南京航空航天大学

第1页 (共6页)

二〇一八~二〇一九 学年 第II学期《工科数学分析 A(2)》考试试题

考试日期: 2019年6月30日 试卷类型: B

试卷代号:

		班	号		学号			姓名			
题号	_	11	三	四	五	六	七	八	九	+	总分
得分											

、填空题: (每题 4 分, 共 24 分)

本题分数	24 分
得 分	

1. 设 f 为可微函数,已知 $F(x) = \int_0^x t f(x^2 - t^2) dt$,则

$$F'(x) = \underline{\hspace{1cm}},$$

2. 设z = z(x, y) 是由方程 f(xz, y + z) = 0 所确定的隐函数,

f 可微,则 dz = _______.

- 3. 设向量场 $\vec{A} = \{x^2y, y^2z, z^2x\}$,则 $\text{div}\vec{A} = \underline{\hspace{1cm}}$ $rot \overrightarrow{A} = \underline{}$
- 4. 设L是从O(0,0)到A(6,0)的上半圆周,

5. 交换积分次序

$$\int_{-1}^{0} dx \int_{-x}^{\frac{x+3}{2}} f(x, y) dy + \int_{0}^{1} dx \int_{2x}^{\frac{x+3}{2}} f(x, y) dy = \underline{\hspace{1cm}}.$$

6. 写出以函数 $y = C_1 e^x + C_2 \cos 2x + C_3 \sin 2x$ 为通解的常系数齐次线性微分方程:

二、单项选择题: (每题 4 分, 共 12 分)

本题分数	12分		
得 分			

1. 二元函数
$$f(x,y) = \begin{cases} (x^2 + y^2)\sin\frac{1}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$

则在(0,0)点,下述正确的是:

)

- (A) 极限不存在,因此不连续; (B) 连续但是不可微;

- (C) 可微, 偏导函数不连续; (D) 可微且偏导函数连续.
- 2. 微分方程 $y'' \lambda^2 y = e^{\lambda x} + e^{-\lambda x} (\lambda > 0)$ 的特解形式为
 - (A) $a(e^{\lambda x} + e^{-\lambda x})$;
 - (B) $ax(e^{\lambda x} + e^{-\lambda x})$;
 - (C) $x(ae^{\lambda x} + be^{-\lambda x})$:
- (D) $x^2(ae^{\lambda x}+be^{-\lambda x})$.

3.
$$\int_0^2 dx \int_0^x f(\sqrt{x^2+y^2}) dy$$
 化为极坐标形式为

)

- (A) $\int_0^{\pi/2} d\varphi \int_0^{2\sec\varphi} f(\rho)\rho d\rho$; (B) $\int_0^{\pi/4} d\varphi \int_0^{2\sec\varphi} f(\rho)\rho d\rho$;
- (C) $\int_0^{\frac{\pi}{4}} d\varphi \int_0^{2\cos\varphi} f(\rho)\rho d\rho$; (D) $\int_0^{\frac{\pi}{2}} d\varphi \int_0^{2\cos\varphi} f(\rho)\rho d\rho$.

三、计算题(每题7分,共28分)

本题分数	28 分
得 分	

1. 利用曲线积分计算星形线 $x = a \cos^3 t$, $v = a \sin^3 t$ 所围图形 的面积.

2. L 为曲线 $\begin{cases} z = \sqrt{x^2 + y^2} \\ z = 1 \end{cases}$, 从 z 轴的正方向看 L 沿顺时针方向,求 $\oint_L (y - z) dx + (z - x) dy + (x - y) dz \ .$

$$\oint_L (y-z) dx + (z-x) dy + (x-y) dz.$$

3. 求微分方程 $y'' - 2y' = e^x(x^2 + x - 3)$, $y|_{x=0} = 2$, $y'|_{x=0} = 2$ 满足初始条件的特解.

4. 求线性微分方程组 $\begin{cases} \frac{dx_1}{dt} = -x_1 + 3x_2, \\ \frac{dx_2}{dt} = 2x_1 - 2x_2 \end{cases}$ 的通解.

本题分数	8分
得 分	

四、设z = f(x,y)具有连续偏导数, $x = r\cos\theta$, $y = r\sin\theta$ (1) 求 $\frac{\partial z}{\partial r}$; (2) 若f(x,y)在 $x^2 + y^2 = 1$ 上恒为0,求

$$\lim_{\varepsilon \to 0^+} \frac{1}{2\pi} \iint_{\varepsilon^2 \le x^2 + y^2 \le 1} \frac{xf_x + yf_y}{x^2 + y^2} \mathrm{d}\,\sigma \ .$$

本题分数	8分
得分	

五、计算 $\oint_L \frac{xdy - ydx}{x^2 + y^2}$,其中L为一条无重点,分段光滑且不经过原

点的连续闭曲线,L的方向为逆时针方向。

本题分数	10分		
得 分			

六、设曲面 Σ 是由空间曲线 Γ : $x = t, y = 2t, z = t^2$ ($0 \le t \le 1$) 绕 z 轴旋转一周而成的旋转曲面,求曲面 Σ 的方程;若曲面 Σ 的法向量与 z 轴正向成纯角,已知连续函数 f(x, y, z) 满足:

$$f(x,y,z) = (x+y+z)^2 + \iint_{\Sigma} f(x,y,z) dy \Lambda dz + x^2 dx \Lambda dy ,$$

求 f(x,y,z) 的表达式.

本题分数	10
得 分	

七 、 (1) 求 函 数 f(x,y,z) = x + 2y - 2z + 5 在 $\Omega: x^2 + y^2 + z^2 \le 1$ 上的最大值和最小值;

(2) 证明不等式 $\frac{3}{2}\pi < \iiint_{\Omega} \sqrt[3]{x+2y-2z+5} dxdydz < 3\pi$.

1.
$$\underline{x}f(x^2)$$
; 2. $\underline{dz} = -\frac{1}{xf_1 + f_2}(\underline{z}f_1dx + f_2dy)$; 3. $\underline{2xy + 2yz + 2zx}$; $\{-y^2, -z^2, -x^2\}$;

4.
$$\frac{135}{2}\pi$$
; 5. $\int_{0}^{1} dy \int_{-y}^{\frac{y}{2}} f(x,y) dx + \int_{1}^{2} dy \int_{2y-3}^{\frac{y}{2}} f(x,y) dx$; 6. $y''' - y'' + 4y' - 4y = 0$

二、 选择题

1.
$$\Re: S = \frac{1}{2} \oint x dy - y dx = 6a^2 \int_0^{\pi/2} [\cos^4 t \sin^2 t + \sin^4 t \cos^2 t] dt = \frac{3}{8} \pi a^2 \dots$$

2. 解: 取 Σ : $z = 1(x^2 + y^2 \le 1)$ 下侧, $\cos \alpha = \cos \beta = 0, \cos \gamma = -1$,

原式 =
$$\iint_{\Sigma} \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y - z & z - x & x - y \end{vmatrix} dS = 2\iint_{\Sigma} dS = 2\pi \dots$$

3 解:对应齐次方程特征根为: $r_1 = 0$, $r_2 = 2$,

故对应齐次方程的通解为: $v = C_1 + C_2 e^{2x}$ 分)

自由项 $f(x) = e^{x}(x^{2} + x - 3)$, $\lambda = 1$ 不是特征根,

所以方程特解为: $v^* = e^x(Ax^2 + Bx + C)$

代入方程解得 A = -1 , B = -1 , C = 1 , $v^* = -e^x(x^2 + x - 1)$,

故方程的通解为: $y = C_1 + C_2 e^{2x} - e^x (x^2 + x - 1) \dots$

由初始条件得: $C_1 + C_2 + 1 = 2$, $C_2 = 1$ 得 $C_1 = 0$, $C_2 = 1$.

故方程满足初始条件的特解为: $v = e^{2x} - e^x(x^2 + x - 1)$

4
$$\text{M}$$
: $A = \begin{pmatrix} -1 & 3 \\ 2 & -2 \end{pmatrix}$, $\det(A - \lambda E) = (-1 - \lambda)(-1 - \lambda) - 6 = \lambda^2 + 3\lambda - 4 = 0 \dots$

特征根为 $\lambda_1 = -4$, $\lambda_2 = 1$, ...分)

解得通解为
$$\mathbf{x}(t) = \begin{pmatrix} e^{-4t} & 3e^t \\ -e^{-4t} & 2e^t \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = c_1 e^{-4t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + c_2 e^t \begin{pmatrix} 3 \\ 2 \end{pmatrix} \dots$$

四、解: (1)
$$\frac{\partial z}{\partial r} = \cos \theta f_x + \sin \theta f_y$$
;)

于是
$$\lim_{\varepsilon \to 0+} \frac{1}{2\pi} \iint_{\varepsilon^2 \le y^2 + y^2 \le 1} \frac{xf_x + yf_y}{x^2 + y^2} d\sigma = -\lim_{\varepsilon \to 0+} f(\varepsilon \cos \theta_0, \varepsilon \sin \theta_0) = -f(0,0)$$
)

五、解:记
$$L$$
 围成的闭区域为 D ,令 $P = \frac{-y}{x^2 + y^2}$, $Q = \frac{x}{x^2 + y^2}$,则当 $x^2 + y^2 \neq 0$ 时,有

$$\frac{\partial Q}{\partial x} = \frac{y^2 - x^2}{(x^2 + y^2)^2} = \frac{\partial P}{\partial y}. \quad (1) \stackrel{\text{def}}{=} (0, 0) \notin D \text{ for } M \oint_L \frac{xdy - ydx}{x^2 + y^2} = 0.$$

(2) 当 $(0,0)\in D$ 时,作位于 D 内圆周 $l:x^2+y^2=r^2$,记 D_1 由 L 和 l 围成,则有 $\oint_L \frac{xdy-ydx}{x^2+y^2} - \oint_l \frac{xdy-ydx}{x^2+y^2} = 0.$ 即

$$\oint_{L} \frac{xdy - ydx}{x^{2} + y^{2}} = \oint_{L} \frac{xdy - ydx}{x^{2} + y^{2}} = \int_{0}^{2\pi} \frac{r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta}{r^{2}} d\theta = 2\pi. \dots$$

六、解: Γ绕 z 轴旋转一周而成的旋转曲面为 Σ : $x^2 + y^2 = 5z(0 \le z \le 1)$ )

首先
$$\iint_{\Sigma} x^2 dxdy = -\iint_{x^2+y^2 \le 5} x^2 dxdy = -\frac{25}{4}\pi$$

令
$$\iint_{\Sigma} f(x, y, z) dy dz = A$$
,可得 $f(x, y, z) = (x + y + z)^2 + A - \frac{25}{4}\pi$

记 $S: z = 1, x^2 + y^2 \le 5$ 取上侧, Ω 为 Σ 与S围成的区域,根据 Gauss 公式

$$A = \iint_{\Sigma} f(x, y, z) dy dz = \iint_{\Sigma} \left((x + y + z)^2 + A - \frac{25}{4} \pi \right) dy dz$$

$$= \iint_{\Sigma + S} \left((x + y + z)^2 + A - \frac{25}{4} \pi \right) dy dz = 2 \iiint_{\Omega} (x + y + z) dx dy dz = \frac{10}{3} \pi$$

$$= \int_{\Sigma + S} \left((x + y + z)^2 + A - \frac{25}{4} \pi \right) dy dz = 2 \iiint_{\Omega} (x + y + z) dx dy dz = \frac{10}{3} \pi$$

于是
$$f(x, y, z) = (x + y + z)^2 - \frac{35}{12}\pi$$

七、(1)首先在 Ω 内部 $x^2+y^2+z^2<1$, f(x,y,z)=x+2y-2z+5 没有驻点,在边界 $x^2+y^2+z^2=1$ 上,应用 Lagrange 乘数法,令 $F=x+2y-2z+5+\lambda(x^2+y^2+z^2-1)$,由 $\begin{cases} F_x=1+2\lambda x=0 & F_z=-2+2\lambda z=0 \\ F_y=2+2\lambda y=0 & F_\lambda=x^2+y^2+z^2-1=0 \end{cases}$ 可得条件极值点 $P_1\left(\frac{1}{3},\frac{2}{3},-\frac{2}{3}\right),P_2\left(-\frac{1}{3},-\frac{2}{3},\frac{2}{3}\right),P_3\left(-\frac{1}{3},-\frac{2}{3},-\frac{2}{3}\right),P_3\left(-\frac{1}{3},-\frac{2}{3},-\frac{2}{3}\right),P_3\left(-\frac{1}{3},-\frac{2}{3},-\frac{2}{3}\right),P_3\left(-\frac{1}{3},-\frac{2}{3},-\frac{2}{3}\right),P_3\left(-\frac{1}{3},-\frac{2}{3},-\frac{2}{3}\right),P_3\left(-\frac{1}{3},-\frac{2}{3},-\frac{2}{3}\right),P_3\left(-\frac{1}{3},-\frac{2}{3},-\frac{2}{3}\right),P_3\left(-\frac{1}{3},-\frac{2}{3},-\frac{2}{3}\right),P_3\left(-\frac{1}{3},-\frac{2}{3}\right),P_3\left(-\frac{1}{3},-\frac{2}{3},-\frac{2}{3}\right),P_3\left(-\frac{1}{3},-\frac{2}{3},-\frac{2}{3}\right),P_3\left(-\frac{1}{3},-\frac{2}{3},-\frac{2}{3}\right),P_3\left(-\frac{1}{3},-\frac{2}{3},-\frac{2}{3}\right),P_3\left(-\frac{1}{3},-\frac{2}{3},-\frac{2}{3}\right),P_3\left(-\frac{1}{3},-\frac{2}{3},-\frac{2}{3}\right),P_3\left(-\frac{1}{3},-\frac{2}{3},-\frac{2}{3}\right),P_3\left(-\frac{1}{3},-\frac{2}{3}\right),P_3\left(-\frac{1}{3},-\frac{2}{3}\right),P_3\left(-\frac{1}{3},-\frac{2}{3}\right),P_3\left(-\frac{1}{3},-\frac{2}{3}\right),P_3\left(-\frac{1}{3},-\frac{2}{3}\right),P_3\left(-\frac{1}{3},-\frac{$

(2) 证明: 由于在 Ω 上, f(x,y,z) = x + 2y - 2z + 5 的最大值和最小值分别为8,2,因此 $\sqrt[3]{2} \frac{4}{3} \pi \le \iiint_{\Omega} \sqrt[3]{x + 2y - 2z + 5} dx dy dz \le \sqrt[3]{8} \frac{4}{3} \pi$

由于 $\sqrt[3]{2}\frac{4}{3}\pi > \frac{3}{2}\pi, \sqrt[3]{8}\frac{4}{3}\pi < 3\pi$,因此 $\frac{3}{2}\pi < \iiint_{\Omega} \sqrt[3]{x + 2y - 2z + 5} dx dy dz < 3\pi$ 分)