Analysis 2 Hausaufgabenblatt Nr. 12

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: April 15, 2024)

Problem 1. (a) Geben Sie die Definitionen von Gradient, Rotation und Divergenz an.

(b) Wir schreiben die Komponenten des dreidimensionalen Vektorprodukts als

$$(\vec{a} \times \vec{b})_i = \sum_{i,k=1}^3 \epsilon_{ijk} a_j b_k,$$

wobei ϵ_{ijk} der total antisymmetrische Tensor für \mathbb{R}^3 ist, mit $\epsilon_{ijk} = 1$. Zeigen Sie, dass gilt:

$$\sum_{i=1}^{3} \epsilon_{ijk} \epsilon_{ilm} = \delta_{jl} \delta_{km} - \delta_{jm} \delta_{kl}$$

$$\frac{1}{2} \sum_{i,j=1}^{3} \epsilon_{ijk} \epsilon_{jl} \delta_{kl},$$

mit δ dem Kronecker- δ .

(c) Zeigen Sie mit den Formeln aus (b) die folgenden Identitäten für beliebige Vektorfelder $\vec{a}, \ \vec{b}, \ \vec{c}, \ \vec{d}$:

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{c} \cdot (\vec{a} \times \vec{b})$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c},$$

$$(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = *(\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d}) - (\vec{a} \cdot \vec{d})(\vec{b} \cdot \vec{c})$$

(d) Zeigen Sie damit, dass für beliebige skalare Funktionen $F(\vec{x})$ und Vektorfelder $\vec{A}(\vec{x})$ gilt:

$$\nabla \times \nabla F = 0$$

$$\nabla \cdot (\nabla \times A) = 0$$

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

mit Δ dem Laplace-Operator.

Proof. (a)

grad
$$F = \sum_{i=1}^{3} \frac{\partial F}{\partial x_i} \hat{x}_i$$

div $\vec{F} = \sum_{i=1}^{3} \frac{\partial F_i}{\partial x_i}$
curl $\vec{F} = \dots$

(b) Offensichtlich muss $j \neq k$ und $l \neq m$ sein, ansonsten wäre 1

Problem 2.