

Lecture 0: Course Overview

BIOMEDICAL DATA SCIENCE

Agenda

- Short Introduction
 - What you will learn in this course
- Logistics
 - What is expected of you in this course

Introduction

Biomedical Data Science

 Data science techniques applied to biomedical science problems

What is Data Science?

Beware of the AI Hype

Why Biomedical Data Science?

Why Study Data Science?

ML FOR DRUG DISCOVERY (NATURE REVIEWS-DRUG DISCOVERY, 2019)

MODELLING TRANSCRIPTION FACTOR BINDING SITES (NATURE REVIEW - GENTIGS, 2019)

DEEP

MEDICINE

HOW ARTIFICIAL

HEALTHCARE
HUMAN AGAIN
ERIC TOPOL

AI.GOOGLE/HEALTHCARE

Current Healthcare Themes (1): Electronic Health Records (EHR)

- Moving beyond paper-based records
 - Regional and national health data integration facilitating
 - Patient care
 - Administrative & financial
 - Research
 - Scholarly information
 - Office automation

Current Healthcare Themes (2): Smart and Connect Health

Smart and connected health (Quantified Self)

Polar: embedded with heart ratemonitoring sensors, a motiontracking sensor to track speed, distance and acceleration

Bodytrak: a pair of earbuds equipped with an in-ear thermometer to measure core body temperature

Flow, a smart air quality tracker

Current Healthcare Themes (3): Omics, Imaging, ...

- Complex heterogeneous types of data
- Past: single experiment, small set of results
- Today: using sophisticated instruments, we can generate very large datasets, e.g. gene sequencing.

Current Healthcare Themes (4): Information Access

- Information access
 - Health-related searches among the most popular
 - Most Web information are anecdotal

Industry & Healthcare

Healthcare Costs

- 2019: \$3.8 trillion, \$10K+ per person
- 1960: \$27.2 billion, \$146 per person

Top 10 most valuable companies combined

Net worth of

\$72 billion

\$58 billion

Healthcare is Broken

How the U.S. Can Reduce Waste in Health Care Spending by \$1 Trillion

POTENTIAL SAVINGS (IN BILLIONS OF DOLLARS)

SOURCE ANALYSIS BY NIKHIL SAHNI ET AL.; "ELIMINATING WASTE IN U.S. HEALTH CARE" BY DONALD M. BERWICK AND ANDREW D. HACKBARTH, 2012

© HBR.ORG

Data Revolution

- All the data processing we did in the last 2 years is more than all the data processing we did in the last three thousand years.
- We are now being exposed to as much information in a single day as our 15th century ancestors were exposed to in their entire lifetime.
- Every two days the human race is now generating as much data as were generated from the dawn of humanity through the year 2003.

ANATOMY OF A DATA SCIENTIST **EDUCATION** SALARY \$120,000/year BENEFITS • Harvard Business Review SKILLS called data science the "Sexiest Job of the 21st Century" • One of the fastest United States • 94% of data science jobs since 2011 RESPONSIBILITIES **CAREER POSSIBILITIES** technology industry.

https://msidebigdata.com/2017.08/05/benefits-data-ocientis-career/ https://www.glassdor.com/Salaries/us-data-ocientis-salary-SRCH_JL.0,2_JN1_KO3,17.htm https://logu_datatry.com/2014/17/data-scence-job-skills.html https://online.rutgers.edu/resources/infographics/what-can-you-do-with-a-career-in-data-science/Program-min

Healthcare data sources

Weber, Griffin M., Kenneth D. Mandl, and Isaac S. Kohane. 2014. "Finding the Missing Link for Big Biomedical Data." JAMA: The Journal of the American Medical Association 311 (24): 2479–80.

Clinical Data

Adoption of Electronic Health record (EHR) data

% non-federal acute care hospitals with EHR adoption

■ NR ■ 0-19% ■ 20-39% ■ 40-59% ■ 60-79% ■ 80-100%

MarketScan Databases

Example: MarketScan dataset 245 million patients

Physiological Data

If you use MIMIC data or code in your work, please cite the following publication:

MIMIC-III, a freely accessible critical care database. Johnson AEW,
Pollard TJ, Shen L, Lehman L, Feng M, Ghassemi M, Moody B, Szolovits P,
Celi LA, and Mark RG. Scientific Data (2016). DOI: 10.1038/sdata.2016.35.

Available from: http://www.nature.com/articles/sdata201635

MoleculeNet

 A large set of dataset useful for molecular machine learning

Wu, Zhenqin, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S. Pappu, Karl Leswing, and Vijay Pande. "MoleculeNet: a benchmark for molecular machine learning." Chemical science 9, no. 2 (2018): 513-530.

Many Other Sources of Data

Biomedical Images

Wearables

Genomics

Lab Tests

Course Logistics

Main Topics Covered

- It can be subject to some change:
 - Python Programming
 - Biomedical Ontologies (e.g. ICD-9, SNOMED, ...)
 - Conventional Machine Learning Techniques
 - kNN, SVM, RF
 - Deep Learning
 - Images, Time series, Text data
 - Useful machine learning and deep learning libraries
 - Scikit-learn, Pandas, Keras, DeepChem
 - Introduction to Natural Language Processing (NLP)

Week	Date	Tuesday Lecture	Thursday Lecture	Code Examples	Paper Reading	HW
1	08/19 - 08/23	Course Overview	Data Sci. Introduction, Python Programming	Intro. To PythonSetting up Google Colab	-	-
2	08/26- 08/30 (Add/Drop)	EHR, NumPy	ML Metrics	NumPy IntroToxicity PredictionSolubility Prediction	Watson Oncology	
3	09/02 - 09/06	Pandas, Preprocessing	Version Control	Pandas IntroPreprocessing (5)Setting up Git		HW1
4	09/09 - 09/13	RF, kNN	Biophysical Modeling	kNNRFBiophysical Modeling	Septic Shock Prediction	
5	09/16 - 09/20	Evaluation	SVM	• Evaluation		HW2
6	09/23 - 09/27	Neural Network	Neural Network, Deep Learning	• FC Networks	Melanoma Detection	
7	09/30 - 10/04	Review	Exam 1			
8	10/07 - 10/11	ConvNet	Convnet (cont.)	• CNN	Adversarial Attacks	
9	10/14 - 10/18	CNN Architectures	Microscopy	Cell CountingCell Segmentation		HW3
10	10/21 - 10/25	RNN	RNN	 Physiological Signals (MIMIC) 	Drug Discovery	
11	10/28 - 11/01	Intro to NLP	NLP Representations	Clinical Notes		HW4
12	11/04 - 11/08	Generative Models	Genomics	 Generating Drug Molecules TF Binding RNA Interference Chromatic Accessibility 		
13	11/11 - 11/15	Feature Selection	Guest Lecture			HW5
14	11/18 - 11/22	Review	Exam 2			
15	11/25 - 11/29	Ethical AI	Holiday			
16	12/02 - 12/06		Reading Day			

Course Objectives

- At the end of the semester, students are expected to be able to:
 - Understand what biomedical data science is,
 - Identify different techniques used to solve biomedical data science problems,
 - Identify when and why a certain library or platform should be used,
 - Demonstrate the ability to apply methods from each of the major domains to solve practical problems.

Course Website

- Everything will be available on Canvas
- Canvas should be considered as the reference
 - All announcements, project postings, schedule changes,
 - Check your email!
 - Upload your photo

Class

- We will meet on the following days:
 - Tuesdays
 - One session: 1:55 2:45 pm
 - Thursdays
 - First session: 1:55 2:45 pm
 - 15 minutes break
 - Second session: 3:00 3:50 pm

Office Hours

- Office location: NEB 459
- Office hours: by appointment
- E-mail address: parisa.rashidi@ufl.edu
- NOTE: When contacting by email include "Course 4760/6938" in the subject line to ensure delivery.

Supervised Teaching Student

- Subhash Nerella, <u>subhashnerella@ufl.edu</u>,
- office location: TBA, office hours: TBA
- Programming/HW questions should be directed to Subhash.

Textbook

- *Recommended*, not required
- Your main source: Lecture Notes,
 - You still have to take your own notes!

Undergraduate Grading

- Final grade is calculated according to:
 - Homework (5) = 35%
 - Equal weight
 - Exams (2) = 45%
 - Equal weight
 - Paper Discussions (5) = 10%
 - Undergraduate students are not asked to present in class, but are expected to contribute to discussions in class and write up a paragraph on each paper (strengths, weakness, suggestions).
 - Quiz (5) = 10%
 - Equal weight

Graduate Grading

- Final grade is calculated according to:
 - Homework (5) = 35%
 - Equal weight
 - Exams (2) = 40%
 - Equal weight
 - Paper Presentation (1) = 10%
 - Graduate students are expected to present in class
 - Paper Discussions (5) = 5%
 - Graduate students are also expected to contribute to discussions in class and write up a paragraph on each paper (strengths, weakness, suggestions).
 - Quiz (5) = 10%
 - Equal weight

Exam

- Exam 1: Thursday, Oct. 3
- held during regular class hours
- Exam 2: Thursday, November 21
- held during regular class hours

Quick Poll

- Programming experience
 - Python
 - Matlab
 - R
 - Other
 - No experience
- Prior machine learning experience

- Introduce Yourself
 - Your name
 - Your major
 - Your research topic if a graduate student
 - Why you enrolled in this class