SDK 例程使用说明 - I2S_int

一、功能描述

12S1主发送;12S0从接收(中断方式接收)。

二、使用环境

I. 硬件环境:

1. 开发板: WTMDK2101-X3 (两电或三电)

Ⅱ. 软件环境:

• IDE工具: SEGGER Embedded Studio for RISC-V V5.60

• 输出信息查看工具: 串口助手

三、系统配置

I. 系统时钟:

时钟源: OSC24MhzAHB时钟: 24Mhz

• I2S时钟:根据采样频率而定,计算方式: CLK = sample rate * 32bit*2;

II. UART配置:

• UARTO_TX->GPIO_16

• UARTO RX->GPIO 17

波特率:9600停止位:1数据位:8位奇偶校验:无

III. 12S0:

- 引脚复用:
 - I2S0_SDO -> GPIO_0
 - o I2S0_WS -> GPIO_1
 - o I2SO CK -> GPIO 2
 - I2S0_SDI -> GPIO_3
- Slave mode

Sample rate: 24000Data length: 32 BitRX Threshold level: 1

IV. I2S1:

- 引脚复用:
 - I2S1_SDO -> GPIO_10
 - I2S1_WS -> GPIO_13
 - I2S1_CK -> GPIO_12
 - o I2S1 SDI -> GPIO 11
- Master mode

Sample rate: 24000Data length: 32 BitTX Threshold level: 7

V. 中断:

- I2S0 IRQHandler();用于 I2S0 接收数据;
 - o Interrupt generation on I2SO when RX FIFO is more than threshold level.
- I2S1_IRQHandler();用于指示发送数据的 Data Overrun interrupt,即 TX FIFO 中 data depth >8;

四、使用说明

- 1. TXFIFO 的使用说明:
 - a) 通过函数 I2S_TxFIFO_LVLCfg(I2S_TypeDef* I2Sx, uint8_t Level); 设置阈值,阈值 =level+1; 当 TX FIFO data<该阈值时, TXFE 中断被触发;
 - b) 通过函数 I2S_TxFIFO_Flush (I2S_TypeDef* I2Sx);TX_FIFO reset, 注意: reset 前需 将 TX channel diable,即调用 I2S_Ctl(I2S_TypeDef* I2Sx, FunctionalState NewState);
 - c) 当 TXFIFO 空了(I2S_ISR0.TXFE = 1), WS=0 时, TX 的数据会发送至 I2S_LTHR0, WS=1 时, TX 的数据会发送至 I2S_RTHR0;
- 2. RXFIFO 的使用说明:
 - a) 通过函数 I2S_RxFIFO_LVLCfg(I2S_TypeDef* I2Sx, uint8_t Level); 设置阈值,阈值 =level+1; 当 RX FIFO data>该阈值时,RXDA 中断被触发;
 - b) 通过函数 I2S_RxFIFO_Flush (I2S_TypeDef* I2Sx);RX_FIFO reset, 注意: reset 前需 将 TX channel diable,即调用 I2S_Ctl(I2S_TypeDef* I2Sx, FunctionalState NewState);
 - c) 当 RXFIFO 有有效数据(I2S_ISR0.RXDA = 1), WS=0 时,接收数据至 I2S_LRHR0,WS=1 时,接收数据至 I2S_RRHR0;
- 3. 配置位数和频率的说明:
 - a) 通过 I2S_RxCfg(I2S_TypeDef* I2Sx, uint32_t ResLen);中 ResLen 配置接收数据的 长度,可将 data length 配置 32/24/20/16/12bit;
 - b) 通过 I2S_TxCfg(I2S_TypeDef* I2Sx, uint32_t ResLen);中 ResLen 配置发送数据的 长度,可将 data length 配置 32/24/20/16/12bit;
 - c) 通过 RCC_I2S1_Set_ClkDiv(uint16_t CLK_Div); 设置采样频率; 采样频率=主频/ (CLK_Div * data length *2);

五、步骤和现象

- 1. 参考硬件接线图1连接各个跳线(包含参考供电, JLink, QSPI等连接) 将J32排针的BOOT0与GND, IOVDD与1.8V, AVDD与3.3V相连接; DVDD通过跳线接到 1.1V,将J33的PERIV与1.8V相连接;
 - 将排线分别将 GPIO_1 与 GPIO_13, GPIO_2 与 GPIO_12, GPIO_3 与 GPIO_10 相 连接。 TXD与P17相连接; RXD与P16相连接;
- 2. 开发板供电——通过Micro-USB线将WTMDK2101-X3板和PC相连接。并拨动拨码开关至ON;
- 3. 编译后下载程序并运行;
- 4. PC端串口助手循环输出i2s_test_ok,测试结果如图2。

图1.硬件连接参考图

图2.测试结果图

六、注意事项 • 无。 WITH CHIPPING CONTRACTOR OF THE PARTY OF THE ALITANEM CONFIDENTIAL CONTRACTOR OF THE PARTY OF THE PART WITH CONFIDENTIAL CONTRACTOR OF THE PARTY OF