Materiais Elétricos e Magnéticos para Engenharia

Professor: Marcus V. Batistuta

Laboratório #2 **Lâmpada Elétrica de Filamento**

1º Semestre de 2018

FGA - Universidade de Brasília

Thomas A. Edison 1847-1931

22 Outubro de 1879

T. A. EDISON. Electric-Lamp.

No. 223,898.

Patented Jan. 27, 1880.

Circuito de Medidas

Lâmpada Elétrica

$$P_E = IV = \frac{V^2}{R(T)} = I^2 R(T)$$

Equilíbrio Térmico (alto-aquecimento)

$$P_E \cong P_R$$

Coeficiente Térmico

$$\alpha_T = \frac{1}{R(T)} \frac{dR}{dT} \bigg|_T$$

Radiação de Corpo Negro

$$B(\upsilon,T) = \frac{2h\upsilon^3}{c^2} \frac{1}{\frac{h\upsilon}{e^{\frac{h\upsilon}{kT}} - 1}} \left[\frac{W.sr^{-1}m^{-2}}{Hz} \right]$$

$$E(\lambda,T) = \frac{2hc^2}{\lambda^5} \frac{1}{\frac{hc}{e^{\frac{hc}{\lambda kT}} - 1}} \left[\frac{W.sr^{-1}.m^{-2}}{m} \right]$$
Lei de Planck

$$P_{\scriptscriptstyle R} = A \, {arepsilon} \sigma T^4$$
 [W] Lei de Stefan-Boltzmann

$$\sigma = 5.67 \times 10-8 \text{ [W m}^{-2} \text{ K}^{-4} \text{]}$$

$$\varepsilon \approx 1$$
 Emissividade

Radiação de Corpo Negro

Radiação de Filamento

Ponto de Máximo:
$$\frac{dB(\lambda,T)}{d\lambda} = 0$$

$$\lambda_{\text{max}} T = 2897,756 \text{ [}\mu\text{m.K]}$$

Temperatura Ideal (Centro da Banda Visível):

$$\lambda_{\text{max}} = \frac{0.7 + 0.4}{2} = 0.55 \text{ [µm]}$$

$$T = \frac{2897,756}{0,55} = 5268,6473$$
 [K]

Ponto de fusão do tungstênio = 3695 K Ponto de Sublimação do Carbono = 3915 K

Olho Humano

Fig. 16.1. (a) Cross section through a human eye. (b) Schematic view of the retina including rod and cone light receptors (adapted from Encyclopedia Britannica, 1994).

Sensibilidade da Visão

Espectro de Sensibilidade do Olho Humano

Fig. 16.7. Eye sensitivity function, $V(\lambda)$, (left-hand ordinate) and luminous efficacy, measured in lumens per watt of optical power (right-hand ordinate). $V(\lambda)$ is maximum at 555 nm (after 1978 CIE data).

https://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/Sample-Chapter.pdf

Processo Aditivo

Additive color mixing. If you (like me) have a hard time wrapping your head around how red and green mix together to make yellow, watch this YouTube video.

Processo Subtrativo

Subtractive color mixing is pretty close to the paint mixing we did in grade school. This video does a great job visualizing the "subtractive" part of it.

7 Cores + Preto (Nenhuma Cor) ou Branco (Todas as Cores) Aditivo Subtrativo

$$N = 3 \Rightarrow R,G,B$$
 (Retina, 1 bit por cor)

Ligado/Desligado

$$2^3 = 8$$

```
Processo Aditivo:
(2 níveis - 0 ou 1)
R G B
  0 0 Preto
  0 0 Vermelho
  1 0 Amarelo
 1 0 Verde
 1 1 Ciano
  0 1 Azul
  0 1 Violeta
  1 1 Branco
```

Não existe na sequência do espectro!

http://hyperphysics.phy-astr.gsu.edu/hbase/vision/cie.html

Radiação de Corpo Negro

CIE 1931 color space chromaticity diagram

Ponto de fusão do tungstênio = 3695 K Ponto de Sublimação do Carbono = 3915 K

Candela e Lúmen

A candela é a intensidade luminosa, numa dada direção, de uma fonte que emite uma radiação monocromática de frequência 540 x 10¹² hertz e que tem uma intensidade radiante nessa direção

de $\frac{1}{683}$ watt por esferorradiano (sr).

1 cd- 1 sr = 1 lm

Isotrópica: 1 candela = 4π lúmens

Vela: ~1 candela

Esfera: $A = 4\pi r^2$

Eficiência e Eficácia

Туре	Overall luminous efficiency	Overall luminous efficacy (lm/W)
40 W tungsten incandescent	1.9%	12.6 ^[1]
60 W tungsten incandescent	2.1%	14.5 ^[1]
100 W tungsten incandescent	2.6%	17.5 ^[1]
glass halogen	2.3%	16
quartz halogen	3.5%	24
photographic and projection lamps with very high filament temperatures and short lifetimes	5.1%	35 ^[53]
ideal black-body radiator at 4000 K (or a class K star like Arcturus)	7.0%	47.5
ideal black-body radiator at 7000 K (or a class F star like Procyon)	14%	95
ideal monochromatic 555 nm (green) source	100%	683 ^[54]

Resistividade do Tungstênio

Resistivity of tungsten

Modelo para a Lâmpada Elétrica

$$V=RI$$
 $R(T)=
ho(T)rac{L}{A}$ $ho(T)\cong K_TT$ Aprox. Linear $R(T)=K_TTrac{L}{A}=K'_TT$

$$P_E = IV = \frac{V^2}{R(T)} = I^2 R(T) = \frac{V^2}{K'_T T} = I^2 K'_T T$$

$$P_E \cong P_R$$

$$P_R = A \varepsilon \sigma T^4$$

$$I^{2}K'_{T}T \cong A\varepsilon\sigma T^{4}$$

$$\frac{V^{2}}{K'_{T}T} \cong A\varepsilon\sigma T^{4}$$

$$I^2 \cong \frac{A\varepsilon\sigma}{K'_T} T^3$$

$$V^2 \cong K'_T A \varepsilon \sigma T^5$$

$$I \cong \sqrt{\frac{A\varepsilon\sigma}{K'_T}}T^{\frac{3}{2}}$$

$$I \cong \sqrt{\frac{A\varepsilon\sigma}{K'_T}} T^{\frac{3}{2}} \qquad V \cong \sqrt{K'_T A\varepsilon\sigma} T^{\frac{5}{2}}$$

$$I \cong K_I T^{\frac{3}{2}}$$

$$I \cong K_I T^{\frac{3}{2}} \qquad V \cong K_V T^{\frac{5}{2}}$$

Verificando:
$$R(T) = \frac{V}{I} \cong \frac{K_V T^{\frac{5}{2}}}{K_I T^{\frac{3}{2}}} = K'_T T$$
 Aprox. Linear

$$I \cong K_{I}T^{\frac{3}{2}} \qquad V \cong K_{V}T^{\frac{5}{2}}$$

$$V^{\frac{2}{5}} \cong (K_{V})^{\frac{2}{5}}T \qquad T = \frac{V^{\frac{5}{2}}}{(K_{V})^{\frac{2}{5}}}$$

$$I \cong K_{I} \left(\frac{V^{\frac{2}{5}}}{(K_{V})^{\frac{2}{5}}} \right)^{\frac{3}{2}} \qquad I \cong \left(\frac{K_{I}}{(K_{V})^{\frac{3}{5}}} \right) V^{\frac{3}{5}}$$

$$I \cong KV^{\frac{3}{5}}$$

Não-linear