

Fisica II Esercitazione 11

Alessandro Pedico

alessandro.pedico@polito.it

4/11/2022

Equazioni di Maxwell

In un mezzo indefinito, lineare e omogeneo, nel quale non abbiamo cariche libere e correnti di conduzione, le equazioni di Maxwell sono:

i)
$$\nabla \cdot \vec{\mathbf{E}} = \mathbf{0}$$

ii)
$$\nabla \cdot \vec{\mathbf{B}} = \mathbf{0}$$

iii)
$$\nabla \mathbf{x} \, \vec{\mathbf{E}} = -\frac{\partial \mathbf{B}}{\partial \mathbf{t}}$$

iv)
$$\nabla x \overrightarrow{B} = \varepsilon \mu \frac{\partial \overrightarrow{E}}{\partial t}$$

Discende dalle equazioni di Maxwell in queste condizioni il fatto che il campo elettrico e il campo magnetico debbano rispettare l'equazione delle onde.

Equazione delle onde

Per verificarlo, facciamo il rotore della equazione iii):

$$\nabla \mathbf{x} \left[\nabla \mathbf{x} \, \vec{\mathbf{E}} \right] = -\nabla \mathbf{x} \frac{\mathbf{\partial} \, \vec{\mathbf{B}}}{\mathbf{\partial} \mathbf{t}} \qquad \text{equazione i)}$$
 Termine di sinistra:
$$\nabla \mathbf{x} \left[\nabla \mathbf{x} \, \vec{\mathbf{E}} \right] = -\nabla^2 \vec{\mathbf{E}} + \nabla \left(\nabla \cdot \vec{\mathbf{E}} \right) = -\nabla^2 \vec{\mathbf{E}}$$
 Termine di destra:
$$-\nabla \mathbf{x} \frac{\partial \, \vec{\mathbf{B}}}{\partial \mathbf{t}} = -\frac{\partial}{\partial \mathbf{t}} \left[\nabla \mathbf{x} \, \vec{\mathbf{B}} \right] = -\frac{\partial}{\partial \mathbf{t}} \left[\epsilon \mu \frac{\partial \vec{\mathbf{E}}}{\partial \mathbf{t}} \right] = -\epsilon \mu \frac{\partial^2 \vec{\mathbf{E}}}{\partial \mathbf{t}^2}$$
 Quindi otteniamo:
$$\nabla^2 \vec{\mathbf{E}} - \epsilon \mu \frac{\partial^2 \vec{\mathbf{E}}}{\partial \mathbf{t}^2} = \mathbf{0}$$
 equazione iv)

In modo equivalente si ottiene l'equazione delle onde per il campo magnetico facendo il rotore della quarta equazione di Maxwell e utilizzando la stessa identità vettoriale.

Equazione delle onde

$$\nabla^2 \vec{E} - \varepsilon \mu \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

$$\nabla^2 \vec{B} - \varepsilon \mu \frac{\partial^2 \vec{B}}{\partial t^2} = 0$$

La velocità di propagazione dei campi è data da:

$$v = \frac{1}{\sqrt{\epsilon_{\mu}}} = \frac{1}{\sqrt{\epsilon_{r} \; \mu_{r}}} \frac{1}{\sqrt{\epsilon_{0} \; \mu_{0}}} = \frac{c}{\sqrt{\epsilon_{r} \; \mu_{r}}} = \frac{c}{n} \qquad \qquad \text{indice diricatione}$$

- Il campo elettrico e magnetico sono perpendicolari $\ \overrightarrow{E} \cdot \overrightarrow{B} = 0$
- Il campo elettrico e magnetico oscillano perpendicolarmente rispetto alla direzione di propagazione, sono in fase e tra i moduli dei campi sussiste la relazione B = E/v
- Vale il principio di sovrapposizione
- Le possibili forme d'onda sono soluzioni dell'equazione delle onde

ONDA PIANA ARMONICA

$$\vec{E}(\vec{r}) = \vec{E}_0 \sin(\vec{k} \cdot \vec{r} - \omega t + \varphi) = Im \vec{E}_0 e^{i(\vec{k} \cdot \vec{r} - \omega t + \varphi)}$$

$$\vec{B}(\vec{r}) = \vec{B}_0 \sin(\vec{k} \cdot \vec{r} - \omega t + \varphi) = Im \vec{B}_0 e^{i(\vec{k} \cdot \vec{r} - \omega t + \varphi)}$$

$$\vec{k} \longrightarrow \text{Vettore d'onda} \qquad \omega \longrightarrow \text{Pulsazione}$$

$$\omega = 2\pi f$$
 $v = \lambda f \longrightarrow c \text{ (nel vuoto)}$

coordinate cartesiane

 $E_x(x, y, z) = E_{0.x} \sin(k_x x + k_y y + k_z z - \omega t + \phi)$

$$k = \frac{2\pi}{\lambda}$$
 $\omega = kv$

 $E_v(x, y, z) = E_{0,v} \sin(k_x x + k_v y + k_z z - \omega t + \phi)$ $E_z(x, y, z) = E_{0,z} \sin(k_x x + k_y y + k_z z - \omega t + \phi)$

Proprietà da equazioni di Maxwell

$$\vec{E} \cdot \vec{B} = 0$$
 $\vec{E}_0 \times \vec{B}_0 = \frac{E_0^2}{v} \hat{u}_k$

$$\vec{k} \cdot \vec{E} = 0 \qquad \vec{k} \cdot \vec{B} = 0$$

$$B_x(x, y, z) = B_{0,x} \sin(k_x x + k_y y + k_z z - \omega t + \phi)$$

$$B_y(x, y, z) = B_{0,y} \sin(k_x x + k_y y + k_z z - \omega t + \phi)$$

$$B_z(x, y, z) = B_{0,z} \sin(k_x x + k_y y + k_z z - \omega t + \phi)$$

ESEMPIO: onda piana che si propaga nel vuoto lungo l'asse z, con campo elettrico che oscilla lungo l'asse x

$$\vec{E}(x, y, z) = E_0 \sin(k z - \omega t + \phi) \hat{u}_x$$

$$E_x(x, y, z) = E_{0,x} \sin(k_x x + k_y y + k_z z - \omega t + \phi)$$

$$E_{y}(x, y, z) = 0$$

$$E_{z}(x, y, z) = 0$$

$$B_{x}(x,y,z) = 0$$

$$B_{y}(x,y,z) = \frac{E_{0,x}}{c} \sin(k_{x}x + k_{y}y + k_{z}z - \omega t + \phi)$$

$$B_{z}(x,y,z) = 0$$

Spettro elettromagnetico

Th	e Electromagnetic Specti	rum			
Frequency (Hz)	Type	Waveleng	gth (m)		
10 ²²		10^{-13}			
10^{21}	gamma rays	10^{-12}			
10^{20}	,	10^{-11}	- raper.		
10 ¹⁹		10^{-10}		The Visible Range	
1018	x rays	10^{-9}	Frequency (Hz)	Color	Wavelength (m)
10^{17}		10^{-8}	1.0×10^{15}	near ultraviolet	3.0×10^{-7}
10 ¹⁶	ultraviolet	10^{-7}	7.5×10^{14}	shortest visible blue	4.0×10^{-7}
10 ¹⁵	visible	10-6	6.5×10^{14}	blue	4.6×10^{-7}
1014	infrared	10^{-5}	5.6×10^{14} 5.1×10^{14}	green	5.4×10^{-7}
10 ¹³	initaled	10 ⁻⁴	4.9×10^{14}	yellow	5.9×10^{-7} 6.1×10^{-7}
10 ¹²		10 ³	3.9×10^{14}	orange longest visible red	7.6×10^{-7}
1011		10^{-2}	3.0×10^{14}	near infrared	1.0×10^{-6}
1010	microwave	10-1			
109		1			
108	TV, FM	10			
107		10^{2}			
106	AM	10 ³			
10 ⁵		10^{4}			
10 ⁴	\mathbf{RF}	105			
10^{3}		10^{6}			

Una onda piana di frequenza $f = 7.5 \cdot 10^{14} \, Hz$ si propaga nel vuoto lungo l'asse x. Il campo elettrico forma un angolo $\vartheta = 30^\circ$ con il piano (x,y) e ha ampiezza $E_0 = 10^3 \, V/m$. Scrivere la funzione dell'onda per il campo elettrico e magnetico.

$$c = 3 \cdot 10^8 \text{m/s}$$

$$\lambda = \frac{c}{f} = 0.4 \cdot 10^{-6} \text{ m}$$

$$k = \frac{2\pi}{\lambda} = 1.6 \cdot 10^7 \text{rad/m}$$

$$\omega = 2\pi f = 4.7 \cdot 10^{15} \text{rad/s}$$

L'onda si propaga lungo l'asse x, quindi:

$$\vec{k} = k_x \hat{u}_x + k_y \hat{u}_y + k_z \hat{u}_z = k \hat{u}_x$$

$$k = \frac{2\pi}{\lambda} = 1.57 \cdot 10^7 \text{ rad/m}$$
 $\omega = 2\pi f = 4.7 \cdot 10^{15} \text{ rad/s}$ $E_0 = 10^3 \text{ V/m}$

$$E_{x}(x, y, z) = 0$$

$$E_y(x, y, z) = E_{0,y} \sin(k_x x - \omega t) = 8.7 \cdot 10^2 \sin(1.6 \cdot 10^7 x - 4.7 \cdot 10^{15} t) \text{ V/m}$$

$$E_z(x, y, z) = E_{0,z} \sin(k_x x - \omega t) = 5 \cdot 10^2 \sin(1.6 \cdot 10^7 x - 4.7 \cdot 10^{15} t) \text{ V/m}$$

$$k = \frac{2\pi}{\lambda} = 1.57 \cdot 10^7 \text{ rad/m}$$
 $\omega = 2\pi f = 4.7 \cdot 10^{15} \text{ rad/s}$ $E_0 = 10^3 \text{ V/m}$

$$\vec{E} = E_{0,y} \sin(kx - \omega t) \hat{u}_y + E_{0,z} \sin(kx - \omega t) \hat{u}_z$$

Vediamo quanto vale il campo magnetico

$$\vec{k} = k_x \hat{u}_x$$

$$\vec{k} \cdot \vec{B} = 0$$
 \longrightarrow $\vec{B}_0 = B_{0,y}\hat{u}_y + B_{0,z}\hat{u}_z$

$$\vec{E} \cdot \vec{B} = 0$$

$$\vec{E}_0 \times \vec{B}_0 = \frac{E_0^2}{c} \hat{u}_k$$

$$B_{0,z} = -\frac{E_{0,z}}{c}$$

$$B_{0,z} = \frac{E_{0,y}}{c}$$

Consideriamo una sorgente S che genera una radiazione in forma di onda piana di pulsazione ω ; vediamo cosa succede quando cambiamo il mezzo in cui si propaga

materiale 1

$$n_1 = \sqrt{\varepsilon_{r,1}\mu_{r,1}} \sim \sqrt{\varepsilon_{r,1}}$$

$$v_1 = \frac{c}{n_1} \qquad \qquad k_1 = \frac{\omega}{v_1}$$

$$\lambda_1 = \frac{2\pi}{k_1}$$

$$\vec{E}(\vec{r}) = \vec{E}_0 \sin(\vec{k}_1 \cdot \vec{r} - \omega t)$$

materiale 2

$$n_2 = \sqrt{\varepsilon_{r,2}\mu_{r,2}} \sim \sqrt{\varepsilon_{r,2}}$$

$$v_2 = \frac{c}{n_2} \qquad k_2 = \frac{\omega}{v_2}$$

$$\lambda_2 = \frac{2\pi}{k_2}$$

$$\vec{E}(\vec{r}) = \vec{E}_0 \sin(\vec{k}_2 \cdot \vec{r} - \omega t)$$

Nota bene: quando l'onda passa da un mezzo di propagazione ad un altro cambia la lunghezza d'onda e velocità di propagazione, ma non cambia la frequenza!