SPARK FOUNDATION ¶

Predict the percentage of an student based on the no. of study hours(TASK 1)

Step 1:

Import the required library

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

In [2]:

```
data = pd.read_csv("data_list.csv")
```

Analyze The Data

In [3]:

```
data.head(10)
```

Out[3]:

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30
5	1.5	20
6	9.2	88
7	5.5	60
8	8.3	81
9	2.7	25

```
In [4]:
```

```
data.describe()
```

Out[4]:

	Hours	Scores
count	25.000000	25.000000
mean	5.012000	51.480000
std	2.525094	25.286887
min	1.100000	17.000000
25%	2.700000	30.000000
50%	4.800000	47.000000
75%	7.400000	75.000000
max	9.200000	95.000000

In [5]:

```
data.shape
```

Out[5]:

(25, 2)

In [6]:

```
data.info()
```

Plotting The Data In Various Type

In [7]:

```
data.plot(x='Hours', y='Scores',style='*')
plt.title('Hours vs Percentage')
plt.xlabel('Percentage Studied')
plt.ylabel('Percentage Scores')
plt.show()
```


In [8]:

data.plot.pie(x='Hours',y='Scores')

Out[8]:

<AxesSubplot:ylabel='Scores'>

In [9]:

data.plot.scatter(x='Hours',y='Scores')

Out[9]:

<AxesSubplot:xlabel='Hours', ylabel='Scores'>

In [10]:

```
data.plot.bar(x='Hours',y='Scores')
```

Out[10]:

<AxesSubplot:xlabel='Hours'>

Preparing The Data

In [11]:

```
x = data.iloc[:,:-1].values
y = data.iloc[:,1].values
```

Splitting The Data

In [13]:

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)
```

Check Train DataSet

In [15]:

```
from sklearn.linear_model import LinearRegression
mo =LinearRegression()
mo.fit(x_train,y_train)
```

Out[15]:

LinearRegression()

```
In [16]:
```

```
print (mo.intercept_)
print (mo.coef_)
```

2.0181600414346974 [9.91065648]

Plotting The Regression Line

In [19]:

```
plt.scatter(x_train,y_train)
plt.plot(x_train,1.495142109236383+9.87171443*x_train,'r')
plt.title("prediction")
plt.xlabel("Hours")
plt.ylabel("Scores")
plt.show()
```


Making Predictions

In [21]:

```
print(x_test)
y_pred = mo.predict(x_test)
```

[[1.5]

[3.2]

[7.4]

[2.5]

[5.9]]

In [22]:

```
df=pd.DataFrame({'Actual': y_test,'Predicted':y_pred})
df
```

Out[22]:

	Actual	Predicted
0	20	16.884145
1	27	33.732261
2	69	75.357018
3	30	26.794801
4	62	60.491033

In [23]:

```
df = pd.DataFrame({'Actual':y_test,'Predicted' : y_pred})
df
```

Out[23]:

	Actual	Predicted
0	20	16.884145
1	27	33.732261
2	69	75.357018
3	30	26.794801
4	62	60.491033

Predicting The Score For The Study Of 9.25 Hours

In [24]:

```
pred_score = mo.predict([[9.25]])
print("The predictdn score is :",pred_score)
```

The predictdn score is : [93.69173249]

Evaluating The Model

In [25]:

```
from sklearn import metrics
print('Mean Absolute Error:',metrics.mean_absolute_error(y_test,y_pred))
```

Mean Absolute Error: 4.183859899002975

In []:		