

Rasht - Iran

CAD slides, Dr. Saheb Zamani

allaboutcircuits.com

Digital Circuits

Acronyms

SPLD = Simple Programmable Logic Device

PAL = Programmable Array Logic

CPLD = Complex PLD

FPGA = Field Programmable Gate Array

ASIC = Application Specific IC

Common Resources

Configurable Logic Blocks (CLB)

- Memory Look-Up Table (LUT)
- AND-OR planes
- Simple gates

Input / Output Blocks (IOB)

- Bidirectional, latches, inverters, pullup/pulldowns
 Interconnect or Routing
 - Local, internal feedback, and global

2

"PROGRAMMABLE"

"Programmable"?

- One time programmable
 - Fuses

(destroy internal links with current)

Anti-fuses (grow internal links)

- PROM

Link

Wire 2

· Fuse-Technology

Antifuse-Technology

- Reprogrammable
 - EPROM
 - EEPROM
 - Flash
 - SRAM → volatile

non-volatile

Wire 1

Antifuse

• جریان برنامه ریزی بالا B عایق ONO را ذوب می کند ی اتصال دایم.

• به علت کوچکی، PLDهای آنتی فیوز ظرفیت بسیار بالایی دارند.

Antifuse-Technology

Antifuse

- مزایا:
- عدم نیاز به حافظه ی خارجی.
- مساحت بسیارکم (تقریبا هم اندازه با viaی سیمهای فلزی).
 - قابليت اطمينان بسيار بالا
- (Time-Dependent Dielectric Breakdown:TDDB) حدود 40 صال.
 - مقاومت کم در حالت روشن (در طی زمان هم کم می ماند).
 - خازن پارازیتی بسیار کمتر.
 - امنیت بالای طرح در برابر سرقت.
 - توان مصرفی بسیار کمتر.
 - اشكالات:
 - عدم امکان برنامه ریزی مجدد.
 - برنامه ریزی آن نیاز به مدار اضافی دارد (باید ولتاژ و جریان بالا ایجاد کند).

Programmable ROM (PROM)

- First ones had fusible links
- High voltage would blow out links
- Fast to program
- Single use

UV EPROM

- Erasable PROM
- Common technologies used UV light to erase complete device
 - Took about 10 minutes
- Holds state as charge in very well insulated areas of the chip
- Nonvolatile for several (10?)

EEPROM

- Electrically Erasable PROM
- Similar technology to UV EPROM
- Erased in blocks by higher voltage
- Programming slower than reading
- Some called flash memory
 - Digital cameras, MP3 players, BIOS
 - Limited life
 - Some support individual word write, some block
 - Has a boot block that is carefully protected

EPROM/EEPROM/Flash

SRAM

SRAM

SRAM

• مزایا:

- برنامه ریزی مجدد سریع.
- برنامه ریزی on-chip به دفعات نامحدود.
- prototyping در داخل سیکل طراحی
- کارخانه ی سازنده می تواند همه ی مسیرها را با reprogram کردن FPGA تست کند (ς) کاربر، آی سی کاملا تست شده را می گیرد و نیازی به ایجاد الگوهای تست و مدارهای DFT ندارد).

• اشكالات:

- مساحت (اشکال اصلی): 5 ترانزیستور برای هر سلول SRAM + یک ترانزیستور برای سوییچ.
 - نیاز به حافظه ی خارجی non-volatile (دارای مدار حسگر power-on است برای (initialization).
 - امنیت کم طرح در برابر سرقت (intellectual property)
 - توان مصرفی بالای سلول های SRAM (حتی وقتی که برنامهٔ آن تغییر نمی کند).

PROGRAMMABLE LOGIC DEVICE (PLD)

Three FPLD Types

- Simple Programmable Logic Device (SPLD)
 - LSI device (Less than 1000 logic gates)
 - PLA or PAL
 - Fixed internal routing, deterministic propagation delays
- Complex Programmable Logic Device (CPLD)
 - VLSI device (Higher logic capacity than SPLDs)
 - Multiple SPLDs onto a single chip
 - Programmable interconnect
- Field Programmable Gate Array (FPGA)
 - VLSI device (Higher logic capacity than CPLDs)
 - An array of logic blocks
 - Large number of gates, user selectable interconnection, delays depending on design and routing
 - A high ratio of flip-flops to logic resources

SPLD

Simple PLD (SPLD)

- Popular SPLD Architecture Types
 - Programmable Logic Array, PLA
 - Programmable Array Logic, PAL
 - General Array Logic, GAL
 - others
- Architecture Differences
 - AND versus OR implementation
 - Programmability (e.g., EE)
 - Fundamental logic block

16

PLA & PAL

Programmable Logic Array

A PLA has complete flexibility of its sum-of-products groupings.

Programmable Array Logic

A PAL has limits on the arrangement of its sum-of-products groupings.

PAL Outputs

- Typical PALs have:
 - from 10 to 20 inputs
 - from 2 to 10 outputs

- from 2 to 8 AND gates driving each OR gate

MUX output is "fed back" to the AND plane.

CPLD

CPLD

- PALs and GALs are available only in small sizes
 - equivalent to a few hundred logic gates
- For bigger logic circuits, complex PLDs or CPLDs can be used.
- CPLDs contain the equivalent of several PALs/GALs
 - linked by programmable interconnections
 - all in one integrated circuit (IC)
- CPLDs can replace thousands, or even hundreds of thousands, of individual logic gates
 - increased integration density

CPLD

CAD

Programmable Interconnect Array

- Consists of connectors that run throughout the CPLD to connect the macrocells in each LAB
- The PIA also connects the AND gate and other elements of the macrocells

FPGA

Field Programmable Logic Array (FPGA)

- 2-D array of logic blocks and flip-flops with programmable interconnections
- User can configure
 - Intersections between the logic blocks
 - The function of each block
- FPGAs are usually programmed after being soldered down to the circuit board, in the same way as larger CPLDs
- In most larger FPGAs the configuration is volatile, and must be re-loaded into the device whenever power is applied or different functionality is required

FPGA vs. MicroController

FPGA vs. MicroController

26

Logic Blocks (LB)

 Purpose: to implement combinational and sequential logic functions.

• Logic blocks can be implemented by:

- Transistor pairs
- Multiplexers
- Look up tables(LUT)
- Wide fan-in AND-OR structure.

Granularity: is the hardware abstraction level. According to granularity, two types of Blocks:

- Fine Grain Logic Blocks
- Coarse Grain Logic Blocks

Look-Up Table (LUT)

28

Look-Up Table (LUT)

- Output of SRAM gives the logic output
- k-input logic function =2^k size SRAM
- K-input LUT gives 2^2^k logic functions

RAM Contents				
Address				Data
Α	В	С	О	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Implementation of Logic Functions using LUT

Implementation of Logic Functions using LUT-3 & MUX

Implementation of a 3-input logic function using 4-input LUT

32

Programmable Switch Matrix (PSM)

SRAM-Based FPGA

