Das Geiger-Müller-Zählrohr

Leander Flottau leander.flottau@tu-dortmund.de

 ${\it Jan~Gaschina} \\ {\it jan.gaschina@tu-dortmund.de}$

Durchführung: 19.01.2021 Abgabe: 26.01.2021

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	3
2	Theorie	3
	2.1 Aufbau	3
	2.2 Funktionsweise	3
	2.3 Tot- und Erholungszeit	4
	2.4 Nachentladungen	4
	2.5 Charakeristik	4
	2.6 Ansprechrate	4
	2.7 Zählrohrstrom	5
	2.8 Zwei Quellen Methode	5
3	Versuchsdurchführung	5
	3.1 Versuchsaufbau	5
	3.2 Messung der Charakteristik	6
	3.3 Messung der Totzeit	
	3.3.1 Oszillograph	
	3.3.2 Messung mithilfe der zwei-Quellen-Methode	6
4	Messwerte	7
	4.1 Teilchenzahlen	8
	4.2 Messwerte Totzeit	10
	4.3 Messwerte Strom	10
5	Fehler	11
6	Auswertung	11
_	6.1 Zählrohr Charakterristik	11
	6.2 Totzeit des Zählrohres	
	6.2.1 Totzeitbestimmung mit dem Oszilloskop	
	6.2.2 Totzeitbestimmung mit der Zwei-Quellen-Methode	
	6.3 Ladung pro einfallendem Teilchen	
7	Diskussion	14
8	Literatur	15
9	Anhang	15
_	: ::::::::::::	

1 Zielsetzung

In diesem Experiment sollen Strahlungsintensitäte mithilfe eines Geiger-Müller-Zählrohres bestimmt werden. Aus diesen lassen sich Rückschlüsse auf die Kenndaten des Zählrohres ziehen.

2 Theorie

2.1 Aufbau

Zählrohre lösen einen elektrischen impuls aus, wenn sie ionisierender Strahlung ausgesetzt sind, durch deren Messung sich die Strahlungsintensität bestimmen lässt. Ein Zählrohr im Allgemeinen besteht aus einer dünnen drahtförmigen Anode des Radius r_a und einer Zylinderförmigen Kathode mit Radius r_b , deren Zwischenraum mit einem Gas gefüllt ist. Diese bilden durch Anlegen einer äußeren Spannung U einen zylindrischen Kondensator mit einem radialsymmetrischen elektrischen Feld der Feldstärke

$$E = \frac{U}{rln(r_b/r_a)} \tag{1}$$

im Abstand r von der zentralen Achse.

2.2 Funktionsweise

Wenn Strahlung durch das Zählrohrfenster einfällt, wird das Strahlungsteilchen Atome im Gas ionisieren. Da für eine Ionisation in der Regel ca.26eV Energie aufgebracht werden muss, und die Teilchen energie deutlich Größer ist, können mehrere ionisationen erfolgen. Das nachfolgende Verhalten der freien Elektronen variirt qualitativ stark in Abhängigkeit von der angelegten Spannung.

Im Bereich geringer Spannung ist die Beschleunigung der Elektronen so gering, dass sie mit den Ionen rekombinieren, wodurch nur ein geringer Anteil der Elektronen die Anode erreicht.

Wenn die Spannung ausreichend erhöht wird, ist keine Rekombination der Elektronen mehr möglich, sodass alle freien Elektronen die Anode erreichen. Der resultierende Strom ist proportional zu Intensität und Energie der einfallenden Strahlung. Ein solches Zählrohr wird Ionisationsationskammer genannt, und funktioniert aufgrund der geringen Stärke des Ionisationsstroms nur bei Strahlung hoher Intensität.

Bei weiterer Erhöhung der Kondensatorspannung nehmen die freien Elektronen durch das elektrische Feld genug Energie auf um ihrerseits wiederum Atome zu Ionisieren und dadurch entlang des Feldes eine sogenannte Townsend-Lawine auszulösen. Dies führt zu einem messbaren Ladungsimpul. Die gesammelte Ladung Q ist proportional zur Strahlungsenergie, weshalb dieser Bereich als Proportionalitätsbereich bezeichnet wird. Im letzten und zugleich höchsten praktikablen Spannungsbereich ist die Energie der Elektronen so groß, dass sich die Lawinen durch UV-Quanten nicht nur entlang des Feldes, sondern im gesamten Zählrohr ausbreiten. Der resultierende Spannungsstoß lässt keine

Rückschlüsse mehr auf die ursprüngliche Teilchenergie zu, allerdings werden bereits sehr geringe Strahlungsintensitäten registriert. Zählrohre, welche in diesem Bereich arbeiten, werden Geiger-Müller-Zählrohr genannt.

2.3 Tot- und Erholungszeit

Die positiv geladenen Ionen, die bei Strahlungseinfall entstehen, bewegen sich aufgrund der hohen Masse deutlich langsamer zur Kathode. Sie erzeugen für eine begrentzte Zeit T eine positive Raumladung, die dem äußeren elektrischen Feld entgegenwirkt. Da in dieser Zeit die elektrische Feldstärke in drahtnähe sehr gering ist, können keine Elektronen-lawinen, und somit keine Impulse ausgelöst werden, weshalb diese Zeit als Totzeit bezeichnet wird, in der keine Strahlung registriert wird. Auf die Totzeit folgt ein Zeitraum in der sich die Feldstärke mit Abwandern der positiven Ladungsträger wieder aufbaut. Erst nach Abschluss dieser Erholungszeit T_e haben ausgelöste Ladungsimpulse wieder ihre ursprüngliche Höhe.

2.4 Nachentladungen

Wenn die Ionen den Zählrohrmantel erreichen, sind sie durch ihre hohe Energie in der Lage, Elektronen aus dem Metall abzulösen. Diese freien Elektronen sind in der Lage nach beschleunigung durch das elektrische Feld selbst ionisationsakte durchzuführen und eine Elektronenlawine auszulösen. Diese Nachentladungen lösen Impulse aus, die ionisierende Strahlung vortäuschen und dadurch Intensitätsmessungen verfälschen können. Daher werden sie durch Zusatz von Alkoholdämpfen zum Zählrohrgas größtenteils unterbunden. Die Alkoholmoleküle werden ionisiert und ihre Energie wird durch Anregung von Schwingungen verbraucht, sodass keine Nachentladungen entstehen.

2.5 Charakeristik

Jedes Zählrohr besitzt eine bestimmte Charakteristik, die die detektierte Teilchenzahl in Abhängigkeit von der angelegten Spannung beschreibt (bei konstanter Strahlungsintensität). Ab dem Spannungswert U_e kann das Zählrohr akkurat arbeiten. An diesen Wert schließt sich ein Spannungsintervall an in dem das Zählrohr arbeitet, und das die Form eines "Plateausännimmt. Bei einem idealen Zählrohr weist das Plateau eine perfekte ebenheit, also keinerlei Steigung auf, es wird also unabhängig von der angelegten Spannung der gleich Teilchenwert registriert. Im realen Fall hat das Plateau immer eine leichte Steigung, da höhere Spannungswerte öfter zu vereinzelten Nachentladungen führen. Wenn die Spannung über den optimalen Arbeitsbereich hinaus erhöht wird, führen die Nachentladungen zu einer Dauerentladung, die das Zählrohr früher oder später zerstört.

2.6 Ansprechrate

Ein weiterer essentieller Kennnwert für Geiger-Müller-Zählrohre ist die sogenannte Ansprechrate, also die Wahrscheinlichkeit, mit der das Zählrohr auf Strahlung einer bestimmten Form reagiert. α und β -Strahlung haben ein so hohes Ionisationsvermögen, dass das

Zählrohr sie in nahezu 100% der Fälle registriert. Um sicherzugehen, dass die Strahlung das Zählrohrgas erreicht, wird für das Zählrohrfenster extrem dünne Mylar-Folie mit geringer Dichte verwendet, sodass selbst α -Teilchen die Abschirmung durchdringen können. Im Gegensatz zu α bzw. β -Strahlung interagieren hochenergetische γ -Quanten nur äußerst limmitiert mit Materie. Daher liegt die Ansprechrate für diese Form radioaktiver Strahlung nur bei ca. 1%.

2.7 Zählrohrstrom

Mithilfe des mittleren Zählrohrstroms I lässt sich die Zahl der freigesetzten Ladungen pro eingefallenen Teilchen

$$Z = \frac{I}{e_0 N} \tag{2}$$

berechnen.

2.8 Zwei Quellen Methode

Aufgrund der Totzeit T des Zählrohres ist die gemessene Zählrate N_r immer geringer als die Zahl der tatsächlich eingetroffenen Teilchen N_w . Da in der Zeit t $N_r t$ Teilchen registriert werden, ist das Zählrohr für die Zeit $TN_r t$ unempfindlich, und misst nur für $t - TN_r t$. Daraus ergibt sich für die reale Meßrate:

$$N_w = \frac{Impulsrate}{Mezeit} = \frac{N_r t}{(1 - TN_r)t} = \frac{N_r}{1 - TN_r}$$
 (3)

Basierend darauf kann die Totzeit bestimmt werden. Wenn zwei Strahlenquellen zusammen und jeweils getrennt gemessen werden, ist die Zählrate beider Quellen gemeinsam kleiner als die Summe der einzelnen Zählraten ($N_{1+2} < N_1 + N_2$). Da für die realen Zählraten jedoch $N_{w1+2} = N_{w1} + N_{w2}$ gelten muss, ergibt sich aus (3)

$$\frac{N_{1+2}}{1 - TN_{1+2}} = \frac{N_1}{1 - TN_1} - \frac{N_2}{1 - TN_2} \tag{4}$$

Daraus lässt sich bei bekannten Zählraten die Totzeit gemäß

$$T \approx \frac{N_1 + N_2 - N_{1+2}}{2N_1 N_2} \tag{5}$$

berchnen. Hier wurde die Näherung $(TN_i)^2 \ll 1$ (mit i=1,2,1+2) angenommen.

3 Versuchsdurchführung

3.1 Versuchsaufbau

Für den Versuch wurde die Anordung gemäß Abbildung 1 verwendet. Die Ladung des Zählrohrdrahtes löst am Widerstand einen Spannungsimpuls aus, der am Kondensator entkoppelt wird. Anschließend wird der Impuls verstärkt und am Zähler registriert oder an einem Oszillographen sichtbar gemacht. Die β -Strahlen Quelle wurde derart auf das Zählrohr gerichtet, dass die Zählrate 100imp/s nicht übersteigt, um Abweichungen aufgrund der vergleichsweise hohen Totzeit eines Geiger-Müller-Zählrohres zu vermeiden.

Abbildung 1: Pro einfallendem Teilchen ausgelöste Ladung

3.2 Messung der Charakteristik

Zur Messung der Charakteristik wurde die Spannung in Intervallen von 10V erhöht, und die Zahl der Impulse pro 60s gemessen. Diese Zeitspanne wurde gewählt, um zu gewährleisten, dass die Zahl der Impulse in der Größenordnung N=10000 liegt, damit der Messfehler $\Delta N=\sqrt{N}$ ca. 1% oder geringer ist. Außerdem wurde die Zählrohrspannung in Abständen von $\Delta U=50V$ gemessen.

3.3 Messung der Totzeit

3.3.1 Oszillograph

Die Totzeit kann, wenn auch nur ungenau, bestimmt werden, indem von einem Oszillographen die Zeitspanne zwischen dem ursprünglichen Impuls und dem ersten nachfolgenden Impuls bei bekannter Ablenkgeschwindigkeit des Kathodenstrahls agelesen wird.

3.3.2 Messung mithilfe der zwei-Quellen-Methode

Um eine Totzeitkorrektur zur erhalten wurde die Impulsrate erhöht indem der Abstand zum Zählrohr verringert wurde. Anschließend wurde wie in Abbildung 2 zunächst über

120s die Zählrate der ersten Quelle gemessen, anschließend wurde eine zweite Quelle hinzugefügt und zuletzt die erste Quelle entfernt und jeweils über die gleiche Zeitspanne gemessen.

Abbildung 2: Pro einfallendem Teilchen ausgelöste Ladung

4 Messwerte

In diesem Kapitel sind alle Messwerte und deren Umrechnungen aufgeführt. Die Originalmesswerte sind im Anhang Abschnitt 9 zu finden.

4.1 Teilchenzahlen

In der nachfolgenden Tabelle $\ref{lem:condition}$ sind die Teilchenzahlen die pro Zeitintervall von $t=60\,\mathrm{s}$ im Zählrohr registirert wurden aufgeführt.

Tabelle 1: Gemessene Impulse pro Zeitintervall in Abhängingkeit von der Spannung

U[V]	$N[{ m Imp}]$
320	9672
330	9689
340	9580
350	9837
360	9886
370	10041
380	9996
390	9943
400	9995
410	9980
420	9986
430	9960
440	10219
450	10264
460	10174
470	10035
480	10350
490	10 290
500	10 151
510	10 110
520	10 255
530	10 151
540	10 351
550	10 184
560	10 137
570	10 186
580	10 171
590	10 171
600	10 253
$610 \\ 620$	10 368 10 365
$630 \\ 640$	10224 10338
650	10 333
660	10 495
670	10 407
680	10939
690	11 159
700	11 547
100	11 941

4.2 Messwerte Totzeit

Nachfolgend sind die Messwerte zur errechnung der Totzeit nach der Zwei-Quellen-Mathode dargestellt.

$$\begin{split} N_1 &= 96041 \frac{Imp}{120s} \\ N_2 &= 76518 \frac{Imp}{120s} \\ N_{1+2} &= 158479 \frac{Imp}{120s} \end{split}$$

4.3 Messwerte Strom

Alle fünf Minuten oder alle 50 Volt wurde zusätzlich zu Spannung und Teilchenzahl noch der Wert für den Strom notiert. Diese Werte sind in der nachfolgenden Tabelle Tabelle ?? dargestellt. Das verwendete Messgerät besitzt eine ungenauigkeit von $\Delta I = \pm 0,05A$

Tabelle 2: Messwerte des Stromes

U[V]	$I[\mu A]$
350	0.3 ± 0.05
400	0.4 ± 0.05
450	0.7 ± 0.05
500	0.8 ± 0.05
550	1.0 ± 0.05
600	1.3 ± 0.05
650	1.4 ± 0.05
700	1.8 ± 0.05

5 Fehler

Der Mittelwert:

$$\bar{x} = \frac{1}{n} \sum_{i=0} x_i \tag{6}$$

Die Standardabweichung:

$$\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}} \tag{7}$$

Der Fehler des Mittelwertes:

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \tag{8}$$

Die Poissonverteilung:

$$\Delta N = \sqrt{N} \tag{9}$$

Die Gaußsche Fehlerfortpflanzung:

$$\sigma_x = \sqrt{(\frac{\partial f}{\partial x_1})^2 \sigma_{x_1}^2 + (\frac{\partial f}{\partial x_2})^2 \sigma_{x_2}^2 + \dots + (\frac{\partial f}{\partial x_n})^2 \sigma_{x_n}^2}$$
 (10)

6 Auswertung

In diesem Kapitel werden die aufgenommenen Messwerte ausgewertet.

6.1 Zählrohr Charakterristik

In diesem Abschnitt wird die sogenannte Charakeristik des Geiger-Müller-Zählrohres ermittelt. Dazu wird der Abstand der Strahlungsquelle so gewählt, das die Impulsrate bei etwa 10000Imp/min liegt um eine zu große Ungenauigkeit durch Totzeiten zu vermeiden. Da die Messwerte poissonverteilt sind wird der Fehler über Gleichung 9 Um die Plateau-Steigung zu ermittlen wurde mittels linearer Regression ein Polynom ersten Grades der Form f(x) = ax + b durch die Messpunkte gelegt:

$$f(x) = (1.215 \pm 0.256)x + (9567.924 \pm 125.414) \rightarrow D_f = \{x \in \mathbb{R} | 360 \leq x \leq 620\}$$

Das Plateau hat eine Länge von etwa 260 V im Bereich von 360 V bis 620 V und eine Steigung von $(1,215\pm0,256)$ $\frac{\%}{100}$.

Abbildung 3: Teilchenzahlen im Geiger-Müller-Zählrohr

6.2 Totzeit des Zählrohres

An dieser Stelle wird zunächst mithilfe eines Oszilloskopes die Totzeit des Geiger-Müller-Zählrohres abgeschätzt und anschließend mit der Zwei-Quellen-Methode genauer vermessen bzw. abgeschätzt.

6.2.1 Totzeitbestimmung mit dem Oszilloskop

In Abbildung 4 ist die Bildröhre eines Oszilloskopes zu sehen. Die Totzeit ist der Raum zwischen den ersten beiden Signalen. Da das Oszilloskop auf 100µs/DIV eingestellt ist und die beiden Signale innerhalb einer Unterteilung der DIV liegen muss die Totzeit T < 20s sein. Da der Signalabstand sehr klein ist wird die Totzeit auf $T \approx 2s$ geschätzt.

Abbildung 4: Signal am Geiger-Müller-Zählrohr 100µs/DIV

6.2.2 Totzeitbestimmung mit der Zwei-Quellen-Methode

Die Totzeit lässt sich mit der Näherungsformel Gleichung 5 aus den Messwerten Unterabschnitt 4.2 für $N_1,\,N_2$ und N_{1+2} sofort ermittlen, es folgt also:

$$T = (0.96 \pm 0.04)s$$

Der entsprechende Fehler wurde mit der Gaußschen-Fehlerfortpflanzung Gleichung 10 ermittelt. Dazu wurden folgende Ableitungen verwendet:

$$\frac{\partial T}{\partial N_1} = \frac{c - b}{2ba^2}$$

$$\tfrac{\partial T}{\partial N_2} = \frac{c-a}{2ab^2}$$

$$\frac{\partial T}{\partial N_{1+2}} = -\frac{1}{2ab}$$

6.3 Ladung pro einfallendem Teilchen

Im folgenden Diagramm Abbildung 5 ist die Anzahl der Ladungen Z die durch ein einziges einfallendes Teilchen ausgelöst wurden gegen die Spannung aufgetragen. Die Zahl Z lässt sich mit den Werten aus Unterabschnitt 4.3 direkt über Gleichung 2 berechnen

Abbildung 5: Pro einfallendem Teilchen ausgelöste Ladung

7 Diskussion

In diesem Versuch sollten Verschiedene Eigenschaften eines Geiger-Müller-Zählrohres beschrieben werden, dazu wurde zunächst in Unterabschnitt 6.1 die Kennlinie Abbildung 3 des Verwendeten Gerätes ermittelt und an das Plateau mittels linearer Regression ein Polynom ersten Grades angepasst. Dieses Polynom hat hatte wie erwartet eine geringe Steigung von etwa 1,22%. Das Plateau ist jedoch schlecht zu identifizieren. Hier wurde es mit einer Länge von etwa 260 Einheiten angenommen und liegt zwischen 360 V und 620 V in der gewählten Darstellung. Als nächstes wurde die Totzeit in Unterabschnitt 6.2 zunächst mithilfe eines Oszilloskopes bestimmt Unterunterabschnitt 6.2.1. Da das Oszilloskop mit 100μ DIV noch zu grob eingestellt um eine genaue Messung zu liefern konnte hier nur grob geschätzt werden. Der geschätzte Wert von $T \approx 2s$ ist wie sich in Unterunterabschnitt 6.2.2 zeigt etwa doppetlt so groß wie der mittels der Zwei-Quellen-

Metode errechnete bzw. gemessene. Um die Totzeit genauer zu bestimmen wurde wie bereits erwähnt die Zwei-Quellen-Methode Unterunterabschnitt 6.2.2 verwendet. Der errchnete Wert $T=0,96\pm0,04s$ liegt zumindest in der gleichen Größenordnung wie der Messwert der im vorherigen Kapitel mittels Oszilloskop bestimmten Wertes. An Ende wurde noch die Anzahl der Ladungen die von einem einzelnen in das Geiger-Müller-Zählrohr einfallenden Teilchen im Rahmen eines Teilchenschauers ausgelöst werden und den Messdraht erreichen. Diese Zahlen scheinen für Teilchen der entsprechenden Energie durchaus realistisch. Im ganzen kann von einem erkentnisreichen gut gelungenen Versuch gesprochen werden.

8 Literatur

- 1. TU-Dortmund, V703 Das Geiger-Müller-Zählrohr
- 2. Dieter Meschede, Gerthsen Physik 25.Aufl.

9 Anhang

Auf den folgenden Seiten finden sich die Originalmesswerte.