

**(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION
EN MATIÈRE DE BREVETS (PCT)**

**(19) Organisation Mondiale de la Propriété
Intellectuelle**
Bureau international

(43) Date de la publication internationale
23 janvier 2003 (23.01.2003)

PCT

(10) Numéro de publication internationale
WO 03/006497 A2

(51) Classification internationale des brevets⁷ :
C07K 14/435

(JP). **ROSSIER, Jean** [BE/FR]; 322, rue Saint-Jacques,
F-75005 Paris (FR).

(21) Numéro de la demande internationale :
PCT/FR02/02492

(74) Mandataires : **DEMACHY, Charles** etc.; Grosset-Fournier & Demachy S.a.r.l., 20, rue de Maubeuge, F-75009 Paris (FR).

(22) Date de dépôt international : 12 juillet 2002 (12.07.2002)

(81) États désignés (national) : AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(25) Langue de dépôt : français

(26) Langue de publication : français

(30) Données relatives à la priorité :
01/09293 12 juillet 2001 (12.07.2001) FR

(71) Déposant (pour tous les États désignés sauf US) : CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE [FR/FR]; 3, rue Michel-Ange, F-75794 Paris Cedex 16 (FR).

(72) Inventeurs; et
(75) Inventeurs/Déposants (pour US seulement) : LAMBOLEZ, Bertrand [FR/FR]; 54, rue Louis Blanc, F-75010 Paris (FR). GIBELIN, Nathalie [FR/FR]; 16, Chemin de la Justice, F-92290 Chatenay Malabry (FR). BOUROUT, Gaëlle [FR/FR]; 17, rue Albert Bayet, F-75013 Paris (FR). TRICOIRE, Ludovic, Eric [FR/FR]; 7, rue Théophile Gautier, F-92120 Montrouge (FR). COURJEAN, Olivier, Arsène [FR/FR]; 32, boulevard de Reuilly, F-75012 Paris (FR). TSUZUKI, Keisuke [JP/JP]; 4-21-7 Iwagami-machi, Maebashi, Gunma 371-0035

(84) États désignés (régional) : brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SI, SZ, TZ, UG, ZM, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée :

— sans rapport de recherche internationale, sera republiée dès réception de ce rapport

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

(54) Title: MUTATED PHOTOPROTEINS AND THEIR USES

(54) Titre : PHOTOPROTÉINES MUTEES ET LEURS APPLICATIONS

WO 03/006497 A2

(57) Abstract: The invention concerns mutated photoproteins derived from isolated jellyfish photoproteins, said mutated photoproteins being characterised in that they exhibit a thermostability higher than that of the photoproteins from which they are derived, and are called thermostable mutated photoproteins, and/or a luminescence duration longer than that of the photoproteins from which they are derived, and are called persistent mutated photoproteins. The invention also concerns the use of said mutated photoproteins in methods for detecting *in vitro* molecules in a biological sample, methods for detecting compounds with enzymatic activity in a biological sample, or methods for detecting intracellular calcium variations.

(57) Abrégé : L'invention a pour objet des photoprotéines mutées dérivées des photoprotéines isolées de méduses, lesdites photoprotéines mutées étant caractérisées par une thermostabilité supérieure à celle des photoprotéines dont elles dérivent, et sont désignées photoprotéines mutées thermostables, et/ou par un temps de luminescence supérieur à celui des photoprotéines dont elles dérivent, et sont désignées photoprotéines mutées persistantes. L'invention concerne également l'utilisation des photoprotéines mutées susmentionnées dans le cadre de la mise en oeuvre de procédés de détection *in vitro* de molécules dans un échantillon biologique, de procédés de détection de composés à activité enzymatique dans un échantillon biologique, ou de procédés de détection des variations de calcium intracellulaire.

PHOTOPROTEINES MUTÉES ET LEURS APPLICATIONS

La présente invention a pour objet des photoprotéines mutées dérivées des photoprotéines isolées de méduses, lesdites photoprotéines mutées étant caractérisées par une thermostabilité supérieure, et/ou par un temps de luminescence supérieur à ceux des photoprotéines dont elles dérivent, ainsi que les utilisations de ces protéines, notamment dans le cadre de la mise en œuvre de procédés de détection *in vitro* de molécules, de procédés de détection de composés à activité enzymatique dans un échantillon biologique, ou de procédés de détection des variations de calcium intracellulaire induites par divers agents.

L'aequorine est une photoprotéine de la méduse *Aequoria Victoria* qui est constituée d'une partie protéique appelée l'apoequorine et d'un groupement prosthétique, la coelenterazine. Cette photoprotéine a la propriété d'émettre de la lumière lorsqu'elle est en présence d'ions Calcium (Ca^{2+}). Cette propriété permet notamment de détecter les variations de Calcium dans les cellules. Cette photoprotéine est également utilisée comme marqueur pour détecter de faibles quantités de produits organiques (jusqu'à moins d'une centaine de molécules) en raison d'un rapport signal sur bruit de fond extrêmement élevé.

Ainsi, l'aequorine commence à être utilisée dans des systèmes commerciaux de détection de molécules. Son utilisation offre plusieurs avantages : une très grande gamme dynamique qui permet de détecter et de quantifier les molécules sur plusieurs ordres de grandeur, et un bruit de fond extrêmement faible qui permet de détecter la présence de seulement quelques dizaines de molécules dans un échantillon. Ceci permet d'éviter le recours aux techniques d'amplification, telles que la PCR pour la détection des acides nucléiques.

Cependant, les photoprotéines naturelles, et l'aequorine en particulier sont très sensibles aux variations de température qui peuvent dénaturer leur pouvoir d'émission de lumière.

Par ailleurs, la cinétique d'émission de la photoprotéine naturelle est extrêmement rapide (de l'ordre de la seconde) et oblige à une analyse « échantillon par échantillon » dans un luminomètre à injection rapide. Ceci pose un problème pour

utiliser l'aequorine dans un système de criblage à haut débit qui nécessite l'analyse simultanée d'un grand nombre d'échantillon (HTS, High Throughput Screening).

La présente invention découle de la mise en évidence par les inventeurs du fait que certaines mutations dans la séquence peptidique de l'aequorine permettent d'obtenir des mutants d'aequorine beaucoup moins sensibles à la température (à 37°C, les photoprotéines mutantes perdent leurs propriétés photoémettrices en quelques jours au lieu de quelques heures pour la protéine naturelle), ainsi que des mutants ayant une cinétique d'émission lumineuse très ralenties (de la dizaine de secondes à la minute) qui permettent d'analyser simultanément les échantillons (format microplaqué à multipuits).

Ainsi la présente invention a principalement pour but de fournir de nouvelles photoprotéines moins sensibles aux élévations de température, et dont le transport et le stockage se trouvent être facilités en raison de leur meilleure stabilité.

La présente invention a pour but également de fournir de nouvelles photoprotéines résistantes jusqu'à 50°C, ce qui simplifie leur utilisation, notamment dans les expériences de détection d'acides nucléiques.

L'invention a également pour but de fournir de nouvelles photoprotéines dont le temps de luminescence est nettement supérieur à celui des photoprotéines dont elles dérivent, ce qui permet de les utiliser dans le cadre du criblage à haut débit, notamment pour la détection *in vitro* de molécules organiques à l'état de trace.

L'invention a également pour but de fournir des kits comprenant ces nouvelles photoprotéines, pour la mise en œuvre de procédés de mesure et de détection tels que mentionnés ci-dessus.

L'invention a principalement l'utilisation de photoprotéines isolées de méduses pour la préparation de photoprotéines mutées ayant une thermostabilité supérieure à celle des photoprotéines dont elles dérivent, encore désignées photoprotéines mutées thermostables, et/ou par un temps de luminescence supérieur à celui des photoprotéines dont elles dérivent, encore désignées photoprotéines mutées persistantes, lesdites photoprotéines mutées étant caractérisées en ce que leur stabilité dans le temps est augmentée à 37°C d'un facteur d'au moins environ 10, et/ou en ce que leur temps de luminescence est augmenté d'un facteur d'au moins environ 10, par rapport aux photoprotéines dont elles dérivent.

Il convient de souligner que par l'expression photoprotéine mutée dans ce qui précède et ce qui suit, on entend toute photoprotéine constituée d'une partie protéique dérivée par mutation de la partie protéique de la photoprotéine de méduse d'origine, et d'un groupement prosthétique, telle que la coelenterazine.

L'invention a également pour objet un procédé de préparation de photoprotéines mutées thermostables, et/ou persistantes, lesdites photoprotéines mutées étant caractérisées en ce que leur stabilité dans le temps est augmentée à 37°C d'un facteur d'au moins environ 10, et/ou en ce que leur temps de luminescence est augmenté d'un facteur d'au moins environ 10, par rapport aux photoprotéines de méduse dont elles dérivent, caractérisé en ce qu'il comprend la mise en œuvre d'une ou plusieurs mutations desdites photoprotéines de méduse, lesdites mutations étant choisies parmi :

* au moins une des trois mutations augmentant la thermostabilité desdites photoprotéines, et choisie parmi les suivantes :

- suppression de la lysine (K) contenue dans le motif RH₁X₂MFX₂ dans lequel X₁=H ou F, et X₂= N ou D, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de cette lysine par un acide aminé naturel ou non, notamment substitution de cette lysine par une arginine,

- suppression de la glutamine (Q) contenue dans le motif DEMTRQHLGFWY, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de cette glutamine par un acide aminé naturel ou non, notamment substitution de cette glutamine par une arginine,

- suppression de la leucine (L) contenue dans le motif DEMTRQHLGFWY susmentionné, ou substitution de cette leucine par un acide aminé naturel ou non, notamment substitution de cette leucine par une isoleucine,

* et/ou au moins une des six mutations augmentant le temps de luminescence desdites photoprotéines, et choisie parmi les suivantes :

- suppression du glutamate (E) contenu dans le motif DX₁NX₂X₃GX₄IX₅LX₆E dans lequel X₁=V ou I, X₂=H, G ou S, X₃=N ou D, X₄=K ou Q, X₅=S, T ou N, et X₆=D ou N, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de ce glutamate par un acide aminé naturel ou non, notamment substitution de ce glutamate par un acide aminé de petite taille tel que la glycine, lalanine, la cystéine, ou la thréonine,

- suppression du premier aspartate (D) contenu dans le motif DKDX₁X₂GX₃X₄X₅LDE dans lequel X₁=Q, G ou R, X₂=N ou S, X₃=A, S ou T, X₄=I

ou V, et X₅=T ou S, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de cet aspartate par un acide aminé naturel ou non, notamment substitution de cet aspartate par un acide aminé de petite taille tel que la glycine, lalanine, la cystéine, ou la thréonine,

5 - suppression du glutamate (E) contenu dans le motif DKDX₁X₂GX₃X₄X₅LDE susmentionné, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de ce glutamate par un acide aminé naturel ou non, notamment substitution de ce glutamate par un acide aminé de petite taille tel que la glycine, lalanine, la cystéine, ou la thréonine,

10 - suppression de la phénylalanine (F) contenue dans le motif EX₁TFX₂X₃ dans lequel X₁=E, K ou A, X₂=R, K ou A, et X₃=V ou H, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de cette phénylalanine par un acide aminé naturel ou non, notamment substitution de cette phénylalanine par une sérine, ou par un acide aminé de petite taille tel que la glycine, lalanine, la cystéine, ou la thréonine,

15 - suppression du premier aspartate (D) contenu dans le motif DX₁DX₂X₃GX₄LDVDE, dans lequel X₁=I ou L, X₂=E, N ou G, X₃=S ou D, et X₄=Q, K ou D, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de cet aspartate par un acide aminé naturel ou non, notamment substitution de cet aspartate par un acide aminé de petite taille tel que la glycine, lalanine, la cystéine, ou la 20 thréonine,

- suppression de la valine en position 54 de la séquence peptidique SEQ ID NO : 2 de l'aequorine, ou substitution de cette valine par un acide aminé naturel ou non, notamment substitution de cette valine par une alanine, ou par un acide aminé de petite taille tel que la glycine, lalanine, la cystéine, ou la thréonine.

25 L'invention concerne également l'utilisation des photoprotéines mutées thermostables et/ou persistantes pour la mise en œuvre de :

30 - de procédés de détection *in vitro* de molécules, tels que des protéines ou antigènes ou des acides nucléiques dans un échantillon biologique, notamment dans le cadre du dépistage *in vitro* de bactéries telles que les *Listeria* dans les aliments, ou dans le cadre du dépistage d'agents pathogènes tels que le virus VIH chez l'homme,

- de procédés de détection de composés à activité enzymatique dans un échantillon biologique, notamment dans le cadre du criblage de molécules activant ou inhibant une activité enzymatique spécifique,

- de procédés de détection des variations de calcium intracellulaire induites par divers agents, notamment dans le cadre du criblage de molécules agissant sur une séquence nucléique ou protéique fusionnée à la photoprotéine mutée, ou coexprimée avec la photoprotéine mutée dans des cellules hôtes susmentionnées,

5 dans lesquels les températures utilisées peuvent atteindre plus de 50°C, et/ou le temps de lecture après activation de la photoprotéine peut être supérieur à 5 min, ce qui limite considérablement les bruits de lecture.

10 L'invention a également pour objet les photoprotéines mutées dérivées des photoprotéines isolées de méduses, lesdites photoprotéines mutées étant caractérisées par une thermostabilité supérieure à celle des photoprotéines dont elles dérivent, et sont désignées photoprotéines mutées thermostables, et/ou par un temps de luminescence supérieur à celui des photoprotéines dont elles dérivent, et sont désignées photoprotéines mutées persistantes.

15 Avantageusement, les photoprotéines mutées selon l'invention, sont telles que la stabilité dans le temps est augmentée à 37°C d'un facteur d'au moins environ 10, et/ou leur temps de luminescence est augmenté d'un facteur d'au moins environ 10, par rapport aux photoprotéines dont elles dérivent.

20 Avantageusement encore, les photoprotéines mutées selon l'invention, sont caractérisées en ce qu'elles sont stables pendant au moins environ 30 minutes jusqu'à la température d'environ 50°C, et en ce qu'elles peuvent être conservées pendant au moins environ 4 jours à des températures pouvant atteindre jusqu'à 37°C, et/ou en ce que leur temps de luminescence est compris entre environ 1 min et environ 5 min.

25 L'invention a plus particulièrement pour objet les photoprotéines mutées telles que définies ci-dessus, caractérisées en ce qu'elles comprennent :

* au moins une des trois mutations augmentant leur thermostabilité, choisie parmi les suivantes :

30 - suppression de la lysine (K) contenue dans le motif RHKX₁MFX₂ dans lequel X₁=H ou F, et X₂= N ou D, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de cette lysine par un acide aminé naturel ou non, notamment substitution de cette lysine par une arginine,

- suppression de la glutamine (Q) contenue dans le motif DEMTRQHLGFWY, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de cette glutamine par un acide aminé naturel ou non, notamment substitution de cette glutamine par une arginine,

- suppression de la leucine (L) contenue dans le motif DEMTRQHLGFWY susmentionné, ou substitution de cette leucine par un acide aminé naturel ou non, notamment substitution de cette leucine par une isoleucine,

5 * et/ou au moins une des six mutations augmentant leur temps de luminescence, choisie parmi les suivantes :

10 - suppression du glutamate (E) contenu dans le motif DX₁NX₂X₃GX₄IX₅LX₆E dans lequel X₁=V ou I, X₂=H, G ou S, X₃=N ou D, X₄=K ou Q, X₅=S, T ou N, et X₆=D ou N, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de ce glutamate par un acide aminé naturel ou non, à l'exclusion de la sérine, notamment substitution de ce glutamate par un acide aminé de petite taille tel que la glycine, l'alanine, la cystéine, ou la thréonine,

15 - suppression du premier aspartate (D) contenu dans le motif DKDX₁X₂GX₃X₄X₅LDE dans lequel X₁=Q, G ou R, X₂=N ou S, X₃=A, S ou T, X₄=I ou V, et X₅=T ou S, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de cet aspartate par un acide aminé naturel ou non, à l'exclusion de la sérine, notamment substitution de cet aspartate par un acide aminé de petite taille tel que la glycine, l'alanine, la cystéine, ou la thréonine,

20 - suppression du glutamate (E) contenu dans le motif DKDX₁X₂GX₃X₄X₅LDE susmentionné, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de ce glutamate par un acide aminé naturel ou non, à l'exclusion de la sérine, notamment substitution de ce glutamate par un acide aminé de petite taille tel que la glycine, l'alanine, la cystéine, ou la thréonine,

25 - suppression de la phénylalanine (F) contenue dans le motif EX₁TFX₂X₃ dans lequel X₁=E, K ou A, X₂=R, K ou A, et X₃=V ou H, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de cette phénylalanine par un acide aminé naturel ou non, notamment substitution de cette phénylalanine par une sérine, ou par un acide aminé de petite taille tel que la glycine, l'alanine, la cystéine, ou la thréonine,

30 - suppression du premier aspartate (D) contenu dans le motif DX₁DX₂X₃GX₄LDVDE, dans lequel X₁=I ou L, X₂=E, N ou G, X₃=S ou D, et X₄=Q, K ou D, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de cet aspartate par un acide aminé naturel ou non, à l'exclusion de la sérine, notamment substitution de cet aspartate par un acide aminé de petite taille tel que la glycine, l'alanine, la cystéine, ou la thréonine,

- suppression de la valine en position 54 de la séquence peptidique SEQ ID NO : 2 de l'aequorine, ou substitution de cette valine par un acide aminé naturel ou non, notamment substitution de cette valine par une alanine, ou par un acide aminé de petite taille tel que la glycine, l'alanine, la cystéine, ou la thréonine.

5 Des photoprotéines mutées thermostables particulièrement préférées selon l'invention, sont caractérisées en ce qu'elles comprennent au moins une des deux mutations suivantes :

10 - suppression de la glutamine contenue dans le motif DEMTRQHLGFWY, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de cette glutamine par un acide aminé naturel ou non, notamment substitution de cette glutamine par une arginine,

- suppression de la leucine contenue dans le motif DEMTRQHLGFWY susmentionné, ou substitution de cette leucine par un acide aminé naturel ou non, notamment substitution de cette leucine par une isoleucine.

15 Des photoprotéines mutées persistantes particulièrement préférées selon l'invention, sont caractérisées en ce qu'elles comprennent au moins une des mutations suivantes :

20 - suppression du premier aspartate (D) contenu dans le motif DKDX₁X₂GX₃X₄X₅LDE dans lequel X₁=Q, G ou R, X₂=N ou S, X₃=A, S ou T, X₄=I ou V, et X₅=T ou S, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de cet aspartate par un acide aminé naturel ou non, à l'exclusion de la sérine, notamment substitution de cet aspartate par un acide aminé de petite taille tel que la glycine, l'alanine, la cystéine, ou la thréonine,

25 - suppression du glutamate (E) contenu dans le motif DKDX₁X₂GX₃X₄X₅LDE susmentionné, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de ce glutamate par un acide aminé naturel ou non, à l'exclusion de la sérine, notamment substitution de ce glutamate par un acide aminé de petite taille tel que la glycine, l'alanine, la cystéine, ou la thréonine,

30 - suppression du premier aspartate (D) contenu dans le motif DX₁DX₂X₃GX₄LDVDE, dans lequel X₁=I ou L, X₂=E, N ou G, X₃=S ou D, et X₄=Q, K ou D, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de cet aspartate par un acide aminé naturel ou non, à l'exclusion de la sérine, notamment substitution de cet aspartate par un acide aminé de petite taille tel que la glycine, l'alanine, la cystéine, ou la thréonine.

L'invention a plus particulièrement pour objet les photoprotéines mutées telles que définies ci-dessus, caractérisées en ce qu'elles dérivent de :

- l'aequorine extraite de la méduse *Aequoria Victoria*, ladite aequorine étant telle que représentée par la séquence SEQ ID NO : 2,
- 5 - la clytine extraite de la méduse *Clytia gregaria*, ladite clytine étant telle que représentée par la séquence SEQ ID NO : 18,
- la mitrocomine extraite de la méduse *Mitrocoma cellularia*, ladite mitrocomine étant telle que représentée par la séquence SEQ ID NO : 34,
- 10 - ou de l'obéline extraite de la méduse *Obelia longissima*, ladite obéline étant telle que représentée par la séquence SEQ ID NO : 50.

L'invention concerne plus particulièrement les photoprotéines mutées thermostables dérivées de l'aequorine telles que définies ci-dessus, et choisies parmi les protéines comprenant les séquences suivantes :

- la séquence peptidique SEQ ID NO : 4, correspondant à la séquence SEQ ID NO : 2 dans laquelle la lysine en position 27 est remplacée par une arginine,
- la séquence peptidique SEQ ID NO : 6, correspondant à la séquence SEQ ID NO : 2 dans laquelle la glutamine en position 178 est remplacée par une arginine,
- la séquence peptidique SEQ ID NO : 8, correspondant à la séquence SEQ ID NO : 2 dans laquelle la leucine en position 180 est remplacée par une isoleucine,
- 20 - la séquence peptidique SEQ ID NO : 10, correspondant à la séquence SEQ ID NO : 2 dans laquelle la lysine en position 27 est remplacée par une arginine, et la glutamine en position 178 est remplacée par une arginine,
- la séquence peptidique SEQ ID NO : 12, correspondant à la séquence SEQ ID NO : 2 dans laquelle la lysine en position 27 est remplacée par une arginine, et la leucine en position 180 est remplacée par une isoleucine,
- 25 - la séquence peptidique SEQ ID NO : 14, correspondant à la séquence SEQ ID NO : 2 dans laquelle la glutamine en position 178 est remplacée par une arginine, et la leucine en position 180 est remplacée par une isoleucine,
- la séquence peptidique SEQ ID NO : 16, correspondant à la séquence SEQ ID NO : 2 dans laquelle la lysine en position 27 est remplacée par une arginine, la glutamine en position 178 est remplacée par une arginine, et la leucine en position 180 est remplacée par une isoleucine,

L'invention a particulièrement pour objet les photoprotéines mutées thermostables dérivées de la clytine telles que définies ci-dessus, choisies parmi les protéines comprenant les séquences suivantes :

- la séquence peptidique SEQ ID NO : 20, correspondant à la séquence SEQ ID NO : 18 dans laquelle la lysine en position 26 est remplacée par une arginine,
- la séquence peptidique SEQ ID NO : 22, correspondant à la séquence SEQ ID NO : 18 dans laquelle la glutamine en position 177 est remplacée par une arginine,
- la séquence peptidique SEQ ID NO : 24, correspondant à la séquence SEQ ID NO : 18 dans laquelle la leucine en position 179 est remplacée par une isoleucine,
- la séquence peptidique SEQ ID NO : 26, correspondant à la séquence SEQ ID NO : 18 dans laquelle la lysine en position 26 est remplacée par une arginine, et la glutamine en position 177 est remplacée par une arginine,
- la séquence peptidique SEQ ID NO : 28, correspondant à la séquence SEQ ID NO : 18 dans laquelle la lysine en position 26 est remplacée par une arginine, et la leucine en position 179 est remplacée par une isoleucine,
- la séquence peptidique SEQ ID NO : 30, correspondant à la séquence SEQ ID NO : 18 dans laquelle la glutamine en position 177 est remplacée par une arginine, et la leucine en position 179 est remplacée par une isoleucine,
- la séquence peptidique SEQ ID NO : 32, correspondant à la séquence SEQ ID NO : 18 dans laquelle la lysine en position 26 est remplacée par une arginine, la glutamine en position 177 est remplacée par une arginine, et la leucine en position 179 est remplacée par une isoleucine,

L'invention concerne plus particulièrement les photoprotéines mutées thermostables dérivées de la mitrocomine telles que définies ci-dessus, choisies parmi les protéines comprenant les séquences suivantes :

- la séquence peptidique SEQ ID NO : 36, correspondant à la séquence SEQ ID NO : 34 dans laquelle la lysine en position 25 est remplacée par une arginine,
- la séquence peptidique SEQ ID NO : 38, correspondant à la séquence SEQ ID NO : 34 dans laquelle la glutamine en position 176 est remplacée par une arginine,
- la séquence peptidique SEQ ID NO : 40, correspondant à la séquence SEQ ID NO : 34 dans laquelle la leucine en position 178 est remplacée par une isoleucine,
- la séquence peptidique SEQ ID NO : 42, correspondant à la séquence SEQ ID NO : 34 dans laquelle la lysine en position 25 est remplacée par une arginine, et la glutamine en position 176 est remplacée par une arginine,

- la séquence peptidique SEQ ID NO : 44 correspondant à la séquence SEQ ID NO : 34 dans laquelle la lysine en position 25 est remplacée par une arginine, et la leucine en position 178 est remplacée par une isoleucine,

5 - la séquence peptidique SEQ ID NO : 46, correspondant à la séquence SEQ ID NO : 34 dans laquelle la glutamine en position 176 est remplacée par une arginine, et la leucine en position 178 est remplacée par une isoleucine,

10 - la séquence peptidique SEQ ID NO : 48, correspondant à la séquence SEQ ID NO : 34 dans laquelle la lysine en position 25 est remplacée par une arginine, la glutamine en position 176 est remplacée par une arginine, et la leucine en position 178 est remplacée par une isoleucine.

L'invention concerne plus particulièrement les photoprotéines mutées thermostables dérivées de l'obéline telles que définies ci-dessus, choisies parmi les protéines comprenant les séquences suivantes :

15 - la séquence peptidique SEQ ID NO : 52, correspondant à la séquence SEQ ID NO : 50 dans laquelle la lysine en position 23 est remplacée par une arginine,

- la séquence peptidique SEQ ID NO : 54, correspondant à la séquence SEQ ID NO : 50 dans laquelle la glutamine en position 174 est remplacée par une arginine,

- la séquence peptidique SEQ ID NO : 56, correspondant à la séquence SEQ ID NO : 50 dans laquelle la leucine en position 176 est remplacée par une isoleucine,

20 - la séquence peptidique SEQ ID NO : 58, correspondant à la séquence SEQ ID NO : 50 dans laquelle la lysine en position 23 est remplacée par une arginine, et la glutamine en position 174 est remplacée par une arginine,

25 - la séquence peptidique SEQ ID NO : 60, correspondant à la séquence SEQ ID NO : 50 dans laquelle la lysine en position 23 est remplacée par une arginine, et la leucine en position 176 est remplacée par une isoleucine,

- la séquence peptidique SEQ ID NO : 62 correspondant à la séquence SEQ ID NO : 50 dans laquelle la glutamine en position 174 est remplacée par une arginine, et la leucine en position 176 est remplacée par une isoleucine,

30 - la séquence peptidique SEQ ID NO : 64, correspondant à la séquence SEQ ID NO : 50 dans laquelle la lysine en position 23 est remplacée par une arginine, la glutamine en position 174 est remplacée par une arginine, et la leucine en position 176 est remplacée par une isoleucine.

L'invention concerne plus particulièrement les photoprotéines mutées persistantes dérivées de l'aequorine telles que définies ci-dessus, et choisies parmi les protéines comprenant les séquences suivantes :

- la séquence peptidique SEQ ID NO : 66 correspondant à la séquence SEQ ID NO : 2 dans laquelle le glutamate en position 45 est remplacé par une glycine,
- 5 - la séquence peptidique SEQ ID NO : 68 correspondant à la séquence SEQ ID NO : 2 dans laquelle la valine en position 54 est remplacée par une alanine,
- la séquence peptidique SEQ ID NO : 70 correspondant à la séquence SEQ ID NO : 2 dans laquelle l'aspartate en position 127 est remplacé par une glycine,
- 10 - la séquence peptidique SEQ ID NO : 72 correspondant à la séquence SEQ ID NO : 2 dans laquelle le glutamate en position 138 est remplacé par une glycine,
- la séquence peptidique SEQ ID NO : 74 correspondant à la séquence SEQ ID NO : 2 dans laquelle la phénylalanine en position 159 est remplacée par une sérine,
- 15 - la séquence peptidique SEQ ID NO : 76 correspondant à la séquence SEQ ID NO : 2 dans laquelle l'aspartate en position 163 est remplacé par une glycine.

L'invention a particulièrement pour objet les photoprotéines mutées persistantes dérivées de la clytine telles que définies ci-dessus, choisies parmi les protéines comprenant les séquences suivantes :

- la séquence peptidique SEQ ID NO : 78 correspondant à la séquence SEQ ID NO : 18 dans laquelle le glutamate en position 44 est remplacé par une glycine,
- 20 - la séquence peptidique SEQ ID NO : 80 correspondant à la séquence SEQ ID NO : 18 dans laquelle l'aspartate en position 126 est remplacé par une glycine,
- la séquence peptidique SEQ ID NO : 82 correspondant à la séquence SEQ ID NO : 18 dans laquelle le glutamate en position 137 est remplacé par une glycine,
- 25 - la séquence peptidique SEQ ID NO : 84 correspondant à la séquence SEQ ID NO : 18 dans laquelle la phénylalanine en position 158 est remplacée par une sérine,
- la séquence peptidique SEQ ID NO : 86 correspondant à la séquence SEQ ID NO : 18 dans laquelle l'aspartate en position 162 est remplacé par une glycine.

L'invention concerne plus particulièrement les photoprotéines mutées persistantes dérivées de la mitrocomine telles que définies ci-dessus, choisies parmi les protéines comprenant les séquences suivantes :

- la séquence peptidique SEQ ID NO : 88 correspondant à la séquence SEQ ID NO : 34 dans laquelle le glutamate en position 43 est remplacé par une glycine,

- la séquence peptidique SEQ ID NO : 90 correspondant à la séquence SEQ ID NO : 34 dans laquelle l'aspartate en position 125 est remplacé par une glycine,
- la séquence peptidique SEQ ID NO : 92 correspondant à la séquence SEQ ID NO : 34 dans laquelle le glutamate en position 136 est remplacé par une glycine,
- 5 - la séquence peptidique SEQ ID NO : 94 correspondant à la séquence SEQ ID NO : 34 dans laquelle la phénylalanine en position 157 est remplacée par une sérine,
- la séquence peptidique SEQ ID NO : 96 correspondant à la séquence SEQ ID NO : 34 dans laquelle l'aspartate en position 161 est remplacé par une glycine.

10 L'invention concerne plus particulièrement les photoprotéines mutées persistantes dérivées de l'obéline telles que définies ci-dessus, choisies parmi les protéines comprenant les séquences suivantes :

- la séquence peptidique SEQ ID NO : 98 correspondant à la séquence SEQ ID NO : 50 dans laquelle le glutamate en position 41 est remplacé par une glycine,
- la séquence peptidique SEQ ID NO : 100 correspondant à la séquence SEQ ID NO : 50 dans laquelle l'aspartate en position 123 est remplacé par une glycine,
- 15 - la séquence peptidique SEQ ID NO : 102 correspondant à la séquence SEQ ID NO : 50 dans laquelle le glutamate en position 134 est remplacé par une glycine,
- la séquence peptidique SEQ ID NO : 104 correspondant à la séquence SEQ ID NO : 50 dans laquelle la phénylalanine en position 155 est remplacée par une sérine,
- 20 - la séquence peptidique SEQ ID NO : 106 correspondant à la séquence SEQ ID NO : 50 dans laquelle l'aspartate en position 159 est remplacé par une glycine.

L'invention a plus particulièrement pour objet les photoprotéines mutées thermostables et persistantes telles que définies ci-dessus, choisies parmi :

- les protéines dérivées de l'aequorine de séquences SEQ ID NO : 107, 108, 109, 25 110, 111, 112, 113, et correspondant aux séquences SEQ ID NO : 4, 6, 8, 10, 12, 14, 16, dans lesquelles E en position 45 est remplacé par G, et/ou V en position 54 est remplacé par A, et/ou D en position 127 est remplacé par G, et/ou E en position 138 est remplacé par G, et/ou F en position 159 est remplacé par S, et/ou D en position 163 est remplacé par G,
- 30 - les protéines dérivées de la clytine de séquences SEQ ID NO : 114, 115, 116, 117, 118, 119, 120, et correspondant aux séquences suivantes : SEQ ID NO : 20, 22, 24, 26, 28, 30, 32, dans lesquelles E en position 44 est remplacé par G, et/ou D en position 126 est remplacé par G, et/ou E en position 137 est remplacé par G, et/ou F en position 158 est remplacé par S, et/ou D en position 162 est remplacé par G,

5 - les protéines de la mitrocomine de séquences SEQ ID NO : 121, 122, 123, 124, 125, 126, 127, et correspondant aux séquences suivantes : SEQ ID NO : 36, 38, 40, 42, 44, 46, 48, dans lesquelles E en position 43 est remplacé par G, et/ou D en position 125 est remplacé par G, et/ou E en position 136 est remplacé par G, et/ou F en position 157 est remplacé par S, et/ou D en position 161 est remplacé par G,

10 - les protéines dérivées de l'obéline de séquences SEQ ID NO : 128, 129, 130, 131, 132, 133, 134, et correspondant aux séquences suivantes : SEQ ID NO : 52, 54, 56, 58, 60, 62, 64, dans lesquelles E en position 41 est remplacé par G, et/ou D en position 123 est remplacé par G, et/ou E en position 134 est remplacé par G, et/ou F en position 155 est remplacé par S, et/ou D en position 159 est remplacé par G.

L'invention a plus particulièrement pour objet les photoprotéines mutées telles que définies ci-dessus, caractérisées en ce qu'elles sont liées :

15 - à une sonde protéique ou nucléique susceptible de reconnaître des antigènes ou protéines ou acides nucléiques déterminés,
- ou à un substrat spécifique d'une activité enzymatique déterminée,
- ou à une molécule susceptible de former un complexe avec une autre molécule, tel que le complexe avidine-biotine.

L'invention concerne également les séquences nucléotidiques codant pour les photoprotéines mutées définies ci-dessus.

20 A ce titre, l'invention a plus particulièrement pour objet les séquences nucléotidiques susmentionnées, codant pour les photoprotéines mutées telles que définies ci-dessus, choisies parmi les acides nucléiques comprenant les séquences SEQ ID NO : 3, 5, 7, 9, 11, 13, 15, 19, 21, 23, 25, 27, 29, 31, 35, 37, 39, 41, 43, 45, 47, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, codant respectivement pour les séquences SEQ ID NO : 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 26, 28, 30, 32, 36, 38, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, ou toute séquence nucléotidique dérivée par dégénérescence du code génétique des séquences susmentionnées et codant pour les photoprotéines mutées susmentionnées.

30 L'invention concerne également les vecteurs, notamment les plasmides, contenant une séquence recombinante comprenant une séquence nucléotidique de l'invention telle que définie ci-dessus.

L'invention a également pour objet les cellules hôtes, telles que cellules procaryotes, notamment *E. coli*, ou eucaryotes, notamment les lignées HEK 293

(American Type Culture Collection ATCC n° CRL-1573) ou CHO (ATCC n° CCL-61), comprenant une séquence nucléotidique telle que définie ci-dessus, lesdites cellules étant telles qu'obtenues par transformation à l'aide d'un vecteur susmentionné.

L'invention concerne également tout procédé de préparation de photoprotéines mutées telles que définies ci-dessus, caractérisé en ce qu'il comprend la transformation de cellules hôtes appropriées à l'aide d'un vecteur susmentionné, la mise en culture de cellules hôtes transformées ainsi obtenues dans un milieu approprié, et la récupération, le cas échéant après purification, des photoprotéines mutées produites par ces cellules, suivie le cas échéant d'une étape de liaison au groupement prosthétique, telle que la 10 coelenterazine.

L'invention a également pour objet l'utilisation de photoprotéines mutées telles que définies ci-dessus, ou de cellules hôtes transformées susmentionnées exprimant lesdites photoprotéines mutées, dans le cadre de la mise en œuvre :

- de procédés de détection *in vitro* de molécules, tels que des protéines ou 15 antigènes ou des acides nucléiques dans un échantillon biologique, notamment dans le cadre du dépistage *in vitro* de bactéries telles que les *Listeria* dans les aliments, ou dans le cadre du dépistage d'agents pathogènes tels que le virus VIH chez l'homme,

- de procédés de détection de composés à activité enzymatique dans un échantillon biologique, notamment dans le cadre du criblage de molécules activant ou 20 inhibant une activité enzymatique spécifique,

- de procédés de détection des variations de calcium intracellulaire induites par divers agents, notamment dans le cadre du criblage de molécules agissant sur une séquence nucléique ou protéique fusionnée à la photoprotéine mutée, ou coexprimée avec la photoprotéine mutée dans des cellules hôtes susmentionnées.

L'invention a plus particulièrement pour objet des procédés de détection *in vitro* 25 de protéines ou antigènes ou d'acides nucléiques dans un échantillon biologique, tels que définis ci-dessus, caractérisés en ce qu'ils comprennent principalement les étapes suivantes :

- le cas échéant, une étape d'amplification du nombre d'acides nucléiques présents 30 dans l'échantillon biologique,

- immobilisation des protéines ou antigènes ou acides nucléiques sur un support approprié, puis addition d'une sonde spécifique desdits protéines ou antigènes ou acides nucléiques et rinçage, ladite sonde étant liée à une photoprotéine mutée telle que définie

ci-dessus, ou ladite photoprotéine étant additionnée sur le support avec les réactifs appropriés pour sa liaison à ladite sonde,

- mesure de l'intensité de la bioluminescence émise après l'étape de rinçage.

5 L'invention a également pour objet les procédés de détection *in vitro* de composés à activité enzymatique dans un échantillon biologique tels que définis ci-dessus, caractérisés en ce qu'ils comprennent principalement les étapes suivantes :

- immobilisation sur un support approprié d'un substrat protéique spécifique de l'activité enzymatique à détecter, ce substrat étant lié à une photoprotéine mutée telle que définie ci-dessus, addition de l'échantillon biologique, puis rinçage,

10 - ou immobilisation sur un support approprié des composés de l'échantillon biologique, addition du substrat protéique lié à une photoprotéine mutée telle que définie ci-dessus, puis rinçage,

- mesure de l'intensité de la bioluminescence émise après l'étape de rinçage.

15 L'invention a plus particulièrement pour objet encore, les procédés de détection *in vitro* des variations de calcium intracellulaire induites par divers agents tels que définis ci-dessus; caractérisés en ce qu'ils comprennent la mise en culture de cellules transformées susmentionnées, avec l'échantillon contenant les molécules à détecter, et la mesure de la variation de bioluminescence.

20 Avantageusement, les procédés susmentionnés selon l'invention, sont caractérisés en ce qu'ils peuvent être effectués jusqu'à des températures d'environ 50 °C, à l'aide de photoprotéines mutées thermostables, et, le cas échéant, persistantes, telles que définies ci-dessus.

25 Avantageusement encore, les procédés susmentionnés selon l'invention, sont caractérisés en ce qu'ils peuvent être effectués en simultanés sur échantillons multiples, à l'aide de photoprotéines persistantes, et, le cas échéant, thermostables, telles que définies ci-dessus.

30 L'invention a également pour objet les kits ou trousse, pour la mise en œuvre de procédés tels que définis ci-dessus, caractérisés en ce qu'ils comprennent des photoprotéines mutées susmentionnées, le cas échéant en association avec des réactifs nécessaires à la mise en œuvre desdits procédés.

L'invention a plus particulièrement pour objet les kits tels que définis ci-dessus, caractérisés en ce qu'ils peuvent être conservés en solutions prêtes à l'emploi, notamment pendant au moins environ 4 jours à des températures ambiantes d'environ 20°C, et pouvant atteindre jusqu'à environ 37°C, lorsqu'ils contiennent des

photoprotéines mutées thermostables, et, le cas échéant, persistantes, telles que définies ci-dessus.

L'invention sera davantage illustrée à l'aide de la description détaillée qui suit d'obtention de photoprotéines mutées telles que définies ci-dessus, et des conditions d'utilisation de ces photoprotéines dans le cadre des applications susmentionnées de ces dernières.

A) Obtention de mutants thermostables de la photoprotéine aequorine

10

Protocoles

15

La procédure employée a consisté en la réalisation d'une banque de mutants aléatoires d'aequorine générés par la technique de "DNA shuffling" (ou brassage de l'ADN) (Stemmer, WPC, 1994). Ces mutants, insérés dans un vecteur d'expression procaryotique ont été transformés dans *E. coli* et clonés. Les clones ont été ciblés individuellement pour une augmentation de bioluminescence. Les meilleurs mutants ont alors été utilisés pour un deuxième tour de DNA shuffling suivi d'un criblage identique. Ce processus a été répété une troisième fois. Trois mutations qui augmentaient l'activité de l'aequorine ont été répertoriées. Lors des test subséquents, nous avons pu montrer que ces mutations n'augmentent pas l'émission de lumière de l'aequorine mais augmentent sa stabilité. Ceci explique que ces mutants aient été sélectionnés dans notre système cellulaire procaryotique (*E. coli*). Pour l'un de ces mutants, les tests montrent une augmentation du temps de demi-vie à 37°C d'un facteur 12.5 en système cellulaire procaryotique et d'un facteur 7.5 pour la protéine purifiée, par rapport à l'aequorine sauvage. De même, la température de demi-inactivation de ce mutant lors d'un choc thermique de 30 minutes est supérieure de 10 degrés Celsius à celle de l'aequorine sauvage (expérience réalisée en système cellulaire et sur protéine purifiée). Ce même mutant montre une légère réduction d'affinité pour le calcium par rapport à l'aequorine sauvage, ce qui est un avantage pour une utilisation de l'aequorine *in vitro*.

20

25

30

DNA shuffling

Le cDNA de l'aequorine « sauvage » (Aeqwt, ~600 bp) a été sous-cloné aux sites *Kpn*I (5') et *Eco*RI (3') du vecteur pPD16 sous dépendance du promoteur Plac. Ce clone a été nommé pPD-Aeqwt. 20 ng du plasmide pPD-Aeqwt a été digéré par *Pst*I et *Eag*I (sites externes à l'insert aequorine dans le polylinker de pPD16) et l'insert Aeqwt

amplifié par PCR en utilisant les amores suivantes : up-e-Aeq, 5' CGG GTA CCG ATG CTTTATGATGTCCTGAT 3' et lo-e-Aeq, 5' TGGAAATTCTTA GGGGACAGCTCCAC 3'. Le produit de PCR résultant a été purifié (Qiaquick extraction kit, Qiagen). 3 µg du produit purifié a été digéré par la DNaseI (1 ng/µl) dans 100 µl de tampon DNAse I à 25°C pendant 7 min. Les fragments de digestion compris entre 50 et 300 bp ont été purifiés par électrophorèse sur gel d'agarose.

PCR sans amores (shuffling)

1 µg des fragments Aeq digérés ont été soumis à une PCR sans amores dans 50 µl de tampon PCR contenant 200 µM de chaque dNTP, 2,2 mM MgCl₂, 2,5 unités de *taq* polymérase (Qiagen) en effectuant 35 cycles avec 30s à 94°C, 30s à 45°C et 30s à 72°C.

PCR avec amores

2,5 µl du produit de la réaction de shuffling a été amplifié par 20 cycles de PCR (30s à 94°C, 30s à 58°C et 40s à 72°C) dans 100 µl de tampon de PCR contenant 20 pmole de chaque amorce up-e-Aeq et lo-e-Aeq, 50 µM de chaque dNTP, 1,5 mM MgCl₂ et 2,5 unités de *taq* polymérase (Qiagen).

Banque de mutants

Le produit de la PCR avec amores (aequorines mutées) a été purifié (Qiaquick extraction kit, Qiagen), digéré *Kpn*I / *Eco*RI et sous-cloné dans le vecteur pPD16 sous dépendance du promoteur Plac. La banque d'aequorines mutantes a été transformée dans la souche d'E. Coli XL1 blue (Stratagene), et étalée sur boites LB ampicilline.

Au 1^{er} tour de shuffling-criblage, 15840 colonies ont été repiquées individuellement, transférées en plaques 96 puits (Costar) dans 50 µl de LB ampicilline par puits et incubées 4 h à 37°C avec agitation en vue du criblage de leur activité.

Aux 2^e et 3^e tour de shuffling-criblage, respectivement 19200 et 17952 colonies ont été repiquées individuellement, transférées en plaques 96 puits dans 200 µl de milieu de congélation (composition en g/l, Bacto tryptone, 16, Bacto yeast extract, 10, NaCl, 5, K₂HPO₄, 0,27, KH₂PO₄, 7,16, Na citrate, 2, MgSO₄·7H₂O, 0,1, (NH₄)₂SO₄, 0,9, glycérol, 50 et 100 µg/ml d'ampicilline) et après incubation sur la nuit à 37°C sans agitation, stockées à -80°C. Ces plaques de stockage ont été répliquées (96 pin replicator long, Genetix) en plaques 96 puits (Costar) dans 50 µl de LB ampicilline par puits. Ces répliques pour criblage ont été incubées 4 h à 37°C avec agitation.

Après ajout de 50 µl par puits d'une solution contenant Tris pH8, 100 mM, NaCl, 90 mM, coelenterazin, 5 mM, les plaques à cribler ont été incubées à 4°C durant la nuit pour la reconstitution de l'aequorine (volume final par puits 100 µl).

Criblage

Après 15 minutes à température ambiante, les clones d'aequorines mutées en plaques 96 puits ont été criblées pour leur activité de bioluminescence activée par le Ca²⁺ à l'aide d'un luminomètre à injecteur (PhL, Mediators, Austria). La lumière émise durant les 4 secondes consécutives à l'injection de 100 µl d'une solution contenant CaCl₂, 20 mM et triton X100, 1% a été mesurée pour chaque clone individuellement. Les mutants ont été sélectionnés sur la base d'une activité 15 fois supérieure à la moyenne des clones de la plaque 96 puits et ré-étalés sur boite LB ampicilline pour confirmation et comparaison avec l'aequorine sauvage. A l'issue du 1^{er} tour de criblage, 40 clones dont l'activité était supérieure à celle de l'aequorine sauvage ont été sélectionnés pour le 2^e tour de shuffling-criblage. 37 clones ont été sélectionnés au second tour pour le troisième tour de criblage. L'insert de chacun de ces clones a été amplifié individuellement par PCR en utilisant les amores up-e-Aeq et lo-e-Aeq (voir ci-dessus, DNA shuffling). Les produits de PCR de chaque clone ont été combinés (200 ng par clone) et soumis au protocole de DNA shuffling précédent pour générer la banque de mutants du tour suivant.

20

Séquençage des mutants

Le séquençage des mutants (7 mutants sélectionnés au 2^e tour et 7 mutants sélectionnés au 3^e tour) a été réalisé sur un séquenceur automatique ABI310 (PE applied biosystems) avec les amores up-e-Aeq et lo-e-Aeq (voir DNA shuffling).

25

Purification des aequorines

Les cDNA de l'aequorine sauvage et des aequorines mutantes, excisés par double coupure *Kpn*I/*Eco*RI ont été sous-clonés dans pRSETC (Invitrogen, Xpress protein expression system). Les plasmides résultants ont été transformés dans la souche d'E.Coli BL21(DE3) pLysS (Invitrogen) pour expression des aequorines. Les aequorines ont été purifiées par chromatographie d'affinité sur colonne de nickel-agarose (Invitrogen, Xpress protein expression system), selon les instructions du fabricant (élution par 350 mM imidazole). Les aequorines purifiées ont été conservées

à -20°C dans une solution contenant (concentrations finales) imidazole, 175 mM ; EDTA, 10 µM ; BSA, 10 µg/ml et glycérol, 50%.

Expression en lignée cellulaire eucaryote (HEK 293)

5 Les cDNA de l'aequorine sauvage et des aequorines mutantes, excisés par double coupure *KpnI/SpeI* ou *HindIII/SpeI* ont été sous-clonés aux sites *KpnI/NheI* ou *HindIII/NheI* dans un vecteur d'expression eucaryote, pCMX, sous dépendance du promoteur CMV. Les plasmides résultants ont été co-transfектés avec un plasmide contenant le gène LacZ (β -galactosidase) sous dépendance du promoteur RSV dans les 10 cellules HEK 293. 24 h après la transfection les cellules ont été collectées et resuspendues en tampon PBS.

Test d'activité β -galactosidase.

Un aliquote de la suspension cellulaire a été utilisé pour la mesure de l'activité β -galactosidase (luminescent β -galactosidase detection kit II, Clontech) en plaque 96 15 puits afin de normaliser les activités aequorine.

Bioluminescence aequorine.

Après ajout de coelenterazine (10 µM final) la suspension cellulaire a été distribuée en plaque 96 puits à raison de 50 µl par puits et incubée 3h à 37°C pour reconstituer l'aequorine. La mesure de l'activité aequorine a été réalisée à l'aide d'un 20 luminomètre à injecteur (PhL, Mediators, Austria). La lumière émise durant les 4 secondes consécutives à l'injection de 100 µl d'une solution contenant CaCl₂, 1,5 mM et triton X100, 0,75% a été mesurée et normalisée par rapport à l'activité β -galactosidase.

25 Tests de stabilité des aequorines

En bactéries

Pour chaque clone d'aequorine à tester, une colonie a été amplifiée dans 5 ml de LB ampicilline et après centrifugation le culot bactérien a été rincé deux fois par 5 ml 30 d'une solution contenant NaCl, 100 mM ; Tris HCl, 50 mM, pH 8 et EGTA, 1 mM. Les bactéries ont été resuspendues dans 500 µl de la même solution contenant 10 µM de coelenterazine et incubées à 4°C durant la nuit. Après ajout de lysozyme (0,8 mg/ml final) et homogénéisation, des aliquotes de 50 µl ont été prélevés pour les test de stabilité.

5 Stabilité à 37°C au cours du temps : les aliquotes ont été incubés à 37°C et à différents temps (jusqu'à 72 h), puis ont été distribués en plaque 96 puits à raison de 10 µl par puits. La luminescence activée par injection de 200 µl d'une solution contenant CaCl₂, 2 mM ; NaCl, 100 mM ; Tris HCl pH 8, 50 mM et EGTA, 1 mM (Ca²⁺ libre, ~1 mM) a été mesurée et normalisée par rapport à la valeur obtenue à t₀.

10

Stabilité à différentes températures : les aliquotes ont été incubés à des températures comprises entre 25 et 55°C durant 30 min puis distribués en plaque 96 puits à raison de 10 µl par puits. La luminescence, mesurée comme ci-dessus, a été normalisée par rapport à la valeur obtenue à 25°C.

15

Sur protéines purifiées

Les aequorines purifiées ont été reconstituées par dilution 10 dans une solution contenant Tris HCl, 50 mM pH8 ; DTT, 10 mM, EDTA, 1 mM et coelenterazine, 2 µM et incubation 1h à 4°C. Des aliquotes de 50 µl ont ensuite été prélevés pour les test de stabilité. Les mesures de stabilité ont été effectuées comme précédemment, à l'exception de l'étape d'activation réalisée par injection de 100 µl d'une solution contenant CaCl₂, 10 mM ; Tris HCl pH 8, 50 mM et EDTA, 1 mM.

20

Tests de sensibilité calcique des aequorines

25

Les aequorines purifiés ont été reconstituées par dilution 10 dans une solution contenant Tris HCl, 50 mM pH8 ; DTT, 10 mM, EDTA, 10 µM et coelenterazine, 2 µM et incubation 1h à 4°C. Les aequorines reconstituées ont été distribuées en plaque 96 puits à raison de 55 µl par puits et activées par 100 µl d'une solution contenant Tris HCl pH 8, 50 mM ; EDTA, 10 µM et des concentrations de Ca²⁺ libres variables (concentrations libres finales après injection : 10⁻⁸ à 10⁻¹ M). Les mesures de luminescence (luminomètre PhL, Mediators) ont été réalisées en mode cinétique (Fast kinetics, Interval 0.1 sec, kinetic points 60). La détermination des courbes de sensibilité calcique a été basée sur les valeurs initiales de luminescence des cinétiques d'émission lumineuse.

30

B) Obtention de mutants persistants de la photoprotéine aequorine à luminescence prolongée

Protocoles

La procédure employée a consisté en la réalisation d'une banque de mutants aléatoires d'aequorine générés par la technique de "DNA shuffling" (Stemmer, WPC, 5 1994). Ces mutants, insérés dans un vecteur d'expression procaryotique ont été transformés dans E.Coli et clonés. Les clones ont été criblés individuellement pour une augmentation de la durée d'émission de la bioluminescence. Les meilleurs mutants ont alors été séquencés. Nous avons répertorié six mutations qui prolongent la 10 bioluminescence de l'aequorine. Lors des test subséquents, nous avons pu montrer que ces mutations n'augmentent pas l'émission totale de lumière de l'aequorine mais ralentissent sa cinétique. Pour ces mutants, les tests montrent une augmentation du temps d'émission de la bioluminescence (de l'ordre de la minute) d'environ un facteur dix en système cellulaire procaryotique ou eucaryotique et sur protéine purifiée, par rapport à l'aequorine sauvage (de l'ordre de la seconde). Des données préliminaires 15 indiquent que certains mutants présenteraient une thermostabilité supérieure à celle de l'aequorine sauvage (expériences réalisées sur protéine purifiée). Tous ces mutants sauf un montrent une importante réduction d'affinité pour le calcium par rapport à l'aequorine sauvage.

20 DNA shuffling

Le cDNA de l'aequorine « sauvage » (Aeqwt, ~600 bp) a été sous-cloné aux sites *Kpn*I (5') et *Eco*RI (3') du vecteur pPD16 sous dépendance du promoteur Plac. Ce clone a été nommé pPD-Aeqwt. 20 ng du plasmide pPD-Aeqwt a été digéré par *Pst*I et 25 *Eag*I (sites externes à l'insert aequorine dans le polylinker de pPD16) et l'insert Aeqwt amplifié par PCR en utilisant les amorces suivantes : up-e-Aeq, 5' CGG GTA CCG ATG CTTTATGATGTTCCCTGAT 3' et lo-e-Aeq, 5' TGGAAATTCTTA GGGGACAGCTCCAC 3'. Le produit de PCR résultant a été purifié (Qiaquick extraction kit, Qiagen). 3 µg du produit purifié a été digéré par la DNaseI (1 ng/µl) dans 100 µl de tampon DNase I à 25°C pendant 7 min. Les fragments de digestion 30 compris entre 50 et 300 bp ont été purifiés par électrophorèse sur gel d'agarose.

PCR sans amorces (shuffling)

1 µg des fragments Aeq digérés ont été soumis à une PCR sans amorces dans 50 µl de tampon PCR contenant 200 µM de chaque dNTP, 2,2 mM MgCl₂, 2,5 unités de *taq* polymérase (Qiagen) en effectuant 35 cycles avec 30s à 94°C, 30s à 45°C et 30s à 5 72°C.

PCR avec amorces

2,5 µl du produit de la réaction de shuffling a été amplifié par 20 cycles de PCR (30s à 94°C, 30s à 58°C et 40s à 72°C) dans 100 µl de tampon de PCR contenant 20 pmole de chaque amorce up-e-Aeq et lo-e-Aeq, 50 µM de chaque dNTP, 1,5 mM 10 MgCl₂ et 2,5 unités de *taq* polymérase (Qiagen).

Banque de mutants

Le produit de la PCR avec amores (aequorines mutées) a été purifié (Qiaquick extraction kit, Qiagen), digéré *Kpn*I / *Eco*RI et sous-cloné dans le vecteur pPD16 sous dépendance du promoteur *Plac*. La banque d'aequorines mutantes a été transformée dans la souche d'*E. Coli* XL1 blue (Stratagene), et étalée sur boites LB ampicilline. 15

15840 colonies ont été repiquées individuellement, transférées en plaques 96 puits (Costar) dans 50 µl de LB ampicilline par puits et incubées 4 h à 37°C avec agitation en vue du criblage de leur activité.

Après ajout de 50 µl par puits d'une solution contenant Tris pH8, 100 mM, 20 NaCl, 90 mM, coelenterazin, 5 mM, les plaques à cribler ont été incubées à 4°C durant la nuit pour la reconstitution de l'aequorine (volume final par puits 100 µl).

Criblage

Après 15 minutes à température ambiante, les clones d'aequorines mutées en 25 plaques 96 puits ont été criblées pour leur activité de bioluminescence activée par le Ca²⁺ à l'aide d'un luminomètre à injecteur (PhL, Mediators, Austria). La lumière émise durant les 4 secondes consécutives (t0-4) à l'injection de 100 µl d'une solution contenant CaCl₂, 20 mM et triton X100, 1%, et durant les 4 secondes suivantes (t4-8) 30 a été mesurée pour chaque clone individuellement. Les mutants ayant un rapport t0-4/t4-8 inférieur à 1.5 ont été sélectionnés et réétalés sur boite LB ampicilline pour confirmation et détermination des meilleurs mutants.

Séquençage des mutants

Le séquençage des mutants (20 mutants séquencés) a été réalisé sur un séquenceur automatique ABI310 (PE applied biosystems) avec les amorces up-e-Aeq et lo-e-Aeq (voir DNA shuffling).

5

Purification des aequorines

Les cDNA de l'aequorine sauvage et des aequorines mutantes, excisés par double coupure *KpnI/EcoRI* ont été sous-clonés dans pRSETC (Invitrogen, Xpress protein expression system). Les plasmides résultants ont été transformés dans la souche d'E.Coli BL21(DE3) pLysS (Invitrogen) pour expression des aequorines. Les aequorines ont été purifiées par chromatographie d'affinité sur colonne de nickel-agarose (Invitrogen, Xpress protein expression system), selon les instructions du fabricant (élution par 350 mM imidazole). Les aequorines purifiées ont été conservées à -20°C dans une solution contenant (concentrations finales) imidazole, 175 mM ; EDTA, 10 µM ; BSA, 10 µg/ml et glycérol, 50%.

10

15

Expression en lignée cellulaire eucaryote (HEK 293)

Les cDNA de l'aequorine sauvage et des aequorines mutantes, excisés par double coupure *KpnI/SpeI* ou *HindIII/SpeI* ont été sous-clonés aux sites *KpnI/NheI* ou *HindIII/NheI* dans un vecteur d'expression eucaryote, pCMX, sous dépendance du promoteur CMV. Les plasmides résultants ont été transfectés dans les cellules HEK 293. 24 h après la transfection les cellules ont été collectées et resuspendues en tampon PBS.

Après ajout de coelenterazine (10 µM final) la suspension cellulaire a été distribuée en plaque 96 trous à raison de 50 µl par trou et incubée 3h à 37°C pour reconstituer l'aequorine. La mesure de l'activité aequorine a été réalisée à l'aide d'un luminomètre à injecteur (PhL, Mediators, Austria). Les cinétiques d'émission de la bioluminescence consécutives à l'injection de 100 µl d'une solution contenant CaCl₂, 1,5 mM et triton X100, 0,75 % ont été déterminées en mode cinétique (Fast kinetics, Interval 0.1-10 sec, kinetic points 60).

25

30

Tests de cinétique de bioluminescence et de sensibilité calcique des aequorines

En bactéries

Pour chaque clone d'aequorine à tester, une colonie a été amplifiée dans 5 ml de LB ampicilline et après centrifugation le culot bactérien a été rincé deux fois par 5 ml d'une solution contenant NaCl, 100 mM ; Tris HCl, 50 mM, pH 8 et EGTA, 1 mM.

5 Les bactéries ont été resuspendues dans 500 μ l de la même solution contenant 10 μ M de coelenterazine et incubées à 4°C durant la nuit. Après ajout de lysozyme (0,8 mg/ml final) et homogénéisation, des aliquotes de 50 μ l ont été prélevés pour les test de cinétique et/ou de sensibilité calcique comme décrit ci-dessous.

10 *Sur protéines purifiées*

Les aequorines purifiées ont été reconstituées par dilution 10 dans une solution contenant Tris HCl, 50 mM pH8 ; DTT, 10 mM, EDTA, 10 μ M et coelenterazine, 2 μ M et incubation 1h à 4°C. Les aequorines reconstituées ont été distribuées en plaque 96 puits à raison de 55 μ l par puits et activées par 100 μ l d'une solution contenant Tris HCl pH 8, 50 mM ; EDTA, 10 μ M et des concentrations de Ca²⁺ libres variables (concentrations libres finales après injection : 10⁻⁸ à 10⁻¹ M). Les mesures de 15 luminescence (luminomètre PhL, Mediators) ont été réalisées en mode cinétique (Fast kinetics, Interval 0.1-10 sec, kinetic points 60). La détermination des courbes de sensibilité calcique a été basée sur les valeurs initiales de luminescence des cinétiques 20 d'émission lumineuse.

C) Applications industrielles des mutants de la photoprotéine aequorine

25 **1) Détection *in vitro* de molécules organiques (acides nucléiques, protéines, antigènes etc.)**

Ces tests de détection sont basés sur l'immobilisation de la molécule à détecter et sur la fixation spécifique de la photoprotéine à cette molécule. L'immobilisation et la fixation spécifique sont réalisées par des moyens très divers en fonction du type de 30 molécule à détecter et du type d'échantillon à analyser. La quantité de la molécule à détecter dans l'échantillon est ensuite déterminée par activation de la photoprotéine fixée et mesure de la bioluminescence émise.

a) Détection d'acides nucléiques

La détection de séquences d'acides nucléiques peut être réalisée, soit après une étape d'amplification par PCR (ADN) ou RT-PCR (ARN) ou par toute autre technique d'amplification d'acides nucléiques, soit directement. Après immobilisation des molécules d'acides nucléiques ou de leurs produits d'amplification, les molécules sont détectées par hybridation d'une sonde. L'hybridation de la sonde est ensuite révélée grâce à une photoprotéine couplée directement à la sonde ou liée de façon subséquente à celle-ci. Les molécules d'acides nucléiques ou de leurs produits d'amplification sont quantifiées par l'intensité de la bioluminescence émise.

Les principales références bibliographiques décrivant de tels procédés sont les suivantes :

- 1- Lewis JC, Daunert S. Photoproteins as luminescent labels in binding assays. Fresenius J Anal Chem. 2000 Mar-Apr;366(6-7):760-8
- 2- Coombes BK, Mahony JB. Nucleic acid sequence based amplification (NASBA) of Chlamydia pneumoniae major outer membrane protein (ompA) mRNA with bioluminescent detection. Comb Chem High Throughput Screen. 2000 Aug;3(4):315-27.
- 3- Laios E, Ioannou PC, Christopoulos TK. Enzyme-amplified aequorin-based bioluminometric hybridization assays. Anal Chem. 2001 Feb 1;73(3):689-92.
- 4- Actor JK. Bioluminescent quantitation and detection of gene expression during infectious disease. Comb Chem High Throughput Screen. 2000 Aug;3(4):273-88.
- 5- White SR, Christopoulos TK. Signal amplification system for DNA hybridization assays based on in vitro expression of a DNA label encoding apoaequorin. Nucleic Acids Res. 1999 Oct 1;27(19):e25.
- 6- Guenthner PC, Hart CE. Quantitative, competitive PCR assay for HIV-1 using a microplate-based detection system. Biotechniques. 1998 May;24(5):810-6.

b) Détection de protéines ou d'antigènes

Après immobilisation, les protéines et antigènes sont détectés par association spécifique avec une sonde (association du type antigène-anticorps ou ligand-récepteur). La fixation de la sonde est ensuite révélée grâce à une photoprotéine couplée directement à la sonde ou liée de façon subséquente à celle-ci. Les molécules de protéines ou d'antigènes sont quantifiées par l'intensité de la bioluminescence émise.

Les principales références bibliographiques décrivant de tels procédés sont les suivantes :

1-Jackson RJ, Fujihashi K, Kiyono H, McGhee JR. Luminometry: a novel bioluminescent immunoassay enhances the quantitation of mucosal and systemic antibody responses. *J Immunol Methods*. 1996 Apr 19;190(2):189-97.

5 2-Mattox S, Walrath K, Ceiler D, Smith DF, Cummings RD. A solid-phase assay for the activity of CMPNeuAc:Gal beta 1-4GlcNAc-R alpha-2,6-sialyltransferase. *Anal Biochem*. 1992 Nov 1;206(2):430-6.

10

2) Détections d'activités enzymatiques

15

Des substrats protéiques composés en partie d'une photoprotéine (type protéine de fusion) peuvent permettre de mesurer des activités enzymatiques *in vitro* ou en systèmes cellulaires. Les activités enzymatiques détectables sont, par exemple, du type « modification de protéines » (protéases, kinases, glycosylases, etc.). Ce type de mesure peut servir au criblage de molécules activant ou inhibant une activité enzymatique spécifique (par exemple en référence 1, détection de l'activité de la protéase d'HIV-1).

20

Pour les mesures *in vitro*, le substrat protéique contenant la photoprotéine, ou l'échantillon à doser, sont immobilisés. L'activité enzymatique est ensuite quantifiée par l'intensité de la bioluminescence émise. Le même type de mesure peut être réalisé en systèmes cellulaires exprimant le gène correspondant au substrat protéique contenant la photoprotéine. Les activités enzymatiques cellulaires sont alors quantifiées par activation de la photoprotéine et mesure de l'intensité de la bioluminescence émise.

25

Un tel procédé est décrit notamment dans Deo SK, Lewis JC, Daunert S. Bioluminescence detection of proteolytic bond cleavage by using recombinant aequorin. *Anal Biochem*. 2000 May 15;281(1):87-94.

3) Détection des variations de calcium intracellulaire en systèmes cellulaires.

30

Les photoprotéines de type aequorine exprimées en lignées cellulaires (procaryotiques ou eucaryotiques) permettent de détecter les variations de calcium intracellulaire induites par divers agents. Les variations de calcium intracellulaire sont détectées par les variations correspondantes de la bioluminescence émise. L'application la plus courante utilise des lignées eucaryotes du type HEK 293 co-exprimant

l'aequorine et un récepteur de neurotransmetteur (récepteur-canal ou récepteur couplé à une protéine G) pour cibler des agents pharmacologiques ou des ligands naturels agissant sur le récepteur. Inversement, ces systèmes peuvent être utilisés pour cibler des banques d'ADN à la recherche des récepteurs activés par un agent pharmacologique ou un ligand naturel. Le cible est basé sur la variation de bioluminescence induite par l'application de l'agent pharmacologique ou du ligand naturel.

5 Les principales références bibliographiques décrivant de tels procédés sont les suivantes :

- 10 1- Button D, Brownstein M. Aequorin-expressing mammalian cell lines used to report Ca²⁺ mobilization. *Cell Calcium*. 1993 Oct;14(9):663-71.
- 2- Ungrin MD, Singh LM, Stocco R, Sas DE, Abramovitz M. An automated aequorin luminescence-based functional calcium assay for G-protein-coupled receptors. *Anal Biochem*. 1999 Jul 15;272(1):34-42.
- 15 3- Schaeffer MT, Cully D, Chou M, Liu J, Van der Ploeg LH, Fong TM. Use of bioluminescent aequorin for the pharmacological characterization of 5HT receptors. *J Recept Signal Transduct Res*. 1999 Nov;19(6):927-38.
- 4- George SE, Schaeffer MT, Cully D, Beer MS, McAllister G. A high-throughput glow-type aequorin assay for measuring receptor-mediated changes in intracellular calcium levels. *Anal Biochem*. 2000 Nov 15;286(2):231-7.
- 20 5- Parnot C, Bardin S, Miserey-Lenkei S, Guedin D, Corvol P, Clauser E. Systematic identification of mutations that constitutively activate the angiotensin II type 1A receptor by screening a randomly mutated cDNA library with an original pharmacological bioassay. *Proc Natl Acad Sci U S A*. 2000 Jun 20;97(13):7615-20.
- 25 6- Kotani M, Mollereau C, Detheux M, Le Poul E, Brezillon S, Vakili J, Mazarguil H, Vassart G, Zajac JM, Parmentier M. Functional characterization of a human receptor for neuropeptide FF and related peptides. *Br J Pharmacol*. 2001 May 1;133(1):138-144.

REVENDICATIONS

1. Utilisation de photoprotéines isolées de méduses pour la préparation de photoprotéines mutées ayant une thermostabilité supérieure à celle des photoprotéines dont elles dérivent, encore désignées photoprotéines mutées thermostables, et/ou par un temps de luminescence supérieur à celui des photoprotéines dont elles dérivent, encore désignées photoprotéines mutées persistantes, lesdites photoprotéines mutées étant caractérisées en ce que leur stabilité dans le temps est augmentée à 37°C d'un facteur d'au moins environ 10, et/ou en ce que leur temps de luminescence est augmenté d'un facteur d'au moins environ 10, par rapport aux photoprotéines dont elles dérivent

2. Procédé de préparation de photoprotéines mutées thermostables, et/ou persistantes, lesdites photoprotéines mutées étant caractérisées en ce que leur stabilité dans le temps est augmentée à 37°C d'un facteur d'au moins environ 10, et/ou en ce que leur temps de luminescence est augmenté d'un facteur d'au moins environ 10, par rapport aux photoprotéines de méduse dont elles dérivent, caractérisé en ce qu'il comprend la mise en œuvre d'une ou plusieurs mutations desdites photoprotéines de méduse, lesdites mutations étant choisies parmi :

* au moins une des trois mutations augmentant la thermostabilité desdites photoprotéines, et choisie parmi les suivantes :

- suppression de la lysine (K) contenue dans le motif RHKX₁MFX₂ dans lequel X₁=H ou F, et X₂= N ou D, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de cette lysine par un acide aminé naturel ou non, notamment substitution de cette lysine par une arginine,

- suppression de la glutamine (Q) contenue dans le motif DEMTRQHLGFWY, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de cette glutamine par un acide aminé naturel ou non, notamment substitution de cette glutamine par une arginine,

- suppression de la leucine (L) contenue dans le motif DEMTRQHLGFWY susmentionné, ou substitution de cette leucine par un acide aminé naturel ou non, notamment substitution de cette leucine par une isoleucine,

* et/ou au moins une des six mutations augmentant le temps de luminescence desdites photoprotéines, et choisie parmi les suivantes :

- suppression du glutamate (E) contenu dans le motif $DX_1NX_2X_3GX_4IX_5LX_6E$ dans lequel $X_1=V$ ou I , $X_2=H$, G ou S , $X_3=N$ ou D , $X_4=K$ ou Q , $X_5=S$, T ou N , et $X_6=D$ ou N , ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de ce glutamate par un acide aminé naturel ou non, notamment substitution de ce glutamate par un acide aminé de petite taille tel que la glycine, lalanine, la cystéine, ou la thréonine,

- suppression du premier aspartate (D) contenu dans le motif $DKDX_1X_2GX_3X_4X_5LDE$ dans lequel $X_1=Q$, G ou R , $X_2=N$ ou S , $X_3=A$, S ou T , $X_4=I$ ou V , et $X_5=T$ ou S , ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de cet aspartate par un acide aminé naturel ou non, notamment substitution de cet aspartate par un acide aminé de petite taille tel que la glycine, lalanine, la cystéine, ou la thréonine,

- suppression du glutamate (E) contenu dans le motif $DKDX_1X_2GX_3X_4X_5LDE$ susmentionné, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de ce glutamate par un acide aminé naturel ou non, notamment substitution de ce glutamate par un acide aminé de petite taille tel que la glycine, lalanine, la cystéine, ou la thréonine,

- suppression de la phénylalanine (F) contenue dans le motif $EX_1TFX_2X_3$ dans lequel $X_1=E$, K ou A , $X_2=R$, K ou A , et $X_3=V$ ou H , ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de cette phénylalanine par un acide aminé naturel ou non, notamment substitution de cette phénylalanine par une sérine, ou par un acide aminé de petite taille tel que la glycine, lalanine, la cystéine, ou la thréonine,

- suppression du premier aspartate (D) contenu dans le motif $DX_1DX_2X_3GX_4LDVDE$, dans lequel $X_1=I$ ou L , $X_2=E$, N ou G , $X_3=S$ ou D , et $X_4=Q$, K ou D , ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de cet aspartate par un acide aminé naturel ou non, notamment substitution de cet aspartate par un acide aminé de petite taille tel que la glycine, lalanine, la cystéine, ou la thréonine,

- suppression de la valine en position 54 de la séquence peptidique SEQ ID NO : 2 de laequorine, ou substitution de cette valine par un acide aminé naturel ou non, notamment substitution de cette valine par une alanine, ou par un acide aminé de petite taille tel que la glycine, lalanine, la cystéine, ou la thréonine.

3. Photoprotéines mutées dérivées des photoprotéines isolées de méduses, caractérisées en ce que leur stabilité dans le temps est augmentée à 37°C d'un facteur d'au moins environ 10, et/ou en ce que leur temps de luminescence est augmenté d'un facteur d'au moins environ 10, par rapport aux photoprotéines dont elles dérivent.

5

4. Photoprotéines mutées selon la revendication 3, caractérisées en ce qu'elles sont stables pendant au moins environ 30 minutes jusqu'à la température d'environ 50°C, et en ce qu'elles peuvent être conservées pendant au moins environ 4 jours à des températures pouvant atteindre jusqu'à 37°C, et/ou en ce que leur temps de luminescence est compris entre environ 1 min et environ 5 min.

10

5. Photoprotéines mutées selon l'une des revendications 3 ou 4, caractérisées en ce qu'elles comprennent

15

* au moins une des trois mutations augmentant leur thermostabilité, choisie parmi les suivantes :

- suppression de la lysine (K) contenue dans le motif RHKX₁MFX₂ dans lequel X₁=H ou F, et X₂= N ou D, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de cette lysine par un acide aminé naturel ou non, notamment substitution de cette lysine par une arginine,

20

- suppression de la glutamine (Q) contenue dans le motif DEMTRQHLGFWY, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de cette glutamine par un acide aminé naturel ou non, notamment substitution de cette glutamine par une arginine,

25

- suppression de la leucine (L) contenue dans le motif DEMTRQHLGFWY susmentionné, ou substitution de cette leucine par un acide aminé naturel ou non, notamment substitution de cette leucine par une isoleucine,

* et/ou au moins une des six mutations augmentant leur temps de luminescence, choisie parmi les suivantes :

30

- suppression du glutamate (E) contenu dans le motif DX₁NX₂X₃GX₄IX₅LX₆E dans lequel X₁=V ou I, X₂=H, G ou S, X₃=N ou D, X₄=K ou Q, X₅=S, T ou N, et X₆=D ou N, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de ce glutamate par un acide aminé naturel ou non, à l'exclusion de la sérine, notamment substitution de ce glutamate par un acide aminé de petite taille tel que la glycine, lalanine, la cystéine, ou la thréonine,

- suppression du premier aspartate (D) contenu dans le motif DKDX₁X₂GX₃X₄X₅LDE dans lequel X₁=Q, G ou R, X₂=N ou S, X₃=A, S ou T, X₄=I ou V, et X₅=T ou S, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de cet aspartate par un acide aminé naturel ou non, à l'exclusion de la 5 sérine, notamment substitution de cet aspartate par un acide aminé de petite taille tel que la glycine, l'alanine, la cystéine, ou la thréonine,

- suppression du glutamate (E) contenu dans le motif DKDX₁X₂GX₃X₄X₅LDE susmentionné, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de ce glutamate par un acide aminé naturel ou non, à l'exclusion de la 10 sérine, notamment substitution de ce glutamate par un acide aminé de petite taille tel que la glycine, l'alanine, la cystéine; ou la thréonine,

- suppression de la phénylalanine (F) contenue dans le motif EX₁TFX₂X₃ dans lequel X₁=E, K ou A, X₂=R, K ou A, et X₃=V ou H, ce motif peptidique étant conservé 15 chez lesdites photoprotéines, ou substitution de cette phénylalanine par un acide aminé naturel ou non, notamment substitution de cette phénylalanine par une sérine, ou par un acide aminé de petite taille tel que la glycine, l'alanine, la cystéine, ou la thréonine,

- suppression du premier aspartate (D) contenu dans le motif DX₁DX₂X₃GX₄LDVDE, dans lequel X₁=I ou L, X₂=E, N ou G, X₃=S ou D, et X₄=Q, K ou D, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de 20 cet aspartate par un acide aminé naturel ou non, à l'exclusion de la sérine, notamment substitution de cet aspartate par un acide aminé de petite taille tel que la glycine, l'alanine, la cystéine, ou la thréonine,

- suppression de la valine en position 54 de la séquence peptidique SEQ ID NO : 2 de l'aequorine, ou substitution de cette valine par un acide aminé naturel ou non, 25 notamment substitution de cette valine par une alanine, ou par un acide aminé de petite taille tel que la glycine, l'alanine, la cystéine, ou la thréonine.

6. Photoprotéines mutées thermostables selon l'une des revendications 3 à 5, caractérisées en ce qu'elles comprennent au moins une des deux mutations suivantes :

- suppression de la glutamine contenue dans le motif DEMTRQHLGFWY, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de cette glutamine par un acide aminé naturel ou non, notamment substitution de cette glutamine 30 par une arginine,

- suppression de la leucine contenue dans le motif DEMTRQHLGFWY susmentionné, ou substitution de cette leucine par un acide aminé naturel ou non, notamment substitution de cette leucine par une isoleucine.

5 7. Photoprotéines mutées persistantes selon l'une des revendications 3 à 5, caractérisées en ce qu'elles comprennent au moins une des mutations suivantes :

10 - suppression du premier aspartate (D) contenu dans le motif DKDX₁X₂GX₃X₄X₅LDE dans lequel X₁=Q, G ou R, X₂=N ou S, X₃=A, S ou T, X₄=I ou V, et X₅=T ou S, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de cet aspartate par un acide aminé naturel ou non, à l'exclusion de la sérine, notamment substitution de cet aspartate par un acide aminé de petite taille tel que la glycine, lalanine, la cystéine, ou la thréonine,

15 - suppression du glutamate (E) contenu dans le motif DKDX₁X₂GX₃X₄X₅LDE susmentionné, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de ce glutamate par un acide aminé naturel ou non, à l'exclusion de la sérine, notamment substitution de ce glutamate par un acide aminé de petite taille tel que la glycine, lalanine, la cystéine, ou la thréonine,

20 - suppression du premier aspartate (D) contenu dans le motif DX₁DX₂X₃GX₄LDVDE, dans lequel X₁=I ou L, X₂=E, N ou G, X₃=S ou D, et X₄=Q, K ou D, ce motif peptidique étant conservé chez lesdites photoprotéines, ou substitution de cet aspartate par un acide aminé naturel ou non, à l'exclusion de la sérine, notamment substitution de cet aspartate par un acide aminé de petite taille tel que la glycine, lalanine, la cystéine, ou la thréonine.

25 8. Photoprotéines mutées selon l'une des revendications 3 à 7, caractérisées en ce qu'elles dérivent de l'aequorine (SEQ ID NO : 2), de la clytine (SEQ ID NO : 18), de la mitrocomine (SEQ ID NO : 34), et de l'obéline (SEQ ID NO : 50).

30 9. Photoprotéines mutées thermostables selon la revendication 8, choisies parmi :

 - les protéines dérivées de l'aequorine comprenant les séquences suivantes : SEQ ID NO : 4, 6, 8, 10, 12, 14, 16,
 - les protéines dérivées de la clytine comprenant les séquences suivantes : SEQ ID NO : 20, 22, 24, 26, 28, 30, 32,

- les protéines de la mitrocomine comprenant les séquences suivantes : SEQ ID NO : 36, 38, 40, 42, 44, 46, 48,
- les protéines dérivées de l'obéline comprenant les séquences suivantes : SEQ ID NO : 52, 54, 56, 58, 60, 62, 64.

5

10. Photoprotéines mutées persistantes selon la revendication 8, choisies parmi :

- les protéines dérivées de l'aequorine comprenant les séquences suivantes : SEQ ID NO : 66, 68, 70, 72, 74, 76,
- les protéines dérivées de la clytine comprenant les séquences suivantes : SEQ ID NO : 78, 80, 82, 84, et 86,
- les protéines de la mitrocomine comprenant les séquences suivantes : SEQ ID NO : 88, 90, 92, 94, et 96,
- les protéines dérivées de l'obéline comprenant les séquences suivantes : SEQ ID NO : 98, 100, 102, 104, et 106.

10

11. Photoprotéines mutées thermostables et persistantes selon la revendication 8, choisies parmi :

- les protéines dérivées de l'aequorine de séquences SEQ ID NO : 107, 108, 109, 110, 111, 112, 113, et correspondant aux séquences SEQ ID NO : 4, 6, 8, 10, 12, 14, 16, dans lesquelles E en position 45 est remplacé par G, et/ou V en position 54 est remplacé par A, et/ou D en position 127 est remplacé par G, et/ou E en position 138 est remplacé par G, et/ou F en position 159 est remplacé par S, et/ou D en position 163 est remplacé par G,
- les protéines dérivées de la clytine de séquences SEQ ID NO : 114, 115, 116, 117, 118, 119, 120, et correspondant aux séquences suivantes : SEQ ID NO : 20, 22, 24, 26, 28, 30, 32, dans lesquelles E en position 44 est remplacé par G, et/ou D en position 126 est remplacé par G, et/ou E en position 137 est remplacé par G, et/ou F en position 158 est remplacé par S, et/ou D en position 162 est remplacé par G,
- les protéines de la mitrocomine de séquences SEQ ID NO : 121, 122, 123, 124, 125, 126, 127, et correspondant aux séquences suivantes : SEQ ID NO : 36, 38, 40, 42, 44, 46, 48, dans lesquelles E en position 43 est remplacé par G, et/ou D en position 125 est remplacé par G, et/ou E en position 136 est remplacé par G, et/ou F en position 157 est remplacé par S, et/ou D en position 161 est remplacé par G,

15

20

25

30

5 - les protéines dérivées de l'obéline de séquences SEQ ID NO : 128, 129, 130, 131, 132, 133, 134, et correspondant aux séquences suivantes : SEQ ID NO : 52, 54, 56, 58, 60, 62, 64, dans lesquelles E en position 41 est remplacé par G, et/ou D en position 123 est remplacé par G, et/ou E en position 134 est remplacé par G, et/ou F en position 155 est remplacé par S, et/ou D en position 159 est remplacé par G.

12. Photoprotéines mutées selon l'une des revendications 1 à 11, caractérisées en ce qu'elles sont liées :

- 10 - à une sonde protéique ou nucléique susceptible de reconnaître des antigènes ou protéines ou acides nucléiques déterminés,
- ou à un substrat spécifique d'une activité enzymatique déterminée,
- ou à une molécule susceptible de former un complexe avec une autre molécule, tel que le complexe avidine-biotine.

15 13. Séquences nucléotidiques codant pour les photoprotéines mutées selon l'une des revendications 3 à 12.

20 14. Séquences nucléotidiques selon la revendication 13, codant pour les photoprotéines mutées selon les revendications 9 à 11, choisies parmi les acides nucléiques comprenant les séquences SEQ ID NO : 3, 5, 7, 9, 11, 13, 15, 19, 21, 23, 25, 27, 29, 31, 35, 37, 39, 41, 43, 45, 47, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, ou toute séquence nucléotidique dérivée par dégénérescence du code génétique des séquences susmentionnées et codant pour les photoprotéines mutées selon les revendications 9 à 11.

25 15. Vecteur, tel qu'un plasmide, contenant une séquence recombinante comprenant une séquence nucléotidique selon la revendication 13 ou 14.

30 16. Cellules hôtes, telles que cellules procaryotes, notamment *E. coli*, ou eucaryotes, notamment les lignées HEK 293, ou CHO, transformées par un vecteur selon la revendication 15.

17. Procédé de préparation de photoprotéines mutées selon l'une des revendications 3 à 12, caractérisé en ce qu'il comprend l'utilisation d'un vecteur selon la revendication 15 capable de produire lesdites photoprotéines, ou la transformation de cellules hôtes appropriées à l'aide d'un vecteur susmentionné, la mise en culture de cellules hôtes transformées selon la revendication 16 ainsi obtenues dans un milieu approprié, et la récupération, le cas échéant après purification, des photoprotéines mutées produites par ces cellules.

18. Utilisation de photoprotéines mutées selon l'une des revendications 3 à 12, ou de cellules hôtes transformées selon la revendication 16 exprimant lesdites photoprotéines mutées, dans le cadre de la mise en œuvre :

- de procédés de détection *in vitro* de molécules, tels que des protéines ou antigènes ou des acides nucléiques dans un échantillon biologique, notamment dans le cadre du dépistage *in vitro* de bactéries telles que les *Listeria* dans les aliments, ou dans le cadre du dépistage d'agents pathogènes tels que le virus VIH chez l'homme,
- de procédés de détection de composés à activité enzymatique dans un échantillon biologique, notamment dans le cadre du criblage de molécules activant ou inhibant une activité enzymatique spécifique,
- de procédés de détection des variations de calcium intracellulaire induites par divers agents, notamment dans le cadre du criblage de molécules agissant sur une séquence nucléique ou protéique fusionnée à la photoprotéine mutée, ou coexprimée avec la photoprotéine mutée dans des cellules hôtes susmentionnées.

19. Procédés de détection *in vitro* de protéines ou antigènes ou d'acides nucléiques dans un échantillon biologique, tels que définis dans la revendication 18, caractérisés en ce qu'ils comprennent principalement les étapes suivantes :

- le cas échéant, une étape d'amplification du nombre d'acides nucléiques présents dans l'échantillon biologique,
- immobilisation des protéines ou antigènes ou acides nucléiques sur un support approprié, puis addition d'une sonde spécifique desdits protéines ou antigènes ou acides nucléiques et rinçage, ladite sonde étant liée à une photoprotéine selon la revendication 12, ou ladite photoprotéine étant additionnée sur le support avec les réactifs appropriés pour sa liaison à ladite sonde,
- mesure de l'intensité de la bioluminescence émise après l'étape de rinçage.

20. Procédés de détection *in vitro* de composés à activité enzymatique dans un échantillon biologique tels que définis dans la revendication 18, caractérisés en ce qu'ils comprennent principalement les étapes suivantes :

5 - immobilisation sur un support approprié d'un substrat protéique spécifique de l'activité enzymatique à détecter, ce substrat étant lié à une photoprotéine selon la revendication 12, addition de l'échantillon biologique, puis rinçage,

10 - ou immobilisation sur un support approprié des composés de l'échantillon biologique, addition du substrat protéique lié à une photoprotéine selon la revendication 12, puis rinçage,

- mesure de l'intensité de la bioluminescence émise après l'étape de rinçage.

21. Procédés de détection *in vitro* des variations de calcium intracellulaire induites par divers agents tels que définis dans la revendication 18, caractérisés en ce qu'il comprend la mise en culture de cellules transformées selon la revendication 16, avec l'échantillon contenant les molécules à détecter, et la mesure de la variation de bioluminescence.

22. Procédés selon l'une des revendications 19 à 21, caractérisés en ce qu'ils peuvent être effectués jusqu'à des températures d'environ 50 °C, à l'aide de photoprotéines thermostables, et, le cas échéant, persistantes, selon l'une des revendications 3 à 12.

23. Procédés selon l'une des revendications 19 à 22, caractérisés en ce qu'ils peuvent être effectués en simultanés sur échantillons multiples, à l'aide de photoprotéines persistantes, et, le cas échéant, thermostables, selon l'une des revendications 3 à 12.

24. Kits pour la mise en œuvre de procédés selon l'une des revendications 19 à 23, caractérisés en ce qu'ils comprennent des photoprotéines mutées selon l'une des revendications 3 à 12, le cas échéant en association avec des réactifs nécessaires à la mise en œuvre desdits procédés.

25. Kits selon la revendication 24, caractérisés en ce qu'ils peuvent être conservés en solutions prêtes à l'emploi, notamment pendant au moins 4 jours à des températures ambiantes d'environ 20°C et pouvant atteindre jusqu'à environ 37°C, lorsqu'ils contiennent des photoprotéines thermostables, et, le cas échéant, persistantes, selon 5 l'une des revendications 3 à 12.

SEQUENCE LISTING

<110> CNRS
<120> PHOTOPROTEINES MUTEES ET LEURS APPLICATIONS
<130> IFB 01 AJ CNR MEDU
<140> FR 01 09293
<141> 2001-07-12
<160> 134
<170> PatentIn version 3.1

<210> 1
<211> 600
<212> DNA
<213> Aequorea victoria
<220>
<221> CDS
<222> (1)...(600)
<223>

<400> 1
atg ctt tat gat gtt cct gat tat gct agc ctc aaa ctt aca tca gac 48
Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp
1 5 10 15

ttc gac aac cca aga tgg att gga cga cac aag cat atg ttc aat ttc 96
Phe Asp Asn Pro Arg Trp Ile Gly Arg His Lys His Met Phe Asn Phe
20 25 30

ctt gat gtc aac cac aat gga aaa atc tct ctt gac gag atg gtc tac 144
Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Glu Met Val Tyr
35 40 45

aag gca tct gat att gtc atc aat aac ctt gga gca aca cct gag caa 192
Lys Ala Ser Asp Ile Val Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln
50 55 60

gcc aaa cga cac aaa gat gct gta gaa gcc ttc ttc gga gga gct gga 240
Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly
65 70 75 80

atg aaa tat ggt gtg gaa act gat tgg cct gca tat att gaa gga tgg 288
Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp
85 90 95

aaa aaa ttg gct act gat gaa ttg gag aaa tac gcc aaa aac gaa cca 336
Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro
100 105 110

acg ctc atc cgt ata tgg ggt gat gct ttg ttt gat atc gtt gac aaa		384	
Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Asp Lys			
115	120	125	
gat caa aat gga gcc att aca ctg gat gaa tgg aaa gca tac acc aaa		432	
Asp Gln Asn Gly Ala Ile Thr Leu Asp Glu Trp Lys Ala Tyr Thr Lys			
130	135	140	
gct gct ggt atc atc caa tca tca gaa gat tgc gag gaa aca ttc aga		480	
Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Phe Arg			
145	150	155	160
gtg tgc gat att gat gaa agt gga caa ctc gat gtt gat gag atg aca		528	
Val Cys Asp Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr			
165	170	175	
aga caa cat tta gga ttt tgg tac acc atg gat cct gct tgc gaa aag		576	
Arg Gln His Leu Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys			
180	185	190	
ctc tac ggt gga gct gtc ccc taa		600	
Leu Tyr Gly Ala Val Pro			
195			
<210> 2			
<211> 199			
<212> PRT			
<213> Aequorea victoria			
<400> 2			
Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp			
1	5	10	15
Phe Asp Asn Pro Arg Trp Ile Gly Arg His Lys His Met Phe Asn Phe			
20	25	30	
Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Glu Met Val Tyr			
35	40	45	
Lys Ala Ser Asp Ile Val Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln			
50	55	60	
Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly			
65	70	75	80
Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp			
85	90	95	
Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro			
100	105	110	
Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Asp Lys			
115	120	125	

Asp Gln Asn Gly Ala Ile Thr Leu Asp Glu Trp Lys Ala Tyr Thr Lys
 130 135 140

Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Phe Arg
 145 150 155 160

Val Cys Asp Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr
 165 170 175

Arg Gln His Leu Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys
 180 185 190

Leu Tyr Gly Gly Ala Val Pro
 195

<210> 3

<211> 600

<212> DNA

<213> séquence dérivée par mutation de l'aequorine

<220>

<221> CDS

<222> (1)...(600)

<223>

<400> 3
 atg ctt tat gat gtt cct gat tat gct agc ctc aaa ctt aca tca gac 48
 Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp
 1 5 10 15

ttc gac aac cca aga tgg att gga cga cac agg cat atg ttc aat ttc 96
 Phe Asp Asn Pro Arg Trp Ile Gly Arg His Arg His Met Phe Asn Phe
 20 25 30

ctt gat gtc aac cac aat gga aaa atc tct ctt gac gag atg gtc tac 144
 Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Glu Met Val Tyr
 35 40 45

aag gca tct gat att gtc atc aat aac ctt gga gca aca cct gag caa 192
 Lys Ala Ser Asp Ile Val Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln
 50 55 60

gcc aaa cga cac aaa gat gct gta gaa gcc ttc ttc gga gga gct gga 240
 Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly
 65 70 75 80

atg aaa tat ggt gtg gaa act gat tgg cct gca tat att gaa gga tgg 288
 Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp
 85 90 95

aaa aaa ttg gct act gat gaa ttg gag aaa tac gcc aaa aac gaa cca 336
 Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro
 100 105 110

acg ctc atc cgt ata tgg ggt gat gct ttg ttt gat atc gtt gac aaa Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Asp Lys 115 120 125	384
gat caa aat gga gcc att aca ctg gat gaa tgg aaa gca tac acc aaa Asp Gln Asn Gly Ala Ile Thr Leu Asp Glu Trp Lys Ala Tyr Thr Lys 130 135 140	432
gct gct ggt atc atc caa tca tca gaa gat tgc gag gaa aca ttc aga Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Thr Phe Arg 145 150 155 160	480
gtg tgc gat att gat gaa agt gga caa ctc gat gtt gat gag atg aca Val Cys Asp Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr 165 170 175	528
aga caa cat tta gga ttt tgg tac acc atg gat cct gct tgc gaa aag Arg Gln His Leu Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys 180 185 190	576
ctc tac ggt gga gct gtc ccc taa Leu Tyr Gly Gly Ala Val Pro 195	600
 <210> 4	
<211> 199	
<212> PRT	
<213> séquence dérivée par mutation de l'aequorine	
 <400> 4	
Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp 1 5 10 15	
Phe Asp Asn Pro Arg Trp Ile Gly Arg His Arg His Met Phe Asn Phe 20 25 30	
Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Glu Met Val Tyr 35 40 45	
Lys Ala Ser Asp Ile Val Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln 50 55 60	
Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly 65 70 75 80	
Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp 85 90 95	
Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro 100 105 110	
Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Asp Lys 115 120 125	
Asp Gln Asn Gly Ala Ile Thr Leu Asp Glu Trp Lys Ala Tyr Thr Lys 130 135 140	

Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Phe Arg
 145 150 155 160

Val Cys Asp Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr
 165 170 175

Arg Gln His Leu Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys
 180 185 190

Leu Tyr Gly Gly Ala Val Pro
 195

<210> 5

<211> 600

<212> DNA

<213> séquence dérivée par mutation de l'aequorine

<220>

<221> CDS

<222> (1)...(600)

<223>

<400> 5

atg ctt tat gat gtt cct gat tat gct agc ctc aaa ctt aca tca gac 48
 Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp
 1 5 10 15

tgc gac aac cca aga tgg att gga cga cac aag cat atg ttc aat ttc 96
 Phe Asp Asn Pro Arg Trp Ile Gly Arg His Lys His Met Phe Asn Phe
 20 25 30

ctt gat gtc aac cac aat gga aaa atc tct ctt gac gag atg gtc tac 144
 Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Glu Met Val Tyr
 35 40 45

aag gca tct gat att gtc atc aat aac ctt gga gca aca cct gag caa 192
 Lys Ala Ser Asp Ile Val Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln
 50 55 60

gcc aaa cga cac aaa gat gct gta gaa gcc ttc ttc gga gga gct gga 240
 Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly
 65 70 75 80

atg aaa tat ggt gtg gaa act gat tgg cct gca tat att gaa gga tgg 288
 Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp
 85 90 95

aaa aaa ttg gct act gat gaa ttg gag aaa tac gcc aaa aac gaa cca 336
 Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro
 100 105 110

acg ctc atc cgt ata tgg ggt gat gct ttg ttt gat atc gtt gac aaa 384
 Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Asp Lys
 115 120 125

gat caa aat gga gcc att aca ctg gat gaa tgg aaa gca tac acc aaa	432
Asp Gln Asn Gly Ala Ile Thr Leu Asp Glu Trp Lys Ala Tyr Thr Lys	
130 135 140	
gct gct ggt atc atc caa tca tca gaa gat tgc gag gaa aca ttc aga	480
Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Phe Arg	
145 150 155 160	
gtg tgc gat att gat gaa agt gga caa ctc gat gtt gat gag atg aca	528
Val Cys Asp Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr	
165 170 175	
aga cga cat tta gga ttt tgg tac acc atg gat cct gct tgc gaa aag	576
Arg Arg His Leu Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys	
180 185 190	
ctc tac ggt gga gct gtc ccc taa	600
Leu Tyr Gly Gly Ala Val Pro	
195	

<210> 6

<211> 199

<212> PRT

<213> séquence dérivée par mutation de l'aequorine

<400> 6

Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp	
1 5 10 15	

Phe Asp Asn Pro Arg Trp Ile Gly Arg His Lys His Met Phe Asn Phe	
20 25 30	

Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Glu Met Val Tyr	
35 40 45	

Lys Ala Ser Asp Ile Val Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln	
50 55 60	

Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly	
65 70 75 80	

Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp	
85 90 95	

Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro	
100 105 110	

Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Asp Lys	
115 120 125	

Asp Gln Asn Gly Ala Ile Thr Leu Asp Glu Trp Lys Ala Tyr Thr Lys	
130 135 140	

Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Phe Arg	
145 150 155 160	

Val Cys Asp Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr
 165 170 175

Arg Arg His Leu Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys
 180 185 190

Leu Tyr Gly Gly Ala Val Pro
 195

<210> 7

<211> 600

<212> DNA

<213> séquence dérivée par mutation de l'aequorine

<220>

<221> CDS

<222> (1)...(600)

<223>

<400> 7
 atg ctt tat gat gtt cct gat tat gct agc ctc aaa ctt aca tca gac 48
 Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp
 1 5 10 15

tgc gac aac cca aga tgg att gga cga cac aag cat atg ttc aat ttc 96
 Phe Asp Asn Pro Arg Trp Ile Gly Arg His Lys His Met Phe Asn Phe
 20 25 30

ctt gat gtc aac cac aat gga aaa atc tct ctt gac gag atg gtc tac 144
 Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Glu Met Val Tyr
 35 40 45

aag gca tct gat att gtc atc aat aac ctt gga gca aca cct gag caa 192
 Lys Ala Ser Asp Ile Val Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln
 50 55 60

gcc aaa cga cac aaa gat gct gta gaa gcc ttc ttc gga gga gct gga 240
 Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly
 65 70 75 80

atg aaa tat ggt gtg gaa act gat tgg cct gca tat att gaa gga tgg 288
 Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp
 85 90 95

aaa aaa ttg gct act gat gaa ttg gag aaa tac gcc aaa aac gaa cca 336
 Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro
 100 105 110

acg ctc atc cgt ata tgg ggt gat gct ttg ttt gat atc gtt gac aaa 384
 Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Asp Lys
 115 120 125

gat caa aat gga gcc att aca ctg gat gaa tgg aaa gca tac acc aaa 432
 Asp Gln Asn Gly Ala Ile Thr Leu Asp Glu Trp Lys Ala Tyr Thr Lys
 130 135 140

gct gct ggt atc atc caa tca tca gaa gat tgc gag gaa aca ttc aga 480
 Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Phe Arg
 145 150 155 160

gtg tgc gat att gat gaa agt gga caa ctc gat gtt gat gag atg aca
 Val Cys Asp Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr
 165 170 175

```

    aga caa cat ata gga ttt tgg tac acc atg gat cct gct tgc gaa aag      576
    Arg Gln His Ile Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys
    180          185          190

```

ctc tac ggt gga gct gtc ccc taa 600
Leu Tyr Gly Gly Ala Val Pro
195

<210> 8

<211> 199

<212> PRT

<213> séquence dérivée par mutation de l'aequorine

<400> 8

Met	Leu	Tyr	Asp	Val	Pro	Asp	Tyr	Ala	Ser	Leu	Lys	Leu	Thr	Ser	Asp
1				5					10					15	

Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Glu Met Val Tyr
35 40 45

Lys Ala Ser Asp Ile Val Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln
50 55 60

Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly
65 70 75 80

Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp
85 90 95

Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro
100 105 110

Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Asp Lys
115 120 125

Asp Gln Asn Gly Ala Ile Thr Leu Asp Glu Trp Lys Ala Tyr Thr Lys
130 135 140

Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Phe Arg
145 150 155 160

Val Cys Asp Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr
 165 170 175

Arg Gln His Ile Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys
 180 185 190

Leu Tyr Gly Gly Ala Val Pro
 195

<210> 9

<211> 600

<212> DNA

<213> séquence dérivée par mutation de l'aequorine

<220>

<221> CDS

<222> (1)...(600)

<223>

<400> 9
 atg ctt tat gat gtt cct gat tat gct agc ctc aaa ctt aca tca gac 48
 Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp
 1 5 10 15

ttc gac aac cca aga tgg att gga cga cac agg cat atg ttc aat ttc 96
 Phe Asp Asn Pro Arg Trp Ile Gly Arg His Arg His Met Phe Asn Phe
 20 25 30

ctt gat gtc aac cac aat gga aaa atc tct ctt gac gag atg gtc tac 144
 Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Glu Met Val Tyr
 35 40 45

aag gca tct gat att gtc atc aat aac ctt gga gca aca cct gag caa 192
 Lys Ala Ser Asp Ile Val Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln
 50 55 60

gcc aaa cga cac aaa gat gct gta gaa gcc ttc ttc gga gga gct gga 240
 Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly
 65 70 75 80

atg aaa tat ggt gtg gaa act gat tgg cct gca tat att gaa gga tgg 288
 Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp
 85 90 95

aaa aaa ttg gct act gat gaa ttg gag aaa tac gcc aaa aac gaa cca 336
 Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro
 100 105 110

acg ctc atc cgt ata tgg ggt gat gct ttg ttt gat atc gtt gac aaa 384
 Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Asp Lys
 115 120 125

gat caa aat gga gcc att aca ctg gat gaa tgg aaa gca tac acc aaa 432
 Asp Gln Asn Gly Ala Ile Thr Leu Asp Glu Trp Lys Ala Tyr Thr Lys
 130 135 140

gct gct ggt atc atc caa tca tca gaa gat tgc gag gaa aca ttc aga	480
Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Phe Arg	
145 150 155 160	
gtg tgc gat att gat gaa agt gga caa ctc gat gtt gat gag atg aca	528
Val Cys Asp Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr	
165 170 175	
aga cga cat tta gga ttt tgg tac acc atg gat cct gct tgc gaa aag	576
Arg Arg His Leu Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys	
180 185 190	
ctc tac ggt gga gct gtc ccc taa	600
Leu Tyr Gly Gly Ala Val Pro	
195	

<210> 10

<211> 199

<212> PRT

<213> séquence dérivée par mutation de l'aequorine

<400> 10

Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp	
1 5 10 15	

Phe Asp Asn Pro Arg Trp Ile Gly Arg His Arg His Met Phe Asn Phe	
20 25 30	

Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Glu Met Val Tyr	
35 40 45	

Lys Ala Ser Asp Ile Val Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln	
50 55 60	

Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly	
65 70 75 80	

Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp	
85 90 95	

Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro	
100 105 110	

Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Asp Lys	
115 120 125	

Asp Gln Asn Gly Ala Ile Thr Leu Asp Glu Trp Lys Ala Tyr Thr Lys	
130 135 140	

Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Phe Arg	
145 150 155 160	

Val Cys Asp Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr	
165 170 175	

Arg Arg His Leu Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys
 180 185 190

Leu Tyr Gly Gly Ala Val Pro
 195

<210> 11

<211> 600

<212> DNA

<213> séquence dérivée par mutation de l'aequorine

<220>

<221> CDS

<222> (1)..(600)

<223>

<400> 11
 atg ctt tat gat gtt cct gat tat gct agc ctc aaa ctt aca tca gac 48
 Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp
 1 5 10 15

ttc gac aac cca aga tgg att gga cga cac agg cat atg ttc aat ttc 96
 Phe Asp Asn Pro Arg Trp Ile Gly Arg His Arg His Met Phe Asn Phe
 20 25 30

ctt gat gtc aac cac aat gga aaa atc tct ctt gac gag atg gtc tac 144
 Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Glu Met Val Tyr
 35 40 45

aag gca tct gat att gtc atc aat aac ctt gga gca aca cct gag caa 192
 Lys Ala Ser Asp Ile Val Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln
 50 55 60

gcc aaa cga cac aaa gat gct gta gaa gcc ttc ttc gga gga gct gga 240
 Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly
 65 70 75 80

atg aaa tat ggt gtg gaa act gat tgg cct gca tat att gaa gga tgg 288
 Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp
 85 90 95

aaa aaa ttg gct act gat gaa ttg gag aaa tac gcc aaa aac gaa cca 336
 Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro
 100 105 110

acg ctc atc cgt ata tgg ggt gat gct ttg ttt gat atc gtt gac aaa 384
 Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Asp Lys
 115 120 125

gat caa aat gga gcc att aca ctg gat gaa tgg aaa gca tac acc aaa 432
 Asp Gln Asn Gly Ala Ile Thr Leu Asp Glu Trp Lys Ala Tyr Thr Lys
 130 135 140

gct gct ggt atc atc caa tca tca gaa gat tgc gag gaa aca ttc aga	480
Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Phe Arg	
145 150 155 160	
gtg tgc gat att gat gaa agt gga caa ctc gat gtt gat gag atg aca	528
Val Cys Asp Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr	
165 170 175	
aga caa cat ata gga ttt tgg tac acc atg gat cct gct tgc gaa aag	576
Arg Gln His Ile Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys	
180 185 190	
ctc tac ggt gga gct gtc ccc taa	600
Leu Tyr Gly Gly Ala Val Pro	
195	

<210> 12

<211> 199

<212> PRT

<213> séquence dérivée par mutation de l'aequorine

<400> 12

Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp
1 5 10 15

Phe Asp Asn Pro Arg Trp Ile Gly Arg His Arg His Met Phe Asn Phe
20 25 30

Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Glu Met Val Tyr
35 40 45

Lys Ala Ser Asp Ile Val Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln
 50 55 60

Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly
65 70 75 80

Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp
85 90 . 95

Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro
100 105 110

Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Asp Lys
115 120 125

Asp Gln Asn Gly Ala Ile Thr Leu Asp Glu Trp Lys Ala Tyr Thr Lys
130 135 140

Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Phe Arg
145 150 155 160

Val Cys Asp Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr
165 170 175

Arg Gln His Ile Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys
180 185 190

Leu Tyr Gly Gly Ala Val Pro
195

<210> 13

<211> 600

<212> DNA

<213> séquence dérivée par mutation de l'aequorine

<220>

<221> CDS

<222> (1) .. (600)

<223>

<400> 13

```

atg ctt tat gat gtt cct gat tat gct agc ctc aaa ctt aca tca gac
Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp
1          5                  10                   15

```

```

ttc gac aac cca aga tgg att gga cga cac aag cat atg ttc aat ttc
Phe Asp Asn Pro Arg Trp Ile Gly Arg His Lys His Met Phe Asn Phe
          20           25           30

```

ctt gat gtc aac cac aat gga aaa atc tct ctt gac gag atg gtc tac
 Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Glu Met Val Tyr
 35 40 45

```

aag gca tct gat att gtc atc aat aac ctt gga gca aca cct gag caa      192
Lys Ala Ser Asp Ile Val Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln
      50          55          60

```

```

gcc aaa cga cac aaa gat gct gta gaa gcc ttc ttc gga gga gct gga
Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly
65           70           75           .           80

```

atg aaa tat ggt gtg gaa act gat tgg cct gca tat att gaa gga tgg 288
 Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp
 85 90 95

```

aaa aaa ttg gct act gat gaa ttg gag aaa tac gcc aaa aac gaa cca
Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro
          100           105           110

```

acg ctc atc cgt ata tgg ggt gat gct ttg ttt gat atc gtt gac aaa 384
 Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Asp Lys
 115 120 125

gct gct ggt atc atc caa tca tca gaa gat tgc gag gaa aca ttc aga Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Phe Arg 145 150 155 160	480
 gtg tgc gat att gat gaa agt gga caa ctc gat gtt gat gag atg aca Val Cys Asp Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr 165 170 175	528
 aga cga cat ata gga ttt tgg tac acc atg gat cct gct tgc gaa aag Arg Arg His Ile Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys 180 185 190	576
 ctc tac ggt gga gct gtc ccc taa Leu Tyr Gly Gly Ala Val Pro 195	600

<210> 14

<211> 199

<212> PRT

<213> séquence dérivée par mutation de l'aequorine

<400> 14

Phe Asp Asn Pro Arg Trp Ile Gly Arg His Lys His Met Phe Asn Phe
20 25 30

Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Glu Met Val Tyr
35 40 45

Lys Ala Ser Asp Ile Val Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln
50 55 60

Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly
65 70 75 80

Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp
85 90 95

Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro
100 105 110

Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Asp Lys
115 120 125

Asp Gln Asn Gly Ala Ile Thr Leu Asp Glu Trp Lys Ala Tyr Thr Lys
130 135 140

Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Phe Arg
145 150 155 160

Val Cys Asp Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr
165 170 175

Arg Arg His Ile Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys
180 185 190

Leu Tyr Gly Gly Ala Val Pro
195

<210> 15

<211> 600

<212> DNA

<213> séquence dérivée par mutation de l'aequorine

<220>

<221> CDS

<222> (1) .. (600)

<223>

<400> 15

Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp
 1 5 10 15

48

ttt gac aac cca aga tgg acc gga cga cat agg cat atg tcc aat ttc
 Phe Asp Asn Pro Arg Trp Ile Gly Arg His Arg His Met Phe Asn Phe
 20 25 30

96

ctt gat gtc aac cac aat gga aaa atc tct ctt gac gag atg gtc tac
 Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Glu Met Val Tyr
 35 40 45

144

```

aag gca tct gat att gtc atc aat aac ctt gga gca aca cct gag caa
Lys Ala Ser Asp Ile Val Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln
      50           55           60

```

192

```

gcc aaa cga cac aaa gat gct gta gaa gcc ttc ttc gga gga gct gga
Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly
65          70          75          80

```

240

```

atg aaa tat ggt gtg gaa act gat tgg cct gca tat att gaa gga tgg
Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp
          85           90           95

```

288

```

aaa aaa ttg gct act gat gaa ttg gag aaa tac gcc aaa aac gaa cca
Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro
          100           105           110

```

336

```

acg ctc atc cgt ata tgg ggt gat gct ttg ttt gat atc gtt gac aaa
Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Asp Lys
           115          120          125

```

384

```

gat caa aat gga gcc att aca ctg gat gaa tgg aaa gca tac acc aaa
Asp Gln Asn Gly Ala Ile Thr Leu Asp Glu Trp Lys Ala Tyr Thr Lys
    130           135           140

```

gct gct ggt atc atc caa tca tca gaa gat tgc gag gaa aca ttc aga	480
Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Phe Arg	
145 150 155 160	
gtg tgc gat att gat gaa agt gga caa ctc gat gtt gat gag atg aca	528
Val Cys Asp Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr	
165 170 175	
aga cga cat ata gga ttt tgg tac acc atg gat cct gct tgc gaa aag	576
Arg Arg His Ile Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys	
180 185 190	
ctc tac ggt gga gct gtc ccc taa	600
Leu Tyr Gly Gly Ala Val Pro	
195	

<210> 16

<211> 199

<212> PRT

<213> séquence dérivée par mutation de l'aequorine

<400> 16

Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp	
1 5 10 15	

Phe Asp Asn Pro Arg Trp Ile Gly Arg His Arg His Met Phe Asn Phe	
20 25 30	

Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Glu Met Val Tyr	
35 40 45	

Lys Ala Ser Asp Ile Val Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln	
50 55 60	

Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly	
65 70 75 80	

Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp	
85 90 95	

Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro	
100 105 110	

Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Asp Lys	
115 120 125	

Asp Gln Asn Gly Ala Ile Thr Leu Asp Glu Trp Lys Ala Tyr Thr Lys	
130 135 140	

Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Phe Arg	
145 150 155 160	

Val Cys Asp Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr	
165 170 175	

Arg Arg His Ile Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys
 180 185 190

Leu Tyr Gly Gly Ala Val Pro
 195

<210> 17

<211> 597

<212> DNA

<213> Clytia gregaria

<220>

<221> CDS

<222> (1)..(597)

<223>

<400> 17

atg gct gac act gca tca aaa tac gcc gtc aaa ctc aga ccc aac ttc	48
Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe	
1 5 10 15	

gac aac cca aaa tgg gtc aac aga cac aaa ttt atg ttc aac ttt ttg	96
Asp Asn Pro Lys Trp Val Asn Arg His Lys Phe Met Phe Asn Phe Leu	
20 25 30	

gac att aac ggc gac gga aaa atc act ttg gat gaa atc gtc tcc aaa	144
Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys	
35 40 45	

gct tcg gat gac att tgc gcc aaa ctt gga gca aca cca gaa cag acc	192
Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr	
50 55 60	

aaa cgt cac cag gat gct gtc gaa gct ttc ttc aaa aag att ggt atg	240
Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met	
65 70 75 80	

gat tat ggt aaa gaa gtc gaa ttc cca gct ttt gtt gat gga tgg aaa	288
Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys	
85 90 95	

gaa ctg gcc aat tat gac ttg aaa ctt tgg tct caa aac aag aaa tct	336
Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser	
100 105 110	

ttg atc cgc gac tgg gga gaa gct gtt ttc gac att ttt gac aaa gac	384
Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Asp Lys Asp	
115 120 125	

gga agt ggc tca atc agt ttg gac gaa tgg aag gct tat gga cga atc	432
Gly Ser Gly Ser Ile Ser Leu Asp Glu Trp Lys Ala Tyr Gly Arg Ile	
130 135 140	

tct gga atc tgc tca tca gac gaa gac gcc gaa aag acc ttc aaa cat	480
Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Phe Lys His	
145 150 155 160	
tgc gat ttg gac aac agt ggc aaa ctt gat gtt gat gag atg acc aga	528
Cys Asp Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg	
165 170 175	
caa cat ttg gga ttc tgg tac acc ttg gac ccc aac gct gat ggt ctt	576
Gln His Leu Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu	
180 185 190	
tac ggc aat ttt gtt cct taa	597
Tyr Gly Asn Phe Val Pro	
195	
<210> 18	
<211> 198	
<212> PRT	
<213> Clytia gregaria	
<400> 18	
Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe	
1 5 10 15	
Asp Asn Pro Lys Trp Val Asn Arg His Lys Phe Met Phe Asn Phe Leu	
20 25 30	
Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys	
35 40 45	
Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr	
50 55 60	
Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met	
65 70 75 80	
Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys	
85 90 95	
Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser	
100 105 110	
Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Asp Lys Asp	
115 120 125	
Gly Ser Gly Ser Ile Ser Leu Asp Glu Trp Lys Ala Tyr Gly Arg Ile	
130 135 140	
Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Phe Lys His	
145 150 155 160	
Cys Asp Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg	
165 170 175	

Gln His Leu Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu
 180 185 190

Tyr Gly Asn Phe Val Pro
 195

<210> 19

<211> 597

<212> DNA

<213> séquence dérivée par mutation de la clytine

<220>

<221> CDS

<222> (1)...(597)

<223>

<400> 19		
atg gct gac act gca tca aaa tac gcc gtc aaa ctc aga ccc aac ttc		48
Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe		
1 5 10 15		
gac aac cca aaa tgg gtc aac aga cac aga ttt atg ttc aac ttt ttg		96
Asp Asn Pro Lys Trp Val Asn Arg His Arg Phe Met Phe Asn Phe Leu		
20 25 30		
gac att aac ggc gac gga aaa atc act ttg gat gaa atc gtc tcc aaa		144
Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys		
35 40 45		
gct tcg gat gac att tgc gcc aaa ctt gga gca aca cca gaa cag acc		192
Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr		
50 55 60		
aaa cgt cac cag gat gct gtc gaa gct ttc ttc aaa aag att ggt atg		240
Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met		
65 70 75 80		
gat tat ggt aaa gaa gtc gaa ttc cca gct ttt gtt gat gga tgg aaa		288
Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys		
85 90 95		
gaa ctg gcc aat tat gac ttg aaa ctt tgg tct caa aac aag aaa tct		336
Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser		
100 105 110		
ttg atc cgc gac tgg gga gaa gct gtt ttc gac att ttt gac aaa gac		384
Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Asp Lys Asp		
115 120 125		
gga agt ggc tca atc agt ttg gac gaa tgg aag gct tat gga cga atc		432
Gly Ser Gly Ser Ile Ser Leu Asp Glu Trp Lys Ala Tyr Gly Arg Ile		
130 135 140		

tct gga atc tgc tca tca gac gaa gac gcc gaa aag acc ttc aaa cat	480
Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Phe Lys His	
145 150 155 160	
tgc gat ttg gac aac agt ggc aaa ctt gat gtt gat gag atg acc aga	528
Cys Asp Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg	
165 170 175	
caa cat ttg gga ttc tgg tac acc ttg gac ccc aac gct gat ggt ctt	576
Gln His Leu Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu	
180 185 190	
tac ggc aat ttt gtt cct taa	597
Tyr Gly Asn Phe Val Pro	
195	

<210> 20

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la clytine

<400> 20

Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe	
1 5 10 15	

Asp Asn Pro Lys Trp Val Asn Arg His Arg Phe Met Phe Asn Phe Leu	
20 25 30	

Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys	
35 40 45	

Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr	
50 55 60	

Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met	
65 70 75 80	

Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys	
85 90 95	

Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser	
100 105 110	

Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Asp Lys Asp	
115 120 125	

Gly Ser Gly Ser Ile Ser Leu Asp Glu Trp Lys Ala Tyr Gly Arg Ile	
130 135 140	

Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Phe Lys His	
145 150 155 160	

Cys Asp Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg	
165 170 175	

Gln His Leu Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu
180 185 190

Tyr Gly Asn Phe Val Pro
195

<210> 21

<211> 597

<212> DNA

<213> séquence dérivée par mutation de la clytine

<220>

<221> CDS

<222> (1)..(597)

<223>

<400> 21

```

atg gct gac act gca tca aaa tac gcc gtc aaa ctc aga ccc aac ttc
Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe
1          5           10          15

```

48

```

gac aac cca aaa tgg gtc aac aga cac aaa ttt atg ttc aac ttt ttg
Asp Asn Pro Lys Trp Val Asn Arg His Lys Phe Met Phe Asn Phe Leu
          20           25           30

```

96

gac att aac ggc gac gga aaa atc act ttg gat gaa atc gtc tcc aaa
Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys
35 40 45

144

gct tcg gat gac att tgc gcc aaa ctt gga gca aca cca gaa cag acc
 Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr
 50 55 60

192

aaa cgt cac cag gat gct gtc gaa gct ttc ttc aaa aag att ggt atg
Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met
65 70 75 ; 80

240

288

```

gaa ctg gccaat tat gac ttg aaa ctt tgg tct caa aac aag aaa tct
Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser
          100          105          110

```

336

ttg att cgc gac tgg gga gaa gct gtt ttc gac att ttt gac aaa gac
Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Asp Lys Asp
115 120 125

384

```

gga agt ggc tca atc agt ttg .gac gaa tgg aag gct tat gga cga atc
Gly Ser Gly Ser Ile Ser Leu Asp Glu Trp Lys Ala Tyr Gly Arg Ile
    130           135           140

```

tct gga atc tgc tca tca gac gaa gac gcc gaa aag acc ttc aaa cat	480
Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Phe Lys His	
145 150 155 160	
tgc gat ttg gac aac agt ggc aaa ctt gat gtt gat gag atg acc aga	528
Cys Asp Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg	
165 170 175	
cga cat ttg gga ttc tgg tac acc ttg gac ccc aac gct gat ggt ctt	576
Arg His Leu Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu	
180 185 190	
tac ggc aat ttt gtt cct taa	597
Tyr Gly Asn Phe Val Pro	
195	
<210> 22	
<211> 198	
<212> PRT	
<213> séquence dérivée par mutation de la clytine	
<400> 22	
Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe	
1 5 10 15	
Asp Asn Pro Lys Trp Val Asn Arg His Lys Phe Met Phe Asn Phe Leu	
20 25 30	
Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys	
35 40 45	
Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr	
50 55 60	
Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met	
65 70 75 80	
Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys	
85 90 95	
Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser	
100 105 110	
Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Asp Lys Asp	
115 120 125	
Gly Ser Gly Ser Ile Ser Leu Asp Glu Trp Lys Ala Tyr Gly Arg Ile	
130 135 140	
Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Phe Lys His	
145 150 155 160	
Cys Asp Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg	
165 170 175	

Arg His Leu Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu
180 185 190

Tyr Gly Asn Phe Val Pro
195

<210> 23

<211> 597

<212> DNA

<213> séquence dérivée par mutation de la clytine

<220>

<221> CDS

<222> (1)..(597)

<223>

<400> 23

```

atg gct gac act gca tca aaa tac gcc gtc aaa ctc aga ccc aac ttc
Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe
1          5                  10                  15

```

48

```

gac aac cca aaa tgg gtc aac aga cac aaa ttt atg ttc aac ttt ttg
Asp Asn Pro Lys Trp Val Asn Arg His Lys Phe Met Phe Asn Phe Leu
          20           25           30

```

96

```

gac att aac ggc gac gga aaa atc act ttg gat gaa atc gtc tcc aaa
Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys
            35           40           45

```

144

```

gct tcg gat gac att tgc gcc aaa ctt gga gca aca cca gaa cag acc
Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr
      50           55           60

```

192

```

aaa cgt cac cag gat gct gtc gaa gct ttc ttc aaa aag att ggt atg
Lys Arg His Gin Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met
65           70           75           .           80

```

240

gat tat ggt aaa gaa gtc gaa ttc cca gct ttt gtt gat gga tgg aaa
 Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys
 85 90 95

288

```

gaa ctg gcc aat tat gac ttg aaa ctt tgg tct caa aac aag aaa tct
Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser
          100           105           110

```

336

ttg atc cgc gac tgg gga gaa gct gtt ttc gac att ttt gac aaa gac
Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Asp Lys Asp
115 120 125

384

```

gga agt ggc tca atc agt ttg gac gaa tgg aag gct tat gga cga atc
Gly Ser Gly Ser Ile Ser Leu Asp Glu Trp Lys Ala Tyr Gly Arg Ile
    130          135          140

```

tct gga atc tgc tca tca gac gaa gac gcc gaa aag acc ttc aaa cat	480
Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Phe Lys His	
145 150 155 160	
tgc gat ttg gac aac agt ggc aaa ctt gat gtt gat gag atg acc aga	528
Cys Asp Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg	
165 170 175	
caa cat ata gga ttc tgg tac acc ttg gac ccc aac gct gat ggt ctt	576
Gln His Ile Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu	
180 185 190	
tac ggc aat ttt gtt cct taa	597
Tyr Gly Asn Phe Val Pro	
195	

<210> 24

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la clytine

<400> 24

Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe	
1 5 10 15	

Asp Asn Pro Lys Trp Val Asn Arg His Lys Phe Met Phe Asn Phe Leu	
20 25 30	

Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys	
35 40 45	

Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr	
50 55 60	

Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met	
65 70 75 80	

Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys	
85 90 95	

Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser	
100 105 110	

Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Asp Lys Asp	
115 120 125	

Gly Ser Gly Ser Ile Ser Leu Asp Glu Trp Lys Ala Tyr Gly Arg Ile	
130 135 140	

Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Phe Lys His	
145 150 155 160	

Cys Asp Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg	
165 170 175	

Gln His Ile Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu
180 185 190

Tyr Gly Asn Phe Val Pro
195

<210> 25

<211> 597

<212> DNA

<213> séquence dérivée par mutation de la clytine

<220>

<221> CDS

<222> (1)..(597)

<223>

<400> 25

```

atg gct gac act gca tca aaa tac gcc gtc aaa ctc aga ccc aac ttc
Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe
1           5                   10                  15

```

48

```

gac aac cca aaa tgg gtc aac aga cac aga ttt atg ttc aac ttt ttg
Asp Asn Pro Lys Trp Val Asn Arg His Arg Phe Met Phe Asn Phe Leu
          20           25           30

```

96

```

gac att aac ggc gac gga aaa atc act ttg gat gaa atc gtc tcc aaa
Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys
      35           40           45

```

144

```

gct tcg gat gac att tgc gcc aaa ctt gga gca aca cca gaa cag acc
Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr
      50           55           60

```

192

```

aaa cgt cac cag gat gct gtc gaa gct ttc ttc aaa aag att ggt atg
Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met
65           70           75           ,           80

```

240

gat tat ggt aaa gaa gtc gaa ttc cca gct ttt gtt gat gga tgg aaa
Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys
85 90 95

288

```

gaa ctg gcc aat tat gac ttg aaa ctt tgg tct caa aac aag aaa tct
Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser
          100           105           110

```

336

ttg atc cgc gac tgg gga gaa gct gtt ttc gac att ttt gac aaa gac
 Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Asp Lys Asp
 115 120 125

384

```

gga agt ggc tca atc agt ttg gac gaa tgg aag gct tat gga cga atc
Gly Ser Gly Ser Ile Ser Leu Asp Glu Trp Lys Ala Tyr Gly Arg Ile
    130          135          140

```

tct gga atc tgc tca tca gac gaa gac gcc gaa aag acc ttc aaa cat		480	
Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Phe Lys His			
145	150	155	160
 tgc gat ttg gac aac agt ggc aaa ctt gat gtt gat gag atg acc aga		528	
Cys Asp Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg			
165	170	175	
 cga cat ttg gga ttc tgg tac acc ttg gac ccc aac gct gat ggt ctt		576	
Arg His Leu Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu			
180	185	190	
 tac ggc aat ttt gtt cct taa		597	
Tyr Gly Asn Phe Val Pro			
195			
 <210> 26			
<211> 198			
<212> PRT			
<213> séquence dérivée par mutation de la clytine			
<400> 26			
 Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe			
1	5	10	15
 Asp Asn Pro Lys Trp Val Asn Arg His Arg Phe Met Phe Asn Phe Leu			
20	25	30	
 Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys			
35	40	45	
 Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr			
50	55	60	
 Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met			
65	70	75	80
 Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys			
85	90	95	
 Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser			
100	105	110	
 Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Asp Lys Asp			
115	120	125	
 Gly Ser Gly Ser Ile Ser Leu Asp Glu Trp Lys Ala Tyr Gly Arg Ile			
130	135	140	
 Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Phe Lys His			
145	150	155	160
 Cys Asp Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg			
165	170	175	

Arg His Leu Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu		
180	185	190
Tyr Gly Asn Phe Val Pro		
195		

<210> 27

<211> 597

<212> DNA

<213> séquence dérivée par mutation de la clytine

<220>

<221> CDS

<222> (1)..(597)

<223>

<400> 27

atg gct gac act gca tca aaa tac gcc gtc aaa ctc aga ccc aac ttc	48		
Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe			
1	5	10	15

gac aac cca aaa tgg gtc aac aga cac aga ttt atg ttc aac ttt ttg	96	
Asp Asn Pro Lys Trp Val Asn Arg His Arg Phe Met Phe Asn Phe Leu		
20	25	30

gac att aac ggc gac gga aaa atc act ttg gat gaa atc gtc tcc aaa	144	
Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys		
35	40	45

gct tcg gat gac att tgc gcc aaa ctt gga gca aca cca gaa cag acc	192	
Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr		
50	55	60

aaa cgt cac cag gat gct gtc gaa gct ttc ttc aaa aag att ggt atg	240		
Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met			
65	70	75	80

gat tat ggt aaa gaa gtc gaa ttc cca gct ttt gtt gat gga tgg aaa	288	
Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys		
85	90	95

gaa ctg gcc aat tat gac ttg aaa ctt tgg tct caa aac aag aaa tct	336	
Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser		
100	105	110

ttg atc cgc gac tgg gga gaa gct gtt ttc gac att ttt gac aaa gac	384	
Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Asp Lys Asp		
115	120	125

gga agt ggc tca atc agt ttg gac gaa tgg aag gct tat gga cga atc	432	
Gly Ser Gly Ser Ile Ser Leu Asp Glu Trp Lys Ala Tyr Gly Arg Ile		
130	135	140

tct gga atc tgc tca tca gac gaa gac gcc gaa aag acc ttc aaa cat	480
Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Phe Lys His	
145 150 155 160	
tgc gat ttg gac aac agt ggc aaa ctt gat gtt gat gag atg acc aga	528
Cys Asp Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg	
165 170 175	
caa cat ata gga ttc tgg tac acc ttg gac ccc aac gct gat ggt ctt	576
Gln His Ile Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu	
180 185 190	
tac ggc aat ttt gtt cct taa	597
Tyr Gly Asn Phe Val Pro	
195	
<210> 28	
<211> 198	
<212> PRT	
<213> séquence dérivée par mutation de la clytine	
<400> 28	
Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe	
1 5 10 15	
Asp Asn Pro Lys Trp Val Asn Arg His Arg Phe Met Phe Asn Phe Leu	
20 25 30	
Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys	
35 40 45	
Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr	
50 55 60	
Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met	
65 70 75 80	
Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys	
85 90 95	
Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser	
100 105 110	
Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Asp Lys Asp	
115 120 125	
Gly Ser Gly Ser Ile Ser Leu Asp Glu Trp Lys Ala Tyr Gly Arg Ile	
130 135 140	
Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Phe Lys His	
145 150 155 160	
Cys Asp Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg	
165 170 175	

Gln His Ile Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu
 180 185 190

Tyr Gly Asn Phe Val Pro
195 .

<210> 29

<211> 597

<212> DNA

<213> séquence dérivée par mutation de la clytine

<220>

<221> CDS

<222> (1)..(597)

<223>

<400> 29

```

atg gct gac act gca tca aaa tac gcc gtc aaa ctc aga ccc aac ttc
Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe
1          5                  10                   15

```

48

```

gac aac cca aaa tgg gtc aac aga cac aaa ttt atg ttc aac ttt ttg
Asp Asn Pro Lys Trp Val Asn Arg His Lys Phe Met Phe Asn Phe Leu
20          25          30

```

96

```

gac att aac ggc gac gga aaa atc act ttg gat gaa atc gtc tcc aaa
Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys
            35           40           45

```

144

```

gct tcg gat gac att tgc gcc aaa ctt gga gca aca cca gaa cag acc
Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr
   50          55          60

```

192

aaa cgt cac cag gat gct gtc gaa gct ttc ttc aaa aag att ggt atg
 Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met
 65 70 75 80

240

gat tat ggt aaa gaa gtc gaa ttc cca gct ttt gtt gat gga tgg aaa
 Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys
 85 90 95

288

```

gaa ctg gcc aat tat gac ttg aaa ctt tgg tct caa aac aag aaa tct
Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser
          100           105           110

```

336

```

ttg atc cgc gac tgg gga gaa gct gtt ttc gac att ttt gac aaa gac
Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Asp Lys Asp
           115          120          125

```

384

```

gga agt ggc tca atc agt ttg gac gaa tgg aag gct tat gga cga atc
Gly Ser Gly Ser Ile Ser Leu Asp Glu Trp Lys Ala Tyr Gly Arg Ile
    130          135          140

```

tct gga atc tgc tca tca gac gaa gac gcc gaa aag acc ttc aaa cat Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Phe Lys His	480
145 150 155 160	
 tgc gat ttg gac aac agt ggc aaa ctt gat gtt gat gag atg acc aga Cys Asp Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg	528
165 170 175 .	
 cga cat ata gga ttc tgg tac acc ttg gac ccc aac gct gat ggt ctt Arg His Ile Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu	576
180 185 190 .	
 tac ggc aat ttt gtt cct taa Tyr Gly Asn Phe Val Pro	597
195	

<210> 30

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la clytine

<400> 30

Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe
1 5 10 15

Asp Asn Pro Lys Trp Val Ash Arg His Lys Phe Met Phe Ash Phe Leu
20 25 30

Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys
35 40 45

Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr
50 55 60

Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met
65 70 75 80

Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys
85 90 95

Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser
 100 105 110

Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Asp Lys Asp
115 120 125

Gly Ser Gly Ser Ile Ser Leu Asp Glu Trp Lys Ala Tyr Gly Arg Ile
 130 135 140

Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Phe Lys His
145 150 155 160

Cys Asp Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg
165 170 175

Arg His Ile Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu
 180 185 190
 Tyr Gly Asn Phe Val Pro
 195

<210> 31
<211> 597
<212> DNA
<213> séquence dérivée par mutation de la clytine
<220>
<221> CDS
<222> (1)...(597)
<223>
<400> 31
atg gct gac act gca tca aaa tac gcc gtc aaa ctc ag
Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Ar
1 5 10

gac aac cca aaa tgg gtc aac aga cac aga ttt atg tt
Asp Asn Pro Lys Trp Val Asn Arg His Arg Phe Met Ph
20 25

gac att aac ggc gac gga aaa atc act ttg gat gaa at
Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Glu Il
35 40 45

gct tcg gat gac att tgc gcc aaa ctt gga gca aca cc
Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pr
50 55 60

aaa cgt cac cag gat gct gtc gaa gct ttc ttc aaa aa
Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Ly
65 70 75

gat tat ggt aaa gaa gtc gaa ttc cca gct ttt gtt ga
Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val As
85 90

gaa ctg gcc aat tat gac ttg aaa ctt tgg tct caa aa
Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln As
100 105

ttg atc cgc gac tgg gga gaa gct gtt ttc gac att tt
Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Ph
115 120 125

gga agt ggc tca atc agt ttg gac gaa tgg aag gct ta
Gly Ser Gly Ser Ile Ser Leu Asp Glu Trp Lys Ala Ty
130 135 140

tct gga atc tgc tca tca gac gaa gac gcc gaa aag acc ttc aaa cat	480
Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Phe Lys His	
145 150 155 160	
tgc gat ttg gac aac agt ggc aaa ctt gat gtt gat gag atg acc aga	528
Cys Asp Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg	
165 170 175	
cga cat ata gga ttc tgg tac acc ttg gac ccc aac gct gat ggt ctt	576
Arg His Ile Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu	
180 185 190	
tac ggc aat ttt gtt cct taa	597
Tyr Gly Asn Phe Val Pro	
195	

<210> 32

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la clytine

<400> 32

Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe	
1 5 10 15	
Asp Asn Pro Lys Trp Val Asn Arg His Arg Phe Met Phe Asn Phe Leu	
20 25 30	
Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys	
35 40 45	
Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr	
50 55 60	
Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met	
65 70 75 80	
Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys	
85 90 95	
Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser	
100 105 110	
Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Asp Lys Asp	
115 120 125	
Gly Ser Gly Ser Ile Ser Leu Asp Glu Trp Lys Ala Tyr Gly Arg Ile	
130 135 140	
Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Phe Lys His	
145 150 155 160	
Cys Asp Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg	
165 170 175	

Tyr Gly Asn Phe Val Pro
195

<210> 33

<211> 597

<212> DNA

<213> Mitrocoma cellularia

<220>

<221> CDS

<222> (1)..(597)

<223>

<400> 33

```

atg tca atg ggc agc aga tac gca gtc aag ctt acg act gac ttt gat
Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp
1           5                   10                  15

```

48

```

aat cca aaa tgg att gct cga cac aag cac atg ttc aac ttc ctt gac
Asn Pro Lys Trp Ile Ala Arg His Lys His Met Phe Asn Phe Leu Asp
          20           25           . 30

```

96

atc aat tca aat ggc caa atc aat ctg aat gaa atg gtc cat aag gct
 Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Glu Met Val His Lys Ala
 35 40 45

144

192

cgt cat caa aag tgt gtc gaa gac ttc ttt ggg gga gct ggt ttg gaa
 Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu
 65 70 75 . 80

240

tat gac aaa gat acc aca tgg cct gag tac atc gaa gga tgg aag agg
 Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg
 85 90 95

288

ttg gct aag act gaa ttg gaa agg cat tca aag aat caa gtc aca ttg
Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu
100 105 110

336

atc cga tta tgg ggt gat gct ttg ttc gac atc att gac aaa gat aga
Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Asp Lys Asp Arg
115 120 125

384

```

aat gga tcg gtt tcg tta gac gaa tgg atc cag tac act cat tgt gct
Asn Gly Ser Val Ser Leu Asp Glu Trp Ile Gln Tyr Thr His Cys Ala
      130          135          140

```

ggc atc caa cag tca cgt ggg caa tgc gaa gct aca ttt gca cat tgc Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Phe Ala His Cys 145 150 155 160	480
gat tta gat ggt gac ggt aaa ctt gat gtg gac gaa atg aca aga caa Asp Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Gln 165 170 175	528
cat ttg gga ttt tgg tat tcg gtc gac cca act tgt gaa gga ctc tac His Leu Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr 180 185 190	576
ggt ggt gct gta cct tat taa Gly Gly Ala Val Pro Tyr 195	597
<210> 34	
<211> 198	
<212> PRT	
<213> Mitrocoma cellularia	
<400> 34	
Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp 1 5 10 15	
Asn Pro Lys Trp Ile Ala Arg His Lys His Met Phe Asn Phe Leu Asp 20 25 30	
Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Glu Met Val His Lys Ala 35 40 45	
Ser Asn Ile Ile Cys Lys Lys Leu Gly Ala Thr Glu Glu Gln Thr Lys 50 55 60	
Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu 65 70 75 80	
Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg 85 90 95	
Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu 100 105 110	
Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Asp Lys Asp Arg 115 120 125	
Asn Gly Ser Val Ser Leu Asp Glu Trp Ile Gln Tyr Thr His Cys Ala 130 135 140	
Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Phe Ala His Cys 145 150 155 160	
Asp Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Gln 165 170 175	

His Leu Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr
180 185 190

Gly Gly Ala Val Pro Tyr
195

<210> 35

<211> 597

<212> DNA

<213> séquence dérivée par mutation de la mitrocomine

<220>

<221> CDS

<222> (1)..(597)

<223>

<400> 35
atg tca atg ggc agc aga tac gca gtc aag ctt acg act gac ttt gat 48
Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp
1 5 10 15

```

aat cca aaa tgg att gct cga cac agg cac atg ttc aac ttc ctt gac 96
Asn Pro Lys Trp Ile Ala Arg His Arg His Met Phe Asn Phe Leu Asp
20          25          30

```

atc aat tca aat ggc caa atc aat ctg aat gaa atg gtc cat aag gct 144
 Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Glu Met Val His Lys Ala
 35 40 45

tca aac att atc tgc aag aag ctt gga gca aca gaa gaa caa acc aaa	192
Ser Asn Ile Ile Cys Lys Lys Leu Gly Ala Thr Glu Glu Gln Thr Lys	
50 55 60	

cgt cat caa aag tgt gtc gaa gac ttc ttt ggg gga gct ggt ttg gaa 240
 Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu
 65 70 75 . 80

tat gac aaa gat acc aca tgg cct gag tac atc gaa gga tgg aag agg 288
 Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg
 85 90 95

ttg gct aag act gaa ttg gaa agg cat tca aag aat caa gtc aca ttg 336
 Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu
 100 105 110

atc cga tta tgg ggt gat gct ttg ttc gac atc att gac aaa gat aga 384
 Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Asp Lys Asp Arg
 115 120 125

```

aat gga tcg gtt tcg tta gac gaa tgg atc cag tac act cat tgt gct      432
Asn Gly Ser Val Ser Leu Asp Glu Trp Ile Gln Tyr Thr His Cys Ala
   130          135          140

```

ggc atc caa cag tca cgt ggg caa tgc gaa gct aca ttt gca cat tgc Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Phe Ala His Cys 145 150 155 160	480
gat tta gat ggt gac ggt aaa ctt gat gtg gac gaa atg aca aga caa Asp Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Gln 165 170 175	528
cat ttg gga ttt tgg tat tcg gtc gac cca act tgt gaa gga ctc tac His Leu Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr 180 185 190	576
ggt ggt gct gta cct tat taa Gly Gly Ala Val Pro Tyr 195	597

<210> 36

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la mitrocomine

<400> 36

Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp 1 5 10 15
--

Asn Pro Lys Trp Ile Ala Arg His Arg His Met Phe Asn Phe Leu Asp 20 25 30

Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Glu Met Val His Lys Ala 35 40 45

Ser Asn Ile Ile Cys Lys Lys Leu Gly Ala Thr Glu Glu Gln Thr Lys 50 55 60

Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu 65 70 75 80
--

Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg 85 90 95

Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu 100 105 110
--

Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Asp Lys Asp Arg 115 120 125
--

Asn Gly Ser Val Ser Leu Asp Glu Trp Ile Gln Tyr Thr His Cys Ala 130 135 140
--

Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Phe Ala His Cys 145 150 155 160
--

Asp Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Gln 165 170 175
--

His Leu Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr
 180 185 190

Gly Gly Ala Val Pro Tyr
 195

<210> 37

<211> 597

<212> DNA

<213> séquence dérivée par mutation de la mitrocomine

<220>

<221> CDS

<222> (1)..(597)

<223>

<400> 37

atg tca atg ggc agc aga tac gca gtc aag ctt acg act gac ttt gat	48
Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp	
1 5 10 15	

aat cca aaa tgg att gct cga cac aag cac atg ttc aac ttc ctt gac	96
Asn Pro Lys Trp Ile Ala Arg His Lys His Met Phe Asn Phe Leu Asp	
20 25 30	

atc aat tca aat ggc caa atc aat ctg aat gaa atg gtc cat aag gct	144
Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Glu Met Val His Lys Ala	
35 40 45	

tca aac att atc tgc aag aag ctt gga gca aca gaa gaa caa acc aaa	192
Ser Asn Ile Ile Cys Lys Lys Leu Gly Ala Thr Glu Glu Gln Thr Lys	
50 55 60	

cgt cat caa aag tgt gtc gaa gac ttc ttt ggg gga gct ggt ttg gaa	240
Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu	
65 70 75 80	

tat gac aaa gat acc aca tgg cct gag tac atc gaa gga tgg aag agg	288
Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg	
85 90 95	

ttg gct aag act gaa ttg gaa agg cat tca aag aat caa gtc aca ttg	336
Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu	
100 105 110	

atc cga tta tgg ggt gat gct ttg ttc gac atc att gac aaa gat aga	384
Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Asp Lys Asp Arg	
115 120 125	

aat gga tcg gtt tcg tta gac gaa tgg atc cag tac act cat tgt gct	432
Asn Gly Ser Val Ser Leu Asp Glu Trp Ile Gln Tyr Thr His Cys Ala	
130 135 140	

ggc atc caa cag tca cgt ggg caa tgc gaa gct aca ttt gca cat tgc	480
Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Phe Ala His Cys	
145 150 155 160	
gat tta gat ggt gac ggt aaa ctt gat gtg gac gaa atg aca aga cga	528
Asp Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Arg	
165 170 175	
cat ttg gga ttt tgg tat tcg gtc gac cca act tgt gaa gga ctc tac	576
His Leu Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr	
180 185 190	
ggt ggt gct gta cct tat taa	597
Gly Gly Ala Val Pro Tyr	
195	
<210> 38	
<211> 198	
<212> PRT	
<213> séquence dérivée par mutation de la mitrocomine	
<400> 38	
Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp	800
1 5 10 15	
Asn Pro Lys Trp Ile Ala Arg His Lys His Met Phe Asn Phe Leu Asp	
20 25 30	
Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Glu Met Val His Lys Ala	
35 40 45	
Ser Asn Ile Ile Cys Lys Lys Leu Gly Ala Thr Glu Glu Gln Thr Lys	
50 55 60	
Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu	
65 70 75 80	
Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg	
85 90 95	
Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu	
100 105 110	
Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Asp Lys Asp Arg	
115 120 125	
Asn Gly Ser Val Ser Leu Asp Glu Trp Ile Gln Tyr Thr His Cys Ala	
130 135 140	
Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Phe Ala His Cys	
145 150 155 160	
Asp Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Arg	
165 170 175	

His Leu Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr
 180 185 190

Gly Gly Ala Val Pro Tyr
195

<210> 39

<211> 597

<212> DNA

<213> séquence dérivée par mutation de la mitrocomine

<220>

<221> CDS

<222> (1)..(597)

<223>

<400> 39

```

atg tca atg ggc agc aga tac gca gtc aag ctt acg act gac ttt gat
Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp
1           5                   10                  15

```

48

```

aat cca aaa tgg att gct cga cac aag cac atg ttc aac ttc ctt gac
Asn Pro Lys Trp Ile Ala Arg His Lys His Met Phe Asn Phe Leu Asp
20          25          30

```

96

atc aat tca aat ggc caa atc aat ctg aat gaa atg gtc cat aag gct
 Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Glu Met Val His Lys Ala
 35 40 45

144

tca	aac	att	atc	tgc	aag	aag	ctt	gga	gca	aca	gaa	gaa	caa	acc	aaa
Ser	Asn	Ile	Ile	Cys	Lys	Lys	Leu	Gly	Ala	Thr	Glu	Glu	Gln	Thr	Lys
50							55						60		

192

```

cgt cat caa aag tgt gtc gaa gac ttc ttt ggg gga gct ggt ttg gaa
Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu
65          70          75          .          80

```

240

tat gac aaa gat acc aca tgg cct gag tac att gaa gga tgg aag agg
 Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg
 85 90 95

288

```

ttg gct aag act gaa ttg gaa agg cat tca aag aat caa gtc aca ttg
Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu
          100           105           110

```

336

atc cga tta tgg ggt gat gct ttg ttc gac atc att gac aaa gat aga
 Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Asp Lys Asp Arg
 115 120 125

384

```

aat gga tcg gtt tcg tta gac gaa tgg atc cag tac act cat tgt gct
Asn Gly Ser Val Ser Leu Asp Glu Trp Ile Gln Tyr Thr His Cys Ala
    130          135          140

```

ggc atc caa cag tca cgt ggg caa tgc gaa gct aca ttt gca cat tgc	480
Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Phe Ala His Cys	
145 150 155 160	
gat tta gat ggt gac ggt aaa ctt gat gtg gac gaa atg aca aga caa	528
Asp Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Gln	
165 170 175	
cat ata gga ttt tgg tat tcg gtc gac cca act tgt gaa gga ctc tac	576
His Ile Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr	
180 185 190	
ggt ggt gct gta cct tat taa	597
Gly Gly Ala Val Pro Tyr	
195	
<210> 40	
<211> 198	
<212> PRT	
<213> séquence dérivée par mutation de la mitrocomine	
<400> 40	
Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp	15
1 5 10 15	
Asn Pro Lys Trp Ile Ala Arg His Lys His Met Phe Asn Phe Leu Asp	30
20 25 30	
Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Glu Met Val His Lys Ala	45
35 40 45	
Ser Asn Ile Ile Cys Lys Lys Leu Gly Ala Thr Glu Glu Gln Thr Lys	60
50 55 60	
Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu	80
65 70 75 80	
Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg	95
85 90 95	
Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu	110
100 105 110	
Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Asp Lys Asp Arg	125
115 120 125	
Asn Gly Ser Val Ser Leu Asp Glu Trp Ile Gln Tyr Thr His Cys Ala	140
130 135 140	
Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Phe Ala His Cys	160
145 150 155 160	
Asp Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Gln	175
165 170 175 180	

His Ile Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr
180 185 190

Gly Gly Ala Val Pro Tyr
195

<210> 41

<211> 597

<212> DNA

<213> séquence dérivée par mutation de la mitrocomine

<220>

<221> CDS

<222> (1)..(597)

<223>

<400> 41
atg tca atg ggc agc aga tac gca gtc aag ctt acg act gac ttt gat 48
Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp
1 5 10 15

aat cca aaa tgg att gct cga cac agg cac atg ttc aac ttc ctt gac 96
Asn Pro Lys Trp Ile Ala Arg His Arg His Met Phe Asn Phe Leu Asp
20 25 30

atc aat tca aat ggc caa atc aat ctg aat gaa atg gtc cat aag gct
 Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Glu Met Val His Lys Ala
 . 35 40 45

tca aac att atc tgc aag aag ctt gga gca aca gaa gaa caa acc aaa	192
Ser Asn Ile Ile Cys Lys Lys Leu Gly Ala Thr Glu Glu Gln Thr Lys	
50 55 60	

cgt cat caa aag tgt gtc gaa gac ttc ttt ggg gga gct ggt ttg gaa 240
 Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu
 65 70 75 80

tat gac aaa gat acc aca tgg cct gag tac atc gaa gga tgg aag agg 288
 Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg
 85 90 95

```

aat gga tcg gtt tcg tta gac gaa tgg atc cag tac act cat tgt gct      432
Asn Gly Ser Val Ser Leu Asp Glu Trp Ile Gln Tyr Thr His Cys Ala
   130          135          140

```

ggc atc caa cag tca cgt ggg caa tgc gaa gct aca ttt gca cat tgc Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Phe Ala His Cys 145 150 155 160	480
gat tta gat ggt gac ggt aaa ctt gat gtg gac gaa atg aca aga cga Asp Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Arg 165 170 175	528
cat ttg gga ttt tgg tat tcg gtc gac cca act tgt gaa gga ctc tac His Leu Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr 180 185 190	576
ggt ggt gct gta cct tat taa Gly Gly Ala Val Pro Tyr 195	597
<210> 42	
<211> 198	
<212> PRT	
<213> séquence dérivée par mutation de la mitrocomine	
<400> 42	
Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp 1 5 10 15	
Asn Pro Lys Trp Ile Ala Arg His Arg His Met Phe Asn Phe Leu Asp 20 25 30	
Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Glu Met Val His Lys Ala 35 40 45	
Ser Asn Ile Ile Cys Lys Lys Leu Gly Ala Thr Glu Glu Gln Thr Lys 50 55 60	
Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu 65 70 75 80	
Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg 85 90 95	
Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu 100 105 110	
Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Asp Lys Asp Arg 115 120 125	
Asn Gly Ser Val Ser Leu Asp Glu Trp Ile Gln Tyr Thr His Cys Ala 130 135 140	
Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Phe Ala His Cys 145 150 155 160	
Asp Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Arg 165 170 175	

His Leu Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr
 180 185 190

Gly Gly Ala Val Pro Tyr
195

<210> 43

<211> 597

<212> DNA

<213> séquence dérivée par mutation de la mitrocomine

<220>

<221> CDS

<222> (1)..(597)

<223>

<400> 43

```

atg tca atg ggc agc aga tac gca gtc aag ctt acg act gac ttt gat
Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp
1           5           10          15

```

48

```

aat cca aaa tgg att gct cga cac agg cac atg ttc aac ttc ctt gac
Asn Pro Lys Trp Ile Ala Arg His Arg His Met Phe Asn Phe Leu Asp
20                      25                      30

```

96

atc aat tca aat ggc caa atc aat ctg aat gaa atg gtc cat aag gct
Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Glu Met Val His Lys Ala
35 40 45

144

tca aac att atc tgc aag aag ctt gga gca aca gaa gaa caa acc aaa	Ser Asn Ile Ile Cys Lys Lys Leu Gly Ala Thr Glu Glu Gln Thr Lys	
50	55	60

192

cgt	cat	caa	aag	tgt	gtc	gaa	gac	ttc	ttt	ggg	gga	gct	ggt	ttg	gaa
Arg	His	Gln	Lys	Cys	Val	Glu	Asp	Phe	Phe	Gly	Gly	Ala	Gly	Leu	Glu
65					70					75					80

240

tat gac aaa gat acc aca tgg cct gag tac atc gaa gga tgg aag agg
Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg
85 90 95

288

ttg gct aag act gaa ttg gaa agg cat tca aag aat caa gtc aca ttg
Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu
100 105 110

336

atc cga tta tgg ggt gat gct ttg ttc gac atc att gac aaa gat aga
Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Asp Lys Asp Arg
115 120 125

384

aat gga tcg gtt tcg tta gac gaa tgg atc cag tac act cat tgt gct
Asn Gly Ser Val Ser Leu Asp Glu Trp Ile Gln Tyr Thr His Cys Ala
130 135 140

ggc atc caa cag tca cgt ggg caa tgc gaa gct aca ttt gca cat tgc	480
Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Phe Ala His Cys	
145 150 155 160	
gat tta gat ggt gac ggt aaa ctt gat gtg gac gaa atg aca aga caa	528
Asp Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Gln	
165 170 175	
cat ata gga ttt tgg tat tcg gtc gac cca act tgt gaa gga ctc tac	576
His Ile Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr	
180 185 190	
ggt ggt gct gta cct tat taa	597
Gly Gly Ala Val Pro Tyr	
195	

<210> 44

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la mitrocomine

<400> 44

Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp	
1 5 10 15	

Asn Pro Lys Trp Ile Ala Arg His Arg His Met Phe Asn Phe Leu Asp	
20 25 30	

Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Glu Met Val His Lys Ala	
35 40 45	

Ser Asn Ile Ile Cys Lys Lys Leu Gly Ala Thr Glu Glu Gln Thr Lys	
50 55 60	

Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu	
65 70 75 80	

Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg	
85 90 95	

Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu	
100 105 110	

Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Asp Lys Asp Arg	
115 120 125	

Asn Gly Ser Val Ser Leu Asp Glu Trp Ile Gln Tyr Thr His Cys Ala	
130 135 140	

Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Phe Ala His Cys	
145 150 155 160	

Asp Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Gln	
165 170 175	

His Ile Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr
 180 185 190

Gly Gly Ala Val Pro Tyr
 195

<210> 45

<211> 597

<212> DNA

<213> séquence dérivée par mutation de la mitrocomine

<220>

<221> CDS

<222> (1)...(597)

<223>

<400> 45

atg tca atg ggc agc aga tac gca gtc aag ctt acg act gac ttt gat	48
Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp	
1 5 10 15	

aat cca aaa tgg att gct cga cac aag cac atg ttc aac ttc ctt gac	96
Asn Pro Lys Trp Ile Ala Arg His Lys His Met Phe Asn Phe Leu Asp	
20 25 30	

atc aat tca aat ggc caa atc aat ctg aat gaa atg gtc cat aag gct	144
Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Glu Met Val His Lys Ala	
35 40 45	

tca aac att atc tgc aag aag ctt gga gca aca gaa gaa caa acc aaa	192
Ser Asn Ile Ile Cys Lys Lys Leu Gly Ala Thr Glu Glu Gln Thr Lys	
50 55 60	

cgt cat caa aag tgt gtc gaa gac ttc ttt ggg gga gct ggt ttg gaa	240
Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu	
65 70 75 80	

tat gac aaa gat acc aca tgg cct gag tac atc gaa gga tgg aag agg	288
Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg	
85 90 95	

ttg gct aag act gaa ttg gaa agg cat tca aag aat caa gtc aca ttg	336
Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu	
100 105 110	

atc cga tta tgg ggt gat gct ttg ttc gac atc att gac aaa gat aga	384
Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Asp Lys Asp Arg	
115 120 125	

aat gga tcg gtt tcg tta gac gaa tgg atc cag tac act cat tgt gct	432
Asn Gly Ser Val Ser Leu Asp Glu Trp Ile Gln Tyr Thr His Cys Ala	
130 135 140	

ggc atc caa cag tca cgt ggg caa tgc gaa gct aca ttt gca cat tgc	480
Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Phe Ala His Cys	
145 150 155 160	
gat tta gat ggt gac ggt aaa ctt gat gtg gac gaa atg aca aga cga	528
Asp Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Arg	
165 170 175	
cat ata gga ttt tgg tat tcg gtc gac cca act tgt gaa gga ctc tac	576
His Ile Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr	
180 185 190	
ggt ggt gct gta cct tat taa	597
Gly Gly Ala Val Pro Tyr	
195	
<210> 46	
<211> 198	
<212> PRT	
<213> séquence dérivée par mutation de la mitrocomine	
<400> 46	
Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp	15
1 5 10	
Asn Pro Lys Trp Ile Ala Arg His Lys His Met Phe Asn Phe Leu Asp	30
20 25	
Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Glu Met Val His Lys Ala	45
35 40	
Ser Asn Ile Ile Cys Lys Lys Leu Gly Ala Thr Glu Glu Gln Thr Lys	60
50 55	
Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu	80
65 70 75	
Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg	95
85 90	
Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu	110
100 105	
Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Asp Lys Asp Arg	125
115 120	
Asn Gly Ser Val Ser Leu Asp Glu Trp Ile Gln Tyr Thr His Cys Ala	140
130 135	
Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Phe Ala His Cys	160
145 150 155	
Asp Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Arg	175
165 170	

His	Ile	Gly	Phe	Trp	Tyr	Ser	Val	Asp	Pro	Thr	Cys	Glu	Gly	Leu	Tyr
								180				185			190

Gly Gly Ala Val Pro Tyr
195

<210> 47

<211> 597

<212> DNA

<213> séquence dérivée par mutation de la mitrocomine

<220>

<221> CDS

<222> (1)..(597)

<223>

<400> 47

```

atg tca atg ggc agc aga tac gca gtc aag ctt acg act gac ttt gat
Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp
   1           5           10          15

```

48

```

aat cca aaa tgg att gct cga cac agg cac atg ttc aac ttc ctt gac
Asn Pro Lys Trp Ile Ala Arg His Arg His Met Phe Asn Phe Leu Asp
          20           25           30

```

96

atc aat tca aat ggc caa atc aat ctg aat gaa atg gtc cat aag gct
 Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Glu Met Val His Lys Ala
 35 40 45

144

tca	aac	att	atc	tgc	aag	aag	ctt	gga	gca	aca	gaa	gaa	caa	acc	aaa
Ser	Asn	Ile	Ile	Cys	Lys	Lys	Leu	Gly	Ala	Thr	Glu	Glu	Gln	Thr	Lys
50					55						60				

192

cgt cat caa aag tgt gtc gaa gac ttc ttt ggg gga gct ggt ttg gaa
 Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu
 65 70 75 80

240

tat gac aaa gat acc aca tgg cct gag tac atc gaa gga tgg aag agg
 Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg
 85 90 95

288

```

ttg gct aag act gaa ttg gaa agg cat tca aag aat caa gtc aca ttg
Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu
          100           105           110

```

336

atc cga tta tgg ggt gat gct ttg ttc gac atc att gac aaa gat aga
Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Asp Lys Asp Arg
115 120 125

384

ggc atc caa cag tca cgt ggg caa tgc gaa gct aca ttt gca cat tgc 480
 Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Phe Ala His Cys
 145 150 155 160

 gat tta gat ggt gac ggt aaa ctt gat gtg gac gaa atg aca aga cga 528
 Asp Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Arg
 165 170 175

 cat ata gga ttt tgg tat tcg gtc gac cca act tgt gaa gga ctc tac 576
 His Ile Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr
 180 185 190

 ggt ggt gct gta cct tat taa 597
 Gly Gly Ala Val Pro Tyr
 195

 <210> 48

 <211> 198

 <212> PRT

 <213> séquence dérivée par mutation de la mitrocomine

 <400> 48

 Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp 500
 1 5 10 15

 Asn Pro Lys Trp Ile Ala Arg His Arg His Met Phe Asn Phe Leu Asp 550
 20 25 30

 Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Glu Met Val His Lys Ala 600
 35 40 45

 Ser Asn Ile Ile Cys Lys Lys Leu Gly Ala Thr Glu Glu Gln Thr Lys 650
 50 55 60

 Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu 700
 65 70 75 80

 Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg 750
 85 90 95

 Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu 800
 100 105 110

 Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Asp Lys Asp Arg 850
 115 120 125

 Asn Gly Ser Val Ser Leu Asp Glu Trp Ile Gln Tyr Thr His Cys Ala 900
 130 135 140

 Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Phe Ala His Cys 950
 145 150 155 160

 Asp Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Arg 1000
 165 170 175

His Ile Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr
 180 185 190

Gly Gly Ala Val Pro Tyr
 195

<210> 49

<211> 588

<212> DNA

<213> Obelia longissima

<220>

<221> CDS

<222> (1)...(588)

<223>

<400> 49		
atg tct tca aaa tac gca gtt aaa ctc aag act gac ttt gat aat cca		48
Met Ser Ser Lys Tyr Ala Val Lys Leu Lys Thr Asp Phe Asp Asn Pro		
1 5 10 15		
cga tgg atc aaa aga cac aag cac atg ttt gat ttc ctc gac atc aat		96
Arg Trp Ile Lys Arg His Lys His Met Phe Asp Phe Leu Asp Ile Asn		
20 25 30		
gga aat gga aaa atc acc ctc gat gaa att gtg tcc aag gca tct gat		144
Gly Asn Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys Ala Ser Asp		
35 40 45		
gac ata tgt gcc aag ctc gaa gcc aca cca gaa caa aca aaa cgc cat		192
Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His		
50 55 60		
caa gtt tgt gtt gaa gct ttc ttt aga gga tgt gga atg gaa tat ggt		240
Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly		
65 70 75 80		
aaa gaa att gcc ttc cca caa ttc ctc gat gga tgg aaa caa ttg gcg		288
Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala		
85 90 95		
act tca gaa ctc aag aaa tgg gca aga aac gaa cct act ctc att cgt		336
Thr Ser Glu Leu Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg		
100 105 110		
gaa tgg gga gat gct gtc ttt gat att ttc gac aaa gat gga agt ggt		384
Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Asp Lys Asp Gly Ser Gly		
115 120 125		
aca atc act ttg gac gaa tgg aaa gct tat gga aaa atc tct ggt atc		432
Thr Ile Thr Leu Asp Glu Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile		
130 135 140		

tct cca tca caa gaa gat tgt gaa gcg aca ttt cga cat tgc gat ttg	480
Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Phe Arg His Cys Asp Leu	
145 150 155 160	
gac aac agt ggt gac ctt gat gtt gac gag atg aca aga caa cat ctt	528
Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Gln His Leu	
165 170 175	
gga ttc tgg tac act ttg gac cca gaa gct gat ggt ctc tat ggc aac	576
Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn	
180 185 190	
gga gtt ccc taa	588
Gly Val Pro	
195	
<210> 50	
<211> 195	
<212> PRT	
<213> <i>Obelia longissima</i>	
<400> 50	
Met Ser Ser Lys Tyr Ala Val Lys Leu Lys Thr Asp Phe Asp Asn Pro	
1 5 10 15	
Arg Trp Ile Lys Arg His Lys His Met Phe Asp Phe Leu Asp Ile Asn	
20 25 30	
Gly Asn Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys Ala Ser Asp	
35 40 45	
Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His	
50 55 60	
Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly	
65 70 75 80	
Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala	
85 90 95	
Thr Ser Glu Leu Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg	
100 105 110	
Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Asp Lys Asp Gly Ser Gly	
115 120 125	
Thr Ile Thr Leu Asp Glu Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile	
130 135 140	
Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Phe Arg His Cys Asp Leu	
145 150 155 160	
Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Gln His Leu	
165 170 175	

Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn
 180 185 190

Gly Val Pro
195

<210> 51

<211> 588

<212> DNA

213

卷之三

1400-51

```

<400> 51
atg tct tca aaa tac gca gtt aaa ctc aag act gac ttt gat aat cca
Met Ser Ser Lys Tyr Ala Val Lys Leu Lys Thr Asp Phe Asp Asn Pro
1           5           10          15

```

19

cga tgg atc aaa aga cac agg cac atg ttt gat ttc ctc gac atc aat
Arg Trp Ile Lys Arg His Arg His Met Phe Asp Phe Leu Asp Ile Asn
20 25 30

96

```

gga aat gga aaa atc acc ctc gat gaa att gtg tcc aag gca tct gat
Gly Asn Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys Ala Ser Asp
      35           40           45

```

144

gac	ata	tgt	gcc	aag	ctc	gaa	gcc	aca	cca	gaa	caa	aca	aaa	cgc	cat
Asp	Ile	Cys	Ala	Lys	Leu	Glu	Ala	Thr	Pro	Glu	Gln	Thr	Lys	Arg	His
50					55						60				

192

```

caa gtt tgt gtt gaa gct ttc ttt aga gga tgt gga atg gaa tat ggt
Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly
65          70          75          :          80

```

240

aaa gaa att gcc ttc cca caa ttc ctc gat gga tgg aaa caa ttg gcg
 Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala
 85 90 95

288

```

act tca gaa ctc aag aaa tgg gca aga aac gaa cct act ctc att cgt
Thr Ser Glu Leu Lys Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg
          100           105           110

```

336

```

gaa tgg gga gat gct gtc ttt gat att ttc gac aaa gat gga agt ggt
Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Asp Lys Asp Gly Ser Gly
           115          120          125

```

584

```

aca atc act ttg gac gaa tgg aaa gct tat gga aaa atc tct ggt atc
Thr Ile Thr Leu Asp Glu Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile
          130           135           140

```

52

tct cca tca caa gaa gat tgt gaa gcg aca ttt cga cat tgc gat ttg	480
Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Phe Arg His Cys Asp Leu	
145 150 155 . 160	

gac aac agt ggt gac ctt gat gtt gac gag atg aca aga caa cat ctt 528
 Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Gln His Leu
 165 170 175

gga ttc tgg tac act ttg gac cca gaa gct gat ggt ctc tat ggc aac 576
 Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn
 180 185 190

gga gtt ccc taa 588
Gly Val Pro
195

<210> 52

<211> 195

PRT

<213> séquence dérivée par mutation de l'obéline

<400> 52

Met	Ser	Ser	Lys	Tyr	Ala	Val	Lys	Leu	Lys	Thr	Asp	Phe	Asp	Asn	Pro
1				5					10					15	

Arg Trp Ile Lys Arg His Arg His Met Phe Asp Phe Leu Asp Ile Asn
20 25 30

Gly Asn Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys Ala Ser Asp
 35 40 45

Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His
50 55 60

Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly
65 70 75 80

Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala
85 90 95

Thr Ser Glu Leu Lys Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg
100 105 110

Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Asp Lys Asp Gly Ser Gly
115 120 125

Thr Ile Thr Leu Asp Glu Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile
130 135 140

Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Phe Arg His Cys Asp Leu
145 150 155 160

Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Gln His Leu
165 170 175

Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn
 180 185 190

Gly Val Pro
195

<210> 53

<211> 588

<212> DNA

<213>

<220>

<221> CDS

<222>

(223)

```

<400> 35
atg tct tca aaa tac gca gtt aaa ctc aag act gac ttt gat aat cca      48
Met Ser Ser Lys Tyr Ala Val Lys Leu Lys Thr Asp Phe Asp Asn Pro
1          5                  10                 15

```

cga tgg atc aaa aga cac aag cac atg ttt gat ttc ctc gac atc aat 96
 Arg Trp Ile Lys Arg His Lys His Met Phe Asp Phe Leu Asp Ile Asn
 20 25 30

gga aat gga aaa atc acc ctc gat gaa att gtg tcc aag gca tct gat 144
 Gly Asn Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys Ala Ser Asp
 35 40 45

```

gac ata tgt gcc aag ctc gaa gcc aca cca gaa caa aca aaa cgc cat      192
Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His
   50          55          60

```

aaa gaa att gcc ttc cca caa ttc ctc gat gga tgg aaa caa ttg gcg 288
 Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala
 85 90 95

act tca gaa ctc aag aaa tgg gca aga aac gaa cct act ctc att cgt 336
 Thr Ser Glu Leu Lys Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg
 100 105 110

gaa tgg gga gat gct gtc ttt gat att ttc gac aaa gat gga agt ggt 384
 Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Asp Lys Asp Gly Ser Gly
 115 120 125

```

aca atc act ttg gac gaa tgg aaa gct tat gga aaa atc tct ggt atc      432
Thr Ile Thr Leu Asp Glu Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile
   130          135          140

```

tct	cca	tca	caa	gaa	gat	tgt	gaa	gcg	aca	ttt	cga	cat	tgc	gat	ttg	480
Ser	Pro	Ser	Gln	Glu	Asp	Cys	Glu	Ala	Thr	Phe	Arg	His	Cys	Asp	Leu	
145				150						155					160	

gga ttc tgg tac act ttg gac cca gaa gct gat ggt ctc tat ggc aac 576
 Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn
 180 185 190

gga gtt ccc taa 588
Gly Val Pro
195

<210> 54

<211> 195

<212> PRT

<213> séquence dérivée par mutation de l'obéline

<400> 54

Met	Ser	Ser	Lys	Tyr	Ala	Val	Lys	Leu	Lys	Thr	Asp	Phe	Asp	Asn	Pro
1				5				10						15	

Arg Trp Ile Lys Arg His Lys His Met Phe Asp Phe Leu Asp Ile Asn
20 25 30

Gly Asn Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys Ala Ser Asp
35 40 45

Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His
50 55 60

Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly
65 70 75 80

Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala
85 90 95

Thr Ser Glu Leu Lys Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg
100 105 110

Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Asp Lys Asp Gly Ser Gly
 115 120 125

Thr Ile Thr Leu Asp Glu Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile
130 135 140

Ser	Pro	Ser	Gln	Glu	Asp	Cys	Glu	Ala	Thr	Phe	Arg	His	Cys	Asp	Leu
145				150						155					160

Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Arg His Leu
165 170 175

Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn
 180 185 190

Gly Val Pro
195

<210> 55

<211> 588

<212> DNA

<213>

1221-228

<223> (1) (588)

53233

<400> 55

```

atg tct tca aaa tac gca gtt aaa ctc aag act gac ttt gat aat cca
Met Ser Ser Lys Tyr Ala Val Lys Leu Lys Thr Asp Phe Asp Asn Pro
1           5                   10                      15

```

48

cga tgg atc aaa aga cac aag cac atg ttt gat ttc ctc gac atc aat
 Arg Trp Ile Lys Arg His Lys His Met Phe Asp Phe Leu Asp Ile Asn
 20 25 30

96

gga aat gga aaa atc acc ctc gat gaa att gtg tcc aag gca tct gat
 Gly Asn Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys Ala Ser Asp
 35 40 45

144

192

caa gtt tgt gtt gaa gct ttc ttt aga gga tgt gga atg gaa tat ggt
 Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly
 65 70 75 80

240

```

aaa gaa att gcc ttc cca caa ttc ctc gat gga tgg aaa caa ttg gcg
Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala
          85           90           95

```

288

act tca gaa ctc aag aaa tgg gca aga aac gaa cct act ctc att cgt
Thr Ser Glu Leu Lys Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg

336

gaa tgg gga gat gct gtc ttt gat att ttc gac aaa gat gga agt ggt
Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Asp Lys Asp Gly Ser Gly

284

aca atc act ttg gac gaa tgg aaa gct tat gga aaa atc tct ggt atc
 Thr Ile Thr Leu Asp Glu Trp Lys Ala Tyr Gly Ile Ser Gly Ile

432

tct cca tca caa gaa gat tgt gaa gcg aca ttt cga cat tgc gat ttg	480
Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Phe Arg His Cys Asp Leu	
145 150 155 160	
gac aac agt ggt gac ctt gat gtt gac gag atg aca aga caa cat att	528
Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Gln His Ile	
165 170 175	
gga ttc tgg tac act ttg gac cca gaa gct gat ggt ctc tat ggc aac	576
Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn	
180 185 190	
gga gtt ccc taa	588
Gly Val Pro	
195	
<210> 56	
<211> 195	
<212> PRT	
<213> séquence dérivée par mutation de l'obéline	
<400> 56	
Met Ser Ser Lys Tyr Ala Val Lys Leu Lys Thr Asp Phe Asp Asn Pro	
1 5 10 15	
Arg Trp Ile Lys Arg His Lys His Met Phe Asp Phe Leu Asp Ile Asn	
20 25 30	
Gly Asn Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys Ala Ser Asp	
35 40 45	
Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His	
50 55 60	
Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly	
65 70 75 80	
Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala	
85 90 95	
Thr Ser Glu Leu Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg	
100 105 110	
Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Asp Lys Asp Gly Ser Gly	
115 120 125	
Thr Ile Thr Leu Asp Glu Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile	
130 135 140	
Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Phe Arg His Cys Asp Leu	
145 150 155 160	
Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Gln His Ile	
165 170 175	

Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn
 180 185 190

Gly Val Pro
195

<210> 57

<211> 588

<212> DNA

1222 (1) (E88)

1323

<400> 57

```

<400> 57
atg tct tca aaa tac gca gtt aaa ctc aag act gac ttt gat aat cca
Met Ser Ser Lys Tyr Ala Val Lys Leu Lys Thr Asp Phe Asp Asn Pro
1           5                   10                  15

```

48

cga tgg atc aaa aga cac agg cac atg ttt gat ttc ctc gac atc aat
Arg Trp Ile Lys Arg His Arg His Met Phe Asp Phe Leu Asp Ile Asn
20 25 30

96

```

gga aat gga aaa atc acc ctc gat gaa att gtg tcc aag gca tct gat
Gly Asn Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys Ala Ser Asp
      35           40           45

```

144

```

gac ata tgt gcc aag ctc gaa gcc aca cca gaa caa aca aaa cgc cat
Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His
      50          55          60

```

192

```

caa gtt tgt gtt gaa gct ttc ttt aga gga tgt gga atg gaa tat ggt
Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly
65          70          75          80

```

240

```

aaa gaa att gcc ttc cca caa ttc ctc gat gga tgg aaa caa ttg gcg
Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala
          85           90           95

```

288

act tca gaa ctc aag aaa tgg gca aga aac gaa cct act ctc att cgt
Thr Ser Glu Leu Lys Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg
100 105 110

336

gaa tgg gga gat gct gtc ttt gat att ttc gac aaa gat gga agt ggt
Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Asp Lys Asp Gly Ser Gly
115 120 125

384

aca atc act ttg gac gaa tgg aaa gct tat gga aaa atc tct ggt atc
Thr Ile Thr Leu Asp Glu Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile
130 135 140

tct cca tca caa gaa gat tgt gaa gcg aca ttt cga cat tgc gat ttg		480
Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Phe Arg His Cys Asp Leu		
145 150 155 160		
gac aac agt ggt gac ctt gat gtt gac gag atg aca aga cga cat ctt		528
Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Arg His Leu		
165 170 175		
gga ttc tgg tac act ttg gac cca gaa gct gat ggt ctc tat ggc aac		576
Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn		
180 185 190		
gga gtt ccc taa		588
Gly Val Pro		
195		
<210> 58		
<211> 195		
<212> PRT		
<213> séquence dérivée par mutation de l'obéline		
<400> 58		
Met Ser Ser Lys Tyr Ala Val Lys Leu Lys Thr Asp Phe Asp Asn Pro		
1 5 10 15		
Arg Trp Ile Lys Arg His Arg His Met Phe Asp Phe Leu Asp Ile Asn		
20 25 30		
Gly Asn Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys Ala Ser Asp		
35 40 45		
Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His		
50 55 60		
Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly		
65 70 75 80		
Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala		
85 90 95		
Thr Ser Glu Leu Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg		
100 105 110		
Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Asp Lys Asp Gly Ser Gly		
115 120 125		
Thr Ile Thr Leu Asp Glu Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile		
130 135 140		
Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Phe Arg His Cys Asp Leu		
145 150 155 160		
Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Arg His Leu		
165 170 175		

Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn
 180 185 190

Gly Val Pro
 195

<210> 59

<211> 588

<212> DNA

<213> séquence dérivée par mutation de l'obéline

<220>

<221> CDS

<222> (1)..(588)

<223>

<400> 59		
atg tct tca aaa tac gca gtt aaa ctc aag act gac ttt gat aat cca		48
Met Ser Ser Lys Tyr Ala Val Lys Leu Lys Thr Asp Phe Asp Asn Pro		
1 5 10 15		
cga tgg atc aaa aga cac agg cac atg ttt gat ttc ctc gac atc aat		96
Arg Trp Ile Lys Arg His Arg Met Phe Asp Phe Leu Asp Ile Asn		
20 25 30		
gga aat gga aaa atc acc ctc gat gaa att gtg tcc aag gca tct gat		144
Gly Asn Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys Ala Ser Asp		
35 40 45		
gac ata tgt gcc aag ctc gaa gcc aca cca gaa caa aca aaa cgc cat		192
Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His		
50 55 60		
caa gtt tgt gtt gaa gct ttc ttt aga gga tgt gga atg gaa tat ggt		240
Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly		
65 70 75 80		
aaa gaa att gcc ttc cca caa ttc ctc gat gga tgg aaa caa ttg gcg		288
Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala		
85 90 95		
act tca gaa ctc aag aaa tgg gca aga aac gaa cct act ctc att cgt		336
Thr Ser Glu Leu Lys Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg		
100 105 110		
gaa tgg gga gat gct gtc ttt gat att ttc gac aaa gat gga agt ggt		384
Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Asp Lys Asp Gly Ser Gly		
115 120 125		
aca atc act ttg gac gaa tgg aaa gct tat gga aaa atc tct ggt atc		432
Thr Ile Thr Leu Asp Glu Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile		
130 135 140		

60

tct cca tca caa gaa gat tgt gaa gcg aca ttt cga cat tgc gat ttg	480
Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Phe Arg His Cys Asp Leu	
145 150 155 . 160	

gac aac agt ggt gac ctt gat gtt gac gag atg aca aga caa cat att
 Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Gln His Ile
 165 170 175

gga ttc tgg tac act ttg gac cca gaa gct gat ggt ctc tat ggc aac 576
 Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn
 180 185 190

gga gtt ccc taa 588
Gly Val Pro
195

<210> 60

<211> 195

<212> PRT

<213> séquence dérivée par mutation de l'obéline

<400> 60

Met	Ser	Ser	Lys	Tyr	Ala	Val	Lys	Leu	Lys	Thr	Asp	Phe	Asp	Asn	Pro
1				5					10					15	

Gly Asn Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys Ala Ser Asp
 35 40 45

Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His
50 55 60

Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly
 65 70 75 80

Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala
85 90 95

Thr Ser Glu Leu Lys Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg
100 105 110

Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Asp Lys Asp Gly Ser Gly
115 120 125

Thr Ile Thr Leu Asp Glu Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile
 130 135 140

Ser	Pro	Ser	Gln	Glu	Asp	Cys	Glu	Ala	Thr	Phe	Arg	His	Cys	Asp	Leu
145	.			150					155					160	

Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Gln His Ile
165 170 175

Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn
 180 185 190

Gly Val Pro
195

<210> 61

<211> 588

<212> DNA

1000 (1) (500)

1003

5100> 61

<400> 61
atg tct tca aaa tac gca gtt aaa ctc aag act gac ttt gat aat cca
Met Ser Ser Lys Tyr Ala Val Lys Leu Lys Thr Asp Phe Asp Asn Pro
1 5 10 15

48

```

cga tgg atc aaa aga cac aag cac atg ttt gat ttc ctc gac atc aat
Arg Trp Ile Lys Arg His Lys His Met Phe Asp Phe Leu Asp Ile Asn
          20           25           30

```

96

```

gga aat gga aaa atc acc ctc gat gaa att gtg tcc aag gca tct gat
Gly Asn Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys Ala Ser Asp
      35           40           45

```

144

```

gac ata tgt gcc aag ctc gaa gcc aca cca gaa caa aca aaa cgc cat
Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His
      50           55           60

```

192

```

caa gtt tgt gtt gaa gct ttc ttt aga gga tgt gga atg gaa tat ggt
Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly
65          70          75          .          80

```

240

aaa gaa att gcc ttc cca caa ttc ctc gat gga tgg aaa caa ttg gcg
 Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala
 85 90 95

288

```

act tca gaa ctc aag aaa tgg gca aga aac gaa cct act ctc att cgt
Thr Ser Glu Leu Lys Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg
          100           105           110

```

336

gaa tgg gga gat gct gtc ttt gat att ttc gac aaa gat gga agt ggt
Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Asp Lys Asp Gly Ser Gly
115 120 125

384

```

aca atc act ttg gac gaa tgg aaa gct tat gga aaa atc tct ggt atc
Thr Ile Thr Leu Asp Glu Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile
          130           135           140

```

62

tct	cca	tca	caa	gaa	gat	tgt	gaa	gcg	aca	ttt	cga	cat	tgc	gat	ttg	480
Ser	Pro	Ser	Gln	Glu	Asp	Cys	Glu	Ala	Thr	Phe	Arg	His	Cys	Asp	Leu	
145				150						155	.				160	

gac aac agt ggt gac ctt gat gtt gac gag atg aca aga cga cat att
 Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Arg His Ile
 165 170 175

gga ttc tgg tac act ttg gac cca gaa gct gat ggt ctc tat ggc aac 576
 Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn
 180 185 190

gga gtt ccc taa 588
Gly Val Pro .
195

<210> 62

<211> 195

<212> PRT

<213> séquence dérivée par mutation de l'obéline

<400> 62

Met	Ser	Ser	Lys	Tyr	Ala	Val	Lys	Leu	Lys	Thr	Asp	Phe	Asp	Asn	Pro
1				5					10					15	

Arg Trp Ile Lys Arg His Lys His Met Phe Asp Phe Leu Asp Ile Asn
 20 25 30

Gly Asn Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys Ala Ser Asp
35 40 45

Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His
50 55 60

Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly
65 70 75 80

Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala
85 90 95

Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Asp Lys Asp Gly Ser Gly
 115 120 125

Thr Ile Thr Leu Asp Glu Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile
130 135 140

Ser	Pro	Ser	Gln	Glu	Asp	Cys	Glu	Ala	Thr	Phe	Arg	His	Cys	Asp	Leu
145			150						155						160

Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Arg His Ile
165 170 175

Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn
 180 185 190

Gly Val Pro
195

<210> 63

<211> 588

<212> DNA

<213>

<220>

<221> CDS

2222

225

```

atg tct tca aaa tac gca gtt aaa ctc aag act gac ttt gat aat cca      48
Met Ser Ser Lys Tyr Ala Val Lys Leu Lys Thr Asp Phe Asp Asn Pro
1          5           10          15

```

cga tgg atc aaa aga cac agg cac atg ttt gat ttc ctc gac atc aat 96
 Arg Trp Ile Lys Arg His Arg His Met Phe Asp Phe Leu Asp Ile Asn
 20 25 30

gga aat gga aaa atc acc ctc gat gaa att gtg tcc aag gca tct gat 144
 Gly Asn Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys Ala Ser Asp
 35 40 45

gac ata tgt gcc aag ctc gaa gcc aca cca gaa caa aca aaa cgc cat	192
Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His	
50 55 60	

caa gtt tgt gtt gaa gct ttc ttt aga gga tgt gga atg gaa tat ggt
 Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly
 65 70 75 80
 240

aaa gaa att gcc ttc cca caa ttc ctc gat gga tgg aaa caa ttg gcg 288
Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala
85 90 95

act tca gaa ctc aag aaa tgg gca aga aac gaa cct act ctc att cgt
 Thr Ser Glu Leu Lys Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg
 100 105 110

aca atc act ttg gac gaa tgg aaa gct tat gga aaa atc tct ggt atc 432
 Thr Ile Thr Leu Asp Glu Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile
 130 . 135 140

tct cca tca caa gaa gat tgt gaa gcg aca ttt cga cat tgc gat ttg	480
Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Phe Arg His Cys Asp Leu	
145 150 155 160	
gac aac agt ggt gac ctt gat gtt gag atg aca aga cga cat att	528
Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Arg His Ile	
165 170 175	
gga ttc tgg tac act ttg gac cca gaa gct gat ggt ctc tat ggc aac	576
Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn	
180 185 190	
gga gtt ccc taa	588
Gly Val Pro	
195	

<210> 64

<211> 195

<212> PRT

<213> séquence dérivée par mutation de l'obéline

<400> 64

Met Ser Ser Lys Tyr Ala Val Lys Leu Lys Thr Asp Phe Asp Asn Pro	
1 . . . 5 10 15	

Arg Trp Ile Lys Arg His Arg His Met Phe Asp Phe Leu Asp Ile Asn	
20 . . . 25 30	

Gly Asn Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys Ala Ser Asp	
35 . . . 40 45	

Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His	
50 . . . 55 60	

Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly	
65 . . . 70 75 80	

Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala	
85 . . . 90 95	

Thr Ser Glu Leu Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg	
100 . . . 105 110	

Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Asp Lys Asp Gly Ser Gly	
115 . . . 120 125	

Thr Ile Thr Leu Asp Glu Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile	
130 . . . 135 140	

Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Phe Arg His Cys Asp Leu	
145 . . . 150 155 160	

Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Arg His Ile	
165 . . . 170 175	

Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn
 180 185 190

Gly Val Pro
195

<210> 65

<211> 600

<212> DNA

<213>

2203

(221) CDS

```

atg ctt tat gat gtt cct gat tat gct agc ctc aaa ctt aca tca gac 48
Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp
1          5           .          10          .          15

```

ttc gac aac cca aga tgg att gga cga cac agg cat atg ttc aat ttc 96
 Phe Asp Asn Pro Arg Trp Ile Gly Arg His Arg His Met Phe Asn Phe
 20 25 30

ctt gat gtc aac cac aat gga aaa atc tct ctt gac ggg atg gtc tac 144
 Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Gly Met Val Tyr
 35 40 45

```

aag gca tct gat att gtc atc aat aac ctt gga gca aca cct gag caa      192
Lys Ala Ser Asp Ile Val Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln
      50          55          60

```

gcc aaa cga cac aaa gat gct gta gaa gcc ttc ttc gga gga gct gga
 Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly
 65 70 75 80

atg aaa tat ggt gtg gaa act gat tgg cct gca tat att gaa gga tgg 288
 Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp
 85 90 95

aaa aaa ttg gct act gat gaa ttg gag aaa tac gcc aaa aac gaa cca 336
Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro
100 105 110

acg ctc atc cgt ata tgg ggt gat gct ttg ttt gat atc gtt gac aaa 384
 Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Asp Lys
 115 120 125

gat caa aat gga gcc att aca ctg gat gaa tgg aaa gca tac acc aaa 432
Asp Gln Asn Gly Ala Ile Thr Leu Asp Glu Trp Lys Ala Tyr Thr Lys
130 135 140

gct gct ggt atc atc caa tca tca gaa gat tgc gag gaa aca ttc aga	480
Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Phe Arg	
145 150 155 160	
gtg tgc gat att gat gaa agt gga caa ctc gat gtt gat gag atg aca	528
Val Cys Asp Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr	
165 170 175	
aga caa cat tta gga ttt tgg tac acc atg gat cct gct tgc gaa aag	576
Arg Gln His Leu Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys	
180 185 190	
ctc tac ggt gga gct gtc ccc taa	600
Leu Tyr Gly Gly Ala Val Pro	
195	

<210> 66

<211> 199

<212> PRT

<213> séquence dérivée par mutation de l'aequorine

<400> 66

Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp	
1 5 10 15	
Phe Asp Asn Pro Arg Trp Ile Gly Arg His Arg His Met Phe Asn Phe	
20 25 30	
Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Gly Met Val Tyr	
35 40 45	
Lys Ala Ser Asp Ile Val Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln	
50 55 60	
Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly	
65 70 75 80	
Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp	
85 90 95	
Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro	
100 105 110	
Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Asp Lys	
115 120 125	
Asp Gln Asn Gly Ala Ile Thr Leu Asp Glu Trp Lys Ala Tyr Thr Lys	
130 135 140	
Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Phe Arg	
145 150 155 160	
Val Cys Asp Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr	
165 170 175	

Arg Gln His Leu Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys
180 185 190

Leu Tyr Gly Gly Ala Val Pro
195

<210> 67

<211> 600

<212> DNA

<213> séquence dérivée par mutation de l'aequorine

<220>

<221> CDS

<222> (1)..(597)

<223>

<400> 67

```

atg ctt tat gat gtt cct gat tat gct agc ctc aaa ctt aca tca gac
Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp
   1           5           10          15

```

48

```

ttc gac aac cca aga tgg att gga cga cac aag cat atg ttc aat ttc
Phe Asp Asn Pro Arg Trp Ile Gly Arg His Lys His Met Phe Asn Phe
20          25          30

```

96

ctt gat gtc aac cac aat gga aaa atc tct ctt gag gag atg gtc tac
Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Glu Met Val Tyr
35 40 45

144

```

aag gca tct gat att gcc atc aat aac ctt gga gca aca cct gag caa
Lys Ala Ser Asp Ile Ala Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln
      50           55           60

```

192

```

gcc aaa cga cac aaa gat gct gta gaa gcc ttc ttc gga gga gct gga
Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly
65           70           75           :   80

```

240

```

atg aaa tat ggt gtg gaa act gat tgg cct gca tat att gaa gga tgg
Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp
          85           90           95

```

288

```

aaa aaa ttg gct act gat gaa ttg gag aaa tac gcc aaa aac gaa cca
Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro
          100           105           110

```

336

acg ctc atc cgt ata tgg ggt gat gct ttg ttt gat atc gtt gac aaa
Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Asp Lys
115 120 125

384

```

gat caa aat gga gcc att aca ctg gat gaa tgg aaa gca tac acc aaa
Asp Gln Asn Gly Ala Ile Thr Leu Asp Glu Trp Lys Ala Tyr Thr Lys
    130           135           140

```

```

gct gct ggt atc atc caa tca tca gaa gat tgc gag gaa aca ttc aga      480
Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Phe Arg
145           150           155           160

gtg tgc gat att gat gaa agt gga caa ctc gat gtt gat gag atg aca      528
Val Cys Asp Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr
165           170           175

aga cga cat tta gga ttt tgg tac acc atg gat cct gct tgc gaa aag      576
Arg Arg His Leu Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys
180           185           190

ctc tac ggt gga gct gtc ccc taa      600
Leu Tyr Gly Gly Ala Val Pro
195

```

<210> 68

<211> 199

<212> PRT

<213> séquence dérivée par mutation de l'aequorine

<400> 68

Met	Leu	Tyr	Asp	Val	Pro	Asp	Tyr	Ala	Ser	Leu	Lys	Leu	Thr	Ser	Asp
1				5					10				15		
Phe	Asp	Asn	Pro	Arg	Trp	Ile	Gly	Arg	His	Lys	His	Met	Phe	Asn	Phe
				20				25					30		
Leu	Asp	Val	Asn	His	Asn	Gly	Lys	Ile	Ser	Leu	Asp	Glu	Met	Val	Tyr
					35		40					45			
Lys	Ala	Ser	Asp	Ile	Ala	Ile	Asn	Asn	Leu	Gly	Ala	Thr	Pro	Glu	Gln
					50		55				60				
Ala	Lys	Arg	His	Lys	Asp	Ala	Val	Glu	Ala	Phe	Phe	Gly	Gly	Ala	Gly
					65		70			75				80	
Met	Lys	Tyr	Gly	Val	Glu	Thr	Asp	Trp	Pro	Ala	Tyr	Ile	Glu	Gly	Trp
					85				90				95		
Lys	Lys	Leu	Ala	Thr	Asp	Glu	Leu	Glu	Lys	Tyr	Ala	Lys	Asn	Glu	Pro
					100			105					110		
Thr	Leu	Ile	Arg	Ile	Trp	Gly	Asp	Ala	Leu	Phe	Asp	Ile	Val	Asp	Lys
					115			120				125			
Asp	Gln	Asn	Gly	Ala	Ile	Thr	Leu	Asp	Glu	Trp	Lys	Ala	Tyr	Thr	Lys
					130		135				140				
Ala	Ala	Gly	Ile	Ile	Gln	Ser	Ser	Glu	Asp	Cys	Glu	Glu	Thr	Phe	Arg
					145		150			155				160	
Val	Cys	Asp	Ile	Asp	Glu	Ser	Gly	Gln	Leu	Asp	Val	Asp	Glu	Met	Thr
					165				170			175			

Arg Arg His Leu Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys
 180 185 190

Leu Tyr Gly Gly Ala Val Pro
 195

<210> 69

<211> 600

<212> DNA

<213> séquence dérivée par mutation de l'aequorine

<220>

<221> CDS

<222> (1)..(597)

<223>

<400> 69

atg ctt tat gat gtt cct gat tat gct agc ctc aaa ctt aca tca gac
 Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp
 1 5 10 15

48

tgc gac aac cca aga tgg att gga cga cac aag cat atg ttc aat ttc
 Phe Asp Asn Pro Arg Trp Ile Gly Arg His Lys His Met Phe Asn Phe
 20 25 30

96

ctt gat gtc aac cac aat gga aaa atc tct ctt gac gag atg gtc tac
 Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Glu Met Val Tyr
 35 40 45

144

aag gca tct gat att gtc atc aat aac ctt gga gca aca cct gag caa
 Lys Ala Ser Asp Ile Val Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln
 50 55 60

192

gcc aaa cga cac aaa gat gct gta gaa gcc ttc ttc gga gga gct gga
 Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly
 65 70 75 80

240

atg aaa tat ggt gtg gaa act gat tgg cct gca tat att gaa gga tgg
 Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp
 85 90 95

288

aaa aaa ttg gct act gat gaa ttg gag aaa tac gcc aaa aac gaa cca
 Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro
 100 105 110

336

acg ctc atc cgt ata tgg ggt gat gct ttg ttt gat atc gtt ggc aaa
 Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Gly Lys
 115 120 125

384

gat caa aat gga gcc att aca ctg gat gaa tgg aaa gca tac acc aaa
 Asp Gln Asn Gly Ala Ile Thr Leu Asp Glu Trp Lys Ala Tyr Thr Lys
 130 135 140

432

```

gct gct ggt atc atc caa tca tca gaa gat tgc gag gaa aca ttc aga      480
Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Phe Arg
145           150           155           160

gtg tgc gat att gat gaa agt gga caa ctc gat gtt gat gag atg aca      528
Val Cys Asp Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr
165           170           175

aga caa cat ata gga ttt tgg tac acc atg gat cct gct tgc gaa aag      576
Arg Gln His Ile Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys
180           185           190

ctc tac ggt gga gct gtc ccc taa      600
Leu Tyr Gly Gly Ala Val Pro
195

```

<210> 70

<211> 199

<212> PRT

<213> séquence dérivée par mutation de l'aequorine

<400> 70

Met	Leu	Tyr	Asp	Val	Pro	Asp	Tyr	Ala	Ser	Leu	Lys	Leu	Thr	Ser	Asp
1				5						10				15	

Phe Asp Asn Pro Arg Trp Ile Gly Arg His Lys His Met Phe Asn Phe
20 25 30

Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Glu Met Val Tyr
35 40 45

Lys Ala Ser Asp Ile Val Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln
50 55 . 60

Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly
65 70 75 80

Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp
85 90 95

Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro
100 105 110

Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Gly Lys
115 120 125

Asp Gln Asn Gly Ala Ile Thr Leu Asp Glu Trp Lys Ala Tyr Thr Lys
130 135 140

Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Phe Arg
145 150 155 160

Val Cys Asp Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr
165 170 175

Arg Gln His Ile Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys					
180	185	Leu Tyr Gly Gly Ala Val Pro		195	
Leu Tyr Gly Gly Ala Val Pro					
195					

<210> 71

<211> 600

<212> DNA

<213> séquence dérivée par mutation de l'aequorine

<220>

<221> CDS

<222> (1)..(597)

<223>

<400> 71

atg ctt tat gat gtt cct gat tat gct agc ctc aaa ctt aca tca gac	48
Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp	
1 5 10 15	

ttc gac aac cca aga tgg att gga cga cac aag cat atg ttc aat ttc	96
Phe Asp Asn Pro Arg Trp Ile Gly Arg His Lys His Met Phe Asn Phe	
20 25 30	

ctt gat gtc aac cac aat gga aaa atc tct ctt gac gag atg gtc tac	144
Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Glu Met Val Tyr	
35 40 45	

aag gca tct gat att gtc atc aat aac ctt gga gca aca cct gag caa	192
Lys Ala Ser Asp Ile Val Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln	
50 55 60	

gcc aaa cga cac aaa gat gct gta gaa gcc ttc ttc gga gga gct gga	240
Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly	
65 70 75 80	

atg aaa tat ggt gtg gaa act gat tgg cct gca tat att gaa gga tgg	288
Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp	
85 90 95	

aaa aaa ttg gct act gat gaa ttg gag aaa tac gcc aaa aac gaa cca	336
Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro	
100 105 110	

acg ctc atc cgt ata tgg ggt gat gct ttg ttt gat atc gtt gac aaa	384
Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Asp Lys	
115 120 125	

gat caa aat gga gcc att aca ctg gat gga tgg aaa gca tac acc aaa	432
Asp Gln Asn Gly Ala Ile Thr Leu Asp Gly Trp Lys Ala Tyr Thr Lys	
130 135 140	

<210> 72

<211> 199

<212> PRT

<213> séquence dérivée par mutation de l'aequorine

<400> 72

Met	Leu	Tyr	Asp	Val	Pro	Asp	Tyr	Ala	Ser	Leu	Lys	Leu	Thr	Ser	Asp
1				5					10				15		
Phe	Asp	Asn	Pro	Arg	Trp	Ile	Gly	Arg	His	Lys	His	Met	Phe	Asn	Phe
					20				25				30		
Leu	Asp	Val	Asn	His	Asn	Gly	Lys	Ile	Ser	Leu	Asp	Glu	Met	Val	Tyr
						35		40				45			
Lys	Ala	Ser	Asp	Ile	Val	Ile	Asn	Asn	Leu	Gly	Ala	Thr	Pro	Glu	Gln
						50		55			60				
Ala	Lys	Arg	His	Lys	Asp	Ala	Val	Glu	Ala	Phe	Phe	Gly	Gly	Ala	Gly
						65		70		75			80		
Met	Lys	Tyr	Gly	Val	Glu	Thr	Asp	Trp	Pro	Ala	Tyr	Ile	Glu	Gly	Trp
						85			90				95		
Lys	Lys	Leu	Ala	Thr	Asp	Glu	Leu	Glu	Lys	Tyr	Ala	Lys	Asn	Glu	Pro
						100			105			110			
Thr	Leu	Ile	Arg	Ile	Trp	Gly	Asp	Ala	Leu	Phe	Asp	Ile	Val	Asp	Lys
						115		120				125			
Asp	Gln	Asn	Gly	Ala	Ile	Thr	Leu	Asp	Gly	Trp	Lys	Ala	Tyr	Thr	Lys
						130		135			140				
Ala	Ala	Gly	Ile	Ile	Gln	Ser	Ser	Glu	Asp	Cys	Glu	Glu	Thr	Phe	Arg
						145		150		155			160		
Val	Cys	Asp	Ile	Asp	Glu	Ser	Gly	Gln	Leu	Asp	Val	Asp	Glu	Met	Thr
						165			170			175			

Arg Gln His Ile Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys
 180 185 190

Leu Tyr Gly Gly Ala Val Pro
195

<210> 73

<211> 600

<212> DNA

<213> séquence dérivée par mutation de l'aequorine

<220>

<221> CDS

<222> (1)..(597)

<223>

<400> 73

```

atg ctt tat gat gtt cct gat tat gct agc ctc aaa ctt aca tca gac
Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp
1           5           10          15

```

48

ttc gac aac cca aga tgg att gga cga cac aag cat atg ttc aat ttc
Phe Asp Asn Pro Arg Trp Ile Gly Arg His Lys His Met Phe Asn Phe
20 25 30

96

ctt gat gtc aac cac aat gga aaa atc tct ctt gac gag atg gtc tac
 Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Glu Met Val Tyr
 35 40 45

144

```

aag gca tct gat att gtc atc aat aac ctt gga gca aca cct gag caa
Lys Ala Ser Asp Ile Val Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln
      50           55           60

```

192

```

gcc aaa cga cac aaa gat gct gta gaa gcc ttc ttc gga gga gct gga
Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly
65           70           75           :           80

```

240

atg aaa tat ggt gtg gaa act gat tgg cct gca tat att gaa gga tgg
 Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp
 85 90 95

288

```

aaa aaa ttg gct act gat gaa ttg gag aaa tac gcc aaa aac gaa cca
Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro
          100           105           110

```

336

acg ctc atc cgt ata tgg ggt gat gct ttg ttt gat atc gtt gac aaa
Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Asp Lys
115 120 125

384

gat caa aat gga gcc att aca ctg gat gaa tgg aaa gca tac acc aaa
Asp Gln Asn Gly Ala Ile Thr Leu Asp Glu Trp Lys Ala Tyr Thr Lys
130 135 140

gct gct ggt atc atc caa tca tca gaa gat tgc gag gaa aca tcc aga Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Ser Arg 145 150 155 160	480
 gtg tgc gat att gat gaa agt gga caa ctc gat gtt gat gag atg aca Val Cys Asp Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr 165 170 175	528
 aga caa cat ata gga ttt tgg tac acc atg gat cct gct tgc gaa aag Arg Gln His Ile Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys 180 185 190	576
 ctc tac ggt gga gct gtc ccc taa Leu Tyr Gly Gly Ala Val Pro 195	600

<210> 74

<211> 199

<212> PRT

<213> séquence dérivée par mutation de l'aequorine

<400> 74

Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp
1 5 10 15

Phe Asp Asn Pro Arg Trp Ile Gly Arg His Lys His Met Phe Asn Phe
20 25 30

Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Glu Met Val Tyr
35 40 45

Lys Ala Ser Asp Ile Val Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln
50 55 60

Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly
65 70 75 80

Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp
85 90 95

Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro
100 105 110

Asp Gln Asn Gly Ala Ile Thr Leu Asp Glu Trp Lys Ala Tyr Thr Lys
130 135 140

Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Ser Arg
145 150 155 160

Val Cys Asp Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr
165 170 175

Arg Gln His Ile Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys
180 185 190

Leu Tyr Gly Gly Ala Val Pro
195

<210> 75

<211> 600

<212> DNA

<213> séquence dérivée par mutation de l'aequorine

<220>

<221> CDS

<222> (1)..(597)

<223>

<400> 75

```

atg ctt tat gat gtt cct gat tat gct agc ctc aaa ctt aca tca gac
Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp
1           5                   10                  15

```

48

ttc gac aac cca aga tgg att gga cga cac aag cat atg ttc aat ttc
Phe Asp Asn Pro Arg Trp Ile Gly Arg His Lys His Met Phe Asn Phe
20 25 30

96

ctt gat gtc aac cac aat gga aaa atc tct ctt gag gag atg gtc tac
 Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Glu Met Val Tyr
 35 40 45

144

```

aag gca tct gat att gtc atc aat aac ctt gga gca aca cct gag caa
Lys Ala Ser Asp Ile Val Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln
      50           55           60

```

192

```

gcc aaa cga cac aaa gat gct gta gaa gcc ttc ttc gga gga gct gga
Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly
65           70           75           :           80

```

240

```

atg aaa tat ggt gtg gaa act gat tgg cct gca tat att gaa gga tgg
Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp
          85           90           95

```

288

```

aaa aaa ttg gct act gat gaa ttg gag aaa tac gcc aaa aac gaa cca
Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro
          100           105           110

```

336

```

acg ctc atc cgt ata tgg ggt gat gct ttg ttt gat atc gtt gac aaa
Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Asp Lys
           115          120          125

```

384

gat caa aat gga gcc att aca ctg gat gaa tgg aaa gca tac acc aaa
 Asp Gln Asn Gly Ala Ile Thr Leu Asp Glu Trp Lys Ala Tyr Thr Lys
 130 135 140

<210> 76

<211> 199

<212> PRT

<213> séquence dérivée par mutation de l'aequorine

<400> 76

Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp
1 5 10 15

Phe Asp Asn Pro Arg Trp Ile Gly Arg His Lys His Met Phe Asn Phe
20 25 30

Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Glu Met Val Tyr
35 40 45

Lys Ala Ser Asp Ile Val Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln
 50 55 60

Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly
65 70 75 80

Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp
85 90 95

Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro
100 105 110

Asp Gln Asn Gly Ala Ile Thr Leu Asp Glu Trp Lys Ala Tyr Thr Lys
130 135 140

Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Phe Arg
145 150 155 160

Val Cys Gly Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr
165 170 175

Arg Gln His Ile Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys
 180 185 190

Leu Tyr Gly Gly Ala Val Pro
 195

<210> 77

<211> 597

<212> DNA

<213> séquence dérivée par mutation de la clytine

<220>

<221> CDS

<222> (1)..(594)

<223>

<400> 77

atg gct gac act gca tca aaa tac gcc gtc aaa ctc aga ccc aac ttc	48
Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe	
1 5 10 15	

gac aac cca aaa tgg gtc aac aga cac aaa ttt atg ttc aac ttt ttg	96
Asp Asn Pro Lys Trp Val Asn Arg His Lys Phe Met Phe Asn Phe Leu	
20 25 30	

gac att aac ggc gac gga aaa atc act ttg gat gga atc gtc tcc aaa	144
Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Gly Ile Val Ser Lys	
35 40 45	

gct tcg gat gac att tgc gcc aaa ctt gga gca aca cca gaa cag acc	192
Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr	
50 55 60	

aaa cgt cac cag gat gct gtc gaa gct ttc ttc aaa aag att ggt atg	240
Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met	
65 70 75 80	

gat tat ggt aaa gaa gtc gaa ttc cca gct ttt gtt gat gga tgg aaa	288
Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys	
85 90 95	

gaa ctg gcc aat tat gac ttg aaa ctt tgg tct caa aac aag aaa tct	336
Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser	
100 105 110	

ttg atc cgc gac tgg gga gaa gct gtt ttc gac att ttt gac aaa gac	384
Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Asp Lys Asp	
115 120 125	

gga agt ggc tca atc agt ttg gac gaa tgg aag gct tat gga cga atc	432
Gly Ser Gly Ser Ile Ser Leu Asp Glu Trp Lys Ala Tyr Gly Arg Ile	
130 135 140	

tct gga atc tgc tca tca gac gaa gac gcc gaa aag acc ttc aaa cat	480
Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Phe Lys His	
145 150 155 160	
tgc gat ttg gac aac agt ggc aaa ctt gat gtt gat gag atg acc aga	528
Cys Asp Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg	
165 170 175	
caa cat ttg gga ttc tgg tac acc ttg gac ccc aac gct gat ggt ctt	576
Gln His Leu Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu	
180 185 190	
tac ggc aat ttt gtt cct taa	597
Tyr Gly Asn Phe Val Pro	
195	

<210> 78

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la clytine

<400> 78

Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe	
1 5 10 15	
Asp Asn Pro Lys Trp Val Asn Arg His Lys Phe Met Phe Asn Phe Leu	
20 25 30	
Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Gly Ile Val Ser Lys	
35 40 45	
Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr	
50 55 60	
Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met	
65 70 75 80	
Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys	
85 90 95	
Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser	
100 105 110	
Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Asp Lys Asp	
115 120 125	
Gly Ser Gly Ser Ile Ser Leu Asp Glu Trp Lys Ala Tyr Gly Arg Ile	
130 135 140	
Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Phe Lys His	
145 150 155 160	
Cys Asp Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg	
165 170 175	

Gln	His	Leu	Gly	Phe	Trp	Tyr	Thr	Leu	Asp	Pro	Asn	Ala	Asp	Gly	Leu
180								185						190	
Tyr	Gly	Asn	Phe	Val	Pro										
						195									

<210> 79

<211> 597

<212> DNA

<213> séquence dérivée par mutation de la clytine

<220>

<221> CDS

<222> (1)..(594)

<223>

<400> 79

atg	gct	gac	act	gca	tca	aaa	tac	gcc	gtc	aaa	ctc	aga	ccc	aac	ttc	48
Met	Ala	Asp	Thr	Ala	Ser	Lys	Tyr	Ala	Val	Lys	Leu	Arg	Pro	Asn	Phe	
1				5					10			15				

gac	aac	cca	aaa	tgg	gtc	aac	aga	cac	aaa	ttt	atg	ttc	aac	ttt	ttg	96
Asp	Asn	Pro	Lys	Trp	Val	Asn	Arg	His	Lys	Phe	Met	Phe	Asn	Phe	Leu	
			20					25			30					

gac	att	aat	ggc	gac	gga	aaa	atc	act	ttg	gat	gaa	atc	gtc	tcc	aaa	144
Asp	Ile	Asn	Gly	Asp	Gly	Lys	Ile	Thr	Leu	Asp	Glu	Ile	Val	Ser	Lys	
			35				40		45							

gct	tcg	gat	gac	att	tgc	gcc	aaa	ctt	gga	gca	aca	cca	gaa	cag	acc	192
Ala	Ser	Asp	Asp	Ile	Cys	Ala	Lys	Leu	Gly	Ala	Thr	Pro	Glu	Gln	Thr	
				50				55		60						

aaa	cgt	cac	cag	gat	gct	gtc	gaa	gct	ttc	ttc	aaa	aag	att	ggt	atg	240
Lys	Arg	His	Gln	Asp	Ala	Val	Glu	Ala	Phe	Phe	Lys	Lys	Ile	Gly	Met	
				65				70		75		80				

gat	tat	ggt	aaa	gaa	gtc	gaa	ttc	cca	gct	ttt	gtt	gat	gga	tgg	aaa	288
Asp	Tyr	Gly	Lys	Glu	Val	Glu	Phe	Pro	Ala	Phe	Val	Asp	Gly	Trp	Lys	
				85				90		95						

gaa	ctg	gcc	aat	tat	gac	ttg	aaa	ctt	tgg	tct	caa	aac	aag	aaa	tct	336
Glu	Leu	Ala	Asn	Tyr	Asp	Leu	Lys	Leu	Trp	Ser	Gln	Asn	Lys	Lys	Ser	
					100			105		110						

ttg	atc	cgc	gac	tgg	gga	gaa	gct	gtt	ttc	gac	att	ttt	ggc	aaa	gac	384
Leu	Ile	Arg	Asp	Trp	Gly	Glu	Ala	Val	Phe	Asp	Ile	Phe	Gly	Lys	Asp	
				115				120		125						

gga	agt	ggc	tca	atc	agt	ttg	gac	gaa	tgg	aag	gct	tat	gga	cga	atc	432
Gly	Ser	Gly	Ser	Ile	Ser	Leu	Asp	Glu	Trp	Lys	Ala	Tyr	Gly	Arg	Ile	
					130			135		140						

tct gga atc tgc tca tca gac gaa gac gcc gaa aag acc ttc aaa cat	480
Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Phe Lys His	
145 150 155 160	
tgc gat ttg gac aac agt ggc aaa ctt gat gtt gat gag atg acc aga	528
Cys Asp Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg	
165 170 175	
caa cat ttg gga ttc tgg tac acc ttg gac ccc aac gct gat ggt ctt	576
Gln His Leu Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu	
180 185 190	
tac ggc aat ttt gtt cct taa	597
Tyr Gly Asn Phe Val Pro	
195	

<210> 80

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la clytine

<400> 80

Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe	
1 5 10 15	
Asp Asn Pro Lys Trp Val Asn Arg His Lys Phe Met Phe Asn Phe Leu	
20 25 30	
Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys	
35 40 45	
Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr	
50 55 60	
Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met	
65 70 75 80	
Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys	
85 90 95	
Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser	
100 105 110	
Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Gly Lys Asp	
115 120 125	
Gly Ser Gly Ser Ile Ser Leu Asp Glu Trp Lys Ala Tyr Gly Arg Ile	
130 135 140	
Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Phe Lys His	
145 150 155 160	
Cys Asp Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg	
165 170 175	

Gln His Leu Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu
180 185 190

Tyr Gly Asn Phe Val Pro
195

<210> 81

<211> 597

<212> DNA

<213> séquence dérivée par mutation de la clytine

<220>

<221> CDS

<222> (1)..(594)

<223>

<400> 81

```

atg gct gac act gca tca aaa tac gcc gtc aaa ctc aga ccc aac ttc
Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe
1           5                   10                  15

```

48

gac aac cca aaa tgg gtc aac aga cac aaa ttt atg ttc aac ttt ttg	Asp Asn Pro Lys Trp Val Asn Arg His Lys Phe Met Phe Asn Phe Leu		
	20	25	30

96

```

gac att aac ggc gac gga aaa atc act ttg gat gaa atc gtc tcc aaa
Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys
      35           40           45

```

144

gct tcg gat gac att tgc gcc aaa ctt gga gca aca cca gaa cag acc
Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr
50 55 60

192

```

aaa cgt cac cag gat gct gtc gaa gct ttc ttc aaa aag att ggt atg
Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met
65           70           75           .           80

```

240

gat tat ggt aaa gaa gtc gaa ttc cca gct ttt gtt gat gga tgg aaa
 Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys
 85 90 95

288

```

gaa ctg gcc aat tat gac ttg aaa ctt tgg tct caa aac aag aaa tct
Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser
          100           105           110

```

336

ttg atc cgc gac tgg gga gaa gct gtt ttc gac att ttt gac aaa gac
 Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Asp Lys Asp
 115 120 125

384

```

gga agt ggc tca atc agt ttg gac gga tgg aag gct tat gga cga atc
Gly Ser Gly Ser Ile Ser Leu Asp Gly Trp Lys Ala Tyr Gly Arg Ile
    130           135           140

```

tct gga atc tgc tca tca gac gaa gac gcc gaa aag acc ttc aaa cat	480
Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Phe Lys His	
145 150 155 160	
tgc gat ttg gac aac agt ggc aaa ctt gat gtt gat gag atg acc aga	528
Cys Asp Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg	
165 170 175	
caa cat ttg gga ttc tgg tac acc ttg gac ccc aac gct gat ggt ctt	576
Gln His Leu Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu	
180 185 190	
tac ggc aat ttt gtt cct taa	597
Tyr Gly Asn Phe Val Pro	
195	

<210> 82

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la clytine

<400> 82

Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe
 1 5 10 15

Asp Asn Pro Lys Trp Val Asn Arg His Lys Phe Met Phe Asn Phe Leu
20 25 30

Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys
35 40 45

Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr
50 55 60

Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met
65 70 75 80

Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala' Phe Val Asp Gly Trp Lys
 85 90 95

Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser
100 105 110

Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Asp Lys Asp
115 120 125

Gly Ser Gly Ser Ile Ser Leu Asp Gly Trp Lys Ala Tyr Gly Arg Ile
120 125 130 135 140

Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Phe Lys His
145 150 155 160

Cys Asp Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg

Gln His Leu Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu
180 185 190

Tyr Gly Asn Phe Val Pro
195

<210> 83

<211> 597

<212> DNA

<213> séquence dérivée par mutation de la clytine

<220>

<221> CDS

<222> (1)..(594)

<223>

<400> 83

```

atg gct gac act gca tca aaa tac gcc gtc aaa ctc aga ccc aac ttc
Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe
1          5                  10                   15

```

48

gac aac cca aaa tgg gtc aac aga cac aaa ttt atg ttc aac ttt ttg
 Asp Asn Pro Lys Trp Val Asn Arg His Lys Phe Met Phe Asn Phe Leu
 20 25 30

96

```

gac att aac ggc gac gga aaa atc act ttg gat gaa atc gtc tcc aaa
Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys
          35           40           45

```

144

```

gct tcg gat gac att tgc gcc aaa ctt gga gca aca cca gaa cag acc
Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr
      50           55           60

```

192

aaa cgt cac cag gat gct gtc gaa gct ttc ttc aaa aag att ggt atg
Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met
65 70 75 : 80

240

gat tat ggt aaa gaa gtc gaa ttc cca gct ttt gtt gat gga tgg aaa
 Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys
 85 90 95

288

```

gaa ctg gcc aat tat gac ttg aaa ctt tgg tct caa aac aag aaa tct
Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser
          100           105           110

```

336

ttg atc cgc gac tgg gga gaa gct gtt ttc gac att ttt gac aaa gac
Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Asp Lys Asp
115 120 125

384

```

gga agt ggc tca atc agt ttg gac gaa tgg aag gct tat gga cga atc
Gly Ser Gly Ser Ile Ser Leu Asp Glu Trp Lys Ala Tyr Gly Arg Ile
130          135          140

```

tct gga atc tgc tca tca gac gaa gac gcc gaa aag acc tcc aaa cat	480
Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Ser Lys His	
145 150 155 160	
tgc gat ttg gac aac agt ggc aaa ctt gat gtt gag atg acc aga	528
Cys Asp Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg	
165 170 175	
caa cat ttg gga ttc tgg tac acc ttg gac ccc aac gct gat ggt ctt	576
Gln His Leu Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu	
180 185 190	
tac ggc aat ttt gtt cct taa	597
Tyr Gly Asn Phe Val Pro	
195	

<210> 84

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la clytine

<400> 84

Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe	
1 5 10 15	
Asp Asn Pro Lys Trp Val Asn Arg His Lys Phe Met Phe Asn Phe Leu	
20 25 30	
Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys	
35 40 45	
Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr	
50 55 60	
Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met	
65 70 75 80	
Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys	
85 90 95	
Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser	
100 105 110	
Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Asp Lys Asp	
115 120 125	
Gly Ser Gly Ser Ile Ser Leu Asp Glu Trp Lys Ala Tyr Gly Arg Ile	
130 135 140	
Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Ser Lys His	
145 150 155 160	
Cys Asp Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg	
165 170 175	

Gln His Leu Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu
 180 185 190
 Tyr Gly Asn Phe Val Pro
 195

<210> 85

<211> 597

<212> DNA

<213> séquence dérivée par mutation de la clytine

<220>

<221> CDS

<222> (1)..(594)

<223>

<400> 85

```

atg gct gac act gca tca aaa tac gcc gtc aaa ctc aga ccc aac ttc
Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe
1          5                  10                  15

```

48

```

gac aac cca aaa tgg gtc aac aga cac aaa ttt atg ttc aac ttt ttg
Asp Asn Pro Lys Trp Val Asn Arg His Lys Phe Met Phe Asn Phe Leu
20          25          30

```

96

```

gac att aac ggc gac gga aaa atc act ttg gat gaa atc gtc tcc aaa
Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys
            35           40           45

```

144

```

gct tcg gat gac att tgc gcc aaa ctt gga gca aca cca gaa cag acc
Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr
      50           55           60

```

192

```

aaa cgt cac cag gat gct gtc gaa gct ttc ttc aaa aag att ggt atg
Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met
65          70.          75          :          80

```

240

gat tat ggt aaa gaa gtc gaa ttc cca gct ttt gtt gat gga tgg aaa
 Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys
 85 90 95

288

```

gaa ctg gcc aat tat gac ttg aaa ctt tgg tct caa aac aag aaa tct
Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser
          100           105           110

```

336

ttg atc cgc gac tgg gga gaa gct gtt ttc gac att ttt gac aaa gac
Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Asp Lys Asp
115 120 125

384

```

gga agt ggc tca atc agt ttg gac gaa tgg aag gct tat gga cga atc
Gly Ser Gly Ser Ile Ser Leu Asp Glu Trp Lys Ala Tyr Gly Arg Ile
    130          135          140

```

<210> 86

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la clytine

<400> 86

Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe
1 5 10 15

Asp Asn Pro Lys Trp Val Asn Arg His Lys Phe Met Phe Asn Phe Leu
20 25 30

Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys
35 40 45

Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr
50 55 60

Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met
65 70 75 80

Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys
85 90 95

Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser
 100 105 110

Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Asp Lys Asp
115 120 125

Gly Ser Gly Ser Ile Ser Leu Asp Glu Trp Lys Ala Tyr Gly Arg Ile
 130 135 140

Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Phe Lys His
145 150 155 160

Cys Gly Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg
165 170 175

Gln His Leu Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu
 180 185 190

Tyr Gly Asn Phe Val Pro
195

<210> 87

<211> 597

<212> DNA

<213> séquence dérivée par mutation de la mitrocomine

<220>

<221> CDS

<222> (1)..(594)

<223>

<400> 87

```

atg tca atg ggc agc aga tac gca gtc aag ctt acg act gac ttt gat
Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp
1           5                   10                  15

```

48

```

aat cca aaa tgg att gct cga cac aag cac atg ttc aac ttc ctt gac
Asn Pro Lys Trp Ile Ala Arg His Lys His Met Phe Asn Phe Leu Asp
          20           25           30

```

96

atc aat tca aat ggc caa atc aat ctg aat gga atg gtc cat aag gct
 Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Gly Met Val His Lys Ala
 35 40 45

144

tca	aac	att	atc	tgc	aag	aag	ctt	gga	gca	aca	gaa	gaa	caa	acc	aaa
Ser	Asn	Ile	Ile	Cys	Lys	Lys	Leu	Gly	Ala	Thr	Glu	Glu	Gln	Thr	Lys
50							55							60	

192

240

tat gac aaa gat acc aca tgg cct gag tac atc gaa gga tgg aag agg
 Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg
 85 90 95

288

```

ttg gct aag act gaa ttg gaa agg cat tca aag aat caa gtc aca aca ttg
Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu
          100           105           110

```

336

atc cga tta tgg ggt gat gct ttg ttc gac atc att gac aaa gat aga	Ile Arg Leu Trp Gly Asp Ala	Leu Phe Asp Ile Ile Asp Lys Asp Arg
115	120	125

384

```

aat gga tcg gtt tcg tta gac gaa tgg atc cag tac act cat tgt gct
Asn Gly Ser Val Ser Leu Asp Glu Trp Ile Gln Tyr Thr His Cys Ala
          130           135           140

```

ggc atc caa cag tca cgt ggg caa tgc gaa gct aca ttt gca cat tgc	480
Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Phe Ala His Cys	
145 150 155 160	
gat tta gat ggt gac ggt aaa ctt gat gtg gac gaa atg aca aga caa	528
Asp Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Gln	
165 170 175	
cat ttg gga ttt tgg tat tcg gtc gac cca act tgt gaa gga ctc tac	576
His Leu Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr	
180 185 190	
ggt ggt gct gta cct tat taa	597
Gly Gly Ala Val Pro Tyr	
195	

<210> 88

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la mitrocomine

<400> 88

Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp	
1 5 10 15	
Asn Pro Lys Trp Ile Ala Arg His Lys His Met Phe Asn Phe Leu Asp	
20 25 30	
Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Gly Met Val His Lys Ala	
35 40 45	
Ser Asn Ile Ile Cys Lys Lys Leu Gly Ala Thr Glu Glu Gln Thr Lys	
50 55 60	
Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu	
65 70 75 80	
Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg	
85 90 95	
Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu	
100 105 110	
Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Asp Lys Asp Arg	
115 120 125	
Asn Gly Ser Val Ser Leu Asp Glu Trp Ile Gln Tyr Thr His Cys Ala	
130 135 140	
Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Phe Ala His Cys	
145 150 155 160	
Asp Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Gln	
165 170 175	

His Leu Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr
 180 185 190

Gly Gly Ala Val Pro Tyr
 195

<210> 89

<211> 597

<212> DNA

<213> séquence dérivée par mutation de la mitrocomine

<220>

<221> CDS

<222> (1)..(594)

<223>

<400> 89

atg tca atg ggc agc aga tac gca gtc aag ctt acg act gac ttt gat	48
Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp	
1 5 10 15	

aat cca aaa tgg att gct cga cac aag cac atg ttc aac ttc ctt gac	96
Asn Pro Lys Trp Ile Ala Arg His Lys His Met Phe Asn Phe Leu Asp	
20 25 30	

atc aat tca aat ggc caa atc aat ctg aat gaa atg gtc cat aag gct	144
Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Glu Met Val His Lys Ala	
35 40 45	

tca aac att atc tgc aag aag ctt gga gca aca gaa caa acc aaa	192
Ser Asn Ile Ile Cys Lys Leu Gly Ala Thr Glu Glu Gln Thr Lys	
50 55 60	

cgt catcaa aag tgt gtc gaa gac ttc ttt ggg gga gct ggt ttg gaa	240
Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu	
65 70 75 80	

tat gac aaa gat acc aca tgg cct gag tac atc gaa gga tgg aag agg	288
Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg	
85 90 95	

ttg gct aag act gaa ttg gaa agg cat tca aag aat caa gtc aca ttg	336
Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu	
100 105 110	

atc cga tta tgg ggt gat gct ttg ttc gac atc att ggc aaa gat aga	384
Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Gly Lys Asp Arg	
115 120 125	

aat gga tcg gtt tcg tta gac gaa tgg atc cag tac act cat tgt gct	432
Asn Gly Ser Val Ser Leu Asp Glu Trp Ile Gln Tyr Thr His Cys Ala	
130 135 140	

ggc atc caa cag tca cgt ggg caa tgc gaa gct aca ttt gca cat tgc	480
Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Phe Ala His Cys	
145 150 155 160	
gat tta gat ggt gac ggt aaa ctt gat gtg gac gaa atg aca aga caa	528
Asp Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Gln	
165 170 175	
cat ttg gga ttt tgg tat tcg gtc gac cca act tgt gaa gga ctc tac	576
His Leu Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr	
180 185 190	
ggt ggt gct gta cct tat taa	597
Gly Gly Ala Val Pro Tyr	
195	

<210> 90

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la mitrocomine

<400> 90

Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp	
1 5 10 15	

Asn Pro Lys Trp Ile Ala Arg His Lys His Met Phe Asn Phe Leu Asp	
20 25 30	

Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Glu Met Val His Lys Ala	
35 40 45	

Ser Asn Ile Ile Cys Lys Lys Leu Gly Ala Thr Glu Glu Gln Thr Lys	
50 55 60	

Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu	
65 70 75 80	

Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg	
85 90 95	

Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu	
100 105 110	

Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Gly Lys Asp Arg	
115 120 125	

Asn Gly Ser Val Ser Leu Asp Glu Trp Ile Gln Tyr Thr His Cys Ala	
130 135 140	

Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Phe Ala His Cys	
145 150 155 160	

Asp Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Gln	
165 170 175	

His Leu Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr
 180 185 190

Gly Gly Ala Val Pro Tyr
 195

<210> 91

<211> 597

<212> DNA

<213> séquence dérivée par mutation de la mitrocomine

<220>

<221> CDS

<222> (1)..(594)

<223>

<400> 91

atg tca atg ggc agc aga tac gca gtc aag ctt acg act gac ttt gat	48
Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp	
1 5 10 15	

aat cca aaa tgg att gct cga cac aag cac atg ttc aac ttc ctt gac	96
Asn Pro Lys Trp Ile Ala Arg His Lys His Met Phe Asn Phe Leu Asp	
20 25 30	

atc aat tca aat ggc caa atc aat ctg aat gaa atg gtc cat aag gct	144
Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Glu Met Val His Lys Ala	
35 40 45	

tca aac att atc tgc aag aag ctt gga gca aca gaa caa acc aaa	192
Ser Asn Ile Ile Cys Lys Lys Leu Gly Ala Thr Glu Glu Gln Thr Lys	
50 55 60	

cgt cat caa aag tgt gtc gaa gac ttc ttt ggg gga gct ggt ttg gaa	240
Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu	
65 70 75 80	

tat gac aaa gat acc aca tgg cct gag tac atc gaa gga tgg aag agg	288
Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg	
85 90 95	

ttg gct aag act gaa ttg gaa agg cat tca aag aat caa gtc aca ttg	336
Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu	
100 105 110	

atc cga tta tgg ggt gat gct ttg ttc gac atc att gac aaa gat aga	384
Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Asp Lys Asp Arg	
115 120 125	

aat gga tcg gtt tcg tta gac gga tgg atc cag tac act cat tgt gct	432
Asn Gly Ser Val Ser Leu Asp Gly Trp Ile Gln Tyr Thr His Cys Ala	
130 135 140	

ggc atc caa cag tca cgt ggg caa tgc gaa gct aca ttt gca cat tgc	480
Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Phe Ala His Cys	
145 150 155 160	
gat tta gat ggt gac ggt aaa ctt gat gtg gac gaa atg aca aga caa	528
Asp Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Gln	
165 170 175	
cat ttg gga ttt tgg tat tcg gtc gac cca act tgt gaa gga ctc tac	576
His Leu Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr	
180 185 190	
ggt ggt gct gta cct tat taa	597
Gly Gly Ala Val Pro Tyr	
195	

<210> 92

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la mitrocomine

<400> 92

Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp	
1 5 10 15	

Asn Pro Lys Trp Ile Ala Arg His Lys His Met Phe Asn Phe Leu Asp	
20 25 30	

Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Glu Met Val His Lys Ala	
35 40 45	

Ser Asn Ile Ile Cys Lys Lys Leu Gly Ala Thr Glu Glu Gln Thr Lys	
50 55 60	

Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu	
65 70 75 80	

Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg	
85 90 95	

Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu	
100 105 110	

Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Asp Lys Asp Arg	
115 120 125	

Asn Gly Ser Val Ser Leu Asp Gly Trp Ile Gln Tyr Thr His Cys Ala	
130 135 140	

Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Phe Ala His Cys	
145 150 155 160	

Asp Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Gln	
165 170 175	

His Leu Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr
 180 185 190

Gly Gly Ala Val Pro Tyr
 195

<210> 93

<211> 597

<212> DNA

<213> séquence dérivée par mutation de la mitrocomine

<220>

<221> CDS

<222> (1)..(594)

<223>

<400> 93		
atg tca atg ggc agc aga tac gca gtc aag ctt acg act gac ttt gat		48
Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp		
1 5 10 15		
aat cca aaa tgg att gct cga cac aag cac atg ttc aac ttc ctt gac		96
Asn Pro Lys Trp Ile Ala Arg His Lys His Met Phe Asn Phe Leu Asp		
20 25 30		
atc aat tca aat ggc caa atc aat ctg aat gaa atg gtc cat aag gct		144
Ile Asn Ser Asn Gly Gin Ile Asn Leu Asn Glu Met Val His Lys Ala		
35 40 45		
tca aac att atc tgc aag aag ctt gga gca aca gaa gaa caa acc aaa		192
Ser Asn Ile Ile Cys Lys Lys Leu Gly Ala Thr Glu Glu Gln Thr Lys		
50 55 60		
cgt cat caa aag tgt gtc gaa gac ttc ttt ggg gga gct ggt ttg gaa		240
Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu		
65 70 75 80		
tat gac aaa gat acc aca tgg cct gag tac atc gaa gga tgg aag agg		288
Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg		
85 90 95		
ttg gct aag act gaa ttg gaa agg cat tca aag aat caa gtc aca ttg		336
Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu		
100 105 110		
atc cga tta tgg ggt gat gct ttg ttc gac atc att gac aaa gat aga		384
Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Asp Lys Asp Arg		
115 120 125		
aat gga tcg gtt tcg tta gac gaa tgg atc cag tac act cat tgt gct		432
Asn Gly Ser Val Ser Leu Asp Glu Trp Ile Gln Tyr Thr His Cys Ala		
130 135 140		

ggc atc caa cag tca cgt ggg caa tgc gaa gct aca tcc gca cat tgc Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Ser Ala His Cys 145 150 155 160	480
gat tta gat ggt gac ggt aaa ctt gat gtg gac gaa atg aca aga caa Asp Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Gln 165 170 175	528
cat ttg gga ttt tgg tat tcg gtc gac cca act tgt gaa gga ctc tac His Leu Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr 180 185 190	576
ggt ggt gct gta cct tat taa Gly Gly Ala Val Pro Tyr 195	597

<210> 94

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la mitrocomine

<400> 94

Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp 1 5 10 15	
Asn Pro Lys Trp Ile Ala Arg His Lys His Met Phe Asn Phe Leu Asp 20 25 30	
Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Glu Met Val His Lys Ala 35 40 45	
Ser Asn Ile Ile Cys Lys Lys Leu Gly Ala Thr Glu Glu Gln Thr Lys 50 55 60	
Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu 65 70 75 80	
Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg 85 90 95	
Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu 100 105 110	
Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Asp Lys Asp Arg 115 120 125	
Asn Gly Ser Val Ser Leu Asp Glu Trp Ile Gln Tyr Thr His Cys Ala 130 135 140	
Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Ser Ala His Cys 145 150 155 160	
Asp Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Gln 165 170 175	

His Leu Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr
 180 185 190

Gly Gly Ala Val Pro Tyr
195

<210> 95

<211> 597

<212> DNA

<213> séquence dérivée par mutation de la mitrocomine

<220>

<221> CDS

<222> (1)..(594)

<223>

<400> 95

```

atg tca atg ggc agc aga tac gca gtc aag ctt acg act gac ttt gat
Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp
1           5                   10                  15

```

48

```

aat cca aaa tgg att gct cga cac aag cac atg ttc aac ttc ctt gac
Asn Pro Lys Trp Ile Ala Arg His Lys His Met Phe Asn Phe Leu Asp
          20           25           30

```

96

atc aat tca aat ggc caa atc aat ctg aat gaa atg gtc cat aag gct
 Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Glu Met Val His Lys Ala
 35 40 45

144

192

```

cgt cat caa aag tgt gtc gaa gac ttc ttt ggg gga gct ggt ttg gaa
Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu
65          70          75          ;          80

```

240

tat gac aaa gat acc aca tgg cct gag tac atc gaa gga tgg aag agg
 Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg
 85 90 95

288

```

ttg gct aag act gaa ttg gaa agg cat tca aag aat caa gtc aca ttg
Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu
          100           105           110

```

336

atc cga tta tgg ggt gat gct ttg ttc gac atc att gac aaa gat aga
Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Asp Lys Asp Arg
115 120 125

384

```

aat gga tcg gtt tcg tta gac gaa tgg atc cag tac act cat tgt gct
Asn Gly Ser Val Ser Leu Asp Glu Trp Ile Gln Tyr Thr His Cys Ala
      130          135          140

```

96

ggc atc caa cag tca cgt ggg caa tgc gaa gct aca ttt gca cat tgc	480
Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Phe Ala His Cys	
145 150 155 160	
ggt tta gat ggt gac ggt aaa ctt gat gtg gac gaa atg aca aga caa	528
Gly Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Gln	
165 170 175	
cat ttg gga ttt tgg tat tcg gtc gac cca act tgt gaa gga ctc tac	576
His Leu Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr	
180 185 190	
ggt ggt gct gta cct tat taa	597
Gly Gly Ala Val Pro Tyr	
195	

<210> 96

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la mitrocomine

<400> 96

Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp	
1 5 10 15	
Asn Pro Lys Trp Ile Ala Arg His Lys His Met Phe Asn Phe Leu Asp	
20 25 30	
Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Glu Met Val His Lys Ala	
35 40 45	
Ser Asn Ile Ile Cys Lys Lys Leu Gly Ala Thr Glu Glu Gln Thr Lys	
50 55 60	
Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu	
65 70 75 80	
Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg	
85 90 95	
Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu	
100 105 110	
Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Asp Lys Asp Arg	
115 120 125	
Asn Gly Ser Val Ser Leu Asp Glu Trp Ile Gln Tyr Thr His Cys Ala	
130 135 140	
Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Phe Ala His Cys	
145 150 155 160	
Gly Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Gln	
165 170 175	

His Leu Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr
180 185 190

Gly Gly Ala Val Pro Tyr
195

<210> 97

<211> 588

<212> DNA

<213> séquence dérivée par mutation de l'obéline

<220>

<221> CDS

<222> (1) .. (585)

<223>

<400> 97

```

atg tct tca aaa tac gca gtt aaa ctc aag act gac ttt gat aat cca
Met Ser Ser Lys Tyr Ala Val Lys Leu Lys Thr Asp Phe Asp Asn Pro
1          5           10          15

```

```

cga tgg atc aaa aga cac aag cac atg ttt gat ttc ctc gac atc aat
Arg Trp Ile Lys Arg His Lys His Met Phe Asp Phe Leu Asp Ile Asn
20          25          30

```

gga aat gga aaa atc acc ctc gat gga att gtg tcc aag gca tct gat
 Gly Asn Gly Lys Ile Thr Leu Asp Gly Ile Val Ser Lys Ala Ser Asp
 35 40 45

```

gac ata tgt gcc aag ctc gaa gcc aca cca gaa caa aca aaa cgc cat      192
Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His
      50           55           60

```

caa gtt tgt gtt gaa gct ttc ttt aga gga tgt gga atg gaa tat ggt
 Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly
 65 70 75 80

aaa gaa att gcc ttc cca caa ttc ctc gat gga tgg aaa caa ttg gcg 288
Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala
85 90 95

act tca gaa ctc aag aaa tgg gca aga aac gaa cct act ctc att cgt 336
 Thr Ser Glu Leu Lys Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg
 100 105 110

gaa tgg gga gat gct gtc ttt gat att ttc gac aaa gat gga agt ggt
Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Asp Lys Asp Gly Ser Gly
115 120 125

aca atc act ttg gac gaa tgg aaa gct tat gga aaa atc tct ggt atc 432
Thr Ile Thr Leu Asp Glu Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile
130 135 140

98

tct cca tca caa gaa gat tgt gaa gcg aca ttt cga cat tgc gat ttg		480
Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Phe Arg His Cys Asp Leu		
145 150 155 160		
gac aac agt ggt gac ctt gat gtt gac gag atg aca aga caa cat ctt		528
Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Gln His Leu		
165 170 175		
gga ttc tgg tac act ttg gac cca gaa gct gat ggt ctc tat ggc aac		576
Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn		
180 185 190		
gga gtt ccc taa		588
Gly Val Pro		
195		
<210> 98		
<211> 195		
<212> PRT		
<213> séquence dérivée par mutation de l'obéline		
<400> 98		
Met Ser Ser Lys Tyr Ala Val Lys Leu Lys Thr Asp Phe Asp Asn Pro		
1 5 10 15		
Arg Trp Ile Lys Arg His Lys His Met Phe Asp Phe Leu Asp Ile Asn		
20 25 30		
Gly Asn Gly Lys Ile Thr Leu Asp Gly Ile Val Ser Lys Ala Ser Asp		
35 40 45		
Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His		
50 55 60		
Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly		
65 70 75 80		
Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala		
85 90 95		
Thr Ser Glu Leu Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg		
100 105 110		
Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Asp Lys Asp Gly Ser Gly		
115 120 125		
Thr Ile Thr Leu Asp Glu Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile		
130 135 140		
Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Phe Arg His Cys Asp Leu		
145 150 155 160		
Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Gln His Leu		
165 170 175		

99

Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn
 180 185 190

Gly Val Pro
195

<210> 99

<211> 588

<212> DNA

1222 (1) (E8)

12231

<400> 99

atg tct tca aaa tac gca gtt aaa ctc aag act gac ttt gat aat cca
Met Ser Ser Lys Tyr Ala Val Lys Leu Lys Thr Asp Phe Asp Asn Pro
1 5 10 15

48

cga tgg atc aaa aga cac aag cac atg ttt gat ttc ctc gac atc aat
 Arg Trp Ile Lys Arg His Lys His Met Phe Asp Phe Leu Asp Ile Asn
 20 25 30

96

gga aat gga aaa atc acc ctc gat gaa att gtg tcc aag gca tct gat
 Gly Asn Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys Ala Ser Asp
 35 40 45

144

192

```

caa gtt tgt gtt gaa gct ttc ttt aga gga tgt gga atg gaa tat ggt
Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly
65           70           75           .           80

```

240

```

aaa gaa att gcc ttc cca caa ttc ctc gat gga tgg aaa caa ttg gcg
Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala
85          90          95

```

288

```

act tca gaa ctc aag aaa tgg gca aga aac gaa cct act ctc att cgt
Thr Ser Glu Leu Lys Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg
          100           105           110

```

336

gaa tgg gga gat gct gtc ttt gat att ttc ggc aaa gat gga agt ggt
Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Gly Lys Asp Gly Ser Gly
115 120 125

384

```

aca atc act ttg gac gaa tgg aaa gct tat gga aaa atc tct ggt atc
Thr Ile Thr Leu Asp Glu Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile
          130           135           140

```

100

tct cca tca caa gaa gat tgt gaa gcg aca ttt cga cat tgc gat ttg	480
Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Phe Arg His Cys Asp Leu	
145 150 155 160	

gac aac agt ggt gac ctt gat gtt gac gag atg aca aga caa cat ctt 528
 Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Gln His Leu
 165 170 175

gga ttc tgg tac act ttg gac cca gaa gct gat ggt ctc tat ggc aac 576
 Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn
 180 185 190

gga gtt ccc taa 588
Gly Val Pro
195

<210> 100

<211> 195

<212> PRT

<213> séquence dérivée par mutation de l'obéline

<400> 100

Met Ser Ser Lys Tyr Ala Val Lys Leu Lys Thr Asp Phe Asp Asn Pro
1 5 10 15

Arg Trp Ile Lys Arg His Lys His Met Phe Asp Phe Leu Asp Ile Asn
20 25 30

Gly Asn Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys Ala Ser Asp
35 40 45

Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His
50 55 60

Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly
65 70 75 80

Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala
85 90 95

Thr Ser Glu Leu Lys Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg
100 105 110

Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Gly Lys Asp Gly Ser Gly
115 120 125

Thr Ile Thr Leu Asp Glu Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile
130 135 140

Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Phe Arg His Cys Asp Leu
 145 150 155 160

Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Gln His Leu
165 170 175

101

Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn
 180 185 190

Gly Val Pro
195

210 101

<211> 588

<212> DNA

<213>

4226

1100-101

```

atg tct tca aaa tac gca gtt aaa ctc aag act gac ttt gat aat cca      48
Met Ser Ser Lys Tyr Ala Val Lys Leu Lys Thr Asp Phe Asp Asn Pro
1           5           10          15

```

cga tgg atc aaa aga cac aag cac atg ttt gat ttc ctc gac atc aat 96
 Arg Trp Ile Lys Arg His Lys His Met Phe Asp Phe Leu Asp Ile Asn
 20 25 30

gga aat gga aaa atc acc ctc gat gaa att gtg tcc aag gca tct gat 144
 Gly Asn Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys Ala Ser Asp
 35 40 45

gac ata tgt gcc aag ctc gaa gcc aca cca gaa caa aca aaa cgc cat 192
 Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His
 50 55 60

caa gtt tgt gtt gaa gct ttc ttt aga gga tgt gga atg gaa tat ggt 240
 Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly
 65 70 75 80

aaa gaa att gcc ttc cca caa ttc ctc gat gga tgg aaa caa ttg gcg 288
Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala
 85 90 95

act tca gaa ctc aag aaa tgg gca aga aac gaa cct act ctc att cgt 336
Thr Ser Glu Leu Lys Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg
100 105 110

gaa tgg gga gat gct gtc ttt gat att ttc gac aaa gat gga agt ggt 384
Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Asp Lys Asp Gly Ser Gly

aca atc act ttg gac gga tgg aaa gct tat gga aaa atc tct ggt atc 432
Thr Ile Thr Leu Asp Gly Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile

102

tct cca tca caa gaa gat tgt gaa gcg aca ttt cga cat tgc gat ttg		480
Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Phe Arg His Cys Asp Leu		
145 150 155 160		
gac aac agt ggt gac ctt gat gtt gag atg aca aga caa cat ctt		528
Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Gln His Leu		
165 170 175		
gga ttc tgg tac act ttg gac cca gaa gct gat ggt ctc tat ggc aac		576
Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn		
180 185 190		
gga gtt ccc taa		588
Gly Val Pro		
195		
<210> 102		
<211> 195		
<212> PRT		
<213> séquence dérivée par mutation de l'obéline		
<400> 102		
Met Ser Ser Lys Tyr Ala Val Lys Leu Lys Thr Asp Phe Asp Asn Pro		
1 5 10 15		
Arg Trp Ile Lys Arg His Lys His Met Phe Asp Phe Leu Asp Ile Asn		
20 25 30		
Gly Asn Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys Ala Ser Asp		
35 40 45		
Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His		
50 55 60		
Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly		
65 70 75 80		
Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala		
85 90 95		
Thr Ser Glu Leu Lys Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg		
100 105 110		
Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Asp Lys Asp Gly Ser Gly		
115 120 125		
Thr Ile Thr Leu Asp Gly Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile		
130 135 140		
Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Phe Arg His Cys Asp Leu		
145 150 155 160		
Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Gln His Leu		
165 170 175		

103

Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn
 180 185 190

Gly Val Pro
 195

<210> 103

<211> 588

<212> DNA

<213> séquence dérivée par mutation de l'obéline

<220>

<221> CDS

<222> (1)..(585)

<223>

<400> 103

atg tct tca aaa tac gca gtt aaa ctc aag act gac ttt gat aat cca
 Met Ser Ser Lys Tyr Ala Val Lys Leu Lys Thr Asp Phe Asp Asn Pro
 1 5 10 15

48

cga tgg atc aaa aga cac aag cac atg ttt gat ttc ctc gac atc aat
 Arg Trp Ile Lys Arg His Lys His Met Phe Asp Phe Leu Asp Ile Asn
 20 25 30

96

gga aat gga aaa atc acc ctc gat gaa att gtg tcc aag gca tct gat
 Gly Asn Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys Ala Ser Asp
 35 40 45

144

gac ata tgt gcc aag ctc gaa gcc aca cca gaa caa aca aaa cgc cat
 Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His
 50 55 60

192

caa gtt tgt gtt gaa gct ttc ttt aga gga tgt gga atg gaa tat ggt
 Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly
 65 70 75 80

240

aaa gaa att gcc ttc cca caa ttc ctc gat gga tgg aaa caa ttg gcg
 Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala
 85 90 95

288

act tca gaa ctc aag aaa tgg gca aga aac gaa cct act ctc att cgt
 Thr Ser Glu Leu Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg
 100 105 110

336

gaa tgg gga gat gct gtc ttt gat att ttc gac aaa gat gga agt ggt
 Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Asp Lys Asp Gly Ser Gly
 115 120 125

384

aca atc act ttg gac gaa tgg aaa gct tat gga aaa atc tct ggt atc
 Thr Ile Thr Leu Asp Glu Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile
 130 135 140

432

104

tct cca tca caa gaa gat tgt gaa gcg aca tcc cga cat tgc gat ttg	480
Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Ser Arg His Cys Asp Leu	
145 150 155 160	
gac aac agt ggt gac ctt gat gtt gac gag atg aca aga caa cat ctt	528
Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Gln His Leu	
165 170 175	
gga ttc tgg tac act ttg gac cca gaa gct gat ggt ctc tat ggc aac	576
Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn	
180 185 190	
gga gtt ccc taa	588
Gly Val Pro	
195	

<210> 104

<211> 195

<212> PRT

<213> séquence dérivée par mutation de l'obéline

<400> 104

Met Ser Ser Lys Tyr Ala Val Lys Leu Lys Thr Asp Phe Asp Asn Pro	
1 5 10 15	
Arg Trp Ile Lys Arg His Lys His Met Phe Asp Phe Leu Asp Ile Asn	
20 25 30	
Gly Asn Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys Ala Ser Asp	
35 40 45	
Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His	
50 55 60	
Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly	
65 70 75 80	
Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala	
85 90 95	
Thr Ser Glu Leu Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg	
100 105 110	
Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Asp Lys Asp Gly Ser Gly	
115 120 125	
Thr Ile Thr Leu Asp Glu Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile	
130 135 140	
Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Ser Arg His Cys Asp Leu	
145 150 155 160	
Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Gln His Leu	
165 170 175	

105

Gly	Phe	Trp	Tyr	Thr	Leu	Asp	Pro	Glu	Ala	Asp	Gly	Leu	Tyr	Gly	Asn
180															190

Gly	Val	Pro
	195	

<210> 105

<211> 588

<212> DNA

<213> séquence dérivée par mutation de l'obéline

<220>

<221> CDS

<222> (1)..(585)

<223>

<400> 105

atg	tct	tca	aaa	tac	gca	gtt	aaa	ctc	aag	act	gac	ttt	gat	aat	cca
Met	Ser	Ser	Lys	Tyr	Ala	Val	Lys	Leu	Lys	Thr	Asp	Phe	Asp	Asn	Pro
1	5							10						15	

48

cga	tgg	atc	aaa	aga	cac	aag	cac	atg	ttt	gat	ttc	ctc	gac	atc	aat
Arg	Trp	Ile	Lys	Arg	His	Lys	His	Met	Phe	Asp	Phe	Leu	Asp	Ile	Asn
20								25						30	

96

gga	aat	gga	aaa	atc	acc	ctc	gat	gaa	att	gtg	tcc	aag	gca	tct	gat
Gly	Asn	Gly	Ile	Thr	Leu	Asp	Glu	Ile	Val	Ser	Lys	Ala	Ser	Asp	
35								40				45			

144

gac	ata	tgt	gcc	aag	ctc	gaa	gcc	aca	cca	gaa	caa	aca	aaa	cgc	cat
Asp	Ile	Cys	Ala	Lys	Leu	Glu	Ala	Thr	Pro	Glu	Gln	Thr	Lys	Arg	His
50								55				60			

192

caa	gtt	tgt	gtt	gaa	gct	ttc	ttt	aga	gga	tgt	gga	atg	gaa	tat	ggt
Gln	Val	Cys	Val	Glu	Ala	Phe	Phe	Arg	Gly	Cys	Gly	Met	Glu	Tyr	Gly
65								70				75		80	

240

aaa	gaa	att	gcc	ttc	cca	caa	ttc	ctc	gat	gga	tgg	aaa	caa	ttg	gcg
Lys	Glu	Ile	Ala	Phe	Pro	Gln	Phe	Leu	Asp	Gly	Trp	Lys	Gln	Leu	Ala
85								90				95			

288

act	tca	gaa	ctc	aag	aaa	tgg	gca	aga	aac	gaa	cct	act	ctc	att	cgt
Thr	Ser	Glu	Leu	Lys	Trp	Ala	Arg	Asn	Glu	Pro	Thr	Leu	Ile	Arg	
100								105				110			

336

gaa	tgg	gga	gat	gct	gtc	ttt	gat	att	ttc	gac	aaa	gat	gga	agt	ggt
Glu	Trp	Gly	Asp	Ala	Val	Phe	Asp	Ile	Phe	Asp	Lys	Asp	Gly	Ser	Gly
115								120				125			

384

aca	atc	act	ttg	gac	gaa	tgg	aaa	gct	tat	gga	aaa	atc	tct	ggt	atc
Thr	Ile	Thr	Leu	Asp	Glu	Trp	Lys	Ala	Tyr	Gly	Lys	Ile	Ser	Gly	Ile
130								135				140			

432

106

tct cca tca caa gaa gat tgt gaa gcg aca ttt cga cat tgc ggt ttg		480
Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Phe Arg His Cys Gly Leu		
145 150 155 160		
gac aac agt ggt gac ctt gat gtt gac gag atg aca aga caa cat ctt		528
Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Gln His Leu		
165 170 175		
gga ttc tgg tac act ttg gac cca gaa gct gat ggt ctc tat ggc aac		576
Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn		
180 185 190		
gga gtt ccc taa		588
Gly Val Pro		
195		
<210> 106		
<211> 195		
<212> PRT		
<213> séquence dérivée par mutation de l'obéline		
<400> 106		
Met Ser Ser Lys Tyr Ala Val Lys Leu Lys Thr Asp Phe Asp Asn Pro		
1 5 10 15		
Arg Trp Ile Lys Arg His Lys His Met Phe Asp Phe Leu Asp Ile Asn		
20 25 30		
Gly Asn Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys Ala Ser Asp		
35 40 45		
Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His		
50 55 60		
Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly		
65 70 75 80		
Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala		
85 90 95		
Thr Ser Glu Leu Lys Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg		
100 105 110		
Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Asp Lys Asp Gly Ser Gly		
115 120 125		
Thr Ile Thr Leu Asp Glu Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile		
130 135 140		
Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Phe Arg His Cys Gly Leu		
145 150 155 160		
Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Gln His Leu		
165 170 175		

107

Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn
180 185 190

Gly Val Pro
195

<210> 107

<211> 199

<212> PRT

<213> séquence dérivée par mutation de l'aequorine

<220>

<221> MISC_FEATURE

<222> (45)..(45)

<223> X représente E ou G

<220>

<221> MISC_FEATURE

<222> (54)..(54)

<223> X représente V ou A

<221> MISC_FEATURE

<222> (127)..(127)

<223> X représente D ou G

<221> MISC_FEATURE

<222> (138)..(138)

<223> X représente E ou G

<221> MISC_FEATURE

<222> (159)..(159)

<223> X représente F ou S

<221> MISC_FEATURE

<222> (163)..(163)

<223> X représente D ou G

<400> 107

Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp
1 5 10 15

108

Phe Asp Asn Pro Arg Trp Ile Gly Arg His Arg His Met Phe Asn Phe
20 25 30

Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Xaa Met Val Tyr
35 40 45

Lys Ala Ser Asp Ile Xaa Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln
50 55 60

Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly
65 70 75 80

Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp
85 90 95

Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro
100 105 110

Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Xaa Lys
115 120 125

Asp Gln Asn Gly Ala Ile Thr Leu Asp Xaa Trp Lys Ala Tyr Thr Lys
130 135 140

Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Xaa Arg
145 150 155 160

Val Cys Xaa Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr
165 170 175

Arg Gln His Leu Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys
180 185 190

Leu Tyr Gly Gly Ala Val Pro
195

<210> 108

<211> 199

<212> PRT

<213> séquence dérivée par mutation de l'aequorine

<220>

<221> MISC_FEATURE

<222> (45)..(45)

<223> X représente E ou G

<220>

<221> MISC_FEATURE

<222> (54)..(54)

<223> X représente V ou A

<221> MISC_FEATURE
<222> (127)..(127)
<223> X représente D ou G
<221> MISC_FEATURE
<222> (138)..(138)
<223> X représente E ou G
<221> MISC_FEATURE
<222> (159)..(159)
<223> X représente F ou S
<221> MISC_FEATURE
<222> (163)..(163)
<223> X représente D ou G
<400> 108

Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp
1 5 10 15

Phe Asp Asn Pro Arg Trp Ile Gly Arg His Lys His Met Phe Asn Phe
20 25 30

Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Xaa Met Val Tyr
35 40 45

Lys Ala Ser Asp Ile Xaa Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln
50 55 60

Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly
65 70 75 80

Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp
85 90 95

Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro
100 105 110

Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Xaa Lys
115 120 125

Asp Gln Asn Gly Ala Ile Thr Leu Asp Xaa Trp Lys Ala Tyr Thr Lys
130 135 140

Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Xaa Arg
145 150 155 160

Val Cys Xaa Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr
165 170 175

Arg Arg His Leu Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys
180 185 190

Leu Tyr Gly Gly Ala Val Pro
195

<210> 109
<211> 199
<212> PRT
<213> séquence dérivée par mutation de l'aequorine
<220>
<221> MISC_FEATURE
<222> (45)..(45)
<223> X représente E ou G
<220>
<221> MISC_FEATURE
<222> (54)..(54)
<223> X représente V ou A
<221> MISC_FEATURE
<222> (127)..(127)
<223> X représente D ou G
<221> MISC_FEATURE
<222> (138)..(138)
<223> X représente E ou G
<221> MISC_FEATURE
<222> (159)..(159)
<223> X représente F ou S
<221> MISC_FEATURE
<222> (163)..(163)
<223> X représente D ou G
<400> 109

Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp
1 5 10 15

Phe Asp Asn Pro Arg Trp Ile Gly Arg His Lys His Met Phe Asn Phe
20 25 30

111

Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Xaa Met Val Tyr
35 40 45

Lys Ala Ser Asp Ile Xaa Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln
50 55 60

Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly
65 70 75 80

Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp
85 90 95

Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro
100 105 110

Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Xaa Lys
115 120 125

Asp Gln Asn Gly Ala Ile Thr Leu Asp Xaa Trp Lys Ala Tyr Thr Lys
130 135 140

Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Xaa Arg
145 150 155 160

Val Cys Xaa Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr
165 170 175

Arg Gln His Ile Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys
180 185 190

Leu Tyr Gly Gly Ala Val Pro
195

<210> 110

<211> 199

<212> PRT

<213> séquence dérivée par mutation de l'aequorine

<220>

<221> MISC_FEATURE

<222> (45)..(45)

<223> X représente E ou G

<220>

<221> MISC_FEATURE

<222> (54)..(54)

<223> X représente V ou A

<221> MISC_FEATURE

<222> (127)..(127)

<223> X représente D ou G

<221> MISC_FEATURE

<222> (138)..(138)

<223> X représente E ou G

<221> MISC_FEATURE

<222> (159)..(159)

<223> X représente F ou S

<221> MISC_FEATURE

<222> (163)..(163)

<223> X représente D ou G

<400> 110

Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp
1 5 10 15

Phe Asp Asn Pro Arg Trp Ile Gly Arg His Arg His Met Phe Asn Phe
20 25 30

Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Xaa Met Val Tyr
35 40 45

Lys Ala Ser Asp Ile Xaa Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln
50 55 60

Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly
65 70 75 80

Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp
85 90 95

Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro
100 105 110

Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Xaa Lys
115 120 125

Asp Gln Asn Gly Ala Ile Thr Leu Asp Xaa Trp Lys Ala Tyr Thr Lys
130 135 140

Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Xaa Arg
145 150 155 160

Val Cys Xaa Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr
165 170 175

Arg Arg His Leu Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys
180 185 190

Leu Tyr Gly Gly Ala Val Pro
195

<210> 111
<211> 199
<212> PRT
<213> séquence dérivée par mutation de l'aequorine
<220>
<221> MISC_FEATURE
<222> (45)..(45)
<223> X représente E ou G
<220>
<221> MISC_FEATURE
<222> (54)..(54)
<223> X représente V ou A
<221> MISC_FEATURE
<222> (127)..(127)
<223> X représente D ou G
<221> MISC_FEATURE
<222> (138)..(138)
<223> X représente E ou G
<221> MISC_FEATURE
<222> (159)..(159)
<223> X représente F ou S
<221> MISC_FEATURE
<222> (163)..(163)
<223> X représente D ou G
<400> 111

Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp
1 5 10 15

Phe Asp Asn Pro Arg Trp Ile Gly Arg His Arg His Met Phe Asn Phe
20 25 30

Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Xaa Met Val Tyr
35 40 45

Lys Ala Ser Asp Ile Xaa Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln
50 55 60

Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly
65 70 75 80

Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp
85 90 95

Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro
100 105 110

Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Xaa Lys
115 120 125

Asp Gln Asn Gly Ala Ile Thr Leu Asp Xaa Trp Lys Ala Tyr Thr Lys
130 135 140

Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Xaa Arg
145 150 155 160

Val Cys Xaa Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr
165 170 175

Arg Gln His Ile Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys
180 185 190

Leu Tyr Gly Gly Ala Val Pro
195

<210> 112

<211> 199

<212> PRT

<213> séquence dérivée par mutation de l'aequorine

<220>

<221> MISC_FEATURE

<222> (45)..(45)

<223> X représente E ou G

<220>

<221> MISC_FEATURE

<222> (54)..(54)

<223> X représente V ou A

<221> MISC_FEATURE

<222> (127)..(127)

<223> X représente D ou G

<221> MISC_FEATURE

<222> (138)..(138)

<223> X représente E ou G

<221> MISC_FEATURE

<222> (159)..(159)

<223> X représente F ou S

<221> MISC_FEATURE

<222> (163)..(163)

<223> X représente D ou G

<400> 112

Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp
1 5 10 15

Phe Asp Asn Pro Arg Trp Ile Gly Arg His Lys His Met Phe Asn Phe
20 25 30

Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Xaa Met Val Tyr
35 40 45

Lys Ala Ser Asp Ile Xaa Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln
50 55 60

Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly
65 70 75 80

Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp
85 90 95

Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro
100 105 110

Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Xaa Lys
115 120 125

Asp Gln Asn Gly Ala Ile Thr Leu Asp Xaa Trp Lys Ala Tyr Thr Lys
130 135 140

Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Xaa Arg
145 150 155 160

Val Cys Xaa Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr
165 170 175

Arg Arg His Ile Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys
180 185 190

Leu Tyr Gly Gly Ala Val Pro
195

<210> 113

<211> 199

<212> PRT

<213> séquence dérivée par mutation de l'aequorine

<220>

<221> MISC_FEATURE

<222> (45)..(45)

<223> X représente E ou G

<220>

<221> MISC_FEATURE

<222> (54)..(54)

<223> X représente V ou A

<221> MISC_FEATURE

<222> (127)..(127)

<223> X représente D ou G

<221> MISC_FEATURE

<222> (138)..(138)

<223> X représente E ou G

<221> MISC_FEATURE

<222> (159)..(159)

<223> X représente F ou S

<221> MISC_FEATURE

<222> (163)..(163)

<223> X représente D ou G

<400> 113

Met Leu Tyr Asp Val Pro Asp Tyr Ala Ser Leu Lys Leu Thr Ser Asp
1 5 10 15

Phe Asp Asn Pro Arg Trp Ile Gly Arg His Arg His Met Phe Asn Phe
20 25 30

Leu Asp Val Asn His Asn Gly Lys Ile Ser Leu Asp Xaa Met Val Tyr
35 40 45

Lys Ala Ser Asp Ile Xaa Ile Asn Asn Leu Gly Ala Thr Pro Glu Gln
50 55 60

Ala Lys Arg His Lys Asp Ala Val Glu Ala Phe Phe Gly Gly Ala Gly
65 70 75 80

117

Met Lys Tyr Gly Val Glu Thr Asp Trp Pro Ala Tyr Ile Glu Gly Trp
85 90 95

Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys Tyr Ala Lys Asn Glu Pro
100 105 110

Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu Phe Asp Ile Val Xaa Lys
115 120 125

Asp Gln Asn Gly Ala Ile Thr Leu Asp Xaa Trp Lys Ala Tyr Thr Lys
130 135 140

Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp Cys Glu Glu Thr Xaa Arg
145 150 155 160

Val Cys Xaa Ile Asp Glu Ser Gly Gln Leu Asp Val Asp Glu Met Thr
165 170 175

Arg Arg His Ile Gly Phe Trp Tyr Thr Met Asp Pro Ala Cys Glu Lys
180 185 190

Leu Tyr Gly Gly Ala Val Pro
195

<210> 114

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la clytine

<220>

<221> MISC_FEATURE

<222> (44)..(44)

<223> X représente E ou G

<220>

<221> MISC_FEATURE

<222> (126)..(126)

<223> X représente D ou G

<221> MISC_FEATURE

<222> (137)..(137)

<223> X représente E ou G

<221> MISC_FEATURE

<222> (158)..(158)

<223> X représente F ou S

<221> MISC_FEATURE

<222> (162)..(162)

<223> X représente D ou G

<400> 114

Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe
1 5 10 15

Asp Asn Pro Lys Trp Val Asn Arg His Arg Phe Met Phe Asn Phe Leu
20 25 30

Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Xaa Ile Val Ser Lys
35 40 45

Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr
50 55 60

Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met
65 70 75 80

Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys
85 90 95

Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser
100 105 110

Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Xaa Lys Asp
115 120 125

Gly Ser Gly Ser Ile Ser Leu Asp Xaa Trp Lys Ala Tyr Gly Arg Ile
130 135 140

Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Xaa Lys His
145 150 155 160

Cys Xaa Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg
165 170 175

Gln His Leu Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu
180 185 190

Tyr Gly Asn Phe Val Pro
195

<210> 115

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la clytine

<220>

<221> MISC_FEATURE

<222> (44)..(44)

<223> X représente E ou G
<220>
<221> MISC_FEATURE
<222> (126)..(126)
<223> X représente D ou G
<221> MISC_FEATURE
<222> (137)..(137)
<223> X représente E ou G
<221> MISC_FEATURE
<222> (158)..(158)
<223> X représente F ou S
<221> MISC_FEATURE
<222> (162)..(162)
<223> X représente D ou G
<400> 115

Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe
1 5 10 15

Asp Asn Pro Lys Trp Val Asn Arg His Lys Phe Met Phe Asn Phe Leu
20 25 30

Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Xaa Ile Val Ser Lys
35 40 45

Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr
50 55 60

Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met
65 70 75 80

Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys
85 90 95

Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser
100 105 110

Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Xaa Lys Asp
115 120 125

Gly Ser Gly Ser Ile Ser Leu Asp Xaa Trp Lys Ala Tyr Gly Arg Ile
130 135 140

Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Xaa Lys His
145 150 155 160

120

Cys Xaa Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg
165 170 175

Arg His Leu Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu
180 185 190

Tyr Gly Asn Phe Val Pro
195

<210> 116

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la clytine

<220>

<221> MISC_FEATURE

<222> (44)..(44)

<223> X représente E ou G

<220>

<221> MISC_FEATURE

<222> (126)..(126)

<223> X représente D ou G

<221> MISC_FEATURE

<222> (137)..(137)

<223> X représente E ou G

<221> MISC_FEATURE

<222> (158)..(158)

<223> X représente F ou S

<221> MISC_FEATURE

<222> (162)..(162)

<223> X représente D ou G

<400> 116

Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe
1 5 10 15

Asp Asn Pro Lys Trp Val Asn Arg His Lys Phe Met Phe Asn Phe Leu
20 25 30

Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Xaa Ile Val Ser Lys
35 40 45

Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr
50 55 60

Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met
65 70 75 80

Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys
85 90 95

Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser
100 105 110

Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Xaa Lys Asp
115 120 125

Gly Ser Gly Ser Ile Ser Leu Asp Xaa Trp Lys Ala Tyr Gly Arg Ile
130 135 140

Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Xaa Lys His
145 150 155 160

Cys Xaa Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg
165 170 175

Gln His Ile Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu
180 185 190

Tyr Gly Asn Phe Val Pro
195

<210> 117

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la clytine

<220>

<221> MISC_FEATURE

<222> (44) .. (44)

<223> X représente E ou G

<220>

<221> MISC_FEATURE

<222> (126) .. (126)

<223> X représente D ou G

<221> MISC_FEATURE

<222> (137) .. (137)

<223> X représente E ou G

<221> MISC_FEATURE

<222> (158)..(158)

<223> X représente F ou S

<221> MISC_FEATURE

<222> (162)..(162)

<223> X représente D ou G

<400> 117

Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe
1 5 10 15

Asp Asn Pro Lys Trp Val Asn Arg His Arg Phe Met Phe Asn Phe Leu
20 25 30

Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Xaa Ile Val Ser Lys
35 40 45

Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr
50 55 60

Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met
65 70 75 80

Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys
85 90 95

Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser
100 105 110

Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Xaa Lys Asp
115 120 125

Gly Ser Gly Ser Ile Ser Leu Asp Xaa Trp Lys Ala Tyr Gly Arg Ile
130 135 140

Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Xaa Lys His
145 150 155 160

Cys Xaa Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg
165 170 175

Arg His Leu Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu
180 185 190

Tyr Gly Asn Phe Val Pro
195

<210> 118

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la clytine

<220>

<221> MISC_FEATURE

<222> (44)..(44)

<223> X représente E ou G

<220>

<221> MISC_FEATURE

<222> (126)..(126)

<223> X représente D ou G

<221> MISC_FEATURE

<222> (137)..(137)

<223> X représente E ou G

<221> MISC_FEATURE

<222> (158)..(158)

<223> X représente F ou S

<221> MISC_FEATURE

<222> (162)..(162)

<223> X représente D ou G

<400> 118

Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe
1 5 10 15

Asp Asn Pro Lys Trp Val Asn Arg His Arg Phe Met Phe Asn Phe Leu
20 25 30

Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Xaa Ile Val Ser Lys
35 40 45

Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr
50 55 60

Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met
65 70 75 80

Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys
85 90 95

Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser
100 105 110

Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Xaa Lys Asp
115 120 125

Gly Ser Gly Ser Ile Ser Leu Asp Xaa Trp Lys Ala Tyr Gly Arg Ile
130 135 140

Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Xaa Lys His
145 150 155 160

Cys Xaa Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg
165 170 175

Gln His Ile Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu
180 185 190

Tyr Gly Asn Phe Val Pro
195

<210> 119

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la clytine

<220>

<221> MISC_FEATURE

<222> (44)..(44)

<223> X représente E ou G

<220>

<221> MISC_FEATURE

<222> (126)..(126)

<223> X représente D ou G

<221> MISC_FEATURE

<222> (137)..(137)

<223> X représente E ou G

<221> MISC_FEATURE

<222> (158)..(158)

<223> X représente F ou S

<221> MISC_FEATURE

<222> (162)..(162)

<223> X représente D ou G

<400> 119

125

Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe
1 5 10 15

Asp Asn Pro Lys Trp Val Asn Arg His Lys Phe Met Phe Asn Phe Leu
20 25 30

Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Xaa Ile Val Ser Lys
35 40 45

Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr
50 55 60

Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met
65 70 75 80

Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys
85 90 95

Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser
100 105 110

Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Xaa Lys Asp
115 120 125

Gly Ser Gly Ser Ile Ser Leu Asp Xaa Trp Lys Ala Tyr Gly Arg Ile
130 135 140

Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Xaa Lys His
145 150 155 160

Cys Xaa Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg
165 170 175

Arg His Ile Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu
180 185 190

Tyr Gly Asn Phe Val Pro
195

<210> 120

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la clytine

<220>

<221> MISC_FEATURE

<222> (44) .. (44)

<223> X représente E ou G

<220>

<221> MISC_FEATURE

<222> (126) .. (126)

<223> X représente D ou G

<221> MISC_FEATURE

<222> (137)..(137)

<223> X représente E ou G

<221> MISC_FEATURE

<222> (158)..(158)

<223> X représente F ou S

<221> MISC_FEATURE

<222> (162)..(162)

<223> X représente D ou G

<400> 120

Met Ala Asp Thr Ala Ser Lys Tyr Ala Val Lys Leu Arg Pro Asn Phe
1 5 10 15

Asp Asn Pro Lys Trp Val Asn Arg His Arg Phe Met Phe Asn Phe Leu
20 25 30

Asp Ile Asn Gly Asp Gly Lys Ile Thr Leu Asp Xaa Ile Val Ser Lys
35 40 45

Ala Ser Asp Asp Ile Cys Ala Lys Leu Gly Ala Thr Pro Glu Gln Thr
50 55 60

Lys Arg His Gln Asp Ala Val Glu Ala Phe Phe Lys Lys Ile Gly Met
65 70 75 80

Asp Tyr Gly Lys Glu Val Glu Phe Pro Ala Phe Val Asp Gly Trp Lys
85 90 95

Glu Leu Ala Asn Tyr Asp Leu Lys Leu Trp Ser Gln Asn Lys Lys Ser
100 105 110

Leu Ile Arg Asp Trp Gly Glu Ala Val Phe Asp Ile Phe Xaa Lys Asp
115 120 125

Gly Ser Gly Ser Ile Ser Leu Asp Xaa Trp Lys Ala Tyr Gly Arg Ile
130 135 140

Ser Gly Ile Cys Ser Ser Asp Glu Asp Ala Glu Lys Thr Xaa Lys His
145 150 155 160

Cys Xaa Leu Asp Asn Ser Gly Lys Leu Asp Val Asp Glu Met Thr Arg
165 170 175

Arg His Ile Gly Phe Trp Tyr Thr Leu Asp Pro Asn Ala Asp Gly Leu
180 185 190

Tyr Gly Asn Phe Val Pro
195

<210> 121
<211> 198
<212> PRT
<213> séquence dérivée par mutation de la mitrocomine
<220>
<221> MISC_FEATURE
<222> (43)..(43)
<223> X représente E ou G
<220>
<221> MISC_FEATURE
<222> (125)..(125)
<223> X représente D ou G
<221> MISC_FEATURE
<222> (136)..(136)
<223> X représente E ou G
<221> MISC_FEATURE
<222> (157)..(157)
<223> X représente F ou S
<221> MISC_FEATURE
<222> (161)..(161)
<223> X représente D ou G
<400> 121

Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp
1 5 10 15

Asn Pro Lys Trp Ile Ala Arg His Arg His Met Phe Asn Phe Leu Asp
20 25 30

Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Xaa Met Val His Lys Ala
35 40 45

Ser Asn Ile Ile Cys Lys Lys Leu Gly Ala Thr Glu Glu Gln Thr Lys
50 55 60

Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu
65 70 75 80

Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg
85 90 95

Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu
100 105 110

Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Xaa Lys Asp Arg
115 120 125

Asn Gly Ser Val Ser Leu Asp Xaa Trp Ile Gln Tyr Thr His Cys Ala
130 135 140

Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Xaa Ala His Cys
145 150 155 160

Xaa Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Gln
165 170 175

His Leu Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr
180 185 190

Gly Gly Ala Val Pro Tyr
195

<210> 122

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la mitrocomine

<220>

<221> MISC_FEATURE

<222> (43)..(43)

<223> X représente E ou G

<220>

<221> MISC_FEATURE

<222> (125)..(125)

<223> X représente D ou G

<221> MISC_FEATURE

<222> (136)..(136)

<223> X représente E ou G

<221> MISC_FEATURE

<222> (157)..(157)

<223> X représente F ou S

<221> MISC_FEATURE

<222> (161)..(161)

<223> X représente D ou G

<400> 122

Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp
1 5 10 15

Asn Pro Lys Trp Ile Ala Arg His Lys His Met Phe Asn Phe Leu Asp
20 25 30

Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Xaa Met Val His Lys Ala
35 40 45

Ser Asn Ile Ile Cys Lys Lys Leu Gly Ala Thr Glu Glu Gln Thr Lys
50 55 60

Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu
65 70 75 80

Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg
85 90 95

Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu
100 105 110

Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Xaa Lys Asp Arg
115 120 125

Asn Gly Ser Val Ser Leu Asp Xaa Trp Ile Gln Tyr Thr His Cys Ala
130 135 140

Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Xaa Ala His Cys
145 150 155 160

Xaa Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Arg
165 170 175

His Leu Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr
180 185 190

Gly Gly Ala Val Pro Tyr
195

<210> 123

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la mitrocomine

<220>

<221> MISC_FEATURE

<222> (43) . . (43)

<223> X représente E ou G

<220>

<221> MISC_FEATURE
<222> (125)..(125)

<223> X représente D ou G

<221> MISC_FEATURE
<222> (136)..(136)

<223> X représente E ou G

<221> MISC_FEATURE
<222> (157)..(157)

<223> X représente F ou S

<221> MISC_FEATURE
<222> (161)..(161)

<223> X représente D ou G

<400> 123

Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp
1 5 10 15

Asn Pro Lys Trp Ile Ala Arg His Lys His Met Phe Asn Phe Leu Asp
20 25 30

Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Xaa Met Val His Lys Ala
35 40 45

Ser Asn Ile Ile Cys Lys Lys Leu Gly Ala Thr Glu Glu Gln Thr Lys
50 55 60

Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu
65 70 75 80

Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg
85 90 95

Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu
100 105 110

Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Xaa Lys Asp Arg
115 120 125

Asn Gly Ser Val Ser Leu Asp Xaa Trp Ile Gln Tyr Thr His Cys Ala
130 135 140

Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Xaa Ala His Cys
145 150 155 160

Xaa Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Gln
165 170 175

His Ile Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr
180 185 190

Gly Gly Ala Val Pro Tyr
195

<210> 124

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la mitrocomine

<220>

<221> MISC_FEATURE

<222> (43)..(43)

<223> X représente E ou G

<220>

<221> MISC_FEATURE

<222> (125)..(125)

<223> X représente D ou G

<221> MISC_FEATURE

<222> (136)..(136)

<223> X représente E ou G

<221> MISC_FEATURE

<222> (157)..(157)

<223> X représente F ou S

<221> MISC_FEATURE

<222> (161)..(161)

<223> X représente D ou G

<400> 124

Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp
1 5 10 15

Asn Pro Lys Trp Ile Ala Arg His Arg His Met Phe Asn Phe Leu Asp
20 25 30

Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Xaa Met Val His Lys Ala
35 40 45

Ser Asn Ile Ile Cys Lys Lys Leu Gly Ala Thr Glu Glu Gln Thr Lys
50 55 60

132

Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu
65 70 75 80

Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg
85 90 95

Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu
100 105 110

Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Xaa Lys Asp Arg
115 120 125

Asn Gly Ser Val Ser Leu Asp Xaa Trp Ile Gln Tyr Thr His Cys Ala
130 135 140

Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Xaa Ala His Cys
145 150 155 160

Xaa Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Arg
165 170 175

His Leu Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr
180 185 190

Gly Gly Ala Val Pro Tyr
195

<210> 125

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la mitrocomine

<220>

<221> MISC_FEATURE

<222> (43)..(43)

<223> X représente E ou G

<220>

<221> MISC_FEATURE

<222> (125)..(125)

<223> X représente D ou G

<221> MISC_FEATURE

<222> (136)..(136)

<223> X représente E ou G

<221> MISC_FEATURE

<222> (157)..(157)

<223> X représente F ou S

<221> MISC_FEATURE

<222> (161)...(161)

<223> X représente D ou G

<400> 125

Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp
1 5 10 15

Asn Pro Lys Trp Ile Ala Arg His Arg His Met Phe Asn Phe Leu Asp
20 25 30

Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Xaa Met Val His Lys Ala
35 40 45

Ser Asn Ile Ile Cys Lys Lys Leu Gly Ala Thr Glu Glu Gln Thr Lys
50 55 60

Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu
65 70 75 80

Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg
85 90 95

Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu
100 105 110

Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Xaa Lys Asp Arg
115 120 125

Asn Gly Ser Val Ser Leu Asp Xaa Trp Ile Gln Tyr Thr His Cys Ala
130 135 140

Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Xaa Ala His Cys
145 150 155 160

Xaa Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Gln
165 170 175

His Ile Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr
180 185 190

Gly Gly Ala Val Pro Tyr
195

<210> 126

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la mitrocomine

<220>

<221> MISC_FEATURE

<222> (43)..(43)
<223> X représente E ou G
<220>
<221> MISC_FEATURE
<222> (125)..(125)
<223> X représente D ou G
<221> MISC_FEATURE
<222> (136)..(136)
<223> X représente E ou G
<221> MISC_FEATURE
<222> (157)..(157)
<223> X représente F ou S
<221> MISC_FEATURE
<222> (161)..(161)
<223> X représente D ou G
<400> 126

Met	Ser	Met	Gly	Ser	Arg	Tyr	Ala	Val	Lys	Leu	Thr	Thr	Asp	Phe	Asp
1									10					15	
Asn	Pro	Lys	Trp	Ile	Ala	Arg	His	Lys	His	Met	Phe	Asn	Phe	Leu	Asp
				20				25					30		
Ile	Asn	Ser	Asn	Gly	Gln	Ile	Asn	Leu	Asn	Xaa	Met	Val	His	Lys	Ala
					35			40				45			
Ser	Asn	Ile	Ile	Cys	Lys	Lys	Leu	Gly	Ala	Thr	Glu	Glu	Gln	Thr	Lys
					50		55				60				
Arg	His	Gln	Lys	Cys	Val	Glu	Asp	Phe	Phe	Gly	Gly	Ala	Gly	Leu	Glu
					65		70			75				80	
Tyr	Asp	Lys	Asp	Thr	Thr	Trp	Pro	Glu	Tyr	Ile	Glu	Gly	Trp	Lys	Arg
					85			90					95		
Leu	Ala	Lys	Thr	Glu	Leu	Glu	Arg	His	Ser	Lys	Asn	Gln	Val	Thr	Leu
					100			105				110			
Ile	Arg	Leu	Trp	Gly	Asp	Ala	Leu	Phe	Asp	Ile	Ile	Xaa	Lys	Asp	Arg
					115			120				125			
Asn	Gly	Ser	Val	Ser	Leu	Asp	Xaa	Trp	Ile	Gln	Tyr	Thr	His	Cys	Ala
					130		135				140				
Gly	Ile	Gln	Gln	Ser	Arg	Gly	Gln	Cys	Glu	Ala	Thr	Xaa	Ala	His	Cys
					145		150			155			160		

135

Xaa Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Arg
165 170 175

His Ile Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr
180 185 190

Gly Gly Ala Val Pro Tyr
195

<210> 127

<211> 198

<212> PRT

<213> séquence dérivée par mutation de la mitrocomine

<220>

<221> MISC_FEATURE

<222> (43)..(43)

<223> X représente E ou G

<220>

<221> MISC_FEATURE

<222> (125)..(125)

<223> X représente D ou G

<221> MISC_FEATURE

<222> (136)..(136)

<223> X représente E ou G

<221> MISC_FEATURE

<222> (157)..(157)

<223> X représente F ou S

<221> MISC_FEATURE

<222> (161)..(161)

<223> X représente D ou G

<400> 127

Met Ser Met Gly Ser Arg Tyr Ala Val Lys Leu Thr Thr Asp Phe Asp
1 5 10 15

Asn Pro Lys Trp Ile Ala Arg His Arg His Met Phe Asn Phe Leu Asp
20 25 30

Ile Asn Ser Asn Gly Gln Ile Asn Leu Asn Xaa Met Val His Lys Ala
35 40 45

Ser Asn Ile Ile Cys Lys Lys Leu Gly Ala Thr Glu Glu Gln Thr Lys
50 55 60

Arg His Gln Lys Cys Val Glu Asp Phe Phe Gly Gly Ala Gly Leu Glu
65 70 75 80

Tyr Asp Lys Asp Thr Thr Trp Pro Glu Tyr Ile Glu Gly Trp Lys Arg
85 90 95

Leu Ala Lys Thr Glu Leu Glu Arg His Ser Lys Asn Gln Val Thr Leu
100 105 110

Ile Arg Leu Trp Gly Asp Ala Leu Phe Asp Ile Ile Xaa Lys Asp Arg
115 120 125

Asn Gly Ser Val Ser Leu Asp Xaa Trp Ile Gln Tyr Thr His Cys Ala
130 135 140

Gly Ile Gln Gln Ser Arg Gly Gln Cys Glu Ala Thr Xaa Ala His Cys
145 150 155 160

Xaa Leu Asp Gly Asp Gly Lys Leu Asp Val Asp Glu Met Thr Arg Arg
165 170 175

His Ile Gly Phe Trp Tyr Ser Val Asp Pro Thr Cys Glu Gly Leu Tyr
180 185 190

Gly Gly Ala Val Pro Tyr
195

<210> 128

<211> 195

<212> PRT

<213> séquence dérivée par mutation de l'obéline

<220>

<221> MISC_FEATURE

<222> (41)..(41)

<223> X représente E ou G

<220>

<221> MISC_FEATURE

<222> (123)..(123)

<223> X représente D ou G

<221> MISC_FEATURE

<222> (134)..(134)

<223> X représente E ou G

<221> MISC_FEATURE

<222> (155)..(155)

<223> X représente F ou S

<221> MISC_FEATURE

<222> (159)..(159)

<223> X représente D ou G

<400> 128

Met Ser Ser Lys Tyr Ala Val Lys Leu Lys Thr Asp Phe Asp Asn Pro
1 5 10 15

Arg Trp Ile Lys Arg His Arg His Met Phe Asp Phe Leu Asp Ile Asn
20 25 30

Gly Asn Gly Lys Ile Thr Leu Asp Xaa Ile Val Ser Lys Ala Ser Asp
35 40 45

Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His
50 55 60

Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly
65 70 75 80

Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala
85 90 95

Thr Ser Glu Leu Lys Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg
100 105 110

Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Xaa Lys Asp Gly Ser Gly
115 120 125

Thr Ile Thr Leu Asp Xaa Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile
130 135 140

Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Xaa Arg His Cys Xaa Leu
145 150 155 160

Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Gln His Leu
165 170 175

Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn
180 185 190

Gly Val Pro
195

<210> 129

<211> 195

<212> PRT

<213> séquence dérivée par mutation de l'obéline

<220>

<221> MISC_FEATURE

<222> (41)..(41)

<223> X représente E ou G

<220>

<221> MISC_FEATURE

<222> (123)..(123)

<223> X représente D ou G

<221> MISC_FEATURE

<222> (134)..(134)

<223> X représente E ou G

<221> MISC_FEATURE

<222> (155)..(155)

<223> X représente F ou S

<221> MISC_FEATURE

<222> (159)..(159)

<223> X représente D ou G

<400> 129

Met Ser Ser Lys Tyr Ala Val Lys Leu Lys Thr Asp Phe Asp Asn Pro
1 5 10 15

Arg Trp Ile Lys Arg His Lys His Met Phe Asp Phe Leu Asp Ile Asn
20 25 30

Gly Asn Gly Lys Ile Thr Leu Asp Xaa Ile Val Ser Lys Ala Ser Asp
35 40 45

Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His
50 55 60

Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly
65 70 75 80

Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala
85 90 95

Thr Ser Glu Leu Lys Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg
100 105 110

Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Xaa Lys Asp Gly Ser Gly
115 120 125

Thr Ile Thr Leu Asp Xaa Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile
130 135 140

Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Xaa Arg His Cys Xaa Leu
145 150 155 160

Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Arg His Leu
165 170 175

Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn
180 185 190

Gly Val Pro
195

<210> 130

<211> 195

<212> PRT

<213> séquence dérivée par mutation de l'obéline

<220>

<221> MISC_FEATURE

<222> (41)..(41)

<223> X représente E ou G

<220>

<221> MISC_FEATURE

<222> (123)..(123)

<223> X représente D ou G

<221> MISC_FEATURE

<222> (134)..(134)

<223> X représente E ou G

<221> MISC_FEATURE

<222> (155)..(155)

<223> X représente F ou S

<221> MISC_FEATURE

<222> (159)..(159)

<223> X représente D ou G

<400> 130

140

Met Ser Ser Lys Tyr Ala Val Lys Leu Lys Thr Asp Phe Asp Asn Pro
1 5 10 15

Arg Trp Ile Lys Arg His Lys His Met Phe Asp Phe Leu Asp Ile Asn
20 25 30

Gly Asn Gly Lys Ile Thr Leu Asp Xaa Ile Val Ser Lys Ala Ser Asp
35 40 45

Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His
50 55 60

Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly
65 70 75 80

Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala
85 90 95

Thr Ser Glu Leu Lys Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg
100 105 110

Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Xaa Lys Asp Gly Ser Gly
115 120 125

Thr Ile Thr Leu Asp Xaa Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile
130 135 140

Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Xaa Arg His Cys Xaa Leu
145 150 155 160

Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Gln His Ile
165 170 175

Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn
180 185 190

Gly Val Pro
195

<210> 131

<211> 195

<212> PRT

<213> séquence dérivée par mutation de l'obéline

<220>

<221> MISC_FEATURE

<222> (41)...(41)

<223> X représente E ou G

<220>

<221> MISC_FEATURE

<222> (123)...(123)

<223> X représente D ou G

<221> MISC_FEATURE

<222> (134)..(134)

<223> X représente E ou G

<221> MISC_FEATURE

<222> (155)..(155)

<223> X représente F ou S

<221> MISC_FEATURE

<222> (159)..(159)

<223> X représente D ou G

<400> 131

Met Ser Ser Lys Tyr Ala Val Lys Leu Lys Thr Asp Phe Asp Asn Pro
1 5 10 15

Arg Trp Ile Lys Arg His Met Phe Asp Phe Leu Asp Ile Asn
20 25 30

Gly Asn Gly Lys Ile Thr Leu Asp Xaa Ile Val Ser Lys Ala Ser Asp
35 40 45

Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His
50 55 60

Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly
65 70 75 80

Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala
85 90 95

Thr Ser Glu Leu Lys Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg
100 105 110

Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Xaa Lys Asp Gly Ser Gly
115 120 125

Thr Ile Thr Leu Asp Xaa Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile
130 135 140

Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Xaa Arg His Cys Xaa Leu
145 150 155 160

Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Arg His Leu
165 170 175

Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn
180 185 190

Gly Val Pro
195

<210> 132
<211> 195
<212> PRT
<213> séquence dérivée par mutation de l'obéline
<220>
<221> MISC_FEATURE
<222> (41)..(41)
<223> X représente E ou G
<220>
<221> MISC_FEATURE
<222> (123)..(123)
<223> X représente D ou G
<221> MISC_FEATURE
<222> (134)..(134)
<223> X représente E ou G
<221> MISC_FEATURE
<222> (155)..(155)
<223> X représente F ou S
<221> MISC_FEATURE
<222> (159)..(159)
<223> X représente D ou G
<400> 132

Met	Ser	Ser	Lys	Tyr	Ala	Val	Lys	Leu	Lys	Thr	Asp	Phe	Asp	Asn	Pro
1									10						15
Arg	Trp	Ile	Lys	Arg	His	Arg	His	Met	Phe	Asp	Phe	Leu	Asp	Ile	Asn
									25					30	
Gly	Asn	Gly	Lys	Ile	Thr	Leu	Asp	Xaa	Ile	Val	Ser	Lys	Ala	Ser	Asp
									35			40		45	
Asp	Ile	Cys	Ala	Lys	Leu	Glu	Ala	Thr	Pro	Glu	Gln	Thr	Lys	Arg	His
									50			55		60	
Gln	Val	Cys	Val	Glu	Ala	Phe	Phe	Arg	Gly	Cys	Gly	Met	Glu	Tyr	Gly
									65			70		75	80
Lys	Glu	Ile	Ala	Phe	Pro	Gln	Phe	Leu	Asp	Gly	Trp	Lys	Gln	Leu	Ala
									85			90		95	

Thr Ser Glu Leu Lys Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg
100 105 110

Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Xaa Lys Asp Gly Ser Gly
115 120 125

Thr Ile Thr Leu Asp Xaa Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile
130 135 140

Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Xaa Arg His Cys Xaa Leu
145 150 155 160

Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Gln His Ile
165 170 175

Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn
180 185 190

Gly Val Pro
195

<210> 133

<211> 195

<212> PRT

<213> séquence dérivée par mutation de l'obéline

<220>

<221> MISC_FEATURE

<222> (41)..(41)

<223> X représente E ou G

<220>

<221> MISC_FEATURE

<222> (123)..(123)

<223> X représente D ou G

<221> MISC_FEATURE

<222> (134)..(134)

<223> X représente E ou G

<221> MISC_FEATURE

<222> (155)..(155)

<223> X représente F ou S

<221> MISC_FEATURE

<222> (159)..(159)

<223> X représente D ou G

<400> 133

Met Ser Ser Lys Tyr Ala Val Lys Leu Lys Thr Asp Phe Asp Asn Pro
1 5 10 15

Arg Trp Ile Lys Arg His Lys His Met Phe Asp Phe Leu Asp Ile Asn
20 25 30

Gly Asn Gly Lys Ile Thr Leu Asp Xaa Ile Val Ser Lys Ala Ser Asp
35 40 45

Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His
50 55 60

Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly
65 70 75 80

Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala
85 90 95

Thr Ser Glu Leu Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg
100 105 110

Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Xaa Lys Asp Gly Ser Gly
115 120 125

Thr Ile Thr Leu Asp Xaa Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile
130 135 140

Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Xaa Arg His Cys Xaa Leu
145 150 155 160

Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Arg His Ile
165 170 175

Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn
180 185 190

Gly Val Pro
195

<210> 134

<211> 195

<212> PRT

<213> séquence dérivée par mutation de l'obéline

<220>

<221> MISC_FEATURE

<222> (41)..(41)

<223> X représente E ou G

<220>

<221> MISC_FEATURE
<222> (123)..(123)
<223> X représente D ou G
<221> MISC_FEATURE
<222> (134)..(134)
<223> X représente E ou G
<221> MISC_FEATURE
<222> (155)..(155)
<223> X représente F ou S
<221> MISC_FEATURE
<222> (159)..(159)
<223> X représente D ou G
<400> 134

Met	Ser	Ser	Lys	Tyr	Ala	Val	Lys	Leu	Lys	Thr	Asp	Phe	Asp	Asn	Pro
1				5					10					15	
Arg	Trp	Ile	Lys	Arg	His	Arg	His	Met	Phe	Asp	Phe	Leu	Asp	Ile	Asn
		20						25					30		
Gly	Asn	Gly	Lys	Ile	Thr	Leu	Asp	Xaa	Ile	Val	Ser	Lys	Ala	Ser	Asp
		35				40					45				
Asp	Ile	Cys	Ala	Lys	Leu	Glu	Ala	Thr	Pro	Glu	Gln	Thr	Lys	Arg	His
		50			55					60					
Gln	Val	Cys	Val	Glu	Ala	Phe	Phe	Arg	Gly	Cys	Gly	Met	Glu	Tyr	Gly
		65		70					75				80		
Lys	Glu	Ile	Ala	Phe	Pro	Gln	Phe	Leu	Asp	Gly	Trp	Lys	Gln	Leu	Ala
		85						90					95		
Thr	Ser	Glu	Leu	Lys	Lys	Trp	Ala	Arg	Asn	Glu	Pro	Thr	Leu	Ile	Arg
		100						105					110		
Glu	Trp	Gly	Asp	Ala	Val	Phe	Asp	Ile	Phe	Xaa	Lys	Asp	Gly	Ser	Gly
		115				120					125				
Thr	Ile	Thr	Leu	Asp	Xaa	Trp	Lys	Ala	Tyr	Gly	Lys	Ile	Ser	Gly	Ile
		130			135					140					
Ser	Pro	Ser	Gln	Glu	Asp	Cys	Glu	Ala	Thr	Xaa	Arg	His	Cys	Xaa	Leu
		145			150					155				160	
Asp	Asn	Ser	Gly	Asp	Leu	Asp	Val	Asp	Glu	Met	Thr	Arg	Arg	His	Ile
			165					170					175		
Gly	Phe	Trp	Tyr	Thr	Leu	Asp	Pro	Glu	Ala	Asp	Gly	Leu	Tyr	Gly	Asn
		180						185				190			

Gly Val Pro
195