BCMB/CHEM 8190 *ANSWERS TO PROBLEM SET 2*

1) $T_2^* = 1/(\pi \times \Delta v_{1/2}) = 1/(\pi \times 2) = 0.16$ s = T_2 if line width is totally dictated by spin relaxation (no magnetic field inhomogeneity).

If 1Hz of the 2 Hz width is from inhomogeneity, T_2^* is still 0.16 s, but T_2 is 0.32.

The FID decays with T₂* and multiplying with an exponential with a 1 s decay constant (T_e) adds to the decay constant: $\exp(-t/T_2^*) \times \exp(-t/T_e) = \exp(-t/T_2^* + -t/T_e) =$ $\exp(-t^*(T_2^*+T_e)/(T_2^*\times T_e))$, so, effective decay constant is $(T_2^*+T_e)/(T_2^*\times T_e)=0.138$, and line width becomes 2.3 Hz. These decay constants are often entered as line broadening (LB) or effective $1/T_2^* = 1/(\pi \times LB) + 1/0.16$. An LB of 1 Hz would add 1Hz to the line width.

- 2) a) acqusition time should be approximately T_2^* , or 0.3s
- b) spectral width (Hz) for 200 ppm @ 50 MHz = 200 ppm × 50 Hz/ppm = 10,000 Hz the dwell time should be $1/(2 \times \text{spectral width})$ or $1/20000 = 5 \times 10^{-5}$ s. For a 0.3 s acquisition one needs at least $0.3/(5\times10^{-5})=6000$ complex points.
- c) the Ernst formula says optimal pulse angle = $\cos^{-1}[\exp(-aq/T_1)]$; optimum pulse angle is 20 degrees
- d) none if signal to noise is to be optimized
- e) line broadening should be about $1/(\pi \times T_2)$ or 1 Hz if signal to noise is to be optimized.
- 3) 4 minutes is long enough to reach steady state so S/N increases on averaging are well approximated by the square root of the length of time. Hence S/N after 100 min is 25:1 $(5 \times \sqrt{100}/\sqrt{4}).$
- $J_{\rm PH}$ = 21 x cos(θ)² 2.25 = 18.8 for 180°, and 3.0 for 60° 4)

	Ideal Coupli	ngs				
	Trans	Gauche-	Gauche+			
$^{3}J_{PH'}$	3.0	18.8	3.0			
$^{3}J_{PH"}$	3.0	3.0	18.8			
				"trans"	"gauche+"	"gauche-"
Experimental				Р	Р	Р
$^{3}J_{PH'} = f_{T}(3.0) + f_{G+}(3.0) + f_{G-}(18.8) = 6.0$ $^{3}J_{PH''} = f_{T}(3.0) + f_{G+}(18.8) + f_{G-}(3.0) = 8.0$				H' H"	, <u> </u>	H",
$^{3}J_{PH''} = f_{T}(3.0) + f_{G+}(18.8) + f_{G-}(3.0) = 8.0$				\times	\times	\times
$f_T + f_G$	$G_{+} + f_{G_{-}} = 1.0$					
Implies: $f_T = 0.5$, $f_{G+} = 0.3$, $f_{G-} = 0.2$					H"	H'

5) The carbonyl carbon uses an sp² hybrid orbital to bond to the nitrogen as opposed to an sp³ orbital for the $C\alpha$ carbon. Hence the s character ratio is 1/3 vs 1/4 and the coupling to the α carbon should be $\frac{3}{4}$ of 15 or about 11 Hz – this is approximately correct. If we consider the nitrogen of the C'-N bond to also use an sp² hybrid, the only difference from C=C in ethylene would come from the magnetogyric ratios and the C=C coupling in ethylene would be about 10/4 = 2.5 times larger – again approximately correct.