Review

Probability

Let X and Y be two continuous random variables with densities f and g, respectively, $X_1, X_2, ...$, and $Y_1, Y_2, ...$ be two sequences of continuous random variables, and a, b, c be real-valued scalars. Write down the definition or equivalent expressions of the following:

- 1. Expectation
 - (a) E(X)
 - (b) E(aX + bY + c)
 - (c) $E(E(Y \mid X))$
 - (d) E(f(X)g(Y)) if X and Y are independent
- 2. Variance
 - (a) Var(X)
 - (b) Var(aX + bY + c)
- 3. Covariance:
 - (a) Cov(X, Y)
 - (b) $Cov(\sum_{i=1}^{n} a_i X_i, \sum_{j=1}^{m} b_j Y_j)$
- 4. Correlation
 - (a) Corr(X, Y)
 - (b) Write down bounds for Corr(X, Y)
- 5. Autocorrelation between s and t:
- 6. Sample autocovariance of lag k:
- 7. Sample autocorrelation of lag k
- 8. Independence: X and Y are independent if and only if
- 9. Convergence in distribution: $X_n \stackrel{d}{\to} X$ if and only if
- 10. Convergence in probability: $X_n \stackrel{p}{\to} X$ if and only if

Statistics

Let θ be a parameter of interest and $\hat{\theta}$ be the corresponding estimator.

1. We say $\hat{\theta}$ is an **unbiased** estimator of θ if

- 2. The **mean-squared error (MSE)** of an estimator $\hat{\theta}$ with respect to θ is
- 3. We say $\hat{\theta}$ is a **consistent** estimator of θ if
- 4. A random interval [A, B] is a $100(1 \alpha)\%$ confidence interval of θ if
- 5. A (sequence of) random interval(s) $[A_n, B_n]$ is a $100(1-\alpha)\%$ asymptotic confidence interval of θ if

Conceptual questions / Problems

- 1. Which one is random: sample autocorrelation or autocorrelation? Why?
- 2. The central limit theorem states that if $X_1, ..., X_n$ are independently identically distributed (i.i.d.) with $E(X) = \mu$ and $\operatorname{Var}(X) = \sigma^2 \in (0, \infty)$, then $\sqrt{n}(\bar{X} \mu) \stackrel{d}{\to} N(0, \sigma^2)$, where \bar{X} is the sample mean $n^{-1} \sum_{i=1}^n X_i$. Now suppose σ^2 is known.
 - (a) Is \bar{X} an unbiased estimator of μ ?
 - (b) Find $Var(\bar{X})$.
 - (c) Construct a 95% asymptotic confidence interval of μ .

- 3. Let $X_1, X_2, ...$ be a sequence of i.i.d. random variables with mean 0 and variance $\sigma^2 \in (0, \infty)$. Define $S_t = X_1 + ... + X_t$ for positive integer t.
 - (a) Compute $E(S_t)$. Does it depend on t?
 - (b) Compute $Var(S_t)$. Does it depend on t?
 - (c) Compute the autocovariance function of (S_t) .
 - (d) Compute the autocorrelation function of (S_t) .