3.2.10 (a) Prove for a collection of sets $\{E_{\lambda} : \lambda \in \Lambda\}$ that

$$(\bigcup_{\lambda \in \Lambda} E_{\lambda})^c = \bigcap_{\lambda \in \Lambda} E_{\lambda}^c$$
 and $(\bigcap_{\lambda \in \Lambda} E_{\lambda})^c = \bigcup_{\lambda \in \Lambda} E_{\lambda}^c$

Proof: Suppose $x \in (\cup_{\lambda \in \Lambda} E_{\lambda})^c$. We must show that $x \in \cap_{\lambda \in \Lambda} E_{\lambda}^c$. By definition of set compliment, $x \notin \cup_{\lambda \in \Lambda} E_{\lambda}$. Since x does not belong to the union of E_{λ} for every $\lambda \in \Lambda$, then $x \notin E_{\lambda}$ for each $\lambda \in \Lambda$. Therefore by definition of set compliment, $x \in E_{\lambda}^c$ for every $\lambda \in \Lambda$. Therefore by definition of set intersection, $x \in \cap_{\lambda \in \Lambda} E_{\lambda}^c$. Next, suppose $x \in \cap_{\lambda \in \Lambda} E_{\lambda}^c$. We must show that $x \in (\cup_{\lambda \in \Lambda} E_{\lambda})^c$. By definition of set intersection, $x \in E_{\lambda}^c$ for every $\lambda \in \Lambda$. Therefore by definition of set compliment, $x \notin E_{\lambda}$, for every λ . Since x does not belong to any of E_{λ} 's individually, then x does not belong to the union. Therefore $x \notin \cup_{\lambda \in \Lambda} E_{\lambda}$. Therefore by the definition of set compliment, $x \in (\cup_{\lambda \in \Lambda} E_{\lambda})^c$.

Since we have established that $(\bigcup_{\lambda \in \Lambda} E_{\lambda})^c = \bigcap_{\lambda \in \Lambda} E_{\lambda}^c$, by defining $G_{\lambda} = E_{\lambda}^c$ for every $\lambda \in \Lambda$, then we have that $(\bigcup_{\lambda \in \Lambda} G_{\lambda})^c = \bigcap_{\lambda \in \Lambda} G_{\lambda}^c$. If we take the compliment of the left hand side then we have that

$$\bigcup_{\lambda \in \Lambda} E_{\lambda}^{c} = ((\bigcup_{\lambda \in \Lambda} G_{\lambda})^{c})^{c} = (\bigcap_{\lambda \in \Lambda} G_{\lambda}^{c})^{c} = (\bigcap_{\lambda \in \Lambda} (E_{\lambda}^{c})^{c})^{c} = (\bigcap_{\lambda \in \Lambda} E_{\lambda})^{c}.$$

Therefore $(\cap_{\lambda \in \Lambda} E_{\lambda})^c = \bigcup_{\lambda \in \Lambda} E_{\lambda}^c$

- (b) i. The union of a finite number of closed sets is closed Let $\{E_1, \dots, E_n\}$ be a finite set of closed sets. If we consider that E_i^c is open for all $i \in [n]$, and take their intersection then we know by theorem 3.2.3 that $\bigcap_{i=1}^n E_i^c$ is open. Therefore if we take the compliment and and apply DeMorgan's law then we have that $(\bigcap_{i=1}^n E_i^c)^c = ((\bigcup_{i=1}^n E_i)^c)^c = \bigcup_{i=1}^n E_i$ is closed by theorem 3.2.13.
 - ii. The intersection of an arbitrary number of closed sets is closed. Let $\{E_{\lambda} : \lambda \in \Lambda\}$ be a collection of closed sets. Noting that E_{λ}^{c} is open for all $\lambda \in \Lambda$ then we know by theorem 3.2.3 that $\bigcup_{\lambda \in \Lambda} E_{\lambda}^{c}$ is open. Therefore by taking the compliment and applying DeMorgan's law we have that $(\bigcup_{\lambda \in \Lambda} E_{\lambda}^{c})^{c} = ((\bigcap_{\lambda \in \Lambda} E_{\lambda})^{c})^{c} = \bigcap_{\lambda \in \Lambda} E_{\lambda}$ is closed by theorem 3.2.13.