

WHAT WOULD ACTUALLY HAPPEN:

HIS LAPTOP'S ENCRYPTED,
DRUG HIM AND HIT HIM WITH
THIS \$5 WRENCH UNTIL
HE TELLS US THE PASSWORD.

Quantum Key Distribution

Foundational Aspects of Quantum Mechanics

Simon Hirscher & Max Snijders

CONTENTS

- 1 Introduction to Encryption
- 2 Key Distribution
- 3 Quantum Key Distribution
- 4 Vulnerabilities
- 5 Closing
- 6 Authentication

THE SETTING

Alice and Bob

$$\mathsf{ENC}: \{\mathsf{plaintexts}\} \overset{\mathsf{bijective}}{\longrightarrow} \{\mathsf{ciphertexts}\}$$

$$\cong \mathbb{N}$$

$$\mathsf{ENC}: \{\mathsf{plaintexts}\} \overset{\mathsf{bijective}}{\longrightarrow} \{\mathsf{ciphertexts}\}$$

$$\cong \mathbb{N}$$

■ Encryption function hard to reverse for a 3rd party.

$$\mathsf{ENC}: \{\mathsf{plaintexts}\} \overset{\mathsf{bijective}}{\longrightarrow} \{\mathsf{ciphertexts}\}$$

$$\cong \mathbb{N}$$

- Encryption function hard to reverse for a 3rd party.
- Symmetric (shared secret)

$$\mathsf{ENC}: \{\mathsf{plaintexts}\} \overset{\mathsf{bijective}}{\longrightarrow} \{\mathsf{ciphertexts}\}$$

$$\cong \mathbb{N}$$

- Encryption function hard to reverse for a 3rd party.
- Symmetric (shared secret)
- Asymmetric (public/private key)

■ "HELLO" → "BYFFI"

- "HELLO" → "BYFFI"
- 26 options

- "HELLO" → "BYFFI"
- 26 options
- Vulnerabilities

- "HELLO" → "BYFFI"
- 26 options
- Vulnerabilities:
 - Brute-force attacks

- "HELLO" → "BYFFI"
- 26 options
- Vulnerabilities:
 - Brute-force attacks
 - Frequency analysis

- "HELLO" → "BYFFI"
- 26 options
- Vulnerabilities:
 - Brute-force attacks
 - Frequency analysis
 - Known-plaintext attacks

Every character gets mapped to a unique character

Plaintext | Ciphertext

Every character gets mapped to a unique character

Plaintext	Ciphertext
А	G

Every character gets mapped to a unique character

Plaintext	Ciphertext
А	G
В	X

Every character gets mapped to a unique character

Plaintext	Ciphertext
А	G
В	X
С	С

Every character gets mapped to a unique character

Plaintext	Ciphertext
А	G
В	X
С	С
D	J

Every character gets mapped to a unique character

Plaintext	Ciphertext
А	G
В	X
С	С
D	J
:	:

Every character gets mapped to a unique character

Plaintext	Ciphertext
А	G
В	Χ
С	С
D	J
:	:

 \blacksquare "ABBACD" \rightarrow "GXXGCJ"

Every character gets mapped to a unique character

Plaintext	Ciphertext	
А	G	
В	X	
С	С	
D	J	
:	:	

- lacktriangle "ABBACD" ightarrow "GXXGCJ"
- $26 \cdot 25 \cdot 24 \cdot ... \cdot 1 = 26! \approx 10^{26}$ options

Every character gets mapped to a unique character

Plaintext	Ciphertext
А	G
В	X
С	С
D	J
:	:

- lacktriangle "ABBACD" ightarrow "GXXGCJ"
- $26 \cdot 25 \cdot 24 \cdot ... \cdot 1 = 26! \approx 10^{26}$ options
- Vulnerabilities

Every character gets mapped to a unique character

Plaintext	Ciphertext	
А	G	
В	X	
C	С	
D	J	
:	:	

- \blacksquare "ABBACD" \rightarrow "GXXGCJ"
- $26 \cdot 25 \cdot 24 \cdot ... \cdot 1 = 26! \approx 10^{26}$ options
- Vulnerabilities:
 - frequency analysis.

PERMUTATION CIPHER

Every character gets mapped to a unique character

Plaintext	Ciphertext
А	G
В	X
С	С
D	J
:	:

- \blacksquare "ABBACD" \rightarrow "GXXGCJ"
- $26 \cdot 25 \cdot 24 \cdot ... \cdot 1 = 26! \approx 10^{26}$ options
- Vulnerabilities:
 - frequency analysis.
 - known-plaintext attacks.

- \blacksquare Key K of n bits
- Successively apply K to blocks A of n bits of plaintext by xor'ing data and key bits: $ENC_K(A) := A \oplus K$

Bit #	1	2	3	n=4	
Plaintext	1	0	1	1	
Key	1	1	0	1	
Ciphertext	0	1	1	0	

■ Decryption: $DEC_K(ENC_K(A)) := ENC_K(A) \oplus K = A \oplus K \oplus K = A$

- Key K of n bits
- Successively apply K to blocks A of n bits of plaintext by xor'ing data and key bits: $ENC_K(A) := A \oplus K$

Bit #	1	2	3	n=4	5	6	7	8	
Plaintext	1	0	1	1	0	0	0	1	
				1	1	1	0	1	
Ciphertext	0	1	1	0	1	1	0	0	

■ Decryption: $DEC_K(ENC_K(A)) := ENC_K(A) \oplus K = A \oplus K \oplus K = A$

- Key K of n bits
- Successively apply K to blocks A of n bits of plaintext by xor'ing data and key bits: $ENC_K(A) := A \oplus K$

Bit #	1	2	3	n=4	5	6	7	8	
Plaintext	1	0	1	1	0	0	0	1	
Key	1	1	0	1	1	1	0	1	
Ciphertext	0	1	1	0	1	1	0	0	

■ Decryption: $DEC_K(ENC_K(A)) := ENC_K(A) \oplus K = A \oplus K \oplus K = A$

- Key K of n bits
- Successively apply K to blocks A of n bits of plaintext by xor'ing data and key bits: $ENC_K(A) := A \oplus K$

Bit #	1	2	3	n=4	5	6	7	8	
Plaintext	1	0	1	1	0	0	0	1	
Key	1	1	0	1	1	1	0	1	
Ciphertext	0	1	1	0	1	1	0	0	

- Decryption: $DEC_K(ENC_K(A)) := ENC_K(A) \oplus K = A \oplus K \oplus K = A$
- Susceptible to frequency analysis, known-plaintext attacks and brute force.

Introduction to Encryption

- Key K of n bits
- Successively apply K to blocks A of n bits of plaintext by xor'ing data and key bits: $ENC_K(A) := A \oplus K$

Bit #	1	2	3	n=4	5	6	7	8	
Plaintext	1	0	1	1	0	0	0	1	
Key	1	1	0	1	1	1	0	1	
Ciphertext	0	1	1	0	1	1	0	0	

- Decryption: $DEC_K(ENC_K(A)) := ENC_K(A) \oplus K = A \oplus K \oplus K = A$
- Susceptible to frequency analysis, known-plaintext attacks and brute force.
- Moreover: $ENC_K(A) \oplus ENC_K(B) = A \oplus K \oplus B \oplus K = A \oplus B$

Introduction to Encryption

One-time pad = random key that is as long as the message, only used once.

Bit #	1	2	3	4	
Plaintext	1	0	1	1	
Key			0		
Ciphertext	0	1	1	0	

One-time pad = random key that is as long as the message, only used once.

Bit #	1	2	3	4	5	
Plaintext	1	0	1	1	1	
Key	1	1	0	1	0	
Ciphertext	0	1	1	0	1	

One-time pad = random key that is as long as the message, only used once.

Bit #	1	2	3	4	5	6		
	1							
Key	1	1	0	1	0	1		
Ciphertext	0	1	1	0	1	1		

One-time pad = random key that is as long as the message, only used once.

Bit #	1	2	3	4	5	6	
Plaintext	1	0	1	1	1	0	
Key	1	1	0	1	0	1	
Ciphertext	0	1	1	0	1	1	

One-time pad = random key that is as long as the message, only used once.

Bit #	1	2	3	4	5	6	 n
Plaintext	1	0	1	1	1	0	 1
Key	1	1	0	1	0	1	 1
Ciphertext	0	1	1	0	1	1	 0

One-time pad = random key that is as long as the message, only used once.

Plaintext	1	0	1	1	1	0	 1
Key	1	1	0	1	0	1	 1
Ciphertext	0	1	1	0	1	1	 0

Unbreakable since:

■ No correlation

One-time pad = random key that is as long as the message, only used once.

Bit #	1	2	3	4	5	6	 n
Plaintext	1	0	1	1	1	0	 1
Key	1	1	0	1	0	1	 1
Ciphertext	0	1	1	0	1	1	 0

Unbreakable since:

- No correlation
- Any plaintext ⇔ any ciphertext

One-time pad = random key that is as long as the message, only used once.

Plaintext	1	0	1	1	1	0	 1
Key	1	1	0	1	0	1	 1
Ciphertext	0	1	1	0	1	1	 0

THE PROBLEM WITH EXCHANGING THE KEY

How do we agree on the key in the first place? How can we do that securely?

THE PROBLEM WITH EXCHANGING THE KEY

How do we agree on the key in the first place? How can we do that securely?

Two ways:

1 Meet in person every time

THE PROBLEM WITH EXCHANGING THE KEY

How do we agree on the key in the first place? How can we do that securely?

Two ways:

- 1 Meet in person every time
- 2 Meet in person once

Alice Public Bob

Random numbers 23, 5

Alice Public Bob

Random numbers

Alice Public 3

Key Distribution

DIFFIE-HELLMAN DETAILS

■ Exponentiation is hard to invert classically ("discrete logarithm problem")

DIFFIE-HELLMAN DETAILS

- Exponentiation is hard to invert classically ("discrete logarithm problem")
- Impractical for one-time pad use

DIFFIE-HELLMAN DETAILS

- Exponentiation is hard to invert classically ("discrete logarithm problem")
- Impractical for one-time pad use
- Insecure in light of quantum algorithms: discrete logarithm \sim integer factorization (\rightarrow last week)

In QKD, quantum states carry the key information.

In QKD, quantum states carry the key information.

QKD makes use of fundamental principles of quantum mechanics:

1 Measurement changes system (unless in eigenstate of observable)

In QKD, quantum states carry the key information.

QKD makes use of fundamental principles of quantum mechanics:

- 1 Measurement changes system (unless in eigenstate of observable)
 - will prevent Eve from measuring quantum states without being detected

In QKD, quantum states carry the key information.

QKD makes use of fundamental principles of quantum mechanics:

- 1 Measurement changes system (unless in eigenstate of observable)
 - will prevent Eve from measuring quantum states without being detected
- No-cloning theorem

In QKD, quantum states carry the key information.

QKD makes use of fundamental principles of quantum mechanics:

- 1 Measurement changes system (unless in eigenstate of observable)
 - will prevent Eve from measuring quantum states without being detected
- 2 No-cloning theorem
 - will prevent Eve from copying the quantum states for later measurement

■ Consider two Hilbert spaces $H_A \cong H_B$, dim $H_A \geq 2$.

- Consider two Hilbert spaces $H_A \cong H_B$, dim $H_A \geq 2$.
- Want to find unitary operator (time evolution) U such that $\forall |\psi\rangle \in H_A$, $|b\rangle \in H_B$: $U(|\psi\rangle \otimes |b\rangle) \stackrel{!}{=} |\psi\rangle \otimes |\psi\rangle$ (up to a phase)

- Consider two Hilbert spaces $H_A \cong H_B$, dim $H_A \geq 2$.
- Want to find unitary operator (time evolution) U such that $\forall |\psi\rangle \in H_A$, $|b\rangle \in H_B$: $U(|\psi\rangle \otimes |b\rangle) \stackrel{!}{=} |\psi\rangle \otimes |\psi\rangle$ (up to a phase)
- But then take another $|\phi\rangle \in H_A$:

$$\begin{aligned} \langle \psi | \phi \rangle &= \langle \psi | \phi \rangle \, \langle b | b \rangle = \left(\, \langle \psi | \otimes \langle b | \, \right) \left(\, | \phi \rangle \otimes | b \rangle \, \right) \\ &= \left(\, \langle \psi | \otimes \langle b | \, \right) U^{\dagger} U \left(\, | \phi \rangle \otimes | b \rangle \, \right) \\ &= \left(\, \langle \psi | \otimes \langle \psi | \, \right) \left(\, | \phi \rangle \otimes | \phi \rangle \, \right) = \langle \psi | \phi \rangle^2 \end{aligned}$$

- Consider two Hilbert spaces $H_A \cong H_B$, dim $H_A \geq 2$.
- Want to find unitary operator (time evolution) U such that $\forall |\psi\rangle \in H_A$, $|b\rangle \in H_B$: $U(|\psi\rangle \otimes |b\rangle) \stackrel{!}{=} |\psi\rangle \otimes |\psi\rangle$ (up to a phase)
- But then take another $|\phi\rangle \in H_A$:

$$\begin{split} \langle \psi | \phi \rangle &= \langle \psi | \phi \rangle \, \langle b | b \rangle = \left(\, \langle \psi | \otimes \langle b | \, \right) \left(\, | \phi \rangle \otimes | b \rangle \, \right) \\ &= \left(\, \langle \psi | \otimes \langle b | \, \right) U^{\dagger} U \left(\, | \phi \rangle \otimes | b \rangle \, \right) \\ &= \left(\, \langle \psi | \otimes \langle \psi | \, \right) \left(\, | \phi \rangle \otimes | \phi \rangle \, \right) = \langle \psi | \phi \rangle^2 \end{split}$$

 $\Rightarrow \langle \psi | \phi \rangle = 1$, i.e. identical, or $\langle \psi | \phi \rangle = 0$

⇒ Can never work with different, non-orthogonal states

Quantum Key Distribution

THE BB-84 PROTOCOL

Charles Bennet & Gilles Brassard, 1984 Core concept: measurements affect states

 \rightarrow Blackoard

1 Alice chooses bit value

$$b_i \in \{0, 1\}$$

Bit # <i>i</i>	1	2	3	4
Bit b _i	0	1	1	0

1 Alice chooses bit value

$$b_i \in \{0, 1\}$$

2 Alice picks basis $A_i \in \{+, \times\}$

Bit # <i>i</i>	1	2	3	4
Bit b _i	0	1	1	0
Basis A _i	×	×	×	+

- Alice chooses bit value $b_i \in \{0, 1\}$
- 2 Alice picks basis $A_i \in \{+, \times\}$
- 3 Alice encodes b_i as polarized photon using basis

Bit # <i>i</i>	1	2	3	4
Bit b _i	0	1	1	0
Basis A _i	×	×	×	+
Alice sends	Z	5	5	\leftrightarrow

Polarization	Z	\searrow	\leftrightarrow	\$
Bit value	0	1	0	1

- Alice chooses bit value $b_i \in \{0, 1\}$
- 2 Alice picks basis $A_i \in \{+, \times\}$
- 3 Alice encodes b_i as polarized photon using basis
- Bob picks basis $B_i \in \{+, \times\}$

Bit # <i>i</i>	1	2	3	4
Bit b_i	0	1	1	0
Basis A _i	×	×	×	+
Alice sends	Z	5	5	\leftrightarrow
Basis B _i	+	×	+	+

Polarization	Z	\searrow	\leftrightarrow	\updownarrow
Bit value	0	1	0	1

1 Alice chooses bit value $b_i \in \{0,1\}$

- 2 Alice picks basis $A_i \in \{+, \times\}$
- 3 Alice encodes b_i as polarized photon using basis
- Bob picks basis $B_i \in \{+, \times\}$
- Bob measures photon polarization using the basis

1	2	3	4
0	1	1	0
×	×	×	+
Z	5	7	\leftrightarrow
+	×	+	+
?	1	?	0
	7 +	✓✓✓✓	7 5 5 + × +

Polarization	Z	\searrow	\leftrightarrow	\$
Bit value	0	1	0	1

Alice chooses bit value $b_i \in \{0, 1\}$

- 2 Alice picks basis $A_i \in \{+, \times\}$
- 3 Alice encodes b_i as polarized photon using basis
- Bob picks basis $B_i \in \{+, \times\}$
- Bob measures photon polarization using the basis
- 6 Alice & Bob exchange list of bases over classical channel.

Bit # <i>i</i>	1	2	3	4
Bit b _i	0	1	1	0
Basis A _i	×	×	×	+
Alice sends	Z	5	7	\leftrightarrow
Basis B _i	+	×	+	+
Bob sees	?	1	?	0

Polarization	Z	\searrow	\leftrightarrow	\$
Bit value	0	1	0	1

1 Alice chooses bit value $b_i \in \{0, 1\}$

- 2 Alice picks basis $A_i \in \{+, \times\}$
- 3 Alice encodes b_i as polarized photon using basis
- Bob picks basis $B_i \in \{+, \times\}$
- 5 Bob measures photon polarization using the basis
- 6 Alice & Bob exchange list of bases over classical channel. If bases A_i & B_i match \implies append bit b_i to shared key

Bit # <i>i</i>	1	2	3	4
Bit b _i	0	1	1	0
Basis A _i	×	×	×	+
Alice sends	Z	5	7	\leftrightarrow
Basis B _i	+	×	+	+
Bob sees	?	1	?	0
Shared key	-	1	-	0

Polarization	Z	\searrow	\leftrightarrow	\$
Bit value	0	1	0	1

Eve's detectability:

Eve's detectability:

■ If all bases match Eve is not detectable

Eve's detectability:

- If all bases match Eve is not detectable
- If Alice and Bob's bases don't match Eve is not detectable

Quantum Key Distribution

Eve's detectability:

- If all bases match Eve is not detectable
- If Alice and Bob's bases don't match Eve is not detectable
- If Alice and Bob's bases do match but Eve's is different then Bob will measure Alice's value 50% of the time.

Quantum Key Distribution

Eve's detectability:

- If all bases match Eve is not detectable
- If Alice and Bob's bases don't match Eve is not detectable
- If Alice and Bob's bases do match but Eve's is different then Bob will measure Alice's value 50% of the time.
- ⇒ Alice and Bob will match values when their bases match 75% of the time.

Eve's detectability:

- If all bases match Eve is not detectable
- If Alice and Bob's bases don't match Eve is not detectable
- If Alice and Bob's bases do match but Eve's is different then Bob will measure Alice's value 50% of the time.
- ⇒ Alice and Bob will match values when their bases match **75%** of the time.
- ⇒ Alice and Bob will match values when their bases don't match **50%** of the time.

Quantum Key Distribution

BB-84 - Error correction

■ In practice: Transmissions erroneous

BB-84 - Error correction

- In practice: Transmissions erroneous
- Eavesdropping: 25% error rate

BB-84 - ERROR CORRECTION

- In practice: Transmissions erroneous
- Eavesdropping: 25% error rate
- \implies To detect Eve:
 - Keep systematic error rate (noise level N) far below 25%
 - Eve will eavesdrop on every n^{th} bit if error rate is $\frac{25\%}{n}$

BB-84 - Error correction

- In practice: Transmissions erroneous
- Eavesdropping: 25% error rate
- ⇒ To detect Eve:
 - Keep systematic error rate (noise level N) far below 25%
 - Eve will eavesdrop on every n^{th} bit if error rate is $\frac{25\%}{n}$
 - Compute quantum bit error rate E
 - \blacksquare $E > N \implies$ discard key
 - $E \sim N \implies$ do error correction and proceed

Situation:

- Alice and Bob now share a key
- Eve might still have partial knowledge of the key

Situation:

- Alice and Bob now share a key
- Eve might still have partial knowledge of the key

Reduce her knowledge through **privacy amplification**:

Situation:

- Alice and Bob now share a key
- Eve might still have partial knowledge of the key

Reduce her knowledge through privacy amplification:

■ Publicly announce positions i, j of two bits b_i, b_j

Situation:

- Alice and Bob now share a key
- Eve might still have partial knowledge of the key

Reduce her knowledge through privacy amplification:

- Publicly announce positions i, j of two bits b_i, b_j
- Replace bit *i* with XOR(b_i , b_j), discard bit *j*.

Situation:

- Alice and Bob now share a key
- Eve might still have partial knowledge of the key

Reduce her knowledge through privacy amplification:

- Publicly announce positions i, j of two bits b_i, b_j
- Replace bit *i* with XOR(b_i , b_j), discard bit *j*.
- ⇒ Eve's average knowledge of the key **decreases** at the expense of decreasing the key length.

Quantum Key Distribution

Situation:

- Alice and Bob now share a key
- Eve might still have partial knowledge of the key

Reduce her knowledge through **privacy amplification**:

- Publicly announce positions i, j of two bits b_i, b_j
- Replace bit *i* with XOR(b_i , b_j), discard bit *j*.
- \implies Eve's average knowledge of the key **decreases** at the expense of decreasing the key length. \rightarrow blackboard

Quantum Key Distribution

THE E-91 PROTOCOL

- Conceived of by Artur Ekert (Oxford) in 1991
- Difference to BB-84: Source inbetween Alice and Bob produces pairs of entangled photons in state

$$|\psi\rangle := \frac{1}{\sqrt{2}}(\uparrow\uparrow + \to\to) = \frac{1}{\sqrt{2}}(\nearrow\nearrow + \nwarrow\nwarrow)$$

■ If Alice and Bob choose the same basis $(+ \text{ or } \times) \implies$ measurements agree

E-91 – SECURITY: HOW TO RULE OUT THAT EVE IS LISTENING?

■ Make sure Bell's inequality is violated when their bases don't agree.

E-91 – SECURITY: HOW TO RULE OUT THAT EVE IS LISTENING?

- Make sure Bell's inequality is violated when their bases don't agree.
- To this end: Introduce another basis, e.g.
 - Alice's bases: $a_1 = +, a_2 = \times$
 - Bob's bases: $b_1 = +, b_2 = (+ \text{ rotated by } \frac{\pi}{8})$
 - Alice and Bob match 25% of the time
 - Eve will match w/ Bob 50% of the time

E-91 – SECURITY: HOW TO RULE OUT THAT EVE IS LISTENING?

- Make sure Bell's inequality is violated when their bases don't agree.
- To this end: Introduce another basis, e.g.
 - Alice's bases: $a_1 = +, a_2 = \times$
 - Bob's bases: $b_1 = +, b_2 = (+ \text{ rotated by } \frac{\pi}{8})$
 - Alice and Bob match 25% of the time
 - Eve will match w/ Bob 50% of the time
- Bell's inequality $(a_i, b_i \in \{\pm 1\})$:

$$\begin{split} 1 & \overset{\text{classically}}{\geq} \mathbb{E}(a_1 b_2) + \mathbb{E}(a_2 b_2) - \mathbb{E}(a_2 b_1) \\ & = \cos(2\theta_{a_1 b_2}) + \cos(2\theta_{a_2 b_2}) - \cos(2\theta_{a_2 b_1}) \\ & = \cos(\frac{\pi}{4}) + \cos(\frac{\pi}{4}) - \cos(\frac{\pi}{2}) = \frac{2}{\sqrt{2}} = \sqrt{2} > 1 \end{split}$$

E-91 - SECURITY PART II

- In practice: Use 4 different bases Z_{θ} ($\theta = \text{rotation w.r.t.} +$):
 - Alice's bases: $a_1 \coloneqq Z_0 = +, a_2 \coloneqq Z_{\frac{\pi}{8}}, a_3 \coloneqq Z_{\frac{\pi}{4}} = \times$
 - Bob's bases: $b_1 \coloneqq Z_0 = +, b_2 \coloneqq Z_{\frac{\pi}{8}}, b_3 \coloneqq Z_{-\frac{\pi}{8}}$
 - Alice and Bob match in 2 out of 9 cases
 - Eve will match w/ Bob only 33% of the time.

E-91 - SECURITY PART II

- In practice: Use 4 different bases Z_{θ} ($\theta = \text{rotation w.r.t.} +$):
 - Alice's bases: $a_1 \coloneqq Z_0 = +, a_2 \coloneqq Z_{\frac{\pi}{8}}, a_3 \coloneqq Z_{\frac{\pi}{4}} = \times$
 - Bob's bases: $b_1 \coloneqq Z_0 = +, b_2 \coloneqq Z_{\frac{\pi}{8}}, b_3 \coloneqq Z_{-\frac{\pi}{8}}$
 - Alice and Bob match in 2 out of 9 cases
 - Eve will match w/ Bob only 33% of the time.
- CHSH inequality w/ $a \coloneqq Z_0, a' \coloneqq Z_{\frac{\pi}{4}}, b \coloneqq Z_{\frac{\pi}{8}}, b' \coloneqq Z_{-\frac{\pi}{8}}$

$$\begin{aligned} 2 &\overset{\text{classically}}{\geq} \mathbb{E}(ab) + \mathbb{E}(ab') + \mathbb{E}(a'b) - \mathbb{E}(a'b') \\ &= \cos(2\frac{\pi}{8}) + \cos(2\frac{\pi}{8}) + \cos(2\frac{\pi}{8}) \underbrace{-\cos(2\frac{3\pi}{8})}_{\cos(2\frac{\pi}{8})} \\ &= \underbrace{\frac{4}{\sqrt{2}}} = 2\sqrt{2} > 2 \end{aligned}$$

MORE VULNERABILITIES IN PRACTICE

- Basis choice leak
- Authentication issues
- Pseudo-randomness of basis choice

■ One-time pads allow perfect encryption

- One-time pads allow perfect encryption
- Quantum key distribution allows to generate one-time pads on the fly

- One-time pads allow perfect encryption
- Quantum key distribution allows to generate one-time pads on the fly
- In theory: Principles of quantum mechanics protect Alice and Bob from Eve

- One-time pads allow perfect encryption
- Quantum key distribution allows to generate one-time pads on the fly
- In theory: Principles of quantum mechanics protect Alice and Bob from Eve
- In practice: Multitude of attack vectors outside of realm of quantum mechanics

- One-time pads allow perfect encryption
- Quantum key distribution allows to generate one-time pads on the fly
- In theory: Principles of quantum mechanics protect Alice and Bob from Eve
- In practice: Multitude of attack vectors outside of realm of quantum mechanics
- Channel authentication is yet another issue

- One-time pads allow perfect encryption
- Quantum key distribution allows to generate one-time pads on the fly
- In theory: Principles of quantum mechanics protect Alice and Bob from Eve
- In practice: Multitude of attack vectors outside of realm of quantum mechanics
- Channel authentication is yet another issue
- Bandwidth in practice:
 - 1 Mbit/s through 20km of optical fiber (Cambridge, 2008)
 - 10 kbit/s through 100km of optical fiber (Cambridge, 2008)
 - 12.7 kbits/s through 300km of optical fiber (Geneva, 2015)

Never underestimate the bandwidth of a station wagon full of tapes hurtling down the highway.

"

- Andrew S. Tanenbaum

