

Turingmachine

A Turing machine is like a wise old person, sitting at an endless table, playing a complex game. They have a magical pen that reads and writes on the game board. They follow strict rules, do not move from their spot, but the table mysteriously moves back and forth. Their concentration is deep and calm as they perform a complex ballet of reading, writing, and state-changing.

- ChatGPT

Berechenbarkeit

1 Turingmachine

Wir Betrachte das folgende, sehr bekannt, berechnunsmodell. Anschaulich lässt es sich wie folht beschreiben.

- Es gibt einen "Speicher" → k unendlich lange Arrays(Bänder)
- Es gibt einen "Arbeitsspeicher" → eine endliche Menge von Zusänden, die die Machine einnehmen kann
- Für jedes Band gibt es einen Schreib- und Lesekopf
- Jeder Schritt ist wie folgt:
 Abhängig von Zustand und gelesenene Symbol, Schreiben die Küpfe genau ein Symbol, bewegen sich nun maximal eine Position und der Zustand der Machine wird geändert.
- Stellt die Machine ihhr schrittweises Arbeiten ein, so wird die Ausgabe entweder den Zustand entnommen oder von einem der Bänder in geeigneter Weise abgelesen.

Figure 1: Turingmachine.

1.1 Definition (Turingmachine, Alan Tuing, 1936)

Sei $k \in \mathbb{N}$ eine **k-Band-Turingmachine**m kurz k-TM, ist ein Tupe $M = (Q, \Sigma, \Gamma, \Delta, s, F)$. Dabei ist:

- Q eine endliche Menge, Zustandmenge
- Σ das **Eingabealphabet**, ein Alphabet $\square \not\in \Sigma$
- Γ das **Bandaphabet**, ein Alphabet mit $\Sigma \subseteq \Gamma$ und $\square \in \Gamma/\Sigma$
- $\Delta \subseteq Q \times \Gamma^k \to \subseteq Q \times \Gamma^k \times L, S, R^k$ die Übergangsrelation
- $s \in Q$ der Startzustand
- $F \subseteq Q$ die Menge der akzeptierenden Zustände

Das Symbol \square heißt **Blank**. Die Elemente von Δ heißen **instruktionen**. Für eine Instruktion $(q_1, a_1, \cdots, a_k, q', a'_1, \cdots, a'_k, B_1, \cdots, B_k)$ **Anweisungteil**. Die TM M ist eine **deterministische k-Band Turingmachine**, kurz k-DTM, wenn es $\forall b \in Q \times \Gamma^k$ höchstens eine Instruktion $i \in \Delta$ mit Bedingungsteil b.

1.2 Definition (Konfiguration)

Sei $M = (Q, \Sigma, \Gamma, \Delta, s, F)$ eine k-TM. Elne **Konfigration** von M ist ein Tupel

$$C = (q, w_1, \cdots, w_k, p_1, \cdots, p_k) \in Q \times (p^*)^k \times \mathbb{N}^k$$

Die **Startkonfiguration** von M zur Eingabe $(u_1, \dots, u_n) \in (\Sigma^*)^n$, wobei $n \in \mathbb{N}$, ist die Konfiguration

$$Start_M(u_1, \dots, u_n) = (s, u_1 \square u_2 \square \dots \square u_n, \square, \dots, 1, \dots, 1)$$

Die Konfiguration C ist eine **Stoppkonfigration** von M, wenn es keine Instruktion $i \in \Delta$ mit Bedingungsteil $(q, w_1(p_1), \dots, w_k(p_k))$ gibt.

1.3 Definition (Nachfolgekonfiguration)

1.4 Bemerkung (normiert)

Eine 1-DTM $M=(Q,\Sigma,\Gamma,\Delta,s,F)$ heißt **normiert**, wenn $Q=0,\cdots,n$ für eine $n\in\mathbb{N}_0$, $\Sigma=0,1$, $\Gamma=\square,0,1$, s=0, F=s. Alle TMs mit Eingabealphabet 0,1 lassen sich mit folgenden Schritten in eine normierte TM mit gleicher erkannter Sprache und gleicher berechneter Funktion umwandeln.

- Von Nichtdeterminismus zu Determinismus: Eine DTM kann die Rechnungen einer nichtdeterministischen TM parallel im Sinne von abwechend schrittweise durchführen um schließlich das Verhalten der simulierten TM zu ??. Dies entspricht einer Breitensuche im Rechnungsbaum. ADD IMAGE HERE
- Von mehreren Bändern zu einem Band: Intuitiv können k Bänder auf ein Band simuliert werden, indem die Felder des einen Bandes in k-teilfelder unterteilt werden, die jeweils die gleiche Bandalphabetbuchstaben wie zufor als Beschreibung zulassen und es zudem erlaubt zu markieren, dass der simulierte Kopf des simulierten Bandes dort steht. Eine dieser Idee folgende Konstruktion wird als Spurentechnik bezeichnet. Formal: Übergang vom Bandalphabet Γ zu

$$((\Gamma \cup \underline{a} : a \in \Gamma)^k / \square^k) \cup \square$$

wobei $\underline{a} \not\in \Gamma$ für $a \in \Gamma$. Hierbei bedeutet \underline{a} , dass das simulierte Feld mit a beschriftet ist und dass dort der simulierte Kopf steht. Weiter spielt \square die Rolle des k-Tupels $(\square, \dots, \square)$ um der Tatsache gerecht zu werden, dan alle Felderzu Begin mit \square beschriftet sind.