Лабораторная работа №5

Модеь "хищник-жертва"

Парфенова Елизавета Евгеньевна

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	9
5	Выводы	18
Список литературы		19

Список иллюстраций

4.1	График зависимости численности хищников от численности	
	жертв на Julia	13
4.2	График изменения численности хищников и численности жертв	
	при начальных условиях $x_0 = 13, y_0 = 19$ на Julia	13
4.3	Стационарное состояние на Julia	14
4.4	График зависимости численности хищников от численности	
	жертв на Openmodelica	15
4.5	График изменения численности хищников и численности жертв	
	при начальных условиях $x_0=13, y_0=19$ на OpenModelica $\ \ . \ \ . \ \ .$	16
4.6	Стационарное состояние на OpenModelica	17

Список таблиц

1 Цель работы

Изучить распространенную модель "хищник-жертва" (жесткую) и построить графики зависимости и изменения численностей хищников и жертв, а также найти стационарное состояние.

2 Задание

Мой вариант - вариант №8 Задача. Вариант №8 Для модели «хищник-жертва»:

$$\left\{ \begin{array}{l} \displaystyle \frac{dx}{dt} = -0.19x(t) + 0.048x(t)y(t) \\ \\ \displaystyle \frac{dy}{dt} = 0.39y(t) - 0.036x(t)y(t) \end{array} \right.$$

Постройте график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при следующих начальных условиях: $x_0=13, y_0=19.$ Найдите стационарное состояние системы.

3 Теоретическое введение

Модель Лотки — *Вольтерры* (модель Лотки — Вольтерра) — модель взаимодействия двух видов типа «хищник — жертва», названная в честь своих авторов, которые предложили модельные уравнения независимо друг от друга.

Такие уравнения можно использовать для моделирования систем «хищник — жертва», «паразит — хозяин», конкуренции и других видов взаимодействия между двумя видами.

В математической форме предложенная система имеет следующий вид:

$$\begin{cases} \frac{dx}{dt} = (\alpha - \beta y)x \\ \frac{dy}{dt} = (-\gamma - \delta x)y \end{cases}$$

где где x — количество жертв, y — количество хищников, t — время, $\alpha,\beta,\gamma,\delta$ — коэффициенты, отражающие взаимодействия между видами. [1]

Математическая модель наиболее простой, то есть двух видовой системы «хищник – жертва» основывается на следующих предположениях [2]:

- 1) численности популяций жертв N и хищников M зависят только от времени (модель не учитывающая пространственное распределение популяции на занимаемой территории);
- 2) в отсутствие взаимодействия численность видов изменяется по модели Мальтуса; при этом число жертв увеличивается, а число хищников падает, так как им в этом случае нечем питаться;

- 3) естественная смертность жертвы и естественная рождаемость хищника считаются несущественными;
- 4) эффект насыщения численности обеих популяций не учитывается;
- 5) скорость роста численности жертвы уменьшается пропорционально численности хищников;

Нахождение положения равновесия системой [1]

Для положения равновесия $\overline{x}>0,\overline{y}>0$ изменение численностей популяции равно нулю. Следовательно:

$$\alpha \overline{x} - \beta \overline{y} \overline{x} = 0 - \gamma \overline{y} - \delta x \overline{x} \overline{y} = 0$$

Отсюда следует, что $\overline{x}=rac{\gamma}{\delta},\overline{y}=rac{lpha}{eta}$

4 Выполнение лабораторной работы

Математическая модель

Простейшая модель взаимодействия двух видов типа «хищник — жертва» - модель Лотки-Вольтерры. В теоретическом введении уже описано на каких преположениях основывается данная двувидовая модель.

Сама модель в нашем случае выглядит так:

$$\begin{cases} \frac{dx}{dt} = ax(t) - bx(t)y(t) \\ \frac{dy}{dt} = -cy(t) + dx(t)y(t) \end{cases}$$

В этой модели x – число жертв, y - число хищников. Коэффициент a описывает скорость естественного прироста числа жертв в отсутствие хищников, - естественное вымирание хищников, лишенных пищи в виде жертв. Вероятность взаимодействия жертвы и хищника считается пропорциональной как количеству жертв, так и числу самих хищников (xy). Каждый акт взаимодействия уменьшает популяцию жертв, но способствует увеличению популяции хищников (члены -bxy и dxy в правой части уравнения).

Математический анализ этой модели, которая является жесткой, показывает, что имеется стационарное состояние, всякое же другое начальное состояние В приводит к периодическому колебанию численности как жертв, так и хищников, так что по прошествии некоторого времени система возвращается в состояние В.

Стационарное состояние системы, описанной выше, (положение равновесия,

не зависящее от времени решение) будет в точке: $x = \frac{a}{d}$, $y = \frac{a}{b}$.

Если начальные значения задать в стационарном состоянии $x(0)=x_0,y(0)=y_0$, то в любой момент времени численность популяций изменяться не будет. При малом отклонении от положения равновесия численности как хищника, так и жертвы с течением времени не возвращаются к равновесным значениям, а совершают периодические колебания вокруг стационарной точки. Амплитуда колебаний и их период определяется начальными значениями численностей x(0),y(0). Колебания совершаются в противофазе.

Построение математичсекой модели. Julia

Для построения графиков зависимости, изменения и нахождения стационарного состояния я напислаа следующий код:

```
using Plots
using DifferentialEquations

# Коэффициенты в системе дифф.уранвений
а = 0.19
b = 0.048
c = 0.39
d = 0.036

#Начальные условия
x0 = 13.0
y0 = 18.0
```

start = [x0, y0]

#Начальные условия для стационарного состояния

 $x0_1 = c / d$

 $y0_1 = a / b$

```
startt = [x0_1, y0_1]
#Временной промежуток
timee = [0.0, 60.0]
#Функция, содеражащая систему дифф.уравнений (мат.модель)
function predator_prey(du, u, p, t)
    du[1] = -a*u[1] + b*u[1]*u[2]
    du[2] = c*u[2] - d*u[1]*u[2]
end
#Постановка проблемы и решения для графиков зависимости и изменения
equat1 = ODEProblem(predator_prey, start, timee)
solv1 = solve(equat1, dtmax=0.01)
U1_1 = [u[1] \text{ for } u \text{ in solv1.u}]
U2_1 = \lceil u \lceil 2 \rceil for u in solv1.u
#Постановка проблемы и решения для стационарного состояния
equat2 = ODEProblem(predator_prey, startt, timee)
solv2 = solve(equat2, dtmax=0.01)
U1_2 = [u[1] \text{ for } u \text{ in solv2.u}]
U2_2 = \lceil u \lceil 2 \rceil for u in solv2.u
#Построение графика зависимости и его сохранение
plot1 = plot(dpi = 300, legend = false, bg =:white, title="График зависимости: хищник
plot!(plot1, U1_1, U2_1, color=:red)
```

```
#Построение графиков изменения и их сохранение
plot2 = plot(dpi = 300, legend= true, bg =:white, title="График изменения: хищники, и
plot!(plot2, solv1.t, U1_1, label="Численность жертв", color =:green)
plot!(plot2, solv1.t, U2_1, label="Численность хищников", color =:red)

savefig(plot2, "lab05_2.png")

#Построение графика стационарного сосотояния и его сохранение
plot3 = plot(dpi = 300, legend= true, bg =:white, title="График стационарного состоя
plot!(plot3, solv2.t, U1_2, label="Численность жертв", color =:green)
plot!(plot3, solv2.t, U2_2, label="Численность хищников", color =:red)

savefig(plot3, "lab05_3.png")
```

В результате работы кода генерируются изображения трех графиков:

1. График зависимости численности хищников от численности жертв (рис. 4.1).

Рис. 4.1: График зависимости численности хищников от численности жертв на Julia

2. График изменения численности хищников и численности жертв при начальных условиях $x_0=13, y_0=19$ (рис. 4.2).

Рис. 4.2: График изменения численности хищников и численности жертв при начальных условиях $x_0=13, y_0=19$ на Julia

3. График стационарного состояния (рис. 4.3).

График стационарного состояния

Рис. 4.3: Стационарное состояние на Julia

Построение математичсекой модели. OpenModelica

Для OpenModelica я написала две модели, разделив построение графиков изменения и зависимости и графика стационарного состояние.

Модель для построения графиков зависимости и изменения:

```
model predator_prey

parameter Real a = 0.19;
parameter Real b = 0.048;
parameter Real c = 0.39;
parameter Real d = 0.036;

parameter Real x0 = 13.0;
parameter Real y0 = 18.0;

Real x(start=x0);
Real y(start=y0);
```

equation

$$der(x) = -a*x + b*x*y;$$

 $der(y) = c*y - d*x*y;$

end predator_prey;

В результате моделирования получились такие графики:

1. График зависимости численности хищников от численности жертв (рис. 4.4).

Рис. 4.4: График зависимости численности хищников от численности жертв на Openmodelica

2. График изменения численности хищников и численности жертв при начальных условиях $x_0=13, y_0=19$ (рис. 4.5).

Рис. 4.5: График изменения численности хищников и численности жертв при начальных условиях $x_0=13, y_0=19$ на OpenModelica

Модель, написанная мною для построения графиков стационарного состояния, отличается только начальными условиями:

```
model predator_prey_ss

parameter Real a = 0.19;
parameter Real b = 0.048;
parameter Real c = 0.39;
parameter Real d = 0.036;

parameter Real x0 = c / d;
parameter Real y0 = a / b;

Real x(start=x0);
Real y(start=y0);

equation

der(x) = -a*x + b*x*y;
```

$$der(y) = c*y - d*x*y;$$

end predator_prey_ss;

В результате работы кода получилась такая модель:

График стационарного состояния (рис. 4.6).

Рис. 4.6: Стационарное состояние на OpenModelica

Анализ результатов

Графики, построенные на Julia и OpenModelica, совпали друг с другом, однако, можно отметить, что код, получившийся на OpenModelica, значительно меньше, чем на Julia.

5 Выводы

В результате выполнения лабораторной работы мы изучили жесткую модель "хищник-жертва" и построили график зависимости численности хищников от численности жертв, графики изменения численности жертв и численности хищников, а также нашли стационарное состояние, используя Julia и OpemModelica.

Список литературы

- 1. Модель Лотки Вольтерры [Электронный ресурс]. Wikimedia Foundation, Inc., 2024. URL: https://ru.wikipedia.org/wiki/Модель_Лотки_—_Вольтерры.
- 2. Г. Д.В. Математическое моделирование: учебное пособие. Петербургский государственный университет путей сообщения Императора Александра I, 2021. 86 с.