Energy-efficient Task Offloading and Computing Scheme via Multi Agent Reinforcement Learning

Sinwoong Yun

DGIST

lion4656@dgist.ac.kr

28/Jun/2019

Group Meeting

Outline

Overview

- Background
- Prior Works & Limitations
- Objectives & Expected Contributions

Ongoing Research

- System Model
- Problem Formulation
- RL Formulation
- Simulation Results
 - Initial Result
 - Modified Interim Result

Research Plan

Schedule

Part 1

OVERVIEW

Background: Cloud Computing

Cloud Computing (CC)

- Computing service at remote cloud data center
- Long propagation distance (end user ← remote cloud center)
 - Excessively long latency for mobile applications
 - Not adequate for latency-critical applications

"Security and Privacy in Cloud Computing", BBCR

Background: Edge Computing

Edge Computing (EC)

- Address a drawback of CC with the proximate access
- Harvest the idle computation power at the network edges
- Perform computation-intensive & latency-critical tasks

[Cho:19] Chongwu Dong and Wushao Wen (2019). "Joint Optimization for Task Offloading in Edge Computing: An Evolutionary Game Approach". Sensors 2019, 19(3), 740

Background: Edge Computing

Applications of EC

- V2X (Vehicle to everything)
- Smart phone applications (VR/AR, UHD video streaming, ...)
- IoT (Internet of things)

[Yuy:17] Yuyi Mao et al., (2019). "A Survey on Mobile Edge Computing: The Communication Perspective". *IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 19, NO. 4, FOURTH QUARTER 2017*

Background: DVFS

Dynamic Voltage and Frequency Scaling (DVFS)

- CPU technology to reduce energy consumption
- System energy consumption
 - Static energy: idle system power, cooler, ...
 - Dynamic energy : CPU clock $(E_{dynamic} \propto f^2)$

DVFS in EC

- Energy-efficient computing by adjusting clock frequency
- Task deadline : Optimize the frequency to maintain QoS

Background: Reinforcement Learning

- Reinforcement learning (RL)
 - Agent learns how to behave in a environment
 - Agent receives state from the environment
 - Agent takes an action based on the state
 - Environment transitions to a new state
 - Agent receives reward from the environment
 - Try to learn optimal policy

Prior Works & Limitations

- Offloading in Mobile Edge Computing: Task Allocation and Computational Frequency Scaling
 - Thinh Quang Dinh, Jianhua Tang, Quang Duy La and Tony Q. S. Quek
 - 2017 IEEE TCOM

Contribution

- A mobile device (MD) can offload its tasks to multiple APs
- Computational offloading with couples DVFS with task offloading
- Minimize both MD's energy & latency

Limitation

- DVFS technique only for the MD
- Single user ► do not know the effect for multiple users

Prior Works & Limitations

- Path selection enabling user mobility and efficient distribution of data for computation at the edge of mobile network
 - Jan Plachy, Zdenek Becvar, Pavel Mach
 - 2016 ELSEVIER Computer Network

Contribution

 Path selection algorithm finding the most suitable way for data delivery for small cell cloud (SCC) model

Estimate transmission delay and energy consumed by the transmission of offloaded data

Limitation

- Single user
- Do not consider <u>server energy & DVFS</u>

Objectives

- Energy efficient frequency scheduling
 - CPU consumes energy with regard to its processing frequency
 - CPU frequency with high level can process task fast
 - However, this consumes more energy than low level frequency
 - Find optimal frequency level
- Network backhaul (EC-cloud)
 - BSs are connected with wire
 - Distribute a load among BSs to prevent one server from becoming congested
 - Wired transmission consumes a few time, energy
 - Determine task distribution decision

Minimize EC server energy consumption while meeting task deadline

Relative processor frequency

Task distribution strategy

Expected Contributions

- Joint optimization of computation and task distribution
 - Task computation at EC server with DVFS technique
 - Reduce energy consumption while meeting QoS
 - Task distribution among the EC-cloud
 - Control center decides task distribution path
 - Tasks are distributed via wired backhaul
 - Alleviate load congestion for the EC servers
 - Inhomogeneous user distribution + time-variant task arrival rate
- Reinforcement learning
 - Separate the original problem into two problems
 - Task computation (each EC server) : low level
 - Task distribution (control center): high level
 - Multi-agent RL network
 - Each EC servers learn independently: reduced state, action space
 - Control center assembles low level rewards : Maximize overall reward

Part 2

ONGOING RESEARCH

System Model

System model

- N-BSs are deployed in the area
 - BS index $i \in \mathcal{N} = \{1, 2, ..., N\}$
 - EC server equipped with each BS
 - *f_i* : Relative frequency for *i*
- Request task type $h: (D_h, X_h, \tau_h)$
 - D_h: input bit size [bit]
 - *X_h* : computation intensity [cycle/bit]
 - τ_h : <u>deadline</u> [sec]

Control center

- Determine wired transmission
- Re-distribute the loads
 - By observing server states

Control

Center

System Model

System model

- Episode
 - Discrete time slot $t \in \{1,2,...,t,...,t_{end}\}$
 - Each episode lasts for a long time
 - Each episode ends (t_{end}) when all tasks are processed (or time over)
- Task request
 - $\lambda_{i,h}^t$: Average task request rate with task type h to i at time slot t
 - <u>Different task request rate for BSs</u>
 - Time-variant request rate

Task information in the server queue

- Request task type for task k:h(k), task info : $(D_{h(k)}, X_{h(k)}, \tau_{h(k)})$
 - $D_{h(k)}$: left calculation bit size for k in the queue [bit]
 - X_{h(k)}: computation intensity for k [cycle/bit]
 - $\tau_{h(k)}$: <u>left deadline</u> for k[sec]

System Model

Overall phase

- Network model : uplink transmission
 - Nearest association
- Task offloading model: wire transmission via backhaul
 - Tasks arriving at the BSs are re-distributed via backhaul
 - Control center decides where to offload the task based on the arriving task and the state of EC servers
 - Wire transmission uses a little time & energy
- Task computation model : frequency scaling
 - EC server energy consumption
 - Determined by relative frequency, task input bit size and computation intensity
 - Task deadline
 - Total delay should not be longer than task deadline au_h
 - Total latency = uplink transmission time + wire transmission time + queueing time + computation time

Problem Formulation

Original problem

$$\begin{aligned} & \min_{f_i^t, M_{ij}^t} & \sum_{t=1}^{t_{end}} E_{comp}^t + E_{wired}^t & \text{Minimize BS/EC serv} \\ & \text{s.t.} & 0 \leq f_i^t \leq 1 & \text{Relative frequency} \\ & E_{comp}^t = \sum_{i=1}^N \left[c_{stat,i} + c_{dyna,i} (f_i^t)^2 \right] & \text{Computation energy} \\ & E_{wired}^t = E_{wired} \sum_{i,j \in \mathcal{N}, i \neq j} M_{ij}^t & \text{Backhaul energy cond} \\ & M_{ij}^t \in \{0,1\} & \sum_{i,j \in \mathcal{N}, i \neq j} M_{ij}^t \leq 1 \\ & \sum_{i,j \in \mathcal{N}, i \neq j} M_{ij}^t \leq 1 & \\ & T_{ul,h}^k + T_{wire,h}^k + T_{queue,h}^k + T_{comp,h}^k \leq \tau_h & \text{Deadline constraint} \end{aligned}$$

Minimize BS/EC server energy consumption

Relative frequency

Computation energy consumption

Backhaul energy consumption

- Objective: minimize BS/EC server energy consumption
- Constraint : Meet task deadline constraint

 $c_{stat,i}$, $c_{dyna,i}$: computation energy constant

k: task index

 M_{ij}^t : binary decision of wire transmission

Problem Formulation

Computation delay

Original problem

 $T_{queue,h}^{k}$: Queueing delay

 $T^k_{comp,h}$: Computation delay

- Relative frequency f_i^t is time-variant
- Hard to calculate queueing delay/computation delay
- In real world, future information (e.g., task input) is <u>unknown</u>
 - Strict to handle the whole problem

Reformulation

- Choose variable <u>without knowing future information</u>
 - Current information: state
 - Choose variable: action
- Reinforcement learning can approximately optimize variables
 - Markov decision process (MDP)

Multi-agent reinforcement learning (MARL)

- Separate the problem into two problems
 - Server side : schedule CPU frequency
 - Center side : determine wire transmission strategy
- Center controls BSs and each BS has its own small problem

CPU frequency scaling by DVFS (BS)

- Each server i processes the task with utilization f_i^t at time step t
- Original : $0 \le f_i^t \le 1$, $\forall i, t$ ► RL : $f_i^t \in \{0.3, 0.4, \dots, 0.9, 1\}$ (discrete)
- Computation energy consumption at t: $E^t_{comp} = \sum_{i=1}^{\infty} \left[c_{stat,i} + c_{dyna,i}(f^t_i)^2 \right]$

Task distribution strategy (control center)

- Assume time slot interval is short ▶ at most 1 task arrival to EC-cloud at each time
- Choose task distribution path RL : $j \in \{1,2,...,N\}$ (discrete)
- Consume transmission energy if the task is re-distributed via backhaul

Low level: CPU frequency scaling

State:
$$[(D_{h(1)}X_{h(1)}, D_{h(2)}X_{h(2)}, D_{h(3)}X_{h(3)}), (\tau_{h(1)}, \tau_{h(2)}, \tau_{h(3)}), backlog]$$

Action : $[f_i^t]$, discrete

Reward:
$$r_i^{t_{end}} = \sum_{t=1}^{t_{end}} f(E_i^t) + \sum_{k \in tasks} p_{i,k}$$

$$e.g.: f(E_i^t) = -E_i^t, \quad E_i^t \propto (f_i^t)^2$$

$$e.g.: p_{i,k} = \begin{cases} -1 \text{ (over deadline)} \\ +0.1 \text{ (meed deadline)} \end{cases}$$

- Agent : each EC server
- backlog: left queue size [cycles]
 - Fixed state space for RL format

• backlog =
$$\begin{cases} \sum_{k=4}^{L} (D_{h(k)} X_{h(k)}), (k \geq 4) \\ 0, (k < 4) \end{cases}$$

High level: task distribution

State: $[i, h(k), \overline{\sum_{k=1}^{L} (D_{h(k)} X_{h(k)})}]$

Action: [j], backhaul destination, discrete

Reward: $f(r_1^{t_{end}}, ..., r_N^{t_{end}}, \sum_{t=1}^{t=t_{end}} E_{wired}^t)$

- Agent : control center
- State
 - arrival task info (i, h(k)) + queue length [cycle]
- Reward
 - function of low level rewards (e.g., sum of low level rewards)
 - function of backhaul energy consumption over one episode

Overall structure

Contol center: task distribution

State : $[i, h(k), \sum_{k=1}^{L} (D_{h(k)} X_{h(k)})]$

Action: [j], backhaul destination, discrete

Reward: $f(r_1^{tend}, ..., r_N^{tend}, \sum_{t=1}^{t=tend} E_{wired}^t)$

Server 1: frequency scaling

State: $[(D_{h(1)}X_{h(1)}, D_{h(2)}X_{h(2)}, D_{h(3)}X_{h(3)}), (\tau_{h(1)}, \tau_{h(2)}, \tau_{h(3)}), backlog]$

Action: $[f_i^t]$, discrete

Reward: $r_i^{t_{end}} = \sum_{t=1}^{t_{end}} f(E_i^t) + \sum_{k \in tasks} p_{i,k}$

$$e.g.: f(E_i^t) = -E_i^t, \quad E_i^t \propto (f_i^t)^2$$

$$e.g.: p_{i,k} = \begin{cases} -1 \text{ (over deadline)} \\ +0.1 \text{ (meed deadline)} \end{cases}$$

Server N: frequency scaling

State: $[(D_{h(1)}X_{h(1)}, D_{h(2)}X_{h(2)}, D_{h(3)}X_{h(3)}), (\tau_{h(1)}, \tau_{h(2)}, \tau_{h(3)}), backlog]$

Action: $[f_i^t]$, discrete

 $\textbf{Reward}: r_i^{t_{end}} = \sum_{t=1}^{t_{end}} f(E_i^t) + \sum_{k \in tasks} p_{i,k}$

$$e.g.: f(E_i^t) = -E_i^t, E_i^t \propto (f_i^t)^2$$

$$e.g.: p_{i,k} = \begin{cases} -1 \text{ (over deadline)} \\ +0.1 \text{ (meed deadline)} \end{cases}$$

Initial Result

Control center reward

Server 2 reward

Server 1 reward

Server 3 reward

Modified Interim Result

• Low level (frequency scaling) reward convergence

- Learn one EC server for low level
- Reward increases after learning (with DQN algorithm)

: small input size + deadline penalty

: large input size + deadline penalty

: small input size + no deadline

: large input size + no deadline

Modified Interim Result

Low level (frequency scaling) reward convergence

- Compare a reward with benchmarks
 - Better than f = 1 and f = 0.5
 - However, not guarantee the result is better than any fixed frequency

: f = 1 for all time slot

: f = 0.5 for all time slot

Part 3

RESEARCH PLAN

Schedule

System model

- Survey & clarify the contribution point
 - DVFS in MEC
 - DVFS and task allocation via RL
 - Cloud MEC (backhaul among the BSs)
- Time variant arrival rate, wireless backhaul
- Reward design
 - Reward function affects performance significantly
 - Compare the performance for different reward functions

Write a journal/conference paper

- ICC 2020 (2020-06-07~11)
- IEEE journal Energy efficient Task Offloading and Computing Scheme via Multi-Agent Reinforcement Learning

Schedule

Simulation result

- Task offloading probability optimization
 - Proximal policy optimization (PPO)
 - Adjust hyperparameters
- Multi-agent reinforcement learning
 - High level (task distribution) + low level (frequency)
 - Divide-and-conquer
 - Maximize high level reward

Search a new topic

— RL with 5G network (IoT security, MEC, UAV, UDN, ..)

Schedule

• Schedule (~ 2020 Jan)

Progress	6	7	8	9	10	11	12	1
Study (Queueing theory, RL)								
Find contribution point & system model update								
Simulation result & performance analysis								
Paper writing (Journal & Conference)								
Search a new topic & system model								
Simulation for new topic								

Any Questions?

THANK YOU

Email: lion4656@dgist.ac.kr

