Operations Research III: Theory Sensitivity Analysis and Dual Simplex Method

Ling-Chieh Kung

Department of Information Management National Taiwan University

Road map

- ► Evaluating a new variable.
- ▶ Dual simplex method.

A motivating example

- ► Consider the following example.
- A company is selling two products. Producing 1 unit of product 1 requires 1 unit of resource 1 and 1 unit of resource 2. Product 1 unit of product 2 requires 1 unit of resource 1 and 2 units of resource 2. Each unit of products 1 and 2 can be sold at \$2 and \$3, respectively. The total amounts of resources 1 and 2 it has are 4 and 6 units, respectively. Find an optimal production plan that maximize its total sales revenue.
- ► The Linear Programming formulation:

A motivating example

▶ We may use the simplex method to solve it:

An optimal solution is $(x_1^*, x_2^*) = (2, 2)$. The objective value is $z^* = 10$.

A new activity

▶ Suppose that the company now may produce the third product. 1 unit of product 3 requires only 1 unit of resource 2 and can be sold at 8. The new Linear Programming formulation:

► May we find an optimal plan?

A new activity

▶ We may always solve the new linear program from scratch:

• An optimal solution is $(x_1^{**}, x_2^{**}, x_3^{**}) = (0, 0, 6)$ with $z^{**} = 48$.

May we do better?

- ▶ Do we really need to solve the new problem from scratch?
 - We just solved a problem with n activities and obtained an optimal solution.
 - ▶ The new problem has n+1 activities. The original n activities remain unchanged. The resources remain unchanged.
 - ► The new problem is so **similar** to the original problem!
 - ▶ May we go from an optimal solution of the original problem instead of going from the very beginning? That may save a lot of time!
- ▶ If the original problem's feasibility is a question (i.e., the two-phase implementation is needed), the difference becomes more obvious!

May we do better?

- ► The answer is definitely **yes!**
- ▶ When the decision variable set changes from (x_1, x_2) to (x_1, x_2, x_3) , the solution $(x_1^*, x_2^*, 0)$ is certainly **feasible** for the new problem.
 - ▶ Just like removing the newly added column in the new problem.
 - ► We simply ignore the new option.
- ▶ All we need to do is to check whether we should produce some product 3.
 - If no, the current solution $(x_1^*, x_2^*, 0)$ is optimal.
 - ▶ If yes, we increase the nonbasic variable x_3 until one basic variable becomes 0.
- ▶ How to determine this?
 - \blacktriangleright All we need is the **reduced cost** of x_3 !

- ▶ Now we are ready to evaluate the new activity (product 3).
- Our original problem:

Our new problem:

- ▶ After we solve the original problem, we have $B^* = (x_1, x_2)$ and $N^* = (s_1, s_2)$.
 - ightharpoonup The optimal basis is B^* .
- ▶ When we have the new decision variable x_3 , it is 0 (nonbasic) at the beginning.
- ▶ Therefore, to solve the new problem, we may start from the basis $B = (x_1, x_2)$ and the set of nonbasic variables $N = (x_3, s_1, s_2)$.
 - ▶ Setting $x_3 = 0$ is definitely **feasible**.
 - ▶ These B and N allow us to obtain the initial tableau for the new problem.
 - ▶ We do not need to start from scratch.

► Recall that we have the optimal tableau for the original problem:

➤ The initial tableau for the new problem should have only one column missing:

0	0	?	1	1	10			
1	0	?	2	-1	2			
0	1	?	-1	1	2			
$\overline{}$		_						
basic		r						

- ▶ Let's calculate the values in that column.
- ► The vector of constraint coefficients for nonbasic variables is $A_R^{-1}A_N$.
 - For column j, that column is $A_B^{-1}A_j$.
 - ▶ In our example, it is

$$\left[\begin{array}{cc} 2 & -1 \\ -1 & 1 \end{array}\right] \left[\begin{array}{c} 0 \\ 1 \end{array}\right] = \left[\begin{array}{c} -1 \\ 1 \end{array}\right].$$

- The vector of reduced costs for nonbasic variables is $c_B^T A_B^{-1} A_N c_N^T$.
 - For column j, that value is $c_B^T A_B^{-1} A_j c_j$.
 - In our example, it is

$$\begin{bmatrix} 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} - 8 = -7.$$

0	0	?	1	1	10		
1	0	?	2	-1	2		
0	1	?	-1	1	2		
_	سر						
basic		nonbasic					

▶ Let's go from the initial tableau for the new problem:

- An optimal solution is $(x_1^{**}, x_2^{**}, x_3^{**}) = (0, 0, 6)$ with $z^{**} = 48$.
- ► This is exactly **omitting the first few iterations** from the very beginning to the initial tableau!
 - ► Time is thus saved.
- ▶ We may further speed up by using the matrix representation.
 - ▶ There is no need to work with the full tableau.

Road map

- ▶ Evaluating a new variable.
- ► Dual Simplex Method.

A new constraint

► Recall our example

- ▶ We know how to evaluate a new activity.
- ▶ What if now we have a new constraint? For example, how about

A new constraint

- Intuitively, we may plug in the original optimal solution $(x_1^*, x_2^*) = (2, 2)$ into the new constraint.
 - ► If it is feasible, it is optimal for the new problem.
 - In our example, it is not feasible because 2 > 1.
 - ▶ What if it is not feasible?
- ▶ Let's look at the tableau to give us more ideas.

The new tableau with the new constraint

▶ Recall our original optimal tableau

- ▶ With a new constraint $x_1 \le 1$ (which also introduces a new slack variable s_3), what should the new tableau look like?
- ▶ We again rely on the matrix representation.

The new tableau with the new constraint

- ▶ Let's include s_3 to be a basic variable (as that new constraint is violated).
- ► Let $B = (x_1, x_2, s_3)$ and $N = (s_1, s_2)$.

We have
$$c_B = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$$
, $c_N = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $A_B = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$, $A_N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$, and $b = \begin{bmatrix} 4 \\ 6 \\ 1 \end{bmatrix}$.

We then have
$$A_B^{-1} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 1 & 0 \\ -2 & 1 & 1 \end{bmatrix}$$
, $A_B^{-1}A_N = \begin{bmatrix} 2 & -1 \\ -1 & 1 \\ -2 & 1 \end{bmatrix}$,

$$A_B^{-1}b = \begin{bmatrix} 2\\2\\1 \end{bmatrix}, c_B^T A_B^{-1} A_N - c_N^T = \begin{bmatrix} 1 & 1 \end{bmatrix}, \text{ and } c_B^T A_B^{-1} b = 10.$$

The new tableau with the new constraint

► This gives us a new tableau

0	0	1	1	0	10
1	0	2	-1	0	2
0	1	-1	1	0	2
0	0	-2	1	1	-1
basic		nonl	oasic	basic	

An infeasible basis

► The tableau:

0	0	1	1	0	10
1	0	$ \begin{array}{c} 2 \\ -1 \\ -2 \end{array} $	-1	0	2
0	1	-1	1	0	2
0	0	-2	1	1	-1

- ► This is an **invalid simplex tableau**: Its RHS column contains a **negative** value.
 - ▶ In other words, $B = (x_1, x_2, s_3)$ is **infeasible**, as we already know.
- ▶ What should we do?

Linear Programming duality

- ▶ Recall that we know how to deal with a new variable.
 - ▶ We evaluate its reduced cost.
 - ▶ We run some simplex iterations if needed.
- ▶ We do not know how to deal with a new constraint.
 - ▶ We do not know how to run simplex iterations.
- ▶ But wait... we know **Linear Programming duality**.
 - ▶ We know a primal constraint is a dual variable.
 - If a primal LP has one new constraint, it dual LP will has one new variable.
 - ▶ We know how to deal with the dual LP!

Linear Programming duality

▶ Our original primal LP is

▶ Our original dual LP is

Linear Programming duality

▶ Our primal LP with a new constraint is

Our dual LP with a new variable is

- ► The original dual LP's optimal solution isn't optimal for the new dual LP.
- ▶ We may solve the new dual LP to solve the new primal LP.

The dual simplex method

- While we understand the idea, we do not really need to work on the dual LP.
- ► We may use the dual simplex method directly.
- ▶ The (primal) simplex method for a maximization problem:
 - ▶ Look for a **negative reduced cost** for an entering variable.
 - ▶ Do the ratio test to find a RHS value hitting 0 first for a leaving variable.
 - ▶ We maintain primal feasibility and fix dual infeasibility.
- ▶ The dual simplex method for a maximization problem:
 - ▶ Look for a negative RHS value for a leaving variable.
 - Do the ratio test to find a reduced cost hitting 0 first for an entering variable.
 - We maintain dual feasibility and fix primal infeasibility.

An example

▶ Recall our new (primal) problem and its invalid tableau:

0	0	1	1	0	10
1	0	$ \begin{array}{c} 2 \\ -1 \\ \hline -2 \end{array} $	-1	0	2
0	1	-1	1	0	2
0	0	-2	1	1	-1

- ► Look for a negative RHS value for a leaving variable:
 - \triangleright s_3 should be the leaving variable.
- ▶ Where is the **pivot**?
 - \triangleright We need to fix primal infeasibility by making that -1 nonnegative.
 - ▶ The pivot should be **negative** so that a row operation does the fix.

Pivoting

Pivoting

▶ After one iteration, we obtain

0	0	0	$\frac{3}{2}$	$\frac{1}{2}$	$\frac{19}{2}$
1	0	0	0	1	1
0	1	0	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{5}{2}$ $\frac{1}{2}$
0	0	1	$-\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$

- \triangleright s_3 leaves and s_1 enters.
- ▶ The current basic solution is $(x_1, x_2, s_1, s_2, s_3) = (1, \frac{5}{2}, \frac{1}{2}, 0, 0)$. It is feasible.
- ▶ It corresponds to the solution $(x_1, x_2) = (1, \frac{5}{2})$ with $z = \frac{19}{2}$. It is optimal.

Another (purely pedagogical) example

▶ What if we have multiple negative RHS values? E.g.,

0		1			
1	0	-2	-1	0	$ \begin{array}{ c c } \hline -2 \\ 2 \\ -1 \end{array} $
0	1	-1	1	0	2
0	0	-2	1	1	-1

- In this case, pick anyone you like.
- \triangleright E.g., if you adopt the smallest index rule, we will pick x_1 .
- ▶ What if we have **multiple negative numbers** in that row?
 - ▶ We need to maintain dual feasibility (make reduced costs nonnegative).
 - ► A ratio test will help us pick one (which one)?

Another (purely pedagogical) example

▶ Pivoting at -2 is good (and $\left|\frac{1}{-2}\right| < \left|\frac{1}{-1}\right|$):

▶ Pivoting at -1 is bad (and $\left|\frac{1}{-1}\right| > \left|\frac{1}{-2}\right|$):

0	0	1	1	0	10		1	0	-1	0	0	8
1	0	-2	-1	0	-2	\rightarrow	-1	0	2	1	0	2
0	1	-1	1	0	2	,	1	1	-3	0	0	0
0	0	-2	1	1	-1		-1	0	-4	0	1	-3

Remarks

- ▶ The dual simplex method helps us deal with additional constraints.
- ► The pivoting rule:
 - Leaving: a basic variable that is negative (a row with a **negative RHS**).
 - Ratio test: For those nonbasic columns with negative elements in the leaving row, let the reduced costs as numerators and absolute values of the negative elements as denominators.
 - ► Entering: a nonbasic variable (a column) with the **smallest ratio**.
- ▶ It is used in many situations, e.g.:
 - When we use branch and bound to solve an integer program, we keep adding constraints to existing nodes.
 - ▶ To solve a new node with one additional constraint, the dual simplex method helps a lot!