Image segmentation and normalized cuts

Bryan C. Russell

Gestalt school (1938)

Max Wertheimer

Figure 14.4 Examples of Gestalt factors that lead to grouping (which are described in greater detail in the text).

Forsyth and Ponce. Computer Vision: a modern approach. Prentice Hall, 2003.

Forsyth and Ponce. Computer Vision: a modern approach. Prentice Hall, 2003.

Figure 14.7 An example of grouping phenomena in real life. The buttons on an elevator in the computer science building at U.C. Berkeley used to be laid out as in the top figure. It was common to arrive at the wrong floor and discover that this was because you'd pressed the wrong button—the buttons are difficult to group unambiguously with the correct label, and it is easy to get the wrong grouping at a quick glance. A public-spirited individual filled in the gap between the numbers and the buttons, as in the bottom figure, and the confusion stopped because the proximity cue had been disambiguated.

Forsyth and Ponce. Computer Vision: a modern approach. Prentice Hall, 2003.

Image segmentation

 Can group based on brightness, color, texture, spatial location, shape, size, orientation, motion, etc.

 How do we realize this notion of grouping computationally?

Here's one way...

Agglomerative/merge clustering

Popular segmentation methods

- Mean shift
 - Comanicu et al. 2002

- Spectral clustering
 - Shi et al. 2000

- Bayesian, MRF
 - Felzenszwalb 2004, Borenstein et al. 2004

Image segmentation issues

What is a good segmentation?

 What are we optimizing? Is the returned image segmentation optimal?

Let us consider a graph-theoretic approach

$$G = (V, E)$$

$$G = (V, E)$$

 $v_{\rm j}$ - feature, e.g. pixel intensity, spatial location

 $e_{\mathrm{j} \sphericalangle k}$ - indicates two features have nonzero similarity

$$G = (V, E) \qquad e_{j \nmid k}, e_{k \nmid j} \in E$$

w(i,j) - similarity score of pixels \emph{i} and \emph{j}

Visualizing similarities

More complex graph

 $w(i,j) \propto \exp(-dist(i,j))$

Task: cut the graph to produce a meaningful segmentation

One possible cut...

One idea: find set of edges with minimum total weight that partitions the graph - MinCut

Problem: MinCut prefers isolated points

Problem with MinCut

Normalize the cut

Use ratio of cut to the volume of the set

Normalize the cut

$$Ncut(A,B) = \frac{\mathrm{dvu)B} \cdot \mathrm{C} \cdot \mathrm{*}}{\mathrm{wpm)B} \cdot \mathrm{*}} + \frac{\mathrm{dvu)B} \cdot \mathrm{C} \cdot \mathrm{*}}{\mathrm{wpm)C} \cdot \mathrm{*}}$$

Normalized Cuts caveats

Finding the exact solution is NP-hard

 Need to relax the problem to be continuous-valued and use iterative methods

Laplacian matrix

Find generalized eigenvectors

Toy problem: synthetic image

Real image

Automatic Photo Popup

Derek Hoiem Alexei A. Efros Martial Hebert

Carnegie Mellon University

Robust Spatial Support

RGB Pixels

Superpixels

[Felzenszwalb and Huttenlocher 2004]

- Safe oversegmentation of image
- Better but not still not enough spatial support

Cutting and Folding

- Construct 3D model
- Texture map

Noise Estimation from a Single Image

Ce Liu William T. Freeman

Richard Szeliski Sing Bing Kang

Segmentation-based Approach

Oversegmentation

Test on Low and High Noise

low noise $\sigma_s = 0.030, \ \sigma_c = 0.015$

high noise $\sigma_s = 0.090, \ \sigma_c = 0.045$

Segment scores for a given topic

Car topic

Car topic

Results II. – LabelMe dataset

1,554 imagesLearn 20 topics4 topics shown

Each topic shown by top 25 segments

Thank you

- Ncuts software:
 - http://www.cis.upenn.edu/~jshi/software/
- Pedro Felzenszwalb software:
 - http://people.cs.uchicago.edu/~pff/segment/