

Projeto e Fabricação Assistidos por Computador

Flow Simulation

Prof. Me Herbert Severino

Sumário

- Apresentação sobre Flow simulation;
- Método de trabalho com simulações;
- Preset de simulação;
- Simulação.
- Extração de resultados.

Fundamento teórico

Clique na imagem para assistir o vídeo.

Agora que temos os fundamentos, vamos fazer esta simulação:

Abra uma nova peça.

Salve com o nome: Tubo_de_Venturi

Faça o esboço conforme a imagem:

- 1° Faça o esboço. Obs: Adicionar as relações entre a linha 1 e 2:
 - Iguais 🧮
 - Colineares 🔀

2° Crie a espessura da parede utilizando a ferramenta **Offset de entidades**.

Distância: 2mm

Não esqueça de fechar os esboços.

3° Faça um Ressalto/base revolucionado, conforme a imagem.

Como deverá ficar

4° No Plano Frontal, faça uma linha central.

5° Em outro esboço faça os pontos conforme a imagem.

6° Renomee os esboços conforme a figura.

Nome dos esboços:

- Linha_centro
- Pontos_observacao

Vamos ativar o suplemento Flow Simulation:

1° Ative o suplemento **SOLIDWORKS Flow Simulation**.

2° Selecione o Flow Simulation na Barra de Ferramentas.

Podemos iniciar a simulação! Primeiro criamos os Lids:

1° Selecione Create Lids, em Tools/ Create Lids

2° Selecione a face do tubo. O objetivo é tampa-lo.

3° Selecione a face do tubo. O objetivo é fechá-lo.

4° Verifique se ficou assim. Clique em Ok

Como deverá ficar.

Agora vamos para as configurações:

1° Clique em Wizard.

2° Altere o nome para Venturi.

3° Verifique se está no sistema de Unidades SI.

4° Selecione:

- Internal.
- Exclude cavites without flow conditions.
- Selecione Fluid Flow.

- Clique em Fluído para abrir as opções de fluído.
- Selecione Water clicando duas vezes.

Como deverá ficar.

6° Verifique se as informações estão conforme a imagem.

7° Clique em Finish.

Vamos configurar o domínio e pontos de controle:

1° Verifique se o projeto foi iniciado.

2° Aplique uma vista de corte no plano frontal.

- 3° Oculte as linhas do domínio:
 - Clique com o botão direito em Computational Domain.
 - Selecione Hide.

Como deverá ficar

4° Insira as condições de contorno:

- Clique com o botão direito em Boundary Conditions.
- Selecione Insert Boundary Condition...

Como deverá ficar.

5° Insira a condição de entrada:

- Selecione Inlet Velocity.
- Em Flow Parameters insira: V = 1 m/s
- Clique em OK.

6° Insira as condições de contorno:

- Clique com o botão direito em Boundary Conditions.
- Selecione Insert Boundary Condition... novamente.

7° Insira a condição de saída:

- Em Type, selecione Pressure Openings
- Selecione Environment Pressure.
- Deixe o restantes das configurações no padrão. Não necessita alterar.
- Clique em OK.

Como deverá ficar.

8° Configures os pontos de controle:

- Clique com o botão direito em Goals.
- Selecione Insert Point Goals...

9° Selecione os dois pontos conforme a imagem. Em seguida clique em Total Pressure e Velocity para extrair estas informações na simulação.

Como o Menu deverá ficar.

10° Insira uma equação:

- Clique com o botão direito em Goals.
- Selecione Insert Equation Goals...

11° Vamos criar uma equação:

- Clique em <u>PG Total Pressure 1</u> para captar as informações de pressão
- Complemente com "/998+" (densidade da água).
- Cliquem em <u>PG Velocity 2</u> para captar as informações de velocidade no ponto 1.
- Complemente com ^2/2.
- Clique em OK.

Como irá ficar a equação no ponto 1:

{PG Total Pressure 1}/998+{PG Velocity 2}^2/2

12° Insira uma nova equação:

- Clique com o botão direito em Goals.
- Selecione Insert Equation Goals...

13° Vamos criar uma equação:

- Clique em **PG Total Pressure 3** para captar as informações de pressão
- Complemente com "/998+" (densidade da água).
- Cliquem em **PG Velocity 4** para captar as informações de velocidade no ponto 2.
- Complemente com ^2/2.
- Clique em OK.

Como irá ficar a equação no ponto 1: {PG Total Pressure 3}/998+{PG Velocity 4}^2/2

Acabamos de configurar:

Como o Menu deverá ficar.

Agora vamos executar a simulação:

- 1° Vamos rodar a simulação:
 - Clique com o botão direito no título da simulação (Venturi).
 - Selecione Run.

2° Configure conforme a imagem, em seguida clique em Run

PRONTO!
PRÓXIMO PASSO É EXTRAIR OS
RESULTADOS

3° Aguarde o Solve finalizar.

Vamos extrair os resultados:

1° Recolha o Input Data.

2° Abra o menu Results

3° Vamos plotar uma seção de corte:

- Clique com o botão direito em Cut Plot
- Selecione Insert.

4° Configure a plotagem:

- Plano frontal
- Contours:
 - Pressure
 - 0 10
- Clique em OK.

Como deverá ficar.

- 5° Vamos alterar a informação de plotagem:
 - Selectione Velocity.
 - Clique em OK.

6° Oculte o plano:

- Clique com o botão direito no plot criado
- Selecione Hide.

7° Crie as trajetórias do fluxo:

- Clique com o botão direito em Flow Trajectories.
- Selecione Insert.

8° Configure as trajetórias do fluxo:

- Selecione Arrows.
- Tamanho dos vetores: 0,003m.

Como deverá ficar.

- 9° Vamos simular o escoamento no tubo:
 - Clique com o botão direito na trajetória de fluxo criado.
 - Selecione Play.

10° Pare a simulação:

- Clique com o botão direito na trajetória de fluxo criado.
- Selecione Stop.

- 11° Vamos criar um gráfico:
 - Clique com o botão direito em XY Plot.
 - Selecione Insert.

12° Configure o XY Plot conforme a imagem.

13° Pode exibir os gráficos e/ou exportar as informações para o excel.

Show

Export to Excel

14° Exportar todos os resultados:

- Clique com o botão direito no gráfico criado.
- Selecione Export All to Excel para extrair a planilha.

PLANILHA EXPORTADA

- 15° Vamos obter os resultados da linha e pontos que inserimos no início:
 - Clique com o botão direito em Goals.
 - Selecione Insert.

16° Clique em All para obter todas as informações

17° Pode exibir os gráficos e/ou exportar as informações para o excel.

PLANILHA EXPORTADA

<u>Tubo_venturi.SLDPRT [Venturi [Valor predeterminado]]</u>

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
PG Total Pressure 1	[Pa]	102953,1993	102917,0424	102839,3611	102958,2067	100	Yes	118,8455525	180,6532245
PG Velocity 2	[m/s]	1,132490142	1,132062135	1,131583195	1,132490142	100	Yes	0,000906947	0,015655405
PG Total Pressure 3	[Pa]	102792,2649	102756,1292	102674,9147	102799,7188	100	Yes	51,39173835	61,47928708
PG Velocity 4	[m/s]	4,038637449	4,037999995	4,037142182	4,039060664	100	Yes	0,001918481	0,023973672
Energia_entrada	[m]	103,8007853	103,7640713	103,6856923	103,8057264	100	Yes	0,120034059	0,164399766
Energia_garganta	[Pa]	111,1535576	111,1147755	111,033643	111,1627357	100	Yes	0,129092723	0,135121336

Travels []: 1.125 Analysis interval: 21

Você aprendeu:

- Configurar da simulação;
- Executar uma Simulação.
- Extrair os resultados.

Clique em SAIBA MAIS, para acessar a Visão geral do SOLIDWORKS Flow Simulation.

SAIBA MAIS

Quer aprender recursos avançados? Clique nos botões:

Lição A 15

Lição A 16

