处置效应

江梦瑜

2020.11.5

本章框架

- 5.1: 潜在结果、处置效应与因果关系
- 5.2: 观测结果
- 5.3: 使用观测结果估计处置效应的可能偏差
- 5.4: 计算平均处置效应实例

第一节

潜在结果、处置效应与因果关系

5.1.1: 潜在结果

- 若个体i是否接受了某种处置行为D_i后果为Y_i
- 称该结果为潜在结果,表示如下

潜在结果 =
$$\begin{cases} Y_i(0), & \text{如果}D_i = 0 \\ Y_i(1), & \text{如果}D_i = 1 \end{cases}$$

- $D_i = 0$ 表示个体i没有接受处置, $D_i = 0$ 表示接受了处置
- 潜在结果的含义:
 - 这两个结果是个体i一直具备的,只不过没有显现出来
 - 若未显现出来,也无法观测到

5.1.2: 个体处置效应

• 个体处置效应:处置行为 D_i 对个体i的是否接受处置的潜在结果的差异

$$D_i$$
对个体 i 的处置效应= $\gamma_i = Y_i(1) - Y_i(0)$

■ 即处置行为 D_i 对 Y_i 的因果效用

个体 <i>i</i>	个体未处置时特征		潜在结果		处 置 效 果	
<u> </u>	可观测的 不可观测 如果处置 若未处置	八旦次不				
1	X_1	e_1	$Y_1(1)$	$Y_1(0)$	$\gamma_1 = Y_1(1) - Y_1(0)$	
•••	•••	•••	•••	•••	•••	
K	X_K	e_K	$Y_K(1)$	$Y_K(0)$	$\gamma_K = Y_K(1) - Y_K(0)$	
<i>K</i> + 1	X_{K+1}	e_{K+1}	$Y_{K+1}(1)$	$Y_{K+1}(0)$	$\gamma_{K+1} = Y_{K+1}(1) - Y_{K+1}$ (0)	
•••	•••	•••	•••	•••	•••	
N	X_N	e_N	$Y_N(1)$	$Y_N(0)$	$\gamma_N = Y_N(1) - Y_N(0)$	

表5.1 个体处置效应

5.1.3: 平均处置效应

- 个体处置效应存在异质性
- 平均处置效应:用于描述处置效应的平均效果
- 对于不同的群体定义不同的平均处置效应:

(e.g.国有企业必须执行的公司治理法案&私企)

■ 接受处置个体的平均处置效应(ATT) (最关注的效应,是处置行为的直接后果)

$$ATT = E[Y_i(1) - Y_i(0) | D_i = 1]$$

= $E[Y_i(1) | D_i = 1] - E[Y_i(0) | D_i = 1]$

■ 未接受处置个体的平均处置效应(ATU)

$$ATU = E[Y_i(1) - Y_i(0) | D_i = 0]$$

= $E[Y_i(1) | D_i = 0] - E[Y_i(0) | D_i = 0]$

5.1.3: 平均处置效应

■ 总体平均处置效应(ATE)

$$ATE = E[Y_i(1) - Y_i(0)]$$

$$= E[Y_i(1)] - E[Y_i(0)]$$

$$= \omega \times ATT + (1 - \omega) \times ATU$$

- ATE是ATT和ATU的加权平均
- 通过潜在结果框架来分析因果关系最早是由Fisher和 Roy提出的

第二节

观测结果

5.2.1: 观测结果

- 估计处置效应的难点:
 - 对个体i无法同时观测得到两种潜在结果
 - 是Holland提出的因果推断的根本难点
- 观测结果:
 - 个体根据它的接受处置状态而显现出来的对应的潜在结果
 - 可表现为潜在结果和处置状态的函数

$$Y_i = Y_i(0) + [Y_i(1) - Y_i(0)] \times D_i$$

- $D_i = 0$ 表示个体i没有接受处置, $Y_i = Y_i(0)$
- $D_i = 1$ 表示接受了处置, $Y_i = Y_i(1)$

5.2.1: 观测结果

- 例子:
 - 个体1~K接受了处置, K+1~N未接受处置

A /L.	个体未处 征		潜在	结果	77 年 77 年	处置	어디 가지 사는 1편	VH HVI
个体i	可观 测的	不可 观测	如果 处置	若未 处置	处置效果	状态	观测结果	组别
1	X_1	e_1	$Y_1(1)$	$Y_1(0)$	$\gamma_1 = Y_1(1) - Y_1(0)$	1	$Y_1 = Y_1(1)$	
•••	•••	•••	•••	•••		•••		处置组
K	X_K	e_K	$Y_K(1)$	$Y_K(0)$	$\gamma_K = Y_K(1) - Y_K(0)$	1	$Y_K = Y_K(1)$	
<i>K</i> + 1	X_{K+1}	e_{K+1}	$Y_{K+1}(1)$	$Y_{K+1}(0)$	$\gamma_{K+1} = Y_{K+1}(1) - Y_{K+1}(0)$	0	$Y_{K+1} = Y_{K+1}(0)$	
•••	•••	•••	•••	•••	•••	•••		控制组
N	X_N	e_N	$Y_N(1)$	$Y_N(0)$	$\gamma_N = Y_N(1) - Y_N(0)$	0	$Y_N = Y_N(0)$	

表5.2 处置组和控制组

5.2.2: 反事实结果

- 对于处置组个体i, 观测结果 $Y_i = Y_i(1)$, 反事实结果 为 $Y_i = Y_i(0)$
- 反事实结果:
 - 观测结果所对应的未观测到的潜在结果
- 由于无法观测,只能依靠观测数据估计
- 估计反事实结果是估计处置效应的关键

第三节

使用观测结果估计处置效应的可能偏差

5.3.1: 使用观测结果估计个体处置效应的可能偏差

- 假设i接受了处置, $Y_i = Y_i(1)$; j未接受处置, $Y_j = Y_j(0)$
- 想要知道个体i的处置效应,如果用i的观测结果减去j的观测结果

$$Y_i - Y_j = Y_i(1) - Y_j(0) = \underbrace{Y_i(1) - Y_i(0)}_{\gamma_i} + \underbrace{Y_i(0) - Y_j(0)}_{\text{@ £}}$$

- 包含i的处置效应和二者在未处置情况下的潜在结果差异
- 想要知道个体j的处置效应,如果用i的观测结果减去j的观测结果

$$Y_i - Y_j = Y_i(1) - Y_j(0) = \underbrace{Y_j(1) - Y_j(0)}_{\gamma_j} + \underbrace{Y_i(1) - Y_j(1)}_{\text{@} £}$$

- 包含j的处置效应和二者在处置情况下的潜在结果差异
- 个体的潜在结果差异无法消除
 - 解决办法: 关注平均处置效应

平均潜	在结果	处置情况	平均观测结果	
如果处置	如果未处置) <u></u>	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
$T1 = E[Y_i(1) D_i = 1]$	$T0 = E[Y_i(0) D_i = 1]$ (反事实结果)	<i>D_i</i> = 1 (处置组)	$T1 = E[Y_i D_i = 1]$ = $E[Y_i(1) D_i = 1]$	
$C1 = E[Y_i(1) D_i = 0]$ (反事实结果)	$C0 = E[Y_i(0) D_i = 0]$	$D_i = 0$ (控制组)	$C0 = E[Y_i D_i = 1]$ = $E[Y_i(0) D_i = 0]$	

- T1、T0分别代表处置组的平均潜在处置结果和平均潜在未处置结果
- C1、C0分别代表控制组的平均潜在处置结果和平均潜在未处置结果

- ATT(接受处置个体的平均处置效应) = T1 T0
- ATU (未接受处置个体的平均处置效应) = C1 C0
- ATE(总体平均处置效应)= $\omega \times ATT + (1 \omega) \times ATU$ = $\omega \times (T1 - T0) + (1 - \omega) \times (C1 - C0)$

● 简单估计平均处置效应的方法:

- "朴素"估计量对ATT、ATU、ATE的估计都可能存在偏差
- $T1 C0 = \underbrace{T1 T0}_{ATT} + \underbrace{T0 C0}_{ATT}$
 - $T0 C0 \neq 0$,即处置组与控制组的平均未处置潜在结果存在差异
- $T1 C0 = \underbrace{C1 C0}_{ATU} + \underbrace{T1 C1}_{ATU}$
 - T1-C1 ≠ 0,即处置组与控制组的平均接受处置潜在结果存在差异

•
$$T1 - C0 = \omega \times (T1 - T0) + (1 - \omega) \times (C1 - C0) + \Delta TE$$

$$\omega \times (T0 - C0) + (1 - \omega) \times (T1 - C1)$$

$$\Delta TE$$

$$\Delta T$$

- 造成ATE估计偏差的原因包含造成ATT和ATE估计偏差的原因
- 造成"朴素"估计量估计处置效应产生偏差的原因:
 - 接受处置与否并非随机,即是否接受处置与潜在结果是相关的
 - 产生偏差的原因是接受处置与否是个体自我选择的后果,我们 称之为选择偏差

第四节

计算平均处置效应实例

5.4: 计算平均处置效应实例

个体i	潜在结果		从黑妆片	从黑小大	加加外田	
	如果处置	如果未处置	处置效应	处置状态	观测结果	
i	$Y_i(1)$	$Y_i(0)$	$Y_i(1)-Y_i(0)$	D_i	$Y_{\mathbf{i}}$	
1	5	<u>2</u>	3	1	5	
2	7	<u>3</u>	4	1	7	
3	4	<u>1</u>	3	1	4	
4	<u>3</u>	2	1	0	2	
5	<u>8</u>	3	5	0	3	

表5.4 计算ATE、ATT、ATU的数据例子

■ 阴影部分为观测结果,有下划线的部分为无法观测到的反事实结果

5.4: 计算平均处置效应实例

平均灌	· 在结果	4 甲桂灯	平均观测结果	
如果处置	如果未处置	处置情况		
$T1 = E[Y_i(1) D_i = 1]$ = 5.3	$T0 = E[Y_i(0) D_i = 1]$ = 2 (反事实结果)	D _i = 1 (处置组)	$T1 = E[Y_i D_i = 1]$ = $E[Y_i(1) D_i = 1]$ = 5.3	
$C1 = E[Y_i(1) D_i = 0]$ =5.5 (反事实结果)	$C0 = E[Y_i(0) D_i = 0]$ = 2.5	<i>D_i</i> = 0 (控制组)	$C0 = E[Y_i D_i = 1]$ = $E[Y_i(0) D_i = 0]$ = 2.5	

表5.5 表5.4的数据总结

5.4: 计算平均处置效应实例

- 若知道所有个体的潜在结果,就可以得到准确的平均处置效应
- ATT(接受处置个体的平均处置效应) = T1 T0 = 3.3
- ATU (未接受处置个体的平均处置效应) = C1 C0 = 3
- ATE(总体平均处置效应)= ω × ATT + (1 ω) × ATU
 = 3.18

5.4: 计算平均处置效应实例

- 但在实际情况中,无法观测到反事实结果。
- "朴素"估计量= T1-C0 =2.8
- ATT估计误差 = T0 C0 = -0.5
- ATU估计误差 = T1 C1 = -0.2
- ATE估计误差 = $\omega \times (T0 C0) + (1 \omega) \times (T1 C1)$ = -0.38
- 产生偏差的原因是处置组与控制组里个体的潜在结果不同