1.23 Final Value Theorem

Consider the following transfer functions

$$G_1(s) = \frac{2}{s^2 - 2s + 4}$$
 $G_2(s) = \frac{2s - 3}{s^2 + 4s + 1}$

Use the final value theorem to compute the DC gain for $G_1(s)$ and $G_2(s)$. In each case, explain whether the final value theorem gives the right answer and why.

Solution:

DC gain for $G_1(s) = G_1(s)|_{s=0} = \frac{1}{2}$ DC gain for $G_2(s) = G_2(s)|_{s=0} = -3$

The final value theorem computes the correct DC gain for $G_2(s)$ but not for $G_1(s)$ because the poles of $G_1(s)$ are not in LHP, hence Final Value Theorem does not apply.

GPT Answer:

To compute the DC gain of the given transfer functions $G_1(s)$ and $G_2(s)$ using the Final Value Theorem (FVT), we recall that the DC gain can be found by evaluating the limit of sG(s) as s approaches zero. This is equivalent to evaluating the transfer function at DC (0 Hz), i.e., G(0).

The Final Value Theorem states that for a function f(t) with Laplace Transform F(s), the final value of f(t) as t approaches infinity is given by:

$$\lim_{t\to\infty}f(t)=\lim_{s\to 0}sF(s)$$

provided that all poles of sF(s) are in the left half of the complex plane (i.e., the system is stable).

For $G_1(s)$:

Substituting s = 0 in $G_1(s)$:

$$G_1(0) = \frac{2}{0^2 - 2 \cdot 0 + 4} = \frac{2}{4} = 0.5$$

For $G_2(s)$:

Substituting s = 0 in $G_2(s)$:

$$G_2(0) = \frac{2 \cdot 0 - 3}{0^2 + 4 \cdot 0 + 1} = \frac{-3}{1} = -3$$

Analysis and Applicability of FVT:

- For $G_1(s)$: The FVT is applicable because the poles of $G_1(s)$, which are the roots of the denominator $s^2 - 2s + 4$, are both in the left half of the complex plane, indicating

Correct

Claude Answer:

The final value theorem states that for a stable system with transfer function G(s) and input U(s), the steady-state output value is given by:

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sG(s)U(s)$$

For a step input, $U(s) = \frac{1}{s}$, so the DC gain is:

$$\lim_{s\to 0}G(s)$$

For
$$G_1(s) = \frac{2}{s^2 - 2s + 4}$$
:

$$\lim_{s \to 0} G_1(s) = \frac{2}{4} = 0.5$$

However, $G_1(s)$ has poles at $s=1\pm j\sqrt{3}$, which lie in the right half-plane. This makes the system unstable, invalidating the use of the final value theorem. The result cannot be trusted.

For
$$G_2(s) = \frac{2s-3}{s^2+4s+1}$$
:

$$\lim_{s \to 0} G_2(s) = \frac{-3}{1} = -3$$

The poles of $G_2(s)$ are at $s=-2\pm j$, which lie in the left half-plane. This system is stable, so the final value theorem applies, and the DC gain is indeed -3.

Confidence Level: 95%

Correct