Stat 230: Probability Lecture 21

Jeremy VanderDoes

University of Waterloo

Wednesday, June 22nd

Review

Example

Suppose X is a random variable such that

$$F_X(x) = \begin{cases} 0 & x < 0 \\ 2x & 0 \le x \le \frac{1}{2} \\ 1 & x > \frac{1}{2} \end{cases}$$

If we are given $Y \sim -2X + 3$. Determine E(Y).

Review

Last time we talked about

- (1) Summary statistics
- (2) Transformations

For today:

- (1) Transformations
- (2) Uniform Distribution
- (3) Exponential Distribution

Reading: Middle of chapter 8

Review

- Monday: Quiz 4
- Start Review

Uniform Distribution

Definition

We say that X has a uniform distribution on (a, b) if X has pdf

$$f(x) = \begin{cases} \frac{1}{b-a} & x \in (a,b), \\ 0 & otherwise \end{cases}$$

This is abbreviated $X \sim U(a, b)$.

Uniform Distribution

Theorem

If $X \sim U(a, b)$ then

(1)
$$E(X) = \frac{a+b}{2}$$

(2)
$$Var(X) = \frac{(b-a)^2}{12}$$

Uniform Distribution

Example

Suppose that the angle measured from the principal axis to the point of a spinner is uniformly distributed on $[0,2\pi]$. You win the prize you want if the point lands in $[\frac{3\pi}{4},\frac{3\pi}{2}]$. Given that the point will stop in the top half of the circle, what is the probability that you win the prize you want.

Simulation

Remark (One method to simulate U(0,1))

If $(b_1,b_2,b_3,...,b_L)$ is a random bit string (sequence of 0's and 1's), then

$$\sum_{i=1}^{L} \frac{b_i}{2^i}$$

is approximately U(0,1) for large L.

Remark (Another method to simulate U(0,1))

Use a function such as

$$x_{i+1} = ax_i \mod m$$

With proper selection of a and m, a U(0,1) can be generated using $\frac{x_i}{m}$.

Simulation

Remark (Probability integral transformation)

Suppose we wish to simulate a continuous random variable X with CDF F(x).

Let $F^{-1}(x)$ denote the inverse function of F(x) defined on (0,1). If $Y \sim U(0,1)$, then $X = F^{-1}(Y)$ has CDF F(x).

Simulation

Example

Consider the CDF

$$F(x) = \begin{cases} 0 & x \le 0, \\ 1 - e^{-x} & x > 0 \end{cases}$$

Devise a transformation h so that if $Y \sim U(0,1)$, X = h(Y) has CDF F.

Definition

We say that X has an exponential distribution with parameter θ $(X \sim \exp(\theta))$, where $\theta > 0$, if the density of X is

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-x/\theta} & x > 0, \\ 0 & x \le 0 \end{cases}$$

Example

Suppose X has an exponential distribution with parameter θ . Compute the CDF of X.

Remark (Relationship between the exponential distribution and the Poisson process)

Consider a Poisson process with rate parameter λ . Then the distribution of amount of time between the occurrence of successive events is exponential.

Theorem

If X is the time to the first event of Poisson process with parameter λ , then $X \sim \exp(\frac{1}{\lambda})$.

Theorem.

Suppose that $X \sim \exp(\theta)$. Then $E(X) = \theta$, and $Var(X) = \theta^2$.