National University of Singapore

Semester 1, 2020/2021 MA1101R Practice Assignment 2 Solution

1. **A** and **B** are 3×3 row equivalent matrices related by the following diagram:

$$oldsymbol{A} \overset{R_2-2R_1}{\longrightarrow} \overset{R_1\leftrightarrow R_3}{\longrightarrow} \overset{3R_2}{\longrightarrow} \overset{R_1+R_3}{\longrightarrow} oldsymbol{B}$$

(i) [4 marks] Write down four elementary matrices E_1, E_2, E_3, E_4 such that

$$\boldsymbol{E}_{4}\boldsymbol{E}_{3}\boldsymbol{E}_{2}\boldsymbol{E}_{1}\boldsymbol{A}=\boldsymbol{B}.$$

- (ii) [2 marks] Find an invertible matrix C such that A = CB. (You may use MATLAB, but you need to show how C is obtained.)
- (iii) [2 marks] If $\det(\boldsymbol{B}) = 12$, find $\det(\boldsymbol{A})$. You need to show how you obtain the answer.
- (iv) [2 marks] If $\mathbf{D} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix}$ is the inverse of \mathbf{B} , find \mathbf{A}^{-1} . (You may use MATLAB, but you need to show how \mathbf{A}^{-1} is obtained.)

Answer

(i)
$$\boldsymbol{E}_1 = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $\boldsymbol{E}_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, $\boldsymbol{E}_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $\boldsymbol{E}_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

(ii)
$$\mathbf{C} = (\mathbf{E}_4 \mathbf{E}_3 \mathbf{E}_2 \mathbf{E}_1)^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1/3 & 2 \\ 1 & 0 & -1 \end{pmatrix}.$$

(iii) $\det(\mathbf{A}) = \det(\mathbf{C}\mathbf{B}) = \det(\mathbf{C}) \det(\mathbf{B}) = (-1/3)12 = -4.$

(iv)
$$\mathbf{A}^{-1} = (\mathbf{C}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{C}^{-1} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ -6 & 3 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 2 \\ -18 & 9 & 0 \\ 4 & 0 & 0 \end{pmatrix}.$$

2. Let
$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ a & b & c & d \end{pmatrix}$$
 for some real numbers a, b, c, d .

- (i) [2 marks] Find $\det(\mathbf{A})$. (Show your working)
- (ii) [2 marks] Write down the condition among a, b, c, d such that the homogeneous system $\mathbf{A}\mathbf{x} = \mathbf{0}$ has infinitely many solutions. (Briefly explain your answer.)

Answer

(i)
$$\det(\mathbf{A}) = -\begin{vmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ a & c & d \end{vmatrix} - \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ a & b & c \end{vmatrix}$$

= $-d\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} - \begin{pmatrix} \begin{vmatrix} 1 & 0 \\ b & c \end{vmatrix} + \begin{vmatrix} 1 & 1 \\ a & b \end{vmatrix} = d - c - b + a$

(ii) For $\mathbf{A}\mathbf{x} = \mathbf{0}$ to have infinitely many solutions, \mathbf{A} must be singular and hence $\det(\mathbf{A}) = 0$. So the required condition is

$$a - b - c + d = 0.$$

- 3. Let $U = \{(x, y, z) \mid x + y + z = 0\}$ and $V = \{(x, y, z) \mid 2x y z = 0\}$ be the implicit set notations representing two planes in the xyz-space.
 - (i) [2 marks] Write down the explicit set notation of U.
 - (ii) [2 marks] Write down the explicit set notation of $U \cap V$.
 - (iii) [1 mark] Write down a vector that is parallel to the line of intersection of U and V.
 - (iv) [1 mark] Is $W = \{(a, a, a) \mid a \in \mathbb{R}\}$ a subset of V? (Briefly explain your answer.)

Answer

- (i) Explicit set notation of U: $\{(-s-t,s,t) \mid s,t \in \mathbb{R}\}.$
- (ii) Solve the system

$$\begin{cases} x + y + z = 0 \\ 2x - y - z = 0 \end{cases}$$

to get the general solution: z=t, y=-t, x=0. So the explicit set notation of $U\cap V\colon\{(0,-t,t)\mid t\in\mathbb{R}\}.$

- (iii) A vector that is parallel to the line of intersection of U and V can be (0,-1,1) or any non-zero scalar multiple.
- (iv) W is a subset of V, since (a, a, a) satisfies the equation 2x y z = 0, which is the underlying condition of V.