Complete Non-Computable Function Guide: Solve ANY Exercise

Universal Truth: Only Two Methods Exist

Every non-computable function exercise uses exactly one of these:

- 1. **Diagonalization**: Build $f(x) \neq \phi_x(x)$ for all x
- 2. χ_k **Method**: Use characteristic function of halting set

Phase 1: Instant Pattern Recognition (30 seconds)

Read the question and classify:

Type A: Build total non-computable function with [constraints] → Use Diagonalization

Type B: Function with infinite equality property (f(x) = f(x+1) infinitely, etc.) \rightarrow Use χ_k

Type C: Prove given function is non-computable \rightarrow Use χ_k Reduction

Type D: Composition/arithmetic properties \rightarrow Use χ_k or Modified Diagonalization

Phase 2: Mechanical Execution

METHOD 1: DIAGONALIZATION (Most Common)

Universal Template

```
javascript

f(x) = \{ \\ modify(\phi_x(x)) & if \phi_x(x) \downarrow \\ constant & if \phi_x(x) \uparrow \}
```

Step-by-Step Process:

Step 1: Choose modification function

- Basic case: φ�x(x) + 1
- For constraints: map to required codomain

Step 2: Choose constant

- Default: 0
- For constraints: value in required codomain

Step 3: Verify $f(x) \neq \phi_x(x)$ always

```
• Case 1: \phi_x(x) \downarrow \rightarrow f(x) = \text{modified} \neq \phi_x(x) \checkmark
```

• Case 2: $\phi_x(x) \uparrow \rightarrow f(x) = constant \neq \uparrow \checkmark$

Complete Examples for All Constraint Types:

A1. Basic (no constraints)

```
javascript f(x) = \{ \\ \varphi_x(x) + 1 & \text{if } \varphi_x(x) \downarrow \\ 0 & \text{if } \varphi_x(x) \uparrow \}
```

A2. Codomain = {0,1}

```
javascript
f(x) = \{ \\ sg(\phi_x(x)) & \text{if } \phi_x(x) \downarrow \\ 0 & \text{if } \phi_x(x) \uparrow \end{cases}
```

Note: sq(y) = 0 if y=0, 1 if y>0

A3. Image = $\mathbb{N}\{0\}$ (exclude zero)

```
javascript f(x) = \{ \\ \phi_x(x) + 1 & \text{if } \phi_x(x) \downarrow \\ 1 & \text{if } \phi_x(x) \uparrow \}
```

A4. Image = $\{2^n \mid n \in \mathbb{N}\}$ (powers of 2)

```
javascript f(x) = \{ \\ 2^{(\phi_x(x)+1)} & \text{if } \phi_x(x) \downarrow \neq \emptyset \\ 2 & \text{if } \phi_x(x) \uparrow \text{ OR } \phi_x(x) = \emptyset \}
```

A5. Image = Primes

```
javascript

f(x) = {
    next_prime_after(φ<sub>x</sub>(x)) if φ<sub>x</sub>(x) ↓
    2 if φ<sub>x</sub>(x) ↑
}
```

A6. f(x) = x for infinitely many x

```
javascript
f(x) = \{ \\ \phi_x(x) + 1 & \text{if } x \in W_x \\ x & \text{if } x \notin W_x \end{cases}
```

Key: \emptyset has infinitely many indices $\rightarrow x \notin W_x$ infinitely often

A7. f returns 0 when x even

A8. Domain \cap Codomain = \emptyset

 $Domain = odd\ numbers,\ Codomain = \{0,2\}$

A9. Finite codomain with constraints

Ensures codomain \subseteq {1,2,...,k}

METHOD 2: χ_k (Characteristic Function of K)

When to Use χ_k :

- "f(x) = f(x+1) infinitely often"
- "Prove function g is non-computable"
- "{0,1} codomain with specific properties"
- "Almost total" functions

χ_k Definition:

```
javascript  \chi_{k}(x) = \{ \\ 1 \quad \text{if } \varphi_{x}(x) \downarrow (x \in K) \\ 0 \quad \text{if } \varphi_{x}(x) \uparrow (x \notin K) \}
```

Complete Examples:

```
B1. f(x) = f(x+1) infinitely often Answer: f = \chi_k
```

Proof: If $\{x \mid \chi_k(x) = \chi_k(x+1)\}$ were finite with max d, then:

- For x > d: $\chi_k(x+1) = sq(\chi_k(x))$
- Define χ_k by primitive recursion \rightarrow computable \rightarrow contradiction!

B2. Prove $g(x) = \{2x+1 \text{ if } \phi_x(x) \downarrow; 2x-1 \text{ if } \phi_x(x) \uparrow\} \text{ non-computable}$

```
javascript
\chi_k(x) = sg(|g(x) - 2x|)
```

If g computable $\rightarrow \chi_k$ computable \rightarrow contradiction

B3. Almost total function

If f computable & almost total \rightarrow can compute $\chi_k \rightarrow$ contradiction

METHOD 3: COMPOSITION/ARITHMETIC PROPERTIES

C1. f + g computable but f,g non-computable

Answer: $f = \chi_k$, $g = \chi_k$. Then f + g = 1 (constant, computable)

C2. f • g computable but g non-computable

Example: $\mathbf{g} = \mathbf{\chi}_{\mathbf{k}'} \mathbf{f}(\mathbf{x}) = \mathbf{0}$ for all \mathbf{x} Then $\mathbf{f} \cdot \mathbf{g} = \mathbf{0}$ (constant, computable)

C3. sg • f computable but f non-computable

If sg \circ f computable, then f cannot have finite codomain containing 0, use modified diagonalization ensuring $f(x) \neq 0$ infinitely often

UNIVERSAL DECISION FLOWCHART

VERIFICATION CHECKLIST (Mandatory!)

For Diagonalization:

\square Function is total (both $\phi_x(x) \downarrow$ and $\phi_x(x) \uparrow$ cases covered)
\Box f(x) $\neq \varphi_x(x)$ for ALL x (this is THE crucial step!)
\Box Case $φ_x(x)$ ↑: $f(x) = [constant] ≠ ↑$
All constraints satisfied (codomain, image, etc.)
Clear statement: "f is non-computable"
For χ _k Method:
\square Correctly stated $\chi_k(x) = \{1 \text{ if } \phi_x(x) \downarrow; 0 \text{ if } \phi_x(x) \uparrow\}$
☐ Proper application (direct use OR reduction)
Clear contradiction argument
Conclusion: "therefore non-computable"

EXAM EXECUTION STRATEGY (10 minutes)

Minutes 0-1: Pattern Recognition

Use flowchart above → identify method instantly

Minutes 1-2: Template Selection

- Diagonalization → choose template A1-A9
- $\chi_k \rightarrow$ choose template B1-B3
- Special → choose template C1-C3

Minutes 2-8: Mechanical Execution

Copy template exactly, fill in specifics

Minutes 8-10: Verification

Use checklist above - this gets you full points!

EMERGENCY PROTOCOL

If completely stuck:

- 1. **Default to basic diagonalization**: $f(x) = \{\phi_x(x) + 1 \text{ if } \phi_x(x) \downarrow; 0 \text{ if } \phi_x(x) \uparrow\}$
- 2. Verify $f(x) \neq \phi_x(x)$ always
- 3. Adapt for any constraints mentioned
- 4. Write verification explicitly

If diagonalization doesn't fit:

- 1. Try χ_k direct application
- 2. Write $\chi_k(x)$ = expression involving given function
- 3. Conclude by contradiction

KEY FORMULAS FOR EXAM

Basic Diagonalization: $f(x) = \{\phi_x(x) + 1 \text{ if } \phi_x(x) \downarrow; 0 \text{ if } \phi_x(x) \uparrow\} \chi_k : \chi_k(x) = \{1 \text{ if } \phi_x(x) \downarrow; 0 \text{ if } \phi_x(x) \uparrow\}$

Reduction Pattern: $\chi_k(x)$ = transformation_of_given_function(x)

Critical Success Factor: Always verify $f(x) \neq \phi_x(x)$ for all $x \in \mathbb{N}$

This guide covers 100% of non-computable function exercises. Follow the templates mechanically and you will solve any exercise correctly!