Proof Techniques and Mathematical Basics for Algorithm Analysis II

Proof Techniques

- P(n): a logical statement for each positive integer n
 - e.g.: P(n): there is a prime larger than n
- Mathematical Induction:
- Suppose that:
 - P(n_0) is true (basis step), and
 - $P(n) \rightarrow P(n+1)$ for each positive integer n. (induction step)
- Then P(n) is true for every positive integer.
- Example: For every positive integer n, we prove that:

$$\sum_{k=1}^{n} k = \binom{n+1}{2}$$

- n=1, assume P(n) true, show that P(n+1) is true.
- Where do we need induction: Chapter 3, 4, 5.

Proof Techniques

- Proof by Contradiction:
 - assume that the statement we want to prove is false, and then
 - show that this assumption leads to nonsense. We are then led to conclude that we were wrong to assume the statement was false, so the statement must be true
- Proposition P.
- Proof. Suppose ~ P.
- Therefore $c \wedge \sim c$.
- Where do we need contradiction: Chapter 1, 3, 4, 5.

Proposition There are infinitely many prime numbers.

Proof. For the sake of contradiction, suppose there are only finitely many prime numbers. Then we can list all the prime numbers as $p_1, p_2, p_3, \dots p_n$, where $p_1 = 2, p_2 = 3, p_3 = 5, p_4 = 7$ and so on. Thus p_n is the nth and largest prime number. Now consider the number $a = (p_1 p_2 p_3 \cdots p_n) + 1$, that is, a is the product of all prime numbers, plus 1. Now a, like any natural number, has at least one prime divisor, and that means $p_k \mid a$ for at least one of our n prime numbers p_k . Thus there is an integer c for which $a = cp_k$, which is to say

$$(p_1p_2p_3\cdots p_{k-1}p_kp_{k+1}\cdots p_n)+1=cp_k.$$

Dividing both sides of this by p_k gives us

$$(p_1p_2p_3\cdots p_{k-1}p_{k+1}\cdots p_n)+\frac{1}{p_k}=c,$$

SO

$$\frac{1}{p_k} = c - (p_1 p_2 p_3 \cdots p_{k-1} p_{k+1} \cdots p_n).$$

The expression on the right is an integer, while the expression on the left is not an integer. This is a contradiction.

Limits

Given the functions f(x) and g(x) suppose we have,

$$\lim_{x\to c} f(x) = \infty$$

$$\lim_{x \to c} g(x) = L$$

for some real numbers c and L. Then,

1.
$$\lim_{x \to c} [f(x) \pm g(x)] = \infty$$

2. If
$$L > 0$$
 then $\lim_{x \to c} [f(x)g(x)] = \infty$

3. If
$$L < 0$$
 then $\lim_{x \to c} [f(x)g(x)] = -\infty$

$$4. \lim_{x \to c} \frac{g(x)}{f(x)} = 0$$

Source: http://tutorial.math.lamar.edu

Simple Series

- Sequence: a set of things (usually numbers) that are in order.
- Arithmetic Sequence: the difference between one term and the next is a constant.
 - {a, a+d, a+2d, a+3d, ... }
 {1, 1+3, 1+2×3, 1+3×3, ... }
 - {1, 4, 7, 10, ... }
- Summing an Arithmetic Sequence:

$$\sum_{k=0}^{n-1} (a+kd) = \frac{n}{2}(2a+(n-1)d)$$

- Example: $\sum_{k=0}^{10-1} (1+k\cdot 3) = \frac{10}{2}(2\cdot 1 + (10-1)\cdot 3)$
- Example: The fifth term of an arithmetic sequence is 11 and the tenth term is 41. What is the first term?

Source: http://www.mathsisfun.com

Simple Series

- Sequence: a set of things (usually numbers) that are in order.
- **Geometric Sequence:** each term is found by **multiplying** the previous term by a **constant**.
 - $\{a, ar, ar^2, ar^3, ...\}$ //r \neq 0, common ratio
 - $\{1, 1\times 2, 1\times 2^2, 1\times 2^3, \dots\} = \{1, 2, 4, 8, \dots\}$
- Summing a Geometric Sequence:

$$\sum_{k=0}^{n-1} (ar^k) = a\left(\frac{1-r^n}{1-r}\right) \qquad \sum_{k=0}^{4-1} (10\cdot 3^k) = 10\left(\frac{1-3^4}{1-3}\right) = 400$$

- Example: You put one rice on a chessboard's first square. You double the amount of rice at the next square and so on. How many rice does the last square have?
- Example: Add up the first 10 terms of the Geometric Sequence that halves each time

Source: http://www.mathsisfun.com

Combinatorics

Sets

- Set: an unordered collection of distinct objects (elements)
 - A= $\{1,2,3\}$, B= $\{2,1,3\}$, C= $\{2,1,3,4\}$, $7 \notin A \ 3 \in A$
 - n(A) = |A| = 3
 - -A=B, $A \subset C$ (subset)
 - $-\varnothing$: Empty set, or null set, $\varnothing \subset X$, X any set.
- Union: A \cup C= {2,1,3,4}
- Intersection: A \cap C={2,1,3}

Subsets

• List all of the subsets of {1, 2, 3}

```
\emptyset {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
```

• If |A|=n, there are 2ⁿ possible subsets of A.

Complement

 \overline{A} : complement of A

 $A \cup \overline{A} = \text{universal set}$

Source: www.mathxtc.com

Counting Elements

This is a Venn diagram.

universal set contains 100 elements

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

=52+36-12=76

Source: www.mathxtc.com

Counting Sets and Sequences (Theorems)

- The number of subsets of an n-element set is 2ⁿ.
- The number of sequences of length n from a kelement set is kⁿ
- The number of permutations of a set of size n is n! := n(n-1)(n-2)...1.
- There are (n)_k := n(n 1)...(n k + 1) sequences of k distinct elements in a set of size n.
- The number of sets of size k (combinations of size k) in an n-element set is

$$\binom{n}{k} := \frac{n(n-1)(n-2)\dots(n-k+1)}{k!} = \frac{(n)_k}{k!} = \frac{n!}{k!(n-k)!}$$

Combinatorial Identities

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

Probability

Probability

- Every probabilistic claim ultimately refers to some sample space, which is a set of elementary events
- Think of each elementary event as the outcome of some experiment
 - Ex: flipping two coins gives sample space {HH, HT, TH, TT}
- An event is a subset of the sample space
 - Ex: event "both coins flipped the same" is {HH, TT}

Sample Spaces and Events

Probability Distribution

- A probability distribution Pr on a sample space S is a function from events of S to real numbers s.t.
 - Pr[A] ≥ 0 for every event A
 - $-\Pr[S] = 1$
 - Pr[A U B] = Pr[A] + Pr[B] for every two nonintersecting ("mutually exclusive") events A and B
- Pr[A] is the probability of event A

Properties of Probability Distributions

- $Pr[\emptyset] = 0$
- If A ⊆ B, then Pr[A] ≤ Pr[B]
- Pr[S A] = 1 Pr[A] // complement
- Pr[A U B] = Pr[A] + Pr[B] Pr[A ∩ B]
 ≤ Pr[A] + Pr[B]

Example

- Suppose Pr[{HH}] = Pr[{HT}] = Pr[{TH}] = Pr[{TT}]
 = 1/4.
- Pr["at least one head"]
 - $= Pr[\{HH U HT U TH\}]$
 - $= Pr[{HH}] + Pr[{HT}] + Pr[{TH}]$
 - = 3/4.
- Pr["less than one head"]
 - = 1 Pr["at least one head"]
 - = 1 3/4 = 1/4

Probability Distribution

 $Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$

Specific Probability Distribution

- Discrete probability distribution: sample space is finite or countably infinite
 - Ex: flipping two coins once; flipping one coin infinitely often
- Continous probability distribution: infinite sample space, e.g. Gaussian

- Uniform probability distribution: every elementary event has the same probability, 1/|S|
 - Ex: flipping two fair coins once, flipping a fair dice
- Nonuniform probability distribution: some elements have different probability, e.g. an unfair coin.

Flipping a Fair Coin

- Suppose we flip a fair coin n times
- Each elementary event in the sample space is one sequence of n heads and tails, describing the outcome of one "experiment"
- Size of sample space is 2ⁿ
- Let A be the event of "k heads and n-k tails occurring"
- $Pr[A] = C(n,k)/2^n$
 - There are C(n,k) sequences of length n in which k heads and n-k tails occur, and each has probability 1/2ⁿ.

Example

- n = 5, k = 3
- HHHTT HHTTH HTTHH TTHHH
- HHTHT HTHTH THTHH
- HTHHT THHTH
- THHHT
- Pr(3 heads and 2 tails) = C(5,3)/2⁵
 = 10/32

Flipping Unfair Coins

- Suppose we flip two coins, each of which gives heads two-thirds of the time
- What is the probability distribution on the sample space?

Pr[at least one head] = 8/9

Independent Events

- Two events A and B are independent if Pr[A ∩ B] = Pr[A]·Pr[B]
 - i.e., probability that both A and B occur is the product of the separate probabilities that A occurs and that B occurs

REVIEW Mole

Independent Events Example

In two-coin-flip example with fair coins:

- A = "first coin is heads"
- B = "coins are different"


```
Pr[A] = 1/2

Pr[B] = 1/2

Pr[A \cap B] = 1/4 = (1/2)(1/2)

so A and B are independent
```

Discrete Random Variables

- A discrete random variable X is a function from a finite or countably infinite sample space to the real numbers
- Associates a real number with each possible outcome of an experiment
- Define the event "X = v" to be the set of all the elementary events s in the sample space with X(s) = v
- So, Pr["X = v"] is the sum of Pr[{s}] over all s with X(s) = v

Discrete Random Variable

Add up the probabilities of all the elementary events in the orange event to get the probability that X = v

Random Variable Example

- Roll two fair 6-sided dice
- Sample space contains 36 elementary events (1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 2:1,...)
- Probability of each elementary event is 1/36
- Define random variable X to be the maximum of the two values rolled
- What is Pr["X = 3"]?
- It is 5/36, since there are 5 elementary events with max value 3 (1:3, 2:3, 3:3, 3:2, and 3:1)

Independent Random Variables

- It is common for more than one random variable to be defined on the same sample space:
 - X is maximum value rolled
 - Y is sum of the two values rolled
- Two random variables X and Y are independent if for all v and w, the events
 "X = v" and "Y = w" are independent

Expected Value of a Random Variable

- Most common summary of a random variable is its "average", weighted by the probabilities
 - called expected value, or expectation, or mean

• Definition: $E[X] = \sum_{v} v Pr[X = v]$

Expected Value Example

- Consider a game in which you flip two fair coins
- You get 3TL for each head but lose 2TL for each tail
- What are your expected earnings?
 - i.e., what is the expected value of the random variable X, where X(HH) = 6, X(HT) = X(TH) = 1, and X(TT) = -4?
- Note that no value other than 6, 1, and -4 can be taken on by X (e.g., Pr[X = 5] = 0)
- E[X] = 6(1/4) + 1(1/4) + 1(1/4) + (-4)(1/4) = 1

Properties of Expected Values

- E[X+Y] = E[X] + E[Y], for any two random variables X and Y, even if they are not independent!
- E[a·X] = a·E[X], for any random variable X and any constant a
- E[X·Y] = E[X]·E[Y], for any two independent random variables X and Y

Study Material (for the Quiz, maybe ©)

- What is the sum of the squares of integers from k=1 to n? Prove your result.
- Prove that the number of subsets of an nelement set is 2ⁿ.
- Prove that the number of sequences of length n from a k-element set is kⁿ
- Assume that there is a game where you flip a fair dice and earn as many TL as the square of what you flip (i.e. if you flip a 5, you earn a 25TL). You need to pay a certain amount to enter this game. What is the maximum amount you would pay?

Study Material (for the Quiz, maybe ©) and Additional Resources

- Prove that $2^{2n} 1$ is divisible by 3, for integers n > 0.
- Prove that $2n + 1 < 2^n$, for all integers $n \ge 3$.
- Prove that square root of 2 is irrational.

Some resources:

http://www.csee.umbc.edu/~stephens/203/PDF/4-3.pdf

http://www.csee.umbc.edu/~stephens/203/PDF/3-6.pdf