PH4505/PAP723 Homework 1

AY17/18 Semester 2

Instructions for PH4505 students: You are to choose 2 of the 3 questions to submit as your graded assignment. Every plot produced by your programs should have clear x and y axis labels. If more than one curve is shown on a single plot, the two curves should be labeled clearly. For full marks, code must follow good programming style. Your code should be commented; there should be no cryptic variable and function names (like abc); and the program structure should be modular (e.g. numerical constants should be defined in one place instead of being scattered throughout the code).

Instructions for PAP723 students: You are to submit all 3 questions as your graded assignment. Every plot produced by your programs should have clear x and y axis labels. If more than one curve is shown on a single plot, the two curves should be labeled clearly. For full marks, code must follow good programming style. Your code should be commented; there should be no cryptic variable and function names (like abc); and the program structure should be modular (e.g. numerical constants should be defined in one place instead of being scattered throughout the code).

1. Quantum uncertainty in the harmonic oscillator

In units where all the constants are 1, the wave function of the nth energy level of the one-dimensional quantum harmonic oscillator - i.e., a spinless point particle in a quadratic potential well - is given by

$$\psi_n(x) = \frac{1}{\sqrt{2^n n! \sqrt{\pi}}} e^{-x^2/2} H_n(x), \tag{1}$$

for $n = 0...\infty$, where $H_n(x)$ is the *n*th Hermite polynomial. Hermite polynomials satisfy a relation somewhat similar to that for the Fibonacci numbers, although more complex:

$$H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x). (2)$$

The first two Hermite polynomials are $H_0(x) = 1$ and $H_1(x) = 2x$.

- (a) Write a user-defined function H(n,x) that calculates $H_n(x)$ for given x and any integer $n \geq 0$. Use your function to make a plot that shows the harmonic oscillator wavefunctions for n = 0, 1, 2, 3, all on the same graph, in the range x = -4 to x = 4. Hint: There is a function factorial in the math package that calculates the factorial of an integer.
- (b) Make a separate plot of the wavefunction for n = 30 from x = -10 to x = 10. Hint: If your program takes too long to run in this case, then you are doing the calculation wrong - the program should take only a second or so to run.
- (c) The quantum uncertainty in the position of a particle in the *n*th level of a harmonic oscillator can be quantified by its root-mean-square position $\sqrt{\langle x^2 \rangle}$, where

$$\langle x^2 \rangle = \int_{-\infty}^{-\infty} x^2 |\psi_n(x)|^2 dx.$$
 (3)

Write a program that evaluates this integral using Gaussian quadrature on 100 points, then calculate the uncertainty (i.e., the root-mean-square position of the particle) for a given value of n. Use your program to calculate the uncertainty for n = 5. You should get an answer in the vicinity of $\sqrt{\langle x^2 \rangle} = 2.3$.

2. Gravitational pull of a uniform sheet

A uniform square sheet of metal is floating motionless in space:

Figure 1: Floating plate

The sheet is 10m on a side and of negligible thickness, and it has a mass of 10 metric tonnes. Consider the gravitational force due to the plate felt by a point mass of 1kg a distance z from the center of the square, in the direction perpendicular to the sheet, as shown in Fig. 1. The component of the force along the z-axis is

$$F_z = G\sigma z \int \int_{-L/2}^{L/2} \frac{\mathrm{d}x \mathrm{d}y}{(x^2 + y^2 + z^2)^{3/2}},$$
 (4)

where $G=6.674\times 10^{-11} \rm m^3 kg^{-1}s^{-2}$ is Newton's gravitational constant and σ is the mass per unit area of the sheet.

(a) Write a program to calculate and plot the force as a function of z from z=0 to z=10m. For the double integral, use (double) Gaussian quadrature with 100 sample points along each axis.

3. Volume of a torus

A ring torus is the product of 2 circles, generated by revolving a circle around an axis which forms another circle.

Figure 2: Torus

- (a) Write a program to calculate the volume of a torus where the major radius R=1 and minor radius r=0.5. You are to use the Monte Carlo integration method to determine the volume.
- (b) Using the data that you obtain from the Monte Carlo integration, make a 3-dimensional scatter plot of the results to visualize the torus.