Algebra Linear - Lista de Exercícios 10

- 1. Seja $A = \begin{bmatrix} 1 & b \\ b & 1 \end{bmatrix}$.

 (a) Ache b tal que A tenha um autovalor negativo. \rightarrow force a production a concentration a (b) Como podemos concluir que A precisa ter um pivô negativo?
- (c) Como podemos concluir que A não pode ter dois autovalores negativos? 2. Em quais das seguintes classes as matrizes A e B abaixo pertencem: invertível, ortogonal, projeção,
 - permutação, diagonalizável, Markov? PPT=IZ
 - arkov? (s. entrados > 0 e $Z_1 = 1$) $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} e B = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 \end{bmatrix}.$ $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} e B = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}.$
- Quais das seguintes fatorações são possíveis para $A \in B$? LU, QR, $S\Lambda S^{-1}$ ou $Q\Lambda Q^T$?
- 3. Complete a matriz A abaixo para que seja de Markov e ache o autovetor estacionário. Sua conclusão é válida para qualquer matriz simétrica de Markov e ache o autovetor estacionário. é válida para qualquer matriz simétrica de Markov A? Por quê?
 - Grader mother sumetries of $A = \begin{bmatrix} 0.7 & 0.1 & 0.2 \\ 0.1 & 0.6 & 0.3 \\ * & * & * \end{bmatrix}$ as an analysis sumetries of $A = \begin{bmatrix} 0.7 & 0.1 & 0.2 \\ 0.1 & 0.6 & 0.3 \\ * & * & * \end{bmatrix}$ ao autovolor 1
- 4. Dizemos que \mathcal{M} é um grupo de matrizes invertíveis se $A, B \in \mathcal{M}$ implica $AB \in \mathcal{M}$ e $A^{-1} \in \mathcal{M}$. Quais dos conjuntos abaixo é um grupo?
 - (a) O conjunto das matrizes positivas definidas; (b) o conjunto das matrizes ortogonais; $x^T A x > 0$ $\forall x \neq 0 \in \mathbb{R}^n$.

 (c) o conjunto $\{e^{tC} \cdot t \in \mathbb{R}^n\}$

 - (d) o conjunto das matrizes com determinante igual a 1.
- 5. Sejam A e B matrizes simétricas e positivas definidas. Prove que os autovalores de AB são positivos.
- 6. Ache a forma quadrática associada à matriz $A = \begin{bmatrix} 1 & 5 \\ 7 & 9 \end{bmatrix}$. Qual o sinal dessa forma quadrática? Positivo, negativo ou ambos?
- $f(x,y) = [x y] A \Big|_{y}^{x}$ Positivo, negativo ou ambos?
- 7. Prove os seguintes fatos:
 - (a) Se $A \in B$ são similares, então $A^2 \in B^2$ também o são. A \mathcal{L} rundom a \mathcal{G} ($A \sim \mathcal{B}$) $\mathcal{A} \supseteq \mathcal{A}$
 - (b) $A^2 \in B^2$ podem ser similares sem $A \in B$ serem similares. Minimal Inland $A = M \otimes M^{-1}$
- (c) $\begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix}$ é similar à $\begin{bmatrix} 3 & 1 \\ 0 & 4 \end{bmatrix}$, discredings (\Rightarrow da un quiple (d) $\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$ não é similar à $\begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$.

 (b) The posterior set standards sent to 2 sector and quiple (\Rightarrow da un quiple
- 9. Suponha que as colunas de A sejam $\mathbf{w}_1, \dots, \mathbf{w}_n$ que são vetores ortogonais com comprimentos $\sigma_1, \dots, \sigma_n$ Calcule $A^T A$. Ache a decomposição SVD de A.

