Não destacar as folhas

Trabalhar com 4 casas decimais

RA: Nome:

Questão 1	Questão 2	Questao 3	Questão 4	Total	

- Q.1: Considere a função $f(x) = 4\cos(x) e^x$. Esta função admite apenas uma raiz positiva no intervalo [0, 1] e infinitas raízes negativas.
 - a)(1.5) Faça $x_0 = -3.0$ e realize 3 iterações completas do método de Newton, considerando tolerância 10⁻³ para realizar o teste de parada com valor de função.
 - b)(1.5) A solução: $\bar{x} = 0.9048$, com $f(\bar{x}) = -6.62 * 10^{-5}$, é obtida prosseguindo com as iterações de Newton realizadas no item (a), totalizando 7 iterações. Justifique teoricamente o desempenho do método, considerando o chute inicial que foi escolhido, a solução obtida e o número de iterações realizadas.
- Q.2: A tabela seguinte apresenta os valores de uma função contínua f nos pontos $x \in R$ dados:

X	-1.7	-1.5	-1.3	0.5	0.8	1.2	1.5	1.7	1.9	2.3	2.5
f(x)	-6.99	-4.38	-2.28	1.13	0.432	-0.352	-0.625	-0.567	-0.261	1.29	2.63

- a)(0.5) Localize intervalos disjuntos onde você possa afirmar que há pelo menos uma raiz real da equação f(x) = 0. Justifique.
- b)(0.75) É possível afirmar, a partir desta tabela, que a raiz é única em cada intervalo que você localizou no item (a)? Justifique.
- c)(0.75) Supondo que a função tabelada é um polinômio de grau 3, qual a resposta para o item (b)? Justifique.
- Q.3: Considere o sistema linear Ax = b dado por: $\begin{pmatrix} 1 & 4 & 2 \\ 2 & 2 & 3 \\ 8 & 0 & 8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 5/8 \\ 5/4 \\ 1 \end{pmatrix}$.
 - a)(1.5) Resolva este sistema usando fatoração LU com estratégia de pivoteamento parcial. Exiba as matrizes L e U e a matriz de permutação (ou as permutações) de A.
 - b) Considere um sistema linear Ax = b, onde A é uma matriz $n \times n$, e sua fatoração LU. Responda cada afirmação abaixo com Verdadeiro ou Falso e justifique sua resposta:
 - b1) (0.5) Se A é não inversível, então det(L) = 0.
 - b2) (0.5) Usando a estratégia de pivoteamento parcial garante-se que todos os elementos (em módulo) de L são menores ou iguais a 1.

• Q.4: Considere o sistema linear:
$$\begin{cases} x_1 - x_2 - 4x_3 + x_4 = 4 \\ x_2 + 2x_3 + 4x_4 = 17 \\ 2x_1 + 4x_2 - x_3 = 6 \\ -5x_1 + x_2 + x_3 + 2x_4 = 4 \end{cases}$$

- a)(1.0) Monte o esquema iterativo para o método de Gauss-Jacobi, de modo que a convergência do processo seja garantida. Justifique.
- b)(1.5) Obtenha a aproximação $x^{(2)}$ através deste método, e realize um teste de parada usando tolerância 10^{-2} .