5 . /	1	2	100
-not	460	Boys	9.00
/	0	0	1 4

	Idney Boys 9.0%	
QUE	STION 1. (Start a new writing booklet)	Mark
(a)	Differentiate $\sin^{-1} 2x$ with respect to x.	[1]
(b)	Find $tan^{-1}(-1)$.	[1]
(c)	Find the acute angle between the lines $5x - y - 9 = 0$ and $2x - 3y + 12 = 0$	[1]
(d)	Evaluate $\lim_{x \to 0} \frac{\sin 4x}{7x}$	[2]
(c)	If α , β and γ are roots of the equation $x^3 + x^2 - 3 = 0$, write down the value of	[4]
	i) $\alpha + \beta + \gamma$	
	ii) $\alpha\beta + \beta\gamma + \alpha\gamma$	

(f) Evaluate
$$\int_0^{\pi/3} \cos^2 x \, dx$$

iii) $\alpha^2 + \beta^2 + \gamma^2$

[3]

QUESTION 2. (Start a new writing booklet)

(a) Given
$$f(x) = \frac{1}{3}\cos^{-1}2x$$
; [4]

- i) write down the domain.
- ii) write down the range, and hence
- iii) sketch y = f(x)
- Divide the interval AB externally in the ratio 2:3, where A is the point (3,1) [2] and B is (-1,4).
- Find [4]
 - ii) $\int x\sqrt{2-x} dx$ using u=2-x
- Given that log₄ 9 = 1.585 (to 3 decimal places), find log₄ 144. [2]

OUESTION 3. (Start a new writing booklet)

Marks

- Find the term independent of x in the expansion of $\left(x \frac{2}{x^2}\right)^x$. [3]
- Show that the graph $y = x^3 + 3x^2 + 4x$ cuts the x-axis only once. [2]
- Prove $\cos^4 x + \sin^2 x = \cos^2 x + \sin^4 x$ - [3]
- Use the method of mathematical induction to prove that $4\times6" + 1$ is a multiple of 5 [4] when n is a positive integer.

QUESTION 4. (Start a new writing booklet)

- i) Express $\sqrt{3} \sin 3t \cos 3t$ in the form $R \sin(3t \alpha)$ where α is acute and R > 0[3]
 - ii) Hence or otherwise find in exact form the general solution of the equation $\sqrt{3}\sin 3t - \cos 3t = 0$
- $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are two points on the parabola $x^2 = 4ay$. The tangent [9] at P and a line through Q parallel to the y-axis meet at point R. The tangent at Q and the line through P parallel to the y-axis meet at S.
 - i) Draw a neat diagram showing all information given above.
 - ii) Prove the gradient at P is p and the equation of the tangent is $y = px ap^2$.
 - iii) Show that PQRS is a parallelogram.
 - iv) Show that the area of this parallelogram is $2a^2|p-q|^3$ square units.

[4]

[3]

- A particle is moving on a straight line in such a way that its displacement x metres from the origin at time t seconds is given by

$$x = 5\sin 2t$$

- i) Show that $\frac{d^2x}{dt^2} = -4x$
- ii) Find the maximum speed of the particle.
- iii) Find the maximum acceleration of the particle.
- iv) What will be the acceleration of the particle when its displacement is 0?

(b)

- AB is the diameter of the circle ABC whose centre is O. C is equidistant from A and B and the are AB is drawn with C as the centre. Show that the shaded area is equal to the area of the triangle ABC
- Let T be the temperature of an object at time t and let D be the temperature of the surrounding medium. Newton's Law of Cooling states that the rate of change of T is proportional to (T - D)

i.e.
$$\frac{dT}{dt} = -k(T-D)$$

- i) Show that $T = D + Ce^{-k}$ (where C and k are constants) satisfies Newton's Law \ge of Cooling.
- ii) A packet of meat with an initial temperature of 25°C is placed in a freezer whose temperature is kept at a constant -10°C. It takes 12 minutes for the temperature of the meat to drop to 15°C. How much additional time is needed for the temperature of the meat to fall to 0°C? Give you answer in minutes, correct to I decimal place.

Question 6. (Start a new writing booklet)

Marks

6 white and 2 red marbles are arranged at random in a straight line. Find the probability that

[4]

- i) The red marbles are at the ends of the line.
- ii) The red marbles are separated by at least 3 white marbles.
- Kim wishes to solve $x^4 110 = 0$ correct to 2 decimal places and guesses that the solution is close to 3.2. Use Newton's method once to refine Kim's result, and demonstrate that to use it a second time does not improve the result to two decimal places.
 - [4]

[4]

- A transmitter tower TB is 150 metres tall and is observed from Q (due South of B) with an angle of elevation of 15° and from P (due West of B) with an angle of elevation of 17°.
 - i) Find the distance PQ.
 - ii) Hence or otherwise find ∠PTQ to the nearest minute

Question 7. (Start a new writing booklet)

Marks [8]

(a)

PO and SR are tangents to both circles. Show that;

- i) PQ = SR.
- ii) PQRS is a Trapezium.
- iii) P. Q. R and S are concyclic
- iv) $\angle PAS + \angle QBR = 180^{\circ}$
- (b) Two guns at the same fortification shoot simultaneously and hit the same target at [4] different times. They have the same muzzle velocity of 150ms 1 but different angles of elevation. One gun has an angle of elevation of 30°. (Assume g = 10 ms⁻²)
- i) Find the distance of the target from the guns.
- ii) Find the angle of elevation of the other gun.
- iii) Find the time which elapses between the fall of the two shots to the nearest $\frac{1}{10}$ s.

END OF PAPER

3/4 Unit HSC Trial 1999

Page 7 of 7

$$|(a)| \frac{2}{\sqrt{1-4x^2}}$$

- (e) (i) -1 (ii) o (iii) 1

- (b) (11,-3)

(c) (i)
$$\pm \tan^{-1} 2x + C$$

(ii) $\frac{2}{5}(2-x)^{2}\sqrt{2-x} - \frac{4}{5}(2-x)\sqrt{2-x} + C$

- 3(0) -672

(1) no + 18 , n warminger.

- 5(a) (ii)
- (C) 32.7 min
- 6(a) (1) 1/28
 - (ii) 5/14
- (b) 3.24 (2dp)
- (C) (i) 744 m (nemert m)
 (ii) 85° 36'
- 7 (b) (i) 112513 m