

FOOD IMAGE RECOGNITION with Neural Network

DSI Capstone Project

Jetnipat Sarawongsuth (Boss)

DIABETES

3.7 MILLION deaths due to diabetes and high blood glucose

1.5 MILLION deaths caused by diabetes

Se Se

82 MILLION in South East Asia

Risk factors for type 2 diabetes

Genetics, age and family history of diabetes can increase the likelihood of becoming diabetic and cannot be changed. But some behaviours that increase risk can:

Unhealthy diet

is overweight

Physical inactivity

Consequences

Diabetes can lead to complications in many parts of the body and increase the risk of dying prematurely.

FOOD JOURNALLING

Connectify.ai

Connectify.ai Goals

THIS PROJECT

THIS PROJECT

Goal

1

Mobile App

User manually enters what they eat into the app after each meal

Goal

2Food
Classification

Instead of entering food manually, user takes a picture of the food and the model identifies the food

Goal

3Nutrition Data
Retrieval

User is then given the nutrition facts (Calorie, Carb, Fat, Protein) about the food identified in the image

Goal

4

Personalised Meal Recommendation

User is provided with personalized healthy meal recommendations

DATASET Food Images

Food Images

Dataset	# Total Images	# Images per class	Source
Training Set	~26000	~900	Food 101 (Kaggle)
Validation Set	~2900	~100	Food 101 (Kaggle)
Testing Set	580	20	Web Scraping (Google/Bing)

29

Food Classes

Image Label Verification

samosa

Spring_rolls

Peking_duck

Chicken curry

Chicken curry

hummus

Spring rolls

Carrot_cake

ramen

pho

Miso_soup

Caesar salad

Pad thai

Peking duck

Miso soup

ramen

Carrot cake

The dataset contains image which are irrelevant or ambiguous. These images were manually reviewed and removed accordingly.

Image Data Augmentation

Step Random Flip Images are randomly flipped horizontally

Step Random Rotation Images are randomly rotated clockwise/ anti-clockwise

Step **Random Translation** Images are randomly shifted left/right

More Data

Model benefits from learning from a larger dataset

More Robust

Model becomes more robust to the real life images taken at different angles

Augmented Image Examples

After Image Data Augmentation...

Dataset	# Total Images	# Images per class	Source
Training Set	~26000	~900	Food 101 (Kaggle)
Validation Set	~2900	~100	Food 101 (Kaggle)
Testing Set	580	20	Web Scraping (Google/Bing)

Removing irrelevant Images & Performing Image Data Augmentation (two augmentations per image)

Dataset	# Total Images	# Images per class	Source
Training Set	~76000	~2600	Food 101 (Kaggle)
Validation Set	~8700	~300	Food 101 (Kaggle)
Testing Set	580	20	Web Scraping (Google/Bing)

Modelling

How does CNN work?

State of the Art CNN Models

Transfer Learning

Models Setups

CNN Models

- 1 x Custom Model (From Scratch)
- 2 x Inception V3 (Transfer Learning)
- 1 x ResNet 50 (Transfer Learning)
- 2 x Inception-ResNetV2 (Transfer Learning)
- 2 x VGG16 (Transfer Learning)

Configurations:

- Optimizer: Adam
- Regularization:
 - Dropout
 - Early Stopping (pat = 3)
- Metric: Accuracy

Model Specs

Model	# Layers	# Total Params	# Trainable Params
Custom	15	~5m	~5m
VGG16	16	~134m	~120k
VGG16 Dropout	15	~15m	~555k
InceptionV3 Dropout	49	~24m	~2m
InceptionV3 GAP	48	~22m	~60k
ResNet50	50	~24m	~60k
Inception-ResNetV2	164	~54m	~44k
Inception-ResNetV2 Dropout	165	~56m	~1.6m

Image Preprocessing

Preprocessing Techniques

- InceptionV3: Normalize the pixel values between -1 and 1
- VGG16: Each color channel is zero-centered with respect to the ImageNet dataset, without scaling.

Original Images

VGG16 Preprocessed Images

Inception V3 Preprocessed Images

Evaluation

Model Benchmark

All models performed better than the baseline accuracy of 3.4%

Best Performing Model Inception V3 Dropout

Description:

Transfer Learning on Inception V3 Model with weights from ImageNet dataset.

- Inception V3 image preprocessing (normalized between -1 and 1)
- Fully Connected Layers:
 - Dense layers (1024 filters)
 - Dropout layer (0.5)
 - Dense layer (29 filters)
- 49 layers and 2 million parameters to finetune.

Top-N Accuracy Testing Set

Performance

Model	Top-1 Accuracy	Top-3 Accuracy	Top-5 Accuracy
Inception V3 Dropout	0.84	0.95	0.97

Top-1 Acc: X Incorrect Prediction

Top-2 Acc: ✓ Correct Prediction

Web App Demo

Confusion Matrix

Predicted Label

Accuracy and Misclassification Rate by Food Class

Misclassified Food Examples

True: miso_soup Pred:ramen

True: omelette Pred:fried rice

True: peking_duck Pred:samosa

True: omelette Pred:fried_rice

True: omelette Pred:peking_duck

True: peking_duck Pred:xiao long bao

True: omelette Pred:chicken_curry

True: omelette Pred:fried rice

True: peking_duck Pred:samosa

True: omelette Pred:fried rice

True: omelette Pred:fried_rice

True: peking_duck Pred:grilled_salmon

True: omelette Pred:hummus

True: peking_duck Pred:spring_rolls

True: peking_duck Pred:omelette

Limitations & Future Improvements

1

Multiple Food Types

Food Images can often contain multiple food classes (eg. Fish&Chips vs French Fries)

Possible Solution

Assign class_weight when training to prioritise certain classes over others

2

Large intra-class diversity

Food Images belonging to same class might be diverse in how they look (eg. Peking ducks – whole, sliced, duck rolls)

Possible Solution

Acquire more training data and/or
Split classes that have large diversity

3

Large inter-class similarity

Food Images of different classes might look very similar (eg. Sushi vs Sashimi)

Possible Solution

Acquire more training data and/or
Group very similar classes together