Exam 2 Practice Solutions $1 \left(\int (x) = x^3 - 2x^2 - 5x + 6 \right)$ 1 a root of $f(x) \iff x-1$ a factor of f(x)1 1 -2 -5 6 50 $f(x) = (x-1)(x^2-x-6)$ $\chi^2 - \chi - 6 = (\chi - 6)(\chi + 1)$ 1-1-6/0 $|\widehat{f}(x) = (x-1)(x+1)(x-6)|$ $3x^{2}-6x^{2}+13x-25$ $(x^2+2x+1)3x^5+0x^4+4x^3-5x^2+3x+2$ $-3x^{5}-6x^{4}-3x^{3}$ $-6x^{4} + x^{3} - 5x^{2} + 3x + 2$ $\frac{6x^{4} + 12x^{3} + 6x^{2}}{13x^{3} + x^{2} + 3x + 7}$ $-13x^3-26x^2-13x$ $-25x^2-10x+2$ $25x^2 + 50x + 25$ 40x + 27 $Q(x) = 3x^{2} - 6x^{2} + 13x - 25$ R(x) = 40x + 27

3
$$\log (x) - 7 \log (y) + 5 \log (z) = \log \left(\frac{x z^{5}}{y^{7}}\right)$$
 $\ln (x+2) + 2 \ln(x) = \ln \left(x^{2}(x+z)\right)$
 $\log_{3}(1) + 3 \log_{3}(y) = \log_{3}(x^{3})$

4 $\log (x^{2} - 5x + 6) = \log \left((x - 3)(x - 2)\right) = \log_{3}(x - 3) + \log_{3}(x - 2)$
 $\log_{2}(4x^{3}) = \log_{2}(4) + 3 \log_{2}(x) = 2 + 3 \log_{2}(x)$
 $\ln (xe^{2x}) = \ln_{3}(x) + \ln_{3}(e^{2x}) = \ln_{3}(x) + 2x$

5 Let $u = e^{x}$ then this equation becomes $2u^{2} + 9u - 5 = 0$

use gliabetic formula: $u = \frac{-9 \pm \sqrt{81 + 42}(-5)}{4}$
 $= \frac{-9 \pm \sqrt{81 + 40}}{4} = \frac{-9 \pm \sqrt{121}}{4}$
 $= \frac{-9 \pm \sqrt{121}}{4} = \frac{21}{12} \text{ or } -5$
 $e^{x} = \frac{1}{2} \text{ or } e^{x} = \frac{1}{2} \text{ or } e^{x}$

4 domain if $\log |x|$ is $(0, \infty)$ so $3x - 2 > 0$
 $\Rightarrow 3x > 2 \Rightarrow x > \frac{2}{3}$ domain $= \left(\frac{2}{3}, \infty\right)$

7 $A(t) = P(1 + \frac{c}{n})^{nt}$ $P = 1200$, $r = 0.012$, $n = 12$, $t = 2$

1200 (1+0.012) 12.2

$$\frac{8}{3} = \frac{2\pi}{3} \cdot \pi \rightarrow$$

reference angle is
$$\frac{70}{3}$$

reflecting across y-axis does not change y-coordinate so

$$\left|\frac{\sin\left(\frac{2\pi}{3}\right)}{\sin\left(\frac{2\pi}{3}\right)} = \frac{\sqrt{3}}{2}$$

$$\frac{5\pi}{6} = \frac{5}{6} \cdot 70$$

reference angle is $\frac{\pi}{6}$ $5in \frac{\pi}{6} = \frac{1}{2} \quad tan \frac{\pi}{6} = \frac{1}{2} \cdot \frac{2}{\sqrt{3}} = \frac{1}{\sqrt{3}}$ $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{3}$

Quadrant II news & and y coords are negative, but this closes not change sign of tan, to

$$+a_{n}\left(-\frac{5\pi}{6}\right)=\frac{1}{\sqrt{3}}$$

$$\frac{7\pi}{2} = \frac{4}{2}\pi + \frac{3}{2}\pi = 2\pi + \frac{3}{2}\pi$$
2 so $\frac{7\pi}{2}$ is exterminal to $\frac{3\pi}{2}$

$$\operatorname{in}\left(\frac{3\pi}{2}\right) = -1 \implies \left|\operatorname{csc}\left(\frac{3\pi}{2}\right) = \frac{1}{-1} = -1\right|$$

