PATENT ABSTRACTS OF JAPAN

(11)Publication number · 2003-204320 (43)Date of publication of application: 18.07.2003

(51)Int.Cl. H04L 9/08

(21)Application number: 2002-303509 (71)Applicant: MATSUSHITA ELECTRIC IND CO.

LTD

(22)Date of filing: 17.10.2002 (72)Inventor: NAKANO TOSHIHISA

> MATSUZAKI NATSUME TATEBAYASHI MAKOTO

(30)Priority

Priority number : 2001329863 Priority date: 26.10.2001 Priority country: JP

(54) LITERARY WORK PROTECTING SYSTEM, KEY MANAGEMENT SYSTEM, AND USER PROTECTION SYSTEM

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a key management system for determining an allotted key effectively and provide a recording unit, a reproducing unit, and a recording medium.

SOLUTION: In a system made up of a recording unit for recording digital data of contents like a movie or a reproducing unit, and a recording medium, a media key used for recording or reproduction is enciphered by a plurality of device keys and stored in the recording medium. In the key management system, an arrangement, in which each node-annihilation pattern allotted to a node of a tree structure is arranged in a given regulation, is stored as header information along with an enciphered medium key in the recording medium. In the recording unit or the reproducing unit, an enciphered media key to be decoded by itself is specified from the plurality of enciphered media keys by analyzing the node-annihilation pattern sequentially.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-204320 (P2003-204320A)

(43)公開日 平成15年7月18日(2003.7.18)

(51) Int.Cl.7 H04L 9/08 識別配号

FΙ HO 4 I. 9/00

テーマコード(参考) 601B 5J104

601A

審査請求 未請求 請求項の数26 OL (全 51 頁)

(21)出廣番号

特爾2002-303509(P2002-303509)

(22)出顧日

平成14年10月17日 (2002. 10.17)

(32)優先日 (33)優先権主張国

(31)優先権主張番号 特爾2001-329863(P2001-329863) 平成13年10月26日 (2001, 10, 26)

日本 (JP)

(71)出職人 000005821 松下電器産業株式会社

大阪府門真市大字門直1006番地

(72)発明者 中野 稔久

大阪府門真市大字門真1006番地 松下電器

産業株式会社内 (72)発明者 松崎 なつめ

大阪府門真市大字門真1006番地 松下電器

産業株式会社内 (74)代理人 100090446

弁理士 中島 司朗

最終頁に続く

(54) 【発明の名称】 著作物保護システム、鍵管理装置及び利用者装置

(57)【要約】

【課題】 割り当てられた鍵を効率良く決定する鍵管理 装置、記録装置、再生装置、記録媒体を提供する。 【解決手段】 映画などのコンテンツをデジタル化した データを記録する記録装置又は再生する再生装置と、記 録媒体とからなるシステムにおいて、記録媒体には、記 録又は再生に使用するメディア鍵が、複数のデバイス鍵 により暗号化されて記録されている。鍵管理装置は、木 構造のノードに割り当てたノード無効化パターンを、あ る規則に従って並べたものを鍵情報のヘッダ情報とし て、暗号化されたメディア鍵と共に記録媒体に記録す る。記録装置又は再生装置は、ノード無効化パターンを シーケンシャルに解析することで、自身が復号すべき暗 号化されたメディア鍵を複数の暗号化されたメディア鍵 の中から特定する。

【特許請求の範囲】

【請求項1】 n分木(nは、2以上の整数)に関連付 けて1個以上のデバイス鍵を有する鍵管理装置と、1以 上の利用者装置とからなる著作物保護システムであっ て、前記鍵管理装置は、デバイス鍵を各利用者装置に割 り当て、各利用者装置は、割り当てられたデバイス鍵に 基づいて、コンテンツを暗号化して記録媒体に書き込み 又は前記記録媒体から読み出した暗号化コンテンツを復 号し、

n分木においてルートから一部のリーフへの経路上に存

前記鍵管理装置は、

在する複数のノードは、無効化されており、n分木を構 成する1個以上のノードにそれぞれ対応付けて1個以上 のデバイス鍵を記憶しているデバイス鍵記憶手段と、 複数の共通デバイス鍵をそれぞれ用いて1個のメディア 鍵を暗号化して複数の暗号化メディア鍵を生成し、 各共 通デバイス鍵は、無効化されていないノードに対応付け られた複数のデバイス鍵のうち、1以上の利用者装置に 共通に割り当てられたデバイス鍵であり、その結果複数 の暗号化メディア鍵が得られ、得られた複数の暗号化メ 20 ディア鍵を、n分木の構成に係る配列順序に従って記録 媒体に書き込む鍵情報生成手段と、

リーフを除き、無効化されたノードについて、下位のn 個のノードのそれぞれが無効化されているか否かを示す 無効化情報を生成し、その結果複数の無効化情報が得ら れ、得られた複数の無効化情報を、前記配列順序に従っ て前記記録媒体に書き込む無効化情報生成手段とを備 え、

前記利用者装置は、

複数の無効化情報を用いて、前記記録媒体に前記配列順 序に従って書き込まれた前記複数の暗号化メディア鍵の 中から、当該利用者装置に割り当てられたデバイス鍵に より暗号化された暗号化メディア鍵を特定する特定手段

特定した暗号化メディア鍵を、当該利用者装置に割り当 てられたデバイス鍵に基づいて復号して、メディア鍵を 生成する復号手段と、

生成した前記メディア鍵に基づいてコンテンツを暗号化 して前記記録媒体に書き込み、又は前記記録媒体から暗 40 て、下位側に接続する全てのノードが無効化されている 号化コンテンツを読み出し読み出した暗号化コンテンツ を生成した前記メディア鍵に基づいて復号してコンテン ツを生成する暗号復号手段とを備えることを特徴とする 著作物保護システム。

【請求項2】 n分木 (nは、2以上の整数) に関連付 けて1個以上のデバイス鍵を有し、前記デバイス鍵を利 用者装置に割り当てる鍵管理装置であって、

n分木においてルートから一部のリーフへの経路上に存 在する複数のノードは、無効化されており、n分木を構 成する1個以上のノードにそれぞれ対応付けて1個以上 50 接続する全てのノードが無効化されているものについ

のデバイス鍵を記憶しているデバイス鍵記憶手段と、 複数の共通デパイス鍵をそれぞれ用いて1個のメディア 鍵を暗号化して複数の暗号化メディア鍵を生成し、各共 通デパイス鍵は、無効化されていないノードに対応付け られた複数のデバイス鍵のうち、1以上の利用者装置に 共涌に割り当てられたデバイス鍵であり、その結果複数 の暗号化メディア鍵が得られ、得られた複数の暗号化メ ディア鍵を、n分木の構成に係る配列順序に従って記録 媒体に書き込む鍵情報生成手段と、

10 リーフを除き、無効化されたノードについて、下位のn 個のノードのそれぞれが無効化されているか否かを示す 無効化情報を生成し、その結果複数の無効化情報が得ら れ、得られた複数の無効化情報を、前記配列順序に従っ て前記記録媒体に書き込む無効化情報生成手段とを備え ることを特徴とする鍵管理装置。

【請求項3】 前記n分木は、複数のレイヤから構成さ ħ.

前記鍵情報生成手段は、得られた複数の暗号化メディア 鍵を、ルートを起点とし、ルート側のレイヤからリーフ 側のレイヤへの順序である前駅配列順序に従って記録媒 体に書き込み、

前記無効化情報生成手段は、得られた複数の無効化情報 を、前記配列順序に従って前記記録媒体に書き込むこと を特徴とする請求項2に記載の鍵管理装置。

【請求項4】 前記鍵情報生成手段は、得られた複数の 暗号化メディア鍵を、ルートを起点とし、ルートから各 リーフへ至る経路上に配されるノードの順序であって、 重複して配列されない前記配列順序に従って記録媒体に 書き込み、

前記記録媒体に前記配列順序に従って書き込まれた前記 30 前記無効化情報生成手段は、得られた複数の無効化情報 を、前配配列順序に従って前記記録媒体に書き込むこと を特徴とする請求項2に記載の鍵管理装置。

> 【請求項5】 前記無効化情報生成手段は、リーフを除 き、無効化された全てのノードについて、無効化情報を 生成することを特徴とする請求項2に記載の鎌管理法 署。

【請求項6】 前記無効化情報生成手段は、

リーフを除き、無効化されたノードであって、下位側に 接続する全てのノードが無効化されているものについ

旨を示す特別無効化情報を生成し、 前記下位側に接続する全ての無効化されたノードについ

て、無効化情報の生成を抑制し、 リーフを除く他の無効化されたノードについて、下位の

n個のノードのそれぞれが無効化されているか否かを示 す無効化情報を生成することを特徴とする請求項2に記 裁の鍵管理装置。

【請求項7】 前記無効化情報生成手段は、

リーフを除き、無効化されたノードであって、下位側に

3 て、下位側に接続する全てのノードが無効化されている 旨を示す第1付加情報と、下位のn個のノードのそれぞ される特別無効化情報を生成し、

前記下位側に接続する全ての無効化されたノードについ て、無効化情報の生成を抑制し、

リーフを除く他の無効化されたノードについて、下位側 に接続する全てのノードが無効化されていない旨を示す 第2付加情報と、下位のn個のノードのそれぞれが無効 化されているか否かを示す n 桁の情報とから構成される 10 無効化情報を生成することを特徴とする請求項6に記載 の鍵管理装置。

【請求項8】 前記無効化情報生成手段は、

リーフを除き、無効化されたノードであって、下位側に 接続する全てのノードが無効化されているものについ て、下位のn個のノードのそれぞれが無効化されている ことを示すn桁の特別値から構成される特別無効化情報 を生成し、

前記下位側に接続する全ての無効化されたノードについ て、無効化情報の生成を抑制し、

リーフを除く他の無効化されたノードについて、下位の n個のノードのそれぞれが無効化されているか否かを示 すn桁の無効化情報を生成することを特徴とする請求項 6に記載の鎌管理装置。

【請求項9】 n分木 (nは、2以上の整数) に関連付 けて1個以上のデバイス鍵を有し、前記デバイス鍵を利 用者装置に割り当てる鍵管理装置であって、

n分木において一部のノードは、無効化されており、n 分木を構成する1個以上のノードにそれぞれ対応付けて 1個以上のデバイス鍵を記憶しているデバイス鍵記憶手 30 段と、

複数の共通デバイス鍵をそれぞれ用いて1個のメディア 鍵を暗号化して複数の暗号化メディア鍵を生成し、各共 通デバイス鍵は、無効化されていないノードに対応付け られた複数のデバイス鍵のうち、1以上の利用者装置に 共通に割り当てられたデバイス鍵であり、その結果複数 の暗号化メディア鍵が得られ、得られた複数の暗号化メ ディア鍵を、n分木の構成に係る配列順序に従って記録 媒体に書き込む鍵情報生成手段と、

リーフを除き、無効化された各ノードについて、

下位の n 個のノードの少なくとも 1 個が無効化されてい る場合に、それぞれが無効化されているか否かを示す第 1無効化情報を生成し、

下位のπ個のノードのいずれも無効化されていない場合 に、いずれのノードも無効化されていないことを示す第 2無効化情報を生成し、

その結果、1個以上の第1無効化情報、1個以上の第2 無効化情報、又は1個以上の第1無効化情報及び1個以 上の第2無効化情報が得られ、

効化情報、又は1個以上の第1無効化情報及び1個以上 の第2無効化情報を、前記配列順序に従って前記記録媒 体に書き込む無効化情報生成手段とを備えることを特徴 とする鍵管理装置。

【請求項10】 n分木 (nは、2以上の整数) に関連 付けて1個以上のデバイス鍵を有し、前記デバイス鍵を 利用者装置に割り当てる鍵管理装置であって、

n分木を構成する全てのノードは、有効であり、n分木 を構成する1個以上のノードにそれぞれ対応付けて1個 以上のデバイス鍵を記憶しているデバイス鍵記憶手段

各利用者装置に共通に割り当てられた1個のデバイス鍵 に基づいて、1個のメディア鍵を暗号化して1個の暗号 化メディア鍵を生成し、生成した前記暗号化メディア鍵 を、記録媒体に書き込む鍵情報生成手段と、

n分木を構成する全てのノードが有効であることを示す 情報を前記記録媒体に書き込む無効化情報生成手段とを 備えることを特徴とする鍵管理装置。

【請求項11】 n分木 (nは、2以上の整数) に関連 20 付けて1個以上のデバイス鍵を有する鍵管理装置によ り、1個以上のデバイス鍵が割り当てられ、割り当てら れた前記デバイス鍵の中の1個のデバイス鍵に基づい て、コンテンツを暗号化して記録媒体に書き込み又は前 記記録媒体から読み出した暗号化コンテンツを復号する 利用者装置であって、

前記鍵管理装置は、n分木を構成する1個以上のノード にそれぞれ対応付けて1個以上のデバイス鍵を記憶して おり、ルートから一部のリーフへの経路上に存在する複 数のノードは、無効化されており、複数の共通デバイス 鍵をそれぞれ用いて1個のメディア鍵を暗号化して複数 の暗号化メディア鍵を生成し、各共通デバイス鍵は、無 効化されていないノードに対応付けられた複数のデバイ ス鍵のうち、1以上の利用者装置に共涌に割り当てられ たデバイス鍵であり、その結果複数の暗号化メディア鍵 が得られ、得られた複数の暗号化メディア鍵を、n分木 の構成に係る配列順序に従って記録媒体に書き込み、リ ーフを除き、無効化されたノードについて、下位のn個 のノードのそれぞれが無効化されているか否かを示す無 効化情報を生成し、その結果複数の無効化情報が得ら

40 れ、得られた複数の無効化情報を、前記配列順序に従っ て前記記録媒体に書き込み、

前記利用者装置は、

前記記録媒体に前記配列順序に従って書き込まれた前記 複数の無効化情報を用いて、前記記録媒体に前記配列順 序に従って書き込まれた前記複数の暗号化メディア鍵の 中から、当該利用者装置に割り当てられたデバイス鍵に より暗号化された暗号化メディア鍵を特定する特定手段 Ł.

特定した暗号化メディア鍵を、当該利用者装置に割り当 得られた1個以上の第1無効化情報、1個以上の第2無 50 てられたデバイス鍵に基づいて復号して、メディア鍵を 生成する後号手段と、 生成した前記メディア鍵に基づいてコンテンツを唱号化 して前記記録媒体に書き込み、又は前記記録媒体から暗 号化コンテンツを認み出し読み出した暗号化コンテンツ を生成した前記メディア鍵に基づいて彼号してコンテン ツを生成しまする暗号後号手段とを備えることを特徴とする 利用者装層。

【請求項12】 前記n分木は、複数のレイヤから構成され、

前記複数の暗号化メディア鍵は、ルートを起点とし、ル 10 ート側のレイヤからリーフ側のレイヤへの順序である前 記配列順序に従って記録媒体に書き込まれ、

前記複数の無効化情報は、前記配列順序に従って前記記 録媒体に書き込まれ、

前記特定手段は、前記配列順序に従って書き込まれた前 記據数の無効化情報を用いて、前記配列順序に従って書 き込まれた前記複数の暗号化メディア鍵の中から、前記 暗号化メディア鍵を特定することを特徴とする請求項1 1に記載の利用者装置。

【請求項13】 前記複数の暗号化メディア鍵は、ルー 20 トを起点とし、ルートから各リーフへ至る経路上に配さ れるノードの順序であって、重複して配列されない前記 配列順所に従って配録媒体に書き込まれ、

前記複数の無効化情報は、前底配列順序に従って前記記 鉄媒体に書き込まれ、前記院产手段は、前配配列順序に 従って書き込まれ、前記機数の無効化情報を用いて、前 配配列順序に従って書き込まれた前記複数の場分化所 不了鍵の中から、前部時代とディア鍵を検定すること を特徴とする請求項 1 1 に配置の利用 書を選 を特徴とする請求項 1 1 に配置の利用者を置

【請求項14】 リーフを除き、無効化された全てのノ 30 - ドについて、無効化情報が生成されて、前記記録媒体 に書き込まれ、

前記特定手段は、前記複数の無効化情報を用いて、前記 暗号化メディア鍵を特定することを特徴とする請求項1 1に記載の利用者装置。

【請求項15】 リーフを除き、無効化されたノードで あって、下位側に接続する全てのノードが無効化されて いるものについて、下位側に接続する全てのノードが無 効化されている旨を示す特別無効化情報が生成されて前 記記録媒体に書き込まれ、

前記下位側に接続する全ての無効化されたノードについて、無効化情報の生成が抑制され、

リーフを除く他の無効化されたノードについて、下位の 「個のノードのそれぞれが無効化されているか否かを示 す無効に情報が生成されて前記記録媒体に書き込まれ、 前記特定手段は、前記特別無効化情報及び前記無効化情 概を用いて、前記暗号化メディア鍵を特定することを特 徴とする語史項11に記載の利用者装置。

【請求項16】 リーフを除き、無効化されたノードで て、下位のn個のノードの少なくとも1個が無効化されるって、下位側に接続する全てのノードが無効化されて 50 ている場合に、それぞれが無効化されているか否かを示

いるものについて、下位側に接続する全てのノードが無 効化されている旨を示す第1付加情報と、下位の1個の ノードのそれぞれが無効化されていることを示す1桁の 情報とから構成される特別無効化情報が生成されて前記 記録媒体に書き込まれ、

前記下位側に接続する全ての無効化されたノードについ て、無効化情報の生成が抑制され、

リーフを除く他の無効化されたノードについて、下位劇 に接続する全てのノードが無効化されていない旨を示す 第2付加情報と、下位のロ側のノードのそれぞれが無効 化されているか否かを示す。所の情報とから構成される 無効化情報が生成されて前死正鍵線体に書き込まれ、 前記物2年現は、前記特別無效化情報及び前記無效化情報

前配特定手段は、前配特別無効化情報及び前配無効化情報を 報を用いて、前配暗号化メディア鍵を特定することを特 徴とする請求項15に記載の利用者装置。

【請求項17】 リーフを禁さ、無効化されたノードで あって、下位側に接続する全てのノードが無効化されて いるものについて、下位の n 個のノードのそれぞれが無 効化されていることを示す n 桁の特別値から構成される 特別無効化管線が生成されて前記配数域体に書き込ま れ

前記下位側に接続する全ての無効化されたノードについ て、無効化情報の生成が抑制され、

リーフを除く他の無効化されたノードについて、下位の n 個のノードのそれぞれが無効化されているか否かを示 す n 桁の無効化情報が生成されて前配配្ 球媒体に書き込 まれ、

前記特定手段は、前記特別無効化情報及び前記無効化情報を用いて、前記暗号化メディア鍵を特定することを特徴とする請求項15に記載の利用者装置。

【請求項18】 n分木(nk、2以上の整数) に関連 付けて1個以上のデバイス離を有する維管理装置により、1個以上のデバイス離か削り当てられ、割り当てられた前配デバイス鍵の中の1個のデバイス鍵に基づいて、コンテンツを暗号化して配線媒体に書き込み又は前 記鑑線媒体がも読み出した暗号化コンテンツを復与する利用者装置であって、

前記鍵管理装置は、n分木を構成する1個以上のノード にそれぞれ対応付けて1個以上のデパイス鍵を記憶して

4 おり、一部のノードは、無効化されており、複数の共通 デバイス鍵をそれぞれ用いて1個のメディア鍵を暗号化 して複数の暗号化メディア鍵を生成し、各共通デルイス 鍵は、無効化されていないノードに対応付けられた複数 のデバイス鍵のうち、1以上の利用者装置に共流に削り 当てられたデバイス鍵であり、その結果複数の場号化メ ディア鍵が得られ、得られた複数の場号化メディア鍵 を、n分木の構成に係る配列順序に従って配量媒体に書 き込み、リーフを除き、無効化された名ノードについ て、下位のn個のノードの少なくとも1個が集効にされ す第1 集効化情報を生成し、下位の n 個の ハードのいず わも無効化されていない場合し、いずれのノードを効か 化されていないことを示す第2 無効化情報と生成し、そ の結果、1個以上の第1 無効化情報、1個以上の第2 無 効化情報、及14 個以上の第1 無効化情報、10 個以上の第1 無 が化情報、20 14 個以上の第2 無効化情報、20 14 個以上の第2 第2 無効化情報及行1 個以上の第2 無効化情報、前記 最初性報及行1 個以上の第2 無効化情報を、前記 配列順序に従って前記記録媒体に書き込み、 前記利用者装置の

前記記録媒体に前記配列順序に従って書き込まれた前記 第1 集物化情報。 耐配第2 無効化情報。 又は前記記 1 無 効化情報及ご前記 2 無効化情報を用いて、前記記録媒 体に前記配列順序に従って書き込まれた前記録数の地号 化メディア鍵の中から、当該利用者数配に割り当てられ たデバイス鍵により暗号化された暗号化メディア鍵を特 定する特定手段と

特定した暗号化メディア鍵を、当該利用者装置に割り当 てられたデバイス鍵に基づいて復号して、メディア鍵を 生成する復号手段と、

生成した前記メディア輝に基づいてコンテンツを鳴号化 して前記記録域体に書き込み、又は前記記模媒体から暗 号化コンテンツを読み出し読み出した暗号化コンテンツ を生成した前記メディア鍵に基づいて復号してコンテン ツを生成りる暗号復号手段とを備えることを特徴とする 利用者被磨

【韓求東19】 の分本(nは、2以上の整数) に関連 付けて1個以上のデバイス離を有する簡単装置によ り、1個以上のデバイス離か割り当てられ、割り当てら れた前記デバイス離の中の1個のデバイス離に基づい て、コンテンツを暗号化した暗号化コンテンツを復号する 利用者差額であって、

前記聲理英麗は、n分本を構成する1個以上のノード にそれぞれ対応付けて1個以上のデルイス鍵を配能して おり、n分本を構成する全でのノードは、有効であり、 各利用者装置に共適に割り当てられた1個のデルイス鍵 に基づいて、1個のメディア鍵を暗号化して1個の暗号 化メディア鍵を生成し、生成した前記暗号化メディア鍵 を、影響媒体に書き込み、n分本を構成する全でのノー 40 ドが作効であることを示す情報を前記記録媒体に書き込

前記利用者装置は、

前記記録媒体に有効であることを示す前記情報が記録されていると判断する場合に、前記記録媒体に記録されている前記暗号化メディア鍵を読み出す読出手段と、

読み出した暗号化メディア鍵を、当該利用者装置に割り 当てられたデバイス鍵に基づいて復号して、メディア鍵 を生成する復号手段と、

生成した前記メディア鍵に基づいてコンテンツを暗号化 50 れ、得られた複数の無効化情報を、前記配列順序に従っ

して前記記録媒体に書き込み、又は前記記録媒体から暗 号化コンテンツを読み出し読み出した暗号化コンテンツ を生成した前記メディア盤に基づいて復号してコンテン ツを生成する暗号復号手段とを備えることを特徴とする 利用者装置。

【請求預20】 n分木(nは、2以上の整数) に関連 付けて1個以上のデバイス課を有する遵甲装置で用い もれる實管理プログラムであって、前記録管理装置は、 n分木においてルートから一部のリーブへの経路上に存 在する複数のノードは、無効にされており、前記デバイ ス盤を各利用者装置に割り当て、n分木を構成する1個 以上のノードにそれぞれ対応付けて1個以上のデバイス

鍵を記憶しているデバイス鍵記憶手段を備え、 前記鍵管理プログラムは、

複数の共通デバイス線を七十ぞれ用いて1億のメディア 線を暗号化して複数の暗号化メディア線を生成し、各共 通デバイス線は、無効化されていないノードに対応付け られた複数のデバイス線のうち、11とLの利用者装膜に 共画に割り当てられたデバイス線であり、その無機線数 20 の暗号化メディア鍵が得られ、得られた複数の暗号化メ ディア線を、n分木の構成に係る配列順序に従って配線 媒体に書き込む機能無性なディアップと、

リーフを除き、無効化された/ードについて、下位のn 個のノードのそれぞれが無効化されているか否かを示す 無効化管機を生成し、その結果整数の無効化積が目標が得られ、得られた複数の無効化情報を、前記配列順序に従っ で前記記録媒体に書き込む無効化情報を成ステップとを 含むことを特定する整書型プログラム。

【請求項21】 n分木 (nは、2以上の整数) に関連 付けて1個以上のデバイス鍵を有する鍵管理装置によ り、1以上のデバイス盤が割り当てられ、割り当てられ た前記デバイス鍵の中の1個のデバイス鍵に基づいて、 コンテンツを暗号化して記録媒体に書き込み又は前記記 録媒体から読み出した暗号化コンテンツを復号する利用 者装置で用いられる利用者プログラムであって、 前記録管理装置は、n分木を構成する1個以上のノード にそれぞれ対応付けて1個以上のデバイス鍵を記憶して おり、ルートから一部のリーフへの経路上に存在する複 数のノードは、無効化されており、複数の共通デバイス 鍵をそれぞれ用いて 1 個のメディア鍵を暗号化して複数 の暗号化メディア鍵を生成し、各共通デバイス鍵は、無 効化されていないノードに対応付けられた複数のデパイ ス鍵のうち、1以上の利用者装置に共涌に割り当てられ たデバイス鍵であり、その結果複数の暗号化メディア鍵 が得られ、得られた複数の暗号化メディア鍵を、n分木 の構成に係る配列順序に従って記録媒体に書き込み、リ 一フを除き、無効化されたノードについて、下位のn個 のノードのそれぞれが無効化されているか否かを示す無 効化情報を生成し、その結果複数の無効化情報が得ら

て前記記録媒体に書き込み、 前記利用者プログラムは、

前記記録媒体に前記配列順序に従って書き込まれた前記 複数の無効化情報を用いて、前記記録媒体に前記配列順 序に従って書き込まれた前記複数の暗号化メディア鍵の 中から、当該利用者装置に割り当てられたデバイス鍵に より暗号化された暗号化メディア鎌を特定する特定ステ ップと、

q

特定した暗号化メディア鍵を、当該利用者装置に割り当 てられたデバイス鍵に基づいて復号して、メディア鍵を 10 生成する復号ステップと、

生成した前記メディア鍵に基づいてコンテンツを暗号化 して前記記録媒体に書き込み、又は前記記録媒体から暗 号化コンテンツを読み出し読み出した暗号化コンテンツ を生成した前記メディア鍵に基づいて復号してコンテン ツを生成する暗号復号ステップとを含むことを特徴とす る利用者プログラム。

【請求項22】 n分木 (nは、2以上の整数) に関連 付けて1個以上のデバイス鍵を有する鍵管理装置で用い られる鍵管理方法であって、前記鍵管理装置は、n分木 20 においてルートから一部のリーフへの経路上に存在する 複数のノードは、無効化されており、前記デバイス鍵を 各利用者装置に割り当て、n分木を構成する1個以上の ノードにそれぞれ対応付けて1個以上のデバイス鍵を記 憶しているデバイス鍵記憶手段を備え、

前記録管理方法は、

無効化されていないノードに対応付けられた複数のデバ イス鍵のうち、1以上の利用者装置に共通に割り当てら れたデバイス鍵をそれぞれ用いて、1個のメディア鍵を 暗号化して複数の暗号化メディア鍵を生成し、その結果 30 複数の暗号化メディア鍵が得られ、得られた複数の暗号 化メディア鍵を、n分木の構成に係る配列順序に従って 記録媒体に書き込む鍵情報生成ステップと、

リーフを除き、無効化されたノードについて、下位のn 個のノードのそれぞれが無効化されているか否かを示す 無効化情報を生成し、その結果複数の無効化情報が得ら れ、得られた複数の無効化情報を、前記配列順序に従っ て前記記録媒体に書き込む無効化情報生成ステップとを 含むことを特徴とする鍵管理方法。

【請求項23】 n分木 (nは、2以上の整数) に関連 40 付けて1個以上のデバイス鍵を有する鍵管理装置によ り、1以上のデバイス鍵が割り当てられ、割り当てられ た複数のデバイス鍵の中の1個のデバイス鍵に基づい て、コンテンツを暗号化して記録媒体に書き込み又は前 記記録媒体から読み出した暗号化コンテンツを復号する 利用者装置で用いられる利用方法であって、

前記鍵管理装置は、n分木を構成する1個以上のノード にそれぞれ対応付けて1個以上のデバイス鍵を記憶して おり、ルートから一部のリーフへの経路上に存在する複 数のノードは、無効化されており、複数の共通デバイス 50 れ、得られた複数の無効化情報を、前記配列順序に従っ

鍵をそれぞれ用いて1個のメディア鍵を暗号化して複数 の暗号化メディア鍵を生成し、各共通デバイス鍵は、無 効化されていないノードに対応付けられた複数のデバイ ス鍵のうち、1以上の利用者装置に共通に割り当てられ たデバイス鍵であり、その結果複数の暗号化メディア鍵 が得られ、得られた複数の暗号化メディア鍵を、n分木 の構成に係る配列順序に従って記録媒体に書き込み、リ ーフを除き、無効化されたノードについて、下位のn個 のノードのそれぞれが無効化されているか否かを示す無 効化情報を生成し、その結果複数の無効化情報が得ら

れ、得られた複数の無効化情報を、前記配列順序に従っ て前記記録媒体に書き込み、 前記利用方法は、

前記記録媒体に前記配列順序に従って書き込まれた前記 複数の無効化情報を用いて、前記記録媒体に前記配列順 序に従って書き込まれた前記複数の暗号化メディア鍵の 中から、当該利用者装置に割り当てられたデバイス鍵に より暗号化された暗号化メディア鍵を特定する特定ステ ップと、

特定した暗号化メディア鍵を、当該利用者装置に割り当 てられたデバイス鍵に基づいて復号して、メディア鍵を 生成する復号ステップと、

生成した前記メディア鍵に基づいてコンテンツを暗号化 して前記記録媒体に書き込み、又は前記記録媒体から暗 号化コンテンツを読み出し読み出した暗号化コンテンツ を生成した前記メディア鍵に基づいて復号してコンテン ツを生成する暗号復号ステップとを含むことを特徴とす る利用方法。

【請求項24】 n分木(nは、2以上の整数)に関連 付けて1個以上のデバイス鍵を有する鍵管理装置で用い られる鍵管理プログラムを記録しているコンピュータ読 み取り可能な記録媒体であって、前記鍵管理装置は、n 分木においてルートから一部のリーフへの経路上に存在 する複数のノードは、無効化されており、前記デバイス 鍵を各利用者装置に割り当て、 n分木を構成する 1 個以 上のノードにそれぞれ対応付けて1個以上のデバイス鍵 を記憶しているデバイス鍵記憶手段を備え、

前記鍵管理プログラムは、

複数の共涌デバイス鍵をそれぞれ用いて 1 個のメディア 鍵を暗号化して複数の暗号化メディア鍵を生成し、各共 通デバイス鍵は、無効化されていないノードに対応付け られた複数のデバイス鍵のうち、1以上の利用者装置に 共通に割り当てられたデバイス鍵であり、その結果複数 の暗号化メディア鍵が得られ、得られた複数の暗号化メ ディア鍵を、n分木の構成に係る配列順序に従って記録 媒体に書き込む鍵情報生成ステップと、

リーフを除き、無効化されたノードについて、下位の n 個のノードのそれぞれが無効化されているか否かを示す 無効化情報を生成し、その結果複数の無効化情報が得ら

(7)

10

11

て前記記録媒体に書き込む無効化情報生成ステップとを 含むことを特徴とする記録媒体。

【請求項25】 n分木 (nは、2以上の整数) に関連 付けて1個以上のデバイス鍵を有する鍵管理装置によ り、1以上のデバイス鍵が割り当てられ、割り当てられ た複数のデバイス鍵の中の1個のデバイス鍵に基づい て、コンテンツを暗号化して記録媒体に書き込み又は前 記記録媒体から読み出した暗号化コンテンツを復号する 利用者装置で用いられる利用者プログラムを記録してい るコンピュータ読み取り可能な記録媒体であって、 前記録管理装置は、n分木を構成する1個以上のノード にそれぞれ対応付けて1個以上のデパイス鍵を配憶して おり、ルートから一部のリーフへの経路上に存在する複 数のノードは、無効化されており、複数の共通デバイス 鍵をそれぞれ用いて1個のメディア鍵を暗号化して複数 の暗号化メディア鍵を生成し、各共通デバイス鍵は、無 効化されていないノードに対応付けられた複数のデバイ ス鍵のうち、1以上の利用者装置に共通に割り当てられ たデバイス鍵であり、その結果複数の暗号化メディア鍵 が得られ、得られた複数の暗号化メディア鍵を、n分木 20 の構成に係る配列順序に従って記録媒体に書き込み、リ 一フを除き、無効化されたノードについて、下位のn個 のノードのそれぞれが無効化されているか否かを示す無 効化情報を生成し、その結果複数の無効化情報が得ら れ、得られた複数の無効化情報を、前記配列順序に従っ て前記記録媒体に書き込み、 前記利用者プログラムは、

前配記録媒体に前記配列順序に従って書き込まれた前記 複数の無効化情報を用いて、前記記録媒体に前記配列順 序に従って書き込まれた前記複数の暗号化メディア鍵の 30 中から、当該利用者装置に割り当てられたデバイス鍵に より暗号化された暗号化メディア鍵を特定する特定ステ ップと、

特定した暗号化メディア鍵を、当該利用者装置に割り当 てられたデバイス鍵に基づいて復号して、メディア鍵を 生成する復号ステップと.

生成した前記メディア鍵に基づいてコンテンツを暗号化 して前記記録媒体に書き込み、又は前記記録媒体から暗 号化コンテンツを読み出し読み出した暗号化コンテンツ を生成した前記メディア鍵に基づいて復号してコンテン 40 ツを生成する暗号復号ステップとを含むことを特徴とす る記録媒体。

【請求項26】 コンピュータ読み取り可能な記録媒体 であって、

n分木(nは、2以上の整数)の構成に係る配列順序に 従って、複数の暗号化メディア鍵及び複数の無効化情報 を記録しており、

ここで、前記複数の暗号化メディア鍵及び前配複数の無 効化情報は、鍵管理装置により生成され、記録され、前

ス鍵を有し、前記デバイス鍵を利用者装置に割り当て、 前記鍵管理装置は、n分木を構成する1個以上のノード にそれぞれ対応付けて1個以上のデバイス鍵を記憶して おり、ルートから一部のリーフへの経路上に存在する複 数のノードは、無効化されており、複数の共通デバイス 鍵をそれぞれ用いて1個のメディア鍵を暗号化して複数 の暗号化メディア鍵を生成し、各共通デバイス鍵は、無 効化されていないノードに対応付けられた複数のデパイ ス鍵のうち、1以上の利用者装置に共通に割り当てられ たデバイス鍵であり、その結果複数の暗号化メディア鍵 が得られ、得られた複数の暗号化メディア鍵を、n分木 の構成に係る配列順序に従って記録媒体に書き込み、リ 一フを除き、無効化されたノードについて、下位のn個 のノードのそれぞれが無効化されているか否かを示す無 効化情報を生成し、その結果複数の無効化情報が得ら れ、得られた複数の無効化情報を、前配配列順序に従っ て前記記録媒体に書き込むことを特徴とする記録媒体。 【発明の詳細な説明】 [0001]

【発明の属する技術分野】本発明は、デジタル著作物を 記録媒体に記録し、記録媒体を配布し、配布された記録 媒体からデジタル著作物を再生する技術に関し、特に、 著作権を保護するためのコンテンツ暗号化のための鍵情 報を管理する技術に関する。

[0002]

【従来の技術】近年、デジタル処理、蓄積、涌信等の技 術の発展に伴い、映画などのデジタルコンテンツを格納 している大容量記録媒体を販売又はレンタルによりユー ザに提供するサービスが普及している。また、デジタル 化されたコンテンツが放送され、受信装置がデジタルコ ンテンツを受信し、受信したデジタルコンテンツを記録 型デジタル光ディスク等の記録媒体に格納し、再生装置 が記録媒体に格納されたデジタルコンテンツを再生する というシステムも普及しつつある。

【0003】 こうしたサービスやシステムが提供される 際には、コンテンツが不正に使用されないように、コン テンツの著作権が保護され、著作権者との合意による制 限の下でのみコンテンツの再生や複製などが行われる必 要がある。一般的には、次に示すようにして、著作物を 著作権者の許可のない不正コピー等から保護する。記録 装置がデジタルコンテンツをある暗号化鍵により暗号化 し、暗号化コンテンツをディスクに記録する。前記暗号 化鍵に対応する復号鍵を持つ再生装置だけが暗号化コン テンツを復号できる。記録装置や再生装置などの製造業 者と著作権者との間で著作権保護に対する規定が取り決 められ、その規定の遵守を条件として、製造業者は、暗 号化鍵又は復号鍵(以降、これらを単に、鍵と称す る。) を入手できる。製造業者は、入手した鍵が外部に 露見しないように厳重に管理しなければならない。

記鍵管理装置は、n分木に関連付けて1個以上のデバイ 50 【0004】しかし、製造業者が鍵を厳重に管理したと

(8)

しても、不正な第二者(以下、不正名)が、何らかの手 製により離を収得することがあるかもしれない。こうし で誰か一旦不正者により暴露されてしまうと。この不正 者は、製造業者と著作権者との合意による規定を強れ て、難自住を施力にあり、コンテンツを不正に扱う記録 装置又は再生装置を製造したり、又はコンテンツを不正 に扱うコンピュータブログラムを作成しインターネット 等条介して流布することが考えわる。このような場 合、著作権者は、一旦暴露された載では、次から提供す るフィンテンツを発えなからといたまさま。 スコンテンツを発えないたちによいますよ。 スコンテンツを発えないたちによいますよ。 スコンテンツを発えないたちによいますよ。 スコンテンツを発えないたちによいますよ。 スコンテンツを発えないたちによいますよ。

るコンテンツを扱えないようにしたいと考える。 【0005】著作権者のこのような要求に答えるための 最も単純な方法を次に示す。鍵管理機関は、複数のデバ イス鍵及び複数のメディア鍵からなる集合を有してい る。鎌管理機関は、複数の記録装置及び複数の再生装置 のそれぞれに、1個のデバイス鍵及びそのデバイス鍵の 鍵識別番号を割り当て、割り当てたデバイス鍵及び鍵識 別番号を記録装置又は再生装置に与える。また、記録媒 体に、1個のメディア鍵を割り当てる。次に、鍵管理機 関は、前記記録装置及び前記再生装置のそれぞれに割り 当てられた各デバイス鍵を用いてメディア鍵を暗号化し 20 て暗号化メディア鍵を作成し、全てのデバイス鍵に対す る暗号化メディア鍵と鍵識別番号からなるリストを鍵情 報として記録媒体に格納する。記録媒体が装着された記 録装置又は再生装置は、自らに割り当てられた鍵識別番 号に対応する暗号化メディア鍵を、前記記録媒体の鍵情 報から取り出し、自らに割り当てられたデバイス鍵を用 いて、取り出した暗号化メディア鍵を復号してメディア 鍵を獲得する。次に、記録装置は、獲得したメディア鍵 を用いてコンテンツを暗号化して記録媒体に記録する。 一方、再生装置は、同様にして獲得したメディア鍵を用 30 いて暗号化コンテンツを復号する。このようにして、正 規にデバイス鍵が割り当てられた記録装置又は再生装置 であれば、1個の記録媒体からは必ず同じメディア鍵が 獲得できるので、機器間の互換性が保たれる。

正規の記録装置で記録された暗号化コンテンツを正しく 復号することができない。このようにして、暴露された 鍵を無効化することができる。

【0007】しかし、この単純な方法では、装置の台数が大量になると養情報のデータサイズが非現実的な大きを値になるという気はある。例えば、あるデジセストと、 機能ななという気はある。例えば、あるデジセストと を描しなるというには、また、上述した暗号化コンテンツの生成 に用いる暗号アルゴリズムとして、米里の標準暗守であ るトリブルDE 5 略号を用いるものとすると、メディア

鍵の長さは、パディングも含めて、16 [B (バイト)] となる。従って暗号化メディア鎌の長さも16

[B] となる。さらに健識別語号として4 [B] の値を 持つとすると、全体の健情報サイズは20 [B] ×10 億台=200億 [B] =20 [GB] となる。これは現 在の記録型光ディスクの容量からすると非現実的な大き な値である。

【0008】そこで、このようたシステムは、記録媒体 に記録する離情報サイズが記録媒体の記録容量に比べわ ずかである、という条件を満たすらのでなければならな い、このような条件を満たすシステムの一例として、文 献(1)「デジタルコンテンツ保護用観音型方式(中 駅、大森、館林、2014年時号と情報セキュリティシンポ ジウム、SCIS20015A-5、Jan. 2001)には、木構造を用 いた著作権保護用報管理方式が開示されている。 【0009】

【特許文献1】「デジタルコンテンツ保護用鍵管理力式」(中野、大藤、維林、2004年間号と情報セキュリティシンポジウム、SCIS2001 545、月an、2010)こで、文献(1)において開示されている方式について説明さる前に、木構造について若千の解説を行う。形式的に、木構造に「相以上のノードを要求をする有限場合であって、次の条件を満たすものとして定義される。【0010】(a) 木構造のルートと呼ばれるノードが、1個だけ指定されている。

(b) ルートを除く他のノードは、m個 (m≥0) の共 適部分を持たない集合T1、・・・、Tm に分割され、 各T1 (i=1、・・・、m) は再び木構造であり、こ れらは、Tよりも高さが「1」だけ小さい部分木であ

*15は、1よりも高さか・1」たけかさい部分不であ

0 る。この木構造T1、・・・、Tmを、そのルートに対
する部分木という。

[001] また、木標造丁における水準(=レイヤ) とは、次のように定義された数である。 Tのルートの水 準は〇である。このルートに対する形分木で] 10 場合、丁」に含まれるノードの丁における水準は、丁」 における水準より1だけ大きい。以下では、文献(1) により開示されている木構造を用いた著作権保護用鍵管 理方式について影明する。

できない。また、その不正な装置が再生装置であれば、 【0012】前記著作権保護用鍵管理方式において、鍵 正しいメディア鍵を獲得することができないので、他の 50 管理機関は、一例として、レイヤ数4の2分木である木

15

構造を構築し、構築した木構造に含まれるノードと同じ 数のデバイス鍵を生成し、生成したデバイス鍵を構築し、 た前記木構造の各ノードに割り当てる。健管理機関は、 木構造の各リーフに各プレーヤ(以降、上述の再生装置 と同義で使用)を対応させ、リーフからルートに至るま での経路上に割り当てられた複数のデバイス鍵を1個の デバイス鍵セットとして、各リーフに1対1で対応する プレーヤに対して、配布する。こうして各プレーヤに配 布されたデバイス鍵セットは、プレーヤごとに全て異な

【0013】ここで、1個のプレーヤに割り当てられた デバイス鍵セットが暴露された場合において、鍵管理機 関は、木構造において、暴露されたデバイス鍵セットに 含まれるデバイス鍵が割り当てられているノードを削除 する。次に、デバイス鍵が暴露されていないプレーヤの 中で、最も多くのプレーヤが共有しているデバイス鍵 を、次に使うべきデバイス鍵とする。

【0014】 この方式によれば、10億台の装置のう ち、任意の1万台を無効化するためには、概ね3 「M B] 程度の鍵情報サイズでよいことが文献 (1) に示さ 20 れている。また、文献 (2) 「Manipulation of Trees in Information Retrieval (G.Salton, Communicatio n of the ACM 5、1962) 及び文献 (3) 「基本算法/情 報構造! (米田、寛駅、サイエンス社、昭53) は、木橋 造を1次元で表現する表現方法を開示している。木構造 の各ノードをある規則に従って並べることで、木構造は 1次元で表現される。例えば、文献(3)のp. 136 には、水準順の並べ方が示されている。これによると、 水準については小さい方から大きい方へ順に並べ、それ 右への順に従って並べる。このような特定の規則に基づ く並べ方を利用することにより、プレーヤ側で、1次元 に並べた情報から木構造を構築することができる。

[0015]

【特許文献 2】「Manipulation of Trees in Informati on Retrieval | (G. Salton, Communication of the AC M 5, 1962)

[0016]

【特許文献3】「基本算法/情報構造」(米田、筧訳、 サイエンス社、昭53)

[0017]

【発明が解決しようとする課題】上述の著作権保護用鍵 管理方式では、記録媒体に記録する鍵情報サイズが記録 媒体の記録容量に比べわずかであるという条件を進たす ものの、木構造により構築された鍵において、無効化さ れたものを含む場合に、プレーヤにおいて自らに割り当 てられた鍵を効率良く決定することが要求されている。 そこで本発明は、前記の要求に対処するために、利用者 が有する利用者装置において、割り当てられた鍵を効率 装置、利用者装置、鍵管理方法、鍵管理プログラム及び 鍵管理プログラムを記録している記録媒体を提供するこ とを目的とする。

[0018]

【課題を解決するための手段】上記目的を達成するため に、本発明は、n分木(nは、2以上の整数)に関連付 けて1個以上のデバイス鍵を有する鍵管理装置と、1以 上の利用者装置とからなる著作物保護システムであっ て、前記鍵管理装置は、デバイス鍵を各利用者装置に割 り当て、各利用者装置は、割り当てられたデバイス鍵に 基づいて、コンテンツを暗号化して記録媒体に書き込み 又は前記記録媒体から読み出した暗号化コンテンツを復 号し、前記鍵管理装置は、n分木においてルートから一 部のリーフへの経路上に存在する複数のノードは、無効 化されており、n分木を構成する1個以上のノードにそ れぞれ対応付けて1個以上のデパイス鍵を記憶している デパイス鍵記憶手段と、複数の共涌デバイス鍵をそれぞ れ用いて1個のメディア鍵を暗号化して複数の暗号化メ ディア鍵を生成し、各共通デバイス鍵は、無効化されて いないノードに対応付けられた複数のデパイス鍵のう ち、1以上の利用者装置に共通に割り当てられたデバイ ス鍵であり、その結果複数の暗号化メディア鍵が得ら れ、得られた複数の暗号化メディア鍵を、n分木の構成 に係る配列順序に従って記録媒体に書き込む雑情報生成 手段と、リーフを除き、無効化されたノードについて、 下位の n 個のノードのそれぞれが無効化されているか否 かを示す無効化情報を生成し、その結果複数の無効化情 報が得られ、得られた複数の無効化情報を、前記配列順 序に従って前記記録媒体に書き込む無効化情報生成手段 ぞれの水準については、その水準内の各ノードを左から 30 とを備え、前記利用者装置は、前記記録媒体に前記配列 順序に従って書き込まれた前記複数の無効化情報を用い て、前配配録媒体に前配配列順序に従って書き込まれた 前記複数の暗号化メディア鍵の中から、当該利用者装置 に割り当てられたデバイス鍵により暗号化された暗号化 メディア鍵を特定する特定手段と、特定した暗号化メデ ィア鍵を、当該利用者装置に割り当てられたデパイス鍵 に基づいて復号して、メディア鍵を生成する復号手段 と、生成した前記メディア鍵に基づいてコンテンツを暗 号化して前記記録媒体に書き込み、又は前記記録媒体か 40 ら暗号化コンテンツを読み出し読み出した暗号化コンテ ンツを生成した前記メディア鍵に基づいて復号してコン

【0019】また、本発明は、n分木(nは、2以上の 整数) に関連付けて1個以上のデバイス鍵を有し、前記 デバイス鍵を利用者装置に割り当てる鍵管理装置であっ て、n分木においてルートから一部のリーフへの経路上 に存在する複数のノードは、無効化されており、n分木 を構成する1個以上のノードにそれぞれ対応付けて1個 良く決定することができる著作物保護システム、鍵管理 50 以上のデパイス鍵を記憶しているデバイス鍵記憶手段

テンツを生成する暗号復号手段とを備えることを特徴と

する。

(10)

と、複数の共涌デバイス鍵をそれぞれ用いて1個のメデ ィア鍵を暗号化して複数の暗号化メディア鍵を生成し、 各共通デバイス鍵は、無効化されていないノードに対応 付けられた複数のデバイス鍵のうち、1以上の利用者装 置に共通に割り当てられたデバイス鍵であり、その結果 複数の暗号化メディア鍵が得られ、得られた複数の暗号 化メディア鍵を、n分木の構成に係る配列順序に従って 記録媒体に書き込む鍵情報生成手段と、リーフを除き、 無効化されたノードについて、下位のn個のノードのそ れぞれが無効化されているか否かを示す無効化情報を生 10 成し、その結果複数の無効化情報が得られ、得られた複 数の無効化情報を、前記配列順序に従って前記記録媒体 に書き込む無効化情報生成手段とを備えることを特徴と する。

【0020】ここで、前記n分木は、複数のレイヤから 構成され、前記鍵情報生成手段は、得られた複数の暗号 化メディア鍵を、ルートを記点とし、ルート側のレイヤ からリーフ側のレイヤへの順序である前記配列順序に従 って記録媒体に書き込み、前記無効化情報生成手段は、 得られた複数の無効化情報を、前記配列順序に従って前 20 記記録媒体に書き込むように構成してもよい。

【0021】 ここで、前記鍵情報生成手段は、得られた 複数の暗号化メディア鍵を、ルートを起点とし、ルート から各リーフへ至る経路上に配されるノードの順序であ って、重複して配列されない前記配列順序に従って記録 媒体に書き込み、前記無効化情報生成手段は、得られた 複数の無効化情報を、前記配列順序に従って前記記録媒 体に書き込むように構成してもよい。

【0022】ここで、前記無効化情報生成手段は、リー フを除き、無効化された全てのノードについて、無効化 30 情報を生成するように構成してもよい。ここで、前記無 効化情報生成手段は、リーフを除き、無効化されたノー ドであって、下位側に接続する全てのノードが無効化さ れているものについて、下位側に接続する全てのノード が無効化されている旨を示す特別無効化情報を生成し、 前記下位側に接続する全ての無効化されたノードについ て、無効化情報の生成を抑制し、リーフを除く他の無効 化されたノードについて、下位のn個のノードのそれぞ れが無効化されているか否かを示す無効化情報を生成す るように構成してもよい。

【0023】 ここで、前記無効化情報生成手段は、リー フを除き、無効化されたノードであって、下位側に接続 する全てのノードが無効化されているものについて、下 位側に接続する全てのノードが無効化されている旨を示 す第1付加情報と、下位のn個のノードのそれぞれが無 効化されていることを示すη桁の情報とから構成される 特別無効化情報を生成し、前記下位側に接続する全ての 無効化されたノードについて、無効化情報の生成を抑制 し、リーフを除く他の無効化されたノードについて、下

18 示す第2付加情報と、下位のn個のノードのそれぞれが 無効化されているか否かを示す n 桁の情報とから構成さ れる無効化情報を生成するように構成してもよい。

【0024】ここで、前記無効化情報生成手段は、リー フを除き、無効化されたノードであって、下位側に接続 する全てのノードが無効化されているものについて、下 位のn個のノードのそれぞれが無効化されていることを 示すn桁の特別値から構成される特別無効化情報を生成 し、前記下位側に接続する全ての無効化されたノードに ついて、無効化情報の生成を抑制し、リーフを除く他の 無効化されたノードについて、下位のη個のノードのそ れぞれが無効化されているか否かを示すn桁の無効化情 報を生成するように構成してもよい。

【0025】また、本発明は、n分木(nは、2以上の 整数) に関連付けて1個以上のデバイス鍵を有し、前記 デバイス鍵を利用者装置に割り当てる鍵管理装置であっ て、n分木において一部のノードは、無効化されてお り、n分木を構成する1個以上のノードにそれぞれ対応 付けて1個以上のデパイス鍵を記憶しているデバイス鍵 記憶手段と、複数の共通デバイス鍵をそれぞれ用いて1 個のメディア鍵を暗号化して複数の暗号化メディア鍵を 生成し、各共通デバイス鍵は、無効化されていないノー ドに対応付けられた複数のデバイス鍵のうち、1以上の 利用者装置に共通に割り当てられたデバイス鍵であり、 その結果複数の暗号化メディア鍵が得られ、得られた複 数の暗号化メディア鍵を、n分木の構成に係る配列順序 に従って記録媒体に書き込む鍵情報生成手段と、リーフ を除き、無効化された各ノードについて、下位のn個の ノードの少なくとも1個が無効化されている場合に、そ れぞれが無効化されているか否かを示す第1無効化情報 を生成し、下位のn個のノードのいずれも無効化されて いない場合に、いずれのノードも無効化されていないこ とを示す第2無効化情報を生成し、その結果、1個以上 の第1無効化情報、1個以上の第2無効化情報、又は1 個以上の第1無効化情報及び1個以上の第2無効化情報 が得られ、得られた1個以上の第1無効化情報、1個以 上の第2無効化情報、又は1個以上の第1無効化情報及 び1個以上の第2無効化情報を、前記配列順序に従って 前記記録媒体に書き込む無効化情報生成手段とを備える 40 ことを特徴とする。

【0026】また、本発明は、n分木(nは、2以上の 整数) に関連付けて1個以上のデバイス鍵を有し、前記 デバイス鍵を利用者装置に割り当てる鍵管理装置であっ て、n分木を構成する全てのノードは、有効であり、n 分木を構成する1個以上のノードにそれぞれ対応付けて 1個以上のデバイス鍵を記憶しているデバイス鍵記憶手 段と、各利用者装置に共通に割り当てられた1個のデバ イス鍵に基づいて、1個のメディア鍵を暗号化して1個 の暗号化メディア鍵を生成し、生成した前記暗号化メデ 位側に接続する全てのノードが無効化されていない旨を 50 ィア鍵を、記録媒体に書き込む鍵情報生成手段と、n分 木を構成する全てのノードが有効であることを示す情報 を前記記録媒体に書き込む無効化情報生成手段とを備え ることを特徴とする。

【0027】また、本発明は、n分木(nは、2以上の 整数) に関連付けて1個以上のデバイス鍵を有する鍵管 理装置により、1個以上のデバイス鍵が割り当てられ、 割り当てられた前記デバイス鍵の中の1個のデバイス鍵 に基づいて、コンテンツを暗号化1. て記録媒体に書き込 み又は前記記録媒体から読み出した暗号化コンテンツを 復号する利用者装置であって、前記鍵管理装置は、n分 10 木を構成する1個以上のノードにそれぞれ対応付けて1 個以上のデバイス鍵を記憶しており、ルートから一部の リーフへの経路上に存在する複数のノードは、無効化さ れており、複数の共通デバイス鍵をそれぞれ用いて1個 のメディア鍵を暗号化して複数の暗号化メディア鍵を生 成し、各共通デバイス鍵は、無効化されていないノード に対応付けられた複数のデバイス鍵のうち、1以上の利 用者装置に共通に割り当てられたデバイス鍵であり、そ の結果複数の暗号化メディア鍵が得られ、得られた複数 の暗号化メディア鍵を、n分木の構成に係る配列順序に 従って記録媒体に書き込み、リーフを除き、無効化され たノードについて、下位のn個のノードのそれぞれが無 効化されているか否かを示す無効化情報を生成し、その 結果複数の無効化情報が得られ、得られた複数の無効化 情報を、前記配列順序に従って前記記録媒体に書き込 み、前記利用者装置は、前記記録媒体に前記配列順序に 従って書き込まれた前記複数の無効化情報を用いて、前 記記録媒体に前記配列順序に従って書き込まれた前記簿 数の暗号化メディア鍵の中から、当該利用者装置に割り 当てられたデバイス鍵により暗号化された暗号化メディ ア鍵を特定する特定手段と、特定した暗号化メディア舗 を、当該利用者装置に割り当てられたデバイス鍵に基づ いて復号して、メディア鍵を生成する復号手段と、生成 した前記メディア鍵に基づいてコンテンツを暗号化して 前記記録媒体に書き込み、又は前記記録媒体から暗号化 コンテンツを読み出し読み出した暗号化コンテンツを生 成した前記メディア鍵に基づいて復号してコンテンツを 生成する暗号復号手段とを備えることを特徴とする。 【0028】ここで、前記n分木は、複数のレイヤから

構成され、前記複数の暗号化メディア糖は、ルートを記 40 点とし、ルート側のレイヤからリーフ側のレイヤへの順 序である前記配列順序に従って記録媒体に書き込まれ、 前記複数の無効化情報は、前記配列順序に従って前記記 録媒体に書き込まれ、前記特定手段は、前記配列順序に 従って書き込まれた前記複数の無効化情報を用いて、前 記配列順序に従って書き込まれた前記複数の暗号化メデ イア鍵の中から、前記暗号化メディア鍵を特定するよう に構成してもよい。

【0029】ここで、前記複数の暗号化メディア鍵は、

配されるノードの順序であって、重複して配列されない 前記配列順序に従って記録媒体に書き込まれ、前記複数 の無効化情報は、前記配列順序に従って前記記録媒体に 書き込まれ、前記特定手段は、前記配列順序に従って書 き込まれた前記複数の無効化情報を用いて、前記配列順 序に従って書き込まれた前記複数の暗号化メディア鍵の 中から、前記暗号化メディア鍵を特定するように構成し てもよい。

【0030】ここで、リーフを除き、無効化された全て のノードについて、無効化情報が生成されて、前記記録 媒体に書き込まれ、前記特定手段は、前記複数の無効化 情報を用いて、前記暗号化メディア鍵を特定するように 構成してもよい。ここで、リーフを除き、無効化された ノードであって、下位側に接続する全てのノードが無効 化されているものについて、下位側に接続する全てのノ ードが無効化されている旨を示す特別無効化情報が生成 されて前記記録媒体に書き込まれ、前記下位側に接続す る全ての無効化されたノードについて、無効化情報の生 成が抑制され、リーフを除く他の無効化されたノードに ついて、下位のn個のノードのそれぞれが無効化されて いるか否かを示す無効化情報が生成されて前記記録媒体 に書き込まれ、前配特定手段は、前記特別無効化情報及 び前記無効化情報を用いて、前記暗号化メディア髁を特 定するように構成してもよい。

【0031】 ここで、リーフを除き、無効化されたノー ドであって、下位側に接続する全てのノードが無効化さ れているものについて、下位側に接続する全てのノード が無効化されている旨を示す第1付加情報と、下位のn 個のノードのそれぞれが無効化されていることを示すn 桁の情報とから構成される特別無効化情報が生成されて 前記記録媒体に書き込まれ、前記下位側に接続する全て の無効化されたノードについて、無効化情報の生成が抑 制され、リーフを除く他の無効化されたノードについ て、下位側に接続する全てのノードが無効化されていた い旨を示す第2付加情報と、下位のn個のノードのそれ ぞれが無効化されているか否かを示すn桁の情報とから 構成される無効化情報が生成されて前記記録媒体に書き 込まれ、前記特定手段は、前記特別無効化情報及び前記 無効化情報を用いて、前記暗号化メディア鍵を特定する ように構成してもよい。

【0032】ここで、リーフを除き、無効化されたノー ドであって、下位側に接続する全てのノードが無効化さ れているものについて、下位のn個のノードのそれぞれ が無効化されていることを示すn桁の特別値から構成さ れる特別無効化情報が生成されて前記記録媒体に書き込 まれ、前記下位側に接続する全ての無効化されたノード について、無効化情報の生成が抑制され、リーフを除く 他の無効化されたノードについて、下位のn個のノード のそれぞれが無効化されているか否かを示すn桁の無効 ルートを起点とし、ルートから各リーフへ至る経路上に 50 化情報が生成されて前記記録媒体に書き込まれ、前記特 定手段は、前記特別無効化情報及び前記無効化情報を用 いて、前記暗号化メディア鍵を特定するように構成して もよい。

【0033】また、本発明は、n分木(nは、2以上の 整数) に関連付けて1個以上のデバイス鍵を有する鍵管 理装置により、1個以上のデバイス鍵が割り当てられ、 割り当てられた前記デバイス鍵の中の1個のデバイス鍵 に基づいて、コンテンツを暗号化して記録媒体に書き込 み又は前記記録媒体から読み出した暗号化コンテンツを 復号する利用者装置であって、前記録管理装置は、n分 10 木を構成する1個以上のノードにそれぞれ対応付けて1 個以上のデバイス鍵を記憶しており、一部のノードは、 無効化されており、複数の共通デバイス鍵をそれぞれ用 いて 1 個のメディア鍵を暗号化して複数の暗号化メディ ア鎌を生成し、各共通デバイス鍵は、無効化されていな いノードに対応付けられた複数のデバイス鍵のうち、1 以上の利用者装置に共通に割り当てられたデバイス鍵で あり、その結果複数の暗号化メディア鍵が得られ、得ら れた複数の暗号化メディア鍵を、n分木の構成に係る配 列順序に従って記録媒体に書き込み、リーフを除き、無 20 効化された各ノードについて、下位のヵ個のノードの少 なくとも1個が無効化されている場合に、それぞれが無 効化されているか否かを示す第1無効化情報を生成し、 下位のn個のノードのいずれも無効化されていない場合 に、いずれのノードも無効化されていないことを示す第 2無効化情報を生成し、その結果、1個以上の第1無効 化情報、1個以上の第2無効化情報、又は1個以上の第 1無効化情報及び1個以上の第2無効化情報が得られ、 得られた1個以上の第1無効化情報、1個以上の第2無 効化情報、又は1個以上の第1無効化情報及び1個以上 30 の第2無効化情報を、前記配列順序に従って前記記録媒 体に書き込み、前記利用者装置は、前記記録媒体に前記 配列順序に従って書き込まれた前記第1無効化情報、前 記第2無効化情報、又は前記第1無効化情報及び前記第 2無効化情報を用いて、前記記録媒体に前記配列順序に 従って書き込まれた前記複数の暗号化メディア鍵の中か ら、当該利用者装置に割り当てられたデパイス鍵により 暗号化された暗号化メディア鬱を特定する特定手段と、 特定した暗号化メディア鍵を、当該利用者装置に割り当 てられたデバイス鍵に基づいて復号して、メディア鍵を 40 生成する復号手段と、生成した前記メディア鍵に基づい てコンテンツを暗号化して前記記録媒体に書き込み、又 は前記記録媒体から暗号化コンテンツを読み出し読み出 した暗号化コンテンツを生成した前記メディア鍵に基づ いて復号してコンテンツを生成する暗号復号手段とを備 えることを特徴とする。

【0034】また、本発明は、n分木(nは、2以上の 整数)に関連付けて1個以上のデバイス鍵を有する鍵管 **理装置により、1個以上のデバイス鍵が割り当てられ、** 割り当てられた前記デバイス鍵の中の1個のデバイス鍵 50 に記録して、記録媒体500cを生成する。再生装置4

に基づいて、コンテンツを暗号化して記録媒体に書き込 み又は前記記録媒体から読み出した暗号化コンテンツを 復号する利用者装置であって、前記鍵管理装置は、n分 木を構成する1個以上のノードにそれぞれ対応付けて1 個以上のデバイス鍵を記憶しており、n分木を構成する 全てのノードは、有効であり、各利用者装置に共通に割 り当てられた1個のデパイス鍵に基づいて、1個のメデ ィア鍵を暗号化して1個の暗号化メディア鍵を生成し、 生成した前記暗号化メディア鍵を、記録媒体に書き込 み、n分木を構成する全てのノードが有効であることを 示す情報を前記記録媒体に書き込み、前記利用者装置 は、前記記録媒体に有効であることを示す前記情報が記 録されていると判断する場合に、前記記録媒体に記録さ れている前記暗号化メディア鍵を読み出す読出手段と、 読み出した暗号化メディア鍵を、当該利用者装置に割り 当てられたデパイス鍵に基づいて復号して、メディア鍵 を生成する復号手段と、生成した前記メディア鍵に基づ いてコンテンツを暗号化して前記記録媒体に書き込み、 又は前記記録媒体から暗号化コンテンツを読み出し読み 出した暗号化コンテンツを生成した前記メディア鍵に基 づいて復号してコンテンツを生成する暗号復号手段とを 備えることを特徴とする。 [0035]

【発明の実施の形態】1. 第1の実施の形態 本発明に係る1の実施の形態としての著作物保護システ ム10について説明する。

1. 1 著作物保護システム10の構成 著作物保護システム10は、図1に示すように、健管理 装置100、鍵情報記録装置200、記録装置300 a、300b、300c、・・・及び再生装置400 a、400b、400c、・・・から構成されている。 【0036】鍵管理装置100は、鍵情報記録装置20 Oにより、DVD-RAM等のレコーダブルメディアで あって、今だ何らの情報も記録されていない記録媒体5 00aに鍵情報を記録して、鍵情報が記録された記録媒 体500bを予め生成しておく。また、鍵管理装置10 0は、記録装置300a、300b、300c、・・・ 及び再生装置400a、400b、400c、・・・の それぞれに対して鍵情報を復号するためのデバイス鍵を 割り当て、割り当てられたデバイス錯と、デバイス錯を 識別するデバイス鍵識別情報と、記録装置300a、3 00b、300c、・・・及び再生装置400a、40 0b、400c、・・・を識別するID情報とを、記録 装置300a、300b、300c、・・・及び再生装 置400a、400b、400c、・・・のそれぞれに 予め配布しておく。

【0037】記録装置300aは、それぞれ、デジタル 化されたコンテンツを暗号化して、暗号化コンテンツを 生成し、生成した暗号化コンテンツを記録媒体500b

00 a は、記録媒体500 c から暗号化コンテンツを取 り出し、取り出した暗号化コンテンツを復号して、元の コンテンツを得る。記録装置300b、300c、・・ ・は、記録装置300aと同様に動作し、再生装置40 0b、400c、・・・は、再生装置400aと同様に 動作する。

【0038】なお、以下において、記録装置300b、 300c、・・・及び再生装置400b、400c. ・ ・・をユーザ装置と呼ぶことがある。

1.1.1 鍵管理装置100 鍵管理装置100は、図2に示すように、木構造構築部

101、木構造格納部102、デバイス観割当部10 3、無効化装置指定部104、木構造更新部105、鍵 情報ヘッダ生成部106及び離情報生成部107から構 成されている。

【0039】 鍵管理装置100は、具体的には、マイク ロプロセッサ、ROM、RAM、ハードディスクユニッ ト、ディスプレイユニット、キーボード、マウスなどか ら構成されるコンピュータシステムである。前配RAM 又は前記ハードディスクユニットには、コンピュータブ 20 ログラムが記憶されている。前記マイクロプロセッサ が、前記コンピュータプログラムに従って動作すること により、鍵管理装置100は、その機能を達成する。 【0040】(1)木機造格納部102

木構造格納部102は、具体的にはハードディスクユニ ットから構成されており、図3に一例として示すよう に、木構造テーブルD100を有している。木構造テー ブルD100は、図4に一例として示す木橋造T100 に対応しており、木構造T100を表現するためのデー タ構造を示す。後述するように、木構造構築部101に 30 より木構造T100を表現するためのデータ構造が、木 構造テーブルD100として生成され、木構造格納部1 02に書き込まれる。

【0041】(木構造T100)木構造T100は、図 4に示すように、レイヤ0からレイヤ4までの5階層か らなる2分木である。木構造T100は、2分木である ので、木橋造T100が有する各ノード (リーフを除 く)は、2本の経路を介して下位側の2個のノードにそ れぞれ接続されている。レイヤ 0 にはルートである 1 個 のノードが含まれ、レイヤ1には2個のノードが含ま れ、レイヤ2には4個のノードが含まれ、レイヤ3には 8個のノードが含まれ、レイヤ4にはリーフである16 個のノードが含まれている。なお、木構造において下位 例とはリーフ側を示し、上位側とはルート側を示してい

【0042】木構造T100が有する各ノード(リーフ を除く)と、下位側のノードとを接続する2本の経路の うち、一方である左の経路には、「0」の番号が割り当 てられており、他方である右の経路には「1」の番号が ノードを中心として当該ノードから左側下方に接続され ている経路を左の経路と称し、当該ノードから右側下方 に接続されている経路を右の経路と称している。

【0043】各ノードには、ノード名が付されている。 ルートであるノードのノード名は、「ルート」である。 また、レイヤ1を含め、レイヤ1より下位にあるレイヤ に属するノードに対しては、レイヤ数が示す値と同じ文 字数からなる文字列がノード名として付されている。こ の文字列は、ルートから当該ノードに至るまでの経路に 10 割り当てられた番号を、上位から順に並べて生成された ものである。例えば、レイヤ1に属する2個のノードの ノード名は、それぞれ「0」及び「1」である。また. レイヤ2に属する4個のノードのノード名は、それぞれ 「00」、「01」、「10」及び「11」である。ま た、レイヤ3に属する8個のノードのノード名は、それ ₹h [000] 、 [001] 、 [010] 、 [01 1」、・・・、「101」、「110」及び「111」 である。また、レイヤ4に属する16個のノードのノー ド名は、それぞれ「0000」、「0001」、「00 10], [0011], ..., [1100], [11 01」、「1110」及び「1111」である。 【0044】(木構造テーブルD100)木構造テーブ ルD100は、木構造T100に含まれるノードと同じ 数のノード情報を含んで構成されており、各ノード情報 は、木構造T100を構成する各ノードにそれぞれ対応 している。各ノード情報は、ノード名、デパイス鍵及び 無効化フラグを含む。 【0045】ノード名は、当該ノード情報に対応するノ

一ドを識別するための名称である。デパイス鍵は、当該 ノード情報に対応するノードに対して割り当てられた鍵 である。また、無効化フラグは、当該ノード情報に対応 するデバイス鍵が無効化されているか否かを示すフラグ であり、無効化フラグが「0」である場合には、無効化 されていないことを示し、無効化フラグが「1 | である 場合には、無効化されていることを示す。

【0046】木構造テーブルD100内には、次に示す 順序規則1に従った順序により各ノード情報が記憶され る。ここに示す順序規則1は、記録装置300a、30 0b、300c、・・・、再生装置400a、400 40 b、400c、・・・により、木横浩テーブルD100 から各ノード情報がシーケンシャルに読み出される場合

においても適用される。

【0047】(a) 木構造テーブルD100内には、木 構造T100のレイヤ教の昇順に、各レイヤに属するノ ドに対応するノード情報が記憶される。具体的には、 木構造テーブルD100内には、最初にレイヤ0に属す る1個のルートに対応する1個のノード情報が記憶さ れ、次に、レイヤ1に属する2個のノードに対応する2 個のノード情報が記憶され、次に、レイヤ2に属する4 割り当てられている。ここで、図4の紙面において、各 50 個のノードに対応する4個のノード情報が記憶される。

(14)

以下同様である。

【0048】(b) 名レイヤに属するノードについては、名ノードを識別するノード名の月順により、対応するノード権の別で信息される。具体的には、図るに示す木構造テーブルD100内には、次に示す順がより各ノード情報が記憶される。「ルート」、「0」、「1」、「00」、「01」、「10」、「11」、「000」、「001」、「001」、「001」、「001」、「001」、「001」、「001」、「001」、「111」、「000」、「1110」、「1111」、「1110」、「1111」、「1110」、「1111」とこでは、各ノード情報か記憶されている順弁を示している。

ス蔵を望するだめの n分木のデータ構造を構築し、木 構造俗格部 10 2 に構築した木株遺を格飾する。ここ で、nは 2以上の整数であり、何及して、n = 2であ る。木構造構築部 10 1は、最初に、ノード名として 「ルート」を含むノード情報を生成し、木構造格納部 1 20 0 2が有している木構造デーブルへ書き込む。

[0050]次に、木構造構発部101は、レイヤ1に ついて、2個のノードを獲別するノード名「0」及び 「1」を生成し、生成したノード名「0」及び それぞれ合む2個のノード情報を生成し、生成した2個 のノード情報をこの順序で、木構造格部の102が、大木構造 造構築部101は、レイン2について、4個のノードを 観別するノード名「00」、「01」、「10」及び 「11」を生成し、生成したノード名「00」、「0 1」、「10」及び「11」をそれぞれ含む4個のノード情報を生成し、生成したノード名「00」、「0 「情報を生成し、生成したノード情報をこの順序で、木構造発齢部102が有している木構造テーブルへ 追加して書き込む。

【0051】以降、木構造解祭部101は、レイヤ3及 びレイヤ4について、この順序で、上記と同様にして、 ノード情報の生成と、木構造一ブルへの書き込みとを 行う。木構造構築部101は、次に、木構造のノード毎 に乱数を月ルでデバイス鍵を生成し、生成したデバイス 鍵を各月・ドに対応付けて木構造テーブル内に書き込 む。

【0052】(3) デバイス離割当部103 デバイス離割当103は、以下に示すようにして、木 構造格納部102に格納されている木構造から、ユーザ 装置が割り当てられていないリーフと、デバイス離を与 えるべきユーザ返離を対応付けて適当なデバイス離を 択し、選択したデバイス離と一ザ接撃へ出力する。 (0053] デバイス離割当部103は、4ビット長の 変数1Dを有している。デバイス離割当部103は、以 の繰り返しのそれぞれにおいて、変数1Dは、「000 0」、「0001」、「0010」・・・、「111 0」、「1111」の値を保持する。16回の繰り返し により、デバイス鍵割当部103は、16台のユーザ装 置のそれぞれに1D情報と5個のデバイス鍵とを割り当 てる。

【0054】(a) デバイス鍵割当部103は、木構造格部第102が有する木構造テーブルから、「ルート」のノード名を含むノード情報を取得し、取得したノード 情報に含まれるデバイス鍵を抽出する。抽出したデバイス鍵が、ルートに割り当てられたデバイス鍵である。(b) デバイス鍵割当部103は、木構造格前部102が有する木構造デーブルから、変数1Dの先頭12ットからなるノード情報を現在し、取得したノード情報に含まれるデバイス鍵を抽出する。ここで、抽出したデバイス鍵をデバイス鍵を出する。ここで、抽出したデバイス鍵をデバイス鍵を出する。

【0055】(c) デバイス離削当節103は、木構造 格納節102が有する木構造テーブルから、変数1Dの 先頭2ビットからなるノード名を含むノード情報を取得 し、取得したノード情報に含まれるデバイス鍵を抽出す る。ここで、抽出したデバイス鍵をデバイス鍵Bとす る。

(d) デバイス観割当部103は、木構造格幹部102 が有する木構造テーブルから、変数110が無すとット からなるノード名を含むノード情報を取得し、取得した ノード情報に含まれるデバイス製を抽出する。ここで、 抽出したデバイス観をデバイス鍵ととする。

【0056】(e) デバイス鍵割当部103は、木構造 格納部102が有する木構造テーブルから、変数 IDの 30 先調 4ピットからなるノード名を含むノード情報を取得 し、取得したノード情報に含まれるデバイス鍵を抽出す る。ここで、抽出したデバイス鍵をデバイス鍵 Dとす る。

(f) デバイス線割当第103は、1D情報としての変数1D、ルートに割り当てられたデバイス線、各ノードに割り当てられたデバイス線、各ノードに割り当てられたデバイス線と、B、C、D、、及び前記5個のデバイス線をそれぞれ識別する5個のデバイス線流の情報を、ユーザ装置が有する黄情報記憶部へ書き込む。

0 【0057】こうして、各ユーザ装置の鍵情報記憶部は、図8に一例として示すように、10情報、5億のデバイス鍵を設定する。ここで、5億のデバイス製造別情報と5億のデバイス製造別情報と5億のデバイス製造別情報と5億のデバイス製造別情報と5億のデバイス製造別情報と5億のデバイス製が割り当てられているノードが属するレイアの数(レイア数)である。

 (15)

一フを含んでいる。ここで、ユーザ装置は、16台ある ものとし、16台のユーザ装置は、各々16個のリーフ に対応している。各ユーザ装置には、木構造T100に おいて、対応するリーフからルートに至るまでの経路上 に位置するノードに割り当てられたデバイス鍵がそれぞ れ与えられる。例えば、ユーザ装置1には、IK1、K eyH、KeyD、KeyB、KeyAの5つのデバイ ス鍵が与えられる。また、例えば、ユーザ装置1には、 I D情報「0000」が与えられ、ユーザ装置14に は、ID情報「1101」が与えられる。

【0059】(4)無効化装置指定部104 無効化装置指定部104は、鍵管理装置100の運営管 理者から、無効化する1台以上のユーザ装置をそれぞれ 識別する1個以上のID情報を受け付け、受け付けたI D情報を木構造更新部105へ出力する。

(5) 木構造更新部105

木構造更新部105は、無効化装置指定部104から1 個以上のID情報を受け取る。ID情報を受け取ると、 受け取った1個以上の I D情報のそれぞれについて、次 に示す処理 (a) ~ (d) を繰り返す。

【0060】(a) 木構造更新部105は、受け取った I D情報をノード名として含むノード情報を木構造格納 部102が有する木構造テーブルから取得し、取得した ノード情報に無効化フラグ「1」を付加し、無効化フラ グ「1」が付加されたノード情報を、木構造テーブルト において、取得した前記ノード情報が記憶されていた位 置に上書きする。

【0061】(b) 木構造更新部105は、受け取った ID情報の先頭3ビットをノード名として含むノード情 報を木構造格納部102が有する木構造テーブルから取 30 となる対象ノード名を変数 j により示す。 得し、上記と同様にして、取得したノード情報に無効化 フラグ「1」を付加して木構造テーブルに上書きする。

(c) 木構造更新部105は、受け取ったID情報の先 頭2ビットをノード名として含むノード情報を木構造格 納部102が有する木構造テーブルから取得し、上記と 同様にして、取得したノード情報に無効化フラグ「11 を付加して木構造テーブルに上書きする。

【0062】(d) 木構造更新部105は、「ルート」 をノード名として含むノード情報を木構造格納部102 が有する木構造テーブルから取得し、上記と同様にし て、取得したノード情報に無効化フラグ「11を付加し て木構造テーブルに上書きする。

以上説明したように、木構造更新部105は、無効化装 置指定部104から受け取ったID情報に基づいて、木 構造において、受け取ったID情報が示すリーフから、 ノードまでの経路上に存在する全てのノードを無効化す

【0063】図4に示す木構造T100において、ID

情報「0000」、「1010」及び「1011」によ

上記のようにしてノードが無効化された木構造 T 2 0 0 を図5に示す。また、木構造テーブルD100は、木構 造T200に対応して無効化フラグが付加されたもので

【0064】木構造T200において、ID情報「00 00」により示されるユーザ装置1に対応するリーフか らルートまでの経路に存在する全てのノード、ID情報 「1010」により示されるユーザ装置 11に対応する リーフからルートまでの経路に存在する全てのノード、

10 及びID情報「1011」により示されるユーザ装置1 2に対応するリーフからルートまでの経路に存在する全 てのノードに、×印が付されているが、これらのノード は、無効化されたノードを示している。

【0065】木構造テーブルD100において、上記の 無効化されたノードに対応するノード情報には、無効化 フラグが付加されている。

(6) 鍵情報ヘッダ生成部106

鍵情報ヘッダ生成部106は、レイヤ数を示す変数 1 及 びレイヤに含まれるノード名を示す変数 | を有してい 20 る。

【0066】鍵情報ヘッダ生成部106は、次に示す机 理(a)を、木構造に含まれるレイヤ数分、繰り返す。 レイヤ数分の繰り返しのそれぞれにおいて、レイヤ数を 示す変数 i は、「0」、「1」、「2」、「3」の値を 保持する。

(a) 鍵情報ヘッダ生成部106は、変数iによりレイ ヤ数が示されるレイヤに含まれる全てのノードの数だ け、ノード毎に次に示す処理 (a-1)~(a-3)を 繰り返す。ここで、処理 (a-1)~(a-3)の対象

【0067】(a-1)鍵情報ヘッダ生成部106は、 木構造格納部102が有する木構造テーブルから、変数 jに「0」を結合して得られるノード名を含むノード情 報を取得し、変数jに「1」を結合して得られるノード 名を含むノード情報を取得する。このようにして得られ た2個のノード情報は、それぞれ、変数;により示され る対象ノードの直下に接続されている2個の下位ノード に対応している。

【0068】(a-2)鍵情報ヘッダ生成部106は、 取得した2個の前記ノード情報のそれぞれに含まれてい る無効化フラグの両方が「0」であるか、否かを調べ、 両方が「0」でない場合に、取得した2個の前記ノード 情報のそれぞれに含まれている2個の無効化フラグを、 2個の前記ノード情報が木構造テーブルに格納されてい る順序で並べて、ノード無効化パターン(Node R evocationPattern、以下、NRPと呼 ぶ。)を生成する。

【0069】具体的には、取得した2個の前記ノード情 報のそれぞれに含まれている無効化フラグが「0 : 及び り示されるユーザ装置が無効化されると想定する場合、 50 「0」である場合には、ノード無効化パターンを生成し ない。また、取得した2個の前記ノード情報のそれぞれ に含まれている無効化フラグが「1」及び「0」である 場合には、NRP {10} を生成する。

【0070】取得した2個の前記ノード情報のそれぞれ に含まれている無効化フラグが「0」及び「1」である 場合には、NRP {01} を生成する。取得した2個の 前記ノード情報のそれぞれに含まれている無効化フラグ が「1」及び「1」である場合には、NRP {11} を 生成する。 (a-3) 鍵情報ヘッダ生成部106は、生 成したNRPを健情報記録装置200へ出力する。

【0071】以上説明したように、鍵情報ヘッダ生成部 106は、木構造のレイヤ内のノード毎に、当該ノード の下位側に直接接続されている2個の下位ノードが無効 化されているか否かを調べ、2個の下位ノードのいずれ か一方が無効化されている場合には、上記に示すように してNRPを生成する。図5に示す木構造T200にお いて、×印が付されたノードの近辺に、当該ノードに対 応して生成したNRPを示している。

【0072】また、鍵情報ヘッダ生成部106は、上記 に示すような繰り返しにおいて、NRPを出力するの で、図5に示す場合には、図6に一例として示す複数個 のNRPが生成されて出力される。鍵情報ヘッダ生成部 106は、これらの複数個のNRPをヘッダ情報として 出力する。図5に示す木構造T200において、ユーザ 装置1、ユーザ装置11及びユーザ装置12がそれぞれ 無効化されている。ここで、無効化されるべき各ユーザ 装置に対応するリーフから、ルートに至るまでの経路上 に存在するノード (図5において、×印が付されたノー ド)を無効化ノードと称する。また、1個のノードの子 ノードが無効化ノードである場合を「11、そうでない 30 場合を「0」で表現し、それら子ノードの状態を左から 順に連結したものが、そのノードのNRPである。NR Pは、n分木の場合、nビットの情報である。図5にお ける木構造T200のルートT201について、2つの 子ノードが共に無効化ノードであるため、NRPは、

{11} と表現される。また、ノードT202に付され たNRPは、 {10} と表現される。また、ノードT2 03は、無効化ノードであるが、子ノードが存在しない リーフであるため、NRPは付加されない。

【0073】図6に一例として示すように、ヘッダ情報 40 D200は、NRP {11}、 {10}、 {10}、 {10}、{01}、{10}、{11}から構成さ

れ、各NRPをこの順序で含んでいる。なお、これらの 複数個のNRPのそれぞれは、ヘッダ情報D200内に おいて格納される位置が定められている。この位置は、 上記の繰り返しにより定まるものである。図6に示すよ うに、ヘッダ情報D200内に「0」、「1」、

「2」、「3」、「4」、「5」及び「6」により定ま る位置において、それぞれ、NRP {1 1} 、 {1

1) が配置されている。

(16)

【0074】以上説明したように、鍵情報ヘッダ生成部 106は、無効化ノードの1以上のNRPを抽出し、抽 出したNRPを鍵情報のヘッダ情報として、鍵情報記録 装置200へ出力する。このとき、鍵情報ヘッダ生成部 106は、複数のNRPを水準順に並べる。すなわち、 複数のNRPを上位レイヤから下位レイヤの順に並べ、 レイヤが同じNR Pついては、左から右への順に並べ る。なお、NRPの並べ方はある規則に基づいていれば 10 よく、例えば、レイヤが同じ場合に右から左の順に並べ るとしてもよい。

30

【0075】(7)鍵情報生成部107

鍵情報生成部107は、鍵情報ヘッダ生成部106と同 様に、レイヤ数を示す変数i及びレイヤに含まれるノー ド名を示す変数 | を有している。鍵情報生成部 1 0 7 は、次に示す処理 (a) を、木構造に含まれ、レイヤ O を除くレイヤ数分、繰り返す。レイヤ数分の繰り返しの それぞれにおいて、レイヤ数を示す変数iは、「1」、 「2」、「3」の値を保持する。

【0076】(a)鍵情報生成部107は、変数iによ りレイヤ数が示されるレイヤに含まれる全てのノードの 数だけ、ノード毎に次に示す処理 $(a-1) \sim (a-1)$ を繰り返す。ここで、処理(a-1)~(a-3) の対象となる対象ノード名を変数;により示す。

(a-1) 鍵情報生成部107は、木構造格納部102 が有する木構造テーブルから、変数 | をノード名として 含むノード情報を取得し、取得したノード情報に含まれ る無効化フラグが「1」であるか又は「0」であるかを 判断する。

【0077】 (a-2) 無効化フラグが「0」である場 合に、鍵情報生成部107は、さらに、対象ノードの上 位に接続されている上位ノードに対応するデバイス鍵に よる暗号化がされているか否かを判断する。

(a-3) 暗号化がされていない場合に、鍵情報生成部 107は、取得したノード情報に含まれるデバイス鍵を 抽出し、暗号化アルゴリズムE1を適用して、抽出した デバイス鍵を用いて、生成されたメディア鍵を暗号化し て、暗号化メディア鍵を生成する。

【0078】暗号化メディア鍵=E1 (デバイス鍵、メ ディア鍵)

ここで、E(A、B)は、暗号化アルゴリズムEを適用 して、鍵Aを用いて、データBを暗号化することを示し ている。また、暗号化アルゴリズムE1は、一例とし T, DES (Data Encryption Sta ndard) である。

【0079】次に、鍵情報生成部107は、生成した暗 号化メディア鍵を鍵情報記録装置200へ出力する。な お、無効化フラグ「1」が付されている場合、又は暗号 化がされている場合には、処理 (a-3) は、行われな 0 } 、 {10} 、 {10} 、 {01} 、 {10} 、 {1 50 い。以上説明したように、維情報生成部107は、上記

に示すような繰り返しにおいて、暗号化メディア鍵を出力するので、図5に示す場合には、図7に一例として示す複数個の暗号化メディア鍵が生成されて出力される。 銀情報生成部107は、これらの複数個の暗号化メディア鍵を継続部300として出力する。

【0080】なお、これ5の複数値の場合化メディア離のそれぞれは、鍵情報D300内において格納されている位置がよめられている。この位置は、上記の線り返しにより定まるものである。関7に示すように、鍵情報D00月に「10月により定まる位置において、それぞれ、陽号化メディア銀と11(KeyE、メディア銀)、E1(KeyE、メディア銀)、E1(KeyE、メディア銀)、E1(KeyE、メディア銀)、E1(KeyE、メディア銀)、E1(KeyE、メディア銀)が配置されている。

【0081】1.1.2 鍵情報記録装置200 鍵情報記録装置200は、鍵情報ペッダ生成部106か らヘッダ情報を受け取り、鍵情報生成部107から鍵情 物を受け取り、受け取ったヘッダ情報と鍵情報とを記録 媒体500aに書き込む。

1. 1. 3 記録媒体500a、b、c 記録媒体500aは、DVD-RAM等のレコーダブル メディアであって、今だ何らの情報も記録されていない ものである。

【0082】配製機体500bは、配線機体500a に、競管理装置100及び維情報配機機関200によ り、上配に述べたようにして、ヘッダ情報が付加された 鍵情報が書き込まれたものである。配線機体500c は、配線媒体500bに、配線装備300a、300 b、300c、・・・の何れかにより、上配に述べたよ 30 うにして、暗号化コンテンツがが書き込まれたものである。

【0083】 図8に示すように、記録媒体500cは、 ヘッダ情報が付加された鍵情報と暗号化コンテンツとを 記録している。

1. 1. 4 記録装置300a、300b、300c、

記録装置300aは、限8に示すように、離情報記憶か 301、復与部302、特定部303、暗号部304及 びコンテンツ記憶部305から構成されている。なお、 記録装置300b、300c、・・・は、記録装置30 0aと同様の構成を有しているので、これらについて説 明を省略する。

【0084】 記録接贈300aは、具体的には、マイク ロプロセッサ、ROM、RAMなどを含んで構設され、 前記RAMには、コンピュータプログラムが記憶されて いる。前記マイクロプロセッサが、前記コンピュータ30 ログラムに従って動作することはもり、記録故事300aは、その機能を造成する。記録表質300aには、日 総定はちの0かに許益される。記録表質300aには、日 総定は500かに対策論される。記述表質300aには、日 らが記憶している I D情報を元に記録媒体500bに記憶されているヘッダ情報の解析を行って、後号すべき暗 号化メディア報の位置と、使用すべきデバイス盤を特定 し、特定したデバイス鍵を用いて後号してメディア鍵を 獲得する。次に、獲得したメディア鍵を用いて、デジタ ん化されたコンテンツを 記録媒体500bに記録する。

【0085】(1)鍵情報記憶部301

鍵情報記憶部301は、ID情報と、5個のデバイス鍵 10 と、5個のデバイス鍵をそれぞれ競別するための5個の デバイス鍵識別情報とを記憶するための領域を備えてい る。

(2)特定部303

特定部303は、鍵管理装置100が有する鍵情報へッ ダ生成部106が、鍵情報のヘッダ情報を上述した順序 規則1に従って生成したものと想定して動作する。

【0086】特定部303は、鍵情報記憶部301から ID情報を読み出す。また、記録媒体5006からヘッ ダ情報及び鍵情報を読み出す。次に、特定部303は、 20 読み出したID情報及び読み出したヘッダ情報を用い

て、ヘッダ情報を上位からシーケンシャルに関べていく ことにより、酸情報の中から1個の暗号化メディア鍵が 存在する位置Xと、前記暗号化メディア程の復号に使用 するデバイス鍵を観別するためのデータ鍵離別情報とを 特定する。なお、暗号化メディア鍵が存在する位置X及 びデバイス鍵数別情報を特定する場合の詳細の動作につ いては、後述する。

【0087】次に、特定部303は、特定した1個の暗 号化メディア鍵及び決定した1個のデパイス難識別情報 を復号部302へ出力する。

(3) 復号部302

復号部302は、特定部303から1個の暗号化メディ ア能及び1個のデバイス施設前階を受け取る。1個の 暗号化メディア施及び1個のデバイス機設所増充受け 取ると、受け取ったデバイス雑説所増充を受け 取ると、受け取ったデバイス雑誌所増高を受け デルイス雑を離婚和記憶部301から読み出し、復号 アルゴリズムD1を適用して、読み出したデバイス雑と 用いて、受け取った場号化メディア雑を復りして、メディア雑生生成する。

【0088】メディア鍵=D1(デバイス鍵、暗号化メディア鍵)

ここで、D(A、B)は、復号アルゴリズムDを瀬用して、 離るを用いて、 離号化データBを復号して元のデータを生実することを意味する。また、 復号アルゴリズム D 1 は、 暗号化アルゴリズム F 1 に対応するものであり、 暗号化アルゴリズム F 1 を適用して略号化アルゴリズム F 2 を渡りするためのアルゴリズムである。

ログラムに従って動作することにより、記録技蔵300 aは、その機能を達成する。記録技置300aには、記 競媒体5000が装着される。記録技置300aには、 記 録媒体5000が装着される。記録技蔵300aは、 自 50 いる各プロックは、投税線により他のプロックと接続さ

れている。ただし、一部の接続線を省略している。ここ で、各接続線は、信号や情報が伝達される経路を示して いる。また、復号部302を示すプロックに接続してい る複数の接続線のうち、接続線上に鍵マークが付されて いるものは、復号部302へ鍵としての情報が伝達され る経路を示している。 暗号部304を示すプロックにつ いても同様である。また、他の図面についても同様であ る。

【0090】(4) コンテンツ記憶部305

コンテンツ記憶部305は、デジタル化された音楽など 10 の著作物であるコンテンツを記憶している。

(5) 暗号部304

暗号部304は、復号部302からメディア鍵を受け取 り、コンテンツ記憶部305からコンテンツを読み出 す。次に、暗号部304は、暗号化アルゴリズムE2を 適用して、受け取ったメディア鍵を用いて、読み出した コンテンツを暗号化して暗号化コンテンツを生成する。 【0091】暗号化コンテンツ=E2(メディア銀、コ ンテンツ)

ここで、暗号化アルゴリズムE2は、一例として、DE 20 Sによる暗号化アルゴリズムである。次に、暗号部30 4は、生成した暗号化コンテンツを記録媒体500bへ 書き込む。このようにして、暗号化コンテンツが書き込 まれた記録媒体500cが生成される。

【0092】1.1.5 再生装置400a、400 b, 400c, · · ·

再生装置400aは、図9に示すように、鍵情報記憶部 401、特定部402、復号部403、復号部404及 び再生部405から構成されている。なお、再生装置4 00b、400c、・・・は、再生装置400aと同様 30 の構成を有しているので、これらについて説明を省略す

【0093】再生装置400aは、具体的には、マイク ロプロセッサ、ROM、RAMなどを含んで構成され、 前記RAMには、コンピュータプログラムが記憶されて いる。前記マイクロプロセッサが、前記コンピュータブ ログラムに従って動作することにより、再生装置400 aは、その機能を達成する。ここで、鍵情報記憶部40 1、特定部402及び復号部403は、それぞれ、記録 装置300aが有している鍵情報記憶部301、特定部 40 303及び復号部302と同様の構成を有しているの で、説明を省略する。

【0094】再生装置400aに記録媒体500cが装 着される。再生装置400aは、自ら記憶しているID 情報を元に、記録媒体500cに記憶されているヘッダ 情報の解析を行って、復号すべき暗号化メディア鍵の位 置と、使用すべきデバイス鍵を特定し、特定したデバイ ス鍵を用いて復号してメディア鍵を獲得する。次に、再 生装置400aは、獲得したメディア鍵を用いて、記録 してコンテンツを再生する

(1) 復号部404

復号部404は、復号部403からメディア鍵を受け取 り、記録媒体500cから暗号化コンテンツを読み出 し、復号アルゴリズムD2を適用して、受け取ったメデ ィア鍵を用いて、読み出した前記暗号化コンテンツを復 号して、コンテンツを生成し、生成したコンテンツを再 生部405へ出力する。

【0095】コンテンツ=D2(メディア鍵、暗号化コ ンテンツ)

ここで、復号アルゴリズムD2は、暗号化アルゴリズム E 2 に対応するものであり、暗号化アルゴリズム E 2 を 適用して暗号化されたデータを復号するためのアルゴリ ズムである。

(2) 再生部405

再生部405は、復号部404からコンテンツを受け取 り、受け取ったコンテンツを再生する。例えば、コンテ ンツが音楽の場合には、再生部405は、コンテンツを 音声に変換して出力する。

【0096】1、2、著作物保護システム10の動作 著作物保護システム10の動作について説明する。

1. 2. 1 デバイス鍵の割り当て、記録媒体の生成及 びコンテンツの暗号化又は復号の動作

ここでは、ユーザ装置へデバイス鍵を割り当てる動作、 鍵情報の生成と記録媒体への書き込みの動作及びユーザ 装置によるコンテンツの暗号化又は復号の動作につい て、図10に示すフローチャートを用いて説明する。特 に、デバイス鍵が不正な第三者により暴露されるまで の、各装置の動作について説明する。

【0097】鍵管理装置100の木構造構築部101 は、木構造を表す木構造テーブルを生成し、生成した木 構造テーブルを木構造格納部102へ書き込み (ステッ プS101)、次に、木構造のノード毎にデバイス鍵を 生成し、生成したデバイス線を各ノードに対応付けて木 構造テーブル内に書き込む (ステップ S 1 0 2)。次 に、デバイス鍵割当部103は、デバイス鍵、デバイス 鍵識別情報及び I D情報を対応するユーザ装置へ出力す る (ステップS103~S104)。ユーザ装置が有す る鍵情報記憶部は、デバイス鍵、デバイス鍵識別情報及 び I D情報を受け取り (ステップS104)、受け取っ たデバイス鍵、デバイス鍵識別情報及びID情報を記録 する (ステップS111)。

【0098】このようにして、デバイス鍵、デバイス鍵 識別情報及びID情報を記録しているユーザ装置が生産 され、生産されたユーザ装置がユーザに対して販売され る。次に、鍵情報生成部107は、メディア鍵を生成し (ステップS105)、鍵情報を生成し、(ステップS1 06)、生成した鍵情報を鍵情報記録装置200を介し て記録媒体500aに出力し(ステップS107~S1 媒体500cに記録されている暗号化コンテンツを復号 50 08)、記録媒体500aは、鍵情報を記録する(ステ ップS121)。 【0099】このようにして、鍵情報が記録された記録 媒体500bが生成され、生成された記録媒体500b が販売などされることにより、利用者に配布される。次 に、鍵情報が記録された記録媒体が、ユーザ装置に装着

され、ユーザ装置は、記録媒体から鍵情報を読み出し (ステップS131)、読み出した鍵情報を用いて、当 該ユーザ装置自身に割り当てられた暗号化メディア健を 特定し(ステップS132)、メディア鍵を復号し(ス テップS133)、復号したメディア鍵を用いて、コン テンツを暗号化して記録媒体500bに書き込み、又は 暗号化コンテンツの記録されている記録媒体500cか ら暗号化コンテンツを読み出し、読み出した暗号化コン テンツを復号したメディア鍵を用いて復号して、コンテ ンツを生成する(ステップS134)。

【0100】以上のように、ユーザ装置により暗号化コ ンテンツを記録媒体500bに書き込み、ユーザ装置に より暗号化コンテンツの記録されている記録媒体500 c から暗号化コンテンツを読み出して復号し、コンテン ツを再生する。次に、不正な第三者が、ユーザ装置に割 20 り当てられたデバイス鍵を、何らかの手段により不正に 取得する。不正な第三者は、前記コンテンツを不正に流 通させたり、正規のユーザ装置を模倣する不正な装置を 生産して販売する。

【0101】鍵管理装置100の運営管理者は、又は前 記コンテンツの著作権者は、コンテンツが不正に流通し ていること、又は不正な装置が流通していることを知 り、前記デバイス鍵が漏洩したことを知る。

1. 2. 2 デバイス鍵が暴露された後の動作 ここでは、デバイス鍵が不正な第三者により暴露された 30 プS193~S194を繰り返す。 後における、暴露されたデバイス鍵に対応する木構造の 内のノードの無効化の動作、新たな鍵情報の牛成と記録 媒体への書込みの動作、及びユーザ装置によるコンテン ツの暗号化又は復号の動作について、図11に示すフロ ーチャートを用いて説明する。

【0102】鍵管理装置100の無効化装置指定部10 4は、無効化する1台以上のユーザ装置の1個以上のI D情報を受け付け、受け付けた I D情報を木構造更新部 105へ出力する(ステップS151)。次に、木構造 更新部105は、ID情報を受け取り、受け取ったID 40 情報を用いて、木構造を更新し(ステップS152)、 鍵情報ヘッダ生成部106は、ヘッダ情報を生成し、生 成したヘッダ情報を鍵情報記録装置200へ出力し、(ス テップS 1 5 3)、鍵情報生成部は、メディア鍵を生成 し (ステップ S 1 5 4) 、 鍵情報を生成し (ステップ S 155)、生成した鍵情報を鍵情報記録装置200を介 して出力し (ステップS156~S157) 、記録媒体 500aは、鍵情報を記録する(ステップS161)。 【0103】このようにして、新たな鍵情報が記録され

00bが販売などされることにより、利用者に配布され る。次に、新たな鍵情報が記録された記録媒体が、ユー ザ装置に装着され、ユーザ装置は、記録媒体から鍵情報 を読み出し (ステップS171) 、読み出した鍵情報を 用いて、当該ユーザ装置自身に割り当てられた暗号化メ ディア鍵を特定し(ステップS172)、メディア鍵を 復号し(ステップS173)、復号したメディア鍵を用 いて、コンテンツを暗号化して記録媒体500bに書き 込み、又は暗号化コンテンツの記録されている記録媒体 500cから暗号化コンテンツを読み出し読み出した暗 号化コンテンツを復号したメディア鍵を用いて復号し て、コンテンツを生成する(ステップS174)。

【0104】以上のように、ユーザ装置により暗号化コ ンテンツを記録媒体500bに書き込み、又はユーザ装 置により暗号化コンテンツの記録されている記録媒体5 00cから暗号化コンテンツを読み出して復号し、コン テンツを再生する。

1. 2. 3 木構造を構築して格納する動作

ここでは、木構造構築部101による木構造テーブルの 生成と木構造格納部102への木構造テーブルの書き込 みの動作について、図12に示すフローチャートを用い て説明する。なお、ここで説明する動作は、図10に示 すフローチャートにおけるステップS101の詳細であ る。

【0105】木構造構築部101は、最初に、ノード名 として「ルート」を含むノード情報を生成し、木構造格 納部102が有している木構造テーブルへ書き込む(ス テップS191)。次に、木構造構築部101は、レイ ヤi (i=1、2、3、4) について、次に示すステッ

【0106】木構造構築部101は、2i 個の文字列を ノード名として生成し (ステップ S 1 9 3) 、生成した 2i 個の文字列をノード名として含むノード情報を、順 に木構造テーブルへ書き込む(ステップS194)。 1. 2. 4 デパイス鍵と I D情報とを各ユーザ装置へ

出力する動作 ここでは、デパイス健制当部103によるデパイス鍵と

I D情報とを各ユーザ装置へ出力する動作について、図 13に示すフローチャートを用いて説明する。なお、こ こで説明する動作は、図10に示すフローチャートにお けるステップS103の詳細である。

【0107】デバイス鍵割当部103は、変数IDを [0000], [0001], [0010], ... 「1110」、「1111」のように変化させ、それぞ れの変数IDについて、次に示すステップS222~S 227を繰り返す。デバイス鍵割当部103は、ルート に割り当てられたデバイス鍵を取得し(ステップS22 2)、変数 I Dの先頭1 ビットをノード名とするノード に割り当てられたデバイス鍵Aを取得し(ステップS2 た記録媒体500bが生成され、生成された記録媒体5 50 23)、変数 I Dの先頭2ビットをノード名とするノー

返す。

ドに割り当てられたデバイス鍵Bを取得し(ステップS 224)、変数 I Dの先頭 3 ピットをノード名とするノ ードに割り当てられたデバイス鍵Cを取得し(ステップ S 2 2 5) 、変数 I Dの先頭 4 ビットをノード名とする ノードに割り当てられたデバイス鍵Dを取得し(ステッ プS226)、ID情報としての変数ID、ルートに割 り当てられたデバイス鍵、各ノードに割り当てられたデ バイス鍵A、B、C、Dをユーザ装置へ出力する(ステ ップ S 2 2 7)。

【0108】1.2.5 木構造の更新の動作 ここでは、木構造更新部105による木構造の更新の動 作について、図14に示すフローチャートを用いて説明 する。なお、ここで説明する動作は、図11に示すフロ ーチャートにおけるステップS152の詳細である。木 構造更新部105は、無効化装置指定部104から受け 取った1個以上の1D情報のそれぞれについて、次に示 すステップS242~S246を繰り返す。

【0109】木構造更新部105は、受け取った1D情 報をノード名として含むノード情報を取得し、取得した ノード情報に無効化フラグ「1 | を付加する (ステップ 20 テップ 5 2 8 4) 、対象ノードに対応するデバイス鍵を S 2 4 2)。次に、木構造更新部105は、受け取った ID情報の先頭3ビットをノード名として含むノード情 報を取得し、取得したノード情報に無効化フラグ「1」 を付加する (ステップ S 2 4 3)。

【0110】次に、木構造更新部105は、受け取った ID情報の先頭2ビットをノード名として含むノード情 報を取得し、取得したノード情報に無効化フラグ「1」 を付加する (ステップ S 2 4 4)。次に、木構造更新部 105は、受け取ったID情報の先頭1ビットをノード 名として含むノード情報を取得し、取得したノード情報 30 に無効化フラグ「1」を付加する(ステップS24 5)。

【0111】次に、木構造更新部105は、「ルート」 をノード名として含むノード情報を取得し、取得したノ ード情報に無効化フラグ「1 | を付加する (ステップS 246)。

1. 2. 6 ヘッダ情報の生成の動作

ここでは、鍵情報ヘッダ生成部106によるヘッダ情報 の生成の動作について、図15に示すフローチャートを 用いて説明する。なお、ここで説明する動作は、図11 40 に示すフローチャートにおけるステップS153の詳細

【0112】鍵情報ヘッダ生成部106は、レイヤ0か らレイヤ3までの各レイヤについて、ステップS262 ~ S 2 6 6 を繰り返す。さらに、鍵情報へッダ生成部1 06は、各レイヤに含まれる対象ノード毎に、ステップ S263~S265を繰り返す。鍵情報ヘッダ生成部1 06は、当該対象ノードの直下に接続されている2個の 下位ノードを選択し(ステップS263)、次に選択し ているか否かを調べてNRPを牛成し (ステップ 526 生成したNRPを出力する(ステップS26 5)。

【0113】1.2.7 鍵情報の生成の動作

ここでは、鍵情報生成部107による鍵情報の生成の動 作について、図16に示すフローチャートを用いて説明 する。なお、ここで説明する動作は、図11に示すフロ ーチャートにおけるステップS155の詳細である。鍵 情報生成部107は、レイヤ1からレイヤ3までの各レ 10 イヤについて、ステップS282~S287を繰り返 す。さらに、鍵情報生成部107は、各レイヤに含まれ る対象ノード毎に、ステップS283~S286を繰り

【0114】鍵情報生成部107は、対象ノードに無効 化フラグ「1」が付されているか否かを判断する。無効 化フラグ「1」が付されていない場合には(ステップS 283)、さらに対象ノードの上位に接続されている上 位ノードに対応するデバイス鍵による暗号化がされてい るか否かを判断する。暗号化がされていない場合に(ス 木構造テーブルから取得し(ステップS285)、取得 したデパイス鍵を用いて、生成されたメディア鍵を暗号 化して、暗号化メディア鍵を生成し、生成した暗号化メ ディア鍵を出力する(ステップS286)。

【0115】無効化フラグ「1」が付されている場合 (ステップS283)、又は暗号化がされている場合 (ステップS284)、ステップS285~S286は 行われない。

1. 2. 8 録情報の特定の動作

ここでは、記録装置300aが有する特定部303によ り、記録媒体500bに記憶されている鍵情報から、1 個の暗号化メディア鍵を特定する動作について、図17 に示すフローチャートを用いて説明する。なお、ここで 説明する動作は、図11に示すフローチャートにおける ステップS172の詳細である。

【0116】また、再生装置400aが有する特定部4 02による動作は、特定部303による動作と同じであ るので、説明を省略する。特定部303は、暗号化メデ ィア鍵の位置を示す変数X、ユーザ装置自身に関係する NRPの位置を示す変数A、あるレイヤにおけるNRP の数を示す変数W、及び木構造のレイヤ数を示す値Dを

有している。ここで、ユーザ装置自身に関係するNRP (Node Revocation Pattern, 以下、NRPと呼ぶ。)とは、木構造において、ユーザ 装置に割り当てられているリーフから、ルートに至るま での経路上に存在するノードのNRPを示す。

【0117】特定部303は、レイヤi=0から、レイ ヤi=D-1まで、以下の手順で解析を行う。特定部3 03は、初期値として、それぞれ変数A=0、変数W= た2個の下位ノードのそれぞれに無効化フラグが付され 50 1、変数1=0とする(ステップS301)。変数1と

値Dとを比較し、変数iが値Dより大きい場合(ステッ プS302)、このユーザ装置は、無効化されているの で、次に、特定部303は、処理を終了する。

【0118】変数 i が値Dより小さいか又は等しい場合 (ステップS302)、特定部303は、A番目のNR Pを構成する左右2ビットのうち、ID情報のト位iビ ット目の値に対応するビット位置にある値Bが「O」で あるか、又は「1」であるかをチェックする (ステップ S303)。ここで、対応するビット位置とは、図4に 示すように、木構造において左の経路に「0」、右の経 10 路に「1」が割り当てられ、これらの規則に基づいて1 D情報が構成されているので、ID情報の上位 i ビット 目の値「O」は、A番目のNRPの左ビットに対応し、

i ピット目の値「i」は、A番目のNRPの右ビットに 対応する。

【0119】値B=0の場合(ステップS303)、特 定部303は、これまでにチェックしたNRPのうち、 オール「1」でないNRPの数をカウントし、カウント した値を、変数Xに代入する。こうして得られた変数X が、暗号化メディア鍵の位置を示している。また、この 20 時点の変数 i は、デバイス鍵を識別するためのデバイス 鍵識別情報である(ステップS307)。次に、特定部 303は、処理を終了する。

【0120】値B=1の場合(ステップS303)、特 定部303は、レイヤiに存在するW個の全NRPの 「1」の数をカウントし、カウントした値を変数Wに代 入する。こうして得られた変数Wが、次のレイヤ・+1 に存在するNRPの数を示す(ステップS304)。次 に、特定部303は、レイアiに存在するNRPのうち の最初のNRPから、対応するビット位置までのNRP 30 G,メディア鍵)である。 をカウントし、カウントした値を変数 A に代入する。こ こで、対応するビット位置の値はカウントしない。こう して得られた変数 Aが、次のレイヤi+1のNRPのう ち、ユーザ装置自身に関係するNRPの位置を示す(ス

【0121】次に、特定部303は、変数i=i+1を 演算し(ステップS306)、次にステップS302へ 制御を移し、上述の処理を繰り返す。

テップS305)。

1.2.9 鍵情報の特定の動作の具体例 一具体例として、図6及び図7に示すヘッダ情報及び鍵 40 化メディア鍵を効率よく特定することができる。 情報を用いて、図5に示す無効化されていないユーザ装 置14が暗号化メディア鍵を特定するまでの動作につい て以下に説明する。ユーザ装置14には、ID情報「1 101」が割り当てられ、デバイス鍵「KevAl、 「KeyC」、「KeyG」、「KeyN」及び「IK 14」が割り当てられているものとする。

【0122】 (ステップ1) 特定部303は、ユーザ装 置14に割り当てられたID情報「1101」の最上位 ピットの値が「1」であるため、最初のNRP {1.1} の右ビットをチェックする (ステップ S 3 0 3)。

(ステップ2) 最初のNRP {11} の右ビットの値が 「1」であるため、特定部303は、解析を続ける(ス テップS303で、B=1)。

【0123】 (ステップ3) 特定部303は、レイヤ0 に存在する1個のNRP {11} の「1」の数をカウン トする。そのカウントした値が「2」であるので、次の レイヤ1には2個のNRPが存在することが分かる(ス テップS304)。

(ステップ4)特定部303は、対応するビット位置す でのNRPの「1」の数をカウントする。ただし、対応 するピット位置の値はカウントしない。そのカウントし た値が「1」であるため、次のレイヤ1の対応するNR Pの位置は、レイア1内で、1番目である (ステップS 305)

【0124】 (ステップ5) 次に、特定部303は、I D情報「1101」の上位から2ビット目の値が「1 | であるため、レイヤ1の1番目のNRP {10} の右ビ ットをチェックする (ステップS303)。

(ステップ6) ここで、レイヤ1の1番目のNRP (1 0) の右ビットの値が「0」であるため、特定部303 は、解析を終了する (ステップS303で、B=0)。 【0125】 (ステップ7) 特定部303は、これまで のNRPのうち、オール「1」でないNRPの数をカウ ントする。ただし、最後にチェックしたNRPはカウン トしない。カウントした値が「1」であるため、暗号化 メディア鍵の位置は、鍵情報内において、1番目である (ZFyJS307)

(ステップ8) 図7に示すように、鍵情報の1番目の位 置に格納されている暗号化メディア鍵は、E1(Kev

【0126】ユーザ装置14は、KeyGを保持してい る。よって、ユーザ装置14は、KeyGを用いて暗号 化メディア鍵を復号してメディア鍵を獲得することがで きる。

1.3 まとめ

以上説明したように、第1の実施の形態によると、 記録 媒体に予め記録されている鍵情報のヘッダ情報内には、 複数のNRPが水準順に並べられているので、鍵情報が コンパクトになる。また、プレーヤは、復号すべき暗号

【0127】2. 第2の実施の形態 ここでは、第1の実施の形態の変形例としての第2の実 施の形態について説明する。第1の実施の形態におい て、一例として図18に示すように、無効化されるユー ザ装置が木構造の中で特定のリーフに偏って発生する可 能性がある。この場合、鍵管理装置100が記録媒体に 書き込む鍵情報のヘッダ情報内において、 {1 1} であ るNRPが多くなる。図18に示す例では、木構造T3 00の左半分のリーフは、全て無効化された装置に対応 50 するので、鍵情報内のヘッダ情報は、11個のNRPを 含むが、そのうち8個は {1.1} である。 【0128】図18に示す例では、木構造T300の左 半分は全て無効化された装置であるので、レイヤ1の左 のノードから下は全て無効化ノードであると表現すれ ば、左半分の各ノードに対応したNRPをヘッダ情報と して記録媒体に記録する必要がなくなる。そこで、第2 の実施の形態では、無効化された装置が木構造の中で特 定のリーフに集中する場合に、ヘッダ情報のデータ量を

少なく抑えることができる著作物保護システム10b

(図示していない) について説明する。

【0129】鍵管理装置100は、第1の実施の形態に おいて説明したように、鍵情報のヘッダ情報として、N RPを生成する。ここで、鍵管理装置100は、NRP の先頭に1ビットを追加する。追加したビットが「1」 である場合には、そのノードの子孫のノードに割り当て られたユーザ装置は全て無効化装置であることを示す。 図19において、ノードT401及びノードT402 は、これらのノードの子孫のノードに割り当てられた装 置が全て無効化装置ではないので、先頭ビットは「0」 であり、NRPは、それぞれ、 {011} 、 {010} と表現される。ノードT403の子孫のノードに割り当 てられた装置は、全て無効化装置であるため、NRPは {1 1 1 } と表現される。鍵管理装置 1 0 0 は、ノード T403の子孫のノードについてのNRPを記録媒体に 書き込まない。

【0130】2.1 著作物保護システム10hの機成 著作物保護システム10bは、著作物保護システム10 と同様の構成を有している。ここでは、著作物保護シス テム10との相違点を中心として説明する。第2の実施 の形態では、図19に示すように、ユーザ装置1~ユー 30 ザ装置8及びユーザ装置12がそれぞれ無効化されてい るとする。

【0131】2.1.1 鍵管理装置100 著作物保護システム10bの鍵管理装置100は、第1 の実施の形態において述べた鍵管理装置100と同様の 構成を有している。ここでは、その相違点を中心として 説明する。

(1) 木構造格納部102

木構造格納部102は、木構造テーブルD100に代え て、一例として図20に示す木機造テーブルD400を 40 は、その相違占を中心として説明する。 有している。

【0132】木構造テーブルD400は、図19に一例 として示す木構造T400に対応しており、木構造T4 00を表現するためのデータ構造を示す。木構造テープ ルD400は、木構造T400に含まれるノードと同じ 数のノード情報を含んで構成されており、各ノード情報 は、木橋造T400を構成する各ノードにそれぞれ対応 している。

【0133】各ノード情報は、ノード名、デバイス鍵、

及び無効化フラグについては、第1の実施の形態で説明 したとおりであるので、説明を省略する。NRPは、3 ビットから構成され、上位の1ビットは、上述したよう に、対応するノード名により示されるノードの子孫のノ ードに割り当てられたユーザ装置は全て無効化装置であ ることを示す。下位の2ピットは、第1の実施の形態で 説明したNRPと同じ内容のものである。

【0134】(2)鍵情報ヘッダ生成部106

鍵情報ヘッダ生成部106は、NRPの先頭の1ビット 10 が「1」である場合には、そのノードの子孫のノードに 割り当てられたユーザ装置は全て無効化装置であること を示すNRPを生成し、生成したNRPを鍵情報記録装 置200へ出力する。なお、NRPの生成の詳細につい ては、後述する。

【0135】鍵情報ヘッダ生成部106は、一例とし て、図21に示すヘッダ情報D500を生成する。ヘッ ダ情報D500は、NRP {011}、 {111}、 {010}、 {001} 及び {001} から構成され、 各NRPをこの順序で含んでいる。また、この図に示す

20 ように、ヘッダ情報D500内に「0」、「1」、 「21、「31及び「41により定まる位置において、 それぞれ、NRP {011}、 {111}、 {01 0)、{001}及び{001}が配置されている。 【0136】(3) 鍵情報生成部107

鍵情報生成部107は、一例として、図22に示す鍵情 報D600を生成する。鍵情報D600は、3個の暗号 化メディア鍵を含んでいる。3個の暗号化メディア鍵 は、それぞれデパイス鍵KeyG、KeyL、IK11 を用いてメディア鍵を暗号化したものである。

【0137】これらの複数個の暗号化メディア鍵のそれ ぞれは、鍵情報D600内において格納されている位置 が定められている。この図に示すように、鎌情報D60 0内に「0」、「1」及び「2」により定まる位置にお いて、それぞれ、暗号化メディア鍵E1(KeyG、メ ディア鍵)、E1 (KeyL、メディア鍵) 及びE1

(IK11、メディア鍵) が配置されている。 【0138】2.1.2 記録装置300a

記録装置300aは、第1の実施の形態において述べた 記録装置300aと同様の構成を有している。ここで

(1)特定部303

特定部303は、ID情報及びヘッダ情報を用いて、ヘ ッダ情報を上位からシーケンシャルに調べていくことに より、鍵情報の中から1個の暗号化メディア鍵が存在す る位置Xを特定する。なお、暗号化メディア鍵が存在す る位置Xを特定する場合の詳細の動作については、後述

【0139】2.2 著作物保護システム10bの動作 著作物保護システム10bの動作について、著作物保護 無効化フラグ及びNRPを含む。ノード名、デバイス鍵 50 システム10の動作との相違点を中心として説明する。

2、2.1 ヘッダ情報の生成の動作 ここでは、鍵情報ヘッダ生成部106によるヘッダ情報

の生成の動作について、図23~図26に示すフローチ ャートを用いて説明する。なお、ここで説明する動作 は、図11に示すフローチャートにおけるステップ S1 53の詳細である。

【0140】鍵情報ヘッダ生成部106は、レイヤ0か らレイヤ3までの各レイヤについて、ステップS322 ~ S 3 2 7 を繰り返す。さらに、鍵情報へッダ生成部 1 06は、各レイヤに含まれる対象ノード毎に、ステップ 10 テーブルから削除する(ステップS342)。 S323~S326を繰り返す。鍵情報ヘッダ生成部1 0.6は、当該対象ノードの直下に接続される2個の下位 ノードを選択し(ステップS323)、選択した2個の 下位ノードのそれぞれに無効化フラグが付されているか 否かを調べて、NRPを生成し(ステップS324)、 値「0」を有する拡張ピットを生成したNRPの先頭に 付加し(ステップS325)、拡張ビットが付加された NRPを木構造テーブル内の当該対象ノードに対応する ノード情報内に付加する(ステップS236)。

【0141】以上のようにして、ステップS321~S 20 328の繰返しが終了すると、第1の事施の形能におい て説明した方法と同様に、各ノード情報内にNRPが付 加される。ここで、各NRPの先頭には、値「0」(1 ビット) が付加されている。次に、鍵情報ヘッダ生成部 106は、レイヤ3からレイヤ0までの各レイヤについ て、ステップS330~S335を繰り返す。さらに、 鍵情報ヘッダ生成部106は、各レイヤに含まれる対象 ノード毎に、ステップS331~S334を繰り返す。 【0142】鍵情報ヘッダ生成部106は、当該対象ノ ードの直下に接続される2個の下位ノードを選択し(ス 30 テップS331)、選択した2個のノードの両方にそれ ぞれNRP {111} が付加されているか否かを題べ る。ただし、選択した2個のノードがリーフである場合 には、選択した2個のノードの両方に無効化フラグが付 されているか否かを調べる (ステップ S 3 3 2)。 【0143】選択した2個の下位ノードの両方にそれぞ

れNRP {111} が付されている場合にのみ、ただし 選択した2個のノードがリーフである場合には、選択し た2個の下位ノードの両方に無効化フラグが付されてい る場合にのみ(ステップS333)、鍵情報ヘッダ牛成 40 部106は、当該対象ノードに付加されたNRPの先頭 ビットを「1」に書き換える(ステップS334)。 【0144】以上のようにして、ステップS329~S 336の繰返しが終了すると、それぞれNRP {11 が付加されている2個の下位ノードに接続する上位 のノードには、 {111} が付加されることになる。次 に、鍵情報ヘッダ生成部106は、レイヤ2からレイヤ ①までの各レイヤについて、ステップS338~S34 3を繰り返す。さらに、健情報へッダ生成部106は、

~S342を繰り返す。

【0145】鍵情報ヘッダ生成部106は、当該対象ノ ードの直下に接続される2個の下位ノードを選択し(ス テップS339)、選択した2個の下位ノードの両方に NRP {1 1 1 } が付加されているか否かを調べる (ス テップS340)。選択した2個の下位ノードの両方に NRP {111} が付加されている場合にのみ (ステッ プS341)、鍵情報ヘッダ生成部106は、選択した 2個の下位ノードにそれぞれ付加されたNRPを木橋浩

【0146】次に、鍵情報へッダ生成部106は、木橋 造テーブルに記憶されているNRPをルートから順に詩 み出して、出力する (ステップS345)。以上のよう にして、NRPの先頭の1ピットが「1」である場合 に、そのノードの子孫のノードに割り当てられたユーザ 装置は全て無効化装置であることを示すNRPが生成さ れる。

【0147】2.2.2 鍵情報の特定の動作

ここでは、記録装置300aが有する特定部303によ り、記録媒体500bに記憶されている鍵情報から、1 個の暗号化メディア鍵を特定する動作について、図27 に示すフローチャートを用いて説明する。なお、ここで 説明する動作は、図11に示すフローチャートにおける ステップS172の詳細である。

【0148】また、特定部303による1個の暗号化メ ディア鍵を特定する動作は、第1の実施の形能において 説明した動作と同様であり、ここでは、その相違点を中 心として説明する。値B=0の場合(ステップS30 3) 、特定部303は、これまでにチェックしたNRP のうち、下位2ビットがオール「1 : でないNRPの物 をカウントし、カウントした値を、変数Xに代入する。 こうして得られた変数Xが、暗号化メディア鍵の位置を 示している(ステップS307a)。次に、特定部30 3は、処理を終了する。

【0149】値B=1の場合(ステップS303)、特 定部303は、レイヤ1に存在するW個の全NRPの 「1」の数をカウントする。ただし、NRPの最上位の ビットが「1」のNRPについては、カウントしない。 カウントした値を変数Wに代入する。こうして得られた 変数Wが、次のレイヤ1+1に存在するNRPの数を示 す。 (ステップS 3 0 4 a) 。

[0150] 次に、特定部303は、最初のNRPから 数えて、対応するビット位置までのNRPの「1」の初 をカウントする。ただし、NRPの最上位のビットが 「1」のNRPについては、カウントしない。カウント した値を変数 A に代入する。ここで、対応するビット位 置の値はカウントしない。こういて得られた変数Aが、 次のレイヤi+1のNRPのうち、ユーザ装置自身に関 係するNRPの位置を示す(ステップS305a)。 各レイヤに含まれる対象ノード毎に、ステップS339 50 【0151】2.2.3 鍵情報の特定の動作の具体例

【0152】 (ステップ1) 特定部303は、ユーザ装置10に割り当てられた1D情報「1001」の最上位ビットの値が「1」であるため、最初のNRP {011} の下位2ピットのうちの右ビットをチェックする(ステップ5303)

(ステップ2) 最初のNRP (011) の下位2ピット のうちの右ピットの値が「1」であるため、特定部30 3は、解析を続ける (ステップ5303で、B=1)。 [0153] (ステップ3) 特定部303は、レイヤロ に存在する1個のNRP (011) の下位2ピットの 5の「1」の数をカウントする。そのカウントした値が 「2」であるため、次のレイヤ1には2個のNRPが存在するとどが分かる (ステップ5304 a)。

(ステップ4) 特定部303は、対応するビット位置までのNRF {011} の予位2セットの「10数をカウントする。ただし、対応するビット位置の値はかりトしない。そのカウントした値が「1」であるため、次のレイヤ1の対応するNRPの位置は、レイヤ1内において、1番目である(ステップ5305a)。

【0154】(ステップ5) 次に、特定部303は、I D情報「1001」の上位から2ピット目の値が「0」 であるため、レイヤ1の1番目のNRP (010) の下 位2ピットのうちの左ピットをチェックする(ステップ 30 \$303)。

(ステップ6) ここで、レイヤ1の1番目のNRP {0 10} の下位2 ビットのうちの左ビットの値が「1」で あるため、特定部303は、解析を続ける(ステップS 303で、B=1)。

【0155】 (ステップつ) 特定部303は、レイヤ1 に存在する2個のNRP {111}、(0101の下位 2ピットのうちの「1」の数をカウントする。ただし、 NRPの最上位ピットが「1」であるNRPについて は、カウントしない。そのカウントした値が「1」である ろため、次のレイヤ2には「側のNRPが存在すること が分かる (ステップS304a)。

[0156] (ステップ8) 特定部303は、対応する ビット位編までのNRPの「1」の数をカウントする。 ただし、対応するビット位配の値はカウントしない。そ のカウントした値が「0」であるため、次のレイヤ2の 対応するNRPの位置は、レイヤ2内において、0番目 である (ステップ5305a)

(ステップ9)次に、特定部303は、ID情報「10 と同様の構成を有している。ここでは、著作01」の上位から3ビット目の値が「0」であるため、50 テム10との相違点を中心として説明する。

レイヤ2の0番目のNRP (001) の下位2ビットの うちの左ビットをチェックする (ステップ 303)。 (0157) (ステップ10) ここで、レイヤ2の0番 目のNRP (001) の下位2ビットのうちの左ビット の値が「0」であるため、特定部303は、解析を終了 する (ステップ 3303で、B=0)。

(ステップ11) 特定部303は、これまでに繋折し、 NRPのうち、下位2ビットが、オール「1」でないN RPの数をカウントする。なお、最後とチェックしたN 10 RPは、カウントしない、カウントした値が「1」であ るため、暗号化メディア鍵の位置は、建情報内におい て、1番目である (ステップ5307a)。

[0158] (ステップ12) 図22より、鍵情報の1番目の位属に格納されている暗号化メディア健は、E1 (KeyL、メディア館)である。ユーザ装置10は、KeyLを保持している。よって、ユーザ装置10は、KeyLを用いて暗号化メディア鍵を復号してメディア鍵を復考することができる。

【0159】なお、上述した第2の実施の形態において は、あるノードの子孫に存在するユーザ装置か全て無効 化装置である場合に、追加するピットを「1」としてい る。しかし、リーフのレイヤ数がそれぞれ異なるような 木間素がある場合、あるノードの子孫にNFNが存在し ない場合は、追加したピットを「1」にすることで終端 を実味するフラグとしても使用することができる。 【0160】3、第3の実施の形態

上記の第2の実施の形態においては、あるノードの子孫 が全て無効化装置であるか否かを示すビットをNRPの 先頭に追加することで、無効化装置が集中した場合に、 ヘッダ情報をさらに少なく抑える方法を示している。次 に述べる第3の実施の形態では、NRPにビットを追加 する代わりに、特定のパターン {0.0} を有するNRP を用いて、1個のノードの子孫が全て無効化装置である か否かを判断する。これは、レイヤ0を除く全てのレイ ヤにおいては、NRP {00} が使われないことに着目 したものである。これにより、第2の実施の形態より も、さらにヘッダ情報を少なく抑えることができる著作 物保護システム10c (図示していない) について説明 する。一ここでは、図28に示すように、ユーザ装置1 ~ユーザ装置8、ユーザ装置12がそれぞれ無効化され ているとする。第3の実施の形態では、NRPは第1の 実施の形態に示す通りであるが、あるノードの子孫のユ ーザ装置が全て無効化装置である場合には、そのノード のNRPを {00} で表現する。図28におけるノード T501について、そのノードの子孫が全て無効化装置

であるため、NRPは {00} と表現されている。 【0161】3.1 著作物保護ンステム10cの構成 著作物保護システム10cは、著作物保護システム10 と同様の構成を有している。ここでは、著作物保護シス テム10との財富もか由ふと1で説明する

236a).

3. 1. 1 鍵管理装置100

著作物保護システム10cの鍵管理装置100は、第1 の実施の形態において述べた鍵管理装置100と同様の 構成を有している。ここでは、その相違点を中心として 窓助する。

47

【0162】(1) 維情報へッグ生成部106 競情報へッグ生成部106は、NRPが100)である 場合には、そのノードの子孫のノードに割り当てられた ユーヴ塩園は全て無効化接置であることを示すNRPを 生成し、生成したNRPを整備部配金接載第20つ出力 10 する。なお、NRPの生成の詳細については、後述す

[0163] 銀情報ーッダ中成部106は、一例として、図29に示すヘッダ情報D700を生放する。ヘッダ情報D700は、NRP [11]、 [00]、 [10]、 [

【0164】(2)鍵情報生成部107

鍵情報生成部107は、一例として、図30に示す鍵情 報D800を生成する。鍵情報D800は、3個の暗号 化メディア鍵を含んでいる。3個の暗号化メディア鍵 は、それぞれデバイス鍵KeyG、KeyL、IK11 を用いてメディア鍵を暗号化したものである。

【0165】 これらの複数機の暗号化メディア輸のそれ ぞれは、銀情報 D800内において格納されている位置 が定められている。この図に示すように、建情報 D80 30 0内に「0」、「「」及び「2」により定まる位置にお いて、それぞれ、暗号化メディア鎌足 I (KeyG、メ ディア銀)、El (KeyL、メディア鎌) 及びEl

(IK11、メディア鍵) が配置されている。 【0166】3.1.2 記録装置300a

著作物保護システム10cの記録装置300aは、第1 の実施の形態において述べた記録装置300aと同様の 構成を有している。ここでは、その相違点を中心として 説明する。

(1)特定部303

特定部303は、ID情報及びヘッダ情報を用いて、へ ・ ダ情報を上位からシーケンシャルに調べていくことに より、 遺情報の中から1個の暗号化メディア鍵が存在する を位置Xを特定する。なお、 暗号化メディア鍵が存在する な位置Xを特定する場合の詳細の動作については、後述 する。

[0167] 3.2 著作物保護システム10cの動作 著作物保護システム10cの動作について、著作物保護 システム10の動作との相違点を中心として説明する。 3.2.1 ヘッダ情報の生成の動作 ここでは、鍵情報へッダ生成部106によるヘッダ情報 の生成の動作について、図31~図34に示すフローチャートを用いて説明する。なお、ここで説明する動作 は、図11に示すフローチャートにおけるステップS1 53の詳細である。

【0163】戴精酔小少好生煎約106は、レイヤのからレイヤ3までの各レイヤについて、ステップ5322 ~5327を搬り返す。さちに、厳情婦小ッダ生煎約106は、各レイヤに含まれら対象ノード回に、ステップ 323~5326aを繰り返す。戴情報へッダ生煎約106は、当該対象ノードの巨下に接続されるでのツタ生煎約106は、当該対象ノードの巨下に接続されるご側の下位ノードを選択し (ステップ5323) 遊択した2個の下位ノードを選択し (ステップ5323) 過収してラップの自然の事件で、NRPを生成し (ステップ5324) 人生成されたNRPを大構造デーブル内の当該対象ノードに対応するノード情報など付封する (ステップ5

【0169】以上のようにして、ステップ 8321~8 328の縁返しが終了すると、第1の実施の形態におい 20 で歌明した方法と同様に、各ノードにNR Pが付加され る。次に、酸情報へッダ生成部 106は、レイヤ3から レイヤ0までの各レイヤについて、ステップ 8330~ 8335を繰り返す。さらに、健情報へッダ生成部 10 6は、各レイヤに含まれる対象ノード等に、ステップ 8 331~8334 aを繰り返す。

【0170】 解情報へ少生成部106は、当該対象ノードの直下に接続される2個の下位プードを選択してステップ5331)、選択した2個のノードの両方にそれでれNRP {11} が付加されているか否かを調べる。ただし、選択した2個のノードの両方に無効化フラグが付されているか否かを選べる(ステップ5332)。

【0171】選択した2個の下位ノードの両方にそれぞれNRP(11)が付されている場合にのみ、ただし選択した2個の一ドがリーフである場合には、選択した2個の下位ノードの両方に無効化フラグが付されている場合にのかく(ステップS333)、繁情報へッグ生成部106は、当該対線ノードに付加されたNPを(0)に書き換える(ステップS334a)。

0 【0172】以上のようにして、ステップS329~S 336の搬送しが終了すると、それぞれNRP【11】 が付加されている2個の下位ノードに接続する上位のノードには、(00) が付加されることになる。次に、鍵情報へッダ生成部106は、レイヤとからレイヤロまでの各レイヤについて、ステップS338~S343を繰り返す。さらに、鍵情報へッダ生成部106は、各レイヤに含まれる対象ノード時に、ステップS339~S342aを関り返す。

【0173】 鍵情報へッダ生成部106は、当該対象ノ 50 一ドの直下に接続される2個の下位ノードを選択し(ス

[0174]次に、戦情報へッダ生成都106は、末緒 造テーブルに記憶されているNRPをルートかち順に読 み出して、出力する(ステップ5345)。以上のよう10 にして、NRPが(00)である場合に、そのノードの 子孫のノードに削り当てられたユーザ装販は全て無効化 装置であることを示すNRPが供食された。

【0175】3.2.2 鍵情報の特定の動作

とこでは、記録基礎390 a が有する検定部393によ り、配録媒体500 b に配値されている難情報かち、1 個の簡単化メディア鍵を検定する動作について、図35 に示すフローチャートを用いて説明する。なお、ここで 説明する動作は、図11に示すフローチャートにおける ステップ5172の詳細である。

【0176】また、特定部303による1値の暗号化メディア種を特定する動件は、第1の実施の形態において説明した動作と同様であり、ここでは、その相違点を中心として説明する。値目の回場合(ステップ330、特定部303は、元年までドチェックしたNRPのあた。オール「1」でないNRPの数とオール「0」でないNRPの数とオール「0」でないNRPの数とオール「0」のNRPもカウントする。カウントした値を、姿数メだ「代入する。こうして得られた変数メが、毎月代メディが裏の位置を示している。ま30た、この時点の変数1は、デバイス機を諷前するためのデバイス裁議別情報である(ステップ3307b)。次に、特定部303は、処理を修行する。

【0177】3.2.3 触情報の特定の動作の具体例一具体等として、包29及び図30に示す触情報を用いて、図28に示す無効化されていないユーザ装庫10が暗号化ンディア類を特定するまでの動作について以下に認明する。ユーザ装庫10は、10倍線「1001」が割り当てられ、デバイス離「KeyA」、「Key C」、「Key F」、「Key L」及び「I K10」が 40割り当てられているものとする。

【0178】 (ステップ1) 特定部303は、ユーザ装置10に割り当て5れた1D情報「1001」の最上位ビットの値が「10であるため、最初のNRP (11)の右ビットをチェックする (ステップ5303)。 (ステップ2) 最初のNRP (11)の右ビットを分割のの (ステップ2) 最初のNRP (11)の右ビットの値が

「1」であるため、特定部303は、解析を続ける(ステップS303で、B=1)。

【0179】(ステップ3)特定部303は、レイヤ0 化メラに存在する1個のNRP {11}の 0 11の数をカウン 50 きる。

50 トする。そのカウントした値が「2」であるため、次の レイヤ1には2個のNRPが存在することが分かる(ステップS304)。

(ステップ4) 特定部303は、対応するビット位置までのNRPの「1」の数をカウントする。ただし、対応するビット位置の値はカウントした値が「1」であるため、次のレイヤ1の対応するNRPの位置は、レイヤ1内において、1番目である(ステップ5305)

0 【0180】(ステップ5)次に、特定部303は、I D情報「1001」の上位から2ビット目の値が「0」 であるため、レイヤ1の1番目のNRP {10}の左ビットをチェックする(ステップ\$303)。

(ステップ6) レイヤ1の1番目のNRP {10} の左 ビットの値が「1」であるため、特定部303は、解析 を続ける(ステップS303で、B=1)。

【0181】(ステップ7) 特定部303は、レイヤ1 に存在する2個のNRPの「1」の数をカウントする。 ここで、NRP {00}は、カウントしない。そのカウ 2 ントした値が「1」であるため、次のレイヤ2には1個 のNRPが存在するにとが分かる(ステップ、30

4)。 (ステップ8) 特定部303は、対応するピット位置ま でのNRPの「1」の数をカウントする。ただし、対応 するピット位置の値はカウントしない。そのカウントし た値が「0」であるため、次のレイヤ2の対応するNR Pの位置は、レイヤ2内はおいて、0番目である (ステ

ップ5305)。 【0182】(ステップ9)次に、特定部303は、I 30 D情報「1001」の上位から3ピット目の値が「0」 であるため、レイヤ2の0番目のNRP {01}の下位 2ピットのうちの左ピットをチェックする(ステップS 303)。

(ステップ10) ここで、レイヤ2の0番目のNRP {01} の下位2ピットのうちの左ピットの値が「0」 であるため、特定部303は、解析を終了する(ステッ プ\$303で、B=0)。

【0183】 (ステップ11) 特定部303は、これまでに解析したNRPのうち、オール「1」でないNRP の数をカウントする。なは、服後にチックしたNRPはカウントしない。カウントした値が「1」であるため、鳴号化メディア鍵の位置は、健情報内において、1番目である。

(ステップ12) 図30より、鍵情報の1番目の位置に 格納されている暗号化メディア鍵は、E1 (KeyL, メディア鍵)である。

【0184】ユーザ装置10は、KeyLを保持している。よって、ユーザ装置10は、KeyLを用いて暗号化メディア鍵を復得してメディア鍵を獲得することがで

4. 第4の実施の形態

上記の第1の実施の形態においては、複数のNRPを上位レイヤから下位レイヤの順に並べ、レイヤが同じNRPについては、左から右への順に並べるようにしている。

【0185】次に述べる第4の実施の形態では、別の並べ方により複数のNRPを出力する著作物保護システム

10d (図示していない) について説明する。 4.1 著作物保護システム10dの構成

著作物保護システム10dは、著作物保護システム10 10 と同様の構成を有している。ここでは、著作物保護シス テム10との相違点を中心として説明する。

【0186】4.1.1 鍵管理装置100 着作物保護システム10dの鍵管理装置100は、第1 の実施の形態において述べた鍵管理装置100と同様の 構成を有している。ここでは、その相違点を中心として

(1) 木構造格納部102

例として示す木構造す600に対応しており、木構造す 600を表現するためのデータ構造を示す。後述するよ うに、木構造構築節101により木構造す600を表現 するためのデータ構造が、木構造デーブルD1000と して生成され、水構造路的部10と出書き込まれる。 (木構造 1600)木構造1600は、図36に示すよ うに、木構造 1100と同様に、レイヤ0からレイヤ4 までの5階層からなる2分末である。

[0188] 木精造 100の各レイヤに含まれるノードの数は、木精造 1100と同じである。また、上位側のノードと下位側のノードを接続する経路に削り当てられる番号も、木精造 1100と同じである。木精造 1600にむいて、水付さされているノードは、無効化されている。木構造 1600のルートであるノードのノード名は、本構造 1000に同じにを呼ざれる。

【0190】木構造T600において、各ノードの付近 に付された {10} などは、NRPを示している。ま た、各ノードの付近に付された〇印で囲まれた番号は、 NRPが出力される順序を示している。

(木構造テーブルD1000) 木構造テーブルD100 0は、木構造T600に含まれるノードと同じ数のノー ド情報を含んで構成されており、各ノード情報は、木構 造T600を構成する各ノードにそれぞれ対応してい る。

【0191】各ノード情報は、ノード名、デバイス鍵及び無効化フラグを含んでいる。ノード名、デバイス鍵及び無効化フラグを含んでいる。ノード名、デバイス鍵及の焦剤化フラゲについては、未構造テープルD100円には、次に示す順呼規則2に従った順庁により名ノード情報が記憶される。ことに示す順序規則2は、登録整置300a、300b、300c、・・・、再生装置400a、400b、400c、・・・により、木構造テーブルD1000から各ノード情報がシーケンシャルに読み出される場合においても適用される。

【0192】(a) 木構造テーブルD1000内の先頭には、ルートであるノードに対応するノード情報が記憶される。

(b) 1個のノード(特定ノードと呼ぶ。)に対応する ノード情報が水構造デーブルD1000内に記憶された 接と認いて、前記特定ノードの下位制に接続する2億の 下位ノードが存在する場合には、次に示すようにして、 ノード情報が強へられる。前配特定ノードに対応する2 ・ド情報が強へられる。前配特定ノードに対応する2 ・アード及び前記左側のノードのさらに下位側に接続する全でのノードに対応する2 トード機が記憶される。 続いて、前記2億の下位ノードのうち、右側のノード及 切び配右側のノードのさらに下位側に接続する全でのノードに対応する名 アード機関が記憶される。

【0193】(c) (b) 所において、(b) が順度、 適用される。具体的には、図37に示す木構造テープル D100内には、次に示す調節により名グード構造が起 憶される。空白(ルートを示す)、「0」、「00」、 「000」、「000」、「0001」、「01 」、「001」、「011」、「01」、「01 0」、・・・、「11」、「110」、「1100」、「1101」、「1101」、「1101」、「1101」、「1101」、「1101」、「1101」、「1101」、「1101」、「1101」、「1101」、「1101」、「1101」、「11101】

(2) 木構造構築部101

木構造構築部101は、デパイス鍵を管理するためのn 分木データ構造を構築し、木構造格材部102に構築し た木構造を格納する。ここで、nは2以上の整数であ り、一側として、n=2である。

【0194】木構造構築部101による木構造の構築及 び木構造格納部102への格納の詳細の動作について は、後述する。木構造構築部101は、次に、株構造の ノード毎に乱数を用いてデバイス鍵を生成し、生成した 50 デバイス鍵を各ノードに対応付けて木構造テープル内に

書き込む。

【0195】(3) 鍵情報ヘッダ生成部106 鍵情報へッダ生成部106は、複数のNRPを生成し、 生成した複数のNRPをヘッダ情報として、鍵情報記録 装置200へ出力する。NRPの生成の詳細の動作につ いては、後述する。鍵情報ヘッダ生成部106により生 成されるヘッダ情報の一例を図38に示す。この図に示 すヘッダ情報D900は、NRP {11}、 {11}、 {11}, {10}, {01}, {11}, {10},

{10}、 {10}、 {01}、 {11} から構成さ れ、各NRPをこの順序で含んでいる。

【0196】なお、これらの複数個のNRPのそれぞれ は、ヘッダ情報D900内において格納されている位置 が定められている。この図に示すように、ヘッダ情報D 900内に「0」、「1」、「2」、「3」、「4」、 [5], [6], [7], [8], [9], [10], により定まる位置において、それぞれ、NRP {1 1} \ {1 1} \ {1 1} \ {1 1} \ {1 0} \ {0 1} \ {1 1}, {10}, {10}, {10}, {01}, {1 1) が配置されている。

【0197】(4) 鍵情報生成部107

鍵情報生成部107は、上記の木構造テーブルにノード 情報が格納される順序と同じ順序で、無効化されていな いノードに対応するデバイス鍵を用いて、メディア鍵を 暗号化して暗号化メディア鍵を生成し、生成した暗号化 メディア鍵を鍵情報として出力する。

【0198】鍵情報生成部107は、一例として次に示 す鍵情報を生成して出力する。鍵情報は、デバイス鍵 FIK21, FIK31, FIK61, FIK81, 「KevLI及び「KevG」をそれぞれ用いて、メデ 30 ィア鍵を暗号化することにより、生成された暗号化メデ ィア鍵E1 (IK2、メディア鍵)、E1 (IK3、メ ディア鍵)、E1(IK6、メディア鍵)、E1(IK 8、メディア鍵)、E1 (KeyL、メディア鍵) 及び E1 (KevG、メディア鍵) から構成されている。こ の鍵情報内に、「0」、「1」、「2」、「3」、 「41、「51及び「61により定まる位置において、

それぞれ、暗号化メディア鍵E1(IK2、メディア 鍵)、E1(IK3、メディア鍵)、E1(IK6、メ ディア鍵)、E1(IK8、メディア鍵)、E1(Ke 40 y L、メディア鍵) 及びE1 (Key G、メディア鍵) が配置されている。

【0199】4.1.2 記録装置300a 著作物保護システム10dの記録装置300aは、第1 の実施の形態において述べた記録装置300aと同様の 構成を有している。ここでは、その相違点を中心として 説明する。

(1) 特定部303

特定部303は、ID情報及びヘッダ情報を用いて、ヘ ッダ情報を上位からシーケンシャルに調べていくことに 50 読出しを試みる (ステップ S 4 2 1)。ノード情報の終

54 より、鍵情報の中から1個の暗号化メディア鍵が存在す る位置Xを特定する。なお、暗号化メディア鍵が存在す る位置Xを特定する場合の詳細の動作については、後述

【0200】4.2 著作物保護システム10dの動作 著作物保護システム100の動作について、著作物保護 システム10の動作との相違点を中心として説明する。 4. 2. 1 木構造を構築して格納する動作

ここでは、木構造構築部101による木構造テーブルの 10 生成と木槿浩格納部102への木槿浩テーブルの書き込 みの動作について、図39に示すフローチャートを用い て説明する。なお、ここで説明する動作は、図10に示 すフローチャートにおけるステップS101の詳細であ

【0201】木構造構築部101は、空白のノード名を 含むノード情報を生成して木構造テーブルに書き込む (ステップS401)。次に、木構造構築部101は、 レイヤi (i=1、2、3、4) について、次に示すス テップS403~ステップS404を繰り返す。木構造 20 構築部101は、2i個の文字列をノード名として生成 する。具体的には、i=1のときは、21=2個の文字 列「0」及び「1」を生成する。また、i=2のとき は、22 = 4個の文字列「00」、「01」、「10」 及び「11」を生成する。また、i=3のときは、23 =8個の文字列「000」、「001」、「010」、 ・・・・、「111」を生成する。また、i=4のとき は、24=16個の文字列「0000」、「000 1], [0010], [0011], ..., [11 11」を生成する(ステップS 403)。次に、木構造 構築部101は、生成した各ノード名をそれぞれ含むノ ード情報を木構造テーブルに書き込む(ステップS40 4) .

【0202】次に、木構造構築部101は、木構造テー ブルに含まれている各ノード情報を、ノード名の昇順に 並び換え、並び替えられた各ノード情報を再度、木構造 テーブルに上書きする (ステップS406)。このよう にして、図37に一例として示す木機造テーブルD10 00が生成される。生成された木構造テーブルD100 0は、上述した順序規則2により各ノード情報を含んで いる。なお、この段階では、木構浩テーブルD1000 内に各デバイス鍵はまだ記録されていない。

【0203】4.2.2 ヘッダ情報の生成の動作 ここでは、鍵情報ヘッダ生成部106によるヘッダ情報 の生成の動作について、図40~図41に示すフローチ ャートを用いて説明する。なお、ここで説明する動作 は、図11に示すフローチャートにおけるステップS1 53の詳細である。

【0204】鍵情報ヘッダ生成部106は、順序規則2 に従って木構造テーブルから順に1個ずつノード情報の

す。

了を検出すると (ステップ S 4 2 2) 、鍵情報ヘッダ生 成部106は、ステップS427へ制御を移す。ノード 情報の終了を検出せず、ノード情報が読み出せた場合に は (ステップ S 4 2 2) 、鍵情報ヘッダ生成部 1 0 6 は、読み出したノード情報に対応する対象ノードの下位 側に接続されている2個の下位ノードに対応する2個の ノード情報を読み出す(ステップS423)。

【0205】下位ノードが存在する場合に (ステップS 424) 、鍵情報ヘッダ生成部106は、読み出した2 個の下位ノードに対応する2個のノード情報の両方に、 無効化フラグが付されているか否かを調べて、NRPを 生成し(ステップS425)、次に、生成したNRPを 読み出した対象ノードに対応するノード情報に付加する (ステップ S 4 2 6)。次に、ステップ S 4 2 1 へ戻っ て処理を繰り返す。

【0206】下位ノードが存在しない場合(ステップS 424)、ステップS421へ戻って処理を繰り返す。 次に、健情報ヘッダ生成部106は、順序規則2に従っ て木構造テーブルから順に1個ずつノード情報の読出し を試みる (ステップ S 4 2 7)。 ノード情報の終了を検 20 出すると(ステップS422)、鍵情報ヘッダ生成部1 06は、処理を終了する。

【0207】ノード情報の終了を検出せず、ノード情報 が読み出せた場合には (ステップS428)、鍵情報へ ッダ生成部106は、読み出したノード情報にNRPが 付加されているか否かを調べ、付加されている場合(ス テップS 429)、付加されているNRPを出力し(ス テップS430)、次に、ステップS427へ戻って処 理を繰り返す。

【0208】 NRPが付加されていない場合(ステップ 30 S 4 2 9) 、鍵情報ヘッダ生成部 1 0 6 は、ステップ S 427へ戻って処理を繰り返す。

4. 2. 3 鍵情報の特定の動作

ここでは、記録装置300aが有する特定部303によ り、記録媒体500bに記憶されている鍵情報から、1 個の暗号化メディア鍵を特定する動作について、図42 に示すフローチャートを用いて説明する。なお、ここで 説明する動作は、図11に示すフローチャートにおける ステップS172の詳細である。

02による動作は、特定部303による動作と同じであ るので、説明を省略する。特定部303は、チェックす るID情報のビット位置を示す変数i、現在チェックし ているNRPが含まれるレイヤを示す変数 L、分岐点の ノードのレイヤを記憶する変数X、NRPをチェックす るか否かを判断するフラグF(初期値、F=0)を有し ており、木構造のレイヤ数を示す値Dを有している。ま た、チェックするNRPの位置を示すポインタAを有し ている-

【0210】特定部303は、変数1=0、変数L=

0、フラグF = 0、変数X = 0、ポインタA = 0とする (ステップS1300)。次に、特定部303は、変数 Lがレイヤ数D-1よりも小さいか否かを判定する。大 きいか又は等しい場合 (ステップS1301)、特定部 303は、変数 L に対して、変数 X の最後のレイヤ番号 を入力する。変数Xは、後入れ先出しの変数であり、出 力した値は削除されるものとする。即ち、変数Xにレイ ヤ0、レイヤ2、レイヤ3の順で入力されたとすると、 最初に出力されるのはレイヤ3で、そのレイヤ3は削除 10 され、次はレイヤ2が出力される(ステップS131 次に、ステップS1301へ戻って処理を繰り返

【0211】変数Lがレイヤ数D-1よりも小さい場合 (ステップS1301)、特定部303は、変数i=変 数しであるか否かを判定する。変数i=変数しでない場 合(ステップS1302)、特定部303は、ステップ S1310へ制御を移す。変数 i =変数 L である場合 (ステップS1302)、特定部303は、さらに、フ ラグF = 0であるか否かを判定する。フラグF = 0でな い場合(ステップS1303)、特定部303は、フラ グF=0とし(ステップS1309)、特定部303

は、ステップS1310へ制御を移す。 【0212】フラグF=0である場合(ステップS13 03)、特定部303は、ID情報の上位:ビット日の 値に従って、A番目のNRPの対応するビット位置の値 Bをチェックし、変数 i = i + 1 とする (ステップ S 1 304)。次に、特定部303は、値B=1であるか否 かを調べ、値B=1でない場合(ステップS130 このID情報が割り当てられた装置は無効化され、 ていないとものとして、特定部303は、処理を終了す

る。 【0213】値B=1である場合(ステップS130 5)、変数≠D-1であるか否かを調べ、変数≠D-1 でない場合(ステップS1306)、この10情報が割 り当てられた装置は無効化されているものとして、特定 部303は、処理を終了する。次に、変数≠D-1であ る場合(ステップS1306)、特定部303は、NR Pが {11} であり、かつ I D情報の i - 1 番目の値が 「1」であるか否かを判定する。Noの場合(ステップ 【0209】また、再生装置400aが有する特定部4 40 S1307)、特定部303は、ステップS1310へ 制御を移す。

> 【0214】Yesの場合(ステップS1307)、特 定部303は、フラグF=1とし(ステップS130 8)、次に、L=L+1とし(ステップS1310)、 NRPが {11} であれば、そのレイヤ番号を変数Xに 記憶し (ステップS1311) 、A=A+1とし (ステ ップS1312)、次に、ステップS1310へ戻って **処理を繰り返す。**

【0215】5、第5の実施の形態 50 上記の第4の実施の形態においては、複数のNRPを順

(30)

序規則2により並べるようにしている。次に述べる第5 の実施の形態では、第4の実施の形態において述べた著 作物保護システム10 dと同様に、順序規則2により並 べて複数のNRPを出力し、かつ、第2の実施の形態に おいて述べた著作物保護システム10bと同様に、無効 化された装置が木構造の中で特定のリーフに集中する場 合に、ヘッダ情報のデータ量を少なく抑えることができ る著作物保護システム10e (図示していない) につい て説明する。

【0216】5.1 著作物保護システム10eの構成 10 著作物保護システム10eは、著作物保護システム10 dと同様の構成を有している。ここでは、著作物保護シ ステム10 d との相違点を中心として説明する。

5. 1. 1 銀管理装置 100

著作物保護システム10eの鍵管理装置100は、第4 の実施の形態において述べた鍵管理装置100dと同様 の構成を有している。ここでは、その相違点を中心とし て説明する。

【0217】(1)木構造格納部102

木構造格納部102は、木構造テーブルを有している。 木構造格納部102が有する木構造テーブルは、第4の 実施の形態において説明した木構造格納部102が有し ている木構造テーブルDIOOと同様の構造を備えて おり、木構造テーブルに含まれる各ノード情報は、さら に、NRPを含む。

【0218】(2)鍵情報ヘッダ生成部106 僻情報へッダ生成部 106は、複数のNRPを生成し、 生成した複数のNRPをヘッダ情報として、鍵情報記録 装置200へ出力する。各NRPは、第2の実施の形態 において説明したように、3ビットから構成される。N 30 RPの生成の詳細の動作については、後述する。

【0219】5.1.2 記録装置300a

著作物保護システム10eの記録装置300aは、第4 の実施の形態において述べた記録装置300aと同様の 構成を有している。ここでは、その相違点を中心として 説明する。

(1)特定部303

特定部303は、ID情報及びヘッダ情報を用いて、ヘ ッダ情報を上位からシーケンシャルに調べていくことに より、鍵情報の中から1個の暗号化メディア鍵が存在す 40 全てのノード情報に付加されている場合にのみ(ステッ る位置Xを特定する。なお、暗号化メディア鍵が存在す る位置Xを特定する場合の詳細の動作については、後述 する。

【0220】5.2 著作物保護システム10eの動作 著作物保護システム 1 0 e の動作について、著作物保護 システム10 dの動作との相違点を中心として説明す

5. 2. 1 ヘッダ情報の生成の動作

ここでは、鍵情報ヘッダ生成部106によるヘッダ情報 の生成の動作について、図43~図46に示すフローチ 50 【0226】ノード情報の終了を検出すると(ステップ

ャートを用いて説明する。なお、ここで説明する動作 は、図11に示すフローチャートにおけるステップ S1 53の詳細である。

【0221】鍵情報ヘッダ生成部106は、順序規則2 に従って木構造テーブルから順に1個ずつノード情報の 読出しを試みる(ステップS 451)。 ノード情報の終 了を検出すると(ステップS452)、鍵情報ヘッダ生 成部106は、ステップS458へ制御を移す。ノード 情報の終了を検出せず、ノード情報が読み出せた場合に は(ステップS452)、鍵情報ヘッダ生成部106 は、読み出したノード情報に対応する対象ノードの下位 側に接続されている2個の下位ノードに対応する2個の

【0222】下位ノードが存在する場合に(ステップS 454)、鍵情報ヘッダ生成部106は、読み出した2 個の下位ノードに対応する2個のノード情報の両方に、 無効化フラグが付されているか否かを調べて、NRPを 生成し(ステップS455)、値「0」を有する拡張ビ ットを生成したNRPの先頭に付加し(ステップS 45 6)、次に、拡張ビットの付加されたNRPを読み出し た対象ノードに対応するノード情報に付加する(ステッ プS 4 5 7)。次に、ステップ S 4 5 1 へ戻って処理を

ノード情報を読み出す(ステップS453)。

繰り返す。 【0223】下位ノードが存在しない場合(ステップS 454)、ステップS451へ戻って処理を繰り返す。 次に、鍵情報ヘッダ生成部106は、順序規則2に従っ て木橋造テーブルから順に1個ずつノード情報の読出し を試みる(ステップS 458)。ノード情報の終了を検 出すると(ステップS 4 5 9)、鍵情報へッダ生成部1 06は、ステップS465へ制御を移す。

【0224】ノード情報の終了を検出せず、ノード情報 が読み出せた場合には(ステップS459)、鍵情報へ ッダ生成部106は、読み出したノード情報に対応する 対象ノードの下位側に接続されている全ての下位ノード に対応する全てのノード情報を読み出す(ステップS4 60)。下位ノードが存在する場合に(ステップS46 1) 、鍵情報ヘッダ生成部106は、読み出した全ての 下位ノードに対応する全てのノード情報に、無効化フラ グが付されているか否かを調べ(ステップS462)、 プS 4 6 3) 、対象ノードに対応するノード情報に付加 されたNRPの先頭ピットを「1」に書き換える(ステ ップ S 4 6 4) 。

【0225】次に、ステップS458へ戻って処理を繰 り返す。下位ノードが存在しない場合(ステップS46 ステップS458へ戻って処理を繰り返す。次 に、鍵情報ヘッダ生成部106は、順序規則2に従って 木構造テーブルから順に1個ずつノード情報の詩出しを 試みる (ステップ S 4 6 5)。

S 4 6 6) 、鍵情報ヘッダ生成部 1 0 6 は、ステップ S 472へ制御を移す。ノード情報の終了を検出せず、ノ ード情報が読み出せた場合には(ステップS466)、 鍵情報ヘッダ生成部106は、読み出したノード情報に 対応する対象ノードの下位側に接続されている全ての下 位ノードに対応する全てのノード情報を読み出す (ステ ップS 467)。

【0227】下位ノードが存在する場合に (ステップS 468)、鍵情報ヘッダ生成部106は、読み出した全 れNRP {1 1 1 } が付加されているか否かを調べ(ス テップS469)、全てのノード情報に付加されている 場合にのみ(ステップS470)、前記全てのノード情 報に、それぞれ削除フラグを付加する(ステップS47 1) .

【0228】次に、ステップS465へ戻って処理を繰 り返す。下位ノードが存在しない場合(ステップS46 8)、ステップS465へ戻って処理を繰り返す。次 に、鍵情報ヘッダ生成部106は、順序規則2に従って 木構造テーブルから順に1個ずつノード情報の読出しを 20 試みる (ステップ S 472)。

【0229】ノード情報の終了を検出すると(ステップ S 4 7 3) 、健情報ヘッダ生成部 1 0 6 は、処理を終了 する。ノード情報の終了を検出せず、ノード情報が読み 出せた場合には (ステップ S 4 7 3) 、鍵情報ヘッダ生 成部106は、読み出したノード情報にNRPが付加さ れているか否かを調べ、付加されている場合 (ステップ S 4 7 4) 、さらに、削除フラグが付加されているか否 かを調べ、削除フラグが付加されていない場合には(ス テップS475)、付加されているNRPを出力し(ス 30 テップ S 4 7 6)、次に、ステップ S 4 7 2 へ戻って処 理を繰り返す。

【0230】 NR Pが付加されていない場合 (ステップ S 4 7 4)、又は、削除フラグが付加されている場合 (ステップS475)、鍵情報へッダ牛成部106は、 ステップS472へ戻って処理を繰り返す。5.2.2 鍵情報の特定の動作ここでは、記録装置300aが有 する特定部303により、記録媒体500トに記憶され ている鍵情報から、1個の暗号化メディア鍵を特定する 明する。なお、ここで説明する動作は、図11に示すフ ローチャートにおけるステップS172の詳細である。 【0231】また、再生装置400aが有する特定部4 02による動作は、特定部303による動作と同じであ るので、説明を省略する。また、ここでは、図42に示 すフローチャートとの相違点を中心として説明する。特 定部303は、第4の実施の形態の場合と同様に、チェ ックする I D情報のビット位置を示す変数 i 、現在チェ ックしているNRPが含まれるレイヤを示す変数L、分 岐点のノードのレイヤを記憶する変数X、NRPをチェ 50 03b、1703c、・・・へ出力する。

ックするか否かを判断するフラグF(初期値、F=0) を有しており、木構造のレイヤ数を示す値Dを有してい る。また、チェックするNRPの位置を示すポインタA を有している。

【0232】値B=1である場合(ステップS130 NRPの最上位ビットが「1」であるときにのみ (ステップS1316)、特定部303は、変数+=D -1とし、変数L=D-1とする(ステップS131 7)。また、特定部303は、NRPが {11} であ ての下位ノードに対応する全てのノード情報に、それぞ 10 り、かつNRPの最上位ピットが「1」でないとき、そ のレイヤ番号を変数Xに記憶する(ステップS131 1).

【0233】6、その他の変形例

なお、本発明を上記の実施の形態に基づいて説明してき たが、本発明は、上記の実施の形態に限定されないのは もちろんである。以下のような場合も本発明に含まれ

(1) 本発明の実施の形態として、従来方式による無効 化方法を例として説明したが、本発明は上記の実施の形 態に限定されるものではない。鍵管理装置がある木機浩 を保持し、この木構造のリーフに記録装置又は再生装置 を割り当て、ノードに付随するあるデバイス鍵を各記録 装置又は各再生装置に割り当てるものであり、健管理装 置がこの木構造を用いて前配デバイス鍵の無効化と、前 記鑑情報の作成を行うものであれば、前記ノードに付請 するデバイス鍵の割り当て方や、各装置へのデバイス鍵 の割り当て方はどのようなものであってもよい。

【0234】(2) また、本発明の実施の形態として、 2分木の木構造を例として説明したが、本発明は2分木 に限定されるものではない。一般にn分木でも実現可能 である。このときID情報は、あるノードから下に派生 するn本の経路に対して、0~n-1を割り当て、上述 した実施の形態と同様に、リーフからルートに至るまで の経路上に割り当てられた値を上位から順に連結するこ とにより、設定される。

【0235】(3)以上で述べた本発明の実施の形態に おいては、DVD-RAM等のレコーダブルメディアに ついて説明した。しかし、DVD-Video等のプレ レコーディッドメディアについても、同様の方法で実現 動作について、図47に示すフローチャートを用いて説 40 することができる。プレレコーディッドメディアにおけ る著作物保護システム 10 f について、説明する。 【0236】著作物保護システム10fは、図48に示

すように、鍵管理装置100、データ記録装置170 データ再生装置1703a、1703b、1703 c、・・・から構成されている。鍵管理装置100は、 上記の実施の形態において説明したように、ヘッダ情報 が付加された鍵情報とコンテンツ鍵とをデータ記録装置 1701へ出力し、複数のデバイス鍵と各デバイス鍵叢 別情報とID情報とをデータ再生装置1703a、17

【0237】データ記録装置1701に、プレレコーデ イッドメディアである記録媒体500aが装着される。 データ記録装置1701は、鍵管理装置100から鍵情 報とメディア鍵とを受け取り、メディア鍵を用いてコン テンツを暗号化して暗号化コンテンツを生成し、生成し た暗号化コンテンツと受け取った鍵情報とを記録媒体5 00aに書き込む。こうして、暗号化コンテンツと鍵情 報とが書き込まれた記録媒体500dが生産される。

【0238】記録媒体500dは、市場を流通し、利用 体5000をデータ再生装置1703aに装着する。デ ータ再生装置1703aは、鍵管理装置100から複数 のデバイス鍵と各デバイス鍵識別情報とID情報とを予 め受け取っており、 駅録媒体500 dが装着されると、 記録媒体5000から鍵情報と暗号化コンテンツとを読 み出し、鍵情報から暗号化メディア鍵を特定し、特定し た暗号化メディア鍵をデバイス鍵を用いて復号し、得ら れたメディア鍵を用いて、暗号化コンテンツを復号し て、コンテンツを生成する。

【0239】このようなシステムにおいても、実施の形 20 競で示した鍵管理装置100と同様の動作により、記録 媒体に記録するヘッダ情報を少なく抑えつつ、各データ 再生装置で効率よく復号すべき暗号化メディア鍵を特定 することができる。

(4) 以上では本発明をデジタルコンテンツの著作権保 護のために用いる場合を例示したが、本発明の応用はこ れに限定されるものではなく、例えば、会員制の情報提 供システムにおいて、ある特定の会員以外に情報を提供 するという、いわゆるコンディショナルアクセスの目的 にも利用できる。

【0240】(5) 本発明の実施の形態においては、鍵 情報あるいは暗号化コンテンツを、記録媒体を用いて配 布する例を示したが、記録媒体の代わりに、インターネ ットに代表されるような通信媒体を用いてもよい。

(6) 鍵管理装置と鍵情報記録装置が一体の装置から構 成されているとしてもよい。

【0241】(7)上記の実施の形態では、n分木を構 成する全てのノードに予めデバイス鍵を割り当ててお き、リーフからルートへの経路上に存在する全てのデバ イス鍵を、前記リーフに対応する利用装置に割り当てる 40 無効化されていないことを示している。つまり、図4に としているが、本発明は、このようなデバイス鍵の割り 当て方法には、限定されない。n分木を構成する全ての ノードに予めデバイス鍵を割り当てておくのではなく、 一部のノードにのみ、予めデバイス鍵を割り当てておく としてもよい。

【0242】また、リーフからルートへの経路上に存在 する全てのデバイス鍵を、前記リーフに対応する利用装 置に割り当てるのではなく、リーフからルートへの経路 トに存在する全てのデバイス鍵のうちの一部のデバイス 鍵を前記利用装置に割り当てるとしてもよい。

(8) 一例として図4に示す木構造を想定する。デバイ ス鍵が漏洩していない初期状態では、メディア鍵は、デ バイス鍵KevAを用いて暗号化され、暗号化メディア 鍵が生成される。

【0243】 このとき、ユーザ装置 1~16のいずれか の装置が、悪意のある第三者によりハックされて、デバ イス鍵KevAが異露され、デパイス鍵KevAだけを 内部に有するクローン機器が製造されたとする。このと き、前記クローン機器は、デバイス鍵 Kev Aだけを有 者は、記録媒体500dを入手する。利用者は、記録媒 10 するので、ユーザ装置1~16のうちのどの装置がハッ クされた装置であるかを特定することはできない。一方 で、前記クローン機器は、デバイス鍵KeyAを有して いるので、正しいメディア鍵を不正に得ることができ

> 【0244】このような状況では、デバイス鍵KeyA のみを無効化し、かつ、全ての機器がカパーされるよう なデバイス鍵を用いて、言い換えると、全ての機器が共 有しているデバイス鍵を用いて、メディア鍵を暗号化し なければならない。ここで、全ての機器をカバーする理 中は、このような状況では、ハックされた機器がどの機 器か断定できないためである。

> 【0245】そこで、デバイス鍵KeyB及びKeyC をそれぞれ用いて、メディア鍵を暗号化して2個の暗号 化メディア鍵を生成する。次に、デバイス鍵KeyBが 暴露された場合には、デバイス鍵 KevBを無効化し、 さらに、デバイス鍵KevC、KevD及びKevEを それぞれ用いて、メディア鍵を暗号化して3個の暗号化 メディア鍵を生成する。

【0246】このような操作が、木の高さ分だけ繰り返 されると、最終的には、ハックされた機器が特定され る。以上説明したような状況に対応するために、デパイ ス鍵KevAのみを無効化する場合、健管理装置は、デ パイス鍵KevAが対応するノードに対して、NRP {100} を付加する。図4に示す木構造の場合には、 ルートに対して、NRP {100} を付加する。

【0247】NRP {100} の先頭のビット「1」 は、このノードが無効化されていることを示し、また、 先頭のビット「1」に続くビット列「00」は、このノ ードの下に接続されている2個のノードは、両方とも、

示す木構造の場合に、ルートに対して、NRP 110 0} が付加されているならば、デバイス鍵KeyB及び KevCを用いて、メディア鍵を暗号化して生成された 2個の暗号化メディア鍵が存在することとなる。このよ うに、NRPの先頭のピット「1」は、このノードの下 には、暗号化メディア鍵が2個存在することを意味する フラグであるといえる。

【0248】一方、第2の実施の形態で説明したよう に、NRPが {111} であるときの先頭のビット 50 「1」は、このノードの下には、NRPが存在しないこ (33)

(鍵管理装置100) ここでは、鍵管理装置100は、 図4に示す木構造T100を生成し、この図に示すよう に、各ノードにデバイス鍵を割り当て、各リーフにユー ず装置を割り当てたものとする。

【0249】この後、図49に示すように、ルートT7 01、ノードT702及びノードT703にそれぞれ割 り当てられたデバイス鍵KeyA、KeyB及びKey Eが、上記に示すように漏洩したため、鍵管理装置 1 0 10 次に、鍵管理装置 1 0 0 は、以下に示すようにして、無 Oは、以下に示すようにして、デバイス鍵KeyA、K e v B及びK e v Eを無効化し、ヘッダ情報及び鍵情報 を生成し、生成したヘッダ情報及び鍵情報を、鍵情報記 録装置200を介して、記録媒体に書き込む。

【0250】 (a) デバイス鍵 K e y A、 K e y B 及び KevEの無効化

鍵管理装置100は、木構造テーブルにおいて、デバイ ス鍵KeyA、KeyB及びKeyEがそれぞれ含まれ るノード情報に無効化フラグ「1」を付加する。

(b) ヘッダ情報の牛成

鍵管理装置100は、無効化フラグが付加されたノード 情報を含む前記木構造テーブルを用いて、ルートT70 1 に付加するNRP {0 1 0} を生成し、生成したNR P {010} をヘッダ情報の一部として、鍵情報記録装 置200を介して、記録媒体に書き込む。ここで、NR Pの先頭のビット「O」は、ルートT701の直下に接 続される2個の下位のノードのいずわか一方が無効化さ れ、他方は無効化されていないことを示している。ま た、NRPの下位の2ピット「101は、上記の実施の に接続される2個の下位のノードのうち、左側のノード T702は、無効化されており、右側のノードT704 は、無効化されていないことを示している。

【0251】次に、鍵管理装置100は、ノードT70 2 に付加するNRP {001} を生成し、生成したNR P (001) をヘッダ情報の一部として、鍵情報記録装 置200を介して、記録媒体に書き込む。ここで、NR Pの先頭のビット「O」は、ノードT702の直下に接 続される2個の下位のノードのいずれか一方が無効化さ れ、他方は無効化されていないことを示している。ま た、NRPの下位の2ビット「OIIは、ノードT70 2の直下に接続される2個の下位のノードのうち、た側 のノードT705は、無効化されておらず、右側のノー ドT703は、無効化されていることを示している。

【0252】次に、鍵管理装置100は、ノードT70 3に付加するNRP {100} を牛成し、牛成したNR P {100} をヘッダ情報の一部として、鍵情報記録装 置200を介して、記録媒体に書き込む。NRP {10 0) は、上記において説明したように、ノードT703 07の両方とも無効化されておらず、これら2個のノー ドT706、T707には、それぞれ暗号化メディア鍵 が存在することを示している。

【0253】このようにして、図50に示すヘッダ情報 D1000が記録媒体に書き込まれる。ヘッダ情報D1 000は、この図に示すように、NRP {010}、 {001}、 {100} をこの順序で含んで構成されて

いる。

(c) 鍵情報の生成

効化されていないデバイス鍵のうちの一部のデバイス鍵 を用いて、メディア鍵を暗号化して暗号化メディア鍵を 生成し、生成した暗号化メディア継を含む鍵情報とNR Pを含むヘッダ情報とを、健情報記録装置200を介し て、記録媒体に書き込む。

【0254】最初に、録管理装置100は、無効化され ていないデバイス鍵のうち、最上位のレイヤに存在する ノードに割り当てられているデバイス鍵を用いて、メデ ィア鍵を暗号化して暗号化メディア鍵を生成する。ここ 20 で、図49に示すように、無効化されていないデバイス 鍵のうち、最上位のレイヤに存在するノードに割り当て られているデバイス鍵は、ノードT704に割り当てら れたデバイス鍵 Key Cであるので、鍵管理装置100 は、デバイス鍵KeyCを用いて、メディア鍵を暗号化 して、暗号化メディア鍵EI(KevC、メディア鍵) を生成し、生成した暗号化メディア鍵 E1 (KevC、 メディア鍵)を、鍵情報記録装置200を介して、記録 媒体に書き込む。

【0255】次に、鎌管理装置100は、上記のデバイ 形態においても説明したように、ルートT701の直下 30 ス鍵KeyCが割り当てられたノードT704及びノー ドT704の下位側の全てのノードを除く他のノードに ついて、これらの他のノードに割り当てられた無効化さ れていないデバイス鍵のうち、最上位のレイヤに存在す るノードに割り当てられているデパイス鍵を用いて、メ ディア鍵を暗号化して暗号化メディア鍵を生成する。こ こで、該当するノードは、ノードT705であるので、 鍵管理装置100は、ノードT705に割り当てられた デバイス鍵KevDを用いて、メディア鍵を暗号化し て、暗号化メディア鍵E1 (Кеу D、メディア鍵)を

40 生成し、生成した暗号化メディア鍵E1 (KeyD、メ ディア鍵)を、鍵情報記録装置200を介して、記録媒 体に書き込む。 【0256】次に、鍵管理装置100は、上記のデバイ

ス鍵KevCが割り当てられたノードT704及びノー ドT704の下位側の全てのノード、及び上記のデバイ ス鍵KevDが割り当てられたノードT705及びノー ドT705の下位側の全てのノードを除く他のノードに ついて、これらの他のノードに割り当てられた無効化さ れていないデバイス鍵のうち、最上位のレイヤに存在す の直下に接続される2個の下位のノードT706、T7 50 るノードに割り当てられているデバイス鍵を用いて、メ

ディア鍵を暗号化して暗号化メディア鍵を生成する。こ こで、該当するノードは、ノードT706であるので、 鍵管理装置100は、ノードT706に割り当てられた デバイス鍵 Key J を用いて、メディア鍵を暗号化し て、暗号化メディア鍵E1(KevJ、メディア鍵)を 生成し、生成した暗号化メディア鍵 E 1 (Key J、メ ディア鍵)を、鍵情報記録装置200を介して、記録媒 体に書き込む。

【0257】次に、鍵管理装置100は、上記と同様に して、ノードt707に割り当てられたデバイス鍵Ke 10 プS307c)。次に、特定部303は、処理を終了す y Kを用いて、メディア鍵を暗号化して、暗号化メディ ア鍵E1 (Ке v K、メディア鍵) を生成し、生成した 暗号化メディア鍵E1 (KevK、メディア鍵) を、鍵 情報記録装置200を介して、記録媒体に書き込む。こ のようにして、図50に示す鍵情報D1010が記録媒 体に書き込まれる。鍵情報D1010は、この図に示す ように、暗号化メディア鍵 E 1 (KeyC、メディア 鍵)、E1 (KeyD、メディア鍵)、E1 (Key J、メディア鍵)及びE1(KevK、メディア鍵) を、この順序で含んで構成されている。

【0258】 (記録装置300a) 次に、記録装置30 0 a が有する特定部303により、 上記のようにして記 録媒体に記憶されたヘッダ情報及び鍵情報から、1個の 暗号化メディア鍵を特定する動作について、図51に示 すフローチャートを用いて説明する。特定部303は、 暗号化メディア鍵の位置を示す変数X、ユーザ装置自身 に関係するNRPの位置を示す変数A、あるレイヤにお けるNRPの数を示す変数W、及び処理対象となるレイ ヤ数を示す変数」を有している。

【0259】特定部303は、初期値として、それぞれ 30 変数A=0、変数W=1、変数i=0とする (ステップ S 3 0 1) 。次に、特定部 3 0 3 は、A番目のNRPの 下位2ビットのうち、ID情報の上位iビット目の値に 対応するビット位置にある値Bが「O」であるか、又は 「1」であるかをチェックする(ステップS303)。 ここで、対応するビット位置とは、上記の実施の形態に おいても説明したように、図4に示す木構造において左 の経路に「01、右の経路に「11が割り当てられ、こ れらの規則に基づいてID情報が構成されているので、 I D情報の上位iビット目の値「0」は、A番目のNR 40 Pの下位2ビットのうちのたビットに対応し、iビット 目の値「1」は、A番目のNRPの下位2ビットのうち の右ビットに対応する。

ックしたNRPまでの各NRPについて、以下の通りチ エックする。ただしA番目のNRPは含まない。 (a) NPRの最上位ビットが「OI であり、かつ下位

【0260】次に、値B=0の場合(ステップS30

特定部303は、先頭のNRPから、最後にチェ

2 ビットが「1 1 | でないとき、変数 X に「1 | を加算 する。

【0261】 (b) NPRの最上位ビットが「1」であ るとき、下位2ビットに含まれる「O」の数を、変数X に加算する。最後にチェックしたA番目のNRPについ **ては、NRPの最上位ピットが「1」であるときのみ、** 対応するビット位置までの「0」の数を変数 X に加算す る。ここで、対応するビット自身は含まないものとす る。こうして得られた変数Xが、暗号化メディア鍵の位 置を示している。また、この時点の変数iは、デバイス 鍵を識別するためのデパイス鍵識別情報である(ステッ

【0262】一方、値B=1の場合(ステップS30 さらに、特定部303は、NRPの最上位ピット が「1 | でないか否かを判断し、NRPの最 | 位ビット が「1」であると判断する場合には(ステップS30 8)、このユーザ装置は、無効化されているので、次 に、特定部303は、処理を終了する。NRPの最上位 ビットが「1」でないと判断する場合に(ステップS3 (18)、特定部303は、レイヤiに存在するW個の全 20 NRPの下位2ビットに含まれる「1」の数をカウント し、カウントした値を変数Wに代入する。ただし、NR Pの最上位ビットが「1」のNPRは、カウントの対象 とはしない。こうして得られた変数Wが、次のレイヤi +1に存在するNRPの数を示す(ステップS304 c) 。

【0263】次に、特定部303は、レイア:に存在す るNRPのうちの最初のNRPから、対応するビット位 置までの各NRPについて、NRPの下位2ビットに含 まれる「1」の数をカウント」。カウントした値を変数 Aに代入する。ここで、対応するビット位置の値はカウ ントしない。また、NRPの最上位ビットが「1」であ るNRPは、カウントの対象とはしない。こうして得ら れた変数 Aが、次のレイヤ + + 1のNRPのうち、ユー ザ装置自身に関係するNRPの位置を示す (ステップS 305c)

【0264】次に、特定部303は、変数i=i+1を 演算し(ステップS306)、次にステップS303へ 制御を移し、上述の処理を繰り返す。以上に示すように して、木構造のリーフからルートへの経路上に存在する デバイス鍵が無効化された場合に限らず、木構造の一部 のノードに割り当てられたデバイス鍵が無効化された場 合であっても、銀管理装置によるヘッダ情報及び銀情報 の記録媒体への書込みと、再生装置による暗号化メディ ア鍵の特定とが行える。

【0265】(9) 一例として図4に示す木構造を想定 し、デバイス鍵が全く漏洩していない初期状態であり、 前記木構造には無効化されたノードがないものとする。 この場合に、鎌管理装置は、ルートに対応付けられてい るデバイス鍵KeyAを用いて、メディア鍵を暗号化し 50 て1個の暗号化メディア鍵を生成する。次に、鍵管理装

置は、前記木構造には無効化されたノードがなく、全て のノードが有効であることを示す特別なNRP {00} を1個生成する。次に、鍵管理装置は、生成した前記暗 号化メディア鍵と生成したNRP {00} を、鍵情報記 録装置を介して、記録媒体に書き込む。

【0266】また、この場合に、再生装置は、前記記録 媒体からNRPを読み出し、読み出したNRPが (0) 0) のみであり、この他にNRPが前記記録媒体に記録 されていないと判断する場合に、再生装置は、木構造に おいて無効化されているノードが全く存在しないものと 10 を判断することで、さらにヘッダ情報を少なく抑えるこ 判断し、次に、前記記録媒体に記録されている前記暗号 化メディア鍵を読み出し、再生装置自身が記憶している デバイス鍵のうち、ルートに対応付けられているデバイ ス鍵 Kev Aを用いて、読み出した前記暗号化メディア 鍵を復号して、メディア鍵を生成する。

【0267】また、この場合に、記録装置も、前記再生 装置と同様に動作する。

(10) 本発明は、上記に示す方法であるとしてもよ い。また、これらの方法をコンピュータにより実現する コンピュータプログラムであるとしてもよいし、前記コ 20 ンピュータプログラムからなるデジタル信号であるとし てもよい。また、本発明は、前記コンピュータプログラ ム又は前記デジタル信号をコンピュータ読み取り可能な 記録媒体、例えば、フレキシブルディスク、ハードディ スク、CD-ROM、MO、DVD、DVD-ROM、 DVD-RAM、半導体メモリなど、に記録したものと してもよい。また、これらの記録媒体に記録されている 前記コンピュータプログラム又は前記デジタル信号であ るとしてもよい。

【0268】また、本発明は、前記コンピュータプログ 30 ラム又は前記デジタル信号を、電気通信回線、無線又は 有線通信回線、インターネットを代表とするネットワー ク等を経由して伝送するものとしてもよい。また、本発 明は、マイクロプロセッサとメモリとを備えたコンピュ ータシステムであって、前記メモリは、上記コンピュー タプログラムを記憶しており、前記マイクロプロセッサ は、前記コンピュータプログラムに従って動作するとし てもよい。

【0269】また、前記プログラム又は前記デジタル信 号を前記記録媒体に記録して移送することにより、又は 40 前記プログラム又は前記デジタル信号を前記ネットワー ク等を経由して移送することにより、独立した他のコン ピュータシステムにより実施するとしてもよい。

(11) 上記実施の形態及び上記変形例をそれぞれ組み 合わせるとしてもよい。

[0270] 7. まとめ

以上の説明から明らかなように、第1の実施の形態にお いて開示した発明によると、予め記録媒体に記録される 鍵情報のヘッダ情報として、NRPを水準順に並べるこ

よく復号すべき暗号化メディア鍵を特定することもでき

【0271】また、第2の実施の形態において開示した 発明によると、ヘッダ情報として、あるノードの子孫が 全て無効化装置であるか否かを示すビットをNRPの先 頭に追加することで、無効化装置が集中した場合にヘッ ダ情報を少なくすることができる。また、第3の実施の 形態において開示した発明によると、ある特定のパター ンで、あるノードの子孫が全て無効化装置であるか否か とができる。

【0272】また、第4の実施の形態及び第5の実施の 形態において開示した発明によると、NRPの順序を、 第1~第3の実施の形態において開示した順序以外のも のとすることができる。

8. 産業上の利用の可能性

上記において説明した鍵管理装置及び利用者装置から機 成される著作物保護システムは、音楽、映画、小説など のデジタル化された著作物をDVDなどの記録媒体に格 納して市場を流通させる場合において、コンテンツの不 正な使用を防ぐための仕組みとして好適である。 [0273]

【発明の効果】上記目的を達成するために本発明は、n 分木(nは、2以上の整数)に関連付けて1個以上のデ バイス鍵を有する鍵管理装置と、1以上の利用者装置と からなる著作物保護システムであって、前記録管理装置 は、デバイス鍵を各利用者装置に割り当て、各利用者装 置は、割り当てられたデバイス鍵に基づいて、コンテン ツを暗号化して記録媒体に書き込み又は前記記録媒体か ら読み出した暗号化コンテンツを復号し、前記鍵管理装 置は、n分木においてルートから一部のリーフへの経路 上に存在する複数のノードは、無効化されており、n分 木を構成する1個以上のノードにそれぞれ対応付けて1 個以上のデバイス鍵を記憶しているデパイス鍵記憶手段 と、複数の共通デバイス鍵をそれぞれ用いて1個のメデ ィア鍵を暗号化して複数の暗号化メディア鍵を生成し、 各共通デバイス鍵は、無効化されていないノードに対応 付けられた複数のデバイス鍵のうち、1以上の利用者装 置に共通に割り当てられたデバイス鍵であり、その結果 複数の暗号化メディア鍵が得られ、得られた複数の暗号 化メディア鍵を、n分木の構成に係る配列順序に従って 記録媒体に書き込む鍵情報生成手段と、リーフを除き、 無効化されたノードについて、下位のn個のノードのそ れぞれが無効化されているか否かを示す無効化情報を生 成し、その結果複数の無効化情報が得られ、得られた複 数の無効化情報を、前記配列順序に従って前記記録媒体 に書き込む無効化情報生成手段とを備え、前記利用者装 置は、前記記録媒体に前記配列順序に従って書き込まれ た前記複数の無効化情報を用いて、前記記録媒体に前記 とにより、鍵情報をコンパクトにでき、プレーヤが効率 50 配列順序に従って書き込まれた前記複数の暗号化メディ

ア鎌の中から、当該利用者装置に割り当てられたデバイ ス鍵により暗号化された暗号化メディア鍵を特定する特 定手段と、特定した暗号化メディア鍵を、当該利用者装 置に割り当てられたデバイス鍵に基づいて復号して、メ ディア鍵を生成する復号手段と、生成した前記メディア 鍵に基づいてコンテンツを暗号化して前記記録媒体に書 き込み、又は前記記録媒体から暗号化コンテンツを読み 出し読み出した暗号化コンテンツを生成した前記メディ ア鍵に基づいて復号してコンテンツを生成する暗号復号 手段とを備える。

【0274】この構成によると、鍵管理装置は、複数の 暗号化メディア鍵及び複数の無効化情報を、前記配列順 序に従って前記記録媒体に書き込み、利用者装置は、前 記配列順序に従って書き込まれた前記複数の無効化情報 を用いて、前記配列順序に従って書き込まれた前記複数 の暗号化メディア鍵の中から暗号化メディア鍵を特定す るので、利用者装置は、自らに割り当てられた暗号化メ ディア鍵を効率良く決定することができる。

【0275】また、本発明は、n分木(nは、2以上の 整数) に関連付けて1個以上のデバイス鍵を有し、前記 20 デバイス鍵を利用者装置に割り当てる鍵管理装置であっ て、n分木においてルートから一部のリーフへの経路上 に存在する複数のノードは、無効化されており、n分木 を構成する1個以上のノードにそれぞれ対応付けて1個 以上のデバイス鍵を記憶しているデバイス鍵記憶手段 と、複数の共通デパイス鍵をそれぞれ用いて1個のメデ ィア鍵を暗号化して複数の暗号化メディア鍵を生成し、 各共通デバイス鍵は、無効化されていないノードに対応 付けられた複数のデバイス鍵のうち、1以上の利用者装 置に共通に割り当てられたデバイス鍵であり、その結果 30 複数の暗号化メディア鍵が得られ、得られた複数の暗号 化メディア鎌を、n分木の構成に係る配列順序に従って 記録媒体に書き込む鍵情報生成手段と、リーフを除き、 無効化されたノードについて、下位のn個のノードのそ れぞれが無効化されているか否かを示す無効化情報を生 成し、その結果複数の無効化情報が得られ、得られた複 数の無効化情報を、前記配列順序に従って前記記録媒体 に書き込む無効化情報生成手段とを備える。また、n分 木(nは、2以上の整数)に関連付けて1個以上のデバ イス鍵を有する鍵管理装置により、1個以上のデバイス 40 鍵が割り当てられ、割り当てられた前記デバイス鍵の中 の1個のデバイス鍵に基づいて、コンテンツを暗号化し て記録媒体に書き込み又は前記記録媒体から読み出した 暗号化コンテンツを復号する利用者装置であって、前記 鍵管理装置は、n分木を構成する1個以上のノードにそ れぞれ対応付けて」個以上のデバイス鍵を記憶してお り、ルートから一部のリーフへの経路上に存在する複数 のノードは、無効化されており、複数の共通デバイス鍵 をそれぞれ用いて1個のメディア鍵を暗号化して複数の 暗号化メディア鍵を生成し、各共通デバイス鍵は、無効 50 て前部配列順序を確実に決定することができる。ここ

化されていないノードに対応付けられた複数のデパイス 鍵のうち、1以上の利用者装置に共選に割り当てられた デバイス鍵であり、その結果複数の暗号化メディア鍵が 得られ、得られた複数の暗号化メディア鍵を、η分木の 構成に係る配列順序に従って記録媒体に書き込み、リー フを除き、無効化されたノードについて、下位のn個の ノードのそれぞれが無効化されているか否かを示す無効 化情報を生成し、その結果複数の無効化情報が得られ、 得られた複数の無効化情報を、前記配列順序に従って前 10 記記録媒体に書き込み、前記利用者装置は、前記記録媒 体に前記配列順序に従って書き込まれた前記複数の無効 化情報を用いて、前記記録媒体に前記配列順序に従って 書き込まれた前記複数の暗号化メディア鍵の中から、当 該利用者装置に割り当てられたデバイス鍵により暗号化 された暗号化メディア鍵を特定する特定手段と、特定し た暗号化メディア鍵を、当該利用者装置に割り当てられ たデバイス鍵に基づいて復号して、メディア鍵を生成す る復号手段と、生成した前記メディア鍵に基づいてコン テンツを暗号化して前記記録媒体に書き込み、又は前記 記録媒体から暗号化コンテンツを読み出し読み出した暗 号化コンテンツを生成した前記メディア鍵に基づいて復 号してコンテンツを生成する暗号復号手段とを備える。 【0276】この構成によると、鍵管理装置は、複数の 暗号化メディア鍵及び複数の無効化情報を、前記配列順 序に従って前記記録媒体に書き込み、利用者装置は、前 記配列順序に従って書き込まれた前記複数の無効化情報 を用いて、前記配列順序に従って書き込まれた前記複数 の暗号化メディア鍵の中から暗号化メディア鍵を特定す るので、利用者装置は、自らに割り当てられた暗号化メ

【0277】 ここで、前記n分木は、複数のレイヤから 構成され、前記鍵情報生成手段は、得られた複数の暗号 化メディア鍵を、ルートを起点とし、ルート側のレイヤ からリーフ側のレイヤへの順序である前記配列順序に従 って記録媒体に書き込み、前記無効化情報生成手段は、 得られた複数の無効化情報を、前記配列順序に従って前 記記録媒体に書き込む。また、前記n分木は、複数のレ イヤから構成され、前記複数の暗号化メディア鍵は、ル ートを起点とし、ルート側のレイヤからリーフ側のレイ ヤへの順序である前記配列順序に従って記録媒体に書き 込まれ、前記複数の無効化情報は、前記配列順序に従っ て前記記録媒体に書き込まれ、前記特定手段は、前記配 列順序に従って書き込まれた前記複数の無効化情報を用 いて、前記配列順序に従って書き込まれた前記複数の暗 号化メディア鍵の中から、前記暗号化メディア鍵を特定

ディア鍵を効率良く決定することができる。

【0278】この構成によると、前記配列順序は、ルー トを起点とし、ルート側のレイヤからリーフ側のレイヤ への順序であるので、鍵管理装置及び利用者装置におい

する。

71

で、前記鍵情報生成手段は、視られた複数の略号化メデイ製を、ルートを起点とし、ルートから名リーフへ至る経路上に配されるノードの順序であって、重複して配列されない前法配列順序に従って記録媒体は書き込み、また、前記程数の部号化メディア鍵は、ルートを起点とし、ルートから各リーフへ至る経路上に配されるノードの順序であって、重複して配列されない前記配列順序はは、応記程列順序はは、前記配列順序にでする。 前記程数の無分に書き込まれた前記配列順序にでいて記述媒体に書き込まれ、前記程数の無数の性情報は、前記記列順序にでする。 前記報の無数に書き込まれた前記で表別順序にで、可認記列順序にで、言語と表別順序に対して書き込まれた前記程数の集数の生物の作機を用いて、前記記列順序に対して書き込まれた前記程数の集めた情報を用いて、前記記列順序に対して書き込まれた前記程数の集めた情報を用いて、前記記列順序に対して書き込まれた前記程数の集めた情報を用いて、前記記列順序に対して書き込まれた前記程数の集めた情報を用いて、前記記列順序に対して書き込まれた前記程数の無数の生物の性情報を用いて、前記記列順序に対して書き込まれた前記程数の無数の生物の性情報を用いて、前記記列順序に対して書き込まれた前記程数の無数の生物の性情報を表記されて記述を表記されているまされて記述を表記されているまれて記述を表記されているまされてい

【0279】この構成によると、前配配例順序は、ルートを起点とし、増化した別されないように、ルートからをリープで至着経路上に配されるノードの順序であるので、報管理接置化が利用者整備において前配配列順序を確実に決定することができる。ここで、前配無効化情報を生産する。また、リーフを除き、無効化された全でのノードについて、無効化情報を生成する。また、リーフを除き、無効化された全でのノードについて、無効性情報を生成する。また、リーフを除き、無効化された全でのノードについて、無効情報を生成する。また、リーフを除き、無効化された全でのノードについて、無効に特殊が生成されて、前配配録媒体に書き込まれ、前配特定主段は、前記機数の無効化情報を用いて、前記時界化メディア散性特定する。

【0280】 この構成によると、無効化された全てのノ ードについて、無効化情報を生成するので、鍵管理装置 及び利用者装置において無効化されたノードを確実に決 定することができる。ここで、前記無効化情報生成手段 30 は、リーフを除き、無効化されたノードであって、下位 側に接続する全てのノードが無効化されているものにつ いて、下位側に接続する全てのノードが無効化されてい る旨を示す特別無効化情報を生成し、前記下位側に接続 する全ての無効化されたノードについて、無効化情報の 生成を抑制し、リーフを除く他の無効化されたノードに ついて、下位のn個のノードのそれぞれが無効化されて いるか否かを示す無効化情報を生成する。また、リーフ を除き、無効化されたノードであって、下位側に接続す る全てのノードが無効化されているものについて、下位 40 チャートである。 側に接続する全てのノードが無効化されている旨を示す 特別無効化情報が生成されて前記記録媒体に書き込ま れ、前記下位側に接続する全ての無効化されたノードに ついて、無効化情報の生成が抑制され、リーフを除く他 の無効化されたノードについて、下位の n 個のノードの それぞれが無効化されているか否かを示す無効化情報が 生成されて前記記録媒体に書き込まれ、前記特定手段 は、前記特別無効化情報及び前記無効化情報を用いて、 前記暗号化メディア鍵を特定する。

【0281】この構成によると、下位側に接続する全て 50 ートである。

のノードが無効化されていることを示す特別な無効化情 報を生成するので、下位側に接続する全てのノードが無 効化されているものが多い場合に、記録媒体の容量を節 約することができる。

【図面の簡単な説明】

【図1】著作物保護システム10の構成を示すプロック 図である。

【図2】鍵管理装置100の構成を示すプロック図である。

10 【図3】木構造テーブルD100のデータ構造の一例を示す。

【図4】木構造T100を示す概念図である。

【図5】無効化されたノードを含む木構造 T 2 0 0を示す概念図である。

【図6】 ノード無効化パターンの一例を示すデータ構造 図である。

【図7】複数個の暗号化メディア鍵を含む鍵情報の一例 を示すデータ構造図である。 【図8】記録装置300aの機成を示すプロック図であ

20 る。 【図9】再生装置400aの様成を示すプロック図でま

【図9】再生装置 4 0 0 a の構成を示すプロック図である。

[図 1 0] ユーザ変種ペデバイス鍵を削り当てる動作、 環情報の生成と配類媒体への書き込みの動作及びユーザ 装置によるコンテンツの暗号化は後号の動作を示すフ ローチャートである。特に、デバイス健が特に、デバイ ス酸が不正な第二者により暴露されるまでの、各装置の 動作を示すフローチャートである。

【図11】デバイス般が不正な第三者により暴露された 後における、暴露されたデバイス数に対広する木精造の 内のノードの無効化の動作。 新たな錯常報の使と記録 媒体への書込みの動作、及びユーザ装置によるコンテン ツの暗号化又は復号の動作を示すフローチャートであ ス

【図12】木構造構築部101による木構造テーブルの生成と木構造格納第102への木構造テーブルの書き込みの動作を示すフローチャートである。

【図13】デパイス鍵割当部103によるデパイス鍵と ID情報とを各ユーザ装置へ出力する動作を示すフロー

【図14】木構造更新部105による木構造の更新の動作を示すフローチャートである。

【図15】鍵情報ヘッダ生成部106によるヘッダ情報 の生成の動作を示すフローチャートである。

【図16】鍵情報生成部107による鍵情報の生成の動作を示すフローチャートである。

【図17】配録装置300aが有する特定部303により、記録媒体500bに記憶されている鍵情報から、1 個の暗号化メディア鍵を特定する動作を示すフローチャ (38)

【図18】第1の実施の形態において、一例として無効 化されるユーザ装置が木構造の中で特定のリーフに集中 して発生する可能性がある場合の木構造の一例を示す。 【図19】第2の実施の形態において、無効化されるユ

ーザ装置が木構造の中で特定のリーフに集中して発生し た場合における特別なノード無効化パターンを示す木構 浩である。

【図20】木構造テーブルD400のデータ構造の一例 を示す。

【図21】ヘッダ情報D500のデータ構造の一例を示 10

【図22】鍵情報D600のデータ構造の一例を示す。 【図23】鍵情報ヘッダ生成部106によるヘッダ情報 の生成の動作を示すフローチャートである。図24へ続

【図24】鍵情報ヘッダ生成部106によるヘッダ情報 の生成の動作を示すフローチャートである。図25へ続

【図25】鍵情報ヘッダ生成部106によるヘッダ情報 の生成の動作を示すフローチャートである。図26へ続 20 ۲.

【図26】鍵情報ヘッダ生成部106によるヘッダ情報 の生成の動作を示すフローチャートである。図25から 続く。

【図27】記録装置300aが有する特定部303によ り、記録媒体500bに記憶されている鬱情報から、1 個の暗号化メディア鍵を特定する動作を示すフローチャ ートである。

【図28】第3の実施の形態において、特別なノード無 効化パターンを示す太繊浩である。

【図29】ヘッダ情報D700のデータ構造の一例を示

【図30】 鍵情報D800のデータ構造の一例を示す。 【図31】ヘッダ情報の生成の動作を示すフローチャー トである。図32へ続く。

【図32】 ヘッダ情報の生成の動作を示すフローチャー

トである。図33へ続く。 【図33】ヘッダ情報の生成の動作を示すフローチャー

【図34】ヘッダ情報の生成の動作を示すフローチャー 40 トである。図33から続く。

トである。図34へ続く。

【図35】記録装置300aが有する特定部303によ り、記録媒体500bに記憶されている鍵情報から、1 個の暗号化メディア鍵を特定する動作を示すフローチャ ートである。

【図36】第4の実施の形態における複数のノード無効 化パターンの並べ方を示す木構造である。

【図37】木構造テーブルD100のデータ構造の一例 を示す。

【図38】 ヘッダ情報D900のデータ構造の一例を示 50 106

【図39】木構造構築部101による木構造テーブルの 生成と木構造格納部102への木構造テーブルの書き込 みの動作を示すフローチャートである。

【図40】鍵情報ヘッダ生成部106によるヘッダ情報 の生成の動作を示すフローチャートである。図 41へ続

【図41】鍵情報へッダ牛成部106によるヘッダ情報 の生成の動作を示すフローチャートである。図40から 続く。

【図42】記録装置300aが有する特定部303によ り、記録媒体500bに記憶されている鍵情報から、1 個の暗号化メディア鍵を特定する動作を示すフローチャ ートである。

【図43】鍵情報へッダ牛成部106によるヘッダ情報 の生成の動作を示すフローチャートである。 図44へ続

【図44】鍵情報へッダ生成部106によるヘッダ情報 の生成の動作を示すフローチャートである。図45へ続

【図45】 鍵情報ヘッダ生成部106によるヘッダ情報 の生成の動作を示すフローチャートである。図46へ続

【図46】鍵情報へッダ生成部106によるヘッダ情報 の生成の動作を示すフローチャートである。図45から 続く。

【図47】記録装置300aが有する特定部303によ り、記録媒体500bに記憶されている鍵情報から、1 個の暗号化メディア健を特定する動作を示すフローチャ 30 ートである。

【図48】著作物保護システム10fの構成を示すプロ ック図である。

【図49】無効化されたデバイス鍵KeyA、KeyB 及びKevEが割り当てられたノードを含む木構造T7 00を示す概念図である。

【図50】 ヘッダ情報D1000及び鍵情報D1010 の構成を示すデータ構造図である。

【図51】記録装置300aが有する特定部303によ り、1個の暗号化メディア鍵を特定する動作を示すフロ ーチャートである。

【符号の説明】

101

10、10b~10f 著作物保護システム

100 鍵管理装置

100d 鬱管理装置

102 木構造格納部

デバイス鍵割当部 103

104 無効化装置指定部

木構浩構築部

105 木槽造更新部

鍵情報ヘッダ生成部

【図3】

ノード音 デバイス線 施効化フ: ルート名 デバイス線 施効化フ: ルート KayA 1 0 KayB 1 1 KsyC 1 00 KayD 1 10 KsyE 0 11 KsyE 0	00	01ر	木構造テーブル		
N− ト KeyA 1 O KeyB 1 1 KeyC 1 OO KeyD 1 O1 KeyE O	ノード情報				
O Key/8 1 1 Key/C 1 00 Key/D 1 01 Key/E 0	1	無効化フラ	デバイス競	ノード名	
1 KeyC 1 00 KeyD 1 01 KeyE 0	_	1	KeyA	ルート	
00 KeyE 0	_	1	Key8	0	
01 KeyE 0		1	KeyC	1	
		1	KeyD	00	
10 KeyF 1		0	KeyE	01	
	_	1	KeyF	10	
11 KeyG 0	Ξ	0	KeyG	11	
000 KeyH 1		1	KeyH	000	
001 Keyl 0		0	Keyl	001	
010 KeyJ 0			KeyJ	010	
				- :	
111 KeyO 0		0	KeyO	111	
0000 K1 1		1	K1	0000	
0001 K2 0		0	K2	0001	
0010 K3 0		0	К3	0010	
0011 K4 0	_		K4	0011	
		:			
1111 IK16 0	_	0	IK16	1111	

【図5】

【図13】

[図20]

	木構造テーブル D400					
ノード名	デバイス雑	無効化フラグ				
ルート	KeyA	1	{011}			
0	KeyB	1	{111}			
1	KeyC	1	{010}			
00	KeyD	1	=(111)=			
01	KeyE	1	=(111)=			
10	KeyF	1	{001}			
11	KeyG	0				
000	KeyH	1	-(111) -			
001	Keyl	1	=(111)=			
010	KeyJ	i	=(111)=			
	:	-				
111	KeyO	0				
0000	IK1	1	=(111)=			
0001	IK2	1	-(111)-			
0010	IK3	1	=(111)=			
0011	IK4	1	=(111)=			
:		:				
1111	IK16	0				

【図27】

[図35]

【図46】

[図48]

【図49】

[図51]

フロントページの続き

F ターム(参考) 5J104 AA16 EA09 EA17 PA14

```
【公報種別】特許法第17条の2の規定による補正の掲載
【部門区分】第7部門第3区分
【発行日】平成16年7月8日(2004.7.8)
【公開番号】特開2003-204320(P2003-204320A)
【公開日】平成15年7月18日(2003.7.18)
【出願番号】特願2002-303509(P2002-303509)
【国際特許分類第7版】
```

HO4L 9/08 [FI] H O 4 L 9/00 601B H O 4 L 9/00 601A

【手統補正書】

【提出日】平成15年6月2日(2003.6.2)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正の内容】

【特許請求の範囲】

【請求項1】

n分木 (nは、2以上の整数) に関連付けて1個以上のデバイス鍵を有する鍵管理装置と 、1以上の利用者装置とからなる著作物保護システムであって、前記鍵管理装置は、デバ イス鍵を各利用者装置に割り当て、各利用者装置は、割り当てられたデバイス鍵に基づい て、コンテンツを暗号化して記録媒体に書き込み又は前記記録媒体から読み出した暗号化 コンテンツを復号し、

前記録管理装置は、

n 分木においてルートから一部のリーフへの経路上に存在する複数のノードは、無効化さ れており、 n 分木を構成する 1 個以上のノードにそれぞれ対応付けて 1 個以上のデパイス 鍵を記憶しているデバイス鍵記憶手段と、

複数の共通デバイス鍵をそれぞれ用いて1個のメディア鍵を暗号化して複数の暗号化メデ ィア鍵を生成し、各共通デパイス鍵は、無効化されていないノードに対応付けられた複数 のデバイス鍵のうち、1以上の利用者装置に共通に割り当てられたデバイス鍵であり、そ の結果複数の暗号化メディア鍵が得られ、得られた複数の暗号化メディア鍵を、n分木の 機成に係る配列順序に従って記録媒体に書き込む鍵情報生成手段と、

リーフを除き、無効化されたノードについて、下位のn個のノードのそれぞれが無効化さ れているか否かを示す無効化情報を生成し、その結果複数の無効化情報が得られ、得られ た複数の無効化情報を、前記配列順序に従って前記記録媒体に書き込む無効化情報生成手 段とを備え、

前記利用者装置は、

前記記録媒体に前記配列順序に従って書き込まれた前記複数の無効化情報を用いて、前記 記録媒体に前記配列順序に従って書き込まれた前記複数の暗号化メディア鍵の中から、当 該利用者装置に割り当てられたデバイス鍵により暗号化された暗号化メディア鍵を特定す る特定手段と、

特定した暗号化メディア鍵を、当該利用者装置に割り当てられたデバイス鍵に基づいて復 号して、メディア鍵を生成する復号手段と、

生成した前記メディア鍵に基づいてコンテンツを暗号化して前記記録媒体に書き込み、又 は前記記録媒体から暗号化コンテンツを読み出し読み出した暗号化コンテンツを生成した 前記メディア鍵に基づいて復号してコンテンツを生成する暗号復号手段と

を備えることを特徴とする著作物保護システム。

【請求項2】

n分木(nは、2以上の整数)に関連付けて1個以上のデパイス鍵を有し、前記デパイス鍵を利用者装置に割り当てる鍵管理装置であって、

n分木においてルートから一部のリーフへの経路上に存在する複数のノードは、無効化されており、n分木を構成する1個以上のノードにそれぞれ対応付けて1個以上のパイス 観を記憶しているデバイス健記候手段と、

複数の共通デパイス鍵をそれぞれ用いて1個のメディア鍵を暗号化して複数の暗号化メディア鍵を生成し、各共通デパイス鍵は、無効化されていないソードに対応付けられた複数のデパイス鍵のうち、1以上の利用者装置に共通に割り当てられたデパイス鍵であり、その結果複数の暗号化メディア鍵が得られ、得られた複数の暗号化メディア鍵を、n分木の構成に係る配列順序に従って記録媒体に書き込む鍵情報生成手段と、

リーフを除き、無効化されたノードについて、下位のn個のノードのそれぞれが無効化されているか否かを示す無効化情報を生成し、その結果複数の無効化情報が得られ、得られた複数の無効化情報を、前記配列順序に従って前記記録媒体に書き込む無効化情報生成手段と

を備えることを特徴とする鍵管理装置。

【請求項3】

前記n分木は、複数のレイヤから構成され、

前記鍵情報生成手段は、得られた複数の暗号化メディア鍵を、ルートを起点とし、ルート 側のレイヤからリーフ側のレイヤへの順序である前配配列順序に従って記録媒体に書き込

前記無効化情報生成手段は、得られた複数の無効化情報を、前記配列順序に従って前記記録媒体に書き込む

ことを特徴とする請求項2に記載の鎌管理装置。

【請求項4】

前記観情報生成手段は、得られた複数の暗号化メディア鍵を、ルートを起点とし、ルート から各リーフへ至る経路上に配されるノードの順序であって、重複して配列されない前記 紀列限序に従って記録媒体に書き込み、

前記無効化情報生成手段は、得られた複数の無効化情報を、前記配列順序に従って前記記録媒体に書き込む

ことを特徴とする請求項2に記載の鍵管理装置。

【糖求項5】

前記無効化情報生成手段は、リーフを除き、無効化された全てのノードについて、無効化 情報を生成する

ことを特徴とする請求項2に記載の鍵管理装置。

【請求項6】

前記無効化情報生成手段は、

リーフを除き、無効化されたノードであって、下位側に接続する全てのノードが無効化さ れているものについて、下位側に接続する全てのノードが無効化されている旨を示す特別 無効化情報を生成し、

前記下位側に接続する全ての無効化されたノードについて、無効化情報の生成を抑制し、

リーフを除く他の無効化されたノードについて、下位の n 個のノードのそれぞれが無効化されているか否かを示す無効化性額を生成する

ことを特徴とする請求項2に記載の鍵管理装置。

【請求項7】

前記無効化情報生成手段は、

リーフを除き、無効化されたノードであって、下位側に接続する全てのノードが無効化されているものについて、下位側に接続する全てのノードが無効化されている旨を示す第1付加情報と、下位の「個のノードのそれぞれが無効化されていることを示す n 桁の情報と

から構成される特別無効化情報を生成し、

前記下位側に接続する全ての無効化されたノードについて、無効化情報の生成を抑制し、 リーフを除く他の無効化されたノードについて、下位側に接続する全てのノードが無効化 されていない旨を示す第2付加情報と、下位のn個のノードのそれぞれが無効化されているか否かを示すn桁の情報とから構成される無効化情報を生成する

ことを特徴とする請求項6に記載の鍵管理装置。

【請求項8】

前記無効化情報生成手段は.

リーフを除き、無効化されたノードであって、下位側に接続する全てのノードが無効化されているものについて、下位のn個のノードのそれぞれが無効化されていることを示すn桁の特別値から構成される特別無効化情報を生成し、

前記下位側に接続する全ての無効化されたノードについて、無効化情報の生成を抑制し、 リーフを除く他の無効化されたノードについて、下位のn個のノードのそれぞれが無効化 されているか否かを示す n桁の無効化情報を生成する

ことを特徴とする請求項6に記載の鍵管理装置。

【請求項9】

n分木 (nは、2以上の整数) に関連付けて1個以上のデバイス鍵を有し、前記デバイス鍵を利用者装置に割り当てる鍵管理装置であって、

n分木において一部のノードは、無効化されており、n分木を構成する1 個以上のノード にそれぞれ対応付けて1 個以上のデバイス鍵を記憶しているデバイス鍵記憶手段と、

複数の共選デパイス鍵をそれぞれ用いて1個のメディア鍵を暗号化して複数の暗号化メディア鍵を生成し、各共通デパイス鍵は、無効化されていないノードに対応付けられた複数のデパイス鍵であり、そのボースス鍵であり、その結果複数の暗号化メディア鍵が得られ、得られた複数の暗号化メディア鍵を、n分木の構成に係る配列順序に従って記録媒体に書き込む鍵情報生成手段と、

リーフを除き、無効化された各ノードについて、

下位のn個のノードの少なくとも1個が無効化されている場合に、それぞれが無効化されているか否かを示す第1無効化情報を生成し、

下位の n 個のノードのいずれも無効化されていない場合に、いずれのノードも無効化されていないことを示す第 2 無効化情報を生成し、

その結果、1個以上の第1無効化情報、1個以上の第2無効化情報、又は1個以上の第1 無効化情報及び1個以上の第2無効化情報が得5れ、

得られた1個以上の第1無効化情報、1個以上の第2無効化情報、又は1個以上の第1無効化情報及び1個以上の第2無効化情報を、前配配列順序に従って前配配鍵媒体に書き込む無効化情報を成手段と

を備えることを特徴とする鍵管理装置。

【請求項10】

n 分本 (n は、2以上の整数) に関連付けて1 個以上のデバイス鍵を有し、前記デバイス鍵を利用者装置に割り当てる鍵管理装置であって、n 分木を構成する全でのノードは、有効であり、n 分木を構成する1 個以上のノードにそれぞれ対応付けて1 個以上のデバイス鍵を記憶しているデバイス鍵配憶手段と、

各利用者装置に共通に割り当てられた1個のデバイス銀に基づいて、1個のメディア鍵を 暗号化して1個の暗号化メディア鍵を生成し、生成した前記暗号化メディア鍵を、記録媒 体に書き込む製情報や成手段と、

n分木を構成する全てのノードが有効であることを示す情報を前記記録媒体に書き込む無効化情報生成手段と

を備えることを特徴とする鍵管理装置。

【請求項11】

n分木 (nは、2以上の整数) に関連付けて1個以上のデバイス鍵を有する鍵管理装置により、1個以上のデバイス鍵が割り当てられ、割り当てられた前記デバイス鍵の中の1個

のデパイス鍵に基づいて、コンテンツを暗号化して記録媒体に書き込み又は前記記録媒体 から読み出した暗号化コンテンツを復写する利用者装置であって、

前記鏡管理装置は、n分木を構成する1個以上のノードにそれぞれ対応付けて1個以上のデバイス鍵を記憶しており、ルートから一部のリーフへの経路上に存在する複数のノードは、無効化されており、複数の共通デバイス鍵を不ぞれ用いて1個のメディア健を博り化して複数の暗号化メディア鍵を生成し、各共通デバイス鍵とは、無効化されていいないノードに対応付けられた複数のデバイス鍵のうち、1以上の利用者装置に共通に削り当てられたデバイス鍵であり、その結果複数の時号化メディア鍵であり、得られた複数の暗号化メディア鍵を、n分木の構成に係る配列順序に従って配砂螺体に書き込み、リーフを除る水無効化されたノードについて、下位のn個のノードのぞれぞれが無効化されたノードについて、下位のn個のノードのぞれぞれが無効化されたノードについて、下位のn個のノードのそれぞれが無効化された人の終事なが需要がである。

前記利用者装置は、

前記記録媒体に前記配列順序に従って書き込まれた前記複数の無効化情報を用いて、前記 記録媒体に前記配列順序に従って書き込まれた前記複数の暗号化メディア鍵の中から、当 該を得用者装置に割り当てられたデパイス鍵により暗号化された暗号化メディア鍵を特定す を特定手段と、

特定した暗号化メディア鍵を、当該利用者装置に割り当てられたデバイス鍵に基づいて復 号して、メディア鍵を生成する復号手段と、

生成した前記メディア機に基づいてコンテンツを暗号化して前記記録媒体に書き込み、又 は前記記録媒体から暗号化コンテンツを読み出し読み出した暗号化コンテンツを生成した 前記メディア機に基づいて復号してコンテンツを生成する暗号復号手段と

を備えることを特徴とする利用者装置。

【請求項12】

前記n分木は、複数のレイヤから構成され、

前記複数の暗号化メディア鍵は、ルートを起点とし、ルート側のレイヤからリーフ側のレイヤへの順序である前記配列順序に従って記録媒体に書き込まれ、

前配複数の無効化情報は、前配配列順序に従って前配配録媒体に書き込まれ、前配特定手段は、前配配列順序に従って書き込まれた前配複数の無効化情報を用いて、前配配列順序に従って書き込まれた前記複数の暗号化メディア鍵の中から、前記暗号化メディア鍵を特定する。

ことを特徴とする請求項11に記載の利用者装置。

[請求項13]

前配複数の暗号化メディア鍵は、ルートを起点とし、ルートから各リーフへ至る経路上に 配されるノードの順序であって、重複して配列されない前配配列順序に従って配録媒体に 書き込まれ、

前記複数の無効化情報は、前記配列順序に従って前記記錄媒体に書き込まれ、前記特定手段は、前記配列順序に従って書き込まれた前記複数の無効化情報を用いて、前記配列順序 に従って書き込まれた前記複数の暗号化メディア鍵の中から、前記暗号化メディア鍵を特 でする

ことを特徴とする請求項11に記載の利用者装置。

【請求項14】

リーフを除き、無効化された全てのノードについて、無効化情報が生成されて、前記記録 媒体に書き込まれ、

前記特定手段は、前記複数の無効化情報を用いて、前記暗号化メディア鍵を特定する

ことを特徴とする請求項11に記載の利用者装置。

【請求項15】

リーフを除き、無効化されたノードであって、下位側に接続する全てのノードが無効化さ れているものについて、下位側に接続する全てのノードが無効化されている旨を示す特別 無効化情報が生成されて前記記録媒体に書き込まれ、 前記下位側に接続する全ての無効化されたノードについて、無効化情報の生成が抑制され

リーフを除く他の無効化されたノードについて、下位のn個のノードのそれぞれが無効化されているか否かを示す無効化情報が生成されて前記記録媒体に書き込まれ、

前記特定手段は、前記特別無効化情報及び前記無効化情報を用いて、前記暗号化メディア 鍵を特定する

ことを特徴とする請求項11に記載の利用者装置。

【請求項16】

リーフを除き、無効化されたノードであって、下値側に接続する全てのノードが無効化されているものについて、下値側に接続する全てのノードが無効化されている旨を示す第 1付加情報と、下位のn個のノードのそれぞれが無効化されていることを示すn桁の情報とから構成される特別無効化情報が生成されて前記記録媒体に書き込まれ、

前記下位側に接続する全ての無効化されたノードについて、無効化情報の生成が抑制され

リーフを除く他の無効化されたノードについて、下位側に接続する全てのノードが無効化されていない旨を示す第2付加情報と、下位のn個のノードのそれぞれが無効化されているか否かを示す n桁の情報とから構成される無効化情報が生成されて前記記録媒体に書き込まれ、

前記特定手段は、前記特別無効化情報及び前記無効化情報を用いて、前記暗号化メディア 継を特定する

ことを特徴とする結束項15に記載の利用者装置。

【請求項17】

リーフを除き、無効化されたノードであって、下位側に接続する全てのノードが無効化されているものについて、下位のn個のノードのそれぞれが無効化されていることを示すれ 桁の特別値から構成される特別無効化情報が生成されて前配配段媒体に書き込まれ、

前記下位側に接続する全ての無効化されたノードについて、無効化情報の生成が抑制され

リーフを除く他の無効化されたノードについて、下位のn個のノードのそれぞれが無効化 されているか否かを示すn桁の無効化情報が生成されて前記記機媒体に書き込まれ、 前記特定手段は、前記特別無効化情報及び前記無効化情報を用いて、前記暗号化メディア 継を移定する

ことを特徴とする請求項15に記載の利用者装置。

【請求項18】

n分木(nは、2以上の整数)に関連付けて1個以上のデパイス鍵を有する鍵管理装置に より、1個以上のデパイス鍵が割り当てられ、割り当てられた前記デパイス鍵の中の1個 のデパイス鍵に基づいて、コンテンツを暗号化して記録媒体に書き込み又は前記記録媒体 から読み出した暗号化コンテンツを復号する利用者装置であって、

、前記配列順序に従って前記記録媒体に書き込み、

前記利用者装置は、

前記記録媒体に前記配列順序に従って書き込まれた前記第1無効化情報、前記第2無効化 情報、又は前記第1無効化情報及び前記第2無効化情報を用いて、前記記録媒体に前記配 列順序に従って書き込まれた前記複数の暗号化メディア鍵の中から、当該利用者装置に割 り当てられたデバイス鍵により暗号化された暗号化メディア鍵を特定する特定手段と、

特定した暗号化メディア鍵を、当該利用者装置に割り当てられたデバイス鍵に基づいて復 号して、メディア鍵を生成する復号手段と、

生成した前記メディア鍵に基づいてコンテンツを暗号化して前記記録媒体に書き込み、又 は前記記録媒体から暗号化コンテンツを読み出し読み出した暗号化コンテンツを生成した 前記メディア鍵に基づいて復号してコンテンツを生成する暗号復号手段と

を備えることを特徴とする利用者装置。

【請求項19】

n分木(nは、2以上の整数)に関連付けて1個以上のデバイス鍵を有する鍵管理装置に より、1個以上のデバイス鍵が割り当てられ、割り当てられた前記デバイス鍵の中の1個 のデパイス鍵に基づいて、コンテンツを暗号化して記録媒体に書き込み又は前記記録媒体 から読み出した暗号化コンテンツを復号する利用者装置であって、

前記鍵管理装置は、n分木を構成する1個以上のノードにそれぞれ対応付けて1個以上の デバイス鍵を記憶しており、n分木を構成する全てのノードは、有効であり、各利用者装 萱に共通に割り当てられた1個のデバイス鍵に基づいて、1個のメディア鍵を暗号化して 1個の暗号化メディア鍵を生成し、生成した前記暗号化メディア鍵を、記録媒体に書き込 み、n分木を構成する全てのノードが有効であることを示す情報を前記記録媒体に書き込 み、

前記利用者裝置は.

前記記録媒体に有効であることを示す前記情報が記録されていると判断する場合に、前記 記録媒体に記録されている前記暗号化メディア鍵を読み出す読出手段と、

読み出した暗号化メディア鍵を、当該利用者装置に割り当てられたデパイス鍵に基づいて 復号して、メディア鍵を生成する復号手段と、

生成した前記メディア鍵に基づいてコンテンツを暗号化して前記記録媒体に書き込み、又 は前記記録媒体から暗号化コンテンツを読み出し読み出した暗号化コンテンツを生成した 前記メディア鍵に基づいて復号してコンテンツを生成する暗号復号手段と

を備えることを特徴とする利用者装置。

【請求項20】

n 分木 (n は、2以上の整数) に関連付けて1個以上のデバイス鍵を有する鍵管理装置で 用いられる鍵管理プログラムであって、前記鍵管理装置は、n分木においてルートから一 部のリーフへの経路上に存在する複数のノードは、無効化されており、前記デバイス鍵を 各利用者装置に割り当て、n分木を構成する1個以上のノードにそれぞれ対応付けて1個 以上のデバイス鍵を記憶しているデバイス鍵記憶手段を備え、

前記鍵管理プログラムは、

複数の共通デバイス鍵をそれぞれ用いて1個のメディア鍵を暗号化して複数の暗号化メデ ィア鍵を生成し、各共通デバイス鍵は、無効化されていないノードに対応付けられた複数 のデバイス鍵のうち、1以上の利用者装置に共通に割り当てられたデバイス鍵であり、そ の結果複数の暗号化メディア鍵が得られ、得られた複数の暗号化メディア鍵を、n分木の 構成に係る配列順序に従って記録媒体に書き込む鍵情報生成ステップと、

リーフを除き、無効化されたノードについて、下位のn個のノードのそれぞれが無効化さ れているか否かを示す無効化情報を生成し、その結果複数の無効化情報が得られ、得られ た複数の無効化情報を、前記配列順序に従って前記記録媒体に書き込む無効化情報生成ス

を含むことを特徴とする鍵管理プログラム。

【請求項21】

n分末 (nは、2以上の整数)に関連付けて1 偏以上のデバイス鍵を有する腱管理装置に より、1以上のデパイス鍵が割り当てられ、割り当てられた前記デパイス鍵の中の1 個の デパイス鍵に基づいて、コンテンツを哨号化して記録媒体に書き込み又は前記記録媒体ら 競功出した暗号化コンテンツを復号する利用者装置で用いられる利用者プログラムであって。

前記離管理装置は、n分木を構成する1個以上のノードに経路では大きなでは、n分木を構成する1個以上のノードに経路では、ないよいを構成する1個以上のノードに経路では、無効化されており、複数の共通デバイス鍵を不ぞれ用いて1個のメディア鍵を寄り化して複数の時号化メディア鍵を示されて入鍵に大きが表現を表現のうち、1以上の利用者装置に共通に割り当てられたデバイス鍵であり、その結果複数の時号化メディア鍵が得られ、得られた複数の暗時代とディス鍵である。その結果複数の時号化メディア鍵が得られ、複数の暗時代とディアな機能を表現しているが、まだが、の分本の構成に係る配列順序に従って記録媒体に書き込み、リーフを除さ、無効化された/ードについて、下位のn個のパードのそれぞれが無効化されているか否、無効化管報を上成し、その結果複数解体に書き込み、

前記利用者プログラムは、

前記記録媒体に前記配列順序に従って書き込まれた前記複数の無効化情報を用いて、前記 記録媒体に前記配列順序に従って書き込まれた前記複数の暗号化メディア鍵の中から、当 該利用者装置に割り当てられたデパイス鍵により暗号化された暗号化メディア鍵を特定す る絵定ステップと、

特定した暗号化メディア鍵を、当該利用者装置に割り当てられたデバイス鍵に基づいて復 号して、メディア鍵を生成する復号ステップと、

生成した前記メディア鍵に基づいてコンテンツを暗号化して前記記録媒体に書き込み、又 は前記記録媒体から暗号化コンテンツを読み出し読み出した暗号化コンデンツを生成した 前記メディア鍵に基づいて復号してコンテンツを生成する暗号復号ステップと を含むことを特徴とする利用者プログラム。

【請求項22】

n分木 (nは、2以上の整数)に関連付けて 1 個以上のデバイス鍵を有する鍵管理装置で 用いられる鍵管理方法であって、前記鍵管理装置は、n分木においてルートから一部のリ フへの経路上に存在する複数のノードは、無効化されており、前記デパイス鍵を各利用 者装置に割り当て、n分木を構成する 1 個以上のノードにそれぞれ対応付けて 1 個以上の デバイス鍵を記憶しているデバイス鍵記憶手段を備え、

前記鍵管理方法は、

無効化されていないノードに対応付けられた複数のデバイス鍵のうち、1以上の利用者装置に共通に割り当てられたデパイス鍵をそれぞれ用いて、1個のメディア鍵を暗号化して複数の暗号化メディア鍵を生成し、その結果複数の暗号化メディア鍵が得られ、得られた複数の昨号化メディア鍵を、n分木の構成に係る配列順序に従って記録媒体に書き込む鍵情報生成ステップと、

リーフを除き、無効化されたノードについて、下位のn個のノードのそれぞれが無効化されているか否かを示す無効化情報を生成し、その結果複数の無効化情報が得られ、得られた複数の無効化情報を、前記配列順序に従って前記記録媒体に書き込む無効化情報生成ステップド

を含むことを特徴とする鍵管理方法。

【請求項23】

n分末(nは、2以上の整数)に関連付けて1個以上のデバイス鍵を有する鍵管理装置に り、1以上のデパイス鍵が割り当てられ、割り当てられた複数のデパイス鍵の中の1個 のデパイス鍵に基づいて、コンテンツを暗号化して記録媒体に書き込み又は前記記録 から読み出した暗号化コンテンツを復号する利用者装置で用いられる利用方法であって、 前記鏡管理装置は、n分木を構成する1個以上のノードとれぞれ対応付けて1個以上の デバイス鍵を配億しており、ルートから一部のリーフへの経路上に存在する複数のノード は、無効化されており、複数の共通デバイス観をそれぞれ用いて1個のメディア酸を暗号 にして複数の暗号化メディア酸を生成し、各共通デバイス酸は、無効化されていないノー ドに対応付けられた複数のデバイス酸のうち、1以上の利用者装置に共通に割り当てられ たデバイス銀であり、その結果複数の暗号化メディア鍵が得られ、得られた複数の暗号化 メディア鍵を、n分木の構成に係る但列順序に従って記録媒体に書き込み、 リーフを除さ 、無効化されたノードについて、下位のn個のメードのそれぞれが無効化されているか を示す無効化管を生成し、その結果複の無効化情報が得られ、得られた複数の無効 化情報を、前の配配列順序に従って前記記録媒体に書き込み、

前記利用方法は、

前記記録媒体に前記配列順序に従って書き込まれた前記複数の無効化情報を用いて、前記 記録媒体に前記配列順序に従って書き込まれた前記複数の暗号化メディア鍵の中から、当 該関係に割り当てられたデパイス鍵により暗号化された暗号化メディア鍵を特定す る特定ステップと、

特定した暗号化メディア鍵を、当該利用者装置に割り当てられたデバイス鍵に基づいて復 号して、メディア鍵を生成する復号ステップと、

生成した前記メディア鍵に基づいてコンテンツを暗号化して前記記録媒体に書き込み、又は前記記録媒体から萌号化コンテンツを読み出し読み出した暗号化コンテンツを生成した前記メディア鍵に基づいて復号してコンテンツを生成する暗号信号ステップと

を含むことを特徴とする利用方法。

【請求項24】

n分木(nは、2以上の整数) に関連付けて1 個以上のデバイス鍵を有する鍵管理装置で 用いられる鍵管理プログラムを記録しているコンピュータ読み取り可能な記録媒体あっっ て、前記機管理装置は、n分木においてルートから一部のリープへの経路上存在する複数の/一ドは、無効化されており、前記デバイス鍵を各利用者装置に割り当て、n分木を構成する1 個以上の/一ドにそれぞれ対応付けて1 個以上のデバイス鍵を記憶しているデバイス鍵記憶手段を備え、

前記鍵管理プログラムは、

複数の共選デバイス鍵をそれぞれ用いて1個のメディア鍵を明号化して複数の弱号化メディア銀を生成し、各共選デバイス鍵は、無効化されていないノードに対応付けられた複数のデバイス鍵であり、その結果複数の明号化メディア鍵が得られ、得られた複数の暗号化メディア鍵を、n分木の構成に係る配列原序に使って記録媒体に書き込む復情報生成メテップと、

リーフを除き、無効化されたノードについて、下位のn個のノードのそれぞれが無効化されているか否かを示す無効化情報を生成し、その結果複数の無効化情報が得られ、得られた複数の無効化情報を、前記配列順序に従って前記記録媒体に書き込む無効化情報生成ステップと

を含むことを特徴とする記録媒体。

【請求項25】

n分木(nは、2以上の整数) に関連付けて1個以上のデバイス鍵を有する鍵管理装置により、1以上のデバイス鍵が削り当てられ、割り当てられた複数のデバイス鍵の中の1個のデバイス鍵に基づいて、コンテンツを暗号化して記録媒体に書き込み又は前記記録媒体の影談出した暗号化コンテンツを復号する利用者数で用いられる利用者プログラムを記録しているコンピュータ読み取り可能な記録媒体であって、

前記鍵管理装置は、n分木を構成する1個以上のノードにそれぞれ対応付けて1個以上の だい、無効化されており、他数の共通デバイス鍵を不形で用いて1個のメディア鍵を鳴り 化して複数の暗号化メディア健を生成し、各共通デバイス鍵は、無効化されていいシード は、無効化されており、複数の共通デバイス鍵とが、無効化されていないノー に対応付けられた複数のデバイス鍵のうち、1以上の利用者装置に共通に割り当てられ たデバイス鍵であり、その結果複数の暗号化メディア鍵が得られ、得られた複数の暗号化 メディア鍵を、n分木の構成に係る配列順序に従って記録媒体に書き込み、リーフを除さ 、無効化されたノードについて、下位の n 個のノードのそれぞれが無効化されているか否かを示す 無効化情報を生成し、その結果複数の無効化情報が得られ、得られた複数の無効化情報を、前記配列順序に従って前記記録媒体に書き込み、

前記利用者プログラムは、

前記記録媒体に前記配列順序に従って書き込まれた前記複数の無効化情報を用いて、前記 記録媒体に前記配列順序に従って書き込まれた前記複数の暗号化メディア鍵の中から、当 該利用者装置に割り当てられたデパイス鍵により暗号化された暗号化メディア鍵を特定す る特定ステップと、

特定した暗号化メディア鍵を、当該利用者装置に割り当てられたデパイス鍵に基づいて復 号して、メディア鍵を生成する復号ステップと、

生成した前記メディア鍵に基づいてコンテンツを暗号化して前記記録媒体に書き込み、又 は前記記録媒体から暗号化コンテンツを読み出し読み出した暗号化コンテンツを生成した 前記メディア鍵に基づいて復与してコンテンツを生成する暗号復号ステップと

を含むことを特徴とする記録媒体。

【請求項26】

コンピュータ読み取り可能な記録媒体であって、

n分木 (nは、2以上の整数)の構成に係る配列順序に従って、複数の暗号化メディア健 及び複数の無効化情報を記録しており、

ここで、前記複数の暗号化メディア館及び前記複数の無効化情報は、鍵管理装置により生成され、記録され、前記鍵管理装置は、n分末に関連付けて1個以上のデバイス鍵を有し 前記デバイス線を利用考接電に刺り当て.

、前記記載普選機能、 n分木を構成する1 個以上のノードにそれぞれ対応付けて1 個以上の デバイス機を記憶しており、ルートから一部のリーフへの経路上に存在する複数のノード は、無効化されており、複数の共通デバイス鍵をそれぞれ用いて1 個のメディア鍵を培 化して複数の暗号化メディア鍵を生成し、各共通デバイス鍵は、無効化されていないノー ドに対応付けられた複数のデバイス健のうち、1 以上の利用者装置に共通に刺り当てられ たデバイス鍵であり、その結果複数の暗号化メディア鍵に得られた複数の暗号化 メディア機を、 n分木の構成に係る配列順序に従って記録媒体に書き込み、リーフを除る 、無効化されたノードについて、下位の n 個のノードのそれぞれが無効化されているか否 かを示す 無効化管報を生成し、その結果複数の無効化情報が得られ、得られた複数の無効 化情報を、前記配列順序に従って前記記録媒体に書き込む

ことを特徴とする記録媒体。

【請求項27】

対象物の無効化を管理する無効化管理装置と対象物が無効か否かを判定する無効判定装置 とから構成される認証システムであって、

前記無効化管理装置は、

本構造の複数のリーフが、それぞれ複数の対象物に対応し、各リーフを示すリーフ演列。 は、各対象物を識別し、前記対象物のうち少なくとも1個の対象物が無効化されており、 無効化された対象物を識別するリーフ講別子により示されるリーフからルートに至るまで の全てのノードは無効化されており、前記木構造を構成する複数のノードを有する木構造 記憶手段と、

リーフを除く無効化された各ノードについて、下位のノードのそれぞれが無効化されているか否かを示す無効化情報を生成し、その結果複数の無効化情報が得られ、得られた複数の無効化情報を、前記未構造の構成に係る配列順序に従って配列して無効化リストを生成する無効化リスト生成手段と、

生成した無効化リストを出力する出力手段とを含み、

前記無効判定装置は、

前記木構造の1個のリーフを示すリーフ識別子であり、対象物を識別する識別子を取得す る識別子取得手段と、

前記無効化リストを取得するリスト取得手段と、

取得した前記無効化リスト内に配列されている前記無効化情報を用いて、ルートから前記 リーフに至る経路の構築を試み、構築された経路内に前記リーフが含まれる場合に、前記 対象物が無効であると判断し、前記リーフが含まれない場合に、前記対象物が有効である と判断する判定手段と、

前記対象物が無効であると判断される場合に、前記対象物の利用を禁止し、前記対象物が 有効であると判断される場合に、前記対象物を利用する利用手段とを含む

ことを特徴とする認証システム。

【請求項28】

対象物の無効化を管理する無効化管理装置であって、

木構造の複数のリーフが、それぞれ複数の対象物に対応し、各リーフを示すリーフ識別子 は、各対集物を識別し、前記対象物のうち少なくとも1個の対象物が無効化されており、 無効化された対象物を識別するリーフ識別子により示されるリーフからルートに至るまで の全てのノードは無効化されており、前記木構造を構成する複数のノードを有する木構造 配覚手段と、

リーフを除く無効化された各ノードについて、下位のノードのそれぞれが無効化されているか否かを示す無効化情報を生成し、その結果複数の無効化情報が得られ、得られた複数の無効化情報を、前記木構造の構成に係る配列順序に従って配列して無効化リストを生成する無効化リスト生成手段と、

生成した無効化リストを出力する出力手段と

を備えることを特徴とする無効化管理装置。

【請求項29】

対象物が無効か否かを判定する無効判定装置であって、

前記無効判定装置は、

前記木構造の1個のリーフを示すリーフ識別子であり、対象物を識別する識別子を取得する 識別子取得手段と、

前記無効化管理装置から前記無効化リストを取得するリスト取得手段と、

取得した前記無効化リスト内に配列されている前記無効化情報を用いて、ルートから前記 リーフに至る経路の構築を試み、構築された経路内に前記リーフが含まれる場合に、前記 対象物が無効であると判断し、前記リーフが含まれない場合に、前記対象物が有効である と判断する制定手段と、

前記対象物が無効であると判断される場合に、前記対象物の利用を禁止し、前記対象物が 有効であると判断される場合に、前記対象物を利用する利用手段と

を備えることを特徴とする無効判定装置。

【請求項30】

対象物の無効化に係る無効化リストを記録しているコンピュータ読取り可能な記録媒体であって、

無効化管理装置は、

木構造の複数のリーフが、それぞれ複数の対象物に対応し、各リーフを示すリーフ識別子 は、各対象特を識別し、前記対象物のうちいずれも無効化されておらず、全てのノードは 、無効化されておらず、前記木構造を構成する複数のノードを有する木構造記憶手段と、 木構造を構成する全てのノードは、無効化されていないと判断し、無効化された対象物が 存在しないことを示す無効化リストを生成する無効・リスト生成非段とを含む 前記記録媒体は、生成された前記無効化リストを記録している ことを特徴とする記録媒体。