Dénombrement Résumé de cours

I/ Entiers naturels

1. Notion d'ensemble

- C'est une notion primitive, qu'on ne cherchera pas à définir autrement qu'intuitivement. Un ensemble (*set*) est défini quand on connaît ses éléments et les objets qui ne le sont pas. Deux ensembles sont égaux ssi ils ont les mêmes éléments.
- Notations $x \in E$ « x est élément de E », « x appartient à E » « x est dans E » $x \notin E$ « x n'est pas élément de E », « x n'appartient pas à E »
- Exemples $\{bleu, blanc, rouge\}$, $\{1..100\}$, \mathbb{N} , l'ensemble des nombres premiers,]-1,1], $\{x \in \mathbb{R} / \sin x > 0\}$, $\{x \in \mathbb{N} / 2 < x < 3\}$, $\{x \in \mathbb{R} / \sin x > 0\}$ (aussi noté \emptyset): \underline{L} 'ensemble vide.
- ◆ Sous-ensemble (subset) : A est un sous-ensemble de B ssi tout élément de A est élément de B. notation $A \subset B$: «A est une partie de B », «A est inclus dans B » «A est dans B »
- Exemples : Soit $E = \{x, \{x\}\}\$. On a $x \in E$, $\{x\} \in E$, $\{x\} \subset E$, $x \not\subset E$, $\{\{x\}\} \subset E$
- $A \cap B = \{x \mid x \in A \text{ et } x \in B\}$, $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$, $A B = A \setminus B = \{x \mid x \in A \text{ et } x \notin B\}$

2. Ensembles équipotents

- Bijection (bijection) $f: A \rightarrow B$ est une bijection ssi tout élément de A a une image et une seule et tout élément de B a un antécédent et un seul.
- Définition : A est <u>équipotent</u> à B ssi il existe une bijection de A vers B.
- Remarques A est équipotent à $B \Leftrightarrow B$ est équipotent à A. On dit que A et B sont équipotents. Si A est équipotent à B et B est équipotent à C, alors A est équipotent à C. Tout ensemble A est équipotent à lui-même.
- Exemples : → {as, roi, dame, valet} est équipotent à {♣, ♦, ♥, ♠}.

- \rightarrow N et N* sont équipotents, de même que N et l'ensemble des naturels pairs.
- → Les deux segments ci-dessous sont équipotents

Preuve:

• Si des ensembles sont équipotents, on dit qu'ils ont le même <u>cardinal</u>. Si ce sont des ensembles 'finis', on dit qu'ils ont le même nombre d'éléments.

$$Card\left(\{\clubsuit, \blacklozenge, \blacktriangledown, \blacktriangle\}\right) = Card\left(\{1, 2, 3, 4\}\right) = Card\left(\{N, S, E, W\}\right)$$
: chacun a '4' éléments.

$$Card(\mathbb{N}) = Card(\mathbb{N}^*) = Card(\mathbb{Z}) = Card(\mathbb{N}^2)$$

$$Card(]-1, 1[) = Card(\mathbb{R})$$

$$Card(\mathbb{N}) \neq Card(\mathbb{R})$$
 (Cantor)

• Si un ensemble est équipotent à \mathbb{N} , on dit qu'il est dénombrable.

 $\mathbb{N}^*, \mathbb{Z}, \mathbb{N}^2, \mathbb{Q}$ sont dénombrables

 $\mathbb{R}, \mathcal{P}(\mathbb{N}), [0,1], \mathbb{R}^2$, une droite ne sont pas dénombrables.

• Notion d'entier naturel :

On note 0 le cardinal de \emptyset , 1 le cardinal de $\{\emptyset\}$, 2 celui de $\{\emptyset, \{\emptyset\}\}$, 3 celui de $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$...

On définit ainsi de proche en proche tous les entiers naturels : 0 est le premier, et si n est un naturel (c'est le cardinal d'un ensemble X comme ci-dessus), le successeur de n est le cardinal de $X \cup \{X\}$ noté n+1.

N est l'ensemble des naturels ainsi définis.

Soient *n* et *p* deux naturels.

On dit que $n \leq p$

s'il existe una application injective d'un ensemble de cardinal n vers un ensemble de cardinal p, ou (ce qui est équivalent)

s'il existe deux ensembles A et B tels que n = Card(A), p = Card(B) et $A \subset B$.

On note [n, p] l'ensemble des naturels q tels que $n \le q \le p$.

Si E est un ensemble non vide, dire que Card(E) = n revient à dire que E est équipotent à [1, n].

On note aussi #E = n ou encore |E| = n

• Ensembles finis (définition 1)

Un ensemble E est fini ssi il existe un naturel n tel que Card(E) = n

Un ensemble qui n'est pas fini est dit infini. Exemples : \mathbb{N} , \mathbb{Z} , \mathbb{R} , \mathbb{Q} , \mathbb{Q} , \mathbb{Q} ,

• Ensembles finis (définition 2)

Un ensemble E est infini ssi il existe une partie F de E telle que $F \neq E$ et Card(F) = card(E)Un ensemble qui n'est pas infini est dit fini.

3. Propriétés de N

• Proposition 1 :

➤ Toute partie non vide de N admet un plus petit élément

➤ Toute partie non vide et majorée de N admet un plus grand élément

• Proposition 2 : (principe de récurrence)

Si une partie A de \mathbb{N} vérifie la propriété : $0 \in A$ et $\forall n \in \mathbb{N}$, $(n \in A \Rightarrow n+1 \in A)$, alors $A = \mathbb{N}$

• Récurrence simple

Soit $n_0 \in \mathbb{N}$ et $\mathcal{P}(n)$ une propriété portant sur un entier n tel que $n \ge n_0$.

Pour prouver la validité de $\mathcal{P}(n)$ pour tout $n \ge n_0$ il suffit de démontrer que

 $\mathcal{P}(n_0)$ est vraie et que pour tout $n \ge n_0$ $\mathcal{P}(n)$ vraie $\Rightarrow \mathcal{P}(n+1)$ vraie.

Exemples: $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$. $2^n \ge n^2$ pour tout n à partir d'un certain rang (lequel ?).

• Récurrence forte

Pour prouver la validité de $\mathcal{P}(n)$ pour tout $n \ge n_0$ il suffit de démontrer que

 $\mathcal{P}(n_0)$ est vraie et que pour tout $n \geqslant n_0 \ (\forall k = n_0...n, \ \mathcal{P}(k) \text{ vraie }) \Rightarrow \mathcal{P}(n+1) \text{ vraie }.$

Exemple : Si $\forall n \geqslant 1$ $a_{n+1} = \frac{1}{n+1} \sum_{k=0}^{n} a_k a_{n-k}$ et si $|a_0| \leqslant 1$ et $|a_1| \leqslant 1$, alors $\forall n \in \mathbb{N}$ $|a_n| \leqslant 1$