Corso di Laurea: Ingegneria Informatica

 ${\operatorname{Testo}}\ {\operatorname{n.52}}$ - Esame di Fisica Generale sessione del 24/07/2020

Nome: Matricola:

Cognome: Anno di Corso:

ESERCIZIO.1 – Meccanica

Un blocco assimilabile ad punto materiale di massa m=12.5 kg può muoversi senza attrito su un piano orizzontale. Al blocco sono collegate due molle ideali di costanti elastiche $k_1=126~\rm Nm^{-1}$ e $k_2=563~\rm Nm^{-1}$, rispettivamente, come mostrato in figura. Nella posizione $x_0=0$ m il blocco è in equilibrio e le molle sono a riposo. All'istante t=0 s il blocco m viene lasciato, da fermo, dalla posizione $x=57~\rm cm$. Determinare:

1) il periodo T delle oscillazioni intorno alla posizione di equilibrio:

$$T=.....$$

2) la legge oraria del punto per $t \ge 0$ s e il modulo della massima accelerazione $|a_{max}|$ raggiunta dal punto durante il suo moto:

$$|a_{max}| = \dots ; \qquad x(t) = \dots$$

3) l'energia potenziale E_p del punto al tempo t=T/6 (con T periodo del moto oscillatorio):

$$E_p =$$

(Figura qualitativa a solo scopo illustrativo)

${\bf ESERCIZIO.2-Elettromagnetismo}$

I due solenoidi in figura sono rettilinei, di lunghezza infinita, coassiali con l'asse in comune lungo l'asse Z e hanno raggi r_1 = 34 mm e r_2 = 50 mm . I solenoidi hanno entrambi n= 1.01 10^5 spire m⁻¹ e sono percorsi da una medesima corrente i_0 = 34 A ma in versi opposti, come rappresentato in figura. Si determinino:

1) Il grafico di B(r) in funzione della distanza r dall'asse Z e l'espressione del campo magnetico $\vec{B}(r, \varphi, z) \ \forall r \geq 0 \ ; \ \forall \varphi \in [0, 2\pi] \ ; \ \forall z \in \mathbb{R}$

$$\vec{B}(r,\varphi,z) = \dots$$

2) Calcolare l'intensità del campo magnetico $|\vec{B}\Big(\frac{(r_1+r_2)}{2},\varphi,z\Big)|\ \forall \varphi\in[0,2\pi]\ ;\ \forall z\in\mathbb{R}$

$$|\vec{B}\left(\frac{(r_1+r_2)}{2},\varphi,z\right)| = \dots$$

Intorno ai due solenoidi, e coassialmente ad essi, viene collocata una spira circolare, di raggio $r_3 = 51$ cm e resistenza ohmica $R = 15 \Omega$, mentre la corrente che scorre nei solenoidi viene fatta variare con legge i(t) = 4.5 t. Determinare:

3) Indicare in che verso circola la corrente nella spira (orario o antiorario) motivando la risposta. Determinare la potenza P dissipata in (mW) sulla spira per effetto Joule

$$P =$$

Costanti Utili: $\mu_0 = 1.257 \ 10^{-6} \ \mathrm{TmA^{-1}}$

 $(Figura\ qualitativa\ a\ solo\ scopo\ illustrativo)$