49. Свойства сходящихся последовательностей

Число $a \in R$ называется пределом последовательности $\{x_n\}$, если $\forall \varepsilon > 0 \ \exists N \in N$ (зависящее от ε) такое, что при $\forall n > N$ выполняется неравенство $|x_n - a| < \varepsilon$.

Последовательность, имеющая конечный предел, называется сходящейся (сходится к а), в противном случае — расходящейся.

Пусть $x_0 \in R$, $\varepsilon > 0$. Интервал $(x_0 - \varepsilon; x_0 + \varepsilon)$ называют ε -окрестностью точки x_0 (геом. определение ε -окрестности точки). Обозначим: $U(x_0, \varepsilon)$. Имеем: $U(x_0, \varepsilon) = \{x \in R \mid |x - x_0| < \varepsilon\}$ (алгебр. определение ε -окрестности точки).

$$|x_n - a| < \varepsilon < = > -\varepsilon < x_n - a < \varepsilon;$$
 $a - \varepsilon < x_n < a + \varepsilon$

Последовательность $\{x_n\}$ сходится к числу a, если вне любой ε -окрестности точки а имеется лишь конечное число членов этой последовательности.

Свойства сходящихся последовательностей:

- Т.1. Сходящаяся последовательность имеет только 1 предел.
- Т.2 (необходимое условие сходимости последовательности). Сходящаяся последовательность ограничена.
- Т.3 (достаточное условие сходимости последовательности). Всякая ограниченная монотонная последовательность сходится.
- Т.4. Предел постоянной этой последовательности равен этой постоянной, т.е. $\lim_{n \to \infty} c = c$.
- Т.5 (о промежуточной последовательности). Если последовательности $\{x_n\}$ и $\{y_n\}$ сходятся к одному и тому же числу и последовательность $\{z_n\}$ такова, что для $\forall n \in \mathbb{N}$ имеет место неравенство $x_n \leq z_n \leq y_n$, то $\{z_n\}$ также сходится к тому же числу, т.е.

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n = \lim_{n\to\infty} y_n$$

Опр-ие: Последовательность, состоящая из подмножества членов данной последовательности $\{x_n\}$ в порядке возрастания их номеров, называется подпоследовательностью данной последовательности $\{x_n\}$.

Т.6. Если последовательность $\{x_n\}$ сходится к числу a, то любая её подпоследовательность сходится к тому же числу.

Следствие. Если две подпоследовательности $\{x_n\}$ сходятся к различным пределам, то $\lim_{n \to \infty} x_n$ не существует.

- Т.7. Две последовательности, отличающиеся между собой на конечное число членов, ведут себя одинаково относительно сходимости, т.е. одновременно сходятся или одновременно расходятся. При этом, если они, сходятся, то их пределы равны.
- Т.8 (арифметические операции над пределами). Если последовательности $\{x_n\}$ и $\{y_n\}$ сходятся и $\lim_{n\to\infty}x_n=a$, $\lim_{n\to\infty}y_n=b$, то

1)
$$\lim_{n\to\infty} (x_n \pm y_n) = \lim_{n\to\infty} x_n \pm \lim_{n\to\infty} y_n = a \pm b$$

$$2) \lim_{n \to \infty} (Cx_n) = C \lim_{n \to \infty} x_n = Ca$$

3)
$$\lim_{n\to\infty} (x_n \cdot y_n) = \lim_{n\to\infty} x_n \cdot \lim_{n\to\infty} y_n = ab$$

4)
$$\lim_{n\to\infty}\frac{x_n}{y_n}=\frac{\lim\limits_{n\to\infty}x_n}{\lim\limits_{n\to\infty}y_n}=\frac{a}{b}$$
, если $\lim_{n\to\infty}y_n\neq 0$