Eng uzun sayohat

IOI 2023 tashkilotchilari katta muammoga duch kelishmoqda! Ular kelgusi kun uchun Opuztazerga sayohatni rejalashtirishni unutishdi. Ammo, ehtimol, hali kech emas ...

Opuztazerda 0 dan N-1 gacha indekslangan N ta diqqatga sazovor joylar bor. Bu diqqatga sazovor joylarning ba'zi juftliklari o'zaro *ikki tomonlama* **yo'llar** orqali bog'langan. Har bir diqqatga sazovor joylar juftligi ko'pi bilan bitta yo'l orqali bog'langan. Tashkilotchilar qaysi diqqatga sazovor joylar yo'llar orqali bog'langanligini *bilishmaydi*.

Biz Opuztazerdagi yo'l tarmog'ining **zichligi** deb δ ning shunday qiymatiga aytamizki, unda har 3 ta har xil diqqatga sazovor joyning orasida eng kamida δ ta yo'l mavjud bo'ladi. Boshqacha qilib aytganda, har bir (u,v,w) $0 \le u < v < w < N$ uchlik diqqatga sazovor joylar uchun (u,v),(v,w) va (u,w) diqqatga sazovor juftliklar orasida eng kamida δ ta juftlik yo'l orqali bog'langan bo'lsa.

Tashkilotchilar yo'l tarmog'ining zichligi kamida D bo'lishi uchun D musbat sonini *bilishadi*. E'tibor bering, D qiymati 3 dan oshmasligi kerak.

Tashkilotchilar Opuztazerdagi telefon dispetcheriga **qo'ng'iroq** qilib, ba'zi diqqatga sazovor joylar orasidagi yo'l aloqalari haqida ma'lumot olishlari mumkin. Har bir **qo'ng'iroq**da ikkita bo'sh bo'lmagan diqqatga sazovor joylar massivlari $[A[0],\ldots,A[P-1]]$ va $[B[0],\ldots,B[R-1]]$ shakllantirilishi kerak. Diqqatga sazovor joylar juftliklari har xil bo'lishi kerak, bunda:

- Har bir i va j ($0 \le i < j < P$) uchun $A[i] \ne A[j]$;
- Har bir i va j ($0 \le i < j < R$) uchun $B[i] \ne B[j]$;
- Har bir i ($0 \le i < P$) va j ($0 \le j < R$) uchun $A[i] \ne B[j]$.

Har bir qo'ng'iroq uchun dispetcher A massivdagi diqqatga sazovor joylarning biridan B massivlagi diqqatga sazovor joylarning biriga yo'l bor yoki yo'qligini aytadi. Aniqrog'i, dispetcher A va B massivlarining har bir $i(0 \leq i < P)$ va $j(0 \leq j < R)$ juftligini ko'rib chiqib agar qaysidir A[i] va B[j] diqqatga sazovor joylari orasida yo'l mavjud bo'lsa true aks holda false qiymatlarini qaytaradi.

l uzunlikdagi **sayohat** deb shunday $t[0],t[1],\ldots,t[l-1]$ ketma-ketligiga aytiladiki, bunda barcha qiymatlar har xil va har bir $i(0\leq i\leq l-2)$ uchun t[i] va t[i+1] - diqqatga sazovor joylar orasida yo'l mavjud bo'ladi.

l uzunlikdagi sayohat agarda l+1 uzunlikdagi sayohat topilmasa **eng uzun sayohat** deb ataladi.

Sizning vazifangiz dispetcherlarga qo'ng'iroq qilish orqali tashkilotchilarga Opuztazerdagi eng uzun sayohatni topishda yordam berishdan iborat.

Implement qilish uchun tafsilotlar

Siz quyidagi protsedurani implement qilishingiz kerak:

```
int[] longest_trip(int N, int D)
```

- N: Opuztazerdagi diqqatga sazovor joylar soni.
- ullet D: Kafolatlangan yo'l tarmog'ining eng kichik zichligi.
- Bu protsedura eng uzun sayohatni ifodalovchi $t=[t[0],t[1],\ldots,t[l-1]]$ massivini qaytarishi kerak.
- Bu protsedura har bir test case uchun bir necha marotaba qo'ng'iroq qilishi mumkin.

Yuqorida aytilgan protsedura qo'ng'iroqlarni quyidagi funksiyaga qilishi mumkin:

```
bool are_connected(int[] A, int[] B)
```

- A: har xil diqqatga sazovor joylardan tashkil topgan bo'sh bo'lmagan massiv.
- *B*: har xil diqqatga sazovor joylardan tashkil topgan bo'sh bo'lmagan massiv.
- ullet A va B har xil elementlardan tashkil topgan bo'lishi kerak.
- Bu funksiya A massividagi qaysidir diqqatga sazovor joy B massividagi qaysidir bir diqqatga sazovor joy orasida yo'l mavjud bo'lsa true aks holda false qiymatini qaytaradi.
- Bu funksiyadan bitta eng uzun sayohatni aniqlashda ko'pi bilan $32\,640$ marotaba, umumiy hisobda ko'pi bilan $150\,000$ marotaba foydalanish mumkin.
- $\bullet\,$ Bu funksiyaga murojaat qilish davomida A va B massivlarining umumiy uzunligi $1\,500\,000$ dan oshmasligi kerak.

Grayder **moslashuvchan emas**. Har bir jo'natilgan yechim bir xil test case lar bilan tekshiriladi.

Examples

Example 1

Consider a scenario in which $N=5,\ D=1,$ and the road connections are as shown in the following figure:

The procedure longest_trip is called in the following way:

The procedure may make calls to are_connected as follows.

Call	Pairs connected by a road	Return value
are_connected([0], [1, 2, 4, 3])	$\left(0,1 ight)$ and $\left(0,2 ight)$	true
are_connected([2], [0])	(2,0)	true
are_connected([2], [3])	(2,3)	true
are_connected([1, 0], [4, 3])	none	false

After the fourth call, it turns out that *none* of the pairs (1,4), (0,4), (1,3) and (0,3) is connected by a road. As the density of the network is at least D=1, we see that from the triplet (0,3,4), the pair (3,4) must be connected by a road. Similarly to this, landmarks 0 and 1 must be connected.

At this point, it can be concluded that t=[1,0,2,3,4] is a trip of length 5, and that there does not exist a trip of length greater than 5. Therefore, the procedure longest_trip may return [1,0,2,3,4].

Consider another scenario in which N=4, D=1, and the roads between the landmarks are as shown in the following figure:

The procedure longest_trip is called in the following way:

```
longest_trip(4, 1)
```

In this scenario, the length of a longest trip is 2. Therefore, after a few calls to procedure are_connected, the procedure longest_trip may return one of [0,1], [1,0], [2,3] or [3,2].

Example 2

Subtask 0 contains an additional example test case with N=256 landmarks. This test case is included in the attachment package that you can download from the contest system.

Constraints

- $3 \le N \le 256$
- The sum of N over all calls to longest_trip does not exceed $1\,024$ in each test case.
- $1 \le D \le 3$

Subtasks

- 1. (5 points) D = 3
- 2. (10 points) D = 2
- 3. (25 points) D=1. Let l^\star denote the length of a longest trip. Procedure longest_trip does not have to return a trip of length l^\star . Instead, it should return a trip of length at least $\left\lceil \frac{l^\star}{2} \right\rceil$.
- 4. (60 points) D=1

In subtask 4 your score is determined based on the number of calls to procedure are_connected over a single invocation of longest_trip. Let q be the maximum number of calls among all invocations of longest_trip over every test case of the subtask. Your score for this subtask is calculated according to the following table:

Condition	Points
$2750 < q \leq 32640$	20
$550 < q \leq 2750$	30
$400 < q \leq 550$	45
$q \leq 400$	60

If, in any of the test cases, the calls to the procedure are_connected do not conform to the constraints described in Implementation Details, or the array returned by $longest_trip$ is incorrect, the score of your solution for that subtask will be 0.

Sample Grader

Let C denote the number of scenarios, that is, the number of calls to longest_trip. The sample grader reads the input in the following format:

• line 1: *C*

The descriptions of ${\cal C}$ scenarios follow.

The sample grader reads the description of each scenario in the following format:

- line 1: *N D*
- line 1 + i ($1 \le i < N$): $U_i[0] \ U_i[1] \ \dots \ U_i[i-1]$

Here, each U_i ($1 \le i < N$) is an array of size i, describing which pairs of landmarks are connected by a road. For each i and j such that $1 \le i < N$ and $0 \le j < i$:

- if landmarks j and i are connected by a road, then the value of $U_i[j]$ should be 1;
- if there is no road connecting landmarks j and i, then the value of $U_i[j]$ should be 0.

In each scenario, before calling $longest_trip$, the sample grader checks whether the density of the road network is at least D. If this condition is not met, it prints the message losufficient l

If the sample grader detects a protocol violation, the output of the sample grader is Protocol Violation: <MSG>, where <MSG> is one of the following error messages:

- ullet invalid array: in a call to are_connected, at least one of arrays A and B
 - o is empty, or
 - \circ contains an element that is not an integer between 0 and N-1, inclusive, or
 - o contains the same element at least twice.
- ullet non-disjoint arrays: in a call to are_connected, arrays A and B are not disjoint.
- too many calls: the number of calls made to are_connected exceeds $32\,640$ over the current invocation of longest trip, or exceeds $150\,000$ in total.
- too many elements: the total number of landmarks passed to are_connected over all calls exceeds $1\,500\,000$.

Otherwise, let the elements of the array returned by longest_trip in a scenario be $t[0], t[1], \ldots, t[l-1]$ for some nonnegative l. The sample grader prints three lines for this scenario in the following format:

- line 1: *l*
- line 2: t[0] t[1] ... t[l-1]
- line 3: the number of calls to are_connected over this scenario

Finally, the sample grader prints:

• line $1+3\cdot C$: the maximum number of calls to are_connected over all calls to longest_trip