

Master Thesis Defense Presentation

Spatial and Temporal Data Analysis for Estimating Surface Rainfall Using Radar

Chair: Professor. Cho, Hwan-Gue **Reviewer 1:** Professor. Choi, Yoon-Ho

Reviewer 2: Professor. Hong, Bonghee (Supervisor)

Student: Oudomseila PHOK

Date: 2019 / 05 / 30 (UPDATE)

Location: 자연대연구실험동 404호

Content

- 1. Introduction
- 2. Problem Definition
- 3. Key Technical Issues
- 4. ARIMA Model (Existing Method)
- Spatial Dynamic ARIMAX Model (SDAM)
- 6. Implementation
 - Phase 1: Temporal Correlation Analysis
 - 2. Phase 2: Spatial Correlation Analysis
- 7. Experiments and Discussion
- 8. Conclusion and Future Works

1. Introduction — Aerial Rainfall by Radar Weather Station

Radar Weather Station (RWS)

• gives the current rainfalls of the range of RWS with radar image pixel values.

Description:

- record Rain 1.5 km from ground
- Current Rain Estimation Method

Data Output Format:

- Pixel in Color code
- 32 categories of Rainfalls (mm / hour)
- Update every 10 minutes

Range:

- up to 240 km / Radar (Main Weather Images are combined by multiple radar)
- 1 pixel is approximately 2 square kilometer

Aerial Rainfall Data

Figure 1. Example of Radar Image Data

1. Introduction — Surface Rainfall by Automatic Weather Station

Automatic Weather Station (AWS)

give the rainfall of the AWS's ground location

Description:

- Located on Surface
- Attached with multiple sensors to record surface rainfall, temperature

Data Output Format:

- numeric data output into csv
- record every minute

Surface Rainfall Data

Figure 2. Example of Ground Weather Data (AWS)

1. Introduction – AWS & RWS Mismatch

Figure 3. Mismatch Scenario of RWS and AWS Data

Description

- The RWS and AWS data does not match with each other.
- Therefore, the RWS data cannot directly predict the surface rainfall data

2. Problem Definition

Figure 4. Surface Rainfall Prediction Model with Time and Spatial Data

Problem Definition:

Model Processing Overview

"Generate a time series prediction model for surface rainfall using different temporal and spatial data"

3. Two Main Key Technical Issues

4. ARIMA Model: Autoregressive Integrated Moving Average

What is ARIMA Model?

"ARIMA is simply a time series prediction model that uses past data to predict future data"

Example:

Figure 5. Example of ARIMA Model Prediction

Reference:

https://people.duke.edu/~rnau/411arim.htm

5. Spatial Dynamic ARIMAX Model (SDAM)

5. Proposed Model Process Flow

Choosing ARIMA(p,d,q) Model

Step 6

Phase 2: Spatial Correlation Analysis

6. Implementation Details

Phase 1: Temporal Correlation Analysis

Step 1: Original AWS Data Extraction

Step 2:

Different Data Models Extraction

Figure 8: Potential Data Model 1

Technical Question: Is Original Data Model provides good correlation value?

Purpose:

- Identify different potential Data Models through Data Differencing transformation.
- Compare Temporal Correlation Result

Figure 9: Potential Data Model 2

Step 3: Temporal Correlation Result (Concept)

Figure 10: Concept of Correlation Result Calculation

Details:

- Correlation Results refers to **Autocorrelation** and **Partial Autocorrelation** results.
- In ARIMA (p, d, q):
- \circ **d** is the data model ranking (d = 0 is original data model, refer to previous slide)
- p is selected by the highest autocorrelation result within each d
- o **q** is select by the highest partial autocorrelation result within each **q**

Step 3: Original Data Model Correlation Analysis (d = 0)

Example of Original Data Temporal Correlation:

- In ARIMA (p, d, q), this is when d = 0 (original data)
- \Rightarrow p = 1 and q = 1 has high correlation result
- \Rightarrow Potential Test Models are ARIMA(1,0,1), ARIMA (1,0,0) and ARIMA(0,0,1)

Figure 11: Temporal Correlation Results of Original Data Model

Step 4: Temporal Correlation Result and Potential Models

Summary Temporal Correlation Check when d = 0, d = 1 and d = 2

Purpose: Defining Potential Combination of p,d,q for ARIMA(p,d,q) before testing.

Original Data Model Result

d = 0 when no differencing.

Correlation Result:

p = 1 and q = 1

Potential Model:

ARIMA (1,0,1) ARIMA (0,0,1) ARIMA (1,0,0)

Data Model 1 Result

d = 1 when 1 differencing.

Correlation Result:

no high correlation result

Potential Model:

No Potential Models

Data Model 2 Result

d = 2 when 2 differencing.

Correlation Result:

p = 1 and q = 1

Potential Model:

ARIMA (0,2,1) ARIMA (1,2,0)

Model Testing (Next Step)

Step 5: Defining Possible Models for Testing Day 1 (2017-07-02)

Table 1: Testing and Accuracy Table

ARIMA(p,d,q)	Equation (without constant)	Mean Square Error	Mean Absolute Error
ARIMA(1,0,0)	$\hat{\mathbf{y}}_t = \phi_1 \mathbf{y}_{t-1}$	0.037 mm / min	0.081 mm / min
ARIMA(1,0,1)	$\hat{\mathbf{y}}_t = \phi_1 \mathbf{y}_{t-1} + \theta_1 \mathbf{e}_{t-1}$	0.038 mm / min	0.084 mm / min
ARIMA(0,0,1)	$\hat{\mathbf{y}}_{t} = \mathbf{\theta}_{1} \mathbf{e}_{t-1}$	0.042 mm / min	0.094 mm / min
ARIMA(0,2,1)	$\hat{y}_t = \theta_1 e_{t-1}$ // with 2 times differencing	0.044 mm / min	0.090 mm / min
ARIMA(1,2,0)	$\hat{y}_t = \phi_1 y_{t-1}$ // with 2 times differencing	0.082 mm / min	0.147 mm / min

Step 5: Defining Possible Models for Testing Day 2 (2017-07-10)

Figure 13: Train and Test Data Information

Table 2: Testing and Accuracy Table

ARIMA(p,d,q)	Equation (without constant)	Mean Square Error	Mean Absolute Error
ARIMA(1,0,0)	$\hat{\mathbf{y}}_t = \phi_1 \mathbf{y}_{t-1}$	0.005 mm / min	0.034 mm / min
ARIMA(1,0,1)	$\hat{\mathbf{y}}_t = \phi_1 \mathbf{y}_{t-1} + \theta_1 \mathbf{e}_{t-1}$	0.005 mm / min	0.036 mm / min
ARIMA(0,0,1)	$\hat{y}_t = \theta_1 e_{t-1}$	0.006 mm / min	0.044 mm / min
ARIMA(0,2,1)	$\hat{y}_t = \theta_1 e_{t-1}$ // with 2 times differencing	0.006 mm / min	0.039 mm / min
ARIMA(1,2,0)	$\hat{y}_t = \phi_1 y_{t-1}$ // with 2 times differencing	0.011 mm / min	0.061 mm / min

Step 6 : Selected Model Testing Result ARIMA (1,0,0) Day 1 (2017-07-02)

Figure 14: Prediction Result of AWS 560

ARIMA(p,d,q)	Equation (without constant)	Mean Square Error	Mean Absolute Error	
ARIMA(1,0,0)	$\hat{\mathbf{y}}_t = \phi_1 \mathbf{y}_{t-1} + \mathbf{e}$	0.037 mm / min	0.081 mm / min	

Best Fitted Model

 $\hat{\mathbf{y}}_t = \mathbf{\phi}_1 \, \mathbf{y}_{t-1} + \mathbf{e}$

Step 6 : Selected Model Testing Result ARIMA (1,0,0) Day 2 (2017-07-10)

Best Fitted Model

$$\hat{\mathbf{y}}_{t} = \phi_{1} \mathbf{y}_{t-1} + \mathbf{e}$$

ARIMA Model depends on its past value y_{t-1} and estimator ϕ_1

Figure 15: Prediction Result of AWS 560

ARIMA(p,d,q)	Equation (without constant)	Mean Square Error	Mean Absolute Error
ARIMA(1,0,0)	$\hat{\mathbf{y}}_t = \phi_1 \mathbf{y}_{t-1} + \mathbf{e}$	0.005 mm / min	0.034 mm / min

Phase 1: Summary of Temporal Correlation Analysis

Summary

- → Based on Table 1 and Table 2, ARIMA (1,0,0) is our best temporal model.
- → ARIMA(1,0,0) will be the based temporal model for proceeding to Phase 2.

Phase 2: Spatial Correlation Analysis

Step 7: Define Spatial Similarity Matrix (SSM)

Step 7: Example of 7 * 7 Pixels SSM (14 kilometer Square)

SSM of 7 * 7 Pixel 20170702 [1:30 - 3:50] - Sampling Example

0.23	0.44	0.52	0.60	0.64	0.80	0.70
0.4	0.35	0.41	0.53	0.60	0.70	0.61
0.5	0.42	0.57	0.55	0.56	0.58	0.48
0.55	0.59	0.77	0.61	0.50	0.48	0.42
0.80	0.85	0.79	0.65	0.60	0.13	0.23
0.71	0.72	0.39	0.54	0.64	0.26	0.04
0.58	0.40	0.23	0.34	0.58	0.28	-0.17

Step 8: SSM Pruning based on Wind Direction (Concept)

Goal: To make sure that are used is **consistent** with the **wind direction**.

Step 8: SSM Pruning based on Wind Direction (Example)

Example of Pruning SSM

Step 9: Defining Scanning Range for SSM (Spatial Similarity Matrix)

Select out 3 * 3 Matrix from the 5 * 5 result

Final ARIMAX

Model

Criteria of selection is selecting the top cumulative correlation value of all cell.

Step 9: Example of Scanning SSM after Pruning

SSM Scan Result

Description:

SSM Scan Result is the top cumulative 3*3 matrix from the origin matrix.

40.80 **11**0.85 **18**0.79 0.65 0.60

Step 10: Cells Selection Using ARIMAX Test (Concept)

Scanning Output from Step 9

r1	r8	r15
r2	r9	r16
r3	r10	r17

Top Highest Correlated Radar Section with Ground AWS

Description:

- From the previous Step 9 results, we have 3 * 3 matrix with 9 cells
- We test from 3 variables as predictor variable to 9 variables to compare the accuracy

- 1. Should all cells be used for modelling?
- 2. Should we just use some cells?

Comparison Test Based on 2 days and 3 stations

Scenario 1

Use only 3 top variables

Scenario 2

Use only 6 top variables

Scenario 3

Use only 9 top variables

Step 10: Prediction Experiments Explanation

Figure 17: Model Generating Concept Using Past Data

Key Data Point Explanation:

- T_{-10} to T_{-1} is the train data and the first prediction model is T_0 Model.
- $\mathbf{T_{-10}}$ to $\mathbf{T_0}$ is the train data for prediction model of $\mathbf{T_1}$ Model.

Note:

Example: 3 Cells Selection means using 3 spatial cells:

$$\hat{Y}_{t} = \phi_{1}Y_{t-1} + \beta(R1_{t} - \phi_{1}R1_{t-1}) + \beta(R2_{t} - \phi_{1}R2_{t-1}) + \beta(R3_{t} - \phi_{1}R3_{t-1})$$

Step 10: Testing Result and Summary of Results

Figure 18: Result of Using Different Amount of Radar Cells

Analysis:

3 Cells Selections provide the lowest error rates and will be chosen for the final model.

Table 3: Testing and Accuracy of Figure 18 in Detail

Station ID	Day	3 Cells Selections	6 Cells Selections	9 Cells Selections
556	2017-07-02 (1)	0.026	0.027	0.028
556	2017-07-10 (2)	0.070	0.080	0.086
560	2017-07-02 (1)	0.067	0.064	0.070
560	2017-07-10 (2)	0.033	0.039	0.043
561	2017-07-02 (1)	0.106	0.126	0.115
561	2017-07-10 (2)	0.047	0.048	0.047
Average	Error	0.0581 mm / min	0.064 mm / min	0.0648 mm / min

Cases from Different Stations and Different Days

Summary of Phase 1 and Phase 2 Process (Flow and Concept)

7. Discussion of Experimental Result – Error Ratio

Analysis:

- Experiment on Different Location on Two Different Days (2017-07-02 and 2017-07-10)
- Our Proposed Model provides less error rate compare to the Naive Model

Figure 19: Absolute Error Rate Comparison Experiment

7. Discussion of Experimental Result – Amount of Cells Selection

Selections of Cell in Step 10

Figure 20: Increasing Spatial Variables Experiments

Analysis:

- Using **3 radar spatial variables** to predict surface rainfall provides less error
- Using many variables that has low correlation with ground rainfall could increase the error.

8. Conclusion & Future Works

Final Model:

- Surface Rainfall can be estimated using its past rainfall value by using ARIMA (1,0,0)
 as the prediction model
- Integration of Radar Images Information will increase the accuracy.
- **Spatial Similarity Matrix Scanning** for high similarity section is necessary to improve the accuracy of the prediction.
- Future Works:
 - Compare the prediction model with (Recurrent Neural Network)RNNs Model.

Reference

- 1. Korea Meteorological Administration: 2017 Radar Image, Radar Footage Open Portal, url: data.kma.go.kr,2017
- 2. Korea Meteorological Administration: 2017 AWS Data, AWS Observation, url: data.kma.go.kr, 2017
- 3. Jiwan L, Yongdoek S, Bonghee H, "Extraction of Weather Information on Road using CCTV video" IEEE2016 International Conference on Big Data and Smart Computing, Jan 2016
- 4. Oudomseila P, Jiwan L, Bonghee H, "Rainfall Prediction Model based on Radar Image Analysis Processing", 3rd International Conference on Internet of Things, Big Data and Security 2018
- 5. Oudomseila P, Jiwan L, Bonghee H, "Surface Rainfall Estimation Based on Radar Image Analysis and Fully Connected Neural Network", Ko rea Computer Congress 2018
- 6. Robert N. "ARIMA Models for Time Series Forecasting" https://people.duke.edu/~rnau/411arim.htm last accessed on 2019/03/22
- 7. Seoul National Unversity Lecture Note, "ARIMA 모형 (ARIMA Procedure)" http://stat.snu.ac.kr/time/download/%EC%8B%A4%EC%8A%B 5%EA%B0%95%EC%9D%983.pdf , last accessed on 2019/03/22
- 8. Kwon S, Jwae O, Hand Y, "Rainfall Forecasting using Data Mining and Deep Learning", Graduation Final Report of Pusan National University, 2017
- 9. Jiwan L, Yongdeok S., Bonghee H, "Extraction of Weather Information on Road using CCTV Video", IEEE 2016 International Conference on Big Data and Smart Computing.
- 10. Leo E., Leot L., "The Relation Between Pearson's Correlation Coefficient r and Salton's Cosine Measure", Journal of the American Society f or Information Science & Technology (forthcoming)
- 11. Udom P., Phumchusri N., "A Comparison study between time series molde and ARIMA model for sales forecasting of distributor in plastic Industry", https://pdfs.semanticscholar.org/23db/07fb90ad62e8b53fac74bfbf855ba205d1cd.pdf last accessed on 2019/04/14
- 12. Lan P. S., "Statistics: Regression and Time Series Analysis", https://sites.psu.edu/movingpsychology/2012/11/29/statistics-regression-and-time-series-analysis/ last accessed on 2019/04/17
- 13. Oudomseila P, Jiwan L, Bonghee H, "Analysis of Train Data Range, Time Interval Gap, Radar Spatial Range Impacts on Surface Rainfall E stimation Model", Korean Database Conference 2018
- 14. Oudomseila P, Jiwan L, Bonghee H, "Time Series Radar Matrix Based Data Analaysis for Surface Rainfall Estimation", Korean Database So ciety Journal, Volume 35 Number 1, April 2019

