ASSIGNMENT -2 Python Programming

Team ID	PNT2022TMID14463
Project Name	Real Time Communication System Powered By AI For Specially Abled
Roll No	711319EC111

Question-1:

1. Importing Required Package

Solution:

```
import pandas as pd
import seaborn as sns
import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline
```

Question-2:

2. Loading the Dataset

Solution:

```
df = pd.read_csv("/content/Churn_Modelling.csv")
df
```


3. Visualizations

Question-3:

3.1 Univariate Analysis

Solution:

sns.displot(df.Tenure)

Output:

3.2 Bi-Variate Analysis

Solution:

df.plot.line()

Output:

3.3 Multi - Variate Analysis

Solution:

```
sns.lmplot("Age", "NumOfProducts", df, hue="NumOfProducts", fit reg=False);
```

Output:

4. Perform descriptive statistics on the dataset.

Question-4:

Solution:

df.describe()

Output:

5. Handle the Missing values.

Question-5:

Solution:

```
data = pd.read_csv("Churn_Modelling.csv")
pd.isnull(data["Gender"])
```

Output:

Question-6:

6. Find the outliers and replace the outliers.

Solution:

```
df["Tenure"] = np.where(df["Tenure"] >10, np.median,df["Tenure"])
df["Tenure"]
```

Output:

Question-7:

7. Check for Categorical columns and perform encoding.

Solution:

```
pd.get_dummies(df, columns=["Gender", "Age"], prefix=["Age", "Gender"]
).head()
```

Output:

	RoyMumber	CustomerId	Surnane	CreditScore	Geography	Tenure	Balance	MumOfProducts	HasCrCard	IsActiveMember	+++	Gender_78
0		15634602	Hargrave	619	France	2	0.00		4	4	1	
1	2	15647311	Hill	608	Spain	1	83807.66	. 1	0	-1		71
2	- 1	15619304	Onio	502	France		159660.80	3	7	0	-	1
3	- 4	15701354	Болі	699	France	1	0.00	2	0	0		- 0
4	5	15737888	Mitchell	850	Spain	2	125510.62		1	4		1

Output:

Question-8:

- 1. Split the data into dependent and independent variables
- 1. Split the data into Independent variables.

Solution:

```
X = df.iloc[:, :-2].values
print(X)
```

```
[: [[1 15634681 'Hargrave' ... 1 1 1]

[2 15647311 'Hill' ... 1 8 1]

[3 15619384 'Cnio' ... 2 1 8]

...

[9998 15384532 'Liu' ... 1 8 1]

[9999 15882355 'Sabbatini' ... 2 1 8]

[18888 1582355 'Malker' ... 1 1 8]]
```

8.2 Split the data into Dependent variables.

Solution:

```
Y = df.iloc[:, -1].values
print(Y)
```

Output:

```
D- [1 0 1 ... 1 1 0]
```

Question-9:

9. Scale the independent variables

Solution:

```
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df[["RowNumber"]] = scaler.fit_transform(df[["RowNumber"]])
print(df)
```

```
| Table | Tabl
```

Question-10:

10. Split the data into training and testing

Solution:

```
from sklearn.model_selection import train_test_split
train_size=0.8

X = df.drop(columns = ['Tenure']).copy()
y = df['Tenure']
X_train, X_rem, y_train, y_rem = train_test_split(X,y, train_size=0.8)
test_size = 0.5
X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem, test_size=0.5)
print(X_train.shape), print(y_train.shape)
print(X_valid.shape), print(y_valid.shape)
print(X_test.shape), print(y_test.shape)
```

```
C- (8000, 13)
(8000,)
(1000, 13)
(1000,)
(1000,)
(1000,)
(Mone, None)
```

TEAM LEADER: S.THARANI

TEAM MEMBERS:

1. K.V.SUNSHETHA

2. L.P.SINDHUJA

3. S.SRINIVASAN

TEAM ID: PNT2022TMID14463