Задача 1.3.3.

Определение вязкости воздуха по скорости течения через тонкие трубки

Лось Денис (группа 611)

20 февраля 2017

Цель работы: экспериментально выявить участок сформированного течения, определить режимы ламинарного и турбулентного течения, определить число Рейнольдса.

В работе используются: металлические трубки, укреплённые на горизонтальной подставке, газовый счётчик, микроманометр типа ММН, стеклянная U-образная трубка, секундомер.

Теоритическая часть

Рассмотрим движение вязкой жидкости или газа по трубке круглого сечения. При малых скоростях потока движение оказывается ламинарным, скорости частиц меняются по радиусу и направлены вдоль оси трубки. с увеличением скорости потока движение становится турбулентым, а слои перемешиваются. При турбулентоном движении скорость в каждой точке быстро меняет величину и направление, сохраняется только средняя величина скорости.

Характер движения газа(или жидкости) в трубке определяется безразмерным числом Рейнольдса:

$$Re = \frac{vrp}{\eta},$$

где v — скорость потока, r — радиус трубки, p — плотность движущейся среды, η — её динамическая вязкость. В гладких трубках круглого сечения переход от ламинарного течения к турбулентному происходит при $Re \approx 1000$.

При ламинарном течении расход газа определяется по формуле Пуазейля:

$$Q = \frac{\pi r^4 \Delta P}{8l\eta},$$

где ΔP — разность давлений в двух выбранных сечениях, расстояние между которыми l.

Данная формула справедлива, если с достаточным запасом может выполняться Re < 1000, а при течении не происходит существенного изменения удельного объёма газа.

При втекании газа в трубку из большого резервуара скорости слоев вначале постоянны по всему сечению. По мере продвижения газа по трубке картина распределения скоростей меняется, так как сила трения о стенку тормозит прилежащие к ней слои. Характерное для ламинарного течения параболическое распределение скоростей устанавливается на некотором расстоянии a от входа в трубку, которое зависит от радиуса трубки r и числа Рейнольдса Re:

$$a \approx 0.2r \cdot Re$$

Градиент давления на участке формирования потока оказывается большим, чем на участке с установившимся ламинарным течением, что позволяет установить эти участки экспериментально. С помощью данной формулы мы можем оценить длину участка формирования.

Ход работы

1. Оценим расстояние, на котором происходит формирование потока в трубках при ламинарном течении. Если Re=1000, то:

N	Диаметр трубки d, мм	σ_d , MM	а, см
1	3.90	0.05	39
2	5.25	0.03	52.5
3	3.00	0.1	30

2. Для того чтобы определить динамическую вязкость воздуха и вычислить значение числа Рейнольдса, при котором происходит переход между ламинарным и турбулентным течениями для трубок, снимем зависимость разности давлений ΔP от расхода воздуха $Q=\frac{\Delta V}{\Delta t}$, при этом ΔV измеряется газовым счётчиком, а Δt — секундомером.

Для первой трубки: Длина рассматриваемого участка $l=50~{
m cm}$.

	Зависимость ΔP от ${f Q}$				
N	h , дел	ΔP , Πa	ΔV , л	Δt , c	$Q, \frac{\pi}{c}$
1	50	77.47	5	91.00	0.055
2	154	238.60	5	44.50	0.112
3	19	29.44	0.5	25.38	0.020
4	30	46.48	0.5	15.82	0.032
5	129	199.87	2.5	23.59	0.106
6	201	311.42	2.5	19.94	0.125
7	28	43.38	0.5	16.00	0.031
8	253	391.99	2.5	17.65	0.142
9	92	142.54	2.5	26.87	0.093
10	230	356.35	2.5	18.68	0.134

Рис. 1: График зависимости ΔP от Q

Коэффициент наклона прямолинейного участка графика:

$$k = (15.24 \pm 1.06) \frac{\Pi a}{\pi}$$

Тогда коэффициент динамической вязкости воздуха:

$$\eta = (1.73 \pm 0.12) \cdot 10^{-5} \text{ }\Pi\text{a} \cdot \text{c}$$

Вычислим значение числа Рейнольдса для переходного участка между ламинарным и турбулентным течениями:

$$Re = 944 \pm 70$$

Для второй трубки: Длина рассматриваемого участка $l=50~{\rm cm}.$

Зависимость ΔP от ${f Q}$					
N	h , дел	ΔP , Πa	ΔV , л	Δt , c	$Q, \frac{\pi}{c}$
1	33	51.13	1	8.59	0.116
2	49	75.92	1	7.40	0.135
3	62	96.06	1	6.94	0.144
4	16	24.79	0.5	8.94	0.072
5	92	142.54	1	5.66	0.177
6	154	238.60	2.5	10.69	0.234
7	120	185.92	2.5	12.07	0.207
8	172	266.49	2.5	10.19	0.245
9	217	336.21	2.5	8.78	0.285
10	196	303.67	2.5	9.25	0.270

Рис. 2: График зависимости ΔP от Q

Коэффициент наклона прямолинейного участка графика:

$$k = (5.29 \pm 1.18) \frac{\Pi a}{\pi}$$

Тогда коэффициент динамической вязкости воздуха:

$$\eta = (1.97 \pm 0.44) \cdot 10^{-5} \text{ }\Pi\text{a} \cdot \text{c}$$

Вычислим значение числа Рейнольдса для переходного участка между ламинарным и турбулентным течениями:

$$Re = 2956 \pm 660$$

Для третьей трубки: Длина рассматриваемого участка $l=20~{\rm cm}.$

	Зависимость ΔP от ${f Q}$				
N	h , дел	ΔP , Πa	ΔV , л	Δt , c	$Q, \frac{\pi}{c}$
1	10	15.49	0.5	26.12	0.019
2	25	38.73	2	45.02	0.044
3	21	32.54	1	27.94	0.036
4	40	62.03	1.5	24.09	0.062

Рис. 3: График зависимости ΔP от Q

Коэффициент наклона прямолинейного участка графика:

$$k = (11.34 \pm 1.58) \frac{\Pi a}{\pi}$$

Тогда коэффициент динамической вязкости воздуха:

$$\eta = (1.13 \pm 0.16) \cdot 10^{-5} \text{ }\Pi\text{a} \cdot \text{c}$$

3. Для двух трубок построим график зависимости ΔP от l, расстояния от входа в трубку до её конца.

N	ΔP , Πa	l, cm
1	196.77	131.5
	128.60	81.5
	79.01	41.5
	26.34	11.5
2	154.93	131.5
	111.55	81.5
	77.47	41.5
	52.68	11.5

Рис. 4: График зависимости ΔP от l для первой трубки

Рис. 5: График зависимости ΔP от l для второй трубки

4. Сняв зависимость на участках со сформированным течением в ламинарном режиме и обработав результаты по формуле:

$$\frac{8l\eta Q}{\pi\Delta P} = r^n,$$

построим график в двойном логарифмическом масштабе.

N	$\ln\left(\frac{8l\eta Q}{\pi\Delta P}\right)$	$\ln r$
1	-24.92	-6.24
2	-23.59	-5.94
3	-24.85	-6.50

Рис. 6: График зависимости $\ln\left(\frac{8l\eta Q}{\pi\Delta P}\right)$ от $\ln r$

Отсюда получаем, что:

$$n=2.3\pm1.8$$