

Course Code: CBS3007 Course: Data Mining and Analytics

Alan Thomas 21BBS0115

Aim: To analyze and forecast crime incidents using Autoregressive (AR) and Autoregressive Integrated Moving Average (ARIMA) time series techniques. The goal is to prepare a detailed real-time dataset for a specific location, evaluate temporal crime patterns, and predict future incidents based on historical data.

Packages Used: pandas, numpy, matplotlib.pyplot, statsmodels

CODE 👍

```
import pandas as pd
import numpy as np
from statsmodels.tsa.arima.model import ARIMA
import matplotlib.pyplot as plt
from pandas.plotting import autocorrelation_plot
```

```
np.random.seed(42)
date_range = pd.date_range(start="2023-01-01", periods=100)
location_list = [
    "Downtown", "Suburb", "Industrial Area", "Residential Zone", "City
Center",
    "Eastside", "Westside", "Uptown", "Rural Outskirts", "Metro Hub"
][:5]
```

```
crime categories = ["Assault", "Burglary", "Theft", "Vandalism", "Drug
Offense"]
synthetic records = []
for day in date range:
   for area in location list:
       incidents = np.random.poisson(lam=5)
       for in range(incidents):
           synthetic records.append({
               "Date": day,
               "Location": area,
               "Crime Type": np.random.choice(crime categories),
               "Severity": np.random.choice(["Low", "Medium", "High"],
p=[0.5, 0.3, 0.2]
crime df = pd.DataFrame(synthetic records)
aggregated data = crime df.groupby(['Date',
'Location']).size().reset index(name='Incident Count')
crime df.to csv("synthetic crime dataset.csv", index=False)
print("Synthetic dataset saved as 'synthetic crime dataset.csv'.")
downtown crime = aggregated data[aggregated data['Location'] ==
downtown crime.set index('Date', inplace=True)
downtown series =
downtown crime['Incident Count'].reindex(pd.date range(start=downtown crim
e.index.min(),
end=downtown crime.index.max()),
                                                           fill value=0)
plt.figure(figsize=(10, 6))
autocorrelation plot(downtown series)
plt.title("Autocorrelation for Downtown Crime Incidents\nALAN 21BBS0115")
plt.show()
```

```
model = ARIMA(downtown_series, order=(5, 1, 0))
model_fit = model.fit()

print("ARIMA Model Summary:\n")
print(model_fit.summary())

future_forecast = model_fit.forecast(steps=10)
print("\nForecast for the next 10 days:\n", future_forecast)

plt.figure(figsize=(10, 6))
plt.plot(downtown_series, label="Observed Incidents")
plt.plot(future_forecast, label="Forecasted Incidents", linestyle="--")
plt.title("Crime Incidents in Downtown: Observed vs Forecast\n Alan Thomas
21BBS0115")
plt.legend()
plt.show()

downtown_series.to_csv("downtown_crime_series.csv", index=True)
```


ARIMA model Implementation

ARIMA Model	l Summary:						
		SARI	MAX Resul	ts			
Dep. Variat Model: Date: Time: Sample:	Sı	Incident_Cou ARIMA(5, 1, un, 17 Nov 20 17:52: 01-01-20 - 04-10-20 o	0) Log 24 AIC 12 BIC 23 HQIC	 Observations: Likelihood			
========	coef	std err	======= Z	P> z	[0.025	0.975]	
ar.L1 ar.L2 ar.L3 ar.L4 ar.L5 sigma2	-0.8643 -0.8301 -0.5598 -0.3952 -0.2311 4.5484	0.101 0.131 0.152 0.115 0.095 0.634	-8.568 -6.325 -3.692 -3.447 -2.423 7.178	0.000	-1.062 -1.087 -0.857 -0.620 -0.418 3.306	-0.667 -0.573 -0.263 -0.170 -0.044 5.790	
Ljung-Box (L1) (Q): Prob(Q): Heteroskedasticity (H): Prob(H) (two-sided): ====================================			0.52 0.47 0.76 0.44	Jarque-Bera Prob(JB): Skew: Kurtosis:	(JB):		0.30 0.86 0.09 3.20

Q2

Aim: To visualize and analyze various types of moving averages (including Simple, Exponential, Weighted, and Hull Moving Averages), along with Autoregressive Moving Average (ARMA) and Moving Average Crossover techniques, using a crime dataset to identify temporal trends and patterns.

Packages Used: pandas, numpy, matplotlib.pyplot, statsmodels

CODE 👍

#used the same created DataSet

```
data_file = "synthetic_crime_dataset.csv"
crime_df = pd.read_csv(data_file)
```

```
crime_df['Date'] = pd.to_datetime(crime_df['Date'])
```

```
daily crime =
crime df.groupby('Date').size().reset index(name='Incident Totals')
daily crime.set index('Date', inplace=True)
def compute weighted ma(series, window size):
   weights = np.arange(1, window size + 1)
   return series.rolling(window size).apply(lambda values: np.dot(values,
weights) / weights.sum(), raw=True)
def compute hull ma(series, window size):
  half window = window size // 2
  sqrt window = int(np.sqrt(window size))
  wma half = compute weighted ma(series, half window)
   wma full = compute weighted ma(series, window size)
   return compute weighted ma(2 * wma half - wma full, sqrt window)
daily crime['SMA 30'] =
daily crime['Incident Totals'].rolling(window=30).mean()
daily crime['EMA 30'] = daily crime['Incident Totals'].ewm(span=30).mean()
daily crime['WMA 30'] =
compute weighted ma(daily crime['Incident Totals'], 30)
daily crime['HMA 30'] = compute hull ma(daily crime['Incident Totals'],
30)
daily crime['Short MA'] =
daily crime['Incident_Totals'].rolling(window=10).mean()
daily crime['Long MA'] =
daily crime['Incident Totals'].rolling(window=30).mean()
plt.figure(figsize=(14, 8))
plt.plot(daily crime['Incident Totals'], label="Incident Totals",
alpha=0.6)
plt.plot(daily crime['SMA 30'], label="Simple Moving Average (30)",
linestyle='--')
plt.plot(daily crime['EMA 30'], label="Exponential Moving Average (30)",
linestyle='--')
plt.plot(daily crime['WMA 30'], label="Weighted Moving Average (30)",
linestyle='--')
plt.plot(daily crime['HMA 30'], label="Hull Moving Average (30)",
linestyle='--')
```

```
plt.title("Crime Incidents and Moving Averages\n(Alan 21BBS01156)")
plt.xlabel("Date")
plt.ylabel("Incident Totals")
plt.legend()
plt.show()
plt.figure(figsize=(14, 8))
plt.plot(daily_crime['Incident_Totals'], label="Incident Totals",
alpha=0.6)
plt.plot(daily crime['Short MA'], label="Short-Term MA (10)",
linestyle='--')
plt.plot(daily crime['Long MA'], label="Long-Term MA (30)",
linestyle='--')
plt.title("Moving Average Crossover \n(ALan thomas 21BBS0115)")
plt.xlabel("Date")
plt.ylabel("Incident Totals")
plt.legend()
plt.show()
output file = "crime analysis with moving averages.csv"
daily crime.to csv(output file, index=True)
```

Crossovers

Github repo:

https://github.com/ALANT535/DATA-MINING-RESOURCES/tree/main/THEORY%20DA