Modsim cheat sheet

Simple Rotations

$$R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$$
$$\begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \end{bmatrix}$$

$$R_y(\theta) = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

$$R_z(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Positive Real

H(s) positive real iff

- 1. No poles with real part > 0
- 2. H(s) real for all positive and real s
- 3. $Re[H(s)] \ge 0$ for all Re[s] > 0.

Euler's Formula

$$e^{ix} = \cos(x) + i\sin(x)$$

Hyperbolic Trig

 $\sinh(\sigma + j\omega) = \sinh \sigma \cos \omega + j \cosh \sigma \sin \omega$ $\cosh(\sigma + j\omega) = \cosh \sigma \cos \omega + j \sinh \sigma \sin \omega$

Skew Symmetric Matrix

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \iff \mathbf{a}^{\times} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}$$

- $u \times v$ corresponds to $\mathbf{u}^{\times} \mathbf{v}$
- $\bullet \ (\mathbf{a}^{\times})^{\top} = -(\mathbf{a}^{\times})$

Roll Pitch Yaw

Dot Product

- $\vec{v} \cdot \vec{u} = |v||u|\cos\theta$
- $\bullet \ \mathbf{v} \cdot \mathbf{u} = \mathbf{u}^{\top} \mathbf{v}$

Transpose

- $1. \ (\mathbf{A} + \mathbf{B})^{\top} = \mathbf{A}^{\top} + \mathbf{B}^{\top}$
- $2. \ (\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top}$
- 3. $(c\mathbf{A})^{\top} = c\mathbf{A}^{\top}$
- 4. $\det(\mathbf{A}^{\top}) = \det(\mathbf{A})$
- 5. $(\mathbf{A}^{\top})^{-1} = (\mathbf{A}^{-1})^{\top}$

Stability Function

- Explicit methods $R(h\lambda) = \det \left[\mathbf{I} \lambda h (\mathbf{A} \mathbf{1b}^{\top}) \right]$
- Other methods $R(h\lambda) = \begin{bmatrix} 1 + \lambda h \mathbf{b}^{\top} (\mathbf{I} h\lambda \mathbf{A})^{-1} \end{bmatrix}$ $R(h\lambda) = \frac{\det \begin{bmatrix} \mathbf{I} \lambda h (\mathbf{A} \mathbf{1}\mathbf{b}^{\top}) \end{bmatrix}}{\det \begin{bmatrix} \mathbf{I} \lambda h \mathbf{A} \end{bmatrix}}$

Matrix Inverse

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ab - cd} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$