

Knaspsack Problem aproximado

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Problema de la mochila

Sea

Conjunto de n items $X = \{x_1, ..., x_n\}$

Cada item x_i contiene un valor v_i y un peso w_i

Mochila de tamaño W

Deseamos

Encontrar un subset $S \subseteq X$

tal que

la suma de los pesos de los elementos en S no supere W

Y la suma del valor de los elementos en S sea el máximo

Soluciones

Mediante programación dinámica

Hemos logrado un algoritmo pseudopolinomial O(nW)

Se ha demostrado

Que corresponde a un problema NP-Completo

Por lo que (A menos que P=NP)

No podemos encontrar un algoritmo de resolución totalmente polinomial

Si W y N es muy grande

El problema se torna intractable

Una solución aproximada...

Propondremos

Un algoritmo de aproximación

De tipo

Esquema de aproximación en tiempo polinómico

Utilizaremos un parámetro

ε que nos permitirá determinar la precisión deseada

Se ejecutara

En tiempo polinómico

Como parte de su ejecución

Utilizará programación dinámica

Una solución parametrizada y acotable

La solución de aproximación

Nos retornará un subconjunto de elementos S

Que no supere

Entre ellos el peso W

Con un valor total V

Que es igual o menor al valor máximo óptimo

Fijaremos el parámetro ε

para acotar la diferencia máxima entre el valor encontrado y el óptimo

Programación dinámica (recargada)

Necesitamos que el algoritmo

De programación dinámica utilice para hallar el optimo el Valor (y no el peso)

De esa forma podremos ajustar el parámetro V

Según nuestra conveniencia para aproximar el resultado

El algoritmo dividirá el problema

En subproblemas que se superponen para memorizar y evitar repetir cálculo

Subproblemas

Llamaremos

OPT(i,V)

Al subproblema de determinar

El menor peso que se puede obtener con los primeros i items cuyo valor iguale o supere el valor de al menos V en la mochila

Se calculará el subproblema para

$$V=0,...,V_{max}$$

Con
$$V_{max} = \sum_{j=1}^{n} v_j$$
 Valor equivalente a incluir todos los elementos en la mochila

Casos base

Para obtener un valor v=0

No hace falta poner ningún elemento

$$OPT(i,v)=0$$
, $v\leq 0$

Si tengo cero elementos

No puedo lograr ningún valor

(excepto si el valor es 0: Corresponde al caso anterior)

Para expresar la imposibilidad utilizaremos el ∞

(o un peso mayor la suma de los pesos de todos los elementos)

$$OPT(v,i) = \infty$$
 , $v>0$ $i=0$

Solapamiento de subproblemas

En un subproblema genérico OPT(i,v)

Pueden ocurrir 2 casos

Que el i-esimo problema no se encuentre en la solución

En ese caso buscamos el menor peso en lograr el valor v con los i-1 elementos anteriores → OPT(i-1,v)

Que el i-esimo problema se encuentre en la solución

En ese caso sumamos a la mochila W_i de pesos y el menor peso para valor $v-v_i$ con los i-1 elementos \rightarrow OPT $(i-,v-v_i)$

Como se desea minimizar el peso de la mochila

el optimo contendrá el menor de los 2 casos

Recurrencia

Podemos expresar la relación de recurrencia como

Una vez que

tengo resueltos todos los subproblemas

El valor que maximiza el problema sera

El mayor u con u=0,..., v_{max} que cumpla que OPT(n,u) ≤ W

Pseudocódigo

Complejidad

Temporal: O(nV_{max})

Espacial: O(nV_{max})

Para recobrar los elementos seleccionados

Debo almacenar para cada caso si se selecciono o no que el elemento esté en el optimo

Iterar desde el optimo para atrás reconstruyendo

```
Desde i=0 a n
    OPT[i][0] = 0
Desde v=1 a Vmax
    OPT[0][v] = +\infty
Desde i=1 a n // elementos
    Desde v=1 a Vmax // valores
         enOptimo = w[i] + OPT[i-1, v-v[i]]
         noEnOptimo = OPT[i-1,v]
         si enOptimo < noEnOptimo
              OPT[l][p] = enOptimo
         sino
              OPT[l][p] = noEnOptimo
Desde v=Vmax a 0
    si OPT[n,v]<=W
         retornar OPT[n,v]
```


Acotando de forma mas conveniente

Si llamamos

 $v^* = max\{V_i\} con 0 < i \le n$

Podemos acotar

$$V_{max} = \sum_{j=1}^{n} v_j \leq nv^*$$

Por lo tanto

La complejidad de la programación dinámica sera O(n²v*)

(esta forma de expresarlo será ventajosa más adelante)

Lo que tenemos hasta ahora...

La solución es pseudo polinomial

Parámetro de redondeo

Utilizaremos

El parámetro b de redondeo

Para cada item i

Calcularemos $\underline{v}_i = [v_i / b]^* b$

Todos los valores de items resultantes

Son múltiplos de b \rightarrow $v_i \leq \underline{v}_i \leq v_i + b$

Ejemplo:

b=20	X ₁	X ₂	X ₃
V _i	126	37	413
<u>V</u> i	140	40	420
\overline{v}_{i}	7	2	21

Podemos resolver mediante programación dinámica utilizando

$$\overline{v}_i = [v_i / b]$$

← nos asegura que sean valores enteros

No quedará v* mas pequeño

Resolución del parámetro

Resolveremos el problema

Utilizando los nuevos valores vi

El resultado obtenido

tiene el mismo set de elementos óptimos que utilizando vi (mismo peso y un difieren en un factor de b)

Obtenemos los elementos de la solución aproximada

Su valor real será menor o igual al obtenido

Elección del parámetro b

Utilizaremos

ε para generar el parámetro b,

Con $0 < \varepsilon \le 1$

Y por comodidad ε-1 un número entero

Un valor conveniente de b

$$b = \varepsilon v^* / 2n$$

(esta elección nos servirá para las próximas demostraciones)

Pseudocodigo

Obtener vmax Definir b = $\varepsilon \text{ vmax} / 2n$ Para cada elemento i Calcular vi con b Resolver con programación dinámica con valores vi Retornar el set de elementos encontrados

Complejidad temporal global

La programación dinámica se ejecuta en O(n2v*)

Con $v^* = max\{V_i\} con 0 \le i \le n$

Si el item j es el de máximo valor

Entonces $v^* = \overline{v_j} = [v_j / b]$

Siendo que $b = \epsilon v^* / 2n$

Entonces $v^* = 2n\varepsilon^{-1}$

Todo el proceso

será O(n³e-1)

Para un valor fijo de ε ε l algoritmo se ejecuta en tiempo polinomial (!)

Margen de la aproximación

Llamaremos

S* cualquier una solución que satisface $\sum_{i \in S^*} w_i \leq W$

El algoritmo aproximado encuentra la solución optima S

Para los valores \underline{v}_i aproximados (fueron redondeados para arriba)

Si este fuese el máximo valor posible

$$OPT(S) = \sum_{i \in S} \underline{v_i} \ge \sum_{i \in S^*} \underline{v_i}$$

Se puede ver que

$$\sum_{i \in S^*} v_i \le \sum_{i \in S^*} \underline{v_i} \le \sum_{i \in S} \underline{v_i} \le \sum_{i \in S} b + v_i \le nb + \sum_{i \in S} v_i$$

Por redondeo

Por ser optima por $v_i \le \underline{v}_i \le v_i + b$ la aproximación

Si Todos los elementos están en la solución

$$\sum_{i \in S^*} v_i \le nb + \sum_{i \in S} v_i$$

(!) La solución encontrada es como mucho nb menor al máximo valor posible

Expresando en función de ε

Como b = ε v* / 2n

$$nb + \sum_{i \in S} v_i = \frac{\varepsilon}{2} v * + \sum_{i \in S} v_i$$

Entonces

$$\sum_{i \in S^*} v_i \leq \frac{\varepsilon}{2} v^* + \sum_{i \in S} v_i$$

Como cualquier item entra en la mochila

Una posible solución $S^* = \{x_i\}$ con $v_i = v^*$

$$v^* \le \frac{\mathcal{E}}{2} v^* + \sum_{i \in S} v_i \le \frac{v^*}{2} + \sum_{i \in S} v_i \longrightarrow \frac{v^*}{2} \le \sum_{i \in S} v_i \longrightarrow v^* \le 2 \sum_{i \in S} v_i$$

Unificando

$$\sum_{i \in S^*} v_i \leq \frac{\varepsilon}{2} v^* + \sum_{i \in S} v_i \leq \frac{\varepsilon}{2} \left(2 \sum_{i \in S} v_i \right) + \sum_{i \in S} v_i \qquad \sum_{i \in S^*} v_i \leq \left(1 + \varepsilon \right) \sum_{i \in S} v_i$$

Conclusión

Si

S es la solución encontrara por el algoritmo de aproximación

S* es cualquier otra solución factible

Entonces

$$\sum_{i \in S^*} v_i \leq (1 + \varepsilon) \sum_{i \in S} v_i$$

Por lo tanto,

Para cualquier ε >0, la solución aproximada encuentra una solución factible cuyo valor esta dentro de un factor (1+ ε) de la solución óptima

Y lo realiza en tiempo polinomial O(n³ε-1)

Presentación realizada en Julio de 2020