

Algorithms and Data Structures 1 CS 0445

Fall 2022
Sherif Khattab
ksm73@pitt.edu

(Slides are adapted from Dr. Ramirez's and Dr. Farnan's CS1501 slides.)

Announcements

- Upcoming Deadlines:
 - Homework 6: this Friday @ 11:59 pm
 - Homework 7: next Friday @ 11:59 pm
 - Lab 6: Monday 10/31 @ 11:59 pm
- Midterm Exam: Thursday 10/20
 - closed book, paper, in-person
- Live QA Session on Piazza every Friday 4:30-5:30 pm

Previous Lecture ...

- Recursion Applications
 - Divide and Conquer
 - Backtracking
- Limitations of Recursion

Today ...

- More recursion examples
 - Fibonacci numbers
 - linear search
- Recursion tree analysis
- Recursion may lead to poor solutions
- Average running time analysis

Generating Fibonacci Numbers

- Fibonacci numbers:
 - 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,

Fibonacci number. (2022, October 13). In Wikipedia. https://en.wikipedia.org/wiki/Fibonacci number CC BY-SA 4.0

Generating Fibonacci Numbers

- Fibonacci numbers:
 - 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,

```
Algorithm Fibonacci(n)
if (n <= 1)
  return 1</pre>
```

Generating Fibonacci Numbers

- Fibonacci numbers:
 - 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,

```
Algorithm Fibonacci(n)
if (n <= 1)
  return 1
else
  return Fibonacci(n - 1) + Fibonacci(n - 2)</pre>
```

Double Recursion!

Single recursion

A recursive algorithm with a single recursive call provides a linear chain of calls

Calls build run-time stack

Stack shrinks as calls finish

```
Algorithm Fibonacci(n)
if (n <= 1)
  return 1
else
  return Fibonacci(n - 1) + Fibonacci(n - 2)</pre>
```



```
Algorithm Fibonacci(n)
if (n <= 1)
  return 1
else
  return Fibonacci(n - 1) + Fibonacci(n - 2)</pre>
```



```
Algorithm Fibonacci(n)
if (n <= 1)
  return 1
else
  return Fibonacci(n - 1) + Fibonacci(n - 2)</pre>
```



```
Algorithm Fibonacci(n)
if (n <= 1)
  return 1
else
  return Fibonacci(n - 1) + Fibonacci(n - 2)</pre>
```



```
Algorithm Fibonacci(n)
if (n <= 1)
  return 1
else
  return Fibonacci(n - 1) + Fibonacci(n - 2)</pre>
```



```
Algorithm Fibonacci(n)
if (n <= 1)
  return 1
else
  return Fibonacci(n - 1) + Fibonacci(n - 2)</pre>
```



```
Algorithm Fibonacci(n)
if (n <= 1)
  return 1
else
  return Fibonacci(n - 1) + Fibonacci(n - 2)</pre>
```


Recursion Tree

- This branching structure is called a tree
 - recursion tree
- Each node represents one recursive call
- Terminal nodes are called leaves

Recursion Tree Analysis

- We can use the recursion tree to estimate the running time of a recursive algorithm
 - running time = number of nodes * time per node
- For the tree below,
 - the number of nodes for each level almost doubles as the tree grows down
 - first level: 1 node
 - second level: 2 nodes
 - third level: 4 nodes
 - ...
 - number of nodes <= 1 + 2 + 4 + 8 + 16 + ...
 - the number of levels = the value of n
 - e.g., the recursion tree for F_6 has 6 levels
 - number of nodes $\leq 1 + 2 + 4 + 8 + ... + 2^{n-1}$
 - $<= 2*2^{n-1} = 2^n$
 - Time per node is O(1)
 - So, running time = O(2ⁿ)
 - Exponential!

Recursion may lead a poor solution that an iterative approach

Searching

Method that implements this algorithm will need parameters **first** and **last**.

```
private static <T> boolean search(T[] anArray, int first, int last,
    T desiredItem)
{
    boolean found;
    if (first > last)
        found = false; // No elements to search
    else if (desiredItem.equals(anArray[first]))
        found = true;
    else
        found = search(anArray, first + 1, last, desiredItem);
    return found;
} // end search
```

A recursive sequential search of an array that finds its target

Look at	the firs	t entry,	9:	
9	5	8	4	7
T ==1==4	the first	t entry	5.	
Look at	the ms	citiy,	<i>J</i> .	
Look at	5	8	4	7
Look at 8 ≠ 5, so Look at	5 search	8 the nex	4 t subar	7 ray.

A recursive sequential search of an array that does not find its target

(b) A se	arch fo	r 6					
Look at	the firs	t entry,	9:				
9	5	8	4	7			
6 ≠ 9, so search the next subarray.Look at the first entry, 5:							
	5	8	4	7			
6 ≠ 5, so search the next subarray. Look at the first entry, 8:							

A recursive sequential search of an array that does not find its target

MANNENMANAMANAMA	V"							
$6 \neq 5$, so search the next subarray.								
Look at the first entry, 8:								
8 4 7								
$6 \neq 8$, so search the next subarray.								
T 1 (4) (1) (1)								
Look at the first entry, 4:								
4 7								
$6 \neq 4$, so search the next subarray.								
Look at the first entry, 7:								
Look at the mot entry, 7.								
7								

Implementation of the method search

```
// Recursively searches a chain of nodes for desiredItem.
// beginning with the node that currentNode references.
private boolean search(Node currentNode, T desiredItem)
   boolean found;
   if (currentNode == null)
      found = false;
   else if (desiredItem.equals(currentNode.getData()))
      found = true;
   else
      found = search(currentNode.getNextNode(), desiredItem);
   return found;
} // end search
```

Efficiency of a Sequential Search

The time efficiency of a sequential search of a chain of linked nodes

• Best case: O(1)

Worst case: O(n)

Average-case Analysis of Sequential Search

- To do this we need to make an assumption about the index where the target exists
- Let's assume that all index values are equally likely
 - If this is not the case, we can still do the analysis, if we know the actual probability distribution for the index
- Our assumption means that, given n choices for an index, the probability of stopping at a given index, i, (which we will call P(i)) is
 - 1/n for any i
- Let's define our key operation to be "looking at" an entry in the list
 - So for a given index i, we will require i operations
 - Let's call this value Ops(i)

Average-case Analysis of Sequential Search

Now we can define the average number of operations to be:

```
Avg Ops = Sum_over_i (Ops(i) * P(i))

= Sum_over_i (i * 1/n)

= 1/n * Sum_over_i (i)

= 1/n * [n * (n+1)]/2

= (n+1)/2
```

- This is for success case (target found)
- Running time for the failed search case?
 - n
- overall average: successful search probability * (n+1)/2 +
 failed search probability * n
- In an absolute sense, this is better than the worst case, but asymptotically it is the same (why?)
- So in this case the worst and average cases are the same

Amortized Analysis

- Average over a sequence of operations
- add(newEntry) of ArrayList
 - Recall that this version of the method adds to the end of the list
 - Runtime for Resizable Array ?

O(1): We can go directly to the last location and insert there

- The answer above is a bit deceptive
- Some adds take significantly more time, since we have to first allocate a new array **and copy all of the data** into it
 - O(n) time
- So we have $O(n) + O(1) \rightarrow O(n)$ total
 - when resizing happens!

Amortized Analysis

- So, we have an operation that sometimes takes O(1) and sometimes takes O(N)
- How do we handle this issue?
- Amortized Time (see http://en.wikipedia.org/wiki/Amortized_analysis
 - Average time required over a sequence of operations
 - Individual operations may vary in their run-time, but we can get a consistent time for the overall sequence
 - Let's stick with the add() method for resizable array list and consider 2 different options for resizing:
 - 1) Increase the array size by 1 each time we resize
 - 2) Double the array size each time we resize (which is the way the authors actually did it)