IF222, Introduction aux jeux Devoir maison - partie 1, 16 mars 2021.

Un jeu \mathcal{G} consiste d'une arène $\mathcal{A} = (V_0 \cup V_1, E)$ et d'une condition de victoire Win (pour le joueur P_0). On note par W_0 , W_1 la région gagnante de P_0 et P_1 , respectivement, dans le jeu \mathcal{G} . Donc W_0 est l'ensemble des sommets $v \in V$ pour tels que P_0 a une stratégie gagnante à partir de v, et pareil pour W_1 .

Question 1

Soit \mathcal{G} un jeu avec arène $\mathcal{A} = (V_0 \cup V_1, E)$ et condition de victoire Win. Soit $X \subseteq V$ un ensemble de sommets, $A = Attr_0(X)$ l'attracteur du joueur P_0 vers X, et $Y = V \setminus A$. Justifiez:

Si un sommet v est gagnant pour P_1 sur l'arène $\mathcal{A}' = (V_0 \cap Y, V_1 \cap Y_1)$ $Y, E \cap (Y \times Y)$ pour la condition $\overline{\text{Win}}$, alors v est gagnant pour P_1 sur l'arène \mathcal{A} pour Win.

Question 2

On considère un jeu avec arène $\mathcal{A} = (V_0 \cup V_1, E)$ et condition de victoire $\operatorname{Reach}_2(F)$ décrite par un ensemble $F \subseteq V$ comme il suit :

Le joueur P_0 gagne une partie $\pi = v_0, v_1, \ldots$ si F est visité au moins 2 fois : donc s'il existe i < j tels que $v_i \in F$ et $v_j \in F$.

On veut calculer les régions gagnantes W_0, W_1 pour le jeu Reach₂(F).

1. On calcule d'abord une variante de l'attracteur, appellé attracteur $strict \operatorname{Attr}_0^+(F)$. On calcule $\operatorname{Attr}_0^+(F) = \bigcup_{i \geq 0} X_i$ par :

$$X_{0} = \{v \in V_{0} : \exists w \in F, (v, w) \in E\} \cup \{v \in V_{1} : \forall w. (v, w) \in E \Rightarrow w \in F\}$$

$$X_{n} = X_{n-1} \cup \{v \in V_{0} : \exists w \in X_{n-1}, (v, w) \in E\}$$

$$\cup \{v \in V_{1} : \forall w. (v, w) \in E \Rightarrow w \in X_{n-1}\}$$

Justifiez que $v \in \operatorname{Attr}_0^+(F)$ si et seulement si P_0 a une stratégie pour visiter F en 1 ou plus coups.

2. Justifiez que la région gagnante de P_0 dans le jeu Reach₂(F) est l'ensemble

$$\operatorname{Attr}_0(F \cap \operatorname{Attr}_0^+(F))$$

Attention, il faut justifier que $\operatorname{Attr}_0(F \cap \operatorname{Attr}_0^+(F)) \subseteq W_0$ et que $V \setminus$ $\operatorname{Attr}_0(F \cap \operatorname{Attr}_0^+(F)) \subseteq W_1$. Dans les deux cas, il faut indiquer les stratégies gagnantes σ_0, σ_1 des deux joueurs.

l'accessible le joir Reachs