Linear Regression

Price of Used Cars Prediction

Introduction

Linear Regression Model

Prediction Price of Used Cars Listing

Methodology: Data

MSRP

https://www.cars.com/research/

MSRP for latest model of 453 cars

Used Car Listings

https://www.autolist.com/

19 variables for 11809 used cars, including Price.

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9129 entries, 0 to 9128
Data columns (total 11 columns):

#	Column	Non-N	Null Count	Dtype
0	Transmission	9128	non-null	object
1	Drivetrain	9129	non-null	object
2	Mileage	9129	non-null	float64
3	Body Style	9129	non-null	object
4	Price	9129	non-null	float64
5	Cylinders	9129	non-null	float64
6	Engine Size	9129	non-null	float64
7	City_MPG	9129	non-null	float64
8	Hwy MPG	9129	non-null	float64
9	Year	9129	non-null	float64
10	msrp	9129	non-null	float64
	es: float64(8)		ect(3)	

Chrome is being controlled by automated test software.

X

Series for Sale in Austin, TX

Active Search Filters

Save Search

Source Search Filters

Search Filters

Reset

PRICE RANGE

\$5,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

\$50,000

Methodology: Libraries & Packages

- Selenium, requests & BeautifulSoup: Scrape and parse HTML
- sklearn.impute : Predictions to impute missing data
- Fuzzywuzzy Search matches between different sources
- sklearn.linear_model : Create regression models
- yellowbrick.regressor: Drop influential datapoints
- Shap: Visualization of influence of features in model.

Numerical Features

Numerical Features' SHAP Values

All Features

Mean SHAP value of Features

SHAP Values of all Features

Correlated Features & Regularization

Impute missing values

Imperfect Collinearity

Regularization

	variables	vif
0	Mileage	3.825799
1	Cylinders	40.772570
2	Engine_Size	7.444121
3	City_MPG	106.744936
4	Hwy_MPG	268.425848
5	Year	152.686841
6	msrp	6.901849

Variables Dropped

- City MPG
- Manual Transmission
- Body Style Minivan
- Body Style Van
- Body Style SUV
- Body Style Pickup Truck
- Body Style Hatchback

Regularization Results

Model	Mean Squared Error	Mean Absolute Error	R^2 Score	Parameters
Ridge (L1)	1.837455e^07	3335.628	0.725271	Alpha: 12.9
Lasso (L2)	1.837435e^07	3335.626	0.725274	Alpha: 2.0
Elastic Net (L1 & L2)	1.83735e^07	3335.624	0.725274	Alpha:1.97 L1: 1

Residual Analysis

399 Influential Points

Regression without Influential Points

Linear Model	Mean Absolute Error	Root Mean Squared Error	R^2 Score	Parameters
With Influential Points	1.837435e^07	3335.62	0.725	Alpha: 2.0 (L1)
Without Influential Points	1.357837e^07	2952.71	0.769	Alpha: 2.0 (L1)

Polynomial Regression

Linear Model	Mean Absolute Error	Root Mean Squared Error	R^2 Score	Parameters
Penalized Linear Model	1.357e^07	2953	0.769	Lambda 2.0 (L1)
Polynomial Model	1.201e^07	2714	0.796	

Out of Sample Performance

Linear Model	Mean Squared Error	Root Mean Squared Error	R^2 Score
Polynomial Model	1.627e^07	3016	0.770

Results: Unseen Data

Linear Model	Mean Squared Error	Root Mean Squared Error	R^2 Score
Polynomial Model	1.627e^07	3016	0.770

Conclusions

- Low Bias

- High Variance

- RMSE: ~\$3.000

Future Work

Regularization in Polynomial Regression

Need features indicating level of car (basic/premium)

MSRP for individual car.

Remove influential datapoints from SHAP Summary Plot