Scaling Out Alternating Direction Isogeometric L2 Projections Solver

Grzegorz Gurgul (AGH)

Bartosz Baliś (AGH)

Marcin Łoś (AGH)

Danuta Szeliga (AGH)

Maciej Paszyński (AGH)

14th U.S. National Congress on Computational Mechanics

July 17-20, 2017, Montreal, Canada

Agenda

- Background
- Isogeometric L2 projections solver theory
- Isogeometric L2 projections solver algorithm
- Isogeometric L2 projections solver implementation
- Conclusions

Background

Isogeometric L2 projections algorithm

Proposed by prof. Victor Calo: L. Gao, V.M. Calo, Fast Isogeometric Solvers for Explicit Dynamics, Computer Methods in Applied Mechanics and Engineering (2014).

• Applications to time-dependent problems

Non-linear flow (Fortran+MPI, parallel): M. Woźniak, M. Łoś, M. Paszyński, L. Dalcin, V. Calo, Parallel fast isogeometric solvers for explicit dynamics, Computing and Informatics (2015)

Tumor growth simulations (C++ sequential): M. Łoś, M. Paszyński, A. Kłusek, W. Dzwinel, Application of fast isogeometric L2 projection solver for tumor simulations, Computer Methods in Applied Mechanics and Engineering (2017)

Background

Improving performance of time-dependent applications of ADS

Step 1: CUDA implementation:

G. Gurgul, M. Paszyński, W. Dzwinel, Łoś, *GPGPU accelerations of tumor growth simulation using isogeometric L2 - projections solver,* **USACM Conference on Isogeometric Analysis and Meshfree Methods** (2016)

Step 2: Object-Oriented shared memory implementation:

G. Gurgul, M. Paszyński, D. Szeliga, Open source JAVA implementation of the parallel multi-thread alternating direction isogeometric L2 projections solver for material science simulations, Computer Methods in Material Science (2017)

Step 3: Cloud implementation:

G. Gurgul, Bartosz Baliś, Marcin Łoś, D. Szeliga, M. Paszyński, Scaling Out Alternating Direction Isogeometric L2 Projections Solver, 14th U.S. National Congress on Computational Mechanics

Isogeometric L^2 projections

In general: non-stationary problem of the form

$$\partial_t u - \mathcal{L}(u) = f(x, t) \implies \sum_{ij} u_{ij} (B_{ij}, B_{kl})_{L^2} = RHS$$

with some initial state u_0 and boundary conditions

 \mathcal{L} – well-posed linear spatial partial differential operator

Discretization:

- spatial discretization: isogeometric FEM Basis functions: ϕ_1, \ldots, ϕ_n (tensor product B-splines)
- time discretization with explicit method
- implies isogeometric L^2 projections in every time step

L^2 projections – tensor product basis

Isogeometric basis functions:

- 1D B-splines basis $B_1(x), \ldots, B_n(x)$
- higher dimensions: tensor product basis $B_{i_1 \cdots i_d}(x_1, \dots, x_d) \equiv B_{i_1}^{x_1}(x_1) \cdots B_{i_d}^{x_d}(x_d)$

Gram matrix of B-spline basis on 2D domain $\Omega = \Omega_x \times \Omega_y$:

$$\mathcal{M}_{ijkl} = (B_{ij}, B_{kl})_{L^2} = \int_{\Omega} B_{ij} B_{kl} \, \mathrm{d}\Omega$$

L^2 projections – tensor product basis

Isogeometric basis functions:

- 1D B-splines basis $B_1(x), \ldots, B_n(x)$
- higher dimensions: tensor product basis

$$B_{i_1\cdots i_d}(x_1,\ldots,x_d) \equiv B_{i_1}^{x_1}(x_1)\cdots B_{i_d}^{x_d}(x_d)$$

Gram matrix of B-spline basis on 2D domain $\Omega = \Omega_x \times \Omega_y$:

$$\mathcal{M}_{ijkl} = (B_{ij}, B_{kl})_{L^2} = \int_{\Omega} B_{ij} B_{kl} d\Omega$$

$$= \int_{\Omega} B_i^{x}(x) B_j^{y}(y) B_k^{x}(x) B_l^{y}(y) d\Omega$$

$$= \int_{\Omega} (B_i B_k)(x) (B_j B_l)(y) d\Omega$$

$$= \left(\int_{\Omega_x} B_i B_k dx \right) \left(\int_{\Omega_y} B_j B_l dy \right)$$

$$= \mathcal{M}_{ik}^{x} \mathcal{M}_{il}^{y}$$

 $\mathcal{M} = \mathcal{M}^{\mathsf{x}} \otimes \mathcal{M}^{\mathsf{y}}$ (Kronecker product)

Gram matrix of tensor product basis

B-spline basis functions have **local support** (over p+1 elements) \mathcal{M}^{\times} , \mathcal{M}^{y} , ... – banded structure $\mathcal{M}^{\times}_{ij} = 0 \iff |i-j| > 2p+1$ Exemplary basis functions and matrix for cubics

$$\begin{bmatrix} (B_1,B_1)_{\ell^2} & (B_1,B_2)_{\ell^2} & (B_1,B_3)_{\ell^2} & (B_1,B_4)_{\ell^2} & 0 & 0 & \cdots & 0 \\ (B_2,B_1)_{\ell^2} & (B_2,B_2)_{\ell^2} & (B_2,B_3)_{\ell^2} & (B_2,B_4)_{\ell^2} & (B_2,B_5)_{\ell^2} & 0 & \cdots & 0 \\ (B_3,B_1)_{\ell^2} & (B_3,B_2)_{\ell^2} & (B_3,B_3)_{\ell^2} & (B_3,B_4)_{\ell^2} & (B_3,B_5)_{\ell^2} & (B_3,B_6)_{\ell^2} & \cdots & 0 \\ \vdots & \vdots \\ 0 & 0 & \cdots & (B_n,B_{n-3})_{\ell^2} & (B_n,B_{n-2})_{\ell^2} & (B_n,B_{n-1})_{\ell^2} & (B_n,B_n)_{\ell^2} \end{bmatrix}$$

Alternating Direction Solver – 2D

Two steps – solving systems with $\bf A$ and $\bf B$ in different directions

$$\begin{bmatrix} A_{11} & A_{12} & \cdots & 0 \\ A_{21} & A_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{nn} \end{bmatrix} \begin{bmatrix} y_{11} & y_{21} & \cdots & y_{m1} \\ y_{12} & y_{22} & \cdots & y_{m1} \\ \vdots & \vdots & \ddots & \vdots \\ y_{1n} & y_{2n} & \cdots & y_{mn} \end{bmatrix} = \begin{bmatrix} b_{11} & b_{21} & \cdots & b_{m1} \\ b_{12} & b_{22} & \cdots & b_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ b_{1n} & b_{2n} & \cdots & b_{mn} \end{bmatrix}$$

$$\begin{bmatrix} B_{11} & B_{12} & \cdots & 0 \\ B_{21} & B_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & B_{mm} \end{bmatrix} \begin{bmatrix} x_{11} & \cdots & x_{1n} \\ x_{21} & \cdots & x_{2n} \\ \vdots & \ddots & \vdots \\ x_{m1} & \cdots & x_{mn} \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} & \cdots & y_{1n} \\ y_{21} & y_{22} & \cdots & y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{m1} & y_{m2} & \cdots & y_{mn} \end{bmatrix}$$

Two one dimensional problems with multiple RHS:

- $n \times n$ with m right hand sides $\rightarrow O(n * m) = O(N)$
- $m \times m$ with n right hand sides $\rightarrow O(m * n) = O(N)$

Linear computational cost O(N) as opposed to $O(N^{1.5})$ or $O(N^2)$

Algorithm - data structure

The backing data structure is a tree. Each of its nodes holds coefficients of a simple linear equation being a portion of the original system.

Partition of the problem matrix into sub-matrices

Graph of matrices the solver will operate on

Algorithm - set of operations

We can identify a set of basic tasks applicable on any vertex. We call them **productions**. They can:

- branch a vertex into two $\{P1, P2\}$ or three $\{P3\}$ child vertices
- initialize a vertex with particular coefficients {A1, A, AN}
- merge two vertices and eliminate unknowns {A2_3, E1_2_5, A2_2, E2_2_6, Aroot, Eroot}
- backward substitute parts of solution {BS_2_6, BS_1_5}

Algorithm - flow

To obtain a solution for a 1-dimensional problem with 12 elements it is enough to execute the following productions, set by set, going from left to right, on respective vertices.

Implementation

CUDA (GPU):

- extremely fast for problems which fit in on-board memory
- verbose and fragile
- hardware dependent

Shared memory (Multicore CPU)

- fast for problems which fit in RAM (37 million elements require 16GB of RAM)
- portable, easy to understand and adapt
- scales up only

In memory grid (Cloud)

- can solve problems of any size
- slower for relatively small problems

scales out

Implementation - performance considerations

Distributed environment implies *heavy network traffic* and increased memory consumption due to *extensive serialization*. This has to be reduced to the absolute minimum to let solver run bigger problems.

The following measures have been used:

- split tree into set of subtrees of a given height and store them on a single node
- use localized map-reduce to extract columns from the solution rows
- reuse same operation on multiple vertices
- run subsequent operations applied on same vertex in one invocation
- schedule tasks in batches
- use near-caches
- keep solution in deserialized form

Implementation - partition tree

Implementation - time complexity - O(N)

st Run on a cluster of 11 machines - Westmere (Nehalem-C 2.7GHz) CPU with 4 cores / 8GB RAM each

Implementation - scaling out

^{*} Each node has Westmere (Nehalem-C 2.7GHz) CPU with 4 cores / 8GB RAM each

Conclusions

- Distributed memory implementation is slower than shared memory one for small problem sizes which fit into physical memory of a single machine
- It can solve any problem by adding additional nodes (4 6144, 6 - 12288, 12 - 24576)
- Given there is a shared memory machine with sufficient physical memory, IMDG implementation outperforms it starting from a certain problem size
- This implementation can be made significantly faster by pushing some logic into worker nodes

Thank you!

Our research is supported from Dean's grant from Faculty of Computer Science, Electronics and Telecommunication, AGH University, Krakow, Poland