4EB00 Special Topic Thermodynamics and Combustion

Cycle analysis of a jet-engine Lecture 2

Bart Somers (Combustion Technology)

Technische Universiteit
Eindhoven
University of Technology

Where innovation starts

An animation

Also see <u>youtube link to Turbo fan engines</u>
For a nice explanation of
modern jet engines: turbo fan engines

TU/e Technische Universiteit
Eindhoven
University of Technology

An animation of a stationary example

The Jet Engine

Control volume models

Technische Universiteit
Eindhoven
University of Technology

Contents

- Ideal Gas mixtures
 - Thermodynamic Properties of a mixture (2.9)
 - Where hides combustion
 - Adiabatic flame temperature, an application of Nasa thermodynamic tables.
- Cycle analysis of a jet engine using thermodynamic tables
 - Combustor
 - Diffusor
 - Etc...

Using Nasa tables

TU e Technische Universiteit Eindhoven University of Technology

Simple analysis. 1 control volume

Simple analysis. 1 control volume

 $\dot{m}_A + \dot{m}_F = \dot{m}_e$ $\dot{m}_A \left(h_A + \frac{1}{2} (v_A)^2 \right) + \dot{m}_F h_F = \dot{m}_e \left(h_e + \frac{1}{2} (v_e)^2 \right)$

Conservation of

Mass

Energy

Technische Universiteit
Eindhoven
University of Technolog

Exercise 5(p547-549):

create figure 8.18 using Nasa polynomials using gasoline.

Compute exit velocity v_a

Example 8.7

Determine the exhaust jet velocity for a turbojet engine operating with a fuel-air ratio of 1:100. The air enters the engine at 112 m/s (250 miles/hr) and 300 K (station 1 in Fig. 8.14) and the fuel enters at 300 K with negligible velocity. The temperature at the exhaust plane is 600 K. Assume the following simplified thermodynamic properties⁴ for the air, fuel, and products:

- i. The specific
- emation of the air and of the products is zero; the ii. The enthalr 1/kg. The reference state temperature is 500 K.

Hints

- Determine $Y_{i,AF}$ to determine $Y_{i,e}$
- Compute h_{ini} for range of T
- Plot them

Technische Universiteit University of Technology

Exercise 5(p547-549):

Example 8.7

 $T_{\rm exh} = 600 \, {\rm K}$

- create figure 8.18 using Nasa polynomials using gasoline.
- 2. Compute exit velocity v_e

Determine the exhaust jet velocity for a turbojet engine operating with a fuel—air ratio of 1:100. The air enters the engine at 112 m/s (250 miles/hr) and 300 K (station 1 in Fig. 8.14) and the fuel enters at 300 K with negligible velocity. The temperature at the exhaust plane is 600 K. Assume the following simplified thermodynamic properties⁴ for the air, fuel, and products:

- i. The specifid heats of the first air and products are constants and equal (i.e., $c_{p,F} = \frac{1000 \text{ J/kg} \cdot \text{K}}{1000 \text{ J/kg} \cdot \text{K}}$
- ii. The enthalpy of formation of the air and of the products is zero; the enthalpy of formation of the fuel is 1 to 1000. The reference state temperature is 500 K

Different because according to database $hf = 43 \text{ MJ/kg instead of} \\ hf = 40 \text{ MJ/kg} \\ \text{and} \\ c_p = 1070 \text{ J/kg/K instead of} \\ \text{/ Mechanical Engineering} \\ c_p = 1200!$

Contents

- Ideal Gas mixtures
 - Thermodynamic Properties of a mixture (2.9)
 - Where hides combustion
 - Adiabatic flame temperature, an application of Nasa thermodynamic tables.
- Cycle analysis of a jet engine using thermodynamic tables
 - Combustor
 - Diffusor
 - Etc...

Apply thermodynamics on every control volume, see table 7.1 in book

Given is:

- $P_1 = P_{amb}$
- V_1 = flight speed
- Compressor ration P_3/P_2 is known
- T_4 is given (must be kept below certain value to prevent turbine blade failure)
- $P_6 = P_{amb}$
- Isentropic efficiencies of each component is given.

TU/e Technische Universiteit Eindhoven University of Technology

Diffuser 1-2:

- Mass conservation
- 2. Energy conservation
- 3. Isentropic

Cycle analysis of a jet engine using thermodynamic tables

- - V_4 = flight speed
 - Compressor ration P₃/P₂ is known
 - T₄ is given (must be kept below certain value to prevent turbine blade failure)

 - Isentropic efficiencies of each component is given.

Technische Universiteit University of Technology

Intermezzo: Nasa polynomials

Property	Function Name	Unit
c_{p}	CpNasa	[J/kg/K]
c_V	CvNasa	[J/kg/K]
h	HNasa	[J/kg]
и	UNasa	[J/kg]
S	SNasa	[J/kg/K]

1+2 :
$$h_2 = h_1 + \frac{1}{2}v_1^2$$

3 : $s_2 - s_1 = \int_{T_1}^{T_2} \frac{c_p}{T'} dT' - \int_{P_1}^{P_2} \frac{R_g}{P'} dP'$

Tule Technische Universiteit Eindhoven University of Technology

Assignment 2

Complete the Template for all control volumes

Different groups have different conditions so do not copy.

Will check some codes on copycatting. Details matter.

Hand in hardcopy at onderwijsburo W by Thursday 22 sept.

Make sure that cover page is filled out correctly.

