### Lecture 3

## Homogeneous Transformations and Forward Kinematics

### Mapping – General Frames

- Assuming that frame {B} is both translated and rotated with respect frame {A},
- The position of the point expressed in frame {B} can be expressed in frame {A} as follows



## Mapping – Homogeneous Transform

- The homogeneous transform is a 4x4 matrix casting the rotation and translation of a general transform into a single matrix
- In other fields of study it can be used to compute perspective and scaling operations when the last row is other than [0001] or the rotation matrix is not orthonormal.

## Homogeneous Transform – Special Cases

Translation

$${}_{B}^{A}T = \begin{bmatrix} 1 & 0 & 0 & {}^{A}P_{BORGx} \\ 0 & 1 & 0 & {}^{A}P_{BORGy} \\ 0 & 0 & 1 & {}^{A}P_{BORGz} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



Rotation

$${}_{B}^{A}T = \begin{bmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



# Homogeneous Transform Example

Given:

$${}^{B}P = \begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Frame {B} is rotated relative to frame {A} about  $\hat{Z}$  by 30 degrees, and translated 10 units in  $\hat{X}_{_A}$  and 5 units in  $\hat{Y}_{_A}$ 

Calculate: The vector <sup>A</sup>P expressed in frame {A}.

## Homogeneous Transform Example

# Transformation Arithmetic - Compound Transformations

Given: Vector  ${}^{C}P$ 

Frame {C} is known relative to frame {B} -  ${}^{B}_{C}T$ 

Frame {B} is known relative to frame {A} -  ${}^{A}_{B}T$ 

Calculate: Vector <sup>A</sup>P

$$^{B}P=^{B}_{C}T^{C}P$$

$$^{A}P=^{A}_{B}T^{B}P$$

$$^{A}P=^{A}_{B}T^{B}_{C}T^{C}P$$



# Transformation Arithmetic – Inverted Transformation

Given: Description of frame {B} relative to frame {A} -  ${}^{A}_{B}T$  ( ${}^{A}_{B}R$ ,  ${}^{A}P_{BORG}$ )

Calculate: Description of frame {A} relative to frame {B} -

Homogeneous Transform  ${}^{B}_{A}T$   $({}^{B}_{A}R, {}^{B}P_{AORG})$ 



## Inverted Transformation Example

Given: Description of frame {B} relative to frame {A} -  ${}^{A}_{B}T$  ( ${}^{A}_{B}R$ ,  ${}^{A}P_{BORG}$ )

Frame {B} is rotated relative to frame {A} about  $\hat{Z}$  by 30 degrees, and

translated 4 units in  $\hat{X}$ , and 3 units in  $\hat{Y}$ 

Calculate: Homogeneous Transform  ${}^{B}_{A}T$  ( ${}^{B}_{A}R, {}^{B}P_{AORG}$ )

### Inverted Transformation Example

## Operator – Transforming Vector

Transformation Operator - Operates on a a vector  ${}^AP_1$  and changes that vector to a new vector  ${}^BP_1$ , by means of a rotation by R and translation by Q

Note: The matrix of the transform operator T which rotates vectors by R and translation by Q, is the same as the transformation matrix which describes a frame rotated by R and translated by Q relative to the reference frame

# Homogeneous Transform - Summary of Interpretation

- As a general tool to represent a frame we have introduced the *homogeneous transformation*, a 4x4 matrix containing orientation and position information.
- Three interpretations of the homogeneous transformation:

### Transform Equations

Given:  ${}^{U}_{A}T$ ,  ${}^{A}_{D}T$ ,  ${}^{U}_{B}T$ ,  ${}^{C}_{D}T$ 

Calculate:  ${}_{C}^{B}T$ 



### Kinematics - Introduction

- Kinematics the science of motion which treat motions without regard to the forces that cause them
  - e.g. position, velocity, acceleration, higher derivatives of the position
- Kinematics of Manipulators All the geometrical and time based properties of the motion

## Central Topic

#### Problem

- Given: The manipulator geometrical parameters
- Specify: The position and orientation of manipulator

### Solution

 Coordinate system or "Frames" are attached to the manipulator and objects in the environment following the Denenvit-Hartenberg notation.



## DH parameters

- There are a large number of ways that homogeneous transforms can encode the kinematics of a manipulator
- We will sacrifice some of this flexibility for a more systematic approach: DH (Denavit-Hartenberg) parameters.
- DH parameters is a standard for describing a series of transforms for arbitrary mechanisms.





### Forward kinematics: DH parameters

These four DH parameters,

$$(a_i \quad \alpha_i \quad d_i \quad \theta_i)$$

represent the following homogeneous matrix:

$$T = \begin{pmatrix} c_{\theta_i} & -s_{\theta_i} & 0 & 0 \\ s_{\theta_i} & c_{\theta_i} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

First, translate by  $d_i$  along z axis and rotate by  $\theta_i$  about z axis

Then, translate by  $a_i$  along x axis and rotate by  $a_i$  about x axis

### Forward kinematics: DH parameters

$$T = \begin{pmatrix} c_{\theta_i} & -s_{\theta_i} & 0 & 0 \\ s_{\theta_i} & c_{\theta_i} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} c_{\theta_i} & -s_{\theta_i}c_{\alpha_i} & s_{\theta_i}s_{\alpha_i} & a_ic_{\theta_i} \\ s_{\theta_i} & c_{\theta_i}c_{\alpha_i} & -c_{\theta_i}s_{\alpha_i} & a_is_{\theta_i} \\ 0 & s_{\alpha_i} & c_{\alpha_i} & d_i \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

### Forward kinematics: DH parameters

Four DH parameters:  $\begin{pmatrix} a_i & \alpha_i & d_i & \theta_i \end{pmatrix}$ 

$$T = T_{rot(z,\theta_i)} T_{trans(z,d_i)} T_{rot(x,\alpha_i)} T_{trans(x,a_i)}$$

$$0 \hat{\mathbf{v}}$$







Then, translate by  $a_i$  along x axis and rotate by  $a_i$  about x axis

## Joint/Link Description

 Lower pair - The connection between a pair of bodies when the relative motion is characterize by two surfaces sliding over one another.

Mechanical Design Constraints



1 DOF Joint Revolute Joint Prismatic Joint

 Link - A rigid body which defines the relationship between two neighboring joint axes of the manipulator



## Link Parameters (Denevit-Hartenberg) – Length & Twist)

- Joint Axis A line in space (or a vector direction) about which link i rotates relative to link i-1
- Link Length a<sub>i-1</sub>
  - The distance between axis *i* and axis *i-1*

#### **Notes:**

- Expanding cylinder analogy
- Distance
  - Parallel axes → ∞
  - Non-Parallel axes → 1
- Sign  $\rightarrow a_{i-1} \ge 0$
- Link Twist  $\alpha_{i-1}$ 
  - The angle measured from axis *i-1* to axis *i*
- **Note**: Sign  $\alpha_{i-1}$  by right hand rule



## Link Parameters - Example



## Joint Variables (Denevit-Hartenberg) – Angle & Offset

### Link Offset – d<sub>i</sub>

- The signed distance measured along the axis of joint i from the point where a<sub>i-1</sub> intersects the axis to the point where a<sub>i</sub> intersects the axis
  - The link offset d<sub>i</sub> is variable if joint i is prismatic
  - Sign of d<sub>i</sub>

### Joint Angle – θ<sub>i</sub>

 The signed angle made between an extension of a<sub>i-1</sub> and a<sub>i</sub> measured about the the axis of the joint i

### Note:

- The joint angle  $\theta_i$  is variable if the joint i is revolute
- Sign θ<sub>i</sub> → Right hand rule



## Link Parameters - Example





Link offset  $d_i = 2.5in$ 

# Joint/Link Parameters & Values – First and last links in chain

| $\begin{cases} a_1 \to a_{n-1} \\ a_0 = a_n = 0 \end{cases}$                     | See Definition<br>Convention |
|----------------------------------------------------------------------------------|------------------------------|
| $\begin{cases} \alpha_1 \to \alpha_{n-1} \\ \alpha_0 = \alpha_n = 0 \end{cases}$ | See Definition<br>Convention |
| $\begin{cases} d_2 \to d_{n-1} \\ \theta_2 \to \theta_{n-1} \end{cases}$         | See Definition               |
| Joint 1 - Revolute Joint $\begin{cases} \theta_1 = 0 \\ d_1 = 0 \end{cases}$     | Arbitrary<br>Convention      |
| Joint 1 - Prismatic Joint $\begin{cases} \theta_1 = 0 \\ d_1 = 0 \end{cases}$    | Convention<br>Arbitrary      |

## Affixing Frames to Links – Intermediate Links in the Chain

### Origin of Frame {i} –

The origin of frame {i} is located where the a<sub>i</sub> perpendicular intersects the joint i axis

#### Z Axis -

- The  $Z_i$  axis of frame  $\{i\}$  is coincident with the joint axis I

#### X Axis -

- The  $X_i$  axis points along the distance  $\mathbf{a_i}$  in the direction from joint  $\mathbf{i}$  to joint  $\mathbf{i+1}$ 

#### Note:

- For  $\mathbf{a_i} = 0$ ,  $\hat{X_i}$  is normal to the plane of  $\hat{Z_i}$  and  $\hat{Z_{i+1}}$
- The link twist angle  $\alpha_i$  is measured in a right hand sense about  $\hat{X}$ :

#### Y Axis-

The Y<sub>i</sub> axis completes frame {i} following the right hand rule



# Affixing Frames to Links – First & Last Links in the Chain

- Frame {0} The frame attached to the base of the robot or link 0 called frame {0} This frame does not move and for the problem of arm kinematics can be considered as the reference frame.
- Frame {0} coincides with Frame {1}  $\begin{cases} \alpha_0 = 0 \\ a_0 = 0 \end{cases}$  Joint 1 Revolute Joint  $\begin{cases} \theta_1 = 0 & \text{Arbitrary} \\ d_1 = 0 & \text{Convention} \end{cases}$  Joint 1 Prismatic Joint  $\begin{cases} \theta_1 = 0 & \text{Convention} \\ d_1 = 0 & \text{Arbitrary} \end{cases}$

# Link Frame Attachment Procedure - Summary

- Identify the joint axes and imagine (or draw) infinite lines along them.
   For step 2 through step 5 below, consider two of these neighboring lines (at axes *i* and *i+1*)
- 2. Identify the common perpendicular between them, or point of intersection. At the point of intersection, or at the point where the common perpendicular meets the *i* th axis, assign the link frame origin.
- 3. Assign the  $\hat{Z}_i$  axis pointing along the i th joint axis.
- 4. Assign the  $\hat{X}_i$  axis pointing along the common perpendicular, or if the axes intersect, assign  $\hat{X}_i$  to be normal to the plane containing the two axes
- 5. Assign the  $\hat{Y}_i$  axis to the complete a right hand coordinate system.
- 6. Assign  $\{0\}$  to match  $\{1\}$  when the first joint veritable is zero. For  $\{N\}$ , choose an origin location and  $\hat{X}_N$  direction freely, but generally so as to cause as many linkage parameters as possible to be zero

## DH Parameters - Summary

 If the link frame have been attached to the links according to our convention, the following definitions of the DH parameters are valid:

```
a_i - The distance from \hat{Z}_i to \hat{Z}_{i+1} measured along \hat{X}_i \alpha_i - The angle between \hat{Z}_i and \hat{Z}_{i+1} measured about \hat{X}_i d_i - The distance from \hat{X}_{i-1} to \hat{X}_i measured along \hat{Z}_i
```

 $\theta_{i}$  - The angle between  $\hat{X}_{i\text{--}1}$  and  $\hat{X}_{i}$  measured about  $\hat{Z}_{i}$ 

### Note:

 $-a_i \ge 0$ , and  $\alpha_i$ ,  $d_i$ , and  $\theta_i$  are signed quantities