

2. Problem sheet for Statistical Data Analysis

Exercise 1 (3 Points) Let $(x_1, \ldots, x_n) \in \mathbb{R}^n$ be a set of samples. Show that for all $a \in \mathbb{R}$

$$\sum_{i=1}^{n} (x_i - a)^2 = \sum_{i=1}^{n} (x_i - \bar{x}_n)^2 + n(\bar{x}_n - a)^2.$$
 (1)

Exercise 2 (3 Points) Determine whether S_n is an unbiased estimator of σ . In case it is not an unbiased estimator, which one is larger $\mathbb{E}[S_n]$ or σ ?

Exercise 3 (4 Points) Let X_1 , X_2 , X_3 , X_4 be a sample from U(0,1), and let $X_{(1)}$, $X_{(2)}$, $X_{(3)}$, $X_{(4)}$ be the order statistic. Determine the density of $X_{(1)}$, $X_{(2)}$, $X_{(3)}$, $X_{(4)}$.

Exercise 4 (10 Points) Suppose that there are 10000 students at university of Potsdam and we want to estimate the distribution of the students' height in cm.

- 1. Generate 10000 random samples from N(170, 16) and assume that the whole set is the population.
- 2. Take 50 random samples from the population and estimate the mean μ , variance σ^2 , standard deviation σ of the distribution of the population. Are they unbiased estimators?
- 3. Determine Med_n and 31th order statistic.
- 4. Determine the truncated mean for some k. Is there a k so that the Mean is equal to the median?

Exercise 5 (12 Points)

Suppose that you are running an advertising agency and interested in strategic resultoriented marketing by placing one of the 10 different advertisements at once to one user. The reward is 1 if the ad is clicked by the user, and 0 if not. Assume that the dataset 'Ads.csv' provided on Moodle is the underlying rewards.

- 1. Visualize the rewards distribution, i.e. the number of being clicked by a user across all the advertisements. What do you observe?
- 2. Implement Thompson sampling algorithm to maximize the cumulative rewards. Compute the total rewards you could achieve.
- 3. Implement a function that computes the expected regret using the formula discussed in Lecture 4. Compute the regret.