System for laterally positioning a towed marine cable and method of using same	
Patent Number:	∵ □ US4404664
Publication date:	1983-09-13
Inventor(s):	ZACHARIADIS ROBERT G [US]
Applicant(s):	MOBIL OIL CORP [US]
Requested Patent:	☐ <u>DE3151098</u>
Application Number:	US19800221733 19801231
Priority Number (s):	US19800221733 19801231
IPC Classification:	
EC Classification:	B63G8/42, G01V1/38C, G05D1/02C
Equivalents:	AU7900481, BR8108561, CA1178696, FR2497370, GB2093610, HK30285, JP57135607, SG5785G
Abstract	
A marine cable positioning system which includes a plurality of magnetic compasses and a plurality of lateral positioning devices spaced at known intervals along the cable being towed by a marine vessel. Readings from the compasses together with readings from a magnetic compass and gyrocompass onboard the towing vessel are gathered and used with a selected reference heading to generate X-Y coordinates of the lateral positioning devices with respect to the towing vessel and selected reference heading. These coordinates are recorded and provided to a cathode ray tube for visual display of the relative position of each lateral positioning device with respect to the vessel and selected heading. Coded digital commands are generated and transmitted to each lateral positioning device for adjustment of its control surfaces whereby the lateral thrust produced the device as it is towed through the water is varied and the horizontal position of the portion of the cable to either side of the device controlled. Feedback of changes in the cable's location are provided by updated compass readings and visual displays. Each lateral positioning device responds to a command for a specific adjustment of its control surfaces or for the return of the control surfaces to a neutral orientation where lateral thrust is not produced.	
Data supplied from the esp@cenet database - I2	

BEST AVAILABLE COFY

DEUTSCHLAND

® BUNDESREPUBLIK ® Offenlegungsschrift ₀₀ DE 3151098 A1

(5) Int. Cl. 3: G 05 D 3/00

DEUTSCHES **PATENTAMT**

- ② Aktenzeichen:
- Anmeldetag:
- Offenlegungstag:

P 31 51 098.1 23. 12. 81 19. 8.82

3 Unionspriorität: 3 3 31.12.80 US 221733

2000 Hamburg

- (7) Anmelder: Mobil Oil Corp., 10017 New York, N.Y., US
- Kohler, M., Dipl.-Chem. Dr.rer.nat.; Gernhardt, C., Dipl.-Ing., 8000 München; Glaeser, J., Dipl.-Ing., Pat.-Anw.,

Erfinder:

Zachariadis, Robert George, 75249 Dallas, Tex., US

Vorrichtung zum Steuern der seitlichen Position eines geschleppten Seekabels und Verfahren zu deren Verwendung

Die Erfindung betrifft eine Vorrichtung zum Positionieren eines Seekabels, mit einer Mehrzahl von Magnetkompassen und einer Mehrzahl von Seitenpositioniereinrichtungen, die entlang des von einem Schiff geschleppten Kabels in bekannten Abständen angeordnet sind. Die Ablesungen von den Kompassen zusammen mit den Ablesungen von einem Magnetkompaß und einem Kreiselkompaß an Bord des Schleppschiffes werden gesammelt und mit einem ausgewählten Bezugskurs dazu verwendet, X- und Y-Koordinaten der Seitenpositioniereinrichtungen mit Bezug auf das Schleppschiff und den ausgewählten Bezugskurs zu erzeugen. Diese Koordinaten werden aufgezeichnet und an eine Kathodénstrahlröhre geliefert für Sichtanzeige der relativen Position jeder Seitenpositionierenrichtung mit Bezug auf das Schiff und den ausgewählten Kurs. Verschlüsselte digitale Berehle werden erzeugt und zu jeder Seitenpositioniereinrichtung übertragen für Einstellung von deren Steuerflächen, wodurch die seitliche Schubkraft, die von der Einrichtung erzeugt wird, wenn sie durch das Wasser geschleppt wird, geandert und die horizontale Stellung des zugehörigen Teiles des Kabels zu jeder Seite der Einrichtung gesteuert wird. Eine Ruckkopplung von Änderungen der Position des Kabels ist geschaffen durch auf den neuesten Stand gebrachte Kompaßablesungen und Sichtdarstellungen. Jede Seitenpositioniereinrichtung spricht auf einen Befehl fur eine besondere Einstellung ihrer Steuerflächen oder für die Rückkehr der Steuerflächen in eine neutrale Stellung an, in welcher eine (31 51 098) seitliche Schubkraft nicht erzeugt wird.

WIEGAND NIEMANN KOHLER GERNHARDT GLAESER

PATENTANWALTE Europeon Potent Attorneys

M O N C H E N
DR. E. WIFGAND 1
(1932-1960)
DR. M. KOHLER
DIPL-ING. C. GERNHARDI

H A M-B U R G DIPL,-ING. J. GLAESER

DIPL, ING. W. NIEMANN OF COUNSEL TELEFON: C89-55-47677
TELEGRAMME: KARPATENT
TELEX: 529068 KARP D

D-8-000 MUNCHEN 2 HERZOG-WILHELM-STR, 16

23. Dezember 1981

W. 44 116/81 - 12/le

Patentansprüche

Vorrichtung zum Steuern der seitlichen Position eines Seekabels, welches von einem Schiff geschleppt wird, gekennzeichnet durch eine Mehrzahl von Sensoreinrichtungen (12), von denen je eine an jedem einer ersten Mehrzahl von Punkten entlang des Kabels (11) angeord-5 net ist, um Signale zu liefern, welche den Verlauf bzw. die Richtung von Tangenten an das Kabel an der ersten Mehrzahl von Punkten darstellen, eine Mehrzahl von Seitenpositionereinrichtungen (14), von denen je eine an jedem einer Mehrzahl von Punkten entlang des Kabels an-10 . geordnet ist und von denen jede eine Mehrzahl von einstellbaren Steuerflächen (44) zum Ändern der in der horizontalen Richtung ausgeübten seitlichen Schubkräfte und eine Einrichtung aufweist, die auf fernübertragene Steuersignale zum Einstellen der Steuerflächen an-15 spricht, eine Einrichtung zum Liefern eines Signales, welches einen ausgewählten Bezugskurs des Schiffes (10) darstellt, eine Einrichtung, die auf die Tangenten an

10

15

30

das Kabel und die den ausgewählten Bezugskurs darstellenden Signale anspricht, um ein Signal zu erzeugen, welches die Koordinaten des Schiffes und jedes der zweiten Mehrzahl von Punkten in einem zweidimensionalen Koordinatensystem darstellt, eine Sichtanzeigeeinrichtung mit einer Matrix von Darstellungszellen, eine Einrichtung zum Eingeben der zweidimensionalen Koordinaten des Schiffes und der zweiten Mehrzahl von Punkten in die Matrix der Sichtanzeigeeinrichtung, wodurch Zellen der Darstellungseinrichtung, welche mit den eingegebenen Koordinaten identifiziert sind, von den übrigen Darstellungszellen durch Betrachtung unterscheidbar sind, eine Einrichtung, um von dem Schiff ein Steuersignal zu erzeugen, welches eine gewünschte Einstellung der Mehrzahl von Steuerflächen an einer ausgewählten Seitenpositionereinrichtung darstellt, und durch eine Einrichtung zum Übertragen des Steuersignales von dem Schiff zu der ausgewählten Seitenpositiomereinrichtung für die Einstellung der Mehrzahl von Steuerflächen, um die von diesen erzeugte seitliche Schubkraft zu ändern, so daß die 20 seitliche Position des Kabels gesteuert wird.

- 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Sensoreinrichtungen (12) zum Liefern von die Richtung bzw. den Verlauf von Tangenten an das Kabel (11) 25 darstellenden Signalen Magnetkompasse aufweisen, und daß die Vorrichtung weiterhin eine Einrichtung aufweist, um die magnetischen Änderungen der Kompasse des Kabels gegenüber der wahren Nordrichtung zu bestimmen.
 - 3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das zweidimensionale Koordinatensystem ein kartesisches X, Y-System ist, bei welchem die +Y-Richtung bestimmt ist als die Richtung, die sich von dem Heck des

Schiffes in einem Winkel von 180° zu dem ausgewählten Kurs erstreckt, und in welchem die Y-Richtung definiert ist als die Richtung, die sich von Steuerbord des Schiffes in einem Winkel von 90° zu dem ausgewählten Kurs erstreckt.

- 4. Vorrichtung nach einem der Ansprüche 1 bis 3, gekennzeichnet durch eine Einrichtung zum Identifizieren der Koordinaten des Ortes von Hindernissen in der Nähe des Kabels (11) und des Schiffes (10), und durch eine Einrichtung zum Eingeben der Koordinaten der Hindernisse in die Matrix der Sichtanzeigeeinrichtung.
- 5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Einrichtung, welche auf die Signale, welche die Tangenten an das Kabel (11) und den ausgewählten Bezugskurs darstellen, anspricht, einen Digitalrechner aufweist.
- 20 6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Seekabel (11) eine Mehrzahl von seismischen Sensoren aufweist, der ausgewählte Bezugskurs der gewünschte korrigierte Kurs des Schiffes (10) ist, und daß die Vorrichtung weiterhin eine Navigationseinrichtung (29) aufweist, um die absolute Position des Schiffes zu bestimmen, wodurch das Schiff entlang des korrigierten Kurses gerichtet werden kann.
- 7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß jede Seitenpositioniereinrichtung (14) eine Einrichtung aufweist, um die einstellbaren Steuerflächen (44) in eine neutrale Stellung zu bringen, in welcher von der Seitenpositioniereinrichtung eine seitliche Schubkraft nicht erzeugt wird.

- 8. Verfahren zum seitlichen Positonieren eines seismischen Seekabels, gekennzeichnet durch folgende Arbeitsschritte:
- das Kabel wird mit einer geeigneten Einrichtung durch das Wasser geschleppt,
 - ein einen ausgewählten Bezugskurs mit Bezug auf die Schleppeinrichtung darstellendes Signal wird erzeugt,
- von jedem einer Mehrzahl von Sensoren, die an ausgewählten Punkten entlang des Kabels angeordnet sind, werden Signale übertragen, welche die Richtung bzw. den Verlauf einer Tangente an das Kabel an dem Ort des Sensors darstellen,
- an einen Digitalrechner werden die Signale angelegt, welche die Richtung von Tangenten an das Kabel und den ausgewählten Bezugskurs darstellen,
- in dem Digitalrechner wird ein Signal hinsichtlich der relativen horizontalen Position mit Bezug auf das Schleppschiff und den ausgewählten Bezugskurs für jede einer Mehrzahl von Seitenpositioniereinrichtungen erzeugt, die entlang des Kabels angeordnet sind,
- 25
 ein Steuersignal wird für eine ausgewählte Seitenpositioniereinrichtung erzeugt,
- das Steuersignal wird an die ausgewählte Seitenpositio-30 niereinrichtung übertragen,

die Stellung der Steuerflächen an der ausgewählten Positioniereinrichtung wird in Ansprechen auf das Steuersignal geändert, und

die Arbeitsschritte des Übertragens von Signalen von den Sensoren zu den ihre Stellung ändernden Steuerflächen wird wiederholt, wodurch die seitliche Position des Kabels gesteuert wird.

5

9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die relativen horizontalen Positionen des Schiffes und der Seitenpositioniereinrichtungen an einer Darstellungs-einrichtung dargestellt werden.

10

15

- 10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß der Arbeitsschritt des Erzeugens eines Steuersignales für eine ausgewählte Seitenpositioniereinrichtung weiterhin umfaßt, daß dieser Arbeitsschritt in Ansprechen auf die Signale hinsichtlich der relativen horizontalen Stellung und des ausgewählten Bezugskurses erzeugt werden.
- 11. Verfahren nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, daß der Arbeitsschritt des Wiederholens 20 der Arbeitsschritte des Übertragens von Signalen von den Sensoren zu den ihre Stellung ändernden Steuerflächen das Wiederholen der Arbeitsschritte zum Positionieren der entlang des Kabels dem Schiff an nächsten angeordneten Seitenpositioniereinrichtung aufweist, bis die am 25 nächsten angeordnete Seitenpositioniereinrichtung mit Bezug auf einen ausgewählten Weg (13) in zweckentsprechender Weise angeordnet ist, und die Arbeitsschritte für jede nachfolgende Seitenpositioniereinrichtung in Folge wiederholt werden, bis jede von ihnen mit Bezug 30 auf den Weg in zweckentsprechender Weise angeordnet ist.

WIEGAND NIEMANN KOHLER GERNHARDT GLAESER

PATENTANWALTE European Patent Attorneys

6

M D N C H E N
DR. E. WIFGAND†
(1932-1980)
DR. M. KOHLER
DIPL-ING. C. GERNHARDT

H A M B U R G DIPL.-ING. J. GLAFSER

DIPL.-ING. W. NIEMANN OF COUNSEL TELEFON 097-55-476/7
TELEGRAMME: KARPATENT TELEX: 529068 KARP D

D-8000 MONCHEN 2 HERZOG- WILHELM-STR. 16

23. Dezember 1981

W. 44 116/81 - 12/le

Mobil Oil Corporation New York, N. Y. (USA)

Vorrichtung zum Steuern der seitlichen Position eines geschleppten Seekabels und Verfahren zu deren Verwendung

15

Die Erfindung betrifft die Kontrolle und Steuerung von geschleppten Seekabeln, und insbesondere die Positionierung eines geschleppten seismischen Kabels in einer gewünschten horizontalen Ausrichtung mittels Fernsteuerung.

Die Erfindung schafft eine Vorrichtung zum Steuern der seitlichen Lage oder Seitenlage eines Seekabels, welches von einem Schiff geschleppt wird. Die Vorrichtung umfaßt:

eine Mehrzahl von Sensoreinrichtungen, von denen je eine an jedem einer ersten Mehrzahl von Punkten entlang des Kabels angeordnet ist, um Signale zu liefern, welche den Kurs oder Verlauf von Tangenten an das Kabel an der ersten Mehrzahl von Punkten darstellen,

eine Mehrzahl von Seitenpositioniereinrichtungen, von denen je eine an jedem einer zweiten Mehrzahl von Punkten entlang des Kabels angeordnet ist, wobei jede Seitenpositioniereinrichtung eine Mehrzahl von einstellbaren Steuerflächen, um die angelegte seitliche Schubkraft in der horizontalen Richtung zu ändern, und eine Einrichtung aufweist, welche auf fernübertragene Steuersignale anspricht, um die Flächen einzustellen,

25 eine Einrichtung zum Liefern eines Signals, welches einen ausgewählten Bezugskurs des Schiffes darstellt,

eine Einrichtung, die auf die Signale hinsichtlich der Tangenten an das Kabel und hinsichtlich des Bezugskurses an30 spricht, um ein Signal zu erzeugen, welches die Koordinaten des Schiffes und jedes Punktes der zweiten Mehrzahl
von Punkten in einem zweidimensionalen Koordinatensystem
wiedergibt,

eine Sichtanzeigeeinrichtung, die eine Matrix aus Anzeigezellen oder Darstellungszellen aufweist,

eine Einrichtung zum Eingeben der zweidimensionalen Koordi5 naten des Schiffes und der zweiten Mehrzahl von Punkten in die Matrix der Sichtanzeigeeinrichtung, wodurch Zellen der Sichtanzeigeeinrichtung, die mit den eingegebenen Koordinaten identifiziert werden, von den übrigen Anzeigezellen durch Betrachtung unterschieden werden können,

eine Einrichtung zum Erzeugen eines Steuersignales von dem Schiff, welches eine gewünschte Einstellung der Mehrzahl von Steuerflächen an einer ausgewählten Seitenpositioniereinrichtung darstellt, und

eine Einrichtung, um das Steuersignal von dem Schiff zu der ausgewählten Seitenpositioniereinrichtung oder zu den ausgewählten Seitenpositioniereinrichtungen zu übertragen für die Einstellung der Mehrzahl von Steuerflächen, um die von den Steuerflächen erzeugte Schubkraft zu ändern, wodurch die Seitenstellung oder seitliche Stellung des Kabels gesteuert wird.

Seismische Erforschung oder Exploration auf See wird oft25 mals durchgeführt mittels eines Seekabels, welches eine
Vielzahl von seismischen Sensoren enthält und in der Technik als "Streamer" bekannt ist. Dieses Seekabel wird von
einem Schiff unter der Wasseroberfläche über einen seismisch zu untersuchenden Bereich geschleppt. Solche Unter30 suchungen werden allgemein durchgeführt durch Schleppen
des Kabels entlang eines vorbestimmten Pfades über dem
Meeresboden, wobei seismische Störungen in dem Wasser entlang des Weges durch geeignet Mittel erzeugt werden, und
wobei von den seismischen Sensoren erzeugte Signale als

Ergebnis aufgezeichnet werden. Querströme haben das Bestreben, das Kabel gegenüber dem gewünschten Schleppweg seitlich zu verschieben, und durch eine solche seitliche Verschiebung wurd die Qualität der gesammelten seismischen Daten verschlechtert. Demgemäß ist es erwünscht, in der Lage zu sein, ein seismisches Kabel in gerader Linie entlang eines ausgewählten Kurses zu schleppen, und zwar trotz des Vorhandenseins von Querströmen und dergleichen, die das Bestreben haben, Teile des Kabels oder das gesamte Kabel gegenüber der ausgewählten Schlepplinie seitlich zu verschieben.

Manchmal werden Hindernisse angetroffen, welche das Schleppschiff zwingen, von dem vorgeschriebenen Weg oder von dem vorgeschriebenen Kurs abzuweichen, um eine Beschädigung des geschleppten Kabels zu vermeiden. Da diese Kabel oftmals eine Länge von mehr als 3,2 km (2 Meilen) haben, muß ein zeitraubender Umweg genommen werden, um das Hindernis zu umgehen, wonach das Kabel wieder entsprechend dem bestimmten Weg angeordnet werden muß. Es ist daher auch erwünscht, in der Lage zu sein, ausgewählte Abschnitte eines Seekabels seitlich zu der Richtung in gesteuerter Weise zu bewegen, in welcher das Kabel geschleppt wird, um dadurch beispielsweise das Kabel um Hindernisse herum zu lenken und hinter dem Hindernis wieder entlang des bestimmten Weges anzuordnen, ohne einen langen Umweg in Kauf nehmen zu müssen.

Seitliches Positionieren eines geschleppten Kabels hat zwei wesentliche Aspekte, nämlich das Bestimmen der vorhandenen Position des Kabels und das Bewegen des Kabels in eine gewünschte Position. Hinsichtlich des ersten Aspektes oder Merkmales sind Ausführungen für fernsteuerbare Seitenpositioniereinrichtungen zur Verwendung mit seismischen Seekabeln und anderen geschleppten Seekabeln in den US-PSen

3 605 674 und 4 330 278 beschrieben. In der ersteren Patentschrift sind verschiedene Abwandlungen einer ferngesteuerten Einrichtung beschrieben zum seitlichen oder zum seitlichen und vertikalen Positionieren eines "Streamers" oder eines anderen geschleppten Seekabels. Jede Einrichtung ist rund um das Kabel angeordnet, und sie ist in Abhängigkeit von der jeweiligen Ausführungsform mit Paaren von vertikalen oder vertikalen und horizontalen Flossen oder Rippen versehen, die für Richtungssteuerung drehbar sind. In 10 der zuletztgenannten Patentschrift ist eine andere Ausführungsform einer Einrichtung für Tiefenpositionierung und Seitenpositionierung offenbart, die vertikal ausgerichtete Tragflächen aufweist und von der Meeresoberfläche aus mittels eines Schwimmers getragen ist und ihrerseits mittels 15 einer federnden Verbindungseinrichtung eine Länge des geschleppten Kabels trägt. Gemäß der ersten der beiden genannten Patentschriften wird ein nicht definiertes Signal erzeugt und in nicht beschriebener Weise entlang von Drähten innerhalb des geschleppten Kabels an eine zweckentsprechende Fühl- und Betätigungseinrichtung innerhalb je-20 der Seitenpositionierungseinrichtung übertragen, welche eine Drehung der Flossen hervorruft. In der US-PS 4 330 278 sind weiterhin ein Steuerverfahren und eine Schalleinrichtung für automatisches Positionieren einer Vielzahl von Seitenpositioniereinrichtungen entlang einer geraden Linie auf einem ausgewählten Kurs von dem Schleppboot offenbart. Das Steuerverfahren und die Einrichtung gemäß dieser Literaturstelle sind für wahlweises Positionieren einzelner Seitenpositioniereinrichtungen ungeeignet.

Es sind auch mehrere Einrichtungen zum Bestimmen und Überwachen der Position oder Anordnung eines geschleppten Kabels bekannt. In den beiden genannten US-Patentschriften wird das Anordnen und Überwachen der Position des ge-

schleppten Kabels vorgeschlagen unter Verwendung von Ultraschall-Impulsübertrager (sonar transponder), die an ausgewählten Stellen oder Punkten entlang des Kabels angeordnet sind. Die Impulsübertrager können in einer Vielfalt von

5 Arten verwendet werden mit komplementärer Ausrüstung in dem Schleppschiff, um Daten zu liefern, aus denen der Abstand und der Kurs jedes Impulsübertragers mit Bezug auf das Schleppschiff errechnet werden können. In der ersten der beiden genannten US-Patentschriften wird alternativ vorgeschlagen, die Position des Kabels durch horizontale Ultraschallmessung zu überwachen, wahrscheinlich an dem Schleppschiff.

Ein vollständig anderes Verfahren zum Positionieren eines 15 "Streamers" oder eines anderen Seekabels mit Bezug auf ein Schleppschiff ist in der US-PS 3 953 827 beschrieben, wo offenbart ist, die Position eines geschleppten Kabels zu bestimmen durch Identifizieren der Winkel von Tangenten an das Kabel mit Bezug auf eine feste bzw. bestimmte und bekannte Richtung, beispielsweise mit Bezug auf den magnetischen Nordpol, und zwar an einer Mehrzahl von bekannten Meßpunkten entlang des Kabels. Die Winkelinformation wird von einem geeigneten Sensor geliefert, von denen je einer an jedem Meßpunkt angeordnet ist, wobei es vorzugsweise ein 25 Magnetkompaß ist. Es sind auch Mittel vorgesehen, zum Verschlüsseln und Übertragen der gemessenen Winkelwerte mittels elektronischer Impulse zu einer zentralen Station. Die Position jeder Meßstelle ist bestimmt durch Annähern des zwischen den Sensoren befindlichen Teiles des geschleppten Kabels an einen Kreisbogen, dessen Länge aus dem Abstand zwischen den Sensoren bekannt ist, während der Winkelwert des Bogens bestimmt wird aus den Unterschieden zwischen den Winkeln, die von den Tangenten an das Kabel an den Meßstellen zu der festen oder bestimmten und bekannten Richtung

gebildet werden. Die Positionen der anderen bekannten Punkte oder Stellen entlang des Kabels werden dann durch Interpolation bestimmt. Im Vergleich mit der Wandlerortungsmethode gemäß den beiden zuerstgenannten US-Patentschriften ermög-5 licht es das Verfahren gemäß der US-PS 3 953 827, die Ablenkungen oder Biegungen des Kabels zwischen den Meßpunkten genauer zu bestimmen. Diese Information ist von besonderer Bedeutung bei seismischer Untersuchung, wo die genaue Position der Kabelsensoren, welche die seismischen Daten lie-10 fern, für Korrekturzwecke erwünscht ist. Das Verfahren gemäß der zuletztgenannten US-Patentanschrift leidet nicht unter einem Sichtverlust des Kabels, der bei horizontaler Ultraschallmessung auftreten kann, wenn das entfernt liegende Ende des geschleppten Kabels bei gewissen Orientierungen 15 durch Biegungen des Kabels abgeschirmt ist, die in der Sichtlinie des Ultraschallmeßgerätes liegen. Weiterhin wird durch das Verfahren zum Überwachen des Kabels mittels horizontaler Ultraschallmessung die Position der Seitenpositioniereinrichtungen entlang des Kabels nicht identifiziert. Außerdem 20 liefert dieses Verfahren keine Information betreffend die Kabelposition in einer Form, die für die Korrektur von seismischen Daten zweckmäßig ist. In der US-PS 4 068 208 ist eine noch andere Vorrichtung zum Bestimmen der Position von Seekabeln oder "Streamern" beschrieben, die jedoch für eine Kabelüberwachung ungeeignet ist, bei welcher Seitenpositioniereinrichtungen verwendet werden.

In der US-PS 4 231 111 ist eine Vorrichtung zum Orten oder feststellen der Position eines seismischen Seekabels beschrieben, bei welcher der Verlauf der Tangenten an das Kabel dazu verwendet wird, die relative horizontale Position eines Kabels mit Bezug auf ein Schleppschiff zu bestimmen und um eine Sichtanzeige des Schleppschiffes und des Kabels für Überwachungszwecke zu erzeugen.

Demgemäß ist eine Mehrzahl von ferngesteuerten Seitenpositioniereinrichtungen an ausgewählten Stellen oder Punkten entlang der Länge des geschleppten Kabels angebracht. Vielzahlen von Positionssensoren, beispielsweise Magnetkompasse, 5 sind an anderen ausgewählten Punkten oder Stellen zwischen dem Schleppschiff und der ersten Seitenpositioniereinrichtung und zwischen benachbarten Seitenpositioniereinrichtungen vorgesehen, um Signale zu liefern, welche den Verlauf von Tangenten an das Kabel an der Stelle der Anordnung der 10 Positionssensoren darstellen. Die von den Positionssensoren erzeugten Signale werden von einem Rechner verarbeitet, um Signale zu erzeugen, welche die horizontalen Positionskoordinaten des Schiffes und der Seitenpositioniereinrichtungen relativ zu dem Schiff und relativ zu einem ausgewählten 15 Kurs darstellen, beispielsweise dem "course made good"-Kurs des Schiffes. Die Koordinatensignale werden an eine Anzeige für die relativen Positionen des Schiffes und der Seitenpositioniereinrichtungen mit Bezug auf den ausgewählten Kurs geliefert. Wenn Magnetkompasse entlang des Kabels verwendet werden, sind andere Mittel, beispielsweise ein Magnetkompaß und ein Kreiselkompaß an Bord des Schiffes vorgesehen, um Korrekturen zu bestimmen unter Berücksichtigung der örtlichen Magnetkompaßabweichungen.

Demgemäß werden Mittel, beispielsweise der vorgenannte Rechner, vorgesehen zum Erzeugen eines verschlüsselten Signales, welches die Identifizierung der für die Steuerung ausgewählten Seitenpositioniereinrichtung und Informationen für die Aktivierung und Betätigung der Motoreinrichtung in der ausgewählten Seitenpositioniereinrichtung darstellt, um eine gewünschte Steuerflächeneinstellung zu erhalten. Das genannte Steuersignal wird beim Ansprechen auf ein Signal erzeugt, welches von einer Operatoreinrichtung, beispielsweise einer Tastatur geliefert wird, oder beim direkten An-

sprechen auf die Koordinatensignale hinsichtlich der Position des Schiffes und der Seitenpositioniereinrichtung. Eine Übertragungseinrichtung ist vorgesehen, um das verschlüsselte Steuersignal in eine Form umzuwandeln, die für 5 das Übertragen über Leiter in dem seismischen Kabel geeignet ist. Eine geeignete Schaltung in jeder Seitenpositioniereinrichtung stellt das verschlüsselte Steuersignal fest und prüft es, um zu bestimmen, ob das Signal für diese Einrichtung bestimmt ist. In der ausgewählten Seitenposi-10 tioniereinrichtung entschlüsselt eine Schaltung das verschlüsselte Steuersignal. Eine Motorbetätigungseinrichtung wird von der Entschlüsselungseinrichtung in Übereinstimmung mit der in dem verschlüsselten Steuersignal enthaltenen Information gesteuert, und sie betätigt eine Motoreinrichtung 15 für die Einstellung der Steuerflächen der Seitenpositioniereinrichtung in der gewünschten Richtung und in dem gewünschten Ausmaß. Eine Rückkopplung ist vorgesehen mit auf den neuesten Stand gebrachten Koordinatensignalen hinsichtlich der Position des Schiffes und der Seitenpositioniereinrich-20 tung. Zusätzliche Steuersignale können in der beschriebenen Weise erzeugt werden, um die Einrichtung zu positionieren oder um eine Neupositionierung einer anderen Seitenpositioniereinrichtung zu beginnen.

Gemäß einem weiteren Merkmal der vorliegenden Erfindung werden Koordinaten von Hindernissen in dem Weg des Schleppschiffes und/oder des Kabels mit Bezug auf die Position des Schiffes identifiziert und in den Rechner durch geeignete Mittel eingegeben, beispielsweise mittels einer Operatortastatur für Eingabe in die Matrix der Sichtanzeige für Darstellung mit den vorgenannten Koordinaten der Position des Schiffes und der Seitenpositioniereinrichtungen.

Gemäß einem noch anderen Merkmal der Erfindung ist jede

15

25

Seitenpositioniereinrichtung mit Mitteln versehen, um deren vertikale Steuerflächen auf einen Befehl der Bedienungsperson oder des Operators automatisch in eine neutrale Orientierung zurückzubringen.

Die Erfindung wird nachstehend anhand der Zeichnung beispielsweise erläutert.

- Fig. 1 zeigt schematisch eine Anlage zur seismischen

 Erforschung, bei welcher die Erfindung angewendet wird.
 - Fig. 2 ist ein Blockdiagramm einer Vorrichtung zum Überwachen und Positionieren eines Kabels gemäß der Erfindung, die mit der Erforschungsanlage gemäß Fig. 1 verwendet wird.
- Fig. 3 zeigt die geometrische Konfiguration, die dazu verwendet wird, die Koordinaten der Seitenpositioniereinrichtungen des Kabels mit Bezug auf das Schiff zu bestimmen.
 - Fig. 4 zeigt eine Wahrheitswertetabelle zum Orten der Peilung einer Seitenpositioniereinrichtung.
 - Fig. 5 ist eine Sichtanzeige der Koordinaten des Schiffes und ausgewählter Punkte entlang des des geschleppten Kabels, bestimmt durch die Ausrüstung gemäß Fig. 2.
- Fig. 6 ist eine Stirnansicht einer an einem Kabel angebrachten Seitenpositioniereinrichtung.

- Fig. 7 ist eine Schnittansicht nach Linie 7-7 der Fig. 6.
- Fig. 8 ist eine Schnittansicht nach Linie 8-8 der 5 Fig. 7.

Bei seismischer Seeexploration oder Seeerforschung schleppt ein Schiff 10, wie in Fig. 1 dargestellt, ein seismisches Detektorkabel 11 bzw. einen "Streamer" 11 entlang einer ausgewählten Linie oder eines ausgewählten Weges 13, entlang welchem Explorationen stattfinden sollen. Der Kurs 15 des Schiffes 10 wird in Abhängigkeit von dem Nichtvorhandensein oder Vorhandensein von Querströmen geändert, so daß das Schiff 10 einem "course made good"-Kurs 18 entlang des Weges 13 folgt. Das Kabel 11 verwendet üblicherweise eine Mehrzahl von Horchgeräten oder anderen geeigneten seismische Wellen feststellenden Detektoren (nicht dargestellt), die entlang der Länge des Kabels 11 in Abständen angeordnet sind, um seismische Wellenreflektionen von geophysika-20 lischen Schichten unterhalb des Meeresbodens zu empfangen. Eine oder mehrere nicht dargestellte Quellen für seismische Wellen, wie beispielsweise Blaspistolen oder dergl. werden ebenfalls typisch von dem Schiff 10 geschleppt, um seismische Wellen zu erzeugen, deren Reflektionen von den Horchgeräten empfangen werden. Leiter, die durch das Kabel 11 laufen, führen von den seismischen Sensoren erzeugte Signale zurück zum Schiff 10 zum Aufzeichnen, zum erneuten Übertragen und/oder zum Anzeigen.

on Entlang des Kabels 11 ist eine Mehrzahl von Sensoren 12 in bekannten Abständen angeordnet, welche den Verlauf von Tangenten an das Kabel feststellen und von denen in Fig. 1 sechs dargestellt sind. Weiterhin ist an dem Kabel in bekannten Abständen eine Mehrzahl von Seitenpositionierein-

richtungen 14 angeordnet, von denen in Fig. 1 drei dargestellt sind. Jeder Sensor 12 liefert ein Signal, welches den magnetischen Verlauf oder magnetischen Kurs der Tangente an das Kabel in der horizontalen Ebene an dem beson-5 deren Punkt darstellt. Wenn die Verläufe von Tangenten an das Kabel an einer Mehrzahl von Punkten entlang der Länge des Kabels 11 sowie die Abstände zwischen solchen Punkten bekannt sind, kann die Position des Kabels 11 in nachstehend beschriebener Weise bestimmt werden. Jede Seitenposi-10 tioniereinrichtung 14 ist mit einer Mehrzahl von vertikalen Steuerflächen versehen, die durch Fernsteuerung eingestellt werden können, wie es ebenfalls später beschrieben wird, um die Größe der seitlich wirkenden Kraftkomponente zu ändern, welcher jede Einrichtung 14 zu irgendeinem ge-15 gebenen Zeitpunkt unterworfen wird, wenn sie durch das Wasser geschleppt wird.

Fig. 2 zeigt schematisch in Form eines Blockdiagrammes eine bevorzugte Ausführungsform der Erfindung. Jeder Sen-20 sor 12, von denen einer dargestellt ist, umfaßt einen Magnetkompaß 12A, beispielsweise ein Modell 319 "Magnetic Sensor" von Digicourse, Inc., und eine Binärsteuereinheit 12B, beispielsweise das Modell 350 "Binary Control Unit", ebenfalls von Digicourse, Inc. Die Anzeigen oder Ablesungen der Kompasse 12A werden von den zugeordneten Binärsteuereinheiten 12B auf ein-einziges Leiterpaar 12C mehrfachgeschaltet, das entlang der Länge des Kabels 11 und zu der Rechneranlage für die Bestimmung der Position des Kabels 11, die sich an Bord des Schiffes 10 befindet, läuft. 30 Jede Binärsteuereinheit 12B ist mit ihrer geeigneten Codenummer durch einen Anfrager 23 adressiert, der das Modell 290 "Data Acquisition Unit" von Digicourse, Inc. oder eine ähnlich wirkende Einrichtung ist. Ein Startimpuls von einem Rechner 30 oder einem Kreislaufzeitgeber 24 leitet das Mehrfachschalten (multiplexing) der Magnetkompaßablesungen von den Steuereinheiten 12B zu Informationsregistern in dem Anfrager 23 ein. Weiterhin wird an ein Informationsregister in dem Anfrager 23 der Kurs von einem an Bord befindlichen Magnetkompaß 25 angelegt, der beispielsweise das Modell 101 "Magnetic Sensor" von Digicourse, Inc. ist. Die Kompaßanzeige bzw. der Kompaßkurs in jedem der Informationsregister kann an einer geeigneten Sensoranzeige 26 sichtbar dargestellt werden, die beispielsweise das Modell 102 "Sensor Display" von Digicourse, Inc. oder eine ähnlich wirkende Einrichtung ist.

Die Informationsregister des Anfragers 23 übertragen die Kompaßkurse an eine äußere Sammeleinheit in einer Feld-15 aufzeichnungseinrichtung 27, die beispielsweise ein "DFS V Digital Field Recorder" der Firma Texas Instruments oder einer andere vergleichbare seismische Aufzeichnungseinrichtung ist. An die äußere Sammeleinheit oder Sammeleinrichtung werden ferner der Kurs des Schiffes 10 mit Bezug 20 auf die wahre Nordrichtung von einem an Bord befindlichen Kreiselkompaß 28 sowie die absoluten Koordinaten des Schiffes in einem geotäisch festen Koordinatensystem angelegt, und zwar von einem an Bord befindlichen Navigationssystem 29. Die Aufzeichnungseinrichtung 27 enthält daher alle Informationen, die benötigt werden, um die ab-25 soluten Positionen des Schiffes 10 und des Kabels 11 sowie die Position des Kabels 11 relativ zu dem Schiff 10 zu berechnen. Die Kompaßkurve und die absoluten Koordinaten des Schiffes 10 werden von der Aufzeichnungseinrich-30 tung 27 an einen Digitalrechner 30 geliefert, der für Positionierung und Steuerung des Kabels 11 gestaltet sein kann oder ein Vielzweckrechner ist, der in Verbindung mit anderen bei der Exploration anfallenden Arbeitsvorgängen verwendet wird. Ein Schreiber/Drucker 32 mit einer Tasta-

tur, beispielsweise ein Gerät "Silent 730 KSR" der Firma Texas Instruments, Inc., ist vorgesehen für Operatoreingabe eines ausgewählten Kurses in den Rechner 30. Der Rechner 30 verwendet den genannten ausgewählten Kurs, um 5 die Koordinaten der Seitenpositioniereinrichtung 14 in einem zweidimensional cartesischen Koordinatensystem (X und Y) zu bestimmen, welches auf das Schiff 10 zentriert und mit Bezug auf den ausgewählten Kurs orientiert oder ausgerichtet ist. Die X- und Y-Koordinaten zusammen mit 10 den absoluten Koordinaten des Schiffes 10 und der verschiedenen Kompaßkurse werden an eine geeignete Einrichtung geliefert, beispielsweise an eine Magnetbandeinrichtung 24, zum Aufzeichnen und zur späteren Verwendung. Eine einfache Aufzeichnung der X-Koordinaten und der Y-15 Koordinaten des Schiffes 10 und der Seitenpositioniereinrichtungen 14 ist an einer geeigneten Sichtanzeigeeinrichtung geschaffen, beispielsweise an einer Kathodenstrahlröhre 31. Der Rechner 30 liefert auch Informationen hinsichtlich der Peilung und des Abstandes jeder Seitenpositioniereinrichtung 14 mit Bezug auf das Schiff 10 und den ausgewählten Kurs, und zwar an dem Schreiber/Drucker 32, der eine Tastatur besitzt. Wenn der "course made good"-Kurs bzw. der korrigierte Kurs (nachstehend der Einfachheit halber als "korrigierter Kurs" bezeichnet) des Schif-25 fes 10 von dem Operator bzw. der Bedienungsperson ausgewählt ist, wie er vorgeschlagen ist, wenn ein seismisches Kabel entlang eines Weges geschleppt wird, und wenn der korrigierte Kurs über die Tastatur des Schreibers/Druckers 32 in den Rechner 30 eingegeben ist, sind die Kompaßpei-30 lungen zu den Positioniereinrichtungen 14 allgemein reziprok zu dem korrigierten Kurs. Die Versetzung jeder Seitenpositioniereinrichtung 14 gegenüber dem ausgewählten Weg ist an der Anzeigeeinrichtung 31 sichtbar.

Steuerbefehle für eine ausgewählte Seitenpositioniereinrichtung 14 werden von einem Kabelpositionieroperator über
den Schreiber/Drucker 32 für Eingabe in den Rechner 30 eingegeben. Der Rechner 30 ist so programmiert, daß er auf
5 den von dem Operator eingegebenen Steuerbefehl anspricht
und ein geeignetes verschlüsseltes digitales Befehlswort
erzeugt, welches von dem Rechner 30 an eine geeignet Übertragungseinrichtung 34 geliefert wird für nachfolgende
Übertragung entlang von Drähten 35 in dem Kabel 11 zu den
10 Seitenpositioniereinrichtungen 14, von denen eine funktionell ausgewählt ist. Alternativ kann der Rechner 30 so
programmiert sein, daß er auf die Koordinateninformation
direkt anspricht und automatisch geeignete Steuersignale
für die Seitenpositioniereinrichtungen 14 erzeugt.

15 Eine geeignete Empfangseinrichtung 36 in jeder Seitenpositioniereinrichtung 14 stellt das digitale Wort fest, stellt es wieder her und liefert es an eine Entschlüsselungseinrichtung 38, welche das verschlüsselte Steuerwort 20 prüft, um zu bestimmeh, ob es für diese Einrichtung 14 bestimmt ist. Wenn gefunden wird, daß es für die Einrichtung 14 bestimmt ist, liefert die Entschlüsselungseinrichtung 38 beim Ansprechen auf das verschlüsselte Wort ein entsprechendes Signal an eine Betätigungseinrichtung 40 in dieser Einrichtung 14, die ihrerseits Energie an 25 einen Motor 42 liefert, um eine Mehrzahl von vertikalen Steuerflächen 44 in der gewünschten Richtung und in dem gewünschten Ausmaß einzustellen. Anderungen der Position der ausgewählten Seitenpositioniereinrichtung. 14 mit Bezug auf das Schiff 10 werden durch nachfolgende Ablesungen der Magnetkompasse 12A und durch Erzeugung neuer Koordinaten offenbart. Beim Ansprechen auf die neue Position können Korrekturbefehle von dem Operator über den Schreiber/Drucker 32 oder automatisch von dem Rechner 30 gegeben werden für endgültige Positionierung jeder Einrichtung 14.

Die Erfindung ist in Verbindung mit dem schematischen

5 Blockdiagramm der Fig. 2 allgemein beschrieben worden, und
eine mehr ins einzelne gehende Beschreibung der Arbeitsweise
der verschiedenen Einrichtungen gemäß Fig. 2 wird nachstehend gegeben in Verbindung mit der Ortung und dem seitlichen Positionieren des Kabels 11 während eines Schleppvor10 ganges.

Während der Ausführung seismischer Arbeitsvorgänge wird. jeder seismische Aufzeichnungskreislauf zu einem Zeitpunkt Null eingeleitet durch ein Grundsignal von dem Kreislauf-15 zeitgeber 24. Wenn seismische Arbeitsvorgänge nicht ausgeführt werden, kann der Rechner 30 das Grundsignal an den Anfrager 23 liefern. Dieses Signal wird von dem Anfrager 23 dahingehend verwendet, aufeinanderfolgend jede binäre Steuereinrichtung 12B für eine zweckentsprechende Zeitdauer 20 (100 Millisekunden für die Digicourse-Einrichtung bei diesem Ausführungsbeispiel) zu adressieren. Der an Bord des Schiffes 10 befindliche Magnetkompaß 25 wird ebenfalls von dem Anfrager 23 abgelesen, was 60 Millisekunden dauert, wenn ein Kompaß und ein Anfrager gemäß vorstehender Beschreibung verwendet werden. Wenn das Anfragen oder Anwählen der Sensoren seitens des Anfragers 23 vervollständigt ist, liefert der Anfrager 23 ein Signal an die Übertragungseinrichtung 34. Die Magnetkompaßablesungen werden dann von nicht dargestellten Informationsregistern des Anfragers 23 an die äußere Sammeleinrichtung der Feldaufzeichnungseinrichtung 27 geliefert. Weiterhin werden der wahre Nordkurs des Schiffes 10 gemäß dem Kreiselkompaß 28 und die absoluten Koordinaten des Schiffes 10 gemäß dem Navigationssystem 29 an die Aufzeichnungseinrichtung 27

geliefert. Die Koordinaten der Kompaßablesungen und des Navigationssystems werden dann aus der Aufzeichnungseinrichtung 27 ausgelesen in den Rechner 30 eingegeben. Der korrigierte Kurs, welchem das Schiff 10 während des 5 Schleppens folgen muß, wird in den Rechner 30 von dem Kabelsteueroperator eingegeben, und zwar über die Tastatur des Schreiber / Druckers 32. Der Rechner 30 ist zuvor mit Informationen gespeist worden hinsichtlich des Abstandes jedes der Magnetkompasse 12A und der Seitenposi-10 tioniereinrichtungen 14 entlang des Kabels 11. Der Rechner 30 bestimmt dann die X- und Y-Koordinaten jeder Seitenpositioniereinrichtung 14 in einem cartesischen Koordinatensystem, welches an dem Schiff 10 zentriert ist, wobei die +X-Richtung definiert ist als ein Kurs, der vom Heck 15 des Schiffes 10 in einem Winkel von 180° zu dem zuvor ausgewählten korrigierten Kurs ausgeht, und wobei die +Y-Richtung definiert ist als der Kurs, der vom Steuerbord des Schiffes 10 in einem Winkel von 90° zu dem korrigierten Kurs verläuft. Die Peilung und der Abstand jeder Seitempositioniereinrichtung 14 mit Bezug auf das Schiff 10 20 sowie der korrigierte Kurs werden von dem Rechner 30 bestimmt und an den Schreiber/Drucker 32 zwecks Anzeige geliefert.

Die Bestimmungen der Position der Seitenpositioniereinrichtungen 14 basieren auf der Theorie, daß zwischen den
Seitenpositioniereinrichtungen 14 das Kabel 11 gemäß einer
Kurve verläuft, deren Gestalt durch eine oder mehrer Kreisbögen angenähert definiert werden kann. Wenn Tangenten an
zwei Punkte entlang jedes Kreisbogens und der Abstand zwischen den Punkten bekannt sind, kann die Position jedes
Punktes entlang des Kreisbogens und der Sehnen zwischen
jeden Punkten des Kreisbogens bestimmt werden. Demgemäß
können die Sehnen zwischen dem Schleppschiff 10 und jeder

Seitenpositioniereinrichtung 14 bestimmt werden. Diese Sehnen können dann geschichtet werden, um die Position des Kabels 11 mit Bezug auf den korrigierten Kurs darzustellen, wenn das Kabel 11 durch das Wasser geschleppt wird. 5 Eine solche Schichtung ergibt weiterhin einen einzigen Vektor, der den Abstand des Endpunktes jeder Sehne von dem Schiff 10 und die Peilung eines solchen Endpunktes mit Bezug auf den ausgewählten korrigierten Kurs anzeigt.

In Fig. 3 ist als ein Beispiel eine Konfiguration für ein seismisches Kabel 11 dargestellt, welches von einem Schiff Po geschleppt wird und welches drei Seitenpositioniereinrichtungen P₁, P₂, P₃ sowie sechs Magnetkompasse C_{i,i}, i=1-3, j=1-2, trägt. Ein Kompaßpaar (j=1,2) ist entlang des Kabels 15 11 vor jeder Seitenpositioniereinrichtung (Pi, i=1-3) vorgesehen. Es ist zu verstehen, daß die Gestal $\overline{ ext{t}}$ des Kabels 11 in Fig. 3 für Zwecke der Erläuterung übertrieben dargestellt ist, obwohl eine solche Gestalt bzw. ein solcher Verlauf während eines Wendemanövers des Schleppschiffes erhalten werden kann. Es ist wenigstens der Verlauf von zwei Tangenten an das Kabel 11 entlang einer Kabellänge erforderlich, um einen Kreisbogen für den betreffenden Kabelabschnitt zu schätzen. Wenn es gewünscht wird, können mehr als zwei den Kabelverlauf feststellende Sensoren zwischen 25 dem Schiff und der vorderen Seitenpositioniereinrichtung oder zwischen benachbarten Seitenpositioniereinrichtungen vorgesehen sein, und es können dann Kreisbogen für jeden Kabelabschnitt zwischen benachbarten Sensoren geschätzt werden. Weiterhin wird, obwohl es möglich ist, die Kom-30 passe an irgendeinem Punkt entlang der Länge des Kreisbogens zwischen dem Schiff und der ersten Seitenpositioniereinrichtung oder zwischen benachbarten Seitenpositioniereinrichtungen anzuordnen, es für die Vereinfachung vorgeschlagen, daß jeder Kompaß eines Kompaßpaares Cij,

30

j=1-2, im gleichen Abstand von dem Schiff bzw. der nächsten Seitenpositioniereinrichtung angeordnet wird. Demgemäß ist bei der Darstellung in Fig. 3 der Abstand des ersten Magnetkompasses C₁₁ von dem Schiff 10 entlang des Kabels 11 gleich dem Abstand zwischen dem zweiten Kompaß C₁₂ und der ersten Seitenpositioniereinrichtung P1. Auf diese Weise verläuft jede Sehne zwischen den Punkten P_{i-1} und P_i (beispielsweise die Sehne D₁ zwischen dem Schiff P₀ und der Seitenpositioniereinrichtung P1) parallel zu der Sehne di zwischen den Kompassen C_{i1} und C_{i2} in diesem Abschnitt des Kabels 11 (d.h. die Sehne d₁ zwischen C₁₁ und C₁₂). Beispielsweise kann jeder Magnetkompaß $\mathtt{C}_{ extbf{ij}}$ in einem Abstand von der nächsten Seitenpositioniereinrichtung Pi oder Pi-1 angeordnet werden, der gleich einem Viertel der Bogenlänge Si zwischen jeder Positioniereinrichtung P_i und P_{i-1} ist. Die anderen zugehörigen Bezeichnungen und Verhältnisse gemäß der Darstellung in Fig. 3 sind wie folgt definiert:

c_o = korrigierter Kurs des Schiffes P_O mit Bezug 20 auf den magnetischen Norden,

c_{ij} = Verlauf des Kabels mit Bezug auf den magnetischen Norden für jeden Kompaß C_{ij},

d_i = die Sehne, welche den Krümmungsbogen des

Kabels zwischen benachbarten Kompaßpaaren

C_{i1} und C_{i2} einschließt (beispielsweise d₁

zwischen C₁₁ und C₁₂),

D_i = die Sehne, welche den Krümmungsbogen des Kabels zwischen dem Schiff und/oder zwischen benachbarten Seitenpositioniereinrichtungen (P_{i-1} und P_i), die an den Enden jedes Bogens i angeordnet sind, einschließt, wobei i = 1,3 (d.h. D₁ - D₃),

e die Kabellänge zwischen benachbarten Kompaßpaaren C_{i1} und C_{i2} in jedem Bogen i, wobei i =
1-3 (d.h. s₁-s₃),

S_i = die Kabellänge zwischen Punkten P_{i-1} und P_i (Schiff P₀ und Einrichtungen P₁, P₂ und P₃), (d.h. S₁ - S₃),

a_i = der Winkel zwischen den parallelen Sehnen d_i und D_i und der Tangentenlinie c_{i1} des Kabelverlaufes (d.h. a₁ - a₃),

b_i = der Winkel zwischen einer Linie in Richtung
des korrigierten Kurses C_O des Schiffes und
den Sehnen d_i und D_i (d.h. b₁ - b₃).

Jede Sehne D_i, die in der oben beschriebenen Weise definiert ist, wird ein gerichtetes Liniensegment mit Vektorkomponenten X_i und Y_i. Berechnung jedes Koordinatenpaares
X_i, Y_i und des Abstandes R_i sowie der Peilung O_i von dem

15 Schiff P_O zu jeder Seitenpositioniereinrichtung P_i ist wie
folgt (wobei gleicher Abstand der Kompaßpaare C_{i1} und C_{i2}
von benachbarten Punkten P_{i-1} bzw. P_i angenommen ist):

$$a_{i} = 1/2 (c_{i1} - c_{i2})$$

$$b_{i} = a_{i} + c_{0} - c_{i1}$$

$$d_{i} = (180 \cdot s_{i} / \pi \cdot a_{i} \cdot sina_{i})$$

$$D_{1} = (180 \cdot s_{i} / \pi \cdot a_{i}) \cdot sin(a_{i} \cdot s_{i} / s_{i})$$

$$X_{i} = D_{i} \cdot cosb_{i}; Y_{i} = D_{i} \cdot sinb_{i}$$

$$R_{i} = \sqrt{((s_{i} X_{i})^{2} + (s_{i} Y_{i} / s_{i})^{2})}$$

$$\theta_{i} = 180^{0} - tan^{-1} (s_{i} Y_{i} / s_{i} / s_{i})$$

Eine Prüfung der Vorzeichen von ≤iXi und ≤iYi ergibt die Peilung θi mit Bezug auf den ausgewählten korrigierten Kurs co, wie es in der Wahrheitswertetabelle in Fig. 4
30 dargestellt ist. Eine typische Aufzeichnung von Orten mit Bezug auf den korrigierten Kurs des Schiffes 10 für die drei Seitenpositioniereinrichtungen 14 gemäß Fig. 1

ist in Fig. 5 wiedergegeben. Diese Aufzeichnung basiert auf einer Matrix von Anzeigezellen, bei welcher die gesamte Zelle, in welche eine bestimmte X-Y-Koordinate fällt, an der Fläche der Kathodenstrahlröhre 21 erleuchtet wird. Die Vierpunkt-Aufzeichnung von X- und Y-Koordinaten wird vor jedem Zündkreislauf oder Erleuchtungskreislauf (etwa alle 10 Sekunden) auf den neuesten Stand gebracht oder, wenn seismische Daten nicht gesammelt werden, so oft auf den neuesten Stand gebracht, wie ein Kreislauf von dem Rechner 30 eingeleitet wird. Falls es gewünscht wird, kann größere oder bessere Definition der Position des Kabels 11 geschaffen werden durch Berechnen und Anzeigen von X- und Y-Koordinaten von anderen Punkten entlang des Kabels, beispielsweise der Punkte, an denen an dem Kabel 11 die Magnetkompasse 12A angebracht sind.

Zusätzlich zu der Position des Schiffes 10 und der Seitenpositioniereinrichtungen 14 können die Positionen verschiedener Hindernisse, die im Weg des Schiffes 10 oder des Ka-20 bels 11 liegen, wie beispielsweise andere Schiffe, Bohrtürme usw., ebenfalls mit X- und Y-Koordinaten dargestellt werden. Es ist in Betracht gezogen, daß der Abstand und der Kurs eines Hindernisses bestimmt werden durch geeignete Mittel, wie beispielsweise durch die Radareinrichtung des 25 Schiffes oder eine Ultraschallmeßeinrichtung. Der Kabelsteueroperator gibt den Abstand bzw. die Entfernung und den Kurs des Hindernisses in den Rechner 30 ein mittels der Eingabetastatur des Schreiber/Druckers 32. Eine geeignete Programmierung in dem Rechner 30 spricht auf die In-30 formationseingabe an und erzeugt ein Signal, welches die X- und Y-Koordinaten des Hindernisses darstellt, dessen Daten in die Matrix der Anzeigeeinrichtung eingegeben sind. Eine entsprechende Zelle, beispielsweise die mit einem * bezeichnete Stelle wird dann erleuchtet. Auf den neuesten

Stand gebrachte Informationen hinsichtlich des Abstandes oder der Entfernung und des Kurses können von dem Operator periodisch über den Schreiber/Drucker 32 eingegeben werden. Auf den neuesten Stand gebrachte X- und Y-Koordinaten des Hindernisses werden dann von dem Rechner 30 erzeugt, der die Koordinaten in die Matrix der Kathodenstrahlröhre 21 eingibt. Es ist hier in Betracht gezogen, daß geeignete Radarausrüstung und/oder Ultraschallmeßausrüstung vorgesehen sein kann für automatische periodische Eingabe von Informationen hinsichtlich des Abstandes oder der Entfernung und der Peilung eines Hindermisses in den Rechner 30, um die Informationen auf den neuesten Stand zu bringen.

Der Kabelsteueroperator oder Kabelkontrolloperator kontrol-15 liert oder steuert wahlweise eine oder mehrere Seitenpositioniereinrichtungen 14, um das Kabel 11 in Linie mit dem ausgewählten Weg 13 zu bringen oder in anderer Weise das Kabel 11 in gewünschter Weise zu "lenken", indem ein Befehl für Seitenpositioniereinrichtungen in den Rechner 30 eingegeben wird über eine geeignete Zwischeneinrichtung, bei-20 spielsweise die Tastatur des Drucker/Schreibers 32. Der Befehl des Operators oder der Bedienungsperson identifiziert die besondere zu steuernde Seitenpositioniereinrichtung sowie die Richtung und das Ausmaß der gewünschten Bewegung ihrer Mehrzahl von vertikalen einstellbaren Steuerflächen. Beispielsweise kann ein Befehl "P1+010" dazu verwendet werden, eine Drehung von zehn Grad ("010") in plus-Richtung ("+") (in Uhrzeigerrichtung oder in Gegenuhrzeigerrichtung, je nachdem, wie es definiert ist) in der ersten Seitenpositioniereinrichtung ("P1") entlang des Kabels anzu-30 zeigen. Beim Ansprechen auf den Befehl des Operators bzw. der Bedienungsperson erzeugt der Rechner 30 ein verschlüsseltes digitales Wort, welches die ausgewählte Positioniereinrichtung und die notwendige Betätigung der Motoreinrich-

tung in der ausgewählten Seitenpositioniereinrichtung identifiziert, um die befohlene Einstellung auszuführen. Die in dem verschlüsselten digitalen Wort enthaltene Information bezüglich der Motorbetätigung ändert sich in Abhängigkeit 5 von dem Verfahren und der Vorrichtung, die ausgewählt sind für Verwendung in den Seitenpositioniereinrichtungen, um deren Arbeiten zu steuern. Beispielsweise ist bei der bevorzugten Ausführungsform einer hier beschriebenen Seitenpesitioniereinrichtung ein Gleichstrom-Schrittschaltmotor in jeder Seitenpositioniereinrichtung vorgesehen für die Drehung eines Paares vertikaler Flossen 44 (siehe Fig. 2, 6 und 7). Der Rechner 30 ist mit Tabellen versehen, mit denen Grade der Drehung der Flossen in Schrittschaltimpulse des Motors umgewandelt werden können. Das verschlüsselte digitale Wort würde daher die Richtung des dem Motor zugeführten Stromes (derart, daß seine Drehrichtung gesteuert wird) und die Anzahl der Impulse enthalten, die erforderlich ist, um die vom Operator ausgewählte Drehung auszuführen.

20 Es wird weiter bevorzugt, daß der Rechner 30 in der Lage ist, beim Ansprechen auf einen Befehl des Operators bzw. der Bedienungsperson ein einziges digitales Wort zu erzeugen, welches es einer ausgewählten Seitenspositioniereinrichtung befiehlt, ihre einstellbaren Steuerflächen in eine neutrale Stellung zurückzuführen. Wiederum ist bei einer Ausführungsform der beschriebenen Vorrichtung jede Seitenpositioniereinrichtung mit drehbaren vertikal ausgerichteten Steuerflächen oder Flossen 44 versehen (siehe Fig. 6 und 7). In der neutralen Stellung der Flossen 44 ist ein Angriffswinkel von im wesentlichen Null mit Bezug auf die mittlere Längsachse der Seitenpositioniereinrichtung vorhanden, die im wesentlichen parallel zur mittleren Längsachse des Kabels 11 verläuft. Es ist beispielsweise in Betracht gezogen, daß das vom Rechner 30 erzeugte

digitale Steuerwort mit einem Bit versehen ist, welches entweder die Rückkehr der Flossen 44 in die neutrale Stellung oder irgendeine andere spezielle Drehung anzeigt, wobei die Besonderheiten dieser Drehung in weiteren Bits des 5 digitalen Wortes enthalten sind. Das verschlüsselte digitale Wort wird über einen Ausgangskanal des Rechners 30 an die Übertragungseinrichtung 34 geliefert. Die Übertragungseinrichtung 34 umfaßt einen Puffer 34A, einen Signalerzeuger 34B und einen Verstärker 34C. Der Puffer 34A enthält Register oder andere geeignete Einrichtungen, um in einer Folge jedes codierte bzw. verschlüsselte digitale Befehlswort zu speichern, welches von dem Rechner 30 geliefert wird. Ein Signal von dem Anfrager 23 zeigt an, wann die Befragung der verschiedenen Kompasse vervollständigt ist, so daß die 15 Überträgung der verschlüsselten digitalen Wörter zu den Seitenpositioniereinrichtungen beginnen kann. Signale zwischen dem Schiff 10 und den magnetischen Sensoren 12 und zwischen dem Schiff 10 und den Seitenpositioniereinrichtungen 14 müssen über das seismische Kabel 11 zu getrenn-20 ten Zeiten und während Unterbrechungen und Pausen zwischen den Kreisläufen zum Aufzeichnen seismischer Daten übertragen werden, um Übersprechung und andere Signalstörungen zu vermeiden. Beim Empfang des zweckentsprechenden Signals von dem Anfrager 23, welches das Ende der Befragung der 25 Kabelsensoren anzeigt, liefert eine Schaltung in dem Puffer 34A die digitalen Steuerwörter von den Registern des Speichers 34A in Folge zu dem Signalerzeuger 34B, der die digitalen Steuerwörter in ein verschlüsseltes Signal umwandelt, welches über die Verstärkereinrichtung 340 und über die 30 Leitungen 35 geliefert wird, welche durch die Länge des Kabels 11 hindurchgehen.

Die Steuerkomponenten jeder Seitenpositioniereinrichtung 14 sind in Fig. 2 in Form eines Blockdiagrammes repräsen-

tativ dargestellt, und sie umfassen eine Empfängereinrichtung 36, eine Entschlüsselungseinrichtung 38, eine Betätigungseinrichtung 40, eine Motoreinrichtung 42, beispielsweise einen reversiblen Gleichstrom-Schrittschaltmotor, und 5 einstellbare Steuerflächen 44. Jede Empfängereinrichtung 36 in jeder Seitenpositioniereinrichtung 14 stellt die digitalen Steuerwörter fest, die über die Drähte 35 übertragen werden, und zwar mittels einer Induktionsspule 36A oder einer anderen ähnlichen Einrichtung. Eine geeignete Schaltung 36B in der Empfängereinrichtung 36 verstärkt das festgestellte Signal, stellt das ursprüngliche digitale Steuerwort her und liefert es an eine geeignete Speichereinrichtung, beispielsweise an ein Register 38A in der Entschlüsselungseinrichtung 38. Andere, nicht dargestellte Register sind vorgesehen zusammen mit einer geeigneten Schaltung. so daß zusätzliche digitale Steuerwörter, die von dem Kabel 11 festgestellt werden, für darauffolgende Verarbeitung gespeichert werden können.

Das digitale Steuerwort in dem Register 38A wird von einer geeigneten Schaltung 38B der Entschlüsselungseinrichtung 38 geprüft, um zu bestimmen, ob das Wort zu der besonderen Seitenpositioniereinrichtung gerichtet ist. Wenn das Wort für diese Einrichtung bestimmt ist, bestimmt die Schaltung 38B in der Entschlüsselungseinrichtung 38, ob die Flossen 44 in die neutrale Stellung zurückgeführt werden sollen, oder ob irgendeine andere Drehung gewünscht wird, und sie erzeugt entsprechende Signale, die an die Betätigungseinrichtung 40 geliefert werden. Beim Ansprechen auf die von der Entschlüsselungseinrichtung 38 erzeugten Signale liefert die Betätigungseinrichtung 40 Strom in der entsprechenden Richtung und während der erforderlichen Zeitdauer an die Motoreinrichtung 42, um die befohlene Einstellung der Steuerflächen 44 auszuführen. Jede Seitenpositionier-

einrichtung 14 ist weiterhin mit einer Energiezufuhr 46 versehen, beispielsweise mit Trockenzellenbatterien, und zwar für die Betätigung der Motoreinrichtung 42 und anderer elektrischer Bauteile. Gceignete mechanische Verbindungen 43 übertragen kinetische Energie von der Motoreinrichtung 42 zu den Steuerflächen 44 für eine Einstellung, wie sie von dem Operator befohlen ist.

Fig. 6 und 7 zeigen eine Vorderansicht bzw. eine im Schnitt gehaltene Seitenprofilansicht einer Seitenpositioniereinrichtung 14 zur Verwendung mit der Erfindung. Geteilte Bünde oder Kragen 50 sind an dem seismischen Kabel 11 fest angebracht, und zwar dort, wo eine Seitenpositioniereinrichtung 14 angebracht werden soll. Jeder Bund oder Kragen 15 50 enthält einen Kanal, der einen konzentrischen Ring 52 aufnimmt. Jeder Ring 52 ist geteilt für Anbringung rund um den Kragen 50, und er wird nach der Montage durch geeignete Mittel festgelegt. Wenn er einmal festgelegt ist, ist jeder Ring frei, sich in dem Kanal seines Kragens oder Bundes 50 20 zu drehen. Haltelagerarme 54 und 56 sind mittels geeigneter Mittel an jedem Ring 52 befestigt. Jeder Haltelagerarm 54 und 56 nimmt ein erstes Rohr 58 und ein zweites Rohr 60 auf. Die Haltelagerarme 54 und 56 legen jedes Rohr 58 und 60 entlang eines Durchmessers 59 bzw. einer Durchmesser-25 achse 59 des Kabels 11 fest. Das erste Rohr 58 enthält die Empfängereinrichtung 36, die Entschlüsselungseinrichtung 38, die Betätigungseinrichtung 40 und die Motoreinrichtung 42. Das zweite Rohr 60 enthält eine Mehrzahl von Trockenzellenbatterien, die Energie über geeignete Leiter 62 zur 30 Motoreinrichtung 42 und zu elektrischen Bauteilen in dem ersten Rohr 58 liefern. Der Haltelagerarm 54 ist weiterhin in zweckentsprechender Weise derart gestaltet, daß er zwei diametral gegenüberliegende colineare Schäfte 66 eines Joches 64 aufnimmt, welches einen gebogenen mittleren Abschnitt 68 besitzt, um den Durchgang des Kabels 11
zu ermöglichen. An jedem Schaft 66 ist eine vertikal ausgerichtete Steuerfläche oder Flosse 44 befestigt. Da nur
vertikal ausgerichtete Flossen 44 vorgesehen sind, kann
5 die Einrichtung 14 nur zum Steuern der Position des Kabels
in der horizontalen Ebene verwendet werden. Jeder Ring 52
ermöglicht freie Drehung jeder Lagerarmeinrichtung 54 und
56 mit den montierten Rohren 58 und 60 und mit dem Joch 64,
wenn das Kabel 11 sich verdreht. Das Gewicht der Rohre 58
10 und 60 hält die Seitenpositioniereinrichtung 14 in der
richtigen vertikalen Ausrichtung. Wenn es gewünscht wird,
können Auftriebsmittel 72 vorgesehen sein, um eine Unterstützung dahingehend zu schaffen, die Seitenpositioniereinrichtung 14 in der vertikalen Ausrichtung zu halten und
15 auch neutrales Schwimmen zu schaffen.

Das Joch 64 und die damit verbundenen Flossen 44 werden von der Motoreinrichtung 42 innerhalb des Rohres 58 gedreht. Ein erstes Kegelzahnrad 72 ist an einer Well 73 20 eines reversiblen Gleichstrom-Schrittschaltmotors innerhalb des ersten Rohres 58 angebracht. Ein geeignetes Lager und ein geeigneter Teil (nicht dargestellt) ist in dem Ende des Rohres 58 für den Durchgang und für die Drehung der Welle 73 vorgesehen, wobei jedoch der Eintritt von Wasser verhindert ist. Ein zweites Kegelzahnrad 74 ist an 25 einem Schaft 66 des Joches 64 befestigt. Wie ersichtlich, wird durch ein Arbeiten des Motors bewirkt, daß die Zahnräder 72 und 74 sich zusammen mit dem Joch 64 drehen, an welchem das Zahnrad 74 befestigt ist. Die Haltelagerarm-30 einrichtung 54 ist weiterhin mit geeigneten Lagerteilen 78 für drehbare Halterung des Joches 64 versehen. Falls es gewünscht wird, kann eine stromlinienförmige Verkleidung 80 (mit unterbrochenen Linien dargestellt) aus Glasfasermaterial oder aus einem anderen geeigneten Material vorgesehen werden, um der Seitenpositioniereinrichtung 14
weitere Stromliniengestalt zu verleihen. Es wird hier in
Betracht gezogen, daß die Verkleidung 80 in zwei Hälften
82 und 84 vorgeschen sein kann, die aneinander und rund um
das Kabel 11 durch geeignete Mittel, wie beispielsweise
Schrauben 86, befestigt sind. Die Rohre 58 und 60 schaffen
einen Schutz für die in ihnen enthaltenen Bauteile, so daß
es nicht erforderlich ist, die Verkleidung 80 abzudichten,
wenn eine solche Verkleidung vorgesehen ist. Eine Induktionseinrichtung 36A (Fig. 2) ist in dem ersten Rohr 58
angeordnet, und sie stellt die verschlüsselten Steuersignale
fest, die von der Übertragungseinrichtung 34 über die Leiter 35 übertragen werden.

Es sind auch Mittel vorgesehen, um Signale zu erzeugen, um die Steuerflächen 44 in eine neutrale Ausrichtung im wesentlichen parallel zur mittleren Längsachse der Seitenpositioniereinrichtung 14 zurückzubringen, in welcher eine seitliche Schubkraft nicht erzeugt wird. Beispielsweise 20 sind drei wasserdichte Mikroschalter 90a, 90b und 90c an der Halteeinrichtung 54 befestigt, und sie werden von Nokkenflächen 92 an dem unteren Schaft 66 des Joches 64 aktiviert. Fig. 8 zeigt schematisch und in vergrößertem Maßstab die Mikroschalter 90a, 90b und 90c, die an der Halte-25 einrichtung 54 befestigt sind, sowie die Nockenflächen 92a, 92b und 92c an dem unteren Schaft 66 des Joches 64. Es wird in Betracht gezogen, daß jede Seitenpositioniereinrichtung 14 ursprünglich angeordnet wird derart, daß ihre Steuerflächen 44 sich in der neutralen Stellung befinden. In dieser Stellung ist der Mikroschalter 90a von der Nockenfläche 92a geschlossen, und er erzeugt ein Signal, welches an die Betätigungseinrichtung 40 geliefert wird. Wenn der Schaft 66 beim Ansprechen auf ein verschlüsseltes Befehlswort gedreht wird, und zwar aus der neutralen Stellung in

gemäß Fig. 8 Uhrzeigerrichtung oder Gegenuhrzeigerrichtung, trifft die Nockenfläche 92a entweder auf den Mikroschalter 90b oder auf den Mikroschalter 90c auf, und der betreffende Schalter erzeugt ebenfalls ein geeignetes Signal, wel-5 ches an die Betätigungseinrichtung 40 geliefert wird. Das Signal von dem Mikroschalter 90b bzw. 90c zeigt den Drehzustand (Uhrzeigerrichtung oder Gegenuhrzeigerrichtung)des Schaftes 66 gegenüber der neutralen Ausrichtung an, und es wird dazu verwendet, einen Schalter, ein Register oder eine 10 andere vergleichbare Einrichtung innerhalb der Betätigungseinrichtung 40 derart einzustellen, daß der Drehzustand angezeigt wird. Wenn der Operator bzw. die Bedienungsperson die Rückkehr der einstellbaren Steuerflächen 44 in die neutrale Stellung befielt, erzeugt die Entschlüsselungsein-15 richtung 38 ein entsprechendes Signal, welches an die Betätigungseinrichtung 40 geliefert wird. Beim Ansprechen auf das genannte Signal der Entschlüsselungseinrichtung 38 prüft eine Schaltung innerhalb der Betätigungseinrichtung 40 den Drehzustand des Schaftes 66 und liefert elektrischen 20 Strom in der entsprechenden Richtung an den Schrittschaltmotor 42, um den Schaft 66 zurück in die neutrale Stellung zu drehen. Wenn die Nockenfläche 92a wiederum an dem Mikroschalter 90b oder 90c vorbeigeht, erzeugt der betreffende Schalter wiederum ein Signal, welches dazu verwendet wird, den Schalter, das Register oder die andere Einrichtung in 25 der Betätigungseinrichtung 40 zurückzustellen, die dazu verwendet wird, den Drehzustand des Schaftes 66 anzuzeigen. Die Schaltung innerhalb der Betätigungseinrichtung 40 spricht auch auf das Signal an, welches von dem Schalter 30 90a erzeugt wird, wenn die Nockenfläche 92a mit ihm in Berührung tritt, und er bewirkt dann, daß die Lieferung elektrischer Energie an den Motor 42 beendet wird.

Andere Nockenflächen 92b und 92c sind als Drehanschläge

vorgesehen. Die Nockenfläche 92b oder die Nockenfläche 92c tritt mit dem Schalter 90b bzw. 90c in Berührung, wenn die Grenze der Drehung des Schaftes 66 erreicht ist. Eine geeignete Schaltung in der Betätigungseinrichtung 40 spricht auf das Signal von dem Schalter 90b oder 90c und auf den Zustand der Schalter, der Register oder dergleichen, welche den Drehzustand des Schaftes 66 anzeigen, an, um die Stromzufuhr zu dem Motor 42 zu beenden, bevor der Motor oder die mechanischen Verbindungen beschädigt werden oder das Kabel 11 übermäßigen Zugkräften unterworfen wird.

Andere Seitenpositioniereinrichtungen bzw. andere Ausführungen von ihnen sind in den genannten US-Patentschriften 3 605 674, 4 033 278, 3 953 827 und 4 231 111 beschrieben.

- 15 Es ist zu verstehen, daß im Rahmen der Erfindung Abänderungen vorgenommen werden können, wobei beispielsweise
 eine Entschlüsselungseinrichtung in jeder Seitenpositioniereinrichtung vorgesehen ist, damit sie bei einer Ausführungsform gemäß der Erfindung richtig funktionieren.
- 20 Es ist weiterhin zu verstehen, daß jede Einrichtung mit einstellbaren horizontalen Steuerflächen versehen sein kann für Tiefensteuerung und/oder mit Flächen für zusammengesetzte Bewegung, wie sie in der US-PS 4 033 278 beschrieben sind und die in einer Weise gesteuert werden 25 können, die der oben beschriebenen Weise ähnlich ist.

Es ist weiterhin zu verstehen, daß die Einstellungen der Seitenpositioniereinrichtungen, um das Kabel geradlinig entlang eines Kurses oder einer Linie von dem Schlepp-schiff einzustellen oder zu positionieren, durch in geeigneter Weise aufgebaute und programmierte Rechner automatisch erhalten werden können.

Im Rahmen der Erfindung sind verschiedene Änderungen mög-

lich. Beispielsweise können anstelle der Magnetkompasse in den Kabelsensoren 12 andere Sensoren verwendet werden, wie verschlüsselnde Kreiselkompasse oder Spannungsmeßgeräte.

Weiterhin können verschiedene Arten von Aufzeichnungs- und Anzeigeausrüstungen auf dem Schiff verwendet werden, um die Position des Kabels anzuzeigen. Außerdem können verschiedene Arten von Operatorstationen verwendet werden für die Ausgabe und die Eingabe von Steuersignalen, die Lage von Hindernissen und dergleichen. Weiterhin können andere Arten von Motoren und/oder mechanischen Verbindungen in den Seitenpositioniereinrichtungen für die Einstellung der Steuerflächen vorgesehen sein.

Nummer: Int. Cl.³: Anmeldetag: Offenlegungstag: 31 51 098 G 05 D 3/00 23. Dezember 1981 19. August 1982

korrigierter
Kurs
$$\begin{array}{c|cccc}
\chi = - & \chi = + \\
\gamma = + & \gamma = + \\
\hline
\chi = - & \chi = + \\
\gamma = - & \gamma = -
\end{array}$$

Fig. 4

Fig. 5

Fig. 3

Fig. 6

W. 44 116/81

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потпер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.