Analyzing Snapshot Isolation

Andrea Cerone Alexey Gotsman presented by Dima Kuznetsov

IMDEA Software Institute

PODC 2016

Outline

- Introduction
- Snapshot Isolation
 - Definitions
 - Dependency Graphs
 - Characterization
- Static Analysis
 - Transaction Chopping
 - Robustness

Intro

- We focus on Snapshot Isolation presented in the last talk
- ... same context of DBMS and transactional memory systems

Intro

- DBMS typically offer various guarantees for transaction management
- Each mode exhibits different anomalies
- Stronger modes exhibit less anomalies at expense of performance
 - Stronger guarantees incur more overhead on the DBMS side
 - \bullet Less allowed behaviors \to more concurrent transactions expected to abort

Snapshot Isolation

FIXME **Snapshot Isolation** - originally specified as operational model:

- When transaction T begins, $snapshot_T$ is taken
- All reads in T read values from snapshot_T
- All writes in T write to transient write-set
- T commits only if passes write conflict check:
 - No object in T's write-set was updated by other transactions since snapshot_T was taken

Outline

- Introduction
- Snapshot Isolation
 - Definitions
 - Dependency Graphs
 - Characterization
- Static Analysis
 - Transaction Chopping
 - Robustness

We'll start by formulating a declarative definition of Snapshot Isolation.

We'll use a lot of notation similar to Daniel's talk two weeks ago

- $Obj = \{x, y, ...\}$ objects in the data-set
- $Event = \{e, f, ...\}$ transaction events
- $Op = \{read(x, n), write(x, n) \mid x \in Obj, n \in \mathbb{Z}\}$
- op : Event → Op

A **transaction** T, S, ... is a pair (E, po) where $E \subseteq Event$ is a *finite*, non-empty set of events and **program-order** $po \subseteq E \times E$ is a total order.

Where ...

• total order is a transitive and irreflexive relation that orders all pairs

A **history** is a pair $\mathcal{H} = (\mathcal{T}, SO)$ where \mathcal{T} is a finite set of transactions with disjoint set of events and the **session-order** $SO \subseteq \mathcal{T} \times \mathcal{T}$ is a union of total orders defined on disjoint subsets of \mathcal{T} , which correspond to transactions in different sessions.

We elide treatment of:

- aborted transactions all transactions in any history are committed.
- infinite computations histories are always finite.

An **abstract execution** is a tuple $\mathcal{X} = (\mathcal{T}, SO, VIS, CO)$, where (\mathcal{T}, SO) is a history and the **visibility** and **commit order** $VIS, CO \subseteq \mathcal{T} \times \mathcal{T}$ are such that $VIS \subseteq CO$ and CO is total.

- We'll use $(T, S) \in VIS$ and $T \xrightarrow{VIS} S$ interchangeably for VIS and other relations.
- For $\mathcal{H} = (\mathcal{T}, SO)$ we'll shorten $(\mathcal{T}, SO, VIS, CO)$ to (\mathcal{H}, VIS, CO)

For the relations defined in abstract execution:

- $T \stackrel{V/S}{\longrightarrow} S$ means that T is included in S's snapshot.
- $T \xrightarrow{CO} S$ means that T is committed before S.
- VIS ⊆ CO makes sure that snapshots include only already committed transactions.

For a set A and a total order $R \subseteq A \times A$

- $max_R(A) = \{ a \mid \forall b \in A : a = b \lor (b, a) \in R \}$
- $min_R(A) = \{a \mid \forall b \in A : a = b \lor (a, b) \in R\}$

For T = (E, po) we'll use:

• $T \vdash write(x, n)$ if T writes to x and n is s.t.

$$op(max_{po}\{e \mid op(e) = write(x, _)\}) = write(x, n)$$

• $T \vdash read(x, n)$ if T reads x before writing to is and n is s.t.

$$op(min_{po}\{e \mid op(e) = _(x,_)\}) = read(x,n)$$

We'll also use $WriteTx_x = \{T \mid T \vdash write(x,_)\}$

We'll now try to define *snapshot isolation* and *serializability* in terms of **consistency axioms**:

$$ExecSI = \begin{cases} \mathcal{X} \mid \mathcal{X} \vDash \mathsf{INT} \land \mathsf{EXT} \land \mathsf{SESSION} \land \\ \mathsf{PREFIX} \land \mathsf{NOCONFLICT} \end{cases}$$

$$ExecSER = \{ \mathcal{X} \mid \mathcal{X} \vDash \mathsf{INT} \land \mathsf{EXT} \land \mathsf{SESSION} \land \mathsf{TOTALVIS} \}$$

$$HistSI = \{ \mathcal{H} \mid \exists \mathit{VIS}, \mathit{CO} : (\mathcal{H}, \mathit{VIS}, \mathit{CO}) \in \mathit{ExecSI} \}$$

$$HistSER = \{ \mathcal{H} \mid \exists \mathit{VIS}, \mathit{CO} : (\mathcal{H}, \mathit{VIS}, \mathit{CO}) \in \mathit{ExecSER} \}$$

Definition (Internal consistency)

INT - ensures that a read event e on object x returns the same value a as the last write or read on x in the same transaction.

$$\forall (E, po) \in \mathcal{T}. \forall e \in E. \forall x, n :$$

$$op(e) = read(x, n) \land \{f \mid op(f) = _(x, _) \land f \xrightarrow{po} e\} \neq \emptyset \Rightarrow$$

$$op\left(max_{po}\{f \mid op(f) = _(x, _) \land f \xrightarrow{po} e\}\right) = _(x, n)$$

Definition (External consistency)

EXT - ensures that if $T \vdash read(x, n)$ then the value is taken from the last visible transaction that wrote to x according to commit order.

$$\forall T \in \mathcal{T}. \forall x, n :$$

$$T \vdash read(x, n) \Rightarrow max_{CO}\left(VIS^{-1}(T) \cap WriteTx_{x}\right) \vdash write(x, n)$$

Where ...

•
$$R^{-1}(a) = \{b \mid (b, a) \in R\}$$

Definition (Session visibility)

SESSION - requires a snapshot to include all preceding transactions of the same session.

$$SO \subseteq VIS$$

(a) Session guarantees.

Definition (Prefix)

PREFIX - ensures that if snapshot taken by T includes S, then it includes all transactions committed before S as well.

$$CO$$
; $VIS \subseteq VIS$

Where ...

•
$$R_1$$
; $R_2 = \{(a,b) \mid \exists c : (a,c) \in R_1 \land (c,b) \in R_2\}$

The **long-fork** anomaly is prevented by PREFIX axiom:

Definition (No conflict check)

NOCONFLICT - ensures that for any two transactions writing to the same object, one has to be aware of the other.

$$\forall T, S \in \mathcal{T}. \forall x, n.$$

$$(T, S \in WriteTx_X \land T \neq S) \Rightarrow (T \xrightarrow{VIS} S \lor S \xrightarrow{VIS} T)$$

The **lost-update** anomaly is prevented by NoConflict axiom:

(b) Lost update.

Definition (Total visibility)

TOTALVIS - requires total order on the visibility relation, giving us *serializability* of transactions.

$$VIS = CO$$

The **write-skew** anomaly allowed by Snapshot Isolation is prevented by TOTALVIS axiom:

 $(d) \ \text{Write skew. Initially acct1} = \text{acct2} = 60. \\ T_1 \\ \text{if (acct1 + acct2 > 100)} \\ \text{acct1 := acct1 - 100} \\ \\ \text{If (acct1 + acct2 > 100)} \\ \text{acct2 := acct2 - 100} \\ \\ \text{read(acct1, 60)} \rightarrow \text{read(acct2, 60)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{read(acct1, 60)} \rightarrow \text{read(acct2, 60)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{read(acct1, 60)} \rightarrow \text{read(acct2, 60)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{read(acct1, 60)} \rightarrow \text{read(acct2, 60)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{read(acct1, 60)} \rightarrow \text{read(acct2, 60)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{read(acct1, 60)} \rightarrow \text{read(acct2, 60)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{read(acct1, 60)} \rightarrow \text{read(acct2, 60)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{read(acct1, 60)} \rightarrow \text{read(acct2, 60)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{read(acct1, 60)} \rightarrow \text{read(acct2, 60)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{read(acct1, 60)} \rightarrow \text{read(acct2, 60)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{read(acct1, 60)} \rightarrow \text{read(acct2, 60)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{read(acct1, 60)} \rightarrow \text{read(acct2, 60)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{write(acct2, -40)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{write(acct2, -40)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{read(acct2, -40)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{write(acct2, -40)} \rightarrow \text{write($

Outline

- Introduction
- 2 Snapshot Isolation
 - Definitions
 - Dependency Graphs
 - Characterization
- Static Analysis
 - Transaction Chopping
 - Robustness

- Our goal now is to characterize SI in terms of dependencies between transactions.
- Then we'll be able to decide whether SI allows a given history by looking for appropriate dependencies.

Consider execution $\mathcal{X} = (\mathcal{T}, SO, VIS, CO)$, for $x \in Obj$ we define **read-dependency** $WR_{\mathcal{X}}(x)$ over $\mathcal{T}_{\mathcal{X}}$ as:

$$T \xrightarrow{WR_{\mathcal{X}}(x)} S \Leftrightarrow S \vdash read(x, n) \land T = max_{CO} \left(VIS^{-1}(S) \cap WriteTx_{x} \right)$$

Informally: $T \xrightarrow{WR_{\mathcal{X}}(x)} S$ means that S reads T's write to x.

Consider execution $\mathcal{X} = (\mathcal{T}, SO, VIS, CO)$, for $x \in Obj$ we define **write-dependency** $WW_{\mathcal{X}}(x)$ over $\mathcal{T}_{\mathcal{X}}$ as:

$$T \xrightarrow{WW_{\mathcal{X}}(x)} S \Leftrightarrow T \xrightarrow{CO} S \land T, S \in WriteTx_{x}$$

Informally: T $\xrightarrow{WW_{\mathcal{X}}(x)}$ S means that S overwrites T's write to x.

Consider execution $\mathcal{X} = (\mathcal{T}, SO, VIS, CO)$, for $x \in Obj$ we define **anti-dependency** $RW_{\mathcal{X}}(x)$ over $\mathcal{T}_{\mathcal{X}}$ as:

$$T \xrightarrow{RW_{\mathcal{X}}(x)} S \Leftrightarrow$$

$$T \neq S \land \exists T'.T' \xrightarrow{WR_{\mathcal{X}}(x)} T \land T' \xrightarrow{WW_{\mathcal{X}}(x)} S$$

Informally: $T \xrightarrow{RW_{\mathcal{X}}(x)} S$ means that S overwrites the write to x read by T.

FIXME add example

A dependency graph is a tuple G = (T, SO, WR, WW, RW), where (T, SO) is a history and:

- WR: $Obj \rightarrow 2^{T \times T}$ is such that:
 - $\forall T, S. \forall x. T \xrightarrow{WR(x)} S \Rightarrow \exists n. T \neq S \land T \vdash write(x, n) \land S \vdash read(x, n)$
 - $\forall S \in \mathcal{T}. \forall x.S \vdash read(x,_) \Rightarrow \exists T.T \xrightarrow{WR(x)} S$
 - $\forall T, T', S \in T. \forall x. \left(T \xrightarrow{WR(x)} S \land T' \xrightarrow{WR(x)} S \right) \Rightarrow T = T'$
- WW: $Obj \rightarrow 2^{T \times T}$ is such that for every $x \in Obj$, WW(x) is a total order on the set $WriteTx_x$.
- RW: $Obj \rightarrow 2^{T \times T}$ is derived from WR and WW as in the definition of $WR_{\mathcal{X}}(x)$.

Proposition

For any $X \in ExecSI$,

$$graph(\mathcal{X}) = (\mathcal{T}_{\mathcal{X}}, SO_{\mathcal{X}}, WR_{\mathcal{X}}, WW_{\mathcal{X}}, RW_{\mathcal{X}})$$

is a dependency graph.

Proof.

By showing graph(\mathcal{X}) satisfies all requirements of a dependency graph.

Outline

- Introduction
- Snapshot Isolation
 - Definitions
 - Dependency Graphs
 - Characterization
- Static Analysis
 - Transaction Chopping
 - Robustness

We'll show that SI is characterized by dependency graphs that contain only cycles with at least two adjacent anti-dependency edges.

Theorem

Let

$$\begin{aligned} \textit{GraphSER} &= \{\mathcal{G} \mid (\mathcal{T}_{\mathcal{G}} \vdash \mathsf{INT}) \\ &\quad ((\textit{SO}_{\mathcal{G}} \cup \textit{WR}_{\mathcal{G}} \cup \textit{WW}_{\mathcal{G}} \cup \textit{RW}_{\mathcal{G}}) \textit{ is acyclic})\} \end{aligned}$$

Then

$$\textit{HistSER} = \{\mathcal{H} \mid \exists \textit{WR}, \textit{WW}, \textit{RW}. \\ (\mathcal{H}, \textit{WR}, \textit{WW}, \textit{RW}) \in \textit{GraphSER} \}$$

In other words, execution is serializable if it can be extended into an acyclic dependency graph.

Theorem

Let

$$\begin{aligned} \textit{GraphSI} &= \{\mathcal{G} \mid (\mathcal{T}_{\mathcal{G}} \vdash \mathsf{INT}) \land \\ & \left(\left((\textit{SO}_{\mathcal{G}} \cup \textit{WR}_{\mathcal{G}} \cup \textit{WW}_{\mathcal{G}}) ; \textit{RW}_{\mathcal{G}}^? \right) \text{ is acyclic} \right) \} \end{aligned}$$

Then

$$\textit{HistSI} = \{\mathcal{H} \mid \exists \textit{WR}, \textit{WW}, \textit{RW}. (\mathcal{H}, \textit{WR}, \textit{WW}, \textit{RW}) \in \textit{GraphSI}\}$$

Where ...

•
$$R^? = R \cup \{(a, a) \mid a \in A\}$$

Example:

$$(d) \ \text{Write skew. Initially acct1} = \text{acct2} = 60. \\ T_1 \\ \text{if (acct1 + acct2 > 100)} \\ \text{acct1 := acct1 - 100} \\ \\ \text{RW} \\ \\ \text{FW} \\ \\ T_2 \\ \text{read(acct1, 60)} \rightarrow \text{read(acct2, 60)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{acct2 := acct2 - 100} \\ \\ \text{read(acct1, 60)} \rightarrow \text{read(acct2, 60)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{read(acct1, 60)} \rightarrow \text{read(acct2, 60)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{read(acct1, 60)} \rightarrow \text{read(acct2, 60)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{read(acct1, 60)} \rightarrow \text{read(acct2, 60)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{read(acct1, 60)} \rightarrow \text{read(acct2, 60)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{read(acct1, 60)} \rightarrow \text{read(acct2, 60)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{read(acct1, 60)} \rightarrow \text{read(acct2, 60)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{read(acct1, 60)} \rightarrow \text{read(acct2, 60)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{read(acct1, 60)} \rightarrow \text{read(acct2, 60)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{write(acct2, -40)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{write(acct2, -40)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{read(acct2, -40)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{write(acct2, -40)} \rightarrow \text{write(acct2, -40)} \\ \\ \text{write(acct2, -40)} \rightarrow \text{write(acct2,$$

- Prohibited under serializability, and has a dependency graph cycle T₁ RW T₂ RW T₁.
- However, allowed under SI

In contrast, following is *not* allowed under SI:

contain cycles without adjacent anti dependencies.

To prove it we'll show a stronger result:

- **①** Soundness: $\forall \mathcal{G} \in GraphSI.\exists \mathcal{X} \in ExecSI.graph(\mathcal{X}) = \mathcal{G}$
- **② Completeness:** $\forall \mathcal{X} \in ExecSl.graph(\mathcal{X}) \in GraphSl$

The *completeness* closely follows from existing results¹. We will focus on the *soundness*.

¹Making Snapshot Isolation Serializable, 2005, A. Fekete et al > 4 = > 4 = > 9 9 9

Proof sketch:

- ullet Construct a basic **pre-execution** from ${\cal G}$
- Iteratively extend it until satisfies execution definition

A tuple $\mathcal{P} = (\mathcal{T}, SO, VIS, CO)$ is a **pre-execution** if it satisfies all the conditions of being an *execution*, except CO is a *strict partial order* that may not be total.

Definition

We let *PreExecSI* be the set of pre-executions satisfying the SI axioms:

$$\begin{aligned} \textit{PreExecSI} = \{ \mathcal{P} \mid \mathcal{P} \vDash \textit{INT} \land \textit{EXT} \land \textit{SESSION} \land \\ \textit{PREFIX} \land \textit{NOCONFLICT} \} \end{aligned}$$

Where

• strict partial order is a transitive and irreflexive relation

- For a given dep. graph $\mathcal{G} = (\mathcal{H}, WR, WW, RW)$, let $\mathcal{P} = (\mathcal{H}, VIS, CO)$ a respective pre-execution.
- To conform with \mathcal{G} we require that VIS, CO hold:

$$SO \cup WR \cup WW \subseteq VIS$$
 (1)

$$CO$$
; $VIS \subseteq VIS$ (2)

$$VIS \subseteq CO$$
 (3)

$$CO$$
; $CO \subseteq CO$ (4)

$$VIS; RW \subseteq CO$$
 (5)

Lemma

Let G = (T, SO, WR, WW, RW) be a dependency graph, for any relation $R \subseteq T \times T$, the relations

$$VIS = (((SO \cup WR \cup WW); RW^?) \cup R)^*;$$
$$(SO \cup WR \cup WW)$$
$$CO = (((SO \cup WR \cup WW); RW^?) \cup R)^+$$

are a solution to the system of inequalities in the previous slide. They also are the smallest solution to the system for which $R \subseteq CO$.

Where...

- R⁺ a transitive closure of R
- R* a transitive and reflexive closure of R

FIXME add intuition

Proof.

Let $\mathcal{G} = (\mathcal{T}, SO, WR, WW, RW) \in GraphSI$

- Define \mathcal{P}_0 derived from the last lemma by fixing $R_0 = \emptyset$.
- Construct $\{\mathcal{P}_i = (\mathcal{T}, SO, VIS_i, CO_i)\}_{i=0}^n$ series of pre-executions.
- While CO_i is not total:
 - Pick arbitrary pair T, S not ordered by CO_i
 - $R_{i+1} = R_i \cup \{(T, S)\}$
 - Use the lemma with $R = R_{i+1}$ to derive VIS_{i+1} , CO_{i+1} (and thus P_{i+1})
- Let $\mathcal{X} = \mathcal{P}_n$ as CO_n is now total.

Outline

- Introduction
- Snapshot Isolation
 - Definitions
 - Dependency Graphs
 - Characterization
- Static Analysis
 - Transaction Chopping
 - Robustness

Transaction Chopping under SI:

- We'll derive a static analysis that checks if transactions can be chopped into smaller sessions
- The analysis will suggest an optimized program provided any execution with chopped transactions does not exhibit new behaviors.

For history \mathcal{H} , let

$$\approx_{\mathcal{H}} = \textit{SO}_{\mathcal{H}} \cup \textit{SO}_{\mathcal{H}}^{-1} \cup \{(\textit{T},\textit{T}) \mid \textit{T} \in \mathcal{T}_{\mathcal{H}}\}$$

be the equivalence relation grouping transactions from same session.

Let
$$T_{\mathcal{H}} = (E, po)$$
 where $E = (\bigcup \{E_{\mathcal{S}} \mid S \approx_{\mathcal{H}} T\})$ and

$$po = \{(e, f) \mid \left(\exists S.e, f \in E_S \land e \xrightarrow{po_S} f \land S \approx_{\mathcal{H}} T\right) \lor \left(\exists S, S'.e \in E_S \land f \in E_{S'} \land S \xrightarrow{SO_{\mathcal{H}}} S' \land S' \approx_{\mathcal{H}} T\right)\}$$

Informally $|T|_{\mathcal{H}}$ is the result of splicing all transactions in session of T into the same transaction.

For history \mathcal{H} , let

$$splice(\mathcal{H}) = \left(\{ \boxed{T}_{\mathcal{H}} \mid T \in \mathcal{T}_{\mathcal{H}} \}, \emptyset \right)$$

history resulting from splicing all sessions in a history.

- We'll call $\mathcal{G} \in GraphSI$ **spliceable** if exists a dependency graph $\mathcal{G}' \in GraphSI$ such that $\mathcal{H}_{\mathcal{G}'} = splice(\mathcal{H}_{\mathcal{G}})$.
- For graph \mathcal{G} we let $\approx_{\mathcal{G}} = \approx_{\mathcal{H}_{\mathcal{G}}}$.

Example, let graph \mathcal{G} :

The above graph is not splice-able: $S_{\mathcal{G}}$ observes write by $T_{\mathcal{G}}$ to *acct*1 but not to *acct*2.

Given $\mathcal G$ let dynamic chopping graph $DCG(\mathcal G)$ obtained from $\mathcal G$ by

- Removing $WR_{\mathcal{G}}, WW_{\mathcal{G}}, RW_{\mathcal{G}}$ edges between transactions related by $\approx_{\mathcal{G}}$
- Adding predecessor edges SO_G⁻¹
- We'll call SO successor edges
- And call $(WR_{\mathcal{G}} \cup WW_{\mathcal{G}} \cup RW_{\mathcal{G}}) \setminus \approx_{\mathcal{G}}$ conflict edges

A cycle in DCG(G) is **critical** if:

- Does not contain 2 occurrences of the same vertex
- Contains 3 consecutive edges in form of conflict-predecessor-conflict
- Any 2 anti dependency edges $(RW_{\mathcal{G}} \setminus \approx_{\mathcal{G}})$ are separated by at least one read $(WR_{\mathcal{G}} \setminus \approx_{\mathcal{G}})$ or write $(WW_{\mathcal{G}} \setminus \approx_{\mathcal{G}})$ dependency edge

This example contains a critical cycle with

.
$$\xrightarrow{S}$$
 . \xrightarrow{WR} . \xrightarrow{P} . \xrightarrow{RW} .

Theorem

For $G \in G$ aphSI, if DCG(G) contains no critical cycles, then G is splice-able.

We use the last theorem to derive the static analysis.

- Assume set of **programs** $\mathcal{P} = \{P_1, P_2, \dots\}$, each defining code of a session resulting from chopping a single transaction.
- Each P_i is composed of k_i program pieces
- W_j^i and R_j^i sets of objects written or read by j-th piece of P_i

For the above we have 4 *programs*, one for each session. Each transaction is a **program piece**. For transfer session we have 2 program pieces with

•
$$W_1^1 = R_1^1 = \{acct1\}, W_2^1 = R_2^1 = \{acct2\}$$

- History \mathcal{H} can be produced by programs \mathcal{P} if there's 1:1 correspondence between every session in \mathcal{H} and program $P_i \in \mathcal{P}$, and each transaction in the session corresponds to respective program piece, along with its read/write sets.
- Chopping is defined **correct** if every dependency graph $\mathcal{G} \in GraphSI$, where $\mathcal{H}_{\mathcal{G}}$ can be produced by \mathcal{P} is splice-able.

Consider program set \mathcal{P}

Definition

Static chopping graph $SCG(\mathcal{P})$ is a graph where nodes are program pieces in form of (i,j) and the edge $(i_1,j_1),(i_2,j_2)$ is present if:

- $i_1 = i_2$ and:
 - $j_1 < j_2$ (a successor edge)
 - $j_1 > j_2$ (a predecessor edge)
- $i_1 \neq i_2$ and:
 - $W^{i_1}_{j_1}\cap R^{i_2}_{j_2}
 eq \emptyset$ (a read dependency edge)
 - $W^{i_1}_{j_1}\cap W^{i_2}_{j_2}
 eq \emptyset$ (a write dependency edge)
 - $R_{j_1}^{j_1}\cap W_{j_2}^{j_2}
 eq\emptyset$ (an **anti dependency** edge)

- The edge set of static graphs $SCG(\mathcal{P})$ over-approximate the edge sets of the dynamic graphs $DCG(\mathcal{G})$ corresponding to graphs \mathcal{G} produced by programs \mathcal{P} .
- The chopping defined by \mathcal{P} is correct if $SCG(\mathcal{P})$ contains no critical cycles (as defined for dynamic graphs).

Figure 5: The static chopping graph of the programs {transfer,lookupAll} from Figure 4. Dashed boxes group program pieces into sessions.

Figure 6: The static chopping graph of the programs {transfer, lookup1, lookup2} from Figure 4.

Outline

- Introduction
- Snapshot Isolation
 - Definitions
 - Dependency Graphs
 - Characterization
- Static Analysis
 - Transaction Chopping
 - Robustness

Robustness:

We'll derive an analysis that check where an application behaves the same way under a weak consistency model as it does under a strong one.

Robustness against SI towards SER

- Check if a given application running under SI, behaves the same as if it runs under serializability model.
- Specifically, no histories in HistSI \ HistSER

Theorem

For any \mathcal{G} , we have $\mathcal{G} \in GraphSI \setminus GraphSER$ iff. $\mathcal{T}_{\mathcal{G}} \models Int$, \mathcal{G} contains a cycle, and all its cycles have at least two adjacent anti-dependency edges.

Static analysis:

- Assume code of transactions defined by set of programs P with given read and write sets.
- Based on them, derive static dependency graph, over-approximating possible dependencies that can exist.
- Check that static dependency graph contains no cycles with two adjacent anti-dependency edges.

Robustness against PSI towards SI

- Check if a given application running under PSI, behaves the same as if it runs under SI model.
- Again, make sure there are no histories in *HistPSI \ HistSI*

Sets of executions and histories allowed by parallel SI are:

$$\begin{aligned} \textit{ExecPSI} &= \frac{ \{\mathcal{X} \mid \mathcal{X} \models \mathsf{INT} \land \mathsf{EXT} \land \mathsf{SESSION} \land \\ \mathsf{TRANSVIS} \land \mathsf{NOCONFLICT} \} \\ \textit{HistPSI} &= \{\mathcal{H} \mid \exists \textit{VIS}, \textit{CO}.(\mathcal{H}, \textit{VIS}, \textit{CO}) \in \textit{ExecPSI} \} \end{aligned}$$

TRANSVIS axiom ensures that transactions ordered by *VIS* are observed by others in this order. However, allows transactions unrelated by *VIS* to be observed in different orders; in particular, allows *long fork* anomaly.

Theorem

Let

$$\begin{aligned} \textit{GraphPSI} &= \{\mathcal{G} \mid (\mathcal{T}_{\mathcal{G}} \vDash \mathsf{INT}) \land \\ & \left(\left((\textit{SO}_{\mathcal{G}} \cup \textit{WR}_{\mathcal{G}} \cup \textit{WW}_{\mathcal{G}})^{+} ; \textit{RW}_{\mathcal{G}}^{?} \right) \textit{is irreflexive} \right) \} \end{aligned}$$

Then

 $\textit{HistPSI} = \{\mathcal{H} \mid \exists \textit{WR}, \textit{WW}, \textit{RW}.(\mathcal{H}, \textit{WR}, \textit{WW}, \textit{RW}) \in \textit{GraphPSI}\}$

Theorem

For any \mathcal{G} , we have $\mathcal{G} \in GraphPSI \setminus GraphSI$ iff. $\mathcal{T}_{\mathcal{G}} \models Int$, \mathcal{G} contains at least one cycle with no adjacent anti-dependency edges, and all its cycles have at least two anti-dependency edges.

FIXME example

Thank you!