Chapter 4 Simulation and Monte Carlo Integration

• Monte Carlo Methods:

- Wikipedia: Monte Carlo methods are a broad class of computational algorithms that rely on repeated **random sampling** to obtain numerical results.
- It was named, by Stanislaw Ulam and Nicholas Metropolis, after the Monte Carlo Casino.

- Buffon's Needle (1777): Consider the problem of calculating π .
 - Suppose there is a floor made of parallel strips of wood with the same width d. Drop a needle with length l < d onto the floor. We consider the probability that the needle will lie across a line between two strips.
 - Let X be the distance from the center of the needle to the closest parallel line, and let θ be the acute angle between the needle and one of the parallel lines.
 - It is reasonable to assume that (X, θ) follows a uniform distribution with the density

$$f(x,\theta) = \begin{cases} \frac{2}{d} \cdot \frac{2}{\pi}, & 0 \le X \le \frac{d}{2}, \\ 0, & \text{elsewhere.} \end{cases}$$

Buffon's Needle

• The probability that the needle will lie across a line is

$$P(X < \frac{l}{2} \cdot \sin(\theta)) = \int \int_{x < \frac{l}{2} \cdot \sin(\theta)} f(x, \theta) \, dx d\theta$$
$$= \frac{2}{d} \cdot \frac{2}{\pi} \int_{0}^{\pi/2} \int_{0}^{\frac{l}{2} \cdot \sin(\theta)} 1 \, dx d\theta = \frac{2l}{d\pi}.$$

- We can estimate the value of π with the following random experiment.
 - Drop a needle onto the floor m times, let I be the number of times that the the needle lies across a line. Then $I/m \to 2l/d\pi$.
 - Estimate π by

$$\widehat{\pi} = \frac{2l/d}{I/m}.$$

- Monte Carlo Integration/Summation: Suppose we want to calculate $\int g(x) dx$ or $\sum_{x \in A} g(x)$.
 - Generate random samples $x^{(1)}, \dots, x^{(m)}$ from a trial distribution (or sampling distribution) with PDF/PMF q(x).
 - Calculate

$$\widehat{\Pi} = \frac{1}{m} \sum_{j=1}^{m} \frac{g(x^{(j)})}{q(x^{(j)})}$$

$$\xrightarrow{a.s.} E\left(\frac{g(x^{(j)})}{q(x^{(j)})}\right) = \int \frac{g(x)}{q(x)} q(x) dx = \int g(x) dx.$$

• Remarks:

- In the previous sample, $g(x, \theta) = I(x < \frac{1}{2} \cdot \sin(\theta)) f(x, \theta)$ and $q(x, \theta) = f(x, \theta)$.
- The support of q(x) should cover the support of g(x), that is,

$$\mathcal{X}_g := \{x : g(x) \neq 0\} \subset \mathcal{X}_q := \{x : q(x) > 0\}.$$
 (Why?)

– The root mean squared error (RMSE) of $\widehat{\Pi}$ is

$$\left\{ E \left[\widehat{\Pi} - \int g(x) \, dx \right]^2 \right\}^{1/2} = \left\{ \operatorname{Var}(\widehat{\Pi}) \right\}^{1/2}$$

$$= \left\{ \frac{1}{m} \operatorname{Var}_q \left(\frac{g(x^{(j)})}{q(x^{(j)})} \right) \right\}^{1/2}$$

$$= \frac{1}{\sqrt{m}} \operatorname{Var}_q^{1/2} \left(\frac{g(x^{(j)})}{q(x^{(j)})} \right).$$

− We have

$$\operatorname{Var}_{q}\left(\frac{g(x^{(j)})}{q(x^{(j)})}\right)^{2} = E_{q}\left(\frac{g(x^{(j)})}{q(x^{(j)})}\right)^{2} - E_{q}^{2}\left(\frac{g(x^{(j)})}{q(x^{(j)})}\right)^{2} \\
= E_{q}\left(\frac{g(x^{(j)})}{q(x^{(j)})}\right)^{2} - \left(\int g(x) dx\right)^{2} \\
= E_{q}\left(\frac{|g(x^{(j)})|}{q(x^{(j)})}\right)^{2} - \left(\int |g(x)| dx\right)^{2} + \left(\int |g(x)| dx\right)^{2} - \left(\int g(x) dx\right)^{2} \\
= \operatorname{Var}_{q}\left(\frac{|g(x^{(j)})|}{q(x^{(j)})}\right) + \left(\int |g(x)| dx\right)^{2} - \left(\int g(x) dx\right)^{2} \\
\geq \left(\int |g(x)| dx\right)^{2} - \left(\int g(x) dx\right)^{2}.$$

- - Suppose that $\int |g(x)| dx < \infty$. Then $|g(x)|/\int |g(x)| dx$ is a density function.
 - "Optimal" choice of q: If we let $q(x) = |g(x)| / \int |g(x)| dx$, then

$$\operatorname{Var}_q\left(\frac{|g(x^{(j)}|)}{q(x^{(j)})}\right) = 0$$

and

$$\operatorname{Var}_{q}\left(\frac{g(x^{(j)})}{q(x^{(j)})}\right) = \left(\int |g(x)| \, dx\right)^{2} - \left(\int g(x) \, dx\right)^{2}.$$

- However, we **can not** use $q(x) = |g(x)|/\int |g(x)| dx$ in practice, since we need to compute the normalizing constant $\int |g(x)| dx$.
- We should choose the trial distribution so that (1) it is easy to draw samples from q(x); (2) it is easy to calculate the value of q(x); (3) q(x) is close to $|g(x)|/\int |g(x)| dx$.

• **Pseudo-random Number:** One of the most common approaches to generating pseudo-random numbers starts with an initial positive integer $x_0 \neq 0$, then recursively computes x_n by letting

$$x_n = ax_{n-1} \mod m$$

where a and m are given positive integers.

- $-x_0$ is call the random seed.
- $-x_n$ takes value in $\{1, 2, \dots, m-1\}$. (Note that we need choose x_0 and a so that $x_n \neq 0$ for any n.)
- Since x_n , $n = 0, 1, \dots$, can only take finite number of values, the sequence must repeat itself after a certain number of iterations.
- We want the sequence $\frac{x_0}{m}, \frac{x_1}{m}, \cdots$ performs as a sequence of i.i.d. random variables following the Uniform(0, 1) distribution.

- \bullet In general, the constants a and m should be chosen to satisfy the following criteria.
 - * For any initial seed, $\frac{x_0}{m}, \frac{x_1}{m}, \cdots$ has the "appearance" of being a sequence of independent Uniform(0, 1) distributed random variables.
 - * For any initial seed, the number of variables that can be generated before repetition begins is large.
 - * The values can be computed efficiently on a digital computer.
 - For example, one choice for a 32-bit computer is $m=2^{32}-1$ and $a=7^5=16,807$.
 - Sometimes, we also consider the recursions of the type

$$x_n = ax_{n-1} + c \mod m.$$

- In the following, suppose that we can generate i.i.d. Uniform (0, 1) distributed sequence U_1, U_2, \cdots .
- Generating Discrete Random Variables: Suppose $X \in \{a_0, a_1, \dots\}$ is a discrete random variable with $P(X = a_i) = p_i$, where $p_0 + p_1 + \dots = 1$. We can simulate X as follows.
 - Step 1: Generate a random number $U \sim \text{Uniform}(0, 1)$.
 - Step 2: Set i = 0 and $F = p_0$.
 - Step 3: If U < F, set $X = a_i$ and stop.
 - Step 4: Let $i \leftarrow i + 1$ and $F \leftarrow F + p_i$.
 - Step 5: Go to Step 3.

• Remarks:

- At iteration $i, F = p_0 + \cdots + p_i$.
- We let $X = a_i$ if $p_0 + \dots + p_{i-1} \le U < p_0 + \dots + p_{i-1} + p_i$. Obviously, $P(X = a_i) = p_i$.
- If we want to generate i.i.d. random variables X_1, \dots, X_m with $P(X_j = a_i) = p_i$, we should save $F_i = p_0 + \dots + p_i$.

- Example: Bernoulli(p) Variable Generation.
 - Step 1: Generate a random number $U \sim \text{Uniform}(0, 1)$.
 - Step 2: If U < p, set X = 1; otherwise, set X = 0.
- Example: Binomial(n; p) Variable Generation. Note that if $X \sim \text{Binomial}(n; p)$,

$$P(X=i) = \frac{n!}{i!(n-i)!} p^{i} (1-p)^{n-i} = \frac{n-i+1}{i} \cdot \frac{p}{1-p} \cdot P(X=i-1).$$

- Step 1: Generate a random number $U \sim \text{Uniform}(0, 1)$.
- Step 2: Set c = p/(1-p), $q = (1-p)^n$, i = 0 and F = q.
- Step 3: If U < F, set X = i and stop.
- Step 4: Let $i \leftarrow i+1$, $q \leftarrow \frac{n-i+1}{i} \cdot c \cdot q$ and $F \leftarrow F+q$.
- Step 5: Go to Step 3.

• Remarks:

- Note that if $X \sim \text{Binomial}(n; p)$, E(X) = np. On average, we need compute np + 1 probabilities and make np + 1 comparisons. When p > 0.5, we can generate $Y \sim \text{Binomial}(n; 1 p)$ and let X = n Y.
- We can also generate Y_1, \dots, Y_n i.i.d. following the Bernoulli(p) distribution and let $X = Y_1 + \dots + Y_n$.
- If we already have F_0, F_1, \dots , generating X from Bernoulli distributed random variables requires n random numbers and makes n comparisons, whereas the previous method only requires 1 random number and make np+1 comparisons (on average).

• Example: Uniform $\{1, \dots, n\}$ Variable Generation.

- Step 1: Generate a random number $U \sim \text{Uniform}(0, 1)$.
- Step 2: Let $X = 1 + \lfloor nU \rfloor$, where $\lfloor nU \rfloor$ denotes the integer part of nU.

• Example: Geometric(p) Variable Generation. A Geometric(p) random variable X has the distribution $P(X = i) = p(1 - p)^{i-1}$ for $i = 1, 2, \dots$, where 0 . Note that

$$P(X \le i) = P(X = 1) + \dots + P(X = i) = 1 - (1 - p)^{i}.$$

To simulate X, we generate $U \sim \text{Uniform}(0,1)$, the let X = i if

$$P(X \le i - 1) \le U < P(X \le i)$$

$$\Leftrightarrow 1 - (1 - p)^{i - 1} \le U < 1 - (1 - p)^{i}$$

$$\Leftrightarrow i - 1 \le \log(1 - U) / \log(1 - p) < i.$$

Hence, we can simulate $X \sim \text{Geometric}(p)$ as follows.

- Step 1: Generate a random number $U \sim \text{Uniform}(0, 1)$.
- -Step 2: Let $X = 1 + \lfloor \frac{\log(1-U)}{\log(1-p)} \rfloor$ (or let $X = 1 + \lfloor \frac{\log(U)}{\log(1-p)} \rfloor$).

- Example: Random Permutation Generation. Suppose we are interested in generating a permutation of the numbers $1, \dots, n$ which is such that all n! possible orderings are equally likely.
 - Step 1: Let P_1, \dots, P_n be any permutation of $1, \dots, n$, for example, let $(P_1, \dots, P_n) = (1, \dots, n)$.
 - Step 2: Set k = n.
 - Step 3: Generate a random number $U \sim \text{Uniform}(0,1)$ and let $I = 1 + \lfloor kU \rfloor$.
 - Step 4: Interchange the values of P_I and P_k .
 - Step 5: Let $k \leftarrow k 1$; if k > 1 go to Step 3.
 - Step 6: P_1, \dots, P_n is the desired random permutation.

- Next, we consider generating continuous random variables. Suppose we want to simulate X following a distribution with the CDF $F_X(x)$ and the PDF $f_X(x)$.
- **Definition:** Let F be a cumulative distribution function, the generalized inverse of F is defined by

$$F^{-}(u) = \inf\{x : F(x) \ge u\} \text{ for } 0 < u < 1.$$

- $-F^{-}(u)$ is called the *uth quantile* of F.
- Note that $F(F^{-}(u))$ may not be equal to u.
- We have $F(F^{-}(u)) \ge u$ and $F(F^{-}(u)-\varepsilon) < u$ for any $\varepsilon > 0$. (**Homework**)
- If F is continuous at $F^-(u)$, then $F(F^-(u)) = u$.
- For any CDF F and any 0 < u < 1, $F(x) \ge u$ if and only if $x \ge F^-(u)$.

- **Theorem:** Let F_X be the CDF of a random variable X. If $U \sim \text{Uniform}(0, 1)$, then $F_X^-(U)$ has the distribution F_X , which can be written as $F_X^-(U) \stackrel{d}{=} X$.
- **Proof.** Note that $F_X^-(u) \leq x$ if and only if $u \leq F_X(x)$. We have

$$P(F_X^-(U) \le x) = P(U \le F_X(x)) = F_X(x).$$

This completes the proof.

• Remarks:

- Let $X \sim F_X$. Under certain conditions (e.g., F_X is continuous), we have

$$X \stackrel{d}{=} F_X^-(U) \Rightarrow F_X(X) \stackrel{d}{=} F_X(F_X^-(U)) = U.$$

Therefore, $F_X(X) = \int_{-\infty}^X f_X(x) dx$ follows a Uniform (0, 1) distribution.

The theorem is also called the *probability integral transform*.

- - If we want to simulate $X \sim F_X$, we can first generate $U \sim \text{Uniform}(0, 1)$, then let $X = F_X^-(U)$.
 - Suppose $X \in \{a_0 < a_1 < \cdots\}$ is a discrete random variable with $P(X = a_i) = p_i$, where $p_0 + p_1 + \cdots = 1$. We can simulate X by letting

$$X = F_X^-(U) = \begin{cases} a_0, & \text{if } 0 < U \le p_0; \\ a_1, & \text{if } p_0 < U \le p_0 + p_1; \\ \cdots, & \cdots; \\ a_i, & \text{if } p_0 + \cdots + p_{i-1} < U \le p_0 + \cdots + p_{i-1} + p_i; \\ \cdots, & \cdots, \end{cases}$$

where $U \sim \text{Uniform}(0, 1)$.

- Example: Exponential(β) Variable Generation. Let X be an Exponential(β) distributed random variable with $f_X(x) = \frac{1}{\beta}e^{-x/\beta}$ and $F_X(x) = 1 e^{-x/\beta}$ for x > 0.
 - Here $\beta > 0$. We have $E(X) = \beta$.
 - Define $\lambda = 1/\beta$, which is called the *rate parameter* of the exponential distribution.
 - If $U \sim \text{Uniform}(0, 1)$, then

$$X \stackrel{d}{=} F_X^-(U) = -\beta \log(1-U) \stackrel{d}{=} -\beta \log U.$$

- If X_1, X_2, \cdots are i.i.d. Exponential(1) random variables,

$$2\sum_{i=1}^{m} X_{j} \sim \chi_{2m}^{2}, \quad \beta \sum_{i=1}^{m} X_{i} \sim \text{Gamma}(m, \beta), \quad \text{and} \quad \frac{\sum_{i=1}^{m} X_{i}}{\sum_{i=1}^{m+n} X_{i}} \sim \text{Beta}(m, n).$$

• Gamma Distribution: A continuous random variable X follows a Gamma(α, β) ($\alpha, \beta > 0$) distribution if

$$f_X(x) = \begin{cases} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta} & x > 0, \\ 0 & \text{otherwise,} \end{cases}$$

where $\Gamma(\alpha) = \int_0^\infty t^{\alpha-1} e^{-t} dt$.

- (1) $E(X) = \alpha \beta$
- (2) $Var(X) = E(X^2) E^2(X) = \alpha \beta^2$.
- (3) $M_X(u) = (1 \beta u)^{-\alpha}$ for $u < 1/\beta$.

• Remarks:

- Exponential(β) = Gamma(1, β).
- If X_1, \dots, X_n are independent and $X_i \sim \text{Gamma}(\alpha_i, \beta)$, then $X_1 + \dots + X_n \sim \text{Gamma}(\alpha_1 + \dots + \alpha_n, \beta)$.

• Chi-Squared Distribution: A random variable follows Chi-squared distribution with degrees of freedom p, denoted by χ_p^2 , if

$$f_X(x) = \begin{cases} \frac{1}{\Gamma(p/2)2^{p/2}} x^{(p/2)-1} e^{-x/2} & x > 0, \\ 0 & \text{otherwise,} \end{cases}$$

• Remarks:

- If X is a N(0,1) random variable, then $X^2 \sim \chi_1^2$.
- $-\chi_p^2 = \text{Gamma}(p/2, 2).$
- $-\chi_2^2 = \text{Gamma}(1, 2) = \text{Exponential}(2).$
- If X_1, \dots, X_n are independent and $X_i \sim \chi_{p_i}^2$, then $X_1 + \dots + X_n \sim \chi_{p_1 + \dots + p_n}^2$.

• Example: Normal Variable Generation. Suppose X_1 and X_2 are two i.i.d. N(0,1) random variables. Let (r,θ) be the polar coordinates of (X_1,X_2) , that is,

$$r = \sqrt{X_1^2 + X_2^2}$$
 and $\theta = \text{angle}(X_1, X_2),$

or equivalently,

$$X_1 = r \cos \theta$$
 and $X_2 = r \sin \theta$.

– We can prove that r > 0 and $\theta \in [0, 2\pi)$ are independent,

$$r^2 \sim \chi_2^2 \stackrel{d}{=} -2 \log U_1$$
 and $\theta \sim \text{Uniform}[0, 2\pi) \stackrel{d}{=} 2\pi U_2$.

- We can simulate two independent N(0,1) random variables as follows.
 - * Generate U_1 and U_2 i.i.d. following the Uniform(0,1) distribution.

* Let
$$X_1 = \sqrt{-2 \log U_1} \cos (2\pi U_2)$$
 and $X_2 = \sqrt{-2 \log U_1} \sin (2\pi U_2)$.

- If $X \sim N(0,1)$, then $Y = \mu + \sigma X \sim N(\mu, \sigma^2)$.
 - A random vector $Y = (Y_1, \dots, Y_p)^T$ follows a multivariate normal distribution $N(\boldsymbol{\mu}, \Sigma)$ if

$$f_{Y_1 \cdots Y_p}(\mathbf{y}) = \frac{1}{\sqrt{\det[2\pi\Sigma]}} \exp\left\{-\frac{1}{2} (\mathbf{y} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{y} - \boldsymbol{\mu})\right\}$$

$$= \frac{1}{(2\pi)^{p/2} \sqrt{\det[\Sigma]}} \exp\left\{-\frac{1}{2} \sum_{i=1}^p \sum_{j=1}^p r_{i,j} (x_i - \mu_i) (x_j - \mu_j)\right\},$$

where $\mathbf{y} = (y_1, \dots, y_p)^T$, $\boldsymbol{\mu} = (\mu_1, \dots, \mu_p)^T$, $\boldsymbol{\Sigma} = \{\Sigma_{i,j}\}_{p \times p}$ is a $p \times p$ symmetric and positive definite matrix, and $R = \{r_{i,j}\}_{p \times p} = \Sigma^{-1}$. We have

$$E(Y_i) = \mu_i$$
 and $Cov(Y_i, Y_j) = \Sigma_{i,j}$.

• - Bivariate Normal Distribution: Suppose (X, Y) follow a bivariate normal distribution $N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$, its joint density function is

$$f_{XY}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$

$$exp\left\{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - 2\rho\left(\frac{x-\mu_1}{\sigma_1}\right)\left(\frac{y-\mu_2}{\sigma_2}\right) + \left(\frac{y-\mu_2}{\sigma_2}\right)^2\right]\right\},$$

then

$$\boldsymbol{\mu} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}.$$

- - Suppose that $Y = (Y_1, \dots, Y_p)^T \sim N(\boldsymbol{\mu}, \Sigma)$.
 - * We have $Y_i \sim N(\mu_i, \Sigma_{i,i})$.
 - * The moment generating function of Y is $M_Y(\mathbf{u}) = E\left[\exp\{\mathbf{u}^T Y\}\right] = \exp\{\mathbf{u}^T \boldsymbol{\mu} + \frac{1}{2}\mathbf{u}^T \Sigma \mathbf{u}\}$, where $\mathbf{u} = (u_1, \dots, u_p)^T$.
 - * Let A be a $k \times p$ matrix and let b be a $k \times 1$ vector, then

$$AY + b \sim N(A\boldsymbol{\mu} + b, A\Sigma A^T).$$

- For a $p \times p$ non-negative definite symmetric matrix Σ , we can find a $p \times p$ symmetric matrix, denoted by $\Sigma^{1/2}$, satisfying $\Sigma = \Sigma^{1/2}\Sigma^{1/2}$.
- We can simulate $Y = (Y_1, \dots, Y_p)^T \sim N(\boldsymbol{\mu}, \Sigma)$ by letting

$$\left(egin{array}{c} Y_1 \ dots \ Y_p \end{array}
ight) = oldsymbol{\mu} + \Sigma^{1/2} \left(egin{array}{c} X_1 \ dots \ X_p \end{array}
ight),$$

where X_1, \dots, X_p are i.i.d. N(0,1) random variables.

• Rejection Method: Suppose we want to simulate a random variable with density function f(x), and we have a method for generating a random variable having density g(x) with $\mathcal{X}_g \supset \mathcal{X}_f$. Assume that there exists a positive constant c such that

$$\frac{f(x)}{g(x)} \le c$$
 for all x .

Then we can generate a random variable X having density f(x) as follows.

- Step 1: Generate Y having density g.
- Step 2: Generate a random number $U \sim \text{Uniform}(0, 1)$.
- Step 3: If $U \leq \frac{f(Y)}{cg(Y)}$, set X = Y and stop. Otherwise, go to Step 1.
- Remark: The method is also called the acceptance-rejection method, and g is called the instrumental distribution.

• **Theorem:** (1) The number of iterations that the algorithm need is a geometric random variable with mean c. (2) The random variable X generated by the rejection method has density f.

• Proof.

(1) Let Y_i and U_i be the random number Y and U generated at iteration i, respectively. Let D be the number of iterations needed before stopping. We have

$$P(D=i) = P\left(U_1 > \frac{f(Y_1)}{cg(Y_1)}\right) \cdots P\left(U_{i-1} > \frac{f(Y_{i-1})}{cg(Y_{i-1})}\right) P\left(U_i \le \frac{f(Y_i)}{cg(Y_i)}\right).$$

Note that Y_k and U_k are independent. It is easy to find

$$P\left(U_k \le \frac{f(Y_k)}{cg(Y_k)}\right) = \int \int_{u \le \frac{f(y)}{cg(y)}} 1 \cdot g(y) du \, dy$$
$$= \int \int_0^{\frac{f(y)}{cg(y)}} 1 \cdot g(y) du \, dy = \int \frac{f(y)}{c} \, dy = \frac{1}{c}.$$

Hence, $f_X(x) = f(x)$.

- Therefore, $P(D=i) = (1-1/c)^{i-1} \cdot (1/c)$ for $i=1,2,\cdots$, and D is a geometric random variable with mean c.
 - (2) We have

$$\begin{split} P(X \leq x) &= \sum_{i=1}^{\infty} P(Y_i \leq x, D = i) \\ &= \sum_{i=1}^{\infty} P\left(Y_i \leq x, U_i \leq \frac{f(Y_i)}{cg(Y_i)} \,\middle|\, U_1 > \frac{f(Y_1)}{cg(Y_1)}, \cdots U_{i-1} > \frac{f(Y_{i-1})}{cg(Y_{i-1})}\right) \\ &\qquad \times P\left(U_1 > \frac{f(Y_1)}{cg(Y_1)}, \cdots U_{i-1} > \frac{f(Y_{i-1})}{cg(Y_{i-1})}\right) \\ &= \sum_{i=1}^{\infty} \int_{-\infty}^{x} \int_{0}^{\frac{f(y)}{cg(y)}} 1 \cdot g(y) du \, dy \cdot \left(1 - 1/c\right)^{i-1} \\ &= \sum_{i=1}^{\infty} \int_{-\infty}^{x} f(y) \, dy \cdot \frac{1}{c} \cdot \left(1 - 1/c\right)^{i-1} = \int_{-\infty}^{x} f(y) \, dy. \end{split}$$

30

• Remarks:

- Suppose that $X \sim f(x) = K \cdot \bar{f}(x)$, where $\bar{f}(x)$ is given, but the normalizing constant $K = 1/\int \bar{f}(x) dx$ is unknown.
 - * For example, we have $f_{\pmb{\theta}|X}(\theta|x) \propto \pi(\theta) f_{X|\pmb{\theta}}(x|\theta)$ for Bayesian inference.
 - * Assume that we know $\frac{\bar{f}(x)}{g(x)} \leq M$ for all x. Then $\frac{f(x)}{g(x)} \leq c := KM$. The condition in Step 3 of the rejection method becomes

$$U \le \frac{f(Y)}{KM \cdot g(Y)} \quad \Leftrightarrow \quad U \le \frac{\bar{f}(Y)}{M \cdot g(Y)}.$$

The normalizing constant K need not to be known to apply the rejection method.

– The average number of iterations need for the rejection method is $E(D) = c \ge 1$. We want c to be as small as possible for efficiency. In general, we want g is close to f so that c would be close to 1.

- Example: Generating Gamma from Exponential. We want to generate a Gamma(α,β) distributed random variable with density $f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}$ for x > 0. Consider the rejection method with $g(x;b) = \frac{1}{b} e^{-x/b}$ for x > 0.
 - We have

$$\frac{f(x)}{g(x;b)} = \frac{b}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x(b-\beta)/(\beta b)}.$$

- When $0 < \alpha < 1$, $\sup_{x>0} \frac{f(x)}{g(x;b)} = \infty$. When $\alpha = 1$, Gamma $(1,\beta)$ is an exponential distribution.
- We only consider the case when $\alpha > 1$. When $b > \beta$, the maximum value of f(x)/g(x;b) is obtained at $x = \frac{(\alpha-1)\beta b}{b-\beta}$ and we have

$$\frac{f(x)}{g(x;b)} \le \frac{b}{\Gamma(\alpha)\beta^{\alpha}} \left(\frac{(\alpha-1)\beta b}{b-\beta}\right)^{\alpha-1} e^{1-\alpha} = \frac{(\alpha-1)^{\alpha-1}b^{\alpha}}{\Gamma(\alpha)\beta(b-\beta)^{\alpha-1}} e^{1-\alpha} := c(b).$$

• - Obviously, c(b) is minimized when $b = \alpha \beta$, and the minimum value is

$$c_* = \alpha^{\alpha} e^{1-\alpha} / \Gamma(\alpha).$$

- When we use the rejection method to simulate a Gamma(α,β) variable with $g(x;b) = \frac{1}{b}e^{-x/b}$ for x > 0, we should choose $b = \alpha\beta$, that is, we use an exponential distribution having the same mean as the Gamma distribution.
- When $\alpha = 1.5$, $c_* = 1.2573$; when $\alpha = 10$, $c_* = 3.4008$.
- Note that we do not need to know $\Gamma(\alpha)$ when using the rejection method.

- Example: Generating Normal from Double Exponential. Consider generating a N(0,1) variable by the rejection method using a double-exponential distribution with density $g(x; \lambda) = (\lambda/2)e^{-\lambda|x|}$ for $-\infty < x < \infty$, where $\lambda > 0$.
 - How to generate a double-exponential variable?
 - We have

$$\frac{f(x)}{g(x;\lambda)} = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} (2/\lambda) e^{\lambda|x|}
= \sqrt{\frac{2}{\pi}} \lambda^{-1} \exp\left\{-\frac{1}{2} (|x| - \lambda)^2 + \lambda^2/2\right\} \le \sqrt{\frac{2}{\pi}} \lambda^{-1} e^{\lambda^2/2} := c(\lambda).$$

 $-c(\lambda)$ is minimized when $\lambda = 1$, and the minimum value is

$$c_* = \sqrt{\frac{2e}{\pi}} = 1.3155.$$

• Example: Truncated Normal Variable Generation. We want to generate a truncated N(0,1) random variable with the density

$$f(x) = \frac{\phi(x)}{1 - \Phi(b)} \cdot I(x \ge b),$$

where Φ and ϕ are the CDF and PDF of the N(0,1) distribution, respectively.

- Consider the instrumental distribution $g_1(x) = \phi(x)$. Obviously,

$$\frac{f(x)}{g_1(x)} \le \frac{1}{1 - \Phi(b)} := c_1.$$

Note that $\frac{f(x)}{c_1g_1(x)} = I(x \ge b)$. The rejection method is equivalent to

- * Step 1: Generate $Y \sim N(0, 1)$.
- * Step 2: If $Y \ge b$, set X = Y and stop. Otherwise, go to Step 1.

Where $\Phi(b)$ is close to 1, this method can be very inefficient.

ullet - Consider the translated exponential distribution

$$g_2(x;\lambda) = \lambda e^{-\lambda(x-b)} \cdot I(x \ge b),$$

where $\lambda > 0$. Then for $x \geq b$,

$$\frac{f(x)}{g_2(x;\lambda)} = \frac{1}{\sqrt{2\pi} (1 - \Phi(b)) \lambda} \cdot \exp\left\{-x^2/2 + \lambda(x - b)\right\}$$

$$= \frac{1}{\sqrt{2\pi} (1 - \Phi(b)) \lambda} \cdot \exp\left\{-(x - \lambda)^2/2 - \lambda b + \lambda^2/2\right\}$$

$$\leq \begin{cases} \frac{1}{\sqrt{2\pi} (1 - \Phi(b)) \lambda} \cdot \exp\left\{-\lambda b + \lambda^2/2\right\}, & \text{if } \lambda \geq b; \\ \frac{1}{\sqrt{2\pi} (1 - \Phi(b)) \lambda} e^{-b^2/2}, & \text{if } 0 < \lambda < b, \\ \vdots = c_2(\lambda). \end{cases}$$

where $c_2(\lambda)$ is minimized at $\lambda_* = b/2 + \sqrt{1 + b^2/4}$.

4.2 Random Variable Generation

- The algorithm for rejection method with the instrumental distribution $g_2(x; \lambda_*) = \lambda_* e^{-\lambda_*(x-b)} \cdot I(x \ge b)$, where $\lambda_* = b/2 + \sqrt{1 + b^2/4}$, is as follows.
 - * Step 1: Generate Y having density $g_2(x; \lambda_*)$.
 - * Step 2: Generate a random number $U \sim \text{Uniform}(0,1)$.
 - * Step 3: If $U \leq \frac{f(Y)}{g_2(Y;\lambda_*)c(\lambda_*)} = \exp\{-(Y-\lambda_*)^2/2\}$, set X=Y and stop. Otherwise, go to Step 1.
 - The average number of iterations need for the rejection method using the instrumental distribution $g_2(x; \lambda_*)$ is

$$c_2(\lambda_*) = \frac{1}{\sqrt{2\pi}(1-\Phi(b))\lambda_*} \cdot \exp\left\{-\lambda_* b + \lambda_*^2/2\right\}.$$

When b = -1, $c_1 = 1.1886$ and $c_2(\lambda_*) = 1.7230$; when b = 0, $c_1 = 2$ and $c_2(\lambda_*) = 1.3155$; when b = 1, $c_1 = 6.3030$ and $c_2(\lambda_*) = 1.1409$; when b = 2, $c_1 = 43.9558$ and $c_2(\lambda_*) = 1.0711$.

4.2 Random Variable Generation

- - When it requires substantial computing time at each evaluation of the density f, we may use the *envelope acceptance-rejection method* to generate random variables from f.
 - Envelope Acceptance-Rejection Method: Suppose there exist a density (instrumental distribution) g(x), a function $g_l(x)$ and a constant c > 0 such that

$$g_l(x) \le f(x) \le c g(x),$$

where $g_l(x)$ is easy to evaluate and g(x) is easy to draw samples from. We can generate a random variable X having density f(x) as follows.

- * Step 1: Generate $Y \sim g(x)$ and $U \sim \text{Uniform}(0, 1)$.
- * Step 2: If $U \leq \frac{g_l(Y)}{cq(Y)}$, set X = Y and stop.
- * Step 3: If $U \leq \frac{f(Y)}{cg(Y)}$, set X = Y and stop. Otherwise, go to Step 1.

- We consider calculating $\int h(x)f(x) dx$, where f(x) is a density function.
 - When $h(x) = x^k$ and $f(x) = f_X(x)$, $\int h(x)f(x) dx = E(X^k)$.
 - When $h(x) = I(x \in A)$ and $f(x) = f_X(x)$,

$$\int h(x)f(x) dx = \int_A f(x) dx = P(X \in A).$$

- When h(x) = x and $f(x) = f_{X|Z}(x|z)$,

$$\int h(x)f(x) dx = \int x f_{X|Z}(x|z) dx = E(X|Z=z).$$

– If we can generate $x^{(1)}, x^{(2)}, \dots, x^{(m)}$ i.i.d. from f(x), for example, using the rejection method, then

$$\widehat{\Pi}_0 := \frac{1}{m} \sum_{i=1}^m h(x^{(i)}) \xrightarrow{a.s.} \int h(x) f(x) dx := E_f[h(X)].$$

• Stratified Sampling: Let $\mathcal{X}_f = \{x : f(x) > 0\}$. Suppose we divide \mathcal{X}_f into K disjoint sets D_1, \dots, D_K . Then

$$\int h(x)f(x) dx = \int_{D_1} h(x)f(x) dx + \dots + \int_{D_K} h(x)f(x) dx.$$

- Define $a_k = \int_{D_k} f(x) dx$ and $f_k(x) = \frac{1}{a_k} f(x) I(x \in D_k)$ for $k = 1, \dots, K$. Here $f_k(x)$ is the density of the distribution f(x) conditional on D_k .
- Suppose that a_k is known and we can generate samples $x^{(k,1)}, \dots, x^{(k,m_k)}$ from $f_k(x)$, then

$$\Pi_{S,k} = \int_{D_k} h(x)f(x) dx = a_k \cdot \int h(x)f_k(x) dx$$

can be estimated by

$$\widehat{\Pi}_{S,k} = a_k \cdot \frac{1}{m_k} \sum_{j=1}^{m_k} h(x^{(k,j)}).$$

• - Note that

$$\widehat{\Pi}_{S} = \widehat{\Pi}_{S,1} + \dots + \widehat{\Pi}_{S,K}$$

$$= \frac{a_{1}}{m_{1}} \sum_{j=1}^{m_{1}} h(x^{(1,j)}) + \dots + \frac{a_{K}}{m_{K}} \sum_{j=1}^{m_{K}} h(x^{(K,j)})$$

is an unbiased estimator for $\int h(x)f(x) dx$. We have

$$MSE(\widehat{\Pi}_S) = Var(\widehat{\Pi}_S)$$

$$= \sum_{k=1}^K \frac{a_k^2}{m_k} Var_{f_k} [h(x^{(k,j)})].$$

- Let $m = m_1 + \cdots + m_K$, the total number of samples. We compare variances of $\widehat{\Pi}_0$ and $\widehat{\Pi}_S$ for a fixed m.

• - When m is fixed, $Var(\widehat{\Pi}_S)$ is minimized when

$$m_k = m \cdot \frac{a_k \operatorname{Var}_{f_k}^{1/2} [h(x^{(k,j)})]}{\sum_{s=1}^K a_s \operatorname{Var}_{f_s}^{1/2} [h(x^{(s,j)})]}, \quad \text{(Homework)}$$

and the minimum value is

$$\min\left\{\operatorname{Var}(\widehat{\Pi}_S)\right\} = \frac{1}{m} \left\{ \sum_{k=1}^K a_k \operatorname{Var}_{f_k}^{1/2} \left[h\left(x^{(k,j)}\right)\right] \right\}^2.$$

In many cases, we have $\operatorname{Var}_{f_k}[h(x^{(k,j)})] < \operatorname{Var}_f[h(x^{(j)})]$. Also note that $a_1 + \cdots + a_K = 1$. Then

$$\min \left\{ \operatorname{Var}(\widehat{\Pi}_S) \right\} \leq \frac{1}{m} \left\{ \operatorname{Var}_f^{1/2} \left[h(x^{(j)}) \right] \right\}^2$$
$$= \frac{1}{m} \operatorname{Var}_f \left[h(x^{(j)}) \right] = \operatorname{Var}(\widehat{\Pi}_0).$$

• If $\operatorname{Var}_{f_k}[h(x^{(k,j)})]$, $k = 1, \dots, K$, are unknown, but $\operatorname{Var}_{f_k}[h(x^{(1,j)})]$ $\approx \dots \approx \operatorname{Var}_{f_K}[h(x^{(K,j)})]$, we can let $m_k = a_k m$. Define d(x) = k if $x \in D_k$. Note that

$$\operatorname{Var}_{f_k}[h(x^{(k,j)})] = \operatorname{Var}_f[h(x^{(j)})|d(x^{(j)}) = k].$$

Then

$$\operatorname{Var}(\widehat{\Pi}_{S}) = \frac{1}{m} \sum_{k=1}^{K} a_{k} \operatorname{Var}_{f_{k}} [h(x^{(k,j)})]$$

$$= \frac{1}{m} \sum_{k=1}^{K} a_{k} \operatorname{Var}_{f} [h(x^{(j)}) | d(x^{(j)}) = k]$$

$$= \frac{1}{m} E_{f} \left\{ \operatorname{Var}_{f} [h(x^{(j)}) | d(x^{(j)})] \right\}$$

$$\leq \frac{1}{m} \operatorname{Var}_{f} [h(x^{(j)})] = \operatorname{Var}(\widehat{\Pi}_{0}).$$

• Control Variate Method: We want to calculate $E_f[h(X)] = \int h(x)f(x) dx$. Suppose $\mu_g = E_f[g(X)]$ is known. We can generate $x^{(1)}, \dots, x^{(m)}$ i.i.d. from f(x) and estimate $E_f[h(X)]$ by

$$\widehat{\Pi}_C = \frac{1}{m} \sum_{j=1}^{m} \left[h(x^{(j)}) + b(g(x^{(j)}) - \mu_g) \right].$$

 $-\widehat{\Pi}_C$ is an unbiased estimator of $E_f[h(X)]$. The MSE of $\widehat{\Pi}_C$ is

$$MSE(\widehat{\Pi}_C) = Var(\widehat{\Pi}_C)$$

= $\frac{1}{m} \left[Var_f(h(x^{(j)})) + 2bCov_f(h(x^{(j)}), g(x^{(j)})) + b^2Var_f(g(x^{(j)})) \right].$

 $-\operatorname{Var}(\widehat{\Pi}_C)$ is minimized when $b = -\operatorname{Cov}_f(h(x^{(j)}), g(x^{(j)}))/\operatorname{Var}_f(g(x^{(j)}))$, and the minimum value is

$$\frac{1}{m} \operatorname{Var}_f(h(x^{(j)})) \left[1 - \rho_f^2(h, g)\right] = \operatorname{Var}(\widehat{\Pi}_0) \left[1 - \rho_f^2(h, g)\right],$$

where
$$\rho_f(h, g) = \frac{\text{Cov}_f(h(x^{(j)}), g(x^{(j)}))}{\text{Var}_f^{1/2}(h(x^{(j)}))\text{Var}_f^{1/2}(g(x^{(j)}))}$$
.

- - For example, we want to calculate P(X > a) = E[I(X > a)] for a given a, where X has density f.
 - * Assume we know that f is symmetric around μ .
 - * Assume that $a > \mu$. We can generate $x^{(1)}, \dots, x^{(m)}$ i.i.d. from f(x) and estimate P(X > a) by

$$\frac{1}{m} \sum_{j=1}^{m} \left[I(x^{(j)} > a) + b \left(I(x^{(j)} > \mu) - 0.5 \right) \right],$$

where

$$b \approx -\frac{\text{Cov}_f(I(x^{(j)} > a), I(x^{(j)} > \mu))}{\text{Var}_f(I(x^{(j)} > \mu))}$$
$$= -\frac{P(X > a) - P(X > a)/2}{1/4}$$
$$= -2P(X > a).$$

• Antithetic Variate Method: We want to calculate $E_f[h(X)] = \int h(x)f(x) dx$. Let F(x) be the CDF with density f(x). Consider the estimator

$$\widehat{\Pi}_A = \frac{1}{m} \sum_{j=1}^{m/2} \left[h(F^-(U^{(j)})) + h(F^-(1-U^{(j)})) \right],$$

where both $F^{-}(U^{(j)})$ and $F^{-}(1-U^{(j)})$ follow the distribution with density f(x).

- Define $g(u) := h(F^{-}(u))$. We have

$$MSE(\widehat{\Pi}_A) = Var(\widehat{\Pi}_A)$$

$$= \frac{1}{m} \cdot \frac{1}{2} \cdot \left[Var_f(h(x^{(j)})) + 2Cov(g(U^{(j)}), g(1 - U^{(j)})) + Var_f(h(x^{(j)})) \right].$$

- Suppose that h(x) is a **monotonic** (increasing/decreasing) function of x, e.g., h(x) = x, then g(u) is also **monotonic**.

• Let $U^{(1)}$ and $U^{(2)}$ be independent. Then

$$0 \geq E\left[\left(g(U^{(1)}) - g(U^{(2)})\right)\left(g(1 - U^{(1)}) - g(1 - U^{(2)})\right)\right]$$

$$= E\left[g(U^{(1)})g(1 - U^{(1)})\right] + E\left[g(U^{(2)})g(1 - U^{(2)})\right]$$

$$-E\left[g(U^{(1)})g(1 - U^{(2)})\right] - E\left[g(U^{(2)})g(1 - U^{(1)})\right]$$

$$= 2E\left[g(U^{(1)})g(1 - U^{(1)})\right] - 2E\left[g(U^{(1)})\right] \cdot E\left[g(1 - U^{(1)})\right]$$

$$= 2\operatorname{Cov}\left(g(U^{(1)}), g(1 - U^{(1)})\right)$$

- Hence, $\operatorname{Var}(\widehat{\Pi}_A) \leq \frac{1}{m} \cdot \frac{1}{2} \cdot \left[\operatorname{Var}_f(h(x^{(j)})) + \operatorname{Var}_f(h(x^{(j)})) \right] = \operatorname{Var}(\widehat{\Pi}_0).$
- Similarly, if f(x) is symmetric around μ , we can generate $x^{(1)}, \dots, x^{(m/2)}$ i.i.d. from f(x) and use the estimator

$$\widehat{\Pi}_A = \frac{1}{m} \sum_{j=1}^{m/2} \left[h(x^{(j)}) + h(2\mu - x^{(j)}) \right].$$

- If h(x) is not a monotonic function, the conclusion may not hold.

• Rao-Blackwellization: Suppose $X = (X_1, X_2)$. Assume that we are able to compute $E_f(h(X)|X_2 = x_2)$. We can generate $x^{(j)} = (x_1^{(j)}, x_2^{(j)})$, $j = 1, \dots, m$, i.i.d. from f(x) and estimate $E_f[h(X)]$ by

$$\widehat{\Pi}_0 = \frac{1}{m} \sum_{j=1}^m h(x_1^{(j)}, x_2^{(j)}) \quad \text{or} \quad \widehat{\Pi}_R = \frac{1}{m} \sum_{j=1}^m E_f(h(X)|X_2 = x_2^{(j)}).$$

We have

$$MSE(\widehat{\Pi}_R) = Var(\widehat{\Pi}_R)$$

$$= \frac{1}{m} Var_f [E_f(h(X_1, X_2)|X_2)]$$

$$\leq \frac{1}{m} Var_f(h(X_1, X_2))$$

$$= Var(\widehat{\Pi}_0).$$

• Remark: One basic principle in Monte Carlo computation: One should carry out analytical computation as much as possible.

• Importance Sampling: We want to calculate $E_f[h(X)] = \int h(x)f(x) dx$. Suppose that we can generate samples $x^{(1)}, x^{(2)}, \dots, x^{(m)}$ i.i.d. from a trial distribution (proposal distribution) q(x) with $\mathcal{X}_q \supset \mathcal{X}_f$, then

$$\widehat{\Pi}_{1} := \frac{1}{m} \sum_{j=1}^{m} h(x^{(j)}) \frac{f(x^{(j)})}{q(x^{(j)})}$$

$$\xrightarrow{a.s.} E_{q} \left(h(x^{(j)}) \frac{f(x^{(j)})}{q(x^{(j)})} \right)$$

$$= \int_{\mathcal{X}_{q}} h(x) \frac{f(x)}{q(x)} q(x) dx = \int_{\mathcal{X}_{q}} h(x) f(x) dx = \int_{\mathcal{X}_{f}} h(x) f(x) dx.$$

• Remarks:

- To minimize the MSE of $\widehat{\Pi}_1$, we want to choose $q(x) = \frac{|h(x)|f(x)}{\int |h(x)|f(x) dx}$.
- In practice, we may need to calculate $\int h(x)f(x) dx$ for several different h's. We often choose q(x) close to the target distribution f(x).

- Compared with uniform sampling (or Newton-Côtes quadrature), the importance sampling idea suggests that one should focus on the "important" region to improve efficiency.
 - Define $w^{(j)} := w(x^{(j)}) = f(x^{(j)})/q(x^{(j)})$, then

$$\widehat{\Pi}_1 = \frac{1}{m} \sum_{j=1}^m w^{(j)} h(x^{(j)}),$$

where $w^{(j)}$ is called the *importance weight*.

– For any function h with $\int |h(x)|f(x) dx < \infty$, we also have

$$\widehat{\Pi}_2 := \frac{\sum_{j=1}^m w^{(j)} h(x^{(j)})}{\sum_{j=1}^m w^{(j)}} \xrightarrow{a.s.} \int h(x) f(x) \, dx. \quad (\mathbf{Why?}).$$

• - We say that the set $\{(x^{(j)}, w^{(j)})\}_{j=1}^m$ is properly weighted with respect to (w.r.t.) the target distribution f(x). It can be interpreted as that we use a discrete distribution

$$f(x) \approx \sum_{j=1}^{m} \underbrace{\sum_{k=1}^{m} w^{(k)}} \delta(x - x^{(j)}) \quad \text{or} \quad P(X = x^{(j)}) = \frac{w^{(j)}}{\sum_{k=1}^{m} w^{(k)}}$$

to approximate the target distribution f(x), where $\delta(\cdot)$ is the Dirac delta function. Here $\delta(u) = 0$ for $u \neq 0$, $\delta(0) = \infty$ and $\int_{-\infty}^{\infty} \delta(u) du = 1$.

- Comparing $\widehat{\Pi}_1$ with $\widehat{\Pi}_2$.
 - * $\widehat{\Pi}_1$ is an unbiased estimator for $\int h(x)f(x) dx$, but $\widehat{\Pi}_2$ is biased.
 - * When calculating $\widehat{\Pi}_2$, the multiplicative constants in f or q can be ignored.
 - * $\widehat{\Pi}_2$ is in the form of a weighted average, it is often more robust than $\widehat{\Pi}_1$.

- - Comparing importance sampling with the rejection method.
 - * It is difficult to compare efficiency of the importance sampling and the rejection method in general cases (it is case-specified).
 - * The importance sampling method is often easier to implement, since we do not need to find an upper bound for f(x)/q(x).
 - * The rejection method generates "useless" samples when rejecting, but the importance sampling method uses all generated samples.
 - In practice, the efficiency of $\widehat{\Pi}_2$ is often measured using the *effective* sample size (ESS), which is defined as

$$ESS_m(w) = \frac{m}{1 + Var_q(w(x^{(j)}))}.$$

It can be interpreted as that the m weighted samples perform as $\mathrm{ESS}_m(w)$ i.i.d. samples drawn from the target distribution f(x).

• - We have

$$\operatorname{Var}_{q}(w(x^{(j)})) = E_{q}(w(x^{(j)}))^{2} - \left[E_{q}(w(x^{(j)}))\right]^{2}$$
$$= \int \frac{f^{2}(x)}{q^{2}(x)} q(x) dx - 1 = \int \frac{f(x)}{q(x)} f(x) dx - 1.$$

It is called the χ^2 -divergence between f and q, which measures the difference between the target distribution and the proposal distribution.

- Usually, we want the proposal distribution q(x) has a fatter tail than the target distribution f(x), otherwise, $\operatorname{Var}_q(w(x^{(j)}))$ could be infinite.
- Since the importance weights $w^{(1)}, \dots, w^{(m)}$ may not be normalized in practice (we may ignore some multiplicative constants so that $E(w(x^{(j)})) \neq 1$), we can estimate $\operatorname{Var}_q(w(x^{(j)}))$ by

$$\frac{1}{m} \sum_{j=1}^{m} \left(\frac{w^{(j)}}{\bar{w}_m}\right)^2 - 1,$$

where $\bar{w}_m = \frac{1}{m} \sum_{j=1}^m w^{(j)}$.

• Marginalization: Consider the target distribution f(x). Suppose we generate $x^{(1)}, \dots, x^{(m)}$ from the trail distribution q(x) and let $w^{(j)} = f(x^{(j)})/q(x^{(j)})$, then $\{(x^{(j)}, w^{(j)})\}_{j=1}^m$ is properly weighted with respect to f(x), that is,

$$\frac{\sum_{j=1}^{m} w^{(j)} h(x^{(j)})}{\sum_{j=1}^{m} w^{(j)}} \xrightarrow{a.s.} \int h(x) f(x) dx$$

for any h with finite $\int |h(x)| f(x) dx$.

- The proper weights $\{w^{(j)}\}_{j=1}^m$ are **not unique**. For example, let f(y|x) and q(y|x) be conditional densities satisfying

$$\{(x,y): f(x)f(y|x) > 0\} \subset \{(x,y): q(x)q(y|x) > 0\}.$$

Then for each $x^{(j)}$, we generate $y^{(j)}$ from $q(y|x^{(j)})$ and let

$$\widetilde{w}^{(j)} = \frac{f(x^{(j)})f(y^{(j)}|x^{(j)})}{q(x^{(j)})q(y^{(j)}|x^{(j)})} = w^{(j)} \frac{f(y^{(j)}|x^{(j)})}{q(y^{(j)}|x^{(j)})}.$$

 \bullet - It is easy to show that (Why?)

$$\frac{\sum_{j=1}^{m} \widetilde{w}^{(j)} h(x^{(j)})}{\sum_{j=1}^{m} \widetilde{w}^{(j)}} \xrightarrow{a.s.} \int h(x) f(x) dx$$

for any h with finite $\int |h(x)| f(x) dx$. Then $\{(x^{(j)}, \widetilde{w}^{(j)})\}_{j=1}^m$ is also properly weighted with respect to f(x).

- Note that $E(\widetilde{w}^{(j)}|x^{(j)}) = w^{(j)}$, $\{w^{(j)}\}_{j=1}^m$ are "better" weights because

$$\operatorname{Var}(w^{(j)}) = \operatorname{Var}\left[E(\widetilde{w}^{(j)}|x^{(j)})\right]$$

$$\leq \operatorname{Var}(\widetilde{w}^{(j)}).$$

(However, $f(x^{(j)}, y^{(j)})$ or $\widetilde{w}^{(j)}$ may be easier to compute than $f(x^{(j)})$ or $w^{(j)}$ in some cases.)

- We want to generate **high dimensional** random samples $x_{0:T} = (x_0, x_1, \dots, x_T)$ from the target distribution $p(x_{0:T})$ (p is a PDF/PMF).
 - Some sampling methods can not be applied to generate high dimensional samples, for example, the inverse CDF transform method.
 - We can write the target distribution as

$$p(x_{0:T}) = p(x_0)p(x_1|x_0)\cdots p(x_T|x_{0:T-1}).$$

If we can **sequentially** generate

$$x_0^{(j)} \sim p(x_0), \quad x_1^{(j)} \sim p(x_1 | x_0^{(j)}), \quad \cdots, \quad x_T^{(j)} \sim p(x_T | x_{0:T-1}^{(j)}),$$
then $(x_0^{(j)}, \cdots, x_T^{(j)}) \sim p(x_{0:T}).$

- In many cases, it is not easy to draw samples from $p(x_t|x_{0:t-1})$.

- Example: Optimal Trading Path. Let x_t be the holding position of a financial asset in shares at time t, then $x_{0:T} = (x_0, x_1, \dots, x_T)$ forms a trading path.
 - We want to find an "optimal" trading path to maximize utility function

$$u(x_{0:T}) = -\sum_{t=1}^{T-1} l(y_t - x_t) - \sum_{t=1}^{T} c(x_t - x_{t-1}).$$

subject to $x_0 = 0$ and $x_T = 0$.

- $-(y_1, \dots, y_{T-1})$ is the 'optimal" trading path in an ideal world without trading costs. It can be obtained through maximizing the risk-adjusted expected return using historical data. $(y_{1:T-1}$ is known.)
- $-l(\cdot)$ is the utility loss due to the departure of the trading path $x_{1:T-1}$ from the ideal path $y_{1:T-1}$.
- $-c(\cdot)$ denotes the trading costs.

- Generally, we can not find analytical solution of the optimal trading path. We consider generating samples from $p(x_{0:T}) \propto \exp\{u(x_{0:T})/\tau\}$ subject to $x_0 = 0$ and $x_T = 0$, where $\tau > 0$ is called the *temperature*.
 - It is not easy to obtain $p(x_t|x_0 = 0, x_{1:t-1}, x_T = 0)$ in this example.

Trading Path Samples

• Chain Structured Model: A model of $x_{0:T}$ is called a *chain structured* model or Markovian structured model if its distribution can be written as

$$p(x_{0:T}) \propto \exp\left\{-H(x_{0:T})\right\} = \exp\left\{-\sum_{t=1}^{T} h_t(x_{t-1}, x_t)\right\}.$$

- Such a model has the following **Markovian property**:

$$p(x_{i}|x_{0:(i-1)}, x_{(i+1):T}) = \frac{\exp\left\{-\sum_{t=1}^{T} h_{t}(x_{t-1}, x_{t})\right\}}{\int \exp\left\{-\sum_{t=1}^{T} h_{t}(x_{t-1}, x_{t})\right\} dx_{i}}$$

$$= \frac{\exp\left\{-h_{i}(x_{i-1}, x_{i}) - h_{i+1}(x_{i}, x_{i+1})\right\}}{\int \exp\left\{-h_{i}(x_{i-1}, x_{i}) - h_{i+1}(x_{i}, x_{i+1})\right\} dx_{i}}$$

$$= p(x_{i}|x_{i-1}, x_{i+1}).$$

- The trading path example is a chain structured model with

$$h_t(x_{t-1}, x_t) = [l(y_t - x_t) + c(x_t - x_{t-1})]/\tau.$$

- Assume that in a chain structured mode, x_t takes value in **a finite set** $S_t = \{s_{t,1}, \dots, s_{t,K_t}\}.$
- For simplicity, we assume $S_t = S = \{s_1, \dots, s_K\}$ for all t.
- We can find the "optimal" path

$$x_{0:T}^* = \arg \min_{x_0, \dots, x_T \in \mathcal{S}} H(x_{0:T})$$

$$= \arg \min_{x_0, \dots, x_T \in \mathcal{S}} \sum_{t=1}^T h_t(x_{t-1}, x_t)$$

$$= \arg \max_{x_0, \dots, x_T \in \mathcal{S}} p(x_{0:T})$$

using the Viterbi algorithm (Viterbi, 1967).

• Viterbi Algorithm:

- For $x_1 = s_1, \dots, s_K$, calculate $m_1(x_1) = \min_{x_0 \in S} h_1(x_0, x_1)$.
- For $t = 2, 3, \dots, T$, recursively compute

$$m_t(x_t) \stackrel{\triangle}{=} \min_{x_0, \dots, x_{t-1} \in \mathcal{S}} \sum_{s=1}^t h_s(x_{s-1}, x_s)$$

$$= \min_{x_{t-1} \in \mathcal{S}} \left[\min_{x_0, \dots, x_{t-2} \in \mathcal{S}} \sum_{s=1}^{t-1} h_s(x_{s-1}, x_s) + h_t(x_{t-1}, x_t) \right] = \min_{x_{t-1} \in \mathcal{S}} \left[m_{t-1}(x_{t-1}) + h_t(x_{t-1}, x_t) \right]$$
for $x_t = s_1, \dots, s_K$.

- At time T, output

$$\min_{x_T \in \mathcal{S}} m_T(x_T) = \min_{x_0, \dots, x_{t-1} \in \mathcal{S}} \sum_{s=1}^T h_s(x_{s-1}, x_s) = \min_{x_0, \dots, x_T \in \mathcal{S}} H(x_{0:T}).$$

• Q: How to output the "optimal" path

$$x_{0:T}^* = \arg\min_{x_0, \dots, x_T \in \mathcal{S}} \sum_{s=1}^T h_s(x_{s-1}, x_s)$$
?

• - Expectation Calculation: Suppose that we want to calculate

$$E_p[g(x_i)] = \frac{\sum_{x_0, \dots, x_T} \exp\left\{-\sum_{t=1}^T h_t(x_{t-1}, x_t)\right\} g(x_i)}{\sum_{x_0, \dots, x_T} \exp\left\{-\sum_{t=1}^T h_t(x_{t-1}, x_t)\right\}}$$

$$\stackrel{\triangle}{=} \frac{A}{B}.$$

We can calculate B (or A) using the following algorithm (we can use the same method to calculate A).

\bullet -Algorithmic steps to compute B:

* For $x_1 = s_1, \dots, s_K$, compute $V_1(x_1) = \sum_{x_0 \in \mathcal{S}} \exp \{-h_1(x_0, x_1)\}$.

* For $t = 2, 3, \dots, T$, recursively compute

$$V_{t}(x_{t}) \stackrel{\triangle}{=} \sum_{x_{0}, \dots, x_{t-1} \in \mathcal{S}} \exp \left\{ -\sum_{s=1}^{t} h_{s}(x_{s-1}, x_{s}) \right\}$$

$$= \sum_{x_{t-1} \in \mathcal{S}} \left[\exp \left\{ -h_{t}(x_{t-1}, x_{t}) \right\} \sum_{x_{0}, \dots, x_{t-2} \in \mathcal{S}} \exp \left\{ -\sum_{s=1}^{t-1} h_{s}(x_{s-1}, x_{s}) \right\} \right]$$

$$= \sum_{x_{t-1} \in \mathcal{S}} \left[V_{t-1}(x_{t-1}) \exp \left\{ -h_{t}(x_{t-1}, x_{t}) \right\} \right]$$

for $x_t = s_1, \cdots, s_K$.

* At time T, output

$$B = \sum_{x_T \in \mathcal{S}} V_T(x_T).$$

• - Exact Simulation: Note that

$$p(x_{0:T}) = p(x_T)p(x_{T-1}|x_T)\cdots p(x_0|x_{1:T}).$$

We can generate $x_{0:T}^{(j)} = (x_0^{(j)}, \dots, x_T^{(j)})$ from $p(x_{0:T})$ as follows.

- * Generate $x_T^{(j)}$ from $p(x_T) = V_T(x_T)/B$.
- * For $t = T 1, \dots, 0$, recursively generate $x_t^{(j)}$ from

$$p(x_t|x_{(t+1):T}^{(j)}) = \frac{p(x_t, x_{(t+1):T}^{(j)})}{p(x_{(t+1):T}^{(j)})}$$

$$= \frac{\sum_{x_0, \dots, x_{t-1} \in \mathcal{S}} \exp\left\{-\sum_{s=1}^t h_s(x_{s-1}, x_s) - h_{t+1}(x_t, x_{t+1}^{(j)}) - \sum_{s=t+2}^T h_s(x_{s-1}^{(j)}, x_s^{(j)})\right\}}{\sum_{x_0, \dots, x_t \in \mathcal{S}} \exp\left\{-\sum_{s=1}^t h_s(x_{s-1}, x_s) - h_{t+1}(x_t, x_{t+1}^{(j)}) - \sum_{s=t+2}^T h_s(x_{s-1}^{(j)}, x_s^{(j)})\right\}}$$

$$= \frac{V_t(x_t) \exp\left\{-h_{t+1}(x_t, x_{t+1}^{(j)})\right\}}{\sum_{x_t \in \mathcal{S}} V_t(x_t) \exp\left\{-h_{t+1}(x_t, x_{t+1}^{(j)})\right\}} = \frac{V_t(x_t) \exp\left\{-h_{t+1}(x_t, x_{t+1}^{(j)})\right\}}{V_{t+1}(x_{t+1}^{(j)})}.$$

• State Space Model: A state space model consists of a latent state variable sequence $\{x_t, t = 0, 1, \dots\}$ and observations $\{y_t, t = 1, 2, \dots\}$. The model is defined by

state equation:
$$x_t \sim p(x_t \mid x_{0:t-1}, y_{1:t-1}) = p(x_t \mid x_{t-1}) := g_t(x_t \mid x_{t-1}),$$

observation equation :
$$y_t \sim p(y_t | x_{0:t}, y_{1:t-1}) = p(y_t | x_t) := \zeta_t(y_t | x_t).$$

The joint density of this model can be calculated by

$$p(x_{0:t}, y_{1:t}) = p(x_0) \prod_{s=1}^{t} p(x_s, y_s \mid x_{0:s-1}, y_{1:s-1})$$

$$= p(x_0) \prod_{s=1}^{t} p(x_s \mid x_{0:s-1}, y_{1:s-1}) p(y_s \mid x_{0:s}, y_{1:s-1}) = g_0(x_0) \prod_{s=1}^{t} g_s(x_s \mid x_{s-1}) \zeta_s(y_s \mid x_s).$$

- We want to make inference of the unobservable states x_t given the observations y_1, y_2, \cdots .
 - Filtering: estimate $p(x_t | y_{1:t})$ or $E(x_t | y_{1:t})$.
 - Prediction: estimate $p(x_{t+\Delta} | y_{1:t})$ or $E(x_{t+\Delta} | y_{1:t})$ for $\Delta > 0$.
 - Smoothing: estimate $p(x_{t-\delta} | y_{1:t})$ or $E(x_{t-\delta} | y_{1:t})$ for $\delta > 0$.
 - $-E(x_t | y_{1:t})$ is the "best" function of $y_{1:t}$ to estimate x_t in terms of MSE.
 - $-E(x_t \mid y_{1:t+\delta})$ is a better estimator for x_t than $E(x_t \mid y_{1:t})$.
 - We have

$$E(x_t | y_{1:t}) = \int x_t p(x_{0:t} | y_{1:t}) dx_{0:t}$$

$$\propto \int x_t p(x_{0:t}, y_{1:t}) dx_{0:t} = \int x_t g_0(x_0) \prod_{s=1}^t g_s(x_s | x_{s-1}) \zeta_s(y_s | x_s) dx_{0:t},$$

which does not have a closed-form solution in most cases.

• Example: Target Tracking. Consider a target moving with random acceleration on a plane. The state equation can be written as

$$\begin{pmatrix} x_{t,1} \\ x_{t,2} \\ v_{t,1} \\ v_{t,2} \end{pmatrix} = \begin{pmatrix} 1 & 0 & T_0 & 0 \\ 0 & 1 & 0 & T_0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_{t-1,1} \\ x_{t-1,2} \\ v_{t-1,1} \\ v_{t-1,2} \end{pmatrix} + \begin{pmatrix} T_0^2/2 & 0 \\ 0 & T_0^2/2 \\ T_0 & 0 \\ 0 & T_0 \end{pmatrix} \begin{pmatrix} u_{t,1} \\ u_{t,2} \end{pmatrix},$$

where $(x_{t,1}, x_{t,2})$ and $(v_{t,1}, v_{t,2})$ are the position and velocity of the target, respectively, T_0 is the time duration between two observations, and $u_t = (u_{t,1}, u_{t,2})$ is the random acceleration. The observation is

$$\begin{pmatrix} y_{t,1} \\ y_{t,2} \end{pmatrix} = \begin{pmatrix} x_{t,1} \\ x_{t,2} \end{pmatrix} + \begin{pmatrix} \varepsilon_{t,1} \\ \varepsilon_{t,2} \end{pmatrix},$$

which is a noised measurement of the target location.

• Example: Wireless Communication. In a digital wireless communication problem, the received signal sequence $\{y_t\}$ is modelled as

$$y_t = \xi_t s_t + v_t,$$

where $\{\xi_t\}$ is the transmitted channel, $s_t \in \{-1, 1\}$ is the transmitted digital signal, $\{v_t\}$ are i.i.d. noises following the $N(0, \sigma^2)$ distribution.

- The latent state is $x_t = (\xi_t, s_t)$.
- Assume that $\{s_t\}$ and $\{\xi_t\}$ are independent,

$$\xi_t = \rho \xi_{t-1} + u_t,$$

where $u_t \sim N(0, \delta^2)$, and

$$p(s_t = -1 \mid s_{0:t-1}) = p(s_t = 1 \mid s_{0:t-1}) = 0.5.$$

- We want to estimate $p(s_t = 1 | y_1, \dots, y_t, \dots, y_{t+h}) = \frac{1}{2} + \frac{1}{2} E(s_t | y_{1:t+h}).$

- Example: Stochastic Volatility Model. Let $y_t := \log(P_t/P_{t-1})$ be the observed log-return of a financial asset at time t, where P_t is the price at time t.
 - Assume that y_t follows a normal distribution $N(0, \sigma_t^2)$.
 - The variance of y_t is an unobservable state variable. Assume that $\{\log \sigma_t^2\}$ follows an autoregressive (AR(1)) process.
 - We have the following state space model

state equation: $\log \sigma_t^2 = \alpha + \beta \log \sigma_{t-1}^2 + u_t$,

observation equation: $y_t | \sigma_t^2 \sim N(0, \sigma_t^2),$

where $\beta > 0$ and $u_t \sim N(0, \delta^2)$.

Price Series and Log-return of S&P 500 Index

• Linear-Gaussian State Space Model: Consider the state space model:

state equation:
$$x_t = c + Ax_{t-1} + u_t$$
,

observation equation:
$$y_t = d + Bx_t + v_t$$
.

- Here x_t and y_t are random variables/vectors, where x_t is the latent state and y_t is the observation at time t. $u_t \sim N(0, \Sigma_{uu})$ and $v_t \sim N(0, \Sigma_{vv})$ are independent noises. Also assume that $x_0 \sim N(\mu_0, \Sigma_0)$.
- $-\mu_0, \Sigma_0, A, B, c, d, \Sigma_{uu}, \text{ and } \Sigma_{vv} \text{ are known.}$
- It is easy to show that $(x_{0:t}, y_{1:t})$ follows a high-dimensional Gaussian distribution. Then the conditional distribution $p(x_t|y_{1:t})$ is also a Gaussian distribution, denoted by $N(\mu_t, \Sigma_t)$.
- If we want to find $p(x_t|y_{1:t})$ or $E(x_t|y_{1:t})$, we only need to determine μ_t and Σ_t .

• Multivariate Gaussian Distribution: Suppose X and Y are $n \times 1$ and $m \times 1$ random vectors, respectively. Z = (X', Y')' follows multivariate normal distribution $N(\mu, \Sigma)$ with joint pdf

$$f_{XY}(x,y) = \frac{1}{\sqrt{\det[2\pi\Sigma]}} \exp\left\{-\frac{1}{2}(z-\mu)'\Sigma^{-1}(z-\mu)\right\},$$

where $z = (x', y')', \mu = (\mu'_X, \mu'_Y)',$

$$\Sigma = \begin{pmatrix} \Sigma_{XX} & \Sigma_{XY} \\ \Sigma_{YX} & \Sigma_{YY} \end{pmatrix}.$$

- Given y, $f_{X|Y}(x \mid Y = y)$ follows the normal distribution

$$N\left(\mu_X + \Sigma_{XY}\Sigma_{YY}^{-1}(y-\mu_Y), \Sigma_{XX} - \Sigma_{XY}\Sigma_{YY}^{-1}\Sigma_{YX}\right).$$

- We can verify that $f_{XY}(x,y) = f_{X|Y}(x \mid y) f_{Y}(y)$. (You may need to use the Schur complement to prove it.)

• Schur Complement. Let I_n be the $n \times n$ -identity matrix. vector. Because

$$\begin{pmatrix} I_n & -\Sigma_{XY}\Sigma_{YY}^{-1} \\ 0 & I_m \end{pmatrix} \begin{pmatrix} \Sigma_{XX} & \Sigma_{XY} \\ \Sigma_{YX} & \Sigma_{YY} \end{pmatrix} \begin{pmatrix} I_n & 0 \\ -\Sigma_{YY}^{-1}\Sigma_{YX} & I_m \end{pmatrix} = \begin{pmatrix} \Sigma_{XX} - \Sigma_{XY}\Sigma_{YY}^{-1}\Sigma_{YX} & 0 \\ 0 & \Sigma_{YY} \end{pmatrix},$$

let
$$F = \Sigma_{XX} - \Sigma_{XY} \Sigma_{YY}^{-1} \Sigma_{YX}$$
, then
$$\begin{pmatrix} \Sigma_{XX} & \Sigma_{XY} \\ \Sigma_{YX} & \Sigma_{YY} \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} I_n & 0 \\ -\Sigma_{YY}^{-1} \Sigma_{YX} & I_m \end{pmatrix} \begin{pmatrix} F^{-1} & 0 \\ 0 & \Sigma_{YY}^{-1} \end{pmatrix} \begin{pmatrix} I_n & -\Sigma_{XY} \Sigma_{YY}^{-1} \\ 0 & I_m \end{pmatrix}$$

$$= \begin{pmatrix} F^{-1} & -F^{-1} \Sigma_{XY} \Sigma_{YY}^{-1} \\ -\Sigma_{YY}^{-1} \Sigma_{YY} F^{-1} & \Sigma_{YY}^{-1} + \Sigma_{YY}^{-1} \Sigma_{YY} F^{-1} \Sigma_{YY} \Sigma_{YY}^{-1} \end{pmatrix}.$$

- Kalman Filter: Suppose at time t-1, we already obtain $p(x_{t-1}|y_{1:t-1}) \sim N(\mu_{t-1}, \Sigma_{t-1})$.
 - At time t, $p(x_t, y_t \mid y_{1:t-1}) \sim N(\mu, \Sigma)$, where

$$\mu := (\mu_X', \mu_Y')' = ((c + A\mu_{t-1})', [d + B(c + A\mu_{t-1})]')'$$

and

$$\Sigma = \begin{pmatrix} \Sigma_{XX} & \Sigma_{XY} \\ \Sigma_{YX} & \Sigma_{YY} \end{pmatrix} = \begin{pmatrix} A\Sigma_{t-1}A' + \Sigma_{uu} & (A\Sigma_{t-1}A' + \Sigma_{uu})B' \\ B(A\Sigma_{t-1}A' + \Sigma_{uu}) & B(A\Sigma_{t-1}A' + \Sigma_{uu})B' + \Sigma_{vv} \end{pmatrix}.$$

- Then $p(x_t|y_{1:t-1}, y_t) \sim N(\mu_t, \Sigma_t)$ with

$$\mu_t = \mu_X + \Sigma_{XY} \Sigma_{YY}^{-1} (y_t - \mu_Y)$$
 and $\Sigma_t = \Sigma_{XX} - \Sigma_{XY} \Sigma_{YY}^{-1} \Sigma_{YX}$.

• **Remark:** Obviously, we have

$$E(x_t | y_{1:t}) = \mu_t$$
 and $E(x_{t+1} | y_{1:t}) = c + A\mu_t$.

- For the state space models, we can only find analytic solutions of $p(x_t | y_{1:t})$ or $E(x_t | y_{1:t})$ in some special cases.
 - Case 1: For any t, x_t takes value in a finite set.
 - Case 2: the linear-Gaussian state space model.
- In most cases,

$$p(x_t | y_{1:t}) \propto \int p(x_{0:t}, y_{1:t}) dx_{0:t-1}$$

$$= \int g_0(x_0) \prod_{s=1}^t g_s(x_s | x_{s-1}) \zeta_s(y_s | x_s) dx_{0:t-1}$$

does not have a closed form.

• Importance Sampling for State Space Model: We consider generating samples $x_{0:t}^{(1)}, \dots, x_{0:t}^{(m)}$ from a trial distribution $q(x_{0:t})$ and let

$$w_{t}^{(j)} = \frac{p(x_{0:t}^{(j)} \mid y_{1:t})}{q(x_{0:t}^{(j)})}$$

$$\propto \frac{p(x_{0:t}^{(j)}, y_{1:t})}{q(x_{0:t}^{(j)})} = \frac{g_{0}(x_{0}^{(j)}) \prod_{s=1}^{t} g_{s}(x_{s}^{(j)} \mid x_{s-1}^{(j)}) \zeta_{s}(y_{s} \mid x_{s}^{(j)})}{q(x_{0:t}^{(j)})}.$$

Then

$$p(x_{0:t} \mid y_{1:t}) \approx \sum_{j=1}^{m} \frac{w_t^{(j)}}{\sum_{k=1}^{m} w_t^{(k)}} \delta(x_{0:t} - x_{0:t}^{(j)})$$

and

$$E(x_t \mid y_{1:t}) \approx \sum_{j=1}^{m} \frac{w_t^{(j)} x_t^{(j)}}{\sum_{k=1}^{m} w_t^{(k)}} = \frac{\sum_{j=1}^{m} w_t^{(j)} x_t^{(j)}}{\sum_{k=1}^{m} w_t^{(k)}}$$

• **Remark:** Since $p(x_t | y_{1:t})$ may not have a closed-form, we can not use the "marginalized" weight $p(x_t^{(j)} | y_{1:t})/q(x_t^{(j)})$.

- Sequential Importance Sampling: Generate samples $x_{0:t}^{(j)}$, $j=1,\cdots,m$, as follows.
 - At t = 0, generate $x_0^{(j)}$ from $q(x_0)$ and let $w_0^{(j)} = g_0(x_0^{(j)})/q(x_0^{(j)})$.
 - For $t = 1, 2, \dots,$
 - * (Sampling.) Generate $x_t^{(j)}$ from distribution $q(x_t \mid x_{0:t-1}^{(j)})$.
 - * (Updating Weights.) Let

$$w_t^{(j)} = w_{t-1}^{(j)} \eta_t^{(j)},$$

where

$$\eta_t^{(j)} := \frac{g_t(x_t^{(j)} \mid x_{t-1}^{(j)})\zeta_t(y_t \mid x_t^{(j)})}{q(x_t^{(j)} \mid x_{0:t-1}^{(j)})}$$

is called the *incremental weight*.

• Remarks:

- The weighted sample set $\{(x_{0:t}^{(j)}, w_t^{(j)})\}_{j=1}^m$ obtained at time t can be used at time t+1.
- The sequential importance sampling (SIS) method is often used for "online" estimation, that is, estimate $E(x_t|y_{1:t})$ for $t = 1, 2, \cdots$ recursively, without restarting from t = 0.
- The sample $x_{0:t}^{(j)}$ is built up **sequentially** according to a series of **low dimensional** conditional distributions

$$q(x_{0:t}) = q(x_0)q(x_1|x_0)\cdots q(x_t|x_{0:t-1}).$$

- At each time t, the "correct" weight should be

$$w_t^{(j)} = \frac{g_0(x_0^{(j)}) \prod_{s=1}^t g_s(x_s^{(j)} \mid x_{s-1}^{(j)}) \zeta_s(y_s \mid x_s^{(j)})}{q(x_0^{(j)}) \prod_{s=1}^t q(x_s^{(j)} \mid x_{0:s-1}^{(j)})}.$$

• - From the algorithm, we have

$$\begin{split} w_t^{(j)} &= w_{t-1}^{(j)} \eta_t^{(j)} \ = \ w_{t-1}^{(j)} \frac{g_t(x_t^{(j)} \mid x_{t-1}^{(j)}) \zeta_t(y_t \mid x_t^{(j)})}{q(x_t^{(j)} \mid x_{0:t-1}^{(j)})} \\ &= w_{t-2}^{(j)} \frac{\prod_{s=t-1}^t g_s(x_s^{(j)} \mid x_{s-1}^{(j)}) \zeta_s(y_s \mid x_s^{(j)})}{\prod_{s=t-1}^t q(x_s^{(j)} \mid x_{0:s-1}^{(j)})} \\ &= \cdots \\ &= \frac{g_0(x_0^{(j)}) \prod_{s=1}^t g_s(x_s^{(j)} \mid x_{s-1}^{(j)}) \zeta_s(y_s \mid x_s^{(j)})}{q(x_0^{(j)}) \prod_{s=1}^t q(x_s^{(j)} \mid x_{0:s-1}^{(j)})} \\ &= \frac{p(x_{0:t}^{(j)}, y_{0:t})}{q(x_{0:t}^{(j)})} \\ &\propto \frac{p(x_{0:t}^{(j)} \mid y_{0:t})}{q(x_{0:t}^{(j)})}. \end{split}$$

• Therefore, for any function $h(x_{0:t})$ with finite expectation, we have

$$\sum_{j=1}^{m} \frac{w_t^{(j)} h(x_{0:t}^{(j)})}{\sum_{k=1}^{m} w_t^{(k)}} \xrightarrow{a.s.} E[h(x_{0:t}) \mid y_{1:t}].$$

- Since we often ignore some normalizing constants in the importance weights $(e.g., p(y_{1:t})), \sum_{j=1}^{m} w_t^{(j)}$ could be very large or very small when t is large.
- In practice, we may record $\alpha_t^{(j)} = \log w_t^{(j)}, j = 1, \dots, m$. Let

$$\alpha_{t,\max} = \max\{\alpha_t^{(1)}, \cdots, \alpha_t^{(m)}\}.$$

Then
$$E(x_t | y_{1:t})$$
 can be estimated by
$$\frac{\sum_{j=1}^{m} \exp\{\alpha_t^{(j)} - \alpha_{t,\max}\} \cdot x_t^{(j)}}{\sum_{j=1}^{m} \exp\{\alpha_t^{(j)} - \alpha_{t,\max}\}} = \frac{\sum_{j=1}^{m} w_t^{(j)} x_t^{(j)}}{\sum_{j=1}^{m} w_t^{(j)}}.$$

- - Choices of the trial distribution $q(x_t | x_{0:t-1}^{(j)})$:
 - (1) Only use the state equation (Gordon et al., 1993).
 - Let $q(x_t | x_{0:t-1}^{(j)}) = g_t(x_t | x_{t-1}^{(j)}).$
 - The incremental weight is $\eta_t^{(j)} = \zeta_t(y_t \mid x_t^{(j)})$.
 - (2) Use the state equation and the observation equation (Kong et al., 1994; Liu and Chen, 1998).
 - $\cdot \text{ Let } q(x_t \mid x_{0:t-1}^{(j)}) = \frac{g_t(x_t \mid x_{t-1}^{(j)})\zeta_t(y_t \mid x_{t-1}^{(j)}, x_t)}{\int g_t(x_t \mid x_{t-1}^{(j)})\zeta_t(y_t \mid x_{t-1}^{(j)}, x_t) dx_t}.$
 - · The incremental weight is $\eta_t^{(j)} = \int g_t(x_t \mid x_{t-1}^{(j)}) \zeta_t(y_t \mid x_{t-1}^{(j)}, x_t) dx_t$.
 - (3) Only use the observations (Lin et al., 2005).
 - Let $q(x_t | x_{0:t-1}^{(j)}) \propto \zeta_t(y_t | x_t)$.
 - The incremental weight is $\eta_t^{(j)} = g_t(x_t^{(j)} \mid x_{t-1}^{(j)})$.

• As t increases, $Var(w_t^{(j)})$ increases and $w_t^{(j)}$ becomes increasingly skewed, resulting in many unrepresentative samples of $x_{0:t}^{(j)}$. This phenomena is called $sample\ degeneracy$.

- A resampling step is often used to deal with the "sample degeneracy" problem.
- **Resampling:** At time t, suppose we have obtained $\{(x_{0:t}^{(j)}, w_t^{(j)}), j = 1, \dots, m\}$ properly weighted with respect to $p(x_{0:t} \mid y_{1:t})$.
 - For each sample $x_{0:t}^{(j)}$, $j=1,\cdots,m$, assign a priority score $\beta_t^{(j)}>0$.
 - $For j = 1, \cdots, m,$
 - * Choose K_j from $\{1, \dots, m\}$ with probability $P(K_j = i) = \beta_t^{(i)} / \sum_{l=1}^m \beta_t^{(l)}$.
 - * Set $x_{0:t}^{*(j)} = x_{0:t}^{(K_j)}$ and $w_t^{*(j)} = \frac{w_t^{(K_j)}}{\beta_t^{(K_j)}/(m^{-1}\sum_{l=1}^m \beta_t^{(l)})}$.
 - Return the new set $\{(x_{0:t}^{(j)}, w_t^{(j)})\}_{j=1}^m \leftarrow \{(x_{0:t}^{*(j)}, w_t^{*(j)})\}_{j=1}^m$.
- **Remark:** We often choose $\beta_t^{(j)} = w_t^{(j)}$.

- Multinomial Resampling: At time t, suppose we have obtained $\{(x_{0:t}^{(j)}, w_t^{(j)}), j = 1, \dots, m\}$ properly weighted with respect to $p(x_{0:t} \mid y_{1:t})$.
 - For each sample $x_{0:t}^{(j)}$, $j=1,\cdots,m$, assign a priority score $\beta_t^{(j)}>0$.
 - Generate U_1, \dots, U_m i.i.d. from the Uniform(0, 1) distribution.
 - $For j = 1, \cdots, m,$
 - * Let $K_j = k$ if

$$\frac{\sum_{j=1}^{k-1} \beta_t^{(j)}}{\sum_{l=l}^m \beta_t^{(l)}} < U_j \le \frac{\sum_{j=1}^k \beta_t^{(j)}}{\sum_{l=l}^m \beta_t^{(l)}}.$$

* Set
$$x_{0:t}^{*(j)} = x_{0:t}^{(K_j)}$$
 and $w_t^{*(j)} = \frac{w_t^{(K_j)}}{\beta_t^{(K_j)}/(m^{-1}\sum_{l=1}^m \beta_t^{(l)})}$.

- Return the new set $\{(x_{0:t}^{(j)}, w_t^{(j)})\}_{j=1}^m \leftarrow \{(x_{0:t}^{*(j)}, w_t^{*(j)})\}_{j=1}^m$.

- **Systematic Resampling:** At time t, suppose we have obtained $\{(x_{0:t}^{(j)}, w_t^{(j)}), j = 1, \dots, m\}$ properly weighted with respect to $p(x_{0:t} \mid y_{0:t})$.
 - For each sample $x_{0:t}^{(j)}$, $j=1,\cdots,m$, assign a priority score $\beta_t^{(j)}>0$.
 - Generate random number U_1 from the Uniform(0, 1/m) distribution. Let $U_i = U_1 + (j-1)/m$, $j = 2, \dots, m$.
 - $For j = 1, \cdots, m,$
 - * Let $K_j = k$ if

$$\frac{\sum_{j=1}^{k-1} \beta_t^{(j)}}{\sum_{l=l}^{m} \beta_t^{(l)}} < U_j \le \frac{\sum_{j=1}^{k} \beta_t^{(j)}}{\sum_{l=l}^{m} \beta_t^{(l)}}.$$

* Set
$$x_{0:t}^{*(j)} = x_{0:t}^{(K_j)}$$
 and $w_t^{*(j)} = \frac{w_t^{(K_j)}}{\beta_t^{(K_j)}/(m^{-1}\sum_{l=1}^m \beta_t^{(l)})}$.

- Return the new set $\{(x_{0:t}^{(j)}, w_t^{(j)})\}_{j=1}^m \leftarrow \{(x_{0:t}^{*(j)}, w_t^{*(j)})\}_{j=1}^m$.

• Remarks:

- Resampling tries to remove "bad" samples (with small $\beta_t^{(j)}$) and duplicate "good" samples (with large $\beta_t^{(j)}$) at intermediate steps.
- We often **choose** $\beta_t^{(j)} = w_t^{(j)}$, then the new weight after resampling becomes

$$w_t^{*(j)} = \frac{w_t^{(K_j)}}{\beta_t^{(K_j)}/(m^{-1}\sum_{l=1}^m \beta_t^{(l)})} = \frac{w_t^{(K_j)}}{w_t^{(K_j)}/(m^{-1}\sum_{l=1}^m w_t^{(l)})} = \frac{1}{m}\sum_{l=1}^m w_t^{(l)},$$

which is a constant not depending on j. The sample variance of $\{w_t^{*(j)}\}_{j=1}^m$ is 0.

- For the multinomial resampling, it is easy to find that

$$P(K_j = k \mid \beta_t^{(l)}, x_{0:t}^{(l)}, w_t^{(l)}, l = 1, \dots, m) = \frac{\beta_t^{(k)}}{\sum_{l=l}^m \beta_t^{(l)}}.$$

For the multinomial resampling,

$$\begin{split} E\Big(\frac{1}{m}\sum_{j=1}^{m}w_{t}^{*(j)}h(x_{0:t}^{*(j)}) \mid \beta_{t}^{(l)}, x_{0:t}^{(l)}, w_{t}^{(l)}, l = 1, \cdots, m\Big) \\ &= \frac{1}{m}\sum_{j=1}^{m}E\Big(w_{t}^{*(j)}h(x_{0:t}^{(K_{j})}) \mid \beta_{t}^{(l)}, x_{0:t}^{(l)}, w_{t}^{(l)}, l = 1, \cdots, m\Big) \\ &= \frac{1}{m}\sum_{j=1}^{m}\Big\{\sum_{k=1}^{m}P\Big(K_{j} = k \mid \beta_{t}^{(l)}, x_{0:t}^{(l)}, w_{t}^{(l)}, l = 1, \cdots, m\Big) \\ &\qquad \qquad \cdot \frac{w_{t}^{(k)}}{\beta_{t}^{(k)}/(m^{-1}\sum_{l=1}^{m}\beta_{t}^{(l)})} \cdot h(x_{0:t}^{(k)})\Big\} \\ &= \frac{1}{m}\sum_{j=1}^{m}\Big\{\sum_{k=1}^{m}\frac{\beta_{t}^{(k)}}{\sum_{l=l}^{m}\beta_{t}^{(l)}} \cdot \frac{w_{t}^{(k)}(m^{-1}\sum_{l=1}^{m}\beta_{t}^{(l)})}{\beta_{t}^{(k)}} \cdot h(x_{0:t}^{(k)})\Big\} \\ &= \frac{1}{m}\sum_{j=1}^{m}\Big\{m^{-1}\sum_{k=1}^{m}w_{t}^{(k)}h(x_{0:t}^{(k)})\Big\} = \frac{1}{m}\sum_{k=1}^{m}w_{t}^{(k)}h(x_{0:t}^{(k)}) \xrightarrow{a.s.} E\left[h(x_{0:t}) \mid y_{1:t}\right]. \end{split}$$

• - For the **multinomial resampling**, we can show that

$$\frac{1}{m} \sum_{j=1}^{m} w_t^{*(j)} h(x_{0:t}^{*(j)}) \xrightarrow{a.s.} E[h(x_{0:t}) | y_{1:t}]$$

and

$$\frac{1}{m} \sum_{j=1}^{m} w_t^{*(j)} \cdot 1 \xrightarrow{a.s.} 1.$$

Hence,

$$\frac{\sum_{j=1}^{m} w_t^{*(j)} h(x_{0:t}^{*(j)})}{\sum_{j=1}^{m} w_t^{*(j)}} \xrightarrow{a.s.} E[h(x_{0:t}) \mid y_{1:t}].$$

The sample set $\{(x_{0:t}^{*(j)}, w_t^{*(j)})\}_{j=1}^m$ obtained after resampling is also properly weighted with respect to $p(x_{0:t} | y_{1:t})$.

• - For the **systematic resampling**, we can also prove that

$$E\left(\frac{1}{m}\sum_{j=1}^{m}w_{t}^{*(j)}h(x_{0:t}^{*(j)})\mid\beta_{t}^{(l)},x_{0:t}^{(l)},w_{t}^{(l)},l=1,\cdots,m\right)=\frac{1}{m}\sum_{k=1}^{m}w_{t}^{(k)}h(x_{0:t}^{(k)}).$$

and

$$\frac{\sum_{j=1}^{m} w_t^{*(j)} h(x_{0:t}^{*(j)})}{\sum_{j=1}^{m} w_t^{*(j)}} \xrightarrow{a.s.} E[h(x_{0:t}) \mid y_{1:t}].$$

* To prove the conclusion, note that $U_j \sim Uniform(\frac{j-1}{m}, \frac{j}{m})$ and

$$P(K_j = k \mid \beta_t^{(l)}, x_{0:t}^{(l)}, w_t^{(l)}, l = 1, \dots, m) = \frac{\left| \left(\frac{\sum_{j=1}^{k-1} \beta_t^{(j)}}{\sum_{l=l}^m \beta_t^{(l)}}, \frac{\sum_{j=1}^k \beta_t^{(j)}}{\sum_{l=l}^m \beta_t^{(l)}} \right) \cap \left(\frac{j-1}{m}, \frac{j}{m} \right) \right|}{1/m},$$

where $|\cdot|$ denotes the length of the set. Then

$$\sum_{j=1}^{m} P(K_j = k \mid \beta_t^{(l)}, x_{0:t}^{(l)}, w_t^{(l)}, l = 1, \dots, m) = \frac{m\beta_t^{(k)}}{\sum_{l=l}^{m} \beta_t^{(l)}}.$$

- In the resmapling step, to estimate $E[h(x_{0:t}) | y_{1:t}]$, we need to resample the whole path $x_{0:t}^{(j)}$, not only $x_t^{(j)}$. (In practice, if we only want to estimate $E[h(x_t) | y_{1:t}]$, we may only record $x_t^{(j)}$.)
 - For the systematic resampling, we can find K_1, \dots, K_m in O(m) comparisons. (Why?)
 - Resampling introduces extra variation to the current step (systematic resampling is better than multinomial resampling), but it will benefit future sampling steps.
 - At each time t, we should make inference of x_t before resampling.

• Sequential Monte Carlo / Particle Filter:

- At t = 0, generate $x_0^{(j)}$ from $q(x_0)$ and let $w_0^{(j)} = g_0(x_0^{(j)})/q(x_0^{(j)})$.
- For $t = 1, 2, \dots,$
 - * (Sampling.) Generate $x_t^{(j)}$ from distribution $q(x_t \mid x_{0:t-1}^{(j)})$.
 - * (Updating Weights:) Set

$$w_t^{(j)} = w_{t-1}^{(j)} \eta_t^{(j)} = w_{t-1}^{(j)} \frac{g_t(x_t^{(j)} \mid x_{t-1}^{(j)}) \zeta_t(y_t \mid x_t^{(j)})}{q(x_t^{(j)} \mid x_{0:t-1}^{(j)})}.$$

- * (*Inference*:) Estimate $E(x_t | y_{1:t})$ by $\sum_{j=1}^m w_t^{(j)} x_t^{(j)} / \sum_{j=1}^m w_t^{(j)}$.
- * (Resampling:) Resampling with the priority scores $\{\beta_t^{(j)}\}_{j=1}^m$. (Usually we let $\beta_t^{(j)} = w_t^{(j)}$.)

• Remarks:

- Note that $\{(x_{0:t}^{(j)}, w_t^{(j)})\}_{j=1}^m$ obtained at time t is properly weighted with respect to $p(x_{0:t} \mid y_{1:t})$, that is, for any function h with finite expectation,

$$\frac{\sum_{j=1}^{m} w_{t}^{(j)} h(x_{0:t}^{(j)})}{\sum_{j=1}^{m} w_{t}^{(j)}} \xrightarrow{a.s.} E[h(x_{0:t}) \mid y_{1:t}].$$

- Smoothing: At time t (before resampling), we can estimate

$$E(x_{t-\delta} \mid y_{1:t}) \approx \frac{\sum_{j=1}^{m} w_t^{(j)} x_{t-\delta}^{(j)}}{\sum_{j=1}^{m} w_t^{(j)}}.$$

- Prediction: At time t (before resampling), we can estimate

$$E(x_{t+1} | y_{1:t}) \approx \frac{\sum_{j=1}^{m} w_{t}^{(j)} E(x_{t+1} | x_{0:t} = x_{0:t}^{(j)})}{\sum_{j=1}^{m} w_{t}^{(j)}}$$

$$\xrightarrow{a.s.} E[E(x_{t+1} | x_{0:t}) | y_{1:t}]$$

$$= E[E(x_{t+1} | x_{0:t}, y_{1:t}) | y_{1:t}] = E(x_{t+1} | y_{1:t}).$$

- Example: Target Tracking in Clutter. Consider the problem of tracking a single target in one dimensional space (Avitzour, 1995).
 - The state equation can be written as

$$\begin{pmatrix} x_t \\ v_t \end{pmatrix} = \begin{pmatrix} 1 & T_0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_{t-1} \\ v_{t-1} \end{pmatrix} + \begin{pmatrix} T_0^2/2 \\ T_0 \end{pmatrix} u_t,$$

where x_t and v_t denote the one dimensional location and velocity of the target, respectively; $u_t \sim N(0, \sigma^2)$ is the random acceleration.

- At each time t, the target can be observed with probability p_d independently.
- If the target is observed, the observation is $y_t = x_t + \varepsilon_t$, where $\varepsilon_t \sim N(0, \delta^2)$.
- In additional to the true signal, there are false signals. False signals follow a spatially homogeneous Poisson process with rate λ .

The target is observed with probability $p_d = 0.8$.

Estimated Trace (circle: true position, solid line: estimated position.)

- 1. A deck of 100 cards (numbered $1, 2, \dots, 100$) is shuffled and then turned over one card at a time. Say that a "hit" occurs whenever card i is the ith card to be turned over for $i = 1, \dots, 100$.
 - (a) Find the expectation and variance of the total number of hits. (Note: Let A_i be the event that the ith card to be turned over is card i. Then the total number of hits is $\sum_{i=1}^{100} I(A_i)$.)
 - (b) Write a simulation program to estimate the expectation and variance of the total number of hits. Compare your estimates with the exact answers.
- 2. Let F be any c.d.f. and let F^- be the generalized inverse of F. Prove that $F(F^-(u)) \ge u$ and $F(F^-(u) \varepsilon) < u$ for any $\varepsilon > 0$, where 0 < u < 1.

- 3. Suppose X_1 and X_2 are two i.i.d. N(0,1) random variables. Let (r,θ) be the polar coordinates of (X_1, X_2) . Find the joint PDF of (r, θ) . Show that r and θ are independent.
- 4. Suppose that we want to generate a random variable X whose density function is

$$f(x) = \frac{1}{2}x^2e^{-x}, \quad x > 0$$

by using the rejection method with an exponential distribution having density $g(x) = \lambda e^{-\lambda x}$, x > 0. Find the value of λ that minimizes the expected number of iterations of the algorithm used to generate X.

5. Consider a distribution having density

$$f(x) = 30(x^2 - 2x^3 + x^4), \quad 0 \le x \le 1.$$

- (1) Develop an algorithm to generate random variables from f(x). Use the algorithm to draw 1,000,000 random samples.
- (2) Plot the histogram of the random samples you generated, and compare it with the density function f(x).
- 6. Prove that $Var(\widehat{\Pi}_S)$ is minimized when

$$m_k = m \cdot \frac{a_k \operatorname{Var}_{f_k}^{1/2} [h(x^{(k,j)})]}{\sum_{s=1}^K a_s \operatorname{Var}_{f_s}^{1/2} [h(x^{(s,j)})]}.$$

7. For any two random variables X and Y, prove that

$$Var(Y) = E[Var(Y|X)] + Var[E(Y|X)].$$

8. Suppose $X \sim N(0,4)$. Use $\widehat{\Pi}_2$ with m=10,000 samples to calculate

$$E\left(\frac{X^5}{1+(X-3)^2}\right).$$

Try trial distributions $q_1(x) \sim N(0,1)$, $q_2(x) \sim N(0,4)$ and $q_3(x) \sim N(0,9)$. Repeat the experiment 100 times. Report the mean and variance of the 100 estimates using different trial distributions.

- 9. Suppose that X follows the standard normal distribution N(0,1).
 - (1) Derive an algorithm to calculate P(X > 4). (Note: You should not use function $\Phi(4)$ in this question.)
 - (2) Use the rejection method $(i.e., \widehat{\Pi}_0)$ and the importance sampling method $(\widehat{\Pi}_1 \text{ and } \widehat{\Pi}_2)$ with 10,000 samples to calculate E(X|X>4). Repeat the experiment 100 times. Report the boxplots of the 100 estimates using different methods. (Note: For the rejection method, the rejected samples are included in the 10,000 samples.)

10. In the trading path example, let T=20 and

$$c(x_t - x_{t-1}) = 2[(x_t - x_{t-1})^2 + 2|x_t - x_{t-1}|],$$

$$l(y_t - x_t) = \frac{1}{2}(y_t - x_t)^2,$$

$$y_t = 25 \exp\{-(t+1)/8\} - 40 \exp\{-(t+1)/4\}.$$

Assume that $x_0 = 0$, $x_T = 0$ and $x_t \in \{-2, -1.9, -1.8 \cdots, 5.8, 5.9, 6\}$ for $t = 1, \cdots, T - 1$. Find the optimal trading path and the maximum value of the utility function

$$u(x_{0:T}) = -\sum_{t=1}^{T-1} l(y_t - x_t) - \sum_{t=1}^{T} c(x_t - x_{t-1}).$$

subject to $x_0 = 0$ and $x_T = 0$.

11. Consider a one-dimensional Ising model with

$$p(x_{0:T}) = \frac{1}{B} \exp \left\{ 0.1 \cdot (8x_0 x_1 + x_1 x_2 + \dots + x_{T-1} x_T) \right\},$$

where $x_i \in \{-1, 1\}$. Let T = 100.

- (1) Find the exact values of B and $E_p(x_0x_1 + x_1x_2 + \cdots + x_{T-1}x_T)$.
- (2) Use the Monte Carlo method to compute $E_p(x_0x_1+x_1x_2+\cdots+x_{T-1}x_T)$.
- 12. Let X and Y be two random variables. Prove that $E(X \mid Y)$ is the best function of Y to estimate X in terms of mean squared error, that is,

$$E(X \mid Y) = \arg\min_{g} E[X - g(Y)]^{2},$$

where the minimization is over all measurable and square-integrable functions of Y.

13. Consider the following state space model

state equation: $x_t = 0.5x_{t-1} + \frac{25x_{t-1}}{1 + x_{t-1}^2} + 8\cos(1.2(t-1)) + u_t$

observation equation: $y_t = x_t^2/20 + v_t$,

where the initial state is $x_0 = 0$, $u_t \sim N(0,1)$ and $v_t \sim N(0,1)$ are independent noises.

- (1) Use the particle filter (with resampling) with m = 1,000 samples to estimate $E(x_t | y_{1:t})$ and $E(x_t | y_{1:t+1})$ for $t = 1, \dots, 50$. Plot your estimates and the true state path $x_{1:50}$ in one figure.
- (2) Repeat the experiment using 100 independent data sets. Report

RMSE(
$$\delta$$
) := $\left\{ \frac{1}{100 \cdot 50} \sum_{l=1}^{100} \sum_{t=1}^{50} \left[\widehat{E}(x_t \mid y_{1:t+\delta}) - x_t \right]^2 \right\}^{1/2}$

for $\delta = 0, 1, 2, 3, 4$. Try the particle filter with resampling and without resampling.

References

References

- Avitzour, D. (1995), "Stochastic simulation Bayesian approach to multitarget tracking," *IEE Proceedings on Radar, Sonar and Navigation*, 142, 41–44.
- Gordon, N. J., Salmond, D. J., and Smith, A. F. M. (1993), "Novel approach to nonlinear / non-Gaussian Bayesian state estimation," *IEE Proceedings on Radar and Signal Processing*, 140, 107–113.
- Kong, A., Liu, J., and Wong, W. (1994), "Sequential imputations and Bayesian missing data problems," *Journal of the American Statistical Association*, 89, 278–288.
- Lin, M., Zhang, J., Cheng, Q., and Chen, R. (2005), "Independent particle filters," *Journal of the American Statistical Association*, 100, 1412–1421.

- Liu, J. and Chen, R. (1998), "Sequential Monte Carlo methods for dynamic systems," *Journal of the American Statistical Association*, 93, 1032–1044.
- Viterbi, A. (1967), "Error bounds for convolutional codes and an asymptotically optimum decoding algorithm," *IEEE Transactions on Information Theory*, 13, 260–269.