Billiards

Jonathan Allen, John Wang

Massachusetts Institute of Technology

November 22nd, 2013

Introduction

Frictionless, massless, point-sized billiard ball bouncing in a square.

2 / 52

vvvhvvvv vhv

vvvhvvvvhvvv <mark>vhv</mark>

Resulting Sequence

vvvhvvvvvhvvvvhv

Presentation Outline

- Introduction
- 2 Tiling
- Theorems
- Future Research

Problem Statement

Problem: Given a sequence of v and h collisions, determine if it is a valid collision sequence.

Basic Notation

Definition

v collision: when the ball collides with a v side

Definition

h collision: when the ball collides with an h side

Definition

Collision sequence (α) : a sequence of v and h collisions which starts and ends with an h collision.

Introduction

- 2 Tiling
- 3 Theorems
- 4 Future Research

Tiling Representation

- Tile the table in the plane for a more powerful representation of the problem
- Tiling will reflect the table about each side
- After tiling, we only need to deal with straight line trajectories in a tiled plane

Introduction

- 2 Tiling
- Theorems

4 Future Research

Indexing Definitions

$$I(A, b)_k$$
: index of kth occurrence of b in A
 β_i : # of v's between ith and (i+1)th h collisions: $[I(\alpha, h)]_{i+1} - [I(\alpha, h)]_i - 1$

$$lpha = hvvvvhvvvvhvvvh$$
 $I(lpha, h) = (0, 5, 10, 14)$
 $eta = (4, 4, 3)$

First Indexing Theorem

 N_h : the number of h's in α : $length(I(\alpha, h))$

Theorem

Every valid collision sequence has the following property

$$\beta_i \geq 1 \quad \forall i \in \{0, \dots, N_h - 2\}$$

First Indexing Theorem

- $\alpha = hvvhhvvvhhvhhvhhvvvvhvvvh$ $\beta = (2,0,3,2,0,1,2,4,3)$
- $\alpha = hvvvvhvvvvhvhvvvvvvvh$ $\beta = (4, 4, 1, 3, 7)$
- $\alpha = hvvvvhvvvvhvvvvhvvvvh$ $\beta = (4, 4, 3, 4, 4)$

First Indexing Theorem

- $\alpha = hvvhhvvvhvvhhvvhhvvhvvvh$ $\beta = (2,0,3,2,0,1,2,4,3)$
- $\alpha = hvvvvhvvvvhvhvvvvvvvh$ $\beta = (4, 4, 1, 3, 7)$
- $\alpha = hvvvvhvvvvhvvvvhvvvvh$ $\beta = (4, 4, 3, 4, 4)$

Parametric Representation

Parametric Representation

Parametric Representation

Second Indexing Theorem

 β_{max} : maximum β value in α : max $_i$ β_i β_{min} : minimum β value in α : min $_i$ β_i

Theorem

Every valid collision sequence has the following property

$$\beta_{max} - \beta_{min} \le 1$$

Second Indexing Theorem

- $\alpha = hvvhhvvvhhvhhvhhvvvvhvvvh$ $\beta = (2,0,3,2,0,1,2,4,3)$
- $\alpha = hvvvvhvvvvhvhvvvvvvvh$ $\beta = (4, 4, 1, 3, 7)$
- $\alpha = hvvvvhvvvvhvvvvhvvvvh$ $\beta = (4, 4, 3, 4, 4)$

Second Indexing Theorem

- $\alpha = hvvhhvvvhvvhhvhhvhhvvvvhvvvh$ $\beta = (2, 0, 3, 2, 0, 1, 2, 4, 3)$
- $\alpha = hvvvvhvvvvhvhvvvvvvvh$ $\beta = (4, 4, 1, 3, 7)$
- $\alpha = hvvvvhvvvvhvvvvhvvvvh$ $\beta = (4, 4, 3, 4, 4)$

Windowing

More Sub-Sequences

$$C_i^{(0)} := [I(\beta, \beta_{min})]_{i+1} - [I(\beta, \beta_{min})]_i$$
$$\forall i \in \{0, \dots, length(I(\beta, \beta_{min}) - 2)\}$$

More Sub-Sequences

$$N_j$$
: length($I(C^{(j-1)}, C_{min}^{(j-1)})$)

$$C_i^{(j)} := [I(C_i^{(j-1)}, C_{min}^{(j-1)})]_{i+1} - [I(C_i^{(j-1)}, C_{min}^{(j-1)})]_i$$

$$\forall i \in \{0, \dots, N_j - 2\}, \ \forall j \in \{0, N_C - 1\}$$

where N_C is defined s.t.

$$\begin{cases} C^{(j)} \neq (1) & \text{for } j < N_C - 1 \\ C^{(j)} = (1) & \text{for } j = N_C - 1 \end{cases}$$

Satisfiability Test (Fractal Version)

Definition

$$C_{max}^{(j)} := \max_{i} C_{i}^{(j)}$$

$$C_{min}^{(j)} := \min_{i} C_{i}^{(j)}$$

$$(2)$$

$$C_{\min}^{(j)} := \min_{i} C_{i}^{(j)} \tag{2}$$

Theorem

A collision sequence is valid iff the following is true:

$$\beta_{max} - \beta_{min} \leq 1$$
 and $C_{max}^{(j)} - C_{min}^{(j)} \leq 1$ $\forall j \in \{0, \dots, N_C - 1\}$

Introduction

2 Tiling

- Theorems
- Future Research

Extensions to Cubes

- Assign x, y, and z as the opposite pairs of faces of a cube.
- Characterize sequences of x, y, and z collisions.

Intuition

- Examine collisions in xy, yz, and xz planes.
- Movement in each plane is independent.
- Combine xy, yz, and xz collision sequences to get final sequence.

Example

Example

xy sequence: xxyyxx
yz sequence: zzyzyz
xz sequence: xxzzzx