Свойства МНК оценок. Стохастические регрессоры

Если:

1. Истинная зависимость имеет вид $y_i = \beta_1 + \beta_2 x_{i2} + \ldots + \beta_k x_{ik} + \varepsilon_i$ В матричном виде: $y = X\beta + \varepsilon$

2. С помощью МНК оценивается регрессия y на константу, $x_{.2}, x_{.3}, \ldots, x_{.k}$ В матричном виде: $\hat{\beta} = (X'X)^{-1}X'y$

- 3. Наблюдений больше, чем оцениваемых коэффициентов $\beta \colon n > k$
- 4. Строгая экзогенность: $E(\varepsilon_i|\ \mathrm{Bce}\ x_{ij})=0$ В матричном виде: $E(\varepsilon_i|X)=0$
- 5. Условная гомоскедастичность: $E(\varepsilon_i^2|\ {\rm Bce}\ x_{ij}) = \sigma^2$ В матричном виде: $E(\varepsilon_i^2|X) = \sigma^2$
- 6. $Cov(\varepsilon_i, \varepsilon_j|X) = 0$ при $i \neq j$
- 7. вектора (x_i, y_i) независимы и одинаково распределены
- 8. с вероятностью 1 среди регрессоров нет линейно зависимых $rank(X) = k \ det(X'X) \neq 0 \ (X'X)^{-1}$ существует

То (свойства для конечных выборок, не требующие нормальности ε):

тГМ МНК оценки $\hat{\beta}$ линены по y: $\hat{\beta}_j = c_1 y_1 + ... + c_n y_n$

тГМ $E(\hat{\beta}|X) = \beta$, и в частности $E(\hat{\beta}) = \beta$

тГМ Для любой альтернативной оценки $\hat{\beta}^{alt}$ удовлетворяющей свойствам 1 и 2: $Var(\hat{\beta}^{alt}_j|X) \ge Var(\hat{\beta}^{alt}_j)$ $Var(\hat{\beta}^{alt}_j) \ge Var(\hat{\beta}^{alt}_j)$

- 1. $Var(\hat{\beta}|X) = \sigma^2(X'X)^{-1}$
- 2. $Cov(\hat{\beta}, \hat{\varepsilon}|X) = 0$
- 3. $E(\hat{\sigma}^2|X)=\sigma^2$, и $E(\hat{\sigma}^2)=\sigma^2$?остается ли при условной ГК?

свойства для конечных выборок, требующие нормальности ε Если дополнительно известно, что $\varepsilon|_X\sim N$, (в частности ε и X независимы) то:

- 1. $t|X \sim t_{n-k}, t \sim t_{n-k}$
- 2. $RSS/\sigma^2|X \sim \chi^2_{n-k}, RSS/\sigma^2 \sim \chi^2_{n-k}$
- 3. $F \text{ тест } F|X \sim F$

Асимптотические свойства:

- 1. $\hat{\beta} \rightarrow \beta$ по вероятности
- 2. $t \to N(0,1)$
- 3. $rF \rightarrow \chi_r^2$, r число ограничений
- 4. $nR^2 \to \chi^2_{k-1} \xrightarrow{RSS \over n-k} \to \sigma^2$