ASEN 3728 Aircraft Dynamics Written Homework 2

Due date listed on Gradescope.

Question 1. Consider the following simplified quadrotor translational dynamics equation,

$$m\dot{u}_E = Z_c \sin\theta - \nu |u_E| u_E,$$

where u_E is the velocity in the *inertial* x axis*, and the control force Z_c is managed by an automatic control system to maintain zero vertical acceleration, that is $Z_c = -\frac{mg}{\cos\theta}$. This equation can be used to solve for a steady forward-flight trim condition characterized by $\dot{u}_E = 0$. Assume $\psi = \phi = 0$ and that there is no wind.

- a) Draw a diagram of the quadrotor in forward flight from the side (i.e. the y axis is pointing directly toward you). Label the angle θ , the direction of positive u_E , and the aerodynamic, control, and gravity force vectors, ${}^a\mathbf{f}$, ${}^c\mathbf{f}$, and ${}^g\mathbf{f}$ assuming u_E is positive.
- b) Write an equation for the pitch angle θ_0 as a function of the forward flight velocity $u_{E,0}$, in a forward flight trim state.
- c) Linearize these dynamics about the trim state, that is, find a linear equation for $\Delta \dot{u}_E$ in terms of Δu_E and $\Delta \theta$ assuming that u_E is positive. Simplify so that every term in the equation has a disturbance variable (one that begins with Δ) in it.[‡]

 u_E should not be confused with u^E , the earth-relative velocity component in the body x axis.

[†]You can label $-\theta$ instead of θ if you would like to.

[‡]Hint: Use a Taylor series expansion to linearize $\tan \theta$ about θ_0 .

Question 2. A 10 kg quadrotor has state vector $\vec{x} = [0 \text{ m}, 0 \text{ m}, 0 \text{ m}, 0 \text{ rad}, -\pi/6 \text{ rad}, 0 \text{ rad}, 11 \text{ m/s}, 4 \text{ m/s}, 1 \text{ m/s}, -0.1 \text{ rad/s}, 0.2 \text{ rad/s}, 0.4 \text{ rad/s}]$. There is wind with velocity $\vec{W}_B^E = [2, 2, 0]^T$ m/s. Each rotor applies a control force of magnitude 30 N to the aircraft, and $\nu = 10^{-2}$ kg/m. Considering forces due to gravity, aerodynamic drag, and the rotor control, what is \vec{V}_B^E ?

Question 3. Consider a aircraft flying near a mountain ridge as shown in the diagram. The aircraft's pitot tube is used to measure the air-relative velocity in body coordinates:

$$\vec{V}_B^W = [100 \, m/s, 0, 0]^T$$

The background wind is known to be blowing due East from a recent weather report at 30 m/s. The aircraft is flying at an altitude $z_E = -3000$ m, with a heading angle $\psi = -60^{\circ}$. The ridge is located located 20 km West of the current position and has a height of 4000 m.

- (a) How long will it take for the aircraft to reach the ridge?
- (b) If the pilot wants to clear the ridge, how fast must the aircraft climb? Assume no change in W or the internal x and y components of \vec{V}^E .