Tema 2 – Optimización y Regularización (Parte 1)

Aprendizaje Automático II - Grado en Inteligencia Artificial Universidad Rey Juan Carlos

Iván Ramírez Díaz ivan.ramirez@urjc.es

José Miguel Buenaposada Biencinto josemiguel.buenaposada@urjc.es

2.1 Planteamiento del problema

Bibliografía

 Understanding Deep Learning Capítulo 5.

• The Elements of Statistical Learning Secciones 4.5 y 10.6.

Aprendizaje supervisado

 Modelo. Función que lleva una o más entradas a una o más salidas. El modelo es una ecuación matemática:

Nota importante: Usaremos \mathbf{w} ó $\mathbf{\Phi}$ indistintamente para denominar a los parámetros del modelo

Aprendizaje supervisado

 Modelo. Función que lleva una o más entradas a una o más salidas. El modelo es una ecuación matemática:

$$y=f(x;w)$$

 Conjunto de datos de entrenamiento. N pares de muestras entrada/salida:

$$D = \{x_i, y_i\}_{i=1}^N$$

Pérdida esperada

 Función de coste ideal. Pérdida esperada sobre la distribución de probabilidad p(x, y):

$$J(\mathbf{w}) = E_{(\mathbf{x}, \mathbf{y}) \sim p(\mathbf{x}, \mathbf{y})}[L(f(\mathbf{x}; \mathbf{w}), \mathbf{y})]$$
 Esperanza o valor esperado

Función de pérdida

 Función de pérdida mide cómo de malo es el modelo para un único dato:

$$L(y_i, \underbrace{f(x_i; w)}_{\hat{y}_i})$$

Ejemplo: error cuadrático

$$L(\mathbf{y}_i, \hat{\mathbf{y}}_i) = (\mathbf{y}_i - \hat{\mathbf{y}}_i)^2$$

Pérdida esperada

• Función de coste ideal. Pérdida esperada sobre la distribución de probabilidad $p(\mathbf{x}, \mathbf{y})$:

$$J(\textbf{\textit{w}}) \!\!=\! E_{(\textbf{\textit{x}},\textbf{\textit{y}}) \sim p(\textbf{\textit{x}},\textbf{\textit{y}})} [L(f(\textbf{\textit{x}};\textbf{\textit{w}}),\textbf{\textit{y}})]$$
 Esperanza o valor esperado

Problema: p(x, y) es desconocida

Pérdida esperada

 Función de coste empírica. Pérdida esperada sobre la distribución de probabilidad de (x, y) ahora definida sobre el conjunto de entrenamiento:

Pérdida esperada

 Función de coste empírica. Pérdida esperada sobre la distribución de probabilidad de (x, y) ahora definida sobre el conjunto de entrenamiento:

Idealmente queremos encontrar el **w** que optimiza una medida de rendimiento **P** sobre el conjunto de test (o los infinitos datos que no hemos visto en entrenamiento). Sin embargo, en Aprendizaje automático optimizamos **J** (sobre el subconjunto de datos de entrenamiento) con la esperanza de que optimicen también **P**.

$$J(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} L(f(\mathbf{x}_i, \mathbf{w}), \mathbf{y}_i)$$

Pérdida esperada

 Función de coste empírica. Pérdida esperada sobre la distribución de probabilidad de (x, y) ahora definida sobre el conjunto de entrenamiento:

Pérdida media

• Función de coste. Mide cómo de malo es el modelo:

$$J(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} L(f(\mathbf{x}_i, \mathbf{w}), \mathbf{y}_i)$$

En general el aprendizaje supervisado minimizará la pérdida media sobre todo el conjunto de entrenamiento D

Pérdida media

Función de coste. Mide cómo de malo es el modelo:

$$J(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} L(f(\mathbf{x}_i, \mathbf{w}), \mathbf{y}_i)$$

En general el aprendizaje supervisado minimizará la pérdida media sobre todo el conjunto de entrenamiento D

Problema: ¿Cómo encontrar la función de pérdida, L, adecuada a cada problema de aprendizaje?

2.2.1 Funciones de pérdida por Máxima verosimilitud

2.2.2 Funciones de pérdida basadas en el margen

2.2 Funciones de pérdida

2.2.3 Funciones de pérdida para regresión

2.2.1 Funciones de pérdida por máxima verosimilitud

- Máxima verosimilitud (likelihood)
- · Receta para funciones de pérdida
- Ejemplo 1: regresión univariante
- Ejemplo 2: clasificación binaria
- Ejemplo 3: clasificación multiclase
- Otros tipos de datos
- Múltiples salidas
- ntropía cruzada (cross entropy).

Como construir la función de pérdida

• El modelo predice la salida y, dada la entrada x

Ejemplos: Regresión 1D

Cómo construir la función de pérdida

• El modelo predice la salida y, dada la entrada, x

Ejemplos: Regresión 1D

Cómo construir la función de pérdida

- El modelo predice la salida y, dada la entrada, x
- El modelo predice la distribución de probabilidad condicional:

sobre las salidas, y, dadas las entradas, x.

• La función de pérdida intenta que las salidas tengan probabilidad alta.

Ejemplos: Regresión 1D

Ejemplos: Regresión 1D

Ejemplos: Regresión 1D

Ejemplos: Regresión 1D

Ejemplos: Regresión 1D

Predecir una distribución de probabilidad con $f[x, \Phi]$

1. Asumimos una distribución conocida para modelar la salida, y, con parámetros **0**.

p.ej. Distribución normal $\boldsymbol{\theta} = \{ \mu, \sigma^2 \}$

2. Se utiliza el modelo, $f[\mathbf{x}, \mathbf{\Phi}]$, para predecir los parámetros, $\boldsymbol{\theta}$, de la distribución de probabilidad.

Ejemplos: Regresión 1D

Criterio de máxima verosimilitud

$$D = \{x_i, y_i\}_{i=1}^N$$

Criterio de máxima verosimilitud

$$D = \{x_i, y_i\}_{i=1}^N \longrightarrow \hat{\phi} = \underset{\phi}{\operatorname{argmax}} \left[\prod_{i=1}^N Pr(y_i|x_i) \right]$$

Criterio de máxima verosimilitud

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{N} Pr(\mathbf{y}_{i} | \mathbf{x}_{i}) \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{N} Pr(\mathbf{y}_{i} | \mathbf{x}_{i}) \right]$$

Cuando consideramos la probabilidad como una función de los parámetros **6**, se denomina función de verosimilitud (likelihood).

Criterio de máxima verosimilitud

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{N} Pr(\mathbf{y}_{i} | \mathbf{x}_{i}) \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{N} Pr(\mathbf{y}_{i} | \boldsymbol{\theta}_{i}) \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{con la distribución normal}}$$

$$\underset{tendríamos:}{\operatorname{con}} \boldsymbol{\theta}_{i} = \{ \mu_{i}, \sigma_{i}^{2} \}$$

Cuando consideramos la probabilidad como una función de los parámetros θ , se denomina función de verosimilitud (likelihood).

Criterio de máxima verosimilitud

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{N} Pr(\mathbf{y}_{i} | \mathbf{x}_{i}) \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{N} Pr(\mathbf{y}_{i} | \boldsymbol{\theta}_{i}) \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{N} Pr(\mathbf{y}_{i} | \boldsymbol{\theta}_{i}) \right]$$

Nuestro modelo estima los parámetros de la distribución, $\pmb{\theta}$, para cada posible valor de entrada, \pmb{x}

Criterio de máxima verosimilitud

• Problema:

$$\hat{\boldsymbol{\phi}} = \operatorname*{argmax}_{\boldsymbol{\phi}} \left[\prod_{i=1}^{N} Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right]$$

- · Los términos en este producto pueden ser muy pequeños
- El producto puede ser tan pequeño que tengamos problemas de representación numérica.

Criterio de máxima verosimilitud

$$D = \{x_i, y_i\}_{i=1}^N \longrightarrow \hat{\phi} = \underset{\phi}{\operatorname{argmax}} \left[\prod_{i=1}^N Pr(y_i | \mathbf{f}[\mathbf{x}_i, \phi]) \right]$$

La función logaritmo es monótona

 El máximo del logaritmo de una función está en el mismo sitio que el de la función

Criterio de máxima verosimilitud

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{N} Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\log \left[\prod_{i=1}^{N} Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right] \right]$$

Criterio de máxima verosimilitud

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{N} Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\log \left[\prod_{i=1}^{N} Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right] \right]$$

$$\log[a \cdot b] = \log[a] + \log[b]$$

Criterio de máxima verosimilitud

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{N} Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\log \left[\prod_{i=1}^{N} Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right] \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\sum_{i=1}^{N} \log \left[Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right] \right]$$

Minimizar el log. de la verosimilitud

$$D = \{x_i, y_i\}_{i=1}^N \longrightarrow \hat{\phi} = \underset{\phi}{\operatorname{argmax}} \left[\sum_{i=1}^N \log \left[Pr(\mathbf{y}_i | \mathbf{f}[\mathbf{x}_i, \phi]) \right] \right]$$

Minimizar el log. de la verosimilitud

Minimizar el log. de la verosimilitud

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\sum_{i=1}^{N} \log \left[Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right] \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{N} \log \left[Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right] \right]$$

$$\boldsymbol{J}(\boldsymbol{\phi})$$

2.2.1 Funciones de pérdida por máxima verosimilitud

- Máxima verosimilitud (likelihood)
- · Receta para funciones de pérdida
- Ejemplo 1: regresión univariante
- Ejemplo 2: clasificación binaria
- Ejemplo 3: clasificación multiclase
- Otros tipos de datos
- Múltiples salidas

Inferencia (estimación del modelo)

- Ahora predecimos una distribución de probabilidad (sus parámetros 6)
- ¡Necesitamos la predicción puntual!
- Encontrar el valor de máxima probabilidad (p.ej. La media en una normal)

$$\hat{\mathbf{y}} = \operatorname*{argmax}_{\mathbf{y}} \left[Pr(\mathbf{y} | \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]) \right]$$

Receta para funciones de pérdida

1. Elegir la distribución de probabilidad $Pr(y \mid \theta)$, definida sobre el dominio de las predicciones y, con parámetros θ

Receta para funciones de pérdida

- 1. Elegir la distribución de probabilidad $Pr(y | \theta)$, definida sobre el dominio de las predicciones y, con parámetros θ
- 2. Definir el modelo f [x, ϕ] para predecir uno o más parámetros, tal que θ = f [x, ϕ] y Pr($y \mid \theta$) = $Pr(y \mid f \mid x$, ϕ])

Receta para funciones de pérdida

- 1. Elegir la distribución de probabilidad $Pr(y \mid \theta)$, definida sobre el dominio de las predicciones y, con parámetros θ
- 2. Definir el modelo f $[x, \Phi]$ para predecir uno o más parámetros, tal que $\theta = f[x, \Phi]$ y $Pr(y | \theta) = Pr(y | f[x, \Phi])$
- 3. Entrenar el modelo encontrando los parámetro ϕ , que minimizan el logaritmo de la verosimilitud en D:

$$\hat{\boldsymbol{\phi}} = \operatorname*{argmin}_{\boldsymbol{\phi}} \left[\boldsymbol{J}(\boldsymbol{\Phi}) \right] = \operatorname*{argmin}_{\boldsymbol{\phi}} \left[-\sum_{i=1}^{N} \log \left[Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right] \right]$$

4. La inferencia en un ejemplo nuevo de test, \mathbf{x} , devuelve la distribución completa $Pr(\mathbf{y}|\mathbf{f}[\mathbf{x},\hat{\boldsymbol{\phi}}])$ o el máximo de esta distribución.

Receta para funciones de pérdida

- 1. Elegir la distribución de probabilidad $Pr(y | \theta)$, definida sobre el dominio de las predicciones y, con parámetros θ
- 2. Definir el modelo f $[x, \Phi]$ para predecir uno o más parámetros, tal que $\theta = f[x, \Phi]$ y $Pr(y | \theta) = Pr(y | f[x, \Phi])$
- 3. Entrenar el modelo encontrando los parámetros, $\hat{\phi}$, que minimizan el logaritmo de la verosimilitud en D:

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[\boldsymbol{J}(\boldsymbol{\Phi}) \right] = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{N} \log \left[Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right] \right]$$

2.2.1 Funciones de pérdida por máxima verosimilitud

- Máxima verosimilitud (likelihood)
- Receta para funciones de pérdida
- Ejemplo 1: regresión univariante
- Ejemplo 2: clasificación binaria
- Ejemplo 3: clasificación multiclase
- Otros tipos de datos
- · Múltiples salidas

Ejemplo 1: Regresión univariante

Ejemplo 1: Regresión univariante

- 1. Elegir la distribución de probabilidad $Pr(y \mid \theta)$, definida sobre el dominio de las predicciones y, con parámetros θ
- Predecir la salida (un escalar): $y \in \mathbb{R}$
- Distribución de probabilidad razonable:
- · Distribución normal:

$$Pr(y|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y-\mu)^2}{2\sigma^2}\right] \quad \stackrel{\text{\tiny [1,0]}}{\stackrel{\text{\tiny [2]}}{\stackrel{\text{\tiny [2]}}{\stackrel{\text{\tiny [3]}}{\stackrel{\text{\tiny [3]}}{\stackrel{\text{\tiny [4]}}{\stackrel{\text{\tiny [4]}}}{\stackrel{\text{\tiny [4]}}{\stackrel{\text{\tiny [4]}}{\stackrel{\text{\tiny [4]}}}{\stackrel{\text{\tiny [4]}}{\stackrel{\text{\tiny [4]}}}{\stackrel{\text{\tiny [4]}}{\stackrel{\text{\tiny [4]}}}{\stackrel{\text{\tiny [4]}}{\stackrel{\text{\tiny [4]}}}{\stackrel{\text{\tiny [4]}}{\stackrel{\text{\tiny [4]}}{\stackrel{\text{\tiny [4]}}{\stackrel{\text{\tiny [4]}}}{\stackrel{\text{\tiny [4]}}{\stackrel{\text{\tiny [4]}}}}}}}}}}}}}}}}}}}}}}}}}}$$

Ejemplo 1: Regresión univariante

2. Definir el modelo f $[\mathbf{x}, \boldsymbol{\Phi}]$ para predecir uno o más parámetros, tal que $\boldsymbol{\theta} = f[\mathbf{x}, \boldsymbol{\Phi}]$ y $\Pr(\mathbf{y} \mid \boldsymbol{\theta}) = \Pr(\mathbf{y} \mid f[\mathbf{x}, \boldsymbol{\Phi}])$

$$Pr(y|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y-\mu)^2}{2\sigma^2}\right]$$

$$Pr(y|\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}], \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y - \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}])^2}{2\sigma^2}\right]$$

Ejemplo 1: Regresión univariante

3. Entrenar el modelo encontrando los parámetros, ϕ , que minimizan el logaritmo de la verosimilitud en D:

$$\mathbf{J}(\boldsymbol{\Phi}) = -\sum_{i=1}^{N} \log \left[Pr(y_i | \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}], \sigma^2) \right]$$
$$= -\sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right] \right]$$

Ejemplo 1: Regresión univariante

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right] \right] \right]$$

Ejemplo 1: Regresión univariante

$$\hat{\phi} = \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - f[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right] \right] \right]$$

$$= \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] - \frac{(y_i - f[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right]$$

$$= \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{N} -\frac{(y_i - f[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right]$$

Ejemplo 1: Regresión univariante

$$\hat{\phi} = \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - f[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right] \right] \right]$$

$$= \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] - \frac{(y_i - f[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right]$$

Ejemplo 1: Regresión univariante

$$\hat{\phi} = \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - \mathbf{f}[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right] \right] \right]$$

$$= \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] - \frac{(y_i - \mathbf{f}[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right]$$

$$= \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{N} -\frac{(y_i - \mathbf{f}[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right]$$

$$= \underset{\phi}{\operatorname{argmin}} \left[\sum_{i=1}^{N} (y_i - \mathbf{f}[\mathbf{x}_i, \phi])^2 \right]$$
iMínimos cuadrados! (least squares)

Ejemplo 1: Regresión univariante

Mínimos cuadrados

Máxima verosimiltud

Ejemplo 1: Regresión univariante

Mínimos cuadrados

Máxima verosimiltud

Ejemplo 1: Regresión univariante

4. La inferencia en un ejemplo nuevo de test, ${f x}$, devuelve la distribución completa $Pr({f y}|{f f}[{f x},\hat{m{\phi}}])$ o el máximo de esta distribución.

$$Pr(y|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y-\mu)^2}{2\sigma^2}\right]$$

$$Pr(y|\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}], \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y - \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}])^2}{2\sigma^2}\right]$$

Estimación de la varianza

• La varianza desaparece de la optimización final:

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right] \right] \right]$$
$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[\sum_{i=1}^{N} (y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2 \right]$$

Pero podríamos aprenderla:

$$\hat{\boldsymbol{\phi}}, \hat{\sigma}^2 = \underset{\boldsymbol{\phi}, \sigma^2}{\operatorname{argmin}} \left[-\sum_{i=1}^N \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right] \right] \right]$$

Regresión heterocedástica

 Hasta ahora hemos asumido homocedasticidad (misma varianza para todo valor de x)

Regresión heterocedástica

- Hasta ahora hemos asumido homocedasticidad (misma varianza para todo valor de x)
- Podríamos tener un problema donde el ruido dependa del valor de x
- Construiríamos un modelo con dos salidas:

$$\mu = f_1[\mathbf{x}, \boldsymbol{\phi}]$$
$$\sigma^2 = f_2[\mathbf{x}, \boldsymbol{\phi}]^2$$

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2\pi f_2[\mathbf{x}_i, \boldsymbol{\phi}]^2}} \right] - \frac{(y_i - f_1[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2f_2[\mathbf{x}_i, \boldsymbol{\phi}]^2} \right]$$

Regresión heterocedástica

- Hasta ahora hemos asumido homocedasticidad (misma varianza para todo valor de x)
- Podríamos tener un problema donde el ruido dependa del valor de **x**

Regresión heterocedástica

2.2.1 Funciones de pérdida por máxima verosimilitud

- Máxima verosimilitud (likelihood)
- · Receta para funciones de pérdida
- Ejemplo 1: regresión univariante
- Ejemplo 2: clasificación binaria
- Ejemplo 3: clasificación multiclase
- Otros tipos de datos
- Múltiples salidas

Ejemplo 2: Clasificación binaria

Ejemplo 2: Clasificación binaria

Ejemplo 2: Clasificación binaria

Ejemplo 2: Clasificación binaria

Ejemplo 2: Clasificación binaria

Ejemplo 2: Clasificación binaria

Ejemplo 2: Clasificación binaria

Ejemplo 2: Clasificación binaria

- 1. Elegir la distribución de probabilidad $Pr(y \mid \theta)$, definida sobre el dominio de las predicciones y, con parámetros θ
- Dominio de salida: $y \in \{0, 1\}$
- Distribución de Bernuilli
- Un parámetro en [0, 1]

$$Pr(y|\lambda) = \begin{cases} 1 - \lambda & y = 0\\ \lambda & y = 1 \end{cases}$$

$$Pr(y|\lambda) = (1-\lambda)^{1-y} \cdot \lambda^y$$

Ejemplo 2: Clasificación binaria

2. Definir el modelo f $[\mathbf{x}, \boldsymbol{\Phi}]$ para predecir uno o más parámetros, tal que $\boldsymbol{\theta} = f[\mathbf{x}, \boldsymbol{\Phi}]$ y $\Pr(\mathbf{y} \mid \boldsymbol{\theta}) = \Pr(\mathbf{y} \mid f[\mathbf{x}, \boldsymbol{\Phi}])$

Problema:

- $\theta = f[x, \Phi]$ puede tomar cualquier valor.
- El parámetro de la Bernouilli debe de estar en [0, 1]

Solución:

• Una función que pase el valor al intervalo [0,1]:

$$\operatorname{sig}[z] = \frac{1}{1 + \exp[-z]}$$

Ejemplo 2: Clasificación binaria

2. Definir el modelo $f[x, \Phi]$ para predecir uno o más parámetros, tal que $\theta = f[x, \Phi]$ y $Pr(y | \theta) = Pr(y | f[x, \Phi])$

$$Pr(y|\lambda) = (1-\lambda)^{1-y} \cdot \lambda^y$$

$$Pr(y|\mathbf{x}) = (1 - \text{sig}[f[\mathbf{x}|\boldsymbol{\phi}]])^{1-y} \cdot \text{sig}[f[\mathbf{x}|\boldsymbol{\phi}]]^y$$

Ejemplo 2: Clasificación binaria

Ejemplo 2: Clasificación binaria

3. Entrenar el modelo encontrando los parámetros, ϕ , que minimizan el logaritmo de la verosimilitud en D:

$$\hat{\boldsymbol{\phi}} = \operatorname*{argmin}_{\boldsymbol{\phi}} \left[\boldsymbol{J}(\boldsymbol{\Phi}) \right] = \operatorname*{argmin}_{\boldsymbol{\phi}} \left[- \sum_{i=1}^{N} \log \left[Pr(\mathbf{y}_i | \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]) \right] \right]$$

$$Pr(y|\mathbf{x}) = (1 - \operatorname{sig}[f[\mathbf{x}|\boldsymbol{\phi}]])^{1-y} \cdot \operatorname{sig}[f[\mathbf{x}|\boldsymbol{\phi}]]^{y}$$
$$J(\boldsymbol{\phi}) = \sum_{i=1}^{N} -(1 - y_{i}) \log [1 - \operatorname{sig}[f[\mathbf{x}_{i}|\boldsymbol{\phi}]]] - y_{i} \log [\operatorname{sig}[f[\mathbf{x}_{i}|\boldsymbol{\phi}]]]$$

2.2.1 Funciones de pérdida por máxima verosimilitud

- Máxima verosimilitud (likelihood)
- · Receta para funciones de pérdida
- Ejemplo 1: regresión univariante
- Ejemplo 2: clasificación binaria
- Ejemplo 3: clasificación multiclase
- Otros tipos de datos
- Múltiples salidas

Ejemplo 2: Clasificación binaria

4. La inferencia en un ejemplo nuevo de test, \mathbf{x} , devuelve la distribución completa $Pr(\mathbf{y}|\mathbf{f}[\mathbf{x},\hat{\boldsymbol{\phi}}])$ o el máximo de esta distribución.

Elegir y=1 donde Pr(y|x)>0.5, y en otro caso 0

Ejemplo 3: Clasificación multiclase

Ejemplo 3: Clasificación multiclase

Ejemplo 3: Clasificación multiclase

Ejemplo 3: Clasificación multiclase

Ejemplo 3: Clasificación multiclase

Ejemplo 3: Clasificación multiclase

Ejemplo 3: Clasificación multiclase

- 1. Elegir la distribución de probabilidad $Pr(y \mid \theta)$, definida sobre el dominio de las predicciones y, con parámetros θ
- Dominio de salida: $y \in \{1, 2, \dots, K\}$
- Distribución categórica (Bernoulli generalizada)
- K parámetros en [0, 1]
- Los parámetros suman 1

$$Pr(y=k) = \lambda_k$$

Ejemplo 3: Clasificación multiclase

2. Definir el modelo $f[x, \Phi]$ para predecir uno o más parámetros, tal que $\theta = f[x, \Phi]$ y $Pr(y | \theta) = Pr(y | f[x, \Phi])$

Problema:

- $\theta = f[x, \Phi]$ puede tomar cualquier valor.
- Parámetros en [0, 1] y que sumen 1

Solución:

 Una función que pase el valor al intervalo [0,1] y los haga sumar 1:

$$\operatorname{softmax}_{k}[\mathbf{z}] = \frac{\exp[z_{k}]}{\sum_{k'=1}^{K} \exp[z_{k'}]}$$

$$Pr(y = k|\mathbf{x}) = \operatorname{softmax}_k[\mathbf{f}|\mathbf{x}, \boldsymbol{\phi}]$$

Ejemplo 3: Clasificación multiclase

$$Pr(y = k|\mathbf{x}) = \operatorname{softmax}_k[\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]]$$

Ejemplo 3: Clasificación multiclase

3. Entrenar el modelo encontrando los parámetros, ϕ , que minimizan el logaritmo de la verosimilitud en D:

$$\hat{\boldsymbol{\phi}} = \operatorname*{argmin}_{\boldsymbol{\phi}}[\boldsymbol{J}(\boldsymbol{\Phi})] = \operatorname*{argmin}_{\boldsymbol{\phi}} \left[-\sum_{i=1}^{N} \log \left[Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right] \right]$$

"Multiclass cross-entropy loss"

2.2.1 Funciones de pérdida por máxima verosimilitud

- Máxima verosimilitud (likelihood)
- · Receta para funciones de pérdida
- Ejemplo 1: regresión univariante
- Ejemplo 2: clasificación binaria
- Ejemplo 3: clasificación multiclase
- Otros tipos de datos
- Múltiples salidas

Ejemplo 3: Clasificación multiclase

4. La inferencia en un ejemplo nuevo de test, ${f x}$, devuelve la distribución completa $Pr({f y}|{f f}[{f x},\hat{m \phi}])$ o el máximo de esta distribución.

Otros tipos de datos

Data Type	Domain	Distribution	Use
univariate, continuous, unbounded	$y \in \mathbb{R}$	univariate normal	regression
univariate, continuous, unbounded	$y\in\mathbb{R}$	Laplace or t-distribution	robust regression
univariate, continuous, unbounded	$y\in\mathbb{R}$	mixture of Gaussians	multimodal regression
univariate, continuous, bounded below	$y \in \mathbb{R}^+$	exponential or gamma	predicting magnitude
univariate, continuous, bounded	$y \in [0, 1]$	beta	predicting proportions
multivariate, continuous, unbounded	$\mathbf{y} \in \mathbb{R}^K$	multivariate normal	multivariate regression
symmetric positive definite matrix	$\mathbf{Y} \in \mathbb{R}^{K \times K}$ $\mathbf{z}^T \mathbf{Y} \mathbf{z} > 0 \forall \mathbf{z} \in \mathbb{R}^K$	Wishart	predicting covariances
univariate, continuous, circular	$y\in (-\pi,\pi]$	von Mises	predicting direction
univariate, discrete, binary	$y \in \{0, 1\}$	Bernoulli	binary classification
univariate, discrete, bounded	$y \in \{1, 2, \dots, K\}$	categorical	multiclass classification
univariate, discrete, bounded below	$y \in [0,1,2,3,\ldots]$	Poisson	predicting event counts
multivariate, discrete, permutation	$\mathbf{y} \in \text{Perm}[1, 2, \dots K]$	Plackett-Luce	ranking

Figure 5.10 Distributions for loss functions for different prediction types.

En estos casos la aproximación de máxima verosimilitud permite diseñar la función de pérdida.

2.2.1 Funciones de pérdida por máxima verosimilitud

- Máxima verosimilitud (likelihood)
- Receta para funciones de pérdida
- Ejemplo 1: regresión univariante
- · Ejemplo 2: clasificación binaria
- Ejemplo 3: clasificación multiclase
- Otros tipos de datos
- Múltiples salidas

Ejemplo 4: Regresión multivariante

Múltiples salidas

Suponer todas las salidas, y_d, independientes:

$$Pr(\mathbf{y}|\mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]) = \prod_d Pr(y_d|\mathbf{f}_d[\mathbf{x}_i, \boldsymbol{\phi}])$$

• El logaritmo de la verosimilitud es una suma:

$$\boldsymbol{J}(\boldsymbol{\Phi}) = -\sum_{i=1}^{N} \log \left[Pr(\mathbf{y}|\mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right] = -\sum_{i=1}^{N} \sum_{d} \log \left[Pr(y_{id}|\mathbf{f}_{d}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right]$$

Ejemplo 4: Regresión multivariante

- Objetivo: predecir una salida multivariante $\mathbf{y} \in \mathbb{R}^{D_o}$
- Suponer todas las salidas, y_d, independientes:

$$Pr(\mathbf{y}|\boldsymbol{\mu}, \sigma^2) = \prod_{d=1}^{D_o} Pr(y_d|\mu_d, \sigma^2)$$
$$= \prod_{d=1}^{D_o} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y_d - \mu_d)^2}{2\sigma^2}\right]$$

El modelo predice la media de diferentes dist. normales:

$$Pr(\mathbf{y}|\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}], \sigma^2) = \prod_{d=1}^{D_o} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y_d - f_d[\mathbf{x}, \boldsymbol{\phi}])^2}{2\sigma^2}\right]$$

2.2 Funciones de pérdida

- 2.2.1 Funciones de pérdida por Máxima verosimilitud
- 2.2.2 Funciones de pérdida basadas en el margen
- 2.2.3 Funciones de pérdida para regresión

Distancia a un hiperplano

• Modelo lineal en 2D:

$$f(x; \Phi) = \Phi_0 + \Phi_1 x_1 + \Phi_2 x_2 = \Phi_0 + \mathbf{w}^T x$$

 $f(\mathbf{x}; \boldsymbol{\phi}) = 0$ define los puntos de la recta (hiperplano en más dimensiones), H

Modelo lineal

Modelo lineal en 2D:

$$f(x; \Phi) = \Phi_0 + \Phi_1 x_1 + \Phi_2 x_2 = \Phi_0 + w^T x$$

Distancia a un hiperplano

• Modelo lineal en 2D:

$$f(x; \Phi) = \Phi_0 + \Phi_1 x_1 + \Phi_2 x_2 = \Phi_0 + \mathbf{w}^T \mathbf{x}$$

- f(x; Φ) = 0 define los puntos de la recta (hiperplano en más dimensiones), H
- El vector w es normal a H

Distancia a un hiperplano

Modelo lineal en 2D:

$$f(x; \Phi) = \Phi_0 + \Phi_1 x_1 + \Phi_2 x_2 = \Phi_0 + w^T x$$

- $f(\mathbf{x}; \boldsymbol{\phi}) = 0$ define los puntos de la recta (hiperplano en más dimensiones), H
- El vector w es normal a H
- Si x_p es la proyección de x en H

$$x = x_p + r \cdot \frac{w}{\|w\|}$$

Distancia a un hiperplano

Modelo lineal en 2D:

$$f(x; \Phi) = \Phi_0 + \Phi_1 x_1 + \Phi_2 x_2 = \Phi_0 + \mathbf{w}^T \mathbf{x}$$

- f(x; Φ) = 0 define los puntos de la recta (hiperplano en más dimensiones), H
- El vector w es normal a H
- Si x_p es la proyección de x en H

$$f(x) = f(x_p + r \cdot \frac{w}{\|w\|})$$

Distancia a un hiperplano

Modelo lineal en 2D:

$$f(x; \Phi) = \Phi_0 + \Phi_1 x_1 + \Phi_2 x_2 = \Phi_0 + \mathbf{w}^T \mathbf{x}$$

- f(x; Φ) = 0 define los puntos de la recta (hiperplano en más dimensiones), H
- El vector w es normal a H
- Si x_p es la proyección de x en H

$$x = x_p + r \cdot \frac{w}{\|w\|}$$

Distancia a un hiperplano

Modelo lineal en 2D:

$$f(x; \Phi) = \Phi_0 + \Phi_1 x_1 + \Phi_2 x_2 = \Phi_0 + w^T x$$

- f(**x**; **φ**) = 0 define los puntos de la recta (hiperplano en más dimensiones), H
- El vector w es normal a H
- Si **x**_p es la proyección de **x** en H

$$f(x) = \mathbf{w}^T \mathbf{x}_p + r \cdot \frac{\mathbf{w}^T \mathbf{w}}{\|\mathbf{w}\|} + \Phi_0$$

Distancia a un hiperplano

Modelo lineal en 2D:

$$f(x; \Phi) = \Phi_0 + \Phi_1 x_1 + \Phi_2 x_2 = \Phi_0 + w^T x$$

- $f(\mathbf{x}; \boldsymbol{\phi}) = 0$ define los puntos de la recta (hiperplano en más dimensiones), H
- El vector w es normal a H
- Si x_p es la proyección de x en H

$$f(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \mathbf{x}_{p} + r \cdot \frac{\|\mathbf{w}\|^{2}}{\|\mathbf{w}\|} + \Phi_{0}$$

Distancia a un hiperplano

Modelo lineal en 2D:

$$f(x; \Phi) = \Phi_0 + \Phi_1 x_1 + \Phi_2 x_2 = \Phi_0 + \mathbf{w}^T \mathbf{x}$$

- f(x; Φ) = 0 define los puntos de la recta (hiperplano en más dimensiones), H
- El vector w es normal a H
- Si x_p es la proyección de x en H

$$f(x) = r \cdot ||w||$$

$$f(x; \phi) \text{ es proporcional a } r$$

Modelo lineal y definición de margen

· Volvamos al modelo lineal como clasificador en 2D:

$$f(x; \Phi) = \Phi_0 + \Phi_1 x_1 + \Phi_2 x_2 = \Phi_0 + \mathbf{w}^T \mathbf{x}$$

Modelo lineal y definición de margen

· Volvamos al modelo lineal como clasificador en 2D:

$$f(x; \Phi) = \Phi_0 + \Phi_1 x_1 + \Phi_2 x_2 = \Phi_0 + \mathbf{w}^T \mathbf{x}$$

Modelo lineal y definición de margen

Volvamos al modelo lineal como clasificador en 2D:

$$f(x; \Phi) = \Phi_0 + \Phi_1 x_1 + \Phi_2 x_2 = \Phi_0 + \mathbf{w}^T \mathbf{x}$$

Modelo lineal y definición de margen

Volvamos al modelo lineal como clasificador en 2D:

$$f(x; \Phi) = \Phi_0 + \Phi_1 x_1 + \Phi_2 x_2 = \Phi_0 + \mathbf{w}^T \mathbf{x}$$

- Problema de clasificación con etiquetas y en {1, -1}.
- Clasificador lineal:
 G(x_i)=signo(f(x_i))
- Entonces para un ejemplo x_i el "margen" (margin en inglés):

$$y_i \cdot f(\mathbf{x}_i) > 0$$
 si acierto
 $y_i \cdot f(\mathbf{x}_i) < 0$ si fallo

Uso del margen en funciones de pérdida

Volvamos al modelo lineal como clasificador en 2D:

$$f(x; \Phi) = \Phi_0 + \Phi_1 x_1 + \Phi_2 x_2 = \Phi_0 + \mathbf{w}^T \mathbf{x}$$

 Existen funciones de pérdida definidas sobre el margen:

$$L(\mathbf{y}_{i},\underbrace{f(\mathbf{x}_{i};\mathbf{\Phi})}_{\hat{\mathbf{y}}_{i}})=L(\mathbf{y}_{i}\cdot f(\mathbf{x}_{i};\mathbf{\Phi}))$$

Funciones de pérdida para clasificación

• Las más habituales basadas en el margen:

Funciones de pérdida para clasificación

• Las más habituales basadas en el margen:

$$\begin{split} L_{0-1}(\mathbf{y_i}, f(\mathbf{x_i}; \mathbf{\Phi})) &= I(\mathbf{y_i} \cdot f(\mathbf{x_i}; \mathbf{\Phi}) < 0) \\ L_{L2}(\mathbf{y_i}, f(\mathbf{x_i}; \mathbf{\Phi})) &= (\mathbf{y_i} - f(\mathbf{x_i}; \mathbf{\Phi}))^2 \\ L_{\exp}(\mathbf{y_i}, f(\mathbf{x_i}; \mathbf{\Phi})) &= e^{-\mathbf{y_i} \cdot f(\mathbf{x_i}; \mathbf{\Phi})} \\ L_{\operatorname{Bin}}(\mathbf{y_i}, f(\mathbf{x_i}; \mathbf{\Phi})) &= \log \left(1 + e^{-2 \cdot \mathbf{y_i} \cdot f(\mathbf{x_i}; \mathbf{\Phi})}\right) \\ L_{\operatorname{Hinge}}(\mathbf{y_i}, f(\mathbf{x_i}; \mathbf{\Phi})) &= \max(0, 1 - \mathbf{y_i} \cdot f(\mathbf{x_i}; \mathbf{\Phi})) \end{split}$$

2.2 Funciones de pérdida

- 2.2.1 Funciones de pérdida por Máxima verosimilitud
- 2.2.2 Funciones de pérdida basadas en el margen
- 2.2.3 Funciones de pérdida para regresión

Funciones de pérdida para regresión

Las más habituales:

• Para salida univariante:

$$L_{L2}(y, \hat{y}) = (y - \hat{y})^2$$

Funciones de pérdida para regresión

• Las más habituales:

• Para salida univariante:

$$L_{L1}(y,\hat{y}) = |y - \hat{y}|$$

Funciones de pérdida para regresión

Las más habituales:

• Para salida univariante:

$$L_{Huber}(y, \hat{y}, \delta) = \begin{vmatrix} \frac{1}{2} \cdot (y - \hat{y})^2, & \text{si } |y - \hat{y}| < \delta \\ \delta \cdot (|y - \hat{y}| - \frac{\delta}{2}), & \text{si } |y - \hat{y}| \ge \delta \end{vmatrix}$$

Funciones de pérdida para regresión

Las más habituales:

Para salida univariante:

$$L_{Huber}(y, \hat{y}, \delta) = \begin{cases} \frac{1}{2} \cdot (y - \hat{y})^2, \text{ si } |y - \hat{y}| < \delta \\ \delta \cdot (|y - \hat{y}| - \frac{\delta}{2}), \text{ si } |y - \hat{y}| \ge \delta \end{cases}$$

Funciones de pérdida para regresión

Las más habituales:

Para salida univariante:

$$L_{Huber}(y, \hat{y}, \delta) = \begin{cases} \frac{1}{2} \cdot (y - \hat{y})^2, & \text{si } |y - \hat{y}| < \delta \\ \delta \cdot (|y - \hat{y}| - \frac{\delta}{2}), & \text{si } |y - \hat{y}| \ge \delta \end{cases}$$

Funciones de pérdida para regresión

· Las más habituales:

Para salida univariante:

$$L_{\textit{SmoothL}1}(y, \hat{y}, \beta) = \frac{L_{\textit{Huber}}(y, \hat{y}, \beta)}{\beta}$$

Funciones de pérdida para regresión

• Las más habituales:

