1. Normalformen (4 Punkte)

Gegeben ist die Relation Lagerhaltung (Teil, Lager, Menge, Lageradresse) mit den funktionalen Abhängigkeiten $F = \{(Teil, Lager) \rightarrow Menge, Lager \rightarrow Lageradresse\}$. Die Relation Lagerhaltung gibt an, in welcher Menge bestimmte Teile an bestimmten Orten lagern. Zusätzlich wird die Adresse des jeweiligen Lagers vermerkt. Beantworten Sie folgende Fragestellungen:

- a) Ermitteln Sie den Schlüssel und die Normalform der Relation Lagerhaltung.
- b) Geben Sie ein Beispiel für eine gültige Ausprägung dieser Relation mit vier Tupel an.
- c) Zeigen Sie anhand dieses Beispiels einen Nachteil, der sich aus dieser Modellierung der Relation Lagerhaltung ergibt.
- d) Erläutern Sie, was man tun sollte, um diesen Nachteil zu vermeiden.

2. Relationales Modell

(4 Punkte)

Wandeln Sie das folgende Entity Relationship-Diagramm (= konzeptuelles Schema) in Abbildung 1 in ein relationales Modell (= logisches Schema) um, welches die **3. Normalform** erfüllt. Verwenden Sie möglichst wenige Relationen und beachten Sie, dass die Datenbank **keine NULL-Werte** erlaubt.

Abbildung 1: Entity Relationship-Diagramm

Kennzeichnen Sie im logischen Schema die jeweiligen Primärschlüssel und Fremdschlüssel!

3. Fehlersuche – Relationales Modell

(3 Punkte)

Die unter den einzelnen Unterpunkten angeführten Ausschnitte aus relationalen Modellen genügen nicht der 3. Normalform bzw. enthalten grundlegende Fehler (z.B.: fehlende Primärund Fremdschlüssel).

Ziel dieser Aufgabe ist es, Verstöße gegen die 1., 2. und 3. Normalform bzw. grundlegende Fehler zu erkennen, zu beschreiben und die relationalen Modelle so zu verbessern, dass sie der 3. Normalform genügen. Um Ihnen diese Aufgabe zu erleichtern, sind zu jeder Relation Beispieldaten angeführt. Treffen Sie, falls notwendig, sinnvolle Annahmen (bspw. Angabe von funktionalen Abhängigkeiten) und dokumentieren Sie diese nachvollziehbar in ihrer Lösung!

a) **Book** (Author, Title, ISBN10/13)

Book

Author	Title	ISBN10, ISBN13
Walter Isaacson	Steve Jobs: A Biography	(1451648537, 978-1451648539)
David Nicholls	One Day	(0340994681, 978-0340994689)

b) SalesStatistics (StoredId, ISBN, StoreName, BookTitle, NumCopiesSold) SalesStatistics

StoreId	<u>ISBN</u>	StoreName	BookTitle	NumCopiesSold
1	978-1451648539	Barnes & Noble	Steve Jobs: A Biography	10
2	978-0340994689	Amazon EU	One Day	20

c) CarModel (<u>CarModelId</u>, <u>ManufactorId</u>, ModelName, ManufactorName)

CarModel

<u>CarModelId</u>	<u>ManufactorId</u>	ModelName	ManufactorName
1	101	Fiesta	Ford
2	105	A4	Audi

d) **Invoice** (<u>InvoiceNum</u>, InvoiceLineItem, <u>ArticleNum</u>, ArticleName, Quantity) **Invoice**

<u>InvoiceNum</u>	InvoiceLineItem	<u>ArticleNum</u>	ArticleName	Quantity
1	1	2	Hamster	1
2	2	1	Elephant	2
1	3	5	Turtle	1
2	1	1	Shark	1

e) Customer (<u>CustomerId</u>, Name, Note) Invoice (<u>InvoiceNum</u>, CustomerId, Date, AmountTotal)
Customer

CustomerId	Name	Note
1	Steve Jobs	There is one more thing
2	Henry Spence	If You Lie To The Compiler, It Will Get Its Revenge

Invoice

<u>InvoiceNum</u>	CustomerId	Date	AmountTotal
1	2	01.01.1970	10
2	2	01.01.1971	20

f) **Grade** (ExamId, StudentId, Grade, ExaminationDate)

Grade

ExameId	StudentId	Grade	ExaminationDate
1	1	4	01.01.1970
1	2	1	01.01.1970

4. Normalformen (6 Punkte)

Wir legen uns eine kleine Datenbank für unsere Lieblingsfilme an.

Für Filme gelte: Es gibt einen eindeutigen Filmtitel, mitwirkende Schauspieler, einen Regisseur, ein Erscheinungsjahr (Jahr). Jeder Film habe mindestens einen/eine Schauspieler/in und genau einen Regisseur, wovon es in der Realität Ausnahmen gibt, die hier nicht zugelassen sind. Schauspieler und Regisseure sind in der Regel an mehreren Filmen beteiligt, sogar innerhalb eines Jahres.

Man wird aber erst zum Schauspieler oder Regisseur, wenn man mindestens bei einem Film mitgespielt bzw. bei ihm Regie geführt hat. Schauspieler und Regisseure werden durch ihren Namen eindeutig identifiziert, sie haben ein Geburtsjahr (GJahr) und einen Geburtsort (GOrt).

- 4.1. Geben Sie ein ER-Diagramm für diese Miniwelt an. Die Kanten sollen die Kardinalitäten in der min, max-Notation zeigen. Unterstreichen Sie die Schlüssel. (2 Punkte)
- 4.2. Im ersten Entwurf entsteht eine Relation Filme mit einer Belegung wie in Abbildung 2 gezeigt, die auch die Miniweltannahmen von Aufgabe 4 widerspiegelt.

Filmtitel	Schauspieler	Regisseur	Jahr
The Terminator	Arnie Schwarzenegger	James Cameron	1984
Titanic	Leonardo DiCaprio	James Cameron	1997
Titanic	Kate Winslet	James Cameron	1997
Departed	Leonardo DiCaprio	Martin Scorsese	2006
Departed	Jack Nickolson	Martin Scorsese	2006
Departed	Matt Damon	Martin Scorsese	2006
Departed	Alec Baldwin	Martin Scorsese	2006
Cape Fear	Robert de Niro	Martin Scorsese	1991
Cape Fear	Nick Nolte	Martin Scorsese	1991
Cape Fear	Jessica Lange	Martin Scorsese	1991
True Lies	Arnie Schwarzenegger	James Cameron	1994
True Lies	Jamie Lee Curtis	James Cameron	1994
Taxi Driver	Robert de Niro	Martin Scorsese	1976
Taxi Driver	Judie Foster	Martin Scorsese	1976

Abbildung 2: Tabelle Filme

- a) Was sind die Schlüsselkandidaten? (1 Punkt)
- b) Welche funktionalen Abhängigkeiten existieren? (1 Punkt)
- c) Ist die Relation Filme in 2. Normalform? Begründung ist anzugeben! (1 Punkt)
- 4.3. Aus der Relation Filme haben wir durch Weglassen des Schauspieler-Attributes die Relation FRJ gewonnen (siehe Abbildung 3). Beachten Sie, dass Regisseure potentiell mehr als einen Film pro Jahr drehen können, auch wenn das hier nicht gezeigt ist. Weiterhin habe jeder Film nur einen Regisseur, wie angenommen.

Filmtitel	Regisseur	Jahr
The Terminator	James Cameron	1984
Titanic	James Cameron	1997
Departed	Martin Scorsese	2006
Cape Fear	Martin Scorsese	1991
True Lies	James Cameron	1994
Taxi Driver	Martin Scorsese	1976

Abbildung 3: Tabelle FRJ

Ist FRJ in 3. Normalform? Begründung! Hinweis: Bestimmen Sie zuerst die Schlüsselkandidaten und funktionalen Abhängigkeiten. (1 Punkt)