

UNIVERSITÀ DEGLI STUDI DI CAGLIARI

FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA

Esistenza di funzioni continue non differenziabili in alcun punto

Relatore Prof. Andrea Loi Tesi di laurea di Daniela Lampis

Indice

1	Richiami		3
		Spazi topologici	
	1.2	Spazi metrici	
	1.3	Spazi metrici completi	6
2	Spazi di funzioni		10
	2.1	Spazi di funzioni	10
	2.2	Lo spazio di funzioni $C[0,1]$	12
3	Teo	Lo spazio di funzioni $C[0,1]$	
4	4 Funzioni continue non differenziabili in alcun punto		16
Bi	Bibliografia		

Introduzione

Lo spazio C[0,1] di tutte le funzioni continue da I=[0,1] in \mathbb{R} su cui definiamo la norma: $||f|| = \sup\{|f(x)| : x \in I\}$ è uno dei più importanti spazi di funzioni dell'analisi. Sappiamo inoltre che ogni funzione derivabile in un punto x è continua in quel punto. In questa tesi, invece, ci proponiamo di dimostrare l'esistenza di una funzione continua $f: I \to \mathbb{R}$ che non è differenziabile in alcun punto. La dimostrazione di questo teorema avviene per passi e si utilizzano principalmente: l'insieme $A_m \subset C[0,1]$ delle funzioni f per le quali vale che: $\exists x_0 \in [0,1-\frac{1}{m}]$ tale che $\left|\frac{f(x_0+h)-f(x_0)}{h}\right| \leq m, \forall h \in (0,\frac{1}{m})$, il fatto che ogni funzione $f \in C[0,1]$ che sia differenziabile in un punto appartiene a qualche A_m per un m abbastanza grande e il Teorema di Baire sugli spazi metrici completi.

La tesi è strutturata nel seguente modo. Nel primo capitolo vengono richiamati i concetti di base degli spazi topologici e metrici, in particolare la nozione di spazio metrico completo. Nel secondo capitolo si introducono gli spazi di funzioni e in particolare lo spazio di funzioni C[0,1]. Il terzo capitolo è dedicato all'enunciato e alla dimostrazione del Teorema di Baire. Infine nel quarto capitolo mostreremo l'esistenza di funzioni continue non differenziabili in alcun punto.

Richiami

1.1 Spazi topologici

Definizione 1 Una topololgia su un insieme X è una famiglia \mathcal{T} di sottoinsiemi di X che soddisfano le seguenti proprietà:

- i) $\emptyset \in \mathcal{T}, X \in \mathcal{T};$
- ii) l'intersezione finita di elementi di \mathcal{T} appartiene a \mathcal{T} ;
- iii) l'unione di una qualsiasi famiglia di elementi di \mathcal{T} appartiene a \mathcal{T} .

L'insieme X con la suddetta famiglia \mathcal{T} viene detto spazio topologico. Gli elementi $U \in \mathcal{T}$ sono detti aperti di X.

Definizione 2 Sia X uno spazio topologico. Un punto $p \in X$ è detto punto di accumulazione di un sottoinsieme A di X se e solo se ogni aperto G contenente p contiene un punto di A diverso da p cioè

se G è un aperto e
$$p \in G$$
, allora $(G \backslash \{p\}) \cap A \neq \emptyset$

Definizione 3 Sia X uno spazio topologico. Un sottoinsieme A di X è un insieme chiuso se e solo se il suo complementare A^C è aperto.

Segue che l'intersezione qualunque di chiusi è un chiuso e questo giustifica la seguente definizione:

Definizione 4 Sia A un sottoinsieme di uno spazio topologico X. La *chiusura* di A, indicata da \overline{A} , è l'intersezione di tutti i soprainsiemi chiusi di A. In altre parole, se $\{F_i: i \in I\}$ è la classe di tutti i sottoinsiemi chiusi di X contenenti A,

allora

$$\overline{A} = \cap_i F_i$$

Definizione 5 Sia (X, \mathcal{T}) uno spazio topologico. Una classe \mathcal{B} di sottoinsiemi aperti di X, ossia $\mathcal{B} \subset \mathcal{T}$, è una base per la topologia \mathcal{T} se e solo se

i) ogni insieme aperto $G \in \mathcal{T}$ è l'unione di elementi di \mathcal{B} .

Equivalentemente, $\mathcal{B} \subset \mathcal{T}$ è una base per \mathcal{T} se e solo se

ii) per ogni punto p appartenente a un insieme aperto G, esiste un $B \in \mathcal{B}$ con $p \in B \subset G$.

Definizione 6 Un ricoprimento di un sottoinsieme S di un insieme X è una famiglia di sottoinsiemi $\{U_j \mid j \in J\}$ di X tale che $S \subseteq \bigcup_{j \in J} U_j$. Il ricoprimento è detto finito se l'insieme di indici J è finito.

Definizione 7 Siano $\{U_j \mid j \in J\}$ e $\{V_k \mid k \in K\}$ due ricoprimenti di un sottoinsieme S di X. Diremo che $\{U_j \mid j \in J\}$ è un sottoricoprimento di $\{V_k \mid k \in K\}$ se per ogni $j \in J$ esiste $k \in K$ tale che $U_j = V_k$.

Definizione 8 Siano X uno spazio topologico e S un sottoinsieme di X; diremo che un ricoprimento $\{U_j \mid j \in J\}$ di S è aperto se U_j è un sottoinsieme aperto di X per ogni $j \in J$.

Definizione 9 Un sottoinsieme S di uno spazio topologico X si dice compatto se ogni ricoprimento aperto di S ammette un sottoricoprimento finito.

N.B. Per il teorema di Heine-Borel, ogni in tervallo chiuso e limitato [a,b] sulla retta reale è compatto. In particolare I = [0, 1] è compatto.

Definizione 10 Siano \mathcal{T} e \mathcal{T}^* due topologie. Una funzione f da X in Y è continua rispettivamente a \mathcal{T} e \mathcal{T}^* , se e solo se l'immagine inversa di ogni sottoinsieme aperto di Y è un sottoinsieme aperto di X, vale a dire, se e solo se

$$H \in \mathcal{T}^*$$
 implies $f^{-1}(H) \in \mathcal{T}$

In particolare abbiamo che:

Proposizione 11 Una funzione $f: X \to Y$ è continua se e solo se l'immagine inversa di ogni elemento di una base \mathcal{B} per Y è un sottoinsieme aperto di X.

Dimostrazione.

Sia H un sottoinsieme aperto di Y; allora $H = \bigcup_i B_i$, dove B_i sono elementi della base \mathcal{B} . Ma

$$f^{-1}(H) = f^{-1}(\cup_i B_i) = \cup_i f^{-1}(B_i)$$

e ogni $f^{-1}(B_i)$ è aperto per ipotesi; quindi $f^{-1}(H)$ è l'unione di insiemi aperti ed è quindi un aperto. Quindi f è continua.

1.2 Spazi metrici

Definizione 12 Sia X un insieme non vuoto. Una funzione a valori reali d definita su $X \times X$, cioè sulle coppie ordinate costituite da elementi di X, è detta metrica o $funzione \ distanza$ su X se e solo se, presi comunque $a,b,c\in X$, soddisfa i seguenti assiomi:

- i) $d(a,b) \ge 0$ e d(a,a) = 0 (positività).
- ii) d(a, b) = d(b, a) (Simmetria).
- iii) $d(a,c) \leq d(a,b) + d(b,c)$ (Disuguaglianza triangolare).

Uno spazio metrico è quindi una coppia (X, d).

Definizione 13 Supponiamo che d sia una metrica su un insieme X. La distanza tra un punto $p \in X$ e un sottoinsieme non vuoto A di X è denotata e definita da

$$d(p,A) = \inf\{d(p,a) : a \in A\}$$

La distanza tra due sottoinsiemi non vuoti A e B di X è denotata e definita da

$$d(A, B) = \inf \{ d(a, b) : a \in A, b \in B \}$$

Il diametro di un sottoinsieme non vuoto A di X è denotato e definito da

$$d(A) = \sup\{d(a, a') : a, a' \in A\}$$

In particolare se il diametro di A è finito, cioè $d(A) < \infty$, allora A è limitato.

Definizione 14 Sia d una metrica su un insieme X. Per ogni punto $p \in X$ e ogni numero reale $\delta > 0$ denotiamo con $S(p, \delta)$ l'insieme dei punti che distano da p meno di δ

$$S(p, \delta) = \{x : d(p, x) < \delta\}$$

Diciamo che $S(p, \delta)$ è una sfera aperta di centro p e raggio δ .

Definizione 15 Ogni spazio metrico (X, d) è uno spazio topologico. Gli aperti sono le sfere aperte in X. La topologia indotta dalla metrica d verrà denotata da \mathcal{T}_d .

Definizione 16 Sia V uno spazio vettoriale lineare reale. Una funzione che assegna a ogni vettore $v \in V$ il numero reale ||v|| è detta norma su V se e solo de sono soddisfatti i seguenti assiomi per ogni $v, w \in V$ e per ogni $k \in \mathbb{R}$:

- i) $||v|| \ge 0$ e ||v|| = 0 se e solo se v = 0.
- ii) $||v + w|| \le ||v|| + ||w||$.
- iii) ||kv|| = |k|||v||.

Uno spazio lineare V dotato di una norma è detto spazio normato. Il numero reale ||v|| è detto norma del vettore v.

1.3 Spazi metrici completi

Definizione 17 Una *successione*, indicata mediante la notazione

$$\langle a_1, a_2, ... \rangle$$
 $\langle a_n : n \in \mathbb{N} \rangle$ $o \quad \langle a_n \rangle$

è una funzione avente come dominio $\mathbb{N}=\{1,2,3,...\}$ e come codominio uno spazio metrico, cioè una successione assegna un punto a_n a ogni intero positivo $n\in\mathbb{N}$. L'immagine a_n di $n\in\mathbb{N}$ è detta l'n-esimo termine della successione. Una successione $\langle s_n:n\in\mathbb{N}\rangle$ è detta limitata se l'insieme delle immagini $\{s_n:n\in\mathbb{N}\}$ è un insieme limitato.

Definizione 18 La successione $\langle a_1, a_2, ... \rangle$ di numeri reali converge a $b \in \mathbb{R}$, o equivalentemente il numero reale b è il limite della successione $\langle a_n : n \in \mathbb{N} \rangle$, fatto che si indica con

$$\lim_{n\to\infty} a_n = b$$

se per ogni $\varepsilon > 0$ esiste un intero positivo n_0 tale che

$$n > n_0$$
 implica $|a_n - b| < \varepsilon$

Definizione 19 Si consideri una successione $\langle a_1, a_2, a_3, ... \rangle$. Se $\langle i_n \rangle$ è una successione di interi positivi tali che $i_1 < i_2 < ...$, allora

$$\langle a_{i_1}, a_{i_2}, a_{i_3}, \ldots \rangle$$

è detta una sottosuccessione di $\langle a_n : n \in \mathbb{N} \rangle$.

Definizione 20 Sia X uno spazio metrico. Una successione $\langle a_1, a_2, ... \rangle$ in X è una successione di Cauchy se e solo se, per ogni $\varepsilon > 0$

$$\exists n_0 \in \mathbb{N}$$
 tale che $n, m > n_0 \Rightarrow d(a_n, a_m) < \varepsilon$

Definizione 21 Uno spazio metrico (X, d) è *completo* se ogni successione di Cauchy $\langle a_n \rangle$ in X converge ad un punto $p \in X$.

Definizione 22 Una successione di insiemi $A_1, A_2,$ è detta nidificata se $A_1 \supset A_2 \supset$

Proposizione 23 Sia $\langle a_1, a_2, ... \rangle$ una successione in uno spazio metrico X e sia

$$A_1 = \{a_1, a_2, ...\}, A_2 = \{a_2, a_3, ...\}, A_3 = \{a_3, a_4, ...\}, ...$$

Allora $\langle a_n \rangle$ è una successione di Cauchy se e solo se i diametri degli A_n tendono a zero, cioè $\lim_{n\to\infty} d(A_n) = 0$.

Dimostrazione.

Supponiamo che $\langle a_n \rangle$ sia una successione di Cauchy. Sia $\varepsilon > 0$. Allora

$$\exists n_0 \in \mathbb{N}$$
 tale che $n, m > n_0 \Rightarrow d(a_n, a_m) < \varepsilon$

Perciò, $n > n_0 \Rightarrow d(A_n) < \varepsilon$ e quindi $\lim_{n\to\infty} d(A_n) = 0$. D'altra parte, supponiamo $\lim_{n\to\infty} d(A_n) = 0$. Sia $\varepsilon > 0$. Allora

$$\exists n_0 \in \mathbb{N}$$
 tale che $d(A_{n_o+1}) < \varepsilon$

Quindi $n,m>n_0\Rightarrow a_n,a_m\in A_{n_0+1}\Rightarrow d(a_n,a_m)<\varepsilon$ e quindi $\langle a_n\rangle$ è una successione di Cauchy.

Teorema 24 I seguenti asserti sono equivalenti:

- i) X è uno spazio metrico completo.
- ii) Ogni successione nidificata di insiemi chiusi non vuoti il cui diametro tende a zero ha intersezione non vuota.

Dimostrazione.

$$i) \Rightarrow ii)$$
:

Siano $A_1 \supset A_2 \supset ...$ sottoinsiemi chiusi non vuoti di X tali che $\lim_{n\to\infty} d(A_n) = 0$ vogliamo dimostrare che $\cap_n A_n \neq \emptyset$. Dato che ogni A_i è non vuoto, possiamo scegliere una successione

$$\langle a_1, a_2, ... \rangle$$
 tale che $a_1 \in A_1, a_2 \in A_2, ...$

Vogliamo dimostrare che $\langle a_n \rangle$ è una successione di Cauchy. Sia $\varepsilon > 0$. Dato che $\lim_{n \to \infty} d(A_n) = 0$

$$\exists n_0 \in \mathbb{N}$$
 tale che $d(A_{n_0}) < \varepsilon$

Ma gli A_i sono nidificati; quindi

$$n, m > n_0 \Rightarrow A_n, A_m \subset A_{n_0} \Rightarrow d(a_n, a_m) < \varepsilon$$

Perciò $\langle a_n \rangle$ è di Cauchy.

Ora X è completo e quindi $\langle a_n \rangle$ converge, per esempio, a $p \in X$. Vogliamo dimostrare che $p \in \cap_n A_n$. Supponiamo il contrario, cioè

$$\exists k \in \mathbb{N}$$
 tale che $p \notin A_k$

Dato che A_k è un insieme chiuso, la distanza tra p e A_k non è zero, per esempio $d(p, A_k) = \delta > 0$. Allora A_k e la sfera aperta $S = S(p, \frac{1}{2}\delta)$ sono disgiunti. Quindi

$$n > k \Rightarrow a_n \in A_k \Rightarrow a_n \notin S(p, \frac{1}{2}\delta)$$

Ciò è impossibile dato che $a_n \to p$. In altre parole, $p \in \cap_n A_n$ e quindi $\cap_n A_n$ non è vuoto.

$$ii) \Rightarrow i$$

Sia $\langle a_1, a_2, ... \rangle$ una successione di Cauchy in X. Vogliamo dimostrare che $\langle a_n \rangle$ è convergente. Sia

$$A_1 = \{a_1, a_2, ...\}, A_2 = \{a_2, a_3, ...\}, ...$$

cioè $A_k = \{a_n : n \geq k\}$. Allora $A_1 \supset A_2 \supset \dots$ e, per la proposizione 23, $\lim_{n \to \infty} d(A_n) = 0$. Inoltre dato che $d(A) = d(\overline{A})$, dove \overline{A} è la chiusura di A, $\overline{A_1} \supset \overline{A_2} \supset \dots$ è una successione di insiemi chiusi non vuoti i cui diametri tendono a zero. Quindi per ipotesi, $\bigcap_n \overline{A_n} \neq \emptyset$; per esempio $p \in \bigcap_n \overline{A_n}$. Vogliamo dimostrare

che la successione di Cauchy $\langle a_n \rangle$ converge a p. Sia $\varepsilon > 0$. Dato che $\lim_{n \to \infty} d(\overline{A}) = 0$,

$$\exists n_0 \in \mathbb{N}$$
 tale che $d(\overline{A_{n_0}}) < \varepsilon$

e quindi $n > n_0 \Rightarrow a_n, p \in \overline{A_{n_0}} \Rightarrow d(a_n, p) < \varepsilon$ In altre parole, $\langle a_n \rangle$ converge a p.

Spazi di funzioni

2.1 Spazi di funzioni

Definizione 25 Siano X e Y insiemi qualsiasi, e sia $\mathcal{F}(X,Y)$ la collezione di tutte le funzioni da X a Y. Qualsiasi sottocollezione di $\mathcal{F}(X,Y)$ dotata di topologia \mathcal{T} è detta spazio di funzioni .

Definizione 26 Sia $\langle f_1, f_2, ... \rangle$ una successione di funzioni da un insieme qualsiasi X in uno spazio topologico Y. La successione $\langle f_n \rangle$ si dice che converge puntualmente a una funzione $g: X \to Y$ se, per ogni $x_0 \in X$,

$$\langle f_1(x_0), f_2(x_0), ... \rangle$$
 converge a $g(x_0)$, cioè $\lim_{n \to \infty} f_n(x_0) = g(x_0)$

In particolare se Y è uno spazio metrico, allora $\langle f_n \rangle$ converge puntualmente a g se e solo se, per ogni ε_0 e ogni $x_0 \in X$,

$$\exists n_0 = n_0(x_0, \varepsilon) \in \mathbb{N}$$
 tale che $n > n_0 \Rightarrow d(f_n(x_0), g(x_0)) < \varepsilon$

Definizione 27 Sia $\langle f_1, f_2, ... \rangle$ una successione di funzioni da un insieme qualsiasi X in uno spazio metrico (Y, d). Si dice che $\langle f_n \rangle$ converge uniformemente a una funzione $g: X \to Y$ se, per ogni $\varepsilon > 0$,

$$\exists n_0 = n_0(\varepsilon) \in \mathbb{N}$$
 tale che $n > n_0 \Rightarrow d(f_n(x), g(x)) < \varepsilon, \forall x \in X$

Proposizione 28 Sia $\langle f_1, f_2, ... \rangle$ una successione di funzioni continue da uno spazio topologico X in uno spazio metrico Y. Se $\langle f_n \rangle$ converge uniformemente a $g: X \to Y$, allora g è continua.

Dimostrazione.

Sia $x_0 \in X$ e sia $\varepsilon > 0$. Allora g è continua in x_0 se esiste un insieme aperto $G \subset X$ contenente x_0 tale che

$$x \in G \Rightarrow d(g(x), f(x)) < \varepsilon$$

Ora $\langle f_n \rangle$ converge uniformemente a g e quindi

$$\exists m \in \mathbb{N}$$
 tale che $d(f_m(x), g(x)) < \frac{1}{3}\varepsilon, \forall x \in X$

Quindi per la disuguaglianza triangolare,

$$d(g(x), g(x_0)) \le d(g(x), f_m(x)) + d(f_m(x), f_m(x_0)) + d(f_m(x_0), g(x_0))$$

$$< d(f_m(x), f_m(x_0)) + \frac{2}{3}\varepsilon$$

Dato che f_m è continua, esiste un insieme aperto $G \subset X$ contenente x_0 tale che

$$x \in G \Rightarrow d(f_m(x), f_m(x_0)) < \frac{1}{3}\varepsilon$$
 e quindi $x \in G \Rightarrow d(g(x), g(x_0)) < \varepsilon$

Perciò g è continua.

Supponiamo che $\mathcal{B}(X,Y)$ denoti la collezione di tutte le funzioni limitate da un insieme qualsiasi X in uno spazio metrico (Y,d) e sia e la metrica su $\mathcal{B}(X,Y)$ definita da

$$e(f,g) = \sup\{d(f(x),g(x)) : x \in X\}$$

Questa metrica ha la seguente proprietà:

Teorema 29 Sia $\langle f_1, f_2, ... \rangle$ una successione di funzioni in $\mathcal{B}(X, Y)$. Allora i seguenti asserti sono equivalenti:

- i) $\langle f_n \rangle$ converge a $g \in \mathcal{B}(X,Y)$ rispetto alla metrica e
- ii) $\langle f_n \rangle$ converge uniformemente a g.

Dimostrazione.

i) \Rightarrow ii): Sia $\varepsilon > 0$. Dato che $\langle f_n \rangle$ converge a g rispetto a e,

$$\exists n_0 \in \mathbb{N}$$
 tale che $n > n_0 \Rightarrow e(f_n, g) < \varepsilon$

Perciò,

$$n > n_0 \Rightarrow d(f_n(x), g(x)) \le \sup\{d(f_n(x), g(x)) : x \in X\} = e(f_n, g) < \varepsilon, \forall x \in X\}$$

cioè $\langle f_n \rangle$ converge uniformemente a g.

ii) \Rightarrow i): Sia $\varepsilon > 0$. Dato che $\langle f_n \rangle$ converge uniformemente a g,

$$\exists n_0 \in \mathbb{N}$$
 tale che $n > n_0 \Rightarrow d(f_n(x), g(x)) < \frac{\varepsilon}{2}, \forall x \in X$

Perciò, $n > n_0 \Rightarrow \sup\{d(f_n(x), g(x)) : x \in X\} \leq \frac{\varepsilon}{2} < \varepsilon$ cioè, $n > n_0$ implica $e(f_n, g) < \varepsilon$, e quindi $\langle f_n \rangle$ converge a g rispetto a e.

Per il teorema 29 , la topologia su $\mathcal{B}(X,Y)$ indotta dalla metrica precedente è detta topologia della convergenza uniforme .

2.2 Lo spazio di funzioni C[0,1]

Consideriamo lo spazio vettoriale C[0,1] di tutte le funzioni continue da I = [0,1] in \mathbb{R} e definiamo in questo spazio una norma come segue:

$$||f|| = \sup\{|f(x)| : x \in X\}$$

Dato che I = [0,1] è compatto, ogni $f \in C[0,1]$ è uniformemente continua, quindi vale la seguente:

Proposizione 30 Sia $f:[0,1] \to \mathbb{R}$ una funzione continua. Allora per ogni $\varepsilon > 0$

$$\exists \delta = \delta(x) > 0$$
 tale che $|x_0 - x_1| < \delta \Rightarrow |f(x_0) - f(x_1)| < \varepsilon$

Dimostrazione.

Sia $\varepsilon > 0$. Dato che f è continua, per ogni $p \in I$,

$$\exists \delta_p > 0$$
 tale che $|x - p| < \delta_p \Rightarrow |f(x) - f(p)| < \frac{1}{2}\varepsilon$ (2.1)

Per ogni $p \in I$, sia $S_p = I \cap (p - \frac{1}{2}\delta_p, p + \frac{1}{2}\delta_p)$. Allora $\{S_p : p \in I\}$ è un ricoprimento aperto di I e dato che I è compatto, anche un numero finito di S_p ricopre I. Per esempio $I = S_{p_1} \cup ... \cup S_{p_m}$. Sia

$$\delta = \frac{1}{2}min(\delta_{p_1}, ... \delta_{p_m})$$

Supponiamo $|x-y| < \delta$. Allora $x \in S_{p_k}$ per qualche k, e quindi $|x-p_k| < \frac{1}{2}\delta_{p_k} < \delta_{p_k}$ e

$$|y - p_k| \le |y - x| + |x - p_k| < \delta + \frac{1}{2}\delta_{p_k} \le \frac{1}{2}\delta_{p_k} + \frac{1}{2}\delta_{p_k} = \delta_{p_k}$$

Quindi per la (2.1), $|f(x) - f(p_k)| < \frac{1}{2}\varepsilon$ e $|f(y) - f(p_k)| < \frac{1}{2}\varepsilon$ Per la disuguaglianza triangolare si ha allora

$$|f(x) - f(y)| \le |f(x) - f(p_k)| + |f(p_k) - f(y)| < \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon$$

Ecco una conseguenza della Proposizione 30:

Teorema 31 C[0,1] è uno spazio vettoriale normato completo.

Dimostrazione.

Sia $\langle f_1, f_2, ... \rangle$ una successione di Cauchy in C[0,1]. Allora per ogni $x_0 \in I$, $\langle f_n(x_0) \rangle$ è una successione di Cauchy in \mathbb{R} , infatti: sia $x_0 \in I$ e sia $\varepsilon > 0$, dato che $\langle f_n \rangle$ è di Cauchy, $\exists n_0 \in \mathbb{N}$ tale che

$$m, n > n_0 \Rightarrow ||f_n - f_m|| = \sup\{|f_n(x) - f_m(x)| : x \in I\} < \varepsilon$$

 $\Rightarrow |f_n(x_0) - f_m(x_0)| < \varepsilon.$

Dato che \mathbb{R} è completo $\langle f_n(x_0) \rangle$ è convergente. Definiamo $g: I \to \mathbb{R}$ ponendo $g(x) = \lim_{n \to \infty} f_n(x)$. Allora $\langle f_n \rangle$ converge uniformemente a g. Ma, per la Proposizione 28, g è continua, cioè $g \in C[0,1]$; quindi C[0,1] è completo.

Teorema di Baire

Definizione 32 Un sottoinsieme A di uno spazio topologico X è denso in X se e solo se $\overline{A} = X$.

Definizione 33 Sia A un sottoinsieme di uno spazio topologico X. Un punto $p \in A$ è detto un *punto interno* di A se p appartiene a un insieme aperto G contenuto in A:

$$p \in G \subset A$$
 dove G è aperto

L'insieme dei punti interni di A, denotato da int(A), è detto interno di A.

Definizione 34 Un sottoinsieme A di uno spazio topologico X è detto ovunque non denso in X se l'interno della chiusura di A è vuoto, cioè $\operatorname{int}(\overline{A}) = \emptyset$.

Definizione 35 Uno spazio topologico X è detto di $prima \ categoria$ se X è l'unione finita o numerabile di sottoinsiemi di X ovunque non densi. Altrimenti X è detto di $seconda\ categoria$.

Lemma 36 Sia N un sottoinsieme ovunque non denso di X, allora $\overline{N^c}$ è denso in X.

Dimostrazione: Supponiamo che $\overline{N^c}$ non sia denso in X,cioè $\exists p \in X$ e un insieme aperto Gtali che

$$p \in G$$
 e $G \cap \overline{N^c} = \emptyset$

Allora $p \in G \subset \overline{N}$ e quindi $p \in \operatorname{int}(\overline{N})$. Ma ciò è impossibile dato che N è ovunque non denso in X, cioè $\operatorname{int}(N) = \emptyset$. Perciò N^c è denso in X.

Lemma 37 Sia G un sottoinsieme di uno spazio metrico X e sia N ovunque non denso in X, allora esiste un $p \in X$ e un $\delta > 0$ tali che $S(p, \delta) \subset G$ e $S(p, \delta) \cap N = \emptyset$.

Dimostrazione: Sia $H = G \cap \overline{N^c}$. Allora $H \subset G$ e $H \cap N = \emptyset$. Inoltre H non è vuoto dato che G è aperto e $\overline{N^c}$ è denso in X; per esempio, $p \in H$. Ma H è aperto dato che G e $\overline{N^c}$ sono aperti; quindi $\exists \delta > 0$ tale che $S(p, \delta) \subset G$ e $S(p, \delta) \cap N = \emptyset$.

Teorema di Baire 38 Ogni spazio metrico completo X è di seconda categoria.

Dimostrazione: Sia $m \subset X$ e sia M di prima categoria. Vogliamo dimostrare che $M \neq X$, cioè che $\exists p \in X$ tale che $p \notin M$. Dato che M è di prima categoria, $M = N_1 \cup N_2 \cup ...$ dove ogni N_i è ovunque non denso in X.

Dato che N_1 è ovunque non denso in X, $\exists a_1 \in X \in \delta_1 > 0$ tali che $S(a_1, \delta_1) \cap N_1 = \emptyset$. Sia $\varepsilon_1 = \delta_1/2$. Allora

$$\overline{S(a_1,\varepsilon_1)} \cap N_1 = \emptyset$$

Ora $S(a_1, \varepsilon_1)$ è aperto e N_2 è ovunque non denso in X, quindi

$$\exists a_2 \in X$$
 e $\delta_2 > 0$ tali che

$$S(a_2, \delta_2) \subset S(a_1, \delta_1) \subset \overline{S(a_1, \varepsilon_1)}$$
 e $S(a_2, \delta_2) \cap N_2 = \emptyset$

Sia $\varepsilon_2 = \delta_2/2 \leqslant \varepsilon_1/2 = \delta_1/4$. Allora

$$\overline{S(a_2, \varepsilon_2)} \subset \overline{S(a_1, \varepsilon_1)}$$
 e $\overline{S(a_2, \varepsilon_2)} \cap N_2 = \emptyset$

Continuando in questo modo otteniamo una successione nidificata di insiemi chiusi

$$\overline{S(a_1, \varepsilon_1)} \supset \overline{S(a_2, \varepsilon_2)} \supset \overline{S(a_3, \varepsilon_3)} \supset \dots$$

tale che, per ogni $n \in N$, $\overline{S(a_n, \varepsilon_n)} \cap N_n = \emptyset$ e $\varepsilon_n \leqslant \delta_1/2^n$ Quindi, $\lim_{n \to \infty} \varepsilon_n \leqslant \lim_{n \to \infty} \delta_1/2^n = 0$ per cui

$$\exists p \in X$$
 tale che $p \in \cap_{n=1}^{\infty} S(a_n, \varepsilon_n)$

Inoltre, per ogni $n \in N$, $p \notin N_n$ e quindi $p \notin M$.

Funzioni continue non differenziabili in alcun punto

Teorema 39 Esiste una funzione continua $f:[0,1]\to\mathbb{R}$ che non è differenziabile in alcun punto.

Dimostrazione.

Passo1. Sia m un intero positivo qualsiasi e sia $A_m \subset C[0,1]$ l'insieme costituito da quelle funzioni f per le quali vale che

$$\exists x_0 \in [0, 1 - \frac{1}{m}]$$
 tale che $\left| \frac{f(x_0 + h) - f(x_0)}{h} \right| \le m, \forall h \in (0, \frac{1}{m})$

Allora A_m è un sottoinsieme chiuso di C[0,1].

Sia $g \in \overline{A_m}$. Vogliamo dimostrare che $g \in A_m$, cioè $\overline{A_m} = A_m$. Dato che $g \in \overline{A_m}$ esiste una successione $\langle f_1, f_2, ... \rangle$ in A_m che converge a g. Ora per ogni f_i , esiste un punto x_i tale che

$$x_i \in [0, 1 - \frac{1}{m}]$$
 e $\left| \frac{f_i(x_i + h) - f_i(x_i)}{h} \right| \le m, \forall h \in (0, \frac{1}{m})$ (4.1)

Ma $\langle x_n \rangle$ è una successione in un insieme compatto $[0,1-\frac{1}{m}]$ e quindi ha una sottosuccessione $\langle x_{i_n} \rangle$ che converge per esempio a $x_0 \in [0,1-\frac{1}{m}]$. Ora $f_n \to g$ implica $f_{i_n} \to g$ e quindi passando al limite nella (4.1), si ottiene

$$\left| \frac{g(x_0 + h) - g(x_0)}{h} \right| \le m, \forall h \in (0, \frac{1}{m})$$

Quindi $g \in A_m$ e A_m è chiuso.

Passo2. Le spezzate sono dense in C[0,1].

f è uniformemente continua su [0,1] e quindi

$$\exists n_0 \in \mathbb{N}$$
 tale che $|a-b| \le \frac{1}{n_0} \Rightarrow |f(a) - f(b)| < \frac{\varepsilon}{5}$ (4.2)

Si consideri il seguente sottoinsieme di $I \times \mathbb{R}$:

$$A = \{\langle x, y \rangle : x = \frac{i}{n_0}, y = \frac{k\varepsilon}{5} \quad \text{dove} \quad i = 0, ... n_0; k \in \mathbf{Z} \}$$

Si determini $p_i = \langle x_i, y_i \rangle \in A$ in modo che $y_i \leq f(x_i) < y_i + \frac{\varepsilon}{5}$. Allora $|f(x_i) - g(x_i)| = |f(x_i) - y_i| < \frac{\varepsilon}{5}$ e per la (4.2), $|f(x_i) - f(x_{i+1})| < \frac{\varepsilon}{5}$. Si osservi che

$$|g(x_{i}) - g(x_{i+1})| \le |g(x_{i}) - f(x_{i})| + |f(x_{i}) - f(x_{i+1})| + |f(x_{i+1}) - g(x_{i+1})| < \frac{\varepsilon}{5} + \frac{\varepsilon}{5} + \frac{\varepsilon}{5} = \frac{3\varepsilon}{5}$$

Dato che g è lineare tra x_i e x_{i+1} ,

$$x_i \le z \le x_{i+1} \Rightarrow |g(x_i) - g(z)| \le |g(x_i) - g(x_{i+1})| < \frac{3\varepsilon}{5}$$

Ora per ogni punto $z \in I$, $\exists x_k$ tale che $x_k \leq z \leq x_{k+1}$. Quindi

$$|f(z) - g(z)|$$

$$\leq |f(z) - f(x_k)| + |f(x_k) - g(x_k)| + |g(x_k) - g(z)|$$

$$< \frac{\varepsilon}{5} + \frac{\varepsilon}{5} + \frac{3\varepsilon}{5} = \varepsilon$$

Ma z era un punto qualsiasi in I; quindi $||f - g|| < \varepsilon$.

Passo3. A_m è ovunque non denso in C[0,1].

 A_m è ovunque non denso in C[0,1] se e solo se $int(\overline{A_m}) = int(A_m) = \emptyset$. Sia $S = S(f, \delta)$ una sfera aperta qualsiasi in C[0,1]. Vogliamo dimostrare che S contiene un punto che non appertiene ad A_m e quindi $int(\overline{A_m}) = \emptyset$. Per il Passo 2, esiste una spezzata $p \in C[0,1]$ tale che $||f-p|| < \frac{1}{2}\delta$. Sia g una funzione dentellata con grandezza minore di $\frac{1}{2}\delta$ e pendenza abbastanza grande. Allora la funzione h = p + g appartiene a C[0,1] ma non appartiene ad A_m . Inoltre

$$||f - h|| \le ||f - p|| + ||g|| < \frac{1}{2}\delta + \frac{1}{2}\delta = \delta$$

Quindi $h \in S$.

Passo4. $C[0,1] \neq \bigcup_{m=1}^{\infty} A_m$.

Dato che A_m è ovunque non denso in C[0,1], $B = \bigcup_{m=1}^{\infty} A_m$ è di prima categoria. Ma per il teorema di Baire, C[0,1], uno spazio metrico completo, è di seconda categoria. Quindi $C[0,1] \neq B$.

Passo5. Esiste una funzione continua $f:[0,1] \to \mathbb{R}$ che è ovunque non differenziabile.

Supponiamo che $f \in C[0,1]$ abbia una derivata, per esempio, in x_0 e supponiamo che $|f'(x_0)| = t$. Allora

$$\exists \varepsilon > 0$$
 tale che $\left| \frac{f(x_0 + h) - f(x_0)}{h} \right| \le t + 1, \forall h \in (-\varepsilon, \varepsilon)$

Scegliamo ora $m_0 \in \mathbb{N}$ in modo che $t+1 \leq m_0$ e $\frac{1}{m_0} < \varepsilon$. Allora $f \in A_{m_0}$. Perciò $\bigcup_{m=1}^{\infty} A_m$ contiene tutte le funzioni che sono differenziabili in qualche punto di I. Ma $C[0,1] \neq \bigcup_{m=1}^{\infty} A_m$ e quindi esiste una funzione in C[0,1] che è ovunque non differenziabile.

Bibliografia

 $[\operatorname{Lip}]$ Lipschutz Seymour. Topologia. Collana Schaum 1979.

 $[{\rm Loi}] \ {\rm Loi} \ {\rm Andrea}. \ {\it Appunti \ di \ topologia \ generale}.$