

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Report Template Version: V04

Report Template Revision Date: 2018-07-06

Telephone: +86-755-26648640 Fax: +86-755-26648637

Website: www.cqa-cert.com

RF Exposure Evaluation Report

Report No.: CQASZ20190800831E-03

Applicant: Shenzhen Times Innovation Technology Co., Ltd

Address of Applicant: Room 3, 6/F, Building 3, WINLEAD, Fada Road, Bantian Street, Longgang

District, Shenzhen, China.

Equipment Under Test (EUT):

EUT Name: Baseus Immersive Virtual 3D Wireless Receiver

All Model No.: Baseus BA03, BA03

Test Model No.: Baseus BA03

Brand Name: Baseus

FCC ID: 2AN7Y-BA03

Standards: 47 CFR Part 1.1307

47 CFR Part 1.1310

KDB447498D01 General RF Exposure Guidance v06

Date of Receipt: 2019-09-02

Date of Test: 2019-09-02 to 2019-09-06

Date of Issue: 2019-09-06

Test Result : PASS*

*In the configuration tested, the EUT complied with the standards specified above

Tested By:

(Tom chen

Reviewed By:

(Sheek Luo)

Approved By:

TESTING TECHNOLOGY

LESTING TECHNOLOGY

APPROVED

APPROVED

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

Report No.: CQASZ20190800831E-03

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20190800831E-03	Rev.01	Initial report	2019-09-06

Report No.: CQASZ20190800831E-03

2 Contents

			Page
1	VERSI	ON	2
2	CONT	ENTS	3
3	GENE	RAL INFORMATION	4
Ŭ			
	3.1 CLIE	NT INFORMATION	4
	3.2 Gen	ERAL DESCRIPTION OF EUT	4
	3.3 GEN	ERAL DESCRIPTION OF EUTERAL DESCRIPTION OF BT	
	3.4 GEN	ERAL DESCRIPTION OF NFC	4
4		VALUATION	
4			
	4.1 RF E	EXPOSURE COMPLIANCE REQUIREMENT	5
	4.1.1	Exposure Compliance RequirementStandard Requirement	
	4.1.2	Limits	4
		FLIT RE Exposure	

Report No.: CQASZ20190800831E-03

3 General Information

3.1 Client Information

Applicant:	Shenzhen Times Innovation Technology Co., Ltd
Address of Applicant:	Room 3, 6/F, Building 3, WINLEAD, Fada Road, Bantian Street, Longgang District, Shenzhen, China.
Manufacturer:	SHENZHEN KINGREE ELECTRONIC CO., LTD
Address of Manufacturer:	Floor 3, Bohua Technology Park, Shangkeng Community, Guanlan Street, Longhua New District, Shenzhen, Guangdong, China.

3.2 General Description of EUT

Product Name:	Baseus Immersive Virtual 3D Wireless Receiver					
All Model No.:	Baseus BA03, BA03					
Test Model No.:	Baseus BA03					
Trade Mark:	Baseus					
Hardware Version:	Baseus_BA03 V2.1					
Software Version:	3008_i2s_190806					
Product Type:	☐ Mobile ☐ Portable ☐ Fix Location					
Power Supply:	lithium battery:DC3.7V, Charge by DC5.0V					

3.3 General Description of BT

Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	V5.0
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Transfer Rate:	1Mbps/2Mbps/3Mbps
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Test Software of EUT:	Blue test3 (manufacturer declare)
Antenna Type:	Ceramic antenna
Antenna Gain:	1.75dBi

3.4 General Description of NFC

Operation Frequency:	13.56MHz
Modulation Type:	ASK
Antenna Type:	Integral Antenna
Antenna Gain:	0dBi

Model No.: Baseus BA03, BA03

Only the model Baseus BA03 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being color/Model name.

Report No.: CQASZ20190800831E-03

4 SAR Evaluation

4.1 RF Exposure Compliance Requirement

4.1.1 Standard Requirement

According to KDB447498D01 General RF Exposure Guidance v06

4.3.1. Standalone SAR test exclusion considerations

Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied.

4.1.2 Limits

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

f(GHz) is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation¹⁷

The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

For frequencies below 100 MHz, the following may be considered for SAR test exclusion (also illustrated in Appendix C):

Appendix C

SAR Test Exclusion Thresholds for < 100 MHz and < 200 mm

Approximate SAR test exclusion power thresholds at selected frequencies and test separation distances are illustrated in the following table. The equation and threshold in 4.3.1 must be applied to determine SAR test exclusion.

MHz	< 50	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	mm
100	237	474	481	487	494	501	507	514	521	527	534	541	547	554	561	567	
50	308	617	625	634	643	651	660	669	677	686	695	703	712	721	729	738	
10	474	948	961	975	988	1001	1015	1028	1041	1055	1068	1081	1095	1108	1121	1135	
1	711	1422	1442	1462	1482	1502	1522	1542	1562	1582	1602	1622	1642	1662	1682	1702	mW
0.1	948	1896	1923	1949	1976	2003	2029	2056	2083	2109	2136	2163	2189	2216	2243	2269	
0.05	1019	2039	2067	2096	2125	2153	2182	2211	2239	2268	2297	2325	2354	2383	2411	2440	
0.01	1185	2370	2403	2437	2470	2503	2537	2570	2603	2637	2670	2703	2737	2770	2803	2837	

Report No.: CQASZ20190800831E-03

4.1.3 EUT RF Exposure

1) For BT

Measurement Data

Weasurement Data				
	GFSK	mode		
Test channel	Peak Output Power	Tune up tolerance	ne up tolerance Maximum tune	
	(dBm)	(dBm)	(dBm)	(mW)
Lowest(2402MHz)	-9.310	-10.0±1	-9.0	0.126
Middle(2441MHz)	-10.840	-11.5±1	-10.5	0.089
Highest(2480MHz)	-11.490	-12.0±1	-11.0	0.079
	π/4DQPS	SK mode		
Test channel	Peak Output Power	Tune up tolerance	Maximum tu	ne-up Power
	(dBm)	(dBm)	(dBm)	(mW)
Lowest(2402MHz)	-7.150	-8.0±1	-7.0	0.200
Middle(2441MHz)	-8.760	-9.0±1	-8.0	0.158
Highest(2480MHz)	-9.380	-10.0±1	-9.0	0.126
	8DPSK	mode		
Test channel	Peak Output Power	Tune up tolerance	Maximum tu	ne-up Power
	(dBm)	(dBm)	(dBm)	(mW)
Lowest(2402MHz)	-6.980	-7.5±1	-6.5	0.224
Middle(2441MHz)	-8.540	-9.0±1	-8.0	0.158
Highest(2480MHz)	-9.200	-10.0±1	-9.0	0.126

	Maximum		Maximu	ım tune-			
	Peak	Peak Tune up		ower	Calculated	Exclusion	
Channel	Conducted Output Power (dBm)	tolerance (dBm)	(dBm)	(mW)	value	threshold	
Lowest (2402MHz)	-6.980	-7.5±1	-6.5	0.224	0.069		
Middle (2441MHz)	-8.540	-9.0±1	-8.0	0.158	0.050	3.0	
Highest (2480MHz)	-9.200	-10.0±1	-9.0	0.126	0.040		

Remark: The Max Conducted Peak Output Power data refer to report Report No.: CQASZ20190800786E-01

Report No.: CQASZ20190800831E-03

2) For NFC

eirp = pt x gt = $(E x d)^2/30$

where:

pt = transmitter output power in watts,

gt = numeric gain of the transmitting antenna (unitless),

 $E = electric \ field \ strength \ in \ V/m, \ \ \text{---}10^{((dB\mu V/m)/20)}/10^6 \ ,$

d = measurement distance in meters (m)---3m,

So pt = $(E \times d)^2/30 / gt$

The worst case (refer to report CQASZ20190800831E-02) is below:

Frequency (MHz)	Level (dBuV/m)	Polarization
13.56	73.76	Peak

For 13.56MHz wireless:

Field strength = 73.76dBµV/m @3m

Ant. gain 0dBi; so Ant numeric gain=1.0

So pt={ $[10^{(73.76/20)}/10^6x3]^2/30/1.0$ }x1000mW =0.007mW

0.007mW<Limit:308mW

So the SAR report is not required.