Particle spectrograph

Wave operator and propagator

$ au_1^{\#2}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2}}{(t_1 + 2k^2t_1)^2}$	0	$\frac{2k^2(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\tau_{1^-}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1^{+}\alpha}^{\#2}$	0 0		0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{2k^2r_1+t_1}{(t_1+2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1^{\text{-}}\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$\frac{i k (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{lphaeta}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$-\frac{ik(t_1+4t_2)}{3(1+k^2)^2t_1t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$		$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2)t_1t_2}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#2} + \alpha^{\beta}$	$\tau_{1}^{#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} +^{\alpha}$

$f_{1^-}^{\#2}$	0	0	0	ikt_1	0	0	0
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{lpha}f_{1}^{\#1}{}_{lpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$-k^2 r_1 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ar{\imath} \ k \ t_1$
$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$\frac{1}{3}$ \bar{l} k $(t_1 + t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0
$\omega_1^{\#_+^2}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$-\frac{1}{3}\bar{l}k(t_1+t_2)\Bigg \frac{1}{3}k^2(t_1+t_2)$	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$		$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0
	$\omega_1^{\#1} + \alpha^{\beta}$	$\omega_1^{\#2} + \alpha^{eta}$	$f_{1+}^{\#1} +^{\alpha\beta}$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_{1}^{#2} +^{\alpha}$

1 $^{lphaeta\chi}$	0	0	$\frac{2}{2 k^2 r_1 + t_1}$	$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	$k^2 r_2 +$
$\sigma_{2}^{\#1}$			$\frac{1}{2 k^2}$	$f_{0}^{\#2}$	0	0	0	0
$\tau_2^{\#1}_{+\alpha\beta}$	$\frac{2 i \sqrt{2} k}{(1+2k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	$f_0^{\#1}$	$\bar{l}\sqrt{2}kt_1$	$-2 k^2 t_1$	0	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1} - \frac{1}{(1+2k^2)^2}$	0	$\omega_0^{\#1}$	-41	$-\bar{l}\sqrt{2}kt_{1}$	0	0
	$+^{\alpha\beta}$	$+^{\alpha\beta}$	$+_{\alpha eta \chi}$		$\omega_{0}^{\#1}$ †	$f_{0}^{\#1}$ †	$f_{0}^{#2} +$	$\omega_{0^-}^{\#1} \dagger$
	$\sigma_{2}^{\#1}$	$\tau_{2}^{\#1}$	$\sigma_{2}^{\#1}$					

Source constraints/gauge generators					
Multiplicities					
1					
1					
3					
3					
3					
5					
16					

)	ω_{0}^{*}		ω_2^*	+,√	(0)#	78
	$\sigma_{0^{\text{-}}}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 + t_2}$	
	$\tau_{0}^{\#2}$	0	0	0	0	
	${\tau_0^\#}_1^1$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0	
	$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0	

 $k^2 t_1$

 $\frac{i\,k\,t_1}{\sqrt{2}}$

Massive and massless spectra

	Massive particle				
? /	Pole residue:	$-\frac{1}{r_2} > 0$			
$J^P = 0^-$	Polarisations:	1			
$\overrightarrow{k^{\mu}}$	Square mass:	$-\frac{t_2}{r_2} > 0$			
?	Spin:	0			
	Parity:	Odd			

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& r_2 < 0 \&\& t_1 > 0 \&\& t_2 > 0$