Introduction to Bottom Up Parser

Bottom-Up Parsing

- A **bottom-up parser** creates the parse tree of the given input starting from leaves towards the root.
- A bottom-up parser tries to find the right-most derivation of the given input in the reverse order.

```
S \Rightarrow ... \Rightarrow \omega (the right-most derivation of \omega)

\leftarrow (the bottom-up parser finds the right-most derivation in the reverse order)
```

- Bottom-up parsing is also known as **shift-reduce parsing** because its two main actions are shift and reduce.
 - At each shift action, the current symbol in the input string is pushed to a stack.
 - At each reduction step, the symbols at the top of the stack (this symbol sequence is the right side of a production) will replaced by the non-terminal at the left side of that production.
 - There are also two more actions: accept and error.

Introduction

- Constructs parse tree for an input string beginning at the leaves (the bottom) and working towards the root (the top)
- Example: id*id

Shift-reduce parser

- The general idea is to shift some symbols of input to the stack until a reduction can be applied
- At each reduction step, a specific substring matching the body of a production is replaced by the nonterminal at the head of the production
- The key decisions during bottom-up parsing are about when to reduce and about what production to apply
- A reduction is a reverse of a step in a derivation
- The goal of a bottom-up parser is to construct a derivation in reverse:
 - E=>T=>T*F=>T*id=>F*id=>id*id

Bottom-Up Parsing

- •Shift reduce parsing uses a stack to hold the grammar and an input tape to hold the string.
- •Sift reduce parsing performs the two actions: shift and reduce. That's why it is known as shift reduces parsing.
- •At the shift action, the current symbol in the input string is pushed to a stack.
- •At each reduction, the symbols will replaced by the non-terminals. The symbol is the right side of the production and non-terminal is the left side of the production.
- •Shift reduce parsing is a process of reducing a string to the start symbol of a grammar.

Shift-Reduce Parsing

- A shift-reduce parser tries to reduce the given input string into the starting symbol.
 - a string \rightarrow the starting symbol

reduced to

- At each reduction step, a substring of the input matching to the right side of a production rule is replaced by the non-terminal at the left side of that production rule.
- If the substring is chosen correctly, the right most derivation of that string is created in the reverse order.

Rightmost Derivation: $S \stackrel{*}{\rightleftharpoons} \omega$

Shift-Reduce Parser finds: $\omega \rightleftharpoons ... \rightleftharpoons S$

Shift-Reduce Parsing -- Example

```
S \rightarrow aABb input string: aaabb

A \rightarrow aA \mid a aaAbb

B \rightarrow bB \mid b aAbb \bigvee reduction

aABb
```

$$S \Rightarrow aABb \Rightarrow aAbb \Rightarrow aaAbb \Rightarrow aaabb$$

Right Sentential Forms

• How do we know which substring to be replaced at each reduction step?

Handle

- Informally, a **handle** of a string is a substring that matches the right side of a production rule.
 - But not every substring matches the right side of a production rule is handle
- A handle of a right sentential form γ (≡ αβω) is

 a production rule A → β and a position of γ
 where the string β may be found and replaced by A to produce the previous right-sentential form in a rightmost derivation of γ.

$$S \stackrel{*}{\Longrightarrow} \alpha A \omega \Longrightarrow_{rm} \alpha \beta \omega$$

- If the grammar is unambiguous, then every right-sentential form of the grammar has exactly one handle.
- We will see that ω is a string of terminals.

Handle pruning

• A Handle is a substring that matches the body of a production and whose reduction represents one step along the reverse of a rightmost derivation

Right sente	ential form	Handle	Reducing production
	id*id	id	F->id
	F*id	F	T->F
	T*id	id	F->id
	T*F	T*F	E->T*F

Shift reduce parsing

- A stack is used to hold grammar symbols
- Handle always appear on top of the stack
- Initial configuration:

```
Stack Input 
$ w$
```

Acceptance configuration

```
Stack Input
$S $
```

Handle Pruning

A right-most derivation in reverse can be obtained by handle-pruning.

$$S = \gamma_0 \overrightarrow{m} \gamma_1 \overrightarrow{m} \gamma_2 \overrightarrow{m} \cdots \overrightarrow{m} \gamma_{n-1} \overrightarrow{m} \gamma_n = \omega$$
 input string

- Start from γ_n , find a handle $A_n \rightarrow \beta_n$ in γ_n , and replace β_n in by A_n to get γ_{n-1} .
- Then find a handle $A_{n-1} \rightarrow \beta_{n-1}$ in γ_{n-1} , replace β_{n-1} in by A_{n-1} to get γ_{n-2} .
- Repeat this, until we reach S.

and

A Shift-Reduce Parser

Dadwaina Duadwatian

$$\begin{array}{lll} E \rightarrow E+T \mid T & Right-Most \ Derivation \ of \ id+id*id \\ T \rightarrow T*F \mid F & E+T*F \Rightarrow E+T*id \Rightarrow E+F*id \\ F \rightarrow (E) \mid id & \Rightarrow E+id*id \Rightarrow T+id*id \Rightarrow F+id*id \Rightarrow id+id*id \end{array}$$

Right-Most	Sentential Form	Reducing Production
<u>id</u> +id*id		$F \rightarrow id$
<u>F</u> +id*id		$T \rightarrow F$
<u>T</u> +id*id		$E \rightarrow T$
E+ <u>id</u> *id		$F \rightarrow id$
E+ <u>F</u> *id		$T \rightarrow F$
E+T* <u>id</u>		$F \rightarrow id$
E+ <u>T*F</u>		$T \rightarrow T^*F$
E+T		$E \rightarrow E+T$

Dielas Mass Cantantial Dame

 \mathbf{E}

Handles are red and underlined in the right-sentential forms.

A Stack Implementation of A Shift-Reduce Parser

- There are four possible actions of a shift-parser action:
 - 1. Shift: The next input symbol is shifted onto the top of the stack.
 - **2. Reduce**: Replace the handle on the top of the stack by the non-terminal.
 - 3. Accept: Successful completion of parsing.
 - **4. Error**: Parser discovers a syntax error, and calls an error recovery routine.

- Initial stack just contains only the end-marker \$.
- The end of the input string is marked by the end-marker \$.

A Stack Implementation of A Shift-Reduce Parser

Stack	<u>Input</u>	Action	
\$	id+id*id\$shift		
\$id	+id*id\$	reduce by $F \rightarrow id$	Parse Tree
\$F	+id*id\$	reduce by $T \rightarrow F$	
\$T	+id*id\$	reduce by $E \rightarrow T$	E 8
\$E	+id*id\$	shift	
\$E+	id*id\$	shift E	3 + T 7
\$E+id	*id\$	reduce by $F \rightarrow id$	
\$E+F	*id\$	reduce by $T \to F$	2 T 5 * F 6
\$E+T	*id\$	shift	
\$E+T*	id\$	shift F	1 F 4 id
\$E+T*id	\$	reduce by $F \rightarrow id$	
\$E+ T * F	\$	reduce by $T \rightarrow T^*F$ id	id
\$E+T	\$	reduce by $E \rightarrow E+T$	
\$E	\$	accept	

Conflicts During Shift-Reduce Parsing

- There are context-free grammars for which shift-reduce parsers cannot be used.
- Stack contents and the next input symbol may not decide action:
 - shift/reduce conflict: Whether make a shift operation or a reduction.
 - reduce/reduce conflict: The parser cannot decide which of several reductions to make.
- If a shift-reduce parser cannot be used for a grammar, that grammar is called as non-LR(k) grammar.

An ambiguous grammar can never be a LR grammar.

Shift-Reduce Parsers

There are two main categories of shift-reduce parsers

1. Operator-Precedence Parser

simple, but only a small class of grammars.

2. LR-Parsers

- covers wide range of grammars.
 - SLR simple LR parser
 - LR most general LR parser
 - LALR intermediate LR parser (lookhead LR parser)
- SLR, LR and LALR work same, only their parsing tables are different.

Handle will appear on top of the stack

Stack	Input
\$αβγ	yz\$
\$α β B	yz\$
\$ α β By	z\$

Stack	Input
\$ \alpha \gamma	xyz\$
αBxy	z\$

Conflicts during shit reduce parsing

- Two kind of conflicts
 - Shift/reduce conflict
 - Reduce/reduce conflict
- Example:

```
stmt --> If expr then stmt
| If expr then stmt else stmt
| other
```

Stack Input
... if expr then stmt else ...\$

Reduce/reduce conflict

```
stmt -> id(parameter_list)
stmt -> expr:=expr
parameter_list->parameter_list, parameter
parameter_list->parameter
parameter->id
expr->id(expr_list)
expr->id
expr_list->expr_list, expr
                                                               Input
                                   Stack
expr_list->expr
                                                              ,id) ...$
                             ... id(id
```

Two data structures are required to implement a shift-reduce parser-

- •A **Stack** is required to hold the grammar symbols.
- •An **Input buffer** is required to hold the string to be parsed.

Working-

Initially, shift-reduce parser is present in the following configuration where-

- •Stack contains only the \$ symbol.
- •Input buffer contains the input string with \$ at its end.

The parser works by-

- •Moving the input symbols on the top of the stack.
- •Until a handle β appears on the top of the stack.

The parser keeps on repeating this cycle until-

- •An error is detected.
- •Or stack is left with only the start symbol and the input buffer becomes empty.

After achieving this configuration,

- •The parser stops / halts.
- •It reports the successful completion of parsing.

Final Configuration

Possible Actions-

A shift-reduce parser can possibly make the following four actions-

1. Shift-

In a shift action,

•The next symbol is shifted onto the top of the stack.

2. Reduce-

In a reduce action,

•The handle appearing on the stack top is replaced with the appropriate non-terminal symbol.

3. Accept-

In an accept action,

•The parser reports the successful completion of parsing.

4. Error-

In this state,

•The parser becomes confused and is not able to make any decision.

•It can neither perform shift action nor reduce action nor accept action.

Problem-01:

Consider the following grammar-

 $E \rightarrow E - E$

 $E \rightarrow E \times E$

 $E \rightarrow id$

Parse the input string

id – id x id

using a shift-reduce parser

Solution-

The priority order is: id > x > -

Stack	Input Buffer	Parsing Action
\$	id – id x id \$	Shift
\$ id	- id x id \$	Reduce $E \rightarrow id$
\$ E	- id x id \$	Shift
\$ E -	id x id \$	Shift
\$ E – id	x id \$	Reduce $E \rightarrow id$
\$ E – E	x id \$	Shift
\$ E – E x	id\$	Shift
$E - E \times id$	\$	Reduce $E \rightarrow id$
\$ E – E x E	\$	Reduce $E \rightarrow E \times E$
\$ E – E	\$	Reduce $E \rightarrow E - E$
\$ E	\$	Accept

D 11 00	Stack	Input Buffer	Parsing Action
• Problem-02:	\$	(a,(a,a))\$	Shift
 Consider the following grammar- 	\$ (a,(a,a))\$	Shift
 S → (L) a 	\$ (a	,(a,a))\$	Reduce $S \rightarrow a$
• $L \rightarrow L, S \mid S$	\$ (S	,(a,a))\$	Reduce $L \to S$
 Parse the input 	\$ (L	,(a,a))\$	Shift
string	\$(L,	(a,a))\$	Shift
• (a,(a,a))	\$(L,(a,a))\$	Shift
	\$ (L , (a	,a))\$	Reduce $S \rightarrow a$
 using a shift- 	\$(L,(S	,a))\$	Reduce $L \to S$
reduce parser.	\$(L,(L	, a))\$	Shift
	\$(L,(L,	a))\$	Shift
	\$ (L , (L , a))\$	Reduce $S \rightarrow a$
	\$(L,(L,S)))\$	Reduce $L \to L$, S
	\$(L,(L))\$	Shift
	\$(L,(L))\$	Reduce $S \rightarrow (L)$
	\$ (L , S)\$	Reduce $L \rightarrow L$, S
	\$ (L)\$	Shift
	\$(L)	\$	Reduce $S \rightarrow (L)$
	\$ S	\$	Accept

Problem-03:

- Consider the following grammar-
 - S → T L
 - T → int | float
 - L → L , id | id
- Parse the input string
- int id , id ;
- using a shiftreduce parser.

Stack	Input Buffer	Parsing Action
\$	int id, id;\$	Shift
\$ int	id, id;\$	Reduce $T \rightarrow int$
\$ T	id, id;\$	Shift
\$ T id	, id;\$	Reduce $L \rightarrow id$
\$ T L	, id;\$	Shift
\$ T L,	id;\$	Shift
\$TL, id	;\$	Reduce $L \rightarrow L$, id
\$ T L	;\$	Shift
\$ T L;	\$	Reduce $S \to T L$
\$ S	\$	Accept

Problem-04:	Stack	Input Buffer	Parsing Action
Considering the string	\$	10201\$	Shift
"10201",	\$ 1	0201\$	Shift
design a shift-reduce	\$ 1 0	201\$	Shift
parser for the following grammar-	\$ 1 0 2	01\$	Reduce $S \rightarrow 2$
$S \rightarrow 0S0 \mid 1S1 \mid 2$	\$ 1 0 S	01\$	Shift
S → 030 131 2	\$ 1 0 S 0	1 \$	Reduce $S \rightarrow 0 S 0$
	\$ 1 S	1 \$	Shift
	\$ 1 S 1	\$	Reduce S \rightarrow 1 S 1
	\$ S	\$	Accept

Operator-Precedence Parser

Operator grammar

- small, but an important class of grammars
- we may have an efficient operator precedence parser (a shift-reduce parser) for an operator grammar.
- In an operator grammar, no production rule can have:
 - $-\epsilon$ at the right side
 - two adjacent non-terminals at the right side.

• Ex:			
$E \rightarrow AB$		E→EOE	E→E+E
A→a		E→id	E*E
$B \rightarrow b$		$O \rightarrow + * /$	E/E id
not operator	grammar	not operator grammar	operator grammar

Precedence Relations

• In operator-precedence parsing, we define three disjoint precedence relations between certain pairs of terminals.

a < b	b has higher precedence than a
a = b	b has same precedence as a
a > b	b has lower precedence than a

• The determination of correct precedence relations between terminals are based on the traditional notions of associativity and precedence of operators. (Unary minus causes a problem).

Using Operator-Precedence Relations

- The intention of the precedence relations is to find the handle of a right-sentential form,
 - < with marking the left end,
 - = appearing in the interior of the handle, and
 - > marking the right hand.
- In our input string $a_1a_2...a_n$, we insert the precedence relation between the pairs of terminals (the precedence relation holds between the terminals in that pair).

Using Operator - Precedence Relations

$$E \rightarrow E+E \mid E-E \mid E*E \mid E/E \mid E^E \mid (E) \mid -E \mid id$$

The partial operator-precedence table for this grammar

	id	+	*	\$
id		Ņ	Ņ	Ÿ
+	<.	·>	<.	·
*	<.	·>	.>	·>
\$	<.	<.	<.	

• Then the input string id+id*id with the precedence relations inserted will be:

To Find The Handles

- 1. Scan the string from left end until the first > is encountered.
- 2. Then scan backwards (to the left) over any $=\cdot$ until a $<\cdot$ is encountered.
- 3. The handle contains everything to left of the first > and to the right of the < is encountered.

Operator-Precedence Parsing Algorithm

• The input string is w\$, the initial stack is \$ and a table holds precedence relations between certain terminals

Algorithm:

```
set p to point to the first symbol of w$;
repeat forever
  if ($ is on top of the stack and p points to $) then return
  else {
    let a be the topmost terminal symbol on the stack and let b be the symbol pointed to by p;
    if (a < b \text{ or } a = \cdot b) then {
                                        /* SHIFT */
       push b onto the stack;
       advance p to the next input symbol;
    else if (a > b) then
                                         /* REDUCE */
       repeat pop stack
       until (the top of stack terminal is related by < to the terminal most recently popped);
     else error();
```

Operator-Precedence Parsing Algorithm -- Example

<u>stack</u>	<u>input</u>	<u>action</u>
\$	id+id*id\$	\$ < id shift
\$id	+id*id\$	$id > + reduce E \rightarrow id$
\$	+id*id\$	shift
\$+	id*id\$	shift
\$+id	*id\$	$id > * reduce E \rightarrow id$
\$+	*id\$	shift
\$+*	id\$	shift
\$+*id	\$	$id > \$$ reduce $E \rightarrow id$
\$+*	\$	* $>$ \$ reduce $E \rightarrow E*E$
\$+	\$	$+:>$ \$ reduce $E \rightarrow E+E$
\$	\$	accept

How to Create Operator-Precedence Relations

- We use associativity and precedence relations among operators.
- 1. If operator O_1 has higher precedence than operator O_2 , $\rightarrow O_1 > O_2$ and $O_2 < O_1$
- 2. If operator O_1 and operator O_2 have equal precedence, they are left-associative \rightarrow $O_1 > O_2$ and $O_2 > O_1$ they are right-associative \rightarrow $O_1 < O_2$ and $O_2 < O_1$
- 3. For all operators O, O < id, id > O, O < ((< O, O >),) > O, O > \$, and \$ < O
- 4. Also, let

 (=·) \$ <· (id ·>)) ·> \$

 (<· (\$ <· id id ·> \$) ·>)

 (<· id

Operator-Precedence Relations

	+	ı	*	/	٨	id	()	\$
+	Ņ	Ņ	Ÿ	<:	Ÿ	<·	Ÿ	Ņ	·>
-	ý	ý	Ÿ	<.	Ÿ	<.	Ÿ	ý	·>
*	ý	ý	ý	·>	Ÿ	<.	Ÿ	ý	·>
/	ý	ý	ý	·>	Ÿ	<.	Ÿ	ý	·>
^	ý	ý	ý	·>	Ÿ	<.	Ÿ	ý	·>
id	Ņ	Ņ	Ņ	Ņ	Ņ			Ņ	·>
(Ÿ	Ÿ	Ÿ	<·	Ÿ	<·	Ÿ	ii	
)	Ņ	Ÿ	Ÿ	·>	Ÿ			Ÿ	·>
\$	<:	<:	<:	<.	<:	<.	<.		

Handling Unary Minus

- Operator-Precedence parsing cannot handle the unary minus when we also the binary minus in our grammar.
- The best approach to solve this problem, let the lexical analyzer handle this problem.
 - The lexical analyzer will return two different operators for the unary minus and the binary minus.
 - The lexical analyzer will need a lookhead to distinguish the binary minus from the unary minus.

• Then, we make

O < unary-minus	for any operator
unary-minus ·> O	if unary-minus has higher precedence than O
unary-minus < · O	if unary-minus has lower (or equal) precedence than O

Operator-Precedance Grammars

Let G be an \in -free operator grammar(No \in -Production). For each terminal symbols a and b, the following conditions are satisfies.

- 1. a = b, if \exists a production in RHS of the form $\alpha a \beta b \gamma$, where β is either \in or a single non Terminal. Ex $S \rightarrow iCtSeS$ implies i = t and t = e.
- 2. a < b if for some non-terminal A \exists a production in RHS of the form A $\Rightarrow \alpha a A \beta$, and A $\Rightarrow^+ \gamma b \delta$ where γ is either \in or a single non-terminal. $Ex \land b$ implies i < b.
- 3. a > b if for some non-terminal A \exists a production in RHS of the form A $\Rightarrow \alpha Ab\beta$, and A $\Rightarrow^+ \gamma a\delta$ where δ is either \in or a single non-terminal. $Ex \ S \rightarrow iCtS \ and \ C \Rightarrow^+ b$ implies b > t.

 $E \rightarrow E + T \mid T, T \rightarrow T * F \mid F, F \rightarrow (E) \mid id$

Operator Precedence Relations.

To find the Table we have to find the last & first terminal for each non-terminal as follows:

Non terminal	First terminal	Last terminal
E	*, +, (, id	*, +,), id
T	*, (, id	*,), id
F	(, id), id

	+	*	()	id	\$
+	Ÿ	Ÿ	Ċ	Ÿ	Ÿ	Ÿ
*	·>	ý	<.	ý	Ÿ	Ÿ
(<.	<.	<.	÷	<.	
)	·>	ý		Ÿ		Ÿ
id	·>	Ÿ		Ÿ		Ÿ
\$	<·	Ÿ	<.		<.	

By Applying the Rule of Operator Precedence Grammar

Operator Precedence Relations, Continue....

To produce the Table we have to follow the procedure as: LEADING(A) = { $a \mid A \Rightarrow^+ \gamma a \delta$, where γ is \in or a single non-terminal.} TRAILING(A) = { $a \mid A \Rightarrow^+ \gamma a \delta$, where δ is \in or a single non-terminal.}

Precedence Functions

- Compilers using operator precedence parsers do not need to store the table of precedence relations.
- The table can be encoded by two precedence functions f and g that map terminal symbols to integers.
- For symbols a and b.

$$f(a) < g(b)$$
 whenever $a < b$

$$f(a) = g(b)$$
 whenever $a = b$

$$f(a) > g(b)$$
 whenever $a > b$

Disadvantages of Operator Precedence Parsing

Disadvantages:

- It cannot handle the unary minus (the lexical analyzer should handle the unary minus).
- Small class of grammars.
- Difficult to decide which language is recognized by the grammar.

Advantages:

- simple
- powerful enough for expressions in programming languages

Error Recovery in Operator-Precedence Parsing

Error Cases:

- 1. No relation holds between the terminal on the top of stack and the next input symbol.
- 2. A handle is found (reduction step), but there is no production with this handle as a right side

Error Recovery:

- 1. Each empty entry is filled with a pointer to an error routine.
- 2. Decides the popped handle "looks like" which right hand side. And tries to recover from that situation.

LR Parsers

• The most powerful shift-reduce parsing (yet efficient) is:

- LR parsing is attractive because:
 - LR parsing is most general non-backtracking shift-reduce parsing, yet it is still efficient.
 - The class of grammars that can be parsed using LR methods is a proper superset of the class of grammars that can be parsed with predictive parsers.

$$LL(1)$$
-Grammars $\subset LR(1)$ -Grammars

 An LR-parser can detect a syntactic error as soon as it is possible to do so a left-to-right scan of the input.

LR Parsers

LR-Parsers

- covers wide range of grammars.
- SLR simple LR parser
- LR most general LR parser
- LALR intermediate LR parser (look-head LR parser)
- SLR, LR and LALR work same (they used the same algorithm), only their parsing tables are different.

LR Parsing Algorithm

A Configuration of LR Parsing Algorithm

A configuration of a LR parsing is:

- S_m and a_i decides the parser action by consulting the parsing action table. (*Initial Stack* contains just S_o)
- A configuration of a LR parsing represents the right sentential form:

$$X_1 ... X_m a_i a_{i+1} ... a_n$$
\$

Actions of A LR-Parser

1. shift s -- shifts the next input symbol and the state s onto the stack $(S_0 X_1 S_1 ... X_m S_m, a_i a_{i+1} ... a_n \$) \rightarrow (S_0 X_1 S_1 ... X_m S_m a_i s, a_{i+1} ... a_n \$)$

- 2. reduce $A \rightarrow \beta$ (or rn where n is a production number)
 - pop $2|\beta|$ (=r) items from the stack;
 - then push A and s where $s=goto[s_{m-r},A]$

$$(S_0 X_1 S_1 ... X_m S_m, a_i a_{i+1} ... a_n \$) \rightarrow (S_0 X_1 S_1 ... X_{m-r} S_{m-r} A s, a_i ... a_n \$)$$

- Output is the reducing production reduce $A \rightarrow \beta$
- 3. Accept Parsing successfully completed
- **4.** Error -- Parser detected an error (an empty entry in the action table)

Reduce Action

- pop $2|\beta|$ (=r) items from the stack; let us assume that $\beta = Y_1Y_2...Y_r$
- then push A and s where $s=goto[s_{m-r},A]$

$$(S_{o} X_{1} S_{1} ... X_{m-r} S_{m-r} Y_{1} S_{m-r} ... Y_{r} S_{m}, a_{i} a_{i+1} ... a_{n} \$)$$
 $(S_{o} X_{1} S_{1} ... X_{m-r} S_{m-r} A s, a_{i} ... a_{n} \$)$

• In fact, $Y_1Y_2...Y_r$ is a handle.

$$X_1 ... X_{m-r} A a_i ... a_n$$
 $\Rightarrow X_1 ... X_m Y_1 ... Y_r a_i a_{i+1} ... a_n$

(SLR) Parsing Tables for Expression Grammar

1) $E \rightarrow E+T$

2)
$$E \rightarrow T$$

3) $T \rightarrow T*F$

4)
$$T \rightarrow F$$

5) $F \rightarrow (E)$

6) $F \rightarrow id$

Action Table

Goto Table

state	id	+	*	()	\$	E	T	F
0	s 5			s4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

Actions of A (S)LR-Parser -- Example

<u>stack</u>	<u>input</u>	<u>action</u>	<u>output</u>
0	id*id+id\$	shift 5	
0id5	*id+id\$	reduce by F→id	F→id
0F3	*id+id\$	reduce by $T \rightarrow F$	T→F
0T2	*id+id\$	shift 7	
0T2*7	id+id\$	shift 5	
0T2*7id5	+id\$	reduce by F→id	F→id
0T2*7F10	+id\$	reduce by $T \rightarrow T^*F$	$T \rightarrow T*F$
0T2	+id\$	reduce by $E \rightarrow T$	$E \rightarrow T$
0E1	+id\$	shift 6	
0E1+6	id\$	shift 5	
0E1+6id5	\$	reduce by F→id	F→id
0E1+6F3	\$	reduce by $T \rightarrow F$	$T \rightarrow F$
0E1+6T9	\$	reduce by $E \rightarrow E + T$	$E \rightarrow E + T$
0E1	\$	accept	

Constructing SLR Parsing Tables – LR(0) Item

• An LR(0) item of a grammar G is a production of G a dot at the some position of the right side.

• Ex: $A \rightarrow aBb$ Possible LR(0) Items: $A \rightarrow aBb$ (four different possibility) $A \rightarrow aBb$ $A \rightarrow aBb$ $A \rightarrow aBb$

- Sets of LR(0) items will be the states of action and goto table of the SLR parser.
- A collection of sets of LR(0) items (the canonical LR(0) collection) is the basis for constructing SLR parsers.
- Augmented Grammar:

G' is G with a new production rule $S' \rightarrow S$ where S' is the new starting symbol.

The Closure Operation

- If *I* is a set of LR(0) items for a grammar *G*, then *closure*(*I*) is the set of LR(0) items constructed from I by the two rules:
 - 1. Initially, every LR(0) item in I is added to closure(I).
 - 2. If $A \to \alpha \bullet B\beta$ is in closure(I) and $B \to \gamma$ is a production rule of G; then $B \to \bullet \gamma$ will be in the closure(I).
 - We will apply this rule until no more new LR(0) items can be added to closure(I).

The Closure Operation -- Example

$$E' \rightarrow E$$

$$E \rightarrow E+T$$

$$E \rightarrow E+T$$

$$E \rightarrow \bullet E$$

$$E \rightarrow \bullet E+T$$

$$T \rightarrow T^*F$$

$$T \rightarrow F$$

$$T \rightarrow \bullet T^*F$$

$$T \rightarrow \bullet F$$

$$F \rightarrow \bullet (E)$$

$$F \rightarrow \bullet id$$

$$Closure(\{E' \rightarrow \bullet E\}) =$$

$$E \rightarrow \bullet E+T$$

$$E \rightarrow \bullet E+T$$

$$T \rightarrow \bullet T^*F$$

$$T \rightarrow \bullet T^*F$$

$$T \rightarrow \bullet F$$

$$F \rightarrow \bullet (E)$$

$$F \rightarrow \bullet id$$

Goto Operation

- If I is a set of LR(0) items and X is a grammar symbol (terminal or non-terminal), then goto(I,X) is defined as follows:
 - If $A \to \alpha \bullet X\beta$ in I then every item in **closure**($\{A \to \alpha X \bullet \beta\}$) will be in goto(I,X).

Example:

```
I = \{ E' \rightarrow \bullet E, E \rightarrow \bullet E + T, E \rightarrow \bullet T, \\ T \rightarrow \bullet T^*F, T \rightarrow \bullet F, \\ F \rightarrow \bullet (E), F \rightarrow \bullet id \} 
goto(I,E) = \{ E' \rightarrow E \bullet, E \rightarrow E \bullet + T \} 
goto(I,T) = \{ E \rightarrow T \bullet, T \rightarrow T \bullet ^*F \} 
goto(I,F) = \{ T \rightarrow F \bullet \} 
goto(I,()) = \{ F \rightarrow (\bullet E), E \rightarrow \bullet E + T, E \rightarrow \bullet T, T \rightarrow \bullet T^*F, T \rightarrow \bullet F, \\ F \rightarrow \bullet (E), F \rightarrow \bullet id \} 
goto(I,id) = \{ F \rightarrow id \bullet \}
```

Construction of The Canonical LR(0) Collection

• To create the SLR parsing tables for a grammar G, we will create the canonical LR(0) collection of the grammar G'.

• Algorithm:

```
C is { closure({S'→•S}) }
repeat the followings until no more set of LR(0) items can be added to C.
for each I in C and each grammar symbol X
if goto(I,X) is not empty and not in C
add goto(I,X) to C
```

• goto function is a DFA on the sets in C.

The Canonical LR(0) Collection -- Example

$$\begin{split} I_0 \colon E' \to .EI_1 \colon E' \to E.I_6 \colon E \to E+.T & I_0 \colon E \to E+T. \\ E \to .E+T & E \to E.+T & T \to .T*F & T \to T.*F \\ E \to .T & T \to .F & T \to .F \\ T \to .T*F & I_2 \colon E \to T. & F \to .(E) & I_{10} \colon T \to T*F. \\ T \to .F & T \to T.*F & F \to .id & F \to .(E) \\ F \to .(E) & F \to .(E) & F \to .(E) \\ F \to .id & I_3 \colon T \to F. & I_7 \colon T \to T*.F & I_{11} \colon F \to (E). \\ & F \to .(E) & F \to .id & E \to .E+T \\ E \to .T & I_8 \colon F \to (E.) & F \to .E+T \\ T \to .F & F \to .(E) & F \to .id & E \to E+T \\ T \to .F & F \to .(E) & F \to .id & E \to E+T \\ & F \to .(E) & F \to .id & E \to E+T \\ & F \to .(E) & F \to .id & E \to E+T \\ & F \to .(E) & F \to .id & E \to E+T \\ & F \to .(E) & F \to .id & E \to E+T \\ & F \to .(E) & F \to .id & E \to E+T \\ & F \to .(E) & F \to .id & E \to E+T \\ & F \to .(E) & F \to .id & E \to E+T \\ & F \to .(E) & F \to .id & E \to E+T \\ & F \to .(E) & F \to .id & E \to E+T \\ & F \to .(E) & F \to .id & E \to E+T \\ & F \to .(E) & F \to .id & E \to E+T \\ & F \to .(E) & E \to E+T \\ & E \to E+T & E \to$$

 $I_5: F \rightarrow id.$

Transition Diagram (DFA) of Goto Function

LR Parsing

- The most prevalent type of bottom-up parsers
- LR(k), mostly interested on parsers with k<=1
- Why LR parsers?
 - Table driven
 - Can be constructed to recognize all programming language constructs
 - Most general non-backtracking shift-reduce parsing method
 - Can detect a syntactic error as soon as it is possible to do so
 - Class of grammars for which we can construct LR parsers are superset of those which we can construct LL parsers

States of an LR parser

- States represent set of items
- An LR(0) item of G is a production of G with the dot at some position of the body:
 - For A->XYZ we have following items
 - A->.XYZ
 - A->X.YZ
 - A->XY.Z
 - A->XYZ.
 - In a state having A->.XYZ we hope to see a string derivable from XYZ next on the input.
 - What about A->X.YZ?

Constructing canonical LR(0) item sets

- Augmented grammar:
 - G with addition of a production: S'->S
- Closure of item sets:
 - If I is a set of items, closure(I) is a set of items constructed from I by the following rules:
 - Add every item in I to closure(I)
 - If A-> α .B β is in closure(I) and B-> γ is a production then add the item B->. γ to clsoure(I).
- Example: E'->E E -> E + T | T T -> T * F | F

$$F -> (E) \mid id$$

```
I0=closure({[E'->.E]}
E'->.E
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.id
```

Constructing canonical LR(0) item sets (cont.)

• Goto (I,X) where I is an item set and X is a grammar symbol is closure of set of all items [A-> αX . β] where [A-> $\alpha .X$ β] is in I

Closure algorithm

```
SetOfItems CLOSURE(I) {
   J=I;
   repeat
        for (each item A-> \alpha.B\beta in J)
                for (each production B->\gamma of G)
                        if (B->.\gamma \text{ is not in } J)
                                add B->.γ to J;
   until no more items are added to J on one round;
   return J;
```

GOTO algorithm

```
SetOfItems GOTO(I,X) { 
 J=empty; 
 if (A-> \alpha.X \beta is in I) 
 add CLOSURE(A-> \alphaX. \beta) to J; 
 return J; 
 }
```

Canonical LR(0) items

```
Void items(G') {
  C= CLOSURE({[S'->.S]});
  repeat
       for (each set of items I in C)
        for (each grammar symbol X)
          if (GOTO(I,X) is not empty and not in C)
              add GOTO(I,X) to C;
  until no new set of items are added to C on a round;
```


Use of LR(0) automaton

• Example: id*id

Line	Stack	Symbols	Input	Action
(1)	0	\$	id*id\$	Shift to 5
(2)	05	\$id	*id\$	Reduce by F->id
(3)	03	\$F	*id\$	Reduce by T->F
(4)	02	\$T	*id\$	Shift to 7
(5)	027	\$T*	id\$	Shift to 5
(6)	0275	\$T*id	\$	Reduce by F->id
(7)	02710	\$T*F	\$	Reduce by T->T*F
(8)	02	\$T	\$	Reduce by E->T
(9)	01	\$E	\$	accept

LR-Parsing model

LR parsing algorithm

```
let a be the first symbol of w$;
while(1) { /*repeat forever */
   let s be the state on top of the stack;
   if (ACTION[s,a] = shift t) {
        push t onto the stack;
        let a be the next input symbol;
   } else if (ACTION[s,a] = reduce A->\beta) {
        pop |\beta| symbols of the stack;
        let state t now be on top of the stack;
        push GOTO[t,A] onto the stack;
        output the production A->\beta;
   } else if (ACTION[s,a]=accept) break; /* parsing is done */
   else call error-recovery routine;
```

Example E'->E E -> E + T

STATE		ACTON)
	id	+	*	()	\$	Е	T	F
0	S ₅			S ₄			1	2	3
1		S 6				Acc			
2		R2	S ₇		R ₂	R2			
3		R 4	R ₇		R4	R4			
4	S ₅			S4			8	2	3
5		R 6	R 6		R6	R6			
6	S ₅			S ₄				9	3
7	S ₅			S ₄					10
8		S 6			S11				
9		Rı	S ₇		R1	Rı			
10		R ₃	R ₃		R ₃	R ₃			
11		R5	R5		R ₅	R ₅			

(2) E -> T

(3) T -> T * F

(4) T-> F

(5) F -> (E)

(6) F->id

id*id+id?

Line	Stac k	Symbol s	Input	Action
(1)	О		id*id+id\$	Shift to 5
(2)	05	id	*id+id\$	Reduce by F->id
(3)	03	F	*id+id\$	Reduce by T->F
(4)	02	T	*id+id\$	Shift to 7
(5)	027	T*	id+id\$	Shift to 5
(6)	0275	T*id	+id\$	Reduce by F->id
(7)	02710	T*F	+id\$	Reduce by T->T*F
(8)	02	Т	+id\$	Reduce by E->T
(9)	01	E	+id\$	Shift
(10)	016	E+	id\$	Shift
(11)	0165	E+id	\$	Reduce by F->id
(12)	0163	E+F	\$	Reduce by T->F
(13)	0169	E+T`	\$	Reduce by E->E+T
(14)	01	E	\$	accept

action 6 acapt 2

Constructing SLR Parsing Table

(of an augumented grammar G')

- 1. Construct the canonical collection of sets of LR(0) items for G'. $C \leftarrow \{I_0,...,I_n\}$
- 2. Create the parsing action table as follows
 - If a is a terminal, $A \rightarrow \alpha.a\beta$ in I_i and $goto(I_i,a)=I_j$ then action[i,a] is *shift j*.
 - If $A \rightarrow \alpha$. is in I_i , then action[i,a] is *reduce* $A \rightarrow \alpha$ for all a in FOLLOW(A) where $A \neq S$ '.
 - If S' \rightarrow S. is in I_i , then action[i,\$] is *accept*.
 - If any conflicting actions generated by these rules, the grammar is not SLR(1).
- 3. Create the parsing goto table
 - for all non-terminals A, if $goto(I_i,A)=I_j$ then goto[i,A]=j
- 4. All entries not defined by (2) and (3) are errors.
- 5. Initial state of the parser contains $S' \rightarrow .S$

Parsing Tables of Expression Grammar

		Action Table							Goto Table			
state	id	+	*	()	\$		E	T	F		
0	s5			s4				1	2	3		
1		s6				acc						
2		r2	s7		r2	r2						
3		r4	r4		r4	r4						
4	s5			s4				8	2	3		
5		r6	r6		r6	r6						
6	s5			s4					9	3		
7	s5			s4						10		
8		s6			s11							
9		r1	s7		r1	r1						
10		r3	r3		r3	r3						
11		r5	r5		r5	r5						

SLR(1) Grammar

- An LR parser using SLR(1) parsing tables for a grammar G is called as the SLR(1) parser for G.
- If a grammar G has an SLR(1) parsing table, it is called SLR(1) grammar (or SLR grammar in short).
- Every SLR grammar is unambiguous, but every unambiguous grammar is not a SLR grammar.

shift/reduce and reduce/reduce conflicts

- If a state does not know whether it will make a shift operation or reduction for a terminal, we say that there is a shift/reduce conflict.
- If a state does not know whether it will make a reduction operation using the production rule i or j for a terminal, we say that there is a reduce/reduce conflict.
- If the SLR parsing table of a grammar G has a conflict, we say that that grammar is not SLR grammar.

Conflict Example

$$S \rightarrow L=R$$
 $I_0: S' \rightarrow .S$
 $S \rightarrow R$ $S \rightarrow .L=R$
 $L \rightarrow *R$ $S \rightarrow .R$
 $L \rightarrow id$ $L \rightarrow .*R$
 $R \rightarrow L$ $L \rightarrow .id$
 $R \rightarrow .L$

Problem

FOLLOW(R)={=,\$}

 $= \rightarrow \text{shift 6}$

reduce by $R \rightarrow L$

shift/reduce conflict

$$I_{1}:S' \rightarrow S. \qquad I_{6}:S \rightarrow L=.R \qquad I_{9}: S \rightarrow L=R.$$

$$R \rightarrow .L$$

$$L \rightarrow .*R$$

$$L \rightarrow .id$$

$$I_{3}:S \rightarrow R.$$

$$I_{4}:L \rightarrow *.R \qquad I_{7}:L \rightarrow *R.$$

$$R \rightarrow .L$$

$$L \rightarrow .*R \qquad I_{8}:R \rightarrow L.$$

$$L \rightarrow .id$$

$$I_{5}:L \rightarrow id.$$

Conflict Example2

Problem

$$FOLLOW(A) = \{a,b\}$$

$$FOLLOW(B) = \{a,b\}$$

a
$$\rightarrow$$
 reduce by $A \rightarrow \varepsilon$ reduce by $B \rightarrow \varepsilon$

reduce/reduce conflict

b reduce by
$$A \rightarrow \epsilon$$
 reduce by $B \rightarrow \epsilon$ reduce/reduce conflict

Constructing Canonical LR(1) Parsing Tables

- In SLR method, the state i makes a reduction by $A\rightarrow\alpha$ when the current token is a:
 - if the $A \rightarrow \alpha$ in the I_i and a is FOLLOW(A)
- In some situations, βA cannot be followed by the terminal a in a right-sentential form when $\beta \alpha$ and the state i are on the top stack. This means that making reduction in this case is not correct.

$$S \rightarrow AaAb$$
 $S \Rightarrow AaAb \Rightarrow Aab \Rightarrow ab$ $S \Rightarrow BbBa \Rightarrow Bba \Rightarrow ba$ $S \rightarrow BbBa$ $Aab \Rightarrow \epsilon ab$ $Bba \Rightarrow \epsilon ba$ $B \rightarrow \epsilon$ $AaAb \Rightarrow Aa \epsilon b$ $BbBa \Rightarrow Bb \epsilon a$

LR(1) Item

- To avoid some of invalid reductions, the states need to carry more information.
- Extra information is put into a state by including a terminal symbol as a second component in an item.
- A LR(1) item is:

 $A \rightarrow \alpha \cdot \beta, a$

where **a** is the look-head of the LR(1) item (**a** is a terminal or end-marker.)

LR(1) Item (cont.)

- When β (in the LR(1) item A $\rightarrow \alpha \cdot \beta$,a) is not empty, the look-head does not have any affect.
- When β is empty $(A \to \alpha_{\bullet}, a)$, we do the reduction by $A \to \alpha$ only if the next input symbol is **a** (not for any terminal in FOLLOW(A)).
- A state will contain $A \to \alpha_{\bullet}, a_1$ where $\{a_1, ..., a_n\} \subseteq FOLLOW(A)$

• • •

$$A \rightarrow \alpha_{\bullet}, a_{n}$$

Canonical Collection of Sets of LR(1) Items

• The construction of the canonical collection of the sets of LR(1) items are similar to the construction of the canonical collection of the sets of LR(0) items, except that *closure* and *goto* operations work a little bit different.

closure(I) is: (where I is a set of LR(1) items)

- every LR(1) item in I is in closure(I)
- if A \rightarrow α.B β ,a in closure(I) and B \rightarrow γ is a production rule of G; then B \rightarrow .γ,b will be in the closure(I) for each terminal b in FIRST(β a).

goto operation

- If I is a set of LR(1) items and X is a grammar symbol (terminal or non-terminal), then goto(I,X) is defined as follows:
 - If $A \to \alpha.X\beta$, a in I then every item in **closure**($\{A \to \alpha X.\beta,a\}$) will be in goto(I,X).

Construction of The Canonical LR(1) Collection

• Algorithm:

```
C is { closure({S'→.S,$}) }
repeat the followings until no more set of LR(1) items can be added to C.
for each I in C and each grammar symbol X
if goto(I,X) is not empty and not in C
add goto(I,X) to C
```

• goto function is a DFA on the sets in C.

A Short Notation for The Sets of LR(1) Items

• A set of LR(1) items containing the following items

$$A \rightarrow \alpha \cdot \beta, a_1$$

• • •

$$A \rightarrow \alpha \cdot \beta, a_n$$

can be written as

$$A \rightarrow \alpha \cdot \beta, a_1/a_2/.../a_n$$

Canonical LR(1) Collection -- Example

$$S \rightarrow AaAb$$

 $S \rightarrow BbBa$
 $A \rightarrow \varepsilon$
 $B \rightarrow \varepsilon$

$$I_0: S' \rightarrow .S ,\$$$

 $S \rightarrow .AaAb ,\$$
 $S \rightarrow .BbBa ,\$$
 $A \rightarrow . ,a$
 $B \rightarrow . ,b$

$$I_4: S \to Aa.Ab , \$ \xrightarrow{A} I_6: S \to AaA.b , \$ \xrightarrow{a} I_8: S \to AaAb. , \$$$

$$A \to . , b$$

$$I_5: S \to Bb.Ba$$
, \$\bigcup_B \int_1: S \to BbB.a\$, \$\bigcup_B \int_1: S \to BbBa.\$, \$\bigcup_B \int_2: S \to BbBa.\$,\$

Canonical LR(1) Collection – Example 2

$$S' \rightarrow S \qquad I_0: S' \rightarrow .S, \$$$

$$1) S \rightarrow L = R \qquad S \rightarrow .L = R, \$$$

$$2) S \rightarrow R \qquad S \rightarrow .R, \$$$

$$3) L \rightarrow *R \qquad L \rightarrow .*R, \$/=$$

$$4) L \rightarrow id \qquad L \rightarrow .id, \$/=$$

5) $R \rightarrow L$

 $I_8: R \rightarrow L.,\$/=$

 $R \rightarrow .L,$ \$

Construction of LR(1) Parsing Tables

- 1. Construct the canonical collection of sets of LR(1) items for G'. $C \leftarrow \{I_0,...,I_n\}$
- 2. Create the parsing action table as follows
 - If a is a terminal, $A \rightarrow \alpha \cdot a\beta$, b in I_i and $goto(I_i,a)=I_j$ then action[i,a] is shift j.
 - If $A \rightarrow \alpha$, a is in I_i , then action[i,a] is **reduce** $A \rightarrow \alpha$ where $A \neq S$.
 - If $S' \rightarrow S_{\bullet}$, \$\(\sim \text{is in } \text{I}_i\), then action[i,\$] is accept.
 - If any conflicting actions generated by these rules, the grammar is not LR(1).
- 3. Create the parsing goto table
 - for all non-terminals A, if $goto(I_i,A)=I_j$ then goto[i,A]=j
- 4. All entries not defined by (2) and (3) are errors.
- 5. Initial state of the parser contains $S' \rightarrow .S,$ \$

LR(1) Parsing Tables – (for Example 2)

	id	*	=	\$	S	L	R
0	s5	s4			1	2	3
1				acc			
2			s6	r5			
3				r2			
4	s5	s4				8	7
5			r4	r4			
6	s12	s11				10	9
7			r3	r3			
8			r5	r5			
9				r1			
10				r5			
11	s12	s11				10	13
12				r4			
13				r3			

no shift/reduce or no reduce/reduce conflict

so, it is a LR(1) grammar

LALR Parsing Tables

- LALR stands for LookAhead LR.
- LALR parsers are often used in practice because LALR parsing tables are smaller than LR(1) parsing tables.
- The number of states in SLR and LALR parsing tables for a grammar G are equal.
- But LALR parsers recognize more grammars than SLR parsers.
- yacc creates a LALR parser for the given grammar.
- A state of LALR parser will be again a set of LR(1) items.

Creating LALR Parsing Tables

Canonical LR(1) Parser

LALR Parser

shrink # of states

- This shrink process may introduce a reduce/reduce conflict in the resulting LALR parser (so the grammar is NOT LALR)
- But, this shrink process does not produce a shift/reduce conflict.

The Core of A Set of LR(1) Items

• The core of a set of LR(1) items is the set of its first component.

Ex:
$$S \to L \bullet = R, \$$$
 \Rightarrow $S \to L \bullet = R$ \leftarrow Core $R \to L \bullet, \$$ $R \to L \bullet$

• We will find the states (sets of LR(1) items) in a canonical LR(1) parser with same cores. Then we will merge them as a single state.

$$I_1:L \to id \bullet ,=$$
 A new state: $I_{12}:L \to id \bullet ,=$ $L \to id \bullet ,\$$ $I_2:L \to id \bullet ,\$$ have same core, merge them

- We will do this for all states of a canonical LR(1) parser to get the states of the LALR parser.
- In fact, the number of the states of the LALR parser for a grammar will be equal to the number of states of the SLR parser for that grammar.

Creation of LALR Parsing Tables

- Create the canonical LR(1) collection of the sets of LR(1) items for the given grammar.
- Find each core; find all sets having that same core; replace those sets having same cores with a single set which is their union.

$$C = \{I_0,...,I_n\} \rightarrow C' = \{J_1,...,J_m\}$$
 where $m \le n$

- Create the parsing tables (action and goto tables) same as the construction of the parsing tables of LR(1) parser.
 - Note that: If J=I₁ ∪ ... ∪ Ik since I₁,...,Ik have same cores
 ⇒ cores of goto(I₁,X),...,goto(I₂,X) must be same.
 - So, goto(J,X)=K where K is the union of all sets of items having same cores as $goto(I_1,X)$.
- If no conflict is introduced, the grammar is LALR(1) grammar. (We may only introduce reduce/reduce conflicts; we cannot introduce a shift/reduce conflict)

Shift/Reduce Conflict

- We say that we cannot introduce a shift/reduce conflict during the shrink process for the creation of the states of a LALR parser.
- Assume that we can introduce a shift/reduce conflict. In this case, a state of LALR parser must have:

$$A \rightarrow \alpha \bullet ,a$$
 and $B \rightarrow \beta \bullet a\gamma ,b$

• This means that a state of the canonical LR(1) parser must have:

$$A \rightarrow \alpha \bullet ,a$$
 and $B \rightarrow \beta \bullet a\gamma ,c$

But, this state has also a shift/reduce conflict. i.e. The original canonical LR(1) parser has a conflict.

(Reason for this, the shift operation does not depend on lookaheads)

Reduce/Reduce Conflict

• But, we may introduce a reduce/reduce conflict during the shrink process for the creation of the states of a LALR parser.

Canonical LALR(1) Collection – Example 2

$$S' \rightarrow S \qquad I_0:S' \rightarrow \bullet S, \\ I_1:S' \rightarrow S \bullet, \\ I_{411}:L \rightarrow *\bullet R, \\ R \rightarrow \bullet L, \\ S \rightarrow \bullet L = R, \\ S \rightarrow \bullet L = R, \\ S \rightarrow \bullet R, \\ S \rightarrow \bullet R, \\ S \rightarrow \bullet R, \\ I_2:S \rightarrow L \bullet = R, \\ S \rightarrow \bullet L \rightarrow \bullet R, \\ I_{2:S} \rightarrow L \bullet = R, \\ I_{2:S} \rightarrow L \bullet = R, \\ I_{3:S} \rightarrow L \rightarrow \bullet R, \\ I_{411}:L \rightarrow *\bullet R, \\ I_{411}:L$$

LALR(1) Parsing Tables – (for Example 2)

	id	*	=	\$	S	L	R
0	s5	s4			1	2	3
1				acc			
2			s6	r5			
3				r2			
4	s5	s4				8	7
5			r4	r4			
6	s12	s11				10	9
7			r3	r3			
8			r5	r5			
9				r1			

no shift/reduce or no reduce/reduce conflict

so, it is a LALR(1) grammar

Using Ambiguous Grammars

- All grammars used in the construction of LR-parsing tables must be un-ambiguous.
- Can we create LR-parsing tables for ambiguous grammars?
 - Yes, but they will have conflicts.
 - We can resolve these conflicts in favor of one of them to disambiguate the grammar.
 - At the end, we will have again an unambiguous grammar.
- Why we want to use an ambiguous grammar?
 - Some of the ambiguous grammars are much natural, and a corresponding unambiguous grammar can be very complex.
 - Usage of an ambiguous grammar may eliminate unnecessary reductions.
- Ex.

$$E \rightarrow E+E \mid E*E \mid (E) \mid id$$

$$T \rightarrow T*F \mid F$$

$$F \rightarrow (E) \mid id$$

Sets of LR(0) Items for Ambiguous Grammar

SLR-Parsing Tables for Ambiguous Grammar

$$FOLLOW(E) = \{ \$, +, *, \}$$

State I₇ has shift/reduce conflicts for symbols + and *.

$$I_0 \xrightarrow{E} I_1 \xrightarrow{+} I_4 \xrightarrow{E} I_7$$

when current token is +

shift → + is right-associative

reduce → + is left-associative

when current token is *

shift \rightarrow * has higher precedence than +

reduce → + has higher precedence than *

SLR-Parsing Tables for Ambiguous Grammar

$$FOLLOW(E) = \{ \$, +, *, \}$$

State I₈ has shift/reduce conflicts for symbols + and *.

$$I_0 \xrightarrow{E} I_1 \xrightarrow{*} I_5 \xrightarrow{E} I_7$$

when current token is *

shift → * is right-associative

reduce → * is left-associative

when current token is +
shift → + has higher precedence than *
reduce → * has higher precedence than +

SLR-Parsing Tables for Ambiguous Grammar

		Act	tion	Goto				
	id	+	*	()	\$		E
0	s3			s2				1
1		s4	s5			acc		
2	s3			s2				6
3		r4	r4		r4	r4		
4	s3			s2				7
5	s3			s2				8
6		s4	s5		s9			
7		r1	s 5		r1	r1		
8		r2	r2		r2	r2		
9		r3	r3		r3	r3		

Error Recovery in LR Parsing

- An LR parser will detect an error when it consults the parsing action table and finds an error entry. All empty entries in the action table are error entries.
- Errors are never detected by consulting the goto table.
- An LR parser will announce error as soon as there is no valid continuation for the scanned portion of the input.
- A canonical LR parser (LR(1) parser) will never make even a single reduction before announcing an error.
- The SLR and LALR parsers may make several reductions before announcing an error.
- But, all LR parsers (LR(1), LALR and SLR parsers) will never shift an erroneous input symbol onto the stack.

Panic Mode Error Recovery in LR Parsing

- Scan down the stack until a state s with a goto on a particular nonterminal A is found. (Get rid of everything from the stack before this state s).
- Discard zero or more input symbols until a symbol **a** is found that can legitimately follow A.
 - The symbol a is simply in FOLLOW(A), but this may not work for all situations.
- The parser stacks the nonterminal **A** and the state **goto[s,A]**, and it resumes the normal parsing.
- This nonterminal A is normally is a basic programming block (there can be more than one choice for A).
 - stmt, expr, block, ...

Phrase-Level Error Recovery in LR Parsing

- Each empty entry in the action table is marked with a specific error routine.
- An error routine reflects the error that the user most likely will make in that case.
- An error routine inserts the symbols into the stack or the input (or it deletes the symbols from the stack and the input, or it can do both insertion and deletion).
 - missing operand
 - unbalanced right parenthesis