

(Matching Results Chris Likes)

Given a graph G(V, E), a matching is a set of edges $M \subseteq E$, such that no two edges of M share a common node.

Given a graph G(V, E), a matching is a set of edges $M \subseteq E$, such that no two edges of M share a common node.

not a matching

>

Given a graph G(V, E), a matching is a set of edges $M \subseteq E$, such that no two edges of M share a common node.

a valid matching

>

Given a graph G(V, E), a matching is a set of edges $M \subseteq E$, such that no two edges of M share a common node.

a maximal matching

)

Given a graph G(V, E), a matching is a set of edges $M \subseteq E$, such that no two edges of M share a common node.

a maximum matching

>

For any two maximal matchings A and B, we have $|A| \le 2|B|$ and $|B| \le 2|A|$.

For any two maximal matchings A and B, we have

$$|A| \le 2|B|$$
 and $|B| \le 2|A|$.

• Each edge in $B \setminus A$ is adjacent to at most two edges in $A \setminus B$.

For any two maximal matchings A and B, we have

$$|A| \le 2|B|$$
 and $|B| \le 2|A|$.

- Each edge in $B \setminus A$ is adjacent to at most two edges in $A \setminus B$.
- Each edge in A \ B is adjacent to some edge in B \ A.

For any two maximal matchings A and B, we have

$$|A| \le 2|B|$$
 and $|B| \le 2|A|$.

- Each edge in $B \setminus A$ is adjacent to at most two edges in $A \setminus B$.
- Each edge in $A \setminus B$ is adjacent to some edge in $B \setminus A$.
- Therefore $|A \setminus B| \le 2|B \setminus A|$.

For any two maximal matchings A and B, we have

$$|A| \le 2|B|$$
 and $|B| \le 2|A|$.

- Each edge in $B \setminus A$ is adjacent to at most two edges in $A \setminus B$.
- Each edge in $A \setminus B$ is adjacent to some edge in $B \setminus A$.
- Therefore $|A \setminus B| \le 2|B \setminus A|$.

$$|A| = |A \cap B| + |A \setminus B|$$

For any two maximal matchings A and B, we have

$$|A| \le 2|B|$$
 and $|B| \le 2|A|$.

- Each edge in $B \setminus A$ is adjacent to at most two edges in $A \setminus B$.
- Each edge in $A \setminus B$ is adjacent to some edge in $B \setminus A$.
- Therefore $|A \setminus B| \le 2|B \setminus A|$.

$$|A| = |A \cap B| + |A \setminus B|$$

 $\leq |A \cap B| + 2|B \setminus A|$

For any two maximal matchings A and B, we have

$$|A| \le 2|B|$$
 and $|B| \le 2|A|$.

- Each edge in $B \setminus A$ is adjacent to at most two edges in $A \setminus B$.
- Each edge in $A \setminus B$ is adjacent to some edge in $B \setminus A$.
- Therefore $|A \setminus B| \le 2|B \setminus A|$.

$$|A| = |A \cap B| + |A \setminus B|$$

$$\leq |A \cap B| + 2|B \setminus A|$$

$$\leq 2|A \cap B| + 2|B \setminus A|$$

For any two maximal matchings A and B, we have

$$|A| \le 2|B|$$
 and $|B| \le 2|A|$.

- Each edge in $B \setminus A$ is adjacent to at most two edges in $A \setminus B$.
- Each edge in $A \setminus B$ is adjacent to some edge in $B \setminus A$.
- Therefore $|A \setminus B| \le 2|B \setminus A|$.

$$|A| = |A \cap B| + |A \setminus B|$$

$$\leq |A \cap B| + 2|B \setminus A|$$

$$\leq 2|A \cap B| + 2|B \setminus A|$$

$$= 2|B \cap A| + 2|B \setminus A|$$

For any two maximal matchings A and B, we have

$$|A| \le 2|B|$$
 and $|B| \le 2|A|$.

- Each edge in $B \setminus A$ is adjacent to at most two edges in $A \setminus B$.
- Each edge in $A \setminus B$ is adjacent to some edge in $B \setminus A$.
- Therefore $|A \setminus B| \le 2|B \setminus A|$.

$$|A| = |A \cap B| + |A \setminus B|$$

$$\leq |A \cap B| + 2|B \setminus A|$$

$$\leq 2|A \cap B| + 2|B \setminus A|$$

$$= 2|B \cap A| + 2|B \setminus A|$$

$$= 2|B|$$

Algorithms for Maximum Cardinality Matching

```
General: O(m\sqrt{n}), Micali, Vazirani, 1980 O(n^{\omega})^1 Mucha, Sankowski, 2004
```

```
Bipartite: O(m\sqrt{n}), Hopcroft, Karp, 1973 O(n^{\omega}), Mucha, Sankowski, 2004 \tilde{O}(m^{10/7}), Madry, 2013
```

 $^{^{1}\}omega \approx 2.37286...$

Augmenting Paths: A path starting and ending with two free nodes such that matched and unmatched edges alternate.

Augmenting Paths: A path starting and ending with two free nodes such that matched and unmatched edges alternate.

Augmenting Paths: A path starting and ending with two free nodes such that matched and unmatched edges alternate.

Augmenting Paths: A path starting and ending with two free nodes such that matched and unmatched edges alternate.

Given a matching M and an augmenting path p, we obtain a larger matching $M'=M\bigoplus p$ with |M'|=|M|+1.

Optimum and Augmenting Paths

Lemma 0.5 (Berge's Theorem)

M is an optimal matching if and only if there exist no augmenting paths with respect to M.

 \Rightarrow : Augmenting paths increase matching by 1.

 \Leftarrow : Let M' be an optimum.

 $M' \bigoplus M$ can consist of:

- 1. Isolated vertices
- 2. Even length cycles
- 3. Even length paths
- 3. Odd length paths

 M^\prime and M agree in size on everything except for the odd length paths.

Augmenting paths are odd length paths.

Optimum and Augmenting Paths

Lemma 0.5 (Berge's Theorem)

M is an optimal matching if and only if there exist no augmenting paths with respect to M.

- \Rightarrow : Augmenting paths increase matching by 1. \Leftarrow : Let M' be an optimum.
- $M' \bigoplus M$ can consist of:
 - 1. Isolated vertices
 - 2. Even length cycles
 - 3. Even length paths
 - 3. Odd length paths
 - M' and M agree in size on everything except for the odd length paths.

Augmenting paths are odd length paths.

First Attempt

Successive Augmenting Path

Compute a maximal matching M

For i = 1 to n/2

For every unmatched node v

Find an augmenting path p starting at v.

 $M = M \bigoplus p$

Running time: $O(mn^2)$

Correctness: Berge's Theorem

Giving the Algorithm a Bit of Structure

Lemma 1

Let M be a matching where the shortest augmenting path with respect to M has length k. Let P be a maximal set of edge disjoint augmenting paths of length k. Then the shortest augmenting path with respect to $M' = M \bigoplus P$ has length at least k + 2.

Let π be an augmenting path with respect to M'.

If π does not intersect any path from P, its length is greater than k.

Otherwise its existence contradicts the assumption that P is maximal or that the paths in P are shortest.

Let π intersect with path $p \in P$ in $M \bigoplus P$.

Let π intersect with path $p \in P$ in $M \bigoplus P$.

Let π intersect with path $p \in P$ in $M \bigoplus P$.

Let π intersect with path $p \in P$ in $M \bigoplus P$.

Let π intersect with path $p \in P$ in $M \bigoplus P$.

Proof of Lemma 1 Continued

Let π intersect with path $p \in P$ in $M \bigoplus P$.

Then $\pi \bigoplus p$ were two augmenting paths a and b with respect to M.

$$|a| + |b| < |p| + |\pi| \le 2|p|$$

Proof of Lemma 1 Continued

Let π intersect with path $p \in P$ in $M \bigoplus P$.

Then $\pi \bigoplus p$ were two augmenting paths a and b with respect to M.

$$|a| + |b| < |p| + |\pi| \le 2|p|$$

Contradiction to the assumption that *p* was shortest

Proof of Lemma 1 Continued

Let π intersect with path $p \in P$ in $M \bigoplus P$.

Then $\pi \bigoplus p$ were two augmenting paths a and b with respect to M.

$$|a| + |b| < |p| + |\pi| \le 2|p|$$

Contradiction to the assumption that p was shortest

By induction, a similar claim holds if π intersects with $p_1, \dots p_i \in P$

Second Attempt

Successive Shortest Augmenting Path

```
Compute a maximal matching M

For i=1 to n

P \leftarrow \emptyset

While augmenting paths of length 2i+1 exist

Find an augmenting path p of length 2i+1.

Add p to p

Remove p and incident edges from the graph p

p

Restore p
```

Naive way to determine P: Run a BFS for every free node.

Second Attempt

Successive Shortest Augmenting Path

```
Compute a maximal matching M

For i=1 to n

P \leftarrow \emptyset

While augmenting paths of length 2i+1 exist

Find an augmenting path p of length 2i+1.

Add p to p

Remove p and incident edges from the graph p

p

Restore p

Restore p
```

Naive way to determine *P*: Run a BFS for every free node.

We can do better ©

Second Attempt

Successive Shortest Augmenting Path

```
Compute a maximal matching M

For i=1 to n

P \leftarrow \emptyset

While augmenting paths of length 2i+1 exist

Find an augmenting path p of length 2i+1.

Add p to p

Remove p and incident edges from the graph p

p

Restore p

Restore p
```

Naive way to determine P: Run a BFS for every free node.

We can do better ©

Compute P with just one BFS and one DFS

Running Example

Formal Intermission

Hopcroft-Karp Tree Initialization

Put all free nodes into a queue

Run alternating path BFS

Place no node into more than one even (red) or odd (blue) level

Running Time: O(m+n)

14

Disjoint Augmenting Path Detection

Hopcroft-Karp Tree Initialization

Put all free nodes into a queue

Run alternating path BFS

Place no node into more than one even (red) or odd (blue) level

Path Extraction

 $P \leftarrow \emptyset$

For all free nodes in the first level

Run a DFS in the Hopcroft-Karp Tree

If path p is found, add p to P and stop.

Remove every node and any incident edges of the DFS traversal.

Running Time: O(m+n)

Analysis of Hopcroft-Karp Trees

Claim

We can find a maximal set of disjoint augmenting paths in O(m+n) time.

Hopcroft-Karp Trees contain all augmenting paths up to a given depth.

A DFS from a free node u finds an augmenting path starting at u, or none exist.

If a node a was visited by a DFS traversal, but not included in an augmenting path, then no augmenting path containing a exists (that does not overlap with P).

If a DFS rooted at u yields an augmenting path p, then no augmenting path disjoint from p at v can use one of the nodes in p.

Third Attempt

Hopcroft-Karp

Compute a maximal matching M

For
$$i = 1$$
 to n

$$P \leftarrow \emptyset$$

Find a maximal set P of disjoint augmenting paths of length 2i + 1.

$$M = M \bigoplus P$$

Running Time: $O(m \cdot n)$

Third Attempt

Hopcroft-Karp

Compute a maximal matching M

For
$$i=1$$
 to n

$$P \leftarrow \emptyset$$

Find a maximal set P of disjoint augmenting paths of length 2i + 1.

$$M = M \bigoplus P$$

Running Time: $O(m \cdot n)$

This is (more or less) the final algorithm.

Third Attempt

Hopcroft-Karp

Compute a maximal matching M

For
$$i = 1$$
 to n

$$P \leftarrow \emptyset$$

Find a maximal set P of disjoint augmenting paths of length 2i + 1.

$$M = M \bigoplus P$$

Running Time: $O(m \cdot n)$

This is (more or less) the final algorithm.

I promised you $O(m\sqrt{n})$.

Lemma 2

Let M' be an optimum matching and let M be any matching. If the length of the shortest augmenting path with respect to M is k, then $|M'|-|M|\leq \frac{n}{k}$.

Lemma 2

Let M' be an optimum matching and let M be any matching. If the length of the shortest augmenting path with respect to M is k, then $|M'|-|M|\leq \frac{n}{k}$.

Let M' be an optimum matching.

Lemma 2

Let M' be an optimum matching and let M be any matching. If the length of the shortest augmenting path with respect to M is k, then $|M'|-|M|\leq \frac{n}{k}$.

Let M' be an optimum matching.

Consider $M' \bigoplus M$. It contains at most |M'| - |M| augmenting paths.

Lemma 2

Let M' be an optimum matching and let M be any matching. If the length of the shortest augmenting path with respect to M is k, then $|M'|-|M|\leq \frac{n}{k}$.

Let M' be an optimum matching.

Consider $M' \bigoplus M$. It contains at most |M'| - |M| augmenting paths.

Each of these paths has length at least k.

Lemma 2

Let M' be an optimum matching and let M be any matching. If the length of the shortest augmenting path with respect to M is k, then $|M'|-|M|\leq \frac{n}{k}$.

Let M' be an optimum matching.

Consider $M' \bigoplus M$. It contains at most |M'| - |M| augmenting paths.

Each of these paths has length at least k.

The paths are disjoint, so their total length is at most n.

Lemma 2

Let M' be an optimum matching and let M be any matching. If the length of the shortest augmenting path with respect to M is k, then $|M'|-|M|\leq \frac{n}{k}$.

Let M' be an optimum matching.

Consider $M' \bigoplus M$. It contains at most |M'| - |M| augmenting paths.

Each of these paths has length at least k.

The paths are disjoint, so their total length is at most n.

There are no more then $\frac{n}{k}$ such paths.

Lemma 2

Let M' be an optimum matching and let M be any matching. If the length of the shortest augmenting path with respect to M is k, then $|M'|-|M|\leq \frac{n}{k}$.

Lemma 2

Let M' be an optimum matching and let M be any matching. If the length of the shortest augmenting path with respect to M is k, then $|M'|-|M|\leq \frac{n}{k}$.

We run Hopcroft-Karp until $k \ge \sqrt{n}$.

Lemma 2

Let M' be an optimum matching and let M be any matching. If the length of the shortest augmenting path with respect to M is k, then $|M'|-|M|\leq \frac{n}{k}$.

We run Hopcroft-Karp until $k \ge \sqrt{n}$.

We have at most $\frac{n}{\sqrt{n}} = \sqrt{n}$ paths left.

Lemma 2

Let M' be an optimum matching and let M be any matching. If the length of the shortest augmenting path with respect to M is k, then $|M'|-|M|\leq \frac{n}{k}$.

We run Hopcroft-Karp until $k \ge \sqrt{n}$.

We have at most $\frac{n}{\sqrt{n}} = \sqrt{n}$ paths left.

The algorithm now only computes \sqrt{n} remaining iterations of BFS/DFS searches.

Final Algorithm

Hopcroft-Karp

Compute a maximal matching M

For
$$i = 1$$
 to \sqrt{n}

$$P \leftarrow \emptyset$$

Find a maximal set P of disjoint augmenting paths in Hopcroft-Karp trees of depth 2i + 1.

$$M = M \bigoplus P$$

For
$$i = 1$$
 to \sqrt{n}

$$P \leftarrow \emptyset$$

Find a maximal set P of disjoint augmenting paths in Hopcroft-Karp trees of depth n.

$$M = M \bigoplus P$$