





## БЛОЧНЫЕ КОМПЛЕКТНЫЕ ТРАНСФОРМАТОРНЫЕ ПОДСТАНЦИИ И РАСПРЕДЕЛИТЕЛЬНЫЕ ПУНКТЫ

Трансформаторные подстанции (БКТП) и распределительные пункты (БКРП) АО «МЭЛ», поставляются в полной заводской готовности, включая их комплектацию электрическим оборудованием, согласно требованиям заказчика, что существенно сокращает срок ввода подстанции в эксплуатацию. Все оборудование проходит монтаж и наладку в заводских условиях, после чего подстанция проходит все необходимые, предусмотренные заводом испытания.





## **ЭЛЕКТРООБОРУДОВАНИИЕ**

Гибкая технология изготовления железобетонных блоков, а также простые и надежные узлы стыковки блоков позволяют подобрать оптимальные габариты строительной части для компактного размещения как импортных КРУ ВН (производства Schneider Electric; Eaton; Siemens; ABB и другие), так и российских высоковольтных камер КСО.

Монтаж оборудования производится в заводских условиях.

### БКТП В ПЛОТНОЙ ГОРОДСКОЙ ЗАСТРОЙКЕ

Согласно требованиям ФСК, малогабаритные БКТП, реализуемые компанией АО «МЭЛ», вписываются в архитектурную застройку, полностью соответствуют требованиям современной урбанизации, а так же всем градостроительным требованиям.

#### ВНЕШНЯЯ ОТДЕЛКА

Широкий спектр цветовой гаммы RAL, применяемый для внешней окраски, а так же возможные варианты отделки, такие как штукатурка и конфигурация крыши, позволяет оформить подстанцию в соответствии со всеми требованиями заказчика.

#### ИНДИВИДУАЛЬНЫЕ РЕШЕНИЯ

Учитывая возрастающий интерес к нетиповым решениям, компания АО «МЭЛ» ставит основной задачей возможность реализации проектов любой сложности, в соответствии с требованиями заказчика и эксплуатирующих сетей.

## ОБЛАСТЬ ПРИМЕНЕНИЯ

Блочные комплектные трансформаторные подстанции (БКТП), блочные распределительные трансформаторные подстанции (БКРТП), блочные распределительные пункты (БКРП) служат для приема, преобразования и распределения электроэнергии в системах электроснабжения жилищно-коммунальных, общественных, промышленных и сельскохозяйственных объектов, площадок индивидуальной застройки и коттеджных поселков.

БКТП изготавливаются в строгом соответствии с основными техническими требованиями ПУЭ, стандарта России, ГОСТ 14695-80, ГОСТ-1516.3-96, сертифицированы в системе Госстандарта Российской Федерации и имеют соответствующие маркировки.



## КОНСТРУКТИВНОЕ ИСПОЛНЕНИЕ БКТП

Все элементы блочной трансформаторной подстанции смонтированы в единый электротехнический модуль и подготовлены для подключения к цепи высокого и низкого напряжения.

#### ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

|                                                                                                                           |                                                                                     | Значение параметра                                              |                          |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------|
| Наименование параметра                                                                                                    | БКТП                                                                                | БКРТП                                                           | БКРП                     |
| 1. Мощность силового трансформатора, кВА: Масляного герметичного, сухого с литой изоляцией                                | 63; 100; 160; 250; 400;<br>630; 1000; 1250; 1600;<br>2000; 2500                     | 63; 100; 160; 250; 400;<br>630; 1000; 1250; 1600;<br>2000; 2500 | -                        |
| 2. Номинальное напряжение на стороне ВН, кВ                                                                               | 6 *; 10; 20 *                                                                       | 6 *; 10; 20 *                                                   | 6 *; 10; 20 *            |
| 3. Наибольшее рабочее напряжение на стороне ВН, кВ                                                                        | 7,2; 12; 24                                                                         | 7,2; 12; 24                                                     | 7,2; 12; 20              |
| 4. Номинальное напряжение на стороне НН, кВ                                                                               | 0,4                                                                                 | 0,4                                                             | -                        |
| 5. Номинальный ток на стороне ВН, А:<br>– для присоединения линий;<br>– для присоединения трансформатора                  | 400/630/1000/1250<br>200                                                            | 400/630/1000/1250<br>200                                        | 400/630/1000/1250<br>200 |
| 6. Ток электродинамической стойкости на стороне ВН, кА                                                                    | 50                                                                                  | 50                                                              | 50                       |
| 7. Ток термической стойкости на стороне ВН в течение 1с, кА                                                               | 20                                                                                  | 20                                                              | 20                       |
| 8. Уровень изоляции по ГОСТ 1516.3: - с масляным герметичным трансформатором; - с сухим трансформатором с литой изоляцией | нормальная изоляция<br>облегченная<br>изоляция                                      | нормальная изоляция<br>облегченная<br>изоляция                  | -<br>-                   |
| 9. Габариты блоков, мм: - толщина наружных стен; - ширина блока; - длина блока; - высота блока                            | 70 ÷ 100<br>-2500; 3000<br>-2000; 3000 ÷ 7500 (с шагом 500 мм)<br>-2704: 3004: 3204 |                                                                 |                          |
| 10. Высота приямка, мм                                                                                                    |                                                                                     | -1600; 1900                                                     |                          |
| 11. Исполнение крыши                                                                                                      |                                                                                     | односкатная/двускатная                                          |                          |
| 12. Срок службы, лет                                                                                                      |                                                                                     | 30                                                              |                          |

<sup>\*</sup> По требованию заказчика

### ОСНОВНЫЕ КОНСТРУКТИВНЫЕ ХАРАКТЕРИСТИКИ

Основные конструктивные и массогабаритные характеристики БКТП приведены ниже. Длина, ширина, высота блоков и их количество может изменяться в зависимости от набора электрооборудования, определяемого электрической схемой, мощностью БКТП, БКРТП, БКРП и условиями эксплуатации УВН и УНН (одной или разными организациями). Приямок и основной блок изготавливаются отдельно. Блоки легко объединяются в двух-

блочную или многоблочную конструкцию. При этом они могут быть установлены как последовательно, так и параллельно.



#### БЛОК, ПРИ ШИРИНЕ 2500 мм

| Высота, мм |      |      |       |      |       | 28    | 70    |       |       |       |       |       |
|------------|------|------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|
| Длина, мм  | 2000 | 3000 | 3500  | 4000 | 4500  | 4700  | 5000  | 5500  | 6000  | 6500  | 7000  | 7500  |
| Вес, т     | 7,4  | 9,6  | 11,2  | 11,8 | 13,7  | 14,6  | 14,9  | 16,2  | 17,3  | 18,7  | 20,1  | 23,1  |
| Высота, мм |      | 3070 |       |      |       |       |       |       |       |       |       |       |
| Длина, мм  | 2000 | 3000 | 3500  | 4000 | 4500  | 4700  | 5000  | 5500  | 6000  | 6500  | 7000  | 7500  |
| Вес, т     | 7,67 | 10,3 | 12,14 | 13,0 | 14,14 | 14,94 | 15,37 | 16,78 | 17,91 | 19,28 | 20,55 | 24,47 |

### БЛОК, ПРИ ШИРИНЕ 3000 мм

| Высота, мм | 2870  |       |       |       |       |
|------------|-------|-------|-------|-------|-------|
| Длина, мм  | 5000  | 5500  | 6000  | 6500  | 7000  |
| Вес, т     | 17,75 | 19,36 | 20,66 | 22,28 | 23,7  |
| Высота, мм |       |       | 3070  |       |       |
| Длина, мм  | 5000  | 5500  | 6000  | 6500  | 7000  |
| Вес, т     | 18,3  | 19,94 | 21,28 | 22,93 | 24,39 |



#### ОБЪЕМНЫЕ ПРИЯМОК (ПОДЗЕМНАЯ ЧАСТЬ ТП)

Объемный приямок (ОП) представляет собой монолитную железобетонную конструкцию, который заглубляется в землю и устанавливается на подготовленную фундаментную площадку. Предназначен для ввода кабельных линий, прокладки и подключения кабелей и секционных перемычек. Для доступа в объемный приямок предусмотрена съемная лестница. Снаружи приямки покрыты слоем гидроизоляции. Базовый ОП имеет высоту 1600 мм. Возможно изготовление высотой до 1900 мм.

### ПРИЯМОК, ПРИ ШИРИНЕ 2500 мм

| Высота, мм |      | 1600 |      |      |      |      |      |      |      |      |       |       |   |
|------------|------|------|------|------|------|------|------|------|------|------|-------|-------|---|
| Длина, мм  | 2000 | 3000 | 3500 | 4000 | 4500 | 4700 | 5000 | 5500 | 6000 | 6500 | 7000  | 7500  |   |
| Вес, т     | 3,8  | 4,92 | 5,49 | 6,05 | 6,62 | 6,86 | 7,19 | 7,76 | 8,32 | 8,89 | 9,46  | 10,72 | • |
| Высота, мм |      |      |      |      |      | 19   | 00   |      |      |      |       |       |   |
| Длина, мм  | 2000 | 3000 | 3500 | 4000 | 4500 | 4700 | 5000 | 5500 | 6000 | 6500 | 7000  | 7500  |   |
| Вес, т     | 4,27 | 5,49 | 6,11 | 6,73 | 7,36 | 7,81 | 7,98 | 8,6  | 9,22 | 9,84 | 10,46 | 11,77 | • |

## ПРИЯМОК, ПРИ ШИРИНЕ 3000 ММ

| Ι. |            |      |      |       |       |       |
|----|------------|------|------|-------|-------|-------|
|    | Высота, мм |      |      | 1600  |       |       |
|    | Длина, мм  | 5000 | 5500 | 6000  | 6500  | 7000  |
|    | Вес, т     | 8,43 | 9,08 | 9,73  | 10,39 | 11,04 |
|    | Высота, мм |      |      | 1900  |       |       |
|    | Длина, мм  | 5000 | 5500 | 6000  | 6500  | 7000  |
|    | Вес, т     | 9,27 | 9,97 | 10,67 | 11,38 | 12,09 |
|    |            |      |      |       |       |       |





## ПРИМЕНЯЕМОЕ ОБОРУДОВАНИЕ

## **КРУЗ** СЕРИИ RM6 ПРОИЗВОДСТВА SCHNEIDER ELECTRIC (ФРАНЦИЯ)



#### **НАЗНАЧЕНИЕ**

КРУЭ RM6 — распределительное устройство, предназначенное для установки в радиальных, магистральных и петлевых распределительных сетях на 6, 10, 20 кВ. Выполняет функции присоединения, питания и защиты одного или двух распределительных трансформаторов мощностью до 3000 кВА с помощью силового выключателя с защитой. Коммутационные аппараты и сборные шины расположены в герметичном корпусе, заполненном элегазом.

Серия распределительных устройств RM6 включает в себя полный ряд функций на среднем напряжении, которые позволяют производить:

- Присоединение, питание и защиту трансформаторов в радиальных или кольцевых сетях при помощи выключателей на 200 А с независимой цепью защиты;
- Присоединение и питание линий при помощи выключателей нагрузки
- Защиту линий при помощи выключателя на 630 А;
- Производство частных понижающих подстанций с измерениями на стороне среднего напря-

|   | Рабочее напряжени    | е, кВ                                                           | 6-10 |      | 20         |     |     |   |
|---|----------------------|-----------------------------------------------------------------|------|------|------------|-----|-----|---|
|   | Уровень изоляции:    | - испытания промышленной частотой 50 Гц,<br>1 мин (кВ, действ.) | 42   |      | 65         |     |     | Ŀ |
|   | тровень изоляции.    | - испытания импульсным напряжением<br>1,2/50 мкс (кВА, мгн.)    | 95   |      | 125        |     |     | • |
|   | Сетевой выключате.   | ль нагрузки (функция I)                                         |      |      |            |     |     |   |
|   | Номинальный ток, А   |                                                                 | 630  | 630  | 400        | 630 | 630 |   |
|   |                      | Ток нагрузки                                                    | 630  | 630  | 400        | 630 | 630 |   |
|   | Ток отключения:      | Ток замыкания на землю                                          | 95   | 95   | 95         | 95  | 95  |   |
|   |                      | Ток х.х. кабеля                                                 | 30   | 30   | 30         | 30  | 30  |   |
|   | Ток термической сто  | йкости, кА (действ., 1 с)                                       | 21   | 25   | 16         | 16  | 20  |   |
|   | Ток включения выкл   | очателей нагрузки и замыкающих разъединителей, кА (мгн.)        | 52,5 | 62,5 | 40         | 40  | 50  |   |
|   | Функция защиты ли    | нии (функция В)                                                 |      |      |            |     |     |   |
| - | Номинальный ток, А   |                                                                 | 630  |      |            | 630 |     |   |
|   | Ток отключения, кА   |                                                                 | 21   |      |            | 16  |     |   |
|   | Ток включения, кА (м | лгн.)                                                           | 52,5 |      |            | 40  |     |   |
|   | Выключатель (функ    | ция D)                                                          |      |      |            |     |     |   |
|   | Номинальный ток, А   |                                                                 | 630  |      | 200        | 200 |     |   |
|   | Ток отключения, кА   |                                                                 | 21   |      | 16         | 16  |     |   |
|   | Ток включения, кА (м | игн.)                                                           | 52,5 |      | 40         | 40  |     |   |
|   | Температура окружа   | ающей среды, °С                                                 |      | ОТ   | r -25 до + | 40  |     |   |
|   | Срок службы, лет     | ужбы, лет 25                                                    |      |      |            |     |     |   |
|   |                      |                                                                 |      |      |            |     |     |   |

## **КРУЭ** СЕРИИ SAFERING

(КОНЦЕРН АВВ)

#### НАЗНАЧЕНИЕ

KPУЭ SAFERING – распределительное устройство с элегазовой изоляцией для замкнутой сети распределения. Представляет собой герметичную камеру из нержавеющей стали, в которой размещены все токоведущие элементы и коммутационные аппараты.

#### ПРЕИМУЩЕСТВА

- Минимальные размеры;
- Простота и удобство монтажа и обслуживания;
- Возможность расширения блока;
- Наличие дополнительного измерительного модуля;
- Отсутствие необходимости в техническом обслуживании.

#### КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ

Конфигурация SAFERING зависит от комбинации следующих устройств:

- Выключатель нагрузки;
- Предохранитель;
- Заземлитель:
- Вакуумный выключатель.

Для защиты трансформатора имеется выбор между комбинациями «выключатель нагрузки – предохранитель» и «силовой вакуумный выключатель» – устройство РЗиА». KPУЭ SAFERING может поставляться со встроенным устройством дистанционного управления.

|                                                      | Моду                    | /ль С       | Моду                | уль F          | Моду                     | /ль V       |  |
|------------------------------------------------------|-------------------------|-------------|---------------------|----------------|--------------------------|-------------|--|
|                                                      | Выключатель<br>нагрузки | Заземлитель | Предо-<br>хранитель | Заземлитель    | Вакуумный<br>выключатель | Заземлитель |  |
| Наибольшее рабочее<br>напряжение, кВ                 | 12/17,5/24              | 12/17,5/24  | 12/17,5/24          | 12/17,5/24     | 12/17,5/24               | 12/17,5/24  |  |
| Испытательное напряжение промышленной частоты, кВ    | 28/38/50                | 28/38/50    | 28/38/50            | 28/38/50       | 28/38/50                 | 28/38/50    |  |
| Испытательное напряжение грозового принципа, кВ      | 95/95/125               | 95/95/125   | 95/95/125           | 95/95/125      | 95/95/125                | 95/95/125   |  |
| Отключающая способность:<br>- ток нагрузки, А        | 630/630/630             |             | ×                   |                | 200/200/200              |             |  |
| - ток заряда<br>ненагруженного, А                    | 135/135/135             |             |                     |                |                          |             |  |
| - ток кабеля трансформатора                          |                         |             | 20/20/20            |                |                          |             |  |
| без нагрузки, А<br>- ток замыкания на землю, А       | 200/150/150             |             |                     |                |                          |             |  |
| - ток заряда кабеля с<br>замыканием на землю, А      | 115/87/87               |             |                     |                |                          |             |  |
| - ток короткого замыкания, кА                        |                         |             | ××                  |                | 21/16/16                 |             |  |
| Включающая способность, кА                           | 52,5/40/40              | 52,5/40/40  | ××                  | 12,5/12,5/12,5 | 52,5/40/40               | 52,5/40/40  |  |
| Номинальный ток терми-<br>ческой стойкости 1 сек, кА | ×××                     |             |                     | 5/5/5          |                          |             |  |
| Номинальный ток терми-<br>ческой стойкости 3 сек, кА | 21/16/16                | 21/16/16    |                     |                | 21/16/16                 | 21/16/16    |  |

<sup>&</sup>lt;sup>\*</sup> Зависит от номинального тока предохранителей; \*\* Ограничен плавкой вставкой высоковольтных предохранителей; \*\*\*\* Другие значения выполняются по заказу; \*\*\*\* Действительно только для кабельных вводов 400-й серии SafeRing соответствует стандартам МЭК 60265, МЭК 60129, МЭК 60056, МЭК 60420, МЭК 60694, МЭК 60298,

ГОСТ 14693-90 (п.п. 2.8.1, 2.8.2, 2.8.5, 2.8.9, 3), ГОСТ 1516.1-76 (п. 1.14).



# **ЯЧЕЙКИ КСО-298MSi** «ПЕМ» ОА

# ЯЧЕЙКИ КСО-298 «ПЕМ» ОА





#### НАЗНАЧЕНИЕ

Камеры сборные одностороннего обслуживания серии КСО-298MSi предназначены для комплектования распределительных устройств напряжением 6-10 кВ переменного трехфазного тока частотой 50Гц в системах с изолированной нейтралью.

Ячейка представляет собой металлоконструкцию, собираемую из профилей. Элементы конструкции выполнены из стального листа с гальваническим покрытием (цинк или цинкоалюминий). Ячейки комплектуются вакуумным выключателями: «Sion» (Siemens), «ВВ/ТЕL», «ВБП» (Контакт), «Эволис» (SE) на выкатных тележках, либо любым другим.

Ячейки КСО-298MSi могут использоваться как в распределительных, так и в трансформаторных подстанциях.

| Габаритные размеры |             |            |  |  |  |  |
|--------------------|-------------|------------|--|--|--|--|
| Ширина, мм         | Глубина, мм | Высота, мм |  |  |  |  |
| 650                | 1128        | 2070       |  |  |  |  |

| Технические характеристики                                                                    |                      |
|-----------------------------------------------------------------------------------------------|----------------------|
| Номинальное напряжение (линейное), кВ                                                         | 6; 10                |
| Наибольшее рабочее напряжение (линейное), кВ                                                  | 7,2; 12              |
| Номинальный ток главных цепей шкафов КРУ, А                                                   | 630; 800; 1000; 1250 |
| Номинальный ток сборных шин, А                                                                | 630; 800; 1000; 1250 |
| Номинальный ток отключения камер, кА                                                          | 20                   |
| Ток термической стойкости (кратковременный), кА                                               | 20                   |
| Номинальный ток электродинамической<br>стойкости главных цепей шкафов КРУ, кА                 | 51                   |
| Номинальное напряжение вспомогательных цепей постоянного, переменного и выпрямленного тока, В | 220<br>12            |
| Температура окружающей среды, С                                                               | от -25С до +40С      |
| Масса, кг                                                                                     | 370                  |

#### НАЗНАЧЕНИЕ

Камеры сборные одностороннего обслуживания серии КСО-298 предназначены для комплектования распределительных устройств напряжением 6-10 кВ переменного трехфазного тока частотой 50Гц в системах с изолированной нейтралью или заземленной через дугогасительный реактор.

Ячейки производятся на базе вакуумных выключателей типа BB/TEL компании «Таврида Электрик», либо ВБП (Контакт), Эволис (ШЭ), ВВР (Росвакуум) и VF-12 («Элтехника»).

Ячейки КСО-298 могут использоваться как в распределительных так и в трансформаторных подстанциях.

| Габаритные размеры |             |            |  |  |  |  |
|--------------------|-------------|------------|--|--|--|--|
| Ширина, мм         | Глубина, мм | Высота, мм |  |  |  |  |
| 750; 1000*         | 1100        | 2650       |  |  |  |  |
| 750                | 1100        | 2320       |  |  |  |  |
| 750                | 1100        | 2270       |  |  |  |  |

| 6; 10                 |
|-----------------------|
| 7,2; 12               |
| 400; 630; 1000; 1600* |
| 630; 1000; 1600*      |
| 20                    |
| 20                    |
| 51                    |
| 220                   |
| 220<br>100            |
| 36<br>380             |
|                       |

<sup>\*</sup> На ток 1000А



10

ПРОИЗВОДСТВО ПОДСТАНЦИЙ,

# **ЯЧЕЙКИ КСО-395** «ПЕМ» ОА





#### **НАЗНАЧЕНИЕ**

Камеры КСО-395 напряжением 6 и 10 кВ предназначены для распределительных устройств переменного трехфазного тока частотой 50 Гц систем с изолированной нейтралью.

Комплектуются выключателями нагрузки ВНПР-10/630, а также другими аппаратами высокого напряжения в зависимости от

Производится ошиновка камер.

|   | Номинальное напряжение, кВ                                                      | 6; 10                                      |
|---|---------------------------------------------------------------------------------|--------------------------------------------|
|   | Наибольшее рабочее напряжение, кВ                                               | 7,2; 12                                    |
|   | Номинальный ток главных цепей, А                                                | 400; 630                                   |
|   | Номинальный рабочий ток главных цепей, А<br>- при Uн (6 кВ)<br>- при Uн (10 кВ) | 31,5; 50; 80; 100; 125<br>31,5; 40; 63; 80 |
| _ | Номинальный ток сборных шин, А                                                  | 630                                        |
|   | Номинальный ток отключения камер, кА                                            | 630                                        |
|   | Ток термической стойкости (кратковременный), кА                                 | 20                                         |
|   | Номинальный ток электродинамической стойкости главных цепей шкафов КРУ, кА      | 51                                         |
| • | Номинальное напряжение вспомогательных цепей, переменного тока, В               | 100; 220                                   |
|   | Температура окружающей среды, °С                                                | От –25°С до +40°С                          |
|   | Масса, кг                                                                       | 218                                        |

# СТАНДАРТНЫЕ НИЗКОВОЛЬТНЫЕ СБОРКИ СЕРИИ ЩРНН

#### **НАЗНАЧЕНИЕ**

Шкаф низкого напряжения ЩРНН предназначен для распределения электроэнергии напряжением до 380В переменного тока с частотой 50; 60 Гц. При реконструкции действующих БКТП и РТП применение ЩРНН данного типа дает возможность сохранения первоначальной компоновки объекта и существующих конструкций, пригодных для дальнейшей эксплуатации, так как вводные и секционные рубильники устанавливаются отдельно от шкафа на дополнительных конструкциях, согласно с проектом.

#### КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ

Используются корпуса сборной конструкции. Высота и глубина ЩРНН изменяются в зависимости от количества присоединений. Для организации учета электроэнергии предусмотрена возможность установки трансформаторов тока, как на вводе, так и на отходящих присоединениях (без изменения конструкции и габаритов шкафа).

При наличии сдвоенных линий НН кабели защищаются одним предохранителем соответствующего номинала. Места подключения кабелей объединяются перемычкой. Параллельная работа двух предохранителей не допускается.



| Наименование        | Количество<br>присоединений, шт | Ширина,<br>мм | Глубина,<br>мм | Высота,<br>мм |
|---------------------|---------------------------------|---------------|----------------|---------------|
| ЩРНН-8-1250 (800)   | 8                               | 1000          | 585            | 2000          |
| ЩРНН-10-1600 (1250) | 10                              | 1200          | 585            | 2000          |
| ЩРНН-10-2000 (1250) | 10                              | 1200          | 585            | 2000          |
| ЩРНН-10-2500 (1600) | 10                              | 1200          | 585            | 2000          |
| ЩРНН-12-2000 (1250) | 12                              | 1400          | 585            | 2000          |
| ЩРНН-12-2500 (2000) | 12                              | 1400          | 585            | 2000          |
| ЩРНН-12-3150 (2000) | 12                              | 1400          | 585            | 2000          |
| ЩРНН-14-2000 (1250) | 14                              | 1600          | 585            | 2000          |
| ЩРНН-14-2500 (1600) | 14                              | 1600          | 585            | 2000          |
| ЩРНН-14-3150 (2000) | 14                              | 1600          | 585            | 2000          |
| ЩРНН-16-2000 (1250) | 16                              | 1800          | 585            | 2000          |
| ЩРНН-16-2500 (1600) | 16                              | 1800          | 585            | 2000          |
| ЩРНН-16-3150 (2000) | 16                              | 1800          | 585            | 2000          |
| ЩРНН-18-3150 (2000) | 18                              | 2200          | 585            | 2000          |
| ЩРНН-20-3150 (2000) | 20                              | 2400          | 585            | 2000          |
| ЩРНН-22-3150 (2000) | 22                              | 2600          | 585            | 2000          |
| ЩРНН-24-3150 (2000) | 24                              | 2800          | 585            | 2000          |

## ВВОДНО-РАСПРЕДЕЛИТЕЛЬНЫЕ **УСТРОЙСТВА ВРУ**



#### **НАЗНАЧЕНИЕ**

Устройство типа ВРУ служит для приема, распределения и учета электроэнергии напряжением 380/220 В, в сетях с глухоззаземленной нейтралью трехфазного переменного тока частой 50 Гц, а также для защиты линий от перегрузок и токов короткого замыкания. ВРУ комплектуются из отдельных вводных и распределительных панелей, что позволяет использовать их для схем электроснабжения домов любой секционности и этажности.

#### ПО НАЗНАЧЕНИЮ ПАНЕЛИ ВРУ ПОДРАЗДЕЛЯЮТСЯ:

Вводные ВР – с рубильником; Вводные ВП – с переключателем (типа ПРБ-01). Вводные ВА- с выключателем автоматическим. Распределительные:

- с выключателями автоматическими на отходящих линиях;
- с автоматикой управления лестничным и коридорным освещением;
- с отделением учета;
- со станциями управления «АВР».

#### ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ:

| Наименование параметра             | Значение параметра |
|------------------------------------|--------------------|
| Номинальный ток вводных панелей, А | 100; 250; 400; 630 |
| Номинальный ток панелей АВР, А     | 100; 160; 250; 400 |
| Габаритные размеры панелей, мм     | 2000x630 (450)x450 |

## УСТРОЙСТВО АВР НА СТОРОНЕ 6-20 кВ «ПЕМ» ОА

#### **НАЗНАЧЕНИЕ**

Устройство АВР высокого напряжения в трансформаторных подстанциях 6-20 кВ предназначено для однократного автоматического взаимного резервирования питания секций 6-20 кВ двухсекционных ТП в случае аварийной ситуации (нарушения последовательности чередования фаз, исчезновения напряжения или снижения его ниже определенного уровня).

Габаритные размеры

|                                 | ,                                                                 | ,                          | 22.0014,1 |
|---------------------------------|-------------------------------------------------------------------|----------------------------|-----------|
|                                 | 400                                                               | 200                        | 600       |
|                                 |                                                                   | Технические характеристики |           |
|                                 | Номинальное напряжение, В                                         |                            | 380400    |
|                                 | Частота рабочей сети, Гц                                          |                            | 50        |
|                                 | Номинальное рабочее напряжение цепи управления, В                 |                            | 220       |
|                                 | Частота сети управления, Гц                                       |                            | 50        |
|                                 | Степень защиты по ГОСТ 14254-96                                   |                            | 630       |
| 0                               | Вид системы заземления по ГОСТ Р50571.2-94                        |                            | TN-C      |
|                                 | Климатическое исполнение по категории размещения по ГОСТ 19150-69 |                            | ухлз      |
| Температура окружающей среды, С |                                                                   | от -30С до +40С            |           |

от -25С до +40С



# ШКАФ УПРАВЛЕНИЯ ПИТАНИЕМ СОБСТВЕННЫХ НУЖД ШПСН-ВУ

#### НАЗНАЧЕНИЕ ....

Температура окружающей среды, С

Ящик управления питанием собственных нужд модификации ШПСН-ВУ предназначен для питания напряжением 12 В и 220 В различных потребителей в помещении высоковольтных устройств.

Ящик управления питанием собственных нужд ШПСН-ВУ имеет узел оборудованный автоматическими выключателями для подсоединения автоматизированных информационных измерительных систем АИИС.

| - 7 | Y X                                             |                    |  |
|-----|-------------------------------------------------|--------------------|--|
|     | Наименование параметра                          | Значение параметра |  |
|     | Номинальное напряжение, В                       | 380/220            |  |
|     | Род тока, частота                               | ~ 50 Гц            |  |
|     | Номинальный выходной ток, А                     | 100 A /40 A /40 A  |  |
|     | Габаритные размеры (высота, ширина, глубина) мм | 700x450x264        |  |
|     | Масса (не более), кг                            | 29                 |  |
|     |                                                 |                    |  |





## ЯЩИК СОБСТВЕННЫХ НУЖД ЯСН-В



#### **НАЗНАЧЕНИЕ**

Ящик предназначен для подключения цепей освещения трансформаторных подстанций, а также передвижных измерительных и испытательных устройств, приборов для проверки защиты и автоматики напряжением 12 В, 220 В, 380 В. Ящик имеет лабораторные клеммы для подсоединения нагрузок с токами до 100 А. В ящике собственных нужд ЯСН-В УЗ учтены замечания и предложения монтажных и эксплуатационных организаций, имеющих опыт работы с ящиком предыдущей серии ЯСН-М УЗ. Конструкция ящика согласована со специалистами «Московской Городской Электросетевой Компании».

Качество изготовления ящиков собственных нужд подтверждено сертификатом соответствия № РОСС RU.АЯ 46.В12578 и гарантируется системой менеджмента качества предприятия сертифицированной по ГОСТ Р ИСО 9001-2001, регистрационный № РОСС RU.ИС94.К0016.

| Наименование параметра               | Значение параметра |
|--------------------------------------|--------------------|
| Номинальный ток силовой цепи, А      | 100                |
| Частота сети, Гц                     | ~ 50               |
| Номинальное напряжение, В            | 380/220/12         |
| Габариты (длина, ширина, высота), мм | 320x177x550        |
| Масса, кг                            | 16                 |



# ЩИТ АВТОМАТИЧЕСКОГО ПЕРЕКЛЮЧЕНИЯ НА РЕЗЕРВ ЩАП-14

#### НАЗНАЧЕНИЕ

Щит типа ЩАП-14 МКС предназначен для переключения на резервное питание однофазных электропотребителей, в том числе источников безперебойного питания оперативных цепей высоковольтных распределительных устройств на основе камер КСО и КРУ. Щиток предназначен для работы при нормальных значениях климатических факторов УЗ с ограничением по температуре окружающего воздуха от -40°С до +40°С (без конденсата). RU.ИС94.КО016.

|  | Габаритные размеры |     |  |
|--|--------------------|-----|--|
|  | Ширина, мм         | 400 |  |
|  | Глубина, мм        | 200 |  |
|  | Высота, мм         | 600 |  |

| Значение параметра |
|--------------------|
| ~220               |
| 50 Гц              |
| 2,8                |
| IP41               |
| У3                 |
|                    |

# **ЩИТ ТЕПЛОВОЙ ЗАЩИТЫ ТРАНСФОРМАТОРА ЩТЗТ**

#### **НАЗНАЧЕНИЕ**

Щитки тепловой защиты трансформатора (ЩТЗТ) предназначены для контроля степени перегрева обмоток сухих трансформатора с термодатчиками типа РТС с действием на «сигнал» (1-я ступень до 140°С) и на «отключение» (2-я ступень до 150°С). Отключение трансформатора выполняется подачей импульса на катушку электромагнита отключения ячейки «D» высоковольтного распределительного устройства RM6.

Схема ЩТЗТ допускает дублирование этих сигналов с передачей на диспетчерский пункт. RU.ИС94.K0016.



| Классификация по ГОСТ Р 51321.1-2000<br>- вид конструкции<br>- место установки<br>- возможность перемещения | - защищенная<br>- внутреннее<br>- стационарное |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Степень защиты по ГОСТ 14254-96                                                                             | IP54                                           |
| Номинальное рабочее напряжение, кВ                                                                          | 380/220                                        |
| Частота силовой цепи, Гц                                                                                    | 50                                             |
| Вид системы заземления по ГОСТ Р 50571.2-94                                                                 | TN-C                                           |
| Климатическое исполнение и категория размещения по ГОСТ 15150-69 и ГОСТ 15543.1-89                          | УЗ                                             |
| Масса (не более), кг                                                                                        | 5                                              |
|                                                                                                             |                                                |