(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 25 May 2001 (25.05.2001)

PCT

(10) International Publication Number WO 01/36473 A2

(51) International Patent Classification⁷: C07K 14/00

(21) International Application Number: PCT/US00/31581

(22) International Filing Date:

16 November 2000 (16.11.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/165,838	16 November 1999 (16.11.1999)	US
60/166,071	17 November 1999 (17.11.1999)	US
60/166,678	19 November 1999 (19.11.1999)	US
60/173,396	28 December 1999 (28.12.1999)	US
60/184,129	22 February 2000 (22.02.2000)	US
60/185,421	28 February 2000 (28.02.2000)	US
60/185,554	28 February 2000 (28.02.2000)	US
60/186,530	2 March 2000 (02.03.2000)	US
60/186,811	3 March 2000 (03.03.2000)	US
60/188,114	9 March 2000 (09.03.2000)	US
60/190,310	17 March 2000 (17.03.2000)	US
60/190,800	21 March 2000 (21.03.2000)	US
60/198,568	20 April 2000 (20.04.2000)	US
60/201,190	2 May 2000 (02.05.2000)	US
60/203,111	8 May 2000 (08.05.2000)	US
60/207,094	25 May 2000 (25.05.2000)	US

(71) Applicant (for all designated States except US): PHAR-MACIA & UPJOHN COMPANY [US/US]; 301 Henrietta Street, Kalamazoo, MI 49001 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): VOGELI, Gabriel [US/US]; 3005 First Avenue, Seattle, WA 98121 (US). WOOD, Linda, S. [US/US]; 10193 Fox Hollow, Portage, MI 49024 (US). PARODI, Luis, A. [SE/SE]; Grevgafan-24, S-115 43 Stockholm (SE). HIEBSCH,

Ronald, R. [US/US]; 917 Lane Boulevard, Kalamazoo, MI 49001 (US). LIND, Peter [SE/SE]; Borjegatan 31C, S-751 29 Uppsala (SE). SLIGHTOM, Jerry [US/US]; 3305 Lorraine Avenue, Kalamazoo, MI 49008 (US). SCHELLIN, Kathleen, A. [US/US]; 361 Jason Court, Portage, MI 49024 (US). KAYTES, Paul, S. [US/US]; 3506-D Shadow Bend Drive, Kalamazoo, MI 49004 (US). BANNIGAN, Christopher, M. [US/US]; 2411 Kopka Court, Bay City, MI 48708 (US). RUFF, Valerie [US/US]; 7301 Sandpiper Street, Portage, MI 49024 (US). SEJLITZ, Torsten [SE/SE]; Sankt Eriksgatan 59, S-112 34 Stockholm (SE). HUFF, Rita, M. [US/US]; 3627 B Avenue, West, Plainwell, MI 49080 (US).

- (74) Agents: DELUCA, Mark et al.; Woodcock Washburn Kurtz Mackiewicz & Norris LLP, One Liberty Place, 46th Floor, Philadelphia, PA 19103 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

36473 A

(54) Title: NOVEL G PROTEIN-COUPLED RECEPTORS

(57) Abstract: The present invention provides a gene encoding a G protein-coupled receptor termed nGPCR-x; constructs and recombinant host cells incorporating the genes; the nGPCR-x polypeptides encoded by the gene; antibodies to the nGPCR-x polypeptides; and methods of making and using all of the foregoing.

bipolar disease, or other neurological disorders. This latter category of receptor is also useful as a marker for identifying and/or purifying (e.g., via fluorescence-activated cell sorting) cellular subtypes that express the receptor. Unfortunately, only a limited number of G protein receptors from the central nervous system (CNS) are known. Thus, a need exists for G protein-coupled receptors that have been identified and show promise as targets for therapeutic intervention in a variety of animals, including humans.

SUMMARY OF THE INVENTION

10

15

20

25

30

The present invention relates to an isolated nucleic acid molecule that comprises a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence homologous to even numbered sequences ranging from SEQ ID NO: 2 to SEQ ID NO: 94 and SEQ ID NO: 186, or a fragment thereof. The nucleic acid molecule encodes at least a portion of nGPCR-x. In some embodiments, the nucleic acid molecule comprises a sequence that encodes a polypeptide comprising even numbered sequences ranging from SEQ ID NO: 2 to SEQ ID NO: 94 and SEQ ID NO: 186, or a fragment thereof. In some embodiments, the nucleic acid molecule comprises a sequence homologous to odd numbered sequences ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID NO: 185, or a fragment thereof. In some embodiments, the nucleic acid molecule comprises a sequence selected from the group consisting of odd numbered sequences ranging from SEQ ID NO: 1 to SEQ ID

According to some embodiments, the present invention provides vectors which comprise the nucleic acid molecule of the invention. In some embodiments, the vector is an expression vector.

According to some embodiments, the present invention provides host cells which comprise the vectors of the invention. In some embodiments, the host cells comprise expression vectors.

The present invention provides an isolated nucleic acid molecule comprising a nucleotide sequence complementary to at least a portion of a sequence from an odd numbered sequence ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID NO: 185, said portion comprising at least 10 nucleotides.

The present invention provides a method of producing a polypeptide comprising a sequence from an even numbered sequence ranging from SEQ ID NO: 2

to SEQ ID NO: 94 and SEQ ID NO: 186, or a homolog or fragment thereof. The method comprising the steps of introducing a recombinant expression vector that includes a nucleotide sequence that encodes the polypeptide into a compatible host cell, growing the host cell under conditions for expression of the polypeptide and recovering the polypeptide.

5

10

15

20

25

30

The present invention provides an isolated antibody which binds to an epitope on a polypeptide comprising a sequence from an even numbered sequence ranging from SEQ ID NO: 2 to SEQ ID NO: 94 and SEQ ID NO: 186, or a homolog or fragment thereof.

The present invention provides an method of inducing an immune response in a mammal against a polypeptide comprising a sequence from an even numbered sequence ranging from SEQ ID NO: 2 to SEQ ID NO: 94 and SEQ ID NO: 186, or a homolog or fragment thereof. The method comprises administering to a mammal an amount of the polypeptide sufficient to induce said immune response.

The present invention provides a method for identifying a compound which binds nGPCR-x. The method comprises the steps of: contacting nGPCR-x with a compound and determining whether the compound binds nGPCR-x.

The present invention provides a method for identifying a compound which binds a nucleic acid molecule encoding nGPCR-x. The method comprises the steps of contacting said nucleic acid molecule encoding nGPCR-x with a compound and determining whether said compound binds said nucleic acid molecule.

The present invention provides a method for identifying a compound which modulates the activity of nGPCR-x. The method comprises the steps of contacting nGPCR-x with a compound and determining whether nGPCR-x activity has been modulated.

The present invention provides a method of identifying an animal homolog of nGPCR-x. The method comprises the steps screening a nucleic acid database of the animal with an odd numbered sequence ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID NO: 185, or a portion thereof and determining whether a portion of said library or database is homologous to said odd numbered sequence ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID NO: 185, or portion thereof.

The present invention provides a method of identifying an animal homolog of nGPCR-x. The methods comprises the steps screening a nucleic acid library of the animal with a nucleic acid molecule having an odd numbered nucleotide sequence

ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID NO: 185, or a portion thereof; and determining whether a portion of said library or database is homologous to said odd numbered nucleotide sequence ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID NO: 185, or a portion thereof.

5

10

15

20

25

30

Another aspect of the present invention relates to methods of screening a human subject to diagnose a disorder affecting the brain or genetic predisposition therefor. The methods comprise the steps of assaying nucleic acid of a human subject to determine a presence or an absence of a mutation altering an amino acid sequence, expression, or biological activity of at least one nGPCR that is expressed in the brain. The nGPCR comprise an amino acid sequence selected from the group consisting of: SEQ ID NO:74, SEQ ID NO:186, SEQ ID NO:78, SEQ ID NO:80, SEQ ID NO:82, SEQ ID NO:84, SEQ ID NO:86, SEQ ID NO:90, and SEQ ID NO:94, and allelic variants thereof. A diagnosis of the disorder or predisposition is made from the presence or absence of the mutation. The presence of a mutation altering the amino acid sequence, expression, or biological activity of the nGPCR in the nucleic acid correlates with an increased risk of developing the disorder.

The present invention further relates to methods of screening for an nGPCR-40 or nGPCR-54 hereditary schizophrenia genotype in a human patient. The methods comprise the steps of providing a biological sample comprising nucleic acid from the patient, in which the nucleic acid includes sequences corresponding to allelles of nGPCR-40 or nGPCR-54. The presence of one or more mutations in the nGPCR-40 allelle or the nGPCR-54 allelle is detected indicative of a hereditary schizophrenia genotype.

The present invention provides kits for screening a human subject to diagnose schizophrenia or a genetic predisposition therefor. The kits include an oligonucleotide useful as a probe for identifying polymorphisms in a human nGPCR-40 gene or a human nGPCR-54 gene. The oligonucleotide comprises 6-50 nucleotides in a sequence that is identical or complementary to a sequence of a wild type human nGPCR-40 or nGPCR-54 gene sequence or nGPCR-40 or nGPCR-54 coding sequence, except for one sequence difference selected from the group consisting of a nucleotide addition, a nucleotide deletion, or nucleotide substitution. The kit also includes a media packaged with the oligonucleotide. The media contains information for identifying polymorphisms that correlate with schizophrenia or a

genetic predisposition therefor, the polymophisms being identifiable using the oligonucleotide as a probe.

The present invention further relates to methods of identifying nGPCR allelic variants that correlates with mental disorders. The methods comprise the steps of providing biological samples that comprise nucleic acid from a human patient diagnosed with a mental disorder, or from the patient's genetic progenitors or progeny, and detecting in the nucleic acid the presence of one or more mutations in an nGPCR that is expressed in the brain. The nGPCR comprises an amino acid sequence selected from the group consisting of SEQ ID NO:74, SEQ ID NO:186, SEQ ID NO:78, SEQ ID NO:80, SEQ ID NO:82, SEQ ID NO:84, SEQ ID NO:86, SEQ ID NO:90, and SEQ ID NO:94, and allelic variants thereof. The nucleic acid includes sequences corresponding to the gene or genes encoding nGPCR. The one or more mutations detected indicate an allelic variant that correlates with a mental disorder.

10

15

20

25

30

The present invention further relates to purified polynucleotides comprising nucleotide sequences encoding allelles of nGPCR-40 or nGPCR-54 from a human with schizophrenia. The polynucleotide hybridizes to the complement of SEQ ID NO:83 or of SEQ ID NO:85 under the following hybridization conditions: (a) hybridization for 16 hours at 42°C in a hybridization solution comprising 50% formamide, 1% SDS, 1 M NaC1, 10% dextran sulfate and (b) washing 2 times for 30 minutes at 60°C in a wash solution comprising 0.1x SSC and 1% SDS. The polynucleotide that encodes nGPCR-40 or nGPCR-54 amino acid sequence of the human differs from SEQ ID NO:84 or SEQ ID NO:86 by at least one residue.

The present invention also provides methods for identifying a modulator of biological activity of nGPCR-40 or nGPCR-54 comprising the steps of contacting a cell that expresses nGPCR-40 or nGPCR-54 in the presence and in the absence of a putative modulator compound and measuring nGPCR-40 or nGPCR-54 biological activity in the cell. The decreased or increased nGPCR-40 or nGPCR-54 biological activity in the presence versus absence of the putative modulator is indicative of a modulator of biological activity.

The present invention further provides methods to identify compounds useful for the treatment of schizophrenia. The methods comprise the steps of contacting a composition comprising nGPCR-40 with a compound suspected of binding nGPCR-40 or contacting a composition comprising nGPCR-54 with a compound suspected of

binding nGPCR-54. The binding between nGPCR-40 and the compound suspected of binding nGPCR-40 or between nGPCR-54 and the compound suspected of binding nGPCR-54 is detected. Compounds identified as binding nGPCR-40 or nGPCR-54 are candidate compounds useful for the treatment of schizophrenia.

5

10

15

20

25

30

The present invention further provides methods for identifying a compound useful as a modulator of binding between nGPCR-40 and a binding partner of nGPCR-40 or between nGPCR-54 and a binding partner of nGPCR-54. The methods comprise the steps of contacting the binding partner and a composition comprising nGPCR-40 or nGPCR-54 in the presence and in the absence of a putative modulator compound and detecting binding between the binding partner and nGPCR-40 or nGPCR-54. Decreased or increased binding between the binding partner and nGPCR-40 or nGPCR-54 in the presence of the putative modulator, as compared to binding in the absence of the putative modulator is indicative a modulator compound useful for the treatment of schizophrenia.

Another aspect of the present invention relates to methods of purifying a G protein from a sample containing a G protein. The methods comprise the steps of contacting the sample with an nGPCR for a time sufficient to allow the G protein to form a complex with the nGPCR; isolating the complex from remaining components of the sample; maintaining the complex under conditions which result in dissociation of the G protein from the nGPCR; and isolating said G protein from the nGPCR.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS Definitions

Various definitions are made throughout this document. Most words have the meaning that would be attributed to those words by one skilled in the art. Words specifically defined either below or elsewhere in this document have the meaning provided in the context of the present invention as a whole and as are typically understood by those skilled in the art.

"Synthesized" as used herein and understood in the art, refers to polynucleotides produced by purely chemical, as opposed to enzymatic, methods. "Wholly" synthesized DNA sequences are therefore produced entirely by chemical means, and "partially" synthesized DNAs embrace those wherein only portions of the resulting DNA were produced by chemical means.

RNA sequences for use in therapeutics as alternatives to antisense or catalytic RNA methods (McColl et al., Proc. Natl. Acad. Sci. (USA) 96:9521-9526 (1997); Wu et al., Proc. Natl. Acad. Sci. (USA) 92:344-348 (1995)). The present invention contemplates methods of designing such transcription factors based on the gene sequence of the invention, as well as customized zinc finger proteins, that are useful to modulate nGPCR-x expression in cells (native or transformed) whose genetic complement includes these sequences.

Polypeptides

10

15

20

25

30

The invention also provides purified and isolated mammalian nGPCR-x polypeptides encoded by a polynucleotide of the invention. Presently preferred is a human nGPCR-x polypeptide comprising the amino acid sequence set out in even numbered sequences ranging from SEQ ID NO: 2 to SEQ ID NO: 94 and SEQ ID NO: 186 or fragments thereof comprising an epitope specific to the polypeptide. By "epitope specific to" is meant a portion of the nGPCR receptor that is recognizable by an antibody that is specific for the nGPCR, as defined in detail below.

Although the sequences provided are particular human sequences, the invention is intended to include within its scope other human allelic variants; non-human mammalian forms of nGPCR-x, and other vertebrate forms of nGPCR-x.

It will be appreciated that extracellular epitopes are particularly useful for generating and screening for antibodies and other binding compounds that bind to receptors such as nGPCR-x. Thus, in another preferred embodiment, the invention provides a purified and isolated polypeptide comprising at least one extracellular domain (e.g., the N-terminal extracellular domain or one of the three extracellular loops) of nGPCR-x. Purified and isolated polypeptides comprising the N-terminal extracellular domain of nGPCR-x are highly preferred. Also preferred is a purified and isolated polypeptide comprising a nGPCR-x fragment selected from the group consisting of the N-terminal extracellular domain of nGPCR-x, transmembrane domains of nGPCR-x, an extracellular loop connecting transmembrane domains of nGPCR-x, an intracellular loop connecting transmembrane domains of nGPCR-x, the C-terminal cytoplasmic region of nGPCR-x, and fusions thereof. Such fragments may be continuous portions of the native receptor. However, it will also be appreciated that knowledge of the nGPCR-x gene and protein sequences as provided herein permits recombining of various domains that are not contiguous in the native protein. Using a FORTRAN computer program called "tmtrest.all" [Parodi et al.,

Comput. Appl. Biosci. 5:527-535 (1994)], nGPCR-x was shown to contain transmembrane-spanning domains.

The invention also embraces polypeptides that have at least 99%, at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 65%, at least 60%, at least 55% or at least 50% identity and/or homology to the preferred polypeptide of the invention. Percent amino acid sequence "identity" with respect to the preferred polypeptide of the invention is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with the residues in the nGPCR-x sequence after aligning both sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Percent sequence "homology" with respect to the preferred polypeptide of the invention is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with the residues in the nGPCR-x sequence after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and also considering any conservative substitutions as part of the sequence identity.

10

15

20

25

30

In one aspect, percent homology is calculated as the percentage of amino acid residues in the smaller of two sequences which align with identical amino acid residue in the sequence being compared, when four gaps in a length of 100 amino acids may be introduced to maximize alignment [Dayhoff, in <u>Atlas of Protein Sequence and Structure</u>, Vol. 5, p. 124, National Biochemical Research Foundation, Washington, D.C. (1972), incorporated herein by reference].

Polypeptides of the invention may be isolated from natural cell sources or may be chemically synthesized, but are preferably produced by recombinant procedures involving host cells of the invention. Use of mammalian host cells is expected to provide for such post-translational modifications (e.g., glycosylation, truncation, lipidation, and phosphorylation) as may be needed to confer optimal biological activity on recombinant expression products of the invention. Glycosylated and non-glycosylated forms of nGPCR-x polypeptides are embraced by the invention.

The invention also embraces variant (or analog) nGPCR-x polypeptides. In one example, insertion variants are provided wherein one or more amino acid residues supplement a nGPCR-x amino acid sequence. Insertions may be located at either or both termini of the protein, or may be positioned within internal regions of the nGPCR-x amino acid sequence. Insertional variants with additional residues at either

or both termini can include, for example, fusion proteins and proteins including amino acid tags or labels.

Insertion variants include nGPCR-x polypeptides wherein one or more amino acid residues are added to a nGPCR-x acid sequence or to a biologically active fragment thereof.

5

10

15

20

25

30

Variant products of the invention also include mature nGPCR-x products, *i.e.*, nGPCR-x products wherein leader or signal sequences are removed, with additional amino terminal residues. The additional amino terminal residues may be derived from another protein, or may include one or more residues that are not identifiable as being derived from specific proteins. nGPCR-x products with an additional methionine residue at position -1 (Met⁻¹-nGPCR-x) are contemplated, as are variants with additional methionine and lysine residues at positions -2 and -1 (Met⁻²-Lys⁻¹-nGPCR-x). Variants of nGPCR-x with additional Met, Met-Lys, Lys residues (or one or more basic residues in general) are particularly useful for enhanced recombinant protein production in bacterial host cells.

The invention also embraces nGPCR-x variants having additional amino acid residues that result from use of specific expression systems. For example, use of commercially available vectors that express a desired polypeptide as part of a glutathione-S-transferase (GST) fusion product provides the desired polypeptide having an additional glycine residue at position -1 after cleavage of the GST component from the desired polypeptide. Variants that result from expression in other vector systems are also contemplated.

Insertional variants also include fusion proteins wherein the amino terminus and/or the carboxy terminus of nGPCR-x is/are fused to another polypeptide.

In another aspect, the invention provides deletion variants wherein one or more amino acid residues in a nGPCR-x polypeptide are removed. Deletions can be effected at one or both termini of the nGPCR-x polypeptide, or with removal of one or more non-terminal amino acid residues of nGPCR-x. Deletion variants, therefore, include all fragments of a nGPCR-x polypeptide.

The invention also embraces polypeptide fragments of the even numbered sequences ranging from SEQ ID NO: 2 to SEQ ID NO: 94 and SEQ ID NO: 186, wherein the fragments maintain biological (e.g., ligand binding and/or intracellular signaling) immunological properties of a nGPCR-x polypeptide.

In one preferred embodiment of the invention, an isolated nucleic acid molecule comprises a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence homologous to even numbered sequences selected from the group consisting of: SEQ ID NO:2 to SEQ ID NO:94, SEQ ID NO: 186, and fragments thereof, wherein the nucleic acid molecule encoding at least a portion of nGPCR-x. In a more preferred embodiment, the isolated nucleic acid molecule comprises a sequence that encodes a polypeptide comprising even numbered sequences selected from the group consisting of SEQ ID NO:2 to SEQ ID NO: 94, SEQ ID NO: 186, and fragments thereof.

As used in the present invention, polypeptide fragments comprise at least 5, 10, 15, 20, 25, 30, 35, or 40 consecutive amino acids of the even numbered sequences ranging from SEQ ID NO: 2 to SEQ ID NO: 94 and SEQ ID NO: 186. Preferred polypeptide fragments display antigenic properties unique to, or specific for, human nGPCR-x and its allelic and species homologs. Fragments of the invention having the desired biological and immunological properties can be prepared by any of the methods well known and routinely practiced in the art.

10

15

20

25

30

In still another aspect, the invention provides substitution variants of nGPCR-x polypeptides. Substitution variants include those polypeptides wherein one or more amino acid residues of a nGPCR-x polypeptide are removed and replaced with alternative residues. In one aspect, the substitutions are conservative in nature; however, the invention embraces substitutions that are also non-conservative. Conservative substitutions for this purpose may be defined as set out in Tables 2, 3, or 4 below.

Variant polypeptides include those wherein conservative substitutions have been introduced by modification of polynucleotides encoding polypeptides of the invention. Amino acids can be classified according to physical properties and contribution to secondary and tertiary protein structure. A conservative substitution is recognized in the art as a substitution of one amino acid for another amino acid that has similar properties. Exemplary conservative substitutions are set out in Table 2 (from WO 97/09433, page 10, published March 13, 1997 (PCT/GB96/02197, filed 9/6/96), immediately below.

Table 2
Conservative Substitutions I

SIDE CHAIN	
<u>CHARACTERISTIC</u>	<u>AMINO ACID</u>
Aliphatic	
Non-polar	GAP
	ILV
Polar - uncharged	CSTM
	NQ
Polar - charged	DE
	KR
Aromatic	HFWY
Other	NQDE

Alternatively, conservative amino acids can be grouped as described in

Lehninger, [Biochemistry, Second Edition; Worth Publishers, Inc. NY, NY (1975), pp.71-77] as set out in Table 3, below.

Table 3
Conservative Substitutions II

10	SIDE CHAIN <u>CHARACTERISTIC</u>	AMINO ACID
	Non-polar (hydrophobic)	
	A. Aliphatic:	ALIVP
	B. Aromatic:	F W
	C. Sulfur-containing:	M
	D. Borderline:	G
	Uncharged-polar	
	A. Hydroxyl:	STY
	B. Amides:	NQ
	C. Sulfhydryl:	c `
	D. Borderline:	G
	Positively Charged (Basic):	KRH
	Negatively Charged (Acidic)	DE

As still another alternative, exemplary conservative substitutions are set out in Table 4, below.

Table 4 Conservative Substitutions III

Original Residue	Exemplary Substitution
Ala (A)	Val, Leu, Ile
Arg (R)	Lys, Gln, Asn
Asn (N)	Gln, His, Lys, Arg
Asp (D)	Glu
Cys (C)	Ser
Gln (Q)	Asn
Glu (E)	Asp
His (H)	Asn, Gln, Lys, Arg
Ile (I)	Leu, Val, Met, Ala, Phe,

Leu (L)	Ile, Val, Met, Ala, Phe
Lys (K)	Arg, Gln, Asn
Met (M)	Leu, Phe, Ile
Phe (F)	Leu, Val, Ile, Ala
Pro (P)	Gly
Ser (S)	Thr
Thr (T)	Ser
Trp (W)	Tyr
Tyr (Y)	Trp, Phe, Thr, Ser
Val (V)	Ile, Leu, Met, Phe, Ala

It should be understood that the definition of polypeptides of the invention is intended to include polypeptides bearing modifications other than insertion, deletion, or substitution of amino acid residues. By way of example, the modifications may be covalent in nature, and include for example, chemical bonding with polymers, lipids, other organic, and inorganic moieties. Such derivatives may be prepared to increase circulating half-life of a polypeptide, or may be designed to improve the targeting capacity of the polypeptide for desired cells, tissues, or organs. Similarly, the invention further embraces nGPCR-x polypeptides that have been covalently modified to include one or more water-soluble polymer attachments such as polyethylene glycol, polyoxyethylene glycol, or polypropylene glycol. Variants that display ligand binding properties of native nGPCR-x and are expressed at higher levels, as well as variants that provide for constitutively active receptors, are particularly useful in assays of the invention; the variants are also useful in providing cellular, tissue and animal models of diseases/conditions characterized by aberrant nGPCR-x activity.

5

10

15

20

25

In a related embodiment, the present invention provides compositions comprising purified polypeptides of the invention. Preferred compositions comprise, in addition to the polypeptide of the invention, a pharmaceutically acceptable (i.e., sterile and non-toxic) liquid, semisolid, or solid diluent that serves as a pharmaceutical vehicle, excipient, or medium. Any diluent known in the art may be used. Exemplary diluents include, but are not limited to, water, saline solutions, polyoxyethylene sorbitan monolaurate, magnesium stearate, methyl- and propylhydroxybenzoate, talc, alginates, starches, lactose, sucrose, dextrose, sorbitol, mannitol, glycerol, calcium phosphate, mineral oil, and cocoa butter.

Variants that display ligand binding properties of native nGPCR-x and are expressed at higher levels, as well as variants that provide for constitutively active

receptors, are particularly useful in assays of the invention; the variants are also useful in assays of the invention and in providing cellular, tissue and animal models of diseases/conditions characterized by aberrant nGPCR-x activity.

The G protein-coupled receptor functions through a specific heterotrimeric guanine-nucleotide-binding regulatory protein (G-protein) coupled to the intracellular portion of the G protein-coupled receptor molecule. Accordingly, the G protein-coupled receptor has a specific affinity to G protein. G proteins specifically bind to guanine nucleotides. Isolation of G proteins provides a means to isolate guanine nucleotides. G Proteins may be isolated using commercially available anti-G protein antibodies or isolated G protein-coupled receptors. Similarly, G proteins may be detected in a sample isolated using commercially available detectable anti-G protein antibodies or isolated G protein-coupled receptors.

According to the present invention, the isolated n-GPCR-x proteins of the present invention are useful to isolate and purify G proteins from samples such as cell lysates. Example 15 below sets forth an example of isolation of G proteins using isolated n-GPCR-x proteins. Such methodolgy may be used in place of the use of commercially available anti-G protein antibodies which are used to isolate G proteins. Moreover, G proteins may be detected using n-GPCR-x proteins in place of commercially available detectable anti-G protein antibodies. Since n-GPCR-x proteins specifically bind to G proteins, they can be employed in any specific use where G protein specific affinity is required such as those uses where commercially available anti-G protein antibodies are employed.

Antibodies

5

10

15

20

25

30

Also comprehended by the present invention are antibodies (e.g., monoclonal and polyclonal antibodies, single chain antibodies, chimeric antibodies, bifunctional/bispecific antibodies, humanized antibodies, human antibodies, and complementary determining region (CDR)-grafted antibodies, including compounds which include CDR sequences which specifically recognize a polypeptide of the invention) specific for nGPCR-x or fragments thereof. Preferred antibodies of the invention are human antibodies that are produced and identified according to methods described in WO93/11236, published June 20, 1993, which is incorporated herein by reference in its entirety. Antibody fragments, including Fab, Fab', F(ab')₂, and F_v, are also provided by the invention. The term "specific for," when used to describe antibodies of the invention, indicates that the variable regions of the antibodies of the

The diseases that could be diagnosed by detection of nucleic acid in a sample preferably include central nervous system and metabolic diseases. The test samples suitable for nucleic acid probing methods of the present invention include, for example, cells or nucleic acid extracts of cells, or biological fluids. The samples used in the above-described methods will vary based on the assay format, the detection method and the nature of the tissues, cells or extracts to be assayed. Methods for preparing nucleic acid extracts of cells are well known in the art and can be readily adapted in order to obtain a sample that is compatible with the method utilized.

Alternatively, immunoassay kits can be provided which have containers container having antibodies specific for the n-GPCR-x-protein and optionally, containers with positive and negative controls and/or instructions.

Kits may also be provided useful in the identification of GPCR binding partners such as natural ligands or modulators (agonists or antagonists). Substances useful for treatment of disorders or diseases preferably show positive results in one or more *in vitro* assays for an activity corresponding to treatment of the disease or disorder in question. Substances that modulate the activity of the polypeptides preferably include, but are not limited to, antisense oligonucleotides, agonists and antagonists, and inhibitors of protein kinases.

Methods of inducing immune response

10

15

20

25

30

Another aspect of the present invention is directed to methods of inducing an immune response in a mammal against a polypeptide of the invention by administering to the mammal an amount of the polypeptide sufficient to induce an immune response. The amount will be dependent on the animal species, size of the animal, and the like but can be determined by those skilled in the art.

Methods of identifying ligands

The invention also provides assays to identify compounds that bind nGPCR-x. One such assay comprises the steps of: (a) contacting a composition comprising a nGPCR-x with a compound suspected of binding nGPCR-x; and (b) measuring binding between the compound and nGPCR-x. In one variation, the composition comprises a cell expressing nGPCR-x on its surface. In another variation, isolated nGPCR-x or cell membranes comprising nGPCR-x are employed. The binding may be measured directly, e.g., by using a labeled compound, or may be measured indirectly by several techniques, including measuring intracellular signaling of

nGPCR-x induced by the compound (or measuring changes in the level of nGPCR-x signaling).

Specific binding molecules, including natural ligands and synthetic compounds, can be identified or developed using isolated or recombinant nGPCR-x products, nGPCR-x variants, or preferably, cells expressing such products. Binding partners are useful for purifying nGPCR-x products and detection or quantification of nGPCR-x products in fluid and tissue samples using known immunological procedures. Binding molecules are also manifestly useful in modulating (i.e., blocking, inhibiting or stimulating) biological activities of nGPCR-x, especially those activities involved in signal transduction.

5

10

15

20

25

30

The DNA and amino acid sequence information provided by the present invention also makes possible identification of binding partner compounds with which a nGPCR-x polypeptide or polynucleotide will interact. Methods to identify binding partner compounds include solution assays, *in vitro* assays wherein nGPCR-x polypeptides are immobilized, and cell-based assays. Identification of binding partner compounds of nGPCR-x polypeptides provides candidates for therapeutic or prophylactic intervention in pathologies associated with nGPCR-x normal and aberrant biological activity.

The invention includes several assay systems for identifying nGPCR-x binding partners. In solution assays, methods of the invention comprise the steps of (a) contacting a nGPCR-x polypeptide with one or more candidate binding partner compounds and (b) identifying the compounds that bind to the nGPCR-x polypeptide. Identification of the compounds that bind the nGPCR-x polypeptide can be achieved by isolating the nGPCR-x polypeptide/binding partner complex, and separating the binding partner compound from the nGPCR-x polypeptide. An additional step of characterizing the physical, biological, and/or biochemical properties of the binding partner compound is also comprehended in another embodiment of the invention. In one aspect, the nGPCR-x polypeptide/binding partner complex is isolated using an antibody immunospecific for either the nGPCR-x polypeptide or the candidate binding partner compound.

In still other embodiments, either the nGPCR-x polypeptide or the candidate binding partner compound comprises a label or tag that facilitates its isolation, and methods of the invention to identify binding partner compounds include a step of isolating the nGPCR-x polypeptide/binding partner complex through interaction with

the label or tag. An exemplary tag of this type is a poly-histidine sequence, generally around six histidine residues, that permits isolation of a compound so labeled using nickel chelation. Other labels and tags, such as the FLAG® tag (Eastman Kodak, Rochester, NY), well known and routinely used in the art, are embraced by the invention.

In one variation of an *in vitro* assay, the invention provides a method comprising the steps of (a) contacting an immobilized nGPCR-x polypeptide with a candidate binding partner compound and (b) detecting binding of the candidate compound to the nGPCR-x polypeptide. In an alternative embodiment, the candidate binding partner compound is immobilized and binding of nGPCR-x is detected. Immobilization is accomplished using any of the methods well known in the art, including covalent bonding to a support, a bead, or a chromatographic resin, as well as non-covalent, high affinity interactions such as antibody binding, or use of streptavidin/biotin binding wherein the immobilized compound includes a biotin moiety. Detection of binding can be accomplished (i) using a radioactive label on the compound that is not immobilized, (ii) using of a fluorescent label on the non-immobilized compound, (iii) using an antibody immunospecific for the non-immobilized compound, (iv) using a label on the non-immobilized compound that excites a fluorescent support to which the immobilized compound is attached, as well as other techniques well known and routinely practiced in the art.

10

15

20

25

30

The invention also provides cell-based assays to identify binding partner compounds of a nGPCR-x polypeptide. In one embodiment, the invention provides a method comprising the steps of contacting a nGPCR-x polypeptide expressed on the surface of a cell with a candidate binding partner compound and detecting binding of the candidate binding partner compound to the nGPCR-x polypeptide. In a preferred embodiment, the detection comprises detecting a calcium flux or other physiological event in the cell caused by the binding of the molecule.

Another aspect of the present invention is directed to methods of identifying compounds that bind to either nGPCR-x or nucleic acid molecules encoding nGPCR-x, comprising contacting nGPCR-x, or a nucleic acid molecule encoding the same, with a compound, and determining whether the compound binds nGPCR-x or a nucleic acid molecule encoding the same. Binding can be determined by binding assays which are well known to the skilled artisan, including, but not limited to, gelshift assays. Western blots, radiolabeled competition assay, phage-based expression

cloning, co-fractionation by chromatography, co-precipitation, cross linking, interaction trap/two-hybrid analysis, southwestern analysis, ELISA, and the like, which are described in, for example, Current Protocols in Molecular Biology, 1999, John Wiley & Sons, NY, which is incorporated herein by reference in its entirety. The compounds to be screened include (which may include compounds which are suspected to bind nGPCR-x, or a nucleic acid molecule encoding the same), but are not limited to, extracellular, intracellular, biologic or chemical origin. The methods of the invention also embrace ligands, especially neuropeptides, that are attached to a label, such as a radiolabel (e.g., 125I, 35S, 32P, 33P, 3H), a fluorescence label, a chemiluminescent label, an enzymic label and an immunogenic label. Modulators falling within the scope of the invention include, but are not limited to, non-pertide molecules such as non-peptide mimetics, non-peptide allosteric effectors, and peptides. The nGPCR-x polypeptide or polynucleotide employed in such a test may either be free in solution, attached to a solid support, borne on a cell surface or located intracellularly or associated with a portion of a cell. One skilled in the art can, for example, measure the formation of complexes between nGPCR-x and the compound being tested. Alternatively, one skilled in the art can examine the diminution in complex formation between nGPCR-x and its substrate caused by the compound being tested.

10

15

20

25

30

In another embodiment of the invention, high throughput screening for compounds having suitable binding affinity to nGPCR-x is employed. Briefly, large numbers of different small peptide test compounds are synthesized on a solid substrate. The peptide test compounds are contacted with nGPCR-x and washed. Bound nGPCR-x is then detected by methods well known in the art. Purified polypeptides of the invention can also be coated directly onto plates for use in the aforementioned drug screening techniques. In addition, non-neutralizing antibodies can be used to capture the protein and immobilize it on the solid support.

Generally, an expressed nGPCR-x can be used for HTS binding assays in conjunction with its defined ligand, in this case the corresponding neuropeptide that activates it. The identified peptide is labeled with a suitable radioisotope, including, but not limited to, ¹²⁵I, ³H, ³⁵S or ³²P, by methods that are well known to those skilled in the art. Alternatively, the peptides may be labeled by well-known methods with a suitable fluorescent derivative (Baindur *et al.*, *Drug Dev. Res.*, **1994**, *33*, 373-398; Rogers, *Drug Discovery Today*, **1997**, *2*, 156-160). Radioactive ligand specifically

bound to the receptor in membrane preparations made from the cell line expressing the recombinant protein can be detected in HTS assays in one of several standard ways, including filtration of the receptor-ligand complex to separate bound ligand from unbound ligand (Williams, Med. Res. Rev., 1991, 11, 147-184; Sweetnam et al.,

J. Natural Products, 1993, 56, 441-455). Alternative methods include a scintillation proximity assay (SPA) or a FlashPlate format in which such separation is unnecessary (Nakayama, Cur. Opinion Drug Disc. Dev., 1998, 1, 85-91 Bossé et al., J.

Biomolecular Screening, 1998, 3, 285-292.). Binding of fluorescent ligands can be detected in various ways, including fluorescence energy transfer (FRET), direct spectrophotofluorometric analysis of bound ligand, or fluorescence polarization (Rogers, Drug Discovery Today, 1997, 2, 156-160; Hill, Cur. Opinion Drug Disc. Dev., 1998, 1, 92-97).

15

20

25

30

Other assays may be used to identify specific ligands of a nGPCR-x receptor, including assays that identify ligands of the target protein through measuring direct binding of test ligands to the target protein, as well as assays that identify ligands of target proteins through affinity ultrafiltration with ion spray mass spectroscopy/HPLC methods or other physical and analytical methods. Alternatively, such binding interactions are evaluated indirectly using the yeast two-hybrid system described in Fields et al., Nature, 340:245-246 (1989), and Fields et al., Trends in Genetics, 10:286-292 (1994), both of which are incorporated herein by reference. The twohybrid system is a genetic assay for detecting interactions between two proteins or polypeptides. It can be used to identify proteins that bind to a known protein of interest, or to delineate domains or residues critical for an interaction. Variations on this methodology have been developed to clone genes that encode DNA binding proteins, to identify peptides that bind to a protein, and to screen for drugs. The twohybrid system exploits the ability of a pair of interacting proteins to bring a transcription activation domain into close proximity with a DNA binding domain that binds to an upstream activation sequence (UAS) of a reporter gene, and is generally performed in yeast. The assay requires the construction of two hybrid genes encoding (1) a DNA-binding domain that is fused to a first protein and (2) an activation domain fused to a second protein. The DNA-binding domain targets the first hybrid protein to the UAS of the reporter gene; however, because most proteins lack an activation domain, this DNA-binding hybrid protein does not activate transcription of the reporter gene. The second hybrid protein, which contains the activation domain,

cannot by itself activate expression of the reporter gene because it does not bind the UAS. However, when both hybrid proteins are present, the noncovalent interaction of the first and second proteins tethers the activation domain to the UAS, activating transcription of the reporter gene. For example, when the first protein is a GPCR gene product, or fragment thereof, that is known to interact with another protein or nucleic acid, this assay can be used to detect agents that interfere with the binding interaction. Expression of the reporter gene is monitored as different test agents are added to the system. The presence of an inhibitory agent results in lack of a reporter signal.

10

15

20

25

30

The function of nGPCR-x gene products is unclear and no ligands have yet been found which bind the gene product. The yeast two-hybrid assay can also be used to identify proteins that bind to the gene product. In an assay to identify proteins that bind to a nGPCR-x receptor, or fragment thereof, a fusion polynucleotide encoding both a nGPCR-x receptor (or fragment) and a UAS binding domain (i.e., a first protein) may be used. In addition, a large number of hybrid genes each encoding a different second protein fused to an activation domain are produced and screened in the assay. Typically, the second protein is encoded by one or more members of a total cDNA or genomic DNA fusion library, with each second protein-coding region being fused to the activation domain. This system is applicable to a wide variety of proteins, and it is not even necessary to know the identity or function of the second binding protein. The system is highly sensitive and can detect interactions not revealed by other methods; even transient interactions may trigger transcription to produce a stable mRNA that can be repeatedly translated to yield the reporter protein.

Other assays may be used to search for agents that bind to the target protein. One such screening method to identify direct binding of test ligands to a target protein is described in U.S. Patent No. 5,585,277, incorporated herein by reference. This method relies on the principle that proteins generally exist as a mixture of folded and unfolded states, and continually alternate between the two states. When a test ligand binds to the folded form of a target protein (i.e., when the test ligand is a ligand of the target protein), the target protein molecule bound by the ligand remains in its folded state. Thus, the folded target protein is present to a greater extent in the presence of a test ligand which binds the target protein, than in the absence of a ligand. Binding of the ligand to the target protein can be determined by any method that distinguishes between the folded and unfolded states of the target protein. The function of the

target protein need not be known in order for this assay to be performed. Virtually any agent can be assessed by this method as a test ligand, including, but not limited to, metals, polypeptides, proteins, lipids, polysaccharides, polynucleotides and small organic molecules.

5

10

15

20

25

30

Another method for identifying ligands of a target protein is described in Wieboldt *et al.*, Anal. Chem., 69:1683-1691 (1997), incorporated herein by reference. This technique screens combinatorial libraries of 20-30 agents at a time in solution phase for binding to the target protein. Agents that bind to the target protein are separated from other library components by simple membrane washing. The specifically selected molecules that are retained on the filter are subsequently liberated from the target protein and analyzed by HPLC and pneumatically assisted electrospray (ion spray) ionization mass spectroscopy. This procedure selects library components with the greatest affinity for the target protein, and is particularly useful for small molecule libraries.

Other embodiments of the invention comprise using competitive screening assays in which neutralizing antibodies capable of binding a polypeptide of the invention specifically compete with a test compound for binding to the polypeptide. In this manner, the antibodies can be used to detect the presence of any peptide that shares one or more antigenic determinants with nGPCR-x. Radiolabeled competitive binding studies are described in A.H. Lin et al. Antimicrobial Agents and Chemotherapy, 1997, vol. 41, no. 10. pp. 2127-2131, the disclosure of which is incorporated herein by reference in its entirety.

As described above and in Example 4 below, the genes encoding nGPCR-1 (nucleic acid sequence SEQ ID NO: 1, SEQ ID NO: 73, amino acid sequence SEQ ID NO: 2, SEQ ID NO:74), nGPCR-9 (nucleic acid sequence SEQ ID NO:9, SEQ ID NO:77, amino acid sequence SEQ ID NO:10, SEQ ID NO:78), nGPCR-11 (nucleic acid sequence SEQ ID NO:11, SEQ ID NO:79, amino acid sequence SEQ ID NO:12, SEQ ID NO:80), nGPCR-16 (nucleic acid sequence SEQ ID NO: 21, SEQ ID NO:81, amino acid sequence SEQ ID NO: 22, SEQ ID NO:82), nGPCR-40 (nucleic acid sequence SEQ ID NO:53, SEQ ID NO:83, amino acid sequence SEQ ID NO:54, SEQ ID NO:84), nGPCR-54 (nucleic acid sequence SEQ ID NO:59, SEQ ID NO:85, amino acid sequence SEQ ID NO:60, SEQ ID NO: 86), nGPCR-56 (nucleic acid sequence SEQ ID NO:63, SEQ ID NO:87, SEQ ID NO:89, amino acid sequence SEQ ID NO:64, SEQ ID NO:88, SEQ ID NO:90), nGPCR-58 (nucleic acid sequence SEQ ID NO:64, SEQ ID NO: 88, SEQ ID NO:90), nGPCR-58 (nucleic acid sequence SEQ ID NO:64, SEQ ID NO: 88, SEQ ID NO:90), nGPCR-58 (nucleic acid sequence SEQ ID NO:64, SEQ ID NO: 88, SEQ ID NO:90), nGPCR-58 (nucleic acid sequence SEQ

ID NO:67, SEQ ID NO:91, SEQ ID NO:93, amino acid sequence SEQ ID NO:68, SEQ ID NO: 92, SEQ ID NO:94), and nGPCR-3 (nucleic acid sequence SEQ ID NO:3, SEQ ID NO:185, amino acid sequence SEQ ID NO:4, SEQ ID NO: 186) have been detected in brain tissue indicating that these n-GPCR-x proteins are neuroreceptors. Accordingly, natural binding partners of these molecules include neurotransmitters.

Identification of modulating agents

10

15

20

25

30

The invention also provides methods for identifying a modulator of binding between a nGPCR-x and a nGPCR-x binding partner, comprising the steps of: (a) contacting a nGPCR-x binding partner and a composition comprising a nGPCR-x in the presence and in the absence of a putative modulator compound; (b) detecting binding between the binding partner and the nGPCR-x; and (c) identifying a putative modulator compound or a modulator compound in view of decreased or increased binding between the binding partner and the nGPCR-x in the presence of the putative modulator, as compared to binding in the absence of the putative modulator.

nGPCR-x binding partners that stimulate nGPCR-x activity are useful as agonists in disease states or conditions characterized by insufficient nGPCR-x signaling (e.g., as a result of insufficient activity of a nGPCR-x ligand). nGPCR-x binding partners that block ligand-mediated nGPCR-x signaling are useful as nGPCR-x antagonists to treat disease states or conditions characterized by excessive nGPCR-x signaling. In addition nGPCR-x modulators in general, as well as nGPCR-x polynucleotides and polypeptides, are useful in diagnostic assays for such diseases or conditions.

In another aspect, the invention provides methods for treating a disease or abnormal condition by administering to a patient in need of such treatment a substance that modulates the activity or expression of a polypeptide having the sequence of even numbered sequences ranging from SEQ ID NO: 2 to SEQ ID NO: 94 and SEQ ID NO: 186.

Agents that modulate (i.e., increase, decrease, or block) nGPCR-x activity or expression may be identified by incubating a putative modulator with a cell containing a nGPCR-x polypeptide or polynucleotide and determining the effect of the putative modulator on nGPCR-x activity or expression. The selectivity of a compound that modulates the activity of nGPCR-x can be evaluated by comparing its effects on nGPCR-x to its effect on other GPCR compounds. Selective modulators

may include, for example, antibodies and other proteins, peptides, or organic molecules that specifically bind to a nGPCR-x polypeptide or a nGPCR-x-encoding nucleic acid. Modulators of nGPCR-x activity will be therapeutically useful in treatment of diseases and physiological conditions in which normal or aberrant nGPCR-x activity is involved. nGPCR-x polynucleotides, polypeptides, and modulators may be used in the treatment of such diseases and conditions as infections, such as viral infections caused by HIV-1 or HIV-2; pain; cancers; Parkinson's disease; hypotension; hypertension; and psychotic and neurological disorders, including anxiety, schizophrenia, manic depression, delirium, dementia, severe mental retardation and dyskinesias, such as Huntington's disease or Tourette's Syndrome, among others. nGPCR-x polynucleotides and polypeptides, as well as nGPCR-x modulators, may also be used in diagnostic assays for such diseases or conditions.

10

15

20

25

30

Methods of the invention to identify modulators include variations on any of the methods described above to identify binding partner compounds, the variations including techniques wherein a binding partner compound has been identified and the binding assay is carried out in the presence and absence of a candidate modulator. A modulator is identified in those instances where binding between the nGPCR-x polypeptide and the binding partner compound changes in the presence of the candidate modulator compared to binding in the absence of the candidate modulator compound. A modulator that increases binding between the nGPCR-x polypeptide and the binding partner compound is described as an enhancer or activator, and a modulator that decreases binding between the nGPCR-x polypeptide and the binding partner compound is described as an inhibitor.

The invention also comprehends high-throughput screening (HTS) assays to identify compounds that interact with or inhibit biological activity (i.e., affect enzymatic activity, binding activity, etc.) of a nGPCR-x polypeptide. HTS assays permit screening of large numbers of compounds in an efficient manner. Cell-based HTS systems are contemplated to investigate nGPCR-x receptor-ligand interaction. HTS assays are designed to identify "hits" or "lead compounds" having the desired property, from which modifications can be designed to improve the desired property. Chemical modification of the "hit" or "lead compound" is often based on an identifiable structure/activity relationship between the "hit" and the nGPCR-x polypeptide.

Another aspect of the present invention is directed to methods of identifying compounds which modulate (i.e., increase or decrease) activity of nGPCR-x comprising contacting nGPCR-x with a compound, and determining whether the compound modifies activity of nGPCR-x. The activity in the presence of the test compared is measured to the activity in the absence of the test compound. Where the activity of the sample containing the test compound is higher than the activity in the sample lacking the test compound, the compound will have increased activity. Similarly, where the activity of the sample containing the test compound is lower than the activity in the sample lacking the test compound, the compound will have inhibited activity.

The present invention is particularly useful for screening compounds by using nGPCR-x in any of a variety of drug screening techniques. The compounds to be screened include (which may include compounds which are suspected to modulate nGPCR-x activity), but are not limited to, extracellular, intracellular, biologic or chemical origin. The nGPCR-x polypeptide employed in such a test may be in any form, preferably, free in solution, attached to a solid support, borne on a cell surface or located intracellularly. One skilled in the art can, for example, measure the formation of complexes between nGPCR-x and the compound being tested.

Alternatively, one skilled in the art can examine the diminution in complex formation between nGPCR-x and its substrate caused by the compound being tested.

The activity of nGPCR-x polypeptides of the invention can be determined by, for example, examining the ability to bind or be activated by chemically synthesized peptide ligands. Alternatively, the activity of nGPCR-x polypeptides can be assayed by examining their ability to bind calcium ions, hormones, chemokines, neuropeptides, neurotransmitters, nucleotides, lipids, odorants, and photons.

Alternatively, the activity of the nGPCR-x polypeptides can be determined by examining the activity of effector molecules including, but not limited to, adenylate cyclase, phospholipases and ion channels. Thus, modulators of nGPCR-x polypeptide activity may alter a GPCR receptor function, such as a binding property of a receptor or an activity such as G protein-mediated signal transduction or membrane localization. In various embodiments of the method, the assay may take the form of an ion flux assay, a yeast growth assay, a non-hydrolyzable GTP assay such as a [35S]-GTP S assay, a cAMP assay, an inositol triphosphate assay, a diacylglycerol assay, an Aequorin assay, a Luciferase assay, a FLIPR assay for intracellular Ca²⁺

concentration, a mitogenesis assay, a MAP Kinase activity assay, an arachidonic acid release assay (e.g., using [³H]-arachidonic acid), and an assay for extracellular acidification rates, as well as other binding or function-based assays of nGPCR-x activity that are generally known in the art. In several of these embodiments, the invention comprehends the inclusion of any of the G proteins known in the art, such as G 16, G 15, or chimeric Gqd5, Gqs5, Gqo5, Gq25, and the like. nGPCR-x activity can be determined by methodologies that are used to assay for FaRP activity, which is well known to those skilled in the art. Biological activities of nGPCR-x receptors according to the invention include, but are not limited to, the binding of a natural or an unnatural ligand, as well as any one of the functional activities of GPCRs known in the art. Non-limiting examples of GPCR activities include transmembrane signaling of various forms, which may involve G protein association and/or the exertion of an influence over G protein binding of various guanidylate nucleotides; another exemplary activity of GPCRs is the binding of accessory proteins or polypeptides that differ from known G proteins.

The modulators of the invention exhibit a variety of chemical structures, which can be generally grouped into non-peptide mimetics of natural GPCR receptor ligands, peptide and non-peptide allosteric effectors of GPCR receptors, and peptides that may function as activators or inhibitors (competitive, uncompetitive and non-competitive) (e.g., antibody products) of GPCR receptors. The invention does not restrict the sources for suitable modulators, which may be obtained from natural sources such as plant, animal or mineral extracts, or non-natural sources such as small molecule libraries, including the products of combinatorial chemical approaches to library construction, and peptide libraries. Examples of peptide modulators of GPCR receptors exhibit the following primary structures: GLGPRPLRFamide, GNSFLRFamide, GGPQGPLRFamide, GPSGPLRFamide, PDVDHVFLRFamide, and pyro-EDVDHVFLRFamide.

15

20

25

30

Other assays can be used to examine enzymatic activity including, but not limited to, photometric, radiometric, HPLC, electrochemical, and the like, which are described in, for example, *Enzyme Assays: A Practical Approach*, eds. R. Eisenthal and M. J. Danson, 1992, Oxford University Press, which is incorporated herein by reference in its entirety.

The use of cDNAs encoding GPCRs in drug discovery programs is wellknown; assays capable of testing thousands of unknown compounds per day in high-

throughput screens (HTSs) are thoroughly documented. The literature is replete with examples of the use of radiolabelled ligands in HTS binding assays for drug discovery (see Williams, Medicinal Research Reviews, 1991, 11, 147-184.; Sweetnam, et al., J. Natural Products, 1993, 56, 441-455 for review). Recombinant receptors are preferred for binding assay HTS because they allow for better specificity (higher relative purity), provide the ability to generate large amounts of receptor material, and can be used in a broad variety of formats (see Hodgson, Bio/Technology, 1992, 10, 973-980; each of which is incorporated herein by reference in its entirety).

A variety of heterologous systems is available for functional expression of recombinant receptors that are well known to those skilled in the art. Such systems include bacteria (Strosberg, et al., Trends in Pharmacological Sciences, 1992, 13, 95-98), yeast (Pausch, Trends in Biotechnology, 1997, 15, 487-494), several kinds of insect cells (Vanden Broeck, Int. Rev. Cytology, 1996, 164, 189-268), amphibian cells (Jayawickreme et al., Current Opinion in Biotechnology, 1997, 8, 629-634) and several mammalian cell lines (CHO, HEK293, COS, etc.; see Gerhardt, et al., Eur. J. Pharmacology, 1997, 334, 1-23). These examples do not preclude the use of other possible cell expression systems, including cell lines obtained from nematodes (PCT application WO 98/37177).

10

15

20

25

30

In preferred embodiments of the invention, methods of screening for compounds that modulate nGPCR-x activity comprise contacting test compounds with nGPCR-x and assaying for the presence of a complex between the compound and nGPCR-x. In such assays, the ligand is typically labeled. After suitable incubation, free ligand is separated from that present in bound form, and the amount of free or uncomplexed label is a measure of the ability of the particular compound to bind to nGPCR-x.

It is well known that activation of heterologous receptors expressed in recombinant systems results in a variety of biological responses, which are mediated by G proteins expressed in the host cells. Occupation of a GPCR by an agonist results in exchange of bound GDP for GTP at a binding site on the G_{α} subunit; one can use a radioactive, non-hydrolyzable derivative of GTP, GTP χ^{35} S], to measure binding of an agonist to the receptor (Sim *et al.*, Neuroreport, 1996, 7, 729-733). One can also use this binding to measure the ability of antagonists to bind to the receptor by decreasing binding of GTP χ^{35} S] in the presence of a known agonist. One could

therefore construct a HTS based on GTP χ^{35} S] binding, though this is not the preferred method.

10

15

20

25

30

The G proteins required for functional expression of heterologous GPCRs can be native constituents of the host cell or can be introduced through well-known recombinant technology. The G proteins can be intact or chimeric. Often, a nearly universally competent G protein (e.g., $G_{\alpha 16}$) is used to couple any given receptor to a detectable response pathway. G protein activation results in the stimulation or inhibition of other native proteins, events that can be linked to a measurable response.

Examples of such biological responses include, but are not limited to, the following: the ability to survive in the absence of a limiting nutrient in specifically engineered yeast cells (Pausch, *Trends in Biotechnology*, 1997, 15, 487-494); changes in intracellular Ca²⁺ concentration as measured by fluorescent dyes (Murphy, et al., Cur. Opinion Drug Disc. Dev., 1998, 1, 192-199). Fluorescence changes can also be used to monitor ligand-induced changes in membrane potential or intracellular pH; an automated system suitable for HTS has been described for these purposes (Schroeder, et al., J. Biomolecular Screening, 1996, 1, 75-80). Melanophores prepared from Xenopus laevis show a ligand-dependent change in pigment organization in response to heterologous GPCR activation; this response is adaptable to HTS formats (Jayawickreme et al., Cur. Opinion Biotechnology, 1997, 8, 629-634). Assays are also available for the measurement of common second messengers, including cAMP, phosphoinositides and arachidonic acid, but these are not generally preferred for HTS.

Preferred methods of HTS employing these receptors include permanently transfected CHO cells, in which agonists and antagonists can be identified by the ability to specifically alter the binding of GTPγ[³⁵S] in membranes prepared from these cells. In another embodiment of the invention, permanently transfected CHO cells could be used for the preparation of membranes which contain significant amounts of the recombinant receptor proteins; these membrane preparations would then be used in receptor binding assays, employing the radiolabelled ligand specific for the particular receptor. Alternatively, a functional assay, such as fluorescent monitoring of ligand-induced changes in internal Ca²⁺ concentration or membrane potential in permanently transfected CHO cells containing each of these receptors individually or in combination would be preferred for HTS. Equally preferred would be an alternative type of mammalian cell, such as HEK293 or COS cells, in similar

formats. More preferred would be permanently transfected insect cell lines, such as *Drosophila* S2 cells. Even more preferred would be recombinant yeast cells expressing the *Drosophila melanogaster* receptors in HTS formats well known to those skilled in the art (e.g., Pausch, *Trends in Biotechnology*, 1997, 15, 487-494).

5

10

15

20

25

30

The invention contemplates a multitude of assays to screen and identify inhibitors of ligand binding to nGPCR-x receptors. In one example, the nGPCR-x receptor is immobilized and interaction with a binding partner is assessed in the presence and absence of a candidate modulator such as an inhibitor compound. In another example, interaction between the nGPCR-x receptor and its binding partner is assessed in a solution assay, both in the presence and absence of a candidate inhibitor compound. In either assay, an inhibitor is identified as a compound that decreases binding between the nGPCR-x receptor and its binding partner. Another contemplated assay involves a variation of the dihybrid assay wherein an inhibitor of protein/protein interactions is identified by detection of a positive signal in a transformed or transfected host cell, as described in PCT publication number WO 95/20652, published August 3, 1995.

Candidate modulators contemplated by the invention include compounds selected from libraries of either potential activators or potential inhibitors. There are a number of different libraries used for the identification of small molecule modulators, including: (1) chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of random peptides, oligonucleotides or organic molecules. Chemical libraries consist of random chemical structures, some of which are analogs of known compounds or analogs of compounds that have been identified as "hits" or "leads" in other drug discovery screens, some of which are derived from natural products, and some of which arise from non-directed synthetic organic chemistry. Natural product libraries are collections of microorganisms, animals, plants, or marine organisms which are used to create mixtures for screening by: (1) fermentation and extraction of broths from soil, plant or marine microorganisms or (2) extraction of plants or marine organisms. Natural product libraries include polyketides, nonribosomal peptides, and variants (non-naturally occurring) thereof. For a review, see Science 282:63-68 (1998). Combinatorial libraries are composed of large numbers of peptides, oligonucleotides, or organic compounds as a mixture. These libraries are relatively easy to prepare by traditional automated synthesis methods, PCR, cloning, or proprietary synthetic methods. Of particular interest are non-peptide combinatorial

libraries. Still other libraries of interest include peptide, protein, peptidomimetic, multiparallel synthetic collection, recombinatorial, and polypeptide libraries. For a review of combinatorial chemistry and libraries created therefrom, see Myers, Curr. Opin. Biotechnol. 8:701-707 (1997). Identification of modulators through use of the various libraries described herein permits modification of the candidate "hit" (or "lead") to optimize the capacity of the "hit" to modulate activity.

5

10

15

20

25

30

Still other candidate inhibitors contemplated by the invention can be designed and include soluble forms of binding partners, as well as such binding partners as chimeric, or fusion, proteins. A "binding partner" as used herein broadly encompasses non-peptide modulators, as well as such peptide modulators as neuropeptides other than natural ligands, antibodies, antibody fragments, and modified compounds comprising antibody domains that are immunospecific for the expression product of the identified nGPCR-x gene.

The polypeptides of the invention are employed as a research tool for identification, characterization and purification of interacting, regulatory proteins. Appropriate labels are incorporated into the polypeptides of the invention by various methods known in the art and the polypeptides are used to capture interacting molecules. For example, molecules are incubated with the labeled polypeptides, washed to remove unbound polypeptides, and the polypeptide complex is quantified. Data obtained using different concentrations of polypeptide are used to calculate values for the number, affinity, and association of polypeptide with the protein complex.

Labeled polypeptides are also useful as reagents for the purification of molecules with which the polypeptide interacts including, but not limited to, inhibitors. In one embodiment of affinity purification, a polypeptide is covalently coupled to a chromatography column. Cells and their membranes are extracted, and various cellular subcomponents are passed over the column. Molecules bind to the column by virtue of their affinity to the polypeptide. The polypeptide-complex is recovered from the column, dissociated and the recovered molecule is subjected to protein sequencing. This amino acid sequence is then used to identify the captured molecule or to design degenerate oligonucleotides for cloning the corresponding gene from an appropriate cDNA library.

Alternatively, compounds may be identified which exhibit similar properties to the ligand for the nGPCR-x of the invention, but which are smaller and exhibit a

longer half time than the endogenous ligand in a human or animal body. When an organic compound is designed, a molecule according to the invention is used as a "lead" compound. The design of mimetics to known pharmaceutically active compounds is a well-known approach in the development of pharmaceuticals based on such "lead" compounds. Mimetic design, synthesis and testing are generally used to avoid randomly screening a large number of molecules for a target property. Furthermore, structural data deriving from the analysis of the deduced amino acid sequences encoded by the DNAs of the present invention are useful to design new drugs, more specific and therefore with a higher pharmacological potency.

5

10

15

20

25

30

Comparison of the protein sequence of the present invention with the sequences present in all the available databases showed a significant homology with the transmembrane portion of G protein coupled receptors. Accordingly, computer modeling can be used to develop a putative tertiary structure of the proteins of the invention based on the available information of the transmembrane domain of other proteins. Thus, novel ligands based on the predicted structure of nGPCR-x can be designed.

In a particular embodiment, the novel molecules identified by the screening methods according to the invention are low molecular weight organic molecules, in which case a composition or pharmaceutical composition can be prepared thereof for oral intake, such as in tablets. The compositions, or pharmaceutical compositions, comprising the nucleic acid molecules, vectors, polypeptides, antibodies and compounds identified by the screening methods described herein, can be prepared for any route of administration including, but not limited to, oral, intravenous, cutaneous, subcutaneous, nasal, intramuscular or intraperitoneal. The nature of the carrier or other ingredients will depend on the specific route of administration and particular embodiment of the invention to be administered. Examples of techniques and protocols that are useful in this context are, *inter alia*, found in Remington's Pharmaceutical Sciences, 16th edition, Osol, A (ed.), 1980, which is incorporated herein by reference in its entirety.

The dosage of these low molecular weight compounds will depend on the disease state or condition to be treated and other clinical factors such as weight and condition of the human or animal and the route of administration of the compound. For treating human or animals, between approximately 0.5 mg/kg of body weight to 500 mg/kg of body weight of the compound can be administered. Therapy is

AGTGCCATGCTGCACATCCACATGTACCTCACGTTCCTATTCTATGTGGTGATCCTGGTCACCAGATACCTCA TCTTCTTCAAGTGCAAAGACAAAGTGGAATTCTACAGAAAACTGCATGCTGTGGCTGCCAGTGCTGGCATGTG GACGCTGGTGATTGTCATTGTGGTACCCCTGGTTGTCTCCCGGTATGGAATCCATGAGGAATACAATGAGGAG CACTGTTTTAAATTTCACAAAGAGCTTGCTTACACATATGTGAAAATCATCAACTATATGATAGTCATTTTTG TCATAGCCGTTGCTGATTCTGTTGGTCTTCCAGGTCTTCATCATTATGTTGATGGTGCAGAAGCTACGCCA TTCCTTCCCTACCAGTTCTTTAGGATCTATTACTTGAATGTTGTGACGCATTCCAATGCCTGTAACAGCAAGG TTGCATTTTATAACGAAATCTTCTTGAGTGTAACAGCAATTAGCTGCTATGATTTGCTTCTCTTTGTCTTTGG $\tt GGGAAGCCATTGGTTTAAGCAAAAGATAATTGGCTTATGGAATTGTGTTTTTGTGCCGT{\color{red}{T}}{\color{blue}{A}}{\color{blue}{GCCACAAACTACA}}$ GTATTCATATTGCTTCCTTTATATTGGGAATAAAAATGGGTATAGGGGAGGTAAGAATGGTATTTCATTACT TGATCAAAACCATGCCTTGATGTACCCAAAACAAAGGACTATAAAATGCAAGAGCCCTCATTGTAGTCCTTA TGGGATCCCTCCCATCTCTGAGTGATGGCCGTACAAAGACCAGTGTTGTTGAATCCACCTGGAGTTGCAATAT TACATTATTTTCCAGTACAGAATGTCTGTGTGGCCCATGAAAGCAACATAGGTTTTAAGAGTTTTAGAGTTTTC ATTAGCTCATTCTAAGTTCCTCTGTTTGAAGCATGGTCTCTTAGGTTTTGGACTGAACTCAGACCTTTAGTTC TTTTCATCCCACTTCACCTTAGGTAAGTAAATTCTGGCCACCACCCAGCTCCAAAGACACAACTCTCCTTCG CTAACCAGGTTAGATGTCCCATTCATCTCATGCCCTGATAAAAACTGATAAGGGGAGAGAATAGTTAAAAAATT $\tt TTTCTAGGGTATCATAACTCTGGTAGGAAGTCATCTGTCTAGAAATCAAGAGAAAAAAGAACGTGTGGCCTCCT$ GTTATAACAAGGGTTTCTAGATTTGTCCTGTGAAAGGTCGTTTAAGGACTTGGGGATCAACTTCCTCAATTAT CACCAATTGCACTGTTGCTCCAAAAATCATTTAAAAGCTTACTGGACATATCTACATAATGGTGAAACTGTAA TTTAGAGACTATCCCTGACTAATGTGCTGGTAGGCATTAAAATGAGTTCCCAAGGGAAGTGATTAAAATTTTT AGTTCTGGGGTACATGTGCAGAATGTGCAGGTTTGTTACATAGGTATACACGTGCCATGGTGGTTTGCGGCAC CTGTCAACCCATCTACATTAGGTATTTCTCCTAATGCTCTCCCTAGCCCCCCACCCCTGGACAGGCCC CATTGTGTGATGTTCCCCTCCCTGTGTCCATGTGTTTTCATTGTTCAACTCCCACTTCTAAGTGAGAACATGC GGTGTTTGGTTTCTGTTCCTGTGTTAGTTTGCTGAGAATGATGGTTTCCAGGTTAAAATTATATATTTTTAA ATAAATGAAAACTGTGTTTTTAAAAGAGGACTTTTGAGAAGTATATAGAAAAACCATTAATTTAGACTCTGTG ATCATAATCCTTTAAAATATAGGAAAAATAACTAATGGGAACTAGGCTTAATACTCGGGATGAAATAATCTGT ACAACAAACTCCCATGACACATGTTTACCTATGTAACAAACCTGCACATGTACCCCTGAACTTAAAATAAAAT TTAAAGTATAATAATAAAATAATATGGATTTTCTTT

The following amino acid sequence <SEQ ID NO. 82> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 81:

MTGDFPSMPGHNTSRNSSCDPIVTPHLISLYFIVLIGGLVGVISILFLLVKMNTRSVTTMAVINLVVVHSVFL
LTVPFRLTYLIKKTWMFGLPFCKFVSAMLHIHMYLTFLFYVVILVTRYLIFFKCKDKVEFYRKLHAVAASAGM
WTLVIVIVVPLVVSRYGIHEEYNEEHCFKFHKELAYTYVKIINYMIVIFVIAVAVILLVFQVFIIMLMVQKLR
HSLLSHQEFWAQLKNLFFIGVILVCFLPYQFFRI
YYLNVVTHSNACNSKVAFYNEIFLSVTAISCYDLLLFVF
GGSHWFKQKIIGLWNCVLCR

The following DNA sequence nGPCR-40 <SEQ ID NO. 83> was identified in H. sapiens:

GCAGGAGCACTGAAAATCAGGAACAATCCTGTATTTTTTGTGATAATCAACAAGGACAAAACTTCTCCATATG TAAATAACAGCGTTATGAGCAGCAATTCATCCCTGCTGGTGGCTGTGCAGCTGTGCTACGCGAACGTGAATGG GTCCTGTGTGAAAATCCCCTTCTCGCCGGGATCCCGGGTGATTCTGTACATAGTGTTTTGGCTTTTGGGCTGTG ${\tt CTGGCTGTGTTTGGAAACCTCCTGGTGATGATTTCAATCCTCCATTTCAAGCAGCTGCACTCTCCGACCAATT}$ GGTGGAGAGCTGCTGGTATTTTGGGAGGAGTTTTTGTACTTTCCACACCTGCTGTGATGTGGCATTTTGTTAC ${\tt TCTTCTCTTTCACTTGTGCTTCATCTCCATCGACAGGTACATTGCGGTTACTGACCCCCTGGTCTATCCTA}$ CCAAGTTCACCGTATCTGTGTCAGGAATTTGCATCAGCGTGTCCTGGATCCTGCCCCTCATGTACAGCGGTGC TGTGTTCTACACAGGTGTCTATGACGATGGGCTGGAGGAATTATCTGATGCCCTAAACTGTATAGGAGGTTGT TTCTGTATGGTAACATATTTCTTGTGGCTAGACGACAGGCGAAAAAGATAGAAAATACTGGTAGCAAGACAGA GTGGTAGCATTTATGATTTCATGGTTACCATATAGCATTGATTCATTAATTGATGCCTTTATGGGCTTTATAA CCCCTGCCTGTATTTATGAGATTTGCTGTTGGTGTGCTTATTATAACTCAGCCATGAATCCTTTGATTTATGC TTTATTTTACCCATGGTTTAGGAAAGCAATAAAAGTTATTGTAACTGGTCAGGTTTTAAAGAACAGTTCAGCA **ACCATGAATTTGTTTTCTGAACATATATAA**

Twenty-five microliters of the PCR reaction mixture was added to each well of the RapidScan PCR plate. The plate was placed in a GeneAmp 9700 PCR thermocycler (Perkin Elmer Applied Biosystems). The following cycling program was executed: Pre-soak at (94° for 3min.) followed by 35 cycles of [(94°C for 45 sec.) (53°C for 2 min.) (72°C for 45 sec.)]. PCR reaction products were then separated and analyzed by electrophoresis on a 2.0% agarose gel, and stained with ethidium bromide.

The 4-log dilution range of cDNA deposited on the plate ensured that the amplification reaction was within the linear range and, facilitated semi-quantitative determination of relative mRNA accumulation in the various tissues or brain regions examined.

nGPCR-16 was expressed in the ovary, lung, prostate, bone marrow, salivary gland, heart, adrenal gland, spleen, liver, small intestine, skin, muscle, peripheral blood leukocytes, testis, placenta, fetal liver, brain, thyroid gland, kidney, pancreas, colon, uterus, and stomach. Within the brain, nGPCR-16 was expressed in all areas examined including the frontal lobe, temporal lobe, cerebellum, hippocampus, substantia nigra, caudate nucleus, amygdala, thalamus, hypothalamus, pons, medulla and spinal cord.

Expression of nGPCR-16 in the brain provides an indication that modulators of nGPCR-16 activity have utility for treating neurological disorders, including but not limited to, schizophrenia, affective disorders, ADHD/ADD (i.e., Attention Deficit-Hyperactivity Disorder/Attention Deficit Disorder), and neural disorders such as Alzheimer's disease, Parkinson's disease, migraine, and senile dementia. Some other diseases for which modulators of nGPCR-16 may have utility include depression, anxiety, bipolar disease, epilepsy, neuritis, neurasthenia, neuropathy, neuroses, and the like. Use of nGPCR-16 modulators, including nGPCR-16 ligands and anti-nGPCR-16 antibodies, to treat individuals having such disease states is intended as an aspect of the invention.

nGPCR-40

10

15

20

25

30

The RapidScanTM Gene Expression Panel (OriGene Technologies, Rockville, MD) was used to generate a comprehensive expression profile of the putative GPCR in human tissues. Human tissues arrayed include: brain, heart, kidney, spleen, liver, colon, lung, small intestine, muscle, stomach, testis, placenta, salivary gland, thyroid,

What is claimed is:

25

30

35

1. An isolated nucleic acid molecule comprising a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence homologous to even numbered sequences selected from the group consisting of: SEQ ID NO:2 to SEQ ID NO:94, SEQ ID NO:186, and fragments thereof; said nucleic acid molecule encoding at least a portion of nGPCR-x.

- The isolated nucleic acid molecule of claim 1 comprising a sequence that encodes a polypeptide comprising even numbered sequences selected from the group consisting of SEQ ID NO:2 to SEQ ID NO:94, SEQ ID NO:186, and fragments thereof.
- 15 3. The isolated nucleic acid molecule of claim 1 comprising a sequence homologous to odd numbered sequences selected from the group consisting of SEQ ID NO:1 to SEQ ID NO:93, SEQ ID NO:185 and fragments thereof.
- The isolated nucleic acid molecule of claim 1 comprising a sequence selected
 from the group of odd numbered sequences consisting of SEQ ID NO:1 to SEQ ID
 NO: 93, SEQ ID NO:185 and fragments thereof.
 - 5. The isolated nucleic acid molecule of claim 4 comprising a sequence selected from the group of odd numbered sequences consisting of SEQ ID NO:1 to SEQ ID NO:93 and SEQ ID NO:185.
 - 6. The isolated nucleic acid molecule of claim 4 wherein said nucleotide sequence is selected from the group consisting of: SEQ ID NO:1, SEQ ID NO:73, SEQ ID NO:9, SEQ ID NO:77, SEQ ID NO:11, SEQ ID NO:79, SEQ ID NO:21, SEQ ID NO:81 SEQ ID NO:53, SEQ ID NO:83, SEQ ID NO:59, SEQ ID NO:85, SEQ ID NO:63, SEQ ID NO:87, SEQ ID NO:89, SEQ ID NO:67, SEQ ID NO:91, SEQ ID NO:93, SEQ ID NO:3, and SEQ ID NO:185.
 - 7. The isolated nucleic acid molecule of claim 4 wherein said nucleotide sequence is selected from the group consisting of: SEQ ID NO:73, SEQ ID NO:77,

SEQ ID NO:79, SEQ ID NO:81 SEQ ID NO:83, SEQ ID NO:85, SEQ ID NO:89, SEQ ID NO:93 and SEQ ID NO:185.

- 8. The isolated nucleic acid molecule of claim 1 wherein said nucleic acid molecule is DNA.
 - 9. The isolated nucleic acid molecule of claim 1 wherein said nucleic acid molecule is RNA.
- 10. An expression vector comprising a nucleic acid molecule of any one of claims 1 to 5.
 - 11. The expression vector of claim 10 wherein said nucleic acid molecule comprises a sequence selected from the group of odd numbered sequences consisting of SEQ ID NO:1 to SEQ ID NO:93 and SEQ ID NO:185.

15

20

30

- 12. The expression vector of claim 10 wherein said nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of: SEQ ID NO:1, SEQ ID NO:73, SEQ ID NO:9, SEQ ID NO:77, SEQ ID NO:11, SEQ ID NO:79, SEQ ID NO: 21, SEQ ID NO:81 SEQ ID NO:53, SEQ ID NO:83, SEQ ID NO:59, SEQ ID NO:85, SEQ ID NO:63, SEQ ID NO:87, SEQ ID NO:89, SEQ ID NO:67, SEQ ID NO:91, SEQ ID NO:93, SEQ ID NO: 3, and SEQ ID NO: 185.
- The expression vector of claim 10 wherein said nucleotide sequence is
 selected from the group consisting of: SEQ ID NO: 73, SEQ ID NO:77, SEQ ID NO:79, SEQ ID NO:81 SEQ ID NO:83, SEQ ID NO:85, SEQ ID NO:89, SEQ ID NO:93 and SEQ ID NO: 185.
 - 14. The expression vector of claim 10 wherein said vector is a plasmid.
 - 15. The expression vector of claim 10 wherein said vector is a viral particle.
 - 16. The expression vector of claim 15 wherein said vector is selected from the group consisting of adenoviruses, baculoviruses, parvoviruses, herpesviruses,

poxviruses, adeno-associated viruses, Semliki Forest viruses, vaccinia viruses, and retroviruses.

17. The expression vector of claim 10 wherein said nucleic acid molecule is

operably connected to a promoter selected from the group consisting of simian virus
40, mouse mammary tumor virus, long terminal repeat of human immunodeficiency
virus, maloney virus, cytomegalovirus immediate early promoter, Epstein Barr virus,
rous sarcoma virus, human actin, human myosin, human hemoglobin, human muscle
creatine, and human metalothionein.

10

- 18. A host cell transformed with an expression vector of claim 10.
- 19. The transformed host cell of claim 18 wherein said cell is a bacterial cell.
- 15 20. The transformed host cell of claim 19 wherein said bacterial cell is E. coli.
 - 21. The transformed host cell of claim 18 wherein said cell is yeast.
 - 22. The transformed host cell of claim 21 wherein said yeast is S. cerevisiae.

20

- 23. The transformed host cell of claim 18 wherein said cell is an insect cell.
- 24. The transformed host cell of claim 23 wherein said insect cell is S. frugiperda.
- 25. The transformed host cell of claim 18 wherein said cell is a mammalian cell.
 - 26. The transformed host cell of claim 25 wherein mammalian cell is selected from the group consisting of chinese hamster ovary cells, HeLa cells, African green monkey kidney cells, human 293 cells, and murine 3T3 fibroblasts.

30

27. An isolated nucleic acid molecule comprising a nucleotide sequence complementary to at least a portion of a sequence selected from the group of odd numbered sequences consisting of SEQ ID NO:1 to SEQ ID NO:93 and SEQ ID NO:185, said portion comprising at least 10 nucleotides.

28. The nucleic acid molecule of claim 27 wherein said molecule is an antisense oligonucleotide directed to a region of a sequence selected from the group of odd numbered sequences consisting of SEQ ID NO:1 to SEQ ID NO:93 and SEQ ID NO:185.

5

10

15

25

30

- 29. The nucleic acid molecule of claim 28 wherein said oligonucleotide is directed to a regulatory region of a sequence selected from the group of odd numbered sequences consisting of SEQ ID NO:1 to SEQ ID NO:93 and SEQ ID NO:185.
- 30. The nucleic acid molecule of claim 27 wherein said molecule is an antisense oligonucleotide directed to a region of nucleotide sequence selected from the group consisting of: SEQ ID NO: 73, SEQ ID NO:77, SEQ ID NO:79, SEQ ID NO:81 SEQ ID NO:83, SEQ ID NO:85, SEQ ID NO:89, SEQ ID NO:93 and SEQ ID NO: 185.
 - 31. A composition comprising a nucleic acid molecule of any one of claims 1 to 5 or 27 and an acceptable carrier or diluent.
- 32. A composition comprising a recombinant expression vector of claim 10 and an acceptable carrier or diluent.
 - 33. A method of producing a polypeptide that comprises a sequence selected from the group of even numbered sequences consisting SEQ ID NO: 2 to SEQ ID NO: 94 and SEQ ID NO: 186, and homologs and fragments thereof, said method comprising the steps of:
 - a) introducing a recombinant expression vector of claim 10 into a compatible host cell;
 - b) growing said host cell under conditions for expression of said polypeptide; and
 - c) recovering said polypeptide.
 - 34. The method of claim 33 wherein said host cell is lysed and said polypeptide is recovered from the lysate of said host cell.

35. The method of claim 33 wherein said polypeptide is recovered by purifying the culture medium without lysing said host cell.

36. An isolated polypeptide encoded by a nucleic acid molecule of claim 1.

5

15

- 37. The polypeptide of claim 36 wherein said polypeptide comprises a sequence selected from the group of even numbered sequences consisting SEQ ID NO:2 to SEQ ID NO:94 and SEQ ID NO:186.
- 10 38. The polypeptide of claim 36 wherein said polypeptide comprises an amino acid sequence homologous to a sequence selected from the group of even numbered sequences consisting of SEQ ID NO:2 to SEQ ID NO:94 and SEQ ID NO:186.
 - 39. The polypeptide of claim 36 wherein said sequence homologous to a sequence selected from the group of even numbered sequences consisting of SEQ ID NO:2 to SEQ ID NO:94 and SEQ ID NO:186 comprises at least one conservative amino acid substitution compared to the even numbered sequences in the group of even numbered sequences consisting of SEQ ID NO: 2 to SEQ ID NO: 94 and SEQ ID NO: 186.
- 40. The polypeptide of claim 36 wherein said polypeptide comprises a fragment of a polypeptide with a sequence selected from the group of even numbered sequences consisting of SEQ ID NO:2 to SEQ ID NO:94 and SEQ ID NO:186.
- 41. The polypeptide of claim 36 wherein said polypeptide comprises an amino
 25 acid sequence selected from the group consisting of: SEQ ID NO: 2, SEQ ID NO: 74;
 SEQ ID NO: 4, SEQ ID NO: 186; SEQ ID NO:10, SEQ ID NO:78; SEQ ID NO:12,
 SEQ ID NO:80; SEQ ID NO: 22, SEQ ID NO:82; SEQ ID NO:54, SEQ ID NO:84;
 SEQ ID NO:60, SEQ ID NO: 86; SEQ ID NO:64, SEQ ID NO: 88, SEQ ID NO:90;
 SEQ ID NO:68, SEQ ID NO: 92, and SEQ ID NO:94.

30

The polypeptide of claim 36 wherein said polypeptide comprises an amino acid sequence selected from the group consisting of: SEQ ID NO: 74; SEQ ID NO: 186; SEQ ID NO:78; SEQ ID NO:80; SEQ ID NO:82; SEQ ID NO:84; SEQ ID NO:86; SEQ ID NO:90; and SEQ ID NO:94.

43. A composition comprising a polypeptide of claim 36 and an acceptable carrier or diluent.

- 5 44. An isolated antibody which binds to an epitope on a polypeptide of claim 36.
 - 45. The antibody of claim 44 wherein said antibody is a monoclonal antibody.
- 46. A composition comprising an antibody of claim 44 and an acceptable carrier or diluent.
 - 47. A method of inducing an immune response in a mammal against a polypeptide of claim 36 comprising administering to said mammal an amount of said polypeptide sufficient to induce said immune response.

15

- 48. A method for identifying a compound which binds nGPCR-x comprising the steps of:
 - a) contacting nGPCR-x with a compound; and
 - b) determining whether said compound binds nGPCR-x.

20

25

- 49. The method of claim 48 wherein the nGPCR-x comprises an amino acid sequence selected from the group consisting of: SEQ ID NO: 2, SEQ ID NO: 74; SEQ ID NO: 4, SEQ ID NO: 186; SEQ ID NO:10, SEQ ID NO:78; SEQ ID NO:12, SEQ ID NO:80; SEQ ID NO: 22, SEQ ID NO:82; SEQ ID NO:54, SEQ ID NO:84; SEQ ID NO:60, SEQ ID NO: 86; SEQ ID NO:64, SEQ ID NO: 88, SEQ ID NO:90; SEQ ID NO:68, SEQ ID NO: 92, and SEQ ID NO:94.
- 50. The method of claim 48 wherein the nGPCR-x comprises an amino acid sequence selected from the group consisting of: SEQ ID NO: 74; SEQ ID NO: 186; SEQ ID NO:78; SEQ ID NO:80; SEQ ID NO:82; SEQ ID NO:84; SEQ ID NO: 86; SEQ ID NO:90; and SEQ ID NO:94.
- 51. The method of claim 48 wherein binding of said compound to nGPCR-x is determined by a protein binding assay.

52. The method of claim 48 wherein said protein binding assay is selected from the group consisting of a gel-shift assay, Western blot, radiolabeled competition assay, phage-based expression cloning, co-fractionation by chromatography, co-precipitation, cross linking, interaction trap/two-hybrid analysis, southwestern analysis, and ELISA.

- 53. A compound identified by the method of claim 48.
- 10 54. A method for identifying a compound which binds a nucleic acid molecule encoding nGPCR-x comprising the steps of:
 - a) contacting said nucleic acid molecule encoding nGPCR-x with a compound; and
- b) determining whether said compound binds said nucleic acid
 molecule.
 - 55. The method of claim 54 wherein binding is determined by a gel-shift assay.
 - 56. A compound identified by the method of claim 54.

20

5

- 57. A method for identifying a compound which modulates the activity of nGPCR-x comprising the steps of:
 - a) contacting nGPCR-x with a compound; and
 - b) determining whether nGPCR-x activity has been modulated.

25

- 58. The method of claim 57 wherein the nGPCR-x comprises an amino acid sequence selected from the group consisting of: SEQ ID NO: 2, SEQ ID NO: 74; SEQ ID NO: 4, SEQ ID NO: 186; SEQ ID NO:10, SEQ ID NO:78; SEQ ID NO:12, SEQ ID NO:80; SEQ ID NO: 22, SEQ ID NO:82; SEQ ID NO:54, SEQ ID NO:84; SEQ ID NO:60, SEQ ID NO: 86; SEQ ID NO:64, SEQ ID NO: 88, SEQ ID NO:90; SEQ ID NO:68, SEQ ID NO: 92, and SEQ ID NO:94.
- 59. The method of claim 57 wherein the nGPCR-x comprises an amino acid sequence selected from the group consisting of: SEQ ID NO: 74; SEQ ID NO: 186;

SEQ ID NO:78; SEQ ID NO:80; SEQ ID NO:82; SEQ ID NO:84; SEQ ID NO: 86; SEQ ID NO:90; and SEQ ID NO:94.

- 60. The method of claim 57 wherein said activity is neuropeptide binding.
- 61. The method of claim 57 wherein said activity is neuropeptide signaling.
 - 62. A compound identified by the method of claim 57.
- 10 63. A method of identifying an animal homolog of nGPCR-x comprising the steps:
 - a) comparing the nucleic acid sequences of the animal with a sequence selected from the group of odd numbered sequence consisting of SEQ ID NO: 1 to SEQ ID NO: 93, SEQ ID NO: 185, and portions thereof, said portions being at least 10 nucleotides; and
 - b) identifying nucleic acid sequences of the animal that are homologous to said sequence selected from the group of odd numbered sequence consisting of SEQ ID NO: 1 to SEQ ID NO: 93, SEQ ID NO: 185, and portions thereof.

20

15

5

64. The method of claim 63 wherein comparing the nucleic acid sequences of the animal with a sequence selected from the group of odd numbered sequence consisting of SEQ ID NO: 1 to SEQ ID NO: 93, SEQ ID NO: 185, and portions thereof, said portions being at least 10 nucleotides is performed by DNA hybridization.

25

65. The method of claim 63 wherein comparing the nucleic acid sequences of the animal with a sequence selected from the group of odd numbered sequence consisting of SEQ ID NO: 1 to SEQ ID NO: 93, SEQ ID NO: 185, and portions thereof, said portions being at least 10 nucleotides is performed by computer homology search.

- 66. A method of screening a human subject to diagnose a disorder affecting the brain or genetic predisposition therefor, comprising the steps of:
- (a) assaying nucleic acid of a human subject to determine a presence or an absence of a mutation altering an amino acid sequence, expression, or biological

activity of at least one nGPCR that is expressed in the brain, wherein the nGPCR comprises an amino acid sequence selected from the group consisting of: SEQ ID NO:74, SEQ ID NO:186, SEQ ID NO:78, SEQ ID NO:80, SEQ ID NO:82, SEQ ID NO:84, SEQ ID NO:86, SEQ ID NO:90, and SEQ ID NO:94, and allelic variants thereof, and wherein the nucleic acid corresponds to a gene encoding the nGPCR; and

(b) diagnosing the disorder or predisposition from the presence or absence of said mutation, wherein the presence of a mutation altering the amino acid sequence, expression, or biological activity of the nGPCR in the nucleic acid correlates with an increased risk of developing the disorder.

10

- 67. A method according to claim 66, wherein the nGPCR is nGPCR-40 comprising an amino acid sequence set forth in SEQ ID NO:84 or an allelic variant thereof.
- 15 68. A method according to claim 66, wherein the nGPCR is nGPCR-54 comprising an amino acid sequence set forth in SEQ ID NO:86 or an allelic variant thereof.
 - 69. A method according to claim 66, wherein the disease is schizophrenia.

20

- 70. A method according to claim 66, wherein the assaying step comprises at least one procedure selected from the group consisting of:
- a) comparing nucleotide sequences from the human subject and reference sequences and determining a difference of either

25

30

at least a nucleotide of at least one codon between the nucleotide sequences from the human subject that encodes an nGPCR-40 allele and an nGPCR-40 reference sequence, or

at least a nucleotide of at least one codon between the nucleotide sequences from the human subject that encodes an nGPCR-54 allele and an nGPCR-54 reference sequence;

(b) performing a hybridization assay to determine whether nucleic acid from the human subject has a nucleotide sequence identical to or different from one or more reference sequences;

(c) performing a polynucleotide migration assay to determine whether nucleic acid from the human subject has a nucleotide sequence identical to or different from one or more reference sequences; and

(d) performing a restriction endonuclease digestion to determine whether nucleic acid from the human subject has a nucleotide sequence identical to or different from one or more reference sequences.

5

10

15

20

- 71. A method according to claim 70 wherein the assaying step comprises: performing a polymerase chain reaction assay to amplify nucleic acid comprising nGPCR-40 or nGPCR-54 coding sequence, and determining nucleotide sequence of the amplified nucleic acid.
- 72. A method of screening for an nGPCR-40 or nGPCR-54 hereditary schizophrenia genotype in a human patient, comprising the steps of:
- (a) providing a biological sample comprising nucleic acid from said patient, said nucleic acid including sequences corresponding to allelles of nGPCR-40 or nGPCR-54; and
- (b) detecting the presence of one or more mutations in the nGPCR-40 allelle or the nGPCR-54 allelle;
- wherein the presence of a mutation in an nGPCR-40 allelle or nGPCR-54 allele is indicative of a hereditary schizophrenia genotype.
 - 73. The method according to claim 72 wherein said biological sample is a cell sample.
 - 74. The method according to claim 72 wherein said detecting the presence of a mutation comprises sequencing at least a portion of said nucleic acid, said portion comprising at least one codon of said nGPCR-40 or nGPCR-54 alleles.
- 30 75. The method according to claim 72 wherein said nucleic acid is DNA.
 - 76. The method according to claim 72 wherein said nucleic acid is RNA.

77. A kit for screening a human subject to diagnose schizophrenia or a genetic predisposition therefor, comprising, in association:

- (a) an oligonucleotide useful as a probe for identifying polymorphisms in a human nGPCR-40 gene or a human nGPCR-54 gene, the oligonucleotide comprising 6-50 nucleotides in a sequence that is identical or complementary to a sequence of a wild type human nGPCR-40 or nGPCR-54 gene sequence or nGPCR-40 or nGPCR-54 coding sequence, except for one sequence difference selected from the group consisting of a nucleotide addition, a nucleotide deletion, or nucleotide substitution; and
- (b) a media packaged with the oligonucleotide, said media containing information for identifying polymorphisms that correlate with schizophrenia or a genetic predisposition therefor, the polymorphisms being identifiable using the oligonucleotide as a probe.
- 15 78. A method of identifying a nGPCR allelic variant that correlates with a mental disorder, comprising steps of:
 - (a) providing a biological sample comprising nucleic acid from a human patient diagnosed with a mental disorder, or from the patient's genetic progenitors or progeny;
- 20 (b) detecting in the nucleic acid the presence of one or more mutations in an nGPCR that is expressed in the brain, wherein the nGPCR comprises an amino acid sequence selected from the group consisting of SEQ ID NO:74, SEQ ID NO:186, SEQ ID NO:78, SEQ ID NO:80, SEQ ID NO:82, SEQ ID NO:84, SEQ ID NO:86, SEQ ID NO:90, and SEQ ID NO:94, and allelic variants thereof, and wherein the nucleic acid includes sequence corresponding to the gene or genes encoding nGPCR;

wherein the one or more mutations detected indicates an allelic variant that correlates with a mental disorder.

30 79. A method according to claim 78, wherein the disorder is schizophrenia, and wherein the at least one nGPCR is nGPCR-40, nGPCR-54, or an allelic variant thereof.

80. A purified and isolated polynucleotide comprising a nucleotide sequence encoding an nGPCR-40 or nGPCR-54 allelic variant identified according to claim 79.

81. A host cell transformed or transfected with a polynucleotide according to claim 80 or with a vector comprising the polynucleotide.

5

20

82. A purified polynucleotide comprising a nucleotide sequence encoding nGPCR-40 or nGPCR-54 of a human with schizophrenia;

wherein said polynucleotide hybridizes to the complement of SEQ ID NO:83 or of SEQ ID NO:85 under the following hybridization conditions:

- (a) hybridization for 16 hours at 42°C in a hybridization solution comprising 50% formamide, 1% SDS, 1 M NaC1, 10% dextran sulfate and
- (b) washing 2 times for 30 minutes at 60°C in a wash solution comprising 0.1x SSC and 1% SDS; and
- wherein the polynucleotide that encodes nGPCR-40 or nGPCR-54 amino acid sequence of the human differs from SEQ ID NO:84 or SEQ ID NO:86 by at least one residue.
 - 83. A vector comprising a polynucleotide according to claim 82.
 - 84. A host cell that has been transformed or transfected with a polynucleotide according to claim 82 and that expresses the nGPCR-40 or nGPCR-54 protein encoded by the polynucleotide.
- 25 85. A host cell according to claim 84 that has been co-transfected with a polynucleotide encoding the nGPCR-40 or nGPCR-54 amino acid sequence set forth in SEQ ID NO:84 or SEQ ID NO:86 and that expresses the nGPCR-40 or nGPCR-54 protein having the amino acid sequence set forth in SEQ ID NO:84 or SEQ ID NO:86.
- 30 86. A method for identifying a modulator of biological activity of nGPCR-40 or nGPCR-54 comprising the steps of:
 - a) contacting a cell according to claim 84 in the presence and in the absence of a putative modulator compound;

b) measuring nGPCR-40 or nGPCR-54 biological activity in the cell;

wherein decreased or increased nGPCR-40 or nGPCR-54 biological activity in the presence versus absence of the putative modulator is indicative of a modulator of biological activity.

87. A method to identify compounds useful for the treatment of schizophrenia, said method comprising steps of:

5

20

25

30

- (a) contacting a composition comprising nGPCR-40 with a compound suspected of binding nGPCR-40 or contacting a composition comprising nGPCR-54 with a compound suspected of binding nGPCR-54;
 - (b) detecting binding between nGPCR-40 and the compound suspected of binding nGPCR-40 or between nGPCR-54 and the compound suspected of binding nGPCR-54;
- wherein compounds identified as binding nGPCR-40 or nGPCR-54 are candidate compounds useful for the treatment of schizophrenia.
 - 88. A method for identifying a compound useful as a modulator of binding between nGPCR-40 and a binding partner of nGPCR-40 or between nGPCR-54 and a binding partner of nGPCR-54 comprising the steps of:
 - (a) contacting the binding partner and a composition comprising nGPCR-40 or nGPCR-54 in the presence and in the absence of a putative modulator compound;
 - (b) detecting binding between the binding partner and nGPCR-40 or nGPCR-54;

wherein decreased or increased binding between the binding partner and nGPCR-40 or nGPCR-54 in the presence of the putative modulator, as compared to binding in the absence of the putative modulator is indicative a modulator compound useful for the treatment of schizophrenia.

89. A method according to claim 87 or 88 wherein the composition comprises a cell expressing nGPCR-40 or nGPCR-54 on its surface.

90. An method according to claim 89 wherein the composition comprises a cell transformed or transfected with a polynucleotide that encodes nGPCR-40 or nGPCR-54.

- 5 91. A method of purifying a G protein from a sample containing said G protein comprising the steps of:
 - a) contacting said sample with a polypeptide of claim 1 for a time sufficient to allow said G protein to form a complex with said polypeptide;
- b) isolating said complex from remaining components of said
 sample;
 - c) maintaining said complex under conditions which result in dissociation of said G protein from said polypeptide; and
 - d) isolating said G protein from said polypeptide.
- 15 92. The method of claim 91 wherein said sample comprises an amino acid sequence selected from the group of even numbered sequences consisting of SEQ ID NO:2 to SEQ ID NO:94 and SEQ ID NO:186.
- 93. The method of claim 91 wherein said polypeptide comprises an amino acid sequence homologous to a sequence selected from the group of even numbered sequences consisting of SEQ ID NO:2 to SEQ ID NO:94 and SEQ ID NO:186.
- 94. The method of claim 91 wherein said polypeptide comprises an amino acid sequence selected from the group consisting of: SEQ ID NO: 2, SEQ ID NO: 74; SEQ ID NO: 4, SEQ ID NO: 186; SEQ ID NO:10, SEQ ID NO:78; SEQ ID NO:12, SEQ ID NO:80; SEQ ID NO: 22, SEQ ID NO:82; SEQ ID NO:54, SEQ ID NO:84; SEQ ID NO:60, SEQ ID NO: 86; SEQ ID NO:64, SEQ ID NO: 88, SEQ ID NO:90; SEQ ID NO:68, SEQ ID NO: 92, and SEQ ID NO:94.
- 30 95. The method of claim 91 wherein said polypeptide comprises an amino acid sequence selected from the group consisting of: SEQ ID NO: 74; SEQ ID NO: 186; SEQ ID NO:78; SEQ ID NO:80; SEQ ID NO:82; SEQ ID NO:84; SEQ ID NO: 86; SEQ ID NO:90; and SEQ ID NO:94.

96. An isolated nucleic acid molecule comprising a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence homologous to SEQ ID NO:76, and fragments thereof; said nucleic acid molecule encoding at least a portion of nGPCR-5.

5

97. An isolated polypeptide encoded by a nucleic acid molecule of claim 96.

Trp Ala Phe Gly Asp Ile Pro Cys Arg Val Gly Leu Phe Thr Leu Ala Met Asn Arg Ala Gly Ser Ile Val Phe Leu Thr Val Val Ala Ala Asp 105 Arg Tyr Phe Lys Val Val His Pro His His Ala Val Asn Thr Ile Ser Thr Arg Val Ala Ala Gly Ile Val Cys Thr Leu Trp Ala Leu Val Ile 135 Leu Gly Thr Val Tyr Leu Leu Leu Glu Asn His Leu Cys Val Gln Glu Thr Ala Val Ser Cys Glu Ser Phe Ile Met Glu Ser Ala Asn Gly Trp 170 His Asp Ile Met Phe Gln Leu Glu Phe Phe Met Pro Leu Gly Ile Ile Leu Phe Cys Ser Phe Lys Ile Val Trp Ser Leu Arg Arg Arg Gln Gln 200 Leu Ala Arg Gln Ala Arg Met Lys Lys Ala Thr Arg Phe Ile Met Val Val Ala Ile Val Phe Ile Thr Cys Tyr Leu Pro Ser Val Ser Ala Arg Leu Tyr Phe Leu Trp Thr Val Pro Ser Ser Ala Cys Asp Pro Ser Val 250 His Gly Ala Leu His Ile Thr Leu Ser Phe Thr Tyr Met Asn Ser Met Leu Asp Pro Leu Val Tyr Tyr Phe Ser Ser Pro Ser Phe Pro Lys Phe Tyr Asn Lys Leu Lys Ile Cys Ser Leu Lys Pro Lys Gln Pro Gly His Ser Lys Thr Gln Arg Pro Glu Glu Met Pro Ile Ser Asn Leu Gly Arg Arg Ser Cys Ile Ser Val Ala Asn Ser Phe Gln Ser Gln Ser Asp Gly 330 Gln Trp Asp Pro His Ile Val Glu Trp His 340

<210> 81

<211> 2525

<212> DNA

<213> H.Sapiens

<400> 81

caagaatgac aggtgacttc ccaagtatgc ctggccacaa tacctccagg aattcctctt Page 54

gcgatcctat	agtgacaccc	cacttaatca	gcctctactt	catagtgctt	attggcgggc	120
tggtgggtgt	catttccatt	cttttcctcc	tggtgaaaat	gaacacccgg	tcagtgacca	180
ccatggcggt	cattaacttg	gtggtggtcc	acagcgtttt	tctgctgaca	gtgccatttc	240
gcttgaccta	cctcatcaag	aagacttgga	tgtttgggct	gcccttctgc	aaatttgtga	300
gtgccatgct	gcacatccac	atgtacctca	cgttcctatt	ctatgtggtg	atcctggtca	360
ccagatacct	catcttcttc	aagtgcaaag	acaaagtgga	attctacaga	aaactgcatg	420
ctgtggctgc	cagtgctggc	atgtggacgc	tggtgattgt	cattgtggta	cccctggttg	480
tctcccggta	tggaatccat	gaggaataca	atgaggagca	ctgttttaaa	tttcacaaag	540
agcttgctta	cacatatgtg	aaaatcatca	actatatgat	agtcattttt	gtcatagccg	600
ttgctgtgat	tctgttggtc	ttccaggtct	tcatcattat	gttgatggtg	cagaagctac	660
gccactcttt	actatcccac	caggagttct	gggctcagct	gaaaaaccta	ttttttatag	720
gggtcatcct	tgtttgtttc	cttccctacc	agttctttag	gatctattac	ttgaatgttg	780
tgacgcattc	caatgcctgt	aacagcaagg	ttgcatttta	taacgaaatc	ttcttgagtg	840
taacagcaat	tagctgctat	gatttgcttc	tctttgtctt	tgggggaagc	cattggttta	900
agcaaaagat	aattggctta	tggaattgtg	ttttgtgccg	ttagccacaa	actacagtat	960
tcatatttgc	ttcctttata	ttgggaataa	aaatgggtat	aggggaggta	agaatggtat	1020
ttcattactt	gatcaaaacc	atgccttgat	gtacccaaaa	caaaaggact	ataaaatgca	1080
agagccctca	ttgtagtcct	tatgggatcc	ctcccatctc	tgagtgatgg	ccgtacaaag	1140
accagtgttg	ttgaatccac	ctggagttgc	aatattacat	tattttccag	tacagaatgt	1200
ctgtgtggcc	catgaaagca	acataggttt	taagagtttt	agagtttcat	tagctcattc	1260
taagttcctc	tgtttgaagc	atggtctctt	aggttttgga	ctgaactcag	acctttagtt	1320
cttttcatcc	cacttcacct	taggtaagta	aattctggcc	accacccagc	tccaaagaca	1380
caaactctcc	ttcgctaacc	aggttagatg	tcccattcat	ctcatgccct	gataaaaact	1440
gataagggga	gagaatagtt	aaaaattttt	ctagggtatc	ataactctgg	taggaagtca	1500
tctgtctaga	aatcaagaga	aaaagaacgt	gtggcctcct	gttataacaa	gggtttctag	1560
atttgtcctg	tgaaaggtcg	tttaaggact	tggggatcaa	cttcctcaat	tatcaccaat	1620
tgcactgttg	ctccaaaaat	catttaaaag	cttactggac	atatctacat	aatggtgaaa	1680
ctgtaattta	gagactatcc	ctgactaatg	tgctggtagg	cattaaaatg	agttcccaag	1740
ggaagtgatt	aaaattttt	tctcttctgt	tttttgagag	aatttctaga	tgtcctgggc	1800

cacagttaat	taagattttt	aggggggaca	gaaagttata	ctgaaatctt	tagagctccc	1860
ttccgccgtt	aaaattatat	atatatatat	ttaaattata	ccttaagttc	tggggtacat	1920
gtgcagaatg	tgcaggtttg	ttacataggt	atacacgtgc	catggtggtt	tgcggcacct	1980
gtcaacccat	ctacattagg	tatttctcct	aatgctctcc	ctcccctagc	ccccacccc	2040
tggacaggcc	ccattgtgtg	atgttcccct	ccctgtgtcc	atgtgttttc	attgttcaac	2100
teccaettet	aagtgagaac	atgcggtgtt	tggttttctg	ttcctgtgtt	agtttgctga	2160
gaatgatggt	ttccaggtta	aaattatata	tttttaaata	aatgaaaact	gtgtttttaa	2220
aagaggactt	ttgagaagta	tatagaaaaa	ccattaattt	agactctgtg	agattaggtt	2280
gcatgaagaa	ggttttctga	atatttgaag	agtggataaa	taaatgtccc	ccaaagcaat	2340
aaaatcataa	tcctttaaaa	tataggaaaa	ataactaatg	ggaactaggc	ttaatactcg	2400
ggatgaaata	atctgtacaa	caaactccca	tgacacatgt	ttacctatgt	aacaaacctg	2460
cacatgtacc	cctgaactta	aaataaaatt	taaagtataa	taataaaata	atatggattt	2520
tcttt						2525

<210> 82 <211> 312 <212> PRT

<213> H.Sapiens

<400> 82

Met Thr Gly Asp Phe Pro Ser Met Pro Gly His Asn Thr Ser Arg Asn

Ser Ser Cys Asp Pro Ile Val Thr Pro His Leu Ile Ser Leu Tyr Phe

Ile Val Leu Ile Gly Gly Leu Val Gly Val Ile Ser Ile Leu Phe Leu

Leu Val Lys Met Asn Thr Arg Ser Val Thr Thr Met Ala Val Ile Asn 50_{\odot} 60

Leu Val Val His Ser Val Phe Leu Leu Thr Val Pro Phe Arg Leu

Thr Tyr Leu Ile Lys Lys Thr Trp Met Phe Gly Leu Pro Phe Cys Lys

Phe Val Ser Ala Met Leu His Ile His Met Tyr Leu Thr Phe Leu Phe

Tyr Val Val Ile Leu Val Thr Arg Tyr Leu Ile Phe Phe Lys Cys Lys 120

Asp Lys Val Glu Phe Tyr Arg Lys Leu His Ala Val Ala Ala Ser Ala Page 56

	130					135					140					
Gly 145	Met	Trp	Thr	Leu	Val 150	Ile	Val	Ile	Val	Val 155	Pro	Leu	Val	Val	Ser 160	
Arg	Tyr	Gly	Ile	His 165	Glu	Glu	Tyr	Asn	Glu 170	Glu	His	Cys	Phe	Lys 175	Phe	
His	Lys	Glu	Leu 180	Ala	Tyr	Thr	Tyr	Val 185	Lys	Ile	Ile	Asn	Tyr 190	Met	Ile	
Val	Ile	Phe 195	Val	Ile	Ala	Val	Ala 200	Val	Ile	Leu	Leu	Val 205	Phe	Gln	Val	
Phe	Ile 210	Ile	Met	Leu	Met	Val 215	Gln	Lys	Leu	Arg	His 220	Ser	Leu	Leu	Ser	
His 225	Gln	Glu	Phe	Trp	Ala 230	Gln	Leu	Lys	Asn	Leu 235	Phe	Phe	Ile	Gly	Val 240	
Ile	Leu	Val	Cys	Phe 245	Leu	Pro	Tyr	Gln	Phe 250	Phe	Arg	Ile	Tyr	Tyr 255	Leu	
Asn	Val	Val	Thr 260	His	Ser	Asn	Ala	Cys 265	Asn	Ser	Lys	Val	Ala 270	Phe	Tyr	
Asn	Glu	Ile 275	Phe	Leu	Ser	Val	Thr 280	Ala	Ile	Ser	Cys	Tyr 285	Asp	Leu	Leu	
Leu	Phe 290	Val	Phe	Gly	Gly	Ser 295	His	Trp	Phe	Lys	Gln 300	Lys	Ile	Ile	Gly	
Leu . 305	Trp	Asn	Суѕ	Val	Leu 310	Cys	Arg									
<210 <211 <212 <213	> 1 > D	3 125 NA .Sap	oiens													
<400: gcag	_	-	gaaa	atca	g ga	acaa	tcct	gta	tttt	ttq	tgat	aato	aa c	aagg	acaaa	60
															ctgtg	120
cagci	tgtg	ct a	cgcg	aacg	t ga	atgg	gtcc	tgt	gtga	aaa	tccc	cttc	tc g	ccgg	gatcc	180
cggg	tgat	tc t	gtac	atag	t gt	ttgg	cttt	ggg	gctg	tgc	tggc	tgtg	tt t	ggaa	acctc	240
ctggi	tgat	ga t	ttca	atcc	t cc	attt	caag	cag	ctgc	act	ctcc	gacc	aa t	tttc	tcgtt	300
gcct	ctct	gg c	ctgc	gctg	a tt	tctt	ggtg	ggt	gtga	ctg	tgat	gccc	tt c	agca	tggtc	360
aggad	cggt	gg a	gagc	tgct	g gt	attt	tggg	agg	agtt	ttt	gtac	tttc	ca c	acct	gctgt	420
gatgt	ggc	at t	ttgt	tact	c tt	ctct	cttt	cac	ttgt	gct	tcat	ctcc	at c	gaca	ggtac	480
attgo	eggt	ta c	tgac	cccc	t gg	tcta	tcct	acc	aagt	tca	ccgt	atct	gt g	tcag	gaatt	540