计算机组成原理

第六讲

张展

哈尔滨工业大学 容错与移动计算研究中心

第4章存储器

4.1 概述

4.2 主存储器

4.3 高速缓冲存储器

4.4 辅助存储器

4.2 主存储器

- 一、概述
 - 1. 主存的基本组成
 - 2. 主存和CPU的联系
 - 3. 主存中存储单元地址的分配
 - 4. 主存的技术指标
- 二、半导体芯片简介概述
 - 1. 半导体存储芯片的基本结构
 - 2. 半导体存储芯片的译码驱动方式
- 三、随机存取存储器(RAM)
 - 1. 静态 RAM (SRAM)

三、随机存取存储器(RAM)

4.2

1. 静态 RAM (SRAM)

(1) 静态 RAM 基本电路

① 静态 RAM 基本电路的 读 操作

4.2

② 静态 RAM 基本电路的 写 操作

4.2

(2) 静态 RAM 芯片举例

① Intel 2114 外特性

曾经讲到过的重合法,怎么实现选一次四列?

2022/8/24

4.2

(2) 静态 RAM 芯片举例

① Intel 2114 外特性

(3) 静态 RAM 读 时序

4.2

tm VE 失效后的数据维持时间

2022/

2. 动态 RAM (DRAM)

(1) 动态 RAM 基本单元电路 数据线 读选择线 预充电信号 字线 写选择线

读数据线

读出与原存信息相反写入与输入信息相同

读出时数据线有电流 为 "1" 写入时 $C_{\rm S}$ 充电为 "1" 放电为 "0

写数据线

(2) 动态 RAM 芯片举例

4.2

① 三管动态 RAM 芯片 (Intel 1103) 读

4.2

4.2

4.2

③ 单管动态 RAM 4116 (16K × 1位) 外特性 4.2

(3) 动态 RAM 时序

DOUT 有效

4.2

行、列地址分开传送

 读时序
 写时序

 行地址 RAS 有效
 行地址 RAS 有效

 写允许 WE 有效(高)
 写允许 WE 有效(低)

 列地址 CAS 有效
 数据 D_{IN} 有效

列地址 CAS 有效

(4) 动态 RAM 刷新

4.2

刷新与行地址有关

① 集中刷新 (存取周期为0.5 µs)以128×128矩阵为例

"死区"为

 $0.5 \mu s \times 128 = 64 \mu s$

"死时间率"为 128/4 000 × 100% = 3.2%

②分散刷新(存取周期为1µs)

4.2

以 128×128 矩阵为例

	W/R	REF	W/R		W/R	REF	W/R	REF	W/R	W/R	REF	
		0				126		127				
*	t_{M}	$\stackrel{t_{\mathrm{R}}}{\longleftrightarrow}$										
									-			

$$t_{\rm C} = t_{\rm M} + t_{\rm R}$$

$$\downarrow \qquad \downarrow$$
读写 刷新

无 "死区"

(存取周期为 $0.5 \mu s + 0.5 \mu s$)

③分散刷新与集中刷新相结合(异步刷新)4

对于 128×128 的存储芯片 (存取周期为 0.5 μs) 若每隔 15.6 μs 刷新一行

每行每隔 2 ms 刷新一次

"死区"为 0.5 μs

将刷新安排在指令译码阶段,不会出现"死区"

2022/8/24

3. 动态 RAM 和静态 RAM 的比较

主存	DRAM	SRAM	
存储原理	电容	触发器	缓存
集成度	高	低	
芯片引脚	少	多	
功耗	小	大	
价格	低	高	
速度	慢	快	
刷新	有	无	

2022/8/24

4.2

四、只读存储器(ROM)

1. 掩模 ROM (MROM)

行列选择线交叉处有 MOS 管为"1" 行列选择线交叉处无 MOS 管为"0"

2. PROM (一次性编程)

熔丝断 为"0"

熔丝未断 为"1"

3. EPROM (多次性编程)

4.2

(1) N型沟道浮动栅 MOS 电路

G栅极

S源

D 漏

紫外线全部擦洗

D端加正电压

D端不加正电压

形成浮动栅

不形成浮动栅

S与D不导通为"0"

S与D导通为"1"

(2) 2716 EPROM 的逻辑图和引脚

PD/Progr 功率下降 / 编程输入端 读出时 为 低电平

4. EEPROM (多次性编程)

4.2

电可擦写

局部擦写

全部擦写

5. Flash Memory (闪速型存储器)

EPROM

价格便宜 集成度高

EEPROM

电可擦洗重写

比 EEPROM快 具备 RAM 功能