Urbanization and Development

Klaus Desmet SMU, NBER and CEPR

STEG Macro Development Virtual Course, May 7, 2021

Outline

- Determinants of the city size distribution
 - ▶ Desmet and Rossi-Hansberg (AER 2013)
 - Role of efficiency, amenities and frictions
 - Application to U.S. and China
- Space and development
 - ► Desmet and Henderson (Handbook 2015)
 - ► Henderson, Squires, Storeygard and Weil (QJE 2018)
 - ► Gollin, Jedwab and Vollrath (*JOEG* 2016)
 - ► Conte, Desmet, Nagy and Rossi-Hansberg (2020)

1. Desmet and Rossi-Hansberg (AER, 2013)

Introduction

- Why do people live in particular cities?
 - High productivity
 - Attractive amenities
 - ► Low frictions
- In equilibrium larger cities must either be more productive, have better amenities or face smaller frictions, compared to smaller cities
- Use a simple urban theory to estimate these components for the U.S.
- Counterfactual exercises that explain the relative importance of these characteristics for welfare and the city size distribution
 - ► Similar to growth (or business cycle) accounting

Introduction

- Regional policy often interested in smoothing differences across space
- Eliminating differences in any of these characteristics leads to
 - Relatively modest changes in welfare
 - Large population reallocations
 - Important changes to the fate of individual cities
- Are the relatively small welfare effects specific to the U.S.?
 - Compare to China
- Simple methodology to compare urban systems across countries

The Model

- Standard model of a system of I cities
- Each city is characterized by
 - ► A level of productivity
 - ► A level of amenities
 - A level of excessive frictions reflecting the efficiency of providing commuting infrastructure
- N_t identical agents choose where to live and work
- Add externalities in productivity and amenities

Technology

- ullet Goods are produced in I mono-centric circular cities with sizes N_{it}
- Production in city i depends on productivity A_{it}

$$Y_{it} = A_{it} K_{it}^{\theta} H_{it}^{1-\theta}$$

The standard first order conditions of this problem are

$$w_{it} = (1 - \theta) \frac{Y_{it}}{H_{it}} = (1 - \theta) \frac{y_{it}}{h_{it}}$$

$$r_t = \theta \frac{Y_{it}}{K_{it}} = \theta \frac{y_{it}}{k_{it}}$$

Capital is freely mobile so there is a common interest rate r

Preferences

Utility of an agent in city i is

$$\sum_{t=0}^{\infty} \beta^{t} \left[\log c_{it} + \psi \log \left(1 - h_{it} \right) + \gamma_{i} \right]$$

where γ_i denotes the city's amenities

• The problem of an agent with capital k_0 is therefore

$$\max_{\{i_{t}, c_{it}, h_{it}, k_{it}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} \left[\log c_{it} + \psi \log (1 - h_{it}) + \gamma_{i} \right]$$

subject to

$$c_{it} + x_{it} = r_t k_{it} + w_{it} h_{it} (1 - \tau_{it}) - R_{it} - T_{it}$$

 $k_{it+1} = (1 - \delta) k_{it} + x_{it}$

Preferences

- In steady state $k_{it+1} = k_{it}$ and $x_{it} = \delta k_{it}$
- Assume k_{it} is such that $r_t = \delta$
- Budget constraint simplifies to

$$c_{it} = w_{it}h_{it}(1-\tau_{it}) - R_{it} - T_{it}$$

The first order conditions of this problem imply that

$$(1-\tau_{it}) = \frac{\psi}{(1-\theta)} \frac{c_{it}}{1-h_{it}} \frac{h_{it}}{y_{it}}$$

where τ_{it} is referred to as the labor wedge in Chari et al. (2007)

ullet Agents can move freely across cities, so utility $u_{it}=ar{u}_t$

Commuting Costs and Land Rents

- Cities are mono-centric
 - Production happens at city center
 - ▶ People's residence is characterized by distance to center, *d*
- ullet Commuting is costly in terms of goods, $T\left(d
 ight)=\kappa d$
- ullet Each agent lives on one unit of land and pays rent R(d)
 - lacktriangle Normalize the price of agricultural land to zero, so $R\left(ar{d}
 ight)=0$
- Since all agents in a city are identical

$$R_{it}\left(d\right) + T\left(d\right) = T\left(\bar{d}_{it}\right) = \kappa \bar{d}_{it}$$

ullet City radius $ar{d}=\left(rac{N_{it}}{\pi}
ight)^{rac{1}{2}}$ and total miles traveled $TC_{it}=rac{2}{3}\pi^{-rac{1}{2}}N_{it}^{rac{3}{2}}$

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 釣 9 C C

Government Budget Constraint and Frictions

 Cost of providing transport infrastructure depends on total commuting costs and wages

$$G\left(h_{it}w_{it},\kappa TC_{it}\right) = g_{it}h_{it}w_{it}\kappa TC_{it} = g_{it}h_{it}w_{it}\kappa \frac{2}{3}\pi^{-\frac{1}{2}}N_{it}^{\frac{3}{2}}$$

where g_{it} is the inefficiency (or the frictions) of government

The government budget constraint is then given by

$$\tau_{it}h_{it}N_{it}w_{it} = g_{it}h_{it}w_{it}\kappa^{\frac{2}{3}}\pi^{-\frac{1}{2}}N_{it}^{\frac{3}{2}}$$

• The greater the inefficiency g_{it} , the greater the tax or labor wedge

$$\tau_{it} = g_{it} \kappa \frac{2}{3} \left(\frac{N_{it}}{\pi} \right)^{\frac{1}{2}}$$

Characterization of Equilibrium

- Labor market equilibrium satisfies $\sum_{i=1}^{l} N_{it} = N_t$ and all agents receive the same utility level \bar{u}
- Given $(A_{it}, \gamma_{it}, g_{it})$ we can calculate N_{it} for all i
- In equilibrium
 - ▶ More productive cities are larger: $\frac{dN_{it}}{dA_{it}} > 0$
 - ▶ Cities with larger amenities are larger: $\frac{dN_{it}}{d\gamma_{it}} > 0$
 - ► Higher "excess frictions" make cities smaller: $\frac{dN_{it}}{dg_{it}}$ < 0
- Explore this using data on U.S. cities and paying attention to the general equilibrium effects

Data

- Data for all MSAs in the U.S. between 2005-2008
- Production: GDP by MSA
- Consumption: No readily available data on consumption at MSA level
 - Use retail earnings and adjust using national averages
 - ► For housing consumption use gross rents
- Capital: use U.S. sectoral capital stocks and allocate it to MSAs according to their shares in sectoral earnings
- Hours worked: Current Population Survey

Identifying City Characteristics

- Need to calculate the triplet $(A_{it}, \gamma_{it}, g_{it})$ from the data
- Obtain productivity A_{it} from

$$A_{it} = \frac{y_{it}}{k_{it}^{\theta} h_{it}^{1-\theta}}$$

• Calculate labor wedge τ_{it} from

$$(1-\tau_{it}) = \frac{\psi}{(1-\theta)} \frac{c_{it}}{1-h_{it}} \frac{h_{it}}{y_{it}}$$

Government's budget constraint to obtain excessive frictions git

$$\ln \tau_{it} = \alpha + \frac{1}{2} \ln N_{it} + \ln g_{it}$$

ullet Model to obtain the amenity levels γ_{it} as to match size distribution

How Reasonable is This Identification Strategy?

Amenities

- ► Data on 23 amenities at MSA level: climate variables, quality of life variables from different city rankings, geographic variables
- Correlate observed data with model-generated data
- ▶ 22 out of the 23 correlations have the expected sign

Efficiency

► Correlation between efficiency measure and wages: 0.80

Parameters

- $\psi = 1.4841$ and $\theta = 0.3358$ (McGrattan and Prescott, 2009)
- $r = \delta = 0.02$
- According to the budget constraint

$$\alpha = \ln\left(\frac{2}{3}\right) + \ln\kappa - \frac{1}{2}\ln\pi$$

which allows us to estimate $\kappa = 0.002$

The Effect of Kappa

The Effect of Kappa

- Increasing commuting costs leads to decreased dispersion
 - ► Large cities become less attractive (higher congestion) and shrink
 - ► Small cities become more attractive (lower congestion) and grow
 - ▶ If commuting costs double, utility drops by 6.1%
- Decreasing commuting costs leads to increased dispersion
 - ► The disadvantage of being large is less important
 - ▶ If commuting costs halve, utility rises by 3.1%

Counterfactuals Without One Shock

Welfare Effects

- Eliminate one shock (productivity, amenities, excessive frictions) by setting its value to the population-weighted average
- Eliminating any of the shocks increases utility because it leads to less dispersion and commuting costs are convex
- Modest effects on welfare (less than 1.5%).
 - People can reallocate across cities
 - ▶ In terms of consumption equivalence, the drop is larger (up to 15%)
 - ★ Utility depends on more factors
 - ★ Any negative productivity effect, for example, is mitigated through people working less and through the importance of amenities in utility

Effects on Individual Cities

- Effect on the population of individual cities is large
- In the case of excessive frictions, strong relation to size
 - ▶ New York and Los Angeles -90%, Santa Cruz +145%
 - Some of the large cities are successful not just because of amenities or efficiency, but because of lower frictions
- In the case of efficiency, also strong relation to size
 - ▶ New York -77%, Los Angeles -29% and Chicago -46%
- In the case of amenities, weaker relation to size
 - ► East Coast gains (New York +44%, Philadelphia +34%)
 - ► West Coast loses (Los Angeles -8%, San Diego -42%)
 - ► Some smaller cities gain (Fargo +183%) but not all (Santa Fe -82%)

Geographic Distribution

Without Differences in Excessive Frictions:

Geographic Distribution

- In the absence of amenity differences:
 - ► West Coast and Florida loses
- In the absence of efficiency differences:
 - North East and Central regions would lose
- In the absence of differences in excessive frictions:
 - "Rust Belt" would gain
 - ► Rochester +37%, Syracuse +120%, Toledo +108%, Allentown-Bethlehem +14%

Reallocation

- In the case of equalizing efficiency or amenities, the overall shape of the distribution does not change much
- But cities may be changing their ranking in the distribution, so that the implied population reallocation may be large
- Measure reallocation by adding the number of new workers in expanding cities as proportion of total population
 - ► Same efficiency: 37% reallocation and welfare gains of 1.2%
 - ► Same amenities: 20% reallocation and welfare gains of 0.2%
 - ► Same excessive frictions: 44% reallocation and welfare gains of 0.8%
- Hence, very large reallocations, but relatively modest welfare gains
 - $\,\blacktriangleright\,$ Reallocation in the U.S. economy amounts to around 2.1% over 5 years

Counterfactuals With Only One Shock

Adding Production Externalities

- Until now efficiency affects agglomeration, but agglomeration does not affect efficiency
- Introduce production externalities

$$A_{it} = \tilde{A}_{it} N_{it}^{\omega}$$

where \tilde{A}_{it} is an exogenous characteristic and ω governs the elasticity of productivity with respect to size

- Based on literature, $\omega = 0.02$
- Use data on N_{it} and A_{it} to compute the exogenous productivities \tilde{A}_{it} .

Counterfactuals with Production Externalities

City Selection Effect

- When eliminating one of the shocks, some small cities become a lot smaller and exit (extensive margin)
- These are cities that lose their only comparative advantage
 - With externalities, this loss gets compounded, leading to exit
- Again, welfare effects are small, and population reallocation is large

Adding Externalities in Amenities

Introduce amenities externalities:

$$\gamma_{it} = \tilde{\gamma}_{it} N_{it}^{\zeta}$$

- \blacktriangleright As in the case of production externalities we let $\zeta=0.02$
- Reallocation and welfare changes very similar
- Equalizing city characteristics may decrease utility as cities are not able to take as much advantage of externalities
- City selection effect is stronger (extensive margin)

Counterfactuals Without One Shock and Both Externalities

- As in U.S. benchmark exercise, eliminate one shock (efficiency, amenities, excessive frictions)
- Welfare effects are an order of magnitude larger than in the U.S.
 - ► Equalize efficiency across space: welfare +47% (in U.S. +1.2%).
 - ► Equalize amenities across space: welfare +13% (in U.S. +0.2%)
 - ► To maintain utility, it would be enough to give all Chinese cities the efficiency of the lowest 27th percentile location
- Total reallocation of population similar to that of the U.S.
 - ► Equalizing efficiency: Beijing and Shanghai -97%.
 - ► Equalizing amenities: Beijing -10%, Shanghai -2%.
 - ► Equalizing excessive frictions: Shenzhen (one of the SEZs) -71%.

- Equalizing efficiency or amenities in U.S.: less disperse distribution
 - ► Larger cities become smaller & smaller cities become larger
- Equalizing efficiency in China: more disperse distribution
 - ► Larger cities become larger & smaller cities become smaller
 - Not inconsistent with Shanghai and Beijing losing most of their population if efficiency were equalized
 - Others those with high amenities but dismal productivity become the new mega-cities

- Same holds when equalizing amenities: larger cities become larger
 - Some of the large cities in China have low amenities
 - One potential reason are migratory restrictions that make us estimate low amenities for large cities
 - ★ Shenzhen would grow to a population of 78 million, and Guangzhou would increase its population by 72%
 - * Conversely, cities that are actively trying to attract more people should show up as having high amenities (e.g., Chongqing and Chengdu)
 - ► Other reasons might include air pollution and "time to build"
- The greater welfare effect from smoothing city characteristics in China has to do with the greater dispersion of those characteristics
 - ▶ These are bound to become smaller as China becomes more developed

Targeting Lagging Cities or Medium-Sized Cities?

China used to have the policy of controlling the big cities, moderating development of medium-sized cities, encouraging growth of small cities

Urban Policies	Welfare Differences		
	Efficiency	Amenities	Frictions
Improve in Worse Cities by 20%	4.9%	11.4%	0.2%
Improve in Smallest Cities by 20%	2.0%	4.5%	0.1%
Improve in Medium-Large Cities by 20%	5.2%	8.9%	0.1%

Policy Conclusions

- Reducing spatial differences across cities does not necessarily imply larger cities becoming smaller
- ② In a mature economy, like the U.S., the welfare effects of smoothing out spatial differences are small
- As developing countries continue to grow, spatial differences will converge to those observed in more mature economies
 - ► Huge welfare effect in China, insignificant effect in Mexico
 - ► Greater underlying spatial differences and mobility restrictions in China
- Favoring small cities is unwarranted
 - ► Favoring medium-sized cities or backward cities is more effective.
- Analyzing policy interventions for just one city, without taking into account its effects on other cities, is misleading

2. Other Papers

Desmet and Henderson (Handbook 2015)

- What do we know about the spatial distribution of population and development?
- Development, industrialization and urbanization: one approach
 - Income elasticity for food less than one
 - Development leads to industrialization
 - ▶ Implies urbanization to the extent that industry is more urbanized
- Development, industrialization and urbanization: another approach
 - Elasticity between food and non-food less than one
 - ► Industrialization result of higher productivity growth in agriculture
 - ► Agricultural revolution preceded industrial revolution

Desmet and Henderson (Handbook 2015)

- Last decades in U.S.:
 - Spatial dispersion of manufacturing
 - Spatial concentration of services
- Explanation:
 - ► Land intensity of manufacturing vs services
 - ► Life cycle of industries (Desmet and Rossi-Hansberg, JET 2009)
- Similar patterns noted in other countries, e.g., Korea

Gollin, Jedwab and Vollrath (JOEG 2016)

- Observation: urbanization in Africa and Middle East is occurring at lower levels of industrialization
- Driving force seems to be higher income from natural resources
- Leads to "consumption cities" instead of "production cities"
- Rationalizes "urbanization without industrialization"
- Role of trade is key

Henderson, Squires, Storeygard and Weil (QJE 2018)

- Explores determinants of global distribution of economic activity
- Two groups of determinants:
 - ► Those important for agriculture
 - ► Those important for trade
- Puzzling finding:
 - ► Agriculture explains much more of the variation in developed countries than in developing countries
- Possible explanation:
 - ► Early developers: structural transformation occurred when transport costs were still high, so cities located in agricultural regions
 - ► Late developers: not the case
 - These initial spatial patterns have persisted

Conte, Desmet, Nagy and Rossi-Hansberg (2020)

- Geography of development
 - ► Desmet, Nagy & Rossi-Hansberg (JPE 2018)
 - ► Each location is unique in terms of its (i) amenities, (ii) productivity and (iii) geography
 - ► Each location has firms that produce, innovate and trade
- Extend in two ways
 - Multiple sectors
 - Effect of temperature on production and vice versa
- Discretize the world into 64,800 $1^{\circ} \times 1^{\circ}$ cells
- Calibrate and simulate
- Assess effect of global warming

Effect of Climate Change on Population 2200

Figure displays $\log(\bar{L}_{200}(r))$ under climate change minus $\log(\bar{L}_{200}(r))$ under no climate change

Climate Change and Agricultural Output

(a) Ag. output 2000

(c) Ag. output 2200: climate $\boldsymbol{\Delta}$

(b) Ag. output 2200: no climate $\boldsymbol{\Delta}$

(d) Ag. output 2200: climate - no climate $\boldsymbol{\Delta}$

