WiSe 2021/22

Priv.-Doz. Dr. S.-J. Kimmerle

Thursday, 11.11.2021

Exercise 6: functions: limits and continuity

Exercise 17

We consider a connection of n identical voltage sources in series (e.g., electrical batteries) in a circuit with one consumer.

Each of the voltage sources has an interior ohmic resistance R_i and yields a source voltage U_q . Hence the total voltage is $U_0 = nU_q$.

The consumer has an ohmic resistance R_a .

Compute the resulting current I(n) in the circuit as function of the number of voltage sources. Plot I(n). What is the limit I(n) as n tends to infinity? Remark: The latter is the so-called short-circuit current I_{sc} .

 $R_{g} = nR_{i} + R_{a}$

Note that according to the Kirchhoff laws, the total ohmic resistance is

$$I(n) = \frac{h Uq}{h Ri + Ra}$$

$$= \frac{h Uq}{h Ri + Ra}$$

$$\frac{U_q}{R_i + \frac{R_a}{n}}$$

$$\frac{U_q}{R_i + \frac{R_q}{n}} \quad \text{Lim } l(n) = \frac{U_q}{R_i} \quad I = \frac{U_0}{R_g}.$$

Exercise 18

Compute the limits

a)
$$\lim_{x\to 2} \frac{x^3 - x^2 - 2x}{x^3 + x^2 - 7x + 2}$$

b)
$$\lim_{x\to 1} \frac{\sqrt{x}-1}{x-1}$$

c)
$$\lim_{x\downarrow 1} \frac{x-3}{x^2+x-2}$$

Exercise 19

Let

$$f: [0,1] \to \mathbb{R}, x \mapsto f(x) := x^2 - 2x + 1,$$

 $g: [0,1] \to \mathbb{R}, x \mapsto g(x) := -x + 1.$

a) Justify that f and g are continuous.

Show that f and g attain its maximum and minumum.

Determine the images of f and g.

- b) Compute $h_1(x) = f(g(x))$ and $h_2(x) = g(f(x))$.
- c) Show that h_1 and h_2 are strictly monotone increasing.