Formelsammlung Energietechnik

Alexandros Raptis, Maximilian Schnadt

21. Juni 2022

Inhaltsverzeichnis

1	Mathematik	1
	1.1 Komplexe Zahlen	1
	1.2 Trigonometrie	1
2		2
	2.1 Elementargesetze	2
	2.2 Gleichstromkreise	2
	2.3 Wechselstromkreise	2
3	Energietechnik	2
	3.1 Leiterspannungen	2
	3.2 Kurzschlussberechnungen	
4	Physikalische Konstanten	3
5	Symbole und Formelzeichen	3

1 Mathematik

1.1 Komplexe Zahlen

Die schönste Gleichung der Mathematik

$$e^{i\pi} = -1 \tag{1.1.1}$$

Eulersche Identität

$$r \cdot e^{j\varphi} = r \cdot [\cos(\varphi) + j \cdot \sin(\varphi)]$$
 (1.1.2)

1.2 Trigonometrie

Winkel zwischen x und y Achse

$$tan(\varphi) = \frac{y}{x} \Rightarrow \varphi = \arctan(\frac{y}{x}) + \theta$$

$$\theta = \begin{cases} 0 & x > 0, \ y > 0 \\ \pi & x < 0, \ y \neq 0 \\ 2\pi & x > 0, \ y < 0 \end{cases}$$
(1.2.1)

Zeigerlänge aus Realteil und Imaginärteil

$$r = \sqrt{x^2 + y^2} \tag{1.2.2}$$

Realteil und Imaginärteil aus Zeigerlänge

$$x = r \cdot \cos(\varphi)$$

$$y = r \cdot \sin(\varphi)$$
(1.2.3)

Winkelgeschwindigkeit, Frequenz und Periodendauer

$$\omega = 2\pi f = \frac{2\pi}{T} \tag{1.2.4}$$

Multiplikation von Potenzen

$$a^b \cdot a^c = a^{b+c} \tag{1.2.5}$$

2 Elektrotechnik

2.1 Elementargesetze

Ohmsches Gesetz (+ im Komplexen)

$$R = \frac{U}{I} \quad \underline{Z} = \frac{\underline{U}}{I} \tag{2.1.1}$$

Elektrische Leistung

$$P = U \cdot I = \frac{U^2}{R} = I^2 \cdot R \tag{2.1.2}$$

Elektrische Energie

$$W = P \cdot t \tag{2.1.3}$$

Wirkungsgrad

$$\eta = \frac{P_{in}}{P_{cut}} \tag{2.1.4}$$

Temperaturabhängigkeit des Widerstands

$$R_{\vartheta} = R_{20} \cdot (1 + \alpha_{20} \cdot \Delta \vartheta) \tag{2.1.5}$$

2.2 Gleichstromkreise

Reihenschaltung Widerstände

$$R_{ges} = \sum_{n} R_n \tag{2.2.1}$$

Parallelschaltung Widerstände

$$\frac{1}{R_{ges}} = \sum_{n} \frac{1}{R_{n}}$$

$$\Rightarrow R_{ges} = \frac{1}{\sum_{n} \frac{1}{R_{n}}}$$
(2.2.2)

Spannungsteiler

$$\frac{U_1}{U_{qes}} = \frac{R_1}{R_{qes}} {2.2.3}$$

Stromteiler

$$\frac{I_1}{I_2} = \frac{R_2}{R_1} \tag{2.2.4}$$

2.3 Wechselstromkreise

Merksatz Spulen

"Bei Induktivitäten, die Ströme sich verspäten."

Merksatz Kondensatoren

"Im Kondensator eilt der Strom vor."

Widerstand Kondensator

$$X_C = \frac{1}{j2\pi fC} {(2.3.1)}$$

Widerstand Spule

$$X_L = j2\pi fL \tag{2.3.2}$$

3 Energietechnik

3.1 Leiterspannungen

Leiterspannung im Dreiphasen-Netz

$$U_L = U \cdot \sqrt{3} \tag{3.1.1}$$

3.2 Kurzschlussberechnungen

Minimaler Kurzschlussstrom

$$I_{K_{min}} = I_K \cdot c_{min} \tag{3.2.1}$$

Maximaler Kurzschlussstrom

$$I_{K_{max}} = I_K \cdot c_{max} \tag{3.2.2}$$

Anfangs-Kurzschlusswechselstrom

$$I_k'' = \frac{c \cdot U_n}{\sqrt{3} \cdot |Z_k|} \tag{3.2.3}$$

Kurzschlussimpedanz

$$|\underline{Z}_k| = R_k + jX_k \tag{3.2.4}$$

Stoßziffer

$$\kappa = 1,02 + 0,98 \cdot e^{-3\frac{R_{tot}}{X_{tot}}} \tag{3.2.5}$$

Stoßkurzschlussstrom

$$i_p = \sqrt{2\kappa} I_k'' \tag{3.2.6}$$

Netzinnenimpedanz (Quellenimpedanz)

$$Z_Q = c \cdot \frac{U_{nQ}^2}{S_{KO}''} \tag{3.2.7}$$

Verhältnis Resistanz und Reaktanz

$$\frac{R_Q}{X_Q} = \begin{cases}
0 & U_N > 35kV \\
0.1 & \text{sonstige Fälle}
\end{cases}$$
zu Fall 2: $X_Q = 0.995 Z_Q$ (3.2.8)

Trafoimpedanz

$$Z_T = \frac{u_k}{100\%} \cdot \frac{U_T^2}{S_T} \tag{3.2.9}$$

Trafowiderstand

$$R_T = \frac{u_R}{100\%} \cdot \frac{U_T^2}{S_T} \tag{3.2.10}$$

Traforeaktanz

$$X_T = \sqrt{Z_T^2 - R_T^2} (3.2.11)$$

4 Physikalische Konstanten

Elementarladung¹

$$e = 1,602 \ 176 \ 634 \cdot 10^{-19} \text{As}$$
 (4.0.1)

Permeabilität Vakuum (magn. Feldkonstante) 1

$$\mu_0 = 1,256 \ 637 \ 062 \cdot 10^{-6} \frac{\text{Vs}}{\text{Am}}$$
 (4.0.2)

Permittivität Vakuum (elektr. Feldkonstante) 1

$$\varepsilon_0 = 8,854 \ 187 \ 812 \cdot 10^{-12} \frac{\text{As}}{\text{Vm}}$$
 (4.0.3)

5 Symbole und Formelzeichen

In eckigen Klammern ist, wo angemessen, das zugehörige Einheitenzeichen angegeben.

l = Länge [m]

 $A = \text{Fläche}[m^2]$

t = Zeit [s]

U = Spannung[V]

I = Strom [A]

 $R = \text{Widerstand} [\Omega]$

P = Leistung [W]

W = Energie [J]

 $\eta = Wirkungsgrad$

 $\vartheta = \text{Temperatur}[K]$

X = Reaktanz

Z = Komplexer Widerstand

S = Komplexe Leistung

 $I_k = Kurzschlussstrom$

 $I_k'' = \text{Anfangs-Kurzschlusswechselstrom}$

c = Spannungsfaktor

 $U_n = \text{Nennspannung}$

 $\underline{Z}_k = \text{Kurzschlussimpedanz}$

L = Induktivität [H]

C = Kapazität [F]

https://physics.nist.gov/cuu/pdf/wall_ 2018.pdf

Q = elektr. Ladung [As]

 $\kappa=$ Stoßziffer

 $R_{tot} = \text{Totaler Wirkwiderstand}$

 $X_{tot} = \text{Totaler Blindwiderstand}$

 $i_p = \text{Stoßkurzschlussstrom}$

 $\hat{I}_b = \text{Ausschaltwechselstrom}$

 $S_k''' =$ Anfangs-Kurzschlusswechselstromleistung

 $R_Q =$ Wirkwiderstand Quelle

 $X_Q = Blindwiderstand Quelle$

 $Z_Q =$ Impedanz Quelle

 $R_T =$ Wirkwiderstand Trafo

 $X_T = Blindwiderstand Trafo$

 $Z_T = \text{Impedanz Trafo}$

 $u_k = \text{Relative Kurzschlussspannung}$

 $u_R =$ Relativer ohmscher Spannungsabfall