n (minkens) = u(maxterns)

$$f = 2 m (2/3/5/7) = \frac{1}{2} 8 x_1 x_2 x_3$$

 $= 17 M (011/4,6) = (5+x,)(1.5+x_2)$

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

s ₁	s ₀	f
0 0 1	0 1 0	w ₀ w ₁ w ₂ w ₃

n inputs 1 output 1 selection conteol inputs

$$\int_{c} f = x_{1} \text{ if } s, 0$$

$$\rho = x_{2} \text{ if } s = 1$$

$$s \quad f(s, x_{1}, x_{2})$$

$$s \quad r_{1}$$

$$r_{2}$$

Crossbur Swifun

 x_1 x_2 y_1 y_2

(b) Implementation using multiplexers

If s = 0, crossbar connects:

 $-x_1$ to y_1

 $-x_2$ to y_2

If s = 1, crossbar connects:

 $-x_1$ to y_2

 $- x_2 \text{ to } y_1$

(a) A 2x2 crossbar switch

if kem of f has!w, > goes to !w, (...)

w, > w, (...)

closn'thank w, > goes to both

factoring out all of the terms lacks to a cononical sop expression.

