Problem 1. The non-inverting amplifier shown below uses a non-ideal op amp with a finite open-loop gain.

- (A) Calculate the *ideal gain* if the op amp has $A \to \infty$, $R_1 = 1k\Omega$ and $R_2 = 9k\Omega$.
- (B) Calculate the actual gain for the values in (A) if the gain is $A = 100 \,\mathrm{V/V}$.
- (C) Suppose the op amp has a finite open-loop gain of A = 1000 V/V, and it is desired to have an actual circuit gain of G = 10 V/V. What is the ratio R_2/R_1 that will achieve the desired gain?
- (D) Lastly, if the open loop gain varies from 100 to $1000\,\mathrm{V/V}$, and R_1 is held constant at $1\mathrm{k}\Omega$, what is the range of adjustments needed in R_2 to maintain an actual gain of $G=10\,\mathrm{V/V}$?

- Problem 2. The transresistance amplifier shown below is to be used in a sensor interface. The resistor R_s is an unknown resistance, which will be measured by the following method:
 - (i) Apply a known potential V_{ref} to the op amp's non-inverting input terminal. Due to the virtual short effect, the same potential (or nearly the same) should then appear at the inverting input terminal.
 - (ii) Measure the potential V_o appearing at the op amp's output terminal.
 - (iii) Based on V_o , estimate the value of the current flowing through R_s . The resistance is then

$$R_s \approx V_s/I_s$$

.

- (A) If the op amp is ideal, obtain expressions for these items: V_s , I_s , and V_o . For each item, the left-hand side of your expression should only include R_s , V_{ref} and/or R_F . Finally, obtain an expression for R_s .
- (B) Repeat (A) for the case where the op amp has finite gain equal to A V/V. This time, the left-hand side of each expression should only include R_s , V_{ref} , R_F and/or A.
- (C) Suppose the op amp is ideal, $R_s = 1k\Omega$, $R_F = 2k\Omega$, and $V_{\text{ref}} = 1V$. What are the values of V_s , I_s and V_o ?
- (D) Repeat (C) for an op amp with finite gain $A = 100 \,\text{V/V}$

.

- (E) For the circuit described in (C) and (D), suppose R_s can vary between 500 Ω and 5k Ω . What is the corresponding range of variation that may be seen in V_o ?
- (F) Estimate the value of R_s if $V_o = 1.5 \text{V}$, $R_F = 10 \text{k}\Omega$, $V_{\text{ref}} = 1 \text{V}$ and $A \to \infty$.

Problem 3. The difference amplifier shown below uses an op amp, but suffers from mismatch in its resistor values. By design, $R_2 = R_4 = 10 \text{k}\Omega$, and $R_1 = R_3 = 1 \text{k}\Omega$. In reality, all resistors vary within a $\pm 5\%$ tolerance.

For this circuit, recall that there are two signal paths, called the *inverting* path and the *non-inverting* path. The goal is to balance the gains along these signal paths:

inverting path :
$$-G_i = -\frac{R_2}{R_1}$$

non – inverting path : $G_{ni} = \left(1 + \frac{R_2}{R_1}\right) \left(\frac{R_4}{R_3 + R_4}\right)$

Notice here that G_i is defined as a positive number. Based on these definitions, you can show that the differential gain and the common-mode gain are:

$$A_d = \frac{1}{2} (G_i + G_{ni})$$
$$A_{CM} = |G_i - G_{ni}|$$

- (A) If all the resistors were *perfectly matched* to their specified values, what should be the circuit's differential gain, common-mode gain and CMRR?
- (B) Suppose all resistors are mismatched from their specified values as follows:

$$R_1$$
: 5% too large R_2 : 5% too small R_3 : 5% too small R_4 : 5% too large

In this case, calculate the resistor values, the differential gain, the common-mode gain and the CMRR in dB.

Problem 4. A non-inverting op amp configuration is shown below. Also shown are current and voltage sources inserted to model the op amp's non-ideal bias current and offset voltage.

- (A) For this problem, suppose that $V_{\text{ofs}} = 0$, $I_{\text{bias}} = 20 \mu\text{A}$, and $R_1 = 10 \text{k}\Omega$. The op amp's supply rails are at $\pm 5 \text{V}$, and the op amp has infinite open-loop gain. If the input signal is a sinusoid with peak-to-peak amplitude 10 mV, what is the **maximum gain** (i.e. the maximum value for R_2) that can be allowed without saturating the op amp?
- (B) For this problem, suppose that $I_{\rm bias}\approx 0$, $R_2=5{\rm k}\Omega$, $R_1=1{\rm k}\Omega$ and the op amp is otherwise ideal. If $V_{\rm ofs}$ varies in the range of $\pm 10{\rm mV}$, what is the range of DC offset voltages that may appear at $V_{\rm OUT}$?