Scheda riassuntiva di Teoria dei campi e di Galois

Campi e omomorfismi

Si dice **campo** un anello commutativo non banale K che è contemporaneamente anche un corpo. Si dice **omomorfismo di campo** tra due campi K ed L un omomorfismo di anelli. Dal momento che un omomorfismo φ è tale per cui $\operatorname{Ker} \varphi$ è un ideale di K con $1 \notin \operatorname{Ker} \varphi$, deve per forza valere $\operatorname{Ker} \varphi = \{0\}$, e quindi ogni omomorfismo di campi è un'immersione.

Caratteristica di un campo

Dato l'omomorfismo $\zeta:\mathbb{Z}\to K$ completamente determinato dalla relazione $1\stackrel{\zeta}{\mapsto} 1_K$, si definisce **caratteristica di** K, detta char K, il generatore non negativo di Ker ζ . In particolare char K è 0 o un numero primo. Se char K è zero, ζ è un'immersione, e quindi K è un campo infinito, e in particolare vi si immerge anche \mathbb{Q} .

Tuttavia non è detto che char K=p implichi che K è finito. In particolare $\mathbb{Z}_p(x)$, il campo delle funzioni razionali a coefficienti in \mathbb{Z}_p , è un campo infinito a caratteristica p.

Proprietà dei campi a caratteristica p

Se char K=p, per il Primo teorema di isomorfismo per anelli, $\mathbb{Z}/p\mathbb{Z}$ si immerge su K tramite la proiezione di ζ ; pertanto K contiene una copia isomorfa di $\mathbb{Z}/p\mathbb{Z}$. Per campi di caratteristica p, vale il Teorema del binomio ingenuo, ossia:

$$(a+b)^p = a^p + b^p,$$

estendibile anche a più addendi. In particolare, per un campo K di caratteristica p, la mappa $\mathcal{F}: K \to K$ tale per cui $a \stackrel{\mathcal{F}}{\longmapsto} a^p$ è un omomorfismo di campi, ed in particolare è un'immersione di K in K, detta **endomorfismo di Frobenius**. Se K è un campo finito, \mathcal{F} è anche un isomorfismo. Si osserva che per gli elementi della copia $K \supseteq \mathbb{F}_p \cong \mathbb{Z}/p\mathbb{Z}$ vale $\mathcal{F}|_{\mathbb{F}_p} = \mathrm{Id}_{\mathbb{F}_p}$, e quindi \mathcal{F} è un elemento di $\mathrm{Gal}(K/\mathbb{F}_p)$.

Campi finiti

Per ogni p primo e $n \in \mathbb{N}^+$ esiste un campo finito di ordine p^n . In particolare, tutti i campi finiti di ordine p^n sono isomorfi tra loro, possono essere visti come spazi vettoriali di dimensione n sull'immersione di $\mathbb{Z}/p\mathbb{Z}$ che contengono, e come campi di spezzamento di $x^{p^n}-x$ su tale immersione. Tali campi hanno obbligatoriamente caratteristica p, dove $|K|=p^n$. Esiste sempre un isomorfismo tra due campi finiti che manda la copia isomorfa di $\mathbb{Z}/p\mathbb{Z}$ di uno nell'altra.

Poiché i campi finiti di medesima cardinalità sono isomorfi, si indicano con \mathbb{F}_p e \mathbb{F}_{p^n} le strutture algebriche di tali campi. In particolare con $\mathbb{F}_{p^n} \subseteq \mathbb{F}_{p^m}$ si intende che esiste un'immersione di un campo con p^n elementi in uno con p^m elementi, e analogamente si farà con altre relazioni (come l'estensione di

campi) tenendo bene in mente di star considerando tutti i campi di tale ordine.

Vale la relazione $\mathbb{F}_{p^n} \subseteq \mathbb{F}_{q^m}$ se e solo se p=q e $n \mid m$. Conseguentemente, l'estensione minimale per inclusione comune a $\mathbb{F}_{p^{n_1}}, \ldots, \mathbb{F}_{p^{n_i}}$ è \mathbb{F}_{p^m} dove $m:= \mathrm{mcm}(n_1,\ldots,n_i)$. Pertanto se $p \in \mathbb{F}_{p^n}[x]$ si decompone in fattori irriducibili di grado n_1,\ldots,n_i , il suo campo di spezzamento è \mathbb{F}_{p^m} . Inoltre, $x^{p^n}-x$ è in \mathbb{F}_p il prodotto di tutti gli irriducibili di grado divisore di n.

Proprietà dei polinomi di K[x]

Per il Teorema di Lagrange sui campi, ogni polinomio di K[x] ammette al più tante radici quante il suo grado. Come conseguenza pratica di questo teorema, ogni sottogruppo moltiplicativo finito di K è ciclico. Pertanto $\mathbb{F}_{p^n}^* = \langle \alpha \rangle$ per $\alpha \in \mathbb{F}_{p^n}$, e quindi $\mathbb{F}_{p^n} = \mathbb{F}_p(\alpha)$, ossia \mathbb{F}_{p^n} è sempre un'estensione semplice su \mathbb{F}_p . Si dice **campo di spezzamento** di una famiglia $\mathcal F$ di polinomi di K[x] un sovracampo minimale per inclusione di K che fa sì che ogni polinomio di $\mathcal F$ si decomponga in fattori lineari. I campi di spezzamento di $\mathcal F$ sono sempre K-isomorfi tra loro. Per il criterio della derivata, $p \in K[x]$ ammette radici multiple se e solo se $\mathrm{MCD}(p,p')$ non è invertibile, dove p' è la derivata formale di p.

Se p è irriducibile in K[x], (p) è un ideale massimale, e K[x]/(p) è un campo che ne contiene una radice, ossia [x]. In particolare K si immerge in K[x]/(p), e quindi tale campo può essere identificato come un'estensione di K che aggiunge una radice di p. Se K è finito, detta α la radice aggiunta all'estensione, $L:=K[x]/(p)\cong K(\alpha)$ contiene tutte le radici di p (ed è dunque il suo campo di spezzamento). Infatti detto $[L:\mathbb{F}_p]=n$, [x] annulla $x^{p^n}-x$ per il Teorema di Lagrange sui gruppi, e quindi p deve dividere p0 deve spezzarsi in fattori lineari, e quindi ogni radice deve già appartenere ad p1. In particolare, ogni estensione finita e semplice di un campo finito è normale, e quindi di Galois.

Estensioni di campo

Si dice che L è un'estensione di K, e si indica con L/K, se L è un sovracampo di K, ossia se $K\subseteq L$. Si indica con $[L:K]=\dim_K L$ la dimensione di L come K-spazio vettoriale. Si dice che L è un'estensione finita di K se [L:K] è finito, e infinita altrimenti. Un'estensione finita di un campo finito è ancora un campo finito. Un'estensione è finita se e solo se è finitamente generata da elementi algebrici. Una K-immersione è un omomorfismo di campi iniettivo da un'estensione di K in un'altra estensione di K che agisce come l'identità su K. Un K-isomorfismo è una K-immersione che è isomorfismo.

Date estensioni L e M su K, si definisce LM = L(M) = M(L) come il **composto** di L ed M, ossia come la più piccola estensione di K che contiene sia L che M. In particolare, LM

può essere visto come L-spazio vettoriale con vettori in M, o analogamente come M-spazio con vettori in L.

Omomorfismo di valutazioni, elementi algebrici e trascendenti e polinomio minimo

Dato α , si definisce $K(\alpha)$ il più piccolo sovracampo di K che contiene α . Si definisce l'omomorfismo di valutazione $\varphi_{\alpha,K}:K[x]\to K[\alpha]$, detto φ_{α} se K è noto, l'omomorfismo completamente determinato dalla relazione $p\xrightarrow{\varphi\alpha}p(\alpha)$. Si verifica che φ_{α} è surgettivo. Se φ_{α} è iniettivo, si dice che α è trascendentale su K e $K[x]\cong K[\alpha]$, da cui $[K[\alpha]:K]=[K[x]:K]=\infty$. Se invece φ_{α} non è iniettivo, si dice che α è algebrico su K. Si definisce μ_{α} , detto il polinomio minimo di α su K, il generatore monico di Ker φ_{α} . IDal momento che K è in particolare un dominio di integrità, μ_{α} è sempre irriducibile.

Si definisce $\deg_K \alpha := \deg \mu_\alpha$. Se α è algebrico su K, $K[x]/(\mu_\alpha) \cong K[\alpha]$, e quindi $K[\alpha]$ è un campo. Dacché $K[\alpha] \subseteq K(\alpha)$, vale allora $K[\alpha] = K(\alpha)$. Inoltre, poiché $\dim_K K[x]/(\mu_\alpha) = \deg_K \alpha$, vale anche che $[K(\alpha):K] = \deg_K \alpha$. Infine, si verifica che α è algebrico se e solo se $[K(\alpha):K]$ è finito.

Estensioni semplici, algebriche

Si dice che L è un'estensione semplice di K se $\exists \alpha \in L$ tale per cui $L = K(\alpha)$. In tal caso si dice che α è un elemento primitivo di K. Si dice che L è un'estensione algebrica di K se ogni suo elemento è algebrico su K. Ogni estensione finita è algebrica. Non tutte le estensioni algebriche sono finite (e.g. $\overline{\mathbb{Q}}$ su \mathbb{Q}).

L'insieme degli elementi algebrici di un'estensione di K su K è un estensione algebrica di K. Pertanto se α e β sono algebrici, $\alpha \pm \beta, \ \alpha\beta, \ \alpha\beta^{-1}$ e $\alpha^{-1}\beta$ (a patto che o $\alpha \neq 0$ o $\beta \neq 0$) sono algebrici.

Campi perfetti, estensioni separabili e coniugati

Si dice che un'estensione algebrica L è un'estensione separabile di K se per ogni elemento $\alpha \in L$, μ_{α} ammette radici distinte. Si dice che K è un campo perfetto se ogni polinomio irriducibile ammette radici distinte. In un campo perfetto, ogni estensione algebrica è separabile. Si definiscono i coniugati di α algebrico su K come le radici di μ_{α} . Se $K(\alpha)$ è separabile su K, α ha esattamente $\deg_K \alpha$ coniugati, altrimenti esistono al più $\deg_K \alpha$ coniugati.

Un campo è perfetto se e solo se ha caratteristica 0 o altrimenti se l'endomorfismo di Frobenius è un automorfismo. Equivalentemente, un campo è perfetto se le derivate dei polinomi irriducibili sono sempre non nulle. Esempi di campi

perfetti sono allora tutti i campi di caratteristica 0 e tutti i campi finiti.

Campi algebricamente chiusi e chiusura algebrica di K

Un campo K si dice **algebricamente chiuso** se ogni $p \in K[x]$ ammette una radice in K. Equivalentemente K è algebricamente chiuso se ogni $p \in K[x]$ ammette tutte le sue radici in K. Si dice **chiusura algebrica** di K una sua estensione algebrica e algebricamente chiusa. Le chiusure algebriche di K sono K-isomorfe tra loro, e quindi si identifica con \overline{K} la struttura algebrica della chiusura algebrica di K.

Se L è una sottoestensione di K algebricamente chiuso, allora \overline{L} è il campo degli elementi algebrici di K su L. Infatti se $p \in L[x], \, p$ ammette una radice α in K, essendo algebricamente chiuso. Allora α è un elemento di K algebrico su L, e quindi $\alpha \in \overline{L}$. Per il Teorema fondamentale dell'algebra, $\overline{\mathbb{R}} = \mathbb{C}$.

Estensioni normali e K-immersioni di un'estensione finita di K

Sia α un elemento algebrico su K. Allora $[K(\alpha):K]=\deg_K\alpha$. Le K-immersioni da $K(\alpha)$ in \overline{K} sono esattamente tante quanti sono i coniugati di α e sono tali da mappare α ad un suo coniugato. Se K è perfetto, esistono esattamente $\deg_K\alpha$ K-immersioni da $K(\alpha)$ in \overline{K} .

Se L/K è un'estensione finita su K, allora esistono esattamente [L:K] K-immersioni da L in \overline{K} . Per quanto detto prima, tali immersioni mappano gli elementi L nei loro coniugati.

Se L è un'estensione separabile finita, allora per ogni $\varphi: K \to \overline{K}$ esistono esattamente [L:K] estensioni $\varphi_i: L \to \overline{K}$ di φ , ossia omomorfismi tali per cui $\varphi_i|_K = \varphi$.

Si dice che un'estensione algebrica L/K è un'estensione normale se per ogni K-immersione φ da L in \overline{K} vale che $\varphi(L) = L$. Equivalentemente un'estensione è normale se è il

campo di spezzamento di una famiglia di polinomi (in particolare è il campo di spezzamento di tutti i polinomi irriducibili che hanno una radice in L). Ancora, un'estensione L è normale se e solo se per ogni $\alpha \in L$, i coniugati di L appartengono ancora ad L. Per un'estensione normale, per ogni K-immersione $\varphi: L \to \overline{K}$ si può restringere il codominio ad un campo isomorfo a $L \subseteq \overline{K}$, e quindi considerare φ come un automorfismo di L che fissa K.

Si indica con $\operatorname{Aut}_K(L)=\operatorname{Aut}(L/K)$ l'insieme degli automorfismi di L che fissano K. Se L è normale e separabile, si dice **estensione di Galois**, e si definisce $\operatorname{Gal}(L/K):=(\operatorname{Aut}_K L,\circ),$ ossia come il gruppo $\operatorname{Aut}_K L$ con l'operazione di composizione.