캐글 코리아 4차 대회

• 성인 인구조사 소득 예측 대회

학습 내용

• 대회를 통해 데이터 처리 및 분석을 이해한다.

목차

 01. 라이브러리 임포트 및 데이터 준비

 02. 데이터 전처리

 03. Baseline 모델 만들기

01. 라이브러리 임포트 및 데이터 준비

목차로 이동하기

In [1]:

```
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

```
train = pd.read_csv('data/4th_kaggle/train.csv')
test = pd.read_csv('data/4th_kaggle/test.csv')
sub = pd.read_csv('data/4th_kaggle/sample_submission.csv')
```

데이터 탐색

• 컬럼명 : [].columns

행열 : [].shape정보 : [].info()

• 수치 데이터 요약정보 : [].describe()

• 결측치 : [].isnull().sum()

데이터 정보

```
age : 나이
   workclass : 고용 형태
   fnlwgt : 사람 대표성을 나타내는 가중치 (final weight의 약자)
   education : 교육 수준 (최종 학력)
   education num : 교육 수준 수치
   marital status: 결혼 상태
   occupation : 업종
   relationship : 가족 관계
   race : 인종
   sex : 성별
   capital gain : 양도 소득
   capital loss : 양도 손실
   hours per week : 주당 근무 시간
   native country : 국적
   income : 연소득 (예측해야 하는 값, target variable) - 50K - $50,000
In [3]:
train.columns
Out[3]:
Index(['id', 'age', 'workclass', 'fnlwgt', 'education', 'education_nu
       'marital status', 'occupation', 'relationship', 'race', 'sex',
       'capital_gain', 'capital_loss', 'hours_per_week', 'native_count
ry',
       'income'],
     dtype='object')
In [4]:
test.columns
Out[4]:
Index(['id', 'age', 'workclass', 'fnlwgt', 'education', 'education_nu
m',
       'marital_status', 'occupation', 'relationship', 'race', 'sex',
       'capital_gain', 'capital_loss', 'hours_per_week', 'native_count
ry'],
     dtype='object')
In [5]:
sub.columns
Out[5]:
Index(['id', 'prediction'], dtype='object')
In [6]:
print("학습용 데이터 : ", train.shape)
print("테스트용 데이터 : ", test.shape)
학습용 데이터 : (26049, 16)
테스트용 데이터: (6512, 15)
```

```
In [7]:
```

```
train.isnull().sum()
```

Out[7]:

id 0 0 age workclass 0 0 fnlwgt 0 education 0 education num marital_status 0 occupation relationship 0 race 0 0 sex capital_gain 0 capital_loss 0 hours_per_week 0 0 native country 0 income dtype: int64

In [8]:

```
test.isnull().sum()
```

Out[8]:

0 id 0 age 0 workclass 0 fnlwgt 0 education education_num 0 marital_status occupation 0 relationship 0 race sex 0 0 capital_gain capital_loss 0 hours_per_week 0 0 native_country dtype: int64

In [9]:

train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 26049 entries, 0 to 26048
Data columns (total 16 columns):

#	Column	Non-N	Dtype	
0	id	26049	non-null	int64
1	age	26049	non-null	int64
2	workclass	26049	non-null	object
3	fnlwgt	26049	non-null	int64
4	education	26049	non-null	object
5	education_num	26049	non-null	int64
6	marital_status	26049	non-null	object
7	occupation	26049	non-null	object
8	relationship	26049	non-null	object
9	race	26049	non-null	object
10	sex	26049	non-null	object
11	capital_gain	26049	non-null	int64
12	capital_loss	26049	non-null	int64
13	hours_per_week	26049	non-null	int64
14	native_country	26049	non-null	object
15	income	26049	non-null	object
dtyp	es: int64(7), ob	iect(9)	

dtypes: int64(7), object(9)

memory usage: 3.2+ MB

In [10]:

test.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6512 entries, 0 to 6511
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype			
0	id	6512 non-null	int64			
1	age	6512 non-null	int64			
2	workclass	6512 non-null	object			
3	fnlwgt	6512 non-null	int64			
4	education	6512 non-null	object			
5	education_num	6512 non-null	int64			
6	marital_status	6512 non-null	object			
7	occupation	6512 non-null	object			
8	relationship	6512 non-null	object			
9	race	6512 non-null	object			
10	sex	6512 non-null	object			
11	capital_gain	6512 non-null	int64			
12	capital_loss	6512 non-null	int64			
13	hours_per_week	6512 non-null	int64			
14	native_country	6512 non-null	object			
dtypes: int64(7) object(8)						

dtypes: int64(7), object(8)
memory usage: 763.2+ KB

In [11]:

```
train.income.unique()
```

Out[11]:

```
array(['>50K', '<=50K'], dtype=object)</pre>
```

In [12]:

```
sns.countplot(x="income", data=train)
```

Out[12]:

<AxesSubplot:xlabel='income', ylabel='count'>

02. 데이터 전처리

<u>목차로 이동하기</u>

In [13]:

```
train.loc[ train['income']=='>50K' , 'target'] = 1
train.loc[ train['income']=='<=50K' , 'target'] = 0
train['target'] = train.target.astype("int")</pre>
```

In [14]:

train.head()

Out[14]:

	id	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationsh
0	0	40	Private	168538	HS-grad	9	Married-civ- spouse	Sales	Husbai
1	1	17	Private	101626	9th	5	Never-married	Machine- op-inspct	Own-ch
2	2	18	Private	353358	Some- college	10	Never-married	Other- service	Own-ch
3	3	21	Private	151158	Some- college	10	Never-married	Prof- specialty	Own-ch
4	4	24	Private	122234	Some- college	10	Never-married	Adm- clerical	Not-i fam

In [15]:

test.head()

Out[15]:

	id	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationsh
0	0	28	Private	67661	Some- college	10	Never-married	Adm- clerical	Othe relati
1	1	40	Self-emp- inc	37869	HS-grad	9	Married-civ- spouse	Exec- managerial	Husbai
2	2	20	Private	109952	Some- college	10	Never-married	Handlers- cleaners	Own-ch
3	3	40	Private	114537	Assoc- voc	11	Married-civ- spouse	Exec- managerial	Husbai
4	4	37	Private	51264	Doctorate	16	Married-civ- spouse	Prof- specialty	Husbai

In [16]:

train.columns

Out[16]:

```
In [18]:
```

```
print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
(19536, 7) (6513, 7) (19536,) (6513,)
```

03. Baseline 모델 만들기

목차로 이동하기

로지스틱 모델

```
In [19]:
```

```
from sklearn.linear_model import LogisticRegression
```

```
In [20]:
```

```
model = LogisticRegression()
model.fit(X_train, y_train)
pred = model.predict(test_X)
```

```
In [21]:
```

```
sub.columns
```

```
Out[21]:
```

```
Index(['id', 'prediction'], dtype='object')
```

In [22]:

```
print( sub.shape )
print( pred.shape )
```

```
(6512, 2)
(6512,)
```

```
In [23]:
```

```
sub['prediction'] = pred
sub.to_csv("firstSub4th.csv", index=False)
```

0.78545