4. Integrals

Formula for integration by parts: $\int_a^b u \frac{dv}{dx} dx = [uv]_a^b - \int_a^b \frac{du}{dx} v \, dx$

f(x)	$\int f(x) dx$	f(x)	$\int f(x) dx$
x^n	$\frac{x^{n+1}}{n+1} (n \neq -1)$	$\left[g\left(x\right)\right]^{n}g'\left(x\right)$	$\frac{[g(x)]^{n+1}}{n+1} (n \neq -1)$
$\frac{1}{x}$	$\ln x $	$\frac{g'(x)}{g(x)}$	$\ln g(x) $
e^x	e^x	a^x	$\frac{a^x}{\ln a}$ $(a>0)$
$\sin x$	$-\cos x$	$\sinh x$	$\cosh x$
$\cos x$	$\sin x$	$\cosh x$	$\sinh x$
$\tan x$	$-\ln \cos x $	$\tanh x$	$\ln \cosh x$
$\csc x$	$\ln \left \tan \frac{x}{2} \right $	$\operatorname{cosech} x$	$\ln \left \tanh \frac{x}{2} \right $
$\sec x$	$\ln \sec x + \tan x $	$\operatorname{sech} x$	$2\tan^{-1}e^x$
$\sec^2 x$	$\tan x$	$\operatorname{sech}^2 x$	$\tanh x$
$\cot x$	$\ln \sin x $	$\coth x$	$\ln \sinh x $
$\sin^2 x$	$\frac{x}{2} - \frac{\sin 2x}{4}$	$\sinh^2 x$	$\frac{\sinh 2x}{4} - \frac{x}{2}$
$\cos^2 x$	$\frac{x}{2} + \frac{\sin 2x}{4}$	$\cosh^2 x$	$\frac{\sinh 2x}{4} + \frac{x}{2}$

$\int f(x)$	$\int f(x) dx$	f(x)	$\int f(x) \mathrm{d}x$
$\frac{1}{a^2 + x^2}$	$\frac{1}{a} \tan^{-1} \frac{x}{a}$	$\frac{1}{a^2 - x^2}$	$\frac{1}{2a} \ln \left \frac{a+x}{a-x} \right (0 < x < a)$
	(a > 0)	$\frac{1}{x^2 - a^2}$	$\left \frac{1}{2a} \ln \left \frac{x-a}{x+a} \right (x > a > 0) \right $
$\frac{1}{\sqrt{a^2 - x^2}}$	$\sin^{-1}\frac{x}{a}$	$\frac{1}{\sqrt{a^2 + x^2}}$	$\left \ln \left \frac{x + \sqrt{a^2 + x^2}}{a} \right \ (a > 0) \right $
	$ \left (-a < x < a) \right $	$\frac{1}{\sqrt{x^2 - a^2}}$	$\left \ln \left \frac{x + \sqrt{x^2 - a^2}}{a} \right (x > a > 0) \right $
$\sqrt{a^2-x^2}$	$\frac{a^2}{2} \left[\sin^{-1} \left(\frac{x}{a} \right) \right]$	$\sqrt{a^2+x^2}$	$\frac{a^2}{2} \left[\sinh^{-1} \left(\frac{x}{a} \right) + \frac{x\sqrt{a^2 + x^2}}{a^2} \right]$
	$+\frac{x\sqrt{a^2-x^2}}{a^2}$	$\sqrt{x^2-a^2}$	$\frac{a^2}{2} \left[-\cosh^{-1}\left(\frac{x}{a}\right) + \frac{x\sqrt{x^2 - a^2}}{a^2} \right]$

5. Useful trig results

When calculating the Fourier coefficients a_n and b_n , for which $n=1,2,3,\ldots$, the following trig. results are useful. Each of these results, which are also true for $n=0,-1,-2,-3,\ldots$, can be deduced from the graph of $\sin x$ or that of $\cos x$

 $\bullet \sin n\pi = 0$

Areas cancel when when integrating over whole periods

Exercise 1.

Let f(x) be a function of period 2π such that

$$f(x) = \begin{cases} 1, & -\pi < x < 0 \\ 0, & 0 < x < \pi \end{cases}$$

- a) Sketch a graph of f(x) in the interval $-2\pi < x < 2\pi$
- b) Show that the Fourier series for f(x) in the interval $-\pi < x < \pi$ is

$$\frac{1}{2} - \frac{2}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right]$$

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

Exercise 2.

Let f(x) be a function of period 2π such that

$$f(x) = \begin{cases} 0, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$$

- a) Sketch a graph of f(x) in the interval $-3\pi < x < 3\pi$
- b) Show that the Fourier series for f(x) in the interval $-\pi < x < \pi$ is

$$\frac{\pi}{4} - \frac{2}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \dots \right] + \left[\sin x - \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x - \dots \right]$$

(i)
$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$
 and (ii) $\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$

Exercise 3.

Let f(x) be a function of period 2π such that

$$f(x) = \begin{cases} x, & 0 < x < \pi \\ \pi, & \pi < x < 2\pi \end{cases}.$$

- a) Sketch a graph of f(x) in the interval $-2\pi < x < 2\pi$
- b) Show that the Fourier series for f(x) in the interval $0 < x < 2\pi$ is

$$\frac{3\pi}{4} - \frac{2}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \dots \right]$$
$$- \left[\sin x + \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x + \dots \right]$$

(i)
$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$
 and (ii) $\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$

Exercise 4.

Let f(x) be a function of period 2π such that

$$f(x) = \frac{x}{2}$$
 over the interval $0 < x < 2\pi$.

- a) Sketch a graph of f(x) in the interval $0 < x < 4\pi$
- b) Show that the Fourier series for f(x) in the interval $0 < x < 2\pi$ is

$$\frac{\pi}{2} - \left[\sin x + \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x + \dots \right]$$

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots$$

Exercise 5.

Let f(x) be a function of period 2π such that

$$f(x) = \begin{cases} \pi - x, & 0 < x < \pi \\ 0, & \pi < x < 2\pi \end{cases}$$

- a) Sketch a graph of f(x) in the interval $-2\pi < x < 2\pi$
- b) Show that the Fourier series for f(x) in the interval $0 < x < 2\pi$ is

$$\frac{\pi}{4} + \frac{2}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \dots \right] + \sin x + \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x + \frac{1}{4} \sin 4x + \dots$$

$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$

Exercise 6.

Let f(x) be a function of period 2π such that

$$f(x) = x$$
 in the range $-\pi < x < \pi$.

- a) Sketch a graph of f(x) in the interval $-3\pi < x < 3\pi$
- b) Show that the Fourier series for f(x) in the interval $-\pi < x < \pi$ is

$$2\left[\sin x - \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x - \ldots\right]$$

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

Exercise 7.

Let f(x) be a function of period 2π such that

$$f(x) = x^2$$
 over the interval $-\pi < x < \pi$.

- a) Sketch a graph of f(x) in the interval $-3\pi < x < 3\pi$
- b) Show that the Fourier series for f(x) in the interval $-\pi < x < \pi$ is

$$\frac{\pi^2}{3} - 4 \left[\cos x - \frac{1}{2^2} \cos 2x + \frac{1}{3^2} \cos 3x - \dots \right]$$

$$\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots$$

Exercise 1.

$$f(x) = \begin{cases} 1, & -\pi < x < 0 \\ 0, & 0 < x < \pi, \text{ and has period } 2\pi \end{cases}$$

a) Sketch a graph of f(x) in the interval $-2\pi < x < 2\pi$

b) Fourier series representation of f(x)

STEP ONE
$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{0} f(x) dx + \frac{1}{\pi} \int_{0}^{\pi} f(x) dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{0} 1 \cdot dx + \frac{1}{\pi} \int_{0}^{\pi} 0 \cdot dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{0} dx$$

$$= \frac{1}{\pi} [x]_{-\pi}^{0}$$

$$= \frac{1}{\pi} (0 - (-\pi))$$

$$= \frac{1}{\pi} \cdot (\pi)$$

14/68

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \frac{1}{\pi} \int_{-\pi}^{0} f(x) \cos nx \, dx + \frac{1}{\pi} \int_{0}^{\pi} f(x) \cos nx \, dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{0} 1 \cdot \cos nx \, dx + \frac{1}{\pi} \int_{0}^{\pi} 0 \cdot \cos nx \, dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{0} \cos nx \, dx$$

$$= \frac{1}{\pi} \left[\frac{\sin nx}{n} \right]_{-\pi}^{0} = \frac{1}{n\pi} \left[\sin nx \right]_{-\pi}^{0}$$

$$= \frac{1}{n\pi} \left(\sin 0 - \sin(-n\pi) \right)$$

$$= \frac{1}{n\pi} (0 + \sin n\pi)$$
i.e. $a_{n} = \frac{1}{n\pi} (0 + 0) = 0$.

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{0} f(x) \sin nx \, dx + \frac{1}{\pi} \int_{0}^{\pi} f(x) \sin nx \, dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{0} 1 \cdot \sin nx \, dx + \frac{1}{\pi} \int_{0}^{\pi} 0 \cdot \sin nx \, dx$$
i.e.
$$b_n = \frac{1}{\pi} \int_{-\pi}^{0} \sin nx \, dx = \frac{1}{\pi} \left[\frac{-\cos nx}{n} \right]_{-\pi}^{0}$$

$$= -\frac{1}{n\pi} [\cos nx]_{-\pi}^{0} = -\frac{1}{n\pi} (\cos 0 - \cos(-n\pi))$$

$$= -\frac{1}{n\pi} (1 - \cos n\pi) = -\frac{1}{n\pi} (1 - (-1)^n), \text{ see TRIG}$$
i.e.
$$b_n = \begin{cases} 0, & n \text{ even} \\ -\frac{2}{n\pi}, & n \text{ odd} \end{cases}$$
, since $(-1)^n = \begin{cases} 1, & n \text{ even} \\ -1, & n \text{ odd} \end{cases}$

We now have that

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos nx + b_n \sin nx]$$

with the three steps giving

$$a_0 = 1$$
, $a_n = 0$, and $b_n = \begin{cases} 0 & \text{, } n \text{ even} \\ -\frac{2}{n\pi} & \text{, } n \text{ odd} \end{cases}$

It may be helpful to construct a table of values of b_n

Substituting our results now gives the required series

$$f(x) = \frac{1}{2} - \frac{2}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right]$$

c) Pick an appropriate value of x, to show that

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

Comparing this series with

$$f(x) = \frac{1}{2} - \frac{2}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right],$$

we need to introduce a minus sign in front of the constants $\frac{1}{3}, \frac{1}{7}, \dots$

So we need $\sin x = 1$, $\sin 3x = -1$, $\sin 5x = 1$, $\sin 7x = -1$, etc

The first condition of $\sin x = 1$ suggests trying $x = \frac{\pi}{2}$.

This choice gives $\sin \frac{\pi}{2} + \frac{1}{3} \sin 3\frac{\pi}{2} + \frac{1}{5} \sin 5\frac{\pi}{2} + \frac{1}{7} \sin 7\frac{\pi}{2}$ i.e. $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7}$ Looking at the graph of f(x), we also have that $f(\frac{\pi}{2}) = 0$.

18/68

Picking $x = \frac{\pi}{2}$ thus gives

$$0 = \frac{1}{2} - \frac{2}{\pi} \left[\sin \frac{\pi}{2} + \frac{1}{3} \sin \frac{3\pi}{2} + \frac{1}{5} \sin \frac{5\pi}{2} + \frac{1}{7} \sin \frac{7\pi}{2} + \dots \right]$$

i.e.
$$0 = \frac{1}{2} - \frac{2}{\pi} \begin{bmatrix} 1 & - & \frac{1}{3} & + & \frac{1}{5} \\ & - & \frac{1}{7} & + \dots \end{bmatrix}$$

A little manipulation then gives a series representation of $\frac{\pi}{4}$

$$\frac{2}{\pi} \left[1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots \right] = \frac{1}{2}$$
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}.$$

Exercise 2.

$$f(x) = \begin{cases} 0, & -\pi < x < 0 \\ x, & 0 < x < \pi, \text{ and has period } 2\pi \end{cases}$$

a) Sketch a graph of f(x) in the interval $-3\pi < x < 3\pi$

b) Fourier series representation of f(x)

STEP ONE

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{0} f(x) dx + \frac{1}{\pi} \int_{0}^{\pi} f(x) dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{0} 0 \cdot dx + \frac{1}{\pi} \int_{0}^{\pi} x dx$$

$$= \frac{1}{\pi} \left[\frac{x^{2}}{2} \right]_{0}^{\pi}$$

$$= \frac{1}{\pi} \left(\frac{\pi^{2}}{2} - 0 \right)$$
i.e. $a_{0} = \frac{\pi}{2}$.

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, \mathrm{d}x = \frac{1}{\pi} \int_{-\pi}^{0} f(x) \cos nx \, \mathrm{d}x + \frac{1}{\pi} \int_{0}^{\pi} f(x) \cos nx \, \mathrm{d}x$$

$$= \frac{1}{\pi} \int_{-\pi}^{0} 0 \cdot \cos nx \, \mathrm{d}x + \frac{1}{\pi} \int_{0}^{\pi} x \cos nx \, \mathrm{d}x$$
i.e. $a_n = \frac{1}{\pi} \int_{0}^{\pi} x \cos nx \, \mathrm{d}x = \frac{1}{\pi} \left\{ \left[x \frac{\sin nx}{n} \right]_{0}^{\pi} - \int_{0}^{\pi} \frac{\sin nx}{n} \, \mathrm{d}x \right\}$
(using integration by parts)
i.e. $a_n = \frac{1}{\pi} \left\{ \left(\pi \frac{\sin n\pi}{n} - 0 \right) - \frac{1}{n} \left[-\frac{\cos nx}{n} \right]_{0}^{\pi} \right\}$

$$= \frac{1}{\pi} \left\{ (0 - 0) + \frac{1}{n^2} [\cos nx]_{0}^{\pi} \right\}$$

$$= \frac{1}{\pi n^2} \left\{ \cos n\pi - \cos 0 \right\} = \frac{1}{\pi n^2} \left\{ (-1)^n - 1 \right\}$$
i.e. $a_n = \begin{cases} 0 & , n \text{ even} \\ -\frac{2}{\pi n^2} & , n \text{ odd} \end{cases}$, see TRIG.

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{1}{\pi} \int_{-\pi}^{0} f(x) \sin nx \, dx + \frac{1}{\pi} \int_{0}^{\pi} f(x) \sin nx \, dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{0} 0 \cdot \sin nx \, dx + \frac{1}{\pi} \int_{0}^{\pi} x \sin nx \, dx$$
i.e.
$$b_n = \frac{1}{\pi} \int_{0}^{\pi} x \sin nx \, dx = \frac{1}{\pi} \left\{ \left[x \left(-\frac{\cos nx}{n} \right) \right]_{0}^{\pi} - \int_{0}^{\pi} \left(-\frac{\cos nx}{n} \right) dx \right\}$$
(using integration by parts)
$$= \frac{1}{\pi} \left\{ -\frac{1}{n} \left[x \cos nx \right]_{0}^{\pi} + \frac{1}{n} \int_{0}^{\pi} \cos nx \, dx \right\}$$

$$= \frac{1}{\pi} \left\{ -\frac{1}{n} \left(\pi \cos n\pi - 0 \right) + \frac{1}{n} \left[\frac{\sin nx}{n} \right]_{0}^{\pi} \right\}$$

$$= -\frac{1}{n} (-1)^{n} + \frac{1}{\pi n^{2}} (0 - 0), \text{ see Trig}$$

$$= -\frac{1}{n} (-1)^{n}$$

i.e.
$$b_n = \begin{cases} -\frac{1}{n} & , n \text{ even} \\ +\frac{1}{n} & , n \text{ odd} \end{cases}$$

We now have

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos nx + b_n \sin nx \right]$$

where
$$a_0 = \frac{\pi}{2}$$
, $a_n = \begin{cases} 0, & n \text{ even} \\ -\frac{2}{\pi n^2}, & n \text{ odd} \end{cases}$, $b_n = \begin{cases} -\frac{1}{n}, & n \text{ even} \\ \frac{1}{n}, & n \text{ odd} \end{cases}$

Constructing a table of values gives

n	1	2	3	4	5
a_n	$-\frac{2}{\pi}$	0	$-\frac{2}{\pi}\cdot\frac{1}{3^2}$	0	$-\frac{2}{\pi}\cdot\frac{1}{5^2}$
b_n	1	$-\frac{1}{2}$	$\frac{1}{3}$	$-\frac{1}{4}$	$\frac{1}{5}$

This table of coefficients gives

$$\begin{split} f(x) &= \frac{1}{2} \left(\frac{\pi}{2} \right) &+ \left(-\frac{2}{\pi} \right) \cos x + 0 \cdot \cos 2x \\ &+ \left(-\frac{2}{\pi} \cdot \frac{1}{3^2} \right) \cos 3x + 0 \cdot \cos 4x \\ &+ \left(-\frac{2}{\pi} \cdot \frac{1}{5^2} \right) \cos 5x + \dots \\ &+ \sin x - \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x - \dots \\ &\text{i.e. } f(x) &= \frac{\pi}{4} - \frac{2}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \dots \right] \\ &+ \left[\sin x - \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x - \dots \right] \end{split}$$

25/68

c) Pick an appropriate value of x, to show that

(i)
$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

Comparing this series with

$$f(x) = \frac{\pi}{4} - \frac{2}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \dots \right] + \left[\sin x - \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x - \dots \right],$$

the required series of constants does <u>not</u> involve terms like $\frac{1}{3^2}$, $\frac{1}{5^2}$, $\frac{1}{7^2}$, So we need to pick a value of x that sets the $\cos nx$ terms to zero. The TRIG section shows that $\cos n\frac{\pi}{2}=0$ when n is odd, and note also that $\cos nx$ terms in the Fourier series all have odd n

i.e.
$$\cos x = \cos 3x = \cos 5x = \dots = 0$$
 when $x = \frac{\pi}{2}$, i.e. $\cos \frac{\pi}{2} = \cos 3\frac{\pi}{2} = \cos 5\frac{\pi}{2} = \dots = 0$

Setting $x = \frac{\pi}{2}$ in the series for f(x) gives

$$\begin{split} f\left(\frac{\pi}{2}\right) &= \frac{\pi}{4} - \frac{2}{\pi} \left[\cos\frac{\pi}{2} + \frac{1}{3^2}\cos\frac{3\pi}{2} + \frac{1}{5^2}\cos\frac{5\pi}{2} + \ldots\right] \\ &+ \left[\sin\frac{\pi}{2} - \frac{1}{2}\sin\frac{2\pi}{2} + \frac{1}{3}\sin\frac{3\pi}{2} - \frac{1}{4}\sin\frac{4\pi}{2} + \frac{1}{5}\sin\frac{5\pi}{2} - \ldots\right] \\ &= \frac{\pi}{4} - \frac{2}{\pi}[0 + 0 + 0 + \ldots] \\ &+ \left[1 - \frac{1}{2}\underbrace{\sin\pi}_{=0} + \frac{1}{3}\cdot(-1) - \frac{1}{4}\underbrace{\sin2\pi}_{=0} + \frac{1}{5}\cdot(1) - \ldots\right] \end{split}$$

The graph of f(x) shows that $f\left(\frac{\pi}{2}\right) = \frac{\pi}{2}$, so that

$$\begin{array}{rcl} \frac{\pi}{2} & = & \frac{\pi}{4}+1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\dots \\ \text{i.e.} & \frac{\pi}{4} & = & 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\dots \end{array}$$

Pick an appropriate value of x, to show that

(ii)
$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$$

Compare this series with

$$f(x) = \frac{\pi}{4} - \frac{2}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \dots \right] + \left[\sin x - \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x - \dots \right].$$

This time, we want to use the coefficients of the $\cos nx$ terms, and the same choice of x needs to set the $\sin nx$ terms to zero

Picking x = 0 gives

$$\sin x = \sin 2x = \sin 3x = 0$$
 and $\cos x = \cos 3x = \cos 5x = 1$

Note also that the graph of f(x) gives f(x) = 0 when x = 0

Solutions to exercises

4

So, picking x = 0 gives

$$0 = \frac{\pi}{4} - \frac{2}{\pi} \left[\cos 0 + \frac{1}{3^2} \cos 0 + \frac{1}{5^2} \cos 0 + \frac{1}{7^2} \cos 0 + \dots \right]$$

$$+ \sin 0 - \frac{\sin 0}{2} + \frac{\sin 0}{3} - \dots$$
i.e.
$$0 = \frac{\pi}{4} - \frac{2}{\pi} \left[1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots \right] + 0 - 0 + 0 - \dots$$

We then find that

$$\frac{2}{\pi} \left[1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots \right] = \frac{\pi}{4}$$
and
$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}.$$

Exercise 3.

$$f(x) = \begin{cases} x, & 0 < x < \pi \\ \pi, & \pi < x < 2\pi, \text{ and has period } 2\pi \end{cases}$$

a) Sketch a graph of f(x) in the interval $-2\pi < x < 2\pi$

b) Fourier series representation of f(x)

STEP ONE

$$a_{0} = \frac{1}{\pi} \int_{0}^{2\pi} f(x) dx = \frac{1}{\pi} \int_{0}^{\pi} f(x) dx + \frac{1}{\pi} \int_{\pi}^{2\pi} f(x) dx$$
$$= \frac{1}{\pi} \int_{0}^{\pi} x dx + \frac{1}{\pi} \int_{\pi}^{2\pi} \pi \cdot dx$$
$$= \frac{1}{\pi} \left[\frac{x^{2}}{2} \right]_{0}^{\pi} + \frac{\pi}{\pi} \left[x \right]_{\pi}^{2\pi}$$
$$= \frac{1}{\pi} \left(\frac{\pi^{2}}{2} - 0 \right) + \left(2\pi - \pi \right)$$
$$= \frac{\pi}{2} + \pi$$

ie $a_0 = \frac{3\pi}{}$

31/68

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx \, dx$$

$$= \frac{1}{\pi} \int_0^{\pi} x \cos nx \, dx + \frac{1}{\pi} \int_{\pi}^{2\pi} \pi \cdot \cos nx \, dx$$

$$= \frac{1}{\pi} \left[\left[x \frac{\sin nx}{n} \right]_0^{\pi} - \int_0^{\pi} \frac{\sin nx}{n} \, dx \right] + \frac{\pi}{\pi} \left[\frac{\sin nx}{n} \right]_{\pi}^{2\pi}$$

$$= \frac{1}{\pi} \left[\frac{1}{n} \left(\pi \sin n\pi - 0 \cdot \sin n0 \right) - \left[\frac{-\cos nx}{n^2} \right]_0^{\pi} \right]$$

$$+ \frac{1}{n} (\sin n2\pi - \sin n\pi)$$

i.e.
$$a_n = \frac{1}{\pi} \left[\frac{1}{n} \left(0 - 0 \right) + \left(\frac{\cos n\pi}{n^2} - \frac{\cos 0}{n^2} \right) \right] + \frac{1}{n} \left(0 - 0 \right)$$

$$= \frac{1}{n^2 \pi} (\cos n\pi - 1), \text{ see TRIG}$$

$$= \frac{1}{n^2 \pi} ((-1)^n - 1),$$

i.e. $a_n = \begin{cases} -\frac{2}{n^2\pi} &, n \text{ odd} \\ 0 &, n \text{ even.} \end{cases}$

$$b_{n} = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin nx \, dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} x \sin nx \, dx + \frac{1}{\pi} \int_{\pi}^{2\pi} \pi \cdot \sin nx \, dx$$

$$= \frac{1}{\pi} \left[\left[x \left(-\frac{\cos nx}{n} \right) \right]_{0}^{\pi} - \int_{0}^{\pi} \left(\frac{-\cos nx}{n} \right) dx \right] + \frac{\pi}{\pi} \left[\frac{-\cos nx}{n} \right]_{\pi}^{2\pi}$$
using integration by parts
$$= \frac{1}{\pi} \left[\left(\frac{-\pi \cos n\pi}{n} + 0 \right) + \left[\frac{\sin nx}{n^{2}} \right]_{0}^{\pi} \right] - \frac{1}{n} (\cos 2n\pi - \cos n\pi)$$

$$= \frac{1}{\pi} \left[\frac{-\pi(-1)^{n}}{n} + \left(\frac{\sin n\pi - \sin 0}{n^{2}} \right) \right] - \frac{1}{n} (1 - (-1)^{n})$$

$$= -\frac{1}{n} (-1)^{n} + 0 - \frac{1}{n} (1 - (-1)^{n})$$

i.e.
$$b_n = -\frac{1}{n}(-1)^n - \frac{1}{n} + \frac{1}{n}(-1)^n$$

i.e. $b_n = -\frac{1}{n}$.

We now have

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos nx + b_n \sin nx \right]$$
 where $a_0 = \frac{3\pi}{2}$, $a_n = \begin{cases} 0 & , n \text{ even} \\ -\frac{2}{n^2\pi} & , n \text{ odd} \end{cases}$, $b_n = -\frac{1}{n}$

Constructing a table of values gives

n	1	2	3	4	5
a_n	$-\frac{2}{\pi}$	0	$-\frac{2}{\pi}\left(\frac{1}{3^2}\right)$	0	$-\frac{2}{\pi}\left(\frac{1}{5^2}\right)$
b_n	-1	$-\frac{1}{2}$	$-\frac{1}{3}$	$-\frac{1}{4}$	$-\frac{1}{5}$

This table of coefficients gives

$$f(x) = \frac{1}{2} \left(\frac{3\pi}{2} \right) + \left(-\frac{2}{\pi} \right) \left[\cos x + 0 \cdot \cos 2x + \frac{1}{3^2} \cos 3x + \dots \right]$$
$$+ \left(-1 \right) \left[\sin x + \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x + \dots \right]$$

i.e.
$$f(x) = \frac{3\pi}{4} - \frac{2}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \dots \right]$$

$$- \left[\sin x + \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x + \dots \right]$$

and we have found the required series.

c) Pick an appropriate value of x, to show that

(i)
$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

Compare this series with

$$f(x) = \frac{3\pi}{4} - \frac{2}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \dots \right]$$
$$- \left[\sin x + \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x + \dots \right]$$

Here, we want to set the $\cos nx$ terms to zero (since their coefficients are $1, \frac{1}{3^2}, \frac{1}{5^2}, \ldots$). Since $\cos n\frac{\pi}{2} = 0$ when n is odd, we will try setting $x = \frac{\pi}{2}$ in the series. Note also that $f(\frac{\pi}{2}) = \frac{\pi}{2}$

This gives

$$\frac{\pi}{2} = \frac{3\pi}{4} - \frac{2}{\pi} \left[\cos \frac{\pi}{2} + \frac{1}{3^2} \cos 3\frac{\pi}{2} + \frac{1}{5^2} \cos 5\frac{\pi}{2} + \ldots \right]$$

$$- \left[\sin \frac{\pi}{2} + \frac{1}{2} \sin 2\frac{\pi}{2} + \frac{1}{3} \sin 3\frac{\pi}{2} + \frac{1}{4} \sin 4\frac{\pi}{2} + \frac{1}{5} \sin 5\frac{\pi}{2} + \ldots \right]$$

and

$$\frac{\pi}{2} = \frac{3\pi}{4} - \frac{2}{\pi} \left[0 + 0 + 0 + \dots \right]$$

$$- \left[(1) + \frac{1}{2} \cdot (0) + \frac{1}{3} \cdot (-1) + \frac{1}{4} \cdot (0) + \frac{1}{5} \cdot (1) + \dots \right]$$

then

$$\frac{\pi}{2} = \frac{3\pi}{4} - \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \ldots\right)$$

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \ldots = \frac{3\pi}{4} - \frac{\pi}{2}$$

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$$
, as required.

To show that

(ii)
$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$$

We want zero $\sin nx$ terms and to use the coefficients of $\cos nx$

Setting x=0 eliminates the $\sin nx$ terms from the series, and also gives

$$\cos x + \frac{1}{3^2}\cos 3x + \frac{1}{5^2}\cos 5x + \frac{1}{7^2}\cos 7x + \dots = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$$
(i.e. the desired series).

The graph of f(x) shows a discontinuity (a "vertical jump") at x = 0

The Fourier series converges to a value that is **half-way** between the two values of f(x) around this discontinuity. That is the series will converge to $\frac{\pi}{2}$ at x=0

$$\begin{split} \text{i.e.} \ \frac{\pi}{2} & = \ \frac{3\pi}{4} - \frac{2}{\pi} \left[\cos 0 + \frac{1}{3^2} \cos 0 + \frac{1}{5^2} \cos 0 + \frac{1}{7^2} \cos 0 + \ldots \right] \\ & - \left[\sin 0 + \frac{1}{2} \sin 0 + \frac{1}{3} \sin 0 + \ldots \right] \\ \text{and} \ \frac{\pi}{2} & = \ \frac{3\pi}{4} - \frac{2}{\pi} \left[1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \ldots \right] - [0 + 0 + 0 + \ldots] \end{split}$$

Finally, this gives

$$-\frac{\pi}{4} = -\frac{2}{\pi} \left(1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots \right)$$

and
$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$$

Exercise 4.

 $f(x) = \frac{x}{2}$, over the interval $0 < x < 2\pi$ and has period 2π

a) Sketch a graph of f(x) in the interval $0 < x < 4\pi$

b) Fourier series representation of f(x)

STEP ONE

$$a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) dx$$

$$= \frac{1}{\pi} \int_0^{2\pi} \frac{x}{2} dx$$

$$= \frac{1}{\pi} \left[\frac{x^2}{4} \right]_0^{2\pi}$$

$$= \frac{1}{\pi} \left[\frac{(2\pi)^2}{4} - 0 \right]$$
i.e. $a_0 = \pi$.

STEP TWO

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx \, dx$$

$$= \frac{1}{\pi} \int_0^{2\pi} \frac{x}{2} \cos nx \, dx$$

$$= \frac{1}{2\pi} \underbrace{\left\{ \left[x \frac{\sin nx}{n} \right]_0^{2\pi} - \frac{1}{n} \int_0^{2\pi} \sin nx \, dx \right\}}_{\text{using integration by parts}}$$

$$= \frac{1}{2\pi} \underbrace{\left\{ \left(2\pi \frac{\sin n2\pi}{n} - 0 \cdot \frac{\sin n \cdot 0}{n} \right) - \frac{1}{n} \cdot 0 \right\}}_{\text{emption}}$$

$$= \frac{1}{2\pi} \underbrace{\left\{ (0 - 0) - \frac{1}{n} \cdot 0 \right\}}_{\text{i.e. } a_n} \text{, see Trig}$$
i.e. $a_n = 0$.

STEP THREE

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx \, \mathrm{d}x = \frac{1}{\pi} \int_0^{2\pi} \left(\frac{x}{2}\right) \sin nx \, \mathrm{d}x$$

$$= \frac{1}{2\pi} \int_0^{2\pi} x \sin nx \, \mathrm{d}x$$

$$= \frac{1}{2\pi} \left\{ \left[x \left(\frac{-\cos nx}{n} \right) \right]_0^{2\pi} - \int_0^{2\pi} \left(\frac{-\cos nx}{n} \right) \, \mathrm{d}x \right\}$$
using integration by parts
$$= \frac{1}{2\pi} \left\{ \frac{1}{n} \left(-2\pi \cos n2\pi + 0 \right) + \frac{1}{n} \cdot 0 \right\}, \text{ see TRIG}$$

$$= \frac{-2\pi}{2\pi n} \cos(n2\pi)$$

$$= -\frac{1}{n} \cos(2n\pi)$$
i.e. $b_n = -\frac{1}{n}$, since $2n$ is even (see TRIG)

We now have

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos nx + b_n \sin nx \right]$$

where
$$a_0 = \pi$$
, $a_n = 0$, $b_n = -\frac{1}{n}$

These Fourier coefficients give

$$f(x) = \frac{\pi}{2} + \sum_{n=1}^{\infty} \left(0 - \frac{1}{n} \sin nx \right)$$

i.e. $f(x) = \frac{\pi}{2} - \left\{ \sin x + \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x + \dots \right\}.$

c) Pick an appropriate value of x, to show that

$$\boxed{\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots}$$

Setting $x = \frac{\pi}{2}$ gives $f(x) = \frac{\pi}{4}$ and

$$\frac{\pi}{4} = \frac{\pi}{2} - \left[1 + 0 - \frac{1}{3} + 0 + \frac{1}{5} + 0 - \dots\right]$$

$$\frac{\pi}{4} = \frac{\pi}{2} - \left[1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots\right]$$

$$\left[1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots\right] = \frac{\pi}{4}$$
i.e.
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots = \frac{\pi}{4}.$$

Exercise 5.

$$f(x) = \begin{cases} \pi - x & , 0 < x < \pi \\ 0 & , \pi < x < 2\pi, \text{ and has period } 2\pi \end{cases}$$

a) Sketch a graph of f(x) in the interval $-2\pi < x < 2\pi$

b) Fourier series representation of f(x)

STEP ONE

$$a_{0} = \frac{1}{\pi} \int_{0}^{2\pi} f(x) dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} (\pi - x) dx + \frac{1}{\pi} \int_{\pi}^{2\pi} 0 \cdot dx$$

$$= \frac{1}{\pi} \left[\pi x - \frac{1}{2} x^{2} \right]_{0}^{\pi} + 0$$

$$= \frac{1}{\pi} \left[\pi^{2} - \frac{\pi^{2}}{2} - 0 \right]$$
i.e. $a_{0} = \frac{\pi}{2}$.

STEP TWO

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx \, dx$$

$$= \frac{1}{\pi} \int_0^{\pi} (\pi - x) \cos nx \, dx + \frac{1}{\pi} \int_{\pi}^{2\pi} 0 \cdot dx$$
i.e. $a_n = \frac{1}{\pi} \left\{ \left[(\pi - x) \frac{\sin nx}{n} \right]_0^{\pi} - \int_0^{\pi} (-1) \cdot \frac{\sin nx}{n} \, dx \right\} + 0$

$$= \frac{1}{\pi} \left\{ (0 - 0) + \int_0^{\pi} \frac{\sin nx}{n} \, dx \right\} \quad \text{, see TRIG}$$

$$= \frac{1}{\pi n} \left[\frac{-\cos nx}{n} \right]_0^{\pi}$$

$$= -\frac{1}{\pi n^2} \left(\cos n\pi - \cos 0 \right)$$
i.e. $a_n = -\frac{1}{\pi n^2} \left((-1)^n - 1 \right) \quad \text{, see TRIG}$

i.e.
$$a_n = \begin{cases} 0, n \text{ even} \\ \frac{2}{\pi n^2}, n \text{ odd} \end{cases}$$

STEP THREE

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx \, dx$$

$$= \frac{1}{\pi} \int_0^{\pi} (\pi - x) \sin nx \, dx + \int_{\pi}^{2\pi} 0 \cdot dx$$

$$= \frac{1}{\pi} \left\{ \left[(\pi - x) \left(-\frac{\cos nx}{n} \right) \right]_0^{\pi} - \int_0^{\pi} (-1) \cdot \left(-\frac{\cos nx}{n} \right) dx \right\} + 0$$

$$= \frac{1}{\pi} \left\{ \left(0 - \left(-\frac{\pi}{n} \right) \right) - \frac{1}{n} \cdot 0 \right\}, \text{ see Trig}$$
i.e. $b_n = \frac{1}{n}$.

In summary, $a_0 = \frac{\pi}{2}$ and a table of other Fourier cofficients is

n	1	2	3	4	5
$a_n = \frac{2}{\pi n^2}$ (when n is odd)	$\frac{2}{\pi}$	0	$\frac{2}{\pi} \frac{1}{3^2}$	0	$\frac{2}{\pi} \frac{1}{5^2}$
$b_n = \frac{1}{n}$	1	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{5}$

$$\therefore f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos nx + b_n \sin nx \right]$$

$$= \frac{\pi}{4} + \frac{2}{\pi} \cos x + \frac{2}{\pi} \frac{1}{3^2} \cos 3x + \frac{2}{\pi} \frac{1}{5^2} \cos 5x + \dots$$

$$+ \sin x + \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x + \frac{1}{4} \sin 4x + \dots$$
i.e.
$$f(x) = \frac{\pi}{4} + \frac{2}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \dots \right]$$

$$+ \sin x + \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x + \frac{1}{4} \sin 4x + \dots$$

c) To show that
$$\left[\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots \right]$$
,

note that, as $x \to 0$, the series converges to the half-way value of $\frac{\pi}{2}$,

and then
$$\frac{\pi}{2} = \frac{\pi}{4} + \frac{2}{\pi} \left(\cos 0 + \frac{1}{3^2} \cos 0 + \frac{1}{5^2} \cos 0 + \dots \right)$$

$$+ \sin 0 + \frac{1}{2} \sin 0 + \frac{1}{3} \sin 0 + \dots$$

$$\frac{\pi}{2} = \frac{\pi}{4} + \frac{2}{\pi} \left(1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots \right) + 0$$

$$\frac{\pi}{4} = \frac{2}{\pi} \left(1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots \right)$$
giving
$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$

Exercise 6.

f(x) = x, over the interval $-\pi < x < \pi$ and has period 2π

a) Sketch a graph of f(x) in the interval $-3\pi < x < 3\pi$

b) Fourier series representation of f(x)

STEP ONE

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$
$$= \frac{1}{\pi} \int_{-\pi}^{\pi} x dx$$
$$= \frac{1}{\pi} \left[\frac{x^2}{2} \right]_{-\pi}^{\pi}$$
$$= \frac{1}{\pi} \left(\frac{\pi^2}{2} - \frac{\pi^2}{2} \right)$$

i.e. $a_0 = 0$.

STEP TWO

i.e. $a_n = 0$.

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} x \cos nx \, dx$$

$$= \frac{1}{\pi} \left\{ \left[x \frac{\sin nx}{n} \right]_{-\pi}^{\pi} - \int_{-\pi}^{\pi} \left(\frac{\sin nx}{n} \right) \, dx \right\}$$
using integration by parts

i.e. $a_n = \frac{1}{\pi} \left\{ \frac{1}{n} \left(\pi \sin n\pi - (-\pi) \sin(-n\pi) \right) - \frac{1}{n} \int_{-\pi}^{\pi} \sin nx \, dx \right\}$

$$= \frac{1}{\pi} \left\{ \frac{1}{n} (0 - 0) - \frac{1}{n} \cdot 0 \right\},$$
since $\sin n\pi = 0$ and $\int_{2\pi} \sin nx \, dx = 0$,

55/68

STEP THREE

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin nx \, dx$$

$$= \frac{1}{\pi} \left\{ \left[\frac{-x \cos nx}{n} \right]_{-\pi}^{\pi} - \int_{-\pi}^{\pi} \left(\frac{-\cos nx}{n} \right) \, dx \right\}$$

$$= \frac{1}{\pi} \left\{ -\frac{1}{n} \left[x \cos nx \right]_{-\pi}^{\pi} + \frac{1}{n} \int_{-\pi}^{\pi} \cos nx \, dx \right\}$$

$$= \frac{1}{\pi} \left\{ -\frac{1}{n} \left(\pi \cos n\pi - (-\pi) \cos(-n\pi) \right) + \frac{1}{n} \cdot 0 \right\}$$

$$= -\frac{\pi}{n\pi} \left(\cos n\pi + \cos n\pi \right)$$

$$= -\frac{1}{n} \left(2 \cos n\pi \right)$$
i.e. $b_{n} = -\frac{2}{n} (-1)^{n}$.

We thus have

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos nx + b_n \sin nx \right]$$

with
$$a_0 = 0$$
, $a_n = 0$, $b_n = -\frac{2}{n}(-1)^n$

and

n	1	2	3
b_n	2	-1	$\frac{2}{3}$

Therefore

$$f(x) = b_1 \sin x + b_2 \sin 2x + b_3 \sin 3x + \dots$$

i.e.
$$f(x) = 2 \left[\sin x - \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x - \dots \right]$$

57/68

c) Pick an appropriate value of x, to show that

$$\boxed{\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots}$$

Setting $x = \frac{\pi}{2}$ gives $f(x) = \frac{\pi}{2}$ and

$$\frac{\pi}{2} = 2 \left[\sin \frac{\pi}{2} - \frac{1}{2} \sin \frac{2\pi}{2} + \frac{1}{3} \sin \frac{3\pi}{2} - \frac{1}{4} \sin \frac{4\pi}{2} + \frac{1}{5} \sin \frac{5\pi}{2} - \dots \right]$$

This gives

$$\frac{\pi}{2} = 2\left[1 + 0 + \frac{1}{3}\cdot(-1) - 0 + \frac{1}{5}\cdot(1) - 0 + \frac{1}{7}\cdot(-1) + \dots\right]$$

$$\frac{\pi}{2} = 2\left[1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots\right]$$
i.e.
$$\frac{\pi}{4} = 1 - \frac{1}{2} + \frac{1}{7} - \frac{1}{7} + \dots$$

Exercise 7.

 $f(x) = x^2$, over the interval $-\pi < x < \pi$ and has period 2π

a) Sketch a graph of f(x) in the interval $-3\pi < x < 3\pi$

b) Fourier series representation of f(x)

STEP ONE

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 dx$$

$$= \frac{1}{\pi} \left[\frac{x^3}{3} \right]_{-\pi}^{\pi}$$

$$= \frac{1}{\pi} \left(\frac{\pi^3}{3} - \left(-\frac{\pi^3}{3} \right) \right)$$

$$= \frac{1}{\pi} \left(\frac{2\pi^3}{3} \right)$$
i.e. $a_0 = \frac{2\pi^2}{3}$.

60/68

STEP TWO

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \cos nx \, dx$$

$$= \frac{1}{\pi} \left\{ \left[x^{2} \frac{\sin nx}{n} \right]_{-\pi}^{\pi} - \int_{-\pi}^{\pi} 2x \left(\frac{\sin nx}{n} \right) dx \right\}$$
using integration by parts
$$= \frac{1}{\pi} \left\{ \frac{1}{n} \left(\pi^{2} \sin n\pi - \pi^{2} \sin(-n\pi) \right) - \frac{2}{n} \int_{-\pi}^{\pi} x \sin nx \, dx \right\}$$

$$= \frac{1}{\pi} \left\{ \frac{1}{n} (0 - 0) - \frac{2}{n} \int_{-\pi}^{\pi} x \sin nx \, dx \right\}, \text{ see TRIG}$$

$$= \frac{-2}{n\pi} \int_{-\pi}^{\pi} x \sin nx \, dx$$

i.e.
$$a_n = \frac{-2}{n\pi} \left\{ \left[x \left(\frac{-\cos nx}{n} \right) \right]_{-\pi}^{\pi} - \int_{-\pi}^{\pi} \left(\frac{-\cos nx}{n} \right) dx \right\}$$

using integration by parts again
$$= \frac{-2}{n\pi} \left\{ -\frac{1}{n} \left[x \cos nx \right]_{-\pi}^{\pi} + \frac{1}{n} \int_{-\pi}^{\pi} \cos nx \, dx \right\}$$

$$= \frac{-2}{n\pi} \left\{ -\frac{1}{n} \left(\pi \cos n\pi - (-\pi) \cos(-n\pi) \right) + \frac{1}{n} \cdot 0 \right\}$$

$$= \frac{-2}{n\pi} \left\{ -\frac{1}{n} \left(\pi (-1)^n + \pi (-1)^n \right) \right\}$$

$$= \frac{-2}{n\pi} \left\{ \frac{-2\pi}{n} (-1)^n \right\}$$

i.e.
$$a_n = \frac{-2}{n\pi} \left\{ -\frac{2\pi}{n} (-1)^n \right\}$$
$$= \frac{+4\pi}{\pi n^2} (-1)^n$$
$$= \frac{4}{n^2} (-1)^n$$

i.e.
$$a_n = \begin{cases} \frac{4}{n^2} & , n \text{ even} \\ \frac{-4}{n^2} & , n \text{ odd.} \end{cases}$$

STEP THREE

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \sin nx \, dx$$

$$= \frac{1}{\pi} \left\{ \left[x^{2} \left(\frac{-\cos nx}{n} \right) \right]_{-\pi}^{\pi} - \int_{-\pi}^{\pi} 2x \cdot \left(\frac{-\cos nx}{n} \right) \, dx \right\}$$
using integration by parts
$$= \frac{1}{\pi} \left\{ -\frac{1}{n} \left[x^{2} \cos nx \right]_{-\pi}^{\pi} + \frac{2}{n} \int_{-\pi}^{\pi} x \cos nx \, dx \right\}$$

$$= \frac{1}{\pi} \left\{ -\frac{1}{n} \left(\pi^{2} \cos n\pi - \pi^{2} \cos(-n\pi) \right) + \frac{2}{n} \int_{-\pi}^{\pi} x \cos nx \, dx \right\}$$

$$= \frac{1}{\pi} \left\{ -\frac{1}{n} \underbrace{\left(\pi^{2} \cos n\pi - \pi^{2} \cos(n\pi) \right)}_{=0} + \frac{2}{n} \int_{-\pi}^{\pi} x \cos nx \, dx \right\}$$

$$= \frac{2}{\pi n} \int_{-\pi}^{\pi} x \cos nx \, dx$$

i.e.
$$b_n = \frac{2}{\pi n} \underbrace{\left\{ \left[x \frac{\sin nx}{n} \right]_{-\pi}^{\pi} - \int_{-\pi}^{\pi} \frac{\sin nx}{n} \, \mathrm{d}x \right\}}_{\text{using integration by parts}}$$

$$= \frac{2}{\pi n} \underbrace{\left\{ \frac{1}{n} \left(\pi \sin n\pi - (-\pi) \sin(-n\pi) \right) - \frac{1}{n} \int_{-\pi}^{\pi} \sin nx \, \mathrm{d}x \right\}}_{\text{=} \frac{2}{\pi n} \underbrace{\left\{ \frac{1}{n} (0+0) - \frac{1}{n} \int_{-\pi}^{\pi} \sin nx \, \mathrm{d}x \right\}}_{\text{=} \frac{-2}{\pi n^2} \int_{-\pi}^{\pi} \sin nx \, \mathrm{d}x}$$
i.e. $b_n = 0$.

$$\therefore f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos nx + b_n \sin nx \right]$$

where

$$a_0 = \frac{2\pi^2}{3}$$
, $a_n = \begin{cases} \frac{4}{n^2} & , n \text{ even} \\ \frac{-4}{n^2} & , n \text{ odd} \end{cases}$, b_n

n	1	2	3	4
a_n	-4(1)	$4\left(\frac{1}{2^2}\right)$	$-4\left(\frac{1}{3^2}\right)$	$4\left(\frac{1}{4^2}\right)$

i.e.
$$f(x) = \frac{1}{2} \left(\frac{2\pi^2}{3} \right) - 4 \left[\cos x - \frac{1}{2^2} \cos 2x + \frac{1}{3^2} \cos 3x - \frac{1}{4^2} \cos 4x \dots \right] + [0 + 0 + 0 + \dots]$$

i.e.
$$f(x) = \frac{\pi^2}{3} - 4\left[\cos x - \frac{1}{2^2}\cos 2x + \frac{1}{3^2}\cos 3x - \frac{1}{4^2}\cos 4x + \dots\right]$$
.

c) To show that
$$\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots$$
,

use the fact that $\cos n\pi = \begin{cases} 1 & , n \text{ even} \\ -1 & , n \text{ odd} \end{cases}$

i.e.
$$\cos x - \frac{1}{2^2}\cos 2x + \frac{1}{3^2}\cos 3x - \frac{1}{4^2}\cos 4x + \dots$$
 with $x = \pi$ gives $\cos \pi - \frac{1}{2^2}\cos 2\pi + \frac{1}{3^2}\cos 3\pi - \frac{1}{4^2}\cos 4\pi + \dots$

i.e.
$$(-1) - \frac{1}{2^2} \cdot (1) + \frac{1}{3^2} \cdot (-1) - \frac{1}{4^2} \cdot (1) + \dots$$

i.e.
$$-1 - \frac{1}{2^2} - \frac{1}{3^2} - \frac{1}{4^2} + \dots$$

$$= -1 \cdot \underbrace{\left(1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \ldots\right)}_{\text{(the desired series)}}$$

The graph of f(x) gives that $f(\pi) = \pi^2$ and the series converges to this value.

Setting $x = \pi$ in the Fourier series thus gives

$$\pi^{2} = \frac{\pi^{2}}{3} - 4\left(\cos \pi - \frac{1}{2^{2}}\cos 2\pi + \frac{1}{3^{2}}\cos 3\pi - \frac{1}{4^{2}}\cos 4\pi + \dots\right)$$

$$\pi^{2} = \frac{\pi^{2}}{3} - 4\left(-1 - \frac{1}{2^{2}} - \frac{1}{3^{2}} - \frac{1}{4^{2}} - \dots\right)$$

$$\pi^{2} = \frac{\pi^{2}}{3} + 4\left(1 + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + \dots\right)$$

$$\frac{2\pi^{2}}{3} = 4\left(1 + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + \dots\right)$$
i.e.
$$\frac{\pi^{2}}{6} = 1 + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + \dots$$