

Learning Transferable Self-attentive Representations for Action Recognition in Untrimmed Videos with Weak Supervision

Xiao-Yu Zhang¹ Haichao Shi^{1,2,4} Changsheng Li^{3,4} Kai Zheng^{3,4} Xiaobin Zhu⁵ Lixin Duan^{3,4}

¹Institute of Information Engineering, Chinese Academy of Sciences
²School of Cyber Security, University of Chinese Academy of Sciences
³University of Electronic Science and Technology of China
⁴Youedata Co., Ltd., Beijing
⁵Beijing Technology and Business University

Presenter: Haichao Shi

Outline

- 1. Introduction
- Our Method (TSRNet)
 - Two-Stream Feature Extraction
 - Self-attentive Action Classification
 - Knowledge Transfer
 - Temporal Action Detection
- 3. Evaluation
- 4. Conclusion

Action Recognition in Videos

Videos

- Trimmed: fully semantic annotations (UCF101, HMDB51, etc.)
- Untrimmed: typically long, may contain multiple activities, difficult for temporal annotation (THUMOS, ActivityNet, etc.)

Opportunities

- Videos provide huge and rich data for visual learning
- Action is important in motion perception and has many applications

Challenges

- Temporal models and representations
- High computational and memory cost
- Noisy and weakly labels

Motivation

Existing Methods on Weakly Supervised Action Detection

- UntrimmedNets [1] utilizes a soft selection module for untrimmed video classification along with activity localization.
- STPN [2] utilizes a sparsity constraint to detect the activities.
- W-TALC [3] improve the localization results by optimizing two complimentary loss functions.

Limitations

- Limited training videos.
- Difficult to learn the specific high-level features for untrimmed videos.
- External background information affect the model performance greatly.
- [1] Limin Wang et al. UntrimmedNets for Weakly Supervised Action Recognition and Detection, in CVPR 2017
- [2] Phuc Nguyen et al. Weakly Supervised Action Localization by Sparse Temporal Pooling Network, in CVPR 2018
- [3] Sujoy Paul et al. W-TALC: Weakly-supervised Temporal Activity Localization and Classification, in ECCV 2018

Inspiration

Transfer Learning Inter-domain exploring VGGnet GoogLeNet GoogLeNet (b) Adversarial Joint Adaptation Network (JAN-A) (a) Joint Adaptation Network (JAN) learn transfer learning skills noptimize what to transfer for a target pair of source and target domains

- [1] Ashish Vaswani et al. Attention Is All You Need, in NIPS 2017[2] Zhouhan Lin et al. A Structured Self-attentive Sentence Embeddi
- [2] Zhouhan Lin et al. A Structured Self-attentive Sentence Embedding, in ICLR 2017
- [3] Mingsheng Long et al. Deep Transfer Learning with Joint Adaptation Networks, in ICML 2017
- [4] Ying Wei et al. Transfer Learning via Learning to Transfer, in ICML 2018

Our Method (TSRNet)

■TSRNet: <u>Transferable Self-attentive Representation learning based</u> deep neural Network

 Self-Attention Module: capture domain-specific properties

 Transfer Module: capture general properties shared by domains

Framework

Two-stream feature extraction

Self-attentive action classification

Knowledge transfer between trimmed and untrimmed videos

Temporal action detection

Overall loss: $\mathcal{L} = \mathcal{L}_{SA} + \mathcal{L}_{KT}$

Two-Stream Feature Extraction

Two-stream feature extraction

Self-attentive action classification

Knowledge transfer between trimmed and untrimmed videos

Temporal action detection

- Base network: ResNet101
- **X**_{RGB}: RGB feature matrices
- **X**_{FLOW}: Optical flow feature matrices

Self-Attentive Action Classification

Two-stream feature extraction

Self-attentive action classification

Knowledge transfer between trimmed and untrimmed videos

Temporal action detection

- $\mathbf{m} = \mathbf{X}\mathbf{a} = \mathbf{X} \left(\operatorname{softmax} \left(\mathbf{w_2} \cdot \operatorname{tanh}(\mathbf{W_1}\mathbf{X}) \right) \right)^T$
- $\mathcal{L}_{SA} = \mathcal{L}_{class} + \mathcal{R}_{SA}$
 - \mathcal{L}_{class} : the standard multi-label cross-entropy loss
 - $\mathcal{R}_{SA} = \alpha \mathcal{R}_{smooth} + \beta \mathcal{R}_{sparsity}$
 - $\mathcal{R}_{smooth} = \sum_{i=1}^{n-1} (a_i a_{i+1})^2$
 - $\mathcal{R}_{sparsity} = \|\mathbf{a}\|_1$

Knowledge Transfer

Two-stream feature extraction

Self-attentive action classification

Knowledge transfer between trimmed and untrimmed videos

Temporal action detection

•
$$\mathcal{L}_{KT} = \mathcal{L}_{FC1} + \mathcal{L}_{FC2}$$

•
$$\mathcal{L}_{FC1} = \text{MMD}^{2}(\mathcal{T}, \mathcal{U})$$

$$= \frac{1}{n_{T}^{2}} \sum_{i=1}^{n_{T}} \sum_{j=1}^{n_{T}} k(\mathbf{t}_{i}, \mathbf{t}_{j})$$

$$+ \frac{1}{n_{U}^{2}} \sum_{i=1}^{n_{U}} \sum_{j=1}^{n_{U}} k(\mathbf{u}_{i}, \mathbf{u}_{j})$$

$$- \frac{2}{n_{T} \cdot n_{U}} \sum_{i=1}^{n_{T}} \sum_{j=1}^{n_{U}} k(\mathbf{t}_{i}, \mathbf{u}_{j})$$

•
$$\mathcal{L}_{FC2} = \text{MMD}^2(FC1(\mathcal{T}), FC1(\mathcal{U}))$$

 $\mathcal{T} = \{ t_i |_{i=1}^{n_T} \}$: the set of features of trimmed videos $\mathcal{U} = \{ u_i |_{i=1}^{n_U} \}$: the set of features of untrimmed videos $k(\cdot, \cdot)$: the Gaussian kernel function

Temporal Action Detection

Two-stream feature extraction

Self-attentive action classification

Knowledge transfer between trimmed and untrimmed videos

Temporal action detection

 w_i^c : the weighted score of frame i for class c.

 $s_c = [s_1, s_2, ..., s_m]^T \in \mathbb{R}^{m \times 1}$: the output of softmax layer.

 $[ind_{start}, ind_{end}]$: the frame indices of starting and ending positions.

F: the fps (frames per second) of videos.

Experiments – Settings

Evaluation Datasets

	# Training Data	# Testing Data
THUMOS14	1,010	10,024
ActivityNet1.3	1,574	4,926

Transfer Dataset

# Overlapping Classes	THUMOS14	ActivityNet1.3
UCF101	20	200

Experiments – Settings

Implementations Details

Hyper-parameters	Settings
Batch Size	16
Momentum	0.9
Dropout	0.8
Learning Rate	0.0001(RGB) / 0.0005(Optical Flow)
Sampling Rate	30 fps (frames per second)
Decay Rate	Decrease every 5,000 iterations by 10

Results – Action Classification

Action recognition on THUMOS14

Table 1: Classification accuracy (%) of all the methods on the THUMOS14 dataset for action recognition. Note that SRNet is a simpler version of TSRNet, which excludes the knowledge transfer module.

	RGB	Optical Flow	Fusion
(Wang and Schmid 2013)	-	-	63.1
(Wang et al. 2016)(3 seg)	-	-	78.5
(Wang et al. 2017)	-	-	82.2
Two-Stream	68.2	71.6	73
SRNet	72.3	76.2	79.4
TSRNet	74.4	79.6	87.1

Two-Stream: TSRNet w/o (Self-Attention & Knowledge Transfer module)

SRNet: TSRNet w/o Knowledge Transfer module

Results – Action Classification

Action recognition on ActivityNet1.3

Table 2: Classification accuracy (%) of all the methods on the ActivityNet1.3 dataset for action recognition. Note that SRNet is a simpler version of TSRNet, which excludes the knowledge transfer module.

	RGB	Optical Flow	Fusion
Two-Stream	71.4	73.5	79.2
SRNet	74.3	80.1	86.9
TSRNet	79.7	84.3	91.2

Two-Stream: TSRNet w/o (Self-Attention & Knowledge Transfer module)

SRNet: TSRNet w/o Knowledge Transfer module

Results – Action Detection

Action detection on THUMOS14

Table 3: Comparisons on the THUMOS14 dataset for action detection.

	Method	mAP@IoU (%)								
		0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	(Richard and Gall 2016)	39.7	35.7	30.0	23.2	15.2	-	-	-	-
	(Shou, Wang, and Chang 2016)	47.7	43.5	36.3	28.7	19.0	10.3	5.3	-	-
	(Yeung et al. 2016)	48.9	44.0	36.0	26.4	17.1	-	-	-	-
	(Alwassel, Heilbron, and Ghanem 2017)	49.6	44.3	38.1	28.4	19.8	-	-	-	-
Full supervision	(Lin, Zhao, and Shou 2017)	50.1	47.8	43.0	35.0	24.6	-	-	-	-
	(Yuan et al. 2016)	51.4	42.6	33.6	26.1	18.8	-	-	-	-
	(Shou et al. 2017)	-	-	40.1	29.4	23.3	13.1	7.9	-	-
	(Xu, Das, and Saenko 2017)	54.5	51.5	44.8	35.6	28.9	-	-	-	-
	(Zhao et al. 2017)	66.0	59.4	51.9	41.0	29.8	-	-	-	-
	(Wang et al. 2017)	44.4	37.7	28.2	21.1	13.7	-	-	-	-
Weak supervision	(Singh and Lee 2017)	36.4	27.8	19.5	12.7	6.8	-	-	-	-
	(Nguyen et al. 2017)	52.0	44.7	35.5	25.8	16.9	9.9	4.3	1.2	0.1
	(Nguyen et al. 2017)	45.3	38.8	31.1	23.5	16.2	9.8	5.1	2.0	0.3
	TSRNet (w/o \mathcal{L}_{FC2})	53.5	45.3	35.9	26.5	17.2	10.4	5.31	1.93	0.21
	TSRNet	55.9	46.9	38.3	28.1	18.6	11.0	5.59	2.19	0.29

TSRNet (w/o \mathcal{L}_{FC2}): TSRNet w/o the 2nd Knowledge Transfer

Results – Action Detection

Action detection on ActivityNet1.3

Table 4: Comparisons on the ActivityNet1.3 dataset for action detection.

	Methods	mAP@IoU (%)					
	Wiethods	0.5	0.75	0.95	Average		
	(Singh and Cuzzolin 2016)	34.5	-	-	11.3		
	(Xu, Das, and Saenko 2017)	26.8	-	-	-		
	(Xiong et al. 2017)	29.1	23.5	5.5	-		
Full supervision	(Heilbron et al. 2017)	40.0	17.9	4.7	21.7		
Full supervision	(Shou et al. 2017)	45.3	26.0	0.2	23.8		
	(Zhao et al. 2017)	39.12	23.48	5.49	23.98		
	(Lin et al. 2018)	52.50	33.53	8.85	33.72		
Weak supervision	(Nguyen et al. 2017)	29.3	16.9	2.6	-		
	TSRNet (pretrained:[ResNet101@ImageNet])	29.9	17.2	2.71	19.56		
	TSRNet (pretrained:[TSRNet@overlap30])	33.1	18.7	3.32	21.78		

TSRNet (pretrained: [ResNet101@ImageNet]): using ResNet101 pretrained on ImageNet to initialize the feature extraction module of TSRNet

TSRNet (pretrain: [TSRNet@overlap30]): using the overlapping 30 classes between UCF101 and ActivityNet1.3 to initialize the entire TSRNet

Results – Ablation Study

Ablation study on THUMOS14

SA: the self-attention module

KT: the knowledge transfer module

Two-Stream + SA + KT: the full implementation of TSRNet

Results – Qualitative Evaluation

Qualitative evaluation on THUMOS14

Results – Qualitative Evaluation

• Qualitative evaluation on ActivityNet1.3

Conclusion

- TSRNet is the first to introduce Knowledge Transfer for action recognition in untrimmed videos with weak supervision
 - Knowledge of additional trimmed videos is effectively leveraged and transferred to improve the classification performance for untrimmed ones.
- TSRNet adopts Self-Attention mechanism to obtain frame-levels analysis
 - Frames with higher self-attentionweights can be selected out for the purpose of temporal action localization/detection in videos.
- TSRNet outperforms the existing state-of-the-art competitors
 - Extensive experiments on two challenging untrimmed video datasets (i.e., THUMOS14 and ActivityNet1.3) show promising results

Thank you! Questions & Answers

