

FASER-2: Status of current FASER2 designs and performance studies

Olivier SALIN
Visit for study with Alan Barr
24/05/2022

Introduction

I am Olivier SALIN, master student at ENS Paris-Saclay on a visit for study with Alan Barr at University of Oxford working on the FASER-2 project

Involvement in FASER-2 project

- Started working on FASER-2 in April 2022
- Work on FASER-2 until June 2023

Outlines of this talk

- 1. Vertical separation for different geometries
- 2. Exploring the decay modes of the Dark Higgs and Dark Photon
- 3. Preliminary new layout with a thin magnet
- 4. Tracking software with 2D Helix fit and smearing

Detector Layout and software

LLP decay and spectra handled by FORESEE as input for Geant4

FORESEE: FORward Experiment SEnsitivity Estimator

By Felix Kling and Sebastian Trojanowski

Geant4 simulations for FASER-2 design created by Josh McFayden

- Focus on vertical separation
- Change in the magnetic field and geometries

Impact of different geometries

Same magnetic field
Same sample of Dark Photon

- ➤ The vertical separation is the same for each geometries
- Vertical separation >1 m
 Tracker is similar to infinite plane

Decay volume with no magnet

- Vertical separation on the 3rd Tracker still very good and stay within the detector
- Vertical separation : 1st Tracker >100 um compatible with SciFi Tracker

To create input of Geant4 in FORESEE Particle are limited to one decay mode (e+e-)

```
#particles
    particles = foresee.decay llp(mass=0.1, energy=energy
    for n,particle in enumerate(particles):
        if n == 0:
            f.write("P "+str(n+1)+" 11 ")
        else:
            f.write("P "+str(n+1)+" -11 ")
        f.write(str(particle.px)+" ")
        f.write(str(particle.py)+" ")
        f.write(str(particle.pz)+" ")
        f.write(str(particle.e)+" ")
        f.write("0 1 0 0 0 0\n")
f.write('HepMC::IO GenEvent-END EVENT LISTING\n')
f.close()
```

Modification on the FORESEE function by adding the mass of decayed particles

```
def decay llp(self, mass, energy):
   #randomly choose angles
   costh = random.uniform(-1.,1.)
   phi = random.uniform(-math.pi.math.pi)
   #4-momentum of pl and p2 in ALP rest frame
   pz = mass/2. * costh
   py = mass/2. * math.sqrt(1.-costh*costh) * np.sin(phi)
   px = mass/2. * math.sqrt(1.-costh*costh) * np.cos(phi)
   pl = LorentzVector( px, pv, pz,mass/2.)
   p2 = LorentzVector(-px,-py,-pz,mass/2.)
   #boost decay products in lab restframe
   xxx=math.sqrt(energy**2-mass**2)
   p0 = LorentzVector(0,0,math.sqrt(energy**2-mass**2),energy)
   pl =pl.boost(-1.*p0.boostvector)
   p2 =p2.boost(-1.*p0.boostvector)
   return pl , p2
def decay llp massive(self, mass,energy,m decay):
   if mass > 2*m decay :
       p decay = 0.5*math.sqrt(mass**2-4*m decay**2)
       costh = random.uniform(-1.,1.)
       phi = random.uniform(-math.pi.math.pi)
       #4-momentum of pl and p2 in ALP rest frame
       pz = p decay * costh
       pv = p decay * math.sgrt(1.-costh*costh) * np.sin(phi)
       px = p decay * math.sqrt(1.-costh*costh) * np.cos(phi)
       pl = LorentzVector( px, py, pz,mass/2.)
       p2 = LorentzVector(-px,-py,-pz,mass/2.)
       #boost decay products in lab restframe
       xxx=math.sqrt(energy**2-mass**2)
       p0 = LorentzVector(0,0,math.sgrt(energy**2-mass**2),energy)
       pl =pl.boost(-1.*p0.boostvector)
       p2 =p2.boost(-1.*p0.boostvector)
```


Exploring other decays of LLP

Plot of the vertical separation for each decay for the Dark Higgs and Dark Photon

- > For each decayed particle the main differences is the upper tail of the vertical separation
- > The higher the mass of the decayed particle the more narrow the upper tail is
- \triangleright Studies focussing on the decay into e^+e^- are still a very good approximation

Dark Higgs and Dark Photon

- For a same mass differences in vertical separation between Dark Higgs and Dark electron
- Investigation needed to explain this difference

Separation Scans

Calorimeter loss comes between 10 and 50 mm

Compatible with Calorimeter Dual Readout (10 mm)

Loss in reach resolution >10 mm more significatif for no magnet decay volume

Proposed layout by Jamie

Approximation for Geant4 of the new configuration

Detector Layout Thin magnet

Detector Layout Thin magnet

Tracking software with 2D helix fit OXFORD

Code written in Python who takes for parameters: Position of each tracking station

Position of the Vertex from FORESEE for checking Momentum of the particles from FORESEE for checking

Distance between the Vertex in FORESEE and reconstructed Vertex: 550 mm

Radius e+ : r_{fit} =472.87 m $r_{FORESEE}$ = 467.32 m | **Relative error on momentum e+ : 1,18 %**

Radius e- : r_{fit} =345.36 m $r_{FORESEE}$ = 340.52 m | **Relative error on momentum e- : 1,42** %

Variation of x position for each tracking station

3rd Tracker 1st Tracker 2nd Tracker 914.85612171 913.7003417 911.99266557] 390.45289714 386.77009765 381.54536374] 479,45019197 481,36084666 484,20824341] -444.4862556 -444.93631005 -445.31178648] -455,77010911 -457,99041885 -460,22705775]

Variation in x direction is negligible compared to y or z direction \rightarrow 2D

Tracking software with 2D helix fit OXFORD

> Many fits are not good or have a high relative error on momentum

	\$66_E
	Electron
Relative error on momentum > 20 %	67.84 %
Relative error on momentum > 20 % with new cuts	32.55 %

Trajectorie of e+ > trajectory e-

Those tracks would have been kept in the true tracking For this study, prority of having a clean tracking software

	Electron	Muon	Muon inside	Muon inside with no gap
Relative error on momentum > 20 %	67.84 %	33.99 %	20.51 %	19.85 %
Relative error on momentum > 20 % with new cuts	32.55 %	0.57 %	0.3 %	0.03 %
Relative error on momentum > 10 %	75.34 %	37.3 %	22.81 %	21.04 %
Relative error on momentum > 10 % with new cuts	43.18 %	3.34 %	1.81 %	0.1 %

Nombre total d'evenement Muon inside 28008 Nombre total d'evenement Muon inside with new cut 15216

With Muon inside and with the cuts the mass reconstruction is more reliable.

- > The detector layout has gap inbetween the magnets
 - > Fitting with a helix has an intrinsic error with the gap

Nombre total d'evenement Muon inside 28008 Nombre total d'evenement Muon inside with new cut 15216

Nombre total d'evenement Muon inside_nogap 28466 Nombre total d'evenement Muon inside with new cut 16975

> The analysis of the smearing of muons will be done without the gap

- SciFi:
- Pitch = 250 um, Resolution = 100 um
- ▶ Naive hit cluster: ~1 mm?
- ▶ Reduced resolution of SciFi detector seems acceptable even in 1

Smearing the muons

	Muon inside with no gap	Smeared d = 100 um	Smeared V2 d = 100 um	Smeared d = 250 um	Smeared d = 500 um	Smeared d = 750 um
Relative error on momentum > 20 % with cuts	0,18%	0,09%	0,59%	0,57%	0,73%	1,30%
Relative error on momentum > 10 % with cuts	0,34%	0,24%	0,76%	0,92%	2,53%	5,28%
Relative error on momentum > 5 % with cuts	0,63%	0,64%	1,21%	3,30%	10,92%	20,24%

Nombre total d'evenement smear_d250um 28466 Nombre total d'evenement smear_d250um with cut 16707

Nombre total d'evenement smear_d750um 28466 Nombre total d'evenement smear_d750um with cut 15006

➤ SciFi Tracker Pitch strip < 250 mm → Low impact on mass reconstruction

Prospects

- ☐ Study differents possible geometries for the thin magnet configuration
 - Reducing the length of the decay volume
- ☐ Propagate the error from the fit on the momuntum to reconstruct the mass of the LLP
- ☐ Adding the effect of the alignement of the trackers to the smearing
- ☐ The background for FASER-2

Backup

Distance between the Vertex of the fit and reconstructed Vertex: 2538 mm

Value of the radius (r_fit,r_hepmc)=[864.7759349544502, 501.77569109964224]
Relative error on mass for e+: 72.34313066447925 %
Value of the radius (rfit,r_hepmc)=[733.6910032529358, 702.9539985969353]
Relative error on mass for e-: 4.372548519156332 %

Distance between the Vertex of the fit and reconstructed Vertex : 1306 mm

Value of the radius (r_fit,r_hepmc)=[1075.8053984061394, 216.94981342844125] Relative error on mass for e+ : 395.87754025010173 % Value of the radius (rfit,r_hepmc)=[556.8125997510824, 520.2722370482265] Relative error on mass for e- : 7.023315891343394 %

Higgs SepScan not working

		Electron	Muon	Muon inside	Muon inside with no gap
	no cut	34 367	34 995	28 008	28 466
	Old cut	27 169	24634	20 311	20 936
	New cut	14 707	21 487	15 216	16 975
Nombre total d'evenement Muon inside 28008 Nombre total d'evenement Muon inside nogap 28466 Nombre total d'evenement Muon inside with new cut 15216 Nombre total d'evenement Muon inside with new cut 169					

3500

3000

2500

2000

1500

1000

500

Nombre total d'evenement Muon 34995 Nombre total d'evenement Muon inside 28008 Nombre total d'evenement Muon with new cut 21487 Nombre total d'evenement Muon inside with new cut 15216

Distribution of distance between the hepmc and reconstructed

Muon inside_nogap

Muon inside_nogap with new cut

		LITOI OII	IIIuss	
200 -	Muon+ in	side		1
175 -	Muon+ in	side with new cut		
150 -				
125 -				
100 -				
75 -				
50 -				
25 -				
١٥	A LANGE OF THE PARTY OF THE PAR	Addition of the	لرما جامانيسة	
	20 4		80	100
		Relative Error	on mass %	

Frror on mass

			nedate croi of mass to		
	Electron	Muon	Muon inside	Muon inside with no gap	
Proportion relative error on mass > 20	67.84 %	33.99 %	20.51 %	19.85 %	
Proportion relative error on mass > 20 with cuts	63.05 %	32.23 %	16.47 %	14.47 %	
Proportion relative error on mass > 20 with new cuts	32.55 %	0.57 %	0.3 %	0.03 %	
Proportion relative error on mass > 10	75.34 %	37.3 %	22.81 %	21.04 %	
Proportion relative error on mass > 10 with new cuts	43.18 %	3.34 %	1.81 %	0.1 %	

Nombre total d'evenement Elec 34367

1000

el with new cut

elec

2000

Delta Vertex

3000

Error on mass

Relative Error on mass %

1400

1200

1000

800

600

400

200

250

200

150

100

50

Nombre total d'evenement Elec with new cut 14707

Distribution of distance between the hepmc and reconstructed

elec

4000

el with new cut

Muon inside with no gap	Smeared d = 1 mm	Smeared V2 d = 1 mm	Smeared d = 2 mm	Smeared d = 5 mm	Smeared d = 10 mm
0,18	1,46	2,29	7,13	29,22	55,81
0,34	8,25	9,29	25,57	59,18	81,05
0,63	28,7	29,82	54,26	83,01	94,35
	0,18 0,34	0,18 1,46 0,34 8,25	0,18 1,46 2,29 0,34 8,25 9,29	0,18 1,46 2,29 7,13 0,34 8,25 9,29 25,57	0,18 1,46 2,29 7,13 29,22 0,34 8,25 9,29 25,57 59,18

Nombre total d'evenement Muon inside nogap 28466 Nombre total d'evenement Muon inside with cut 17114

Nombre total d'evenement smear_d1 28466 Nombre total d'evenement smear_d1 with cut 14287

Nombre total d'evenement smear_d1_B 28466 Nombre total d'evenement smear_d1_B with cut 14356

Nombre total d'evenement smear_d2 28466 Nombre total d'evenement smear_d2 with cut 13041

Nombre total d'evenement smear_d5 28466 Nombre total d'evenement smear d5 with cut 12216

Nombre total d'evenement smear_d10 28466 Nombre total d'evenement smear_d10 with cut 11941

