C6/BME2 Tissue Engineering

Prof. Zhanfeng Cui and Dr Xia Xu 4 Lectures and 1 Class

Contents

- Principle of Tissue Engineering
- Biomaterials for Tissue Engineering
- Mass Transfer
- Bioreactors for Tissue Engineering

To live longer, stronger and smarter!

- System biology and synthetic biology
- Preventive medicine
- Diagnostic technology
- Regenerative medicine
- Silver bullets and drug delivery
- Personalised medicine/therapy
- Tele-medicine/healthcare
- Life elongation and aging

Anything to do with Engineering?

Regenerative Medicine

- to promote regeneration of cells, tissues and even organs
- to prevent and cure diseases
- to repair and replace diseased and lost tissues
- Methodologies
 - Gene therapy
 - Cell therapy
 - Functional biomaterials
 - Tissue engineering
 - Stem cell transplantation

Principle of Tissue Engineering

TISSUE ENGINEERING

- Definition
- Application of principles and methods of engineering and life sciences
- Development of biological substitutes
- Method of restoring, maintaining or improving biological functions

· Multi-disciplinary field

- **■** Applications
- Virtually every human tissue!

Organ and Tissue Deficiencies

- Tissue
 - Skin
 - Bone
 - Cartilage
 - Tendon & Ligament
 - Blood Vessels
 - Pancreas
 - Urological
 - Dental

- Procedures/Patient pa
 - **-** 4,750,000
 - -1,340,000
 - -1,150,000
 - -123,000
 - -1,360,000
 - **728,000**
 - 82,000
 - 10,000,000

Neomorphogenesis

- To create an environment where the cells would be close enough to form structures, which can function and be implanted.
- Approach: donor cells are placed and cultured on a highly porous, biodegradable, polymer matrix.
- Examples: skin, cartilage, tendons, ligament, liver, ureters, etc.

Engineered Soft Tissue

Immunoisolation Membranes

- Living cells are encapsulated with a polymeric membrane
- The membrane allows the molecules of interest to diffuse through, but rejects large antibodies and immune cells to protect the cells
- Examples: livers and pancreas

Cell Encapsulation

Cells secreting pain killer are encapsulated in a hollow fibre membrane and implanted into the spinal cord for the treatment of chronic back pain.

Cell Source

- Autogetic: Patient's own cells; immune acceptable, does not lend itself to off-the-shelf availability
- Allogenic: Cells from other human source; lends itself to off-the-shelf availability, but may need to engineer immune acceptance
- Xenogentic: From different species; not only need to engineer immune acceptance, but must be concerned with animal virus transmission
- Stem cells: Great potential but little is known

Scaffolding Materials

- Natural Biopolymers
 - e.g collagen, alginate
- Synthetic Polymers
 - biocompatibility
 - biodegradability
 - mechanical properties
 - surface properties

Scaffolds Requirements: Good adhesion, differentiation and proliferation Good biocompatibility Biodegradability Non-toxicity Larger surface for cell-polymer interaction Interconnected pores Easily fabricated Mechanical properties

Scaffolds Synthetic scaffolds PLA, PGA Biological scaffolds Collagen Hydrogel scaffolds Agarose, alginate

Preservation Needs for cell preservation – e.g. stem cell banking Needs for engineered tissue preservation Off-the-shelf availability Long production cycle Needs for organ preservation – matching availability of organ and recipient Quality control Product distribution

Scaffolding Materials

Natural Biopolymers

- e.g collagen, alginate
- Synthetic Polymers
 - biocompatibility
 - biodegradability
 - mechanical properties
 - surface properties
- Inorganic/ceramic materials
 - Bioglass, HA
- Biocomposite
 - PLA-HA
 - Collagen-HA

Extracellular Matrix Compositions of the ECM: The polysaccharides: proteoglycans Collagen, Elastin, Laminin, Fibronectin The role of ECM: Provide 3D environment for cells to organize in tissues Importance in cell-cell signaling and cell-ECM interaction to regulate cell adhesion and tissue function.

Biomaterials for Tissue Engineering

- In order to grow engineered tissues with proper functions, it is necessary to mimic native ECM
- Biomaterials for tissue Engineering should provide a 3D structure for cells to form new tissues, and allow for the delivery of cells and appropriate bioactive factors to the desired site

Collagen

- Structure protein with triple-strand helical structure
- Extracted by enzyme treatment and salt/acid extraction
- Can be resorbed into the body
- Degradation rate cab be altered by crosslinked with chemicals
- Excellent for attachment and biological interaction with cells
- Disadvantages:
 - Poor mechanical properties
 - Undergo contraction

Alginate

- A polysaccharide isolated from seaweed
- Gelling in the presence of calcium ion
- Used as injectable cell delivery vehicle and a cell immobilization matrix
- Biocompatible
- FDA approved for human use
- Disadvantages:
 - Poor mechanical strength
 - Poor cell adhension

Chitosan

- hindegradable
 hince grapatifie
 hince grapatifie
 hince grapatifie
- •Derived from chitin, the most abundant polysaccharide (marine organism) after cellulose in nature
- •Linear polyamine (poly-D-Glucosamine)
- •Reactive amino and hydroxyl groups available
- •Advantages:
 - •Biocompatible and biodegradable
 - •Mild process conditions
 - •Controllable mechanical/biodegradation properties
 - •Availability of chemical side groups for attachment to other moleules
 - •Accelerates the formation of osteoblasts responsible for bone formation
- •Disadvantage:
 - •Cell attachment

IN VAL

Synthetic Materials: Bioceramics and bioactive glasses

- Inorganic/non-metallic
- Bioactive glasses based on silica network structure with Ca, P, Na, form bond with living bone
- Bioceramics:

Bioceramic	Bone tissue attachment
Single crystal Al ₂ O ₃	Dense non-porous nearly inert ceramics.
Polycrystalline Al ₂ O ₃	Bone growth into surface irregularities by
	cementing the device into the tissues or by press
	fitting into a defect (morphological fixation).
Polycrystalline Al ₂ O ₃	Porous inert implants – bone ingrowth occurs that
Hydroxyapatite (HA)-coated	mechanically attaches the bone to the material
porous metals	(biological fixation).
Bioactive glasses	Dense porous/non-porous surface-reactive ceramics,
Bioactive glass ceramics	glasses and glass ceramics attach directly by chemical
HA	bonding with bone (bioactive fixation).
Calcium sulphate	Dense porous/non-porous resorbable
Tricalcium phosphate (TCP)	ceramics slowly replaced by bone.
Calcium phosphate salts	

Synthetic Materials: Polymers

Polyester:
$$-(-R-C-O)$$

R = $-CH_2$ Poly(glycolic acid)

Poly(glycolic acid)

Poly(lactic acid)

Poly(lactic acid)

Poly(e-caprolactone)

Poly(e-caprolactone)

Poly(g-caprolactone)

Poly(g-caprolactone)

Poly(g-caprolactone)

Poly(g-caprolactone)

Poly(g-caprolactone)

Poly(g-caprolactone)

Poly(g-caprolactone)

Sudden "autocatalytic" degradation

Poly(g-caprolactone)

Slow degradation

Synthetic Materials: Polymers ■ PGA, PLA and PLGA are FDA approved

- Degradation by nonenzymatic hydrolysis
- The degradation products are nontoxic natural metabolites and eliminated from the body in the form of carbon dioxide and water

Biomimetic scaffolds-modification

Surface modification

- Incorporate bioactive ligands via chemical or physical modification
- Ligands minic protein found in ECM that are recognized and bind to specific cell surface receptors, such as integrins
- Ligands can activate the cellular responses

Bulk modification

- Recognition sites are present not only on the surface but also in the bulk of the materials.
- Mimic complicated events associated with in vivo environments.
- Bulk modification with enzymatically degradable sequences.

Modification

By chemical attachment or physical adsorption

- Short chain peptide sequences
 - Surface density and orientation controlled more easily
 - Nearly all available for cell binding
 - Easily synthesized, purified, and inexpensive
- Long chain ECM proteins
 - Include fibronectin (FN), laminin (LN), and vitronectin (VN)
 - Proven to promote cell adhesion and proliferation

Mass transfer in Tissue Engineering

Transport in Biological system Molecular level Characteristic length scale: 1nm Ion channel in lipid layer Transport at the level of a single ion channel Cell Level RNA transport out of the cell's nucleus, L~1μm Transpot of G-actin to psuedopod of leukocytes to form F-actin and allow for extension, L~10μm Microvascular level Oxygen transport through the vasculature, L~10-100μm Organ level L~1cm-10cm

Ficks' Law and Transport Properties

The law governing molecular diffusion of species was first formulated by Adolph Fick in 1855, using the analogy with heat transfer.

$$N_{Ay} = -D_A \frac{\partial CA}{\partial y}$$

where N_A is the main flux of A in y- direction, D_A is the diffusivity of A (m²/s), $\frac{\partial C_A}{\partial y}$ is the concentration gradient.

Fick's Law applies to the diffusion of a single, dilute, species through a quiescent fluid, or through a liquid.

The diffusivity of gases at room temperature and pressure is around 10^{-5} m²/s and is inversely proportional to pressure (why?). The much greater rate of intermolecular illusions in liquids means that liquid phase diffusivities are much lower – around 10^{-9} m²/s.

Newton's Equation of Viscosity

$$\tau_{yx} = -\mu \frac{\partial V_x}{\partial y}$$

$$\mu - N.s/m^2$$
 or $Pa.s$

$$\tau_{yx} = -v \frac{\partial (\rho V_x)}{\partial y}$$

$$v - m^2/s$$

 ρV_x - momentum/ m^3

Fourier's Law of Conduction

$$q_y = -k \frac{\partial T}{\partial y}$$

$$k-W/(m.K)$$

$$q_{y} = -\alpha \, \frac{\partial(\rho CT)}{\partial y}$$

$$\alpha - m^2/s$$

 ρCT – Thermal energy/ m^3

Fick's Law of diffusion

$$N_{Ay} = -D_A \frac{\partial C_A}{\partial y}$$

$$D_A - m^2/s$$

$$C_A - mass/m^3$$

General rate equation

Mass mass

heat $\begin{cases} Flux = heat \end{cases}$ diffusivity x

Momentum momentum

mass

heat Concentration gradient

momentum

 ν (μ), α (k) and D are called the transport properties, and they depends on temperature, pressure and concentration (for D)

For gases. $T \uparrow \rightarrow k \uparrow, \mu \uparrow, D \uparrow$

 $P \uparrow \rightarrow D \downarrow$

For liquid $T \uparrow \rightarrow k \uparrow, \mu \uparrow, D \uparrow \uparrow$

D heavily depends on composition as well.

Convective Mass Transfer

Film theory

For the convective mass transfer between a surface with a concentration of C_{As} , and a fluid with a bulk concentration C_{Ab} , the rate of the mass transfer can be evaluated by assuming the mass transfer resistance is only confined within a thin laminar layer with a thickness of δ close to the surface. Then the mass flux

$$N_A = \frac{D}{\delta} (C_{As} - C_{Ab}) = k_c (C_{As} - C_{Ab})$$

where $k_c = D/\delta$ (m/s) is named as the mass transfer coefficient.

As one can expect, the more turbulent, the thinner of this laminar layer, and hence the higher the k_c .

If we look at the mass transfer in a circular pipe
$$k_{c} = f\left(D, \mu, \rho, V, d\right)$$
By dimensional analysis, we have
$$\frac{k_{c} \cdot d}{D} = f\left(\frac{\rho \, Vd}{\mu}, \frac{\mu}{\rho D}\right)$$

$$\frac{k_{c} \cdot d}{D} = \frac{k_{c}}{D/d} = Sh \quad Sherwood \; Number \rightarrow \frac{convective \; transfer \; rate}{diffusive \; transfer \; rate}$$

$$\frac{\rho \, Vd}{\mu} = \text{Re} \qquad \text{Re } ynolds \; number$$

$$\frac{\mu}{\rho D} = \frac{\gamma}{D} = Sc \quad Schmidt \; number \quad \Rightarrow \frac{momentum \; transfer \; BL \; thickness}{mass \; transfer \; BL \; thickness}$$

$$[compare \; to \; Nu = f\left(Re, Pr\right), \; and \; Pr = \frac{\mu C_{p}}{\kappa} = \frac{\mu / \rho}{k / \rho C_{p}} = v / \alpha]$$

At the interface the two phases must be in equilibrium with each other. For example, in a gas/liquid system, Henry's Law will apply

$$P_{Ai} = H c_{Ai}$$

where **H** is the Henry constant. In the gas phase (assumed to be phase 1, and ideal) the molar concentration of A is P_A/RT . We thus have two equations for the flux through the gas and liquid films

$$N_A = k_G (P_{Ab} - P_{Ai})/RT$$

$$N_A = k_L (c_{Ai} - c_{Ab}).$$

We can also define **overall mass transfer coefficients** based on the overall driving forces. There are two of them

$$N_A = K_G (P_{Ab} - P_A^*)/RT = K_G (P_{Ab} - H c_{Ab})/RT$$

$$N_A = K_L (c_A^* - c_{Ab}) = K_L (P_{Ab}/H - c_{Ab}).$$

The quantity Hc_{Ab} is the equilibrium partial pressure P_A^* that would occur over a solution of concentration c_{Ab} , and P_{Ab}/H is the equilibrium concentration c_A^* for a partial pressure P_{Ab} . Note that neither P_A^* nor c_A^* actually occur in the system - they are hypothetical values. We can use the condition for equilibrium at the interface, $P_{Ai} = H c_{Ai}$, to eliminate the interface concentration and partial pressure and hence obtain the law of addition of resistances

$$\frac{1}{K_G} = \frac{1}{k_G} + \frac{H}{RTk_L}$$

$$\frac{1}{K_L} = \frac{RT}{Hk_G} + \frac{1}{k_L}$$

The distribution of resistances between the gas and liquid phases therefore depends on the solubility. For a sparingly soluble gas (large H) the mass transfer resistance is in the liquid phase; for a highly soluble gas (small H) a greater proportion of the resistance is in the gas phase.

Mass transport through cell membranes

Cell membranes

- is a selectively permeable lipid bilayer coated by proteins which comprises the outer layer of a cell.
- In essence membranes are essential for the integrity and function of the cell.
- control the input and output of the cell

Functions of cell membranes

- > Attaches parts of the cytoskeleton to the cell membrane in order to provide shape.
- > Attaches cells to an extra-cellular matrix in grouping cells together to form tissues.
- > Transports molecules into and out of cells
- > Acts as receptor for the various chemical messages that pass between cells
- > Part of the body's defense mechanism.

Transport through cell membranes

- Passive transport
 - Diffusion
 - Simple diffusion
 - Facilitated diffusion
 - Osmosis
- Active transport

Activated transport

WNAS

- Primary active transport:
 - use energy (usually through ATP hydrolysis) at the membrane protein itself to cause a conformational change that results in the transport of the molecule through the protein.
 - Na+-K+ pump.
- Secondary active transport:
 - use energy to establish a gradient across the cell membrane, and then utilizing that gradient to transport a molecule of interest up its concentration gradient.

Comparison of Simple Diffusion, Facilitated Transport & Active Transport

Property	Simple Diffusion	Facilitated Transport	Active Transport
Requires special membrane proteins	No	Yes	Yes
Highly selective	No	Yes	Yes
Transport saturates	No	Yes	Yes
Can be inhibited	No	Yes	Yes
Hormonal regulation	No	Yes	Yes
Uphill transport	No	No	Yes
Requires ATP energy	No	No	Yes

CPA transport through cell membranes

■ Kedem-Katchalsky formalism (K-K model)

$$\begin{split} J_{v} &= \frac{1}{A} \frac{dV_{w+c}}{dt} = -Lp\{(C_{s}^{e} - C_{s}^{i}) + \sigma(C_{c}^{e} - C_{c}^{i})\}RT \\ J_{CPA} &= \frac{1}{A} \frac{dN_{c}}{dt} = \overline{C}_{c}(1 - \sigma)J_{v} + \omega(C_{c}^{e} - C_{c}^{i}) \\ C_{s}^{i}(t) &= C_{s}^{e,0}(\frac{V_{cell}^{0} - V_{b} - v_{CPA}N_{c}^{i,0}}{V_{cell}(t) - V_{b} - v_{CPA}N_{c}^{i}(t)}) \\ C_{c}^{i}(t) &= (\frac{N_{c}^{i}(t)}{V_{cell}(t) - V_{b} - v_{CPA}N_{c}^{i}(t)}) \end{split}$$

2-P model $J_{w} = \frac{1}{A} \frac{dV_{w}}{dt} = -Lp(C^{e} - C^{i})RT$ $J_{CPA} = \frac{1}{A} \frac{dN_{c}}{dt} = \omega(C_{c}^{e} - C_{c}^{i})$ $V = V_{w} + V_{c} + V_{b}$ $dV_{c} / dt = v_{CPA} dN_{c} / dt$

Features of a Growing Engineered Tissue

- Cells consume nutrient and produce waste
- Mass transport is by diffusion, and/or perfusion, and/or convection
- Cells can proliferate
- Cells make extracellular matrix
- Cells can degrade scaffold

Mass Transfer Modelling

$$\frac{\partial C_i}{\partial t} = D_{e,i} \nabla^2 C_i + \Phi_i + C_i \nabla \bullet V$$

i = 1,2, ... N with N the number of concerned substances (nutrients, metabolites, growth factors ect)

C the concentration

V the perfusion velocity vector

 Φ is the consumption rate or production rate of i per unit volume.

PLUS BCs and ICs

Challenges

The consumption/productions rates

 $\Phi i = \phi[C1, C2,, CN, \rho(x,y,z), P(t), St]$ $\rho(x,y,z)$ the cell density distribution

P(t) the hydrostatic pressure time profile

St other factors, e.g. mechanical/electrical stimuli

The effective diffusivities

depend on cell density, ECM production scaffold degradation and non-uniformity; are difficult to evaluate

Perfusion

also depends on applied driving force

Good News – dilute, the interactions among solutes can be ignored!

1. Description of Bioreactors

- Objectives of bioreactors in Tissue Engineering
 - establish spatially uniform cell distributions on three dimensional scaffolds, to maintain desired concentrations of gases and nutrients in the culture medium, and to expose developing tissue to appropriate physical stimuli.
- Bioreactors are able to mimic physiological conditions in order to maintain and encourage tissue regeneration.

2. Classification and configuration of bioreactors

- Standing cultures
- Shaken bioreactors
- Stirred system

WNAS

- Hollow fibre bioreactors
- Rotating-wall vessels
- Perfused bioreactors
- Packed bed bioreactors
- Bioreactors with controlled mechanical force

c. Methods of minimizing cell damage

- Impeller design
- Bubble free oxygenation
 - headspace oxygenation
 - external oxygenation
 - direct oxygenation using gas permeable silicone tubing or hydrophobic membranes.

