В ядро функції входять ті терми, без яких неможливо покрити хоча б одну імпліканту.

Ядро = {1100; 1111}

В МДНФ входять всі терми ядра, а також ті терми, що забезпечують покриття всієї функції з мінімальною ціною.

 $f_{4MH/II}\phi = (X4X3\overline{X}2\overline{X}1) \ v \ (X4X3X2X1) \ v \ (\overline{X}4\overline{X}3X1) \ v \ (\overline{X}3\overline{X}2X1)$

Метод діаграм Вейча

Метод діаграм Вейча— це графічний метод, призначений для ручної мінімізації. Його наочність эберігається за невеликої кількості аргументів. Кожна клітинка відповідає конституанті. Кожний прямокутник, що містить 2^k елементів, відповідає імпліканті. Прямокутник максимального розміру відповідає простій імпліканті (рисунок 4.5).

Рисунок 4.5 – Мінімізація методом Вейча

 $f_{\perp MH/I, \phi} = (X4X3\overline{X}2\overline{X}1) \ v \ (X4X3X2X1) \ v \ (\overline{X}4\overline{X}3X1) \ v \ (\overline{X}3\overline{X}2X1)$

3.4. Спільна мінімізація функцій f1, f2, f3

Для отримання схем з мінімальними параметрами треба провести спільну мінімізацію системи функцій та їх заперечень. Проведемо мінімізацію функцій методом Квайна-Мак-Класкі за ДДНФ.

Запишемо ДДНФ функцій у вигляді списку термів, проведемо склеювання та поглинання (рисунок 4.6). Побудуємо таблицю покриття (таблиця 4.5).

Зм.	Арк.	№ докум.	Підп.	Дата

KO	K1	<i>K2</i>
0000 (1,2,3)	000X (1,2)	OXXO (1,3)
0001 (1,2)	00X0 (1,2,3)	OXXO (1,3)
0010 (1,2,3)	OX00 (1,3)	XX00 (1)
0100 (-1,3)	X000 (1,2)	XX00 (1)
0110 (1, 2, 3)	OX10 (1,2,3)	
0111 (-1,-2,3)	01X0 (1,3)	-
1000 (1,2)	X100 (1,3)	
1100 (1,-2,3)	011X (1,2,3)	
1111 (1,2,3)	X111 (1,2,3)	
	1X00 (1,2)	

Рисунок 4.6 – Склеювання і поглинання термів системи

Таблиця 4.5 – Таблиця покриття системи

	0000lF1l	0001/F1/	0010IF1	0110lF1)	1000lF1/	1100/F1/	1111/F1)	0000lF21	0001/F2/	0010IF2I	1000lF2)	1111/F2/	0000lF3/	0010IF3/	0100IF3J	0111F3J	1100IF3J	1111/F3/
1100 (1,-2,3)						+											+	
000X (1,2)	+	+						+	+									
00X0 (1,2,3)	+		+					+		+			+	+				
X000 (1,2)	+				+			+			+							
OX10 (1,2,3)			+	+						+				+				
X100 (1,3)						+									+		+	
011X (1,2,3)				+												+		
X111 (1,2,3)							+					+				+		+
1X00 (1,2)					+	+					+							
OXXO (1,3)	+		+	+									+	+	+			
XX00 (1)	+				+	+												

Зм.	Арк.	№ докум.	Підп.	Дата

Після мінімізації визначили кожну з функцій в формі І/АБО.

 $f1_{MDH\Phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (X4\overline{X2}\overline{X1}) \ v \ (\overline{X4}\overline{X1}) \ v \ (X3X2X1)$

 $f2_{MJH\phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}\overline{X3}\overline{X1}) \ v \ (X3X2X1) \ v \ (X4\overline{X2}\overline{X1})$

 $f3_{MDH\phi} = (X3X2X1) \ v \ (X3\overline{X2}\overline{X1}) \ v \ (\overline{X4}\overline{X1})$

Проведемо мінімізацію функцій методом Квайна-Мак-Класкі за ДДНФ. Запишемо ДДНФ функцій у вигляді списку термів, проведемо склеювання та поглинання (рисунок 4.7). Побудуємо таблицю покриття (таблиця 4.6).

KO	K1	<i>K2</i>
0001 (3)	00X1 (3)	X0X1 (3)
<i>0011 (1,2,3)</i>	0X01 (3)	XX01 (3)
0100 (-1,2)	X001 (3)	X0X1 (3)
0101 (1,2,3)	<i>0X11 (1,2</i>)	XX01 (3)
0110 (-2,-3)	X011 (1,2,3)	01XX (2)
0111 (-1,-2)	010X (1,2)	X10X (2)
1000 (3)	01X0 (2)	01XX (2)
1001 (1,2,3)	X100 (2)	X1X0 (2)
1010 (1,2,3)	01X1 (1,2)	X10X (2)
1011 (1,2,3)	X101 (1,2,3)	X1X0 (2)
1100 (-2)	011X (2)	-10XX (3)
1101 (1,2,3)	X110 (2,3)	10XX (3)
1110 (1,2,3)	100X (3)	•
	10X0 (3)	
	10X1 (1,2,3)	
	1X01 (1,2,3)	
	101X (1,2,3)	
	1X10 (1,2,3)	
	110X (2)	_
	11X0 (2)	

Рисинок 4.7 – Склеювання і поглинання термів системи

Зм.	Арк.	№ докум.	Підп.	Дата	

Таблиця 4.6 – Таблиця покриття системи

	0011/F1/	01011F1	10011F1	1010IF1)	1011F1	1101/F1/	1110IF1)	0011F2J	0100lF2)	0101F2J	1001F2I	1010IF2I	1011F2J	1101F2J	1110/F2/	0001F3J	0011F3J	0101F3J	1000lF3/	1001F3J	1010IF3J	1011F3J	1101F3J	1110IF3J
OX11 (1,2)	+							+																
X011 (1,2,3)	+				+			+					+				+					+		
010X (1,2)		+							+	+														
01X1 (1,2)		+								+														
X101 (1,2,3)		+				+				+				+				+					+	
X110 (2,3)															+									+
10X1 (1,2,3)			+		+						+		+							+		+		
1X01 (1,2,3)			+			+					+			+						+			+	
101X (1,2,3)				+	+							+	+								+	+		
1X10 (1,2,3)				+			+					+			+						+			+
X0X1 (3)																+	+			+		+		
XX01 (3)																+		+		+			+	
01XX (2)									+	+														
X10X (2)									+	+				+										
X1X0 (2)									+						+									
10XX (3)																			+	+	+	+		

Після мінімізації визначили кожну з функцій в формі І/АБО-НЕ.

f1_{MDHФ}= (\overline{X}\overline{3}X2X1\) v (\overline{X}\overline{3}\overline{X}\overline{1}\) v (\overline{X}\overline{4}\overline{2}\overline{1}\)

 $f2_{MJH\phi}=(\overline{X3}X2X1) \ v \ (X3\overline{X2}X1) \ v \ (X4\overline{X3}X1) \ v \ (X4X2\overline{X1}) \ v \ (\overline{X4}X3)$

 $f3_{MDH\phi}=(X3\overline{X}2X1) \ v \ (X4\overline{X}3X1) \ v \ (\overline{X}3X1) \ v \ (\overline{X}4X3)$

Зм.	Арк.	№ докум.	Підп.	Дата

3.5. Одержання операторних форм для реалізації на ПЛМ

Для програмування ПЛМ використовують нормальны форми I/AБО, I/AБО-НЕ. Розглянемо програмування ПЛМ для системи перемикальних функцій, що подана в формі I/AБО.

 $f1_{MJH\phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (X4\overline{X2}\overline{X1}) \ v \ (\overline{X4}\overline{X1}) \ v \ (X3X2X1)$

 $f2_{MJH\phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}\overline{X3}\overline{X1}) \ v \ (X3X2X1) \ v \ (X4\overline{X2}\overline{X1})$

 $f3_{MJH\phi} = (X3X2X1) \ v \ (X3\overline{X2}\overline{X1}) \ v \ (\overline{X4}\overline{X1})$

Позначимо терми системи:

 $P1 = \overline{X4}\overline{X3}\overline{X2}$

 $P2 = X4\overline{X}2\overline{X}1$

 $P3 = \overline{X4}\overline{X1}$

P4 = X3X2X1

 $P5 = \overline{X}4\overline{X}3\overline{X}1$

P6 = X3\overline{X}2\overline{X}1

Тоді функції виходів описуються системою:

 $f1_{MJH\Phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (X4\overline{X2}\overline{X1}) \ v \ (\overline{X4}\overline{X1}) \ v \ (X3X2X1) = P1 \ v \ P2 \ v \ P3 \ v \ P4$

 $f2_{M\Pi H \phi} = (\overline{X} 4 \overline{X} 3 \overline{X} 2) \ v \ (\overline{X} 4 \overline{X} 3 \overline{X} 1) \ v \ (X3X2X1) \ v \ (X4 \overline{X} 2 \overline{X} 1) = P1 \ v \ P4 \ v \ P5 \ v \ P2$

 $f3_{MDH\phi} = (X3X2X1) \ v \ (X3X2X1) \ v \ (X4X1) = P4 \ v \ P3 \ v \ P6$

3M.	Арк.	№ докум.	Підп.	Дата

Визначимо мінімальні параметри ПЛМ:

п = 4 — число інформаційних входів, що дорівнює кількості аргументів системи перемикальних функцій.

p = 6 — число проміжних внутрішніх шин, яке дорівнює кількості різних термів системи.

т = 3 — число інформаційних виходів, котре дорівнює кількості функцій виходів.

Побудуємо спрощену мнемонічну схему ПЛМ(4,6,3) (рисунок 4.8).

Рисунок 4.8 – Мнемонічна схема ПЛМ

Складемо карту програмування ПЛМ(4,6,3) (таблиця 4.7).

3M.	Арк.	№ докум.	Підп.	Дата

Таблиця 4.7 – Карта програмування ПЛМ

Nº		Вхи	Виходи				
ШИНИ	<i>X</i> 4	<i>X3</i>	<i>X2</i>	<i>X1</i>	<i>f1</i>	<i>f2</i>	<i>f3</i>
<i>P1</i>	0	0	0	ı	1	1	0
<i>P2</i>	1	-	0	0	1	1	0
<i>P3</i>	0	-	1	0	1	0	1
P4	-	1	1	1	1	1	1
P5	0	0	-	0	0	1	0
<i>P6</i>	-	0	1	1	0	0	1

Покажемо умовне графічне позначення даної П/ІМ (рисунок 4.8).

Рисунок 4.8 – умовне графічне позначення ПЛМ

3M.	Арк.	№ докум.	Підп.	Дата

" " " " " " " " " " " " " " " " " " "	IA/IL	1.463626.004	//3
---------------------------------------	-------	--------------	-----

4. Висновок

У даній курсовій роботі на підставі «Технічного завдання ІА/ІЦ.463626.002 ТЗ» був виконаний синтез керуючого автомата, а також синтез комбінаційних схем. Функціональна схема автомата приведена у документі «Керуючий автомат. Схема електрична функціональна» і виконана згідно з вимогами єдиної системи конструкторської документації.

При синтезі комбінаційних схем у роботі була виконана мінімізація функції різними методами, а також мінімізована методом Квайна— Мак-Класкі система функцій. В результаті було отримано дві форми представлення системи функцій, одна з яких була реалізована на програмувальній логічній матриці (ПЛМ).

Під час виконання роботи були закріплені знання теоретичного курсу, отримані навички їх практичного застосування, а також навички роботи зі стандартами та пошуку інформації.

Зм.	Арк.	№ докум.	Підп.	Дата

5. Список літератури

1. Жабін В.І., Жуков І.А., Клименко І.А., Ткаченко В.В. Прикладна теорія цифрових автоматів. Київ: книжкове видавництво НАУ, 2007 р. 2. Конспект лекцій з курсу «Комп'ютерна логіка», 2015р.

Зм.	Арк.	№ докум.	Підп.	Дата