CS 105: Department Introductory Course on Discrete Structures

Instructor: S. Akshay

Aug 28, 2023 Lecture 09 – Basic Mathematical Structures Uncountable Sets and relations

Definition

- ightharpoonup Set C is called countably infinite, if there is a bijection from set C to \mathbb{N} .
- ▶ A set is countable if it is finite or countably infinite.

).

Definition

- Set C is called countably infinite, if there is a bijection from set C to \mathbb{N} .
- ▶ A set is countable if it is finite or countably infinite.

Properties

- ▶ Union of countable sets is countable (e.g., $\mathbb{Z} \cup \{\sqrt{2}\}$)
- \blacktriangleright Cartesian product of countable sets is countable (e.g., $\mathbb{Z}\times\mathbb{N})$

Definition

- Set C is called countably infinite, if there is a bijection from set C to \mathbb{N} .
- ▶ A set is countable if it is finite or countably infinite.

- ▶ Union of countable sets is countable (e.g., $\mathbb{Z} \cup \{\sqrt{2}\}\)$
- ▶ Cartesian product of countable sets is countable (e.g., $\mathbb{Z} \times \mathbb{N}$)
- Qn. Show that set of primes P is countable.
 - ▶ Proof 1
 - 1. In Lecture 1, we showed that set of primes is infinite.

Definition

- ▶ Set C is called countably infinite, if there is a bijection from set C to \mathbb{N} .
- ▶ A set is countable if it is finite or countably infinite.

- ▶ Union of countable sets is countable (e.g., $\mathbb{Z} \cup \{\sqrt{2}\}\)$
- ▶ Cartesian product of countable sets is countable (e.g., $\mathbb{Z} \times \mathbb{N}$)
- Qn. Show that set of primes P is countable.
 - ▶ Proof 1
 - 1. In Lecture 1, we showed that set of primes is infinite.
 - 2. So there is surjection from P to \mathbb{N} .

Definition

- ightharpoonup Set C is called countably infinite, if there is a bijection from set C to \mathbb{N} .
- ▶ A set is countable if it is finite or countably infinite.

- ▶ Union of countable sets is countable (e.g., $\mathbb{Z} \cup \{\sqrt{2}\}\)$
- ightharpoonup Cartesian product of countable sets is countable (e.g., $\mathbb{Z} \times \mathbb{N}$)
- Qn. Show that set of primes P is countable.
 - ▶ Proof 1
 - 1. In Lecture 1, we showed that set of primes is infinite.
 - 2. So there is surjection from P to \mathbb{N} .
 - 3. Now, $P \subseteq \mathbb{N}$. $Id : P \to \mathbb{N}$ is an injection.

Definition

- ightharpoonup Set C is called countably infinite, if there is a bijection from set C to \mathbb{N} .
- ▶ A set is countable if it is finite or countably infinite.

- ▶ Union of countable sets is countable (e.g., $\mathbb{Z} \cup \{\sqrt{2}\}\)$
- ightharpoonup Cartesian product of countable sets is countable (e.g., $\mathbb{Z} \times \mathbb{N}$)
- Qn. Show that set of primes P is countable.
 - ▶ Proof 1
 - 1. In Lecture 1, we showed that set of primes is infinite.
 - 2. So there is surjection from P to \mathbb{N} .
 - 3. Now, $P \subseteq \mathbb{N}$. $Id: P \to \mathbb{N}$ is an injection. Conclude by Schroder-Bernstein Theorem.

Definition

- Set C is called countably infinite, if there is a bijection from set C to \mathbb{N} .
- ▶ A set is countable if it is finite or countably infinite.

- ▶ Union of countable sets is countable (e.g., $\mathbb{Z} \cup \{\sqrt{2}\}\)$
- ▶ Cartesian product of countable sets is countable (e.g., $\mathbb{Z} \times \mathbb{N}$)
- Qn. Show that set of primes P is countable.
 - ▶ Proof 1
 - 1. In Lecture 1, we showed that set of primes is infinite.
 - 2. So there is surjection from P to \mathbb{N} .
 - 3. Now, $P \subseteq \mathbb{N}$. $Id: P \to \mathbb{N}$ is an injection. Conclude by Schroder-Bernstein Theorem.
 - ▶ Proof 2 Show $f: P \to \mathbb{N}$ by f maps i^{th} prime to i is a bijection

Countable sets and functions

Are the following sets countable?

- \triangleright the set of all integers \mathbb{Z}
- \triangleright $\mathbb{N} \times \mathbb{N}$
- \triangleright N × N × N
- ightharpoonup the set of rationals $\mathbb Q$
- \triangleright the set of all (finite and infinite) subsets of $\mathbb N$
- \triangleright the set of all real numbers \mathbb{R}

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

	0	1	2	3	
f(0)	√	×	×	×	
f(1)	✓	×	\checkmark	\checkmark	
f(2)	×	×	×	×	
f(0) $f(1)$ $f(2)$ $f(3)$	$ \times $	\checkmark	×	\checkmark	

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

▶ Consider the set $S \subseteq \mathbb{N}$ obtained by switching the diagonal elements, i.e., $S = \{i \in \mathbb{N} \mid i \notin f(i)\}.$

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

		1		3	
f(0)	√×	×	×	×	
f(1)	✓ ×	* <	\checkmark	\checkmark	
f(2)	×	×	* <	×	
f(3)	×	\checkmark	×	$\checkmark \times$	

- ▶ Consider the set $S \subseteq \mathbb{N}$ obtained by switching the diagonal elements, i.e., $S = \{i \in \mathbb{N} \mid i \notin f(i)\}.$
- ▶ As f is bij, $\exists j \in \mathbb{N}, f(j) = S$.

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

		1		3	
f(0) $f(1)$ $f(2)$ $f(3)$	√×	×	×	×	
f(1)	✓	* <	\checkmark	\checkmark	
f(2)	×	×	* <	×	
f(3)	×	\checkmark	×	√×	

- ▶ Consider the set $S \subseteq \mathbb{N}$ obtained by switching the diagonal elements, i.e., $S = \{i \in \mathbb{N} \mid i \notin f(i)\}.$
- ▶ As f is bij, $\exists j \in \mathbb{N}, f(j) = S$.
- \triangleright S and f(j) differ at position j, for any j.

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

	0				
f(0)	√×	×	×	×	
f(0) $f(1)$ $f(2)$ $f(3)$	\checkmark	* <	\checkmark	\checkmark	
f(2)	×	×	* <	×	
f(3)	×	\checkmark	X	$\checkmark \times$	

- ▶ Consider the set $S \subseteq \mathbb{N}$ obtained by switching the diagonal elements, i.e., $S = \{i \in \mathbb{N} \mid i \notin f(i)\}.$
- ▶ As f is bij, $\exists j \in \mathbb{N}, f(j) = S$.
- \triangleright S and f(j) differ at position j, for any j.
- ▶ Thus, $S \neq f(j)$ for all $j \in \mathbb{N}$, which is a contradiction!

Does this proof look familiar??

Does this proof look familiar??

Figure: Cantor and Russell

Does this proof look familiar??

Figure: Cantor and Russell

▶ $S = \{i \in \mathbb{N} \mid i \notin f(i)\}$ is like the one from Russell's paradox.

Does this proof look familiar??

Figure: Cantor and Russell

- ▶ $S = \{i \in \mathbb{N} \mid i \notin f(i)\}$ is like the one from Russell's paradox.
- ▶ If $\exists j \in \mathbb{N}$ such that f(j) = S, then we have a contradiction.
 - ▶ If $j \in S$, then $j \notin f(j) = S$.
 - ▶ If $j \notin S$, then $j \notin f(j)$, which implies $j \in S$.

Does this proof look familiar??

Figure: Cantor and Russell

In fact, using diagonalization Cantor showed that...

- ► There cannot be a bijection between any set and its power set (i.e., its set of subsets).(H.W)
- ▶ So there is an infinite hierarchy of "larger" infinities...

Does this proof look familiar??

Figure: Cantor and Russell

In fact, using diagonalization Cantor showed that...

- ► There cannot be a bijection between any set and its power set (i.e., its set of subsets).(H.W)
- ▶ So there is an infinite hierarchy of "larger" infinities...
- ▶ There is no bijection from \mathbb{R} to \mathbb{N} (H.W). Moreover, there is a bijection from \mathbb{R} to set of subsets of \mathbb{N} .

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

- ▶ But, there is a surjection from set of all subsets of \mathbb{N} to \mathbb{N} .
- ▶ Thus, the "size" of $\mathcal{P}(\mathbb{N})$ is strictly greater that \mathbb{N} !

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

- \blacktriangleright But, there is a surjection from set of all subsets of \mathbb{N} to \mathbb{N} .
- ▶ Thus, the "size" of $\mathcal{P}(\mathbb{N})$ is strictly greater that \mathbb{N} !

Can there be some set whose "size" is in between the two?

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

- \blacktriangleright But, there is a surjection from set of all subsets of \mathbb{N} to \mathbb{N} .
- ▶ Thus, the "size" of $\mathcal{P}(\mathbb{N})$ is strictly greater that \mathbb{N} !

Can there be some set whose "size" is in between the two?

Cantor's Continuum hypothesis

There is no set whose "cardinality" is strictly between \mathbb{N} and $\mathcal{P}(\mathbb{N})$ (i.e., between naturals and reals).

Figure: 1st of Hilbert's 23 problems for the 20th century in 1900.

What did the world think about these proofs (in 1890s?)

(a) Kronecker (b) Poincare

(c) Theologians

- ► Kronecker: Only constructive proofs are proofs! "Scientific Charlatan", "Corruptor of youth"!
- ▶ Poincare: Set theory is a "disease" from which mathematics will be cured.
- ► Christian Theologians: God=Uniqueness of an absolute infinity. So, what is all this different infinities...?!

What did the world think about these proofs (in 1890s?)

(a) Kronecker (b) Poincare

(c) Theologians

- ► Kronecker: Only constructive proofs are proofs! "Scientific Charlatan", "Corruptor of youth"!
- ▶ Poincare: Set theory is a "disease" from which mathematics will be cured.
- ► Christian Theologians: God=Uniqueness of an absolute infinity. So, what is all this different infinities...?!
- ► Hilbert: No one can expel us from the paradise that Cantor has created for us.

Summary and moving on...

- ► Finite and infinite sets.
- ▶ Using functions to compare sets: focus on bijections.
- ▶ Countable, countably infinite and uncountable sets.
- ➤ Cantor's diagonalization argument (A new powerful proof technique!).

Summary and moving on...

- ► Finite and infinite sets.
- ▶ Using functions to compare sets: focus on bijections.
- ▶ Countable, countably infinite and uncountable sets.
- ► Cantor's diagonalization argument (A new powerful proof technique!).

Next: Basic Mathematical Structures – Relations

Relations

Definition: Function

Let A, B be two sets. A function f from A to B is a subset R of $A \times B$ such that

- (i) $\forall a \in A, \exists b \in B \text{ such that } (a, b) \in R, \text{ and }$
- (ii) if $(a, b) \in R$ and $(a, c) \in R$, then b = c.
 - Now, suppose A is the set of all Btech students and B is the set of all courses. Clearly, we can assign to each student the set of courses he/she is taking. Is this a function?

Relations

Definition: Function

Let A, B be two sets. A function f from A to B is a subset R of $A \times B$ such that

- (i) $\forall a \in A, \exists b \in B \text{ such that } (a, b) \in R, \text{ and }$
- (ii) if $(a, b) \in R$ and $(a, c) \in R$, then b = c.
 - ▶ Now, suppose A is the set of all Btech students and B is the set of all courses. Clearly, we can assign to each student the set of courses he/she is taking. Is this a function?
 - ▶ By removing the two extra assumptions in the defn, we get:

Definition: Relation

- ▶ A relation R from A to B is a subset of $A \times B$. If $(a,b) \in R$, we also write this as a R b.
- ► Thus, a relation is a way to relate the elements of two (not necessarily different) sets.

Examples and representations of relations

We write R(A, B) for a relation from A to B and just R(A) if A = B. Also if A is clear from context, we just write R.

Examples of relations

- ▶ All functions are relations.
- $R_1(\mathbb{Z}) = \{(a,b) \mid a,b \in \mathbb{Z}, a-b \text{ is even } \}.$
- $R_2(\mathbb{Z}) = \{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}.$
- ▶ Let S be a set, $R_3(\mathcal{P}(S)) = \{(A, B) \mid A, B \subseteq S, A \subseteq B\}.$
- ▶ Relational databases are practical examples.

Examples and representations of relations

We write R(A, B) for a relation from A to B and just R(A) if A = B. Also if A is clear from context, we just write R.

Examples of relations

- ▶ All functions are relations.
- $R_1(\mathbb{Z}) = \{(a,b) \mid a,b \in \mathbb{Z}, a-b \text{ is even } \}.$
- $R_2(\mathbb{Z}) = \{(a,b) \mid a,b \in \mathbb{Z}, a \leq b\}.$
- ▶ Let S be a set, $R_3(\mathcal{P}(S)) = \{(A, B) \mid A, B \subseteq S, A \subseteq B\}.$
- ▶ Relational databases are practical examples.

Representations of a relation from A to B.

- \blacktriangleright As a set of ordered pairs of elements, i.e., subset of $A \times B$.
- ► As a directed graph.
- ► As a (database) table.

Use of relations

Practical application in relational databases: IMDB, university records, etc.

Practical application in relational databases: IMDB, university records, etc.

But, why study relations in this course?

Practical application in relational databases: IMDB, university records, etc.

But, why study relations in this course?

► Functions were special kinds of relations that were useful to compare sets.

Practical application in relational databases: IMDB, university records, etc.

But, why study relations in this course?

- ► Functions were special kinds of relations that were useful to compare sets.
- ▶ Are there other special relations? What are they useful for?

Practical application in relational databases: IMDB, university records, etc.

But, why study relations in this course?

- ► Functions were special kinds of relations that were useful to compare sets.
- ▶ Are there other special relations? What are they useful for?
 - ► Equivalence relations
 - ▶ Partial orders

Examples

- ▶ Natural numbers are partitioned into even and odd.
- ► This class is partitioned into sets of students from same hostel.

How do you define a partition?

Examples

- ▶ Natural numbers are partitioned into even and odd.
- ► This class is partitioned into sets of students from same hostel.

How do you define a partition?

Definition

A partition of a set S is a

Examples

- ▶ Natural numbers are partitioned into even and odd.
- ► This class is partitioned into sets of students from same hostel.

How do you define a partition?

Definition

A partition of a set S is a set P of its subsets such that

Examples

- ▶ Natural numbers are partitioned into even and odd.
- ► This class is partitioned into sets of students from same hostel.

How do you define a partition?

Definition

A partition of a set S is a set P of its subsets such that

- ▶ if $S' \in P$, then $S' \neq \emptyset$.
- $\bigvee_{S' \in P} S' = S$: its union covers entire set S.
- ▶ If $S_1, S_2 \in P$, then $S_1 \cap S_2 = \emptyset$: sets are disjoint.

Examples

- ▶ Natural numbers are partitioned into even and odd.
- ► This class is partitioned into sets of students from same hostel.

How do you define a partition?

Definition

A partition of a set S is a set P of its subsets such that

- ▶ if $S' \in P$, then $S' \neq \emptyset$.
- $\bigcup_{S' \in P} S' = S : \text{ its union covers entire set } S.$
- ▶ If $S_1, S_2 \in P$, then $S_1 \cap S_2 = \emptyset$: sets are disjoint.

Can you think of two trivial partitions that any set must have?

Thus, a partition divides S into subsets that each contain (only) elements that share some common property. e.g.,

Thus, a partition divides S into subsets that each contain (only) elements that share some common property. e.g.,

- ▶ Evenness or oddness (formally, remainder modulo 2!).
- ► Same hostel...

Thus, a partition divides S into subsets that each contain (only) elements that share some common property. e.g.,

- Evenness or oddness (formally, remainder modulo 2!).
- ► Same hostel...
- ▶ But, this sounds like relation, right? Which one?

Thus, a partition divides S into subsets that each contain (only) elements that share some common property. e.g.,

- Evenness or oddness (formally, remainder modulo 2!).
- ► Same hostel...
- ▶ But, this sounds like relation, right? Which one?

Relation generated by a partition

- ► Clearly all elements in a set of the partition are related by the "sameness" or "likeness" property.
- ▶ So can we define this as a relation?

Thus, a partition divides S into subsets that each contain (only) elements that share some common property. e.g.,

- Evenness or oddness (formally, remainder modulo 2!).
- ► Same hostel...
- ▶ But, this sounds like relation, right? Which one?

Relation generated by a partition

- ► Clearly all elements in a set of the partition are related by the "sameness" or "likeness" property.
- \triangleright So can we define this as a relation? aRb if a is "like" b.

Thus, a partition divides S into subsets that each contain (only) elements that share some common property. e.g.,

- Evenness or oddness (formally, remainder modulo 2!).
- ► Same hostel...
- ▶ But, this sounds like relation, right? Which one?

Relation generated by a partition

- ► Clearly all elements in a set of the partition are related by the "sameness" or "likeness" property.
- \triangleright So can we define this as a relation? aRb if a is "like" b.
- Formally, we define R(S) by aRb if a and b belong to the same set in the partition of S.

Thus, a partition divides S into subsets that each contain (only) elements that share some common property. e.g.,

- Evenness or oddness (formally, remainder modulo 2!).
- ► Same hostel...
- ▶ But, this sounds like relation, right? Which one?

Relation generated by a partition

- ► Clearly all elements in a set of the partition are related by the "sameness" or "likeness" property.
- ightharpoonup So can we define this as a relation? aRb if a is "like" b.
- Formally, we define R(S) by aRb if a and b belong to the same set in the partition of S.

What properties does this relation have?