Quadrilateral: 4 sided polygon

Sum of internal angles = 360

Sum of external angles = 360

Number of diagonals = 2

Parallelogram: Quadrilateral formed by joining mid points of the sides of any quadrilateral.

- 1. Opposite sides are \parallel .
- **2.** Opposite sides are equal.
- **3.** Opposite angles are equal.
- **4.** The diagonals bisect each other i.e.

OA=OC & OB=OD

Area = base ×height = ab Sin θ , a & b are sides and θ is any angle

Rectangle: Special parallelogram with

- 1. Equal angles.
- 2. Equal diagonals.
- 3. Maximum area.

Area = Base \times Height

$$Diagonal = \sqrt{a^2 + b^2}$$

Problem: There is a rectangular garden with dimensions 14m×16m. There is a path of width 5m all along outside the garden. Find the area of the path?

Problem: There is a rectangular garden with dimensions 14m×16m. There is a path of width 5m all along outside the garden. Find the area of the path?

Area of path = Area of outer rectangle – Area of inner rectangle

$$= 24 \times 26 - 14 \times 16$$

= 400

Rhombus: Special parallelogram with

- 1. Equal sides.
- 2. Diagonals bisect at 90°.
- 3. Diagonals are angle bisectors.
- 4. 4 smaller triangles are congruent.

Area =
$$\frac{1}{2} \times d_1 \times d_2$$

Note: In any quadrilateral if diagonals are perpendicular then its area = $\frac{1}{2} \times d_1 \times d_2$

Problem: If diagonals of a Rhombus are 24cm and 32cm then find the perimeter of the Rhombus?

Problem: If diagonals of a Rhombus are 24cm and 32cm then find the perimeter of the Rhombus?

Side =
$$\sqrt{12^2 + 16^2}$$
 = 20

Perimeter = $4 \times 20 = 80$

Square: Special Rectangle & Rhombus

- 1. Equal sides.
- 2. Diagonals bisect at 90°.
- 3. Diagonals are angle bisectors.
- 4. Equal angles.
- 5. Equal diagonals.

 $Area = (Side)^2$

Diagonal = $\sqrt{2} \times \text{Side}$

Problem:

Find the ratio of area of square to rhombus if both are having same sides and one angle of rhombus is 30°.

Find the ratio of area of square to rhombus if both are having same sides and one angle of rhombus is 30° .

Let a is the side of square as well as rhombus.

$$\frac{\text{Area of square}}{\text{Area of rhombus}} = \frac{a^2}{a^2 \sin 30^\circ} = \frac{1}{\frac{1}{2}} = 2$$

Trapezium(Trapezoid): 2 sides are ||.

Area = $\frac{1}{2}$ × height× sum of || sides

E & F are mid points of AD and BC then

$$EF = \frac{AB + CD}{2}$$

Isosceles Trapezium:

- 1. Oblique sides (Non-parallel sides) are equal.
- 2. Diagonals are equal.
- 3. It is cyclic i.e. sum of opposite angles is 180.

Note: If a trapezium is cyclic then must be an isosceles.

Cyclic quadrilateral:

Sum of opposite angles is 180°.

Or

Quadrilateral inscribed in a circle.

Area =
$$\sqrt{(S-a)(S-b)(S-c)(S-d)}$$
, S:Semiperimeter

Problem: Find the area of cyclic parallelogram with sides 5cm & 10cm

Problem: Find the area of cyclic parallelogram with sides 5cm

& 10cm

Area = 5×10

Note: Cyclic parallelogram is a Rectangle.