1 Grundprinzipien relativistischer Beschreibung

- Raum & Zeit als Grundstruktur, also Punktmenge mit geometrischen Strukturen sei gegeben
- Automorphismengruppe der Raumzeit (z.B. Galilei-Gruppe, Poincaré-Gruppe)
- Automorphismengruppe als <u>Symmetrie</u> dynamischer Gesetze, Bewegungsgleichungen für "Teilchen" & "Felder"
 - Teilchen: Abb. γ : \mathbb{R} → M (Raumzeit)
 - Felder: Abb.F : M → V (Vektorraum)

Aktion der Automorphismengruppe (der Raumzeit) auf dynamischen Größen "Teilchen" & "Felder"

Definition 1.1. Aktion Aktion einer Gruppe G auf Menge M ist ein Homomorphismus

$$\Phi: G \to \operatorname{Bij}(M) \tag{1.1}$$

$$g \mapsto \phi_g$$
 (1.2)

$$\phi_{g_1} \circ \phi_{g_2} = \phi_{g_1 \circ g_2} \tag{1.3}$$

$$\phi_{e_G} = \mathrm{id}_M \tag{1.4}$$

Allgemeine Form von Bewegungsgleichungen:

$$B\left[\Sigma;\gamma,F\right] = 0\tag{1.5}$$

Mit F einem Feld und γ der Bahnkurve in der Raumzeit der Teilchen. Gelöst wird nach (γ, F) bei gegebenem Σ (Hintergrundstrukturen). Sei T eine Aktion der Gruppe G auf den dynamischen Größen (γ, F)

$$g \mapsto T_g : (\gamma, F) \mapsto (T_g \gamma, T_g F)$$
 (1.6)

Dann heißt G Symmetriegruppe der Bewegungsgleichung (BWG) wenn

$$B\left[\Sigma; T_g \gamma, T_g F\right] = 0 \Leftrightarrow B\left[\Sigma; \gamma, F\right] = 0 \,\forall \, g \in G \tag{1.7}$$

d.h. die mit g transformierten dynamischen Größen erfüllen wieder dieselbe BWG.

Unterschied Symmetrie zu Kovarianz: Bei Symmetrie dürfen nur die dynamischen Größen transformiert werden, bei Kovarianz aber alle. Kovarianz:

$$B\left[T_{g}\Sigma; T_{g}\gamma, T_{g}F\right] = 0 \Leftrightarrow B\left[\Sigma; \gamma, F\right] = 0 \tag{1.8}$$

Bei $T_g\Sigma$ werden auch die Hintergrundstrukturen transformiert. Kovarianz ist eine "relativ" triviale (leicht zu erfüllende) Forderung, im Gegensatz zu Symmetrie.

Beispiel 1.2. Diffusionsgleichung

$$\partial_t \phi = k \, \Delta \phi \tag{1.9}$$

Sei $n^{\mu} = (1,0,0,0)$, so dass $n^{\mu} \partial_{\mu} = \partial_{t}$

$$n^{\mu}\partial_{\mu}\phi = k(n^{\mu}n^{\nu} - \eta^{\mu\nu})\partial_{\mu}\partial_{\nu}\phi \tag{1.10}$$

wobei $\eta_{\mu\nu} = \operatorname{diag}(1,-1,-1,-1)$ und $\eta^{\mu\nu} = \operatorname{diag}(1,-1,-1,-1)$ die Minkowski-Metrik sind. In $B\left[\Sigma;\gamma,F\right]$ kommen η , n aus den Strukturen, also Σ , ϕ ist ein Feld F. Würde man $n \& \eta$ mittransformieren, so wäre die Diffusionsgleichung Poincarékovariant. Aber natürlich ist die Poincaré-Gruppe <u>keine</u> Symmetrie-Gruppe dieser BWG. Achtung: Terminologie <u>nicht</u> eindeutig.

Ist G eine Gruppe und

$$\phi: G \to \operatorname{Bij}(M) \tag{1.11}$$

$$g \mapsto \phi_g$$
 (1.12)

ein Homomorphismus, dann heißt

$$(\phi, G, M) \tag{1.13}$$

(verallgemeinerte) Darstellung, oder auch "Wirkung" von G auf M.

- Die Darstellung heißt <u>treu</u> bzw. effektive (Wirkung) $\Leftrightarrow \phi$ injektiv (G wird durch ϕ in Bij (M) "eingebettet"). Damit wird also nur das neutrale Element auf das neutrale Element abgebildet. Die Wirkung jedes nicht neutralen Gruppenelements bewegt mindestens einen Punkt.
- Die Wirkung heißt <u>frei</u>, falls ϕ_g für $g \neq e_G$ keine Fixpunkte besitzt. Damit werden alle Punkte bewegt.
- Die WIrkung heißt (einfach) transitiv, falls für $p, q \in M$ (genau) ein $g \in G$ existiert mit $\phi_g(p) = q$.

Sind G & H Gruppen. Auf der Menge $G \times H$ existieren mehrere Gruppenstrukturen

1. Direktes Produkt:

$$G \times H = \{ (g, h) | g \in G, h \in H \}$$

$$\tag{1.14}$$

$$(g,h)(g',h') = (gg',hh')$$
 (1.15)

$$(e_g, e_h)$$
 neutrales Element (1.16)

2. Semidirekte Produkte:

$$G \rtimes_{\alpha} H \quad \alpha \in \text{hom}(H, \text{Aut}(G))$$
 (1.17)

wobei $\operatorname{Aut}(G)$ die Gruppe der Isomorphien auf G sind. Jeder Homomorphismus $\alpha \in \operatorname{hom}(H,\operatorname{Aut}(G))$ definiert eine Gruppenstruktur auf der Menge $G \times H$ wie folgt:

$$(g,h)(g',h') = (g\alpha_h(g'),hh')$$
(1.18)

Man rechnet leicht nach: (e_G, e_H) ist neutrales Element $(g, h)^{-1} = (\alpha_{h^{-1}}(g^{-1}), h^{-1})$. Außerdem gilt Assoziativität:

$$(g,h)[(g',h')(g'',h'')] = [(g,h)(g',h')](g'',h'')$$
 (1.19)

Diese Gruppe heißt das semi-direkte Produkt von G auf H bezüglich α . Bezeichnung $G \rtimes_{\alpha} H$ (Achtung Notation nicht einheitlich). Übungsaufgaben: Inverses Element und Assoziativität.

In der Physik wichtig sind semi-direkte Produkte mit G = V = Vektorraum (aufgefasst als abelsche Gruppe), $H \subset \text{GL}(V)$ (invertierbare lineare Abbildungen von V auf sich selbst) und $\alpha : H \hookrightarrow \text{GL}(V)$ (= stetige Automorphismen der Gruppe V). Dann ist das semidirekte Produkt einfach:

$$(v,h)(v',h') = (v+h(v'),hh')$$

$$(1.20)$$

$$(v,h)^{-1} = (-h^{-1}(v),h^{-1})$$
(1.21)

$$(0, e_H)$$
 neutrales Element (1.22)

Konkreter: $V = \mathbb{R}^n$ und $H \subset GL(n,\mathbb{R})$. Man kann $\mathbb{R}^n \rtimes H$, $H \subset GL(n,\mathbb{R})$ als Untergruppe von $GL(n+1,\mathbb{R})$ auffassen, d.h. se gibt eine Einbettung $j : \mathbb{R}^n \rtimes H \hookrightarrow GL(n+1,\mathbb{R})$

$$j: (\nu, h) \mapsto \left(\begin{array}{c|c} 1 & 0 \\ \hline \nu & h \end{array}\right) \tag{1.23}$$

$$j(v,h) \cdot j(v',h') = \begin{pmatrix} 1 & 0 \\ v & h \end{pmatrix} \begin{pmatrix} 1 & 0 \\ v' & h' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ v + h(v') & h' \end{pmatrix} = j((v,h),(v',h'))$$
(1.24)

Lie-Gruppen als Mannigfaltigkeit (Mft)?

$$SO(3) \cong \mathbb{R}\mathbf{P}^3 \tag{1.25}$$

$$\mathfrak{su}(2) \cong \mathbb{S}^3 \tag{1.26}$$

$$\mathfrak{u}(1) \cong \mathbb{S}^1 \tag{1.27}$$

$$E^{3} = \mathbb{R}^{3} \times SO(2) \cong \mathbb{R}^{3} \times \mathbb{R}\mathbf{P}^{3}$$
(1.28)

$$\mathbb{R}^4 \times (SO(1,3))$$
 Lorentz-Gruppe (1.29)

2 Lie-Algebren und Lie-Gruppen

Im folgenden bezeichnet \mathbb{F} den Körper \mathbb{R} oder \mathbb{C} .

Definition 2.1. *Eine Lie-Algebra über* 𝔻 *ist ein Vektorraum über* 𝔻 *mit einer Abbildung*:

$$V \times V \to V \tag{2.1}$$

$$(x, y) \mapsto [x, y] \tag{2.2}$$

genannt "Lie-Produkt" oder "Lie-Klammer", sodass $\forall x, y, z \in V$ und alle $a \in \mathbb{F}$ gilt:

- 1. [x, y] = -[y, x] (Antisymmetrie)
- 2. [x, y + az] = [x, y] + a[x, z] (Bilnearität)
- 3. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (*Jacobi-Identität*)

Achtung: Es gibt keine Assoziativtät! $[x, [y, z]] \neq [[x, y], z]$

Beispiel 2.2.

$$V = \mathbb{R}^3 \quad [\vec{x}, \vec{y}] = \vec{x} \times \vec{y} \tag{2.3}$$

1) & 2) trivial, 3) folgt so:

$$\vec{x} \times (\vec{y} \times \vec{z}) + \vec{y} \times (\vec{z} \times \vec{x}) + \vec{z} \times (\vec{x} \times \vec{y})$$

$$= \vec{y} (\vec{x}\vec{z}) - \vec{z} (\vec{x}\vec{y}) + \vec{z} (\vec{x}\vec{y}) - \vec{x} (\vec{y}\vec{z}) + \vec{x} (\vec{z}\vec{y}) - \vec{y} (\vec{x}\vec{z})$$

$$= 0$$
(2.4)

Jede assoziative Algebra ist auch eine Lie-Algebra, z.B. Algebra der $n \times n$ -Matrizen

$$[X,Y] = XY - YX \tag{2.5}$$

1) & 2) sind wieder klar. 3) folgt aus Assoziativität

Sei V ein Vektorraum und $\operatorname{End}(V) = \operatorname{Endomorphismen} \operatorname{von} V$ eine assoziative Algebra unter \circ , d.h. für $\varphi, \varphi' \in \operatorname{End}(V)$:

$$[\varphi, \varphi'] = \varphi \circ \varphi' - \varphi' \circ \varphi \tag{2.6}$$

Definition 2.3. *Ist* L *Lie-Algebra, dann ist* L' *eine Lie-Unteralgebra* \Leftrightarrow L' *ist Untervektorraum und falls* $[\cdot,\cdot]|_{L'}$ *zu einer Lie-Algebra macht,* $[L',L'] \subset L'$.

Eine Lie-Unteralgebra $L' \subset L$ heißt <u>Ideal</u>, falls: $[x, y] \in L' \ \forall \ x \in L'$ und $\forall \ y \in L$ Man schreibt dann auch $[L', L] \subset L'$. Lie-Ideale sind für Lie-Algebren, was Normalteiler (invariante Untergruppen) für Gruppen sind. Ist $L' \subset L$ ideal, dann ist L/L' wieder Lie-Algebra.

$$[[x]_{L'}, [y]_{L'}] = [[x, y]]_{L'}$$
 (2.7)

Definition 2.4. Seien $L = (V, [\cdot, \cdot])$ und $L' = (V', [\cdot, \cdot]')$ Lie-Algebren: Eine lineare Abb. $\varphi : V \to V'$ heißt <u>Lie-Homomorphismus</u> $\varphi \varphi([x, y]) = [\varphi(x), \varphi(y)]' \forall x, y \in L.$

Wie üblich definiert $\ker(\varphi) = \{x \in L | \varphi(x) = 0\}$ Der Kern eines Lie-Homomorphismus ist ein Ideal. Eine Lie-Algebra heißt Abelsch $\Leftrightarrow [x, y] = 0 \ \forall \ x, y \in L$.

L heißt <u>einfach</u> \Leftrightarrow {0} und L sind die einzigen Ideale, d.h. L hat keine nicht-trivialen Ideale. Oft fordert man zusätzlich, dass $\dim(L) = \dim_{\mathbb{F}}(V) \ge 2$

L heißt halbeinfach, wenn $\dim(L) \ge 2$ und $\{0\}$ das einzige abelsche Ideal ist.

Bemerkung 2.5. Halbeinfach spielt für die Darstellungstheorie und Anwendungen in der Physik eine große Rolle.

 $Sei\dim(L) = \dim_{\mathbb{F}} = n$

$$\{e_a \mid a=1,\dots,n\} \text{ Basis} \tag{2.8}$$

Dann existieren $\frac{1}{2}n^2(n-1)$ Koeffizienten

$$C_{ab}^{c} = -C_{ba}^{c} mit \left[e_{a}, e_{b} \right] = C_{ab}^{c} e_{c}$$
 (2.9)

We gen $\sum\limits_{(a,b,c)\in S_3}\left[e_a,\left[e_b,e_c\right]\right]=0$

$$\Leftrightarrow C^{m}_{an}C^{n}_{bc} + C^{m}_{bn}C^{n}_{ca} + C^{m}_{cn}C^{n}_{ab} = 0$$
 (2.10)

Also genügen die Koeffizienten C^c_{ah} s den Bedingungen

1.
$$C^{c}_{ab} = -C^{c}_{ba}$$

2.
$$C_{na}^{m}C_{bc}^{n}=0$$

Umgekehrt gilt: Ein Satz von Koeffizienten C^c_{ab} der 1) & 2) genügt definiert eine Lie-Algebra. Unter Basiswechsel

$$e_a \mapsto e'_a := A^b_a e_b \tag{2.11}$$

ist

$$[e'_{a}, e'_{b}] = C'^{c}_{ab} e'_{c} (2.12)$$

$$C_{ab}^{c} \mapsto C_{ab}^{c} = (A^{-1})_{l}^{c} C_{mn}^{l} A_{a}^{m} A_{b}^{n}$$
 (2.13)

 $\left\{C^{c}_{ab}\right\}$ und $\left\{C^{\prime c}_{ab}\right\}$ definieren gleiche bzw. isomorphe Lie-Algebren.

Definition 2.6. Die direkte Summe zweier Lie-Algebren $L'(V', [\cdot, \cdot]')$, $L'' = (V'', [\cdot, \cdot]'')$ ist gegeben durch:

$$L = (V, [\cdot, \cdot]) \ mit \ V = V' \oplus V''$$
 (2.14)

$$[x' \oplus x'', y' \oplus y''] = [x', y']' \oplus [x'', y'']$$
 (2.15)

$$\forall x', y' \in V' x'', '' \in V'' \tag{2.16}$$

Definition 2.7. *Eine Derivation* $\varphi \in \text{Der}(L)$ *der Lie-Algebra* $L = (V, [\cdot, \cdot])$ *ist ein* $\varphi \in \text{End}(V)$ *mit*:

$$\varphi([x,y]) = [\varphi(x),y] + [x,\varphi(y)]$$
(2.17)

 $\operatorname{Der}(L) \subset \operatorname{End}(V)$ ist eine Lie-Unteralgebra, denn für $\varphi, \varphi' \in \operatorname{Der}(L)$:

$$[\varphi, \varphi']([x, y]) := (\varphi \circ \varphi' - \varphi' \circ \varphi)[x, y]$$

$$= [\varphi \circ \varphi'(x), y] + [\varphi'(x), \varphi(y)] + [\varphi(x), \varphi'(y)] + [x, \varphi \circ \varphi'(y)]$$

$$[\varphi' \circ \varphi(x), y] + [\varphi(x), \varphi'(y)] + [\varphi'(x), \varphi(y)] + [x, \varphi' \circ \varphi(y)]$$

$$= [[\varphi, \varphi'](x), y] + [x, [\varphi, \varphi'](y)]$$
(2.18)

Es existiert ein natürlicher Gruppenhomomorphismus

$$ad: L \to Der(L)$$
 (2.19)

$$x \mapsto \mathrm{ad}_x := [x, \cdot] \tag{2.20}$$

$$\operatorname{ad}_{x}: y \mapsto \operatorname{ad}_{x}(y) = [x, y] \operatorname{ad}_{x} \in \operatorname{Der}(L)$$
 (2.21)

Beweis.

$$ad_{x}([y,z]) = [x, [y,z]]$$

$$= -[y, [z,x]] - [z, [x,y]]$$

$$= [[x,y],z] + [y, [x,z]]$$

$$= [ad_{x}(y),z] + [y, ad_{x}(z)]$$
(2.22)

ad : $L \rightarrow Der(L)$ ist Lie-Homomorphismus

$$\operatorname{ad}_{[x,y]} = [\operatorname{ad}_x, \operatorname{ad}_y] = \operatorname{ad}_x \circ \operatorname{ad}_y - \operatorname{ad}_y \circ \operatorname{ad}_x \tag{2.23}$$

Anwenden auf $z \in L$:

$$[[x, y], z] = -[[y, z], x] - [[z, x], y]$$

$$= [x[y, z]] - [y, [x, z]]$$

$$= ad_x \circ ad_y (z) - ad_y \circ ad_x (z)$$
(2.24)

Den so definierten Lie-Homomorphismus

$$L \to \operatorname{End}(L) \quad x \mapsto \operatorname{ad}_x$$
 (2.25)

auch die <u>adjungierte</u> Darstellung der Lie-Algebra (auf sich selbst). Einen Lie-Homomorphismus

$$L \to \operatorname{End}(W)$$
 (2.26)

auf W als \mathbb{F} -Vektorraum nennt man eine Darstellung von L auf W

Definition 2.8. Seien $L' = (V', [\cdot, \cdot]')$ und $L'' = (V'', [\cdot, \cdot]'')$ Lie-Algebren und

$$\sigma: L'' \to \operatorname{Der}(L') \tag{2.27}$$

$$x'' \mapsto \sigma_{x''} \tag{2.28}$$

ein Lie-Homomorphismus. Dann ist:

$$L = (V, [\cdot, \cdot]) \tag{2.29}$$

$$L = L' \rtimes_{\sigma} L'' \tag{2.30}$$

die Semidirekte Summe von L' mit L" definiert durch:

$$V = V' \oplus V'' \tag{2.31}$$

und

$$[x' \oplus x'', y' \oplus y''] = ([x', y']' + \sigma_{x''}(y') - \sigma_{y''}(x')) \oplus [x'', y'']''$$
(2.32)

Antisymmetrie, Bilinearität und Jacobi-Identität in der Übung nachgerechnet.

Definition 2.9. Die Killing-Form einer Lie-Algebra $L = (V, [\cdot, \cdot])$ ist eine symmetrische Bilinearform

$$K: V \times V \to \mathbb{F}$$
 (2.33)

definiert durch

$$K(x, y) = \operatorname{Spur}(\operatorname{ad}_{x} \circ \operatorname{ad}_{y}) \tag{2.34}$$

Bezüglich einer Basis $\{e_a \mid a=1,\ldots,n\}$ von L ist $[e_a,e_b]=C^c_{ab}$ und

$$\left(\operatorname{ad}_{e_a}\right)^c_{\ h} = C^c_{\ ah} \tag{2.35}$$

Damit

$$K_{ab} = K(e_a, e_b) = \operatorname{Spur}(\operatorname{ad}_x \circ \operatorname{ad}_y) = C_{am}^n C_{bn}^m$$
(2.36)

Proposition 2.10. $\forall x, y \in L \ gilt$:

$$K([x,y],z) = K(x,[y,z]) \Leftrightarrow K([y,x],z) + K(x,[y,z]) = 0$$
(2.37)

Beweis. Aus $ad_{[x,y]} = [ad_x, ad_y]$ folgt:

$$\operatorname{Spur}\left(\operatorname{ad}_{[x,y]} \circ \operatorname{ad}_{z}\right)$$

$$= \operatorname{Spur}\left(\operatorname{ad}_{x} \circ \operatorname{ad}_{y} \circ \operatorname{ad}_{z} - \operatorname{ad}_{y} \circ \operatorname{ad}_{z} \circ \operatorname{ad}_{z}\right)$$

$$= \operatorname{Spur}\left(\operatorname{ad}_{x} \circ \operatorname{ad}_{y} \circ \operatorname{ad}_{z} - \operatorname{ad}_{x} \circ \operatorname{ad}_{z} \circ \operatorname{ad}_{y}\right)$$

$$= \operatorname{Spur}\left(\operatorname{ad}_{x} \circ \operatorname{ad}_{[y,z]}\right)$$

$$= \operatorname{Spur}\left(\operatorname{ad}_{x} \circ \operatorname{ad}_{[y,z]}\right)$$

$$(2.38)$$

Der Nullraum von K ist definiert durch

$$N(L) := \{ x \in L | K(x, y) = 0 \ \forall \ y \in L \}$$
 (2.39)

Ist $x \in N(L)$, dann folgt aus

$$K([x,y],z) = K(x,[y,z]) = 0 \forall y,z$$
(2.40)

N(L) ist ein Ideal. Das kann verallgemeinert werden zu:

Korollar 2.11. *Sei* $I \subset L$ *ein Ideal dann ist auch* I^{\perp} *ein Ideal:*

$$I^{\perp} = \{ x \in L | K(x, y) = 0 \ \forall \ y \in I \}$$
 (2.41)

Beweis.

$$K([I^{\perp}, L], I) = K(I^{\perp}, [L, I]) = K(I^{\perp}, I) = 0$$
 (2.42)

Damit folgt
$$[I^{\perp}, L] \subset I^{\perp}$$

Proposition 2.12. *Ist* $I \subset L$ *ein Ideal, dann ist*

$$K_I = K|_I, (2.43)$$

d.h. die Killingform von I ist gleich der Einschränkung der Killingform von L auf I

Beweis. Ist $\varphi \in \text{End}(V)$ mit $\text{Bild}(\varphi) \subset W \subset V$, dann gilt

$$\operatorname{Spur}(\varphi) = \operatorname{Spur}(\varphi|_{W}) \tag{2.44}$$

Angewandt auf $\varphi = \operatorname{ad}_x \circ \operatorname{ad}_v \in \operatorname{End}(V)$ mit $x, y \in I$, dann ist $\operatorname{Bild}(\varphi) \subset I \subset L$.s

Satz 2.13 (Cartan). *L* ist genau dann halbeinfach, wenn *K* nicht ausgeartet ist, d.h. $N(L) = \{0\}$

Beweis. Ist $I \subset L$ ein abelsches Ideal $\neq \{0\}$ und $0 \neq x \in I$, $y \in L$, dann

$$K(x, y) = \operatorname{Spur}(\operatorname{ad}_x \circ \operatorname{ad}_y) = \operatorname{Spur}(\operatorname{ad}_x|_I, \operatorname{ad}_y|_I) = 0$$
(2.45)

Da $\operatorname{ad}_{x}|_{I} = 0$ falls I abelsch (und Bild $\subset I$). Andere Richtung als Übung.

Zerlegung von halbeinfachen Lie-Algebren in die direkte Summe von einfachen Lie-Algebren. Sei L halbeinfache Lie-Algebra und $I \subset L$ Ideal

$$K([I^{\perp}, I], L) = K(I^{\perp}, [I, L]) = K(I^{\perp}, I) = 0$$
 (2.46)

Dann $[I^{\perp}, I] = N(L) = \{0\}$ und damit $I^{\perp} \cap I = \{0\}$, also $L = I \oplus I^{\perp}$. Enthält I weitere Ideale kann die Zerlegung analog weiter geführt werden, bis keine weiteren Ideale mehr existieren:

$$L = \bigoplus_{i=1}^{n} I_i \tag{2.47}$$

Proposition 2.14. L halbeinfach, dann

$$[L, L] = \text{Span}\{[x, y] | x, y \in L\}$$
 (2.48)

Definition 2.15. Eine Lie-Algebra für die [L, L] = L gilt, heißt perfekt

Definition 2.16. Eine Lie-Algebra heißt kompakt, falls K negativ definit ist. Achtung: Das Wort "Kompakt" bezieht sich auf die zur Lie-Algebra zugehörigum Lie-Gruppen. Eine Lie-Algebra als topologischer Raum ist natürlich nie kompakt.

Beispiel 2.17.
$$L = (\mathbb{R}^3, \times), \vec{e}_a \times \vec{e}_b = \epsilon_{ab}{}^c \vec{e}_c, C^c_{ab} = \epsilon_{ab}{}^c$$

$$K_{ab} = C^n_{am} C^m_{bn} = \epsilon_{am}^n \epsilon_{bn}^m = -2\delta_{ab}$$
 (2.49)

2.1 Matrix Lie-Gruppen

"Matrix" heißt: Jede der betrachteten Gruppen besitzt eine treue endliche Darstellung (sog. "definierende Darstellung"). Achtung: Es existieren endlich dim. Lie-Gruppen die keine Matrixgruppen sind, z.B. alle Überlagerungsgruppen von $SL(2,\mathbb{R})$

Beispiel 2.18.

$$GL(\mathbb{F}^n) := \{ x \in End(\mathbb{F}^n) | \det(x) \neq 0 \}$$
(2.50)

$$SL(\mathbb{F}^n) := \{ x \in GL(\mathbb{F}^n) | \det(x) = 1 \}$$

$$(2.51)$$

$$O(p, q_{-}) := \left\{ x \in End(\mathbb{F}^{n}) \middle| x E^{(p,q)} x^{T} = E^{(p,q)} \right\}$$
 (2.52)

$$SO(p, q_{-}) := \{x \in O(p, q_{-}) | \det(x) = 1\}$$
 (2.53)

$$U(p,q_{-}) := \left\{ x \in GL(\mathbb{C}^{n}) \middle| xE^{(p,q)}X^{T} = E^{(p,q)} \right\}$$
 (2.54)

$$SU(p, q_{-}) := \{x \in U(p, q_{-}) | \det(x) = 1\}$$
 (2.55)

$$SO(1,3) = Lorentzgruppe \cup \{-1_4\}$$
 (2.56)

wobei

$$E^{(p,q)} = \left(\begin{array}{c|c} \mathbb{1}_p & 0 \\ \hline 0 & -\mathbb{1}_q \end{array}\right) \tag{2.57}$$

Ebenfalls Matrix-Gruppen sind solche, die aus semi-direkten Produkten mit \mathbb{F}^n entstehbar. Sei $G \subset \operatorname{End}(V)$ ($V \cong \mathbb{F}^n$) eine Gruppe & $A : \mathbb{R} \supset (-\epsilon, \epsilon) \to G$ differenzierbare Kurve mit $A(0) = \operatorname{id}$. Wir definieren $\dot{A} := \frac{\operatorname{d}}{\operatorname{d} s} \Big|_{s=0} A(s) = \operatorname{Tangentialvektor}$ an der Gruppenidentität.

Satz 2.19. *Die Menge der Tangentialvektoren an die Gruppenidentität bilden eine reelle Lie-Algebra,* Lie (*G*).

Beweis. 1. Linearität: Ist $X = \dot{A}$ und $Y = \dot{B}$, definiere C(s) = A(s)B(s), dann $\dot{C} = \dot{A} + \dot{B} = X + Y$. Ebenso: Ist $X = \dot{A}$, definiere $B(s) = A(as)\dot{B} = aX \forall a \in \mathbb{R}$. Geschwindigkeit bei $e \in G$ bildet Vektorraum über \mathbb{R} .

2. Abgeschlossenheit unter Kommutatorbildung: Sei $X = \dot{A} \& Y = \dot{B}$. Wir müssen zeigen, dass eine Kurve C(s) existiert mit C(0) = e und $\dot{C} = [X, Y] = XY - YX$. Definiere also

$$C(s) = \begin{cases} A(\tau(s)) B(\tau(s)) A^{-1}(\tau(s)) B^{-1}(\tau(s)) & s \ge 0 \\ B(\tau(s)) A(\tau(s)) B^{-1}(\tau(s)) A^{-1}(\tau(s)) & s \le 0 \end{cases}$$
 (2.58)

wobei $\tau(s) = \text{sign}(s) \sqrt{s}$ und invers $s(\tau) = \text{sign}(\tau) \tau^2$

Obwohl keine der Kurven $s \mapsto A(\tau(s))$ etc. selber differenzierbar ist (weil $\tau(s)$ nicht differenzierbar ist), ist dennoch die Kurve $s \mapsto C(s)$ bei s = 0 differenzierbar. Für $s \setminus 0$ (Rechtsableitung) gilt:

$$\dot{C}_{R} = \lim_{s \searrow 0} \left\{ \frac{C(s) - e}{s} \right\} = \lim_{s \searrow 0} \left\{ \frac{[A(\tau(s)), B(\tau(s))] A^{-1}(\tau(s)) B^{-1}(\tau(s))}{s} \right\}
= \lim_{\tau \searrow 0} \left\{ \left[\frac{A(\tau) - e}{\tau}, \frac{B(\tau) - e}{\tau} \right] A^{-1}(\tau) B^{-1}(\tau) \right\}
= [X, Y]$$
(2.59)

 \dot{C}_L analog.

Da die Lie-Struktur durch die von $\operatorname{End}(V)$ induziert wird, gilt automatisch die Jacobi-Identität. Ist $D \in \operatorname{Hom}(G,\operatorname{GL}(W))$ eine lineare Darstellung von G auf den Vektorraum W, dann induziert diese eindeutig eine Darstellung

$$D_* \in \operatorname{Hom}\left(\operatorname{Lie}\left(G\right), \operatorname{End}\left(W\right)\right)$$
 (2.60)

Beweis. Das sieht man so: Sei A(s) Kurve in G mit A(0) = e und $\frac{d}{ds}\Big|_{s=0} A(s) = X$. Dann ist $A'(s) = (D \circ A)(s) = D(A(s))$ eine Kurve in GL(W) mit $A'(0) = e|_{GL(W)}$. Wir sehen voraus, dass D differenzierbar ist.

$$\frac{d}{ds}\Big|_{s=0} A'(s) = D_*(X).$$
 (2.61)

Dabei ist D_* die Ableitung der Abb.D bei $e \in G$. Wir müssen zeigen:

$$D_*([X,Y]) = [D_*(X), D_*(Y)]$$
(2.62)

Wir zuvor betrachten wir Kurven in G; A(s) B(s) mit $\dot{A} = X$ $\dot{B} = Y$ und C(s) def. wie oben und deren Bilder unter D in GL(W) (A', B', C'). Für $s \ge 0$ ist dann:

$$C'(s) = D(C(s)) \tag{2.63}$$

Abgeleitet ergibt einerseits

$$\dot{C}' = D_* \dot{C} = D_* ([X, Y]) \tag{2.64}$$

andererseits, weil D Homomorphismus

$$C' = D(A(\tau(s))) D(B(\tau(s))) [D(A(\tau(s)))]^{-1} [D(A(\tau(s)))]^{-1}$$
(2.65)

folgt nach identischer Rechnung $\dot{C}' = [D_* X, D_* Y]$

Adjungierte Darstellung

$$Ad \in Hom(G, GL(Lie(G)))$$
 (2.66)

$$G \ni A \mapsto \mathrm{Ad}_A : x \mapsto \mathrm{Ad}_A(x)$$
 (2.67)

Sei B(s) Kurve in G mit B(0) = e und $\dot{B} = \frac{d}{ds} \Big|_{s=0} B(s) = Y$, dann

$$Ad_{A}(Y) := \frac{d}{ds} \Big|_{s=0} AB(s) A^{-1} = AYA^{-1}$$
(2.68)

Achtung: Da $Y \in \text{End}(V)$ i. A. nicht in GL(V) liegt, ist hier mit "·" das Produkt in der assoziativen Algebra End(V) gemeint (Komposition). Ist nun A = A(t) selbst eine Kurve mit A(0) = e und $\dot{A} = X$, dann folgt mit

$$\frac{\mathrm{d}}{\mathrm{d}t}\bigg|_{t=0} A(t) = -X \tag{2.69}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \mathrm{Ad}_{A(t)}(Y) = \mathrm{Ad}_{*}(X)(Y)$$

$$= [X, Y] = \mathrm{ad}_{X}(Y)$$
(2.70)

Damit $Ad_* = ad$

2.2 Die Exponentialabbildung

Sei exp: $\operatorname{End}(V) \to \operatorname{End}(V)$ def. durch

$$\exp(x) := \sum_{n=0}^{\infty} \frac{X^n}{n!} \quad X^n = X \circ \dots \circ X$$
 (2.71)

Ist $X \in \text{End}(V)$ und $A \in \text{GL}(V)$ und sei Ad_A: End(V) → End(V) die Abb.

$$Ad_A(X) = A \circ X \circ A^{-1} \quad Ad_A(X^n) = [Ad_A(X)]^n \tag{2.72}$$

Damit erhält man $Ad_A \circ exp = exp \circ Ad_A$

Proposition 2.20. $det \circ exp = exp \circ Spur$

Beweis. einfach über $\mathbb C$ (nötigenfalls Komplexifizierung $V\otimes\mathbb C$), dann existiert eine Basis $\{e_a \mid a=1,\dots,n\}$ aus Eigenvektoren von $X\in\mathrm{End}\left(V^{\mathbb C}\right)$

$$X = \begin{pmatrix} \lambda_1 & * \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} \exp(X) = \begin{pmatrix} e^{\lambda_1} & * \\ & \ddots & \\ 0 & & e^{\lambda_1} \end{pmatrix}$$
 (2.73)

$$\det(\exp(X)) = \exp\left(\sum_{n} \lambda_{n}\right)$$

$$= \exp(\operatorname{Spur}(X))$$
(2.74)

Korollar 2.21.

$$\exp(\text{End}(V)) \subseteq \text{GL}^+(V) = \{x \in \text{GL}(V) | \det(X) > 0\}$$
 (2.75)

Beweis. Ist $X: (-\epsilon, \epsilon) \to \operatorname{End}(V)$ mit X(0) = 0 und $\dot{X} = \frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} X(s)$, dann $A(s) := \exp(X(s))$ mit A(0) = e

$$\dot{A} = \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0} \exp(X(t)) = \exp_*(\dot{X}) = \dot{X} \,\forall X \tag{2.76}$$

Nach dem Satz über Umkehrfunktionen bildet exp eine offene Umgebung U von $O \in \operatorname{End}(V)$ in eine offene Umgebung U' von $e \in \operatorname{GL}(V)$ ab, und zwar bijektiv und in beide Richtungen diff'bar . exp ist also lokal ein Diffeomorphismus. Global kann dagegen sowohl die Injektivität, als auch die Surjektivität nicht erfüllt sein.

Beispiel 2.22. Exponentialabbildungen

- 1. $G = U(1) = \{e^{i\lambda} | \lambda \in \mathbb{R}\}\ und \operatorname{Lie}(G) = \{i\lambda | \lambda \in \mathbb{R}\}\ Kurven\ in\ G\ sind\ z.B.\ A(s) = e^{i\lambda(s)}\ mit\ \lambda(0) = 0,\ \dot{A}(0) = i\dot{\lambda} \in i\mathbb{R}\ aber\ \exp(i\lambda) = \exp(i\lambda') \Leftrightarrow \lambda \lambda' = 2\pi n,\ also\ ist\ \exp\ surjektiv,\ aber\ nicht\ injektiv.$
- 2. $G = SO(3) = SO(\mathbb{R}^3) = \{A \in GL(\mathbb{R}^3) | A^T = A^{-1} \}$ und Lie $(G) = \{x \in End(\mathbb{R}^3) | X + X^T = 0 \}$. exp-Funktion ist auch hier nicht injektiv. Auch hier gilt Surjektivität (Übung). Das sind aber Spezialfälle. i. A. nicht surjektiv.
- 3. $SL(2,\mathbb{R})$ Behauptung: Kein Element der Form

$$D_n = \begin{pmatrix} -n & 0 \\ 0 & -\frac{1}{n} \end{pmatrix} \quad n \in \mathbb{R}_+ \setminus \{1\}$$
 (2.77)

liegt im Bild von exp

Beweis. Clevere Beobachtung: Ist $A \in G$ in Bild (exp), dann ex. $H \in G$ mit $H^2 = A$; $A = \exp x$, $H = \exp \frac{1}{2}x$. Es reicht also zu zeigen, dass D_n keine Wurzel hat, d.h. $D_n \neq H^2$

$$H = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad H^2 = \begin{pmatrix} a^2 + bc & b(a+d) \\ c(a+d) & d^2 + bc \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} -n & 0 \\ 0 & -\frac{1}{n} \end{pmatrix}$$
 (2.78)

$$b(a+d) = c(a+d) = 0 (2.79)$$

$$a^2 + bc = -n (2.80)$$

$$d^2 + bc = -\frac{1}{n} (2.81)$$

1. Fall: $(a + d) \neq 0$, b = c = 0, also $a^2 = -n$

2. Fall: (a + d) = 0, also $n^2 = 1$

Beachte, dass D_n in der Komponente der Gruppeneinheit liegt, d.h. es gibt eine stetige Kurve A(s), die e mit D_n verbindet

 $A(s) = \begin{cases} \begin{pmatrix} \cos(2\pi s) & \sin(2\pi s) \\ -\sin(2\pi s) & \cos(2\pi s) \end{pmatrix} & s \in \left[0, \frac{1}{2}\right] \\ \begin{pmatrix} \varphi(s) & 0 \\ 0 & \frac{1}{\varphi(s)} \end{pmatrix} & s \in \left[\frac{1}{2}, 1\right] \end{cases}$ (2.82)

mit $\varphi(s) = 2(1-n)s + (n-2)$ sodass $\varphi(\frac{1}{2}) = -1$ und $\varphi(1) = -n$

Obwohl exp: Lie $(G) \rightarrow G$ i. A. nicht surjektiv ist (auch dann nicht, wenn G zusammenhängend ist) wird doch ganz G (zusammenhängend) von Lie (G) im folgenden Sinne "erzeugt":

Proposition 2.23. Ist G zusammenhängende Lie-Gruppe und $A \in G$. Dann ex. endlich viele $X_1, ..., X_n \in \text{Lie}(G)$, dass

$$A = \exp(X_1) \cdot \dots \cdot \exp(X_n) \tag{2.83}$$

Zum Beweis benötigen wir folgendes

Lemma 2.24. Sei G zusammenhängende topologische Grupep und $V \subset G$ offene Umgebung der Identität $e \in G$. Sei $A \in G$, dann ex. endlich viele $g_1, \ldots, g_n \in V$, $A = g_1 \cdots g_n$

Beweis. Wir betrachten die Menge aller endlichen Produkte von Elementen aus V, also

$$G' = \{ g \in G | \exists g_1, \dots, g_n \in V, n < \infty, g = g_1 \cdot \dots \cdot g_n \}$$
 (2.84)

G' ist offen und eine Untergruppe. Es ist $V \subset G'$, also $gV = \{gg' | g' \in V\}$ offene Umgebung von g denn die Linksoperation $L_g : G \to G$ $h \mapsto gh$ hat stetige Inverse $L_g^{-1} = L_{g^{-1}}$, somit offene Abbildungen. In einer topologischen Gruppe ist eine offene Untergruppe auch abgeschlossen, da sie das Komplement der Vereinigung aller von G' verschiedenen Nebenklassen gG' ist, die alle offen sind. $G' \subset G$ ist also offen und abgeschlossen. Da G' nichtleer und G zusammenhängend ist, folgt G' = G

Satz 2.25. Jedes Element in der Komponente der Einheit einer Lie-Gruppe ist das endliche Produkt von Bildern der Exponentialfunktion.

Sei G Lie-Gruppe & $X \in \text{Lie}(G)$. Wir betrachten die Kurve

$$A(S) = \exp(sX)$$

$$\dot{A} = \frac{d}{ds} \Big|_{s=0} A(s) = X$$
(2.85)

Für $A \in \text{Hom}((\mathbb{R}, +), G)$

$$A(s_1) A(s_2) = \exp(s_1 X) \exp(s_2 X)$$

$$= \exp((s_1 + s_2) X)$$

$$= A(s_1 + s_2)$$
(2.86)

Proposition 2.26. *Jeder differenzierbare Homomorphismus* $A : (\mathbb{R}, +) \to G$ *ist von der Form* $A(s) = A \exp(sx)$ *für ein* $x \in \text{Lie}(G)$

Beweis. Sei A diff'bar Homomorphismus mit $\frac{d}{ds}\Big|_{s=0} = X$

$$\frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} A(s+s') = \frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} A(s) A(s')$$

$$\dot{A}(s) = A(s) X$$
(2.87)

Betrachte Kurve $C(s) = A(s) \exp(-sX)$. Dann ist wegen

$$\dot{C}(s) = A(s) x \exp(-sx) - A(s) x \exp(-sx) = 0$$
(2.88)

$$C(s) = id|_G = e \text{ konstant, also } A(s) = \exp(-sx)$$

Seien G & G' Lie-Gruppen und $\Phi : G \to G'$ eine differenzierbarer Homomorphismus. Dann ist $A(s) = \phi(\exp(sx)) \in \operatorname{Hom}((\mathbb{R},+),G')$ mit

$$\dot{A} = \frac{d}{ds} \Big|_{s=0} A(s) = \dot{\phi}(x) = \phi_* \Big|_e(x)$$
 (2.89)

Aus Proposition folgt:

$$\phi(\exp(tx)) = \exp(t\dot{\phi}(x)) \tag{2.90}$$

Korollar 2.27. Sei $\phi: G \to G'$ diff'bar Homomorphismus, dann gilt:

$$\phi \circ \exp = \exp \circ \phi \tag{2.91}$$

Beachte: $\phi \in \text{Hom}(G, G')$

$$\dot{\phi} = \text{Hom}\left(\text{Lie}\left(G\right), \text{Lie}\left(G'\right)\right) \tag{2.92}$$

Letzteres folgte bereits am z.B. der Darstellung (gezeigt): Sind A(s), B(s) Kurven in G mit $\dot{A} = X \& \dot{B} = Y$, sowie C(s) mit $\dot{C} = [X, Y]$. Dann sind $A'(s) := \phi(A(s))$, $B'(s) := \phi(B(s))$ und $C'(s) = \phi(C(s))$ Kurven in G' mit

$$\dot{A}' = \dot{\phi}(X) \quad \dot{B}' = \dot{\phi}(Y) \quad \dot{C}' = \dot{\phi}([X, Y])$$
 (2.93)

Ausder Homomorphie von ϕ und der Form von C (Produkt $ABA^{-1}B^{-1}$) folgt $\dot{C}' = [\dot{\phi}(X), \dot{\phi}(Y)]$. Da X, Y beliebig ist $\dot{\phi} \in \text{Hom}(\text{Lie}(G), \text{Lie}(G'))$

Die Frage ist nun, inwieweit auch die Umkehrung gilt, also inwieweit ein Lie-Algebren-Homomorphismus der zugehörigen Lie-Gruppe induziert. Seien also Lie (G) & Lie (G') die Lie-Algebren der Lie-Gruppen G bzw. G' und:

$$\varphi: \operatorname{Lie}(G) \to \operatorname{Lie}(G')$$
 (2.94)

ein Lie-Algebren-Homomorphismus. Frage: Existiert $\phi \in \text{Hom}(G, G')$ mit $\dot{\phi} = \varphi$ Eindeutigkeit: Seien $\phi_1 \& \phi_2$ zwei Homomorphismen $G \to G'$ mit

$$\dot{\phi}_1 = \dot{\phi}_2 = \varphi \tag{2.95}$$

Dann folgt wegen

$$\phi_{1,2} \circ \exp = \exp \circ \dot{\phi}_{1,2} = \exp \circ \varphi \tag{2.96}$$

dass ϕ_1 und ϕ_2 auf Elementen der From $\exp(x_1)$... $\exp(x_n)$ übereinstimmen, d.h. auf der Komponente der Einheit. Also: Ist G zusammenhängend dann ist ϕ mit $\dot{\phi} = \varphi$ eindeutig bestimmt, sofern es existiert. Beachte: Ob G' zusammenhängend ist, interessiert nicht. Ist G hingegen nicht zusammenhängend, dann kann es mehrere Homomorphismen geben mit $\dot{\phi} = \varphi$

Beispiel 2.28.

$$G = G' = O(3) = \{ A \in GL(\mathbb{R}^3) | AA^T = id|_{\mathbb{R}^3} \}$$

$$O(3) = SO(3) \cup PSO(3)$$

$$SO(3) = \{ A \in O(3) | \det(A) = +1 \}$$

$$PSO(3) = \{ A \in O(3) | \det(A) = -1 \}$$
(2.97)

Sei $f: \text{Lie}(O(3)) \to \text{Lie}(O(3))$ und sei $\phi: O(3) \to O(3)$ Homomorphismus mit $\dot{\phi} = f$, dann ist $\phi' = \det \phi$

$$\phi'(A) = \det(A)\phi(A) \tag{2.98}$$

Dann ist $\phi' \neq \phi$ aber $\dot{\phi}' = \dot{\phi} = f$

Proposition 2.29. Seien $G \neq G'$ Lie-Gruppen, wobei G zusammenhängend ist. Sei f: Lie $(G) \rightarrow$ Lie (G') Lie-Homomorphismus. Dann gibt es höchstens einen differenzierbaren Gruppen-Homomorphismus ϕ : $G \rightarrow G'$ mit $\dot{\phi} = f$. Ein solches ϕ existiert genau dann, falls G einfach zusammenhängend ist, d.h. $\Pi_1(G) = \{1\}$ die Fundamentalgruppe ist trivial. Beweis: algebraische Topologie

Bemerkung 2.30. Für allgemeine topologische Räume muss Π_1 nicht unbedingt abelsch sein. Für topologische Gruppen ist Π_1 aber immer abelsch.

$$\Pi_{1}(\mathbb{S}^{1}) = \mathbb{Z}$$

$$\Pi_{1}(\mathbb{S}^{1} \times \mathbb{S}^{1}) = \mathbb{Z} \times \mathbb{Z}$$

$$\Pi_{1}(8) = \mathbb{Z} \times \mathbb{Z}$$
(2.99)

Zu jeder zusammenhängenden Lie-Gruppe existiert eine eindeutige zusammenhängende $\underline{\text{und}}$ einfach zusammenhängende Lie-Gruppe \bar{G} mit