Nearest Neighbor

Peng Lingwei

August 16, 2019

Contents

19	19 Nearest Neighbor														2					
	19.1	NEAREST N	IEIGI	$\mathbf{H}\mathbf{B}$	OR															2
	19.2	ANALYSIS 1	-NN																	2
	19.3	Chernoff Bou	ınd .																	3
	19.4	Analysis k-N	Ν.																	4

19 Nearest Neighbor

19.1 NEAREST NEIGHBOR

- 1. Instance domain $(\mathcal{X}, \mathcal{Y}) \sim \mathcal{D}$;
- 2. Metric function $\rho: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$;
- 3. Training examples $S = ((\vec{x}_1, y_1), \dots, (\vec{x}_m, y_m));$
- 4. For each $\vec{x} \in \mathcal{X}$, let $(\pi_1(\vec{x}), \dots, \pi_m(\vec{x})) = \pi(\rho(\vec{x}, \vec{x}_i), \dots, \rho(\vec{x}, \vec{x}_m))$
- 5. Rules of k-NN in classification: return the majority label among $\{y_i : \pi_i(\vec{x}) \leq k\}$
- 6. Rules of k-NN in regression: return $h_S(\vec{x}) = \frac{\sum_{\pi_i \leq k} \rho(\vec{x}, \vec{x}_i) y_i}{\sum_{\pi_i \leq k} \rho(\vec{x}, \vec{x}_i)}$

19.2 ANALYSIS 1-NN

- 1. $\mathcal{X} = [0, 1]^d$, $\mathcal{Y} = \{0, 1\}$, $l(h, (\vec{x}, y)) = 1_{[h(\vec{x}) \neq y]}$, ρ is the Euclidean distance;
- 2. Define conditional probability: $\eta(\vec{x}) = \mathbb{P}_{\mathcal{D}}[y=1|\vec{x}];$
- 3. Bayes optimal rule: $h^*(\vec{x}) = 1_{[\eta(\vec{x}) > 1/2]}$;
- 4. Assume that η is c-Lipschitz: $\forall \vec{x}, \vec{x}' \in \mathcal{X}, |\eta(\vec{x}) \eta(\vec{x}')| \leq c ||\vec{x} \vec{x}'||$

Lemma 1. In 1-NN:

$$\mathbb{E}_{S \sim \mathcal{D}^m}[L_{\mathcal{D}}(h_S)] \le 2L_{\mathcal{D}}(h^*) + c\mathbb{E}_{S \sim \mathcal{D}^m, \vec{x} \sim \mathcal{D}}\left[\|\vec{x} - \vec{x}_{i:\pi_i(\vec{x})=1}\|\right]$$

Proof.

$$\begin{split} \mathbb{E}_{S \sim \mathcal{D}^m} \{L_{\mathcal{D}}(h_S)\} = & \mathbb{E}_{S \sim \mathcal{D}^m} \{\mathbb{E}_{(\vec{x},y) \sim \mathcal{D}}[\mathbf{1}_{[h_S(\vec{x}) \neq y]}]\} \\ = & \mathbb{E}_{S_x \sim \mathcal{D}_{\mathcal{X}}^m, \vec{x} \sim \mathcal{D}, y \sim \eta(\vec{x}), y' \sim \eta(x_{i:\pi_i(\vec{x}) = 1})} \left[\mathbf{1}_{[y \neq y']}\right] \\ = & \mathbb{E}_{S_x \sim \mathcal{D}_{\mathcal{X}}^m, \vec{x} \sim \mathcal{D}} \left[\mathbb{P}_{y \sim \eta(\vec{x}), y' \sim \eta(x_{i:\pi_i(\vec{x}) = 1})} \left[y \neq y'\right]\right] \end{split}$$

For any two domain points \vec{x}, \vec{x}' :

$$\begin{split} \mathbb{P}_{y \sim \eta(\vec{x}), y' \sim \eta(\vec{x}')} = & \eta(\vec{x}')(1 - \eta(\vec{x})) + (1 - \eta(\vec{x}'))\eta(\vec{x}) \\ = & 2\eta(\vec{x})(1 - \eta(\vec{x})) + (\eta(\vec{x}) - \eta(\vec{x}'))(2\eta(\vec{x}) - 1). \end{split}$$

Using $|2\eta(\vec{x}) - 1| \le 1$ and the assumption that η is c - Lipschitz, then

$$\mathbb{P}_{v \sim \eta(\vec{x}), v' \sim \eta(\vec{x}')} = 2\eta(\vec{x})(1 - \eta(\vec{x})) + c\|\vec{x} - \vec{x}'\|.$$

$$\mathbb{E}_{S \sim \mathcal{D}} \left[L_{\mathcal{D}}(h_S) \right] \leq \mathbb{E}_{\vec{x} \sim \mathcal{D}} \left[2\eta(\vec{x})(1 - \eta(\vec{x})) \right] + c \mathbb{E}_{S_x \sim \mathcal{D}, \vec{x} \sim \mathcal{D}} \left[\|\vec{x} - \vec{x}_{i:\pi_i(\vec{x})=1} \| \right]$$
$$L_{\mathcal{D}}(h^*) = \mathbb{E}_{\vec{x} \sim \mathcal{D}} \left[\min \left\{ \eta(\vec{x}), 1 - \eta(\vec{x}) \right\} \right] \geq \mathbb{E}_{\vec{x}} \left[\eta(\vec{x})(1 - \eta(\vec{x})) \right].$$

Then we bound the second part of preceeding inequation's right side.

Lemma 2. Let C_1, \ldots, C_r be a collection of subsets of some domain set \mathcal{X} . Then,

$$\mathbb{E}_{S \sim \mathcal{D}^m} \left[\sum_{i: C_i \cap S = \emptyset} \mathbb{P}[C_i] \right] \le \frac{r}{me}$$

Proof.

$$\mathbb{E}_{S \sim \mathcal{D}^m} \left[\sum_{i:C_i \cap S = \emptyset} \mathbb{P}[C_i] \right]$$

$$= \sum_{i=1}^r \mathbb{P}\left[C_i\right] \mathbb{E}_{S \sim \mathcal{D}^m} \left[1_{[C_i \cap S = \emptyset]} \right] = \sum_{i=1}^r \mathbb{P}\left[C_i\right] \mathbb{P}_{S \sim \mathcal{D}} \left[C_i \cap S = \emptyset\right]$$

$$= \sum_{i=1}^r \mathbb{P}\left[C_i\right] \left(1 - \mathbb{P}\left[C_i\right]\right)^m \le \sum_{i=1}^r \mathbb{P}\left[C_i\right] e^{-\mathbb{P}\left[C_i\right]m}$$

$$\le r \max_i \mathbb{P}\left[C_i\right] e^{-\mathbb{P}\left[C_i\right]m} \le \frac{r}{me}$$

Theorem 1. $\mathbb{E}_{S \sim \mathcal{D}^m} [L_{\mathcal{D}}(h_S)] \leq 2L_{\mathcal{D}}(h^*) + 2c\sqrt{d}m^{-\frac{1}{d+1}}$

Proof. We cut $\mathcal{X} = [0,1]^d$ into $N \times \cdots \times N$ hypertable, which divide sample space into $r = N^d$ pieces, C_1, \ldots, C_r .

 $\forall \vec{x}, \vec{x}', \text{ if they are in the same box, we have } ||\vec{x} - \vec{x}'|| \leq \frac{\sqrt{d}}{T}.$ Otherwise, $||\vec{x} - \vec{x}'|| \leq \sqrt{d}.$

$$\begin{split} \mathbb{E}_{\vec{x},S} \left[\| \vec{x} - \vec{x}_{i:\pi_i(\vec{x})=1} \| \right] \leq & \mathbb{E}_S \left[\mathbb{P} \left[\bigcup_{i:C_i \cap S = \emptyset} C_i \right] \sqrt{d} + \mathbb{P} \left[\bigcup_{i:C_i \cap S \neq \emptyset} C_i \right] \sqrt{d} / T \right] \\ \leq & \sqrt{d} \left(\frac{T^d}{me} + \frac{1}{T} \right) \leq \sqrt{d} \left(\frac{me}{d} \right)^{-\frac{1}{d+1}} \left\{ \frac{1}{d} + 1 \right\} \\ < & 2\sqrt{d} m^{-1/(d+1)} \end{split}$$

The theorem shows that if we want the error gap is smaller than ϵ , the sample size $m \geq \left(2c\sqrt{d}/\epsilon\right)^{d+1}$, we call it the "curse of dimensionality".

 $\forall c > 1$, guarantees $\eta(\vec{x})$ is c-Lipschitz. If $m \leq (c+1)^d/2$, the true error of the rule L is greater than 1/8 with probability greater than 1/7. (The proof is in the book.)

19.3 Chernoff Bound

Chebyshev's Inequality only requires the pairwise independence of the variables $\{X_i\}$. Donote $Z = \sum X_i$, so the bound

$$\forall a > 0, \mathbb{P}\left[\left|Z - \mathbb{E}\left[Z\right]\right| \ge a\right] = \mathbb{P}\left[\left(Z - \mathbb{E}\left[Z\right]\right)^2 \ge a^2\right] \le \frac{Var\left[Z\right]}{a^2}$$

is not satisfying for i.i.d. variables X_i .

Theorem 2. Let X_1, \ldots, X_m be independent Bernoulli variables where for every i, $\mathbb{P}[X_i = 1] = p_i$ and $\mathbb{P}[X_i = 0] = 1 - p_i$. Let $Z = \sum_{i=1}^m X_i$ and $p = \mathbb{E}[Z] = \sum_{i=1}^m p_i$.

1. Upper Tail:
$$\forall \delta > 0, \mathbb{P}(Z \ge (1+\delta)\mu) \le e^{-\frac{\delta^2}{2+\delta}\mu};$$

2. Lower Tail:
$$\forall \delta \in (0,1), \mathbb{P}(Z \leq (1-\delta)\mu) \leq e^{-\frac{\delta^2}{2+\delta}\mu}$$

Proof. Step1: $\delta > 0$:

$$\mathbb{E}\left[e^{tZ}\right] = \mathbb{E}\left[e^{t\sum_{i}X_{i}}\right] = \prod_{i}\mathbb{E}\left[e^{tX_{i}}\right] = \prod_{i}\left(p_{i}e^{t} + (1-p_{i})\right) \leq \prod_{i}e^{p_{i}(e^{t}-1)} = e^{p(e^{t}-1)}$$

$$\mathbb{P}\left[Z \geq (1+\delta)p\right] \leq \min_{t>0} \frac{\mathbb{E}\left[e^{tZ}\right]}{e^{(1+\delta)tp}} \leq \min_{t>0} e^{p(e^t-1)-(1+\delta)tp} = e^{-p\left[(1+\delta)\ln(1+\delta)-\delta\right]}$$

Let's take a break, and study the function $f(\delta) = \ln(1+\delta) - \frac{\delta}{1+k\delta}$: $f'(\delta) = \frac{k^2\delta^2 + (2k-1)\delta}{(1+\delta)(1+k\delta)^2}$. If $k \geq \frac{1}{2}$, $\forall \delta > 0$, $f(\delta) \geq f(0) = 0 \Rightarrow \ln(1+\delta) \geq \frac{\delta}{1+k\delta}$.

$$\mathbb{P}\left[Z \ge (1+\delta)p\right] \le e^{-p \cdot \frac{(1-k)\delta^2}{1+k\delta}} = e^{-p\frac{\delta^2}{2+\delta}}$$

Step2: $\delta \in (0,1)$:

$$\mathbb{P}\left[Z \leq (1-\delta)p\right] \leq \min_{t>0} \frac{\mathbb{E}\left[e^{-tZ}\right]}{e^{-tp(1-\delta)}} \leq \min_{t>0} e^{p(e^{-t}-1)+tp(1-\delta)} \leq e^{-p((1-\delta)\ln(1-\delta)+\delta)}$$

$$(1 - \delta)\ln(1 - \delta) + \delta = \sum_{i=1}^{\infty} \frac{\delta^{i+1}}{i(i+1)} \ge \sum_{i=1}^{\infty} \frac{(-\delta)^{i+1}}{i(i+1)} = ((1 + \delta)\ln(1 + \delta) - \delta)$$

Then, we can get the same bound:

$$\mathbb{P}\left[Z \le (1-\delta)p\right] \le e^{-p \cdot \frac{(1-k)\delta^2}{1+k\delta}} = e^{-p\frac{\delta^2}{2+\delta}}$$

19.4 Analysis k-NN

Lemma 3. Let C_1, \ldots, C_r be a collection of subsets of some domain set, \mathcal{X} . Then $\forall k \geq 2$,

$$\mathbb{E}_{S \sim \mathcal{D}^m} \left[\sum_{i: |C_i \cap S| < k} \mathbb{P}\left[C_i\right] \right] \le \frac{2rk}{m}.$$

Proof.

$$\mathbb{E}_{S \sim \mathcal{D}^m} \left[\sum_{i:|C_i \cap S| < k} \mathbb{P}_{\mathcal{D}} \left[C_i \right] \right] = \mathbb{E}_{S \sim \mathcal{D}^m} \left[\sum_{i=1}^r \mathbb{P}_{\mathcal{D}} \left[C_i \right] 1_{\left[|C_i \cap S| < k \right]} \right]$$
$$= \sum_{i=1}^r \mathbb{P}_{\mathcal{D}} \left[C_i \right] \mathbb{P}_{S \sim \mathcal{D}} \left[|C_i \cap S| < k \right]$$

If $k \geq \mathbb{P}[C_i] m/2$,

$$\mathbb{P}_{\mathcal{D}}\left[C_{i}\right]\mathbb{P}_{S \sim \mathcal{D}}\left[\left|C_{i} \cap S\right| < k\right] \leq \mathbb{P}_{\mathcal{D}}\left[C_{i}\right] \leq \frac{2k}{m}$$

If $k < \mathcal{P}_{\mathcal{D}}[C_i] m/2$, then

$$\mathbb{P}_{S \sim \mathcal{D}}\left[\left|C_{i} \cap S\right| < k\right] \leq \mathbb{P}_{S \sim \mathcal{D}}\left[\left|C_{i} \cap S\right| < \left(1 - \frac{1}{2}\right)\mathbb{P}_{\mathcal{D}}\left[C_{i}\right]m\right] \leq e^{-\mathbb{P}_{\mathcal{D}}\left[C_{i}\right]m/10}$$

$$\mathbb{P}_{\mathcal{D}}\left[C_{i}\right]\mathbb{P}_{S \sim \mathcal{D}}\left[\left|C_{i} \cap S\right| < k\right] \leq \mathbb{P}_{\mathcal{D}}\left[C_{i}\right]e^{-P_{D}\left[D_{i}\right]m/10} \leq \frac{10}{me} \leq \frac{4}{m} \leq \frac{2k}{m}$$

Lemma 4. Let $p = \frac{1}{k} \sum_{i=1}^{k} p_i$, and $p' = \frac{1}{k} \sum_{i=1}^{k} X_i$. Then

$$\mathbb{E}_{X_1,...,Z_k} \mathbb{P}_{y \sim p} \left[y \neq 1_{[p' > 1/2]} \right] \le \left(1 + \sqrt{\frac{8}{k}} \right) \mathbb{P}_{y \sim p} \left[y \neq 1_{[p > 1/2]} \right]$$

Proof.

$$\begin{split} \mathbb{E}_{X_1,...,X_k} \mathbb{P}_{y \sim p} \left[y \neq \mathbf{1}_{[p' > 1/2]} \right] = & p \left(1 - \mathbb{P}_{X_1,...,X_k} \left[p' > 1/2 \right] \right) + \left(1 - p \right) \left(\mathbb{P}_{X_1,...,X_k} \left[p' > 1/2 \right] \right) \\ = & p + \left(1 - 2p \right) \left(\mathbb{P}_{X_1,...,X_k} \left[p' > 1/2 \right] \right) \end{split}$$

$$\mathbb{P}_{X_1,...,X_k}\left[p' > 1/2\right] = \mathbb{P}_{X_1,...,X_k}\left[\sum_{i=1}^k X_i \ge k/2\right] = \mathbb{P}_{X_1,...,X_k}\left[\sum_{i=1}^k X_i \ge (1 + \frac{1}{2p} - 1)kp\right]$$

If $p \leq \frac{1}{2}$, $\mathbb{P}_{X_1,...,X_k}[p' > 1/2] \leq e^{-kph\left(\frac{1}{2p}-1\right)} = e^{-kp+\frac{k}{2}(\log(2p)+1)}$ (If $p > \frac{1}{2}$, we study the random variables $1 - X_1, \ldots, 1 - X_k$, the error times keep unchanged.)

There is a inequation: $(1-2p)e^{-kp+\frac{k}{2}(\log(2p)-1)} \le p\sqrt{\frac{8}{k}}$

$$\mathbb{E}_{X_1,...,X_k} \mathbb{P}_{y \sim p} \left[y \neq 1_{[p' > 1/2]} \right] \leq \left(1 + \sqrt{\frac{8}{k}} \right) p$$

Lemma 5. $\forall p, p' \in [0, 1], y' \in \{y, y'\}, \mathbb{P}_{y \sim p} [y \neq y'] - \mathbb{P}_{y \sim p'} [y \neq y'] \leq |p - p'|.$

Proof. If
$$y' = 0$$
, $\mathbb{P}_{y \sim p} [y \neq 0] - \mathbb{P}_{y \sim p'} [y \neq 0] \leq p - p$;
If $y' = 1$, $\mathbb{P}_{y \sim p} [y \neq 1] - \mathbb{P}_{y \sim p'} [y \neq 1] \leq (1 - p) - (1 - p') = p' - p$.

Theorem 3. Let C_1, \ldots, C_r be the cover of the set \mathcal{X} using boxes of length ϵ .

$$\mathbb{E}_{S}\left[L_{\mathcal{D}}(h_{S})\right] \leq \left(1 + \sqrt{\frac{8}{k}}\right) L_{\mathcal{D}}(h^{*}) + (3c\sqrt{d} + 2k)m^{-1/(d+1)}.$$

П

Proof. First we get a loose bound:

$$\mathbb{E}_{S \sim \mathcal{D}} \left[L_{\mathcal{D}}(h_S) \right] \leq \mathbb{E}_{S \sim \mathcal{D}} \left[\sum_{i: |C_i \cap S| < k} P_{\mathcal{D}} \left[C_i \right] \right]$$
$$+ \max_{j} \mathbb{P}_{S, (\vec{x}, y)} \left[h_S(\vec{x}) \neq y | \forall j \in [k], ||\vec{x} - \vec{x}_{j: \pi_j(\vec{x}) \leq k}|| \leq \epsilon \sqrt{d} \right]$$

If a cell doesn't contain k instances from the training set and test point \vec{x} gets from this "bad cell", we think it's a kind of mistake. Only if test point \vec{x} gets from a "good cell", there is probability for correct prediction. Let $p=\frac{1}{k}\sum_{i=1}^k \eta(\vec{x}_i)<1/2.$

Let
$$p = \frac{1}{k} \sum_{i=1}^{k} \eta(\vec{x}_i) < 1/2$$
.

$$\mathbb{E}_{y_{1},...,y_{m}} \mathbb{P}_{y \sim \eta(\vec{x})} \left[h_{S}(\vec{x}) \neq y \right] \leq \mathbb{E}_{y_{1},...,y_{m}} \mathbb{E}_{y \sim p} \left[h_{S}(\vec{x}) \neq y \right] + |p - \eta(\vec{x})| \\
\leq \left(1 + \sqrt{\frac{8}{k}} \right) \mathbb{P}_{y \sim p} \left[1_{[p > 1/2]} \neq y \right] + |p - \eta(\vec{x})| \\
\leq \left(1 + \sqrt{\frac{8}{k}} \right) \left(\min\{ \eta(\vec{x}), 1 - \eta(\vec{x}) \} + |p - \eta(\vec{x})| \right) + |p - \eta(\vec{x})| \\
\leq \left(1 + \sqrt{\frac{8}{k}} \right) L_{\mathcal{D}}(h^{*}) + \left(2 + \sqrt{\frac{8}{k}} \right) |p - \eta(\vec{x})| \\
\leq \left(1 + \sqrt{\frac{8}{k}} \right) L_{\mathcal{D}}(h^{*}) + 3c\epsilon\sqrt{d}$$

$$\mathbb{E}_{S \sim \mathcal{D}}\left[L_{\mathcal{D}}\left(h_{S}\right)\right] \leq \left(1 + \sqrt{\frac{8}{k}}\right) L_{\mathcal{D}}(h^{*}) + 3c\epsilon\sqrt{d} + \frac{2k}{m\epsilon^{d}}$$

If
$$\epsilon = m^{-1/(d+1)}$$
, $\mathbb{E}_{S \sim \mathcal{D}} [L_{\mathcal{D}}(h_S)] \le \left(1 + \sqrt{\frac{8}{k}}\right) L_{\mathcal{D}}(h^*) + (3c\sqrt{d} + 2k)m^{-1/(d+1)}$

6