RC2

1 Vector Calculus

1.1 Divergence Theorem

$$\int_{V} \nabla \cdot \vec{A} dv = \oint_{S} \vec{A} \cdot d\vec{s}$$

The volume integral of the divergence of a vector field equals the total outward flux of the vector through the surface that bounds the volume.

1.2 Stokes's Theorem

$$\int_{S} (\nabla \times \vec{A}) d\vec{s} = \oint_{C} \vec{A} \cdot d\vec{l}$$

The surface integral of the curl of a vector field over an open surface is equal to the closed line integral of the vector along the contour bounding the surface.

1.3 Null Identities

$$\nabla \times (\nabla V) \equiv 0$$

- The curl of the gradient of any scalar field is identically zero.
- Another interpretation: If a vector field is curl-free, it can be expressed as the gradient of a scalar field.

$$\nabla \cdot (\nabla \times \vec{A}) \equiv 0$$

- The divergence of the curl of any vector field is identically zero.
- Another interpretation: if a vector field is divergenceless, it can be expressed as the curl of another vector field.
- Divergenceless field is called solenoidal field.

1.4 Exercise

- (HW1-4) Find the divergence of the following radial vector fields:
 - a) $f_1(\mathbf{R}) = \mathbf{a}_{\mathbf{R}} R^n$,

b)
$$f_2(\mathbf{R}) = \mathbf{a}_{\mathbf{R}} \frac{k}{R^2}$$
.

• (HW1-5) For vector function $\mathbf{A} = \mathbf{a_r} r^2 + \mathbf{a_z} 2z$, verify the divergence theorem for the circular cylindrical region enclosed by r = 5, z = 0, and z = 4.

• Given $\mathbf{F} = \mathbf{a_x} xy - \mathbf{a_y} 2x$, verify Stokes's theorem using the triangle in the following picture.

2 Electrostatics in Free Space

Static electric charges (source) in free space \rightarrow electric field

2.1 Electric field intensity

$$\mathbf{E} = \lim_{q \to 0} rac{\mathbf{F}}{q} \quad (\mathbf{V}/\mathrm{m})$$

2.2 Fundamental Postulates of Electrostatics

• Differential form:

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} \quad (divergence)$$
$$\nabla \times \mathbf{E} = 0 \quad (curl)$$

where ρ is the volume charge density of free charges (C/m^3) , ϵ_0 is the permittivity of free space, a universal constant.

• Integral form:

$$\oint_{S} \mathbf{E} \cdot d\mathbf{s} = \frac{Q}{\epsilon_{0}}$$

$$\oint_{C} \mathbf{E} \cdot d\ell = 0$$

where Q is the total charge contained in volume V bounded by surface S. Also, the scalar line integral of the static electric field intensity around any closed path vanishes.

E is not solenoidal (unless $\rho = 0$), but irrotational (conservative)

3 Coulomb's Law

3.1 Electric Field due to a System of Discrete Charges

• a single point charge (charge on the origin):

$$\mathbf{E} = \mathbf{a_R} E_R = \mathbf{a_R} \frac{q}{4\pi\epsilon_0 R^2} \quad (\mathbf{V/m})$$

• a single point charge (charge is not on the origin):

$$\mathbf{E}_{p} = \frac{q \left(\mathbf{R} - \mathbf{R}' \right)}{4\pi\epsilon_{0} \left| \mathbf{R} - \mathbf{R}' \right|^{3}} \quad (\mathbf{V}/\mathbf{m})$$

When a point charge q_2 is placed in the field of another point charge q_1 at the origin, a force $\mathbf{F_{12}}$ is experienced by q_2 due to the electric field intensity $\mathbf{E_{12}}$ of q_1 at q_2 . Then we have:

$$\mathbf{F_{12}} = q_2 \mathbf{E_{12}} = \mathbf{a_R} \frac{q_1 q_2}{4\pi\epsilon_0 R^2}$$

• several point charges:

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \sum_{k=1}^{n} \frac{q_k \left(\mathbf{R} - \mathbf{R}'_k\right)}{\left|\mathbf{R} - \mathbf{R}'_k\right|^3}$$

3.2 Electric Dipole

• Electric Field general expression:

$$\mathbf{E} = \frac{q}{4\pi\epsilon_0} \left\{ \frac{\mathbf{R} - \frac{\mathbf{d}}{2}}{\left|\mathbf{R} - \frac{\mathbf{d}}{2}\right|^3} - \frac{\mathbf{R} + \frac{\mathbf{d}}{2}}{\left|\mathbf{R} + \frac{\mathbf{d}}{2}\right|^3} \right\}$$

if $d \ll R$:

$$\mathbf{E} \cong \frac{q}{4\pi\epsilon_0 R^3} \left[3 \frac{\mathbf{R} \cdot \mathbf{d}}{R^2} \mathbf{R} - \mathbf{d} \right]$$

• Electric Dipole Moment Definition:

$$\mathbf{p} = q\mathbf{d}$$

,where q is the charge, vector **d** goes from -q to +q.

$$\mathbf{p} = \mathbf{a}_z p = p \left(\mathbf{a}_R \cos \theta - \mathbf{a}_\theta \sin \theta \right)$$

$$\mathbf{R} \cdot \mathbf{p} = Rp \cos \theta$$

• Electric Field: (spherical coordinate)

$$\mathbf{E} = \frac{p}{4\pi\epsilon_0 R^3} \left(\mathbf{a}_R 2 \cos \theta + \mathbf{a}_\theta \sin \theta \right) \quad (V/m)$$

3.3 Electric Field due to a Continuous Distribution of Charge

• General Differential Element:

$$d\mathbf{E} = \mathbf{a}_R \frac{\rho dv'}{4\pi\epsilon_0 R^2}$$

, where dv' is the differential volume element.

• Line Charge:

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \int_{L'} \mathbf{a}_R \frac{\rho_\ell}{R^2} d\ell' \quad (\mathbf{V/m})$$

• Surface Charge:

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \int_{\mathbf{S}'} \mathbf{a}_R \frac{\rho_s}{R^2} ds' \quad (\mathbf{V}/\mathbf{m})$$

• Volume Charge:

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \int_{V'} \mathbf{a}_R \frac{\rho}{R^2} dv' \quad (\mathbf{V/m})$$

3.4 Exercise

• (HW2-1) A line charge of uniform density ρ_l in free space forms a semicircle of radius b. Determine the magnitude and direction of the electric field intensity at the center of the semicircle.

• (HW2-2) Three uniform line charges— ρ_{l1} , ρ_{l2} , and ρ_{l3} , each of length L—form an equilateral triangle. Assuming that $\rho_{l1} = 2\rho_{l2} = 2\rho_{l3}$, determine the electric field intensity at the center of the triangle.

4 Gauss's Law and Application

4.1 Definition

The total outward flux of the E-field over any closed surface in free space is equal to the total charge enclosed in the surface divided by ϵ_0 . (Note that we can choose arbitrary surface S for our convenience.)

$$\oint_{S} \mathbf{E} \cdot d\mathbf{s} = \frac{Q}{\epsilon_0}$$

4.2 Application

• Conditions for Maxwell's Integral Equations:

There is a high degree of symmetry in the charge distribution or in the electrical field (i.e., spherically symmetric, planar, line charge, etc.

4.3 Example

• Determine the electric field intensity of an infinitely long, straight, line charge of a uniform density ρ_{ℓ} .

• Determine the electric field intensity of an infinite planar charge with a uniform surface charge density ρ_s .

4.4 Exercise

- (HW2-3) Two infinitely long coaxial cylindrical surfaces, r=a and r=b (b>a), carry surface charge densities ρ_{sa} and ρ_{sb} , respectively.
 - a) Determine **E** everywhere.
 - b) What must be the relation between a and b in order that **E** vanishes for r > b?

4.5 Several Useful Models (paste on your ctpp!)

Note: The charge distribution should be **uniform**.

Recitation class 5.22

different models	E (magnitude)
infinitely long, line charge	$E = \frac{\rho_{\ell}}{2\pi r \epsilon_0}$
infinite planar charge	$E = \frac{\rho_s}{2\epsilon_0}$
uniform spherical surface charge with radius R	$\begin{cases} E = 0 & (r < R) \\ E = \frac{Q}{4\pi\epsilon_0 r^2} & (r > R) \end{cases}$
uniform sphere charge with radius R	$E = \frac{Qr}{4\pi\epsilon_0 R^3} (r < R)$ $E = \frac{Q}{4\pi\epsilon_0 r^2} (r > R)$
infinitely long, cylindrical charge with radius R	$\begin{cases} E = \frac{\rho_v r}{2\epsilon_0} \ (r < R) \\ E = \frac{\rho_v R^2}{2r\epsilon_0} \ (r > R) \end{cases}$