

HB0009 开发工具

用户手册

目 录

1.	概述	3
2.	电气性能	3
3.	开发工具构成	4
	3.1 开发工具硬件	4
	3.1.1 测试针	5
	3.1.2 测试仪器列表	5
4.	开发工具使用说明	6
	4.1 LDO(5V)测试方案	6
	4.2 LDO(3.3V)测试方案	10
	4.3 步进电机驱动器测试方案	11
	4.4 高压驱动器测试方案	12
	4.5 level shifter(3.3V to 5V)测试方案	15
	4.6 level shifter(5V to 3.3V)测试方案	16
5.	应用注意事项	17
	5.1 避免低压引脚与高压引脚接触	17
	5.2 双排针的内侧与外侧使用时功能不同	17
6.	安全注意事项	18
	6.1 产品安全	18
	6.2 人身安全	18
7	版木信自 & 联系方式	10

1. 概述

本系列芯片是集成电源管理与高压驱动的模拟前端芯片,本系列芯片与 MCU 相互配合用于控制和驱动高压外设。

本手册主要描述本系列芯片的测试硬件、测试方法步骤以及注意事项等,旨在帮助使用 HB0009 系列模拟前端芯片的开发人员快速便捷地进行开发工作。

2. 电气性能

芯片支持的工作温度为-40~85℃,工作电压为 10~14V。

HB0009 开发工具用户手册 Page 3 of 19

3. 开发工具构成

3.1 开发工具硬件

序号	功能	备注
1	电源 VIN	系统供电电源接口
2	地 GND	系统地接口
3	排针 1	HB0009 的 Pin 34~44 测试针
4	地 GND	系统地接口
5	排针 2	HB0009 的 Pin 1~11 测试针
6	地 GND	系统地接口
7	排针 3	HB0009 的 Pin 12~22 测试针
8	排针 4	HB0009 的 Pin 23~33 测试针
9	HB0009 芯片	

HB0009 开发工具用户手册 Page 4 of 19

3.1.1 测试针

开发板配置 4 组 2*11 测试针,连接至 HB0009 全部引脚,提供用户测试或扩展功能。

注意,为了提高测试精度,使用测试针的外侧针连接输入信号以及负载设备,使用测试针的内侧针接测试仪器。

3.1.2 测试仪器列表

序号	仪器名称	推荐型号
1	直流稳压电压源	SPS3610
2	高精度台式万用表	Agient34470A
3	电子负载仪	IT8510
4	示波器	MSOX3054T
5	电流探头	Keysight1147B
6	信号发生器	Agient33500B
7	电阻负载	

HB0009 开发工具用户手册 Page 5 of 19

4. 开发工具使用说明

HB0009 开发工具使用说明详细讲解了 HB0009 芯片的测试方法步骤, 其中每一项测试方案都根据《HB0009 数据手册》的要求设计实现。

4.1 LDO(5V)测试方案

测量名称	5V LDO 输出端电压(Output Voltage)
硬件测量平台	直流稳压电压源、高精度台式万用表、电子负载仪
工作温度	25°C
工作电压	12V
测量方法	1.工作环境: VIN 到 GND 接 1000uF 电容, VOUT50 接 100uF 电容到 GND, VOUT33 接 47uF 电容到 GND, 所有输入脚接 GND, 所有输出悬空 2.芯片供电: VIN=12V 3.VOUT50 接电子负载仪到 GND, 带载 10mA 4.测量 VOUT50 电压

图 4-1 LDO(5V)输出电压测试简图

测量名称	5V LDO 线性调整率(Line Regulation)
硬件测量平台	直流稳压电压源、高精度台式万用表、电子负载仪
工作温度	25°C
工作电压	10V, 12V, 14V
测量方法	1.工作环境: VIN 到 GND 接 1000uF 电容, VOUT50 接 100uF 电容到 GND, VOUT33 接 47uF 电容到 GND, 所有输入脚接 GND, 所有输出悬空 2.芯片供电: VIN 分别接 10V、12V、14V 3.VOUT50 接电子负载仪到 GND, 带载 10mA 4.测量 VOUT50 电压

图 4-2 LDO(5V)线性调整率测试简图

HB0009 开发工具用户手册 Page 6 of 19

测量名称	5V LDO 负载调整率(Load Regulation)
硬件测量平台	直流稳压电压源、高精度台式万用表、电子负载仪
工作温度	25°C
工作电压	12V
测量方法	1.工作环境: VIN 到 GND 接 1000uF 电容, VOUT50 接 100uF 电容到 GND, VOUT33 接 47uF 电容到 GND, 所有输入脚接 GND, 所有输出悬空 2.芯片供电: VIN=12V 3.VOUT50 接电子负载仪到 GND, 负载从 1mA 增加到 100mA 4.测量 VOUT50 电压

图 4-3 LDO(5V)负载调整率测试简图

测量名称	5V LDO 静态功耗(Quiescent Current)		
硬件测量平台	直流稳压电压源、高精度台式万用表		
工作温度	25°C		
工作电压	12V		
测量方法	1.工作环境: VIN 到 GND 接 1000uF 电容, VOUT50 接 100uF 电容到 GND, VOUT33 接 47uF 电容到 GND, 所有输入脚接 GND, 所有输出悬空 2.芯片供电: VIN=12V 3.电流表测量从电压源流入 VIN 的电流值		

图 4-4 LDO(5V)静态功耗测试简图

测量名称	5V LDO 静态功耗变化量(Quiescent Current Change)
硬件测量平台	直流稳压电压源、高精度台式万用表、电子负载仪
工作温度	25°C
工作电压	12V
测量方法	1.工作环境: VIN 到 GND 接 1000uF 电容, VOUT50 接 100uF 电容到 GND, VOUT33 接 47uF 电容到 GND, 所有输入脚接 GND, 所有输出悬空 2.操作 1: (1) VIN 分别接 10V、12V、14V (2) 电流表测量从电压源流入 VIN 的电流值 3.操作 2: (1) VIN=12V (2) VOUT50 分别带载 10mA、100mA (3) 电流表测量从电压源流入 VIN 的电流值

图 4-5 LDO(5V)静态功耗变化量测试简图

测量名称	5V LDO 输出电压温度偏移量(Output Voltage Drift)
硬件测量平台	直流稳压电压源、高精度台式万用表、电子负载仪
工作温度	-40°C, -20°C, 0°C, 25°C, 50°C, 85°C
工作电压	12V
测量方法	1.工作环境: VIN 到 GND 接 1000uF 电容, VOUT50 接 100uF 电容到 GND, VOUT33 接 47uF 电容到 GND, 所有输入脚接 GND, 所有输出悬空 2.芯片供电: VIN=12V 3.VOUT50 接电子负载仪到 GND, 带载 10mA 4.改变环境温度: -40℃, -20℃, 0℃, 25℃, 50℃, 85℃ 5.测量各温度点的 VOUT50 电压

测量名称	5V LDO 短路保护电流(short circuit current)
硬件测量平台	直流稳压电压源、高精度台式万用表、示波器、电流探头
工作温度	25°C
工作电压	12V
测量方法	1.工作环境: VIN 到 GND 接 1000uF 电容, VOUT50 接 100uF 电容到 GND, VOUT33悬空,所有输入脚接 GND,所有输出悬空2.芯片供电: VIN=12V3.利用电流探头测量 VIN 上电瞬间, VOUT50 流入到 100uF 电容的电流峰值

HB0009 开发工具用户手册 Page 8 of 19

图 4-6 LDO(5V)短路保护电流测试简图

4.2 LDO(3.3V)测试方案

注: LDO(3.3V)的相关测试方法参考 LDO(5V)的测试方法。

测量名称	3.3V LDO 输出电压(Output Voltage)
硬件测量平台	直流稳压电压源、高精度台式万用表、电子负载仪
工作温度	25°C
工作电压	12V
测量方法	1.工作环境: VIN 到 GND 接 1000uF 电容, VOUT50 接 100uF 电容到 GND, VOUT33 接 47uF 电容到 GND, 所有输入脚接 GND, 所有输出悬空 2.芯片供电: VIN=12V 3.VOUT33 接电子负载仪到 GND, 带载 10mA 4.测量 VOUT33 电压

测量名称	3.3V LDO 线性调整率(Line Regulation)
硬件测量平台	直流稳压电压源、高精度台式万用表、电子负载仪
工作温度	25°C
工作电压	10V-14V
测量方法	1.工作环境: VIN 到 GND 接 1000uF 电容, VOUT50 接 100uF 电容到 GND, VOUT33 接 47uF 电容到 GND, 所有输入脚接 GND, 所有输出悬空 2.芯片供电: VIN 分别接 10V,12V,14V 3.VOUT33 接电子负载仪到 GND, 带载 10mA 4.测量 VOUT33 电压

测量名称	3.3V LDO 负载调整率(Load Regulation)		
硬件测量平台	直流稳压电压源、高精度台式万用表、电子负载仪		
工作温度	25°C		
工作电压	12V		
测量方法	1.工作环境: VIN 到 GND 接 1000uF 电容, VOUT50 接 100uF 电容到 GND, VOUT33 接 47uF 电容到 GND, 所有输入脚接 GND, 所有输出悬空 2.芯片供电: VIN=12V 3.VOUT33 接电子负载仪到 GND, 负载从 1mA 增加到 100mA 4.测量 VOUT33 电压		

测量名称	3.3V LDO 静态功耗(Quiescent Current)		
硬件测量平台	直流稳压电压源、高精度台式万用表		
工作温度	25°C		
工作电压	12V		
测量方法	1.工作环境: VIN 到 GND 接 1000uF 电容, VOUT50 接 100uF 电容到 GND, VOUT33 接 47uF 电容到 GND, 所有输入脚接 GND, 所有输出悬空 2.芯片供电: VIN=12V 3.电流表测量从电压源流入 VIN 的电流值		

测量名称	3.3V LDO 短路保护电流(short circuit current)		
硬件测量平台	直流稳压电压源、示波器、电子负载仪、电流探头		
工作温度	25°C		
工作电压	12V		
测量方法	1.工作环境: VIN 到 GND 接 1000uF 电容, VOUT50 悬空, VOUT33 接 100uF 电容到 GND, 所有输入脚接 GND, 所有输出悬空 2.芯片供电: VIN=12V 3.利用电流探头测量 VIN 上电瞬间, VOUT33 流入到 47uF 电容的电流峰值		

HB0009 开发工具用户手册 Page 10 of 19

4.3 步进电机驱动器测试方案

测量名称	步进电机驱动器输出饱和压降(Output Saturation Voltage)		
硬件测量平台	直流稳压电压源、2台高精度台式万用表、电子负载仪		
工作温度	25°C		
工作电压	12V		
测量方法	1.工作环境: VIN 到 GND 接 1000uF 电容,VOUT50 接 100uF 电容到 GND,VOUT33 接 47uF 电容到 GND,除 HEN,HAIN,HBIN 以外的其他输入脚接 GND,输出悬空 2.VIN=12V,HEN 接 VOUT50 3.测量 H 桥上管输出饱和压降(Output Saturation Voltage):		

图 4-7 步进电机驱动器上管输出饱和压降测试简图

图 4-8 步进电机驱动器下管输出饱和压降测试简图

HB0009 开发工具用户手册 Page 11 of 19

4.4 高压驱动器测试方案

 硬件测量平台 直流稳压电压源、高精度台式万用表、电子负载仪、电阻负载 工作温度 25℃ 工作电压 12V 1.工作环境: VIN 到 GND 接 1000uF 电容, VOUT50 接 100uF 电容到 GND, VOUT50 接 100uF 电容列 GND, VOUT50 接 100uF PND, VOUT50 接 100uF PND, VOUT50 接 100uF PND, VOUT50 END, VOUT50 END,	测量名称
工作电压 12V	硬件测量平台
· · ·	工作温度
1 工作环接 VIN 到 CND 按 1000 E 由家 VOLITSO 按 100 E 由家到 CND VOLI	工作电压
1.上作环境: VIN 到 GND 接 1000IIF 电容, VOU130 接 100IIF 电容到 GND, VOU 接 47uF 电容到 GND, HEN,HAIN,HBIN,LSBI1,LSAI0 接 GND, 所有输出悬空 2.VIN=12V 3.输出饱和压降 Icc1 测量:	

图 4-9 高压驱动器下管输出饱和压降 Iccl 测试简图

图 4-10 高压驱动器下管输出饱和压降 Icc2 测试简图

HB0009 开发工具用户手册 Page 12 of 19

图 4-11 高压驱动器上管输出饱和压降 Icc3 测试简图

图 4-12 高压驱动器上管输出饱和压降 Icc4_1 测试简图

图 4-13 高压驱动器上管输出饱和压降 Icc4_2 测试简图

测量名称	高压驱动传输延时(turn-on delay time/turn-off delay time)			
硬件测量平台	直流稳压电压源、信号发生器、示波器、电阻负载			
工作温度	25°C			
工作电压	12V			
测量方法	1.工作环境: VIN 到 GND 接 1000uF 电容, VOUT50 接 100uF 电容到 GND, VOUT33 接 47uF 电容到 GND, HEN,HAIN,HBIN,LSBI1,LSAI0 接 GND, 所有输出悬空 2.VIN=12V 3.所有输出口接负载情况: a).LOUT1/LOUT2/LOUT3/LOUT4/LOUT5 接 120Ω 电阻到 VIN b).LOUT6/LOUT7/LOUT8/LOUT9 接 24Ω 电阻到 VIN c).HOUT1 接阻值最小 12Ω(功率最小 12W)电阻到 GND d).HOUT2/HOUT3 分别接阻值最小 8Ω(功率最小 18W)电阻到 GND 4.LIN1/LIN2/LIN3/LIN4/LIN5/LIN6/LIN7/LIN8/LIN9/HIN1/HIN2/HIN3 接信号发生器输入幅值 5V 频率 1KHz 方波信号 5.测量 turn-on delay time: a).示波器分别测量 LIN1/LIN2/LIN3/LIN4/LIN5 传输到 LOUT1/LOUT2/LOUT3/LOUT4/LOUT5 的延时时间 Tplh b).示波器分别测量 LIN6/LIN7/LIN8/LIN9 传输到 LOUT6/LOUT7/LOUT8/LOUT9 的延时时间 Tplh c).示波器测量 HIN1 传输到 HOUT1 的延时时间 Tplh d).示波器测量 LIN1/LIN2/LIN3/LIN4/LIN5 传输到 LOUT1/LOUT2/LOUT3/LOUT4/LOUT5 的延时时间 Tpll 6.测量 turn-off delay time: a).示波器分别测量 LIN1/LIN2/LIN3/LIN4/LIN5 传输到 LOUT1/LOUT2/LOUT3/LOUT4/LOUT5 的延时时间 Tphl b).示波器分别测量 LIN6/LIN7/LIN8/LIN9 传输到 LOUT6/LOUT7/LOUT8/LOUT9 的延时时间 Tphl c).示波器测量 HIN1 传输到 HOUT1 的延时时间 Tphl d).示波器测量 HIN1 传输到 HOUT1 的延时时间 Tphl d).示波器测量 HIN1 传输到 HOUT1 的延时时间 Tphl d).示波器测量 HIN1 传输到 HOUT1 的延时时间 Tphl			

图 4-14 高压驱动传输延时测试波形图

HB0009 开发工具用户手册 Page 14 of 19

4.5 level shifter (3.3V to 5V) 测试方案

测量名称	Level shifter 传输延时(turn-on delay time/turn-off delay time)		
硬件测量平台	直流稳压电压源、信号发生器、示波器		
工作温度	25°C		
工作电压	12V		
测量方法	1.工作环境: VIN 到 GND 接 1000uF 电容, VOUT50 接 100uF 电容到 GND, VOUT33 接 47uF 电容到 GND, 除 LSAI0 外所有输入接 GND, 所有输出悬空 2.VIN=12V 3.LSAI0 通过信号发生器输入幅值 3.3V 频率 1KHz 的方波信号 4.测量 turn-on delay time: 示波器测量 LSAI0 传输到 LSBO0 的延时时间 Tplh 5.测量 turn-off delay time: 示波器测量 LSAI0 传输到 LSBO0 的延时时间 Tphl		

图 4-15 3.3V to 5V level shifter 传输延时测试波形图

4.6 level shifter (5V to 3.3V) 测试方案

测量名称	Level shifter 传输延时(turn-on delay time/turn-off delay time)		
硬件测量平台	直流稳压电压源、信号发生器、示波器		
工作温度	25°C		
工作电压	12V		
测量方法	1.工作环境: VIN 到 GND 接 1000uF 电容, VOUT50 接 100uF 电容到 GND, VOUT3 接 47uF 电容到 GND, 除 LSBI1 外所有输入接 GND, 所有输出悬空 2.VIN=12V 3.LSBI1 通过信号发生器输入幅值 5V 频率 1KHz 的方波信号 4.测量 turn-on delay time: 示波器测量 LSBI1 传输到 LSAO1 的延时时间 Tplh 5.测量 turn-off delay time: 示波器测量 LSBI1 传输到 LSAO1 的延时时间 Tphl		

图 4-16 5V to 3.3V level shifter 传输延时测试波形图

5. 应用注意事项

5.1 避免低压引脚与高压引脚接触

HB0009 的 pin1~7、pin9~17、pin40~44 为低压引脚,它们的最高耐压为 5V; HB0009 的 pin18~37、pin39 为高压引脚,它们的最高耐压为 14V。由于在 HB0009 正常工作时,高压引脚需要输入或者输出最高 14V 的电压,一旦低压引脚碰触到高压引脚,低压引脚将会受到不可恢复的损伤。例如: pin17 与 pin18 的测试针脚,pin39 与 pin40 的测试针脚,它们的针脚间距较小,在测试操作时,容易出现低压引脚碰触高压引脚的情况。

5.2 双排针的内侧与外侧使用时功能不同

为了提高测试的精度,尽可能排除寄生对测试结果的影响,HB0009 开发板使用 Kelvin 测试方法。HB0009 的每个 pin 脚使用一组双排插针,在测量时,排针的内侧用于测量数据,排针的外侧用于连接负载。例如:在测量 HAOUT1 的上管 output saturation voltage 时,HAOUT1 的排针外侧接 200mA 负载到 GND,电压表两个表笔接 HAOUT1 和 PVIN3 的排针内侧,这样测试结果比较精确。

6. 安全注意事项

6.1 产品安全

使用 HB0009 时,芯片供电电源请勿超出产品额定输入电压范围。在使用跳线连接针脚时,应注意查看信号线,防止短路情况发生,否则可能对产品造成永久损坏。

6.2 人身安全

HB0009 属弱电类产品,使用最高电源电压 14V,故产品本身不会对人体造成电气伤害,但使用时仍应该确保产品供电电源、测量仪器等的安全性,防止可能带来的安全隐患。

7. 版本信息 & 联系方式

日期	版本	修改记录
2019/07/30	Rev1.0	初版发布。

如果您在购买与使用过程中有任何意见或建议,请随时与我们联系。

Email: mcu@hdsc.com.cn

网址: www.hdsc.com.cn

通信地址: 上海市张江高科园区碧波路 572 弄 39 号

邮编: 201203

HB0009 开发工具用户手册 Page 19 of 19