

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC146647 Page: 1 of 53

FCC Radio Test Report FCC ID: 2AG8SZYZ-Z8

Original Grant

Report No. : TB-FCC146647

Applicant : ShenZhen XingYangXing Communication Technology Co.,ltd

Equipment Under Test (EUT)

EUT Name : Panorama Photo/Video for Smartphone

Model No. : ZYZ-Z8

Series Model No. : N/A

Brand Name : N/A

Receipt Date : 2016-01-11

Test Date : 2016-01-11 to 2016-01-13

Issue Date : 2016-01-14

Standards : FCC Part 15: 2015, Subpart C(15.247)

Test Method : ANSI C63.10: 2013

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer :

Approved& Authorized :

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Page:

Contents

COR	NIENIS	
1.	GENERAL INFORMATION ABOUT EUT	
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	4
	1.3 Block Diagram Showing the Configuration of System Tested	5
	1.4 Description of Support Units	
	1.5 Description of Test Mode	
	1.6 Description of Test Software Setting	
	1.7 Measurement Uncertainty	
	1.8 Test Facility	
2.	TEST SUMMARY	
3.	TEST EQUIPMENT	10
4.	CONDUCTED EMISSION TEST	11
	4.1 Test Standard and Limit	11
	4.2 Test Setup	11
	4.3 Test Procedure	
	4.4 EUT Operating Mode	12
	4.5 Test Data	12
5.	RADIATED EMISSION TEST	17
	5.1 Test Standard and Limit	17
	5.2 Test Setup	
	5.3 Test Procedure	19
	5.4 EUT Operating Condition	19
6.	RESTRICTED BANDS REQUIREMENT	28
	6.1 Test Standard and Limit	
	6.2 Test Setup	28
	6.3 Test Procedure	
	6.4 EUT Operating Condition	29
	6.4 Test Data	29
7.	NUMBER OF HOPPING CHANNEL	36
	7.1 Test Standard and Limit	36
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 EUT Operating Condition	36
	7.5 Test Data	
8.	AVERAGE TIME OF OCCUPANCY	38
6	8.1 Test Standard and Limit	
	8.2 Test Setup	
	8.3 Test Procedure	

Report No.: TB-FCC146647
Page: 3 of 53

	8.4 EUT Operating Condition	38
	8.5 Test Data	
9.	CHANNEL SEPARATION AND BANDWIDTH TEST	45
	9.1 Test Standard and Limit	45
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 EUT Operating Condition	
	9.5 Test Data	
10.	PEAK OUTPUT POWER TEST	50
	10.1 Test Standard and Limit	50
	10.2 Test Setup	50
	10.3 Test Procedure	
	10.4 EUT Operating Condition	50
	10.5 Test Data	51
11.	ANTENNA REQUIREMENT	
	11.1 Standard Requirement	53
	11.2 Antenna Connected Construction	53

Page: 4 of 53

1. General Information about EUT

1.1 Client Information

Applicant: ShenZhen XingYangXing Communication Technology Co.,ltd

Address : No.16, Benkang Road industrial Zone, Dakang Dawan village,

Hengang Street, Longgang District 518115, Shenzhen, China

Manufacturer : ShenZhen XingYangXing Communication Technology Co.,ltd

Address : No.16, Benkang Road industrial Zone, Dakang Dawan village,

Hengang Street, Longgang District 518115, Shenzhen, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name		Panorama Photo/Video for	Panorama Photo/Video for Smartphone		
Models No.		ZYZ-Z8			
Model Difference	i	N/A			
1000		Operation Frequency: Bluetooth:2402~2480MHz			
Product		Number of Channel:	Bluetooth:79 Channels see Note 3		
Description	:	Max Peak Output Power:	Bluetooth: -13.92 dBm(GFSK)		
3 100		Antenna Gain:	0 dBi PCB Antenna		
		Modulation Type:	GFSK (1Mbps)		
Power Supply		DC Voltage supplied from DC power by Li-ion Battery	Host System by USB cable.		
Power Rating	1	DC 5.0V by USB cable.			
DC 3.7V 400mAh Li-ion Battery.		attery.			
Connecting I/O Port(S)	١	Please refer to the User's	Please refer to the User's Manual		

Note:

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Channel List:

	Bluetooth Channel List					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
00	2402	27	2429	54	2456	
01	2403	28	2430	55	2457	
02	2404	29	2431	56	2458	

Page: 5 of 53

03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454	MILL	A WE
26	2428	53	2455	20	13.5

(4) The Antenna information about the equipment is provided by the applicant.

1.3 Block Diagram Showing the Configuration of System Tested

TX Mode	-	TURN	3		
		EUT			

Page: 6 of 53

USB Charging with TX Mode

1.4 Description of Support Units

Equipment Information					
Name	Model	FCC ID/DOC	Manufacturer	Used "√"	
LCD Monitor	E170Sc	DOC	DELL	√	
PC	OPTIPLEX380	DOC	DELL	√	
Keyboard	L100	DOC	DELL	√	
Mouse	M-UARDEL7	DOC	DELL	1	
		Cable Informa	tion		
Number	Shielded Type	Ferrite Core	Length	Note	
Cable 1	YES	YES	1.5M		
Cable 2	NO	NO	1.0M	2 1111	
Cable 3	YES	NO	1.5M	S S	
Cable 4	YES	YES	0.8M	mn33	

Page: 7 of 53

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

	For Conducted Test
Final Test Mode	Description
Mode 1	USB Charging with TX GFSK Mode

For Radiated Test				
Final Test Mode Description				
Mode 1 USB Charging with TX GFSK Mode				
Mode 2 TX Mode(GFSK) Channel 00/39/78				
Mode 3	Hopping Mode(GFSK)			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate. We have pretested all the test mode above.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK (1 Mbps)

(2) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane as the normal use. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of Bluetooth mode.

Test Software Version	Airoha AB1100 Family LAB Test Tool –Version 1.4.5.0			
Frequency	2402 MHz	2441MHz	2480 MHz	
GFSK	DEF	DEF	DEF	

Page: 8 of 53

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
	Level Accuracy:	3
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Radiated Emission	Level Accuracy:	±4.60 dB
Radiated Emission	9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy:	.4.40 dB
Radiated Emission	30MHz to 1000 MHz	±4.40 dB
Dadiated Emission	Level Accuracy:	. 4 20 dD
Radiated Emission	Above 1000MHz	±4.20 dB

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 9 of 53

2. Test Summary

FCC Part 15 Subpart C(15.247)/ RSS 247 Issue 1					
Standard Section				_	
FCC	IC	Test Item	Judgment	Remark	
15.203	13	Antenna Requirement	PASS	N/A	
15.207	RSS-GEN 7.2.2	Conducted Emission	PASS	N/A	
15.205	RSS-Gen 7.2.3	Restricted Bands	PASS	N/A	
15.247(a)(1)	RSS 247 5.1 (2)	Hopping Channel Separation	PASS	N/A	
15.247(a)(1)	RSS 247 5.1 (4)	Dwell Time	PASS	N/A	
15.247(b)(1)	RSS 247 5.4 (2)	Peak Output Power	PASS	N/A	
15.247(b)(1)	RSS 247 5.1 (4)	Number of Hopping Frequency	PASS	N/A	
15.247(c)	RSS 247 5.5	Radiated Spurious Emission	PASS	N/A	
15.247(a)	RSS 247 5.1 (1)	99% Occupied Bandwidth & 20dB Bandwidth	PASS	99%OBW GFSK:1007.10kHz	

Page: 10 of 53

3. Test Equipment

Conducte	d Emission Te	est			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Aug. 07, 2015	Aug. 06, 2016
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Aug. 07, 2015	Aug. 06, 2016
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Aug. 07, 2015	Aug. 06, 2016
LISN	Rohde & Schwarz	ENV216	101131	Aug. 07, 2015	Aug. 06, 2016
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Date
radiation	Emission Tes				Cal. Due
Spectrum	Agilent	E4407B	MY45106456	Aug. 29, 2015	Aug. 28, 2016
Analyzer	Aglierit	L4407B	101143100430	Aug. 29, 2013	Aug. 20, 2010
EMI Test Receiver	Rohde & Schwarz	ESCI	100010/007	Aug. 07, 2015	Aug. 06, 2016
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 28, 2015	Mar. 27, 2016
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar. 28, 2015	Mar. 27, 2016
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 28, 2015	Mar. 27, 2016
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar. 28, 2015	Mar. 27, 2016
Pre-amplifier	Sonoma	310N	185903	Mar. 28, 2015	Mar. 27, 2016
Pre-amplifier	HP	8447B	3008A00849	Mar. 28, 2015	Mar. 27, 2016
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar. 28, 2015	Mar. 27, 2016
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A

Page: 11 of 53

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

Eroguopov	Maximum RF Line Voltage (dBμV)				
Frequency	Quasi-peak Level	Average Level			
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Report No.: TB-FCC146647 Page: 12 of 53

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please see the next page.

EUT: Panorama Photo/Video for Smartphone **Model Name:** ZYZ-Z8 Temperature: 25 ℃ **Relative Humidity:** 55% **Test Voltage:** AC 120V/60 Hz Terminal: Line **Test Mode:** USB Charging with TX GFSK Mode 2402 MHz Remark: Only worse case is reported

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB	dBuV	dBu∀	dB	Detector
1		0.5540	35.57	10.02	45.59	56.00	-10.41	QP
2	*	0.5540	27.76	10.02	37.78	46.00	-8.22	AVG
3		4.2859	22.60	10.06	32.66	56.00	-23.34	QP
4		4.2859	17.05	10.06	27.11	46.00	-18.89	AVG
5		5.6939	20.99	10.06	31.05	60.00	-28.95	QP
6		5.6939	16.52	10.06	26.58	50.00	-23.42	AVG
7		12.8619	3.40	10.10	13.50	60.00	-46.50	QP
8		12.8619	-1.93	10.10	8.17	50.00	-41.83	AVG
9		16.2499	8.52	10.06	18.58	60.00	-41.42	QP
10		16.2499	2.48	10.06	12.54	50.00	-37.46	AVG
11		19.5138	7.11	10.06	17.17	60.00	-42.83	QP
12		19.5138	-1.04	10.06	9.02	50.00	-40.98	AVG

Tage. If of our

	Panorama Pho	to/Video for Smartphone	Model Name	e :	ZYZ-Z8
Temperature:	25 ℃	TO S	Relative Hu	midity:	55%
Test Voltage:	AC 120V/60	Hz		TO BE	
Terminal:	Neutral				
Test Mode:	USB Chargin	g with TX GFSK Mode	e 2402 MHz	A 5	Millian
Remark:	Only worse of	ase is reported		2.7	
40 A A A A A A A A A A A A A A A A A A A				QP: AVG:	peak
-10 0.150 No. Mk. F	Readir	_	sure-	Over	30.000
	<u> </u>		J110		
	1Hz dBuV		uV dBuV	dB	Detector
1 0.1	740 34.55	5 10.12 44.	uV dBuV 67 64.76	dB -20.09	QP
1 0.1	1Hz dBuV	5 10.12 44.	uV dBuV 67 64.76	dB	
1 0.1 2 0.1	740 34.55	5 10.12 44. 4 10.12 44.	dBuV 67 64.76 06 54.76	dB -20.09	QP
1 0.1 2 0.1 3 0.2	740 34.55 740 33.94	5 10.12 44. 4 10.12 44. 4 10.12 44.	dBuV 67 64.76 06 54.76 06 63.20	dB -20.09 -10.70	QP AVG
1 0.1 2 0.1 3 0.2 4 0.2	740 34.55 740 33.94 2100 33.94	10.12 44. 10.12 44. 10.12 44. 10.12 42.	dBuV 67 64.76 06 54.76 06 63.20 25 53.20	dB -20.09 -10.70 -19.14 -10.95	QP AVG QP
1 0.1 2 0.1 3 0.2 4 0.2 5 0.5	740 34.55 740 33.94 2100 33.94 2100 32.13	10.12 44. 10.12 44. 10.12 44. 10.12 42. 10.12 42. 10.02 46.	dBuV 67 64.76 06 54.76 06 63.20 25 53.20 35 56.00	dB -20.09 -10.70 -19.14 -10.95	QP AVG QP AVG
1 0.1 2 0.1 3 0.2 4 0.2 5 0.5 6 * 0.5	740 34.55 740 33.94 2100 33.94 2100 32.13 3540 36.33	5 10.12 44. 4 10.12 44. 4 10.12 44. 3 10.12 42. 3 10.02 46. 1 10.02 38.	dBuV 67 64.76 06 54.76 06 63.20 25 53.20 35 56.00 53 46.00	dB -20.09 -10.70 -19.14 -10.95 -9.65	QP AVG QP AVG QP
1 0.1 2 0.1 3 0.2 4 0.2 5 0.5 6 * 0.5 7 5.3	740 34.55 740 33.94 2100 33.94 2100 32.13 3540 36.33 3540 28.51	10.12 44. 10.12 44. 10.12 44. 10.12 42. 10.02 46. 10.02 38. 10.06 40.	dBuV 67 64.76 06 54.76 06 63.20 25 53.20 35 56.00 53 46.00 23 60.00	dB -20.09 -10.70 -19.14 -10.95 -9.65 -7.47	QP AVG QP AVG QP AVG
1 0.1 2 0.1 3 0.2 4 0.2 5 0.5 6 * 0.5 7 5.3 8 5.3	740 34.55 740 33.94 2100 33.94 2100 32.13 3540 36.33 3540 28.51 3740 30.17	10.12 44. 10.12 44. 10.12 44. 10.12 42. 10.02 46. 10.02 38. 10.06 40. 10.06 35.	dBuV 67 64.76 06 54.76 06 63.20 25 53.20 35 56.00 53 46.00 23 60.00	dB -20.09 -10.70 -19.14 -10.95 -9.65 -7.47 -19.77	QP AVG AVG QP AVG QP AVG
1 0.1 2 0.1 3 0.2 4 0.2 5 0.5 6 * 0.5 7 5.3 8 5.3	740 34.55 740 33.94 2100 32.13 3540 36.33 3740 28.51 3740 25.81 740 28.65	10.12 44. 10.12 44. 10.12 44. 10.12 42. 10.02 46. 10.02 38. 10.06 40. 10.06 35. 10.16 38.	dBuV 67 64.76 06 54.76 06 63.20 25 53.20 35 56.00 53 46.00 23 60.00 87 50.00 81 60.00	dB -20.09 -10.70 -19.14 -10.95 -9.65 -7.47 -19.77 -14.13 -21.19	QP AVG QP AVG QP AVG QP AVG
1 0.1 2 0.1 3 0.2 4 0.2 5 0.5 6 * 0.5 7 5.3 8 5.3 9 10.1 10 10.1	740 34.55 740 33.94 2100 33.94 2100 32.13 3540 36.33 3740 30.17	10.12 44. 10.12 44. 10.12 44. 10.12 44. 10.12 42. 10.02 46. 10.02 38. 10.06 40. 10.06 35. 10.16 38. 10.16 36.	dBuV 67 64.76 06 54.76 06 63.20 25 53.20 35 56.00 53 46.00 23 60.00 87 50.00 81 60.00	dB -20.09 -10.70 -19.14 -10.95 -9.65 -7.47 -19.77 -14.13	QP AVG QP AVG QP AVG QP AVG

EUT: Panorama Photo/Video for Smartphone **Model Name:** ZYZ-Z8 Temperature: 25 ℃ **Relative Humidity:** 55% **Test Voltage:** AC 240V/60 Hz Terminal: Line **Test Mode:** USB Charging with TX GFSK Mode 2402 MHz Remark: Only worse case is reported

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB	dBu∀	dBu∨	dB	Detector
1		0.5580	34.59	10.02	44.61	56.00	-11.39	QP
2	*	0.5580	24.65	10.02	34.67	46.00	-11.33	AVG
3		0.9860	29.02	10.15	39.17	56.00	-16.83	QP
4		0.9860	20.93	10.15	31.08	46.00	-14.92	AVG
5		1.5339	28.41	10.11	38.52	56.00	-17.48	QP
6		1.5339	22.34	10.11	32.45	46.00	-13.55	AVG
7		3.3900	25.19	10.06	35.25	56.00	-20.75	QP
8		3.3900	20.74	10.06	30.80	46.00	-15.20	AVG
9		5.6940	20.64	10.06	30.70	60.00	-29.30	QP
10		5.6940	16.27	10.06	26.33	50.00	-23.67	AVG
11		12.8620	3.05	10.10	13.15	60.00	-46.85	QP
12		12.8620	-2.30	10.10	7.80	50.00	-42.20	AVG

EUT: Panorama Photo/Video for Smartphone **Model Name:** ZYZ-Z8 Temperature: 25 ℃ **Relative Humidity:** 55% **Test Voltage:** AC 240V/60 Hz Terminal: Neutral **Test Mode:** USB Charging with TX GFSK Mode 2402 MHz Remark: Only worse case is reported

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB	dBuV	dBu∀	dB	Detector
1		0.1740	34.54	10.12	44.66	64.76	-20.10	QP
2		0.1740	33.94	10.12	44.06	54.76	-10.70	AVG
3		0.5540	36.32	10.02	46.34	56.00	-9.66	QP
4	*	0.5540	28.51	10.02	38.53	46.00	-7.47	AVG
5		0.9740	29.26	10.15	39.41	56.00	-16.59	QP
6		0.9740	21.30	10.15	31.45	46.00	-14.55	AVG
7		1.5300	28.64	10.11	38.75	56.00	-17.25	QP
8		1.5300	22.33	10.11	32.44	46.00	-13.56	AVG
9		2.1860	29.18	10.06	39.24	56.00	-16.76	QP
10		2.1860	23.38	10.06	33.44	46.00	-12.56	AVG
11		3.4820	24.74	10.06	34.80	56.00	-21.20	QP
12		3.4820	20.81	10.06	30.87	46.00	-15.13	AVG

Page: 17 of 53

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

Radiated Emission Limit (9 kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Class B (dBuV/m)(at 3m)				
(MHz)	Peak	Average			
Above 1000	74	54			

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)

Page: 18 of 53

5.2 Test Setup

Bellow 30MHz Test Setup

Bellow 1000MHz Test Setup

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power in TX mode.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=1 Kz with Peak Detector for Average Values.

Test data please refer the following pages.

Page: 20 of 53

UT:		Panorama Photo/Video for Smartphone Model Name :				ZY	Z-Z8								
emperatu	re:	25 °	$^{\circ}$ C		100	W.			Rel	ative H	lum	idity	y:	55	%
est Voltaç	ge:	DC:	3.7\	/			1	W)			1	1	V.		
nt. Pol.		Hori	zon	tal		(11)		Jan Stranger	4	2 1					1
est Mode	•	TX (GFS	SK M	lode	2402M	Hz	6					N		
Remark:		Only	/ wo	rse	case	is repo	orted			A					_
30.0 dBuV/m															
										(RF)	FCC 1!	5C 3M		ation in -6 d	вГ
				_											6 5 x
			\blacksquare	-											Ϋ́
30								X X				3	3	4 X	
								1.			and reading	Month	Sty and the	ماولياوره	A PERSON
								X							
Wilsiganle Volg				412		a de la disposición	Northway		Maryan	Mentinana					
W. Stelling or A. Proposition of the Anna	mada and the first of the second	Lyphankard	4.Netwo	atomorphis policies	ibrootspeakhyyb	المعروب المرسال والمعروب المساود المعروب المعر	A-MARININ	* * * * * * * * * * * * * * * * * * *	Phane	#No-Antono					
and the second second second	more and the second	L _{ord} phonosition and	4.NW.o	ales and the first of the first	uhowa ayan diliyah	المعرب فالمهرب فالمساودات	Markens		Phinned	Morrowales					
0	50				ihon orkiyan biyyi	المتحديث المستلحب المتأثر بدا								700	1000
Www.	50	60 70			ah na magaah nga	multi _{gra} duspilage ^{NT}		halver Ald	300	400			00 7	700	1000.
0 30.000 40		60 70	0 80 R	ead	ling	Corr	Hz)	Meas	300 ure-	400	50	00 60	00 7		1000.
0	. Fre	eq.	0 80 R	ead Lev	ling el	Corr Fac	ect tor	Meas mer	300 ure- nt	400 Limi	50 t	00 60 O\	00 ; /er	•	
0 30.000 40 No. Mk	ι. Fr∈	60 70 ≥q .	0 80 R	ead Lev	ling el	Corr Fac	ect tor	Meas mer	300 ure- nt	Limi	50 t	O\	00 ; ∕er ⊞B)etect
0 30.000 40 No. Mk	x. Fre M⊢ 234.9	eq.	0 80 R	ead Leve	ling el v	Corr Fac dB/r	ect tor	Meas mer dBu\	300 ure- nt //m	400 Limi dBu\ 46.0	t //m	O\ -31	00 : ∕er ⊞ 1.2	4)etect pea
No. Mk	x. Fre M⊢ 234.9 257.4	eq.	R	ead Levo dBu 33.6	ling el ∨ 50	Corr Fac dB/r -18.8	ect tor n 34	Meas mer dBu\ 14.7	300 ure- nt //m 76	Limi dBu\ 46.0	t //m 00	O\ -3'	oo : ⁄er ∄B 1.2	24 5	etect pea pea
0 30.000 40 No. Mk	x. Fre M⊢ 234.9	eq.	R	ead Leve	ling el ∨ 50	Corr Fac dB/r	ect tor n 34	Meas mer dBu\	300 ure- nt //m 76	400 Limi dBu\ 46.0	t //m 00	O\ -31	oo : ⁄er ∄B 1.2	24 5)etect pea
No. Mk	x. Fre M⊢ 234.9 257.4	eq. dz 909 222 142	R :	ead Levo dBu 33.6	ling el ∨ 50 51	Corr Fac dB/r -18.8	ect tor 0 34 96	Meas mer dBu\ 14.7	300 ure- nt 76 65	Limi dBu\ 46.0	50 t t 00 00	O\ -3'	/er ∄ 1.2 9.3	4 .5	etect pea pea
No. Mk	234.9 257.4 614.2	eq. dz 909 222 142 778	R	ead Leve dBu 33.6 44.6	ling el V 50 51 73	Corr Fac dB/r -18.8 -17.9	ect tor 96 3	Measimer dBu\ 14.3 26.6	300 ure- nt 76 35 30	46.0 46.0	50 t 000 000	O\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/er ∄ 1.2 9.3	: :4 :5 :0	Petect pea pea pea

Page: 21 of 53

EUT:		Pano	orama	Photo/V	ideo for Smar	tphone	Mod	el Name	:	ZYZ-Z8	
Tempera	ture:	25 °	$^{\circ}$ C		7.7		Rela	tive Hum	idity:	55%	
Test Volt	age:	DC:	3.7V	MA		W/		-0	130		
Ant. Pol.		Vert	ical					I AM			
Test Mod	le:	TX	GFSK	Mode	2402MHz	The same	U.S. LINE				
Remark:		Only	wors	se case	is reported				1		
80.0 dBuV	/m										
								(RF)FCC 1	5C 3M Radia	n -6 dB	
									3.4		
									7¥5 7 7	6	
30						1			2 X	, i	
						×				Addrawy Phill	
andreway.			1		l., h	Maria de la Carta	A.Landary Warry	homewayinem	11.7		
	make and the organization with	جج بالدهرسوب وويده	ملساوسالساد	mhanalala	Hallander dilland	Name of the second					
20											
30.000	40 50	60 7	0 80		(MHz)		300	400 5	00 600 7	00 1000.00	
				ading	Correct	Measu	ır e-				
NI. N			- Re	aumu		IVICASU					
No. N	1k. Fr	eq.		aumg evel	Factor	men		Limit	Over		
INO. IV		r eq . Hz	Le	_			ıt	Limit dBuV/m	Over dB		
1		Hz	Le d	evel	Factor	men	r t /m			Detecto	
	М	Hz 5455	1 d	evel BuV	Factor dB/m	m en dBuV	nt /m 78	dBuV/m	dB	Detecto 2 peak	
1	м 267 .	Hz 5455 3223	38 37	Bu V B.52	dB/m -17.74	men dBuV 20 .7	/m /8 88	dBuV/m 46.00	dB -25.2	Detecto peak peak	
1 2	м 267.9 566.6	Hz 5455 6223 6592	38 37 47	BuV B.52 7.00	dB/m -17.74 -10.12	men dBuV 20.7 26.8	/m /8 88 52	dBuV/m 46.00 46.00	dB -25.2 -19.1	Detecto peak peak peak	
1 2 3 4 *	267.5 566.6 605.6 631.6	Hz 5455 6223 6592 6884	38 37 47 48	BuV 8.52 7.00 7.77 9.07	Hactor dB/m -17.74 -10.12 -9.25 -8.57	men dBuV 20.7 26.8 38.5 40.5	78 38 52	dBuV/m 46.00 46.00 46.00	-25.2 -19.1 -7.48 -5.50	Detecto peak peak peak peak peak	
1 2 3	267.5 566.6 605.6 631.6	Hz 5455 6223 6592 6884 9417	38 37 47 49 44	BuV 8.52 7.00	Hactor dB/m -17.74 -10.12 -9.25	men dBuV 20.7 26.8 38.5	78 38 52 50	dBuV/m 46.00 46.00 46.00	-25.2 -19.1 -7.48	Detecto peak peak peak peak peak peak	

Page: 22 of 53

EUT:	Panorama Photo/Video for Smartphone	Model Name :	ZYZ-Z8				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Horizontal						
Test Mode:	TX GFSK Mode 2402MHz	11:32	Millian				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.652	44.51	13.44	57.95	74.00	-16.05	peak
2	*	4804.123	32.68	13.44	46.12	54.00	-7.88	AVG

Page: 23 of 53

EUT:	T: Panorama Photo/Video for Smartphone		ZYZ-Z8			
Temperature:	25 ℃ Relative Humid		55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical					
Test Mode:	TX GFSK Mode 2402MHz	11:32	Millian			
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4804.006	45.01	13.44	58.45	74.00	-15.55	peak
2	*	4804.036	31.59	13.44	45.03	54.00	-8.97	AVG

Page: 24 of 53

EUT:	Panorama Photo/Video for Smartphone		ZYZ-Z8			
Temperature:	25 ℃	55%				
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal					
Test Mode:	TX GFSK Mode 2441MHz		Millian			
Remark:	No report for the emission which more than 10 dB below the					
	prescribed limit.					

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4882.117	32.97	13.90	46.87	54.00	-7.13	AVG
2		4882.249	44.08	13.90	57.98	74.00	-16.02	peak

Page: 25 of 53

EUT:	Panorama Photo/Video for Smartphone	Model Name :	ZYZ-Z8			
Temperature:	25 ℃ Relative Humidity: 5					
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical					
Test Mode:	TX GFSK Mode 2441MHz	11:30 T	Millian			
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.721	43.73	13.90	57.63	74.00	-16.37	peak
2	*	4882.186	30.51	13.90	44.41	54.00	-9.59	AVG

Page: 26 of 53

EUT:	Panorama Photo/Video for Smartphone Model Na		ZYZ-Z8			
Temperature:	25 °C Relative Humidity: 55					
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal					
Test Mode:	TX GFSK Mode 2480MHz	11:30 - 1	Millian			
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4959.934	35.25	14.36	49.61	54.00	-4.39	AVG
2		4960.495	45.52	14.36	59.88	74.00	-14.12	peak

Page: 27 of 53

EUT:	Panorama Photo/Video for Smartphone	Model Name :	ZYZ-Z8			
Temperature:	ıre: 25 ℃ Relative Humidity:		55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical					
Test Mode:	TX GFSK Mode 2480MHz	11:30	Millian			
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

N	۱o.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	-	*	4959.382	30.68	14.36	45.04	54.00	-8.96	AVG
2			4959.745	44.42	14.36	58.78	74.00	-15.22	peak

Page: 28 of 53

6. Restricted Bands Requirement

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.209 FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Class B (dE	BuV/m)(at 3m)	
Band (MHz)	Peak	Average	
2310 ~2390	74	54	
2483.5 ~2500	74	54	

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

Report No.: TB-FCC146647 Page: 29 of 53

(3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.4 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=1 KHz with Peak Detector for Average Values.

All restriction bands have been tested, only the worst case is reported.

Page: 30 of 53

(1) Radiation Test

EUT:	Panorama Photo/Video for Smartphone	Model Name :	ZYZ-Z8			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal		Illine			
Test Mode:	TX GFSK Mode 2402MHz					
Remark:	N/A	A MILLIAN				

No	. Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	42.10	0.77	42.87	74.00	-31.13	peak
2		2390.000	30.08	0.77	30.85	54.00	-23.15	AVG
3	*	2402.100	77.59	0.82	78.41	Fundamental	l Frequency	AVG
4	Х	2402.200	81.19	0.82	82.01	Fundamental	Frequency	peak

2

3

4

Χ

Report No.: TB-FCC146647

Page: 31 of 53

EUT:	Pano	rama Photo/V	ideo for Smar	tphone M	odel Name :	ZYZ-Z8
Temperature	: 25 °	C	33	R	elative Humidity:	55%
Test Voltage:	DC 3	3.7V		4/1/2		
Ant. Pol.	Verti	cal			a Vision	
Test Mode:	TX	TX GFSK Mode 2402MHz				Millian
Remark:	N/A	Million .		U		
100.0 dBuV/m						
					(RF) FCC PART 15C (P	A RAK)
50					(RF) FCC PART 15C (AVG)
					1 X	
					2	
				······································	X	
0.0						
2311.000 2321.0	0 2331.00	2341.00 235	1.00 2361.00	2371.00 23	81.00 2391.00	2411.00 MHz
	_	Reading	Correct	Measure-	l:# C	
No. Mk.	Freq.	Level	Factor	m ent	Limit O∨er	
	MHz	dBu∀	dB/m	dBuV/m	dBuV/m dB	Detecto
1 2	390.000	41.60	0.77	42.37	74.00 -31.6	3 peak

Emission Level= Read Level+ Correct Factor

30.20

72.69

75.97

0.77

0.82

0.82

30.97

73.51

76.79

54.00

Fundamental Frequency

Fundamental Frequency

2390.000

2402.000

2402.100

AVG

AVG

peak

-23.03

Page: 32 of 53

EUT:	Panorama Photo/Video for Smartphone	Model Name :	ZYZ-Z8		
Temperature: 25 ℃		Relative Humidity:	55%		
Test Voltage:	DC 3.7V				
Ant. Pol.	Horizontal				
Test Mode:	TX GFSK Mode 2480 MHz				
Remark:	mark: N/A				

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2480.000	75.07	1.15	76.22	Fundamental	Frequency	AVG
2	Χ	2480.100	78.69	1.15	79.84	Fundamental	Frequency	peak
3		2483.500	45.56	1.17	46.73	74.00	-27.27	peak
4		2483.500	36.94	1.17	38.11	54.00	-15.89	AVG

Page: 33 of 53

EUT:	Panorama Photo/Video for Smartphone	Model Name :	ZYZ-Z8			
Temperature:	25 °C Relative Humidity: 55%					
Test Voltage: DC 3.7V						
Ant. Pol.	Vertical					
Test Mode:	Mode: TX GFSK Mode 2480 MHz					
Remark:	N/A		- 6			

No	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	O∨er	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2480.000	72.71	1.15	73.86	Fundamental	Frequency	AVG
2	Х	2480.200	75.97	1.15	77.12	Fundamental	Frequency	peak
3		2483.500	43.56	1.17	44.73	74.00	-29.27	peak
4		2483.500	34.75	1.17	35.92	54.00	-18.08	AVG

(2) Conducted Test

EUT:	Panorama Photo/Video for Smartphone	Model Name :	ZYZ-Z8			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Test Mode:	TX GFSK Mode 2402MHz / 2480 MHz					
Remark:	N/A					

35 of 53 Page:

EUT:	Panorama Photo/Video for Smartphone	Model Name :	ZYZ-Z8			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Test Mode:	GFSK Hopping Mode					
Remark:	N/A					

Page: 36 of 53

7. Number of Hopping Channel

7.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247 (a)(1)

6.1.2 Test Limit

Section	Test Item	Limit
15.247	Number of Hopping Channel	>15

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100 KHz, VBW=100 KHz, Sweep time= Auto.

7.4 EUT Operating Condition

The EUT was set to the Hopping Mode by the Customer.

7.5 Test Data

Page: 37 of 53

EUT:	Panorama Photo/Video for Smartphone	Model Name :	ZYZ-Z8
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Test Mode:	Hopping Mode (GFSK)		
		414 611 1	

Frequency Range	Quantity of Hopping Channel	Limit
2402MHz~2480MHz	79	>15

GFSK Mode

Page: 38 of 53

8. Average Time of Occupancy

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (a)(1)

8.1.2 Test Limit

Section	Test Item	Limit
15.247(a)(1)/ RSS-210	Average Time of	0.4.000
Annex 8(A8.1d)	Occupancy	0.4 sec

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=1MHz, VBW=1MHz.
- (3) Use video trigger with the trigger level set to enable triggering only on full pulses.
- (4) Sweep Time is more than once pulse time.
- (5) Set the center frequency on any frequency would be measure and set the frequency span to zero.
- (6) Measure the maximum time duration of one single pulse.
- (7) Set the EUT for packet transmitting.
- (8) Measure the maximum time duration of one single pulse.

8.4 EUT Operating Condition

The EUT was set to the Hopping Mode by the Customer.

Page: 39 of 53

8.5 Test Data

EUT:			Panorama Photo/Video for Smartphone Mode		Model Name :	
Temperature		25 ℃		Relative Hum	idity:	55%
Test Voltage:		DC 3.7V	V		A BILLIAN	
Test Mode:		Hopping I	Mode (GFSK DH1)			
Channel	Pu	lse Time	Total of Dwell	Period Time	Limit	Result
(MHz)		(ms)	(ms)	(s)	(ms)	Nesuit
2402		0.440	140.80			
2441		0.440	140.80	31.60	400	PASS
2480		0.440	140.80			
	GESK Honning Mode DH1					

GFSK Hopping Mode DH1

40 of 53 Page:

Page: 41 of 53

EUT:	Panorama Photo/Video for Smartphone	Model Name :	ZYZ-Z8		
Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage:	DC 3.7V				
Tost Modo:	Honning Mode (CESK DH3)				

Test Mode: Hopping Mode (GFSK DH3)

Channel (MHz)	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result	
2402	1.720	275.20		400 PA		
2441	1.720	275.20	31.60		PASS	
2480	1.720	275.20				

GFSK Hopping Mode DH3

Page: 42 of 53

Page: 43 of 53

EUT:	Panorama Photo/Video for Smartphone	Model Name :	ZYZ-Z8	
Temperature:	25 ℃	Relative Humidity:	55%	
Test Voltage:	DC 3.7V	W NW		
Total Manda	II : M I (OFOK DUE)			

Test Mode: Hopping Mode (GFSK DH5)

Channel (MHz)	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result	
2402	3.000	320.00		400		
2441	3.000	320.00	31.60		PASS	
2480	3.000	320.00				

GFSK Hopping Mode DH5

Page: 44 of 53

Page: 45 of 53

9. Channel Separation and Bandwidth Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Bandwidth	<=1 MHz (20dB bandwidth)	2400~2483.5
Channel Separation	>25KHz or >two-thirds of the 20 dB bandwidth Which is greater	2400~2483.5

9.2 Test Setup

9.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Channel Separation: RBW=30 kHz, VBW=100 kHz.

Bandwidth: RBW=30 kHz, VBW=100 kHz.

- (3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
 - (4) Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:30 kHz, and Video Bandwidth:100 kHz. Sweep Time set auto.

9.4 EUT Operating Condition

The EUT was set to the Hopping Mode for Channel Separation Test and continuously transmitting for the Bandwidth Test.

Page: 46 of 53

9.5 Test Data

	EUT:	Panorama Photo/Video for Smartphone	Model Name :	ZYZ-Z8
	Temperature:	25 ℃	Relative Humidity:	55%
	Test Voltage:	DC 3.7V		TUL
ĺ	Test Mode:	TX Mode (GFSK)	The same	

Channel frequency (MHz)	99% OBW (kHz)	20dB Bandwidth (kHz)	20dB Bandwidth *2/3 (kHz)
2402	1006.80	1052.00	701.33
2441	1007.10	1052.00	701.33
2480	1006.40	1052.00	701.33

GFSK TX Mode

Page: 47 of 53

2480 MHz Agilent Ref 0 dBm Atten 10 dB #Peak Log 10 dB/ Center Offst 1 dB 2.480000000 GHz Center 2.48 GHz Span 3 MHz #Res BW 30 kHz **#VBW 100 kHz** Sweep 5 ms (401 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % -20.00 dB 1.0064 MHz Transmit Freq Error 3.987 kHz x dB Bandwidth 1.052 MHz

Page: 48 of 53

EUT:	Panorama Photo/Video for Smartphone		Model Name :	ZYZ-Z8	
Temperature:	25 ℃		Relative Humidity:	55%	
Test Voltage:	DC 3.7V				
Test Mode:	Hopping Mode (GFSK)				
Channel frequency (MHz)		Separation Read Valu	e Separation	n Limit	
		(kHz)	(kHz)	
2402		1005.00	701.3	3	
2441		997.500	701.3	3	
2480		1005.00	701.33		
GFSK Hopping Mode					

49 of 53 Page:

Page: 50 of 53

10. Peak Output Power Test

10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.247 (b) (1)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	Hopping Channels>75 Power<1W(30dBm) Other <125 mW(21dBm)	2400~2483.5

10.2 Test Setup

10.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz. RBW=3 MHz, VBW=3 MHz for bandwidth more than 1MHz.

10.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

Page: 51 of 53

10.5 Test Data

EUT:	Panorama Photo/Video for Smartphone		Model Name :	ZYZ-Z8	
Temperature:	25 ℃	THU -	Relative Humidity:	55%	
Test Voltage:	DC 3.7V	and and	The same	W.	
Test Mode:	TX Mode	(GFSK)	CARLEY .		
Channel frequency (MHz)		Test Result (dBm)	Limit (dBr	Limit (dBm)	
2402		-13.92			
2441		-14.45	21		
2480		-14.94			
GFSK TX Mode					

Page: 52 of 53

GFSK TX Mode

Page: 53 of 53

11. Antenna Requirement

11.1 Standard Requirement

11.1.1 Standard FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 0 dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

The EUT antenna is a PCB antenna. It complies with the standard requirement.

Antenna Type
▼ Permanent attached antenna
□ Unique connector antenna
□ Professional installation antenna