CS & IT ENGINEERING

COMPUTER NETWORKS

TCP & UDP

Lecture No-4

By- Ankit Doyla Sir

TOPICS TO
BE
COVERED

Phases of TCP connection

16 bits								16 bits		
Source Port								Destination Port		
	Alexa III	11		S	eque	nce n	umber			
	I mining	1	A	ckno	wled	gem	ent nur	nber		
HL (4 bit)	Reserved (6 bits)	U R G	A C K	P S H	R S T	S Y N	F I N	Window Size or (Advertisement Window)		
	Chec	k Sum						Urgent Pointer		
MSS =1460		Options (0-40 bytes)								

- 1. Connection establishment
- 2 Data + Yans Fee
- 3 connection termination

SYN and Ack Flags are used in the connection establishment phase

Connection Establishment Phase

5411 segment

SYNHACK signing

Ack sigment

SYN=1 -> consume one sequence Number

FIN=1 -> consume one sequence Number

Ack=1 -> consume No sequence Number

1 Data Byte -> consume one sequence Number

SYN	Ack
1	0 - reguest
1	1 → reply
O	1 - Ack Piggy Backing
0	0 → Data

WINdowsize=14600B

No. 07 segments = 1460013 146015

No of sigments = 10

window size = 10,000

No of segments = 10,000B
500B

No. of segments = 20

Note:-

- A SYN segment cannot carry data, but it consume one sequence number.
- (2) A SYN + ACK segment cannot carry data, but it consume one sequence number.
- (3) An ACK segment, If carry no data then it will not consume sequence number.

Data Transfer Phase


```
SOENO = 1001, ACK=1
ACK No = 2001
500No=2001, ACK=1
```

ACK NO= 1101

See No= 1201, ACK= 1 Pww Ack

Connection Termination Phase

· FIN Flag is used in the connection termination Phase

Connection termination is a 4 way Handshaking

Connection termination

Note:-

FIN segment cannot carry data but it consume one sequence number.

Consider the three-way handshake mechanism followed during TCP connection establishment between hosts P and Q. Let X and Y be two random 32-bit starting sequence numbers chosen by P and Q respectively. Suppose P sends a TCP connection request message to Q with a TCP segment having SYN bit = 1, SEQ number = X, and ACK bit = 0. Suppose Q accepts the connection request. Which one of the following choices represents the information present in the TCP segment header that is sent by Q to P?

SYN bit = 1, SEQ number = Y, ACK bit = 1, ACK number = X+1, FIN bit = 0

SYN bit = 0, SEQ number = X+1, ACK bit = 0, ACK number = Y, FIN bit = 1

SYN bit = 1, SEQ number = X+1, ACK bit = 0, ACK number = Y, FIN bit = 0

SYN bit = 1, SEQ number = Y, ACK bit = 1, ACK number (X, Y) FIN bit = 0

(802)
$$SYN=1$$
, $SO2NO=X$, $ACK=0$ $SYN=1$, $SO2NO=Y$, $ACK=1$ $SO2NO=Y$, $ACK=1$ $SO2NO=Y$, $ACK=1$ $ACKNO=X+1$, $FIN=0$

