Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования «КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Кафедра прикладной математики и искусственого интеллекта

Направление подготовки: 01.03.04 – Прикладная математика

ОТЧЁТ

По дисциплине «Численные методы» на тему: «Вычисление интеграла с помощью квадратурных формул»

Выполнил: студент группы 09-222 Саитов М.А. Проверил: ассистент Глазырина О.В.

Содержание

1	Постановка задачи	3
2	Ход работы	4
3	Выводы	7
4	Листинг программы	8

1 Постановка задачи

Необходимо изучить и сравнить различные способы приближённого вычисления функции ошибок

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} dt \tag{1}$$

1. Протабулировать $\operatorname{erf}(x)$ на отрезке [a,b] с шагом h и точностью ε , основываясь на ряде Маклорена, предварительно вычислив его. Получив таким образом таблицу из 11 точек вида:

$$x_0 x_1 x_2 \dots$$

 f_0 f_1 f_2 ...

$$f_i = \text{erf}(x_i), \quad x_i = a + ih, \quad i = 0, \dots, n.$$

- 2. Вычислить $\operatorname{erf}(\mathbf{x})$ при помощи пяти составных квадратурных формул при $h = (x_{i+1} x_i)$:
 - 2.1. Формула правых прямоугольников:

$$J_N(x) = \sum_{i=1}^n hg(x_i) \tag{2}$$

2.2. Формула центральных прямоугольников:

$$J_N(x) = \sum_{i=1}^n hg\left(\frac{x_i + x_{i+1}}{2}\right)$$
 (3)

2.3. Формула трапеции:

$$J_N(x) = \sum_{i=1}^n h \frac{g(x_i) + g(x_{i+1})}{2}$$
 (4)

2.4. Формула Симпсона:

$$J_N(x) = \sum_{i=1}^n \frac{h}{6} \left[g(x_i) + 4g\left(\frac{x_i + x_{i+1}}{2}\right) + g(x_{i+1}) \right]$$
 (5)

2.5. Формула Гаусса:

$$J_N(x) = \sum_{i=1}^n \frac{h}{2} \left[g \left(x_i + \frac{h}{2} \left(1 - \frac{1}{\sqrt{3}} \right) \right) + g \left(x_i + \frac{h}{2} \left(1 + \frac{1}{\sqrt{3}} \right) \right) \right]$$
 (6)

Вычисления проводятся от начала интегрирования до каждой из 11 точек, увеличивая количество разбиений между точками в 2 раза до тех пор, пока погрешность больше ε.

2 Ход работы

Для того чтобы найти значение функции в точке, необходимо протабулировать искомый интеграл на отрезке [a, b] с шагом h=0.2 и точностью ε . Для этого:

1. Найдём разбиение подинтегральной функции e^{-t^2} в ряд Маклорена, подставив в стандартное разбиение функции e^x в ряд Маклорена $x=-t^2$:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \implies e^{-t^2} = \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{n!}$$
 (7)

2. Проинтегрируем полученное выражение на интеграле [0, х]:

$$\frac{2}{\sqrt{\pi}} \int_{0}^{x} \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{n!} dt = \frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n+1}}{(2n-1)n!} \bigg|_{0}^{x} = \frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n-1)n!}$$
(8)

3. Выделим два общих члена $a_n,\ a_{n+1}$ из полученного выражения и найдём $q_n=rac{a_{n+1}}{a_n}$:

$$a_n = \frac{(-1)^n x^{2n+1}}{n!(2n+1)}, \quad a_{n+1} = \frac{(-1)^{n+1} x^{2n+3}}{(n+1)!(2n+3)}.$$
 (9)

$$q_n = \frac{-x^2(2n+1)}{(n+1)(2n+3)}. (10)$$

Таким образом,

$$a_n = a_0 \prod_{n=0}^{n-1} q_n. (11)$$

Для каждой точки $x_i = a + ih$ найдём значение $erf(x_i)$ и составим таблицу результатов (Таблица 1).

x_i	$erf(x_i)$
0,0	0,0000000000
0,2	0,2227025926
0,4	$0,\!4283923805$
0,6	0,6038561463
0,8	0,7421009541
1,0	0,8427006602
1,2	0,9103140831
1,4	0,9522852302
1,6	0,9763484001
1,8	0,9890906215
2,0	0,9953226447

Таблица 1 - точки x_i и значения разложения в ряд Маклорена функции $erf(x_i)$

После нахождения значений разложения в ряд Маклорена в точках, вычислим значение erf(x) при помощи 5 составных квадратурных формул. Для каждой формулы составим свою таблицу. В таблицах будут находится значения точки, для которой производились расчёты, значение разбиения в ряд Маклорена в точке, значение найденного с помощью формулы интеграла в точке, модуль разницы между значениями найденного интеграла и разбиения, количества разбиений, которые пришлось совершить для нахождения значения интеграла с нужной точностью.

1. Правые прямоугольники:

x_i	$J_0(x_i)$	$J(x_i)$	$ J_0(x_i) - J_N(x_i) $	N
0,0	0,0000000000	0,0000000000	0,0000000000	2
0,2	0,2227025926	0,2226983160	0,0000042766	1024
0,4	$0,\!4283923805$	$0,\!4283596873$	0,0000326931	1024
0,6	0,6038561463	0,6037563682	0,0000997782	1024
0,8	0,7421009541	0,7418920994	0,0002088547	1024
1,0	0,8427006602	0,8423525691	0,0003480911	1024
1,2	0,9103140831	0,9098084569	0,0005056262	1024
1,4	0,9522852302	0,9516219497	0,0006632805	1024
1,6	0,9763484001	0,9764841199	0,0001357198	1024
1,8	0,9890906215	0,9891686440	0,0000780225	1024
2,0	0,9953226447	0,9953628182	0,0000401735	1024

Таблица 2 - таблица значений для формулы Правых прямоугольников

2. Центральные прямоугольники:

	7 /	7	T / \ T / \	A.7
x_i	$J_0(x_i)$	$J_{(}x_{i})$	$ J_0(x_i) - J_N(x_i) $	N
0,0	0,0000000000	0,0000000000	0,0000000000	2
0,2	0,2227025926	0,2227027565	0,0000001639	64
0,4	0,4283923805	0,4283923209	0,0000000596	256
0,6	0,6038561463	0,6038563848	0,0000002384	256
0,8	0,7421009541	0,7421010733	0,0000001192	512
1,0	0,8427006602	0,8427013755	0,0000007153	512
1,2	0,9103140831	0,9103139043	0,0000001788	512
1,4	0,9522852302	0,9522854686	0,0000002384	512
1,6	0,9763484001	0,9763489366	0,0000005364	256
1,8	0,9890906215	0,9890908003	0,0000001788	512
2,0	0,9953226447	0,9953227639	0,0000001192	256

Таблица 3 - таблица значений для формулы Центральных прямоугольников

3. Формула трапеций:

x_i	$J_0(x_i)$	$J(x_i)$	$ J_0(x_i) - J_N(x_i) $	N
0,0	0,0000000000	0,0000000000	0,0000000000	2
0,2	$0,\!2227025926$	0,2229140997	$0,\!0002115071$	128
0,4	$0,\!4283923805$	$0,\!4287676811$	$0,\!0003753006$	512
0,6	0,6038561463	0,6043169498	$0,\!0004608035$	512
0,8	0,7421009541	0,7425656319	$0,\!0004646778$	512
1,0	0,8427006602	0,8431062102	$0,\!0004055500$	512
1,2	0,9103140831	0,9106265903	$0,\!0003125072$	512
1,4	0,9522852302	0,9525024891	$0,\!0002172589$	512
1,6	0,9763484001	0,9764841199	0,0001357198	512
1,8	0,9890906215	0,9891686440	$0,\!0000780225$	512
2,0	0,9953226447	0,9953628182	$0,\!0000401735$	512

Таблица 4 - таблица значений для формулы Трапеций

4. Формула Симпсона

4.1. Вывод формулы Симпсона через интегральный полином Лагранжа: Формула для полинома Лагранжа:

$$L_n(x) = \sum_{i=0}^n f(x_i) \prod_{i \neq j, j=0}^n \frac{x - x_j}{x_i - x_j}$$
 (12)

По трём узлам
$$(x_1 = a, x_2 = \frac{a+b}{2}, x_3 = b)$$
 : $L_2 = f(a) \left(\frac{x - \frac{a+b}{2}}{a - \frac{a+b}{2}} \right) \left(\frac{x-b}{a-b} \right) + f(b) \left(\frac{x - \frac{a+b}{2}}{a - \frac{a+b}{2}} \right) \left(\frac{x-b}{a-b} \right) + f(b) \left(\frac{x - \frac{a+b}{2}}{b - \frac{a+b}{2}} \right) \left(\frac{x-b}{b-a} \right).$

Проинтегрируем выражение по интервалу [a,b]:

$$\int_{a}^{b} L_{2}(x)dx = f(a)c_{1} + f\left(\frac{a+b}{2}\right)c_{2} + f(b)c_{3}$$
(13)

где
$$c_1 = \frac{b-a}{6}, c_2 = \frac{2}{3}(b-a), c_3 = \frac{b-a}{6}.$$

Тогда:

$$\int_{a}^{b} L_{2}(x) dx = \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)$$
 (14)

4.2. Значения полученные для формулы Симпсона:

x_i	$J_0(x_i)$	$J(x_i)$	$ J_0(x_i) - J_N(x_i) $	N
0,0	0,0000000000	0,0000000000	0,0000000000	2
0,2	$0,\!2227025926$	0,2227026075	0,0000000149	2
0,4	0,4283923805	0,4283923805	0,0000000000	4
0,6	0,6038561463	0,6038562059	0,0000000596	8
0,8	0,7421009541	0,7421009541	0,0000000000	8
1,0	0,8427006602	0,8427007794	$0,\!0000001192$	16
1,2	0,9103140831	0,9103139639	0,0000001192	16
1,4	0,9522852302	0,9522852302	0,0000000000	8
1,6	0,9763484001	0,9763483405	0,0000000596	16
1,8	0,9890906215	0,9890906215	0,0000000000	32
2,0	0,9953226447	0,9953221679	0,0000004768	32

Таблица 5 - таблица значений для формулы Симпсона

5. Формула Гаусса:

x_i	$J_0(x_i)$	$J(x_i)$	$ J_0(x_i) - J_N(x_i) $	N
0,0	0,00000000000	0,0000000000	$0,\!0000000000$	2
0,2	$0,\!2227025926$	0,2227025777	$0,\!0000000149$	2
0,4	0,4283923805	0,4283923209	$0,\!0000000596$	4
0,6	$0,\!6038561463$	0,6038560867	$0,\!0000000596$	8
0,8	0,7421009541	0,7421008945	0,0000000596	8
1,0	0,8427006602	0,8427007794	$0,\!0000001192$	16
1,2	0,9103140831	0,9103140235	0,0000000596	16
1,4	0,9522852302	0,9522851706	0,0000000596	8
1,6	0,9763484001	0,9763484001	$0,\!0000000000$	16
1,8	0,9890906215	0,9890905023	$0,\!0000001192$	32
2,0	0,9953226447	0,9953223467	0,0000002980	32

Таблица 6 - таблица значений для формулы Гаусса

3 Выводы

Проделав все вычисления, можно сделать выводы, что более комплексные методы вычисления интеграла, как формула Гаусса и Симпсона, показыают наилучшие результаты за меньшее количество разбиений. В это же время худшие результаты вычисления показыают методы правых прямоугольников и метод трапеций, приводя к довольно большому значению ошибки.

4 Листинг программы

```
#include "Function.h"
void Function::set_FuncType(FuncType typeToCopy){
      type = typeToCopy;
5 }
7 double Function::Qn(double n, double x){
      return -(((x * x) / (n + 1)) * ((2 * n + 1) / (2 * n + 3)));
 }
 double Function::erf(double x){
      int n = 1;
11
      double prevA = x;
12
      double currentA = x;
13
      double result = x;
14
      while (abs(prevA) >= Eps){
15
          currentA = Qn(n - 1, x) * prevA;
16
          result += currentA;
17
          prevA = currentA;
18
          n++;
19
      }
20
      result *= 2 / sqrt(M_PI);
21
      return result;
22
23 }
24
25 // #1 Методлевыхпрямоугольников
26 double Function::Left_Rect(int n, double x){
      double h = x/n;
27
      double sum = 0.0;
28
      for(int i = 0; i < n; i++){</pre>
29
          double xi = a + i*h;
30
          sum += h * erf(xi);
31
      }
32
      return sum;
33
34 }
35
36 // #2 Методправыхпрямоугольников
double Function::Right_Rect(int n, double x){
      double h = x/n;
38
      double sum = 0.0;
39
      for(int i = 1; i <= n; i++){</pre>
40
          double xi = a + i*h;
41
```

```
sum += h * erf(xi);
^{42}
      }
43
      return sum;
44
  }
45
^{46}
  // #3 МетодЦентральныхпрямоугольников
47
  double Function::Central_Rect(int n, double x){
      double h = x/n;
49
      double sum = 0.0;
50
      double xi = h/2;
51
      for(int i = 0; i <= n-1; i++){</pre>
52
           sum += h * erf(xi);
53
           xi+=h;
54
       }
55
      return sum;
56
 }
57
58
  // #4 МетодТрапеций
  double Function::Trapezoid(int n, double x){
      double h = x/n;
61
      double sum = 0.0;
62
      double xi = 0.0;
63
      for(int i = 0; i <= n-1; i++){
64
           sum += h*(erf(xi) + erf(xi+h))/2;
65
           xi += h:
66
      }
67
      return sum;
68
 }
69
70
  // #5 КвадратнаяформулаСимпсона
  double Function::Simpson(int n, double x){
72
      double h = x/n;
73
      double sum = 0.0;
74
      double xi = 0.0;
75
      for(int i = 0; i <= n-1; i++){
76
           sum += (erf(xi) + 4 * erf(xi + h / 2) + erf(xi + h)) * h / 6;
77
           xi += h;
78
      }
79
      return sum;
80
81 }
82
83 // #6 КвадратнаяформулаГауса
84 double Function::Gaus(int n, double x){
```

```
double h = x/n;
85
       double num1 = (1 - 1.0 / sqrt(3)) * h / 2;
86
       double num2 = (1 + 1.0 / sqrt(3)) * h / 2;
87
       double sum = 0;
88
       double xi = 0.0;
89
       for(int i = 0; i \le n-1; i++){
90
           sum += (erf(xi + num1) + erf(xi + num2)) * h/2;
91
           xi += h;
92
       }
93
       return sum;
94
95
96
  void Function::calculateAndWrite(double x, double y){
97
       double lastJ = 0;
98
       double J = 0;
99
       int n = 1;
100
       do{
101
           n *= 2;
102
           lastJ = J;
103
           J = calculatedFunction(n, x);
104
105
       while (abs(lastJ - J) > Eps);
106
       double accuracy = abs(J - y);
107
       std::cout << std::setw(3) << x << " | " << std::setw(9) << y << "
108
           | " << std::setw(9) << J << " | " << std::setw(9) << accuracy
           << " | " << n << std::endl;
109 }
  double Function::calculatedFunction(int n, double x){
       double result = 0.0;
111
       switch(type){
112
            case leftRec:{
113
                result = Left_Rect(n, x);
114
                break;
115
           }
116
            case rightRec:{
117
                result = Right_Rect(n, x);
118
                break;
119
120
            case centralRect:{
121
                result = Central_Rect(n, x);
122
                break;
123
124
            case trapezoid:{
125
```

```
result = Trapezoid(n, x);
126
                break;
127
            }
128
            case simpson:{
129
                result = Simpson(n, x);
130
                break;
131
            }
132
            case gauss:{
133
                result = Gaus(n, x);
134
                break:
135
            }
136
       }
137
       return result;
138
139
  void Function::printTable(){
140
       double* x = new double[11];
141
       double* y = new double[11];
142
       x[0] = 0;
143
       y[0] = erf(x[0]);
144
       for (int i = 1; i < 11; i++){</pre>
145
           x[i] = x[i - 1] + H;
146
            y[i] = erf(x[i]);
147
       }
148
       std::cout << "\033[1m" << "\033[3m" << "Left Rectangle\n" << "
149
          \033[0m";
       set_FuncType(leftRec);
150
       for (int i = 1; i < 11; i++){</pre>
151
            calculateAndWrite(x[i], y[i]);
152
153
       std::cout << "\033[1m" << "\033[3m" << "Right Rectangle\n" << "
154
          \033[0m";
       set_FuncType(rightRec);
155
       for (int i = 1; i < 11; i++){
156
            calculateAndWrite(x[i], y[i]);
157
158
       std::cout << "\033[1m" << "\033[3m" << "Central Rectangle\n" << "
159
          \033[0m";
       set_FuncType(centralRect);
160
       for (int i = 1; i < 11; i++){
161
            calculateAndWrite(x[i], y[i]);
162
163
       }
       std::cout << "\033[1m" << "\033[3m" << "Trapezoid\n" << "\033[0m";
164
       set_FuncType(trapezoid);
165
```

```
for (int i = 1; i < 11; i++){</pre>
166
            calculateAndWrite(x[i], y[i]);
167
       }
168
       std::cout << "\033[1m" << "\033[3m" << "Simpson\n" << "\033[0m";
169
       set_FuncType(simpson);
170
       for (int i = 1; i < 11; i++){</pre>
171
            calculateAndWrite(x[i], y[i]);
172
       }
173
       std::cout << "\033[1m" << "\033[3m" << "Gauss\n" << "\033[0m";
174
       set_FuncType(gauss);
175
       for (int i = 1; i < 11; i++){</pre>
176
            calculateAndWrite(x[i], y[i]);
177
       }
178
179 }
```