L15: Introduction to Reinforcement Learning

Shan Wang

Lingnan College, Sun Yat-sen University

2020 Data Mining and Machine Learning LN3119 https://wangshan731.github.io/DM-ML/

Last lecture

- Dimension Reduction
 - PCA (squared matrix)
 - SVD (general matrix)
 - Auto Encoder

$$A_{m \times n} = U_{m \times m} S_{m \times n} V_{n \times n}^T$$

- EM Method
 - E-step: construct a (good) lower-bound of log-likelihood
 - M-step: optimize that lower-bound

What we have learned so far

- Supervised Learning
 - To perform the desired output given the data and labels
 - e.g., to build a loss function to minimize
- Unsupervised Learning
 - To analyze and make use of the underlying data patterns/structures
 - e.g., to build a log-likelihood function to maximize

Supervised Learning

Given the training dataset of (data, label) pairs,

$$D = \{(x_i, y_i)\}_{i=1,2,...,N}$$

let the machine learn a function from data to label $x \sim f_{*}(x)$

$$y_i \simeq f_{\theta}(\mathbf{x}_i)$$

• Learning is referred to as updating the parameter heta

- Learning objective: make the prediction close to the ground truth
 - $f_{\theta}(x_i)$ is as close to y_i as possible

Unsupervised Learning

Given the training dataset

$$D = \{(x_i)\}_{i=1,2,...,N}$$

let the machine learn the data underlying patterns

Sometimes build latent variables

$$z \rightarrow x$$

Estimate the probabilistic density function (p.d.f.)

$$p(\mathbf{x}|\theta) = \sum_{z} q(z)p(\mathbf{x}|z,\theta)$$

Maximize the likelihood of training data

$$\prod_{i=1}^{n} p(\mathbf{x}_i | \theta)$$

Two Kinds of Machine Learning

Prediction

- Predict the desired output given the data (supervised learning)
- Generate data instances (unsupervised learning)
- We mainly covered this category in previous lectures

Decision Making

- Take actions based on a particular state in a dynamic environment (reinforcement learning)
 - to transit to new states
 - to receive immediate reward
 - to maximize the accumulative reward over time
- Learning from interaction

Machine Learning Categories

- Supervised Learning
 - To perform the desired output given the data and labels

p(y|x)

- Unsupervised Learning
 - To analyze and make use of the underlying data patterns/structures

p(x)

- Reinforcement Learning
 - To learn a policy of taking actions in a dynamic environment and acquire rewards

 $\pi(a|\mathbf{x})$

Course Outline

- Supervised learning
 - Linear regression
 - Logistic regression
 - SVM and kernel
 - Tree models
- Deep learning
 - Neural networks
 - Convolutional NN
 - Recurrent NN

- Unsupervised learning
 - Clustering
 - PCA
 - EM

- Reinforcement learning
 - MDP
 - ADP
 - Deep Q-Network

This lecture

- Introduction to Reinforcement Learning
- Model-based Reinforcement Learning
 - MDP
 - Value iteration
 - Policy iteration
- Model-free Reinforcement Learning

Reference: CS 420, Weinan Zhang (SJTU)

Introduction to RL

Reinforcement Learning

- Learning from interaction
 - Given the current situation, what to do next in order to maximize utility?

Reinforcement Learning Definition

 A computational approach by learning from interaction to achieve a goal

- Sensation: sense the state of the environment to some extent
- Action: able to take actions that affect the state and achieve the goal
- Goal: maximize the cumulative reward over time

Process of RL

- At step t, the agent
 - Receives observation Ot
 - Receives scalar reward R_t
 - Executes action At
- The environment
 - Receives action At
 - Emits observation *O*_{t+1}
 - Emits scalar reward R_{t+1}
- t increments at environment step

History is the sequence of observations, action, rewards

$$H_t = \{O_1, R_1, A_1, O_2, R_2, A_2, \dots, O_t, R_t\}$$

- i.e. all observable variables up to time t
- E.g., all the records of the Go game
- What happens next depends on the history:
 - The agent selects actions
 - The environment selects observations/rewards
- State is the information used to determine what happens next (actions, observations, rewards)
- Formally, state is a function of the history

$$S_t = f(H_t)$$

- Policy is the learning agent's way of behaving at a given time
 - It is a map from state to action
 - Deterministic policy

$$a = \pi(s)$$

Stochastic policy

$$\pi(s|a) = P(A_t = a|S_t = s)$$

Reward

- A scalar defining the goal in an RL problem
- For immediate sense of what is good

Value function

- State value (Value of a state) is a scalar specifying what is good in the long run
- Value function is a prediction of the cumulative future reward
 - Used to evaluate the goodness/badness of states (given the current policy)

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots | S_t = s]$$

Reward

- A scalar defining the goal in an RL problem
- For immediate sense of what is good

Value function

 State value (value of a state) is a scalar specifying what is good in the long run, i.e., the cumulative reward

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s]$$

• Action value (value of a action) is a scalar specifying what is a good action at a specific state in the long run $(s, a) = \mathbb{E} [P] + vP + vP + v^2P + vP = sA = a$

$$Q_{\pi}(s,a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s, A_t = a]$$

- A Model of the environment that mimics the behavior of the environment
 - Predict the next state

$$\mathcal{P}_{sa}(s') = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$$

Predict the next (immediate) reward

$$\mathcal{R}_{s}(a) = \mathbb{E}[R_{t+1}|S_{t} = s, A_{t} = a]$$

- State: agent's location
- Action: N,E,S,W
- State transition: move to the next grid according to the action
 - No move if the action is to the wall

- State: agent's location
- Action: N,E,S,W
- State transition: move to the next grid according to the action
- Reward: -1 per time step

- State: agent's location
- Action: N,E,S,W
- State transition: move to the next grid according to the action
- Reward: -1 per time step

Given a policy as shown above

• Arrows represent policy $\pi(s)$ for each state s

- State: agent's location
- Action: N,E,S,W
- State transition: move to the next grid according to the action
- Reward: -1 per time step

Numbers represent value $v\pi(s)$ of each state s

Another example

http://www.4399.com/flash/105474_1.htm

Model-based RL

Markov Decision Process

Markov Decision Process

 Markov decision processes (MDPs) provide a mathematical framework for modeling decision making in situations where outcomes are partly random and partly under the control of a decision maker.

- MDPs formally describe an environment for RL
 - where the environment is FULLY observable
 - i.e. the current state completely characterizes the process (Markov property)

Markov Property

- "The future is independent of the past given the present"
- Definition
 - A state s_t is Markov if and only if $P[s_{t+1}|s_t] = P[s_{t+1}|s_t, s_{t-1}, ..., s_1]$
- Properties
 - The state captures all relevant information from the history
 - Once the state is known, the history may be thrown away
 - i.e. the state is sufficient statistic of the future

Markov Decision Process

- A Markov decision process is a tuple $(S, A, \{P_{sa}\}, \gamma, R)$
 - S is the set of states
 - E.g., location in a maze, or current screen in an Atari game
 - A is the set of actions
 - E.g., move N, E, S, W, or the direction of the joystick and the buttons
 - P_{sa} are the state transition probabilities
 - For each state $s \in S$ and action $a \in A$, P_{sa} is a distribution over the next state in S
 - $\gamma \in [0,1]$ is the discount factor for the future reward
 - $R: S \times A \to \mathbb{R}$ is the reward function
 - Sometimes the reward is only assigned to state, i.e., irrelative to the action

Markov Decision Process

- The dynamics of an MDP proceeds as
 - Start in a state s_0
 - The agent chooses some action $a_0 \in A$
 - The agent gets the reward $R(s_0, a_0)$
 - MDP randomly transits to some successor state $s_1 \sim P_{s_0 a_0}$
 - This proceeds iteratively

$$a_0 \xrightarrow{a_1} a_2$$
 $S_0 \xrightarrow{R(s_0, a_0)} S_1 \xrightarrow{R(s_1, a_1)} S_2 \xrightarrow{R(s_2, a_2)} S_3 \dots$

- Until a terminal state S_T or proceeds with no end
- The total payoff of the agent is

$$R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \cdots$$

Reward on State Only

- For a large part of cases, reward is only assigned to the state
 - E.g., in maze game, the reward is on the location
 - In game of Go, the reward is only based on the final territory
- The reward function $R(s): S \to \mathbb{R}$
- MDPs proceed

$$a_0 \qquad a_1 \qquad a_2$$

$$S_0 \xrightarrow{R(s_0)} S_1 \xrightarrow{R(s_1)} S_2 \xrightarrow{R(s_2)} S_3 \dots$$

cumulative reward (total payoff)

$$R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots$$

MDP Goal and Policy

 The goal is to choose actions over time to maximize the expected cumulative reward

$$\mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots]$$

- $\gamma \in [0,1]$ is the discount factor for the future reward, which makes the agent prefer immediate reward to future reward
 - In finance case, today's \$1 is more valuable than \$1 in tomorrow
- Given a particular policy $\pi(s): S \to A$
 - i.e. take the action $a = \pi(s)$ at state s
- Define the value function for π

$$V^{\pi}(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots | s_0 = s, \pi]$$

• i.e. expected cumulative reward given the start state s and taking actions according to π

Bellman Equation for Value Function

• Define the value function for π

$$V^{\pi}(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots] s_0 = s, \pi]$$

$$\gamma V^{\pi}(s_1)$$

Bellman Equation:

Optimal Value Function

 The optimal value function for each state s is best possible sum of discounted rewards that can be attained by any policy

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

The Bellman's equation for optimal value function

$$V^*(s) = R(s) + \gamma \max_{a \in A} \sum_{s \in S} P_{sa}(s')V^*(s')$$

The optimal policy

$$\pi^*(s) = \underset{a \in A}{\operatorname{argmax}} \sum_{s' \in S} P_{sa}(s') V^*(s')$$

• For every state s and every policy π

$$V^*(s) = V^{\pi^*}(s) \ge V^{\pi}(s)$$

Value Iteration & Policy Iteration

Note that the value function and policy are correlated

$$V^{\pi}(s) = R(s) + \gamma \max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^{\pi}(s')$$

$$\pi(s) = \underset{a \in A}{\operatorname{argmax}} \sum_{s' \in S} P_{sa}(s') V^{\pi}(s')$$

- It is feasible to perform iterative update towards the optimal value function and optimal policy
 - Value iteration
 - Policy iteration

Value Iteration

- For an MDP with finite state and action spaces $|S| < \infty, |A| < \infty$
- Value iteration is performed as
 - 1. For each state s, initialize V(s) = 0
 - 2. Repeat until convergence {
 For each state, update

$$V(s) = R(s) + \gamma \max_{a \in A} \sum_{s' \in S} P_{sa}(s')V(s')$$

Note that there is no explicit policy in above calculation

Value Iteration Example: Shortest Path

g		

Problem

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

 V_1

0	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	-1

0	-1	-2	-2
-1	-2	-2	-2
-2	-2	-2	-2
-2	-2	-2	-2

0	-1	-2	-3
-1	-2	-3	-3
-2	-3	-3	-3
-3	-3	-3	-3

 V_4

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-4
-3	-4	-4	-4

0	-1	-2	ဒု
-1	-2	-3	-4
-2	-3	-4	-5
-3	-4	-5	-5

0	7	-2	ကု
-1	-2	-3	-4
-2	-3	-4	-5
-3	-4	-5	-6

Policy Iteration

- For an MDP with finite state and action spaces $|S| < \infty, |A| < \infty$
- Policy iteration is performed as
 - 1. Initialize π randomly
 - 2. Repeat until convergence {
 - a) Let $V := V^{\pi}$
 - b) For each state, update

$$\pi(s) = \underset{a \in A}{\operatorname{argmax}} \sum_{s' \in S} P_{sa}(s') V^{\pi}(s')$$

 The step of value function update could be timeconsuming

Policy Iteration

- Policy evaluation
 - Estimate V^{π}
 - Iterative policy evaluation
- Policy improvement
 - Generate $\pi' > \pi$
 - Greedy policy improvement

Value Iteration vs. Policy Iteration

- Value iteration
- 1. For each state s, initialize V(s) = 0
- Repeat until convergence {For each state, update

$$V(s) = R(s) + \gamma \max_{a \in A} \sum_{s' \in S} P_{sa}(s')V(s')$$

- Policy iteration
- 1. Initialize π randomly
- 2. Repeat until convergence {
 - a) Let $V := V^{\pi}$
 - b) For each state, update

$$\pi(s) = \underset{a \in A}{\operatorname{argmax}} \sum_{s' \in S} P_{sa}(s') V^{\pi}(s')$$

Remarks:

- 1. Value iteration is a greedy update strategy
- 2. In policy iteration, the value function update by bellman equation is costly
- 3. For small-space MDPs, policy iteration is often very fast and converges quickly
- 4. For large-space MDPs, value iteration is more practical (efficient)
- 5. If there is no state-transition loop, it is better to use value iteration

Learning an MDP Model

- So far we have been focused on
 - Calculating the optimal value function
 - Learning the optimal policy given a known MDP model
 - i.e. the state transition $P_{sa}(s')$ and reward function R(s) are explicitly given
- In realistic problems, often the state transition and reward function are not explicitly given
- We only have some observations by experience
 - e.g., play games, inventory management with unknown demand, online advertisement...

Learning an MDP Model

- Learn an MDP model from "experience"
 - Learning state transition probabilities $P_{sa}(s')$ $P_{sa(s')} = \frac{\text{#times we took action } a \text{ in state } s \text{ and got to state } s'}{\text{#times we took action } a \text{ in state } s}$
 - Learning reward R(s), i.e. the expected immediate reward

$$R(s) = avg(R(s)^{(i)})$$

Learning Model and Optimizing Policy

Algorithm

- 1. Initialize π randomly
- 2. Repeat until convergence {
 - a) Execute π in the MDP for some number of trials
- b) Using the accumulated experience in the MDP, update our estimates for P_{sa} and R
- c) Apply value iteration with the estimated P_{sa} and R to get the new estimated value function V
 - d) Update π to be the greedy policy w.r.t. V

- Another branch of solution is to directly learning value & policy from experience without building an MDP
- i.e. Model-free Reinforcement Learning

Model-free RL

Model-free Prediction

Model-free Reinforcement Learning

- In realistic problems, often the state transition and reward function are not explicitly given
- Model-free RL is to directly learn value & policy from experience without building an MDP
- Key steps: (1) estimate value function; (2) optimize policy

Value Function Estimation

 In model-based RL (MDP), the value function is calculated by dynamic programming

$$V^{\pi}(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots | s_0 = s, \pi]$$

= $R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$

- Now in model-free RL
 - We cannot directly know P_{sq} and R
 - But we have a list of experiences to estimate the values

Monte-Carlo Methods

- Monte-Carlo methods are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results.
- Example, to calculate the circle's surface

Circle Surface = Square Surface $\times \frac{\text{#points in circle}}{\text{#points in total}}$

Monte-Carlo Methods

 Go: to estimate the winning rate given the current state

Win Rate (s) = $\frac{\text{#win simulation cases started from } s}{\text{#simulation cases started from } s \text{ in total}}$

Monte-Carlo Value Estimation

- Goal: learn V^{π} from experience under policy π
- Recall that the return is the total discounted reward $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots \gamma^{T-1} R_T$
- Recall that the value function is the expected return

$$V^{\pi}(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots | s_0 = s, \pi]$$

$$= \mathbb{E}[G_t | s_t = s, \pi]$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} G_t^{(i)}$$

- Sample N episodes from state s using policy π
- Calculate the average of cumulative reward
- $G_t^{(i)}$ is the G_t of ith sample
- Monte-Carlo policy evaluation uses empirical mean return instead of expected return

Monte-Carlo Value Estimation

- Implementation
 - Sample episodes under policy π

$$s_0^{(i)} \xrightarrow[R_1^{(i)}]{a_0^{(i)}} s_1^{(i)} \xrightarrow[R_2^{(i)}]{a_1^{(i)}} s_2^{(i)} \xrightarrow[R_3^{(i)}]{a_2^{(i)}} s_3^{(i)} \cdots s_T^{(i)} \sim \pi$$

- Every time-step t that state s is visited in an episode
 - Increment counter N(s) = N(s) + 1
 - Increment total return $S(s) = S(s) + G_t$
 - Value is estimated by mean return V(s) = S(s)/N(s)
 - By law of large numbers

$$V(s) \to V^{\pi(s)} \text{ as } N(s) \to \infty$$

Incremental Monte-Carlo Updates

- Update V(s) incrementally after each episode
- For each state S_t with cumulative return G_t

$$N(s_t) = N(s_t) + 1$$

$$V(s_t) = V(s_t) + \frac{1}{N(s_t)} (G_t - V(s_t))$$

• For non-stationary problems (i.e. the environment could be varying over time), it can be useful to track a running mean, i.e. forget old episodes

$$V(s_t) = V(s_t) + \alpha(G_t - V(s_t))$$

Monte-Carlo Value Estimation

Idea:
$$V(s) = \frac{1}{N} \sum_{i=1}^{N} G_t^{(i)}$$

Implementation:
$$V(s_t) = V(s_t) + \alpha(G_t - V(s_t))$$

- MC methods learn directly from episodes of experience
- MC is model-free: no knowledge of MDP transitions / rewards
- MC learns from complete episodes
- MC uses the simplest possible idea: value = mean return
- Caveat: can only apply MC to episodic MDPs
 - All episodes must terminate

Lecture 15 Wrap-up

- ✓ Reinforcement Learning
- ✓ Model-based Reinforcement Learning
- ✓ Model-free Reinforcement Learning

Next Lecture

- Supervised learning
 - Linear regression
 - Logistic regression
 - SVM and kernel
 - Tree models
- Deep learning
 - Neural networks
 - Convolutional NN
 - Recurrent NN

- Unsupervised learning
 - Clustering
 - PCA (Dimension Reduction)
 - EM

- Reinforcement learning
 - MDP
 - ADP
 - Deep Q-Network

2020 Data Mining and Machine Learning LN3119 https://wangshan731.github.io/DM-ML/

Questions?

Shan Wang (王杉)

https://wangshan731.github.io/