SPRING 2023

CS 378: INTRO TO SPECH AND AUDIO PROCESSING

Hidden Markov Models 1

DAVID HARWATHAssistant Professor, UTCS

Today's big questions

- How can we model time-series data in general?
 - One way: using Hidden Markov Models (HMMs)

 What is a Hidden Markov Model and how does it work?

How are HMMs used in speech recognition systems?

Today's agenda

- HMM motivation and intuitive introduction
- HMM mathematical formulation
- HMM algorithms
 - Scoring: Forward-Backward Algorithm
 - Decoding: Viterbi and Forward-Backward Algorithms
 - Training: Baum-Welch Algorithm
- HMMs for phone and word modeling in ASR

Modeling time series data

There are many problems in science and engineering that involve data in the form of a *time series*

- Speech waveforms
- Biometrics like heart rate
- Stock prices

Modeling time series data

Generally, we have access to the time series data but are actually interested in inferring something about what *caused* the time series to appear the way it did

- Speech waveform: The words that were spoken
- Heart rate: A patient's stress or physical exertion level
- Stock price: A company's internal management decisions

This underlying cause is often unobserved, or hidden.

Words as a hidden cause of a waveform

Notice that the "hidden cause" changes over time...

Hidden Markov Models

A Hidden Markov Model:

- Assumes a hidden state sequence that causes a signal we get to observe
- Allows the hidden state sequence to change over time under a first order *Markov* assumption (the next hidden state only depends on the current hidden state)
- Models the relationship between the hidden state sequence and the observed signal

- I have a bag with two quarters and one marble in it.
- Quarter #1 is "regular"
 - If I flip it, heads and tails have an equal probability (0.5) of coming up
- Quarter #2 is "loaded"
 - The quarter is biased in favor of heads. If I flip it, P(Heads) = 0.9

We play the following game:

- 1. I draw one item from the bag, each with equal probability (1/3). I don't show you the item.
- 2. If the item is a quarter, I flip the quarter and record the outcome (H or T) on a piece of paper. Then I go back to step 1.
- 3. If the item is the marble, the game stops and I go to step 4.
- 4. I give you the piece of paper. Your job is to infer the sequence of items that I drew from the bag.

The paper recording the flip outcomes (You get to see this)

H T H H H T

Q2, Q1, Q1, Q2, Q1, Q1, M

The underlying sequence of objects I pulled from the bag (You need to guess this)

P(Heads) = 0.5

P(Heads) = 0.9

You decide to model the game with a probabilistic state machine:

This is a Hidden Markov Model!

Now we'll learn how to use it...

Today's agenda

- HMM motivation and intuitive introduction
- HMM mathematical formulation
- HMM algorithms
 - Scoring: Forward-Backward Algorithm
 - Decoding: Viterbi and Forward-Backward Algorithms
 - Training: Baum-Welch Algorithm
- HMMs for phone and word modeling in ASR

•
$$S = \{s_1, s_2, \dots, s_N\}$$

State set

•
$$X = \{x_1, x_2, ..., x_M\}$$

Observation symbol set

•
$$A \in \mathbb{R}^{N \times N}$$

State transition distribution

•
$$B \in \mathbb{R}^{N \times M}$$

State observation distribution

•
$$\Pi = \{\pi_1, \pi_2, \dots, \pi_N\}$$

Initial state distribution

$$q_t \in S$$
: The state at time t

$$o_t \in X$$
: The observation at time t

$$a_{ij} = P(q_{t+1} = s_j | q_t = s_i)$$

$$b_{ik} = P(o_t = x_k | q_t = s_i)$$

$$\pi_i = P(q_1 = s_i)$$

- $S = \{s_1, s_2, ..., s_N\}$ State set
- $X = \{x_1, x_2, ..., x_M\}$ Observation symbol set
- $A \in \mathbb{R}^{N \times N}$ State transition distribution
- $B \in \mathbb{R}^{N \times M}$ State observation distribution
- $\Pi = \{\pi_1, \pi_2, \dots, \pi_N\}$ Initial state distribution

- $S = \{s_1, s_2, ..., s_N\}$ State set
- $X = \{x_1, x_2, ..., x_M\}$ Observation symbol set (H and T)
- $A \in \mathbb{R}^{N \times N}$ State transition distribution
- $B \in \mathbb{R}^{N \times M}$ State observation distribution
- $\Pi = \{\pi_1, \pi_2, \dots, \pi_N\}$ Initial state distribution

- $S = \{s_1, s_2, ..., s_N\}$ State set
- $X = \{x_1, x_2, ..., x_M\}$ Observation symbol set
- $A \in \mathbb{R}^{N \times N}$ 1/3 State transition distribution
- $B \in \mathbb{R}^{N \times M}$ State observation distribution
- $\Pi = \{\pi_1, \pi_2, ..., \pi_N\}$ Initial state distribution

- $S = \{s_1, s_2, ..., s_N\}$ State set
- $X = \{x_1, x_2, ..., x_M\}$ Observation symbol set
- $A \in \mathbb{R}^{N \times N}$ State transition distribution
- $B \in \mathbb{R}^{N \times M}$ State observation distribution
- $\Pi = \{\pi_1, \pi_2, ..., \pi_N\}$ Initial state distribution

- $S = \{s_1, s_2, ..., s_N\}$ State set
- $X = \{x_1, x_2, ..., x_M\}$ Observation symbol set
- $A \in \mathbb{R}^{N \times N}$ State transition distribution
- $B \in \mathbb{R}^{N \times M}$ State observation distribution
- $\Pi = \{\pi_1, \pi_2, \dots, \pi_N\}$ Initial state distribution

In practice, we define an HMM as $\lambda = \{A, B, \Pi\}$

•
$$A \in \mathbb{R}^{N \times N}$$

State transition distribution

•
$$B \in \mathbb{R}^{N \times M}$$

State observation distribution

•
$$\Pi = \{\pi_1, \pi_2, \dots, \pi_N\}$$
 Initial state distribution

$$a_{ij} = P(q_{t+1} = s_j | q_t = s_i)$$

$$b_{ik} = P(o_t = x_k | q_t = s_i)$$

$$\pi_i = P(q_1 = s_i)$$

How do you use an HMM?

There are 3 major HMM problems + algorithms

- 1. Given a parameterized HMM, how do you compute the probability of a given observation sequence?
 - ➤ Scoring Problem: Use the Forward (or Backward) Algorithm
- 2. Given a parameterized HMM, how do you compute the optimal hidden state sequence for a given observation sequence and some optimality criterion?
 - ➤ Decoding Problem: Use the Viterbi or Forward-Backward Algorithm
- 3. Given an HMM with unknown parameters, how do you find the most likely parameters given a collection of observation sequences?
 - Training Problem: Use the Baum-Welch Algorithm

Today's agenda

- HMM motivation and intuitive introduction
- HMM mathematical formulation
- HMM algorithms
 - Scoring: Forward-Backward Algorithm
 - Decoding: Viterbi and Forward-Backward Algorithms
 - Training: Baum-Welch Algorithm
- HMMs for phone and word modeling in ASR

The HMM Scoring Problem

• We have an HMM model $\lambda = \{A, B, \Pi\}$

• We are given an observation sequence $O = \{o_1, o_2, \dots, o_T\}$

- Our goal: compute $P(O|\lambda)$
 - We can use either the Forward Algorithm or the Backward Algorithm to do this.

Define the *forward variable*:

$$\alpha_t(i) = P(o_1, o_2, ..., o_t, q_t = s_i | \lambda)$$

The forward variable $\alpha_t(i)$ tells us the joint probability of seeing the prefix of the observation sequence up to time t and being in state s_i at time t

We can solve for $\alpha_t(i)$ using dynamic programming.

Consider the very first timestep as the base case:

$$\alpha_1(i) = P(o_1, q_1 = s_i \mid \lambda) = P(o_1 \mid q_1 = s_i, \lambda) P(q_1 = s_i \mid \lambda)$$

$$b_i(o_1)$$
 π_i

Now the induction step to derive $\alpha_{t+1}(i)$ from $\alpha_t(i)$:

$$\alpha_{t+1}(i) = P(o_1, \dots, o_{t+1}, q_{t+1} = s_i \mid \lambda)$$

$$\alpha_{t+1}(i) = P(o_1, ..., o_t, q_{t+1} = s_i | \lambda) P(o_{t+1} | q_{t+1} = s_i, \lambda)$$

$$\alpha_{t+1}(i) = \left[\sum_{j=1}^{N} P(o_1, \dots, o_t, q_t = s_j, q_{t+1} = s_i \mid \lambda)\right] \underbrace{P(o_{t+1} \mid q_{t+1} = s_i, \lambda)}_{b_i(o_{t+1})}$$

$$\alpha_{t+1}(i) = \left[\sum_{j=1}^{N} P(o_1, \dots, o_t, q_t = s_j | \lambda) P(q_{t+1} = s_i | q_t = s_j, \lambda) \right] b_i(o_{t+1})$$

$$\alpha_t(j)$$

Finally, we can compute the score $P(o_1, ..., o_T | \lambda)$ from the values of the forward variable at the final timestep:

$$P(o_1, ..., o_T | \lambda) = \sum_{i=1}^{N} P(o_1, ..., o_T, q_T = s_i | \lambda) = \sum_{i=1}^{N} \alpha_T(i)$$

Putting it all together:

Initialization: $\alpha_1(i) = b_i(o_1)\pi_i$

Induction:
$$\alpha_{t+1}(i) = \left[\sum_{j=1}^{N} \alpha_t(j) a_{ji}\right] b_i(o_{t+1})$$

Termination:
$$P(o_1, ..., o_T | \lambda) = \sum_{i=1}^{N} \alpha_T(i)$$

Forward Illustration

