LabActor

Main control module – select and access measurement modules, control measurements etc.

[abc] Monitor

List of active measurement modules

III Start

Start measurement

TFI Stop

Stop measurement

TFI View

View Monitor data file

TFI Read cfg

Read application configuration from file

TFI Write cfg

Write application configuration to file

III Monitor configuration

Open Monitor configuration

TFI Exit

Exit application

TFI Clear log

Clear error log

Monitor Running

Measurement state

Monitor File

Latest Monitor data file

Error log

Monitor

Configure measurement flow

Configuration

Monitor configuration

DBLI Update period

Request data collection this often

1321 Repeat times

Complete this many measurements then stop (or keep going if <0)

TFI Open plot

Open new Monitor data plot on start

File defragment period

Defragment Monitor data file this often when running

Spectrum Recorder

Spectrum Recorder module sweeps frequency and records complex response using Red Pitaya. The sweep frequency increment is either uniform and equal to Frequency step, or equal to Frequency step only inside defined focus regions and Frequency step*acceleration factor elsewhere

EConfiguration

Spectrum recorder configuration

DBL Start frequency

Spectrum starting frequency

DBLI End frequency

Spectrum ending frequency

IBLI Frequency step

Minimal frequency increment

DBLI Point interval

Interval between frequency increments

Address

Network address of Red Pitaya

III Open plot

Open new spectrum plot window at the start of measurements

[DBL] Focus region centers

If not empty, increase frequency steps outside listed regions

DBLI Regions width

Width of focus regions

Out-of-focus step acceleration

If > 1, increase frequency steps outside listed regions by this factor

TIP View XY Plot

View latest spectrum file

Spectrum plot

Latest spectrum

Spectrum File

Latest spectrum file

Sweep duration

Estimated duration of single spectrum recording, sec

Line Detector

Line Detector module finds amplitude peaks in spectrum file and fits complex Lorentzian around peaks

Each individual resonance parameters are determined via non-linear curve fit of the signal data in complex representation $Z(f) = X(f) + iY(f) = M(f)e^{i\varphi(f)}$, where're X is "Signal X", Y is "Signal Y", M is magnitude, φ is phase, and f is frequency. The resonance fit model is $Z(f) = \frac{Ae^{i\theta}}{f - f_0 + i\gamma} + Z_{bg}$, with fit parameters as follows: f_0 is center frequency, γ is resonance half-width, A is amplitude, θ is phase, and Z_{bg} is background signal.

The initial guess for fit parameters can be provided by either a Peak finder or by last fit results obtained in preceding Line Detector processing run shown in Best fit results control. The Best fit results array can be manually edited by overwriting the values or inserting or deleting rows via right-click pop-up menu. Each separate resonance is fitted within a frequency Fit window centered on its guessed f_0 .

Line Detector can optionally send the updated the list of focus regions (f_0) to Spectrum Recorder, in other words to follow peaks. The update is delayed depending on how full Red Pitaya input buffer is.

Input file

Spectrum file to process (auto-updates when monitor is running)

Configuration

Line Detector configuration

Initial fit guess

Run peak finder to guess fit parameter or use Best fit results values

IDEL! Fit window

Width of complex Lorentzian fit window around the peak

DBLI Re-sample

If > 0, re-sample signal to this frequency step

DBLI Peak width guess

Guess width for peak finder

Tinder algorithm

Peak finder type

Background removal

Background removal type for peak finder

Smoothing

Smoothing type for peak finder

DBL Smooth window

Smoothing amount for peak finder

BLI Relative threshold

Smallest peak magnitude relative to spectrum maximum

Belling Bgd window

Background removal width for peak finder

Spectrum recorder name

Name of the spectrum recorder module to watch

TFI Follow peaks

Auto-update Spectrum Recorder focus regions with best fit results

TFI Create rusin.dat

Auto-create rusin.dat

шы ...with header

Prepend rusin.dat with this header

TFI Re-process

Re-process spectrum file selected in the Input file window

Spectrum plot

Spectrum data (thin lines) with complex Lorentzian fit results (thick lines)

Peak Plot

Filtered and smoothed magnitude with peaks found by Peak Finder, if Peak Finder is enabled

[DBL] Best fit results

Latest complex Lorentzian fit results. Manual edits allowed when used with "Last fit" guess mode

Data Plot Module

Plots listed TDMS data files

- File(s)
 - List of files to plot. Click browse buttons on the right to add/replace
- X column

Selects X-axis channel name. Avaliable names determined by top file on the lsit.

Y column(s)

Selects Y-axis channel name(s). Hold Ctrl or Shift for multi-channel selection. Avaliable names determined by top file on the lsit.

Plot type

Switch between X-Y and Waveform style plots

File history depth

Keep up to this many previous files in the list when new measurement file arrives