Data approximation and quadrature

Francesco Marchetti

Fundamentals of Computational Mathematics

Summary

1 Least-squares approximation

2 Numerical quadrature

Least-squares approximation: introduction

We introduce least-squares approximation from the most basic setting.

Suppose that m observations y_1, \ldots, y_m of a certain process at times t_1, \ldots, t_m are at disposal (e.g. the value of a stock at different times). Our aim is to find the straight line $y = c_1 + c_2 x$ that *better* fit the data, being c_1, c_2 parameters.

In principle, if the line intersects each couple (t_i, y_i) , i = 1, ..., m, we find the best model. Translating this into a linear system becomes

$$\begin{cases} c_1 + c_2 t_1 = y_1 \\ \vdots \\ c_1 + c_2 t_m = y_m. \end{cases}$$

Least-squares approximation: introduction (cont.)

We can rewrite the linear system as Ac = y, where

$$A = \begin{pmatrix} 1 & t_1 \\ \vdots & \vdots \\ 1 & t_m \end{pmatrix}, \ \boldsymbol{c} = (c_1, c_2)^{\mathsf{T}}, \ \boldsymbol{y} = (y_1, \dots, y_m)^{\mathsf{T}}.$$

This linear system is overdetermined, and almost surely has no solution (three non-collinear points are sufficient...).

Therefore, we need to establish what we mean with a *good fit*. Here, we consider the **least-squares** approach: letting

$$r = r(c) = Ac - y$$
, we consider the minimization problem

$$\min_{\boldsymbol{c}\in\mathbb{R}^2}\frac{1}{2}\boldsymbol{r}^{\mathsf{T}}\boldsymbol{r}=\frac{1}{2}\sum_{i=1}^mr_i^2.$$

Doing in this way, we find the line that minimize the sum of square residuals at times t_i , i = 1, ..., m.

Least-squares approximation: generalization

In a more general setting, one can consider a **basis** of functions b_1, \ldots, b_n , $n \le m$ (e.g. polynomials of degree $\le n-1$) and the model

$$y = c_1b_1(x) + c_2b_2(x) + \cdots + c_nb_n(x),$$

obtaining then $A = A_{(ij)} = b_j(t_i)$ and $\boldsymbol{c} = (c_1, \dots, c_n)^{\mathsf{T}}$.

The resulting overdetermined linear system is $m \times n$, and we assume A to have full column rank.

In the following, we describe some approaches to solve such linear system in a least-squares sense.

Normal equations

Let us recall and rewrite our minimization problem as

$$\min_{\boldsymbol{c} \in \mathbb{R}^n} \frac{1}{2} \boldsymbol{r}^{\mathsf{T}} \boldsymbol{r} = \frac{1}{2} (A\boldsymbol{c} - \boldsymbol{y})^{\mathsf{T}} (A\boldsymbol{c} - \boldsymbol{y}) = R(\boldsymbol{c}).$$

We have

$$R(\boldsymbol{c}) = \frac{1}{2}((A\boldsymbol{c})^{\mathsf{T}}A\boldsymbol{c} - (A\boldsymbol{c})^{\mathsf{T}}\boldsymbol{y} - \boldsymbol{y}^{\mathsf{T}}A\boldsymbol{c} + \boldsymbol{y}^{\mathsf{T}}\boldsymbol{y}).$$

Note that $(Ac)^{\mathsf{T}}y = y^{\mathsf{T}}Ac$ (it is a scalar product), therefore

$$R(\boldsymbol{c}) = \frac{1}{2}((A\boldsymbol{c})^{\mathsf{T}}A\boldsymbol{c} - 2(A\boldsymbol{c})^{\mathsf{T}}\boldsymbol{y} + \boldsymbol{y}^{\mathsf{T}}\boldsymbol{y}).$$

Normal equations (cont.)

At this point, we can use the fact that if c is a minimum for R(c) then $\frac{\partial R}{\partial c} = 0$. We then calculate

$$\frac{\partial R}{\partial \boldsymbol{c}} = A^{\mathsf{T}} A \boldsymbol{c} - A^{\mathsf{T}} \boldsymbol{y} = 0,$$

and thus the normal equations

$$A^{\mathsf{T}}A\boldsymbol{c}=A^{\mathsf{T}}\boldsymbol{y}.$$

We point out that A^TA is a $n \times n$ positive definite matrix, therefore we can use e.g. Cholesky factorization to find c. This approach is dangerous from a numerical perspective if A is severely ill-conditioned, since in that case multiplying by A^T may amplify too much the ill-conditioning in the linear system.

QR decomposition

Any $m \times n$ matrix A can be decomposed as A = QR, where Q is an $m \times m$ orthogonal matrix $Q^{-1} = Q^{T}$ and R is $m \times n$ so that

$$R = \begin{bmatrix} R_1 \\ 0 \end{bmatrix},$$

where R_1 is a $n \times n$ upper triangular matrix. If A is square, then R is itself square and upper triangular. We can highlight the submatrix Q_2 that multiplies the zero part of R.

$$A = Q_1 Q_2$$

QR decomposition (cont.)

The QR factorization can be employed as a direct method for solving square linear systems. Here, we use it to find the least-squares solution as follows. First, since the multiplication by an orthogonal matrix does not modify the length of a vector, we can write

$$R(c) = \frac{1}{2}(Ac - y)^{\mathsf{T}}(Ac - y) = \frac{1}{2}||Ac - y||_2^2 = \frac{1}{2}||Q^{\mathsf{T}}(QRc - y)||_2^2.$$

Then, also omitting the 1/2 factor (no need here), we have

$$\|Q^{\mathsf{T}}(QR\boldsymbol{c}-\boldsymbol{y})\|_2^2 = \left\| \begin{bmatrix} R_1 \\ 0 \end{bmatrix} \boldsymbol{c} - \begin{bmatrix} Q_1^{\mathsf{T}} \\ Q_2^{\mathsf{T}} \end{bmatrix} \boldsymbol{y} \right\|_2^2 = \|R_1\boldsymbol{c} - Q_1^{\mathsf{T}}\boldsymbol{y}\|_2^2 + \|Q_2^{\mathsf{T}}\boldsymbol{y}\|_2^2.$$

QR decomposition (cont.)

The least-squares solution can thus be found by solving

$$R_1 \boldsymbol{c} = Q_1^{\mathsf{T}} \boldsymbol{y},$$

while $||Q_2^\mathsf{T} \mathbf{y}||_2^2$ is the residual.

The QR decomposition is a stable approach, but computationally is not that cheap, being $\mathcal{O}(m^2n)$.

We observe that if A is square, then Q_2 is the zero matrix, and there is no residual.

Singular Value Decomposition (SVD)

Similarly to the QR factorization, the SVD is a direct method for solving linear systems, in an exact or least-squares sense. Any $m \times n$ matrix A can be decomposed as $A = U \Sigma V^{\mathsf{T}}$, where U and V are $m \times m$ and $n \times n$ orthogonal matrices, respectively, and Σ is composed by a diagonal $n \times n$ matrix, with a zero $(m-n) \times n$ matrix below. The diagonal elements $\sigma_1, \ldots, \sigma_n$ are the so-called singular values.

Singular Value Decomposition (SVD) (cont.)

To find the solution of the original linear system, similar steps with respect to the QR approach can be carried out. Here, we point out a different formulation.

The least-squares solution of Ac = y can be expressed as

$$\boldsymbol{c} = V \Sigma^+ U^{\mathsf{T}} \boldsymbol{y},$$

where Σ^+ is the **pseudoinverse** of Σ , which is

$$\Sigma = egin{pmatrix} \sigma_1 & & & & & & \\ & & \ddots & & & & \\ 0 & \dots & 0 & & & & \\ dots & \ddots & dots & & & \ddots & dots \\ 0 & \dots & 0 & & & & \end{pmatrix} \Rightarrow \Sigma^+ = egin{pmatrix} 1/\sigma_1 & & & 0 & \dots & 0 \\ & \ddots & & dots & \ddots & dots \\ & & 1/\sigma_n & 0 & \dots & 0 \end{pmatrix}.$$

Some final remarks

The SVD actually works in the more general case where A is not of full rank, and it also reveals more properties than the QR decomposition. However, this comes with a slightly larger computational cost.

When the number of basis functions coincide with the number of observations (m = n) we talk about **interpolation**. In this case, it is possible for the model to exactly replicate all the observations y_1, \ldots, y_n at the sampling times t_1, \ldots, t_n . This could be required, depending on the application.

On model complexity

How to choose *n*? How much complexity should we include in our model?

This is a crucial issue. Especially in the machine learning field, we talk about **underfitting** and **overfitting**.

Approximating integrals

In numerical integration, one wants to find a good approximation of

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} w_{i} f(x_{i}), \qquad (1)$$

where x_1, \ldots, x_n are nodes in [a, b] and w_1, \ldots, w_n are weights. In the following, we provide a possible formal approach for the construction of such weights, restricting to the case of *equidistant* nodes. In this framework, we will call the resulting quadrature schemes **Newton-Cotes** rules. Their property is being **exact** for polynomials up to a certain degree, i.e., there is an equal sign in (1). To simplify the discussion, we restrict to the cases n = 2, 3.

Trapezoidal rule (n = 2)

The nodes are $x_1 = a$, $x_2 = b$. We impose the exactness on polynomials of degree ≤ 1 by writing

$$\begin{cases} w_1 x_1^0 + w_2 x_2^0 = \int_a^b 1 dx = b - a, \\ w_1 x_1^1 + w_2 x_2^1 = \int_a^b x dx = \frac{b^2 - a^2}{2}. \end{cases}$$

Therefore, we get

$$\begin{cases} w_1 + w_2 = b - a, \\ aw_1 + bw_2 = \frac{b^2 - a^2}{2}. \end{cases}$$

The solution is $w_1 = w_2 = \frac{b-a}{2}$.

Simpson's rule (n = 3)

The nodes are $x_1 = a$, $x_2 = (a + b)/2$ and $x_3 = b$. We impose the exactness on polynomials of degree ≤ 2 by writing

$$\begin{cases} w_1 x_1^0 + w_2 x_2^0 + w_3 x_3^0 = \int_a^b 1 dx = b - a, \\ w_1 x_1^1 + w_2 x_2^1 + w_3 x_3^1 = \int_a^b x dx = \frac{b^2 - a^2}{2}. \\ w_1 x_1^2 + w_2 x_2^2 + w_3 x_3^2 = \int_a^b x^2 dx = \frac{b^3 - a^3}{3}. \end{cases}$$

Therefore, we get

$$\begin{cases} w_1 + w_2 + w_3 = b - a, \\ aw_1 + \frac{b-a}{2}w_2 + bw_3 = \frac{b^2 - a^2}{2}, \\ a^2w_1 + \frac{(b-a)^2}{4}w_2 + b^2w_3 = \frac{b^3 - a^3}{3}. \end{cases}$$

The solution is $w_1 = w_3 = \frac{b-a}{6}$, $w_2 = \frac{2(b-a)}{3}$. Simpson's rule is actually exact for polynomials up to degree 3 (!!!)

Composite rules

It is not convenient to use Newton-Cotes rules that are exact for high degree polynomials, because they are not stable. Instead, it is common to employ **composite** rules, i.e., to divide [a,b] into subintervals and apply the quadrature rules locally on each subinterval

- In the trapezoidal case, we need two nodes for each subinterval.
- In the Simpson's case, we need three nodes for each subinterval.