Question 1

Based on the data in Table

- (i) Classify test document using Multinomial Naive Bayes Classifier
- (ii) Classify test document using Bernoulli NB classifier,(iii) Classify test document using Rocchio classifier(Use Euclidean distance)

docID	words in document	in $c = China$?
1	Taipei Taiwan	yes
2	Macao Taiwan Shanghai	yes
3	Japan Sapporo	no
4	Sapporo Osaka Taiwan	no
5	Taiwan Taiwan Sapporo	?
	docID 1 2 3 4 5	 Taipei Taiwan Macao Taiwan Shanghai Japan Sapporo Sapporo Osaka Taiwan

- Multinomial NB
- P(C | d5) = P(C) P(Taiwan | C) P(Taiwan | C)
 P(Sapporo | C)
 - = 0.5 *0.25*0.25*1/12 = 0.0026
- P (Not C | d5) = P(Not C) P(Taiwan | Not C)
 P(Taiwan | Not C) P(Sapporo | Not C)

= 0.5 *1/6*1/6*0.25 = 0.00347

d5 is classified in Class Not China

Bernoulli NB

```
    P(C | d5) = P(C) P(Taiwan | C)
        P(Sapporo | C) (1 - P(Taipei | C))
        (1 - P(Macao | C)) (1 - P(Taipei | C))
        (1 - P(Shanghai | C)) (1 - P(Japan | C))
        (1 - P(Osaka | C))
```

= 0.00659

- Bernoulli NB
- P (Not C | d5) = P(Not C) P(Taiwan | Not C)
 P(Sapporo | Not C) (1 P(Taipei | Not C))
 (1 P(Macao | Not C)) (1 P(Taipei | Not C)) (1 P(Shanghai | Not C)) (1 P(Japan | Not C)) (1 P(Osaka | Not C))
 = 0.0197

Rocchio

	Taiwa n	Sapp oro	Japan	Taipei	Osaka	Shangh ai	Macao
d_1	0.4	0	0	2	0	0	0
d_2	0.4	0	0	0	0	2	2
d_3	0	1	2	0	0	0	0
d_4	0.4	1	0	0	2	0	0
Centriod of C	0.4	0	0	1	0	1	1
Centriod of Not C	0.2	1	1	0	1	0	0
d_5	0.8	1	0	0	0	0	0

Distance of d5 to centriod of C = 2.36 Distance of d5 to centriod of Not C = 1.61 D5 is classified in class Not C

Question 2

- (i) Compute the "export"/POULTRY contingency table for the "Kyoto"/JAPAN in the collection given below.
- (ii) Make up a contingency table for which MI is 0 that is, term and class are independent of each other.

$$e_c = e_{poultry} = 1$$
 $e_c = e_{poultry} = 0$
 $e_t = e_{\text{EXPORT}} = 1$ $N_{11} = 49$ $N_{10} = 27,652$
 $e_t = e_{\text{EXPORT}} = 0$ $N_{01} = 141$ $N_{00} = 774,106$

Collection:

	docID	words in document	in $c = Japan$?
training set	1	Kyoto Osaka Taiwan	yes
	2	Japan Kyoto	yes
	3	Taipei Taiwan	no
	4	Macao Taiwan Shanghai	no
	5	London	no

Question 3

 Consider the following frequencies for the class coffee for four terms in the total 100,000 documents

term	N_{00}	N_{01}	N_{10}	N_{11}
brazil	98,012	102	1835	51
council	96,322	133	3525	20
producers	98,524	119	1118	34
roasted	99,824	143	23	10

• Calculate mutual information for the term brazil

Part 1

N11 = 2	N10 = 0
N01 = 0	N00 = 3

Part 2: N11 = N01 and N10 = N00; term is present in half docs of each class

N11 = 3	N10 = 5
N01 = 3	N00 = 5

OR N01 = 0 and N00 = 0, term is present in all docs in all classes

N11 = 2	N10 = 3
N01 = 0	N00 = 0

N11 = 51	N10 = 1835
N01 = 102	N00 = 98,012

N = 100,000

$$I(U; C) = \frac{N_{11}}{N} \log_2 \frac{NN_{11}}{N_{1.}N_{.1}} + \frac{N_{01}}{N} \log_2 \frac{NN_{01}}{N_{0.}N_{.1}} + \frac{N_{10}}{N} \log_2 \frac{NN_{10}}{N_{1.}N_{.0}} + \frac{N_{00}}{N} \log_2 \frac{NN_{00}}{N_{0.}N_{.0}}$$

$$\frac{1835}{\log \frac{1835 * 100000}{\log + \frac{98012}{\log \frac{98012 * 100000}{\log \frac{100000}{\log + \frac{1835}{\log \frac{100000}{\log \frac{1000000}{\log \frac{100000}{\log \frac{100000}{\log \frac{100000}{\log \frac{100000}{\log \frac{1000000}{\log \frac{100000}{\log \frac{1000000}{\log \frac{100000000}{\log \frac{1000000}{\log \frac{10000000}{\log \frac{1000000}{\log \frac{100000000000}{$$