

### Navigation Technologies for Micro-Aerial Vehicles

F Wong **DRDC** Valcartier

November 2012



| maintaining the data needed, and c<br>including suggestions for reducing                                                                   | lection of information is estimated to<br>ompleting and reviewing the collect<br>this burden, to Washington Headqu<br>uld be aware that notwithstanding an<br>DMB control number. | ion of information. Send comments arters Services, Directorate for Info | regarding this burden estimate ormation Operations and Reports | or any other aspect of the 1215 Jefferson Davis  | nis collection of information,<br>Highway, Suite 1204, Arlington |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------|
| 1. REPORT DATE NOV 2012                                                                                                                    |                                                                                                                                                                                   | 2. REPORT TYPE                                                          |                                                                | 3. DATES COVERED <b>00-00-2012 to 00-00-2012</b> |                                                                  |
| 4. TITLE AND SUBTITLE                                                                                                                      |                                                                                                                                                                                   |                                                                         |                                                                | 5a. CONTRACT NUMBER                              |                                                                  |
| Navigation Technologies for Micro-Aerial Vehicles                                                                                          |                                                                                                                                                                                   |                                                                         |                                                                | 5b. GRANT NUMBER                                 |                                                                  |
|                                                                                                                                            |                                                                                                                                                                                   |                                                                         |                                                                | 5c. PROGRAM ELEMENT NUMBER                       |                                                                  |
| 6. AUTHOR(S)                                                                                                                               |                                                                                                                                                                                   |                                                                         |                                                                | 5d. PROJECT NUMBER                               |                                                                  |
|                                                                                                                                            |                                                                                                                                                                                   |                                                                         |                                                                | 5e. TASK NUMBER                                  |                                                                  |
|                                                                                                                                            |                                                                                                                                                                                   |                                                                         |                                                                | 5f. WORK UNIT NUMBER                             |                                                                  |
| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)  Defence R&D Canada - Valcartier,2459 Pie-XI Blvd North,Quebec (Quebec) G3J 1X5 Canada, |                                                                                                                                                                                   |                                                                         |                                                                | 8. PERFORMING ORGANIZATION<br>REPORT NUMBER      |                                                                  |
| 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)                                                                                    |                                                                                                                                                                                   |                                                                         |                                                                | 10. SPONSOR/MONITOR'S ACRONYM(S)                 |                                                                  |
|                                                                                                                                            |                                                                                                                                                                                   |                                                                         |                                                                | 11. SPONSOR/MONITOR'S REPORT<br>NUMBER(S)        |                                                                  |
| 12. DISTRIBUTION/AVAII Approved for publ                                                                                                   | ABILITY STATEMENT<br>ic release; distributi                                                                                                                                       | on unlimited                                                            |                                                                |                                                  |                                                                  |
| 13. SUPPLEMENTARY NO DRDC-VALCART                                                                                                          |                                                                                                                                                                                   |                                                                         |                                                                |                                                  |                                                                  |
| 14. ABSTRACT                                                                                                                               |                                                                                                                                                                                   |                                                                         |                                                                |                                                  |                                                                  |
| 15. SUBJECT TERMS                                                                                                                          |                                                                                                                                                                                   |                                                                         |                                                                |                                                  |                                                                  |
| 16. SECURITY CLASSIFIC                                                                                                                     | 17. LIMITATION OF<br>ABSTRACT                                                                                                                                                     | 18. NUMBER<br>OF PAGES                                                  | 19a. NAME OF<br>RESPONSIBLE PERSON                             |                                                  |                                                                  |
| a. REPORT<br>unclassified                                                                                                                  | b. ABSTRACT <b>unclassified</b>                                                                                                                                                   | c. THIS PAGE<br>unclassified                                            | Same as Report (SAR)                                           | 21                                               | RESPONSIBLE PERSON                                               |

**Report Documentation Page** 

Form Approved OMB No. 0704-0188



**Challenge Mission Transition to** <mark>Perch/Stare/C</mark> hover, **Indoor flight** ontinue reconnoiter, and **Ingress from air or** transition back to ground assets forward flight **Recovery ops Obstacle** avoidance Swoop down and agile maneuvering Fly down urban canyon Air Force Research Lab, Eglin AFB



# **Navigation is Key**

- Classical approach
  - sensors
  - algorithms
- Biomimetic approach
  - sensors
  - algorithms



#### **Inertial Measurement Unit**

Crossbow ANC-1000

www.moog-crossbow.com

Microstrain 3DM-GX3

www.microstrain.com

SBG IG-500N

www.sbg-systems.com



acceleration angular rate magnetic field

leads to estimation of velocity position heading



#### **Infrared Time of Flight Scanner**

Hokuyo UTM-30LX www.hokuyo.aut.jp/02sensor Sick LMS 111 www.sick.com

Velodyne HDL-32E www.velodynelidar.com



2D range

max. range: 5 m to 30 m

3D range

max. range: 70 m

working principle: time taken for laser pulse to travel from an illuminator to objects in the FOV and back to the detector



#### **Infrared Time of Flight Camera**

#### MESA SR4000

www.mesa-imaging.ch



3D range

max. range: 5 m

working principle: time taken for light to travel from an active illumination source to objects in the FOV and back to the sensor



#### **Ultrasonic Range Finder**

#### Devantech SRF

http://www.robotshop.com/ca/sensors.html

Maxbotix XL-MaxSonar

www.maxbotix.com

Parallax PING

www.parallax.com



1D range

max. range: 2 cm to 10 m

working principle:

time taken for sound to travel from an active transducer to objects in the beam width and back to the detector



### **Classical Approach - Algorithms**

#### **Reactive Obstacle Avoidance**

Instantaneous mapping of environment and path generation.

Durham et al. (2008), IROS, 1-9
Minguez & Montano (2004), IEEE Trans Robotics and Auto., Vol. 20, 45-59
Simmons (1996), Proc IEEE Intl Conf Robotics and Auto, 3375-3382
Ulrich & Borenstein (1998), IEEE Intl Conf Robotics and Auto, 1572-1577

#### **Simultaneous Localization and Mapping**

Incremental build of a spatially consistent map with concurrent computation of location within the map to allow path planning.

Celik et al. (2008), AIAA GNC Conf, AIAA 2008-6670 Grisetti et al. (2007), Robotics and Autonomous Syst, Vol. 55, 30-38

#### **Structure from Motion**

Reconstruction of vehicle pose relative to the 3D environment through feature-point tracking in successive images.

Prazenica et al. (2007), AIAA GNC Conf, AIAA 2007-6830 Watkins (2007), PhD Thesis, U Florida



### **Biomimetic Approach - Sensors**

#### **Vision**

monocular camera

Centeye www.centeye.com



optical mouse ADNS-2610 https://www.sparkfun.com/products/10105



PrimeSense www.primesense.com



array of CCD or CMOS detectors

compound eye composed of elementary motion detectors

simple elementary motion detector

3D scanner using structured light



# Hierarchy of Technologies for Vision-based Micro-Aerial Vehicles





# **Image Extraction**

• 160x120 pixels, 10 fps, computation time = 0.23 s



• 320x240 pixels, 30 fps, computation time = 2.26 s





# **Optical Flow Estimation**

• Optical flow due to general camera motion

Coombs, D. et al. (1998), IEEE Trans Robotics and Automation, Vol. 14, 49-58.

$$u = (1/Z)(-T_x + xT_z) + [xy\omega_x - (1 + x^2)\omega_y + y\omega_z]$$
  

$$v = (1/Z)(-T_y + yT_z) + [(1 + y^2)\omega_x - xy\omega_y - x\omega_z]$$

Optical flow based on image pixel brightness

$$\frac{\partial I}{\partial x}V_x + \frac{\partial I}{\partial y}V_y + \frac{\partial I}{\partial t} = 0$$



### **Optical Flow Estimation**

Horn & Schunck – global smoothness constraint

Horn and Schunck (1981), Artificial Intelligence, Vol. 17, 185-203.

$$E = \iint \left[ \left( I_x u + I_y v + I_t \right)^2 + \infty^2 \left( \|\nabla u\|^2 + \|\nabla v\|^2 \right) \right] dxdt$$

$$dxdy$$

• Liu (Lucas & Kanada) – local smoothness constraint

Lucas and Kanade (1981), Proc. Of DARPA Image Understanding Workshop, 121-130. Liu (2009), PhD Thesis, MIT

$$\begin{bmatrix} V_x \\ V_y \end{bmatrix} = \begin{bmatrix} \sum_{t} I_x(q_t)^2 & \sum_{t} I_x(q_t) I_y(q_t) \\ \sum_{t} I_x(q_t) I_y(q_t) & \sum_{t} I_y(q_t)^2 \end{bmatrix}^{-1} \begin{bmatrix} -\sum_{t} I_x(q_t) I_t(q_t) \\ -\sum_{t} I_y(q_t) I_t(q_t) \end{bmatrix}$$

• Other algorithms

vision.middlebury.edu/flow/eval



### **Feature Extraction – Time to Contact**

### • TTC based on flow divergence

Coombs, D. et al. (1998), IEEE Trans Robotics and Automation, Vol. 14, 49-58.

$$\frac{\partial u}{\partial x} = \rho T_z + y \omega_x - 2x \omega_y$$

$$\frac{\partial v}{\partial y} = \rho T_z + 2y \omega_x - x \omega_y$$

$$T_c = \frac{2}{\nabla(u, v)} \quad \text{at } (x, y) = (0, 0)$$

### • TTC at pixel location (x, y)

Low & Wyeth (2005), Australasian Conf Robotics and Automation, 1-10.

$$\mathbf{T_c} = \frac{\cos\phi \times \sin\phi}{\dot{\phi}} \qquad \begin{array}{l} \dot{\phi} = u\cos\theta + v\cos\theta \\ \phi = \text{spherical angle between optical axis and vector from focal point to pixel on image plane} \end{array}$$



### **Navigation Law**

Global TTC

$$T_{cbalance} = \sum_{i=0}^{n/2} \sum_{j=0}^{m} \mathbf{T_c(i,j)} - \sum_{i=n/2}^{n} \sum_{j=0}^{m} \mathbf{T_c(i,j)}$$
$$T_c = K_{scaling} \sum_{i=0}^{n} \sum_{j=0}^{m} \mathbf{T_c(i,j)}$$

Heading and speed commands

$$\psi_{cmd} = \left(-\frac{\pi}{36} * (T_c)^2 + \frac{\pi}{4}\right) * sign(T_{cbalance})$$

$$v_{cmd} = \left(-\frac{1}{18} * (T_c)^2 + \frac{1}{2}\right) * sign(T_{cbalance})$$



### **Quadrotor Control Law**



Simplified control law for simulation study only.



# **Comparison of Optical Flow Estimation Methods**











### **Obstacle Avoidance Simulation – 1 Obstacle**





### **Obstacle Avoidance Simulation – 5 Obstacles**





# **Summary**

- Classical navigation approach comprised of sensors that measure distances to objects and algorithms that exploit absolute distance measurements to compute navigation commands.
- Biomimetic approach comprised of sensors that pixelate objects in an image plane and algorithms that exploit pixel movement to deduce object location in order to compute navigation commands.
- As the size of a micro-aerial vehicle reduces, the viability of using classical navigation methods decreases unless classical navigation sensors have a dramatic decrease in size, weight and power consumption.
- Vision-based navigation methods may offer an avenue to miniaturize the navigation sub-system on micro-aerial vehicles. However, further development to increase the robustness of optical flow-based navigation algorithms is required.



### **Other Interesting References**

- Ahrens (2009), "Vision-based Guidance and Control of a Hovering Vehicle in Unknown, GPS-denied Environments", Proc IEEE Intl Conf Robotics and Auto, 2643-2648.
- Beyeler et al. (2007), "3D Vision-based Navigation for Indoor Flyers", IEEE Intl Conf Robotics and Auto (ICRA).
- Floreano et al. (2009), Flying Insects and Robots, Springer.
- Lewinger et al. (2006), "Obstacle Avoidance Behavior for Biologically-Inspired Mobile Robot using Binaural Ultrasonic Sensors", IEEE/RSJ Intl Conf on Intell Robots and Syst, 5769-5774.
- Minguez et al. (2004), "Divide and Conquer Strategy based on Situations to Achieve Reactive Collision Avoidance in Troublesome Environments", IEEE Intl Conf Robotics and Auto, Vol. 4, 3855-3862.
- Moeckel and Liu (2010), Motion Detection Chips for Robotic Platforms, Springer.
- Zuffrey and Floreano (2006), "Fly-Inspired Visual Steering of an Ultralight Indoor Aircraft", IEEE Trans on Robotics, Vol. 22, 137-146.
- Zuffrey (2008), "Bio-Inspired Flying Robots: Experimental Synthesis of Autonomous Indoor Flyers", Chap. 3, EPFL Press.