Thursday Reading Assessment: Unit 5, Field Induction and Inductance

Prof. Jordan C. Hanson

April 16, 2020

1 Memory Bank

- $\epsilon = -N\Delta\phi_m/\Delta t$... Faraday's Law
- $\phi_m = \vec{B} \cdot \vec{A} = BA\cos(\theta)$... Definition of magnetic flux
- $\epsilon(t) = V_{max} \sin(\omega t)$... AC voltage signal.
- $\omega = 2\pi f$... Angular frequency vs. frequency.

2 Electric guitar pickup coils

1. Consider a pickup coil for an electric guitar that has N=1000 turns of wire around a permanent magnet with $\vec{B}=0.03\hat{k}$ T. The area of the pickup coil is $\vec{A}=10^{-4}\hat{k}$ cm⁻². The permanent magnet magnetizes the guitar string above it (gives it a magnetic dipole moment). If the string oscillates with a frequency ω , then we can model the B-field of string as

 $\vec{b} = -b_0 \sin(\omega t)\hat{k} \tag{1}$

(a) If $b_0 = 0.01$ T, and $\omega = 1350$ Hz, what is the total magnetic field function? (b) Graph the magnetic field as a function of time.

- 2. What is the induced voltage in the pickup coil by the metal string as it vibrates? (Use the given variables from the previous problem).
- 3. What is the frequency f of the pickup coil voltage?
- 4. From the pickup coil, the induced voltage is passed to an analog *amplifier*, which grows the signal by a factor of 200. What is the V_{max} of the signal after it has been amplified by a factor of 200?