Image Processing

Lecture Notes: Color Correction

Kai-Lung Hua

Color Images

- ^m Are constructed from three overlaid intensity maps.
- Each map represents the intensity of a different "primary" color.
- The actual hues of the primaries do not matter as long as they are distinct.
- The primaries are 3 vectors (or axes) that form a "basis" of the color space.

Vector-Valued Pixels

Each color corresponds to a point in a 3D vector space

26 March 2020

Color Space

for standard digital images

3

- primary image colors red, green, and blue
 - correspond to R,G, and B axes in color space.
- 8-bits of intensity resolution per color
 - correspond to integers 0 through 255 on axes.
- no negative values
 - color "space" is a cube in the first octant of 3-space.
- · color space is discrete
 - -256^3 possible colors = 16,777,216 elements in cube.

26 March 2020 4

Color Correction

Global changes in the coloration of an image to alter its tint, its hues or the saturation of its colors with minimal changes to its luminant features

RGB to HSV Conversion

$$\mathbf{v}_0 = \frac{1}{3} \begin{bmatrix} c \\ c \\ c \end{bmatrix}$$
, where $c = r_0 + g_0 + b_0$.

$$v_0 = \frac{1}{3}c$$
, or $v_0 = \|\mathbf{v}_0\| = \frac{\sqrt{3}}{3}c$.

$$\mathbf{s}_{0} = \mathbf{p}_{0} - \mathbf{v}_{0} = \begin{bmatrix} r_{0} - \frac{1}{3}c \\ g_{0} - \frac{1}{3}c \\ b_{0} - \frac{1}{3}c \end{bmatrix}. \qquad \mathbf{p}_{0} = \begin{bmatrix} r_{0} \\ g_{0} \\ b_{0} \end{bmatrix}.$$

$$s_0 = \|\mathbf{s}_0\| = \sqrt{(r_0 - \frac{1}{3}c)^2 + (g_0 - \frac{1}{3}c)^2 + (b_0 - \frac{1}{3}c)^2}.$$

c/3 is the usual value-image intensity (the advantage of r, q, d, d) image intensity (the average of r, g, & b) ...

here
$$c = r_0 + g_0$$

has the advantage of being in the range [0, 255].

$$v_0 = \frac{1}{3}c$$
, or $v_0 = ||\mathbf{v}_0|| = \frac{\sqrt{3}}{3}c$.

$$\mathbf{s}_0 = \mathbf{p}_0 - \mathbf{v}_0 = \begin{bmatrix} \frac{1}{100} & \frac{1}{100} &$$

$$\mathbf{p}_0 = \begin{bmatrix} r_0 \\ g_0 \\ b_0 \end{bmatrix}$$

$$s_0 = \|\mathbf{s}_0\| = \sqrt{(r_0 - \frac{1}{3}c)^2 + (g_0 - \frac{1}{3}c)^2 + (b_0 - \frac{1}{3}c)^2}.$$

71 26 March 2020

RGB to HSV Conversion

$$\mathbf{x} = \mathbf{R} - \mathbf{v}_0 = \begin{bmatrix} c \\ 0 \\ 0 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} c \\ c \\ c \end{bmatrix} = \frac{c}{3} \begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix}$$

$$\mathbf{s}_0 = \mathbf{p}_0 - \mathbf{v}_0 = \begin{bmatrix} r_0 - \frac{1}{3}c \\ g_0 - \frac{1}{3}c \\ b_0 - \frac{1}{3}c \end{bmatrix}.$$

$$h_0 = \angle (\mathbf{s}_0, \mathbf{x}) = \cos^{-1} \left(\frac{\mathbf{s}_0 \cdot \mathbf{x}}{\|\mathbf{s}_0\| \|\mathbf{x}\|} \right).$$

RGB to HSV Conversion

In summary,

$$v_0 = \frac{1}{3}c$$
, or $v_0 = \|\mathbf{v}_0\| = \frac{\sqrt{3}}{3}c$,

where $c = r_0 + g_0 + b_0$,

ere
$$c = r_0 + g_0 + b_0$$
,

$$s_0 = \sqrt{\left(r_0 - \frac{1}{3}c\right)^2 + \left(g_0 - \frac{1}{3}c\right)^2 + \left(b_0 - \frac{1}{3}c\right)^2},$$

and

$$h_0 = \cos^{-1} \left(\frac{\mathbf{s}_0 \cdot \mathbf{x}}{\|\mathbf{s}_0\| \|\mathbf{x}\|} \right).$$

Usually, s_0 is normalized to lie in the interval (0,1) and h_0 is shifted to lie in (0,2 π).

26 March 2020 73

HSV to RGB Conversion

The equivalue plane is perpendicular to the value vector, v.

The plane contains vector \mathbf{x} defined on slide 45.

Therefore, \mathbf{v} is perpendicular to \mathbf{x} and $y = v \times x$ is also in the plane.

If we keep the directions but ignore the magnitudes, the unit vectors

$$\hat{\mathbf{x}} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \hat{\mathbf{y}} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \text{ and } \hat{\mathbf{v}} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$$

form an orthonormal basis with respect to the equivalue plane.

26 March 2020 74

ŷ

Given values h, s, and v, where

$$h \in [0, 2\pi), s \in [0, 1], \text{ and } v \in [0, 255],$$

the saturation vector is

$$\begin{bmatrix} \mathbf{s} \end{bmatrix}_{xyy} = \begin{bmatrix} s \cos(h) \\ s \sin(h) \\ 0 \end{bmatrix}_{xyy}$$

with respect to unit vectors $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$, and $\hat{\mathbf{v}}$, in the equivalue plane.

$$\mathbf{s} = s\cos(h)\hat{\mathbf{x}} + s\sin(h)\hat{\mathbf{y}} + 0\hat{\mathbf{v}}$$

26 March 2020

75

HSV to RGB Conversion

Given values h, s, and v, where

$$h \in [0, 2\pi), s \in [0, 1], \text{ and } v \in [0, 255],$$

the These are the coordinates of s with respect to \hat{x} , \hat{y} , & \hat{v} .

$$[\mathbf{s}]_{\mathbf{xyv}} = \begin{bmatrix} s\cos(h) \\ s\sin(h) \\ 0 \end{bmatrix}_{\mathbf{xyv}},$$

with res This is swritten as a linear combination of vectors \hat{x} , \hat{y} , & \hat{v} . and \hat{v} , in the equivariae plane.

$$|\mathbf{s} = s\cos(h)\hat{\mathbf{x}} + s\sin(h)\hat{\mathbf{y}} + 0\hat{\mathbf{v}}.$$

26 March 2020

 $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$, and $\hat{\mathbf{v}}$, are not in the same directions as the red, green, and blue unit vectors, $\hat{\mathbf{r}}$, $\hat{\mathbf{g}}$, and $\hat{\mathbf{b}}$.

Therefore, $[s]_{xyv}$ — which we know — is not equal to $[s]_{rgb}$ which we need in order to find the color, \mathbf{p}_0 , with respect to $\hat{\mathbf{r}}$, $\hat{\mathbf{g}}$, and $\hat{\mathbf{b}}$.

$$\begin{bmatrix} \mathbf{s} \end{bmatrix}_{\mathbf{rgb}} = \begin{bmatrix} r_0 & g_0 & b_0 \end{bmatrix}^\mathsf{T}$$

$$\mathbf{s} \leftrightarrow r_0 \hat{\mathbf{r}} + g_0 \hat{\mathbf{g}} + b_0 \hat{\mathbf{b}},$$

 $\mathbf{s} \leftrightarrow s \cos(h)\hat{\mathbf{x}} + s \sin(h)\hat{\mathbf{y}} + 0\hat{\mathbf{v}}$. We need to find r_0 , g_0 , & b_0 .

26 March 2020

77

HSV to RGB Conversion

Vector \mathbf{s} written as a linear combination of vectors, $\hat{\mathbf{r}}$, $\hat{\mathbf{g}}$, and $\hat{\mathbf{b}}$, and \mathbf{s} written as a linear combination of vectors, $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$, and $\hat{\mathbf{v}}$ both refer to the same point on the equivalue plane.

$$\mathbf{s} \leftrightarrow r_0 \,\hat{\mathbf{r}} + g_0 \,\hat{\mathbf{g}} + b_0 \,\hat{\mathbf{b}},$$

$$\mathbf{s} \leftrightarrow s \cos(h)\hat{\mathbf{x}} + s \sin(h)\hat{\mathbf{y}} + 0\hat{\mathbf{v}}.$$

The specific numbers in $[s]_{rgb}$ and in $[s]_{xyy}$ (that represent the point w.r.t. the two coordinate systems) are, however, different.

$$\begin{bmatrix} \mathbf{s} \end{bmatrix}_{\mathbf{rgb}} = \begin{bmatrix} r_0 & g_0 & b_0 \end{bmatrix}^\mathsf{T}$$
 and

$$[\mathbf{s}]_{xyz} = [s\cos(h) \ s\sin(h) \ 0]^{\mathsf{T}} \text{ but } [\mathbf{s}]_{rgb} \neq [\mathbf{s}]_{xyz}$$

26 March 2020

We can find r_0 , g_0 , and b_0 , from h_0 , s_0 , and v_0 , if we know how the unit vectors $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$, and $\hat{\mathbf{v}}$, are expressed with respect to $\hat{\mathbf{r}}$, $\hat{\mathbf{g}}$, and $\hat{\mathbf{b}}$. That relationship is in the form of a rotation matrix, A, such

26 March 2020 79

HSV to RGB Conversion

When written w.r.t the xyz coordinate system we have

$$\hat{\mathbf{x}} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \hat{\mathbf{y}} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \text{ and } \hat{\mathbf{v}} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$$

$$\left[\hat{\mathbf{x}} \right]_{\text{rgb}} = A \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ \left[\hat{\mathbf{y}} \right]_{\text{rgb}} = A \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \ \left[\hat{\mathbf{v}} \right]_{\text{rgb}} = A \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

But that implies,

$$A = \left[\begin{bmatrix} \hat{\mathbf{x}} \end{bmatrix}_{\text{rgb}} \quad \begin{bmatrix} \hat{\mathbf{y}} \end{bmatrix}_{\text{rgb}} \quad \begin{bmatrix} \hat{\mathbf{v}} \end{bmatrix}_{\text{rgb}} \right].$$

 $\left[\hat{\mathbf{x}} \right]_{\text{rgb}} = A \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ \left[\hat{\mathbf{y}} \right]_{\text{rgb}} = A \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \ \left[\hat{\mathbf{v}} \right]_{\text{rgb}} = A \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$

26 March 2020

 $\hat{\mathbf{v}}$ is the unit vector in the direction $[1\ 1\ 1]^T$ when written w.r.t **rgb** coordinates.

$$\begin{bmatrix} \hat{\mathbf{v}} \end{bmatrix}_{\mathbf{rgb}} = \frac{\sqrt{3}}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

 $\hat{\mathbf{x}}$ is perpendicular to $\hat{\mathbf{v}}$ and has equal $\hat{\mathbf{g}}$ and $\hat{\mathbf{b}}$ components.

$$\left[\hat{\mathbf{x}}\right]_{\text{rgb}} = \frac{\sqrt{6}}{6} \begin{bmatrix} 2\\-1\\-1 \end{bmatrix}$$

 $\hat{\mathbf{y}}$ is the cross product of $\hat{\mathbf{v}}$ with $\hat{\mathbf{x}}$.

$$\begin{bmatrix} \hat{\mathbf{y}} \end{bmatrix}_{\text{rgb}} = \begin{bmatrix} \hat{\mathbf{v}} \end{bmatrix}_{\text{rgb}} \times \begin{bmatrix} \hat{\mathbf{x}} \end{bmatrix}_{\text{rgb}}$$
$$= \frac{\sqrt{2}}{2} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

26 March 2020

81

HSV to RGB Conversion

Therefore, the rotation matrix is

$$A = \frac{\sqrt{6}}{6} \begin{bmatrix} 2 & 0 & \sqrt{2} \\ -1 & \sqrt{3} & \sqrt{2} \\ -1 & -\sqrt{3} & \sqrt{2} \end{bmatrix}$$

and

$$\begin{split} \left[\mathbf{s}\right]_{\mathbf{rgb}} &= s \frac{\sqrt{6}}{6} \cos\left(h\right) \begin{bmatrix} \frac{2}{-1} \\ -1 \end{bmatrix} + s \frac{\sqrt{2}}{2} \sin\left(h\right) \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} + 0 \frac{\sqrt{3}}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ &= s \frac{\sqrt{6}}{6} \cos\left(h\right) \begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix} + s \frac{\sqrt{2}}{2} \sin\left(h\right) \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}. \end{split}$$

Finally, $[\mathbf{s}]_{\mathbf{rgb}}$ must be shifted to the value vector to obtain the \mathbf{rgb} color of \mathbf{p}_0 :

$$\mathbf{p}_0 = \left[\mathbf{p}\right]_{\mathbf{rgb}} = \left[\mathbf{s}\right]_{\mathbf{rgb}} + \left[\mathbf{v}\right]_{\mathbf{rgb}}, \text{ where } \mathbf{s}_0 = \left[\mathbf{s}\right]_{\mathbf{rgb}} \text{ and } \left[\mathbf{v}\right]_{\mathbf{rgb}} = \mathbf{v}_0 \text{ as def'd. on slide } \underline{15}.$$

26 March 2020

Color Correction Via Transformation

• is a point process; the transformation is applied to each pixel as a function of its color alone.

$$J(r,c) = \Phi[I(r,c)] \quad \forall (r,c) \in \text{supp}(I)$$

• Each pixel is vector valued, therefore the transformation is a vector space operator.

$$I(r,c) = \begin{bmatrix} R_I(r,c) \\ G_I(r,c) \\ B_I(r,c) \end{bmatrix} \qquad J(r,c) = \begin{bmatrix} R_J(r,c) \\ G_J(r,c) \\ B_J(r,c) \end{bmatrix} = \Phi\{I(r,c)\} = \Phi\{\begin{bmatrix} R_I(r,c) \\ G_I(r,c) \\ B_I(r,c) \end{bmatrix}\}$$

26 March 2020 101

Linear Transformation of Color green yellow cyan original magenta 26 March 2020

Color Vector Space Operators

Linear operators are matrix multiplications

$$\begin{bmatrix} r_1 \\ g_1 \\ b_1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} r_0 \\ g_0 \\ b_0 \end{bmatrix}$$

$$\begin{bmatrix} r_1 \\ g_1 \\ b_1 \end{bmatrix} = 255 \cdot \begin{bmatrix} (r_0 / 255)^{1/\gamma_r} \\ (g_0 / 255)^{1/\gamma_g} \\ (b_0 / 255)^{1/\gamma_b} \end{bmatrix}$$

Example of a nonlinear operator: gamma correction

Color Transformation

Assume *J* is a discolored version of image *I* such that $J = \Phi[I]$. If Φ is linear then it is represented by a 3×3 matrix, *A*:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}.$$

Then J = AI or, more accurately, J(r,c) = AI(r,c) for all pixel locations (r,c) in image I.

Color Transformation

If at pixel location
$$(r,c)$$
, then $J(r,c) = AI(r,c)$, or
$$\begin{bmatrix} \rho_{I} \\ \gamma_{I} \\ \beta_{I} \end{bmatrix} \text{ and } \begin{bmatrix} \rho_{J} \\ \gamma_{J} \\ \beta_{J} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} \rho_{I} \\ \gamma_{I} \\ \beta_{I} \end{bmatrix}$$
$$\text{image } J(r,c) = \begin{bmatrix} \rho_{J} \\ \gamma_{J} \\ \beta_{J} \end{bmatrix}, \qquad = \begin{bmatrix} a_{11}\rho_{I} & + & a_{12}\gamma_{I} & + & a_{13}\beta_{I} \\ a_{21}\rho_{I} & + & a_{22}\gamma_{I} & + & a_{23}\beta_{I} \\ a_{31}\rho_{I} & + & a_{32}\gamma_{I} & + & a_{33}\beta_{I} \end{bmatrix}.$$

26 March 2020 109

Color Transformation

The inverse transform Φ^{-1} (if it exists) maps the discolored image, J, back into the correctly colored version, I, i.e., $I = \Phi^{-1}[J]$. If Φ is linear then it is represented by the inverse of matrix A:

$$\begin{split} A^{-1} = & \left(a_{11} a_{22} a_{33} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33} + \right. \\ & \left. a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31} \right)^{-1} \cdot \\ & \left[a_{22} a_{33} - a_{23} a_{32} - a_{13} a_{32} - a_{12} a_{33} - a_{12} a_{23} - a_{13} a_{22} \right. \\ & \left. a_{23} a_{31} - a_{21} a_{33} - a_{11} a_{33} - a_{13} a_{31} - a_{13} a_{21} - a_{11} a_{23} \right. \\ & \left. a_{21} a_{32} - a_{22} a_{31} - a_{12} a_{31} - a_{11} a_{32} - a_{11} a_{22} - a_{12} a_{21} \right]. \end{split}$$

26 March 2020

Assume we know n colors in the discolored image, J, that correspond to another set of n colors (that we also know) in the original image, I.

$$\begin{cases} \left[\rho_{J,k} \\ \gamma_{J,k} \\ \beta_{J,k} \right] \end{cases}^{n} \qquad \left[\rho_{J,k} \\ \gamma_{J,k} \\ \beta_{J,k} \right] \longleftrightarrow \left[\rho_{I,k} \\ \gamma_{I,k} \\ \beta_{I,k} \right] \qquad \left\{ \left[\rho_{I,k} \\ \gamma_{I,k} \\ \beta_{I,k} \right] \right\}_{k=1}^{n}$$
 known wrong colors known correct colors

26 March 2020 111

Color Correction

To remap the discolored image so that the result matches the original image in a linearly optimal way, we need to find the matrix, A, that minimizes

$$\varepsilon^{2} = \sum_{k=1}^{n} \begin{bmatrix} \rho_{I,k} \\ \gamma_{I,k} \\ \beta_{I,k} \end{bmatrix} - A^{-1} \begin{bmatrix} \rho_{J,k} \\ \gamma_{J,k} \\ \beta_{J,k} \end{bmatrix} \end{bmatrix}^{2}$$

To find the solution of this problem, let

$$Y = \begin{bmatrix} \begin{bmatrix} \rho_{I,1} \\ \gamma_{I,1} \\ \beta_{I,1} \end{bmatrix} \cdots \begin{bmatrix} \rho_{I,n} \\ \gamma_{I,n} \\ \beta_{I,n} \end{bmatrix} \quad \text{and} \quad X = \begin{bmatrix} \begin{bmatrix} \rho_{J,1} \\ \gamma_{J,1} \\ \beta_{J,1} \end{bmatrix} \cdots \begin{bmatrix} \rho_{J,n} \\ \gamma_{J,n} \\ \beta_{J,n} \end{bmatrix}.$$

Then X and Y are known $3 \times n$ matrices such that

$$Y \approx A^{-1}X$$
,

where A is the 3×3 matrix that we want to find.

26 March 2020 113

Color Correction

The linearly optimal solution is the least mean squared solution that is given by

$$B = A^{-1} = YX^{T} \left(XX^{T} \right)^{-1}$$

where X^T represents the transpose of matrix X.

Notes:

- 1. n, the number of color pairs, must be ≥ 3 ,
- 2. XX^T must be invertible, i.e., rank $(XX^T) = 3$,
- 3. If n=3, then $X^T(XX^T)^{-1} = X^{-1}$.

The linearly optimal soluti solution that is given by

$$B = A^{-1} = YX^{T} \left(XX^{T} \right)^{-1}$$

where X^T represe output colors (wanted): of matrix X.

Notes:

- 1. n, $[\beta_{i,1}]$ or pairs, must be ≥ 3 ,
- 2. XX^T must be invertible, *i.e.*, rank(XX^T) = 3,
- 3. If n=3, then $X^{T}(XX^{T})^{-1} = X^{-1}$.

26 March 2020 115

Color Correction

The linearly optimal soluti solution that is given by

$$B = A^{-1} = YX^{T} \left(XX^{T}\right)^{-1}$$

where X^T represe output colors (wanted): of matrix X.

Notes:

- n, or pairs, must be ≥ 3 ,
- 2. XX^T must be invertible, i.e., rank $(XX^T) = 3$,
- 3. If n=3, then $X^T(XX^T)^{-1} = X^{-1}$.

Then the image is color corrected by performing

$$I(r,c) = BJ(r,c)$$
, for all $(r,c) \in \text{supp}(J)$.

In Matlab this is easily performed by

```
I = reshape(((B*(reshape(J,R*C,3))')'),R,C,3);
```

where $B=A^{-1}$ is computed directly through the LMS formula on the previous page, and R & C are the number of rows and columns in the image.

26 March 2020 117

Linear Color Correction

NASA Summer Faculty Fellows at Ellington Air Force Base, Houston, TX, July 2002. Airplane is a T-38.

Original Image

"Aged" Image

Color Mapping 3

Original Image

"Aged" Image

26 March 2020 121

Color Mapping 4

Original Image

"Aged" Image

Color Transformations

The aging process was a transformation, Φ , that mapped:

$$\begin{bmatrix} 17 \\ 122 \\ 114 \end{bmatrix} = \Phi \begin{bmatrix} 17 \\ 121 \\ 171 \end{bmatrix} \qquad \begin{bmatrix} 222 \\ 222 \\ 185 \end{bmatrix} = \Phi \begin{bmatrix} 222 \\ 222 \\ 218 \end{bmatrix} \qquad \begin{bmatrix} 240 \\ 171 \\ 103 \end{bmatrix} = \Phi \begin{bmatrix} 240 \\ 171 \\ 160 \end{bmatrix} \qquad \begin{bmatrix} 236 \\ 227 \\ 106 \end{bmatrix} = \Phi \begin{bmatrix} 240 \\ 230 \\ 166 \end{bmatrix}$$

26 March 2020 123

Color Transformations

To undo the process we need to find, Φ^{-1} , that maps:

$$\begin{bmatrix} 17\\121\\171 \end{bmatrix} = \Phi^{-1} \left\{ \begin{bmatrix} 17\\122\\114 \end{bmatrix} \right\} \qquad \begin{bmatrix} 222\\222\\218 \end{bmatrix} = \Phi^{-1} \left\{ \begin{bmatrix} 222\\222\\185 \end{bmatrix} \right\} \qquad \begin{bmatrix} 240\\171\\160 \end{bmatrix} = \Phi^{-1} \left\{ \begin{bmatrix} 240\\171\\103 \end{bmatrix} \right\} \qquad \begin{bmatrix} 240\\230\\166 \end{bmatrix} = \Phi^{-1} \left\{ \begin{bmatrix} 236\\227\\106 \end{bmatrix} \right\}$$

 $X = \begin{bmatrix} 222 & 17 & 236 \\ 222 & 122 & 227 \\ 185 & 114 & 106 \end{bmatrix}$

 $Y = \begin{bmatrix} 222 & 17 & 240 \\ 222 & 121 & 230 \\ 218 & 171 & 166 \end{bmatrix}$

26 March 2020 127

Another Correction Using 3 Mappings

 $B = A^{-1} = YX^{-1}$

corrected

original

 $X = \begin{bmatrix} 222 & 17 & 236 \\ 222 & 122 & 227 \\ 185 & 114 & 106 \end{bmatrix}$

 $Y = \begin{bmatrix} 222 & 17 & 240 \\ 222 & 121 & 230 \\ 218 & 171 & 166 \end{bmatrix}$

Correction Using All 4 Mappings

 $X = \begin{bmatrix} 222 & 17 & 236 & 240 \\ 222 & 122 & 227 & 171 \\ 185 & 114 & 106 & 103 \end{bmatrix}$

 $Y = \begin{bmatrix} 222 & 17 & 240 & 240 \\ 222 & 121 & 230 & 171 \\ 218 & 171 & 166 & 160 \end{bmatrix}$

26 March 2020 129

Correction Using All 4 Mappings

 $B = A^{-1} = YX^{T} (XX^{T})^{-1}$ riginal corrected

 $X = \begin{bmatrix} 222 & 17 & 236 & 240 \\ 222 & 122 & 227 & 171 \\ 185 & 114 & 106 & 103 \end{bmatrix}$

 $Y = \begin{bmatrix} 222 & 17 & 240 & 240 \\ 222 & 121 & 230 & 171 \\ 218 & 171 & 166 & 160 \end{bmatrix}$

Random Sampling of Color Values

```
>> rr = round(R*rand([1 n]));
>> rc = round(C*rand([1 n]));
>> idx = [rr;rc];
>> Y(:,1) = diag(I(rr,rc,1));
>> Y(:,2) = diag(I(rr,rc,2));
>> Y(:,3) = diag(I(rr,rc,3));
>> X(:,1) = diag(J(rr,rc,1));
>> X(:,2) = diag(J(rr,rc,2));
>> X(:,3) = diag(J(rr,rc,3));
```

R = number of rows in image C = number of columns in image n = number of pixels to select

rand([1 n]): 1 × n matrix of random numbers between 0 and 1.

diag(I(rr,rc,1)): vector from main diagonal of matrix I(rr,rc,1).

26 March 2020 131

Correction Using 128 Mappings

$$B = A^{-1} = YX^{T} (XX^{T})^{-1}$$

233

229

 $= \begin{bmatrix} 111 & 235 \\ 103 & \cdots & 233 \\ 22 & 210 \end{bmatrix} \qquad Y = \begin{bmatrix} 111 \\ 102 \\ 71 \end{bmatrix}$

26 March 2020

Correction Using 4 Mappings

original
$$B = A^{-1} = YX^T (XX^T)^{-1}$$
 corrected

 $X = \begin{bmatrix} 222 & 17 & 236 & 240 \\ 222 & 122 & 227 & 171 \\ 185 & 114 & 106 & 103 \end{bmatrix}$

 $Y = \begin{bmatrix} 222 & 17 & 240 & 240 \\ 222 & 121 & 230 & 171 \\ 218 & 171 & 166 & 160 \end{bmatrix}$

26 March 2020 135

Linear Color Transformation Program

```
function J = LinTrans(I,A)

[R C B] = size(I);

I = double(I);

J = reshape(((A*(reshape(I,R*C,3))')'),R,C,3);

J = uint8(J);

return;
```