Lecture Notes on Advanced Econometrics

Lecture 10: GLS, WLS, and FGLS

Generalized Least Square (GLS)

So far, we have been dealing with heteroskedasticity under OLS framework. But if we knew the variance-covariance matrix of the error term, then we can make a heteroskedastic model into a homoskedastic model.

As we defined before

$$E(uu') = \sigma^2 \Omega = \Sigma$$
.

Define further that

$$\Omega^{-1} = P'P$$

P is a "n x n" matrix

Pre-multiply P on a regression model

$$Py = PX\beta + Pu$$

or

$$\widetilde{v} = \widetilde{X}\beta + \widetilde{u}$$

In this model, the variance of \tilde{u} is

$$E(\widetilde{u}\widetilde{u}') = E(Puu'P') = PE(uu')P' = P\sigma^2\Omega P' = \sigma^2 P\Omega P' = \sigma^2 I$$

Note that $P\Omega P' = I$, because define $P\Omega P' = A$, then $P'P\Omega P' = P'A$. By the definition of P, $\Omega^{-1}\Omega P' = P'A$, thus P' = P'A. Therefore, A must be I.

Because $E(\widetilde{u}\widetilde{u}') = \sigma^2 I$, the model satisfies the assumption of homoskedasticity. Thus, we can estimate the model by the conventional OLS estimation.

Hence,

$$\hat{\beta} = (\widetilde{X}'\widetilde{X})^{-1}\widetilde{X}\widetilde{y}$$

$$= (X'P'PX)^{-1}X'P'Py$$

$$= (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}y$$

is the efficient estimator of β . This is called the **Generalized Least Square (GLS)** estimator. Note that the GLS estimators are unbiased when $E(\widetilde{u} \mid \widetilde{X}) = 0$. The variance of GLS estimator is

$$\operatorname{var}(\hat{\mathbf{B}}) = \sigma^2 (\widetilde{X}'\widetilde{X})^{-1} = \sigma^2 (X'\Omega^{-1}X)^{-1}.$$

Note that, under homoskedasticity, i.e., $\Omega^{-1} = I$, GLS becomes OLS.

The problem is, as usual, that we don't know $\sigma^2 \Omega$ or Σ . Thus we have to either assume Σ or estimate Σ empirically. An example of the former is Weighted Least Squares Estimation and an example of the later is Feasible GLS (FGLS).

Weighted Least Squares Estimation (WLS)

Consider a general case of heteroskedasticity.

$$\operatorname{Var}(u_i) = \sigma_i^2 = \sigma^2 \omega_i$$
.

Then,

$$E(uu') = \sigma^{2} \begin{bmatrix} \omega_{1} & 0 & 0 \\ 0 & \omega_{2} & 0 \\ 0 & 0 & \omega_{n} \end{bmatrix} = \sigma^{2} \Omega, \text{ thus } \Omega^{-1} = \begin{bmatrix} \omega_{1}^{-1} & 0 & 0 \\ 0 & \omega_{2}^{-1} & 0 \\ 0 & 0 & \omega_{n}^{-1} \end{bmatrix}.$$

Because of $\Omega^{-1} = P'P$, **P** is a n x n matrix whose *i*-th diagonal element is $1/\sqrt{\omega_i}$. By pre-multiplying **P** on **y** and **X**, we get

$$y_* = Py = \begin{bmatrix} y_1 / \sqrt{\omega_1} \\ y_2 / \sqrt{\omega_2} \\ y_n / \sqrt{\omega_n} \end{bmatrix} \quad and \quad X_* = PX = \begin{bmatrix} 1 / \sqrt{\omega_1} & x_{11} / \sqrt{\omega_1} & \dots & x_{1k} / \sqrt{\omega_1} \\ 1 / \sqrt{\omega_2} & x_{21} / \sqrt{\omega_2} & \dots & x_{2k} / \sqrt{\omega_2} \\ 1 / \sqrt{\omega_n} & x_{n1} / \sqrt{\omega_n} & \dots & x_{nk} / \sqrt{\omega_n} \end{bmatrix}.$$

The OLS on y_* and X_* is called the Weighted Least Squares (WLS) because each variable is weighted by $\sqrt{\omega_i}$. The question is: where can we find ω_i ?

Feasible GLS (FGLS)

Instead of assuming the structure of heteroskedasticity, we may estimate the structure of heteroskedasticity from OLS. This method is called Feasible GLS (FGLS). First, we estimate $\hat{\Omega}$ from OLS, and, second, we use $\hat{\Omega}$ instead of Ω .

$$\hat{\beta}_{FGLS} = (X'\hat{\Omega}^{-1}X)^{-1}X'\hat{\Omega}^{-1}y$$

There are many ways to estimate FGLS. But one flexible approach (discussed in Wooldridge page 277) is to assume that

$$var(u \mid X) = u^2 = \sigma^2 \exp(\delta_0 + \delta_1 x_1 + \delta_2 x_2 + ... + \delta_k x_k)$$

By taking log of the both sides and using \hat{u}^2 instead of u^2 , we can estimate

$$\log(\hat{u}^2) = \alpha_0 + \delta_1 x_1 + \delta_2 x_2 + ... + \delta_k x_k + e.$$

The predicted value from this model is $\hat{g}_i = \log(\hat{u}^2)$. We then convert it by taking the exponential into $\hat{\omega}_i = \exp(\hat{g}_i) = \exp(\log(\hat{u}^2)) = \hat{u}^2$. We now use WLS with weights $1/\hat{\omega}_i$ or $1/\hat{u}^2$.

Example 1

- . * Estimate the log-wage model by using WAGE1.dta with WLS
- . * Weight is educ
- . * Generate weighted varaibles
- . $gen w=1/(educ)^0.5$
- . gen wlogwage=logwage*w
- . gen wfemale=female*w
- . gen weduc=educ*w
- . gen wexper=exper*w
- . gen wexpsq=expsq*w
- . * Estimate weighted least squares (WLS) model
- . reg wlogwage weduc wfemale wexper wexpsq w, noc

Source	1	SS	df	MS		Number of obs	=	524
	+-					F(5, 519)	=	1660.16
Model	1	113.916451	5	22.78329	901	Prob > F	=	0.0000
Residual	1	7.12253755	519	.0137235	579	R-squared	=	0.9412
	+-					Adj R-squared	=	0.9406
Total	1	121.038988	524	.2309904	135	Root MSE	=	.11715
, ,	•	Coef.				 [95% Conf.		-

weduc	1	.080147	.006435	12.455	0.000	.0675051	.0927889
wfemale	1	3503307	.0354369	-9.886	0.000	4199482	2807133
wexper	1	.0367367	.0045745	8.031	0.000	.0277498	.0457236
wexpsq	1	0006319	.000099	-6.385	0.000	0008264	0004375
w	I	.4557085	.0912787	4.992	0.000	.2763872	. 6350297

End of Example 1

Example 2

- . * Estimate reg
- . reg logwage educ female exper expsq (Output omitted)
- . predict e, residual
- . gen logesq=ln(e*e)
- . reg logesq educ female exper expsq
 (output omitted)
- . predict esqhat

(option xb assumed; fitted values)

- . gen omega=exp(esqhat)
- . * Generate weighted varaibles
- . gen $w=1/(omega)^0.5$
- . gen wlogwage=logwage*w
- . gen wfemale=female*w
- . gen weduc=educ*w
- . gen wexper=exper*w
- . gen wexpsq=expsq*w
- . * Estimate Feasible GLS (FGLS) model
- . reg wlogwage weduc wfemale wexper wexpsq \mathbf{w} , noc

Source	•	ss			MS		Number of obs = $F(5, 519) =$	_
Model Residual	i I	31164.1981 2060.77223	5 519	6232 3.97	.83962 065941		• •	0.0000
Total	-	33224.9703			406432			1.9927
wlogwage	ı	Coef.	Std. 1	Err.	t	P> t	[95% Conf. I	nterval]
weduc wfemale	1 1 1	.0828952 2914609 .0376525 0006592	.0069 .0349 .004	779 884 497	11.880 -8.330 8.373 -6.540	0.000 0.000 0.000 0.000	.0691868 3601971 - .0288179	.0966035 .2227246 .0464872 .0004612

End of Example 2