

Introduction to

and omics

Daniel Lundin

1 liter seawater: 20,000 "species" 10⁹ cells

Microscopic phytoplankton in the sea carry out as much photosynthesis as green plants on land (~140 million tons of carbon per day).

Field et al. Science 1998

And around 50% of the organic matter produced is processed by marine bacteria!

Microbial model Systems

The microbial phenotype – what does it consist of?

How can we study microbes in natural environments?

Photo: Jarone Pinhassi

1%

E. coli growth (Wikimedia commons)

Natural community experiments

- Primary production/CO₂ uptake
- Bacterial (heterotrophic) production/uptake of organic carbon

Centre

- Respiration
- Substrate utilization: carbohydrates, carboxylic acids, amino acids, nucleotides etc.
- ..

Scientific questions

- Community composition: Who are there?
- Genetic potential: What are they capable of doing?
 - Community as a whole vs. specific members
- Expression of transcripts: What are they actually doing?
 - Community as a whole vs. specific members

Methodology

Metagenomics: shotgun sequencing of environmental DNA

Centre

- Metatranscriptomics: **shotgun** sequencing of environmental **RNA**
- Amplicon sequencing: sequencing of PCR products (DNA or RNA)

Communities and populations

	CO ₂ as carbon source	Organic carbon
Chemical energy	Chemoautotroph	(Chemo)heterotroph
Sunlight	Photoautotroph	Photoheterotroph

Oxygen and other electron acceptors

Donor	Product	Redox potential
O ₂	H ₂ O	+0.82
Fe ³⁺	Fe ⁺²	+0.75
NO ₃	NO ₂	+0.40
SO ₄ ²⁻	HS ⁻	-0.22
CO ₂	CH ₄	-0.25
S ⁰	HS ⁻	-0.27
CO ₂	Acetate	-0.30

Microbial model Systems

Anammox: The ultimate in weird redox chemistry

$$NH_4^+ + NO_2^- \rightarrow N_2^- + 2H_2^-O$$

Candidatus Pelagibacter ubique: 1415 genes

Photobacterium angustum, 4743 genes

"Cellular overviews" from http://www.biocyc.org

How do we know all this?

Examples of marine model bacteria

Ruegeria pomeroyi DSS-3

Dokdonia sp. MED134

Vibrio sp. AND4

Polaribacter sp. MED152

Photographs by Shalabh Sharma

The **Funding**

