STA 303/1002-Methods of Data Analysis II Sections L0101& L0201, Winter 2018

Shivon Sue-Chee

April 4, 2018

Repeated measures / Mixed Model Diagnostics

- ▶ What procedures do we use to:
 - Estimate parameters in a general linear mixed model?
 - Restricted Maximum likelihood estimation for variance and covariance parameters
 - ► Generalized least squares for fixed effects
 - Carry out inference (significance tests and C.I.s)
 - ▶ t and F tests based on the Normal distribution for fixed effects

What are the conditions for inference to be valid?

Observations on different subjects are independent but observations on the same subject are correlated

Correct form of the model:

between Y and X's covariance structure for observations on same subject

- ▶ Error variance can be modelled to vary across X's, e.g., across different sexes
- Normally distributed error terms and random effects: this implies no outliers
- ► Large enough sample sizes for <u>LR tests</u> to compare nested models (with same *Y* and *X*'s but different var-cov structure)

Within-subject Covariance structures

► CS [2]: same variance and common covariances

$$D_{CS} = \begin{bmatrix} \widehat{\sigma_{u}^{2}} + \sigma_{\epsilon}^{2} & \widehat{\sigma_{u}^{2}} & \widehat{\sigma_{u}^{2}} \\ \sigma_{u}^{2} & \sigma_{u}^{2} + \sigma_{\epsilon}^{2} & \sigma_{u}^{2} \\ \sigma_{u}^{2} & \sigma_{u}^{2} & \sigma_{u}^{2} + \sigma_{\epsilon}^{2} \end{bmatrix} \hat{v}_{e_{1}}$$

▶ UN [t(t+1)/2]: different variances and different covariances

$$D_{UN} = \begin{bmatrix} \sigma_1^2 & \sigma_{12}^2 & \sigma_{13}^2 \\ \sigma_{12}^2 & \sigma_{23}^2 & \sigma_{23}^2 \\ \sigma_{13}^2 & \sigma_{23}^2 & \sigma_{3}^2 \end{bmatrix}$$

► AR1 [2]: same variances, covariances decrease exponentially

$$D_{AR(1)} = \sigma^2 egin{bmatrix} 1 &
ho &
ho^2 \
ho & 1 &
ho \
ho^2 &
ho & 1 \end{bmatrix}$$

Comparing models

- Using likelihood-based criteria: compare models with same Y and X's but different covariance structures
 - ▶ AIC= $-2 \operatorname{Res} \log \mathcal{L} + 2(\# \text{ of parameters})$
 - ▶ BIC= $-2 \operatorname{Res} \log \mathcal{L} + (\# \operatorname{of parameters}) \log(n)$,
 - where n=# of subjects $G^2 = -2 \operatorname{Res} \log(\frac{\mathcal{L}_{\mathcal{R}}}{\mathcal{L}_{\mathcal{F}}})$
 - ▶ Using t and F tests: check relevance of fixed effects

Checking Residuals

- ► Marginal residuals- interested in quantities averaged over all levels of the random effect. If predictor, *X* is quantitative, use plot of residuals vs *X* to see if linear form is appropriate.
- Conditional residuals- interested in effects for a particular $\mathcal{L} = \mathcal{L}$ subject (a level of the random effect). Use to check for normality.
 - Cholesky (Studentized) residuals- standardized residuals (zero correlation, variance is one); helpful for identifying outliers

Plot of Cholesky Residuals

Summary of MM Example 1 Analysis

- Significant interaction between Sex and Age (p=0.0057, model 10.5)
- ► Final model established has compound symmetry (CS) structure for within-subject effect, varying with sex, that is, same variance on each subject with same sex/ age but different variances for each sex.

(10-8)

- Final model has smaller AIC. Residuals are proper.
- In general, choose a parsimonious model that makes sense and is easier to interpret.

Course Summary

What did we cover in our course-STA 303/1002: Methods of Data Analysis II?

Cases and Methods

Case	Title	Method(s)
	Spock's Trial	Two-sample T-test
		General Linear Model (1-way)
		Multiple comparisons (Bont, Takey).
П	The Pygmalion Effect	General Linear Model (2-way)
Ш	The Donner Party /	Binary Logistic Regression
IV	The Krunnit Islands /	Binomial Logistic Regression
V	Mating Elephants	Poisson Regression
VI	Heart Study	Difference in proportions (2- way CT).
		Pearson's TOA or LRT (2-way CT)
		Multinomial Logistic model (2-way CT)
		Log-linear model (2-way CT)
VII	Three Drugs	Log-linear model (3-way CT)
VIII	Orthodontic Growth	General Linear Mixed Model
IX	Carbs in Diabetes	General Linear Mixed Model (アア. / Hw)

Outcomes / Responses

STA	302 LM	ct	S	any (no	stly cts).
	Metho	d Y		X	Dist. of Y
	General LN	1 conti	nuous ¹	categorical	Normal —
	Binary Logi	t binar	У	any	Bernoulli
	Binomial Logi	t count	ts	any	Binomial
	Poisso	n count	ts	any	Poisson
	Contingency (2-way) count	ts	categorical	Multinomial
	(2-way and 3-way) count	ts	categorical	Poisson
	Mixe	d conti	$nuous^{>1}$	any	Normal
			>	observation;	per person

General Linear Model and Assumptions

$$Y = f(\mathbf{X}; \boldsymbol{\beta}) + \epsilon$$

OR

$$g(E(Y)) = f(X; \beta)$$
, with $g(\cdot) = 1$

- ightharpoonup Y is a linear function of β 's
- Correct form of the model along with:
 - Observations are independent
 - $\epsilon_i \sim N(0, \sigma^2)$: errors have/are
 - zero expectation
 - constant variance
 - uncorrelated
 - ▶ jointly normal

So no outliers or heavy/light tails, or additional X's

Logistic Regression and Assumptions

$$\log\left(\frac{\pi}{1-\pi}\right) = f(\mathbf{X}; \boldsymbol{\beta}) + \mathbf{X}$$

OR

$$g(E(Y)) = f(X; \beta)$$
, with $g(\cdot) = logit$

- ightharpoonup Y is a linear function of β 's
- Correct form of model along with:
 - Observations are independent
 - Variance follows Bernoulli / Binomial distribution form
 - No outliers
 - Sample size is large

Poisson Regression/ Log-linear Model and Assumptions

$$\log(\mu) = f(\mathbf{X}; \boldsymbol{\beta}) + \boldsymbol{\delta}$$

OR

$$g(E(Y) = \mu) = f(X; \beta)$$
, with $g(\cdot) = \log$

- \triangleright Y is a linear function of β 's
- Correct form of model along with:
 - Observations are independent
 - ► Variance= Mean
 - No outliers
 - Sample size is large

General Linear Mixed Model

$$Y = f(\mathbf{X}; \boldsymbol{\beta}) + \underline{u} + \epsilon$$

- ightharpoonup Y is a linear function of eta's, u is the random effect; identity link
- Correct form of model including:
 - Observations on different subjects are independent but observations on the same subject are correlated
 - Error variance can be modelled to vary across X's
 - Normal error and random effects (so no outliers)
 - ► Large sample sizes for LR tests to compare nested models (with same Y and X's but different var-cov structure)

Estimation and Inference Procedures

	Regression	Estimation	Inference
	General LM	Least Squares (LS)	F, t
	Logistic Poisson	MLE	LRT, Wald
GLM	√ Poisson	MLE	LRT, Wald
	Mixed (random)	ML	LRT
	(fixed)	Generalized LS	F, t

Main R procedures

- 1. proc lm(·)
- 2. proc anova
- 3. proc glm
- 4. proclme

Model Extensions

- ► Other link functions- e.g., log-log, gamma
- Penalized Regression- for model selection with high-dimensional data
- Principal Component Analysis- for correlated observations
- Markov Chain Monte Carlo Methods (MCMC)- conditioning on the past
- Non-parametric density estimation- eg. kernels, polynomial smoothers
- ► Quantile Regression- to obtain conditional response quantiles
- Generalized Linear Mixed Model- eg. Binomial Logistic Mixed Model

STA 414

STA 437

STA 447

STA3SS

STA 490

Theory: 342, 452, 453.

Class Review

All the best on your Exam!

- ▶ When: Wednesday, April 25 at 9am to 12noon
- ► Where: EX 300, 310, 320 (Exam_Centre)
- ► What's covered: All topics with emphasis on latter half
- ▶ Why: for academic evaluation!
- ► Who'll be there: Us (Classmates, TAs, Instructor, Invigilators)

O H '.

April 19-24

Thanks for being a great class!