This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Sheet 1 of 22

Appl. No. 10/791,681; Filed: Mar 3, 2004

Dkt No. 1866.0220001/PEG/CMB; Group Unit: 2857

Inventor: Frank P. HOLLINGER, Ph.D. Tel: 202-371-2600

Title: Methods and Systems for Preparing Virtual

Representations of Molecules

IDENTIFYING A VIRTUAL REPRESENTATION OF A PROTEIN

ASSESSING ONE OR MORE FEATURES OF THE VIRTUAL REPRESENTATION OF THE PROTEIN

MODIFYING THE VIRTUAL REPRESENTATION OF THE PROTEIN BASED, AT LEAST IN PART, ON THE ASSESSMENT(S) PERFORMED IN STEP 104

100

FIG.1

Sheet 2 of 22

Appl. No. 10/791,681; Filed: Mar 3, 2004

Dkt No. 1866.0220001/PEG/CMB; Group Unit: 2857

Inventor: Frank P. HOLLINGER, Ph.D. Tel: 202-371-2600

Title: Methods and Systems for Preparing Virtual

Representations of Molecules

FIG.2A

Ehoot 3 of 32

Appl. No. 10/791,681; Filed: Mar 3, 2004

Dkt No. 1866.0220001/PEG/CMB; Group Unit: 2857

Inventor: Frank P. HOLLINGER, Ph.D. Tel: 202-371-26CO

Title: Methods and Systems for Preparing Virtual

PROTEIN DATA BANK

Structure Explorer – 1AIK

Hiv Gp41 Core Structure

Glycoprotein Classification

Mol_Id: 1; Molecule: Hiv—1 Gp41 Glycoprotein; Chain: N, C; Fragment: Protease—Resistant Core; Biological_Unit: Trimer; Other_Details: N36 and C34 Are Synthetic Peptides Compound

X-ray Diffraction

Exp. Method

20-APR-97

1AIK

Save full entry to disk Summary Information

Download/Display File

View Structure

HIV GP41 CORE STRUCTURE **GLYCOPROTE IN** COMPND

2 MOLECULE: HIV-1 GP41 GLYCOPROTEIN; COMPND

Download/Display File

Structural Neighbors

3 CHAIN: N, C; 4 FRAGMENT: PROTEASE-RESISTANT CORE; OMPNO ON

OTHER_DETAILS: N36 AND C34 ARE SYNTHETIC PEPTIDES BIOLOGICAL_UNIT: TRIMER; COMPND COMPND

MOL_10: 1; SOURCE

2 ORGANISM_SCIENTIFIC: HUMAN IMMUNODEFICIENCY VIRUS TYPE 1; SOURCE

CELLULAR_LOCATION: VIRAL MEMBRANE STRAIN: HXB2; SOURCE SOURCE

Other Sources

Geometry

HIV, GP41, ENVELOPE GLYCOPROTEIN, RETROVIRUS K-RAY DIFFRACTION **(EYMDS EXPOTA ETTE**

Sequence Details

D.C.CHAN, D. FASS, J.M. BERGER, P.S. KIM 16-JUN-97 1AIK 0 REVDAT EWARK

SearchFields

SearchLite

FIG.3A

. ,

		OPE		1997	8660																									0.D
	S.KIM	THE HIV ENVEL		89 263										: 2.0	: 12.0	: 2.0	. 100000000.	: NULL	: 96.5	: 5683			THROUGHOUT	RANDOM	0.238	0.266	7.12	371	NULL	
-	D.C.CHAN, D.FASS, J.M.BERGER, P.S.KIM	CORE STRUCTURE OF GP41 FROM	GL YCOPROTE IN	CELL (CAMBRIDGE, MASS.)	ASTM ČELLB5 US ISSN 0092-8674		. 2.0 ANGSTROMS.			: X-PLOR 3.851	: BRUNGER		DATA USED IN REFINEMENT.	RESOLUTION RANGE HIGH (ANGSTROMS)	RESOLUTION RANGE LOW (ANGSTROMS)	TOFF (SIGMA(F))	DATA CUTOFF HIGH (ABS (F))	DATA CUIOFF LOW (ABS (F))	COMPLETENESS (WORKING+TEST) (%)	NUMBER OF REFLÈCTIONS		FIT TO DATA USED IN REFINEMENT.	CROSS-VALIDATION METHOD :	FREE R VALUE TEST SET SELECTION :	(WORKING SET) :		FREE R VALUE TEST SET SIZE (%) :	VALUE TEST SET COUNT :	STIMATED ERROR OF FREE R VALUE :	
REFERENCE	AUTH	111[11TL 2	REF	REFN		RESOLUTION.		REF INEMENT	PROCRAM	AUTHORS		DATA USED	RESOLUT	RESOLUT	DATA CUTOFF	DATA CU	DATA CU	COMPLET	NUMBER		FIT TO DAT	CROSS-V	FREE R	R VALUE	FREE R VALUE	FREE R	FREE R	ESTIMAT	
-	-	-	-		-	2	2	3	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	3	~	~	~	ر ر	?
REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	KEMAKK

	NOLL :	(A) : NULL	(A) : NULL	: (%)	SET)	ING SET) : NULL	: NULL	· · (%)	COUNT : NULL	BIN FREE R VALUE : NULL		IS USED IN REFINEMENT.	296	0	0	43			(A**2) :	\(\text{\colony}\) : \(\text{NULL}\)	LUE.	NULL	NULL	NULL	NULL	NULL	NULL	i	F[C] 3(
IN THE HIGHEST RESOLUTION BIN	TOTAL NUMBER OF BINS USED	BIN RESOLUTION RANGE HIGH	BIN RESOLUTION RANGE LOW	BIN COMPLETENESS (WORKING+TEST)	REFLECTIONS IN BIN (WORKING	BIN R VALUE (WORKING	BIN FREE R VALUE	FREE R VALUE	BIN FREE R VALUE TEST SET COUNT	STIMATED ERROR OF BIN FRE		NUMBER OF NON-HYDROGEN ATOMS USED IN REFINEMENT	PROTEIN ATOMS :	NUCLEIC ACID ATOMS :	HETEROGEN ATOMS	SOLVANT ATOMS :		VALUES.	FROM WILSON PLOT	MEAN B VALUE (OVERALL,	OVERALL ANISOTROPIC B VALUE	B11 (A**2) :	B22 (A**2) :	B33 (A**2) :	B12 (A**2) :	B13 (A**2) :	B23 (A**2)	CCTIMATEN COODIINATE EDDOD	I IMPLED COUNTINALE ENVOIN.
3 F1T	~	3 E	3	3	3	ح ا	3	3	3	~ F	~	ĭ ∑	~	~	~	3	2	3 B	~	~	~	~	3	3	3	~	۳,	ت ~	
REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	KEMAKK	ורואואו

FIG.3D				NOLL NOLL	PARAMETER FILE 2	3 PAI	· · · ·	REMARK
1	-		<i>_</i>			, w		REMARK
			S (S	(A) (A**7)	GROUP 1 POSITIONAL GROUP 1 B-FACTOR	ප ~ ~	~ ·	REMARK RFMARK
SIGMA/WEIGHT		RMS		·	TRAINTS	3 NC	~	REMARK
						~	···,	REMARK
					NCS MODEL : NULL	3 NC	···	REMARK
						~	, ~	REMARK
NOLL	• -	: NULL	2)	(A**2)	SIDE-CHAIN ANGLE	S	, ~	REMARK
NULL		: NULL	2)	(A**2)	SIDE-CHAIN BOND	. S	···	REMARK
NULL		: NULL	2)	(A**2)	MAIN-CHAIN ANGLE	3 W	, ~	REMARK
NOLL		. NULL	2)	(A**2)	MAIN-CHAIN BOND	3 W	, ~	REMARK
SIGMA		RMS		RESTRAINTS	SOTROPIC THERMAL FACTOR RESTRAINTS	3 Is	, ~	REMARK
						· ~	. ~	REMARK
				- - - - -	SOTRODIC THERMAL MODEL . NIILL	~ ~	~ .	REMARK REMARK
		NULL	-	(DEGREES)	IMPROPER ANGLES	~	, ~	REMARK
		VUL L		(DEGREES)	DIHEDRAL ANGLES	~	···,	REMARK
		2.742		(DEGREES)	BOND ANGLES	~	, ~	REMARK
		0.014		(A)	BOND LENGTHS	~	···	REMARK
				AL VALUES.	RMS DEVIATIONS FROM IDEAL VALUES.	3	···	REMARK
				•		~	·-,	REMARK
		NULL		(A)	ESD FROM C-V SIGMAA	~	·-,	REMARK
		NLL NLL			ESD FROM C-V LUZZATI PLOT	~	···,	REMARK
		₩.	E ERROR.	ED COORDINAT	CROSS-VALIDATED ESTIMATED COORDINATE	3	, ~	REMARK
				•		~	·-,	REMARK
				(Y)	LOW RESOLUTION CUTOFF	~	···)	REMARK
		NULL	•	(A)	ESD FROM SIGNAA	~	·-,	REMARK
		NILL NULL		(A)	ESD FROM LUZZATI PLOT	~	· · ·	REMARK

Sheet 8 of 22 Appl. No. 10/791,681; Filed: Mar 3, 2004 Dkt No. 1866.0220001/PEG/CMB; Group Unit: 2857 Inventor: Frank P. HOLLINGER, Ph.D. Tel: 202-371-2600 Title: Methods and Systems for Preparing Virtual Representations of Molecules

		96	·	'n			X-RAY DIFFRACTION	MAR-1997	100	0.9	_		Z	NULL	NOLL	RIGAKU RU200		1.5418	NULL .	MIRRORS		R-AXIS IIC	RIGAKU	DENZO	SCALEPACK	5287 FIG 3E	
		16-DEC-1996		CHAIN							• •											• •	• •		••	٠.	
TOPOLOGY FILE 1 : NULL TOPOLOGY FILE 2 : NULL	OTHER REFINEMENT REMARKS : NULL	1AIK COMPILES WITH FORMAT V. 2.2,		C-TERMINAL NH2 NOI IN AIOM LISI FOR BOTH CHAINS.		EXPERIMENTAL DETAILS	EXPERIMENT TYPE	A COLLECTION	TEMPERATURE (KELVIN)		NUMBER OF CRYSTALS USED		SYNCHROTRON (Y/N)	RADIATION SOURCE		X-RAY GENERATOR MODEL	MONOCHROWATIC OR LAUE (M/L)	WAVELENGTH OR RANGE		OPTICS		_	<i>ــ</i>		DATA SCALING SOFTWARE	NUMBER OF UNIQUE REFLECTIONS	
w w w	۵ 4	4	9	စ	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	28	200	200
REMARK REMARK REMARK	REMARK REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	remark Remark	REMARK	REMARK.

							;	2.00^{-1}	2.07																		<i>)</i> . - -
							•	7.	2.																		
								• •	• •										2	3							
20.0 1.5	96.5			0.054	18.4			E	(A)	98.9	NOLL	NULL	0.263	5.4					1 1 1	DATA COLLECTED ON	1.1396,]]N. :	
				••							••			• •		WAD			i	DATA	. 1398,						
(SIGMA (I))	(%)	•	(I)		DATA SET			., RANGE HIGH	., RANGE LOW	(%)			(Γ)			THE STRUCTURE:	1.1		!) MAD METHODS.	WAVELENGTHS 1	MS.			(%) : 46.	(ANGSTROMS**3/DA)	
RESOLUTION RANGE LOW REJECTION CRITERIA	OVERALL. COMPLETENESS FOR RANCE	DATA REDUNDANCY	R MERGE	R SYM	< I/SIGMA (I) > FOR THE DATA SET		IN THE HIGHEST RESOLUTION SHELL	HIGHEST RESOLUTION SHELL, RANGE	HIGHEST RESOLUTION SHELL,	COMPLETENESS FOR SHELL	DATA REDUNDANCY IN SHELL	R MERGE FOR SHELL	R SYM FOR SHELL	< I/SIGMA (I) > FOR SHELL			\circ	STARTING MODEL: NULL		REMARK: DATA AT NSLS USED MAD METHODS. DATA COLLECTE	AN OSMIUM-SOAK CRYSTAL AT	1.1344, AND 1.1406 ANGSTOMS.		CRYSTAL	SOLVENT CONTENT, VS	MATTHEWS COEFFICIENT, VM	
200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	700	200	200	700	280	780	280	280	280
REMARK REMARK	REMARK REMARK REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK

															0.0000	0.0000	0.0000	0.0000	0.00000	0.00000	0.0000	0.0000
S DILUTED 200, AND E AGAINST						÷					!	JM/HETATM	ICALLY		0.000000	0.000000	1.00000	0.00000	0.00000	1.00000	0.00000	0.00000
/ML STOCK WA CL, 20 % PEG O EQUILIBRAT ISOPROPANOL.	P 3 2 1			Z,X	7-	7-' _\ -	7-' Y -	3ER	/ECTOR	!	ATIONS	TE ON THE AT(rsial Logkaph		0.00000	1.000000	0.00000	-0.866016	-0.499979	0.00000	0.866016	-0.500021
NS: A 10 MG TH 80 MM NH4 EN ALLOWED T , AND 30 %	Y PACE GROUP:	SYMMETRY OPERATOR			Z-'X'-Z		7-, X-Y, X- 20, X-X, -20,	-> OPERATOR NUMBER	TRANSLATION VECTOR		RANSFORM	ATIONS OPERA) PRODUCE CR	,	1.00000	0.00000	0.00000	-0.500021	0.866035	0.00000	-0.499979	-0.866035
CONDITIO 3 DROP WI L, AND TH % PEG200	C SYMMETR ORS FOR S		1555	3555	4555	5555	6555	^- NN	_ \- MM		C SYMMETF	RANSF ORM	S ENTRY TO	ES.	-	.		7	2	2	~	~
CRYSTALLIZATION CONDITIONS: A 10 MG/ML STOCK WAS DILUTED 1:1 IN A SITTING DROP WITH 80 MM NH4CL, 20 % PEG200, AND 50 % ISOPROPANOL, AND THEN ALLOWED TO EQUILIBRATE AGAINST 80 MM NH4CL, 20 % PEG200, AND 30 % ISOPROPANOL.	CRYSTALLOGRAPHIC SYMMETRY SYMMETRY OPERATORS FOR SPACE GROUP:	SYMOP						WHERE			CRYSTALLOGRAPHIC SYMMETRY TRANSFORMATIONS	THE FOLLOWING TRANSFORMATIONS OPERATE ON THE ATOM/HETATM	RECORDS IN THIS ENTRY TO PRODUCE CRYSTALLOGRAPHICALLY	RELATED MOLECULES	SMTRY1	SMTRY2	SMTRY3	SMTRY1	SMTRY2	SMTRY3	SMTRY1	SMTRY2
280 280 280 280 290	230 230	290 290 290	290	230	290	290	290	730 730	290	230	290	290	290	290	230	290	290	290	290	230	290	290
REMARK REMARK REMARK REMARK REMARK	REMARK REMARK	REMARK REMARK REMARK	REMARK Prandy	REMARK	REMARK	REMARK	REMARK	remark Remark	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK	REMARK

•	11ST 11ST 11ST 656 579	
-	ATOMS ATOMS ATOMS	
	ZZZZ	
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	621 NOT 851 NOT 542 NOT 853 NOT 853 NOT RF 543 MF 543 CONFLICT CONFLICT CONFLICT N TYR THR N TYR THR N TYR THR	
1.000000 0.000000 0.000000 0.000000 0.000000	1 - 657 - 1 - 580 - ENV_HVIB8 ENV_HVIB8 622 C 622 C 622 C 621 C 1LE LEU LI LEU GLN LEU LI LEU GLN LEU LI LEU GLN LEU LI LEU SN ASN T CLU SER GLN A	,
0.000000 0.865991 0.500021 0.000000 0.000000 0.000000 0.499979 0.000000	P04582 P04582 P19551 P19551 P19551 P19551 P19551 R2 THR S51 CEU GLN GLN GLN I LEU GLN ALA ASP ARG GLU CLU GLN ALA I CEU GLN ALA I CEU GLN ALA I CEU GLN GLU I CEU GLU GLU I CEU GLU GLU	
0.000000 -0.500021 0.866035 0.000000 1.000000 0.000000 -0.499979 -0.866035 0.000000	SWS SWS SWS PO45 P195 LYS GLN CLV TRF GLU TRF ANS GLN	01
, , , ,	SWS SWS SWS SWS SWS SWS SWS SER (GLY TRP 1	ر ج
M 4 4 4 W W W O O O	0 0 ACE ACE SER GLN	GROUP C2
SMTRY3 SMTRY1 SMTRY2 SMTRY3 SMTRY2 SMTRY3 SMTRY3 SMTRY3 SMTRY3 SMTRY3 SMTRY3	00 N N N N N N N N N N N N N N N N N N	ACE ACETYL ACE
REMAR	SEQUENCE 141K 141K N ACE C C C C C C C	ACE ACE
290 290 290 290 290 290 290 290	999 999 999 141K 141K 1 141K 2 2 1 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	AGE 1
	REMARK REMARK REMARK REMARK REMARK REMARK REMARK SEQADV SEQADV SEQRES SEQRES SEQRES SEQRES	HETNAM FORMUL

32		OOOZOOOOTTZOO	JOTZO
546	0.00000 0.00000 0.00000 0.00000 0.00000	56.26 56.37 56.01 56.49 56.15 57.67 57.67 57.84 0.00 0.00 55.59	50.76 50.76 0.00 51.57 52.14
SER N		888888888888888888888888888888888888888	8.0.00
zz) 120.00	-17.472 -16.305 -18.531 -17.827 -15.655 -17.546 -17.546 -17.546 -17.546 -17.546 -17.546 -17.546 -17.546	-13.390 -12.391 -16.618 -14.145 -13.425
0 8 	90.00 0.000000 1.000000 0.000000 0.000000	14.270 14.580 14.045 14.014 14.392 13.631 14.255 14.172 12.815 12.316 11.414	11.767 11.967 11.945 12.280
N 578 J C 659	90.00	19.211 19.488 20.273 17.955 16.876 16.909 16.736 15.525 15.498 17.181 17.181	18. 299 18. 147 17. 409 19. 399 20. 551
H3 01 (H2 01) 547 ALA 629 GLU N 0	55.300 0.000000 1.000000 0.000000 0.011664 0.023327	546 546 546 546 546 547	547 547 548 548
C2 + *43 (F) * *43 (F) * *43 (F) * *5 (200	ACE N A SER N N N SER N SER N SER N N SER N N SER N N N SER N N N N N N N N N N N N N N N N N N N	6LY N 6LY N 6LY N 1LE N 1LE N
ACE HOH 1 GLY 2 MET C	49.500 49. 1.000000 0.000000 0.000000 0.020202 0.000000	2 1 2 4 3 7 6 5 4 3 7 6 5 4 3 7 6 6 5 4 3 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	15 17 17 17 17 17 17 17 17 17 17 17 17 17
2 - 2 2 5			
FORMUL FORMUL HEL IX LINK	CRYSTI ORIGXI ORIGXZ ORIGXZ SCALE1 SCALE2	HETATM HETATM HETATM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	ATOM ATOM ATOM ATOM
		302	

19 C ILE N 548 20.218 14.116 -12.696 1.00 51.31	ATO	ATO	ATO	ATO	ATO	ATOM	ATO	ATO	ATO	ATO	ATO	ATO	ATO	ATO	ATO	ATO	AT0	ATO	ATO	
C ILE N 548 20.218 14.116 -12.696 1.00 51.31	_	_	-				_	_	_	_		-	-	-	>	>	>	>	>	
ILE N 548 20.218 14.116 -12.696 1.00 51.31	19	70	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	
N 548 20.218 14.116 -12.696 1.00 51.31	ပ	0	8	8	007	5	=	Z	S	ں	0	8	53	002	Ŧ	z	S	ں	0	!
20.218 14.116 -12.696 1.00 51.31	ILE	31	11	IIE	JLE	ILE	IE	VAL	VAL	VAL	W	M	۷AL	M	W	GLN 6	GLN GLN	OLN 6	CLN	;
20.218 14.116 -12.696 1.00 51.31	z	z	z	z	z	Z	z	z	z	z	Z	z	Z	z	z	z	z	z	Z	
14.116 -12.696 1.00 51.31	548	548	548	548	548	548	548	549	549	549	549	549	549	549	549	550	550	550	220	
-12.696 1.00 51.31	20.218	20.543	21.693	22.120	22.861	23.126	19.445	19.590	19.093	18.036	17.992	18.451	17.814	19.539	19.486	17.187	16.176	16.843	16.520	
1.00 51.31	14.116	14.273	13.043	11.712	13.705	11.909	12.272	15.054	16.291	15.977	16.598	17.196	18.437	17.650	14.911	15.030	14.508	13.895	14.236	
51.31	-12.696	-11.519	-14.436	-15.087	-13.721	-16.234	-15.118	-13.393	-12.786	-11.726	-10.674	-13.841	-13.226	-14.780	-14.360	-12.001	-11.109	-9.861	-8.736	
	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
S	51.31	50.83	54.22	54.58	55.25	56.29	0.00	50.93	50.79	50.36	51.60	52.28	54.97	51.05	0.00	49.13	49.23	48.50	47.94	(
	ပ	0	<u>ن</u>	ပ	ں	ပ	工	Z	ں	ပ	0	ပ	ပ	ပ	工	Z	ں	ပ	0	<

II.

Sheet 14 of 22

Appl. No. 10/791,681; Filed: Mar 3, 2004

Dkt No. 1866.0220001/PEG/CMB; Group Unit: 2857

Inventor: Frank P. HOLLINGER, Ph.D. Tel: 202-371-2600

Title: Methods and Systems for Preparing Virtual

Representations of Molecules

		ပ	0	ပ	Z	ပ	ပ	0	ပ	0	工	工	z	ပ	ပ	0	工	Z	ပ	<i>ن</i>	0	ပ	S	ပ	S	工	Z	ပ	ပ
		56.26	56.37	56.01	56.49	56.15	56.24	27.67	56.05	57.84	0.00	0.00	55.59	53.04	51.70	50.76	0.00	51.57	52.14	51.31	50.83	54.22	54.58	55.25	56.29	0.00	50.93	50.79	50.36
		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		-17.472	-16.305	-18.531	-17.827	-16.942	-15.655	-14.615	-17.546	-17.842	-18.652	-18.582	-15.724	-14.570	-13.596	-12.391	-16.618	-14.145	-13.425	-12.696	-11.519	-14.436	-15.087	-13.721	-16.234	-15.118	-13.393	-12.786	-11.726
316		14.270	14.580	14.045	14.014	14.392	13.631	14.255	14.172	12.815	13.501	12.455	12.316	11.414	11.783	11.667	11.945	12.280	12.815	14.116	14.273	13.043	11.712	13.705	11.909	12.272	15.054	16.291	15.977
		19.211	19.488	20.273	17.955	16.876	16.909	16.736	15.525	15.498	17.816	15.988	17.181	17.202	18.299	18.147	17.409	19.399	20.551	20.218	20.543	21.693	22.120	22.861	23.126	19.445	19.590	19.093	18.036
2 314	4	- _0	0	0	546	546	546	546	546	546	546												548	548	548	548	549	549	549
33	上	_ _z	Z	z	z	z	z	Z	Z	z	z								z				z	z	Z	Z	Z	Z	Z
310	_[- ACE-	ACE	ACE.	SER	SER	SER	SER	SER	SER	SER	SER	GLY	GLY	CLY CLY	GLY	GLY GLY	ILE	11	IE I][E	=======================================	1	ILE	11	II.	VAL	VAL	VAL
805	-[_ _ပ	0	33	z	₹	ပ	0	8	8	工	오	z	S	ပ	0	工	z	S	ပ	0	ප	8	CC2	8	工	z	S	ပ
306 308	Ĺ	<u>-</u>	2	~	4	5	9	7	∞	6	2	=	12	13	14	15	9	17	<u>&</u>	19	20	21	22	23	24	25	26	27	28
304		HETATM	HETATM	HETATM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM

Sheet 15 of 22

Appl. No. 10/791,681; Filed: Mar 3, 2004

Dkt No. 1866.0220001/PEG/CMB; Group Unit: 2857

Inventor: Frank P. HOLLINGER, Ph.D. Tel: 202-371-26t

Title: Methods and Systems for Preparing Virtual

Representations of Molecules

					رر در	F					
ပ	52.96	1.00	-11.814	13.398	15.452	550	Z	0LN	8	38	
0	47.94	1.00	-8.736	14.236	16.520	550	z	OLN GLN	0	37	
ပ	48.50	1.00	-9.861	13.895	16.843	550	z	OLN GLN	ပ	36	
ပ	49.23	1.00	-11.109	14.508	16.176	550	Z	OLN GLN	S	35	
Z	49.13	1.00	-12.001	15.030	17.187	550	z	SLN GLN	Z	34	
<u> </u>	0.00	1.00	-14.360	14.911	19.486	549	Z	\ ¥	工	33	
ပ	51.05	1.00	-14.780	17.650	19.539	549	Z	M	002	32	
ပ	54.97	1.00	-13.226	18.437	17.814	549	z	۸Ł	8	3	
ت	52.28	0.0	-13.841	17.196	18.451	549	z	M	ප	8	
0	51.60	9.	-10.674	16.598	17.992	549	z	VAL	0	29	
٠											

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM

Appl. No. 10/791,681; Filed: Mar 3, 2004 Dkt No. 1866.0220001/PEG/CMB; Group Unit: 2857 Inventor: Frank P. HOLLINGER, Ph.D. Tel: 202-371-2600 Title: Methods and Systems for Preparing Virtual

Representations of Molecules

Sheet 17 of 22

Appl. No. 10/791,681; Filed: Mar 3, 2004

Dkt No. 1866.0220001/PEG/CMB; Group Unit: 2857

Inventor: Frank P. HOLLINGER, Ph.D. Tel: 202-371-2600

Title: Methods and Systems for Preparing Virtual

Representations of Molecules

•		•		
-12.696 -11.519 -14.436 -15.087 -13.721	-16.234 -15.154 -12.663 -15.236 -15.482	-14.323 -14.429 -12.915 -13.307	-15.851 -17.008 -13.393 -12.786 -11.726	-13.841 -13.226 -14.780 -14.382 -12.333 -14.014
-0.174 -0.017 -1.247 -2.578 -0.585	-2.381 -2.001 -2.193 -0.592 -3.073	-3.200 -0.420 -1.232 0.371 -3.351	-1.893 -1.759 0.764 2.001 1.687	2.300 2.906 4.147 3.360 0.619 2.340 4.757
-4.532 -4.207 -3.057 -2.630 -1.889	-1.624 -5.306 -3.897 -3.403 -3.517	-7.171 -1.076 -1.543 -2.211 -1.359	-0.727 -2.073 -5.160 -5.657 -6.714	-6.299 -6.299 -5.211 -5.301 -7.080 -7.378 -6.174
548 548 548 548	548 548 548 548 548	548 548 548 548	548 549 549 549	5 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
4444	4444	X	4444	
			AAL VAL	A VAL VAL VAL VAL VAL VAL VAL VAL VAL VA
C C C C C C C C C C C C C C C C C C C	CD1 H H H H 2HC1	3462 2462 3462 1401	2401 3401 CA CA	CG CG2 CG2 HH HH 2HG1
27 28 29 30 31	38 28 28 28 28 28 28 28 28 28 28 28 28 28	38 39 41 41	44 44 45 46	48 48 50 51 52 53 54 53
ATOM ATOM ATOM ATOM ATOM	ATOM ATOM ATOM ATOM	ATOM ATOM ATOM ATOM	ATOM ATOM ATOM ATOM	A10M A10M A10M A10M A10M

Sheet 18 of 22

Appl. No. 10/791,681; Filed: Mar 3, 2004

Dkt No. 1866.0220001/PEG/CMB; Group Unit: 2857

Inventor: Frank P. HOLLINGER, Ph.D. Tel: 202-371-261

Title: Methods and Systems for Preparing Virtual

Representations of Molecules

HISTIDINE TERMINI (4 NEUTRAL CONFORMERS, 2 PROTONATED CONFORMERS, AS APPROPRIATE)

ASPARAGINE & GLUTAMINE RESIDUE TERMINI (TWO CONFORMATIONS AS SHOWN BELOW)

TYROSINE, SERINE, CYSTEINE, THREONINE TERMINI (MULTIPLE ROTOR STATES AROUND THE R-X BOND)

X=0,S

THE R IN EACH CASE IS THE REMAINDER OF SPECIFIC RESIDUE UNDER STUDY.