

Problématique

L'énergie solaire a connu des progrès immenses et deviendra une source renouvelable prometteuse dans l'avenir. Alors comment peut-on contribuer l'optimisation d'une installation en utilisant cette source pour l'électrification d'un site quelconque?

SOMMAIRE

- ► APPROCHE EXPERIMENTALE THEORIQUE(conversion lumière – électricité)
- Simulation de la caractéristique I-V d'un générateur photovoltaïque
- ► Quelques facteurs influençant sur la courbe I-V
- ► la poursuite du point de puissance maximale type Perturbe & Observe(MPPT type P&O):
- **CONCLUSION**

■ APPROCHE EXPERIMENTALE(conversion lumière – électricité)

Schéma simplifié de l'expérience

Nous obtenons les données suivantes et, en utilisant Excel, nous arrivons à la représentation graphique de la puissance en fonction de l'intensité lumineuse

Lux	Tension (mV)	Intensité (mA)	Puissance U*I (Watt)
200	1,050	0,020	2,10E-08
300	1,630	0,032	5,22E-08
400	2,300	0,044	1,01E-07
600	3,200	0,063	2,02E-07
800	4,500	0,087	3,92E-07
1000	5,900	0,115	6,79E-07
1500	8,400	0,164	1,38E-06
2000	10,000	0,194	1,94E-06
3000	13,700	0,267	3,66E-06
4000	17,900	0,345	6,18E-06
5000	21,700	0,421	9,14E-06
6000	26,900	0,522	1,40E-05
8000	35,200	0,681	2,40E-05
10000	42,600	0,826	3,52E-05
13000	54,100	1,051	5,69E-05
15000	61,300	1,190	7,29E-05
17000	65,100	1,244	8,10E-05
20000	74,500	1,445	1,08E-04

☐ APPROCHE THEORIQUE(conversion lumière –électricité)

Le principe de fonctionnement peut être décomposé en deux parties: l'absorption de photons et la collecte des porteurs de charges créés.

Simulation d'un module photovoltaique

En appliquant la loi de Kirchhoff:

$$I = Iph - ID - Ip$$

I: courant généré par la cellule photovoltaïque

Iph: photo courant créé par la1 cellule

ID: courant circulant dans la diíode

Ip: le courant circulant dans la résistance Rp

La tension aux bornes de la diiode

$$V_D = R_p I_p = V + R_s . I$$

Le courant traversant la résistance parallèle

$$I_p = \frac{V_D}{R_p} = \frac{V + R_S \cdot I}{R_p}$$

Le courant de diiode

$$I_{D} = I_{0} \left[e^{\frac{qV}{nkT}} - 1 \right]$$

n est le facteur d'idéalité de la cellule, qui dépend des mécanismes de

recombinaison dans la zone de charge d'espace.

k: Constante de Boltzmann

T: Température

q: Charge de l'électron

V: Tension appliquée à la charge utilisatrice Rc.

$$I \ = \ \text{lph} \ - I_0 . \Bigg(\ exp \Bigg[\ \frac{q \left(\ V + \ R_s \ . I \right)}{n \, k \, T} \ \Bigg] - \ 1 \Bigg) - \frac{V + \ R_s \ I}{R_p}$$

Calcul et traçage de la caractéristique d'un panneau photovoltaïque sous Matlab

```
close all;
clear all:
clc;
q=1.6022*10^(-19);
A=1.5:
Eg=1.1;
k=1.380649*10^(-23);
%%%%%%%%%%%%%%%%Caractéristiques du panneau?
Ns=......%%nombre de cellule
alfa=0.00065:
Tr=298;
Iccref=.......%%Courant de court circuit
Vcoref=.....%%tension de au circuit ouvert
NOCT=47:
Eref=1000:
eps=0.0001;
Tcref=298;
Rs=0.82/36;%%Résistance série du panneau
Rp=1000;%%résistance parallèle du panneau
E=500:%% Eclairement
T=273+25; %Température ambiante?
```

```
%%%%%%%%%%%%%Paramètre de l'algorithme
I=0:
V=0;
i=1:
j=1;
%%%%%%%%%%%%%%%%% Calcule des 5 paramètres?
Tc = T;\%+((NOCT-20)/800)*E;
Isref=Iccref/(exp(q*Vcoref/(Ns*A*k*Tcref))-1);
Is=Isref^*((Tc/Tcref)^3)^*exp((q^*Eg/(k^*A))^*((1/Tcref)-(1/Tc)));
lcc=(E/Eref)*(Iccref+(Tc-Tcref)*alfa);
Vco=((Ns*A*k*T)/q)*log((Icc/Is)+1);
pas=0.05;
%file=fopen('pv.xls','w');
%fprintf(file,'%s\t%s\n','I','V');
for V=0:pas:Vco;
  lp=10;
  I=0;
  while abs(I-Ip) >= eps;
     lp=l;
     f=Icc-I-Is*(exp(q*(V+Ns*Rs*I)/(Ns*A*k*T))-1)-(V+Ns*Rs*I)/(Ns*Rp);
```

```
fp = (-1 - Is*(q*Rs/(A*k*T))*(exp(q*(V+Ns*Rs*I)/(Ns*A*k*T))) - Rs/Rp);
     I=I-(f/fp);
     j=j+1;
  end;
  Ipv(i)=I;
  Vpv(i)=V;
  i=i+1;
  %fprintf(file,'%.5f\t %.5f\r\n',I,V);
end;
plot(Vpv,lpv,'b.');
grid minor;
title('I en fonction de V');
axis([0 22 0 3]);
xlabel('tension en [V]');
ylabel('intensité en [A]');
hold off;
```

▶ Quelques facteurs influençant sur la courbe I–V

la courbe I-V aux différentes températures

la courbe I-V aux différentes irradiations

Remarques et résultats

On constate qu'à partir d'une certaine intensité, la tension chute brusquement. Cette valeur Imax est celle où le produit U*I, c'est à dire la puissance, est le plus grand

Le suivi de point de puissance maximal MPPT type P&O:

CONCLUSION

$$\eta = \frac{P_{max}}{P_{in}}$$

$$P_{max} = V_{OC}I_{SC}FF$$