一、填空题

1.
$$(1,1,1)^T$$
 2. $-\frac{1}{6}(A-I)$ **3.** $(1,2,1,2)^T + k(0,1,-2,-1)^T$ **4.** $\frac{3}{2}$ **5.** $\frac{1}{3}$ **6.** -8

二、选择题

DACBAB

三、计算题

1.
$$\prod_{k=0}^{n} a_k - \sum_{i=1}^{n} \left(\prod_{\substack{j=1 \ j \neq i}}^{n} a_j \right)$$

2.
$$(2I - A^*)BA^2 = 3A$$

$$\Rightarrow B = 3(2I - A^*)^{-1}A^{-1} = 3[A(2I - A^*)]^{-1} = 3[2A - |A|I]^{-1}$$

$$=3[\begin{pmatrix}2&4&6\\0&2&4\\0&0&2\end{pmatrix}-\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix}]^{-1}=3\begin{pmatrix}1&4&6\\0&1&4\\0&0&1\end{pmatrix}^{-1}=3\begin{pmatrix}1&-4&10\\0&1&-4\\0&0&1\end{pmatrix}$$

3.
$$\begin{pmatrix} 1 & -1 & 1 & -1 \\ -1 & 2 & 2 & 1 \\ 1 & 0 & 4 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 4 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
, 秩为3, 极大线性无关组 $\{\alpha_1, \alpha_2, \alpha_4\}$, $\alpha_3 = 4\alpha_1 + 3\alpha_2$.

4.
$$\begin{pmatrix} 3 & 5 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} T$$
, $\begin{pmatrix} 3 & 5 & 1 & 1 \\ -1 & -1 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{pmatrix}$, 过渡矩阵 $T = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$,

$$\gamma_{\mathbf{B_1}} = T\gamma_{\mathbf{B_2}} = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}, \ \gamma_{\mathbf{B_2}} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}.$$

四、证明题

证: 设 $k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = 0$. 左乘A可得 k_1 A $\alpha_1 + k_2$ A $\alpha_2 + k_3$ A $\alpha_3 = -2k_1\alpha_1 + k_2\alpha_2 + 2k_3\alpha_2 + k_3\alpha_3 = 0$. 两式消掉 $k_3\alpha_3$ 得, $3k_1\alpha_1 - 2k_3\alpha_2 = 0$. 因为 α_1 , α_2 为不同特征值对应的特征向量,所以 α_1 , α_2 无关,从而有 $k_1 = k_3 = 0$,进而有 $k_1 = k_2 = k_3 = 0$.所以 α_1 , α_2 , α_3 无关.

五、解方程组

$$\begin{pmatrix} 1 & 1 & -4 & 1 & 6 \\ 1 & 0 & 4 & -1 & -1 \\ 2 & 1 & a-1 & b-3 & b+6 \\ -2 & -1 & 0 & b-2 & b-2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -4 & 1 & 6 \\ 0 & -1 & 8 & -2 & -7 \\ 0 & -1 & a+7 & b-5 & b-6 \\ -2 & -1 & 0 & b-2 & b-2 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & -4 & 1 & 6 \\ 0 & 1 & -8 & 2 & 7 \\ 0 & -1 & a+7 & b-5 & b-6 \\ 0 & 1 & -8 & b & b+10 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -4 & 1 & 6 \\ 0 & 1 & -8 & 2 & 7 \\ 0 & 0 & a-1 & b-3 & b+1 \\ 0 & 0 & 0 & b-2 & b+3 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & -4 & 1 & 6 \\ 0 & 1 & -8 & 2 & 7 \\ 0 & 0 & a-1 & -1 & -2 \\ 0 & 0 & 0 & b-2 & b+3 \end{pmatrix}$$

当
$$a=1$$
时, $\begin{pmatrix} 1 & 1 & -4 & 1 & 6 \\ 0 & 1 & -8 & 2 & 7 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & b-2 & b+3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -4 & 1 & 6 \\ 0 & 1 & -8 & 2 & 7 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & b+3-2(b-2) \end{pmatrix} \rightarrow$

$$\begin{pmatrix} 1 & 1 & -4 & 0 & 4 \\ 0 & 1 & -8 & 0 & 3 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 4 & 0 & 1 \\ 0 & 1 & -8 & 0 & 3 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \ \text{基础解系为} X_1 = \begin{pmatrix} -4 \\ 8 \\ 1 \\ 0 \end{pmatrix}, \ \text{非齐次特解为} X_0 = \begin{pmatrix} 1 \\ 3 \\ 0 \\ 2 \end{pmatrix},$$

通解为
$$X = \begin{pmatrix} 1\\3\\0\\2 \end{pmatrix} + k \begin{pmatrix} -4\\8\\1\\0 \end{pmatrix}.$$

当 $a \neq 1$ 时,若b = 2,则方程组无解;当 $b \neq 2$ 时,方程组有唯一解.

六、化二次型为标准型

(1)
$$A = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 1 & -2 \\ 2 & -2 & c \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -2 \\ -1 & 1 & -2 \\ 0 & 0 & c - 4 \end{pmatrix}$$
, 所以 $c = 4$.

(2)
$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & 1 & -2 \\ 1 & \lambda - 1 & 2 \\ -2 & 2 & \lambda - 4 \end{vmatrix} = \begin{vmatrix} \lambda & \lambda & 0 \\ 1 & \lambda - 1 & 2 \\ -2 & 2 & \lambda - 4 \end{vmatrix} = \begin{vmatrix} \lambda & 0 & 0 \\ 1 & \lambda - 2 & 2 \\ -2 & 4 & \lambda - 4 \end{vmatrix} = \lambda^2 (\lambda - 6)$$

A的特征值为 $\lambda_1 = 0$ (二重), $\lambda_2 = 6$ (一重).

$$\lambda_1 = 0$$
时, $A = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, 基础解系 $X_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $X_2 = \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$, 标准正交化,

$$\beta_1 = X_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \ \beta_2 = X_2 - \frac{(X_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1 = \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} + \frac{2}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \ \eta_1 = \frac{\beta_1}{|\beta_1|} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}, \ \eta_2 = \frac{\beta_2}{|\beta_2|} = \begin{pmatrix} -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix},$$

$$\lambda_2 = 6 \, \mathbb{M}, \ \lambda I - A = \begin{pmatrix} 5 & 1 & -2 \\ 1 & 5 & 2 \\ -2 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 5 & 2 \\ 5 & 1 & -2 \\ -2 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 5 & 2 \\ 0 & -24 & -12 \\ 0 & 12 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix}, \ X_3 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix},$$

$$\eta_3 = \frac{X_3}{|X_3|} = \begin{pmatrix} \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \end{pmatrix}. \quad 所以 f(x_1, x_2, x_3) 标准型为6y_3^2, \quad 正交变换阵为 \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \end{pmatrix}.$$

(3) $f(x_1, x_2, x_3)$ 的规范型为 z_3^2 .