

Laboratório - Configurar CDP, LLDP e NTP

Topologia

Tabela de endereçamento

Dispositivo	Interface	Endereço IP	Máscara de sub- rede	Gateway padrão
R1	Loopback1	172.16.1.1	255.255.255.0	N/D
	G0/0/1	10.22.0.1	255.255.255.0	
S1	SVI VLAN 1	10.22.0.2	255.255.255.0	10.22.0.1
S2	SVI VLAN 1	10.22.0.3	255.255.255.0	10.22.0.1

Objetivos

Parte 1: criar a rede e definir as configurações básicas do dispositivo

Parte 2: descobrir a rede com CDP

Parte 3: descobrir a rede com LLDP

Parte 4: Configurar e verificar NTP

Histórico/Cenário

O CDP (Cisco Discovery Protocol) é um protocolo de propriedade da Cisco para a descoberta de rede na camada de enlace de dados. Ele pode compartilhar informações, como nomes de dispositivos e versões de IOS, com outros dispositivos da Cisco fisicamente conectados. O LLDP (Link Layer Discovery Protocol) é um protocolo independente de fornecedores, usado na camada de enlace de dados para a descoberta de rede. Ele é principalmente usado com os dispositivos de rede na rede local (LAN). Os dispositivos de rede anunciam informações, como suas identidades e recursos, para seus vizinhos.

O Protocolo de Horário de Rede (NTP) sincroniza a hora do dia entre um conjunto de servidores e clientes de horário distribuídos. O NTP usa o UDP (User Datagram Protocol) como protocolo de transporte. Por padrão, as comunicações NTP usam o Tempo Universal Coordenado (UTC).

Um servidor NTP geralmente recebe seu horário de uma fonte de horário autorizada, como um relógio atômico conectado a um servidor de horário. Em seguida, distribui esse tempo pela rede. O NTP é extremamente eficiente; é necessário apenas um pacote por minuto para sincronizar duas máquinas com diferença de tempo de um milissegundo.

Neste laboratório, você precisa documentar as portas que estão conectadas a outros switches usando o CDP e o LLDP. Você documentará suas descobertas em um diagrama da topologia de rede.

Nota: Os roteadores usados nos laboratórios práticos do CCNA são o Cisco 4221 com o Cisco IOS XE Release 16.9.4 (imagem universalk9). Os comutadores usados nos laboratórios são o Cisco Catalyst 2960s

com Cisco IOS Release 15.2 (2) (imagem lanbasek9). Outros roteadores, switches e versões do Cisco IOS podem ser usados. De acordo com o modelo e a versão do Cisco IOS, os comandos disponíveis e a saída produzida poderão variar em relação ao que é mostrado nos laboratórios. Consulte a Tabela de resumo de interfaces dos roteadores no final do laboratório para saber quais são os identificadores de interface corretos.

Nota: Verifique se os roteadores e comutadores foram apagados e sem configurações de inicialização. Se estiver em dúvida, entre em contato com o instrutor.

Recursos necessários

- 1 roteador (Cisco 4221 com imagem universal do Cisco IOS XE Release 16.9.4 ou comparável)
- 2 comutadores (Cisco 2960 com imagem lanbasek9 do Cisco IOS Release 15.2 (2) ou comparável)
- 1 PC (Windows com um programa de emulação de terminal, como Tera Term)
- Cabos de console para configurar os dispositivos Cisco IOS por meio das portas de console
- · Cabos ethernet conforme mostrado na topologia

Parte 1: Criar a rede e definir as configurações básicas do dispositivo

Na Parte 1, você configurará a topologia de rede e definirá as configurações básicas no roteador e nos switches.

Etapa 1: Instale os cabos da rede conforme mostrado na topologia.

Conecte os dispositivos como mostrado no diagrama da topologia e cabei-os se necessário.

Etapa 2: Defina as configurações básicas do roteador.

- a. Atribua um nome de dispositivo ao roteador.
- b. Desative a pesquisa do DNS para evitar que o roteador tente converter comandos inseridos incorretamente como se fossem nomes de host.
- c. Atribua class como a senha criptografada do EXEC privilegiado.
- d. Atribua **cisco** como a senha de console e habilite o login.
- e. Atribua cisco como a senha VTY e ative o login.
- f. Criptografe as senhas em texto simples.
- g. Crie um banner para avisar às pessoas que o acesso não autorizado é proibido.
- h. Configurar interfaces conforme listado na tabela acima
- i. Salve a configuração atual no arquivo de configuração inicial.

Etapa 3: Defina as configurações básicas de cada switch.

- a. Atribua um nome de dispositivo ao comutador.
- Desative a pesquisa do DNS para evitar que o roteador tente converter comandos inseridos incorretamente como se fossem nomes de host.
- c. Atribua class como a senha criptografada do EXEC privilegiado.
- d. Atribua cisco como a senha de console e habilite o login.
- e. Atribua cisco como a senha VTY e ative o login.
- f. Criptografe as senhas em texto simples.
- g. Crie um banner que avisa que qualquer pessoa que acesse o dispositivo vê a mensagem de banner "Somente usuários autorizados!".
- h. Encerre todas as interfaces não utilizadas.
- i. Salve a configuração atual no arquivo de configuração inicial.

Parte 2: Descobrir a rede com CDP

R1# mostrar a entrada cdp S1

Nos dispositivos da Cisco, o CDP é ativado por padrão. Você usará o CDP para detectar as portas que estão conectadas no momento.

a. No R1, use o comando **show cdp** apropriado para determinar quantas interfaces estão habilitadas para CDP e quantas estão ativadas e quantas estão inativas.

Quantas interfaces estão participando do anúncio do CDP? Quais interfaces estão ligadas?

b. No R1, use o comando **show cdp** apropriado para determinar a versão do IOS usada no S1.

```
Device ID: S1
Endereço(s) de Entrada:
Plataforma: cisco WS-C2960 + 24LC-L, Recursos: Switch IGMP
Interface: GigabitEthernet0 / 1, ID da porta (porta de saída): FastEthernet0 / 5
```

```
Holdtime : 125 sec

Version :
IOS Cisco Software, C2960 Software (C2960-LANBASEK9-M), Version 15.0(2)SE, RELEASE
SOFTWARE (fc1)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2019 by Cisco Systems, Inc.
Compilado Sex 15-Mar-19 17:28 por prod_rel_team

advertisement version: 2
VTP Management Domain: ''
Native VLAN: 1
Duplex: full
```

Qual versão do IOS está usando o S1?

c. No S1, use o comando **show cdp** apropriado para determinar quantos pacotes CDP foram enviados.

```
S1# show cdp traffic
```

```
CDP counters:

Saída total de pacotes: 179, Entrada: 148

Sintaxe Hdr: 0, erro de chksum: 0, Encaps falhou: 0

Sem memória: 0, Pacote inválido: 0,

CDP versão 1 saída de anúncios: 0, Entrada: 0

CDP versão 2 saída de anúncios: 179, Entrada: 148
```

Quantos pacotes tem saída CDP desde a última reinicialização do contador?

- d. Configure o SVI para VLAN 1 em S1 e S2 usando os endereços IP especificados na tabela de endereçamento acima. Configure o gateway padrão em cada switch com base na tabela de endereços.
- e. Em R1, emita o comando show cdp entry S1.

Que informações adicionais já estão disponíveis?

R1# show cdp entry S1

```
Device ID: S1
Endereço(s) de Entrada:
   Endereço IP: 10.22.0.2
Platform: cisco WS-C2960+24LC-L, Capabilities: Switch IGMP
Interface: GigabitEthernet0/0/1, Port ID (outgoing port): FastEthernet0/5
Holdtime: 133 sec
```

```
Version :
Cisco IOS Software, C2960 Software (C2960-LANBASEK9-M), Version 15.2(4)E8, RELEASE
SOFTWARE (fc3)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2019 by Cisco Systems, Inc.
Compilado Sex 15-Mar-19 17:28 por prod_rel_team

advertisement version: 2
VTP Management Domain: ''
Native VLAN: 1
Duplex: full
Management address(es):
    Endereço IP: 10.22.0.2
```

f. Desative CDP globalmente em todos os dispositivos.

Parte 3: Descobrir a rede com LLDP

Nos dispositivos da Cisco, o LLDP pode ser ativado por padrão. Você usará o LLDP para detectar as portas que estão conectadas no momento.

- a. Digite o comando **IIdp** apropriado para habilitar o LLDP em todos os dispositivos na topologia.
- b. Em S1, emita o comando IIdp apropriado para fornecer informações detalhadas sobre S2.

```
S1# show lldp entry S2
```

```
Capability codes:
    (R) Router, (B) Bridge, (T) Telephone, (C) DOCSIS Cable Device
    (W) WLAN Access Point, (P) Repeater, (S) Station, (O) Other
______
Local Intf: Fa0/1
ID do chassi: c025.5cd7.ef00
Port id: Fa0/1
Port Description: FastEthernet0/1
System Name: S2
System Description:
Cisco IOS Software, C2960 Software (C2960-LANBASEK9-M), Version 15.2(4)E8, RELEASE
SOFTWARE (fc3)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2019 by Cisco Systems, Inc.
Compilado Sex 15-Mar-19 17:28 por prod rel team
Time remaining: 109 seconds
System Capabilities: B
Enabled Capabilities: B
Management Addresses:
   IP: 10.22.0.3
```

```
Auto Negotiation - supported, enabled
Physical media capabilities:
    100base-TX(FD)
    100base-TX(HD)
    10base-T(FD)
    10base-T(HD)

Media Attachment Unit type: 16
Vlan ID: 1

Total entries displayed: 1

Qual é o ID do chassi para o switch S2?
```

c. Console em todos os dispositivos e use os comandos LLDP necessários para que você desenhe a topologia de rede física somente da saída do comando show.

Parte 4: Configurar NTP

Na Parte 4, você configurará R1 como servidor NTP e S1 e S2 como clientes NTP de R1. O horário sincronizado é importante para as funções syslog e debug. Se a hora não estiver sincronizada, será difícil determinar qual evento de rede causou a mensagem.

Etapa 1: Exiba a hora atual.

Emita o comando **show clock detail** para exibir a hora atual em R1. Anote as informações referentes à hora atual exibida na tabela a seguir.

Data	Tempo	Fuso horário	Origem de Tempo

Etapa 2: Ajuste a hora.

Use o comando apropriado para definir a hora em R1. A hora inserida deve estar em UTC.

Etapa 3: Configure o mestre do NTP.

Configure R1 como o mestre NTP com um nível de estrato de 4.

Etapa 4: Configure o cliente NTP.

a. Execute o comando apropriado em S1 e S2 para ver a hora configurada. Registre a hora atual exibida na tabela a seguir.

Data	Tempo	Fuso horário

b. Configure S1 e S2 como clientes NTP. Use os comandos NTP apropriados para obter tempo da interface G0/0/1 do R1, bem como para atualizar periodicamente o calendário ou o relógio de hardware no switch.

Etapa 5: Verifique a configuração do NTP.

- a. Use o comando show apropriado para verificar se S1 e S2 estão sincronizados com R1.
 - Nota: Pode demorar alguns minutos até que os comutadores sejam sincronizados com o R1.
- b. Execute o comando apropriado em S1 e S2 para ver a hora configurada e comparar a hora registrada anteriormente.

Perguntas para reflexão

Em quais interfaces de uma rede você não deve usar os protocolos de descoberta? Explique.

Tabela de resumo das interfaces dos roteadores

Modelo do roteador	Interface Ethernet 1	Interface Ethernet 2	Interface serial 1	Interface serial 2
1800	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)
1900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)
2801	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)
2811	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)
2900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)
4221	Gigabit Ethernet 0/0/0 (G0/0/0)	Gigabit Ethernet 0/0/1 (G0/0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)
4300	Gigabit Ethernet 0/0/0 (G0/0/0)	Gigabit Ethernet 0/0/1 (G0/0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)

Nota: Para descobrir como o roteador está configurado, consulte as interfaces para identificar o tipo de roteador e quantas interfaces o roteador possui. Não há como listar efetivamente todas as combinações de configurações para cada classe de roteador. Esta tabela inclui identificadores para as combinações possíveis de Ethernet e Interfaces seriais no dispositivo. Esse tabela não inclui nenhum outro tipo de interface, embora um roteador específico possa conter algum. Um exemplo disso poderia ser uma interface ISDN BRI. O string entre parênteses é a abreviatura legal que pode ser usada em comandos do Cisco IOS para representar a interface.