Understanding NGS raw data: FASTQ format, quality checking

Erika Souche

Outline

- Definitions
- FASTQ format
- Quality control
- Pre-processing

^{*}Focus on Illumina short read sequencing

Outline

- Definitions
- FASTQ format
- Quality control
- Pre-processing

Library

- DNA fragment
- Index/barcode
- Single End (SE) sequencing
- Paired End (PE) sequencing
- Insert size (=DNA fragment size)

Illumina flowcell

• Cluster
Bright spot on an image
Represents 1,000s of copies of the same DNA fragment

Sequencing

Demultiplexing

Outline

- Definitions
- FASTQ format
- Quality control
- Pre-processing

FASTA file format

>1 dna:chromosome chromosome:GRCh38:1:1:248956422:1 REF

Header 1 Contig name

. . .

Contig sequence

. . .

FASTQ file format

Read sequence & quality

```
@HWI-EAS337 4 FC 3038UAAXX:1:2:1069:110/1
    GATCGCCATCCAGAAATCGGTGGCTTGCTCACTTTC
                                                                         Read sequence
                                                                         Read quality
    A>AAAAAAAAAAAAAAAAA>>AA*:A>A:AAA3
                                                                        Probability of incorrect base call (P)
                                                                         Phred Q =-10 log10 P
                                                                         1 ASCII character per base
                                                                         Phred Q = dec(ASCII) - 33
               Regular ASCII Chart (character codes 0 - 127)
000
             016 > (dle)
                           032 sp
                                    048 0
                                            064 @
                                                   080 P
                                                           096 `
      (nul)
                                                                   112 p
001 @
     (soh)
             017 ◄ (dc1)
                           033 !
                                    049 1
                                           065 A
                                                   081 Q
                                                           097 a
                                                                   113 q
             018 t (dc2)
                           034 "
                                    050 2
                                            066 B
                                                   082 R
                                                           098 b
                                                                   114 r
002 😝
     (stx)
003 🔻
      (etx)
             019 !! (dc3)
                           035 #
                                    051 3
                                            067 C
                                                   083 ន
                                                           099 c
                                                                   115 ៩
004 + (eot)
             020 ¶ (dc4)
                           036 $
                                    052 4
                                            068 D
                                                   084 T
                                                           100 d
                                                                   116 t
                           037 %
                                    053 5
                                            069 E
                                                   085 U
                                                           101 e
                                                                   117 u
005 d (enq)
             021 § (nak)
             022 - (syn)
006 & (ack)
                           038 €
                                    054 6
                                            070 F
                                                   086 V
                                                           102 f
                                                                   118 v
007 •
     (bel)
             023 t (etb)
                           039 '
                                    055 7
                                           071 G
                                                   087 W
                                                           103 g
                                                                   119 พ
                                            072 H
                                                   088 X
                                                           104 h
008 a (bs)
             024 † (can)
                           040 (
                                    056 8
                                                                   120 x
                                    057 9
                                           073 I
                                                   089 Y
                                                           105 i
                                                                   121 y
009
      (tab)
             025 | (em)
                           041 )
010
      (1f)
             026
                   (eof)
                           042 *
                                    058 :
                                            074 J
                                                   090 Z
                                                           106 j
                                                                   122 z
011 라
     (vt)
             027 \leftarrow (esc)
                           043 +
                                    059 ;
                                           075 K
                                                   091 [
                                                           107 k
                                                                   123 {
                                           076 L
                                                   092 \
                                                           108 1
                                                                   124 |
012 * (np)
             028 L (fs)
                           044 ,
                                    060 <
             029 ↔ (gs)
                           045 -
                                    061 =
                                           077 M
                                                   093 ]
                                                           109 m
                                                                   125 }
013
      (cr)
                                    062 >
                                           078 N
                                                   094 ^
                                                           110 n
                                                                   126 ~
014 $ (so)
             030 A (rs)
                           046 .
                                    063 ?
                                           079 0
015 🗘 (si)
             031 ▼ (us)
                           047 /
                                                   095
                                                           111 o
                                                                   127 0
```

Read sequence & quality

@HWI-EAS337_4_FC_3038UAAXX:1:2:1069:110/1

GATCGCCATCCAGAAATCGGTGGCTTGCTCACTTTC

+

A>AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Read sequence

Read quality

Probability of incorrect base call (P)

Phred Q = $-10 \log 10 P$

1 ASCII character per base

Phred Q = dec(ASCII) - 33

Phred Quality Score	Probability of Incorrect Base Call	Base Call Accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1,000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%

Demultiplexing – PE sequencing

FASTQ file format – PE sequencing

```
Read 1
                                                          Read 2
@HWI-EAS337 4 FC 3038UAAXX:1:2:1069:110/1
                                          @HWI-EAS337 4 FC 3038UAAXX:1:2:1069:110/2
GATCGCCATCCAGAAATCGGTGGCTTGCTCACTTTC
                                          AACGAAGACCGCGTCGTATTGTTCCAAAAGCGAATC
A>AAAAAAAAAAAAAAAAAA>>AA*:A>A:AAA3
                                          AAAAAAAAAAAAAAAAAAAAAAAAAAAA>>>>>
                                          @HWI-EAS337 4 FC 3038UAAXX:1:2:161:1891/2
@HWI-EAS337 4 FC 3038UAAXX:1:2:161:1891/1
GAACTGTTGCTGGAAGACTACAAAGCCTCCCTGAAA
                                          CAATATTTTACGTTGCTAATGACAGTGAACAGACTT
                                          AAAAA>;AA6AAAA?AAAA?A&AAA<?;AA><<5;<
A?A4?A>A>>A?<A>AA?AA=????;??6?????=<
@HWI-EAS337 4 FC 3038UAAXX:1:2:1041:124/1
                                          @HWI-EAS337 4 FC 3038UAAXX:1:2:1041:124/2
GGTGATTTCAGCCAACAGGCCAGATTGAGCGTAGCC
                                          CCGGAATTAAAGTCACCGTTGAGCATCCGGATAAAC
A:AAAAAAAAAAAA=AAA=AAAAAAAAAAAAAA=AA9=
                                          AAAA;AAAAAAAAAA?AAA=A?AAAAAAA6=>=><
@HWI-EAS337 4 FC 3038UAAXX:1:2:1114:113/1
                                          @HWI-EAS337 4 FC 3038UAAXX:1:2:1114:113/2
GCTTTGTTCGTGAAGCGTTATCGCTGGTGACATGGG
                                          CCGAAACAGACGCCCAGCACCCGATCGGTGCCTGAC
AAAAA?AAAA?AA?A?AAAA>>AA>A:A>>7A>>A
```

Demultiplexing statistics

RUN	MACHINE	FLOW	C LANE PROJECT	SAMPLE	BARCODE		BARCODE.CO		I.1 BARCODE. BARCODE CH O.MISMAT 1.MISMAT CH.PERC. CH.PERC			YIELD.Q30.SUM (LL.QUAL	BASECALL.Q CL UAL.ABOVE CC 30.PERC RC	OUNT.PE
	1004 HiSeg2000		1 Project	GC085522	CGCATGAT+TCAGGCTT	5,552,039	5,552,039		1NA	151.682.423			42,813,220,820			0.04
	1004 HiSeq2000		1 Project	GC085522 ID	CTGAAGCT+TATAGCCT	9,777	9,777	9,777 NA	1NA	151,682,423	1,974,954	1,913,612	75,745,127		0.97	0
191	1004 HiSeq2000	FCA	1 Project	GC085523	CTTAGGAC+GTAGGAGT	5,814,208	5,814,208	5,814,208 NA	1NA	151,682,423	1,174,470,016	1,129,817,062	44,881,213,892	38.21	0.96	0.04
191	L004 HiSeq2000	FCA	1 Project	GC085523_ID	CTGAAGCT+ATAGAGGC	17,079	17,079	17,079 NA	1 NA	151,682,423	3,449,958	3,316,987	131,549,660	38.13	0.96	0
191	L004 HiSeq2000	FCA	1 Project	GC085524	ATCCGGTA+TATCGGTC	6,290,933	6,290,933	6,290,933 NA	1 NA	151,682,423	1,270,768,466	1,221,984,994	48,547,800,901	38.20	0.96	0.04
191	L004 HiSeq2000	FCA	1 Project	GC085524_ID	CTGAAGCT+CCTATCCT	14,085	14,085	14,085 NA	1 NA	151,682,423	2,845,170	2,757,522	109,110,362	38.35	0.97	0
191	L004 HiSeq2000	FCA	1 default	Undetermined	unknown	11,130,696	712,364,544	712,364,544 NA	1 NA	151,682,423	2,248,400,592	2,030,960,115	82,104,595,067	36.52	0.9	0.07
										_						

SAMPLE	BARCODE	CHISTER COUNT	Г BARCODE.COUNT	BARCODE.O.MI SMATCH.COUN			BARCODE.1. MISMATCH. PERC
						TENC	I LIKC
GC085522	CGCATGAT+TCAGGCTT	5,552,03	9 5,552,039	5,552,039	NA	1	. NA
GC085522_ID	CTGAAGCT+TATAGCCT	9,77	7 9,777	9,777	'NA	1	. NA
GC085523	CTTAGGAC+GTAGGAGT	5,814,20	5,814,208	5,814,208	NA	1	NA
GC085523_ID	CTGAAGCT+ATAGAGGC	17,07	9 17,079	17,079	NA	1	. NA
GC085524	ATCCGGTA+TATCGGTC	6,290,93	3 6,290,933	6,290,933	NA	1	NA
GC085524_ID	CTGAAGCT+CCTATCCT	14,08	5 14,085	14,085	NA	1	NA
Undetermined	unknown	11,130,69	6 712,364,544	712,364,544	NA	1	NA

Demultiplexing statistics

									BARCODE.O. BARCOD	E.1 BARCODE	. BARCODE					BASECA	BASECALL.Q (CLUSTER.
			FLOW				CLUSTER.CO	BARCODE.CO	MISMATCH.C .MISMA	CH 0.MISMA	T 1.MISMA	T CLUSTER.COU E	ASECALL.COU			LL.QUAL	. UAL.ABOVE (COUNT.PE
RU	I NL	MACHINE	ELL	LANE PROJECT	SAMPLE	BARCODE	UNT	UNT	OUNT .COUNT	CH.PERC	CH.PERC	NT.SUM.LANE	IT	YIELD.Q30.SUM	QSUM.SUM	.AVG	30.PERC F	RC
1	191004 F	HiSeq2000	FCA	1 Project	GC085522	CGCATGAT+TCAGGCTT	5,552,039	5,552,039	5,552,039 NA		1NA	151,682,423	1,121,511,878	1,076,542,969	42,813,220,820	38.17	7 0.96	0.04
1	191004 F	HiSeq2000	FCA	1 Project	GC085522_ID	CTGAAGCT+TATAGCCT	9,777	9,777	9,777 NA		1NA	151,682,423	1,974,954	1,913,612	75,745,127	38.35	0.97	0
1	191004 F	HiSeq2000	FCA	1 Project	GC085523	CTTAGGAC+GTAGGAGT	5,814,208	5,814,208	5,814,208 NA		1NA	151,682,423	1,174,470,016	1,129,817,062	44,881,213,892	38.21	0.96	0.04
1	191004 F	HiSeq2000	FCA	1 Project	GC085523_ID	CTGAAGCT+ATAGAGGC	17,079	17,079	17,079 NA		1NA	151,682,423	3,449,958	3,316,987	131,549,660	38.13	0.96	0
1	191004 H	HiSeq2000	FCA	1 Project	GC085524	ATCCGGTA+TATCGGTC	6,290,933	6,290,933	6,290,933 NA		1NA	151,682,423	1,270,768,466	1,221,984,994	48,547,800,901	38.20	0.96	0.04
1	191004 F	HiSeq2000	FCA	1 Project	GC085524_ID	CTGAAGCT+CCTATCCT	14,085	14,085	14,085 NA		1NA	151,682,423	2,845,170	2,757,522	109,110,362	38.35	0.97	0
1	191004 H	HiSeq2000	FCA	1 default	Undetermined	unknown	11,130,696	712,364,544	712,364,544 NA		1NA	151,682,423	2,248,400,592	2,030,960,115	82,104,595,067	36.52	0.9	0.07

SAMPLE	CLUSTER.COUN T.SUM.LANE	BASECALL.COUNT	YIELD.Q30.SUM	QSUM.SUM	BASECALL. QUAL.AVG	BASECALL.QUAL.ABO VE30.PERC	CLUSTER.CO UNT.PERC
GC085522	151,682,423	1,121,511,878	1,076,542,969	42,813,220,820	38.17	0.96	0.04
GC085522_ID	151,682,423	1,974,954	1,913,612	75,745,127	38.35	0.97	0
GC085523	151,682,423	1,174,470,016	1,129,817,062	44,881,213,892	38.21	0.96	0.04
GC085523_ID	151,682,423	3,449,958	3,316,987	131,549,660	38.13	0.96	0
GC085524	151,682,423	1,270,768,466	1,221,984,994	48,547,800,901	38.20	0.96	0.04
GC085524_ID	151,682,423	2,845,170	2,757,522	109,110,362	38.35	0.97	0
Undetermined	151,682,423	2,248,400,592	2,030,960,115	82,104,595,067	36.52	0.9	0.07

Outline

- Definitions
- FASTQ format
- Quality control
- Pre-processing

Example 1 – targeted capture sequencing

- Finding the genetic cause of a disease
 - ∘ ~ 6,000 genes
 - o Illumina PE 125 bp

Example 2 – targeted amplicon sequencing

- Fingerprinting of xenocrafts
 - ∘ 31 SNPs
 - o Illumina PE 150 bp

Example 3 – whole genome sequencing

- Predicting bacterial resistance
 - Whole Genome Sequencing (WGS)
 - Mycobacterium tuberculosis (BWGS)
 - o Illumina PE 300 bp

NGS workflow

 Example of targeted (capture) test

Need for quality control

- Complex workflow
- Cost efficient assay
- Ensure sequenced data is OK
 - o Enough data?
 - o Correct content ?
 - Good quality data?

Number of reads

Estimated mean coverage

FASTQ files – QC

- FastQC
 - Check Phred quality scores
 - Check GC content
 - Check read content

0 ...

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/https://multiqc.info

FastQC

Summary report

```
fastqc -o result sample.R1.fastq.gz
fastqc -o result sample.R2.fastq.gz
```

№FastQC Report

Summary

- Basic Statistics
- Per base sequence quality
- Per sequence quality scores
- Per base sequence content
- Per base GC content
- Per sequence GC content
- Per base N content
- Sequence Length Distribution
- Sequence Duplication Levels
- Overrepresented sequences
- **Example 1** Kmer Content

FastQC – Phred quality score by position

• Example 1 – targeted capture sequencing

R1

FastQC – Base content by position

• Example 1 – targeted capture sequencing

∘ G-C 25-26%

○ A-T 24-25%

R1

R2

FastQC – Base content by position

Example 2 – targeted amplicon sequencing

∘ G-C 25-27%

○ A-T 24-24%

FastQC – Over-represented sequences

 Example 2 – targeted amplicon sequencing

Overrepresented sequences

Sequence	Count	Percentage	Possible Source
GTGATCTCCAACTTTGACCTGACCGTCGCTTAGATCGGAAGAGCACACGT	92	5.2421652421652425	No Hit
CAGTGACACTAGTCTGCAACAACGCCACTTAGATCGGAAGAGCACACGT	88	5.014245014245014	No Hit
${\tt TTCCTCACCTGCCCTGACCGTCGCTTAGATCGGAAGAGCACACGTCTGAA}$	52	2.9629629629632	Illumina Multiplexing PCR Primer 2.01 (100% over 24bp)
TTCCTCACCTGCCACAAACGCCACTTAGATCGGAAGAGCACACGT	49	2.792022792022792	No Hit
${\tt CTCACATCAGCCTGACCTGACCGTCGCTTAGATCGGAAGAGCACACGTCT}$	31	1.7663817663817662	Illumina Multiplexing PCR Primer 2.01 (100% over 21bp)
${\tt CAGCCTCTGCTCTCACCTGACCTGACCGTCGCTTAGATCGGAAGAGCACA}$	26	1.4814814814816	No Hit
${\tt TTCCTCACCTGCCCTGCACTCAATCATCGTCTCCTAGATCGGAAGAGCAC}$	25	1.4245014245014245	No Hit
${\tt TTCCTCACCTGCCCTGCACTCTCCTCACCTCCACCTGCACTCTCCTCAC}$	22	1.2535612535612535	No Hit
${\tt CTCACATCAGCCTGACACAACTTAGGACCACTTGAATAGAGAGCCTCAGT}$	22	1.2535612535612535	No Hit
${\tt TTCCTCACCTGCCCTGCACTCTCCTCACCTCCTGCACTCAATCATC}$	21	1.1965811965811968	No Hit
${\tt GACCAGAAGAACCTGACCTGACCGTCGCTTAGATCGGAAGAGCACACGTC}$	21	1.1965811965811968	No Hit
${\tt CTCACATCAGCCTGACCGTCGCTTAGATCGGAAGAGCACACGTCTGAACT}$	19	1.0826210826210827	Illumina Multiplexing PCR Primer 2.01 (100% over 26bp)
${\tt TCCTCCCTCTTGATGTGACCGTCGCTTAGATCGGAAGAGCACACGTCTGA}$	14	0.7977207977207977	Illumina Multiplexing PCR Primer 2.01 (100% over 23bp)
${\tt GTACAGCTGCACTGTGAAGATCGGAAGAGCACACGTCTGAACTCCAGTCA}$	14	0.7977207977207977	Illumina Multiplexing PCR Primer 2.01 (100% over 33bp)
${\tt TTCCTCACCTGCCCTGCACCATGAATGTTTTTTATAAAAAGGCTGTTGGC}$	12	0.6837606837606838	No Hit
${\tt AGGTAAGTGACAGTTTGCTCATGGGAAAGGAGATAGATCGGAAGAGCACA}$	12	0.6837606837606838	No Hit
${\tt GTGATCTCCAACTTTGACCGTCGCTTAGATCGGAAGAGCACACGTCTGAA}$	11	0.6267806267806267	Illumina Multiplexing PCR Primer 2.01 (100% over 24bp)
${\tt CAAGAGCTCAGAGGAGGAAGCTGTCAGAGATCGGAAGAGCACACGTCTGA}$	11	0.6267806267806267	Illumina Multiplexing PCR Primer 2.01 (100% over 23bp)
${\tt TTTGTACTTGTACCTGACCGTCGCTTAGATCGGAAGAGCACACGTCTGAA}$	11	0.6267806267806267	Illumina Multiplexing PCR Primer 2.01 (100% over 24bp)
${\tt CTCACATCAGCCTGACACTTTAAGTCGGGAGTCAGAAAGTACCCAAGGAG}$	9	0.5128205128205128	No Hit
${\tt TTGGTGTACATGTGTTGTGTGTGTGTGGGGGGAAGTTGAGTAGATCG}$	9	0.5128205128205128	No Hit
${\tt TTCCTCACCTGCCCTGCACTCGATAATTCAATACATAATATTCAATAATT}$	9	0.5128205128205128	No Hit
${\tt GTACAGCTGGTACAAGAACCAGATCGGAAGAGCACACGTCTGAACTCCAG}$	9	0.5128205128205128	Illumina Multiplexing PCR Primer 2.01 (100% over 30bp)
${\tt TTCCTCACCTGACCTGACCGTCGCTTAGATCGGAAGAGCACACGTCTGAA}$	8	0.4558404558404558	Illumina Multiplexing PCR Primer 2.01 (100% over 24bp)
${\tt TTGGTGTACATGTGTTGTGTGTGTGGGGGGAAGTTGAGTAGATCGGAAG}$	8	0.4558404558404558	No Hit
${\tt CATCTGCATGGTGATCCTGGGCTCTGTAGTGGTGGCTGCAAAGAGGTGCT}$	8	0.4558404558404558	No Hit
${\tt CATTTCCATTGCCAACCGAGTCCATTGTGCACAGTATGAAGACAGCACAT}$	8	0.4558404558404558	No Hit
${\tt GATGTTCAGGCATTCCCAGTTAGGTGAGTAAACCCTTGATCAGTCACTAT}$	7	0.39886039886039887	No Hit
${\tt AGGTAAGTGACAGTTTGCTCAGGGAAAGTGTGAGATTGGATTCTTTAAAC}$	7	0.39886039886039887	No Hit
${\tt TGGCCTTGACAAACAGATCGGAAGAGCACACGTCTGAACTCCAGTCACAG}$	7	0.39886039886039887	TruSeq Adapter, Index 2 (97% over 35bp)
${\tt TTCCTCACCTGCCCTGCACTCTCCTCACCTCCACCTCCACCTCCACCC}$	7	0.39886039886039887	No Hit
${\tt ACACTGGGCTAGACACTCGTATGGTTGTATGGGGTTTCTCTTAGAGA}$	7	0.39886039886039887	No Hit
${\tt TTTGTACTTGTACCTGGGCGCATCGTTCATTTTTCAGTTGTGGATAGCAC}$	7	0.39886039886039887	No Hit
${\tt AAGAGCCTGACCGTCGCTTAGATCGGAAGAGCACACGTCTGAACTC}$	6	0.3418803418803419	Illumina Multiplexing PCR Primer 2.01 (100% over 27bp)

FastQC – Over-represented sequences

Example 2 – targeted amplicon sequencing

- Compare reads to various libraries
- Any library can be searched against
- Output proportion of reads with hit(s) to libraries

```
fastq_screen --subset 100000 --conf fastq_screen.conf --aligner bowtie2 --
outdir result --nohits sample.R1.fastq.gz
```

https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/

• Example 1 – targeted capture sequencing

• Example 2 – targeted amplicon sequencing

- Taxonomic sequence classification system
 - Build (custom) database
 - Compare k-mer from reads to database

```
kraken2-build --download-taxonomy --db database
kraken2-build --download-library library --db database
kraken2-build --build --db database --minimizer-spaces 0
kraken2 --db database --paired sample.R1.fastq.gz sample.R2.fastq.gz -
report kraken2Report.txt --use-names > kraken2.output.txt
```

https://ccb.jhu.edu/software/kraken2/

• Example 3 – bacterial WGS

_	Fragments	_		NCBI	
•		assigned to R	Rank code		scientific name
clade (%)	clade	taxon		ID	
0.04	243	243 U		0	unclassified
99.96	632527	0 R		1	root
99.96	632527	0 R 2	1	131567	cellular organisms
99.96	632491	121 D		2	Bacteria
99.55	629954	1 D:	1	1783272	Terrabacteria group
99.53	629777	0 P		201174	Actinobacteria
99.53	629777	17 C		1760	Actinobacteria
99.52	629754	200		85007	Corynebacteriales
99.52	629733	74 F		1762	Mycobacteriaceae
99.51	629657	5911 G		1763	Mycobacterium
98.56	623663	5295 G	1	77643	Mycobacterium tuberculosis complex
97.69	618141	613920S		1773	Mycobacterium tuberculosis
0.04	227	785		78331	Mycobacterium canettii
0.01	37	35 S		1768	Mycobacterium kansasii
0.03	176	0 P		1239	Firmicutes
0.03	176	0 C		91061	Bacilli
0.03	172	00		186826	Lactobacillales
0.03	172	0 F		1300	Streptococcaceae
0.03	172	7G		1301	Streptococcus
0.03	161	155 S		1313	Streptococcus pneumoniae
0	2	15		28037	Streptococcus mitis
0	1	0\$		257758	Streptococcus pseudopneumoniae

Outline

- Definitions
- FASTQ format
- Quality control
- Pre-processing

Pre-processing?

- Process FASTQ files prior to further analysis
 - Remove reads from other species
 - Trim adapters
 - Clip low quality bases
 - Merge overlapping reads from same DNA fragment

0 ...

Clipping & trimming

- Sequencing adapters and primers
- Poor quality bases at the ends of reads
- Ns from ends of reads
- Remove low complexity reads

```
fastq-mcf -H -X -o sample_filtered.R1.fastq.gz -o
/sample filtered.R2.fastq.gz adapters.fa sample.R1.fastq sample.R2.fastq
```

https://github.com/ExpressionAnalysis/ea-utils/blob/wiki/FastqMcf.md

Adapter clipping & trimming

- Example 2 targeted amplicon sequencing
 - Input
 - 2 fastq files of 1,834 reads each
 - Outputs
 - 2 fastq files of 1,801 reads each
 - List of adapter found

Total reads: 1801

Too short after clip: 33


```
Adapter TruSeq_Adapter_Index_1 : counted 1038 at the 'end' of 'sample.R1.fastq' ...

Adapter Illumina_Single_End_Sequencing_Primer_3p : counted 1046 at the 'end' of 'sample.R2.fastq'
```

Adapter clipping & trimming

Example 2 – targeted amplicon sequencing

■ Multiple hits to multiple libraries

■ One hit to multiple libraries

■ Multiple hits to one library

■ One hit to one library

Merge overlapping reads

- Merge paired-end reads
- Keep DNA insert only


```
flash2 --max-overlap=250 --min-overlap=20 --allow-outies -d result -o
sample.flashed sample.R1.fastq.gz sample.R2.fastq.gz > flash.log
```

https://github.com/dstreett/FLASH2

Merge overlapping reads

- Merge paired-end reads
- Keep DNA insert only


```
flash2 --max-overlap=250 --min-overlap=20 --allow-outies -d result -o
sample.flashed sample.R1.fastq.gz sample.R2.fastq.gz > flash.log
```

https://github.com/dstreett/FLASH2

Read selection

Select reads from sequenced organism

Fragments	Fragments	Fragments	NCBI	
covered by	covered by	assigned to Rank code	taxonomic	scientific name
clade (%)	clade	taxon	ID	
99.52	629733	74 F	1762	Mycobacteriaceae
99.51	629657	5911G	1763	Mycobacterium
98.56	623663	5295 G1	77643	Mycobacterium tuberculosis complex
97.69	618141	613920S	1773	Mycobacterium tuberculosis
0.04	227	78\$	78331	Mycobacterium canettii
0.01	37	35 S	1768	Mycobacterium kansasii

```
grep "organism" kraken2.output.txt | cut -f2 > reads.list
seqtk subseq sample.R1.fastq.gz reads.list | gzip - >
sample.selected.R1.fastq.gz
seqtk subseq sample.R2.fastq.gz reads.list | gzip - >
sample.selected.R2.fastq.gz
```

https://ccb.jhu.edu/software/kraken2/ https://github.com/lh3/seqtk

Summary

- Quality control can be done at the raw data level
- Pipeline has to be tailored for analysis
- Pre-processing might be required depending on the analysis

Questions?

Erika Souche

