Physics 250 Chapters 9-11 Equation Sheet

Velocity and acceleration:
$$v_{av} = \frac{\Delta x}{\Delta t}$$
 $a_{av} = \frac{\Delta v}{\Delta t}$

Constant velocity:
$$x_B = x_A + v_{AB}\Delta t_{AB}$$

Constant acceleration:
$$v_B = v_A + a_{AB}\Delta t_{AB}$$

$$x_B = x_A + v_A \Delta t_{AB} + \frac{a_{AB}}{2} \Delta t_{AB}^2$$

$$v_B^2 = v_A^2 + 2a_{AB}\Delta x_{AB}$$

$$x_B = x_A + \left(\frac{v_A + v_B}{2}\right) \Delta t_{AB}$$

Circular motion:
$$a_{rad} = v^2/r$$
 $F_{rad} = mv^2/r$

Forces:
$$\vec{a} = \overline{F_{net}}/m$$
 $w = mg$ $f_s \le \mu_s n$ $f_k = \mu_k n$ $f_r = \mu_r n$

$$f_{spring} = -kx$$

Energy:
$$W_{net} = \int \overrightarrow{F_{net}} \cdot \overrightarrow{ds} = \int_{x_A}^{x_B} \overrightarrow{F_{net}} \cdot \left(\hat{\imath} + \frac{dy}{dx}\hat{\jmath}\right) dx$$

$$W_{net} = \Delta K$$
 $E_f = E_i + W_{other}$

$$\Delta U = -W_{Cons}$$
 $K = \frac{1}{2}mv^2$ $U_g = mgh$ $U_s = \frac{1}{2}kx^2$

$$P = \frac{dW}{dt} = \vec{F} \cdot \vec{v}$$

Momentum: $\vec{p} = m\vec{v}$ $\vec{J} = \vec{F}\Delta t$ $\vec{J} = \Delta \vec{p}$

Rigid body rotation in a plane:

Linear Quantity	Angular Quantity	Link/ definition
S	θ	$s = r\Delta\theta$
V	ω	$v_{tan} = r\omega$
a	α	$a_{tan} = r\alpha$
M		$I_{point} = mr^2$
F	τ	$\tau = rFsin(\theta)$
Р	L	$L = I\omega = rmvsin(\theta)$
F=ma	au = I lpha	n/a

Moments of inertia of shapes about axes will be given in problems if needed.

Rotation in 3D:

$$\vec{\tau} = \vec{r} \times \vec{F}$$

$$\vec{\tau} = \vec{r} \times \vec{F}$$
 $\vec{L} = \vec{r} \times \vec{p}$ $\vec{\tau} = \frac{d\vec{L}}{dt}$

$$\vec{\tau} = \frac{d\vec{L}}{dt}$$

Simple Harmonic Motion:

$$x = A\cos(\omega t + \varphi)$$
 $\omega = 2\pi f = 2\pi/T$ $\omega = \sqrt{k/m}$

$$\omega = 2\pi f = 2\pi/T$$

$$\omega = \sqrt{k/_m}$$

Waves:

$$y(x,t) = A\sin(kx \pm \omega t + \varphi)$$
 $k = 2\pi/\lambda$ $v = \sqrt{F/\mu}$

$$k = 2\pi/2$$

$$v = \sqrt{F/\mu}$$

$$f_n = \frac{n}{2L} \sqrt{F/\mu}$$
 $v = f\lambda$ $v = \omega/k$

$$v = f\lambda$$

$$v = \omega/k$$

Constants:

$$g = 9.80 \, m/s^2$$