L3-CALCF

Level 3 Mathematics and Statistics (Mathematics), 2013

9.30 am Wednesday 13 November 2013

FORMULAE AND TABLES BOOKLET for 91577, 91578 and 91579

Refer to this booklet to answer the questions in your Question and Answer booklets.

Check that this booklet has pages 2-4 in the correct order and that none of these pages is blank.

YOU MAY KEEP THIS BOOKLET AT THE END OF THE EXAMINATION.

MATHEMATICS - USEFUL FORMULAE

ALGEBRA

Quadratics

If
$$ax^2 + bx + c = 0$$

then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Logarithms

$$y = \log_b x \Leftrightarrow x = b^y$$

$$\log_b (xy) = \log_b x + \log_b y$$

$$\log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y$$

$$\log_b (x^n) = n\log_b x$$

$$\log_b x = \frac{\log_a x}{\log_a b}$$

Complex numbers

$$z = x + iy$$

$$= r \operatorname{cis} \theta$$

$$= r(\cos \theta + i \sin \theta)$$

$$\overline{z} = x - iy$$

$$= r \operatorname{cis} (-\theta)$$

$$= r(\cos \theta - i \sin \theta)$$

$$r = |z| = \sqrt{z\overline{z}} = \sqrt{(x^2 + y^2)}$$

$$\theta = \arg z$$
where $\cos \theta = \frac{x}{r}$
and $\sin \theta = \frac{y}{r}$

De Moivre's Theorem

If *n* is any integer, then $(r \operatorname{cis} \theta)^{n} = r^{n} \operatorname{cis} (n\theta)$

COORDINATE GEOMETRY

Straight Line

Equation
$$y - y_1 = m(x - x_1)$$

CALCULUS

Differentiation

y = f(x)	$\frac{dy}{dx} = f'(x)$
$\ln x$	$\frac{1}{x}$
e ^{ax}	ae^{ax}
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
tan x	$\sec^2 x$
sec x	sec x tan x
cosec x	$-\csc x \cot x$
cot x	$-\csc^2 x$

Integration

f(x)	$\int f(x) \mathrm{d}x$
x ⁿ	$\frac{x^{n+1}}{n+1} + c$ $(n \neq -1)$
$\frac{1}{x}$	$\ln x + c$
$\frac{f'(x)}{f(x)}$	$\left \ln \left f(x) \right + c \right $

Parametric Function

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x}$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right) \cdot \frac{\mathrm{d}t}{\mathrm{d}x}$$

Product Rule

$$(f.g)' = f.g' + g.f'$$
 or if $y = uv$ then $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

Quotient Rule

$$\left(\frac{f}{g}\right)' = \frac{g \cdot f' - f \cdot g'}{g^2}$$
 or if $y = \frac{u}{v}$ then $\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$

Composite Function or Chain Rule

$$(f(g))' = f'(g).g'$$

or if $y = f(u)$ and $u = g(x)$ then $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$

NUMERICAL METHODS

Trapezium Rule

$$\int_{a}^{b} f(x) \, dx \approx \frac{1}{2} h \Big[y_0 + y_n + 2(y_1 + y_2 + \dots + y_{n-1}) \Big]$$
where $h = \frac{b-a}{n}$ and $y_r = f(x_r)$

Simpson's Rule

$$\int_{a}^{b} f(x) dx \approx \frac{1}{3} h \left[y_0 + y_n + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2}) \right]$$
where $h = \frac{b-a}{n}$, $y_r = f(x_r)$ and n is even.

TRIGONOMETRY

$$\csc \theta = \frac{1}{\sin \theta}$$
$$\sec \theta = \frac{1}{\cos \theta}$$

$$\cot\theta = \frac{1}{\tan\theta}$$

$$\cot\theta = \frac{\cos\theta}{\sin\theta}$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine Rule

$$c^2 = a^2 + b^2 - 2ab\cos C$$

Identities

$$\cos^2\theta + \sin^2\theta = 1$$

$$\tan^2\theta + 1 = \sec^2\theta$$

$$\cot^2 \theta + 1 = \csc^2 \theta$$

General Solutions

If
$$\sin \theta = \sin \alpha$$
 then $\theta = n\pi + (-1)^n \alpha$

If
$$\cos \theta = \cos \alpha$$
 then $\theta = 2n\pi \pm \alpha$

If
$$\tan \theta = \tan \alpha$$
 then $\theta = n\pi + \alpha$

where n is any integer

Compound Angles

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$cos(A \pm B) = cos A cos B \mp sin A sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

Double Angles

$$\sin 2A = 2\sin A\cos A$$

$$\tan 2A = \frac{2\tan A}{1-\tan^2 A}$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$=2\cos^2 A - 1$$

$$=1-2\sin^2 A$$

Products

$$2\sin A\cos B = \sin(A+B) + \sin(A-B)$$

$$2\cos A\sin B = \sin(A+B) - \sin(A-B)$$

$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$

$$2\sin A\sin B = \cos(A - B) - \cos(A + B)$$

Sums

$$\sin C + \sin D = 2\sin\frac{C+D}{2}\cos\frac{C-D}{2}$$

$$\sin C - \sin D = 2\cos\frac{C+D}{2}\sin\frac{C-D}{2}$$

$$\cos C + \cos D = 2\cos\frac{C+D}{2}\cos\frac{C-D}{2}$$

$$\cos C - \cos D = -2\sin\frac{C+D}{2}\sin\frac{C-D}{2}$$

MEASUREMENT

Triangle

Area =
$$\frac{1}{2}ab\sin C$$

Trapezium

Area =
$$\frac{1}{2}(a+b)h$$

Sector

Area =
$$\frac{1}{2}r^2\theta$$

Arc length = $r\theta$

Cylinder

Volume =
$$\pi r^2 h$$

Curved surface area = $2\pi rh$

Cone

$$Volume = \frac{1}{3}\pi r^2 h$$

Curved surface area = πrl where l = slant height

Sphere

$$Volume = \frac{4}{3}\pi r^3$$

Surface area =
$$4\pi r^2$$