POLIMI GRADUATE MANAGEMENT

MACHINE LEARNING IN PYTHON - LAB SESSION

Andrea Mor - andrea.mor@polimi.it - https://github.com/mrondr/BABD2023

SUPERVISED LEARNING

THE PROBLEM: BANK TELEMARKETING $^{\! 1}$

Attribute		Type	Description/Values		
Personal	age	num	Age of the potential client		
	job	cat	admin., blue- collar, entrepreneur, housemaid, , unknown		
	marital_status	cat	divorced, married, single, unknown		
	education	cat	basic.4y, basic.6y, basic.9y, high.school, , unknown		
Bank	default	cat	The client has credit in default: no,yes,unknown		
	housing	cat	The client has a housing loan contract: no,yes,unknown		
	loan	cat	The client has a personal loan: no,yes,unknown		
Campain	contact	cat	Communication type: cellular,telephone		
	month	cat	Last month contacted: jan, feb ,, dec		
	day_of_week	cat	Last contact day: mon, tue,, fri		
	duration	num	Last contact duration (in seconds)		
	campain	num	Number of contacts performed during this campaign		
	pdays	num	Number of days that passed by after last contact		
	previous	num	Number of contacts performed before this campaign		
	poutcome	cat	Outcome of the prev. marketing campaign: failure,nonexistent,success		
Economical	emp.var.rate	num	Employment variation rate in the last quarter		
	cons.price.idx	num	Consumer price index in the last month		
	cons.conf.idx	num	Monthly consumer confidence index		
	euribor3m	num	Dayly Euro Interbank Offered Rate		
	nr.employed	num	Number of employed citizens in the last quarter (thousands)		
Target	success	target	0: no, 1: yes		

¹ A data-driven approach to predict the success of bank telemarketing. S. Moroa, P. Cortez, P. Rita. Decision Support Systems, 62:22-31, 2014.

CLASSIFICATION PROBLEM

Area	Pothers	\mathbf{Pmob}		NumSMS	Class
1	0.27	0.67		36	?
4	0.44	0.22		50	?
4	0.31	0.47		14	?
:		:	:	:	:
2	0.31	0.14		49	?

CLASSIFICATION FORMULATION

$$\mathcal{S}_m = \{(\mathbf{x}_i, y_i), \ i \in \mathcal{M}\}$$
 : training set, where $\ \mathbf{x}_i \in \Re^n \ \ ext{and} \ \ y_i \in \mathcal{D}$

$${\mathcal H}$$
 denotes a set of functions $f({\mathbf x}): \Re^n \mapsto {\mathcal D}$

Classification problem: define a hypotheses space $\mathcal H$ and a function $f^*\in\mathcal H$ which optimally describes the relationship between $\mathbf x_i$ and $\ y_i$

MULTI-CLASS CLASSIFICATION

1. One-vs-Rest We perform |H| different binary classifications: one for every class.

We decide based on a majority vote.

2. One-vs-One We perform |H|(|H-1|)/2 binary classifications: one for every pair of classes. We decide based on a majority vote.

CLASSIFICATION MODELS

- Heuristics Methods
 - Nearest Neighbours
 - Classification Trees
- Probabilistic Methods
 - Bayesian Methods
- Regression Methods
 - Logistic regression
- Separation Methods
 - Support vector machine
 - Perceptron
 - Neural Networks

EVALUATION DIMENSIONS

- Prediction accuracy
- Speed
- Robustness
- Scalability
- Intepretability
- Rules effectiveness

QUALITY MEASURES - CONFUSION MATRIX

- Accuracy = $\frac{TP+TN}{TP+FP+TN+FN}$ When: balanced problems, equal costs of FN and FP. When NOT: imbalanced problems.
- ► Recall (True Positive rate)= $\frac{TP}{FN+TP}$ "proportion of true positives among actual positive" When: you want to be sure to catch all the 1s, at the cost of having false alerts.
- Precision (Positive Predictive value) = TP/TP+FP
 "proportion of true positives among positive predictions"
 When: you want to be sure that all that you predict as 1, are indeed 1, e.g., false alerts are costly.
- Precision and Recall are typically evaluated together.

QUALITY MEASURES - CONFUSION MATRIX

- ▶ **Geom.** mean= $\sqrt{\text{Precision} \times \text{Recall}}$
- $\qquad \qquad \textbf{F-score} = \frac{(1+\beta^2)}{\beta^2} \frac{1}{\frac{1}{\mathsf{Precision}} + \frac{1}{\mathsf{Recall}}} = (1+\beta^2) \frac{\mathsf{Precision \cdot Recall}}{(\beta^2 \cdot \mathsf{Precision}) \cdot \mathsf{Recall}}$
- ▶ **F1**: harmonic mean of Prec. and Recall $= \frac{2TP}{2TP+FP+FN}$ Frequently the to-go metric.
- F2: 2x emphasis on Recall When: False Negatives are more costly.

QUALITY MEASURES - CONFUSION MATRIX (AUXILLIARY)

- False Positive rate = $\frac{FP}{FP+TN}$ "proportion of false positives among actual negatives" When: cost of dealing with positive prediction is high (e.g., false alarms).
- ► True Negative rate (Specificity) = $\frac{TN}{TN+FP}$ When: e.g., you want to be sure when you say something is safe for health.

QUALITY MEASURES - ROC CURVE & AUC

- If we accepting even with small probability then TPR = FPR = 1
- If we accepting just with high probability then TPR = FPR = 0
- ▶ The perfect classificator is the the point (0,1)
- $ightharpoonup AUC \in [0.5, 1]$ area under the curve is a quality measure of our algorithm.

POLIMI SERADUATE MANAGEMEN

WORKFLOW

UNDER/OVER-FITTING

POLIMI GRADUATE MANAGEMENT

CROSS VALIDATION

THE ALGORITHMS

K-NEAREST NEIGHBORS

Main Parameters

- ightharpoonup k: number of neighbors
- neighbor weights
- distances

Tree

types

- Binary tree (zero/two descendants)
- General trees
- Uni-variate tree ($X_j < b$)
- Multi-variate tree ($\sum_{j=1}^{n} w_j x_j = b$)

POLIMI GRADUATE MANAGEMENT

classification by an axis parallel tree

classification by an oblique tree

- Entropy index:
- Gini index:
- Miss-classification index:

Split criteria

$$\begin{aligned} -\sum_{h=1}^{H} f_h \log_2 f_h \\ 1 - \sum_{h=1}^{H} f_h^2 \\ 1 - \max_h f_h \end{aligned}$$

Main Parameters

- impurity measure: "gini", "entropy"
- max_depth
- min_samples_split: minimum number of samples to split an internal node
- min_sample_leaf: minimum number of samples required to be at a leaf node

NAIVE BAYESIAN CLASSIFIER

Bayes Theorem

$$P(y|\mathbf{x}) = \frac{P(\mathbf{x}|y)P(y)}{P(\mathbf{x})} = \frac{P(\mathbf{x}|y)P(y)}{\sum_{l=1}^{H} P(\mathbf{x}|y)P(y)}$$

Maximum a posteriori hypothesis

$$y_{MAP} = \arg\max_{y \in \mathcal{H}} P(y|\mathbf{x}) = \arg\max \frac{P(\mathbf{x}|y)P(y)}{P(\mathbf{x})}$$

Independence (Naive)

$$P(\mathbf{x}|y) = P(x_1|y) \cdot P(x_2|y) \cdot \ldots \cdot P(x_n|y) = \prod_{j=1}^{n} P(x_j|y)$$

NAIVE BAYESIAN CLASSIFIER

Categorical/discrete attributes

$$P(x_j|y) = P(x_j = r_{jk}|y = v_h)$$

- ightarrow empirical frequency of the observed value on the class v_h
- Numerical attribute

$$P(x_j|y) \sim N(\mu_{jh}, \sigma_{jh})$$

 \rightarrow assuming Gaussian density with empirical parameters

I NGISTIC REGRESSINN

The model postulates that

$$\log\left[\frac{P(y=1|x)}{P(y=0|x)}\right] = w^T x$$

then if
$$p = P(y = 1|x)$$

then if
$$p=P(y=1|x)$$
:
$$\frac{p}{1-p}=e^{w^Tx}$$

$$\Rightarrow p = P(y = 1|x) = \frac{e^{w^T x}}{1 + e^{w^T x}} = \frac{1}{1 + e^{-w^T x}},$$

$$P(y = 0|x) = 1 - p = \frac{1}{1 + e^{w^T x}} = \frac{e^{-w^T x}}{1 + e^{-w^T x}}$$

LOGISTIC REGRESSION

Therefore if we maximizes the likelihood

$$L(w) := P(Y_1 = y_1, \dots, Y_m = y_m | w, x_1, \dots, x_m) = \prod_{i=1}^n P(Y_i = y_i | w, x_1, \dots, x_m).$$

Assuming independence:

$$L(w) := \prod_{i|y_i=1} p(x_i) \cdot \prod_{i|y_i=0} (1 - p(x_i))$$
$$L(w) := \prod_{i=1}^{n} p(x_i)^{y_i} (1 - p(x_i))^{1-y_i}$$

 $i{=}1$ is equivalent to maximize the log likelihood

$$\begin{split} l(w) &= \sum_{i=1}^{n} (y_i log(p(x_i)) + (1 - y_i) log(1 - p(x_i))) \\ &= \sum_{i=1}^{n} (y_i log(\frac{p(x_i)}{1 - p(x_i)}) + log(1 - p(x_i))) \end{split}$$

Given the quantities defined above

$$l(w) = \sum_{i=1}^{n} (y_i w^T x_i) - log(1 + e^{-w^T x_i}))$$

Therefore we aim to resolve the following optimization problem

$$\max_{w} l(w)$$

LOGISTIC REGRESSION

Regulation term(s) can be considered (recall that $\max l(w)$ is equivalent to $\min -l(w)$):

$$\min_{w} \frac{1}{2} ||w||^2 - C \cdot l(w)$$

Main Parameters

- C: Inverse of regularization strength
- Resolution algorithm parameters:
 - solver: lbfgs, newton-cg, liblinear, sag, saga.
 - tol: Tolerance for stopping criteria.
 - max_iter: max. number of iterations
 - n_jobs: Number of CPU cores

Temp. [C]	20	31	15	18	21
Humidity [%]	40	36	23	45	30
Prob. Rain	0.70	0.52	0.55	0.73	0.60

Temp. [C]	20	31	15	18	21
Humidity [%]	40	36	23	45	30
Prob. Rain	0.70	0.52	0.55	0.73	0.60

For a classification problem we can use the Likelihood as cost function.

$$\begin{split} & \min_{w_1,w_2} \sum_{i=1}^5 [P_i(\mathsf{rain}) - f(T_i, H_i, w_1, w_2)]^2 \\ & = \min \left[0.7 - 1/(1 + e^{-(w_1 \cdot 20 + w_2 \cdot 0.4)}) \right]^2 + \left[0.52 - 1/(1 + e^{-(31 \cdot w_1 + w_2 \cdot 0.36)}) \right]^2 + \cdots \end{split}$$

$$\begin{split} & \min_{w_1, w_2} \sum_{i=1}^5 [P_i(\mathsf{rain}) - f(T_i, H_i, w_1, w_2)]^2 \\ & = \min \left[0.7 - 1/(1 + e^{-(w_1 \cdot 20 + w_2 \cdot 0.4)}) \right]^2 + \left[0.52 - 1/(1 + e^{-(31 \cdot w_1 + w_2 \cdot 0.36)}) \right]^2 + \cdots \end{split}$$

$$(w_1^*, w_2^*) = (-0.044, 4.147)$$

$$\begin{split} & \min_{w_1,w_2} \sum_{i=1}^5 [P_i(\mathsf{rain}) - f(T_i, H_i, w_1, w_2)]^2 \\ & = \min \left[0.7 - 1/(1 + e^{-(w_1 \cdot 20 + w_2 \cdot 0.4)}) \right]^2 + \left[0.52 - 1/(1 + e^{-(31 \cdot w_1 + w_2 \cdot 0.36)}) \right]^2 + \cdots \end{split}$$

$$(w_1^*, w_2^*) = (-0.044, 4.147)$$

Temp. [C] Humidity [%]	20 40	31 36	15 23	18 45	21 30
Prob. Rain	0.70	0.52	0.55	0.73	0.60
Predicted	0.70	0.56	0.58	0.75	0.60
Error	0.0	-0.04	-0.03	-0.02	0.0

MULTI-LAYER PERCEPTRON

Main Parameters

- ▶ hidden_layer_sizes: $(n_1, n_2, ..., n_L)$
- activation: identity, logistic, tanh, relu
- alpha regularization term parameter
- Resolution algorithm parameters: solver, tol, batch_size, learning_rate, max_iter.

NEURAL NETWORK

DEEP LEARNING

CLASSIFICATION AND STATISTICAL LEARNING THEORY

Given an hypothesis space \mathcal{F} , a predictive function $f \in \mathcal{F}$, and a loss function $V(y, f(\mathbf{x}))$, we define

ightharpoonup the **empirical risk** on a train set $\mathcal T$ as

$$R_{emp}(f) = \frac{1}{m} \sum_{i=1}^{m} V(y_i, f(\mathbf{x_i}))$$

and the expected risk as

$$R(f) = \frac{1}{2} \int V(y, f(\mathbf{x})) dP(\mathbf{x}, y)$$

Overfitting arises when the difference between these errors is large.

VC-DIMENSION

The Vapnik–Chervonenkis (VC) dimension is the maximum number of points that can be correctly classified by classifiers in \mathcal{F} . We can prove that

$$R(f) - R_{emp}(f) \leq \sqrt{\frac{1}{t}(\gamma \log(2t/\gamma) - \log(\eta/4) + 1)} = \Psi(t, \gamma, \eta)$$

with probability $1 - \eta$, where

- ightharpoonup t is the number of training points
- $ightharpoonup \gamma$ is the VC-dimension

REGULARIZATION

Structural risk minimization (SRM)

$$\hat{R}(f) = \frac{1}{t} \sum_{i=1}^{t} V(y_i, f(\mathbf{x_i})) + \lambda ||f||_K^2$$

SUPPORT VECTOR MACHINE - LINEARLY SEPARABLE

SVM - LINEARLY SEPARABLE

$$\begin{aligned} & \min_{\mathbf{w}, b} & & \frac{1}{2} \|\mathbf{w}\|_2^2 \\ & \text{s. t.} & & y_i(\mathbf{w}'\mathbf{x}_i - b) \geq 1 & i \in \mathcal{M} \end{aligned}$$

SVM - GENERAL CASE

$$\min_{\mathbf{w},b} \quad \frac{1}{2} \|\mathbf{w}\|_{2}^{2}$$
s. t. $y_{i}(\mathbf{w}'\mathbf{x}_{i} - b) \ge 1 \quad i \in \mathcal{M}$

$$\min_{\mathbf{w},b,d} \quad \frac{1}{2} \|\mathbf{w}\|_2^2 + \lambda \sum_{i=1}^m d_i$$

s.t.
$$y_i(\mathbf{w}'\mathbf{x}_i - b) \ge 1 - d_i$$
 $i \in \mathcal{M}$
 $d_i \ge 0$ $i \in \mathcal{M}$

SVM - KERNELS

SVM - GENERAL CASE

$$\begin{split} \min_{w,b,d} & \quad \frac{1}{2}||w||^2 + C\sum_{i=1}^m d_i \\ \text{subject to } y_i(w^T\underbrace{\phi(x_i)}_{\text{kernel}} - b) \geq 1 - d_i, \\ d_i \geq 0 \end{split}$$

Main Parameters

- C: Inverse of regularization strength
- kernel: linear: x'x

- poly:
$$(\gamma x'x + r)^d$$

- rbf:
$$exp(-\gamma||x-x'||^2)$$

- sigmoid:
$$tanh(\gamma x'x + r)$$

- degree(d), gamma(γ), coef0(r)
- Resolution algorithm parameters

ENSEMBLE METHODS

RANDOM FOREST

- 1. Create different (simple) tree models (stumps)
- 2. Each model is created with a subset of observation/features (\sim 2m/3)
- 3. We combine the prediction of all trees

Main Parameters

- n_estimators: Number of trees
- max_features: Number of features selected for the split
- bootstrap=False: Use all samples
- Tree parameters

ADABOOST

- 1. Assign equal weights to observations $w_i^{(0)} = 1/m$
- 2. For k = 1, ..., K
 - Select a sample of observations based on the weights.
 - Create the k-th weak learner and compute predictions $x^{(k)}$
 - Compute the model weighted error and assign its coefficient:

$$\alpha^{(k)} = \lambda \times \log((1 - error)/error)$$

Update sample weights:

$$w_i^{(k+1)} \propto w_i^{(k)} \times \exp(-\alpha^{(k)} y_i \hat{x}_i^{(k)})$$

3. Final weighted prediction

Main Parameters

- n_estimators: Number of estimators (K)
- base_estimator: Weak estimator type
- learning_rate: weights of estimator in final decision (λ)

THANK YOU