EEE 313 - Electronic Circuit Design - Lab 2 Preliminary Report Tuna Şahin - Low Voltage Dropout Regulator

Introduction:

For this lab we were asked to implement a low voltage dropout regulator. For this, we used a zener diode to have a stable voltage reference, and used OPAMPS for feedback and regulation.

Calculations:

My BilkentID is 22201730 therefore I chose my V_{cc} to be 9.5V.

$$R_1 = (V_{out} - V_7)/0.003 \Rightarrow 1466\Omega$$

$$\frac{R_2}{R_2 + R_3} = \frac{V_Z}{V_{out}} \Rightarrow R_2 = 100k\Omega, \quad R_3 = 116k\Omega$$

$$R_6 = R_2 \parallel R_3 \Rightarrow 53.6\Omega$$

by measuring the ß of the BJT as 100 we can calculate $R_{_{\rm S}}$ as:

$$R_5 = R_{min}(V_{out} - 1)/I_{max} \Rightarrow 8500\Omega$$

$$R_4 = 0.8R_5 \Rightarrow R_4 = 6800\Omega$$

$$\frac{R_2}{R_2 + R_3} = \frac{V_{o2}}{V_Z} \Rightarrow R_7 = 500k\Omega, \quad R_8 = 10k\Omega$$

$$R_9 = R_7 \parallel R_8 \Rightarrow 9800\Omega$$

$$R_{10} = (V_{in} - 2)/0.005 \Rightarrow R_{10} = 1500$$

Component List:

2 x 10μF electrolytic
1 x 100Ω resistor.

- 1 x UMZ5 1N diode

capacitors.

- 1×1.8 k Ω resistor.

- 1 x LM358 Dual

capacitors.-1 x 1.8kΩ resistor.-1 x LM358 Dual-1 x 70pF capacitor.-1 x 68kΩ resistor.Opamp-1 x 3.3Ω resistor.-3 x 10kΩ resistor.-1 x BD136 BJT-1 x 6.8kΩ resistor.-2 x 56kΩ resistor.-1 x LED-2 x 1.5kΩ resistor.-1 x 150kΩ resistor.-1 x 820Ω resistor.-2 x 1MΩ resistor.-1 x 100kΩ resistor.-1 x 100kΩ resistor.-1 x 1.2MΩ resistor.-1 x 100Ω resistor.

- $1 \times 100 k\Omega$ resistor.

LTSpice Simulations:

Figure 1.1: Line Regulation Output Voltage and corresponding LED current

Observation: 133 Hz was the maximum frequency that had a ripple voltage < 20mV.

Figure 1.2: Load Regulation Output Voltage and corresponding LED current.

Figure 1.3: Low Voltage Line Regulation Voltages and LED currents

Figure 1.4: High current drawing load and LED currents.(LED off)

Transistor Properties:

Figure 2.1: β measuring circuit.(Ratio of $I_C/I_B = \beta$)

$$\begin{split} r_{_{\theta ja}} &= \, 100 K/W \\ r_{_{\theta jc}} &= \, 10 K/W \end{split}$$

And taking $P_{_D}=0.3W$ we get the following results:

$$T_j = 25 + 100 \cdot 0.3 = 55$$

 $T_C = 55 - 10 \cdot 0.3 = 52$

Schematics:

#	Name	Manufacturer	Quantity
1	CAP		1
2	CAP100		1
3	CAP200		1
4	1N4100-1	Microsemi	1
5	LED		1
6	2SA1552T-TL-E	ON Semiconductor	1
7	RES400		2
8	RES		13
9	RES850		2
10	RES500		2
11	LM358AD	ST Microelectronics	1

Figure 3.1: DipTrace Schematic

Figure 3.2: LTSpice Schematic