Федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский университет ИТМО

Факультет программной инженерии и компьютерной техники Направление подготовки:

Системное и Прикладное Программное Обеспечение (09.03.04 Программная инженерия)

Дисциплина «Основы программной инженерии»

Отчет

По лабораторной работе №2 Численное решение нелинейных уравнений и систем

Вариант №10

Студент

Карташев Владимир Сергеевич, группа P3215

Преподаватель / Практик

Малышева Татьяна Алексеевна

Методы вычислительной реализации

Крайний правый корень - Метод Ньютона Крайний левый корень - Метод половинного деления Центральный корень - Метод простой итерации

Система нелинейных уравнений - Метод простой итерации

Нелинейное уравнение:

$$x^3 - 3,125x^2 - 3,5x + 2,458$$

Система нелинейных уравнение:

$$\begin{cases} \sin(x+0,5) - y = 1\\ \cos(y-2) + x = 0 \end{cases}$$

Методы программной реализации

Решение нелинейных уравнений:

Метод хорд, метод Ньютона, Метод простой итерации Решение систем нелинейных уравнений:

Метод Ньютона

Цель лабораторной работы

Изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов.

Рабочие формулы

Метод Ньютона:
$$x_i = x_{i-1} - \frac{f(x_{i-1})}{f'(x_{i-1})}$$

Метод половинного деления:
$$x_{i} = \frac{a_{i} + b_{i}}{2}$$

Метод простой итерации:
$$x_{i+1} = \varphi(x_i)$$

Метод хорд:
$$x_i = \frac{a_i f(b_i) - b_i f(a_i)}{f(b_i) - f(a_i)}$$

Решение нелинейного уравнения

Точность: $\epsilon = 10^{-2} = 0$, 01

Уравнение: $x^3 - 3$, $125x^2 - 3$, 5x + 2, 458 = 0

Уточнение правого корня уравнения методом Ньютона $x \in (3;4)$

№ итерации	x_{k}	$f(x_k)$	$f'(x_k)$	x_{k+1}	$ x_{k+1} - x_k $
1	4.000	2.458	19.500	3.874	0.126
2	3.874	0.138	17.309	3.866	0.008

Уточнение левого корня уравнения методом половинного деления

$$x \in (-2; -1)$$

№ шага	а	b	х	f(a)	f(x)	a-b
1	-2.000	-1.000	-1.500	-11.042	1.833	1.000
2	-1.500	-1.000	-1.250	1.833	-0.003	0.500

Уточнение центрального корня уравнения методом простой итерации $x \in (0;1)$

№ итерации	x_{k}	x_{k+1}	$\varphi(x_{k+1})$	$f(x_{k+1})$	$ x_{k+1} - x_k $
1	0	0,702	0,361	-1,193	0,702
2	0,702	0,361	0,599	0,834	0,341
3	0,361	0,599	0,443	-0,545	0,238
4	0,599	0,443	0,552	0,381	0,156
5	0,443	0,552	0,478	-0,258	0,109
6	0,552	0,478	0,529	0,18	0,074
7	0,478	0,529	0,495	-0,12	0,051
8	0,529	0,495	0,518	0,081	0,034
9	0,495	0,518	0,502	-0,055	0,023
10	0,518	0,502	0,513	0,04	0,016
11	0,502	0,513	0,506	-0,025	0,011
12	0,513	0,506	0,511	0,016	0,007

Ответ:

$$x_1 = -1.25$$
 - левый

$$x_2^1 = -1.25$$
 - центральный

$$x_3 = 3.8659$$
 - правый

Решение системы нелинейных уравнений

Точность:
$$\varepsilon = 10^{-2} = 0,01$$
 Система:
$$\begin{cases} \sin(x+0,5) - y = 1 \\ \cos(y-2) + x = 0 \end{cases}$$

$$\begin{cases} \sin(x+0.5) - y = 1 \\ \cos(y-2) + x = 0 \end{cases} \Rightarrow \begin{cases} x = -\cos(y-2) \\ y = \sin(x+0.5) - 1 \end{cases}$$

$$x_0 = 1; \ y_0 = 1$$

№ итерации	Х	у	$ x_{i-1} - x_i $	$ y_{i-1} - y_i $	макс. разность
0	1	1	-	-	0
1	-0,54	-0,003	1,54	1,003	1,54
2	0,419	-1,04	0,959	1,037	1,037
3	0,995	-0,205	0,576	0,835	0,835
4	0,593	-0,003	0,402	0,202	0,402
5	0,419	-0,112	0,174	0,109	0,174
6	0,515	-0,205	0,096	0,093	0,096
7	0,593	-0,151	0,078	0,054	0,078
8	0,548	-0,112	0,045	0,039	0,045
9	0,515	-0,134	0,033	0,022	0,033
10	0,534	-0,151	0,019	0,017	0,019
11	0,548	-0,141	0,014	0,01	0,014
12	0,54	-0,134	0,008	0,007	0,008

Листинг программы:

Функции для подсчета значения функции и производной по массиву коэффициентов [a, b, c, ..., y, z, n] уравнения $n + zx + yx^2 + ... + ax^m$

```
func FindFunctrion(x float64, coefficients []float64) float64 {
    var y float64
    for i, val := range coefficients {
        if i == 0 {
            y += val
        } else {
            y += val * math.Pow(x, float64(i))
        }
    }
    return y
}

func FindTheDerivative(coefficients []float64) []float64 {
    var derivative []float64
    for i, val := range coefficients {
        if i == 0 {
            continue
        }
        derivative = append(derivative, val*float64(i))
    }
    return derivative
}
```

Метод Хорд:

Метод Ньютона:

```
d1 xi = tools.FindFunctrion(xi, derivative1)
      x i plus 1 = xi - (f_xi / d1_xi)
      differenceAbs = math.Abs(x_i_plus_1 - xi)
x i plus 1, differenceAbs)
      if differenceAbs <= e {</pre>
         fmt.Println("OTBET:", x i_plus_1)
         fmt.Println("OTBET:", x i plus 1)
         fmt.Println("OTBET:", x_i_plus_1)
      xi = x_i_plus_1
```

Метод простой итерации:

```
iterationsLimit := 1000
     phi_x_plus_1 = phiFunction(x i plus 1, lambda, coefficients)
      f_x_plus_1 = tools.FindFunctrion(x_i_plus_1, coefficients)
      differenceAbs = math.Abs(x i plus 1 - xi)
      fmt.Printf("%d\t%5f\t\t%5f\t\t\t%5f\t\t\t\$5f\t\t\t\$5f\t\n", i, xi, x i plus 1,
phi_x_plus_1, f_x_plus_1, differenceAbs)
         fmt.Println("Значение функции:", f_x_plus_1)
math.Abs(tools.FindFunctrion(b, derivative1)))
```

Метод Ньютона (для системы) нелинейных уравнений:

```
func newtonMethod(f func(float64, float64) (float64, float64), jacobian func(float64, float64) (float64, float64, float64, float64), x0, y0 float64) (float64, float64, error) {
    x, y := x0, y0
    fmt.Println("\n")
    for i := 0; i < maxIter; i++ {
        fx, fy := f(x, y)
        jx, jy, jz, jw := jacobian(x, y)

    detJ := jx*jw - jy*jz
    if math.Abs(detJ) < tolerance {
        return 0, 0, fmt.Errorf("Якобиан имеет единичную матрицу")
    }

    deltaX := (jw*fx - jy*fy) / detJ
    deltaY := (-jz*fx + jx*fy) / detJ
    fmt.Println("deltaX:", deltaX)
    x -= deltaX
    y -= deltaY</pre>
```

```
if math.Abs(deltaX) < tolerance && math.Abs(deltaY) < tolerance {
    fmt.Println("Количество итераций:", i+1)
    return x, y, nil
    }
}
return 0, 0, fmt.Errorf("Достигнут лимит итераций")
}
```

Результаты выполнения программы при различных исходных данных:

Ввод:

```
0.01
2.5 -3 -10.3
2 10
```

Вывод:

Метод Хорд:

```
Считанная функция:
2.5*x^2 + -3*x^1 + -10.3
График создан
Корени в интервале: [-2;-1]
Корени в интервале: [2;3]
a = 2
b = 10
Производная 1-го порядка: [-3 5]
Производная 2-го порядка: [5]
              [b]
[#] [a]
                        [x]
                                  [F(a)]
                                                 [ F(b) ]
                                                                 [ F(x) ]
                                                                                [ |x_i+1 - x_i| ]
     2.000000
                  10.000000
                                             -6.300000
                                                                                  -4.530556
0
                                2.233333
                                                               209.700000
                                                                                                    0.233333
     2.233333
                  10.000000
                                2.397583
                                             -4.530556
                                                               209.700000
                                                                                  -3.121738
                                                                                                    0.164250
1
2
     2.397583
                  10.000000
                                2.509098
                                             -3.121738
                                                               209.700000
                                                                                  -2.088364
                                                                                                    0.111515
3
                                2.582963
     2.509098
                  10.000000
                                             -2.088364
                                                               209.700000
                                                                                                    0.073865
                                                                                  -1.369647
4
     2.582963
                  10.000000
                                                               209.700000
                                2.631092
                                             -1.369647
                                                                                  -0.886659
                                                                                                    0.048130
5
                  10.000000
                                                               209.700000
     2.631092
                                2.662119
                                             -0.886659
                                                                                  -0.569167
                                                                                                    0.031026
6
     2.662119
                  10.000000
                                2.681981
                                             -0.569167
                                                               209.700000
                                                                                  -0.363386
                                                                                                    0.019863
7
     2.681981
                  10.000000
                                2.694641
                                             -0.363386
                                                               209.700000
                                                                                  -0.231203
                                                                                                    0.012659
8
     2.694641
                  10.000000
                                2.702686
                                             -0.231203
                                                               209.700000
                                                                                  -0.146778
                                                                                                    0.008046
Причина: |x_i+1 - x_i| \le e
Ответ: 2.702686106472415
Значение функции: -0.14677784411968986
```

Метод Ньютона:

```
Считанная функция:
2.5*x^2 + -3*x^1 + -10.3
График создан

Корни в интервале: [-2;-1]
Корни в интервале: [2;3]

а = 2
b = 10
Производная 1-го порядка: [-3 5]
Производная 2-го порядка: [5]
```

			_		
[#]	[x_i]	[f'(x_i)] [1	[(x_i)] [x_i+1]	[x_i+1	- x_i]
0	10.000000	209.700000	47.000000	5.538298	4.461702
1	5.538298	49.766965	24.691489	3.522747	2.015551
2	3.522747	10.156118	14.613733	2.827776	0.694971
3	2.827776	1.207461	11.138878	2.719375	0.108401
4	2.719375	0.029377	10.596875	2.716603	0.002772
Стог	1				
Прич	чина: x_i+1	- x_i <= e			
Знач	ение функі	ции: 0.029376729	38845992		
O	0 746600	00640000755			

Ответ: 2.7166028642922755

Метод простой итерации: Считанная функция: $2.5*x^2 + -3*x^1 + -10.3$ График создан Корени в интервале: [-2;-1] Корени в интервале: [2;3] a = 2b = 10Производная 1-го порядка: [-3 5] Производная 2-го порядка: [5] Лямбда: -0.02127659574468085 phi'(a) 0.851063829787234 phi'(b) 0 Index x_i x_i+1 phi(x_i+1) $f(x_i+1)$ |x_i+1 - x_i| 2.000000 2.134043 2.247166 -5.316784 0.134043t 2.134043 2.247166 2.341147 -4.417114 0.113123t 3 2.247166 2.341147 2.418190 -3.621020 0.093981t 4 2.341147 2.418190 2.480646 -2.935465 0.077043t 5 2.418190 2.480646 2.530815 -2.357922 0.062457t 6 2.480646 2.530815 2.570813 -1.879884 0.050169t 7 2.530815 2.570813 2.602509 -1.489745 0.039998t 8 2.570813 2.602509 2.627507 -1.174892 0.031697t 9 2.602509 2.627507 2.647146 -0.923039 0.024998t 10 2.627507 2.647146 2.662529 -0.722983 0.019639t 2.662529 11 2.647146 2.674549 -0.564939 0.015383t 12 2.662529 2.674549 2.683924 -0.440620 0.012020t 13 2.674549 2.683924 2.691225 -0.343157 0.009375t 14 2.683924 2.691225 2.696904 -0.266948 0.007301t 2.691225 15 2.696904 -0.207479 0.005680t 2.701319 16 2.696904 2.701319 2.704748 -0.161147 0.004414t 0.003429t 17 2.701319 2.704748 2.707409 -0.125094 18 2.704748 2.709474 0.002662t 2.707409 -0.097067 19 2.707409 2.709474 2.711076 -0.075294 0.002065t 20 2.709474 2.711076 2.712319 -0.058391 0.001602t 21 2.711076 2.712319 2.713282 -0.045274 0.001242t 22 2.712319 2.713282 2.714029 -0.035098 0.000963t 23 2.713282 2.714029 2.714608 -0.027206 0.000747t 24 2.714029 2.714608 2.715056 -0.021086 0.000579t 25 2.714608 2.715056 2.715404 -0.016342 0.000449t 26 2.715056 2.715404 2.715673 -0.012665 0.000348t 27 2.715404 2.715673 2.715882 -0.009815 0.000269t

Стоп

Причина: |f(x_i+1)| <= e Ответ: 2.7156734577628994

Значение функции: -0.009814550293942403

```
Выберите тип решения уравнения:
1. Решение нелинейных уравнений
2. Решение системы нелинейных уравнений
Выберите метод решения системы нелинейных уравнений:
1. Метод Ньютона
Выберите решаемое уравнение:
tgxy = x^2
0.5x^2 + 2y^2 = 1
\sin(x+y)-1.4x=0
x^2 + y^2 = 1
Введите точность
0.01
Введите начальное прибижение для х
Введите начальное прибижение для у
deltaX: -0.9741181115719424
deltaX: 4.899147962303645
deltaX: 1.7569666091027636
deltaX: -1.280492689255874
deltaX: -2.773574088202409
deltaX: 0.06208520999392478
deltaX: -0.043574666840793974
deltaX: 0.019882722632935623
deltaX: -0.0033826711945834057
Количество итераций: 9
Решение системы 1: x = -0.6629402769676657, y = -0.6246047278329376
```

Вывод

В ходе выполнения лабораторной работы №2 были изучены и применены численные методы решения нелинейных уравнений и систем нелинейных уравнений. В процессе работы была выполнена как вычислительная, так и программная реализация методов, что позволило закрепить теоретические знания на практике и получить практические навыки программирования и анализа численных методов.