UNSUPERVISED MACHINE LEARNING: Análise de Correspondência Simples e Múltipla

Prof. Dr. Wilson Tarantin Junior

*A responsabilidade pela idoneidade, originalidade e licitude dos conteúdos didáticos apresentados é do professor.

Proibida a reprodução, total ou parcial, sem autorização. Lei nº 9610/98

- Quando aplicar a análise de correspondência?
 - Técnica adequada para a análise de variáveis categóricas (qualitativas)
 - O objetivo é verificar se existe **associação** estatisticamente significativa entre as variáveis e suas categorias, criando o **mapa perceptual** para visualizar as associações
 - Caso exista uma variável quantitativa, é necessário que ela passe por um processo de categorização previamente
 - Por exemplo: a idade é uma variável quantitativa (25, 42, 73, 81 anos) e poderia ser categorizada como: 0-30 anos é a categoria 1, 31-60 anos é categoria 2, 61-90 anos é categoria 3...

- Trata-se de técnica exploratória (não supervisionada)
 - Para avaliar a relação conjunta entre as variáveis
 - Não há modelos do tipo "y_i = x_{1i} + x_{2i} + ... + u_i"
 - Não são adequadas para fins de inferência
 - Se novas observações forem adicionadas ao banco de dados, é adequado refazer a análise

- Exemplos de aplicação
 - Faixa de renda e status na aprovação de crédito
 - Nível de escolaridade e cargo ocupado em empresas
 - Tipo de solo e cultura implementada
 - Gravidade dos sintomas da doença e comorbidades
 - Outros...

- Análise de variáveis geradas por escala Likert
 - Exemplos: concordo plenamente; concordo parcialmente; não concordo, nem discordo; discordo parcialmente; discordo plenamente
 - Evita o problema da ponderação arbitrária
 - Cada ponto da escala Likert torna-se uma categoria da variável na análise de correspondência simples ou múltipla

Implementação Corresponda Análise de Correspondência Simples

- Também conhecida como Anacor
 - Quando o objetivo é estudar a associação entre duas variáveis e suas categorias
 - É possível separar a Anacor em duas partes:
 - 1. Análise da significância estatística da associação entre as variáveis e suas categorias por meio do teste qui-quadrado (χ^2)
 - 2. Elaboração e interpretação do mapa perceptual

1. Análise da significância estatística (teste qui-quadrado)

1. Tabela de contingência

- Contém as frequências absolutas observadas para cada par de categorias das variáveis
- Trata-se de uma tabela de classificação cruzada (cross-tabulation)

		Variável B								
		Categoria 1	Categoria 2	Categoria 3	•••	Categoria J	Total			
	Categoria 1	n ₁₁	n ₁₂	n ₁₃	•••	n ₁ J	Σ_{L1}			
	Categoria 2	n ₂₁	n ₂₂	n ₂₃	•••	n_{2J}	\mathcal{S}_{L2}			
Mariánal A	Categoria 3	n ₃₁	n ₃₂	n ₃₃	•••	<i>n</i> ₃ ,	Σ_{L3}			
Variável A	000	•••	•••		•••		•••			
	Categoria I	n ₁₁	n ₁₂	n ₁₃	•••	n_{IJ}	Σ_{LI}			
	Total	Σ _{C1}	Σ _{C2}	Σ _{C3}	•••	Σ _C	N			

- 2. Tabela de frequências absolutas esperadas
 - Para a célula referente às categorias 1 das duas variáveis, a frequência absoluta esperada é:

Freq. absoluta esperada =
$$\frac{\left(\Sigma_{L1} \times \Sigma_{C1}\right)}{N}$$

• Este mesmo cálculo deve ser realizado para cada par de categorias das variáveis, alterando-se apenas o numerador

3. Tabela de resíduos

• Para a célula referente às categorias 1 das duas variáveis, o valor do resíduo é:

Resíduo =
$$n_{11} - \frac{(\Sigma_{L1} \times \Sigma_{C1})}{N}$$

- Ou seja, resíduo = frequência absoluta observada frequência absoluta esperada
- O mesmo cálculo é realizado para cada par de categorias

- 4. Tabela com os valores χ^2
 - Para a célula referente às categorias 1 das duas variáveis, o valor da estatística $\chi 2$ é:

$$\chi 2 = \frac{(residuo_{11})^2}{(freq. absoluta esperada_{11})}$$

• O mesmo cálculo é realizado para cada par de categorias e, em seguida, os valores de todas as células são somados

- 4. Tabela com os valores χ^2
 - O objetivo é verificar se há associação estatisticamente significante entre as variáveis (utilizando a soma do $\chi 2$)
 - H₀: as variáveis se associam de forma aleatória.
 - H₁: a associação entre as variáveis não se dá de forma aleatória.
 - Dados o nível de significância e os graus de liberdade, se o valor da estatística χ^2 for maior do que seu valor crítico, há associação significante entre as duas variáveis (H_1)
 - Graus de liberdade = $(I 1) \times (J 1)$

- 5. Tabela de resíduos padronizados (e padronizados ajustados)
 - Enquanto a análise do χ^2 permite verificar se há ou não a dependência entre as duas variáveis, a análise de resíduos padronizados ajustados permite aprofundar a análise com foco nas categorias das variáveis
 - Como as categorias de uma variável se relacionam com as categorias da outra variável?
 - Para tanto, observa-se o excesso ou falta de ocorrência de casos nas categorias das duas variáveis

- 5. Tabela de resíduos padronizados
 - Para a célula referente às categorias 1 das duas variáveis, o valor do resíduo padronizado é:

$$Residuo_{padronizado} = \frac{residuo_{11}}{V(freq. absoluta esperada_{11})}$$

• O mesmo cálculo é realizado para cada par de categorias

- 5. Tabela de resíduos padronizados ajustados
 - Para a célula referente às categorias 1 das duas variáveis, o valor do resíduo padronizado ajustado é:

$$Residuo_{padronizado \ ajustado} = \frac{residuo \ padronizado_{11}}{\sqrt{\left[\left(1 - \frac{\Sigma_{C1}}{N}\right) \times \left(1 - \frac{\Sigma_{L1}}{N}\right)\right]}}$$

• O mesmo cálculo é realizado para cada par de categorias

- 5. Tabela de resíduos padronizados ajustados
 - Se o valor do resíduo padronizado ajustado em certa célula for maior do que **1,96**, interpreta-se que existe associação significativa, ao nível de significância de **5%**, entre as duas categorias que interagem na célula; se for menor do que **1,96**, não há associação estatisticamente significativa
 - A referência de 1,96 é o valor crítico da normal padrão para o nível de significância de 5%

2. Elaboração e interpretação do mapa perceptual

- 1. Determinar os autovalores (λ^2)
 - A quantidade (m) de autovalores depende da quantidade de categorias nas variáveis: $m = \min(I-1, J-1)$
 - Na Anacor, os autovalores referem-se às inércias principais parciais e são base para determinar a inércia principal total e o percentual da inércia principal total em cada dimensão do mapa perceptual

- 1. Determinar os autovalores (λ^2)
 - Como base para o cálculo dos autovalores, inicialmente, define-se uma matriz A
 - Um modo de obter a matiz A, baseando-se nas etapas anteriores, é fazer para cada célula da matriz de resíduos padronizados o seguinte cálculo:

• Com base na matriz A, obtém-se a matriz W: W = A' . A

- 1. Determinar os autovalores (λ^2)
 - Identificando **W**, os autovalores são obtidos pela solução da seguinte expressão: $det(\lambda^2 \cdot I W) = 0$

$$\begin{vmatrix} \lambda^2 - w_{11} & -w_{12} & -w_{13} \\ -w_{21} & \lambda^2 - w_{22} & -w_{23} \\ -w_{31} & -w_{32} & \lambda^2 - w_{33} \end{vmatrix} = 0$$

I é a matriz identidade

- 1. Determinar os autovalores (λ^2)
 - Com base nos autovalores (λ^2), encontra-se o percentual da inércia principal total de cada dimensão

% da Inércia Principal Total =
$$\frac{\lambda^{-}_{dimensão}}{\lambda^{2}_{total}}$$

• Quanto maior a inércia principal total (e o χ^2), mais forte será a associação entre as variáveis em análise

2. Determinar as massas em linha e coluna

- As **massas** representam a influência que cada categoria exerce sobre as demais categorias de sua variável, seja na coluna (*column profiles*) ou linha (*row profiles*)
- Com base nos "totais" da tabela de contingência, para a categoria 1 das variáveis, obtém-se as massas médias:

Massa na coluna =
$$\frac{\Sigma_{L1}}{N}$$
 Massa na linha = $\frac{N}{N}$

• O mesmo cálculo é realizado para as demais categorias

3. Determinar os autovetores

- Para a matriz \mathbf{W} , é possível encontrar os autovetores a partir dos autovalores (λ^2) já calculados
 - Substituindo os autovalores de cada dimensão na matriz definida como $\det(\lambda^2 \cdot I W) = 0$ e resolvendo o sistema de equações que parte dela, é possível encontrar os autovetores da coluna (V) e, com base neles, encontrar os autovetores da linha (U)

$$u'_{k} = [D_{l}^{-1/2} . (P - lc') . D_{c}^{-1/2}] . v'_{k} . \lambda_{k}^{-1}$$

Trata-se da matriz A

- 4. Determinar as coordenadas das categorias
 - Variável em linha na tabela de contingência
 - Coordenadas das abscissas (X)

$$X_{I} = V\lambda_{1} \cdot D_{I}^{-1/2} \cdot u_{1}$$

Coordenadas das ordenadas (Y)

$$Y_1 = \sqrt{\lambda_2} \cdot D_1^{-1/2} \cdot u_2$$

• Coordenadas da K-ésima dimensão ($k = quantidade de \lambda$)

$$Z_l = \sqrt{\lambda_k} \cdot D_l^{-1/2} \cdot u_k$$

- 4. Determinar as coordenadas das categorias
 - Variável em coluna na tabela de contingência
 - Coordenadas das abscissas (X)

$$X_c = V\lambda_1 \cdot D_c^{-1/2} \cdot V_1$$

Coordenadas das ordenadas (Y)

$$Y_c = V\lambda_2 \cdot D_c^{-1/2} \cdot V_2$$

• Coordenadas da K-ésima dimensão ($k = quantidade de \lambda$)

$$Z_c = V\lambda_k \cdot D_c^{-1/2} \cdot V_k$$

MBAUSP

- Associação entre mais de duas variáveis
 - Só participam da ACM as variáveis que apresentam associação estatisticamente significativa com pelo menos uma outra variável contida na análise
 - Antes de elaborar a ACM, é importante realizar um teste χ^2 para cada par de variáveis
 - Se alguma delas não apresentar associação com outras, não é incluída na análise de correspondência

1º método: utilizando a Matriz Binária

- A matriz binária é obtida pela transformação das variáveis qualitativas em variáveis binárias, ou seja, valores 0 ou 1
- Com base na matriz binária (Z), pode ser obtida a inércia principal total na ACM
- Supondo que a matriz binária (Z) seja semelhante a uma tabela de contingência da Anacor, é possível obter a inércia principal parcial das dimensões, autovalores, autovetores e coordenadas dessa matriz

1º método: utilizando a Matriz Binária

• Um exemplo de matriz binária (Z) é:

Obs.	Variável A		Variável B			Variável C			
	Categ. 1	Categ. 2	Categ. 1	Categ. 2	Categ. 3	Categ. 1	Categ. 2	Categ. 3	Categ. 4
1	1	0	oe l	1	0	1	0	0	0
2	0	1	K O	0	1	0	1	0	0
3	0	(1)	1	0	0	0	0	1	0
N	10	0	1	0	0	0	0	0	1

• Quantidade de dimensões $(\lambda^2) = J - Q = (9 - 3) = 6$, em que "J" é a quantidade total de categorias e "Q" a quantidade de variáveis

2º método: utilizando a Matriz de Burt

- A matriz de Burt é definida como: B = Z'.Z
 - É possível combinar em uma única matriz as tabelas de contingência com o cruzamento de todos os pares variáveis
 - Ao considerar a matriz de Burt uma tabela de contingência, é possível realizar uma Anacor e obter as coordenadas das categorias

Referência

Fávero, Luiz Paulo; Belfiore, Patrícia. (2017). Manual de análise de dados: estatística e modelagem multivariada com Excel®, SPSS® e Stata®. Rio de Janeiro: Elsevier

Joao Hiroyuki de Melo

