A Left Realist Critique of the Political Value of Adopting Machine Learning Systems in Criminal Justice

Fabio Massimo Zennaro¹

Department of Informatics University of Oslo

F.M. Zennaro

¹fabiomz@ifi.uio.no

Aim

Fairness of adopted machine learning systems How does my system perform in terms of fairness metrics? What fairness metrics make sense?

Fairness of adopting machine learning systems
What is the role of a ML system?
What is the political value of adopting a ML system?

F.M. Zennaro

Terms

What is the political value of adopting ML system?

ML system

- A supervised system
- modelling a functional relationship between input and output
- by minimizing a given loss function

Political value

- Values it expresses
- Values it makes easy to express
- Artifacts (and technology) are not politically neutral [4, 3]

F.M. Zennaro 3 / 11

Case study

What is the political value of adopting ML systems in the context of criminal justice?

Criminal justice

- Parole assessment, risk assessment, recidivism assessment, police deployment, crime prevention...
- Long historical relationship with statistics [1]
- Very relevant in fair ML [5, 2]

F.M. Zennaro 4 / 1

Methodology

How to uncover political values in the adoption of ML systems in criminal justice?

Critical assessment through the lens of Left Realism (LR)

- Criminological theory from 1980s proposed by Lea and Young [4]
- Middle ground between left idealism and law and order (L&O)

We assess where ML systems lie on the spectrum of concerns between LR and L&O with respect to six issues.

F.M. Zennaro 5 / 11

Issues

What are positions of L&O and LR on a set of representative issues?

	Law and Order	Left Realism
1. Approach to Crime	Priority on fighting crime	Priority on understanding
	Simplified sociological category	Explanation of behaviour
2. Types of Crimes	Focus on specific crimes	Wider view on crimes
	Authoritative definitions	Definition-perception gaps
3. Interpretation	Direct use of statistics	Deep analysis of statistics
	Statistics for enforcing policies	Careful use in decision-making
4. Policing	Military policing	Consensus policing
	Unilateral enforcement	Community integration
5. Accountability	Police efficiency	Democratic overview
	Covertness	Transparency

F.M. Zennaro 6 / 11

ML Alignment

How do ML systems align with respect to L&O and LR on these issues?

	ML Features	
1. Approch to Crime	Focus on correlation	Disregard of cause-effects links
	Coarse categorical labeling	and entrenchment of
		oversimplified criminologial
		categories
2. Types of Crimes	Reliance on available data	Reinforcement of historical
	Strict labeling	data and definitions
3. Interpretation	Use irrespective of assumptions	Instrumental-legalistic
	Direct decision-making tool	processing of data
4. Policing	Unilateral data analysis	Support for military policing
5. Accountability	Poor interpretability	Support for opaque policies on
	Black box	the ground of efficiency

F.M. Zennaro 7 / 11

6. Analogy with CCTV

1980s

- Adoption of CCTV
- New technology
- Promise of efficiency
- Idea of data intelligence
- Idea of remote control

2010s

- Adoption of ML systems
- New technology
- Promise of efficiency
- Idea of data intelligence
- Idea of remote control

ML systems may promote a "fire-brigade mentality" in law enforcement

F.M. Zennaro 8 / 11

Discussion and Conclusion

Simplified analogical analysis of ML systems:

- ML systems are more than functional models (causal ML, transfer learning, interpretable ML)
- Criminal justice theory richer than a simple dichotomy

Yet ML systems have *implicit political biases* that may be overlooked or exploited

- Danger of *naive adoption* (technological enthusiasm)
- Danger of instrumental adoption (justification of aims through ML means)

F.M. Zennaro 9 / 11

Thanks

Thank you for listening!

F.M. Zennaro 10 / 13

References I

- [1] Chelsea Barabas, Karthik Dinakar, Joichi Ito Virza, Jonathan Zittrain, et al. Interventions over predictions: Reframing the ethical debate for actuarial risk assessment. arXiv preprint arXiv:1712.08238, 2017.
- [2] Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth. Fairness in criminal justice risk assessments: the state of the art. arXiv preprint arXiv:1703.09207, 2017.
- [3] Luciano Floridi. Infraethics—on the conditions of possibility of morality. *Philosophy & Technology*, 30(4):391–394, 2017.
- [4] John Lea, Jock Young, et al. What is to be done about law and order? 1984.
- [5] Rashida Richardson, Jason Schultz, and Kate Crawford. Dirty data, bad predictions: How civil rights violations impact police data, predictive policing systems, and justice. New York University Law Review Online, Forthcoming, 2019.

F.M. Zennaro 11 / 11