

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления»

Кафедра ИУ5 «Системы обработки информации и управления»

Курс «Технологии машинного обучения»

Отчет по лабораторной работе №1

Выполнила:

студент группы ИУ5-63Б

Латыпова К.Н.

Проверил:

преподаватель каф. ИУ5

Гапанюк Ю.Е.

Задание:

- Выбрать набор данных (датасет). Вы можете найти список свободно распространяемых датасетов <u>здесь.</u>
- Для первой лабораторной работы рекомендуется использовать датасет без пропусков в данных, например из <u>Scikit-learn</u>.
- Пример преобразования датасетов Scikit-learn в Pandas Dataframe можно посмотреть здесь.

Для лабораторных работ не рекомендуется выбирать датасеты большого размера.

- Создать ноутбук, который содержит следующие разделы:
- 1. Текстовое описание выбранного Вами набора данных.
- 2. Основные характеристики датасета.
- 3. Визуальное исследование датасета.
- 4. Информация о корреляции признаков.
- Сформировать отчет и разместить его в своем репозитории на github.

Текст программы и экранные формы:

ЛР №1

1) Текстовое описание набора данных

В качестве набора данных мы будем использовать набор данных о ценах на жилье в Бостоне:

Содержкание:

CRIM per capita crime rate by town - Уровень преступности на душу населения по городам

ZN proportion of residential land zoned for lots over 25,000 sq.ft. - 3H доля земли под жилую застройку зонирована на участки площадью более 25 000 кв. Футов.

INDUS proportion of non-retail business acres per town - INDUS доля акров, не относящихся к розничной торговле, на город

CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise) - Фиктивная переменная CHAS Charles River (= 1, если тракт ограничивает реку; 0 в противном случае)

NOX nitric oxides concentration (parts per 10 million) - Концентрация оксидов азота NOX (частей на 10 млн.)

RM average number of rooms per dwelling - RM среднее количество комнат в одном жилом помещении

AGE proportion of owner-occupied units built prior to 1940 - BO3PACTHAЯ доля занятых владельцами квартир, построенных до 1940 года

DIS weighted distances to five Boston employment centres - DIS взвешенные расстояния до пяти бостонских центров занятости

RAD index of accessibility to radial highways - РАД индекс доступности радиальных магистралей

ТАХ full-value property-tax rate per 10,000 dol. - НАЛОГ на недвижимость с полной стоимостью-ставка налога на 10 000 долларов США

PTRATIO pupil-teacher ratio by town - PTRATIO соотношение учеников и учителей по городам

В 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town - В 1000(Bk - 0.63)^2, где Вк-доля чернокожих по городам

LSTAT % lower status of the population - LSTAT % более низкий статус населения

MEDV Median value of owner-occupied homes in 1000's dol. - MEDV Медианная стоимость домов, занятых владельцами, в 1000-х годах

Импорт библиотек

```
B [52]: import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from pandas.plotting import scatter_matrix import warnings from sklearn import datasets from sklearn.datasets import load_boston from sklearn.import linear_model from sklearn.cluster import KMeans from sklearn import metrics from pandas import DataFrame %pylab inline
```

Populating the interactive namespace from numpy and matplotlib

Загрузка данных

```
B [53]: boston = load_boston()
data = pd.DataFrame(boston.data, columns=boston.feature_names)
data['TARGET'] = boston.target
```

2)Основные характеристики датасета

```
В [54]: # Первые пять строк датасета
        data.head()
Out[54]:
             CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO
                                                                           B LSTAT TARGET
         0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 15.3 396.90 4.98
         1 0.02731 0.0 7.07
                              0.0 0.469 6.421 78.9 4.9671 2.0 242.0
                                                                    17.8 396.90
                                                                               9.14
                                                                                       21.6
         2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 17.8 392.83 4.03
                                                                                       34.7
         3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0
                                                                    18.7 394.63 2.94
                                                                                       33.4
         4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 18.7 396.90 5.33
                                                                                       36.2
B [55]: # Размер датасета data.shape
Out[55]: (506, 14)
B [56]: total_count = data.shape[0]
print('Bcero cτροκ: {}'.format(total_count))
        Всего строк: 506
 В [57]: # Список колонок
        data.columns
В [58]: # Список колонок с типами данных
        data.dtypes
Out[58]: CRIM
                   float64
                   float64
        INDUS
                   float64
         CHAS
                   float64
        NOX
                  float64
float64
        RM
         AGE
                   float64
        DIS
                   float64
         RAD
                   float64
                  float64
float64
         TAX
         PTRATIO
         В
                   float64
        LSTAT
                   float64
         TARGET
                   float64
        dtype: object
```

```
В [59]: # Проверим наличие пустых значений
         # Цикл по колонкам датасета
         for col in data.columns:
            # Количество пустых значений - все значения заполі
            temp_null_count = data[data[col].isnull()].shape[0]
            print('{} - {}'.format(col, temp_null_count))
         CRIM - 0
         ZN - 0
         INDUS - 0
         CHAS - 0
         NOX - 0
         RM - 0
         AGE - 0
         RAD - 0
         TAX - 0
         PTRATIO - 0
         B - 0
         LSTAT - 0
         TARGET - 0
 В [60]: # Основные статистические характеристки набора данных
        data.describe()
Out[60]:
                  CRIM
                           ZN
                                  INDUS
                                           CHAS
                                                              RM
                                                                     AGE
                                                                               DIS
                                                                                       RAD
                                                                                                TAX
                                                                                                     PTRATIO
                                                                                                                  В
                                                    NOX
        mean
               3.613524 11.363636 11.136779
                                        0.069170
                                                 0.554695
                                                          6.284634 68.574901
                                                                           3.795043
                                                                                    9.549407 408.237154 18.455534 356.674032
                                                                                                                     12.6
               8.601545 23.322453 6.860353
                                                                                                    2.164946 91.294864
          std
                                         0.253994
                                                 0.115878
                                                          0.702617
                                                                           2.105710
                                                                                    8.707259 168.537116
```

28.148861 min 0.006320 0.000000 0.460000 0.000000 0.385000 3.561000 2.900000 1.129600 1.000000 187.000000 12.600000 0.320000 1.7 0.000000 25% 5.190000 0.449000 5.885500 45.025000 2.100175 4.000000 279.000000 17.400000 375.377500 0.082045 0.000000 6.9 50% 0.256510 0.000000 9.690000 0.000000 0.538000 6.208500 77.500000 3.207450 5.000000 330.000000 19.050000 391.440000 11.3 **75**% 3.677083 12.500000 18.100000 0.624000 6.623500 94.075000 5.188425 24.000000 666.000000 20.200000 396.225000 0.000000 16.9 max 88.976200 100.000000 27.740000 1.000000 0.871000 8.780000 100.000000 12.126500 24.000000 711.000000 22.000000 396.900000 37.5 4

20.1, 19.5, 19.8, 18.8, 18.5, 18.3, 19.2, 17.3, 15.7, 16.2, 18., 14.3, 23., 18.1, 17.1, 13.3, 17.8, 14., 13.4, 11.8, 13.8, 14.6, 15.4, 21.5, 15.3, 17., 41.3, 24.3, 27., 50., 22.7, 23.8, 22.3, 19.1, 29.4, 23.2, 24.6, 29.9, 37.2, 39.8, 37.9, 32.5, 26.4, 29.6, 32., 29.8, 37., 30.5, 36.4, 31.1, 29.1, 33.3, 30.3, 34.6, 32.9, 42.3, 48.5, 24.4, 22.4, 28.1, 23.7, 26.7, 30.1, 44.8, 37.6, 46.7, 31.5, 31.7, 41.7, 48.3, 29., 25.1, 17.6, 24.5, 26.2, 42.8, 21.9, 44., 36., 33.8, 43.1, 48.8, 31., 36.5, 30.7, 43.5, 20.7, 21.1, 25.2, 35.2, 32.4, 33.1, 35.1, 45.4, 46., 32.2, 28.5, 37.3, 27.9, 28.6, 36.1, 28.2, 16.1, 22.1, 19., 32.7, 31.2, 17.2, 16.8, 10.2, 10.4, 10.9, 11.3, 12.3, 8.8, 7.2, 10.5, 7.4, 11.5, 15.1, 9.7, 12.5, 8.5, 5., 6.3, 5.6, 12.1, 8.3, 11.9, 17.9, 16.3, 7., 7.5, 8.4, 16.7, 14.2, 11.7, 11., 9.5, 14.1, 9.6, 8.7, 12.8, 10.8, 14.9, 12.6, 13., 16.4, 17.7, 12., 21.8, 8.1])

3) Визуальное исследование датасета

Диаграмма рассеяния

```
B [62]: fig. ax = pt. subplats (figsize_(10,1a)) sns.scatterplot(ax-ax, x-'2N', y-'RM', data-data)

Out[62]: cAxesSubplot:xlabel-'2N', ylabel-'RM'>
```

Можно видеть что между полями ZN и RM не пристутствует линейной зависимости.

Посмотрим насколько на эту зависимость влияет целевой признак.

Гистограмма

B [64]: fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(data['ZN'])

C:\Users\user\anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexi bility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[64]: <AxesSubplot:xlabel='ZN', ylabel='Density'>

Jointplot

B [65]: sns.jointplot(x='ZN', y='RM', data=data)

Out[65]: <seaborn.axisgrid.JointGrid at 0x2bed5aead60>


```
B [66]: sns.jointplot(x='ZN', y='RM', data=data, kind="hex")
```

Out[66]: <seaborn.axisgrid.JointGrid at 0x2bed6034190>

B [67]: sns.jointplot(x='ZN', y='RM', data=data, kind="kde")

Out[67]: <seaborn.axisgrid.JointGrid at 0x2bed6201a60>

"Парные диаграммы"

B [68]: sns.pairplot(data)

Ящик с усами

B [70]: sns.boxplot(x=data['ZN'])

Out[70]: <AxesSubplot:xlabel='ZN'>

B [71]: # Πο θερπυκαπυ sns.boxplot(y=data['ZN'])

Out[71]: <AxesSubplot:ylabel='ZN'>


```
B [72]: # Распределение параметра ZN сгруппированные по TARGET.
sns.boxplot(x='TARGET', y='ZN', data=data)
```

Out[72]: <AxesSubplot:xlabel='TARGET', ylabel='ZN'>

Violin plot

B [73]: sns.violinplot(x=data['ZN'])

Out[73]: <AxesSubplot:xlabel='ZN'>

B [74]: fig, ax = plt.subplots(2, 1, figsize=(10,10))
sns.violinplot(ax=ax[0], x=data['ZN'])
sns.distplot(data['ZN'], ax=ax[1])

C:\Users\user\anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexi bility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[74]: <AxesSubplot:xlabel='ZN', ylabel='Density'>

Из приведенных графиков видно, что violinplot действительно показывает распределение плотности.

```
B [75]: # Распределение параметра ZN сгруппированные по TARGET.
sns.violinplot(x='TARGET', y='ZN', data=data)
```

Out[75]: <AxesSubplot:xlabel='TARGET', ylabel='ZN'>


```
B [76]: sns.catplot(y='ZN', x='TARGET', data=data, kind="violin", split=True)
```

Out[76]: <seaborn.axisgrid.FacetGrid at 0x2beedbaa4f0>

4) Информация о корреляции признаков

B [77]: data.corr()

:	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	TARG
CRIM	1.000000	-0.200469	0.406583	-0.055892	0.420972	-0.219247	0.352734	-0.379670	0.625505	0.582764	0.289946	-0.385064	0.455621	-0.3883
ZN	-0.200469	1.000000	-0.533828	-0.042697	-0.516604	0.311991	-0.569537	0.664408	-0.311948	-0.314563	-0.391679	0.175520	-0.412995	0.3604
INDUS	0.406583	-0.533828	1.000000	0.062938	0.763651	-0.391676	0.644779	-0.708027	0.595129	0.720760	0.383248	-0.356977	0.603800	-0.4837
CHAS	-0.055892	-0.042697	0.062938	1.000000	0.091203	0.091251	0.086518	-0.099176	-0.007368	-0.035587	-0.121515	0.048788	-0.053929	0.1752
NOX	0.420972	-0.516604	0.763651	0.091203	1.000000	-0.302188	0.731470	-0.769230	0.611441	0.668023	0.188933	-0.380051	0.590879	-0.42732
RM	-0.219247	0.311991	-0.391676	0.091251	-0.302188	1.000000	-0.240265	0.205246	-0.209847	-0.292048	-0.355501	0.128069	-0.613808	0.69536
AGE	0.352734	-0.569537	0.644779	0.086518	0.731470	-0.240265	1.000000	-0.747881	0.456022	0.506456	0.261515	-0.273534	0.602339	-0.37695
DIS	-0.379670	0.664408	-0.708027	-0.099176	-0.769230	0.205246	-0.747881	1.000000	-0.494588	-0.534432	-0.232471	0.291512	-0.496996	0.24992
RAD	0.625505	-0.311948	0.595129	-0.007368	0.611441	-0.209847	0.456022	-0.494588	1.000000	0.910228	0.464741	-0.444413	0.488676	-0.38162
TAX	0.582764	-0.314563	0.720760	-0.035587	0.668023	-0.292048	0.506456	-0.534432	0.910228	1.000000	0.460853	-0.441808	0.543993	-0.46853
PTRATIC	0.289946	-0.391679	0.383248	-0.121515	0.188933	-0.355501	0.261515	-0.232471	0.464741	0.460853	1.000000	-0.177383	0.374044	-0.50778
E	-0.385064	0.175520	-0.356977	0.048788	-0.380051	0.128069	-0.273534	0.291512	-0.444413	-0.441808	-0.177383	1.000000	-0.366087	0.33346
LSTAT	0.455621	-0.412995	0.603800	-0.053929	0.590879	-0.613808	0.602339	-0.496996	0.488676	0.543993	0.374044	-0.366087	1.000000	-0.73766
TARGET	-0.388305	0.360445	-0.483725	0.175260	-0.427321	0.695360	-0.376955	0.249929	-0.381626	-0.468536	-0.507787	0.333461	-0.737663	1.00000

B [78]: data.corr(method='pearson') Out[78]: NOX AGE CRIM ZN INDUS CHAS RM DIS RAD TAX PTRATIO R LSTAT TARGE CRIM 1.000000 -0.200469 0.406583 -0.055892 0.420972 -0.219247 0.352734 -0.379670 0.625505 0.582764 0.289946 -0.385064 0.455621 -0.38830 ZN -0.200469 1.000000 -0.533828 -0.042697 -0.516604 0.311991 -0.569537 0.664408 -0.311948 -0.314563 -0.391679 0.175520 -0.412995 0.36044 INDUS 0.406583 -0.533828 1.000000 0.062938 0.763651 -0.391676 0.644779 -0.708027 0.595129 0.720760 0.383248 -0.356977 0.603800 -0.48372 CHAS -0.055892 -0.042697 0.062938 1.000000 0.091203 0.091251 0.086518 -0.09176 -0.007368 -0.035587 -0.121515 0.048788 -0.053929 0.17526 NOX 0.420972 -0.516604 0.763651 0.091203 1.00000 -0.302188 0.731470 -0.769230 0.611441 0.668023 0.188933 -0.380051 0.590879 -0.42732 RM -0.219247 0.311991 -0.391676 0.091251 -0.302188 1.000000 -0.240265 0.205246 -0.209847 -0.292048 -0.355501 0.128069 -0.613808 0.69536 AGE 0.352734 -0.569537 0.644779 0.086518 0.731470 -0.240265 1.000000 -0.747881 0.456022 0.506456 0.261515 -0.273534 0.602339 -0.37695 DIS -0.379670 0.664408 -0.708027 -0.099176 -0.769230 0.205246 -0.747881 1.00000 -0.494588 -0.534432 -0.232471 0.291512 -0.496996 0.24992 RAD 0.625505 -0.311948 0.595129 -0.007368 0.611441 -0.209847 0.456022 -0.494588 1.000000 0.910228 0.464741 -0.444413 0.488676 -0.38162 TAX 0.582764 -0.314563 0.720760 -0.035587 0.668023 -0.292048 0.506456 -0.534432 0.910228 1.000000 0.460853 -0.441808 0.543993 -0.46853 PTRATIO 0.289946 -0.391679 0.383248 -0.121515 0.188933 -0.355501 0.261515 -0.232471 0.464741 0.460853 1.000000 -0.177383 0.374044 -0.50778 LSTAT 0.455621 -0.412995 0.603800 -0.053929 0.590879 -0.613808 0.602339 -0.496996 0.488676 0.543993 0.374044 -0.366087 1.000000 -0.73766 TARGET -0.388305 0.360445 -0.483725 0.175260 -0.427321 0.695360 -0.376955 0.249929 -0.381626 -0.468536 -0.507787 0.333461 -0.737663 1.00000 4 B [79]: data.corr(method='kendall')

Out[79]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	TARGE
CRIM	1.000000	-0.462057	0.521014	0.033948	0.603361	-0.211718	0.497297	-0.539878	0.563969	0.544956	0.312768	-0.264378	0.454837	-0.40396
ZN	-0.462057	1.000000	-0.535468	-0.039419	-0.511464	0.278134	-0.429389	0.478524	-0.234663	-0.289911	-0.361607	0.128177	-0.386818	0.33998
INDUS	0.521014	-0.535468	1.000000	0.075889	0.612030	-0.291318	0.489070	-0.565137	0.353967	0.483228	0.336612	-0.192017	0.465980	-0.41843
CHAS	0.033948	-0.039419	0.075889	1.000000	0.056387	0.048080	0.055616	-0.065619	0.021739	-0.037655	-0.115694	-0.033277	-0.041344	0.11520
NOX	0.603361	-0.511464	0.612030	0.056387	1.000000	-0.215633	0.589608	-0.683930	0.434828	0.453258	0.278678	-0.202430	0.452005	-0.39499
RM	-0.211718	0.278134	-0.291318	0.048080	-0.215633	1.000000	-0.187611	0.179801	-0.076569	-0.190532	-0.223194	0.032951	-0.468231	0.48282
AGE	0.497297	-0.429389	0.489070	0.055616	0.589608	-0.187611	1.000000	-0.609836	0.306201	0.360311	0.251857	-0.154056	0.485359	-0.38775
DIS	-0.539878	0.478524	-0.565137	-0.065619	-0.683930	0.179801	-0.609836	1.000000	-0.361892	-0.381988	-0.223486	0.168631	-0.409347	0.31311
RAD	0.563969	-0.234663	0.353967	0.021739	0.434828	-0.076569	0.306201	-0.361892	1.000000	0.558107	0.251913	-0.214364	0.287943	-0.24811
TAX	0.544956	-0.289911	0.483228	-0.037655	0.453258	-0.190532	0.360311	-0.381988	0.558107	1.000000	0.287769	-0.241606	0.384191	-0.41465
PTRATIO	0.312768	-0.361607	0.336612	-0.115694	0.278678	-0.223194	0.251857	-0.223486	0.251913	0.287769	1.000000	-0.042152	0.330335	-0.39878
В	-0.264378	0.128177	-0.192017	-0.033277	-0.202430	0.032951	-0.154056	0.168631	-0.214364	-0.241606	-0.042152	1.000000	-0.145430	0.12695
LSTAT	0.454837	-0.386818	0.465980	-0.041344	0.452005	-0.468231	0.485359	-0.409347	0.287943	0.384191	0.330335	-0.145430	1.000000	-0.66865
TARGET	-0.403964	0.339989	-0.418430	0.115202	-0.394995	0.482829	-0.387758	0.313115	-0.248115	-0.414650	-0.398789	0.126955	-0.668656	1.00000
4														

B [80]: data.corr(method='spearman')

Out[80]:

		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	TARGE
	CRIM	1.000000	-0.571660	0.735524	0.041537	0.821465	-0.309116	0.704140	-0.744986	0.727807	0.729045	0.465283	-0.360555	0.634760	-0.55889
	ZN	-0.571660	1.000000	-0.642811	-0.041937	-0.634828	0.361074	-0.544423	0.614627	-0.278767	-0.371394	-0.448475	0.163135	-0.490074	0.43817
	INDUS	0.735524	-0.642811	1.000000	0.089841	0.791189	-0.415301	0.679487	-0.757080	0.455507	0.664361	0.433710	-0.285840	0.638747	-0.57825
	CHAS	0.041537	-0.041937	0.089841	1.000000	0.068426	0.058813	0.067792	-0.080248	0.024579	-0.044486	-0.136065	-0.039810	-0.050575	0.14061
	NOX	0.821465	-0.634828	0.791189	0.068426	1.000000	-0.310344	0.795153	-0.880015	0.586429	0.649527	0.391309	-0.296662	0.636828	-0.56260
	RM	-0.309116	0.361074	-0.415301	0.058813	-0.310344	1.000000	-0.278082	0.263168	-0.107492	-0.271898	-0.312923	0.053660	-0.640832	0.63357
	AGE	0.704140	-0.544423	0.679487	0.067792	0.795153	-0.278082	1.000000	-0.801610	0.417983	0.526366	0.355384	-0.228022	0.657071	-0.54756
	DIS	-0.744986	0.614627	-0.757080	-0.080248	-0.880015	0.263168	-0.801610	1.000000	-0.495806	-0.574336	-0.322041	0.249595	-0.564262	0.44585
	RAD	0.727807	-0.278767	0.455507	0.024579	0.586429	-0.107492	0.417983	-0.495806	1.000000	0.704876	0.318330	-0.282533	0.394322	-0.34677
	TAX	0.729045	-0.371394	0.664361	-0.044486	0.649527	-0.271898	0.526366	-0.574336	0.704876	1.000000	0.453345	-0.329843	0.534423	-0.56241
	PTRATIO	0.465283	-0.448475	0.433710	-0.136065	0.391309	-0.312923	0.355384	-0.322041	0.318330	0.453345	1.000000	-0.072027	0.467259	-0.55590
	В	-0.360555	0.163135	-0.285840	-0.039810	-0.296662	0.053660	-0.228022	0.249595	-0.282533	-0.329843	-0.072027	1.000000	-0.210562	0.18566
	LSTAT	0.634760	-0.490074	0.638747	-0.050575	0.636828	-0.640832	0.657071	-0.564262	0.394322	0.534423	0.467259	-0.210562	1.000000	-0.85291
	TARGET	-0.558891	0.438179	-0.578255	0.140612	-0.562609	0.633576	-0.547562	0.445857	-0.346776	-0.562411	-0.555905	0.185664	-0.852914	1.00000

B [81]: sns.heatmap(data.corr())

Out[81]: <AxesSubplot:>


```
B [82]: # Вывод значений в ячейках sns.heatmap(data.corr(), annot=True, fmt='.3f')
```

Out[82]: <AxesSubplot:>


```
B [83]: # Изменение цветовой гаммы sns.heatmap(data.corr(), cmap='YlGnBu', annot=True, fmt='.3f')
```

Out[83]: <AxesSubplot:>


```
B [84]: # Треугольный вариант матрицы
mask = np.zeros_like(data.corr(), dtype=np.bool)
# чтобы оставить нижнюю часть матрицы
                # mask[np.triu_indices_from(mask)] = True
# чтобы оставить верхнюю часть матрицы
mask[np.tril_indices_from(mask)] = True
sns.heatmap(data.corr(), mask=mask, annot=True, fmt='.3f')
 Out[84]: <AxesSubplot:>
                      CRIM -
                      ZN -
INDUS -
                                                                                              - 0.8
                                                                                               - 0.6
                      CHAS -
                        NOX -
                        AGE -
                        DIS -
RAD -
                         TAX -
                     LSTAT -
                   TARGET -
                                                               RAD -
TAX -
PTRATIO -
                                               NOX
RM
AGE
B [85]: fig, ax = plt.subplots(1, 3, sharex='col', sharey='row', figsize=(15,5))
sns.heatmap(data.corr(method='pearson'), ax=ax[0], annot=True, fmt='.2f')
sns.heatmap(data.corr(method='kendall'), ax=ax[1], annot=True, fmt='.2f')
sns.heatmap(data.corr(method='spearman'), ax=ax[2], annot=True, fmt='.2f')
              fig.suptitle('Корреляционные матрицы, построенные различными методами')
              ax[0].title.set_text('Pearson')
ax[1].title.set_text('Kendall')
              ax[2].title.set_text('Spearman')
                                                                              Корреляционные матрицы, построенные различными методами
                                                                              - 1.0
                                                                                                                                                                                                               - 1.00
                    CRIM -4.00
                                                                              - 0.8
                                                                                                                                               - 0.8
                                                                                                                                                                                                               - 0.75
                   INDUS
                                                                              - 0.6
                                                                                                                                               - 0.6
                   CHAS
                     NOX
                                                                              - 0.4
                                                                                                                                               - 0.4
                      RM ·
                                                                                                                                                                                                               - 0.25
                                                                              - 0.2
                     AGE
                                                                                                                                               - 0.2
                                                                                                                                                                                                               - 0.00
                      DIS -0.30.60.70
                                                                              - 0.0
                                                                                                                                               - 0.0
                     RAD
                                                                                                                                                                                                               - -0.25
                      TAX
                                                                                -0.2
                PTRATIO
                                                                                                                                                                                                                 -0.50
                        В.
                   LSTAT
                TARGET -
                             Kendall
                     CRIM -1.00
                       ZN ·
                                                                              - 0.8
                                                                                                                                              - 0.8
                                                                                                                                                                                                              - 0.75
                   INDUS
                                                                              - 0.6
                    CHAS
                      NOX
                                                                                                                                              - 0.4
                       RM
                                                                                                                                                                                                             - 0.25
                                                                              - 0.2
                      AGE
                                                                                                                                              - 0.2
                                                                                                                                                                                                             - 0.00
                       DIS
                                                                              - 0.0
                                                                                                                                              - 0.0
                      RAD
                                                                                                                                                                                                               -0.25
                       TAX
                                                                                -0.2
                                                                                                                                               -0.2
                 PTRATIO
                                                                                                                                                                                                               -0.50
                                                                                                                                                -0.4
                    LSTAT
                  TARGET
                                       CHAS
NOX
RM
AGE
DIS
FAD
TAX
                                                                                                                                                             CRIM
ZN
NDUS
CHAS
CHAS
NOX
RM
AGE
DIS
RAD
TAX
   B [ ]:
```