S^1 の基本群

1

定義 1.1. (道の連結). $f,g:[0,1] \to X$ に対して

2

設定 2.1.

 $c_n: [0,1] \to S^1; t \mapsto (\cos 2\pi nt, \sin 2\pi nt)$ $\pi: \mathbb{R} \to S^1; s \mapsto (\cos 2\pi s, \sin 2\pi s)$

 $\tilde{c}_n:[0,1]\to\mathbb{R};t\mapsto nt$

命題 **2.2.** $\pi_1(S^1)$ は $c(t) \coloneqq (\cos 2\pi t, \sin 2\pi s)$ のホモトピー類が生成する無限巡回群と同型である.

証明. step:

$$[c_1]^n = [c_n]$$

(::) 明らかである.

step: 任意の $l \in \pi(S^1,(1,0))$ に対して, $n \in \mathbb{Z}$ で $l \simeq c_n$ を満たすものが存在する. 従って

$$[l] = [c_n]$$

が成り立つ.

(::) $l:[0,1]\to S^1$ を (1,0) を基点とするループとする. $\mathbb R$ へのリフト $\tilde l:[0,1]\to \mathbb R$ がとれる. ループ l は時刻 1 で基点に戻ってくるので、その持ち上げについて $\tilde l_1\in \mathbb Z$ である. $\tilde c_{\tilde l_1}$ を考え、

$$(1-t)\tilde{l}+tc_{\tilde{l}_1}$$

を考えると、これは \tilde{l} から $\tilde{c}_{\tilde{i}}$ へのホモトピーである.

step: $(\tilde{l}$ は適当な c_n とホモトピックであるが, 別の c_m とホモトピックであるかもしれない.)

$$f \simeq c_n, f \simeq c_m \Rightarrow n = m.$$

(::) c_n から c_m へのホモトピーを f_t とする. $\mathbb R$ へのリフト $\tilde f:[0,1]\to\mathbb R$ がとれる. $\tilde f_t(1)$ は t によらず同じである. $\tilde f_0(1)=n, \tilde f_1(1)=m$ であるので, n=m が成り立つ.