Лабораторная работа 6 «Паросочетание в двудольном графе»

Пусть задан неориентированный двудольный граф G с долями V_1 и V_2 . Подмножество M множества ребер E(G) графа называется паросочетанием, если в нем нет двух ребер с общей концевой вершиной. Требуется реализовать алгоритм, который находит в графе G паросочетание с максимальным числом ребер.

Алгоритм

Bxod. Двудольный граф G с долями V_1 и V_2 .

Bыход. Наибольшее паросочетание графа G.

ШАГ 1. По неориентированному графу G построим направленный граф G^* следующим образом: в графе G каждое ребро $\{u,v\} \in E(G)$, где $u \in V_1$ и $v \in V_2$, заменим на дугу (u,v).

ШАГ 2. Добавим к графу G^* две вершины s и t. Включим в граф G^* дугу (s,u) для каждой вершины $u \in V_1$, а также дугу (v,t) для каждой вершины $v \in V_2$.

ШАГ 3. С помощью обхода графа (поиска в ширину или поиска в глубину) определим достижима ли в графе G^* вершина t из вершины s и в случае положительного ответа найдем в этом графе (s,t)-путь P.

ШАГ 4. Если вершина t не достижима из вершины s в графе G^* , то положим $M=\emptyset$ и для каждой дуги (v,u) графа G^* такой, что $v\in V_2$ и $u\in V_1$ добавим в множество M ребро $\{u,v\}$ графа G; получившееся в результате множество M является наибольшим паросочетанием графа G. СТОП. Алгоритм завершает свою работу.

ШАГ 5. Пусть в графе G^* вершина t достижима из вершины s. Скорректируем граф G^* следующим образом: в графе G^* первую и последнюю дуги пути P удалим, а остальным дугам этого пути поменяем ориентацию на противоположную. Переходим на ШАГ 3.

 Π ример. Рассмотрим двудольный граф G

с долями $V_1=\{a,b,c\}$ и $V_2=\{x,y,z\}$. Построим направленный граф G^* . Граф G^* получается из графа G ориентацией всех ребер слева направо и добавлением двух вершин — вершины s с выходящими из нее дугами с концами в вершинах множества V_1 и вершины t с входящими в нее дугами с началами в вершинах множества V_2

Найдем в графе G^* (s,t)-путь

Рассмотрим в графе G^* дуги найденного пути. Первую и последнюю дуги пути удалим, а промежуточным дугам, а именно дуге (b,x), поменяем ориентацию

Найдем (s,t)-путь

Крайние дуги пути удалим, а промежуточные дуги пути (в этом случае единственную дугу (c,z)) заменим на обратные

Найдем (s,t)-путь

Крайние дуги пути удалим, а промежуточные дуги пути обратим

В получившемся графе нет (s,t)-путей. Алгоритм завершает свою работу. В результирующем графе G^* нас интересуют дуги, которые начинаются в вершинах множества V_2 и заканчиваются в вершинах множества V_1

Этим дугам соответствуют ребра в исходном графе G

$${a,x},{b,y},{c,z}.$$

Совокупность этих ребер представляет собой наибольшее паросочетание графа G.