1.) a.) First Come First Served

A B C D E 5 9 12 14 17 completion time

Average Turnaround: 8.2

Average Normalized Turnaround: 2.8

b.) Round Robin (q = 1)

A B C D E

16 13 14 10 17 completion time

Average Turnaround: 10.8

Average Normalized Turnaround: 3.173

c.) Round Robin (q = 2)

A B C D E 17 14 15 8 16 completion time

Average Turnaround: 10.8

Average Normalized Turnaround: 3.063

d.) Shortest Job First

 A
 B
 C
 D
 E

 5
 17
 10
 7
 13
 completion time

Average Turnaround: 7.2

Average Normalized Turnaround: 2.1

e.) Shortest Remaining Time First

 A
 B
 C
 D
 E

 5
 17
 10
 7
 13
 completion time

Average Turnaround: 7.2

Average Normalized Turnaround: 2.1

f.) Highest Response Ratio Next

 A
 B
 C
 D
 E

 5
 9
 14
 11
 17
 completion time

Average Turnaround: 8

Average Normalized Turnaround: 2.633

g.) Multi-level Feedback With 2 Queues

Queue 1 (First Come First Served, q = 1)

Queue 2 (Round Robin, q = 2)

Α	В	С	D	\mathbf{E}	
16	17	11	12	14	completion time

 $Average\ Turnaround:\ 10.8$

Average Normalized Turnaround: 3.173

h.) Preemptive Highest Response Ratio Next (q = 2)

Average Turnaround: 10.4

Average Normalized Turnaround: 3.057

2.) Let $S = \{s_1, s_2, \dots, s_n\}$ be an arbitrarily ordered set of n process service times. We know that the average total wait time μ_S for S is given by

$$\mu_S = \frac{1}{n} \left(\sum_{k=1}^n s_k(n-k) \right).$$

Now suppose we have consecutive $i, j \in \mathbb{N}$ where $1 \leq i < j \leq n$ and $s_i \geq s_j$, and let S_1 have the same ordering as S but with s_i and s_j swapped, then the new average total wait time μ_{S_1} is given by

$$\mu_{S_1} = \frac{1}{n} \left(\sum_{k=1}^{i-1} s_k(n-k) + s_j(n-i) + s_i(n-j) + \sum_{k=j+1}^n s_k(n-k) \right).$$

The difference $\mu_S - \mu_{S_1}$ is given by

$$\mu_S - \mu_{S_1} = \frac{1}{n} \left[(n-i)(s_i - s_j) + (n-j)(s_j - s_i) \right]$$
$$= \frac{1}{n} (j-i)(s_i - s_j) = \frac{s_i - s_j}{n}.$$

Since $s_i \geq s_j$, we know that $s_i - s_j \geq 0$, thus $\mu_S - \mu_{S_1} \geq 0$, and thus $\mu_S \geq \mu_{S_1}$. Repeating this swapping procedure on S, we eventually obtain a set S' where $i < j \implies s_i \leq s_j$, which is the same order as scheduling processes by shortest job first. Since we have proven that $\mu_{S'} \leq \mu_S$ for arbitrary S, we know that S', and thus shortest job first achieves the smallest possible average wait time for all processes.

- 3.) a.) If a task has zero slack, it means that if the task does not start running on the processor immediately, then it will miss its next deadline.
 - b.) If a task has negative slack, it means that it's impossible for the task to meet its next deadline.
 - c.) If a task has slack s, it means that the scheduler can delay the task at most s time and still have it meet its next deadline.
 - d.) (Assuming current process is prioritized when there is a tie)

Least Slack Process Next

Earliest Deadline First

Rate Monotonic Scheduling (priority is inverse to period)

