STANFORD UNIVERSITY EE 102B Spring-2013

Lecture 07
Frequency Response of
FIR Systems
April 15, 2013

Office Hours for Course Staff – Come see us.

- Ron Schafer: Mon. 2:00-3:00 pm and Weds. 4:00-5:00 pm in Packard 211
- Dookun Park: Tues. 1:30 ~ 3:30 pm in Packard 107
- Ruo Yu Gu (Roy): Mon. 4:00 ~ 6:00 pm in Packard 106
- https://class2go.stanford.edu/EE102B/ Spring2013/pages/staff

ASSIGNMENTS

- Reading for this Lecture:
 - SPF: Sections 6-1, 6-2, 6-3, 6-4, & 6-5
 - S&S: Sections 2.1 and 3.2
- HW#02 is posted. It is due by 5pm on Wednesday, April 17 in Packard 263.
- Lab #02 is posted. It is due by 5pm,
 Friday, April 19, in Packard 263

4/15/13 EE 102B, Spring 2013, RWS

Lab 01 syn_fourier - 1

$$x(t) = \sum_{k=-N}^{N} a_k e^{j2\pi f_k t}$$

$$x(t) = \sum_{k=1}^{2N+1} a_k e^{j2\pi f_k t} \qquad a_k = \operatorname{ak}(k)$$

$$f_k = \operatorname{fk}(k)$$

- function xx = syn_fourier(tt, ak, fk) xx = exp(tt(:)*(2i*pi*fk(:)'))* ak(:);
- tt(:) is a column vector (matrix) regardless of whether tt is a row or column vector.
- X' is the complex conjugate transpose of
 X. X.' is the non-conjugate transpose.

4/15/13

EE 102B, Spring 2013, RWS

3

4

2

Lab 01 syn_fourier - 2

$$x(t) = \sum_{k=1}^{2N+1} a_k e^{j2\pi f_k t}$$

function xx = syn_fourier(tt, ak, fk)
 xx = exp(tt(:)*(2i*pi*fk(:)'))* ak(:);
tt(:) is a column vector (matrix) regardless of whether tt is a row or column vector.

$$\left[\begin{array}{c} t_1 \\ t_2 \\ \vdots \\ t_M \end{array}\right] \left[\begin{array}{cccc} 2\pi f_1 & 2\pi f_2 & \cdots & 2\pi f_{2N+1} \end{array}\right]$$

4/15/13

102B, Spring 2013, RW

5

Lab 01 syn_fourier - 3

$$x(t) = \sum_{k=1}^{2N+1} a_k e^{j2\pi f_k t}$$

function $xx = syn_fourier(tt, ak, fk)$ $xx = exp(\underline{tt(:)*(2i*pi*fk(:)')})*ak(:);$

4/15/13 EE 102B, Spring 2013, RWS

Lab 01 syn_fourier - 4

$$x(t) = \sum_{k=1}^{2N+1} a_k e^{j2\pi f_k t}$$

$$\begin{bmatrix} e^{j2\pi f_1 t_1} & e^{j2\pi f_2 t_1} & \cdots & e^{j2\pi f_2 N_{+1} t_1} \\ e^{j2\pi f_1 t_2} & e^{j2\pi f_2 t_2} & \cdots & e^{j2\pi f_2 N_{+1} t_2} \\ \vdots & \vdots & \vdots & \vdots \\ e^{j2\pi f_1 t_M} & e^{j2\pi f_2 t_M} & \cdots & e^{j2\pi f_2 N_{+1} t_M} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_{2N+1} \end{bmatrix}$$

4/15/13

EE 102B, Spring 2013, RWS

Lab 01 syn_fourier -5

$$x(t) = \sum_{k=1}^{2N+1} a_k e^{j2\pi f_k t}$$

$$\begin{bmatrix} 2N+1 & \sum_{k=1}^{N+1} a_k e^{j2\pi f_k t_1} \\ \sum_{k=1}^{2N+1} a_k e^{j2\pi f_k t_2} \\ \vdots \\ \sum_{k=1}^{2N+1} a_k e^{j2\pi f_k t_M} \end{bmatrix} = \begin{bmatrix} x(t_1) \\ x(t_2) \\ \vdots \\ x(t_M) \end{bmatrix}$$

4/15/13

8

TWO QUICK QUESTIONS

- FIR Filter is "FIRST DIFFERENCE" filter:
 - y[n] = x[n] x[n-1]
 - Find output when input = unit-step signal?

x[n] = u[n]

$$y[n] = u[n] - u[n-1] = ?$$

Convolve shifted unit impulse signals

$$s[n] = \delta[n-2] * \delta[n-5] = ?$$

4/15/13 EE 102B, Spring 2013, RWS 10

• SINUSOIDAL INPUT SIGNAL • DETERMINE the FIR FILTER OUTPUT • FREQUENCY RESPONSE of FIR • PLOTTING vs. Freq • PHASE vs. Freq • PHASE vs. Freq $H(e^{j\hat{\omega}}) = H(e^{j\hat{\omega}})e^{j\angle H(e^{j\hat{\omega}})}$

DOMAINS: Time & Frequency

- Time-Domain: "n" = time
 - x[n] discrete-time signal
 - x(t) continuous-time signal
- Frequency Domain (sum of sinusoids)
 - Spectrum vs. f (Hz)
 - ANALOG vs. DIGITAL
 - Spectrum vs. omega-hat
- Move back and forth QUICKLY

4/15/13 EE 102B, Spring 2013, RWS

DIGITAL "FILTERING"

- CONCENTRATE on the <u>SPECTRUM</u>
- SINUSOIDAL INPUT
 - INPUT x[n] = SUM of SINUSOIDS
 - Then, OUTPUT y[n] = SUM of SINUSOIDS

4/15/13 EE 102B, Spring 2013, RWS

FILTERING EXAMPLE

- 7-point AVERAGER
- $y_7[n] = \sum_{k=0}^{6} (\frac{1}{7})x[n-k]$

13

- Removes cosine
 - By making its amplitude (A) smaller
- 3-point AVERAGER
 - Changes A slightly

$$y_3[n] = \sum_{k=0}^{2} \left(\frac{1}{3}\right) x[n-k]$$

4/15/13 EE 102B, Spring 2013, RWS 15

SINUSOIDAL RESPONSE

- INPUT: x[n] = SINUSOID
- OUTPUT: y[n] will also be a SINUSOID
 - Different Amplitude and Phase
 - **SAME** Frequency
- AMPLITUDE & PHASE CHANGE
 - Called the <u>FREQUENCY RESPONSE</u>

4/15/13 EE 102B, Spring 2013, RWS 18

COMPLEX EXPONENTIAL

$$x[n] = Ae^{j\varphi}e^{j\hat{\omega}n} - \infty < n < \infty$$

$$x[n] \text{ is the input signal} -a \text{ complex exponential}$$

$$y[n] = \sum_{k=0}^{M} b_k x[n-k] = \sum_{k=0}^{M} h[k]x[n-k]$$
FIR DIFFERENCE EQUATION

20

4/15/13 EE 102B, Spring 2013, RWS

COMPLEX EXP OUTPUT

Use the FIR "Difference Equation"

$$y[n] = \sum_{k=0}^{M} b_k x[n-k] = \sum_{k=0}^{M} b_k A e^{j\varphi} e^{j\hat{\omega}(n-k)}$$
$$= \left(\sum_{k=0}^{M} b_k e^{j\hat{\omega}(-k)}\right) A e^{j\varphi} e^{j\hat{\omega}n}$$
$$= H(e^{j\hat{\omega}}) A e^{j\phi} e^{j\hat{\omega}n}$$

21

23

4/15/13 EE 102B, Spring 2013, RWS

FREQUENCY RESPONSE

At each frequency, we can DEFINE

$$H(e^{j\hat{\omega}}) = \sum_{k=0}^{M} b_k e^{-j\hat{\omega}k}$$
FREQUENCY RESPONSE

- Complex-valued formula
 - Has MAGNITUDE vs. frequency
 - And PHASE vs. frequency
 - Alternatively, REAL and IMAGINARY parts

4/15/13 EE 102B, Spring 2013, RWS 22

EXAMPLE 6.1

$${b_k} = {1, 2, 1}$$

$$H(e^{j\hat{\omega}}) = 1 + 2e^{-j\hat{\omega}} + e^{-j2\hat{\omega}}$$

$$= e^{-j\hat{\omega}}(e^{j\hat{\omega}} + 2 + e^{-j\hat{\omega}})$$

$$= e^{-j\hat{\omega}}(2 + 2\cos\hat{\omega})$$

$$= EXPLOIT$$
SYMMETRY

Since
$$(2 + 2\cos\hat{\omega}) \ge 0$$

Magnitude is $\left| H(e^{j\hat{\omega}}) \right| = (2 + 2\cos\hat{\omega})$
and Phase is $\angle H(e^{j\hat{\omega}}) = -\hat{\omega}$

4/15/13 EE 102B, Spring 2013, RWS

EXAMPLE 6.2

Find y[n] when $H(e^{j\omega})$ is known and $x[n] = 2e^{j\pi/4}e^{j(\pi/3)n}$

$$\xrightarrow{x[n]} H(e^{j\hat{\omega}}) \xrightarrow{y[n]}$$

$$H(e^{j\hat{\omega}}) = (2 + 2\cos\hat{\omega})e^{-j\hat{\omega}}$$

25

27

4/15/13

EXAMPLE 6.2 (answer)

Find y[n] when $x[n] = 2e^{j\pi/4}e^{j(\pi/3)n}$

Evaluate
$$H(e^{j\hat{\omega}})$$
 at $\hat{\omega} = \pi/3$

$$H(e^{j\hat{\omega}}) = (2 + 2\cos\hat{\omega})e^{-j\hat{\omega}}$$

$$H(e^{j\hat{\omega}}) = 3e^{-j\pi/3}$$
 $(\hat{\omega}, \hat{\omega}) = \pi/3$

$$y[n] = (3e^{-j\pi/3}) \times 2e^{j\pi/4}e^{j(\pi/3)n} = 6e^{-j\pi/12}e^{j(\pi/3)n}$$

EXAMPLE: COSINE INPUT

Find y[n] when $H(e^{j\hat{\omega}})$ is known and $x[n] = 2\cos(\frac{\pi}{3}n + \frac{\pi}{4})$

$$\begin{array}{c|c}
x[n] \\
H(e^{j\hat{\omega}}) \\
\hat{\omega}
\end{array}$$

$$H(e^{j\hat{\omega}}) = (2 + 2\cos\hat{\omega})e^{-j\hat{\omega}}$$

4/15/13

EX: COSINE INPUT

Find y[n] when $x[n] = 2\cos(\frac{\pi}{3}n + \frac{\pi}{4})$

$$2\cos(\frac{\pi}{3}n + \frac{\pi}{4}) = e^{j(\pi n/3 + \pi/4)} + e^{-j(\pi n/3 + \pi/4)}$$

$$\Rightarrow x[n] = x_1[n] + x_2[n]$$

Use
Linearity
$$y_1[n] = H(e^{j\pi/3})e^{j(\pi n/3 + \pi/4)}$$

 $y_2[n] = H(e^{-j\pi/3})e^{-j(\pi n/3 + \pi/4)}$
 $\Rightarrow y[n] = y_1[n] + y_2[n]$

EX: COSINE INPUT (ans-2)

Find
$$y[n]$$
 when $x[n] = 2\cos(\frac{\pi}{3}n + \frac{\pi}{4})$

$$H(e^{j\hat{\omega}}) = (2 + 2\cos\hat{\omega})e^{-j\hat{\omega}}$$

$$y_{1}[n] = H(e^{j\pi/3})e^{j(\pi n/3 + \pi/4)} = 3e^{-j(\pi/3)}e^{j(\pi n/3 + \pi/4)}$$

$$y_{2}[n] = H(e^{-j\pi/3})e^{-j(\pi n/3 + \pi/4)} = 3e^{j(\pi/3)}e^{-j(\pi n/3 + \pi/4)}$$

$$y[n] = 3e^{j(\pi n/3 - \pi/12)} + 3e^{-j(\pi n/3 - \pi/12)}$$

$$\Rightarrow y[n] = 6\cos(\frac{\pi}{3}n - \frac{\pi}{12})$$

General Result for Sinusoidal Input - I

$$x[n] = A\cos(\hat{\omega}_0 n + \phi)$$

$$= \frac{A}{2} e^{j\phi} e^{j\hat{\omega}_0 n} + \frac{A}{2} e^{-j\phi} e^{-j\hat{\omega}_0 n}$$

$$y[n] = \frac{A}{2} e^{j\phi} |H(e^{j\omega_0})| e^{j\Delta H(e^{j\omega_0})} e^{j\hat{\omega}_0 n}$$

$$+ \frac{A}{2} e^{-j\phi} |H(e^{-j\omega_0})| e^{j\Delta H(e^{-j\omega_0})} e^{-j\hat{\omega}_0 n}$$

4/15/13 EE 102B, Spring 2013, RWS

General Result for Sinusoidal Input - II

$$y[n] = \frac{A}{2} e^{j\phi} |H(e^{j\omega_0})| e^{j\Delta H(e^{j\omega_0})} e^{j\hat{\omega}_0 n}$$

$$+ \frac{A}{2} e^{-j\phi} |H(e^{-j\omega_0})| e^{j\Delta H(e^{-j\omega_0})} e^{-j\hat{\omega}_0 n}$$

$$y[n] =$$

$$A |H(e^{j\omega_0})| \cos \left[\hat{\omega}_0 n + \phi + \Delta H(e^{j\omega_0})\right]$$

MATLAB: FREQUENCY RESPONSE

- HH = freqz(bb,1,ww)
 - VECTOR bb contains Filter Coefficients
 - SP-First: HH = freekz (bb, 1, ww)
- FILTER COEFFICIENTS {b_k}

$$H(e^{j\hat{\omega}}) = \sum_{k=0}^{M} b_k e^{-j\hat{\omega}k}$$

32

4/15/13 EE 102B, Spring 2013, RWS

4/15/13

EE 102B, Spring 2013, RWS

Time & Frequency Relation

- Get Frequency Response from h[n]
 - Here is the FIR case:

4/15/13

$$H(e^{j\hat{\omega}}) = \sum_{k=0}^{M} b_k e^{-j\hat{\omega}k} = \sum_{k=0}^{M} h[k]e^{-j\hat{\omega}k}$$
IMPULSE RESPONSE

EE 102B, Spring 2013, RWS

CASCADE SYSTEMS Does the order of S₁ & S₂ matter? WHAT ARE THE FILTER COEFFS? {b,} WHAT is the overall FREQUENCY **RESPONSE?** x[n]w[n]y[n]LTI 1 LTI 2 $h_1[n]$ $h_2[n]$ $\delta[n]$ $h_1[n]$ $h_1[n] * h_2[n]$ 4/15/13 38 EE 102B, Spring 2013, RWS