Chapter 3: Simplex methods [Big M method and special cases]

Hamdy A. Taha, Operations Research: An introduction, 8th Edition

Mute ur call

Simplex method when some constraints are not "≤" constraints

 We employ a mathematical "trick" to jumpstart the problem by adding artificial variables to the equations.

Simplex method when some constraints are not "≤" constraints (cont.)

Example:

Max 16x1+15x2+20x3-18x4

ST

$$2x1 + x2 + 3x3 \le 3000$$
 [1]
 $3x1 + 4x2 + 5x3 - 60x4 \le 2400$ [2]
 $x4 \le 32$ [3]
 $X2 \ge 200$ [4]
 $X1 + x2 + x3 \ge 800$ [5]
 $X1 - x2 - x3 = 0$ [6]
 $Xj \ge 0$ for all J

Simplex method when some constraints are not "≤" constraints (cont.)

Example:

Max 16x1+15x2+20x3-18x4

ST

$$2x1 + x2 + 3x3 \le 3000$$

 $3x1 + 4x2 + 5x3 - 60x4 \le 2400$
 $x4 \le 32$
 $X2 \ge 200$
 $X1 + x2 + x3 \ge 800$
 $X1 - x2 - x3 = 0$
 $Xj \ge 0$ for all J

We assign a very large negative objective function coefficient, -M, (+M for minimization problem) to each artificial variable

```
[1]
[2]
[3]
[4]
[5] We add artificial:
R4, R5, R6, respectively to the fourth, fifth, and sixth equations.
```

Simplex method when some constraints are not "≤" constraints (cont.)

The solution

Max 16x1+15x2+20x3-18x4 -MR4 -MR5 -MR6

ST

$$2x1 + x2 + 3x3 + s1 = 3000$$
 [1]
 $3x1 + 4x2 + 5x3 - 60x4 + s2 = 2400$ [2]
 $x4 + s3 = 32$ [3]
 $X2 - s4 + R4 = 200$ [4]
 $X1 + x2 + x3 - s5 + R5 = 800$ [5]
 $X1 - x2 - x3 + R6 = 0$ [6]
 $Xj \ge 0$, $Sj \ge 0$, $Rj \ge 0$ for all J

The simplex algorithm can then be used to solve this problem

Example # 1:

MAX 2x1+ 5x2

ST

X1 ≥ 4

 $x1 + 4x2 \le 32$

3x1 + 2x2 = 24

The Solution

 By adding the appropriate slack, surplus, and artificial variables, we obtain the following:

MAX
$$2x1 + 5x2 - MR1 - MR3$$

ST
 $X1 - s1 + R1 = 4$
 $X1 + 4x2 + s2 = 32$

$$3x1 + 2x2 + R3 = 24$$

$$X1,x2,s1,s2,R1,R3 \ge 0$$

The initial table:

Basis	X1	X2	S 1	S2	R1	R3	RHS
R1	1	0	-1	0	1	0	4
S2	1	4	0	1	0	0	32
R3	3	2	0	0	0	1	24
Z	-2	-5	0	0	+ M	+ M	0

Make z consistent; (R1, R3) in z-row coefficient (+M,+M) it must be zero; By apply:

Starting table:

Basis	X1	X2	S1	S2	R1	R3	RHS
R1	1	0	-1	0	1	0	4
S2	1	4	0	1	0	0	32
R3	3	2	0	0	0	1	24
Z	-2-4M	-5-2M	+M	0	- M	- M	-28M

• To determine Entering Variable; We should look to the largest negative number in z-row.

Enteri	ng '	Var	iab	le
				. –

Basis	X1	X2	S1	S2	R1	R3	RHS
R1	1	0	-1	0	1	0	4
S2	1	4	0	1	0	0	32
R3	3	2	0	0	0	1	24
Z	-2-4M	-5-2M	+M	0	- M	- M	-28M

Largest negative number

 Calculate the ratio; then, determine the smallest positive number as Leaving Variable

Leaving Variable

Basis	X 1	X2	S 1	S2	R1	R3	RHS	Ratio
R1	1	0	-1	0	1	0	4	4
S2	1	4	0	1	0	0	32	32
R3	3	2	0	0	0	1	24	8
Z	-2-4M	-5-2M	+M	0	- M	- M	-28M	

• Pivot element = (1, 0, -1, 0, 1, 0, 4)/ (1)

(1, 0, -1, 0, 1, 0, 4)

Hamdy A. Taha, Operations Research: An introduction, Prentice Half

First iteration

Entering Variable Basis X1 X2 S1 S2 R1 R3 RHS Ratio X1 1 0 -1 0 0 **S2** 0 28 28 **R3** -3 12 0 0 4 8-12M Z 0 -2-3M -5-2M 2+3M -M

113

Leaving Variable

Second iteration

Entering Variable

Leaving Variable

Basis	X1	X2	S1	S2	R1	R3	RHS	Ratio
X1	1	2/3	0	0	0	1/3	8	12
S2	0	10/3	0	1	0	-1/3	24	7.2
S1	0	2/3	1	0	-1	1/3	4	6
Z	0	-11/3	0	0	0	2/3	+16	

Third iteration

Basis	X1	X2	S1	S2	R1	R3	RHS	Ratio
X1	1	0	-1	0	1	0	4	
S2	0	0	-5	1	5	-2	4	
X2	0	1	3/2	0	-3/2	1/2	6	
Z	0	0	11/3	0	-11/2	5/2	38	

points	Classification	Reason
X1=0, X2=0	Not Feasible	R1, R3 both Positive (4, 24)
X1=4, X2=0	Not Feasible	R3 positive= 12
X1=8, X2=0	Feasible but not optimal	X2 is negative
X1=4, X2=6	Feasible and optimal	All x1,X2 ≥0

Example # 2:

$$Min 4x1 + x2$$

ST

$$3x1 + x2 = 3$$

$$4x1 + 3x2 \ge 6$$

$$X1 + 2x2 \le 4$$

$$X1, x2 \ge 0$$

The Solution

 By adding the appropriate slack, surplus, and artificial variables, we obtain the following:

Min 4x1 + x2 + MR1 + MR2
ST

$$3x1+x2+R1=3$$

 $4x1+3x2-s1+R2=6$
 $X1+2x2+s2=4$
 $X1, x2, s1, s2, R1, R2 \ge 0$

The initial table:

Basis	X1	X2	S1	R1	R2	S2	RHS
R1	3	1	0	1	0	0	3
R2	4	3	-1	0	1	0	6
S2	1	2	0	0	0	1	4
Z	-4	-1	0	-M	-M	0	0

New z-row = old z-row +(M * R1 row +M * R3 row)

Leaving Variable Starting table: **Entering Variable** RHS **Basis X1 X2 S1 R2 R1 S2** 3 0 3 R1 0 0 3 R2 4 -1 0 S2 0 -4+7M -1+4M Ζ -M 0 0 0 9M

• First iteration Entering Variable

Leaving Variable

Basis	X1	X2	S1	R1	R2	S2	RHS
X1	1	1/3	0	1/3	0	0	1
R2	0	5/3	-1	-4/3	1	0	2
S2	0	5/3	0	-1/3	0	1	3
Z	0	(1+5M)/3	-M	(4-7M)/3	0	0	4+2M

• Second iteration Entering Variable

Leaving Variable

Basis	X1	X2	S1	R1	R2	S2	RHS
X1	1	0	1/5	3/5	-1/5	0	3/5
X2	0	1	-3/5	-4/5	3/5	0	6/5
S2	0	0	1	1	-1	1	1 ←
Z	0	0	1/5	8/5 - M	-1/5 -M	0	18/5

Third iteration

Basis	X1	X2	S 1	R1	R2	S2	RHS
X1	1	0	0	2/5	0	-1/5	2/5
X2	0	1	0	-1/5	0	3/5	9/5
s1	0	0	1	1	-1	1	1
Z	0	0	0	7/5 – M	-M	-1/5	17/5

• Optimal solution : x1= 2/5, x2= 9/5, z= 17/5

Simplex Algorithm – Special cases

 There are four special cases arise in the use of the simplex method.

- 1. Degeneracy
- 2. Alternative optima
- 3. Unbounded solution
- 4. Nonexisting (infeasible) solution

1. Degeneracy (no improve in objective)

- It typically occurs in a simplex iteration when in the minimum ratio test more than one basic variable determine 0, hence two or more variables go to 0, whereas only one of them will be leaving the basis.
- This is in itself not a problem, but making simplex iterations from a degenerate solution may give rise to cycling, meaning that after a certain number of iterations without improvement in objective value the method may turn back to the point where it started.

Example:

Max 3x1 + 9x2

ST

$$X1 + 4x2 \le 8$$

$$X1 + 2x2 \le 4$$

$$X1, x2 \ge 0$$

The solution:

The constraints:

$$X1 + 4x2 + s1 = 8$$

$$X1 + 2x2 + s2 = 4$$

$$X1$$
, $x2$, $s1$, $s2 ≥ 0$

Basis	X1	X2	S1	S2	RHS	Same objective
X2	0	1	1/2	-1/2	2	
X1	1	0	-1	2	0	
Z	0	0	3/2	3/2	18	

- Same objective no change and improve (cycle)
- It is possible to have no improve and no termination for computation.

2. Alternative optima

 If the z-row value for one or more nonbasic variables is 0 in the optimal tubule, alternate optimal solution is exist.

331

Example:

Max 2x1+4x2

ST

$$X1 + 2x2 \le 5$$

$$X1 + x2 \le 4$$

The solution

Max 2x1+ 4x2

ST

$$X1 + 2x2 + s1 = 5$$

$$X1 + x2 + s2 = 4$$

$$X1$$
, $x2$, $s1$, $s2 ≥ 0$

Entering Variable			Leaving Variable			
Basis	X1	X2	S1	S2	RHS	
s1	1	2	1	0	4	ل
s2	1	1	0	1	5	
Z	-2	-4	0	0	0	

• Optimal solution is 10 when x2=5/2, x1=0.

Basis	X1	X2	S1	S2	RHS
x2	1/2	1	1/2	0	5/2
s2	1/2	0	-1/2	1	3/2
Z	0	0	2	0	10

 How do we know from this tubule that alternative optima exist?

By looking at z-row coefficient of the nonbasic

Enteri	ng Varia	ble			Le	aving Va	riable	
	Basis	X1	X2	S 1	S 2	RHS		
	x2	1/2	1	1/2	0	5/2		
	s2	1/2	0	-1/2	1	3/2	← J	
	Z	0	0	2	0	10		

The coefficient for x1 is 0, which indicates that x1 can enter the basic solution without changing the value of z.

The second alternative optima is:

Basis	X1	X2	S1	S2	RHS
x2	0	1	1	-1	1
x1	1	0	-1	2	3
Z	0	0	2	0	10

The new optimal solution is 10 when x1=3, x2=1

3. Unbounded solution

 It occurs when nonbasic variables are zero or negative in all constraints coefficient (max) and variable coefficient in objective is negative

Example

Max 2x1+ x2

ST

 $X1 - x2 \le 10$

 $2x1 \le 40$

X1, x2≥0

The solution

Max 2x1+ x2

ST

$$X1 - x2 + s1 = 10$$

$$2x1 + s2 = 40$$

Basis	X1	X2	S1	S2	RHS
x2	1	-1	1	0	10
x1	2	0	0	1	40
Z	-2	-1	0	0	0

- All value if x2(nonbasic variable) either zero or negative.
- So, solution space is unbounded

4. Infeasible solution

R coefficient at end ≠ 0

 This situation can never occur if all the constraints are of the type "≤" with nonnegative RHS