

### Richiami di teoria

Si consideri un sistema lineare con funzione di trasferimento G(s).

**Definizione: Risposta in frequenza**. Si definisce risposta in frequenza associata alla funzione di trasferimento G(s) la funzione  $G(y\omega)$  della variabile reale  $\omega \geq 0$ .

Teorema della risposta in frequenza. Si consideri un sistema dinamico lineare

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

con funzione di trasferimento  $G(s) = C(sI - A)^{-1}B + D$ . Se la matrice dinamica A del sistema non ha autovalori sull'asse immaginario, allora all'ingresso sinusoidale con pulsazione  $\omega$ , ampiezza  $\bar{u}$  e fase  $\varphi$ :

$$u(t) = \bar{u}\sin(\omega t + \varphi), \ t \ge 0,$$

esiste una condizione iniziale  $\tilde{x}(0)$  tale che l'uscita y(t) è pari a

$$\tilde{y}(t) = \bar{u}|G(j\omega)|\sin(\omega t + \varphi + \angle G(j\omega)), \ t \ge 0,$$

Se il sistema è asintoticamente stabile, allora  $y(t) \to \tilde{y}(t)$  per  $t \to +\infty$  per ogni condizione iniziale.

## 1 Tracciamento diagrammi di Bode

Tracciare i diagrammi di Bode asintotici della risposta in frequenza del sistema dinamico lineare con funzione di trasferimento

$$G(s) = \frac{10}{s} \frac{1 + 0.1s}{1 + 0.01s}.$$

#### Soluzione

La funzione di trasferimento ha uno zero in  $z_1 = -10$ , polo in  $p_1 = -100$  e un polo nell'origine  $p_2 = 0$ . Dato che esiste un polo nell'origine, il tipo della funzione di trasferimento è g = 1. Il guadagno (generalizzato)  $\mu$  della funzione di trasferimento è pari a  $\mu = [s^g G(s)]|_{s=0} = 10$ .

Le pulsazioni di interesse sono quindi 10 pari al modulo dello zero  $z_1$ , e 100, pari al modulo del polo  $p_1$ .

Diagramma di Bode asintotico del modulo Il diagramma di Bode del modulo si costruisce a partire dalle basse pulsazioni e in questo caso inizia con pendenza -20g = -20 dB/decade e assume valore  $|\mu|_{\text{dB}} = 20 \log 10 = 20 \text{dB}$  in  $\omega = 1$ . A  $\omega = 10$  interviene lo zero  $z_1$  che incrementa di +20 dB/decade la pendenza del diagramma di Bode asintotico del modulo. Il diagramma di Bode del modulo, quindi assume una pendenza di -20 + 20 = 0 dB/decade. A  $\omega = 100$  inizia a contribuire il polo  $p_1$  che varia di -20 dB/decade la pendenza del diagramma di Bode asintotico del modulo. Il diagramma di Bode del modulo, quindi assume una pendenza di 0 - 20 = -20 dB/decade.

Diagramma di Bode asintotico della fase Il diagramma di Bode della fase assume inizialmente il valore  $\angle \mu - 90^{\circ}g = -90^{\circ}$ . A  $\omega = 10$  lo zero  $z_1$  reale negativo contribuisce con una variazione di fase a scalino pari a  $+90^{\circ}$ . A  $\omega = 100$  il polo  $p_1$ , anch'esso reale e negativo, contribuisce con una variazione di fase a scalino di  $-90^{\circ}$ .

I diagrammi di Bode asintotici del modulo e della fase sono mostrati in Figura 1. In particolare, la linea continua mostra i diagrammi di Bode asintotici, mentre la linea tratteggiata mostra i diagrammi di Bode esatti.



Figura 1: Diagrammi di Bode asintotici (linea continua) ed esatti (linea tratteggiata) di G(s).

# 2 Tracciamento diagrammi di Bode con poli complessi coniugati

Si consideri un sistema dinamico lineare con funzione di trasferimento

$$G(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}, \quad \omega_n = 2, \xi = 0.8.$$

Rispondere in maniera chiara e precisa ai seguenti quesiti:

- 1. Tracciare i diagrammi di Bode asintotici della risposta in frequenza associata a G(s).
- 2. Dire che cosa cambia nei diagrammi di Bode asintotici nel caso in cui lo smorzamento sia  $\xi = 0.1$ .
- 3. Tracciare l'andamento qualitativo della risposta allo scalino unitario del sistema con  $\xi=0.8$  e con  $\xi=0.1$ .

#### Soluzione

1. La funzione di trasferimento G(s) non ha poli o zeri nell'origine, per cui ha tipo g=0. Il guadagno  $\mu$  di G(s) si può ottenere semplicemente valutando G(s) in 0 dato che non ci sono singolarità nell'origine, ed è pari a  $\mu=1$ . G(s) ha due poli complessi coniugati  $p_{1,2}=-\xi\omega_n\pm\jmath\omega_n\sqrt{1-\xi^2}$ , che, ai fini del tracciamento dei diagrammi di Bode asintotici, possono essere sostituiti con  $\tilde{p}_1=\tilde{p}_2=\text{sign}(-\xi\omega_n)\cdot\omega_n$ , dove  $\text{sign}(\cdot)$  è la funzione segno. Nel caso  $\omega_n=2$  e  $\xi=0.8$ ,  $\tilde{p}_1=\tilde{p}_2=-2$ .

Diagramma di Bode asintotico del modulo Il diagramma di Bode asintotico del modulo ha pendenza iniziale (cioè a bassa frequenza) -20g = 0dB/decade, e vale  $|\mu|_{\rm dB} = 0$ dB. In  $\omega = 2$  intervengono i due poli a parte reale negativa, per cui c'è una variazione di pendenza pari a  $-2 \cdot 20 = -40$ dB/decade.

Diagramma di Bode asintotico della fase Il diagramma di Bode asintotico della fase ha valore iniziale  $\angle \mu - 90^{\circ}g = 0^{\circ}$ . A  $\omega = 2$  intervengono i due poli complessi coniugati a parte reale negativa, che contribuiscono alla fase con un decremento a scalino di  $-2 \cdot 90^{\circ} = -180^{\circ}$ .

I diagrammi di Bode asintotici e esatti sono mostrati in Figura 2.



Figura 2: Diagrammi di Bode asintotici (linea continua) e esatti (linea tratteggiata) per  $\xi = 0.8$ .

2. I diagrammi di Bode asintotici nel caso  $\xi=0.1$  non cambiano rispetto a quelli trovati al punto precedente. Infatti nel tracciamento dei diagrammi di Bode asintotici l'informazione legata a  $\xi$  è utilizzata solo per capire se i poli sono a parte reale negativa o positiva. Tuttavia, cambiano i diagrammi di Bode esatti. Infatti, se  $|\xi|$  è piccolo (inferiore a  $1/\sqrt{2}$ ) si ha un cosiddetto **picco** di **risonanza** che aumenta proporzionalmente a  $\left|\frac{1}{2\xi}\right|$ .

Nel caso in questione, per  $\xi=0.8$  non si ha un picco di risonanza, mentre per  $\xi=0.1$  si ha un picco di risonanza.

Si ha una differenza anche per quanto riguarda il diagramma di Bode esatto della fase. Ciò che accade per  $|\xi| \to 0$  è che il diagramma di Bode della fase esatto tende a schiacciarsi su quello asintotico. Nel caso limite per cui  $\xi = 0$ , i due diagrammi coincidono.

I diagrammi di Bode asintotici ed esatti di G(s) con  $\xi = 0.1$  sono mostrati in Figura 3.



Figura 3: Diagrammi di Bode asintotici (linea continua) ed esatti (linea tratteggiata) per  $\xi = 0.1$ .

Si può notare il picco di risonanza nel diagramma di Bode (esatto) del modulo che non era presente in Figura 2. Inoltre, confrontando i diagrammi di Bode esatti della fase in Figura 2 e Figura 3, si può notare che al decrescere di  $|\xi|$ , la fase tende a schiacciarsi verso il diagramma di Bode della fase asintotico.

3. La risposta allo scalino dei due sistemi è mostrata in Figura 4.



Figura 4: Risposte allo scalino per  $\xi = 0.8$  (sopra) e per  $\xi = 0.1$  (sotto).

Come è evidente dalla figura per smorzamenti elevati ( $\xi_1 = 0.8$ ) la risposta a scalino è simile a quella di un sistema a due poli reali, senza zeri. In effetti, la stessa osservazione vale anche per i diagrammi di Bode della risposta in frequenza. Per smorzamenti bassi ( $\xi_2 = 0.1$ ) la risposta allo scalino presenta delle oscillazioni.

Il tempo di assestamento, nel caso di poli complessi coniugati, è inversamente proporzionale allo smorzamento  $\xi$  e alla pulsazione naturale  $\omega_n$  secondo la relazione

$$T_a \simeq 5 \frac{1}{\xi \omega_n}$$

da cui si può calcolare che

$$T_{a_1} \simeq 3.125, \quad T_{a_2} \simeq 25.$$

# 3 Risposta in frequenza

Data la funzione di trasferimento di un sistema lineare del terzo ordine

$$G(s) = 10 \frac{s+1}{(s+0.1)(s^2+20s+100)}$$

Rispondere in maniera chiara e precisa ai seguenti quesiti:

- 1. Valutare le proprietà di stabilità del sistema.
- 2. Dire qual è il polo dominante del sistema.
- 3. Determinare la risposta di regime  $(y_{\infty}(t))$  quando

$$u(t) = 2 + \sin(0.01t) + \sin(0.1t) + 2\cos(100t), \quad t \ge 0$$

e valutare dopo quanto tempo la risposta del sistema si assesta a quella di regime calcolata.

- 4. Tracciare i diagrammi di Bode asintotici della risposta in frequenza del sistema con funzione di trasferimento G(s) e verificare che siano consistenti con i risultati ottenuti al punto precedente.
- 5. Approssimare il sistema con un sistema di ordine ridotto in modo che la risposta allo scalino sia simile (approssimazione di bassa frequenza).

#### Soluzione

1. Per prima cosa portiamo la funzione di trasferimento in forma di Bode:

$$G(s) = 10 \frac{s+1}{(s+0.1)(s^2+20s+100)} = 10 \frac{s+1}{(s+0.1)(s+10)^2} = \frac{10}{0.1 \cdot 10^2} \cdot \frac{1+s}{(1+10s)(1+0.1s)^2}$$
$$= \frac{1+s}{(1+10s)(1+0.1s)^2}.$$

Il numero di poli della funzione di trasferimento è uguale all'ordine del sistema, quindi i poli sono tutti e soli gli autovalori del sistema (non ci sono autovalori nascosti). I poli del sistema sono:

- $p_1 = -0.1 < 0$
- $p_2 = p_3 = -10 < 0$ .

Essendo tutti autovalori reali negativi, il sistema è asintoticamente stabile.

2. Le costanti di tempo associate ai poli del sistema sono

• 
$$p_1 = -0.1 \Rightarrow \tau_1 = \frac{1}{|-0.1|} = 10$$

• 
$$p_2 = p_3 = -10 \Rightarrow \tau_2 = \tau_3 = \frac{1}{|-10|} = 0.1$$

La costante di tempo dominante è  $\tau_d = \tau_1$ , quindi il polo dominante è  $p_d = p_1$ .

Il polo dominante di un sistema si può identificare nel piano complesso anche come quello più vicino all'asse immaginario. In particolare, in Figura 5 sono mostrati i poli del sistema (indicati con il simbolo  $\times$ ) e si può vedere che  $p_1$  è il polo più vicino all'asse immaginario.

3. La risposta del sistema, si assesta al valore di regime calcolato dopo  $5\tau_d=5\cdot 10=50$  unità di tempo.

Osservazione 1. Ha senso parlare di risposta di regime perché il sistema è asintoticamente stabile. Se il sistema fosse instabile la risposta di regime non esisterebbe.



Figura 5: Rappresentazione dei poli nel piano complesso.

Per poter calcolare la risposta di regime si scompone l'ingresso nelle sue quattro componenti:

$$u_1(t) = 2$$
  
 $u_2(t) = \sin(0.01t)$   
 $u_3(t) = \sin(0.1t)$   
 $u_4(t) = 2\cos(100t)$ 

e si sommano le risposte di regime ad esse associate.

•  $u_1(t) = 2$  è un ingresso costante. Dato che il sistema è asintoticamente stabile, la risposta di regime è una costante pari all'ingresso moltiplicato per il guadagno del sistema, quindi

$$y_{1,\infty}(t) = 2 \cdot G(0) = 2 \cdot 10 \frac{1}{0.1 \cdot 100} = 2$$

Alternativamente si sarebbe potuto applicare il teorema del valore finale a  $Y(s) = G(s) \cdot 2/s$ .

•  $u_2(t) = \sin(0.01t)$ . La risposta di regime è data dal teorema della risposta in frequenza ed è pari a

$$y_{2,\infty}(t) = |G(\jmath 0.01)| \cdot \sin(0.01t + \angle G(\jmath 0.01))$$

Per valutare  $\angle G(\jmath 0.01)$  è opportuno scrivere la funzione di trasferimento evidenziando guadagno, tipo, costanti di tempo di poli e zeri, ossia:

$$G(s) = 10 \frac{1+s}{0.1\left(1+\frac{s}{0.1}\right)10^2\left(1+\frac{s}{10}\right)^2}$$
$$= \frac{1+s}{(1+10s)(1+0.1s)^2}$$

Si può calcolare

Dato che

$$\angle(1 + \jmath\omega) = \arctan \omega$$

$$\angle(1 + 10\jmath\omega) = \arctan (10\omega)$$

$$\angle(1 + 0.1\jmath\omega) = \arctan (0.1\omega)$$

si può scrivere

$$\angle G(j\omega) = \arctan \omega - \arctan (10\omega) - 2\arctan (0.1\omega)$$

Osservazione 2. Notare il fatto che la scrittura che evidenzia guadagno e costanti di tempo consente di utilizzare l'arctan, che è la funzione inversa della tangente tan quando il suo dominio è ristretto a  $[-\pi/2, \pi/2]$ , (ogni numero complesso di cui si valuta la fase ha parte reale uguale a 1 e quindi la fase è compresa tra  $-\pi/2$  e  $\pi/2$ , angoli per cui la tan ammette arctan come inversa).

Quindi, per  $u_2(t)$  si ha  $\omega = 0.01$  e si può calcolare che

da cui si può ricavare ricavare che

$$y_{2,\infty}(t) = \sin(0.01t)$$

•  $u_3(t) = \sin(0.1t)$ , similmente al caso precedente

$$y_{3,\infty}(t) = |G(\jmath 0.1)| \sin(0.1t + \measuredangle G(\jmath 0.1)).$$

Il modulo di G(s) valutato in  $\jmath 0.1$  è

$$|G(\jmath 0.1)| = \left| \frac{1 + \jmath 0.1}{(1 + 10\jmath 0.1)(1 + 0.1\jmath 0.1)^2} \right| = \frac{\sqrt{1 + 10^{-2}}}{\sqrt{1 + 1}(\sqrt{1 + 10^{-4}})^2}$$
$$\approx \frac{1}{\sqrt{2}}$$

mentre la fase è

$$\angle G(\jmath 0.1) = \arctan 0.1 - \arctan (10 \cdot 0.1) - 2\arctan (0.1 \cdot 0.1)$$
  
 $\simeq 0 - \frac{\pi}{4} - 2 \cdot 0 = -\frac{\pi}{4}$ 

da cui si può ricavare ricavare che

$$y_{3,\infty}(t) = \frac{1}{\sqrt{2}} \cdot \sin\left(0.1t - \frac{\pi}{4}\right)$$

•  $u_4(t) = 2\cos(100t)$ , quindi  $\omega = 100$ 

$$y_{4,\infty}(t) = 2 \cdot |G(\jmath 100)| \cos(100t + \angle G(\jmath 100))$$

Il modulo di G(s) valutato in  $\jmath 100$  è

$$|G(\jmath 100)| = \left| \frac{1 + \jmath 100}{(1 + 10\jmath 100)(1 + 0.1\jmath 100)^2} \right| =$$

$$= \frac{\sqrt{1 + 10^4}}{\sqrt{1 + 10^6}(\sqrt{1 + 10^2})^2} \simeq \frac{10^2}{10^3 \cdot 10^2}$$

$$= 10^{-3}$$

mentre la fase è

$$\angle G(\jmath 100) = \arctan(100) - \arctan(10 \cdot 100) - 2\arctan(0.1 \cdot 100)$$
  
 $\simeq \frac{\pi}{2} - \frac{\pi}{2} - 2 \cdot \frac{\pi}{2} = -\pi$ 

da cui si può ricavare ricavare che

$$y_{4,\infty}(t) = 2 \cdot 10^{-3} \cdot \cos(100t - \pi)$$
  
= -2 \cdot 10^{-3} \cdot \cos (100t)  
\sim 0

Per il principio di sovrapposizione degli effetti, vale che

$$y_{\infty}(t) = y_{1,\infty}(t) + y_{2,\infty}(t) + y_{3,\infty}(t) + y_{4,\infty}(t).$$

Come mostrato in Figura 6 il segnale in ingresso u(t) viene filtrato da G(s) che elimina le componenti di alta frequenza, ma lascia passare (distorcendole di poco) le componenti di bassa frequenza.



Figura 6: Ingresso u(t) e uscita y(t) filtrata da G(s).

- 4. Per tracciare i diagrammi di Bode asintotici si individuano le pulsazioni corrispondenti ai moduli delle singolarità della funzione di trasferimento:
  - Un polo negativo in  $p_1 = -0.1$ ,
  - Uno zero negativo in  $z_1 = -1$ ,
  - Due poli negativi coincidenti in  $p_2 = p_3 = -10$ .

Dato che non ci sono singolarità nell'origine, il tipo della funzione di trasferimento è g=0, e il guadagno del sistema si può ottenere come

$$\mu = G(0) = 1 \quad \Rightarrow \quad |\mu|_{\mathrm{dB}} = 0$$

Diagramma di Bode asintotico del modulo Il tratto iniziale del diagramma di Bode asintotico del modulo ha pendenza -20g=0dB/decade e assume il valore  $|\mu|_{\rm dB}=0$ dB in  $\omega=1$ . In  $\omega=0.1$  interviene il polo  $p_1$  che varia di -20dB/decade la pendenza del diagramma di Bode asintotico del modulo, che quindi assume una pendenza di 0-20=-20dB/decade. A  $\omega=1$  interviene lo zero  $z_1$  che varia di +20dB/decade la pendenza del diagramma di Bode asintotico del modulo, che quindi assume una pendenza di -20+20=0dB/decade. In  $\omega=10$  intervengono due poli  $p_2$  e  $p_3$  che variano di  $-2\cdot 20=-40$ dB/decade la pendenza del diagramma di Bode asintotico del modulo, che quindi assume una pendenza finale di 0-40=-40dB/decade, pari a +20 (#zeri - #poli) =20 (1 - 3) =-40dB/decade.

Diagramma di Bode asintotico della fase Il diagramma di Bode della fase assume inizialmente il valore  $\angle \mu - 90^{\circ}g = 0^{\circ}$ . A  $\omega = 0.1$  il polo  $p_1$  negativo contribuisce con una variazione di fase a scalino di  $-90^{\circ}$ . A  $\omega = 1$  lo zero  $z_1$  negativo contribuisce a una variazione di fase di  $+90^{\circ}$ . In  $\omega = 10$  i due poli reali  $p_2$  e  $p_3$  negativi contribuiscono a una variazione di fase di  $-2 \cdot 90^{\circ} = -180^{\circ}$ .

In Figura 7 sono mostrati i diagrammi di Bode asintotici ed esatti del modulo e della fase.



Figura 7: Diagrammi di Bode asintotici (linea continua) ed esatti (linea tratteggiata).

In bassa frequenza, il sistema si comporta come un sistema con funzione di trasferimento  $\tilde{G}(s) = \mu$ , in alta frequenza la pendenza è data da  $20 \cdot (\#\text{zeri} - \#\text{poli}) = 20 \cdot (1-3) = -40 \text{dB/decade}$ .

Osservazione 3. Il sistema si comporta come un filtro passa basso, come già evidenziato al punto precedente.

I risultati ottenuti per  $y_{i,\infty}(t)$ ,  $i=1,\ldots,4$ , si possono ottenere sulla base dei diagrammi appena tracciati, leggendo su di essi i valori di  $|G(j\omega)|$  e  $\angle G(j\omega)$  per le pulsazioni di interesse.

• 
$$u_1(t) = 2\sin\left(0t + \frac{\pi}{2}\right)$$

$$|G(\jmath 0)|_{\mathrm{dB}} \simeq 0\mathrm{dB} \quad \Rightarrow \quad |G(\jmath 0)| \simeq 1$$

$$\angle G(\jmath 0) \simeq 0^\circ = 0\mathrm{rad}$$

da cui si ricava:

$$y_{1,\infty}(t) = 2\sin\left(0t + \frac{\pi}{2}\right) = 2$$

•  $u_2(t) = \sin(0.01t)$ 

$$|G(\jmath 0.01)|_{\mathrm{dB}} \simeq 0 \quad \Rightarrow \quad |G(\jmath 0.01)| \simeq 1$$
  
  $\angle G(\jmath 0.01) \simeq 0$ 

Quindi, si ottiene:

$$y_{2,\infty}(t) = \sin(0.01t)$$

•  $u_3(t) = \sin(0.1t)$ , dato che ci troviamo esattamente sulla singolarità del polo in  $\omega = 0.1$  lo scostamento tra il diagramma asintotico e il valore esatto non sara trascurabile. Dobbiamo allora verificare il diagramma di Bode esatto, ottenendo:

$$|G(\jmath 0.1)|_{\mathrm{dB}} \simeq -3\mathrm{dB} \quad \Rightarrow \quad |G(\jmath 0.01)| \simeq \frac{1}{\sqrt{2}}$$
  
$$\angle G(\jmath 0.1) \simeq -45^{\circ} = -\frac{\pi}{4}$$

da cui:

$$y_{3,\infty}(t) = \frac{1}{\sqrt{2}}\sin\left(0.1t - \frac{\pi}{4}\right)$$

•  $u_4(t) = 2\cos(100t)$ , dato che le altre singolarità distano almeno una decade dal polo in  $\omega = 100$ , il diagramma di Bode asintotico si può considerare una buona approssimazione, quindi si può ottenere:

$$|G(\jmath 100)|_{\rm dB} \simeq -60 \, {\rm dB} \quad \Rightarrow \quad |G(\jmath 100)| \simeq 10^{-3}$$
  
 $\angle G(\jmath 100) \simeq -180^{\circ} = -\pi$ 

da cui:

$$y_{4,\infty}(t) = 2 \cdot 10^{-3} \cos(100t - \pi)$$
$$= -2 \cdot 10^{-3} \cos(100t)$$

5. Per ottenere una approssimazione di ordine ridotto di bassa frequenza si possono guardare i diagrammi di Bode della risposta in frequenza e utilizzare un sistema a singolo polo  $\tilde{G}(s)$ . Il polo di  $\tilde{G}(s)$  deve coincidere con la dinamica dominante, e il guadagno deve essere uguale a quello del sistema originale come mostrato in Figura 8.



Figura 8: Diagramma di Bode del modulo della risposta in frequenza del sistema e del sistema ridotto.

Si può ottenere quindi  $\tilde{G}(s)$  come:

$$\tilde{G}(s) = \frac{G(0)}{1 + \frac{s}{0.1}} = \frac{1}{1 + \frac{s}{0.1}}$$

La risposta allo scalino del sistema ridotto è molto simile alla risposta allo scalino del sistema originale, come si può notare dalla Figura 9.



Figura 9: Risposte allo scalino del sistema con funzione di trasferimento G(s) e  $\tilde{G}(s)$ .

### 4 Analisi diagrammi di Bode

Si consideri un sistema lineare senza autovalori nascosti la cui funzione di trasferimento G(s) ha associati i diagrammi di Bode della risposta in frequenza rappresentati in Figura 10.



Figura 10: Diagrammi di Bode della risposta in frequenza associati a G(s).

Rispondere in maniera chiara e precisa ai seguenti quesiti:

- 1. Dire, motivando la risposta, quanto valgono guadagno, tipo e moduli dei poli e zeri del sistema, se il sistema è asintoticamente stabile, se ha poli complessi o reali.
- 2. Dire, motivando la risposta, quale fra i gli andamenti riportati in Figura 11 rappresenta la risposta allo scalino del sistema.



Figura 11: Alternative per la risposta allo scalino.

#### Soluzione

- 1. Si procede per punti:
  - Il tipo del sistema è g=0, perché la pendenza del diagramma asintotico del modulo è nulla a basse pulsazioni ( $\omega < 0.05$ ).
  - Il guadagno del sistema è  $\mu=10$ , perché nei diagrammi asintotici, a basse pulsazioni ( $\omega<0.05$ ), il modulo è 20dB e la fase è nulla.

- G(s) ha un polo reale con modulo 0.05, perché la pendenza del diagramma asintotico del modulo diminuisce di 20dB/decade alla pulsazione  $\omega = 0.05$ . Il polo è negativo dato che la fase diminuisce di 90° nel diagramma asintotico della fase ad  $\omega = 0.05$ .
- G(s) ha un unico zero (e quindi è anche necessariamente reale) con modulo 0.1. Infatti, la pendenza del diagramma asintotico del modulo aumenta di 20dB/decade alla pulsazione  $\omega = 0.1$ . Più precisamente si tratta di uno zero reale negativo (quindi pari a -0.1), perché alla pulsazione  $\omega = 0.1$  la fase aumenta di 90° nel diagramma asintotico della fase.
- G(s) ha due poli complessi coniugati a parte reale negativa e modulo (o equivalentemente pulsazione naturale) pari a  $\omega_n = 1$ , perché la pendenza del diagramma asintotico diminuisce di 40 dB/decade alla pulsazione  $\omega = 1$ . Si capisce che si tratta di poli complessi, e non reali coincidenti, dato che il diagramma di Bode del modulo esatto presenta un picco di risonanza. Si deduce che i due poli sono a parte reale negativa dato che la fase nel diagramma di Bode asintotico varia di  $-180^{\circ}$  alla pulsazione  $\omega = 1$ . Dato che il picco di risonanza è evidente, allora il modulo dello smorzamento  $\xi$  dei poli è inferiore a  $\sqrt{2}/2$ .
- Il sistema è asintoticamente stabile perché ha tutti poli a parte reale strettamente negativa, e non ha autovalori nascosti.
- 2. L'andamento corretto della risposta allo scalino è l'andamento (c) in Figura 11, perché il sistema ha due poli complessi coniugati con modulo pari a 1, e smorzamento in modulo inferiore a  $\sqrt{2}/2$ , ed uno reale con modulo pari a 0.05. La costante di tempo dominante è  $\max\{\tau_1, \tau_2\}$ , dove

$$\tau_1 = \frac{1}{0.05} = 20, \quad \tau_2 = \frac{1}{\xi \omega_n} > \sqrt{2}.$$

Si ha quindi  $\tau_d \geq 20$ , da cui si conclude che il transitorio si esaurisce in un tempo superiore a 100 unità di tempo. Per questa ragione, si può escludere il grafico (b). Inoltre, la presenza di poli complessi coniugati con un fattore di smorzamento minore di  $\sqrt{2}/2$  fa sì che la risposta allo scalino presenti delle oscillazioni, le quali non sono presenti nel grafico (a).