

Master thesis

Measurement of the strong coupling constant with the LHCb detector

Thesis supervisor

Dr. Lorenzo Sestini

Candidate Alice Moro

Thesis co-supervisors

Prof. Donatella Lucchesi

Dr. Davide Zuliani

Goal of the thesis

The LHCb experiment and hadronic jets

Analysis strategy

Final results and conclusions

Goal of the thesis

The LHCb experiment and hadronic jets

Analysis strategy

Final results and conclusions

Precise measurement of α_s and main uncertainties from dijet cross section

$$\sigma_{jj}^{\text{data}} \propto \sigma_{pp \to jj} (s, Q^2, \alpha_s) = \frac{\alpha_s^2(Q^2)}{s^2} |\mathcal{M}_{pp \to jj}|^2$$

- Least precisely measured SM coupling constant:
 - $\alpha_s = 0.1180(9) \rightarrow 7.6 \times 10^6 \text{ ppb}$
 - $\alpha = 1/137.035999084(21) \rightarrow 0.15 \text{ ppb!}$
- Limitation to new physics effects

Employing LHCb data samples containing hadronic jets

LHCb can measure α_s in complementary kinematic regions

Goal of the thesis

The LHCb experiment and hadronic jets

Analysis strategy

Final results and conclusions

Large Hadron Collider beauty experiment – Run 2 (2015-2018) layout Top view Side view

This work: trackers, calorimeters, muon stations

Large Hadron Collider beauty experiment – Run 2 (2015-2018) layout

Side view

Top view

This work: trackers, calorimeters, muon stations

Large Hadron Collider beauty experiment – Run 2 (2015-2018) layout

SPD PS

Magnet

R C H1

Vertex Locator

R C H1

Note that the second sec

Side view

Top view

This work: trackers, calorimeters, muon stations

Large Hadron Collider beauty experiment – Run 2 (2015-2018) layout Top view Side view

M4 M: -250mrad RICH2

CAL HCAL Magnet Detector

This work: trackers, calorimeters, muon stations

x [m]

partons $0 u d \dots$

Jet Collimated conical spray of particles

Jet Collimated conical spray of particles

Jet reconstruction

1. Tracks and calorimeter clusters

Collimated conical spray of particles Jet

- Tracks and calorimeter clusters
- Clustering algorithm

Jet Collimated conical spray of particles

- 1. Tracks and calorimeter clusters
- 2. Clustering algorithm
- 3. Jet four-momentum

Jet Collimated conical spray of particles

- 1. Tracks and calorimeter clusters
- 2. Clustering algorithm
- 3. Jet four-momentum
- 4. Jet Energy Correction

Jet Collimated conical spray of particles

Jet reconstruction

- 1. Tracks and calorimeter clusters
- 2. Clustering algorithm
- 3. Jet four-momentum
- 4. Jet Energy Correction

Useful quantities

- Transverse momentum, p_T
- Pseudorapidity, $\eta = -\ln(\tan(\theta/2))$
- Azimuthal angle, φ

LHCb samples (data and MC)

2016 (Run 2), $\sqrt{s} = 13$ TeV, $\mathcal{L} = 1.6$ fb⁻¹

- *Dijet* events with two jets
- Z+jet events with $Z^0 (\rightarrow \mu^+\mu^-) + jet$
- Selection $20 \text{ GeV} < p_T(\text{jet}) < 100 \text{ GeV}$
 - $2.2 < \eta(jet) < 4.2$

Goal of the thesis

The LHCb experiment and hadronic jets

Analysis strategy

Final results and conclusions

Analysis strategy

- 1. $\mathbf{N} = \boldsymbol{\sigma} \times \boldsymbol{\varepsilon} \times \boldsymbol{\mathcal{L}} \rightarrow \sigma_{jj}^{\text{data}}$ from dijet sample, $\sigma_{jj}^{\text{data}} \propto \sigma_{pp \rightarrow jj}$ (s, Q², α_s) $\propto \frac{\alpha_s^2 (Q^2)}{s^2}$
- 2. Jets p_T correction factors from *dijet* and *Z+jet* samples \rightarrow **efficiency** ε
- 3. Comparison simulated and experimental $\sigma_{ii} \rightarrow \alpha_s$ value
- 4. Statistics, correction factors, $\mathcal{L} \to \sigma_{ii}^{data}$ uncertainty $\to \alpha_s$ uncertainty

Analysis strategy

Jet Energy Scale

$$JES = \left\langle \frac{p_{T}^{true}}{p_{T}^{reco}} \right\rangle$$

Jet Energy Resolution

Analysis strategy

Total efficiency

$$\varepsilon = \frac{N_{corr}}{N_{MC}} = (1.11 \pm 0.09) \times 10^{-6}$$

N_{MC}: n. of events in *dijet* MC sample

N_{corr}: n. of selected and corrected MC events

Experimental dijet cross section

$$\sigma_{jj}^{data} = \frac{N_{data}}{\varepsilon \times \mathcal{L}}$$

N_{data}: n. of events in *dijet* data sample

$$\sigma_{jj}^{\text{data}} = (1.307 \pm 0.009 \text{ (stat.)} \pm 0.1 \text{ (syst.)} \pm 0.03 \text{ (lumi.)}) \times 10^7 \text{ pb} =$$

$$= (1.3 \pm 0.1) \times 10^7 \text{ pb}$$

$$\sigma_{ii}^{sim}$$
 ($\alpha_s = 0.1180$) = (1.37 ± 0.03) × 10⁷ pb

Goal of the thesis

The LHCb experiment and hadronic jets

Analysis strategy

Final results and conclusions

Final results and conclusions

$$\star$$
 $\alpha_s(m_{Z^0}^2) = 0.1143 \pm 0.0007 \text{ (stat.)} \pm 0.009 \text{ (syst.)} \pm 0.002 \text{ (lumi.)} =$
= **0.114 ± 0.009**

This work
$$\alpha_s(m_Z^{02}) = 0.1143 \pm 0.0007 \text{ (stat.)} \pm 0.009 \text{ (syst.)} \pm 0.002 \text{ (lumi.)} = 0.114 \pm 0.009$$

PDG/ATLAS
$$\alpha_s(m_{Z^0}^2) = 0.1180 \pm 0.0009$$

CMS jets $\alpha_s(m_{Z^0}^2) = 0.1170 \pm 0.0019$

First measurement of α_s in forward region with the LHCb detector!

ATLAS

Hadron Colliders

-- Category Averages PDG 2022

- Statistics is not the limiting factor
- Jet energy correction must be refined to lower systematic uncertainty
- Uncertainty from \mathcal{L} gives constant contribution, potentially limiting

Future improvements

- Jet energy correction refinement
- Enhanced simulation study

Other analysis approaches

- Differential measurements
- Multi-jet events $\rightarrow R_{32}$

LHCb detector development

- Run 3 and Upgrades
- ECAL development $\rightarrow \gamma$ +jet sample

Thank you for your attention!

Back-up slides

LHCb samples (data and MC)

Two jets

Dijet
$20 \text{ GeV} < p_T(\text{jet}_{1,2}) < 100 \text{ GeV}$
$2.2 < \eta(\text{jet}_{1,2}) < 4.2$
$\Delta \phi(\text{jet}_{1,2}) > 2.8 \text{ or } 1$

Calibration sample Z+jet - invariant mass

Z+jet
$20 \text{ GeV} < p_T(\text{jet}) < 100 \text{ GeV}$
2.2 < η(jet) < 4.2
$p_{T}(\mu^{\pm}) > 20 \text{ GeV}$
$2 < \eta(\mu^{\pm}) < 4.5$
$\Delta \phi(Z^0, jet) > 2.8$

LHCb samples (data and MC)

Events generation

- **pp** > **jj** @ LO, MadGraph5_aMC@NLO + Pythia8
 - $p = g u c d s u \sim c \sim d \sim s \sim$
 - $j = g u c d s b u \sim c \sim d \sim s \sim b \sim$
 - $N_{gen} = 10^6$ events
 - $\Delta R(j,j) = 0.4$
 - $p_{T, min}(j) = 10 \text{ GeV}$
 - $\eta_{max}(j) = 5$
- PDFs CT10 NNLO
 - $\alpha_s = 0.1100$
 - $\alpha_s = 0.1180$
 - $\alpha_s = 0.1300$

α_s value	$\sigma_{\text{sim}} \left[\times 10^9 \text{ pb} \right]$
0.1100	4.26194 ± 0.00099
0.1180	4.6643 ± 0.0011
0.1300	5.3889 ± 0.0014

- FastJet \rightarrow anti- k_t clustering algorithm:
 - $p_{T, min} = 5 \text{ GeV}, R = 0.5, \Delta R = 0.4$
 - stable (no children) final particles: + hadrons, muons, electrons, photons; - neutrinos
- Energy recombination scheme:
 - jet four-momentum (p_x, p_y, p_z, E) with $E = \sum_i E_i$ and $p_i = \sum_i p_{ij}$

Jets selection and distributions

Scale factor
$$F = \frac{\mathcal{L} \times \sigma_{sim}}{N_{gen}}$$

α_s value	N_{sel}	F [×10 ⁶]	$N_{\text{exp}} = F \times N_{\text{sel}} [\times 10^8]$
0.1100	111	6.8 ± 0.1	8.0 ± 0.7
0.1180	152	7.5 ± 0.1	12 ± 1
0.1300	156	8.6 ± 0.2	15 ± 1

Jets selection and distributions

Graduation session September 16th 2024 - A. Y. 2023/2024

Simulated weighted inclusive cross sections

Nieta	Weighted	σ _{sim} [pb]	
Njets	$\alpha_{\rm s} = 0.1100$	$\alpha_{\rm s} = 0.1180$	$\alpha_{\rm s} = 0.1300$
≥ 0	$(4.094 \pm 0.004) \times 10^9$	$(4.475 \pm 0.005) \times 10^9$	$(5.163 \pm 0.005) \times 10^9$
≥ 1	$(1.551 \pm 0.008) \times 10^8$	$(1.750 \pm 0.009) \times 10^8$	$(2.08 \pm 0.01) \times 10^8$
≥ 2	$(1.22 \pm 0.02) \times 10^7$	$(1.37 \pm 0.03) \times 10^7$	$(1.70 \pm 0.03) \times 10^7$
≥ 3	$(4.7 \pm 0.4) \times 10^5$	$(7.1 \pm 0.6) \times 10^5$	$(8.4 \pm 0.7) \times 10^5$
≥ 4	$(2 \pm 1) \times 10^4$	$(4 \pm 1) \times 10^4$	$(5 \pm 2) \times 10^4$

K* and **F*** correction factors

$$p_{T}^{data}(jet_{1,2})$$

$$\downarrow$$

$$Gauss(p_{T}^{data}(jet_{1,2}), \mathbf{F}^{*} \times p_{T}^{data}(jet_{1,2}))$$

Total efficiency - complete formula

$$\epsilon = \frac{\epsilon_{corr} \times \epsilon_{GEC} \times pre_{HLT} \times pre_{strip}}{PS}$$

Quantity	Value
$\epsilon_{ m corr}$	$(2.3 \pm 0.2) \times 10^{-3}$
$\epsilon_{ m GEC}$	0.6
pre _{HLT}	0.001
pre _{strip}	0.013
PS	~ 0.016

Experimental dijet cross section - complete formula

$$\sigma_{jj}^{data} = \frac{N_{data}}{\varepsilon_{corr} \times \varepsilon_{GEC} \times pre_{HLT} \times pre_{strip} \times \mathcal{L}} \times PS$$

$$\sigma_{ii}^{data} = (1.3 \pm 0.1) \times 10^7 \text{ pb}$$

$$\sigma_{ii}^{sim}$$
 ($\alpha_s = 0.1180$) = (1.37 ± 0.03) × 10⁷ pb

