Práctico e

Ortogonalidad y Espectro

Problemas del libro Strang: secciones I.5 y I.6

- 1. Si \mathbf{u} y \mathbf{v} son vectores unitarios ortogonales, demuestra que $\mathbf{u} + \mathbf{v}$ es ortogonal a $\mathbf{u} \mathbf{v}$. ¿Cuáles son las longitudes de esos vectores?
- 2. Dibuja vectores unitarios \mathbf{u} y \mathbf{v} que no sean ortogonales. Demuestra que $\mathbf{w} = \mathbf{v} \mathbf{u}(\mathbf{u}^T\mathbf{v})$ es ortogonal a \mathbf{u} (y añade \mathbf{w} a tu dibujo).
- 3. Propiedad clave de toda matriz ortogonal: $\|Q\mathbf{x}\|^2 = \|\mathbf{x}\|^2$ para todo vector \mathbf{x} . Más aún, demuestra que $(Q\mathbf{x})^T(Q\mathbf{y}) = \mathbf{x}^T\mathbf{y}$ para todo vector \mathbf{x} y y. Entonces, las longitudes y ángulos no cambian bajo la acción de Q. ¡Los cálculos con Q nunca se desbordan!
- 4. Si Q es ortogonal, ¿cómo sabes que Q es invertible y que Q^{-1} también es ortogonal? Si $Q_1^T = Q_1^{-1}$ y $Q_2^T = Q_2^{-1}$, demuestra que Q_1Q_2 también es una matriz ortogonal.
- 5. Una **matriz de permutación** tiene las mismas columnas que la matriz identidad (en otro orden). *Explica por qué esta matriz de permutación y toda matriz de permutación es ortogonal*:

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

tiene columnas ortonormales, así que $P^TP = \underline{\hspace{1cm}} y P^{-1} = \underline{\hspace{1cm}}$.

6. Cuando una matriz es simétrica u ortogonal, *tendrá vectores propios ortogonales*. Esta es la propiedad más importante de las matrices ortogonales en álgebra aplicada.

Cuatro vectores propios de la matriz P son $\mathbf{x}_1 = (1,1,1,1)$, $\mathbf{x}_2 = (1,i,i^2,i^3)$, $\mathbf{x}_3 = (1,i^2,i^4,i^6)$, y $\mathbf{x}_4 = (1,i^3,i^6,i^9)$. Multiplica P por cada vector para encontrar $\lambda_1,\lambda_2,\lambda_3,\lambda_4$. Los vectores propios son las columnas de la matriz de Fourier F:

$$Q = \frac{F}{2} = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix}$$
tiene columnas ortonormales: $\overline{Q}^T Q = I$

7. La rotación

$$Q = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

tiene valores propios complejos $\lambda = \cos \theta \pm i \sin \theta$:

$$Q\begin{bmatrix} 1 \\ -i \end{bmatrix} = (\cos \theta + i \sin \theta) \begin{bmatrix} 1 \\ -i \end{bmatrix}, \quad Q\begin{bmatrix} 1 \\ i \end{bmatrix} = (\cos \theta - i \sin \theta) \begin{bmatrix} 1 \\ i \end{bmatrix}.$$

Verifica que $\lambda_1 + \lambda_2$ es igual al trazo de Q (suma $Q_{11} + Q_{22}$ sobre la diagonal).

Verifica que $(\lambda_1)(\lambda_2)$ es igual al determinante.

Verifica que esos vectores propios complejos son ortogonales, usando el producto complejo $x_1 \cdot x_2$ (no solamente $x_1 \cdot x_2$ real).

¿Cuál es Q^{-1} y cuáles son sus valores propios?

- 8. (a) Si sabes que x es un vector propio, la forma de encontrar λ es
 - (b) Si sabes que λ es un valor propio, la forma de encontrar \mathbf{x} es
- 9. Encuentra los valores y vectores propios de ambas matrices de Markov A y A^{∞} . Explica con base en esas respuestas por qué A^{100} es cercano a A^{∞} :

$$A = \begin{bmatrix} .6 & .2 \\ .4 & .8 \end{bmatrix}, \quad A^{\infty} = \begin{bmatrix} 1/3 & 1/3 \\ 2/3 & 2/3 \end{bmatrix}.$$

10. El determinante de A es igual al producto $\lambda_1 \lambda_2 \cdots \lambda_n$. Comienza con el polinomio característico det $(A - \lambda I)$ factorizado (siempre se puede). Entonces al poner $\lambda = 0$:

$$\det(A - \lambda I) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda), \text{ así que } \det A = \underline{\hspace{1cm}}.$$

11. Elige las últimas filas de A y C para obtener los autovalores 4,7 y 1,2,3:

Matrices compañeras:
$$A = \begin{bmatrix} 0 & 1 \\ * & * \end{bmatrix}$$
, $C = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ * & * & * \end{bmatrix}$

12. Esta matriz es singular con rango uno. Encuentra tres autovalores λ y tres autovectores:

$$A = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 2 \\ 4 & 2 & 4 \\ 2 & 1 & 2 \end{bmatrix}$$

2

- 13. Supón que A y B tienen los mismos autovalores $\lambda_1, \ldots, \lambda_n$ y los mismos autovectores independientes x_1, \ldots, x_n . Entonces A = B. **Razón:** cualquier vector x es una combinación lineal $c_1x_1 + \cdots + c_nx_n$. ¿Qué es Ax? ¿Qué es Bx?
- 14. Supón que A tiene autovalores 0, 3, 5, con autovectores independientes u, v, w.
 - a) Da una base para el núcleo y una base para la imagen (espacio columna).
 - b) Encuentra una solución particular a Ax = v + w. ¿Cuáles son todas las soluciones?
 - c) Ax = u no tiene solución. Si la tuviera, entonces __ estaría en la imagen.
- 15. a) Factoriza las siguientes matrices como $A = X\Lambda X^{-1}$:

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}, \quad A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

b) Si $A = X\Lambda X^{-1}$, entonces:

$$A^3 = (\)(\)(\), \quad A^{-1} = (\)(\)(\)$$

- 16. Supón que $A = X\Lambda X^{-1}$. ¿Cuál es la matriz de autovalores para A + 2I? ¿Cuál es la matriz de autovectores? Verifica que $A + 2I = (\)(\)(\)^{-1}$.
- 17. Verdadero o falso: Si las columnas de *X* (autovectores de *A*) son linealmente independientes, entonces
 - (a) A es invertible (b) A es diagonalizable
 - (c) X es invertible (d) X es diagonalizable.
- 18. Escribe la matriz más general que tenga como vectores propios [1,1] y [1,-1].
- 19. Verdadero o falso: Si los autovalores de *A* son 2, 2, 5, entonces la matriz es ciertamente
 - (a) A invertible (b) A diagonalizable
 - (c) X invertible X diagonalizable.
- 20. $A^k = X\Lambda^k X^{-1}$ se aproxima a la matriz cero cuando $k \to \infty$ si y solo si cada λ tiene valor absoluto menor que uno.
- 21. Supón que la misma matriz X diagonaliza ambas A y B. Tienen los mismos autovectores en $A = X\Lambda_1X^{-1}$ y $B = X\Lambda_2X^{-1}$. Prueba que AB = BA.
- 22. La traspuesta de $A = X\Lambda X^{-1}$ es $A^T = (X^{-1})^T \Lambda X^T$. Los autovectores en $A^T y = \lambda y$ son las columnas de la matriz $(X^{-1})^T$. Se llaman frecuentemente <u>autovectores izquierdos</u> de A porque $y^T A = \lambda y^T$. ¿Cómo multiplicas matrices para obtener esta fórmula para A?

Suma de matrices de rango 1: $A = X\Lambda X^{-1} = \lambda_1 x_1 y_1^T + \dots + \lambda_n x_n y_n^T$