t sne

Luis Angel Rodriguez Garcia

3/5/2022

Introduction

We are going to play with the Iris dataset:

```
X <- iris %>% dplyr::select(-Species) %>% as.matrix()
n <- nrow(X)
p <- ncol(X)</pre>
```

Euclidean distance

The way to calculate the Euclidean distance:

$$\|\mathbf{x}_i - \mathbf{x}_i\|^2 = \|\mathbf{x}_i\|^2 + \|\mathbf{x}_i\|^2 - 2\mathbf{x}_i'\mathbf{x}_i$$

where
$$\|\mathbf{x}_i\| = \sqrt{x_{i,1}^2 + \dots + x_{i,p}^2}$$
 and $\mathbf{x}_k^2 = \mathbf{x}_k' \mathbf{x}_k = x_{k1}^2 + \dots + x_{kp}^2$.

The following method apply the formula above:

```
x_diff <- function(X) {
  n <- nrow(X)
  sum_x <- apply(X^2, MARGIN=1, FUN=sum)
  sum_x_m <- t(matrix(replicate(n, sum_x), byrow=T, nrow=n))
  cross_times_minus_2 <- -2 * (X %*% t(X))
  D <- t(cross_times_minus_2 + sum_x_m) + sum_x_m
  D <- round(D, digits=4)
}</pre>
```

Perplexity

$$Perp_i = 2^{H_i}$$

Where H_i is the Shannon entropy in the point x_i of the conditional probability:

$$H_{i} = -\sum_{j \neq i} p_{j|i} \log(p_{j|i})$$

$$= -\sum_{j \neq i} p_{j|i} \log(p_{j,i}/p_{i})$$

$$= -\sum_{j \neq i} p_{j|i} (\log(p_{j,i}) - \log(p_{i}))$$

$$= -\sum_{j \neq i} p_{j|i} (\log(e^{-||x_{i}-x_{j}||^{2}/2\sigma^{2}}) - \log(\sum_{k \neq i} e^{-||x_{i}-x_{j}||^{2}/2\sigma^{2}}))$$

$$= -\sum_{j \neq i} p_{j|i} ((-||x_{i}-x_{j}||^{2}/2\sigma^{2}) - \log(\sum_{k \neq i} e^{-||x_{i}-x_{j}||^{2}/2\sigma^{2}}))$$

$$= \sum_{j \neq i} p_{j|i} (\log(S_{i}) + ||x_{i}-x_{j}||^{2} \frac{1}{2\sigma^{2}})$$

$$= \log(S_{i}) \sum_{j \neq i} p_{j|i} + \frac{1}{2\sigma^{2}} \sum_{j \neq i} p_{j|i} ||x_{i}-x_{j}||^{2})$$

$$= \log(S_{i}) + \frac{1}{2\sigma^{2}} \sum_{j \neq i} p_{j|i} ||x_{i}-x_{j}||^{2}$$

Where $S_i = \sum_{k \neq i} e^{-||x_i - x_j||^2/2\sigma^2}$ and $\sum_{j \neq i} p_{j|i} = 1$

In order to proceed with the optimization of the variance, we are going to define this term $\frac{1}{2\sigma^2}$ as the parameter β .

```
entropy_beta <- function(D_i, beta=1) {
  P_i <- exp(-D_i * beta)
  sum_p_i <- sum(P_i)
  H_i <- log(sum_p_i) + (beta * sum(D_i * P_i) /sum_p_i)
  P_i <- P_i / sum_p_i
  return(list(entropy=H_i, probs=P_i))
}</pre>
```

The goal is to adjust the variability so that the perplexity at each point is the same. The perplexity is a way to measure the effective number of neighbors of a point. We are going to perform a binary search to get the probabilities in such a way that the conditional Gaussian has the same perplexity.

```
index_except_i <- function(i, n) {
  index <- c(seq(1,i-1),seq(i+1,n))
  if (i == 1) {
    index <- 2:n
  } else if (i == n) {
    index <- 1:(n-1)
  }
  return(index)
}

binary_search <- function(h_diff, beta, i, beta_min, beta_max) {
  if(h_diff > 0) {
    beta_min = beta[i]
    if(beta_max == -Inf || beta_max == Inf) {
      beta[i] <- beta[i] * 2
  } else {</pre>
```

```
beta[i] <- (beta[i] + beta_max) / 2</pre>
    }
  } else {
    beta_max = beta[i]
    if(beta_min == -Inf || beta_min == Inf) {
      beta[i] <- beta[i] / 2</pre>
    } else {
      beta[i] <- (beta[i] + beta min) / 2</pre>
    }
 return(list(beta=beta, min=beta_min, max=beta_max))
}
binary_search_optimization <- function(D_i, i, beta, h_star, prob_star, log_perp,
                                         tolerance=1e-5) {
  beta_min <- -Inf
  beta_max <- Inf
  tries <- 0
  h_diff <- h_star - log_perp
  while(abs(h_diff) > tolerance && tries < 50) {</pre>
    beta_opt <- binary_search(h_diff, beta, i, beta_min, beta_max)</pre>
    beta <- beta_opt$beta; beta_min <- beta_opt$min; beta_max <- beta_opt$max
    res_loop <- entropy_beta(D_i, beta[i])</pre>
   h_star <- res_loop$entropy; prob_star <- res_loop$probs</pre>
    h_diff <- h_star - log_perp
    tries <- tries + 1
 return(list(probs=prob_star, beta=beta))
```

Once we have defined these two methods, we are able to obtain the high dimensional properties:

```
high_dimension_probs <- function(X=matrix(), tolerance=1e-5, perplexity=30) {
    n <- nrow(X)
    p <- ncol(X)

D <- x_diff(X)

P <- matrix(0, nrow=150, ncol=150)
    beta <- rep(1, n)
    log_perp <- log(perplexity)

for(i in seq_len(n)) {
    column_index <- index_except_i(i, n)
    D_i <- D[i, column_index]

    res <- entropy_beta(D_i, beta[i])
    h_star <- res$entropy
    prob_star <- res$probs

h_diff <- h_star - log_perp</pre>
```

The version of the t-SNE is the symmetric one, that has the property that $p_{ij} = p_{ji}$ and $q_{ij} = q_{ji}$ $\forall i, j$. Therefore, we define $p_{ij} = \frac{p_{i|j} + p_{j|i}}{2n}$.

```
symmetric_probs <- function(P) {
  P = (P + t(P)) / (2*nrow(P))
  return(P)
}</pre>
```

In order to initialize the lower dimension probability matrix, we are going to use the method mvtnorm::rmvnorm as it is described in the paper: $\mathcal{Y}^0 = \{y_1, ..., y_n\} \sim \mathcal{N}(0, 10^{-4}\mathbf{I}_n)$ which is assigned to \mathcal{Y}^1 and \mathcal{Y}^2 (the first two initial states).

Gradient Descent

$$C = KL(\mathbf{P}||\mathbf{Q})$$

$$= \sum_{i} \sum_{j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

$$= \sum_{i} \sum_{j} p_{ij} (\log p_{ij} - \log q_{ij})$$

$$= \sum_{i} \sum_{j} p_{ij} \log p_{ij} - p_{ij} \log q_{ij}$$

$$(2)$$

We define these two auxiliary variables $d_{ij} = \|\mathbf{y}_i - \mathbf{y}_j\|$ and $Z = \sum_{k \neq l} (1 + d_{kl}^2)^{-1}$

$$\frac{\partial C}{\partial \mathbf{y}_{i}} = \sum_{j \neq i} \left[\frac{\partial C}{\partial d_{ij}} \frac{\partial d_{ij}}{\partial \mathbf{y}_{i}} + \frac{\partial C}{\partial d_{ji}} \frac{\partial d_{ji}}{\partial \mathbf{y}_{i}} \right]
= \sum_{j \neq i} \left[\frac{\partial d_{ij}}{\partial \mathbf{y}_{i}} \left(\frac{\partial C}{\partial d_{ij}} + \frac{\partial C}{\partial d_{ji}} \right) \right]$$
(3)

Recall that $\frac{\partial}{\partial x}\sqrt{g(x)} = \frac{1}{2\sqrt{g(x)}}g'(x)$, $\frac{\partial}{\partial \mathbf{y}}\|\mathbf{y}\|^2 = 2\mathbf{y}$ and $d_{ij} = d_{ji}$

$$\frac{\partial d_{ij}}{\partial \mathbf{y}_{i}} = \frac{\partial}{\partial y_{i}} \|\mathbf{y}_{i} - \mathbf{y}_{j}\|
= \frac{\partial}{\partial \mathbf{y}_{i}} (\|\mathbf{y}_{i}\|^{2} + \|\mathbf{y}_{j}\|^{2} - 2\mathbf{y}_{i}'\mathbf{y}_{j})^{\frac{1}{2}}
= \frac{1}{2} \frac{1}{d_{ij}} \frac{\partial}{\partial \mathbf{y}_{i}} (\|\mathbf{y}_{i}\|^{2} + \|\mathbf{y}_{j}\|^{2} - 2\mathbf{y}_{i}'\mathbf{y}_{j})
= \frac{1}{2} \frac{1}{d_{ij}} (2\mathbf{y}_{i} - 2\mathbf{y}_{j})
= \frac{(\mathbf{y}_{i} - \mathbf{y}_{j})}{d_{ij}}
= \frac{\partial d_{ji}}{\partial \mathbf{y}_{i}}$$
(4)

```
dij.1 <- function(i, j) {</pre>
  dij.2 <- function(i, j) {</pre>
 norm(i-j, type="2")
}
y <- data.matrix(iris)[, -5]
# For rows 2 and 3
result1 <- as.numeric(round(jacobian(func=dij.2, x=y[2,], j=y[3,]), digits=7))
result2 <- as.numeric((y[2,]-y[3,])/norm(y[2,]-y[3,], type="2"))
all.equal(result2, result1) # checked
## [1] "Mean relative difference: 6e-08"
# For row 3 and 2
result3 <- as.numeric(round(jacobian(func=dij.2, x=y[3,], i=y[2,]), digits=7))
result4 <- as.numeric((y[3,]-y[2,])/norm(y[2,]-y[3,], type="2"))
all.equal(result4, result3) # checked
## [1] "Mean relative difference: 6e-08"
# Checked that both d(d_ij)/dy_i = d(d_ji)/dy_i
```

Recall that $d_{ij} = \|\mathbf{y}_i - \mathbf{y}_j\|$ and $Z = \sum_{k \neq l} \left(1 + d_{kl}^2\right)^{-1}$:

$$\frac{\partial C}{\partial d_{ij}} = \frac{\partial}{\partial d_{ij}} \sum_{k \neq l} p_{kl} \log p_{kl} - p_{kl} \log q_{kl}
= \frac{\partial}{\partial d_{ij}} \sum_{k \neq l} -p_{kl} \log q_{kl} = -\sum_{k \neq l} p_{kl} \frac{\partial (\log q_{kl})}{\partial d_{ij}}
= -\sum_{k \neq l} p_{kl} \frac{\partial (\log q_{kl}Z - \log Z)}{\partial d_{ij}}
= -\sum_{k \neq l} p_{kl} \left[\frac{\partial (\log q_{kl}Z - \log Z)}{\partial d_{ij}} \right]
= -\sum_{k \neq l} p_{kl} \left[\frac{\partial (\log q_{kl}Z)}{\partial d_{ij}} - \frac{\partial \log Z}{\partial d_{ij}} \right]
= -\sum_{k \neq l} p_{kl} \left[\frac{1}{q_{kl}Z} \frac{\partial (q_{kl}Z)}{\partial d_{ij}} - \frac{1}{Z} \frac{\partial Z}{\partial d_{ij}} \right]
= -\sum_{k \neq l} p_{kl} \left[\frac{1}{q_{kl}Z} \frac{\partial (\sum_{k \neq l} (1 + d_{ij}^2)^{-1}}{\partial d_{ij}} \sum_{k \neq l} (1 + d_{kl}^2)^{-1}) - \frac{1}{Z} \frac{\partial (\sum_{k \neq l} (1 + d_{kl}^2)^{-1})}{\partial d_{ij}} \right]
= 2 \frac{p_{ij}}{q_{ij}Z} (1 + d_{ij}^2)^{-2} d_{ij} - 2 \sum_{k \neq l} p_{kl} \frac{(1 + d_{ij}^2)^{-1}}{Z} (1 + d_{ij}^2)^{-1} d_{ij}
= 2 \frac{p_{ij}}{(1 + d_{ij}^2)^{-1}} \sum_{k \neq l} (1 + d_{ij}^2)^{-1} d_{ij} - 2 \sum_{k \neq l} p_{kl} q_{ij} (1 + d_{ij}^2)^{-1} d_{ij}
= 2 p_{ij} (1 + d_{ij}^2)^{-1} d_{ij} - 2 q_{ij} (1 + d_{ij}^2)^{-1} d_{ij}
= 2 p_{ij} (1 + d_{ij}^2)^{-1} d_{ij} - 2 q_{ij} (1 + d_{ij}^2)^{-1} d_{ij}$$

$$\frac{\partial C}{\partial y_{i}} = \sum_{j \neq i} \left[\frac{\partial C}{\partial d_{ij}} \frac{\partial d_{ij}}{\partial y_{i}} + \frac{\partial C}{\partial d_{ji}} \frac{\partial d_{ji}}{\partial y_{i}} \right]$$

$$= \sum_{j \neq i} \left[\frac{\partial d_{ij}}{\partial y_{i}} \left(\frac{\partial C}{\partial d_{ij}} + \frac{\partial C}{\partial d_{ij}} \right) \right]$$

$$= 2 \sum_{j \neq i} \left[\frac{\partial C}{\partial d_{ij}} \right] \frac{\mathbf{y}_{i} - \mathbf{y}_{j}}{d_{ij}}$$

$$= 2 \sum_{j \neq i} \left[2(p_{ij} - q_{ij})(1 + d_{ij}^{2})^{-1} d_{ij}^{2} \right] \frac{\mathbf{y}_{i} - \mathbf{y}_{j}}{d_{ij}}$$

$$= 4 \sum_{j \neq i} (p_{ij} - q_{ij})(1 + d_{ij}^{2})^{-1} d_{ij} \frac{\mathbf{y}_{i} - \mathbf{y}_{j}}{d_{ij}}$$

$$= 4 \sum_{j \neq i} (p_{ij} - q_{ij})(1 + ||\mathbf{y}_{i} - \mathbf{y}_{j}||^{2})^{-1} (\mathbf{y}_{i} - \mathbf{y}_{j})$$

```
C <- function(P, Q) {
  n <- nrow(P)
  for(i in n)
    sum(P[i,]*log(P[i,]) - P[i,j]*log(Q[i,]))
}</pre>
```

```
data_p <- high_dimension_probs(y)</pre>
## [1] "Values of sigma for each x i"
     [1] 0.3780304 0.4607298 0.4243159 0.4965345 0.3837637 0.5514578 0.3955292
     [8] 0.3384491 0.6520605 0.4287873 0.4671533 0.3411599 0.4853362 0.7014462
##
  [15] 0.7460165 0.8690508 0.5362177 0.3746600 0.6220632 0.4371836 0.4280960
   [22] 0.4108477 0.4688299 0.3869914 0.4063922 0.4527804 0.3432931 0.3850883
## [29] 0.3839017 0.4266667 0.4410019 0.4309886 0.5706898 0.7146601 0.4187302
## [36] 0.3875444 0.4771803 0.3786585 0.6309631 0.3537640 0.3713282 0.8256690
## [43] 0.5703837 0.4005009 0.4857764 0.4675271 0.4385774 0.4625673 0.4402500
   [50] 0.3446443 0.6609539 0.5021307 0.5713830 0.6423974 0.4634519 0.4667245
  [57] 0.4670538 0.9860313 0.5397962 0.6641671 1.0074759 0.4695233 0.6355430
##
## [64] 0.4174633 0.6809281 0.6063287 0.4930376 0.5623780 0.5173544 0.6568509
##
   [71] 0.4869667 0.4982393 0.4622053 0.4351024 0.5048377 0.5626931 0.5544243
## [78] 0.4419261 0.4061221 0.7594333 0.7126635 0.7588392 0.5897177 0.4617780
## [85] 0.5417507 0.5119427 0.5470785 0.5082287 0.5704743 0.6183647 0.5355320
## [92] 0.4267331 0.5663052 0.9896792 0.5375116 0.5424118 0.5242820 0.4539464
   [99] 0.9371884 0.5391302 0.7578012 0.5424118 0.6702857 0.5104059 0.6022879
## [106] 1.1058341 0.6601491 0.8674030 0.5749399 0.8395022 0.4457090 0.4486949
## [113] 0.5449622 0.5906525 0.5925354 0.5288760 0.4853990 1.2308830 1.2627702
## [120] 0.5450709 0.6573271 0.5722217 1.1779986 0.4354850 0.6012704 0.7262302
## [127] 0.4237064 0.4372193 0.5288263 0.6736935 0.8338010 1.1817203 0.5397722
## [134] 0.4149681 0.5652881 0.9467595 0.6616600 0.4847720 0.4508636 0.5566428
## [141] 0.6378034 0.5868843 0.5424118 0.6810727 0.7089047 0.5480756 0.4772665
## [148] 0.4410648 0.5802677 0.4797609
## [1] "Mean value of sigma: 0.57"
data_d <- data.matrix(dist(y))</pre>
data_q <- data_p * 3
```

[1] 150