Assignment Project Exam Help Computer Graphics

WeChatPastatores 5 2021 Term 3 Lecture 6

What did we learn last lecture?

2D to 3D

- How our 2D skills lightnesst Project Exam Help
- Objects in 3D
- Coordinate Spaces and Fransiorms (they re the same thing!)
- Making a Camera

WeChat: cstutorcs

What are we covering today?

Cameras and Scenes

- Converting coordinate spaces Project Exam Help
- A more dynamic camera https://tutorcs.com

WeChat: cstutorcs

Corrections from last lecture

I'd gotten confused by Matrix Maths

Look, it can happen so all on the Project Exam H

The transform matrices as sets of axes l'd accidentally mixed up rows and l'd accidentally mixed up rows accidentally mixed up rows and l'd accidentally mixed up rows accidentally m columns

All the slides in lecture Chat: cstutorcs been updated!

The X axis		The Z axis				
	1	0	0	0		
11	0	1	0	0		
S	0	0	1	0		
	0	0	0	1		

The Y axis

The origin

Corrected LookAt Matrix

Correction from last lecture

• These two matrices are inverted so that they move the world and not the camera

Hence the horizontal vectors in the Hence the horizontal vectors in the

translation

Rx	Ry	Wę(Chat	cstute	orçs	0	0	-Px
Ux	Uy	Uz	0	V	0	1	0	-Py
Dx	Dy	Dz	0	^	0	0	1	-Pz
0	0	0	1		0	0	0	1

Model/View/Projection

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Where are we up to with cameras?

We've started seeing cameras as a Transform Matrix

- The LookAt matrix grown as view Exam Help
- This allows us to transform the world's vertices . . . so that they're now relative to the camera

WeChat: cstutores

Let's look at different coordinate spaces

A vertex takes a journey through multiple coordinate systems

Image credit: learnopengl.com

A Vertex's Journey

From creation through to visibility

- Local Space Assignment Project Exam Help
 - Where an object is created
- Local to World (the https://dutorcs.com
 - Place an object in world coordinates
 - Uses things like Scale object in the scene
- World to View
 - Uses the camera's transform (we've used LookAt to create this)
 - Coordinates are now in the camera's viewpoint

A Vertex's Journey (continued)

New transforms and coordinate spaces

- Projection to Assignment Project Exam Help
 - Uses the Projection Matrix
 - Uses Normalized Device Coordinates (-1.0 to 1.0)

 - Can also now use perspective transformation to mimic a single viewpoint
- Transform to Screen Chat: cstutorcs
 - The Viewport Transform
 - Changes our -1.0 to 1.0 into the actual pixels of the window/screen we're rendering
 - Information then goes to the rasterizer to make fragments

Projection to Clip Space

Why are we doing another transform?

- The camera's viewpoint, now know as the view Transform
 - Change the scale from World Coordinates to Normalized Device Coordinates (-1.0 to 1.0)
- Projection

- https://tutorcs.com
- Alter the world's coordinates so that they're a "projection"
- We'll use Perspective Cthagraphic stoirtings
- The next step is to "clip" the vertices that we can't see
 - Any vertices outside of -1.0 to 1.0 are not visible to the camera
 - They will be discarded and will not be part of rendered fragments

The View Frustum

The Projection Matrix creates a "viewable area"

Between -1.0 Assignment Project Exam Help cube

- Forms the "viewable tops://tutorcs.com
- This is known as the **Frustum**The **Near Plane** is like your screen stutorcs
- The **Far Plane** is the maximum viewable distance
- Anything outside this frustum will be clipped

Image credit: learnopengl.com

Types of Projection

Orthographic Projection

- We've actually Assignment Project Exam Help
- All our 2D projects have used -1.0 to 1.0 as our coordinates We've been ignoring the Model View Projection transforms

- . . . and just working in Clip Space
 This is the same as a camera that sooking straight along the Z axis with an orthographic projection

Orthographic Projection

Looking "Square on"

- Objects don't Assignment Project Exam Help
- The view frustum looks like a rectangular prism in world space https://tutorcs.com

WeChat: cstutorcs

How do we see things?

Human Eyes, Real World Geometry

We see the world signment Project Exam Help

As things get further away, they get smaller The idea of a "vanishing point in the distance

Appeared in art around the 1400s during the Italian Renaissance WeChat: cstutorcs

Masolino da Panicale: Healing of the Cripple and Raising of Tabitha (1424)

Image credit: www.CGPGrey.com

Perspective in Graphics

Showing 3D Graphics so that our eyes believe it

• We need to represent Project Exam Help GETS DISCARDED S

The frustum for this looks interesting in world space https://tutorcs.com

- It's the idea of viewing the virtual screen (Near Plane) as if from a style (Viewtoic stutorcs
- Field of View (FOV) is the angle between the top and bottom of the frustum
- Aspect Ratio is the width/height of the near and far planes

Image credit: learnopengl.com

Transforming Coordinates in Perspective

If we go from the "pyramid" frustum to a cube

- Objects closer Assignment Project Exam Help
- Objects further away will be smaller https://tutorcs.com
- Mathematically, we're using the w coordinate
- if we set w = -z (WeChate Ostutores ions) before applying the perspective transform
- then divide x, y and z by w
- We end up with visible coordinates in the range of -1.0 to 1.0
- We've effectively normalized our coordinates based on their distance from the camera

One Transform from Object to Screen

Multiple Matrices together can do a lot of work!

In OpenGL

We won't be building this transform matrix manually

• glm::perspective()ment Project Exam Help

- This function will take:
 - FOV https://tutorcs.com
 - Aspect Ratio
 - Distance to Near PlaweChat: cstutorcs
 - Distance to Far Plane
- It will create a projection matrix

Break Time

An Appreciation for Technology and Art

- Perspective Projection (Renals Sanciest Exam Help
- Cubism, the disruption of perspective (early 1900s) Picasso https://tutorcs.com

- Impressionism, brush strokes predating pixels WeChat: cstutorcs (19th Century)
 - Monet
- Colour Theory, mixing colours together (~300BC)
 - Aristotle and others along the way including Isaac Newton (1700s)

Pablo Picasso, 1910, Girl with a Mandolin (Fanny Tellier)

Claude Monet, Impression, soleil levant (Impression, Sunrise), 1872

Dynamic Camera

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Moving our Camera in a Scene

Cameras are the player's view into a virtual world Assignment Project Exam Help

 It's important that we give players control in a game situation

 Letting the camera move in the scene is amazing for immersion Chat: cstuto

Image credit: id Software (edited by Marc)

What do we have so far?

Current Camera knowledge

- We can create Assignment Project Exam Help
 - Position
 - o Look vector (also that tos a look vector (a
 - Up vector
- We know we can rewesterhist transform very quickly with new information

The Render Loop

While(true) {render}

- You may have Assignment Project Exam Help
- It runs for every "frame" that is displayed on your screen Each time it runs, it runs the entire Spends pipeline
- - Calculates vertex data
 - Passes it through to We enat: cstutorcs
 - Renders the pixel colours

Player Input

We can detect things like keyboard and mouse input

- We have some Assignment Project Exam Helpnework)
- These can pick up keys and mouse events each frame We can make changes in our camera based on these
- For Example: If 'w' is pressed, we could translate our camera towards its target by a certain amount hat: cstutorcs

How much time is there in between frames?

1/60th of a second? 1/144th of a second?

- Does this mean that a carriera is going to move faster ipour framerate is higher?
- Maybe we want to make sure our movement is NOT dependent on how many frames per second we are rendering WeChat: cstutorcs

Delta Time

Make sure our render loop records time

- GLFW can give us signment Project Exam Help
- We can record what the time was when we started rendering our last https://tutorcs.com frame
- Which means we can figure out how long it took in between frames! This is known as delta time cstutorcs
- Camera speed * delta time gives us smooth motion

Rotating a Camera

Using a mouse to control where a camera is aiming

- Euler Angles: Assignment Project Exam Help
- Pitch rotates around the camera's x axis
- Yaw rotates around the camera's com

Rotating a Camera (continued)

We're not going to be using roll (we let our up vector always stay up)

- Mouse input deltaignment Project Exam Help
 - O Where was the mouse last frame?
 - Where is it now? https://tutorcs.com
- Mouse input delta is in two dimensions
 - x relates to yaw WeChat: cstutorcs
 - o y relates to pitch
- We can calculate a new Look Vector by rotating the previous Look Vector based on the changes in the mouse input

Camera Control

Each frame . . .

- Detect the time seignment Project Exam Help
- Detect user input

 Calculate how far the camera should not be come.
- Calculate how much it should rotate
 Generate a new camera transform cstutorcs
- Pass this information to the renderer!

What did we learn today?

More details about 3D Graphics

- Model/View/Project Exam Help
 - One transform to go from local object to device coordinates
- Camera Control https://tutorcs.com
 - Updating an object per frame based on player input

WeChat: cstutorcs