Podstawy Elektroniki - Sprawozdanie 5

Układy diodowe

Imię i nazwisko	Nr albumu	Grupa
Anita Zielińska	136836	12
Dariusz Max Adamski	136674	12
Damian Jóźwiak	136726	12

1. Wartości elementów wykorzystanych w zestawie do pomiaru charakterystyki statycznej diody.

Element	Wartość [Ω]
R1	981
R2	991

- 2. Wykres charakterystyki statycznej diody dla polaryzacji w kierunkach: zaporowym i przewodzenia.
- a.) kierunek przewodzenia

$U_z[V]$	U _R [mV]	U _d [V]	I _d [mA]
0,4	0,022	0,378	0,00002242609582
0,6	0,117	0,483	0,000119266055
0,7	0,223	0,477	0,0002273190622
1	0,503	0,497	0,0005127420999
1,24	0,654	0,586	0,0006666666667
1,6	1,223	0,377	0,001246687054
2	1,486	0,514	0,001514780836
3	2,409	0,591	0,002455657492
4	3,372	0,628	0,003437308869
5	4,461	0,539	0,004547400612

b.) kierunek zaporowy

Uz [V]	UR	Ud [V]	ld [mA]
2	0	2	0
12,3	0	12,3	0
18,9	0	18,9	0

c.) wykres

3. Oscylogramy z przebiegów napięciowych w układzie prostownika jednopołówkowego

 $V_{amp(1)} = 8.10V, V_{amp(2)} = 14.6V$

Dioda jest półprzewodnikiem, co oznacza, że jest w stanie przewodzić prąd tylko w jednym kierunku (przewodzenia), natomiast gdy prąd płynie w kierunku przeciwnym (zaporowym), nie przewodzi. W wyniku tego prąd płynie tylko przez połowę trwania pełnego cyklu, stąd różnice w amplitudzie.

4.

R [Ω]	C _f [µF]	U _{R(DC)} [V]	U _{R(AC)} [V]	U _{R(pp)} [V]
215,2	1,937	0,465	0,426	1,88
215,2	20,77	0,548	0,445	1,55
2171	1,937	0,793	0,701	2,13
2171	20,77	1,564	0,224	0,84

Jakie zależności można dostrzec pomiędzy wielkością napięcia międzyszczytowego tętnień, wartością pojemności filtrującej Cf oraz wartością rezystancji obciążenia R?

 $U_{R(pp)}$ jest odwrotnie proporcjonalne do C_f . Gdy R jest stałe, ze wzrostem C_f maleje $U_{R(pp)}$ i odwrotnie. Przy większej pojemności filtrującej (22 µF) przy wzroście rezystancji maleje napięcie międzyszczytowe tętnień, zaś przy mniejszej (2,2 µF) przy wzroście R rośnie $U_{R(pp)}$. Przy odpowiednio dobranej pojemności i rezystancji można uzyskać napięcie $U_{R(DC)}$ zbliżone do $U_{R(AC)}$.

6. Spadki napięć na diodach świecących.

U [V]	U(D₁) (czerwona) [V]	U(D ₂) (zielona) [V]
5	1,866	1,861
10	2,013	2,02
15	2,136	2,138

Spadki napięcia w diodach są podobne - świecą one z porównywalną intensywnością.

7. Schemat połączeń wyświetlacza LED.

