CS 341 Automata Theory Geoffrey Parker - grp352 Homework 10

Due: Tuesday, March 27

This assignment reviews Chapter 13 and covers Chapter 14 and Sections 17.1 - 17.3.

This	assignment reviews Chapter 13 and covers Chapter 14 and Sections 17.1 - 17.3.
	or each of the following languages L , state whether L is regular, context-free but not regular, or not intext-free and prove your answer.
a)	$\{w: w = uu^R \text{ or } w = ua^n: n = u , u \in \{a, b\}^*\}.$
	Answer. Context-free but not regular. \Box
	<i>Proof.</i> This language is generated by this context-free grammar so it must be context-free:
	$S o A \mid B$
	$A ightarrow aAa \mid bAa \mid \epsilon$
	$B ightarrow aBa \mid bBb \mid \epsilon$
	This language L is not regualar. Let $w = b^k a^k$ for some integer $k \ge 1$. Then y must be b^p for some integer p such that $1 \le p \le n$. Pumping out y generates a new string $w' = b^{k-p} a^k$ which is not in the language. Therefore by the pumping theorem this language is not regular.
b)	$\{a^nb^{2n}c^m\}\cap\{a^nb^mc^{2m}\}.$
	Answer. Not context-free. This language is equivalent to $L = \{a^n b^{2n} c^{4n}\}.$
	<i>Proof.</i> Let $w = a^k b^{2k} c^{4k}$. Let region 1 be the a 's, region 2 be the b 's and region 3 be the c 's. In any case where vxy crosses a region boundry, pumping in will result in a new string with out of order a 's b 's or c 's, and thus not in the language. If vxy is contained solely within a region, pumping out will disrupt the cardinality requirement, thus also generating a string not in the language. Therefore by the pumping theorem for context-free languages this language is not context-free.
c)	L^* , where $L = \{0^*1^i0^*1^i0^* : i \ge 0\}$.
	Answer. Regular \Box
	<i>Proof.</i> L^* is equivalent to $\{w: w \in \{0,1\}^* \text{ where } \#_1(w) \text{ is even.}\}$, which we have already established to be regular.

	d)	$\neg L_0$, where $L_0 = \{ww : w \in \{a, b\}^*\}.$
		Answer. Context-free but not regular.
		Proof. CFG:
		$S ightarrow AB\mid BA\mid A\mid B \ A ightarrow aAa\mid aAb\mid bAa\mid bAb\mid a \ B ightarrow aBa\mid aBb\mid bBa\mid bBb\mid b$
		If $\neg L_0$ were regular, then L_0 would be regular. Let $w = a^k b^k a^k b^k$, which is an element of L_0 . Then y must be a^p for some integer p where $1 \le p \le k$ and y is in the first a region. So pumping out gives $w' = a^{k-p} b^k a^k b^k$, which is not an element of L_0 . Therefore by the pumping theorem L_0 is not regular, so $\neg L_0$ is not regular.
	e)	$\{x \in \{a,b\}^* : x \text{ is even and the first half of } x \text{ has one more a than does the second half} \}.$
		Answer. Not context-free.
		Proof. Let $w=ab^{2k+1}$. If vxy does not contain the a there are two cases. If $ vxy $ is odd, pump out once to generate an odd length string. If $ vxy $ is even, pump in twice to generate an odd length string. If vxy contains the a, pump out to generate a string without an a, violating the requirement that the first half contains one more a than the second half.
2)		ive a decision procedure to answer the following question: given a context-free grammar G , does G nerate any even length strings?
	So	blution.
	2.3.	Let L be the language generated by G . Let $L' = L \cap ((a \cup b)(a \cup b))^*$. Construct a PDA M' to recognize M' . Determine if M' recognizes any strings.
3)	wł	onstruct a standard, one-tape Turing machine M to decide the language $L = \{x*y = z : x, y, z \in 1^+ \text{ and } z \in x, y, z \in 1^+ \text{ and } z \in x, y, z \in 1^+ \text{ and } z \in x, z \in x\}$. For example, the string 1111*11 = 111111111 $\in L$ escribe M in the macro language described in Section 17.1.5.

Solution. See attached.

4) Construct a standard 1-tape Turing machine M to compute the function sub_3 , which is defined as follows:

$$sub_3(n) = n-3 \quad \text{if } n > 2 \\ 0 \quad \text{if } n \le 2.$$

Specifically, compute sub_3 of a natural number represented in binary. For example, on input 10111, M should output 10100. On input 11101, M should output 11010. (Hint: you may want to define a subroutine.)

Solution. See attached. \Box