The Two Most Important Numbers: Zero and One

R (Chandra) Chandrasekhar

2023-10-31 | 2023-11-01

The unique properties of the numbers zero and one make them mathematically interesting and indispensable. In this slow-paced stroll though the ideas streaming out of these two numbers, we uncover well-known as well as relatively obscure facts about them. It is hoped that in the process we may discover how they cement disparate areas of Mathematics.

Starting at the beginning

I thought I would skirt around the idea of the well-known sets of numbers, but found that each time I tried, I would have to sneak in furtively a paragraph here or a footnote there as explanation. So, I have decided to start at the beginning and work my way through the natural numbers, the integers, the rationals, etc., again using intuitively obvious justification rather than a purely mathematical approach.

Counting

Initially, a shepherd with five sheep used to count "one sheep, two sheep, three sheep, four sheep, and five sheep." But wait! Since he did not have the names for numbers—nor indeed the abstract concept of a number—he could have used either of two slightly different methods.

Naming sheep

He could have given *unique* names to each of his five sheep and developed enough familiarity with them to identify them by name. Then all he needed to do was to check that all his named sheep were home by sundown.

One-to-one correspondence

The later, and more likely, alternative was to use stones to correspond to sheep. He could have taken a leather bag and dropped a stone in it— one for each sheep that he owned. He did not need to learn counting. All he needed to do was to establish a one-to-one correspondence¹ between sheep and stone. As long as he had the right number of stones in his bag, he could account for each one of his sheep.

The Latin word for stone is calculus, and from the stone has come the whole science of calculation.

¹One-to-one correspondence is a simple but extremely powerful idea which guided Georg Cantor to develop his radical but consistent ideas about types of infinity.

Measurement

When we *count*, as with sheep, where do we start? We start with one. We do not start with zero, because we cannot point to any sheep or other object and say "zero".

Nevertheless, zero has fundamental importance when we start *measuring*. When the petrol tank in a car is empty, we can fill it up and measure the volume of petrol for which we have to pay.

When we count, we start with 1; when we measure, we start with 0.

Sets of numbers

Although Mathematics has rigorous foundations, at the very bottom, notions are not defined explicitly. One such notion is that of a *set*, which is loosely defined as a collection of objects that can either be enumerated or described clearly. The *sets of numbers* we will deal with have names, symbols, and definitions as shown below.

-	Sym-	
Name	bol	Definition
Natural numbers	N	{1,2,3,4,}
Integers	\mathbb{Z}	$\{3,-2,-1,0,1,2,3,\}$
Rational numbers	$\mathbb Q$	$\{x: x = \frac{p}{q} \text{ where } p, q \in \mathbb{Z} \text{ and } q \neq 0\}$
Irrational numbers		Numbers which are not rational
Real numbers	\mathbb{R}	The rationals and irrationals
Complex numbers	\mathbb{C}	$\{a+ib:a,b\in\mathbb{R} \text{ and } i^2=-1\}$

While it is premature to talk about these sets and their peculiarities just now, it is worth making some points about them.

- 1. The symbols in the second column are called blackboard bold letters.
- 2. A set is traditionally enclosed in a pair of *braces*: {}.
- 3. There is no agreement on whether or not to include zero as a member of \mathbb{N} . I have chosen not to because I consider \mathbb{N} the set of *counting numbers*.
- 4. Zero is neither positive nor negative. It is itself and, as a set, is often denoted {0}.
- 5. The *integers* are named \mathbb{Z} after the German word *Zahlen* which stands for "numbers" (singular *Zahl*). The integers include positive and negative whole numbers as well as zero.
- 6. The *rational numbers* are so named because they are really *ratios* of whole numbers with the proviso that the denominator cannot be zero. More about this in a later section. The symbol \mathbb{Q} is used because it denotes *quotient* the result of *division*.
- 7. There is no symbol for the irrationals, which are simply defined as numbers which are not rational. In fact, the set of irrationals may shown using set notation only indirectly as $\mathbb{R} \setminus \mathbb{Q}$, which means the set of real numbers, excluding the rational numbers.
- 8. The *complex* numbers incorporate a non-real entity called *i* the *imaginary unit*, which is defined as $i^2 = -1$. Since every real number when squared is greater than or equal to zero, this *i* is not a real number, and therefore demands its own symbol, arithmetic, and set, \mathbb{C} .

The Four arithmetic operations

Each of the four basic arithmetic operations—addition, multiplication, subtraction, division—are binary operations and may only be performed between *two* numbers. The ability to add multiple numbers—as in determining the total sum to be paid at the checkout counter while shopping—is made possible by the commutativity and associativity of addition.

Commutativity and Associativity

Let us demystify this. Lets us add three numbers, 2, 3, and 5. It is common to write this as 2 + 3 + 5 = 10. The sum 10 is correct, but it is derived from the commutativity and associativity of addition.

In commutativity, we have

$$2 + 3 = 3 + 2$$
.

The order of the two operands may be interchanged.

In associativity, we have *three operands*. We use parentheses to denote the operation we perform first. It does not matter which pair we add first.

$$(2+3)+5=2+(3+5).$$

Together, these two operations allow us to be casual about how we order the numbers when we add many of them.

Talking about commutativity and associativity might seem like overkill for addition. But, identifying these properties is a useful insight, as the more sophisticated mathematical objects we will encounter later may not obey either or both properties.²

Addition

If we start with zero and add one to it, we get one. If we add one to that we get two. In this fashion, all the natural numbers may be generated successively by adding one. The *next number* is called the *successor*. Even if we did not start with zero, but started with one, instead, we can still generate the entire set \mathbb{N} by adding one successively.

Zero is the *additive identity*, meaning that if we add zero to any number, the result is the original number again. Henceforth, let us denote an arbitrary real number by a, i.e., $a \in \mathbb{R}$. Then,

$$a + 0 = a$$
.

This is also true of other mathematical objects. The zero of the complex numbers is 0 + i(0) = 0 as well. And adding it to any complex number also gives us the original complex number.

²For a start, subtraction is not commutative: $3 - 2 \neq 2 - 3$.

A matrix is mathematical object which I facetiously call *numbers in teabags*. They may come in different shapes and sizes. Let us consider a general 2×2 square matrix like $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ which has two horizontal rows and two vertical columns. The additive inverse for this matrix is a 2×2 square matrix all of whose entries are zero:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Polynomials are expressions like $x^2 + 3x + 1$ where x is some real variable. The zero polynomial is simply the number zero, and adding it to any polynomial also gives us a zero.

Multiplication as repeated addition

Subtraction

Division as repeated subtraction

Why is division by zero not allowed?

Fundamental properties of zero

Is not a factor of any number other than itself.

Cannot be the denominator of any rational number.

Is the additive identity.

Zeroes in control theory

Zeroes of polynomials

Laplace transforms from ODE to polynomials

Galois: polynomial roots

Poles and zeroes

Division by zero functions becoming unbounded at points where division by zero is attempted

Renormaliztion theory: Quantum and Relativity: problem oc functions "blowing up" that preclude a conclusive theoer

Stability and the s-plane. The importance of zero. s = sigma + j omega exponential and the value $a \land 0 = 1$ etc.

Fundamental properties of ones

Generates successor numbers and therefore the entire sets N and Z.

Multiplicative inverse.

Control systems and the number (-1, 0)

Radius of convergence and the change in powers of as number GP

Curves of x^n for x < 1 and $n \rightarrow$ infinity

Binary logic and numbers

The shy one

The number one is often implicit in mathematical notation. While we may write 2x to denote $2 \times x$, or two multiplied by x, we *do not* write 1x, even if it is literally correct, because of convention. In instances like this, the number one is implicit, and assumed to be understood by those who know. If you happen to be one of those *not* in the know, here's your chance to join the other side.

When we write a fraction as $\frac{3}{4}$ we mean the decimal 0.75 and matters are clear. But all whole numbers are also fractions with the denominator being 1. So, the fraction $\frac{3}{1}$ is rarely written in that form, even if syntactically correct, because usage dictates that whole numbers are written to stand on their own, as 3, in this case. Again, the 1 in the denominator is assumed to be unobtrusively present: out of sight but *not* out of mind.

When we write 4^2 , spoken out as "four squared" we mean the number obtained by multiplying 4 by itself. This nomenclature arose because, if 4 was associated with the *length* of, say, a piece of string, the number "four squared" was used to denote the *area* of a square that had a side of length 4. So, $4^2 = 4 \times 4 = 16$.

Likewise, the expression 7^3 or "seven cubed" denoted the volume of a cube of side 7. Beyond the third dimension, this naming scheme faded out, because we cannot percieve dimensions higher than three.

Therefore, 6^4 is spoken as "six raised to the fourth (power)" or "six to the four". In such statements, the number 6 is called the *base* and the number 4 is called the *exponent*.

Following this logic, we might assert that $5^1 = 5$ and that is perfectly correct. But again, convention intrudes to say that we write it simply as 5. *Any number raised to the power of* 1 *equals itself.*

The notation making 1 implicit in these scenarios reduces clutter and simplifies notation. The absence of the implicit 1 might trouble the heart of the sincere young mathematician, but familiarity with these conventions will make for comfort in using them.

The additive and multiplicative identities

When mathematicians in the nineteenth century contemplated the then extant mathematical systems, they recognized certain commonalities. Whether it was arithmetic or geometry, or some other branch of mathematics, they were able to distil certain underlying principles behind the common practices of mathematics. By systematizing and classifying what they observed, they were able to *invent* names for the *classes of objects* they discerned, along with their properties. Thus was born abstract algebra. The ideas of the additive and multiplicative identity were born from this exercise in classification.

The numbers we use for counting, starting from 1, and never ending, are called the *natural numbers*. The collection or *set* of these numbers is denoted \mathbb{N} . We can add and multiply these numbers.

For example, we have seen that multiplying 5 by 1 gives the original number 5. The number 1 is called the *multiplicative identity* because multiplying any natural number by 1 preserves the original number.

What do you think is the additive equivalent, the *additive identity*? We know that if we add 0 to any number, we get the original number again. So, 0 *preserves* the original number intact after addition. But is 0 in the set \mathbb{N} ? Not as we have defined it here.³ Nevertheless, we may posit that under appropriate conditions, the additive identity is 0.

Zero and one enjoy their coign of vantage because they are the additive and multiplicative identities respectively:

$$a + 0 = a$$

$$a \times 1 = a$$

where a is an arbitrary number, of the sort we are familiar with.⁴

Mathematics as a discipline tends to generalize and extend simple ideas to increasing levels of complexity, while at the same time maintaining consistency in definition and behaviour across these disparate domains.

It should come as no surprise that some objects called matrices⁵ (singular matrix) also have their additive and multiplicative identities, where applicable. We will consider an arbitrary square $matrix\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ having four elements, and called a 2 × 2 matrix. Then,

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \tag{1}$$

and $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is the multiplicative identity for matrix multiplication. 6

Likewise,

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 (2)

and
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
 is the additive identity for matrix addition.

Do you see how the seed ideas of the additive and multiplicative identities, sown far and wide, germinate into shoots that are surprisingly similar to the original ones. The numbers 0 and 1 do indeed rule the roost. Obviously, the identity matrices will change with the matrix sizes, but the principles remain the same.

³Some folks do include 0 in the set \mathbb{N} .

⁴This is an easy-to-read blog; so I will not belabour the reader with the finer points of different types of numbers, but will reserve them for a later blog.

⁵I facetiously call them numbers in teabags

⁶The rules of matrix multiplication are a little involved and will not detain us here. The interested reader is referred to another blog of mine for details.

Zero, one, and repeated addition

All natural numbers may be generated by zero, one, and repeated addition:

$$0 + 1 = 1 \tag{3}$$

$$1+1=2 \tag{4}$$

The *next natural number* is obtained by adding in the sequence is generated by adding 1 to the current number._ By repeating this process, we can generate any desired natural number.

Multiplication

Division

Why we cannot divide by zero

Exponentiation

Exponentiation may also be called *raising (something) to a power*. It is a short form for repeated multiplication by the *same* number. For example, if we multiply 5 by itself three times, we write it so:

$$5 \times 5 \times 5 = 5^{1} \times 5^{1} \times 5^{1} = 5^{(1+1+1)} = 5^{3} = 125$$
 (5)

The number 5 is called the *base* and the power 3 is called the *exponent*. As noted before, $5^1 = 5$ and the exponent 1 is omitted.

The reciprocal of an arbitrary non-zero real number a is $\frac{1}{a}$. The product of the two is 1. Written with an exponent,

$$\frac{1}{a} = a^{-1}$$
.

Continuing with the number 5 in our example, its reciprocal is $\frac{1}{5} = 5^{-1}$. What do we get if we multiply 5 by its reciprocal? We are ready know the answer to be 1. Let us do the multiplication using exponents:

$$5 \times \frac{1}{5} = 1 = 5^1 \times 5^{-1} = 5^{1+(-1)} = 5^0.$$
 (6)

The astounding conclusion from Equation (6) is that a base raised to the exponent zero is 1. By extension, any integer raised to the to the zeroth power equals 1. This remarkable conclusion applies to any real number as well: something that will be understood better after we encounter logarithms in this series of blogs or elsewhere. The consequence is that the logarithm of 1 to any base b is 0:

$$\log_b 1 = 0. (7)$$

Equation (7) is yet another memorable equation linking 1 and 0. When the domain of mathematics expands to take on new numbers, new objects, and new notations, the need for consistency with the existing body of mathematics gives us pearls such as equation Equation (7).

Application of index to polynomials; x is x^1 and 2 is $2 \times x^0$

The interval [0,1]

Sequences

An ordered procession of numbers is called sequence [1,2]. Repetitions are allowed, but the order matters. The natural numbers form the sequence (1, 2, 3, 4, 5, ...). Note that the elements of the sequence are enclosed in parentheses, (). There is an entire website devoted to sequences, called the The On-Line Encyclopedia of Integer Sequences® (OEIS®).

Fibonacci sequence

Binomial sequence Pascals triangle

Series

A series is the (progressive) sum of an infinite sequence [3,4].

Pascal's triangle and the Binomial theorem and their origin in the number 1.

Arithmetic series (progressions)

Geometric series (progressions)

Primes

Is one the first prime? No!

Stuff

arose out of the solutions to polynomial equations that did not have roots in the real number system. To put it in a picture, the graphs of some polynomials did not intersect the x-axis as many times as they should have.

Acknowledgements

Feedback

Please email me your comments and corrections.

A PDF version of this article is available for download here:

https://swanlotus.netlify.app/blogs/the-two-most-important-numbers.pdf

References

- [1] Wikipedia contributors. 2023. Sequence Wikipedia, the free encyclopedia. Retrieved 3 November 2023 from https://en.wikipedia.org/w/index.php?title=Sequence&oldid=1177801 065
- [2] Eric W Weisstein. Sequence. From MathWorld–A Wolfram Web Resource. Retrieved 3 November 2023 from https://mathworld.wolfram.com/Sequence.html

 $^{^{7}}$ The general definition replaces *numbers* with *mathematical objects* but the former will suffice for our limited purpose here.

- [3] Wikipedia contributors. 2023. Series (mathematics) Wikipedia, The Free Encyclopedia. Retrieved 3 November 2023 from https://en.wikipedia.org/w/index.php?title=Series_(mathematics)&oldid=1174621451
- [4] Eric W. Weisstein. Series. From MathWorld–a wolfram web resource. Retrieved 3 November 2023 from https://mathworld.wolfram.com/Series.html