BUSINESS CASE TARGET SQL

Submitted By: Rahul Kumar

October Intermediate - 22

- 1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset
 - 1. Data type of columns in a table

2. Time period for which the data is given

select min(order_purchase_timestamp) as first_purchase_date, max(order_purchase_timestamp) as last_purchase_date from target_data.orders;

Query results

 Cities and States of customers ordered during the given period select distinct customer_city, customer_state from target_data.customers; select distinct customer_city, customer_state from target_data.customers;

1. In-depth Exploration:

1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

select distinct extract(month from order_purchase_timestamp) as month, extract(year from order_purchase_timestamp) as year, count (order_id) as order_per_month from target_data.orders group by month, year order by year, month;

Row	month	year //	order_per_montl
1	9	2016	4
2	10	2016	324
3	12	2016	1
4	1	2017	800
5	2	2017	1780
6	3	2017	2682
7	4	2017	2404
8	5	2017	3700
9	6	2017	3245
10	7	2017	4026
11	8	2017	4331
12	9	2017	4285
13	10	2017	4631
14	11	2017	7544
15	12	2017	5673
16	1	2018	7269
17	2	2018	6728
18	3	2018	7211
19	4	2018	6939

From the deried result we can conclude that there is a growing trend of e-commerce in brazil with peak seaonality during end months and beginning months on an year.

2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

select distinct extract(hour from order_purchase_timestamp) as hour, count (order_id) as order_per_month from target_data.orders group by hour order by hour;

From the derived results we can conclude that Brazilians customers are more active in the evening and night hours and the footfall decreases in the late night and early morning timings.

3. Evolution of E-commerce orders in the Brazil region:

Get month on month orders by states
 select customer_state, extract(month from order_purchase_timestamp) as month,
 extract(year from order_purchase_timestamp) as year,
 count(order_id) as total_no_of_orders
 from target_data.customers as a
 join target_data.orders as b
 on a.customer_id = b.customer_id
 group by customer_state, month, year
 order by customer_state, year, month;

Query results JOB INFORMATION RESULTS JSON EXECUTION DETAILS customer_state month total_no_of_orde AC AC AC

2. Distribution of customers across the states in Brazil

select customer_state, count(distinct customer_id) as statewise_customers
from target_data.customers
group by customer_state;

Quer	y results			
JOB IN	FORMATION	RESULTS	JSON	EX
Row	customer_state	//	statewise_custo	
1	RN		485	
2	CE		1336	
3	RS		5466	
4	SC		3637	
5	SP		41746	
6	MG		11635	
7	BA		3380	
8	RJ		12852	
Load mor	e			

- 4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
 - 1. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) You can use "payment_value" column in payments table
 - 2. Mean & Sum of price and freight value by customer state

select customer_state, sum(freight_value) as sum_fv,
sum(price) as sum_price, avg(freight_value) as avg_fv, avg(price) as avg_price
from target_data.customers as a
join target_data.orders as b
on a.customer_id = b.customer_id
join target_data.order_items as c
on b.order_id = c.order_id
group by customer_state;

Query results

JOB INFORMATION RESULTS		JSON	EXECUTION DET	TAILS EXE	CUTION GRAPH
Row	customer_state	sum_fv	sum_price	avg_fv	avg_price
1	MT	29715.4300	156453.529	28.1662843	148.297184
2	MA	31523.7700	119648.219	38.2570024	145.204150
3	AL	15914.5899	80314.81	35.8436711	180.889211
4	SP	718723.069	5202955.05	15.1472753	109.653629
5	MG	270853.460	1585308.02	20.6301668	120.748574
6	PE	59449.6599	262788.029	32.9178626	145.508322
7	RJ	305589.310	1824092.66	20.9609239	125.117818
8	DF	50625.4999	302603.939	21.0413549	125.770548
9	RS	135522.740	750304.020	21.7358043	120.337453
10	SE	14111.4699	58920.8500	36.6531688	153.041168
11	PR	117851.680	683083.760	20.5316515	119.004139
12	PA	38699.3000	178947.809	35.8326851	165.692416
13	BA	100156.679	511349.990	26.3639589	134.601208
14	CE	48351.5899	227254.709	32.7142016	153.758261
15	GO	53114.9799	294591.949	22.7668152	126.271731
16	ES	49764.5999	275037.309	22.0587765	121.913701
17	SC	89660.2600	520553.340	21.4703687	124.653577
18	PI	21218.2000	86914.0800	39.1479704	160.358081
19	PB	25719.7300	115268.079	42.7238039	191.475215
20	RN	18860.1000	83034.9800	35.6523629	156.965935

5. Analysis on sales, freight and delivery time

1. Calculate days between purchasing, delivering and estimated delivery

select date_diff(order_delivered_customer_date, order_purchase_timestamp, day) as paurchase_to_delivery, date_diff(order_delivered_customer_date, order_estimated_delivery_date, day) as actual_to_expected from target_data.orders;

Query results JOB INFORMATION RESULTS Row paurchase_to_delivery actual_to_expected -28

2. Find time_to_delivery & diff_estimated_delivery.

```
select customer_state,
date_diff(order_delivered_customer_date, order_purchase_timestamp, day) over(partition by) as
time_to_delivery,
date_diff(order_delivered_customer_date, order_estimated_delivery_date, day) as diff_estimated_delivery
from target_data.customers as a
inner join target_data.orders as b
on a.customer_id = b.customer_id
inner join target_data.order_items as c
on b.order_id = c.order_id
group by customer_state;
```

- 4. Sort the data to get the following:
- 5. Top 5 states with highest/lowest average freight value sort in desc/asc limit 5

```
select customer_state, avg(freight_value) as avg_freight from target_data.customers as a inner join target_data.orders as b
```

on a.customer_id = b.customer_id inner join target_data.order_items as c on b.order_id = c.order_id group by customer_state order by avg_freight asc limit 5;

Quer	y results			
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DE
Row	customer_state	//	avg_freight	
1	SP		15.1472753	
2	PR		20.5316515	
3	MG		20.6301668	
4	RJ		20.9609239	
5	DF		21.0413549	

6. Payment type analysis:

1. Month over Month count of orders for different payment types

select extract(month from order_purchase_timestamp) as order_month, extract(year from order_purchase_timestamp) as order_year, payment_type, count(a.order_id) as total_order from target_data.orders as a inner join target_data.payments as b on a.order_id = b.order_id group by payment_type, order_month, order_year order by order_year, order_month;

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	AILS	EXECUTION GRAP
Row	order_month	order_year	payment_type		total_order	
1	9	2016	credit_card			3
2	10	2016	credit_card		25	4
3	10	2016	voucher		2	3
4	10	2016	debit_card			2
5	10	2016	UPI		6	3
6	12	2016	credit_card			1
7	1	2017	voucher		6	1
8	1	2017	UPI		19	7
9	1	2017	credit_card		58	3
10	1	2017	debit_card			9
11	2	2017	credit_card		135	6
12	2	2017	voucher		11	9
13	2	2017	UPI		39	8
14	2	2017	debit_card		1	3

2. Count of orders based on the no. of payment installments

select payment_installments, count(order_id) as total_orders from target_data.payments group by payment_installments;

Quer	y results			
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAIL
Row	payment_installmen	ts //	total_orders	
1		0	2	
2		1	52546	
3		2	12413	
4		3	10461	
5		4	7098	
6		5	5239	
7		6	3920	
8		7	1626	
9		8	4268	
10		9	644	
11		10	5328	
12		11	23	
13		12	133	
14		13	16	
15		14	15	
16		15	74	
17		16	5	
18		17	8	
10		1.0	27	

Actionable Insights

The performed analysis on the dataset "Target SQL" gives various observation worthy details on the case of 100k orders from 2016 to 2018 made at Target in Brazil.

- The growth of e-commerce is up hill in Brazil and is showing a good increase every year.
- Sales tend to increase in the festive season of year-end and is continued till New Year.
- All states in Brazil show good amount of orders, so we can say Target is performing well sales-wise pan Brazil.
- Customers tend to buy more on credit than upfront pay using debit-card, UPI or cash.
- Most of the credits have few no. of installments ranging from mostly from 1 to 6 with a few outliers up to 10.

Recommendations

As a data analyst some of the prominent recommendations to Target may be:

- While to growth in customers is going up, it is always good to increase customer acquisition.
- Taking measures to accelerate sales in the mid-year/ off-season.
- Payments made on vouchers should be promoted to increase customer acquisition.
- Few states are showing lesser number of customers, measures to boost sales in those regions should be taken.
- Cost of delivery can be reduced.
- The gap between estimated delivery and actual delivery can be bridged to a better number.