

The BBP data model, BluePy and friends

HBP CodeJam Workshop #7

Eilif Muller
eilif.mueller@epfl.ch
http://bluebrain.epfl.ch

BluePy (pronounced "bloopy") is a scientist targeted productivity layer for scientists to access BBP production entities.

Designed to be empowering:

- "One-liners" for scientific needs
- Tools to facilitate automation streamlined

	+		++ numpy SQLAlchemy lxml h5py
+	++ bluepy		matplotlib NeuroTools sqlite
 ++	 ++ ++	 	++
 BBP-SDK Brion +	 SpatialIndex 	ReportLib ReportLib 	networkx(?) MGL(?)

Reconstruction and simulation of neocortical microcircuitry

Markram H, Muller E, Ramaswamy S, Reimann MW, ... DeFelipe J, Hill SL, Segev I, Schuermann F

Cell 163:2, p456–492, 8 October 2015

An algorithm to predict the connectome of neural microcircuits

Reimann et al.

Front. Comp. Neurosci., 8 October 2015

The neocortical microcircuit collaboration portal: a resource for rat somatosensory cortex

Ramaswamy S, Courcol J-D, et al.

Frontiers in Neural Circuits, 8 October 2015

https://github.com/BlueBrain

https://bbp.epfl.ch/nmc-portal

BluePy was the primary API used for above analysis. Some IPython notebook use-cases ...

- BluePy is not yet open-source
- Brion is open-source
- Ongoing process to converge with ABI & community on underlying data models
- Intention to release our software ecosystem around such converged data models

- Core IO library for accessing BBP data model in C++
- https://github.com/BlueBrain/Brion
- http://bluebrain.github.io/

Brion includes classes for reading and writing files of the Blue Brain data model.

Fast and low-overhead read access to:

- Circuit descriptors "CircuitConfigs" (brion::Circuit)
- Simulation descriptors "BlueConfigs" (brion::BlueConfig) –
- H5 Synapses data (brion::SynapseSummary, brion::Synapse)
- Groupings of elements (neurons, syns, ...) "Targets" (brion::Target)
- BBP binary meshes (brion::Mesh)
- BBP H5 morphologies and SWC morphologies (brion::Morphology and brion::morphologies)
- Compartment reports (brion::CompartmentReport)
- Spike reports (brion::SpikeReport)

Fast and low-overhead write access to:

- Compartment reports (brion::CompartmentReport)
- BBP binary meshes (brion::Mesh)
- BBP H5 morphologies (brion::Morphology)

BBP Data model - overview

CircuitConfig

- start.target "verbatim" defn. of named gid groups
- nrn.h5 connectivity and synapse parameters
- circuit.mvd2 neuron database
- Circuit_mvd2.sqlite, SEGMENT_spatial.*, SYNAPSE_spatial.*, nrn_efferent.h5, ...

BlueConfig

- out.dat -> CSV: gid, spiketime
- soma.bbp -> voltages per dt
- soma.h5 -> voltage trace dataset per gid

Example CircuitConfig – a key-value format

```
Run Default
        # URI to the morphology collection entity
        MorphologyPath <...>/release/l2/2012.07.23/morphophologies
        # URI to the morpho-electrical model collection entity
        METypePath <...>/release/l2/2012.07.23/ccells
        # URI to the mesh collection entity
        MeshPath <...>/release/l2/2012.07.23/meshes
        # URI to the build recipe entity
        BioName <...>/project/proj1/entities/bionames/SomatosensoryCxS1-v5.r0
        # Circuit specific attributes & paths
        CircuitPath <...>/project/proj1/circuits/SomatosensoryCxS1-v5.r0/01/merged circuit
        nrnPath ncsFunctionalAllRecipePathways
        TargetFile default user.target
        CentralHyperColumn 2
# Input projection entities defined for this circuit
Projection Thalamocortical input VPM
 Path ncsThalamocortical VPM
 Source proj Thalamocortical VPM Source
```

circuit.mvd2 – The neuron database

```
Essentially A CSV file with:
  morphology name (string)
  database type [not used] (int)
  hyperColumn (int)
  miniColumn (int)
  layer [note that 0 is layer 1, 1 is layer 2, etc.] (int)
  morphology type [index into MorphTypes below] (int)
  electrophysiology type [index into ElectroTypes below] (int)
  neuronCenter[0] (float)
  neuronCenter[1] (float)
  neuronCenter[2] (float)
  neuronRotation[1] (float)
  metype (string)
```

```
sm090317a2_idB 0 0 71 0 3 1 286.965408 1960.801904 83.942752 -144.357745 cNAC187_L1_HA sm090317a2_idB 0 0 285 0 3 1 468.045056 1966.229605 50.926316 139.318573 cNAC187_L1_HA sm080905b1 0 0 289 0 3 4 263.596306 1940.176638 31.100535 24.977901 cIR216_L1_HAC_1_sm C060106F 0 0 297 0 3 0 106.403043 2027.019862 232.607069 66.966942 bNAC219_L1_HAC_1_C0 C280206K 0 0 33 0 5 3 409.051345 1918.453896 130.654939 124.924653 cACint209_L1_SLAC_1
```

Synapses: nrn.h5 – and HDF5 file

Contains a dataset for every gid, with a Nx19 list of its synapses & params:

0: Connecting gid: presynaptic for nrn.h5, postsynaptic for nrn_efferent.h5 (int)

- 1: Axonal delay: computed using the distance from AIS to the post synaptic terminal (ms) (float)
- 1. Axonal delay: computed using the distance from Als to the post synaptic terminal (ms) (noat)
- 2: postSection ID (int)
- 3: postSegment ID (int)
- 4: The post distance (in microns) of the synapse from the begining of the post segment 3D point, or -1 for soma connections (float)
- 5: preSection ID (int)
- 6: preSegment ID (int)
- 7: The pre distance (in microns) of the synapse from the begining of the pre segment 3D point (float)
- 8: g_synX is the conductance of the synapse (nS) (float)
- 9: u_syn is the u parameter in the TM model (0-1) (float)
- 10: d_syn is the time constant of depression (ms) (float)
- 11: f_syn is the time constant of facilitation (ms) (float)
- 12: DTC Decay Time Constant (milliseconds) (float)
- 13: synapseType, the synapse type Inhibitory < 100 or Excitatory >= 100 (specific value corresponds to generating recipe)
- 14: The morphology type of the pre neuron. Index corresponds with circuit.mvd2 (int)
- 15-16: BranchOrder of the dendrite, BranchOrder of the axon (int,int)
- 17: ASE Absolute Synantic Efficacy (Millivolts) (int) (not used)
- 17: ASE Absolute Synaptic Efficacy (Millivolts) (int) (not used)
 18: Branch Type from the post neuron(0 for soma, 1 for axon and 2 for basal and 3 for apical) (int)

Targets: start.target

ASCII file:

```
Target Cell L1_SLAC
{
    a7 a12 a13 a16 a24 a33 a36 a38 a50 a55 a69 a78 a79
}
Target Cell mc1_L6_BPC
{
    a51924 a51927 a51941
}
....
```

Simulation descriptors - BlueConfig

- Circuit URI
- Job params

```
RunMode LoadBalance
CircuitTarget Slice
Duration 12000
Dt 0.025
ForwardSkip 5000
```

Define Reporting

```
Report I_NonSpecific
                               Report compartments
Report soma
                                        Target Slice Spercent AllComp
                                                                                 Target AllCompartments mc2
        Target Slice
                                        Type compartment
                                                                                   Type Summation
        Type compartment
                                                                               ReportOn i pas ihon Ih ihon hon3 icsa csa
                                        ReportOn v
        ReportOn v
                                        Unit mV
                                                                                   Unit nA
        Unit mV
                                        Format Bin
                                                                                 Format Bin
        Format Bin
                                        Dt 0.25
                                                                                     Dt 0.1
        Dt 0.1
                                        StartTime 0
                                                                              StartTime 0
        StartTime 0
                                        EndTime 20000
                                                                                EndTime 2000
        EndTime 20000
```

Define stimuli & manipulations

```
StimulusInject ThresholdIntoExc
                                                                          # Use adjustments due to Calcium 1.25 mM
Stimulus ThresholdExc
                                                                          Connection scheme CaUse ee
                                            Stimulus ThresholdExc
                                            Target Excitatory
              Mode Current
                                                                                         Source Excitatory
           Pattern Noise
                                                                                   Destination Excitatory
                                                                                        Weight 1.0
       MeanPercent 88.7711221281
                                                                              SynapseConfigure %s.Use *= 0.1
          Variance 0.001
            Delay 0.000000
          Duration 20000.000000
```

HBP Building Workflows HBP Performance Morphologies & Representation **Eletrical models** NeuroML **Neurons NeuroML** Circuits & Synapses v2/LEMS Circuits Simplifications Curation **Simulations** STEPS, NEURON, NEST Unstructured Community (Towards: Contributions Open Standard) Other HBP IO (Brion), Analysis, Validation APIs (OSS) supported Viz tools (RTNeuron) representation **HBP Platform apps** formats ...?

- Relation to validation driven development
 - Validations rely on an analysis API
- Representation of simplified circuits
 - -1&F
 - Population density
 - Mean-field

Generality of the BBP data model

- PAVIA example export example
- https://bbpteam.epfl.ch/project/spaces/displa y/HWP64/Required+changes+to+BBP+tools
- Ongoing work in HBP:
 - Cerebellum
 - Hippocampus
 - Basal ganglia

HBP: A first draft model of cerebellar granular layer

Team:

Stefano Masoli, Sergio Solinas, Stefano Casali, Martina Rizza, Werner van Geit, Egidio D'Angelo

Reconstruction

- Constructed Cerebellar granular layer model
- Connected 400,000 neurons in a early draft cerebellar network (Granule and Golgi Cells)
- Neuron models optimized using BBP Optimizer framework
- Previous network connectivity (UPavia) ported to BBP circuit representation
- Simulated using BBP framework: Neurodamus

Analysis

Results analyzed and visualized using bluepy,
 RTNeuron.

Rendering with RTNeuron

HBP: First draft hippocampal CA1

Sources: morphologies from UCL, IEM

Sources: UCL, Ropireddy et al 2012, Bezaire and Soltesz 2013

Notable future plans: BluePy

- API: make all functions accept interchangeably the ways to express groups of neurons:
 - SQL queries
 - Named "verbatim" targets (deprecate)
 - Gid lists (deprecate)
- Leverage more functionality from Brion (C++ IO lib)
- Converge data model with the community
- Open-source in 2016.
- Support for I&F models

Thoughts for convergence with Allen Brain Inst, and community standards

- NWB for simulation output
- LEMS for channel and synapses
- SWC for morphologies
- NeuroML for neuron biophysics
- Conceptual revision of CircuitConfig & BlueConfig -> JSON?

Simplified point-neuron case?

- LEMS for neuron models?
- NeuroML for neuron parameters?

Towards a community ecosystem

- Validation
- Simplification
- Building tools

- Visualization
- Analysis
- Neuroinformatics bridges

RTNeuron

Spatial Indexer

BluePy & Data Model Links

Publically accessible documentation

- https://developer.humanbrainproject.eu/docs/
- https://developer.humanbrainproject.eu/docs/projects/bluepy/0.5.11/index.html

Accessibility for BBP-EXT members (can be case-by-case granted to HBP members)

Documentation & internal discussion on BBP file formats:

- https://bbpteam.epfl.ch/project/spaces/display/HWP64/BBP+network+files+format
- https://bbpteam.epfl.ch/project/spaces/pages/viewpage.action?spaceKey=HWP64&title=BB P+network+files+format

Issue tracker

https://bbpteam.epfl.ch/project/issues/browse/BLPY

Data-model Improvement Proposals

- https://bbpteam.epfl.ch/project/spaces/display/BBPWFA/MVD+version+3+-+Draft+0.0.1
- https://bbpteam.epfl.ch/project/spaces/display/BLBLD/New+h5+file+to+support+future+S2F
- https://bbpteam.epfl.ch/project/spaces/display/HWP64/Required+changes+to+BBP+tools

The BBP team

Human Brain Project

Hippocamp Participants

BBP Platform Team

Members (WP and Task Leaders)

Data-driven reconstruction of brain models

Henry Markram

Idan Segev Marc-Oliver Gewaltig Felix Schürmann

Brain Simulation Platform: integration and operations

Henry Markram

Jeffrey Muller

Brain Simulation Platform: user support and community building

Felix Schürmann

Brain simulation engines

Felix Schürmann

Erik De Schutter Julian Shillcock Michael Hines Markus Diesmann Fabien Delalondre

Brain Simulation Platform: scientific coordination

Felix Schürmann

Molecular dynamics simulation

Paolo Carloni

Richard Lavery Rebecca Wade

Initial brain models

Jeanette Hellgren Kotaleski

Antoine Triller
Pierre Magistretti
Alex Thomson
Eilif Muller
Egidio D'Angelo
Sten Grillner

HBP Platform Teams

- SP5 Neuroinformatics
- SP6 Brain Simulation
- SP7 HPC

- SP8 Medical Informatics
- SP9 Neuromorphic
- SP10 Neurorobotics