

Creating dummies

Nele Verbiest, Ph. D. Senior Data Scientist @ Python Predictions

Motivation for creating dummy variables (1)

Logistic regression: $logit(a_1x_1 + a_2x_2 + ... + a_nx_n + b)$

donor_id	gender	country	segment
5	F	India	Gold
3	M	USA	Silver
2	M	India	Bronze
8	F	UK	Silver
1	F	USA	Bronze

Motivation for creating dummy variables (2)

Logistic regression: $logit(a_1x_1 + a_2x_2 + ... + a_nx_n + b)$

donor_id	gender	country	segment	gender_F	gender_M
5	F	India	Gold	1	0
3	M	USA	Silver	0	1
2	M	India	Bronze	0	1
8	F	UK	Silver	1	0
1	F	USA	Bronze	1	0

Preventing Multicollinearity (1)

donor_id	gender	gender_F	gender_M
5	F	1	0
3	M	0	1
2	M	0	1
8	F	1	0
1	F	1	0

Preventing Multicollinearity (2)

donor_id	gender	gender_F
5	F	1
3	М	0
2	М	0
8	F	1
1	F	1

Preventing Multicollinearity (3)

donor_id	country	country_USA	country_India	country_UK
5	India	0	1	0
3	USA	1	0	0
2	India	0	1	0
8	UK	0	0	1
1	USA	1	0	0

Preventing Multicollinearity (4)

donor_id	country	country_USA	country_India
5	India	0	1
3	USA	1	0
2	India	0	1
8	UK	0	0
1	USA	1	0

Adding dummy variables in Python

```
donor_id segment
0 32770 Gold
1 32776 Silver
2 32777 Bronze
3 65552 Bronze
```

```
# Create the dummy variable
dummies_segment = pd.get_dummies(basetable["segment"],drop_first=True)

# Add the dummy variable to the basetable
basetable = pd.concat([basetable, dummies_segment], axis=1)

# Delete the original variable from the basetable
del basetable["segment"]
```

```
donor_id Gold Silver
0 32770 1 0
1 32776 0 1
2 32777 0 0
3 65552 0 0
```


Let's practice!

Missing values

Nele Verbiest

Senior Data Scientist @ Python Predictions

Replacing missing values by an aggregate (1)

donor_id	age
5	-
3	25
2	36
8	40
1	26

Replacing missing values by an aggregate (2)

donor_id	age
5	38
3	25
2	36
8	40
1	26

Mean age: 38

Replacing missing values by an aggregate (3)

donor_id	max_donation
5	-
3	1 000 000
2	100
8	40
1	120

Mean max donation: 25 065

Median max_donation: 110

Replacing missing values by an aggregate (4)

donor_id	max_donation
5	110
3	1 000 000
2	100
8	40
1	120

Mean max donation: 25 065

Median max_donation: 110

Replacing missing values by a fixed value (1)

donor_id	sum_donations
5	130
3	10
2	-
8	40
1	120

Replacing missing values by a fixed value (2)

donor_id	sum_donations
5	130
3	10
2	0
8	40
1	120

Replacing missing values in Python

```
# Replace missing values by 0
replacement = 0
basetable["donations_last_year"] =
    basetable["donations_last_year"].fillna(replacement)

# Replace missing values by mean
replacement = basetable["age"].mean()
basetable["age"] = basetable["age"].fillna(replacement)
```


Missing value dummies

Let's practice!

Handling outliers

Nele Verbiest

Senior Data Scientist @ Python Predictions

Influence of outliers on predictive models

Causes of outliers

- Human errors
- Measuring errors
- Truly extreme values
- ..

Winsorization concept

Winsorization in Python

```
from scipy.stats.mstats import winsorize
basetable["variable_winsorized"] =
    winsorize(
    basetable["variable"],
    limits = [0.05,0.01])
```

Standard deviation method concept

Standard deviation method in Python

Let's practice!

Transformations

Nele Verbiest

Senior Data Scientist @ Python Predictions

Motivation for transformations

Log transformation

Log transformation


```
import numpy as np
basetable["log_variable"] = np.log(basetable["variable"])
```


Interactions

Unlikely to donate soon

Interactions in Python

```
basetable["number_donations_int_recency"] =
  basetable["number_donations"] * basetable["recency"]
```


Let's practice!