

NHD-0420H1Z-FSW-GBW

Character Liquid Crystal Display Module

NHD- Newhaven Display 0420- 4 Lines x 20 Characters

H1Z- Model

F- Transflective

SW- Side White LED Backlight
G- STN Positive - Gray
B- 6:00 Optimal View

W- Wide Temp.

RoHS Compliant

Newhaven Display International, Inc.

2661 Galvin Ct. Elgin IL, 60124

Ph: 847-844-8795 Fax: 847-844-8796

Document Revision History

Revision	Date	Description	Changed by
0	10/21/2008	Initial Release	-
1	1/28/2010	User Guide Reformat	MC
2	1/5/2011	Update Driver Information	JT
3	5/6/2011	Electrical characteristics updated	AK
4	9/9/2015	Mechanical drawing, electrical and optical characteristics	SB
		updated, timing characteristics added	
5	10/10/2016	Updated Electrical Characteristics	TM
6	3/13/18	Backlight Characteristics Updated	SB

Functions and Features

- 4 lines x 20 characters
- Built-in controller ST7066U
- +5.0V Power Supply
- 1/16 duty, 1/4 bias
- RoHS compliant

Pin Description and Wiring Diagram

Pin No.	Symbol	External Connection	Function Description
1	Vss	Power Supply	Ground
2	V_{DD}	Power Supply	Supply voltage for logic (+5.0V)
3	V_0	Power Supply	Supply voltage for contrast (approx. 0.6V)
4	RS	MPU	Register Select signal. RS=0: Command, RS=1: Data
5	R/W	MPU	Read/Write select signal, R/W=1: Read R/W:=0: Write
6	Е	MPU	Operation Enable signal. Falling edge triggered.
7-10	DB0-DB3	MPU	Four low order bi-directional three-state data bus lines. These
			four are not used during 4-bit operation.
11-14	DB4-DB7	MPU	Four high order bi-directional three-state data bus lines.
15	LED+	Power Supply	Backlight Anode (+5.0V via on-board resistor)
16	LED-	Power Supply	Backlight Cathode(Ground)

Recommended LCD connector: 2.54mm pitch pins **Backlight connector:** --- **Mates with:** ---

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	T _{OP}	Absolute Max	-20	-	+70	°C
Storage Temperature Range	T _{ST}	Absolute Max	-30	1	+80	°C
Supply Voltage	V_{DD}	-	4.8	5.0	5.2	V
Supply Current	I _{DD}	Ta=25°C,	1.0	1.5	2.5	mA
Supply for LCD (contrast)	V_{LCD}	$V_{DD}=5.0V$	4.2	4.4	4.6	V
"H" Level input	V _{IH}	-	0.7*V _{DD}	-	V_{DD}	V
"L" Level input	VIL	-	0	-	0.6	V
"H" Level output	Vон	-	3.9	-	V _{DD}	V
"L" Level output	Vol	-	Vss	-	0.2*Vss	V
Backlight Supply Voltage	V _{LED}	-	4.8	5.0	5.2	V
Backlight Supply Current	I _{LED}	V _{LED} =5.0V	8	15	25	mA

Optical Characteristics

	Item			Condition	Min.	Тур.	Max.	Unit
Omtima	Тор		φΥ+		-	40	-	0
Optimal	Bott	tom	φΥ-	CR ≥ 2	-	60	•	0
Viewing	Left		θХ-	CR 2 Z	-	60	-	0
Angles	Righ	nt	θХ+		-	60	-	0
Contrast Rat	io		CR	-	2	5	-	-
Dosnonso T	ima	Rise	T_R	T - 25°C	-	150	250	ms
Response T	ime	Fall	T_{F}	$T_{OP} = 25^{\circ}C$	1	200	300	ms

Controller Information

Built-in ST7066U controller.

Please download specification at http://www.newhavendisplay.com/app notes/ST7066U.pdf

DDRAM Address

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
00	01	02	03	04	05	06	07	80	09	0A	OB	0C	0D	0E	OF	10	11	12	13
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	50	51	52	53
14	15	16	17	18	19	1A	1B	1C	1D	1E	1F	20	21	22	23	24	25	26	27
54	55	56	57	58	59	5A	5B	5C	5D	5E	5F	60	61	62	63	64	65	66	67

Table of Commands

				Ins	tructi	ion co	ode					Execution
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	time (fosc= 270 KHZ
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRA and set DDRAM address to "00H" from AC	1.53ms
Return Home	0	0	0	0	0	0	0	0	1	-	Set DDRAM address to "00H" From AC and return cursor to Its original position if shifted. The contents of DDRAM are not changed.	1.53ms
Entry mode Set	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor moving direction And blinking of entire display	39us
Display ON/ OFF control	0	0	0	0	0	0	1	D	С	В	Set display (D), cursor (C), and Blinking of cursor (B) on/off Control bit.	
Cursor or Display shift	0	0	0	0	0	1	S/C	R/L	-	-	Set cursor moving and display Shift control bit, and the Direction, without changing of DDRAM data.	39us
Function set	0	0	0	0	1	DL	N	F	-	-	Set interface data length (DL: 8-Bit/4-bit), numbers of display Line (N: =2-line/1-line) and, Display font type (F: 5x11/5x8)	39us
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	39us
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	39us
Read busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal Operation or not can be known By reading BF. The contents of Address counter can also be read.	0us
Write data To Address	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	43us
Read data From RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	43us

Timing Characteristics

Writing data from MPU to ST7066U

TA = 25°C, VCC = 5V

	Write Mode (Writing data from MPU to ST7066U)										
T _c	Enable Cycle Time	1200	ı	ı	ns						
T _{PW}	Enable Pulse Width	Pin E	140	ı	ı	ns					
T_R, T_F	Enable Rise/Fall Time	-	1	25	ns						
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	-	-	ns					
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	-	1	ns					
T _{DSW}	Data Setup Time	Pins: DB0 - DB7	40	-	-	ns					
T _H	Data Hold Time	Pins: DB0 - DB7	10	ı	ı	ns					

Reading data from ST7066U to MPU

TA = 25°C, VCC = 5V

IA - 23 C, V	<u> </u>										
	Read Mode (Reading Data from ST7066U to MPU)										
Tc	Enable Cycle Time	Pin E	1200	-	-	ns					
T _{PW}	Enable Pulse Width	Pin E	140	-	-	ns					
T_R,T_F	Enable Rise/Fall Time	Pin E	-	-	25	ns					
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	-	-	ns					
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	-	-	ns					
T _{DDR}	Data Setup Time	Pins: DB0 - DB7	-	-	100	ns					
T _H	Data Hold Time	Pins: DB0 - DB7	10	-	-	ns					

Built-in Font Table

<u>67-64</u> 63-60	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	CG RAM (1)															
0001	(2)															
0010	(3)															
0011	(4)														8.	**
0100	(5)															
0101	(6)											×				ü
0110	7)		8			W						H				
0111	(8)					W							×			m
1000	(1)					×										8
1001	(2)															
1010	(3)					X										*
1011	(4)			*	×						×	*				×
1100	(5)			×												
1101	(6)				M		m					×				
1110	(7)						M									
1111	(8)						۵						×			

Example Initialization Program

```
8-bit Initialization:
void command(char i)
      P1 = i;
                                        //put data on output Port
      D I = 0;
                                        //D/I=LOW : send instruction
      RW=0;
                                       //R/W=LOW : Write
      E^{-} = 1;
                                     //enable pulse width >= 300ns
      Delay(1);
       E = 0;
                                        //Clock enable: falling edge
void write(char i)
      P1 = i;
                                        //put data on output Port
      D I = 1;
                                        //D/I=HIGH : send data
      RW = 0;
                                        //R/W=LOW : Write
      E^{-} = 1;
      Delav(1);
                                       //enable pulse width >= 300ns
      E = 0;
                                        //Clock enable: falling edge
void init()
{
      E = 0;
      Delay(100);
                                       //Wait >40 msec after power is applied
      command(0x30);
    //command 0x30 = Wake up
Delay(30);
    //must wait 5ms, busy flag not available
command(0x30);
    //command 0x30 = Wake up #2
Delay(10);
    //must wait 160us, busy flag not available
command(0x30);
    //command 0x30 = Wake up #3
Delay(10);
    //must wait 160us, busy flag not available
command(0x38);
    //Function set: 8-bit/2-line
command(0x10);
    //Set cursor
command(0x0c);
    //Display ON; Cursor ON
      command(0x30);
Delay(30);
                                       //command 0x30 = Wake up
                                       //Display ON; Cursor ON
                                        //Entry mode set
      command (0x06);
/*********************
```

```
4-bit Initialization:
void command(char i)
      P1 = i;
                                   //puc.
//D/I=LOW : senu ...
//R/W=LOW : Write
//Send lower 4 bits
//Shift over by 4 bits
//put data on output Port
//Send upper 4 bits
                                      //put data on output Port
      D I = 0;
                                      //D/I=LOW : send instruction
      R^{-}W = 0;
      Nybble();
      i = i << 4;
      P1 = i;
      Nybble();
/***********************
void write(char i)
      P1 = i;
                                      //put data on output Port
                                   //D/I=HIGH : send data
//R/W=LOW : Write
//Clock lower 4 bits
//Shift over by 4 bits
//put data on output Port
     D I = 1;
     RW=0;
     Nybble();
      i = i << 4;
     P1 = i;
      Nybble();
                                       //Clock upper 4 bits
void Nybble()
      E = 1;
     Delay(1);
                                      //enable pulse width >= 300ns
      E = 0;
                                       //Clock enable: falling edge
/***********************
void init()
{
      P1 = 0;
      P3 = 0;
      Delay(100);
                                       //Wait >40 msec after power is applied
      P1 = 0x30;
                                       //put 0x30 on the output port
      Delay(30);
                                       //must wait 5ms, busy flag not available
      Nybble();
                                       //command 0x30 = Wake up
      Delay(10);
                                      //must wait 160us, busy flag not available
      Nybble();
                                      //command 0x30 = Wake up #2
                                //command 0x30 = Wake up #2
//must wait 160us, busy flag not available
//command 0x30 = Wake up #3
//can check busy flag now instead of delay
//put 0x20 on the output port
//Function set: 4-bit interface
//Function set: 4-bit/2-line
//Set cursor
//Display ON: Blinking cursor
      Delay(10);
      Nybble();
      Delay(10);
      P1 = 0x20;
      Nybble();
      command(0x28);
      command(0x10);
                                      //Display ON; Blinking cursor
      command(0x0F);
      command (0x06);
                                       //Entry Mode set
```

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage	+80°C , 48hrs	2
	temperature for a long time.		
Low Temperature storage	Endurance test applying the low storage	-30°C , 48hrs	1,2
	temperature for a long time.		
High Temperature	Endurance test applying the electric stress	+70°C , 48hrs	2
Operation	(voltage & current) and the high thermal		
	stress for a long time.		
Low Temperature	Endurance test applying the electric stress	-20°C , 48hrs	1,2
Operation	(voltage & current) and the low thermal		
	stress for a long time.		
High Temperature /	Endurance test applying the electric stress	+40°C, 90% RH, 48hrs	1,2
Humidity Operation	(voltage & current) and the high thermal		
	with high humidity stress for a long time.		
Thermal Shock resistance	Endurance test applying the electric stress	0°C, 30min -> 25°C, 5min ->	
	(voltage & current) during a cycle of low	50°C, 30min = 1 cycle	
	and high thermal stress.	For 10 cycles	
Vibration test	Endurance test applying vibration to	10-55Hz, 1.5mm amplitude.	3
	simulate transportation and use.	60 sec in each of 3 directions	
		X,Y,Z	
		For 15 minutes	
Static electricity test	Endurance test applying electric static	VS=800V, RS=1.5kΩ, CS=100pF	
	discharge.	One time	

Note 1: No condensation to be observed.

Note 2: Conducted after 4 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Precautions for using LCDs/LCMs

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information

See Terms & Conditions at http://www.newhavendisplay.com/index.php?main_page=terms

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Newhaven Display:

NHD-0420H1Z-FSW-GBW