Housing Prices, Internal Migration, and Intergenerational Mobility

Qingyuan Chai

Boston University

October 20, 2024

Motivation

- Moving to wealthier regions has long been a critical pathway to escape from poverty
- However, housing prices have been surging, particularly in high-income areas
 "We have no home where there is work, and there is no work where there is home."
 - Anecdotal evidence from a Chinese social media

Motivation

- Moving to wealthier regions has long been a critical pathway to escape from poverty
- However, housing prices have been surging, particularly in high-income areas
 "We have no home where there is work, and there is no work where there is home."
 - Anecdotal evidence from a Chinese social media
- The high housing costs may affect migration decisions differently for individuals from advantaged and disadvantaged backgrounds
 - Housing is a major component of migration costs
 - Young adults from disadvantaged families face restrictions, making them more affected by housing costs, which hinder migration and limit their ability to earn higher incomes

Motivation

- Moving to wealthier regions has long been a critical pathway to escape from poverty
- However, housing prices have been surging, particularly in high-income areas
 "We have no home where there is work, and there is no work where there is home."
 - Anecdotal evidence from a Chinese social media
- The high housing costs may affect migration decisions differently for individuals from advantaged and disadvantaged backgrounds
 - Housing is a major component of migration costs
 - Young adults from disadvantaged families face restrictions, making them more affected by housing costs, which hinder migration and limit their ability to earn higher incomes
- This may reinforce existing inequalities and decrease intergenerational mobility

This paper

• This paper examines how housing affordability affects intergenerational mobility in China by influencing internal migration

```
Housing costs \uparrow \Rightarrow workers from disadvantaged families migrate less and earn lower income \Rightarrow parental background becomes a stronger determinant of individuals' income \Rightarrow social mobility \downarrow
```

This paper

• This paper examines how housing affordability affects intergenerational mobility in China by influencing internal migration

```
Housing costs \uparrow \Rightarrow workers from disadvantaged families migrate less and earn lower income \Rightarrow parental background becomes a stronger determinant of individuals' income \Rightarrow social mobility \downarrow
```

- Housing prices are endogenous. I employ an IV approach using a policy shock
- A spatial equilibrium model for policy experiments

This paper

• This paper examines how housing affordability affects intergenerational mobility in China by influencing internal migration

```
Housing costs \uparrow \Rightarrow workers from disadvantaged families migrate less and earn lower income \Rightarrow parental background becomes a stronger determinant of individuals' income \Rightarrow social mobility \downarrow
```

- Housing prices are endogenous. I employ an IV approach using a policy shock
- A spatial equilibrium model for policy experiments

Note:

- "Children" refers to adult children who are young adults when making migration decisions
- Both the effects on migration and income are explored
- "Advantaged" or "disadvantaged" refers to the parental background of the individuals

Intuitively, this is true; why do we need a paper?

The direction of the impact is theoretically ambiguous:

- Rising housing prices place a greater financial burden on low-income families
 - → Larger responses from individuals with disadvantaged backgrounds
- Disadvantaged young adults are often too far from affording migration for small cost changes to matter.
 - In contrast, young adults from wealthier families, being closer to the decision threshold, can be more sensitive to price fluctuations
 - → Larger responses from individuals with **advantaged** backgrounds

We need empirical analysis to determine which force dominates

Preview of Findings of the Reduced-Form Analysis

- Higher housing costs decrease migration and income
 ... but fathers' education mitigates these impacts
- ullet Young adults from disadvantaged families are more affected by housing costs ullet less migration ullet lower income
 - Housing costs $\uparrow \Rightarrow$ importance of parental backgrounds $\uparrow \Rightarrow$ intergenerational mobility \downarrow
- A 10% increase in destination housing prices raises intergenerational persistence by 12%

Preview of Findings of the Structural Analysis

Structural analysis suggests the heterogeneity depends on the nature of the destination

- Rent subsidies to migrants in megacities increase migration more among individuals from advantaged backgrounds
 - → exacerbating income disparities
- Policies that either 1) target disadvantaged individuals or 2) offer non-targeted subsidies in non-megacities increase migration for disadvantaged individuals
 - \rightarrow improve intergenerational mobility

Such differences across destinations have important policy implications

Relation to the Literature

- This implies housing costs are a crucial determinant of intergenerational mobility
 - Few causal determinants have been established in the literature

Literature Review

- Determinants of intergenerational mobility (e.g. Parman, 2011; Feigenbaum, 2015; Olivetti and Paserman, 2015; Zheng and Graham, 2022)
 - → Propose a new determinant in a developing context
- Driving forces of internal migration (e.g. Bazzi, 2017; Cai, 2020)
 - → Focus on heterogeneous impacts that affect social mobility
- The Moving to Opportunity (MTO) experiment (e.g. Chetty et al., 2016)
 - ightarrow Propose a different age range to break the influence of parental background

Roadmap

- Data and Empirical Strategy
- Reduced-Form Results
- Spatial Equilibrium Model
- Conclusion

Data

- China Household Finance Survey (CHFS) 2017, nearly nationally representative survey
 - Migration history
 - Parents' information, regardless of whether they live together
 - Demographics and income, including income for agricultural and informal sectors

Sample:

- Individuals aged 17-55, both men and women, from non-Tier 1 prefectures
- Adult children who report information about their parents
- CEIC database, annual data for each prefecture, 2000-2017
 - Selling prices for residential properties
 - in log yuan per square meter, adjusted to 2000 RMB using the national CPI
 - Data imply that rents are highly correlated with housing prices
 - Local economic conditions
- Census samples 2000 and the China Migrants Dynamic Monitoring Survey (CMDS)

Goal: Measure housing prices relevant to migration across destinations and over time

- Weighted average across potential destinations
- Use the gap between destination and origin
- Aggregate housing price gaps into a single lifetime measure

For an individual from origin prefecture o born in year t of age 1:

$$\textit{HPgap}_{ot} = \sum_{k=16}^{\textit{min}\{\textit{I}, 45\}} \textit{a}_k \times (\sum_{\textit{d} \neq \textit{o}} \textit{w}_{\textit{od}} \textit{Inprice}_{\textit{d}, t+k} - \textit{Inprice}_{\textit{o}, t+k}) \bigg/ \sum_{k=16}^{\textit{min}\{\textit{I}, 45\}} \textit{a}_k$$

Weights are generated using the 2000 census for years before the sample period

Mean(HPgap) = .55, meaning that HP_{dest} is about 173% of HP_{orig}

► Numerical Example

→ Migration Weights

For an individual from origin prefecture o born in year t of age 1:

$$w_{od} = \frac{\text{\# of people migrated from o to d}}{\text{\# of people migrated from o}}$$

$$HPgap_{ot} = \sum_{k=16}^{min\{l,45\}} a_k \times \left(\sum_{d \neq o} w_{od} Inprice_{d,t+k} - Inprice_{o,t+k}\right) \bigg/ \sum_{k=16}^{min\{l,45\}} a_k$$

Weights are generated using the 2000 census for years before the sample period

Mean(HPgap) = .55, meaning that HP_{dest} is about 173% of HP_{orig}

→ Migration Weights

For an individual from origin prefecture o born in year t of age 1:

$$w_{od} = \frac{\# \text{ of people migrated from o to d}}{\# \text{ of people migrated from o}}$$

$$HPgap_{ot} = \sum_{k=16}^{min\{l,45\}} a_k \times \left(\sum_{d \neq o} w_{od} Inprice_{d,t+k} - Inprice_{o,t+k}\right) \bigg/ \sum_{k=16}^{min\{l,45\}} a_k$$

$$a_k = \frac{\# \text{ of people migrated at age k}}{\# \text{ of migrants}}$$

Weights are generated using the 2000 census for years before the sample period

Mean(HPgap) = .55, meaning that HP_{dest} is about 173% of HP_{orig}

Numerical Example

→ Migration Weights

Empirical Strategy

▶ Chinese Prefectures

For individual *i* born in year *t* with origin prefecture *o*:

$$Outcome_{iot} = \beta_1 FatherEduy_{iot} + \beta_2 HPgap_{ot} + \beta_3 FatherEduy_{iot} \times HPgap_{ot} + \Pi Z_{ot} + \Omega X_{iot} + \mu_t + \eta_o + \epsilon_{iot}$$

Outcome is an indicator for migration or the log of income

Variation for Estimation

- Individuals from the same origin prefecture but born in different years face different housing price shocks during key migration decision ages.
- Individuals from different origin prefectures face different housing price shocks given the different origin and destination prefectures.

Instrumental Variable: Housing Purchase Restriction (HPR) policy

- This policy was launched in 46 prefectures across China from late 2010 to early 2011
- The general framework was to restrict households to owning no more than two properties.
- Since 2014, the policy has begun to be removed.
- This policy has been used in many existing papers as an unexpected shock on housing prices (Chen et al., 2017; Zhao and Zhang, 2022; Liu et al., 2023)

Housing Prices for Ever-Treated and Never-Treated Prefectures

Instrumental Variable Construction

- Create a prefecture-year dummy variable indicating whether the Housing Purchase Restriction policy is in effect
- Calculate the weighted average in the same way as for housing prices
- The weighted average of policy implementation is used as the IV for the housing price gap
- The 1st stage coefficient is expected to be negative, as the policy reduced housing demand and slowed price growth

► Shift-Share IV

Migration Results

	Migration			
	OLS	IV	IV	IV
	(1)	(2)	(3)	(4)
FatherEduy	0.005***	0.005***		
	(0.001)	(0.001)		
$FatherEduy{ imes}HPgap$	0.009***	0.011***	0.011***	0.009***
	(0.001)	(0.002)	(0.002)	(0.002)
HPgap	-0.252***	-0.753***	-0.779**	-0.699**
	(0.073)	(0.292)	(0.303)	(0.297)
Eduy× HPgap	-	-	-	\checkmark
FatherEduy imes birthyearFE	-	-	\checkmark	\checkmark
K-P F-stat		40.013	37.685	25.508
LM test		70.140	67.772	68.667
Obs.	14,976	14,976	14,976	14,976
Mean(Dep. Var.)	0.202	0.202	0.202	0.202

A 10 p.p. increase in HPgap decreases migration probability by 7 p.p., 35% of the mean rate

A 10 p.p. increase in HPgap raises the influence of fathers' education on adult children's migration by 18%

Income Results

	InIncome			
	OLS	IV	IV	IV
	(1)	(2)	(3)	(4)
FatherEduy	0.023***	0.023***		
	(0.004)	(0.004)		
$FatherEduy{ imes}HPgap$	0.028***	0.022**	0.021**	0.027***
	(0.006)	(0.010)	(0.009)	(0.010)
HPgap	-0.795**	-2.852**	-2.720**	-3.009**
	(0.334)	(1.288)	(1.327)	(1.351)
Eduy× HPgap	-	-	-	\checkmark
FatherEduy imes birthyearFE	-	-	\checkmark	
K-P F-stat		66.829	62.223	41.908
LM test		114.214	107.637	110.246
Obs.	12,068	12,068	12,068	12,068
Mean(Dep. Var.)	9.798	9.798	9.798	9.798

NOTE: Macroeconomic conditions are not controlled in this table as they are bad controls

A 10 p.p. increase in HPgap increases intergenerational persistence by 12%

Robustness Check

- Control for originFE × BirthyearFE
- Additional macroeconomics controls
- Control for non-housing cost of living Results
- Subsamples Results
- Impute fathers' income and household assets
- Alternative housing prices dataset

```
► Additional Robustness Results
```

Which levels of education matter most?

1) No schooling (32%), 2) primary school (33%), 3) junior high school (19%), 4) senior high or above (16%). The variables are constructed to reflect the impact of each **additional** level of education

	OLS		- 1	V
	(1)	(2)	(3)	(4)
	Migration	InIncome	Migration	InIncome
$1{\text{FatherEduLevel}} \ge 2{ ext{Y}} imes ext{HPgap}$	0.045***	0.130*	0.073***	0.205*
	(0.011)	(0.069)	(0.019)	(0.115)
$1\{FatherEduLevel \geq 3\} imes HPgap$	0.027*	0.092	0.018	0.132
	(0.015)	(0.069)	(0.022)	(0.090)
$1\{FatherEduLevel \geq 4\} imes HPgap$	-0.000	-0.020	0.009	-0.036
	(0.019)	(0.076)	(0.025)	(0.102)
HPgap	-0.297***	-0.811**	-0.668**	-2.863**
	(0.073)	(0.347)	(0.303)	(1.363)
FatherEduLevelFE× birthyearFE	\checkmark	\checkmark	\checkmark	\checkmark
K-P F-stat			14.462	23.837
LM test			65.974	108.881
Obs.	14,976	12,068	14,976	12,068
Mean(Dep. Var.)	0.202	9.798	0.202	9.798

Rural vs Urban

	Ru	ral	Urban		
	(1)	(1) (2)		(4)	
	Migration	InIncome	Migration	InIncome	
FatherEduy imes HPgap	0.012***	0.044**	0.006	-0.013	
	(0.003)	(0.014)	(0.004)	(0.014)	
K-P F-stat	20.126	38.658	16.983	17.990	
LM test	56.090	103.368	50.227	52.676	
Obs.	10,081	8,303	4,895	3,765	
Mean(Dep. Var.)	0.210	9.516	0.179	10.419	

→ Gender Heterogeneity

Structural Model

- Migration decision is not just a binary choice. It also involves selecting from a choice set
 - Beijing's high housing prices can make workers
 - stay in their origin
 - migrate to a cheaper city
 - I capture this complexity by modeling migration decisions as a set of discrete choices
- To further explore policy implications, I build a bare-bones spatial equilibrium model to take into account general equilibrium effects and analyze counterfactuals

Overview of the Model

- Labor Market
 - Workers decide where to live based on the prefecture's housing prices, economic conditions, distance from origin, and personal preferences.
- Housing Market
 - Housing demand is affected by population size
 - Housing supply depends on geographical factors, regulations, and other local characteristics

Labor Market

The utility that a worker i with parental background f from origin o born in year t obtains by choosing to live in prefecture p is given by:

$$U_{ifopt} = \delta_{fpt} + \chi_{iop} + \epsilon_{ifopt}$$

where

$$\delta_{fpt} = \beta_f^h h_{pt} + \theta g_{pt} + \mu_p + \pi_{ft} + \xi_{fpt}$$

$$\chi_{iop} = \beta^d \ln Distance_{op} + \beta^r rural_i \times 1\{o \neq p\} + \beta^m male_i \times 1\{o \neq p\}$$

 ϵ_{ifopt} is drawn from a standard Type I Extreme Value distribution, which captures idiosyncratic tastes for prefectures

The origin prefecture is also an option

Worker *i* choose to live in *p* if $U_{ifopt} > U_{ifodt}$ for $\forall d \neq p$ The probability that worker *i* choose to live in prefecture *p* is:

$$Pr_{ifopt} = \frac{\exp(\delta_{fpt} + \chi_{iop})}{\sum_{n \in N} \exp(\delta_{fnt} + \chi_{ion})}$$

The model is estimated in two steps:

- The probability equation is estimated using MLE. Obtain $\{\hat{\delta}_{fpt}\}$, which are at father's education \times prefecture \times birth year level
- Estimate $\hat{\delta}_{fpt} = \beta_f^h h_{pt} + \theta g_{pt} + \mu_p + \pi_{ft} + \xi_{fpt}$ using 2SLS
 - As residual ξ_{fpt} includes amenities which is correlated with housing prices h_{pt} , I use Housing Purchase Restriction policy to instrument housing prices

In practice, there is not enough data to estimate δ_{fpt} for each birth year and each level of fathers' education.

Instead, I divide the sample into early and late birth cohorts based on birth years and categorize fathers' education into high and low, i.e., both f and t are binary.

$$\begin{split} \hat{\delta}_{\textit{fpt}} &= \beta_{1} \textit{FatherEduHigh}_{\textit{f}} \times \textit{HousingPrices}_{\textit{pt}} + \beta_{2} \textit{HousingPrices}_{\textit{pt}} \\ &+ \textit{G}_{\textit{pt}}' \Theta + \mu_{\textit{p}} + \pi_{\textit{ft}} + \xi_{\textit{fpt}} \end{split}$$

Table: Conditional logit

	OLS		IV	
	(1)	(2)	(3)	(4)
FatherEduHigh $ imes$ HousingPrices	0.380***	0.384***	0.747**	0.758**
	(0.107)	(0.110)	(0.322)	(0.326)
HousingPrices	-1.181***	-1.011***	-4.050***	-3.606**
	(0.347)	(0.376)	(1.230)	(1.436)
$FatherEduHigh imes birthcohort \; FE$	\checkmark	\checkmark	\checkmark	\checkmark
Prefecture FE	\checkmark	\checkmark	\checkmark	\checkmark
Controls	-	\checkmark	-	\checkmark
K-P F-stat			12.880	7.772
LM test			19.100	9.569
Obs.	607	603	607	603
Mean(Dep. Var.)	0.178	0.180	0.178	0.180

Housing Market

After some math, making housing demand equals housing supply:

$$h_{pt} = \Gamma ln L_{pt} + \varepsilon_{pt}$$

where $\Gamma > 0$ and ε_{pt} depends on worker's preference for housing, price-to-rent ratio of housing, government land regulation, etc. Γ is calibrated based on the existing literature.

Equilibrium

Equilibrium is defined by a menu of housing prices $\{h_{pt}\}$ with populations $\{L_{pt}\}$, such that:

$$L_{pt} = \sum_{i \in \mathcal{I}_t} w_i \cdot Pr(worker \ i \ choose \ to \ live \ in \ prefecture \ p)$$

$$= \sum_{i \in \mathcal{I}_t} w_i \cdot \frac{\exp(\delta_{fpt} + \chi_{iop})}{\sum_{n \in N} \exp(\delta_{fnt} + \chi_{ion})}$$
(1)

where $\delta_{fpt} = \beta_f^h h_{pt} + \theta g_{pt} + \mu_p + \pi_{ft} + \xi_{fpt}$ and w_i is the survey weight for the individual

$$h_{pt} = \Gamma ln L_{pt} + \varepsilon_{pt} \tag{2}$$

Counterfactual Analysis of Migration Responses to Rent Subsidy Policies

Change in Percentage Points (%)										
FatherEdu	Stay	Migrate to Non-Tier-1								
Panel A: 109	6 Rent Subsidy ii	n Tier-1 Prefecti	ıres							
L	-0.79	1.01	-0.22							
Н	-1.20	1.70	-0.49							
	% Rent Subsidy in		ures for							
L	-0.92	1.18	-0.26							
Н	0.23	-0.29	0.06							
Panel C: 10% Rent Subsidy in Non-Tier-1 Prefectures										
L	-3.25	-0.21	3.46							
H	-2.35	-0.49	2.84							

For interpretation, the -0.79 percentage point change in Panel A reflects a reduction in the proportion of workers with low-education fathers remaining in their origin prefecture, from 85.15% to 84.36%.

Impacts on intergenerational mobility

	Income Gap		
	(High vs. Low Edu Fathers)		
Panel A: 10% Rent Subsidy in Tier-1 Prefectures	+3%		
Panel B: 10% Rent Subsidy in Tier-1 Prefectures for	-13%		
Migrants with Low-Education Fathers	-13%		
Panel C: 10% Rent Subsidy in Non-Tier-1 Prefectures	-4%		

Take Aways

- High housing costs significantly deter internal migration, especially for individuals from less privileged backgrounds
- This reinforces economic disadvantage and reduces intergenerational mobility
- In China, with its geographical inequality and low intergenerational mobility, affordable housing policies could address both issues by promoting internal migration
- Policy designers must account for the nature of the destination

The End

Thank you for listening!

Map of 334 Chinese Prefectures

A prefecture can have both rural and urban areas Pack

Age-specific Migration Probability

Migration Enters Both Sides

For an individual from origin prefecture o born in year t:

$$\textit{Migration}_{\textit{iot}} = \beta \sum_{\textit{d}} \textit{w}_{\textit{od}} \textit{HPdest}_{\textit{dt}} + \textit{other terms}$$

but w_{od} is constructed based on historical migration stock, which itself affects migration

To address this concern:

- Time-invariant factors should be controlled by origin FE, including $\sum_d w_{od} \overline{HPdest}_d$
 - ullet eta captures the impact of **changes** in HP weighted by the importance of the destination
- "Market access"-type weights which depend only on destination GDP and the distance between origin and destination
- w_{od} is not used for the discrete choice model

Numerical Example of Housing Price Gap Construction

			Housing Price (w _{od})				
Age (a_k)	Year	Destination 1 (25%)	Destination 2 (75%)	Origin			
19 (20%)	t + 19	5	3	1			
20 (80%)	t+20	6	4	2			
Weighted	by a_k	5*20% + 6*80% = 5.8	3*20% + 4*80% = 3.8	1*20% + 2*80% = 1.8			
Weighted	by w_{od}	3.8*75%					
Final HPg	Final HPgap $5.8*25\% + 3.8*75\% - 1.8 = 2.5$						

Descriptive Statistics

	Mean	SD
Migration	0.20	0.40
InIncome	9.80	1.67
FatherEduy	5.74	4.51
HPgap	0.51	0.51
Male	0.46	0.50
Eduy	10.05	3.75
Rural Hukou	0.67	0.47
Age	43.19	8.95

1{Ever Migrate}

	OLS		IV	
	(1)	(2)	(3)	(4)
FatherEduy	0.005***	0.005***		
	(0.001)	(0.001)		
$FatherEduy{ imes}HPgap$	0.007***	0.008***	0.010***	0.009***
	(0.002)	(0.003)	(0.003)	(0.003)
HPgap	-0.291***	-1.759***	-1.733***	-1.677***
	(0.089)	(0.601)	(0.624)	(0.617)
Eduy× HPgap	-	-	_	\checkmark
FatherEduy imes birthyearFE	-	-	\checkmark	\checkmark
K-P F-stat		15.298	14.035	9.330
LM test		30.837	28.652	28.657
Obs.	15,601	15,601	15,601	15,601
Mean(Dep. Var.)	0.249	0.249	0.249	0.249

Top 5 destinations of Qiqiha'er

Table: The List of 46 Prefectures that Adopted the Housing Purchase Restriction Policy with Dates of Announcing and Abolishing the Policy

Prefecture	Start Year	Start Month	End Year	End Month	Prefecture	Start Year	Start Month	End Year	End Month
Beijing	2010	4			Fuzhou	2010	10	2014	8
Tianjin	2010	10	2014	10	Xiamen	2010	10	2014	8
Shijiazhuang	2011	2	2014	9	Nanchang	2011	2	2014	7
Taiyuan	2011	1	2014	8	Jinan	2011	1	2014	7
Huhehaote	2011	4	2014	6	Qinghai	2011	1	2014	9
Shenyang	2011	3	2014	9	Zhengzhou	2011	1	2014	8
Dalian	2011	3	2014	9	Wuhan	2011	1	2014	7
Changchun	2011	5	2015	6	Changsha	2011	3	2014	8
Haerbin	2011	2	2014	8	Guangzhou	2010	10		
Shanghai	2010	10			Shenzhen	2010	9		
Nanjing	2010	10	2014	9	Zhuhai	2011	11	2016	3
Wuxi	2011	2	2014	8	Foshan	2011	3	2014	8
Xuzhou	2011	5	2014	8	Nanning	2011	3	2014	10
Suzhou	2011	3	2014	9	Haikou	2010	10	2014	7
Hangzhou	2010	10	2014	8	Sanya	2010	10		
Ningbo	2010	10	2014	7	Chengdu	2011	2	2015	1
Wenzhou	2011	3	2013	8	Guiyang	2011	2	2014	9
Shaoxing	2011	8	2014	8	Kunming	2011	1	2014	8
Jinhua	2011	3	2014	8	Xian	2011	3	2014	9
Quzhou	2011	9	2014	7	Lanzhou	2011	3	2014	7
Zhoushan	2011	8	2013	1	Xining	2011	8	2014	9
Taizhou	2011	8	2014	8	Yinchuan	2011	2	2014	8
Hefei	2011	1	2014	8	Wulumuqi	2011	3	2014	8

SSIV

- The IV has a shift-share structure.
- A linear shift-share IV is valid as long as either the share is exogenous or the shift is exogenous. (Goldsmith-Pinkham et al., 2020; Borusyak et al., 2022)
- In this paper, identification comes from the shift, the sudden and unexpected nature of the Housing Price Restriction policy and the resulting decreases in demand.

▶ Back

Table: IV Results: First Stage

	(1)	(2)	(3)	(4)	(5)	(6)
	HPgap	FatherEduy imes HPgap	HPgap	$FatherEduy \times HPgap$	HPgap	$FatherEduy \times HPgap$
HPR	-0.165***	4.465***	-0.161***	3.049***	-0.163***	3.166***
	(0.014)	(0.393)	(0.014)	(0.438)	(0.014)	(0.434)
FatherEduy imes HPR	0.001**	2.291***	0.000	2.647***	-0.000	2.709***
	(0.001)	(0.060)	(0.001)	(0.057)	(0.001)	(0.057)
FatherEduy× birthyearFE	-	-	\checkmark	\checkmark	\checkmark	\checkmark
Eduy× birthyearFE	-	-	-	-	\checkmark	\checkmark
Obs.	14,976	14,976	14,976	14,976	14,976	14,976
Adj. R-sq	0.995	0.456	0.995	0.494	0.995	0.495

Housing Purchase Restriction Policy Event Study Plot

"Market access"-type weights

		Migr	InIncome						
	OLS		IV		OLS		IV	IV	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
FatherEduy	0.005***	0.004***			0.022***	0.022***			
	(0.001)	(0.001)			(0.003)	(0.003)			
FatherEduy imes HPgap	0.008***	0.011***	0.011***	0.008***	0.026***	0.022**	0.023**	0.021*	
	(0.001)	(0.002)	(0.002)	(0.002)	(0.007)	(0.011)	(0.010)	(0.011)	
HPgap	-0.263***	-1.413***	-1.489***	-1.341***	-0.885**	-1.908	-1.703	-1.640	
	(0.075)	(0.502)	(0.528)	(0.509)	(0.346)	(1.580)	(1.695)	(1.756)	
Eduy× HPgap	-	-	-	\checkmark	-	-	-	\checkmark	
$FatherEduy \times birthyearFE$	-	-	\checkmark	\checkmark	-	-	\checkmark		
K-P F-stat		15.298	14.035	9.330		40.993	36.446	23.966	
LM test		30.837	28.652	28.657		75.903	68.583	68.692	
Obs.	15,601	15,601	15,601	15,601	12,570	12,570	12,570	12,570	
Mean(Dep. Var.)	0.200	0.200	0.200	0.200	9.794	9.794	9.794	9.794	

 $w_{od} = log(\frac{GDP}{distance})$. Use prefecture-level GDP in 1999 from CEIC and distance from Baidu Maps.

Additional Controls

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Migration	Migration	Migration	Migration	InIncome	InIncome	InIncome	InIncome
FatherEduy imes HPgap	0.010***	0.009***	0.009***	0.006**	0.033***	0.036***	0.022*	0.029**
	(0.002)	(0.002)	(0.002)	(0.003)	(0.011)	(0.012)	(0.012)	(0.012)
HPgap			-0.716**	-0.656**			-0.562	-0.718
			(0.291)	(0.286)			(1.552)	(1.552)
$Eduy \! imes HPgap$		0.004		0.009***		-0.012		-0.022
		(0.004)		(0.003)		(0.017)		(0.014)
OriginFE× BirthyearFE	\checkmark	\checkmark	-	-	\checkmark	\checkmark	-	-
Interaction terms	-	-	\checkmark	\checkmark	-	-	\checkmark	\checkmark
Obs.	14,976	14,976	14,976	14,976	12,068	12,068	12,068	12,068
Mean(Dep. Var.)	0.202	0.202	0.202	0.202	9.799	9.799	9.799	9.799

Fiscal expenditure, foreign direct investment (FDI), exports, GDP growth rate, and their interactions with fathers' years of education.

Table: Robustness: Control for non-housing cost of living

	(1)	(2)	(3)	(4)
	Migration	Migration	InIncome	InIncome
FatherEduy× HPgap	0.010***	0.007***	0.020*	0.026**
	(0.002)	(0.002)	(0.010)	(0.011)
HPgap	-0.769**	-0.695**	-2.300	-2.615*
	(0.317)	(0.311)	(1.514)	(1.529)
FatherEduy imes COL	0.000**	0.000**	0.000	0.000
	(0.000)	(0.000)	(0.000)	(0.000)
COL	0.012*	0.012*	0.029	0.029
	(0.006)	(0.006)	(0.026)	(0.026)
$Eduy{ imes}\;HPgap$		0.008***		-0.017
		(0.003)		(0.013)
K-P F-stat	34.964	23.696	50.448	34.330
LM test	61.221	62.083	93.813	95.933
Obs.	14,976	14,976	12,068	12,068
Mean(Dep. Var.)	0.202	0.202	9.798	9.798

Table: Robustness: Sample Construction

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Migration	Migration	Migration	Migration	InIncome	InIncome	InIncome	InIncome
FatherEdu imes HPgap	0.010***	0.009***	0.011***	0.011***	0.024**	0.022**	0.024**	0.026**
	(0.003)	(0.003)	(0.003)	(0.003)	(0.010)	(0.011)	(0.012)	(0.012)
HPgap	-0.989**	-1.220**	-0.957**	-0.965**	-3.388**	-3.754**	-2.816*	-3.278*
	(0.457)	(0.538)	(0.451)	(0.458)	(1.700)	(1.779)	(1.651)	(1.821)
Exclude	-	adjacent to Tier-1	high GDP per capita	popular destinations	-	adjacent to Tier-1	high GDP per capita	popular destinations
Obs.	15,128	14,408	14,677	14,200	12,189	11,621	11,839	11,422
Mean(Dep. Var.)	0.201	0.202	0.205	0.210	9.793	9.782	9.770	9.745

Table: Robustness: Average Income Across Waves

	(1)	(2)	(3)	(4)
	InIncome	InIncome	InIncome	InIncome
	iiiiicome	mincome	multi-year	multi-year
$\overline{FatherEduy{\times}\;HPgap}$	0.021**	0.027***	0.022***	0.027***
	(0.009)	(0.010)	(0.008)	(0.009)
HPgap	-2.720**	-3.009**	-3.082**	-3.349***
	(1.327)	(1.351)	(1.240)	(1.256)
$Eduy \! imes HPgap$		-0.016		-0.014
		(0.013)		(0.012)
K-P F-stat	62.223	41.908	60.816	40.854
LM test	107.637	110.246	105.610	107.910
Obs.	12,068	12,068	12,843	12,843
Mean(Dep. Var.)	9.798	9.798	9.317	9.317

Residualized Fathers' Education

	(1)	(2)	(3)	(4)
	Migration	Migration	InIncome	InIncome
$FatherEduy_{r} r x \; HPgap$	0.009***	0.008***	0.024**	0.027**
	(0.002)	(0.002)	(0.012)	(0.012)
HPgap	-0.818***	-0.818***	-2.493*	-2.474*
	(0.315)	(0.315)	(1.392)	(1.392)
$Eduy \! imes HPgap$		0.002		-0.014
		(0.004)		(0.017)
K-P F-stat	35.520	23.678	53.252	35.505
LM test	61.091	61.091	91.183	91.211
Obs.	13,046	13,046	10,490	10,490
Mean(Dep. Var.)	0.147	0.147	9.743	9.743

Alternative Housing Price Dataset

	(1)	(2)	(3)	(4)
	()	()	` '	()
	Migration	Migration	InIncome	InIncome
$FatherEduy \times HPgap$	0.011***	0.008***	0.025**	0.036***
	(0.002)	(0.002)	(0.010)	(0.011)
HPgap	-1.738***	-1.559***	-4.146*	-5.226**
	(0.564)	(0.542)	(2.203)	(2.291)
$Eduy \! imes HPgap$		0.009***		-0.034**
		(0.003)		(0.015)
K-P F-stat	19.678	13.592	27.980	19.316
Obs.	14,950	14,950	12,049	12,049
Mean(Dep. Var.)	0.201	0.201	9.799	9.799

Impute Fathers' Income

	(1)	(2)	(3)	(4)	(5)	(6)
	Migration	Migration	Migration	InIncome	InIncome	InIncome
InFatherIncome	0.085***			0.381***		
	(0.013)			(0.059)		
${\sf InFatherIncome}{ imes}$ ${\sf HPgap}$	0.162***	0.185***	0.138***	0.311*	0.355**	0.437***
	(0.036)	(0.034)	(0.037)	(0.167)	(0.150)	(0.165)
HPgap	-0.852***	-0.868***	-0.770***	-3.107**	-2.775**	-3.069**
	(0.294)	(0.304)	(0.297)	(1.267)	(1.299)	(1.330)
Eduy× HPgap	-	-	\checkmark	-	-	\checkmark
$InFatherIncome \times \ birthyearFE$	-	\checkmark	\checkmark	-	\checkmark	
K-P F-stat	40.055	37.911	25.658	67.002	63.563	42.697
LM test	70.032	67.733	68.631	113.223	108.382	111.236
Obs.	14,955	14,955	14,955	12,051	12,051	12,051
Mean(Dep. Var.)	0.202	0.202	0.202	9.798	9.798	9.798

Impute Household Assets

	(1)	(2)	(3)	(4)	(5)	(6)
	Migration	Migration	Migration	InIncome	InIncome	InIncome
InHHAssets	0.061***			0.277***		
	(0.010)			(0.043)		
InHHAssets $ imes$ HPgap	0.108***	0.128***	0.092***	0.195*	0.246**	0.301**
	(0.026)	(0.025)	(0.027)	(0.118)	(0.107)	(0.117)
HPgap	-0.900***	-0.904***	-0.796***	-3.282***	-2.827**	-3.105**
	(0.294)	(0.304)	(0.296)	(1.257)	(1.282)	(1.318)
Eduy× HPgap	-	-	\checkmark	-	-	\checkmark
InHHAssets imes birthyearFE	-	\checkmark	\checkmark	-	\checkmark	
K-P F-stat	39.963	37.999	25.726	66.907	64.315	43.163
LM test	69.862	67.735	68.649	112.673	108.986	111.979
Obs.	14,955	14,955	14,955	12,051	12,051	12,051
Mean(Dep. Var.)	0.202	0.202	0.202	9.798	9.798	9.798

Table: Heterogeneity: Male vs Female

		Male			Female	
	(1)	(2)	(3)	(4)	(5)	(6)
	Migration	InIncome	InIncome of Spouse	Migration	InIncome	InIncome of Spouse
FatherEduy× HPgap	0.007**	0.027*	0.014	0.010***	0.017	0.021*
	(0.003)	(0.014)	(0.016)	(0.003)	(0.013)	(0.011)
K-P F-stat	18.498	35.181	29.568	24.610	35.156	32.658
LM test	53.194	94.607	84.093	65.849	93.409	89.168
Obs.	6,829	6,039	4,619	8,147	6,029	6,252
Mean(Dep. Var.)	0.196	10.113	9.634	0.204	9.480	10.113

Additional Robustness Check

- Residualized fathers' education Results
- Control for FatherEduy × Ever-treated ► Results
- Use region-specific CPI → Results
- Falsification Tests Results

▶ Back

Falsification Tests: shift the policy five years back

		Migration			InIncome	
	(1)	(2)	(3)	(4)	(5)	(6)
FatherEduy	0.005***			0.023***		
	(0.001)			(0.004)		
$FatherEduy{ imes}HPgap$	0.017*	0.019	0.014	0.009	0.009	0.009
	(0.010)	(0.017)	(0.011)	(0.016)	(0.018)	(0.017)
HPgap	6.037	7.416	5.078	-14.280	-13.429	-13.388
	(9.701)	(16.248)	(10.979)	(9.909)	(11.104)	(11.618)
Eduy× HPgap	-	-	\checkmark	-	_	\checkmark
FatherEduy imes birthyearFE	-	\checkmark		-	\checkmark	
K-P F-stat	0.233	0.119	0.092	1.648	1.283	0.775
LM test	0.467	0.242	0.278	3.486	2.722	2.462
Obs.	15,601	15,601	15,601	12,570	12,570	12,570
Mean(Dep. Var.)	0.200	0.200	0.200	9.794	9.794	9.794

Table: Robustness: IV Ever-treated

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Migration	Migration	Migration	Migration	InIncome	InIncome	InIncome	InIncome
FatherEduy imes HPgap	0.011***	0.011***	0.009***	0.008***	0.021**	0.020*	0.027***	0.025**
	(0.002)	(0.002)	(0.002)	(0.002)	(0.009)	(0.010)	(0.010)	(0.011)
HPgap	-0.779**	-0.775**	-0.699**	-0.695**	-2.720**	-2.721**	-3.009**	-3.010**
	(0.303)	(0.303)	(0.297)	(0.297)	(1.327)	(1.328)	(1.351)	(1.352)
Eduy imes HPgap			0.008***	0.008***			-0.016	-0.016
			(0.003)	(0.003)			(0.013)	(0.013)
FatherEduy× Evertreated		0.002		0.003		0.010		0.009
		(0.006)		(0.006)		(0.029)		(0.029)
K-P F-stat	37.685	37.724	25.508	25.542	62.223	62.196	41.908	41.893
Obs.	14,976	14,976	14,976	14,976	12,068	12,068	12,068	12,068
Mean(Dep. Var.)	0.202	0.202	0.202	0.202	9.798	9.798	9.798	9.798

Adjust income using province × urban/rural CPI

	(1)	(2)
	InIncome	InIncome
FatherEdu imes HPgap	0.018**	0.025**
	(0.009)	(0.010)
HPgap	-2.217*	-2.600*
	(1.305)	(1.328)
Edu imes HPgap		-0.021
		(0.013)
FatherEdu× birthyearFE	\checkmark	\checkmark
K-P F-stat	62.346	42.009
LM test	107.633	110.267
Obs.	11,958	11,958
Mean(Dep. Var.)	9.198	9.198

Fathers' Education Level: Rural vs Urban

Fedutype	Rural (%)	Urban (%)
1	39.15	16.35
2	36.06	27.22
3	17.40	23.52
4	7.39	32.91

Impacts on Agricultural Employment

	Rural Sample		
	(1)	(2)	
$\overline{FatherEduy{\times}\;HPgap}$	-0.006*	-0.008**	
	(0.003)	(0.003)	
HPgap	1.031*	1.105*	
	(0.601)	(0.613)	
Eduy× HPgap	_	$\sqrt{}$	
K-P F-stat	30.197	20.063	
LM test	56.791	56.562	
Obs.	8,123	8,123	
Mean(Dep. Var.)	0.293	0.293	

References used in this Talk

- Bazzi, Samuel, "Wealth heterogeneity and the income elasticity of migration," American Economic Journal: Applied Economics, 2017, 9 (2), 219–255.
- Borusyak, Kirill, Peter Hull, and Xavier Jaravel, "Quasi-experimental shift-share research designs," *The Review of Economic Studies*, 2022, 89 (1), 181–213.
- Cai, Shu, "Migration under liquidity constraints: Evidence from randomized credit access in China," *Journal of Development Economics*, 2020, 142, 102247.
- Chen, Ting, Laura Liu, Wei Xiong, Li-An Zhou et al., "Real estate boom and misallocation of capital in China," Work, Pap., Princeton Univ., Princeton, NJ, 2017, 9.
- Chetty, Raj, Nathaniel Hendren, and Lawrence F Katz, "The effects of exposure to better neighborhoods on children: New evidence from the moving to opportunity experiment," *American Economic Review*, 2016, *106* (4), 855–902.
- Feigenbaum, James J, "Intergenerational mobility during the great depression," 2015.
- Goldsmith-Pinkham, Paul, Isaac Sorkin, and Henry Swift, "Bartik instruments: What, when, why, and how," American Economic Review, 2020, 110 (8), 2586–2624.
- **Liu, Hong, Lili Liu, and Fei Wang**, "Housing wealth and fertility: evidence from China," *Journal of Population Economics*, 2023, *36* (1), 359–395.
- Olivetti, Claudia and M Daniele Paserman, "In the name of the son (and the daughter): Intergenerational mobility in the United States, 1850–1940," *American Economic Review*, 2015, 105 (8), 2695–2724.