Predvidjanje kvaliteta vina na osnovu hemijskih aributa

Autor: Aleksandra Petrovic 4008/21

Uvod

- Cilj ovog projekta je da se isprobaju razni modeli za predvidjanje kvaliteta vina na osnovu hemijskih atributa koji su dostupni u bazi podataka
- Baza podataka koja se koristi je na <u>linku</u>
- Sastoji se iz dva skupa podataka, belog i crvenog vina "Vihno Verde" koje potice iz Portugalije
- U ovom projektu analiziran je skup belog vina
- Ima 11 atributa i 4898 instanci
- Kolona "quality" govori o kvalitetu vina i uzima vrednosti od 0-10

Pretprocesiranje

- Svi atributi su neprekidnog tipa
- Nema nedostajucih podataka
- Ulazne promenljive (bazirane na fizičko-hemijskim testovima):
 - 1 fiksna kiselost (fixed acidity)
 - 2 fluktuirajuća kiselost (volatile acidity)
 - 3 limunska kiselina (citric acid)
 - 4 ostatak šećera (residual sugar)
 - 5 hloridi (chlorides)
 - 6 slobodan sumpor-dioksid (free sulfur dioxide)
 - 7 ukupan sumpor-dioksid (total sulfur dioxide)
 - 8 gustina (density)
 - 9 pH
 - 10 sulfati (sulphates)
 - 11 alkohol (alcohol)
- Izlazna promenljiva (bazirana na senzornim podacima):
 - 12 kvalitet ocena između 0 i 10 (quality)

- · Neizbalansirana podela po ocenama kvaliteta na osnovu histograma
- Najvise srednje ocenjenih vina, malo sa visokom ocenom (odlicnih) kao i sa niskom ocenom (losih)

• Matrica konfuzije, korelacija izmedju kolona

Modeli

- Modeli koji su isprobani u ovom projektu su:
 - KNN K najblizih suseda
 - · Linearna regresija sa tezinama
 - AdaBoost
 - Multinomijalna logisticka regresija
 - · Potpuno povezana neuronska mreza
 - Aditivna logisticka regresija
 - SMOTE algoritam

Podela i standardizacija

- Izvrsena je podela na test i trening skup
- Trening skup je 80%
- Standardizacija je izvrsena standardnim scaler-om

KNN

- K najblizih suseda je model koji klasifikuje novu instancu na osnovu k vrednosti kojih se nalaze u njegovom okruzenju
- Isprobano je 1-25 vrednosti za k, sa ocenom tacnoscu i koriscena je kros validacija za izbor modela
- Izabran je k=19 i treniran je model za tu vrednost

- Izracunata je tacnost modela na osnovu test skupa
- Tacnost je 0.57
- Izvestaj:

	precision	recall	f1-score	support
3	0.00	0.00	0.00	4
4	0.00	0.00	0.00	33
5	0.62	0.62	0.62	291
6	0.58	0.71	0.64	440
7	0.43	0.35	0.38	176
8	0.00	0.00	0.00	35
9	0.00	0.00	0.00	1
accuracy			0.57	980
macro avg	0.23	0.24	0.23	980
weighted avg	0.52	0.57	0.54	980

Linearna regresija sa tezinama

- · Linearna regresija sa tezinama je neprarametarski model
- Koristi se kada zelimo da dodamo tezinu nekim instancama, nesto sto se smatra bitnijim ili manje bitnim
- Isprobane tezine
 - w1=1/y_train
 - w2=np.abs((1-np.sum(y_train))/y_train)
 - w3= np.abs(np.random.randn(3918))
- · Izabrana je prva tezina za treniranje modela, zbog najmanje greske
- MSE=0.67
- MAPE=0.09
- R2=0.15

• Tacnost je 0.53

• Izvestaj

	precision	recall	f1-score	support
3	0.00	0.00	0.00	4
4	0.14	0.03	0.05	33
5	0.58	0.53	0.56	291
6	0.52	0.75	0.61	440
7	0.43	0.17	0.24	176
8	0.00	0.00	0.00	35
9	0.00	0.00	0.00	1
accuracy			0.53	980
macro avg	0.24	0.21	0.21	980
weighted avg	0.49	0.53	0.49	980

AdaBoost

- AdaBoost (Adaptive Boosting) je algoritam ansambla (ensemble) koji se koristi za poboljšanje performansi klasifikacionih modela
- Zasniva se na promenama tezina instanci
- · Neophodno je prvo da se napravi bazni model, dodele mu se parametri
- · Zatim se pravi ansambl i trenira se

• Tacnost je 0.7

• Izvestaj:

	precision	recall	f1-score	support
3	0.00	0.00	0.00	4
4	0.82	0.27	0.41	33
5	0.73	0.70	0.72	291
6	0.67	0.81	0.73	440
7	0.69	0.59	0.63	176
8	1.00	0.37	0.54	35
9	0.00	0.00	0.00	1
accuracy			0.70	980
macro avg	0.56	0.39	0.43	980
weighted avg	0.71	0.70	0.69	980

• Matrica konfuzije

[[0	0	1	3	0	0	0]
[0	9	16	7	1	0	0]
	0	2	204	84	1	0	0]
[0	0	55	355	30	0	0]
[0	0	3	70	103	0	0]
[0	0	0	9	13	13	0]
[0	0	0	0	1	0	0]]

- MSE=0.4
- R2=0.49
- MAPE=0.6

Multinomijalna logisticka regresija

- Statisticki model koji se koristi za predvidjanje vise klasa
- · Za probleme klasifikacije se koristi
- Generalizuje logisticku regresiju za vise od dve klase
- · Softmax funkcija pretvara tezinu i ulaz u verovatnocu za svaku od klasa
- Tacnost je 0.54
- MSE=0.64
- MAPE=0.09
- R2=0.18

• Matrica konfuzije

]]	0	0	1	3	0	0	0]
[0	3	19	10	1	0	0]
[0	1	162	125	2	1	0]
[0	2	79	324	35	0	0]
[0	0	6	128	42	0	0]
[0	0	1	23	11	0	0]
[0	0	0	0	1	0	0]]

Izvestaj

	precision	recall	f1-score	support
3	0.00	0.00	0.00	4
4	0.50	0.09	0.15	33
5	0.60	0.56	0.58	291
6	0.53	0.74	0.62	440
7	0.46	0.24	0.31	176
8	0.00	0.00	0.00	35
9	0.00	0.00	0.00	1
accuracy			0.54	980
macro avg	0.30	0.23	0.24	980
weighted avg	0.52	0.54	0.51	980

Potpuno povezana neuronska mreza

- Potpuno povezana neuronska mreza je tip mreza gde je svaki neuron povezan sa svim neuronima iz prethodnog i narednog sloja
- Sadrzi ulazni sloj, skrivene slojeve i izlazni sloj
- Koristi se Keras i Tensorflow biblioteka
- Ulaz je broj atributa
- Izlaz je vrednost ocena kvaliteta (0-10)
- Isprobano je vise modela sa razlicitim aktivacionim funkcijama, razlicitim brojevima slojeva i neurona
- model = Sequential([Input(shape=(number_of_features,)),
- Dense(units=64, activation='relu'),
- Dense(units=32, activation='relu'),
- Dense(units=output_size,activation='linear')
-])

Model

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 64)	768
dense_1 (Dense)	(None, 32)	2080
dense_2 (Dense)	(None, 10)	330

Total params: 3178 (12.41 KB)
Trainable params: 3178 (12.41 KB)
Non-trainable params: 0 (0.00 Byte)

• Model se kompajlira sa optimizatorom ADAM, greskom srednjom

kvadratnom i metrikom tacnoscu

• Model se trenira za 50 epoha, gde je batch_size 16, validacioni skup je 20%

• Grafik promene greske

Grafik promene tacnosti

- Evaluiran model na test skupu
 - Tacnost 0.083, Greska 0.49
- Evaluiran model na trening skupu
 - Tacnost 0.081, Greska 0.41

SMOTE

• Prilikom koriscenja SMOTE algoritma, gde se postize balansiranje klasa, nije dobijen nikakav bolji rezultat

Rezultati

• Prema dobijenim podacima iz isprobanih modela, najbolju tacnost za predvidjanje ima model AdaBoost, gde tacnost iznosi 0.7

MODEL	TACNOST na test skupu
KNN	0.57
Linearna regresija sa tezinama	0.53
AdaBoost	0.7
Multinomijalna logisticka regresija	0.54
Potpuno povezana neuronska mreza	0.081

Skup crvenog vina

• Modeli KNN, Linearna regresija sa tezinama, AdaBoost i multinomijalna logisticka regresija isporbani su na podacima i crvenog vina

fixed acidity -		-0.26		0.11	0.094	-0.15	-0.11		-0.68	0.18	-0.062	0.12	
volatile acidity -	-0.26	1	-0.55	0.0019	0.061	-0.011	0.076	0.022	0.23	-0.26	-0.2		
citric acid -		-0.55	1	0.14	0.2	-0.061	0.036	0.36	-0.54	0.31	0.11	0.23	
residual sugar -	0.11	0.0019	0.14	1	0.056	0.19	0.2	0.36	-0.086	0.0055	0.042	0.014	
chlorides -	0.094	0.061	0.2	0.056	1	0.0056	0.047	0.2	-0.27	0.37	-0.22	-0.13	
ree sulfur dioxide -	-0.15	-0.011	-0.061	0.19	0.0056	1		-0.022	0.07	0.052	-0.069	-0.051	
otal sulfur dioxide -	-0.11	0.076	0.036	0.2	0.047	0.67	1	0.071	-0.066	0.043	-0.21	-0.19	
density -		0.022	0.36	0.36	0.2	-0.022	0.071	1	-0.34	0.15	-0.5	-0.17	
pH -	-0.68	0.23	-0.54	-0.086	-0.27	0.07	-0.066	-0.34	1	-0.2	0.21	-0.058	
sulphates -	0.18	-0.26	0.31	0.0055	0.37	0.052	0.043	0.15	-0.2	1	0.094	0.25	
alcohol -	-0.062	-0.2	0.11	0.042	-0.22	-0.069	-0.21	-0.5	0.21	0.094	1	0.48	
quality -	0.12	-0.39	0.23	0.014	-0.13	-0.051	-0.19	-0.17	-0.058	0.25	0.48	1	
	fixed acidity -	olatile acidity -	citric acid -	residual sugar -	chlorides -	sulfur dioxide -	sulfur dioxide -	density -	Hd.	sulphates -	alcohol -	quality -	

Aditivna logisticka regresija

- Omogucava nelinearne odnose izmedju ciljne promenljive i atributa
- Splajnovi modeluju nelinearne odnose ima ih 10, za svaku od klasa
- Aditivnost zbog glatkih funkcija
- · Parametar lambda je zaduzen za glatkocu funkcije

- GridSearch parametara lambda, 100x11
- · Dobijeni najbolji i korisceni za treniranje modela
- Zatim predvidjanje i evaluacija
- MSE=0.63
- MAPE=0.09
- R2=0.19

LinearGAM							
Distribution: Link Function: Number of Samples:		Effective DoF: 3 Log Likelihood: -4764 AIC: 9608 AICc: 9609 GCV: 0 Scale: 0 Pseudo R-Squared: 0					
Feature Function	Lambda	Rank	EDoF	P > x	Sig. Code		
s(0)	[134.6572]	10	2.9	3.65e-06	***		
s(1) s(2)	[119.1806] [7.1224]	10 10	2.4 3.5	1.11e-16 8.95e-08	***		
s(3)	[1.8874]	10	4.2	1.11e-16	***		
s(4)	[0.4937]	10	5.4	5.75e-03	**		
s(5)	[0.0833]	10	5.2	1.11e-16	***		
s(6)	[6.3033]	10	3.3	8.51e-07	***		
s(7)	[0.0513]	10	2.8	1.11e-16	***		
s(8)	[2.4203]	10	4.9	1.83e-12	***		
s(9)	[2108.3145]	10	1.2	6.28e-05	***		
s(10)	[65.2]	10	2.7	7.46e-09	***		

Significance codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

terms=s(0) + s(1) + s(2) + s(3) + s(4) + s(5) + s(6) + s(7) + s(8) + s(9) + s(10) + intercept

Listing paketa

- Numpy
- Matplotlib
- Pandas
- Sklearn
- Tensorflow
- Keras
- Pygam

Literatura

- · Skripta "Masinsko ucenje", Mladen Nikolic, Andjelka Zecevic, Beograd 2019
- · Predavanja i vezbe predmeta Masinsko ucenje na Masinskom fakultetu
- https://cs229.stanford.edu/proj2015/245_report.pdf