BEGS: Quantitative Results

September 2013

Numerical exercise

Solve a N=5 agent economy with realistic level and movements in wage dispersion across booms and recessions

- Long run dynamics: Study settings that differ in covariance of interest rates and output
- Transient dynamics: Study outcomes in recessions that are accompanied by higher inequality

Aggregate shocks affect,

1. Wages:

$$\log \theta_i = \epsilon [1 + (.9 - i)m]$$

2. Payoffs:

$$P = 1 + \chi \epsilon$$

Calibration

Parameter	Value	Description
$\{ar{ heta}_i\}$	{1, 1.4, 2.1, 3.24, 4.9}	Wages dispersion for
		{10,25,50,25,90} per- centiles
ψ	0.53	Average Frisch elasticity of
		labor supply of 1
β	0.98	Average (annual) risk free
		interest rate of 2%
m	$\frac{1.5}{.8}$	Changes in dispersion
σ_{e}	0.03	Business cycle fluctuations
		in wages
g	.13 %	Average pre-transfer
		expenditure- output ratio
		of 12 %

Table: Benchmark calibration

The Pareto weights and initial distribution of wealth is chosen to match an average tax rate of 20% and debt to gdp ratio of 60% and transfers to gdp ratio of 10%.

Long run

Figure : The red, black and blue lines plot simulations for a common sequence of shocks for values of $\chi=-1.5,0,1.5$ respectively

Long run: Speed of convergence

Figure : The plot shows conditional mean paths for different values of χ . The red (blue) lines have $\chi < 0$ ($\chi > 0$). The thicker lines represent larger values.

Short run

Lets denote consecutive period of negative (positive) one s.d ϵ shocks a "recession" (boom)

- Simulate a recession that is followed by no further shocks
- Decompose responses into TFP component and inequality component:

Baseline:
$$\log \theta_i = \epsilon [1 + (.9 - i)m]$$

▶ Only TFP:

$$\log \theta_i = \epsilon$$

Only Ineq:

$$\log \theta_i = \epsilon [(.9 - i)m]$$

Recessions with higher inequality: Risk free bond, $\chi = 0$

Figure : The bold line is the total response. The dashed (dotted) line reflects the only TFP (inequality) effect. The shaded region is the recession

Recessions with higher inequality: Procyclical returns, $\chi > 0$

Figure: The bold line is the total response. The dashed (dotted) line reflects the only TFP (inequality) effect. The shaded region is the recession

Recessions with higher inequality: Counter-cyclical returns, $\chi > 0$

Figure: The bold line is the total response. The dashed (dotted) line reflects the only TFP (inequality) effect. The shaded region is the recession

Redistribution in recessions

- ► TFP : Relative inequality is unchanged and planner redistributes by lowering tax-rates on impact.
- ▶ Only Ineq: Earnings gap increases by factor *m*. The planner mainly redistributes mainly through higher transfers and taxes.
- ► TFP + Ineq: For both tax rates and transfers are higher.

In all cases the burden is spread over time by lower future transfers and higher tax rates.