

Birla Institute of Technology & Science, Pilani Hyderabad Campus

SECOND SEMESTER 2022-23

Course Handout (Part II)

MSE G531 Concurrent Engineering

Course Title CONCURRENT ENGINEERING		
Course No(s) MSE G531		
Instructor-In-Charge PIYUSH CHANDRA VERMA		
Version Number	П	
Date	2022-23	

Course Description:

Introduction of concurrent engineering and need, concurrent engineering tools, advances in design and manufacturing engineering, design for manufacture, design for assembly, rapid prototyping, simulation, concurrent approaches to design, manufacturing and other aspects of engineering.

Course Objectives:

Teach the students the philosophy, perspectives and methodology of concurrent engineering Provides basic functional knowledge of product development and concurrent engineering from a cross functional perspective, to be able to manage quality during all stages of the life-cycle Provide the information relevant to implementation of concurrent engineering practices.

Text Book(s):

T1	Kevin Otto and Kristin Wood, Product Design: Techniques in reverse engineering and new product
	development, 1/e, Pearson Education, New Delhi, 2004.

Reference Book(s) & other resources:

R1	Dieter Schmidt, Engineering Design, 4th Edition, McGraw Hill				
R2	Product design for manufacture and assembly, Boothroyd,, Dewhurst, Knight, Third Edition, CRC				
R3	Design for Manufacturability: How to Use Concurrent Engineering to Rapidly Develop Low-Cost, High-Quality Products for Lean Production by David M. Anderson Productivity Press (c) 2014 24x7 online				
R4	Syan., C.S. & Menon, U., (Eds), Concurrent Engineering: Concepts, Implementation and Practice, Chapman & Hall, London, 1994				
R5	Kusiak, A., (Ed), Concurrent Engineering: Automation, Tools, and Techniques, John Wiley and Sons, New York, 1993				
R6	Huang G.Q. (Ed.), Design for X - Concurrent Engineering Imperative, Chapman and Hall, London, 1996				

LEARNING OUTCOMES

LO1	Understand the motivation behind concurrent engineering and apply the principles methods to Improve quality
LO2	Analyze the quality requirements for a product and be able to implement the procedures for attainment and control of quality at different stages in the development and service life-cycle
LO3	Analyze and evaluate the design and process from various perspectives –robustness, reliability, manufacturability, assembly, disassembly, serviceability, environment-friendliness and suggest improvements
LO4	Evaluate and assess the economic aspects in concurrent design process
LO5	Work and meaningfully contribute in cross functional teams for concurrent engineering

Content Structure:

S. No.	Contact Hour	List of Topic Title	Sub-Topics	Reference
1	1-2	Introduction to CE	Definition, basic principles, Benefits and pitfalls Design maturity, Integrating Mechanisms	Lecture 1 Slides
2	3-4	Quality Function Deployment	House of quality OFD philosophy Case studies	T1-Ch.7, Lecture 2 Slides
3	5-6	Robust design	IntroductionTaguchi methodsExamples	R1-Ch.15 Lecture 3 Slides
4	7-8	DFM and its importance in CE	Introduction to DFM Manufacturing process selection Value analysis DFM guidelines	T1-Ch.14, R1-Ch.13, Lecture 4 Slides
5	9-10	Poka Yoke and Manufacturability	 Introduction Poka Yoke Manufacturability Analysis 	T1-Ch.14, R1-Ch.13, Lecture 5 Slides
6	11-12	Design For Assembly	 DFA guidelines Various Techniques: Boothroyd Various Techniques: Lucas 	T1-Ch.14, R1-Ch.13, R2, Lecture 6 Slides
7	13-14	Rapid Prototyping	Introduction Role of prototyping in CE Need and use of RP RP techniques	T1-Ch.17, Lecture 7 Slides
8	15-16	Design for Reliability	Introduction to DFR Reliability fundamentals Reliability analysis during design General 'Design for Reliability' principles /FMEA/ Safety	R1-Ch.14, Lecture 8 Slides

9	17-18	Design for serviceability, maintainability, and reparability	 Design for serviceability Factors affecting serviceability Service modes Serviceability evaluation 	Lecture 9 Slides
10	19-20	Design for disassembly	IntroductionDesign for disassembly methodologies	T1-Ch.15, Lecture 10 Slides
11	21-24	Design for Environment	 Introduction Environmental issues in design LCA Eco-Design 	T1-Ch.15, Lecture 11 Slides
12	25-27	Economic aspects in CE	IntroductionBEPNPVExamples	R1-Ch.16 Lecture 12 Slides
13	28-30	Product Development scope	IntroductionMission StatementCustomer Needs and satisfaction	T1-Ch. 3,4 Lecture 13 Slides
14	31-33	Decomposition in CE	 Introduction Functional Decomposition Function trees and Function Structures 	T1-Ch. 5, Lecture 14 Slides
15	34-36	Product Architecture	IntroductionTypes of architectureTypes of modularity	T1-Ch. 9, Lecture 15 Slides
16	37-40	Concept Generation and Evaluation	 Introduction Concept generation methods Concept evaluation methods 	T1-Ch. 10,11, Lecture 15 Slides

Evaluation Scheme:

Legend: EC = Evaluation Component; AN = After Noon Session; FN = Fore Noon Session

Evaluation Component	Name (Quiz, Lab, Project, Mid- term exam, End semester exam, etc.)	Type (Open book, Closed book, etc.)	Weight	Duration	Day, Date, Session, Time
	Quiz-I	Open Book	5%	60 mins	February 1 to 15, 2023
	Quiz-II	Open Book	5%	60 mins	April 1 to 15, 2023
1. (EC-1)	Literature Survey/ Research Summaries.	Open Book	10%	120 mins	23 rd Jan – 30 th April 2023 (Every two Weeks)
	Laboratory Component/ Seminar and Presentation.	Open Book	20%	120 mins	23 rd Jan – 30 th April 2023 (Every Week)
2. (EC-2)	Mid-Semester Test	Closed Book	25%	90 mins	15/03 11.30 - 1.00PM
3. (EC-3)	Comprehensive Exam	Closed Book	35%	180 mins	12/05 AN

Syllabus for Mid-Semester Test (Closed Book): To be announced Syllabus for Comprehensive Exam (Open Book): To be announced

Important links and information:

<u>Contact sessions:</u> Students should attend the lectures as per the schedule provided on the erp portal. <u>Evaluation Guidelines:</u>

- 1. EC-1 consists of either two quizzes. Announcements will be made on the portal, in a timely manner.
- 2. For Open Book exams: Use of books and any printed / written reference material (filed or bound) is permitted. However, loose sheets of paper will not be allowed. Use of calculators is permitted in all exams. Laptops/Mobiles of any kind are not allowed. Exchange of any material is not allowed.
- 3. For Closed Book tests: No books or reference material of any kind will be permitted.

It shall be the responsibility of the individual student to be regular in maintaining the self-study schedule as given in the course handout, attend the lectures, and take all the prescribed evaluation components such as Assignment/Quiz, Mid-Semester Test and Comprehensive Exam according to the evaluation scheme provided in the handout.

Academic Honesty and Integrity Policy: Academic honesty and Integrity are to be maintained by all the student's throughput the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge

(MSE G531)