Name:		

Rensselaer Polytechnic Institute Department of Electrical, Computer, and Systems Engineering ECSE 4530: Digital Signal Processing, Fall 2017

Exam #2. Closed book, one one-sided page of notes. November 16, 2017, 10:00-11:20 AM

Show all work for full credit.

- No calculators or other electronic devices are allowed.
- Tables are provided with the exam.
- Reduce expressions involving exponentials, sines, and cosines as much as possible.
- If the sinc function is needed, use the definition $\operatorname{sinc}(x) = \frac{\sin x}{x}$.
- When in doubt, show more work!

Crib sheet	5
1	21
2	14
3	14
4	12
5	18
6	16
Total	100

	(21 points.) Indicate whether each of the following statements is true (T) or false (F). No explanation is needed.
<u> </u>	a. Let $H(\omega)$ be the Discrete-time Fourier Transform (DTFT) of a 10-point impulse response $h[n]$ of a Linear Time-Invariant (LTI) system. Then $H(-\frac{\pi}{2}) = H(\frac{3\pi}{2})$ must hold.
 _	b. Let $\hat{H}[k]$, $k=1,,10$ denote the 10-point Discrete Fourier Transform (DFT) of $h[n]$ in (a). Then $\hat{H}[3]=H(\frac{2\pi}{5})$, with $H(\omega)$ defined in (a).
_	c. In order to use radix-2 Fast Fourier Transform (FFT) to compute the DFT of a length-600 signal, we need to zero pad the signal to a length of 1024.
_	d. The process of downsampling can never introduce aliasing.
_	e. The process of upsampling can never introduce aliasing.
 _	f. The FIR filter $h[n] = [-5,3,0,3,5]$ has linear phase.
 _	g. The downsampler $\downarrow 2$ is a linear time-invariant system.

- 2. (14 points.) Let $x[n] = 3\delta[n] + \delta[n-1] 3\delta[n-2]$.
 - (a) (8 points.) What is the DTFT $X(\omega)$ of x[n]? Sample the DTFT $X(\omega)$ at two frequencies $k\pi$ with k=0,1, what is the resulting signal $\hat{X}[k]$, k=0,1?
 - (b) (6 points.) Take the 2-point Inverse DFT of $\hat{X}[k]$, k = 0, 1, what is the resulting signal y[n]?

3. (14 points.) Let $x_1[n]$ and $x_2[n]$ be two N-point sequences. Let $X_1[k]$ and $X_2[k]$ (k = 0, ..., N - 1) denote their N-point DFTs, respectively. $x[n] = x_1[n]x_2[n]$. Let X[k] (k = 0, ..., N - 1) be the N-point DFT of x[n]. Show that X[k] equals the circular convolution of $X_1[k]$ and $X_2[k]$ divided by N, i.e.,

$$X[k] = \frac{1}{N} X_1[k] \circledast X_2[k]$$
 (1)

4. (12 points.) Describe the steps of computing a 15-point DFT using Cooley-Tukey FFT. Please also write down the matrix representation of the input, the matrix representation of the output, and the matrix representation of the twiddle factors.

5. (18 points.)

The Continuous-time Fourier Transform $X_c(\omega)$ of a continuous-time signal $x_c(t)$ is shown in Figure 1. $x_c(t)$ sampled with a sampling period of $T_s = 1/300$ seconds. The resulting discrete-time signal $x_d[n]$ passes an expander 2 that inserts a zero after each of the original sequence values in $x_d[n]$. For example, 1,2,3,... becomes 1,0,2,0,3,0,... The resulting signal $x_d[n]$ passes a discrete-system with frequency response $x_d[n]$ through

$$y_d[n] = z_d[n-1] + z_d[n] + z_d[n+1].$$

 $y_d[n]$ is converted to a continuous-time signal $y_c(t)$ with sampling period T_s . The system diagram is shown in Figure 2.

Figure 1: CTFT of $x_c(t)$

- (a) (6 points.) Draw the frequency response of $x_d[n]$ and $z_d[n]$.
- (b) (4 points.) What is $H(\omega)$?
- (c) (8 points.) Let $Y_c(\omega)$ be the Continuous-time Fourier Transform of $Y_c(t)$. What is the value of $Y_c(50\pi)$?

Figure 2: System diagram

- 6. 16 Let $x_c(t)$ be a real-valued continuous-time signal with the highest frequency at 400π radians/second. Let $y_c(t)$ be a time delayed version of $x_c(t)$, $y_c(t) = x_c(t \frac{1}{1000})$.
 - (a) (3 points.) If $x[n] = x_c(\frac{n}{500})$. Is it theoretically possible to recover $x_c(t)$ from x[n]? Justify your answer.
 - (b) (3 points.) If $y[n] = y_c(\frac{n}{500})$. Is it theoretically possible to recover $y_c(t)$ from y[n]? Justify your answer.
 - (c) (10 points.) We would like to obtain y[n] from x[n]. Is it possible to achieve that using the system in Figure 3? If so, find the frequency response $H(\omega)$. If not, explain why.
 - Hint 1: First establish the relationship between the DTFTs of x[n] and y[n].
 - Hint 2: Can $H(\omega)$ be a low-pass filter?

Figure 3: System diagram

Feedback and suggestions for the class?