ALU设计

全加器 (Full Adder)

- 全加器由两个半加器构成
 - 。输入端口A、B、C_{in}(进位输入)
 - 。输出端口S(和)、C_{out}(进位输出)

A	В	C _{in}	C _{out}	S
0	0	0	0	0
0	1	0	0	1
1	0	0	0	1
1	1	0	1	0
0	0	1	0	1
0	1	1	1	0
1	0	1	1	0
1	1	1	1	1

4位全加器

(1) 添加溢出标志判断

CPU怎么判断溢出?

4位全加器

(1) 添加溢出标志判断

4位全加器

(2) 如何添加减法运算?

补码直接参与计算

$$4 - 3 = 4 + (-3)$$

$$4 - (-3) = 4 + 3$$

$$11111100 + 1$$

$$0000010 + 1$$

$$0 \xrightarrow{+1} 1$$

$$1 \xrightarrow{+1} 0$$

8位可控加减运算器

- Sub为减运算标志,OF为溢出标志,S为运算结果的最高位,即符号标志。
 - □ Sub=0, S=A+B; Sub=1, S=A-B

逻辑运算

增加8位数据的基本逻辑运算包括:与、或、非、异或运算,并实现通过4选1选择器选择具体操作。

移位运算

- (a)算术左移
- (b)逻辑左移
- (c)算术右移
- (d)逻辑右移

<mark>算术</mark>移位是对<mark>有符号数</mark>进行移位,在移位过程中必须 保持符号不变;

<mark>逻辑</mark>移位是对<mark>无符号数</mark>进行移位,总是用0来填补已空 出的位;

移位运算

- **0000 0110**
 - □ 左移两位,0001 1000
 - □ 右移一位,00000011 再右移一位,00000001
- **1000 0110**
 - □ 左移两位,0001 1000
 - □ 右移一位, 1100 0011 再右移一位, 1110 0001

移位运算

■ 左移n位与乘以2n等效

例如:

 $6 \times 2^2 = 00000110B \times 100B = 00011000B$

■ 同样,右移n位与除以2ⁿ等效。若是无符号数,则右移使用逻辑右移SHR;如果是有符号数,则右移使用算术右移SAR。