考研数学笔记 以姜晓千强化课讲义为底本

Weary Bird

2025年7月31日

相见欢·林花谢了春红

林花谢了春红,太匆匆。无奈朝来寒雨晚来风。胭脂泪,相留醉,几时重。自是人生长恨水长东。

2025年7月31日

目录

第一章	多元函数积分学	1
1.1	三重积分的计算	5
1.2	第一类曲线积分的计算	9
1.3	第二类曲线积分的计算	10
1.4	第一类曲面积分的计算	13
1.5	第二类曲面积分的计算	14

第一章 多元函数积分学

三维向量

$$\vec{a} = (a_x, a_y, a_z), \vec{b} = (b_x, b_y, b_z)$$

数量积
$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta = a_x b_x + a_y b_y + a_z b_z$$

性质 1 判断空间向量垂直 $\vec{a} \cdot \vec{b} = 0 \iff a \perp b$

性质 2 求空间两直线的夹角 $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$

向量积
$$a \times b = |a||b|\sin\theta = \begin{vmatrix} i & j & k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

性质 1 判断空间直线平行 $\vec{a} \times \vec{b} = 0 \iff a \parallel b$

性质 2 求平面四边形的面积 $S = \left| \vec{a} \times \vec{b} \right|$

混合积
$$(\vec{a}\vec{b}\vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c} = \begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} \cdot |\vec{c}| = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

性质 1 判断三个向量是否共面 共面 \iff $(\vec{a}\vec{b}\vec{c}) = 0$

性质 2 平行六面体的体积 $V = \left| (\vec{a}\vec{b}\vec{c}) \right|$

直线与平面

(一)平面

平面的点法式 假设平面过点 (x_0,y_0,z_0) 且该平面的法向量为 $\vec{n}=\{A,B,C\}$ 则平面方程为

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

平面的一般式 将点法式展开

$$Ax + By + Cz + D = 0$$

平面的截距式

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

其中a,b,c分别是该平面与x,y,z轴的截距

点到平面的距离公式 假设平面外一点 (x_0, y_0, z_0) 到平面的距离

$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

(直线)

直线的点向式 假设直线过点 (x_0, y_0, z_0) 且该直线的方向向量为 $\vec{s} = \{l, m, n\}$ 则该直线的直线方程为

$$\frac{x_0 - x}{l} = \frac{y_0 - y}{m} = \frac{z - z_0}{n}$$

直线的参数式

$$\begin{cases} x = x_0 + lt \\ y = y_0 + mt \\ z = z_0 + nt \end{cases}$$

直线的一般式(两平面的交线)

$$\begin{cases} A_1x + B_1y + C_1z + D = 0 \\ A_2x + B_2y + C_2z + D = 0 \end{cases}$$

平面束方程 过某一直线的所有平面的方程 $\lambda(A_1x+B_1y+C_1z+D)+\mu(A_2x+B_2y+C_2z+D_2)=0$ 其中 λ,μ 不同时为 0,(...) 即该直线一般式的两平面方程

曲面与曲线

假设直线外一点 (x_0, y_0, z_0) 其到直线的距离为

$$d = \frac{|(x_1 - x_0, y_1 - y_0, z_1 - z_0) \times (l, m, n)|}{\sqrt{l^2 + m^2 + n^2}}$$

平面与直线的关系基本只需要考察 市和 或的关系即可

旋转曲面

假设曲线
$$L = \begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases} \implies \begin{cases} x = x(z) \\ y = y(z) \end{cases}$$
 则曲线 L 绕 z 轴旋转而来的旋转曲

面方程为

$$x^2 + y^2 = x^2(z) + y^2(z)$$

求旋转曲面的问题, 捉住旋转过程中的不变量进行处理, 例如绕 z 轴旋转, 则旋转曲面上的点到 z 轴的距离和 z 坐标都与原来曲线的点一致即

$$P_0 = \begin{cases} x_0 = x(z_0) \\ y_0 = y(z_0) \end{cases} ; P = \begin{cases} x^2 + y^2 = x_0^2 + y_0^2 \\ z = z_0 \end{cases}$$

消去 z₀ 即可得到答案

常见曲面的类型

曲面与曲线

与线代考点的综合题 二次型的特征值的正负对应图像的情况

投影曲线, 往 xoy 面的投影曲线只需要消去 z 即可

$$\begin{cases} F(x,y,z) = 0 & \xrightarrow{\text{ji.s. z}} \begin{cases} H(x,y) = 0 \\ z = 0 \end{cases}$$

曲面的法向量与切平面

若曲面是显示给出的即 F(x,y,z) = 0 则其法向量为

$$\vec{n} = \{F_x', F_y', F_z'\}$$

若曲面的是隐式给出的即 z = z(x, y) 则其法向量为

$$\vec{n} = \{-z_x', -z_y', 1\}$$

切平面方程为

$$F_x'(x - x_0) + F_y'(y - y_0) + F'z(z - z_0) = 0$$

曲线的切向量

若曲线是以参数式给出即 $\begin{cases} x = x(t) \\ y = y(t) \end{cases} \quad 则其切向量为$ z = z(t)

$$\tau = (x'(t), y'(t), z'(t))$$

若以两曲面的交线形式给出,即 $\begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$ 此时切向量为

 $\tau = \vec{n_1} \times \vec{n_2}$,其中 n_1, n_2 分别为两曲面的法向量

方向导数与三度

方向导数

$$\frac{\partial f}{\partial \vec{l}}\big|_{x_0,y_0} = \lim_{t \to 0^+} \frac{f(x_0 + t\cos\alpha, y_0 + t\cos\beta) - f(x_0,y_0)}{t}$$

其中 α 为与 x 轴正方向的夹角, β 为与 y 轴正方向的夹角 t 是趋于 0^+ 若 f(x,y) 可微分,则

$$\frac{\partial f}{\partial \vec{l}} = f'_x \cos \alpha + f'y \cos \beta = gr\vec{ad} \ f \cdot \vec{l_0}$$

梯度, 散度, 旋度

$$\begin{aligned} & \textit{grad} \ f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}) \cdot (\vec{i}, \vec{j}, \vec{k}) \\ & \textit{div} \vec{A} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \\ & \textit{rot} \ A = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} \end{aligned}$$

方向导数沿梯度方向取得最大值,沿梯度反方向取得最小值,值为

$$\pm \left| \vec{grad} \ f \right| = \pm \left| (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}) \right|$$

三度之间的关系,要求二阶偏导连续

$$\begin{array}{l} \operatorname{div}\operatorname{grad}f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \\ \\ \operatorname{rot}\operatorname{grad}f = \vec{0} \\ \\ \operatorname{divrot} = 0 \end{array}$$

1.1 三重积分的计算

Remark. 三重积分

(三重积分的定义)三维物体的质量

$$\iiint_{\Omega} f(x, y, z) dV = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i, \zeta_i) \Delta V_i$$

三重积分的性质 (8条)

线性, 区域可加性, 比较定理, 中值定理, 估值定理, 轮换对称性, 奇偶性, 形心公式 若函数图像关于 *xoy* 平面对称

$$\iiint_{\Omega} = \begin{cases} 2 \iiint_{\Omega'} f(x, y, z) dV, & f(x, y, -z) = f(x, y, z) \\ 0, & f(x, y, -z) = -f(x, y, z) \end{cases}$$

直接坐标计算(两种)

$$\begin{cases} \int_{a}^{b} \mathrm{d}z \iint_{D_{z}} f(x,y,z) \mathrm{d}x \mathrm{d}y, & \text{先二后一, 截面法} \\ \iint_{D_{xy}} \mathrm{d}x \mathrm{d}y \int_{z_{1}(x)}^{z_{2}(x)} f(x,y,z) \mathrm{d}z, & \text{先一后二, 投影法} \end{cases}$$

柱坐标 (x, y 转换为极坐标)

$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \\ z = z \\ \mathrm{d}V = r\mathrm{d}r\mathrm{d}x\mathrm{d}y \end{cases}$$

球坐标

$$\begin{cases} x = r \sin \varphi \cos \theta \\ y = r \sin \varphi \sin \theta \\ z = r \cos \varphi \\ dV = r^2 \sin \varphi dr d\varphi d\theta \end{cases}$$

其中 θ 是与x轴正方向的夹角, φ 是与z轴正反向的夹角

- 1. (2013, 数一) 设直线 L 过 A(1,0,0), B(0,1,1) 两点, 将 L 绕 z 轴旋转一周得到曲面 Σ , Σ 与 平面 z=0, z=2 所围成的立体为 Ω .
 - (I) 求曲面 Σ 的方程;
 - (II) 求 Ω 的形心坐标.

Solution. (1) 有题设可知直线方程为
$$\begin{cases} z=1-x & \text{原直线上一点 } P_0 \text{满足} \\ z=y & \end{cases}$$
 $y_0=z_0$

旋转曲面上一点 P 满足 $\begin{cases} x^2+y^2=x_0^2+y_0^2 \\ z=z_0 \end{cases}$ 带入直线方程消去 (x_0,y_0,z_0) 有曲面方程

$$x^2 + y^2 = 2z^2 - 2z + 1$$

(2) 对于三重积分以及后面的积分, 最大的误区可能就是上来二话不说先画图, 然后发现图画不出来就不会做. 其实完全没必要画图观察曲面方程, 容易发现其关于 xoz, yoz 平面对称, 故 $\bar{x} = \bar{y} = 0$ 由形心公式有

$$\bar{z} = \frac{\iiint_{\Omega} z dV}{\iiint_{\Omega} dV}$$

由题设条件 $z \in [0,2]$ 已经提示了该用截面法喽, 从而有

$$\iiint_{\Omega} dV = \int_{0}^{2} dz \iint_{D_{z}} dxdy$$

$$= \int_{0}^{2} \pi \cdot (2z^{2} - 2z + 1) dz$$

$$= \frac{10}{3} \pi$$

$$\iiint_{\Omega} z dV = \int_{0}^{2} dz \iint_{D_{z}} z dxdy$$

$$= \int_{0}^{2} \pi \cdot (2z^{3} - 2z^{2} + z) dz$$

$$= \frac{14}{3} \pi$$

综上形心坐标为

$$(0,0,\frac{7}{5})$$

2. (2019, 数一) 设 Ω 是由锥面 $x^2 + (y-z)^2 = (1-z)^2 (0 \le z \le 1)$ 与平面 z=0 围成的锥体, 求 Ω 的形心坐标.

Solution. 这个图像张啥样, 其实也一定都不重要. 只要能把握其在某一二维平面的投影即可, 观察曲面表达式, 显然其关于 yoz 平面堆成故 $\bar{x}=0$, 而由形心公式可知要求 3 个

三重积分,分别做吧

$$\iint_{\Omega} dV = \int_{0}^{1} dz \iint_{D_{z}} dxdy$$

$$= \int_{0}^{1} \pi (1-z)^{2} dz$$

$$= \frac{1}{3}\pi$$

$$\iint_{\Omega} z dV = \int_{0}^{1} dz \iint_{D_{z}} z dxdy$$

$$= \int_{0}^{1} \pi z (1-z)^{2} dz$$

$$= \frac{1}{12}\pi$$

$$\iint_{\Omega} y dV = \int_{0}^{1} dz \iint_{D_{z}} y dxdy$$

$$= \int_{0}^{1} \pi z (1-z)^{2} dz$$

$$= \frac{1}{12}\pi$$

综上, 该区域的形心为

$$(0,\frac{1}{4},\frac{1}{4})$$

1.2 第一类曲线积分的计算

Remark. 一类线

定义

$$\int_{L} f(x,y) ds = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}, \eta_{i}) \Delta s_{i}$$

其中 ds 是弧微分

一类线的性质 (8条)

线性,区域可加性,比较定理,中值定理,估值定理,轮换对称性,奇偶性,形心公式计算公式,曲线方程带入

$$\int_L f(x,y) \mathrm{d}s \begin{cases} \int_{\alpha}^{\beta} f(x(t),y(t)) \sqrt{(x'(t))^2 + (y'(t))^2} \mathrm{d}t, & \text{ 参数方程} \\ \int_{a}^{b} f(x,y(x)) \sqrt{1 + (y'(x))^2} \mathrm{d}x, & \text{直接坐标} \\ \int_{\alpha}^{\beta} f(r(\theta) \cos \theta, r(\theta) \sin \theta) \sqrt{r^2(\theta) + (r'(\theta))^2} \mathrm{d}\theta, & \text{极坐标} \end{cases}$$

3. (2018, 数一) 设 L 为球面 $x^2+y^2+z^2=1$ 与平面 x+y+z=0 的交线,则 $\oint_L xyds=0$

Solution. 这道题是比较显然的轮换对称性的题目

原式 =
$$\frac{1}{3} \oint_L (xy + yz + xz) \mathrm{d}s$$

= $\frac{1}{6} \oint_L \left[(x + y + z)^2 - (x^2 + y^2 + z^2) \right]$
= #线方程带入 $-\frac{1}{6} \oint_L \mathrm{d}s$
= $-\frac{1}{3}\pi$

4. 设连续函数 f(x,y) 满足 $f(x,y)=(x+3y)^2+\int_L f(x,y)ds$,其中 L 为曲线 $y=\sqrt{1-x^2}$,求曲线积分 $\int_L f(x,y)ds$.

Solution. 不妨设 $A = \int_L f(x,y) ds$ 同时对等式两边同时求一类线有

$$A = \int_{L} [(x+3y)^{2} + A] ds$$

$$= A\pi + \int_{L} (x+3y)^{2} ds$$

$$= A\pi + \int_{L} (x^{2} + 6xy + 9y^{2}) ds$$

$$= (1+A)\pi + 8 \int_{L} y^{2} ds$$

$$= (1+A)\pi + 8 \int_{0}^{2\pi} \sin^{2}\theta d\theta$$

$$= (5+A)\pi \implies A = \frac{5\pi}{1-\pi}$$

计算过程中优先考虑使用性质化简, 而非直接套公式

对于曲线/曲面/定积分/二重积分/三重积分, 它在某区域内积分后就是一个数, 变限积分和不定积分仍然是一个函数.

1.3 第二类曲线积分的计算

Remark. 二类线

二类线的定义: 沿曲线做功

$$\int_{L} P(x,y) dx + Q(x,y) dy = \lim_{\lambda \to 0} \sum_{i=1}^{n} \left[P(\xi_i, \eta_i) \Delta x_i + Q(\xi_i, \eta_i) \Delta y_i \right]$$

其中 $dx = ds \cdot \cos \alpha$, $dy = ds \cdot \cos \beta$, 其中 $(\cos \alpha, \cos \beta)$ 为切向量的单位向量性质 $(3 \, \$)$

线性,区域可加性,方向性

$$\int_{L} = -\int_{L}', L 和 L' 方 向相反$$

计算方式(两种)

$$\int_{L} P(x,y) dx + Q(x,y) dy = \begin{cases} \int_{\alpha}^{\beta} \left[P(x(t),y(t))x'(t) + Q(x(t),y(t))y'(t) \right] dt, & \text{ 参数方程} \\ \int_{a}^{b} \left[P(x,f(x)) + Q(x,f(x))f'(x) \right] dx, & \text{ 直角坐标} \end{cases}$$

注意此时 $\alpha \to \beta, a \to b$ 均为起点指向终点, 和大小无关

格林公式 设闭区域 D 由分段光滑的曲线 L 围成,L 取正向,P(x,y), Q(x,y) 在 D 上有一阶 连续偏导数,则

$$\oint_{L} P dx + Q dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

积分与路径无关 (四个充分条件) 设 P(x,y),Q(x,y) 在单连通闭区域 D 上有一阶连续偏导数,则

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$

$$\iff D$$

$$\iff \exists u(x,y), du = P(x,y)dx + Q(x,y)dy, \\ \exists u(x,y) = \int_{(x_0,y_0)}^{(x,y)} P dx + Q dy$$

曲线方程带入

曲线积分基本定理

设 P(x,y),Q(x,y) 在区域 D 内连续,u(x,y) 满足 $\mathrm{d}u=P(x,y)\mathrm{d}x+Q(x,y)\mathrm{d}y$, 则区域 D 内任意两点 A,B 曲线积分 $\int_A^B P\mathrm{d}x+Q\mathrm{d}y$ 与路径无关,且 $\int_A^B P\mathrm{d}x+Q\mathrm{d}y=u(B)-u(A)$

- 5. (2021, 数一) 设 $D \subset \mathbb{R}^2$ 是有界单连通闭区域, $I(D) = \iint_D (4 x^2 y^2) dx dy$ 取得最大值的积分域记为 D_1 .
 - (I) 求 $I(D_1)$ 的值;
 - (II) 计算 $\int_{\partial D_1} \frac{(xe^{x^2+4y^2}+y)dx+(4ye^{x^2+4y^2}-x)dy}{x^2+4y^2}$, 其中 ∂D_1 是 D_1 的正向边界.

Solution. (1) 由二重积分的几何意义, 使得 $4 - x^2 - y^2 \ge 0$ 始终成立的区域即为积分最大的区域, 即

$$D_1 = \{(x, y) \mid x^2 + y^2 \le 4\}$$

此时积分为

$$I = \int_{0}^{2\pi} d\theta \int_{0}^{2} (4 - r^{2}) r dr = 8\pi$$

(2) 显然 (0,0,0) 点是被积函数的奇点, 此时考虑挖去该点, 即设

$$L': x^2 + 4y^2 = 1$$
, 取顺时针

此时有

$$I = \oint_{\partial D_1 + L'} - \oint_{L'}$$

对于前一个积分,用 Green 公式有

$$\oint_{\partial D_1 + L'} = \iint_{D_1/D_{L'}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = 0$$

对于后一个积分, 先将曲线方程带入表达式后有

$$\begin{split} \oint_{L'} &= \oint_{L'} \left(ex + y \right) \mathrm{d}x + \left(4ey - x \right) \mathrm{d}y \\ &= \frac{- 8 \pi \text{A} + 2 \pi}{2} - \iint_{D_{L'}} \left(-1 - 1 \right) = 2 S_{D_{L'}} = \pi \end{split}$$

故

$$I=0-\pi=-\pi$$

6. (2011, 数一) 设 L 是柱面 $x^2 + y^2 = 1$ 与平面 z = x + y 的交线,从 z 轴正向往 z 轴负向 看去为逆时针方向,则曲线积分 $\oint_L xzdx + xdy + \frac{y^2}{2}dz =$

Solution. 这种问题仅有三种解法,推荐解法 3, 但三种解法都需要掌握.

Solution. 这种问题仅有三种解法,推荐解法 3,但三种解法都需要掌握.
$$\begin{cases} x=\cos t\\ y=\sin t \end{cases} \qquad \text{由于从 } z\text{ 轴正向往 } z\text{ 轴负向}$$
 看去为逆时针方向,故 $t:0\to 2\pi$,此时原积分等于

看去为逆时针方向, 故 $t:0\to 2\pi$, 此时原积分等于

$$\begin{split} I &= \int_0^{2\pi} \left\{ \left[\cos t (\sin t + \cos t) (-\sin t)\right] + \cos^2 t + \frac{\sin^2 t}{2} (\cos t - \sin t) \right\} \mathrm{d}t \\ &= \int_0^{2\pi} \cos^2 \theta = \pi \end{split}$$

(解法二斯托克斯公式)注意斯托克斯公式一般转换为一类面来做(公式法)

曲面法向量为 $\vec{n}=(-Z_x',-Z_y',1)=(-1,-1,1)$ 其单位向量为 $\vec{n_0}=(-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})$ 此时

由斯托克斯公式有

$$\oint_{L} = \iint_{\Sigma} \begin{vmatrix} -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xz & x & \frac{y^{2}}{2} \end{vmatrix} dS$$

$$= -\frac{1}{\sqrt{3}} \iint_{\Sigma} (y - x - 1) dS$$

$$\stackrel{\triangle \vec{x} \not\equiv}{=} -\frac{1}{\sqrt{3}} \iint_{D_{xy}} (y + x - 1) \sqrt{1 + 1 + 1} dx dy$$

(解法三 转换为平面二类型) 由 z=x+y 消去原曲线积分中的所有 z, 注意 $\mathrm{d}z=\mathrm{d}x+\mathrm{d}y$ 此时积分转换为其中 $L':x^2+y^2=1$ 取逆时针方向

1.4 第一类曲面积分的计算

Remark. 一类面

一类面的定义

$$\iint_{\Sigma} f(x, y, z) dS = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i, \zeta_i) \Delta S_i$$

性质 (8条)

线性,区域可加性,比较定理,中值定理,估值定理,轮换对称性,奇偶性,形心公式 计算公式(一投,二代)

$$\iint_{\sum} f(x,y,z)\mathrm{d}S = \iint_{D_{xy}} f(x,y,z(x,y)) \sqrt{1 + (Z_x')^2 + (Z_y')^2} \mathrm{d}x\mathrm{d}y$$

曲面方程带入

7. (2010, 数一) 设 P 为椭球面 $S: x^2 + y^2 + z^2 - yz = 1$ 上的动点,若 S 在点 P 的切平面与 xOy 面垂直,求 P 点的轨迹 C,并计算曲面积分

$$I = \iint_{\Sigma} \frac{(x + \sqrt{3})|y - 2z|}{\sqrt{4 + y^2 + z^2 - 4yz}} dS,$$

其中 Σ 是椭球面 S 位于曲线 C 上方的部分.

Solution. 一类面的难点肯定在于如何求出该平面, 计算都是小意思用公式就可以.

S 在点 P 处的切平面, 其法向量为 $\vec{n_1}=(F_x',F_y',F_z'=2x,2y-z,2z-y)$ 而 xoy 面的法向量为 $\vec{n_2}=(0,0,1)$ 由题设知 $\vec{n_1}\cdot\vec{n_2}=0$ 即 2z-y=0 带入 S 的方程化简有, 曲线 C 的方程为

$$\begin{cases} x^2 + \frac{3}{4}y^2 = 1\\ y = 2z \end{cases}$$

即一个椭球柱与平面的交线,将曲线往 xoy 面投影,其区域为 $D_{xy}:\{(x,y)\mid x^2+\frac{3}{4}y^2\leq 1\}$

$$dS = \sqrt{1 + (Z'_x)^2 + (Z'_y)^2} dx dy = \frac{\sqrt{4 + y^2 + z^2 - 4yz}}{|y - 2z|} dx dy$$

原积分由公式法等于

$$I = \iint_{D_{xy}} (x + \sqrt{3}) \mathrm{d}x \mathrm{d}y = 2\pi$$

1.5 第二类曲面积分的计算

Remark. 二类面

二类面的定义: 流量

$$\iint_{\Sigma} P(x, y, z) dy dz + Q(x, y, z) dz dx + R(x, y, z) dx dy$$

$$= \lim_{\lambda \to 0} \sum_{i=1}^{n} [P(\xi_i, \eta_i, \zeta_i)(\Delta S_i)_{yz} + Q(\xi_i, \eta_i, \zeta_i)(\Delta S_i)_{zx} + R(\xi_i, \eta_i, \zeta_i)(\Delta S_i)_{xy}]$$

其中 $dydz = dS \cdot \cos \alpha$ 其余类似, 而 $(\cos \alpha, \cos \beta, \cos \gamma)$ 为平面 \sum 的法向量的单位向量性质 $(3 \, \$)$

线性,区域可加性,方向性

计算公式(三合一投影法)

$$\begin{split} &\iint_{\Sigma} P(x,y,z) \mathrm{d}y \mathrm{d}z + Q(x,y,z) \mathrm{d}z \mathrm{d}x + R(x,y,z) \mathrm{d}x \mathrm{d}y \\ &= \pm (P(x,y),Q(x,y),R(x,y)) \cdot (-Z'_x,-Z'_y,1) \\ &= \pm \iint_{D_{xy}} \left[P(x,y,z(x,y))(-Z'_x) + Q(x,y,z(x,y))(-Z'_y) + R(x,y,z(x,y)) \right] \mathrm{d}x \mathrm{d}y \end{split}$$

上侧为正,下侧为负

高斯公式 设闭区域 Ω 由分片光滑的曲面 \sum 围成, \sum 取外侧,P,Q,R 在其上有一阶连续偏导数,则

$$\iint_{\Sigma} P dy dz + Q dz dx + R dx dy = \iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right)$$

曲面方程带入

斯托克斯公式 设 P,Q,R 在曲面 \sum 围成的区域 Ω 内有一阶连续偏导数, \sum 的边界曲线 L 的方向与 \sum 所取的法向量满足右手法则,则

$$\oint_{L} P dx + Q dy + R dz = \iint_{\Sigma} \begin{vmatrix} dy dz & dz dx & dx dy \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} dS$$

即将三维的二类线转换为一类面或者二类面来做

8. (2009, 数一) 计算曲面积分

$$I = \iint_{\Sigma} \frac{xdydz + ydzdx + zdxdy}{(x^2 + y^2 + z^2)^{\frac{3}{2}}},$$

其中 Σ 是曲面 $2x^2 + 2y^2 + z^2 = 4$ 的外侧.

Solution. 显然点 (0,0,0) 是被积函数的奇点, 需要挖去这一个点, 不妨设

$$\sum_{1} : x^2 + y^2 + z^2 = 1$$
, 取外侧

记

$$\Omega: \{(x, y, z) \mid x^2 + y^2 + z^2 \ge 1, 2x^2 + 2y^2 + z^2 \le 4\}$$

$$\Omega_1: \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1\}$$

此时原积分等于

$$I = \iint_{\sum + \sum_{1}} - \iint_{\sum_{1}}$$

其中

$$\iint_{\sum + \sum_{1}} = \underbrace{\text{SMfr}}_{\Omega} \underbrace{\iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right)}_{\Omega} = 0$$

对于第二个积分, 先带入 \sum_1 的曲面方程此时有

$$\iint_{\Sigma_1} = \iint_{\Sigma_1} x dy dz + y dz dx + z dx dy$$
$$= - \iiint_{\Omega_1} 3 dV$$
$$= -4\pi$$

综上有

$$I = 0 + 4\pi = 4\pi$$

9. 计算

$$\iint_{\Sigma} \frac{axdydz + (z+a)^2 dxdy}{(x^2 + y^2 + z^2)^2},$$

其中 Σ 为下半球面 $z=-\sqrt{a^2-x^2-y^2}$ 的上侧,a 为大于零的常数.

Solution. 发现这个曲面不是封闭的, 立刻补上, 即设

$$\sum_1: \begin{cases} x^2+y^2 \leq a^2 \\ z=0 \end{cases},取下侧$$

注意,虽然被积函数在 (0,0,0) 处貌似是奇点,但注意到可以通过带入曲线方程消去分母,就不需要挖点了

$$I = \frac{1}{a} \iint_{\Sigma} ax dy dz + (z+a)^{2} dx dy$$
$$= \frac{1}{a} (\iint_{\Sigma + \Sigma_{1}} - \iint_{\Sigma_{1}})$$

记 \sum_1 , \sum 围成的区域为 Ω ,则有

$$\iint_{\Sigma + \Sigma_1} = - \iiint_{\Omega} = - \iiint_{\Omega} \left[a + 2(z+a) \right] \mathrm{d}V = -\frac{3}{2} \pi a^4$$

记 $D_{xy}:\{(x,y)\mid x^2+y^2\leq a^2\}$ 则有

$$\iint_{\sum_{1}} \frac{\text{d}x}{\text{d}x} - \iint_{D_{xy}} a^{2} dx dy = -\pi a^{4}$$

综上有

$$I = -\frac{\pi a^3}{2}$$

10. (2020, 数一) 设 Σ 为曲面 $z = \sqrt{x^2 + y^2} (1 \le x^2 + y^2 \le 4)$ 的下侧, f(x) 为连续函数, 计算

$$I = \iint_{\Sigma} [xf(xy) + 2x - y] dydz + [yf(xy) + 2y + x] dzdx + [zf(xy) + z] dxdy.$$

Solution. 因为 f(xy) 仅连续, 高斯的条件为<u>封闭外侧, 偏导连续,</u> 只能使用三合一投影法记区域 $D_{xy}:\{(x,y) \mid 1 \leq x^2 + y^2 \leq 4\}$

$$\begin{split} I &= -\iint_{D_{xy}} \left([xf(xy) + 2x - y] \left(-\frac{x}{\sqrt{x^2 + y^2}} \right) \right. \\ &+ [yf(xy) + 2y + x] \left(-\frac{y}{\sqrt{x^2 + y^2}} \right) \\ &+ \left[\sqrt{x^2 + y^2} f(xy) + \sqrt{x^2 + y^2} \right] \right) \, \mathrm{d}x \, \mathrm{d}y \\ &= \iint_{D_{xy}} \sqrt{x^2 + y^2} \, \mathrm{d}x \, \mathrm{d}y \\ &= \int_0^{2\pi} \mathrm{d}\theta \int_1^2 r^2 \, \mathrm{d}r = \frac{14}{3}\pi \end{split}$$