

SOBRE O ALGORITMO

ALGORITMO DE PRIM

O algoritmo foi desenvolvido em 1930 pelo matemático Vojtěch Jarník e depois pelo cientista da computação Robert Clay Prim em 1957 e redescoberto por Edsger Dijkstra em 1959.

Robert Clay Prim

ÁRVORE GERADORA MÍNIMA

MINIMUM SPANNING TREE

Uma árvore T é denominada árvore geradora mínima de um grafo conexo G se T é um subgrafo de G e contém todos os vértices de G e a soma dos pesos nas arestas dela é o menor possível.

Outros algoritmos conhecidos para encontrar árvores geradoras mínimas são o algoritmo de Kruskal e algoritmo de Boruvka

EXEMPLO DE APLICAÇÃO

Se os vértices deste grafo representassem cidades e as arestas representassem estradas de terra que interligam estas cidades, como poderíamos determinar quais estradas asfaltar gastando a menor quantidade de asfalto possível para interligar todas as cidades? O algoritmo de Prim neste caso fornecerá uma resposta ótima para este problema que não necessariamente é única.

APLICAÇÕES

Rota entre cidades;

Rede de computadores;

Rede ferroviária.

PROPRIEDADES DO GRAFO

Conexo;

Valorado;

Não dirigido.

COMPLEXIDADE

A complexidade do algoritmo de Prim pode mudar de acordo com a estrutura de dados utilizada para representar o grafo. As implementações mais comuns para um grafo são por lista de adjacência e por matriz de adjacência e suas respectivas complexidades são $O(A \log V)$ e $O(V^2)$ no pior caso.

MATRIZ DE ADJACÊNCIA

REPRESENTAÇÃO DO GRAFO

Uma matriz de adjacência é uma matriz simétrica quadrada M(G)=[mij] de ordem V onde cada elemento representa o custo da aresta que conecta os vértices ij.

ALGORITMO GENÉRICO

UM ALGORITMO DE PRIM GENÉRICO É DADO DA SEGUINTE FORMA:

Escolha um vértice S para iniciar o subgrafo

enquanto houver vértices que não estão no subgrafo

selecione uma aresta segura

insira a aresta segura e seu vértice no subgrafo

