,E2+NT

L49 43523 S E22+OLD,NT,PFT,RT
 L50 13013 S E2 (L) ALPHA
 L51 43379 S TNF(L)ALPHA
 L52 43641 S TUMOR NECROSIS FACTOR (L) ALPHA
 E TNF
 L53 3838 S E34-E84,E92,E93
 L54 4 S L46 AND L48-L53
 E LIVER/CT
 L55 354152 S E3-E62
 E E3+ALL
 L56 393704 S E3-E10
 E E18+ALL
 L57 93411 S E10+OLD,NT
 E E62+ALL
 L58 4105 S E6+OLD,NT
 L59 18 S L46 AND L55-L58
 L60 19 S L47,L54,L59
 L61 15 S L60 NOT L54
 E HEPAT/CT
 L62 17982 S E66+OLD,NT,PFT,RT
 L63 1535 S E97+OLD,NT,PFT,RT
 L64 10725 S E115+OLD,NT,PFT,RT
 L65 9854 S E126+OLD,NT,PFT,RT
 L66 813 S E145+OLD,NT,PFT,RT
 L67 543 S E147+OLD,NT,PFT,RT
 L68 599 S E148+OLD,NT,PFT,RT OR E149+OLD,NT,PFT,RT OR E150+OLD,NT,PFT,R
 L69 8062 S E159+OLD,NT,PFT,RT
 L70 1266 S E220+OLD,NT,PFT,RT
 L71 2 S E228
 L72 392374 S E229+OLD,NT,PFT,RT OR E231 OR E232+OLD,NT,PFT,RT
 L73 355974 S E246+OLD,NT,PFT,RT OR E252+OLD,NT,PFT,RT
 E E241+ALL
 L74 1698 S E2
 L75 13 S L46 AND L62-L74
 L76 1 S L75 NOT L60
 L77 20 S L60,L75
 L78 15 S L77 AND (PY<=2001 OR PRY<=2001 OR AY<=2001)
 L79 17 S L47,L78
 L80 17 S L79 AND L77
 L81 3 S L77 NOT L80
 SEL HIT RN L80

FILE 'REGISTRY' ENTERED AT 09:07:00 ON 05 JUL 2005

L82 4 S E1-E4
 L83 1 S L82 AND CH5NO3S
 L84 1 S L41 AND CH4NO3S
 L85 0 S 7390-03-5/CRN
 L86 10 S L19,L83,L84

FILE 'HCAPLUS' ENTERED AT 09:09:45 ON 05 JUL 2005

L87 272 S L86
 L88 7 S L87 AND L77
 L89 7 S L88 AND L80

FILE 'REGISTRY' ENTERED AT 09:10:32 ON 05 JUL 2005

=> d ide can tot l86

L86 ANSWER 1 OF 10 REGISTRY COPYRIGHT 2005 ACS on STN
 RN 95796-39-7 REGISTRY

ED Entered STN: 13 Apr 1985
 CN Methanesulfonic acid, amino-, monocesium salt (9CI) (CA INDEX NAME)
 OTHER NAMES:
 CN Aminomethanesulfonic acid cesium salt
 MF C H5 N O3 S . Cs
 LC STN Files: CA, CAPLUS, TOXCENTER, USPATFULL
 CRN (13881-91-9)

● Cs

1 REFERENCES IN FILE CA (1907 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 102:149933

L86 ANSWER 2 OF 10 REGISTRY COPYRIGHT 2005 ACS on STN
 RN 87994-03-4 REGISTRY
 ED Entered STN: 16 Nov 1984
 CN Methanesulfonic acid, amino-, monoammonium salt (9CI) (CA INDEX NAME)
 MF C H5 N O3 S . H3 N
 LC STN Files: CA, CAPLUS, USPATFULL
 CRN (13881-91-9)

● NH₃

4 REFERENCES IN FILE CA (1907 TO DATE)
 2 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
 4 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 113:176616

REFERENCE 2: 105:211552

REFERENCE 3: 105:136850

REFERENCE 4: 99:222302

L86 ANSWER 3 OF 10 REGISTRY COPYRIGHT 2005 ACS on STN
 RN 87994-02-3 REGISTRY
 ED Entered STN: 16 Nov 1984
 CN Methanesulfonic acid, amino-, barium salt (2:1) (9CI) (CA INDEX NAME)
 MF C H5 N O3 S . 1/2 Ba
 LC STN Files: CA, CAPLUS, USPATFULL
 CRN (13881-91-9)

H₂N—CH₂—SO₃H

●1/2 Ba

1 REFERENCES IN FILE CA (1907 TO DATE)
1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 99:222302

L86 ANSWER 4 OF 10 REGISTRY COPYRIGHT 2005 ACS on STN
RN 87994-01-2 REGISTRY
ED Entered STN: 16 Nov 1984
CN Methanesulfonic acid, amino-, strontium salt (2:1) (9CI) (CA INDEX NAME)
MF C H₅ N O₃ S . 1/2 Sr
LC STN Files: CA, CAPLUS, USPATFULL
CRN (13881-91-9)

H₂N—CH₂—SO₃H

●1/2 Sr

1 REFERENCES IN FILE CA (1907 TO DATE)
1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 99:222302

L86 ANSWER 5 OF 10 REGISTRY COPYRIGHT 2005 ACS on STN
RN 87994-00-1 REGISTRY
ED Entered STN: 16 Nov 1984
CN Methanesulfonic acid, amino-, calcium salt (2:1) (9CI) (CA INDEX NAME)
MF C H₅ N O₃ S . 1/2 Ca
LC STN Files: CA, CAPLUS, USPATFULL
CRN (13881-91-9)

H₂N—CH₂—SO₃H

●1/2 Ca

1 REFERENCES IN FILE CA (1907 TO DATE)
1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 99:222302

L86 ANSWER 6 OF 10 REGISTRY COPYRIGHT 2005 ACS on STN
RN 87993-99-5 REGISTRY
ED Entered STN: 16 Nov 1984
CN Methanesulfonic acid, amino-, monopotassium salt (9CI) (CA INDEX NAME)
MF C H₅ N O₃ S . K

LC STN Files: CA, CAPLUS, USPATFULL
 CRN (13881-91-9)

● K

1 REFERENCES IN FILE CA (1907 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 99:222302

L86 ANSWER 7 OF 10 REGISTRY COPYRIGHT 2005 ACS on STN
 RN 87993-98-4 REGISTRY
 ED Entered STN: 16 Nov 1984
 CN Methanesulfonic acid, amino-, monolithium salt (9CI) (CA INDEX NAME)
 MF C H5 N O3 S . Li
 LC STN Files: CA, CAPLUS, USPATFULL
 CRN (13881-91-9)

● Li

4 REFERENCES IN FILE CA (1907 TO DATE)
 4 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 111:193974

REFERENCE 2: 102:47270

REFERENCE 3: 101:172958

REFERENCE 4: 99:222302

L86 ANSWER 8 OF 10 REGISTRY COPYRIGHT 2005 ACS on STN
 RN 73900-03-5 REGISTRY
 ED Entered STN: 16 Nov 1984
 CN Methanesulfonic acid, amino-, ion(1-) (9CI) (CA INDEX NAME)
 FS 3D CONCORD
 MF C H4 N O3 S
 CI COM
 LC STN Files: BEILSTEIN*, CA, CAPLUS
 (*File contains numerically searchable property data)

2 REFERENCES IN FILE CA (1907 TO DATE)
 2 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 136:158706

REFERENCE 2: 93:7278

L86 ANSWER 9 OF 10 REGISTRY COPYRIGHT 2005 ACS on STN
 RN 13881-91-9 REGISTRY
 ED Entered STN: 16 Nov 1984
 CN Methanesulfonic acid, amino- (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)
 OTHER NAMES:
 CN (Aminomethyl)sulfonic acid
 CN Aminomethanesulfonic acid
 CN Aminomethanesulphonic acid
 CN NSC 209983
 FS 3D CONCORD
 MF C H5 N O3 S
 CI COM
 LC STN Files: BEILSTEIN*, BIOSIS, BIOTECHNO, CA, CAOLD, CAPLUS, CASREACT,
 CHEMCATS, CHEMLIST, CSCHEM, DDFU, DETHERM*, DRUGU, EMBASE, GMELIN*,
 IFICDB, IFIPAT, IFIUDB, MEDLINE, PIRA, PROMT, SYNTHLINE, TOXCENTER,
 USPAT2, USPATFULL
 (*File contains numerically searchable property data)
 Other Sources: DSL**, EINECS**, TSCA**
 (**Enter CHEMLIST File for up-to-date regulatory information)

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

242 REFERENCES IN FILE CA (1907 TO DATE)
 21 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
 242 REFERENCES IN FILE CAPLUS (1907 TO DATE)
 6 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

REFERENCE 1: 142:423793

REFERENCE 2: 142:320816

REFERENCE 3: 142:318170

REFERENCE 4: 142:100320

REFERENCE 5: 141:424260

REFERENCE 6: 141:278021

REFERENCE 7: 141:260629

REFERENCE 8: 141:200129

REFERENCE 9: 140:363030

REFERENCE 10: 140:241653

L86 ANSWER 10 OF 10 REGISTRY COPYRIGHT 2005 ACS on STN

RN 6939-85-1 REGISTRY

ED Entered STN: 16 Nov 1984

CN Methanesulfonic acid, amino-, monosodium salt (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Methanesulfonic acid, amino-, sodium salt (6CI, 7CI)

OTHER NAMES:

CN Sodium aminomethanesulfonate

MF C H5 N O3 S . Na

LC STN Files: CA, CAOLD, CAPLUS, CASREACT, CHEMLIST, TOXCENTER, USPATFULL
Other Sources: EINECS**

(**Enter CHEMLIST File for up-to-date regulatory information)

CRN (13881-91-9)

● Na

25 REFERENCES IN FILE CA (1907 TO DATE)
4 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
25 REFERENCES IN FILE CAPLUS (1907 TO DATE)
2 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

REFERENCE 1: 139:123343
REFERENCE 2: 133:367858
REFERENCE 3: 131:116703
REFERENCE 4: 124:255362
REFERENCE 5: 116:256053
REFERENCE 6: 114:256996
REFERENCE 7: 114:33160
REFERENCE 8: 113:211366
REFERENCE 9: 111:184102
REFERENCE 10: 105:211552

=> fil hcaplus
FILE 'HCAPLUS' ENTERED AT 09:11:10 ON 05 JUL 2005
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 5 Jul 2005 VOL 143 ISS 2
FILE LAST UPDATED: 4 Jul 2005 (20050704/ED)

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d all hitstr tot 189

L89 ANSWER 1 OF 7 HCPLUS COPYRIGHT 2005 ACS on STN
AN 2004:693707 HCPLUS
DN 141:200129
ED Entered STN: 25 Aug 2004
TI The glycine analogue, **aminomethanesulfonic acid**, inhibits LPS-induced production of **TNF- α** in isolated rat Kupffer cells and exerts hepatoprotective effects in mice
AU Ishizaki-Koizumi, Sonoko; **Sonaka, Ichiro**; Takei, Yoshiyuki; Ikejima, Kenichi; Sato, Nobuhiro
CS Pharmaceutical Research Laboratories, **AJINOMOTO Co.**, Kawasaki-ku, Kawasaki, 210-8681, Japan
SO Biochemical and Biophysical Research Communications (2004), 322(2), 514-519
CODEN: BBRCA9; ISSN: 0006-291X
PB Elsevier
DT Journal
LA English
CC 1-12 (Pharmacology)
AB The activation of Kupffer cells represents a central mechanism of liver injury involving the production of **TNF- α** . It is known that glycine prevents LPS-induced production of **TNF- α** in isolated Kupffer cells. In this study, the possibility that glycine analogs might affect Kupffer cells was investigated. As a result, **aminomethanesulfonic acid** (AMS) inhibited the production of **TNF- α** in LPS-stimulated Kupffer cells. Furthermore, LPS treatment caused a transient increase in intracellular calcium ($[Ca^{2+}]_i$) which was blunted by AMS. Thus, the addition of AMS is protective against the LPS-induced increase $[Ca^{2+}]_i$ and subsequent production of **TNF- α** . Moreover, in vivo studies demonstrated that pretreatment of mice with AMS increased the rate of survival after injection with LPS-/gal and reduced the **TNF- α** serum level and the mRNA level in the liver. These results indicate that intake of AMS attenuates the LPS-induced hepatotoxicity resulting from activation of Kupffer cells.
ST **aminomethanesulfonate** hepatoprotectant liver injury
IT Gene, animal
RL: BSU (Biological study, unclassified); BIOL (Biological study) (**TNF- α** ; glycine analog, **aminomethanesulfonic acid**, inhibits LPS-induced production of **TNF- α** in isolated rat Kupffer cells and exerts hepatoprotective effects in mice)
IT Tumor necrosis factors
mRNA
RL: BSU (Biological study, unclassified); BIOL (Biological study) (glycine analog, **aminomethanesulfonic acid**, inhibits LPS-induced production of **TNF- α** in isolated rat Kupffer cells and exerts hepatoprotective effects in mice)
IT Injury
(hepatic; glycine analog, **aminomethanesulfonic acid**)

, inhibits LPS-induced production of TNF- α in isolated rat Kupffer cells and exerts hepatoprotective effects in mice)

IT Cytoprotective agents
 (hepatoprotective; glycine analog, aminomethanesulfonic acid, inhibits LPS-induced production of TNF- α in isolated rat Kupffer cells and exerts hepatoprotective effects in mice)

IT Liver, disease
 (injury; glycine analog, aminomethanesulfonic acid, inhibits LPS-induced production of TNF- α in isolated rat Kupffer cells and exerts hepatoprotective effects in mice)

IT 7440-70-2, Calcium, biological studies
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (glycine analog, aminomethanesulfonic acid, inhibits LPS-induced production of TNF- α in isolated rat Kupffer cells and exerts hepatoprotective effects in mice)

IT 107-35-7, Taurine 107-97-1, Sarcosine 1118-68-9, Dimethylglycine 13881-91-9, Aminomethanesulfonic acid
 RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (glycine analog, aminomethanesulfonic acid, inhibits LPS-induced production of TNF- α in isolated rat Kupffer cells and exerts hepatoprotective effects in mice)

RE.CNT 23 THERE ARE 23 CITED REFERENCES AVAILABLE FOR THIS RECORD

RE

- (1) Bruck, R; Liver Int 2003, V23, P276 HCPLUS
- (2) Decker, K; Eur J Biochem 1990, V192, P245 HCPLUS
- (3) Dieter, P; J Hepatol 1988, V6, P23
- (4) Dolmetsch, R; Nature 1997, V386, P855 HCPLUS
- (5) Enomoto, N; Alcohol Clin Exp Res 2003, V27, P2S HCPLUS
- (6) Gaillard, T; Pathobiology 1991, V59, P280 HCPLUS
- (7) Hewett, J; Am J Physiol 1993, V265, PG1011 HCPLUS
- (8) Iimuro, Y; Gastroenterology 1996, V110, P1536 MEDLINE
- (9) Ikejima, K; Am J Physiol Gastrointest Liver Physiol 1996, V271, PG97 HCPLUS
- (10) Ikejima, K; Am J Physiol Gastrointest Liver Physiol 1997, V272, PG1581 HCPLUS
- (11) Kim, C; Immunopharmacology 1996, V34, P89 HCPLUS
- (12) Krause, K; J Clin Invest 1990, V85, P491 MEDLINE
- (13) Lawson, J; Hepatology 1998, V28, P761 HCPLUS
- (14) Leist, M; Am J Pathol 1995, V146, P1220 HCPLUS
- (15) Lichtman, S; Am J Physiol 1996, V271, PG920 HCPLUS
- (16) Matsumoto, Y; Shock 2002, V17, P411
- (17) Misra, U; J Leukoc Biol 1996, V60, P784 HCPLUS
- (18) Nolan, J; Hepatology 1981, V1, P458 MEDLINE
- (19) Seabra, V; J Leukoc Biol 1998, V64, P615 HCPLUS
- (20) Tiegs, G; Biochem Pharmacol 1990, V40, P1317 HCPLUS
- (21) Villa, P; Mol Med 2004, V98, P199 HCPLUS
- (22) Watanabe, N; J Biochem 1996, V120, P1190 HCPLUS
- (23) Yee, S; Biochem Pharmacol Toxicol Sci 2003, V71, P124 HCPLUS

IT 13881-91-9, Aminomethanesulfonic acid

RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(glycine analog, aminomethanesulfonic acid, inhibits LPS-induced production of TNF- α in isolated rat Kupffer cells and exerts hepatoprotective effects in mice)

RN 13881-91-9 HCPLUS

CN Methanesulfonic acid, amino- (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

L89 ANSWER 2 OF 7 HCPLUS COPYRIGHT 2005 ACS on STN
 AN 2004:76465 HCPLUS
 DN 140:122833
 ED Entered STN: 30 Jan 2004
 TI Aminomethanesulfonate derivatives as inhibitors of TNF- α formation for treatment of liver and other diseases
 IN Ishizaki, Sonoko; Iino, Yukio; Fujita, Koichi
 PA Ajinomoto Co., Inc., Japan
 SO Jpn. Kokai Tokkyo Koho, 10 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 IC ICM A61K031-145
 ICS A61K031-4152; A61P001-00; A61P001-16; A61P001-18; A61P007-00;
 A61P009-10; A61P013-12; A61P019-02; A61P043-00
 CC 1-12 (Pharmacology)
 FAN CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI JP 2004026716	A2	20040129	JP 2002-185134	20020625
PRAI JP 2002-185134		20020625		

CLASS

PATENT NO.	CLASS	PATENT FAMILY CLASSIFICATION CODES
JP 2004026716	ICM	A61K031-145
	ICS	A61K031-4152; A61P001-00; A61P001-16; A61P001-18; A61P007-00; A61P009-10; A61P013-12; A61P019-02; A61P043-00
JP 2004026716	FTERM	4C086/AA01; 4C086/AA02; 4C086/BC36; 4C086/MA01; 4C086/MA04; 4C086/NA14; 4C086/ZA40; 4C086/ZA45; 4C086/ZA51; 4C086/ZA66; 4C086/ZA75; 4C086/ZA81; 4C086/ZA96; 4C086/ZC41; 4C206/AA01; 4C206/AA02; 4C206/JA08; 4C206/MA01; 4C206/MA04; 4C206/NA14; 4C206/ZA40; 4C206/ZA45; 4C206/ZA51; 4C206/ZA66; 4C206/ZA75; 4C206/ZA81; 4C206/ZA96; 4C206/ZC41

OS MARPAT 140:122833
 AB Aminomethanesulfonate derivs. (I, R1N(R2)CH₂SO₃H wherein R1 = (substituted)fatty and aromatic ring hydrocarbons, (substituted)heterocyclic; R2 = H, (substituted)fatty hydrocarbon) and their pharmaceutically acceptable salts are claimed as inhibitors of TNF-.alpha. formation for treatment of liver and other diseases, including alc. hepatitis, viral hepatitis, fatty liver, hepatic fibrosis, liver cirrhosis, fulminant hepatitis, inflammatory bowel disease, pancreatitis, nephritis, arthritis, arteriosclerosis, septicemia, and ischemia-reperfusion injury.
 ST aminomethanesulfonate deriv TNFalpha liver disease
 antiinflammatory
 IT Inflammation
 Pancreas, disease
 (acute pancreatitis; aminomethanesulfonate derivs. as inhibitors of TNF- α formation for treatment of liver and other diseases)
 IT Hepatitis
 (alc.; aminomethanesulfonate derivs. as inhibitors of TNF- α formation for treatment of liver and

- other diseases)
- IT Anti-inflammatory agents
 - Antiarteriosclerotics
 - Antiarthritics
 - Arteriosclerosis
 - Arthritis
 - Cirrhosis
 - Liver, disease
 - Septicemia
 - (aminomethanesulfonate derivs. as inhibitors of TNF α formation for treatment of liver and other diseases)
- IT Tumor necrosis factors
 - RL: BSU (Biological study, unclassified); BIOL (Biological study)
 - (aminomethanesulfonate derivs. as inhibitors of TNF α formation for treatment of liver and other diseases)
- IT Liver, disease
 - (fatty; aminomethanesulfonate derivs. as inhibitors of TNF α formation for treatment of liver and other diseases)
- IT Liver, disease
 - (fibrosis; aminomethanesulfonate derivs. as inhibitors of TNF α formation for treatment of liver and other diseases)
- IT Hepatitis
 - (fulminant; aminomethanesulfonate derivs. as inhibitors of TNF α formation for treatment of liver and other diseases)
- IT Fibrosis
 - (hepatic; aminomethanesulfonate derivs. as inhibitors of TNF α formation for treatment of liver and other diseases)
- IT Intestine, disease
 - (inflammatory; aminomethanesulfonate derivs. as inhibitors of TNF α formation for treatment of liver and other diseases)
- IT Reperfusion
 - (injury; aminomethanesulfonate derivs. as inhibitors of TNF α formation for treatment of liver and other diseases)
- IT Reperfusion
 - (ischemia injury; aminomethanesulfonate derivs. as inhibitors of TNF α formation for treatment of liver and other diseases)
- IT Inflammation
 - Kidney, disease
 - (nephritis; aminomethanesulfonate derivs. as inhibitors of TNF α formation for treatment of liver and other diseases)
- IT Injury
 - (reperfusion; aminomethanesulfonate derivs. as inhibitors of TNF α formation for treatment of liver and other diseases)
- IT Infection
 - (viral hepatitis; aminomethanesulfonate derivs. as inhibitors of TNF α formation for treatment of liver and other diseases)
- IT Hepatitis
 - (viral; aminomethanesulfonate derivs. as inhibitors of TNF α formation for treatment of liver and other diseases)

IT 93-13-0 94-57-5 6375-10-6 13881-91-9D,
Aminomethanesulfonic acid, derivs. 648909-35-7
 648909-36-8
 RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL
 (Biological study); USES (Uses)
 (aminomethanesulfonate derivs. as inhibitors of TNF
 - α formation for treatment of liver and other diseases)
 IT 13881-91-9D, **Aminomethanesulfonic acid,**
 derivs.
 RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL
 (Biological study); USES (Uses)
 (aminomethanesulfonate derivs. as inhibitors of TNF
 - α formation for treatment of liver and other diseases)
 RN 13881-91-9 HCPLUS
 CN Methanesulfonic acid, amino- (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

L89 ANSWER 3 OF 7 HCPLUS COPYRIGHT 2005 ACS on STN
 AN 2002:736104 HCPLUS
 DN 137:257687
 ED Entered STN: 27 Sep 2002
 TI TNF α production inhibitors
 IN Ishizaki, Sonoko; Sonaka, Ichiro; Iino, Yukio
 PA Ajinomoto Co., Inc., Japan
 SO PCT Int. Appl., 16 pp.
 CODEN: PIXXD2
 DT Patent
 LA Japanese
 IC ICM A61K031-185
 ICS A61K031-255; A61P043-00; A61P001-16
 CC 1-12 (Pharmacology)
 Section cross-reference(s): 63

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2002074299	A1	20020926	WO 2001-JP11112	20011218 <--
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM				
	RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
	EP 1356810	A1	20031029	EP 2001-273986	20011218 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR				
	US 2004058993	A1	20040325	US 2003-601699	20030624 <--
PRAI	JP 2000-397522	A	20001227		
	WO 2001-JP11112	W	20011218		

CLASS

PATENT NO.	CLASS	PATENT FAMILY CLASSIFICATION CODES
WO 2002074299	ICM	A61K031-185
	ICS	A61K031-255; A61P043-00; A61P001-16

WO 2002074299 ECLA A61K031/185; A61K031/255 <--
 EP 1356810 ECLA A61K031/185; A61K031/255 <--
 US 2004058993 NCL 514/517.000; 514/553.000
 ECLA A61K031/185; A61K031/255 <--

OS MARPAT 137:257687

AB Medicinal compns. containing **aminomethanesulfonic acid**, (I, H₂NCH₂SO₃R where R = C₁-6 alkyl) involving salts and esters thereof, as the active ingredient are offered. Because of being superior in the effect of inhibiting TNF α production to glycine having been proposed hitherto, these compns. are expected as useful as drugs for liver diseases. Moreover, utilization of the above active ingredients in drugs, a method of inhibiting TNF α production and, in particular, a method of treating, ameliorating and/or preventing liver diseases with the use of the above method are provided.

ST TNF α inhibitor **aminomethanesulfonate deriv** liver disease hepatoprotectant

IT Liver, disease (TNF α production inhibitors)

IT Tumor necrosis factors
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(TNF α production inhibitors)

IT Drug delivery systems
(granules; TNF α production inhibitors)

IT Cytoprotective agents
(hepatoprotective; TNF α production inhibitors)

IT Drug delivery systems
(liqs.; TNF α production inhibitors)

IT Drug delivery systems
(powders; TNF α production inhibitors)

IT Drug delivery systems
(tablets; TNF α production inhibitors)

IT 9000-86-6, Alanine aminotransferase 9000-97-9, Aspartate aminotransferase
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(TNF α production inhibitors)

IT 13881-91-9D, **Aminomethanesulfonic acid, salts and esters**
RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(TNF α production inhibitors)

RE.CNT 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD

RE

- (1) Lombardini, J; Biochem Pharmacol 1977, V26(12), P1175 HCPLUS
- (2) The Boots Company Plc; US 5807542 A 1995 HCPLUS
- (3) The Boots Company Plc; EP 730439 A1 1995 HCPLUS
- (4) The Boots Company Plc; WO 9514457 A1 1995 HCPLUS

IT 13881-91-9D, **Aminomethanesulfonic acid, salts and esters**
RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(TNF α production inhibitors)

RN 13881-91-9 HCPLUS

CN Methanesulfonic acid, amino- (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

L89 ANSWER 4 OF 7 HCAPLUS COPYRIGHT 2005 ACS on STN
 AN 2001:416971 HCAPLUS
 DN 135:19916
 ED Entered STN: 08 Jun 2001
 TI Preparation of α -keto amide inhibitors of hepatitis C virus NS3 protease
 IN Han, Wei
 PA Du Pont Pharmaceuticals Company, USA
 SO PCT Int. Appl., 282 pp.
 CODEN: PIXXD2
 DT Patent
 LA English
 IC ICM C07K005-02
 CC 34-3 (Amino Acids, Peptides, and Proteins)
 Section cross-reference(s): 1, 7, 15

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2001040262	A1	20010607	WO 2000-US32677	20001201 <--
	W: AU, BR, CA, CN, CZ, EE, HU, IL, IN, JP, KR, LT, LV, MX, NO, NZ, PL, RO, SG, SI, SK, UA, VN, ZA, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM				
	RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR				
	CA 2390349	AA	20010607	CA 2000-2390349	20001201 <--
	US 2002123468	A1	20020905	US 2000-728653	20001201 <--
	US 6774212	B2	20040810		
	EP 1252178	A1	20021030	EP 2000-983845	20001201 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, CY, TR				
	JP 2003526634	T2	20030909	JP 2001-541017	20001201 <--
PRAI	US 1999-168998P	P	19991203	<--	
	WO 2000-US32677	W	20001201	<--	

CLASS

PATENT NO.	CLASS	PATENT FAMILY CLASSIFICATION CODES
WO 2001040262	ICM	C07K005-02
WO 2001040262	ECLA	C07K005/02A; C07K007/02
US 2002123468	NCL	530/331.000; 530/330.000
	ECLA	C07K005/02A; C07K007/02

OS MARPAT 135:19916

AB Keto amide and keto ester compds. R9-A6-A5-A4-A3-A2-NHCR1R2COCO-W-Q [W = NH or O; Q = substituted alkyl, alkenyl, or alkynyl or an amino acid residue; A2 is a bond, NHCH₂CO which may be C-substituted, an amino acid residue, or NRCHR₂, where NRCHR represents tetrahydropyrrole-1,2-diyl which may be substituted at the 4- and 5-positions or hexahydroindole-1,2-diyl; A3 or A4 is a bond, NHCH₂CO which may be C-substituted, or an amino acid residue; A5 or A6 is a bond or an amino acid residue; R1 = H, F, or substituted alkyl, alkenyl, alkynyl, aryl, or cycloalkyl; R2 = H, F, alkyl; R9 = S(O)R9a, SO₂R9a, C(O)R9a, C(O)OR9a, C(O)NHR9a, alkyl-R9a, alkenyl-R9a, or alkynyl-R9a, where R9a = substituted alkyl, cycloalkyl, aryl, or heterocyclyl] or stereoisomeric forms or pharmaceutically acceptable salts were prepared as inhibitors of HCV NS3 protease. Thus, N-(2-pyrazinylcarbonyl)-L-leucyl-L-isoleucyl-3-cyclohexyl-L-alanyl-2-oxo-(3S)-3-aminopentanoylglycine was prepared by a multistep sequence which includes peptide coupling reactions in solution Compds. of the invention exhibit ki values of $\leq 60 \mu\text{M}$, thereby confirming their utility as effective NS3 protease inhibitors.

ST peptide keto amide ester prepn inhibitor NS3 protease; hepatitis C virus protease inhibitor peptide keto amide

IT Hepatitis C virus

(preparation of α -keto amide inhibitors of hepatitis C virus NS3 protease)

- IT Peptides, preparation
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
 (preparation of α -keto amide inhibitors of hepatitis C virus NS3 protease)
- IT 342612-00-4P
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); RCT (Reactant); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); RACT (Reactant or reagent); USES (Uses)
 (preparation of α -keto amide inhibitors of hepatitis C virus NS3 protease)
- IT 319010-09-8P 342611-10-3P 342611-11-4P 342611-12-5P 342611-13-6P
 342611-15-8P 342611-16-9P 342611-17-0P 342611-18-1P 342611-19-2P
 342611-20-5P 342611-21-6P 342611-22-7P 342611-23-8P 342611-24-9P
 342611-25-0P 342611-26-1P 342611-27-2P 342611-28-3P 342611-29-4P
 342611-30-7P 342611-31-8P 342611-32-9P 342611-33-0P 342611-34-1P
 342611-35-2P 342611-36-3P 342611-37-4P 342611-38-5P 342611-39-6P
 342611-40-9P 342611-41-0P 342611-42-1P 342611-43-2P 342611-44-3P
 342611-45-4P 342611-46-5P 342611-47-6P 342611-48-7P 342611-49-8P
 342611-50-1P 342611-51-2P 342611-52-3P 342611-53-4P 342611-54-5P
 342611-55-6P 342611-56-7P 342611-57-8P 342611-58-9P 342611-59-0P
 342611-60-3P 342611-61-4P 342611-62-5P 342611-63-6P 342611-64-7P
 342611-65-8P 342611-66-9P 342611-67-0P 342611-68-1P 342611-69-2P
 342611-70-5P 342611-71-6P 342611-72-7P 342611-73-8P 342611-74-9P
 342611-75-0P 342611-76-1P 342611-77-2P 342611-78-3P 342611-79-4P
 342611-80-7P 342611-81-8P 342611-82-9P 342611-83-0P 342611-84-1P
 342611-85-2P 342611-86-3P 342611-87-4P 342611-88-5P 342611-89-6P
 342611-90-9P 342611-91-0P 342611-92-1P 342611-93-2P 342611-94-3P
 342611-95-4P 342611-96-5P 342611-97-6P 342611-98-7P 342611-99-8P
 342612-01-5P 342612-02-6P 342612-03-7P 342612-04-8P 342612-05-9P
 342612-06-0P 342612-07-1P 342612-08-2P 342612-09-3P 342612-10-6P
 342612-11-7P 342612-12-8P 342612-13-9P 342612-14-0P 342612-15-1P
 342612-16-2P 342612-17-3P 342612-18-4P 342612-19-5P 342612-20-8P
 342612-21-9P 342612-22-0P 342612-23-1P 342612-24-2P 342612-25-3P
 342612-26-4P 342612-27-5P 342612-28-6P 342612-29-7P 342612-30-0P
 342612-31-1P 342612-32-2P 342612-33-3P 342612-34-4P 342612-35-5P
 342612-36-6P 342612-37-7P 342612-38-8P 342612-39-9P 342612-40-2P
 342612-41-3P 342612-42-4P 342612-43-5P 342612-44-6P 342612-45-7P
 342612-46-8P 342612-47-9P 342612-48-0P 342612-49-1P 342612-50-4P
 342612-52-6P 342612-54-8P 342612-56-0P 342612-59-3P 342621-42-5P
 342621-43-6P 343256-95-1P 343256-96-2P
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
 (preparation of α -keto amide inhibitors of hepatitis C virus NS3 protease)
- IT 149885-80-3
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (preparation of α -keto amide inhibitors of hepatitis C virus NS3 protease)
- IT 59-66-5 61-90-5, L-Leucine, reactions 97-09-6 98-10-2,
 Benzenesulfonamide 98-64-6 98-97-5, 2-Pyrazinecarboxylic acid
 402-46-0 421-85-2, Trifluoromethanesulfonamide 452-35-7 779-71-5
 830-43-3 1205-30-7 1431-39-6 1524-40-9 1576-47-2,
 2-Naphthalenesulfonamide 1954-92-3 2070-48-6 2295-56-9 3118-68-1

3119-02-6 3144-09-0, Methanesulfonamide 4336-70-3 4371-23-7,
 4-Biphenylsulfonamide 4563-33-1, Benzenemethanesulfonamide 4793-24-2
 5455-59-4 6325-93-5 6456-74-2 6949-23-1 6961-82-6 7720-45-8
13881-91-9, Aminomethanesulfonic acid
 17260-71-8 19797-32-1 21506-01-4 23815-28-3 27527-05-5
 29092-27-1 30058-40-3 31602-63-8, 5-(Aminomethyl)tetrazole
 35337-99-6 39213-22-4 42918-86-5 51896-27-6 68252-72-2
 88568-95-0 91569-33-4, [1,1'-Biphenyl]-3-sulfonamide 148992-43-2
 190659-74-6 219138-72-4 253679-11-7 284680-64-4 300382-95-0
 323197-73-5 342612-76-4 342612-77-5 342612-78-6 342612-79-7
 342612-80-0 342612-81-1 342612-87-7 342612-88-8 342612-89-9
 342612-90-2 342612-91-3 342612-92-4 342612-93-5 342612-94-6
 342612-95-7 342612-96-8 342612-97-9 342612-98-0 342612-99-1
 342613-02-9 342621-41-4

RL: RCT (Reactant); RACT (Reactant or reagent)
 (preparation of α -keto amide inhibitors of hepatitis C virus NS3
 protease)

IT 50715-50-9P 58872-03-0P 99429-45-5P 106665-76-3P 188054-58-2P
 274918-51-3P 319010-06-5P 319011-72-8P 319011-74-0P 319011-76-2P
 342612-60-6P 342612-61-7P 342612-62-8P 342612-63-9P 342612-64-0P
 342612-65-1P 342612-66-2P 342612-67-3P 342612-68-4P 342612-69-5P
 342612-70-8P 342612-71-9P 342612-72-0P 342612-73-1P 342612-74-2P
 342612-82-2P 342612-83-3P 342612-84-4P 342612-85-5P 342612-86-6P
 342613-00-7P 342613-01-8P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT
 (Reactant or reagent)
 (preparation of α -keto amide inhibitors of hepatitis C virus NS3
 protease)

RE.CNT 9 THERE ARE 9 CITED REFERENCES AVAILABLE FOR THIS RECORD

RE

- (1) Akzo Nobel Nv; WO 9850420 A 1998 HCPLUS
- (2) Alkermes Inc; WO 9500535 A 1995 HCPLUS
- (3) Bailey, M; WO 9907734 A 1999 HCPLUS
- (4) Beecham Group Plc; EP 0445467 A 1991 HCPLUS
- (5) Boehringer Ingelheim Ca Ltd; WO 9829435 A 1998 HCPLUS
- (6) Cephalon Inc; WO 9917790 A 1999 HCPLUS
- (7) Deininger, D; WO 9817679 A 1998 HCPLUS
- (8) Georgia Tech Res Inst; WO 9212140 A 1992 HCPLUS
- (9) Zaidan Hojin Biseibutsu; EP 0423358 A 1991 HCPLUS

IT 149885-80-3

RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL
 (Biological study); PROC (Process)
 (preparation of α -keto amide inhibitors of hepatitis C virus NS3
 protease)

RN 149885-80-3 HCPLUS

CN Proteinase, polyprotein-processing, NS3 (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

IT 13881-91-9, Aminomethanesulfonic acid

RL: RCT (Reactant); RACT (Reactant or reagent)
 (preparation of α -keto amide inhibitors of hepatitis C virus NS3
 protease)

RN 13881-91-9 HCPLUS

CN Methanesulfonic acid, amino- (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

L89 ANSWER 5 OF 7 HCAPLUS COPYRIGHT 2005 ACS on STN
 AN 1995:780418 HCAPLUS
 DN 123:208436
 ED Entered STN: 08 Sep 1995
 TI Compositions comprising iminium ion scavengers and/or nitrite scavengers
 IN Challis, Brian Christopher; Trew, David Frank; Guthrie, Walter Graham;
 Roper, David Vincent
 PA Boots Co. PLC, UK
 SO PCT Int. Appl., 74 pp.
 CODEN: PIXXD2
 DT Patent
 LA English
 IC ICM A61K007-00
 ICS A61K031-19; A61K031-355; A61K031-375; A61K031-13; A61K031-12
 CC 62-1 (Essential Oils and Cosmetics)
 Section cross-reference(s): 63
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9514457	A1	19950601	WO 1994-EP3264	19941003 <--
	W: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, US, UZ				
	RW: KE, MW, SD, SZ, AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG				
	CA 2176743	AA	19950601	CA 1994-2176743	19941003 <--
	AU 9478110	A1	19950613	AU 1994-78110	19941003 <--
	EP 730439	A1	19960911	EP 1994-928848	19941003 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, NL, PT, SE				
	ZA 9409380	A	19950816	ZA 1994-9380	19941125 <--
	US 5807542	A	19980915	US 1996-649587	19960528 <--
PRAI	GB 1993-24426	A	19931127	<--	
	GB 1994-14886	A	19940723	<--	
	WO 1994-EP3264	W	19941003	<--	

CLASS	PATENT NO.	CLASS	PATENT FAMILY CLASSIFICATION CODES	
WO 9514457	ICM	A61K007-00		
	ICS	A61K031-19; A61K031-355; A61K031-375; A61K031-13; A61K031-12		
WO 9514457	ECLA	A61K007/48C4F3; A61K007/48C4F2; A61K007/48C4D; A61K007/48C14M; A61K007/48C14F; A61K007/48C14K; A61K008/67H; A61K008/67L; A61K031/12; A61K031/19; A61K031/19+M; A61K031/34; A61K031/34+M; A61K031/35; A61K031/35+M; A61K031/355+M; A61K031/375+M; A61K031/66+M; A61K033/00+M		<--
US 5807542	NCL	424/059.000; 424/073.000; 514/846.000; 514/847.000; 514/848.000		
	ECLA	A61K007/48C4D; A61K007/48C4F2; A61K007/48C4F3; A61K007/48C14K; A61K007/48C14F; A61K007/48C14M; A61K008/67H; A61K008/67L; A61K031/12; A61K031/19; A61K031/19+M; A61K031/34; A61K031/34+M; A61K031/35; A61K031/35+M; A61K031/355+M; A61K031/375+M; A61K031/66+M; A61K033/00+M		<--

AB Iminium ion scavengers are used in the invention to inhibit formation of N-nitrosamines, especially in cosmetics and pharmaceutical formulations. The iminium ion scavengers may be used in combination with nitrite ion scavengers such as ascorbate.

ST iminium nitrite ion scavenger cosmetic pharmaceutical
 IT Cosmetics
 Digestive tract
 Nitrosation
 Pharmaceutical dosage forms
 Scavengers
 (iminium and/or nitrite ion scavengers for cosmetics and pharmaceuticals)
 IT Iminium compounds
 Nitrites
 RL: FMU (Formation, unclassified); REM (Removal or disposal); FORM (Formation, nonpreparative); PROC (Process)
 (iminium and/or nitrite ion scavengers for cosmetics and pharmaceuticals)
 IT Amines, formation (nonpreparative)
 RL: FMU (Formation, unclassified); FORM (Formation, nonpreparative)
 (N-nitroso, iminium and/or nitrite ion scavengers for cosmetics and pharmaceuticals)
 IT 50-81-7, Ascorbic acid, biological studies 52-51-7, Bronopol 59-02-9,
 α -Tocopherol 68-04-2, Trisodium citrate 77-92-9, Citric acid,
 biological studies 80-72-8, Reductive acid 89-65-6, Isoascorbic acid
 109-00-2, 3-Hydroxypyridine 110-15-6, Succinic acid, biological studies
 110-16-7, Maleic acid, biological studies 118-71-8, Maltol 120-80-9,
 Catechol, biological studies 121-79-9, n-Propyl gallate 123-31-9,
 Hydroquinone, biological studies 124-04-9, Adipic acid, biological
 studies 124-68-5, 2-Amino-2-methylpropanol 127-09-3, Sodium acetate
 128-37-0, Butylated hydroxytoluene, biological studies 144-55-8, Sodium
 bicarbonate, biological studies 150-90-3, Disodium succinate 371-47-1,
 Disodium maleate 501-30-4, Kojic acid 540-72-7, Sodium thiocyanate
 765-70-8, 3-Methyl-cyclopentane-1,2-dione 994-36-5, Sodium citrate
 1066-33-7, Ammonium bicarbonate 3658-77-3 4839-46-7,
 3,3-Dimethylglutaric acid 4940-11-8, Ethyl maltol 7486-38-6, Disodium
 adipate 7558-79-4, Disodium hydrogen phosphate 7681-82-5, Sodium
 iodide, biological studies 7789-23-3, Potassium fluoride
 13881-91-9, Aminomethylsulfonic acid 14114-09-1,
 5-Methylreductive acid 25013-16-5, Butylated hydroxyanisole 29838-78-6
 106579-53-7, Ascorbic acid 6-phosphate 107985-63-7, Disodium
 3,3-dimethylglutarate 167973-55-9, Vitazyme C
 RL: BUU (Biological use, unclassified); THU (Therapeutic use); BIOL
 (Biological study); USES (Uses)
 (iminium and/or nitrite ion scavengers for cosmetics and pharmaceuticals)
 IT 13881-91-9, Aminomethylsulfonic acid
 RL: BUU (Biological use, unclassified); THU (Therapeutic use); BIOL
 (Biological study); USES (Uses)
 (iminium and/or nitrite ion scavengers for cosmetics and pharmaceuticals)
 RN 13881-91-9 HCPLUS
 CN Methanesulfonic acid, amino- (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

L89 ANSWER 6 OF 7 HCPLUS COPYRIGHT 2005 ACS on STN
 AN 1982:118013 HCPLUS
 DN 96:118013
 ED Entered STN: 12 May 1984
 TI Bile acid-CoA:amino acid N-acyltransferase

AU Killenberg, Paul G.
 CS Dep. Med., Duke Univ., Durham, NC, 27710, USA
 SO Methods in Enzymology (1981), 77(Detoxication Drug Metab.:
 Conjugation Relat. Syst.), 308-13
 CODEN: MENZAU; ISSN: 0076-6879
 DT Journal
 LA English
 CC 7-2 (Enzymes)
 AB Bile acid-CoA:amino acid N-acyltransferase is purified from rat liver by a procedure that includes (NH4)2SO4 precipitation, chromatog. on CM-Sephadex, liquid (NH4)2SO4 fractionation, and rechromatog. on CM-Sephadex. The purified enzyme is active with CoA thioesters of cholate, lithocholate, chenodeoxycholate, and 3β-hydroxy-5-cholenate. In the presence of bile acid-CoA, the apparent Km for taurine and aminomethanesulfonate is 1 mM; the apparent Km values for glycine and β-alanine are 30 and 200 mM, resp. Enzyme activity is maximal at pH 7.8-8.2. Assay methods are described.
 ST bile acid CoA amino acid acyltransferase
 IT Liver, composition
 (bile acid-CoA amino acid acyltransferase of)
 IT Michaelis constant
 (of bile acid CoA amino acid acyltransferase)
 IT 65979-40-0P
 RL: PRP (Properties); PUR (Purification or recovery); BIOL (Biological study); PREP (Preparation)
 (of liver, purification and properties of)
 IT 56-40-6, reactions 107-35-7 107-95-9 13881-91-9
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (reaction of, with bile acid-CoA amino acid N-acyltransferase, kinetics of)
 IT 13881-91-9
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (reaction of, with bile acid-CoA amino acid N-acyltransferase, kinetics of)
 RN 13881-91-9 HCPLUS
 CN Methanesulfonic acid, amino- (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

L89 ANSWER 7 OF 7 HCPLUS COPYRIGHT 2005 ACS on STN
 AN 1977:546398 HCPLUS
 DN 87:146398
 ED Entered STN: 12 May 1984
 TI Inhibition of the synthesis of taurocholic acid by structural analogs of taurine
 AU Lombardini, John B.
 CS Sch. Med., Texas Tech Univ., Lubbock, TX, USA
 SO Biochemical Pharmacology (1977), 26(12), 1175-7
 CODEN: BCPCA6; ISSN: 0006-2952
 DT Journal
 LA English
 CC 3-1 (Biochemical Interactions)
 AB Isethionic acid [107-36-8] and aminomethanesulfonic acid [13881-91-9] were potent inhibitors of rat liver microsomal formation of taurocholic acid [81-24-3] from taurine [107-35-7] with 50% inhibitory concns. (I50) of 110 and 688μM resp. Hydroxypropanesulfonic

acid [15909-83-8] and aminoethanesulfuric acid [926-39-6] were less potent with I₅₀ 3125 and 3750μM resp. Hypotaurine [300-84-5] and glycine [56-40-6] decreased taurocholate formation at high concns. with I₅₀ 7500 and 8800μM resp.

ST taurine analog taurocholate microsome
 IT Liver, metabolism
 Microsome
 (taurocholate formation by, taurine analogs effect on)
 IT 81-24-3
 RL: FORM (Formation, nonpreparative)
 (formation of, by liver microsomes, taurine analogs effect on)
 IT 107-35-7
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (metabolism of, by liver microsomes, structural analogs effect on)
 IT 56-40-6, biological studies
 RL: BIOL (Biological study)
 (taurocholate formation response to, in liver microsomes)
 IT 107-36-8 300-84-5 926-39-6 13881-91-9 15909-83-8
 RL: PRP (Properties)
 (taurocholate formation response to, in liver microsomes)
 IT 13881-91-9
 RL: PRP (Properties)
 (taurocholate formation response to, in liver microsomes)
 RN 13881-91-9 HCAPLUS
 CN Methanesulfonic acid, amino- (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

=> => fil medline
 FILE 'MEDLINE' ENTERED AT 09:22:25 ON 05 JUL 2005

FILE LAST UPDATED: 2 JUL 2005 (20050702/UP). FILE COVERS 1950 TO DATE.

On December 19, 2004, the 2005 MeSH terms were loaded.

The MEDLINE reload for 2005 is now available. For details enter HELP RLOAD at an arrow prompt (>). See also:

<http://www.nlm.nih.gov/mesh/>
http://www.nlm.nih.gov/pubs/techbull/nd04/nd04_mesh.html

OLDMEDLINE now back to 1950.

MEDLINE thesauri in the /CN, /CT, and /MN fields incorporate the MeSH 2005 vocabulary.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d all tot 196

L96 ANSWER 1 OF 2 MEDLINE on STN
 AN 2004418513 MEDLINE
 DN PubMed ID: 15325260
 TI The glycine analogue, aminomethanesulfonic acid,

inhibits LPS-induced production of TNF-alpha in isolated rat Kupffer cells and exerts hepatoprotective effects in mice.

AU Ishizaki-Koizumi Sonoko; Sonaka Ichiro; Takei Yoshiyuki; Ikejima Kenichi; Sato Nobuhiro

CS Pharmaceutical Research Laboratories, AJINOMOTO Co., Inc. 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan.. sonoko_ishizaki@ajinomoto.com

SO Biochemical and biophysical research communications, (2004 Sep 17) 322 (2) 514-9.
Journal code: 0372516. ISSN: 0006-291X.

CY United States

DT Journal; Article; (JOURNAL ARTICLE)

LA English

FS Priority Journals

EM 200410

ED Entered STN: 20040825
Last Updated on STN: 20041028
Entered Medline: 20041027

AB The activation of Kupffer cells represents a central mechanism of liver injury involving the production of TNF-alpha. It is known that glycine prevents LPS-induced production of TNF-alpha in isolated Kupffer cells. In this study, the possibility that glycine analogues might affect Kupffer cells was investigated. As a result, **aminomethanesulfonic acid** (AMS) inhibited the production of TNF-alpha in LPS-stimulated Kupffer cells. Furthermore, LPS treatment caused a transient increase in intracellular calcium ($[Ca(2+)](i)$) which was blunted by AMS. Thus, the addition of AMS is protective against the LPS-induced increase $[Ca(2+)](i)$ and subsequent production of TNF-alpha. Moreover, in vivo studies demonstrated that pretreatment of mice with AMS increased the rate of survival after injection with LPS/d-gal and reduced the TNF-alpha serum level and the mRNA level in the liver. These results indicate that intake of AMS attenuates the LPS-induced hepatotoxicity resulting from activation of Kupffer cells.

CT Animals
Galactosamine: ME, metabolism
Galactosamine: TO, toxicity
Glycine: AA, analogs & derivatives
Glycine: ME, metabolism
*Kupffer Cells: ME, metabolism
Kupffer Cells: PA, pathology
*Lipopolysaccharides: ME, metabolism
Lipopolysaccharides: TO, toxicity
*Liver: ME, metabolism
Liver: PA, pathology
Mice
Rats
*Sulfonic Acids: ME, metabolism
*Tumor Necrosis Factor-alpha: ME, metabolism

RN 13881-91-9 (aminomethanesulfonic acid); 56-40-6 (Glycine); 7535-00-4 (Galactosamine)

CN 0 (Lipopolysaccharides); 0 (Sulfonic Acids); 0 (Tumor Necrosis Factor-alpha)

L96 ANSWER 2 OF 2 MEDLINE on STN
AN 83163208 MEDLINE
DN PubMed ID: 6339682

TI Kinetics and mechanisms of the recombination of Zn²⁺, Co²⁺, and Ni²⁺ with the metal-depleted catalytic site of horse liver alcohol dehydrogenase.

AU Schneider G; Zeppezauer M

SO Journal of inorganic biochemistry, (1983 Feb) 18 (1) 59-69.
Journal code: 7905788. ISSN: 0162-0134.

CY United States
 DT Journal; Article; (JOURNAL ARTICLE)
 LA English
 FS Priority Journals
 EM 198305
 ED Entered STN: 19900318
 Last Updated on STN: 19970203
 Entered Medline: 19830527
 AB The kinetics of the recombination of the metal-depleted active site of horse liver alcohol dehydrogenase (LADH) with metal ions have been studied over a range of pH and temperature. The formation rates were determined optically, by activity measurements, or by using the pH change during metal incorporation with a pH-indicator as monitor. The binding of Zn²⁺, Co²⁺, and Ni²⁺ ions occurs in a two-step process. The first step is a fast equilibrium reaction, characterized by an equilibrium constant K₁. The spectroscopic and catalytic properties of the native or metal-substituted protein are recovered in a slow, monomolecular process with the rate constant k₂. The rate constants k₂ 5.2 X 10(-2) sec⁻¹ (Zn²⁺), 1.1 X 10(-3) sec⁻¹ (Co²⁺), and 2 X 10(-4) sec⁻¹ (Ni²⁺). The rate constants increase with increasing pH. Using temperature dependence, the activation parameters for the reaction with Co²⁺ and Ni²⁺ were determined. Activation energies of 51 +/- 2.5 kJ/mol (0.033 M N-Tris-(hydroxymethyl)methyl-2-aminomethane sulfonic acid (TES), pH 6, 9) for Co²⁺ and 48.5 +/- 4 kJ/mol (0.033 M TES, pH 7, 2) for Ni²⁺ at 23 degrees C were found. The correspondent activation entropies are - 146 +/- 10 kJ/mol K for Co²⁺ and - 163 +/- 9 kJ/mol K for Ni²⁺. Two protons are released during the binding of Zn²⁺ to H4Zn(n)2 LADH in the pH range 6.8-8.1. The binding of coenzyme, either reduced or oxidized, prevents completely the incorporation of metal ions, suggesting that the metal ions enter the catalytic site via the coenzyme binding domain and not through the hydrophobic substrate channel.
 CT Alcohol Dehydrogenase
 *Alcohol Oxidoreductases: ME, metabolism
 Animals
 *Cobalt: PD, pharmacology
 Horses
 Kinetics
 *Liver: EN, enzymology
 *Nickel: PD, pharmacology
 Protein Binding
 Research Support, Non-U.S. Gov't
 *Zinc: PD, pharmacology
 RN 7440-02-0 (Nickel); 7440-48-4 (Cobalt); 7440-66-6 (Zinc)
 CN EC 1.1 (Alcohol Oxidoreductases); EC 1.1.1.1 (Alcohol Dehydrogenase)

=> => d his

(FILE 'HOME' ENTERED AT 08:29:00 ON 05 JUL 2005)
 SET COST OFF

FILE 'HCAPLUS' ENTERED AT 08:29:11 ON 05 JUL 2005
 L1 1 S US20040058993/PN OR (US2003-601699# OR WO2001-JP11112 OR JP20
 E AJINOMOTO/PA,CS
 L2 9132 S E2-E4 OR AJINOMOTO?/PA,CS
 E ISHIZAKI S/AU
 L3 27 S E3,E4,E38
 E SONOKO I/AU
 E SONAKA I/AU
 L4 26 S E3,E4

E ICHIRO S/AU
 E IIINO Y/AU
 L5 53 S E3,E29
 E YUKIO I/AU
 SEL RN L1

FILE 'REGISTRY' ENTERED AT 08:31:56 ON 05 JUL 2005

L6 3 S E1-E3
 L7 STR
 L8 0 S L7 CSS
 L9 STR L7
 L10 0 S L9 CSS
 L11 2 S L9
 L12 414 S L9 CSS FUL
 SAV L12 KWON6016/A
 L13 STR L9
 L14 22 S L13 CSS SAM SUB=L12
 L15 375 S L13 CSS FUL SUB=L12
 SAV L15 KWON6016A/A
 L16 STR L13
 L17 22 S L16 CSS FUL SUB=L15
 SAV L17 KWON6016B/A
 L18 12 S L17 AND (WITH OR CONJUGATE OR PMS/CI OR NR>=1)
 L19 10 S L17 NOT L18
 L20 48 S L12 AND ESTER
 L21 33 S L20 NOT PMS/CI
 L22 15 S L21 AND NR>=1
 L23 18 S L21 NOT L22
 SEL RN 7 8 13 14
 L24 14 S L23 NOT E4-E7
 L25 344 S L15 NOT L20
 L26 1 S 107-35-7
 L27 201 S 107-35-7/CRN
 L28 159 S L25 NOT L26,L27
 L29 16 S 56546-93-1 OR 56546-93-1/CRN
 L30 143 S L28 NOT L29
 L31 1 S 13881-91-9
 L32 17 S 13881-91-9/CRN
 L33 9 S L31,L32 NOT L19,L24
 L34 125 S L30 NOT L31,L32
 L35 117 S L34 NOT PMS/CI
 L36 110 S L35 NOT (D OR T)/ELS
 L37 34 S L36 AND NC>=2
 L38 24 S L37 AND (NA OR CA OR LI OR K OR H3N OR AG)
 L39 76 S L36 NOT L37
 L40 70 S L39 NOT (11C# OR 13C# OR 14C# OR 35S# OR C11# OR C13# OR C14#
 L41 69 S L40 NOT 15N

FILE 'HCAPLUS' ENTERED AT 08:48:05 ON 05 JUL 2005

L42 874 S L19 OR L24 OR L38 OR L41
 L43 158 S AMINOMETHANESULFONIC ACID
 L44 1 S AMINOMETHANESULPHONIC ACID
 L45 61 S AMINOMETHANESULFONATE OR AMINOMETHANESULPHONATE
 L46 942 S L42-L45
 L47 3 S L1-L5 AND L46
 E TUMOR NECROSIS FACTOR/CT
 E E4+ALL
 E E2+ALL
 L48 56749 S E3,E4,E2+NT
 L49 43523 S E22+OLD,NT,PFT,RT

L50 13013 S E2 (L) ALPHA
 L51 43379 S TNF(L)ALPHA
 L52 43641 S TUMOR NECROSIS FACTOR (L) ALPHA
 E TNF
 L53 3838 S E34-E84,E92,E93
 L54 4 S L46 AND L48-L53
 E LIVER/CT
 L55 354152 S E3-E62
 E E3+ALL
 L56 393704 S E3-E10
 E E18+ALL
 L57 93411 S E10+OLD,NT
 E E62+ALL
 L58 4105 S E6+OLD,NT
 L59 18 S L46 AND L55-L58
 L60 19 S L47,L54,L59
 L61 15 S L60 NOT L54
 E HEPAT/CT
 L62 17982 S E66+OLD,NT,PFT,RT
 L63 1535 S E97+OLD,NT,PFT,RT
 L64 10725 S E115+OLD,NT,PFT,RT
 L65 9854 S E126+OLD,NT,PFT,RT
 L66 813 S E145+OLD,NT,PFT,RT
 L67 543 S E147+OLD,NT,PFT,RT
 L68 599 S E148+OLD,NT,PFT,RT OR E149+OLD,NT,PFT,RT OR E150+OLD,NT,PFT,R
 L69 8062 S E159+OLD,NT,PFT,RT
 L70 1266 S E220+OLD,NT,PFT,RT
 L71 2 S E228
 L72 392374 S E229+OLD,NT,PFT,RT OR E231 OR E232+OLD,NT,PFT,RT
 L73 355974 S E246+OLD,NT,PFT,RT OR E252+OLD,NT,PFT,RT
 E E241+ALL
 L74 1698 S E2
 L75 13 S L46 AND L62-L74
 L76 1 S L75 NOT L60
 L77 20 S L60,L75
 L78 15 S L77 AND (PY<=2001 OR PRY<=2001 OR AY<=2001)
 L79 17 S L47,L78
 L80 17 S L79 AND L77
 L81 3 S L77 NOT L80
 SEL HIT RN L80

FILE 'REGISTRY' ENTERED AT 09:07:00 ON 05 JUL 2005

L82 4 S E1-E4
 L83 1 S L82 AND CH5NO3S
 L84 1 S L41 AND CH4NO3S
 L85 0 S 7390-03-5/CRN
 L86 10 S L19,L83,L84

FILE 'HCAPLUS' ENTERED AT 09:09:45 ON 05 JUL 2005

L87 272 S L86
 L88 7 S L87 AND L77
 L89 7 S L88 AND L80

FILE 'REGISTRY' ENTERED AT 09:10:32 ON 05 JUL 2005

FILE 'HCAPLUS' ENTERED AT 09:11:10 ON 05 JUL 2005

FILE 'MEDLINE' ENTERED AT 09:12:01 ON 05 JUL 2005
 L90 7 S L86
 L91 23 S L43 OR L44 OR L45

L92 2 S AMINO() (METHANESULFONATE OR METHANESULPHONATE OR METHANE() (SU
 L93 0 S AMINO() (METHANESULFONIC OR METHANESULPHONIC OR METHANE() (SULF
 L94 8 S AMINOMETHANE() (SULFONATE OR SULPHONATE OR (SULFONIC OR SULPHO
 L95 31 S L90-L94
 L96 2 S L95 AND LIVER+NT/CT
 L97 0 S L95 AND LIVER DISEASES+NT/CT
 E HEPAT/CT
 E E72+ALL
 L98 0 S L95 AND E2+NT
 E HEPATIC DUCT/CT
 L99 0 S L95 AND E36+NT
 L100 0 S L95 AND E139+NT
 L101 0 S L95 AND E169+NT
 L102 0 S L95 AND E210+NT
 L103 0 S L95 AND E212+NT
 L104 0 S L95 AND E221+NT
 L105 0 S L95 AND E228+NT
 L106 0 S L95 AND E243+NT
 L107 0 S L95 AND E246+NT
 L108 0 S L95 AND E312+NT
 L109 0 S L95 AND E331+NT
 L110 0 S L95 AND E343+NT
 L111 0 S L95 AND E344+NT
 L112 0 S L95 AND E369+NT
 L113 0 S L95 AND E400+NT
 L114 0 S L95 AND E420+NT
 L115 0 S L95 AND E442+NT
 L116 0 S L95 AND E470+NT
 L117 0 S L95 AND E493+NT
 L118 0 S L95 AND E495+NT
 L119 0 S L95 AND E619+NT
 L120 0 S L95 AND E620+NT
 L121 0 S L95 AND E639+NT
 L122 0 S L95 AND E735+NT
 L123 0 S L95 AND E788+NT
 L124 0 S L95 AND E797+NT
 L125 0 S L95 AND E813+NT
 L126 0 S L95 AND E814+NT
 L127 0 S L95 AND E878+NT
 L128 0 S L95 AND E903+NT
 L129 0 S L95 AND E933+NT
 L130 0 S L95 AND E963+NT
 L131 0 S L95 AND E992+NT

FILE 'MEDLINE' ENTERED AT 09:22:25 ON 05 JUL 2005

E TUMOR NECROSIS FACTOR/CT
 E E4+ALL
 E E2+ALL

L132 51535 S E64+NT
 L133 1 S L95 AND L132
 L134 0 S L133 NOT L96

=>