Теория вероятности

Храбров Александр Игоревич

2 марта 2023 г.

Содержание

1.	. Элементарная теория вероятностей		
	1.1	Основные понятия	2
	1.2	Предельные теоремы для схем Бернулли	5
2 .	Оби	цая теория вероятностей	9
	2.1	Колмогоровская модель теории вероятности	10
	2.2	Случайные величины	11
	2.3	Совместное распределение	13
	2.4	Математическое ожидание и дисперсия	16

1. Элементарная теория вероятностей

1 из 19

1.1. Основные понятия

Определение 1.1. $\Omega = \{\omega_1, \dots, \omega_n\}$ – пространство элементарных событий (исходов).

- 1. равновозможные
- 2. несовместные
- 3. одно всегда реализуется

Определение 1.2. Событие $A \subset \Omega$

$$P(A) = \frac{\#A}{\#\Omega}$$

Свойства. вероятности

- 1. $P(\emptyset) = 0, P(\Omega) = 1, P(A) \in [0, 1]$
- 2. Если $A \cap B = \emptyset$, то $P(A \cup B) = P(A) + P(B)$

3.
$$\underbrace{P(A \cup B)}_{=P(A)+P(B \setminus (A \cap B))} = P(A) + P(B) - P(A \cap B)$$

- 4. $P(\overline{A}) = 1 P(A)$, где $\overline{A} = \Omega \setminus A$
- 5. $P(A_1 \cup A_2 \cdots \cup A_m) = \sum_{i=1}^m P(A_i) \sum_{i \neq j} P(A_i \cap A_j) + \sum_{i \neq j, \ i \neq k, \ j \neq k} P(A_i \cap A_j \cap A_k) \cdots + (-1)^{m-1} \cdot P(A_1 \cap \cdots \cap A_m)$ формула включений-исключений.

Доказательство. Индукция по m.

База m=2.

Переход $m \to m+1$:

$$B_i = A_i \cup A_{m+1}$$

$$P(\underbrace{A_1 \cup \dots \cup A_m}_{=:B} \cup A_{m+1}) = P(B \cup A_{m+1}) = \underbrace{P(B)}_{\text{это умеем расписывать по инд. предп.}} + P(A_{m+1}) - P(B \cap A_{m+1})$$

$$A_{m+1}) =$$

$$= \sum_{j=1}^{m+1} P(A_j) - sum_{i\neq j}^m P(A_i \cap A_j) + \sum_{i\neq j\neq k}^m P(A_i \cap A_j \cap A_k) - \underbrace{P(A_{m+1} \cap B)}_{=P(B_1 \cup B_2 \cdots \cup B_m)}, \text{ где } B_i := A_i \cap A_{m+1}.$$

$$6. \ P(A \cup B) \le P(A) + P(B)$$

$$P(A_1 \cup \cdots \cup A_m) \le \sum_{j=1}^m P(A_j)$$

Определение 1.3. Условная вероятность.

$$B \neq \emptyset, \ P(B) > 0.$$

Знаем, что выполнилось событие B, хотим узнать вероятность наступления A.

$$P(A|B) = \frac{\#(A \cap B)}{\#B} = \frac{\frac{\#(A \cap B)}{\#\Omega}}{\frac{\#B}{\#\Omega}} = \frac{P(A \cap B)}{P(B)}$$

Свойства. 1. P(A|A) = 1, если $B \subset A$, то P(A|B) = 1

2. Если
$$A_1 \cap A_2 = \emptyset$$
, то $P(A_1 \cup A_2 | B) = P(A_1 | B) + P(A_2 | B)$ В частности: $P(A|B) + P(\overline{A}|B) = 1$

Замечание. $P(A|B) + P(A|\overline{B})$ не обязана быть 1.

Пример: игральный кубик, B – выпало четное число, A – выпало кратное трем.

$$P(A|B) = \frac{1}{3}, \ P(A|\overline{B}) = \frac{1}{3}$$

Теорема 1.1. Формула полной вероятности.

Пусть
$$\Omega = \bigsqcup_{j=1}^m B_j, \ P(B_j) > 0.$$

Тогда
$$P(A) = \sum_{j=1}^{m} P(A|B_j) \cdot P(B_j)$$

Доказательство.
$$\sum_{j=1}^{m} \underbrace{P(A|B_{j})}_{P(B_{j})} \cdot P(B_{j}) = \sum_{j=1}^{m} P(A \cap B_{j}) = P(A \cap \bigsqcup_{j=1}^{m} B_{j}) = P(A)$$

Пример. І. 3 белых шара, 5 черных шаров

II. 5 белых, 5 черных

2 шара из I положили в II, затем вынули 1 шар из II, P(вынули белый)=?

A – вынули из II белый шар.

 $B_0,\ B_1,\ B_2,$ где B_j – переложили j белых шаров из I в II.

Тогда
$$P(A|B_0) = \frac{5}{12}, \ P(A|B_1) = \frac{1}{2}, \ P(A|B_2) = \frac{7}{12}.$$

$$P(B_0) = \frac{C_5^2}{C_8^2} = \frac{5}{14}$$

$$P(B_1) = \frac{15}{C_8^2} = \frac{15}{28}$$

$$P(B_2) = \frac{C_3^2}{C_8^2} = \frac{3}{28}$$

Подставляем в формулу:

$$P(A) = \frac{331}{336}$$

Теорема 1.2. Формула Байеса.

Пусть
$$P(A) > 0$$
, $P(B) > 0$, тогда $P(B|A) = \frac{P(A|B) \cdot P(B)}{P(A)}$

Доказательство. Расписываем P(A|B), получаем в правой части: $\frac{P(A\cap B)}{P(B)} \cdot P(B) \cdot \frac{1}{P(A)}$.

Теорема 1.3. Байеса.

Пусть
$$P(A) > 0, \ P(B_j) > 0, \ \Omega = \bigsqcup_{j=1}^m B_j,$$
 тогда

$$P(B_j|A) = \frac{P(A|B_j) \cdot P(B_j)}{P(A|B_1)P(B_1) + \dots + P(A|B_m)P(B_m)}$$

Пример. Есть 2 монеты (одна симметричная, вторая $P(\text{орла}) = \frac{1}{3}$, $P(\text{решка}) = \frac{2}{3}$). Взялу наугад монету, побросили и выпал орел. Какова вероятность, что мы взяли симметричную монету?

A – выпал орел, B – монета симметричная (\overline{B} – монета кривая).

$$P(B|A) = \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|\overline{B})P(\overline{B})} = \frac{\frac{1}{2} \cdot \frac{1}{2}}{\frac{1}{2} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{1}{2}} = \frac{3}{5}$$

Определение 1.4. Независимые события.

Рассуждения: A не зависит от B, если $P(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}$.

Опр. $A,\ B$ независимые события, если $P(A\cap B)=P(A)\cdot P(B)$

Определение 1.5. События A_1, A_2, \dots, A_m – независимы в совокупности, если

$$P(A_{i_1}\cap A_{i_2}\cap\cdots\cap A_{i_k})=P(A_{i_1})\cdot P(A_{i_2})\cdot\cdots\cdot P(A_{i_k})$$
 – для любых индексов i_j .

Замечание. Независимость в совокупности \implies попарная независимость.

Наоборот неверно.

Пример. Есть два игральных кубика.

A – на первом кубике выпало четное число.

B – на втором выпало четное число.

C – сумма на кубиках четная.

Пространство элементарных исходов это все пары (i, j), где $i, j \in \{1, 2, 3, 4, 5, 6\}, \#\Omega = 36$.

$$P(A) = \frac{1}{2}, \ P(B) = \frac{1}{2}, \ P(C) = \frac{1}{2}.$$

$$A \cap B = A \cap C = B \cap C = A \cap B \cap C.$$

 $P(A \cap B) = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = P(A) \cdot P(B)$, остальные равенства тоже выполняются \implies попарная независимость.

$$P(A \cap B \cap C) = \frac{1}{4} \neq \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = P(A) \cdot P(B) \cdot P(C) \implies$$
 нет независимости в совокупности.

Упражнение. Д-ть, что $A_1, \dots A_m$ независимы в совокупности $\Leftrightarrow P(B_1 \cap B_2 \cap \dots \cap B_m) = P(B_1) \dots P(B_m)$, где $B_j = A_j$ или $\overline{A_j}$ (все 2^m равенств).

Замечание. Небольшое обобщение.

$$\Omega = \{\omega_1, \dots, \omega_n\}$$
 – пр-во элементарных исходов.

Также у нас есть
$$p_1, \dots p_n : \sum_{i=1}^n p_i = 1, \ \forall i : \ p_i \ge 0.$$

$$P(A) = \sum_{j: \ \omega_j \in A} p_j.$$

Теорема 1.4. Схема Бернулли.

$$open = ycnex = 1.$$

решка
$$=$$
 неудача $=$ 0.

$$P(\text{орел}) = p, \ 0$$

$$P(\text{решка}) = 1 - p$$

Бросаем монету n раз, получаем последовательность исходов:

$$\Omega = \{x_1, x_2, \dots, x_n\} : x_j = 0$$
 или 1.

$$\omega = (x_1, x_2, \dots, x_n), \ P(\{\omega\}) = p^{\#i: \ x_i = 1} \cdot q^{\#i: \ x_i = 0} = p^{\sum x_i} \cdot q^{n - \sum x_i}$$

Хотим узнать:

$$P$$
(выпало ровно k орлов) = $C_n^k p^k q^{n-k}$

P(i-ое подбрасывание = орел) – независимые в совокупности по i = 1, 2, ..., n.

Теорема 1.5. Полиномиальная схема.

$$p_1, p_2, \ldots, p_m : \sum p_i = 1.$$

$$P(x_i = k) = p_k$$
, где $x_i \in \{1, 2, \dots, m\}$

$$\Omega = \{(x_1, x_2, \dots, x_n)\}, \ \omega = (x_1, x_2, \dots, x_n)$$

$$P(\{\omega\}) = p_1^{\#\{i:x_i=1\}} \cdot \dots \cdot p_m^{\#\{i:x_i=m\}}$$

$$k_1 + k_2 + \dots + k_m = n$$

$$P(k_1 \text{ раз выпало } 1, k_2 \text{ раз выпало } 2, ...) = \underbrace{\binom{n}{k_1, k_2, \dots, k_m}}_{=\frac{n!}{k_1! - k_m!}} \cdot p_1^{k_1} \cdot \dots \cdot p_m^{k_m}$$

Теорема 1.6. Эрдёша-Мозера

Рассмотрим турнир на n команд. При каком наибольшем k можно всегда выбрать команды $A_1, A_2 \dots A_k$, так, что A_i выиграла у A_j , если i < j? При $k \le 1 + \lceil 2 \log_2 n \rceil$

Доказательство. Рассмотрим случайный турнир(Всего $\binom{n}{2}$, тогда Всего $2^{\binom{n}{2}}$ разных турниров. Случайный - берём из этой кучи наугад).

P(A выиграла у $B) = \frac{1}{2}$. Рассмотрим $A_1, A_2, \ldots A_k$ команды.

$$P(A_1, A_2 \dots A_k \text{ подходят}) = (\frac{1}{2})^{\binom{k}{2}}.$$

$$P(A_1, A_2 \dots A_k \text{ можно переименовать, так, что они подошли}) \leqslant \frac{k!}{2\binom{k}{2}}$$

P(какие-то k команд подошли $) \leqslant \binom{n}{k} \cdot \frac{k!}{2\binom{k}{2}}$

Нужно понять, что если $k\geqslant [2+2\log_2 n]$, то $\binom{n}{k}\frac{k!}{2\binom{k}{2}}<1$. $\binom{n}{k}\frac{k!}{2\binom{k}{2}}=\frac{n(n-1)(n-2)...(n-k+1)}{2^{\frac{k(k-1)}{2}}}<\frac{n^k}{(2^{\frac{k-1}{2}})^k}=\left(\frac{n}{2^{\frac{k-1}{2}}}\right)^k$

Надо понять, что
$$2^{\frac{k-1}{2}}\geqslant n \Leftrightarrow \frac{k-1}{2}\geqslant \log_2 n$$

1.2. Предельные теоремы для схем Бернулли

Определение 1.6. Схема Бернулли с вероятностью успеха $p \in (0,1)$. S_n - число успехов при n испытаниях. $P(S_n = k) = \binom{n}{k} p^k q^{n-k}$

Что будет больше $P(S_{1000}=220)$ при $p=\frac{1}{5}$ или $P(S_{2000})=360$ при $p=\frac{1}{6}$. Точные вычисления дают 0.008984 и 0.006625 соответственно.

Теорема 1.7. Пуассона

Схема Бернулли с n испытаниями и вероятностью успеха p_n - зависит от n. Если $np_n\to \lambda>0$. Тогда $P(S_n=k)\to \frac{\lambda^k}{k!}e^{-\lambda}$

Замечание. Если $np_n = \lambda$, то теорема верна при $k = o(\sqrt{n})$

Доказательство. $P(S_n = k) = \binom{n}{k} p^k (1-p)^{n-k} = \frac{n(n-1)...(n-k+1)}{k!} p_n^k (1-p_n)^{n-k}. \sim \frac{n^k}{k!} p_n^k (1-p)^{n-k} \sim \frac{\lambda^k}{k!} (1-p_n)^n$. Прологарифмируем: $\ln(1-p_n)^n = n \ln(1-p_n) \sim -np_n \sim -\lambda$

Доказательство замечания:

$$\ln(1-p_n)^k = k \ln(1-p_n) \sim -kp_n \to 0$$

Осталось понять, что $\frac{n(n-1)...(n-k+1)}{n^k} \to 1$ при $k = o(\sqrt{n})$.

$$\frac{n(n-1)\dots(n-k+1)}{n^k} = 1 \cdot \left(1 - \frac{1}{n}\right) \dots \cdot \left(1 - \frac{k-1}{n}\right) \geqslant 1 - \frac{1}{n} - \dots - \frac{k-1}{n} = 1 - \frac{k(k-1)}{2n} \to 1$$

Неравенство $(1-x_1)\dots(1-x_k)\geqslant 1-x_1-x_2-\dots-x_k$ при $0\leqslant x_i\leqslant 1$ - индукция.

Теорема 1.8. Прохорова

Если
$$\lambda = np$$
, то $\sum_{i=0}^{+\infty} |P(S_n = k) - \frac{\lambda^k}{k!} e^{-\lambda}| \leqslant \frac{2\lambda}{n} \cdot \min(2, \lambda)$

Пример. Игра в рулетку: 36 чисел и ноль.

$$p = \frac{1}{37}, n = 111, np = 3 = \lambda.$$

$$P(S_{111} = 3) = {111 \choose 3} (\frac{1}{37})^3 (1 - \frac{1}{37})^{111-3} = 0.227127$$

Из Пуассона $\frac{\lambda^3}{3!}e^{-\lambda} = 0.224$

Видим, что приближение хорошее.

$$P$$
(выигрыш) = 1 - $P(S_{111} = 0)$ - $P(S_{111} = 1)$ - $P(S_{111} = 2)$ - $P(S_{111} = 3)$ = 1 - $\frac{\lambda^0}{0!}e^{-\lambda}$ - $\frac{\lambda^1}{1!}e^{-\lambda}$ - $\frac{\lambda^2}{2!}e^{-\lambda}$ - $\frac{\lambda^3}{3!}e^{-\lambda}$ = 0.352754

А по формулам 0.352768

Теорема 1.9. Локальная предельная теорема Муавра-Лапласа

Схема Бернулии с вероятностью успеха $p \in (0,1), \ q = 1 - p, \ x = \frac{k - np}{\sqrt{npq}}$.

$$P(S_n = k) \sim_{n \to +\infty} \frac{1}{\sqrt{2\pi npq}} e^{\frac{-x^2}{2}}$$

Если $|x| \leq T$, то есть равномерность.

Доказательство. $k = np + x\sqrt{npq} \geqslant np - T\sqrt{npq} \rightarrow +\infty$

$$n-k = nq - x\sqrt{npq} \geqslant nq - T\sqrt{npq} \to +\infty$$

$$P(S_n = k) = \binom{n}{k} p^k q^{n-k} = \frac{n!}{k!(n-k)!} p^k q^{n-k}$$

Напишем формулу Стирлинга:

$$\frac{n^n e^{-n} \sqrt{2\pi n} p^k q^{n-k}}{k^k e^{-k} \sqrt{2\pi n} (n-k)^{n-k} e^{-(n-k)} \sqrt{2\pi (n-k)}} = \frac{p^k q^{n-k}}{(\frac{k}{n})^k \cdot (\frac{n-k}{n})^{n-k} \cdot \sqrt{2\pi \frac{k}{n} (1-\frac{k}{n}) n}}$$

$$\frac{k}{n} \to p, \frac{n-k}{n} \to q$$

Поэтому остаётся доказать, что $\frac{p^kq^{n-k}}{(\frac{k}{2})^k\cdot(\frac{n-k}{2})^{n-k}}\to e^{\frac{-x^2}{2}}$

$$k \ln \frac{k}{n} + (n-k) \ln \frac{n-k}{n} - k \ln p - (n-k) \ln q \to \frac{x^2}{2}$$

$$\alpha = \frac{k}{n} \to p, \beta = \frac{n-k}{n} \to q$$

 $n\alpha \ln \alpha + n\beta \ln \beta - n\alpha \ln p - n\beta \ln q \rightarrow \frac{x^2}{2} = n\alpha \ln \frac{\alpha}{p} + n\beta \ln \frac{\beta}{q}$

Напишем Тейлора:

$$\frac{\alpha}{p} = 1 + x\sqrt{\frac{q}{p}} \frac{1}{\sqrt{n}}$$

$$\frac{\beta}{q} = 1 - x\sqrt{\frac{p}{q}} \frac{1}{\sqrt{n}}$$

$$\ln \frac{\alpha}{p} = \ln(1 + x\sqrt{\frac{q}{p}} \frac{1}{\sqrt{n}}) = x\sqrt{\frac{q}{p}} - \frac{1}{2}x^2 \frac{q}{p} \frac{1}{n} + o(\frac{1}{n})$$

$$\ln \frac{\beta}{q} = \ln(1 - x\sqrt{\frac{p}{q}\frac{1}{\sqrt{n}}}) = -x\sqrt{\frac{p}{q}\frac{1}{\sqrt{n}}} - \frac{1}{2}x^2\frac{p}{q}\frac{1}{n} + o(\frac{1}{n})$$

Сумма равна: $x\sqrt{pq}\sqrt{n}+x^2q-\frac{1}{2}x^2q+o(\frac{1}{n})-x\sqrt{pq}\sqrt{n}+x^2p-\frac{1}{2}x^2p+o(\frac{1}{n})=x^2(\frac{q}{2}+\frac{p}{2})+o(1)=\frac{x^2}{2}+o(1)$

Извините, это было очень больно...

Замечание. Если $\varphi(n)=o(n^{\frac{2}{3}})$ и $|k-np|\leqslant \varphi(n),$ то теорема тоже верна

Пример. Всё та же рулетка. n=222, k=111. Пытаемся ставить на четное/нечётное(кроме 0). $p=\frac{18}{37}$

$$P(S_{222} = 111) \approx \frac{1}{\sqrt{2\pi npq}} e^{\frac{-x^2}{2}} \approx 0.049395...$$

Если считать точно, то получим 0.0493228...

Теорема 1.10. Интегральная теорема Муавра-Лапласа

$$0 . $P(a < \frac{S_n - np}{\sqrt{npq}} \le b) \to_{n \to \infty} \frac{1}{\sqrt{2\pi}} \int_a^b e^{-\frac{t^2}{2}} dt$$$

Стремление равномерно по $a, b \in \mathbb{R}$.

Теорема 1.11. Берри-Эссеена

Обозначение: $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$

$$\left| P(\frac{S_n - np}{\sqrt{npq}} \leqslant x) - \Phi(x) \right| \leqslant \frac{p^2 + q^2}{\sqrt{npq}} \cdot \frac{1}{2}$$

Замечание. Константа лучше, чем $\frac{c}{\sqrt{n}}$ не бывает.

Пример.
$$p=q=\frac{1}{2}$$
. Вопрос: $P(S_{2n}=n)=\binom{2n}{n}\frac{1}{2^{2n}}\sim \frac{4^n}{\sqrt{\pi n}}\frac{1}{4^n}=\frac{1}{\sqrt{\pi n}}$.

Ho
$$P(S_{2n} < n) = P(S_{2n} > n)$$
.

Тогда
$$P(S_{2n} \leqslant n) = \frac{1+P(S_{2n}=n)}{2} = \frac{1}{2} + \frac{1}{2\sqrt{\pi n}} + o(\frac{1}{\sqrt{n}})$$

Муавра-Лаплас нам говорит, что $P(S_{2n}\leqslant n)\to \frac{1}{\sqrt{2\pi}}\int_{-\infty}^0 e^{-\frac{t^2}{2}}\,dt=\frac{1}{2}$

Ho
$$P(S_{2n} \leq n) = \frac{1}{2} + \frac{1}{2\sqrt{\pi n}} + o(\frac{1}{\sqrt{n}})$$

Замечание.
$$P(a < S_n \leqslant b) = P(\frac{a-np}{\sqrt{npq}} < \frac{S_n-np}{\sqrt{npq}} \leqslant \frac{b-np}{\sqrt{npq}}) \to \Phi(\frac{b-np}{\sqrt{npq}}) - \Phi(\frac{a-np}{\sqrt{npq}})$$

Отсюда получили, что лучше всего писать полуцелые a и b.

Пример. Задача о театре

Есть театр и 2 входа. У каждого входа расположен гардероб. В театре n=1600 мест. Хотим сделать размер гардероба как можно меньше, но чтобы переполнения случались как можно реже.

Пусть c мест в итоге в гардеробе.

$$p=q=\frac{1}{2}$$
. Нужно, чтобы $n-c\leqslant S_n\leqslant c$.

$$P(n-c \leqslant S_n \leqslant c) = P(\frac{n-c-\frac{n}{2}}{\sqrt{n \cdot \frac{1}{4}}}) \leqslant \frac{S_n - \frac{n}{2}}{\sqrt{n \cdot \frac{1}{4}}} \leqslant \frac{c-\frac{n}{2}}{\sqrt{n \cdot \frac{1}{4}}} = P(\frac{800-c}{20}) \leqslant \frac{S_n - 800}{20} \leqslant \frac{c-800}{20} \to \Phi(\frac{800-c}{20}) - \Phi(\frac{c-800}{20}) = \frac{1}{\sqrt{2\pi}} \int_{\frac{800-c}{20}}^{\frac{c-800}{20}} e^{-\frac{t^2}{2}} dt > \frac{29}{30}$$

$$\Phi_0(\frac{c-800}{20}) > \frac{29}{60}$$
. Тогда $c = 843$.

Пример. Случайное блуждание на прямой

Есть прямая, будем считать, что у нас блуждания исключительно по целым точкам.

В каждой точке подбрасываем монетку. С вероятностью p идём вперёд, q - идём назад.

$$a_{n+1} = a_n + 1$$
 с вероятностью p

$$a_{n+1} = a_n - 1$$
 с вероятностью q

$$a_n \equiv n \mod 2$$

Это почти похоже на схему Бернулли: $2S_n - n = a_n$

$$P(a_n = k) = P(S_n = \frac{n+k}{2}) = \begin{cases} 0, \text{ если } n \not\equiv k \mod 2 \\ \left(\frac{n}{n+k}\right)p^{\frac{n+k}{2}}q^{\frac{n-k}{2}}, \text{ иначе} \end{cases}$$

Теорема 1.12. ван дер Вардена

Рассмотрим числа $1, 2 \dots k$ и покрасим их в 2 цвета.

Тогда существует k_n , такое, что, если $k > k_n$, то при любой раскраске найдётся одноцветная n-членная арифметическая прогрессия.

Теорема 1.13. Эрдеша-Радо

$$k_{n+1} \geqslant \sqrt{n \cdot 2^{n+1}}$$

Доказательство. $A_1, A_2 \dots A_m$ - все арифметические прогрессии длины n+1 из чисел $1, 2 \dots k$. С разностью $1 \ k-n$ прогрессий.

С разностью 2 k - 2n прогрессий.

. . .

С разностью $k-\left[\frac{k}{n}\right]\cdot n$ прогрессий с разностью $\left[\frac{k}{n}\right]$

Тогда $m=(k-n)+(k-2n)+\ldots=k\cdot [\frac{k}{n}]-n\cdot \frac{[\frac{k}{n}]\cdot ([\frac{k}{n}]+1)}{2}=[\frac{k}{n}](k-\frac{1}{2}n([\frac{k}{n}]+1))<\frac{k}{n}(k-\frac{1}{2}\cdot n\cdot \frac{k}{n})=\frac{k^2}{2n}$ - это оценка сверху.

 $P(A_i$ - одноцветная) = $2 \cdot \frac{1}{2^{n+1}} = \frac{1}{2^n}$ (2 - выбор цвета).

P(какое-то A_i - одноцветно $)=\sum_{i=1}^m P(A_i$ - одноцветно $)=\frac{m}{2^n}<\frac{k^2}{2n}\cdot\frac{1}{2^n}=(\frac{k}{\sqrt{2^{n+1}\cdot n}})^2\leqslant 1$ (если так, то найдётся, на которой не выполнится)

2. Общая теория вероятностей

2.1. Колмогоровская модель теории вероятности

Определение 2.1. (Ω, \mathcal{F}, P) - вероятностное пространство.

 Ω - множество или пространство элементарных исходов.

 ${\mathcal F}$ - σ -алгебра подмножеств Ω . Элементы ${\mathcal F}$ - случайный события.

P - мера на \mathcal{F} с условием $P(\Omega) = 1$.

Замечание. Если Ω не более чем счётно, то можно взять $\mathcal{F}=2^{\Omega}$

Определение 2.2. Условная вероятность. A - событие, такое, что P(A) > 0. Тогда $P(B|A) = \frac{P(B \cap A)}{P(A)}$, где $A, B \in \mathcal{F}$.

Определение 2.3. Независимые события A и B. Если $P(A \cap B) = P(A) \cdot P(B)$

Определение 2.4. Независимость в совокупности $A_1, A_2 \dots A_n$. $P(A_{i_1} \cap \dots \cap A_{i_k}) = P(A_{i_1}) \cdot \dots \cdot P(A_{i_k})$ для всевозможных наборов индексов.

Определение 2.5. Последовательность событий $A_1, A_2 \dots$ независимы - любой конечный набор событий независим в совокупности.

Лемма. Бореля-Кантелли

 A_1, A_2, \ldots случайные события.

- 1. Если $\sum_{n=1}^{\infty} P(A_n) < +\infty$, то вероятность, что случилось бесконечное число из них равна 0.
- 2. Если A_1,A_2,\ldots независимы и $\sum_{n=1}^{\infty}P(A_n)=+\infty$, тогда P(случилось бесконечное число из $A_n)=1$.

Доказательство. $B = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$.

 $\omega \in B \iff \omega \in \bigcup_{k=n}^{\infty} A_k \ \forall n \iff w \in A_k$ для бесконечного количества индексов k.

Док-во этого факта:

- 1. \Leftarrow : Лежит в каждом объединении, значит лежит в B.
- 2. \Rightarrow : ω лежит в пересечении. Пусть лежит в конечном возьмём самый большой номер и получим противоречие.

Док-во теоремы:

1. P(B) = 0 - хотим доказать.

 $B\subset \bigcup_{k=n}^\infty A_k\Rightarrow P(B)\leqslant P(\bigcup_{k=n}^\infty A_k)\leqslant \sum_{k=n}^\infty P(A_k),$ а это хвост сходящегося ряда, а он стремится к нулю.

2. Давайте смотреть на $\bar{A}_1, \bar{A}_2, \ldots$ - независимые события (следует из упражнения с прошлой лекции).

$$P(\bigcap_{k=1}^{n} \bar{A}_k) = \prod_{k=1}^{n} P(\bar{A}_k) \to_{n \to \infty} \prod_{k=1}^{\infty} P(\bar{A}_k)$$

Но всё вложено по убыванию, по монотонности меры получаем $P(\bigcap_{k=1}^{\infty} \bar{A}_k) = \prod_{k=1}^{\infty} P(\bar{A}_k) = \prod_{k=1}^{\infty} (1 - P(A_k))$

Прологарифмируем это равенство.

 $\ln(P(\bigcap_{k=n}^{\infty} \bar{A}_k)) = \sum_{k=n}^{\infty} \ln(1 - P(A_k)) \leqslant \sum_{k=n}^{\infty} (-P(A_k)) = -\infty$ – сумма хвоста расходящегося ряда.

А значит мы логарифмировали $0 \Rightarrow P(\bigcap_{k=n}^{\infty} \bar{A}_k) = 0 \Rightarrow P(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} \bar{A}_k) = 0 \Rightarrow P(\bar{B}) = 0 \Rightarrow \overline{\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} \bar{A}_k} = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = B \Rightarrow P(B) = 1.$

Добавим, что $B = \bigcap_{n=1}^{\infty} B_n$, где $B_1 \supset B_2 \supset \dots$ и $P(B) = \lim P(B_n) = 1$.

Теорема 2.1. Закон нуля и единицы

Если $A_1, A_2 \dots$ независимы, то P(B) = 0 или P(B) = 1.

Пример. Испытания Бернулли, успех с вероятностью p,

P(OPO встречается бесконечное число раз) = ?.

 $A_n =$ случилось OPO на позициях n, n + 1, n + 2.

Тогда A_1, A_4, A_7, \dots независимы. $P(A_j) = pqp = p^2q > 0$.

Лемма Бореля-Кантелли говорит: бесконечное кол-во A_{3k+1} случится, если $\sum_{k=1}^{\infty} P(A_{3k+1}) = +\infty \implies P(\text{OPO}$ встречается бесконечное число раз)=1.

2.2. Случайные величины

Определение 2.6. (Ω, \mathcal{F}, P) - вероятностное пространство.

 $\xi:\Omega\to\mathbb{R}$ - случайная величина, если это измеримая функция.

Определение 2.7. Распределение случайное величины

 P_{ξ} - вероятностная мера на борелевских подмножествах $\mathbb R$

A – борелевское мн-во, $P_{\xi}(A)=P(\omega\in\Omega\ :\ \xi(\omega)\in A)$

Определение 2.8. Случаный величины ξ и η одинаково распределены, если $P_{\xi} = P_{\eta}$

Замечание. P_{ξ} однозначно определяются своими значениями на ячейках.

$$P_{\xi}(a,b] = P_{\xi}(-\infty,b] - P_{\xi}(-\infty,a] = P(\xi \leqslant b) - P(\xi \leqslant a)$$

Определение 2.9. Функция распределения случайной величины

$$F_{\xi}(x) = P(\xi \leqslant x)$$

Свойства. 1. Функция распределения однозначно определяет распределение случайной величины.

Доказательство: Если у двух случайных величин совпали, то у них одинаковые распределения

- 2. $0 \leqslant F_{\varepsilon}(x) \leqslant 1 \,\forall x \in \mathbb{R}$
- 3. $\lim_{x \to -\infty} F_{\xi}(x) = 0$

$$\lim_{x\to+\infty} F_{\xi}(x) = 1$$

Доказательство: берём $x_n \to -\infty.A_n = \{\xi \leqslant x_n\}$ Тогда $A_{n+1} \subset A_n$. Тогда $\lim_{n \to \infty} P(A_n) = P(\bigcap_{n=1}^{\infty} A_n) = P(\varnothing) = 0$

4. F_{ξ} монотонно возрастает

5. Непрерывность справа: $\lim_{y\to x+} F_{\xi}(y) = F_{\xi}(x)$

Доказательство: берём y_n убывающие и $y_n \to x$. Тогда $A_n = \{\xi \leqslant y_n\}$. $A_{n+1} \subset A_n$. А тогда $\lim P(A_n) = P(\bigcup_{n=1}^{\infty} A_n) = P(\xi \leqslant x) = F_{\xi}(x)$. Но с другой стороны $\lim P(A_n) = \lim P(\xi \leqslant y_n) = \lim F_{\xi}(y_n)$

6. $\lim_{y \to x^{-}} F_{\xi}(y) P(\xi < x)$

Доказательство: берём y_n возрастающие и $y_n \to x$. $B_n = \{\xi \leqslant y_n\}$ и $B_n \subset B_{n+1}$. $\lim P(B_n) = P(\bigcup B_n) = P(\xi < x)$. Но с другой стороны $\lim P(B_n) = \lim F_{\xi}(y_n)$

7. $F_{\xi+a}(x) = F_{\xi}(x-a)$

Доказательство: $\{\xi + a \leqslant x\} = \{\xi \leqslant x - a\}$

8. $F_{c\xi} = F_{\xi}(\frac{x}{c})$

Доказательство: $\{c\xi \leqslant x\} = \{\xi \leqslant \frac{x}{c}\}$

Замечание. Фукнция, обладающая свойствами 3, 4, 5 - это фукнция распределения некоторой случайной величины.

Доказательство: пусть g - такая функция. Тогда $\nu_g(a,b]=g(b)-g(a)$. Случайная величина $\xi(x)=x$. Тогда $F_\xi=g$

Определение **2.10.** Случайная величина имеет дискретное распределение, если её множество значений не более чем счётное.

Замечание. 1. $\xi \to \{y_1, y_2, \ldots\}$

Если $x \neq y_k$, то $P(\xi = x) = 0$, т.е. $P_{\xi}(\{x\}) = 0$

2. $P_{\xi}(A) = \sum_{k:y_k \in A} P(\xi = y_k)$. Тут счётное число слагаемых, поэтому сумма корректно определена.

Распределение однозначно определяется набором вероятностей $P(\xi=y_k)$

3. $F_{\xi}(x) = \sum_{k: y_k \leq x} P(\xi = y_k)$

Определение 2.11. Случайная величина имеет непрерывное распределение, если $P(\xi = x) = 0$

Замечание. 1. Это значит, что фукнция распределения непрерывна.

2. Непрерывные распределения бывают не очень хорошими, например Канторова лестница.

Определение 2.12. Случайная величина имеет абсолютно непрерывное распределение, если существует $p_{\xi}(t) \geqslant 0$, измеримая, т.ч. $F_{\xi}(x) = \int_{-\infty}^{x} p_{\xi}(t) dt \ (p_{\xi}(t) - \text{плотность распределения}).$

Свойства. 1. $A \subset \mathbb{R}$ – борелевское, то $P_{\xi}(A) = \int_{A} p_{\xi}(t) dt$

Доказательство: слева мера и справа мера. Нужно понять, почему они совпадают на ячейках.

$$P_{\xi}(a,b] = F_{\xi}(b) - F_{\xi}(a) = \int_{a}^{b} p_{\xi}(t) dt$$

- 2. $\int_{-\infty}^{+\infty} p_{\xi}(t) dt = 1$
- 3. p_{ξ} определена однозначно с точностью до почти везде (из теории меры)
- 4. F_{ξ} почти везде диффиренцируема и $F'_{\xi}(x) = p_{\xi}(x)$

Доказательство: а его не будет

Пример. Вероятностные распределения

1. Биномиальное распределение: $\xi \sim Binom(p, n), 0$

$$\xi: \Omega \to \{0, 1, \dots n\}. \ P(\xi = k) \binom{n}{k} p^k (1-p)^{n-k}$$

2. Распределение Пуассона: $\xi \sim Poisson(\lambda), \lambda > 0$.

$$\xi: \Omega \to \{0, 1, \ldots\}. \ P(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

3. Геометрическое распределение: $\xi \sim Geom(p), 0 .$

$$\xi: \Omega \to \{1, 2, \ldots\}.$$
 $P(\xi = k) = p(1-p)^{k-1}.$

4. Дискретные равномерные распределения: $\xi \sim U(...)$

$$\xi: \Omega \to \{1, 2, \dots n\}. \ P(\xi = k) = \frac{1}{n}$$

5. Непрерывно равномерное распределение: $\xi \sim U([a,b])$

$$\xi: \Omega \to [a, b]. \ p_{\xi}(t) = \frac{1}{b-a} \cdot \mathbb{1}_{[a, b]}(t)$$

6. Нормальное распределение: $\xi \sim \mathcal{N}(a, \sigma^2), a \in \mathbb{R}, \sigma > 0$

$$\xi:\Omega\to\mathbb{R}.\ p_{\xi}(t)=\frac{1}{\sqrt{2\pi}\cdot\sigma}e^{-\frac{(t-a)^2}{2\sigma^2}}$$

Стандартное нормальное распределение: $\mathcal{N}(0,1)$

7. Экспонециальное распределение: $\xi \sim Exp(\lambda), \lambda > 0$.

$$\xi:\Omega\to[0,+\infty].$$
 $p_\xi(t)=egin{cases} \lambda e^{-\lambda t},\ \text{при }t\geqslant0 \ 0,\ \text{в других точках} \end{cases}$

Замечание. 1. $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$.

На самом деле это функция распределения стандартной нормальной случайной величины.

2. Если $\nu \sim \mathcal{N}(0,1)$, то $\xi = \sigma \nu + a$. $\xi \sim \mathcal{N}(a,\sigma^2)$

$$F_{\xi}(x) = P(\sigma \nu + a \leqslant x) = P(\nu \leqslant \frac{x-a}{\sigma}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x-a} e^{-\frac{t^2}{2}} dt$$

Замена $t = \frac{s-a}{\sigma}$. Тогда $dt = \frac{ds}{\sigma}$

Тогда:
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{x-a}{\sigma}} e^{-\frac{t^2}{2}} dt = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(s-a)^2}{2\sigma^2}} ds$$

2.3. Совместное распределение

Определение 2.13. Совместное (многомерное) распределение.

$$\bar{\xi} = (\xi_1, \xi_2, \dots, \xi_n) : \Omega \to \mathbb{R}^n$$

$$P_{\bar{\xi}}(A) = P(\bar{\xi} \in A),$$
 где A - борелевское подмножество \mathbb{R}^n

Замечание. Совместное распределение однозначно определяет распределение случайной величины, но не наоборот

Пример. $\xi, \eta : \Omega \to \{0,1\}$ с равными вероятностями.

Если это были независимые подбрасывания: $(\xi, \eta): \Omega \to \{(0,0), (0,1), (1,0), (1,1)\}$ с равными вероятностями.

Если
$$\xi = \eta$$
, то $(\xi, \eta) : \Omega \to \{(0, 0), (1, 1)\}.$

Определение 2.14. Случайные величины $\xi_1, \xi_2 \dots \xi_n$ независимы, если для любых борелевских подмножеств $A_1, A_2 \dots A_n \subset \mathbb{R}$, события $\{\xi_1 \in A_1\}, \dots, \{\xi_n \in A_n\}$ независимы

Замечание. $P(\xi_1 \in A_1, \dots, \xi_n \in A_n) = P(\xi_1 \in A_1) \cdot \dots \cdot P(\xi_n \in A_n)$

Теорема 2.2. $\xi_1, \xi_2 \dots \xi_n$ независимы $\iff P_{\bar{\xi}} = P_{\xi_1} \times \dots \times P_{\xi_n}$

Доказательство. 1. \Leftarrow очевидно. $P_{\bar{\xi}}(A_1 \times \ldots \times A_n) = P_{\xi_1}(A_1) \ldots P_{\xi_n}(A_n)$

2. \Rightarrow . На множествах $A_1 \times \ldots \times A_n$ есть равенство + единственность продолжения.

Определение 2.15. Совместная (многомерная) функция распределения.

$$\bar{\xi}=(\xi_1\ldots\xi_n).\ F_{\bar{\xi}}:\mathbb{R}^n\to\mathbb{R}.\ \text{if }F_{\bar{\xi}}(\bar{x})=P(\xi_1\leqslant x_1,\ldots,\xi_n\leqslant x_n)$$

Cooucmea. 1. $0 \leqslant F_{\bar{\xi}} \leqslant 1$

- 2. Монотонно возрастает по каждой координате
- 3. $\lim_{x_i \to -\infty} F_{\bar{\xi}}(\bar{x}) = 0$ $\lim_{x_1, \dots, x_n \to +\infty} F_{\bar{\xi}}(\bar{x}) = 1$
- 4. $\lim_{x_i \to +\infty} F_{\bar{\xi}}(\bar{x}) = F_{\xi_1, \dots, \xi_{i-1}, \xi_{i+1}, \dots}$

Определение 2.16. Совместная плотность $p_{\bar{\xi}}(\bar{t})$ - неотрицательная измеримая функция, такая, что $F_{\bar{\xi}}(\bar{\xi}) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} p_{\bar{\xi}}(\bar{t}) \, dt_n \dots dt_1$

Теорема 2.3. $\xi_1 \dots \xi_n$ независимы $\iff F_{\bar{\xi}}(\bar{x}) = F_{\xi_1}(x_1) \cdot \dots \cdot F_{\xi_n}(x_n)$

Доказательство. 1. Докажем \Rightarrow . Независимость \Rightarrow $(*)P_{\bar{\xi}} = P_{\xi_1} \times \ldots \times P_{\xi_n} \Rightarrow P_{\bar{\xi}}((-\infty, x_1] \times \ldots \times (-\infty, x_n]) = P_{\xi_1}(-\infty, x_1] \cdot \ldots \cdot P_{\xi_n}(-\infty, x_n]$

2. Хотим проверить совпадение на ячейках, чтобы доказать (*) ещё и в другую сторону.

$$P_{\bar{\xi}}((a_1, b_1] \times (a_2, b_2]) = F_{\bar{\xi}}(b_1, b_2) + F_{\bar{\xi}}(a_1, a_2) - F_{\bar{\xi}}(a_1, b_2) - F_{\bar{\xi}}(a_2, b_1) = (F_{\xi_1}(b_1) - F_{\xi_1}(a_1)) \cdot (F_{\xi_2}(b_2) - F_{\xi_2}(a_2)) = P_{\xi_1}(a_1, b_1] \cdot P_{\xi_2}(a_2, b_2]$$

Следствие. $\xi_1 \dots \xi_n$ - абсолютно непрерывные случайные величины. Тогда $\xi_1 \dots \xi_n$ независимы $\iff p_{\bar{\xi}}(\bar{t}) = p_{\xi_1}(t_1) \cdot \dots \cdot p_{\xi_n}(t_n)$

В частности, в случае независимости $\bar{\xi}$ абсолютно непрерывна.

Доказательство. 1. Докажем \Rightarrow .

Независимость $\Rightarrow F_{\xi}(\bar{x}) = F_{\xi_1}(x_1) \cdot \ldots \cdot F_{\xi_n}(x_n) = \int_{-\infty}^{x_1} p_{\xi_1}(t_1) dt_1 \cdot \ldots \cdot \int_{-\infty}^{x_n} p_{\xi_n}(t_n) dt_n = \int_{-\infty}^{x_1} \ldots \int_{-\infty}^{x_n} p_{\xi_1}(t_1) \ldots p_{\xi_n}(t_n) dt_n \ldots dt_1.$

Запихали всё под один интеграл, то что под интегралом и есть совместная плотность.

2. Докажем ←.

Просто проинтегрируем равенство.

$$\int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} p_{\bar{\xi}}(\bar{t}) dt_n \dots dt_1 = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} p_{\xi_1}(t_1) \dots p_{\xi_n}(t_n) dt_n \dots dt_1 = \underbrace{F_{\xi_1}(x_1) \dots F_{\xi_n}(x_n)}$$

по т. Тонелли можно выносить интегралы

Замечание. Напоминание.

Свертка последовательностей: $\{a_n\}, \{b_n\}$ это $\{c_n\}$, такая что $c_n = a_0b_n + a_1b_{n-1} + \ldots + a_nb_0$.

Мотивировка: $(\sum_{n=0}^{\infty} a_n z^n) \cdot (\sum_{n=0}^{\infty} b_n z^n) = \sum_{n=0}^{\infty} c_n z^n$ (при наличии хоть каких-нибудь кругов сходимости у обоих рядов).

Замечание. Свертки мер

 μ и ν - конечные меры на борелевских подмножествах \mathbb{R} .

$$\mu*
u(A)=\int_{\mathbb{R}}\mu(A-x)\,d
u(x)$$
 - это свертка мер, где $(A-x):=\{a-x\mid a\in A\}.$

Свойства. Свойства свёртки

1.
$$\mu * \nu(A) = \int_{\mathbb{R}^2} \mathbb{1}_A(x+y) d\mu(x) d\nu(y)$$

Доказательство: $\mu * \nu(A) = \int_{\mathbb{R}} \mu(A-x) \, d\nu(x) = \int_{\mathbb{R}} \int_{\mathbb{R}} \mathbb{1}_{A-x}(y) d\mu(y) \, d\nu(x)$

2.
$$\mu * \nu = \nu * \mu$$

3.
$$\mu_1 * \dots * \mu_n(A) = \int_{\mathbb{R}^n} \mathbb{1}_A(x_1 + \dots + x_n) d\mu_1(x_1) \dots d\mu_n(x_n)$$

4.
$$(\mu_1 * \mu_2) * \mu_3 = \mu_1 * (\mu_2 * \mu_3)$$

5.
$$(\mu_1 + \mu_2) * \nu = \mu_1 * \nu + \mu_2 * \nu$$

6. δ_x - мера с единичной нагрузкой в точке x. Тогда $\mu * \delta_0 = \mu$.

Получили линейное пространство относительно + и *

Доказательство: $\mu*\delta_0(A)=\int_R \mu(A-x)\,d\delta_0(x)=\mu A$ - значение подыинтегральной функции в точке x=0.

Теорема 2.4. Пусть μ и ν имеют плотности p_{μ} и p_{ν}

Тогда $\mu * \nu$ имеет плотность $p(t) = \int_{\mathbb{R}} p_{\mu}(t-s) p_{\nu}(s) \, ds$

Доказательство. Возьмём функцию, определяемую этой формулой и проверим, что подходит.

$$\int_{A} p(t) dt = \int_{A} \int_{\mathbb{R}} p_{\mu}(t-s) p_{\nu}(s) ds dt = \int_{\mathbb{R}} \int_{\mathbb{R}} \mathbb{1}_{A}(t) p_{\mu}(t-s) p_{\nu}(s) ds dt = (*).$$

Положим u=t-s. Тогда $(*)=\int_{\mathbb{R}^2}\mathbbm{1}_A(u+s)p_\mu(u)p_\nu(s)\,ds\,du=\int_{\mathbb{R}^2}\mathbbm{1}_A(u+s)\,d\nu(s)\,d\mu(u)=\mu*\nu(A)$

Теорема 2.5. Если ξ и η независимые случайный величины, то $P_{\xi+\eta} = P_{\xi} * P_{\eta}$

Доказательство. Нужно взять какое-то борелевское множество и понять как устроено там распределение суммы.

Пусть
$$B = \{(x, y) : x + y \in A\}$$

$$\begin{array}{lll} P_{\xi+\eta}(A) = P(\xi+\eta \in A) = P((\xi,\eta) \in B) = P_{\xi,\eta}(B) = \int_{\mathbb{R}^2} \mathbb{1}_B(x,y) dP_{\xi}(x) \, dP_{\eta}(y) = \int_{\mathbb{R}^2} \mathbb{1}_A(x+y) dP_{\xi}(x) \, dP_{\eta}(y) = P_{\xi} * P_{\eta}(A) \end{array}$$

Пример. 1. Свертка с дисректным распределением

$$\nu = \sum_{k=1}^{\infty} p_k \delta_{x_k}$$
. Тогда $\mu * \nu(A) = \int_{\mathbb{R}} \mu(A-x) \, d\nu(x) = \sum_{k=1}^{\infty} \mu(A-x_k) p_k$

2. $\xi_i \sim Poisson(\lambda_i)$. ξ_1 и ξ_2 независимы.

$$P_{\xi_1+\xi_2}(\{n\}) = \sum_{k=0}^{+\infty} P_{\xi_1}(\{n-k\}) \cdot \frac{\lambda_2^k e^{-\lambda_2}}{k!} = \sum_{k=0}^n \frac{\lambda_1^{n-k} e^{-\lambda_1}}{(n-k)!} \cdot \frac{\lambda_2^k e^{-\lambda_2}}{k!} = e^{-\lambda_1} e^{-\lambda_2} \sum_{k=0}^n \frac{\lambda_1^{n-k} \lambda_2^k}{k!(n-k)!} = \frac{(\lambda_1+\lambda_2)^n e^{-\lambda_1-\lambda_2}}{n!}$$

 $\xi_1 + \xi_2 \sim Poisson(\lambda_1 + \lambda_2)$

2.4. Математическое ожидание и дисперсия

Определение 2.17. $\xi:\Omega\to\mathbb{R}$ - случайная величина ($\xi\geq0$, либо суммируемая функция). $\mathbb{E}\xi = \int_{\mathbb{R}} \xi(\omega) \, dP(\omega)$ - математическое ожидание (среднее значение случайной величины).

1. $a, b \in \mathbb{R}$: $\mathbb{E}(a\xi + b\eta) = a\mathbb{E}\xi + b\mathbb{E}\eta$ Свойства.

- 2. Если $\xi \geqslant 0$, с вероятностью 1, то $\mathbb{E}\xi \geqslant 0$ (по сути написано, что если функция почти везде неотрицательна, то интеграл неотрицателен).
- 3. Если $\xi \geqslant \eta$ с вероятностью 1, то $\mathbb{E}\xi \geqslant \mathbb{E}\eta$
- 4. $\mathbb{E}\xi = \int_{\mathbb{R}} x \, dP_{\xi}(x)$
- 5. Если $f:\mathbb{R}^n\to\mathbb{R}$ измерима относительно борелевской σ -алгебры.

Тогда
$$\mathbb{E} f(\xi_1,\xi_2\dots\xi_n)=\int_{\mathbb{R}^n}f(x_1,\dots,x_n)dP_{\xi_1,\dots,\xi_n}(x_1,\dots,x_n)$$

Доказательство:
$$f=\mathbbm{1}_A$$
. Тогда $\mathbb{E}\mathbbm{1}_A(\xi_1,\ldots\xi_n)=\int_\Omega\mathbbm{1}_A(\xi_1(w),\ldots,\xi_n(w))dP(\omega)=P(\omega\in\Omega:\bar{\xi}\in A)=P_{\bar{\xi}}(A)=\int_{\mathbb{R}^n}\mathbbm{1}_A(x_1,\ldots,x_n)dP_{\bar{\xi}}(x_1,\ldots,x_n).$

Тогда по линейности верно для простых.

Теперь берём f_j неотрицательный простые, такие, что возрастают и $\to f$. И предельный переход по теореме Леви.

6. Если ξ_1 и ξ_2 независимы, то $\mathbb{E}(\xi \cdot \eta) = \mathbb{E}\xi \cdot \mathbb{E}\eta$

Доказательство:
$$\mathbb{E}(\xi\eta)=\int_{\mathbb{R}^2}xydP_{\xi,\eta}(x,y)=$$

доказательство.
$$\mathbb{E}(\zeta\eta) = \int_{\mathbb{R}^2} xy dP_{\xi}(x) dP_{\eta}(x,y) = \int_{\mathbb{R}} y \int_{\mathbb{R}} xdP_{\xi}(x) dP_{\eta}(y) = \mathbb{E}\xi \cdot \mathbb{E}\eta$$
 независимость сл. вел.

- 7. Если $\xi \geqslant 0$, то $\mathbb{E}\xi = \int_0^{+\infty} P(\xi \geqslant t) dt$ из теории меры.
- 8. Если p,q>1 и $\frac{1}{p}+\frac{1}{q}=1$, то $\mathbb{E}|\xi\eta|\leqslant (\mathbb{E}|\xi|^p)^{\frac{1}{p}}(\mathbb{E}|\eta|^q)^{\frac{1}{q}}$ неравенство Гёльдера
- 9. Неравенство Ляпунова

$$0 < r < s$$
, тогда $(\mathbb{E}|\xi|^r)^{\frac{1}{r}} \leqslant (\mathbb{E}|\xi|^s)^{\frac{1}{s}}$.

Доказательство:
$$p = \frac{s}{r} > 1, \ \frac{1}{q} = 1 - \frac{1}{p} = \frac{s-r}{s} < 1.$$

Тогда запишем Гельдера для ξ и $\eta = 1$:

$$\mathbb{E}|\xi|^r|1| \le (\mathbb{E}(|\xi|^r)^p)^{\frac{1}{p}} \cdot (\mathbb{E}1^q)^{\frac{1}{q}} = (\mathbb{E}|\xi|^s)^{\frac{r}{s}}.$$

Замечание. $\mathbb{E}(\xi\eta)=\mathbb{E}\xi\cdot\mathbb{E}\eta$ без независимости неверно. Пример.

Теорема 2.6. Неравенство Маркова

Если
$$\xi \geqslant 0, p, t > 0$$
, то $P(\xi \geqslant t) \leqslant \frac{\mathbb{E}\xi^p}{t^p}$.

Доказательство. Неравенство Чебышёва из теории меры.

 $Onpedenehue \ 2.18.$ 1. Моменты случайной величины. $\mathbb{E}(\xi^k)$ - k-ый момент.

- 2. Центральный момент. $\mathbb{E}(\xi \mathbb{E}\xi)^k$ k-ый центральный момент.
- 3. Абсолютный момент. $\mathbb{E}|\xi|^k$ k-ый абсолютный момент.

Определение 2.19. Медиана случайной величины. m - медиана ξ , если $P(\xi \geqslant m) \geqslant \frac{1}{2}$ и $P(\xi \leqslant m) \geqslant \frac{1}{2}$.

Замечание. Медиана не единственна.

Возьмём кубик. $\xi = 1, 2, \dots, 6$ с вероятностью $\frac{1}{6}$. Тогда любое число $m \in [3, 4]$ подходит.

Чаще всего всё равно берут середину, чтобы была единственность.

Пример. Есть организация из 1000 человек. 1 начальник и 999 подчиненных.

Зарплата начальника 1.000.000\$, а подчинённых 1000\$.

$$\mathbb{E} = \frac{999}{1000} \cdot 1000 + \frac{1}{1000} \cdot 1000000 = 1999$$

m = 1000 - медиана лучше характеризует ситуацию в этом случае.

 $Onpedenehue\ 2.20.$ Дисперсия. $\mathbb{D}\xi = \mathbb{E}(\xi - \mathbb{E}\xi)^2$ - второй центральный момент.

Обозначение в англоязычной литературе: $Var\xi$

Cooucmea. 1.
$$\mathbb{D}\xi = \mathbb{E}\xi^2 - (\mathbb{E}\xi)^2$$

Доказательство: Пусть $a = \mathbb{E}\xi$.

Тогда
$$\mathbb{D}\xi = \mathbb{E}(\xi - a)^2 = \mathbb{E}\xi^2 - 2a\mathbb{E}\xi + a^2$$

2. $\mathbb{D}\xi\geqslant 0$ и если $\mathbb{D}\xi=0,$ то $P(\xi=c)=1$

 \mathcal{A} оказательство: Если $\mathbb{D}\xi=0,$ то $\int_{\Omega}(\xi-a)^2\,dP=0,$ значит $(\xi-a)^2=0$ почти везде.

3. $\mathbb{D}(\xi + a) = \mathbb{D}\xi$

Доказательство:
$$\mathbb{E}(\xi+a) = \mathbb{E}\xi + a$$
. А тогда $(\xi+a) - \mathbb{E}(\xi+a) = \xi - \mathbb{E}\xi$

4. $\mathbb{D}(c\xi) = c^2 \mathbb{D}\xi$

Доказательство:
$$\mathbb{D}(c\xi) = \mathbb{E}(c\xi)^2 - (\mathbb{E}(c\xi))^2$$

5. Если ξ и η независимы, то $\mathbb{D}(\xi+\eta)=\mathbb{D}\xi+\mathbb{D}\eta$

Доказательство:
$$\mathbb{D}(\xi+\eta)=\mathbb{E}(\xi+\eta)^2-(\mathbb{E}(\xi+\eta))^2=\mathbb{E}\xi^2+2\mathbb{E}(\xi\eta)+\mathbb{E}\eta^2-(\mathbb{E}\xi)^2-2\mathbb{E}\xi\mathbb{E}\eta-(\mathbb{E}\eta)^2=\mathbb{D}\xi+\mathbb{D}\eta$$

6. Аналогично предыдущему, но для n случайных величин.

Доказательство: индукция

7.
$$\mathbb{E}|\xi - \mathbb{E}\xi| \leq \sqrt{\mathbb{D}\xi}$$

Доказательство: $\mathbb{E}|\xi-\mathbb{E}\xi|\leqslant (\mathbb{E}|\xi-\mathbb{E}\xi|^2)^{\frac{1}{2}}=\sqrt{\mathbb{D}\xi}$ - написали Ляпунова.

8. Неравенство Чебышёва

$$P(|\xi - \mathbb{E}\xi| \geqslant t) \leqslant \frac{\mathbb{D}\xi}{t^2}$$
, где $t > 0$

Доказательство: $P(|\xi - \mathbb{E}\xi| \geqslant t) \leqslant \frac{\mathbb{E}|\xi - \mathbb{E}\xi|^2}{t^2} = \frac{\mathbb{D}\xi}{t^2}$ - неравенство Маркова для p=2.

Определение **2.21**. Стандартное отклонение $\sigma = \sqrt{\mathbb{D}\xi}$

Пример. 1. $\xi \sim U[0, 1]$.

Тогда
$$\mathbb{E}\xi = \int_0^1 x \, dx = \frac{x^2}{2} \bigg|_0^1 = \frac{1}{2}.$$

$$\mathbb{E}\xi^2 = \int_0^1 x^2 \, dx = \frac{x^3}{3} \bigg|_0^1 = \frac{1}{3}$$
. А тогда $\mathbb{D}\xi = \mathbb{E}\xi^2 - (\mathbb{E}\xi)^2 = \frac{1}{12}$

2.
$$\xi \sim U[a, b]$$
.

Если
$$\eta \sim U[0,1]$$
 и $\xi=(b-a)\eta+a \sim U[a,b].$ Тогда $\mathbb{E}\xi=\mathbb{E}((b-a)\eta+a)=\frac{a+b}{2}$

$$\mathbb{D}((b-a)\eta + a) = \mathbb{D}((b-a)\eta) = (b-a)^2 \mathbb{D}\eta = \frac{(b-a)^2}{12}$$

3.
$$\xi \sim \mathcal{N}(0, 1)$$

$$\mathbb{E}\xi=\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}xe^{\frac{-x^2}{2}}\,dx=0$$
, так как функция нечётная.

Значит
$$\mathbb{D}\xi = \mathbb{E}\xi^2 = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} x^2 e^{-\frac{x^2}{2}} dx = -\frac{e^{\frac{-x^2}{2}}x}{\sqrt{2\pi}} \bigg|_{-\infty}^{+\infty} + \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-\frac{x^2}{2}} dx = 1$$

4.
$$\xi \sim \mathcal{N}(a, \sigma^2)$$

Если
$$\eta \sim \mathcal{N}(0,1)$$
, то $\xi = \sigma \eta + a \sim \mathcal{N}(a,\sigma^2)$.

$$\mathbb{E}\xi = \mathbb{E}(\sigma\eta + a) = \sigma\mathbb{E}\eta + a = a$$

$$\mathbb{D}\xi = \mathbb{D}(\sigma\eta + a) = \sigma^2\mathbb{D}\eta = \sigma^2$$

Определение 2.22. Пусть $\mathbb{E}\xi^2 < +\infty$ и $\mathbb{E}\eta^2 < +\infty$.

Ковариация $cov(\xi, \eta) = \mathbb{E}((\xi - \mathbb{E}\xi)(\eta - \mathbb{E}\eta))$

Coviction 1. $cov(\xi, \xi) = \mathbb{D}\xi$

2.
$$cov(\xi, \eta) = cov(\eta, \xi)$$

3.
$$cov(c\xi, \eta) = c \cdot cov(\xi, \eta)$$

4.
$$cov(\xi_1 + \xi_2, \eta) = cov(\xi_1, \eta) + cov(\xi_2, \eta)$$

5.
$$cov(\xi, \eta) = \mathbb{E}(\xi \eta) - \mathbb{E}\xi \mathbb{E}\eta$$

Доказательство:
$$\mathbb{E}\xi = a, \mathbb{E}\eta = b$$

$$cov(\xi,\eta) = \mathbb{E}((\xi-a)(\eta-b)) = \mathbb{E}(\xi\eta) - a\mathbb{E}\eta - b\mathbb{E}\xi + ab$$

6. Если
$$\xi$$
 и η независимы, то $cov(\xi, \eta) = 0$

7.
$$\mathbb{D}(\xi + \eta) = \mathbb{D}\xi + \mathbb{D}\eta + 2cov(\xi, \eta)$$

8.
$$\mathbb{D}(\xi_1 + \xi_2 + \ldots + \xi_n) = \mathbb{D}\xi_1 + \mathbb{D}\xi_2 + \ldots + \mathbb{E}\xi_n + 2\sum_{i < j} cov(\xi_i, \xi_j).$$

Пример. P(ycnex) = p. Делаем n подбрасываний. $\eta =$ количество переходов от орла к решке.

Пусть $\xi_i = 1$, если на i позиции орёл, на i+1 позиции решка, иначе $\xi_i = 0$.

$$\eta = \xi_1 + \ldots + \xi_{n-1}$$
. Тогда $\mathbb{E}\eta = \sum_{i=1}^{n-1} \mathbb{E}\xi_i = (n-1)pq$.

$$\mathbb{D}\eta = \sum_{i=1}^{n-1} \mathbb{D}\xi_i + 2\sum_{i < j} cov(\xi_i, \xi_j).$$

Если i+1 < j, то ξ_i и ξ_j независимы, поэтому в сумме почти везде нули.

Значит $\mathbb{D}\eta = \sum_{i=1}^{n-1} \mathbb{D}\xi_i + 2\sum_{i=1}^{n-1} cov(\xi_i, \xi_{i+1}).$

$$\mathbb{D}\xi_i = \mathbb{E}\xi_i^2 - (\mathbb{E}\xi_i)^2 = pq - p^2q^2.$$

$$cov(\xi, \xi_{i+1}) = \mathbb{E}(\xi_i \xi_{i+1}) - \mathbb{E}\xi_i \mathbb{E}\xi_{i+1} = -p^2 q^2$$

Замечание. 1. $\{\xi : \mathbb{E}\xi^2 < +\infty\}$

 $\langle \xi, \eta \rangle = \mathbb{E}(\xi \eta)$ - скалярное произведение.

 $\mathbb{E}\xi$ - ортогональная проекция на константы.

2. $\langle \xi, \eta \rangle = cov(\xi, \eta)$ - тоже скалярное произведение.

Норма - это стандартное отклонение.

Теорема 2.7. Выбор двудольного подграфа

Есть граф G с n вершинами и m рёбрами. Хотим стереть некоторое количество рёбер(как можно меньше) так, чтобы остался двудольный подграф.

Тогда G содержит двудольный подграф с $\geqslant \frac{m}{2}$ рёбрами.

Доказательство. A - те вершины, на которых выпал орёл, B - на которых выпала решка.

Будем интересоваться матожидание количества рёбер в такой ситуации.

$$\xi_{xy} = \begin{cases} 1, & \text{если x, y из разных долей} \\ 0, & \text{иначе} \end{cases}$$

$$\mathbb{E}\xi = \sum_{xy \in E} \mathbb{E}\xi_{xy} = \frac{m}{2}$$
, а значит есть реализация с $\frac{m}{2}$.

 ${\it Onpedenehue}$ 2.23. Коэффициент корреляции. $ho(\xi,\eta)=rac{cov(\xi,\eta)}{\sqrt{\mathbb{D}\xi}\sqrt{\mathbb{D}\eta}}\in[-1,1]$

Определение 2.24. Если $cov(\xi, \eta) = 0$, то это некоррелирующие случайные величины.