# **Ionic Bonding**

### What is an ionic compound?

Ionic compounds are lattices of charged particles (ions), held together by electrostatic forces of attraction. Ions that make up an ionic substance exist in a **fixed ratio**. This ratio depends on the elements involved:

Recall that the most stable electron configuration is full valence shell, often an **octet** ( $s^2p^6$ ). In general, elements with 1, 2 or 3 valence electrons react by losing electrons. By doing so, the atom becomes a **cation** which is positively charged. In general, elements with 5, 6, or 7 valence electrons react by gaining electrons. By doing so, the atom becomes an **anion** which is negatively charged.

Since a metal and non-metal can achieve a stable electron configuration through opposite means (losing vs. gaining electrons), they will often react during which the electron(s) from the metal is/are transferred to the non-metal.

After this electron transfer occurs, there will be oppositely charged-particles in close proximity to one another, which leads to the formation of a lattice of particles held together by electrostatic forces of attraction. These forces of attraction between ions is what we will refer to as an **ionic bond** 

## Example 1.

- different "dots" are used for each type of element in order to better track the movement of electrons
- an arrow depicts the **transfer** of the electron(s) from one atom to another
- the charges on the ions are shown, representing the electrostatic force of attraction between them

### Example 2:

- in this case, magnesium needs to lose 2 electrons to reach a stable configuration while oxygen needs to gain 2 electrons.
- thus, one Mg atom will react with one Oxygen atom, resulting in an ionic compound in which the ions have 2+ and 2- charges respectively.

#### Example 3:



- In the reaction between lithium and nitrogen, the number electrons lost/gained per atom differs: lithium loses 1 electron to reach a stable octet, while nitrogen gains 3 electrons.
- Thus, 3 lithium atoms are need for every1 nitrogen.

- This ratio is depicted by a numerical coefficient in front of the lithium (the "1" in front of the N is implied).
- A bracket may also be employed to clearly indicate the ratio: 3[Li<sup>+</sup>]