SMART CITY BUILD ON IOT

A Major Project Presentation

Internet of Things (IoT)

Introduction

What is IoT?

- Hot research topic
- Word used by many and in different contexts
- IoT research at intersection of several domains: – Internet Computing, – Communications, – RFID, – Sensor Networking,
- No commonly accepted definition of the term 'Internet of Thing

Can be used for...

Digital representation of real "things" in the Internet

- State of real environments is available via sensors in real time – temperature, light, CO2 , movement, humidity, ...
- Via actuators, it is possible to influence the real world through actions in the digital world:
 - switches, traffic lights, displays.

COMPONENTS OF IOT

- Embedded system + sensors and/or actuators
- + Radio interface = Wireless sensor node
- Many wireless sensor nodes = wireless sensor network
- Wireless sensor network + Internet connectivity = Internet of Things (IoT)

Smart City

Smart City Vision

- 50% of the world population lives in a city
- 2010-2050: Urban population will almost double
- Cities occupy 2% of the world's geography
- •17.4 % die annually in accidents in urban cities due to lack of emergency releaf or response.

SMART Cities

Smart cities can be identified along six main axes or dimensions:

- a smart economy
- smart mobility
- smart environment
- smart people and Safety
- smart living
- smart governance

Emergency Situations

- Any time any accident can occur so in order to decrease the casualty, focus is on Emergency Responses.
- For example, a fire that occurs near a oil reservoirs can seriously damage the facility and fataly injure the workers.

Continued

- Second Example, Fire or landslide in mine operations can cause serious casualty.
- Third Example, a simple yet dangerous car accident in a crowded street.
- All these above examples require a swift and strong response in order to reduce the casualty.

EXISTING SYSTEM

- Today if accidents occur more than 70% cases reveal that if the victim were to be given emergency medical attention they would have made it, which is where our system lack.
- Today in this smart phone era we have emergency helplines and apps but they take time to send their queries and receive help.

Existing Systems

 There are existing systems but they are locally connected to raise alarm and evacuation managing.

Proposed System

 The image gives us a general idea but not accurate idea.

Actual System

Limitations

- WiFi connectivity required at all times.
- The main device should not be tampered with.
- Pre-setting of the software does not allow any extra modification.

Conclusion

- Emergency Protocols to be implemented seriously.
- An Emergency Response System for every possible situation.
- Fast relief to the victims and hazard control.
- This study is significant in outlining general information about IoT, such as definition, market size, and status of IoT, which has become a hot IT topic nowadays, and in presenting applicable IoT business models to help business entities and research institutes participating in related projects build a smart city as part of the future vision of local governments by reflecting the new information paradigm of IoT.

Future Scope

- With the help of GPS we can use this device in mobile state.
- Dedicating a cellular system to the project will help in removing WiFi dependancy.
- With more sophesticated sensors and better processors a lot of data can be handled and better response system can be created.