

Inteligência Artificial

Métodos de Pesquisa (Search) – Parte III

Paulo Moura Oliveira

Departamento de Engenharias Gabinete F2.15, ECT-1 UTAD

email: <u>oliveira@utad.pt</u>

O Apelo da Evolução

Porque não utilizar mais do que uma potencial solução para um problema de pesquisa?

Para problemas mais complexos a utilização de várias soluções em paralelo pode ser muito vantajosa.

O Apelo da Evolução

E se o espaço de pesquisa não for estático? Na maioria dos problemas práticos o espaço de pesquisa é dinâmico (e.g. Robótica, Condução Autónoma).

Em muitas aplicações o algoritmo de pesquisa deve ter poder de **adaptação** em ambientes dinâmicos.

O Apelo da Evolução

Porquê utilizar a evolução como uma inspiração para resolver problemas computacionais?

Que computador será este?

Os sistemas evolutivos:

- 1. são intrinsecamente paralelos,
- 2. têm capacidade de adaptação.

Computação Evolucionária

✓ Nas décadas de 1950 e 1960 os sistemas evolutivos foram estudados de

forma independente por vários cientistas.

A ideia geral nestes sistemas é evoluir uma população de soluções candidatas a resolver um dado problema usando operadores inspirados na variação genética e na seleção natural.

Computação Evolucionária

✓ Os Algoritmos Evolutivos baseiam-se (mas não só) num modelo da evolução biológica natural formulado inicialmente por Charles Darwin, conhecido como a Teoria da Evolução de Darwin.

Esta teoria explica as mudanças de adaptação das espécies pelo princípio da <u>Seleção Natural</u>, no qual as espécies que melhor se adaptam às suas condições ambientais são as que melhores possibilidades têm de <u>sobreviver</u> e evoluir.

Computação Evolucionária (Origens)

✓ Na década de 1960, Rechenberg (1965,1973) propôs Estratégias Evolutivas, um método utilizado para otimizar parâmetros reais para dispositivos como asas de aviões (airfoils).

https://en.wikipedia.org/wiki/Ingo Rechenberg

Acedido em 28-7-2018

Computação Evolucionária (Origens)

- ✓ Fogel, Owens e Walsh (1966) desenvolveram a **Programação Evolucionária**, uma técnica em que soluções candidatas a determinadas tarefas eram representadas por máquinas de espaços finitos.
- ✓ Os Algoritmos Genéticos foram desenvolvidos por John Holland na Universidade de Michigan nas décadas de 1960 e 1970.
- ✓ Desde então muitos outros algoritmos classificados como evolutivos, tais como:
 - ✓ Programação Genética
 - ✓ Evolução Diferencial
 - **√**.....

O que é um Algoritmo Genético?

Um AG é um algoritmo de pesquisa baseado nos mecanismos da seleção natural e da genética.

A ideia básica é manter uma população de estruturas de conhecimento que representam potenciais soluções para um dado problema.

População:

Conjunto de estruturas de conhecimento (cromossomas) que representam potenciais soluções para um dado problema

O GA **só precisa** de uma forma de aferir o mérito de cada solução.

População:

✓ Consideremos como exemplo problema da caixa negra ilustrado na figura:

f- Função Objetivo

10110

Representação de **um elemento da população** usando uma **codificação binária**.

O AG usa codificações!

População:

✓ Consideremos que a *população* genética *inicial* é inicializada de uma forma *aleatória* usando o processo de atirar a moeda (20 vezes):

Esta população inicial vai dar origem a uma série de novas populações utilizando o AG.

f- Função Objetivo $f(x) = x^2$ Avaliação

População:

✓ Consideremos que a *população* genética *inicial* é inicializada de uma forma *aleatória* usando o processo de atirar a moeda (20 vezes):

Esta população inicial vai dar origem a uma série de novas populações utilizando o AG.

f- Função Objetivo $f(x) = x^2$ Avaliação

Seleção:

✓ Os indivíduos com maior aptidão devem ter maior probabilidade de contribuir com um ou mais descendentes na próxima geração.

Versão artificial da seleção natural e da sobrevivência do mais apto!

✓ Como implementar o operador da seleção? Há muitos métodos, sendo o da Roda da Roleta o mais conhecido.

Nº	String	Aptidão	% do Total
1	01101	169	14.4
2	11000	576	49.2
3	01000	64	5.5
4	10011	361	30.9
Total		1170	100.0

Cruzamento:

- ✓ Os indivíduos selecionados para gerar a nova população vão ter o seu material genético cruzado de forma a obter os descendentes.
- ✓ Como implementar o operador de cruzamento? Há muitos métodos, sendo um dos mais simples, o cruzamento de ponto simples.

✓ O cruzamento é feito de acordo com uma determinada **probabilidade** de cruzamento, p_c (esta taxa usualmente é elevada).

Mutação:

- ✓ Embora a seleção e cruzamento pesquisem de forma eficaz podem ocasionalmente tornar-se zelosos demais e perder informação genética importante.
- ✓ Como implementar o operador de Mutação? Uma forma simples consiste em alterar um bit de acordo com uma determinada **probabilidade de mutação**, p_m (esta taxa usualmente é baixa).

✓ Neste exemplo de população: assumindo p_m =0.001. Isto significa que num total de 5x4=20 bits, 0.001*20=0.02 bits são sujeitos a mutação numa dada geração. Ou seja nenhum bit é modificado.

Mutação:

✓ A mutação embora, de uma forma geral, ocorra com frequência muito baixa pode desempenhar uma papel muito importante, pois pela simples mutação de um bit a solução pode variar significativamente no espaço.

Resumo do Exemplo:

N°	População Inicial	Valor de <i>x</i> <i>Inteiro</i>	$f(x)=x^2$	$\frac{f_i}{\sum f}$	nº de cópias esperado $\frac{f_i}{\bar{f}}$	nº de cópias obtido na RR
1	01101	13	169	0.14	0.58	1
2	11000	24	576	0.49	1.97	2
3	01000	8	64	0.06	0.22	0
4	10011	19	361	0.31	1.23	1
Total			1170	1.0	4.0	4.0
Média			293	0.25	1.0	1.0
Máximo			$\frac{293}{576}$	0.49	1.97	2.0

Resumo do Exemplo:

✓ Após um cruzamento:

Série de Acasalamento	Parceiro (random)	Ponto de Cruzamento (random)	População Nova	Valor de x	f(x)
0110 1	2	4	0110 0	12	144
1100 0	1	4	1100 1	25	625
11 000	4	2	11 011	27	729
10 011	3	2	10 000	16	256
Total Média					1754
Máximo				1	439 729

✓ Comparação com os valores obtidos na geração anterior:

 $\frac{293}{576}$

Um Algoritmo Genético Simples:

```
t=0
inicializar população X(t)
while(!(critério de término))
 avaliar a população
 seleção
 cruzamento
 mutação
 substituição da população
 t=t+1
end while
```

- ✓ Vimos o princípio de funcionamento para cada um dos passos deste algoritmo. Assumindo uma codificação binária.
- ✓ Existe um manancial de tópicos associados aos GA, alguns dos quais extravasam o carácter deste curso introdutório à IA.

Tópicos Selecionados

- 1. Que método de codificação é o mais apropriado para um dado problema? (e.g. binário, real, inteiro, ...)
- 2. Que tipo operador de seleção, cruzamento e mutação se deve utilizar?
- 3. Como garantir a diversidade genética da população ao longo da evolução do GA?

4. Como evitar a convergência prematura do algoritmo?

Tópicos Selecionados

4. Em problemas multimodais (com mais de que um ótimo global) como fazer com que o GA explore e permaneça nos vários picos?

Tópicos Selecionados

4. Como manter ótimos locais na população?

✓ Em problemas com espaço de pesquisa dinâmico, isto pode ser importante.

Tópicos Selecionados

- 5. Como inicializar a população?
- Quando e como se deve utilizar técnicas de restrição ao acasalamento? (e.g. imbreeding, crossbreeding,)
- 7. Como proceder à substituição da população?
- 8. Como garantir que a informação genética de um indivíduo fora de série não seja perdida na evolução?
 - ✓ O *Elitismo* foi uma técnica proposta por De Jong (1975) que garante que o melhor individuo num geração está na nova população.

(nota: outros modelos de elitismo foram propostos na sua tese de doutoramento).

- ✓ Enquanto num GA um elemento da população originalmente é uma string binária na programação genética um elemento é representado por uma árvore (programa).
- ✓ GP adequa-se a ser implementada em linguagens do tipo LISP.

Exemplo (*):

✓ Nota: adaptado de Lucci S. e Kopec D., ArtificiAl intelligence in the 21st century

✓ Alguns operadores da GP são: cruzamento, inversão e mutação.

Cruzamento:

Selecionar dois progenitores (programas) aleatoriamente

Selecionar duas sublistas aleatoriamente

Trocar as sublistas para obter os dois descendentes

Inversão:

Selecionar um progenitor (programa) aleatoriamente Selecionar dois pontos de fratura aleatoriamente Trocar as árvores respetivas

Mutação:

Selecionar um progenitor (programa) aleatoriamente Substituir um símbolo escolhido aleatoriamente por outro

Algoritmos Evolutivos em Paralelo

✓ Problemas mais complexos podem utilizar algoritmos com várias populações genética a evoluir em paralelo.

✓ Cada população pode evoluir isoladamente (modelo das ilhas) ou haver trocas entre as várias populações.

Algoritmos Evolutivos em Paralelo

✓ Uma variante segue o modelo das ilhas (também chamado distribuído).

Um AE é executado para cada sub-população.

Há migração de indivíduos entre populações.

Cada ilha pode ser atribuída a um processador.

✓ Vantagens: a migração pode melhorar a diversidade melhora a capacidade de pesquisa e pode haver divisão de tarefas.

Coevolução Artificial de Espécies

Métodos Baseados na Coevolução de Espécies

Coevolução Competitiva

✓ Como pode a coevolução artificial ser utilizada para resolver problemas computacionais?