Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра прикладной математики

ОТЧЕТ ПО НИР

(тема НИГ	Р в соответствии с индивидуальным планом)
Направление подготовки: 09.06.01 Инфо (профиль: "Математическое моделирова	орматика и вычислительная техника ание, численные методы и комплексы программ")
Выполнил:	Проверил:
Аспирант	Научный руководитель
(Ф.И.О.)	(Ф.И.О.)
Год подготовки, семестр	Балл:, ECTS,
	– Оценка
Факультет	«отлично», «хорошо», «удовлетворительно», «неуд.»
подпись	подпись
«» 20 г.	« <u> » </u>

Оглавление

1. Постановка задачи	3
2. Конечноэлементная дискретизация	7
2.1. Вариационная постановка в форме уравнений Галеркина	7
2.2. Аппроксимация на конечномерных пространствах	8
2.3. Аппроксимация на шестигранных конечных элементах	11
3. Задача теплопроводности	17
4. Итерационный процесс	20
4.1. Улучшение сходимости итерационного процесса	20
Заключение	22
Список питературы	23

1. Постановка задачи

Компоненты тензора малых деформаций Коши ε_{ij} выражаются через перемещения:

$$\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right). \tag{1.1}$$

Компоненты тензора напряжений Коши σ_{ij} для линейно-упругого материала выражаются через малые деформации Коши обобщенным законом Гука

$$\sigma_{ij} = \sum_{l=1}^{3} \sum_{k=1}^{3} C_{ijkl} \varepsilon_{kl}, \qquad (1.2)$$

где C_{ijkl} — тензор упругих коэффициентов материала.

Внутри тела, геометрия которого задана некоторой областью Ω , выполняются дифференциальные уравнения движения в перемещениях

$$\sum_{j=1}^{3} \frac{\partial \sigma_{ij}}{\partial x_{i}} + F_{i} = \rho \frac{\partial^{2} u_{i}}{\partial t^{2}}, i = \overline{1,3},$$

$$(1.3)$$

где $\vec{F}(t)$ — вектор объёмных сил (силы на единицу объёма). На поверхности S_2 области Ω выполняются краевые условия

$$\sum_{j=1}^{3} \sigma_{ij} n_{j} \bigg|_{S_{2}} = P_{i}, i = \overline{1,3}, \tag{1.4}$$

где \vec{n} — внешняя нормаль к поверхности S_2 , а $\vec{P}(t)$ — вектор поверхностных сил (силы на единицу площади).

Учитывая симметрию тензоров ε_{ij} , σ_{ij} , обозначим вектор деформаций ε и вектор напряжений σ в виде векторов 6-мерного пространства:

$$\mathbf{\varepsilon} = \left\{ \varepsilon_{11}, \varepsilon_{22}, \varepsilon_{33}, 2\varepsilon_{23}, 2\varepsilon_{31}, 2\varepsilon_{12} \right\}^{\mathrm{T}}, \mathbf{\sigma} = \left\{ \sigma_{11}, \sigma_{22}, \sigma_{33}, \sigma_{23}, \sigma_{31}, \sigma_{12} \right\}^{\mathrm{T}}, \tag{1.5}$$

тогда обобщенный закон Гука (1.2) примет вид [10]

$$\mathbf{\sigma} = \mathbf{D}\mathbf{\varepsilon},\tag{1.6}$$

где симметричная матрица упругих коэффициентов ${f D}$ определяется выражением

$$\mathbf{D} = \begin{pmatrix} C_{1111} & C_{1122} & C_{1133} & C_{1123} & C_{1113} & C_{1112} \\ & C_{2222} & C_{2233} & C_{2223} & C_{2213} & C_{2212} \\ & & C_{3333} & C_{3323} & C_{3313} & C_{3312} \\ & & & C_{2323} & C_{2313} & C_{2312} \\ & & & & C_{1313} & C_{1312} \\ & & & & & C_{1212} \end{pmatrix}.$$

$$(1.7)$$

Полные деформации термо-упруго-пластичного материала представимы в виде суммы упругих, пластических и тепловой деформаций

$$\mathbf{\varepsilon} = \mathbf{\varepsilon}^{el} + \mathbf{\varepsilon}^{pl} + \mathbf{\varepsilon}^{th}. \tag{1.8}$$

тогда, в соответствии с обобщенным законом Гука (1.2) для упругих деформаций, напряжения связаны с деформациями соотношением

$$\mathbf{\sigma} = \mathbf{D} \left(\mathbf{\varepsilon} - \mathbf{\varepsilon}^{pl} - \mathbf{\varepsilon}^{th} \right). \tag{1.9}$$

откуда связь приращений напряжений с приращениями деформаций определяется уравнением [4]

$$\Delta \mathbf{\sigma} = \mathbf{D} \left(\Delta \mathbf{\varepsilon} - \Delta \mathbf{\varepsilon}^{pl} - \Delta \mathbf{\varepsilon}^{th} \right), \tag{1.10}$$

$$\Delta \mathbf{\varepsilon}^{th} = \alpha \Delta T \{1, 1, 1, 0, 0, 0\}^{\mathrm{T}},$$
 (1.11)

где α - коэффициент линейного изотропного теплового расширения, ΔT — приращение температуры.

При активном нагружении пластичного материала происходит приращение пластических деформаций. Нейтральное нагружение или разгрузка происходят линейно-упруго, без приращения пластических деформаций.

Для пластичного *изотропного* материала с критерием текучести Мизеса будем считать, что задана кривая пластичности $\varepsilon_{\scriptscriptstyle M}=\tilde{\varepsilon}(\tilde{\sigma})$, где интенсивность напряжений $\tilde{\sigma}$ и интенсивность (нетепловых) деформаций $\tilde{\varepsilon}$ определяются соотношениями [11]

$$\tilde{\sigma}(\sigma) = \sqrt{c_{\tilde{\sigma}}\sigma^{T}M\sigma}, \ \tilde{\varepsilon}(\varepsilon) = \sqrt{c_{\tilde{\varepsilon}}(R\varepsilon)^{T}M(R\varepsilon)},$$
 (1.12)

$$\mathbf{M} = \begin{pmatrix} 1 & -0.5 & -0.5 & 0 & 0 & 0 \\ -0.5 & 1 & -0.5 & 0 & 0 & 0 \\ -0.5 & -0.5 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{pmatrix}, \mathbf{R} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 0 & 0.5 \end{pmatrix}. (1.13)$$

Используя кривую пластичности, можно получить уравнение связи приращения интенсивности напряжений $\Delta \tilde{\sigma} = \tilde{\sigma} (t + \Delta t) - \tilde{\sigma} (t)$ с приращением интенсивности пластических деформаций $\Delta \tilde{\varepsilon}^{pl} = \tilde{\varepsilon}^{pl} (t + \Delta t) - \tilde{\varepsilon}^{pl} (t)$ [11]:

$$\Delta \tilde{\sigma} = E^* \Delta \tilde{\varepsilon}^{pl}, \tag{1.14}$$

$$E^{*}(\boldsymbol{\sigma}, \Delta \boldsymbol{\sigma}) = 1 / \left(\frac{\varepsilon_{m}(\tilde{\boldsymbol{\sigma}}(\boldsymbol{\sigma} + \Delta \boldsymbol{\sigma})) - \varepsilon_{m}(\tilde{\boldsymbol{\sigma}}(\boldsymbol{\sigma}))}{\tilde{\boldsymbol{\sigma}}(\boldsymbol{\sigma} + \Delta \boldsymbol{\sigma}) - \tilde{\boldsymbol{\sigma}}(\boldsymbol{\sigma})} - \frac{\partial \varepsilon_{m}}{\partial \tilde{\boldsymbol{\sigma}}}(0) \right), \tag{1.15}$$

$$E^* \approx 1 / \left(\frac{\partial \varepsilon_m}{\partial \tilde{\sigma}} (\tilde{\sigma}(\mathbf{\sigma})) - \frac{\partial \varepsilon_m}{\partial \tilde{\sigma}} (0) \right). \tag{1.16}$$

Соотношение (1.16) задает начальное приближение коэффициента E^* , а соотношение (1.15) позволяет его итерационно уточнять в процессе решения нелинейных уравнений движения.

Также выполняются ассоциированный с условием текучести Мизеса закон пластического течения, связывающий малые приращения пластических деформаций и малое приращение интенсивности пластических деформаций [9]:

$$d\mathbf{\varepsilon}^{pl} = \frac{2}{3} \sqrt{\frac{c_{\tilde{\sigma}}}{c_{\tilde{\varepsilon}}}} \frac{\mathbf{M}\mathbf{\sigma}}{\tilde{\sigma}} d\tilde{\varepsilon}^{pl}. \tag{1.17}$$

Из соотношений (1.10)–(1.17) можно получить связь малых приращений напряжений $\Delta \mathbf{\sigma} = \mathbf{\sigma} (t + \Delta t) - \mathbf{\sigma} (t)$ с малыми приращениями деформаций $\Delta \mathbf{\varepsilon} = \mathbf{\varepsilon} (t + \Delta t) - \mathbf{\varepsilon} (t)$, которая справедлива в случае активного нагружения или нелинейно-упругой разгрузки [11]:

$$\Delta \mathbf{\sigma} = \tilde{\mathbf{D}} \left(\Delta \mathbf{\varepsilon} - \Delta \mathbf{\varepsilon}^{th} \right), \tag{1.18}$$

где

$$\tilde{\mathbf{D}}(\boldsymbol{\sigma}, \Delta \boldsymbol{\sigma}) = \mathbf{D} \left(\mathbf{I} - \frac{\tilde{\mathbf{Z}}(\tilde{\mathbf{Z}}^{\mathrm{T}} \mathbf{D})}{E^* + \tilde{\mathbf{Z}}^{\mathrm{T}} \mathbf{D} \tilde{\mathbf{Z}}} \right), \tilde{\mathbf{Z}} = \sqrt{\frac{2}{3} c_{\tilde{\sigma}} \sqrt{\frac{c_{\tilde{\sigma}}}{c_{\tilde{\varepsilon}}}}} \frac{\mathbf{M} \boldsymbol{\sigma}}{\tilde{\sigma}}.$$
 (1.19)

Пространственная начально-краевая задача для вектора перемещений \vec{u} определяется дифференциальными уравнениями (1.3) (с учетом определяющих соотношений), заданными в некоторой области Ω с границей $S=S_1\cup S_2$, краевыми условиями (1.4) и

$$\vec{u} \bigg|_{S_1} = \vec{u}_0(t), \tag{1.20}$$

и начальными условиями

$$\vec{u} \Big|_{t=t_0} = 0,$$

$$\dot{\vec{u}} \Big|_{t=t_0} = 0.$$
(1.21)

2. Конечноэлементная дискретизация

2.1. Вариационная постановка в форме уравнений Галеркина

Потребуем, чтобы невязки уравнений движения (1.3) были ортогональны пространству пробных функций $v \in H^1$ в смысле скалярного произведения

$$\int_{\Omega} \left(\sum_{j=1}^{3} \frac{\partial \sigma_{ij}}{\partial x_{j}} + F_{i} - \rho \frac{\partial^{2} u_{i}^{\Sigma}}{\partial t^{2}} \right) v d\Omega = 0, i = \overline{1, 3},$$
(2.1)

применим формулу Грина интегрирования по частям [3]:

$$\sum_{j=1}^{3} \int_{\Omega} \sigma_{ij} \frac{\partial v}{\partial x_{j}} d\Omega + \int_{\Omega} \rho \frac{\partial^{2} u_{i}^{\Sigma}}{\partial t^{2}} v d\Omega = \int_{\Omega} F_{i} v d\Omega + \int_{S_{2}} (\sigma_{i1}, \sigma_{i2}, \sigma_{i3}) \cdot \vec{n} v dS.$$
 (2.2)

Учитывая (1.4), при $\sigma_{ij}=\sigma_{ij}\left(t\right),$ $\Delta\sigma_{ij}=\sigma_{ij}\left(t+\Delta t\right)-\sigma_{ij}\left(t\right),$ получим

$$\sum_{j=1}^{3} \int_{\Omega} \sigma_{ij}(t) \frac{\partial v}{\partial x_{i}} d\Omega + \int_{\Omega} \rho \frac{\partial^{2} u_{i}^{\Sigma}}{\partial t^{2}}(t) v d\Omega = \int_{\Omega} F_{i}(t) v d\Omega + \int_{S_{2}} P_{i}(t) v dS, \qquad (2.3)$$

$$\sum_{j=1}^{3} \int_{\Omega} \Delta \sigma_{ij} \frac{\partial v}{\partial x_{j}} d\Omega + \int_{\Omega} \rho \frac{\partial^{2} u_{i}^{\Sigma}}{\partial t^{2}} (t + \Delta t) v d\Omega =$$

$$\int_{\Omega} F_{i} (t + \Delta t) v d\Omega + \int_{S_{2}} P_{i} (t + \Delta t) v dS - \sum_{j=1}^{3} \int_{\Omega} \sigma_{ij} (t) \frac{\partial v}{\partial x_{j}} d\Omega$$
(2.4)

Из уравнений (2.3) следует, что

$$\int_{\Omega} F_{i}(t + \Delta t) v d\Omega + \int_{S_{2}} P_{i}(t + \Delta t) v dS - \sum_{j=1}^{3} \int_{\Omega} \sigma_{ij}(t) \frac{\partial v}{\partial x_{j}} d\Omega =$$

$$\int_{\Omega} \Delta F_{i} v d\Omega + \int_{S_{2}} \Delta P_{i} v dS + \int_{\Omega} \rho \frac{\partial^{2} u_{i}^{\Sigma}}{\partial t^{2}}(t) v d\Omega$$
(2.5)

Учитывая (1.18), (1.2), (1.1) и (2.5) в уравнениях (2.4), получим:

$$\int_{\Omega} \sum_{j=1}^{3} \sum_{l=1}^{3} \sum_{k=1}^{3} \tilde{C}_{ijkl} \left[\frac{1}{2} \left(\frac{\partial u_{k}}{\partial x_{l}} + \frac{\partial u_{l}}{\partial x_{k}} \right) - \alpha \Delta T \delta_{kl} \right] \frac{\partial v}{\partial x_{j}} d\Omega + \int_{\Omega} \rho \frac{\partial^{2} u_{i}^{\Sigma}}{\partial t^{2}} (t + \Delta t) v d\Omega =$$

$$\int_{\Omega} \Delta F_{i} v d\Omega + \int_{S_{2}} \Delta P_{i} v dS + \int_{\Omega} \rho \frac{\partial^{2} u_{i}^{\Sigma}}{\partial t^{2}} (t) v d\Omega$$
(2.6)

где тензор $ilde{C}_{ijkl}$ соответствует матрице $ilde{\mathbf{D}}$.

Изменим в (2.6) очередность суммирования в $\sum_{l=1}^{3}\sum_{k=1}^{3}\tilde{C}_{ijkl}\frac{1}{2}\left(\frac{\partial u_{k}}{\partial x_{l}}+\frac{\partial u_{l}}{\partial x_{k}}\right)$, учитём симметрию тензора \tilde{C}_{ijkl} , получим уравнения Галеркина:

$$\sum_{j=1}^{3} \sum_{l=1}^{3} \sum_{k=1}^{3} \int_{\Omega} \tilde{C}_{ijkl} \frac{\partial u_{k}}{\partial x_{l}} \frac{\partial v}{\partial x_{j}} d\Omega + \int_{\Omega} \rho \frac{\partial^{2} u_{i}^{\Sigma}}{\partial t^{2}} (t + \Delta t) v d\Omega =$$

$$\int_{\Omega} \Delta F_{i} v d\Omega + \int_{S_{2}} \Delta P_{i} v dS + \sum_{j=1}^{3} \sum_{l=1}^{3} \int_{\Omega} \alpha \Delta T \tilde{C}_{ijll} \frac{\partial v}{\partial x_{j}} d\Omega + \int_{\Omega} \rho \frac{\partial^{2} u_{i}^{\Sigma}}{\partial t^{2}} (t) v d\Omega$$
(2.7)

2.2. Аппроксимация на конечномерных пространствах

Введем конечномерное линейное пространство V^h , натянутое на финитные базисные функции ψ_n , $n=\overline{1,N}$, т.е. каждая базисная функция ψ_n будет принимать ненулевое значение только на одном из конечных элементов $\Omega_K \subseteq \Omega$, на которые разбивается исходная область Ω ($\Omega = \bigcup \Omega_K, \bigcap \Omega_K = \emptyset$).

Заменим $\dot{u}_1, \dot{u}_2, \dot{u}_3$ и v в уравнениях (3.6) на аппроксимирующие их функции $\dot{u}_1^h, \dot{u}_2^h, \dot{u}_3^h$ и v^h из пространства V^h . Функции v^h заменим поочередно на функции $\psi_m, m=\overline{1,N},$ а функции $\dot{u}_1^h, \dot{u}_2^h, \dot{u}_3^h$ разложим по элементам базиса

$$u_{i}^{h} = \sum_{n=1}^{N} q_{n}^{i} \psi_{n}, i = \overline{1,3},$$

$$u_{i}^{\Sigma h} = \sum_{n=1}^{N} q_{n}^{\Sigma i} \psi_{n}, i = \overline{1,3}.$$
(2.8)

После проделанных преобразований, получим СЛАУ (3.8), решение которой содержит коэффициенты в разложениях искомых функций $\dot{u}_1^h, \dot{u}_2^h, \dot{u}_3^h$ по базису $\{\psi_n\}$. При диффиренцировании по времени считаем базисные функции постоянными во времени.

$$\sum_{n=1}^{N} \sum_{j=1}^{3} \sum_{l=1}^{3} \sum_{k=1}^{3} \int_{\Omega} \tilde{C}_{ijkl} q_{n}^{k} \frac{\partial \psi_{n}}{\partial x_{l}} \frac{\partial \psi_{m}}{\partial x_{j}} d\Omega + \sum_{n=1}^{N} \int_{\Omega} \rho \frac{\partial^{2} q_{n}^{\Sigma i}}{\partial t^{2}} (t + \Delta t) \psi_{n} \psi_{m} d\Omega =$$

$$\int_{\Omega} \Delta F_{i} \psi_{m} d\Omega + \int_{S_{2}} \Delta P_{i} \psi_{m} dS + \sum_{j=1}^{3} \sum_{l=1}^{3} \int_{\Omega} \alpha \Delta T \tilde{C}_{ijll} \frac{\partial \psi_{m}}{\partial x_{j}} d\Omega + \int_{\Omega} \rho \frac{\partial^{2} u_{i}^{\Sigma}}{\partial t^{2}} (t) v d\Omega \qquad (2.9)$$

$$i = \overline{1.3}, m = \overline{1.N}.$$

Пусть $q_{3n+k-3} \equiv q_n^k$, $n = \overline{1,N}$, $k = \overline{1,3}$, тогда получим СЛАУ

$$\mathbf{G}\mathbf{q} + \mathbf{M}\frac{\partial^2 \mathbf{q}^{\Sigma}}{\partial t^2} (t + \Delta t) = \mathbf{b}, \tag{2.10}$$

где матрицы G и M размерностей $3N \times 3N$ и вектор правой части размерности 3N определяются следующими соотношениями:

$$G_{(3m+i-3)(3n+k-3)} = \sum_{j=1}^{3} \sum_{l=1}^{3} \int_{\Omega} \tilde{C}_{ijkl} \frac{\partial \psi_m}{\partial x_j} \frac{\partial \psi_n}{\partial x_l} d\Omega, \qquad (2.11)$$

$$M_{(3m+i-3)(3n+k-3)} = \delta_{ik} \int_{\Omega} \rho \psi_m \psi_n d\Omega, \qquad (2.12)$$

$$b_{(3m+i-3)} = \int_{\Omega} \Delta F_{i} \psi_{m} d\Omega + \int_{S_{2}} \Delta P_{i} \psi_{m} dS + \sum_{j=1}^{3} \sum_{l=1}^{3} \int_{\Omega} \alpha \Delta T \tilde{C}_{ijll} \frac{\partial \psi_{m}}{\partial x_{j}} d\Omega + \int_{\Omega} \rho \frac{\partial^{2} u_{i}^{\Sigma}}{\partial t^{2}} (t) v d\Omega$$

$$(2.13)$$

где δ_{ik} – символ Крокенера.

Поскольку базисные функции выбраны финитные, то для каждого конечного элемента Ω_K можно записать локальные вклады в СЛАУ (3.9), выраженные только через локальные базисные функции $\hat{\psi}_n$, не нулевые на этом конечном элементе Ω_K :

$$\hat{G}_{(3m+i-3)(3n+k-3)} = \sum_{j=1}^{3} \sum_{l=1}^{3} \tilde{C}_{ijkl} \int_{\Omega_{k}} \frac{\partial \hat{\psi}_{m}}{\partial x_{j}} \frac{\partial \hat{\psi}_{n}}{\partial x_{l}} d\Omega, \qquad (2.14)$$

$$\hat{M}_{(3m+i-3)(3n+k-3)} = \delta_{ik} \rho \int_{\Omega_K} \hat{\psi}_m \hat{\psi}_n d\Omega, \qquad (2.15)$$

$$\hat{b}_{(3m+i-3)} = \Delta F_{i} \int_{\Omega_{K}} \hat{\psi}_{m} d\Omega + \Delta P_{i} \int_{S_{2} \cap \Omega_{K}} \hat{\psi}_{m} dS + \alpha \Delta T \sum_{j=1}^{3} \sum_{l=1}^{3} \tilde{C}_{ijll} \int_{\Omega_{K}} \frac{\partial \hat{\psi}_{m}}{\partial x_{j}} d\Omega + \rho \int_{\Omega} \frac{\partial^{2} u_{i}^{\Sigma}}{\partial t^{2}} (t) v d\Omega$$

$$(2.16)$$

Для аппроксимации уравнений (3.9) по времени будем использовать разностные схемы, представляя вектор-фукцию \mathbf{q} полиномиальными интерполянтами его значений на текущем временном слое t_r и на предыдущих временных слоях $t_{r-1}, t_{r-2}, t_{r-3}$ и т.д, что позволит вычислить значение производной $\partial^2 \mathbf{q} / \partial t^2$ на текущем временном слое t_r . Так, неявная трехслойная разностная схема аппроксимации уравнений (3.9) по времени с постоянным шагом $\Delta t = t_r - t_{r-1}$ имеет вид [3]

$$\mathbf{Q}^{r} = \mathbf{Q}^{r-1} + \mathbf{q}^{r}$$

$$\mathbf{G}^{r} \mathbf{q}^{r} + \mathbf{M}^{r} \frac{\mathbf{Q}^{r} - 2\mathbf{Q}^{r-1} + \mathbf{Q}^{r-2}}{\Delta t^{2}} = \mathbf{b}^{r}$$

$$\left(\mathbf{G}^{r} + \frac{1}{\Delta t^{2}} \mathbf{M}^{r}\right) \mathbf{q}^{r} = \mathbf{b}^{r} - \mathbf{M}^{r} \left(-\frac{1}{\Delta t^{2}} \mathbf{Q}^{r-1} + \frac{1}{\Delta t^{2}} \mathbf{Q}^{r-2}\right),$$
(2.17)

где верхний индекс матриц G, M и векторов q, b означает номер временного слоя, на котором они вычисляются.

Неявная трехслойная схема с переменным шагом по времени имеет вид

$$\mathbf{G}^{r}\mathbf{q}^{r} + \mathbf{M}^{r}\left(\eta_{0}\mathbf{Q}^{r} + \eta_{1}\mathbf{Q}^{r-1} + \eta_{2}\mathbf{Q}^{r-2}\right) = \mathbf{b}^{r},$$

$$\left(\mathbf{G}^{r} + \eta_{0}\mathbf{M}^{r}\right)\mathbf{q}^{r} = \mathbf{b}^{r} - \mathbf{M}^{r}\left((\eta_{0} + \eta_{1})\mathbf{Q}^{r-1} + \eta_{2}\mathbf{Q}^{r-2}\right),$$

$$\eta_{0} = \frac{2}{(t_{r} - t_{r-2})(t_{r} - t_{r-1})},$$

$$\eta_{1} = \frac{2}{(t_{r-1} - t_{r-2})(t_{r-1} - t_{r})},$$

$$\eta_{2} = \frac{2}{(t_{r-2} - t_{r-1})(t_{r-2} - t_{r})}.$$
(2.18)

Неявная четырехслойная схема с переменным шагом по времени имеет вид

$$\mathbf{G}^{r}\mathbf{q}^{r} + \mathbf{M}^{r} \left(\eta_{0}\mathbf{Q}^{r} + \eta_{1}\mathbf{Q}^{r-1} + \eta_{2}\mathbf{Q}^{r-2} + \eta_{3}\mathbf{Q}^{r-3}\right) = \mathbf{b}^{r},$$

$$\left(\mathbf{G}^{r} + \eta_{0}\mathbf{M}^{r}\right)\mathbf{q}^{r} = \mathbf{b}^{r} - \mathbf{M}^{r} \left(\left(\eta_{0} + \eta_{1}\right)\mathbf{Q}^{r-1} + \eta_{2}\mathbf{Q}^{r-2} + \eta_{3}\mathbf{Q}^{r-3}\right),$$

$$\eta_{0} = \frac{2(3t_{r} - t_{r-1} - t_{r-2} - t_{r-3})}{(t_{r} - t_{r-3})(t_{r} - t_{r-2})(t_{r} - t_{r-1})},$$

$$\eta_{1} = \frac{2(2t_{r} - t_{r-2} - t_{r-3})}{(t_{r-1} - t_{r-2})(t_{r-1} - t_{r})},$$

$$\eta_{2} = \frac{2(2t_{r} - t_{r-1} - t_{r-3})}{(t_{r-2} - t_{r-3})(t_{r-2} - t_{r-1})(t_{r-2} - t_{r})},$$

$$\eta_{3} = \frac{2(2t_{r} - t_{r-1} - t_{r-2})}{(t_{r-3} - t_{r-2})(t_{r-3} - t_{r-1})(t_{r-3} - t_{r})}$$

При отсутствии инертных слагаемых (т.е. $\rho = 0$) уравнения (3.9) принимают вид (3.19) и соответствуют квазистатическому процессу, в котором каждый шаг по времени переводит тело в новое равновесное состояние.

$$\mathbf{G}\mathbf{q} = \mathbf{b} \bigg|_{\rho = 0} \tag{2.20}$$

2.3. Аппроксимация на шестигранных конечных элементах

В качестве конечных элементов будем использовать шестигранники, а базисные функции задавать через отображение трилинейных функций на шаблонном кубе в шестигранник.

Рассмотрим некоторый шестигранник $\Omega_K \subseteq \Omega$ с вершинами $(\hat{x}_i, \hat{y}_i, \hat{z}_i), i=1...8$ и шаблонный куб $\Omega^E = [-1,1] \times [-1,1] \times [-1,1]$. Отображение шаблонного куба Ω^E в шестигранник Ω_K определим соотношениями [3]

$$x = \sum_{i=1}^{8} \hat{\varphi}_i(\xi, \eta, \zeta) \hat{x}_i, \ y = \sum_{i=1}^{8} \hat{\varphi}_i(\xi, \eta, \zeta) \hat{y}_i, \ z = \sum_{i=1}^{8} \hat{\varphi}_i(\xi, \eta, \zeta) \hat{z}_i, \tag{2.21}$$

где $\hat{\varphi}_i$ — трилинейные базисные функции на шаблонном кубе Ω^E :

$$\hat{\varphi}_{i}(\xi,\eta,\zeta) = Q_{\beta(i)}(\xi)Q_{\nu(i)}(\eta)Q_{\beta(i)}(\zeta), i = 1...8,$$
(2.22)

$$Q_{1}(\alpha) = \frac{1-\alpha}{2}, Q_{2}(\alpha) = \frac{1+\alpha}{2},$$

$$\beta(i) = ((i-1) \mod 2) + 1,$$

$$v(i) = \left(\left[\frac{i-1}{2}\right] \mod 2\right) + 1,$$

$$\beta(i) = \left[\frac{i-1}{4}\right] + 1.$$
(2.23)

ИЛИ

$$x = \sum_{i=1}^{27} \hat{\varphi}_i^{tk}(\xi, \eta, \zeta) \hat{x}_i, \ y = \sum_{i=1}^{27} \hat{\varphi}_i^{tk}(\xi, \eta, \zeta) \hat{y}_i, \ z = \sum_{i=1}^{27} \hat{\varphi}_i^{tk}(\xi, \eta, \zeta) \hat{z}_i, \tag{2.24}$$

где $\hat{oldsymbol{arphi}}_i^{tk}$ – триквадратичные базисные функции на шаблонном кубе Ω^E :

$$\hat{\varphi}_{i}(\xi,\eta,\zeta) = Q_{\beta(i)}(\xi)Q_{\nu(i)}(\eta)Q_{\beta(i)}(\zeta), \ i = 1...27, \tag{2.25}$$

$$Q_{1}(\alpha) = \frac{\alpha(\alpha - 1)}{2}, Q_{2}(\alpha) = 1 - \alpha^{2}, Q_{3}(\alpha) = \frac{\alpha(\alpha + 1)}{2},$$

$$\beta(i) = ((i - 1) \operatorname{mod} 3) + 1,$$

$$v(i) = \left(\left[\frac{i - 1}{3}\right] \operatorname{mod} 3\right) + 1,$$

$$Q(i) = \left[\frac{i - 1}{9}\right] + 1.$$

$$(2.26)$$

Тогда базисные функции $\hat{\psi}_i$ на шестиграннике Ω_K можно задать в координатах шаблонного куба [3]:

$$\hat{\psi}_i(x(\xi,\eta,\zeta),y(\xi,\eta,\zeta),z(\xi,\eta,\zeta)) = \hat{\varphi}_i(\xi,\eta,\zeta). \tag{2.27}$$

Обозначим

$$\mathbf{J} = \begin{pmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} & \frac{\partial z}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} & \frac{\partial z}{\partial \eta} \\ \frac{\partial x}{\partial \zeta} & \frac{\partial y}{\partial \zeta} & \frac{\partial z}{\partial \zeta} \end{pmatrix}$$
(2.28)

— матрицу преобразования координат, переводящего куб Ω^E в шестигранник Ω_m . Чтобы найти производные функции $\hat{\psi}_i$ из уравнений (3.13) в координатах шаблонного куба (ξ, η, ζ) , применим правило дифференцирования сложной функции:

$$\begin{pmatrix}
\frac{\partial \hat{\psi}_{i}}{\partial \xi} \\
\frac{\partial \hat{\psi}_{i}}{\partial \eta} \\
\frac{\partial \hat{\psi}_{i}}{\partial \zeta}
\end{pmatrix} = \mathbf{J} \begin{pmatrix}
\frac{\partial \hat{\psi}_{i}}{\partial x} \\
\frac{\partial \hat{\psi}_{i}}{\partial y} \\
\frac{\partial \hat{\psi}_{i}}{\partial z}
\end{pmatrix}.$$
(2.29)

Из системы (3.25) по правилу Крамера получаем искомые производные, обозначив $J \equiv \det \mathbf{J}$ [3]:

$$\frac{\partial \hat{\psi}_{i}}{\partial x} = \frac{1}{J} \det \begin{pmatrix} \frac{\partial \hat{\psi}_{i}}{\partial \xi} & J_{12} & J_{13} \\ \frac{\partial \hat{\psi}_{i}}{\partial \eta} & J_{22} & J_{23} \\ \frac{\partial \hat{\psi}_{i}}{\partial \zeta} & J_{32} & J_{33} \end{pmatrix},$$
(2.30)

$$\frac{\partial \hat{\psi}_{i}}{\partial y} = \frac{1}{J} \det \begin{pmatrix} J_{11} & \frac{\partial \hat{\psi}_{i}}{\partial \xi} & J_{13} \\ J_{21} & \frac{\partial \hat{\psi}_{i}}{\partial \eta} & J_{23} \\ J_{31} & \frac{\partial \hat{\psi}_{i}}{\partial \zeta} & J_{33} \end{pmatrix},$$
(2.31)

$$\frac{\partial \hat{\psi}_{i}}{\partial z} = \frac{1}{J} \det \begin{pmatrix} J_{11} & J_{12} & \frac{\partial \hat{\psi}_{i}}{\partial \xi} \\ J_{21} & J_{22} & \frac{\partial \hat{\psi}_{i}}{\partial \eta} \\ J_{31} & J_{32} & \frac{\partial \hat{\psi}_{i}}{\partial \zeta} \end{pmatrix}.$$
(2.32)

Вклад краевых условий второго рода в вектор правой части (см. (3.15))

$$\int_{S_2 \cap \Omega_K} P_i \hat{\psi}_m dS \tag{2.33}$$

получим из предположения, что каждый участок границы $S \cap \Omega_K$ является гранью некоторого шестигранника Ω_K . Достроим грань $S \cap \Omega_K$ до нового шестигранника $\tilde{\Omega}_K$ путем параллельного переноса вершин грани этой грани по нормали к самой себе, чтобы не искать тот реальный шестигранник среди конечных элементов, которому эта грань принадлежит. Полученный шестигранник $\tilde{\Omega}_K$ определим в координатах (ξ,η,ζ) отображением того же самого шаблонного куба $\Omega^E = [-1,1] \times [-1,1] \times [-1,1]$. Примем, что заданные 4 вершины грани будут иметь номера 1, 2, 3 и 4, тогда, с учетом построенного отображения (3.20), базисные функции на грани будут определяться тем же соотношением (3.23) при $\zeta = -1$, и можно в интеграле (3.29) произвести следующую замену переменных [3]:

$$\int_{S_2 \cap \Omega_K} P_i \hat{\psi}_m dS = \int_{-1}^{1} \int_{-1}^{1} P_i \hat{\psi}_m \sqrt{\beta_1 \beta_2 - \beta_3^2} d\xi d\eta, \qquad (2.34)$$

где обозначено

$$\beta_{1}(\xi,\eta) = \left(\left(\frac{\partial x}{\partial \xi} \right)^{2} + \left(\frac{\partial y}{\partial \xi} \right)^{2} + \left(\frac{\partial z}{\partial \xi} \right)^{2} \right) \bigg|_{\zeta = -1},$$

$$\beta_{2}(\xi,\eta) = \left(\left(\frac{\partial x}{\partial \eta} \right)^{2} + \left(\frac{\partial y}{\partial \eta} \right)^{2} + \left(\frac{\partial z}{\partial \eta} \right)^{2} \right) \bigg|_{\zeta = -1},$$

$$\beta_{3}(\xi,\eta) = \left(\frac{\partial x}{\partial \xi} \frac{\partial x}{\partial \eta} + \frac{\partial y}{\partial \xi} \frac{\partial y}{\partial \eta} + \frac{\partial z}{\partial \xi} \frac{\partial z}{\partial \eta} \right) \bigg|_{\zeta = -1}.$$

$$(2.35)$$

Зная (3.23), (3.26)–(3.28) и (3.30), произведем замены переменных в объемных интегралах в уравнениях (3.13)–(3.15) и окончательно получим компоненты СЛАУ в виде тройных интегралов

$$\hat{\mathbf{G}}_{(3m+i-3)(3n+k-3)} = \sum_{j=1}^{3} \sum_{l=1}^{3} \tilde{C}_{ijkl} \int_{-1}^{1} \int_{-1-1}^{1} \frac{\partial \hat{\psi}_{m}}{\partial x_{i}} \frac{\partial \hat{\psi}_{n}}{\partial x_{l}} |J| d\xi d\eta d\zeta, \qquad (2.36)$$

$$\hat{\mathbf{M}}_{(3m+i-3)(3n+k-3)} = \delta_{ik} \rho \int_{-1}^{1} \int_{-1-1}^{1} \hat{\psi}_{m} \hat{\psi}_{n} |J| d\xi d\eta d\zeta, \qquad (2.37)$$

$$\hat{\mathbf{b}}_{(3m+i-3)} = F_{i} \int_{-1-1-1}^{1} \int_{-1-1}^{1} \hat{\psi}_{m} |J| d\xi d\eta d\zeta +
+ P_{i} \int_{-1-1}^{1} \int_{-1}^{1} \hat{\psi}_{m} \sqrt{\beta_{1}\beta_{2} - \beta_{3}^{2}} d\xi d\eta +
+ \alpha \Delta T \sum_{j=1}^{3} \sum_{l=1}^{3} \tilde{C}_{ijll} \int_{-1-1-1}^{1} \int_{-1}^{1} \frac{\partial \hat{\psi}_{m}}{\partial x_{j}} |J| d\xi d\eta d\zeta +
+ \int_{\Omega} \rho \frac{\partial^{2} u_{i}^{\Sigma}}{\partial t^{2}} (t) v d\Omega$$
(2.38)

в которых базисные функции $\hat{\psi}_i$ и их производные определяются в координатах шаблонного куба (ξ, η, ζ) соотношениями (3.23) и (3.26)–(3.28) соответственно.

После построения СЛАУ (3.9), которая оказалась симметричной, учитываются краевые условия первого рода (2.1). Пусть в вершине m задано некоторое краевое условие $u_i^h = u_0$. Поскольку только одна базисная функция, ассоциированная с вершиной m и имеющая номер 3m+i-3, принимает ненулевое значение в этой вершине при выполнении соотношений (3.7), то замена соответствующего этой вершине уравнения номер 3m+i-3 в СЛАУ (3.9) на уравнение $q_m^i \equiv q_{3m+i-3} = u_0$ обеспечит выполнение данного краевого условия. Такая подмена уравнения оставит ненулевыми, быть может, только диагональный элемент и правую часть, поэтому для сохранения симметричности матрицы достаточно выполнить Гауссово исключение строки номер 3m+i-3, то есть вычесть её из всех остальных строк для обнуления остальной части столбца номер 3m+i-3.

3. Задача теплопроводности

Уравнение теплопроводности

$$-\operatorname{div}(\mathbf{\Lambda}\operatorname{grad}T) + \rho c \frac{\partial T}{\partial t} = f \tag{3.1}$$

 Λ — тензор теплопроводности, ρ — плотность, c — удельная теплоёмкость материала, f — мощность внутренних объёмных источников (стоков) тепла.

Тепловой поток (3-е краевое условие) на поверхности S:

$$\left(\mathbf{\Lambda} \operatorname{grad} T \cdot \vec{\mathbf{n}}\right)\Big|_{S} = q - \chi \left(T - T_{a}\right) \tag{3.2}$$

 T_a — температура окружающей среды, χ — коэффициент конвективного теплообмена, q — текущая плотность набегающего теплового потока.

Домножим на пробную функцию

$$\int_{\Omega} \left(\operatorname{div} \left(\mathbf{\Lambda} \operatorname{grad} T \right) - \rho c \frac{\partial T}{\partial t} + f \right) v d\Omega = 0$$
(3.3)

Применим формулу Грина и подставим (3.2)

$$\int_{S} (\mathbf{\Lambda} \operatorname{grad} T) \cdot \vec{\mathbf{n}} v dS - \int_{\Omega} \mathbf{\Lambda} \operatorname{grad} T \cdot \operatorname{grad} v d\Omega - \int_{\Omega} \rho c \frac{\partial T}{\partial t} v d\Omega + \int_{\Omega} f v d\Omega = 0$$
 (3.4)

$$\int_{\Omega} \mathbf{\Lambda} \operatorname{grad} T \cdot \operatorname{grad} v d\Omega + \int_{\Omega} \rho c \frac{\partial T}{\partial t} v d\Omega + \int_{S} \chi T v dS = \int_{S} (q + \chi T_a) v dS + \int_{\Omega} f v d\Omega \quad (3.5)$$

Функции v^h заменим поочередно на функции $\psi_m, m = \overline{1, N},$ а функцию T разложим по элементам базиса

$$T^h = \sum_{n=1}^N q_n \psi_n \tag{3.6}$$

$$\sum_{n=1}^{N} q_{n} \int_{\Omega} \mathbf{\Lambda} \operatorname{grad} \psi_{n} \cdot \operatorname{grad} \psi_{m} d\Omega + \sum_{n=1}^{N} \int_{\Omega} \rho c \frac{\partial (q_{n} \psi_{n})}{\partial t} \psi_{m} d\Omega + \sum_{n=1}^{N} q_{n} \int_{S} \chi \psi_{n} \psi_{m} dS = \int_{S} (q + \chi T_{a}) \psi_{m} dS + \int_{\Omega} f \psi_{m} d\Omega, m = \overline{1, N}$$
(3.7)

$$\mathbf{\Lambda}\operatorname{grad}\psi_{n}\cdot\operatorname{grad}\psi_{m} = \sum_{i=1}^{3}\sum_{j=1}^{3}\Lambda_{ij}\frac{\partial\psi_{m}}{\partial x_{i}}\frac{\partial\psi_{n}}{\partial x_{j}}$$
(3.8)

Если $\psi_{\scriptscriptstyle n}$ не зависят от времени, то

$$\int_{\Omega} \rho c \frac{\partial (q_n \psi_n)}{\partial t} \psi_m d\Omega = \frac{\partial q_n}{\partial t} \int_{\Omega} \rho c \psi_n \psi_m d\Omega$$
(3.9)

Уравнения (3.7) представим в виде СЛАУ:

$$\mathbf{G}\mathbf{q} + \mathbf{M}\frac{\partial \mathbf{q}}{\partial t} = \mathbf{b},\tag{3.10}$$

где элементы матриц определяются соотношениями

$$G_{mn} = \sum_{i=1}^{3} \sum_{j=1}^{3} \int_{\Omega} \Lambda_{ij} \frac{\partial \psi_{m}}{\partial x_{i}} \frac{\partial \psi_{n}}{\partial x_{j}} d\Omega + \int_{S} \chi \psi_{m} \psi_{n} dS$$

$$M_{mn} = \int_{\Omega} \rho c \psi_{m} \psi_{n} d\Omega$$

$$b_{m} = \int_{S} (q + \chi T_{a}) \psi_{m} dS + \int_{\Omega} f \psi_{m} d\Omega$$

$$(3.11)$$

Элементы локальные матриц для шестигранных конечных элементов:

$$\hat{G}_{mn} = \sum_{i=1}^{3} \sum_{j=1}^{3} \Lambda_{ij} \int_{-1-1}^{1} \int_{-1}^{1} \frac{\partial \hat{\psi}_{m}}{\partial x_{i}} \frac{\partial \hat{\psi}_{n}}{\partial x_{j}} |J| d\xi d\eta d\zeta + \chi \int_{-1-1}^{1} \hat{\psi}_{m} \hat{\psi}_{n} \sqrt{\beta_{1} \beta_{2} - \beta_{3}^{2}} d\xi d\eta$$

$$\hat{M}_{mn} = \rho c \int_{-1-1-1}^{1} \int_{-1-1}^{1} \hat{\psi}_{m} \hat{\psi}_{n} |J| d\xi d\eta d\zeta$$

$$\hat{b}_{m} = (q + \chi T_{a}) \int_{-1-1}^{1} \int_{-1-1}^{1} \hat{\psi}_{m} \sqrt{\beta_{1} \beta_{2} - \beta_{3}^{2}} d\xi d\eta + f \int_{-1-1-1}^{1} \int_{-1-1}^{1} \hat{\psi}_{m} |J| d\xi d\eta d\zeta$$
(3.12)

Дискретизация по времени:

$$\mathbf{G}^{r}\mathbf{q}^{r} + \mathbf{M}^{r}\frac{\mathbf{q}^{r} - \mathbf{q}^{r-1}}{\Delta t} = \mathbf{b}^{r},$$

$$\left(\mathbf{G}^{r} + \frac{1}{\Delta t}\mathbf{M}^{r}\right)\mathbf{q}^{r} = \mathbf{b}^{r} + \frac{1}{\Delta t}\mathbf{M}^{r}\mathbf{q}^{r-1}$$
(3.13)

4. Итерационный процесс

Пустьля для пластичного изотропного материала решаются нелинейные уравнения

$$\mathbf{G}^{(J)}\left(\Delta \mathbf{\sigma}^{(J-1)}\right) \mathbf{q}^{(J)} + \mathbf{M} \frac{\partial^2 \mathbf{q}^{(J)}}{\partial t^2} = \mathbf{b}, \tag{4.1}$$

$$G_{(3m+i-3)(3n+k-3)}^{(J)} = \sum_{j=1}^{3} \sum_{l=1}^{3} \int_{\Omega} \tilde{C}_{ijkl}^{(J)} \left(\Delta \boldsymbol{\sigma}^{(J-1)} \right) \frac{\partial \psi_m}{\partial x_i} \frac{\partial \psi_n}{\partial x_l} d\Omega, \tag{4.2}$$

где J — номер итерации, тогда в качестве условия завершения итерационного процесса можно использовать следующие критерии:

$$\left\| \tilde{\mathbf{G}}^{(J)} \left(\Delta \boldsymbol{\sigma}^{(J-1)} \right) \mathbf{q}^{(J)} + \mathbf{M} \frac{\partial^2 \mathbf{q}^{(J)}}{\partial t^2} - \mathbf{b}^{(J)} \right\| / \left\| \mathbf{b}^{(J)} \right\| < \delta_u, \tag{4.3}$$

$$\operatorname{Max}\left(\left|\tilde{\sigma}^{(J)} - \tilde{\sigma}^{(J-1)}\right|\right) < \delta_{\tilde{\sigma}},\tag{4.4}$$

$$\operatorname{Max}\left(\left|\tilde{\varepsilon}^{(J)} - \tilde{\varepsilon}^{(J-1)}\right|\right) < \delta_{\tilde{\varepsilon}}. \tag{4.5}$$

4.1. Улучшение сходимости итерационного процесса

Для вычисления на некотором конечном элементе матрицы $\tilde{\mathbf{D}}$ используется значение интенсивности напряжений $\tilde{\sigma}^{(J-1)}$, полученное на предыдущей итерации. После завершения итерации получается новое значение $\tilde{\sigma}^{(J+1)} = \varphi(\tilde{\sigma}^{(J)})$, которое используется на следующей итерации. Таким образом, если пренебречь изменениями матриц $\tilde{\mathbf{D}}$ на других конечных элементах, искомое значение $\tilde{\sigma}$ приближенно удовлетворяет уравнению

$$\tilde{\sigma} - \varphi(\tilde{\sigma}) = 0. \tag{4.6}$$

В конце третьей и последующих итераций будут известны две пары $\left(\tilde{\sigma}^{(J)}, \varphi\left(\tilde{\sigma}^{(J-1)}\right)\right)$ и $\left(\tilde{\sigma}^{(J-1)}, \varphi\left(\tilde{\sigma}^{(J-2)}\right)\right)$, что позволяет приближенно вычислить производную функции $\varphi(\tilde{\sigma})$

$$\varphi'\left(\tilde{\sigma}^{(J)}\right) \approx \frac{\varphi\left(\tilde{\sigma}^{(J-1)}\right) - \varphi\left(\tilde{\sigma}^{(J-2)}\right)}{\tilde{\sigma}^{(J-1)} - \tilde{\sigma}^{(J-2)}} \tag{4.7}$$

и получить уточненное значение эквивалентного напряжения для следующей итерации (метод секущих [12]):

$$\tilde{\sigma}^{(J+1)^*} = \tilde{\sigma}^{(J)} + \omega \Big(\varphi \Big(\tilde{\sigma}^{(J)} \Big) - \tilde{\sigma}^{(J)} \Big),$$

$$\omega = \frac{-1}{\varphi' \Big(\tilde{\sigma}^{(J)} \Big) - 1} \in (0;1].$$
(4.8)

Если итерационный процесс не сходится, можно уменьшить величину шага по времени и начать итерации сначала.

Заключение

Построена вариационная постановка для моделирования напряженнодеформированного состояния конструкций, разработаны алгоритмы и конечноэлементные вычислительные схемы.

Список литературы

- 1) Левин В.А. Нелинейная вычислительная механика прочности. Том I. Модели и методы. М.: ФИЗМАТЛИТ, 2015 454 с.
- 2) Численные методы в механике деформируемого твердого тела: электронный конспект лекций / Филиппов А.С. / ИБРАЭ РАН.
- 3) Соловейчик Ю. Г. Метод конечных элементов для решения скалярных и векторных задач : учеб. пособие / Ю. Г. Соловейчик, М. Э. Рояк, М. Г. Персова Новосибирск: Изд-во НГТУ, 2007. 896 с.
- 4) Прикладная теория пластичности [Электронный ресурс] : учебное пособие / К.М. Иванов [и др.]; под ред. К.М. Иванова. СПб. : Политехника, 2011.
- 5) Писаренко Г.С., Можаровский Н.С. Уравнения и краевые задачи теории пластичности и ползучести. Справочное пособие С. Киев: Наук. думка, 1981. 496 с.
- 6) Савин Г. Н. Распределение напряжений около отверстий. Наукова Думка, 1968.
- 7) Каудерер Г. Нелинейная механика. Иностранной литературы, 1961.
- 8) Коробейников С. Н. Нелинейное деформирование твердых тел. Новосибирск: Изд-во Сиб. отд-ния Рос. АН, 2000.
- 9) Белов Н. Н., Копаница Д. Г., Югов Н. Т. Математическое моделирование динамической прочности конструкционных материалов. Томск: SST, 2008 332 с.
- 10) Аннин Б. Д., Остросаблин Н. И. Анизотропия упругих свойств материалов / Прикладная механика и техническая физика. 2008. Т. 49. №. 6. C. 131-151.

- 11) Отчет о ПНИ по теме: "Разработка программно-технических решений в области промышленного программного обеспечения для моделирования поведения элементов конструкций из современных материалов в экстремальных условиях при механических и немеханических воздействиях для решения задач проектирования авиакосмической техники" (№ гос. регистрации: 114112440083)
- 12) Бахвалов Н. С., Жидков Н. П., Кобельков Г. М. Численные методы //М.: Бином. 2003.