CS502-Summary-Chapter 1

- CS502-Summary-Chapter 1
 - What is Computer Science?
 - What is Algorithm?
 - Why we need to study Algorithms?
 - Examples:
 - Greatest Common Divisor (gcd) & Euclidean Algorithm
 - Method of Repeated Squaring
 - MATHS Notation:
 - Some important Facts
 - Logarithms
 - GP
 - AP
 - Calculus
 - MATHS Interlude
 - Examples
 - Asymptotic Notation
 - Problems
 - Examples
 - Assignments

1. What is Computer Science?

Computer Science is the science of

- · algorithm processing
- representation
- storage and
- transmission

of information.

2. What is Algorithm?

An algorithm is a well defined computational procedure that converts input into output.

```
Input -> Algorithm -> Output
```

Example: a set of n real numbers

3. Why we need to study Algorithms?

Algorithm address issues related to: feasibility, effeciency & performance, and scalability.

- Study of algorithm enables us to determine, if a computer program is feasible, or infeasible.
- Effecient algorithm lead to an effecient computer program, & effecient use of hardware resource.
- Algorithm helps us to understand issues related to scalability.
- Analysis of algorithm provides a language for talking about program behavior.

However, we should understand that computer program effeciency is only certain facet of overall computer resource usage.

3.1. Examples:

3.1.1. Greatest Common Divisor (gcd) & Euclidean Algorithm

```
gcd(2,4) = 2
gcd(10,5) = 10
gcd(27,112) = 1
gcd(56432,92431)=?
gcd(256,384)=128
```

Algorithm:

3.1.2. Method of Repeated Squaring

$$2*2=2^2=4 \rightarrow 1$$
 multiplication

$$2 * 2 * 2 = 2^3 = 8 \rightarrow 2$$
 multiplications

$$2 * 2 * 2 * 2 * 2 * 2 * 2 = 2^6 \rightarrow 1$$
 multiplications

 \Rightarrow With this behavior, $2^8 = 256$ (7 multiplications)

Instead of 7 multiplications, we can do it shorter with only 3 multiplications:

So for 2^{32} it usually takes 31 multiplications now only needs 5 multiplications: $2^2, 2^4, 2^8, 2^{16}, 2^{32}$

4. MATHS Notation:

- $\mathbb{P} = \{1, 2, 3, \ldots\}$: Set of positive numbers
- $\mathbb{N} = \{0, 1, 2, 3, ...\}$: Set of natural numbers
- $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$: Set of positive & negative and 0.
- ullet $\mathbb{R}=(-\infty,+\infty)$: Set of real numbers
- $\mathbb{R}^+ = (0, +\infty)$: Set of positive real numbers
- $\mathbb{R}^+_0 = [0, +\infty)$: Set of real numbers ≥ 0
- $\mathbb{Q} = \{ \frac{m}{n} | m, n \in \mathbb{Z}; n \neq 0 \}$: Set of rational numbers

• $\mathbb{C}_0 = \{a + ib | a, b \in \mathbb{R}, i = \sqrt{-1}\}$: Set of complex numbers

5. Some important Facts

5.1. Logarithms

- 1. logxy = logx + logy
- $2. \log_a b * \log_b a = 1$
- 3. $log_a x^y = ylog_a x$
- 4. $a^{\log_b n} = n^{\log_b a}$

5.2. GP

- 1. $S = a + ar + ar^2 + ar^{n-1}$
 - $=\frac{a(1-r^n)}{1-r}; r \neq 1$
 - S = na; r = 1
- 2. $S = a + ar + ar^2 + \dots$
 - $= \frac{a}{1-r}; |r| < 1$

5.3. AP

- 1. $S = 1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$
- 2. $S = a + (a + d) + (a + 2d) + \dots + [a + (n-1)d]$

$$= [a + (a + (n-1)d)] \frac{n}{2}$$

5.4. Calculus

- $1. \ \frac{d}{dx}x^n = nx^{n-1}$
- 2. $\frac{d\hat{a}}{dx}a^x = a^x \ln a$

5.5. MATHS Interlude

- 1. $S = 1 + x + x^2 + \dots = \frac{1}{1-x}; |x| < 1$
 - $S = \sum_{i=0}^{\infty} x^i = \frac{1}{1-x}; |x| < 1$
- 2. $\frac{dS}{dx} = 1 + 2x + 3x^2 + 4x^3 + \dots = \frac{1}{(1-x)^2}$
 - $\frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + 4x^3 \dots$
 - $\frac{x}{1-x^2} = x + 2x^2 + 3x^3 + 4x^4 + \dots = \sum_{i=1}^{\infty} ix^i$

$$\Rightarrow \sum_{i=1}^{\infty} ix^i = \frac{x}{(1-x)^2}; |x| < 1$$

5.6. Examples

(i)	Worst case running time as a function of n is. $4 n^2 - 3n \log n + 17.5n - 43 n^{4/3} + 75 = f(n)$ LET $n = w^2$ $4 n^2 = 4 \times (w^2)^2 = 4 \times w^{14}$ highest
iī). ii) iv) v)	$3n \cdot logn = 3(10^{7}) \cdot log \cdot 10^{7} = 21 \times 10^{7}$ $17.5 n = 17.5 \times 10^{7}$ $43 n^{2/3} < 43 n = 43 \times 10^{7}$ $75 < 10^{7}$ Big Ott $3n \cdot logn = 3(10^{7}) \cdot log \cdot 10^{7}$ $43 \cdot logn = 17.5 \times 10^{7}$ $17 \cdot logn$
	$\Rightarrow f(n) \text{ is } x n^2 \text{ for large } n.$ $proportional. 10$

6. Asymptotic Notation

Asymptotic Notation are languages that allow us to analyze an algorithm's running time by identifying its behavior as the input size for the algorithm increases. This is also known as an algorithm's growth rate.

Computational Steps (fastest to slowest)	Example (N=100)
Constant – 1	1
Logarithmic - $Log(n)$	6.64
N-Linear	100
Log-Linear - N * logn	664
Quadratic - N^2	10,000
Cubic - N^3	100,000
Exponential -2^n	127000000000
Factorial - $N!$	30000000000000000000

Let

$$L = \lim_{n \to \infty} \frac{f(n)}{g(n)}$$

Condition	Notation	Name
$0 \le L < \infty$	0	Big O
$0 < L \le \infty$	Ω	Big Omega
$0 < L < \infty$	Θ	Big Theta
L = 0	O	Small O
$L = +\infty$	ω	Small Omega

6.1. Problems

Indicate whether

•
$$f = \theta(g)$$
; or

•
$$f = \Omega(g)$$
; or

•
$$f = \Theta(g)$$
; or

•
$$f = o(g)$$
; or

•
$$f = \omega(g)$$

6.1.1. Examples

_1)	f(n) = (n - 100);	g(n)	= n-200	
	SOLUTION L=	limit	8(n)	n-100
	f(n) = (n-100); SOLUTION: L=	n-sa	8(U) - 11M18	$\frac{1}{n-200} = 1 = CON 7S$

$$f(n) = \bigoplus g(n).$$

2)	$f(n) = \sqrt{n}$; $g(n) = n^{2/3}$
	SOLUTION: $L = limit \cdot f(n) - \sqrt{n} \cdot \frac{1}{n^{4/3}} = limit \cdot \frac{1}{n^{4/3}}$ $g(n) = n^{4/3} \cdot \frac{1}{n^{4/3} - 1/2} = limit \cdot \frac{1}{n^{4/3}}$
	= 0. (small Oh).
	$\therefore g(n) = o(g(n))$

3)	f(n). = 100 n + logn; g(n) = n+(logn)2.
	L-limit $\frac{f(n)}{n-\infty} = \lim_{n\to\infty} \frac{won + \log n}{n + (\log n)^2}$ (n is much bigger than log n.
	noo g(n) not n + (lag n) i log n.
	$=\lim_{n\to\infty}\frac{100n}{n}=1000 \qquad \text{ignore lagn}$
	$g(n) = \bigoplus (g(n))$

u).	$f(n) = n \log n$, $g(n) = 10n \log (10n)$.
	$L = \lim_{n \to \infty} \frac{J(n)}{g(n)} = \lim_{n \to \infty} \frac{n \log n}{10n \log (10n)} = \lim_{n \to \infty} \frac{n \log n}{10n (\log 10 + \log n)}$
	= lim log r. = log (constant) igrore.
	$\Rightarrow f(n) = \bigoplus (g(n))$
5)	f(n) = lg(2n), $g(n) = lg(3n)$. f(n) = lg(2n), $g(n) = lg(3n)$. g(n) = lg(3n) = lg(3n) $lg(3n)$. f(n) = lg(3n) $lg(3n)$ $lg(3n)$. f(n) = lg(3n) $lg(3n)$ $lg(3n$
	$\rightarrow f(n) = \bigoplus (g(n)).$
6)	$f(n) = lO \log n$, $g(n) = \log n^2$.
	-
	J/11 = (t) (g(r))

$$f(n) = n^{1/d}, \quad g(n) = n(\log n)^{2}.$$

$$L = \lim_{n \to \infty} \frac{g(n)}{g(n)} = n^{1/d}. \quad n = n = n^{1/d}.$$

$$= \lim_{n \to \infty} \frac{g(n)}{g(n)} = \infty \quad (n = n = n = n) = n^{1/d}.$$

$$= \lim_{n \to \infty} \frac{n^{1/d}}{(\log n)^{1/d}} = \infty \quad (n = n = n = n = n) = n^{1/d}.$$

$$f(n) = \lim_{n \to \infty} \frac{g(n)}{g(n)} = \lim_{n \to \infty} \frac{n^{1/d}}{g(n)} = \frac{n}{(\log n)^{1/d}} = \frac{1}{(\log n)^{1/d}} = \frac{1}{(\log$$

 $f(n) = (\log n)^{\log n}, \quad g(n) = \frac{n}{\log n}.$ $L = \lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{(\log n)^{\log n} \cdot \log n}{g(n)}.$ $= \lim_{n \to \infty} \frac{(\log n)^{\log n} \cdot \log n}{n}.$ $= \lim_{n \to \infty} \frac{(\log n)^{\log n} \cdot \log n}{n}.$ $\rightarrow f(n) = o(g(n))$ Sol: n= Wm, lagr. = lag Wm = m $f(n) = m^m$, $g(n) = \frac{n}{m} = \frac{w^m}{m}$ $L = \lim_{n \to \infty} \frac{m^m - m}{\omega^m} = \lim_{n \to \infty} \left(\frac{m}{\omega} \right)^m m - \infty$ f(n) = w (g(n))

7. Assignments

Assignment 1. The following problems are from. Introduction:

to Algorithms, by CLRS.

Points Second Ed. Third Ed.

10 Page 13: 1.2-2 Page 14: 1.2-2

10 Pag 13: 1.2-3 Page 14: 1.2-3.

Hint: Use EXCEL Spreadsheet

Arswers

1 2 < 11 < 1.5