

SEQUENCE LISTING

<110> Hatteboer, Guus
Verhulst, Karine Cornelia
Schouten, Govert Johan
Uytdehaag, Alphonsus Gerardus Cornelis Maria
Bout, Abraham

<120> RECOMBINANT PROTEIN PRODUCTION IN A HUMAN CELL

<130> 2578-4038.3US

<140> To be assigned

<141> 2004-03-01

<150> 06/129,452

<151> 1999-04-15

<160> 33

<170> PatentIn version 3.1

<210> 1

<211> 41

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer-DHFR up, synthesized sequence

<400> 1

gatccacgtg agatctccac catggttggc tcgctaaact g

41

<210> 2
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer-DHFR down, synthesized sequence

<400> 2
gatccacgtg agatcttaa tcattttct catatac 37

<210> 3
<211> 85
<212> DNA
<213> Artificial Sequence

<220>
<223> polylinker fragment, synthesized sequence, restriction fragment from digestion of pIPspAdapt 6 with AgeI and Bam HI

<400> 3
accggtaat tcggcgccc gtcgacgata tcgatcgac cgacgcgttc gcgagcggcc 60
gcaattcgct agcgtaacg gatcc 85

<210> 4
<211> 86
<212> DNA
<213> Artificial Sequence

<220>

<223> polylinker fragment, synthesized sequence, restriction fragment from digestion of pIPspAdapt7 with AgeI and Bam HI

<400> 4

accggtaat tgccggcgct cgcgaacgcg tcggtccgta tcgatatcgt cgacggcg 60

ccgaattcgc tagcgttaac ggatcc 86

<210> 5

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer-EPO-START, synthesized sequence

<400> 5

aaaaaggatc cgccaccatg ggggtgcacg aatgtcctgc ctg 43

<210> 6

<211> 38

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer-EPO-STOP, synthesized sequence

<400> 6

aaaaaggatc ctcatctgtc ccctgtcctg caggcctc 38

<210> 7

<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer-LTR-1, synthesized sequence

<400> 7
ctgtacgtac cagtgcactg gcctaggcat ggaaaaatac ataaactg 47

<210> 8
<211> 64
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer-LTR-2, synthesized sequence

<400> 8
gcggatcctt cgaaccatgg taagcttggt accgctagcg ttaaccgggc gactcagtca 60
atcg 64

<210> 9
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer-HSA1, synthesized sequence

<400> 9

gcgccaccat gggcagagcg atggtggc

28

<210> 10
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer-HSA2, synthesized sequence

<400> 10
gttagatcta agcttgtcga catcgatcta ctaacagtag agatgttagaa

50

<210> 11
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide, synthesized sequence, EcoRI linker

<400> 11
ttaagtgcgac

10

<210> 12
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide, synthesized sequence, EcoRI linker

<400> 12
ttaagtcgac 10

<210> 13
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide, synthesized sequence, PacI linker

<400> 13
aattgtctta attaaccgct taa 23

<210> 14
<211> 67
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide, synthesized sequence, PLL-1

<400> 14
gccatcccta ggaagcttgg taccggtgaa ttcgctagcg ttaacggatc ctctagacga 60
gatctgg 67

<210> 15
<211> 67
<212> DNA
<213> Artificial Sequence

<220>

<223> oligonucleotide, synthesized sequence, PLL-2

<400> 15

ccagatctcg tctagaggat ccgttaacgc tagcgaattc accggtagcca agtttcctag 60

ggatggc 67

<210> 16

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer-CMVplus, synthesized sequence

<400> 16

gatcggtacc actgcagtgg tcaatattgg ccattagcc 39

<210> 17

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer-CMVminA, synthesized sequence

<400> 17

gatcaagctt ccaatgcacc gttcccgcc 29

<210> 18

<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer-CAMH-UP, synthesized sequence

<400> 18
gatcgatatac gctagcacca agggcccatc ggtc 34

<210> 19
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer-CAMH-DOWN, synthesized sequence

<400> 19
gatcgtttaa actcatttac ccggagacag 30

<210> 20
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer-CAML-UP, synthesized sequence

<400> 20
gatccgtacg gtggctgcac catctgtc 28

<210> 21
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer-CAML-DOWN, synthesized sequence

<400> 21
gatcgtttaa acctaacact ctccccgtt g

31

<210> 22
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> leader peptide sequence, synthesized sequence

<400> 22

Met Ala Cys Pro Gly Phe Leu Trp Ala Leu Val Ile Ser Thr Cys Leu
1 5 10 15

Glu Phe Ser Met
20

<210> 23
<211> 60
<212> DNA
<213> Artificial Sequence

<220>

<223> oligonucleotide-leader peptide coding sequence, synthesized sequence

<400> 23

atggcatgcc ctggcttcct gtgggcactt gtgatctcca cctgtcttga atttccatg 60

<210> 24

<211> 38

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer-UBS-UP, synthesized sequence

<400> 24

gatcacgcgt gctagccacc atggcatgcc ctggcttc 38

<210> 25

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> leader peptide, synthesized sequence

<400> 25

Met Ala Cys Pro Gly Phe Leu Trp Ala Leu Val Ile Ser Thr Cys Leu
1 5 10 15

Glu Phe Ser Met

<210> 26
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide-leader peptide coding sequence, synthesized sequence

<400> 26
atggcatgcc ctggcttcct gtgggcactt gtgatctcca cctgtcttga attttccatg 60

<210> 27
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide, synthesized sequence, PCR product generated using primers UBS-UP and UBSHV-DOWN on template pNUT-Cgamma

<400> 27
gatcgctagc tgtcgagacg gtgaccag 28

<210> 28
<211> 29
<212> DNA
<213> Artificial Sequence

<220>

<223> oligonucleotide, synthesized sequence, PCR product generated using primers UBS-UP and UBSLV-DOWN on template pNUT-Ckappa

<400> 28

gatccgtacg cttgatctcc accttggtc

29

<210> 29

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer-15C5-UP, synthesized sequence

<400> 29

gatcacgcgt gctagccacc atgggtactc ctgctcagtt tcttgaaatc

50

<210> 30

<211> 41

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer-HA1 forward primer, synthesized sequence

<400> 30

attggcgccgc caccatgaag actatcattg ctttgagcta c

41

<210> 31

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer-HA1 reverse primer, synthesized sequence

<400> 31

gatgctagct catctagttt gttttctgg tatattccg 39

<210> 32

<211> 42

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer-HA2 reverse primer, synthesized sequence

<400> 32

gatgctagct cagtcttgtt atcctgactt cagttcaaca cc 42

<210> 33

<211> 3052

<212> DNA

<213> Human Adenovirus Type 5

<220>

<223> Nucleotides 459-3510 of Human Adenovirus Type 5

<400> 33

cgtgttagtgt atttataaccc ggtgagttcc tcaagaggcc actcttgagt gccagcgagt 60

agagttttctt cctccgagcc gctccgacac cgggactgaa aatgagacat attatctgcc 120

acggaggtgt tattaccgaa gaaatggccg ccagtcttt ggaccagctg atcgaagagg	180
tactggctga taatcttcca ctccttagcc attttgaacc acctaccctt cacgaactgt	240
atgatttaga cgtgacggcc cccgaagatc ccaacgagga ggcggttcg cagattttc	300
ccgactctgt aatgttggcg gtgcaggaag ggattgactt actcacttt ccgccggcgc	360
ccggttctcc ggagccgcct caccttccc ggcagcccga gcagccggag cagagagcct	420
tgggtccggt ttctatgcca aacttgtac cggaggtgat cgatcttacc tgccacgagg	480
ctggcttcc acccagtgac gacgaggatg aagagggtga ggagtttgta ttagattatg	540
tggagcaccc cgggcacggt tgcaggtctt gtcatttatca ccggaggaat acgggggacc	600
cagatattat gtgtcgctt tgctatatga ggacctgtgg catgttgtc tacagtaagt	660
aaaaattatg ggcagtgggt gatagagtgg tgggttttgt gtggtaattt ttttttaat	720
tttacagtt ttgtggttta aagaattttg tattgtgatt tttttaaaag gtcctgtgtc	780
tgaacctgag cctgagcccg agccagaacc ggagcctgca agacctaccc gccgtcctaa	840
aatggcgctt gctatcctga gacgccccac atcacctgtg tctagagaat gcaatagtag	900
tacggatagc tgtgactccg gtccttctaa cacacctcct gagatacacc cgggtggccc	960
gctgtgcccc attaaaccag ttgccgtgag agttgggtgg cgtcgccagg ctgtggaatg	1020
tatcgaggac ttgcttaacg agcctggca acctttggac ttgagctgta aacgccccag	1080
gccataaggt gtaaacctgt gattgcgtgt gtggtaacg cctttgtttg ctgaatgagt	1140

tgatgtaaat ttaataaagg gtgagataat gtttaacttg catggcgtgt taaatgggc 1200
ggggcttaaa gggtatataa tgccgcgtgg gctaattcttgc gttacatctg acctcatgga 1260
ggcttggag tgtttggaaat attttctgc tgtgcgtaaac ttgctggaaac agagctctaa 1320
cagtacctct tggtttggaa gtttctgtg gggctcatcc caggcaaagt tagtctgcag 1380
aattaaggag gattacaagt gggaaatttga agagcttttga aaatcctgtg gtgagctgtt 1440
tgattcttgc aatctggtc accaggcgct tttccaagag aaggtcatca agactttggaa 1500
ttttccaca ccggggcgcg ctgcggctgc tgttgtttt ttgagttta taaaggataa 1560
atggagcgaa gaaaccatc tgagcgggggt gtacactgctg gattttctgg ccatgcatct 1620
gtggagagcg gttgtgagac acaagaatcg cctgctactg ttgtcttccg tccggccggc 1680
gataataccg acggaggagc agcagcagca gcaggaggaa gccaggcgcc ggcggcagga 1740
gcagagccca tggaaaccgaa gagccggcct ggaccctcgaa gaatgaatgt tgtacaggtg 1800
gctgaactgt atccagaact gagacgcatt ttgacaatta cagaggatgg gcaggggcta 1860
aagggggtaa agagggagcg gggggcttgtt gaggctacag aggaggctag gaatcttagct 1920
tttagcttaa tgaccagaca ccgtcctgag tgtattactt ttcaacagat caaggataat 1980
tgcgctaatg agcttgatct gctggcgca gaaatattcca tagagcagct gaccacttac 2040
tggctgcagc cagggatga ttttggaggag gctattaggg tatatgcaaa ggtggcactt 2100
aggccagatt gcaagtacaa gatcagcaaa cttgtaaata tcaggaatttgc ttgctacatt 2160

tctgggaacg gggccgaggt ggagatagat acggaggata gggtggcctt tagatgtgc 2220
atgataaata tgtggccggg ggtgcttggc atggacgggg tggttattat gaatgttaagg 2280
tttactggcc ccaattttag cggtacggtt ttcctggcca ataccaacct taticctacac 2340
ggtgtaagct tctatgggtt taacaataacc tgtgtggaag cctggaccga tgtaagggtt 2400
cggggctgtg cctttactg ctgctggaag ggggtggtgt gtcgccccaa aagcagggct 2460
tcaattaaga aatgcctctt tgaaaggtgt accttggta tcctgtctga gggtaactcc 2520
agggtgcgcc acaatgtggc ctccgactgt ggttgcttca tgcttagtgaa aagcgtggct 2580
gtgattaagc ataacatggt atgtggcaac tgcgaggaca gggcctctca gatgctgacc 2640
tgctcggacg gcaactgtca cctgctgaaag accattcacg tagccagcca ctctcgcaag 2700
gcctggccag tgttttagca taacatactg acccgctgtt cttgcattt gggtaacagg 2760
aggggggtgt tcctaccta ccaatgcaat ttgagtcaca ctaagatatt gcttgagccc 2820
gagagcatgt ccaaggtgaa cctgaacggg gtgtttgaca tgaccatgaa gatctggaag 2880
gtgctgaggt acgatgagac ccgcaccagg tgcagaccct gcgagtgtgg cggtaaacat 2940
attaggaacc agcctgtgat gctggatgtg accgaggagc tgaggccgaa tcacttggtg 3000
ctggcctgca cccgcgtga gtttggctt agcgatgaaat acagattt ag 3052