DDI's Current Product Line: DDI Codebook, DDI Lifecycle and related products

Wendy Thomas IASSIST 2018

This is about DDI...

- ...and how it has responded to:
 - Community changes
 - Expanding needs
 - Technical changes
 - Data changes
- DDI started in the late 1990's in response to the need for structured metadata by archives and producers in order to
 - Reuse a single source of metadata for different products
 - Provide a machine readable base of data to support search and retrieval of data
 - Encourage the creation of structured metadata by the data producer

What is DDI?

- A collection of products that supports the structured capture and use of metadata surrounding the creation, preservation, and dissemination of data in the social, behavioral, economic, and health sciences
 - The DDI Standard in various versions
 - Controlled Vocabularies
 - XKOS an independent publication targeted to a specific community to support the management and publication of Statistical Classifications
 - DDI Agent Registry to support the DDI Identification structure
- These products reflect the needs of the community as well as the technical environment in which they developed

Products:	1996	1997	 		2001	 				2007	2008	2009	2010			2013	2014	2015	2016	2017	2018
DDI Codebook			V 1.0	V 1.0		V 2.0			V 2.1						V 2.5						
			Beta				[XSD]			\/ 2 O	V 3.0	V/2 1	V/ 2 2		V 3.2		V 3.2				V 3.3
DDI Lifecycle										V 5.0	V 3.0	V 3.1	V 5.Z		V 3.2		V 3,Z				V 3.3
														Begin							
Controlled Vocabularies														Publ.							, s
																V 1.0					
DISCO																					
XKOS																V 1.0			V 1.1		V 1.2
AROS																					
Agent Registry													1	Ect							
5 5 ,																			V 4.0		
DDI 4																·			V 4.0 Dev		V4.0 Proto
																		Dev	Dev		PIOLO
Funding:																					
US National Science Foundation																					
Health Canada			-																		
DDI Alliance																					
Formats:																					
DTD									3									15		E6	
XML Schema																					
UML																					
RDF		orek		I	2 2			l	a 6				50 50	9		1	4				

Type of use Archives/Preservation

User Community Social Sciences

Data Discovery Systems

Data Producers

Economics

Comparative Surveys

Specialized Metadata Systems

Educational Testing
Statistical Systems

Health

DDI Codebook

Target:

• Human Reader

• Perspective:

- Retrospective
- Document
- Descriptive
- Discovery

• Assumptions:

- Documents managed in XML
- Codebook still the format
- Content could be identified and used in different ways
- XML was a version of another source
- The data already existed

DDI Codebook coverage: 1996-2000

- Focus on unit data collected by surveys
- Core of information needed to inform the end user to support intelligent use of the related data
- Structure is focused on information that is presented in different formats for different uses (published codebook, set-up files for statistical software, programmer access)
- Background information on the development and implementation of the study is primarily found in external "Other" material

DDI Codebook development: 2000 - 2012

- Additional data types:
 - Expanded to cover statistical (tabular, aggregate, structured, dimensional) data
- Interaction with related communities:
 - Support for spatial search systems
 - Geographic information needed to integrate data into a GIS system
 - Addition of content to support additional GSBPM content
- Technical adaptation:
 - Ability to apply variable descriptions to more than data store by supporting recording of physical data location information outside of the variable
 - Support for broader use of Controlled Vocabularies
 - Content to support transition to DDI Lifecycle
 - Moved schema to GITHUB for development version control

First transformation period: 2003-2010

- Still things on the list to do:
 - Complex data files formats other than archival formats
 - Repeated surveys
 - Questionnaire content and flow
- Added data producer needs:
 - Capture from the idea all the way through the data and metadata lifecycle
 - Content management
 - Quality control
 - Data capture and processing

DDI Lifecycle

Target:

Human Reader, Computer Ingest

• Perspective:

- Retrospective but progressive
- Document
- Metadata driven statistics

• Assumptions:

- Documents managed in XML
- Reusability
- Metadata as a product
- Management of metadata
- Grouping of studies
- Focus on a slice i.e. Questions
- Same data stored in multiple structures

DDI Lifecycle coverage: 2003-2009

- Focus on capturing metadata at "point of origin" and building on it through the process resulting in a data set – content versioning
- To support the reuse of metadata particularly in repeated surveys
- Better support for structured conceptual data that could be reused and provide implicate comparability
- Support for the management of data files in archives supporting additional storage formats and archival information
- Clearer record descriptions and record linkages
- More background and development metadata brought into the structured content for potential reuse (data cleaning, recoding, derivation instructions, etc.)

DDI Lifecycle development: 2010 - 2018

- Additional depth in class types:
 - Expanded representations to cover scales, image based domains, direct use of geographic codes, etc.
 - Added question grids and blocks
 - Added non-question measures
- Interaction with related communities:
 - Addition of input / output parameters and binding (OWL-s) to track datum flow
 - Support for full ISO-11179 structure
 - Statistical Classification XKOS content, GSIM structure
- Technical adaptation:
 - Consistency within types of groupings (Schemes, groups, etc.)
 - Unique element names within the set of schemes
 - Consistency for reference naming (adding abstract classes as needed)
 - Generation of documentation from schema and structured documents
 - Moved schemas to GITHUB for development version control

DDI 3.3 schema available at: https://bitbucket.org/DDITC/ddi-l_3

Formal review period will begin in the next 2 weeks

Controlled Vocabularies coverage: 2010 -

- Controlled Vocabularies (CVs)are created by the DDI to support commonly used vocabularies among DDI users and CESSDA members
- CVs are published at
 - http://www.ddialliance.org/controlled-vocabularies
- Currently published in:
 - Customized Genericode format (XML)
 - XLS spreadsheet
 - HTML version for viewing
- CVs may be used by any version of DDI or other standard

Controlled Vocabularies development: 2016-

- Development of close ties with CESSDA development in this area
- Movement to a new development and management platform created within the CESSDA work plan
- Expansion of bindings to include:
 - SKOS
 - DDI Lifecycle CodeList
 - DDI 4 Custom Vocabulary

XKOS coverage: 2011-2016

- RDF Vocabulary
- XKOS standardizes the representation of statistical classifications as linked metadata
- Builds on the SKOS W3C Recommendation and implements the Neuchâtel and GSIM statistical models

XKOS development: 2017-2018

- Resolution of comments from the 2016 public draft review
- Refinements and documentation
- Publication of XKOS v1.2 in June 2018

Second Transformation

- Expanded User Community new needs:
 - Metadata driven statistical production
 - Data integration
 - Mixed capture research
 - Automate DDI production process
- Technology was changing...even faster
 - RDF, Linked data
 - Metadata managed in data bases still need to transfer
 - New data storage and access structures
 - Unstructured/undocumented data sources

DDI 4

Target:

Human, Computer Understanding

• Perspective:

- Prospective, Event, Retrospective
- Descriptive + Computational
- Data Linking

Assumptions:

- Metadata managed in databases
- Multiple bindings
- Transport and preservation medium
- Metadata captured at origin
- Access from the study/research area down and the datum up

DDI 4 development: 2012-2018

- Production process
 - UML to documentation content and multiple bindings
- Patterns
 - Structural consistency for collections
 - Expanded use of a process pattern
- Data description
 - Expanded to cover specific case identification and individual datum
- Portions of DDI 3.2 content
- Commonly used DDI 2.5 content

Development Summary

- Target
 - Expanded include Human to Computer understanding of the metadata
- Perspective
 - Move from retrospective to full range of viewpoints
 - From description to data linking
- Assumptions
 - Increasing demands from access from different directions and perspectives
 - Metadata as a requirement to meet the needs of producers and users of data
- Development changes
 - Automatic generation of documentation and related bindings from UML
 - Use of the binding that works for the job at hand (roundtripping of metadata)
 - Use the level of metadata that meets your needs
 - DDI production needs to be iterative in updating its content and automated in its production process
 - Version control in development (scheduled for 2018)

Infrastructure profiles: DDI Codebook

- Identification
 - Only requires instance identifier
 - Content is nested limiting the need for internal references
 - Uses standard ID and IDRef (supported by standard XML validation tools)
 - Supports capture of standard DDI URN
- XML only binding
- Current tools for creation of an instance, catalog of instances, and transformation to PDF document or web site
- Assumes XML instance is a publication in itself and will be managed as such

Infrastructure profiles: DDI Lifecycle

- Identification
 - Required by most classes
 - Registry of DDI Agent identification
 - Uses DDI structure for identification that resolves to a URN (requires secondary validation tool)
 - Allows and encourages reuse of metadata between instances
- XML only binding
- Current tools for creation of an instance, repository of DDI objects, transformation to PDF document or web site, and creation of questionnaires
- Assumes management of metadata content in XML although this is loosening up in v3.3

Infrastructure profiles: DDI 4

- Identification
 - Same as Lifestyle (across bindings)
- UML based
 - Currently testing canonical XMI (expression of UML) for portability across UML tools
- XML needs secondary validation for:
 - Identification
 - Cardinality enforcement
 - Support of internal continuity when needed
- RDF
 - Has not had external review
 - Cardinality and type enforcement by validation with ShEx
- Assumes management of metadata is some form of "DDI aware" data management system

What do I use?

- What is your technical infrastructure?
 - Codebook has the lowest infrastructure requirements and is very suitable for individual researchers or anyone with infrastructure constraints
- What does your data look like?
 - Codebook can describe
 - Unit and dimensional data
 - Basic capture information (questions, derivation codes, secondary use of source data)
 - Archival data file structures limited relational information
 - Focus is on the individual study/data set
 - Lifecycle can describe
 - Questionnaire structure
 - Multi-wave studies and their internal relationships
 - Cross study relationships
 - Common conceptual material
 - XKOS describes formal, managed Statistical Classifications
 - DDI 4 is in the prototype stage and not ready for implementation

Current Content Coverage

Continuing development themes

- Ensure content is not lost as you move from earlier to later versions of the central standard
- Support for user communities in terms of both content and infrastructure needs and restrictions
- Clear lines of transition between versions
 - A repository should be able to take an earlier version and populate a newer version programmatically
 - A repository should be able to identify the content it supports (in the same or earlier version structure) and populate a different version to the extent of its capabilities
 - Flexibility of use over time future use of metadata may require transformation into a different version

DDI Alliance http://ddialliance.org

Wendy Thomas wlt@umn.edu