Projekt

STEROWNIKI ROBOTÓW

Raport

Humanistycznie upośledzony robot akrobatyczny

HURA

Skład grupy: Albert Lis, 235534 Michał Moruń, 235986

Termin: sr TP15

 $\begin{tabular}{ll} $Prowadzący: \\ mgr inż. Wojciech DOMSKI \end{tabular}$

Spis treści

1	Opis projektu	2
2	Konfiguracja mikrokontrolera 2.1 Konfiguracja pinów 2.2 ADC 1 2.3 Timer 2 2.4 Timer 4 2.5 Timer 6	
3	3.1 Schemat elektryczny	6 6
4	Konstrukcja mechaniczna	7
5	- F	8 8 8
6	Zadania niezrealizowane	8
7	Podsumowanie	9
Bi	ibilografia	10

1 Opis projektu

Celem projektu jest zbudowanie zdalnie sterowanego robota jezdnego. Robot będzie sterowany za pomocą akcelerometru w telefonie. Dane będą przesyłanie za pomocą Wi-Fi lub Bluetooth. Regulacja prędkości będzie się odbywać za pomocą regulatora PID. Dane o prędkości będą pobierane z enkoderów znajdujących się w kołach robota. Opcjonalnie robot będzie wyświetlał szczegółowe dane o swoim stanie wewnętrznym za pomocą wbudowanego w płytkę z mikrokontrolerem wyświetlacza LCD.

Rysunek 1: Architektura systemu

2 Konfiguracja mikrokontrolera

Rysunek 2: Konfiguracja wyjść mikrokontrolera w programie STM32CubeMX

Rysunek 3: Konfiguracja zegarów mikrokontrolera

2.1 Konfiguracja pinów

PIN	Tryb pracy	Funkcja/etykieta
PC14	OSC32_IN* RCC_OSC32_IN	
PC15	OSC32_OUT* RCC_OSC32_OUT	
PH0	OSC_IN* RCC_OSC_IN	
PH1	OSC_OUT*	RCC_OSC_OUT
PD5	USART2_TX	$USART_TX$
PD6	USART2_RX	USART_RX
PA0	ADC1_IN5	PWM_INPUT
PA1	GPIO_Input	JOY_LEFT
PA2	GPIO_Input	JOY_RIGHT
PA3	GPIO_Input	JOY_UP
PA4	GPIO_Input	JOY_DOWN
PA5	TIM2_CH1	PWM_MOTOR
PB7	TIM4_CH2	PWM_SERVO

Tabela 1: Konfiguracja pinów mikrokontrolera

2.2 ADC 1

Parametr	Wartość
Resolution	ADC 12-bit resolution
DMA Continuous Requests	Enabled
Data Alignment	Right alignment
Continuous Conversion Mode	Disabled
Channel	Channel 5
Sampling Time	92.5 Cycles

Tabela 2: Konfiguracja peryferium ADC

2.3 Timer 2

Parametr	Wartość
Clock Source	Internal Clock
Channel1	PWM Generation CH1
Prescaler	PWM_PRESC
Counter Mode	Up
Counter Period	PWM_PERIOD
Internal Clock Division	No Division
Mode	PWM mode 1
CH Polarity	High

Tabela 3: Konfiguracja peryferium Timer $2\,$

2.4 Timer 4

Parametr	Wartość
Clock Source	Internal Clock
Channel	PWM Generation CH2
Prescaler	999
Counter Mode	Up
Counter Period	999
Internal Clock Division	No Division
Mode	PWM mode 1
CH Polarity	High

Tabela 4: Konfiguracja peryferium Timer 4

2.5 Timer 6

Parametr	Wartość
Prescaler	TIM6_PRESC
Counter Mode	Up
Counter Period	TIM6_PERIOD
Trigger Event Selection	Update Event

Tabela 5: Konfiguracja peryferium Timer 6

3 Projekt elektroniki

3.1 Schemat elektryczny

Rysunek 4: Schemat elektryczny

3.2 Regulacja prędkości napędu

Za pomocą potencjometru regulujemy wypełnienie sygnału PWM. Sygnał ten jest wzmacniany za pomocą tranzystora NPN i przekazywany do silnika DC.

Rysunek 5: Schemat poglądowy regulacji prędkości obrotowej silnika

4 Konstrukcja mechaniczna

Rysunek 6: Zdjęcie części mechanicznej nr $1\,$

Rysunek 7: Zdjęcie części mechanicznej nr 2

5 Opis działania programu

5.1 Schemat działania programu

Rysunek 8: Schemat działania programu

5.2 Funkcja obsługująca przerwanie timera 6

```
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)

{
    if(htim=>Instance == TIM6)
        HAL_ADC_Start_DMA(&hadc1, (uint32_t *)&adc_value, 1);
}
```

5.3 Funkcja obsługująca przerwanie ADC

```
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
{
    //pid_output = pid_calc(&pid, adc_value, set_value);
    __HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_1, adc_value);
}
```

6 Zadania niezrealizowane

Nie zostało zrealizowane przekazanie napędu z silnika i serwomechanizmu na mechanizm napędowy oraz na ten służący do skręcania. W pierwszym przypadku jest to spowodowane brakiem czasu, wynikający ze zbyt długim poszukiwaniem rozwiązania na problem przeniesienia napędu z silnika do przekładni, natomiast w drugim tym, że wał serwomechanizmu ma stępione zębatki co uniemożliwia przekazanie jakiejkolwiek siły na dalszy podzespół.

7 Podsumowanie

Udało się zrealizować większość zadań. Nastąpiły drobne zmiany koncepcyjne jak użycie potencjometru do regulacji prędkości obrotowej napędu. To będzie wymagać mniejszej ingerencji gdy będziemy projektować regulator PID.

Literatura