

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI I INŻYNIERII BIOMEDYCZNEJ

KATEDRA INFORMATYKI STOSOWANEJ

Analiza i modelowanie oprogramowania

Dokumentacja projektowa - automatyczny parking

Autorzy: Mateusz Grzeliński, Agata Sidło, Katarzyna Lambrecht, Katarzyna Wilczak

Kierunek studiów: Informatyka

Semestr: V

Spis treści

1.	Ogól	ny opis systemu	4
	1.1.	Cel (przeznaczenie) systemu	4
	1.2.	Udziałowcy i użytkownicy	4
	1.3.	Podstawowe cele udziałowców i użytkowników	5
		1.3.1. Porównanie proponowanego systemu do aktualnie funkcjonującego	5
	1.4.	Granice systemu	5
	1.5.	Lista funkcji systemu	6
	1.6.	Diagramy czynności	7
2.	Anal	iza Dziedziny	11
	2.1.	Klasy i opis atrybutów	11
	2.2.	Diagramy klas - relacje	12
	2.3.	Diagramy stanów dla wybranych klas	13
	2.4.	Słownik pojęć	13
3.	SRS	- specyfikacja wymagań	15
	3.1.	Ogólny diagram przypadków użycia	15
	3.2.	Definicje przypadków użycia	15
		3.2.1. Obsługa terminala (identyfikator: UC3)	15
		3.2.2. Wjazd na parking (identyfikator: UC1)	17
		3.2.3. Wyjazd z parkingu (identyfikator: UC5)	17
		3.2.4. Prezentacja statystyk (identyfikator: UC8)	19
		3.2.5. Poprawa danych w systemie (identyfikator: UC7)	19
4.	Arch	itektura systemu	21
	4.1.	Komponenty	21
5.	Proj	ekt oprogramowania	24
	5.1.	Sekcja	24
6.	Proj	ekt interfejsu użytkownika IRS	25
	6.1.	Sekcja	25

	,	
SPIS	TRESCI	

7.	Projekt bazy danych		26
	7.1.	Projekt bazy	26
	7.2.	Specyfikacja kwerend	26

1. Ogólny opis systemu

1.1. Cel (przeznaczenie) systemu

Celem systemu automatyczny parking jest umożliwienie komputerowej obsługi pobierania opłat za pozostawienie pojazdu na parkingu na określony czas. System rozpoznaje ze zdjęcia tablice rejestracyjne pojazdów i na tej podstawie umożliwia wjazd samochodów na parking, a także opuszczenie go.

1.2. Udziałowcy i użytkownicy

- Właściciel posiada parking, jest kierownikiem zarządzającym pracownikami, system prezentuje mu zebrane statystki
- Klient osoba, która korzysta z usług automatycznego parkingu i wjeżdza samochodem na jego teren
- Operator osoba kontrolująca parking w danej chwili, w przypadku błędów, przegląda i wybiera zarejestrowane zdjęcia, wprowadza rejestrację pojazdu do systemu oraz w wyjątkowych sytuacjach podnosi/opuszcza szlaban

1.3. Podstawowe cele udziałowców i użytkowników

Udziałowcy	Cel	Priorytet
Klient	Wjechanie na parking	Wysoki
Klient	Opuszczenie parkingu	Wysoki
Klient	Wpisanie numeru rejestracyjnego	Wysoki
Klient	Potwierdzenie zdjęcia	Wysoki
Klient	Anulowanie wpisanego numeru rejestracyjnego	Średni
Klient	Uiszczenie opłaty	Wysoki
Operator	Przeglądanie zdjęć	Średni
Operator	Wprowadzenie rejestracji	Średni
Operator	or Poprawa czasu wjazdu i wyjazdu w bazie	
Operator	Podnoszenie/opuszczanie szlabanu	Średni
Właściciel	Wyświetlenie statystyk	Niski

1.3.1. Porównanie proponowanego systemu do aktualnie funkcjonującego

Na parkingu znajdującym się koło Wawelu w Krakowie klient podjeżdża do terminala, naciska przycisk i odbiera bilet z godziną wjazdu. Przy opuszczaniu parkingu wkłada otrzymany przy wjeździe bilet i dokonuje opłaty. W naszym systemie klient, wjeżdżając na parking, nie musi podjeżdżać do terminala i czekać na wydrukowanie kartki z godziną wjazdu. System zrobi zdjęcie tablicy rejestracyjnej i sam otworzy szlaban. W ten sposób oszczędzany jest papier oraz tusz. Operator nie musi dbać o to żeby ich nie zabrakło. Musi jedynie interweniować w przypadku błędu.

1.4. Granice systemu

Rys. 1.1. Granice systemu automatyczny parking

1.5. Lista funkcji systemu

- 1. Wykrycie pojawienia się pojazdu
- 2. Zapis zdjęcia rejestracji
- 3. Zapis tablicy rejestracyjnej
- 4. Otwarcie szlabanu
- 5. Zamknięcie szlabanu
- 6. Wyświetlenie zdjęcia tablicy rejestracyjnej
- 7. Obliczenie kwoty do zapłaty
- 8. Wyświetlenie kwoty do zapłaty
- 9. Oczekiwanie na pojazd do 15 minut
- 10. Zgłoszenie błędu odczytu zdjęcia
- 11. Zgłoszenie błędu odczytu rejestracji
- 12. Wyświetlenie wpisanego przez klienta numeru rejestracyjnego
- 13. Zapis danych
- 14. Prezentacja statystyk

1.6. Diagramy czynności 7

1.6. Diagramy czynności

Rys. 1.2. Diagram czynności: Klient wjeżdża na parking

8 1.6. Diagramy czynności

Rys. 1.3. Diagram czynności: Klient opuszcza parking

Rys. 1.4. Diagram czynności: Operator poprawia błąd systemu

Rys. 1.5. Diagram czynności: Właściciel wyświetla statystyki

10 1.6. Diagramy czynności

Rys. 1.6. Diagram czynności: Podnoszenie/opuszczanie diagramu przez operatora

2. Analiza Dziedziny

2.1. Klasy i opis atrybutów

Klasa	Atrybut	Opis
Pojazd	NumerRejestracyjny	Numer rejestracyjny pojazdu
Samochód		
Motor		
Autobus		
Parking	WolneMiejscaZwykłe	Określa ilość wolnych miejsc dla samochodów na parkingu
	WolneMiejscaAutobusowe	Określa ilość wolnych miejsc dla autobusów na parkingu
PostójNaParkingu	DataWjazdu	Data wjazdu na parking
	CzasWjazdu	Czas wjazdu na parking
	DataWyjazdu	Data wyjazdu z parkingu
	CzasWyjazdu	Czas wyjazdu z parkingu
	Pojazd	Określa pojazd, którego dotyczy wjazd
Operator	Id	Id operatora
	Imię	Imię operatora
	Nazwisko	Nazwisko operatora
Zdjęcie		

2.2. Diagramy klas - relacje

Rys. 2.1. Diagram klas i relacje między nimi

2.3. Diagramy stanów dla wybranych klas

Rys. 2.2. Diagram stanów dla klasy PostójNaParkingu

2.4. Słownik pojęć

- Klient wprowadza rejestracje do systemu, potwierdza zdjęcie oraz dokonuje płatności w systemie
- Operator pracownik parkingu, identyfikowany na podstawie Id, ma możliwość przeglądania i wyboru zdjęć w przypadku błędu w systemie oraz poprawy rejestracji
- Parking przechowuje informacje dotyczące ilości wolnych miejsc (zwykłych lub autobusowych)
- Pojazd należy do klienta, na podstawie rejestracji pojazdu jest on wpuszczany i wypuszczany z parkingu
- PostójNaParkingu klasa reprezentująca postój pojazdu na parkingu wraz z wjazdem i wyjazdem
- System służy do obsługi automatycznego parkingu, oblicza płatności, zgłasza błędy odczytu zdjęcia lub rejestracji, a także zbiera dane statystyczne
- System przetwarzający obraz zewnętrzny system, robi zdjęcia, przetwarza je oraz zwraca rejestracje naszego systemu
- Szlaban może być otwarty lub zamknięty, jego status ustalany jest przez system

14 2.4. Słownik pojęć

• Terminal - kieruje szlabanem, zbiera informacje o ilości wolnych miejsc na parkingu, pośredniczy w przetwarzaniu płatności

- Właściciel ma możliwość przeglądania statystyk po wcześniejszym zalogowaniu się do systemu
- Zdjęcie zdjęcie tablicy rejestracyjnej pojazdu znajdującego się na parkingu

3. SRS - specyfikacja wymagań

3.1. Ogólny diagram przypadków użycia

Rys. 3.1. Przypadki użycia

3.2. Definicje przypadków użycia

3.2.1. Obsługa terminala (identyfikator: UC3)

Aktorzy: Klient, System przetwarzający obraz, Operator

Zakres: System automatycznego parkingu

Poziom: Systemowy

Udziałowcy i ich cele: Klient chce dokonać zapłaty za postój, system musi pobrać wszystkie niezbędne dane oraz pobrać płatność

Zdarzenie wyzwalające (trigger): Klienta wybiera funkcję Zapłać za postój

Warunki wstępne: Tablica rejestracyjna pojazdu klienta musi znajdować się w systemie i być poprawnie odczytana

Warunki końcowe dla sukcesu: Tablica rejestracyjna zostaje potwierdzona przez klienta, płatność zostaje potwierdzona przez system

Warunki końcowe dla niepowodzenia: Tablica rejestracyjna nie zostaje potwierdzona, płatność nie zostaje przetworzona

Scenariusz główny:

- 1. System wyświetla formularz wprowadzania rejestracji
- 2. Klient wprowadza rejestrację do systemu
- 3. System weryfikuje wprowadzoną rejestrację
- 4. System wyświetla odpowiednią rejestrację
- 5. Klient potwierdza zdjęcie rejestracji
- 6. System wyświetla kwotę do zapłaty
- 7. Klient dokonuje zapłaty za postój
- 8. System przetwarza płatność (include UC2)
- 9. System wyświetla potwierdzenie zapłaty

Scenariusz alternatywny:

- 3.a Wprowadzona rejestracja nie zostaje znaleziona
- 3.a.1 Błąd zostaje zgłoszony operatorowi
- 3.a.2 Po poprawieniu przez operatora danych następuje powrót do punktu 3 scenariusza głównego

Scenariusz alternatywny:

- 5.a Klient zgłasza niezgodność wprowadzonej rejestracji i wyświetlonego zdjęcia operatorowi
- 5.a.1 Po poprawieniu przez operatora danych następuje powrót do punktu 3 scenariusza głównego.

Scenariusz alternatywny:

- 5.a Klient anuluje wpisaną przez siebie rejestrację
- 5.a.1 Następuje powrót do punktu 1 scenariusza głównego

3.2.2. Wjazd na parking (identyfikator: UC1)

Aktorzy: System przetwarzający obraz, Szlaban, Operator

Zakres: System automatycznego parkingu

Poziom: Systemowy

Udziałowcy i ich cele: Klient chce wjechać na parking, System przetwarzający obraz musi rozpoznać tablicę rejestracyjną

Zdarzenie wyzwalające (trigger): Klient podjeżdza pojazdem pod szlaban

Warunki wstępne: Tablica rejestracyjna pojazdu jest widoczna i możliwa do odczytania przez system przetwarzający obraz

Warunki końcowe dla sukcesu: System przetwarzający obraz poprawnie odczytuje tablicę rejestracyjną, szlaban otwiera się

Warunki końcowe dla niepowodzenia: Szlaban nie otwiera się

Scenariusz główny:

- 1. System wykrywa podjazd pojazdu pod szlaban
- 2. System przetwarzający obraz robi zdjęcie
- 3. System przetwarzający obraz odczytuje tablicę rejestracyjną
- 4. System automatycznego parkingu zapisuje datę i czas wjazdu pojazdu
- 5. Szlaban otwiera się (include: UC4)
- 6. Klient wjeżdża na parking
- 7. Szlaban zamyka się (include: UC4)

Scenariusz alternatywny:

- 3.a System przetwarzający obraz nie może odczytać tablicy rejestracyjnej
- 3.a.1 Operator zostaje powiadomiony o błędzie.
- 3.a.2 Operator wpisuje rejestracje do systemu.
- 3.a.3 Następuje powrót do punktu 4 scenariusza głównego.

3.2.3. Wyjazd z parkingu (identyfikator: UC5)

Aktorzy: System przetwarzający obraz, Szlaban, Operator

Zakres: System automatycznego parkingu

Poziom: Systemowy

Udziałowcy i ich cele: Klient chce wyjechać z parkingu

Zdarzenie wyzwalające (trigger): System odlicza 15 minut na wyjazd z parkingu **Warunki wstępne:** Rejestracja pojazdu została poprawnie odczytana przy wjeździe

Warunki końcowe dla sukcesu: Klient opuścił parking

Warunki końcowe dla niepowodzenia: Płatność nie została potwierdzona, Czas na wyjazd z parkingu skończył się

Scenariusz główny:

- 1. System wykrywa podjazd podjazdu pod szlaban
- 2. System przetwarzający obraz ponownie robi zdjęcie
- 3. System przetwarzający obraz rozpoznaje tablicę rejestracyjną
- 4. System automatycznego parkingu weryfikuje dane: numer rejestracyjny, potwierdzenie płatności, pozostały czas wyjazdu
- 5. Szlaban otwiera się (include: UC4)
- 6. Klient opuszcza parking
- 7. Szlaban zamyka się (include: UC4)

Scenariusz alternatywny:

- 3.a System przetwarzający obraz nie może rozpoznać tablicy rejestracyjnej
- 3.a.1 Operator zostaje powiadomiony o błędzie
- 3.a.2 Operator poprawia dane w systemie
- 3.a.3 Następuje powrót do punktu 4 scenariusza głównego.

3.2.4. Prezentacja statystyk (identyfikator: UC8)

Aktorzy: Właściciel

Zakres: System automatycznego parkingu

Poziom: systemowy

Udziałowcy i ich cele: Właściciel chce wyświetlić statystyki

Zdarzenie wyzwalające (trigger): Właściciel wywołuje funkcję Pokaż statystyki

Warunki wstępne: Właściciel musi być zalogowany

Warunki końcowe dla sukcesu: System prezentuje wybrane statystyki

Warunki końcowe dla niepowodzenia: System nie wyświetla wybranych statystyk

Scenariusz główny:

- 1. System wyświetla zakres (tygodniowe, miesięczne, roczne) i typ statystyk (czas pobytu na parkingu, ilość korzystających z parkingu w zależności od pory dnia)
- 2. Właściciel wybiera odpowiedni zakres i typ statystyk
- 3. System oblicza wybrane statystyki
- 4. System prezentuje wyniki

3.2.5. Poprawa danych w systemie (identyfikator: UC7)

Aktorzy: Operator

Zakres: System automatycznego parkingu

Poziom: Systemowy

Udziałowcy i ich cele: Operator chce poprawić błędne dane w systemie

Zdarzenie wyzwalające (trigger): Operator wywołuje funkcję Popraw dane

Warunki wstępne: Operator musi byc zalogowany

Warunki końcowe dla sukcesu: Do systemu zostają wprowadzone poprawne dane

Warunki końcowe dla niepowodzenia: Brak zdjęcia dla wpisanego numeru rejestracyjnego

Scenariusz główny:

- 1. System wyświetla formularz poprawiania danych
- 2. Operator poprawia dane: wybiera poprawne zdjęcie lub wprowadza poprawny numer rejestracyjny
- 3. System przetwarza wprowadzone dane
- 4. System wyświetla potwierdzenie zmian

Scenariusz alternatywny:

- 3.a System nie może przetworzyć nowych danych
- 3.a.1 System wyświetla ponownie formularz, zaznaczając, które pola zostały niepoprawnie wypełnione
- 3.a.2 Następuje powrót do punktu 3 scenariusza głównego

4. Architektura systemu

4.1. Komponenty

- Kontroler rozpoznawania pojazdów
- Szlaban oparty na systemie wbudowanym
- Kontroler przejazdu odpowiada za utrzymanie sesji. Upewnia się, że szlaban jest zawsze w takiej pozycji jakiej powinien
- Kontroler płatności
- Baza danych
- Operator reprezentuje funkcjonalnośći administratora/operatora

Rys. 4.1. Zależności między komponentami

4.1. Komponenty

Rys. 4.2. Diagram sekwencji dla przypadku użycia UC1 - wjazd z parkingu

Rys. 4.3. Diagram sekwencji dla przypadku użycia UC3 - obsługa terminala

4.1. Komponenty

Rys. 4.4. Diagram sekwencji dla przypadku użycia UC5 - wyjazd z parkingu

5. Projekt oprogramowania

5.1. Sekcja..

6. Projekt interfejsu użytkownika IRS

6.1. Sekcja...

7. Projekt bazy danych

7.1. Projekt bazy

Rys. 7.1. Projekt bazy danych

7.2. Specyfikacja kwerend