Introduction to Abstract Algebra

UT Knoxville, Fall 2023, MATH 351

David White, Alex Zhang

October 8, 2023

Contents

1	Introduction					
	1.1	Relations	2			
	1.2	Functions	3			
2	The	Integers and Modular Arithmetic	4			
	2.1	Divisibility	4			
	2.2	Prime Factorization	5			
	2.3	Properties of Integers	5			
	2.4	Modular Arithmetic	5			
3	Introduction to Groups					
	3.1	The Basics	10			
	3.2	Order	12			
	3.3	Cyclic Groups	14			
	3.4	Subgroups	15			
	3.5	Cyclic Groups	18			
	3.6	Cosets and Lagrange's Theorem	19			
4	Factor groups and Homomorphisms					
	4.1	Normal Subgroups	21			
	4.2	Factor Groups	21			
	4.3	Homomorphisms	22			
In	dex		23			

Introduction

TODO: Pentagon rotation and mirroring example

1.1 Relations

Definition 1.1.1 ▶ **Relation**

Let *A* and *B* be sets.

- A *relation* from A to B is a subset of the Cartesian product $A \times B$.
- A *relation* on A is a subset of the Cartesian product $A \times A$.

Given a relation ρ , we denote $(a, b) \in \rho$ as $a \rho b$. If $(a, b) \notin \rho$, we write $a \not b$.

Definition 1.1.2 ▶ Reflexive, symmetric, transitive, equivalence relation

Let ρ be a relation on a set A.

- ρ is *reflexive* if, for any $a \in A$, $a \rho a$.
- ρ is *symmetric* if $a \rho b$ implies $b \rho a$.
- ρ is *transitive* if, whenever $a \rho b$ and $b \rho c$, we have $a \rho c$.

If ρ satisfies all three properties, it is called an *equivalence relation*. We often use \sim to denote an equivalence relation.

Definition 1.1.3 ▶ Equivalence class

Let \sim be an equivalence relation on a set A, and let $a \in A$. The *equivalence class* of a is a set defined as:

$$[a]\coloneqq\{b\in A\,:\, a\sim b\}$$

1.2 Functions

Definition 1.2.1 ▶ Function

Let X and Y be sets. A *function* from X to Y is a relation f from X to Y such that, for each $x \in X$, there exists exactly one $y \in Y$ where x f y. We write $f : X \to Y$ to mean f is a function from X to Y, and we write f(x) = y to mean x f y.

Definition 1.2.2 ► Injective, surjective, bijective

Let $f: X \to Y$ be a function.

- f is *injective* if, for all x_1 and x_2 where $x_1 \neq x_2$, we have $f(x_1) \neq f(x_2)$.
- f is *surjective* if, for all $y \in Y$, there exists $x \in X$ such that f(x) = y.
- *f* is *bijective* if it is both injective and surjective.

Definition 1.2.3 ▶ **Permutation**

A *permutation* of a set *A* is a function from *A* to *A*.

Definition 1.2.4 ▶ **Binary operation**

A *binary operation* on a set *A* is a function from $A \times A$ to *A*.

Wowzers

The Integers and Modular Arithmetic

Theorem 2.0.1 ▶ Well Ordering Axiom

If *S* is a nonempty subset of \mathbb{N} , then *S* has a minimum value.

Theorem 2.0.2 ▶ Principle of Mathematical Induction

For each $n \in \mathbb{N}$, let P(n) denote a statement. Suppose that:

- 1. P(1) is true, and
- 2. for each $n \in \mathbb{N}$, if P(n) is true, then P(n+1) is true.

Then P(n) is true for all $n \in \mathbb{N}$.

2.1 Divisibility

Theorem 2.1.1 ▶ Division Algorithm

TODO: division algorithm

Definition 2.1.2 ▶ **Divides**

Let $a, b \in \mathbb{Z}$. We say a *divides* b if there exists an integer k such that b = ka. We write $a \mid b$ to mean a divides b.

Definition 2.1.3 ▶ Greatest common divisor (GCD)

Let $a, b \in \mathbb{Z}$ where at least one is non-zero. The *greatest common divisor (GCD)* of a and b is the largest positive integer g such that $g \mid a$ and $g \mid b$. We write gcd(a, b) or simply (a, b) to denote the greatest common divisor of a and b.

Definition 2.1.4 ▶ Relatively prime, coprime

Let $a, b \in \mathbb{Z}$, where at least one is non-zero. We say a and b are *relatively prime* (or *coprime*) if gcd(a, b) = 1.

Theorem 2.1.5

Let $a, b \in \mathbb{Z}$, where at least one is non-zero. Then there exist $u, v \in \mathbb{Z}$ where gcd(a, b) = au + bv. Moreover, gcd(a, b) is the smallest possible number of all values of u and v.

Theorem 2.1.6 ▶ Euclidean Algorithm

TODO

2.2 Prime Factorization

Definition 2.2.1 ▶ Prime, composite

A natural number p > 1 is *prime* if its only positive divisors are 1 and p itself. Otherwise, p is *composite*.

Theorem 2.2.2 ▶ Euclid's Lemma

Let $p \in \mathbb{N}$ where p > 1. p is prime if and only if, for any integers a and b where $p \mid ab$, then $p \mid a$ or $p \mid b$.

Theorem 2.2.3 ▶ Fundamental Theorem of Arithmetic

For every natural number a greater than 1, there exists a unique set of primes $\{p_1, \dots, p_n\}$ such that $a = p_1 \cdots p_n$.

2.3 Properties of Integers

2.4 Modular Arithmetic

Definition 2.4.1 ► **Modular congruency**

Let $n \in \mathbb{N}$ where n > 1, and let $a, b \in \mathbb{Z}$. We say a is *congruent* to b *modulo* n if $n \mid (a-b)$ (that is, if a and b have the same remainder when divided by n). We write $a \equiv b \pmod{n}$ to mean a is congruent to b modulo n.

Theorem 2.4.2

Let $n \in \mathbb{N}$ where n > 1. Then $a \equiv b \pmod{n}$ is an equivalence relation.

The equivalence classes of $a \equiv b \pmod{n}$ are conventionally written as:

$$[0], [1], \dots, [n-1]$$

These are called the *congruence classes modulo n*, where:

$$\mathbb{Z}_n := \{[0], [1], \dots, [n-1]\}$$

On \mathbb{Z}_n , we define addition modulo n and multiplication modulo n as:

$$[a] + [b] = [a+b]$$

$$[a] \cdot [b] = [ab]$$

For example, in \mathbb{Z}_7 , we have [5] + [6] = [4]. We will often shorten this as 5 + 6 = 4 when the context is clear.

Theorem 2.4.3

Addition modulo *n* and multiplication modulo *n* are well-defined.

Proof. Fix $n \in \mathbb{N}$ where n > 1. Suppose $a_1 \equiv a_2 \pmod{n}$ and $b_1 \equiv b_2 \pmod{n}$. To prove addition modulo n is well-defined, we need to verify the following equality:

$$[a_1] + [b_1] = [a_2] + [b_2]$$

Note that:

$$(a_1 + b_1) - (a_2 + b_2) = (a_1 - a_2) + (b_1 - b_2)$$

Since $n \mid (a_1 - a_2)$ and $n \mid (b_1 - b_2)$, we have $n \mid [(a_1 + b_1) - (a_2 + b_2)]$, so addition is well-defined.

To prove multiplication is well-defined, we need to verify the following equality:

$$[a_1][b_1] = [a_2][b_2]$$

Note that:

$$a_1b_1 - a_2b_2 = a_1b_1 - a_1b_2 + a_1b_2 - a_2b_2 = a_1(b_1 - b_2) + (a_1 - a_2)b_2$$

So multiplication modulo *n* is also well-defined

These operations follow similar properties as traditional integer addition and multiplication. Addition in \mathbb{Z}_n is closed, associative, commutative, and has additive identity [0] and additive inverse [-a] for any $a \in \mathbb{Z}_n$.

Multiplication in \mathbb{Z}_n is closed, associative, commutative, distributive, and has multiplicative identity [1]. However, not every \mathbb{Z}_n has a multiplicative inverse for all elements.

Example 2.4.4 \blacktriangleright Multiplicative inverse in \mathbb{Z}_n

In \mathbb{Z}_6 , does ab = 0 mean that a = 0 or b = 0? Not necessarily: a = 3 and b = 2 is a counterexample.

In \mathbb{Z}_7 , does ab = 0 mean a = 0 or b = 0? For any $a \in \mathbb{Z}_7$ where $a \neq 0$, note that $\gcd(a,7) = 1$. Thus, there exist $u,v \in \mathbb{Z}$ where au + 7v = 1. Rearranging, we get 7v = 1 - au, so $7 \mid (au - 1)$. That means [a][u] = [1], so u is the multiplicative inverse of a. Since our choice of a was arbitrary, then every element in \mathbb{Z}_7 has a multiplicative inverse.

Example 2.4.5

In \mathbb{Z}_5 , what is 4^{91} ?

$$4^1 = 4$$

$$4^2 = 1$$

$$4^3 = 4$$

$$4^4 = 1$$

:

$$4^{91} = 4$$

$$3^1 = 3$$
, $3^2 = 4$, $3^2 = 2$, $3^4 = 1$, so $3^{91} = (3^4)^{22} \cdot 3^3 = 2$.

Example 2.4.6

Find *b* satisfying:

$$b \equiv 3 \pmod{5}$$

$$b \equiv 4 \pmod{11}$$

$$b \equiv 6 \pmod{14}$$

Note that 5 and 11 are relatively prime, so there exist $u, v \in \mathbb{Z}$ where 5u + 11v = 1. In this case, we can take u = -2 and v = 1. Note that:

$$5(-2)4 + 11(1)3 \equiv 3 \pmod{5}$$

$$5(-2)4 + 11(1)3 \equiv 4 \pmod{11}$$

More generally, we can take b = -7 + 55k for any $k \in \mathbb{Z}$.

Alternatively, we can let:

$$d_1 := 11 \cdot 14 = 154$$

$$d_2 \coloneqq 5 \cdot 14 = 70$$

$$d_3 := 5 \cdot 11 = 55$$

Note that gcd(5, 154) = 1, so:

$$5(31) + 154(-1) = 1 \implies 5 \cdot 31 \equiv 1 \pmod{5}$$

$$11(-19) + 70(3) = 1 \implies 70 \cdot 3 \equiv 1 \pmod{11}$$

$$14(4) + 55(-1) = 1 \implies 55(-1) \equiv 1 \pmod{14}$$

Let b := 154(-1)(3) + 70(3)4 + 55(-1)6. Then:

$$b \pmod{5} = 154(-1)(3) = 3$$

$$b \pmod{11} = 4$$

$$b \pmod{14} = 6$$

Theorem 2.4.7 ▶ Chinese Remainder Theorem

Let n_1, \ldots, n_k be positive integers, all greater than 1, where any two different n_i and n_j are relatively prime. If $a_1, \ldots, a_n \in \mathbb{Z}$, we can find $b \in \mathbb{Z}$ satisfying $b \equiv a_i \pmod{n_i}$ for all $1 \le i \le k$. Moreover, if $c \equiv a_i \pmod{n_i}$, then $b \equiv c \pmod{n_1 n_2 \cdots n_k}$.

 \Box

Introduction to Groups

3.1 The Basics

Definition 3.1.1 ▶ **Group**

A *group* is a set *G* together with a binary operation * satisfying for any $a, b, c \in G$:

- *closure* under *, meaning $a * b \in G$;
- associativity under *, meaning (a * b) * c = a * (b * c);
- existence of an *identity element* $e \in G$ satisfying e * a = a * e; and
- existence of an *inverse* for a, say $a^{-1} \in G$ where $a * a^{-1} = a^{-1} * a = e$.

A group is *abelian* if it is commutative under *, meaning a * b = b * a for any $a, b \in G$.

Some examples of groups include \mathbb{Z} under addition, \mathbb{Z}_n where $n \geq 2$ under addition, and D_{10} under \circ , the dihedral group of the regular pentagon, often called D_5 . (TODO: pentagon example)

Theorem 3.1.2 ▶ Uniqueness of identities and inverses

Let G be a group.

- 1. The identity of G is unique (that is, there is only one identity element in G).
- 2. For any $a \in G$, its inverse a^{-1} is unique.

Proof of 1. Let e and f be identity elements in G. Then ef = e because f is an identity, and ef = f because e is an identity. Thus, e = f.

Proof of 2. Let *b* and *c* be inverses of *a*. Then bac = (ba)c = ec = c, and bac = b(ac) = be = b. Thus, b = c.

Theorem 3.1.3 ▶ Cancellation

Let *G* be a group, and let $a, b, c \in G$. If ab = ac or ba = ca, then b = c.

Proof sketch. If ab = ac, then $a^{-1}(ab) = a^{-1}(ac) \dots$ so b = c.

Theorem 3.1.4

Let G be a group, and let $a, b \in G$. Then there is a unique $c \in G$ satisfying ac = b, and there is a unique $d \in G$ satisfying da = b.

Intuition: $c = a^{-1}b$ and $d = ba^{1}$.

Definition 3.1.5 ▶ **Permutation**

A *permutation* on a set A is an injective function $\sigma: A \to A$, written as:

$$\sigma \coloneqq \begin{pmatrix} 1 & 2 & 3 \\ a & b & c \end{pmatrix}$$

to mean $\sigma(1) = a$, $\sigma(2) = b$, $\sigma(3) = c$.

Since these are functions, we can compose two or more permutations.

Permutation example, composition example

The set of permutations, under function composition, is a *group*.

- · Closed
- Associativity
- Existence of an identity element e where $e \circ \sigma = \sigma \circ e$ for all σ . In this case, e is simply the identity function.
- Existence of an inverse for each σ . That is, for any σ , there exists τ where $\sigma \circ \tau = \tau \circ \sigma = e$.

Definition 3.1.6 \triangleright Symmetric group (S_n)

The set of permutations on 3 elements under function composition is called S_3 , the *symmetric group* on 3 elements.

Let $n \ge 2$. Let U(n) denote the set of all $a \in \mathbb{Z}_n$ where gcd(a, n) = 1, under the multiplication modulo n.

Definition 3.1.7 ▶ **Direct product**

Let G be a group with operation *, and let H be a group with operation \cdot . On the Cartesian

product $G \times H$, define the operation \diamond by:

$$(g_1, h_1) \diamond (g_2, h_2) := (g_1 * g_2, h_1 \cdot h_2)$$

for all $g_i \in G$, $h_i \in H$. We call this the *direct product* of G and H.

Theorem 3.1.8 ▶ Direct product is always a group

The direct product of any two groups is itself a group.

Example 3.1.9 ► **Simple direct product**

Consider the direct product $\mathbb{Z}_3 \times S_3$.

- How many elements are in the direct product?
- What is the identity element?
- What is the inverse of $(2, (\frac{1}{3}, \frac{2}{1}, \frac{3}{2}))$?
- There are 3 elements in \mathbb{Z}_3 and 6 elements in S_3 , so there are a total of 18 elements in the direct product.
- The identity element is $\left(0, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}\right)$
- The inverse of $\left(2, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}\right)$ is $\left(1, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}\right)$

matrix size

3.2 Order

Integer powers

In groups under an addition operation such as \mathbb{Z}_{15} , we write $7 \cdot 2$ instead of 2^7 to avoid ambiguity with the notation for integer powers.

Theorem 3.2.1 ▶ Properties of power

- 1. $a^m a^n = a^{m+n}$
- 2. $(a^m)^n = a^{mn}$
- 3. $a^{-n} = (a^{-1})^n = (a^n)^{-1}$

Definition 3.2.2 ▶ Order

Let G be a group under operation \cdot .

- The *order* of G (denoted |G|) is the number of elements in G. G is *finite* if its order is finite; otherwise, it's an *infinite* group.
- The *order* of an element $a \in G$ (denoted |a|) is the smallest positive integer where:

$$\underbrace{a \cdot a \cdot a \cdots a}_{n \text{ times}} = e \quad \text{(the identity element of } G\text{)}$$

If such an *n* exists, *a* has *finite order*; otherwise, *a* has *infinite order*.

In any group, the identity element is the only element that has order 1.

Example 3.2.3 ► **Order of common groups**

- $|Z| = \infty$
- $|Z_{15}| = 15$
- $|D_{10}| = 10$
- $|S_5| = 5!$
- $|D_6 \times S_4| = 6 \cdot 4!$

Example 3.2.4 ▶ Order of elements in common groups

- Order of $2 \in \mathbb{Z}_4$ is 2 because 2 + 2 = 0 = e
- Order of $3 \in U(8)$ is 3 because $3^2 = 1 = e$
- Order of $\sigma := \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \in S_3$ is 3 because $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}^3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$

Theorem 3.2.5 ▶ Properties of order

Let G be a group, and let $a \in G$.

- 1. If a has infinite order, then $a^i = a^j$ if and only if i = j.
- 2. If *a* has order $n \in \mathbb{Z}^+$, then $a^i = a^j$ if and only if $n \mid (i j)$.

Proof sketch. Consider *i* and *j* where $a^{i-j} = e$.

- 1. If *a* has infinite order, then i j = 0.
- 2. If *a* has finite order, write i j = nq + r for $0 \le r < n$ (by the division algorithm TODO: REF). Then:

$$a^{i-j} = (a^n)^q a^r = e$$

So $a^r = e$. But r < n, and n is the smallest positive integer satisfying $a^n = e$. Thus, r = 0.

Corollary 3.2.6

Let *G* be a group, and let $a \in G$ where $|a| = n \in \mathbb{Z}^+$. Then $a^i = e$ if and only if $n \mid i$.

Example 3.2.7

Show that *ab* and *ba* have the same order.

Suppose $(ab)^n = e$. Then:

$$(ba)^n = \underbrace{baba \cdots ba}_{n \text{ times}}$$
$$= b(ab)^{n-1}a$$

So $(ba)^n b = b(ab)^{n-1} ab = b(ab)^n = b$. Thus, $(ba)^n = e$. Thus, $n \mid |ba|$, or $|ab| \mid |ba|$.

3.3 Cyclic Groups

Definition 3.3.1 ► Cyclic

A group *G* is *cyclic* if there exists $a \in G$ where, for any $b \in G$:

$$b = a^n$$
 for some $n \in \mathbb{Z}$

In other words, G is cyclic if there exists $a \in G$ where any element of G is a power of a. In this context, we say a is a *generator* of G and write $G = \langle a \rangle$, where:

$$\langle a \rangle \coloneqq \{a^k \, : \, k \in \mathbb{Z}\}$$

For example, \mathbb{Z} under addition is a cyclic group. For any $n \in \mathbb{Z}$, we have:

$$1 \cdot n = n$$

Note here that $1 \cdot n$ reflects the idea of integer powers under addition. We apply the group

operation of addition *n*-times. For example:

$$5 = 1^5 = 1 \cdot 51 + 1 + 1 + 1 + 1$$
$$-2 = 1^{-2} = 1 \cdot (-2) = -(1+1)$$

When dealing with additive operations, we usually omit the exponent notation and simply write the multiplicative expression. Note also that \mathbb{Z} can be generated by -1. Thus, the generator of a cyclic group is not guaranteed to be unique.

Another example, in \mathbb{Z}_{12} , we have:

$$\langle 1 \rangle = \{0, 1, 2, \dots, 10, 11\}$$

 $\langle 4 \rangle = \{0, 4, 8\}$

In fact, this $\langle 4 \rangle$ is itself a group under addition modulo 12.

Theorem 3.3.2 ▶ Every cyclic group is abelian

Let *G* be a group. If *G* is cyclic, then it is abelian.

3.4 Subgroups

Definition 3.4.1 ► **Subgroup**

Let *G* be a group under an operation *. Then a subset $H \subseteq G$ is considered a *subgroup* of *G* if *H* itself also a group under *. *H* is called a *proper subgroup* of *G* if $H \subsetneq G$.

Trivially, every group is a subgroup of itself. Also, $\{e\}$ is a subgroup of every group. More substantially, \mathbb{Z} is a subgroup of \mathbb{Q} , and \mathbb{Q} is a subgroup of \mathbb{R} . This is sometimes written as $\mathbb{Z} \leq \mathbb{Q}$, and $\mathbb{Q} \leq \mathbb{R}$.

Theorem 3.4.2 ▶ Conditions for subgroup

Let G be a group under operation *, and let $H \subseteq G$. Then H is a subgroup of G if and only if:

- 1. $e \in H$ (the subset contains the identity);
- 2. for any $a, b \in H$, $a * b \in H$ (the subset is closed under *); and
- 3. for any $a \in H$, $a^{-1} \in H$ (the subset contains all inverses).

Example 3.4.3 \triangleright Determining $3\mathbb{Z}$ is a subgroup of \mathbb{Z}

Consider the following set:

$$3\mathbb{Z} \coloneqq \{3x : x \in \mathbb{Z}\}$$

We have:

- 1. $0 \in 3\mathbb{Z}$
- 2. For any $a, b \in 3\mathbb{Z}$, a = 3m and b = 3n for some $m, n \in \mathbb{Z}$. Thus, $a + b = 3m + 3n = 3(m + n) \in 3\mathbb{Z}$.
- 3. For any $a \in 3\mathbb{Z}$, $a^{-1} = -a = 3(-m)$.

Thus, we can confirm that $3\mathbb{Z}$ is a subgroup of \mathbb{Z} .

Note that in the above example, we can also write:

$$3\mathbb{Z} := \langle 3 \rangle = \{3x : x \in \mathbb{Z}\}$$

Definition 3.4.4 ► Cyclic subgroup

Let G be a group, and let $a \in G$. The *cyclic subgroup* generated by a is defined as:

$$\langle a \rangle := \{ a^n : n \in \mathbb{Z} \}$$

For example, in \mathbb{Z}_{12} , we have:

$$\langle 0 \rangle = \{0\}$$

$$\langle 1 \rangle = \mathbb{Z}_{12}$$

$$\langle 2 \rangle = \{0, 2, 4, 6, 8, 10\}$$

$$\langle 3 \rangle = \{0, 3, 6, 9\}$$

$$\langle 4 \rangle = \{0, 4, 8\}$$

$$\langle 5 \rangle = \{0, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7\} = \mathbb{Z}_{12}$$

$$\langle 6 \rangle = \{0, 6\}$$

$$\langle 7 \rangle = \dots = \mathbb{Z}_{12}$$

$$\langle 8 \rangle = \{0, 8, 4\}$$

$$\langle 9 \rangle = \{0, 9, 6, 3\}$$

$$\langle 10 \rangle = \{0, 10, 8, 6, 4, 2\} = \langle 2 \rangle$$

$$\langle 11 \rangle = ... = \mathbb{Z}_{12}$$

 \bigcirc

From this, it seems that numbers relatively prime with 12 can generate the entirety of \mathbb{Z}_{12} . In fact, if |a| = n, then $|a^i| = \frac{n}{\gcd(n,i)}$.

this fact!!!

Theorem 3.4.5 ▶ Cyclic subgroups are groups

Let *G* be a group, and let $a \in G$. $\langle a \rangle$ is a subgroup.

Proof sketch. We simply check the three conditions.

- 1. $e = a^0$.
- 2. $a^m a^n = a^{m+n}$
- 3. if $a^m \in \langle a \rangle$, then $a^{-m} \in \langle a \rangle$.

Thus, $\langle G \rangle$ is a subgroup of G.

Theorem 3.4.6 ▶ Conditions for subgroup relaxed

Let *G* be a group, and let $H \subseteq G$. Then *H* is a subgroup *G* if and only if:

- 1. $e \in H$, and
- 2. $ab^{-1} \in H$ for any $a, b \in H$.

Proof sketch. Let $a \in H$. $e \in H$ by (1), so $1 \cdot a^{-1} \in H$.

Let $a, b \in H$. $b^{-1} \in H$ by the first statement, so then $a(b^{-1})^{-1} \in H$, so $ab \in H$.

Theorem 3.4.7 ▶ Conditions for finite subgroup

Let *G* be a group, and let *H* be a **finite** subset of *G*. Then *H* is a subgroup of *G* if and only if:

- 1. $e \in H$, and
- 2. $ab \in H$ for any $a, b \in H$.

Intuition: This theorem is saying that if we take a finite subset of G, then these two conditions alone imply the existence of inverses, and vice versa. For any $a \in H$, we have:

$$\langle a \rangle = \{e, a, a^2, a^3, ...\} \subseteq H$$

Since H is finite, then these a's must "wrap around" back to e. For example, we might have $a^5 = a^{17}$, which implies that $e = a^{12} = a(a^{11})$. Thus, the inverse of a is a^{11} .

Crucially, this theorem does not apply for infinite subsets/subgroups.

Definition 3.4.8 ▶ Center

Let *G* be a group. The *center* of *G* is defined as:

$$Z(G) := \{ z \in G : az = za \text{ for all } a \in G \}$$

If G is abelian, then Z(G) = G.

TODO: dihedral groups, diagram thing

3.5 Cyclic Groups

Definition 3.5.1 ▶ Cyclic group, generator

A group G is *cyclic* if there exists $a \in G$ where every element is a power of a. We say a is a *generator* for G and write $G = \langle a \rangle$.

For any group G, we can easily attain a cyclic subgroup by choosing any $a \in G$ and seeing what it generates:

$$\langle a \rangle := \{ a^n : n \in Z \}$$

Theorem 3.5.2 ▶ Properties of cyclic groups

For cyclic group G and any $a \in G$:

- 1. *G* is abelian.
- 2. $\langle a \rangle \leq G$ for any $a \in G$.
- 3. $|a| = |\langle a \rangle|$.
- 4. Any subgroup of *G* is also cyclic.
- 5. If *k* divides |a|, then $\langle a \rangle$ has exactly one subgroup of order *k*: $\langle a^{|a|/k} \rangle$.

Definition 3.5.3 ► Euler phi-function

The *Euler phi-function* is a function $\phi : \mathbb{N} \to \mathbb{N}$ where $\phi(n)$ is the number of integers $1 \le i \le n$ where $\gcd(i, n) = 1$.

- $|U(n)| = \phi(n)$
- For $\langle a \rangle$ and k where k divides |a|, the number of elements of order k in $\langle a \rangle$ is $\phi(k)$.

Theorem 3.5.4 ▶ Properties of euler phi with primes

For prime number *p*, and any positive integer *m* and *n*:

- 1. $\phi(p^n) = p^n p^{n-1}$.
- 2. If gcd(m, n) = 1, then $\phi(mn) = \phi(m)\phi(n)$.

3.6 Cosets and Lagrange's Theorem

Definition 3.6.1 ► Congruence modulo a group

For $H \le G$ and $a, b \in G$, a is **congruent to** b modulo H if $a^{-1}b \in H$. This is written as $a \equiv b \pmod{H}$.

For group *G* and $H \leq G$:

- Congruence modulo *H* is an equivalence relation on *G*.
- For any $g \in G$, its equivalence class [g] is $\{gh : h \in H\}$.

Definition 3.6.2 ► **Left coset**

For $H \leq G$ and any $a \in G$, the *left coset* of a with respect to G is set $\{ah : h \in H\}$, written as aH. We also call aH a left coset of H in G.

Theorem 3.6.3 ▶ Left cosets partitioning

or $H \leq G$, the left cosets of H in G partition G.

Definition 3.6.4 ► **Index**

For $H \leq G$, the *index* of H in G is the number of distinct left cosets of H in G, written as [G:H].

Theorem 3.6.5 ► Lagrange's Theorem

For finite group *G* and $H \leq G$, |H| divides |G|.

Corollary 3.6.6 ► **Corollaries to Lagrange's Theorem**

For finite group G and $H \leq G$:

- 1. [G:H] = |G|/|H|.
- 2. |a| divides |G| for any $a \in G$.
- 3. Any group of prime order is cyclic.

Factor groups and Homomorphisms

4.1 Normal Subgroups

Definition 4.1.1 ▶ **Normal subgroup**

For $N \leq G$, N is **normal** if gN = Ng for any $g \in G$. This is written as $N \leq G$.

For example, $G \subseteq G$, and $\{e\} \subseteq G$.

Theorem 4.1.2 ▶ Any subgroup of index 2 is normal

If $H \leq G$ and [G : H] = 2, then $H \leq G$.

Theorem 4.1.3 ▶ Equivalent definition of normal subgroup

 $H \leq G$ if and only if $g^{-1}hg \in H$ for all $g \in G$ and $h \in H$.

Theorem 4.1.4

For $H \le G$ and $K \le G$, let $HK := \{hk : h \in H, k \in K\}$.

- 1. If *H* and *K* are both finite, then $|HK| = \frac{|H||K|}{|H \cap K|}$.
- 2. If $H \leq G$ or $K \leq G$, then $HK \leq G$.
- 3. If $H \subseteq G$ and $K \subseteq G$, then $HK \subseteq G$.

4.2 Factor Groups

Definition 4.2.1 ▶ **Factor groups**

For $N \leq G$, the *factor group* G/N is the set of all left cosets gN for all $g \in G$, with group operation (aN)(bN) = (ab)N.

Theorem 4.2.2 ▶ Properties of factor groups

For any group *G* and normal subgroup *N*:

- 1. G/N is a group of order [G:N].
- 2. If G is abelian, then G/N is abelian.
- 3. If G is cyclic, then G/N is cyclic.
- 4. If g is of finite order, then |gN| divides |g|.
- 5. Subgroups of G/N are of the form H/N, where $H \leq G$ and $N \subseteq H$.
- 6. $H/N \leq G/N$ if and only if $H \leq G$.

Theorem 4.2.3 ▶ Properties of factor groups involving the center

- 1. If G/Z(G) is cyclic, then G is abelian.
- 2. [G: Z(G)] cannot be prime.

4.3 Homomorphisms

Definition 4.3.1 ▶ Homomorphism, kernel

For groups G and H, a *homomorphism* from G to H is a function $\alpha: G \to H$ where, for all $g_1, g_2 \in G$:

$$\alpha(g_1g_2) = \alpha(g_1)\alpha(g_2)$$

The *kernel* of α is:

$$ker(\alpha) = \{g \in G : \alpha(g) = e\}$$

Theorem 4.3.2 ▶ Properties of homomorphism

For a homomorphism $\alpha : G \rightarrow H$:

- 1. $\alpha(e) = e$.
- 2. $\alpha(g^n) = (\alpha(g))^n$ for any $n \in \mathbb{Z}$.
- 3. If *g* is of finite order, then $|\alpha(g)|$ divides |g|.
- 4. $\ker(\alpha)$ ≤ G.
- 5. α is injective if and only if $ker(\alpha) = \{e\}$.

Theorem 4.3.3 ▶ Properties of homomorphism involving images/preimages

For a homomorphism $\alpha: G \to H$ and $L \subseteq G, M \subseteq H$:

- 1. If $L \leq G$, then $\alpha[L] \leq H$.
- 2. If $L \leq G$, then $\alpha[L] \leq \alpha(G)$.
- 3. If *L* is cyclic, then $\alpha[L]$ is cyclic.
- 4. If L is abelian, then $\alpha[L]$ is abelian.
- 5. α is surjective if and only if $\alpha[g] = H$.
- 6. If $M \le H$, then $\alpha^{-1}[M] \le G$.
- 7. If $M \leq H$, then $\alpha^{-1}[M] \leq G$.

Index

Def	initions		4.2.1	Factor groups		
			4.3.1	Homomorphism, kernel	22	
1.1.1	Relation	2				
1.1.2	Reflexive, symmetric, transi-		Exa	mples		
	tive, equivalence relation	2	LAG	mpies		
1.1.3	Equivalence class	2	2.4.4	Multiplicative inverse in \mathbb{Z}_n	7	
1.2.1	Function	3	2.4.5		7	
1.2.2	Injective, surjective, bijective .	3	2.4.6		8	
1.2.3	Permutation	3	3.1.9	Simple direct product	12	
1.2.4	Binary operation	3	3.2.3	Order of common groups	13	
2.1.2	Divides	4	3.2.4	Order of elements in common		
2.1.3	Greatest common divisor (GCD)	4		groups	13	
2.1.4	Relatively prime, coprime	4	3.2.7		14	
2.2.1	Prime, composite	5	3.4.3	Determining 3ℤ is a subgroup		
2.4.1	Modular congruency	5		of \mathbb{Z}	16	
3.1.1	Group	10				
3.1.5	Permutation	11	The	Theorems		
3.1.6	Symmetric group (S_n)	11	The			
3.1.7	Direct product	11	2.0.1	Well Ordering Axiom	4	
3.2.2	Order	13	2.0.2	Principle of Mathematical In-		
3.3.1	Cyclic	14		duction	4	
3.4.1	Subgroup	15	2.1.1	Division Algorithm	4	
3.4.4	Cyclic subgroup	16	2.1.5		5	
3.4.8	Center	18	2.1.6	Euclidean Algorithm	5	
3.5.1	Cyclic group, generator	18	2.2.2	Euclid's Lemma	5	
3.5.3	Euler phi-function	18	2.2.3	Fundamental Theorem of		
3.6.1	Congruence modulo a group .	19		Arithmetic	5	
3.6.2	Left coset	19	2.4.2		6	
3.6.4	Index	19	2.4.3		6	
4.1.1	Normal subgroup	21	2.4.7	Chinese Remainder Theorem .	9	

3.1.2	Uniqueness of identities and		4.1.2	Any subgroup of index 2 is	
	inverses	10		normal	21
3.1.3	Cancellation	10	4.1.3	Equivalent definition of nor-	
3.1.4		11		mal subgroup	21
3.1.8	Direct product is always a group	12	4.1.4		21
3.2.1	Properties of power	12	4.2.2	Properties of factor groups	22
3.2.5	Properties of order	13	4.2.3	Properties of factor groups in-	
3.3.2	Every cyclic group is abelian .	15		volving the center	22
3.4.2	Conditions for subgroup	15	4.3.2	Properties of homomorphism .	22
3.4.5	Cyclic subgroups are groups	17	4.3.3	Properties of homomorphism	
3.4.6	Conditions for subgroup relaxed	17		involving images/preimages	23
3.4.7	Conditions for finite subgroup	17			
3.5.2	Properties of cyclic groups	18	Core	ollarys	
3.5.4	Properties of euler phi with		Core	Jilai y S	
	primes	19	3.2.6		14
3.6.3	Left cosets partitioning	19	3.6.6	Corollaries to Lagrange's The-	
3.6.5	Lagrange's Theorem	19		orem	20