Passwortsicherheit

Lehrstuhl für Mediensicherheit

Eik List

Bauhaus-Universität Weimar

Cryptoparty Weimar 20.09.2013

Agenda

- Passwörter benötigt man ständig
 - Computer-Login, Internet-Dienste, Smartphone-Login, . . .
- Worum soll es in diesem Vortrag gehen?
 - Wie werden Passwörter verwendet
 - Wie arbeiten Angreifer typischerweise
 - Welche Regeln gibt es für eine bessere Passwortwahl

Wie werden Passworte verwendet?

- Meist als Eingabe in kryptographische Hashfunktionen:
 - Kryptographisch stark = nicht umkehrbar
 - Nur der Hash wird gespeichert
 Wird Datenbank publiziert, weiß der Dieb trotzdem noch nicht die Passwörter
- ⇒ Angreifer probieren alle mögl. Passworte durch

Wie werden Passworte verwendet?

- Meist als Eingabe in kryptographische Hashfunktionen:
 - Kryptographisch stark = nicht umkehrbar
 - Nur der Hash wird gespeichert
 Wird Datenbank publiziert, weiß der Dieb trotzdem noch nicht die Passwörter
- ⇒ Angreifer probieren alle mögl. Passworte durch

Wie arbeiten Angreifer typischerweise?

- Wir unterscheiden zwischen Online- und Offline-Angreifern
- Online-Angreifer:
 - Benötigt Interaktion mit einem Webserver oder Gerät (z.B. Smartphone)
 - Nur Server/Gerät kann Passworthash berechnen
 - Gut: Nur so viele Versuche wie Server/Gerät zulässt
 - Gut: Potentiell hohe Wartezeit nach einigen Versuchen
- Offline-Angreifer:
 - Kann Passworthashes selbst testen
 - Wird nicht gedrosselt!
 - Hat beliebig viele Versuche!

Wie arbeiten Angreifer typischerweise?

- Wir unterscheiden zwischen Online- und Offline-Angreifern
- Online-Angreifer:
 - Benötigt Interaktion mit einem Webserver oder Gerät (z.B. Smartphone)
 - Nur Server/Gerät kann Passworthash berechnen
 - Gut: Nur so viele Versuche wie Server/Gerät zulässt
 - Gut: Potentiell hohe Wartezeit nach einigen Versuchen
- Offline-Angreifer:
 - Kann Passworthashes selbst testen
 - Wird nicht gedrosselt!
 - Hat beliebig viele Versuche!

Wie arbeiten Angreifer typischerweise?

- Wir unterscheiden zwischen Online- und Offline-Angreifern
- Online-Angreifer:
 - Benötigt Interaktion mit einem Webserver oder Gerät (z.B. Smartphone)
 - Nur Server/Gerät kann Passworthash berechnen
 - Gut: Nur so viele Versuche wie Server/Gerät zulässt
 - Gut: Potentiell hohe Wartezeit nach einigen Versuchen
- Offline-Angreifer:
 - Kann Passworthashes selbst testen
 - Wird nicht gedrosselt!
 - Hat beliebig viele Versuche!

Offline-Angreifer

- Problem: Hashfunktionen sind viel zu effizient (nicht für Passwörter entwickelt)
- Passwörter lassen sich sehr schnell durchprobieren, z.B.;
 - ca. 1,2 Mrd./s für aktuelle Hashfunktionen (SHA2)
 - ca. 11 Mrd./s für
 Windows-XP-Passworthashes
- Derzeit nutzen Angreifer i.d.R. viele Grafikkarten

[Quelle: http://hashcat.net/]

Offline-Angreifer

- Problem: Hashfunktionen sind viel zu effizient (nicht für Passwörter entwickelt)
- Passwörter lassen sich sehr schnell durchprobieren, z.B.:
 - ca. 1,2 Mrd./s für aktuelle Hashfunktionen (SHA2)
 - ca. 11 Mrd./s für
 Windows-XP-Passworthashes
- Derzeit nutzen Angreifer i.d.R. viele Grafikkarten

[Quelle: http://hashcat.net/]

Offline-Angreifer

- Problem: Hashfunktionen sind viel zu effizient (nicht für Passwörter entwickelt)
- Passwörter lassen sich sehr schnell durchprobieren, z.B.:
 - ca. 1,2 Mrd./s für aktuelle Hashfunktionen (SHA2)
 - ca. 11 Mrd./s für Windows-XP-Passworthashes
- Derzeit nutzen Angreifer i.d.R. viele Grafikkarten

[Quelle: http://hashcat.net/]

Passwort-Crack-Programme

- Freie gute Software für diverse Hashfunktionen:
 - John the Ripper (für CPUs) http://www.openwall.com/john/
 - DaveGrohl (für CPUs) http://davegrohl.org/
 - oclHashcat (für Grafikkarten)
 http://hashcat.net/oclhashcat-plus/
- Werden immer besser:
 - Testen erst Wörterbücher
 - Testen auch beliebte Verfremdungen
 - Sortieren Passworte nach Wahrscheinlichkeit
- ⇒ Nur ausreichend lange und zufällige Passwörter sind sicher!

Passwort-Crack-Programme

- Freie gute Software für diverse Hashfunktionen:
 - John the Ripper (für CPUs) http://www.openwall.com/john/
 - DaveGrohl (für CPUs)
 http://davegrohl.org/
 - oclHashcat (für Grafikkarten)
 http://hashcat.net/oclhashcat-plus/
- Werden immer besser:
 - Testen erst Wörterbücher
 - Testen auch beliebte Verfremdungen
 - Sortieren Passworte nach Wahrscheinlichkeit
- ⇒ Nur ausreichend lange und zufällige Passwörter sind sicher!

Passwort-Crack-Programme

- Freie gute Software für diverse Hashfunktionen:
 - John the Ripper (für CPUs) http://www.openwall.com/john/
 - DaveGrohl (für CPUs)
 http://davegrohl.org/
 - oclHashcat (für Grafikkarten)
 http://hashcat.net/oclhashcat-plus/
- Werden immer besser:
 - Testen erst Wörterbücher
 - Testen auch beliebte Verfremdungen
 - Sortieren Passworte nach Wahrscheinlichkeit
- ⇒ Nur ausreichend lange und zufällige Passwörter sind sicher!

- 95 druckbare Zeichen
 - Klein-/Großbuchstaben, Ziffern, Satz- und Sonderzeichen
- Beispiel: Passwort aus 6 Zeichen
 - Eine von 95⁶ Möglichkeiten
 - Informatik rechnet in 2er-Potenzen: $95^6 \approx 2^{40}$ Möglichkeiten
 - ⇒ 40 Bit Entropie

- 95 druckbare Zeichen
 - Klein-/Großbuchstaben, Ziffern, Satz- und Sonderzeichen
- Beispiel: Passwort aus 6 Zeichen
 - Eine von 95⁶ Möglichkeiten
 - Informatik rechnet in 2er-Potenzen: $95^6 \approx 2^{40}$ Möglichkeiten
 - ⇒ 40 Bit Entropie

Wir wissen:

Eine aktuelle Grafikkarte kann 1,2 Mrd. = 2^{30} Passwörter/s testen

$$rac{2^{40} \ {
m M\"{o}glichkeiten}}{2^{30} \ {
m M\"{o}glichkeiten}/s} = 2^{10} \ {
m s} = 1024 \ {
m s} pprox 17 \ {
m min}$$

- Wie lange benötigen Angreifer für Passwörter mit höherer Entropie?
 - 50 Bit Entropie: ≈ 12 Tage
 - 60 Bit Entropie: ≈ 34 Jahre
 - 80 Bit Entropie: ≈ 35 Mio. Jahre
 -

• Wir wissen: Eine aktuelle Grafikkarte kann 1,2 Mrd. = 2^{30} Passwörter/s testen

$$\frac{2^{40}~\text{M\"{o}glichkeiten}}{2^{30}~\text{M\"{o}glichkeiten}/s} = 2^{10}~\text{s} = 1024~\text{s} \approx 17~\text{min}$$

- Wie lange benötigen Angreifer für Passwörter mit höherer Entropie?
 - 50 Bit Entropie: \approx 12 Tage
 - 60 Bit Entropie: \approx 34 Jahre
 - $lue{}$ 80 Bit Entropie: pprox 35 Mio. Jahre
 - **.** . . .

- 6 zufällig gewählte Zeichen: ≈ 40 Bit Entropie
 - Eine (!) Grafikkarte in wenigen Minuten bis Stunden
- 8 zufällig gewählte Zeichen: ≈ 52 Bit Entropie:
 - Tausende mietbare Rechner (z.B. bei Amazon EC2) in wenigen Stunden
- 10 und mehr zufällig gewählte Zeichen: > 65 Bit Entropie
 - Das dauert...

- 6 zufällig gewählte Zeichen: ≈ 40 Bit Entropie
 - Eine (!) Grafikkarte in wenigen Minuten bis Stunden
- 8 zufällig gewählte Zeichen: ≈ 52 Bit Entropie:
 - Tausende mietbare Rechner (z.B. bei Amazon EC2) in wenigen Stunden
- 10 und mehr zufällig gewählte Zeichen: > 65 Bit Entropie
 - Das dauert...

- 6 zufällig gewählte Zeichen: ≈ 40 Bit Entropie
 - Eine (!) Grafikkarte in wenigen Minuten bis Stunden
- 8 zufällig gewählte Zeichen: ≈ 52 Bit Entropie:
 - Tausende mietbare Rechner (z.B. bei Amazon EC2) in wenigen Stunden
- 10 und mehr zufällig gewählte Zeichen: > 65 Bit Entropie
 - Das dauert...

Aber...

- Die Sicherheit reduziert sich drastisch wenn Passwörter keine Zufallskombinationen sind!
 - "A0!94%1+5_" = mehrere Wochen auf Tausenden Rechnern
 - "G3h31m007!" = wenige Minuten auf einer (!) Grafikkarte
- Menschen sind nie zufällig...

Aber...

- Die Sicherheit reduziert sich drastisch wenn Passwörter keine Zufallskombinationen sind!
 - "A0!94%1+5_" = mehrere Wochen auf Tausenden Rechnern
 - "G3h31m007!" = wenige Minuten auf einer (!) Grafikkarte
- Menschen sind nie zufällig...

- Erratbare Begriffe:
 - "Weimar", "monami"
- Namen oder Stichtage:
 - "Helga", "20sep1993"
- Wort aus dem Wörterbuch, auch Verfremdung hilft nicht:
 - "Lichtgeschwindigkeit", "Sh3ttl4nd-TerrIer", "Tr0ub4dour"
- Wortkombinationen:
 - "'Adam.2+%;7Eva''
- Bekannte Begriffe:
 - "supercalifragilisto5287" (aus dem Musical Mary Poppins)

- Erratbare Begriffe:
 - "Weimar". "monami"
- Namen oder Stichtage:
 - "Helga", "20sep1993"
- Wort aus dem Wörterbuch, auch Verfremdung hilft nicht:
 - "Lichtgeschwindigkeit", "Sh3ttl4nd-TerrIer", "Tr0ub4dour"
- Wortkombinationen:
 - "'Adam.2+%;7Eva''
- Bekannte Begriffe:
 - "supercalifragilisto5287" (aus dem Musical Mary Poppins)

- Erratbare Begriffe:
 - "Weimar". "monami"
- Namen oder Stichtage:
 - "Helga", "20sep1993"
- Wort aus dem Wörterbuch, auch Verfremdung hilft nicht:
 - "Lichtgeschwindigkeit", "Sh3ttl4nd-TerrIer", "Tr0ub4dour"
- Wortkombinationen:
 - "'Adam.2+%;7Eva''
- Bekannte Begriffe:
 - "supercalifragilisto5287" (aus dem Musical Mary Poppins)

- Erratbare Begriffe:
 - "Weimar". "monami"
- Namen oder Stichtage:
 - "Helga", "20sep1993"
- Wort aus dem Wörterbuch, auch Verfremdung hilft nicht:
 - "Lichtgeschwindigkeit", "Sh3ttl4nd-TerrIer", "Tr0ub4dour"
- Wortkombinationen:
 - "Adam.2+%;7Eva"
- Bekannte Begriffe:
 - "supercalifragilisto5287" (aus dem Musical Mary Poppins)

- Erratbare Begriffe:
 - "Weimar", "monami"
- Namen oder Stichtage:
 - "Helga", "20sep1993"
- Wort aus dem Wörterbuch, auch Verfremdung hilft nicht:
 - "Lichtgeschwindigkeit", "Sh3ttl4nd-TerrIer", "Tr0ub4dour"
- Wortkombinationen:
 - "Adam.2+%;7Eva"
- Bekannte Begriffe:
 - "supercalifragilisto5287" (aus dem Musical Mary Poppins)

Gute Passwort-Regeln

- Zufällig (maschinell generierte) Passwörtern mit 10 und mehr Zeichen
 - "as8%4,&xn9?14oqj.1!"
 - > 65 Bit Entropie
 - Problem: Wie merke ich mir eine solche Kombination?
- Einfacher: Kombination aus mind. fünf seltenen zufällig gewählten Wörtern
 - "korrekt Pferd Batterie Büroklammer Magnet"
 - > 60 Bit Entropie

Gute Passwort-Regeln

- Zufällig (maschinell generierte) Passwörtern mit 10 und mehr Zeichen
 - "as8%4,&xn9?14oqj.1!"
 - > 65 Bit Entropie
 - Problem: Wie merke ich mir eine solche Kombination?
- Einfacher: Kombination aus mind. fünf seltenen zufällig gewählten Wörtern
 - "korrekt Pferd Batterie Büroklammer Magnet"
 - > 60 Bit Entropie

Gute Passwort-Regeln (ff.)

- Besser: Merksätze mit mind. 19, besser 22 und mehr Zeichen
 - "IbhaCBUimiWulvüEMVTup" = Ich besuche heute abend die Cryptoparty der Bauhaus-Uni im monami in Weimar und lerne viel über E-Mail-Verschlüsselung, TOR und Passwortsicherheit.
 - 19 Zeichen: > 60 Bit Entropie
 - 22 Zeichen: > 70 Bit Entropie
- Noch besser: Ebenso lange Merksätze ohne der/die/das (weniger vorhersagbar)

Kurzer Check: Warum ist "IbhaCBUimiWulvüEMVTuP" jetzt kein gutes Passwort mehr?

Gute Passwort-Regeln (ff.)

- Besser: Merksätze mit mind. 19, besser 22 und mehr Zeichen
 - "IbhaCBUimiWulvüEMVTup" = Ich besuche heute abend die Cryptoparty der Bauhaus-Uni im monami in Weimar und lerne viel über E-Mail-Verschlüsselung, TOR und Passwortsicherheit.
 - 19 Zeichen: > 60 Bit Entropie
 - 22 Zeichen: > 70 Bit Entropie
- Noch besser: Ebenso lange Merksätze ohne der/die/das (weniger vorhersagbar)

Kurzer Check: Warum ist "IbhaCBUimiWulvüEMVTuP" jetzt kein gutes Passwort mehr?

Gute Passwort-Regeln (ff.)

- Besser: Merksätze mit mind. 19, besser 22 und mehr Zeichen
 - "IbhaCBUimiWulvüEMVTup" = Ich besuche heute abend die Cryptoparty der Bauhaus-Uni im monami in Weimar und lerne viel über E-Mail-Verschlüsselung, TOR und Passwortsicherheit.
 - 19 Zeichen: > 60 Bit Entropie
 - 22 Zeichen: > 70 Bit Entropie
- Noch besser: Ebenso lange Merksätze ohne der/die/das (weniger vorhersagbar)

Kurzer Check: Warum ist "IbhaCBUimiWulvüEMVTuP" jetzt kein gutes Passwort mehr?

Guter Umgang mit Passwörtern

- Nutzen Sie ruhig Passwortgeneratoren für zufällig gewählte Passwörter
 - Z.B. PWGen: http://pwgen-win.sourceforge.net/
 - Vertrauen Sie Online-Programmen nicht!
- Passworte aufschreiben?
 - Ja, wenn man sie sicher verwahrt
- Alternative: Passwortsafe-Programme
 - KeyPass: http://keepass.info/
 - Password Safe: http://passwordsafe.sourceforge.net/
 - Problem: Synchronisierung zwischen mehreren Geräten

Guter Umgang mit Passwörtern

- Nutzen Sie ruhig Passwortgeneratoren für zufällig gewählte Passwörter
 - Z.B. PWGen: http://pwgen-win.sourceforge.net/
 - Vertrauen Sie Online-Programmen nicht!
- Passworte aufschreiben?
 - Ja, wenn man sie sicher verwahrt
- Alternative: Passwortsafe-Programme
 - KeyPass: http://keepass.info/
 - Password Safe: http://passwordsafe.sourceforge.net/
 - Problem: Synchronisierung zwischen mehreren Geräten

Guter Umgang mit Passwörtern

- Nutzen Sie ruhig Passwortgeneratoren für zufällig gewählte Passwörter
 - Z.B. PWGen: http://pwgen-win.sourceforge.net/
 - Vertrauen Sie Online-Programmen nicht!
- Passworte aufschreiben?
 - Ja, wenn man sie sicher verwahrt
- Alternative: Passwortsafe-Programme
 - KeyPass: http://keepass.info/
 - Password Safe: http://passwordsafe.sourceforge.net/
 - Problem: Synchronisierung zwischen mehreren Geräten

Gute Passwörter alleine reichen nicht

[Quelle: http://www.raumlabor.net/?p=502]

 Auch das beste Passwort nützt nichts, wenn man den Schutz einfach umgehen kann

Gute Passwörter alleine reichen nicht (ff.)

- Schließen Sie potentielle Hintertüren
 - Lügen Sie bei PW-Wiederherstellungsfragen ("erstes Auto", "Mädchenname der Mutter")
- Verwenden Sie Passwörter nicht mehrfach
 - Wegwerf-Passwörter für Unwichtige Seiten
 - Master-Passwort für versch. Dienste variieren, solange nicht nachvollziehbar für Andere
- Speichern Sie Passwörter niemals online
 - Dropbox und co. lesen Ihre Dateien (ja, wirklich!)

Gute Passwörter alleine reichen nicht (ff.)

- Schließen Sie potentielle Hintertüren
 - Lügen Sie bei PW-Wiederherstellungsfragen ("erstes Auto", "Mädchenname der Mutter")
- Verwenden Sie Passwörter nicht mehrfach
 - Wegwerf-Passwörter für Unwichtige Seiten
 - Master-Passwort für versch. Dienste variieren, solange nicht nachvollziehbar für Andere
- Speichern Sie Passwörter niemals online
 - Dropbox und co. lesen Ihre Dateien (ja, wirklich!)

Gute Passwörter alleine reichen nicht (ff.)

- Schließen Sie potentielle Hintertüren
 - Lügen Sie bei PW-Wiederherstellungsfragen ("erstes Auto", "Mädchenname der Mutter")
- Verwenden Sie Passwörter nicht mehrfach
 - Wegwerf-Passwörter für Unwichtige Seiten
 - Master-Passwort für versch. Dienste variieren, solange nicht nachvollziehbar für Andere
- Speichern Sie Passwörter niemals online
 - Dropbox und co. lesen Ihre Dateien (ja, wirklich!)

- Verlangsamte Berechnung
 - Rufen Hashfunktion intern Tausende Male auf
 - Stört den Nutzer nicht (0.1 Sekunden)
 - Bremst aber Angriffe aus
- Einsatz
 - Aktuelle Betriebssystem-Logins, GnuPG/PGP, ...
- Hier reichen schon Passwörter mit 50 Bit Entropie
- Hauptziel von Angreifern sind aber Webdienste

- Verlangsamte Berechnung
 - Rufen Hashfunktion intern Tausende Male auf
 - Stört den Nutzer nicht (0.1 Sekunden)
 - Bremst aber Angriffe aus
- Einsatz
 - Aktuelle Betriebssystem-Logins, GnuPG/PGP, . . .
- Hier reichen schon Passwörter mit 50 Bit Entropie
- Hauptziel von Angreifern sind aber Webdienste

- Verlangsamte Berechnung
 - Rufen Hashfunktion intern Tausende Male auf
 - Stört den Nutzer nicht (0.1 Sekunden)
 - Bremst aber Angriffe aus
- Einsatz
 - Aktuelle Betriebssystem-Logins, GnuPG/PGP, . . .
- Hier reichen schon Passwörter mit 50 Bit Entropie
- Hauptziel von Angreifern sind aber Webdienste

- Verlangsamte Berechnung
 - Rufen Hashfunktion intern Tausende Male auf
 - Stört den Nutzer nicht (0.1 Sekunden)
 - Bremst aber Angriffe aus
- Einsatz
 - Aktuelle Betriebssystem-Logins, GnuPG/PGP, . . .
- Hier reichen schon Passwörter mit 50 Bit Entropie
- Hauptziel von Angreifern sind aber Webdienste

Fragen?