MATH 323: DAY 16 OCTOBER 31 TUE

COVERING:

- Introducing Continous Random Variables.
- Cumulative Density Function vs Probabilty Density Function
- Relationship between PDF AND CDF
 - o Idea of Area under the graph
- Expected Value and Variance of PDF using integrals

	31st an chober Malh 323.
	Continous Distributions
Formul Def:	A RIV n is said to be continous on have continous distribution if its C-D-F (cumulative Distribution function), for M is a continous function of n for all $-\infty < n < \infty$
O	l.E Thae are no Jumps.
	Important concequence of this
	PCX=n)=0 for all - & < x &
	Reason?: In general, for any R·V n, the probation of (X=n) = P(X=n) - P(X=n)
	Me know all C.D.F (cont on durnete) are cont from the Right.
O	A continous C.DF is Continous from the Right & Left.
	Now $P(X=x) = \lim_{y \to x} P(X=y) = \lim_{y \to x} F(y)$
	$\therefore P(X=n) = f_X(n) - f_X(x) = 0 \text{for all } x$
	Note: That P(X=x)=0 does not mean that- cull events must have Prob of 0 it X is continous.
	iE P(XEA) = 0 15 not live

Point There are uncontabilly many points in an interval ey interval $\{1,30\}$ $\{x \in \mathbb{R} : x \in \mathbb{L}[1,30]\}$ P[X \in [1,3)] \neq 66 sum' \quad \text{prob } \quad \text{qll } \text{nin [1,3).} Axion3 con't apply to uncontable union's as there are intimite points In analogy, even though every point on the real line has leasth of the length of an interval \$0. We clost calculate total length of the interval by adding up the length of its uncourtably many points. Question is how do we calculate the probabilities that X fulls in an interval? To do this, we need an analogue of the probability function (Px Cx) = P(X=n) defined for discrete examples. ration Let X be a Continous RV. Then we clehre the Probabity density function CP.D.F) of X denoted by function Units Properties P(X = X)= Fu(X) = Sfu(y) dy. that when integrated from -50 to x, it proclares
the property that P[X = X] -

iv) Of course if $f_n(x)$ is a P-Q-F then the area under the curve between a &b is $P[a < x \le 6]$ A = S fx (x) dx = Area uncle the curve V) Where as the Px(x)= P[X=n] is a Paobability if X is alsomete, fx(x), the P.D.F does not give P[X=x] if X is continued. intent atthough $f_{x}(x) \ge 0$, it need not gasty $f_{x}(x) \le 1$. Interest offen $f_{x}(x) \ge 1$, as long as it is $g_{x}(x) \ge 0$ and integrates to $g_{x}(x) \ge 0$. Cover $g_{x}(x) \ge 0$ it is $g_{x}(x) \ge 0$. However we have $f_{\mathbf{x}}(\mathbf{x}) d_{\mathbf{x}} \approx P[\mathbf{x} < \mathbf{x} \leq \mathbf{x} + d_{\mathbf{x}}]$ tra a small dx CXCX < X + dx e-Area of Reltangle = f(x). Whath = f(x) dx = A when dx is small.

Vi) if You're given any function g(x) such that $g(x) \ge 0$ and $g(x) dx = C \ge \emptyset$ {thinks} then you can convent g(x) into a P-D-F by standarding it as follows: o Let $f_x(x) = g(x)/\varphi$ $\int_{a}^{b} g(x) dx$ Then $\int_{-\infty}^{\infty} f_x(x) dx = 1$ Vii) if X is continous, then PCX ERI, where R is set of all rational numbers, is aqual to -> 0 schonal no's core complable (mkinile bulla conluble). Some they are countable and each alaboral has feel =0 if x is continous, then with axiom 3, such as all these = 0 as well. Expected value and variance of a confinous R.V. if X is a continous R·V then we define its expected value (mean) to be $E(x) = \mu = \int x \int_{X} (x) dx$ Danylon:

In particular $E(x) = \int_{-\infty}^{\infty} x^2 f_X(x) dx$ Villiance = $E[x-y]^2 = E[x^2] - E[x]^2$ or $\int_{-\infty}^{\infty} f_X(x) dx - \int_{-\infty}^{\infty} x f_X(x) dx$ Or $\int_{-\infty}^{\infty} (x-y)^2 f_X(x) dx$ We say the Excepted value of RV exist if E[x]

0

4

6-

e-

6-

ee-

ee-

6=

(F) We say the Excepted value of RV exist if E(x))

1.5 finite OR E[1x1] < P

1.6 [1x1] (x) der < P

o cue shall see examples es cont-RV that- de not nave finite Expedientron.