





### 6. EFEITOS DO VENTO E CORRENTE SOBRE A EMBARCAÇÃO

- Se a "Carteação" consiste na determinação da posição da embarcação ou navio atendendo ao caminho percorrido em relação à Superfície da água;

Se para "Cartear" se recorre às informações fornecidas pelas agulhas de governo, depois de se eliminarem os erros que possuem (desvio δ, declinação D, erro da giro) ou seja, à proa verdadeira, e, à velocidade indicada pelo odómetro ou pelo regime de rotação da máquina, ou seja, à velocidade de superfície, não entrando em linha de conta com o efeito do vento e da corrente;

A "Estima" ou "Navegação Estimada", consiste na determinação da posição em relação ao fundo do mar — posição real da embarcação.

O ponto "Carteado" e o ponto "Estimado" podem não coincidir, e não coincidem se houver corrente ou vento que levem a embarcação a abater, ou seja, a seguir um caminho diferente ao indicado pela sua proa.

Quando se "estima", querendo nós calcular a posição o mais correcta possível da embarcação, temos de entrar em linha de conta com o efeito da corrente do vento e do bom ou mau governo da embarcação.

#### 6.1 A Corrente

Qualquer objecto flutuante que se encontre na água numa zona de corrente, move-se segundo um rumo, que será o rumo da corrente e com uma velocidade que será a intensidade da dita corrente. Talvez por isto exista o ditado popular que reza:

"Camarão que não nada, leva-o a corrente."

Se uma embarcação tem um **rumo e uma velocidade**, e a água, por sua vez, tem **uma corrente com uma direcção e uma intensidade**, a embarcação desloca-se, em relação ao fundo, com o rumo e a velocidade resultante do conjunto das duas.

Para a resolução destes problemas utilizaremos vectores:

| Dois vectores compone            | Proa verdadeira (P <sub>v</sub> ) e velocidade da embarcação (Vs)<br>Rumo (c) e intensidade da corrente (v). |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| Que dão lugar a um outro vector: |                                                                                                              |  |
| Vector resultante                | Rumo (R) e Velocidade Verdadeira (V <sub>v</sub> ).                                                          |  |



Em resumo, para trabalhar os problemas com correntes, temos seis factores a considerar, que se utilizam como vectores formando com eles um triângulo de velocidades, que se define como "Triângulo de Estima".

| Vector Verdadeiro (V <sub>v</sub> )    | R - Rumo (Caminho em relação ao fundo)                              |
|----------------------------------------|---------------------------------------------------------------------|
|                                        | V <sub>v</sub> − Velocidade Verdadeira (Veloc. em relação ao fundo) |
|                                        |                                                                     |
| Vector de Superfície (V <sub>s</sub> ) | P <sub>v</sub> – Proa Vedadeira (Direcção proa / popa da embarc.)   |
|                                        | V₃ – Velocidade de Superfície (Veloc. em relação à água)            |
|                                        |                                                                     |
| Vector da Corrente (Vc)                | c - Direcção para onde corre a corrente                             |
|                                        | v - Velocidade da corrente                                          |

Para a resolução deste tipo de problemas são-nos dados quatro dos seis vectores, havendo que determinar os dois restantes.

No caso particular de recebermos a corrente pela proa ou pela popa, não havendo portanto formação do triângulo, o vector resultante é unicamente a diminuição ou aumento da velocidade verdadeira ou de fundo, respectivamente.



Figura 16a.





## PRIMEIRA SITUAÇÃO.

| DADOS                                                                  | PEDIDOS                   |
|------------------------------------------------------------------------|---------------------------|
| VS Proa Verdadeira (P <sub>v</sub> );<br>Velocidade de Superfície (V₅) | Direcção da Corrente (c)  |
| VV – Rumo (R);<br>– Velocidade verdadeira (V <sub>v</sub> )            | Velocidade da Corrente(v) |

### **RESOLUÇÃO:**

Com origem no ponto de partida, traçam-se os dois vectores de velocidade: P<sub>v</sub>/V<sub>s</sub>; R/V<sub>v</sub>

A corrente (c;v) é a resultante da união do vector VS ( $P_v/V_s$ ), com o vector VV ( $R/V_v$ ), e por esta ordem é dada a direcção da corrente (c).

Este tipo de problema só pode ter resolução gráfica depois de se ter navegado durante um determinado tempo, situando o ponto carteado sobre o vector de superfície, P<sub>v</sub>/V<sub>s</sub>.



Figura 17.

A "posição observada" a pontos conspícuos, marca-se na carta, que também pode ser obtida por posição "satélite", e une-se ao ponto de partida, dando o vector verdadeiro, R/V<sub>v</sub>.

Unindo o extremo do vector P<sub>v</sub>/V<sub>s</sub>, "carteado", com o extremo do vector R/V<sub>v</sub>, "marcado", temos determinado o vector c/v, direcção / intensidade da corrente.



#### **EXEMPLO 1**

Um navlo sal do ponto "A" com uma proa verdadeira  $P_{\nu}$  e uma velocidade de superfície  $V_{\text{s}}.$ 

Ao fim de uma hora deverla encontrar-se no ponto "B" (carteado).

Quando marca a posição ao fim de 1 hora verifica que foi parar à posição "C" (marcada).

Qual a direcção (c) e intensidade da corrente (v)?



Figura 18.

PROBLEMA (Para ser resolvido na carta nº 25R02 - Caminha a Leça da Palmeira.

 $[D=5^{\circ} 15',5 W (8' E)].$ 

Às 1043 horas encontramo-nos na posição:  $\phi$  = 41° 45′ N; L = 008° 59′ W navegando à proa da agulha  $P_a$  =185°, velocidade de superfície  $V_a$ =6 nós, em zona de corrente desconhecida, e tendo o desvio da agulha  $\delta$  = 2° W.

Ao serem 1158 horas, observamos simultaneamente o Farolim do molhe exterior do porto de Viana do Castelo por  $Z_a$ =052° e os campanários das Igrejas de S. Bartolomeu e Sra. da Paz enflados no  $Z_a$ =107°. Determinar:

- a) O ponto marcado às 1158 horas.
- b) Rumo e intensidade da corrente.
- c) Rumo e velocidade verdadeira.

### **RESOLUÇÃO:**

$$D_{2001} = D_{2000} - (1 \times 8) D_{2001} = (5^{\circ} 15') - (8') D_{2001} = 5^{\circ} 07' W$$

$$V_{mg} = D + \delta$$
  $V_{mg} = 5^{\circ} 07' W + 2^{\circ} W$   $V_{mg} = (-5^{\circ} 07') + (-2^{\circ})$   $V_{mg} \approx 7^{\circ} W$ 

$$P_v = P_a + V_{mg}$$
  $P_v = 185^{\circ} + (-7^{\circ})$   $P_v = 178^{\circ}$ 

$$Z_v = Z_a + V_{mg}$$
  $Z_v = 052^{\circ} + (-7^{\circ})$   $Z_v = 045^{\circ}$  (Farolim do molhe exterior)

$$Z_v = 107^{\circ} + (-7^{\circ})$$
  $Z_v = 100^{\circ}$  (Igrejas de S. Bartolomeu e Sra. da Paz)

- a) Ponto marcado às 1158 horas  $\varphi = 41^{\circ} 35',63 \text{ N}$  L=008° 56',90 W (Obtido da carta)
- b) Rumo da corrente c=143,5°; Intensidade da corrente v=1,72 nós (Obtido da carta)
- c) Rumo da embarcação R=170° ; Velocidade verdadeira V<sub>v</sub>=7,6 nós

 $(9.5 \text{ M} \Rightarrow 75 \text{ minutos})$ 

(Na mesma folha deste exercício, está outro problema idêntico, mas agora navegando contra a corrente.)







## SEGUNDA SITUAÇÃO.

| DADOS                                                         | PEDIDOS                 |
|---------------------------------------------------------------|-------------------------|
| VC – Rumo da corrente (c);<br>– Intensidade da corrente (v).  | Rumo (R)                |
| VS – Proa verdadeira (P₀);<br>– Velocidade de superfície (V₃) | Velocidade verdadelra(V |

### **RESOLUÇÃO:**

No ponto de partida traçamos o vector corrente (c/v). A partir do extremo deste vector, traçamos a Proa verdadeira ( $P_v$ ), com a medida da sua velocidade ( $V_s$ ).

A união do ponto de partida, com o extremo do vector de superfície ( $P_v/V_e$ ), fecha o triângulo de velocidades, cujo lado não é mais do que o vector verdadeiro ( $R/V_v$ ) – figura (a).

Outra forma de resolução, é a construção do paralelogramo, em que a resultante das duas componentes, vectores; de superfície  $(P_v/V_s)$  e corrente (c/v), é o vector verdadeiro  $(R/V_v)$  – figura (b).



Figura 19.



#### **EXEMPLO 2**

Um navio sai do ponto "A" com uma proa verdadeira  $(P_v)$  e uma velocidade de superfície  $(V_s)$ .

Existe uma corrente com direcção e intensidade (c/v).

Determinar o vector verdadelro (R / V<sub>v</sub>).



Figura 20.

PROBLEMA (Para ser resolvido na carta nº 25R02 – Caminha a Leça da Palmeira.

Às 1620 horas, a navegar à proa da agulha P<sub>a</sub>=350° (δ=2°E) e à velocidade de superfície V<sub>e</sub>=6 nós, numa zona de corrente conhecida, c=101° e v=2 nós, marcamos a posição, à distância radar d=5,6 milhas e pelo través de EB, o Molhe exterior do porto de Viana do Castelo. Determinar:

- a) A posição estimada às 1735.
- b) Rumo (R) e velocidade verdadeira (V<sub>v</sub>).

### **RESOLUÇÃO:**

$$D_{2001} = D_{2000} - (1 \times 8) D_{2001} = (5^{\circ} 15') - (8') D_{2001} = 5^{\circ} 07' W$$

$$V_{mg} = D + \delta$$
  $V_{mg} = 5^{\circ} 07' W + 2^{\circ} E$   $V_{mg} = (-5^{\circ} 07') + (+2^{\circ})$   $V_{mg} \approx 3^{\circ} W$ 

$$P_v = P_a + V_{mg}$$
  $P_v = 350^{\circ} + (-3^{\circ})$   $P_v = 347^{\circ}$ 

$$Z_v = P_v + M$$
  $Z_v = 347^\circ + 90^\circ$   $Z_v = 077^\circ$ 

- a) Posição estimada às 1735, obtida na carta:  $\varphi$  = 41° 46,1' N ; L = 008° 56,8' W.
- b) Rumo R=007°; velocidade verdadeira V<sub>v</sub>=5,5 nós (Obtido na carta).







### TERCEIRA SITUAÇÃO.

| DADOS                                                        | PEDIDOS                                    |
|--------------------------------------------------------------|--------------------------------------------|
| VC – Rumo da corrente (c);<br>– Intensidade da corrente (v). | VS - Proa verdadeira (P <sub>v</sub> )     |
| VS – Velocidade de superfície (V₃);<br>Rumo (R)              | VV -Velocidade verdadeira(V <sub>v</sub> ) |

### **RESOLUÇÃO:**

No ponto de partida traçamos o vector corrente (c/v), com a sua direcção (c) e intensidade (v). A partir do mesmo ponto traçamos o rumo (R).

Agora, com um compasso, com centro no extremo do vector corrente (c/v), traçamos um arco com a medida da velocidade de superfície (Va) que corte o vector verdadeiro (R), fechando assim o triângulo de velocidades.

A união do extremo do vector corrente (c/v) com a intersecção do arco (medida da velocidade de superfície) representa o vector de superfície ( $P_v/V_s$ ).



Figura 21.



#### **EXEMPLO 3**

Um navio tem a velocidade máxima (V<sub>s</sub>), sai do ponto "A" para o ponto "B". Existe uma corrente (c/v).

Qual a proa verdadeira a que tem de governar para compensar a corrente e a que horas chega ?(É necessário a velocidade verdadeira  $(V_v)$  para se saber o ETA)



Figura 22.

**PROBLEMA** (Para ser resolvido na carta nº25R07 – Cabo da Roca ao Cabo Espichel [ $D_{2000} = 5^{\circ} 00' \text{ W (8' E)}$ ].

A partir da posição observada  $\phi$  = 38° 32' N e L= 009° 21,4' W, planeámos um rumo R = 131°, que traçamos na carta, numa zona de corrente com direcção c=260° e intensidade v=3 nós.

Com a velocidade da máquina a 9 nós e um desvio da aguiha δ=4°E, determinar:

- a) Proa da agulha (P<sub>s</sub>) com que temos de governar.
- b) Velocidade verdadeira (V<sub>v</sub>) a que navega a embarcação.

## RESOLUÇÃO:

1º - Temos de determinar, graficamente, a resultante, que não é mais do que o vector de superfície (V<sub>s</sub>).

O trabalho na carta de navegação deu-nos uma proa verdadeira de  $P_v$ =135°, para uma velocidade de superfleie- $V_v$ = 9 nós, e uma velocidade verdadeira  $V_v$ =6,8 nós, para o rumo previamente definido R=150°)

 $2^{\circ}$  - Tendo em atenção a declinação magnética indicada na carta  $D_{2000}=5^{\circ}$  00' W, procedemos como nos casos anteriores, e determinamos a declinação magnética do corrente ano ( $D_{2000}=4^{\circ}$  52' W).

a) 
$$V_{mg} = D + \delta$$
  $V_{mg} = 4^{\circ} 52' W + 4^{\circ} E$   $V_{mg} = -4^{\circ} 52' + 4^{\circ}$   $V_{mg} = 1^{\circ} W$   
 $P_{v} = P_{a} + V_{mg}$   $P_{a} = P_{v} - V_{mg}$   $P_{a} = (135^{\circ}) - (-1^{\circ})$   $P_{a} = 136^{\circ}$ 

b) Velocidade verdadeira medida na carta V<sub>v</sub>= 6,8 nós







### QUARTA SITUAÇÃO.

| DADOS                                                                                  | PEDIDOS                        |
|----------------------------------------------------------------------------------------|--------------------------------|
| VC – Rumo da corrente (c);<br>– Intensidade da corrente (v).                           | VV – Rumo (R)                  |
| VS/VV– Proa verdadeira (P <sub>v</sub> );<br>– Velocidade verdadeira (V <sub>v</sub> ) | VS – Velocidade superfície(V₃) |

### **RESOLUÇÃO:**

No ponto de partida traçamos o vector corrente (c;v), com a sua direcção (c) e intensidade (v).

No extremo do vector corrente (c;v), traçamos a direcção dada pela proa verdadeira ( $P_v$ ).

Agora, com um compasso, com centro no ponto de partida, (início do vector corrente), e raio igual ao valor da velocidade verdadeira  $(V_v)$ , traçamos um arco que corte o vector de superfície,  $(P_v)$ , fechando assim o triângulo de velocidades e cujo vector é a velocidade de superfície  $(V_s)$ 

A união do início do vector corrente (c;v) com a intersecção do arco (medida da velocidade verdadeira) representa o vector verdadeiro ( $R/V_v$ ).



Figura 23.



#### **EXEMPLO 4**

Um navio sai do ponto "A" com uma proa verdadeira ( $P_v$ ) e uma velocidade verdadeira ( $V_v$ ).

Existe uma corrente com direcção e Intensidade (c/v).

Determinar no vector de superfície a velocidade (V₃), e no vector verdadeiro o rumo (R).



Figura 24.

PROBLEMA (Para ser resolvido na carta nº105 do Estreito de Gibraltar, reproduzida em modelo A4) [ D<sub>1958</sub> = 7º 25',5 W (7' E)].

Às 0800 horas saímos de uma posição situada a SW verdadeiro e à distância radar de 7 milhas do Farol do Cabo Trafaigar, navegando à proa da agulha  $P_a=128^\circ$  (desvio  $\delta=5^\circ$ E), e numa zona de corrente c=S 80° È a intensidade v=2 nós.

Queremos que a embarcação se deslóque à velocidade verdadeira de V<sub>v</sub>=12 nós Pede-se:

- a) A velocidade dada pela máquina velocidade de superfície (V<sub>s</sub>)
- b) O rumo (R) a que a embarcação navega.
- c) A hora a que estaremos ao norte verdadeiro (N<sub>v</sub>) do Farol da Punte Malabata.



### **RESOLUÇÃO:**

1° Para: 
$$D = 2^{\circ} 23^{\circ} W$$
 e  $\delta = 5^{\circ} E$   $\Rightarrow V_{mg} = D + \delta$   $V_{mg} \approx 2^{\circ} E$ 

**2°** 
$$P_v = P_a + V_{mg}$$
  $P_v = 128^o + (+2^o)$   $P_v = 130^o$ 

- 4º A intersecção do rumo (R) com o norte verdadeiro (N) do Farol da Punta Malabata, dá-nos uma distância navegada de d=23.4 milhas, a que corresponde o tempo de navegação t<sub>Punta Malabata</sub>= 01 hora 57 minutos.
  - a) A resolução gráfica na carta permite-nos medir a velocidade de superfície ou velocidade a dar pela máquina V₂≈ 10.25 nós.
  - b) A resolução gráfica na carta permite-nos medir o rumo R= 125°.
  - c) A hora a que passamos ao norte verdadeiro do Farol da Punta Malabata é:
    - t (Punta Malabata) = 0800 + 0157 t (Punta Malabata) = 0957 horas







### QUINTA SITUAÇÃO.

| DADOS                                                   | PEDIDOS                           |  |
|---------------------------------------------------------|-----------------------------------|--|
| VC – Rumo da corrente (c); Intensidade da corrente (v). | Proa verdadeira (P <sub>v</sub> ) |  |
| VV – Rumo (R); Velocidade verdadeira (V₀)               | Velocidade superfície<br>(V₀)     |  |

### **RESOLUÇÃO:**

No ponto de partida traçamos o vector corrente (c/v), com a sua direcção (c) e intensidade (v), e o vector verdadeiro ( $R/V_v$ ).

A união do extremo do vector corrente (c/v) com o extremo do vector verdadeiro (R/ $V_v$ ), fecha o triângulo de velocidades – vector de superfície – (Pv/Vs).



Figura 2



#### **EXEMPLO 5**

Um navio sal do ponto "A" para o ponto "B" demorando uma hora determinada na viagem.

Existe uma corrente com direcção e intensidade (c/v) conhecidas.

Determinar o vector de superfície (P<sub>v</sub>/Vs).



Figura 26.

PROBLEMA (Para ser resolvido na carta nº105 do Estreito de Gibraltar, reproduzida

em modelo A4) [ D<sub>1996</sub> = 4° 08' W (7' E)].

Às 2300 horas, do dia 07–Fevereiro–2001, marcamos o Farol da Punta Paloma por  $Z_{a1}$ =036° e o Farol da Isla Tarifa por  $Z_{a2}$ =098,5°. O desvio da agulha é  $\delta$ =6° W.

Desse ponto observado, e tendo em conta que a zona é afectada por uma corrente c=144 $^{\circ}$  e v=2 $^{\circ}$ , fazemos rumo à entrada do porto de Tânger, onde queremos chegar dentro de 1h 30 min. Para esta proa, o desvio da agulha é  $\delta$ =2 $^{\circ}$ E,

#### Determinar:

- a) Rumo da agulha a que temos de navegar, sabendo que existe um vento de levante que nos abate 8º.
- b) Velocidade de superfície, ou que temos de dar à máquina (V<sub>s</sub>) para chegarmos à bóia de espera no tempo previsto.

## RESOLUÇÃO:

1° 
$$D_{2001} = 3^{\circ} 33' \text{ W}$$
  $\delta = 6^{\circ} \text{ W}$   $V_{mg} = 3^{\circ} 33' + 6^{\circ}$   $V_{mg} = 9^{\circ} 33' \text{W} \approx 10^{\circ} \text{ W}$ 

2° 
$$Z_{v1} = Z_{a1} + V_{mg}$$
  $Z_{v1} = 036^{\circ} + (-10^{\circ})$   $Z_{v1} \approx 026^{\circ}$   $Z_{v2} = Z_{a2} + V_{mg}$   $Z_{v2} = 098.5^{\circ} + (-10^{\circ})$   $Z_{v2} \approx 088.5^{\circ}$ 

3° Traçamos na carta  $Z_{v1}$  e  $Z_{v2}$  e determinamos o ponto observado.  $\omega$ = 36° 00' N / L= 005° 45,5' W.



- 4º Do ponto observado traçamos o rumo à entrada do Porto de Tanger.

  d = 12,4'; R=192,5° e traçamos também o vector corrente c=144°; v=2'
- 5° Como temos de percorrer 12,4' em 1h 30m, a V<sub>v</sub>= 8,3'. Unindo o vector corrente com o vector verdadeiro, obtemos P<sub>v</sub>=199°, e V<sub>s</sub>=7'
- 6° Como o vento nos abate 8° de Levante (E), há que subtrair P<sub>v</sub>=199° 8° =191°
- 7° Como o δ= 2° E a  $V_{mg} \approx 2^\circ$ . Logo:  $P_a = P_v V_{mg}$   $P_a = 191^\circ (-2^\circ)$   $P_a = 193^\circ$



|  | F V |
|--|-----|
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  | 17  |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  | 22  |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  | 7   |
|  | 2.5 |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |
|  |     |