Fall 2016, MATH 215 Calculus III, Exam 1

10/13/2016, 6:10-7:40pm (90 minutes)

•	Your name:	

• Circle your section and write your Lab time:

Section_	<u>Time</u>	Professor	$\overline{ ext{GSI}}$	$\underline{\text{Lab Time}} \text{ (e.g. Th 10-11)}$
10	8–9	Divakar Viswanath	Trevor Hyde	
20	8–9	Howard Levinson	Rob Silversmith	
30	9–10	Divakar Viswanath	Qingtang Su	
40	10–11	Daniel Burns	Harry Richman	
50	11-12	Yongbin Ruan	Montek Singh Gill	
60	12-1	Yongbin Ruan	Harry Lee	
70	1-2	Alejandro Uribe	Emanuel Reinecke	
80	2-3	Sema Gunturkun	John Kilgore	
90	3-4	Sema Gunturkun	Michael Newman	

Instructions:

- This examination booklet contains 8 problems on 12 sheets of paper including the front cover. The last page is left blank for your own use. The second from last page contains a list of formulas.
- This is a 90-minute exam.
- This is a closed book exam. Electronic devices, calculators and note-cards are not allowed.
- Show your work and explain clearly.

Your scores:

Problem	Your score	Maximum score
1		10
2		10
3		10
4		10
5		10
6		10
7		10
8		10
Total		80

1	Consider	the planes	x + y + z = 1	1 and $r-$	$u + \gamma = 2$

- (a) (5 points) Recall that the angle between two planes is by definition equal to the angle between their normals. If θ is the angle between the two given planes, find $\cos \theta$.
- (b) (5 points) Find a plane that is orthogonal to the two given planes and which goes through the point (2,1,3).

(a): The angle is given by $\cos \theta =$

(b): The equation of the plane is _____

2.	(10 points) Consider $f(x,y) = x^2 + \frac{y^2}{4}$. Let P be the point with $(x,y) = (1,2)$. Find the gradient ∇f , the direction (unit vector) of fastest increase, the direction (unit vector) of fastest decrease, and the direction in which the function neither increases nor decreases at the point $P((x,y) = (1,2))$.					
	The gradient vector is					
	The direction of fastest increase is					
	The direction of fastest decrease is					
	The direction in which the function neither increases nor decreases is					

$$f(1,-1) =$$

$$\frac{\partial f}{\partial x}(1,-1) = \underline{\hspace{1cm}}$$

$$\frac{\partial f}{\partial y}(1,-1) = \underline{\hspace{1cm}}$$

4 (Consider	the	nlane	$r \perp$	2n	\perp	27	_	4

- (a) (5 points) Find the distance from the plane to the origin.
- (b) (5 points) Find the point on the sphere $x^2 + y^2 + z^2 = 1$ which is closest to the plane.

(a): the distance is_____

(b): the closest point is _____

5.	(10 points) The pressure P , volume V , and temperature T of one mole of an ideal gas satisfy $PV = RT$, where R is a constant. Suppose R is measured using $R = PV/T$.
	(a) (5 points) Find the differential dR .
	 (b) (5 points) I find the differential art. (b) (5 points) If the percentage errors in the measurement of P, V, and T are 1%, 2%, and 3%, respectively, find the maximum percentage error in R.
	dR =
	The maximum percentage error in R is
	The maximum percentage error in 16 is

6. Consider the surface $xyz = 1$ in \mathbb{R}^3 . Let P be the point $(x, y, z) = (2, 1, \frac{1}{2})$.						
(a) (5 points) Find the normal to the surface at the point P.(b) (5 points) Find the tangent plane to the surface at the point P.						
The normal vector is						
The tangent plane is						

(a) ((7 points) Find the point of intersection of the two lines.
	(3 points) Find the parametric equation of the unknown line.
(а). П	The point of intergration is
(a). 1	The point of intersection is

8. In this problem, take $g = 10 \mathrm{m/s^2}$. A projectile is fired at an angle α , $0 < \alpha < 90^o$ on level ground at a speed of 120 m/s. Let $\mathbf{r}(t)$ be its position as a function of time.	ıd
(a) (3 points) Take $\mathbf{r}(0) = (0,0)$, $\mathbf{r}'(0) = 120(\cos \alpha, \sin \alpha)$, and $\mathbf{r}''(t) = (0,-g)$, and calculate $\mathbf{r}(t)$ Wind resistance is ignored.).
(b) (3 points) Express the range of the projectile as a function of α .	
(c) (4 points) If the range is 720 m, find the two possible values of α . You may use the trig identi $\sin 2\alpha = 2 \sin \alpha \cos \alpha$.	Бу
(a) The position $\mathbf{r}(t)$ is given by	_
(L) The new sector	
(b) The range is	_
(c) The two values of α are	

Formula sheet: You may find some of the following formulas useful

•
$$\sin^2(x) + \cos^2(x) = 1$$
, $\cos(2x) = \cos^2(x) - \sin^2(x)$, $\sin(2x) = 2\sin(x)\cos(x)$

•
$$\sin^2(x) = \frac{1 - \cos(2x)}{2}$$
, $\cos^2(x) = \frac{1 + \cos(2x)}{2}$

•
$$\cos(\pi/3) = 1/2$$
, $\sin(\pi/3) = \sqrt{3}/2$, $\cos(\pi/4) = \sqrt{2}/2$, $\sin(\pi/4) = \sqrt{2}/2$, $\cos(\pi/6) = \sqrt{3}/2$, $\sin(\pi/6) = 1/2$, $\cos(0) = 1$, $\sin(0) = 0$.

•
$$\frac{d}{dx}\sin(x) = \cos(x)$$
, $\frac{d}{dx}\cos(x) = -\sin(x)$.

$$\bullet \ \mathrm{proj}_{\mathbf{b}} \mathbf{a} = \textstyle \left(\frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{b}|^2} \right) \! \mathbf{b} \,, \qquad \mathrm{comp}_{\mathbf{b}} \mathbf{a} = \frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{b}|}$$

$$\bullet \ \langle a, b, c \rangle \times \langle d, e, f \rangle = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a & b & c \\ d & e & f \end{vmatrix} = \langle bf - ce, -(af - cd), ae - bd \rangle.$$

•
$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$
, $\mathbf{a} \times (\alpha \mathbf{b}) = (\alpha \mathbf{a}) \times \mathbf{b} = \alpha (\mathbf{a} \times \mathbf{b})$.

- Area of the parallelogram determined by the vectors $\mathbf{v_1} = \langle a, b, c \rangle$ and $\mathbf{v_2} = \langle d, e, f \rangle$ is $|\mathbf{v_1} \times \mathbf{v_2}|$
- Volume of the parallelepiped determined by the vectors $\mathbf{v_1} = \langle a, b, c \rangle$, $\mathbf{v_2} = \langle d, e, f \rangle$, and $\mathbf{v_3} = \langle g, h, i \rangle$ is $|\mathbf{v_1} \cdot (\mathbf{v_2} \times \mathbf{v_3})| = \text{ absolute value of } \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$
- Distance from a point (a, b, c) to a plane Ax + By + Cz + D = 0 is $\frac{|Aa + Bb + Cc + D|}{\sqrt{A^2 + B^2 + C^2}}$.
- Arc length function: Length of curve from $\mathbf{r}(\alpha) = (x(\alpha), y(\alpha), z(\alpha))$ to $\mathbf{r}(t) = (x(t), y(t), z(t))$ is $\int_{\alpha}^{t} |\mathbf{r}'(u)| du$.

•
$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}, \quad \mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|}$$

- The circumference of a circle of radius a is $2\pi a$.
- The area of a disk of radius a is πa^2 .
- The volume of a right circular cylinder of radius a and height h is $\pi a^2 h$.

Scratch paper.