Problemas geométricos que arrancan de la teoría clásica de funciones

Celia de Frutos Palacios

12 de mayo de 2018

Capítulo 1

Ejemplos

En esta sección vamos a estudiar el comportamiento de algunas series de potencias en el borde de su disco de convergencia.

Ejemplo 1.0.1. Mostrar que

$$\sum_{n=0}^{\infty} z^n, \, |z| < 1$$

diverge en todo punto tal que |z|=1.

Demostración. Es fácil ver que $1-z^{n+1}=(1-z)(1+z+z^2+\cdots+z^n)$. Por lo tanto, si $z\neq 1$, se tiene que

$$1 + z + \dots + z^n = \frac{1 - z^{n+1}}{1 - z}.$$
 (1.1)

Si |z|<1 entonces lím $_{n\to\infty}\,z^n=0$ y la serie converge a

$$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$$

Si |z| > 1 entonces $\lim_{n \to \infty} z^n = \infty$ y la serie diverge. Pero, ¿qué pasa cuando |z| = 1? La serie de potencias $\sum_{n=0}^{\infty} z^n$ diverge en todos los puntos del radio de convergencia pues $|z^n|$ no tiende a 0 cuando $n \to \infty$.

Sin embargo, $\sum_{n=0}^{\infty} z^n$ puede ser extendida a la función globalmente analítica $\frac{1}{1-z}$ en $\mathbb{C} \setminus \{1\}$ gracias a una cantidad finita de prolongaciones analíticas.

Tomemos a un punto cualquiera de $\mathbb{C} \setminus \{1\}$ y conectémoslo al origen 0 mediante la curva de Jordan $\gamma \subset \mathbb{C} \setminus \{1\}$. Fijemos un punto z_1 en γ que cumpla |z| < 1. $\sum_{n=0}^{\infty} z^n$ puede ser extendida analíticamente en z_1 de la siguiente forma:

$$\frac{1}{1-z} = \frac{1}{1-z_1 - (z-z_1)} = \frac{1}{1-z_1} \frac{1}{1-\frac{z-z_1}{1-z_1}} = \frac{1}{1-z_1} \sum_{n=0}^{\infty} \left(\frac{z-z_1}{1-z_1}\right)^n =$$

$$= \sum_{n=0}^{\infty} \frac{1}{(1-z_1)^{n+1}} (z-z_1)^n, |z-z_1| < |1-z_1|.$$

De nuevo, tomemos z_2 en γ tal que $|z_2 - z_1| < |1 - z_1|$ y $|z_2| \ge 1$. Podemos extender la serie de potencias a z_2 .

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} \frac{1}{(1-z_2)^{n+1}} (z-z_2)^n, |z-z_2| < |1-z_2|.$$

Después de un número finito de iteraciones, dado que la curva es un conjunto compacto, alcanzaremos el punto a y tendremos

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} \frac{1}{(1-a)^{n+1}} (z-a)^n, |z-a| < |1-a|.$$

Así, decimos que hemos obtenido la prolongación analítica de $\sum_{n=0}^{\infty} z^n$ que pasa por la curva γ .

Ejemplo 1.0.2. Mostrar que

$$g(z) = \sum_{n=1}^{\infty} \frac{z^n}{n}, |z| < 1$$

diverge en z = 1 y converge en el resto de punto tales que |z| = 1;

Demostración. Para demostrar que la serie diverge en z=1 y converge en el resto de punto tales que |z|=1 vamos a aplicar el criterio de Dirichlet:

Sean $\{a_n\} \subset \mathbb{R}$ y $\{b_n\} \subset \mathbb{C}$ successores tales que:

- 1. $\{a_n\}$ es monótona con límite 0
- 2. Las sumas parciales de la serie $\sum_{n=1}^{\infty} b_n$ están acotadas

entonces $\sum_{n=1}^{N} a_n b_n$ converge.

En nuestro caso vamos a tomar $a_n = \frac{1}{n}$ y $b_n = z^n$. La primera condición se cumple, veamos la que resta:

$$\left| \sum_{n=1}^{N} z^n \right| = \left| \frac{z - z^{N+1}}{1 - z} \right| \le \frac{2}{|1 - z|}, \text{ si } z \ne 1, \text{ para todo } N \in \mathbb{N}.$$

Esto muestra que la condición se satisface para todo $z \neq 1$ en el disco unidad. Por lo tanto, la serie converge para todo z tal que $|z| \leq 1, z \neq 1$ y diverge para |z| > 1.

Vamos a ver que la suma de la serie es $\log \frac{1}{1-z}$. En efecto, derivando tenemos que

$$g'(z) = \sum_{n=1}^{\infty} z^{n-1} \Rightarrow zg'(z) = \sum_{n=0}^{\infty} z^n = \frac{1}{1-z}.$$

Si integramos ahora la expresión de la derecha tenemos que la suma es $\log \frac{1}{1-z}$.

Ejemplo 1.0.3. Mostrar que

$$f(z) = \sum_{n=1}^{\infty} \frac{z^n}{n^2}, |z| < 1$$

converge absoluta y uniformemente en |z| = 1.

Demostración. Es fácil ver que converge absoluta y uniformemente en |z|=1 dado que

$$\sum_{n=1}^{\infty} \left| \frac{z^n}{n^2} \right| \le \sum_{n=1}^{\infty} \left| \frac{1}{n^2} \right| < \infty.$$

Vamos a ver que la suma de la serie es $z + \log(1-z)(1-z)$. En efecto, si derivamos nos queda

$$f'(z) = \sum_{n=1}^{\infty} \frac{z^{n-1}}{n} \Rightarrow zf'(z) = \sum_{n=1}^{\infty} \frac{z^n}{n} = g(z) = \log \frac{1}{1-z}.$$

Integrando la expresión de la derecha tenemos el resultado.

Ejemplo 1.0.4. Mostrar que la serie lagunar,

$$h(z) = \sum_{n=0}^{\infty} z^{2^n}, |z| < 1$$

tiene una singularidad en cada punto tal que |z| = 1.

Demostraci'on. Sea $h(z) = \sum_{n=0}^{\infty} z^{2^n} = z + z^2 + z^4 + z^8 + \cdots$. Podemos escribir lo siguiente:

$$h(z^2) = h(z) - z, h(z^4) = h(z^2) - z^2,$$

y aplicando inducción tenemos que

$$h(z^{2^k}) = h(z^{2^{k-1}}) - z^{2^{k-1}}$$

Así,

$$h(z) = z + h(z^2) = z + z^2 + h(z^4) = \dots = z + z^2 + \dots + z^{2^{k-1}} + h(z^{2^k}).$$

Si $m, n \in \mathbb{N}$ y $r \in (0, 1)$ y llamamos r a $e^{2\pi i \frac{m}{2^n}}$, tenemos que

$$h(r^{2^n}) = \sum_{k=0}^{\infty} (r^{2^n})^{2^k} = \sum_{k=0}^{\infty} r^{2^n \cdot 2^k} = \sum_{k=0}^{\infty} r^{2^{(n+k)}} = \sum_{k=0}^{\infty} r^{2^k}.$$

Como

$$\sum_{k=n}^{\infty} r^{2^k} \ge \sum_{k=n}^{N} r^{2^k} > (N+1)r^{2^k} \to N+1,$$

entonces $\lim_{r \to 1} |h(re^{2\pi i \frac{m}{2^n}})| = \infty \ \forall m, n.$

Puesto que $\{e^{2\pi i \frac{m}{2^n}}: m, n \in \mathbb{N}\}$ es denso en $\partial \mathbb{D}$, todos los puntos del borde del disco unidad son singulares.

Ejemplo 1.0.5. Mostrar que la función

$$f(z) = \exp\left(\frac{z+1}{z-1}\right), z \in \mathbb{D}$$

es holomorfa, $|f(z)| \leq 1$ para todo $z \in \mathbb{D}$, y $f(t) \to 0$ cuando $t \to 1^-$.

Demostración. La función f es holomorfa ya que es la composición de funciones holomorfas. Obsérvese que el único punto singular es z=1.

La función $g(z)=\frac{z+1}{z-1}$ lleva el disco en el semiplano $H=\{w: \mathrm{Re}(w)<0\}$. Así pues, la exponencial lleva H en $\mathbb D$:

$$|e^z| = |e^{x+iy}| = |e^x(\cos y + i \sin y)| = e^x < 1.$$

La aplicación g es una transformación de Möbius, y las transformadas de Möbius tienen la propiedad de que llevan circunferencias y rectas en circunferencias y rectas. Como la función lleva -1 a 0, i a -i y -i a i, la imagen del círculo |z| = 1, ha de ser una recta.

Si tomamos una sucesión $\{t_n\}$ en el intervalo (-1,1) que converge a 1, se tiene que $g(t_n) \to -\infty$. Por lo tanto,

$$\frac{t+1}{t-1} \xrightarrow[t\to 1^-]{} - \infty \Rightarrow \exp\left(\frac{t+1}{t-1}\right) \xrightarrow[t\to 1^-]{} 0.$$

Sin embargo, la función f no tiene límite en 1. Por ejemplo, si tomamos la sucesión $\{z_n\}$ definida por $z_n = g(w_n)$, siendo $\{w_n\}$ la sucesión de término general $-1 + 2n\pi i$. Entonces,

$$z_n = \frac{2n\pi i}{-2 + 2n\pi i} = \frac{n\pi i}{n\pi i - 1} = \frac{(n\pi i + 1)n\pi i}{-n^2\pi^2 - 1} = \frac{-n^2\pi^2 + in\pi}{-n^2\pi^2 - 1}.$$

Como $g = g^{-1}$ tenemos

$$e^{g(z_n)} = e^{w_n} \to e^{-1} \neq 0.$$

Capítulo 2

Teorema de Fatou y Teorema de Carathéodory

2.1. La Integral de Poisson

Definición 2.1.1. Se llama núcleo de Poisson a la función P definida por

$$P: (r,t) \in [0,1) \times \mathbb{R} \mapsto P_r(t) = \sum_{n=-\infty}^{\infty} r^{|n|} e^{int}.$$

$$(2.1)$$

Podemos considerar el núcleo de Poisson como una función de dos variables r y t o como una familia de funciones de t que dependen de r.

Dados $z = re^{i\theta}$, con $r \in [0,1)$ y $\theta \in \mathbb{R}$ se tiene que

$$P_r(\theta - t) = \text{Re}\left[\frac{e^{it} + z}{e^{it} - z}\right] = \frac{1 - r^2}{1 - 2r\cos(\theta - t) + r^2}$$
 (2.2)

para todo $t \in \mathbb{R}$. En efecto:

$$P_r(t) = \sum_{n=-\infty}^{\infty} r^{|n|} e^{int} = 1 + \sum_{n=1}^{\infty} r^n e^{int} + \sum_{n=1}^{\infty} r^n e^{-int} = 1 + \sum_{n=1}^{\infty} r^n (e^{int} + e^{-int}) = 1 + \sum_{n=1}^{\infty} r^n 2 \operatorname{Re}(e^{int}) = \operatorname{Re}\left[1 + 2 \sum_{n=1}^{\infty} (re^{it})^n\right] = \operatorname{Re}\left[1 + 2 \frac{re^{it}}{1 - re^{it}}\right] = \operatorname{Re}\left[\frac{1 + re^{it}}{1 - re^{it}}\right].$$

Por otra parte

$$\operatorname{Re}\left[\frac{1+re^{it}}{1-re^{it}}\right] = \operatorname{Re}\left[\frac{(1+re^{it})(1-re^{it})}{|1-re^{it}|^2}\right] = \frac{1-r^2}{1-2r\cos t + r^2}.$$

Propiedades del núcleo de Poisson:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(t)dt = 1, \forall r \in [0, 1). \tag{2.3}$$

$$P_r(t) > 0, \forall r \in [0, 1), t \in \mathbb{R}$$

$$\tag{2.4}$$

$$P_r(t) = P_r(-t), \forall r \in [0, 1), t \in \mathbb{R}$$

$$(2.5)$$

$$P_r(t) < P_r(\delta), 0 < \delta < |t| < \pi \tag{2.6}$$

$$\lim_{r \to 1} P_r(\delta) = 0, \forall \delta \in (0, \pi]$$
(2.7)

Definición 2.1.2. Se llama integral de Poisson de una función $f \in L^1(\partial \mathbb{D})$ a la función F dada por

$$F: z = re^{i\theta} \in \mathbb{D} \mapsto F(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) f(e^{it}) dt.$$

Algunas veces nos convendrá referirnos a ella como F = P[f].

Además si f lleva $\partial \mathbb{D}$ en los reales, 2.2equation.2.1.2 nos muestra que

$$P[f] = \operatorname{Re} \left[\frac{1}{2} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} f(t) dt \right].$$

2.2. El Teorema de Fatou

Para demostrar el Teorema de Fatou nos vamos a basar en unos resultados clásicos del libro [chap. 11] rudin.

Teorema 2.2.1. Si $f \in L^1(\partial \mathbb{D})$ y F = P[f], entonces

$$\lim_{r \to 1} F(re^{i\theta}) = f(e^{i\theta})$$

Teorema 2.2.2. Sean $f \in C(\partial \mathbb{D}), F = P[f]$ y

$$u(re^{i\theta}) = \begin{cases} f(re^{i\theta}) & si \ r = 1\\ F(re^{i\theta}) & si \ 0 \le r < 1 \end{cases}$$

Entonces u es una función continua en el disco cerrado $\overline{\mathbb{D}}$ que es armónica en \mathbb{D} .

Teorema 2.2.3 (Teorema de Fatou). Para toda función $f \in \mathcal{H}^{\infty}(\mathbb{D})$, existe una función $f^* \in L^{\infty}(\partial \mathbb{D})$ definida por

$$f^*(e^{it}) = \lim_{r \to 1} f(re^{it}) \tag{2.8}$$

en casi todo punto.

Se tiene la igualdad $||f||_{\infty} = ||f^*||_{\infty}$. Para todo $z \in U$, la fórmula integral de Cauchy

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f^*(\xi)}{\xi - z} d\xi \tag{2.9}$$

se satisface, donde γ es el círculo unidad positivamente orientado: $\gamma(t) = e^{it}, 0 \le t \le 2\pi$.

Las funciones $f^* \in L^{\infty}(\partial \mathbb{D})$ que se obtienen mediante este procedimiento son precisamente aquellas que cumplen la siguiente relación

$$\frac{1}{2\pi i} \int_{-\pi}^{\pi} f^*(e^{it}) e^{-int} dt = 0, n = -1, -2, \dots$$
(2.10)

Demostración. La existencia de f^* se sigue de los teoremas 2.2.1theorem.2.2.1 y 2.2.2theorem.2.2.2. Por 2.8Teorema de Fatouequation.2.2.8, tenemos que $||f^*||_{\infty} \leq ||f||_{\infty}$.

Si $z \in U$ y |z| < r < 1, tomemos $\gamma_r(t) = re^{it}$, $0 \le t \le 2\pi$. Entonces,

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_r} \frac{f(\xi)}{\xi - z} d\xi = \frac{r}{2\pi} \int_{-\pi}^{\pi} \frac{f(re^{it})}{re^{it} - z} e^{it} dt$$

Sea $\{r_n\}$ una sucesión tal que $r_n \to 1$. Por el teorema de la convergencia dominada de Lebesgue tenemos

$$f(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{f^*(e^{it})}{1 - ze^{-it}} dt$$
 (2.11)

Por lo que ya hemos probado 2.9Teorema de Fatouequation.2.2.9. Por el teorema de Cauchy, se sigue que

$$\int_{\gamma_r} f(\xi)\xi^n d\xi = 0, n = 0, 1, \dots$$

Tomando de nuevo una sucesión $\{r_n\}$ que tienda a 1, el teorema de la convergencia dominada garantiza que f^* cumple 2.10Teorema de Fatouequation.2.2.10. Además, podemos convertir 2.11El Teorema de Fatouequation.2.2.11 en una integral de Poisson, si $z = re^{i\theta}$,

$$f(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f^*(e^{it}) \sum_{n=0}^{\infty} r^n e^{in(\theta-t)} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} f^*(e^{it}) \sum_{n=-\infty}^{\infty} r^{|n|} e^{in(\theta-t)} dt =$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) f^*(e^{it}) dt$$

De esto concluimos que $||f||_{\infty} \leq ||f^*||_{\infty}$, así que ambas normas coinciden.

2.3. Teorema de Carathéodory y aplicaciones conformes

Definición 2.3.1. Aplicación conforme Sean U y $V \subset \mathbb{C}^n$. Una aplicación $f: U \to V$ se llama conforme en un punto $u \in U$ si preserva la orientación y los ángulos entre curvas que pasan por u.

Proposición 2.3.2. Sea $U \subset \mathbb{C}$. Una aplicación $f: U \to \mathbb{C}$ es conforme en U si $f \in \mathcal{H}(U)$ y $f'(z) \neq 0 \forall z \in U$.

Demostración. Supongamos que f(z) es una función holomorfa en U tal que $f'(z) \neq 0$ para $z \in U$ y consideremos $f: z \to w = f(z)$. Sea $\gamma: [a,b] \to U$ una curva suave. Consideremos $\lambda = (f \circ \gamma)(t)$. Por la regla de la cadena, λ es continuamente diferenciable y como $f'(\gamma(t)) \neq 0$, tenemos

$$\lambda'(t) = f'(\gamma(t))\gamma'(t). \tag{2.12}$$

Por lo tanto, λ es una curva suave en el plano w.

Sean $\gamma_1, \gamma_2 : [a, b] \to U$ curvas suaves tales que $c = \gamma_1(a) = \gamma_2(a)$. Definimos el ángulo θ entre γ_1 y γ_2 en c como el argumento de $\frac{\gamma_2'(a)}{\gamma_1'(a)}$. Como el argumento es aditivo para la multiplicación de funciones, tenemos que

$$\arg \lambda'_1(a) = \arg f'(c) + \arg \gamma'_1(a)$$

$$\arg \lambda'_2(a) = \arg f'(c) + \arg \gamma'_2(a)$$

y entonces

$$\arg \frac{\lambda_2'(a)}{\lambda_1'(a)} = \arg \lambda_2'(a) - \arg \lambda_1'(a) = \arg \gamma_2'(a) - \arg \gamma_1'(a) = \arg \frac{\gamma_2'(a)}{\gamma_1'(a)}.$$

Así, el ángulo entre las curvas λ_1 y λ_2 en $d = \lambda_1(a) = \lambda_2(a)$ es igual al ángulo θ entre las curvas γ_1 y γ_2 en c.

Vamos a probar un resultado recíproco a éste que incluye algunas restricciones adicionales sobre f.

Proposición 2.3.3. Sean $U \subset \mathbb{C}$ y $f: U \to \mathbb{C}$ una aplicación conforme en U que admite derivadas parciales continuas con respecto a x e y. Entonces $f \in \mathcal{H}(U)$ y $f'(z) \neq 0 \, \forall z \in U$.

Demostración. Fijemos z un punto arbitrario de U, y elijamos $\varepsilon > 0$ tal que $D(z, \varepsilon) \subset U$. Consideremos la familia de curvas suaves $\gamma_{\theta}(t) = z + te^{i\theta}, 0 \le t \le \varepsilon, \theta \in \mathbb{R}$. Nótese que el ángulo entre γ_0 y γ_{θ} en z es θ .

Tomemos la familia de curvas $\lambda_{\theta} = f \circ \gamma_{\theta}$. Como f es conforme, el ángulo entre λ_0 y λ_{θ} , es decir, el argumento de $\frac{\lambda'_{\theta}(0)}{\lambda'_{0}(0)}$ es igual a θ . Si escribimos el argumento de $\lambda'_{0}(0)$ como α , el argumento de $\lambda'_{\theta}(0)$ será $\alpha + \theta$ y, por tanto,

$$e^{-i(\theta+\alpha)}\lambda_{\theta}'(0) = |\lambda_{\theta}'(0)| > 0.$$
 (2.13)

??, nos dice que

$$\lambda_{\theta}'(0) = u_x \cos \theta + u_y \sin \theta + i(v_x \cos \theta + v_y \sin \theta) = = (u_x + iv_x) \cos \theta + (u_y + iv_y) \sin \theta = f_x \cos \theta + f_y \sin \theta,$$
(2.14)

por la fórmula de Euler,

$$2\lambda'_{\theta}(0) = (f_x - if_y)e^{i\theta} + (f_x + if_y)e^{-i\theta}.$$

Entonces por 2.13Teorema de Carathéodory y aplicaciones conformesequation.2.3.13,

$$(f_x - if_y)e^{-i\alpha} + (f_x + if_y)e^{-2i\theta - i\alpha} = 2|\lambda'_{\theta}(0)|.$$

Derivando en ambos lados con respecto a θ , obtenemos

$$-2i(f_x + if_y)e^{-2i\theta - i\alpha} = \frac{2d}{d\theta} |\lambda'_{\theta}(0)|.$$

Como el ángulo θ es arbitrario, $e^{-2i\theta-i\alpha}$ es un giro arbitrario. Como además la parte de la derecha de la igualdad solo toma valores reales, $-2i(f_x+if_y)$ bajo cualquier giro tiene que ser real. De esto se sigue que

$$f_x + if_y = 0$$

por lo que

$$u_x + v_y + i(v_x + u_y) = 0.$$

Como vemos, u(x,y) y v(x,y) satisfacen las ecuaciones de Cauchy-Riemann en U. Luego f(z) = u(x,y) + iv(x,y) es holomorfa en $z = x + iy \in U$. Además se tiene que $f(z) \neq 0, z \in U$. En efecto, como $\lambda'_{\theta}(0) \neq 0$, 2.14Teorema de Carathéodory y aplicaciones conformesequation.2.3.14 garantiza que no pueden anularse a la vez u_x y u_y . Por lo tanto, como $|f'(x+iy)|^2 = u_x^2(x,y) + u_y^2(x,y)$, se tiene el resultado.

Teorema 2.3.4 (Teorema de Carathéodory). Sea φ una aplicación conforme del disco unidad \mathbb{D} en un dominio de Jordan Ω . Entonces φ tiene una extensión continua al disco cerrado $\overline{\mathbb{D}}$, y la extensión es inyectiva de $\overline{\mathbb{D}}$ en $\overline{\Omega}$.

Demostración. Vamos a suponer que Ω está acotado. Fijemos $\zeta \in \partial \mathbb{D}$. Primero vamos a probar que φ tiene una extensión continua en ζ . Sea $0 < \delta < 1$,

$$D(\zeta, \delta) = \{z : |z - \zeta| < \delta\}$$

y tomemos $\gamma_{\delta} = \mathbb{D} \cap \partial D(\zeta, \delta)$. Entonces $\varphi(\gamma_{\delta})$ es una curva de Jordan de longitud

$$L(\delta) = \int_{\gamma_{\delta}} |\varphi'(z)| \, ds$$

Por la desigualdad de Cauchy-Schwarz, tenemos

$$L^2(\delta) \le \pi \delta \int_{\gamma_{\delta}} |\varphi'(z)|^2 ds$$

entonces para $\rho < 1$

$$\int_{0}^{\rho} \frac{L^{2}(\delta)}{\delta} d\delta \leq \pi \int \int_{\mathbb{D} \cap D(\zeta, \rho)} |\varphi'(z)|^{2} dx dy = \pi \operatorname{Area}(\varphi(\mathbb{D} \cap D(\zeta, \rho))) < \infty$$

Entonces, existe una sucesión $\{\delta_n\} \downarrow 0$ tal que $L(\delta_n) \to 0$. Cuando $L(\delta_n) < \infty$, la curva $\varphi(\gamma_{\delta_n})$ tiene extremos $\alpha_n, \beta_n \in \overline{\Omega}$ y ambos puntos deben estar en $\Gamma = \partial \Omega$. De hecho, si $\alpha_n \in \Omega$, entonces algún punto cerca de α_n tiene dos preimágenes distintas en \mathbb{D} y esto es imposible pues φ es inyectiva. Además,

$$|\alpha_n - \beta_n| \le L(\delta_n) \to 0 \tag{2.15}$$

Sea σ_n el subarco cerrado de Γ que tiene extremos α_n y β_n y con un diámetro menor. Entonces 2.15Teorema de Carathéodory y aplicaciones conformesequation.2.3.15 implica que diam $(\sigma_n) \to 0$ porque Γ es homeomorfa al círculo. Por el teorema de la curva de Jordan, $\sigma_n \cup \varphi(\gamma_{\delta_n})$ divide al plano en dos regiones, y una de ellas, llamémosla U_n es acotada. Entonces $U_n \subset \Omega$ ya que $\mathbb{C}^* \setminus \overline{\Omega}$ es conexo por arcos. Como

$$\operatorname{diam}(\partial U_n) = \operatorname{diam}(\sigma_n \cup \varphi(\gamma_{\delta_n})) \to 0$$
, concluimos que $\operatorname{diam}(U_n) \to 0$. (2.16)

Tomamos $D_n = \mathbb{D} \cup \{z : |z - \zeta| < \delta_n\}$. Sabemos que para n suficientemente grande, $\varphi(D_n) = U_n$. Si no, por conexión tendríamos que $\varphi(\mathbb{D} \setminus \overline{D_n}) = U_n$ y

$$diam(U_n) \ge diam(\varphi(B(0, 1/2))) > 0$$

que contradice con 2.16 Teorema de Carathéodory y aplicaciones conformesequation. 2.3.16. Entonces diam $(\varphi(D_n)) \to 0$ y $\bigcap \overline{\varphi(D_n)}$ es un solo punto pues $\varphi(D_{n+1}) \subset \varphi(D_n)$. Esto significa que φ tiene una extensión continua en $\mathbb{D} \cap \{\zeta\}$. La extensión a todos estos puntos define una aplicación continua en $\overline{\mathbb{D}}$.

Denotemos ahora por φ a la extensión $\varphi: \overline{\mathbb{D}} \to \overline{\Omega}$. Como $\varphi(\mathbb{D}) = \Omega$, φ lleva $\overline{\mathbb{D}}$ en $\overline{\Omega}$. Para probar que φ es inyectiva, supongamos que $\varphi(\zeta_1) = \varphi(\zeta_2)$, $\zeta_1 \neq \zeta_2$. El argumento utilizado para mostrar que $\alpha_n \in \Gamma$, también prueba que $\varphi(\partial \mathbb{D}) = \Gamma$, así que podemos suponer que $\zeta_j \in \partial \mathbb{D}$, j = 1, 2. La curva de Jordan

$$\{\varphi(r\zeta_1): 0 \leq r \leq 1\} \cup \{\varphi(r\zeta_2): 0 \leq r \leq 1\}$$

acota al dominio $W \subset \Omega$, luego $\varphi^{-1}(W)$ es una de las dos componentes de

$$\mathbb{D} \setminus (\{r\zeta_1 : 0 \le r \le 1\} \cup \{r\zeta_2 : 0 \le r \le 1\})$$

Pero como $\varphi(\partial \mathbb{D}) \subset \Gamma$,

$$\varphi(\partial \mathbb{D} \cap \partial \varphi^{-1}(W)) \subset \partial W \cap \partial \Omega = \{\varphi(\zeta_1)\}\$$

y φ es constante en un arco de $\partial \mathbb{D}$. Se tiene que φ es constante, por el principio de reflexión de Schwarz, y esta contradicción prueba que $\varphi(\zeta_1) \neq \varphi(\zeta_2)$.

El resultado que presentamos a continuación es un recíproco parcial del teorema de Carathéodory. Muestra que la inyectividad en el borde del dominio se traslada al interior, en condiciones adecuadas.

Teorema 2.3.5. Sea Γ una curva simple, cerrada y suave con interior Ω . Sea $f \in \mathcal{H}(\Gamma \cup \Omega)$ una aplicación inyectiva en Γ . Entonces f es holomorfa e inyectiva en Ω .

Demostración. La aplicación w = f(z) lleva Γ en un camino simple, cerrado y suave Γ' . Sea w_0 un punto arbitrario que no esté en Γ' . Entonces, si llamamos Γ_+ al camino positivamente orientado,

$$n = \frac{1}{2\pi i} \int_{\Gamma_{\perp}} \frac{f'(z)}{f(z) - w_0} dz = \frac{1}{2\pi i} \int_{\Gamma'} \frac{dw}{w - w_0}.$$

Ahora la última integral es cero si w_0 está fuera de Γ' y es ± 1 si w_0 está dentro de Γ' . Sin embargo, n no puede ser negativo pues la primera integral nos da el número de ceros de $f(z) - w_0$ dentro de Γ . Entonces, n = 1 si w_0 está dentro de Γ' .

Esto prueba que $f(z) = w_0$ tiene una sola solución si w_0 está dentro de Γ' , que f(z) es holomorfa e inyectiva en Ω y lleva Ω en Ω' (el interior de Γ') y que la dirección positiva de Γ' se corresponde con la dirección positiva de Γ .

Capítulo 3

Productos infinitos

Definición 3.0.1. Sea $\{u_n\}$ (n=1,2,...) una sucesión de números complejos. Su producto infinito se define como el límite de los productos parciales $u_1u_2\cdots u_N$ cuando N tiende a infinito:

$$\prod_{n=1}^{\infty} u_n = \lim_{N \to \infty} \prod_{n=1}^{N} u_n.$$

Además, decimos que el producto converge cuando el límite existe y no es cero. En otro caso, se dice que el producto diverge.

Proposición 3.0.2. Sea $\{u_n\}$ (n = 1, 2, ...) una sucesión de números complejos no nulos. Si lím $u_n = 1$ y la serie

$$\sum_{n=1}^{\infty} \log u_n$$

converge absolutamente, es decir, $\sum_{n=1}^{\infty} |\log u_n|$ converge, entonces el producto infinito

$$\prod_{n=1}^{\infty} u_n$$

 $converge\ absolutamente.$

Demostración. Si n es suficientemente grande, entonces u_n puede escribirse como $u_n = 1 - \alpha_n$, donde $|\alpha_n| < 1$, y entonces podemos definir $\log u_n$ como $\log (1 - \alpha_n)$. Por hipótesis, se sigue que la serie

$$\sum_{n=1}^{\infty} \log u_n = \sum_{n=1}^{\infty} \log (1 - \alpha_n)$$

converge. Así que las sumas parciales

$$\sum_{n=1}^{N} \log u_n$$

tienen límite. Como la función exponencial es continua, podemos exponenciar las sumas parciales y vemos que

$$\prod_{n=1}^{\infty} u_n = \lim_{N \to \infty} \prod_{n=1}^{N} u_n$$

existe.

Lema 3.0.3. Sea $\{\alpha_n\}$ una sucesión de números complejos tales que $\alpha_n \neq 1$ para todo n. Supongamos que

$$\sum_{n=1}^{\infty} |\alpha_n|$$

converge. Entonces

$$\prod_{n=1}^{\infty} (1 - \alpha_n)$$

converge absolutamente.

Demostración. Para una cantidad finita n, tenemos que $|\alpha_n| < \frac{1}{2}$, así que $\log(1 - \alpha_n)$ está definido por la serie usual, y para alguna constante C, tenemos

$$\left|\log\left(1-\alpha_n\right)\right| \le C\left|\alpha_n\right|.$$

Por tanto, el producto converge absolutamente por definición y utilizando la hipótesis de que $\sum_{n=1}^{\infty} |\alpha_n|$ converge.

3.1. Productos de Blaschke

Proposición 3.1.1. Sea $\{\alpha_n\}$ una sucesión en el disco unidad tal que $\alpha_n \neq 0 \forall n \ y$ $\sum_{n=1}^{\infty} (1-|\alpha_n|)$ converge. Entonces el producto

$$f(z) = \prod_{n=1}^{\infty} \frac{\alpha_n - z}{1 - \overline{\alpha_n} z} \frac{|\alpha_n|}{\alpha_n}$$

converge uniformemente para $|z| \le r < 1$ y define una función holomorfa en el disco unidad que tiene los mismos ceros que α_n . Además $|f(z)| \le 1$.

Demostración. Sea

$$b_n(z) = \frac{\alpha_n - z}{1 - \overline{\alpha_n} z} \frac{|\alpha_n|}{\alpha_n}.$$

Por el lema 3.0.3 theorem.3.0.3, sabemos que $\prod_{n=1}^{\infty} b_n$ converge uniformemente si $\sum_{n=1}^{\infty} |1 - b_n|$ converge.

$$|1 - b_n(z)| = \left| 1 + \frac{z - \alpha_n}{1 - \overline{\alpha_n} z} \frac{|\alpha_n|}{\alpha_n} \right| = \left| \frac{(1 - \overline{\alpha_n} z)\alpha_n + (z - \alpha_n) |\alpha_n|}{(1 - \overline{\alpha_n} z)\alpha_n} \right| = \left| \frac{(1 - |\alpha_n|)(\alpha_n + |\alpha_n| z)}{(1 - \overline{\alpha_n} z)\alpha_n} \right| \le \frac{1 + |z|}{1 - |z|} (1 - |\alpha_n|).$$

Entonces si $|z| \leq r$,

$$\sum_{n=1}^{\infty} |1 - b_n(z)| \le \frac{1 + |z|}{1 - |z|} \sum_{n=1}^{\infty} (1 - |\alpha_n|) \le \frac{1 + r}{1 - r} \sum_{n=1}^{\infty} (1 - |\alpha_n|).$$

Lo que prueba que la serie $\sum_{n=1}^{\infty} |1 - b_n(z)|$ converge absoluta y uniformemente en el disco cerrado de radio r. Por lo que $f(z) = \prod_{n=1}^{\infty} b_n$ converge uniformemente para $|z| \leq r < 1$. Además f define una función holomorfa en el disco unidad ya que b_n son funciones holomorfas y su producto infinito converge uniformemente en los compactos.

Sea $B(z) = \prod_{n=1}^{\infty} b_n$ el producto infinito y $B_n(z) = \prod_{k=1}^{n} b_k$ el producto parcial,

$$\left| \frac{B(0)}{B_n(0)} \right| \le \frac{1}{2\pi} \int_0^{2\pi} \left| \frac{B(e^{i\theta})}{B_n(e^{i\theta})} \right| d\theta = \frac{1}{2\pi} \int_0^{2\pi} \left| B(e^{i\theta}) \right| d\theta.$$

Tomando $n \to \infty$, obtenemos

$$\frac{1}{2\pi} \int_0^{2\pi} \left| B(e^{i\theta}) \right| d\theta = 1,$$

y, por consiguiente, $\left|B(e^{i\theta})\right|=1$ en casi todo punto. Es decir, |f(z)|=1 en $\partial \mathbb{D}$.

Capítulo 4

$\mathcal{H}^{\infty}(\mathbb{D})$ como álgebra de Banach

En este capítulo vamos a trabajar con $\mathcal{H}^{\infty}(\mathbb{D})$ como el álgebra de las funciones holomorfas acotadas en el disco unidad.

Definición 4.0.1. Un espacio vectorial complejo se denomina espacio de Banach si es normado y completo.

 $\mathcal{H}^{\infty}(\mathbb{D})$ es un espacio vectorial complejo, que dotado con la norma infinito

$$||f||_{\infty} = \sup_{|z|<1} |f(z)|,$$

es un espacio vectorial normado y completo sobre \mathbb{C} . Atendiendo a la definición anterior, decimos que $(\mathcal{H}^{\infty}(\mathbb{D}), \|\cdot\|_{\infty})$ es un espacio de Banach.

Definición 4.0.2. Decimos que B es un álgebra de Banach si es un espacio de Banach con un álgebra asociada tal que la multiplicación satisface:

$$\forall x, y \in B: \|x \cdot y\| \le \|x\| \cdot \|y\|.$$

También podemos ver $\mathcal{H}^{\infty}(\mathbb{D})$ como un álgebra. En efecto, si $f, g \in \mathcal{H}^{\infty}(\mathbb{D})$ y $\alpha, \beta \in \mathbb{C}$, entonces

$$\alpha f + \beta g \in \mathcal{H}^{\infty}(\mathbb{D})$$
$$fg \in \mathcal{H}^{\infty}(\mathbb{D}).$$

Así, $\mathcal{H}^{\infty}(\mathbb{D})$ es un álgebra de Banach conmutativa (con la función constante 1 como elemento unidad) puesto que es un álgebra conmutativa y un espacio de Banach cuya norma asociada cumple la siguiente propiedad:

$$\forall f, g \in \mathcal{H}^{\infty}(\mathbb{D}) : \|f \cdot g\|_{\infty} \le \|f\|_{\infty} \cdot \|g\|_{\infty}.$$

Definición 4.0.3. Sea B un espacio de Banach. Consideramos B^* el espacio de las aplicaciones $\varphi: B \to \mathbb{C}$ continuas. B^* es un espacio vectorial y tiene una norma natural dada por:

$$\|\varphi\| = \sup_{\|x\| \le 1} |\varphi(x)|.$$

Con esta norma, B^* es un espacio de Banach al que llamamos espacio conjugado de B.

Además de la topología inducida por la norma en el espacio conjugado B^* , vamos a considerar otra topología denominada topología débil-* en B^* . Está definida de la siguiente manera. Sea $\varphi_0 \in B^*$ y tomemos una cantidad finita de elementos $x_1, \ldots x_n \in B$ y $\varepsilon > 0$. Sea

$$U = \{ \varphi \in B^* : |\varphi(x_k) - \varphi_0(x_k)| < \varepsilon, k = 1, \dots, n \}.$$

un entorno φ_0 . Un abierto de esta topología será, por tanto, cualquier unión de tales entornos U.

Es la topología más débil de B^* tal que todas las funciones $\varphi \to \varphi(x)$ son continuas de B^* en \mathbb{C} , con $x \in B$. Esta topología se denota por $\sigma(B^*, B)$.

Observación. El disco unidad cerrado de B^* es compacto en la topología débil-*.

Recordemos que $\phi: \mathcal{H}^{\infty}(\mathbb{D}) \to \mathbb{C}$ es un homomorfismo de álgebras si para todos $f, g \in \mathcal{H}^{\infty}(\mathbb{D})$ y $\alpha, \beta \in \mathbb{C}$ se cumple:

$$\phi(\alpha f + \beta g) = \alpha \phi(f) + \beta \phi(g)
\phi(f \cdot g) = \phi(f) \cdot \phi(g).$$
(4.1)

El espectro de $\mathcal{H}^{\infty}(\mathbb{D})$, denotado por $\mathfrak{M} = \mathfrak{M}(\mathcal{H}^{\infty}(\mathbb{D}))$, es el espacio de los homomorfismos $\phi : \mathcal{H}^{\infty}(\mathbb{D}) \to \mathbb{C}$ no nulos. Observamos que tales homomorfismos verifican que $\|\phi\| = 1$ y son continuos.

 \mathfrak{M} es un subconjunto del espacio conjugado $\mathcal{H}^{\infty}(\mathbb{D})^*$ y, de hecho, está contenido en el disco unidad de $\mathcal{H}^{\infty}(\mathbb{D})^*$. Además, \mathfrak{M} es cerrado en la topología débil estrella en B^* .

Como el disco unidad en $\mathcal{H}^{\infty}(\mathbb{D})^*$ equipado con la topología débil-* es compacto, se sigue que \mathfrak{M} (como subconjunto de $\mathcal{H}^{\infty}(\mathbb{D})^*$) equipado con la topología débil estrella es un espacio Hausdorff compacto. ?

En este punto queremos asociar cada elemento de x de B con uno que estará sobre $\mathfrak{M}(B)$. Para ello vamos a definir la siguiente aplicación:

$$\widehat{x}: \mathfrak{M}(B) \to \mathbb{C}$$
 $\varphi \mapsto \varphi(x).$

Cada \widehat{x} es una función continua en $\mathfrak{M}(B)$. De hecho, por definición, la topología débil* es la topología más débil de $\mathfrak{M}(B)$ que hace que cada \widehat{x} sea continua. Así pues, tenemos la siguiente representación a la que se le suele denominar **transformada de Gelfand**

$$x \to \widehat{x}$$
.

La imagen de B bajo este homomorfismo es el álgebra $\widehat{B} = \{\widehat{x} : \mathfrak{M}(B) \to \mathbb{C} \mid x \in B\}.$

Lo que hemos comentado puede aplicarse a $\mathcal{H}^{\infty}(\mathbb{D})$. Así tenemos la siguiente aplicación

$$\widehat{f}: \mathfrak{M} \to \mathbb{C}$$
 $\phi \mapsto \phi(f),$

con $x \in \mathcal{H}^{\infty}(\mathbb{D})$, que da lugar a la representación $f \to \widehat{f}$. Vamos a poder interpretar $\mathcal{H}^{\infty}(\mathbb{D})$ como el álgebra de las funciones continuas en el espacio compacto de los ideales maximales \mathfrak{M} . Hay que hablar más de la relación de \mathfrak{M} y los ideales maximales.

Quizá es mejor hablar primero de la transformada de Gelfand y luego introducir la topología débil-* en \mathfrak{M} .

Al espacio \mathfrak{M} se le suele llamar el espacio de ideales maximales de $\mathcal{H}^{\infty}(\mathbb{D})$. Para cada $\phi \in \mathfrak{M}$, el kernel de ϕ es un ideal maximal en el álgebra $\mathcal{H}^{\infty}(\mathbb{D})$. Recíprocamente, todo ideal maximal en $\mathcal{H}^{\infty}(\mathbb{D})$ se corresponde con el núcleo de un homomorfismo en *fiber*. Vamos a estudiar la estructura de este espacio.

Los únicos homomorfismos complejos evidentes de $\mathcal{H}^{\infty}(\mathbb{D})$ son las evaluaciones

$$\delta_z(f) = f(z).$$

Hablar más de las evaluaciones.

Existe una aplicación continua que lleva \mathfrak{M} en el disco unidad cerrado. Si denotamos por id la función identidad de \mathbb{D} ,

$$id(z) = z, z \in \mathbb{D},$$

la proyección que buscamos lleva los homomorfismos $\phi \in \mathfrak{M}$ en su correspondiente valor en la función id. Así pues, la aplicación que nos interesa es $\widehat{\mathrm{id}}$. Para evitar confusiones, vamos a introducir una notación alternativa para referirnos a la función $\widehat{\mathrm{id}}$. Si $\phi \in \mathfrak{M}$,

$$\pi: \mathfrak{M} \to \overline{\mathbb{D}}$$

$$\phi \mapsto \phi(\mathrm{id}). \tag{4.2}$$

Teorema 4.0.4. La aplicación $\pi: \mathfrak{M} \to \overline{\mathbb{D}}$ definida por $4.2\mathcal{H}^{\infty}(\mathbb{D})$ como álgebra de Banachequation.4.0.2 es continua. π es inyectiva sobre el disco abierto \mathbb{D} y π^{-1} aplica homeomorficamente \mathbb{D} sobre un abierto de \mathfrak{M} .

En esta prueba llamo λ a los puntos del disco y z a la variable de la función f.

Demostración. π es continua por definición. Veamos que π lleva \mathfrak{M} en el disco cerrado. En efecto, ya hemos observado antes que cada punto del disco abierto \mathbb{D} está en la imagen de π puesto que $\pi(\phi_{\lambda}) = \lambda$. Como \mathfrak{M} es un conjunto compacto que contiene a \mathbb{D} , y la imagen de un compacto por una aplicación continua es también un compacto, entonces $\pi(\mathfrak{M})$ es compacto. Así pues, como $\pi(\mathfrak{M})$ es un conjunto compacto que contiene a \mathbb{D} ,

contiene todo el disco cerrado $\overline{\mathbb{D}}$.

Veamos ahora que π es inyectiva sobre el disco. Para ello supongamos que $|\lambda| < 1$ y $\pi(\phi) = \phi(\mathrm{id}) = \lambda$, con $\phi \in \mathfrak{M}$. Si $f(\lambda) = 0$, entonces $f(z) = (z - \lambda)g(z)$ y

$$\phi(f) = \phi(z - \lambda)\phi(f) = 0 \cdot \phi(f) = 0.$$

Si
$$f(\lambda) = c$$
, entonces $f(z) = c + g(z)$, con $g(z) = 0$ y

$$\phi(f) = \phi(c) + \phi(g) = c + 0 = c.$$

Por lo tanto, $\phi(f) = f(\lambda)$ para toda $f \in \mathcal{H}^{\infty}(\mathbb{D})$, es decir, ϕ es la evaluación en λ . Esto prueba que π es inyectiva sobre los puntos del disco unidad \mathbb{D} .

Si tomamos $\Delta = \pi^{-1}(\mathbb{D}) = \{\phi_z : z \in \mathbb{D}\}$, entonces π lleva Δ homeomorficamente en el disco \mathbb{D} ya que la topología de Δ es la topología débil definida por las aplicaciones \widehat{f} y la topología de \mathbb{D} es la topología débil definida por las aplicaciones $f \in \mathcal{H}^{\infty}(\mathbb{D})$. ?

Si $|\alpha| = 1$, decimos que $\pi^{-1}(\alpha)$ es la fibra de \mathfrak{M} sobre α y lo denotamos por \mathfrak{M}_{α} :

$$\mathfrak{M}_{\alpha} = \pi^{-1}(\alpha) = \{ \phi \in \mathfrak{M} : \phi(\mathrm{id}) = \alpha \}.$$

La fibra \mathfrak{M}_{α} es un conjunto cerrado de \mathfrak{M} . Intuitivamente, los elementos de \mathfrak{M}_{α} son los homomorfismos complejos de \mathfrak{M} que se comportan como la "evaluación en α ", es decir, los homomorfismos $\phi \in \mathcal{H}^{\infty}(\mathbb{D})$ que llevan cada $f \in \mathcal{H}^{\infty}(\mathbb{D})$ en algo parecido al valor límite f(z) cuando z se aproxima a α . Vamos a ver esto con más detalle a continuación.

Teorema 4.0.5. Sea f una función en $\mathcal{H}^{\infty}(\mathbb{D})$ y sea α un punto del círculo unidad. Sea $\{z_n\}$ una sucesión de puntos en el disco unidad \mathbb{D} que converge a α , y supongamos que el límite

$$\zeta = \lim_{n \to \infty} f(z_n)$$

existe. Entonces existe un homomorfismo complejo ϕ en la fibra \mathfrak{M}_{α} tal que $\phi(f) = \zeta$.

Demostración. Sea $J = \{h \in \mathcal{H}^{\infty}(\mathbb{D}) : \lim_{n \to \infty} h(z_n) = 0\}$ un ideal propio en $\mathcal{H}^{\infty}(\mathbb{D})$. J está contenido en un ideal maximal M, esto es, existe un homomorfismo complejo ϕ de $\mathcal{H}^{\infty}(\mathbb{D})$ del que M es el núcleo. En particular, $\phi(h) = 0$ para todo $h \in J$. Las funciones $(z - \alpha)$ y $(f - \zeta)$ están ambas en J. Entonces, $\phi(z) = \alpha$ y $\phi(f) = \zeta$. Por lo tanto ϕ es el homomorfismo buscado.

Teorema 4.0.6. Sea f una función en $\mathcal{H}^{\infty}(\mathbb{D})$ y sea α un punto del círculo unidad. La función \widehat{f} es constante en la fibra \mathfrak{M}_{α} si y solo si f se puede extender con continuidad a $\mathbb{D} \cup \{\alpha\}$.

Demostración. Supongamos primero que f se puede extender con continuidad a $\mathbb{D} \cup \{\alpha\}$. Esto significa que existe un número complejo ζ tal que $\lim_{z_n \to \alpha} f(z_n) = \zeta$ para toda sucesión $\{z_n\}$ en \mathbb{D} que converge a α . Queremos mostrar que \widehat{f} vale constantemente ζ en la fibra \mathfrak{M}_{α} , es decir, $\phi(f) = \zeta$ para todo $\phi \in \mathfrak{M}_{\alpha}$.

Podemos suponer que $\zeta = 0$. Sea $h(z) = \frac{1}{2}(1 + z\alpha^{-1})$, así que $h(\alpha) = 1$ y |h| < 1 en cualquier otro lugar dentro del disco unidad cerrado. Como f es continua en α y toma el valor 0, es fácil ver que $(1 - h^n)f$ converge uniformemente a f cuando $n \to \infty$. Si ϕ es un homomorfismo complejo de $\mathcal{H}^{\infty}(\mathbb{D})$ que yace en la fibra \mathfrak{M}_{α} , es decir, $\phi(z) = \alpha$, entonces $\phi(h) = 1$. Por lo tanto, $\phi[(1 - h^n)f] = 0$, y, como ϕ es continua, $\phi(f) = 0$. Así, \hat{f} es la función idénticamente nula en \mathfrak{M}_{α} .

Si \widehat{f} es constante en la fibra \mathfrak{M}_{α} , entonces el Teorema 4.0.5theorem.4.0.5 muestra directamente que f se puede extender con continuidad a $\mathbb{D} \cup \{\alpha\}$.

Podemos ahora hacernos algunas preguntas de carácter topológico sobre el espacio de ideales maximales de $\mathcal{H}^{\infty}(\mathbb{D})$. Las evaluaciones punto a punto llevan el disco unidad abierto en un conjunto abierto Δ de \mathfrak{M} . El resto de homomorfismos yacen en las fibras \mathfrak{M}_{α} y son límites de los puntos de Δ . La cuestión que nos planteamos es la siguiente: ¿son esos homomorfismos realmente límites de ϕ_z en la topología de \mathfrak{M} ? En otras palabras, ¿es el disco \mathbb{D} denso en \mathfrak{M} ? A esta pregunta se le ha denominado El Problema de la Corona.

Teorema 4.0.7 (Teorema de la Corona). El problema de la corona es equivalente a: Sean $f_1, \ldots, f_n \in \mathcal{H}^{\infty}(\mathbb{D})$ y $\delta > 0$ tales que para cada $z \in \mathbb{D}$ se tiene

$$|f_1(z)| + \dots + |f_n(z)| \ge \delta,$$

entonces existen $g_1, \ldots, g_n \in \mathcal{H}^{\infty}(\mathbb{D})$ tales que $f_1g_1 + \cdots + f_ng_n = 1$.

Demostración. Supongamos que \mathbb{D} es denso. Sean $f_1, \ldots, f_n \in \mathcal{H}^{\infty}(\mathbb{D})$ y $\delta > 0$ tales que para cada $z \in \mathbb{D}$ se tiene

$$|f_1(z)| + \cdots + |f_n(z)| \ge \delta.$$

Si la función constante 1 no se pudiera escribir de la forma $f_1g_1 + \cdots + f_ng_n$, con $g_1, \ldots, g_n \in \mathcal{H}^{\infty}(\mathbb{D})$, tomemos $\phi \in \mathfrak{M}$ no nulo tal que el ideal maximal ker ϕ contiene al ideal propio generado por f_1, \ldots, f_n .

Como \mathbb{D} es denso en \mathfrak{M} para w^* , existe una red $\{z_{\alpha}\}\subset \mathbb{D}$ que tiende w^* a ϕ . En particular, para cada f_j se tiene que $\lim_{\alpha} f_j(z_{\alpha}) = \widehat{f}_j(\phi) = 0, 1 \leq j \leq n$. Esto contradice la acotación relativa a $|f_1(z)| + \cdots + |f_n(z)|$.

Recíprocamente, supongamos que \mathbb{D} no es denso en \mathfrak{M} , entonces existe un elemento no nulo $\phi_0 \in \mathfrak{M}$ que no está en la adherencia de \mathbb{D} . Por definición de la topología de \mathfrak{M} , existen funciones $f_1, \ldots, f_n \in \mathcal{H}^{\infty}(\mathbb{D})$ y $\delta > 0$ tales que $\phi_0(f_j) = 0, j = 1, \ldots, n$ y el abierto

$$\{\phi \in \mathfrak{M} : |\phi(f_j)| < \delta, 1 \le j \le n \}$$

no corta a \mathbb{D} . En particular, para cada $z \in \mathbb{D}$ se cumple que

$$|f_1(z)| + \cdots + |f_n(z)| \ge \delta$$

y las funciones f_1, \ldots, f_n están en un ideal propio de $J \subset \mathcal{H}^{\infty}(\mathbb{D})$ ya que $J \subset \ker \phi_0$.

La afirmación de que f_1, \ldots, f_n están en un ideal propio es equivalente a la afirmación de que la función constante 1 no se puede escribir de la forma $f_1g_1 + \cdots + f_ng_n = 1$, con $g_1, \ldots, g_n \in \mathcal{H}^{\infty}(\mathbb{D})$, ya que $\phi(1) = 1$ y $\phi(f_1g_1 + \cdots + f_ng_n) = \phi(f_1)\phi(g_1) + \cdots + \phi(f_n)\phi(g_n) = 0$.

Proposición 4.0.8. Para todo $f \in \mathcal{H}^{\infty}(\mathbb{D})$ y α tal que $|\alpha| = 1$ se cumple que

$$\widehat{f}(\mathfrak{M}_{\alpha}) \subset Cl(f,\alpha).$$

Demostración. Sea $\phi \in \mathfrak{M}_{\alpha}$. Veamos que existe una sucesión $\{z_n\} \subset \mathbb{D}$ tal que

- (III) $\lim_{n\to\infty} z_n = \alpha$
- (IV) $\lim_{n\to\infty} f(z_n) = \widehat{f}(\phi).$

Como \mathbb{D} es denso en \mathfrak{M} para w^* , se cumple que existe $\{z_{\alpha}\}\subset\mathbb{D}$ tal que $\delta_{z_{\alpha}}\to\phi$. Es decir, para toda función $h\in\mathcal{H}^{\infty}(\mathbb{D})$ se tiene que $h(z_{\alpha})\to\widehat{h}(\phi)$. En particular, para g(z)=z es cierto por lo que, como $\phi\in\mathfrak{M}_{\alpha}$, tenemos

$$g(z_{\alpha}) = z_{\alpha} \to \widehat{g}(\phi) = \alpha.$$

Si tomamos ahora $\{z_{\alpha_n}\}$ una subsucesión de $\{z_{\alpha}\}$ cumplirá que $\lim_{n\to\infty} z_n = \alpha$ y, además, $\lim_{n\to\infty} f(z_n) = \widehat{f}(\phi)$. Es decir, $\widehat{f}(\phi) \in Cl(f,\alpha)$.

Apéndice A

Notación

 $\mathcal{H}(U)$: espacio de las funciones holomorfas en U.

 $\mathcal{H}^\infty(U)$: espacio de las funciones holomorfas y acotadas en U.

 $\mathbb{D} :$ disco unidad.

 $\overline{\mathbb{D}}$: disco unidad cerrado.

 $\partial \mathbb{D}$: borde del disco unidad.

 $L^{\infty}(U)$: espacio de funciones medibles en U, esencialmente acotadas.

 $\mathfrak{M}(B)$: espacio de los homomorfismos complejos del álgebra B.