Sistemas Operativos, Parcial 1, martes 18 octubre 2022

Apellidos:	Nombres:

Ejercicio 1

El siguiente código de máquina y su desensamblado RISC-V **computa la suma prefijo en el mismo arreglo** (*in-place prefix sum*). El arreglo a está en el segmento ELF .bss y empieza en 0x2FC0 y termina en 0x3008 **exclusive**. Como sus elementos son unsigned long, cada uno ocupa 8 bytes y por lo tanto tiene 9 elementos.

0000000000000634 <main>:

634:	0613	li	a2,0x3008	# <bss_end> &a[9]</bss_end>
636:	b206	li	a5,0x2FC8	# <a+0x8> &a[1]</a+0x8>
638:	6398	ld	a4,0(a5)	# a4 = a[i]
63a:	ff87b683	ld	a3,-8(a5)	# a3 = a[i-1]
63e:	9736	add	a4,a4,a3	
640:	e398	sd	a4,0(a5)	# a[i] = a4
642:	07a1	addi	a5,a5,8	# "i++"
644:	fec79ae3	bne	a5,a2, 0x638	# <main+0x10>, "i<9"</main+0x10>
648:	8082	ret		

Escribir la traza de memoria completa que genera la ejecución del proceso incluyendo los instruction fetch.

Inicialización							
Vuelta 1	,						
Vuelta 2	,	··	·,	·,	,	,	,
Vuelta 3	,	,,	·;	,	,	,	,
Vuelta 4	,	,,	·;	,	,	,	·,
Vuelta 5	,	,,	·,	,	,	,	,
Vuelta 6	,	,,	·,	,	,	,	,
, Vuelta 7	,	,,	·	,	,	,	,
, Vuelta 8	,	,,	·,	·,	,	,	·,
, Fin	,	,,	·,	,	,	,	,

Ejercicio 2

Supongamos que en trampoline.S, la rutina en ensamblador RISC-V que guarda los registros de espacio de usuario se comete un pequeño error por culpa del gato 🙀. La parte que los restituye está perfecta.

sd a1, 120(a0)	ld a1, 120(a0)
sd a2, 128(a0)	ld a2, 128(a0)
sd a3, 136(a0)	ld a3, 136(a0)
sd a4, 144(a0)	ld a4, 144(a0)
sd a2, 152(a0) #ERROR!	ld a5, 152(a0)
sd a6, 160(a0)	ld a6, 160(a0)
sd a7, 168(a0)	ld a7, 168(a0)

Indicar en el código de máquina del Ejercicio 1, **ENTRE** qué líneas se puede producir un TRAP sin cambiar el funcionamiento del programa (poner "**TRAP**") y entre qué líneas ese TRAP resulta fatal para la ejecución de nuestro código (poner "**F**"). Recalcamos, poner TRAP ó F entre cada una de las líneas de código indicando si se puede producir un TRAP de manera inocua o no.

Ejercicio 3

Planificar con Round Robin Q=2 para los siguientes procesos que tienen mezcla entre cómputo CPU y espera IO. Ante situaciones de simultaneidad, ordenar alfabéticamente, por ejemplo ¿Cuál de los tres procesos inicia en tiempo 0?: el "A".

Proceso	Inicio	CPU	Ю	CPU
Α	0	1	4	3
В	0	1	1	1
С	0	8		

Ejercicio 4

Tenemos un esquema de paginación RISC-V con páginas de 4 KiB de 3 niveles con formato 9,9,9,12 -> 44,12 como muestra la figura.

Bits de control

V: válido

R: se puede leer, readable

W: se puede escribir, writable

X: se puede ejecutar,

executable

Supongamos que tenemos el registro de paginación apuntando al marco físico satp=0x00000000FE0.

0x0000000FE0	0x0000000FEA	0x000000AD0BE		
0x1FF: 0x00000000000,	0x1FF: 0x0000000000,	0x1FF: 0x00000000000,		
0x004: 0x0000000000, 0x003: 0x0000000000, 0x002: 0x00000000FEA, XWRV 0x001: 0x00000000FEA, XWRV 0x000: 0x00000000FEA, XWRV	0x004: 0x0000000000, 0x003: 0x0000000000, 0x002: 0x000000AD0BE, XWRV 0x001: 0x000000AD0BE, XWRV 0x000: 0x000000AD0BE, XWRV	0x004: 0x00000000000, 0x003: 0x00000D1AB10, XWR- 0x002: 0x00000DECADA, -WRV 0x001: 0x000CAFECAFE, 0x000: 0x0000000ABAD, XV		

Traducir de virtual a física las direcciones: 0x0000 0x1000 0x2000 0x3000

b) Traducir de la dirección física 0xDECADA980 a todas las virtuales que la apuntan.

memoria res	pecto a la ejec	cución de un p	roceso corrier	ndo el código	de máquina de	el Ejercicio 1.	
Inicialización							
Vuelta 1	,						
Vuelta 2	,						,
Vuelta 3	,					,	,
Vuelta 4	,						
Vuelta 5	,						
Vuelta 6	,					,	,
Vuelta 7	,						,
Vuelta 8		,,					,
Fin		,		·	·	·	,

A la luz del esquema de paginación del Ejercicio 4, indicar de manera esquemática que es lo que pasaría con la traza de

Ejercicio 5