Network Security

Project 1: TLS Connection Hijacking

Chi-Yu Li (2024 Fall)
Computer Science Department
National Yang Ming Chiao Tung University

Goal

Understand how to hijack a TLS connection

- You will learn about
 - Establish TLS connections with customized certificates
 - ☐ Handle multiple network connections
 - □ Importance of certificates and identity verification

Normal Network Connection

- Nowadays, most people use HTTPS to connect to the Internet
- Hypertext Transfer Protocol Secure (HTTPS) is an extension of the Hypertext Transfer Protocol (HTTP)
- In HTTPS, the communication protocol is encrypted using Transport Layer Security (TLS) or Secure Sockets Layer (SSL)

What is TLS?

- Transport Layer Security (TLS) is the successor to SSL (Secure Sockets Layer)
 - □ It is a protocol used to protect the security of network communications

- Key Features
 - □ Encryption: Protects data transmitted over the network from eavesdropping.
 - Authentication: Uses digital certificates to verify the identity of parties.
 - □ Data Integrity: Ensures that data has not been altered during transmission

TLS Primer: Certificate and CA

- TLS certificates are crucial for establishing secure connections
 - □ Containing public keys, identity information, and digital signature
 - □ Providing encryption, authentication, and data integrity
- A certificate authority (CA) is a trusted entity that issues certificates
 - □ verify the authenticity and trustworthiness of a website, domain and organization
 - □ users know they are connected with an official website, not a fake or spoofed website created by a attacker

TLS Primer: Cipher Suite

- Cipher Suites are sets of instructions that determine how TLS encrypts data
- Components of a Cipher Suite
 - Key Exchange Algorithm
 - Method for securely exchanging cryptographic keys between a client and a server
 - Encryption Algorithm
 - The cipher used to encrypt the data being transmitted
 - Hashing Algorithm
 - Used to ensure the integrity and authenticity of the message
 - □ E.g. TLS_RSA_WITH_AES_128_GCM_SHA256

Normal TLS connection

 Establish a connection with a legitimate server certificate to ensure data security

Attack Scenario

How can Attacker steal Victim's user credentials?

Attack Scenario

How can Attacker steal Victim's user credentials?

Major Ideas

- Redirect Victim's traffic to Attacker
 - ☐ Man-in-the-middle based on ARP spoofing
- Dual Connection Establishment
 - ☐ What you need to implement in this project

Experimental Setting

- The attacker VM executes the command below to redirect specific TLS packets to the MITM agent:
 - □ sudo ./setup.sh
- The victim VM should start the browser using the following command to establish a TLS connection with a forged certificate:
 - google-chrome --ignore-certificate-errors --user-data-dir=/tmp/chrome_dev
 - In real-life situations, such as IoT environments, where certificates are often not verified or when a certificate is injected into the browser, this type of attack can be justified.
 - □ recommend to open the browser in Incognito mode.

Experimental Setting: ARP Spoofing

- Attacker VM execute the command below in the MITM agent
 - □ sudo arpspoof -i INTERFACE -t GATEWAY IP CLIENT IP
 - □ sudo arpspoof -i INTERFACE -t CLIENT IP GATEWAY IP

- Victim VM execute arp -a to check ARP table
 - ☐ If the gateway's mac address is the same with that of the attacker, ARP spoofing is successful

```
$ ifconfig
enp0s3: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
   inet 10.0.2.15 netmask 255.255.255.0 broadcast 10.0.2.255
   inet6 fe80::91af:4e1e:53cd:2cb9 prefixlen 64 scopeid 0x20<link>
   ether b8:00:27:c1:68:2f txqueuelen 1000 (Ethernet)
   RX packets 2490 bytes 727742 (727.7 KB)
```

```
$ arp -a

gateway (10.0.2.1) at 52:54:00:12:35:00 [ether] on enp0s3

$ arp -a

_gateway (10.0.2.1) at 08:00:27:c1:68:2f [ether] on enp0s3

? (10.0.2.15) at 08:00:27:c1:68:2f [ether] on enp0s3
```

TLS Client

Task I: Establishing TLS Connections

- TLS Client to MITM Agent:
 - ☐ The MITM agent can use a forged certificate to establish a TLS connection.
 - Configure the server settings (TLS version, check mode, etc.) so that the victim accepts the TLS connection.
- MITM Agent to TLS server:
 - ☐ The MITM agent can retrieve the destination address from the victim's packet
 - □ The MITM agent uses this address to connect to the TLS server.
 - A fixed address for the TLS server connection is not allowed.
 - should be able to connect to different websites.

Task II: Establish multiple TLS connections

- The program should still works normally when opening another website
 - Handling concurrency
 - Ensure the program can manage multiple simultaneous TLS connections efficiently
 - Consider using threading, fork(), or asynchronous I/O (select(), epoll()) to avoid blocking connections
 - Session management
 - Each connection should maintain its own independent TLS session context
 - Avoid session interference between multiple websites being accessed simultaneously

- 1. MITM agent can correctly establish two TLS connection (60%)
 - □ TLS client to MITM agent / MITM agent to TLS server
- 2. Fetch the username/password and show in the terminal (20%)
 - MITM agent should print the hijacked data from portal
- 3. The attacker program can establish multiple TLS connections (20%)
 - □ Handle requests for other TLS connections as normal

● 1. MITM agent can correctly establish two TLS connection (60%)

□ When executing the attack program, the client can successfully connect to the

school's portal webpage.

☐ The program should also print the destination IP and port.

```
:~/project1$ sudo python3 attack.py 10.0.2.9 enp0s3
[sudo] password for
TLS Connection Established : [140.113.41.157:443]
```


- 2. Fetch the username/password and show in the terminal (20%)
 - □ MITM agent should check hijacked data and print the account and password

```
"/project1$ sudo python3 attack.py 10.0.2.9 enp0s3
[sudo] password for TLS Connection Established : [140.113.41.157:443]
id: 312 password:
```


- 3. The attacker program can interact with the server with multiple handshakes (20%)
 - ☐ The program still works normally when opening another website

```
~/project1$ sudo python3 attack.py 10.0.2.9 enp0s3
[sudo] password for ______
TLS Connection Established : [140.113.41.157:443]
id: 312 _____, password: _____
TLS Connection Established : [140.113.24.241:443]
```


Important: How to Prepare Your Attack Programs?

- You need to develop and run your program in the provided virtual machine.
 - □ VM Image: Please download it from the provided <u>link</u>
 - Username/password: ns2024/ns2024
 - □ Network setting: NAT Network
- Do not hardcode the network interface. You are allowed to assign it during execution.
 - □ During the demo, the program may be run on either VMware or VirtualBox, so ensure that no fixed values are used.
- Only Python is allowed for the development.

Important: How to Prepare Your Attack Programs?

- Must provide an attack program named attack.py (Missing: -20%)
- Test requirements for the program
 - □ Due to the environment settings, this project focuses on hijacking websites within the school's IP domain (140.113.*.*)
 - You can use the nslookup command to verify if a specific host is within the school IP domain
 - □ During the demo, all certificates will be provided by the TA and will be located in the ../certificates/ directory
- The program must work with the following test commands:
 - □ sudo ./attack.py <victim ip> or sudo ./attack.py <victim ip> <interface>
- You are allowed to team up. Each team has at most 3 students.
 - Teams: discussions are allowed, but no collaboration

Project Submission

- Due date: 10/30
- Makeup submission (75 points at most): TBA (After the final)
- Submission rules
 - □ Put your source code files into a directory and name it using your student ID(s)
 - If your team has two members, please concatenate your IDs separated by "-"
 - □ Zip the directory and upload the zip file to New E3 (only upload python files)
 - ☐ A sample of the zip file: 01212112-02121221.zip
 - attack.py
 - bbb.py
 - ☐ If files are not in a directory after unzip, 10 points will be deducted.

Online Project Demo

- Demo date: 11/1
- TA will prepare your zip file and run your programs for the demo on behalf of you
 - ☐ TA will run your program in the same given virtual environment
- You will
 - be asked to launch a TLS hijacking attack
 - □ be not allowed to modify your codes or scripts in the demo
 - be asked some questions
 - □ be responsible to show and explain the outcome to TA

Questions?