

Hardware Triggered Scanning: Malcolm

Philip Taylor, Emma Arandjelovic Observatory Sciences Limited

Software Stack: Reminder

Data Analysis WorkbeNch
- Analysis and visualization

Generic Data Acquisition
- Experiment setup and supervision

Malcolm - Scan configuration

Experimental Physics & Industrial Control System
- Low level control of hardware

What is Malcolm?

- Generic and extensible framework for scanning
- Middle layer between GDA and control system
- Implemented in python
 Creates a s/w map or the n/w layer
- https://pymalcolm.readthedocs.io
- Web GUI called MalcolmJS
- https://malcolmjs.readthedocs.io

Malcolm Process

Each Malcolm instance is a Python process managed by procServ

On beamlines this runs on ixx-control

[p47user@localhost]\$ ioc-list

BL47P-EA-IOC-01: pid = 2628, telnet port = 7002

BL47P-ML-MALC-01: pid = 2663, telnet port = 7003

To reboot:

ioc-connect BL4xP-ML-MALC-01

Ctrl-X

Malcolm Concepts

A block is a user-centred view

Examples:

- Motion controller
- PandA
- Detector
- 'Hello World' program
- Blocks contain:
 - Methods (actions)
 - Attributes (data)
- A process hosts multiple blocks
- Parent blocks contain child blocks connected together in a design

Malcolm Concepts

- Each block has a unque name called an MRI (Malcolm Resource Identifier) e.g. BL47P-ML-SCAN-01
- A device block is a higher level block for synchronizing a number of child blocks

Malcolm Concepts

A runnable device block adds state machine functionality with

two main methods:

configure(params)

setup all child blocks

2. run()

start all children and supervise their progress

Control Flow

Two step process:

- 1. Configure the scan
- 2. Run the scan

Web GUI: Overview

Web GUI: Block View

- Attributes displayed depend on the type of block
- Tool-tip text provide descriptions
- Any problems connecting to the h/w are displayed in the tool-tip

Web GUI: Attribute View

Displays table or plot of historical data values

Web GUI: Layout View

Graphical view of selected root block, with automatic layout feature

Web GUI: Layout View

'Wire-up' components visually

Web GUI: Layout View

Auto Layout – first step for complex layouts

Palette – drag and drop new items

Breadcrumb trail in central panel

Starting with the selected root block, you can drill down into the design

Then choose Layout in the right hand inspector

Now focused on the BRICK block:

- 1. Controller
- 2. Trajectory
- 3. Co-ordinate system
- 4. Axes
- 5. Status

Now focused on the BRICK block:

- 1. Controller
- 2. Trajectory
- 3. Co-ordinate system
- 4. Axes
- 5. Status

Select STATUS

Exercise: Web GUI

- Navigate to the PANDA block
- Try to toggle on/off the light controlled by TTLOUT2

 For more info on the web GUI: https://malcolmjs.readthedocs.io

Different scan requirements can be implemented using multiple designs

Example: a new experiment requires a different PandA configuration

Step 1: Open the PANDA block in the layout view

Step 2: Modify the design as required

Step 3: Choose a name and save

layout ~

PANDABOX V

BL49P-ML-SCAN-01 V

Step 4: Open the SCAN block layout Step 5: Select

the PANDABOX and choose the new design

×

BL4

Step 6: Using the left hand panel, save this SCAN configuration as a new design

To load a design in the Web GUI:

- 1. Navigate to the root block
- 2. Select the design from the drop down list in the left hand panel

Malcolm Configuration

Blocks are reusable components that require configuration

Examples:

- PV prefix (for EPICS devices), IP address (for PandA)
- Initial design
- Runtime config directories
- Configuration specified in YAML

('YAML Ain't Markup Language'!)

[p49user@p49-pw001 ~]\$ configure-ioc show BL49P-ML-MALC-01
BL49P-ML-MALC-01 /dls sw/work/R3.14.12.7/support/BL46P-BUILDER/etc/malcolm/BL49P-ML-MALC-01.yaml

YAML Files

YAML Files

YAML Files

Exercise: pvAccess

- Malcolm<->GDA interface uses <u>pvAccess</u> (EPICS V4)
- Each block is represented as a V4 process variable (pv) with a number of fields

 Use pvget to dump the entire SCAN block structure pvget BL4xP-ML-SCAN-01 -r ""

 (If pvget not in PATH, run module load pvatools)

pvAccess continued

- -r 'request' option specifies which fields to return pvget BL4xP-ML-SCAN-01 –r health.value
- What information comes back for the layout field?
- Other useful SCAN block fields include:
 - totalSteps
 - completedSteps
 - state

Exercise: Scan States

- Start a scan in GDA and monitor the SCAN block in the Malcolm web GUI. What states does it go through?
- The -m ('monitor') option to pyget monitors the PV for changes. Use this together with the –r option to monitor the completedSteps field from the command line as the scan progresses.

Scan States Screenshot

X BL49P-	ML-SCAN-01 🔼 lay	yout ✓ BL49P-ML-SCAN-01 ✓ state ✓ ···	•
i) Health	ОК	TIME SET	VALUE
) State	Ready	2019-12-02T13:37:29.521Z	Ready
Layout	EDIT	2019-12-02T13:45:35.840Z	Aborting
Design	pmac_master_tomo 🔻	2019-12-02T13:45:36.111Z	Aborte
Exports	EDIT	2019-12-02T13:45:36.157Z	Resetting
Modified	O	2019-12-02T13:45:36.211Z	Read
Completed Steps	0 / 6000	2019-12-02T13:45:36.538Z	Configurin
Configured Steps	0	2019-12-02T13:45:42.544Z	Arme
Total Steps	0	2019-12-02T13:45:44.300Z	Runnin
) Label	PMAC Master Tomograp		
) Simultaneous Axes	EDIT	2019-12-02T13:45:58.870Z	PostRu
Datasets	VIEW	2019-12-02T13:45:58.890Z	Finishe
Min Turnaround	0.000000 s	2019-12-02T13:45:58.946Z	Resettin
Min Turnaround Interval	0.000000 s	2019-12-02T13:46:00.890Z	Read
DISABLE		2019-12-02T13:46:19.831Z	Abortin
	RESET	2019-12-02T13:46:19.906Z	Aborte
Save	~	2019-12-02T13:46:19.958Z	Resettin
Validato		0040 40 00740 44 00 0077	D 1

Dataset table

