Code Division Multiple Access (CDMA)

Prof. Pierangelo Migliorati DII, Università di Brescia, Italy

What's the Best Technique?

- In The Beginning, there was Frequency Division Multiple Access (FDMA).
 - ➤ Simple and effective
 - ➤ Poor flexibility, frequency reuse, high-Q RF filters
- Then, TDMA was popular
 - Better for digital than FDMA
 - Still with weaknesses, inc. synchronization, poor freq. reuse, equalization

Newer Alternatives

- Code Division Multiple Access (CDMA)
 - Cocktail party analogy: each user uses a unique code, receiver that knows that code can extract out the desired user
 - ➤ Recipient of much Qualcomm-fueled hype in the 1990s (Gilder and other analysts bought it all)
 - ➤ Contrary to popular belief, in theory, CDMA does not allow more users to exist in a fixed bandwidth
 - ➤ But, it does allow for some very nice tradeoffs that ultimately increase system capacity
- All 3G cellular systems use CDMA for multiple access
- For more information:
 - ➤ http://www.ece.utexas.edu/~jandrews/CDMA.html

000.

In CDMA each user:

- · has it's own PN code
- · uses the same RF bandwidth
- transmits simultaneously (asynchronous or synchronous)

CDMA: basic idea

The used codes should have:

- Good autocorrelation;
- 2) Good crosscorrelation.

Codes for CDMA

Auto-correlation:

better if it is white-noise like (good spreading performance, good with multipath fading, easier synchronization);

Cross-correlation:

if low, it reduces the inter-message interference.

Figure 5.21 General structure of a gold codes generator

Signal and Communication Lab
DEA University of Brescia - ITALY

■ Figure 6. An illustration of generating a Gold code set.

Figure 5.23 Crosscorrelation of gold codes sequences

Interferences in CDMA

Performance of CDMA

- 1) Every carrier is "received" with the same power level;
- 2) Every radio-frequency carrier has the same central frequency;
- 3) The phase of the different radio-frequency carriers are independent random variables, uniform in [-pi, +pi];
- 4) The decoded (base-band) sequences are perfectly synchronized.

Prestazioni del CDMA

RAKE receiver

CAMALIZZAZIONE SERAMBLING CSCRAMB. SCRAMBLING

