MATHEMATICS 1LS3 TEST 4

Day Class	E. Clements, M. Lovrić, O. Sanchez
Duration of Examination: 60 minutes	
McMaster University, 19 November 2014	
FIRST NAME	(please print):
FAMILY NAME	C (please print):
	Student No.

THIS TEST HAS 8 PAGES AND 7 QUESTIONS. YOU ARE RESPONSIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE.

Total number of points is 40. Marks are indicated next to the problem number. Any non-graphing calculator is allowed.

USE PEN TO WRITE YOUR TEST. IF YOU USE A PENCIL YOUR TEST WILL NOT BE ACCEPTED FOR REMARKING (IF NEEDED).

You must show work to receive full credit.

Problem	Points	Mark
1	6	
2	6	
3	5	
4	5	
5	6	
6	7	
7	5	
TOTAL	40	

1. Multiple choice questions: circle ONE answer. No justification is needed.

- (a)[3] Which of the following limits is/are indeterminate form(s)?

 - (I) $\lim_{x \to 0} \frac{\cos x x}{x}$ (II) $\lim_{x \to 0} \frac{e^x 1 x}{x^2}$ (III) $\lim_{x \to 0} \frac{\sec x 1}{\tan x}$

- (A) none
- (B) I only
- (C) II only
- (D) III only

- (E) I and II
- (F) I and III
- (G) II and III
- (H) all three

- (b)[3] Which of the following numbers is/are positive?
- (I) $\int_0^1 (e^x 1) dx$ (II) $\int_{0.1}^1 (\ln x 1) dx$ (III) $\int_0^1 (\sec x 1) dx$
- (A) none
- (B) I only
- (C) II only
- (D) III only

- (E) I and II
- (F) I and III
- (G) II and III
- (H) all three

2. Identify each statement as true or false, or yes or no (circle your choice). You do not need to justify your answer.

(a)[2] It is known that $\int_a^b f(x)dx < 0$. This implies that the function f(x) is negative, i.e., f(x) < 0 for all x in [a,b].

TRUE FALSE

(b)[2] Consider $f(x) = e^{-0.8x}$ on [0, 1]. The left sum L_{10} is larger than the right sum R_{50} .

TRUE FALSE

(c)[2] The function $f(x) = \frac{1}{4-x}$ is one possible antiderivative of $g(x) = \frac{1}{(4-x)^2}$.

TRUE FALSE

MATH	1LS3	* Test	4 * 1	9 Novemb	er 2014
------	------	--------	-------	----------	---------

Name:_	
Student No.:	

Questions 3-7: You must show work to receive full credit.

- 3. The rate at which new influenza cases occured in 2013 in Greater Vancouver Area follows the formula $125.4e^{0.3t}+14.6e^{-0.1t}$ people/day. By t we represent the time in days measured from 1 December 2013 (so t=0 represents 1 December 2013). On 1 December 2013 there were 56 cases of influenza.
- (a)[2] Write a differential equation and the initial condition for the number N(t) of influenza cases.

(b)[3] Solve the initial value problem in (a) to find the formula for N(t).

- 4. Consider the initial value problem $y' = 1 t + t^2$, y(0) = 2.
- (a)[2] Find an approximation of y(0.4) using two steps of Euler's method with the step size $\Delta t = 0.2$. Do not round off the numbers, keep all decimals.

(b)[2] Using antidifferentiation, find the exact solution of the given initial value problem.

(c)[1] Using (b), find the true value of y(0.4) and round off to three decimal places (thus checking your approximation in (a)).

5. Consider the differential equation

$$P'(t) = 1.1P(t) \left(1 - \frac{P(t)}{1400}\right)^{1/3}$$

where P(t) represents the number of elk in Douglas Provincial Park in Saskatchewan. The variable t represents time in years, with t = 0 representing 2006.

(a)[1] Classify the above differential equation as pure-time, autonomous, or neither pure-time nor autonomous.

(b)[2] For which values of P(t) is the population increasing? Justify your answer.

(c)[2] For which values of P(t) is the population decreasing? Justify your answer.

(d)[1] What is the biological meaning of the constant 1400?

Name:______ Student No.: _____

6. (a)[2] Find
$$\int_0^1 \left(\frac{5}{1+x^2} + \frac{1+x^2}{5} \right) dx$$

(b)[2] Find
$$\int (\sec x \tan x + \pi) dx$$

(c)[3] Compute
$$\int_{-2}^{4} (4-2|x|) dx$$
 by interpreting the definite integral in terms of area(s).

Name:_	
Student No.:	

7. Find the following limits.

(a)[3] Find
$$\lim_{x\to 0} \frac{e^{x^3} - 1 - x^3}{x^6}$$

(b)[2] Find
$$\lim_{x\to 0^+} x^4 \ln x$$