

基于STATA模拟的内生性: 本质、来源及应对

陈传波

chris@ruc.edu.cn

中国人民大学

1 内生性的本质

内生性导致OLS估计量的非一致性

$$y = \beta_{1}x_{1} + \dots + \beta_{k}x_{k} + u$$

$$y = \mathbf{x}'\boldsymbol{\beta} + u$$

$$\mathbf{x}y = \mathbf{x}\mathbf{x}'\boldsymbol{\beta} + \mathbf{x}u$$

$$E(\mathbf{x}y) = E(\mathbf{x}\mathbf{x}')\boldsymbol{\beta} + E(\mathbf{x}u) \xrightarrow{E(\mathbf{x}u)=0} E(\mathbf{x}y) = E(\mathbf{x}\mathbf{x}')\boldsymbol{\beta}$$

$$E(\mathbf{x}u) = 0 \Rightarrow \boldsymbol{\beta} = \begin{bmatrix} E(\mathbf{x}\mathbf{x}') \end{bmatrix}^{-1} E(\mathbf{x}y)$$

$$\hat{\boldsymbol{\beta}} = (\mathbf{x}\mathbf{x}')^{-1}(\mathbf{x}\mathbf{y})$$

只有不存在内生性时,估计量在样本取到无限大时才能"命中靶心",即β的OLS估计为一致估计量。

」 「WWW.uone-tech.ci 哈定期望和方差阵的虚拟数据回归

2 内生性的主要来源

- 2.1 选择性偏误Self-selections Bias
- 2.2 联立 果Simultaneous Equations Bias
- 2.3 遗漏变量ovB,Omitted-Variable Bias
- 2.4 测量误差 Measurement Error

2.1 选择偏误

不许脱鞋!如何估计鞋的增高效应?

- 研究问题: 穿上5厘米的鞋能增高多少?
- 数据限制: 不允许脱鞋

•
$$y=\beta x+u$$

- 其中y为身高, x=1表示穿鞋, x=0表示光脚
- 若测得光脚者身高为180厘米,而穿鞋者的身高为155厘米,则鞋的增高效应β的估计将是-25厘米
- WHY?

不同的人与同一个人的两种状态

下标表示第i个人和第j个人

上标1表示穿鞋,0表示光脚

若个子矮的人更倾向于穿鞋,即出现选择偏误

类似案例:吃药(同一个人不能既吃又不吃)

2020/8/20

选择性偏误如何导致内生性?

$$y = \beta x + u \xrightarrow{E(xu)=0} P \lim_{\beta \to 0} \hat{\beta} = \beta$$

$$y = y_0 + (y_1 - y_0)x$$

$$= y_0 + \beta x$$

$$= \alpha + \beta x + y_0 - E(y_0)$$

$$= \alpha + \beta x + u$$

$$E(xu) \neq 0$$

• 误差项u由光脚 时的身高yn决定, 一旦越矮的人越 倾向于穿鞋x=1, 穿鞋x就与初始身 高u负相关,即 存在内生性

选择性偏误

```
drawnorm u,n(100) seed(123) clear
sort u
g x=1 in 1/50
recode x .=0
scalar b = 1 //鞋高为1厘米
g y= b* x+u
reg y x //回归系数为-0.6165, 穿鞋使人变矮了0.6 厘米
```

g _y=b* x+	łu –					
reg y x	//b=1,	但回归系数	为-0.6165			
Sourte	SS	df	MS	Number of obs	=	100
				F(1, 98)	=	23.23
Model	9.50118003	1	9.50118003	Prob > F	=	0.0000
Residual	40.0857134	98	.409037892	R-squared	=	0.1916
				Adj R-squared	=	0.1834
Total	49.5868935	99	.500877712	Root MSE	=	.63956
у	Coef.	Std. Err.	t P)> t [95% Co	onf. I	interval]
x	6164797	.1279121		.00087031	72 -	.3626422
2020/8/20 <mark>cons</mark>	.7469744	.0904475	国人民大学。陈位	.567484	42	.9264646

2.2 联立因果

InQ=βInP+u β是需求弹性还是供给弹性?

联立因果为什么会导致内生性

$$y = \beta x + u \xrightarrow{E(xu)=0} P \lim \hat{\beta} = \beta$$

$$\begin{vmatrix} y = \beta x + u \\ x = \alpha y + \varepsilon \end{vmatrix} \Rightarrow x = \alpha(\beta x + u) + \varepsilon = \alpha \beta x + \alpha u + \varepsilon \Rightarrow x = \frac{\alpha u + \varepsilon}{1 - \alpha \beta}$$

$$E(xu) = E(\frac{\alpha u + \varepsilon}{1 - \alpha \beta}u) = \frac{\alpha E(u^2) + E(u\varepsilon)}{1 - \alpha \beta} \neq 0$$

$$E(xu) \neq 0$$

联立因果模拟

```
drawnorm u v,n(1000) clear seed(123)
```

```
scalar b= -1 //b为需求弹性,应为负
scalar a=2 g x=(u-v) / (a-b)
g y=b*x + u
reg y x //b的估计结果显著不等于 -1
```

	g y=b*	x+ı						
	reg y		x	//	b的估计结果。	显著不等于1		
	Source		SS	df	MS	Number of obs	=	1,000 95.76
	Model	4	.2606009	1	46.2606009	F(1, 998) Prob > F	=	0.0000
	Residual	4	2.110581	998	.483076735	R-squared	=	0.0876
Ī	Total	5	23.371182	999	.528900082	Adj R-squared Root MSE	=	0.0866 .69504
	У		Coef.	Std. Err.	t F	r> t [95% Co	onf.	Interval]
	х		.463179	.0473316		3.000 .370298	31	.5560599
	2020/8/20 _cons		.0203864	.021979	中国人。民会学,	陈结波 02274	14	.0635168

2.3 遗漏变量

遗漏变量

$$y = x'\beta + z'\gamma + u, E(xu) = E(zu) = \mathbf{0}$$

$$y = x'\beta + \varepsilon, \quad \varepsilon = z'\gamma + u$$

$$E(x\varepsilon) = E[x(z'\gamma + u)] = E(xz')\gamma$$

$$\frac{E(xz') \neq \mathbf{0}}{\gamma \neq 0} \Rightarrow E(x\varepsilon) \neq 0$$

遗漏变量模拟

use http://www.stata.com/data/jwooldridge/eacsap/nls80,clear

g y=0.05*educ+0.02*exper+0.17*urban +.006*iq

reg y educ exper urban, r //遗漏能力,教育回报被高估40%

g y=0.05*ed	duc+0.02*exper		n +.006*iq			"办一所
Source	ss ss	df	MS	Number of obs	= 935 = 1388.67	名校的唯一
Model Residual	25 0206656 5.59148102	3 931	8.34022186 .006005887	Prob > F R-squared	= 0.0000 = 0.8173	要求是,招
Total	30.6121466	934	.032775318	Adj R-squared Root MSE	= 0.8168 = .0775	最优异的学
у	Coef.	Std. Err.	t P	> t [95% Cor	nf. Interval]	生, 然后让
ec <mark>uc</mark> exper	.0714349	.0012989		.000 .0688858		老师们远离
urban _20 20 #8/2	.1703853 20 .3156941	.0056458 .0223184		.000 .1593055 :\$00陈传波 .2718939		他们。 "

2.4 测量误差

因变量的测量误差

$$y = \beta x + u, E(xu) = \mathbf{0}$$

$$y^* = y + \varepsilon$$

$$y^* = y + \varepsilon = \beta x + u + \varepsilon, E(xu) = \mathbf{0}$$

$$E[x(u + \varepsilon)] \xrightarrow{E(xu)=\mathbf{0}} = E(x\varepsilon) \begin{cases} \xrightarrow{=\mathbf{0}} P \lim \hat{\beta} = \beta \\ \xrightarrow{\neq \mathbf{0}} P \lim \hat{\beta} \neq \beta \end{cases}$$

教育回报估计时,自报收入与真实收入之间存在测量误差,若测量误差与教育水平相关,如教育水平越低,越可能算不清楚他的收入,教育水平越高,越倾向低报收入。测量误差与自变量教育水平相关。导致内生性。

测量误差

```
//因变量的测量误差与自变量相关
drawnorm x v, n(100) corr(1, .6 \setminus .6, 1) seed(123) clear
scalar b=1
g y=b*x+invnormal(uniform())
                             //因变量存在测量误差
g ys=y+v
                            //高估50%
reg ys x
                                             P> |t|
                                                       [95% Conf. Interval]
                  Coef.
                         Std. Err.
        V5
               1.547198
                          .1230773
                                     12.57
                                             0.000
                                                      1.302955
                                                                  1.791441
                .0897636
                           .126588
                                                      -.1614462
                                      0.71
                                             0.480
                                                                  .3409734
      cons
                                     //因变量的测量误差与自变量不相关
drawnorm x v, n(100) seed(123) clear
scalar b=1
g y=b*x+invnormal(uniform())
                                 //因变量存在测量误差
g ys=y+v
                                // 1落入置信区间【0.68, 1.22】
reg ys x
                        Std. Err.
                                            P> t
                                                       [95% Conf. Interval]
                Coef.
      y5
              .9531819
                         .1351688
                                     7.05
                                            0.000
                                                       .6849437
                                                                   1.22142
                         .139024屏人民大学。底传波
              .0943625
                                            0.499
                                                      -.1815269
                                                                    .370252
```


自变量的测量误差

$$y = \beta x + u, E(xu) = 0$$

$$x^* = x + \varepsilon, E(x\varepsilon) = 0, E(\varepsilon u) = 0$$

$$y = \beta x + u = \beta(x^* - \varepsilon) + u = \beta x^* + u - \beta \varepsilon$$

$$E[x^*(u - \beta \varepsilon)] = E[(x + \varepsilon)(u - \beta \varepsilon)] \xrightarrow{E(xu) = E(x\varepsilon) = E(\varepsilon u) = 0} = -\beta E(\varepsilon \varepsilon) \neq 0$$

自变量测量误差必导致内生性。

例: y为学习成绩, x为旷课次数, 当一个人很少旷课时, 他所报告的旷课次数更准确, 相反, 随着旷课次数的增多, 他能够准确回忆并报告其次数的可能性也下降, 因此x存在测量误差, 导致内生性。

自变量测量误差

```
drawnorm x u v, n(100) seed(123) clear //即使自变量与其测量误差不相关 scalar b= 1 g y=b*x+u //自变量存在测量误差 reg y xs //低估50%
```


3 应对内生性的主要方法

- 3.1 加入控制变量
- 3.2 面板数据差分估计

人民大学,陈佳波

- 3.3 匹配估计
- 3.4 工具变量估计
- 3.5 断点回归

3.1 加入控制变量

www.uone-tech**关注核心自变量的斜率估计**

真实的模型是不存在的,寻找"真实模型"的目标 注定是徒劳的。好的研究是由关键问题引导的,是由 理论和假设所激发的,关注模型是否能回答研究问题 就好。

聚焦某一个自变量,或者相关的几个自变量(核心变量/感兴趣的变量),尽最大努力,在数据收集有约束的情况下,去获得对核心变量而言"好的"斜率估计量。

 $y = x'\beta + z'\gamma + u$ 感兴趣变量 控制变量

计量结果可信性吗?

- 多元回归非常流行, 然而。。。。。。
- Leamer (1983):
- "计量经济学的艺术就是,研究者在计算机终端中 拟合许多(甚至上千个)统计模型,从中选择一个 或几个符合作者预期的估计结果在论文中进行报 告。"
- "我们发现我们正处于一种令人沮丧和不科学的境地。没有人将数据分析看作严肃的事情;或者, 更准确地说,没有人把别人的数据分析当回事。"

敏感性分析

- 将计量经济学中的"谎言和欺骗"剔除出来—— "敏感性分析"
- Sala—i—Martin (1997) 估计了200 万个包含62 个可能的解释变量的增长回归模型,其中3 个变量是主要变量(包括GDP、预期寿命和1960年的小学入学率),其余59 个其他解释变量的不同组合作为可能的模型设定,得到200 万个回归结果,以检验结果的稳健性。
- 但问题是,这些变量是否都是正确的控制变量?为何选择这些变量作为控制变量?为什么选择这样的函数形式而不是其他的函数形式?为什么用这些观察值?

控制变量一般原则

在处理变量被决定之前就被测试到的变量,一般而言是好的控制变量,因为它们无法被处理所改变。相比之下,在处理变量被决定之后才被测度到的控制变量,可能会部分地被处理所决定,在这种情况下,这些变量其实并不是控制变量,而是处理产生的结果之一。

例如,上大学、成为白领与收入。

www.uone-tech.cn 估计大学教育回报,不宜控制职业

reg income collage								
Source	SS	df	MS		Number of obs			
Model	375000	1	375000		F(1, 4) Prob > F	= 0.38 = 0.5734		
Residual	4000000	4	1000000		R-squared Adj R-squared	= 0.0857 = -0.1429		
Total	4375000	5	875000		Root MSE	= 1000		
income	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]		
collage	500	816.4966	0.61	0.573	-1766.958	2766.958		
_cons	2000	577.3503	3.46	0.026	397.0187	3602.981		

clear
input collage white income
1 0 1500
0 0 1000
0 0 2000
1 1 2500
1 1 3500
0 1 3000
end
reg income collage
reg income collage white

reg income o	collage white							
Source	SS	df		MS		Number of obs		6 -
Model	3375000	2	1	.687500		F(2, 3) Prob > F	=	5.06 0.1093
Residual	1000000	3	3333	33.333		R-squared Adj R-squared	=	0.7714
Total	4375000	5		875000		Root MSE		577.35
income	Coef.	Std.	Err.	t	P> t	[95% Conf.	Int	cerval]
collage	9.28e-14		500	0.00	1.000	-1591.223	15	591.223
white	1500		500	3.00	0.058	-91.22315	3(91.223
_cons2	020/8/2 @⁵⁰⁰	372.	678	4.02	0.028	3坤.函戏民	大24	월6. 嗨粉

3.2 采用面板数据

差分估计

双重差分DID

采用面板数据

$$y = x'\beta + z'\gamma + u, E(xu) = 0, E(zx') \neq 0$$

$$y = x'\beta + \varepsilon, E(x\varepsilon) \neq 0$$

多期数据

明数据
$$y_{t} = \mathbf{x}_{t}'\boldsymbol{\beta} + \mathbf{z}'\boldsymbol{\gamma} + u_{t}$$

$$y_{t-1} = \mathbf{x}_{t-1}'\boldsymbol{\beta} + \mathbf{z}'\boldsymbol{\gamma} + u_{t-1}$$

$$\Delta y_{t} = \Delta \mathbf{x}_{t}'\boldsymbol{\beta} + \Delta u$$

$$E(\mathbf{x}u) = \mathbf{0} \implies E(\Delta \mathbf{x}\Delta u) = \mathbf{0}$$

$$E(\mathbf{x}_{1}u_{0}) = E(\mathbf{x}_{0}u_{1}) = 0$$

关键条件:

z的时不变性

酒后驾车与交通事故死亡率

DID:双重差分

$$y_{it} = \gamma_i + \lambda_t + \beta x_{it} + u_{it}$$

$E(y \mid \gamma, \lambda)$	$\lambda_{t=0}$	$\lambda_{t=1}$	一重差分△
${\gamma}_{i=0}$	$\gamma_0 + \lambda_0$	$\gamma_0 + \lambda_1$	$\lambda = \lambda_1 - \lambda_0$
${\gamma}_{i=1}$	$\gamma_1 + \lambda_0$	$\gamma_1 + \lambda_1 + \beta$	$\lambda + \beta$
一重差分Δ	$\gamma = \gamma_1 - \gamma_0$	$\gamma + \beta$	双重差分 β

3.3 匹配

处理前的异质性

$$y_i^1 - y_j^0 = (y_i^1 - y_i^0) + (y_i^0 - y_j^0)$$

у	d	y1	y0	dy=y1-y0
162	1	162	160	2
170	0	172	170	2

y是我们观察到的身高,d是干预(=1表示穿鞋,0表示光脚),y1和y0是两种可能的结果,光脚时身高为y0,穿鞋时身高为y1,则dy是鞋的高度。其中有底纹的数据是无法观察到的,我们手头上只有头两行的数据

处理效应异质性

不同性别的人所穿鞋的高度不一样,女生穿高跟鞋 (4cm),男生穿平底鞋(2cm)。 因个体不同处理效应不同,称为**处理效应的异质性偏差**

у	d	W	y1	y0	dy=y1-y0
164	1	60	164	160	4
170	0	40	172	170	2

平均处理效应与协变量分布相关:

当男女生各占一半时,平均增高3cm=2×0.5+4×0.5 若男生只点40%,则增高效应为3.2cm=2×0.4+4×0.6

偏误的分解

у	d	w	y1	y0	dy=y1-y0
164	1	60	164	160	4
170	0	40	172	170	2

若只能观察到y,d和w这前三列数据,彩底中的潜结果观察不到。

观察到的穿鞋者和光脚者身高差异为-6=164-170

只有观察到另外一种可能性(彩底格),才能得正确的ATE=3.2

$$y_{i}^{1} - y_{j}^{0} = [p(y_{i}^{1} - y_{i}^{0}) + (1 - p)(y_{j}^{1} - y_{j}^{0})] + [y_{i}^{0} - y_{j}^{0}] + (1 - p)[(y_{i}^{1} - y_{i}^{0}) - (y_{j}^{1} - y_{j}^{0})]$$

$$= [p\beta_{i} + (1 - p)\beta_{j}] + [y_{i}^{0} - y_{j}^{0}] + [(1 - p)(\beta_{i} - \beta_{j})]$$

平均处理效应为3.2,处理前异质性偏差为-10=160-170,处理效应异质性偏差为0.8=(1-0.6)*(4-2),三者之和恰好为-6=3.2-10+0.8

北京友万信息科技有限公司 www.uone-tech.cn

勞组随机实验仍然可能导致内生性

基于一些可观察到的**协变量x**(比如x=0或1),先将样本分到不同组。在不同组内区分处理对象和参照对象时采用的概率可以不同,即按x分成的不同组中被处理的个体所占比例各不相同。

у	d	X	W	y1	y0	dy
172	1	1	8	172	170	2
164	1	0	45	164	160	4
170	0	1	32	172	170	2
160	0	0	15	164	160	4

$$y = \beta d + u, E(du) \neq 0$$

$$E(y^{0} \mid d = 0) \neq E(y^{0} \mid d = 1)$$

$$166. 8 = \frac{170 \times 32 + 160 \times 15}{32 + 15} \neq \frac{170 \times 8 + 160 \times 45}{8 + 45} = 161. 5$$

处理d与u不独立,因更多 女生(75%)穿鞋,仅 20%男生穿鞋,女生平均 比男生矮

条件均值独立假设(CI)成立

У	d	X	W	y1	y0	dy
172	1	1	8	172	170	2
164	1	0	45	164	160	4
170	0	1	32	172	170	2
160	0	0	15	164	160	4

166.
$$8 = E(y^0 \mid d = 0) \neq E(y^0 \mid d = 1) = 161.5$$

$$E(y^0 \mid d = 1, x = 1) = 170 = E(y^0 \mid d = 0, x = 1)$$

 $E(y^0 \mid d = 1, x = 0) = 160 = E(y^0 \mid d = 0, x = 0)$

但如果按性别先分组(相当以x为条件),只要男生组和女生组内,穿鞋与否随机选取,则男生组内抽出组与对照组在光脚时平均身高必然相等;对女生组来说亦然。

条件均值独立性:给定的x(如固定为男生),处理与否(穿鞋否)与身高无关(即组

内是随机分配的)。

匹配估计

要求得id=1的样本光脚时的身高,我们在参照组(d=0)中寻找和他的协变量(x_1 =1)最为接近的样本,这个样本应该是id=3,因为 x_3 =1,第三个样本对应的y=170,于是我们将这个值作为id=1这个样本光脚时的身高

id	у	d	X	w	y ¹	y ⁰
1	172	1	1	8	172	y ₃ =170
2	164	1	0	45	164	y ₄ =160
3	170	0	1	32	y ₁ =172	170
4	160	0	0	15	y ₂ =164	160

$$\beta_{POM} = E(y_x) = E[E(y_x \mid x)] = \sum_{x} p_x y_x = 160 \times 0.6 + 170 \times 0.4 = 164$$

$$\beta_{ATE} = E(\beta_x) = E[E(\beta_x \mid x)] = \sum_x p_x \beta_x = 4 \times 0.6 + 2 \times 0.4 = 3.2$$

$$\beta_{ATET/2} = E(\beta_x \mid d = 1) = \sum_x p_{x,d=1} \beta_x = 4 \times \frac{45}{53} + 2 \times \frac{8}{53} = 3.6981132$$

倾向值匹配

倾向值匹配将协变量综合成一个倾向值得分,再用该得分进行近邻匹配。

用d对协变量做probit或logit估计并预测出倾向值后,又有三种处理办法:

第一种是用倾向值作为新的协变量,用近邻匹配进行估计;

第二种是用倾向值作为权重,进行逆概率加权;

第三种是将没有匹配的样本删除,或者仅保留倾向值在某一

区间内如(0.1, 0.9)的样本进行简单回归估计

鞋的平均增高效应估计

```
input y d x w
170 0 1 32
160 0 0 15
172 1 1 8
164 1 0 45
end
expand w //按照权重扩展成100个观察值
```

*近邻匹配

clear

teffects nnmatch (y x) (d) //匹配估计:基于协变量的直接匹配teffects nnmatch (y x) (d),atet //ATET

*倾向值匹配

logit d x //先估计一个处理d对协变量的logit函数 predict ps //得到处理的条件概率预测Pi1=0.2, Pj0=0.75 teffects nnmatch (y ps) (d) //以倾向值为协变量的匹配 teffects psmatch (y) (d x) //psm匹配估计,与上述三条命令等价 teffects psmatch (y) (d x),atet //ATET

*逆概率加权

replace ps=1-ps if d==0 //对参照组的概率是1-p; pi0=0.8,pj1=0.25 reg y d [w=1/ps] //用逆处理或未处理概率加权回归得到 ATE=3.2

teffects ipw (y) (d x) //逆概率加权:结果与上述三条件命令等价

```
*分组回归
reg y x if d
predict y0
reg y x if !d
predict y1
su y0 y1
teffects ra (y) (d)
                 //结果与上述五行命令相同
*回归+逆概率加权
reg y x [w=1/ps] if d
predict wy0
reg y \times [w=1/ps] if !d
predict wy1
su wy0 wy1
                      //结果与上述五行命令等价
teffects ipwra (y) (d x)
```

*回归

reg y d //观察到的穿鞋与光脚者的身高差异=E[y|d=1]-E[y|d=0]=(172*8+164*45)/(8+45)-(170*32+160*15)/(32+15)=-1.6009635

bys x:reg y d //分层回归得到条件协处理效应,再加权 table x d,c(m y n y) //按协变量分层估计,平均因果效应再要用差值加权

g dx=d*x

reg y d x dx

reg y d x dx //带协变量x的回归:相当于对bx加权,权重为方差Pdx*(1-Pdx)

*Px,b=(2*0.2*0.8*0.4+4*0.75*0.25*0.6)/(0.2*0.8*0.4+0.75*0.25*.06)=3.2747875,结果与真实的ATE=3.2不同,除非pdx=0.5

培训对收入的影响

	劝	样本的完全比	较	用 p 得分值领	用 p 得分值筛选后的样本		
设 定	NSW (1)	CPS-1 (2)	CPS-2 (3)	CPS-1 (4)	CPS-3 (5)		
普通的比较	1 794 (633)	-8 498 (712)	-635 (657)				
用 人 口 特 征 做 挖 制 变量	1 670 (639)	-3 437 (710)	771 (837)	-3 361 (811) [139/497]	890 (884) [154/154]		
1975 年的收入	1 750 (632)	—78 (537)	-91 (641)	无观测值 [0/0]	166 (644)		
用人口以及 1975 年的 收入做控制变量	1 636 (638)	623 (558)	1 010 (822)	1 201 (722) [149/357]	[183/427] 1 050 (861) [157/162]		
用人口以及 1974 和 1975 年的收入做控制 变量	1 676 (639)	794 (548)	1 369 (809)	1 362 (708) [151/352]	649 (853) [147/157]		

注:表格引自Angrist等《其中无害的计量经济学》

3.4 寻找工具变量

外生性

相关性

GMM

工具变量获得一致估计的原理和前提

$$y = \mathbf{x}'\boldsymbol{\beta} + u, E(\mathbf{x}u) \neq \mathbf{0} \Rightarrow \mathbf{Plim}\hat{\boldsymbol{\beta}} \neq \boldsymbol{\beta}$$

$$zy = zx'\boldsymbol{\beta} + zu$$

$$E(\mathbf{z}y) = E(\mathbf{z}\mathbf{x}')\boldsymbol{\beta} + E(\mathbf{z}u)$$

$$\xrightarrow{E(\mathbf{z}u)=\mathbf{0}} \rightarrow E(\mathbf{z}y) = E(\mathbf{z}\mathbf{x}')\boldsymbol{\beta}$$

$$\xrightarrow{E(\mathbf{z}x')\neq\mathbf{0}} \rightarrow \boldsymbol{\beta} = [E(\mathbf{z}\mathbf{x}')]^{-1}E(\mathbf{z}y)$$

$$\hat{\boldsymbol{\beta}}_{IV} = (\overline{\mathbf{z}\mathbf{x}'})^{-1}\overline{\mathbf{z}y}$$

供求价格弹性估计

use http://people.brandeis.edu/~kgraddy/datasets/fishdata.dta,clear*供给弹性的OLS估计,<mark>得到-0.4</mark>

reg qty price stormy mixed, r

qty	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	. Interval]
price	40211	.1849944	-2.17	0.032	7688399	0353802
stormy	2737641	.1868029	-1.47	0.146	6440791	.0965508
mixed	1061517	.1678509	-0.63	0.528	4388966	.2265932
_cons	8.556986	.1267244	67.52	0.000	8.30577	8.808203

*供给弹性的工具变量估计2SLS

ivreg qty (price= day1 day2 day3 /// day4 rainy cold) stormy mixed, r

qty	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
price	1.072254	1.507905	0.71	0.479	-1.916991	4.061499
stormy	9177926	.6934222	-1.32	0.188	-2.292421	.4568359
mixed	4540534	.4016877	-1.13	0.261	-1.250352	.3422457
_cons	9.134773	.5910338	15.46	0.000	7.963118	10.30643
Instrumented: 2020/8/20 Instruments:	price stormy mixed	d day1 day2	中国人民大	学,陈传	old	

供求弹性的GMM与3SLS估计

GN	ИМ	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]		
xb								use	
	price	-1.296153	.401392	-3.23	0.001	-2.082866	5094388	http://people.brandeis.edu/~kgraddy/datasets/fishdata.	.dta
	dayî	1553275	.2098246	-0.74	0.459	5665761	.2559211		
	day2	3755973	.1856015	-2.02	0.043	7393695	011825		
	day3	3721443	.1932593	-1.93	0.054	7509256	.006637	*GMM估计	
	day4	.0868227	.1742969	0.50	0.618	254793	.4284384	GIVIIVI	
	rainy	.0562628	.1424187	0.40	0.693	2228727	.3353984	gmm	///
	cold	.035882	.1364588	0.26	0.793	2315724	.3033364	(at a fall and a day of also O day of mains and decoral)	\ ///
	_cons	8.424108	.1817484	46.35	0.000	8.067887	8.780328	(qty-{xb:price day1 day2 day3 day4 rainy cold _cons})) ///
								(qty-{xc:price stormy mixed _cons}),	///
xc	price	1.029111	1.429805	0.72	0.472	-1.773256	3.831477	instr(day1 day2 day3 day4 rainy cold stormy mixed)	///
	stormy	-1.085186	.6486846	-1.67	0.094	-2.356584	.1862126		
	mixed	651776	.3847183	-1.69	0.090	-1.40581	.102258	winitial(unadjusted, independent)	
	_cons	9.235452	.5602337	16.48	0.000	8.137414	10.33349		
38	SLS	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]		
qty									
4-7	price	-1.020842	.3867494	-2.64	0.008	-1.778857	2628274		
	day1	1150445	.1855372	-0.62	0.535	4786907	.2486018		
	day2	356868	.1721766	-2.07	0.038	694328	0194081		
	day3	366436	.171311	-2.14	0.032	7021993	0306726	*3SLS估计	
	day4	.091598	.1630694	0.56	0.574	228012	.4112081		111
	rainy	.0339369	.1423345	0.24	0.812	2450336	.3129074	reg3 (qty price day1 day2 day3 day4 rainy cold)	///
	cold	.0718278	.1290774	0.56	0.578	1811592	.3248148	(qty price stormy mixed),endog(price)	
	_cons	8.430028	.1588551	53.07	0.000	8.118678	8.741378	(qty photo otomy mixody,ondog(phot)	
2qty			1					<u>L</u>	
	price	1.045412	1.383568	0.76	0.450	-1.666331	3.757156		
	stormy	893848	.6353879	-1.41	0.159	-2.139185	.3514895		
	mixed c	2018 5323643	.3710589	-1.38	0.167	-1. 23 9626 🛭	己 → 2148978	生活	

16.40

3.5 断点回归

清晰断点回归

drawnorm x u,n(100) clear

tw (sc y x) (lfit y x)

replace y=y+10 if x>0

tw (sc y x) (lfit y x if x<0) (lfit y x if

x>0),xline(0) //绘制图

g d=x>0 //生成虚拟变量d

regyxd //清晰断点回归

非线性断点回归

drawnorm u,n(200) clear g double x = runiform() * 6 g y0 = sin(x) + 0.1*u假设断点为3 g d=x>3 gy = d + sin(x) + 0.1*rnormal()ssc install rdcv //交错鉴定法 rdcv y x , thr(3) ci tw (sc y x) (lpoly y x if x<3) (lpoly y x if x>3) //多项式拟合 tw (sc y x) (lowess y x if x<3) (lowess y x if x>3) //移动加权


```
u AEJfigs,clear
gen age = agecell - 21
gen over21 = agecell >= 21 //虚拟变量,相当于d
gen age2 = age^2
                         //二次项
gen over_age = over21*age //交互项dx
gen over_age2 = over21*age2 //二次项与d的交互项
reg mva age age2 over21 over_age over_age2
predict exfitqi
reg internal age age2 over21 over_age over_age2
predict infitgi
twoway (scatter mva internal agecell) ///
(line exfitqi infitqi agecell if agecell < 21) ///
(line exfitqi infitqi agecell if agecell >= 21), ///
 legend(off) text(28 20.1 "Motor Vehicle Fatalities") ///
  text(17 22 "Deaths from Internal Causes")
```


四种主要方法对比

四种方法对比

A. Randomized Experiment

B. Regression Discontinuity Design

C. Matching on Observables

Y: 因变量

D: 处理变量

X: 分组变量

W: 协变量

U: 误差项

Z:工具变量

D. Instrumental Variables

