

Marcel Solé Àvila, Georgios Tsaousoglou

The Best Response Algorithm Part 2

The MPEC

The MPEC

$$\min_{X_{ exttt{UL}},\Xi_{ exttt{UL}}} \left\{ \sum_{i \in \Omega_j^{ exttt{I}}} \left(-\lambda P_i^{ exttt{G}} + ext{c}_i^{ exttt{G}} P_i^{ exttt{G}}
ight)
ight\}$$

subject to:

$$egin{aligned} & lpha^{\min} \leq lpha_i^{\mathrm{G}} \leq lpha^{\max} & \forall i \in \Omega_j^{\mathrm{I}}, \\ & \min_{X_{\mathrm{LL}}} \left\{ \sum_{i \in \mathcal{I}} lpha_i^{\mathrm{G}} P_i^{\mathrm{G}}
ight\} \end{aligned}$$

subject to:

$$\begin{split} \mathbf{D} - \sum_i P_i^{\mathrm{G}} &= 0: \lambda, \\ \mathbf{P}_i^{\mathrm{Gmin}} &\leq P_i^{\mathrm{G}} \leq \mathbf{P}_i^{\mathrm{Gmax}} : \mu_i^{\mathrm{G}_{\mathrm{min}}}, \mu_i^{\mathrm{G}_{\mathrm{max}}}, \qquad \forall i \in \mathcal{I} \end{split}$$

Where:

$$\begin{split} X_{\text{UL}} = & \left\{ \alpha_{i \in \Omega_j^{\text{I}}}^{\text{G}}, P_{i \in \mathcal{I}}^{\text{G}} \right\} \\ \Xi_{\text{UL}} = & \left\{ \lambda_{n,t} \mu_i^{\text{G}_{\text{min}}}, \mu_i^{\text{G}_{\text{max}}} \right\} \\ X_{\text{LL}} = & \left\{ P_{i \in \mathcal{I}}^{\text{G}} \right\} \end{split}$$

Other players bids are parameters.
Only our bids are optimized over

The Best Response Algorithm

The Best Response Algorithm

The Best Response Algorithm

RPoA over the discretized search space

Diagonalization Algorithm == Best Response

Exercise

- Consider 3 players, with 1 generator each.
- Consider a range of possible cost range(minFuelCost, maxFuelCost) for each player.
- Discretize each range in S segments. Keep it to 2 segments so the search space is not to large.
- For every combination SxSxS run the BR algorithm. Use convergence based on profit or a number of max iterations.
- For every combination clear the market at true costs.
- Calculate the PoA of the SxSxS space.
- Generalize the previous in a python function where you can pass the number of players, the range of fuel cost of each player, and the number of segments for discretatization.
- What do you see when you increase the number of players?
- What about when the discretization is finer?
- Can you even compute all the combinations?

Related literature

- Complementarity, Not Optimization, is the Language of Markets, Antonio J. Conejo, Carlos Ruiz
- https://doi.org/10.1109/oajpe.2020.3029134

23-09-2025 Technical University of Denmark Game theory for the electricity market

#