## **MECHANISM DESIGN**

#### JOHN P DICKERSON AND MARINA KNITTEL

Lecture #7 - 02/14/2022

CMSC498T Mondays & Wednesdays 2:00pm – 3:15pm



# THIS CLASS: MATCHING & MAYBE THE NRMP

# OVERVIEW OF THIS LECTURE

#### Stable marriage problem

Bipartite, one vertex to one vertex

#### Stable roommates problem

Not bipartite, one vertex to one vertex

#### Hospitals/Residents problem

Bipartite, one vertex to many vertices

# MATCHING WITHOUT INCENTIVES

Given a graph G = (V, E), a matching is any set of pairwise nonadjacent edges

- No two edges share the same vertex
- Classical combinatorial optimization problem

#### **Bipartite matching:**

- Bipartite graph G = (U, V, E)
- Max cardinality/weight matching found easily O(VE) and better
  - E.g., through network flow, Hungarian algorithm, etc

#### Matching in general graphs:

 Also PTIME via Edmond's algorithm – O(V<sup>2</sup>E) and better



# STABLE MATCHING PROBLEM



Thanks Prof. Xanda Schofield for the example!

Complete bipartite graph with equal sides:

n horses and n jockeys

Each horse has a strict, complete preference ordering over

jockeys, and vice versa

Want: a stable matching

Stable matching: No unmatched horse and jockey both prefer each other to their current matches



# **EXAMPLE PREFERENCE PROFILES**











| Alice |  |  |
|-------|--|--|
| Bob   |  |  |
| Eve   |  |  |

| Donkey    |  |  |
|-----------|--|--|
| Spirit    |  |  |
| Swiftwind |  |  |

# **EXAMPLE PREFERENCE PROFILES**











| Alice | Donkey | Spirit | Swiftwind |
|-------|--------|--------|-----------|
| Bob   | Spirit | Donkey | Swiftwind |
| Eve   | Donkey | Spirit | Swiftwind |

| Donkey    | Bob   | Alice | Eve |
|-----------|-------|-------|-----|
| Spirit    | Alice | Bob   | Eve |
| Swiftwind | Alice | Bob   | Eve |

| Alice | Donkey | Spirit | Swiftwind |
|-------|--------|--------|-----------|
| Bob   | Spirit | Donkey | Swiftwind |
| Eve   | Donkey | Spirit | Swiftwind |

| Donkey    | Bob   | Alice | Eve |
|-----------|-------|-------|-----|
| Spirit    | Alice | Bob   | Eve |
| Swiftwind | Alice | Bob   | Eve |

Is this a stable matching?

| Alice | Donkey | Spirit | Swiftwind |
|-------|--------|--------|-----------|
| Bob   | Spirit | Donkey | Swiftwind |
| Eve   | Donkey | Spirit | Swiftwind |

| Donkey    | Bob   | Alice | Eve |
|-----------|-------|-------|-----|
| Spirit    | Alice | Bob   | Eve |
| Swiftwind | Alice | Bob   | Eve |

No.

Alice and Spirit form a blocking pair.

| Alice | Donkey | Spirit | Swiftwind |
|-------|--------|--------|-----------|
| Bob   | Spirit | Donkey | Swiftwind |
| Eve   | Donkey | Spirit | Swiftwind |

| Donkey    | Bob   | Alice | Eve |
|-----------|-------|-------|-----|
| Spirit    | Alice | Bob   | Eve |
| Swiftwind | Alice | Bob   | Eve |

What about this matching?

| Alice | Donkey | Spirit | Swiftwind |
|-------|--------|--------|-----------|
| Bob   | Spirit | Donkey | Swiftwind |
| Eve   | Donkey | Spirit | Swiftwind |

| Donkey    | Bob   | Alice | Eve |
|-----------|-------|-------|-----|
| Spirit    | Alice | Bob   | Eve |
| Swiftwind | Alice | Bob   | Eve |

#### Yes!

(Swiftwind and Eve are unhappy, but helpless.)

# THROWBACK MONDAY: INT. LINEAR PROGRAMS

Can we formulate this as a linear program?

Spoiler: Yes we can

Another spoiler: You're going to do it!

What are our variables?

 $x_{hj}$  for each horse  $h \in \{1, ..., n\}$  and jockey  $j \in \{1, ..., n\}$ 

How are they bounded?

 $x_{hj} \in \{0, 1\}$ , indicating if the horse and jockey are matched

How do we ensure everyone is only matched once?

$$\sum_{j\in\{1,\ldots,n\}} x_{hj} \leq 1$$
 for all  $h\in\{1,\ldots,n\}$  (covers horses)

$$\sum_{h \in \{1,...,n\}} x_{hj} \le 1$$
 for all  $j \in \{1, ..., n\}$  (covers jockeys)

How do we ensure stability?

$$\sum_{j'>hj} x_{hj'} + \sum_{h'>jh} x_{h'j} + x_{hj} \ge 1 \text{ for all } h,j \in \{1, \dots, n\}$$

# THROWBACK MONDAY: INT. LINEAR PROGRAMS

#### **Optimize:** *Nothing*

$$\begin{split} & \sum_{j \in \{1, \dots, n\}} x_{hj} \leq 1 \text{ for all } h \in \{1, \dots, n\} \\ & \sum_{h \in \{1, \dots, n\}} x_{hj} \leq 1 \text{ for all } j \in \{1, \dots, n\} \\ & \sum_{j' \geq_h j} x_{hj'} + \sum_{h' \geq_j h} x_{h'j} + x_{hj} \geq 1 \text{ for all } h, j \in \{1, \dots, n\} \\ & x_{hj} \in \{0, 1\} \text{ for all } h, j \in \{1, \dots, n\} \end{split}$$

#### What does this give us?

- If there is a stable matching, this finds one
- This might take exponential time!
- Open question: Can there exist no stable matching?

## **SOME QUESTIONS**

Does a stable solution to the marriage problem always exist?

Can we compute such a solution efficiently?

Can we compute the best stable solution efficiently?



# **GALE-SHAPLEY** [1962]

Idea: men propose to women



# **GALE-SHAPLEY** [1962]

Idea: jockeys "propose" to horses

- 1. Everyone is unmatched
- 2. While some jockey *j* is unmatched:



- If h is also unmatched:
  - h and j are engaged
- Else if h prefers j to their current match j'
  - h and j are engaged, j' is unmatched
- Else: h rejects j
- 3. Return matched pairs













| Alice | Donkey | Spirit | Swiftwind |
|-------|--------|--------|-----------|
| Bob   | Spirit | Donkey | Swiftwind |
| Eve   | Donkey | Spirit | Swiftwind |

| Donkey    | Bob   | Alice | Eve |
|-----------|-------|-------|-----|
| Spirit    | Alice | Bob   | Eve |
| Swiftwind | Alice | Bob   | Eve |











| Alice | Donkey | Spirit | Swiftwind |
|-------|--------|--------|-----------|
| Bob   | Spirit | Donkey | Swiftwind |
| Eve   | Donkey | Spirit | Swiftwind |

| Donkey    | Bob   | Alice | Eve |
|-----------|-------|-------|-----|
| Spirit    | Alice | Bob   | Eve |
| Swiftwind | Alice | Bob   | Eve |











| Alice | Donkey | Spirit | Swiftwind |
|-------|--------|--------|-----------|
| Bob   | Spirit | Donkey | Swiftwind |
| Eve   | Donkey | Spirit | Swiftwind |

| Donkey    | Bob   | Alice | Eve |
|-----------|-------|-------|-----|
| Spirit    | Alice | Bob   | Eve |
| Swiftwind | Alice | Bob   | Eve |











| Alice | Donkey | Spirit | Swiftwind |
|-------|--------|--------|-----------|
| Bob   | Spirit | Donkey | Swiftwind |
| Eve   | Donkey | Spirit | Swiftwind |

| Donkey    | Bob   | Alice | Eve |
|-----------|-------|-------|-----|
| Spirit    | Alice | Bob   | Eve |
| Swiftwind | Alice | Bob   | Eve |











| Alice | Donkey | Spirit | Swiftwind |
|-------|--------|--------|-----------|
| Bob   | Spirit | Donkey | Swiftwind |
| Eve   | Donkey | Spirit | Swiftwind |

| Donkey    | Bob   | Alice | Eve |
|-----------|-------|-------|-----|
| Spirit    | Alice | Bob   | Eve |
| Swiftwind | Alice | Bob   | Eve |











| Alice | Donkey | Spirit | Swiftwind |
|-------|--------|--------|-----------|
| Bob   | Spirit | Donkey | Swiftwind |
| Eve   | Donkey | Spirit | Swiftwind |

| Donkey    | Bob   | Alice | Eve |
|-----------|-------|-------|-----|
| Spirit    | Alice | Bob   | Eve |
| Swiftwind | Alice | Bob   | Eve |











| Alice | Donkey | Spirit | Swiftwind |
|-------|--------|--------|-----------|
| Bob   | Spirit | Donkey | Swiftwind |
| Eve   | Donkey | Spirit | Swiftwind |

| Donkey    | Bob   | Alice | Eve |
|-----------|-------|-------|-----|
| Spirit    | Alice | Bob   | Eve |
| Swiftwind | Alice | Bob   | Eve |

GS terminates in polynomial time (at most n<sup>2</sup> iterations of the outer loop)

#### **Proof:**

- Each iteration, one jockey proposes to someone to whom they have never proposed before
- n horses, n jockeys  $\rightarrow n \times n$  possible events

(Can tighten a bit to n(n - 1) + 1 iterations.)

## GS results in a perfect matching

### **Proof by contradiction:**

- Suppose BWOC that j is unmatched at termination
- n horses, n jockeys  $\rightarrow h$  is unmatched, too
- Once a horse is proposed to, they are matched and never unmatched; they only swap partners. Thus, nobody proposed to h
- j proposed to everyone (by def. of GS): ><

GS results in a stable matching (i.e., there are no blocking pairs)

### **Proof by contradiction (1):**

Assume j and h form a blocking pair

Case #1: j never proposed to h

- GS: jockeys propose in order of preferences
- j prefers current match h' > h
- $\rightarrow$  j and h are not blocking

GS results in a stable matching (i.e., there are no blocking pairs)

### **Proof by contradiction (2):**

Case #2: j proposed to h

- h rejected j at some point
- GS: horses only reject for better jockeys
- h prefers current partner j' > j
- $\rightarrow j$  and h are not blocking

Case #1 and #2 exhaust space. ><

## **RECAP: SOME QUESTIONS**

Does a stable solution to the marriage problem always exist?



Can we compute such a solution efficiently?



Can we compute the best stable solution efficiently?



We'll look at a specific notion of "the best" – optimality with respect to one side of the market

# HORSE/JOCKEY OPTIMALITY/PESSIMALITY

Let *s* be the set of stable matchings

j is a valid partner of h (and vice versa) if there exists some stable matching S in S where they are paired

A matching is jockey optimal (resp. horse optimal) if each jockey (resp. horse) receives their best valid partner

Is this a perfect matching? Stable?

A matching is jockey pessimal (resp. horse pessimal) if each jockey (resp. horse) receives their worst valid partner

GS – with the jockey proposing – results in a jockey-optimal matching

# **Proof by contradiction (1):**

- Jockey propose in order → at least one jockey was rejected by a valid partner
- Let j and h be the first such reject in S
- This happens because h chose some j' > j
- Let S' be a stable matching with j, h paired
   (S' exists by def. of valid)

GS – with the jockey proposing – results in a jockey-optimal matching

# **Proof by contradiction (2):**

- Let h' be match of j' in S'
- j' was not rejected by valid partner in S
   before j was rejected by h (by assump.)
  - $\rightarrow$  j' prefers h to h'
- Know h prefers j' over j, their jockey in S'
  - $\rightarrow$  j' and h form a blocking pair in S' ><

# RECAP: SOME QUESTIONS

Does a stable solution to the marriage problem always exist?



Can we compute such a solution efficiently?



Can we compute the best stable solution efficiently?



For one side of the market. What about the other side?

GS – with the jockey proposing – results in a horse-pessimal matching

# Proof by contradiction:

- j and h matched in S, j is not worst valid
- $\rightarrow$  exists stable S' with h paired to j' < j
- Let h' be partner of j in S
- j prefers to h to h' (by jockey-optimality)
- $\rightarrow i$  and h form blocking pair in S' > <

### **INCENTIVE ISSUES**

#### Can either side benefit by misreporting?

 (Slight extension for rest of talk: participants can mark possible matches as unacceptable – a form of preference list truncation)

Any algorithm that yields a jockey-(horse-)optimal matching

 $\rightarrow$ 

truthful revelation by jockeys (horses) is dominant strategy [Roth 1982]

# In GS with jockey proposing, horses can benefit by misreporting preferences

#### Truthful reporting

| Alice | Donkey | Spirit | Donkey |
|-------|--------|--------|--------|
| Bob   | Spirit | Donkey | Spirit |
|       |        |        |        |
| Alice | Donkey | Spirit | Donkey |
| Bob   | Spirit | Donkey | Spirit |

| Donkey | Bob   | Alice |
|--------|-------|-------|
| Spirit | Alice | Bob   |
|        |       |       |
| Donkey | Bob   | Alice |
| Spirit | Alice | Bob   |

#### Strategic reporting

| Alice | Donkey | Spirit |
|-------|--------|--------|
| Bob   | Spirit | Donkey |
|       |        |        |
| Alice | Donkey | Spirit |
| 7     | Donkoy | Opinit |

| Donkey | Bob   | $\Diamond$ |
|--------|-------|------------|
| Spirit | Alice | Bob        |
|        |       |            |
| Donkey | Bob   | $\Diamond$ |
| Spirit | Alice | Bob        |

There is **no** matching mechanism that:

- 1. is strategy proof (for both sides); and
- 2. always results in a stable outcome (given revealed preferences)

#### **EXTENSIONS TO STABLE MATCHING**

#### IMBALANCE [ASHLAGI ET AL. 2013]

What if we have *n* jockeys and *n'* ≠ *n* horses? How does this affect participants? Core size?



# horses held constant at n' = 40

- Being on short side of market: good!
- W.h.p., short side get rank ~log(n)
- ... long side gets rank ~random

#### **IMBALANCE** [ASHLAGI ET AL. 2013]

Not many stable matchings with even small imbalances in the market



#### **IMBALANCE** [ASHLAGI ET AL. 2013]

#### "Rural hospital theorem" [Roth 1986]:

 The set of jockeys and horses that are unmatched is the same for all stable matchings

#### Assume *n* jockeys, *n*+1 horses

- One horse h unmatched in all stable matchings
- $\rightarrow$  Drop h, same stable matchings

#### Take stable matchings with *n* horses

- Stay stable when we add in h if no jockeys prefer h to their current match
- → average rank of jockey's matches is low

#### ONLINE ARRIVAL [KHULLER ET AL. 1993]

Random preferences, jockeys arrive over time, once matched nobody can switch

Algorithm: match *j* to highest-ranked free *h* 

On average, O(nlog(n)) unstable pairs

No deterministic or randomized algorithm can do better than  $\Omega(n^2)$  unstable pairs!

Not better with randomization

#### **INCOMPLETE PREFS**

[MANLOVE ET AL. 2002]

#### **Before: complete + strict preferences**

Easy to compute, lots of nice properties

#### **Incomplete preferences**

May exist: stable matchings of different sizes

#### **Everything becomes hard!**

- Finding max or min cardinality stable matching
- Determining if < j, h > are stable
- Finding/approx. finding "egalitarian" matching

#### **NON-BIPARTITE GRAPH ...?**

#### Matching is defined on general graphs:

"Set of edges, each vertex included at most once"

The stable roommates problem is bipartite stable matching generalized to any graph

Each vertex ranks all n-1 other vertices

(Variations with/without truncation)

Same notion of stability

#### IS THIS DIFFERENT THAN BIPARTITE STABLE MATCHING?











| Alana     | Brian    | Cynthia  | Dracula  |
|-----------|----------|----------|----------|
| Brian     | Cynthia  | Alana    | Dracula  |
| Cynthia   | Alana    | Brian    | Dracula  |
| Dracula 🚜 | (Anyone) | (Anyone) | (Anyone) |

No stable matching exists!

Anyone paired with Dracula (i) prefers some other *v* and (ii) is preferred by that *v* 

#### **HOPELESS?**

#### Can we build an algorithm that:

- Finds a stable matching; or
- Reports nonexistence

... In polynomial time?

#### Yes! [Irving 1985]

 Builds on Gale-Shapley ideas and work by McVitie and Wilson [1971]



#### IRVING'S ALGORITHM: PHASE 1

Run a deferred acceptance-type algorithm

If at least one person is unmatched: nonexistence

Else: create a reduced set of preferences

- a holds proposal from b → a truncates all x after b
- Remove a from x's preferences
- Note: a is at the top of b's list

If any truncated list is empty: nonexistence

Else: this is a "stable table" – continue to Phase 2

Example from: https://www.youtube.com/watch?v=9Lo7TFAkohE&ab\_channel=OscarRobertson

| Alice | Bob   | Dave  | Frank | Eve   | Carol |
|-------|-------|-------|-------|-------|-------|
| Bob   | Eve   | Carol | Frank | Dave  | Alice |
| Carol | Bob   | Frank | Eve   | Alice | Dave  |
| Dave  | Carol | Alice | Frank | Bob   | Eve   |
| Eve   | Bob   | Alice | Frank | Carol | Dave  |
| Frank | Alice | Dave  | Eve   | Carol | Bob   |

| Alice | Bob   | Dave  | Frank | Eve   | Carol |
|-------|-------|-------|-------|-------|-------|
| Bob   | Eve   | Carol | Frank | Dave  | Alice |
| Carol | Bob   | Frank | Eve   | Alice | Dave  |
| Dave  | Carol | Alice | Frank | Bob   | Eve   |
| Eve   | Bob   | Alice | Frank | Carol | Dave  |
| Frank | Alice | Dave  | Eve   | Carol | Bob   |

| Alice | Bob   | Dave  | Frank | Eve   | Carol |
|-------|-------|-------|-------|-------|-------|
| Bob   | Eve   | Carol | Frank | Dave  | Alice |
| Carol | Bob   | Frank | Eve   | Alice | Dave  |
| Dave  | Carol | Alice | Frank | Bob   | Eve   |
| Eve   | Bob   | Alice | Frank | Carol | Dave  |
| Frank | Alice | Dave  | Eve   | Carol | Bob   |

| Alice | Bob   | Dave  | Frank | Eve   | Carol |
|-------|-------|-------|-------|-------|-------|
| Bob   | Eve   | Carol | Frank | Dave  | Alice |
| Carol | Bob   | Frank | Eve   | Alice | Dave  |
| Dave  | Carol | Alice | Frank | Bob   | Eve   |
| Eve   | Bob   | Alice | Frank | Carol | Dave  |
| Frank | Alice | Dave  | Eve   | Carol | Bob   |

| Alice | Bob   | Dave  | Frank | Eve   | Carol |
|-------|-------|-------|-------|-------|-------|
| Bob   | Eve   | Carol | Frank | Dave  | Alice |
| Carol | Bob   | Frank | Eve   | Alice | Dave  |
| Dave  | Carol | Alice | Frank | Bob   | Eve   |
| Eve   | Bob   | Alice | Frank | Carol | Dave  |
| Frank | Alice | Dave  | Eve   | Carol | Bob   |

|       | •     |       | •     |       | •     |
|-------|-------|-------|-------|-------|-------|
| Alice | Bob   | Dave  | Frank | Eve   | Carol |
| Bob   | Eve   | Carol | Frank | Dave  | Alice |
| Carol | Bob   | Frank | Eve   | Alice | Dave  |
| Dave  | Carol | Alice | Frank | Bob   | Eve   |
| Eve   | Bob   | Alice | Frank | Carol | Dave  |
| Frank | Alice | Dave  | Eve   | Carol | Bob   |

|       | -     | >     | > ,   | > ;   | >     |
|-------|-------|-------|-------|-------|-------|
| Alice |       | Dave  | Frank | Eve   | Carol |
| Bob   | Eve   | Carol | Frank | Dave  |       |
| Carol | Bob   | Frank | Eve   | Alice | Dave  |
| Dave  | Carol | Alice | Frank | Bob   | Eve   |
| Eve   | Bob   | Alice | Frank | Carol | Dave  |
| Frank | Alice | Dave  | Eve   | Carol | Bob   |

|       |       | > ;   | > >   | > >   | >     |
|-------|-------|-------|-------|-------|-------|
| Alice |       | Dave  | Frank | Eve   | Carol |
| Bob   | Eve   | Carol | Frank | Dave  |       |
| Carol | Bob   | Frank | Eve   | Alice | Dave  |
| Dave  | Carol | Alice | Frank | Bob   | Eve   |
| Eve   | Bob   | Alice | Frank | Carol | Dave  |
| Frank | Alice | Dave  | Eve   | Carol | Bob   |

|       | ;     | > ;   | > ;   | > ;   | >     |
|-------|-------|-------|-------|-------|-------|
| Alice |       | Dave  | Frank | Eve   | Carol |
| Bob   | Eve   | Carol | Frank | Dave  |       |
| Carol | Bob   | Frank | Eve   | Alice | Dave  |
| Dave  | Carol | Alice | Frank | Bob   | Eve   |
| Eve   | Bob   | Alice | Frank | Carol | Dave  |
| Frank | Alice | Dave  | Eve   | Carol | Bob   |

|       |       | > ;   | > >   | > ;   | >     |
|-------|-------|-------|-------|-------|-------|
| Alice |       | Dave  | Frank | Eve   | Carol |
| Bob   | Eve   | Carol | Frank | Dave  |       |
| Carol | Bob   | Frank | Eve   | Alice | Dave  |
| Dave  | Carol | Alice | Frank | Bob   | Eve   |
| Eve   | Bob   | Alice | Frank | Carol | Dave  |
| Frank | Alice | Dave  | Eve   | Carol | Bob   |

|       |       | > ;   | > >   | > >   | >     |
|-------|-------|-------|-------|-------|-------|
| Alice |       | Dave  | Frank | Eve   | Carol |
| Bob   | Eve   | Carol | Frank | Dave  |       |
| Carol | Bob   | Frank | Eve   | Alice | Dave  |
| Dave  | Carol | Alice | Frank | Bob   | Eve   |
| Eve   | Bob   | Alice | Frank | Carol | Dave  |
| Frank | Alice | Dave  | Eve   | Carol | Bob   |

|       |       | > ;   | > >   | > ;   | >     |
|-------|-------|-------|-------|-------|-------|
| Alice |       | Dave  | Frank | Eve   | Carol |
| Bob   | Eve   | Carol | Frank | Dave  |       |
| Carol | Bob   | Frank | Eve   | Alice | Dave  |
| Dave  | Carol | Alice | Frank | Bob   | Eve   |
| Eve   | Bob   | Alice | Frank | Carol | Dave  |
| Frank | Alice | Dave  | Eve   | Carol | Bob   |

|       | ;     | > ;   | > >   | > ;   | >     |
|-------|-------|-------|-------|-------|-------|
| Alice |       | Dave  | Frank | Eve   | Carol |
| Bob   | Eve   |       | Frank | Dave  |       |
| Carol |       | Frank | Eve   | Alice | Dave  |
| Dave  | Carol | Alice | Frank | Bob   | Eve   |
| Eve   | Bob   | Alice | Frank | Carol | Dave  |
| Frank | Alice | Dave  | Eve   | Carol | Bob   |

|       | ;     | > ;   | > >   | > ;   | >     |
|-------|-------|-------|-------|-------|-------|
| Alice |       | Dave  | Frank | Eve   | Carol |
| Bob   | Eve   |       | Frank | Dave  |       |
| Carol |       | Frank | Eve   | Alice | Dave  |
| Dave  | Carol | Alice | Frank | Bob   | Eve   |
| Eve   | Bob   | Alice | Frank | Carol | Dave  |
| Frank | Alice | Dave  | Eve   | Carol | Bob   |

|       |       | > ;   | > >   | > >   | >     |
|-------|-------|-------|-------|-------|-------|
| Alice |       | Dave  | Frank | Eve   | Carol |
| Bob   | Eve   |       | Frank | Dave  |       |
| Carol |       | Frank | Eve   | Alice | Dave  |
| Dave  | Carol | Alice | Frank | Bob   | Eve   |
| Eve   | Bob   | Alice | Frank | Carol | Dave  |
| Frank | Alice | Dave  | Eve   | Carol | Bob   |

|       |       | > ;   | > ;   | > >   | >     |
|-------|-------|-------|-------|-------|-------|
| Alice |       | Dave  | Frank | Eve   | Carol |
| Bob   | Eve   |       | Frank | Dave  |       |
| Carol |       | Frank | Eve   | Alice | Dave  |
| Dave  | Carol | Alice | Frank | Bob   | Eve   |
| Eve   | Bob   | Alice | Frank | Carol | Dave  |
| Frank | Alice | Dave  | Eve   | Carol | Bob   |

|       |       | > >   | > ;   | > >   | >     |
|-------|-------|-------|-------|-------|-------|
| Alice |       | Dave  | Frank | Eve   | Carol |
| Bob   | Eve   |       | Frank | Dave  |       |
| Carol |       | Frank | Eve   | Alice | Dave  |
| Dave  | Carol | Alice | Frank | Bob   | Eve   |
| Eve   | Bob   | Alice | Frank | Carol | Dave  |
| Frank | Alice | Dave  | Eve   | Carol | Bob   |

Remove anyone below the proposal offered to you

|       |       | > ;   | > ;   | > ;   | >    |
|-------|-------|-------|-------|-------|------|
| Alice |       | Dave  | Frank |       |      |
| Bob   | Eve   |       |       |       |      |
| Carol |       | Frank | Eve   | Alice | Dave |
| Dave  | Carol | Alice |       |       |      |
| Eve   | Bob   |       |       |       |      |
| Frank | Alice | Dave  | Eve   | Carol |      |

Green = Locked proposal from self Blue = Locked proposal to self

If you are not on someone else's list, remove them from your list

|       |       | >     | >     | >    | >    |
|-------|-------|-------|-------|------|------|
| Alice |       | Dave  | Frank |      |      |
| Bob   | Eve   |       |       |      |      |
| Carol |       | Frank |       |      | Dave |
| Dave  | Carol | Alice |       |      |      |
| Eve   | Bob   |       |       |      |      |
| Frank | Alice |       |       | Caro | l    |

Green = Locked proposal from self Blue = Locked proposal to self

If you are not on someone else's list, remove them from your list

|       |       | ŕ     |
|-------|-------|-------|
| Alice | Dave  | Frank |
| Bob   | Eve   |       |
| Carol | Frank | Dave  |
| Dave  | Carol | Alice |
| Eve   | Bob   |       |
| Frank | Alice | Carol |

Green = Locked proposal from self Blue = Locked proposal to self

#### STABLE TABLES

- 1. a is first on b's list iff b is last on a's
- 2. a is not on b's list iff
  - b is not on a's list
  - a prefers last element on list to b
- 3. No reduced list is empty
- Note 1: stable table with all lists length 1 is a stable matching
- Note 2: any stable subtable of a stable table can be obtained via rotation eliminations

#### IRVING'S ALGORITHM: PHASE 2

Stable table has length 1 lists: return matching Identify a rotation:

 $(a_0,b_0),(a_1,b_1),...,(a_{k-1},b_{k-1})$  such that:

- *b<sub>i</sub>* is a<sub>i</sub>'s second preference
- a<sub>i+1</sub> is b<sub>i</sub>'s last preference
- $a_0$  is  $b_{k-1}$ 's last preference (i.e., we have cycled)

#### Eliminate it:

•  $b_i$  rejects  $a_{i+1}$ , and repeat rotation finding as necessary

If any list becomes empty: nonexistence

If the subtable hits length 1 lists: return matching



 $(a_0,b_0),(a_1,b_1),...,(a_{k-1},b_{k-1})$  such that:

- b<sub>i</sub> is a<sub>i</sub>'s second preference
- $a_{i+1}$  is  $b_i$ 's last preference
- $a_0$  is  $b_{k-1}$ 's last preference



 $(a_0,b_0),(a_1,b_1),...,(a_{k-1},b_{k-1})$  such that:

- b<sub>i</sub> is a<sub>i</sub>'s second preference
- $a_{i+1}$  is  $b_i$ 's last preference
- $a_0$  is  $b_{k-1}$ 's last preference



(a<sub>0</sub>,b<sub>0</sub>),(a<sub>1</sub>,b<sub>1</sub>),...,(a<sub>k-1</sub>) such that:

- b<sub>i</sub> is a<sub>i</sub>'s second preference
- $a_{i+1}$  is  $b_i$ 's last preference
- $a_0$  is  $b_{k-1}$ 's last preference



(a<sub>0</sub>,b<sub>0</sub>),(a<sub>1</sub>,b<sub>1</sub>),...,(a<sub>k-1</sub>) such that:

- b<sub>i</sub> is a<sub>i</sub>'s second preference
- $a_{i+1}$  is  $b_i$ 's last preference
- $a_0$  is  $b_{k-1}$ 's last preference

### Claim

Irving's algorithm for the stable roommates problem terminates in polynomial time – specifically  $O(n^2)$ .

#### This requires some data structure considerations

Naïve implementation of rotations is ~O(n³)

### **ONE-TO-MANY MATCHING**

The hospitals/residents problem (aka college/students problem aka admissions problem):

- Strict preference rankings from each side
- One side (hospitals) can accept q > 1 residents

Also introduced in [Gale and Shapley 1962]

Has seen lots of traction in the real world

E.g., the National Resident Matching Program (NRMP)

# OVERVIEW OF AN IMPACTFUL PAPER IN THIS SPACE [Roth & Peranson 1999]

Redesign of the Matching Market for American Physicians



### THE MATCHING PROBLEM

#### Couples

Second-year positions need prerequisite first-year positions

Residency programs with positions that revert to other programs if they are unfilled

Programs that need an even number of positions filled



# THE MATCHING PROBLEM

| Simple Markets                                                                                    | Markets with Complementaries                                                    |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Optimal stable matchings exist                                                                    | No stable matching may exist                                                    |
| Same applicants matched, same positions filled                                                    | Different stable matchings may have different applicants and positions filled   |
| When applicant proposing is used a dominant strategy for applicants is to submit true preferences | No algorithm where a dominant strategy for all agents to state true preferences |

### **HISTORY OF THE NRMP**



1950's Market Failure

1990's Crisis of Confidence



**1997** Switched to new algorithm



1951 Clearinghouse Started



**1998** First match completed with new algorithm

# THE PREEXISTING ALGORITHM

#### Phase 1

- Program proposing
- Ignores most variations
- Couples hold onto offers

#### Phase 2

Identifies instabilities

#### Phase 3

- Fixes instabilities one by one
- Sometimes couples propose to programs

When no match variations are present this produces program-optimal stable matching (Thoracic Surgery)





### IS THERE A PROBLEM?

#### Are there a lot of variations?

- 4% couples
- 8-12% submit supplemental rank order lists (ROLs)
- 7% of programs have positions that revert to other positions if unfilled
- Thoracic Surgery match is a simple match

#### Two (of many) questions to ask:

- Does a program optimal solution make the physicians happy?
- Can applicants act strategically?

Assemble a set A(k) of residency programs and applicants.

Tentative matching M(k) with no instabilities.

No applicant or program in A(k) is matched to anyone outside of A(k).

When A(k) has grown to include all applicants and programs, then the matching M(k) is a stable matching

#### A(0):

- consists of all positions offered in the match
- All positions are vacant

#### *A*(1):

• Select an applicant S(1) and add S(1) to A(0) to make A(1).

#### For any step *k* of the algorithm:

- Applicant S(k) proposes down his ROL to programs who also have S(k) in the rank.
- Stop when there is a vacant position or the program prefers S(k) to its least preferred accepted applicant S(k,2)
- The applicant S(k,2) is rejected and starts proposing to new programs down his ROL
- Each S(k,n) is displaced and proposes down his/her ROL

#### What about couples or supplemental positions?

- If a couple is displaced, a position is left vacant. This is put on the "program stack"
- Couples propose to programs together
- They each may displace another applicant!
- One displaced applicant is processed immediately. Others are added to the "applicant stack"
- Proceed until the "applicant stack" is empty

#### **Dealing with instabilities**

- For each position in the "program stack" all applicants in A(k)
  are found that cause instabilities
- Add these applicants to the "applicant stack"
- Empty the "applicant stack"

Once both the applicant stack and the program stack are empty you now have the tentative matching M(k).

When all applicants have been added to A(k), even/odd requests and program reversions are adjusted.

Handle inconsistencies the same way as before

## LOOPS IN THE APPLICANT PROPOSING ALGORITHM



### **SEQUENCE CHANGES**

Ran computational experiments

Differences in matches was extremely small and did not appear to be systematic

#### Did effect number of loops

Fewest when couples where introduced last

# RESULTS OF THE NEW ALGORITHM

TABLE 2—COMPARISON OF RESULTS BETWEEN ORIGINAL NRMP ALGORITHM AND APPLICANT-PROPOSING ALGORITHM

| Result                                 | 1987      | 1993     | 1994     | 1995    | 1996     |
|----------------------------------------|-----------|----------|----------|---------|----------|
| Applicants:                            |           |          |          |         |          |
| Number of applicants affected          | 20        | 16       | 20       | 14      | 21       |
| Applicant-proposing result preferred   | 12        | 16       | 11       | 14      | 12       |
| Current NRMP result preferred          | 8         | 0        | 9        | 0       | 9        |
| U.S. applicants affected               | 17        | 9        | 17       | 12      | 18       |
| Independent applicants affected        | 3         | 7        | 3        | 2       | 3        |
| Difference in result by rank number    |           |          |          |         |          |
| 1 rank                                 | 12        | 11       | 13       | 8       | 8        |
| 2 ranks                                | 3         | 1        | 4        | 2       | 6        |
| 3 ranks                                | 2         | 3        | 2        | 2       | 3        |
| More than 3 ranks                      | 2         | 1        | 1        | 2       | 3        |
|                                        | (max 9)   | (max 4)  | (max 5)  | (max 6) | (max 6)  |
| New matched                            | 0         | 0        | 0        | 0       | 1        |
| New unmatched                          | 1         | 0        | 0        | 0       | 0        |
| Programs:                              |           |          |          |         |          |
| Number of programs affected            | 20        | 15       | 23       | 15      | 19       |
| Applicant-proposing result preferred   | 8         | 0        | 12       | 1       | 10       |
| Current NRMP result preferred          | 12        | 15       | 11       | 14      | 9        |
| Difference in result by rank number    |           |          |          |         |          |
| 5 or fewer ranks                       | 5         | 3        | 9        | 6       | 3        |
| 6–10 ranks                             | 5         | 3        | 3        | 5       | 3        |
| 11–15 ranks                            | 0         | 5        | 1        | 3       | 1        |
| More than 15 ranks                     | 9         | 4        | 6        | 0       | 11       |
|                                        | (max 178) | (max 36) | (max 31) |         | (max 191 |
| Programs with new position(s) filled   | 0         | 0        | 2        | 1       | 1        |
| Programs with new unfilled position(s) | 1         | 0        | 2        | 0       | 0        |

# IS THE CHANGE WORTH IT?

0.1% of applicants affected

Most of those affected prefer the new algorithm

0.5% of programs affected

Most of those affected prefer the old algorithm

This does not imply the associated change in welfare is small

- Large increase for affected applicants
- Small decrease for the affected programs

# STRATEGIC BEHAVIOR OF PARTICIPANTS

TABLE 4—UPPER LIMIT OF THE NUMBER OF APPLICANTS
WHO COULD BENEFIT BY TRUNCATING THEIR LISTS AT ONE
ABOVE THEIR ORIGINAL MATCH POINT

| Upper limit                |                                         |  |  |
|----------------------------|-----------------------------------------|--|--|
| Preexisting NRMP algorithm | Applicant-proposing algorithm           |  |  |
| 12                         | 0                                       |  |  |
| 22                         | 0                                       |  |  |
| 13                         | 2                                       |  |  |
| 16                         | 2                                       |  |  |
| 11                         | 9                                       |  |  |
|                            | Preexisting NRMP algorithm  12 22 13 16 |  |  |

# STRATEGIC BEHAVIOR OF PROGRAMS

Table 5—Upper Limit of the Number of Programs
That Could Benefit by Truncating Their Lists at
One Above the Original Match Point

| Year | Preexisting NRMP algorithm | Applicant-proposing algorithm |
|------|----------------------------|-------------------------------|
| 1987 | 15                         | 27                            |
| 1993 | 12                         | 28                            |
| 1994 | 15                         | 27                            |
| 1995 | 23                         | 36                            |
| 1996 | 14                         | 18                            |