Lista de Exemplos 3: Interpolação Polinomial

Exemplo 1

Calcular $P_2(0,2)$ por meio da solução de um sistema de equações lineares usando os dados da tabela abaixo (Campos, 2018; Exemplo 3.2).

Х	у	
0,1	1,221	
0,6	3,320	
0,8	4,953	

Solução

$$P_2(x_0) = y_0$$

 $P_2(x_1) = y_1$
 $P_2(x_2) = y_2$

$$a_0 + 0.1a_1 + 0.1^2a_2 = 1.221$$

 $a_0 + 0.6a_1 + 0.6^2a_2 = 3.320$
 $a_0 + 0.8a_1 + 0.8^2a_2 = 4.953$

$$\begin{bmatrix} 1 & 0.1 & 0.01 \\ 1 & 0.6 & 0.36 \\ 1 & 0.8 & 0.64 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1.221 \\ 3.320 \\ 4.953 \end{bmatrix} \Rightarrow a = \begin{bmatrix} 1.1412 \\ 0.2310 \\ 5.6671 \end{bmatrix}$$

$$P_2(x) = 1{,}1412 + 0{,}2310x + 5{,}6671x^2$$

$$P_2(0,2) = 1,414$$

Exemplo 2

Calcular $P_2(0,2)$ por meio de um polinômio de Lagrange usando os dados da tabela abaixo (Campos, 2018; Exemplo 3.4).

i	x_i	y_i		
0	0,1	1,221		
1	0,6	3,320		
2	0,8	4,953		

Solução

$$P_{2}(x) = y_{0} \frac{(x - x_{1})(x - x_{2})}{(x_{0} - x_{1})(x_{0} - x_{2})} + y_{1} \frac{(x - x_{0})(x - x_{2})}{(x_{1} - x_{0})(x_{1} - x_{2})} + y_{2} \frac{(x - x_{0})(x - x_{1})}{(x_{2} - x_{0})(x_{2} - x_{1})}$$

$$= 1,221 \frac{(x - 0,6)(x - 0,8)}{(0,1 - 0,6)(0,1 - 0,8)} + 3,320 \frac{(x - 0,1)(x - 0,8)}{(0,6 - 0,1)(0,6 - 0,8)}$$

$$+ 4,953 \frac{(x - 0,1)(x - 0,6)}{(0,8 - 0,1)(0,8 - 0,6)}$$

$$P_2(0,2) = 1,414$$

Exemplo 3

Determinar $P_2(1,2)$ por meio de um polinômio de Newton usando os dados da tabela abaixo (Campos, 2018; Exemplo 3.9).

Х	у	
0,9	3,211	
1,1	2,809	
2,0	1,614	

Solução

$$P_2(x) = y_0 + \Delta y_0(x - x_0) + \Delta^2 y_0(x - x_0)(x - x_1)$$

i	x_i	y_i	Δy_i	$\Delta^2 y_i$
0	0,9	3,211	-2,010	0,62020
1	1,1	2,809	-1,328	
2	2,0	1,614		

$$P_2(x) = 3.211 - 2.010(x - 0.9) + 0.62020(x - 0.9)(x - 1.1)$$

$$P_2(1,2) = 2,62661$$

Exemplo 4

Seja $f(x) = e^x + x - 1$ tabelada abaixo (Ruggiero e Lopes, 2009; Exemplo 5.8).

Х	у		
0	0,0		
0,5	1,1487		
1	2,7183		
1,5	4,9811		
2,0	8,3890		

a) Obter f(0,7) por interpolação linear.

Solução

$$P_1(x) = y_0 + \Delta y_0(x - x_0)$$

$$x=0,7\in(0,5,1)$$
, então $x_0=0,5$ e $x_1=1$

$$P_1(x) = 1,1487 + \left(\frac{2,7183 - 1,1487}{1 - 0,5}\right)(x - 0,5) = 1,1487 + 3,1392(x - 0,5)$$

$$P_1(0,7) = 1,7765$$

b) Analisar a cota máxima do erro cometido.

Solução

$$|E_1(x)| \le |(x - x_0)(x - x_1)| \frac{\max_{\xi \in [0, 5, 1]} |f''(\xi)|}{2!}$$

$$f(x) = e^x + x - 1$$

$$f'(x) = e^x + 1$$

$$f''(x) = e^x \Rightarrow \xi = 1$$

$$|E_1(x)| \le |(x - 0, 5)(x - 1)| \frac{|e^1|}{2!}$$

$$|E_1(0, 7)| \le 0.0815$$

Exemplo 5

Seja f(x) dada na forma (Ruggiero e Lopes, 2009; Exemplo 5.9):

Х	у		
0,20	0,16		
0,34	0,22		
0,40	0,27		
0,52	0,29		
0,60	0,32		
0,72	0,37		

a) Obter f(0,46) usando um polinômio de grau 2 na forma de Newton.

Solução

	i	x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
	0	0,20	0,16	0,4286	2,0235	-17,8963
x_0	1	0,34	0,22	0,8333	-3,7033	18,2494
x_1	2	0,40	0,27	0,1667	1,0415	-2,6031
x_2	3	0,52	0,29	0,375	0,2085	
	4	0,60	0,32	0,4167		
	5	0,72	0,37			

Deve-se escolher três pontos de interpolação. Como $0.46 \in (0.4, 0.52)$, dois pontos deverão ser 0.40 e 0.52. O outro deve ser 0.34, porque |0.46 - 0.34| = 0.12 < |0.46 - 0.60| = 0.14. Escolheremos $x_0 = 0.34$, $x_1 = 0.52$ e $x_2 = 0.60$.

$$P_2(x) = \Delta^0 y_0 + \Delta y_0 (x - x_0) + \Delta^2 y_0 (x - x_0) (x - x_1)$$

$$= 0.22 + 0.8333 (x - 0.34) + (-3.7033) (x - 0.34) (x - 0.40)$$

$$P_2(0.46) = 0.2933$$

b) Dar uma estimativa para o erro.

Solução

$$\begin{split} |E_2(x)| &\approx |(x-x_0)(x-x_1)(x-x_2)| \left(\max(|\text{diferenças divididas de ordem 3}|) \right) \\ &= |(x-0.34)(x-0.4)(x \\ &- 0.52)| \left(\max(|-17.8963|, |18.2494|, |-2.6031|) \right) \\ &= |(x-0.34)(x-0.4)(x-0.52)| \left(18.2494 \right) \end{split}$$

 $|E_2(0,46)| \approx 0.007884$

Referências

- F. F. Campos. Algoritmos Numéricos: Uma Abordagem Moderna de Cálculo Numérico. 3ª edição. Rio de Janeiro: Livros Técnicos e Científicos, 2018.
- M. A. G. Ruggiero e V. L. da R. Lopes. Cálculo Numérico: Aspectos Teóricos e Computacionais. 2ª edição. São Paulo: Pearson Education do Brasil, 2000.