The RAG Approach to Smarter Language Models

About Me!

- Ph.D. entitled "An efficient framework for processing and analyzing unstructured text to discover delivery delay and optimization of route planning in realtime"
- Post-doc at CEA (2019 2021) specialized in online machine learning, incremental learning, concept drift, etc.
- Presented by Mohammad ALSHAER, software/data engineer at Meltwater (2022 – present)

Outline

- Introduction to RAG
- RAG Architecture
- Vector Embeddings & Search
- Building a RAG System
- Advanced RAG Techniques
- Evaluation Metrics
- Emerging RAG Research
- Demo

Introduction to RAG

What is RAG?

- Retrieval-Augmented Generation: A hybrid AI architecture that combines retrieval systems with generative models
- First introduced by Lewis et al. in 2020 (Facebook Al Research)¹
- Enhances Large Language Models (LLMs) with external knowledge retrieval

Why RAG Matters?

- Addresses hallucination issues in LLMs
- Provides up-to-date information beyond training cutoff
- Enables domain-specific knowledge integration
- Improves factual accuracy and citation capabilities

LLM vs. RAG

The Problem RAG Solves

Limitations of Traditional LLMs

- Fixed knowledge frozen at training time
- Hallucinations when answering specific queries
- No access to proprietary or specialized information
- Limited context window size (GPT 3.5 had ~4K tokens)

RAG Benefits

- Augments model with real-time external knowledge
- Provides verifiable sources and citations
- Customizable knowledge base for domain adaptation
- Reduces operational costs compared to full retraining

RAG Architecture

- Chunker: Breaks documents into manageable pieces
- Embedder: Converts text chunks into vector representations
- **Vector Store**: Database optimized for similarity search
- Retriever: Fetches relevant documents based on query similarity
- **Generator**: LLM that produces responses based on retrieved context

Vector Embeddings

What are Text Embeddings?

- Dense numerical representations of text in high-dimensional space
- Words/phrases with similar meanings are positioned closer together
- Typical dimensions range from 384-1536 depending on the model

Common Embedding Models

- OpenAl's text-embedding-ada-002 (1536d)
- BERT/Sentence-BERT variants (768d)
- BGE embeddings
- E5 embeddings
- Instructor embeddings (customizable for specific tasks)

Vector Embeddings

In reality, embeddings exist in hundreds of dimensions, not just 2

Vector Search

Similarity Metrics

- Cosine Similarity: Measures angle between vectors (scale-invariant)
- Euclidean Distance: Direct distance between points
- Dot Product: Simple multiplication of vector elements

Approximate Nearest Neighbor (ANN) Algorithms

- HNSW (Hierarchical Navigable Small World)
- IVF (Inverted File Index)
- PQ (Product Quantization) for memory efficiency
- FAISS, Annoy, ScaNN, NMSLIB implementations

Vector Search

Nearest Neighbor Search in Action

Top 3 nearest neighbors: king, queen, royal

HNSW

- An efficient graph-based algorithm for ANN search
- Used in vector databases, recommendation systems, and similarity search applications.

HNSW Search Process

Begin at entry point in top layer
Greedily search closest neighbors at each layer
Use these as entry points for layer below
Return nearest vectors at bottom layer
Key parameters: M (max connections), ef_construction, ef_search

Building a RAG System

RAG Workflow

RAG Implementation Steps

Document Processing

- Document loading from various sources (PDF, web, databases)
- Text extraction and cleaning
- Chunking strategies (fixed size, semantic, recursive)

Retrieval Methods

- Top-k retrieval
- Hybrid search (lexical + semantic)
- Re-ranking for relevance

Prompting Strategies

- Few-shot examples
- Instruction formatting
- Source attribution templates

Advanced RAG Techniques (1/2)

Query Transformation

- Query Expansion: Enhancing queries with related terms
- Query Decomposition: Breaking complex queries into subqueries
- Hypothetical Document Embeddings: Creating ideal document representations

Advanced RAG Techniques (2/2)

Contextual Compression

- Filtering irrelevant information from retrieved documents
- Document summarization before LLM processing

Ensemble Retrieval

- Multiple embedding models
- Multiple retrieval strategies
- Fusion methods for combining retrieval results

Self-RAG and Adaptive Retrieval

- Dynamic retrieval based on uncertainty
- LLM decides when to retrieve information
- Multi-step reasoning with iterative retrieval

Evaluation Metrics

Content Quality

- Factual Correctness: Accuracy of retrieved information
- Hallucination Rate: Measure of fabricated content
- Answer Relevance: Relationship to original query

Retrieval Performance

- Recall: Proportion of relevant documents retrieved
 - Recall@k = (Number of relevant documents retrieved in top k) / (Total number of relevant documents)
- Precision: Proportion of retrieved documents that are relevant
 - Precision@k = (Number of relevant documents in top k) / k

RAG Vector Database Options

Popular Vector DB Solutions

- **Pinecone**: Fully managed vector database service
- Weaviate: Open-source vector search engine
- Milvus: Distributed vector database
- Chroma: Open-source embedding database
- FAISS: Facebook AI Similarity Search (library)
- **Qdrant**: Vector search engine
- pgvector: Vector extension for PostgreSQL

Selection Factors

- Scale requirements
- Update frequency
- Hosting preferences (cloud vs. on-prem)
- Filtering & metadata capabilities

Common RAG Challenges

Technical Challenges

- Chunking strategy optimization
- Embedding model selection
- Retrieval latency vs. accuracy
- Token context limitations

Implementation Challenges

- Source attribution
- Handling contradictory information
- Multi-hop reasoning
- Domain adaptation

Vector Search Optimization

Indexing Techniques

- Clustering: Group similar vectors
- Quantization: Reduce vector precision for efficiency
- Sharding: Distribute vectors across multiple servers

Performance Tips

- Dimensionality reduction when appropriate
- Pre-filtering based on metadata
- Optimized vector storage formats
- Batch processing for embeddings generation

Emerging RAG Research

- Multimodal RAG: Including images, audio in retrieval
- Recursive Retrieval: Multi-step retrieval processes
- LLM Evaluation of Retrieved Content: Self-critiquing retrieval
- Personalized RAG: User-specific knowledge adaptation

Practical Applications

Industry Use Cases

- Customer support knowledge bases
- Legal and medical document analysis
- Educational content personalization
- Enterprise knowledge management

Useful Resources

Tools & Libraries

- LangChain, LlamaIndex (Python frameworks)
- Haystack, Jina AI (RAG pipelines)
- Hugging Face Sentence Transformers (embeddings)

DEMO

Thank you for your attention!

