

**PCT**WORLD INTELLECTUAL PROPERTY ORGANIZATION  
International Bureau

## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

|                                                                                                                                                                                                                                                                                                                                                             |  |                                                                                                                                                                                               |                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| (51) International Patent Classification 6 :<br><b>C12P 21/00, C12N 1/20, 15/00, G01N 33/53, C07H 21/04, C07K 1/00, 14/32, A61K 45/05, 38/19, 38/00</b>                                                                                                                                                                                                     |  | A1                                                                                                                                                                                            | (11) International Publication Number: <b>WO 97/42340</b><br>(43) International Publication Date: 13 November 1997 (13.11.97) |
| (21) International Application Number: <b>PCT/US97/07521</b><br>(22) International Filing Date: <b>2 May 1997 (02.05.97)</b>                                                                                                                                                                                                                                |  | (81) Designated States: CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).<br><br><b>Published</b><br><i>With international search report.</i> |                                                                                                                               |
| (30) Priority Data:<br>60/016,899 6 May 1996 (06.05.96) US<br>9610995.4 24 May 1996 (24.05.96) GB                                                                                                                                                                                                                                                           |  |                                                                                                                                                                                               |                                                                                                                               |
| (71) Applicant ( <i>for all designated States except US</i> ): MERCK & CO., INC. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065 (US).                                                                                                                                                                                                                   |  |                                                                                                                                                                                               |                                                                                                                               |
| (72) Inventors; and                                                                                                                                                                                                                                                                                                                                         |  |                                                                                                                                                                                               |                                                                                                                               |
| (75) Inventors/Applicants ( <i>for US only</i> ): CASKEY, C., Thomas [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065 (US). HESS, John, W. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065 (US). HEY, Patricia [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065 (US). PHILLIPS, Michael, S. [CA/US]; 126 East Lincoln Avenue, Rahway, NJ 07065 (US). |  |                                                                                                                                                                                               |                                                                                                                               |
| (74) Common Representative: MERCK & CO., INC.; 126 East Lincoln Avenue, Rahway, NJ 07065 (US).                                                                                                                                                                                                                                                              |  |                                                                                                                                                                                               |                                                                                                                               |

(54) Title: **OB RECEPTOR ISOFORMS AND NUCLEIC ACIDS ENCODING THEM**

**(57) Abstract**

The *ob* receptor has numerous isoforms resulting from alternative splicing; three novel isoforms, designated c', f, and g are disclosed. The nucleic acids encoding these isoforms are taught. Also part of the invention are vectors containing the nucleic acid encoding the receptors, host cells transformed with these genes, and assays which use the genes or protein isoforms.

**FOR THE PURPOSES OF INFORMATION ONLY**

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

|     |                          |    |                                       |    |                                           |    |                          |
|-----|--------------------------|----|---------------------------------------|----|-------------------------------------------|----|--------------------------|
| AL  | Albania                  | ES | Spain                                 | LS | Lesotho                                   | SI | Slovenia                 |
| AM  | Armenia                  | FI | Finland                               | LT | Lithuania                                 | SK | Slovakia                 |
| AT  | Austria                  | FR | France                                | LU | Luxembourg                                | SN | Senegal                  |
| AU  | Australia                | GA | Gabon                                 | LV | Latvia                                    | SZ | Swaziland                |
| AZ  | Azerbaijan               | GB | United Kingdom                        | MC | Monaco                                    | TD | Chad                     |
| BA  | Bosnia and Herzegovina   | GE | Georgia                               | MD | Republic of Moldova                       | TG | Togo                     |
| BB  | Barbados                 | GH | Ghana                                 | MG | Madagascar                                | TJ | Tajikistan               |
| BE  | Belgium                  | GN | Guinea                                | MK | The former Yugoslav Republic of Macedonia | TM | Turkmenistan             |
| BF  | Burkina Faso             | GR | Greece                                | ML | Mali                                      | TR | Turkey                   |
| BG  | Bulgaria                 | HU | Hungary                               | MN | Mongolia                                  | TT | Trinidad and Tobago      |
| BJ  | Benin                    | IE | Ireland                               | MR | Mauritania                                | UA | Ukraine                  |
| BR  | Brazil                   | IL | Israel                                | MW | Malawi                                    | UG | Uganda                   |
| BY  | Belarus                  | IS | Iceland                               | MX | Mexico                                    | US | United States of America |
| CA  | Canada                   | IT | Italy                                 | NE | Niger                                     | UZ | Uzbekistan               |
| CF  | Central African Republic | JP | Japan                                 | NL | Netherlands                               | VN | Viet Nam                 |
| CG  | Congo                    | KE | Kenya                                 | NO | Norway                                    | YU | Yugoslavia               |
| CII | Switzerland              | KG | Kyrgyzstan                            | NZ | New Zealand                               | ZW | Zimbabwe                 |
| CI  | Côte d'Ivoire            | KP | Democratic People's Republic of Korea | PL | Poland                                    |    |                          |
| CM  | Cameroon                 | KR | Republic of Korea                     | PT | Portugal                                  |    |                          |
| CN  | China                    | KZ | Kazakhstan                            | RO | Romania                                   |    |                          |
| CU  | Cuba                     | LC | Saint Lucia                           | RU | Russian Federation                        |    |                          |
| CZ  | Czech Republic           | LI | Liechtenstein                         | SD | Sudan                                     |    |                          |
| DE  | Germany                  | LK | Sri Lanka                             | SE | Sweden                                    |    |                          |
| DK  | Denmark                  | LR | Liberia                               | SG | Singapore                                 |    |                          |
| EE  | Estonia                  |    |                                       |    |                                           |    |                          |

- 1 -

TITLE OF THE INVENTION

**OB RECEPTOR ISOFORMS AND NUCLEIC ACIDS ENCODING THEM**

FIELD OF THE INVENTION

5        This invention relates to *ob* receptor protein isoforms, to DNA and RNA sequences encoding them, and to assays using the receptor isoform proteins.

BACKGROUND OF THE INVENTION

10      Recently the identification of mutations in several genes involved in the onset of obesity in rodents have been identified. Of particular interest are mutations discovered in the peptide hormone, leptin, which is a component of a novel signal transduction pathway that regulates body weight (Zhang *et al.* 1994, *Nature* 372:425-432;

15      Chen *et al.* 1996, *Cell* 84:491-495). Leptin was initially discovered by the positional cloning of the obesity gene, *ob*, in mice. Two different ob alleles have been identified: one mutation causes the premature termination of the leptin peptide resulting in a truncated protein, and the other mutation changes the transcriptional activity of

20      the *obesity (ob)* gene, resulting in a reduced amount of circulating leptin.

There is a correlation between a decrease in the levels of biologically active leptin and the overt obese phenotype observed in *ob/ob* mice. Recombinant leptin has been shown to induce weight loss in the *ob/ob* mouse but not in the diabetic phenotype *db/db* mouse (Campfield *et al.* 1995, *Science* 269: 546-549; Halaas *et al.* 1995, *Science* 269: 543-546; Pellymounter *et al.* 1995, *Science* 269:540-543; Rentsch *et al.* 1995, *Biochem. Biophys. Res. Comm.* 214:131-136; and Weigle *et al.* 1995, *J. Clin. Invest.* 96:2065-2070).

30      Although the synthesis of leptin occurs in the adipocyte, its ability to decrease food intake and increase metabolic rate appears to be mediated centrally by the hypothalamus. Injection of recombinant leptin into the third ventricle of the brain elicits a similar response as peripheral administration of leptin.

- 2 -

Furthermore, the recent cloning of the human receptor for the leptin, the ob-receptor (OB-R), reveals that it is transcribed in the hypothalamus (Tartaglia *et al.* 1995, *Cell* 83:1263-1271; Stephens *et al.* 1995, *Nature* 377: 530-532). In addition, a mutation that  
5 results in premature termination of the long-form of the mouse OB-R, which is preferentially expressed in the hypothalamus, appears to be responsible for the obese phenotype of the *db/db* mouse (Lee *et al.* 1996, *Nature* 379:632-635; Chua *et al.* 1996, *Science* 271:994-996; and Chen *et al.* 1996, *Cell* 84:491-495).

10 The OB-R from wild type (lean) rats and from rats having the *fatty* mutation (both heterozygous and homozygous *fa*) have been isolated and sequenced. (Patent Application Serial Nos. \_\_\_\_\_, Attorney Docket Nos. 19642PV and 19642PV2, filed February 22, 1996 and March 22, 1996, which are hereby  
15 incorporated by reference.)

Various isoforms of the OB-Rs have also been identified. These isoforms are due to alternative splicing. For example, in the mouse the a form has 5 amino acids following the Lysine at 889; the b form has 273 amino acids after Lysine 889; the c  
20 form has 3 amino acids after Lysine 889; and the d form contains 11 amino acids after Lysine 889.

It would be desirable to be able to further experiment with various isoforms in order to better understand obesity, and to be able to clone and produce novel *ob* receptor isoforms to use in  
25 assays for the identification of ligands which may be useful in understanding obesity and for its prevention and treatment.

#### DETAILED DESCRIPTION OF THE INVENTION

This invention relates to novel *ob* receptor isoforms  
30 designated c', f and g which are substantially free from associated membrane proteins. It also relates to substantially purified *ob* receptor isoform c', f and g proteins. These isoforms are present in various species, including rat, mouse and human.

- 3 -

Another aspect of this invention is to nucleic acids which encode OB receptor isoforms c', f or g. The nucleic acid may be any nucleic acid which can encode a protein, such as genomic DNA, cDNA, or any of the various forms of RNA. Preferably, the nucleic  
5 acid is cDNA.

This invention also includes vectors containing a OB-R isoform c', f or g gene, host cells containing the vectors, and methods of making substantially pure OB-R isoform c', f or g protein comprising the steps of introducing a vector comprising a  
10 OB-R isoform c', f or g gene into a host cell, and cultivating the host cell under appropriate conditions such that OB-R isoform c', f or g is produced. The OB-R isoform c', f or g so produced may be harvested from the host cells in conventional ways.

Yet another aspect of this invention are assays which  
15 employ OB-R isoform c', f or g. In these assays, various molecules, suspected of being OB-R isoform c', f or g ligands are contacted with a OB-R isoform c', f or g, and their binding is detected. In this way agonists, antagonists, and ligand mimetics may be identified. A further aspect of this invention are the ligands so indentified.  
20

#### BRIEF DESCRIPTION OF THE FIGURES

FIGURE 1 is the amino acid sequence of wild type rat OB-R.

25 FIGURE 2 is the cDNA sequence of wild type rat OB-R.  
FIGURE 3 is the cDNA sequence encoding rat isoform.  
FIGURE 4 is the cDNA specific for Rat isoform c'.

As used throughout the specification and claims, the following definitions apply:

"Substantially free from associated membrane proteins"  
30 means that the receptor protein is not in physical contact with any membrane proteins.

"Substantially purified OB-receptor isoform c', f or g" means that the protein isoform is at least 90% and preferably at least 95% pure.

- 4 -

"Wild type" means that the gene or protein is substantially the same as that found in an animal which is not considered to have a mutation for that gene or protein.

5 "fa" means that the gene or protein is substantially the same as that found in a rat homologous for the *fatty* mutation.

"Substantially the same" when referring to a nucleic acid or amino acid sequence means either it is the same as the reference sequence, or if not exactly the same, contains changes which do not affect its biological activity or function.

10 It has been surprisingly found, in accordance with this invention that the OB-R exists in a large variety of isoforms, including three novel ones, form c', f and g. These isoforms apply to all species, but for convenience, throughout the specification and 15 claims, numberings of amino acids and nucleotides will use the rat wild type sequences (FIGURES 1 and 2) as a reference. However, it is to be understood that this invention is not limited to rat wild type proteins and nucleic acids and specifically includes rat (wild type and *fatty*), mouse, and human OB-R isoform c', f and g proteins and 20 nucleic acids.

OB-R isoform f differs from wild type protein in that after the Lysine at position 889 (referring to the rat sequence in FIGURE 1), there are six amino acids, ending at an Asparagine 25 residue at position 895. In the cDNA, the codons are then followed by a Stop codon. One cDNA for rat isoform f is shown in FIGURE 3; this invention specifically includes all various cDNAs encoding an isoform f protein. The superscripted numbers refer to protein position numbers.

30 Lys<sup>889</sup> Iso<sup>890</sup> Met<sup>891</sup> Pro<sup>892</sup> Gly<sup>893</sup> Arg<sup>894</sup> Asn<sup>895</sup>

In the human isoform f, Lysine 891 corresponds to the rat Lysine 889, the same six amino acids follow Lysine 889.

In a particularly preferred embodiment of this invention, the OB-R isoform f is from rat origin.

- 5 -

OB-R isoform g differs from the wild type in that it is much shorter than the wild type sequence. The following eighteen amino acids are found at the beginning of the protein with the superscript numbers indicating their position. The Arginine at

5 position 18 is spliced to a large fragment of the wild type molecule, beginning at the Proline at position 166 (in both mouse and human). This isoform then extends for the remainder of the wild type molecule.

10 Met<sup>1</sup> Phe<sup>2</sup> Gln<sup>3</sup> Thr<sup>4</sup> Pro<sup>5</sup> Arg<sup>6</sup> Ile<sup>7</sup> Val<sup>8</sup> Pro<sup>9</sup> Gly<sup>10</sup>  
His<sup>11</sup> Lys<sup>12</sup> Asp<sup>13</sup> Leu<sup>14</sup> Ile<sup>15</sup> Ser<sup>16</sup> Lys<sup>17</sup> Arg<sup>18</sup> Pro<sup>166</sup>...

After Pro 166, the remainder of the protein may be the same as wild type, or, alternatively it could also contain another isoform variation, such as isoform a, b, c, d, e, or f.

15 A particularly preferred embodiment is the rat isoform g.

OB-R isoform c' is similar to the OB-R isoform c which was previously described [Lee *et al.*, *Nature* 379: 632-635]. After 20 Lysine at position 889, it only has three amino acids, Val<sup>890</sup> Thr<sup>891</sup> Phe<sup>892</sup> Stop. As can be seen, isoform c' differs from isoform c in that the final amino acid is phenylalanine rather than valine found in isoform c. Further, there are untranslated sequences in the DNA encoding isoform c' which do not appear to be present in isoform c. 25 The cDNA encoding the rat isoform c' is given in FIGURE 4. In humans, the Val, Thr, Phe follow Lysine 891.

One aspect of this invention is the molecular cloning of these various isoforms of OB-R. The wild type and *fa* receptor 30 proteins contain an extracellular, a transmembrane domain. In the rat, the extracellular domain extends from amino acids 1-830; the transmembrane domain is from amino acids 839-860; and the cytoplasmic domain is from amino acids 860-1162. Similar domains have been identified for the mouse and human proteins. This

- 6 -

invention also includes isoform c', f and g proteins which lack one or more of these domains. Such deleted proteins are useful in assays for identifying ligands and their binding activity.

5 In the rat wild type protein, amino acids 1-28 form a signal sequence; thus the mature proteins extend from amino acids 28-1162. The mature protein isoforms form yet another aspect of this invention. This differs somewhat from the signal sequence of 1-22 reported for mouse and human OB-R; the mature mouse and human isoforms form yet another aspect of this invention.

10 The OB-R isoform c', f or g gene can be introduced into virtually any host cell using known vectors. Preferred host cells include *E. coli* as well as mammalian and yeast cell lines.

15 One of ordinary skill in the art is able to choose a known vector which is appropriate for a given host cell; generally plasmids or viral vectors are preferred. The OB-R isoform c', f or g gene may be present in the vector in its native form, or it may be under the control of a heterologous promoter, and if desired, one or more enhancers, or other sequences known to regulate transcription or translation. The host cell containing the OB-R isoform c', f or g  
20 gene is cultured, and the OB-R isoform c', f or g gene is expressed. After a suitable period of time the OB-R c', f or g isoform protein may be harvested from the cell using conventional separation techniques.

25 A further aspect of this invention is the use of an OB-R c', f or g isoform in assays to identify OB-R c', f or g isoform ligands. A ligand binds to the OB-R isoform receptor, and *in vivo* may or may not result in an activation of the receptor. Ligands may be agonists of the receptor (i.e. stimulate its activity), antagonists (inhibit its activity) or they may bind with little or no effect upon the  
30 receptor activity.

In an assay for ligands, an OB-R isoform of this invention is exposed to a putative ligand, and the amount of binding is measured. The amount of binding may be measured in many ways; for example, a ligand or the OB-R isoform being investigated

- 7 -

may be labeled with a conventional label (such as a radioactive or fluorescent label) and then put in contact with the OB-R isoform under binding conditions. After a suitable time, the unbound ligand is separated from the OB-R isoform and the amount of ligand which 5 has bound can be measured. This can be performed with any of the OB-R isoforms of this invention; alternatively the amount of binding of the various isoforms can be compared. In a competitive assay, both the putative ligand and a known ligand are present, and the amount of binding of the putative ligand is compared to the amount 10 of binding to a known ligand. Alternatively, the putative ligand's ability to displace previously bound known ligand (or vice-versa) may be measured. In yet other embodiments, the assay may be a heterogeneous one, where the OB-R isoform may be bound to a surface, and contacted with putative ligands. Detection of binding 15 may be by a variety of methods, including labelling, reaction with antibodies, and chromophores.

In another assay, the OB-R isoforms of this invention may be used in a "trans" activation assay. Such assays are described in U.S. Application Serial No. \_\_\_\_\_, Attorney Docket No. 20 19686PV, which was filed on April 22, 1996 and which is hereby incorporated by reference. In this assay, a cell which expresses an OB-R isoform of this invention (either naturally or through recombinant means) is transfected with a reporter gene construct comprising a minimal promoter, a leptin activation element and a 25 reporter gene. Transcription of the reporter gene is dependent upon activation of the leptin activation element. Binding of a ligand to the receptor isoform activates the leptin activation element, which then allows transcription of the reporter gene.

The following non-limiting Examples are presented to 30 better illustrate the invention.

- 8 -

### EXAMPLE 1

#### Preparation of mRNA and cDNA from rat tissues

Tissues were collected from lean and *fa/fa* Zucker rats  
5 and snap frozen in liquid nitrogen. The tissues collected included:  
hypothalamus, pituitary, lung, liver, kidney, heart, adrenal glands,  
smooth muscle, skeletal muscle, and adipose tissue. The tissues were  
homogenized with a Brinkmann Polytron homogenizer in the  
presence of guanadinium isothiocyanate. mRNA was prepared from  
10 hypothalamus, lung, and kidney according to the instructions  
provided with the messenger RNA isolation kit (Stratagene, La Jolla,  
CA). cDNA was prepared from approximately 2 µg of mRNA with  
the SuperScript™ choice system (Gibco/BRL Gaithersburg, MD).  
The first strand cDNA synthesis was primed using 1 µg of  
15 oligo(dT)12-18 primer and 25 ng of random hexamers per reaction.  
Second strand cDNA synthesis was performed according to the  
manufacturer's instructions. The quality of the cDNA was assessed  
by labeling an aliquot (1/10th) of the second strand reaction with  
approximately 1 µCi of [ $\alpha$ -32P]dCTP (3000 Ci/mmol). The labeled  
20 products were separated on an agarose gel and detected by  
autoradiography.

### EXAMPLE 2

#### Preparation of a hypothalamic cDNA library

Approximately 3.6 µg of phosphorylated *Bst* XI adapters  
(Invitrogen, San Diego, CA) were ligated to approximately 3 µg of  
cDNA prepared as described in Example 1. The ligation mix was  
then diluted and size-fractionated on a cDNA sizing column  
30 (Gibco/BRL Gaithersburg, MD). Drops from the column were  
collected and the eluted volume from the column was determined.  
An aliquot from each fraction was analyzed on an agarose gel.  
Fractions containing cDNA of greater than or equal to 1 kb were  
pooled and precipitated. The size-fractionated cDNA with the *Bst* XI  
35 adapters was ligated into the prokaryotic vector pcDNA II

- 9 -

(Invitrogen, San Diego, CA). The vector (4 µg) was prepared for ligation by first cutting with the restriction endonuclease *Bst* XI, gel purifying the linearized vector, and then dephosphorylating the ends with calf intestinal phosphatase (Gibco/BRL, Gaithersburg, MD)

5 according to the manufacturers instructions. The ligation contained approximately 10-20 ng of cDNA and approximately 100 ng of vector and was incubated overnight at 14°C. The ligation was transformed into 1 ml of XL-2 Blue Ultracompetent cells (Stratagene, La Jolla, CA) according to the manufacturer's

10 instructions. The transformed cells were spread on 133 mm Colony/Plaque Screen filters (Dupont/NEN, Boston, MA), plated at a density of 30,000 to 60,000 colonies per plate on Luria Broth agar plates containing 100 µg/ml Ampicillin (Sigma, St. Louis, MO).

15

### EXAMPLE 3

#### Screening a hypothalamic cDNA library

Colonies on filters were replica plated onto a second filter set. The master filter was stored at 4°C for subsequent

20 isolation of regions containing colonies that gave a positive hybridization signal. The replica filters were grown for several hours at 37°C until colonies were visible and then processed for *in situ* hybridization of colonies according to established procedures (Maniatis, et al. *Molecular Cloning: A Laboratory Manual*, Cold

25 Spring Harbor Laboratory Publications, Cold Spring Harbor, NY, which is hereby incorporated by reference). A Stratalinker (Stratagene, La Jolla, CA) was used to crosslink the DNA to the filter. The filters were washed at 55°C for 2 hours in 2x SSC and 0.5% SDS to remove bacterial debris. Eight to ten filters were then

30 placed in a heat sealable bag (Kapak, Minneapolis, MN) containing 15-20 ml of 1x hybridization solution (Gibco/BRL, Gaithersburg, MD) containing 50% formamide and incubated for 1 hour at 42°C. The filters were hybridized overnight with greater than 1,000,000 cpm/ml of the radiolabeled probe described below in 1x

- 10 -

hybridization buffer (Gibco/BRL, Gaithersburg, MD) containing 50% formamide at 42°C. The probe, a 2.2 kb fragment encoding the extracellular portion of the Ob-R was labeled by random priming with [alpha 32P]dCTP (3000 Ci/mmole, Amersham, Arlington Heights, IL) using redi-prime (Amersham, Arlington Heights, IL). The probe was purified from unincorporated nucleotides using a Probequant G-50 spin column (Pharmacia Biotech, Piscataway, NJ). Filters were washed two times with 0.1x SSC 0.1% SDS at 60°C for 30 min and then subjected to autoradiography. Individual regions containing hybridization positive colonies were lined up with the autoradiogram of the hybridized filter. These were excised from the master filter, and placed into 0.5 ml Luria broth plus 20% glycerol. Each positive was replated at a density of approximate 50-200 colonies per 100 by 15 mm plate and screened by hybridization as previously described. Individual positive colonies were picked and plasmid DNA was prepared from an overnight culture using a Wizard kit (Promega, Madison, WI).

#### EXAMPLE 4

20

##### Amplification of Lean Rat OB-receptor cDNA using PCR

To provide for a probe to screen the hypothalamic cDNA library, the rat OB receptor was initially obtained by PCR using degenerate primers based on the mouse and human OB-receptor amino acid sequences. A set of oligonucleotide primers, were designed to regions with low codon degeneracy. The pairing of the forward primers ROBR 2 (5'-CAY TGG GAR TTY CTI TAY GT-3') and ROBR 3 (5'-GAR TGY TGG ATG AAY GG-3') corresponding to mouse amino acid sequences HWEFLYV and ECWMKG, with reverse primers ROBR 6 (5'-ATC CAC ATI GTR TAI CC-3'), ROBR 7 (5'-CTC CAR TTR CTC CAR TAI CC-3'), ROBR 8 (5'-ACY TTR CTC ATI GGC CA-3') and ROBR 9 (5'-CCA YTT CAT ICC RTC RTC-3') representing mouse amino acids, GYTMWI, VYWSNWS, WPMSKV, and DDGMKW provided good yields of the appropriately sized products. The fragments of interest

- 11 -

were amplified as long polymerase chain reaction (PCR) products by a modifying the method of Barnes (1994, *Proc. Natl. Acad. Sci.* 91:2216-2220, which is hereby incorporated by reference). In order to obtain the required long PCR fragments, Taq Extender

5 (Stratagene, La Jolla CA) and the Expand Long Template PCR System (Boehringer Mannheim, Indianapolis, IN) were used in combination. The standard PCR reaction mix, in a final volume of 20 µl, contained 5 ng of template (lean rat cDNA), 100 ng of primers, 500 µM dNTPs, 1 X Buffer 3 from the Expand kit, 0.1 µl  
10 each of Taq Polymerase and Taq Expander. Reactants were assembled in thin walled reaction tubes.  
The amplification protocol was: 1 cycle of 92°C for 30 sec., followed by 32 cycles at 92°C for 30 sec., 45°C for 1 min. and 68°C for 3 min. using a Perkin-Elmer (Norwalk, CT) 9600 Thermal  
15 Cycler.

This strategy produced a series of PCR products with the largest being approximately 2.2 Kbp amplified from primers ROBR 2 and ROBR 9. These products were subcloned for DNA sequence analysis as described below. The insert was excised from  
20 the cloning vector with the restriction endonuclease *Eco* RI, and fragments were separated from the vector by agarose gel electrophoresis. The fragments were eluted from the gel using a Prep-A-Gene kit (BioRad, Richmond CA) according to the manufacturer's instructions and radiolabeled as described above.

25

#### EXAMPLE 5

##### Subcloning of PCR products

PCR products of the appropriate size were prepared for  
30 subcloning by separation on an agarose gel, excising the band, and extracting the DNA using Prep-A-Gene (BioRad, Richmond, CA). PCR products were ligated into pCR™II (Invitrogen, San Diego, CA) according to the instructions provided by the manufacturer. The ligation was transformed into INVaF' cells and plated on Luria-  
35 Bertani plates containing 100 µg/ml ampicillin and X-Gal (32 µl of

- 12 -

50 mg/ml X-Gal (Promega, Madison, WI). White colonies were picked and grown overnight in Luria-Bertani broth plus 100 µg/ml ampicillin. Plasmid DNAs were prepared using the Wizard miniprep kit (Promega, Madison, WI). Inserts were analyzed by digesting the plasmid DNA with EcoRI and separating the restriction endonuclease digestion products on an agarose gel.

Plasmid DNA was prepared for DNA sequencing by ethanol precipitation of Wizard miniprep plasmid DNA and resuspending in water to achieve a final DNA concentration of 100 µg/ml. DNA sequence analysis was performed using the ABI PRISM™ dye terminator cycle sequencing ready reaction kit with AmpliTaq DNA polymerase, FS. The initial DNA sequence analysis was performed with M13 forward and reverse primers, subsequently primers based on the rat OB-R sequence were utilized. Following amplification in a Perkin-Elmer 9600, the extension products were purified and analyzed on an ABI PRISM 377 automated sequencer (Perkin Elmer, Norwalk, CT). DNA sequence data was analyzed with the Sequencher program.

- 13 -

WHAT IS CLAIMED IS:

1. *Ob*-receptor (OB-R) isoform c', f or g, substantially free from associated proteins.  
5
2. An OB-R isoform according to Claim 1 which is substantially pure.
3. An OB-R isoform according to Claim 1 which is a  
10 c' isoform.
4. An OB-R isoform according to Claim 1 which is an f isoform.  
15
5. An OB-R isoform according to Claim 1 which is a g isoform.  
15
6. An OB-R isoform according to Claim 1 which is from a rat.  
20
7. An OB-R isoform according to Claim 6 which is from a wild-type rat.  
25
8. An OB-R isoform according to Claim 6 which is from a fatty rat.  
25
9. An OB-R isoform according to Claim 3 which is human.  
30
10. An OB-R isoform according to Claim 4 which is human.  
30
11. An OB-R isoform according to Claim 5 which is human.  
35

- 14 -

12. An OB-R isoform according to Claim 3 which is from a mouse.
13. An OB-R isoform according to Claim 4 which is 5 from a mouse.
14. An OB-R isoform according to Claim 5 which is from a mouse.
- 10 15. A nucleic acid encoding an OB-R of Claim 1.
16. A nucleic acid according to Claim 15 which is a cDNA.
- 15 17. A vector comprising a nucleic acid which encodes an OB-R of Claim 1.
18. A vector according to Claim 17 which is a plasmid.
- 20 19. A host cell containing a vector according to Claim 17.
- 25 20. A host cell according to Claim 19 which is *E. coli*, a mammalian cell, or a yeast cell.
- 30 21. An assay to determine if a putative ligand binds to an OB-R isoform c', f or g comprising: contacting the putative ligand with an OB-R isoform c', f or g, and determining if binding has occurred.

- 15 -

22. An assay according to Claim 17 wherein the ligand is labeled.

23. An assay to determine if a putative ligand binds to  
5 an OB-R isoform c', f or g which is a trans-activation assay.

1 MTCQKFTYVVL LHWEFLYVIT ALNLAYPTSP WRFKLFCAPP STTDDDFLSP  
51 AGVPNNTISSL RGASEALVEA KFNSTGTYVS ELSKTIIFHCC FGNEQGQNCS  
101 ALTGNTEGKT LASVVVKPLVF RQLGVNWIE CWMKGDLTLF ICHMEPLLKN  
151 PFKNYDSKVH LLYDLPEVID DLPLPPLKDS FQTVQCNCSTV RECECHVPPV  
201 RAKVNYALLM YLEITSAGVS FQSPLMSLQP MLVVKPDPPPL GLRMEVTDDG  
251 NLKISWDSQT KAPFPLQYQV KYLENSTIVR EAAEIVSDTS LLVDSTVLPGS  
301 SYEVQVRSKR LDGSGVWSDW SLPQLFTTQD VMYFPKKILT SVGSNASFCC  
351 IYKNNENQTTIS SKQIVVMML AEKIPETQYN TVSDHISKVT FSNLKATRPR  
401 GKFTYDAVYC CNEQACHRY AELYVIDVNI NISCETDGYL TKMTCRWSPS  
451 TIQSLVGSTV QLRYHRRSLY CPDNPSSIRPT SELKNCVLTQ DGFYECVFQP  
501 IFLLSGYTMW IRINHSIGSL DSPPTCVLPD SVVKPLPPSN VKAEITINTG  
551 LIKVSWEKPV FPENNQFQI RYGLNGKEIQ WKTHEVFDAK SKSASILPVSD

FIG. 1A

2/15

601 LCAVYVVQVR CRRLDGLGYW SNWSSPAYTL VMDFVKVPMRG PEFWRIMDGD  
651 ITTKERNTL LWKPLMKND S LCSVRRYVVK HRTAHNGTWS QDVGNQTNLT  
701 FLWAESARTV TVLAINSIGA SLVNFNLTFS WPMISKVNAVQ SLSAYPLSSS  
751 CVILSWTLSP NDYSLLVVI EWKNLNDGG MKWLRLIPSNV NKYYIHDNFI  
801 PIEKYQFSLY PVFMEGVGKP KIINGFTKDD IAKQONDAGL YVIVPIIISS  
851 CVLLLGTLI SHORMKULFW DVDPNPKNCS WAQGLNFQKP ETFEHLFTKH  
901 AESVIFGPLL LEPEPVSEEI SVDTAWKNNKD EMVPAAMVSL LLTTPDSTRG  
951 SICISDQCNS ANFGSGAQSTQ GTCEDECQSQ PSVKYATLV NVKTVTDEE  
1001 QGAIHSSVSQ CIARKHSPLR QSFSNSWEI EAQAFFLSD HPPNVISQL  
1051 SFSGLDELLE LEGNTPEENH GEKSVYLYGV SSGNKRENDM LLTDEAGVLC  
1101 PFPAHCLFSD IRILQESCSH FVENNNLGT SGKNFVPMYP QFQSCSTHSH  
1151 KIENKOMCDL TV

FIG. 1B

3/15

1 TGGGCAATT GGGCTGACCT TTCTTATGCT GGGATGTTGCC TTGGAGGACT  
51 ATGCCGTCT ATCTCTGAAG TAAGATGACG TGTCAAAAT TCTATGTGGT  
101 TTGTTACAC TGGAAATTTC TCTATGTGAT AACTGCACCT AACCTGGCCT  
151 ATCCAACCCTC TCCTTGAGA TTTAAGCTGT TTGTCGCC ACCGAGTACA  
201 ACTGATGACT CCTTTCCTCTC TCCTGCTGGA CTCCCCAACAA ATACTTCGTC  
251 TTGAAGGGG CCTTCTGAAG CACTTGTGA AGCTAAATT ATTCAACTG  
301 GTATCTACGT TTCTGAGTTA TCCAAAACCA TTTTCCACTG TTGCTTGGG  
351 AATGAGCAAG GTCAAAACTG CTCCGCACTC ACAGGCAACA CTGAAGGGAA  
401 GACGGCTGGCT TCAGTGGTGA AGCCTTTAGT TTTCCGCCAA CTAGGTGTA  
451 ACTGGGACAT AGAGTGTGG ATGAAAAGGGG ACTTGACATT ATTCACTGT  
501 CATATGGAAC CATTACTAA GAACCCCTTC AGAAATTATG ACTCTAAAGGT  
551 TCACCTTTA TATGATCTGC CTGAAGTTAT AGATGATTG CCTCTCCCC  
601 CACTGAAGA CAGCTTTCAG ACTGTCCAGT GCAACTGCAG TGTTGGAA  
651 TCGGAATGTC ATGTACCACT ACCCAGAGCC AAAGTCAAAT ACGGCTCTTCT

FIG. 2A

4/15

701 GATGTATTAA GAAATCACAT CTGCTGCTG GACTTTTCAG TCACCTCTAA  
751 TGTCACTGCCA GCCCATGCTT GTTGTGAAGC CCGATCCACC GCTGGGTTTG  
801 CGTATGGAG TCACAGATGA TGGTAATTAA AAGATTTCAT GGGACAGCCA  
851 AACAAAGCA CCATTCCAC TTCAATATCA GGTGAATAAT TTAGAGAATT  
901 CTACAATCGT AAGAGAGGCT GCTGAATATCG TCTCGGATAAC ATCTCTGCTG  
951 GTAGACAGCG TGCCTCCTCG GTCTTCATAAC GAGGTCAGG TGAGGAGCAA  
1001 GAGACTGAT GGCTCAGGAG TCTGGAGTGA CTGGAGTTA CCTCAACTCT  
1051 TTACACACAA AGATGTCATG TATTTCAC CCAAATTCT GACGAGTGT  
1101 GGATCCAATG CTTCTTCTG CTGCATCTAC AAAATGAGA ACCAGACTAT  
1151 CTCCCTAAAA CAAATAGTT GGTGGATGAA TCTAGCCGAG AAGATCCCCG  
1201 AGACACAGTA CAAACACTGT AGTGACCCACA TTAGCAAAGT CACTTCTCC  
1251 AACCTGAAAG CCACCAGACC TCGAGGGAAAG TTTACCTATG ATGCAGTGT  
1301 CTGCTGCCAAT GAGCAGGGCAT GCCCATCACCG CTACGCTGAA TTATATGTGA

FIG. 2B

5/15

1351 TCGATGTCAA TATCAATATA TCATGTGAAA CTGACGGGT A CTTAACTAAA  
 1401 ATGACTTGC A GATGGTCACC CAGCACAAATC CAATCACTAG TGGAAAGCAC  
 1451 TGTGCGAGTTG AGGTATTCACA GGGCGAGCCT GTACTGTCCC GATAATCCAT  
 1501 CTATTGGTCC TACATCAGAG CTCAAAAACT GCGTCTTACA GACAGATGGC  
 1551 TTTTATGAAT GTGTTTCCA GCCAATCTTT CTATTATCTG GCTATAACAAT  
 1601 GTGGATCAGG ATCAACCATT CTTTAGGTT ACTTGACTCT CCACCAACGTT  
 1651 GTGTCCTTCC TGACTCCGTA GTAAAACCAC TACCTCCATC TAATGTAAAA  
 1701 GCAGAGATT A CTATAAACAC TGGATTATTG AAAGTATCTT GGGAAAAGCC  
 1751 AGTCTTCCA GAGAATAACC TTCAGTTCCA GATTGGATAT GGCTTAAATG  
 1801 GAAAAGAAAT ACAATGGAA ACACACCGAGG TATTGGATGC AAAATCAAAA  
 1851 TCGGCCAGCC TGCCACTGTG AGATCTCTGT GCGGTCTATG TTGTACAGGT  
 1901 TCGCTCCGG CGGTTGGATG GACTAGGGTA TTGGAGTAAT TGGAGCAGTC  
 1951 CAGCCTACAC TCTTGTCAATG GATGTAAAAG TTCCCTATGAG AGGGCCTGAA  
 2001 TTCTGGAGAA TAATGGATGG GGATATTACT AAAAAGGAGA GAAATGTCAAC

FIG. 2C

6/15

2051 CTTGCCTTTCG AAGCCACTGA TGAATAATGA CTCACCTGT AGTGAGGA  
2101 GGTATGTGGT GAAGCATCGT ACTGCCACA ATGGACATG GTCAAAAGAT  
2151 GTGGAAATC AGACCAATCT CACTTTCCTG TGGCAGAAT CAGCACACAC  
2201 TGTACAGT CTGGCCATCA ATTCCATCGG TCCCTCCCT GTGAATTAA  
2251 ACCTTACGTT CTCATGGCCC ATGAGTAAAG TGAATGCTGT GCAGTCACTC  
2301 AGTCCTTATC CCCTGAGCAG CAGCTGGTC ATCCCTTCCT GGACACTGTC  
2351 ACCTAATGAT TATACTCTGT TATATCTGGT TATTGAATGC AAGAACCTTA  
2401 ATGATGATGA TCGAATGAAAG TGGCTTAGAA TCCCTTCGAA TGTAAACAAAG  
2451 TATTATATCC ATGATAATT TATTCTATC GAGAAATATC AGTTAGTCT  
2501 TTACCCAGTA TTATGGAAG GAGTTGGAAA ACCAAAGATA ATTAATGGTT  
2551 TCACCAAAGA TGATATGCC AAACAGCAAATGATGCAGG GCTGTATGTC  
2601 ATTGTACCGA TAATTATTC CTCTTGTCTG CTGCTGCTG GAACACTGTT  
2651 AATTTCACAC CAGAGAATGA AAAAGTTGTT TTGGGACCGAT GTTCCAAACC

FIG. 2D

7/15

2701 CCAAGAATTG TTTCCTGGCA CAAGGACTTA ATTCCAAAA GCCTGAAACA  
2751 TTTGAGGCATC TTTTACCAA GCATGCCAGAA TCAGTGATAAT TTGGTCCCTCT  
2801 TCTTCTGGAG CCTGAACCAG TTTCAGAAAGA AATCAAGTGTG GATACAGGCTT  
2851 GGAAAATAA AGATGAGATG GTACCAGGAG CTATGGTCTC ACTTCTTTTG  
2901 ACCACTCCAG ATTCCACAAG GGCTTCTATT TGTATCAGTG ACCACTGTA  
2951 CAGTGTCAAC TTCTCTGGGG CTCAGAGCAC CCAGGGAAACC TGTGAGGATG  
3001 AGTGTCAAGAG TCAACCCTCA GTTAAATATG CAACGGCTGGT CAGCAACGTC  
3051 AAAACAGTGG AAACGTATGA AGAGCAAGGG GCTATACATA GTTCTGTCA  
3101 CCAGTGTCACT GCCAGGAAAC ATTCCCCACT GAGACAGTCT TTTTCTAGCA  
3151 ACTCCCTGGGA GATAGAGGCC CAGGGCATTT TCCTTTTATC AGATCATCCA

FIG. 2E

8/15

3201 CCCAATGTGA TTTCACCAACA ACTTTCATTC TCAGGGTTGG ATGAGCTTT  
3251 GGAACCTGGAG GGAATTTTC CTGAAGAAAA TCACGGGAA AAATCTGTGT  
3301 ATTATCTAGG AGTCTCCTCA GGAAACAAA GAGAGAATGA TATGCTTTG  
3351 ACTGATGAGG CAGGGTATT GTGCCCATTC CCAGGTCACT GTCTGTTCA  
3401 TGACATCAGA ATCCCTCCAGG AGAGTTGTTCA ACACTTTGTA GAAAATAATT  
3451 TGAATTAGG GACCTCTGT AAGAACTTTG TACCTTACAT GCCCCAGTT  
3501 CAATCTGTT CCACTCACAG TCATAAGATA ATAGAAAATA AGATGTTGAA  
3551 CTTAACCTGTC TAATCTTGTCA AAAAACTTC CAGGTTCAT TCCAGTAGAG  
3601 TGTGTATGT ATAATATGTT CTTTATAGT TGTGGGTGGG AGAGAAAGCC

FIG. 2F

9/15

1 TGGGCAATT GGGCTGACCT TTCTTATGCTT GGGATGTGCC TTGGAGGGACT  
51 ATGGGTGTCT ATCTCTGAAG TAAGATGACG TGTCAGAAAT TCTATGTGGT  
101 TTTGTTACAC TGGGAATTTC TGTATGTGAT AACTGCACCT AACCTGGCCT  
151 ATCCAACCTC TCCCTGGAGA TTTAAGCTGT TTGTCGGCC ACCGAGTACA  
201 ACTGATGACT CCTTTCTCTC TCCTGCTGGA GTCCCCAACAA ATACTTCGTC  
251 TTTGAAGGGG GCTTCTGAAG CACTGTGTA AGCTAAATT ATTCAAAC TG  
301 GTATCTACGT TTCTGAGTTA TCCAAAACCA TTTCACACTG TTGCTTTGGG  
351 AATGAGCAAG GTCAAAACTG CTCCCGCACTC ACAGGCAACAA CTGAAGGGAA  
401 GACGGCTGGCT TCAGTGGTGA AGCCCTTTAGT TTCCGCCAA CTAGGTGTA  
451 ACTGGGACAT AGAGTGGCTGG ATGAAAGGG ACTTGACATT ATTCATCTGT  
501 CATATGGAAC CATTACTTAA GAACCCCTTC AAGAATTATG ACTCTAAGGT  
551 TCACCTTTA TATGATCTGC CTGAAGTTAT AGATGATTG CCTCTGCC  
601 CACTGAAAGA CAGCTTTCAAG ACTGTCCAGT GCAAAC TGTTGGGAA

FIG. 3A

10/15

651 TGCGAATGTC ATGTACCAAGT ACCCAGAGCC AAAGTCAAAT ACGGCTCTTCT  
701 GATGTATTAA GAAATCACAT CTGGCTGGTGT GAGTTTCAG TCACCTCTAA  
751 TGTCACTGCA GCCCATGCTT GTTGTGAAGC CCGATCCACC GCTGGGTTG  
801 CGTATGGAG TCACAGATGA TGGTAATTAA AAGATTTCAT GGGACAGCCA  
851 AACAAAAGCA CCATTCCAC TTCAATATCA GGTGAAATAT TTAGAGAAATT  
901 CTACAATCGT AAGAGAGGCT GCTGAAATCG TCTGGATAAC ATCTCTGCTG  
951 GTAGACAGCG TGCTTCCTGG GTCTTCATAC GAGGTCAGG TGAGGAGCAA  
1001 GAGACTGGAT GGCTCAGGAG TCTGGAGTGA CTGGAGTTA CCTCAACTCT  
1051 TTACCAACACA AGATGTCAATG TATTTCAC CCAAAATTCT GACCGAGTGT  
1101 GGATCCAATG CTTCCCTTTTG CTGCATCTAC AAAATGAGA ACCAGACTAT  
1151 CTCCCTCAAAA CAAATAGTTT GGTGGATGAA TCTAGCCGAG AAGATCCCCG  
1201 AGACACAGTA CAACACTGTG AGTGACCAACA TTAGCAAAGT CACTTTCTCC  
1251 AACCTGAAAG CCACCAAGACC TCGAGGGAG TTTACCTATG ATGCAGTGTAA

FIG. 3B

11/15

|      |             |            |             |             |             |
|------|-------------|------------|-------------|-------------|-------------|
| 1301 | CTGCTGCAAT  | GAGCAGGCAT | GCCATCACCG  | CTACGGCTGAA | TTATATGTGA  |
| 1351 | TCGATGTCAA  | TATCAAATA  | TCATGTGAAA  | CTGACGGGTA  | CTTAACCTAAA |
| 1401 | ATGACTTGCA  | GATGGTCAC  | CAGCACACATC | CAATCACTAG  | TGGGAAGCAC  |
| 1451 | TGTGCAGTGTG | AGGTATCACA | GGGCCAGGCCT | GTACTGTCCC  | GATAATCCAT  |
| 1501 | CTATTGGTCC  | TACATCAGAG | CTCAAAACT   | GCGTCTTACA  | GACAGATGGC  |
| 1551 | TTTTATGAAT  | GTGTGTTCCA | GCCAATCTTT  | CTATTATCTG  | GCTATAACAAT |
| 1601 | GTGGATCAGG  | ATCAACCATT | CTTTAGGTTTC | ACTTGACTCT  | CCACCAAACGT |
| 1651 | GTGTCCTTCC  | TGACTCCGTA | GTAAAACCCAC | TACCTCCATC  | TAATGTAAAAA |
| 1701 | GCAGAGATTAA | CTATAAACAC | TGGATTATTG  | AAAGTATCTT  | GGGAAAAGCC  |
| 1751 | AGTCTTCCA   | GAGAATAACC | TTCAGTTCCA  | GATTGATAT   | GGCTTAAATG  |
| 1801 | GAAAAGAAAT  | ACAATGGAAG | ACACACGGG   | TATTGATGC   | AAAATCAAAA  |
| 1851 | TCGGCCAGCC  | TGCCAGTGT  | AGATCTCTGT  | GCGGTCTATG  | TGGTACAGGTT |

FIG. 3C

12/15

1901 TCGCTGCCGG CGGTGGATG GACTAGGGTA TTGGAGCTAAT TGGAGCCAGTC  
1951 CAGCCTACAC TCTTGTCACTG GATGTAAG GATGTTATGAG AGGGCCTGAA  
2001 TTCTGGAGAA TAATGGATGG GGATATTACT AAAAAGGAGA GAAATGTCAC  
2051 CTTGCTTGCG AAGCCACTGA TGAAAAATGA CTCACATGTGT AGTGTGAGGA  
2101 GGTATGTGGT GAAGGCATCGT ACTGCCACCA ATGGGACATG GTCACAAAGAT  
2151 GTGGAAATC AGACCAAATCT CACTTTCCCTG TGGGCAGAAT CAGCACACAC  
2201 TGTACAGTT CTGGCCATCA ATTCCATCGG TGCCTCCCTT GTGAATTAA  
2251 ACCTTACGTT CTCATGGCCC ATGAGTAAAG TGAATGCTGT GCAGTCACTC  
2301 AGTGCTTATC CCCTGAGCAG CAGCTGCCAG ATCCCTTCCCT GGACACACTGTC  
2351 ACCTAATGAT TATACTGT TATATCTGGT TATTGAATGG AAGAACCTTA  
2401 ATGATGATGA TGGAATGAAG TGGCTTAGAA TCCCTTCGAA TGTAAACAAG  
2451 TATTATATCC ATGATAATT TATTCCTATC GAGAAATATC AGTTTAGTCT

FIG. 3D

13/15

2501 TTACCCAGTA TTTATGGAAG GAGTTGGAAA ACCAAAGATA ATTAAATGGTT  
2551 TCACCAAGA TGATATGCC AAACAGCAA ATGATGCAGG GCTGTATGTC  
2601 ATTGTACCGA TAATTATTC CTCTTGTC CTTGCTGCTCG GAACACTGTT  
2651 AATTTCACAC CAGAGAATGA AAAAGTTGTT TTGGGACGAT GTTCCAAACC  
2701 CCAAGAATTG TTCCTGGCA CAAGGACTA ATTTCAAAAA GATAATGCCCTG  
2751 GCAGAAATTG GAGGATATAG AGTGGATGCC GTCAAATGCC TTTAGACTCT  
2801 GGCTTCCCTG GCTGTCTCAC ATCTCCCCTA TTGGAGCTAA GTGTGGTGTCT  
2851 GTATTAGCA GGGTATCTGG CAGATATTAA ATTAAATTG AAATATCACC  
2901 CTAATTTC AGATTCTGGT AAACGTGAAGT GAATTTCAGA ATTATTGTA  
2951 TTTATGTGTG TGCACATATG TGTGCAGGTA CCCACCGAAA TCTGCAGAGG  
3001 CATCAGATGC CCCAGAGCTG GAACTGACAG TTGTGAGCCT GATATGAGTT  
3051 CTGGGAATGA GCTCAGTCCT CTGGAAGAGC TGCAAGCACT ATTAACGTGCT

FIG. 3E

14/15

3101 GAGCCATCTT TTCAGTCCCT CATGTATAGA TTAAAAAAA TTGGGGTTTG  
3151 AAGATCCTCA TTTGTGAGAA ATTCCCTCTT ACCTTTGCAA ACACTTTTC  
3201 TCATTTTAG TATATGTATT CATAATTAC TGTCATCATT TCAATATATG  
3251 TGGTCACAGT TTTTAAGTAT TTCTAAGGCA TAACAAAGAT GTAATATTAA  
3301 GAATAATAAA AAGAATAAT CAATAATCCA GATGGTAGTG ACAGACACCT  
3351 TTAATCCCAG TACTAAGGAG ACAGAGATAG GTAAATCTGT ATGAATTGAG  
3401 GACACGCCCTG TTCTACAAAG AAATTCAAGG ACATCTAGGG GTATCCACAA  
3451 AGAACACACTG TCTCAAAAAA TGCCAAACAA TCAAAAAAA AAAA

FIG. 3F

15/15

1 GTCACCTTT AAGTATTAC CCAAGATATC TAAGGTTGCA GTTTAGATAC  
51 TCTATTACAT AGAGATCTTT AAACATCTTT AAAAGGCTTT ATTTGTCCCT  
101 GTTCACTTTA TTAATCCCGT TTATCCTTGT TCTATAGCAA TAGCTGGGT  
151 TTGGATTGAA TCAGAGGAAA CAAAGTTCA TCATTATCA CATGAGAGT  
201 GACAAGGTGT CTTTTTTTT TCTCGTCACT GTACATAAAA AAATAAAATAC  
251 TACAAGGGA AGGAACATTG TAGATGGAGA ATAGATAACT GACTAAAAGG  
301 GCTTCTTTA GTCAAAAAGT TTAGGATCAA TATTATGAGT TTCTGATATT  
351 CAATATTCA CCATGACTTA CAAGTACAGT GTGTGTTTT

FIG. 4

## INTERNATIONAL SEARCH REPORT

International application No.

PCT/US97/07521

**A. CLASSIFICATION OF SUBJECT MATTER**

IPC(6) :Please See Extra Sheet.

US CL :Please See Extra Sheet.

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 435/69.1, 69.5, 252.3, 320.1, 7.1, 7.2; 536/23.5; 530/350, 351; 514/2,8,12

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS, BIOSIS, CA

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                           | Relevant to claim No. |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| X         | TARTAGLIA et al . Identification and expression cloning of a Leptin Receptor, OB-R. Cell. 29 December 1995, Vol. 83, pages 1263-1271, see entire document.                                                                   | 1-5, 9-20             |
| ---       |                                                                                                                                                                                                                              | -----                 |
| Y         |                                                                                                                                                                                                                              | 1-23                  |
| X         | CHUA et al. Phenotypes of Mouse <i>diabetes</i> and Rat <i>fatty</i> due to mutations in the OB (Leptin) Receptor. Science. 16 February 1996, Vol. 271, see pages 994-996.                                                   | 1-8, 12-20            |
| ---       |                                                                                                                                                                                                                              | -----                 |
| Y         |                                                                                                                                                                                                                              | 1-23                  |
| X         | CHEN et al. Evidence that the diabetes gene encodes the Leptin Receptor: Identification of a mutation in the Leptin Receptor gene in <i>db/db</i> mice. Cell. 09 February 1996, Vol. 84, pages 491-495, see entire document. | 1-5, 12-20            |
| ---       |                                                                                                                                                                                                                              | -----                 |
| Y         |                                                                                                                                                                                                                              | 1-23                  |

 Further documents are listed in the continuation of Box C.

See patent family annex.

|     |                                                                                                                                                                    |     |                                                                                                                                                                                                                                              |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •   | Special categories of cited documents:                                                                                                                             | "T" | later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention                                              |
| "A" | document defining the general state of the art which is not considered to be of particular relevance                                                               |     |                                                                                                                                                                                                                                              |
| "E" | earlier document published on or after the international filing date                                                                                               | "X" | document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone                                                                     |
| "L" | document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) | "Y" | document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art |
| "O" | document referring to an oral disclosure, use, exhibition or other means                                                                                           | "&" | document member of the same patent family                                                                                                                                                                                                    |
| "P" | document published prior to the international filing date but later than the priority date claimed                                                                 |     |                                                                                                                                                                                                                                              |

Date of the actual completion of the international search

19 JUNE 1997

Date of mailing of the international search report

1 JUL 1997

Name and mailing address of the ISA/US  
Commissioner of Patents and Trademarks  
Box PCT  
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

GARNETTE D. DRAPER

Telephone No. (703) 308-0196

## INTERNATIONAL SEARCH REPORT

|                                                 |
|-------------------------------------------------|
| International application No.<br>PCT/US97/07521 |
|-------------------------------------------------|

## C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                      | Relevant to claim No.       |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| X         | CIOFFI et al. Novel B219/OB receptor isoforms: Possible role of leptin in hematopoiesis and reproduction. Nature Medicine. May 1996, Vol. 2, No. 5, pages 585-589, see entire document. | 1-5, 9-20<br>-----<br>1-23  |
| X         | WO 96/08510 A1 (PROGENITOR, INC.) 21 March 1996 (21.03.96), see the figures and claims.                                                                                                 | 1-23                        |
| X         | LEE et al. Abnormal splicing of the leptin receptor in <i>diabetic</i> mice. Nature. 15 February 1996, Vol. 379, pages 632-635, see entire document.                                    | 1-5, 12-20<br>-----<br>1-23 |
| X         | HODGSON J. Receptor screening and the search for new pharmaceuticals. Bio/Technology. September 1992, Vol. 10, pages 973-997, see entire document.                                      | 21-23                       |
| X         | CA 2,104,996 A1 (BEHRINGWERKE AKTIENGESELLSCHAFT) 01 March 1994 (01.03.94), see the claims.                                                                                             | 21-23                       |

**INTERNATIONAL SEARCH REPORT**

International application No.  
PCT/US97/07521

**A. CLASSIFICATION OF SUBJECT MATTER:**  
**IPC (6):**

C12P 21/00; C12N 1/20, 15/00; G01N 33/53; C07H 21/04; C07K 1/00, 14/52; A61K 45/05, 38/19, 38/00

**A. CLASSIFICATION OF SUBJECT MATTER:**  
**US CL :**

435/69.1, 69.5, 252.3, 320.1, 7.1, 7.2; 536/23.5; 530/350, 351; 514/2,8,12