Examenul național de bacalaureat 2025 Proba E. c)

Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 5

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2(\log_5 10 - \log_5 2) + \log_5 25 = 2\log_5 5 + \log_5 5^2 =$	3p
	$=2\cdot 1+2=4$	2p
2.	f(2+m)=m-2, pentru orice număr real m	2 p
	m-2=2-m, de unde obținem $m=2$	3 p
3.	$2^{2x+1} = 2^7$, de unde obţinem $2x+1=7$	3p
	x=3	2p
4.	Cifra unităților se poate alege într-un singur mod	2 p
	Cifra sutelor se poate alege în 5 moduri și, pentru fiecare alegere a cifrei sutelor, cifra zecilor se poate alege în câte 4 moduri, deci sunt $1.5.4 = 20$ de numere	3 p
5.	$m_{BC} = 3$, deci $m_d = 3$	3 p
	Ecuația dreptei d este $y-1=3(x-0)$, adică $y=3x+1$	2p
6.		3p
	$E\left(\frac{\pi}{3}\right) = \sqrt{3} \cdot \left(\frac{\sqrt{2}}{2}\right)^2 - \frac{\sqrt{3}}{2} = \sqrt{3} \cdot \frac{1}{2} - \frac{\sqrt{3}}{2} = 0$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 1 & 1 & -2 \\ 0 & 1 & 1 \\ 2 & 4 & 1 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 1 & 1 & -2 \\ 0 & 1 & 1 \\ 2 & 4 & 1 \end{vmatrix} =$	
	$A(1) = \begin{vmatrix} 0 & 1 & 1 \end{vmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 0 & 1 & 1 \end{vmatrix} =$	2p
	$\begin{pmatrix} 2 & 4 & 1 \end{pmatrix}$ $\begin{vmatrix} 2 & 4 & 1 \end{vmatrix}$	
	=1+0+2+4-4-0=3	3 p
b)	$\begin{vmatrix} a & 1 & -2 \end{vmatrix}$	
	$\det(A(a)) = \begin{vmatrix} a & 1 & -2 \\ 0 & a & 1 \\ 2 & 4 & 1 \end{vmatrix} = a^2 + 2$, pentru orice număr real a	3р
	$a^2 + 2 \neq 0$, pentru orice număr real a, deci sistemul de ecuații are soluție unică, pentru orice	2p
	număr real a	2p
c)	$y_0 = \frac{12 - 3a}{a^2 + 2}$, pentru orice număr real a	3р
	$\frac{12-3a}{a^2+2} \ge 1$, de unde obţinem $a \in [-5,2]$	2p
2.a)	$6*7 = 4 - \frac{1}{2}(6-4)(7-4) =$	3p
	=4-3=1	2p

b)	$x*(x+4) = 4 - \frac{1}{2}(x-4)x$, pentru orice număr real x	2p
	$4 - \frac{1}{2}(x-4)x = 6$, de unde obținem $x = 2$	3 p
c)	$m*n*p=4+\frac{1}{4}(m-4)(n-4)(p-4)$, pentru orice numere naturale m , n și p	3р
	$4 + \frac{1}{4}(m-4)(n-4)(p-4) = 3 \Leftrightarrow (m-4)(n-4)(p-4) = -4$ şi, cum m , n şi p sunt	2p
	numere naturale cu $m < n < p$, obținem tripletele (2,5,6) și (3,5,8)	r

SUBIECTUL al III-lea

(30 de puncte)

$f'(x) = \sqrt{x^2 + 2} + (x - 5) \cdot \frac{2x}{2\sqrt{x^2 + 2}} =$	3p
$= \frac{x^2 + 2 + x^2 - 5x}{\sqrt{x^2 + 2}} = \frac{2x^2 - 5x + 2}{\sqrt{x^2 + 2}}, \ x \in \mathbb{R}$	2p
$f'(x) = 0 \Leftrightarrow x = \frac{1}{2} \text{ sau } x = 2$	2p
Pentru orice $x \in \left(-\infty, \frac{1}{2}\right]$, $f'(x) \ge 0$, deci f este crescătoare pe $\left(-\infty, \frac{1}{2}\right]$, pentru orice $x \in \left[\frac{1}{2}, \frac{1}{2}\right]$ si pentru orice $x \in \left[\frac{1}{2}, \frac{1}{2}\right]$ si pentru orice $x \in \left[\frac{1}{2}, \frac{1}{2}\right]$	3 p
$\lim_{x \to +\infty} \left(\frac{x^2 - 5x}{f(x)} \right)^x = \lim_{x \to +\infty} \left(1 - \frac{2}{x^2 + 2} \right)^{\frac{x}{2}} = \lim_{x \to +\infty} \left(\left(1 - \frac{2}{x^2 + 2} \right)^{-\frac{x^2 + 2}{2}} \right)^{-\frac{x}{x^2 + 2}} =$	3p
$= e^{\lim_{x \to +\infty} -\frac{x}{x^2 + 2}} = e^0 = 1$	2p
$\int_{1}^{2} (f(x) - \ln^{2} x) dx = \int_{1}^{2} (8x^{3} + 1) dx = (2x^{4} + x) \Big _{1}^{2} =$	3p
=34-3=31	2p
$\int_{1}^{e} \frac{f(x) - 8x^{3} - 1}{x} dx = \int_{1}^{e} \ln^{2} x \cdot (\ln x)' dx = \frac{\ln^{3} x}{3} \Big _{1}^{e} =$	3p
$=\frac{\ln^3 e}{3} - \frac{\ln^3 1}{3} = \frac{1}{3}$	2p
$I_n = \int_{1}^{e^2} \frac{x(\ln x)^n}{1 + \ln^2 x} dx, I_{n+2} + I_n = \int_{1}^{e^2} \frac{x(\ln x)^{n+2} + x(\ln x)^n}{1 + \ln^2 x} dx = \int_{1}^{e^2} x(\ln x)^n dx, \text{pentru orice}$	3p
număr natural nenul <i>n</i>	
Pentru orice $x \in [1, e^2]$, $\ln x \le 2$, de unde obținem $I_{n+2} + I_n \le 2^n \int_1^{e^2} x dx = 2^{n-1} (e^4 - 1)$	2p
	$\frac{x^{2} + 2 + x^{2} - 5x}{\sqrt{x^{2} + 2}} = \frac{2x^{2} - 5x + 2}{\sqrt{x^{2} + 2}}, x \in \mathbb{R}$ $f'(x) = 0 \Leftrightarrow x = \frac{1}{2} \text{ sau } x = 2$ Pentru orice $x \in \left[-\infty, \frac{1}{2}\right], f'(x) \ge 0$, deci f este crescătoare pe $\left[-\infty, \frac{1}{2}\right]$, pentru orice $x \in \left[\frac{1}{2}, 2\right], f'(x) \le 0$, deci f este descrescătoare pe $\left[\frac{1}{2}, 2\right]$ și, pentru orice $x \in \left[2, +\infty\right), f'(x) \ge 0$, deci f este crescătoare pe $\left[2, +\infty\right)$ $\lim_{x \to +\infty} \left(\frac{x^{2} - 5x}{f(x)}\right)^{x} = \lim_{x \to +\infty} \left(1 - \frac{2}{x^{2} + 2}\right)^{\frac{x}{2}} = \lim_{x \to +\infty} \left(1 - \frac{2}{x^{2} + 2}\right)^{-\frac{x^{2} + 2}{2}} = \frac{1}{x^{2} + 2}$ $= e^{\lim_{x \to +\infty} -\frac{x}{x^{2} + 2}} = e^{0} = 1$ $\lim_{x \to +\infty} \left[\frac{f(x) - \ln^{2} x}{x}\right] dx = \int_{1}^{2} (8x^{3} + 1) dx = \left(2x^{4} + x\right) \left _{1}^{2} = \frac{1}{1} + 1$