

# COLLEGE OF COMPUTIG DEPARTMENT OF DATA SCIENCE REGRATION PROGECT

| GROUPMEMBERS NAME |                 | <u>ID</u>  |
|-------------------|-----------------|------------|
| 1.                | NATENAEL BEKELE | DBU1501407 |
| 2.                | HAFIZE HUSEN    | DBU1501241 |
| 3.                | REDIET ESUBALEW | DBU1501704 |
| 4.                | BEREKET GETAW   | DBU1501044 |
| 5.                | DAWIT ALEMU     | DBU1501117 |
| 6.                | YIFERU MEKONEN  | DBU1501562 |
| 7.                | ELBETEL ABEDI   | DBU1501145 |
| 8.                | GENET MINDA     | DBU1501217 |

#### ###what is forward selection

**Forward selection**: is a type of stepwise regression technique used to build a predictive model by iteratively adding predictors to the model. It starts with an empty model (no predictors) and adds one predictor at a time based on a predefined criterion (e.g., p-value, AIC, or R-squared). The goal is to identify the most significant predictors that improve the model's performance.

#### ### How Forward Selection Works:

- 1. Start with an empty model: The initial model contains only the intercept (no predictors).
- 2. **Evaluate all possible predictors**: For each predictor not yet in the model, fit a new model by adding that predictor.
- 3. **Select the best predictor:** Choose the predictor that improves the model the most based on a criterion (e.g., lowest p-value, highest improvement in R-squared, or lowest AIC).
- 4. **Add the predictor to the model**: Include the selected predictor in the model.
- 5. **Repeat:** Continue adding predictors one at a time until no further improvement is achieved or a stopping criterion is met.

#### ### Advantages of Forward Selection:

- 1. Simplicity: Easy to implement and understand.
- 2. **Efficiency**: Works well when there are many predictors, as it reduces the number of models to evaluate.
- 3. **Interpretability**: Produces a simpler model with fewer predictors, making it easier to interpret.

#### ### Disadvantages of Forward Selection:

- 1. **Greedy Algorithm**: It selects the best predictor at each step but does not reconsider previous choices, which may lead to suboptimal models.
- 2. **Risk of Overfitting**: If too many predictors are added, the model may overfit the training data
- 3. **Dependence on Criteria**: The results depend on the criterion used (e.g., p-value, AIC), which may not always lead to the best model.

# ### When to Use Forward Selection:

- When you have a large number of predictors and want to identify the most important ones.
- When computational efficiency is important, as it evaluates fewer models compared to exhaustive methods like all-subsets regression.

#### ### Comparison with Other Methods:

- Backward Elimination: Starts with all predictors and removes the least significant one at each step.
- **Stepwise Regression**: Combines forward selection and backward elimination, allowing predictors to be added or removed at each step.
- **All-Subsets Regression**: Evaluates all possible combinations of predictors, which is computationally expensive but thorough.

#### ###which criterion is best for our dataset

For our dataset (31 observations, 6 predictors), BIC (Bayesian Information Criterion) is likely the best choice because:

- It strongly penalizes model complexity, which is important for small datasets.
- It helps avoid overfitting and ensures the model generalizes well to new data.

# ---Here is our code--

## # Load the dataset

```
data <- data.frame(
```

)

```
y = c(6.75, 13.00, 14.75, 12.60, 8.25, 10.67, 7.28, 12.67, 12.58, 20.60, 3.58, 7.00, 26.20, 11.67, 7.67, 12.25, 0.76, 1.35, 1.44, 1.60, 1.10, 0.85, 1.20, 0.56, 0.72, 0.47, 0.33, 0.26, 0.76, 0.80, 2.00),
```

```
x1 = c(2.80, 1.40, 1.40, 3.30, 1.70, 2.90, 3.70, 1.70, 0.92, 0.68, 6.00, 4.30, 0.60, 1.80, 6.00, 4.40, 88.00, 62.00, 50.00, 58.00, 90.00, 66.00, 140.00, 240.00, 420.00, 500.00, 180.00, 270.00, 170.00, 98.00, 35.00),
```

```
x2 = c(4.68, 5.19, 4.82, 4.85, 4.86, 5.16, 4.82, 4.86, 4.78, 5.16, 4.57, 4.61, 5.07, 4.66, 5.42, 5.01, 4.97, 4.01, 4.96, 5.20, 4.80, 4.98, 5.35, 5.04, 4.80, 4.83, 4.66, 4.67, 4.72, 5.00, 4.70),
```

```
x3 = c(4.87, 4.50, 4.73, 4.76, 4.95, 4.45, 5.05, 4.70, 4.84, 4.76, 4.82, 4.65, 5.10, 5.09, 4.41, 4.74, 4.66, 4.72, 4.90, 4.70, 4.60, 4.69, 4.76, 4.80, 4.80, 4.60, 4.72, 4.50, 4.70, 5.07, 4.80),
```

x5 = c(8.4, 6.5, 7.9, 8.3, 8.4, 7.4, 6.8, 8.6, 6.7, 7.7, 7.4, 6.7, 7.5, 8.2, 5.8, 7.1, 6.5, 8.0, 6.8, 8.2, 6.6, 6.4, 7.3, 7.8, 7.4, 6.7, 7.2, 6.3, 6.8, 7.2, 7.7),

```
x6 = c(4.916, 4.563, 5.321, 4.865, 3.776, 4.397, 4.867, 4.828, 4.865, 4.034, 5.450, 4.853, 4.257, 5.144, 3.718, 4.715, 4.625, 4.977, 4.322, 5.087, 5.971, 4.647, 5.115, 5.939, 5.916, 5.471, 4.602, 5.043, 5.075, 4.334, 5.705)
```

3

## # Define the full model (with all predictors)

```
full model <- Im(y \sim x1 + x2 + x3 + x4 + x5 + x6, data = data)
summary(full_model)
output:
Call:
lm(formula = y \sim x1 + x2 + x3 + x4 + x5 + x6, data = data)
Residuals:
    Min
            1Q Median
                             3Q
                                    Max
-6.0548 -1.8258 -0.1374 1.6179 11.9741
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) -32.663676 30.199504 -1.082
              0.001131 0.008386 0.135
                                             0.894
                        3.047723 1.425
                                           0.167
x2
              4.343137
              4.272295 4.745619 0.900
                                            0.377
x3
             -9.753643 1.973300 -4.943 4.81e-05 ***
x5
             0.950435 1.210822 0.785
                                            0.440
             -0.950855 1.628797 -0.584
                                             0.565
x6
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.055 on 24 degrees of freedom
Multiple R-squared: 0.7113,
                               Adjusted R-squared: 0.6391
F-statistic: 9.853 on 6 and 24 DF, p-value: 1.645e-05
# Define the null model (intercept-only model)
null_model \leftarrow Im(y \sim 1, data = data)
summary(null_model)
output:
Call:
lm(formula = y \sim 1, data = data)
Residuals:
  Min
         10 Median
                        3Q
-6.247 -5.682 -2.927 5.453 19.693
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.507
                         1.212 5.368 8.24e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.749 on 30 degrees of freedom
```

#### # Perform forward selection using BIC

forward\_model <- step(null\_model, scope = list(lower = null\_model, upper = full\_model), direction = "forward", k = log(nrow(data)))

#### output:

```
Start: AIC=120.8
y ~ 1
      Df Sum of Sq
                   RSS
                           AIC
      1 898.57 467.95 91.014
+ x4
+ xl
      1
          424.93 941.59 112.689
+ x6 1 245.58 1120.94 118.094
<none>
                 1366.52 120.801
     1
          99.00 1267.52 121.904
+ x5
         80.23 1286.29 122.359
      1
+ x2
+ x3
      1
           60.38 1306.14 122.834
Step: AIC=91.01
y \sim x4
     Df Sum of Sq RSS AIC
<none> 467.95 91.014
    1 30.5099 437.44 92.358
+ x2
+ x3
      1 17.7425 450.21 93.250
+ x6 1 14.7853 453.17 93.452
+ x5 1 9.1078 458.85 93.838
+ x1 1
          1.9125 466.04 94.321
```

# **Interpretation of Forward Selection Using BIC**

# **Step 1: Understanding the Forward Selection Process**

- **4** The selection starts with the **null model** (intercept-only).
- Variables are added one by one based on the **BIC criterion** (which is approximated here using AIC with k=log(n).
- ♣ The variable with the largest reduction in **Residual Sum of Squares (RSS)** and lowest AIC/BIC is selected at each step.

# **Step 2: First Selection Step**

# Starting Model: $y \sim 1$

```
Start: AIC=120.8
y ~ 1

Df Sum of Sq RSS AIC
+ x4 1 898.57 467.95 91.014
+ x1 1 424.93 941.59 112.689
+ x6 1 245.58 1120.94 118.094
<none> 1366.52 120.801
+ x5 1 99.00 1267.52 121.904
+ x2 1 80.23 1286.29 122.359
+ x3 1 60.38 1306.14 122.834
```

## Explanation:

- **Best predictor to add:** x4 (since it gives the lowest AIC = 91.01).
- The improvement in RSS from 1366.52 to 467.95 is significant.

Other variables were considered, but they resulted in **higher AIC values**, meaning they were less optimal in reducing model complexity while improving fit.

# **Step 3: Second Selection Step**

#### **Current Model:** y~x4

```
Step: AIC=91.01
y ~ x4

Df Sum of Sq RSS AIC

<none> 467.95 91.014
+ x2 1 30.5099 437.44 92.358
+ x3 1 17.7425 450.21 93.250
+ x6 1 14.7853 453.17 93.452
+ x5 1 9.1078 458.85 93.838
+ x1 1 1.9125 466.04 94.321
```

#### Explanation:

- The algorithm checks whether adding another predictor would further reduce the AIC/BIC significantly.
- None of the remaining predictors (x1, x2, x3, x5, x6) provide a large enough improvement.
  - The lowest AIC among them is x2 (AIC = 92.36), which is higher than 91.01, meaning it's not worth adding.
  - Since no additional variable significantly improves the model, the algorithm stops here.

# **Step 4: Interpretation of the Final Model**

# # Summarize the final model

# **Final Selected Model:**

```
y=11.72-10.77x4
```

- **Intercept** (11.72): When x4=0, the predicted value of yyy is 11.72.
- **♣** Effect of x4 (-10.77):
  - $\circ$  If x4=1, the predicted y drops to **0.95** (a strong negative effect).
  - $\circ$  This suggests  $\mathbf{x_4}$  is a key factor influencing  $\mathbf{y}$ .

# **Step 5: Why Were Other Variables Excluded?**

- **BIC** prefers **simplicity** and penalizes adding more variables unless they significantly improve fit.
- ♣ None of the other variables provided enough reduction in **AIC/BIC** to be worth adding.
- +  $\mathbf{x_4}$  alone explains a significant portion of the variance in  $\mathbf{y}$ .

# **Step 6: Conclusion**

- +  $\mathbf{x_4}$  is the most significant predictor of  $\mathbf{y}$ .
- ♣ Other variables do not improve model fit enough to justify inclusion.
- ♣ The final model balances simplicity and predictive power, avoiding overfitting.

# **\*** Final Decision: The best model

y=11.72-10.77 x<sub>4</sub>