ECO 602 Analysis of Environmental Data

FALL 2019 - UNIVERSITY OF MASSACHUSETTS DR. MICHAEL NELSON

Today's Agenda

- 1. First quiz
- 2. Recap on models
- 3. Intuition on the descriptive/inferential, sample/population concepts
- 4. Variables and data types
- 5. Assignment 1

Quiz Instructions

Choose 2 questions in the first part.

There aren't right or wrong answers for these questions, but I expect thoughtful replies.

I want to know about your big-picture (conceptual) model thinking process.

If you struggled with the exercise, explain.

Answer TWO of the following questions – 20 pts:

- 1. Describe the question your group decided to ask and your group's decision process.
- 2. Which elements of your system were most critical for a model, which could be ignored or simplified?
- 3. Describe your null and alternative hypotheses.
- 4. What were some critical unknowns in your system summary and how would address these?

Why am I harping on model thinking?

- 1. Model model (not a typo) of data and analyses is sometimes not emphasized enough.
- 2. When you get into details of a statistical model, it is easy to forget our overall questions.
- 3. Referring often to your conceptual model of a system helps you remember why you should care about your statistical model.

Descriptive/inferential, sample/population concepts

Parallel concepts:

- 1. We can calculate **descriptive** stats on a sample
- 2. We must **infer** parameters for a larger population

Statistical populations are context dependent

Depends on system, research questions

Bird example from McGarigal:

Testimony 1, 2

 population = single mountain, unit = single nesting site

Testimony 3, 4:

population = species range, unit = nesting site

Samples and sampling units

Sample = **group of observations** taken from larger population.

Sampling unit = 'thing' of interest to research question

1. Sampling units are highly context-dependent

Variable = attribute of sampling unit

Question: characterize the length distribution of 1 species in one lake:

- Statistical population = all fish in the lake
- Ecological population = entire range of the fish species.
- Sampling unit = individual fish
- Variable = fish length
 - What are the units of measurement and the scale of the variable?

Question: characterize the length distribution of 1 species in MA:

- •Statistical population = all fish in MA (in all lakes)
- Ecological population = entire range of the fish species.
- •Sampling unit = individual fish
- Variable = fish length

Question: characterize the length distribution of 1 species in MA

- Statistical population = all fish in all MA (in all lakes)
- Ecological population = entire range of the fish species.
- Sampling unit = individual fish
- Variable = fish length

Question: characterize the variability fish length among lakes in MA

- Statistical population = all lakes in MA
- Ecological population = entire range of the fish species.
- Sampling Unit = individual lakes
- •Variable = mean fish length in the lake

Descriptive and Inferential: 2 points of view

Population and sample point of view

 We use a small sample to learn about the larger population

Uncertainty point of view

- We can calculate sample descriptive exactly*.
 - *except for measurement error
- Inference, i.e. estimation, of population parameters introduces uncertainty.

Quick detour: some numerical and graphical descriptive stats

Numerical stats: 5 number summary

- 1. Min
- 2. Max
- 3. Median
- 4. 1st quartile, i.e. 25th percentile
- 5. 3rd quartile, i.e. 75th percentile

Graphical summaries

```
Scatterplot: individual data points
  x and y axes: predictor and response
  shows relationships between variables
Histogram: counts
  x axis = bins
  y axis = count of points in bin
Boxplot: 5 number summary
  extreme data points
```

Samples and populations: intuition

Amount of variation in population

- Spread is harder to quantify than center
- Sample size
 - Larger sample = better population estimates, but...
 - Diminishing returns
 - Square root terms in formulas

Hypothetical example population: 10 million mosquitoes

- 1. Sampling unit: individual mosquitoes
- 2. Variable of interest: wingspan
- 3. Scale: continuous, ratio, millimeters

Hypothetical example population: 10 million mosquitoes

In the real world, we couldn't measure all individuals, but we can create a simulated population.

We can build a simulated population of 10 million using software

Hypothetical example population: 10 million mosquitoes

Our mosquito population:

- Mean wingspan = 100mm
- Standard deviation of wingspan = 10mm
- Wingspan is Normally* distributed
 - Symmetrical, bell shaped

These are big mosquitoes!

* 'Normal' is usually capitalized when referring to the Normal distribution

Hypothetical example population: descriptive stats: center, spread, symmetry

Graphical summaries:

- 1. Scatterplot
- 2. Histogram
- 3. Boxplot

Numerical summaries – descriptive stats:

- 1. Mean
- 2. Quartiles (percentiles)
- 3. Standard deviation

Wingspan of all mosquitoes

Hypothetical example population: numerical summaries

	Sample	N	Mean	Standard Deviation	Minimum	Maximum	
1	Whole Population	10000000	100	10	49.04	152.6	

Sampling: intuition

Larger samples = better population estimates You have a very small budget; you can only afford to sample 5 mosquitoes: n = 5 Wingspan n = 5 sample 1

Wingspan n = 5 sample 4

	Sample	n	Mean	Standard Deviation	Minimum	Maximum
1	Whole Population	10000000	100	10	49.04	152.6
2	Sample 1	5	103.1	10.83	86.76	113.1
3	Sample 2	5	98.44	5.92	91.31	107
4	Sample 3	5	107.1	10.21	94.57	118
5	Sample 4	5	91.67	3.268	86.55	94.81
6	Sample 5	5	104.8	13.87	85.37	118.7

Sampling: intuition

Slightly larger sample: n = 10

Wingspan n = 10 sample 1

Wingspan n = 10 sample 5

Wingspan n = 10wingspan sample

	Sample	n	Mean	Standard Deviation	Minimum	Maximum
1	Whole Population	10000000	100	10	49.04	152.6
2	Sample 6	10	102.7	9.757	89.86	122.3
3	Sample 7	10	99.24	9.19	82.94	110.7
4	Sample 8	10	104	6.317	91.9	113.8
5	Sample 9	10	97.26	8.96	77.39	107.9
6	Sample 10	10	97.06	8.554	86.71	116.9

Sampling: intuition

Sample size: n = 30

Wingspan n = 30 sample 1

Wingspan n = 30 sample 5

	Sample	n	Mean	Standard Deviation	Minimum	Maximum
1	Whole Population	10000000	100	10	49.04	152.6
2	Sample 11	30	98.12	7.498	85.02	112.2
3	Sample 12	30	97.64	9.818	78.11	112.4
4	Sample 13	30	99.29	10.16	78.18	122.6
5	Sample 14	30	98.48	8.655	84.55	117.4
6	Sample 15	30	98.32	8.132	77.34	112

Sampling: intuition

Sample size: n = 100

Wingspan n = 100 sample 1

Wingspan n = 100 sample 5

Wingspan n = 100wingspan sample

	Sample	n	Mean	Standard Deviation	Minimum	Maximum
1	Whole Population	10000000	100	10	49.04	152.6
2	Sample 16	100	100.6	9.575	77.48	139.2
3	Sample 17	100	99.49	8.122	79.08	123.3
4	Sample 18	100	99.78	9.891	75.76	125.3
5	Sample 19	100	101.9	9.512	80.46	129.7
6	Sample 20	100	99.77	9.993	76.92	120.1

Variable Scales

- 1. Scale: definition of 'scale' depends on context
- 2. Scale: measurement system
 - 1. Intrinsic property of variable, or...
 - 2. Intrinsic property of how we choose to measure it
 - 1. E.g. age in years vs. age in age classes

Discrete and continuous

Discrete: cannot take on intermediate values

- 1. Counts
- 2. Categories

Continuous values can assume any value on a continuum*

•* limited by our ability to measure

Interval and ratio data

Interval: relative zero

- 1. Degrees C and F
- 2. Coordinate distance from a fixed point

Ratio: meaningful zero

- 1. Degrees Kelvin
- 2. Height, weight, etc

Data types and analyses

Data type influences mathematical form of analyses:

- 1. Continuous distributions are often mathematically simpler
- 2. We can often use continuous distributions to approximate discrete, especially with large sample sizes

Assignment 1

1. Groups of 4