Reducing Complicated Block Niagrams: O Move summation + take-off politi to desirable positions (to evoid staggered laps) 1. Combine all cascade blocks (multiply) (G, G2) 2. Combine all parallel blocks (add) (G1+G2) 3. Elininate all feedback loops (G1+G2)

Block Diagram Transformations

	Manipulation	Original Block Diagram	Equivalent Block Diagram	Equation
1	Combining Blocks in Cascade	$X \longrightarrow G_1 \longrightarrow G_2 \longrightarrow Y$	$X \longrightarrow G_1G_2 \longrightarrow Y$	$Y = (G_1 G_2) X$
2	Combining Blocks in Parallel; or Eliminating a Forward Loop	$X \longrightarrow G_1 \longrightarrow Y$	$X \longrightarrow G_1 \pm G_2 \longrightarrow Y$	$Y = (G_1 \pm G_2)X$
3	Moving a pickoff point behind a block	u G y	$u \longrightarrow G \longrightarrow y$ $u \longrightarrow 1/G$	$y = Gu$ $u = \frac{1}{G}y$
4	Moving a pickoff point ahead of a block	$u \longrightarrow G \longrightarrow y$	$ \begin{array}{cccc} u & & & & & & & & & & & & & & & & & & &$	y = Gu
5	Moving a summing point behind a block		$u_1 \longrightarrow G \longrightarrow y$ $u_2 \longrightarrow G$	$e_2 = G(u_1 - u_2)$
6	Moving a summing point ahead of a block	$u_1 \longrightarrow G \longrightarrow y$ u_2	$u_1 \longrightarrow G \longrightarrow y$ $1/G \longrightarrow u_2$	$y = Gu_1 - u_2$

Modeling Mechanical Systems: J'ALL MODELS ARE WRONG, BUT SOME ARE USEFUL - Newton's second law. \$ M = J0 1 3 S S S S (Double integrator)

State- Space Form:

Components of a J-ww->F (Stores energy) F = kx (Lissipates energy) J-C-F $F = C \propto$ perallel $F = (k_1 + k_2) \times$ $\begin{cases} \frac{1}{k_1} + \frac{1}{k_2} \\ \frac{1}{k_1} + \frac{1}{k_2} \end{cases}$ F = $\frac{1}{k_1} + \frac{1}{k_2}$ Series

Mass-Spring-Damper

$$F_{k}=ky$$

$$F_{c}=cy$$

$$ma = 2F$$

$$m\ddot{y} = F - ky - cy$$

$$F$$

$$m\ddot{y} + c\ddot{y} + ky = F = u$$

$$x_1 = y$$
 $\Rightarrow |\dot{x}_1| = \dot{y} = |x_2|$

$$x_2 = y = x_2 = y = -\frac{c}{m}x_2 - \frac{k}{m}x_1 + (\frac{1}{m})y_2$$