<u> Calcul Numeric - Examen - 2 Iunie 2025 - Profir Alexandru - 235</u>

- 1) Fie $\left(\pi_k\right)_{k\in N}$ polinoamele ortogonale Legendere monice.
- (a) Arătați că polinoamele

$$\pi_k^+(t^2) = \pi_{2k}(t)$$

sunt ortogonale monice pe [0,1] în raport cu ponderea $w(t) = \frac{1}{\sqrt{t}}$.

Polinoamele Legendre $\pi_m(x)$ sunt ortogonale pe intervalul [-1,1] în raport cu funcția pondere w(x)=1, asta însemnând că:

$$\int_{-1}^{1} \pi_k(x) \pi_l(x) dx = 0, \text{ pentru } k \neq l$$

Paritatea polinoamelor Legendre $\pi_m = \frac{m!}{(2,)!} \cdot \frac{d^t}{dt^m} (t^2 - 1)^m$ (forma rezultată din Formula lui Rodrigues) depinde de termenul **m**. Demonstrăm acest lucru prin următoarele:

- Fie $g(t) = (t^2 1)^m$;
- $g(-t) = [(-t)^2 1]^m = (t^2 1)^m = g(t);$
- derivarea de m ori a unei funcții pare rezultă tot într-o funcție pară, dacă m par, și într-o funcție impară, dacă m - impar.

Rezultă astfel că paritatea lui $\frac{\mathrm{d}^m}{\mathrm{d}t^m}(t^2-1)^m$ depinde de paritatea lui **m**:

- m par: $(t^2-1)^m$ par, $\frac{\mathrm{d}^m}{\mathrm{d}t^m}(t^2-1)^m$ par, π_m multiplu scalar al acestei derivate, rezultă că π_m par;
- m impar: $(t^2 1)^m$ par, $\frac{\mathrm{d}^m}{\mathrm{d}t^m}(t^2 1)^m$ impar, π_m multiplu scalar al acestei derivate, rezultă că π_m impar;

Rezultă astfel paritatea $\pi_m = \frac{m!}{(2m)!} \cdot \frac{\mathrm{d}^m}{\mathrm{d}t^m} (t^2 - 1)^m - \begin{cases} \mathrm{par} & m - \mathrm{par} \\ \mathrm{impar} & m - \mathrm{impar} \end{cases}$. Ne interesează ortogonalitatea polinoamelor de grad par, astfel considerăm integrala ortogonalității pentru polinoamele $\pi_{2k}(x), \pi_{2l}(x), \mathrm{pentru} \ k \neq l$:

$$\int_{-1}^{1} \pi_{2k}(x) \pi_{2l}(x) dx = 0 \quad (*)$$

Având interval simetric, și cum $\pi_{2m}(x)$ este par pentru oricare m, integrala (*) pe intervalul simetric [-1,1] rezultă:

$$\int_{-1}^{1} \pi_{2k}(x) \pi_{2l}(x) dx = 2 \cdot \int_{0}^{1} \pi_{2k}(x) \pi_{2l}(x) dx \quad (**)$$

Monicitatea polinoamelor π_k^+ rezultă din următoarele:

- 1. dacă $\pi_{2k}(t)$ este un polinom Legendre monic de grad 2k, termenul sau principal este t^{2k} ;
- 2. rezultă atunci că $\pi_k^+(x) = \pi_{2k}(\sqrt{x})$; termenul principal al lui $\pi_k^+(x)$ va proveni din termenul principal al lui $\pi_{2k}(\sqrt{x})$, care este $(\sqrt{x})^{2k} = x^k$;
- 3. coeficientul acestui termen x^k este 1, deci $\pi_k^+(x)$ este un polinom monic de grad k. (1)

Dorim să demonstrăm că polinoamele $\pi_k^+(t^2) = \pi_{2k}(t)$ sunt ortogonale în raport cu ponderea $w(t) = \frac{1}{\sqrt{t}}$. Facem o schimbare de variabilă $x = t^2 \Rightarrow t = \sqrt{x}$, iar derivând obținem $\mathrm{d}t = \frac{1}{2\sqrt{x}}\mathrm{d}x$. Substituind în integrala (**), obtinem:

 $0 = 2 \cdot \int_0^1 \pi_{2k}(x) \pi_{2l}(x) dx = 2 \cdot \int_0^1 \pi_k^+(x^2) \pi_l^+(x^2) dx = \int_0^1 \frac{1}{\sqrt{t}} \pi_k^+(t) \pi_l^+(t) dt, k \neq l \quad (2) \text{ Din (1) si (2): rezultă astfel că polinoamele } \pi_k^+(t^2) = \pi_{2k}(t) \text{ sunt ortogonale monice pe [0, 1] în raport cu ponderea } w(t) = \frac{1}{\sqrt{t}}.$

(b) Stabiliți formula de cuadratură

$$\int_0^1 \frac{1}{\sqrt{(x)}} f(x) dx = 2 \sum_{k=1}^n A_k f(t_k^2) + R_n(f)$$

unde A_k și t_k , $k=1,\ldots,2n$ sunt coeficienții și respectiv nodurile formulei de cuadratură Gauss-Legendre cu 2n noduri.

Folosim schimbarea de variabilă $x = t^2 \Rightarrow dx = 2tdt$, rezultând astfel:

$$\int_0^1 \frac{1}{\sqrt{x}} f(x) dx = 2 \int_0^1 \frac{1}{t} f(t^2) t dt = \int_{-1}^1 f(t^2) dt.$$
 Folosind formula Gauss-Legendre cu 2n noduri, rezultă:

Pentru a afla restul, dacă $f \in C^{4n}[-1,1], \exists \, \xi \in (-1,1) \, \text{astfel încât:}$

$$R_n(f) = \frac{f^{(4n)}(\xi)}{(4n)!} \int_{-1}^{1} [\pi_{2n}(t)]^2 dt$$

Rezultă formula de cuadratură:

$$\int_0^1 \frac{1}{\sqrt{(x)}} f(x) dx = \int_{-1}^1 f(x^2) dx = 2 \sum_{k=1}^n A_k f(x_k^2) + \frac{f^{(4n)}(\xi)}{(4n)!} \cdot \int_{-1}^1 [\pi_{2n}(x)]^2 dx, \xi \in (-1, 1)$$

(c) Implementarea mai jos și (d) Implementați (în MATLAB) o formulă de cuadratură de tip Gauss pentru integrala $\int_0^1 \frac{\sin(x)}{\sqrt{x}} dx$ cu 8 zecimale exacte.

```
% Functia
f = @(x) \sin(x);
% Integrala exacta
I_{exact} = integral(@(x) (1 ./ sqrt(x)) .* f(x), 0, 1);
% Numarul initial de noduri
n = 2;
% Numarul maxim de iteratii
max_iter = 100;
% Toleranta admisa
tol = 1e-8;
for iter = 1:max_iter
    [g nodes, g coeffs] = gauss rsqrt(n);
    I approx = sum(g coeffs(:) .* f(g nodes(:)));
    if norm(I_approx - I_exact, "inf") < tol</pre>
        fprintf("[nodes = %d] Toleranta %g atinsa in %d iteratii!", n, tol, iter);
        fprintf("Exact: %.16g | Approx: %.16g", I_exact, I_approx);
    end
    n = n + 1;
end
```

[nodes = 4] Toleranta 1e-08 atinsa in 3 iteratii! Exact: 0.6205366034467622 | Approx: 0.6205366029267461

```
if iter >= max_iter
    error("Nu s-a atins convergenta in %d maximum iteratii!", max_iter);
end
```

- 2) Dorim să calculăm $\frac{1}{\sqrt{a}}$, pentru a > 0.
- (a) Pornind de la o ecuație convenabilă și folosind metoda lui Newton, deduceți o metodă pentru calculul lui $\frac{1}{\sqrt{a}}$.

Fie $x = \frac{1}{\sqrt{a}} \Rightarrow x^2 = \frac{1}{a} \Leftrightarrow \frac{1}{x^2} = a \Leftrightarrow \frac{1}{x^2} - a = 0$. Rezultă formula de recurență:

$$f(x) = \frac{1}{x^2} - a,$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = \frac{1}{2} x_n (3 - ax_n^2)$$

(b) Pentru ce valori ale lui x_0 metoda converge?

Pentru a analiza convergența, considerăm funcția de iterație $\phi(x) = \frac{x}{2}(3 - ax^2)$, căutăm rădăcina $\alpha = \frac{1}{\sqrt{(a)}}$.

Derivata lui $\phi(x)$ este:

$$\phi'(x) = \left[\frac{x}{2}(3 - ax^2)\right]' = \frac{1}{2}(3 - ax^2) + \frac{x}{2}(-2ax) = \frac{3}{2} - \frac{ax^2}{2} - 2ax^2 = \frac{3}{2} - \frac{3}{2}ax^2$$

Ţinând cont că x > 0, iar pentru convergența locală este necesar ca $|\phi'(x)| < 1$:

$$\phi'(\alpha) = \phi'\left(\frac{1}{\sqrt{a}}\right) = \frac{3}{2} - \frac{3}{2}a\left(\frac{1}{\sqrt{a}}\right)^2 = \frac{3}{2} - \frac{3}{2} = 0. \text{ Rezultă astfel soluția } falsă \ x_0 = 0.$$

Pentru a obține un interval mai larg de convergență, trebuie să ne asigurăm că iterațiile rămân pozitive și că acestea se apropie de rădăcină. Ținând cont că $x_0 > 0$:

Iterația x_{k+1} trebuie să rămână pozitivă, astfel este necesar ca $3 - ax_k^2 > 0 \Leftrightarrow ax_k^2 < 3 \Leftrightarrow x_k^2 < \frac{3}{a} \Rightarrow x_k < \sqrt{\frac{3}{a}}$. Deci dacă $0 < x_0 < \sqrt{\frac{3}{a}} \Rightarrow x_1 > 0$.

Din condiția $|\phi'(x)| < 1$ pentru convergența monotonă:

 $|\frac{3}{2}-\frac{3}{2}ax^2|<1\Leftrightarrow -1<\frac{3}{2}-\frac{3}{2}ax^2<1$, rezolvăm pentru ambele inegalități:

•
$$\frac{3}{2} - \frac{3}{2}ax^2 < 1 \Leftrightarrow \frac{1}{2} < \frac{3}{2}ax^2 \Leftrightarrow \frac{1}{3} < ax^2 \Leftrightarrow x^2 > \frac{1}{3a} \Leftrightarrow x > \frac{1}{\sqrt{3a}}$$

Rezultă astfel că pentru convergență monotonă în sensul teoremei de punct fix a lui Banach,

 $x_0 \in \left(\frac{\sqrt{3}}{3\sqrt{a}}, \frac{\sqrt{15}}{3\sqrt{a}}\right)$, iar rădăcina $\alpha = \frac{1}{\sqrt{a}}$ aparține acestui interval. Dacă impunem și ca $\phi(x) > 0$, pentru

 $0 < x_0 < \frac{1}{\sqrt{a}}$ convergența este monotonă, adică șirul iterațiilor este crescător și mărginit superior de soluție.

Însă pentru $x_0 > \frac{1}{\sqrt{a}}$, este necesar ca $\phi(x_0) > 0$, obținându-se astfel că $x_0 < \sqrt{\frac{3}{a}}$, convergența fiind asigurată dacă x_0 este suficient de aproape de $\alpha = \frac{1}{\sqrt{a}}$.

(c) Folosiți iterația de la (a) pentru a da o metodă de calcul al radicalului fără împărțiri.

Iterația $x_{k+1} = \frac{x_k}{2} \left(3 - ax_k^2\right)$ aproximează $x \approx \frac{1}{\sqrt{a}}$. Această formulă nu implică nicio operație de împărțire, împărțirea cu 2 fiind o înmulțire cu 0.5, care dpdv. hardware este trivială sau chiar un shift binar.

Odată aproximat $x_N \approx \frac{1}{\sqrt{a}}$, putem calcula \sqrt{a} folosind: $\sqrt{a} = a \cdot \frac{1}{\sqrt{a}} \approx a \cdot x_N$.

```
% Valoarea lui a
a = 3;
real sqrt = sqrt(a);
% Toleranta
tol = 1e-8;
% Numarul maxim de iteratii
max_iter = 100;
% x0 initial: 0 < x0 < sqrt(3/a)</pre>
xk = 1e-1;
for iter = 1:max_iter
    xk1 = xk * (3-a*xk^2) * 0.5;
    approx_sqrt = a * xk1;
    if abs(approx_sqrt - real_sqrt) < tol</pre>
        fprintf("Toleranta %g a fost atinsa in %d iteratii!", tol, iter);
        fprintf("Exact: %.16g | Approx: %.16g", real_sqrt, approx_sqrt);
        break;
    end
    xk = xk1;
end
```

Toleranta 1e-08 a fost atinsa in 9 iteratii! Exact: 1.732050807568877 | Approx: 1.732050807568827

```
if iter >= max_iter
    error("Nu s-a atins convergenta in %d maximum iteratii!", max_iter);
end
```

```
function [g_nodes, g_coeffs] = gauss_rsqrt(n)
   %% GAUSS_RSQRT - determina coeficientii si nodurile pentru o cuadratura de tip Gauss-Legen
   %
                     cu ponderea w(t) = t^{-1/2}
   %
       Inputs:
   %
   %
      n - numarul de noduri;
   %
   %
       Outputs:
   %
   %
       - g_nodes- g_coeffs- coeficientii cuadraturii;
   %
   %%
    [nodes, coeffs] = gauss_legendre(2*n);
   g_nodes = nodes(1:n) .^ 2;
   g_coeffs = 2 * coeffs(1:n);
end
```

```
function [g nodes, g coeffs] = gauss legendre(n)
    %% GAUSS_LEGENDRE - determina coeficientii si nodurile pentru o cuadratura de tip Gauss-Leg
    %
    %
       Inputs:
    %
    %
       - n - numarul de noduri;
    %
   %
       Outputs:
   %
   %
       - g_nodes- g_coeffs- coeficientii cuadraturii;
    %
    %%
    alpha = zeros(n, 1);
    beta = (1:n-1).^2 ./ (4*(1:n-1).^2 - 1);
    beta = [2; beta(:)];
    [g_nodes, g_coeffs] = gauss_quad(alpha', beta');
end
function [g_nodes, g_coeff] = gauss_quad(alpha, beta)
    %% GAUSS_QUAD - generare cuadratura Gauss
    %
                    calculeaza noduri si coeficienti pentru cuadraturi
    %
                    Gauss, cu alpha si beta cunoscuti, folosing matricea
    %
                    Jacobi
    %
   %
       Inputs:
    %
   %
       - alpha, beta - coeficientii cunoscuti pentru matricea Jacobi
    %
   %
       Outputs:
    %
   %
        - g_nodes - nodurile cuadraturii Gauss;
   %
        - g coeff

    coeficientii cuadraturii Gauss;

   % Numarul de noduri
    n = length(alpha);
   % Radacinile elementelor Beta ale termenilor sub/supra-diagonali
    rb = sqrt(beta(2:n));
   % Matricea Jacobi - matrice tridiagonala
    J = diag(alpha) + diag(rb, -1) + diag(rb, 1);
    % Diagonalizarea lui J - d va contine valorile proprii/nodurile
    [v, d] = eig(J);
   % Nodurile cuadraturii
    g_nodes = diag(d);
   % Coeficientii cuadraturii - patratul primei componente din vectorul
    % propriu
    g_coeff = beta(1) * v(1, :) .^ 2;
end
```