EMMY NOETHER'S FIRST THEOREM FOR FIRST ORDER LAGRANGIANS

BERND SCHOMBURG

- 1. Introduction. The purpose of this note is to formulate and prove one direction of Emmy Noether's first theorem [3] on the relation between invariances and conservation laws in the simplest case of a first order Lagrangian and a single independent variable. We follow the presentation in Arnol'd [1] (for a historical assessment of Arnol'd's approach see Kosmann-Schwarzbach [2]). For a modern approach to Emmy Noether's theorems in [3] we refer to Olver [4].
- **2. Notation and basic definitions.** In this note M will be an n-dimensional smooth (C^{∞}) manifold and $L:TM\times\mathbb{R}\to\mathbb{R}$ be a C^2 -function. We will call (M,L) a **mechanical system** with **configuration manifold** M and **Lagrangian** (function) L. If L does not depend on the last component (i.e. $L(\cdot,t)=\tilde{L}$ for some $\tilde{L}:TM\to\mathbb{R}$ and all t), then (M,L) is said to be **autonomous** (and we will identify L with \tilde{L}), otherwise **non-autonomous**. In the sequel, we will work in local coordinates $((x,\xi),x\in M,\xi\in T_xM)$).

For a Riemannian¹ manifold $(M, \langle \cdot, \cdot \rangle)$ we call $T: TM \to \mathbb{R}$, $T(\xi) = \frac{1}{2} \langle \xi, \xi \rangle$ the **kinetic energy** of M. If L is of the form

$$L(x,\xi) = T(\xi) - V(x),$$

for a C^2 -function $V: M \to \mathbb{R}$ (potential energy), then we call (M, L) (more accurately, $(M, \langle \cdot, \cdot \rangle, L)$) a **natural system**. In this case, the function $E: TM \to \mathbb{R}$, $E(x, \xi) = T(\xi) + V(x)$, is called the **total energy** of (M, L).

Now let

$$\mathcal{M} = \{ u \in C^1([a, b], M) \mid u(a) = u_0, u(b) = u_1 \},\$$

where $u_0, u_1 \in M$. Let us consider the functional $\mathcal{J}: \mathcal{M} \to \mathbb{R}$,

$$\mathcal{J}[u] = \int_a^b L(u(t), \dot{u}(t), t) dt.$$

THEOREM 2.1. A function u is a critical point of the functional \mathcal{J} (i.e. a zero of the Gâteaux derivative $\delta \mathcal{J}$ of \mathcal{J}) if and only if u satisfies the so-called Euler-Lagrange

 $^{^1\}mathrm{All}$ following notions and arguments carry over to pseudo-Riemannian manifolds.

equation

$$\frac{d}{dt}\frac{\partial L}{\partial \xi}(u(t), u'(t), t) - \frac{\partial L}{\partial x}(u(t), u'(t), t) = 0$$
(2.1)

for all $t \in (a, b)$.

DEFINITION 2.2. (i) A C^1 -function $u:[a,b] \to M$ is called a **motion** of (M,L) if it satisfies the Euler-Lagrange equation (2.1).

(ii) A function $I: TM \times \mathbb{R} \to \mathbb{R}$ is called a **first integral** for (M, L) if for each motion u the function $t \mapsto I(u(t), u'(t), t) \in \mathbb{R}$ is constant.

DEFINITION 2.3. (i) Let $J \subseteq \mathbb{R}$ an open interval with $0 \in J$. A family $\mathcal{G} = (g^s)_{s \in J}$ of C^k -diffeomorphisms $M \to M$ is called a local one-parameter group of C^k -diffeomorphisms on M if

- 1. $J \times M \ni (s, x) \mapsto g^s x \in M$ is C^k ,
- 2. $q^0 = id_M$, and
- 3. $g^{s+t} = g^s g^t$ for all $s, t \in J$ such that $s + t \in J$.

(ii) The C^{k-1} vector field $v: M \to TM$, $v(x) = \frac{d}{ds}|_{s=0}g^s(x) \in T_xM$ is called the symmetry vector field corresponding to \mathcal{G} .

Definition 2.4. (i) $L:TM \to \mathbb{R}$ is said to be invariant w.r.t. a C^1 -map $g:M \to M$ if $L \circ Dg = L$.

(ii) L is invariant w.r.t. a local one-parameter group of C^1 -diffeomorphisms $(g^s)_{s\in J}$ if it is invariant w.r.t. g^s for each $s\in J$, i.e.

$$\frac{d}{ds}L(g^s(x), Dg^s(\xi)) = 0.$$

REMARK 2.5. The following example shows that if $g \circ u$ is a motion for each motion u, then L is not necessarily invariant w.r.t. g (cf. [1] Footnote 38, p. 88). Let $M = \mathbb{R}$, $L : TM = \mathbb{R} \times \mathbb{R} \ni (x, \xi) \mapsto \xi^2 \in \mathbb{R}$ and $g : \mathbb{R} \ni x \mapsto 2x \in \mathbb{R}$. Then obviously $L \circ Dg \neq L$. On the other hand, $u : [a, b] \to \mathbb{R}$ is a motion if and only if it is of the form $u = \alpha(\cdot) + \beta$ for some $\alpha, \beta \in \mathbb{R}$, thus $g \circ u = 2u$ is a motion for each motion u of (M, L).

3. The autonomous case. We now show

THEOREM 3.1. (Emmy Noether's first theorem) Let $L:TM \to \mathbb{R}$ be invariant w.r.t. a local one-parameter group of C^2 -diffeomorphisms $(g^s)_{s\in J}$ and $v:M\to TM$ its symmetry vector field. Then $I:TM\to\mathbb{R}$, defined by

$$I(x,\xi) = \frac{d}{dt}|_{t=0}L(x,\xi+tv(x)) = D_{\xi}L(x,\xi)v(x).$$

is a first integral of (M, L).

Proof. Let $u:(a,b)\to M$ be a solution of the Euler-Lagrange equation (2.1), $w=v\circ u$ and

$$\Phi: J \times (a,b) \ni (s,t) \mapsto g^s(u(t)) \in M.$$

Then

$$\Phi(0,t) = u(t), \frac{\partial \Phi}{\partial t}(0,t) = u'(t). \tag{3.1}$$

Since (g^s) is C^2 , the mixed derivatives $\frac{\partial^2 \Phi}{\partial s \partial t}$ and $\frac{\partial^2 \Phi}{\partial t \partial s}$ exist and coincide. Moreover,

$$\frac{\partial^2 \Phi}{\partial s \partial t}(0, t) = v(u(t))' = w'(t). \tag{3.2}$$

Since

$$\frac{d}{ds}L(g^s(x), Dg^s(\xi)) = 0,$$

we obtain for x = u(t), $\xi = u'(t)$

$$\frac{d}{ds}L(\Phi(s,t),\frac{\partial\Phi}{\partial t}(s,t)) = 0,$$

thus

$$D_x L(\Phi(s,t), \frac{\partial \Phi}{\partial t}(s,t)) \cdot \frac{\partial \Phi}{\partial s}(s,t) + D_{\xi}(\Phi(s,t), \frac{\partial \Phi}{\partial t}(s,t)) \cdot \frac{\partial^2 \Phi}{\partial s \partial t}(s,t) = 0.$$

By (3.1) and (3.2) we obtain for s = 0:

$$D_x L(u(t), u'(t)) \cdot w(t) + D_{\varepsilon} L(u(t), u'(t)) \cdot w'(t) = 0.$$

Since u satisfies the Euler-Lagrange equation (2.1), we finally obtain

$$\frac{d}{dt}I(u(t), u'(t)) = \frac{d}{dt}(D_{\xi}L(u(t), u'(t))w(t))
= (\frac{d}{dt}(D_{\xi}L(u(t), u'(t))) \cdot w(t) + D_{\xi}L(u(t), u'(t)) \cdot w'(t)
= D_{x}L(u(t), u'(t)) \cdot w(t) + D_{\xi}L(u(t), u'(t)) \cdot w'(t)
= 0. \, \square$$

REMARK 3.2. Suppose that in some (local) system of coordinates $x_1, ..., x_n$ on M, L does not depend on x_1 . Then L is invariant w.r.t. to the local one-parameter group $g^s: x_1 \to x_1 + s, x_k \to x_k, k \geq 2$. By Theorem 2.1, $I = \frac{\partial L}{\partial \xi_1}$ is a first integral. In mechanics, x_1 is called a cyclic coordinate and I is a cyclic integral corresponding to x_1 .

Let $(M, \langle \cdot, \cdot \rangle, L)$ be a natural system. Then the first integral I from Theorem 3.1 is equal to $\langle v(x), \xi \rangle$ and thus linear in the (velocity) component ξ . The following examples are to illustrate this property. ($|\cdot|$ will denote the Euclidean distance).

Example 3.3. Let $M = \mathbb{R}^3$, L = T - V with

$$T(\xi) = \langle \xi, \xi \rangle := \frac{1}{2}m|\xi|^2$$

and

$$V(x_1, x_2, x_3) = U(x_1, x_2)$$

with a smooth $U: \mathbb{R}^2 \to \mathbb{R}$. Then L is invariant w.r.t. (g^s) , $g^s(x) = x + se_3$, so that $v = e_3$. The corresponding first integral I is $I(x, \xi) = \langle \xi, e_3 \rangle = m\xi \cdot e_3$, i.e. if u is a motion, then $p_3 = mu'(t) \cdot e_3$ is conserved.

EXAMPLE 3.4. System of two (non-colliding) particles of masses m_1 and m_2 . Let $M = (\mathbb{R}^3 \times \mathbb{R}^3) \setminus \{(x, x) \mid x \in \mathbb{R}^3\}$ and

$$L(x_1, x_2, \xi_1, \xi_2) = \frac{1}{2} (m_1 |\xi_1|^2 + m_2 |\xi_2|^2) - V(x_1, x_2)$$

with $V(x_1, x_2) = U(x_1 - x_2)$ for a smooth $U : \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}$. For each $w \in \mathbb{R}^3$, L is invariant w.r.t.

$$g^s(x) = x + s \begin{bmatrix} w \\ w \end{bmatrix}.$$

The corresponding symmetry field is the constant vector field $v = \begin{bmatrix} w \\ w \end{bmatrix}$. Thus

$$I = \langle \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix}, \begin{bmatrix} w \\ w \end{bmatrix} \rangle = \begin{bmatrix} m_1 \xi_1 \\ m_2 \xi_2 \end{bmatrix} \cdot \begin{bmatrix} w \\ w \end{bmatrix} = (m_1 \xi_1 + m_2 \xi_2) \cdot w$$

is a first integral each w, i.e. $p_{tot} = m_1 u'_1(t) + m_2 u'_2(t)$ is constant for each motion u of (M, L).

Example 3.5. Let $M = \mathbb{R}^3$ and

$$L = \frac{1}{2}m|\xi|^2 - V(x)$$

where V is of the form $V = U \circ |\cdot|$ and $U : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ (this covers e.g. the cases of the gravitational, electrical and Yukawa potential, respectively). Then L is invariant w.r.t. to all $h \in O(3)$. In particular, it is invariant w.r.t. to the one-parameter group

$$g^s = \begin{bmatrix} \cos s & -\sin s & 0\\ \sin s & \cos s & 0\\ 0 & 0 & 1 \end{bmatrix}.$$

Now

$$v(x) = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -x_2 \\ x_1 \\ 0 \end{bmatrix}.$$

Thus,

$$\mathcal{L}_3 = m \begin{bmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{bmatrix} \begin{bmatrix} -x_2 \\ x_1 \\ 0 \end{bmatrix} = m(\xi_2 x_1 - \xi_1 x_2),$$

the x_3 -component of the angular momentum \mathcal{L} , is conserved. Analogously, $\mathcal{L}_1 = m(\xi_3 x_2 - \xi_2 x_3)$ and $\mathcal{L}_2 = m(\xi_1 x_3 - \xi_3 x_1)$ are first integrals, i.e. the angular momentum

$$\mathcal{L}(u, u') = m(u \times u')$$

is conserved.

4. The non-autonomous case. For given (in general, non-autonomous) system (M,L) consider the extended (autonomous) Lagrangian system (\bar{M},\bar{L}) with $\bar{M}=M\times\mathbb{R},\,T\bar{M}\cong TM\times T\mathbb{R}$ and $\bar{L}:TM\times (T\mathbb{R}\setminus 0)\to\mathbb{R}$ defined by

$$\bar{L}(x,\xi,t,\tau) = L(x,\frac{\xi}{\tau},t)\tau.$$

The proofs of the following results are straightforward.

Lemma 4.1. If $x:[a,b]\to M$ is a motion in (M,L), then $\bar x:[a,b]\ni t\mapsto (x(t),t)\in \bar M$ is a motion in $(\bar M,\bar L)$. \square

PROPOSITION 4.2. If $\bar{I}: T\bar{M} \to \mathbb{R}$ is a first integral of (\bar{M}, \bar{L}) , then $I: TM \times \mathbb{R} \to \mathbb{R}$, defined in local coordinates by

$$I(x,\xi,t) = \bar{I}(x,\xi,t,1),$$

is a first integral of (M, L). \square

Example 4.3. If (M,L) is autonomous, i.e. L does not depend on t, then, by Remark 3.2, t is a cyclic coordinate of (\bar{M},\bar{L}) and the corresponding cyclic integral $\frac{\partial \bar{L}}{\partial \tau}$ is a first integral of (\bar{M},\bar{L}) . By Proposition 4.2,

$$\frac{\partial \bar{L}}{\partial \tau}|_{\tau=1} = L - D_{\xi} L \cdot \xi$$

is a first integral of (M, L). If (M, L) is natural, then $D_{\xi}L \cdot \xi - L = T + V = E$.

References.

- [1] Vladimir I. Arnol'd. *Mathematical Methods of Classical Mechanics*. Springer, 1st edition, 1978.
- [2] Yvette Kosmann-Schwarzbach. *The Noether Theorems*. Springer, 2nd edition, 2018.
- [3] Emmy Noether. Invariante Variationsprobleme. Nachrichten von der Kgl. Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse. 1918, pages 235–257.
- [4] Peter Olver. Applications of Lie Groups to Differential Equations. Springer, 2nd edition, 1993.

 $[\]overline{^2}$ For a motion $u \in \mathbb{C}^2$ this can be directly verified.