如何用算法高效寻找素数?

原创: labuladong labuladong 9月27日

预计阅读时间: 5 分钟

素数的定义很简单,如果一个数如果只能被 1 和它本身整除,那么这个数就是素数。

不要觉得素数的定义简单,恐怕没多少人真的能把素数相关的算法写得高效。本文就主要聊这样一个函数:

```
// 返回区间 [2, n) 中有几个素数 int countPrimes(int n)

// 比如 countPrimes(10) 返回 4

// 因为 2,3,5,7 是素数
```

你会如何写这个函数? 当然可以这样写:

这样写的话时间复杂度 O(n²),问题很大。首先你用 isPrime 函数来辅助的思路就不够高效;而且就算你要用 isPrime 函数,这样实现也是存在计算冗余的。

先来简单说下**如果你要判断一个数是不是素数,应该如何写算法**。只需稍微修改一下上面的 **isPrime** 代码中的 for 循环条件:

换句话说, i 不需要遍历到 n , 而只需要到 sqrt(n) 即可。为什么呢,我们举个例子,假设 n=12 。

```
12 = 2 × 6

12 = 3 × 4

12 = sqrt(12) × sqrt(12)

12 = 4 × 3

12 = 6 × 2
```

可以看到,后两个乘积就是前面两个反过来,反转的分界点就在 sqrt(n)。

换句话说,如果在 [2,sqrt(n)] 这个区间之内没有发现可整除因子,就可以直接断定 n 是素数了,因为在区间 [sqrt(n),n] 也一定不会发现可整除因子。

这样, isPrime 函数的时间复杂度降为了 O(sqrt(N)), **但是我们实现countPrimes 函数其实并不需要这个函数**,以上只是希望读者明白 sqrt(n)的含义,因为等会还会用到。

高效实现 countPrimes

高效解决这个问题的核心思路是和上面的常规思路反着来:

首先从 2 开始, 我们知道 2 是一个素数, 那么 $2 \times 2 = 4$, $3 \times 2 = 6$, $4 \times 2 = 8$... 都不可能是素数了。

然后我们发现 3 也是素数,那么 $3 \times 2 = 6$, $3 \times 3 = 9$, $3 \times 4 = 12$...也都不可能是素数了。

看到这里,你是否有点明白这个排除法的逻辑了呢?先看我们的第一版代码:

```
int countPrimes(int n) {
   boolean[] isPrim = new boolean[n];
```

	2	3	4	5	6	7	8	9	10	Prime numbers
11	12	13	14	15	16	17	18	19	20	
21	22	23	24	25	26	27	28	29	30	
31	32	33	34	35	36	37	38	39	40	
41	42	43	44	45	46	47	48	49	50	
51	52	53	54	55	56	57	58	59	60	
61	62	63	64	65	66	67	68	69	70	
71	72	73	74	75	76	77	78	79	80	
81	82	83	84	85	86	87	88	89	90	
91	92	93	94	95	96	97	98	99	100	
101	102	103	104	105	106	107	108	109	110	
111	112	113	114	115	116	117	118	119	120	

图片来自 Wikimedia

如果上面这段代码你能够理解,那么你已经掌握了整体思路,但是还有两个细微的地方可以优化。

首先,回想刚才判断一个数是否是素数的 isPrime 函数,由于因子的对称性,其中的 for 循环只需要遍历 [2,sqrt(n)] 就够了。这里也是类似的,我们**外层**的 for 循环也只需要遍历到 sqrt(n):

```
for (int i = 2; i * i < n; i++)
   if (isPrim[i])
   ...</pre>
```

除此之外, 很难注意到内层的 for 循环也可以优化。我们之前的做法是:

```
for (int j = 2 * i; j < n; j += i)
    isPrim[j] = false;</pre>
```

这样可以把 i 的整数倍都标记为 false , 但是仍然存在计算冗余。

比如 $\mathbf{i} = 4$ 时算法会标记 $4 \times 2 = 8$, $4 \times 3 = 12$ 等等数字, 但是 8 和 12 已经被 $\mathbf{i} = 2$ 和 $\mathbf{i} = 3$ 的 2×4 和 3×4 标记过了。

我们可以稍微优化一下,<u>让 j 从 i 的平方开始遍历</u>,而不是从 2 * i 开始:

```
for (int j = i * i; j < n; j += i)
    isPrim[j] = false;</pre>
```

这样,素数计数的算法就高效实现了。其实这个算法有一个名字,叫做Sieve of Eratosthenes。看下完整的最终代码:

该算法的时间复杂度比较难算,显然时间跟这个嵌套 for 循环有关,其操作数应该是:

$$n/2 + n/3 + n/5 + n/7 + ...$$

= $n \times (1/2 + 1/3 + 1/5 + 1/7...)$

括号中是素数的倒数和。其最终结果是 O(N * loglogN), 有兴趣的读者可以查一下该算法的时间复杂度证明。

以上就是素数算法相关的全部内容。怎么样,是不是看似简单的问题却有不少细节可以打磨呀?

历史文章:

动态规划之 KMP 算法详解

这个问题不简单:寻找缺失元素如何高效对有序数组/链表去重?

点击这里进入留言板

编程,算法,生活

致力于把问题讲清楚

扫码关注公众号: labuladong

VO

反向思考方能出其不意!