1. Valoarea determinantului
$$\begin{vmatrix} 2 & -1 & 0 \\ 0 & 0 & 2 \\ 1 & 1 & 0 \end{vmatrix}$$
 este: (5 pct.)

a) 2; b) 4; c) 0; d) 5; e)
$$-2$$
; f) -6

Soluție. Dezvoltând după linia a doua a determinantului, obținem: $-2 \begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} = -2 \cdot (2+1) = -6$.

- 2. Soluția ecuației $2^{x+1} = 16$ este: (5 pct.)
 - a) 1; b) 0; c) -1; d) 2; e) -2; f) 3.

Soluție. Ecuația se rescrie $2^{x+1} = 2^4$, deci $x + 1 = 4 \Leftrightarrow x = 3$.

3. Să se rezolve inecuația x + 2 < 4 - x. (5 pct.)

a)
$$x \in (-\infty, 1)$$
; b) $x \in (-1, 1)$; c) $x \in (1, \infty)$; d) $x \in (0, 1) \cup (1, \infty)$; e) \emptyset ; f) $x \in (0, \infty)$.

Soluție. Regrupând termenii, avem $2x < 2 \Leftrightarrow x < 1 \Leftrightarrow x \in (-\infty, 1)$.

- 4. Să se determine valoarea parametrului real m pentru care x=2 este soluție a ecuației $x^3+mx^2-2=0$. (5 pct.)
 - a) 3; b) $\frac{1}{2}$; c) $-\frac{3}{2}$; d) $\frac{5}{2}$; e) 1; f) $\frac{3}{4}$.

Soluție. Înlocuind soluția x=2 în ecuație, obținem: $8+4m-2=0 \Leftrightarrow 4m=-6 \Leftrightarrow m=-3/2$.

- 5. Să se calculeze $(1+i)^2$. (5 pct.)
 - a) 1; b) 2i; c) 4i; d) -2 + i; e) 0; f) i.

Soluție. Ridicând la pătrat și folosind proprietatea $i^2 = -1$, obținem $(1+i)^2 = 1 + 2i + i^2 = 2i$.

- 6. Fie ecuația $x^2 mx + 1 = 0$, $m \in \mathbb{R}$. Să se determine valorile lui m pentru care ecuația are două soluții reale și distincte. (5 pct.)
 - a) \mathbb{R} ; b) $(-\infty, -2) \cup (2, \infty)$; c) $(0, \infty)$; d) $(-\infty, 0)$; e) $(-\infty, -1) \cup (2, \infty)$; f) \emptyset .

Soluție. Condiția $\Delta > 0$ se rescrie $(-m)^2 - 4 \cdot 1 > 0 \Leftrightarrow m^2 - 4 > 0 \Leftrightarrow m \in (-\infty, -2) \cup (2, \infty)$.

- 7. Soluția ecuației $\sqrt[3]{x-1} = -1$ este: (5 pct.)
 - a) -3; b) Ecuația nu are soluții; c) 0; d) 1; e) -1; f) 3.

Soluție. Ridicând la puterea a treia, rezultă $(x-1)=(-1)^3 \Leftrightarrow x-1=-1 \Leftrightarrow x=0$.

- 8. Fie funcția $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, $f(x) = \frac{x-1}{x}$. Să se calculeze f'(2). (5 pct.)
 - a) $\frac{1}{4}$; b) $\frac{2}{3}$; c) $-\frac{1}{2}$; d) $\frac{1}{8}$; e) 0; f) 2.

Soluție. Derivând, avem $f'(x) = (\frac{x-1}{x})' = (1 - \frac{1}{x})' = -(-\frac{1}{x^2}) = \frac{1}{x^2}$, deci $f'(2) = \frac{1}{4}$.

- 9. Să se determine $m \in \mathbb{R}$ astfel încât funcția $f(x) = \begin{cases} x + 2m, & x \le 0 \\ m^2x + 4, & x > 0 \end{cases}$ să fie continuă pe \mathbb{R} . (5 pct.)
 - a) m = -3; b) m = 2; c) m = 0; d) m = 1; e) $m \in \mathbb{R}$; f) m = -2.

Soluţie. Avem $f_s(0) = \lim_{x \nearrow 0} (x+2m) = 2m$, $f(0) = x+2m|_{x=0} = 2m$, $f_d(0) = \lim_{x \searrow 0} (m^2x+4) = 4$. Funcţia f este continuă în x=0 dacă și numai dacă $f_s(0) = f(0) = f_d(0)$, deci $2m=4 \Leftrightarrow m=2$. Cum f este continuă pe $\mathbb{R}\setminus\{0\}$, fiind compunere de funcţii polinomiale continue, rezultă că f este continuă pe \mathbb{R} dacă și numai dacă m=2.

- 10. Multimea soluțiilor ecuației $x^2 5x + 4 = 0$ este: (5 pct.)
 - a) $\{-1, 4\}$; b) $\{-1, 1\}$; c) $\{0, 3\}$; d) $\{1, 4\}$; e) \emptyset ; f) $\{0, -3\}$

Soluție. Rădăcinile ecuației de gradul doi sunt $x_{1,2} = \frac{5 \pm \sqrt{25 - 4 \cdot 4}}{2} = \frac{4 \pm 3}{2} \in \{1,4\}.$

11. Valoarea integralei $\int_{0}^{1} (6x^2 + 2x) dx$ este: (5 pct.)

a)
$$-2$$
; b) 0; c) 3; d) $\frac{1}{3}$; e) 4; f) $\frac{1}{2}$

Soluţie. Integrăm,
$$\int_0^1 (6x^2 + 2x) dx = \left(6\frac{x^3}{3} + 2\frac{x^2}{2}\right)\Big|_0^1 = \left(2x^3 + x^2\right)\Big|_0^1 = (2+1) - (0+0) = 3.$$

12. Să se determine funcția $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2 + ax + b$ astfel încât $f(0) = 1, \ f(1) = 0$. (5 pct.)

a)
$$x^2 - 1$$
; b) $x^2 + 1$; c) $x^2 - 3x$; d) $x^2 + 4x + 5$; e) $x^2 - 2x + 1$; f) $x^2 + x + 1$.

Soluție. Impunând cele două condiții, rezultă:

$$\begin{cases} f(0) = 1 \\ f(1) = 0 \end{cases} \Leftrightarrow \begin{cases} 0^2 + a \cdot 0 + b = 1 \\ 1^2 + a \cdot 1 + b = 0 \end{cases} \Leftrightarrow \begin{cases} b = 1 \\ a + b = -1 \end{cases} \Leftrightarrow \begin{cases} a = -2 \\ b = 1 \end{cases} \Rightarrow f(x) = x^2 - 2x + 1.$$

13. Să se calculeze $\sqrt{\pi}$ cu o zecimală exactă. (5 pct.)

Soluţie. Pentru a avea o zecimală exactă în evaluarea lui $\sqrt{\pi}$ trebuie sa aproximăm π cu două zecimale exacte, deci $\pi \simeq 3.14$. Dar $\sqrt{3.14} = \frac{\sqrt{314}}{10}$, iar $\underbrace{289}_{17^2} < 314 < \underbrace{324}_{18^2}$ și deci $\frac{\sqrt{17^2}}{10} < \sqrt{3.14} < \frac{\sqrt{18^2}}{10} \Leftrightarrow 1.7 < \underbrace{314}_{17^2} < \underbrace{314}_{18^2} < \underbrace{314$

$$\sqrt{3.14} < 1.8$$
. Rezultă $\sqrt{\pi} \simeq 1.7$.

14. Fie şirul cu termenul general $a_n = \sum_{k=1}^n kC_n^k$, $n \ge 1$. Să se calculeze a_{2009} . (5 pct.)

a)
$$2007 \cdot 2^{2009}$$
; b) $2009! + 1$; c) $2008!$; d) $2009 \cdot 2^{2008}$; e) $2008 \cdot 2^{2009}$; f) $\frac{1}{2009}$.

Soluţie. Se observă că avem $kC_n^k = k \frac{n!}{(n-k)!k!} = \frac{n(n-1)!}{(n-k)!(k-1)!} = nC_{n-1}^{k-1}$. Deci

$$a_n = \sum_{k=1}^n k C_n^k = \sum_{k=1}^n n C_{n-1}^{k-1} = n \sum_{k=0}^{n-1} C_{n-1}^k = n (C_{n-1}^0 + \dots + C_{n-1}^{n-1}) = n (1+1)^{n-1} = n 2^{n-1}$$

şi prin urmare $a_{2009} = 2009 \cdot 2^{2008}$.

15. Să se calculeze aria mulțimii plane mărginite de graficul funcției $f:(0,\infty)\to\mathbb{R}, f(x)=x\ln x$, axa Ox şi dreptele verticale x=1, x=e. (5 pct.)

a) 1; b)
$$e + 2$$
; c) e ; d) $\frac{e-1}{4}$; e) 0; f) $\frac{e^2+1}{4}$.

Soluţie. Integrând prin părţi integrala definită care produce aria, obţinem

$$\begin{split} A &= \int_{1}^{e} x \ln x dx = \int_{1}^{e} \left(\frac{x^{2}}{2}\right)' \ln x dx = \left.\frac{x^{2}}{2} \ln x\right|_{1}^{e} - \int_{1}^{e} \frac{x^{2}}{2} \frac{1}{x} dx = \\ &= \frac{e^{2}}{2} \ln e - \frac{1^{2}}{2} \cdot \underbrace{\ln 1}_{=0} - \frac{1}{2} \int_{1}^{e} x dx = \frac{e^{2}}{2} - \frac{1}{2} \cdot \frac{x^{2}}{2} \Big|_{1}^{e} = \frac{e^{2}}{2} - \frac{e^{2} - 1}{4} = \frac{e^{2} + 1}{4}. \end{split}$$

16. Fie funcția $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$, $f(x) = \frac{\sqrt{x^2+1}}{x-1}$. Asimptotele funcției f sunt: (5 pct.)

a)
$$x = 1$$
, $y = x$; b) $x = 0$, $y = -1$; c) $y = x + 1$; d) $x = -1$, $y = 2x + 3$; e) $x = 1$, $y = 1$, $y = 1$; f) $x = 1$, $y = 1$.

Soluție. Deoarece $\lim_{x\searrow 1} \frac{\sqrt{x^2+1}}{x-1} = 2\lim_{x\searrow 1} \frac{1}{x-1} = \infty$ și $\lim_{x\nearrow 1} \frac{\sqrt{x^2+1}}{x-1} = 2\lim_{x\nearrow 1} \frac{1}{x-1} = -\infty$, funcția f admite asimptota verticală bilaterială x=1. De asemenea,

$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{x - 1} = \lim_{x \to \infty} \frac{\sqrt{1 + \frac{1}{x^2}}}{1 - \frac{1}{x}} = 1, \quad \lim_{x \to -\infty} \frac{\sqrt{x^2 + 1}}{x - 1} = \lim_{x \to -\infty} \frac{|x|\sqrt{1 + \frac{1}{x^2}}}{x(1 - \frac{1}{x})} = -1,$$

deci funcția f admite asimpotele orizontale y=1 pentru $x\to\infty$ și y=-1 pentru $x\to\infty$ și deci nu are asimpote oblice pentru $x\to\pm\infty$. În final, asimptotele funcției f sunt: x=1 (asimptotă verticală bilaterală), y=1 și y=-1 (asimptote orizontale).

17. Știind că polinomul $aX^4 + bX^3 + cX^2 + (a-1)X - 1$ are rădăcina triplă 1, să se calculeze a + b + c. (5 pct.)

a) 0; b)
$$-2$$
; c) 1; d) -1 ; e) $\frac{1}{2}$; f) 2.

Soluţie. Avem
$$\begin{cases} P = ax^4 + bx^3 + cx^2 + (a-1)x - 1 \\ P' = 4ax^3 + 3bx^2 + 2cx + a - 1 \\ P'' = 12ax^2 + 6bx + 2c. \end{cases}$$

Polinomul P are rădăcina triplă 1 d.n.d. P(1) = P'(1) = P''(1) = 0. Avem deci:

$$\begin{cases} a+b+c+(a-1)-1=0\\ 4a+3b+2c+a-1=0\\ 12a+6b+2c=0 \end{cases} \Leftrightarrow \begin{cases} 2a+b+c=2\\ 5a+3b+2c=1\\ 6a+3b+c=0. \end{cases}$$

Scăzând primele două ecuații înmulțite respectiv cu 2 și 1 din ultima ecuație, obținem:

$$\left\{\begin{array}{ll} 2a+b+c=2\\ a+b=-3\\ 4a+2b=-2 \end{array}\right. \Leftrightarrow \left\{\begin{array}{ll} a+b=-3\\ 2a+b=-1\\ 2a+b+c=2 \end{array}\right. \Leftrightarrow \left\{\begin{array}{ll} a=2\\ b=-5\\ c=3 \end{array}\right. \Rightarrow a+b+c=0.$$

18. Pe \mathbb{Z} se definește legea de compoziție $x \star y = xy - 2x - 2y + 6$. Să se determine elementul neutru. (5 pct.) a) 7; b) -3; c) 1; d) 3; e) Nu există; f) -1.

Soluție. Se observă că legea este comutativă, adică $x * y = y * x, \forall x, y \in \mathbb{Z}$. Deci $e \in \mathbb{Z}$ este element neutru bilateral d.n.d. $x * e = x, \forall x \in \mathbb{Z}$, ceea ce se revine la

$$xe - 2x - 2e + 6 = x, \forall x \in \mathbb{Z} \Leftrightarrow x(e-3) - 2(e-3) = 0, \forall x \in \mathbb{Z} \Leftrightarrow (x-2)(e-3) = 0, \forall x \in \mathbb{Z},$$

deci $e = 3 \in \mathbb{Z}$ este element neutru.