

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

AD A137879

AFGL-TR-83-0235

CHEMICAL REACTIONS AND MOLECULAR AGGREGATION IN CRYOGENIC WHOLE AIR SAMPLE MATRICES

J.M. Calo W.D. Lilly

Division of Engineering Brown University Providence, Rhode Island 02912

Final Report
1 October 1981 - 31 March 1983

July 1983

Approved for public release; distribution unlimited.

FILE COPY

AIR FORCE GEOPHYSICS LABORATORY AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE HANSOOM AFB, MASSACHUSETTS 01731

This report has been reviewed by the ESD Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS).

This technical report has been reviewed and is approved for publication

Charles C. Hallagher
Contract Manager

Branch Chief

FOR THE COMMANDER

Division Director

Qualified requestors may obtain additional copies from the Defense Technical Information Centor. All others should apply to the National Technical Information Service.

C. g. Sterger

If your address has changed, or if you wish to be removed from the mailing list, or if the addressee is no longer employed by your organization, please notify AFGL/DAA, Hanscom AFB, MA 01731. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document requires that it be returned.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

DECOMITY CEASSIFICATION OF THIS PAGE (When Data Enveree)					
REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM				
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER			
AFGL-TR-83-0235	AD-A137879				
4. TITLE (and Sublitio) Chemical Reactions and Molecular Aggregation in Cryogenic Whole Air Sample Matrices		5. TYPE OF REPORT & PERIOD COVERED Final Report for Period 1 Oct. 1981 - 31 March 1983			
		6. PERFORMING ORG. REPORT NUMBER			
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(#)			
J. M. Calo and W. D. Lilly		F19628-81-C-0157			
9. PERFORMING ORGANIZATION NAME AND ADDRESS Division of Engineering BROWN UNIVERSITY Providence, R. I. 02912		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 62101F, 668703AR			
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE			
Air Force Geophysics Laboratory	1	July 1983			
Hanscom AFB, MA 01731	'	13. NUMBER OF PAGES			
Monitor/Charles C. Gallagher/LKD		118			
14. MONITORING AGENCY NAME & ADDRESS(II different	t from Controlling Office)	15. SECURITY CLASS. (of this report)			
		UNCLAS			
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE			
IS DISTRIBUTION STATEMENT (of this Beast)		15a. DECLASSIFICATION/DOWN SCHEDULE			

16. DISTRIBUTION STATEMENT (of this Report)

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Cryogenic sampling of stratospheric gases; oxides of nitrogen and water vapor; infrared analysis of condensed samples.

20. ABSTRACT (Continue on reverse side if necessary and identity by block number)

This report conveys the results of an investigation concerned with the effects of chemical reactions in cryogenically condensed NO /O /H O samples, on the alteration of sample composition upon subsequent thermal desorption. These studies were undertaken to elucidate the relevant mechanisms and improve the understanding of these processes as they relate to the analysis of cryogenically-collected stratospheric whole air samples acquired in the balloon-borne sampling project of the composition task of the Stratospheric

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-LF-014-6601

Inclassified
SECURITY CLASSIFICATION OF THIS PAGE (Then Data Entered)

[&]quot;Approved for public release; distribution unlimited."

20. continued

Environment Program of the Air Force Geophysics Laboratory.

An experimental apparatus was developed around a mechanical, closed cycle, helium cryogenic refrigerator to perform the following functions: (1) condensed sample generation by controlled deposition from the gas phase onto the cryogenic surface; (2) in-situ observation via infrared transmission spectrophotometry; and (3) post-regeneration analysis of the thermally desorbed gas samples by NO_X chemiluminescence and/or gas chromatography. In addition, provision was made to vary the water vapor composition of the samples.

The major features of infrared spectra of condensed samples were interpreted in terms of assignments to the various species of importance Subsequent experiments with $NO_X/O_Y/H_2O$ samples substantiated that condensed NO self-disproportionates to a significant degree upon thermal regeneration. Furthermore, it was found that the intensity of the absorption peak indicative of NO2 formation in the condensed sample was inversely proportional to the total amount of water in the sample, although the final conversion to NO_x upon thermal desorption remained approximately constant. This behavior was interpreted as an NO conversion mechanism involving the nitrogen oxyacids, nitrous and nitric acids, in the presence of large amounts of water in the condensed sample. This could not be directly proven since the infrared absorption features of the acids are obscured by the N-O and O-H features, and the two gas chromatographic column packings that were tried could not provide unambiguous separation of the acids. However, the fact that water does play a significant role in total NO conversion was shown in experiments including 0_2 and 0_3 in the condensed sample. In these experiments, the $0_{\rm X}$ was observed to convert NO to NO₂ in the condensed sample, which then presumably reacted readily to acids, resulting in significantly increased conversion to NO_x upon thermal desorption, over and above that measured for NO alone.

In addition to the infrared/NO $_{\rm X}$ chemiluminescence studies, separate sample immersion studies in liquid nitrogen and helium were conducted which permitted visual observations of the condensed samples upon warming. These studies qualitatively substantiated the other NO conversion results, and were used as an aid in understanding and interpreting the other experiments.

The results of this work indicate that interconversion of the oxides of nitrogen in condensed samples, especially in the presence of water vapor, is a significant process under certain conditions. However, additional work involving careful cryogenic deposition of very small amounts of the various species, combined with perhaps high resolution FTIR, is definitely needed in order to quantitatively assess the relative importance of these same processes in the much more highly dilute stratospheric cryogenic whole air samples.

TABLE OF CONTENTS

1.0.	INTR	DDUCTION			• • • •	• • • • • • • • •	• • • • • • • • • •		1
2.0.	EXPE	RIMENTAL				• • • • • • • • • •		• • • • •	3
	2.1.	Cvervie	w		••••	• • • • • • • • • •		• • • • •	3
3.0.	RESU	LTS AND	DISCUSS	ION	• • • •			• • • • •	4
	3.1.	Infrare	d Spect	rophoto	metr	Y			4
		3.1-1.	Peak Id	entific	atio	n			4
		з.	1-1.1.	Nitrous	Oxi	de		••••	4
		з.	1-1.2.	Nitric	Oxid	e		• • • • •	6
		з.	i-i.3.	Oxyden	and	Ozone			5
	3.2.	Condens	ed NO E	ehavion	Wit	h Temperati	.re		.10
	3.3.	NO/0_/0	Mixtu	res	• • • •		• • • • • • • • • •		.12
		3.3-1.	NO Oxid	ation i	in th	e Solid Sta	ate - Litera	ature.	.12
		3.3-2.	Current	Observ	atio	ns	• • • • • • • • • • •		-14
	3.4.	Cryosen	ic Imme	rsion S	Studi	es			.16
		3.4-1.	Initial	Exper	iment	5	• • • • • • • • • •		. 16
		3.4-2.	Visual	Observa	tion	5			.18
		з.	4-2.1.	NO Exp	erime	nts			.19
		з.	4-2.2.	NO/0 E	Exper	iments			.21
		3.	4-2.3.	Liquid	Heli	um Experim	ents		.22
		3.4-3.	Experim	ents W	ith H				.22
	3.5.	The Ro	le of	H _Q i	n NO	Self-Disp	roportionat	ion	
		and Oxi	dation.		• • • • •			• • • • • •	.23 For
		3.5-1.				ionation i			ī
		0.5.0	Present		2				đ
	2242						of H O 2		
		LUSIONS.		•••••					on/
5.0.	REFE	RENCES.	• • • • • • •	• • • • • •	• • • • •	• • • • • • • • •	• • • • • • • • • • •	• • • • •	$.35 \frac{\cdot}{ity}$
		•				Original conplates: All plons will be	OTIC reproduct	Dist	Avail and Special

6.0.	APPENDICES
	Appendix A. EXPERIMENTAL APPARATUS
	A.1. Sample Cell64
	A.2. NO Chemiluminescence Analyzer
	x A.3. Welsbach Ozonator
	Appendix B. EXPERIMENTAL PROCEDURES109
	B.1. Sample Line Clean-Up and Cool-Down
	B.2. Sample Deposition and IR Analysis
	B.3. Flash Desorption and NO Analyzer Mode110
	X B.4. NO Conversion Calculations111
	LIST OF TABLES
~ _ L 1 _	
	e I. The effect of water on NO self-disproportionation37
Table	e II. Sample types and deposition modes
Table	PIII. The effect of water on NO conversion in NO/O mixtures
	LIST OF FIGURES
Figur	re 1. Schematic of the Experimental Apparatus40
Figur	re 2. IR Spectrum of N O at 18K42
Figur	-1 2 re 3. 3200 cm Absorption as a Function of Temperature44
Figur	re 4. IR Packsround Spectrum of Empty Cell at 16K46
Figur	re 5. IR Spectrum of NO at 17K48
Figur	re 6. IR Spectrum of NO at 18K for a Large Sample50
Figur	re 7. IR Spectrum of Residual From a NO Sample at 95K52
Figur	re 8. IR Spectra of Condensed NO from Smith, Keller, and Johnston (1951)
Figur	re 9. IR Spectra of Condensed NO in an Oxygen Matrix from Smith and Guillory (1977a)56
Fisur	re 10. IR Spectra of Condensed Oxysen as a Function of Temperature58

Figure	11.	IR Spectra of a 2.5 mol % Ozone in Oxysen Mixture as a Function of Temperature60
Figure	12.	Concentration of Condensed Ozone at 40K62
Figure	13.	IR Spectra of Condensed NO as a Function of Temperature: 35K and 50K
Fisure	14.	Behavior of the 1845 cm Absorption in Condensed NO With Temperature
Figure	15.	Mass Spectrometric Thermal Desorption Spectra of ND for Peaks m/e=30 and 28 Subsequent to Deposition on Gold-Flashed Stainless Steel at 16K
Figure	16.	If Spectrum of NO Deposited on an Ozone/Oxysen Substrate at 29K
Figure	17.	IR Spectrum of Residual From the Sample in Figure 16 at 70K72
Figure	18.	Photograph of Apparatus For Cryogenic Immersion Studies
Figure	19.	Photographs of Cryogenic Immersion Experiments With Pure NO
Fisure	20.	Photographs of Cryogenic Immersion Experiments With NO/O Mixtures
Figure	21.	NO Conversion as a Function of Water Content80
Figure	22.	Infrared Spectrum of Condensed NO/O at 24K;
		Run 22, Type IV (see Table III)82
Figure	A-1.	. IR Window Holder Assembly
Figure	A-2.	. PVC Vacuum Shroud Schematic90
Figure	A-3.	. Background Spectrum With CaF Windows92
Figure	A-4	. Background Spectrum With CdTe Windows
Fisure	A-5.	. Photographs of the Inlet Manifold
Figure	A-6.	. Photograph of the Assembled Apparatus
Figure	6-7	. Infrared Spectrum of Polystyrene Sample
Figure	A-8	. Infrared Spectrum of Water Vapor Bands
Figure	Δ - 9.	. Ozonator Calibration Apparatus Schematic

gette Verrönde nederled spekaling ledstatet erlegen genoem spikaan anname bourne ledstate lede

1.0. INTRODUCTION.

The trace gas composition of the stratosphere has received significant attention since the initial impetus provided by the Climatic Impact Assessment Program of the Department Transportation in the early 1970's. At that time it was suggested (Snelson, 1972) that cryosenic sampling of stratospheric air could be performed in such a manner as to exploit the inherent advantage of the high dilution of trace species in the frozen air Snelson (1972) noted that species present matrix. in concentrations of parts-per-million and lower would be imbedded in a matrix composed principally of nitrogen and oxygen. It was reasoned that this state of "matrix isolation" would tend to severely inhibit potential reactions due to extremely low temperatures and diffusion rates, thereby preserving reactive species. Potentially, many of these could be studied using insitu techniques such as electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), and spectroscopy. measurement of other species, however, would necessitate the use of alternate analytical techniques such as gas chromatography (GC), chemiluminescence (for NO), and mass spectrometry (MS); all of which are destructive with respect to the solid matrix, requiring at least thermal desorption, and possibly other subsequent manipulations such as fractionation. Obviously, under these latter conditions the advantages of matrix isolation are lost, and there exists the possibility that the original sample composition will be altered.

In addition to the preceding problems with reactive species,

reactions between what may be considered to be relatively "stable" molecular species have also been observed in the solid phase; e.s., oxidation of nitric oxide by oxygen (Smith and Guillory, 1977, 1977a), and by ozone (Lucas, 1977, and Lucas and Pimentel, 1979). In addition, ozone is known to recombine in the condensed state under various conditions (sometimes explosively); e.s., see Deitz and Pitner, 1973, and Jenkins, 1959. In some of those studies recombination mechanisms involving catalytic impurities and/or oxidative chain reactions have been hypothesized (e.s., see Arin and Warneck, 1972, and Jenkins, 1959). Thus, thermal reseneration of these species, and mixtures thereof, may also lead to significant alteration of ambient relative compositions.

Since 1974 the Air Force Geophysics Laboratory has conducting a research effort concerned with cryogenic whole sampling of the stratosphere (Gallagher et al., 1981). In this program. fixed metal cylinders (three in the most recent confidurations), with specially treated inner surfaces, are immersed in a liquid helium bath surrounded by a suard volume of liquid nitrogen. This "tri- whole air sampler" (TRIWAS) is the heart of a balloon flight package which is designed to collect one whole air sample per cylinder at different stratospheric altitudes, typically in the 12 to 30 km range. Once sampling is completed on the balloon descent les of the flisht, the sampler is parachuted to the ground where it is recovered and maintained at cryosenic temperatures until regeneration and gas analysis can be performed in the laboratory to determine relative ambient stratospheric composition.

Even though this program is relatively simple in concept, the many processes associated with the collection and regeneration of atmospheric gas mixtures onto and from cryogenic surfaces are not well understood. The very nature of multilayered deposits of atmospheric species on polycrystalline substrates, and their subsequent behavior upon warming and thermal desorption, including the effects of chemical reactions cited above, represent complex and interrelated physico-chemical phenomena.

This final report summarizes the work performed and the results of a study specifically focused on the effect of chemical reactions in solid cryodenic samples on alteration of relative compositions upon thermal redeneration. More specifically, the work concentrated on the investidation of the conversion of NO x and O species and water vapor in cryofrost matrices using infrared spectrophotometry and NO chemiluminescence. In addition, visual observations of the thermal redeneration of cryodenic samples composed of these species were helpful in interpreting and understanding the various data.

2.0. EXPERIMENTAL

2.1. Overview.

A schematic of the apparatus developed for the current studies on cryogenic samples of NO /O /H O mixtures is presented x x 2 in Figure 1. The primary functions of this experimental system are: (1) sample generation: to allow controlled deposition of gas samples onto a cryogenic surface; (2) in-situ observation: to

obtain direct infrared transmission spectra of the condensed sample as a function of temperature; (3) post-reseneration analysis: to analyze desorbed gas phase samples by NO x chemiluminescence. In addition, provision was made for auxiliary cryopumping for water vapor interaction studies. A more detailed description of the apparatus is given in Appendix A, and the general experimental procedures are described in Appendix B.

3.0. RESULTS AND DISCUSSION.

3.1. IR Spectrophotometry.

3.1-1. Peak Identification.

A series of spectra were taken of condensed samples of the various species expected to be involved in the work that follows for the purpose of identification and assignment of the absorption peaks.

3.1-1.1. Nitrous Oxide.

A typical spectrum of condensed nitrous oxide is presented in Figure 2. Nitrous oxide gas directly from the cylinder (Linde, minimum purity 97%) was deposited on the CdTe window in the manner described in Appendix P. The fundamental modes of N O in 2 the condensed state are clearly evident; i.e., the stretching -1 modes, y and y, at 2200 and 1280 cm, respectively (Hallam, 3 1 -1 1973). (The expected N O bending mode at 585 cm lies beyond the cutoff of the CaF IR cell windows.) The other features are most 2 probably combinations and overtones of the fundamentals, and/or unidentified impurities. Since N O was found to be relatively unimportant in the current work, no additional effort was expended in obtaining more detailed assignments.

All the absorption features remain unchanged as a function of time except for the broad absorption peak at approximately -1 3200 cm. This feature continues to grow with time after deposition, even during heating of an N O sample to desorption, as shown in Figure 3. The N O sample disappears at ~100K with no 2 obvious changes in the features already attributed to N O between -1 2 18K and 100K. The 3200 cm feature, however, continues to grow to ~200K, where it abruptly disappears.

A typical background spectrum with the sample window cold (16K) with no condensed gas sample is presented in Figure 4 for comparison. It is quite obvious that this spectrum also exhibits the 3200 cm feature, and it behaves in the same manner as in the NO condensed sample spectra; i.e., it steadily increases with time at low temperatures, disappearing entirely relatively high temperatures (~200K). Thus, this feature is definitely not due to N O, but rather is indicative of additional accumulation of the species responsible over the time span of an experiment as a result of continual deposition from the gas phase. It is believed that the 3200 cm absorption feature is due to background water vapor accumulating and polymerizing the sample window. This absorption lies in the correct region of the strong fundamental O-H stretching frequencies. A similar absorption has been observed for hydrogen-bonded species with OH groups in polymerized form in condensed phases (e.g., Bellamy, 1975). In addition, the disappearance temperature of this feature (i.e., ~200K) is indicative of water condensate desorption in vacuo (e.g., see Calo et al., 1981).

3.1-1.2. Nitric Oxide.

A typical spectrum of condensed nitric oxide is presented in Figure 5. Nitric oxide gas directly from the cylinder (Linde, 98.5% minimum purity) was deposited on the CdTe sample window in the manner described in Appendix B. Clearly evident are the two strong absorptions at 1845 and 1740 cm. The appearance of these features strongly resembles the spectrum of approximately 0.17 mol fraction NO in N given by Smith et al. (1951) (reproduced as Figure 8), who examined the infrared and Raman spectra of solid and liquid nitric oxide. As shown in both Figures 5 and 8, the higher frequency feature is quite sharp, and the lower frequency one appears split into a doublet. Smith et al. (1951) attributed both absorptions to the NO dimer. The higher frequency peak was attributed to symmetric stretch, and the lower frequency to asymmetric stretch. It was also speculated that the splitting evident in the 1770 cm Peak was Possibly due to the coexistence of two types of dimer. However, in infrared studies of NO isolated in a solid oxygen matrix, Smith and Guillory (1977) observed only one form of the NO dimer, and assigned reaks at 1861 and 1773 cm to the cis-(NO) dimer (see Figure 9). These workers also assigned a strong absorption at 1866 cm monomeric NO (see Figure 9), and point out that, "This feature is close to, if somewhat lower than, those observed for NO trapped in solid N (Guillory and Hunter, 1969; Varetti and 1971) (1878 cm), or solid Ar (Fateley et al., 1959) (1875 cm).

In our own spectra there is no unequivocal evidence of an absorption feature due solely to monomeric NO. However, the sharp

nature of the 1845 cm Peak from the unannealed solid in Figure 5 closely resembles that cotained by Smith and Guillory (1977) (cf. Figure 9). In addition, there seems to be another smaller, incompletely resolved absorption located at the base of this peak in Figure 5. Thus, it seems probable that this peak includes contributions from both the NO monomer and the cis-(NO) dimer 2 (e.g., the 1866 and 1861 cm peaks observed by Smith and Guillory (1977); cf. Figure 9). The relative intensities of these two features seem to interchange under other conditions (e.g., see Figures 6 and 7). Thus, the two major peaks observed for pure NO are most probably due to both the cis-(NO) dimer (i.e., at -1 2-1 1845 and 1740 cm) and the NO monomer (1845 cm), with varying contributions to the higher frequency absorption.

As stated by Lucas (1977), "Experience has shown that every matrix study of one of the oxides of nitrogen tends to become study of all the oxides of nitrosen." This statement is, course, also applicable in the current work. In addition to absorption peaks attributed to NO, there are also weaker features present that arise primarily from NO and N O contaminants. These become more evident under other conditions; e.g., with samples, as in Figure 6, or under conditions where most of nitric oxide has evaporated, as in Figure 7. In Figure 6, the absorption peak at 2200 cm and the composite peak at about 1280 cm are attributed to the fundamental stretching modes, of NO (see section 3.1-1.1 above). Also evident Figure a moderately strong unassigned absorption approximately 3525 cm that appears related to NO. This absorption is quite evident in the pure N O spectrum (shifted

about 3450 cm) presented in Figure 2. It does not appear to be related to either NO or NO , since there are no other discernible 2 features due to these two species in Figure 2. In addition, the -1 3525 cm absorption disappears at about 100K upon the desorption of NO. Its behavior also appears to be different from that of 2 the broad condensed water absorption at 3200 cm , since it appears immediately upon deposition of NO, and remains 2 relatively unchanged after one hour, whereas the condensed water absorption continues to increase monotonically with time as water vapor deposition from the background continues.

The absorption peak at about 1585 cm in Figure attributed to monomeric NO . Smith and Guillory (1977) assigned absorption to NO , as determined directly from NO /O absorption was assigned to NO (V stretch) in films. A 1617 cm solid N , and 1610 cm in solid Ar. It seems reasonable expect that this absorption would shift to lower frequency in an NO matrix. The same NO peak is also evident in Figure 7 which is a spectrum of the residual from an NO sample at 95K. Also present in the same spectrum is a strong absorption at about 1285 cm However, by 95K all the NO had already desorbed (N.B.P. - 151.8 C), and although some residual N O might still have been present C), the complete absence of the 2200 cm (N.B.P. -88.5 (e.g., see Figure 2) argues against this. Thus, species must be responsible for the absorption peaks observed in Figure 7.

Since the monomeric NO feature is quite evident in Figure 2
7, it is reasonable to conclude that the other major features are

probably due to N O . Smith and Guillory (1977) reported a group of absorption peaks, including 1828, 1644, and 1290 cm, that appeared immediately upon warming NO/O solid films. In their work, these features became the most prominent in the spectrum after the O oxidation of NO was complete. Some additional work with NO /O films showed that at a high deposition rate these features were the only ones observed in addition to that for NO . In wellannealed films, these features disappeared and were replaced by others (attributed to D $\,$ -N $\,$ D $\,$). Thus, these peaks were assigned 2h to iso-N O . The well-annealed NO /O films were also observed to exhibit features at 1766, 1738, 1279, and 1265 cm that were observed to grow steadily during the experiments. These features were assigned to the D -N O isomer, which is the stable form in 2h the gas phase. Since the iso-N O thermally isomerizes into D -2 4 2h N O , this accounts for the continuous growth observed for the absorption features of the more stable isomer. Schaffert (1933) assigned absorption features at 1754 (y) and 1274 (y) cm in the sas phase. These assignments correspond well to the N O doublets given by Smith and Guillory (1977) for D -N O; -1 2h 2 4 1766 and 1738 correspond to Schaffert's 1764 cm feature, while 1279 and 1265 correspond to Schaffert's 1274 cm

Therefore, concerning Figure 7, the 1850, 1675 (multiplet), -1 and the 1285 cm $\,$ peaks are assigned to iso-N O , while the 1750 $\,$ -1 $\,$ 2 4 (minor), 1725, and 1250 cm $\,$ peaks are assigned to D $\,$ -N O . $\,$ 2 4

3.1-1.3. Oxysen and Ozone.

Representative spectra of pure oxygen and oxygen/ozone mixtures are presented in Figures 10 and 11, respectively.

Comparison of these two figures indicates that the absorption -1 features at 1020 and 2080 cm are attributable to 0. These -1 3 features are close to 1044 (y) and 2125 (y +y) cm observed by 3 1 3 Lucas (1977) for 0 in a solid nitrogen matrix. Absorptions in 3 solid Ar were observed at 1105 (y), 704 (y), and 1040 (y) cm

All the ozone in the current studies was deposited as 2.5 mol % 0 in 0 mixtures. The resultant samples could be 3 2 concentrated in ozone by allowing the 0 /0 mixture to impinge on 3 2 the sample disk at elevated temperatures. Since the normal boiling point of ozone is greater than that of oxygen (-111.9 C of o and -183. C for 0), ozone can be differentially 3 concentrated in the sample in this manner. An example of this procedure is shown by the spectra in Figure 12 (taken with CdTe -1 transmission windows) where the ozone absorption at 1020 cm becomes progressively more intense as 0 condenses and concentrates at 40K.

3.2. Condensed NO Behavior With Temperature.

One objective of the current work was to observe changes in condensed samples as a function of temperature. In Figure 13, spectra of a pure NO sample are presented as a function of temperature. Some definite qualitative behavior is readily apparent from this figure. Increasing the temperature from 19K to 35K and holding at the latter temperature for approximately five —1 minutes caused the 1745 cm — feature to grow and become larger—1 than the 1845 cm—absorption. After thirty minutes, and then one hour at 35K, the situation appeared to remain relatively unchanged. Increasing the temperature to 50K, however, resulted

in a definite increase in intensity of the high frequency feature with respect to the lower one. In order to investigate this behavior further, the spectrophotometer was set on the higher frequency absorption while the temperature was gradually varied. The results of this experiment are presented in Figure 14. As can be seen, the absorption intensity increased continuously from 35K to approximately 50K, whereupon it remained constant to about 63K, at which point it began to decrease quite rapidly.

This preceding behavior is consistent with the results of Smith and Guillory (1977) and our own previous work (Calo et al., 1981, 1982). Smith and Guillory (1977) found that annealing an NO/O sample by increasing the temperature to 35K and then recooling, resulted in a significant increase in the intensity of the absorption features at 1773 and 1861 cm ascribed to the cis-(NO) dimer. In Figure 14, increasing absorption is apparently due to dimer growth between 35K and 50K that appears to cease at the latter temperature. The rapid decrease beginning at 63K is due to thermal desorption of the sample. In our mass spectrometric work (Calo et al., 1981; cf. Figure 15), thermal desorption of NO clearly exhibited two desorption peaks at 64K and 82K. The first peak coincides almost exactly with the intensity decrease evident in Figure 14. The second peak, however, was not reflected in the IR data. This is explained by the fact that the thermal desorption data are differential in nature, whereas the IR data are integral; i.e., relatively little sample remains to provide strong absorption at 82K where the second desorption peak was observed.

3.3. NO/O /O Mixtures.

3 2

3.3-1. NO Oxidation in the Solid State - Literature.

The solid state analoss of the well-known sas phase reactions:

$$NO + NO + O \longrightarrow 2NO$$
 [R1]

and

$$NO + O \longrightarrow NO + O$$
 [R2]

have been previously reported in the literature. Lucas (1977) and Lucas and Pimentel (1979) studied NO/O /N mixtures (typically 3 2 1/30/250) on a 12K CsI window, and attributed the growth of the -1 1617 cm band to reaction [R2]. However, even though absorption by the NO product was clearly evident, the high dilution ratios 2 employed resulted in barely discernible changes in the reactant concentrations. The NO-O complex was hypothesized as the 3 reaction intermediate, and the reaction rate data were found to be first order with respect to the concentration of the complex, with an apparent rate constant:

$$-4$$
 -1 $= 9.9 \times 10$ $= 4 \times 100$ $= -1$

The activation energy of 106 cal/s mol is on the order of that required for orientation rearrangement in rare sas matrices, and more than an order of magnitude less than the 2.3 kcal/s mol reported for the sas phase version of reaction [R2]. It was, therefore, hypothesized that matrix rearrangement could be the rate-determining step, although the reason why the reaction should proceed without any activation energy once the reactants are properly oriented was not resolved.

Smith and Guillory (1977, 1977a) observed the overall reaction [R1] for NO in solid oxygen matrices. These workers were able to directly resolve and observe the kinetic mechanism in two distinct steps:

$$cis-(NO) + O ---> iso-N O$$
 [R1-b]
2 2 2 2 4

Actually, the details of the mechanism include an initial formation of the more stable D -N D, followed by a very rapid 2h 24 "uphill" isomerization to the more unstable iso-form (Smith and Guillory, 1977a). It was also stated that this mechanism appears to be the equivalent of the corresponding gas phase reaction, but that in the solid, case effects do not allow the two product molecules to separate.

Decomposition of the cis-(NO) dimer was found to follow 2 first order kinetics with a rate constant:

$$-2$$
 -1 $k = 4.25 \times 10 \text{ exp}(-105/RT), s$ (2)

Since the observed activation energy of 105 cal/s mol is virtually the same as that for oxidation by ozone in the work of Lucas and Pimentel (1979), it is possible that orientation constraints are rate-determining. More accurately, tunneling was hypothesized to account for the observed isotope effect at 13K, while the orientational requirement was invoked to account for the extremely low frequency factor observed.

3.3-2. Current Observations.

The infrared spectrum presented in Figure 16 was taken immediately following deposition of NO on an O /O layer. The two absorption features indicative of NO are clearly evident at about 1845 and 1740 cm. Unlike the pure NO spectrum presented in Figure 5, however, both features are significantly broader (especially the higher frequency peak), and (more obviously) the relative intensities of the two peaks are reversed. Also clearly evident are very strong absorption features indicative of NO at about 1570 cm , iso-N O at 1850 (superimposed on NO/(NO) absorption), 1675 (shoulder), and 1285 and D -N O at 1750 and 1725 (superimposed on 2 4 2h absorption) and 1250 cm

Obviously, the spectrum in Figure 16 exhibits the results of large and rapid oxidation of NO by both O and O . Since the primary product of the O oxidation reaction in the solid state is iso-N O (a la Smith and Guillory, 1977a), the large amount of evident in Figure 16 may be the result of direct O oxidation (a la Lucas, 1977, and Lucas and Pimentel, 1979). However, significant amounts of N O are also evident, implying that either the O oxidation mechanism was also operative and/or some formed by O oxidation subsequently dimerized to N O . of the NO the oxidation reactions had to have occurred any event, relatively rapidly in order to produce such immediate and intense product features. The half-life of NO due to the O mechanism, according to the data of Smith and Guillory (1977a) is about 1.6 min. This time scale is consistent with experimental observations. The half-life of NO due to

reaction mechanism, however, (according to Lucas and Pimentel, 1979) is about a factor of 43 greater, or approximately 1.2 hours. This latter time scale is less relevant to the experiment represented by Figure 16. However, due to the layered deposition mode of the experiment, a large amount of NO-O complex could 3 have been formed at the NO-O /O interface, resulting in a 2 3 significant contribution to the product concentration within the time scale of the experiment. Thus, both mechanisms probably contribute significantly to the NO peak in Figure 16.

Several changes occur upon warming of the sample represented in Figure 16. These become evident upon comparison of the spectra in Figures 16 (29K) and 17 (70K):

- (1) The 1845 cm absorption steadily increases, and the -1 shoulder at about 1810 cm in Figure 16 gradually disappears. This is interpreted as indicating the gradual disappearance of NO and cis-(NO) due to reaction and desorption, and appearance of iso-NO product due to reaction.
- (2) The 1740 cm absorption steadily decreases, indicative of cis-(NO) dimer depletion.
- (3) The monomeric NO absorption at 1570 cm steadily increases.
- (4) The D -N D features at ~1750, 1725, and 1250 cm $^{2}\rm{h}$ $^{2}\rm{A}$ increase markedly.
- (5) The iso-N O features at 1850, 1675, and 1285 cm $$2\ 4$$ increase markedly.
- (6) The ozone absorption at 1020 cm decreases steadily.

 All the preceding observations are indicative of a significant

oxidation of NO to NO /N O $\,$ in the solid sample during warm-up. 2 - 2 - 4

3.4. Cryosenic Immersion Studies.

3.4-1. Initial Experiments.

Under experimental conditions similar to those used here in previous work (Calo et al., 1981, 1982) high levels of NO were 2 detected with the NO chemiluminescence analyzer upon complete x rapid desorption of NO samples with ambient temperature nitrogen.

But in Figures 5 and 13 the NO absorption peak at 1585 cm is 2 notably absent, and it only appears for very large NO samples, as in Figure 6. More notably, however, it does not appear in Figure 13 as the temperature of the NO sample is increased to desorption. Thus, no NO self-disproportionation, according to the stoichiometry,

$$4N0 ---> 2N0 + N$$
 [R3]

(see Calo et al., 1981, 1982) is evident from the IR spectra, although it is readily apparent from thermal desorption mass spectrometry and NO chemiluminescence. In an attempt to resolve x this apparent discrepancy, it was decided to examine some NO samples gas chromatographically before and after freezing out on the walls of a glass vial by immersion in liquid helium.

A 125 ml gas sampling bulb was filed to 2 psig with NO from the gas cylinder (Linde, 98.5 % minimum purity). A sample of this gas, run in a Perkin-Elmer Sigma 3B gas chromatograph with a carbosphere column (6' x 1/8" O.D. teflon tubing packed with 100/120 mesh carbosphere) at room temperature (i.e., oven, injection port, and thermal conductivity detector), yielded a weight ratio of NO_/NO=0.065 (0.044 molar ratio). In order to

obtain a positive identification of the resultant GC peaks, 50 gcm of oxygen was added to the 125 ml gas sampling bulb at 2 psig. An immediate exothermic reaction occurred, resulting in the appearance of the familiar brownish color of NO gas, and a concomitant pressure reduction of about -2.2 psig. Obviously, the well-known reaction, [R1], had occurred. Subsequent GC analysis revealed that the NO/NO weight ratio had increased to 1.88.

These preliminary tests substantiated that the GC was performing as expected.

In the helium immersion experiment, a 40 ml amber glass vial with a screw cap septum (teflon/silicone) was filled approximately 5.8 psig with NO. GC spectra were taken before and immersion in liquid helium (for five minutes). difference was observed in the NO /NO ratio before and after immmersion. This result was puzzling at the time since all other indications were that considerable conversion should have evident. Subsequent immersion studies followed das chromatographic (Poropak T column, 10' x 2mm) analyses yielded similar results, although the chemiluminescence consistently indicated significant NO self-disproportionation upon thermal desorption from the CdTe IR sample window. Ιn addition, visual observations of color changes in solid NO samples subsequent to cryosenic immersion (see section 3.4-2.) supported the observation that NO self-disproportionation does indeed occur as a result of the condensation cycle.

The visual observation experiments (see section 3.4-2.) also finally helped resolve the discrepancy of the lack of NO $_{_}$

detection in the evaporated sample. After warm-up of condensed NO samples, it was noted that the brownish color of NO gas resulting from NO self-disproportionation showed a marked gradation with vertical position in the gas sample apparatus (cf. Figure 18), with NO concentrating preferentially in the lower dip tube and NO in the upper sample bulb. This was not the result of the slight molecular weight difference per se, but rather as a result of fractionation of the solid sample as it evaporated. Upon removing the dip tube with the condensed sample from the liquid cryosen, NO desorbed first as the sample warmed, filling both the lower dip tube and the upper sas sample bulb. The more condensable NO desorbed at a time considerably later than the bulk of the NO, and concentrated in the lower dip tube where the entire condensed sample originally resided. Thus, all the gas samples drawn off from the upper bulb for gas analysis were concentrated in NO and did not reflect the true extent volumetric conversion to NO .

2

3.4-2. Visual Observations.

In order to investigate the condensed phase NO self-disproportionation and O exidation reactions further, some $\frac{2}{2}$ experiments were performed in which NO and NO/O samples were immersed in liquid nitrogen and liquid helium, and the resultant condensed samples were allowed to warm while under visual observation.

The basic apparatus for these studies is shown in the photograph in Figure 18. The gas samples were initially charged to the larger upper sampling bulb. The sample was then evacuated

into the lower, smaller dip tube (immersed in the liquid cryogen) by opening the interconnecting stopcock. In order to more clearly explain the subsequent thermal desorption behavior of the condensed samples, color photographs are used to supplement the written description.

3.4-2.1. NO Experiments.

Pure NO, direct from its cylinder, was admitted to the upper, larger sample bulb shown in Figure 18, to 3 psig at 20 C. This gas was found to have an NO/NO ratio of 0.988 by chemiluminescence, and 0.985 by gas chromatography (Poropak column). Thus, initially, the sample was no greater than 1.5% NO (i.e., if all the NO except NO was NO). The still empty dip tube was immersed in a dewar of LN for a few minutes before the stopcock between the sample bulb and the dip tube was opened evacuate the sample bulb. After a few seconds, the LN dewar was removed, and the dip tube was observed and photographed as condensed samples warmed. The photographs in Figure 19 show the sequence of events. Figure 19(a) shows the appearance of the dip tube immediately after removal of the LN dewar. The walls are frosted over, and a greenish-yellow liquid is clearly evident at the bottom of the tube. Immediately upon condensation, this liquid is straw-yellow in color, but acquires a more marked freenish tinge as the sample warms. As the liquid evaporates, the tube fills rapidly with gaseous NO since it has a much lower N.B.P. = -151.74 C, M.P. = -163.51 C; boiling point than NO (NO: NO: N.B.P. = 21.2 C, M.P. = -11.2 C), while the liquid at the bottom becomes more greenish (see Figure 19(b)). In Figure 19(c), a distinct blue ring can be observed at the top of the liquid. After most of the sample has evaporated, the remaining liquid is deep blue, and after complete evaporation, the final gas phase has a marked brownish tinge indicative of NO. Since this color was not in evidence in the original gas, and since care was taken to insure that no other oxidants were admitted during the process described, the NO must have self-disproportionated to a significant extent. This result is totally consistent with our thermal desorption studies from the cryogenic refrigerator IR sample window.

It is known (Chilton, 1968) that nitrogen peroxide (i.e., the equilibrium mixture of NO and NO) is yellow in color, and that dinitrosen trioxide, NO, forms a liquid with a deep blue color. Thus the explanation for the observations reported above seems to be that enough NO is present initially, and/or formed very rapidly, to give the initial resultant liquid its yellow color, but that as the tube warms, NO progressively reacts with nitrosen peroxide to form dinitrosen trioxide, giving the liquid a progressively greener tinge. The blue ring above the greenishyellow liquid in Figure 19(c) can be explained by the sas reaction of NO and NO above the liquid to form dinitrogen trioxide which condenses on the walls at a point that is still below the ~-40 C required to condense the compound. In the vapor N O dissociates extensively to NO and NO; in fact, the vapor above liquid dinitrogen trioxide consists of almost pure NO (Chilton, 1968). The final sas mixture is probably almost all NO and NO , from which the brownish color of the final gas mixture derives.

3.4-2.2. NO/O Experiments.

Other experiments were conducted to observe the effect condensed O on NO. In these experiments, after complete evacuation of the sample bulb, pure oxygen was admitted to pressure of -15 in. Hs. With the dip tube immersed in LN , stopcock was opened, thereby completely transferring the oxygen sample to the dip tube. After closing the stopcock, the sample tube was flushed with helium and evacuated once again. Pure NO, directly from the sas cylinder, was charsed to the sample bulb to 3 psis at 20 C. And, once again, with the dip tube immersed, the NO sample was completely transferred to the dip tube by opening the stopcock. The resultant sample was thus approximately 70.6% NO and 29.4% O . After a few seconds, the LN dewar was removed and the changes in the sample observed. Figure 20(a) shows appearance of the dip tube immediately after removing the dewar. The resultant frost is obviously multicolored. Initially, are definite layers of blue, green, and yellow. As the frost melts (Figure 20(b) and 20(c)), oranges, reds, and violets appear. After these transient species disappear, only blue liquid droplets, indicative of dinitrogen trioxide, remain (Figure 20(d)). These blue liquid droplets are also quite evident Figures 20(b,c), As previously, due to its lower melting point, the NO desorbs first, leaving the blue liquid NO behind. The oranges, reds, and violets in Figures 20(a,b,c) are evidently transient intermediates involved in the oxidation NO. Figure 20(e) shows the appearance of the sample after most of it has evaporated. The brownish color of NO sas is clearly

evident, as well as a dark blue pool of liquid N O at the $$2\,3$$ bottom. In Figure 20(f), taken after the entire sample had evaporated, only the dark brownish color of NO remains.

3.4-2.3. Liquid Helium Experiments.

Due to the temperature limitation imposed by the use of LN , both NO and O were actually condensed in the liquid, rather than the solid state. In order to assess whether any differences in behavior could be attributed to this fact, some experiments, similar to the preceding, were performed with liquid helium (LHe). The results of these experiments were qualitatively similar. For initially colorless pure NO samples, condensation/evaporation process produced a gas sample with a definite brownish color, thereby, once again, substantiating NO self-disproportionation. The qualitative observations for NO/O samples were also similar, except that rapid and heavy frost deposition on the outside of the dip tube made clear observations quite difficult.

3.4-3. Experiments With H O.

In addition to the preceding experiments, the effect of water on NO conversion was also investigated. In one such 3 experiment, 10 cm of oxygen was added to an NO gas sample with an NO/NO weight ratio of 0.16, at atmospheric pressure. As expected, the NO/NO ratio increased to 0.845. To this mixture was added 1 ml of liquid distilled water. The NO/NO ratio increased further to 1.84. In order to determine whether dissolved oxygen in the water might have been responsible for the

additional conversion, the sample vial was charged with a small amount of liquid water which was then pumped off until all the visible liquid evaporated and about 100 Um of water vapor remained. NO sample gas was then charged to the vial to a total pressure of one atmosphere. Once again, the results were similar; i.e., the final NO /NO weight ratio was arout 2.125, thereby indicating a large conversion of NO to NO due to water. [Since both oxyacids of nitrogen require NO for formation with water (see section 3.5, reactions [R4] and [R5]), enough NO must have been present initially to initiate the conversion process. Once formed, the acids readily decompose, since temperature the equilibrium constants for formation of the acids are relatively low. This yields more NO (reaction [R5]) which can then further react with excess water to produce additional acid, etc. Thus, in this manner the acids can "catalytically" oxidize NO.]

These experiments indicated that the water-related aspects of interconversion among the oxides of nitrogen could be a central issue in understanding the behavior of NO in cryogenic whole air samples. Further investigations concerning this facet are reported in the next section.

3.5. The Role of H $\scriptstyle O$ in NO Self-Disproportionation and Oxidation.

The chemistry of water and the oxides of nitrosen is quite important both from an atmospheric viewpoint and commercially in the manufacture of nitric acid. The two oxyacids of most interest here are nitrous acid, HNO , and nitric acid, HNO . Foth of these $$\rm 2$$ species are known to occur in the stratosphere and are important

participants in the H-NO cycle (e.s. see "The Stratosphere x 1981...," 1982), as well as in the currently popularized issues related to acid rain. Since water is a relatively abundant minor stratospheric constituent (~3 ppm), it is definitely present in whole air samples. Due to its intimate involvement in NO chemistry its effect on the solid sample and subsequently upon desorption, is of considerable interest. In view of this situation, the following experiments were conducted in order to define the effect of H O on NO conversion.

3.5-1. NO Self-Disproportionation in the Presence of H O.

It was previously noted that in Figures 5 and 13 the NO $_{\rm 2}$ absorption peak, as well as all the NO features, were notably $_{\rm 2}$ 4 absent from the IR spectra even upon warming to desorption. However, as the cryogenic immersion studies in the previous section, and mass spectrometric and chemiluminescence studies have shown (see Calo et al., 1981), NO does self-disproportionate significantly into NO and N a la reaction [R3]. Thus, there $_{\rm 2}$ 2 must be a plausible explanation for why no absorption due to NO is observed in the IR spectra of Figures 5 and 13.

In both these figures, a significant absorption due to condensed water vapor is quite evident in the omnipresent broad \$-1\$ feature at about 3150 cm . This condensed water originates primarily from deposition of background water vapor in the refrigerator vacuum shroud. In order to investigate the correlation between the appearance of the NO absorption peak and condensed water vapor, a series of experiments was conducted in which the amount of water vapor was varied. The auxiliary

cryosenic refriserator was used as a cryopump to minimize the accumulation of water vapor from the background, and additional controlled amounts of water were admitted as described in the experimental procedures outlined in Appendix B. Although it was difficult to accurately determine the total absolute amount of water deposited onto the IR sample window during each experiment, the relative amount of water in excess of the background present with the cryopump in operation was estimated as the difference between the peak absorbance and an arbitrary baseline value equivalent to 90% transmission.

The results of four experiments conducted by deposition 50 mmol of NO on a substrate of varying amounts of water vapor (i.e., Type I experiment; see section 3.5-2.) are summarized in Table I. The total conversion to NO upon thermal desorption for each case was determined using the procedure outlined in Appendix B. Two interesting results are evident upon examination of the data in Table I. First, the intensity of the NO absorption peak is inversely proportional to the amount of water vapor present in the substrate; and second, the total conversion to NO remains relatively constant with respect to the total amount of water deposited. In addition, the two absorption peaks indicative of pure NO were observed to become more nearly equal with increasing absorption, indicative of increasing iso-N O NO previously (see section 3.3-2.). Thus, in the presence of almost no water (e.g., run 9) the products of NO self-disproportionation are clearly evident in the IR spectra; whereas in the presence of larger amounts of water they are not apparent. However, in all cases the eventual final conversion to NO remains approximately constant.

One explanation for this behavior is that in the presence of significant amounts of water, the NO resulting from self-2 disproportionation is rapidly converted to the two oxyacids of nitrogen, HNO and HNO; however, as explained below, unequivocal 2 3 proof of this process was not obtained. The basic stoichiometries for the production of the oxyacids are:

$$NO + NO + H O ---> 2HNO$$
 [R4]

and

$$3NO + H O ---> 2HNO + NO$$
 [R5] 2 2 3

Clearly evident from these reactions is that the statement quoted from Lucas (1977) in section 3.1-1.2, concerning the interrelated nature of the oxides of nitrogen, also readily extends to oxyacids. As presented by Ashmore and Tyler (1961), for example, presence of nitrous acid in the vapor Phase inevitably results in a mixture of NO, NO, NO, NO, HNO, HNO, and HO. The chemical equilibria among the various hishly species coupled, and the thermodynamic properties of the reactions well-known. Since both reactions [R4] and [R5] are exothermic, their equilibrium constants decrease with increasing temperature. The resultant equilibrium constant for [R4] at 20 C is about 1.56 atm , while at 25 C the corresponding equilibrium constant for . Thus, formation of reaction [R5] is approximately 0.01 atm is thermodynamically favored under conditions prevalent in the condensed cryosenic samples of interest in current work, while significant decomposition of the acids favored in the resultant gas phase from thermal desorption nf

these samples that is fed to the chemiluminescence analyzer at ambient temperature. As an example of the latter point, Ashmore and Tyler (1961) sive the following vapor phase compositions for reaction mixtures initially consisting of NO , NO, and H O: $\frac{1}{2}$

0 T(C) N O NO NO H O HNO HNO 2 3 2 2 4 2 2 0.0275 0.0060 0.0142 0.9051 0.0229 0.0243 0.0311 0.0001 0.0008 0.7753 0.1739 0.0187

These figures show quite clearly that that acids are not favored in the vapor phase at room temperature and above; especially $\frac{1}{2}$

3 There are some serious problems associated with unambiguous identification of IR absorption features attributable to the acids in the presence of large amounts of NO, NO, and HO. This is, of course, due to the fact that the absorption features of the oxyacids of nitrosen are superimposed on the very strong fundamental O-H, N-O, and N=O frequencies of the reactants. Jones al (1951) studied the IR spectra of HNO in the vapor was concluded that HNO exists as two tautomeric forms, and trans (with the latter being the more stable, and thus more prevalent form -- approximately a factor of three greater at room temperature). Absorptions due to: O-H stretch () at 3426 (cis) and 3590 (trans); O-H bend (>) at 1260 (trans) and 1292 (cis); O-N stretch (V) at 794 (trans) and 856 (cis); and O=N stretch (¥) at 1696 (trans) cm, were reported. The absorption characteristics of HNO vapor were examined by Cohn et al. (1952). The following major features were evident: O-H stretch at 3560; O-H bending at 1335; and NO stretch at 1320 and -1 2 1710 cm. Even a cursory examination of these absorptions, allowing for shifts due to the solid matrix, clearly indicates the problem of superposition on initial reactant peaks.

Attempts at positive identification of the acids by gas chromatography, using both the carbosphere and Poropak T columns, met with problems similar to those for the IR spectra; i.e., acid peaks could not be separated from those of the reactant species.

NO chemiluminescence, of course, results in the acids showing up x as additional NO due to thermal decomposition, and thus is also x incapable of providing the necessary discrimination. Thus, although a mechanism involving the formation of the acids in the condensed sample can explain the current observations, direct evidence of their presence was not obtained.

3.5-2. NO Oxidation in the Presence of H O.

In order to explore the effects of additional oxidation in the condensed sample due to 0 and 0, on the final conversion 3 2 of NO upon thermal reseneration, a number of experiments were conducted. These were classified according to the nature of the sample deposition mode, as set forth in Table II. All of the experiments reported on in this section were performed in accordance with the procedures outlined in Appendix B.

The results of a number of these types of experiments are summarized in Table III. The relative water content in Table III is taken as the difference between the peak absorbance at 3200 -1 cm , measured immediately after sample deposition, and the

procedure was used to determine the relative NO content using 2 the 1585 cm absorption peak. The NO conversions were determined from the post-reseneration sas sample, as measured with the chemiluminescence analyzer, in accordance with the procedure described in Appendix B.

The results resarding total conversion to NO as a function of relative water content are summarized in Figure 21. The effect of the additional conversion to NO by oxidation in the condensed state is quite evident. In addition, there is a definite trend in the manner in which the relative water content affects total conversion. As shown in Figure 21, at low relative water content the effect on NO conversion increases rapidly. However, at higher water content the NO conversion approaches a limiting asymptotic value; i.e., after a certain amount of water is present, additional water has no effect. This result can also be explained in terms of an acid intermediate conversion mechanism, proposed in the preceding section, in terms of the relative amounts of H O and NO . With NO available in considerable excess due to production in the condensed phase by O (beyond that expected for just self-disproportionation), additional conversion of NO can occur via reaction [R4] to produce nitrous acid. However, as the amount of water is increased, a point is reached where the NO availability for acid production becomes limiting, in which case, additional conversion of NO is reduced. Of course, this mechanism implicitly assumes that thermodynamic equilibrium overwhelminsly favors the acid, and that the conversion process,

although perhaps initially rapid at interfacial points of contact, eventually becomes kinetically limited and slow. From the data presented in sections 3.3-1 and 3.5-1, the formation of the acid is indeed thermodynamically favored at low temperature, and as the available amount of NO decreases, the conversion 2 process should also slow significantly. Thus, the situation hypothesized seems likely. This explanation is also consistent with the NO self-disproportionation results presented in section 3.5-1, if the availability of NO is already limiting due to the lower inherent conversions.

The correlation between the NO absorption peak at 1585 cm and the overall conversion of NO, however, seems to be less clear. In certain experiment sets in Table III (e.g., Runs 13, 26, and 28; Type VII), the NO peak clearly increases as the water content decreases, exactly as in disproportionation experiments (Runs 4, 9, 18, and 24). But in other sets, the NO absorption peak either remained relatively constant (e.s., Runs 15, 22, and 25), or actually decreased slightly (Runs 3, 21, and 31). The detailed behavior of NO in the condensed sample is complicated by the larger production rate due to the oxidants reacting with NO, as well as the competing reaction paths to N O and the acids. For example, in Figure 22 (Run 15; Type IV), the features characteristic of large amounts N O are readily apparent (compare Figures 7 and 22). Thus, the behavior of monomeric NO in these types of condensed samples becomes a more complex function of the total and relative amounts of NO, HO, and oxidants., than in the self-disproportionation case.

Of all the sample/deposition types, IV exhibited the highest NO conversion by a significant amount (cf. Table III and/or Figure 21). Type IV differs from types II and III due to the 20% more \mathbf{O} , and also due to the co-deposition of $N\mathbf{O}$ and \mathbf{O} . Admittedly, the enhanced conversion of type IV could be due to the greater interfacial area available for reaction in the condensed phase because of the more homogeneous nature of the sample, and/or some gas phase conversion during the deposition process. However, since co-deposition did not seem to be a very important factor in the type VII experiments (which differ from types V and VI in the same manner as the type IV differ from types II and III), the controlling factor responsible for the bulk of the higher conversions observed in the type IV experiments clearly seems to be the additional O . This is also supported by a comparison of the type II/III results (50 mmol 0) and the type V/VI (58.5 mmol 0 , 1.5 mmol 0). Furthermore, that sas phase conversion during the deposition process is significant, is supported by the NO conversions for the type VII (co-deposition) experiments, that are actually slightly less than those for the type V/VI (layered deposition) experiments.

It is also interesting to note that in the layered deposition experiments, the order of deposition seems to make no observable difference (e.g., compare types II/III to types V/VI). This seems to imply that the interfacial area between the NO and O layers is the most important factor. This interface remains at x the same distance from the H O layer no matter whether NO or O x deposited first. Thus, the rate of interdiffusion between

oxidized NO and H O remains the same during any of the acid formation processes.

The results of the type IV and VII experiments indicate a significantly lower NO conversion efficiency for O in comparison to O . Averaging the type VII results yields an NO conversion of 0.6, whereas the value for the type IV results is about 0.7. Thus, for the 2.5% reduction in O from the type VII to the type IV experiments, an apparent 14.3% reduction in NO conversion results. On the basis of just stoichiometry (according to [R1] and [R2]) this reduction in O and replacement by an equal molar should result in only a 1.25% reduction in NO conversion, if the product O in [R2] is not available to further convert NO according to [R1]. Obviously, then the net effect is not stoichiometrically, but perhaps kinetically limited. This observation is also consistent with the relative magnitudes of two solid phase rate constants (as given in section $K / K = 2.3 \times 10$ 03 02

In summary, the results presented in Table III and Figure 21 are consistent with significant oxidation of NO by O in the condensed phase, and the enhancement of NO conversion in the presence of condensed water via a mechanism involving the oxyacids of nitrogen.

4.0. CONCLUSIONS.

This report conveys the results of an investigation concerned with the effects of chemical reactions in cryogenically condensed NO /O /H O samples on the alteration of sample \times \times 2 composition upon subsequent thermal desorption. These studies

were undertaken to elucidate the relevant mechanisms and improve the understanding of these processes as they relate to the analysis of cryosenically-collected stratospheric whole air samples acquired in the balloon-borne sampling project of the composition task of the Stratospheric Environment Program of the Air Force Geophysics Laboratory.

The major features of infrared spectra of condensed samples were interpreted in terms of assignments to the various species of interest. Experiments with NO substantiated that condensed NO self-disproportionates to a significant degree upon thermal regeneration. Furthermore, it was found that the intensity of the absorption peak indicative of NO formation in the condensed sample was inversely proportional to the total amount of water in the sample, although'the final conversion to NO upon thermal desorption remained approximately constant. This behavior was interpreted as an NO conversion mechanism involving the nitrogen oxyacids, nitrous and nitric acids, in the presence of large amounts of water in the condensed sample. This could not be directly proven since the infrared absorption features of acids are obscured by the N-O and O-H features, and the two gas chromatographic column packings that were tried could not provide unambiguous separation of the acids. However, the fact that water does play a significant role in total NO conversion was shown in experiments including O and O in the condensed sample. In these experiments, the O was observed to convert NO to NO in the condensed sample, which then presumably reacted readily to acids, resulting in significantly increased conversion to NO

upon thermal desorption, over and above that measured for NO alone.

In addition to the infrared/NO chemiluminescence studies, X separate sample immersion studies in liquid nitrogen and helium were conducted which permitted visual observations of the condensed samples upon warming. These studies qualitatively substantiated the other NO conversion results, and were used as an aid in understanding and interpreting the other experiments.

The results of this work indicate that interconversion of the oxides of nitrogen in condensed samples, especially in the presence of water vapor, is a significant process under certain conditions. However, additional work involving careful cryogenic deposition of very small amounts of the various species, combined with perhaps high resolution FTIR, is definitely needed in order to quantitatively assess the relative importance of these same processes in the much more highly dilute stratospheric cryogenic whole air samples.

5.0. REFERENCES.

Arin, L.M. and P. Warneck, J. Chem. Phys., 26, 1514, 1972.

Ashmore, P.G. and B.J. Tyler, J. Chem. Soc. (London) 1017 (1961).

Bellamy, L.J., The Infra=red Specira of Complex Molecules, Wiley, N.Y., 1975.

Calo, J.M., R.J. Fezza, and E.J. Dineen, "Gas-Surface Interactions in Cryosenic Whole Air Sampling," Final Report, Air Force Geophysics Laboratory, Hansoom AFE, MA, AFGL-TR-81-0162, May 1981, ADA108255.

Calo, J.M., R.J. Fezza, and G.F. Ryan, "Chemical Reactions and Molecular Assresation in Cryosenic Whole Air Sample Matrices," Final Report, Air Force Geophysics Laboratory, Hanscom AFB, MA, AFGL-TR-82-0061, January 1982, ADA114661.

Chilton, T.H., Strong Water. Nitric Acid: Sources. Methods of Manufacture. and Uses, MIT Press, Cambridge, MA, 1968.

Cohn, H., C.K. Insold, and H.G. Poole, J. Chem. Soc. (London) 4272 (1952).

Dietz, V.R. and J.L. Bitner, Carbon 11, 393 (1973).

Fateley, W.G., H.A. Bent, and P. Crawford, Jr., J. Chem. Phys. 31, 204 (1959).

Gallasher, C.C., C.A. Forsberg, R.V. Pieri, and G.A. Faucher, "Stratospheric Trace Gas Composition Studies Utilizing In Situ Cryosenic Whole-Air Sampling Methods," AFGL-TR-81-0071, Air Force Geophysics Laboratory, Hansoom AFB, MA, 1981, ADA104375.

Guillory, W.A. and C.E. Hunter, J. Chem. Phys. 50, 3516 (1969).

Hallam, H.E., and G.F. Scrimshaw, in Wibrational Spectroscopy of Irapped Species, H.E. Hallam, ed., Wiley, N.Y., 1973, pp. 12-66.

Jenkins, A.C., "Ozone Chemistry and Technology," Adv. Chem. Ser., American Chemical Society, Washington, D.C., 1959.

Jones, L.H., R.M. Badser, and G.E. Moore, J. Chem. Phys. 19, 1599 (1951).

Lucas, D., "Fast Reactions, Free Radicals, and Molecular Complexes Studies by the Matrix Isolation Technique," Ph.D. Thesis, University of California at Ferkley, 1977, Univ. Micro. 77-31, 448.

Lucas, D. and G.C. Pimentel, J. Phys. Chem. 83, 2311 (1979).

Marcus, R.A. and J.M. Fresco, J. Chem. Phys. 22, 564 (1957).

Schaffert, R., "The Infrared Absorption Spectra of NO2 and N204," J. Chem. Phys. 1, 507 (1933).

Smith, A.L., W.E. Keller, and H.L. Johnston, "The Infrared and Raman Spectra of Condensed Nitric Oxide," J. Chem. Phys. 12, 187 (1951).

Smith, G.R. and W.A. Guillory, "Spectroscopy of the Thermal Oxidation of NO in Solid Oxygen at Cryogenic Temperatures," J. Mol. Spect. 68, 223 (1977a).

Smith, G.R. and W.A. Guillory, Int. J. Chem. Kinetics 9, 953 (1977a).

Snelson, A., "The Chemical Composition of the Atmosphere at 40,000 to 65,000 Feet Using a Modified Matrix Isolation Technique," Project Suggestion IITRI-72-107CX, IIT Research Institute, Chicago, 1972.

Varetti, E.L. and G.C. Pimentel, J. Chem. Phys. 55, 3813 (1971).

"The Stratosphere 1981. Theory and Measurements,"WMO Global Ozone Research and Monitorins Project, Report No. 11. May 1981, NASA/Goddard Space Flisht Center, Greenbelt, MD, January 1982.

Table I.

The effect of water on NO self-disproportionation.

Run #	Relative	Amount	Relatio	e Amount	NO
	of Water *		of NO * 2		Conversion
	^% T	<u> </u>	^% T ¯	_ <u> </u>	to NO x
18	69	0.632	1	0.005	0.364
24	31	0.183	2	0.010	0.361
4	9.5	0.048	5.5	0.027	0.348
9	5	0.025	17.5	0.094	0.383

^{90%} transmittance assumed as the baseline.

Table II.

Sample types and deposition modes.

Sample Type

Deposition Mode

I.	NO on H O substrate.
II.	NO layer on O layer on H O substrate.
III.	O layer on NO layer on H O substrate.
IV.	Homoseneous layer of NO and O on H O
	substrate (co-deposition of NO and O).
٧.	NO layer on 0 /O layer on H O substrate.
VI.	0 /0 layer on NO layer on H O substrate. 3 2
VII.	Homogeneous layer of NO and O /O on H O
	substrate (co-deposition of NO and O /O). 3 2

Table III.

The effect of water on NO conversion in NO/O mixtures. Run # Deposition NO NO Type (mmol) Conversion to NOx 0.005 I 50 0.632 0.364 18 24 I 50 0.183 0.001 0.353 0.048 0.027 0.340 Ι 50 0.094 9 I 50 0.025 0.376 0.165 0.141 0.551 6 ΙI 50 50 II 50 50 0.030 0.046 0.574 32 31 III 50 50 0.539 0.097 0.581 50 0.210 0.051 0.573 21 III 50 3 III 50 50 0.057 0.065 0.515 22 ΙV 50 60 0.106 0.242 0.739 0.040 0.230 0.718 15 ΙV 50 60 ΙV 50 60 0.018 0.234 0.645 25 50 1.5 0.326 0.062 0.703 Ų 58.5 33 50 1.5 0.025 0.051 0.615 23 Ų 58.5 0.671 50 1.5 0.097 0.079 27 VI 58.5 0.062 0.046 0.652 29 VI 50 58.5 1.5 0.158 0.595 26 VII 50 58.5 1.5 0.122 50 1.5 0.079 0.214 0.653 28 VII 58.5 0.010 0.255 0.546 VII 58.5 13

^{90%} transmittance assumed as the baseline.

Figure 1. Schematic of the experimental apparatus.

ASSESSED ASSESSED FRANCISCO LEGISLAND SESSESSED

Figure 2. Infrared spectrum of $\rm N_2O$ at 18K ($\rm CaF_2$ transmission windows).

Figure 4. Infrared background spectrum of empty cell at 16 K $(CaF_2 \text{ transmission windows}).$

クロマンシングルションシンシン 国際のカンシン 関係の対象の対象に対象の対象

Figure 5. Infrared spectrum of condensed NO at 17 K (CaF_2 transmission windows).

Figure 6. Infrared spectrum of condensed NO at 18 K for a large sample (${\rm CaF}_2$ transmission windows).

Figure 7. Infrared spectrum of residual from a condensed NO sample at 95 K.

Figure 8. Infrared spectra of condensed NO from Smith Keller, and Johnston (1951).

Spectra of nitric oxide solutions.

Figure 9. Infrared spectra of condensed NO in an ${\rm O_2}$ matrix from Smith and Guillory (1977).

, $0_2/NO \sim 180$: (a) immediately after deposition; (b) immediately after warming to 32 K and recooling to 13 K; (c) after ~ 40 min at 13 K. The solid bars in each trace mark 1861, 1773, and 1644 cm⁻¹.

KERKERSE ZZZZZZZ SECSSSSI WSSSSSSS VZZ

Figure 11. Infrared spectra of a 2.5 mol% 0_3 in 0_2 mixture as a function of temperature (CaF $_2$ transmission windows).

Figure 12. Concentration of condensed 0_3 from a 2.5 mol% 0_3 in 0_2 mixture (CdTe transmission windows).

Figure 13. Infrared spectra of condensed NO for T = 35 K (a), and T = 50 K (b) (CdTe transmission windows).

Figure 14. Behavior of the 1845 cm⁻¹ absorption feature in condensed NO as a function of temperature.

TEMPERATURE, K

al innation leavester

Figure 15. Mass spectrometric desorption spectra of NO for peaks $m/e \approx 30$ and 28 subsequent to deposition on gold-flashed stain less steel at 16 K. (from Calo et al., 1981).

STATE AND STATE OF THE PROPERTY OF THE PROPERTY STATES OF THE PROPERTY STATES OF THE PROPERTY OF THE PROPERTY

Figure 16. Infrared spectrum of condensed NO deposited on an $0_3/0_2$ substrate at 29 K (CaF $_2$ transmission windows).

PRINCE PERSONAL PROPERTY

Figure 17. Infrared spectrum of the residual from the $NO-O_3/O_2$ sample in Figure 16 at 70 K (CaF₂ transmission windows).

Figure 18. Photograph of apparatus for cryogenic immersion studies.

Figure 19. Photographs of cryogenic immersion studies with pure NO.

Figure 20. Photographs of cryogenic immersion studies with NO/O_2 mixtures.

PART ACCESSED. TOUGHER TOUGHT SECRETAR TOUGHT

SCORES SERVICE RESPONDE RESPONDE RESERVED RESPONDED FOR SERVICE RE

Figure 21. NO conversion as a function of relative water content.

LEGEND:

- TYPE I.
- △ TYPE II.
- ▲ TYPE III.
- O TYPE IV.
- TYPE V.
- ☐ TYPE VI.
- ◆ TYPE VII.

Figure 22. Infrared spectrum of condensed NO/O sample at 24K; Run 22, Type IV (see Table III).

Appendix A.

EXPERIMENTAL APPARATUS

A.1. Sample Cell.

The heart of the experimental apparatus was the IR transmission window/cryosurface. In the current work, this window was a polycrystalline CdTe disk, 1 in. in diameter and 0.125 in. —1 in thickness (~65% transmission, 4000-400 cm). This window was clamped in a copper holder assembly (see Figure A-1), which was in turn screwed into the cold end of a closed-cycle, helium refligerator (Air Products Displex CS202). Good thermal contact was insured by the insertion of indium strips between the contact surfaces. The window temperature was monitored by a silicon diode sensor and disital thermometer/controller (Lake-Shore Cryotronics, DRC-7C).

The refriserator expander and window holder assembly were enclosed in a vacuum shroud (see Figure A-2). This shroud was constructed from a standard 2.5 in. Excelon clear PVC tee machined to the dimensions indicated in Figure A-2. Two standard 2.5 in. PVC end caps were machined to accomposate the two IR transmission windows (for the entering and exiting IR beam) which were cemented to the ends of the straight run of the tee. Two different types of transmission windows were used on the cell during the current work: CaF (typical background spectrum in -1 2 Figure A-3; ~900 cm cutoff), and CdTe (typical background spectrum given in Figure A-4). Each types were 1 in. diameter disks, 0.125 in. thick.

The vacuum shroud is evacuated by a mechanical pump (Alcatel

2030, 425 1/min) baffled with a molecular sieve trap. In order to control the water vapor background in the vicinity of the sample window, it was found necessary to be able to cryogenically pump the vacuum shroud. This was accomplished with another closedcycle, helium refrigerator (Air Products Displex C5208L). This refrigerator and the two sample gas inlets were interfaced to the vacuum shroud via a specially-constructed manifold, shown in the photographs in Figure A-5. This manifold allows for the separate, simultaneous deposition of two gas samples and for the evacuation of the vacuum shroud by the auxiliary cryosenic refriserator. The entire apparatus is shown in the assembly photograph in Figure A-The auxiliary refrigerator could also be used as a source of helium gas to enable purging of the sample window before and during sample deposition to minimize accumulation of water vapor and other contaminants. The cold helium purse gas was produced from a gas cylinder of helium that was was passed through a copper heat exchanger, packed with copper shot that was mounted on the cold end of the auxiliary refrigerator.

The entire cryosenic refriserator/vacuum schroud assembly was alisned and positioned in the beam of a Perkin-Elmer 735B infrared spectrophotometer. The spectrophotometer was calibrated asainst a standard polystyrene sample (see Figure A-7), and in the single beam, calibrate mode on a background water vapor spectrum (see Figure A-8).

Sample sases were admitted to the system via the manifold shown in the photographs in Figure A-5. Both sample tubing inlets terminated at the circumference of the circular opening in the

copper window holder such that the sample gases flowed past close and parallel to the window surface. This mode of deposition resulted in a good, even coating of condensate over most of the window area.

A.2. NO Chemiluminescence Analyzer.

A ThermoElectron Model 10AR NO chemiluminescence analyzer X
was used to determine NO/NO ratios of desorbed samples and X
sample sases. The operatins principle of the analyzer relies on the reaction between ozone and NO to produce electronically excited nitrosen dioxide. Emission from this species is monitored with a photomultiplier tube and related to the absolute concentration of NO via a calibration procedure. In order to determine the concentration of total NO in the sample, the sas sample is first passed through a stainless steel reactor maintained at 650 C which quantitatively reduces NO to NO for detection using the ozone reaction exactly as in the NO mode.

A.3. Welsbach Ozonator.

Ozone was produced as an ozone-oxysen mixture in a model T-408 Welsbach high voltage discharge ozonator. To insure reproducibility of ozone concentrations, the ozonator was always set at an oxysen feed rate of 2 SLPM (standard liters per minute) at 8 psis, and only the primary voltage was varied to change the ozone concentration.

The ozonator was calibrated using a standard analytical technique. A schematic of the calibration apparatus is presented in Figure A-9. The materials employed were limited to glass, stainless steel, teflon, and tygon, as recommended by the

manufacturer. As shown in Figure A-9, the bulk of the ozonated oxygen was fed to a scrubber charged with a potassium iodide solution which chemically destroys ozone. A slipstream from the ozonator output was fed to a gas bubbler (medium porosity) containing 400 ml of 2% potassium iodide solution at approximately 0.3 1/min. In the bubbler, the reaction:

takes place. The sas, now stripped of ozone, passes through a pressure sause and then through a wet test meter, where its volume was recorded as a function of time. The iodine solution produced in the bubbler is then removed and acidified with 10 ml of 1M sulfuric acid, and titrated with either 0.1N or 0.01N sodium thiosulfate solution, depending on the expected concentration of the iodine solution. Starch solution was used as the indicator and is added when the bright yellow color of the solution begins to fade.

The data obtained from this procedure allowed the determination of ozone concentrations in the sample gas stream. The manufacturer of the ozonator claims that this calibration procedure is accurate $\pm 1\%$ of the amount of ozone in the sample stream down to concentrations of approximately 28 ppm.

Using this calibration procedure, the ozone contration in the oxygen stream was calibrated against the primary voltage of the Welsbach ozonator. It was found that high ozone concentrations up to 2.5% could be delivered reproducibly. This latter concentration was used in the current work.

Figure A-1. IR window holder assembly.

SIDE VIEW

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

Figure A-2. PUC vacuum shroud schematic

ALL DOTTON GUECOR WELLERS INVESTOR SESSION MATERIA

Property March 1978 (Sept. 1978)

Figure A-4. Typical background infrared spectrum with CdTe transmission windows.

Figure A-5. Photographs of the inlet manifold:

- (a) Side view, disconnected from apparatus showing deposition flow tubes and fittings.
- (b) Top view through auxiliary cryopump connection, disconnected from apparatus.
- (c) Side view, connected to the apparatus; i.e., to the auxiliary cryopump, flow metering valves, and copper block sample window holder.
- (d) Front view, connected to the apparatus.

(P)

(d)

Figure A-6. Photograph of the assembled apparatus.

Figure A-7. Infrared spectrum of standard polystyrene calibration film inserted between vacuum shroud window and infrared detector (Cell: T=300K, P< 1 mtorr). Inset: polystyrene test spectrum from Perkin-Elmer 735B instrument manual. (CdTe transmission windows.)

Figure A-8. Single beam background spectrum with water vapor bands; calibrate mode with nothing in reference beam, and sample beam blocked. Inset: Same spectrum from Perkin-Elmer 735B instrument manual. CdTe transmission windows.

Figure A-9. Schematic of the calibration apparatus for the ozonator.

The second of th

APPENDIX B.

EXPERIMENTAL PROCEDURES

In this appendix, the general experimental procedures are summarized for deposition/formation of the cryofrost samples, and subsequent infrared and NO chemiluminescence analysis. The x following descriptions make reference to the various parts of the experimental system as designated in Figure 1 of the text.

- B.1. Sample line clean-up and cool-down.
- 1. First, the IR cell (i.e., the Excelon PVC vacuum shroud), the auxiliary cryopump (aluminum) shroud, and the sample lines were evacuated with a mechanical vacuum pump to < 1 mtorr.
- 2. After the entire system was evacuated, the auxiliary cryopump (i.e., the CS208L refriserator) was be started. For experiments requiring a low water vapor background pressure, the system pumping was transferred to the auxiliary cryopump, after attaining operating temperature, by simply closing the foreline bellows value.
- 3. After turning on the power to all the electrical equipment and allowing sufficient warmup time, the NO analyzer chamber and bypass pumps could be started, as well as the pure oxygen flow to the analyzer (88 psig).
- 4. The infrared spectrophotometer was then set to monitor —1 the condensed water vapor absorption peak at 3150 cm , and the recorder was set to record the IR output and the temperature indicator. If additional water vapor deposition was desired, the liquid water reservoir was evacuated (with the foreline value

closed), as well as the 0 /0 feed line, until the liquid was 3 2 completely desassed.

B.2. Sample deposition and IR analysis.

- 1. With the sample feed lines pursed and backfilled, and the fixed volume sample lines evacuated, the sample meterins valves were fully closed and the sample lines were charsed by openins the charsins valves. Once the sample lines were filled, the charsins valves were closed. The samples are then deposited on the cold window by slowins openins the meterins valves; either individually, or simultaneously, depending on the specific type of experiment. The amount of sample actually deposited was calculated from the charse volume and pressure.
- 2. Infrared spectrophotometer scans could then be run as appropriate, depending on the specific experiment.

B.3. Flash desorption and NO analyzer mode.

- 1. The helium line pressure was set to -4 in. Hs, and the NO analyzer was flushed with helium. The strip chart recorder x was zeroed to the output of the analyzer. The background suppression was set and the analyzer ozone senerator was activated. The background levels in the NO and NO modes were recorded. The bypass flowrate was set to ~1.5 SCFM of air.
- 2. The foreline and auxiliary cryopump values were closed. The sample window refriserator was turned off, and the heater was turned on (optional). The sample was then ready for desorption.
- 3. When the sample temperature attained 150K, the IR cell was backfilled with helium through the sample transfer line, using the transfer value to meter in the helium at a low rate.

The analyzer bypass flowrate was watched to insure that it did not drop below 1.25 SCFM. When the IR cell pressure read -4 in. Hs, both the transfer value and the purse value at the rear of the IR cell shroud, were fully opened.

4. With the analyzer in the NO mode and recording a baseline, the helium bypass valve was closed. A mixture of the sample and the helium carrier gas then flowed through the transfer line. When the output peaked, the analyzer was quickly switched to the NO mode and the value recorded. Thereafter, the X NO and NO modes were monitored alternately in order to record the decay curves for each mode. The corresponding peak areas were then calculated to establish the overall conversion for each experiment.

B.4. NO conversion calculations.

The experimental procedure for alternate recording of the NO and NO signals from the chemiluminescence analyzer result in x peaks with an abrupt rise and a near-exponential decay. Thus, total amounts of NO and NO were determined by integrating the x experimental response curves assuming:

$$C(t) = C exp(kt); (B-1)$$

the area of which is given by:

Area =
$$\int_{0}^{C} C \exp(kt) = -C/k$$
 (B-2)

A value of k was determined at each recorded data point. These were then averaged to yield the k value used in Eq. (B-2). In this manner, total signals in PPM-min were determined in the NO

and NO modes, which were then divided to yield R=NO/NO . The $_{\rm X}$ fractional conversion of NO is readily determined from:

$$x = R - R \tag{B-3}$$

where R=NO/NO , and R is the value measured for the pure NO sas x oprior to deposition. This value remained approximately constant during the entire course of experimentation at about R =0.988.

FILMED
3-84

DTIC