随机信号处理mooc

2021年9月27日 10:55

参考:《随机信号处理-西安电子科技大学-赵国庆》

https://www.bilibili.com/video/BV16s411p7iX

绪论

动态的随机过程-具有明确的时间概念

随机试验

三个特征

- 可重复性: 可以在同一条件下多次进行

- 结果的可限定性: 确定的结果范围

- 结果的随机性

样本空间

定义: 随机试验中华所有可能结果的集合称为样本空间Ω

定义波雷尔实践域F

Ω中若干元素的集合称为F,满足下列性质

- 若A∈F, 则¬A∈F, ¬A=Ω-A
- Ω∈F
- 若Ai∈F, i=1,2,3···, 则∪Ai∈F (可加性)

F的含义: 在Ω中讨论是有意义的

概率空间

定义: 设 $X(\omega)$ 为 Ω 中的一个函数, $\omega \in F$, $X(\omega) = x \in R1$ (ω 可以看成一个事件, x是随机变量), 若满足:

- 非负性 P(X)≥0
- 完备性 P(Ω∞)=1
- 可列可加性 P(∪Xi)=ΣP(Xi),对于任意i,j, Xi∪Xj=∞ P为概率 (测度)
- (Ω, F, P) 称为概率空间

要从古典模型脱离出来,在数学上进行讨论

随机变量的概念

从随机事件到随机数值

定义:函数 $X(\omega)$, $\omega \in \Omega$, $X(\omega) \in R1$, $X(\omega) = x$, 之后的讨论就可以按照数值去讨论讨论x, 随机变量

- X(ω)=x∈R1中离散数值的集合, 称之为离散的随机变量
- x∈R1中某个区间或全部,称之为连续的随机变量,例如噪声

离散随机变量

$$\begin{pmatrix} x_i \\ P(x_i) \end{pmatrix}_{i=1}^{\infty}$$

概率密度函数/概率分布

$$\Sigma P(xi)=1$$
, $P(xi)\geq 0$

连续随机变量

定义: x的分布函数F(x), 概率密度函数f(x)

F(x)=P(X≤x), X — 随机变量, x — R1中任意实数

F(x1)≤F(x2), x2≥x1, 单调不减

 $F(x) = \int_{-\infty}^{x} f(s) ds f(x) 为X的概率密度函数$

$$f(x) = \frac{\partial F(x)}{\partial x} \ge 0$$

-∞为0,∞为1

离散随机变量也有F(x)=ΣP(xi), xi≤x

引入δ函数

 $f(x) = \sum P(xi)\delta(x-xi)$

多维随机变量

x1, x2…xn∈R1

多维概率分布

$$\Omega = \begin{pmatrix} x_1, x_2 \cdots x_n \\ P(x_1 = x_1 \cdots x_n = x_n) & \cdots \end{pmatrix}$$

 $F_x(x_1, x_2 \cdots x_n)$ 多维

$$\frac{\partial^n F_x(x_1, x_2 \cdots x_n)}{\partial x_1, x_2 \cdots x_n} = f_x(x_1, x_2 \cdots x_n)$$
 多维概率密度函数

若 $x_1, x_2 \cdots x_n$ 相互独立 $F_x(x_1, x_2 \cdots x_n) = \prod_{i=1}^n F_x(x_i)$

随机变量函数的分布

以随机变量为自变量的函数g(x)称为随机变量函数

条件:已知随机变量x的分布,y=g(x),y的分布一般是随机变量

$$F(y)=P(Y \le y)=\int_{-\infty}^{y} f_{Y}(p)dp$$

f_Y(y) 概率密度函数

$$\int_{-\infty}^{y} f_{Y}(p) dp = \int_{-\infty}^{x} f_{x}(q) dq$$
 其中 $x=g^{-1}(y)$

两侧对y求偏导

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{\partial g^{-1}(y)}{\partial y} \right|$$
 雅可比变换

补充: 雅可比变换 https://blog.csdn.net/haoshu1231/article/details/116978706

当z' = f(z)且q表示分布函数时:

$$q(\mathbf{z}') = q(\mathbf{z}) \left| \det \frac{\partial f^{-1}}{\partial \mathbf{z}'} \right| = q(\mathbf{z}) \left| \det \frac{\partial f}{\partial \mathbf{z}} \right|^{-1}, \quad (5)$$

这里补充记录下雅克比变换的数学知识。当我们知道x的概率分布时,雅可比变换是一种确定变量y的概率分布的代数方法,其中y是关于x的函数。首先定义:

- 变量x的概率密度函数为f(x),累积分布函数为F(x);
- 变量y的概率密度函数为f(y),累积分布函数为F(y);
- y与x具有函数关系,且呈单调递增

那么我们认为累积分布函数的变化是一致的:

$$dF(y) = dF(x)$$

从而有:

|f(y)dy| = |f(x)dx|

重构之后,可以得到:

$$f(y) = \left| rac{dx}{dy}
ight| f(x)$$
 其中, $\left| rac{dx}{dy}
ight|$ 就是神奇的Jacobian(雅克比行列式)

使用雅可比变换求y的分布 (正态分布可以利用线性变换性质)

例:

已知x有概率密度函数 $f_x(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$, $-\infty < x < \infty$, 即标准正态分布N(0,1), 若有

y=σx+a, 求y的概率分布密度函数

解:

$$x=(y-a)/\sigma=g^{-1}(y)$$

$$f_{Y}(y) = \frac{1}{\sqrt{2\pi \sigma}} e^{-\frac{(y-a)^{2}}{2\sigma^{2}}} -\infty < y < \infty, 即为N(a,\sigma^{2})$$

Tips: 求g-1(y)时口能否写成x的显函数

随机变量的数字特征

数学期望 (均值) E[x]

离散随机变量 $m_x = \sum_{i=-\infty}^{\infty} x_i P_i \quad P_i = P(x = x_i)$

连续随机变量 $m_x = \int_{-\infty}^{\infty} x f_x(x) dx$

E[q(x)] 求均值的算子

性质:

- a. E[c]=c
- b. $E[kX]=km_x$
- c. $E[X+Y] = m_x + m_y$
- (2,3满足线性系统,E算子是一个线性算子)

a. 若X与Y独立, E[XY]=E[X]E[Y]

方差和标准差

方差 $D[X] = E[(x - m_x)^2] = \int_{-\infty}^{\infty} (x - m_x)^2 f_x(x) dx$ 离散情况 $\sum_{-\infty}^{\infty} (x - m_x)^2 P_i$ 标准差 $\sqrt{D[X]}$

性质:

- a. D[c]=0
- b. $D[x]=E[X^2]-(m_x)^2$ $E\left[X^2\right]$ 总功率 D[x]交流功率(起伏功率) $\left(m_x\right)^2$ 直流功率
- c. $D[x] \ge 0$
- d. 若X与Y不相关, D[X±Y]=D[X]±D[Y]

协方差和相关函数

 $C(X,Y) = E[(x-m_x)(y-m_y)] = \iint_{-\infty}^{\infty} (x-m_x)(y-m_y) f_{X,Y}(x,y) dxdy$

- a. C(X,Y)=0, X, Y不相关
- b. 若X, Y独立,则C(X,Y)=0 独立肯定不相关,不相关不一定独立
- c. C(aX,bY)=abC(X,Y)
- d. 若C(X,X),和方差一样
- e. C(X,Y)=C(Y,X) 复随机变量不能随意交换
- f. 若C(X,c), 其中c为常数,则C(X,c)=0
- g. $C(X,Y\pm Z)=C(X,Y)\pm C(X,Z)$

相关函数 $R(X,Y)=E[XY]=\iint_{-\infty}^{\infty}xyf(x,y)dxdy$ $C(X,Y)=R(X,Y)-m_xm_y-m_ym_x+m_xm_y=R(X,Y)-m_xm_y$ 所以 $R(X,Y)=C(X,Y)+m_xm_y$ 相关函数比协方差函数多了各自直流量的乘积 若R(X,Y)=0,称之为正交

相关系数

对协方差函数进行归一化

$$\begin{split} \rho(X,Y) &= \frac{C(X,Y)}{\sqrt{D(X)D(Y)}} \\ \oplus \mathcal{F} &|C(X,Y)| \leq \sqrt{D(X)D(Y)} \\ \text{所以} &|\rho(X,Y)| \leq 1 \\ \text{不相关} &\rho(X,Y) = 0 \\ \\ \mathcal{E}\rho(X,Y) &= \pm 1, \ \text{全相关} \end{split}$$

C会收到能量大小的影响, p值表现两者的关系

随机变量的特征函数

特征函数是一个数学概念,并没有对应的物理意义

复随机变量

定义: 若x, y为实随机变量,则z=x+jy为复随机变量

$$E[z] = E[x+jy] = \iint_{\square}^{\square} (x+jy)f(x,y)dxdy = m_x + jm_y = m_z$$

$$D[z]=E[(z-m_z)^*(z-m_z)]$$
 为求模的平方取共轭= $D[x]+D[Y]$

$$C[z_1, z_2] = E[(z_1 - m_{z_1})^* (z_1 - m_{z_1})]$$

$$R[z_1, z_2] = E[x_1 z_2]$$

正交
$$R[z_1, z_2] = 0$$

独立 若f(x₁, y₁, x₂, y₂)=f(x₁, y₁)f(x₂, y₂) 则z₁, z₂相互独立

随机变量的特征函数

定义:
$$\phi_x(\lambda) = E\left[e^{j\lambda x}\right] = \int_{-\infty}^{\infty} e^{j\lambda x} f_x(x) dx$$
 少了一个负号,不用 ω ,为了和傅里叶变换区分,只是为了利用其数学工具

特征函数的性质

- 1. $\phi_{\nu}(\lambda)$, 若 $\lambda = 0$, 则 $\phi_{\nu}(\lambda) = 1$
- 2. 若 $\phi_x(\lambda)$ 已知,若有y = ax + b, $\phi_y(\lambda) = E\left[e^{j\lambda y}\right] = E\left[e^{j\lambda(ax+b)}\right] = e^{j\lambda b}E\left[e^{j\lambda ax}\right] = e^{j\lambda b}\phi_x(a\lambda)$
- 3. 若x,y是独立的随机变量,z=x+y,则 $\phi_z(\lambda)$ = $\phi_x(\lambda)\phi_y(\lambda)$

$$\mathsf{E}\left[e^{j\lambda z}\right] = \mathsf{E}\left[e^{j\lambda(x+y)}\right] = \mathsf{E}\left[e^{j\lambda x}\cdot\ e^{j\lambda y}\right] = \phi_x(\lambda)\phi_y(\lambda)$$

4.
$$f_x(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \phi_x(\lambda) e^{-j\lambda x} d\lambda$$

特征函数与矩函数的关系

矩:对随机变量本身的幂或随机变量减均值以后的幂,求概率平均,称为矩

原点矩:对随机变量本身的幂

中心矩:对随机变量减均值以后的幂

总的幂次称之为矩的阶数

均值:一阶原点矩

方差: 二阶中心矩

协方差:两个变量的二阶中心矩

相关系数: 二阶原点矩

求x的n阶原点矩 $E[x^n] = \frac{\partial^n \phi_x(\lambda)}{j^n \partial \lambda^n}$

令
$$\lambda = 0$$
 $\frac{\partial^n}{j^n \partial \lambda^n} \ E\left[e^{j\lambda x}\right] = \frac{1}{j^n} E\left[\frac{\partial^n e^{j\lambda x}}{\partial \lambda^n}\right] = \frac{1}{j^n} E\left[(jx)^n e^{j\lambda x}\right] = E\left[x^n e^{j\lambda x}\right]$ 带入 $\lambda = 0$ $= E[x^n]$

利用求导运算替代了n次积分运算

多维随机变量的特征函数

$$\begin{split} \phi_{x_1\cdots x_n}(\lambda_1\cdots\lambda_n) = & E\left[e^{j(\sum_{i=1}^n\lambda_ix_i)}\right] = n \equiv 积分 \ \iint_{-\infty}^{\infty} f(x_1\cdots x_n) \, e^{j(\sum_{i=1}^n\lambda_ix_i)} dx_1\cdots dx_n \\ & \ddot{\pi}x_1\cdots x_n H 互独立 \ \phi_{x_1\cdots x_n}(\lambda_1\cdots\lambda_n) = \prod_{i=1}^n \phi_{x_i}(\lambda_i) \end{split}$$

推广,求原点矩 $记\Sigma_{i=1}^n i_j \ \, 为 \ \, K \\ E[x_1^{i_1}\cdots x_n^{i_n}] = \frac{\partial^K}{\partial^K} \frac{[\phi_{x_1\cdots x_n}(\lambda_1\cdots \lambda_n)]}{\partial x_1^{i_1}\cdots x_n^{i_n}} \ \, 令所有的\lambda_n = 0$

特征函数的目的: 便于计算, 利用傅里叶中的数学工具, 解决之后的问题

切比雪夫不等式与极限定理

切比雪夫不等式

定理: $P(|x - m_x| \ge \epsilon) \le \frac{D[x]}{\epsilon^2}$, $\epsilon \in \forall R1$

证明:

若x为离散随机变量,左边= $\sum_{|x_i-m_x|\geq \varepsilon} P_i = \sum_{(x_i-m_x)^2\geq \varepsilon^2} P_i \leq \sum_{(x_i-m_x)^2\geq \varepsilon^2} P_i \frac{(x_i-m_x)^2}{\varepsilon^2} \leq \sum_{(x_i-m_x)^2\geq \varepsilon^2} P_i \frac{(x_i-m_x)^2}{\varepsilon^2} = \frac{1}{\varepsilon^2} \sum_{(x_i-m_x)^2\geq \varepsilon^2} P_i (x_i-m_x)^2 = \frac{D[x]}{\varepsilon^2}$ 告诉了某个随机变量的取值范围和方差的关系

(如果是连续变量,同理)

中心极限定理

- 1. 独立同分布 $x_1 \cdots x_n$, $y = \sum_{i=1}^n x_i$ 的分布,当n足够大的时候,其概率分布趋于正态分布 $N(nm, n\sigma^2)$
- 2. 独立不同分布但有相同的均值方差,n足够大,y = $\sum_{i=1}^{n} x_i$ 趋于正态分布N $\left(\text{nm}, \text{n}\sigma^2\right)$
- 二项分布P, (1-P), 一次实验记为x_i可以看成定理1的一个具体应用m=P, E[X²]=P, D[x]=P(1-P)正态分布为N(np, np(1 p))

随机过程的基本概念

定义

- 1. 设随机试验E具有样本空间S,对S的任意元素e都按照某种规则,确定了一个样本函数 x(e,t),则S中全体元素构成的样本函数族成为随机过程 (每个样本都是时间的函数)
- 2. 对于任意给定的时间t,都有一个随机变量x(t)与之对应,则x(t)称为随机过程两个特点:
 - 1. 随着时间随机变化
 - 2. 给定时间为随机变量

(以前没有讨论随机变量和时间的关系,只是单纯数值的概念)

分类

按时域和值域中的类型来划分

离散/连续

- a. 离散随机序列 离散时域+离散值域 数字信号处理非常多
- b. 连续随机序列 连续+离散

- c. 离散随机过程 离散+连续
- d. 连续随机过程 连续+连续 之后主要讨论这部分

概率分布

一维概率分布: 给定一个时间t x(t)为随机变量, $F_x(x,t)=P(x(t)\leq x)$ n维概率分布: 在同一个时间过程中抽样了n次 $F_x\big(x_1\cdots x_n,t_1\cdots t_n\big)=P\big(x(t_1)\leq x_1\cdots x(t_n)\leq x_n\big)$

概率密度 一维离散随机过程/序列 $\left(\frac{x_i(t)}{P_i(t)}\right)_i$ (不是分式是上下的两个值)

 $f_x(x_1 \cdots x_n, t_1 \cdots t_n) = \frac{\partial^n F(x_1 \cdots x_n, t_1 \cdots t_n)}{\partial x_1 \cdots \partial x_n}$

独立随机过程: 白噪声

矩函数

均值: $E[x(t)] = \int_{-\infty}^{\infty} x(t) f_x(x(t), t) dx(t)$

时间函数 $m_x(t) = \int_{-\infty}^{\infty} x f_x(x,t) dx$ 例如: 一天内的平均温度, 和所取时间有关

方差: $D[x(t)] = E[(x(t) - m_x(t))^2] = E[x(t)^2] - m_x(t)^2 = \sigma_t^2(t)$

协方差: $C_x(t_1,t_2) = E[(x(t_1)-m_x(t_1))((x(t_2)-m_x(t_2))] = E[x(t_1)x(t_1)] - m_x(t_1)m_x(t_2)$

相关函数: $R_x(t_1,t_2) = E[x(t_1)x(t_1)] = \iint_{-\infty}^{\infty} x_1x_2 f_x(x_1,x_2,t_1,t_2) dx_1 dx_2$

将复杂的问题, 简化为两个时间之间的关系

特征函数

$$\varphi_{x}(\lambda,t) = \int_{-\infty}^{\infty} e^{j\lambda x} f_{x}(x,t) dx = E\left[e^{j\lambda x(t)}\right]$$

$$\varphi_{x}\left(\lambda_{1} \cdots \lambda_{n}, t_{1} \cdots t_{n}\right) = E\left[e^{j(\sum_{i=1}^{n} \lambda_{i} x(t_{i})}\right]$$

依然没有意义,用于数学计算

特征函数和矩函数的关系同样适用

平稳随机过程

定义和分类

若 $F_x(x_1\cdots x_n,t_1\cdots t_n)=F_x(x_1\cdots x_n,t_{1+\varepsilon}\cdots t_{n+\varepsilon})$,对于任意 $\varepsilon\in R1$,任意 $n<\infty$,均满足,称x(t)为严格平稳的随机过程/强平稳的随机过程

此时一阶矩函数和时间无关, 二阶矩函数和时间的间隔长度有关

广义平稳的随机过程/弱平稳

若,对于 $\forall t$, $m_x(t) = m_x$,且 $R_x(t_1, t_2) \equiv R_x(t_2, t_1)$,为广义平稳的随机过程推论: $C_x(t_1, t_2) = R_x(t_1, t_2) - m_x(t_1)m_x(t_2) = R_x(t_1, t_2) - m_x^2 = C_x(t_2, t_1)$ 例:

噪声调幅信号 $X(t) = N(t) \cos(\omega t + \varphi)$ 其中N(t)为广义平稳的随机过程, ω 为常数, $\varphi \in [0,2\pi)$ 上均匀分布的随机变量,证明X(t)为平稳随机过程 若 φ 为常数,不再是广义平稳过程

各态历经过程

定义时间平均算子< g(x(t)) > = $\lim_{T\to\infty} \frac{1}{2T} \int_{-T}^{T} g(x(t)) dt$ 在一个足够长的时间内,计算均值,即使含有随机过程

定义各态历经过程

若X(t)任意阶的矩都与其时间平均以概率1相等(不相等的概率为0),则称其为各态历经过程

$$P(|E[x^n(t)] - \langle x^n(t) \rangle| \le \varepsilon) = 1, \ \forall \varepsilon > 0$$

广义各态历经

只要求均值,相关函数满足

$$E[x(t)] = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) dt$$

$$E[x(t_1)x(t_1 + \tau)] = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t)x(t + \tau) dt$$

随机过程范围很大,各态历经说明,只需要取其中一个时间足够长的样本,就可以代表 全部

充要条件

$$\lim_{T\to\infty}\frac{1}{2T}\int_{-\infty}^{\infty}\left(1-\frac{|\tau|}{T}\right)C_{x}(\tau)d\tau=0$$

 $\lim_{\tau \to \infty} C_x(\tau) = 0$ 时间取的足够长,就认为相距 τ 的两个时间不相关

相关函数性质

- 1. $R_x(\tau) = R_x(-\tau)$ 相同的间隔时间,结果是相等的
- 2. $R_{r}(0) \geq 0$ 总平均功率
- 3. $|R_x(\tau)| \le R_x(0)$ 证明: $E\left[\left(X(t) - X(t+\tau)\right)^2\right] \ge 0$ $E\left[X(t)^2 + X(t+\tau)^2 - 2X(t)X(t+\tau)\right] \ge 0$ $= R_x(0) + R_x(0) - 2R_x(x) \ge 0$ $= 2R_x(0) - 2R_x(x) \ge 0$
- 4. $\lim_{\tau \to \infty} R_x(\tau) = m_x^2$ 直流功率
- 5. 周期平稳的随机过程X(t) $R_x(\tau) = R_x(\tau + nT)$, 其中 $n = 1,2,3 \cdots$, T为周期 X(t) = X(t + nT)
- 6. 非负定性

$$\sum_{i=1}^{n} \sum_{j=1}^{n} R_x \left(t_j - t_i \right) f(t_i) f(t_j) \ge 0, \ \$$
对于 $\forall f$,任意函数, $\forall t_i, \forall t_j \in R1$

相关系数与相关时间

相关系数: $r_{\chi}(\tau) = \frac{c_{\chi}(\tau)}{c_{\chi}(0)} \in [-1,1]$

归一化,去除了绝对能量的影响

相关时间: $\tau_0 = \int_0^\infty r_x(\tau) d\tau$

反映变化的快慢

联合平稳随机过程

这里的联合指的是两个随机变量的关系

联合随机过程的概率分布与矩函数

假设X(t),Y(t)分别为两个实随机过程

则称
$$F_{X+Y}(x_1 \cdots x_n, t_1 \cdots t_n; y_1 \cdots y_m, t_1 \cdots t_m)$$

= $P_{X+Y}(X(t_1) \le x_1 \cdots X(t_n) \le x_n; Y(t_1) \le y_1 \cdots Y(t_m) \le y_m)$
为 $X(t),Y(t)$ 的 $n+m$ 维的联合概率分布

对连续的X(t),Y(t),则有联合概率密度函数

$$f_{X+Y}(x_1 \cdots x_n, t_1 \cdots t_n; y_1 \cdots y_m, t_1 \cdots t_m)$$

$$= \frac{\partial^{n+m} F_{X+Y}(x_1 \cdots x_n, t_1 \cdots t_n; y_1 \cdots y_m, t_1 \cdots t_m)}{\partial x_1 \cdots \partial x_n; \partial y_1 \cdots \partial y_m}$$

若为离散
$$\begin{pmatrix} x_{1i1} \cdots x_{nin}, y_{1i'1} \cdots y_{mi'm} \\ P(X(t_1) = X_{1i1} \cdots X(t_n) = X_{nin}, Y(t_1) = Y_{1i1} \cdots Y(t_m) = Y_{mim}) \end{pmatrix}$$

矩函数 二阶矩 二阶互相关矩/互相关函数

$$R_{X,Y}(t_1,t_2) = E[X(t_1)Y(t_2)] = \iint_{-\infty}^{\infty} xy f_{x+y}(x,y,t_1,t_2) dx dy$$

互协方差函数

$$C_{X,Y}(t_1,t_2) = E[(X(t_1) - m_x(t_1))(Y(t_2) - m_y(t_1))] = R_{X,Y}(t_1,t_2) - m_x(t_1)m_y(t_1)$$

联合平稳各态历经与矩函数

联合平稳

严格:

$$F_{X+Y}(x_1 \cdots x_n, t_1 \cdots t_n; y_1 \cdots y_m, t`_1 \cdots t`_m)$$

$$= F_{X+Y}(x_1 \cdots x_n, t_1 + \varepsilon \cdots t_n + \varepsilon; y_1 \cdots y_m, t`_1 + \varepsilon \cdots t`_m + \varepsilon)$$

$$\forall n, m < \infty, \ \forall \varepsilon \in R1$$

广义的联合平稳:

- 1. 各自广义平稳
- 2. 互相关函数或互协方差函数和时间起点无关

$$R_{X-Y}(t_1, t_2) = R_{X-Y}(t_2, t_1)$$

 $C_{X,Y}(t_1, t_2) = C_{X,Y}(t_1, t_2)$

各态历经

广义:

- 1. X(t),Y(t)自身是各态历经的
- 2. $< X(t_1)Y(t_1+\tau)> = E[X(t_1)Y(t_1+\tau)]$

矩函数 (在联合平稳, 联合各态历经下)

互相关函数

- 1. $R_{XY}(\tau) = R_{YX}(-\tau)$
- 2. $|R_{XY}(\tau)|^2 \le R_X(0)R_Y(0)$ 柯西不等式 互相关系数

$$r_{XY}(\tau) = \frac{C_{XY}(\tau)}{\sqrt{C_X(0)C_Y(0)}} \in [-1,1]$$
$$\left|C_{XY}(\tau)\right|^2 \le C_X(0)C_Y(0)$$

3.
$$\lim_{\tau \to \infty} R_{XY}(\tau) = m_X m_Y$$

离散时间随机过程

区别在于, 只在规定的时间离散点上取值 为了方便, 把时间限定在整数点上 T采样周期

定义

数值连续时间离散的随机过程,也称为离散时间随机过程(连续随机序列)

概率分布

$$F_{x}(x_{1}\cdots x_{n},K_{1}\cdots K_{n}) = P_{x}(X(K_{1}) \leq x_{1}\cdots X(K_{n}) \leq x_{n})$$

$$f_{x}(x_{1}\cdots x_{n},K_{1}\cdots K_{n}) = \frac{\partial^{n}F_{x}(x_{1}\cdots x_{n},K_{1}\cdots K_{n})}{\partial x_{1}\cdots \partial x_{n}}$$

数字特征

均值: $E[x(t)] = m_x(K)$ 方差: $D[x(t)] = \sigma_x^2(K)$

相关函数: $R_X(K_1,K_2)$

协方差函数: $C_X(K_1,K_2)$

相关函数的性质

与连续时间相关函数性质一致,只有时间取样点离散化。

离散时间变换DFT

正态随机过程

一般正态随机过程

定义: 若随机过程X(t)的任意n维概率密度函数满足下式

$$f_x(x_1 \cdots x_n, t_1 \cdots t_n) = \frac{1}{(2\pi)^{\frac{n}{2}} |C|^{1/2}} exp\left\{-\frac{1}{2} (X - M)^T C^{-1} (X - M)\right\}$$

则称其为正态随机过程

其中,
$$|C|^{1/2}$$
为协方差的行列式, $X^T = (x_1 \cdots x_n)$, $M^T = (m_1 \cdots m_n)$

$$m_i = E[X(t_i)] = m_x(t_i)$$

C为n维方矩阵,协方差矩阵

$$C_{ij} = E\left[\left(X_i - m_i \right) \left(X_j - m_j \right) \right]$$

特征函数

$$\begin{split} & \varphi_{x} \big(\lambda_{1} \cdots \lambda_{n}, t_{1} \cdots t_{n} \big) = E \left[e^{j \left[\lambda_{1} x_{1} + \lambda_{2} x_{2} + \cdots + \lambda_{n} x_{n} \right]} \right] \\ & = exp \left\{ j \sum_{i=1}^{n} \lambda_{i} m_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{ij}^{2} \lambda_{i} \lambda_{j} \right\} \\ & \sigma_{ij}^{2} = E \left[(x_{i} - m_{i})(x_{j} - m_{j}) \right] \end{split}$$

(广义) 平稳正态随机过程

$$M^T = (m \cdots m)$$

C协方差矩阵对角线元素 $C_{ij}=\sigma^2$,且为对称阵,若将 σ^2 提取,则各项变为相关系数 r_{ij} ,若求C的行列式,则提取系数为 σ^{2n}

$$f_X(x_1 \cdots x_n, t_1 \cdots t_n) = \frac{1}{(2\pi)^{\frac{n}{2}} \sigma^2 |r|^{\frac{1}{2}}} exp\left\{-\frac{1}{2} (X - M)^T C^{-1} (X - M)\right\}$$

例: 二阶正态随机过程的概率密度展开式

$$f_x\big(x_1,x_2,t_1,t_2\big) = \frac{1}{2\pi\sigma^2\sqrt{(1-r^2)}} exp\left\{-\frac{1}{2}(x_1-m,x_2-m)C^{-1}\begin{pmatrix}x_1-m\\x_2-m\end{pmatrix}\right\}$$

正态随机过程在通过线性变化之后还是正态随机过程

推论:

$$E[x_1x_2x_3x_4] = E[x_1x_2]E[x_3x_4] + E[x_1x_3]E[x_2x_4] + E[x_1x_4]E[x_2x_3]$$
 如果证明从特征函数推导