Analiza matematyczna dla informatyków.

Mieczysław Cichoń, ver. 4.2/2023

Mieczysław Cichoń - WMI UAM

Plan wykładów ...

Granica i ciągłość funkcji jednej zmiennej rzeczywistej. Punkt skupienia zbioru.

Granica funkcji w punkcie. Ciągłość funkcji (np. spline) i ciągłość jednostajna funkcji. Własność Darboux. Twierdzenie Weierstrassa o kresach.

Ciąg dalszy informacji o funkcjach zadanych szeregiem potęgowym. Wybrane funkcje elementarne. Funkcje zadane szeregami potęgowymi w informatyce (np. błędu).

Wybrane szeregi potęgowe i ich obliczanie. Błąd obliczeniowy. (na ćwiczeniach: kilka granic funkcji i badanie ciągłości funkcji zadanych klamrowo, wykorzystanie własności Darboux do obliczania miejsc zerowych równań nieliniowych.

Strony do lektury na wykłady:

Czytamy najpierw motywacje:

[K] : motywacje - strony 24-27

teraz wstępne materiały

[K] : strony 163-166, 168-171

ale tym razem głównym źródłem jest:

[W]: strony 77-96, pomocniczo 98-102

(lub alternatywnie: z tego wykładu strony 53-69).

Funkcje 1.

Fakt, że badanie funkcji jest **niezbędne informatykom** nie podlega chyba (czyżby?) dyskusji (a już funkcje logarytmiczna i wykładnicza przy szacowaniach błędów metod, to już absolutna podstawa). Ale twierdzenia o ich własnościach też będą przydatne?

Funkcja dla komputera, to w uproszczeniu (na razie) pewna reguła zgodnie z którą powinien obliczyć dla dowolnej wartości x z dziedziny jej wartość f(x) - oczywiście najchętniej dokładnie. Ale to nie takie oczywiste... Skoro liczba x jest reprezentowana z pewną dokładnością, to to nie może być mowy o dokładnym wyniku f(x)! Przybliżanie wartości to konieczny element więszości obliczeń komputerowych. Poza tym dane x też mogą być obarczone dodatkową niepewnością np. pomiarową...

Funkcje 2.

Jeżeli liczba jest niewymierna, to ma nieskończone rozwinięcie (np. dziesiętne) i można tylko operować na przybliżeniach. Trzeba być świadomy błedu i kontrolować go. W miare możliwości to programista ma go ograniczać. Wyobraźmy sobie, że mamy obliczyć $f(\sqrt{5})$ dla pewnej funkcji f, przesłać wynik, a odbiorca wykona dalsze obliczenie np. $g(f(\sqrt{5}))$. Po pierwsze $\sqrt{5}$ do obliczeń musi być przybliżone,czyli $f(\sqrt{5})$ też (zawsze?), teraz problem transmisji danych - to może zwiększyć błąd i znowu obliczenia przybliżone... Inny problem to m.in. czas obliczeń (niekiedy muszą być w czasie "rzeczywistym"). A może przekazać wartość $\sqrt{5}$ w dokładnej postaci i całość obliczeń wykonać po transmisji? Jak? Np. przekazać równanie $x^2 - 5 = 0$, ale to już inna historia. Jest niestety gorzej - nie wszystkie liczby rzeczywiste są pierwiastkami wielomianów o współczynnikach wymiernych (nie sa algebraiczne) np. π . Czyli kontrola przybliżeń to wyzwanie dla informatyków.

Funkcje 3.

Proste zastosowania:

- twierdzenie o złożeniu funkcji obliczalnych (teoria obliczalności),
- funkcje tworzące i ich własności przy badaniach rekurencji,
- interpolacja trygonometryczna (funkcje okresowe),
- funkcje skrótów (haszujące),
- problemy złożoności obliczeniowej (np. funkcje logarytmiczne i wielomianowe),
- w metodach numerycznych własność Darboux przy badaniu istnienia rozwiązań równań nieliniowych (powiemy o tym przy okazji metody bisekcji),
- funkcje tworzące dla "matematyki dyskretnej" zastosowanej w informatyce,
- grafika komuterowa, wizualizacja, analiza obrazów (a tam funkcje trygonometryczne, pochodne) itd.

Funkcje 4.

A jak programy obliczają wartości funkcji? Czy jest "najlepszy algorytm"? Dla zainteresowanych **przegląd** algorytmów dla funkcji $f(x) = \sqrt{x}$ można znaleźć tu:

https://www.codeproject.com/Articles/69941/Best-Square-Root-Method-Algorithm-Function-Precisi

Tak - to ponownie obliczanie wartości pierwiastków...

Funkcje 5.

I jeszcze jedno pytanie: czy nie wystarczy badać funkcji od razu w wersji dyskretnej? Czyli wypełnić np. tablicę wartości funkcji w pewnych punktach i to wszystko? Krótko: nie! Przy wszelkich zachowaniach "granicznych" (cokolwiek o tym pojęciu myślimy) to za mało - o czym powiemy.

Czasami jest wręcz przeciwnie: mamy wartości dyskretne (np. ciąg zadany rekurencyjnie). Ale ich obliczanie może mieć dużą złożoność obliczeniową (dla zainteresowanych: np. liczby Catalana) i wtedy **tworzymy** funkcję odpowiadajacą tym wartościom (funkcja tworząca :-)) i badamy jej wartości - za pomocą różnych metod, w tym szeregów Taylora, pochodnych itp.: o czym też opowiemy... (a więcej w "Concrete Mathematics...").

Funkcje 6.

Co ważne: w wielu zastosowaniach istotne są tylko własności pewnych funkcji, a nie ich dokładne wartości lub np. wykresy! Z bardziej zaawansowanych zastosowań (bez metod numerycznych):

- Grafika komputerowa: interpolacja, transformaty (Fouriera w JPEG czy falkowa w formacie JPEG 2000) (i algebra liniowa).
- Optymalizacja: cały rachunek różniczkowy (i algebra liniowa),
- ▶ Robotyka (i inne modelowania fizyczne): analiza funkcji wielu zmiennych,
- Transmisja danych (np. oszczędne algorytmy przesyłu strumieniowego): rachunek różniczkowy stosowany do probabilistyki, (przesył danych - transformaty Fouriera itp.),
- Analiza algorytmów o tym szerzej poniżej (np. asymptotyka)...
- Jako metoda komunikacji z użytkownikami oprogramowania!!
- Algorytmy kryptograficzne: istotna różnowartościowość funkcji, a także własności pewnych klasycznych funkcji (np. funkcja sinus w algorytmie MD5), ...

Odwzorowania

Niech X i Y oznaczają dowolne zbiory niepuste.

Odwzorowaniem określonym w zbiorze X o wartościach ze zbioru Y nazywamy przyporządkowanie (pewną metodą) każdemu elementowi $x \in X$ jakiegoś elementu $y \in Y$. Zapiszemy to $f: X \longrightarrow Y$, gdzie f jest symbolem tego odwzorowania.

Odwzorowanie dla którego każdemu $x \in X$ przyporządkowano dokładnie jeden $y \in Y$ nazywamy **funkcją**.

Podstawowe pojęcia.

O ile nie określono inaczej: będziemy domyślnie rozumieć, że dziedziną jest zbiór dla którego dany wzór ma sens (największy taki zbiór). Mówimy, że funkcja $f:X\longrightarrow Y$ odwzorowuje zbiór X na zbiór Y (f jest $\mathbf{surjekcjq}$), gdy dla każdego $y\in Y$ istnieje (co najmniej jeden) element $x\in X$ taki, że y=f(x). Inaczej mówiąc f(X)=Y.

O ile $f(X) \subseteq Y$ (tj. $f(X) \subset Y$, ale istnieje $y \in Y \setminus f(X)$) to mówimy, że f odwzorowuje zbiór X w zbiór Y.

Przykładem funkcji f z \mathbb{R} na \mathbb{R} jest f(x) = 4x + 2, a przykładem funkcji f z \mathbb{R} w (nie jest to surjekcja) \mathbb{R} $f(x) = x^2 + 1$ (wówczas zbiór wartości: $f(X) = <1, \infty$)).

Fakt, że f odwzorowuje zbiór X na zbiór Y oznaczać będziemy

$$f: X \xrightarrow{\mathsf{na}} Y.$$

Różnowartościowość.

Będziemy mówili, że funkcja $f: X \longrightarrow Y$ jest **różnowartościowa** (inne nazwy: iniekcja, wzajemnie jednoznaczna, jedno-jednoznaczna, "jeden na jeden"), gdy zachodzi implikacja

$$(f(x) = f(y)) \Longrightarrow (x = y)$$
, dla dowolnego $x, y \in X$.

Funkcją różnowartościową jest np. $f: \mathbb{R} \longrightarrow \mathbb{R}, \ f(x) = 3x + 1,$ a nie jest nią np. $f: \mathbb{R} \longrightarrow \mathbb{R}, \ f(x) = \sin x.$

Fakt różnowartościowości funkcji f oznaczać będziemy

$$f: X \xrightarrow{1-1} Y.$$

Bijekcje i funkcje odwrotne.

Jeżeli funkcja $f: X \xrightarrow[na]{1-1} Y$ jest równocześnie różnowartościowa i odwzorowuje zbiór X na zbiór Y to nazywamy ją bijekcją.

W tym przypadku f określa również inną funkcję (to ważne twierdzenie i powinniśmy to wykazać !!) z Y na X nazywaną funkcją odwrotną do f (oznaczaną przez f^{-1}): $f^{-1}: Y \longrightarrow X$.

$$(f^{-1}(y) = x) \Longleftrightarrow (f(x) = y) .$$

(A) - funkcja 1-1 i "na"
(B) - funkcja 1-1, ale nie "na"
(C) - funkcja nie jest 1-1 i jest "na"
(D) - funkcja nie jest ani 1-1, ani "na"

Przykład.

Niech f(x) = 2x + 6 , pokażemy, że jest bijekcją.

Niech $x_1 \neq x_2$, czyli $x_1 - x_2 \neq 0$ oraz

$$f(x_1) - f(x_2) = 2x_1 + 6 - (2x_2 + 6) = 2x_1 + 6 - 2x_2 - 6 =$$

= $2x_1 - 2x_2 = 2(x_1 - x_2) \neq 0$ na mocy założenia.

Funkcja f jest więc różnowartościowa.

Weźmy teraz dowolne $y\in\mathbb{R}$. Ponieważ szukamy $x\in\mathbb{R}$ takiego, że y=f(x), to uzyskamy równanie y=2x+6 i dalej y-6=2x, czyli ostatecznie $\frac{1}{2}y-3=x$. Istnieje więc $x\in\mathbb{R}$ takie, że y=f(x), czyli f jest "na" \mathbb{R} .

Stąd
$$f^{-1}(y) = \frac{1}{2}y - 3$$
, i $f^{-1}: \mathbb{R} \longrightarrow \mathbb{R}$ jest bijekcją.

Ważną rolę odgrywają pewne klasy odwzorowań:

- (a) Niech $f:\mathbb{N}\longrightarrow\mathbb{R}$. Takie funkcje, dla których dziedziną jest zbiór liczb naturalnych nazywamy **ciągami** (o ile wartości funkcji są w \mathbb{R} to ciągami liczbowymi).
 - (b) Niech $X_1 = \{1, 2, 3, \dots, n\}, X_2 = \{1, 2, \dots, m\}.$

Funkcje $f: X_1 \times X_2 \longrightarrow \mathbb{R}$ nazywać będziemy **macierzami** $n \times m$ -elementowymi.

Więcej o tych klasach odwzorowań powiemy później.

Co ważne: własności wprowadzimy dla funkcji, ale najważniejsze zastosowania w informatyce dotyczyć będą **funkcji wielu zmiennych** $f: \mathbb{R}^N \to \mathbb{R}$ oraz tzw. **odwzorowań** $f: \mathbb{R}^n \to \mathbb{R}^m$.

Wykresy funkcji odwrotnych dla przypadku $f: \mathbb{R} \to \mathbb{R}$.

Jeżeli f^{-1} jest funkcją odwrotną dla $f: \mathbb{R} \to \mathbb{R}$, to jej wykres jest symetryczny do wykresu funkcji f względem prostej y = x.

Monotoniczność.

Definicja. Niech $f: A \longrightarrow \mathbb{R}, A \subset \mathbb{R}, A \neq \emptyset$.

Będziemy mówić, że funkcja f jest:

- (a) rosnąca w A, gdy $(x_1, x_2 \in A, x_1 < x_2) \implies f(x_1) < f(x_2),$
- (b) malejąca w A, gdy $(x_1, x_2 \in A, x_1 < x_2) \implies f(x_1) > f(x_2),$
- (c) niemalejąca w A, gdy $(x_1, x_2 \in A, x_1 < x_2) \implies f(x_1) \leqslant f(x_2),$
- (d) nierosnąca w A, gdy $(x_1, x_2 \in A, x_1 < x_2) \implies f(x_1) \geqslant f(x_2).$

W przypadku, gdy dla dowolnych $x_1, x_2 \in A$, $f(x_1) = f(x_2)$ funkcję nazywać będziemy stałą.

Monotoniczność cd.

Oczywiście funkcja może nie mieć żadnej z powyższych własności!

(np.
$$f(x) = \sin x$$
 dla $A = \mathbb{R}$), ale:

wszystkie funkcje posiadające jedną z powyższych własności nazywamy **monotonicznymi** (funkcje z (a) i (b) - ściśle monotonicznymi).

U w a g a: Zwracamy szczególną uwagę, że własność ta zależy od zbioru (dziedziny)! Umawiamy się, że mówiąc krótko "funkcja f jest monotoniczna" oznaczać to będzie, że jest monotoniczna w całej swojej dziedzinie.

Funkcje wypukłe.

Definicja. Niech $A\subset\mathbb{R}$ będzie przedziałem. Funkcję $f:A\longrightarrow\mathbb{R}$ nazywamy **wypukłą** w A gdy dla dowolnych $a,b\in A$ oraz dowolnych $s,t\in\mathbb{R},\ k\in[0,1]$, zachodzi nierówność

$$f(k \cdot a + (1-k) \cdot b) \leqslant k \cdot f(a) + (1-k) \cdot f(b) .$$

W przypadku, gdy nierówność zachodzi w przeciwnym kierunku funkcję nazywamy **wklęsłą** w *A*.

Ponownie zwracamy uwagę, że ta własność także zależy od zbioru, a nierówność jest na ogół bardzo dobrym oszacowaniem dla wartości funkcji f często wykorzystywanym w różnych zastosowaniach.

Nieco później podamy inną metodę badania wypukłości funkcji f. Ilustracją graficzną tej cechy jest fakt, iż odcinek łączący dowolne dwa punkty wykresu $\{(x,y):x\in A,\ y=f(x)\}$ "leży nad" wykresem funkcji (dokładnie to stwierdza nierówność z definicji!! - zrobić odpowiedni rysunek).

Przykładami funkcji wypukłych są np. $f(x)=x^2, x\in\mathbb{R}$ czy $f(x)=e^x, x\in\mathbb{R}$, natomiast funkcja $f(x)=\sin x$ jest wypukła w $A=[\pi,2\pi]$, ale nie jest wypukła w swojej dziedzinie. Funkcje wklęsłe to np. $f(x)=-x^2, x\in\mathbb{R}$ czy $f(x)=\log x, x\in(0,\infty)$.

Przykład. Ponieważ $2=\frac{1}{2}\cdot 1+\frac{1}{2}\cdot 3$, a funkcja $f(x)=\sqrt{x}$, $x\in[0,\infty)$ jest wklęsła (sprawdzić!), to m.in. (!) wstawiając a=1 oraz b=3 do definicji uzyskamy

$$\sqrt{2}\geqslant\frac{1}{2}\cdot\sqrt{1}+\frac{1}{2}\sqrt{3},$$

czyli $2\sqrt{2}-\sqrt{3}\geqslant 1$, a ta nierówność nie dla wszystkich jest oczywista...

Podobnie natychmiast mamy przydatne oszacowanie pierwiastka: $\sqrt{2} \leqslant \frac{3}{2}$ (tu: $\frac{1}{2} = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 0$, gdyż $f(x) = 2^x$ -wypukła).

Funkcje elementarne.

A teraz podamy klasę funkcji zwanych elementarnymi. Jest to niestety umowne pojęcie i można spotkać w literaturze zestawy takich funkcji nieco różniące się od naszego, ale na szczęście raczej rzadko.

Do funkcji elementarnych zaliczamy funkcje:

- potęgowe,
- wykładnicze,
- trygonometryczne,
- odwrotne do powyższych klas funkcji: pierwiastkowe, logarytmiczne, cyklometryczne.

Inne klasy funkcji będą uzyskiwane wykonując działania na funkcjach elementarnych, m.in.

- sumy i iloczyny: np. wielomianowe $(f(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \ldots + a_n \cdot x^n)$ i hiperboliczne (!), oraz ich ilorazy (np. funkcje wymierne ilorazy funkcji wielomianowych, a szczególny przypadek to funkcje homograficzne $f(x) = \frac{a_0 + a_1 x}{b_0 + b_1 x}$,
- złożenia funkcji elementarnych,
- tzw. "klamrowe" (np. wartość bezwzględna, funkcje schodkowe czy funkcja sgn(x)) - różne wzory w różnych częściach dziedziny.

Funkcja znaku ("signum"):

$$f(x) = \operatorname{sgn} x = \begin{cases} 1 & x > 0 \ , \\ 0 & x = 0 \ , \\ -1 & x < 0 \ . \end{cases}$$

Wybrane funkcje.

Funkcja stała f(x)=c= const oraz liniowa $f(x)=a\cdot x$ nie wymagają większych komentarzy (może uwaga: tzw. "funkcje liniowe" w szkole średniej $f(x)=a\cdot x+b$ posiadają nazwę od swojego wykresu - linii prostej, w rzeczywistości ta klasa funkcji nazywa się w matematyce funkcjami afinicznymi),

Jeżeli $\alpha \in \mathbb{Z}$ to funkcję $f(x) = x^{\alpha}$ nazywamy funkcją potęgową $X = \mathbb{R}$. Dla α nie będącego liczbą całkowitą dziedzina $X = [0, \infty)$.

O ile a>0 to funkcję $f:\mathbb{R}\longrightarrow (0,\infty)$ określoną wzorem $f(x)=a^x$ nazywamy funkcją wykładniczą. Własności takich funkcji (w zależności od a) pozostawiamy jako ćwiczenie.

Funkcje potęgowe.

Wybrane funkcje potęgowe - wykresy dla $x \ge 0$. Zwracam uwagę na symetrię wykresów względem prostej y = x (czyli funkcje "pierwiastkowe").

Teraz rozpatrzmy funkcję odwrotną do funkcji potęgowej (o ile $a \neq 1$) $f(x) = a^x$. Funkcja ta istnieje i jest nazywana funkcją logarytmiczną. Szczególnie istotną funkcją jest jedna z funkcji wykładniczych: $f(x) = e^x$, $x \in \mathbb{R}$ oraz funkcja do niej odwrotna $f^{-1}(x) = \ln x$, $x \in (0, \infty)$.

A funkcje logarytmiczne to w informatyce **absolutna podstawa**, por. materiał: takie ciekawostki dla początkujących - koniecznie przeczytać!

Znane z innych działów funkcje trygonometryczne $f(x) = \sin x$, $g(x) = \cos x$, $h(x) = \tan x$, $k(x) = \cot x$ były już wspomniane przy własnościach funkcji. Proszę przypomnieć sobie JAK były definiowane w szkole średniej...

Funkcje odwrotne do nich, ich dziedziny i własności Czytelnik znajdzie częściowo w zadaniach na ćwiczeniach, a w celu poszerzenia wiadomości odsyłamy do literatury.

Funkcje trygonometryczne i odwrotne do nich...

Funkcje schodkowe i łamane.

Jeżeli $f:[a,b]\longrightarrow \mathbb{R}$, oraz $a\leqslant x_0\leqslant x_1\leqslant x_2\leqslant \ldots\leqslant x_n=t$ to funkcję f nazywamy schodkową, o ile jest stała w każdym z przedziałów (x_{i-1},x_i) , $(i=1,2,\ldots,n)$; a łamaną, gdy jest afiniczna na każdym z tych przedziałów.

Funkcje hiperboliczne.

Inne przydatne w niektórych działach zastosowań funkcje hiperboliczne:

$$\sinh x = \frac{e^x - e^{-x}}{2} , \qquad \cosh x = \frac{e^x + e^{-x}}{2} ,$$

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} , \qquad \coth x = \frac{e^x + e^{-x}}{e^x - e^{-x}} .$$

Pod pewnymi względami (relacje pomiędzy nimi przypominają te znane z trygonometrii - stąd nazwy) rzeczywiście przypominają funkcje trygonometryczne, ale ich wykresy są zdecydowanie inne niż funkcji trygonometrycznych...

Wykresy funkcji hiperbolicznych.

Cele operowania funkcjami w informatyce.

- (1) przybliżanie jednych funkcji innymi (aproksymacja),
- (2) wykorzystanie wzorów funkcji, gdy znany jej wartości jedynie w pewnych punktach ułatwia ich stosowanie (interpolacja),
- (3) korzystanie z ich ciągłości i jednostajnej ciągłości (np. własność Darboux, rozwiązywanie równań nieliniowych),
- (4) znajdowanie punktów charakterystycznych (np. miejsc zerowych, wartości największych itp.),
- (5) badanie własności (np. monotoniczność, wypukłość), np. funkcji celu w nauczaniu maszynowym,
 - (6) korzystanie z granic funkcji do obliczeń granic ciągów,
- (7) korzystanie z asymptot (np. symbole Landaua, asymptotyka zachowań, złożoność obliczeniowa) i inne...