Измерение вязкости воздуха по течению в тонких трубках 1.1.3

Цель работы: экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.

В работе используются: система подачи воздуха (компрессор, поводящие трубки); газовый счетчик барабанного типа; спиртовой микроманометр с регулируемым наклоном; набор трубок различного диаметра с выходами для подсоединения микроманометра; секундомер

Теория

Работа посвящена изучению течения воздуха по прямой трубе круглого сечения. Движение жидкости или газа вызывается перепадом внешнего давления на концах ΔP трубы, чему в свою очередь препятствуют силы вязкого (внутреннего) трения, действующие между соседними слоями жидкости, а также со стороны стенок трубы.

Сила вязкого трения как в жидкостях, так и в газах описывается законом Ньютона: касательное напряжение между слоями пропорционально перепаду скорости течения в направлении, поперечном к потоку. В частности, если жидкость течёт вдоль оси x, а скорость течения $v_x(y)$ зависит от координаты y в каждом слое возникает направленное по x касательное напряжение.

$$\tau_{xy} = -\eta \frac{\partial v_x}{\partial y}$$

Величину η называют коэффициентом динамической вязкости (или просто вязкостью) среды.

Объёмным расходом (или просто расходом) Q называют объём жидкости, протекающий через сечение трубы в единицу времени. Величина Q зависит от перепада давления ΔP , а также от свойств газа (плотности ρ и вязкости η) и от геометрических размеров (радиуса трубы R и её длины L). Основная задача данной работы — исследовать эту зависимость экспериментально.

Характер течения в трубе может быть ламинарным либо турбулентным.

Характер течения определяется безразмерным параметром задачи — числом Рейнольдса

$$Re = \frac{\rho ua}{n}$$

где ρ - плотность жидкости, u - скорость движения потока, a - характерный размер потока. Вспомним уравнения, изучавшиеся в первом семестре:

$$u = \frac{Q}{\pi R^2} = \frac{u_{max}}{2}$$

(средняя скорость потока)

$$Q = \frac{\pi R^4 \Delta P}{8\eta l}$$

(Формула Пуазейля)

$$l_{\text{vct}} \approx 0.2R \cdot Re$$

(коэффицент получен экспериментально)

Рис. 1: Схема экспериментальной установки

Ход работы

1. Зафиксируем в параметры экспериментальной установки:

Участок трубки	l, cm	σ , mm
1	11	1
2	30	1
3	40	1
4	50	1

Таблица 1: Длины участков второй трубки между различными точками подключения.

	d, mm	σ , mm
Первая трубка	5,25	0,05
Вторая трубка	3,90	0,05

Таблица 2: Внутренние диаметры трубок установки

- 2. Проведем измерение зависимости разности давлений от расхода воздуха. Для этого будем отмерять объём воздуха, занимающий целое число шкал (для удобсвта) проходящий через газовый счетчик и засекать продолжительность замера. Результаты занесем в таблицу 3.
- 3. Построим графики по этим таблицам:
- 4. Через МНК определим значение и погрешность вязскости воздуха.

Исходя из полученных данных, выбирая наиболее линейные участки на графиках, получим с помощью МНК значение вязкости воздуха, определенное по формуле Пуазейля:

$$\eta = 1.9 \cdot 10^{-6}; \quad \sigma_{\eta} = 6 \cdot 10^{-7},$$

№ измерения	Δh , дел	ΔV , л	δV , л	t_1 , c	t_2 , c	t_3 , c	t_4, c
1	34	5	0,05	102,8	103,1	103,0	102,9
2	58	5	0,05	74,5	74,8	74,3	74,4
3	65	5	0,05	57,5	57,5	57,6	57,9
4	86	5	0,05	50,4	50,8	51,2	51,3
5	125	5	0,05	45,0	45,2	45,1	45,3
6	166	5	0,05	39,70	39,08	39,5	39,4
7	212	10	0,05	68,4	68.6	69,0	68,7
8	257	10	0,05	93,0	95,2	96,1	95,4

Таблица 3: Зависимость разницы давления от расхода воздуха между точками 2 - 3 второй трубки

№ измерения	Δh , дел	ΔV , л	δV , л	t_1 , c	t_2 , c	t_3 , c	t_4, c
1	25	5	0,2	171,3	172,0	170,6	171,6
2	55	5	0,2	81,0	81,3	81,1	80,7
3	95	5	0,2	55,0	55,0	55,2	54,9
4	120	5	0,2	50,1	49,5	49,3	49,2
5	150	5	0,2	45,0	44,6	45,0	44,9
6	180	5	0,2	41,7	41,6	41,8	42,3
7	210	5	0,2	39,0	38,6	38,6	38,6
8	240	5	0,2	36,5	36,1	36,1	36,4

Таблица 4: Зависимость разницы давления от расхода воздуха между точками 3 - 4 второй трубки

Рис. 2: графики зависимости перепада давления от расхода воздуха для второй трубки и точек 2 - 3, 3 - 4

$$\eta = (1.9 \pm 0.6) \cdot 10^{-6} \Pi a \cdot c$$

Построим графики зависимости падения давления от длины трубки (3).

ΔP , Πa	$\sigma_{\Delta P}$, Π a	$Q \cdot 10^5 \frac{\text{M}^3}{\text{c}}$	$\sigma_Q \cdot 10^5 \frac{\text{M}^3}{\text{c}}$	ΔP , Πa	$σ_{\Delta P}$, Πα	$Q \cdot 10^5 \frac{\text{M}^3}{\text{c}}$	$\sigma_Q \cdot 10^5 \frac{\text{M}^3}{\text{c}}$
66	2	4,857	0,005	49	22	2,92	0,01
113	4	6,711	0,007	107	10	6,17	0,02
127	4	8,675	0,009	185	7	9,09	0,04
168	9	9,822	0,010	234	10	10,11	0,04
244	3	11,071	0,011	293	7	11,13	0,04
324	5	12,682	0,013	351	14	11,94	0,05
414	5	14,430	0,014	410	9	12,91	0,05
502	20	15,827	0,011	469	9	13,77	0,06
				547	8	14,95	0,00

Таблица 5: Результаты измерения перепадов давления, расхода, а также погрешности данных измерений

Рис. 3: графики зависимости перепада давления от расстояния до начала трубки

Вывод

- 1. При выполнении данной работы были исследованы различные режимы течения газа по трубкам. На практике получена экспериментальная зависимость разницы давления в различных точках трубки в зависимости от расхода воздуха, идущего через трубку.
- 2. Исследовались условия перехода течения из одного режима (ламинарного) в другой (турбулентный).
- 3. Полученные зависимости разницы давлений от расхода воздуха согласуются с существующей теорией, описывающей движение газов и жидкостей в различных режимах.
- 4. Определено значение вязкости воздуха : $\eta_{\text{эксп}} = (1.9 \pm 0.6) \cdot 10^{-6} \text{ Па·с}$, при табличном значении $\eta_{\text{табл}} = (1.3 \pm 0.2) \cdot 10^{-6} \text{ Па·с}$. Полученные значения равны в пределах погрешности.
- 5. Основной вклад в погрешность итогового значения вязкости внесла погрешность измерения времени, а так же погрешности измерения давлений. Погрешности, связанные с установкой (погрешность линейных размеров установки, диаметра трубок) внесли меньший вклад в итоговое значение погрешности.

