TEC-101

B. Tech. (First Semester) End Semester EXAMINATION, 2017

(All Branches)

BASIC ELECTRONICS ENGINEERING

Time: Three Hours] [Maximum Marks: 100

Note: (i) This question paper contains five questions.

- (ii) All questions are compulsory.
- (iii) Instructions on how to attempt a question are mentioned against it.
- (iv) Total marks assigned to each question are twenty.
- 1. Attempt any two questions of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) Discuss the laws of Boolean algebra.
 - (b) Realize AND, OR, NOT, XOR, XNOR gates using NOR gates only.
 - (c) Perform the following operations:
 - (i) $(97)_{10} + (85)_{10}$ in BCD system.
 - (ii) $(542)_{10} (876)_{10}$ in BCD system using 9's complement.

- 2. Attempt any two questions of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) Distinguish between the following:
 - (i) Insulators, semiconductors and conductors
 - (ii) P type and N type semiconductors
 - (b) Define the following with mathematical expressions:
 - (i) Mass action law
 - (ii) Mobility
 - (iii) Conductivity
 - (c) Consider an intrinsic semiconductor with intrinsic concentration of 1.5 × 10¹⁰/cm³ at room temperature. Determine its conductivity. Now if a donor type impurity with concentration of 8 × 10¹⁵ atoms/cm³ is added to it, what will be the concentration of majority and minority carries? Also find the conductivity of this extrinsic semiconductor.

 (Given: Mobility of electrons = 1300 cm²/V-sec and Mobility of holes = 500 cm²/V-sec).
- Attempt any two questions of choice from (a), (b) and (c).
 (2×10=20 Marks)
 - (a) Discuss V-I characteristics of a P-N junction diode. Compare the V-I characteristics of Germanium and Silicon diodes.

- (b) Discuss the working of a Bridge rectifier with neat circuit diagram. Also determine its maximum rectification efficiency and ripple factor.
- (c) Draw a neat voltage regulator circuit using Zener diode. Now, in this circuit, assume that series resistance $R_s = 1 \text{ k}\Omega$, input voltage $V_i = 16 \text{ V}$, Zener breakdown voltage $V_Z = 10 \text{ V}$ and load resistance $R_L = 3 \text{ k}\Omega$. Determine load voltage V_0 , load current I_L and current through Zener diode I_Z .
- 4. Attempt any *two* questions of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) Discuss Voltage divider bias circuit of BJT with mathematical analysis.
 - (b) Explain construction, operation and characteristics of E-MOSFET.
 - (c) (i) Find the relation between α and β parameters of a BJT.
 - (ii) For a BJT, determine emitter current, α and β for collector current = 0.1 mA and base current= 30 μ A.
- 5. Attempt any two questions of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) What is an operational amplifier (op-amp.)? Discuss its open loop gain and CMRR.

P. T. O.

C-59

- (b) Draw and discuss the op-amp. based integrator and differentiator circuits.
- (c) Derive the mathematical expression for the output voltage of the following op-amp. based circuits:
 - (i) Adder
 - (ii) Subtractor

TEC-101 450