Практическое задание и лабораторная работа №2

Тема:

моделирование процесса движения информации (структурный анализ на основе DFD-диаграмма).

Цель:

- изучить общие положения о моделирования потоков данных и компоненты диаграммы потоков данных DFD;
- построить диаграмму декомпозиции в нотации DFD;
- изучить автоматизированные средства моделирования потоков данных и потоков работ;
- осуществить выбор и применение инструментального средства для функционального моделирования потоков данных (диаграммы DFD).

Основная часть

1. Отчёт о выполнении практического задания

В данной системе (расчётный центр ЖКХ) основным процессом является обслуживание потребителей, учёт их потребления и оплат. Для своей работы система использует внешнюю систему: потребители. Потребители вносят показания, оплачивают и получают счета на оплату, запрашивают и получают задолженности и показания. Система также должна хранить данные о всех потребителях, изменениях в потреблении, оплатах.

В свою очередь основной процесс включает в себя следующие процессы: снятие показаний, расчёт и оплата, информирование.

В таблице 1 представлено описание процессов для разработанной DFDдиаграммы.

Таблица 1

№	Внешняя сущность	Событие (описание взаимодействия)	Тип события	Основной процесс	Реакция системы на события
1	Потребитель Работник ЖКХ	Вносит показания в устной форме Принимает устные показания посетителей		Снятие показаний	Занесение показаний в БД
		Вносит снятые показания			
2	Потребитель	Оплата Получение счёта на оплату	Типичный	Расчёт и оплата	Внесение оплаты в БД Выборка данных из БД и составление счёта
	Диспетчер ЖКХ	Получение оплаты от потребителя Расчёт потребления			Внесение оплаты в БД Составление плана потребления
3	Потребитель	Получение информации о показаниях Получение информации о задолженностях		Информирование	Выборка данных из БД

На рисунках 1, 2 представлены DFD-диаграммы полученные в ходе выполнения практического задания.

Рисунок 1 – DFD диаграмма основного процесса

Рисунок 2 – DFD диаграмма декомпозиции основного процесса

2. Отчёт о выполнении задания на лабораторную работу

Ramus — кроссплатформенная система моделирования и анализа бизнеспроцессов. Данная система позволяет проводить описание, анализ и моделирование бизнес-процессов, а также строить систему классификации и кодирования.

Основные функции данной системы:

- Разработка графических моделей бизнес-процессов в нотациях IDEF0 и DFD;
- Разработка систем классификации и кодирования (с привязкой к моделям процессов);
- Формирования отчётности по моделям и системе классификации (в виде регламентов бизнес-процессов, должностных инструкций и т.п.).

Данное ПО имеет следующие преимущества перед своими аналогами, а именно:

- Эргономичность графического редактора. Редактор поддерживает быструю навигацию по модели, шаблоны часто используемых типов диаграмм, возможность отмены последних действий, "умное" поведение стрелок;
- Поддержка неограниченного количества атрибутов различных типов.
- Автоматическое построение иерархических деревьев в классификаторах на основании значений атрибутов;
- Частичная совместимость с аналогами благодаря экспорту в формат IDL;
- Гибкий графический интерфейс пользователя.

Выводы

В ходе выполнения данной практической и лабораторной работы были изучены общие положения о моделирования потоков данных и компонентов диаграммы потоков данных DFD, построена диаграмма декомпозиции в нотации DFD, изучена автоматизированные средства моделирования поток данных и потоков работ, а также осуществлен выбор и применение инструментального средства для функционального моделирования потоков данных (диаграммы DFD) средствами ПО Ramus.