UNIVERSITÀ DEGLI STUDI DI SALERNO

DIPARTIMENTO DI INFORMATICA

Corso di Laurea in Informatica

Appunti Metodi Matematici per l'Informatica

Autore:

Oleg BILOVUSMat. 0512105721

ABSTRACT

Gli appunti sono molto brevi e sintetici in quanto non sono pensati allo studio della materia, bensì al ripasso. Gli appunti possono contenere errori, quindi non sono da considerare veritieri.

L	Lo	gica,	insiemi e dimostrazioni	1
1	Log	ica pro	oposizionale	2
	1.1	Perché	é studiare la logica proposizionale	2
	1.2	Propo	sizioni	2
		1.2.1	Semplici	2
		1.2.2	Composte	3
	1.3	Conne	ettivi logici	3
		1.3.1	NOT	3
		1.3.2	AND	3
		1.3.3	OR	4
		1.3.4	XOR	4
		1.3.5	Implicazione	5
		1.3.6	Equivalenza	5
	1.4	Equiva	alenza logica	5
		1.4.1	Tautologia	6
		1.4.2	Contraddizione	6
	1.5	Invers	o, opposto e contronominale	7
		1.5.1	Inverso	7
		1.5.2	Opposto	7

		1.5.3	Contronominale	8
		1.5.4	Osservazione: l'inverso è equivalente logicamente all'op-	
			posto	8
	1.6	Equiva	alenze logiche note	9
		1.6.1	Leggi di De Morgan	9
		1.6.2	Equivalenze più usate	9
		1.6.3	Altre equivalenze	9
2	Logi	ica pre	edicativa	10
	2.1	Predic	ato	10
	2.2	Quant	ificatori	10
		2.2.1	Universale	11
		2.2.2	Esistenziale	11
		2.2.3	Dominio vuoto	11
		2.2.4	Cambio dominio	12
		2.2.5	Quantificatori innestati	12
		2.2.6	Negazione quantificatori	13
		2.2.7	Dominio finito	14
	2.3	Insiem	ne di verità	14
3	Insi	emi		16
4	Dim	ostraz	zioni	18
	4.1	Dimos	trazione diretta	18
	4.2	Dimos	trazione per contrapposizione	18
	4.3	Dimos	trazione per assurdo o contraddizione	19
	4.4	Dimos	trazione banale o vuota	19
	4.5	Dimos	trazione di equivalenza	20
	4.6	Contro	pesempio	20
	4.7	Prova	di esistenza	20
	4.8	Dimos	trazione per casi	20
	4.9	Dimos	trazione esaustiva	20

II	I Ricorsione, principio induzione e relazioni di ricor-				
\mathbf{re}	nze		21		
5	Def	inizione funzioni ricorsivamente	22		
	5.1	Funzione matematica in \mathbb{N}	22		
		5.1.1 Calcolo buttom up	22		
		5.1.2 Calcolo top down	23		
	5.2	Dalla definizione ricorsiva alla funzione ricorsiva	23		
6	Def	inizione insiemi ricorsivamente	2 5		
	6.1	Insiemi numerici	25		
7	Def	inizione stringhe ricorsivamente	28		
	7.1	Definizioni	28		
	7.2	Definizione ricorsiva di Σ^*	28		
	7.3	Lunghezza di una stringa	29		
	7.4	Concatenazione di una stringa	29		
	7.5	Potenza di una stringa	30		
	7.6	Stringa palindroma	30		
	7.7	Inversione di una stringa	30		
	7.8	Ulteriori definizioni di specifiche stringhe	31		
		7.8.1 Stringhe su $\{a,b\}$ di lunghezza pari	31		
		7.8.2 Stringhe pari su $\{a,b\}$ che iniziano con a	31		
		7.8.3 Morfismo	31		
8	Def	inizione alberi radicati ricorsivamente	32		
	8.1	Definizioni	32		
	8.2	Definizione ricorsiva	33		
	8.3	Numero di vertici	34		
	8.4	Numero di edges(archi)	34		
	8.5	Numero di foglie	35		
	8.6	Numero di nodi interni	35		
	8.7	Altezza di un vertice	35		

	8.8	Profondità di un vertice	36
9	Defi	nizione alberi binari ricorsivamente	37
	9.1	Definizioni	37
	9.2	Definizione ricorsiva albero binario pieno	38
	9.3	Definizione ricorsiva di albero binario	39
10	Prin	acipio di induzione	40
	10.1	Principio di induzione matematico	40
	10.2	Principio di induzione forte	40
	10.3	Principio di induzione strutturale	41
	10.4	Quale induzione usare	41
	10.5	Principio induzione sulle stringhe	41
	10.6	Esempi	42
	10.7	Principio di induzione strutturale sugli alberi radicati	43
	10.8	Principio induzione strutturale sugli alberi binari pieni e non .	44
11	Rela	azioni di ricorrenza	46
	11.1	Metodo di iterazione	46
	11.2	Principio di induzione matematico sulle relazioni di ricorrenze	48
	11.3	Esempio più complesso	48
\mathbf{El}	enco	delle figure	50
\mathbf{El}	enco	delle tabelle	51

Parte I

Logica, insiemi e dimostrazioni

LOGICA PROPOSIZIONALE

1.1 Perché studiare la logica proposizionale

La materia insegna a distinguere quelle che sono delle proposizioni, ossia che hanno valore **True** oppure **False**, e quelle che invece non lo sono.

La frase *Che bella giornata* non è una proposizione, in quanto essa può essere sia True che False.

Allo stesso modo affermazioni matematiche del tipo x + 2 = 5 non è una proposizione in quanto il valore della x può variare e con esso varia il valore di verità della proposizione in True o False.

Invece proposizioni del tipo La penna è sul tavolo oppure 5+4=0 sono proposizioni in quanto hanno un valore di verità univoco al momento della loro affermazione.

1.2 Proposizioni

1.2.1 Semplici

Le proposizioni semplici sono dette tali quando hanno un valore ${\bf T}$ o ${\bf F}$ e non sono usati connettivi logici.

Esempio 1.2.1.1

La televisione è accesa

Esempio 1.2.1.2

$$3 + 5 = 8$$

1.2.2 Composte

Le proposizioni composte sono dette tali quando hanno un valore ${\bf T}$ o ${\bf F}$ e sono usati connettivi logici.

Esempio 1.2.2.1

Laura fa i compiti e ascolta la musica

Esempio 1.2.2.2

Se domani piove allora prenderò l'ombrello

1.3 Connettivi logici

1.3.1 NOT

Il connettivo logico \neg ha valore \mathbf{T} se e solo se la proposizione p ha valore \mathbf{F} , e ha valore \mathbf{F} se e solo se la proposizione p ha valore \mathbf{T} .

Tabella 1.1: Tabella di verità del connettivo logico NOT.

p	$\neg p$
T	F
F	Т

1.3.2 AND

Il connettivo logico \wedge ha valore \mathbf{T} se e solo se entrambe le proposizioni p e q hanno valore \mathbf{T} , se una delle due è \mathbf{F} allora il valore della proposizione è \mathbf{F} .

Tabella 1.2: Tabella di verità del connettivo logico AND.

p	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

1.3.3 OR

Il connettivo logico \vee ha valore \mathbf{T} se e solo se una delle proposizioni p o q ha valore \mathbf{T} , se sono entrambe \mathbf{F} allora il valore della proposizione è \mathbf{F} .

Tabella 1.3: Tabella di verità del connettivo logico OR.

p	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

1.3.4 XOR

Il connettivo logico \oplus ha valore \mathbf{T} se e solo se una delle le proposizioni p o q ha valore \mathbf{T} ma non entrambe, se sono entrambe \mathbf{F} o \mathbf{T} allora il valore della proposizione è \mathbf{F} .

Tabella 1.4: Tabella di verità del connettivo logico XOR.

p	q	$p \oplus q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

1.3.5 Implicazione

Il connettivo logico \implies ha valore \mathbf{F} se e solo se la proposizione p ha valore \mathbf{T} e la proposizione q ha valore \mathbf{F} , altrimenti il valore della proposizione è \mathbf{T} .

Tabella 1.5: Tabella di verità del connettivo logico Implicazione.

p	q	$p \implies q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

1.3.6 Equivalenza

Il connettivo logico \iff ha valore \mathbf{T} se e solo se la proposizione p e la proposizione q hanno valori uguali, altrimenti il valore della proposizione è \mathbf{F} .

Tabella 1.6: Tabella di verità del connettivo logico Equivalenza.

p	q	$p \iff q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

1.4 Equivalenza logica

Due proposizioni composte p e q si dicono equivalenti logicamente se e solo se hanno la stessa tabella di verità e si indica con $\mathbf{p} \equiv \mathbf{q}$.

N.B: \equiv non è un connettivo logico.

 $\mathbf{N.B:} \equiv \mathbf{e} \iff \text{sono diversi.}$

1. LOGICA PROPOSIZIONALE

N.B: Non si usa il simbolo = per esprimere l'equivalenza logica, ma si usa il simbolo \equiv .

1.4.1 Tautologia

La tautologia è una proposizione composta sempre **True**, ossia tutte **T** nella colonna della proposizione composta, qualsiasi sia il valore delle proposizioni elementari che la compongono.

Tabella 1.7: Tabella di verità della tautologia $(p \wedge q) \implies (p \vee q)$.

p	q	$p \wedge q$	$p \vee q$	$(p \land q) \implies (p \lor q)$
Т	Т	Т	Т	Т
Т	F	F	Т	Т
F	Т	F	Т	Т
F	F	F	F	Т

1.4.2 Contraddizione

La contraddizione è una proposizione composta sempre \mathbf{False} , ossia tutte \mathbf{F} nella colonna della proposizione composta, qualsiasi sia il valore delle proposizioni elementari che la compongono.

Tabella 1.8: Tabella di verità della contraddizione $p \wedge \neg p$.

p	$\neg p$	$p \land \neg p$
Т	F	F
F	Т	F

1.5 Inverso, opposto e contronominale

1.5.1 Inverso

Inverso di
$$p \implies q \ge q \implies p$$

$$p \implies q \not\equiv q \implies p$$

Tabella 1.9: Tabella di verità di $p \implies q \not\equiv q \implies p$.

p	q	$p \implies q$	$q \implies p$
Т	Т	Т	Т
Т	F	F	Т
F	Т	Т	F
F	F	Т	Т

Esempio 1.5.1.1

Se domani piove allora prenderò l'ombrello

Inverso: Prenderò l'ombrello se domani piove

1.5.2 Opposto

Opposto di
$$p \implies q$$
 è $\neg p \implies \neg q$
$$p \implies q \not\equiv \neg p \implies \neg q$$

Tabella 1.10: Tabella di verità di $p \implies q \not\equiv \neg p \implies \neg q.$

p	q	$\neg p$	$\neg q$	$p \implies q$	$\neg p \implies \neg q$
Т	Т	F	F	Т	Т
Т	F	F	Т	F	Т
F	Т	Т	F	Т	F
F	F	Т	Т	Т	Т

Esempio 1.5.2.1

Se domani piove allora prenderò l'ombrello

Opposto: Se domani non piove allora non prenderò l'ombrello

1.5.3 Contronominale

Contronominale di $p \implies q \ ensuremath{\grave{e}} \neg q \implies \neg p$

$$p \implies q \equiv \neg p \implies \neg q$$

Tabella 1.11: Tabella di verità di $p \implies q \equiv \neg p \implies \neg q$.

p	q	$\neg p$	$\neg q$	$p \implies q$	$\neg q \implies \neg p$
Т	Т	F	F	Т	Т
Т	F	F	Т	F	F
F	Т	Т	F	Т	Т
F	F	Т	Т	Т	Т

Esempio 1.5.3.1

Se domani piove **allora** prenderò l'ombrello

Contronominale: Non prenderò l'ombrello se domani non piove

1.5.4 Osservazione: l'inverso è equivalente logicamente all'opposto

Dalla Tabella 1.9 e dalla Tabella 1.10 si ha che $q \implies p \equiv \neg p \implies \neg q$

Tabella 1.12: Tabella di verità di $q \implies p \equiv \neg p \implies \neg q$.

p	q	$\neg p$	$\neg q$	$q \implies p$	$\neg p \implies \neg q$
Т	Т	F	F	Т	Т
Т	F	F	Т	Т	Т
F	Т	Т	F	F	F
F	F	Т	Т	Т	Т

1.6 Equivalenze logiche note

1.6.1 Leggi di De Morgan

- $\neg (p \land q) \equiv \neg p \lor \neg q$
- $\neg (p \lor q) \equiv \neg p \land \neg q$
- $p \implies q \equiv \neg p \lor q$
- $\neg(p \implies q) \equiv \neg(\neg p \lor q) \equiv p \land \neg q$

1.6.2 Equivalenze più usate

- $\neg(\neg p) \equiv p$
- $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
- $\bullet \ p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
- $(x < y < z) \equiv (x < y) \land (y < z)$
- $p \iff q \equiv (p \implies q) \land (q \implies p) \equiv (\neg p \lor q) \land (\neg q \lor p)$

1.6.3 Altre equivalenze

- $p \wedge T \equiv p$
- $p \lor F \equiv p$
- $p \lor T \equiv T$
- $\bullet \quad p \wedge F \equiv F$
- $\bullet \quad p \vee p \equiv p$
- $p \wedge p \equiv p$
- $p \lor \neg p \equiv T$
- $p \land \neg p \equiv F$

LOGICA PREDICATIVA

2.1 Predicato

Esprime una proprietà che un oggetto di un gruppo può avere o non avere o relazioni tra gli oggetti di un gruppo.

Esempio 2.1.0.1

P(x,y) x ama y

Luca ama Laura

Il predicato P è una funzione con dominio l'universo del discorso e codominio il valore ${\bf T}$ o ${\bf F}.$

2.2 Quantificatori

Essi vengono usati per esprime una proprietà su un gruppo di oggetti o l'esistenza di un oggetto con una proprietà in un gruppo.

2.2.1 Universale

Il quantificatore \forall viene usato per esprimere una proprietà su un gruppo di oggetti. Per essere \mathbf{T} , tutti gli oggetti nel dominio devono rispettare le proprietà.

Esempio 2.2.1.1

Tutti i laureati in informatica hanno fatto l'esame di MMI

P(x), x è laureato in informatica

Q(x), x ha fatto l'esame di MMI

Dominio di x sono tutti gli umani

$$\forall x P(x) \implies Q(x)$$

N.B: Se $\forall x P(x)$ è falso, ciò <u>non</u> significata che tutti gli oggetti del dominio di x non rispettino la proprietà P, ma che esiste almeno un oggetto che non rispetta le proprietà.

2.2.2 Esistenziale

Il quantificatore \exists viene usato per esprime l'esistenza di un oggetto con una determinata proprietà in un gruppo di oggetti. Affinché sia \mathbf{T} , deve esistere almeno un oggetto che rispetti le proprietà.

Esempio 2.2.2.1

Alcuni laureati in informatica hanno fatto l'esame di programmazione avanzata P(x), x è laureato in informatica

Q(x), x ha fatto l'esame di programmazione avanzata

Dominio di x sono tutti gli umani

$$\exists x P(x) \land Q(x)$$

2.2.3 Dominio vuoto

Se il dominio del predicato P(x) è \emptyset , i quantificatori hanno i seguenti comportamenti:

2. LOGICA PREDICATIVA

- $\forall x P(x)$: è **T** in quanto non si può trovare un controesempio per dimostrare che è **F**.
- ∃xP(x) è F in quanto non si può trovare un esempio per dimostrare che
 è T.

2.2.4 Cambio dominio

Se si cambia il dominio di un predicato, il valore di verità dell'intera proposizione può cambiare totalmente.

Esempio 2.2.4.1

Alcuni laureati in informatica hanno fatto l'esame di programmazione avanzata P(x), x ha fatto l'esame di programmazione avanzata

Dominio di x tutti i laureati in informatica. Allora avremmo che $\exists x P(x)$ è \mathbf{T} . Se cambiamo il dominio di x in tutti i laureati di filosofia, avremmo che $\exists x P(x)$ è \mathbf{F} .

2.2.5 Quantificatori innestati

I quantificatori \forall e \exists si possono combinare tra di loro per formare predicati più complessi.

Esempio 2.2.5.1

Ogni figlio ha una madre

P(x), x è un figlio

Q(x), x è una madre

R(x,y), x è figlio di y

Dominio di x e y sono tutti gli umani

 $\forall x \exists y \mid R(x,y) \land P(x) \land Q(y)$

Esempio 2.2.5.2

Ognuno apprezza qualcuno

P(x,y), x apprezza y

2. LOGICA PREDICATIVA

Dominio di x e y sono tutti gli umani

$$\forall x \exists y \mid P(x,y)$$

2.2.6 Negazione quantificatori

I quantificatori possono essere negati. La regola generale è che se il quantificatore è \forall , diventa \exists e viceversa e poi si nega il predicato.

- $\neg(\forall x P(x)) \equiv \exists x \neg P(x)$
- $\neg(\exists x P(x)) \equiv \forall x \neg P(x)$

Negazione quantificatori innestati

La regola generale è che si cambiano i quantificatori con il loro opposto e si nega il predicato.

Esempio 2.2.6.1

$$\neg(\forall x (P(x) \implies Q(x))) \equiv$$

$$\exists x \neg(P(x) \implies Q(x)) \equiv$$

$$\exists x \neg(\neg P(x) \lor Q(x)) \equiv$$

$$\exists x (P(x) \land \neg Q(x))$$

Esempio 2.2.6.2

Negare il seguente predicato $\forall x(x>0 \implies \exists y \mid (x\cdot y=1))$

$$\neg(\forall x(x>0 \implies \exists y \mid (x\cdot y=1))) \equiv$$

Si può spostare $\exists y$ all'inizio, in quanto lo scope di y non cambierebbe e risulta più facile la negazione

$$\neg(\forall x(x>0 \implies \exists y \mid (x\cdot y=1))) \equiv \\ \neg(\forall x\exists y(x>0 \implies (x\cdot y=1))) \equiv \\ \exists x\forall y\neg(x>0 \implies (x\cdot y=1))) \equiv \\ \exists x\forall y\neg(\neg(x>0)\lor (x\cdot y=1)) \equiv \\ \exists x\forall y((x>0)\land \neg(x\cdot y=1)) \equiv \\ \exists x\forall y((x>0)\land (x\cdot y\neq 1))$$

2.2.7 Dominio finito

Se il dominio del predicato è finito ed è presente un quantificatore, esso può essere anche rimosso a seconda del quantificatore e la proposizione continuerà ad avere lo stesso valore di verità.

Esempio 2.2.7.1

Supponiamo che il dominio del predicato P(x) abbia n oggetti. Avremmo che le seguenti equivalenze sono T:

- $\forall x P(x) \iff P(x_1) \land P(x_2) \land ... \land P(x_n)$
- $\exists x P(x) \iff P(x_1) \vee P(x_2) \vee ... \vee P(x_n)$
- Funzione proposizionale Q(x,y) con dominio $\{1,2\} \times \{1,2\}$ $\exists x \forall y Q(x,y) \iff (Q(1,1) \land Q(1,2)) \lor (Q(2,1) \land Q(2,2))$
- Funzione proposizionale Q(x,y) con dominio $\{1,2\} \times \{1,2\}$ $\forall x \exists y Q(x,y) \iff (Q(1,1) \lor Q(1,2)) \land (Q(2,1) \lor Q(2,2))$

2.3 Insieme di verità

L'insieme di verità di P(x) è l'insieme degli elementi x_i nel dominio di P(x) tali che P(x) è \mathbf{T} .

In termini matematici l'insieme di verità rappresenta un sottoinsieme della controimmagine di P(x) tale che $P(x) = \mathbf{T}$

Il codominio di P(x) è $C = \{T, F\}$, sia D il dominio di P(x), V l'insieme di verità di P(x) e $A = \{T\} \subset C$.

Si ha che l'insieme di verità di P(x) è $f^{-1}(A) = \{x \in D \mid P(x) = T\} = V$

Figura 2.1: Rappresentazione grafica esempio di insieme di verità.

INSIEMI

- $A = B \iff A \subseteq B \land B \subseteq A$
- $A = B : \forall x (x \in A \iff x \in B) \equiv \forall x ((x \in A \implies x \in B) \land (x \in B \implies x \in A))$
- $A \subseteq B : \forall x (x \in A \implies x \in B)$
- $A \nsubseteq B : \neg(\forall x (x \in A \implies x \in B) \equiv \exists x \neg(x \in A \implies x \in B) \equiv \exists x \neg(\neg(x \in A) \lor x \in B)) \equiv \exists x (x \in A \land x \notin B)$
- $\emptyset \in S : \forall x (x \in \emptyset \implies x \in S)$ è sempre **True** perché $x \in \emptyset$ è sempre falsa e dalla Tabella 1.5, se p è **F**, la proposizione è sempre **T**.
- $S\subseteq S: \forall x(x\in S\implies x\in S)$ è sempre **True** perché $p\implies p$ è una tautologia.

Tabella 3.1: Tabella di verità di $p \implies p.$

p	$p \implies p$		
Т	Т		
F	Т		

- $\bullet \ A \subset B : \forall x (x \in A \implies x \in B) \land \exists y (y \in B \land y \not \in A)$
- $\bullet \ \ A\times B=\{(a,b)\mid a\in A\wedge b\in B\}$

DIMOSTRAZIONI

4.1 Dimostrazione diretta

$$p \implies q$$

Esempio 4.1.0.1

Se $n \ \dot{e} \ dispari \ allora \ n^2 \ \dot{e} \ dispari.$

Dimostrazione: Sia n un intero dispari.

$$n^2 = (2k+1)^2 = 4k^2 + 1 + 4k = 2(2k^2 + 2k) + 1$$

Quindi n^2 è dispari.

4.2 Dimostrazione per contrapposizione

$$\neg q \implies \neg p$$

Dalla Tabella 1.11 si ha che $\neg q \implies \neg p \equiv p \implies q$

Esempio 4.2.0.1

Se 3n + 2 è dispari allora n è dispari.

Contronominale: Se n è pari allora 3n + 2 è pari.

Dimostrazione: Sia n pari.

$$3n + 2 = 3(2k) + 2 = 2(3k) + 2 = 2(3k + 1)$$

2(3k+1) è sempre un numero pari in quanto $2 \cdot r, r \in \mathbb{R}$ è sempre pari.

Avendo dimostrato che $\neg q \implies \neg p$ è **True** e poiché $\neg q \implies \neg p \equiv p \implies q$, si ha che 3n+2 è dispari allora n è dispari è **True**.

4.3 Dimostrazione per assurdo o contraddizio-

ne

$$p \implies q \ge \mathbf{T}$$
 quando $p \land \neg q \ge \mathbf{F}$

Si ricorda che dalle Leggi di De Morgan si ha che $\neg(p \implies q) \equiv p \land \neg q$

Tabella 4.1: Tabella di verità di $p \implies q \in p \land \neg q$.

p	q	$\neg q$	$p \implies q$	$p \land \neg q$
Т	Т	F	Т	F
Т	F	Т	F	Т
F	Т	F	Т	F
F	F	Т	Т	F

Esempio 4.3.0.1

 $Se \ 3n + 2 \ \grave{e} \ dispari \ allora \ n \ \grave{e} \ dispari.$

 $p \wedge \neg q$: 3n + 2 è dispari e n è pari.

Dimostrazione:

$$3n + 2 = 3(2k) + 2 = 2(3k + 1)$$

Nella Dimostrazione per contrapposizione abbiamo visto che 2(3k+1) è sempre pari. Poiché 3n+2=2(3k+1) allora 3n+2 è pari, ma avevamo detto che era dispari. Quindi è un assurdo e $p \land \neg q$ è \mathbf{F} , quindi $p \implies q$ è \mathbf{T} , cioè Se 3n+2 è dispari allora n è dispari è \mathbf{T} .

4.4 Dimostrazione banale o vuota

 $p \implies q, p = \mathbf{F}$ allora dalla Tabella 1.5 $p \implies q$ è sempre **True**.

4.5 Dimostrazione di equivalenza

$$p \iff q$$
 Si dimostra $(p \implies q) \land (q \implies p)$

4.6 Controesempio

$$\forall x P(x)$$
$$\neg(\forall x P(x)) \equiv \exists x \neg P(x)$$

4.7 Prova di esistenza

 $\exists x P(x)$

- Può essere costruttiva esibendo un elemento x nel dominio per cui P(x) è **True**.
- Può essere non costruttiva.

4.8 Dimostrazione per casi

$$(p_1 \vee p_2 \vee \ldots \vee p_n) \implies q \equiv (p_1 \implies q) \vee (p_2 \implies q) \vee \ldots \vee (p_n \implies q)$$

4.9 Dimostrazione esaustiva

«TODO»

Parte II

Ricorsione, principio induzione e relazioni di ricorrenze

DEFINIZIONE FUNZIONI RICORSIVAMENTE

5.1 Funzione matematica in \mathbb{N}

Passo base: Specificare il valore della funzione in 0.

Passo ricorsivo: Definire la regola per ottenere il valore della funzione su un intero attraverso i valori della funzione su interi più piccoli.

Esempio 5.1.0.1

$$f: \mathbb{N} \longrightarrow \mathbb{N}$$

Passo Base: f(0) = 3

Passo ricorsivo: f(n+1) = 2f(n) + 3

La funzione target, ad esempio f(3), si può calcolare buttom up o top down.

5.1.1 Calcolo buttom up

Si parte dal **Passo base**, in quanto si conosce il valore della funzione e si arriva a ogni iterazione al valore della funzione target.

5. DEFINIZIONE FUNZIONI RICORSIVAMENTE

Esempio 5.1.1.1

$$f(0) = 3$$

$$f(1) = 2 \cdot 3 + 3 = 9$$

$$f(2) = 2 \cdot 9 + 3 = 21$$

$$f(3) = 2 \cdot 21 + 3 = 45$$

5.1.2 Calcolo top down

Si parte dal target, ad esempio f(3), e si scrive la sua funzione ricorsiva. Si scende fino al **Passo base** in quanto non si conosce il valore delle precedenti funzioni ricorsive. Arrivati al **Passo base**, si inizia a scrivere il valore delle funzioni che si conoscono a ritroso, in questo modo si arriverà al valore della funzione target.

Esempio 5.1.2.1

$$f(3) = 2f(2) + 3 = 2 \cdot 21 + 3 = 45$$

$$f(2) = 2f(1) + 3 = 2 \cdot 9 + 3 = 21$$

$$f(1) = 2f(0) + 3 = 2 \cdot 3 + 3 = 9$$

$$f(0) = 3$$

5.2 Dalla definizione ricorsiva alla funzione ricorsiva

Per passare dalla definizione ricorsiva alla funzione ricorsiva bisogna scoprire il meccanismo ricorsivo. Lo si può fare calcolando il **Passo base**, la funzione in n, cioè f(n), e la funzione in f(n+1).

N.B: la funzione ricorsiva è f(n+1).

N.B: nella funzione ricorsiva f(n+1) ci deve essere sempre una chiamata a valori di funzioni precedenti a f(n+1), altrimenti non è una funzione ricorsiva.

Esempio 5.2.0.1

Fibonacci

5. DEFINIZIONE FUNZIONI RICORSIVAMENTE

Definizione ricorsiva

Passo base: $F_0 = F_1 = 1$

Passo ricorsivo: $F_n = F_{n-1} + F_{n-2}, n \ge 2$

Funzione ricorsiva

$$f(0) = 1$$

$$f(1) = 1$$

$$f(n) = f(n-1) + f(n-2)$$

$$f(n+1) = f((n+1) - 1) + f((n+1) - 2) = f(n) + f(n-1)$$

Esempio 5.2.0.2

$$f: \mathbb{N} \longrightarrow \mathbb{N}$$

Definizione ricorsiva

$$f(n) = a^n$$

Funzione ricorsiva

$$f(0) = a^0 = 1$$

$$f(n) = a^n$$

$$f(n+1) = a^{n+1} = a \cdot a^n = a \cdot f(n)$$

N.B.: Se avessimo scritto solamente $f(n+1) = a^{n+1} = a \cdot a^n$, non è corretto, in quanto non è una definizione ricorsiva poiché non vi sono chiamate ai valori delle funzioni precedenti a f(n+1).

DEFINIZIONE INSIEMI RICORSIVAMENTE

6.1 Insiemi numerici

Applicare il passo ricorsivo un paio di volte, capire cosa contiene l'insieme e darne la costruzione ricorsiva. La correttezza della costruzione ricorsiva sarà dimostrata successivamente con il Principio di induzione.

Esempio 6.1.0.1

Definizione ricorsiva

Passo base: $1 \in A$

Passo ricorsivo: Se $x \in A$, allora $x + 2 \in A$

Costruzione ricorsiva

Applico il passo ricorsivo

 $x = 1 \in A$, allora $x + 2 = 1 + 2 = 3 \in A$

Applico il passo ricorsivo

 $x = 3 \in A$, allora $x + 2 = 3 + 2 = 5 \in A$

6. DEFINIZIONE INSIEMI RICORSIVAMENTE

Si può notare che A contiene i numeri dispari, quindi la sua costruzione ricorsiva è: $A=\{2n+1\mid n\geq 0, n\in \mathbb{N}\}$

Esempio 6.1.0.2

Definizione ricorsiva

Passo base: $3 \in S$

Passo ricorsivo: Se $x, y \in S$, allora $x + y \in S$

Costruzione ricorsiva

Applico il passo ricorsivo

$$x = 3 \in S, y = 3 \in S$$
, allora $x + y = 3 + 3 = 6 \in S$

Applico il passo ricorsivo

$$x = 6 \in S, y = 3 \in S$$
, allora $x + y = 6 + 3 = 9 \in S$

Applico il passo ricorsivo

$$x = 9 \in S, y = 3 \in S$$
, allora $x + y = 9 + 3 = 12 \in S$

Applico il passo ricorsivo

$$x = 9 \in S, y = 6 \in S$$
, allora $x + y = 9 + 6 = 15 \in S$

Si può notare che S contiene i numeri multipli di 3, quindi la sua costruzione ricorsiva è: $S = \{3n \mid n \geq 1, \in \mathbb{N}\}$

Esempio 6.1.0.3

Definizione ricorsiva

Passo base: $1 \in T$

Passo ricorsivo: Se $x \in T$, allora $3 \cdot x \in T$

Costruzione ricorsiva

Applico il passo ricorsivo

$$x = 1 \in T$$
, allora $3 \cdot x = 3 \cdot 1 = 3 \in T$

Applico il passo ricorsivo

$$x = 3 \in T$$
, allora $3 \cdot x = 3 \cdot 3 = 9 \in T$

Applico il passo ricorsivo

$$x = 9 \in T$$
, allora $3 \cdot x = 3 \cdot 9 = 27 \in T$

6. DEFINIZIONE INSIEMI RICORSIVAMENTE

Si può notare che T contiene i numeri $3^n,$ quindi la sua costruzione ricorsiva è: $T=\{3^n\mid n\in\mathbb{N}\}$

DEFINIZIONE STRINGHE RICORSIVAMENTE

7.1 Definizioni

- L'alfabeto Σ è un insieme di simboli per creare stringhe.
- La stringa è una sequenza di simboli presi da un alfabeto Σ .
- λ è la stringa vuota che non contiene simboli. λ è una stringa e non un simbolo dell'alfabeto Σ, quindi λ ∉ Σ.
- Σ^* è l'insieme di tutte le possibili stringhe sull'alfabeto Σ .
- L'insieme Σ^* è infinito e $\lambda \in \Sigma^*$.

7.2 Definizione ricorsiva di Σ^*

Passo base: $\lambda \in \Sigma^*$

Passo ricorsivo: Se $w \in \Sigma^*$ e $x \in \Sigma$, allora $wx \in \Sigma^*$

Esempio 7.2.0.1

7. DEFINIZIONE STRINGHE RICORSIVAMENTE

$$\Sigma = \{0, 1\}$$

Dal **Passo base** si ha che $\lambda \in \Sigma^*$. Quindi al **Passo base** $\Sigma^* = \{\lambda\}$

Applico il passo ricorsivo

$$w = \lambda \in \Sigma^*, x = 0 \in \Sigma$$
, allora $wx = \lambda 0 = 0 \in \Sigma^*$. Quindi $\Sigma^* = \{\lambda, 0\}$

Applico il passo ricorsivo

$$w = \lambda \in \Sigma^*, x = 1 \in \Sigma$$
, allora $wx = \lambda 1 = 1 \in \Sigma^*$. Quindi $\Sigma^* = \{\lambda, 0, 1\}$

Applico il passo ricorsivo

$$w = 0 \in \Sigma^*, x = 0 \in \Sigma, \text{ allora } wx = 00 \in \Sigma^*. \text{ Quindi } \Sigma^* = \{\lambda, 0, 1, 00\}$$

Applico il passo ricorsivo

$$w=0\in\Sigma^*, x=1\in\Sigma,$$
 allora $wx=01\in\Sigma^*.$ Quindi $\Sigma^*=\{\lambda,0,1,00,01\}$

...

7.3 Lunghezza di una stringa

Passo base: $|\lambda| = 0$

Passo ricorsivo: Se $w \in \Sigma^*$ e $x \in \Sigma$, allora |wx| = |w| + 1

Esempio 7.3.0.1

$$|abb| = |ab| + |b| = |a| + |b| + |b| = 1 + 1 + 1 = 3$$

7.4 Concatenazione di una stringa

u e v due stringhe, la concatenazione di u e v è la stringa $u \cdot v$. Si indica anche semplicemente con uv senza usare il \cdot

N.B: $uv \neq vu$

Passo base: Se $w \in \Sigma^*$, allora $w\lambda = w$

Passo ricorsivo: Se $w_1, w_2 \in \Sigma^*$ e $x \in \Sigma$, allora $w_1 \cdot (w_2 x) = (w_1 \cdot w_2)x \in \Sigma^*$

Esempio 7.4.0.1

$$abb \cdot ab = abb \cdot (ab) = abba \cdot b = abbab$$

7.5 Potenza di una stringa

Passo base: $w^0 = \lambda$

Passo ricorsivo: $w^{n+1} = w^n \cdot w, \forall n \ge 0$

Esempio 7.5.0.1

$$\{(aa)^i \mid 0 \le i \le 3\} = \{\lambda, aa, aaaa, aaaaaaa\}$$

Esempio 7.5.0.2

$$\{aa^i \mid 0 \le i \le 3\} = \{\lambda, aa, aaa, aaaa\}$$

N.B:
$$(aa)^i \neq aa^i$$
, $(aa)^2 = aaaa$, $aa^2 = aaa$

7.6 Stringa palindroma

Passo base: $\forall x \in \Sigma \text{ e } \lambda \text{ sono stringhe palindrome}$

Passo ricorsivo: Se w è una stringa palindroma e $x \in \Sigma$, allora xwx è una stringa palindroma.

Esempio 7.6.0.1

abba

Per il **Passo base** a, b, λ sono stringhe palindrome

Applico il passo ricorsivo

 $w=\lambda$ palindroma per il **Passo base** e $x=b\in\Sigma$, allora $xwx=b\lambda b=bb$ è una stringa palindroma.

Applico il passo ricorsivo

w=bb palindroma per il passo ricorsivo precedente e $x=a\in \Sigma$, allora xwx=abba è una stringa palindroma.

7.7 Inversione di una stringa

Passo base: $\lambda^R = \lambda$

Passo ricorsivo: Se $w \in \Sigma^*$ e $x \in \Sigma$, allora $(wx)^R = xw^R$

7. DEFINIZIONE STRINGHE RICORSIVAMENTE

Esempio 7.7.0.1

$$(abb)^R = b(ab)^R = bb(a)^R = bba$$

Esempio 7.7.0.2

$$a^R = (\lambda a)^R = a\lambda^R = a\lambda = a$$

7.8 Ulteriori definizioni di specifiche stringhe

7.8.1 Stringhe su $\{a,b\}$ di lunghezza pari

Passo base: $\lambda \in S$

Passo ricorsivo: Se $w \in S$, allora $waa, wab, wba, wbb \in S$

7.8.2 Stringhe pari su $\{a, b\}$ che iniziano con a

Passo base: $aa, ab \in S$

Passo ricorsivo: Se $w \in S$, allora $waa, wab, wba, wbb \in S$

7.8.3 Morfismo

Prende in input $w \in \{a, b\}^* \setminus \lambda$ e sostituisce a con 0 e b con 1

Passo base: change(a) = 0, change(b) = 1

Passo ricorsivo: $change(wx) = \begin{cases} change(w)0, \text{ se } x = a \\ change(w)1, \text{ se } x = b \end{cases}$

CAPITOLO 8

DEFINIZIONE ALBERI RADICATI RICORSIVAMENTE

8.1 Definizioni

Figura 8.1: Esempio albero radicato.

- Un albero radicato per definizione ha una sola radice, nella Figura 8.1 in questo caso è il nodo 1.
- Un albero radicato ha una o più foglie, nella Figura 8.1 sono i nodi 3,
 5, 6 e 7.

8. DEFINIZIONE ALBERI RADICATI RICORSIVAMENTE

- Un albero radicato può avere uno o più genitori/nodi interni, essi per definizione sono nodi che hanno almeno un figlio, cioè che non sono foglie, nella Figura 8.1 sono i nodi 2, 4 e anche la radice nodo 1 in questo caso è un genitore/nodo interno.
- Un albero radicato può essere rappresentato da una coppia di insiemi T=(V,E). Prendiamo come esempio la Figura 8.1.
 - V rappresenta i nodi, detti anche vertici o dall'inglese $\textbf{\textit{Vertexes}}.$ $V = \{1, 2, 3, 4, 5, 6, 7\}.$
 - E rappresenta gli archi, dall'inglese $\textbf{\textit{E}} dges$. L'insieme è composto a sua volta da coppie di nodi (genitore, figlio) dall'insieme V.

$$E\subset V\times V$$

$$E = \{(1,2), (1,3), (1,4), (2,5), (2,6), (4,7)\}.$$

Osservazione: la radice compare solo a sinistra delle coppie in quanto è l'unico nodo che è solo genitore e non ha genitori. Le foglie invece compaiono solo a destra delle coppie poiché per definizione non hanno figli.

- Infine la coppia viene chiamata T, dall'inglese Tree, cioè albero. $T = (\{1, 2, 3, 4, 5, 6, 7\}, \{(1, 2), (1, 3), (1, 4), (2, 5), (2, 6), (4, 7)\}).$

8.2 Definizione ricorsiva

Passo base: $T = (\{r\}, \{\emptyset\})$ è un albero radicato

Figura 8.2: Passo base definizione ricorsiva albero radicato.

Passo ricorsivo: Supponiamo che $T_1 = (V_1, E_1), ..., T_n = (V_n, E_n)$ siano alberi radicati disgiunti, cioè $\bigcap_{i=1}^n V_i = \emptyset$ (gli alberi non hanno nodi in comune). Le respettive radici sono $r_1 \in V_1, ..., r_n \in V_n$. Allora T = (V, E) si ottiene

ponendo come radice un nodo $r \notin V_1 \cup ... \cup V_n$ e da r si aggiunge un arco a ogni $r_1 \in V_1, ..., r_n \in V_n$.

$$V = \{r\} \cup V_1 \cup \ldots \cup V_n$$

$$E = \{(r, r_1), ..., (r, r_n)\} \cup E_1 \cup ... \cup E_n$$

T = (V, E) è un albero radicato.

Figura 8.3: Passo ricorsivo definizione ricorsiva albero radicato.

8.3 Numero di vertici

Passo base: Se $T = (\{r\}, \emptyset)$, allora |V| = 1

Passo ricorsivo: Se T=(V,E) è un albero radicato costruito a partire dagli alberi $T_1=(V_1,E_1),...,T_n=(V_n,E_n)$, allora $|V|=1+|V_1|+...|V_n|$.

N.B.: L'1 rappresenta la radice $r \notin V_1 \cup ... \cup V_n$, così come definito nel Passo ricorsivo della costruzione dell'albero radicato. Nella Figura 8.3 è il vertice r.

8.4 Numero di edges(archi)

Passo base: Se $T = (\{r\}, \{\emptyset\})$, allora |E| = 0

Passo ricorsivo: Se T = (V, E) è un albero radicato costruito a partire da $T_1 = (V_1, E_1), ..., T_n = (V_n, E_n)$, allora $|E| = n + |E_1| + ... + |E_n|$.

8. DEFINIZIONE ALBERI RADICATI RICORSIVAMENTE

N.B.: n sono gli archi dalla radice ai vertici $r_1 \in V_1, ..., r_n \in V_n$, nella Figura 8.3 sono gli archi in verde.

8.5 Numero di foglie

Sia f(T) la funzione che prende in input un albero e restituisce il numero di foglie di esso.

Passo base: Se $T = (\{r\}, \emptyset)$, allora f(T) = 1

Passo ricorsivo: Se T = (V, E) è un albero radicato costruito a partire da $T_1 = (V_1, E_1), ..., T_n = (V_n, E_n)$, allora $f(T) = f(T_1) + ... + f(T_n)$.

N.B.: La radice non viene aggiunta al conteggio del numero di foglie, perché $T_1, ..., T_n$ essendo alberi radicati, dal Passo base della definizione di albero radicato sappiamo che hanno almeno un vertice, ossia la radice. Poiché T è costruito a partire da $T_1 = (V_1, E_1), ..., T_n = (V_n, E_n)$, la radice di T avrà n figli e per definizione di foglia, non può essere una foglia se ha figli.

8.6 Numero di nodi interni

Sia i(T) la funzione che prende in input un albero e restituisce il numero di nodi interno di esso.

Passo base: Se $T = (\{r\}, \emptyset)$, allora i(T) = 0

Passo ricorsivo: Se T(V, E) è un albero radicato costruito a partire da $T_1 = (V_1, E_1), ..., T_n = (V_n, E_n)$, allora $i(T) = 1 + i(T_1) + ... + i(T_n)$.

N.B.: L'1 è la radice, in quanto nel Passo ricorsivo non è più una foglia. Il perché è spiegato nel "N.B." di Numero di foglie.

8.7 Altezza di un vertice

N.B.: L'altezza di un vertice si conta dal basso verso l'alto.

- Se v è una foglia, allora l'altezza di v è 0.
- Altrimenti l'altezza di v è la massima altezza tra i figli di v più 1.

8. DEFINIZIONE ALBERI RADICATI RICORSIVAMENTE

Osservazione: L'altezza di un albero è l'altezza della sua radice.

Prendendo come esempio Figura 8.1, i nodi di colore rosso hanno altezza 2, quelli di colore blu hanno altezza 1 e quelli di colore verde hanno altezza 0.

8.8 Profondità di un vertice

N.B.: La profondità di un vertice si conta dall'alto verso il basso.

- Se v è la radice, allora la profondità di v è 0.
- Altrimenti la profondità di v è la profondità del padre di v più 1.

Figura 8.4: Esempio profondità di un vertice.

CAPITOLO 9

DEFINIZIONE ALBERI BINARI RICORSIVAMENTE

9.1 Definizioni

• Un albero binario ha la caratteristica che ogni vertice può avere al massimo 2 figli.

Figura 9.1: Esempio di albero binario.

• Un albero binario pieno ha 0 o 2 figli a ogni vertice.

Figura 9.2: Esempio di albero binario pieno.

• Un albero binario pieno completo ha 2 figli a ogni vertice.

Figura 9.3: Esempio di albero binario pieno completo.

Poiché vi è un limite sui figli che ogni vertice può avere, ad ogni profondità/livello d dell'albero ci possono essere al massimo 2^d vertici.

9.2 Definizione ricorsiva albero binario pieno

Passo base: $T = (\{r\}, \emptyset)$ è un albero binario pieno.

Passo ricorsivo: Supponiamo che $T_1(V_1, E_1)$ e $T_2(V_2, E_2)$ siano alberi binari pieni disgiunti, cioè $V_1 \cap V_2 = \emptyset$ con radici $r_1 \in V_1$ e $r_2 \in V_2$. Allora T = (V, E) si ottiene ponendo come radice un nodo $r \notin V_1 \cup V_2$ e da r si aggiunge un arco a $r_1 \in V_1$ e $r_2 \in V_2$.

$$V = \{r\} \cup V_1 \cup V_2$$

9. DEFINIZIONE ALBERI BINARI RICORSIVAMENTE

$$E = \{(r, r_1), (r, r_2)\} \cup E_1 \cup E_2$$

T = (V, E) è un albero binario pieno.

9.3 Definizione ricorsiva di albero binario

Passo base: $T = (\emptyset, \emptyset)$ è un albero binario.

Passo ricorsivo Supponiamo che $T_1(V_1, E_1)$ e $T_2(V_2, E_2)$ siano alberi binari disgiunti, cioè $V_1 \cap V_2 = \emptyset$ con radici $r_1 \in V_1$ e $r_2 \in V_2$. Allora T = (V, E) si ottiene ponendo come radice un nodo $r \notin V_1 \cup V_2$ e da r si aggiunge un arco a $r_1 \in V_1$ e $r_2 \in V_2$.

$$V = \{r\} \cup V_1 \cup V_2$$

$$E = \{(r, r_1), (r, r_2)\} \cup E_1 \cup E_2$$

T = (V, E) è un albero binario.

CAPITOLO 10

PRINCIPIO DI INDUZIONE

10.1 Principio di induzione matematico

Passo base: Provare che il Passo base è vero, ossia P(m) è vera, dove è m è l'intero più piccolo del dominio.

Passo induttivo: Supporre per Ipotesi induttiva che P(k) è vera, provare che P(k+1) è vera. Per farlo, è essenziale usare l'ipotesi induttiva. $P(k) \implies P(k+1)$

N.B.: Giustificare ogni uguaglianza non banale.

10.2 Principio di induzione forte

Passo base: Provare che il Passo base è vero, ossia P(m) è vera, dove è m è l'intero più piccolo del dominio. Il Passo base può variare, possono essere anche più proposizioni vere nel passo base.

Passo induttivo: Supporre per Ipotesi induttiva che P(m), ..., P(k) è vera, provare che P(k+1) è vera. Per farlo, è essenziale usare l'ipotesi induttiva.

$$(P(m) \land P(m+1) \land ... \land P(k)) \implies P(k+1)$$

N.B.: Giustificare ogni uguaglianza non banale.

10.3 Principio di induzione strutturale

Passo base: Provare che l'enunciato P è vero per ogni elemento dell'insieme specificato nel Passo base della definizione ricorsiva dell'insieme.

Passo induttivo: Supporre per Ipotesi induttiva che l'enunciato P è vero per gli elementi nell'insieme, provare che l'enunciato è vero quando si costruiscono nuovi elementi dell'insieme usando il Passo ricorsivo dell'insieme e l'Ipotesi induttiva.

N.B.: Giustificare ogni uguaglianza non banale.

10.4 Quale induzione usare

Per dimostrare che due definizioni sono uguali, si deve dimostrare che $def_1 \subseteq def_2$ e $def_2 \subseteq def_1$.

- $def_{nonRicorsiva} \subseteq def_{ricorsiva}$: si usa il principio di induzione matematico in cui si fa induzione su un k.
- $def_{ricorsiva} \subseteq def_{nonRicorsiva}$: si usa il principio di induzione strutturale in cui si fa induzione sul Passo ricorsivo della definizione ricorsiva dell'insieme.
- $\forall w \in def_{ricorsiva}P(w)$: Si usa il principio di induzione strutturale anche quando si deve dimostrare che la $def_{ricorsiva}$ ha una proprietà.

10.5 Principio induzione sulle stringhe

Passo base: a seconda di quale induzione si usa, provare che gli elementi dell'insieme nel Passo base della definizione ricorsiva dell'insieme sono sottoinsiemi della definizione non ricorsiva o hanno una certa proprietà nel

10. PRINCIPIO DI INDUZIONE

caso del principio di induzione strutturale, il viceversa nel caso di induzione matematica.

Passo induttivo: a seconda di quale induzione si usa, si suppone per Ipotesi induttiva che l'insieme è sottoinsieme della definizione non ricorsiva oppure ha una certa proprietà e si dimostra che costruendo gli altri elementi dell'insieme usando il Passo ricorsivo, i nuovi elementi sono sempre sottoinsiemi della definizione non ricorsiva o hanno una certa proprietà nel caso di induzione strutturale, il viceversa nel caso di induzione matematica. Usare una w appartenente alla definizione ricorsiva che sia diversa dagli elementi nel Passo base.

10.6 Esempi

Esempio 10.6.0.1

Traccia

Passo base: $a \in B, b \in B$

Passo ricorsivo: Se $w \in B$, allora $wbb \in B$ e $wba \in B$

Utilizzando il Principio di induzione, dimostrare che ogni elemento di ${\cal B}$ ha lunghezza dispari.

Svolgimento

Bisogna dimostrare che $\forall w \in B, |w| = 2k + 1, k \ge 0$

Dimostrazione per il Principio di induzione strutturale, poiché si dimostra che una definizione ricorsiva ha una proprietà.

Passo base: |a|= (definizione lunghezza stringa) = 1 = 2 · 0 + 1, |b|= (definizione lunghezza stringa)= 1 = 2 · 0 + 1

Passo induttivo:

Ipotesi induttiva: $|w| = 2k + 1, w \in B$.

Sia $w \in B, w \neq a, w \neq b$. Allora w = ubb oppure $w = uba, u \in B$. Per ipotesi induttiva esiste un $k \geq 0$ tale che |w| = 2k + 1.

Per la definizione ricorsiva di lunghezza di stringa, risulta che:

•
$$|w| = |ubb| = |ub| + 1 = |u| + 2 = 2k + 1 + 2 = 2(k+1) + 1$$

10. PRINCIPIO DI INDUZIONE

• |w| = |uba| = |ub| + 1 = |u| + 2 = 2k + 1 + 2 = 2(k+1) + 1

Il Passo induttivo è stato dimostrato e pertanto l'enunciato è vero.

Esempio 10.6.0.2

Traccia

$$A \subset \{a,b\}^*$$

Passo base: $b \in A$

Passo ricorsivo: Se $w \in A$, allora $wab \in A$

Dimostrare che $\forall n \in \mathbb{N}, b(ab)^n \in A$

Svolgimento

Dimostrazione per Principio di induzione matematico, in quanto si dimostra $def_{nonRicorsiva} \subseteq def_{ricorsiva}$.

Passo base: $b(ab)^0$ =(definizione potenze stringhe)= $b\lambda$ =(definizione concatenazione stringhe)= $b \in A$

Passo induttivo:

Ipotesi induttiva: $b(ab)^k = w \in A$.

Sia $w \in A, w \neq b$. Allora $w = uab, u \in A$.

$$b(ab)^{k+1} = b(ab)^k \cdot ab = wab \in A$$

Il passo induttivo è stato dimostrato e pertanto l'enunciato è vero.

10.7 Principio di induzione strutturale sugli alberi radicati

Passo base: Provare che P(T) è vera se $T=(\{r\},\emptyset)$

Passo induttivo: Sia T = (V, E) un albero costruito a partire dagli alberi radicati $T_1 = (V_1, E_1), ..., T_n = (V_k, E_k)$. Per **Ipotesi induttiva** $P(T_1), ..., P(T_k)$ sono vere, provare usando l'ipotesi induttiva che P(T) è vera quando si costruisce T.

Esempio 10.7.0.1

Traccia

Per ogni albero radicato T = (V, E) risulta |V| = |E| + 1.

Svolgimento

Passo base: $T = (\{r\}, \emptyset), |V| = 1 = |\emptyset| + 1 = 0 + 1 = 1$

Passo induttivo:

Sia T = (V, E) costruito a partire dagli alberi $T_1 = (V_1, E_1), ..., T_k = (V_k, E_k)$.

Ipotesi induttiva: $|V_i| = |E_i| + 1, 1 \le i \le k$

 $V = (\text{definizione albero radicale}) = r \cup V_1 \cup ... \cup V_k$

 $E = (\text{definizione albero radicale}) = \{(r, r_1), ..., (r, r_k)\} \cup E_1 \cup ... \cup E_k$

 $|V| = r + |V_1| + ... + |V_k|$ =(ipotesi induttiva)= $1 + |E_1| + 1 + ... + |E_k| + 1 = |E| + 1$

Il passo ricorsivo è stato dimostrato e pertanto l'enunciato è vero.

10.8 Principio induzione strutturale sugli alberi binari pieni e non

Passo base: Provare che P(T) è vera se $T=(\{r\},\emptyset)$. Nel caso di albero binario non pieno, si prova che P(T) è vera se $T=(\emptyset,\emptyset)$. Il Passo induttivo è uguale.

Passo induttivo: Sia T = (V, E) un albero binario pieno o non costruito a partire dagli alberi binari pieno o non $T_1 = (V_1, E_1)$ e $T_2 = (V_2, E_2)$. Per **Ipotesi induttiva** $P(T_1)$ e $P(T_2)$ sono vere, provare usando l'ipotesi induttiva che P(T) è vera quando si costruisce T.

Esempio 10.8.0.1

Traccia

Sia f(T) la funzione che prende in input un albero e restituisce il numero di foglie di esso.

Sia h(T) la funzione che prende in input un albero e restituisce la sua altezza.

In un albero binario T il numero di foglie è minore o uguale di 2^h , dove h è l'altezza di T, cioè $f(T) \leq 2^{h(T)}$.

Svolgimento

Passo base:

$$T = (\emptyset, \emptyset)$$
 oppure $T = (\{r\}, \emptyset)$

$$h(T) = 0$$

$$f(T) = 0 \le 2^0 = 1$$
 oppure $f(T) = 1 \le 2^0 = 1$

Passo induttivo:

Sia T = (V, E) un albero binario pieno o non costruito a partire dagli alberi $T_1 = (V_1, E_1)$ e $T_2 = (V_2, E_2)$.

Ipotesi induttiva: $f(T_i) \leq 2^{h(T_i)}, 1 \leq i \leq 2$

Abbiamo due casi a seconda che la radice abbia uno o due figli:

- Nel primo caso abbiamo che $h(T_1) = h(T) 1$ e che $f(T) = f(T_1)$ e quindi si ha che $f(T) = f(T_1) \le 2^{h(T_1)} = 2^{h(T)-1} < 2^{h(T)}$.
- Nel secondo caso abbiamo che $h(T_i) = h(T) 1, 1 \le i \le 2$ e che $f(T) = f(T_1) + f(T_2)$, quindi si ha che $f(T) = f(T_1) + f(T_2) \le 2^{h(T_1)} + 2^{h(T_2)} = 2^{h(T)-1} + 2^{h(T)-1} = 2 \cdot 2^{h(T)-1} = 2^{h(T)}$

Il passo induttivo è stato dimostrato e pertanto l'enunciato è vero.

CAPITOLO 11

RELAZIONI DI RICORRENZA

11.1 Metodo di iterazione

Una relazione di ricorrenza può essere risolta con il metodo di iterazione.

- Per prima cosa calcolare il valore per alcune chiamate ricorsive a T in T(n), ossia calcolare T(--) in T(n) = ...T(--)... per trovare un pattern nelle soluzioni.
- Una volta individuato il pattern, sostituirlo con opportune variabili, ad esempio i e porre le variabili in un intervallo in modo tale che la condizione iniziale di n > k sia vera. Se non è presente chiaramente questa condizione, deve essere ricavata. Si ricava semplicemente ponendo n > m, dove m è il "Passo base" della relazione di ricorrenza, ad esempio se è T(1) = ..., allora n > 1.
- Porre i al suo valore massimo nell'intervallo, in quanto di sta calcolando T(n).
- Fare i calcoli e ci si ritroverà con la risoluzione della relazione di ricorrenza.

11. RELAZIONI DI RICORRENZA

N.B.: In generale durante i calcoli di T(n) = ...T(--)... deve scomparire qualsiasi richiamo a T(--), l'unico modo per farlo scomparire è che -- sia uguale m, dove m è il "Passo base" della relazione di ricorrenza, poiché ne conosciamo il valore di T(m) si sostituisce il richiamo a T(m) con il suo valore. Ad esempio T(1) = 4, allora m = 1 e -- = m = 1 e si sostituisce la chiamata a T(m) con 4. Questo può aiutare con i calcoli e a vedere si sta facendo bene.

Esempio 11.1.0.1

Traccia

$$T(1) = 2$$

 $T(n) = T(n-1) + 3, n > 1$

Svolgimento

$$T(n) = T(n-1) + 3 =$$

$$^{1} = [T(n-2) + 3] + 3 = T(n-2) + 3 \cdot 2 =$$

$$^{2} = [T(n-3) + 3] + 2 \cdot 3 = T(n-3) + 3 \cdot 3$$
...
$$T(n) = T(n-i) + 3 \cdot i, 1 < i < n-1$$

 $i \leq n-1$ perché abbiamo bisogno che n-i sia uguale a 1 perché T inizia da 1.

$$T(n) = T(n - (n - 1) + 3(n - 1) =$$

$$T(n - n + 1) + 3n - 3 =$$

$$T(1) + 3n - 3 = 2 + 3n - 3 = 3n - 1$$

$$T(n) = a_n = 3n - 1$$

La relazione di ricorrenza è stata risolta, si verifica con il Principio di induzione matematico se è vera.

$$^{1}T(n-1) = T((n-1)-1) + 3 = T(n-2) + 3$$

 $^{2}T(n-2) = T((n-2)-1) + 3 = T(n-3) + 3$

Principio di induzione matematico sulle 11.2 relazioni di ricorrenze

Passo base: Provare che $a_m = T(m)$, dove m rappresenta il più piccolo elemento del dominio.

Passo induttivo: Provare che $T(n) = a_n$. Per Ipotesi induttiva in T(n) = ...T(--)... si ha che $a_{--} = T(--)$. Sostituire T(--) con a_{--} nella definizione di T(n), fare i calcoli e risulterà che $T(n) = a_n$.

Esempio 11.2.0.1

Traccia

Dall'esempio precedente dimostrare che $T(n) = T(n-1) + 3 = a_n = 3n-1$

Svolgimento

Passo base: $a_1 = 3 \cdot 1 - 1 = 3 - 1 = 2 = T(1)$

Passo induttivo:

Ipotesi induttiva:
$$a_{n-1} = T(n-1) = 3(n-1) - 1 = 3n - 3 - 1 = 3n - 4$$

 $T(n) = T(n-1) + 3 = a_{n-1} + 3 =$
 $= [3n-4] + 3 = 3n - 1$

Il passo induttivo è stato dimostrato e pertanto l'enunciato è vero.

11.3Esempio più complesso

Esempio 11.3.0.1

Traccia

$$T(1) = 1$$

$$T(n)=2T(\frac{n}{2})+n,\, n>1$$
e n potenza di 2.

Svolgimento

$$T(n) = 2T(\frac{n}{2}) + n =$$

$$^{3}=2[2T(\frac{n}{2^{2}})+\frac{n}{2}]+n=2^{2}T(\frac{n}{2^{2}})+n+n=2^{2}T(\frac{n}{2^{2}})+2n=0$$

$$^{4}=2^{2}\left[2T(\frac{n}{2^{3}})+\frac{n}{2^{2}}\right]+2n=2^{3}T(\frac{n}{2^{3}})+n+2n=2^{3}T(\frac{n}{2^{3}})+3n$$

$$\begin{array}{c} {}^3T(\frac{n}{2}) = 2T((\frac{n}{2})/2) + \frac{n}{2} = 2T(\frac{n}{2^2}) + \frac{n}{2} \\ {}^4T(\frac{n}{2^2}) = 2T((\frac{n}{2^2})/2) + \frac{n}{2^2} = 2T(\frac{n}{2^3}) + \frac{n}{2^2} \end{array}$$

$${}^{4}T(\frac{n}{2^{2}}) = 2T((\frac{n}{2^{2}})/2) + \frac{n}{2^{2}} = 2T(\frac{n}{2^{3}}) + \frac{n}{2^{2}}$$

. . .

$$T(n) = 2^i T(\frac{n}{2^i}) + i \cdot n, \ 1 \le i \le \log_2 n$$

N.B.: $i \leq \log_2 n$ perché abbiamo bisogno che $\frac{n}{2^i}$ sia uguale a 1 perché T inizia da 1 e quindi che 2^i sia uguale a n. Dalle proprietà matematiche si ha che $x^{\log_x n} = n$.

$$T(n) = 2^{\log_2 n} T(\frac{n}{2^{\log_2 n}}) + \log_2 n \cdot n =$$

$$= nT(n/n) + n \log_2 n =$$

$$= n \cdot 1 + n \log_2 n = n + n \log_2 n$$

Dimostrazione

Passo base: $a_1 = 1 + 1 \log_2 1 = 1 + 0 = 1 = T(1)$

Passo induttivo:

Ipotesi induttiva: n potenza di 2 e $a_{\frac{n}{2}} = T(\frac{n}{2}) = \frac{n}{2} + \frac{n}{2}\log_2\frac{n}{2}$

$$T(n) = 2T(\frac{n}{2}) + n = 2a_{\frac{n}{2}} + n =$$

$$= 2\left[\frac{n}{2} + \frac{n}{2}\log_2\frac{n}{2}\right] + n$$

$$= n + n\log_2\frac{n}{2} + n =$$

$$= n + n(\log_2 n - \log_2 2) + n =$$

$$= n + n\log_2 n - n + n =$$

$$= n + n\log_2 n = a_n$$

Il passo induttivo è stato dimostrato e pertanto l'enunciato è vero.

ELENCO DELLE FIGURE

2.1	Rappresentazione grafica esempio di insieme di verita	15
8.1	Esempio albero radicato	32
8.2	Passo base definizione ricorsiva albero radicato	33
8.3	Passo ricorsivo definizione ricorsiva albero radicato	34
8.4	Esempio profondità di un vertice	36
9.1	Esempio di albero binario	37
9.2	Esempio di albero binario pieno	38
9.3	Esempio di albero binario pieno completo	38

ELENCO DELLE TABELLE

1.1	Tabella di verità del connettivo logico NOT	3
1.2	Tabella di verità del connettivo logico AND	4
1.3	Tabella di verità del connettivo logico OR	4
1.4	Tabella di verità del connettivo logico XOR	4
1.5	Tabella di verità del connettivo logico Implicazione	5
1.6	Tabella di verità del connettivo logico Equivalenza	5
1.7	Tabella di verità della tautologia $(p \wedge q) \implies (p \vee q)$	6
1.8	Tabella di verità della contraddizione $p \wedge \neg p$	6
1.9	Tabella di verità di $p \implies q \not\equiv q \implies p$	7
1.10	Tabella di verità di $p \implies q \not\equiv \neg p \implies \neg q$	7
1.11	Tabella di verità di $p \implies q \equiv \neg p \implies \neg q$	8
1.12	Tabella di verità di $q \implies p \equiv \neg p \implies \neg q$	8
3.1	Tabella di verità di $p \implies p$	17
4.1	Tabella di verità di $p \implies q e p \land \neg q$	19