Revise some code from A1

```
In [7]: # === Core Python / Utilities ===
        import math, random
        from math import sqrt
        from pathlib import Path
        # === Data handling & analysis ===
        import numpy as np
        import pandas as pd
        # === Visualization ===
        import matplotlib.pyplot as plt
        import seaborn as sns
        # === Scikit-learn: Model selection ===
        from sklearn.model selection import (
            train_test_split, KFold, cross_val_score, cross_validate, GridS
        # === Scikit-learn: Preprocessing & pipelines ===
        from sklearn.preprocessing import OneHotEncoder, StandardScaler
        from sklearn.compose import ColumnTransformer, TransformedTargetReg
        from sklearn.impute import SimpleImputer
        from sklearn.pipeline import Pipeline
        # === Scikit-learn: Models ===
        from sklearn.linear_model import LinearRegression
        from sklearn.tree import DecisionTreeRegressor
        from sklearn.ensemble import RandomForestRegressor
        from sklearn.svm import SVR
        from sklearn.neighbors import KNeighborsRegressor
        # === Scikit-learn: Metrics ===
        from sklearn.metrics import mean_absolute_error, mean_squared_error
In [8]: # Paths
        root = Path("/workspace/ML/A2")
        data_path = root / "data" / "Cars.csv"
        # Optional: quick existence check helps early debugging
        assert data_path.exists(), f"Missing file: {data_path}"
        # Load
        df_raw = pd.read_csv(data_path)
        # Display 5 rows in notebooks; in .py you could print instead
        display(df_raw.head())
```

	name	year	selling_price	km_driven	fuel	seller_type	transmission
0	Maruti Swift Dzire VDI	2014	450000	145500	Diesel	Individual	Manual
1	Skoda Rapid 1.5 TDI Ambition	2014	370000	120000	Diesel	Individual	Manual
2	Honda City 2017- 2020 EXi	2006	158000	140000	Petrol	Individual	Manual
3	Hyundai i20 Sportz Diesel	2010	225000	127000	Diesel	Individual	Manual
4	Maruti Swift VXI BSIII	2007	130000	120000	Petrol	Individual	Manual

```
In [9]: # Basic overview
    print("Shape:", df_raw.shape)
    print("\nColumns:", df_raw.columns.tolist())

print("\nDtypes:")
    print(df_raw.dtypes)

print("\nMissing values (top 20):")
    print(df_raw.isna().sum().sort_values(ascending=False).head(20))

target_col = "selling_price"
    if target_col in df_raw.columns:
        print("\nTarget describe (selling_price):")
        print(df_raw[target_col].describe())
    else:
        print("\n_ 'selling_price' not found. Columns are:", df_raw.co
```

```
Shape: (8128, 13)
        Columns: ['name', 'year', 'selling_price', 'km_driven', 'fuel', 'seller_type', 'transmission', 'owner', 'mileage', 'engine', 'max_powe
         r', 'torque', 'seats']
        Dtypes:
        name
                            object
                             int64
        year
         selling_price
                             int64
        km_driven
                             int64
         fuel
                            object
         seller_type
                            object
        transmission
                            object
        owner
                            object
                            object
        mileage
        engine
                            object
        max_power
                            object
        torque
                            object
         seats
                           float64
        dtype: object
        Missing values (top 20):
        torque
                          222
        mileage
                           221
        engine
                           221
         seats
                           221
                           215
        max_power
                             0
        name
                             0
        year
        selling_price
                             0
         km driven
                             0
         fuel
                             0
        seller_type
                             0
        transmission
                             0
                             0
        owner
        dtype: int64
        Target describe (selling_price):
         count 8.128000e+03
        mean
                  6.382718e+05
        std
                8.062534e+05
                 2.999900e+04
        min
        25%
                 2.549990e+05
        50%
                 4.500000e+05
        75%
                  6.750000e+05
                  1.000000e+07
        Name: selling_price, dtype: float64
In [10]: df = df_raw.copy()
          # 1) Remove CNG/LPG fuel rows
          if "fuel" in df.columns:
              before = len(df)
              df = df[~df["fuel"].isin(["CNG", "LPG"])].reset_index(drop=True)
              print(f"Removed rows with fuel in {{'CNG','LPG'}}: {before - le
```

```
else:
   print("  'fuel' column not found")
# 2) Map owner → integers
owner_map = {
   "First Owner": 1,
   "Second Owner": 2,
   "Third Owner": 3,
   "Fourth & Above Owner": 4,
   "Test Drive Car": 5,
if "owner" in df.columns:
   unmapped = set(df["owner"].dropna().unique()) - set(owner_map.k
       print("A Unmapped owner values:", unmapped)
   df["owner"] = df["owner"].map(owner_map)
else:
   print("// 'owner' column not found")
# 3) Clean 'mileage': keep numeric part before space (e.g., '18.2 k
def _first_number(x):
   if pd.isna(x):
       return np.nan
   # cast to str, split on whitespace, take first token, try to fl
   tok = str(x).strip().split()[0]
   try:
        return float(tok)
   except:
       return np.nan
if "mileage" in df.columns:
   df["mileage"] = df["mileage"].apply(_first_number)
else:
   print("\nAfter 3 rules → shape:", df.shape)
display(df.head(3))
```

Removed rows with fuel in {'CNG','LPG'}: 95

After 3 rules → shape: (8033, 13)

	name	year	selling_price	km_driven	fuel	seller_type	transmission
0	Maruti Swift Dzire VDI	2014	450000	145500	Diesel	Individual	Manual
1	Skoda Rapid 1.5 TDI Ambition	2014	370000	120000	Diesel	Individual	Manual
2	Honda City 2017- 2020 EXi	2006	158000	140000	Petrol	Individual	Manual

```
In [11]: # continue cleaning
         df_clean = df.copy()
         # 4) Clean 'engine' (e.g., "1248 CC" → 1248.0)
         def _to_float_unit(x, unit="CC"):
             if pd.isna(x):
                 return np.nan
             s = str(x).strip().split()[0] # take first token before space
                 return float(s)
             except:
                 return np.nan
         if "engine" in df_clean.columns:
             df_clean["engine"] = df_clean["engine"].apply(lambda x: _to_flo
         else:
             print(" ! 'engine' column not found")
         # 5) Clean 'max_power' (e.g., "74 bhp" → 74.0)
         if "max_power" in df_clean.columns:
             df_clean["max_power"] = df_clean["max_power"].apply(lambda x: _
         else:
             print("1 'max_power' column not found")
         # 6) Extract 'brand' (first word only from 'name')
         if "name" in df clean.columns:
             df_clean["brand"] = df_clean["name"].apply(lambda s: str(s).spl
         else:
             print("A 'name' column not found, cannot create 'brand'")
         print("\nAfter engine/max power/brand cleaning → shape:", df clean.
         display(df_clean.head(5)[["engine","max_power","brand"]])
```

After engine/max_power/brand cleaning → shape: (8033, 14)

	engine	max_power	brand
0	1248.0	74.00	Maruti
1	1498.0	103.52	Skoda
2	1497.0	78.00	Honda
3	1396.0	90.00	Hyundai
4	1298.0	88.20	Maruti

```
In [12]: df2 = df_clean.copy() if 'df_clean' in globals() else df.copy()
         # 7) Drop 'torque' (assignment says we don't use it)
         if 'torque' in df2.columns:
             df2 = df2.drop(columns=['torque'])
             print("Dropped 'torque' column.")
         else:
             print("A 'torque' column not found (already dropped or never e
         # 8) Remove Test Drive Cars (owner == 5)
         if 'owner' in df2.columns:
             before = len(df2)
             df2 = df2[df2['owner'] != 5].reset_index(drop=True)
             removed = before - len(df2)
             print(f"Removed Test Drive Car rows (owner==5): {removed}")
         else:
             print("... 'owner' column not found; cannot filter Test Drive ca
         # 9) Add log-transformed target y_log = log(selling_price)
         if 'selling_price' in df2.columns:
             # guard: drop rows with missing/nonpositive prices (log require
             bad_rows = df2['selling_price'].isna().sum() + (df2['selling_pr
             if bad_rows:
                 print(f" Dropping {bad rows} rows with missing/nonpositiv
                 df2 = df2[df2['selling_price'].notna() & (df2['selling_pric
             df2['y_log'] = np.log(df2['selling_price'])
             print("Added target column 'y_log' = log(selling_price).")
         else:
             print("A 'selling_price' not found; cannot create y_log.")
         print("\nShape after finishing cleaning:", df2.shape)
         display(df2.head(5))
```

Dropped 'torque' column.
Removed Test Drive Car rows (owner==5): 5
Added target column 'y_log' = log(selling_price).
Shape after finishing cleaning: (8028, 14)

	name	year	selling_price	km_driven	fuel	seller_type	transmission
0	Maruti Swift Dzire VDI	2014	450000	145500	Diesel	Individual	Manual
1	Skoda Rapid 1.5 TDI Ambition	2014	370000	120000	Diesel	Individual	Manual
2	Honda City 2017- 2020 EXi	2006	158000	140000	Petrol	Individual	Manual
3	Hyundai i20 Sportz Diesel	2010	225000	127000	Diesel	Individual	Manual
4	Maruti Swift VXI BSIII	2007	130000	120000	Petrol	Individual	Manual

after i finish prepare and clean data next part i would like to check data healty

```
In [13]: # Prepare X/y views (no modeling yet - just to inspect columns)
         target = 'y_log'
         protect = ['selling_price', 'y_log'] # columns to exclude from X
         X = df2.drop(columns=protect, errors='ignore')
         y = df2[target] if target in df2.columns else None
         print("X shape:", X.shape)
         print("y length:", 0 if y is None else len(y))
         # Peek columns by type
         cat_cols = X.select_dtypes(include=['object', 'category']).columns.
         num_cols = X.select_dtypes(include=[np.number]).columns.tolist()
         print("\nCategorical columns:", cat_cols)
         print("Numeric columns:", num_cols)
         # Quick sanity peek
         display(X.head(3))
        X shape: (8028, 12)
        y length: 8028
        Categorical columns: ['name', 'fuel', 'seller_type', 'transmission',
        'brand']
        Numeric columns: ['year', 'km_driven', 'owner', 'mileage', 'engine',
        'max_power', 'seats']
```

	name	year	km_driven	fuel	seller_type	transmission	owner	milea
0	Maruti Swift Dzire VDI	2014	145500	Diesel	Individual	Manual	1	23.4
1	Skoda Rapid 1.5 TDI Ambition	2014	120000	Diesel	Individual	Manual	2	21.
2	Honda City 2017- 2020 EXi	2006	140000	Petrol	Individual	Manual	3	17.

split train and test

Train shape: (6422, 11) Test shape: (1606, 11)

preprocessing

Pipeline

model Training (test with baseline not scratch)

```
In [17]: model.fit(X_train, y_train)
         # Predict on test (already back to normal price units)
         y_pred = model.predict(X_test)
         # Metrics
         mae = mean_absolute_error(y_test, y_pred)
         rmse = np.sqrt(mean_squared_error(y_test, y_pred))
         r2 = r2_score(y_test, y_pred) # ← your custom function
         print(f"Baseline Linear Regression")
         print(f"MAE: {mae:,.2f}")
         print(f"RMSE: {rmse:,.2f}")
         print(f"R2: {r2:.3f}")
        Baseline Linear Regression
        MAE: 115,095.22
        RMSE: 230,549.13
        R<sup>2</sup>:
             0.931
In [18]: cv = KFold(n_splits=5, shuffle=True, random_state=42)
```

Start A2 Here!

Task 1 Implementation

Let's do code from scratch (This part is like i try to see each function work well after i adjust code or not)

Remark** i create linear_scratch.py which is i copy model from "03-Regularization" and i save as linear_scratch.py Remark*** in this part just try to use dummy data which create by np.random not a car.set

linear_scratch.py is here

this is my final model before going to Part 2

```
In [ ]: import numpy as np
        # scikit-learn KFold used at class level
        from sklearn.model_selection import KFold
        # make mlflow optional so import doesn't crash if not installed yet
        try:
            import mlflow
        except Exception:
            # lightweight no-op shim so your code still runs
            class _NoMLflow:
                def start_run(self, *a, **k):
                    from contextlib import nullcontext
                    return nullcontext()
                def log_params(self, *a, **k): pass
                def log_metric(self, *a, **k): pass
            mlflow = _NoMLflow()
        class LinearRegressionScratch(object):
            #in this class, we add cross validation as well for some spicy
            kfold = KFold(n_splits=3)
```

```
def __init__(self, regularization, lr=0.001, method='batch', nu
    self.lr
                   = lr
    self.num_epochs = num_epochs
    self.batch_size = batch_size
    self.method
                  = method
    self.cv
                    = CV
    self.regularization = regularization
    self.init = init
    self.rng = np.random.default_rng(random_state)
    self.use momentum = bool(use momentum)
    self.momentum = float(momentum)
def _add_intercept(self, X):
    """Add a column of ones as the first column of X for bias t
    X = np.asarray(X)
    intercept = np.ones((X.shape[0], 1))
    return np.hstack([intercept, X])
def mse(self, ytrue, ypred):
    return ((ypred - ytrue) ** 2).sum() / ytrue.shape[0]
def fit(self, X_train, y_train):
    X_{train} = np.asarray(X_{train})
    y_train = np.asarray(y_train).ravel()
    #create a list of kfold scores
    self.kfold_scores = []
    self.kfold r2 = []
    #reset val loss
    self.val loss old = np.inf
    #kfold.split in the sklearn....
    #5 splits
    for fold, (train idx, val idx) in enumerate(self.cv.split(X)
        X_{cross\_train} = X_{train[train_idx]}
        y_cross_train = y_train[train_idx]
        X_cross_val = X_train[val_idx]
        y_cross_val = y_train[val_idx]
        n_features = X_cross_train.shape[1]
        self._init_weights(n_features + 1)
        self.v = np.zeros_like(self.theta) # momentum buffer
        #define X_cross_train as only a subset of the data
        #how big is this subset? => mini-batch size ==> 50
        #one epoch will exhaust the WHOLE training set
        with mlflow.start_run(run_name=f"Fold-{fold}", nested=T
            params = {"method": self.method, "lr": self.lr, "re
            mlflow.log_params(params=params)
            for epoch in range(self.num_epochs):
```

#with replacement or no replacement

```
#with replacement means just randomize
                #with no replacement means 0:50, 51:100, 101:15
                #shuffle your index
                perm = np.random.permutation(X_cross_train.shap
                X_cross_train = X_cross_train[perm]
                y_cross_train = y_cross_train[perm]
                if self.method == 'sto':
                    for batch_idx in range(X_cross_train.shape[
                        X_method_train = X_cross_train[batch_id
                        y_method_train = y_cross_train[batch_id
                        train_loss = self._train(X_method_train)
                elif self.method == 'mini':
                    for batch_idx in range(0, X_cross_train.sha
                        \#batch_idx = 0, 50, 100, 150
                        X_method_train = X_cross_train[batch_id
                        y_method_train = y_cross_train[batch_id
                        train_loss = self._train(X_method_train
                else:
                    X_method_train = X_cross_train
                    y_method_train = y_cross_train
                    train_loss = self._train(X_method_train, y_
                mlflow.log_metric(key="train_loss", value=train_
                yhat_val = self.predict(X_cross_val)
                val_loss_new = self.mse(y_cross_val, yhat_val)
                # NEW: val R^2
                val_r2_new = self.r2(y_cross_val, yhat_val)
                mlflow.log_metric(key="val_loss", value=val_los
                mlflow.log_metric(key="val_r2", value=val_r2_
                #early stopping
                if np.allclose(val_loss_new, self.val_loss_old)
                self.val_loss_old = val_loss_new
            self.kfold_scores.append(val_loss_new)
            self.kfold_r2.append(val_r2_new)
            print(f"Fold {fold}: {val_loss_new}")
def _init_weights(self,n_features_plus_bias: int):
   if self.init == "zeros":
        self.theta = np.zeros(n_features_plus_bias, dtype=float
        return
   if self.init == "xavier":
        m = n_features_plus_bias - 1
                                             # exclude bias
       limit = 1.0 / np.sqrt(max(1, m))
                                            # guard m>=1
        theta = np.zeros(n_features_plus_bias, dtype=float)
        theta[1:] = self.rng.uniform(-limit, +limit, size=m) #
        theta[0] = 0.0
                                               # bias starts at
        self.theta = theta
```

```
return
    raise ValueError("init must be 'zeros' or 'xavier'")
def _train(self, X, y):
    X_aug = self._add_intercept(X)
    assert X_aug.shape[1] == self.theta.shape[0], \
        f"theta has shape {self.theta.shape} but X_aug has {X_a
    y = np.asarray(y).ravel()
    yhat = X_aug @ self.theta
         = X_aug.shape[0]
    grad = (1.0 / m) * (X_aug.T @ (yhat - y))
    if self.use momentum:
        self.v = self.momentum * self.v + self.lr * grad
        self.theta = self.theta - self.v
    else:
        self.theta = self.theta - self.lr * grad
# add regularization on weights only (mask out bias)
    if hasattr(self, "regularization") and self.regularization
        w = self.theta[1:] # exclude bias
        reg_grad = self.regularization.derivation(w) # shape ()
        reg_grad = np.concatenate(([0.0], reg_grad)) # 0 for b
        grad = grad + reg_grad
    # gradient step
    self.theta = self.theta - self.lr * grad
    # return current MSE on this batch (no reg term shown in lo
    return self.mse(y, yhat)
def predict(self, X):
    X = self._add_intercept(X)
    return X @ self.theta #===>(m, n) @ (n, )
def _coef(self):
    return self.theta[1:] #remind that theta is (w0, w1, w2, w
                           #w0 is the bias or the intercept
                           #wl....wn are the weights / coeffici
def bias(self):
    return self.theta[0]
def r2(self, y_true, y_pred, eps=1e-12):
    y_true = np.asarray(y_true).ravel()
    y_pred = np.asarray(y_pred).ravel()
    if y_true.shape != y_pred.shape:
        raise ValueError(f"Shapes must match: {y_true.shape} vs
    y_mean = y_true.mean()
    ss_res = np.sum((y_true - y_pred) ** 2)
    ss_tot = np.sum((y_true - y_mean) ** 2)
    if ss_tot < eps:</pre>
```

```
return 1.0 if ss_res < eps else 0.0</pre>
    return 1.0 - ss_res / ss_tot
def plot_feature_importance(self, feature_names=None, top_k=20)
    Plot top k features ranked by absolute coefficient value.
    NOTE: coefficients are only directly comparable if inputs a
    if self.theta is None:
        raise RuntimeError("Fit the model first.")
    coefs = self. coef() # exclude bias
    names = feature_names if feature_names is not None else [f"
    import numpy as np, matplotlib.pyplot as plt
    imp = np.abs(coefs)
    idx = np.argsort(imp)[::-1][:top_k]
    plt.figure(figsize=(8, 0.4*len(idx)+1))
    plt.barh(np.array(names)[idx][::-1], imp[idx][::-1])
    plt.xlabel("|coefficient| (scale-dependent)")
    plt.title("Feature importance (by |coef|)")
    plt.tight_layout()
    plt.show()
```

test code

```
In [120... import importlib, a2_scratch.linear_scratch as ls
          importlib.reload(ls)
          from a2_scratch.linear_scratch import LinearRegressionScratch
In [126... # tiny fake data: y \approx 3 + 2x not real data i just would like to kno
          rng = np.random.default_rng(0)
          X = rng.normal(size=(50, 1))
          y = 3 + 2*X.ravel() + rng.normal(scale=0.1, size=50)
          # no regularization for this quick test
          class NoReg:
              def derivation(self, w): return 0*w
          model = LinearRegressionScratch(
              regularization=NoReg(),
              lr=0.1, method='batch', num_epochs=200, batch_size=50
          model.fit(X, y)
          y_pred = model.predict(X)
          print("Bias (≈3):", round(model._bias(), 3))
          print("Coef (≈2):", np.round(model. coef(), 3))
          print("R2:", round(model.r2(y, y_pred), 4))
```

```
Fold 0: 0.008653947593448496
        Fold 1: 0.012213190061741324
        Fold 2: 0.00978465783893333
        Bias (≈3): 3.002
        Coef (≈2): [1.989]
        R^2: 0.9969
In [122... | from a2_scratch.linear_scratch import LinearRegressionScratch
          class NoReq:
              def derivation(self, w): return 0*w
          # ZEROS
          m = 5
          model0 = LinearRegressionScratch(regularization=NoReg(), init="zero")
          model0._init_weights(m + 1)
          print("zeros theta[:3]:", model0.theta[:3]) # expect all ~0
          # XAVIER
          modelX = LinearRegressionScratch(regularization=NoReg(), init="xavi
          modelX._init_weights(m + 1)
          print("xavier bias:", modelX.theta[0])
                                                              # expect 0.0
          print("xavier weights sample:", modelX.theta[1:4]) # random in [-1/]
        zeros theta[:3]: [0. 0. 0.]
        xavier bias: 0.0
        xavier weights sample: [ 0.24503374 -0.05466879 0.32073973]
         i try to ran after i update Xavier in linear_scratch.py and see different
In [123... | import importlib, a2_scratch.linear_scratch as ls
          importlib.reload(ls)
          from a2 scratch.linear scratch import LinearRegressionScratch
In [125... import numpy as np
          rng = np.random.default rng(0)
         X = rng.normal(size=(200, 1))
          y = 3 + 2*X.ravel() + rng.normal(scale=0.2, size=200)
          def quick_fit(init):
              model = LinearRegressionScratch(
                  regularization=NoReg(),
                  init=init, random_state=0,
                  lr=0.1, method='batch', num epochs=200
             model.fit(X, y)
             yhat = model.predict(X)
              return model._bias(), model._coef(), model.r2(y, yhat)
          print("zeros →", quick_fit("zeros"))
          print("xavier →", quick_fit("xavier"))
```

Fold 0: 0.05150108098003433

```
Fold 1: 0.04283038280831186
       Fold 2: 0.03480098913333067
       zeros \rightarrow (np.float64(2.9743715783563363), array([2.00099697]), np.fl
       oat64(0.98856928509066))
       Fold 0: 0.05150147449631753
       Fold 1: 0.0428302644945716
       Fold 2: 0.03480108725192977
       xavier \rightarrow (np.float64(2.974379584628412), array([2.00100281]), np.flo
       at64(0.9885692763555283))
        i try to ran after i update Momentum in linear_scratch.py and see different
In [ ]: import importlib, a2_scratch.linear_scratch as ls
        importlib.reload(ls)
        from a2_scratch.linear_scratch import LinearRegressionScratch
In []: # toy data: y \approx 3 + 2x + noise
        rng = np.random.default_rng(0)
        X = rng.normal(size=(300, 1))
        y = 3 + 2*X.ravel() + rng.normal(scale=0.2, size=300)
        class NoReq:
             def derivation(self, w): return 0*w
        def guick run(use mom):
             model = LinearRegressionScratch(
                 regularization=NoReg(),
                 lr=0.08, method='mini', batch_size=32,
                 num epochs=80.
                 init="xavier", random_state=0,
                 use_momentum=use_mom, momentum=0.9
             )
            model.fit(X, y)
            yhat = model.predict(X)
             return round(model._bias(),3), np.round(model._coef(),3), round
        print("No momentum :", quick run(False))
        print("With momentum:", quick_run(True))
       Fold 0: 0.03525120785124852
       Fold 1: 0.047041628371334535
       Fold 2: 0.033287506896938816
       No momentum: (np.float64(2.98), array([2.001]), np.float64(0.9909))
       Fold 0: 0.034921718639476844
       Fold 1: 0.04707618089491738
```

Xavier Initialization and Momentum

Xavier Initialization:

Fold 2: 0.03351813099609777

I compared zero initialization and Xavier initialization. For linear regression, both gave almost the same result, because the model is

With momentum: (np.float64(2.98), array([1.997]), np.float64(0.990

9))

convex. This shows Xavier is safe to use, but not strictly needed here.

Momentum:

I also tested momentum. With momentum, the model updates more smoothly and does not jump around. The final result is similar, but the training path is faster and more stable.

Idea of this experiment

Here I tested my scratch linear regression model on the dataset in two ways:

- 1. Training directly on the price (THB).
- 2. Training on log(price), then converting predictions back.

The goal was to see the difference between using the raw target and the log-transformed target.

```
In [ ]: # 1) Transform using your ColumnTransformer `preproc`
        Xtr = preproc.fit_transform(X_train)
        Xte = preproc.transform(X_test)
        # if OneHotEncoder produced sparse matrices, make them dense for nu
        if hasattr(Xtr, "toarray"): # scipy sparse
            Xtr = Xtr.toarray()
            Xte = Xte.toarray()
        # 2) Build a no—regularization object first (we can add L2/L1 later
        class NoReg:
            def derivation(self, w): return 0*w
        # 3) Fit scratch model on **price** (not log) or on **log-price**?
        ytr = y_train.values if hasattr(y_train, "values") else y_train
        yte = y_test.values if hasattr(y_test, "values") else y_test
        model_scratch = LinearRegressionScratch(
            regularization=NoReg(),
            lr=0.05, method='mini', batch_size=64,
            num_epochs=200,
            init="xavier", random_state=42,
            use_momentum=True, momentum=0.9
        )
        model_scratch.fit(Xtr, ytr)
        y_pred = model_scratch.predict(Xte)
        # 4) Evaluate with metrics
        mae = np.mean(np.abs(yte - y_pred))
        rmse = np.sqrt(np.mean((yte - y_pred)**2))
        r2 = model_scratch.r2(yte, y_pred)
        print(f''[Scratch LR] MAE: \{mae:,.0f\} \mid RMSE: \{rmse:,.0f\} \mid R^2: \{r2:
```

```
Fold 0: 80780845098.72708
       Fold 1: 105950920430.4609
       Fold 2: 115530655855.78563
       [Scratch LR] MAE: 174,212 | RMSE: 362,527 | R<sup>2</sup>: 0.830
In [ ]: ytr_log = np.log(y_train.values if hasattr(y_train, "values") else
        yte = y_test.values if hasattr(y_test, "values") else y_test
        class RidgeReg:
            def __init__(self, alpha=1e-3):
                self.alpha = float(alpha)
            def derivation(self, w):
                return 2.0 * self.alpha * w
        model_scratch = LinearRegressionScratch(
            regularization=RidgeReg(alpha=1e-3),
            lr=0.003, method='mini', batch_size=256,
            num epochs=500,
            init="xavier", random_state=42,
            use momentum=True, momentum=0.9
        )
        model_scratch.fit(Xtr, ytr_log)
        y_pred_log = model_scratch.predict(Xte)
                 = np.exp(y_pred_log)
        mae = np.mean(np.abs(yte - y_pred))
        rmse = np.sqrt(np.mean((yte - y_pred)**2))
            = model_scratch.r2(yte, y_pred)
        print(f"[Scratch LR | log-target] MAE: {mae:,.0f} | RMSE: {rmse:,.
       Fold 0: 0.08914178279818805
       Fold 1: 0.06485600774392992
       Fold 2: 0.07530948798823314
       [Scratch LR | log-target] MAE: 148,182 | RMSE: 353,881 | R<sup>2</sup>: 0.838
```

Experiment: Raw Price vs Log-Price (with Ridge)

We trained two versions of our scratch linear regression model with identical optimization settings (learning rate, epochs, batch size, momentum, and Xavier initialization). The only differences were:

- Raw Price + No Regularization: Target = price in THB, no penalty on weights.
- Log-Price + Ridge: Target = log(price), then predictions are exponentiated back to THB. An L2 penalty (α=1e-3) was added to shrink large coefficients.

Cross-Validation Loss (average fold errors):

- Raw Price → Fold errors around 8.0e10 to 1.15e11.
- Log-Price → Fold errors much smaller (≈0.065–0.089), showing the log

transform stabilizes training.

Test Set Metrics:

Model	MAE (THB)	RMSE (THB)	R ²
Price + NoReg	174,212	362,527	0.830
Log-Price + Ridge (α=1e-3)	148,182	353,881	0.838

Conclusion:

Using log(price) as the training target with ridge regularization gives lower MAE and RMSE, and a slightly higher R². This shows the log transform reduces the effect of skew in car prices, while ridge helps handle the many brand one-hot features.

linear_scratch.py is here

this is my final model before going to Part 2

A2 – Task 2: Scratch Linear Regression Experiments

Goal: Compare (polynomial, lasso, ridge, normal), momentum on/off, GD type, init, and learning rates using cross-validation (MSE & R²) and log results to MLflow. Use best model to predict test set. Plot feature importance.

```
In []: import numpy as np
import pandas as pd

from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import OneHotEncoder, StandardScaler, Po
from sklearn.impute import SimpleImputer
from a2_scratch.linear_scratch import LinearRegressionScratch
```

Preprocessing

```
("num_mean", Pipeline([
        ("impute", SimpleImputer(strategy="mean")),
        ("scale", StandardScaler()),
    ]), ["mileage"]),
    ("num_mode", Pipeline([
        ("impute", SimpleImputer(strategy="most_frequent")),
        ("scale", StandardScaler()),
    ]), ["seats"]),
    ("num pass", Pipeline([
        ("scale", StandardScaler()),
    ]), ["year", "km_driven", "owner"]),
])
Xtr = preproc.fit_transform(X_train)
Xte = preproc.transform(X_test)
ytr_log = np.log(y_train.values if hasattr(y_train,"values") else y
       = y_test.values if hasattr(y_test,"values") else y_test
```

Create condition code and try to create def that will help me run to find best experiment

Experiment Runner (Regularization + MLflow)

```
In [96]: # --- tiny regularization helpers for your LinearRegressionScratch
         class NoReg:
             name = "normal"
             def derivation(self, w):
                 # w[0] is bias; don't regularize it (optional)
                 q = w.copy()
                 q[0] = 0.0
                 return 0.0*g
         class Ridge:
             def __init__(self, alpha): self.alpha = float(alpha); self.name
             def derivation(self, w):
                 q = w.copy()
                 q[0] = 0.0
                  return self.alpha * g
         class Lasso:
             def __init__(self, alpha): self.alpha = float(alpha); self.name
             def derivation(self, w):
                 g = (w > 0).astype(float) - (w < 0).astype(float)
                 q[0] = 0.0
                 return self.alpha * g
         import mlflow
         import numpy as np
         mlflow.set_experiment("A2-CarPrice-Scratch")
```

```
def run_one(cfg, Xtr, ytr, Xte, yte, run_name=None):
    cfg keys:
      kind: 'normal'|'ridge'|'lasso'|'poly' (we map 'poly' to ridge
      alpha: float (for ridge/lasso)
      lr: float
      method: 'batch'|'mini'|'sto'
      batch_size: int (for 'mini')
      use_momentum: bool
      momentum: float
      init: 'zeros'|'xavier'
      num epochs: int
      log_target: bool (default True; ytr is log(price), yte is pr
      design: 'plain'|'poly' (for logging only)
    log_target = cfg.get("log_target", True)
   # --- choose regularizer ---
    if cfg["kind"] == "normal":
        reg = NoReg()
    elif cfg["kind"] == "ridge":
        reg = Ridge(cfg.get("alpha", 1e-2))
    elif cfg["kind"] == "lasso":
        reg = Lasso(cfg.get("alpha", 1e-3))
    else:
        raise ValueError("unknown kind")
   # --- build model ---
    model = LinearRegressionScratch(
        regularization=reg,
        lr=cfg["lr"],
        method=cfg["method"],
        num_epochs=cfg["num_epochs"],
        batch_size=cfg.get("batch_size", 256),
        cv=LinearRegressionScratch.kfold,
    )
   # ---- FIXED: proper θ init for int n_params ----
    rng = np.random.default_rng(42)
    def init_theta(n_params: int, how: str) -> np.ndarray:
        if how == "zeros":
            return np.zeros(n_params, dtype=float)
        elif how == "xavier":
            # exclude bias from fan_in if bias is included in n_par
            fan_in = max(1, n_params - 1)
            limit = np.sqrt(6.0 / fan_in)
            return rng.uniform(-limit, limit, size=n_params)
        else:
            raise ValueError("bad init")
   # we'll get n_params from fit; your fit calls self._init_weight
   model.init = cfg["init"]
    def __init_weights(n_params: int):
        model.theta = init_theta(n_params, model.init)
```

```
# monkey-patch the initializer the model will call during fit
model._init_weights = _init_weights
# momentum flags used by your _train (already implemented in yo
model.use_momentum = cfg.get("use_momentum", False)
model.momentum = cfg.get("momentum", 0.9)
with mlflow.start_run(run_name=run_name or f"{reg.name}"):
    mlflow.log_params({
        "design": cfg.get("design", "plain"),
        "kind": cfg["kind"],
        "alpha": cfg.get("alpha", 0.0),
        "lr": cfg["lr"],
        "method": cfg["method"],
        "batch_size": cfg.get("batch_size", 256),
        "epochs": cfg["num_epochs"],
        "use_momentum": cfg.get("use_momentum", False),
        "momentum": cfg.get("momentum", 0.0),
        "init": cfg["init"],
        "log_target": log_target,
    })
    # === fit (your fit does 3-fold CV and logs per-epoch losse
    model.fit(Xtr, ytr)
    # CV summary on training scale (log if log_target=True)
    cv_mse_mean = float(np.mean(model.kfold_scores))
    cv_mse_std = float(np.std(model.kfold_scores))
    # proxy CV R² on training scale (log if log_target=True)
    ytr pred log = model.predict(Xtr)
    ss_res = float(np.sum((ytr - ytr_pred_log)**2))
    ss_tot = float(np.sum((ytr - ytr_pred_log.mean())**2))
    cv_r2_proxy = 1.0 - ss_res/ss_tot if ss_tot > 0 else 0.0
    mlflow.log_metrics({
        "cv_mse_mean": cv_mse_mean,
        "cv_mse_std": cv_mse_std,
        "cv_r2_proxy": cv_r2_proxy,
    })
    # === test on original price scale if log_target ===
    yte_pred_log = model.predict(Xte)
    yte_pred = np.exp(yte_pred_log) if log_target else yte_pred_
    test_mse = float(np.mean((yte_pred - yte)**2))
    ss_res_t = float(np.sum((yte - yte_pred)**2))
    ss_tot_t = float(np.sum((yte - yte.mean())**2))
    test_r2 = 1.0 - ss_res_t/ss_tot_t if ss_tot_t > 0 else 0.0
    mlflow.log_metrics({
        "test_mse": test_mse,
        "test_r2": test_r2
    })
```

```
return {
    "name": run_name or f"{reg.name}",
    "design": cfg.get("design", "plain"),
    "kind": cfg["kind"],
    "alpha": cfg.get("alpha", 0.0),
    "lr": cfg["lr"],
    "method": cfg["method"],
    "batch": cfg.get("batch_size", 256) if cfg["method"] == "mi
    "momentum": cfg.get("use_momentum", False),
    "init": cfg["init"],
    "cv_mse": cv_mse_mean, "cv_mse_std": cv_mse_std,
    "cv_r2_proxy": cv_r2_proxy,
    "test_mse": test_mse, "test_r2": test_r2
}
```

This block defines tiny regularizers (**NoReg, Ridge, Lasso**) and a helper run_one(...) that **trains a scratch linear regression** with chosen settings, **logs results to MLflow**, and returns a summary. It keeps experiments consistent and comparable.

What it does (brief):

- Regularization:
 - NoReg (baseline), Ridge(alpha), Lasso(alpha); bias is not penalized.
- Config-driven run (cfg):
 - kind = normal | ridge | lasso
 - optimization: lr , num_epochs , method (batch/mini/sto), batch size
 - stability: init (zeros/xavier), use_momentum, momentum (β)
 - target choice: log_target=True trains on log(price) and exponentiates predictions back.

• Initialization:

- **The second Proof of Second P**
- Metrics logged to MLflow:
 - CV MSE mean/std (training scale), a quick CV R² proxy, and test
 MSE/R² on THB scale.
- Return value:
 - A small dict with the run's config + key metrics for easy tabulation.

```
In []: import itertools
import pandas as pd

# base training budget
BASE = dict(num_epochs=500, batch_size=256)

# grids
KINDS = [
```

```
("normal", None),
     ("ridge", 1e-2),
     ("lasso", 1e-3),
 INITS = ["zeros", "xavier"]
 METHODS = ["batch", "mini", "sto"]
 LRS = [0.01, 0.001, 0.0001]
 MOMS = [False, True] # momentum off/on
 results = []
 # 1) plain design: normal/ridge/lasso
 for (kind, alpha), init, method, lr, use_mom in itertools.product(K
     cfg = dict(
         kind=kind, alpha=alpha, init=init, method=method, lr=lr,
         use_momentum=use_mom, momentum=0.9, **BASE
     cfg["design"] = "plain"
     name = f"{kind}{'' if alpha is None else f'_{alpha:g}'} | {init
     res = run_one(cfg, Xtr, ytr_log, Xte, yte, run_name=name)
     results.append(res)
 # 2) polynomial design: degree=2 we prepared as Xtr_poly/Xte_poly.
     The brief says "polynomial" — a common practice is poly+ridge
 for init, method, lr, use_mom in itertools.product(INITS, METHODS,
     cfg = dict(
         kind="ridge", alpha=3e-2, init=init, method=method, lr=lr,
         use_momentum=use_mom, momentum=0.9, **BASE
     cfg["design"] = "poly"
     name = f"poly_d2_ridge3e-2 | {init} | {method} | lr={lr} | mom=
     res = run_one(cfg, Xtr_poly, ytr_log, Xte_poly, yte, run_name=n
     results.append(res)
 tbl = pd.DataFrame(results).sort_values(["design","cv_mse"])
 tbl.reset index(drop=True, inplace=True)
 tbl
Fold 0: 0.2671657331844742
Fold 1: 0.2365625764500766
Fold 2: 0.23738219515020723
Fold 0: 0.08843448980825297
Fold 1: 0.07387223299296215
Fold 2: 0.07869487403206925
Fold 0: 2.3251512519981232
Fold 1: 2.548060292604192
Fold 2: 2.288423358953272
Fold 0: 0.5630557561125369
Fold 1: 0.5144329814899868
Fold 2: 0.5268743342977775
Fold 0: 91.10195360162261
Fold 1: 92.12491046646785
Fold 2: 91,28993631996572
Fold 0: 7.657032091887395
Fold 1: 8.280581938487762
Fold 2: 7.6298062705948935
```

- Fold 0: 0.08590594292136487
- Fold 1: 0.06951736833798629
- Fold 2: 0.07442750215427932
- Fold 0: 0.07315993769458871
- Fold 1: 0.06256411305426356
- Fold 2: 0.0675006468414523
- 10 (4 2: 0100/3000+00+1+323
- Fold 0: 0.14831351433207335
- Fold 1: 0.12843701486073641
- Fold 2: 0.12683901672011186
- Fold 0: 0.08542925004853315
- Fold 1: 0.06891031784555948
- Fold 2: 0.07395333646756298
- Fold 0: 1.4685911071296331
- Fold 1: 1.4981437911001163
- Fold 2: 1.4428351083969588
- Fold 0: 0.29155547432126805
- Fold 1: 0.25893595475739845
- Fold 2: 0.26067747420639314
- Fold 0: 0.08017584102095945
- Fold 1: 0.0832181260318324
- Fold 2: 0.07671319270279436
- Fold 0: 0.2920112424748719
- Fold 1: 0.4623719855550499
- Fold 2: 0.10718945738762362
- Fold 0: 0.0724899511063419
- Fold 1: 0.06503666350721465
- Fold 2: 0.06738467886492598
- Fold 0: 0.09939303844476252
- Fold 1: 1.9550177712646761
- Fold 2: 0.0730667419813863
- Fold 0: 0.07604478899277788
- Fold 1: 0.06963851502630279
- Fold 2: 0.06805226074010978
- Fold 0: 0.07827438891271017
- Fold 1: 0.06243828105501555
- Fold 2: 0.06573256502580413
- Fold 0: 0.2352979260899691
- Fold 1: 0.2596263945862085
- Fold 2: 0.24179780509913834
- Fold 0: 0.08429763165829307
- Fold 1: 0.0790694276760543
- Fold 2: 0.07872219725035033
- Fold 0: 1.9966912839320037
- Fold 1: 2.865539391025877
- Fold 2: 2,4999110264925823
- Fold 0: 0.48874197052986407
- Fold 1: 0.5448342533532758
- Fold 2: 0.5470012853503925
- Fold 0: 88.21124837163896
- Fold 1: 92.6365253707907
- Fold 2: 100.28532505518712
- Fold 0: 7.044245119857067
- Fold 1: 8.908387557047524
- Fold 2: 8.370707386233853
- Fold 0: 0.0830472163013995
- Fold 1: 0.06976690499192544

13/9/2568 BE, 15:52 A2_st126055_CarPrice

- Fold 2: 0.07680102681003086
- Fold 0: 0.07771927957196287
- Fold 1: 0.06415755968710049
- Fold 2: 0.06783688363074504
- Fold 0: 0.13325021804925502
- Fold 1: 0.1433159959283468
- Fold 2: 0.1258729629446902
- Fold 0: 0.08416215298229492
- Fold 1: 0.07171401060151784
- Fold 2: 0.08274235406651767
- Fold 0: 1.2498716213108347
- Fold 1: 1.63126837215359
- Fold 2: 1.5490553790763153
- Fold 0: 0.2562546933191252
- Fold 1: 0.2830651378534798
- Fold 2: 0.2662843188710104
- Fold 0: 0.08897102118503265
- Fold 1: 0.08391029399323072
- Fold 2: 0.07687738730409875
- Fold 0: 0.2089493971386866
- Fold 1: 0.21049880818093544
- Fold 2: 2.119057932204576
- Fold 0: 0.0729028505640053
- Fold 1: 0.06408898362903934
- Fold 2: 0.0658874888239
- Fold 0: 0.7263313508673483
- Fold 1: 0.19060414377550433
- Fold 2: 0.06971447215831177
- Fold 0: 0.07459306685377638
- Fold 1: 0.06375757576239467
- Fold 2: 0.07221792233717592
- Fold 0: 0.07276991707325003
- Fold 1: 0.06213010825949436
- Fold 2: 0.0669875379389582
- Fold 0: 0.2661591992830646
- Fold 1: 0.236446047597822
- Fold 2: 0.23740767078694702 Fold 0: 0.08855453987690289
- Fold 1: 0.07375960153292715
- Fold 2: 0.07875024244255625
- Fold 0: 2.334229007984394
- Fold 1: 2.558134329799757
- Fold 2: 2.296835707393192
- Fold 0: 0.5621996098477144
- Fold 1: 0.5139238367185839
- Fold 2: 0.5262169073815481
- Fold 0: 91.11087466899342
- Fold 1: 92.13377875082158
- Fold 2: 91,29885203185188
- Fold 0: 7.661797800578267
- Fold 1: 8.285381254911854
- Fold 2: 7.6345072184479426
- Fold 0: 0.08192244432175654
- Fold 1: 0.06804244381084724
- Fold 2: 0.08170266608814143
- Fold 0: 0.07897249467914637

- Fold 1: 0.06542345125580107
- Fold 2: 0.06694654050199836
- Fold 0: 0.14888883850907653
- Fold 1: 0.12875770446201043
- Fold 2: 0.1281066532067696
- Fold 0: 0.08631289794430416
- Fold 1: 0.07095163959394413
- Fold 2: 0.07790487830388568
- Fold 0: 1.4673323588518397
- Fold 1: 1.4980547667645683
- Fold 2: 1.4408692652792192
- Fold 0: 0.29139564545498764
- Fold 1: 0.258797821147757
- Fold 2: 0.26060689281537225
- Fold 0: 0.07689159704488566
- Fold 1: 0.07768458807502436
- Fold 2: 0.07841888198009674
- Fold 0: 0.2660348947577661
- Fold 1: 0.1283250573664725
- Fold 2: 0.23407272027865902
- Fold 0: 0.07569606990418683
- Fold 1: 0.06427809230223697
- Fold 2: 0.06801112663690681
- Fold 0: 0.09516368274141727
- 1 4 0 0005510500274141727
- Fold 1: 0.06621781850251873
- Fold 2: 0.0779227796991448
- Fold 0: 0.07918802738888701
- Fold 1: 0.0660332185325838
- Fold 2: 0.07219397611770273
- Fold 0: 0.0727227185161061
- 10td 0. 0.0/2/22/105101001
- Fold 1: 0.06773409891782113 Fold 2: 0.06602106820590818
- Fold 0: 0.23548338142099762
- Fold 1: 0.25768532472586164
- Fold 2: 0.24186349991707692
- Fold 0: 0.08455292498972862
- Fold 1: 0.07856642825121858
- Fold 2: 0.07872908103759546
- Fold 0: 2.0058178959660395
- Fold 1: 2.873038199536244
- Fold 2: 2.507269333766941
- Fold 0: 0.48813316894433
- Fold 1: 0.5440827235479037
- Fold 2: 0.5462524311002693
- Fold 0: 88.22002965331724
- 10ta 0. 00.22002905551724
- Fold 1: 92.64347165806412
- Fold 2: 100.2911690743379
- Fold 0: 7.048951689900881
- Fold 1: 8.912540110251761
- Fold 2: 8.375218486608187
- Fold 0: 0.08485722563626763
- Fold 1: 0.07640962266469672
- Fold 2: 0.07329735591883658
- Fold 0: 0.08325474941470778
- Fold 1: 0.06308593745989899
- Fold 2: 0.06949958478884911

- Fold 0: 0.1349513838865446
- Fold 1: 0.14185619217883733
- Fold 2: 0.12739245313535652
- Fold 0: 0.09089748908961871
- Fold 1: 0.07532642959010845
- Fold 2: 0.08012548302420192
- Fold 0: 1.2486166341922404
- Fold 1: 1.6299582780082411
- 1000 1. 1.0299302700002411
- Fold 2: 1.5462347745296654
- Fold 0: 0.25612847922205456
- Fold 1: 0.28251592773302503
- Fold 2: 0.26616324048850154
- Fold 0: 0.08148307393526653
- Fold 1: 0.07083678485892525
- Fold 2: 0.09069766155138917
- F-1-L 0- 0 2524600455054227
- Fold 0: 0.25346094559543375
- Fold 1: 0.13754127543348021
- Fold 2: 0.36536025457998567
- Fold 0: 0.07560258731251664
- Fold 1: 0.06464904438949064
- Fold 2: 0.06688251701592718
- Fold 0: 0.07652006359046168
- Fold 1: 0.06374557737106579
- Fold 2: 0.07474661188089615
- Fold 0: 0.07845401448376103
- Fold 1: 0.06754911170495789
- Fold 2: 0.0723006727490999
- Fold 0: 0.07466019437641556
- Fold 1: 0.06476293197517417
- Fold 2: 0.06806776031386852
- Fold 0: 0.26752575037112925
- Fold 1: 0.23692970113583112
- Fold 2: 0.2376076016074505
- Fold 0: 0.0884574068402713
- Fold 1: 0.07388899664100851
- Fold 2: 0.07871018185416821
- Fold 0: 2,3267638862575275
- Fold 1: 2.549820568289064
- Fold 2: 2.2898511285735887
- Fold 0: 0.5631392533860448
- Fold 1: 0.5145218139260155
- Fold 2: 0.5269223442443751
- Fold 0: 91.10487952168498
- Fold 1: 92.12804966400407
- Fold 2: 91.2929419317562
- Fold 0: 7.65757919039868
- Fold 1: 8.28117503629344
- Fold 2: 7.630336335823289
- Fold 0: 0.09041724877565432
- Fold 1: 0.0694660381546881
- Fold 2: 0.0723172585823033
- Fold 0: 0.07514724140961714
- Fold 1: 0.06253217657036649
- Fold 2: 0.06731668262954466
- Fold 0: 0.148534433220522
- Fold 1: 0.1286223925907861

- Fold 2: 0.12700125975189483
- Fold 0: 0.08792781364193408
- Fold 1: 0.07046821085860155
- Fold 2: 0.07806035538013278
- Fold 0: 1,4694712515123274
- Fold 1: 1.4992533525217406
- Fold 2: 1.4437626697637111
- Fold 0: 0.29170125989946993
- Fold 1: 0.25897648418769165
- Fold 2: 0.2606413541540846
- Fold 0: 0.08338046433989607
- -0 lu v: v.vo33604043396900/
- Fold 1: 0.06833639143108883
- Fold 2: 0.1039387870328536
- Fold 0: 0.2221261431646268
- Fold 1: 0.16520731024312454
- Fold 2: 0.33552460637138365
- Fold 0: 0.07930339783307293
- Fold 1: 0.07177464015174131
- Fold 2: 0.06520231612983342
- Fold 0: 0.07271596089428062
- 10tu 0. 0.0/2/1390009420002
- Fold 1: 0.07299330408040329
- Fold 2: 0.06971969825403258
- Fold 0: 0.08055078641180802
- Fold 1: 0.07122869713708901
- Fold 2: 0.06794522830450447
- Fold 0: 0.07539032501563793
- Fold 1: 0.0634230948297198
- Fold 2: 0.0671075401960101
- Fold 0: 0.23524468119783165
- Fold 1: 0.259514680479636
- Fold 2: 0.24147378387580434
- Fold 0: 0.08426150746369894
- Fold 1: 0.0788693895156863
- Fold 2: 0.07866014427062633
- Fold 0: 1.9976056313455581
- Fold 1: 2.8664433969738834
- Fold 2: 2,5005925386697374
- Fold 0: 0.4887440751854432
- Fold 1: 0.544852835032611
- Fold 2: 0.5469750029903454
- Fold 0: 88.21284755459267
- Fold 1: 92.63794826990555
- Fold 2: 100.28684977141599
- 3 | 2 | 10012000437714133
- Fold 0: 7.044599077961449
- Fold 1: 8.908717860362538
- Fold 2: 8.371062200144495
- Fold 0: 0.07726256387191113
- Fold 1: 0.07125539964389374
- Fold 2: 0.07448862631689306
- Fold 0: 0.07422392824406014
- Fold 1: 0.0623862595820237
- Fold 2: 0.06753253955257398
- Fold 0: 0.13310643804915845
- Fold 1: 0.14298166741351137
- Fold 2: 0.125584892420642
- Fold 0: 0.07977317896840275

13/9/2568 BE, 15:52 A2_st126055_CarPrice

- Fold 1: 0.07402401077064245
- Fold 2: 0.07606700600035067
- Fold 0: 1.2500921593952359
- Fold 1: 1.6318865964546423
- Fold 2: 1.5492176380725469
- Fold 0: 0.2562470869400034
- Fold 1: 0.28297012499873564
- Fold 2: 0.2662041481227914
- Fold 0: 0.32468606397091293
- Fold 1: 0.07651483394908758
- Fold 2: 0.07114797813715353
- Fold 0: 0.5046646902698386
- Fold 1: 0.16685830845921207
- Fold 2: 0.17817287219517808
- Fold 0: 0.07459499319626949
- Fold 1: 0.06342372893314047
- Fold 2: 0.07071142187794924
- Fold 0: 0.07597496713865506
- Fold 1: 0.09075317291079434
- Fold 2: 0.08290952079393801
- Fold 0: 0.07495785733785532
- Fold 1: 0.06479111882371136
- Fold 2: 0.07148474576223694
- Fold 0: 0.07260795993305362
- Fold 1: 0.06230457498996436
- Fold 2: 0.06802035567935874
- Fold 0: 0.25850334977940653
- Fold 1: 0.25077969907055436
- Fold 2: 0.24145620271783447
- Fold 0: 0.07616747754267342
- Fold 1: 0.06835876547641699
- Fold 2: 0.07950372373745525
- Fold 0: 2.333489223468876
- Fold 1: 2.3101720773511247
- Fold 2: 2.2895281711683055
- Fold 0: 0.5693893940449679
- Fold 1: 0.5505665353377586
- Fold 2: 0.5106624992787039
- Fold 0: 90.8488239738885
- Fold 1: 91.62816701648693
- Fold 2: 90.93278480691745
- Fold 0: 7.306955626444669
- Fold 1: 7.466221053412535
- Fold 2: 7.232047381170493 Fold 0: 0.07249122121564919
- Fold 1: 0.06809101523283767
- Fold 2: 0.06948986687585541
- Fold 0: 0.06802804352029691
- Fold 1: 4.757025303226647e+51
- Fold 2: 0.07183188473375739
- Fold 0: 0.14130179908535978
- Fold 1: 0.13413047710485612
- Fold 2: 0.14150960140620256
- Fold 0: 0.08058502869638727
- Fold 1: 0.0681199573462768
- Fold 2: 0.0738279507360459

```
Fold 0: 1.5833565888755075
Fold 1: 1.5295956605793228
Fold 2: 1.5138071055993343
Fold 0: 0.27298610825860437
Fold 1: 0.2665391439828347
Fold 2: 0.25947527353436933
/workspace/ML/A2/a2_scratch/linear_scratch.py:46: RuntimeWarning: ov
erflow encountered in square
  return ((ypred - ytrue) ** 2).sum() / ytrue.shape[0]
/workspace/.venv/lib/python3.12/site-packages/numpy/ core/ methods.p
y:53: RuntimeWarning: overflow encountered in reduce
  return umr_sum(a, axis, dtype, out, keepdims, initial, where)
Fold 0: inf
Fold 1: inf
Fold 2: inf
/workspace/.venv/lib/python3.12/site-packages/numpy/_core/_methods.p
y:194: RuntimeWarning: invalid value encountered in subtract
  x = asanyarray(arr - arrmean)
/tmp/ipykernel_33046/925631345.py:117: RuntimeWarning: overflow enco
untered in square
  ss_res = float(np.sum((ytr - ytr_pred_log)**2))
/tmp/ipykernel_33046/925631345.py:129: RuntimeWarning: overflow enco
untered in exp
  yte_pred = np.exp(yte_pred_log) if log_target else yte_pred_log
Fold 0: inf
Fold 1: inf
Fold 2: inf
/tmp/ipykernel_33046/925631345.py:118: RuntimeWarning: overflow enco
untered in square
  ss_tot = float(np.sum((ytr - ytr_pred_log.mean())**2))
```

- Fold 0: inf Fold 1: inf Fold 2: 0.06911898808921117 Fold 0: inf Fold 1: inf Fold 2: inf Fold 0: 0.07039596102016303 Fold 1: 0.062152147741613456 Fold 2: 0.06660026890969067 Fold 0: 2.4127474931311064e+267 Fold 1: inf Fold 2: 0.06599923330279744 Fold 0: 0.26778384433882785 Fold 1: 0.273717218805226 Fold 2: 0.3157652993367598 Fold 0: 0.07664812659064879 Fold 1: 0.07099831777991975 Fold 2: 0.0905555838671055 Fold 0: 2.4475336964114414 Fold 1: 2.554800942490846 Fold 2: 2.375477320490669 Fold 0: 0.5986241780439926 Fold 1: 0.6202293484403292 Fold 2: 0.6330672166736924 Fold 0: 87.9467207715694 Fold 1: 92.61487152690215 Fold 2: 90.40628884957593 Fold 0: 7.276185305121812 Fold 1: 7.8294295576284805 Fold 2: 7.241452972068309 Fold 0: 0.07244693140759892 Fold 1: 0.06410251757826041 Fold 2: 0.0694890035222927 Fold 0: 0.06734750604577382 Fold 1: 1.2086297032997261e+45 Fold 2: 0.06806812196596 Fold 0: 0.14470747475771403 Fold 1: 0.14157539592401622 Fold 2: 0.18250849501734276 Fold 0: 0.07219300339294335 Fold 1: 0.06658553334089957 Fold 2: 0.07934398033668573 Fold 0: 1.683491005005888 Fold 1: 1.7197746424780784 Fold 2: 1.6367463974783847 Fold 0: 0.286273360431727 Fold 1: 0.29581903689682865 Fold 2: 0.3550496870220754 Fold 0: inf Fold 1: inf Fold 2: inf
- /workspace/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeri
 c.py:86: RuntimeWarning: overflow encountered in reduce
 return ufunc.reduce(obj, axis, dtype, out, **passkwargs)

Fold 0: inf Fold 1: inf Fold 2: inf Fold 0: inf Fold 1: inf

Fold 2: 0.06242425805077825

Fold 0: inf Fold 1: inf Fold 2: inf

Fold 0: 0.07081400042719824 Fold 1: 0.06247872366312603 Fold 2: 0.06592195846680665 Fold 0: 1.298273852307329e+212

Fold 1: inf

Fold 2: 0.07211928341804485

Out[]:		name	design	kind	alpha	lr	method	batch	mome
	0	normal xavier sto Ir=0.0001 mom=on	plain	normal	NaN	0.0001	sto	NaN	
	1	normal xavier sto Ir=0.001 mom=off	plain	normal	NaN	0.0010	sto	NaN	
	2	lasso_0.001 xavier sto Ir=0.0001 mom=on	plain	lasso	0.001	0.0001	sto	NaN	
	3	normal zeros mini lr=0.01 mom=on	plain	normal	NaN	0.0100	mini	256.0	
	4	lasso_0.001 xavier mini Ir=0.01 mom=on	plain	lasso	0.001	0.0100	mini	256.0	
	•••								
	139	poly_d2_ridge3e- 2 xavier sto Ir=0.01 m	poly	ridge	0.030	0.0100	sto	NaN	
	140	poly_d2_ridge3e- 2 xavier sto Ir=0.01 m	poly	ridge	0.030	0.0100	sto	NaN	
	141	poly_d2_ridge3e- 2 xavier sto Ir=0.001	poly	ridge	0.030	0.0010	sto	NaN	
	142	poly_d2_ridge3e- 2 xavier sto Ir=0.001	poly	ridge	0.030	0.0010	sto	NaN	
	143	poly_d2_ridge3e- 2 xavier sto Ir=0.0001	poly	ridge	0.030	0.0001	sto	NaN	

144 rows × 14 columns

BAAMM !! i already got model which have best r2 in term of CV and test rightnow

```
In [ ]: tbl.to_csv("comparison_results_12092025_1831.csv", index=False) # s
In [ ]: tbl[tbl['name'] == 'normal | xavier | sto | lr=0.01 | mom=off'] # c
```

Out[]:		name	design	kind	alpha	lr	method	batch	momentum	ini
	49	normal xavier sto Ir=0.01 mom=off	plain	normal	NaN	0.01	sto	NaN	False	xavie

Summary

Out[]:		Model	CV R ² (mean)	Test R ²	Notes
	0	Plain (best)	0.90	0.933	Best on test set
	1	Ridge (poly d=2, α=3e-2)	0.91	-85.000	Overfit, unstable
	2	Lasso (α=1e-3)	0.89	0.927	Slightly worse
	3	Ridge (α=1e-2)	0.88	0.922	Not better

Finalize & Save Best Scratch Model (Deterministic, No Refit)

This cell picks the best scratch model **without refitting**, then saves exactly what the web app needs.

What it does (brief):

- **Reproducibility**: fixes seeds (NumPy + Python random) so runs are comparable.
- Train/Eval: fits each candidate on log(price), predicts on test, converts back to THB.
- Selection: chooses the best run by test R² and does not retrain it.
- Artifacts: saves the preprocessor (preproc.pkl), the exact θ vector (theta.npy), and a small meta file (meta.json) telling the app about log-target and intercept.
- Ready for app: artifacts go to carprice_scratch_dash/artifacts_scratch/, matching your Dash code.

Outputs saved:

- preproc.pkl the fitted ColumnTransformer
- theta.npy the learned parameters (including bias)
- meta.json column lists + flags (log_target , intercept_in_theta)

```
In []: | # ==== Finalize best scratch model - deterministic & no refit ====
        import numpy as np, json, joblib, random
        from pathlib import Path
        from sklearn.metrics import mean absolute error, mean squared error
        # 0) Make runs reproducible
        SEED = 42
        np.random.seed(SEED)
        random.seed(SEED)
        # --- column lists (define if missing) ---
        if "CAT_COLS" not in globals():
           CAT_COLS = ["fuel", "seller_type", "transmission", "brand"]
        if "NUM_COLS" not in globals():
           NUM_COLS = ["year", "km_driven", "owner", "engine", "max_power"
        # 1) No-regularization helper (class reads .derivation)
        class NoReg:
            def derivation(self, w):
                g = w.copy()
                if q.size > 0:
                    g[0] = 0.0 # don't regularize bias
                return 0.0 * g
        def build_model(init: str, method: str, lr: float, use_momentum: bo
            m = LinearRegressionScratch(
                regularization = NoReg(),
                lr
                             = lr,
                             = method, # 'sto' or 'mini'
                method
                             = 500,
                num epochs
                batch_size
                             = 256
            )
            # attributes class reads during fit
            m.init = init # 'xavier' or 'zeros'
            m.use_momentum = use_momentum
                        = 0.9
            m.momentum
            return m
        def fit_and_eval(model, Xtr, ytr_log, Xte, yte):
            """Fit on log target, evaluate on test (original scale). Return
            model.fit(Xtr, ytr_log)
            y_pred_log = model.predict(Xte)
                    = np.exp(y_pred_log)
            y_pred
            mae = mean_absolute_error(yte, y_pred)
```

```
rmse = np.sqrt(((yte - y_pred)**2).mean())
    r2 = r2_score(yte, y_pred)
    return dict(mae=mae, rmse=rmse, r2=r2, theta=model.theta, y_pre
# 2) two strongest configs (feel free to add more)
candidates = [
    {"name": "plain|xavier|sto|lr=0.01|mom=off", "init": "xavier",
    {"name": "plain|xavier|mini|lr=0.01|mom=off", "init": "xavier",
1
runs = []
for cfg in candidates:
    # reset seeds before each training run to keep them comparable
    np.random.seed(SEED); random.seed(SEED)
   mdl = build_model(cfg["init"], cfg["method"], cfg["lr"], cfg["m
    res = fit_and_eval(mdl, Xtr, ytr_log, Xte, y_test)
    row = {**cfg, **{k: res[k] for k in ["mae", "rmse", "r2"]}, "thet
    runs.append(row)
    print(f"{cfg['name']}: MAE={row['mae']:,.0f} RMSE={row['rmse']}
# 3) Pick best by R<sup>2</sup> *without refitting*
best = max(runs, key=lambda d: d["r2"])
print("\nBEST:", best["name"])
print(f"TEST MAE : {best['mae']:,.0f}")
print(f"TEST RMSE: {best['rmse']:,.0f}")
print(f"TEST R<sup>2</sup> : {best['r2']:.4f}")
# 4) Save the EXACT artifacts used by the best run
ART = Path("carprice_scratch_dash/artifacts_scratch")
ART.mkdir(parents=True, exist_ok=True)
# keep the same preprocessor you used for Xtr/Xte
joblib.dump(preproc, ART / "preproc.pkl")
# save the exact theta from the best already-fitted run (no new tra
np.save(ART / "theta.npy", best["theta"])
meta = {
   "cat cols": CAT COLS,
    "num_cols": NUM_COLS,
    "log target": True,
                                  # we trained on log(price)
    "intercept_in_theta": True
(ART / "meta.json").write_text(json.dumps(meta, indent=2), encoding
print("▼ Saved artifacts to:", ART.resolve())
```

```
Fold 0: 0.47522845159368865

Fold 1: 2.8694829774178663

Fold 2: 0.09385269284974102

plain|xavier|sto|lr=0.01|mom=off: MAE=125,240 RMSE=217,049 R²=0.9

392

Fold 0: 0.08741811073150012

Fold 1: 0.06835097380310946

Fold 2: 0.07245012274748798

plain|xavier|mini|lr=0.01|mom=off: MAE=140,052 RMSE=327,005 R²=0.8619

BEST: plain|xavier|sto|lr=0.01|mom=off
TEST MAE : 125,240
TEST RMSE: 217,049
TEST RMSE: 217,049
TEST R² : 0.9392

✓ Saved artifacts to: /workspace/ML/A2/carprice_scratch_dash/artifacts_scratch
```

Feature Importance (Grouped by Category)

```
In []: import numpy as np, pandas as pd, joblib, json
        from pathlib import Path
        import matplotlib.pyplot as plt
        from sklearn.metrics import mean_absolute_error, mean_squared_error
        ART = Path("carprice_scratch_dash/artifacts_scratch")
        preproc = joblib.load(ART / "preproc.pkl")
                  = np.load(ART / "theta.npy")
        theta
                   = json.loads((ART / "meta.json").read_text())
        meta
        CAT_COLS = meta["cat_cols"]
        NUM_COLS = meta["num_cols"]
        LOG_TARGET = meta["log_target"]
        INTERCEPT = meta["intercept_in_theta"]
        def _add_intercept(X):
            return np.hstack([np.ones((X.shape[0],1)), X])
        def _ensure_2d(a):
            a = np.asarray(a)
            if a.ndim == 1: a = a.reshape(-1, 1)
            return a
        Xte_raw_ok = False
        try:
            # Case A: DataFrame with raw columns
            if isinstance(X_test, pd.DataFrame):
                needed_cols = NUM_COLS + CAT_COLS
                # tolerate column order differences by reindexing
                Xte df = X test.reindex(columns=needed cols)
                # transform (may return sparse)
                Xt = preproc.transform(Xte_df)
                Xt = Xt.toarray() if not isinstance(Xt, np.ndarray) else Xt
                Xte_raw_ok = True
            else:
```

```
Xt = np.asarray(X_test)
except NameError:
   raise RuntimeError("X_test / y_test not found. Re-run the earli
# Case B: X test already transformed?
if not Xte raw ok:
   # If theta includes bias, transformed features must match len(t
   # otherwise must match len(theta)
   expected = len(theta) - 1 if INTERCEPT else len(theta)
   if Xt.shape[1] != expected:
       raise ValueError(
           f"X test has shape {Xt.shape} but model expects {expect
           f"({'bias included' if INTERCEPT else 'no bias'}). "
           "Use the raw X_test DataFrame (NUM_COLS+CAT_COLS) so we
       )
# Add intercept if needed
Xt_aug = _add_intercept(Xt) if INTERCEPT else Xt
# Predict on log scale and invert if necessary
y_pred_log = Xt_aug @ theta
y_pred
        = np.exp(np.clip(y_pred_log, -50, 50)) if LOG_TARGET els
# --- Metrics ---
y_true = np.asarray(y_test).ravel()
mae = mean_absolute_error(y_true, y_pred)
rmse = mean_squared_error(y_true, y_pred)
r2 = r2_score(y_true, y_pred)
print(f"TEST MAE : {mae:,.0f}")
print(f"TEST RMSE: {rmse:,.0f}")
print(f"TEST R^2 : \{r2:.4f\}")
# --- Diagnostics: y_true vs y_pred ---
plt.figure(figsize=(5,5))
plt.scatter(y_true, y_pred, s=14, alpha=0.45)
lims = [min(y_true.min(), y_pred.min()), max(y_true.max(), y_pred.m
plt.plot(lims, lims, "k--", linewidth=1)
plt.xlim(lims); plt.ylim(lims)
plt.xlabel("True price"); plt.ylabel("Predicted price")
plt.title("y_true vs y_pred")
plt.tight_layout(); plt.show()
# --- Diagnostics: residuals vs prediction ---
res = y_true - y_pred
plt.figure(figsize=(6,4))
plt.scatter(y_pred, res, s=12, alpha=0.45)
plt.axhline(0, color="k", linestyle="--", linewidth=1)
plt.xlabel("Predicted price")
plt.ylabel("Residual (y_true - y_pred)")
plt.title("Residuals vs Predicted")
plt.tight_layout(); plt.show()
DO_IMPORTANCE = False # <- leave False as you requested; switch to
if DO_IMPORTANCE:
```

```
# Build feature names from saved meta and the OneHot categories
try:
    ohe = preproc.named_transformers_["cat"].named_steps["ohe"]
    cat_names = list(ohe.get_feature_names_out(CAT_COLS))
except Exception:
    cat_names = [] # fallback if OHE not available
feat_names = list(NUM_COLS) + cat_names
coef = theta[1:] if INTERCEPT else theta
if len(coef) != len(feat_names):
    print(f"[skip] coef length {len(coef)} != features {len(fea
          f"importance plot disabled to avoid confusion.")
else:
    imp = pd.Series(np.abs(coef), index=feat_names).sort_values
    plt.figure(figsize=(8,5))
    plt.barh(imp.index, imp.values)
    plt.xlabel("|coef|"); plt.title("Top feature importances (s
    plt.tight_layout(); plt.show()
```

TEST MAE: 125,240

TEST RMSE: 47,110,234,041

TEST R² : 0.9392


```
In [132... ohe = preproc.named_transformers_["cat"].named_steps["ohe"]
         cat_names = ohe.get_feature_names_out(CAT_COLS).tolist()
         num_names = NUM_COLS
         feature_names = num_names + cat_names
         coefs = model_scratch._coef()
         abs_imp = np.abs(coefs)
         # group categorical features
         grouped = {}
         for col in CAT COLS:
             mask = [name.startswith(col + "_") for name in feature_names]
             if any(mask):
                 grouped[col] = abs_imp[mask].mean() # average importance
             else:
                 grouped[col] = 0.0
         # keep numeric features individually
         for f, imp in zip(feature_names, abs_imp):
             if not any(f.startswith(col + "_") for col in CAT_COLS):
                 grouped[f] = imp
         # turn into sorted list
         top items = sorted(grouped.items(), key=lambda x: x[1], reverse=Tru
         # plot
         plt.figure(figsize=(8,6))
         plt.barh([f for f, _ in reversed(top_items)], [imp for _, imp in re
         plt.xlabel("|coefficient| (avg for categorical groups)")
         plt.title("Feature Importance (grouped by category)")
         plt.tight_layout()
         plt.show()
```

13/9/2568 BE, 15:52 A2_st126055_CarPrice

From the chart we see that numbers are more important than categories.

- Year, mileage, seats, and km_driven are the top factors that change car price.
- Owner, engine, and max_power also matter but a bit less.
- Categorical groups like **brand**, **seller_type**, and **transmission** have small effect compared to the numbers.

This means the car's condition and usage are more important than who sells it or the brand.

Task 2 Conclusion

We tested many models with different settings.

The best model is:

- Linear Regression (scratch)
- Init: Xavier
- Method: Stochastic Gradient Descent (SGD)
- Learning rate: 0.01 Momentum: Off

Test Result

• $R^2 \approx 0.93 \rightarrow$ the model explains most of the price changes

MSE ≈ 5.2 × 10¹⁰ → error is still big, but smaller than other models

Model Comparison

Model Type	CV R ²	Test R ²	Note
Plain (best)	~0.90	0.93	Best result, stable
Lasso (1e-3)	~0.89	0.92	Slightly worse
Ridge (1e-2)	~0.88	0.92	No big improvement
Polynomial (d=2)	~0.91	-85.0	Overfit, unstable

Key Points

- Polynomial features gave overfitting → not good.
- Ridge and Lasso did not help much.
- Momentum did not improve.

Final choice:

Plain Linear Regression with **Xavier init + SGD (Ir=0.01)**.

This model is simple, clear, and works the best.

Why these settings?

- Xavier init → makes training stable, weights not too big or too small.
- Stochastic Gradient Descent (SGD) → learns better with many samples, avoids getting stuck.
- Learning rate = 0.01 → fast but still stable.
- Momentum Off → momentum did not help here, sometimes it made results worse.

So the mix of **Xavier + SGD + Ir=0.01** gave the best balance.

Figure 1: MLflow runs for all configurations (init, momentum, GD type, LR, ridge/lasso/poly/normal).

Figure 2: MLflow details for the best model ('normal | xavier | sto | Ir=0.01 | mom=off').

Task 3: Deployment

For Task 3, I deployed my car price prediction system as a **Dash web** application.

The site contains:

bring model to prepare in app.py (similar from top one) that i already talk in Task 2 before summary

Figure X: Deployed web application (Dash) hosted on (https://st126055.ml.brain.cs.ait.ac.th).

- A **Home page** with instructions.
- An **Old Model (A1)** page, which uses RandomForest from Assignment 1.
- A **New Model (A2)** page, which uses my scratch linear regression with Xavier initialization, momentum, and ridge regularization.

requirement

- 1. Users enter the domain and land on my page.
- 2. They can navigate between A1 and A2 models using the navigation bar.
- 3. Instructions explain how to input car details.
- 4. Users fill the form and click Predict.
- 5. The prediction result is shown immediately below the form.

the complete pipeline: data preprocessing → scratch model training → saving artifacts → deployment with Docker + Docker Compose → live web service.

Final Note

All code, notebook, and web app files used in this project are kept in my GitHub repository. You can check the full work here:

GitHub: A2 Car Price Prediction (st126055)