Project 4: Degradation of Data Integrity

Diego Guerra & Ryan Scott

CST-305

Dr. Ricardo Citro

Part 1:

Using a system of differential equations, we first develop a model for transferring data among processors. As a result of the fact that each processor is composed of a group of processors, we can add up the rate of input supplied by each processor, multiplied by the ratio of data each of these processors contains. To get a total output, we subtract and multiply the processor output.

Our next step is to find the eigenvalues of the matrix created by these DEs:

Part 1				
X (t) 100 12(t) - 100 x, (t)				
1/2 (t) 100 No.(t) + 100 (x,(t) -	1/10 X	,(t)		
X (+) 15 X (+) - 5/ WO X	2(t)			
N (+) = -3/50 N, + 1	50 /21	f) + ()	N3 (f)
N 14 = 3/50 M - 7/	100 Na 18	1+1	Un N	(4)
3 (+) ~ 0 x, + 1/20	Malt)	- 120	100	t)
-3/50 V50 0	14		[0]	
3/50 -1/100 /100	γ	1	0	
0 1/20 -1/20	1 %		0	
[-3/50-12 /50 0]		-		
det 3/50 - 4/1052 - 1/100	= 0			
0 420-1/20-1				
1=-0.0214, -0.0531	,-V.10	54		

The eigenvalues are: λ = -0.0214, -0.0531, -0.1054 Using an online calculator, we solved the third-degree polynomial.

Part 2:

Using a system of differential equations, we repeat steps in part 1, making another system of DEs. Our task was to solve for e^At, followed by solving the DE system using the matrix method.

Once e^At is solved, the solution can be found:
X, = -2/100 M(t) +3/100 M2 (t)
1/2 = 2/100 x, (t) = 3/100 x2(t)
[1-2/100 3/100 7 [x, 7 , [0]
1/100 -3/100 / 7/2 / 20
ent = XA++XoI
= [-2/box, + + no 3/100 d+]
2/100 Q,t -3/100 d,t+do
det (A+-, L_1) = 0
1-2/00t-1 3/100 +7 = D
\$ 2/100+ -3/100 t-, \]
1:0, -1/20 e 3 do
6 1/20 ta, +1
V2) + d/ = 000
-106-vat-1) = N
A1
ent 1-2/1900 ttale 3/100 dt
[2/100 ast -3/100 ast + do]
M)20 4 ((2 [1]
where time
(2)
2(b) 2 -c-1

Here is a graph of the solution using Python:

