Spring 2021: Numerical Analysis Assignment 6: Polynomial approximation and quadrature Due May 10th 2pm EST

1. [Connection between interpolation and 2-norm approximation, 10pts] Using a set of disjoint points (nodes) x_0, \ldots, x_n in [a, b], we define an inner product for polynomials p(x), q(x) as

$$\langle p, q \rangle := \sum_{i=0}^{n} p(x_i) q(x_i).$$

- (a) [3 pts] This is an inner product for each \mathcal{P}_k with $k \leq n$, where \mathcal{P}_k denotes the space of polynomials of degree k or less. Why is $\langle \cdot , \cdot \rangle$ not an inner product for k > n?
- (b) [3 pts] Show that the Lagrange polynomials $L_k(x)$ corresponding to the nodes x_0, \ldots, x_n are orthonormal with respect to the inner product $\langle \cdot, \cdot \rangle$.
- (c) [4 pts] For a continuous function $f:[a,b]\to\mathbb{R}$, compute its optimal approximation in \mathcal{P}_n with respect to the inner product $\langle\cdot\,,\cdot\rangle$ and compare with the polynomial interpolant of f on the same set of nodes.
- 2. Compute explicitly the optimal L_2 approximation of $\sin(x)$ on $[0,\pi]$ for the standard L_2 inner product. Compare it on the same plot to the sine function, as well as the quadratic interpolant of $\sin(x)$ with nodes $x_0=0,\ x_1=\pi/2,\ x_2=\pi$ (see Worksheet 7 and be encouraged to also add the Hermite interpolant from that worksheet).
- 3. Obtain explicit formulas for the first three Chebyshev polynomials via the Gram-Schmidt orthogonalization process starting with the monomials $\{1, x, x^2\}$. Note that unless you normalize these polynomials they are only defined up to a constant.