CIMSS TC Intensity Satellite Consensus (SATCON)

Derrick Herndon and Chris

Velden
University of Wisconsin Madison

Cooperative Institute for Meteorological Satellite Studies

Meteorological Satellite (METSAT) Conference Ford Island Conference Center Pearl Harbor, HI 27-28 April 2009

Motivation

- Importance of getting current TC intensity right
 - Intensification trends
 - Predictor for statistical forecast models
 - Climatology (Basin Best Tracks)
 - Initial conditions for numerical models
- Estimates of TC intensity can vary by more than 40 knots
- Several objective TC intensity methods exist
- Goal is to assist forecasters in assessing current intensity by combining the best aspects of individual objective estimates into a single estimate

Members

ADT

Uses IR imagery to assess eye temperature, curvature and cloud region temperature.

Members: ADT

Strengths

Time-averaging results in consistency
Temporal frequency - every 1/2 hour
Method based on the reliable Dvorak Technique
Global coverage with few gaps (eclipses)
Familiarity

Weaknesses

Sensitive to scene type identification IR signature not strongly related to intensity Time-averaging can miss rapid intensity changes

Members: CIMSS

AMSU

Microwave sounder which includes channels for measuring brightness temperatures (Tb) in the 550-150 mb layer.

AMSU-A (temperature) and AMSU-B (moisture) 1998-present Resolution ~ 50 km at nadir to 100 km at the limb

Multiple regression scheme using Tb anomaly magnitude from 3 AMSU-A channels (6-8) and 1 AMSU-B channel (16)

Corrections applied to account for sub-sampling, hydrometeor scattering and scan geometry

Members: CIMSS

AMSU Tb Anomaly vertical cross section for Katrina 2005

Members: CIMSS AMSU Strengths

Tb Anomaly magnitude directly related to intensity
No dependence on previous estimate
TC-relative MSW training allows for motion component

Weaknesses

Resolution requires sub-sampling corrections Dependence on ancillary data (RMW, P_env) Polar orbiter pass coverage

Members: CIRA AMSU

AMSU-A Tb are used to produce a statistical temperature retrieval at 23 pressure levels. Estimate of CLW is used to correct for attenuation due to hydrometers

Members: CIRA AMSU

Strengths

Temperature anomaly directly related to TC intensity

CLW useful in accounting for attenuation Provides objective estimate of critical wind radii Higher latitudes (Best Track training)

Weaknesses

CLW may not correct for all of the attenuation Reliance on model data for boundary conditions No sub-sampling correction for resolution

CIMSS SATCON

We can take the knowledge of these strengths and weaknesses and assign weights to each method based on situational performance

Then combine the estimates into a single SATellite CONsensus (SATCON) estimate

- ADT performs best in clear eye scenes
- CIMSS AMSU performs best for weaker storms and when eye is large for stronger storms
- CIRA AMSU performs best when eye is large and position of AMSU-A matches TC

Next Step: Information Sharing

nt relationships might exist between the parameter member algorithms?

these parameters be shared across the algorithms rove the individual members?

r all corrections are made re-define the weights produce a weighted consensus of the corrected nbers

Information Sharing: ADT to AMSU

Get Estimate of Eye Size

Compare to AMSU-A FOV resolution

Adjust AMSU pressure if needed

IR can be used to estimate eye size

CIMSS AMSU uses eye size information to correct resolution subsampling

Use RMW to adjust MSW?

Information Sharing: CIMSS to CIRA

tion bias used to correct CIMSS AMSU can be used for A as well.

rong relationship exists between AMSU-B 89 Ghz signal wolved) within the AMSU-A FOV and CIRA estimate error f n MSLP (shown) and MSW

Information Sharing

currently does not use any estimate of environmental press messages used by CIMSS includes P env

rm Motion Component

th ADT and CIRA AMSU developed using Best Track MSW of component of the MSW imparted by storm motion is intrins lata set.

rm motions which deviate from the Best Track data averag at 11 knots) are not accounted for by these members.

oly 50% of anomalous motion component (similar to Swerdt e ADT and CIRA. Especially important for recurving storms ng > 30 knots

SATCON: Weighting

Weights are based on RMSE error for each member

- Separate weights for MSW and MSLP
- Weights are stratified by scene (ADT), scan geometry or level of estimated sub-sampling (AMSIM) ember MSW Performance:

RMSE 14

RMSE 12

RMSE 18

SATCON: Weighting

Member MSW Performance: CIMSS

SATCON: Weighting

Member MSW Performance: CIRA

Weaker system, AMSU FOstrong system, AMSU FO

RMSE 12 knots

RMSE 15 knots

RMSE 18 knots

Examples

ADT determines scene is an eye scene

CIMSS AMSU near Nadir. Eye is large compared to AMSU resolution

CIRA is sub-sampled

ADT = 28 % CIMSS AMSU =47 % CIRA AMSU = 25 %

Examples

ADT determines scene is a CDO scene

CIMSS AMSU position near limb. Eye is small

CIRA AMSU position located near true TC center

ADT = 22 % CIMSS AMSU = 34 % CIRA AMSU = 44 %

Examples

ADT determines scene is a SHEAR scene

CIMSS AMSU indicates no sub-sampling present

CIRA AMSU: no subsampling due to position offset

ADT = 18 % CIMSS AMSU =41 % CIRA AMSU = 41 %

Examples: Katrina 2005

1999-2006 Stats (MSW)

	CIMSS AMSU	CIMSS ADT	CIRA AMSU	SATCO N
BIAS	-3.9	- 4.9	-7.3	-2.0
AVG ERROR	8.9	12.3	11.1	7.6
RMSE	11.2	16.1	15.0	9.6
N	258	258	258	258

pendent sample. Values in knots. Validation is best track msw coincident with craft recon +/- 3 hours from estimate time. A - bias = method was too weak.

1999-2006 Stats Compare

SATCON SIMPLE SATCON **SIMPLE MSW** MSLP **MSLP MSW** BIAS 0.0 -2.2-2.0 - 4.7 5.2 **AVG** 7.6 8.7 4.7 **ERROR RMSE** 7.8 11.16.7 9.6 258 258 258 258

ependent sample. MSW validation in knots. MSLP validation in millibars. bias = method was too weak. SIMPLE is simple average of the 3 members

1999-2006 Compare to

Dvorak SATCON SATCON Dvorak Dvorak **MSW MSLP MSLP MSW BIAS** 0.8 0.4 -2.6-1.6 **AVG** 4.9 7.5 7.3 7.9 **ERROR RMSE** 7.0 10.1 10.3 9.3

ISW validation in knots vs. Best Track. MSLP validation in millibars vs. recon.
eg. bias = method was too weak. Dvorak is average of TAFB and SAB estimates

270

270

N

270

270

2007-2008 Stats (MSW)

	CIMSS AMSU	CIMSS ADT	CIRA AMSU	SATCO N
BIAS	- 2.6	- 4.4	-10.3	-3.3
AVG ERROR	9.2	9.9	15.0	8.2
RMSE	12.0	12.7	19.1	10.1
N	144	144	144	144

ependent sample. Values in knots. Validation is best track msw coincident with craft recon +/- 3 hours from estimate time. - bias = method was too weak.

2007-2008 Compare to Dvorak

	SATCON	Dvorak	SATCON	Dvorak
	MSLP	MSLP	MSW	MSW
BIAS	-0.3	-1.8	-3.3	- 3.1
AVG ERROR	4.8	6.2	8.2	7.3
RMSE	6.3	8.4	10.1	9.4
N	144	144	144	144

dependent validation. MSW validation in knots. MSLP validation in millibars. ias = method was too weak. Dvorak is average of SAB and TAFB

Future Work

- Add error bars for estimate confidence
- Continue cross-platform information sharing
- Add additional TC intensity methods (SSMI / TRMM ?)
- ADT-MW
- Interactive Web Interface
- JTWC will evaluate during 2009 season

References

- K. and C. Velden 2003: Satellite-Based Tropical Cyclone Intensity Estimation Using the LM Series Advanced Microwave Sounding Unit (AMSU). *Monthly Weather Review* 131, Issue 4 (April 2003) pp. 687-697
- J. and M. Demaria, 2004: Evaluation of Advanced Microwave Sounding Unit Tropical-Cyc and Size Estimation Algorithms. *Journal of Applied Meteorology* 13, Issue 2 (February 2004) pp. 282-296
- D. nd C. Velden, 2004: Upgrades to the UW-CIMSS AMSU-based TC intensity algorithm. s, 26th Conference on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. S
- 2007: Estimating Hurricane Wind Structure in the Absence of Aircraft Reconnaissance and Forecasting Volume 22, Issue 1 (February 2007) pp. 89–101
- T. 2007: The Advanced Dvorak Technique: Continued Development of an Objective Schere Tropical Cyclone Intensity Using Geostationary Infrared Satellite Imagery. *Wea. and For* 22, Issue 2 (April 2007) pp. 287-298
- t. 2006: The Dvorak Tropical Cyclone Intensity Estimation Technique: A Satellite-Based I Endured for over 30 Years. Bulletin of the American Meteorological Society Volume 87, ber 2006) pp. 1195-1210

SATCON HOMEPAGE

CURRENT ESTIMATE

Date (yyyymmddhh): 2007090413 SATCON (3mem): MSLP = 937 hPa MSW = 130 kt

ADT: 932 hPa 132 kt Scene: EYE

CIMSS AMSU: 941 hPa 124 kt Bias Corr: -12 (IR)

CIRA AMSU: 965 hPa 89 kt clw: 1.28

Date		CON	CIMS	S_AMS		DT MSLP	CIRA	AMSU	
090410	130	937	124	941	132	932	89	965	0
090321	121	945	125	941	115	951	105	953	- 11
090310	128	939	119	946	132	932	92	966	- 11
090306	126	942	116	949	132	932	85	971	- 11
090222	119	947	107	956	127	938	85	971	LI.
090218	118	949	116	949	117	949	89	969	
090208	70	987	70	990	65	990	66	985	
090120	60	996	67	993	53	999	32	1006	Ā
090109	51	1000	50	1002	39	1005	56	994	*

http://cimss.ssec.wisc.edu/tropic2/real-time/satcon

MSLP Error Distribution for SATCON and Me

MSU Sub-sampling Corrections

Correcting for position

Correcting for resolution

ortion of TC eyewall is within the MSU-A FOV indicating the AMSU-A xel location is offset from true TC enter. Find AMSU-B center-weighted onvolved) Tb. Used as regression erm.

Get Estimate of Eye Size

Compare to AMSU-A FOV resolution

Adjust AMSU pressure if needed

Members: CIRA AMSU

CIRA AMSU TC intensity predictors

MSW

Tangential wind at height of 5 km
Maximum temperature anomaly
Average CLW within 100 km radius
Percent of CLW > 0.5 mm within 300 km
RMW at height of 3 km
AMSU-A FOV resolution

MSLP

Pressure anomaly estimated from 600 km radius

1999-2006 Stats

(Pressure)

	CIMSS AMSU	CIMSS ADT	CIRA AMSU	SATCO N
BIAS	-0.3	-3.9	-2.9	0.0
AVG ERROR	5.7	9.5	6.7	4.7
RMSE	7.5	13.3	10.3	6.7
N	258	258	258	258

pendent sample. Values in millibars. Validation is aircraft recon (buoys) pressu - 3 hours from estimate time - bias = method was too weak.