Etude des effets des pésticides dans la production des vins de table Analyse empirique des marchés

A. Blanc, N. Gusarov, S. Picon

Université Grenoble Alpes

11/12/2019

Introduction

Dans cet étude, nous chercherons à étudier l'équilibre sur le marché du vin.

Nous chercherons à répondre à la question suivante :

Quel est l'effet de la demande de pesticide sur l'équilibre des vins simples ?

Plan de la présentation

- Présentation de la problématique
- Présentation des données
- Modélisation
- Les résultats

Le problème des pesticides

- Présentation du problème des pésticides
- Etat actuel
- Comment combattre

Présentation du problème des pesticides

- source de nombreux débats sur la santé et l'environnement
- plusieurs mesures mises en places pour réduire leurs usages :
 - interdiction des produits les plus toxiques ;
 - instauration d'une taxe (Butault et al, 2011).
- l'utilisation perdure:
 - hausse des ventes de produits phytosanitaires
 - Augmentation des doses utilisés : +12% en 2014-2016
 - moyen de protection contre les aléas climatiques
 - préservation du rendement

Etat actuel

Aucune baisse de l'utilisation de pesticides.

- ▶ Nodu augmente de 23% entre 2008 et 2017
- ► Le nombre de substances actives utilisées a augmenté de 15% entre 2011 et 2017.
- Baisse des produits les plus dangereux de 6%, en 2017 (Moghaddam et al, 2019)
- Les grandes cultures (blés, etc...) sont les premières utilisatrices de pesticides 67.4%
- Les vignes sont les deuxièmes 14.4% (Butault et al, 2011)

Comment baisser l'utilisation de pesticides

- le changement de mode de culture:
 - agriculture intensive -> agriculture biologique
 - agriculture raisonnée -> adapté la quantité de produit utilisé à la culture et à la surface
 - diminution des doses
 - déserherber un rang sur 2 dans les vignes puis désherbage mécanique
- ▶ la diversification des cultures (Moghaddam et al, 2019)

Le marché du vin français

- Le marché commun
- Utilisation des pésticides dans viticulture
- Heterogénéité
- Pourquoi vins de table
- Le marché des vins de table français

Le marché commun

Principal producteur de vin:

- ▶ 10% surface de vigne mondiale
- ▶ 20% terres agricoles française dédiées à la vigne
- ▶ 3% de la surface agricole est consacré au vin
- ▶ 16% de la production mondiale boisson alcoolisées la plus consommée en France
- 88% des ventes de vins en France sont effectuées dans une grande surface (le Comité National des Interprofessions des Vins à appelation d'origine et à indication géographique, 2018)

La consommation de vins (2011)(FranceAgrimer, 2011)

La Fuanca cat la musualen accesantatacon de cio

- ▶ 55% de vins rouges
- ▶ 16% de vins blancs
- ▶ 29% de vins rosés

Utilisation des pesticides dans viticulture

La viticulture un type de culture gourmand en pesticides :

- ▶ 14.4% des produits phytosanitaires utilisés en France.
- 2è culture utilisatrice de pesticides en Frances
- Les régions viticoles sont des régions ou les dépenses en phyto sont les plus importantes
- ► Fortes disparités d'utilisation des pesticides entre les régions.(climat) (Butault et al, 2011)
- Les bassins viticoles Français utilisent en majorité des fongicides et des bactéricides
- ▶ La champagne est la région la plus utilisatrice de pesticide avec un IFT de 21.4 en 2013.
- Les pyrennées orientales sont la région la moins utilisatrice de pesticide avec un IFT de 9.2 en 2013.(Pujol, J, 2017)

Heterogénéité

Il existe une forte hétérogénéité entre les différents labels mais aussi à l'intérieur de ces labels.

Les vins peuvent être divisés en 2 grandes classes suivant leurs prix(Cembalo et al., 2014) :

- les vins de qualité moyenne
 - ils ont un degré d'hétérogénéité important (Cembalo et al, 2014)
- les vins de qualité supérieure
 - limitation des quantités produites,
 - une origine contrôlé
 - une demande spécifique

Pourquoi vins de table

Les vins de tables sont des vins sans indication géographiques

- hétérogènéité importante,
- en moyenne prix bas.

Il s'agit des vins les plus simples, refusant les contraintes associées aux labels.

Nous traitons seulement des vins sans indication géographique.

- La situation sur ce marché influence l'utilisation des pesticides
- Les volumes de production sont plus significatifs dans le marché des vins sans indication géographique.
- ► Il existe une homogénéité presque parfaite dans les vins sans indication géographique (Cembalo et al, 2014).

Le marché des vins de tables Français :

Représente 10% de la production (VIN & SOCIETE, 2018)

- ► Hausse des transactions en 2011:
 - ► Vins rouges : 29 %
 - ► Vins rosés :13%
 - ▶ Vins blancs : 76%
- Hausse des prix:
 - ▶ Vins rouges : 12%
 - ► Vins rosés : 3%
 - Vins blancs: 13%
- ▶ La consommation des vins sans IG en 2011 :
 - baisse des ventes en grande distribution de 14.6%

Le Modèle théorique

- Le rôle des pesticides dans la production du vin
- Le rôle de la demande sur la production et l'offre en général
- La formalisation et les équations

Le rôle de la demande sur la production et l'offre en génèral

- Nous supposons que sur le marché des vins simples la demande est unique pour toute la France.
- ► La production de vin varie par département à cause de variations climatologiques
- On observe l'équilibre sur le marché au niveau du pays. Ainsi, la quantité demandée = quantité offerte par l'ensemble des régions.
- ▶ La demande de pesticides est inélastique au prix. Ainsi, la quantité de pesticides utilisée dépend seulement des intentions et des besoins des agriculteurs.

Les données

Sources des données :

- Les données de ventes de pesticides par département : Institut National de l'Environnement Industriel et des Risques (INERIS)
- Les données sur les prix du vin (France Agrimer)
- Les données sur la population (INSEE)
- Les données sur la production de vin (service statistique du ministère des Finances)

Base de données finale :

- une base de données en panel double dimention
- par départements français (en France Métropolitaine excepté la Corse)
- les années (2012 à 2016)

Déscription des données :

- Toutes les variables varient par département et par année.
- Le période temporelle comprise dans notre échantillon est de 2012 à 2016 (nombre de périodes pauvres mais intérêt de disposer d'un panel cylindré)
- Sélection des régions productrices de vin et utilisatrices de pesticides : 69 départements.
- ► Elimination des effets fixes en soustrayant les moyennes départementales des quantités produites de vin.

Les variables utilisées pour notre modèle :

- Variable d'intérêt : quantités totales de pesticides vendues par département
- Variables dépendantes : la quantité totale produite de vin rouge et blanc non IG par département (en hectolitres), le prix moyen des vins rouges-blancs par département (représenté à l'aide d'un indice des prix du vin par département construit à partir des prix moyen nationaux des vins blancs et rouges)
- ➤ Variables de controle : revenu médian par département, surface agricole destinée à la culture viticole (en hectares)

Les statistiques déscriptives

- Between and within variance par variable
- Bivariate plots with support regressions
- Covariance analysis
- Fixed vs Random effects

Etude de la variance

Table 1: Variance study

	Mean	Overall	Between	Within
Index prix	0.175	0.568	0.368	0.434
Index pesticides	0.170	0.333	0.239	0.234
Surface	4.892	1.986	1.955	0.410
Revenus	9.891	0.061	0.061	0.011
Temps	3	1.416	0	1.416

Visualisatoin des interdependances

Visualisatoin des interdependances

Random and fixed effects testing

Poolability tests (tested versus pooled model)

Table 2: Chow pooling test, p-values

	Random	Fixed
Index prix	0.535	0.533
Index pesticides	0.485	0.451
Surface	0	0.0001
Revenus	0.297	0.247

Type of fixed effect testing

▶ Type of fixed effects testing

Table 3: Lagrange multiplier test, p-values

	Individual	Time	Two-ways	
Index prix	0	0.169	0	
Index pesticides	0	0.222	0	
Surface	0	0.030	0	
Revenus	0	0.248	0	

Correlation

Table 4: Overall correlation

	Quantité du vin	IP	Surface	Revenus	Index pésticides	Temps
Quantité du vin	1	0.154	0.956	-0.027	-0.078	-0.036
IP	0.154	1	0.045	-0.037	-0.127	0.043
Surface	0.956	0.045	1	-0.057	-0.060	-0.064
Revenus	-0.027	-0.037	-0.057	1	-0.052	0.119
Index pésticides	-0.078	-0.127	-0.060	-0.052	1	0.291
Temps	-0.036	0.043	-0.064	0.119	0.291	1

Table 5: Within transformation correlation

	Quantité du vin	IP	Surface	Revenus	Index pésticides	Temps
Quantité du vin	1	0.961	0.366	-0.160	-0.228	-0.199
IP	0.961	1	0.289	-0.009	-0.127	0.056
Surface	0.366	0.289	1	-0.166	-0.191	-0.310
Revenus	-0.160	-0.009	-0.166	1	0.228	0.652
Index pésticides	-0.228	-0.127	-0.191	0.228	1	0.414
Temps	-0.199	0.056	-0.310	0.652	0.414	1

Within transformation results

Within transformation results

Modèlisation

- Explication de la méthode utilisée
 - Panel data
 - Within transforation
 - Fixed effects
 - Obtained slopes are averages for all population
 - AIDS model
 - Interdependent equations (simultaneity bias)
 - 3SLS estimator (that is identical to ILS estimator)
 - It generates consistent estimates
 - The distribution of the estimators are normally distributed only in large samples
 - ► The estimator is (asymptotically) efficient
- Limites du modèle
 - ► Faible representation des effets hetérogenes entre les régions (nous estimons seulemnt les effets moyens)
 - Les interferences induites par l'heterogénéité

Résultats d'estimation

- Les coefficients estimés avec leurs variance
- Etude des erreurs
- Vérification des hypothèses (5 hypothèses) :
 - La moyenne nulle des erreurs
 - Homoscedacité
 - Autocorrélation
 - Spécification du modèle
 - ▶ ... (à voir)

Les résultats OLS vs SUR

	OLS	WLS	SUR
Demande: ipi	0.93***	0.93***	0.93***
	(0.01)	(0.01)	(0.01)
Demande: ri	-5.75***	-5.75***	-2.00***
	(0.47)	(0.47)	(0.33)
Offre: ipi	0.90***	0.90***	0.92***
	(0.01)	(0.01)	(0.01)
Offre: si	0.08***	0.08***	0.02*
	(0.01)	(0.01)	(0.01)
Offre: iki	-0.17***	-0.17***	-0.05**
	(0.02)	(0.02)	(0.02)
Demande: R ²	0.95	0.95	0.94
Offre: R ²	0.94	0.94	0.93
Demande: Adj. R ²	0.95	0.95	0.94
Offre: Adj. R ²	0.94	0.94	0.93
Num. obs. (total)	690	690	690
*** <i>p</i> < 0.001, *	p < 0.01	p < 0.05	

Table 6: Statistical models

Disturbances correlation study

Les résidus sont non correlés avec les variables explicatives

Table 7: Errors correlation

	OLS D	OLS O	WLS D	WLS O	SUR D	SUR O
Vin	0.232	0.244	0.232	0.244	0.273	0.275
IP	-0	-0	0	-0	0	0
Surface	0.271	-0	0.271	0	0.313	0.236
Revenus	0	-0.480	-0	-0.480	-0.393	-0.542
Pesticides	-0.308	-0	-0.308	0	-0.373	-0.281

Les résultats 2SLS, W2SLS et 3SLS

	201.0	MOCLC	201.0
	2SLS	W2SLS	3SLS
Demande: ipi	1.19***	1.19***	1.19***
	(0.06)	(0.06)	(0.06)
Demande: ri	-5.67***	-5.67***	-5.67***
	(0.71)	(0.71)	(0.71)
Offre: ipi	-1.22	-1.22	-0.71
	(1.97)	(1.97)	(1.96)
Offre: si	0.70	0.70	0.46
	(0.59)	(0.59)	(0.58)
Offre: iki	-0.46	-0.46	-0.73*
	(0.34)	(0.34)	(0.32)
Demande: R ²	0.88	0.88	0.88
Offre: R ²	-3.37	-3.37	-1.60
Demande: Adj. R ²	0.88	0.88	0.88
Offre: Adj. R ²	-3.40	-3.40	-1.62
Num. obs. (total)	690	690	690
**** <i>p</i> < 0.001, *	* $p < 0.01$,	p < 0.05	

Table 8: Statistical models

Model choice tests

► Hausman 3SLS consistency test :

Hausman specification test for consistency of the 3SLS estimation

data: dataWX Hausman = 5.5763, df = 5, p-value = 0.3497

Likelihood test :

	#Df	LogLik	Df	Chisq	Pr(>Chisq)
1	6	-149.621			
2	7	-149.621	1	0	1.000
3	8	-65.614	1	168.013	0

Residuals tests

► Residuals normality test

Table 9: Shapiro-Wilk test

	2SLS	W2SLS	3SLS
Equation de demande	0.00003	0.00003	0.00003
Equation d'offre	0.00000	0.00000	0.00000

Residuals heteroscedasticity test

Table 10: Bartlett test

	2SLS	W2SLS	3SLS
Equation de demande	0.975	0.975	0.975
Equation d'offre	0.0003	0.0003	0.002

Residuals PDF visualisation

N = 345 Bandwidth = 0.0 N = 345 Bandwidth = 0.1

Residuals autocorrelation study for 3SLS

Disturbances correlation study

Les résidus sont peux correlés avec les variables explicatives

Table 11: Errors correlation

	2SLS D	2SLS O	W2SLS D	W2SLS O	3SLS D	3SLS O
Vin	-0.561	0.906	-0.561	0.906	-0.561	0.898
IP	-0.746	0.948	-0.746	0.948	-0.746	0.938
Surface	-0.034	0	-0.034	0	-0.034	0.032
Revenus	0	0	0	0	-0	0
Pesticides	-0.113	0	-0.113	0	-0.113	0.105

Conclusions

- Le rôle des pésticides
- Le marché du vin
- Validité
- Limitations
- Ouverture

Bibliographie

- Cembalo L., Caracciolo F., & Pomarici E. (2014). Drinking cheaply: the demand for basic wine in italy. Australian Journal of Agricultural and Resource Economics, 58(3). 374-391.
- Butault J-P., Delame N., Jacquet F. & Zardet G. (2011). L'utilisation des pesticides en France: état des lieux et perspectives de réduction. Notes et études socio-économiques, 35. 7-26
- ▶ Pujol J. (2017). Apports des produits phytosanitaires en viticulture et climat : une analyse à partir des enquêtes pratiques culturales. *Agreste Les Dossiers*. 39. 3-25