sponsored by: MCVECTOR Don Harper GROUP 3 Robert Higginbotham Robert Baker TonyCamarano Drew Hanson

Director of Technology, UCF

OVERVIEW

- Re-create Atari's© Tempest using an FGPA as the basis of the emulator
 - Implement many original features from the original arcade game
- Model original hardware in Verilog
- User input via spinner-wheel and push-button
 - Constructed in similar fashion to the original user controller
- Output graphics using concert-style laser

GOALS AND OBJECTIVES

- Re-create and preserve the popular Atari© Tempest game on modern technology
- Use original ROMs
- Same performance as original game (including bugs)
- Output vector-style graphics using concert-style laser
- Re-create a similar game controller to the original
- Implement original hardware

REQUIREMENTS AND SPECIFICATIONS

Software:

- Runs on original game timings at approximately 1.5 MHz clock speed
- Less than 250kb ROM and RAM

Hardware:

- PCB Board will be no larger than 5" x 5"
- 38 FPGA I/O Ports

User Interface and Gameplay:

- The game will save top 8 high scores
- Contains 16 different level shapes
- One player

Power Supply:

Powered by 120 V power outlet

I/O:

- Controlled by a dial capable of 360° of motion
- 4-button controller
- Controller deck 7" x 5"
- Output by laser galvanometer under \$300.00
- Output refresh rates above 30 frames per second (fps)

OVERALL SYSTEM DESIGN

PCB Connections

- Input and Output Analog Circuits on one PCB board
- Place holder pins to hold FPGA

Overall Structure Flow

- Input received from user controller as analog signal and converted to digital signal
- Digital signal is passed to FPGA for appropriate computations
- FPGA passes result to be converted back to analog and then forwarded to the laser output

FPGA CHOICES

XuLA Board	Parameter	Papilio One
\$70	Price	\$50 - 75
Spartan 3A 200 K	Chipsets	Spartan 3E 100K, 250K, 500K
32	I/O Pins	48
12 MHz	Clock	32 MHz
5, 3.3, 1.2 V	Voltage Pins	5, 3.3, 2.5, 1.2 V

MEMORY CONSIDERATIONS

Memory needed to be instantiated by FPGA Block RAM

Component	# ROM/RAM	Address Bytes	Data Bits	Bits
6502	2 RAM	1024	8	16k
	10 ROM	2048	8	160k
Math Box	6 ROM	256	4	6k
Vector	4 RAM	1024	8	32k
Generator	2 ROM	2048	8	32k
TOTAL				246 kbits

1kbits = 1024 bits

Spartan 3E 500K Chip is capable of addressing up to 360 kbits

CLOCK GENERATION

- Clocks needed: 12 MHz, 6 MHz, 3 MHz, 1.5 MHz, Φ1, Φ2
- Input clock: 32 MHz
 - 3 Digital Clock Management modules:

$$32*3 = 96 \text{ MHz}$$

 $96 / 8 = 12 \text{ MHz}$

- Positive Edge Counters generate the remaining signals
- 96 MHz is used to manage Φ1 and Φ2 based on the diagram below

Timing Waveforms for the 6502 Phase Clocks

CLOCK GENERATION

SOFTWARE LAYOUT

AND 6502 ADDRESS DECORFR 6502 MICROPROCESSOR ROBERTHIGGINBOTHAN

6502 MICROPROCESSOR INSTRUCTION SET

- 56 total instructions
 - Expanded to include more Op-Codes for various addressing modes
 - Contains R-type,
 J-Type, and I-type instructions
 - Supports BCD Operations

Addressing Mode	Op-Code
Immediate	69h
Zero Page	65h
Zero Page, X	75h
Absolute	6Dh
Absolute, X	7Dh
Absolute, Y	79h
(Indirect, X)	61h
(Indirect, Y)	71h

ADC - Add Memory to Accumulator with Carry Instruction

6502 MICROPROCESSOR BUSSES AND TIMING

- 3 Main Bus lines (data, address-high, address-low)
 - Each bus is 8-bit wide allows for 8-bit data words and 16-bit address words
 - In general, each bus is isolated, but sometimes may be latched into each other
- Utilizes a 2-phase clocking system allows for more efficient use of clock signals
 - Φ₁ phase clock
 - Φ₂ phase clock
- Outside the 6502, buses are connected to properly interface the Vector Generator,
 Math Box, RAM,ROM, and other hardware components
 - All external components are asynchronous
 - Data is accessed during a high Φ₂ phase clock signal
 - Data is latched during high Φ₁ phase clock signal

6502 MICROPROCESSOR INTERNAL ARCHITECTURE

6502 VHDL CODE

- Available as open-source code
- Originally used in an FPGA Emulator project for Atari© Asteroids
- Has the capability of supporting the following microprocessors
 - 6502
 - 65C02 (work in progress)
 - 65816 (work in progress)
- Consists of 4 modules
 - T65_Pack.vhd
 - T65.vhd
 - T65_ALU.vhd
 - T65_MCode.vhd

6502 TOP MODULE (T65.VHD)

- Functionality:
 - Passes data to T65_ALU and T65_MCode modules through Bus A and Bus B
 - Sets Program Status Register based on Op-Code
 - Controls Stack and PC Registers
 - Handles execution of Interrupt Subroutines
- Testing:
 - Simulation of individual test scripts checking Interrupt functionality
 - Simulation of Atari© Tempest Program ROM's

6502 ADDRESS DECODER

6502 TESTING (WITH ADDRESS DECODER)

Stand-Alone:

 Simulation of individual test scripts

With Vector Generator:

- Simulation of individual test scripts
- Simulation of Atari© Tempest
 Program ROMs

ATARI© MEMORY MAP

Atari© Memory Map										
Hexadecimal	R/W D7	Data								Function
Address		D7	D6	D5	D4	D3	D2	D1	D0	Function
0000-7FFF	R/W	D	D	D	D	D	D	D	D	Program RAM (2K)
0800-080F	W					D	D	D	D	Color RAM
0C00	R								D	Right Coin Switch
0C00	R							D		Center Coin Switch
0C00	R						D			Left Coin Switch
0C00	R					D				Slam Switch
0C00	R				D					Self-Test Switch
0C00	R			D						Diag. Step Switch
0C00	R		D							HALT
0C00	R	D								3KHz
0D00	R	D	D	D	D	D	D	D	D	Option Switch Inputs
0E00	R	D	D	D	D	D	D	D	D	Option Switch Inputs
2000-2FFF	R/W	D	D	D	D	D	D	D	D	Vector RAM (4K)
3000-3FFF	R	D	D	D	D	D	D	D	D	Vector ROM (4K)
4000	W								D	Right Coin Counter
4000	W							D		Center Coin Counter
4000	W					D				Video Invert X
4000	W				D					Video Invert Y
4000	W									VG GO

ATARI© MEMORY MAP

Atari© Memory Map										
Hexadecimal	R/W	Data							Function	
Address		D7	D6	D5	D4	D3	D2	D1	D0	
5000	W									WD CLEAR
5800	W									VG Reset
6000-603F	W	D	D	D	D	D	D	D	D	EAROM Write
6040	W	D	D	D	D	D	D	D	D	EAROM Control
6040	R	D								Math Box Status
6050	R	D	D	D	D	D	D	D	D	EAROM Read
6060	R	D	D	D	D	D	D	D	D	Math Box Read
6070	R	D	D	D	D	D	D	D	D	Math Box Read
6080-609F	W	D	D	D	D	D	D	D	D	Math Box Start
60C0-60CF	R/W	D	D	D	D	D	D	D	D	Custom Audio Chip 1
60D0-60DF	R/W	D	D	D	D	D	D	D	D	Custom Audio Chip 2
60E0	R								D	One Player Start
60E0	R							D		Two Player Start
60E0	R						D			FLIP
9000-DFFF	R	D	D	D	D	D	D	D	D	Program ROM (20K)
E000-FFFF	R	D	D	D	D	D	D	D	D	Reset/Interrupt Vectors

WATH BOX, ADDRESS DECODER AND POWER DREW HANSON

VERILOG MODULE LAYOUT

AUXILIARY ADDRESS DECODER

- Reads in bits 4-7 from External Address Bus (EAB)
- Address is decoded using basic logic and decoders
- Based on memory map, either Math Box, High Score or 'POKEY' is activated
- Upon activation, the Math Box, High Score or 'POKEY' will be enabled to read to or write from External Data Bus (EDB)

EAB SIMULATION

MATH BOX

MATH BOX MICROCODE EXECUTION

MATH BOX - ALUs

- AM2901 Microprocessor bit-slice
- 8 bits input/output
 - 2 4-bit inputs
 - From/to EDB
- 8 functions plus shifts
 - From ROMs 127-132
- Can be connected together for operations on 32 bit values
 - 2 16-bit inputs
- Coding: Used VHDL code with permission.
 - Adjustments were made for better compatibility in Verilog simulation

ALU DATA FLOW

MATH BOX - CONTROL LOGIC

POKEYS

- Reads data from spinner wheel and buttons
- Reads data from coin in, and difficulty switch
- Output audio data
- Used open source code

HIGH SCORE MEMORY

- Activated by Auxiliary Board Address Decoder
- Main Component (Rewritable ROM) ER 2055
- Address is read from EAB
- Data is written to High Score ROM via EDB
- Data can be written to EDB when high scores need to be displayed

VECTOR GENERATION

VECTOR GENERATOR VERILOG DESIGN

SPECIFICATIONS AND REQUIREMENTS OF THE ATARI VECTOR GENERATOR

- Outputs changes in X-Y vector coordinates, 10-bit 2's complement numbers
- 13-bit Address Bus
- 8-bit Data Bus
- 1024x1024 resolution
- Little Endian PC and 4-word Stack
- State machine with 8 micro-instructions
- 16 levels of brightness intensity
- 8 binary scaling settings

VG FSM AND INSTRUCTIONS

8 micro-instructions: draw, scale, address manipulation

VG FSM AND INSTRUCTIONS

VG FSM TIMING CONTROL

- Simulation of the clock signals used in the FSM
 - state_clk_not controls the latch to the FSM
 - avg0_clk_not clears decoder and varies AVG0 (LSB of VG address bus)
- Original Atari specs:
 - VCTR: 8 states/8 cycles \rightarrow Total Time = 5.3 μs

$$8*0.667 \mu s = 5.333 \mu s$$

Current Simulation Time: 3000 ns		1 Cycle = 0.667 μs
state_clk_not	0	
avg0_clk_not	0	
ò ∏ A	0	
₀ ∏ B	0	
d_in	1	
<mark>₀∏</mark> R_in	0	
S_in	0	
SR_out	0	
SR_out_not	1	
clk_12MHz	0	
clk_6MHz	0	
clk_3MHz	1	
<mark>3,∏</mark> VGCK	0	

STATIC GAME IMAGE (1)

STATIC GAME IMAGE (2)

OPCB OF BAKER ROBERT BAKER

SPINNER WHEEL INPUT

- Power 5 VDC
- Output:
 - V High = 4 volts
 - V Low = 0 Volts
- Uses Optical Encoder
 - Clock line
 - Data line
- High Frequency
- Implemented digital delay counter

INPUT SCHEMATIC

X/Y OUTPUT SCHEMATIC

- Components
 powered by +/ 15V from
 regulator –
 IA0515D
- 26mA current draw from circuit
- ~35mV Input offset
- Accuracy of 10k resistors
- Analog switch at AB, CD

OUTPUT TIMING CONSIDERATIONS (1)

- Longest drawing time: t ≈ 2.73 ms → RC ≈ 2.73
- Maximum voltage (± 5 VDC) charged for this amount of time
- Some tuning was necessary:
 - $R = 25 k\Omega$
 - $C = 0.1 \mu F$
 - Output gain = 10 chosen based on real game image
- Timing specific to original game hardware
 - Only 2 FPS
 - Increase of clock speed improves image stability but reduces image size, due to the RC values used.

OUTPUT TIMING CONSIDERATIONS (2)

LASER

- Galvanometer Scanner
- Draws vectors on a surface via +/- 5Volt signals received from the output of PCB
- Monochromatic Red laser

FINAL SCHEMATIC

FINAL PCB DESIGN

- 5" x 5"
- Designed with all through-hole components for simplicity
- 4 layers required

BUDGET

Component	Quantity	Cost Per Unit	Estimated Total Cost	Actual Total Cost
PCM1741E - IC DAC	3	\$4.19	\$12.57	\$28.36
LM324AM/NOPB – IC Op Amp	4	\$1.22	\$4.88	\$10.52
Concave Button	4	\$1.95	\$7.80	\$16.96
NPN-BJT Transistor	2	\$0.419	\$0.838	\$ O
CMOS Inverter	2	\$0.279	\$0.558	\$O
Resistors, Capacitors, etc.	NA	NA	≈\$5.00	\$10.00
Arcade Spinner Wheel	1	\$69.95	\$69.95	\$79.60
Papilio One 500K FPGA Board	1	\$74.99	\$74.99	\$81.41
Galvo-Scanner & Laser	1	\$106	\$106	\$O
PCB Milling Costs	NA	NA	≈\$75.00	\$39.31
Unforeseen Costs	NA	NA	≈\$50.00	\$84.08
Т	otal	\$413.59	\$350.24	