Department of Chemical Engineering, IIT Kharagpur

CH49019: CAPE Laboratory Autumn 2021

Assignment 1: Due on September 12, 2021

Email Your Assignment (pdf only) to

ID-swayamisra@gmail.com AND kowsalya123@kgpian.iitkgp.ac.in

1. The following Eigenvalue Equation is obtained during solution of an unsteady state diffusion equation by Separation of Variables.

$$\sin \lambda - \lambda \cos \lambda = 0$$

There are many roots for the above equation and $\lambda = 0$ is one of them. Find the smallest positive root by any numerial zero-finding method of your choice. Also, solve the problem using fzero function of MATLAB and compare two results in a table.

2. The well-known Colebrook-White equation for flow friction is an implicit equation.

$$\frac{1}{\sqrt{f}} = -2 \cdot \log_{10} \left(\frac{2.51}{Re} \cdot \frac{1}{\sqrt{f}} + \frac{\frac{\varepsilon}{\overline{D}}}{3.71} \right)$$

Determine the flow friction factor (f) for the following two cases using <u>Bisection Method</u>.

(i)
$$Re = 2.3 \times 10^5$$
 and $\frac{\epsilon}{D} = 10^{-4}$

(ii)
$$Re = 4.6 \times 10^7$$
 and $\frac{\epsilon}{D} = 0.037$

Also, solve the problem using fzero function of MATLAB and compare two results.

In literature, many explicit equations have been proposed to approximate the Colebrook-White implicit equation. Recently, Praks and Brkic (2020) have proposed the following relation.

$$\frac{1}{\sqrt{f}} = 0.8686 \left(B - C + \frac{C}{X - 0.5564C + 1.207} \right)$$

where

$$X = A + B$$

$$A = \frac{(Re)\varepsilon}{8.0884D}, B = \ln(Re) - 0.7794, C = \ln(X)$$

Determine the flow friction factor (f) for the above two cases using the explicit relation and report the Relative Error (%) compared with the implicit Colebrook-White equation. Present your results in the tabular form as follows:

	Friction Factor computed		Friction Factor	Relative Error
	using Colebrook-White		computed	(%)
	equation		using	
Case	Bisection	fzero	Explicit	$\left \frac{C-B}{A}\right \leq 100$
	Method		Relation	$\left \frac{B}{B}\right \times 100$
	(A)	(B)	(C)	
$Re = 2.3 \times 10^5$				
$Re = 2.3 \times 10^5$ $\frac{\epsilon}{D} = 10^{-4}$				
$Re = 4.6 \times 10^7$				
$\frac{\epsilon}{D} = 0.037$				

Optional Question:

Write a program (preferably using fzero of MATLAB) to generate Moody Chart for friction factor.

----- The End -----