1. Pojednostavnjeni model računala (CISC, 1975)

Podsjetimo se na tijek izvođenja programa u von Neumannovom modelu računala:

- pribavljanje instrukcije:
 - CU adresira memoriju programskim brojilom
 - memorija šalje instrukciju (npr. ADD \$100)
 - CU sprema instrukciju u IR, uvećava PC

- izvođenje tipične instrukcije:
 - CU pribavlja podatak koji se smješta u ALU; adresu podatka definira IR
 - ALU izvodi operaciju nad podatkom i akumulatorom; operaciju definira IR
 - rezultat operacije smješta se natrag u akumulator

Računalo se tijekom izvođenja programa uvijek nalazi u jednoj od dvije moguće faze (ili stanja)

PRIBAVI – iz memorije se pribavlja sljedeća instrukcija

IZVRŠI – pribavljena instrukcija se izvršava

Tipični obrasci izvršavanja:

- memorijski operand se dohvaća i obrađuje
- akumulator se sprema u memoriju
- memorijski operand se sprema u PC

[Ribarić]

PRIBAVI:

1. korak: $MEM(PC) \rightarrow IR$

2. korak: $PC + 1 \rightarrow PC$

3. korak: Dekodiranje operacijskog

koda instrukcije

IZVRŠI: 4. korak: (npr. pročitaj tj. dohvati operand iz memorije)

5. korak: (npr. izvedi aritmetičku operaciju nad jednim ili dvama operandima)

6. korak: ...

7. korak: ...

Pojednostavnjeni model procesora (CU + ALU) (CISC, 1970-1980, 10^4 tranzistora)

Komponente modela

- Akumulator A
- Programsko brojilo PC
- Instrukcijski registar IR
- Brojilo podataka DC
- Privremeni registar PR
- Statusni registar (Registar stanja)
- ALU
- (Skup registara opće namjene)
- Interna sabirnica
- Upravljačka jedinica

Primjer izvođenja programa

- Program samo od jedne instrukcije INC \$05FF
- ekvivalent u C-u: ++i;

Početni uvjeti

S. Ribarić, Arhitektura računala 2

Stanje nakon pribavljanja operacijskog koda instrukcije

Operacijski kod

7C = 01111100

se tumači kao: Povećaj za 1 vrijednost operanda čija je adresa sadržana u dva bajta koja slijede ovom operacijskom kodu.

Stanje nakon pribavljanja značajnijeg bajta adrese operanda

Pazi: Faza Pribavi još uvijek traje!

Stanje nakon pribavljanja manje značajnog bajta adrese operanda

Faza Pribavi je završena!

Jednoadresni format instrukcije – kao i kod von Neumannovog računala (akumulatorska instrukcijska arhitektura – očuvana do danas!)

Stanje nakon dohvata operanda (faza IZVRŠI)

S. Ribarić, Arhitektura računala 2

Stanje nakon povećanja operanda za jedan (faza IZVRŠI)

S. Ribarić, Arhitektura računala 2

Stanje na vanjskim sabirnicama

Prvi period signala vremenskog vođenja

Drugi period signala vremenskog vođenja

Treći period signala vremenskog vođenja

Četvrti period signala vremenskog vođenja

Peti period signala vremenskog vođenja

Pozor:

** - Označava stanje visoke impedancije /treće stanje/

Šesti period vremenskog vođenja

Motorola MC 6800

(izravni prošireni način adresiranja)

	OP	?	#
INC	7C	6	3

Zahtijeva 6 perioda signala vremenskog vođenja!

Naš model obavlja ovu instrukciju također za 6 perioda!

Za računalo temeljeno na pojednostavljenom modelu procesora nacrtati stanje na sabirnicama za instrukciju

STA \$07

(pohrani sadržaj akumulatora A na memorijsku lokaciju 0007 – izravni kratki način adresiranja;adresiranje nulte stranice).

Operacijski kod instrukcije je 97(heksadekadski) a instrukcija je pohranjena u memoriji na lokacijama 0103 i 0104 (heksadekadski).

Odrediti potreban broj perioda signala vremenskog vođenja i usporediti ga s onim koji se zahtijeva za MC 6800 (4 perioda).

S. Ribarić, Arhitektura računala 2

Stanje na sabirnicama za instrukciju STA \$07

Motorola MC 6800

(izravni način adresiranja)

	OP	?	#
STA A	97	4	2

Zahtijeva 4 perioda signala vremenskog vođenja!

Naš model obavlja ovu instrukciju tijekom 3 perioda.

Razlozi?

Nacrtati stanje na sabirnicama za programski odsječak prikazan na slici. Odrediti stanja registara na početku, tijekom i nakon izvođenja programskog odsječka.

Riješiti prethodni zadatak pod pretpostavkom da procesor koristi obrnuti poredak bajtova u memorijskoj riječi (little endian, x86).

Strojnu instrukciju inc \$A0B0 nadomjestiti programskim odsječkom (tri instrukcije) za registarski orijentiran procesor koji operand prvo smješta u registar opće namjene, zatim sadržaj registra povećava za jedan te, napokon, tako uvećan sadržaj registra pohranjuje natrag u memoriju. Za tako napisani programski odsječak nacrtajte stanje na sabirnicama tijekom njegovog izvođenja. Odredite broj potrebnih perioda signala vremenskog vođenja i usporedite ga s onim koji je potreban za instrukciju i nc \$A0B0.

(Potrebne podatke operacijske kodove instrukcija, početnu adresu programskog odsječka te vrijednost operanda izaberite sami.)

S. Ribarić, Arhitektura računala 2

Signali vremenskog vođenja Φ 1 i Φ2

Stanje na sabirnicama za STA A \$010F (MC 6800)

S. Ribarić, Arhitektura računala 2

i386 (1986-2007), 3*10^6 tranzistora, Paging Unit Segmentation Unit **Bus Control** 132 izvoda 32 34 HOLD, INTR, NMI, 3-Input Request Effective Address Bus Adder ERROR, BUSY, Adder Prioritizer RESET, HLDA 32 32 Discriptor Page Effective Address Bus Registers Cache Control and Limit and Protection Attribute Attribute **Test Unit** PLA PLA Address BE0# - BE3#. A2 - A31 Driver M/IO#, D/C#, Pipeline / W/R#, LOCK#, Internal Control Bus **Bus Size** ADS#, NA#, Control Code Fetch / BS16#, READY# 32 Barrel Shifter, Multiplexer / D0 - D31 Adder Transceivers Status Decode and Flags Sequencing Multiply / Prefetcher / Instruction Divide Decoder **Limit Checker** Code Stream 3-Decoded Control 16 Byte Code Register File Instruction ROM Queue Queue **ALU Control** 32 -ALU Instruction Instruction Prefetch Predecode Control 32 **Dedicated ALU Bus** PLA: Programmable Logic Array