A Non Context-Free Language

(We will prove later)

Non Context-free languages

 $a^nb^nc^n$

Context-free languages

 a^nb^n

Regular languages

a*b*

Deterministic PDAs

DPDAS

DPDAs

Allowed:

Not allowed:

Allowed:

Something must be matched from the stack of

Not allowed:

DPDA example

$$L(M) = \{a^n b^n : n \ge 0\}$$

The language
$$L(M) = \{a^n b^n : n \ge 0\}$$

is deterministic context-free

Definition:

A language is deterministic context-free if some DPDA accepts it

Example of Non-DPDA (NPDA)

$$L(M) = \{ww^R\}$$

$$a, \lambda \rightarrow a$$
 $a, a \rightarrow \lambda$
 $b, \lambda \rightarrow b$ $b, b \rightarrow \lambda$
 $\downarrow q_0$ $\lambda, \lambda \rightarrow \lambda$ $\downarrow q_1$ $\lambda, \$ \rightarrow \$$ $\downarrow q_2$

Not allowed in DPDAs

NPDAS

Have More Power than

DPDAs

We will show:

there is a context-free language $\,L\,$ (accepted by a NPDA)

which is **not** deterministic context-free (**not** accepted by a DPDA)

The language is:

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

$$n \ge 0$$

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

The language L is context-free

Context-free grammar for L:

$$S \rightarrow S_1 \mid S_2$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

there is an NPDA that accepts L

$$S_2 \rightarrow aS_2bb \mid \lambda$$

Theorem:

The language
$$L = \{a^nb^n\} \cup \{a^nb^{2n}\}$$
 is not deterministic context-free

(there is no DPDA that accepts L)

Proof: Assume for contradiction that

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

is deterministic context free

Therefore:

there is a DPDA $\,M\,$ that accepts $\,L\,$

DPDA M with $L(M) = \{a^nb^n\} \cup \{a^nb^{2n}\}$

accepts $a^n b^n$

Fact 1: The language $\{a^nb^nc^n\}$ is not context-free

(we will prove it at the next class)

Fact 2: The language $L \cup \{a^nb^nc^n\}$ is not context-free

$$(L = \{a^n b^n\} \setminus \{a^n b^{2n}\})$$

Use pumping lemma. Example 8.1, page 217

(a consequence of Fact 1)

We will construct a NPDA that accepts:

$$L \cup \{a^nb^nc^n\}$$

Contradiction!

$$(L = \{a^n b^n\} \cup \{a^n b^{2n}\})$$

We modify
$$M$$

$$(L = \{a^n b^n\} \cup \{a^n b^{2n}\})$$

Replace b with c

The NPDA that accepts $L \cup \{a^nb^nc^n\}$

Modified M

Since $L \cup \{a^nb^nc^n\}$ is accepted by a NPDA

it is context-free

Contradiction!

(since $L \cup \{a^n b^n c^n\}$ is not context-free)

Therefore:

There is no DPDA that accepts

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

Not deterministic context free

End of Proof

Positive Properties of Context-Free languages

Union

Context-free languages are closed under: Union

 L_1 is context free $L_1 \cup L_2$ L_2 is context free is context-free

Example

Language

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2a \mid bS_2b \mid \lambda$$

Union

$$L = \{a^n b^n\} \cup \{ww^R\}$$

$$S \rightarrow S_1 \mid S_2$$

In general:

For context-free languages L_1 , L_2 with context-free grammars G_1 , G_2 and start variables S_1 , S_2

The grammar of the union $L_1 \cup L_2$ has new start variable S and additional production $S \to S_1 \mid S_2$

Concatenation

Context-free languages are closed under: Concatenation

 L_1 is context free L_1L_2 L_2 is context free is context-free

Example

Language

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2a \mid bS_2b \mid \lambda$$

Concatenation

$$L = \{a^n b^n\} \{ww^R\}$$

$$S \rightarrow S_1 S_2$$

In general:

For context-free languages L_1 , L_2 with context-free grammars G_1 , G_2 and start variables S_1 , S_2

The grammar of the concatenation L_1L_2 has new start variable S and additional production $S \to S_1S_2$

Star Operation

Context-free languages are closed under: Star-operation

L is context free $\stackrel{*}{\bigsqcup}$ is context-free

Example

Language

Grammar

$$L = \{a^n b^n\}$$

$$S \rightarrow aSb \mid \lambda$$

Star Operation

$$L = \{a^n b^n\}^*$$

$$S_1 \rightarrow SS_1 \mid \lambda$$

In general:

For context-free language L with context-free grammar G and start variable S

The grammar of the star operation L^* has new start variable S_1 and additional production $S_1 \to SS_1 \mid \lambda$

Negative Properties of Context-Free Languages

Intersection

Context-free languages are <u>not</u> closed under:

intersection

 L_1 is context free $L_1 \cap L_2$ L_2 is context free $\underbrace{ \begin{array}{c} L_1 \cap L_2 \\ \text{not necessarily} \\ \text{context-free} \end{array} }$

Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

$$S \rightarrow AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \lambda$$

$$A \rightarrow aA \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$B \rightarrow bBc \mid \lambda$$

Intersection

$$L_1 \cap L_2 = \{a^n b^n c^n\}$$
 NOT context-free

Complement

Context-free languages are **not** closed under: **complement**

is context free \longrightarrow L

not necessarily context-free

Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

Context-free:

$$S \rightarrow AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \lambda$$

$$A \rightarrow aA \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$B \rightarrow bBc \mid \lambda$$

Complement

$$\overline{L_1 \cup L_2} = L_1 \cap L_2 = \{a^n b^n c^n\}$$

NOT context-free

Intersection
of
Context-free languages
and
Regular Languages

Machine M_1

NPDA for L_1 context-free

Machine M_2

DFA for L_2 regular

Construct a new NPDA machine M that accepts $L_1 \cap L_2$

 $\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

NPDA M_1

DFA M_2

NPDA M

$$\begin{array}{c}
 q_1, p_1 \\
 \hline
 a, b \rightarrow c \\
 \hline
 q_2, p_2
\end{array}$$
transition

NPDA M_1

DFA M_2

initial state

initial state

NPDA M

Initial state

NPDA M_1

final state

final states

NPDA M

 $\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

M accepts string w if and only if

 M_1 accepts string w and M_2 accepts string w

$$L(M) = L(M_1) \cap L(M_2)$$

Therefore: $L(M_1) \cap L(M_2)$ is context-free

(since M is NPDA)

 $L_1 \cap L_2$ is context-free