# This Page Is Inserted by IFW Operations and is not a part of the Official Record

### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

### IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

#### **PCT**

#### WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



#### INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: WO 98/11217 (11) International Publication Number: **A2** C12N 15/12, C07K 14/47 (43) International Publication Date: 19 March 1998 (19.03.98) PCT/JP97/03239 (81) Designated States: AU, CA, JP, MX, US, European patent (21) International Application Number: (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, 12 September 1997 (12.09.97) MC, NL, PT, SE). (22) International Filing Date: **Published** (30) Priority Data: 8/243060 13 September 1996 (13.09.96) JP. Without international search report and to be republished upon receipt of that report. (71) Applicants (for all designated States except US): SAGAMI CHEMICAL RESEARCH CENTER [JP/JP]; 4-1, Nishi-Ohnuma 4-chome, Sagamihara-shi, Kanagawa 229 (JP). PROTEGENE INC. [JP/JP]; 2-20-3, Naka-cho, Meguro-ku, Tokyo 153 (JP). (72) Inventors; and (75) Inventors/Applicants (for US only): KATO, Seishi [JP/JP]; 3-46-50, Wakamatsu, Sagamihara-shi, Kanagawa 229 (JP). SEKINE, Shingo [JP/JP]; 4-4-1, Nishi-Ohnuma, Sagamihara-shi, Kanagawa 229 (JP). YAMAGUCHI, Tomoko [JP/JP]; 5-13-11, Takasago, Katsushika-ku, Tokyo 125 (JP). KOBAYASHI, Midori [JP/JP]; 647-2, Chougo, Fujisawa-shi, Kanagawa 252 (JP). (74) Agents: AOYAMA, Tamotsu et al.; Aoyama & Partners, IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Osaka-shi, Osaka 540 (JP).

(54) Title: HUMAN PROTEINS HAVING SECRETORY SIGNAL SEQUENCES AND DNAs ENCODING THESE PROTEINS

#### (57) Abstract

[Problems to be solved] To provide human proteins having secretory signal sequences and cDNAs encoding said proteins. [Means to solve the problems] Proteins containing any of the amino acid sequences represented by Sequence No. 1 to Sequence No. 9 and DNAs encoding said proteins exemplified by cDNAs containing any of the base sequences represented by Sequence No. 10 to Sequence No. 18. Said proteins can be provided by expressing cDNAs encoding human proteins having secretory signal sequences with verified secretory functions and recombinants of these human cDNAs.

#### FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AL | Albania                  | ES  | Spain               | LS | Lesotho               | SI | Slovenia                 |
|----|--------------------------|-----|---------------------|----|-----------------------|----|--------------------------|
| AM | Armenia                  | Fl  | Finland             | LT | Lithuania             | SK | Slovakia                 |
| AT | Austria                  | FR  | France              | เบ | Luxembourg            | SN | Senegal                  |
| AU | Australia                | GA  | Gabon               | LV | Latvia                | SZ | Swaziland                |
| ΑZ | Azerbaijan               | GB  | United Kingdom      | MC | Monaco                | TD | Chad                     |
| BA | Bosnia and Herzegovina   | GE  | Georgia             | MD | Republic of Moldova   | TG | Togo                     |
| BB | Barbados                 | GH  | Ghana               | MG | Madagascar            | TJ | Tajikistan               |
| BE | Belgium                  | GN  | Guinea              | MK | The former Yugoslav   | TM | Turkmenistan             |
| BF | Burkina Faso             | GR  | Greece              |    | Republic of Macedonia | TR | Turkey                   |
| BG | Bulgaria                 | HU  | Hungary             | ML | Mali                  | TT | Trinidad and Tobago      |
| BJ | Benin                    | IE  | Ireland             | MN | Mongolia              | UA | Ukraine                  |
| BR | Brazil                   | IL  | Israel              | MR | Mauritania            | UG | Uganda                   |
| BY | Belarus                  | IS  | Iceland             | MW | Malawi                | us | United States of America |
| CA | Canada                   | IT  | Itały               | MX | Mexico                | UZ | Uzbekistan               |
| CF | Central African Republic | JP  | Japan               | NE | Niger                 | VN | Viet Nam                 |
| CG | Congo                    | KE  | Kenya               | NL | Netherlands           | YU | Yugoslavia               |
| CH | Switzerland              | KG  | Kyrgyzstan          | NO | Norway                | zw | Zimbabwe                 |
| CI | Côte d'Ivoire            | KP  | Democratic People's | NZ | New Zealand           |    |                          |
| CM | Cameroon                 |     | Republic of Korea   | PL | Poland                |    |                          |
| CN | China                    | KR  | Republic of Korea   | PT | Portugal              |    |                          |
| CU | Cuba                     | KZ. | Kazakstan           | RO | Romania               |    |                          |
| CZ | Czech Republic           | LC  | Saint Lucia         | RU | Russian Federation    |    |                          |
| DE | Germany                  | LI  | Liechtenstein       | SD | Sudan                 |    |                          |
| DK | Denmark                  | LK  | Sri Lanka           | SE | Sweden                |    |                          |
| EE | Estonia                  | LR  | Liberia             | SG | Singapore             |    |                          |

1

#### DESCRIPTION

## Human Proteins Having Secretory Signal Sequences and DNAs Encoding These Proteins

#### TECHNICAL FIELD

The present invention relates to human proteins having secretory signal sequences and DNAs encoding these proteins. The proteins of the present invention can be used as pharmaceuticals or as antigens for preparing antibodies against said proteins. The cDNAs of the present invention can be used as probes for the gene diagnosis and gene sources for the gene therapy. Furthermore, the cDNAs can be used as gene sources for large-scale production of the proteins encoded by said cDNAs.

#### BACKGROUND ART

Cells secrete many proteins outside the cells. These secretory proteins play important roles for the proliferation control, the differentiation induction, the transportation, the biological protection, etc. in the cells. Different from intracellular proteins, the secretory proteins exert their actions outside the cells, whereby they can be administered in the intracorporeal manner such as the injection or the drip to anticipate the potentialities as In fact, a number of human secretory proteins medicines. interleukins, interferons, erythropoietin, such as thrombolytic agents, etc. have been currently utilized as medicines. In addition, secretory proteins other than those described above have been undergoing clinical trials to develop as pharmaceuticals. Since it has been conceived that the human cells still produce many unknown secretory proteins, availability of these secretory proteins as well as genes encoding them is expected to lead to the development of novel pharmaceuticals using these proteins.

Heretofore, such a secretory protein has been obtained by a method comprising the isolation and purification of the target protein from a large amount of the blood or a cell culture supernatant by using the biological activity as an indicator, determination of its primary structure followed by cloning of the corresponding cDNA on the basis of the information on the thus-obtained amino acid sequence, and production of the recombinant protein using said cDNA. the secretory proteins are However, the contents of generally so low that the isolation and purification are difficult in many cases. On the other hand, secretory proteins and type-I membrane proteins possess hydrophobic sequences, defined as the secretory signal sequences, consisting of about 20 amino acid residues at the amino acid termini (the N-termini). Therefore, the cloning of genes encoding the secretory proteins or type-I membrane proteins is expected to be performed by using the presence or the absence of these secretory signal sequences as indicators.

#### DISCLOSURE OF INVENTION

The object of the present invention is to provide novel human proteins having secretory signal sequences and DNAs

3

encoding said proteins.

As the result of intensive studies, the present inventors were successful in cloning of cDNAs having secretory signal sequences from a human full-length cDNA bank, thereby completing the present invention. That is to say, the present invention provides proteins containing any of the amino acid sequences represented by Sequence No. 1 to Sequence No. 9 that are human proteins having secretory signal sequences. The present invention, also, provides DNAs encoding said proteins exemplified as cDNAs containing any of the base sequences represented by Sequence No. 10 to sequence No. 18.

Each of the proteins of the present invention can be obtained, for example, by a method for isolation from human organs, cell lines, etc, a method for preparation of the peptide by the chemical synthesis on the basis of the amino acid sequence of the present invention, or a method for production with the recombinant DNA technology using the DNA encoding the human secretory protein of the present invention, wherein the method for obtainment the recombinant DNA technology is employed preferably. For example, an in vitro expression can be achieved by preparation of an RNA by the in vitro transcription from a vector having a cDNA of the present invention, followed by the in vitro translation using this RNA as a template. Also, the recombination of the translation domain to a suitable expression vector by the method known in the art leads to the expression of a large amount of the encoded protein by using Escherichia coli, Bacillus subtilis, yeasts, animal cells, and so on.

4

In the case in which a protein of the present invention is expressed by a microorganism such as Escherichia coli, the translation region of a cDNA of the present invention is constructed in an expression vector having an origin, a promoter, ribosome-binding site(s), cDNA-cloning site(s), a terminator, etc. that can be replicated in the microorganism and, after transformation of the host cells with said expression vector, the thus-obtained transformant incubated, whereby the protein encoded by said cDNA can be produced on a large scale in the microorganism. In that case, a maturation protein can be obtained by performing the expression with inserting an initiation codon in the translation region where the secretary signal sequence is removed. Alternatively, a fusion protein with another protein can be expressed. Only a protein portion encoding said cDNA can be obtained by cleavage of said fusion protein with an appropriate protease.

In the case in which a protein of the present invention is secretory-expressed in animal cells, the protein of the present invention can be secretory-produced as a maturation protein outside the cells, when the translation region of said cDNA is subjected to recombination to an expression vector for animal cells that has a promoter for the animal cells, a splicing domain, a poly(A) addition site, etc., followed by transfection into the animal cells.

The proteins of the present invention include peptide fragments (more than 5 amino acid residues) containing any partial amino acid sequence of the amino acid sequences represented by Sequence No. 1 to Sequence No. 9. These

5

fragments can be used as antigens for preparation of the antibodies. Also, the proteins of the present invention are secreted in the form of maturation proteins outside the cells, after the signal sequences are removed. Therefore, these maturation proteins shall come within the scope of the present invention. The N-terminal amino acid sequences of the maturation proteins can be easily identified by using the method for the cleavage-site determination in a signal sequence [Japanese Patent Kokai Publication No. 1996-187100]. Furthermore, many secretory proteins are subjected to the processing after the secretion to be converted to the active forms. These activated proteins or peptides shall come within the scope of the present invention. When glycosylation sites are present in the amino acid sequences, expression in appropriate animal cells affords glycosylated proteins. Therefore, these glycosylated proteins or peptides also shall come within the scope of the present invention.

The DNAs of the present invention include all DNAs encoding the above-mentioned proteins. Said DNAs can be obtained using the method by chemical synthesis, the method by cDNA cloning, and so on.

Each of the cDNAs of the present invention can be cloned from, for example, a cDNA library of the human cell origin. The cDNA is synthesized using as a template a poly(A)<sup>†</sup> RNA extracted from human cells. The human cells may be cells delivered from the human body, for example, by the operation or may be the culture cells. The cDNA can be synthesized by using any method selected from the Okayama-Berg method [Okayama, H. and Berg, P., Mol. Cell. Biol. 2: 161-170

6

(1982)], the Gubler-Hoffman method [Gubler, U. and Hoffman, J. Gene 25: 263-269 (1983)], and so on, but it is preferred to use the capping method [Kato, S. et al., Gene 150: 243-250 (1994)] as illustrated in Examples in order to obtain a full-length clone in an effective manner.

The primary selection of a cDNA encoding a human protein having a secretory signal sequence is performed by the sequencing of a partial base sequence of the cDNA clone selected at random from the cDNA library, sequencing of the amino acid sequence encoded by the base sequence, and recognition of the presence or absence of hydrophobic site(s) in the resulting N-terminal amino acid sequence region. Next, the secondary selection is carried out by determination of the whole base sequence by the sequencing and the protein expression by the in vitro translation. The ascertainment of the cDNA of the present invention for encoding the protein having the secretory signal sequence is performed by using the signal sequence detection method [Yokoyama-Kobayashi, M. et al., Gene 163: 193-196 (1995)]. In other words, the ascertainment for the coding portion of the inserted cDNA fragment to function as a signal sequence is provided by fusing a cDNA fragment encoding the N-terminus of the target protein with a cDNA encoding the protease domain of urokinase and then expressing the resulting cDNA in COS7 cells to detect the urokinase activity in the cell culture medium.

The cDNAs of the present invention are characterized by containing any of the base sequences represented by Sequence No. 10 to Sequence No. 18 or any of the base sequences represented by Sequence No. 19 to Sequence No. 27. Table 1

summarizes the clone number (HP number), the cells affording the cDNA, the total base number of the cDNA, and the number of the amino acid residues of the encoded protein, for each of the cDNAs.

Table 1

| Sequence  | HP      | Cells          | Number   | Number of  |
|-----------|---------|----------------|----------|------------|
| Number    | Number  |                | of Bases | Amino Acid |
|           |         |                |          | Residues   |
| 1. 10. 19 | НР00658 | HT-1080        | 1296     | 154        |
| 2. 11. 20 | HP00714 | KB             | 3311     | 315        |
| 3. 12. 21 | HP00876 | Stomach cancer | 1152     | 158        |
| 4, 13, 22 | HP01134 | Liver          | 1749     | 376        |
| 5, 14, 23 | HP10029 | KB             | 988      | 173        |
| 6, 15, 24 | HP10189 | KB             | 390      | 93         |
| 7, 16, 25 | HP10269 | U937           | 4667     | 1172       |
| 8, 17, 26 | HP10298 | Stomach cancer | 1086     | 122        |
| 9, 18, 27 | HP10368 | Stomach cancer | 866      | 175        |

Hereupon, the same clone as any of the cDNAs of the present invention can be easily obtained by screening of the cDNA library constructed from the cell line or the human tissue employed in the present invention, by the use of an oligonucleotide probe synthesized on the basis of the corresponding cDNA base sequence depicted in Sequence No. 19 to Sequence No. 27.

In general, the polymorphism due to the individual difference is frequently observed in human genes. Therefore, any cDNA that is subjected to insertion or deletion of one or

plural nucleotides and/or substitution with other nucleotides in Sequence No. 10 to Sequence No. 27 shall come within the scope of the present invention.

In a similar manner, any protein that is produced by these modifications comprising insertion or deletion of one or plural nucleotides and/or substitution with other nucleotides shall come within the scope of the present invention, as far as said protein possesses the activity of the corresponding protein having the amino acid sequence represented by Sequence No. 1 to Sequence No. 9.

The cDNAs of the present invention include cDNA fragments (more than 10 bp) containing any partial base sequence of the base sequence represented by Sequence No. 10 to No. 18 or of the base sequence represented by Sequence No. 19 to No. 27. For example, as illustrated in Examples, the portion encoding the secretory signal sequence can be employed as means to secrete an optionally selected protein outside the cells by fusing with a cDNA encoding another protein. Also, DNA fragments consisting of a sense chain and an anti-sense chain shall come within this scope. These DNA fragments can be used as the probes for the gene diagnosis.

#### BRIEF DESCRIPTION OF DRAWINGS

Figure 1: A figure depicting the structure of the secretory signal sequence detection vector pSSD3.

Figure 2: A figure depicting the construction of the secretory signal sequence - the urokinase fusion gene.

Figure 3: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded

9

WO 98/11217 PCT/JP97/03239

by clone HP00685.

Figure 4: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP00714.

Figure 5: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP00876.

Figure 6: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01134.

Figure 7: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10029.

Figure 8: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10189.

Figure 9: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10269.

Figure 10: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10298.

Figure 11: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10368.

## BEST MODE FOR CARRING OUT INVENTION EXAMPLE

The present invention is embodied in more detail by the

10

following examples, but this embodiment is not intended to restrict the present invention. The basic operations and the enzyme reactions with regard to the DNA recombination are carried out according to the literature ["Molecular Cloning. A Laboratory Manual", Cold Spring Harbor Laboratory, 1989]. Unless otherwise stated, restrictive enzymes and a variety of modification enzymes to be used were those available from Takara Shuzo Co., Ltd. The manufacturer's instructions were used for the buffer compositions as well as for the reaction conditions, in each of the enzyme reactions. The cDNA synthesis was carried out according to the literature [Kato, S. et al., Gene 150: 243-250 (1994)].

#### (1) Preparation of Poly(A) + RNA

The fibrosarcoma cell line HT-1080 (ATCC CCL 121), the epidermoid carcinoma cell line KB (ATCC CRL 17), the histiocyte lymphoma cell line U937 (ATCC CRL 1593) stimulated by phorbol esters, tissues of stomach cancer delivered by the operation, and liver were used for human cells to extract mRNAs. Each of the cell lines was cultured by a conventional procedure.

After about 1 g of human tissues was homogenized in 20 ml of a 5.5 M guanidinium thiocyanate solution, total mRNAs were prepared in accordance with the literature [Okayama, H. et al., "Methods in Enzymology" Vol. 164, Academic Press, 1987]. These mRNAs were subjected to chromatography using an oligo(dT)-cellulose column washed with 20 mM Trishydrochloric acid buffer solution (pH 7.6), 0.5 M NaCl, and 1 mM EDTA to obtain a poly(A) RNA in accordance with the above-mentioned literature.

11

#### (2) Construction of cDNA Library

To a solution of 10  $\mu$ g of the above-mentioned poly(A) + RNA in 100 mM Tris-hydrochloric acid buffer solution (pH 8) was added one unit of an RNase-free, bacterium-origin alkaline phosphatase and the resulting solution was allowed to react at 37°C for one hour. After the reaction solution underwent the phenol extraction followed by the ethanol precipitation, the obtained pellets were dissolved in a mixed solution of 50 mM sodium acetate (pH 6), 1 mM EDTA, 0.1% 2-mercaptoethanol, and 0.01% Triton X-100. Thereto was added one unit of a tobacco-origin pyrophosphatase (Epicenter Technologies) and the resulting solution at a total volume of 100  $\mu$ l was allowed to react at 37°C for one hour. After the reaction solution underwent the phenol extraction followed by the ethanol precipitation, the thus-obtained pellets were dissolved in water to obtain a decapped poly(A) + RNA solution.

To a solution of the decapped  $poly(A)^+$  RNA and 3 nmol of a DNA-RNA chimeric oligonucleotide (5'-dG-dG-dG-dG-dA-dA-dT-dT-dC-dG-dA-G-G-A-3') in a mixed aqueous solution of 50 mM Tris-hydrochloric acid buffer solution (pH 7.5), 0.5 mM ATP, 5 mM MgCl<sub>2</sub>, 10 mM 2-mercaptoethanol, and 25% polyethylene glycol were added 50 units of T4 RNA ligase and the resulting solution at a total volume of 30  $\mu$ l was allowed to react at 20°C for 12 hours. After the reaction solution underwent the phenol extraction followed by the ethanol precipitation, the thus-obtained pellets were dissolved in water to obtain a chimeric oligo-capped poly(A)<sup>+</sup> RNA.

12

After the vector pKA1 developed by the present inventors (Japanese Patent Kokai Publication No. 1992-117292) was digested with KpnI, an about 60-dT tail was inserted by a terminal transferase. This product was digested with EcoRV to remove the dT tail at one side and the resulting molecule was used as a vectorial primer.

After 6 µg of the previously-prepared chimeric oligocapped poly(A) + RNA was annealed with 1.2 µg of the vectorial primer, the product was dissolved in a mixed solution of 50 mM Tris-hydrochloric acid buffer solution (pH 8.3), 75 mM KCl, 3 mM MgCl2, 10 mM dithiothreitol, and 1.25 mM dNTP (dATP + dCTP + dGTP + dTTP), mixed with 200 units of a reverse transferase (GIBCO-BRL), and the resulting solution at a total volume of 20  $\mu l$  was allowed to react at 42°C for one hour. After the reaction solution underwent the phenol extraction followed by the ethanol precipitation, the thusobtained pellets were dissolved in a mixed solution of 50 mM Tris-hydrochloric acid buffer solution (pH 7.5), 100 mM NaCl, 10 mM MgCl2, and 1 mM dithiothreitol. Thereto were added 100 units of EcoRI and the resulting solution at a total volume of 20 ul was allowed to react at 37°C for one hour. After the reaction solution underwent the phenol extraction followed by ethanol precipitation, the obtained pellets were dissolved in a mixed solution of 20 mM Tris-hydrochloric acid buffer solution (pH 7.5), 100 mM KCl, 4 mM MgCl<sub>2</sub>, 10 mM  $(NH_A)_2SO_A$ , and 50 µg/ml bovine serum albumin. Thereto were added 60 units of Escherichia coli DNA ligase and the resulting solution was allowed to react at 16°C for 16 hours.

PCT/JP97/03239

To the reaction solution were added 2  $\mu l$  of 2 mM dNTP, 4 units of *Escherichia coli* DNA polymerase I, and 0.1 unit of *Escherichia coli* DNase H and the resulting solution was allowed to react at 12°C for one hour and then at 22°C for one hour.

Next, the cDNA-synthesis reaction solution was used to transform Escherichia coli DH12S (GIBCO-BRL). The transformation was carried out by the electroporation method. A portion of the transformant was inoculated on a 2xYT agar culture medium containing 100 µg/ml ampicillin, which was incubated at 37°C overnight. A colony grown on the culture medium was randomly picked up and inoculated on 2 ml of the 2xYT culture medium containing 100 µg/ml ampicillin, which was incubated at 37°C overnight. The culture medium was centrifuged to separate the cells, from which a plasmid DNA was prepared by the alkaline lysis method. After the plasmid DNA was double-digested with EcoRI and NotI, the product was subjected to 0.8% agarose gel electrophoresis to determine the size of the cDNA insert. In addition, by the use of the obtained plasmid as a template, the sequence reaction using M13 universal primer labeled with a fluorescent dye and Taq polymerase (a kit of Applied Biosystems Inc.) was carried out and the product was analyzed by a fluorescent DNA-sequencer (Applied Biosystems Inc.) to determine the base sequence of the cDNA 5'-terminal of about 400 bp. The sequence data were filed as a homo-protein cDNA bank data base.

(3) Selection of cDNAs Encoding Proteins Having Secretory Signal Sequence

The base sequence registered in the homo-protein cDNA

bank was converted to three frames of amino acid sequences and the presence or absence of an open reading frame (ORF) beginning from the initiation codon. Then, the selection was made for the presence of a signal sequence that is characteristic to a secretory protein at the N-terminal of the portion encoded by ORF. These clones were sequenced from the both 5' and 3' directions by using the deletion method to whole base sequence. determine the hydrophobicity/hydrophilicity profiles were obtained for proteins encoded by ORF by the Kyte-Doolittle method [Kyte, J. & Doolittle, R. F., J. Mol. Bio. 157: 105-132 (1982)] to examine the presence or absence of a hydrophobic region. In the case in which there is not a hydrophobic region of putative transmembrane domain(s) in the amino acid sequence of an encoded protein, this protein was considered as a membrane protein that did not possess a secretory protein or transmembrane domain(s).

(4) Construction of Secretory Signal Detection Vector pSSD3

One microgram of pSSD1 carrying the SV40 promoter and a cDNA encoding the protease domain of urokinase [Yokoyama-Kobayashi, M. et al., Gene 163: 193-196 (1995)] was digested with 5 units of Bg1II and 5 units of EcoRV. Then, after dephosphorylation at the 5' terminal by the CIP treatment, a DNA fragment of about 4.2 kbp was purified by cutting off from the gel of agarose gel electrophoresis.

Two oligo DNA linkers, L1 (5'-GATCCCGGGTCACGTGGGAT-3') and L2 (5'-ATCCCACGTGACCCGG-3'), were synthesized and phosphorylated by T4 polynucleotide kinase. After annealing

15

of the both linkers, followed by ligation with the previously-prepared pSSD1 fragment by T4 DNA ligase, Escherichia coli JM109 was transformed. A plasmid pSSD3 was prepared from the transformant and the objective recombinant was confirmed by the determination of the base sequence of the linker-inserted fragment. Figure 1 illustrates the structure of the thus-obtained plasmid. The present plasmid vector carries three types of blunt-end formation restriction enzyme sites, SmaI, PmaCI, and EcoRV. Since these cleavage sites are positioned in succession at an interval of 7 bp, selection of an appropriate site in combination of three types of frames for the inserting cDNA allows to construct a vector expressing a fusion protein.

(5) Functional Verification of Secretory Signal Sequence Whether the N-terminal hydrophobic region in secretory protein clone candidate obtained in the abovementioned steps functions as the secretory signal sequence was verified by the method described in the literature [Yokoyama-Kobayashi, M. et al., Gene 163: 193-196 (1995)]. First, the plasmid containing the target cDNA was cleaved at an appropriate restriction enzyme site that existed at the downstream from the portion expected for encoding the secretory signal sequence. In the case in which this restriction enzyme site was a protruding 5'-terminus, the site was blunt-ended by the Klenow treatment. Digestion with HindIII was further carried out and a DNA fragment containing the SV40 promoter and a cDNA encoding the secretory sequence at the downstream from the promoter was separated by agarose gel electrophoresis. This fragment was inserted between the

pSSD3 HindIII site and a restriction enzyme site selected so as to match with the urokinase-coding frame, thereby constructing a vector expressing a fusion protein of the secretory signal portion of the target cDNA and the urokinase protease domain (refer to Figure 2).

After Escherichia coli (host: JM109) bearing the fusion-protein expression vector was incubated at 37°C for 2 hours in 2 ml of the 2xYT culture medium containing 100 µg/ml ampicillin, the helper phage M13KO7 (50 µl) was added and the incubation was continued at 37°C overnight. A supernatant separated by centrifugation underwent precipitation with polyethylene glycol to obtain single-stranded phage particles. These particles were suspended in 100 µl of 1 mM Tris-0.1 mM EDTA, pH 8 (TE). Also, there was used as a control a suspension of single-stranded particles prepared in the same manner from the vector pKA1-UPA containing pSSD3 and a full-length cDNA of urokinase [Yokoyama-Kobayashi, M. et al., Gene 163: 193-196 (1995)].

The simian-kidney-origin culture cells, COS7, were incubated at 37°C in the presence of 5% CO<sub>2</sub> in the Dulbecco's modified Eagle's culture medium (DMEM) containing 10% fetal calf albumin. Into a 6-well plate (Nunc Inc., 3 cm in the well diameter) were inoculated 1  $\times$  10<sup>5</sup> COS7 cells and incubation was carried out at 37°C for 22 hours in the presence of 5% CO<sub>2</sub>. After the culture medium was removed, the cell surface was washed with a phosphate buffer solution and then washed again with DMEM containing 50 mM Trishydrochloric acid (pH 7.5) (TDMEM). To the cells were added 1  $\mu$ l of the single-stranded phage suspension, 0.6 ml of the

presence of 5% CO2.

DMEM culture medium, and 3  $\mu$ l of TRANSFECTAM<sup>TM</sup> (IBF Inc.) and the resulting mixture was incubated at 37°C for 3 hours in the presence of 5% CO<sub>2</sub>. After the sample solution was removed, the cell surface was washed with TDMEM, 2 ml per well of DMEM containing 10% fetal calf albumin was added, and the incubation was carried out at 37°C for 2 days in the

17

To 10 ml of 50 mM phosphate buffer solution (pH 7.4) containing 2% bovine fibrinogen (Miles Inc.), 0.5% agarose, and 1 mM potassium chloride were added 10 units of human thrombin (Mochida Pharmaceutical Co., Ltd.) and the resulting mixture was solidified in a plate of 9 cm in diameter to prepare a fibrin plate. Ten microliters of the culture supernatant of the transfected COS7 cells were spotted on the fibrin plate, which was incubated at 37°C for 15 hours. The diameter of the thus-obtained clear circle was taken as an index for the urokinase activity. Table 2 shows restriction enzyme site used for cutting off the cDNA fragment from each clone, the restriction enzyme site used for cleavage of pSSD3, and the presence or absence of a clear circle. Except for pSSD3 used as the control, each of the samples formed a clear circle to identify that urokinase was secreted in the culture medium. That is to say, it is indicated that each of the cDNA fragments codes for the amino acid sequence that functions as the secretory signal sequence.

18 Table 2

| HP Number | Restriction En | Clear Circle      |            |
|-----------|----------------|-------------------|------------|
|           | cDNA*          | Vector            |            |
| HP00658   | HindIII (K)    | SmaI              | +          |
| HP00714   | PvuII          | PmaCI             | · <b>+</b> |
| HP00876   | Ncol (K)       | PmaCI             | +          |
| HP01134   | PmaCI          | PmaCI             | +          |
| HP10029   | ApaI (K)       | SmaI              | +          |
| нр10189   | BglI (K)       | PmaCI             | +          |
| HP10269   | PvuII          | PmaCI             | +          |
| HP10298   | HindIII (K)    | PmaCI             | +          |
| HP10368   | ECORV          | PmaCI             | +          |
| pKA1-UPA  |                |                   | +          |
| pSSD3     |                | 11 11 11 11 11 11 | -          |

\* (K) means that cleavage with the restriction enzyme is followed by the Klenow treatment.

#### (6) Protein Synthesis by In Vitro Translation

The plasmid vector carrying the cDNA of the present invention was utilized for the in vitro transcription/translation by the  $T_NT$  rabbit reticulocyte lysate kit (Promega Biotec). In this case, [ $^{35}$ S]methionine was added and the expression product was labeled with the radioisotope. All reactions were carried out by following the protocols attached to the kit. Two micrograms of the plasmid was allowed to react at 30°C for 90 minutes in total 25 ml of a reaction solution containing 12.5  $\mu$ l of the  $T_NT$  rabbit reticulocyte lysate, 0.5  $\mu$ l of the buffer solution (attached to the kit), 2  $\mu$ l of an amino acid mixture (methionine-free),

 $2 \mu l (0.37 MBq/\mu l)$  of [ $^{35}$ S]methionine (Amersham Corporation),  $0.5~\mu l$  of T7 RNA polymerase, and 20 U of RNasin. Also, the experiment in the presence of the membrane system was carried out by adding 2.5  $\mu l$  of the dog pancreatic microsome fraction (Promega Biotec) into this reaction system. To 3  $\mu l$  of the reaction solution was added 2 µl of an SDS sampling buffer (125 mM Tris-hydrochloric acid buffer solution, pH 6.8, 120 mM 2-mercaptoethanol, 2% SDS solution, 0.025% bromophenol blue, and 20% glycerol) and the resulting solution was heated 95°C for 3 minutes and then subjected to SDSpolyacrylamide gel electrophoresis. The molecular weight of the translation product was determined by carrying out the autoradiography. Table 3 shows the molecular weight of the in vitro translation product obtained from each of the clones in the presence/absence of the membrane microsome together with the calculated value of the molecular weight of the protein encoded by ORF of the cDNA.

20 Table 3

| Se-    | НР      | Calcu-  | In Vitro Translation Product |               |  |
|--------|---------|---------|------------------------------|---------------|--|
| quence | Number  | lated   | (KDa)                        |               |  |
| No.    |         | (Da)    | Without Membrane             | With Membrane |  |
|        |         |         | System Added                 | System Added* |  |
| 1      | HP00658 | 17,037  | 18                           | 16            |  |
| 2      | HP00714 | 37,106  | 47                           | -             |  |
| 3      | HP00876 | 18,230  | 18                           | -             |  |
| 4      | HP01134 | 42,947  | 42                           | 49            |  |
| 5      | HP10029 | 18,894  | 21                           | 18            |  |
| 6      | HP10189 | 9,113   | 12                           | -             |  |
| 7      | HP10269 | 129,572 | 130                          | _             |  |
| 8      | HP10298 | 13,161  | 16                           | -             |  |
| 9      | HP10368 | 19,979  | 19                           | 18            |  |

<sup>\* -</sup> means "Not examined".

#### (7) Clone Examples

<HP00658> (Sequence Number 1, 10, 19)

Determination of the whole base sequence for the cDNA insert of clone HP00658 obtained from the human fibrosarcoma cell line HT-1080 cDNA libraries revealed the structure consisting of a 5'-non-translation region of 55 bp, an ORF of 465 bp, and a 3'-non-translation region of 776 bp. The ORF codes for a protein consisting of 154 amino acid residues with a hydrophobic region of a putative secretory signal N-terminal. Figure 3 depicts sequence at the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. Search of the protein data base using the amino acid sequence encoded by the ORF

revealed that the N-terminal 63 amino acid residues thereof were completely identical with those in the RANTES protein (EMBL Accession No. 21121) except for one amino acid residue at position 7 (arginine in RANTES and alanine in the present protein), but the sequences in both proteins were completely different after position 64. Hereupon, RANTES consisted of 91 amino acid residues, whereas the present protein consisted of longer 154 amino acid residues. The in vitro translation resulted in the formation of a translation product of 18 kDa that was almost consistent with the molecular weight of 17,037 predicted from the ORF. In this case, the addition of the microsome resulted in the formation of a 16-kDa product in which the secretory signal sequence portion was putatively removed by cleavage. This result together with the result on pSSD3 verifies that the present protein possesses the secretory signal sequence. Application of the (-3,-1) rule, a method for predicting the signal sequence cleavage site [von Heijne, G., Nucl. Acid Res. 14: 4683-4690 (1986)], allows to expect that the maturation protein starts from serine at position 24.

Comparison of the base sequences for the both proteins revealed that the base sequence from position 2 to position 325 in the present cDNA was deficient in the RANTES cDNA. It is considered that this deficiency resulted in induction of a frame shift to form an ORF of a different size. Some mutations were observed in other regions, wherein the homology was 97.7% up to position 241 and was 98.0% after position 325. RANTES has been obtained as a T cell-specific protein [Schall, T. J. et al., J. Immunol. 141: 1018-1025]

22

(1988)], whereas the present cDNA was obtained from the fibrosarcoma cells. Accordingly, the present protein is considered to possess a different function from that of RANTES.

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that any EST possessing the homology of 90% or more was not found.

<HP00714> (Sequence Number 2, 11, 20)

Determination of the whole base sequence for the cDNA insert of clone HP00714 obtained from the human epidermoid carcinoma cell line KB cDNA libraries revealed the structure consisting of a 5'-non-translation region of 56 bp, an ORF of 948 bp, and a 3'-non-translation region of 2310 bp. The ORF codes for a protein consisting of 315 amino acid residues with a hydrophobic region of a putative secretory signal the N-terminal. Figure 4 depicts sequence at hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 47 kDa that was somewhat larger than the molecular weight of 37,106 predicted from the ORF. Since the molecular weight of the human reticulocalbin analogous to the present protein is also larger by about 10 kDa than the molecular weight expected from the translation-product band on SDS-PAGE [Ozawa, M., J. Biochem. 117: 1113-1119 (1995)], the molecular weight difference in the present protein is considered to be arisen from its physicochemical properties. Application of the (-3,-1) rule, a method for predicting the signal sequence cleavage site, allows to expect that the maturation protein

starts from lysine at position 20. There is a possibility that the present protein exists in the endoplasmic reticulum because this protein possesses the C-terminal sequence HDEF analogous to KDEL, the signal motif sequence localized in the endoplasmic reticulum.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the human reticulocalbin (GenBank Accession No. D42073). Table 4 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the human reticulocalbin (RC). - represents a gap, \* represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 60.5%.

#### Table 4

- · \*\*\*. \*\*. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* \*\*. \*\*\*\*\*\*\*. \*\*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*. \*\*.
- RC NGDLTATREEFTAFLHPEEFEHMKEIVVLETLEDIDKNGDGFVDQDEYIADMFSHEENGP
- HP EPEWVKTEREQFVEFRDKNRDGKMDKEETKDWILPSDYDHABABARHLVYESDQNKDGKL
- RC BPDWVLSEREQFNEFRDLNKDGKLDKDEIRHWILPQDYDHAQABARHLVYBSDKNKDBKL
- HP TKBEIVDKYDLFVGSQATDFGEALVR-HDEF
  - \*\*\*\*\*.... \*\*\*\*\*\*\*.. \*\*. \*\*\*.
- RC TKEELLENWNMFVGSQATNYGEDLTKNHDEL

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more and containing the initiation codon (for example, Accession No. F3872), but any of the sequences thereof did not allow to predict the present protein.

Reticulocalbin is a protein localized on the membrane surface of the endoplasmic reticulum and has been considered to participate in the protein folding. Accordingly, the protein of the present invention is considered to be applicable to the folding process of recombinant proteins.

<HP00876> (Sequence Number 3, 12, 21)

Determination of the whole base sequence for the cDNA insert of clone HP0876 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 146 bp, an ORF of 477 bp, and a 3'-non-translation region of 529 bp. The ORF codes for a protein consisting of 158 amino acid residues with a hydrophobic region of a putative secretory signal sequence at the N-terminal. Figure 5 depicts the hydrophobicity/hydrophilicity

25

profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 18 kDa that was almost consistent with the molecular weight of 18,230 predicted from the ORF. In this case, the addition of the microsome resulted in the formation of a 16-kDa product in which the secretory signal sequence portion was putatively removed by cleavage. This result together with the result on pSSD3 verifies that the present protein possesses the secretory signal. Application of the (-3,-1) rule, a method for predicting the signal sequence cleavage site, allows to expect that the maturation protein starts from glycine at position 18 or aspartic acid at position 23.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to several type-C lectins. As an example, Table 5 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the rattlesnake lectin (CL) (Swiss-PROT Accession No. P21963). - represents a gap, \* represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 35.3%.

26

#### Table 5

HP MASRSMRLLLLLSCLAKTGVLGDIIMRPSCAPGWPYHKSNCYGYFRKLRNWSDAELECQS

.\*. .\*. .. \*\* \*.. \*. \*. \*\*. \*..

CL NNCPLDWLPMNGLCYKIFNQLKTWEDAEMFCRK

HP YGNGAHLASILSLKEASTIAEYISGYQRSQ-PIWIGLHDPQKRQQWQWIDGAMYLYRSWS

- CL YKPGCHLASFHRYGESLEIAEYISDYHKGQENVWIGLRDKKKDFSWEWTDRSCTDYLTWD
- HP GKSMGG--NKH-CAEMSSNNNFLTWSSNECNKRQHFLCKYRP
  - . . \*\*. \*. \* ... \*... \*... \*\*\*...
- CL KNQPDHYQNKEFCVELVSLTGYRLWNDQVCESKDAFLCQCKF

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that any EST possessing the homology of 90% or more was not found.

After 1 μg of the plasmid pHP00876 was digested with 20 units of PvuII, the product was subjected to 1% agarose gel electrophoresis and an about 700-bp DNA fragment was cut off from the gel. Next, 1 μg of pET-21a (Novagen) was digested with 20 units of NheI, the product was subjected to the Klenow treatment followed by 1% agarose gel electrophoresis and an about 5.4-kbp DNA fragment was cut off from the gel. After ligation of the vector fragment and the cDNA fragment using a ligation kit, Escherichia coli BL21 (DE3) (Novagen) was transformed. A plasmid pET876 was prepared from the transformant and the objective recombinant was confirmed from the restriction enzyme cleavage map. The present expression vector expresses a protein in which methionine-alanine was

inserted before a protein starting from serine at position 29 in the protein encoded by the clone HP00876.

A suspension of pET876/BL21 (DE3) in 5 ml of the LB culture medium containing 100  $\mu$ g/ml ampicillin was incubated in a shaker at 37°C and isopropylthiogalactoside was added to make 1 mM when  $A_{600}$  reached to about 0.5. After the incubation was continued at 37°C for 6 hours, cells were collected by centrifugation and suspended in 25 ml of a column buffer solution for the amylose column (10 mM Trishydrochloric acid, pH 7.4, 200 mM NaCl, and 1 mM EDTA). The resulting suspension was sonicated and then the insoluble fraction was subjected to SDS-polyacrylamide electrophoresis to identify a band originating from the expression of the present vector at a position of about 14 kDa.

Since lectins recognize and then bind to sugar chains, lectins are useful as sugar-chain detection reagents and as affinity carriers for purification of glycoproteins. In addition, extracellular secretory lectins play important roles also in intercellular signal transduction and thereby are useful as medicines.

<HP01134> (Sequence Number 4, 13, 22)

Determination of the whole base sequence for the cDNA insert of clone HP01134 obtained from the human liver cDNA libraries revealed the structure consisting of a 5'-non-translation region of 116 bp, an ORF of 1131 bp, and a 3'-non-translation region of 502 bp. The ORF codes for a protein consisting of 376 amino acid residues with a hydrophobic region of a putative secretory signal sequence at the N-terminal. Figure 6 depicts the hydrophobicity/hydrophilicity

28

profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 42 kDa that was almost consistent with the molecular weight of 42,947 predicted from the ORF. In this case, the addition of the microsome resulted in the formation of a 49-kDa product in which a sugar chain was putatively added by N-glycosylation after the secretion. Hereupon, there exist in the amino acid sequence of this protein four possible N-glycosylation sites (Asn-Gly-Thr at position 91, Asn-Glu-Thr at position 167, Asn-Thr-Ser at position 263, and Asn-Lys-Thr at position 272). The above result together with the result on pSSD3 verifies that the present protein possesses the secretory signal. Application of the (-3,-1) rule, a method for predicting the signal sequence cleavage site, allows to expect that the maturation protein starts from alanine at position 17 or valine at position 18.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to several cysteine proteinases. As an example, Table 6 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the tangerine cysteine proteinase (CP) (GenBank Accession No. 247793). - represents a gap, \* represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 49% among the N-terminal region of 286 amino acid residues.

PCT/JP97/03239

29

#### Table 6

HP MVWKVAVFLSVALGIGAVPIDDPEDGGKH \* \*\* \*\* . \*. CP MTRLASGVLITLLVALAGIADGSRDIAGDILKLPSEAYRFFHNGGGGAKVNDDDDSVGTR HP WVVIVAGSNGWYNYRHQADACHAYQIIHRNGIPDEQIVVMMYDDIAYSEDNPTPGIVINR CP WAVLLAGSNGFWNYRHQADICHAYQLLRKGGLKDENIIVFMYDDIAFNEENPRPGVIINH HP PNGTDVYQGVPKDYTGEDVTPQNFLAVLRGDAEAVKGIGSGKVLKSGPQDHVFIYFTDHG CP PHGDDVYKGVPKDYTGEDVTVEKFFAVVLGNKTALTG-GSGKVVDSGPNDHIFIFYSDHG HP STGILVFPNED-LHVKDLNETIHYMYKHKMYRKMVFYIBACESGSMMN-HLPDNINVYAT CP GPGVLGMPTSRYIYADELIDVLKKKHASGNYKSLVFYLEACESGSIFEGLLLEGLNIYAT HP TAANPRESSYACYY----DEKRSTY---LGDWYSVNWMEDSDVEDLTKETLHKQYHLVKS \*\* \* \*\*\* \* CP TASNABESSWGTYCPGEIPGPPPEYSTCLGDLYSIAWMEDSDIHNLRTETLHQQYBLYKT HP HT----NTSHVMQYGNKTISTMKVMQFQGMKRKASSPVPLPPVTHLDLTPSPDVPLTIM \*\*\*\*\*\*\* CP RTASYNSYGSHVMQYGDIGLSKNNLFTYLGTNPANDNYTFVDENSLRPASKAVNQRDADL

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. F01300), but they were shorter than the present cDNA and any molecule containing the initiation codon was not identified.

30

Extracellular secretory proteases possess a variety of physiological functions and thereby are useful as medicines. In addition, the proteases have been utilized as research reagents for the structure analysis of proteins by restricted degradation and so on.

<HP10029> (Sequence Number 5, 14, 23)

Determination of the whole base sequence for the cDNA insert of clone HP10029 obtained from the human epidermoid carcinoma cell line KB cDNA libraries revealed the structure consisting of a 5'-non-translation region of 8 bp, an ORF of 522 bp, and a 3'-non-translation region of 458 bp. The ORF codes for a protein consisting of 173 amino acid residues with a hydrophobic region of a putative secretory signal at the N-terminal. Figure 7 depicts sequence hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 21 kDa that was almost consistent with the molecular weight of 18,894 predicted from the ORF. In this case, the addition of the microsome resulted in the formation of a 18-kDa product in which the secretory signal sequence portion was putatively removed by cleavage. This result together with the result on pSSD3 verifies that the present protein possesses the secretory signal sequence. Application of the (-3,-1) rule, a method for predicting the signal sequence cleavage site, allows to expect that the maturation protein starts from valine at position 32. There is a possibility that the present protein exists in the endoplasmic reticulum because this protein possesses the C-

terminal sequence RTEL analogous to KDEL, the signal motif sequence localized in the endoplasmic reticulum.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not homologous with any of known proteins. Hereupon, the search of GenBank using the base sequence revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. H87021), but they were shorter than the present cDNA and any molecule containing the initiation codon was not identified.

<HP10189> (Sequence Number 6, 15, 24)

Determination of the whole base sequence for the cDNA insert of clone HP10189 obtained from the human epidermoid carcinoma cell line KB cDNA libraries revealed the structure consisting of a 5'-non-translation region of 101 bp, an ORF of 222 bp, and a 3'-non-translation region of 67 bp. The ORF codes for a protein consisting of 73 amino acid residues with a hydrophobic region of a putative secretory signal sequence N-terminal. Figure 8 depicts hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 10 kDa that was almost consistent with the molecular weight of 9,113 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the signal sequence cleavage site, allows to expect that the maturation protein starts from alanine at position 27.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was

32

not homologous with any of known proteins. Hereupon, the search of GenBank using the base sequence revealed that there existed some ESTs possessing the homology of 90% or more and containing the initiation codon (for example, Accession No. N56270), but a frame shift had occurred and the same ORF as that in the present cDNA was not identified.

<HP10269> (Sequence Number 7, 16, 25)

Determination of the whole base sequence for the cDNA insert of clone HP10269 obtained from the human lymphoma cell line U937 cDNA libraries revealed the structure consisting of a 5'-non-translation region of 753 bp, an ORF of 351 bp, and a 3'-non-translation region of 395 bp. The ORF codes for a protein consisting of 1172 amino acid residues with a hydrophobic region of a putative secretory signal sequence at N-terminal. Figure depicts hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 130 kDa that was almost consistent with the molecular weight of 129,571 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the signal sequence cleavage site, allows to expect that the maturation protein starts from glutamine at position 18.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the B3 chain of laminin S. Table 7 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the B3 chain of human laminin S (B3) (GenBank Accession No. L25541)

33 Table 7

| Amino Acid Residue Number | HP  | В3        |
|---------------------------|-----|-----------|
| 124                       | Gln | Arg       |
| 269                       | Pro | Deficient |
| 388                       | Pro | Ala       |
| 426                       | Gln | Arg       |
| 427                       | Gly | Arg       |
| 439                       | Arg | Deficient |
| 441                       | Asp | Glu       |
| 603                       | Arg | Pro       |
| 815                       | Gly | Ala       |
|                           |     |           |

Comparison of the base sequence of the present cDNA and the base sequence described in the data base reveals that the 5'-terminus in the present cDNA is longer by 600 or more bp and the 81-bp 5'-terminus in the base sequence described in the data base is not consistent at all with the base sequence of the present cDNA. Accordingly, the both proteins originate from different mRNAs.

As an extracellular matrix, laminin deeply participates in the proliferation and differentiation of cells. Accordingly, laminin has been employed as an additive for the cell culture and so on.

<HP10298> (Sequence Number 8, 17, 26)

Determination of the whole base sequence for the cDNA insert of clone HP10298 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 137 bp, an ORF of 369 bp, and a

WO 98/11217

34

PCT/JP97/03239

3'-non-translation region of 580 bp. The ORF codes for a protein consisting of 122 amino acid residues with a hydrophobic region of a putative secretory signal sequence at N-terminal. Figure 10 depicts hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 16 kDa that was almost consistent with the molecular weight of 13,161 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the signal sequence cleavage site, allows to expect that the maturation protein starts from leucine at position 18. There is also a possibility that the present protein possessing the hydrophobic C-terminal sequence of about 20 amino acid residues binds to the membrane via this portion.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not homologous with any of known proteins. Hereupon, the search of GenBank using the base sequence revealed that there existed some ESTs possessing the homology of 90% or more and containing the initiation codon (for example, Accession No. D78655), but many sequences were not distinct and the same ORF as that in the present cDNA was not identified.

<HP10368> (Sequence Number 9, 18, 27)

Determination of the whole base sequence for the cDNA insert of clone HP10368 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 72 bp, an ORF of 528 bp, and a 3'-non-translation region of 266 bp. The ORF codes for a

protein consisting of 175 amino acid residues with a hydrophobic region of a putative secretory signal sequence at N-terminal. Figure 11 depicts hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 20 kDa that was almost consistent with the molecular weight of 19,979 predicted from the ORF. In this case, the addition of the microsome resulted in the formation of a 19-kDa product in which the secretory signal sequence portion was putatively removed by cleavage. This result together with the result on pSSD3 verifies that the present protein possesses the secretory signal. Application of the (-3,-1) rule, a method for predicting the signal sequence cleavage site, allows to expect that the maturation protein starts from leucine at position 19 or arginine at position 21. There is a possibility that the present protein exists in the endoplasmic reticulum because this protein possesses the C-terminal sequence KTEL analogous to KDEL, the signal motif sequence localized in the endoplasmic reticulum.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not homologous with any of known proteins. Hereupon, the search of GenBank using the base sequence revealed that there existed some ESTs possessing the homology of 90% or more and containing the initiation codon (for example, Accession No. T86663), but many sequences were not distinct and the same ORF as that in the present cDNA was not identified.

#### INDUSTRIAL APPLICATION

The present invention provides human proteins having secretory signal sequences and cDNAs encoding said proteins. All of the proteins of the present invention are putative proteins controlling the proliferation and differentiation of the cells, because said proteins are secreted outside the cells and exist in the extracellular liquid or on the cell membrane surface. Therefore, the proteins of the present invention can be used as pharmaceuticals or as antigens for preparing antibodies against said proteins. Furthermore, said DNAs can be used for the expression of large amounts of said proteins.

In addition to the activities and uses described above, the polynucleotides and proteins of the present invention may exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA).

## Research Uses and Utilities

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a

37

particular stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to antibodiesusing DNA anti-protein immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

(6)

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers

38

for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

# Nutritional Uses

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases

the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

# Cytokine and Cell Proliferation/DifferentiationActivity

A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays

40

for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., J. Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol. 152: 1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Po lyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human Interferon γ, Schreiber, R.D. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L.S. and Lipsky, P.E. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and interleukin 6 -Nordan, R. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci.

U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11 - Bennett, F., Giannotti, J., Clark, S.C. and Turner, K. J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9 - Ciarletta, A., Giannotti, J., Clark, S.C. and Turner, K.J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

# Immune Stimulating or Suppressing Activity

A protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating

(up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of cells and other cell populations. These deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial orfungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be a protein of the present invention, treatable using HIV, infections by hepatitis including herpesviruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic erythematosus, rheumatoid arthritis, autoimmune pulmonary Guillain-Barre syndrome, inflammation, thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or Other conditions, in which other respiratory problems. immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

Using the proteins of the invention it may also be

possible to immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an non-antigen-specific, process which continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as , for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be situations of tissue, skin in useful transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an reaction that destroys the transplant. administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural

ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the immune cells without transmitting the corresponding costimulatory signal. Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

particular blocking reagents efficacy of The preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine

the effect of blocking B lymphocyte antigen function in vivo on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease Administration of reagents symptoms. which costimulation of T cells by disrupting receptor: ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy.

46

Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the commoncold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity. Tumor cells (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid

encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. For example, tumor cells obtained from a patient can be transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the provides the necessary surface of the tumor cell costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I  $\alpha$ chain protein and  $\beta_2$  microglobulin protein or an MHC class  $\text{II}\alpha$  chain protein and an MHC class  $\text{II}\beta$  chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Bowmanet al., J. Virology 61:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991;

Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J.J. and Brunswick, M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology

67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

## Hematopoiesis Regulating Activity

A protein of the present invention may be useful in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in

combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or conjunction with bone ex-vivo (i.e., in marrow transplantation orwith peripheral progenitor transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described Methylcellulose colony forming assays, in: Freshney, M.G. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I.K. and Briddell, R.A. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R.E. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc.., New York, NY. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; Long term culture initiating cell assay, Sutherland, H.J. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

## Tissue Growth Activity

A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

Another category of tissue regeneration activity that may

be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon ligament tissue. or Dе novo tendon/ligament-like tissue formation induced by composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The protein of the present invention may also be useful

55

for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager Further conditions which may be treated in syndrome. accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of

cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. W095/16035 (bone, cartilage, tendon); International Patent Publication No. W095/05846 (nerve, neuronal); International Patent Publication No. W091/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

#### Activin/Inhibin Activity

A protein of the present invention may also exhibit activin- or inhibin-related activities. Inhibins are characterized by their ability to inhibit the release of

57

follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin  $\alpha$  family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin- $\beta$  group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

# Chemotactic/Chemokinetic Activity

A protein of the present invention may have chemotactic

or chemokinetic activity (e.g., act as a chemokine) for cells, including, for example, monocytes, mammalian fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to

another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25: 1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.

## Hemostatic and Thrombolytic Activity

A protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulation disorders (includinghereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79

60

(1991); Schaub, Prostaglandins 35:467-474, 1988.

# Receptor/Ligand Activity

A protein of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) receptor/liqand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses). Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in:Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein

et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

# Anti-Inflammatory Activity

Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of ytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

#### Tumor Inhibition Activity

In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A

protein may inhibit tumor growth directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth

## Other Activities

A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or bodily characteristics, including, enhancing) limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or caricadic cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent

63

behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

64

SEQUENCE LISTING

Sequence No.: 1

Sequence length: 154

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No

Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma

Cell line: HT-1080

Clone name: HP00658

Sequence description

Met Lys Val Ser Ala Ala Ala Leu Ala Val Ile Leu Ile Ala Thr Ala

10 15

Leu Cys Ala Pro Ala Ser Ala Ser Pro Tyr Ser Ser Asp Thr Thr Pro

25 20

Cys Cys Phe Ala Tyr Ile Ala Arg Pro Leu Pro Arg Ala His Ile Lys

40

Glu Tyr Phe Tyr Thr Ser Gly Lys Cys Ser Asn Pro Ala Val Val His

50 55 60

Arg Ser Arg Met Pro Lys Arg Glu Gly Gln Gln Val Trp Gln Asp Phe

70 75 65

Leu Tyr Asp Ser Arg Leu Asn Lys Gly Lys Leu Cys His Pro Lys Glu

90 85 95

Pro Pro Ser Val Cys Gln Pro Arg Glu Glu Met Gly Ser Gly Val His

100 105 110

Gln Leu Phe Gly Asp Glu Leu Gly Trp Arg Val Leu Glu Pro Glu Leu

65

115 120 125

Thr Gln Ile Cys Leu Phe Leu Leu Ala Leu Val Leu Ala Trp Glu Ala

130 135 140

Ser Pro His Tyr Pro Thr Pro Pro Ala Pro

145 150

Sequence No.: 2

Sequence length: 315

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No

Original source:

Organism species: Homo sapiens

Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP00714

Sequence description

Met Asp Leu Arg Gln Phe Leu Met Cys Leu Ser Leu Cys Thr Ala Phe

1 5 10 15

Ala Leu Ser Lys Pro Thr Glu Lys Lys Asp Arg Val His His Glu Pro

20 25 30

Gln Leu Ser Asp Lys Val His Asn Asp Ala Gln Ser Phe Asp Tyr Asp

35 40 45

His Asp Ala Phe Leu Gly Ala Glu Glu Ala Lys Thr Phe Asp Gln Leu

50 55 60

Thr Pro Glu Glu Ser Lys Glu Arg Leu Gly Lys Ile Val Ser Lys Ile

65 70 75 80

Asp Gly Asp Lys Asp Gly Phe Val Thr Val Asp Glu Leu Lys Asp Trp

66

|     |     |     |     | 85  |     |     |     |     | 90  |     |     |     |     | 95  |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ile | Lys | Phe | Ala | Gln | Lys | Arg | Trp | Ile | Tyr | Glu | Asp | Val | Glu | Arg | Gln |
|     |     |     | 100 |     |     |     |     | 105 |     |     |     |     | 110 |     |     |
| Trp | Lys | Gly | His | Asp | Leu | Asn | G1u | Авр | Gly | Leu | Val | Ser | Trp | G1u | Glu |
|     |     | 115 |     |     |     |     | 120 |     |     |     |     | 125 |     |     |     |
| Tyr | Lys | Asn | Ala | Thr | Tyr | Gly | Tyr | Val | Leu | Asp | Asp | Pro | Asp | Pro | Авр |
|     | 130 |     |     |     |     | 135 |     |     |     |     | 140 |     |     |     |     |
| Asp | G1y | Phe | Asn | Tyr | Lys | Gln | Met | Met | Val | Arg | Asp | Glu | Arg | Arg | Phe |
| 145 |     |     |     |     | 150 |     |     |     |     | 155 |     |     |     |     | 160 |
| Lys | Met | Ala | Asp | Lys | Asp | Gly | Asp | Leu | Ile | Ala | Thr | Lys | Glu | Glu | Phe |
|     |     |     |     | 165 |     |     |     |     | 170 |     |     |     |     | 175 |     |
| Thr | Ala | Phe | Leu | His | Pro | Glu | Glu | Tyr | Asp | Tyr | Met | Lys | Asp | Ile | Val |
|     |     |     | 180 |     |     |     |     | 185 |     |     |     |     | 190 |     |     |
| Val | Gln | Glu | Thr | Met | Glu | Asp | Ile | Asp | Lys | Asn | Ala | Asp | Gly | Phe | Ile |
|     |     | 195 |     |     |     |     | 200 |     |     |     |     | 205 |     |     |     |
| Asp | Leu | G1u | Glu | Tyr | Ile | Gly | Asp | Met | Tyr | Ser | His | Asp | Gly | Asn | Thr |
|     | 210 |     |     |     |     | 215 |     |     |     |     | 220 |     |     |     |     |
| Asp | Glu | Pro | Glu | Trp | Val | Lys | Thr | Glu | Arg | Glu | Gln | Phe | Val | Glu | Phe |
| 225 |     |     |     |     | 230 |     |     |     |     | 235 |     |     |     |     | 240 |
| Arg | Asp | Lys | Asn | Arg | Asp | Gly | Lys | Met | Asp | Lys | Glu | Glu | Thr | Lys | Asp |
|     |     |     |     | 245 |     |     |     |     | 250 |     |     |     |     | 255 |     |
| Trp | Ile | Leu | Pro | Ser | Asp | Tyr | Asp | His | Ala | Glu | Ala | G1u | Ala | Arg | His |
|     |     |     | 260 |     |     |     |     | 265 |     |     |     |     | 270 |     |     |
| Leu | Val | Tyr | Glu | Ser | Asp | Gln | Asn | Lys | Asp | Gly | Lys | Leu | Thr | Lys | Glu |
|     |     | 275 |     |     |     |     | 280 |     |     |     |     | 285 |     |     |     |
| Glu | Ile | Va1 | Asp | Lys | Tyr | Asp | Leu | Phe | Val | Gly | Ser | Gln | Ala | Thr | Asp |
|     | 290 |     |     |     |     | 295 |     |     |     |     | 300 |     |     |     |     |
| Phe | G1y | Glu | Ala | Leu | Val | Arg | His | Asp | Glu | Phe |     |     |     |     |     |
| 305 |     |     |     |     | 310 |     |     |     |     | 315 |     |     |     |     |     |

67

Sequence No.: 3 Sequence length: 158 Sequence type: Amino acid Topology: Linear Sequence kind: Protein Hypothetical: No Original source: Organism species: Homo sapiens Cell kind: Stomach cancer Clone name: HP00876 Sequence description Met Ala Ser Arg Ser Met Arg Leu Leu Leu Leu Ser Cys Leu Ala 10 Lys Thr Gly Val Leu Gly Asp Ile Ile Met Arg Pro Ser Cys Ala Pro 20 25 Gly Trp Phe Tyr His Lys Ser Asn Cys Tyr Gly Tyr Phe Arg Lys Leu 40 45 35 Arg Asn Trp Ser Asp Ala Glu Leu Glu Cys Gln Ser Tyr Gly Asn Gly 60 50 55 Ala His Leu Ala Ser Ile Leu Ser Leu Lys Glu Ala Ser Thr Ile Ala 75 70 65 Glu Tyr Ile Ser Gly Tyr Gln Arg Ser Gln Pro Ile Trp Ile Gly Leu 85 90 His Asp Pro Gln Lys Arg Gln Gln Trp Gln Trp Ile Asp Gly Ala Met 105 110 100 Tyr Leu Tyr Arg Ser Trp Ser Gly Lys Ser Met Gly Gly Asn Lys His

120

Cys Ala Glu Met Ser Ser Asn Asn Asn Phe Leu Thr Trp Ser Ser Asn

115

125

68

130 135 140

Glu Cys Asn Lys Arg Gln His Phe Leu Cys Lys Tyr Arg Pro

145 150 155

Sequence No.: 4

Sequence length: 376

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No

Original source:

Organism species: Homo sapiens

Cell kind: Liver

Clone name: HP01134

Sequence description

Met Val Trp Lys Val Ala Val Phe Leu Ser Val Ala Leu Gly Ile Gly

1 5 10 15

Ala Val Pro Ile Asp Asp Pro Glu Asp Gly Gly Lys His Trp Val Val

20 25 30

Ile Val Ala Gly Ser Asn Gly Trp Tyr Asn Tyr Arg His Gln Ala Asp

35 40 45

Ala Cys His Ala Tyr Gln Ile Ile His Arg Asn Gly Ile Pro Asp Glu

50 55 60

Gin Ile Val Val Met Met Tyr Asp Asp Ile Ala Tyr Ser Glu Asp Asn

65 70 75 80

Pro Thr Pro Gly Ile Val Ile Asn Arg Pro Asn Gly Thr Asp Val Tyr

85 90 95

Gln Gly Val Pro Lys Asp Tyr Thr Gly Glu Asp Val Thr Pro Gln Asn

100 105 110

| Phe | Leu | Ala | Val | Leu | Arg | Gly | Asp | Ala | Glu | Ala | Val | Lys | Gly | Ile | Gly |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|     |     | 115 |     |     |     |     | 120 |     |     |     |     | 125 |     |     |     |
| Ser | Gly | Lys | Va1 | Leu | Lys | Ser | Gly | Pro | Gln | Asp | His | Val | Phe | Ile | Tyr |
|     | 130 |     |     |     |     | 135 |     |     |     |     | 140 |     |     |     |     |
| Phe | Thr | Asp | His | Gly | Ser | Thr | Gly | Ile | Leu | Val | Phe | Pro | Asn | Glu | Asp |
| 145 |     |     |     |     | 150 |     |     |     |     | 155 |     |     |     |     | 160 |
| Leu | His | Val | Lys | Asp | Leu | Asn | Glu | Thr | Ile | His | Tyr | Met | Tyr | Lys | His |
|     |     |     |     | 165 |     |     |     |     | 170 |     |     |     |     | 175 |     |
| Lys | Met | Tyr | Arg | Lys | Met | Va1 | Phe | Tyr | Ile | Glu | Ala | Cys | Glu | Ser | Gly |
|     |     |     | 180 |     |     |     |     | 185 |     |     |     |     | 190 |     |     |
| Ser | Met | Met | Asn | His | Leu | Pro | Asp | Asn | Ile | Asn | Val | Tyr | Ala | Thr | Thr |
|     |     | 195 |     |     |     |     | 200 |     |     |     |     | 205 |     |     |     |
| Ala | Ala | Asn | Pro | Arg | Glu | Ser | Ser | Tyr | Ala | Cys | Tyr | Tyr | Asp | Glu | Lys |
|     | 210 |     |     |     |     | 215 |     |     |     |     | 220 |     |     |     |     |
| Arg | Ser | Thr | Tyr | Leu | Gly | Asp | Trp | Tyr | Ser | Val | Asn | Trp | Met | Glu | Asp |
| 225 |     |     |     |     | 230 |     |     |     |     | 235 |     |     |     |     | 240 |
| Ser | Asp | Va1 | Glu | Asp | Leu | Thr | Lys | Glu | Thr | Leu | His | Lys | Gln | Tyr | His |
|     |     |     |     | 245 |     |     |     |     | 250 |     |     |     |     | 255 |     |
| Leu | Val | Lys | Ser | His | Thr | Asn | Thr | Ser | His | Val | Met | Gln | Tyr | Gly | Asn |
|     |     |     | 260 |     |     |     |     | 265 |     |     |     |     | 270 |     |     |
| Lys | Thr | Ile | Ser | Thr | Met | Lys | Val | Met | Gln | Phe | Gln | Gly | Met | Lys | Arg |
|     |     | 275 |     |     |     |     | 280 |     |     |     |     | 285 |     |     |     |
| Lys | Ala | Ser | Ser | Pro | Val | Pro | Leu | Pro | Pro | Val | Thr | His | Leu | Asp | Leu |
|     | 290 |     |     |     |     | 295 |     |     |     |     | 300 |     |     |     |     |
| Thr | Pro | Ser | Pro | Asp | Va1 | Pro | Leu | Thr | Ile | Met | Lys | Arg | Lys | Leu | Met |
| 305 |     |     |     |     | 310 |     |     |     |     | 315 |     |     |     |     | 320 |
| Asn | Thr | Asn | Asp | Leu | G1u | Glu | Ser | Arg | G1n | Leu | Thr | Glu | Glu | Ile | Gln |
|     |     |     |     | 325 |     |     |     |     | 330 |     |     |     |     | 335 |     |
| Aro | His | Leu | Asp | Tvr | G1u | Tvr | Ala | Leu | Arg | His | Leu | Tvr | Va1 | Leu | Va1 |

70

340 345 350

Asn Leu Cys Glu Lys Pro Tyr Pro Leu His Arg Ile Lys Leu Ser Met

355 360 365

Asp His Val Cys Leu Gly His Tyr

370 375

Sequence No.: 5

Sequence length: 173

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No

Original source:

Organism species: Homo sapiens

Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10029

Sequence description

Met Ala Ala Pro Ser Gly Gly Trp Asn Gly Val Arg Ala Ser Leu Trp

1 5 10 15

Ala Ala Leu Leu Cly Ala Val Ala Leu Arg Pro Ala Glu Ala Val

20 25 30

Ser Glu Pro Thr Thr Val Ala Phe Asp Val Arg Pro Gly Gly Val Val

35 40 45

His Ser Phe Ser His Asn Val Gly Pro Gly Asp Lys Tyr Thr Cys Met

50 55 60

Phe Thr Tyr Ala Ser Gln Gly Gly Thr Asn Glu Gln Trp Gln Met Ser

65 70 75 80

Leu Gly Thr Ser Glu Asp His Gln His Phe Thr Cys Thr Ile Trp Arg

71

85 90 95

Pro Gln Gly Lys Ser Tyr Leu Tyr Phe Thr Gln Phe Lys Ala Glu Val

100 105 110

Arg Gly Ala Glu Ile Glu Tyr Ala Met Ala Tyr Ser Lys Ala Ala Phe

115 120 125

Glu Arg Glu Ser Asp Val Pro Leu Lys Thr Glu Glu Phe Glu Val Thr

130 135 140

Lys Thr Ala Val Ala His Arg Pro Gly Ala Phe Lys Ala Glu Leu Ser

145 150 155 160

Lys Leu Val Ile Val Ala Lys Ala Ser Arg Thr Glu Leu

165 170

Sequence No.: 6

Sequence length: 73

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No

Original source:

Organism species: Homo sapiens

Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10189

Sequence description

Met Gly Val Lys Leu Glu Ile Phe Arg Met Ile Ile Tyr Leu Thr Phe

1 5 10 15

Pro Val Ala Met Phe Trp Val Ser Asn Gln Ala Glu Trp Phe Glu Asp

20 25 30

Asp Val Ile Gln Arg Lys Arg Glu Leu Trp Pro Pro Glu Lys Leu Gln

72

35 40 45

Glu Ile Glu Glu Phe Lys Glu Arg Leu Arg Lys Arg Arg Glu Glu Lys

50 55 60

Leu Leu Arg Asp Ala Gln Gln Asn Ser

65 70

Sequence No.: 7

Sequence length: 1172

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Histiocyte lymphoma

Cell line: U937

Clone name: HP10269

Sequence description

Met Arg Pro Phe Phe Leu Leu Cys Phe Ala Leu Pro Gly Leu Leu His

1 5 10 15

Ala Gln Gln Ala Cys Ser Arg Gly Ala Cys Tyr Pro Pro Val Gly Asp

20 25 30

Leu Leu Val Gly Arg Thr Arg Phe Leu Arg Ala Ser Ser Thr Cys Gly

35 40 45

Leu Thr Lys Pro Glu Thr Tyr Cys Thr Gln Tyr Gly Glu Trp Gln Met

50 55 60

Lys Cys Cys Lys Cys Asp Ser Arg Gln Pro His Asn Tyr Tyr Ser His

65 70 75 80

Arg Val Glu Asn Val Ala Ser Ser Ser Gly Pro Met Arg Trp Trp Gln

|     |     |       |     | 85    |     |     |                 |                  | 90  |     |     |       |     | 95              |     |
|-----|-----|-------|-----|-------|-----|-----|-----------------|------------------|-----|-----|-----|-------|-----|-----------------|-----|
| er  | Gln | Asn   | Asp | Val   | Asn | Pro | Val             | Ser              | Leu | Gln | Leu | Asp   | Leu | Asp             | Arg |
|     |     |       | 100 |       |     |     |                 | 105              |     |     |     |       | 110 |                 |     |
| Arg | Phe | Gln   | Leu | Gln   | Glu | Val | Met             | Met              | G1u | Phe | Gln | Gly   | Pro | Met             | Pro |
|     |     | 115   |     |       |     |     | 120             |                  |     |     |     | 125   |     |                 |     |
| Ma  | G1y | Met   | Leu | Ile   | Glu | Arg | Ser             | Ser              | Asp | Phe | Gly | Lys   | Thr | Trp             | Arg |
|     | 130 |       |     |       |     | 135 |                 |                  |     |     | 140 |       |     |                 |     |
| 7al | Tyr | Gln   | Tyr | Leu   | Ala | Ala | Asp             | Cys              | Thr | Ser | Thr | Phe   | Pro | Arg             | Val |
| 145 |     |       |     |       | 150 |     |                 |                  |     | 155 |     |       |     |                 | 160 |
| Arg | Gln | Gly   | Arg | Pro   | Gln | Ser | Trp             | Gln              | Asp | Val | Arg | Cys   | Gln | Ser             | Leu |
|     |     |       |     | 165   |     |     |                 |                  | 170 |     |     |       |     | 175             |     |
| Pro | Gln | Arg   | Pro | Asn   | Ala | Arg | Leu             | Asn              | Gly | Gly | Lys | Va1   | Gln | Leu             | Asn |
|     |     |       | 180 |       |     |     |                 | 185              |     |     |     |       | 190 |                 |     |
| Leu | Met | . Asp | Leu | Val   | Ser | Gly | Ile             | Pro              | Ala | Thr | Gln | Ser   | Gln | Lys             | Ile |
|     |     | 195   |     |       |     |     | 200             |                  |     |     |     | 205   |     |                 |     |
| Gln | Glu | Val   | Gly | Glu   | Ile | Thr | Asn             | Leu              | Arg | Val | Asn | Phe   | Thr | Arg             | Leu |
|     | 210 |       |     |       |     | 215 |                 |                  |     |     | 220 |       |     |                 |     |
| Ala | Pro | Val   | Pro | Gln   | Arg | Gly | Tyr             | His              | Pro | Pro | Ser | Ala   | Tyr | Tyr             | Ala |
| 225 |     |       |     |       | 230 |     |                 |                  |     | 235 |     |       |     |                 | 240 |
| Val | Ser | G1n   | Leu | Arg   | Leu | G1n | Gly             | Ser              | Cys | Phe | Cys | His   | Gly | His             | Ala |
|     |     |       |     | 245   |     |     |                 |                  | 250 |     |     |       |     | 255             | ,   |
| Asp | Arg | Cys   | Ala | Pro   | Lys | Pro | G1 <del>y</del> | Ala              | Ser | Ala | G1y | Pro   | Ser | Thr             | Ala |
|     |     |       | 260 | )     |     |     |                 | 265              | •   |     |     |       | 270 | )               |     |
| Val | Gln | Val   | His | Asp   | Val | Cys | Val             | Cys              | Gln | His | Asn | Thr   | Ala | Gl <sub>y</sub> | Pro |
|     |     | 275   | ;   |       |     |     | 280             | )                |     |     |     | 285   | •   |                 |     |
| Asn | Cys | Glu   | Arg | Cys   | Ala | Pro | Phe             | Tyr              | Asn | Asn | Arg | Pro   | Trp | Arg             | Pro |
|     | 290 | )     |     |       |     | 295 | ,               |                  |     |     | 300 | )     |     |                 |     |
| Ala | Glu | Gly   | Glr | ı Asp | Ala | His | Glu             | C <del>y</del> s | Gln | Arg | Cys | . Asp | Cys | Asr             | Gly |
| 305 | ;   |       |     |       | 310 | )   |                 |                  |     | 315 | ;   |       |     |                 | 320 |

PCT/JP97/03239

| n: ~ | Sa-  | <u>61</u> | ጥኤ  | Cero  | Hic  | Pha           | Aen              | Pro | A1 a        | Va 1     | Pho              | Αla  | Ala  | Ser      | Gin  |
|------|------|-----------|-----|-------|------|---------------|------------------|-----|-------------|----------|------------------|------|------|----------|------|
| นาล  | SEL  | GIU       | IHE |       | дтя  | FIIG          | vah              | FIU |             | AGI      | THE              | TIC  | TITO |          | GIII |
|      |      |           |     | 325   |      |               |                  |     | 330         |          |                  |      |      | 335      |      |
| Gly  | Ala  | Tyr       | Gly | Gly   | Val  | Cys           | Asp              | Asn | Cys         | Arg      | Asp              | His  | Thr  | Glu      | Gly  |
|      |      |           | 340 |       |      |               |                  | 345 |             |          |                  |      | 350  |          |      |
| Lys  | Asn  | Cys       | Glu | Arg   | Cys  | Gln           | Leu              | His | Tyr         | Phe      | Arg              | Asn  | Arg  | Arg      | Pro  |
|      |      | 355       |     |       |      |               | 360              |     | •           |          |                  | 365  |      |          |      |
| Gly  | Ala  | Ser       | Ile | Gln   | Glu  | Thr           | Cys              | Ile | Ser         | Cys      | Glu              | Суѕ  | Asp  | Pro      | Asp  |
|      | 370  |           |     |       |      | 375           |                  |     |             |          | 380              |      |      |          |      |
| Gly  | Ala  | Va1       | Pro | Gly   | Ala  | Pro           | С <del>у</del> в | Asp | Pro         | Val      | Thr              | Gly  | Gln  | Суѕ      | Val  |
| 385  |      |           |     |       | 390  |               |                  |     |             | 395      |                  |      |      |          | 400  |
| Cys  | Lys  | Glu       | His | Val   | Gln  | Gly           | Glu              | Arg | Cys         | Asp      | Leu              | Cys  | Lys  | Pro      | Gly  |
|      |      |           |     | 405   |      |               |                  |     | 410         |          |                  |      |      | 415      |      |
| Phe  | Thr  | Gly       | Leu | Thr   | Tyr  | Ala           | Asn              | Pro | Gln         | Gly      | Сув              | His  | Arg  | Cys      | Asp  |
|      |      |           | 420 |       |      |               |                  | 425 |             |          |                  |      | 430  |          |      |
| Cys  | Asn  | Ile       | Leu | Gly   | Ser  | Arg           | Arg              | Asp | Met         | Pro      | Cys              | Asp  | Glu  | Glu      | Ser  |
|      |      | 435       |     |       |      |               | 440              |     |             |          |                  | 445  |      |          |      |
| Gly  | Arg  | Cys       | Leu | Cys   | Leu  | Pro           | Asn              | Va1 | <b>V</b> al | Gly      | Pro              | Lys  | Cys  | Asp      | Gln  |
|      | 450  |           |     |       |      | 455           |                  |     |             |          | 460              |      |      |          |      |
| Cys  | Ala  | Pro       | Tyr | His   | Trp  | Lys           | Leu              | Ala | Ser         | Gly      | Gln              | Gly  | Cys  | Glu      | Pro  |
| 465  |      |           | -   |       | 470  |               |                  |     |             | 475      |                  |      |      |          | 480  |
|      | Ala  | Cys       | Asp | Pro   | His  | Asn           | Ser              | Leu | Ser         | Pro      | Gln              | Cys  | Asn  | Gln      | Phe  |
| .:   |      | •         | -   | 485   |      |               |                  |     | 490         |          |                  | -    |      | 495      |      |
|      | G] v | Gln       | Cvs |       | Cvs  | Arg           | Glu              | Glv |             | Glv      | Gl <sub>v</sub>  | Leu  | Met  | Cvs      | Ser  |
|      | 01,  |           | 500 |       | -,-  | 6             |                  | 505 |             | ,        | ,                |      | 510  |          |      |
| A1.a | A1 n | A1 o      |     | A = a | Cin  | Cwo           | Pro              |     | Ara         | Thr      | የ <sub>ත</sub> - | C1 v | Asp  | Vo 1     | A1s  |
| ATA  | MIG  |           | TIE | urg   | GIII | oys           |                  | nop | ME          | 1111     | 1,11             |      | мор  | <b>V</b> | 1114 |
|      |      | 515       |     | 4.7   | 0    | <b>A</b> == = | 520              | A   | DI          | <b>A</b> | 01-              | 525  | 01   | 01       | D    |
| Thr  |      | Cys       | Arg | ALA   | cys  |               | Cys              | Asp | rne         | Arg      |                  | Inr  | Glu  | GIÀ      | rro  |
|      | 530  |           |     |       |      | 535           |                  |     |             | _        | 540              | _    |      | _        |      |
| C1-  | Cwc  | Acr       | Twe | A1 a  | Sor  | C1 v          | Ara              | Cve | Len         | Cvs      | Ara              | Pro  | G1 v | I.e11    | Thr  |

| 545 |     |     |     |     | 550             |     |     |     |     | 555 |     |     |     |     | 560 |
|-----|-----|-----|-----|-----|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Gly | Pro | Arg | Cys | Авр | Gln             | Суз | Gln | Arg | Gly | Tyr | Cys | Asn | Arg | Tyr | Pro |
|     |     |     |     | 565 |                 |     |     |     | 570 |     |     |     |     | 575 |     |
| Val | Суз | Val | Ala | Cys | His             | Pro | Cys | Phe | Gln | Thr | Tyr | Asp | Ala | Asp | Leu |
|     |     |     | 580 |     |                 |     |     | 585 |     |     |     |     | 590 |     |     |
| Arg | Glu | Gln | Ala | Leu | Arg             | Phe | Gly | Arg | Leu | Arg | Asn | Ala | Thr | Ala | Ser |
|     |     | 595 |     |     |                 |     | 600 |     |     |     |     | 605 |     |     |     |
| Leu | Trp | Ser | Gly | Pro | Gl <del>y</del> | Leu | G1u | Авр | Arg | Gly | Leu | Ala | Ser | Arg | Ile |
|     | 610 |     |     |     |                 | 615 |     |     |     |     | 620 |     |     |     |     |
| Leu | Asp | Ala | Lys | Ser | Lys             | Ile | G1u | Gln | Ile | Arg | Ala | Val | Leu | Ser | Ser |
| 625 |     |     |     |     | 630             |     |     |     |     | 635 |     |     |     |     | 640 |
| Pro | Ala | Val | Thr | G1u | Gln             | Glu | Val | Ala | Gln | Val | Ala | Ser | Ala | Ile | Leu |
|     |     |     |     | 645 |                 |     |     |     | 650 |     |     |     |     | 655 |     |
| Ser | Leu | Arg | Arg | Thr | Leu             | Gln | Gly | Leu | Gln | Leu | Asp | Leu | Pro | Leu | Glu |
|     |     |     | 660 |     |                 |     |     | 665 |     |     |     |     | 670 |     |     |
| Glu | Glu | Thr | Leu | Ser | Leu             | Pro | Arg | Asp | Leu | Glu | Ser | Leu | Asp | Arg | Ser |
|     |     | 675 |     |     |                 |     | 680 |     |     |     |     | 685 |     |     |     |
| Phe | Asn | Gly | Leu | Leu | Thr             | Met | Tyr | Gln | Arg | Lys | Arg | Glu | Gln | Phe | G1u |
|     | 690 |     |     |     |                 | 695 |     |     |     |     | 700 |     |     |     |     |
| Lys | Ile | Ser | Ser | Ala | Asp             | Pro | Ser | Gly | Ala | Phe | Arg | Met | Leu | Ser | Thr |
| 705 |     |     |     |     | 710             |     |     |     |     | 715 |     |     |     |     | 720 |
| Ala | Tyr | Glu | Gln | Ser | Ala             | Gln | Ala | Ala | Gln | Gln | Val | Ser | Asp | Ser | Ser |
|     |     |     |     | 725 |                 |     |     |     | 730 |     |     |     |     | 735 |     |
| Arg | Leu | Leu | Asp | Gln | Leu             | Arg | Asp | Ser | Arg | Arg | Glu | Ala | Glu | Arg | Leu |
|     |     |     | 740 |     |                 |     |     | 745 |     |     |     |     | 750 |     |     |
| Val | Arg | Gln | Ala | Gly | Gly             | Gly | Gly | Gly | Thr | Gly | Ser | Pro | Lys | Leu | Val |
|     |     | 755 |     |     |                 |     | 760 |     |     |     |     | 765 |     |     |     |
| Ala | Leu | Arg | Leu | Glu | Met             | Ser | Ser | Leu | Pro | Asp | Leu | Thr | Pro | Thr | Phe |
|     | 770 |     |     |     |                 | 775 |     |     |     |     | 780 |     |     |     |     |

| Asn | Lys  | Leu | Суs | Gly | Asn | Ser | Arg | Gln | Met | Ala | Cys | Thr | Pro | Ile | Ser |
|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 785 |      |     |     |     | 790 |     |     |     |     | 795 |     |     |     |     | 800 |
| Cys | Pro  | Gly | Glu | Leu | Cys | Pro | Gln | Asp | Asn | Gly | Thr | Ala | Cys | G1y | Ser |
|     |      |     |     | 805 |     |     |     |     | 810 |     |     |     |     | 815 |     |
| Arg | Cys  | Arg | Gly | Val | Leu | Pro | Arg | Ala | Gly | G1y | Ala | Phe | Leu | Met | Ala |
|     |      |     | 820 |     |     |     |     | 825 |     |     |     |     | 830 |     |     |
| Gly | Gln  | Va1 | Ala | Glu | G1n | Leu | Arg | Gly | Phe | Asn | Ala | Gln | Leu | Gln | Arg |
|     |      | 835 |     |     |     |     | 840 |     |     |     |     | 845 |     |     |     |
| Thr | Arg  | Gln | Met | Ile | Arg | Ala | Ala | Glu | Glu | Ser | Ala | Ser | Gln | Ile | G1n |
|     | 850  |     |     |     |     | 855 |     |     |     |     | 860 |     |     |     |     |
| Ser | Ser  | Ala | Gln | Arg | Leu | Glu | Thr | Gln | Val | Ser | Ala | Ser | Arg | Ser | Gln |
| 865 |      |     |     |     | 870 |     |     |     |     | 875 |     |     |     |     | 880 |
| Met | Glu  | Glu | Asp | Val | Arg | Arg | Thr | Arg | Leu | Leu | Ile | Gln | Gln | Val | Arg |
|     |      |     |     | 885 |     |     |     |     | 890 |     |     |     |     | 895 |     |
| Asp | Phe  | Leu | Thr | Asp | Pro | Asp | Thr | Asp | Ala | Ala | Thr | Ile | G1n | Glu | Val |
|     |      |     | 900 |     |     |     |     | 905 |     |     |     |     | 910 |     |     |
| Ser | Glu  | Ala | Va1 | Leu | Ala | Leu | Trp | Leu | Pro | Thr | Asp | Ser | Ala | Thr | Val |
|     |      | 915 |     |     |     |     | 920 |     |     |     |     | 925 |     |     |     |
| Leu | Gln  | Lys | Met | Asn | Glu | Ile | G1n | Ala | Ile | Ala | Ala | Arg | Leu | Pro | Asn |
|     | 930  |     |     |     |     | 935 |     |     |     |     | 940 |     |     |     |     |
| Val | Asp  | Leu | Val | Leu | Ser | G1n | Thr | Lys | Gln | Asp | Ile | Ala | Arg | Ala | Arg |
| 945 |      |     |     |     | 950 |     |     |     |     | 955 |     |     |     |     | 960 |
| Arg | Leu  | Gln | Ala | Glu | Ala | Glu | Glu | Ala | Arg | Ser | Arg | Ala | His | Ala | Val |
|     |      |     |     | 965 |     |     |     |     | 970 |     |     |     |     | 975 |     |
| Glu | Gly  | Gln | Val | Glu | Asp | Va1 | Val | Gly | Asn | Leu | Arg | Gln | Gly | Thr | Va1 |
|     |      |     | 980 |     |     |     |     | 985 |     |     |     |     | 990 |     |     |
| Ala | Leu  | Gln | Glu | Ala | Gln | Asp | Thr | Met | Gln | Gly | Thr | Ser | Arg | Ser | Leu |
|     |      | 995 |     |     |     |     | 100 | 0 - |     |     |     | 100 | 5   |     |     |
| Ara | ī.eu | Tle | Gln | Asn | Ara | Val | Ala | Glu | Val | Gln | Gln | Val | Leu | Arg | Pro |

Ala Glu Lys Leu Val Thr Ser Met Thr Lys Gln Leu Gly Asp Phe Trp Thr Arg Met Glu Glu Leu Arg His Gln Ala Arg Gln Gln Gly Ala Glu Ala Val Gln Ala Gln Gln Leu Ala Glu Gly Ala Ser Glu Gln Ala Leu Ser Ala Gln Glu Gly Phe Glu Arg Ile Lys Gln Lys Tyr Ala Glu Leu Lys Asp Arg Leu Gly Gln Ser Ser Met Leu Gly Glu Gln Gly Ala Arg Ile Gln Ser Val Lys Thr Glu Ala Glu Glu Leu Phe Gly Glu Thr Met Glu Met Met Asp Arg Met Lys Asp Met Glu Leu Glu Leu Leu Arg Gly Ser Gln Ala Ile Met Leu Arg Ser Ala Asp Leu Thr Gly Leu Glu Lys Arg Val Glu Gln Ile Arg Asp His Ile Asn Gly Arg Val Leu Tyr Tyr 

Sequence No.: 8

Ala Thr Cys Lys

Sequence length: 122

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No

Original source:

PCT/JP97/03239 WO 98/11217

78

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10298

Sequence description

Met Gly Leu Leu Leu Val Pro Leu Leu Leu Pro Gly Ser Tyr

10

Gly Leu Pro Phe Tyr Asn Gly Phe Tyr Tyr Ser Asn Ser Ala Asn Asp

25

Gln Asn Leu Gly Asn Gly His Gly Lys Asp Leu Leu Asn Gly Val Lys

40

Leu Val Val Glu Thr Pro Glu Glu Thr Leu Phe Thr Arg Ile Leu Thr

60 55

Val Gly Pro Gln Ser Leu Gly Ser Glu Ala Leu Ala Ser Pro Thr Arg

70 75

Arg Ala Ala Cys Thr Val Phe Thr Ala Thr Ala Ser Thr Arg Thr Trp

85 90

Gly Pro Pro Leu Pro His Ser Leu Thr Gly Cys Val Phe Ile Glu Trp

100 105 110

Phe Val Phe Pro Cys Gly Leu Glu Pro Phe

120 115

Sequence No.: 9

Sequence length: 175

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10368

Sequence description

Met Glu Lys Ile Pro Val Ser Ala Phe Leu Leu Val Ala Leu Ser

1 5 10 15

Tyr Thr Leu Ala Arg Asp Thr Thr Val Lys Pro Gly Ala Lys Lys Asp

25 30

Thr Lys Asp Ser Arg Pro Lys Leu Pro Gln Thr Leu Ser Arg Gly Trp

35 40 4

Gly Asp Gln Leu Ile Trp Thr Gln Thr Tyr Glu Glu Ala Leu Tyr Lys

50 55 60

Ser Lys Thr Ser Asn Lys Pro Leu Met Ile Ile His His Leu Asp Glu

65 70 75 80

Cys Pro His Ser Gln Ala Leu Lys Lys Val Phe Ala Glu Asn Lys Glu

85 90 95

Ile Gln Lys Leu Ala Glu Gln Phe Val Leu Leu Asn Leu Val Tyr Glu

100 105 110

Thr Thr Asp Lys His Leu Ser Pro Asp Gly Gln Tyr Val Pro Arg Ile

115 120 125

Met Phe Val Asp Pro Ser Leu Thr Val Arg Ala Asp Ile Thr Gly Arg

130 135 140

Tyr Ser Asn Arg Leu Tyr Ala Tyr Glu Pro Ala Asp Thr Ala Leu Leu

145 150 155 160

Leu Asp Asn Met Lys Lys Ala Leu Lys Leu Leu Lys Thr Glu Leu

165 170 175

Sequence No.: 10

Sequence length: 462

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

WO 98/11217

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma

Cell line: HT-1080

Clone name: HP00658

Sequence description

ATGAAGGTCT CCGCGGCAGC CCTCGCTGTC ATCCTCATTG CTACTGCCCT CTGCGCTCCT 60 GCATCTGCCT CCCCATATTC CTCGGACACC ACACCCTGCT GCTTTGCCTA CATTGCCCGC 120 CCACTGCCCC GTGCCCACAT CAAGGAGTAT TTCTACACCA GTGGCAAGTG CTCCAACCCA 180 GCAGTCGTCC ACAGGTCAAG GATGCCAAAG AGAGAGGGAC AGCAAGTCTG GCAGGATTTC 240 CTGTATGACT CCCGGCTGAA CAAGGGCAAG CTTTGTCACC CGAAAGAACC GCCAAGTGTG 300 TGCCAACCCA GAGAAGAAT GGGTTCGGGA GTACATCAAC TCTTTGGAGA TGAGCTAGGA 360 TGGAGAGTCC TTGAACCTGA ACTTACACAA ATTTGCCTGT TTCTGCTTGC TCTTGTCCTA 420 GCTTGGGAGG CTTCCCCTCA CTATCCTACC CCACCCGCTC CT 462

80

PCT/JP97/03239

Sequence No.: 11

Sequence length: 945

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Epidermoid carcinoma

Cell line: KB

81

Clone name: HP00714

Sequence description

| 60  | CTTGAGCAAA | CAGCCTTTGC | TCCCTGTGCA | TATGTGCCTG | GACAGTTTCT          | ATGGACCTGC |
|-----|------------|------------|------------|------------|---------------------|------------|
| 120 | GGTTCACAAT | TCAGTGACAA | GAGCCTCAGC | TGTACATCAT | AGAAGGACCG          | CCCACAGAAA |
| 180 | AGCAAAGACC | GTGCTGAAGA | GCCTTCTTGG | TGACCATGAT | GTTTTGATTA          | GATGCTCAGA |
| 240 | AAGTAAAATA | GAAAGATTGT | GAAAGGCTTG | AGAGAGCAAG | TGACACCAGA          | TTTGATCAGC |
| 300 | TAAATTTGCA | AAGACTGGAT | GATGAGCTCA | TGTCACTGTG | AGGACGGGTT          | GATGGCGACA |
| 360 | CCTCAATGAG | AGGGGCATGA | CGACAGTGGA | GGATGTAGAG | GGATTTACGA          | CAAAAGCGCT |
| 420 | TTTAGATGAT | ACGGCTACGT | AATGCCACCT | GGAGTATAAA | TTTCCTGGGA          | GACGGCCTCG |
| 480 | GCGGAGGTTT | TTAGAGATGA | CAGATGATGG | TAACTATAAA | ATGATGGATT          | CCAGATCCTG |
| 540 | AGCTTTCCTG | AGGAGTTCAC | GCCACCAAGG | AGACCTCATT | ACAAGGATGG          | AAAATGGCAG |
| 600 | GGAAGATATA | AGGAAACAAT | ATAGTAGTAC | CATGAAAGAT | AGTATGACTA          | CACCCTGAGG |
| 660 | GTACAGCCAT | TTGGTGACAT | GAAGAGTATA | CATTGATCTA | CTGATGGTTT          | GATAAGAATG |
| 720 | TGTTGAGTTT | GAGAGCAGTT | AAGACAGAGC | AGAATGGGTA | CTGATGAGCC          | GATGGGAATA |
| 780 | GATCCTTCCC | CCAAAGACTG | AAGGAAGAGA | GAAGATGGAC | ACCGTGATGG          | CGGGATAAGA |
| 840 | AGACCAAAAC | TCTATGAATC | AGGCACCTGG | GGCAGAAGCC | ATCATGCAGA          | TCAGACTATG |
| 900 | TGTTGGCAGC | ATGACTTATT | GTTGACAAGT | GGAGGAGATC | AGCTTACCAA          | AAGGATGGCA |
| 945 |            | AGTTC      | CCCCATGATG | GGCCTTAGTA | Α <b>ͲͲͲͲ</b> ϹϹϹϹΑ | CACCCCACAG |

Sequence No.: 12

Sequence length: 474

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP00876

PCT/JP97/03239

82

Sequence description

WO 98/11217

| ATGGCTTCCA GAAGCA | rgcg gctgctccta | TTGCTGAGCT | GCCTGGCCAA | AACAGGAGTC | 60  |
|-------------------|-----------------|------------|------------|------------|-----|
| CTGGGTGATA TCATCA | rgag acccagctgt | GCTCCTGGAT | GGTTTTACCA | CAAGTCCAAT | 120 |
| TGCTATGGTT ACTTCA | GGAA GCTGAGGAAC | TGGTCTGATG | CCGAGCTCGA | GTGTCAGTCT | 180 |
| TACGGAAACG GAGCCC | ACCT GGCATCTATC | CTGAGTTTAA | AGGAAGCCAG | CACCATAGCA | 240 |
| GAGTACATAA GTGGCT | ATCA GAGAAGCCAG | CCGATATGGA | TTGGCCTGCA | CGACCCACAG | 300 |
| AAGAGGCAGC AGTGGC | AGTG GATTGATGGG | GCCATGTATC | TGTACAGATC | CTGGTCTGGC | 360 |
| AAGTCCATGG GTGGGA | ACAA GCACTGTGCT | GAGATGAGCT | CCAATAACAA | CTTTTTAACT | 420 |
| TGGAGCAGCA ACGAAT | GCAA CAAGCGCCAA | CACTTCCTGT | GCAAGTACCG | ACCA       | 474 |

Sequence No.: 13

Sequence length: 1128

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Liver

Clone name: HP01134

Sequence description

| ATGGTTTGGA | AAGTAGCTGT | ATTCCTCAGT | GTGGCCCTGG | GCATTGGTGC | CGTTCCTATA | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| GATGATCCTG | AAGATGGAGG | CAAGCACTGG | GTGGTGATCG | TGGCAGGTTC | AAATGGCTGG | 120 |
| TATAATTATA | GGCACCAGGC | AGACGCGTGC | CATGCCTACC | AGATCATTCA | CCGCAATGGG | 180 |
| ATTCCTGACG | AACAGATCGT | TGTGATGATG | TACGATGACA | TTGCTTACTC | TGAAGACAAT | 240 |
| CCCACTCCAG | GAATTGTGAT | CAACAGGCCC | AATGGCACAG | ATGTCTATCA | GGGAGTCCCG | 300 |
| AAGGACTACA | CTGGAGAGGA | TGTTACCCCA | CAAAATTTCC | TTGCTGTGTT | GAGAGGCGAT | 360 |
| GCAGAAGCAG | TGAAGGGCAT | AGGATCCGGC | AAAGTCCTGA | AGAGTGGCCC | CCAGGATCAC | 420 |
| GTGTTCATTT | ACTTCACTGA | CCATGGATCT | ACTGGAATAC | TGGTTTTTCC | CAATGAAGAT | 480 |

| 540  | AATGTACCGA | ACAAACACAA | CATTACATGT | TGAGACCATC | AGGACCTGAA | CTTCATGTAA |
|------|------------|------------|------------|------------|------------|------------|
| 600  | CCTGCCGGAT | TGATGAACCA | TCTGGGTCCA | AGCCTGTGAG | TCTACATTGA | AAGATGGTGT |
| 660  | CGCCTGTTAC | AGTCGTCCTA | AACCCCAGAG | TACTGCTGCC | TTTATGCAAC | AACATCAATG |
| 720  | GATGGAAGAC | GCGTCAACTG | GACTGGTACA | GTACCTGGGG | AGAGGTCCAC | TATGATGAGA |
| 780  | GGTAAAATCG | AGTACCACCT | CTGCACAAGC | TAAAGAGACC | AAGATCTGAC | TCGGACGTGG |
| 840  | CATGAAAGTG | CAATCTCCAC | GGAAACAAAA | CATGCAGTAT | CCAGCCACGT | CACACCAACA |
| 900  | TCCAGTCACA | TCCCCCTACC | AGTTCTCCCG | ACGCAAAGCC | AGGGTATGAA | ATGCAGTTTC |
| 960  | GAAACTGATG | TCATGAAAAG | CCTCTCACCA | CCCTGATGTG | TCACCCCCAG | CACCTTGACC |
| 1020 | GCATCTGGAT | AGATCCAGCG | CTCACGGAGG | GTCCAGGCAG | ATCTGGAGGA | AACACCAATG |
| 1080 | GCCGTATCCG | TTTGTGAGAA | CTGGTCAACC | TTTGTACGTG | CGTTGAGACA | TACGAGTATG |
| 1128 |            | GTCACTAC   | GTGTGCCTTG | CATGGACCAC | TAAAATTGTC | CTTCACAGGA |

Sequence No.: 14

Sequence length: 519

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10029

Sequence description

ATGGCGGCGC CCAGCGGAGG GTGGAACGGC GTCCGCGCGA GCTTGTGGGC CGCGCTGCTC 60

CTAGGGGCCG TGGCGCTGAG GCCGGCGGAG GCGGTGTCCG AGCCCACGAC CGTGGCGTTT 120

GACGTGCGGC CCGGCGGCGT CGTGCATTCC TTCTCCCATA ACGTGGGCCC GGGGGACAAA 180

TATACGTGTA TGTTCACTTA CGCCTCTCAA GGAGGGACCA ATGAGCAATG GCAGATGAGT 240

CTGGGGGACCA GCGAAGACCA CCAGCACTTC ACCTGCACCA TCTGGAGGCC CCAGGGGAAG 300

84

| TCCTATCTGT | ACTTCACACA | GTTCAAGGCA | GAGGTGCGGG | GCGCTGAGAT | TGAGTACGCC | 360 |
|------------|------------|------------|------------|------------|------------|-----|
| ATGGCCTACT | CTAAAGCCGC | ATTTGAAAGG | GAAAGTGATG | TCCCTCTGAA | AACTGAGGAA | 420 |
| TTTGAAGTGA | CCAAAACAGC | AGTGGCTCAC | AGGCCCGGGG | CATTCAAAGC | TGAGCTGTCC | 480 |
| AAGCTGGTGA | TTGTGGCCAA | GGCATCGCGC | ACTGAGCTG  |            |            | 519 |

Sequence No.: 15

Sequence length: 219

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10189

Sequence description

ATGGGGGTGA AGCTGGAGAT ATTTCGGATG ATAATCTACC TCACTTTCCC TGTGGCTATG 60

TTCTGGGTTT CCAATCAGGC CGAGTGGTTT GAGGACGATG TCATACAGCG CAAGAGGGAG 120

CTGTGGCCAC CTGAGAAGCT TCAAGAGATA GAGGAATTCA AAGAGAGGTT ACGGAAGCGG 180

CGGGAGGAGA AGCTCCTTCG CGACGCCCAG CAGAACTCC 219

Sequence No.: 16

Sequence length: 3516

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

PCT/JP97/03239

Organism species: Homo sapiens

Cell kind: Lymphoma

Cell line: U937

Clone name: HP10269

Sequence description

| ATGAGACCAT | TCTTCCTCTT | GTGTTTTGCC | CTGCCTGGCC | TCCTGCATGC | CCAACAAGCC | 60   |
|------------|------------|------------|------------|------------|------------|------|
| TGCTCCCGTG | GGGCCTGCTA | TCCACCTGTT | GGGGACCTGC | TTGTTGGGAG | GACCCGGTTT | 120  |
| CTCCGAGCTT | CATCTACCTG | TGGACTGACC | AAGCCTGAGA | CCTACTGCAC | CCAGTATGGC | 180  |
| GAGTGGCAGA | TGAAATGCTG | CAAGTGTGAC | TCCAGGCAGC | CTCACAACTA | CTACAGTCAC | 240  |
| CGAGTAGAGA | ATGTGGCTTC | ATCCTCCGGC | CCCATGCGCT | GGTGGCAGTC | CCAGAATGAT | 300  |
| GTGAACCCTG | TCTCTCTGCA | GCTGGACCTG | GACAGGAGAT | TCCAGCTTCA | AGAAGTCATG | 360  |
| ATGGAGTTCC | AGGGGCCCAT | GCCTGCCGGC | ATGCTGATTG | AGCGCTCCTC | AGACTTCGGT | 420  |
| AAGACCTGGC | GAGTGTACCA | GTACCTGGCT | GCCGACTGCA | CCTCCACCTT | CCCTCGGGTC | 480  |
| CGCCAGGGTC | GGCCTCAGAG | CTGGCAGGAT | GTTCGGTGCC | AGTCCCTGCC | TCAGAGGCCT | 540  |
| AATGCACGCC | TAAATGGGGG | GAAGGTCCAA | CTTAACCTTA | TGGATTTAGT | GTCTGGGATT | 600  |
| CCAGCAACTC | AAAGTCAAAA | AATTCAAGAG | GTGGGGGAGA | TCACAAACTT | GAGAGTCAAT | 660  |
| TTCACCAGGC | TGGCCCCTGT | GCCCCAAAGG | GGCTACCACC | CTCCCAGCGC | CTACTATGCT | 720  |
| GTGTCCCAGC | TCCGTCTGCA | GGGGAGCTGC | TTCTGTCACG | GCCATGCTGA | TCGCTGCGCA | 780  |
| CCCAAGCCTG | GGGCCTCTGC | AGGCCCCTCC | ACCGCTGTGC | AGGTCCACGA | TGTCTGTGTC | 840  |
| TGCCAGCACA | ACACTGCCGG | CCCAAATTGT | GAGCGCTGTG | CACCCTTCTA | CAACAACCGG | 900  |
| CCCTGGAGAC | CGGCGGAGGG | CCAGGACGCC | CATGAATGCC | AAAGGTGCGA | CTGCAATGGG | 960  |
| CACTCAGAGA | CATGTCACTT | TGACCCCGCT | GTGTTTGCCG | CCAGCCAGGG | GGCATATGGA | 1020 |
| GGTGTGTGTG | ACAATTGCCG | GGACCACACC | GAAGGCAAGA | ACTGTGAGCG | GTGTCAGCTG | 1080 |
| CACTATTTCC | GGAACCGGCG | CCCGGGAGCT | TCCATTCAGG | AGACCTGCAT | CTCCTGCGAG | 1140 |
| TGTGATCCGG | ATGGGGCAGT | GCCAGGGGCT | CCCTGTGACC | CAGTGACCGG | GCAGTGTGTG | 1200 |
| TGCAAGGAGC | ATGTGCAGGG | AGAGCGCTGT | GACCTATGCA | AGCCGGGCTT | CACTGGACTC | 1260 |
| ACCTACGCCA | ACCCGCAGGG | CTGCCACCGC | TGTGACTGCA | ACATCCTGGG | GTCCCGGAGG | 1320 |
| GACATGCCGT | GTGACGAGGA | GAGTGGGCGC | TGCCTTTGTC | TGCCCAACGT | GGTGGGTCCC | 1380 |
| AAATGTGACC | AGTGTGCTCC | CTACCACTGG | AAGCTGGCCA | GTGGCCAGGG | CTGTGAACCG | 1440 |

| TGTGCCTGCG | ACCCGCACAA | CTCCCTCAGC | CCACAGTGCA | ACCAGTTCAC | AGGGCAGTGC | 1500 |
|------------|------------|------------|------------|------------|------------|------|
| CCCTGTCGGG | AAGGCTTTGG | TGGCCTGATG | TGCAGCGCTG | CAGCCATCCG | CCAGTGTCCA | 1560 |
| GACCGGACCT | ATGGAGACGT | GGCCACAGGA | TGCCGAGCCT | GTGACTGTGA | TTTCCGGGGA | 1620 |
| ACAGAGGGCC | CGGGCTGCGA | CAAGGCATCA | GGCCGCTGCC | TCTGCCGCCC | TGGCTTGACC | 1680 |
| GGGCCCCGCT | GTGACCAGTG | CCAGCGAGGC | TACTGCAATC | GCTACCCGGT | GTGCGTGGCC | 1740 |
| TGCCACCCTT | GCTTCCAGAC | CTATGATGCG | GACCTCCGGG | AGCAGGCCCT | GCGCTTTGGT | 1800 |
| AGACTCCGCA | ATGCCACCGC | CAGCCTGTGG | TCAGGGCCTG | GGCTGGAGGA | CCGTGGCCTG | 1860 |
| GCCTCCCGGA | TCCTAGATGC | AAAGAGTAAG | ATTGAGCAGA | TCCGAGCAGT | TCTCAGCAGC | 1920 |
| CCCGCAGTCA | CAGAGCAGGA | GGTGGCTCAG | GTGGCCAGTG | CCATCCTCTC | CCTCAGGCGA | 1980 |
| ACTCTCCAGG | GCCTGCAGCT | GGATCTGCCC | CTGGAGGAGG | AGACGTTGTC | CCTTCCGAGA | 2040 |
| GACCTGGAGA | GTCTTGACAG | AAGCTTCAAT | GGTCTCCTTA | CTATGTATCA | GAGGAAGAGG | 2100 |
| GAGCAGTTTG | AAAAAATAAG | CAGTGCTGAT | CCTTCAGGAG | CCTTCCGGAT | GCTGAGCACA | 2160 |
| GCCTACGAGC | AGTCAGCCCA | GGCTGCTCAG | CAGGTCTCCG | ACAGCTCGCG | CCTTTTGGAC | 2220 |
| CAGCTCAGGG | ACAGCCGGAG | AGAGGCAGAG | AGGCTGGTGC | GGCAGGCGGG | AGGAGGAGGA | 2280 |
| GGCACCGGCA | GCCCCAAGCT | TGTGGCCCTG | AGGCTGGAGA | TGTCTTCGTT | GCCTGACCTG | 2340 |
| ACACCCACCT | TCAACAAGCT | CTGTGGCAAC | TCCAGGCAGA | TGGCTTGCAC | CCCAATATCA | 2400 |
| TGCCCTGGTG | AGCTATGTCC | CCAAGACAAT | GGCACAGCCT | GTGGCTCCCG | CTGCAGGGGT | 2460 |
| GTCCTTCCCA | GGGCCGGTGG | GGCCTTCTTG | ATGGCGGGGC | AGGTGGCTGA | GCAGCTGCGG | 2520 |
| GGCTTCAATG | CCCAGCTCCA | GCGGACCAGG | CAGATGATTA | GGGCAGCCGA | GGAATCTGCC | 2580 |
| TCACAGATTC | AATCCAGTGC | CCAGCGCTTG | GAGACCCAGG | TGAGCGCCAG | CCGCTCCCAG | 2640 |
| ATGGAGGAAG | ATGTCAGACG | CACACGGCTC | CTAATCCAGC | AGGTCCGGGA | CTTCCTAACA | 2700 |
| GACCCCGACA | CTGATGCAGC | CACTATCCAG | GAGGTCAGCG | AGGCCGTGCT | GGCCCTGTGG | 2760 |
| CTGCCCACAG | ACTCAGCTAC | TGTTCTGCAG | AAGATGAATG | AGATCCAGGC | CATTGCAGCC | 2820 |
| AGGCTCCCCA | ACGTGGACTT | GGTGCTGTCC | CAGACCAAGC | AGGACATTGC | GCGTGCCCGC | 2880 |
| CGGTTGCAGG | CTGAGGCTGA | GGAAGCCAGG | AGCCGAGCCC | ATGCAGTGGA | GGGCCAGGTG | 2940 |
| GAAGATGTGG | TTGGGAACCT | GCGGCAGGGG | ACAGTGGCAC | TGCAGGAAGC | TCAGGACACC | 3000 |
| ATGCAAGGCA | CCAGCCGCTC | CCTTCGGCTT | ATCCAGGACA | GGGTTGCTGA | GGTTCAGCAG | 3060 |
| GTACTGCGGC | CAGCAGAAAA | GCTGGTGACA | AGCATGACCA | AGCAGCTGGG | TGACTTCTGG | 3120 |
| ACACGGATGG | AGGAGCTCCG | CCACCAAGCC | CGGCAGCAGG | GGGCAGAGGC | AGTCCAGGCC | 3180 |

87

| CAGCAGCTTG | CGGAAGGTGC | CAGCGAGCAG | GCATTGAGTG | CCCAAGAGGG | ATTTGAGAGA | 3240 |
|------------|------------|------------|------------|------------|------------|------|
| ATAAAACAAA | AGTATGCTGA | GTTGAAGGAC | CGGTTGGGTC | AGAGTTCCAT | GCTGGGTGAG | 3300 |
| CAGGGTGCCC | GGATCCAGAG | TGTGAAGACA | GAGGCAGAGG | AGCTGTTTGG | GGAGACCATG | 3360 |
| GAGATGATGG | ACAGGATGAA | AGACATGGAG | TTGGAGCTGC | TGCGGGGCAG | CCAGGCCATC | 3420 |
| ATGCTGCGCT | CAGCGGACCT | GACAGGACTG | GAGAAGCGTG | TGGAGCAGAT | CCGTGACCAC | 3480 |
| ATCAATGGGC | GCGTGCTCTA | CTATGCCACC | TGCAAG     |            |            | 3516 |

Sequence No.: 17

Sequence length: 366

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10298

Sequence description

| ATGGGCCTGT | TGCTCCTGGT | CCCATTGCTC | CTGCTGCCCG | GCTCCTACGG | ACTGCCCTTC | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| TACAACGGCT | TCTACTACTC | CAACAGCGCC | AACGACCAGA | ACCTAGGCAA | CGGTCATGGC | 120 |
| AAAGACCTCC | TTAATGGAGT | GAAGCTGGTG | GTGGAGACAC | CCGAGGAGAC | CCTGTTCACC | 180 |
| CGCATCCTAA | CTGTGGGCCC | CCAGAGCCTG | GGGTCCGAAG | CTTTGGCTTC | CCCGACCCGC | 240 |
| AGAGCCGCTT | GTACGGTGTT | TACTGCTACC | GCCAGCACTA | GGACCTGGGG | CCCTCCCCTG | 300 |
| CCGCATTCCC | TCACTGGCTG | TGTATTTATT | GAGTGGTTCG | TTTTCCCTTG | TGGGTTGGAG | 360 |
| CCATTT     |            |            |            |            |            | 366 |

Sequence No.: 18

Sequence length: 525

Sequence type: Nucleic acid

88

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10368

Sequence description

| ATGGAGAAAA | TTCCAGTGTC | AGCATTCTTG | CTCCTTGTGG | CCCTCTCCTA | CACTCTGGCC | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| AGAGATACCA | CAGTCAAACC | TGGAGCCAAA | AAGGACACAA | AGGACTCTCG | ACCCAAACTG | 120 |
| CCCCAGACCC | TCTCCAGAGG | TTGGGGTGAC | CAACTCATCT | GGACTCAGAC | ATATGAAGAA | 180 |
| GCTCTATATA | AATCCAAGAC | AAGCAACAAA | CCCTTGATGA | TTATTCATCA | CTTGGATGAG | 240 |
| TGCCCACACA | GTCAAGCTTT | AAAGAAAGTG | TTTGCTGAAA | ATAAAGAAAT | CCAGAAATTG | 300 |
| GCAGAGCAGT | TTGTCCTCCT | CAATCTGGTT | TATGAAACAA | CTGACAAACA | CCTTTCTCCT | 360 |
| GATGGCCAGT | ATGTCCCCAG | GATTATGTTT | GTTGACCCAT | CTCTGACAGT | TAGAGCCGAT | 420 |
| ATCACTGGAA | GATATTCAAA | CCGTCTCTAT | GCTTACGAAC | CTGCAGATAC | AGCTCTGTTG | 480 |
| CTTGACAACA | TGAAGAAAGC | TCTCAAGTTG | CTGAAGACTG | AATTG      |            | 525 |

Sequence No.: 19

Sequence length: 1296

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma

Cell line: HT-1080

Clone name: HP00658

| WO 98/11217 | PCT/JP97/03239 |
|-------------|----------------|
|             |                |

| Sequence characteristics:                                        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|
| Code representing characteristics: CDS                           |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Existence site: 56 520                                           |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Characterization method: E                                       |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sequence description                                             |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CCTGCAGAGG ATCAAGACAG CACGTGGACC TCGCACAGCC TCTCCCACAG GTACC ATG |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Met                                                              |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AAG GTC TCC GCG GCA GCC CTC GCT GTC ATC CTC ATT GCT ACT GCC CTC  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Lys Val Ser Ala Ala Ala Leu Ala Val Ile Leu Ile Ala Thr Ala Leu  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 10 15                                                          |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |

58

106

TGC GCT CCT GCA TCT GCC TCC CCA TAT TCC TCG GAC ACC ACA CCC TGC

154

Cys Ala Pro Ala Ser Ala Ser Pro Tyr Ser Ser Asp Thr Thr Pro Cys

TGC TTT GCC TAC ATT GCC CGC CCA CTG CCC CGT GCC CAC ATC AAG GAG

Cys Phe Ala Tyr Ile Ala Arg Pro Leu Pro Arg Ala His Ile Lys Glu

35 40 45

20

25

TAT TTC TAC ACC AGT GGC AAG TGC TCC AAC CCA GCA GTC GTC CAC AGG 250

Tyr Phe Tyr Thr Ser Gly Lys Cys Ser Asn Pro Ala Val Val His Arg

50 55 60 65

TCA AGG ATG CCA AAG AGA GAG GGA CAG CAA GTC TGG CAG GAT TTC CTG

298

Ser Arg Met Pro Lys Arg Glu Gly Gln Gln Val Trp Gln Asp Phe Leu

70

75

80

TAT GAC TCC CGG CTG AAC AAG GGC AAG CTT TGT CAC CCG AAA GAA CCG

Tyr Asp Ser Arg Leu Asn Lys Gly Lys Leu Cys His Pro Lys Glu Pro

85 90 95

CCA AGT GTG TGC CAA CCC AGA GAA GAA ATG GGT TCG GGA GTA CAT CAA 394

Pro Ser Val Cys Gln Pro Arg Glu Glu Met Gly Ser Gly Val His Gln

100 105 110

WO 98/11217 PCT/JP97/03239

| CTC  | TTT   | GGA   | GAT            | GAG   | CTA   | GGA   | TGG   | AGA   | GTC   | CTT   | GAA   | CCT   | GAA   | CTT   | ACA    | 442    |
|------|-------|-------|----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|
| Leu  | Phe   | Gly   | Asp            | Glu   | Leu   | Gly   | Trp   | Arg   | Va1   | Leu   | G1u   | Pro   | Glu   | Leu   | Thr    |        |
|      | 115   |       |                |       |       | 120   |       |       |       |       | 125   |       |       |       |        |        |
| CAA  | ATT   | TGC   | CTG            | TTT   | CTG   | CTT   | GCT   | CTT   | GTC   | CTA   | GCT   | TGG   | GAG   | GCT   | TCC    | 490    |
| G1n  | Ile   | Cys   | Leu            | Phe   | Leu   | Leu   | Ala   | Leu   | Val   | Leu   | Ala   | Trp   | Glu   | Ala   | Ser    |        |
| 130  |       |       |                |       | 135   |       |       |       |       | 140   |       |       |       |       | 145    |        |
| CCT  | CAC   | TAT   | CCT            | ACC   | CCA   | ccc   | GCT   | CCT   | TGA   | AGGGC | CCC A | AGA   |       |       |        | 530    |
| Pro  | His   | Tyr   | Pro            | Thr   | Pro   | Pro   | Ala   | Pro   |       |       |       |       |       |       |        |        |
|      |       |       |                | 150   |       |       |       |       |       |       |       |       |       |       |        |        |
| TTC  | TACCA | ACA ( | CAGC           | AGCAG | T TA  | ACAAA | AAAC  | C TTC | CCCC  | AGGC  | TGGA  | ACGT  | GGT   | GGCT  | CACGC  | C 590  |
| TGTA | AATC  | CCA ( | GCAC!          | rttgo | G A   | GCCA  | AAGG" | r GG( | STGG/ | ATCA  | CTT   | GAGG' | rca   | GGAG' | rtcga( | G 650  |
| ACC  | AGCC  | rgg ( | CCAA           | CATGA | AT GA | AAAC  | CCA   | r cto | CTACT | AAA   | AATA  | ACAA  | AAA . | ATTA  | CCGG   | G 710  |
| CGT  | GTAC  | SCG ( | GCG            | CCTG  | ra G  | rccc  | AGCTA | A CTO | CGGG/ | AGGC  | TGAC  | GCA   | GGA   | GAAT( | GCGT(  | G 770  |
| AAC  | CCGG  | SAG ( | GCGGA          | AGCT  | rg ca | AGTG/ | AGCCG | G AGA | ATCG  | CGCC  | ACTO  | CAC'  | rcc . | AGCC' | rgggc  | g 830  |
| ACAC | SAGC  | SAG A | ACTC           | CGTC  | C A   | AAAA  | AAAA  | A AA  | AAAA/ | AAAA  | AAA   | [ACA  | AAA . | ATTA  | CCGG   | 890    |
| CGT  | GTG   | CC (  | CACG           | CCTG  | ra a: | rccc  | AGCTA | A CTO | CGGGA | AGGC  | TAAC  | GCA   | GGA . | AAAT' | IGTTT( | g 950  |
| AAC  | CCAG  | GAG ( | GTGG/          | AGGC' | rg C  | AGTGA | AGCT  | G AG  | ATTG: | rgcc  | ACT   | CAC'  | ICC . | AGCC' | rgggt  | G 1010 |
| ACA  | AAGT  | SAG A | ACTC           | CGTCA | AC A  | ACAA  | CAACA | A AC  | AAAA  | AGCT  | TCC   | CAA   | CTA . | AAGC  | CTAGA  | A 1070 |
| GAG  | CTTC  | rga ( | GCG            | CTGC  | T T   | STCA  | AAAG  | AAC   | STCT  | CTAG  | GTT   | CTGA  | GCT   | CTGG  | CTTTG  | 1130   |
| CTT  | GCT   | etg ( | CCAG           | GCT   | CT G  | rgaco | CAGGA | A AGO | GAAG' | CAG   | CATO  | CCT   | CTA   | GAGG  | CAAGGA | A 1190 |
| GGG  | SAGGA | AAC ( | GC <b>T</b> G( | CACT  | CT TA | AAGC! | TCC   | CCC   | STCT  | CAAC  | ccci  | CAC   | AGG . | AGCT' | PACTGO | G 1250 |
| CAA  | ACATO | SAA A | AAAT           | CGGC  | T A   | CAT:  | ΓΑΑΑΊ | TT(   | CTCA  | ATGC  | AAC   | CAT   |       |       |        | 1296   |

Sequence No.: 20

Sequence length: 3311

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

PCT/JP97/03239 WO 98/11217

|                                                                   |                    |           | 91        |        |         |         |     |  |  |  |  |  |  |
|-------------------------------------------------------------------|--------------------|-----------|-----------|--------|---------|---------|-----|--|--|--|--|--|--|
| Original source:                                                  |                    |           |           |        |         |         |     |  |  |  |  |  |  |
| Organism s                                                        | pecies: <i>Hom</i> | o sapiens |           |        |         |         |     |  |  |  |  |  |  |
| Cell kind:                                                        | Epidermoid         | carcinom  | а         |        |         |         |     |  |  |  |  |  |  |
| Cell line:                                                        | KB                 |           |           |        |         |         |     |  |  |  |  |  |  |
| Clone name: HP00714                                               |                    |           |           |        |         |         |     |  |  |  |  |  |  |
| Sequence characteristics:                                         |                    |           |           |        |         |         |     |  |  |  |  |  |  |
| Code representing characteristics: CDS                            |                    |           |           |        |         |         |     |  |  |  |  |  |  |
| Existence site: 57 1004                                           |                    |           |           |        |         |         |     |  |  |  |  |  |  |
| Characterization method: E                                        |                    |           |           |        |         |         |     |  |  |  |  |  |  |
| Sequence description                                              |                    |           |           |        |         |         |     |  |  |  |  |  |  |
| GAGCGGCGGC CACGGCATCC TGTGCTGTGG GGGCTACGAG GAAAGATCTA ATTATC ATG |                    |           |           |        |         |         |     |  |  |  |  |  |  |
| Met                                                               |                    |           |           |        |         |         |     |  |  |  |  |  |  |
|                                                                   |                    |           |           |        |         |         | 1   |  |  |  |  |  |  |
| GAC CTG CGA                                                       | CAG TTT CTT        | ATG TGC   | CTG TCC C | TG TGC | ACA GCC | TTT GCC | 107 |  |  |  |  |  |  |
| Asp Leu Arg                                                       | Gln Phe Leu        | Met Cys   | Leu Ser L | eu Cys | Thr Ala | Phe Ala |     |  |  |  |  |  |  |
|                                                                   | 5                  |           | 10        |        | 15      |         |     |  |  |  |  |  |  |
| TTG AGC AAA                                                       | CCC ACA GAA        | AAG AAG   | GAC CGT G | TA CAT | CAT GAG | CCT CAG | 155 |  |  |  |  |  |  |
| Leu Ser Lys                                                       | Pro Thr Glu        | Lys Lys   | Asp Arg V | al His | His Glu | Pro Gln |     |  |  |  |  |  |  |
| 20                                                                |                    | 25        |           |        | 30      |         |     |  |  |  |  |  |  |
| CTC AGT GAC                                                       | AAG GTT CAC        | AAT GAT   | GCT CAG A | GT TTT | GAT TAT | GAC CAT | 203 |  |  |  |  |  |  |
| Leu Ser Asp                                                       | Lys Val His        | Asn Asp   | Ala Gln S | er Phe | Asp Tyr | Asp His |     |  |  |  |  |  |  |
| 35                                                                |                    | 40        |           | 45     |         |         |     |  |  |  |  |  |  |
| GAT GCC TTC                                                       | TTG GGT GCT        | GAA GAA   | GCA AAG A | CC TTT | GAT CAG | CTG ACA | 251 |  |  |  |  |  |  |
| Asp Ala Phe                                                       | Leu Gly Als        | Glu Glu   | Ala Lys T | hr Phe | Asp Gln | Leu Thr |     |  |  |  |  |  |  |
| 50                                                                | 55                 | <b>;</b>  |           | 60     |         | 65      |     |  |  |  |  |  |  |

CCA GAA GAG AGC AAG GAA AGG CTT GGA AAG ATT GTA AGT AAA ATA GAT 299 Pro Glu Glu Ser Lys Glu Arg Leu Gly Lys Ile Val Ser Lys Ile Asp 80 75 70

GGC GAC AAG GAC GGG TTT GTC ACT GTG GAT GAG CTC AAA GAC TGG ATT 347

| VO 98/11217 | PCT/JP97/0323 |
|-------------|---------------|

| Gly | Asp | Lys | Asp | Gly | Phe | Val | Thr | Val | Asp | Glu | Leu | Lys | Asp | Trp | Ile |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|     |     |     | 85  |     |     |     |     | 90  |     |     |     |     | 95  |     |     |     |
| AAA | TTT | GCA | CAA | AAG | CGC | TGG | ATT | TAC | GAG | GAT | GTA | GAG | CGA | CAG | TGG | 395 |
| Lys | Phe | Ala | Gln | Lys | Arg | Trp | Ile | Tyr | G1u | Asp | Va1 | Glu | Arg | Gln | Trp |     |
|     |     | 100 |     |     |     |     | 105 |     |     |     |     | 110 |     |     |     |     |
| AAG | GGG | CAT | GAC | CTC | AAT | GAG | GAC | GGC | CTC | GTT | TCC | TGG | GAG | GAG | TAT | 443 |
| Lys | Gly | His | Asp | Leu | Asn | Glu | Asp | Gly | Leu | Val | Ser | Trp | Glu | Glu | Tyr |     |
|     | 115 |     |     |     |     | 120 |     |     |     |     | 125 |     |     |     |     |     |
| AAA | AAT | GCC | ACC | TAC | GGC | TAC | GTT | TTA | GAT | GAT | CCA | GAT | CCT | GAT | GAT | 491 |
| Lys | Asn | Ala | Thr | Tyr | Gly | Tyr | Val | Leu | Asp | Asp | Pro | Asp | Pro | Asp | Asp |     |
| 130 |     |     |     |     | 135 |     |     |     |     | 140 |     |     |     |     | 145 |     |
| GGA | TTT | AAC | TAT | AAA | CAG | ATG | ATG | GTT | AGA | GAT | GAG | CGG | AGG | TTT | AAA | 539 |
| Gly | Phe | Asn | Tyr | Lys | Gln | Met | Met | Val | Arg | Asp | Glu | Arg | Arg | Phe | Lys |     |
|     |     |     |     | 150 |     |     |     |     | 155 |     |     |     |     | 160 |     |     |
| ATG | GCA | GAC | AAG | GAT | GGA | GAC | CTC | ATT | GCC | ACC | AAG | GAG | GAG | TTC | ACA | 587 |
| Met | Ala | Asp | Lys | Asp | Gly | Asp | Leu | Ile | Ala | Thr | Lys | Glu | Glu | Phe | Thr |     |
|     |     |     | 165 |     |     |     |     | 170 |     |     |     | :   | 175 |     |     |     |
| GCT | TTC | CTG | CAC | CCT | GAG | GAG | TAT | GAC | TAC | ATG | AAA | GAT | ATA | GTA | GTA | 635 |
| Ala | Phe | Leu | His | Pro | G1u | G1u | Tyr | Asp | Tyr | Met | Lys | Asp | Ile | Val | Val |     |
|     |     | 180 |     |     |     |     | 185 |     |     |     |     | 190 |     |     |     |     |
| CAG | GAA | ACA | ATG | GAA | GAT | ATA | GAT | AAG | AAT | GCT | GAT | GGT | TTC | ATT | GAT | 68: |
| Gln | G1u | Thr | Met | G1u | Asp | Ile | Asp | Lys | Asn | Ala | Asp | Gly | Phe | Ile | Asp |     |
|     | 195 |     |     |     |     | 200 |     |     |     |     | 205 |     |     |     |     |     |
| CTA | GAA | GAG | TAT | ATT | GGT | GAC | ATG | TAC | AGC | CAT | GAT | GGG | AAT | ACT | GAT | 73: |
| Leu | Glu | G1u | Tyr | Ile | Gly | Asp | Met | Tyr | Ser | His | Asp | G1y | Asn | Thr | Asp |     |
| 210 |     |     |     |     | 215 |     |     |     |     | 220 |     |     |     |     | 225 |     |
| GAG | CCA | GAA | TGG | GTA | AAG | ACA | GAG | CGA | GAG | CAG | TTT | GTT | GAG | TTT | CGG | 77  |
| Glu | Pro | Glu | Trp | Val | Lys | Thr | Glu | Arg | Glu | Gln | Phe | Val | Glu | Phe | Arg |     |
|     |     |     |     | 230 |     |     |     |     | 235 |     |     |     |     | 240 |     |     |

93

GAT AAG AAC CGT GAT GGG AAG ATG GAC AAG GAA GAC AAA GAC TGG 827 Asp Lys Asn Arg Asp Gly Lys Met Asp Lys Glu Glu Thr Lys Asp Trp 250 255 245 ATC CTT CCC TCA GAC TAT GAT CAT GCA GAG GCA GAA GCC AGG CAC CTG 875 Ile Leu Pro Ser Asp Tyr Asp His Ala Glu Ala Glu Ala Arg His Leu 260 265 GTC TAT GAA TCA GAC CAA AAC AAG GAT GGC AAG CTT ACC AAG GAG GAG 923 Val Tyr Glu Ser Asp Gln Asn Lys Asp Gly Lys Leu Thr Lys Glu Glu 275 280 ATC GTT GAC AAG TAT GAC TTA TTT GTT GGC AGC CAG GCC ACA GAT TTT 971 Ile Val Asp Lys Tyr Asp Leu Phe Val Gly Ser Gln Ala Thr Asp Phe 290 300 295 GGG GAG GCC TTA GTA CGG CAT GAT GAG TTC TGAGCTACGG AGGAACCCT 1020 Gly Glu Ala Leu Val Arg His Asp Glu Phe 310 CATTTCCTCA AAAGTAATTT ATTTTTACAG CTTCTGGTTT CACATGAAAT TGTTTGCGCT 1080 ACTGAGACTG TTACTACAAA CTTTTTAAGA CATGAAAAGG CGTAATGAAA ACCATCCCGT 1140 CCCCATTCCT CCTCCTCTC GAGGGACTGG AGGGAAGCCG TGCTTCTGAG GAACAACTCT 1200 AATTAGTACA CTTGTGTTTG TAGATTTACA CTTTGTATTA TGTATTAACA TGGCGTGTTT 1260 ATTTTTGTAT TTTTCTCTGG TTGGGAGTAT GATATGAAGG ATCAAGATCC TCAACTCACA 1320 CATGTAGACA AACATTAGCT CTTTACTCTT TCTCAACCCC TTTTATGATT TTAATAATTC 1380 TCACTTAACT AATTTTGTAA GCCTGAGATC AATAAGAAAT GTTCAGGAGA GAGGAAAGAA 1440 AAAAAATATA TGCTCCACAA TTTATATTTA GAGAGAGAAC ACTTAGTCTT GCCTGTCAAA 1500 AAGTCCAACA TTTCATAGGT AGTAGGGGCC ACATATTACA TTCAGTTGCT ATAGGTCCAG 1560 CAACTGAACC TGCCATTACC TGGGCAAGGA AAGATCCCTT TGCTCTAGGA AAGCTTGGCC 1620 CAAATTGATT TTCTTCTTTT TCCCCCTGTA GGACTGACTG TTGGCTAATT TTGTCAAGCA 1680 CAGCTGTGGT GGGAAGAGTT AGGGCCAGTG TCTTGAAAAT CAATCAAGTA GTGAATGTGA 1740 TCTCTTTGCA GAGCTATAGA TAGAAACAGC TGGAAAACTA AAGGAAAAAT ACAAGTGTTT 1800 TCGGGGCATA CATTTTTTT CTGGGTGTGC ATCTGTTGAA ATGCTCAAGA CTTAATTATT

| TGCCTTTTGA | AATCACTGTA | AATGCCCCCA | TCCGGTTCCT | CTTCTTCCCA | GGTGTGCCAA | 1920 |
|------------|------------|------------|------------|------------|------------|------|
| GGAATTAATC | TTGGTTTCAC | TACAATTAAA | ATTCACTCCT | TTCCAATCAT | GTCATTGAAA | 1980 |
| GTGCCTTTAA | CGAAAGAAAT | GGTCACTGAA | TGGGAATTCT | CTTAAGAAAC | CCTGAGATTA | 2040 |
| AAAAAAGACT | ATTTGGATAA | CTTATAGGAA | AGCCTAGAAC | CTCCCAGTAG | AGTGGGGATT | 2100 |
| TTTTTCTTCT | TCCCTTTCTC | TTTTGGACAA | TAGTTAAATT | AGCAGTATTA | GTTATGAGTT | 2160 |
| TGGTTGCAGT | GTTCTTATCT | TGTGGGCTGA | TTTCCAAAAA | CCACATGCTG | CTGAATTTAC | 2220 |
| CAGGGATCCT | CATACCTCAC | AATGCAAACC | ACTTACTACC | AGGCCTTTTT | CTGTGTCCAC | 2280 |
| TGGAGAGCTT | GAGCTCACAC | TCAAAGATCA | GAGGACCTAC | AGAGAGGGCT | CTTTGGTTTG | 2340 |
| AGGACCATGG | CTTACCTTTC | CTGCCTTTGA | CCCATCACAC | CCCATTTCCT | CCTCTTTCCC | 2400 |
| TCTCCCCGCT | GCCAAAAAA  | AAAAAAAAG  | GAAACGTTTA | TCATGAATCA | ACAGGGTTTC | 2460 |
| AGTCCTTATC | AAAGAGAGAT | GTGGAAAGAG | CTAAAGAAAC | CACCCTTTGT | TCCCAACTCC | 2520 |
| ACTTTACCCA | TATTTTATGC | AACACAAACA | CTGTCCTTTT | GGGTCCCTTT | CTTACAGATG | 2580 |
| GACCTCTTGA | GAAGAATTAT | CGTATTCCAC | GTTTTTAGCC | CTCAGGTTAC | CAAGATAAAT | 2640 |
| ATATGTATAT | ATAACCTTTA | TTATTGCTAT | ATCTTTGTGG | ATAATACATT | CAGGTGGTGC | 2700 |
| TGGGTGATTT | ATTATAATCT | GAACCTAGGT | ATATCCTTTG | GTCTTCCACA | GTCATGTTGA | 2760 |
| GGTGGGCTCC | CTGGTATGGT | AAAAAGCCAG | GTATAATGTA | ACTTCACCCC | AGCCTTTGTA | 2820 |
| CTAAGCTCTT | GATAGTGGAT | ATACTCTTTT | AAGTTTAGCC | CCAATATAGG | GTAATGGAAA | 2880 |
| TTTCCTGCCC | TCTGGGTTCC | CCATTTTTAC | TATTAAGAAG | ACCAGTGATA | ATTTAATAAT | 2940 |
| GCCACCAACT | CTGGCTTAGT | TAAGTGAGAG | TGTGAACTGT | GTGGCAAGAG | AGCCTCACAC | 3000 |
| CTCACTAGGT | GCAGAGAGCC | CAGGCCTTAT | GTTAAAATCA | TGCACTTGAA | AAGCAAACCT | 3060 |
| TAATCTGCAA | AGACAGCAGC | AAGCATTATA | CGGTCATCTT | GAATGATCCC | TTTGAAATTT | 3120 |
| TTTTTTTGTT | TGTTTGTTTA | AATCAAGCCT | GAGGCTGGTG | AACAGTAGCT | ACACACCCAT | 3180 |
| ATTGTGTGTT | CTGTGAATGC | TAGCTTTCTT | GAATTTGGAT | ATTGGTTATT | TTTTATAGAG | 3240 |
| TGTAAACCAA | GTTTTATATT | CTGCAATGCG | AACAGGTACC | TATCTGTTTC | TAAATAAAAC | 3300 |
| TGTTTACATT | С          |            |            |            |            | 3311 |

Sequence No.: 21

Sequence length: 1152

Sequence type: Nucleic acid

| PCT/JP97/03239 |
|----------------|
|                |

Strandedness: Double

| Topology                               | : Li  | near | :     |      |       |       |       |       |       |       |     |       |       |        |     |
|----------------------------------------|-------|------|-------|------|-------|-------|-------|-------|-------|-------|-----|-------|-------|--------|-----|
| Sequence kind: cDNA to mRNA            |       |      |       |      |       |       |       |       |       |       |     |       |       |        |     |
| Original source:                       |       |      |       |      |       |       |       |       |       |       |     |       |       |        |     |
| Organism species: Homo sapiens         |       |      |       |      |       |       |       |       |       |       |     |       |       |        |     |
| Cell kind: Stomach cancer              |       |      |       |      |       |       |       |       |       |       |     |       |       |        |     |
| Clone name: HP00876                    |       |      |       |      |       |       |       |       |       |       |     |       |       |        |     |
| Sequence characteristics:              |       |      |       |      |       |       |       |       |       |       |     |       |       |        |     |
| Code representing characteristics: CDS |       |      |       |      |       |       |       |       |       |       |     |       |       |        |     |
| Existence site: 147 623                |       |      |       |      |       |       |       |       |       |       |     |       |       |        |     |
| Characterization method: E             |       |      |       |      |       |       |       |       |       |       |     |       |       |        |     |
| Sequence description                   |       |      |       |      |       |       |       |       |       |       |     |       |       |        |     |
| ACTGGAGA                               | CA C  | TGAA | AGAAG | G CA | AGGGG | CCCI  | TAC   | AGT   | CTTG  | GTT   | CCA | AAC A | AGAT: | TGCAG  | 60  |
| ATCAAGGA                               | AGA A | CCCA | AGGAG | T T  | CAAA  | AGAAG | G CGC | CTAG: | PAAG  | GTC   | CTG | AGA : | rcct: | IGCACT | 120 |
| AGCTACAI                               | rcc 1 | CAGG | GTAC  | G AG | GAA   | ATC   | G GCT | r TC  | C AGA | A AGO | ATC | G CGC | CTC   | CTC    | 173 |
|                                        |       |      |       |      |       | Met   | t Ala | a Se  | r Arg | g Sei | Me  | t Ar  | g Let | ı Leu  |     |
|                                        |       |      |       |      |       |       |       | :     | l     |       |     |       | 5     |        |     |
| CTA TTG                                | CTG   | AGC  | TGC   | CTG  | GCC   | AAA   | ACA   | GGA   | GTC   | CTG   | GGT | GAT   | ATC   | ATC    | 221 |
| Leu Leu                                | Leu   | Ser  | Cys   | Leu  | Ala   | Lys   | Thr   | Gly   | Val   | Leu   | Gly | Asp   | Ile   | Ile    |     |
| 10                                     |       |      |       | 1.5  |       |       |       |       | 20    |       |     |       |       | 25     |     |
| ATG AGA                                | CCC   | AGC  | TGT   | GCT  | CCT   | GGA   | TGG   | TTT   | TAC   | CAC   | AAG | TCC   | AAT   | TGC    | 269 |
| Met Arg                                | Pro   | Ser  | Cys   | Ala  | Pro   | Gly   | Trp   | Phe   | Tyr   | His   | Lys | Ser   | Asn   | Суз    |     |
|                                        |       |      | 30    |      |       |       |       | 35    |       |       |     |       | 40    |        |     |
| TAT GGT                                | TAC   | TTC  | AGG   | AAG  | CTG   | AGG   | AAC   | TGG   | TCT   | GAT   | GCC | GAG   | CTC   | GAG    | 317 |
| Tyr Gly                                | Tyr   | Phe  | Arg   | Lys  | Leu   | Arg   | Asn   | Trp   | Ser   | Asp   | Ala | Glu   | Leu   | Glu    |     |
|                                        |       | 45   |       |      |       |       | 50    |       |       |       |     | 55    |       |        |     |
| TGT CAG                                | TCT   | TAC  | GGA   | AAC  | GGA   | GCC   | CAC   | CTG   | GCA   | TCT   | ATC | CTG   | AGT   | TTA    | 365 |
| Cys Gln                                | Ser   | Tyr  | Gly   | Asn  | Gly   | Ala   | His   | Leu   | Ala   | Ser   | Ile | Leu   | Ser   | Leu    |     |
|                                        | 60    |      |       |      |       | 65    |       |       |       |       | 70  |       |       |        |     |
|                                        |       |      |       |      |       |       |       |       |       |       |     |       |       |        |     |

| AAG | GAA  | GCC   | AGC  | ACC   | ATA             | GCA   | GAG   | TAC  | ATA   | AGT  | GGC  | TAT   | CAG | AGA   | AGC    | 413  |
|-----|------|-------|------|-------|-----------------|-------|-------|------|-------|------|------|-------|-----|-------|--------|------|
| Lys | Glu  | Ala   | Ser  | Thr   | Ile             | Ala   | Glu   | Tyr  | Ile   | Ser  | Gly  | Tyr   | Gln | Arg   | Ser    |      |
|     | 75   |       |      |       |                 | 80    |       |      |       |      | 85   |       |     |       |        |      |
| CAG | CCG  | ATA   | TGG  | ATT   | GGC             | CTG   | CAC   | GAC  | CCA   | CAG  | AAG  | AGG   | CAG | CAG   | TGG    | 461  |
| Gln | Pro  | Ile   | Trp  | Ile   | Gl <del>y</del> | Leu   | His   | Asp  | Pro   | Gln  | Lys  | Arg   | Gln | G1n   | Trp    |      |
| 90  |      |       |      |       | 95              |       |       |      |       | 100  |      |       |     |       | 105    |      |
| CAG | TGG  | ATT   | GAT  | GGG   | GCC             | ATG   | TAT   | CTG  | TAC   | AGA  | TCC  | TGG   | TCT | GGC   | AAG    | 509  |
| Gln | Trp  | Ile   | Asp  | Gly   | Ala             | Met   | Tyr   | Leu  | Tyr   | Arg  | Ser  | Trp   | Ser | Gly   | Lys    |      |
|     |      |       |      | 110   |                 |       |       |      | 115   |      |      |       |     | 120   |        |      |
| TCC | ATG  | GGT   | GGG  | AAC   | AAG             | CAC   | TGT   | GCT  | GAG   | ATG  | AGC  | TCC   | AAT | AAC   | AAC    | 557  |
| Ser | Met  | Gly   | Gly  | Asn   | Lys             | His   | Cys   | Ala  | Glu   | Met  | Ser  | Ser   | Asn | Asn   | Asn    |      |
|     |      |       | 125  |       |                 |       |       | 130  |       |      |      |       | 135 |       |        |      |
| TTT | TTA  | ACT   | TGG  | AGC   | AGC             | AAC   | GAA   | TGC  | AAC   | AAG  | CGC  | CAA   | CAC | TTC   | CTG    | 605  |
| Phe | Leu  | Thr   | Trp  | Ser   | Ser             | Asn   | Glu   | Cys  | Asn   | Lys  | Arg  | Gln   | His | Phe   | Leu    |      |
|     |      | 140   |      |       |                 |       | 145   |      |       |      |      | 150   |     |       |        |      |
| TGC | AAG  | TAC   | CGA  | CCA   | TAG             | AGCA  | AGA A | ATCA | AGAT' | TC T | GCTA | ACTC  | C   |       |        | 650  |
| Cys | Lys  | Tyr   | Arg  | Pro   |                 |       |       |      |       |      |      |       |     |       |        |      |
|     | 155  |       |      |       |                 |       |       |      |       |      |      |       |     |       |        |      |
| TGC | ACAG | ccc ( | CGTC | CTCT  | TC C            | TTTC  | TGCT  | A GC | CTGG  | CTAA | ATC  | TGCT  | CAT | TATT  | TCAGAG | 710  |
| GGG | AAAC | CTA ( | GCAA | ACTA  | AG A            | GTGA' | TAAG  | G GC | CCTA  | CTAC | ACT  | GGCT' | TTT | TTAG  | GCTTAG | 770  |
| AGA | CAGA | AAC ' | TTTA | GCAT  | TG G            | CCCA  | GTAG' | r gg | CTTC' | TAGC | TCT  | AAAT( | GTT | TGCC  | CCGCCA | 830  |
| TCC | CTTT | CCA   | CAGT | ATCC  | TT C            | TTCC  | CTCC  | r cc | CCTG' | TCTC | TGG  | CTGT  | CTC | GAGC. | AGTCTA | 890  |
| GAA | GAGT | GCA ' | TCTC | CAGC  | CT A            | TGAA  | ACAG  | C TG | GGTC' | TTTG | GCC  | ATAA  | GAA | GTAA  | AGATTT | 950  |
| GAA | GACA | GAA ( | GGAA | GAAA  | CT C            | AGGA  | GTAA  | G CT | TCTA  | GCCC | CCT  | TCAG  | CTT | CTAC  | ACCCTT | 1010 |
| CTG | CCCT | CTC ' | TCCA | TTGC  | CT G            | CACC  | CCAC  | C CC | AGCC  | ACTC | AAC  | TCCT  | GCT | TGTT  | TTTCCT | 1070 |
| TTG | GCCA | TGG ( | GAAG | GTTT. | AC C            | AGTA  | GAAT  | C CT | TGCT. | AGGT | TGA  | TGTG  | GGC | CATA  | CATTCC | 1130 |
| TTT | AATA | AAC   | CATT | GTGT. | AC A            | T     |       |      |       |      |      |       |     |       |        | 1152 |

97

Sequence length: 1749

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Liver

Clone name: HP01134

Sequence characteristics:

Code representing characteristics: CDS

Existence site: 117.. 1247

Characterization method: E

Sequence description

AATCACAGCA GTNCCGACGT CGTGGGTGTT TGGTGTGAGG CTGCGAGCCG CCGCCGCCAC 60
CACTGCCACC ACGGTCGCCT GCCACAGGTG TCTGCAATTG AACTCCAAGG TGCAGA ATG 119

Met

1

GTT TGG AAA GTA GCT GTA TTC CTC AGT GTG GCC CTG GGC ATT GGT GCC

Val Trp Lys Val Ala Val Phe Leu Ser Val Ala Leu Gly Ile Gly Ala

5 10 15

GTT CCT ATA GAT GAT CCT GAA GAT GGA GGC AAG CAC TGG GTG ATC

215

Val Pro Ile Asp Asp Pro Glu Asp Gly Gly Lys His Trp Val Val Ile

20 25 30

GTG GCA GGT TCA AAT GGC TGG TAT AAT TAT AGG CAC CAG GCA GAC GCG

Val Ala Gly Ser Asn Gly Trp Tyr Asn Tyr Arg His Gln Ala Asp Ala

35 40 45

TGC CAT GCC TAC CAG ATC ATT CAC CGC AAT GGG ATT CCT GAC GAA CAG

Cys His Ala Tyr Gln Ile Ile His Arg Asn Gly Ile Pro Asp Glu Gln

| VO 98/11217 | PCT/JP97/03239 |
|-------------|----------------|
|             |                |

| 50  |     |     |     |     | 55  |     |     |     |     | 60  |     |     |     |     | 65  |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ATC | GTT | GTG | ATG | ATG | TAC | GAT | GAC | ATT | GCT | TAC | TCT | GAA | GAC | AAT | CCC | 359 |
| Ile | Va1 | Val | Met | Met | Tyr | Asp | Asp | Ile | Ala | Tyr | Ser | Glu | Asp | Asn | Pro |     |
|     |     |     |     | 70  |     |     |     |     | 75  |     |     |     |     | 80  |     |     |
| ACT | CCA | GGA | ATT | GTG | ATC | AAC | AGG | ccc | AAT | GGC | ACA | GAT | GTC | TAT | CAG | 407 |
| Thr | Pro | Gly | Ile | Val | Ile | Asn | Arg | Pro | Asn | Gly | Thr | Asp | Val | Tyr | Gln |     |
|     |     |     | 85  |     |     |     |     | 90  |     |     |     |     | 95  |     |     |     |
| GGA | GTC | CCG | AAG | GAC | TAC | ACT | GGA | GAG | GAT | GTT | ACC | CCA | CAA | AAT | TTC | 455 |
| Gly | Val | Pro | Lys | Asp | Tyr | Thr | Gly | Glu | Asp | Val | Thr | Pro | Gln | Asn | Phe |     |
|     |     | 100 |     |     |     |     | 105 |     |     |     |     | 110 |     |     |     |     |
| CTT | GCT | GTG | TTG | AGA | GGC | GAT | GCA | GAA | GCA | GTG | AAG | GGC | ATA | GGA | TCC | 503 |
| Leu | Ala | Val | Leu | Arg | Gly | Asp | Ala | Glu | Ala | Val | Lys | Gly | Ile | Gly | Ser |     |
|     | 115 |     |     |     |     | 120 |     |     |     |     | 125 |     |     |     |     |     |
| GGÇ | AAA | GTC | CTG | AAG | AGT | GGC | ccc | CAG | GAT | CAC | GTG | TTC | ATT | TAC | TTC | 551 |
| Gly | Lys | Val | Leu | Lys | Ser | Gly | Pro | Gln | Asp | His | Val | Phe | Ile | Tyr | Phe |     |
| 130 |     |     |     |     | 135 |     |     |     |     | 140 |     |     |     |     | 145 |     |
| ACT | GAC | CAT | GGA | TCT | ACT | GGA | ATA | CTG | GTT | TTT | ccc | AAT | GAA | GAT | CTT | 599 |
| Thr | Asp | His | Gly | Ser | Thr | Gly | Ile | Leu | Val | Phe | Pro | Asn | Glu | Asp | Leu |     |
|     |     |     |     | 150 |     |     |     |     | 155 |     |     |     |     | 160 |     |     |
| CAT | GTA | AAG | GAC | CTG | AAT | GAG | ACC | ATC | CAT | TAC | ATG | TAC | AAA | CAC | AAA | 647 |
| His | Val | Lys | Asp | Leu | Asn | Glu | Thr | Ile | His | Tyr | Met | Tyr | Lys | His | Lys |     |
|     |     |     | 165 |     |     |     |     | 170 |     |     |     |     | 175 |     |     |     |
| ATG | TAC | CGA | AAG | ATG | GTG | TTC | TAC | ATT | GAA | GCC | TGT | GAG | TCT | GGG | TCC | 695 |
| Met | Tyr | Arg | Lys | Met | Val | Phe | Tyr | Ile | Glu | Ala | Суѕ | Glu | Ser | G1y | Ser |     |
|     |     | 180 |     |     |     |     | 185 |     |     |     |     | 190 |     |     |     |     |
| ATG | ATG | AAC | CAC | CTG | CCG | GAT | AAC | ATC | AAT | GTT | TAT | GCA | ACT | ACT | GCT | 743 |
| Met | Met | Asn | His | Leu | Pro | Asp | Asn | Ile | Asn | Val | Tyr | Ala | Thr | Thr | Ala |     |
|     | 195 |     |     |     |     | 200 |     |     |     |     | 205 |     | •   |     |     |     |
| GCC | AAC | CCC | AGA | GAG | TCG | TCC | TAC | GCC | TGT | TAC | TAT | GAT | GAG | AAG | AGG | 791 |

| Ala | Asn | Pro | Arg | Glu | Ser | Ser | Tyr | Ala | Cys | Tyr | Tyr | Asp | Glu | Lys | Arg |      |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| 210 |     |     |     |     | 215 |     |     |     |     | 220 |     |     |     |     | 225 |      |
| TCC | ACG | TAC | CTG | GGG | GAC | TGG | TAC | AGC | GTC | AAC | TGG | ATG | GAA | GAC | TCG | 839  |
| Ser | Thr | Tyr | Leu | Gly | Asp | Trp | Tyr | Ser | Val | Asn | Trp | Met | Glu | Asp | Ser |      |
|     |     |     |     | 230 |     |     |     |     | 235 |     |     |     |     | 240 |     |      |
| GAC | GTG | GAA | GAT | CTG | ACT | AAA | GAG | ACC | CTG | CAC | AAG | CAG | TAC | CAC | CTG | 887  |
| Asp | Val | Glu | Asp | Leu | Thr | Lys | Glu | Thr | Leu | His | Lys | Gln | Tyr | His | Leu |      |
|     |     |     | 245 |     |     |     |     | 250 |     |     |     |     | 255 |     |     |      |
| GTA | AAA | TCG | CAC | ACC | AAC | ACC | AGC | CAC | GTC | ATG | CAG | TAT | GGA | AAC | AAA | 935  |
| Val | Lys | Ser | His | Thr | Asn | Thr | Ser | His | Val | Met | Gln | Tyr | Gly | Asn | Lys |      |
|     |     | 260 |     |     |     |     | 265 |     |     |     |     | 270 |     |     |     |      |
| ACA | ATC | TCC | ACC | ATG | AAA | GTG | ATG | CAG | TTT | CAG | GGT | ATG | AAA | CGC | AAA | 983  |
| Thr | Ile | Ser | Thr | Met | Lys | Val | Met | Gln | Phe | Gln | Gly | Met | Lys | Arg | Lys |      |
|     | 275 |     |     |     |     | 280 |     |     |     |     | 285 |     |     |     |     |      |
| GCC | AGT | TCT | CCC | GTC | CCC | CTA | CCT | CCA | GTC | ACA | CAC | CTT | GAC | CTC | ACC | 1031 |
| Ala | Ser | Ser | Pro | Val | Pro | Leu | Pro | Pro | Val | Thr | His | Leu | Asp | Leu | Thr |      |
| 290 |     |     |     |     | 295 |     |     |     |     | 300 |     |     |     |     | 305 |      |
| CCC | AGC | CCT | GAT | GTG | CCT | CTC | ACC | ATC | ATG | AAA | AGG | AAA | CTG | ATG | AAC | 1079 |
| Pro | Ser | Pro | Asp | Va1 | Pro | Leu | Thr | Ile | Met | Lys | Arg | Lys | Leu | Met | Asn |      |
|     |     |     |     | 310 |     |     |     |     | 315 |     |     |     |     | 320 |     |      |
| ACC | AAT | GAT | CTG | GAG | GAG | TCC | AGG | CAG | CTC | ACG | GAG | GAG | ATC | CAG | CGG | 1127 |
| Thr | Asn | Asp | Leu | G1u | Glu | Ser | Arg | Gln | Leu | Thr | Glu | G1u | Ile | Gln | Arg |      |
|     |     |     | 325 |     |     |     |     | 330 |     |     |     |     | 335 |     |     |      |
| CAT | CTG | GAT | TAC | GAG | TAT | GCG | TTG | AGA | CAT | TTG | TAC | GTG | CTG | GTC | AAC | 1175 |
| His | Leu | Asp | Tyr | G1u | Tyr | Ala | Leu | Arg | His | Leu | Tyr | Val | Leu | Val | Asn |      |
|     |     | 340 |     |     |     |     | 345 |     |     |     |     | 350 |     |     |     |      |
| CTT | TGT | GAG | AAG | CCG | TAT | CCG | CTT | CAC | AGG | ATA | AAA | TTG | TCC | ATG | GAC | 1223 |
| Leu | Cys | G1u | Lys | Pro | Tyr | Pro | Leu | His | Arg | Ile | Lys | Leu | Ser | Met | Asp |      |
|     | 355 |     |     |     |     | 360 |     |     |     |     | 365 |     |     |     |     |      |

100

| CAC GTG TGC CTT GGT CAC TAC TGAAGAGCTG CCTCCTGGAA GCTTTT          | 12/0 |
|-------------------------------------------------------------------|------|
| His Val Cys Leu Gly His Tyr                                       |      |
| 370 375                                                           |      |
| CCAAGTGTGA GCGCCCCACC GACTGTGTGC TGATCAGAGA CTGGAGAGGT GGAGTGAGAA | 1330 |
| GTCTCCGCTG CTCGGGCCCT CCTGGGGAGC CCCCGCTCCA GGGCTCGCTC CAGGACCTTC | 1390 |
| TTCACAAGAT GACTTGCTCG CTGTTACCTG CTTCCCCAGT CTTTTCTGAA AAACTACAAA | 1450 |
| TTAGGGTGGG AAAAGCTCTG TATTGAGAAG GGTCATATTT GCTTTCTAGG AGGTTTGTTG | 1510 |
| TTTTGCCTGT TAGTTTTGAG GAGCAGGAAG CTCATGGGGG CTTCTGTAGC CCCTCTCAAA | 1570 |
| AGGAGTCTTT ATTCTGAGAA TTTGAAGCTG AAACCTCTTT AAATCTTCAG AATGATTTTA | 1630 |
| TTGAAGAGGG CCGCAAGCCC CAAATGGAAA ACTGTTTTTA GAAAATATGA TGATTTTTGA | 1690 |
| TTCCTTTTCT ATTTAATTCT GCAGGTGTTC AAGTCTTAAA AAATAAAGAT TTATAACAG  | 1749 |

Sequence No.: 23

Sequence length: 988

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10029

Sequence characteristics:

Code representing characteristics: CDS

Existence site: 9.. 530

Characterization method: E

Sequence description

AGTCCAAC ATG GCG GCG CCC AGC GGA GGG TGG AAC GGC GTC CGC GCG AGC

|     |     | Met | Ala | Ala | Pro | Ser | Gly | , G12 | 7 Trp | Asn             | G15 | v Val | Arg | , Ala | Ser |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-------|-------|-----------------|-----|-------|-----|-------|-----|-----|
|     |     | 1   | L   |     |     | :   | 5   |       |       |                 | 10  | )     |     |       |     |     |
| TTG | TGG | GCC | GCG | CTG | CTC | CTA | GGG | GCC   | GTG   | GCG             | CTG | AGG   | CCG | GCG   | GAG | 98  |
| Leu | Trp | Ala | Ala | Leu | Leu | Leu | Gly | Ala   | Va1   | Ala             | Leu | Arg   | Pro | Ala   | Glu |     |
| 15  |     |     |     |     | 20  |     |     |       |       | 25              |     |       |     |       | 30  |     |
| GCG | GTG | TCC | GAG | CCC | ACG | ACC | GTG | GCG   | TTT   | GAC             | GTG | CGG   | ccc | GGC   | GGC | 146 |
| Ala | Val | Ser | G1u | Pro | Thr | Thr | Val | Ala   | Phe   | Asp             | Val | Arg   | Pro | Gly   | Gly |     |
|     |     |     |     | 35  |     |     |     |       | 40    |                 |     |       |     | 45    |     |     |
| GTC | GTG | CAT | TCC | TTC | TCC | CAT | AAC | GTG   | GGC   | CCG             | GGG | GAC   | AAA | TAT   | ACG | 194 |
| Val | Val | His | Ser | Phe | Ser | His | Asn | Val   | Gly   | Pro             | Gly | Asp   | Lys | Tyr   | Thr |     |
|     |     |     | 50  |     |     |     |     | 55    |       |                 |     |       | 60  |       |     |     |
| TGT | ATG | TTC | ACT | TAC | GCC | TCT | CAA | GGA   | GGG   | ACC             | AAT | GAG   | CAA | TGG   | CAG | 242 |
| Сув | Met | Phe | Thr | Tyr | Ala | Ser | G1n | Gly   | Gly   | Thr             | Asn | Glu   | Gln | Trp   | Gln |     |
|     |     | 65  |     |     |     | •   | 70  |       |       |                 |     | 75    |     |       |     |     |
| ATG | AGT | CTG | GGG | ACC | AGC | GAA | GAC | CAC   | CAG   | CAC             | TTC | ACC   | TGC | ACC   | ATC | 290 |
| Met | Ser | Leu | Gly | Thr | Ser | Glu | Asp | His   | Gln   | His             | Phe | Thr   | Cys | Thr   | Ile |     |
|     | 80  |     |     |     |     | 85  |     |       |       |                 | 90  |       |     |       |     |     |
| TGG | AGG | CCC | CAG | GGG | AAG | TCC | TAT | CTG   | TAC   | TTC             | ACA | CAG   | TTC | AAG   | GCA | 338 |
| Trp | Arg | Pro | Gln | G1y | Lys | Ser | Tyr | Leu   | Tyr   | Phe             | Thr | Gln   | Phe | Lys   | Ala |     |
| 95  |     |     |     |     | 100 |     |     |       |       | 105             |     |       |     |       | 110 |     |
|     |     |     |     |     |     |     |     |       |       |                 |     |       |     |       | GCC | 386 |
| Glu | Val | Arg | Gly | Ala | Glu | Ile | Glu | Tyr   | Ala   | Met             | Ala | Tyr   | Ser |       | Ala |     |
|     |     |     |     | 115 |     |     |     |       | 120   |                 |     |       |     | 125   |     |     |
|     |     |     |     |     |     |     |     |       |       |                 |     |       |     |       | GAA | 434 |
| Ala | Phe | Glu | Arg | Glu | Ser | Asp | Val | Pro   | Leu   | Lys             | Thr | Glu   |     |       | Glu |     |
|     |     |     | 130 |     |     |     |     | 135   |       |                 |     |       | 140 |       |     |     |
|     |     |     |     |     |     |     |     |       |       |                 |     |       |     |       | GAG | 482 |
| Val | Thr | Lys | Thr | Ala | Val | Ala | His | Arg   | Pro   | G1 <del>y</del> | Ala | Phe   | Lys | Ala   | Glu |     |
|     |     | 145 |     |     |     |     | 150 | 1     |       |                 |     | 155   |     |       |     |     |

102

| CTG  | TCC   | AAG   | CTG   | GTG   | ATT   | GTG   | GCC  | AAG   | GCA   | TCG  | CGC  | ACT   | GAG   | CTG   |       |   | 527 |
|------|-------|-------|-------|-------|-------|-------|------|-------|-------|------|------|-------|-------|-------|-------|---|-----|
| Leu  | Ser   | Lys   | Leu   | Val   | Ile   | Val   | Ala  | Lys   | Ala   | Ser  | Arg  | Thr   | Glu   | Leu   |       |   |     |
|      | 160   |       |       |       |       | 165   |      |       |       |      | 170  |       |       |       |       |   |     |
| TGA  | CCAG  | CAG   | ccc : | rgtto | cccc  | ST GO | GCAC | CTTC  | r ca: | CTC  | CGGT | GAAG  | CTG   | AAG   |       |   | 580 |
| GGG  | CTG   | rgg ( | CCCT  | GAAAC | G G   | CCAG  | CACA | CAC   | CTGG: | TTTT | CTAG | GAG   | GA (  | CTCT  | TAAGT | T | 640 |
| TTC  | ACC?  | rgg ( | GCTG  | ACGT  | rg co | CTTG' | rccg | G AGO | GGC'  | rtgc | AGG  | TGG   | CTG A | AAGC  | CTGG  | G | 700 |
| GCA  | AGA   | ACA ( | GAGG  | GTCCA | AG G  | GCCC' | TCCT | GC:   | TCCC  | AACA | GCT  | CTC   | AGT ' | TCCCA | ACTTC | С | 760 |
| TGC  | rgag( | CTC   | TTCT  | GGAC' | rc A  | GGAT( | CGCA | S AT  | CCGG  | GGCA | CAAA | AGAG  | GT (  | GGGGA | AACAT | G | 820 |
| GGGG | CTA   | rgc   | TGGG  | GAAA  | GC A  | GCCA' | TGCT | c cc  | CCCG  | ACCT | CCAC | GCCG/ | AGC . | ATCC: | TCAT  | G | 880 |
| AGC  | CTGCA | AGA   | ACTG  | CTTT  | CC T  | ATGT' | TTAC | C CA  | GGGG  | ACCT | CCT  | TCAC  | GAT ( | GAAC' | rggga | A | 940 |
| GAGA | ATGA/ | AAT ( | GTTT' | TTTC  | AT A  | TTTA  | AATA | A AT  | AAGA  | ACAT | TAA  | AAAG  | 3     |       |       |   | 988 |

Sequence No.: 24

Sequence length: 390

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10189

Sequence characteristics:

Code representing characteristics: CDS

Existence site: 102.. 323

Characterization method: E

Sequence description

103

| GGCTTTGGGC  | GGAACTGG  | CT TTGTTGAC | CG GGAGAA | ACGA G A  | rg ggg g  | IG AAG CTG              | 116 |
|-------------|-----------|-------------|-----------|-----------|-----------|-------------------------|-----|
|             |           |             |           | Ме        | et Gly Va | al L <del>y</del> s Leu |     |
|             |           |             |           |           | 1         | 5                       |     |
| GAG ATA TTT | CGG ATG   | ATA ATC TAG | C CTC ACT | TTC CCT   | GTG GCT   | ATG TTC                 | 164 |
| Glu'Ile Phe | Arg Met   | Ile Ile Ty  | r Leu Thr | Phe Pro   | Val Ala   | Met Phe                 | -   |
|             | 10        |             | 15        |           |           | 20                      |     |
| TGG GTT TCC | AAT CAG   | GCC GAG TG  | G TTT GAG | GAC GAT   | GTC ATA   | CAG CGC                 | 212 |
| Trp Val Ser | Asn Gln   | Ala Glu Tr  | Phe Glu   | Asp Asp   | Val Ile   | Gln Arg                 |     |
|             | 25        |             | 30        |           | 35        |                         |     |
| AAG AGG GAG | CTG TGG   | CCA CCT GAG | G AAG CTT | CAA GAG   | ATA GAG   | GAA TTC                 | 260 |
| Lys Arg Glu | Leu Trp   | Pro Pro Gl  | ı Lys Leu | Gln Glu   | Ile Glu   | Glu Phe                 |     |
| 40          | ı         | 4:          | 5         |           | 50        |                         |     |
| AAA GAG AGG | TTA CGG   | AAG CGG CGG | G GAG GAG | AAG CTC   | CTT CGC   | GAC GCC                 | 308 |
| Lys Glu Arg | Leu Arg   | Lys Arg Arg | g Glu Glu | Lys Leu   | Leu Arg   | Asp Ala                 |     |
| 55          |           | 60          |           | 65        |           |                         |     |
| CAG CAG AAC | TCC TGAG  | GCCTCC AAG  | rgggagt c | CTAGCCCCT | r         |                         | 350 |
| Gln Gln Asn | Ser       |             |           |           |           |                         |     |
| 70          |           |             |           |           |           |                         |     |
| CCCCTGATGA  | AATATACA1 | TA TACTCAGT | C CTTGTT. | ATTC      |           |                         | 390 |
|             |           |             |           |           |           |                         |     |

Sequence No.: 25

Sequence length: 4667

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Lymphoma

PCT/JP97/03239 WO 98/11217

104

Cell line: U937

Clone name: HP10269

Sequence characteristics:

Code representing characteristics: CDS

Existence site: 754.. 4272

Characterization method: E

| Sequence description  |               |                     |                  |
|-----------------------|---------------|---------------------|------------------|
| CATTTAGTTA CTCTGCTCAT | TTCTCTTAAG C  | TTTCCTTGG ATGAGTTGA | G CTTTGAATCC 60  |
| TTCCTGATGA ACCTTGCCTT | TTAAGGATCC T  | CCAAATGCC CCAAGAAGC | T GGGATTTTC 120  |
| ATTTTTTTT TCACTGGGG   | GGGGAATGGT G  | CTTTCCAGG GTCCTGGAT | G TTTGAGTCTT 180 |
| CTCACCTTCC AGCCCGGTGA | TATGTCTGGA G  | CTTTAACTC TCTATATAA | G CCCTAATCTT 240 |
| TGTGTTCTCT GCCTGATCTT | CTGTCTGGGG T  | GGTCCAGGT CACAAGAAG | A AGCTGACCCC 300 |
| TGCTGGCTTT GGGAAAATGC | TGAGTTCATT G  | CCTGGCACA AATGCAAGG | G CCCTTCCCCA 360 |
| CCCTGTGAAT TCTGGTCTCT | GATGATCACT T  | ACATGTGCC TTGTGCTT1 | C TGTTTGAGGG 420 |
| GCCCCTTGCA GCCCCCACAG | GCAGGTGGGC A  | TTGTGGAGC TCACTACAA | G AACTCTGGGA 480 |
| CCGACCGACC AACCCACTTG | CCCAGTCCCG T  | CCTGGGAGG TGGGGGTGC | A GTGACGACAG 540 |
| ATGGGTGTGA CGGCTGCCAG | ATTCCTGAGA C  | CCGCCCTGC GGTGGGGC1 | A CACCCAGCCA 600 |
| GGAGTCTCC AGAGGTGAGG  | CTGTTGTTTA A  | AAACCTGGA GCCGGGAGG | G GAGACCCCCA 660 |
| CATTCAAGAG GAGCTTTCAG | GCGATCTGGA G  | AAAGAACGG CAGAACACA | C AGCAAGGAAA 720 |
| GCTCCTTTCT GGGGATCACC | CCATTGGCTG A  | AG ATG AGA CCA TTC  | TTC CTC TTG 774  |
|                       |               | Met Arg Pro Phe     | Phe Leu Leu      |
|                       |               | 1                   | 5                |
| IGT TTT GCC CTG CCT G | GC CTC CTG CA | T GCC CAA CAA GCC T | GC TCC CGT 822   |
| Cys Phe Ala Leu Pro G | ly Leu Leu Hi | s Ala Gin Gin Ala C | ys Ser Arg       |
| 10                    | 15            | 20                  |                  |
| GGG GCC TGC TAT CCA C | CT GTT GGG GA | C CTG CTT GTT GGG A | GG ACC CGG 870   |
| Gly Ala Cys Tyr Pro P | ro Val Gly As | p Leu Leu Val Gly A | rg Thr Arg       |
| 25                    | 30            | 35                  |                  |

TTT CTC CGA GCT TCA TCT ACC TGT GGA CTG ACC AAG CCT GAG ACC TAC 918

| Phe | Leu | Arg | Ala | Ser | Ser | Thr | Cys | GLy | Leu | Thr | Lys | Pro | Glu | Thr | Tyr |      |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| 40  |     |     |     |     | 45  |     |     |     |     | 50  |     |     |     |     | 55  |      |
| TGC | ACC | CAG | TAT | GGC | GAG | TGG | CAG | ATG | AAA | TGC | TGC | AAG | TGT | GAC | TCC | 966  |
| Cys | Thr | Gln | Tyr | Gly | Glu | Trp | Gln | Met | Lys | Cys | Cys | Lys | Cys | Asp | Ser |      |
|     |     |     |     | 60  |     |     |     |     | 65  |     |     |     |     | 70  |     |      |
| AGG | CAG | CCT | CAC | AAC | TAC | TAC | AGT | CAC | CGA | GTA | GAG | AAT | GTG | GCT | TCA | 1014 |
| Arg | Gln | Pro | His | Asn | Tyr | Tyr | Ser | His | Arg | Va1 | Glu | Asn | Val | Ala | Ser |      |
|     |     |     | 75  |     |     |     |     | 80  |     |     |     |     | 85  |     |     |      |
| TCC | TCC | GGC | ccc | ATG | CGC | TGG | TGG | CAG | TCC | CAG | AAT | GAT | GTG | AAC | CCT | 1062 |
| Ser | Ser | Gly | Pro | Met | Arg | Trp | Trp | Gln | Ser | Gln | Asn | Asp | Val | Asn | Pro |      |
|     |     | 90  |     |     |     |     | 95  |     |     |     |     | 100 |     |     |     |      |
| GTC | TCT | CTG | CAG | CTG | GAC | CTG | GAC | AGG | AGA | TTC | CAG | CTT | CAA | GAA | GTC | 1110 |
| Val | Ser | Leu | Gln | Leu | Asp | Leu | Asp | Arg | Arg | Phe | Gln | Leu | Gln | G1u | Va1 |      |
|     | 105 |     |     |     |     | 110 |     |     |     |     | 115 |     |     |     |     |      |
| ATG | ATG | GAG | TTC | CAG | GGG | CCC | ATG | CCT | GCC | GGC | ATG | CTG | ATT | GAG | CGC | 1158 |
| Met | Met | Glu | Phe | Gln | G1y | Pro | Met | Pro | Ala | G1y | Met | Leu | Ile | Glu | Arg |      |
| 120 |     |     |     |     | 125 |     |     |     |     | 130 |     |     |     |     | 135 |      |
| TCC | TCA | GAC | TTC | GGT | AAG | ACC | TGG | CGA | GTG | TAC | CAG | TAC | CTG | GCT | GCC | 1206 |
| Ser | Ser | Asp | Phe | Gly | Lys | Thr | Trp | Arg | Val | Tyr | Gln | Tyr | Leu | Ala | Ala |      |
|     |     |     |     | 140 |     |     |     |     | 145 |     |     |     |     | 150 |     |      |
| GAC | TGC | ACC | TCC | ACC | TTC | CCT | CGG | GTC | CGC | CAG | GGT | CGG | CCT | CAG | AGC | 1254 |
| Asp | Cys | Thr | Ser | Thr | Phe | Pro | Arg | Val | Arg | Gln | Gly | Arg | Pro | Gln | Ser |      |
|     |     |     | 155 |     |     |     |     | 160 |     |     |     |     | 165 |     |     |      |
| TGG | CAG | GAT | GTT | CGG | TGC | CAG | TCC | CTG | CCT | CAG | AGG | CCT | AAT | GCA | CGC | 1302 |
| Trp | Gln | Asp | Val | Arg | Cys | Gln | Ser | Leu | Pro | Gln | Arg | Pro | Asn | Ala | Arg |      |
|     |     | 170 |     |     |     |     | 175 |     |     |     |     | 180 |     |     |     |      |
| CTA | AAT | GGG | GGG | AAG | GTC | CAA | CTT | AAC | CTT | ATG | GAT | TTA | GTG | TCT | GGG | 1350 |
| Leu | Asn | Gly | Gly | Lys | Val | Gln | Leu | Asn | Leu | Met | Asp | Leu | Val | Ser | Gly |      |
|     | 185 |     |     |     |     | 190 |     |     |     |     | 195 |     |     |     |     |      |

| ATT | CCA              | GCA | ACT | CAA | AGT | CAA | AAA | ATT | CAA | GAG | GTG | GGG | GAG | ATC | ACA | 1398 |
|-----|------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| Ile | Pro              | Ala | Thr | Gln | Ser | Gln | Lys | Ile | Gln | Glu | Val | G1y | Glu | Ile | Thr |      |
| 200 |                  |     |     |     | 205 |     |     |     |     | 210 |     |     | •   |     | 215 |      |
| AAC | TTG              | AGA | GTC | AAT | TTC | ACC | AGG | CTG | GCC | CCT | GTG | ccc | CAA | AGG | GGC | 1446 |
| Asn | Leu              | Arg | Val | Asn | Phe | Thr | Arg | Leu | Ala | Pro | Val | Pro | Gln | Arg | Gly |      |
|     |                  |     |     | 220 |     |     |     |     | 225 |     |     |     |     | 230 |     |      |
| TAC | CAC              | ССТ | ccc | AGC | GCC | TAC | TAT | GCT | GTG | TCC | CAG | CTC | CGT | CTG | CAG | 1494 |
| Tyr | His              | Pro | Pro | Ser | Ala | Tyr | Tyr | Ala | Val | Ser | Gln | Leu | Arg | Leu | Gln |      |
|     |                  |     | 235 |     |     |     |     | 240 |     |     |     |     | 245 |     |     |      |
| GGG | AGC              | TGC | TTC | TGT | CAC | GGC | CAT | GCT | GAT | CGC | TGC | GCA | ccc | AAG | CCT | 1542 |
| Gly | Ser              | Cys | Phe | Cys | His | Gly | His | Ala | Asp | Arg | Cys | Ala | Pro | Lys | Pro |      |
|     |                  | 250 |     |     |     |     | 255 |     |     |     |     | 260 |     |     |     |      |
| GGG | GCC              | TCT | GCA | GGC | CCC | TCC | ACC | GCT | GTG | CAG | GTC | CAC | GAT | GTC | TGT | 1590 |
| Gly | Ala              | Ser | Ala | Gly | Pro | Ser | Thr | Ala | Val | Gln | Val | His | Asp | Val | Cys |      |
|     | 265              |     |     |     |     | 270 |     |     |     |     | 275 |     |     |     |     |      |
| GTC | TGC              | CAG | CAC | AAC | ACT | GCC | GGC | CCA | AAT | TGT | GAG | CGC | TGT | GCA | CCC | 1638 |
| Val | Суз              | Gln | His | Asn | Thr | Ala | Gly | Pro | Asn | Cys | Glu | Arg | Cys | Ala | Pro |      |
| 280 |                  |     |     |     | 285 |     |     |     |     | 290 |     |     |     |     | 295 |      |
| TTC | TAC              | AAC | AAC | CGG | CCC | TGG | AGA | CCG | GCG | GAG | GGC | CAG | GAC | GCC | CAT | 1686 |
| Phe | Tyr              | Asn | Asn | Arg | Pro | Trp | Arg | Pro | Ala | G1u | G1y | Gln | Asp | Ala | His |      |
|     |                  |     |     | 300 |     |     |     |     | 305 |     |     |     |     | 310 |     |      |
| GAA | TGC              | CAA | AGG | TGC | GAC | TGC | AAT | GGG | CAC | TCA | GAG | ACA | TGT | CAC | TTT | 1734 |
| Glu | С <del>у</del> в | Gln | Arg | Суз | Asp | Cys | Asn | Gly | His | Ser | Glu | Thr | Сув | His | Phe |      |
|     |                  |     | 315 |     |     |     |     | 320 |     |     |     |     | 325 |     |     |      |
| GAC | CCC              | GCT | GTG | TTT | GCC | GCC | AGC | CAG | GGG | GCA | TAT | GGA | GGT | GTG | TGT | 1782 |
| Asp | Pro              | Ala | Va1 | Phe | Ala | Ala | Ser | Gln | Gly | Ala | Tyr | Gly | Gly | Val | Cys |      |
|     |                  | 330 |     |     |     |     | 335 |     |     |     |     | 340 |     |     |     |      |
| GAC | AAT              | TGC | CGG | GAC | CAC | ACC | GAA | GGC | AAG | AAC | TGT | GAG | CGG | TGT | CAG | 1830 |
| Asp | Asn              | Cys | Arg | Asp | His | Thr | Glu | Gly | Lys | Asn | Cys | Glu | Arg | Сув | Gln |      |

|     | 345 |     |     |     |     | 350 |     |     |     |     | 355 |     |     |     |     |      |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| CTG | CAC | TAT | TTC | CGG | AAC | CGG | CGC | CCG | GGA | GCT | TCC | ATT | CAG | GAG | ACC | 1878 |
| Leu | His | Tyr | Phe | Arg | Asn | Arg | Arg | Pro | Gly | Ala | Ser | Ile | Gln | Glu | Thr |      |
| 360 |     |     |     |     | 365 |     |     |     |     | 370 |     |     |     |     | 375 |      |
| TGC | ATC | TCC | TGC | GAG | TGT | GAT | CCG | GAT | GGG | GCA | GTG | CCA | GGG | GCT | CCC | 1926 |
| Cys | Ile | Ser | Cys | Glu | Сув | Asp | Pro | Asp | Gly | Ala | Val | Pro | Gly | Ala | Pro |      |
|     |     |     |     | 380 |     |     |     |     | 385 |     |     |     |     | 390 |     |      |
| TGT | GAC | CCA | GTG | ACC | GGG | CAG | TGT | GTG | TGC | AAG | GAG | CAT | GTG | CAG | GGA | 1974 |
| Cys | Asp | Pro | Val | Thr | Gly | Gln | Cys | Val | Cys | Lys | Glu | His | Val | Gln | Gly |      |
|     |     |     | 395 |     |     |     |     | 400 |     |     |     |     | 405 |     |     |      |
| GAG | CGC | TGT | GAC | CTA | TGC | AAG | CCG | GGC | TTC | ACT | GGA | CTC | ACC | TAC | GCC | 2022 |
| Glu | Arg | Cys | Asp | Leu | Cys | Lys | Pro | Gly | Phe | Thr | G1y | Leu | Thr | Tyr | Ala |      |
|     |     | 410 |     |     |     |     | 415 |     |     |     |     | 420 |     |     |     | -    |
| AAC | CCG | CAG | GGC | TGC | CAC | CGC | TGT | GAC | TGC | AAC | ATC | CTG | GGG | TCC | CGG | 2070 |
| Asn | Pro | Gln | Gly | Cys | His | Arg | Cys | Asp | Cys | Asn | Ile | Leu | Gly | Ser | Arg |      |
|     | 425 |     |     |     |     | 430 |     |     |     |     | 435 |     |     |     |     |      |
| AGG | GAC | ATG | CCG | TGT | GAC | GAG | GAG | AGT | GGG | CGC | TGC | CTT | TGT | CTG | CCC | 2118 |
| Arg | Asp | Met | Pro | Сув | Asp | Glu | Glu | Ser | G1y | Arg | Cys | Leu | Cys | Leu | Pro |      |
| 440 |     |     |     |     | 445 |     |     |     |     | 450 |     |     |     |     | 455 |      |
| AAC | GTG | GTG | GGT | CCC | AAA | TGT | GAC | CAG | TGT | GCT | CCC | TAC | CAC | TGG | AAG | 2166 |
| Asn | Val | Val | Gly | Pro | Lys | Сув | Asp | Gln | Cys | Ala | Pro | Tyr | His | Trp | Lys |      |
|     |     |     |     | 460 |     |     | ٠   |     | 465 |     |     |     |     | 470 |     |      |
| CTG | GCC | AGT | GGC | CAG | ĢGC | TGT | GAA | CCG | TGT | GCC | TGC | GAC | CCG | CAC | AAC | 2214 |
| Leu | Ala | Ser | Gly | Gln | Gly | Cys | Glu | Pro | Cys | Ala | Cys | Asp | Pro | His | Asn |      |
|     |     |     | 475 |     |     |     |     | 480 |     |     |     |     | 485 |     |     |      |
| TCC | CTC | AGC | CCA | CAG | TGC | AAC | CAG | TTC | ACA | GGG | CAG | TGC | ccc | TGT | CGG | 2262 |
| Ser | Leu | Ser | Pro | G1n | Сув | Asn | Gln | Phe | Thr | Gly | Gln | Cys | Pro | Cys | Arg |      |
|     |     | 490 |     |     |     |     | 495 |     |     |     |     | 500 |     |     |     |      |
| CAA | GGC | ттт | CCT | ദേദ | CTG | ATG | TCC | AGC | GCT | GCA | GCC | ATC | CGC | CAG | ፐርጥ | 2310 |

| Glu | Gly | Phe | Gly | G1y | Leu             | Met | Cys | Ser | Ala | Ala          | Ala | Ile | Arg | Gln | Cys |      |
|-----|-----|-----|-----|-----|-----------------|-----|-----|-----|-----|--------------|-----|-----|-----|-----|-----|------|
|     | 505 |     |     |     |                 | 510 |     |     |     |              | 515 |     |     |     |     |      |
| CCA | GAC | CGG | ACC | TAT | GGA             | GAC | GTG | GCC | ACA | GGA          | TGC | CGA | GCC | TGT | GAC | 2358 |
| Pro | Asp | Arg | Thr | Tyr | Gl <del>y</del> | Asp | Val | Ala | Thr | Gly          | Суѕ | Arg | Ala | Cys | Asp |      |
| 520 |     |     |     |     | 525             |     |     |     |     | 530          |     |     |     |     | 535 |      |
| TGT | GAT | TTC | CGG | GGA | ACA             | GAG | GGC | CCG | GGC | TGC          | GAC | AAG | GCA | TCA | GGC | 2406 |
| Cys | Asp | Phe | Arg | Gly | Thr             | Glu | Gly | Pro | Gly | Cys          | Asp | Lys | Ala | Ser | Gly |      |
|     |     | •   |     | 540 |                 |     |     |     | 545 |              |     |     |     | 550 |     |      |
| CGC | TGC | CTC | TGC | CGC | CCT             | GGC | TTG | ACC | GGG | CCC          | CGC | TGT | GAC | CAG | TGC | 2454 |
| Arg | Cys | Leu | Cys | Arg | Pro             | Gly | Leu | Thr | Gly | Pro          | Arg | Суs | Asp | Gln | Cys |      |
|     |     |     | 555 |     |                 |     |     | 560 |     |              |     |     | 565 |     |     |      |
| CAG | CGA | GGC | TAC | TGC | AAT             | CGC | TAC | CCG | GTG | TGC          | GTG | GCC | TGC | CAC | CCT | 2502 |
| Gln | Arg | G1y | Tyr | Cys | Asn             | Arg | Tyr | Pro | Val | С <b>у</b> ѕ | Val | Ala | Cys | His | Pro |      |
|     |     | 570 |     |     |                 |     | 575 |     |     |              |     | 580 |     |     |     |      |
| TGC | TTC | CAG | ACC | TAT | GAT             | GCG | GAC | CTC | CGG | GAG          | CAG | GCC | CTG | CGC | TTT | 2550 |
| Cys | Phe | Gln | Thr | Tyr | Asp             | Ala | Asp | Leu | Arg | Glu          | Gln | Ala | Leu | Arg | Phe |      |
|     | 585 |     |     |     |                 | 590 |     |     |     |              | 595 |     |     |     |     |      |
| GGT | AGA | CTC | CGC | AAT | GCC             | ACC | GCC | AGC | CTG | TGG          | TCA | GGG | CCT | GGG | CTG | 2598 |
| G1y | Arg | Leu | Arg | Asn | Ala             | Thr | Ala | Ser | Leu | Trp          | Ser | Gly | Pro | Gly | Leu |      |
| 600 |     |     |     |     | 605             |     |     |     |     | 610          |     |     |     |     | 615 |      |
| GAG | GAC | CGT | GGC | CTG | GCC             | TCC | CGG | ATC | CTA | GAT          | GCA | AAG | AGT | AAG | ATT | 2646 |
| G1u | Asp | Arg | Gly | Leu | Ala             | Ser | Arg | Ile | Leu | Asp          | Ala | Lys | Ser | Lys | Ile |      |
|     |     |     |     | 620 |                 |     |     |     | 625 |              |     |     |     | 630 |     |      |
| GAG | CAG | ATC | CGA | GCA | GTT             | CTC | AGC | AGC | CCC | GCA          | GTC | ACA | GAG | CAG | GAG | 2694 |
| G1u | G1n | Ile | Arg | Ala | Val             | Leu | Ser | Ser | Pro | Ala          | Val | Thr | G1u | Gln | Glu |      |
|     |     |     | 635 |     |                 |     |     | 640 |     |              |     |     | 645 |     |     |      |
| GTG | GCT | CAG | GTG | GCC | AGT             | GCC | ATC | CTC | TCC | CTC          | AGG | CGA | ACT | CTC | CAG | 2742 |
| Val | Ala | Gln | Va1 | Ala | Ser             | Ala | Ile | Leu | Ser | Leu          | Arg | Arg | Thr | Leu | Gln |      |
|     |     | 650 |     |     |                 |     | 655 |     |     |              |     | 660 |     |     |     |      |

| GGC      | CTG      | CAG | CTG         | GAT | CTG | CCC | CTG | GAG | GAG | GAG  | ACG         | TTG | TCC | CTT    | CCG | 2790 |
|----------|----------|-----|-------------|-----|-----|-----|-----|-----|-----|------|-------------|-----|-----|--------|-----|------|
| Gly      | Leu      | Gln | Leu         | Asp | Leu | Pro | Leu | G1u | Glu | Glu  | Thr         | Leu | Ser | Leu    | Pro |      |
|          | 665      |     |             |     |     | 670 |     |     |     |      | 675         |     |     |        |     |      |
| AGA      | GAC      | CTG | GAG         | AGT | CTT | GAC | AGA | AGC | TTC | AAT  | GGT         | CTC | CTT | ACT    | ATG | 2838 |
| Arg      | Asp      | Leu | Glu         | Ser | Leu | Asp | Arg | Ser | Phe | Asn  | Gly         | Leu | Leu | Thr    | Met |      |
| 680      |          |     |             |     | 685 |     |     |     |     | 690  |             |     |     |        | 695 |      |
| TAT      | CAG      | AGG | AAG         | AGG | GAG | CAG | TTT | GAA | AAA | ATA  | AGC         | AGT | GCT | GAT    | CCT | 2886 |
| Tyr      | Gln      | Arg | Lys         | Arg | Glu | Gln | Phe | G1u | Lys | Ile  | Ser         | Ser | Ala | Asp    | Pro |      |
|          |          |     |             | 700 |     |     |     |     | 705 |      |             |     |     | 710    |     |      |
| TCA      | GGA      | GCC | TTC         | CGG | ATG | CTG | AGC | ACA | GCC | TAC  | GAG         | CAG | TCA | GCC    | CAG | 2934 |
| Ser      | G1y      | Ala | Phe         | Arg | Met | Leu | Ser | Thr | Ala | Tyr  | Glu         | Gln | Ser | Ala    | Gln | •    |
|          |          |     | <b>71</b> 5 |     |     |     |     | 720 |     |      |             |     | 725 |        |     |      |
| GCT      | GCT      | CAG | CAG         | GTC | TCC | GAC | AGC | TCG | CGC | CTT  | TTG         | GAC | CAG | CTC    | AGG | 2982 |
| Ala      | Ala      | Gln | Gln         | Val | Ser | Asp | Ser | Ser | Arg | Leu  | Leu         | Asp | Gln | Leu    | Arg |      |
|          |          | 730 |             |     |     |     | 735 |     |     |      |             | 740 |     |        |     |      |
|          |          |     |             |     |     | GAG |     |     |     |      |             |     |     |        |     | 3030 |
| Asp      | Ser      | Arg | Arg         | Glu | Ala | Glu | Arg | Leu | Val | Arg  | Gln         | Ala | Gly | Gly    | Gly |      |
|          | 745      |     |             |     |     | 750 |     |     |     |      | <b>75</b> 5 |     |     |        |     |      |
|          |          |     |             |     |     | AAG |     |     |     |      |             |     |     |        |     | 3078 |
| Gly      | Gly      | Thr | G1y         | Ser | Pro | Lys | Leu | Val | Ala |      | Arg         | Leu | Glu | Met    |     |      |
| 760      |          |     |             |     | 765 |     |     |     |     | 770  |             |     |     |        | 775 |      |
|          |          |     |             |     |     | CCC |     |     |     |      |             |     |     |        |     | 3126 |
| Ser      | Leu      | Pro | Asp         |     | Thr | Pro | Thr | Phe |     | Lys  | Leu         | Cys | Gly |        | Ser | •    |
|          |          |     |             | 780 |     |     |     |     | 785 |      | 205         |     |     | 790    | 000 | 017/ |
|          |          |     |             |     |     | CCA |     |     |     |      |             |     |     |        |     | 3174 |
| Arg      | Gln      | Met |             | Cys | Thr | Pro | lle |     | Cys | Pro  | GIÀ         | GIU |     | Cys    | PTO |      |
| <b>.</b> | <b>.</b> |     | 795         |     | 000 | ma~ | 000 | 800 | 000 | Tr.C | 400         | CCT | 805 | Center | ccc | 2222 |
|          |          |     |             |     |     | TGT |     |     |     |      |             |     |     |        |     | 3222 |
| GIn      | Asp      | Asn | GTA         | Inr | BIA | Cys | GTA | ser | wrg | Cys  | vcR         | GTA | VAI | ren    | LIO |      |

AGG GCC GGT GGG GCC TTC TTG ATG GCG GGG CAG GTG GCT GAG CAG CTG Arg Ala Gly Gly Ala Phe Leu Met Ala Gly Gln Val Ala Glu Gln Leu CGG GGC TTC AAT GCC CAG CTC CAG CGG ACC AGG CAG ATG ATT AGG GCA Arg Gly Phe Asn Ala Gln Leu Gln Arg Thr Arg Gln Met Ile Arg Ala GCC GAG GAA TCT GCC TCA CAG ATT CAA TCC AGT GCC CAG CGC TTG GAG Ala Glu Glu Ser Ala Ser Gln Ile Gln Ser Ser Ala Gln Arg Leu Glu ACC CAG GTG AGC GCC AGC CGC TCC CAG ATG GAG GAA GAT GTC AGA CGC Thr Gln Val Ser Ala Ser Arg Ser Gln Met Glu Glu Asp Val Arg Arg ACA CGG CTC CTA ATC CAG CAG GTC CGG GAC TTC CTA ACA GAC CCC GAC Thr Arg Leu Leu Ile Gln Gln Val Arg Asp Phe Leu Thr Asp Pro Asp ACT GAT GCA GCC ACT ATC CAG GAG GTC AGC GAG GCC GTG CTG GCC CTG Thr Asp Ala Ala Thr Ile Gln Glu Val Ser Glu Ala Val Leu Ala Leu : 905 TGG CTG CCC ACA GAC TCA GCT ACT GTT CTG CAG AAG ATG AAT GAG ATC Trp Leu Pro Thr Asp Ser Ala Thr Val Leu Gln Lys Met Asn Glu Ile CAG GCC ATT GCA GCC AGG CTC CCC AAC GTG GAC TTG GTG CTG TCC CAG Gln Ala Ile Ala Ala Arg Leu Pro Asn Val Asp Leu Val Leu Ser Gln ACC AAG CAG GAC ATT GCG CGT GCC CGC CGG TTG CAG GCT GAG GCT GAG Thr Lys Gln Asp Ile Ala Arg Ala Arg Arg Leu Gln Ala Glu Ala Glu GAA GCC AGG AGC CGA GCC CAT GCA GTG GAG GGC CAG GTG GAA GAT GTG 

| Glu  | Ala | Arg  | Ser | Arg | Ala | His | Ala | Val | G1u | Gly  | Gln | Val | Glu | Asp  | Val  |      |
|------|-----|------|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|------|------|------|
|      |     | 970  |     |     |     |     | 975 |     |     |      |     | 980 |     |      |      |      |
| GTT  | GGG | AAC  | CTG | CGG | CAG | GGG | ACA | GTG | GCA | CTG  | CAG | GAA | GCT | CAG  | GAC  | 3750 |
| Val  | Gly | Asn  | Leu | Arg | Gln | Gly | Thr | Va1 | Ala | Leu  | Gln | Glu | Ala | Gln  | Asp  |      |
|      | 985 |      |     |     |     | 990 |     |     |     |      | 995 |     |     | ٠    |      |      |
| ACC  | ATG | CAA  | GGC | ACC | AGC | CGC | TCC | CTT | CGG | CTT  | ATC | CAG | GAC | AGG  | GTT  | 3798 |
| Thr  | Met | Gln  | Gly | Thr | Ser | Arg | Ser | Leu | Arg | Leu  | Ile | Gln | Asp | Arg  | Val  |      |
| 1000 | 0   |      |     |     | 100 | 5   |     |     |     | 1010 | )   |     |     |      | 1015 |      |
| GCT  | GAG | GTT  | CAG | CAG | GTA | CTG | CGG | CCA | GCA | GAA  | AAG | CTG | GTG | ACA  | AGC  | 3846 |
| Ala  | Glu | Val  | Gln | Gln | Va1 | Leu | Arg | Pro | Ala | Glu  | Lys | Leu | Val | Thr  | Ser  |      |
|      |     |      |     | 102 | D   |     |     |     | 102 | 5    |     |     |     | 1030 | 0    |      |
| ATG  | ACC | AAG  | CAG | CTG | GGT | GAC | TTC | TGG | ACA | CGG  | ATG | GAG | GAG | CTC  | CGC  | 3894 |
| Met  | Thr | Lys  | Gln | Leu | Gly | Asp | Phe | Trp | Thr | Arg  | Met | Glu | Glu | Leu  | Arg  |      |
|      |     |      | 103 | 5   |     |     |     | 104 | D   |      |     |     | 104 | 5    |      |      |
| CAC  | CAA | GCC  | CGG | CAG | CAG | GGG | GCA | GAG | GCA | GTC  | CAG | GCC | CAG | CAG  | CTT  | 3942 |
| His  | Gln | Ala  | Arg | Gln | Gln | Gly | Ala | Glu | Ala | Val  | Gln | Ala | Gln | Gln  | Leu  |      |
|      |     | 1050 | )   |     |     |     | 105 | 5   |     |      |     | 106 | 0   |      |      |      |
| GCG  | GAA | GGT  | GCC | AGC | GAG | CAG | GCA | TTG | AGT | GCC  | CAA | GAG | GGA | TTT  | GAG  | 3990 |
| Ala  | G1u | Gly  | Ala | Ser | Glu | Gln | Ala | Leu | Ser | Ala  | Gln | Glu | G1y | Phe  | Glu  |      |
|      | 106 | 5    |     |     |     | 107 | 0   |     |     |      | 107 | 5   |     |      |      |      |
| AGA  | ATA | AAA  | CAA | AAG | TAT | GCT | GAG | TTG | AAG | GAC  | CGG | TTG | GGT | CAG  | AGT  | 4038 |
| Arg  | Ile | Lys  | Gln | Lys | Tyr | Ala | G1u | Leu | Lys | Asp  | Arg | Leu | Gly | Gln  | Ser  |      |
| 108  | 0   |      |     |     | 108 | 5   |     |     |     | 109  | 0   |     |     |      | 1095 |      |
| TCC  | ATG | CTG  | GGT | GAG | CAG | GGT | GCC | CGG | ATC | CAG  | AGT | GTG | AAG | ACA  | GAG  | 4086 |
| Ser  | Met | Leu  | Gly | Glu | Gln | G1y | Ala | Arg | Ile | Gln  | Ser | Val | Lys | Thr  | Glu  |      |
|      |     |      |     | 110 | 0   |     |     |     | 110 | 5    |     |     |     | 111  | 0    |      |
| GCA  | GAG | GAG  | CTG | TTT | GGG | GAG | ACC | ATG | GAG | ATG  | ATG | GAC | AGG | ATG  | AAA  | 4134 |
| Ala  | Glu | Glu  | Leu | Phe | Gly | Glu | Thr | Met | Glu | Met  | Met | Asp | Arg | Met  | Lys  |      |
|      |     |      | 111 | 5   |     |     |     | 112 | 0   |      |     |     | 112 | 5    |      |      |

112

| GAC ATG | GAG    | TTG   | GAG   | CTG            | CTG  | CGG           | GGC   | AGC   | CAG          | GCC  | ATC  | ATG   | CTG   | CGC   |   | 4182 |
|---------|--------|-------|-------|----------------|------|---------------|-------|-------|--------------|------|------|-------|-------|-------|---|------|
| Asp Met | Glu    | Leu   | Glu   | Leu            | Leu  | Arg           | Gly   | Ser   | Gln          | Ala  | Ile  | Met   | Leu   | Arg   |   |      |
|         | 113    | 0     |       |                |      | 113           | 5     |       |              |      | 1140 | 0     |       |       |   |      |
| TCA GCG | GAC    | CTG   | ACA   | GGA            | CTG  | GAG           | AAG   | CGT   | GTG          | GAG  | CAG  | ATC   | CGT   | GAC   |   | 4230 |
| Ser Ala | Asp    | Leu   | Thr   | Gly            | Leu  | Glu           | Lys   | Arg   | Va1          | Glu  | Gln  | Ile   | Arg   | Asp   |   |      |
| 114     | 5      |       |       |                | 1150 | ס             |       |       |              | 1155 | 5    |       |       |       |   |      |
| CAC ATC | AAT    | GGG   | CGC   | GTG            | CTC  | TAC           | TAT   | GCC   | ACC          | TGC  | AAG  | T     |       |       |   | 4270 |
| His Ile | Asn    | Gly   | Arg   | Val            | Leu  | Tyr           | Tyr   | Ala   | Thr          | Cys  | Lys  |       |       |       |   |      |
| 1160    |        |       |       | 116            | 5    |               |       |       | 1170         | )    |      |       |       |       |   |      |
| GATGCTA | CAG (  | CTTC  | CAGC  | CC G           | TGC  | CCCA          | C TC  | ATCT  | CCG          | CCT  | TGC  | rtt ' | TGGT: | rgggg | 3 | 4330 |
| CAGATTG | GGT :  | IGGA/ | ATGCT | r <b>t t</b> e | CAT  | CTCCA         | A GGA | AGAC  | TTTC         | ATG  | CAGC | CTA A | AAGTA | ACAGC | С | 4390 |
| TGGACCA | .ccc ( | CTGG  | CTG   | ra go          | CTAG | raag <i>i</i> | A TTA | ACCC  | DAD          | CTG  | CAGC | IGA ( | GCCT  | SAGCC | A | 4450 |
| ATGGGAC | AGT :  | raca( | CTTGA | AC AC          | ACA  | AGA           | r GG7 | rgga( | CATT         | GGC  | ATGC | CAT   | TGAAA | ACTAA | 3 | 4510 |
| AGCTCTC | AAG '  | CAAC  | GAAG  | C TO           | GGC1 | rggg          | C AG  | CATC  | ccc          | GCC  | OATT | STT ( | CTCCA | ACTGG | 3 | 4570 |
| GAGGAAT | CCT (  | GAC   | CAAGO | CA CA          | AAAA | ACTTA         | A ACA | AAAA  | STGA         | TGTA | AAAA | ATG A | AAAA  | CCAA  | A | 4630 |
| TAAAAAT | CTT :  | rgga/ | AAGA  | AG CO          | TGG  | AGGTT         | r ca/ | ACGAG | <del>}</del> |      |      |       |       |       |   | 4667 |

Sequence No.: 26

Sequence length: 1086

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10298

Sequence characteristics:

Code representing characteristics: CDS

| WO 98/11217 | PCT/JP97/03239 |
|-------------|----------------|
|             |                |

Existence site: 138.. 506

| Cha  | ract | eriz | atio | n me | thod  | l: E |       |       |      |       |       |       |      |       |        |     |
|------|------|------|------|------|-------|------|-------|-------|------|-------|-------|-------|------|-------|--------|-----|
| Sequ | ence | des  | crip | tion | ı     |      |       |       |      |       |       |       |      |       |        |     |
| TTTA | ATTI | cc c | CGAA | ATCA | G AC  | TGC  | rgcci | TGG   | ACC  | GGA   | CAGO  | CTCGC | eg c | cccc  | GAGAG  | 60  |
| CTCI | AGCC | GT C | GAGG | AGCI | G CC  | TGGG | GAC   | TTI   | GCC( | TGG   | GGCC  | CCAG  | CC 1 | reeco | CCGGGT | 120 |
| CACC | CTGG | CA I | GAGG | AG A | TG G  | GC ( | CTG 1 | TG C  | TC C | CTG G | STC C | CA 1  | TG C | CTC C | CTG    | 170 |
|      |      |      |      | ŀ    | let G | ly I | .eu I | .eu I | eu I | Leu V | 7al E | Pro I | eu I | Leu I | Leu    |     |
|      |      |      |      |      | 1     |      |       |       | 5    |       |       |       |      | 10    |        |     |
| CTG  | ccc  | GGC  | TCC  | TAC  | GGA   | CTG  | ccc   | TTC   | TAC  | AAC   | GGC   | TTC   | TAC  | TAC   | TCC    | 218 |
| Leu  | Pro  | Gly  | Ser  | Tyr  | Gly   | Leu  | Pro   | Phe   | Tyr  | Asn   | Gly   | Phe   | Tyr  | Tyr   | Ser    |     |
|      |      |      | 15   |      |       |      |       | 20    |      |       |       |       | 25   |       |        |     |
| AAC  | AGC  | GCC  | AAC  | GAC  | CAG   | AAC  | CTA   | GGC   | AAC  | GGT   | CAT   | GGC   | AAA  | GAC   | CTC    | 266 |
| Asn  | Ser  | Ala  | Asn  | Asp  | Gln   | Asn  | Leu   | Gly   | Asn  | Gly   | His   | G1y   | Lys  | Asp   | Leu    |     |
|      |      | 30   |      |      |       |      | 35    |       |      |       |       | 40    |      |       |        |     |
| CTT  | AAT  | GGA  | GTG  | AAG  | CTG   | GTG  | GTG   | GAG   | ACA  | CCC   | GAG   | GAG   | ACC  | CTG   | TTC    | 314 |
| Leu  | Asn  | G1y  | Val  | Lys  | Leu   | Val  | Val   | Glu   | Thr  | Pro   | Glu   | Glu   | Thr  | Leu   | Phe    |     |
|      | 45   |      |      |      |       | 50   |       |       |      |       | 55    |       |      |       |        |     |
| ACC  | CGC  | ATC  | CTA  | ACT  | GTG   | GGC  | ccc   | CAG   | AGC  | CTG   | GGG   | TCC   | GAA  | GCT   | TTG    | 362 |
| Thr  | Arg  | Ile  | Leu  | Thr  | Va1   | G1y  | Pro   | Gln   | Ser  | Leu   | Gly   | Ser   | G1u  | Ala   | Leu    |     |
| 60   |      |      |      |      | 65    |      |       |       |      | 70    |       |       |      |       | 75     |     |
| GCT  | TCC  | CCG  | ACC  | CGC  | AGA   | GCC  | GCT   | TGT   | ACG  | GTG   | TTT   | ACT   | GCT  | ACC   | GCC    | 410 |
| Ala  | Ser  | Pro  | Thr  | Arg  | Arg   | Ala  | Ala   | Cys   | Thr  | Val   | Phe   | Thr   | Ala  | Thr   | Ala    |     |
|      |      |      |      | 80   |       |      |       |       | 85   |       |       |       |      | 90    |        |     |
| AGC  | ACT  | AGG  | ACC  | TGG  | GGC   | CCT  | ccc   | CTG   | CCG  | CAT   | TCC   | CTC   | ACT  | GGC   | TGT    | 458 |
| Ser  | Thr  | Arg  | Thr  | Trp  | Gly   | Pro  | Pro   | Leu   | Pro  | His   | Ser   | Leu   | Thr  | Gly   | Cys    |     |
|      |      |      | 95   |      |       |      |       | 100   |      |       |       |       | 105  |       |        |     |
| GTA  | TTT  | ATT  | GAG  | TGG  | TTC   | GTT  | TTC   | CCT   | TGT  | GGG   | TTG   | GAG   | CCA  | TTT   |        | 503 |
| Val  | Phe  | Ile  | Glu  | Trp  | Phe   | Val  | Phe   | Pro   | Cys  | Gly   | Leu   | Glu   | Pro  | Phe   |        |     |
|      |      | 110  |      |      |       |      | 115   |       |      |       |       | 120   |      |       |        |     |

PCT/JP97/03239

| TAACTGT TT | TTATACTT CTC | CAATITAA AT | TTCTTTA AAG | CATTTTTT TAC | CTATTTTT   | 560  |
|------------|--------------|-------------|-------------|--------------|------------|------|
| TGTAAAGCAA | ACAGAACCCA   | ATGCCTCCCT  | TTGCTCCTGG  | ATGCCCCACT   | CCAGGAATCA | 620  |
| TGCTTGCTCC | CCTGGGCCAT   | TTGCGGTTTT  | GTGGGCTTCT  | GGAGGGTTCC   | CCGCCATCCA | 680  |
| GGCTGGTCTC | CCTCCCTTAA   | GGAGGTTGGT  | GCCCAGAGTG  | GGCGGTGGCC   | TGTCTAGAAT | 740  |
| GCCGCCGGGA | GTCCGGGCAT   | GGTGGGCACA  | GTTCTCCCTG  | CCCCTCAGCC   | TGGGGGAAGA | 800  |
| AGAGGGCCTC | GGGGGCCTCC   | GGAGCTGGGC  | TTTGGGCCTC  | TCCTGCCCAC   | CTCTACTTCT | 860  |
| CTGTGAAGCC | GCTGACCCCA   | GTCTGCCCAC  | TGAGGGGCTA  | GGGCTGGAAG   | CCAGTTCTAG | 920  |
| GCTTCCAGGC | GAAAGCTGAG   | GGAAGGAAGA  | AACTCCCCTC  | CCCGTTCCCC   | TTCCCCTCTC | 980  |
| GGTTCCAAAG | AATCTGTTTT   | GTTGTCATTT  | GTTTCTCCTG  | TTTCCCTGTG   | TGGGGAGGGG | 1040 |
| CCCTCAGGTG | TGTGTACTTT   | GGACAATAAA  | TGGTGCTATG  | ACTGCC       |            | 1086 |

Sequence No.: 27

WO 98/11217

Sequence length: 866

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10368

Sequence characteristics:

Code representing characteristics: CDS

Existence site: 73.. 600

Characterization method: E

Sequence description

ACTCAGAAGC TTGGACCGCA TCCTAGCCGC CGACTCACAC AAGGCAGGTG GGTGAGGAAA 60

TCCAGAGTTG CC ATG GAG AAA ATT CCA GTG TCA GCA TTC TTG CTC CTT GTG 111

Met Glu Lys Ile Pro Val Ser Ala Phe Leu Leu Val

|     |     |     |                 | 1   |     |     |     | 5   |     |     |     | 1               | LO  |     |     |     |
|-----|-----|-----|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----------------|-----|-----|-----|-----|
| GCC | CTC | TCC | TAC             | ACT | CTG | GCC | AGA | GAT | ACC | ACA | GTC | AAA             | CCT | GGA | GCC | 159 |
| Ala | Leu | Ser | Tyr             | Thr | Leu | Ala | Arg | Asp | Thr | Thr | Val | Lys             | Pro | Gly | Ala |     |
|     | 15  |     |                 |     |     | 20  |     |     |     |     | 25  |                 |     |     |     |     |
| AAA | AAG | GAC | ACA             | AAG | GAC | TCT | CGA | ccc | AAA | CTG | ccc | CAG             | ACC | CTC | TCC | 207 |
| Lys | Lys | Asp | Thr             | Lys | Asp | Ser | Arg | Pro | Lys | Leu | Pro | G1n             | Thr | Leu | Ser |     |
| 30  |     |     |                 |     | 35  |     |     |     |     | 40  |     |                 |     |     | 45  |     |
| AGA | GGT | TGG | GGT             | GAC | CAA | CTC | ATC | TGG | ACT | CAG | ACA | TAT             | GAA | GAA | GCT | 255 |
| Arg | Gly | Trp | G1 <del>y</del> | Asp | Gln | Leu | Ile | Trp | Thr | Gln | Thr | Tyr             | Glu | Glu | Ala |     |
|     |     |     |                 | 50  |     |     |     |     | 55  |     |     |                 |     | 60  |     |     |
| CTA | TAT | AAA | TCC             | AAG | ACA | AGC | AAC | AAA | CCC | TTG | ATG | ATT             | ATT | CAT | CAC | 303 |
| Leu | Tyr | Lys | Ser             | Lys | Thr | Ser | Asn | Lys | Pro | Leu | Met | Ile             | Ile | His | His |     |
|     |     |     | 65              |     |     |     |     | 70  |     |     |     |                 | 75  |     |     |     |
| TTG | GAT | GAG | TGC             | CCA | CAC | AGT | CAA | GCT | TTA | AAG | AAA | GTG             | TTT | GCT | GAA | 351 |
| Leu | Asp | Glu | Сув             | Pro | His | Ser | Gln | Ala | Leu | Lys | Lys | Val             | Phe | Ala | Glu |     |
|     |     | 80  |                 |     |     |     | 85  |     |     |     |     | 90              |     |     |     |     |
| AAT | AAA | GAA | ATC             | CAG | AAA | TTG | GCA | GAG | CAG | TTT | GTC | CTC             | CTC | AAT | CTG | 399 |
| Asn | Lys | Glu | Ile             | Gln | Lys | Leu | Ala | G1u | Gln | Phe | Val | Leu             | Leu | Asn | Leu |     |
|     | 95  |     |                 |     |     | 100 |     |     |     |     | 105 |                 |     |     |     |     |
| GTT | TAT | GAA | ACA             | ACT | GAC | AAA | CAC | CTT | TCT | CCT | GAT | GGC             | CAG | TAT | GTC | 447 |
| Val | Tyr | Glu | Thr             | Thr | Asp | Lys | His | Leu | Ser | Pro | Asp | G1 <del>y</del> | Gln | Tyr | Val |     |
| 110 |     |     |                 |     | 115 |     |     |     |     | 120 |     |                 |     |     | 125 |     |
| CCC | AGG | ATT | ATG             | TTT | GTT | GAC | CCA | TCT | CTG | ACA | GTT | AGA             | GCC | GAT | ATC | 495 |
| Pro | Arg | Ile | Met             | Phe | Va1 | Asp | Pro | Ser | Leu | Thr | Val | Arg             | Ala | Asp | Ile |     |
|     |     |     |                 | 130 |     |     |     |     | 135 |     |     |                 |     | 140 |     |     |
| ACT | GGA | AGA | TAT             | TCA | AAC | CGT | CTC | TAT | GCT | TAC | GAA | CCT             | GCA | GAT | ACA | 543 |
| Thr | Gly | Arg | Tyr             | Ser | Asn | Arg | Leu | Tyr | Ala | Tyr | Glu | Pro             | Ala | Asp | Thr |     |
|     |     |     | 145             |     |     |     |     | 150 |     |     |     |                 | 155 |     |     |     |
| GCT | CTG | TTG | CTT             | GAC | AAC | ATG | AAG | AAA | GCT | CTC | AAG | TTG             | CTG | AAG | ACT | 591 |

| Ala Leu | Leu   | Leu   | Asp A | Asn  | Met  | Lys   | Lys   | Ala   | Leu   | Lys   | Leu  | Leu | Lys   | Th  | r   |   |     |
|---------|-------|-------|-------|------|------|-------|-------|-------|-------|-------|------|-----|-------|-----|-----|---|-----|
|         | 160   |       |       |      |      | 165   |       |       |       |       | 170  |     |       |     |     |   |     |
| GAA TTG | TAA   | AGAAA | AA A  | AATC | TCC  | AA GO | CCT   | CTG   | r ctc | STCAG | GCC  | TTG |       |     |     | 6 | 540 |
| Glu Leu | L     |       |       |      |      |       |       |       |       |       |      |     |       |     |     |   |     |
| 175     | ;     |       | •     |      |      |       |       |       |       |       |      |     |       |     |     |   |     |
| AGACTTG | AAA ( | CCAGA | AGAA  | G TG | TGA  | SAAGA | A CTO | GCTA  | AGTG  | TGG.  | AGC  | ATA | GTGA  | ACA | CAC | 7 | 700 |
| TGATTAG | GTT . | ATGGT | 'TTAA | T GI | TAC  | ACA   | A CTA | ATTT' | TTTA  | AGA/  | AAA( | CAA | GTTT: | TAG | AAA | 7 | 760 |
| TTTGGTT | TCA . | AGTGT | ACAT  | G TO | TGA  | AAACA | A ATA | ATTG: | TATA  | CTAC  | CATA | AGT | GAGC  | CAT | GAT | ε | 320 |
| TTTCTAA | AAA . | AAAA  | ATAA  | A TO | TTT: | rece  | GT    | GTTC: | TGTT  | TTC   | CC   |     |       |     |     | 8 | 366 |

117

## Claims

1. Proteins containing any of the amino acid sequences represented by Sequence No. 1 to Sequence No. 9.

- 2. DNAs encoding any of the proteins as described in Claim 1.
- 3. cDNAs containing any of the base sequences represented by Sequence No. 10 to Sequence No. 18.
- 4. cDNAs described in Claim 3 which comprise any of the base sequences represented by Sequence No. 19 to Sequence No. 27.

## 1/11



Fig.1





Amino acid Residue Number





 $H^{\lambda}$ qrobyoptct $f^{\lambda}$ 

Amino acid Residue Number



Ηλατοδυορτατέλ\Ηλατοδυτιτατέλ



 $_{\rm H}$ Aqxobyoptct $_{\rm C}$ 



 $H^{\overline{\lambda}}$ grobyopicif $\overline{\lambda}$ \H $\overline{\lambda}$ grobyijicif $\lambda$ 



 $_{\rm H}$ Aqıobyopıcı $_{\rm L}$ Aqıobyı $_{\rm L}$ Cq $_{\rm L}$ A



Ηλατορλορίςττς Αλατορλίζιτε τ



 $_{\rm H}$ λ $_{\rm T}$ cobyoptc $_{\rm T}$ c $_{\rm$ 



