Claims

1. A process for the manufacture of compounds represented by the following formula III

wherein R3 is C2-5-alkanoyloxy,

10 by the reaction of

a) a compound represented by the following formula I

$$R^3$$
 O
 R^1
 E/Z
 E/Z

wherein R^1 and R^2 are independently from each other H or C_{1-5} -alkyl, with the proviso that at least one of R^1 and R^2 is not H, and wherein R^3 is as defined above, with

b) a compound represented by the following formula II

24

wherein R4 is H or CH2-R5,

wherein R⁵ is formyloxy, C₂₋₅-alkanoyloxy, benzoyloxy, C₁₋₅-alkoxy or OSiR⁶R⁷R⁸, wherein R⁶, R⁷ and R⁸ are independently from each other C₁₋₆-alkyl or phenyl,

in the presence of a cross-metathesis catalyst.

- The process as claimed in claim 1, wherein the cross-metathesis catalyst is a ruthe-2. 10 nium compound used in homogeneous catalysis.
- The process as claimed in claim 2, wherein the ruthenium compound is a ruthenium 3. metal carbene complex possessing (a) ruthenium metal center(s), having an electron count of 16 and being penta-coordinated or a ruthenium metal carbene complex possessing (a) ruthenium metal center(s), having an electron count of 18 and being 15 hexa-coordinated, preferably a ruthenium metal carbene complex possessing a ruthenium metal center, having an electron count of 16 and being penta-coordinated.
- The process as claimed in claim 2, wherein the ruthenium compound is one of the 4. complexes represented by the following formulae VIIa, VIIb and VIIc: 20

$$CI \longrightarrow \begin{bmatrix} L \\ Ru \longrightarrow A \\ CI & CI & Ru \longrightarrow A \\ CI & L^{2} & L^{4} \end{bmatrix}$$

$$VIIa \qquad VIIb$$

$$L = \begin{bmatrix} R^{9} - N & G \\ N - R^{9} & N \end{bmatrix}$$

wherein \mathbb{R}^9 is an optionally single or multiple $C_{1\text{-}5}$ -alkylated and/or $C_{1\text{-}5}$ -alkoxylated phenyl,

5

G is ethane-1,2-diyl, ethylene-1,2-diyl, cyclohexane-1,2-diyl or 1,2-diphenylethane-1,2-diyl,

L1 is PR10R11R12,

wherein R^{10} , R^{11} and R^{12} are independently from each other C_{1-8} -alkyl, phenyl or tolyl,

A is CH₂, C(H)aryl, C(H)R¹³, C=C(R¹³)₂, C=C(H)Si(R¹⁴)₃, C(H)-C(H)=C(R¹³)₂, C=C(H)(phenyl), C(H)-C(H)=C(phenyl)₂ or C=C=C(phenyl)₂,

wherein "aryl" is an optionally single or multiple C_{1-5} -alkylated and/or halogenated phenyl, R^{13} is C_{1-4} -alkyl, R^{14} is C_{1-6} -alkyl or phenyl,

L² is L or L¹,

L³ and L⁴ are independently from each other pyridyl or 3-halopyridyl, wherein halo is Br or Cl,

 R^{15} and R^{16} are both H or form together a fused benzene ring, and R^{17} is C_{1-5} -alkoxy.

25 5. The process as claimed in claim 2, wherein the ruthenium compound is represented by the following formula VIII

10

25

$$H_3C$$
 CH_3
 H_3C
 CH_3
 CH_3

- The process as claimed in any of the proceeding claims, wherein the reaction is car-6. ried out in an aprotic organic solvent.
- The process as claimed in claim 6, wherein the aprotic organic solvent is a dialkyl 7. ether R¹⁸-O-R¹⁹, tetrahydrofuran, tetrahydropyran, 1,4-dioxane, methylene chloride, chloroform, cumene, an optionally once, twice or thrice methylated arylene, or a mixture thereof,
- wherein R^{18} and R^{19} are independently from each other linear C_{1-4} -alkyl or branched C₃₋₈-alkyl.
- The process as claimed in claim 7, wherein the aprotic organic solvent is tetrahydro-8. furan, methylene chloride, chloroform, toluene or a mixture thereof, preferably tolu-15 ene.
- The process as claimed in claims 6 to 8, wherein from about 3 ml to about 15 ml, 9. preferably from about 4 ml to about 10 ml, more preferably from about 4.5 ml to about 8 ml of the aprotic organic solvent are used per mmol of compound a) or b), 20 whichever is used in the lesser amount.
 - The process as claimed in claims 1 to 5, wherein the reaction is carried out essentially 10. in the absence of an additional solvent.
 - The process as claimed in claim 10, wherein the reaction is carried out in vacuo, pref-11. erably at a pressure below 100 mbar.
- The process as claimed in any one of the proceeding claims, wherein the relative 12. amount of the cross-metathesis catalyst to the amount of compound a) or b), which-30

ever is used in the lesser amount, is from about 0.0001 mol% to about 20 mol%, preferably from about 1.0 mol% to about 10 mol%, more preferably from about 2 to about 5 mol%.

- 5 13. The process according to any one of the proceeding claims, wherein the molar ratio of compound a) to compound b) present in the reaction mixture is from about 1:10 to about 10:1, preferably from about 1:5 to about 5:1, more preferably from about 1:3 to about 1:2.5.
- 10 14. The process as claimed in any one of the proceeding claims wherein the reaction is carried out at temperatures from about 10°C to about 120°C, preferably from about 30°C to about 100°C, especially from about 40°C to about 85°C.
- 15. A process for the manufacture of α -tocopheryl alkanoates represented by the following formula V

$$R^3$$
 V

comprising the following steps:

i) reacting of a compound represented by the following formula I

$$R^3$$
 O
 R^1
 E/Z
 I

with a compound represented by the following formula II

10

15

to a compound represented by the following formula III

in the presence of a cross-metathesis catalyst,

ii) subjecting the compound represented by the formula III and obtained in step i) to a rearrangement to the compound represented by the following formula IV, and

iii) subjecting the compound represented by the formula IV and obtained in step ii) to a cyclization to the compound represented by the formula V,

wherein R¹, R², R³ and R⁴ are as defined in claim 1.

20 16. Compounds of the formula III

wherein R^3 is C_{2-5} -alkanoyloxy.

5 17. Compounds of the formula IX

wherein R^{20} is C_{3-5} -alkanoyloxy.

10

(...

18. Compounds of the formula IV

wherein R^3 is C_{2-5} -alkanoyloxy.

19. Compounds of the formula X

wherein R^{20} is C_{3-5} -alkanoyloxy.