#### **LECTURE 15**

### Bias and Variance

Exploring the different sources of error in the predictions that our models make.

#### Data 100, Fall 2020 @ UC Berkeley

Anthony D. Joseph, Fernando Pérez (content by Ani Adhikari & Suraj Rampure)

# Random Variables and Expectations: A quick recap

## What is a random variable?

A random variable is a **numerical function of a random sample.** 

Another name for a numerical function of a sample is a "statistic."

We typically denote random variables with uppercase letters late in the alphabet (e.g. X, Y).

Why **random**? Because the sample on which it is a function was drawn at random.

Why **variable**? Because its value depends on how the sample came out.

#### Definition of expectation

The **expectation** of a random variable X is the weighted average of the values of X, where the weights are the probabilities of the values.

The most common formulation applies the weights one possible value at a time:

$$\mathbb{E}(X) = \sum_{\substack{\text{all possible} \\ x}} x \mathbb{P}(X = x)$$

However, an equivalent formulation applies the weights one sample at a time:

$$\mathbb{E}(X) = \sum_{\text{all samples}} X(s) \mathbb{P}(s)$$



#### Linearity

Two of the properties we just established were

- Linear transformations apply to expectations.
- Expectation is additive.

Combining these gives us a single property, which is sometimes referred to as the **linearity of expectation**. For any random variables X, Y and constants a, b:

$$E(aX + bY) = aE(X) + bE(Y)$$

This more general form won't appear often in this class, but it is good to be aware of.



#### Summary

- Random variables are functions of our sample.
- The expectation of a random variable is the weighted average of its possible values, w of those values.
  - Expectation behaves nicely with linear transformations of random variables.
  - Expectation is also additive.



## Variance and Covariance: Random Variables Revisited

#### Definition of variance

- Variance is the expected squared deviation from the expectation of X.
- It is defined as follows:

$$\mathbb{V}ar(X) = \mathbb{E}((X - \mathbb{E}(X))^2)$$

- The units of the variance are the square of the units of X.
- To get back to the right scale, we look at the **standard deviation** of X:

$$\mathbb{SD}(X) = \sqrt{\mathbb{V}ar(X)} = \sqrt{\mathbb{E}((X - \mathbb{E}(X))^2)}$$

Both standard deviation and variance must be non-negative.

#### Interpretation of variance

- The main use of variance is to **quantify chance error**.
  - o How far away from the expectation can X be, just by chance?

- By Chebyshev's inequality from Data 8:
  - No matter what the shape of the distribution of X is,
  - The vast majority of the probability lies in the interval "expectation plus or minus a few SDs".
  - o Specifically, if  $m{\mu}$  = E[X] and  $m{\sigma}$  = SD[X], then  $P(|X-\mu| \geq k\sigma) \leq rac{1}{k^2}$  .
  - We will not be using this formula in this class; it's just here to remind you of it.
    - Here's a <u>link to a discussion in the Data 8 book</u> about this.

#### An alternative calculation

There's a more convenient form of variance for use in calculations.

$$\mathbb{V}ar(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$

To derive this, we make repeated use of the linearity of expectation. (A more detailed walkthrough is in the lecture video.)

$$egin{aligned} Var(X) &= E((X-E(X))^2) \ &= Eig(X^2-2XE(X)+(E(X)^2)ig) \ &= E(X^2)-2E(X)E(X)+(E(X))^2 \ &= E(X^2)-(E(X))^2 \end{aligned}$$

#### An alternative calculation

$$\mathbb{V}ar(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$

For example, to compute the variance of one roll of a die, we can find

$$Var(X) = (1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2) \cdot \frac{1}{6} - (3.5)^2 = 2.92$$

- This formulation also makes clear that if X is **centered**, i.e. E(X) = 0, then  $Var(X) = E(X^2)$ .
- Since Var(X) is non-negative, this property also shows us that  $E(X^2) \ge (E(X))^2$ . Equality is if and only if X is a constant.
- If you know the expectation and variance of a random variable, you can easily determine the expectation of its square:  $\mathbb{E}(X^2) = \mathbb{V}ar(X) + (\mathbb{E}(X))^2$ .

#### Linear transformations

We know that  $\mathbb{E}(aX+b)=a\mathbb{E}(X)+b$  . In order to compute Var(aX + b), consider:

A shift by **b** units **does not** affect spread:



Here, the distribution of X is in blue, and the distribution of X+4 is in orange.

But scaling by **a** units **does** affect spread:



The distribution of X is in blue, and the distribution of 3X is in orange.

#### Linear transformations

We know that  $\mathbb{E}(aX+b)=a\mathbb{E}(X)+b$  .

In order to compute Var(aX + b), consider:

- A shift by b units does not affect spread. Thus, Var(aX + b) = Var(aX).
- The multiplication by a does affect spread!

$$egin{aligned} Var(aX+b) &= Var(aX) = E((aX)^2) - (E(aX))^2 \ &= E(a^2X^2) - (aE(X))^2 \ &= a^2ig(E(X^2) - (E(X))^2ig) \ &= a^2Var(X) \end{aligned}$$

In summary:

$$Var(aX + b) = a^{2}Var(X)$$
  
$$SD(aX + b) = |a|SD(X)$$

Don't forget the absolute values and squares!

#### Standardization of random variables

X in **standard units** is the random variable 
$$X_{su} = \frac{X - \mathbb{E}(X)}{\mathbb{SD}(X)}$$
 .

- X<sub>su</sub> measures X on the scale "number of SDs from expectation."
- It is a linear transformation of X. By the linear transformation rules for expectation and variance:

$$\mathbb{E}(X_{su}) = 0, \quad \mathbb{SD}(X_{su}) = 1$$

• Since  $X_{su}$  is centered (has expectation 0):

$$\mathbb{E}(X_{su}^2) = \mathbb{V}ar(X_{su}) = 1$$

You should prove these facts yourself.

## Variance of a sum, Covariance

#### Recap

Thus far, we've established the following:

Linear transformations of random variables apply to their expectation.

$$\mathbb{E}(aX + b) = a\mathbb{E}(X) + b$$

Expectation is additive.

$$\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$$

Linear transformations of random variables transform their variance as follows:

$$\mathbb{V}ar(aX+b) = a^2 \mathbb{V}ar(X)$$

We haven't yet talked about the variance of a sum of random variables. Let's now do that!

#### Distributions of sums

Suppose  $X_1$  and  $X_2$  are the numbers on two rolls of a die.

- **X1 and X2 have the same distribution** (they are both Uniform in {1, 2, 3, 4, 5, 6}).
- But the distributions of X<sub>1</sub> + X<sub>1</sub> and
   X<sub>1</sub> + X<sub>2</sub> are different.
- Both  $X_1 + X_1$  and  $X_1 + X_2$  have the same expectation (7).
- But  $X_1 + X_2$  seems to have less spread, indicating that  $X_1 + X_1 = 2X_1$  has a larger variance.



#### Variance of a sum

The variance of a sum is affected by the dependence between the two random variables that are being added. Let's expand out the definition of Var(X + Y) to see what's going on. Let  $\mu_x = E[X], \mu_y = E[Y]$ .

$$Var(X+Y) = Eig[(X+Y-E(X+Y))^2ig]$$
 and the substitution.  $= Eig[((X-\mu_x)+(Y-\mu_y))^2ig]$   $= Eig[(X-\mu_x)^2+2(X-\mu_x)(Y-\mu_y)+(Y-\mu_y)^2ig]$   $= Eig[(X-\mu_x)^2ig]+Eig[(Y-\mu_y)^2ig]+2Eig[(X-\mu_x)(Y-\mu_y)ig]$   $= Var(X)+Var(Y)+2Eig[(X-E(X))(Y-E(Y))ig]$ ,

By the linearity of expectation,

We see that the variance of a sum is equal to the sum of variances, PLUS this weird term...

#### Covariance

The covariance of two random variables is their **expected product of deviations**.

$$\mathbb{C}ov(X,Y) = \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y)))$$

- ullet It is a generalization of variance. Note:  $\mathbb{C}ov(X,X) = \mathbb{V}ar(X)$  .
- Using the linearity of expectation and some algebra, you can show the following equality,
   which is a generalization of the alternative calculation for variance:

$$\mathbb{C}ov(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

To see whether variance is ever additive, we need to look at covariance differently.

#### When is variance additive?

For any two random variables X and Y:

$$\mathbb{V}ar(X+Y) = \mathbb{V}ar(X) + \mathbb{V}ar(Y) + 2\mathbb{C}ov(X,Y)$$

In order for variance to be additive, the covariance between X and Y needs to be 0.

$$\mathbb{V}ar(X+Y) = \mathbb{V}ar(X) + \mathbb{V}ar(Y) \iff \mathbb{C}ov(X,Y) = 0$$

When is the covariance between two random variables 0?

- A sufficient condition is that X and Y are independent. If X and Y are independent, knowing
  the value of X tells you nothing about the value of Y. Independence is a strong statement.
- This is not the only case when the covariance is 0, as we will shortly see.

Sometimes called the addition rule for variance:

$$\mathbb{V}ar(X+Y) = \mathbb{V}ar(X) + \mathbb{V}ar(Y)$$
 if X and Y are independent

#### Correlation

The units of the covariance are hard to interpret (e.g. "inch pounds"). In order to get rid of the units, we can scale it:

$$\frac{\mathbb{C}ov(X,Y)}{\mathbb{SD}(X)\mathbb{SD}(Y)} = \frac{\mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y)))}{\mathbb{SD}(X)\mathbb{SD}(Y)}$$

$$= \mathbb{E}\left(\frac{X - \mathbb{E}(X)}{\mathbb{SD}(X)} \cdot \frac{Y - \mathbb{E}(Y)}{\mathbb{SD}(Y)}\right)$$

$$= \mathbb{E}(X_{su}Y_{su})$$
Recall from Date of the product in state of

**Correlation** is covariance scaled by the two SDs.

Recall from Data 8: correlation is the average product in standard units. This is the random variable equivalent of that!

#### Uncorrelated random variables

The correlation between X and Y is

$$r(X,Y) = \frac{\mathbb{C}ov(X,Y)}{\mathbb{SD}(X)\mathbb{SD}(Y)}$$

This means that either both correlation and covariance are 0, or neither are.

$$\mathbb{C}ov(X,Y) = 0 \iff r(X,Y) = 0$$

- "Covariance equal to 0" is the same as "uncorrelated".
- Independent random variables are uncorrelated.
- But not all uncorrelated random variables are independent!
  - For instance: Let X be uniform on  $\{-1, 1\}$ . X and  $X^2$  are uncorrelated, but dependent.

## More properties of sums

#### Addition rule for variance



If X and Y are uncorrelated (in particular, if they are independent), then

$$\mathbb{V}ar(X+Y) = \mathbb{V}ar(X) + \mathbb{V}ar(Y)$$

Therefore, under the same conditions,

$$\mathbb{SD}(X+Y) \ = \ \sqrt{\mathbb{V}ar(X) + \mathbb{V}ar(Y)} \ = \ \sqrt{(\mathbb{SD}(X))^2 + (\mathbb{SD}(Y))^2}$$

- Think of this as "Pythagorean theorem" for random variables.
- Uncorrelated random variables are like orthogonal vectors.

#### I.I.D. sample sum



- "i.i.d." is short for "independent and identically distributed".
- Draws at random with replacement from a population are i.i.d.
- Let the sample  $X_1, X_2, \ldots, X_n$  be i.i.d. draws from a numerical population that has mean  $\mu$  and SD  $\sigma$ .
- Let the sample sum be  $S_n = \sum_{i=1}^n X_i$ .

Then, 
$$\mathbb{E}(S_n) = n\mu$$
,  $\mathbb{V}ar(S_n) = n\sigma^2$ ,  $\mathbb{SD}(S_n) = \sqrt{n}\sigma$ 

SD is not additive, even when each RV in the sum is independent.

#### An example revisited

Suppose  $X_1$  and  $X_2$  are the numbers on two rolls of a die.  $X_1$  and  $X_2$  have the same expectation and variance:

$$\mathbb{E}(X_1) = 3.5 = \mathbb{E}(X_2)$$
  $\mathbb{SD}(X_1) = 1.71 = \mathbb{SD}(X_2)$ 

 $X_1 + X_1$  and  $X_1 + X_2$  have the same expectation:

$$\mathbb{E}(X_1 + X_1) = 2 \times 3.5 = 7 = \mathbb{E}(X_1 + X_2)$$





$$\mathbb{SD}(X_1 + X_1) = \mathbb{SD}(2X_1) = 2 \times 1.71 = 3.42$$
  
$$\mathbb{SD}(X_1 + X_2) = \sqrt{2} \times 1.71 = 2.42$$



Since  $X_1$  and  $X_2$  are independent, we can use the result from the previous slide.

As we reasoned about earlier, the spread of  $X_1 + X_2$  is less than the spread of  $X_1 + X_1$ .

#### Variance of the Bernoulli distribution

En-route to computing the variance of the binomial distribution, let's first compute the variance of the Bernoulli (p) distribution. We can do this using the alternate calculation for variance.

$$E(X)=p$$
  $E(X^2)=1^2\cdot p+0^2\cdot (1-p)=p$ 

Putting these together:

$$Var(X) = E(X^2) - (E(X))^2 = p - p^2 = p(1 - p)$$

#### A quick bit of intuition - when is Var(Ber(p)) maximal?

$$Var(X) = p - p^2 = p(1 - p)$$

#### Graph for x-x^2



#### Variance of the binomial distribution

Let X have the **binomial (n, p)** distribution. We know that X is the number of "successes" in n independent trials of some event, each of which occur with probability p.

- Each trial can be thought of as a single Bernoulli (p) trial.
- We can then write:

$$X = I_1 + I_2 + \dots + I_n$$

where  $I_j$  is the **indicator** of success on trial j.  $I_j = 1$  if trial j is a success, and 0 else.

- ullet For each j,  $\mathbb{E}(I_j)=p, \;\; \mathbb{V}ar(I_j)=p(1-p)$
- ullet As established before,  $\mathbb{E}(X)=np$  .
- Using the fact that each indicator is independent:

$$\mathbb{V}ar(X) = np(1-p), \quad \mathbb{SD}(X) = \sqrt{np(1-p)}$$

## Distribution of sample means

#### Sample mean

Earlier, we looked at the expectation and SD of the sample sum. Let's explore the sample mean.

- ullet Consider an i.i.d. sample  $X_1, X_2, \dots, X_n$  .
- ullet For each i,  $E(X_i) = \mu, \quad SD(X_i) = \sigma$
- Define:

$$S_n = \sum_{i=1}^n X_i, \quad \bar{X}_n = \frac{1}{n} S_n$$

- The sample mean is a linear transformation of the sample sum (scaled by 1/n).
  - By linear transformation rules:

$$\mathbb{E}(\bar{X}_n) = \mu, \quad \mathbb{SD}(\bar{X}_n) = \frac{\sigma}{\sqrt{n}}$$

#### Accuracy of the sample mean

- Our goal will often be to estimate some characteristic of a population.
  - For instance, the average height of undergrad students at UC Berkeley.
  - To do this, we typically go out and collect a single sample. It has just one average.
  - Since that sample was random, it could have come out differently. As such, we need
    to look at the distribution of all possible sample means.
- For any sample size, the expected value of the sample mean is the population mean.
  - $\circ\quad \mathbb{E}(X_n)=\mu$  .
  - We call the sample mean an unbiased estimator of the population mean.
    - The term "unbiased" will reappear later in the semester.

#### Shape of the distribution

- As the sample size increases, the SD of the sample mean decreases.
  - The sample mean is more likely to be close to the population mean if we have a larger sample size.
- Square root law: If you increase the sample size by a factor, the SD decreases by the square root of the factor.
  - This is from Data 8. But we've just proven it, using the properties of variance!

$$\mathbb{SD}(\bar{X}_n) = \frac{\sigma}{\sqrt{n}}$$



Here are the distributions of two sample means. Both are drawn from the same population, but with different sample sizes.

#### Central limit theorem

The **central limit theorem (CLT)** states that no matter what population you are drawing from, the probability distribution of **the sum of an i.i.d. sample is roughly normal** if the sample size is large.

 Since the sample mean is a linear transformation of the sample sum, the sample mean is also roughly normal (with scaled parameters).

## Bias and Variance in Modeling

### Questions

- How can we describe the randomness in our data generation process?
- What does it mean for a new individual to be "similar" to those for whom we already have data?
- What are the main sources of error in prediction?
- Why do these errors occur, and how can we reduce them?
- How do all the different errors affect our overall risk?

# Assumptions of Randomness

### Data Generation Process



Errors have expectation 0 and are i.i.d. across individuals

### The Data

At each x,

- $\rightarrow$  truth = g(x)
- $\triangleright$  noise =  $\epsilon$
- ightharpoonup Observation  $Y = g(x) + \epsilon$

We only see Y





### Our Predictions

We choose a model and fit it to our data. The red line is our fitted function.



At every x, our prediction for Y is

- The height of the red line at x
- $\blacktriangleright$  Denote this  $\hat{Y}(x)$

# Measuring Prediction Error

### Prediction Error



#### Model Risk

- $\triangleright$  For a new individual at (x, Y):
- Mean squared error of prediction

model risk = 
$$\mathbb{E}((Y - \hat{Y}(x))^2)$$

- > The expectation is an average over all samples:
  - all possible samples we could have got for fitting our model
  - $\triangleright$  all possible new observations at the fixed x

#### Two Kinds of Error

- > Chance error:
  - > Due to randomness alone
  - > In the new observations
  - Also in the sample we used for fitting our model
- > Bias:
  - Non-random error
  - Due to our model being different from the true underlying function g

## Chance Error in the New Observation



### Observation Variance

- > The new observation is Y
- $\triangleright Y = g(x) + \epsilon$
- $\triangleright \epsilon \text{ is random } \mathbb{E}(\epsilon) = 0 \quad \mathbb{V}ar(\epsilon) = \sigma^2$

$$\mathbb{V}ar(Y) = \mathbb{V}ar(g(x) + \epsilon) = \mathbb{V}ar(\epsilon) = \sigma^2$$

observation variance =  $\sigma^2$ 

#### Reasons and Remedies

#### Some reasons:

- Measurement error
- Missing information acting like noise

Could try to get more precise measurements

Often this is beyond the control of the data scientist.

# Chance Error in Our Fitted Model

## Model Variability

 $\hat{Y}$  depends on the sample







Second source of chance error:

- Our fitted model is based on a random sample
- The sample could have come out differently
- Then the fitted model would have been different

#### Model Variance

- $\blacktriangleright$  Our prediction at x is  $\hat{Y}(x)$
- The average of these predictions across all possible samples is  $\mathbb{E}(\hat{Y}(x))$
- The variance of our prediction is

model variance = 
$$\mathbb{V}ar(\hat{Y}(x)) = \mathbb{E}((\hat{Y}(x) - \mathbb{E}(\hat{Y}(x)))^2)$$

#### Reasons and Remedies

#### Main reason:

 Overfitting: small differences in random samples lead to large differences in the fitted model

#### Remedy:

- Reduce model complexity
- Don't fit the noise

# Bias

#### Our Model Versus the Truth



- The green line is the fixed truth g
- The red line is our fitted model
- Bias measures how far off these two are, on average over all possible samples

#### Model Bias

- $\blacktriangleright$  The difference between our predicted value and the true g(x)
  - averaged over all possible samples

$$\mathbb{E}(\hat{Y}(x) - g(x)) = \mathbb{E}(\hat{Y}(x)) - g(x)$$

model bias = 
$$\mathbb{E}(\hat{Y}(x)) - g(x)$$

- Bias depends on x but is not random
  - $\triangleright$  If positive, the model tends to overestimate at x
  - $\triangleright$  If negative, the model tends to underestimate at x

#### Reasons and Remedies

#### Some reasons:

- Underfitting
- Lack of domain knowledge

#### Remedies:

- Increase model complexity (but don't overfit)
- Consult domain experts to see which models make sense

# Components of Prediction Error

### Prediction Error

New individual: 
$$(x, Y)$$

$$error = Y - \hat{Y}(x)$$



random variable





# Decomposition of Model Risk

## Decomposition of Error and Risk

Decomposition of the prediction error into three pieces:

$$Y - \hat{Y}(x) = \epsilon + (g(x) - \mathbb{E}(\hat{Y}(x))) + (\mathbb{E}(\hat{Y}(x)) - \hat{Y}(x))$$

Decomposition of the model risk into three pieces:

$$\mathbb{E}((Y - \hat{Y}(x))^2) = \mathbb{E}(\epsilon^2) + (g(x) - \mathbb{E}(\hat{Y}(x)))^2 + \mathbb{E}((\hat{Y}(x)) - \hat{Y}(x))^2)$$

The cross-product terms are 0

model risk =  $\sigma^2$  + (model bias)<sup>2</sup> + model variance

# Bias Variance Decomposition

 $model risk = observation variance + (model bias)^2 + model variance$ 

$$\mathbb{E}((Y - \hat{Y}(x))^2) = \sigma^2 + (\mathbb{E}(\hat{Y}(x)) - g(x))^2 + \mathbb{E}((\hat{Y}(x) - \mathbb{E}(\hat{Y}(x)))^2)$$

Note: these three terms are dimensionally consistent.

# Predicting by a Function with Parameters

If our model is a non-random function f that has an unknown parameter vector  $\theta$ 

- $\triangleright \theta$  is not random but has to be estimated from the sample
- $\blacktriangleright$  The estimate  $\hat{\theta}$  is random
- ightharpoonup So our fitted function  $f_{\hat{ heta}}$  is random and is just another name for  $\hat{Y}$

$$\mathbb{E}((Y - f_{\hat{\theta}}(x))^2) = \sigma^2 + (\mathbb{E}(f_{\hat{\theta}}(x)) - g(x))^2 + \mathbb{E}((f_{\hat{\theta}}(x) - \mathbb{E}(f_{\hat{\theta}}(x)))^2)$$

### Derivation of Bias-Variance Formula

See the lecture notebooks

# Summary for Modeling

### Bias Variance Plot



# Modeling Goals

 Try to minimize all three of observation variance, model bias, and model variance.

#### But

- Observation variance is often out of our control
- Reducing complexity to reduce model variance can increase bias
- Increasing model complexity to reduce bias can increase model variance
- Domain knowledge matters: the right model structure!

# The right model structure matters!



Ptolemaic Astronomy, a geocentric model based on circular orbits (epicycles and deferents).

High accuracy but very high model complexity.



Copernicus and Kepler: a heliocentric model with elliptical orbits.

Small model complexity yet high accuracy.