Question 1:

Initial conditions:

$$f(x) = \frac{1}{2}x^T A x + b^T x,$$

where $A \in \mathbb{R}^{n \times n}$ is symmetric and $b \in \mathbb{R}^n$

To find:

 $\nabla_x f(x)$ and $\nabla^2 f(x)$

Solution:

1) At the beginning, need to find the gradient:

Take into account that A is symmetric, that is, $A = A^{T}$.

$$\nabla_x(x^TAx) = (A + A^T)x$$

So:

$$\begin{split} \nabla_x \left(\frac{1}{2} x^T A x\right) &= \frac{1}{2} \nabla_x (x^T A x) = \frac{1}{2} (A+A) x = A x \\ \nabla_x (b^T x) &= b. \end{split}$$

So, at the finally:

$$\nabla_x f(x) = Ax + b$$

2) At the beginning, need to find the Hessian:

Need to differentiate the gradient $\nabla_x f(x) = Ax + b$ with respect to x, because the Hessian is the matrix of second derivatives.

So,

$$\nabla^2(Ax)=A$$

$$\nabla^2 b = 0$$

b - const, and A - coefficient, constant before x

Solution:

$$\nabla_x f(x) = Ax + b$$

$$\nabla^2 f(x) = A$$

b)

Initial conditions:

$$f(x) = g(h(x)),$$

where $g:\mathbb{R}\to\mathbb{R}$ and $h:\mathbb{R}^n\to\mathbb{R}$ are both differentiable.

To find:

$$\nabla_x f(x)$$

Solution:

$$\nabla_x f(x) = \nabla_x g(h(x)) = g'(h(x)) \cdot \nabla_x h(x)$$

-because the chain rule applies: the derivative of the outer function with respect to the inner function is multiplied by the derivative of the inner function with respect to the variable of interest

g'(h(x)) - scalar value

Gradient $\nabla_x h(x)$ is n - vector of partial derivatives

$$\nabla_x h(x) = \begin{bmatrix} \frac{\partial h}{\partial x_1}(x) \\ \frac{\partial h}{\partial x_2}(x) \\ \vdots \\ \frac{\partial h}{\partial x_n}(x) \end{bmatrix}.$$

So, at the finally:

$$\nabla_x f(x) = g'(h(x)) \cdot \nabla_x h(x).$$

c)

Initial conditions:

$$f(x) = g(a^T x)$$

where $a \in \mathbb{R}^n$ and $g : \mathbb{R} \to \mathbb{R}$

To find:

 $\nabla_x f(x)$ and $\nabla^2 f(x)$

Solution:

1) the chain rule applies:

$$\nabla_x(a^Tx) = a.$$

$$\nabla_x f(x) = g'(a^Tx) \cdot \nabla_x(a^Tx).$$

At the finally:

$$\nabla_x f(x) = g'(a^T x) \cdot a.$$

2)

$$\begin{split} \nabla_x f(x) &= g'(a^T x) \cdot a. \\ \nabla^2 f(x) &= \nabla_x (g'(a^T x) \cdot a). \end{split}$$

At the finally:

$$\nabla^2 f(x) = g''(a^Tx) \cdot \nabla_x (a^Tx) \cdot a^T = g''(a^Tx) \cdot (aa^T),$$

Question 2:

```
estimatepercentile90 <- function(x) {</pre>
  if (length(x) != 100) {
    stop("Vector must be of length 100")
  sortedx <- sort(x)</pre>
 return(sortedx[90])
}
# b
estimatepercentile91 <- function(x) {</pre>
  if (length(x) != 100) {
    stop("Vector must be of length 100")
  sortedx <- sort(x)</pre>
  return(sortedx[91])
}
avr90and91 <- function(x) {</pre>
  return((estimatepercentile90(x) + estimatepercentile91(x)) / 2)
}
# d
n <- 10000
estimatespercentile90 <- numeric(n)</pre>
estimatespercentile91 <- numeric(n)</pre>
estimatesavr <- numeric(n)</pre>
estimatesquantile <- numeric(n)</pre>
for (i in 1:n) {
  sample <- runif(100)</pre>
  estimatespercentile90[i] <- estimatepercentile90(sample)</pre>
  estimatespercentile91[i] <- estimatepercentile91(sample)</pre>
  estimatesavr[i] <- avr90and91(sample)</pre>
  estimatesquantile[i] <- quantile(sample, 0.9)</pre>
library(ggplot2)
```

```
library(ggplot2)

results <- data.frame(
    m = 1:n,
    mean90 = cumsum(estimatespercentile90) / (1:n),
    mean91 = cumsum(estimatespercentile91) / (1:n),
    meanavr = cumsum(estimatesavr) / (1:n),
    meanquantile = cumsum(estimatesquantile) / (1:n)
)</pre>
```

Plot 0.91 Estimate Type sample mean mean90 0.90 mean91 meanavr meanquantile 0.89 0.88 2500 5000 7500 10000 0 m

```
ultimateMeans <- data.frame(
   Method = c("90 Percentile", "91 Percentile", "Average of 90 & 91", "Quantile Function"),
   ultimate_means = c(mean(estimatespercentile90), mean(estimatespercentile91), mean(estimatesavr), mean
)
print(ultimateMeans)</pre>
```

```
## Method ultimate_means
## 1 90 Percentile 0.8907533
## 2 91 Percentile 0.9008927
## 3 Average of 90 & 91 0.8958230
## 4 Quantile Function 0.8917672
```

e)

The estimate obtained from the quantile() function appears to be the best, because it uses a more complex method, which give a more exactly estimate compared to the simpler methods, based on sorting.

Question 3:

a)

pi2(n) that approximates as a function of n, using the approximation:

$$\pi = \lim_{n \to \infty} \sqrt{6\sum_{k=1}^n \frac{1}{k^2}}$$

```
pi2 <- function(n) {</pre>
  sumK <- sum(1/(1:n)^2)</pre>
  return(sqrt(6 * sumK))
}
pi2 \text{ for } j = 0, 1, 2, ..., 6:
solution_pi2 <- sapply(0:6, function(j) pi2(10^j))</pre>
names(solution_pi2) <- paste("10^", 0:6, sep="")</pre>
solution_pi2
##
        10^0
                  10^1
                            10^2
                                      10^3
                                                 10^4
                                                           10^5
                                                                     10^6
## 2.449490 3.049362 3.132077 3.140638 3.141497 3.141583 3.141592
  b)
pi3 <- function(n) {</pre>
  x \leftarrow runif(n, -1, 1)
  y <- runif(n, -1, 1)
  circle <- (x^2 + y^2) <= 1
  fraction <- sum(circle) / n</pre>
  return(fraction * 4)
}
solution_pi3 <- sapply(0:4, function(j) pi3(10^j))</pre>
names(solution_pi3) <- paste("10^", 0:4, sep="")</pre>
solution_pi3
     10^0
             10^1
                     10^2
                             10^3
                                     10^4
## 0.0000 3.2000 2.9600 3.0920 3.1284
  c) For j=4:
points_col <- 10^4</pre>
x <- runif(points_col, -1, 1)
y <- runif(points_col, -1, 1)
circle <- (x^2 + y^2) <= 1
```

Plot simulated points:

Question 4:

a)

library(tidyverse)

```
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr
               1.1.4
                                      2.1.5
                         v readr
## v forcats
               1.0.0
                         v stringr
                                      1.5.1
## v lubridate 1.9.3
                         v tibble
                                      3.2.1
## v purrr
               1.0.2
                          v tidyr
## -- Conflicts -----
                                                   ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
                     masks stats::lag()
## x dplyr::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
```

```
cat("\n")
books <- read.csv("amazonbooks.csv")</pre>
book_with_min_pages <- books[which.min(books$NumPages), ]</pre>
name_of_min_book <- book_with_min_pages$Title</pre>
col_pages_of_min_book <- book_with_min_pages$NumPages</pre>
cat("The book with the minimum number of pages: ", name_of_min_book," ", col_pages_of_min_book,"pages\n
## The book with the minimum number of pages: Big Dog . . . Little Dog
                                                                           24 pages
  b)
library(dplyr)
summary_table <- books %>%
    group_by(Author) %>%
    summarise(
       all books = n(),
       mean_pages = mean(NumPages),
        variance_pages = var(NumPages)
    )
print(summary_table)
## # A tibble: 256 x 4
##
      Author
                         all_books mean_pages variance_pages
##
      <chr>
                             <int>
                                        <dbl>
                                                        <dbl>
## 1 ""
                                 1
                                           432
                                                           NΑ
## 2 "Abraham Verghese"
                                 1
                                           667
                                                           NA
## 3 "Adam Goodheart"
                                 1
                                           460
                                                           NA
## 4 "Adam Hochschild"
                                 1
                                           480
                                                           NA
## 5 "Adam Mansbach"
                                           32
                                                           NA
                                 1
## 6 "Alaa Aswany"
                                 1
                                           255
                                                           NA
## 7 "Alice Munro"
                                 2
                                           320
                                                         2048
## 8 "Alice Schroeder"
                                1
                                           832
                                                           NA
## 9 "Allen, Toorawa"
                                           200
                                                           NΑ
                                1
## 10 "Andrea Warren"
                                 1
                                           160
                                                           NA
## # i 246 more rows
  c)
library(ggplot2)
ggplot(summary_table, aes(x = Author, y = mean_pages, fill = Author)) +
  geom_bar(stat = "identity") +
  labs(title = "Average number of pages by author",
       x = "Author",
       y = "Average number of pages") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
## Warning: Removed 2 rows containing missing values or values outside the scale range
```

(`geom_bar()`).

Hurston	John Kennedy Toole	Kurt vonnegut
J.M. Barrie	John Steinbeck	Lahiri
Jamaica Kincaid	John Tosh	Lalita Tademy
James B. Maas	John Traphagan	Laura Hillenbrand
James Napoli	Joseph Conrad	Lauren Leto
James Patterson	Joseph Heller	Lawrence
James Patterson & Maxine Paetro	Joseph M. Williams	Levy
James Patterson & Michael Ledwidge	Jospeh Heller	Lewis
Jane Austin	Judi Barrett	Lewis Carroll
Jay Asher	Judith M. Heimann	Lois Lowry
JD Salinger	Justin Halpern	Lore, Pittacus
Jean-Dominique Bauby	Kate Chopin	Lorraine Hansberry
Jean-Paul Sartre	Kate Morton	Louis Sachar
Jeffrey Toobin	Kathleen Norris	Ludwig Bemelmans
Jerome Lawrence and Robert E. Lee	Kathy Griffin	M. Jimmie Killingsw
Jim Glastonbury	Kawabata	Marcus Aurelius
Jimmy Fallon	Kawasaki	Mark Hart