# A New Kernel-Based Fuzzy Clustering Approach: Support Vector Clustering With Cell Growing

Bharat Yadav MA15w1-M

Hochschule Mittweida

04/01/2017

## **Outline**

- Introduction
- 2 SV Clustering
- 3 Proposed Multisphere SV Clustering
- MSV Clustering Algorithm
- 5 Fuzzy Memberships Computation and Heuristic Analysis
- **6** Experimental Results
- References

## Introduction

#### **Clustering?**

Grouping a set of objects similar to each other.

### **Fuzzy Clustering?**

- Each data point has a membership grade indicating its belongingness degree to each cluster, rather than assigning the data point to only one of the clusters.
- The fuzzy formalism can provide a framework to model cluster prototypes and to detect noise patterns for further classification.

## Introduction

### **Kernel-based Clustering**

- A nonlinear mapping between the input space and feature space through a kernel function.
- Computing the sphere with minimum radius.

## **SV Clustering Algorithm**

- The support vectors are used to define a sphere.
- This sphere corresponds to a set of contours which enclose all the points in original input space.

## Introduction

#### **Problem with SV Clustering**

The clustering results provide no information about either prototypes (i.e., cluster centers) or actual grade of memberships in partition.

#### **Solution**

"One cluster as one sphere" in the feature space so that it becomes a convertible kernel-based mapping between original space and feature space.



Fig. 1. Schematic diagram of the SV clustering

- Φ denotes a nonlinear transformation.
- Clustering may be viewed as finding a smallest sphere that encloses all the data points in the feature space, as shown in Fig. 1(a).
- The contour diagram shown in Fig. 1(b) can be obtained by estimating the distance between the spherical center and corresponding input point.

#### **Mathematical Formulation**

Given a set of input patterns,  $\{\mathbf{x}_i\}\subseteq\mathcal{X}$ 

$$\min_{R,a,\xi_i} R^2 + C \sum_i \xi_i$$

s.t.
$$\|\Phi(\mathbf{x}_i) - \mathbf{a}\|^2$$
;  $\xi_i \ge 0 \ \forall i$  (1)

where, R is radius a is the center of the enclosing sphere  $\xi_i$  is a slack variable and

C is a constant controlling the penalty of noise

#### **Mathematical Formulation**

The Wolfe Dual optimization problem is

$$\max_{\beta_i} W = \sum_i \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_i) \beta_i - \sum_{i,j} \beta_i \beta_j \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j)$$
 (2)

subject to  $\sum_i \beta_i = 1$  and  $0 \le \beta_i \le C$ . Where  $\beta_i$  are the Lagrange multipliers.

#### **Mathematical Formulation**

The functional form of mapping  $\Phi(x_i)$  does not need to be known since it is implicitly defined by the choice of kernel function,

$$K(\mathbf{x}_i, \mathbf{x}_j) \equiv \langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle$$

Throughout this paper, we use the Gaussian kernel,

$$K(\mathbf{x}_i, \mathbf{x}_j) = exp\left(-q\|\mathbf{x}_i - \mathbf{x}_j\|^2\right)$$
(3)

The distance between input pattern and spherical center

$$R^{2}(x) = \|\Phi(\mathbf{x}) - \mathbf{a}\|^{2}$$

$$= K(\mathbf{x}, \mathbf{x}) - 2\sum_{i} \beta_{i}K(\mathbf{x}_{i}, \mathbf{x}) + \sum_{i,j} \beta_{i}\beta_{j}K(\mathbf{x}_{i}, \mathbf{x}_{j})$$
(4)

#### **Mathematical Formulation**

- $\mathbf{x}_i$  is outside the sphere if  $\xi_i > 0$
- From the Karush–Kuhn–Tucker (KKT) conditions we know that  $\beta_i = C$ . Thus, we refer to those points as outside vectors (OVs). Those points do not exist when  $C \ge 1$ .
- The point is located in the spherical surface when  $0 < \beta_i < C$ . We denote these points as border vectors (BVs).
- Thus, the set of support vectors consists of an OV set and a BV set.
- Similarly, the point  $\mathbf{x}_i$  is located inside the sphere when  $\beta_i = 0$ .

## **Proposed Multisphere SV Clustering**

#### Three major difficulties with SV clustering for real data

- SV clustering algorithm identifies variously shaped clusters by finding connected components among data points. This is a relatively time-consuming and unreliable procedure.
- 2 The results of SV clustering do not provide cluster centers (or prototypes), which makes a geometrical picture of clusters impossible.
- The SV clustering lacks the ability to represent the nature of the grade of membership in partition.

## **Proposed Multisphere SV Clustering**



Fig. 2. Schematic diagram of the multisphere SV clustering.

## **Proposed Multisphere SV Clustering**

### Five processes for multisphere SV (MSV) clustering

- **①** Competition process: find a winning cluster to enclose new point.
- **2** Validation process: test the vigilance degree of the winning cluster.
- 3 Reset process: disable the winning cluster.
- **4 Growing process:** create a new cluster to enclose new point.
- **1 Learning process:** update cluster parameters.

## MSV Clustering Algorithm

| Variables and Parameters |                                                                                 |
|--------------------------|---------------------------------------------------------------------------------|
| $P_k$                    | partition of data points                                                        |
| $S_k$                    | support vectors set in sphere $k$ for cluster $P_k$ , where $S_k \subseteq P_k$ |
| nc:                      | numbers of clusters                                                             |
| $\mathbf{V}_{k}$         | center of sphere $k$ in feature space                                           |
| $R_k$                    | radius of sphere $k$ in feature space                                           |
| $D_k(\mathbf{x})$        | distance between $\mathbf{x}$ and $\mathbf{V}_k$ in feature space               |
| $d(\mathbf{x}, P_k)$     | distance between $\mathbf{x}$ and $P_k$ in original space                       |
| $g_k(\mathbf{x})$        | vigilance degree of $\mathbf{x}$ belonging to $P_k$                             |
| $\beta_i$                | the Lagrange multiplier corresponding to data point $\mathbf{x}_i$              |
| J                        | index for winning cluster                                                       |
| q, C                     | the cluster parameters                                                          |
| ε                        | vigilance threshold                                                             |

## **MSV Clustering Algorithm**

1. Initialization.

Initial first cluster. Set  $P_1 = S_1 = \{\mathbf{x}^{(1)}\}\$ ,  $\beta_1 = 1$ , and  $R_1 = 0$ .

2. Input Points Presentation

Perform the following computation for  $\mathbf{x}^{(i)}$ , i = 2,...,n.

3. Winning Cluster Competition.

Find winning cluster *J*, such that  $d(\mathbf{x}^{(i)}, P_J) = \min_{k=1,...,nc} \{d(\mathbf{x}^{(i)}, P_k)\}$ 

4. Validity Test.

IF 
$$g_J(\mathbf{x}^{(l)}) < \varepsilon$$
,

THEN  $\mathbf{x}^{(i)}$  belongs to cluster J, goto Step 5.

ELSE

Disable cluster J by setting  $d(\mathbf{x}^{(i)}, P_J) = \infty$ 

IF there exists available cluster k,

THEN return to Step 3.

ELSE

goto Step 6.

5. Parameter Learning

Solve the MSV optimization problem in the winning cluster J, and update the cluster parameters.

Return to Step 2 (First enable all disabled clusters.)

6. Create a New Cluster

Create a new cluster  $P_{nc} = S_{nc} = \{\mathbf{x}^{(i)}\}\$ ,  $R_{nc} = 0$ ,

Set the corresponding Lagrange multiplier of  $x^{(i)}$  to 1.

Return to Step 2 (First enable all disabled clusters.)

## **Computation of Cluster Memberships**



Fig. 3. Two different sizes of clusters in the feature space.

### **Computation of Cluster Memberships**

$$\mu_j(\mathbf{x}) = \begin{cases} 0.5 \times \left(\frac{1 - \left(\frac{1}{R_j}\right) D_j(\mathbf{x})}{1 + \lambda_1 \left(\frac{1}{R_j}\right) D_j(\mathbf{x})}\right) + 0.5, \\ & \text{if } D_j(\mathbf{x}) \le R_j \\ 0.5 \times \left(\frac{1}{1 + \lambda_2 (D_j(\mathbf{x}) - R_j)}\right), \\ & \text{otherwise} \end{cases}$$

- Where R<sub>j</sub> is the spherical radius in feature space that corresponding to cluster j
- ullet  $D_j(x)$  is the distance between x and spherical center in feature space
- The parameters  $\lambda_1$  and  $\lambda_2$  satisfy the relation below which makes  $\mu_j(x)$  differentiable as  $D_j(x) = R_j$

$$\lambda_2 = \frac{1}{R_i(1+\lambda_1)}$$

### **Estimation of Winning Cluster Validity**



Fig. 4. Difference between x and spherical surface for two examples. (a) Large  $R_i$ . (b) Small  $R_i$ 

## Heuristic 1 Method to Reduce the Computation Time

If the input point  $x_i$  is located inside the cluster sphere, the algorithm does not need to update cluster parameters by setting the Lagrange multiplier  $\beta_i = 0$ . And then check whether the following condition satisfies:

$$D_j(x_i) \leq R_j$$

If yes, no need to update the cluster parameters. Otherwise, update cluster parameter using Heuristic 2.

#### Heuristic 2 Method to Reduce the Computation Time

By using only the support vectors, one would obtain exactly the same final results as if one had the full training set. Therefore, one can directly solve the reduced problem, saving significantly computation time.

### **Unequal Populations Data Set**



Fig. 5. Crisp partition results obtained from (a) classical FCM algorithm with c=2 and m=2, and (b) MSV algorithm. The support vectors are marked with small circles.

#### Random Noise Data Set



Fig. 6. Clustering results for "random noise data set" with 1/(CN) = 0.5. The border vectors are marked with small circles. The dense regions are enclosed as clusters whereas the noise points are identified with square symbols.





Fig. 7. Clustering results for the "XO" data set. The support vectors are marked with small circles.

### Handwritten Digits Data Set



Fig. 8. Examples of some of the handwritten digits from classes "2" and "7" (The Confusion Group) in data set. Each digit has different size.

### Handwritten Digits Data Set



Fig. 9. Examples of typical prototype digits obtained from the MSV clustering algorithm for both classes and their corresponding fuzzy membership values.

### Handwritten Digits Data Set



Fig. 10. Examples of outlier digits obtained from the MSV clustering algorithm for both classes and their corresponding fuzzy membership values.

We then decide "good patterns" or "bad patterns" according to the membership values higher or lower than 0.5.

### References

A New Kernel-Based Fuzzy Clustering Approach: Support Vector Clustering With Cell Growing; Jung-Hsien Chiang, Member, IEEE, and Pei-Yi Hao Thank you for your attention.