16.09.2014 - Amplificatori Operazionali Ideali

1 Introduzione

In questa sessione di laboratorio abbiamo montato due circuiti con amplificatori operazionali e valutato la loro tensione di output.

2 Materiali

- Oscilloscopio Agilent DSO-X 2002A (bandwidth 70MHz, sample rate 2GSa/s);
- Generatore di tensione continua (max $\pm 25V$);
- Generatore di tensione Agilent 33120A con range di frequenza da $100\mu Hz$ a 15Mhz;
- Multimetro Agilent 34410A (utilizzato come amperometro e per verificare i valori delle resistenze);
- Un amplificatore operazionale UA741;
- Resistenze di vari valori;
- Due capacità da $0.1\mu F$;
- Breadboard;
- Cablaggi vari.

3 Premessa sugli amplificatori operazionali ideali

Durante l'esperienza valuteremo l'amplificatore operazionale considerandolo come ideale. Infatti, in questa approssimazione (peraltro non eccessivamente limitante visti i valori di corrente in gioco nel nostro caso), valgono (considerando come A e B rispettivamente gli ingressi invertente e non invertente):

$$\Delta V_{AB} = 0 \tag{1}$$

$$I_{AB} = 0 (2)$$

cioè la ddp fra l'ingresso invertente e non invertente è portato ad essere nullo dall'amplificatore operazionale modificando il valore di tensione in output (il cosiddetto *ground virtuale* dato che nei nostri casi l'ingresso non invertente è collegato alla comune del circuito); e la corrente assorbita dall'amplificatore è nulla. Queste regole verranno utilizzate durante questa sessione per valutare la risposta del circuito a segnali in ingresso, e si intendono utilizzate per tutte le sessioni in cui l'amplificatore è considerato ideale.

Figura 1: Grafico dell'alimentazione dell'OPAMP. La tensione di alimentazione è fornita con il generatore di tensione costante, mentre le capacità sono $C_1 = C_2 = 0.1 \mu F$. Per maggiore chiarezza negli schemi circuitali, questa configurazione sarà nascosta negli schemi successivi, ma comunque presente sulla breadboard.

Inoltre, per maggiore chiarezza degli schemi circuitali, l'amplificatore si intende collegato all'alimentazione ($\pm 15V$); e, al fine di evitare problemi di noise durante l'alimentazione, abbiamo collegato l'alimentazione a due capacità come nello schema.

4 Generatore di corrente

In questo circuito montiamo un generatore di corrente costante, cioè un dispositivo in grado di erogare una corrente costante indipendentemente dal carico a cui è sottoposto. Per valutare la risposta a diverse resistenze di carico abbiamo dunque utilizzato come R_f una resistenza variabile di tipo trimmer. Lo schema circuitale è in figura.

Risolviamo ora il circuito. Dato che B si trova a potenziale di comune, per (1) anche A sarà allo stesso potenziale, che considereremo nullo. Dunque varrà

$$V_{gen} = IR_1 \tag{3}$$

Per (2) e la legge di Kirkhhoff sui nodi, avremo invece che la corrente passante per la resistenza di carico è uguale alla corrente I di (3).

Otteniamo dunque che la tensione di output si modificherà, ad opera dell'OPAMP, in modo da far passare sempre lo stesso valore di corrente attraverso R_2 ; ciò avviene per il fenomeno di retroazione negativa, che ci permette di controllare la tensione di output tramite la resistenza di feedback, che in questo caso è proprio R_2 , e di ottenere dunque una corrente costante passante per il circuito di feedback. Imponendo l'uguaglianza della corrente possiamo inoltre trovare il valore della tensione di uscita

Figura 2: Schema del generatore di corrente costante. Come valori abbiamo utilizzato $R1 = 3.85 \pm 0.01 k\Omega$ e $V_{gen} = 3.85 V$, mentre R_2 è variabile. Come amperometro è utilizzato il multimetro, mentre per alimentare l'OPAMP e come generatore di tensione costante in figura, abbiamo utillizzato il generatore di tensione continua.

$$V_{out} = \frac{R_2}{R_1} V_{gen}$$

Durante l'esperienza abbiamo però deciso di misurare la corrente passante per la resistenza piuttosto che la tensione di uscita, ponendo un amperometro fra l'uscita dell'OPAMP e la resistenza di carico R_2 . Come valore di corrente abbiamo scelto 1mA in modo da discostarci dalla corrente massima in cui l'amplificatore operazionale potrebbe non comportarsi più in maniera ideale (10/20mA); e avendo a disposizione una resistenza $R_1 = 3.85 \pm 0.01k\Omega$, per (3), abbiamo utilizzato una tensione continua di 3.85V.

5 Sommatore Pesato