MATH 151B HOMEWORK

Problem 1

Consider the f(x) on [0,1] such that f(x) = 0 if $x = \frac{1}{2^n}$ for some positive integer n and f(x) = 1 otherwise. Prove that f(x) is integrable and compute its integral.

Problem 2

Suppose $c_n \ge 0$ such that $\sum C_n$ converges and s_n is a sequence of distinct points in (a,b). Let

$$\alpha(x) = \sum_{n=1}^{\infty} c_n I(x - s_n)$$

Let f be bounded on (a, b) and continuous at s_n for each n. Is is true that $f \in \mathfrak{R}(\alpha)$?

Problem 3

Let γ_1 be a curve defined on [a, b] and ϕ be a continuous 1-1 mapping of [c, d] onto [a, b] such that $\phi(c) = a$. Define $\gamma_2(s) = \gamma_1(\phi(s))$. Prove that γ_2 is rectifiable if and only if γ_1 is rectifiable. In that case, prove that they have the same length.

Problem 4

Suppose α increasing monotonically on [a,b], g is continuous and g(x)=G'(x). Prove that

$$\int_{a}^{b} G d\alpha = G(b)\alpha(b) - G(a)\alpha(a) - \int_{a}^{b} \alpha(x)g(x)dx.$$

Hint For any partition P, choose $t_i \in (x_{i-1}, x_i)$ so that

$$g(t_i)\Delta x_i = G(x_i) - G(x_{i-1})$$

Show that

$$\sum_{i=1}^{n} \alpha(x_i)g(t_i)\Delta x_i = G(b)\alpha(b) - G(a)\alpha(a) - \sum_{i=1}^{n} G(x_{i-1})\Delta \alpha_i$$