NASA Contractor Report 195408

Fiber Optic Control System Integration for Advanced Aircraft

Electro-Optic and Sensor Fabrication, Integration, and Environmental Testing for Flight Control Systems - Laboratory Test Results

Bradley L. Kessler, McDonnell Douglas Aerospace St. Louis, Missouri

November 1994

Prepared for Lewis Research Center **Under Contract NAS3-25796**

(NASA-CR-195408) FIBER OPTIC CONTROL SYSTEM INTEGRATION FOR ADVANCED AIRCRAFT. ELECTRO-OPTIC AND SENSOR FABRICATION, INTEGRATION, AND ENVIRONMENTAL TESTING FOR FLIGHT CONTROL SYSTEMS: LABORATORY TEST RESULTS Final Report (McDonnell-Douglas Aerospace) 388 p

N95-18938

Unclas

G3/35 0037007

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington DC 2505

			Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blan		3. REPORT TYPE AN	
	November 1994	<u></u>	inal Contractor Report
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Fiber Optic Control Syste Test Results	em Integration for Advanced Airo	craft—Laboratory	- WU-505-62-50
6. AUTHOR(S)			C-NAS3-25796
Bradley L. Kessler			
7. PERFORMING ORGANIZATION	NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
36.70. 11.70. 1			REPORT NUMBER
McDonnell Douglas			
P.O. Box 516	· \~~~		E-9265
Saint Louis, MO 63166-0	1516		
SPONSORING/MONITORING AG National Aeronautics and	SENCY NAME(S) AND ADDRESS(ES)	·	10. SPONSORING/MONITORING AGENCY REPORT NUMBER
Lewis Research Center	Space Administration		NASA CR–195408
Cleveland, Ohio 44135–3	3191		11A3A CA-193406
	,		
11. SUPPLEMENTARY NOTES			
Project Manager Robert I	Raumhick Instrumentation and	1 Control Technology Di	vision, NASA Lewis Research Center,
organization code 2540, (2		Condoi recimology Di	vision, NASA Lewis Research Center,
12a. DISTRIBUTION/AVAILABILITY	STATEMENT		12b. DISTRIBUTION CODE
YY 1 '6 1 YY 1'			
Unclassified - Unlimited			
Subject Category 35			
This publication is available from	om the NASA Center for Aerospace Ir	formation (301) 621-0300	
13. ABSTRACT (Maximum 200 wor		101111111111111111111111111111111111111	
•	•	of the entired concern on	d multiplexing architecture developed
for flight testing in the NA	ASA F-18 systems research aircra	of the optical sensors and	a multiplexing architecture developed
for fight asking in the 142	ioa 1-16 systems research anera	ILE.	
14. SUBJECT TERMS			15. NUMBER OF PAGES
Fiber optics: Optical senso	ors; Optical multiplexing; Fly-by	-light: Flight control	388
, 50.00	, - pp		A17
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICA	~ ``````
OF REPORT	OF THIS PAGE	OF ABSTRACT	The same of Aboundary
Unclassified	Unclassified	Unclassified	

	en e		
,			
;			
			·
	4.8 of the selection of the control		
#####################################	BR - 프로젝트 (1985년 12일 - 1985년 - 1985년 1일 - 1985년 - 1985	보다는 그리고 있다는 사람들은 얼마를 하셨다면 했다.	나는 사회가 있다고 하셨습니다. 그 살아 다른

FOCSI Final Report Table of Contents

1.	Abstract	1
2.	Program Overview	1
3.	Summary	1
4.	Optic Test Results	1
	4.1. EOA CCD Array and TRD Sources and Receivers	1
	4.1.1. EOA CCD Array Source	1
	4.1.1.1. Specification Failures	1
	4.1.1.2. Specification Successes	2
	4.1.1.3. Performance Notes	2
	4.1.2. EOA TRD Source	3
	4.1.3. EOA CCD Array Receiver	3
	4.1.4. EOA TRD Receiver	3
	4.2. Sensors	5
	4.2.1. Digital Sensors	5
	4.2.2. Analog Sensors	7
	4.2.3. TRD Sensors	8
5.	Integration Test Results	9
	5.1. EOA	9
	5.2. Digital Sensors	10
	5.2.1. Stabilizer Sensor	10
	5.2.2. Rudder Sensor	10
	5.2.3. Rudder Pedal Sensor	10
	5.2.4. Power Lever Control Sensor	11
	5.2.5. Leading Edge Flap Sensor	11
	5.3. Analog Sensors	13
	5.3.1. Pitch Stick Sensor	13
	5.3.2. Trailing Edge Flap Sensor and Nose Wheel Steering Sensor	13
	5.3.3. Total Pressure Sensor	13
	5.4. TRD Temperature Sensors	15
	5.5. Sensor Results After Decoding Algorithms Changed	15
	Just Benner Results Fator Becoming Augorithms Changed	13
6.	Environmental Test Results	16
	6.1. Pressure Sensor	16
	6.2. EOA	16
	6.2.1. Temperature Test	16
	6.2.2. Altitude Test	17
	6.2.3. Vibration Test	18
	6.2.4. Electromagnetic Interference (EMI) Test	19
	APPENDIX A	
	Test Plans and Data Sheets for	
	Optic, Integration, and Environmental Tests	A-:

1. ABSTRACT

This is the final report of the Fiber Optic Control System Integration (FOCSI) Program summarizing the integration, testing, and operation of the Electro-Optic Architecture (EOA) and optic sensors delivered by McDonnell Douglas Aerospace-East (MDA-E) to NASA-Dryden for flight testing.

2. PROGRAM OVERVIEW

The optical sensing system consists of ten optical sensors of various optical sensing technologies and one EOA to decode the ten sensors and convert the optic signals to electric signals which are sent to NASA's data acquisition system. One of the challenges in this program was to have one EOA decode as many different sensing technologies as feasible to advance a little explored area of technology. The approach until now is one EOA for each type of sensing technology which has the benefit of providing tailored decoding for that sensor resulting in excellent results. That is not a viable approach in the space limited and weight conscious aircraft environment because each sensor type needs a separate EOA. A single EOA for all sensors not only saves space and weight, it is the vehicle management system (VMS) concept of one processing area which can handle multiple tasks, and VMS systems are already the systems of choice for the next generation of military aircraft.

3. SUMMARY

The performance of the EOA and sensors is good considering one EOA decodes a several types of sensors which vary widely in their optic characteristics, however, the performance of the EOA is poor when comparing the EOA and sensor performance to the traditional electrical aircraft sensors. The performance of the EOA and digital sensors is very close to the performance of the traditional sensors while the performance of the EOA and analog and time rate of decay (TRD) sensors is very far from the performance of the traditional sensors.

The EOA and digital sensors produce consistent and stable results. EOA decoding of digital sensors is little affected by noise, is able to overcome some variations in optical code plates, and is not affected by temperature, altitude, or vibration.

The EOA and analog sensors produce noisy and varied results. EOA decoding of analog sensors is sensitive to variations in power levels, is sensitive to noise, is sensitive to some variations in code plates, and is sensitive to EOA temperature. Analog decoding is not affected by altitude or vibration.

The EOA and TRD sensors produce noisy results due to a poor optic source.

The EOA fails to meet the electromagnetic interference (EMI) emission limits due to spikes in the data, but the EOA is not an EMI threat to the aircraft since the data outages are few and the majority of the outages are small.

4. OPTIC TEST RESULTS

4.1. EOA CCD Array and TRD Sources and Receivers

The optic test results reflect the mixed success and failure of EOA performance. The data in Table 1 shows that the sources and receivers of EOA #1 and EOA #2 had only minor differences in optic performance. However, EOA #2 does perform better than EOA #1 as explained in section 4.1.1.3.

4.1.1. EOA CCD Array Source

4.1.1.1. Specification Failures

The power spectral density failure results in sensor return signals that are lower than expected which can cause problems depending upon the receiver range. Fortunately, the CCD array receiver is able

to receive lower power signals than originally expected, however, signals in the lower part of the receiver bandwidth are affected by receiver noise. These signals also have less resolution when fed to an analog to digital converter than signals in the upper portion of the receiver range due to the internal workings of the CCD array. For sensors with high insertion loss, the failure of the source to meet power spectral density requirements results in a degraded ability to decode the sensors

The wavelength range failure is due to the failure to meet the power spectral density requirements. The maximum power of the source spectrum is within the correct wavelength range, however, this test records the wavelength range covered by the spectrum which meets or exceeds the minimum power spectral density. This is not a serious failure.

The excitation off leakage allowed failure may result corrupted sensor signals. The area CCD array requires the source to be off when it shifts out its information, otherwise, the optic signals will be exciting the CCD array as the information in the array is being moved through the array. The leakage failure of the source is not serious for two reasons: the sources only failed by 0.9dB and 2.0dB, and the method of measurement. Since the source is pulsed, an optic to electric converter had to be use to compare the source on and off levels. This converter had a large gain which may have introduced an error causing the leakage to appear greater than actual.

The required rise and fall time failures are due to the resolution of the oscilloscope. During the test, different resolutions resulted in different rise and fall times. As the resolution increased, the rise and fall times decreased. The resolution could not be made small enough to accurately measure the rise and fall times.

4.1.1.2. Specification Successes

These successes contribute greatly to successful sensor decoding. Meeting power variation with wavelength prevents a sensor signal which covers too much of the receiver range thus allowing the receiver dynamic range to vary with temperature and still receive the entire sensor signal. Meeting power variation with time prevents a sensor signal which varies too much and exceeds the receiver range. The power variation with time was observed to be very slow which is important to properly decode analog sensors since the effects of the source must be removed. A slowly varying source ensures that the source spectrum which the processor uses to condition the sensor signal is the same spectrum which excited the sensor.

Meeting repeatability creates sensor signals which consistently fall within a certain receiver power range. This allows consistent sensor decoding since it minimizes the effects of the receiver having better resolution at the higher power levels than at the lower power level. It also helps to keep the sensor signal in the range of the receiver at all times.

4.1.1.3. Performance Notes

The performance of the CCD array source and receiver in decoding the analog and digital sensors differs between the EOAs. EOA #2 is able to decode more sensors than EOA #1 because of a slightly different placement of an optical block which is used to reduce optical reflections. The optical block is placed near the 900nm wavelength for both EOAs, but the optical block in EOA #2 is closer to the shorter wavelengths. Because of the shape of the power spectrum, the position of the optical block causes EOA #2 to have a smaller power variation over wavelength, a higher power spectral density, and more power at the 900nm wavelength. These differences allow EOA #2 to better decode sensors which vary to the extremes within their optical specifications.

4.1.2. EOA TRD Source

The peak power and wavelength range failures cause much difficulty in decoding the temperature TRD sensor. The failure to meet the minimum peak power results in a weak sensor signal which is more susceptible to corruption by the source because the source fails wavelength range. The source wavelengths overlap the sensor signal wavelengths so the source corrupts the sensor signal. The peak power of source spectrum is from 650nm to 700nm, but the source has significant power extending to 1000nm. The sensor signal range is from 700nm to 900nm.

The source modulation depth could not be measured since the power level of the source could not be adjusted. The small source variation during normal operation aids sensor decoding because it helps provide a consistent sensor signal.

4.1.3. EOA CCD Array Receiver

The expected and actual results of these tests are in different units so the results are limited in value. The CCD receiver display relates power levels to CCD array pixel values instead of dBm, and a pixel value cannot be translated to dBm. The difference between pixel values, however, can be converted to dB so the range was calculated by this method. The calculated range is only good for room temperature since the noise and saturation levels change with temperature.

4.1.4. EOA TRD Receiver

These tests are not possible since there is no source power level adjustment or display.

WDM CCD SOURCE	SPEC.	EOA #1	P/F	EOA #2	P/F
Allowed Power Variation with Wavelength	≤ 6.0 dB	4.75 dB	P	2.4 dB	P
Allowed Power Variation with Wavelength	≤ 6.0 dB	1.75 dB	P	0.75 dB	P
Repeatability	\leq 8.0 dB	0.50 dB	P	1.125 dB	P
Power Spectral Density (PSD)	≥ –38.0 dBm/nm	-46.4 dBm/nm (max. is -41.3)	F	-45.6 dBm/nm (max. is -43.375)	F
Wavelength Range	≤ 750nm ≥ 900nm	None of the spectrum meets the PSD	F	None of the spectrum meets the PSD	F
Excitation Off Leakage	≥ 20 dB	19.1 dB	F	17.0 dB	F
Repetition Rate	100 +/- 1 pulses/sec	100 pulses/sec	P	100 pulses/sec	Р
Source Duty Factor	90+/ 1%	89.6%	P	89.6%	P
Required Rise Time	< 100nsec	20.0 μsec	F	28.0 µsec	
Required Fall TIme	< 100nsec	28.0 μsec	F	28.0 μsec	F
WDM TRD SOURCE			·		
Peak Power	≥–17.5dBm	–37.8 dBm	F	-34.0 dBm	F
Wavelength Range	> 650 nm < 675nm	650nm to 1000nm. None of the spectrum meets the PSD	F	650nm to 1000nm. None of the spectrum meets the PSD	F
Repetition Rate	≤ 1000 pulses/sec	996 pulses/sec	P	990 pulses/sec	P
Source Modulation Depth	≥ 15 dB	0.2dB of normal variation	N/A	source adjustment not possible	N/A
WDM CCD RECEIVER		EOA #1 and EOA #2	2 (Test	results are the same)	1
Saturation Level	≥-60 dBm/nm	CCD array pixel valusor displays)	e of 9	10 (actual value from	ı sen-
Dark Current Level	≤-86 dBm/nm	CCD array pixel valu Litton)	ie of 3	0 (value obtained from	m
Dynamic Range (at room temperature only)	≥ 26 dB	29.5 dB (This is the oplies at room temperate		U ,	ap-
WDM TRD RECEIVER	 Tests not po 	ssible: no source adju	ıstmen	t or receiver display.	

Optic Test Results for WDM CCD Array and TRD Source and Receiver Table 1

4.2. Sensors

The optic sensor test results reflect the mixed success and failure of the sensors performance. In general, the digital and time rate of decay(TRD) sensors performed well, but the analog sensors performed poorly. The data in Table 2, Table 3, Table 4, and Table 5 shows the large variance in the code plate characteristics of similar sensors. Large differences even occur between the same sensors. These differences point to problems in the manufacturing process of the code plates.

4.2.1. Digital Sensors

The digital sensors meet most of the specifications, and the specifications which are not met did not prevent the EOA from decoding the sensors. However, those failures increased the difficulty of decoding the sensors. The sensor decoding algorithms had to be modified for the sensors with the worst optic failures so the EOA could decode them. Digital sensor data is in Table 2 and Table 3.

The contrast ratio failures of 5dB and below are the failures which make decoding the sensors difficult. The sensors with failures of 5dB or less – rudder 1, leading edge flap (LEF) 43 and 45, and power lever control (PLC) 1 – needed their decoding algorithms fine tuned to their optic spectrum in order for the EOA to be able to decode them. (The algorithm for PLC 1 was never revised because the optic code plate was found to be out of alignment, and it needed to be fixed before changing the algorithm. PLC 1 was not repaired.) Contrast ratio failures between 5dB and 6dB did not affect the ability of the EOA to decode those sensors.

The insertion loss failure of LEF 43 contributes to effects of its contrast ratio failure. The high insertion loss causes the sensor signal to be near the receiver noise level so the sensor signal is easily corrupted by receiver noise.

The wavelength range results for all of the sensors meet the specified range of 750nm to 900nm.

The channel width failures are either not large enough to effect sensor decoding or the widths of the channels are not an important factor in sensor decoding because the results of the channel width test do not correlate with the ability of the EOA to decode the sensors.

The guardband width results are not important. After most of the testing was completed, Litton revised their sensors' interface control documents and eliminated the specification for guardband width. This is permissible since the results do not correlate with the ability of the EOA to decode the sensors, and the locations of the guardbands in the sensor spectrums are not clear and were arbitrarily chosen during testing. The guardbands were originally specified so the EOA could easily distinguish between channels.

DIGITAL SENSORS	(dB)				NTRAST ATIO (dB		WAVELENGTH RANGE (nm)		
	SPEC.	MEAS- URED	P/F	SPEC.	MEAS- URED	P/F	First Channel	Last Channel	P/F
Stabilator 1	≤ 24.0	21.0	P	≥ 6.0	6.8	P	758.6	861.8	P
Stabilator 2	≤ 24.0	16.6	Р	≥ 6.0	9.0	P	759.0	864.6	P
Rudder 1	≤ 24.0	17.1	Р	≥ 6.0	3.1	F	759.4	873.4	P
Rudder 2	≤ 24.0	17.6	Р	≥ 6.0	6.6	P	758.6	867.4	P
Rudder Pedal 1	≤ 24.0	17.2	P	≥ 6.0	8.2	P	759.4	867.0	P
Rudder Pedal 2	≤ 24.0	21.7	Р	≥ 6.0	5.4	F	765.8	867.0	P
Power Lever Control 1	≤ 24.0	22.5	Р	≥ 6.0	4.8	F	753.0	877.4	P
Power Lever Control 2	≤ 24.0	19.0	Р	≥ 6.0	5.9	F	760.2	885.0	P
Leading Edge Flap 43	≤ 28.0	29.4	F	≥6.0	5.4	F	778.6	886.6	P
Leading Edge Flap 45	≤ 27.0	22.6	P	≥ 5.0	1.6	F	777.8	888.6	P

Optic Test Results for Digital Sensors (part 1 of 2) Table 2

DIGITAL SENSORS	NUMBER OF CHAN-	СНА	NNEL W (nm)	GUARDBAND WIDTHS(nm) (expect 2.5nm)			
	NELS	SPEC.	Smallest	Largest	P/F	Smallest	Largest
Stabilator 1	12	8.5 +/- 0.5	8.0	8.8	P	2.2	7.2
Stabilator 2	12	8.5 +/- 0.5	8.0	8.8	P	1.8	5.8
Rudder 1	13	8.5 +/- 0.5	8.0	8.8	P	2.2	3.8
Rudder 2	13	8.5 +/ 0.5	7.6	8.4	F	2.0	3.6
Rudder Pedal 1	13	8.5 +/- 0.5	7.6	8.8	F	2.0	3.8
Rudder Pedal 2	13	8.5 +/- 0.5	7.8	8.8	F	1.8	3.6
Power Lever Control 1	15	8.5 +/- 0.5	7.2	9.2	F	2.0	2.8
Power Lever Control 2	15	8.5 +/- 0.5	7.6	9.2	F	2.0	4.0
Leading Edge Flap 43	13	8.5 +/ - 0.9	7.6	9.6	P	N/A	N/A
Leading Edge Flap 45	13	8.5 +/ - 0.9	7.6	10.8	F	N/A	N/A

Optic Test Results for Digital Sensors (part 2 of 2) Table 3

4.2.2. Analog Sensors

The analog sensors meet most of the specifications, and the specifications which were not met only slightly increased the difficulty of decoding the sensors. The fact that the analog sensors are noisy when decoded is mostly due to the EOA, however, the sensor dynamic range factors into the problem. Analog sensor data is in Table 4 and Table 5.

The reference integrity failures slightly increase the noise of the sensors during decoding, but they do not account for the poor integration test results. The pitch stick sensors will be used as an example. Pitch Stick 1 passes the reference integrity test by a large margin while Pitch Stick 2 fails the test by a significant margin, however, Pitch Stick 1 only performs slightly better than Pitch Stick 2 in the integration tests in Table 10. The integration data contains the effects of internal EOA noise as well as the reference integrity failure effects, and the amount of noise attributed to each cannot be determined.

The dynamic range results are good, however, there are problems concerning dynamic range which include the variations between sensors. The specification of ≥7.5dB is half of the original interface control document value of 15dB. Reducing the dynamic range reduces the signal to noise ratio thus creating noisier sensor decoding. Even though the pressure sensor exceeds the specified dynamic range, the range is so small that the sensor value is greatly affected by small amounts of noise in the EOA decoding process. The pressure sensor vendor does not have this problem since they have an EOA and decoding algorithm tailored to the sensor.

The dynamic range variations between sensors resulting from an inability to produce a repeatable analog code plate is another problem affecting the sensor decoding. The trailing edge flap and nose wheel steering sensors' analog code plates were made the same yet the dynamic range varies widely. As a result, the EOA decoding algorithms were modified to work with the dynamic range of a specific sensor. This would not be necessary if the dynamic range were consistent or larger.

The insertion loss results are good except for the large variation between sensors. The only insertion loss failure, Pitch Stick 2, is very close to passing and is not a concern. The variation of insertion losses shows the inconsistency in the manufacturing process, but does not affect EOA decoding since the largest difference in insertion losses is 9.1dB which is much smaller than the ~30dB range of the EOA receiver.

The results of the number of channels, the channels widths, and the wavelength centers are satisfactory.

The rotary analog code plates of the trailing edge flap and nose wheel steering sensors all have anomalies on the ends of the optic tracks, however, the anomalies seemed to be just outside of the sensors' operational range so they are not a concern. Each end of an optic track is different, but in general, the reference and signal tracks are not consistent. In some cases, the reference is not a constant power level while the signal track is constant. In other cases, the signal track varies too much.

ANALOG SENSORS	INSERTION LOSS (dB)			DYNA	MIC RA	NGE	REFERENCE INTEGRITY (dB)		
w.	SPEC.	MEAS- URED	P/F	SPEC.	MEAS- URED	P/F	SPEC.	MEAS- URED	P/F
Pitch Stick 1	≤ 20.0	15.7	P	≥ 7.5	8.0	P	≤-26.0	-67.1	P
Pitch Stick 2	≤ 20.0	20.2	F	≥7.5	8.2	P	≤-26.0	-13.3	F
Trailing Edge Flap 1	≤ 20.0	16.8	P	≥ 7.5	6.8	F	≤-26.0	-7.6	F
Trailing Edge Flap 2	≤ 20.0	11.1	P	≥ 7.5	9.9	P	≤-26.0	-19.4	F
Nose Wheel Steering 1	≤ 20.0	13.6	Р	≥7.5	19.5	P	≤-26.0	-14.5	F
Nose Wheel Steering 2	≤ 20.0	19.1	P	≥ 7.5	10.6	Р	≤-26.0	-1.6	F
Total Pressure 4030–32–01	≤ 17.5	16.8	Р	≥ 2.7	2.9	Р	≤-30.0	-59.4	Р

Optic Test Results for Analog Sensors (part 1 of 2) Table 4

ANALOG SENSORS	NUMBER OF CHAN-	C	HANNEL V (nm)	WAVELENGTH CENTER (nm)			
	NELS	SPEC.	Reference	Signal	P/F	Reference	Signal
Pitch Stick 1	2	≤75	51.4	50.2	P	776.2	874.6
Pitch Stick 2	2	≤75	45.8	50.0	P	771.8	885.0
Trailing Edge Flap 1	2	. ≤75	50.6	49.8	P	777.0	875.4
Trailing Edge Flap 2	2	≤ 75	51.0	49.0	P	776.2	875.4
Nose Wheel Steering 1	2	≤75	50.2	49.8	P	777.4	875.4
Nose Wheel Steering 2	2	≤75	49.8	50.2	P	775.0	875.8
Total Pressure 4030–32–01	2	≤75	63.8	60.2	Р	779.6	885.0

Optic Test Results for Analog Sensors (part 2 of 2)
Table 5

4.2.3. TRD Sensors

The TRD sensors pass the optic tests, and are the best sensors for providing duplicate results. The data for the TRD sensors is in Table 6.

The signal duration success is the key characteristic in determining that the sensors are performing properly. The duration of the sensor florescent time decay signal varies with temperature and determines the phase shift between the signal and the source. The EOA examines the phase shift between the signal and source signals to determine the temperature.

The power conversion efficiency for both temperature sensors actually passes if the entire sensor signal is taken into account instead of just the peak of the sensor spectrum. The test was conducted with just the peak of the source and signal spectrums and reflects a failure as a result. The test was performed this way due to the misunderstanding that the TRD receiver uses only the peak spectrum values. The TRD receiver actually uses the entire signal spectrum.

TRD SENSORS	SIGNAL DURATION(µsec) (@ room temp.)		CON	POWER CONVERSION EFFICIENCY (dB)			CHANNEL CHARACTERISTICS			
	SPEC.	MEAS- URED	P/F	SPEC.	MEAS- URED	P/F	# of Chan.	Channel Width	Channel Center	
Total Temperature 2	175 +/	280	P	≥-28	-4 9.7	F	1	36.0 nm	753 nm	
Total Temperature 3	125	270	P	≥-28	-48.0	F	1	36.0 nm	753 nm	

Optic Test Results for TRD Sensors
Table 6

5. INTEGRATION TEST RESULTS

5.1. EOA

EOA #1 passed all of the functional tests. These were used to provide a quick test of EOA operation. The data is summarized in Table 7. The EOA chassis is able to thermally dissipate approximately 100 Watts without cooling air so it will be able to easily dissipate 65.4 Watts. The optic functions and the electrical data bus performed as expected. The optic to electric conversion and the sensor value decoding were not checked in the functional tests.

EOA #2 performs better than EOA #1 by decoding sensors with less noise and by operating reliably. This is due in part to optical differences explained in section 4.1.1.3. EOA #1 also has had the 1553 bus stop updating on many occasions including the altitude test, the vibration test, and when EOA #1 was powered for long periods of time with no tests being performed. This seems to be due to software halting in the decoding processor module. The root caused may be due to internal EOA noise which could be generated by many sources, several high frequency clocks, high frequency 1553 data transfers, power supply switching, or decoding modules activity. A similar problem was present before the data acquisition card's printed wiring board (PWB) was re-laid out to use better methods of electrical PWB lay out. The solution to the loss of EOA #1 1553 updates is to turn off power to EOA #1 and then turn on power; EOA #1 always returns to normal operation. EOA #2 has never had this problem. This is probably due to EOA #2's decoding modules being less receptive to internal noise. This may also explain why EOA #2 decodes sensors with less noise than EOA #1.

EOA decoding noise is dependent on the environment and may be high frequency noise affecting the CCD optic receiver. The receiver operates with very low power levels and is therefore more susceptible to noise than other electronics. Decoding noise is not as pronounced when the modules are on the vendor's development backplane as it is when the modules are in the EOA chassis. On vendor backplane, the modules are not as close to each other, the 1553 data bus does not run next to the modules, and an inherently noisy switching power supply is not used. The confined EOA chassis is a different environment than the open development backplane so it is not unusual that the modules operate a little differently in the two environments.

EOA FUNCTIONAL		EOA FUNCTIONAL TEST RESULTS						
TEST	Expected	Actual						
Power Dissipation	≤ 76.5 Watts	65.4 Watts	P					
1553 Multiplex Bus	No errors in transmission and good data transfer.	Good data transfer. A nuisance error is reported, but it does not affect the data transfer. Suspect the test equipment is the source of the problem since the problem has been seen on other non-FOCSI tests.	P					
EOA Spectrum Analyzer Mode	Source and all sensors (except temp. sensor) visible on display.	Source and all sensors except the temperature sensor are visible on the display. Digital sensors show a good digital pattern, and the analog sensors show the reference and signal channels. The attenuation for each sensor was adjusted so all sensors fell within the receiver range.	Р					

Integration Test Results for EOA Table 7

5.2. Digital Sensors

The EOA performs very well in decoding digital sensors that can be decoded, however, a small amount of noise does cause a few failures. EOA decoding noise is discussed in section 5.1. Good performance is expected since the EOA vendor also made the digital sensors except for the leading edge flap which could not be decoded.

5.2.1. Stabilizer Sensor

The EOA decodes the stabilizer sensor fairly well. The decode value is quite stable, although, there is some intermittent noise which causes the failures in the null offset and resolution tests. The overall results are good.

5.2.2. Rudder Sensor

EOA #1 cannot decode rudder 1, and EOA #2 has difficulty decoding rudder 1. This is probably due to the optical contrast ratio of less than 5.0dB. With EOA #2, the sensor output looks noisy which is reflected in the integration data, although, rudder 1 still performs fairly well. When rudder 1 was returned to the vendor for testing, the decoding algorithm was changed to so rudder 1 performed very well, however, rudder 2 cannot use the same algorithm. The flight EOA rudder decoding algorithm is dependent on which rudder is flying.

The EOA decodes rudder 2 sensor very well. The decode value is quite stable, although, there is some intermittent noise which causes the failure in the null offset test. The overall results are good. The rudder and rudder pedal sensors are the same, and the decode algorithms are only slightly different.

5.2.3. Rudder Pedal Sensor

The EOA decodes the rudder pedal sensors better than any other sensor. The range and resolution results are excellent, the linearity results are almost perfect, and there is hardly any noise in the decoded sensor signals. The only failure, by rudder pedal sensor 2, is very close to passing and is

not a concern. The rudder pedal and rudder sensors are the same, and the decode algorithms are only slightly different.

5.2.4. Power Lever Control Sensor

Neither EOA can decode power lever control 1. This is probably due to an optical contrast ratio of less than 5.0dB, or the sensor may have been damaged before the integration tests. When this sensor was returned to the vendor for testing, it was reported that the sensor was broken; the code plate was shifted and the shaft did not turn as freely as it should. The sensor may have been damaged before the integration tests were performed.

EOA #2 decodes power lever control 2 very well while EOA #1 cannot decode the sensor. This is due to the different optics in the EOAs explained in section 4.1.1.3. Power lever control 2 has its last channel at a wavelength of 885nm which is close to the limit of 900nm. EOA #1 does not receive signals as well as EOA #2 at this end of the spectrum, and the performance of power lever control2 is proof.

5.2.5. Leading Edge Flap Sensor

The EOA decoding algorithms could not decode either leading edge flap sensor. Both sensors had optic failures which contributed to the decoding problem; see the optic test results in section 4.2.1. However, the main reason was due to the wide variation of the wavelength of the first channel on the code plate as the sensor was moved through its full stroke. The decoding algorithm searched for each channel, and because the location varied so much, the algorithm needed more time than the EOA update rate would allow.

The decoding algorithms were changed after integration tests were performed at McDonnell Douglas so the leading edge flap sensors could be decoded. The algorithms were written to find the data channels at specific wavelengths. As a result, the algorithms will not decode the sensors if the data channels move from their initial locations. This could occur if the code plate shifts even slightly.

DIGITAL SENSORS	9	LL OFFSET unless specified)		RESOLUTION (inches unless specified)				
	Specified	Measured	P/F	Specified	Measured	P/F		
Stabilator 1	≤+/ - 0.018	+/ 0.045	F	≤ +/̈-0.018	0.002	P		
Stabilator 2	≤+/ - 0.018	+0.052, -0.073	F	≤ + /−0.018	0.022	F		
Rudder 1	≤ +/ - 0.0032	+0.007, -0.011	F	≤ +/ - 0.0032	0.001	P		
Rudder 2	≤ +/ - 0.0032	+/-0.002	Р	≤ +/ - 0.0032	0.002	Р		
Rudder Pedal 1	≤ +/−0.0045	+/-0.001	P	≤ +/ - 0.0045	0.002	Р		
Rudder Pedal 2	≤ +/-0.0045	+0.004, -0.005	F	≤ +/ - 0.0045	0.002	Р		
Power Lever Control 1	≤+/–0.325deg	Not Decoded		≤+/0.325deg	Å.			
Power Lever Control 2	≤+/–0.325deg	+/-0.064deg	Р	≤+/0.325deg	0.079 deg	P		
Leading Edge Flap 43	≤ +/-0.30deg	Not Decoded *		≤ +/–0.30deg				
Leading Edge Flap 45	\leq +/ -0.30 deg	Not Decoded *		\leq +/ -0.30 deg	N.			

Integration Test Results for Digital Sensors (part 1 of 2) Table 8

DIGITAL SENSORS	1	RANGE hes unless		LINEARITY					
	• `	pecified)	9		Con- stant	Standard D	P/F		
	Spec.	Measured	P/F		Stairt	Specified	Meas.		
Stabilator 1	+/- 3.56	+/ 3.56	P	0.996	0.008	≤+/-0.0356	0.034	P	
Stabilator 2	+/ 3.56	+/ 3.56	P	0.989	-0.009	≤+/-0.0356	0.051	P	
Rudder 1	+/0.665	+/- 0.665	P	0.986	-0.004	≤+/-0.0033	0.014	P	
Rudder 2	+/0.665	+/ 0.665	P	0.996 0.002		≤+/-0.0033	0.008	P	
Rudder Pedal 1	+/-0.750	+/- 0.750	Р	0.999	0.001	≤+/-0.0019	0.002	Р	
Rudder Pedal 2	+/-0.750	+/ 0.750	P	1.000	0.001	≤+/- 0.0019	0.004	P	
Power Lever Control 1	0.000 to			Not D	ecoded	≤ +/- 0.175			
Power Lever Control 2	130.000 degrees	0.000 to 130.000	P	0.993	-0.539	≤ +/- 0.175	0.563	P	
Leading Edge Flap 43	+ 36, – 7			Not decoded*		≤ +/- 0.675			
Leading Edge Flap 45	degrees			Not de	coded*	degrees			

^{*} Before the decoding algorithms were changed at the EOA vendor.

Integration Test Results for Digital Sensors (part 2 of 2) Table 9

5.3. Analog Sensors

The EOA performs poorly in decoding analog sensors for several reasons: the EOA decoding noise discussed in section 5.1., poor optical reference integrity test results slightly increase the decoding noise, and the decoding algorithms are dependant upon a consistent dynamic range (which did not occur) for the similar analog sensors. The last reason is due to the fact that the EOA vendor did not have the sensors to work with when writing the decoding algorithms so the algorithms were not tailored to the specific dynamic range of the sensors.

5.3.1. Pitch Stick Sensor

Pitch stick 2 broke during integration testing so the linearity data was not obtained. A small amount of strain was applied to the sensor and it broke apart. The mechanical design was very poor in that the two halves of the sensor were butt coupled and held together only by glue.

The EOA decoding of the pitch stick sensors is the best of the analog sensors, however, a slightly incorrect expected dynamic range caused the range and linearity results to fail. The decoding noise does not affect these sensors as much as the other analog sensors, but the noise does cause the null offset results to fail.

After the decoding algorithm was tailored to the correct dynamic range, the pitch stick sensor performs fairly well. EOA noise still prevents this sensor from providing excellent performance.

5.3.2. Trailing Edge Flap Sensor and Nose Wheel Steering Sensor

The nose wheel steering and trailing edge flap sensor code plates were made the same, and the decoding algorithms are only slightly different, yet the decoded performance of the sensors varies widely due to the wide variation in dynamic range. Only trailing edge flap 1 is decoded over the entire range with any accuracy to the amount of shaft movement. The other decoded sensor values either fail to relate to the shaft movement or only a portion of the shaft movement is decoded.

After the decoding algorithms were tailored to the dynamic ranges of these sensors, the decoded sensor performance improved, but the overall decoded performance is still poor. The decoded values are very noisy, and the sensors' linearity is poor.

5.3.3. Total Pressure Sensor

The EOA decoding algorithms could not decode the pressure sensor because the equation for the sensor signal received from the sensor vendor did not fit the location and dynamic range of the sensor as seen by the EOA CCD receiver. Modified algorithms enabled the decoded sensor value to wok over a portion of the pressure sensor range, but not enough to do integration tests on the sensor.

The decoding algorithms were changed after integration tests were performed at McDonnell Douglas so the pressure sensor could be decoded over its full range. The algorithms were written for linear operation of the pressure sensor even though the sensor vendor used a third order equation to approximate the sensor response and get the desired accuracy from the sensor. The person writing the decoding algorithm felt that there was less error in using the linear method.

ANALOG SENSORS	4	LL OFFSET unless specified)	RESOLUTION (inches unless specified)			
	Specified	Measured	P/F	Specified	Measured	P/F
Pitch Stick 1	≤+/ - 0.010	+0.030, -0.039	F	≤ +/ -0.010	0.003	P
Pitch Stick 2	≤ +/ - 0.010	+0.047, -0.053	F	≤ +/-0.010	0.004	P
Trailing Edge Flap 1	≤ +/–0.049in	+/- 0.123 in	F	≤+/-0.898deg	0.567deg	P
Trailing Edge Flap 2	≤ +/–0.049in	+0.075,-0.076in	F	≤+/-0.898deg	0.099deg	P
Nose Wheel Steering 1	≤ +/- 0.186 degrees	+2.273, -2.419 degrees	F	≤ +/- 0.186 degrees	0.265 degrees	F
Nose Wheel Steering 2	≤+/-0.186deg	+/- 0.953 deg	F	≤+/-0.186deg	0.773deg	F
Total Pressure 4030–32–01	Neither EOA #1 nor EOA #2 could decode the pressure sensor at the time of the integration testing at McDonnell Douglas.					

Integration Test Results for Analog Sensors (part 1 of 2) Table 10

ANALOG SENSORS	RANGE (inches unless			LINEARITY					
	specified)		Slope	Con- stant	Standard D	eviation	P/F		
	Spec.	Measured	P/F		Staint	Specified	Meas.	1	
Pitch Stick 1	+2.02 -1.01	+1.950 ** -0.763 **	F	0.976	0.047	≤+/ - 0.0202	0.087	F	
Pitch Stick 2	+2.02 -1.01	÷2.02 -0.783 **	F		Sensor 2 as taken.	broke before	the line	arity	
Trailing Edge Flap 1	+/- 4.05	+/- 4.05	Р	1.219	-0.075	≤+/-0.0405	0.719	F	
Trailing Edge Flap 2	+/- 4.05	+4.05 -0.820 **	F	-0.38 6	-2.558	≤+/-0.0405	0.046	F	
Nose Wheel Steering 1	+/-75.00 degrees	+/-75.000 degrees *	F	0.992	18.749	≤ +/ - 0.188	18.383	F	
Nose Wheel Steering 2	+/-75.00 degrees		F	1.067	0.459	≤ +/−0.188	7.721	F	
Total Pressure 4030–32–01		Neither EOA #1 nor EOA #2 could decode the pressure sensor at the ime of the integration testing at McDonnell Douglas.							

^{*} Even though the full range is covered, the measured value has no relationship with the reference.

Integration Test Results for Analog Sensors (part 2 of 2) Table 11

^{**} These measured values are before the decoding algorithms were changed at the EOA vendor.

5.4. TRD Temperature Sensors

The conventional platinum resistance thermometer (PRT) elements performed well, but the optic temperature sensor decoding performed poorly as shown in the data summarized in Table 12. The accuracy of the PRT elements, tested in an ice bath, were very stable; the results were so good that a second test point was not needed. Comparing the tracking of the decoded optic sensor value to the PRT element revealed the optic decoding was not working between 360° R and 410° R, and the error was as much as 36° R from 410° R to 580° R. The graphs of the optic sensor to PRT element tracking are in the temperature sensor section of the Integration Test Plan data sheets in APPENDIX A.

The poor range of the optical temperature decoding is probably due to the decoding algorithms being fine tuned to a different Rosemount optical sensor than is used in the integration tests. The decoding algorithms were later fine tuned to the optical sensors used in integration testing.

The noise and poor tracking of the optical temperature sensor is probably due in part to the optic source used to excite the fluorescent sensor. Examining the optic sensor and source data sheets in APPENDIX A show that the source wavelengths overlap the sensor signal wavelengths. Even though an optical filter was used to block the source at the sensor signal's peak wavelengths, much of the sensor signal is blended with the source. The small section of the sensor signal that is unaffected by the source may not be enough for the optic receiver to obtain a consistent signal.

TRD SENSORS	PRT ELEMENT RESISTANCE (@ 32 ⁰ C)			GEN. THERMAL. DIFFERENCE BE- TWEEN PRT & TRD			E-	INITIAL CHECKOUT			
	Spec.	PRT 1	PRT 2	P/F	Spec.	Max.	Min.	P/F	Spec.	Measured	P/F
Total Temperature S/N 2	50.00 +/- 0.05Ω	49.992 ohms	49.995 ohms	P	≤+/– 0.50 ⁰ F	perfor poo	ptical to med do or perfo ce of S/	ie to r-	≤ 2.0 ⁰ F	Unstable and noisy. Much	F
Total Temperature S/N 3	50.00 +/- 0.05Ω	50.038 ohms	50.008 ohms	P	≤+/- 0.50 ⁰ F	36 ⁰ R	1 ⁰ R	F	2.0 [≤] 2.0 ⁰ F	greater than 2.0 ⁰ F.	F

Integration Test Results for TRD Sensors
Table 12

5.5. Sensor Results After Decoding Algorithms Changed

The leading edge flap (LEF), temperature, and analog sensor decoding algorithms were changed by the EOA vendor after the integration tests at McDonnell Douglas. The LEF sensors were able to be decoded, and their performance appeared to equal the performance of the other digital sensors. The temperature sensor algorithms were tuned to the individual sensors so the specified temperature range was met, but the temperature sensors are still much too noisy. The Pitch Stick, trailing edge flap, and nose wheel steering sensor algorithms were changed so those sensors met the range specifications. Their linearity performance was improved but not enough to meet the specifications. Their null offset and resolution performance was not improved.

6. ENVIRONMENTAL TEST RESULTS

6.1. Pressure Sensor

The pressure sensor was environmentally tested at MDC since Babcock & Wilcox did not complete environmental testing. The pressure sensor survived all environmental testing: temperature, altitude, and vibration. The environmental test profiles are the same as the EOA environmental profiles and are contained in the Environmental Test Plan in APPENDIX A.

6.2. EOA

6.2.1. Temperature Test

EOA #2 survived the thermal test chamber temperature range of -30° C to 75° C, however, the EOA did not decode all of the sensors over that range. The test results summarized in Table 13 show the EOA's success in decoding digital sensors and the EOA's difficulty in decoding analog sensors.

The EOA performance with the digital sensors during the thermal test was excellent. The digital sensors were decoded over the full EOA temperature range, and the sensor values were steady. The two exceptions, rudder and leading edge flap(LEF), were due to problems not related to the thermal test, the rudder connection to the EOA and the EOA decoding algorithm for the LEF. The ability of the EOA to decode the digital sensors is independent of the EOA temperature.

The EOA performance with the analog sensors during the thermal test was poor. The sensors were decoded over very little of the EOA temperature range, and the sensor values were noisy which is normal even at room temperature. The pitch stick was decoded over 50% of the EOA temperature range, the trailing edge flap 29%, and the nose wheel steering 14%. These results agree with the EOA vendor tests which show the EOA has decreasing dynamic range for receiving analog sensors as the EOA temperature approaches the extremes, and at the extremes, there is zero dynamic range. The ability of the EOA to decode the analog sensors is very dependent on the EOA temperature.

The reasons for the poor performance of the EOA decoding the analog sensors are that analog sensor decoding is power level dependent, and the shape of the LED output power spectrum changes with temperature. The decoding algorithms were written to try to take out the effects of the source spectrum shape but were not totally successful since the analog sensor decoding is very EOA temperature dependent.

SENSOR	SENSOR VALUE	SENSOR IS SUCCESSFULLY DECODED OVER EOA#2 TEMPERATURE RANGE OF:			
Digital Sensors	**************************************				
Power Lever Control 2	97.5 deg.	Full Range of –300	C to 75 ⁰ C		
Rudder Pedal 2	0.293 in.	Full Range of –300	C to 75 ⁰ C		
Stabilizer 2	-3.212 in.	Full Range of -300	C to 75 ⁰ C		
Rudder 2	-0.496 in.	Rudder is sometimes decoded t	hroughout full range.		
Leading Edge Flap 43	Not Decoded	EOA unable to decode LEF sens	or during thermal test.		
Analog Sensors					
		Successful Decoding Over EOA#2 Temp. Range Of:	Direction of Temperature Change		
Pitch Stick 1	~-0.330 in.	26^{0} C to -30^{0} C+5minutes	Decreasing		
		$10^0\mathrm{C}$ to $60^0\mathrm{C}$	Increasing		
		none	Decreasing		
Trailing Edge Flap 1	~1.2 in.	26^{0} C to -10^{0} C	Decreasing		
		30 ⁰ C to 55 ⁰ C	Increasing		
		25 ⁰ C+10min. to 25 ⁰ C+15min.	Decreasing		
Nose Wheel Steering 2	~26 deg.	26 ⁰ C to –5 ⁰ C	Decreasing		
		none	Increasing		
		none	Decreasing		
Total Pressure	Not Connected	EOA software is not able to decode the pressure sensor at room pressure during thermal test.			
TRD Sensor					
Temperature	Not Connected	EOA software is not able to de sensor at room temperature durin			

EOA Thermal Test Results Table 13

6.2.2. Altitude Test

EOA #1 survived the altitude test chamber range of room altitude to 50,000 feet. Room pressure was 743 Torr or 29.3 in Hg. The chamber temperature range was 23.7°C to 32.5°C, and the internal EOA temperature range was 24.1°C to 41.5°C. The EOA stopped updating the 1553 bus during a portion of the test, however, this failure was not related to the altitude test. The test results summarized in Table 14 show the EOA's success in decoding all of the sensors during the altitude test. A technical memorandum was prepared by the laboratory performing the altitude test; the memo is located in the altitude data sheets in the Environmental Test Plan in APPENDIX A.

EOA #1 performance during the altitude test was acceptable. The noisy sensor values and the loss of 1553 bus updates tarnished the results, but these problems were not a result of the altitude test. The ability of the EOA to decode the sensors is independent of the EOA altitude. Since the sensors were decoded equally well throughout the test, and in normal operation, EOA #1 reports noisy sensor values much more than EOA #2, the noisy sensor values are not a failure of the altitude test. The loss of 1553 updates is also not a failure of the altitude test and is explained in 5.1.

SENSOR	SENSOR VALUE	SENSOR IS SUCCESSFULLY DECODED OVER EOA#1 ALTITUDE RANGE OF:
Digital Sensors		
Power Lever Control 2	Not Connected	The Power Lever Control Sensor was not available for the altitude test.
Rudder Pedal 2	~0.121 in.	Full Range of 743 Torr to 50,000 feet
Stabilizer 2	-2.210 in. & -2.161 in.	Full Range of 743 Torr to 50,000 feet. The position was changed during test as part of troubleshooting.
Rudder 2	~-0.118 in.	Full Range of 743 Torr to 50,000 feet
Leading Edge Flap 43	Not Decoded	EOA unable to decode LEF sensor during altitude test.
Analog Sensors		
Pitch Stick 1	~1.2 in.	Full Range of 743 Torr to 50,000 feet
Trailing Edge Flap 1	~1.4 in.	Full Range of 743 Torr to 50,000 feet
Nose Wheel Steering 2	~41 deg.	Full Range of 743 Torr to 50,000 feet
Total Pressure	Not Connected	EOA software is not able to decode the pressure sensor at room pressure during altitude test.
TRD Sensor		
Temperature	Not Connected	EOA software is not able to decode the temperature sensor at room temperature during altitude test.

EOA Altitude Test Results Table 14

6.2.3. Vibration Test

EOA #1 survived the vibration tests, and the vibration did not affect the sensor decoding, however, there were failures that were corrected and re-tested and one failure that was not corrected. The vibration testing consisted of a sinusoidal resonance survey, a random performance test, and a minimum structural rigidity test in each of the three axes. A technical memorandum was prepared by the laboratory performing the vibration testing; the memo is located in the vibration data sheets in the Environmental Test Plan in APPENDIX A along with sensor data for the vertical axis.

The failure that was not corrected occurred on an already environmentally qualified power supply supplied by the Navy Standard Hardware And Reliability Program (SHARP). The failure was not corrected and retested since all of the performance tests had been completed, and the failure occurred during the structural rigidity test which is not required by NASA Ames-Dryden Flight Research

Facility Process Specification No. 21–2 Environmental Testing of Electronic and Electromechanical Equipment. An examination of the power supply revealed the leads of a transformer had sheared because of inadequate support. (Adequate support was provided in later models of the power supply.)

The purpose of the three vibration tests is to determine if the EOA will survive the aircraft vibration environment. The resonance survey locates the frequencies at which the EOA is vulnerable. The performance test requires the equipment operate during the vibration profile and shows the equipment will survive at least fifty flight hours. The minimum structural rigidity test does not require the equipment to operate and verifies the equipment is structurally sound.

The first failure occurred during the vertical axis performance test. The 1553 bus stopped updating, and the failure was isolated to one of the two 1773/1553 converter modules. A loose nut and two washers were found inside the chassis, and a screw was found outside the chassis. The two converter modules were removed, and the 1553 data bus line was jumpered to bypass the 1773/1553 converter modules. The loose mounting hardware was replaced and secured with Locktite. Testing continued without the converter modules. The 1773/1553 converter module failure was attributed to an electrical short caused by the loose mounting hardware.

The second failure occurred during the vertical axis minimum structural rigidity test. The 1553 bus again stopped updating, and the failure was isolated to 1553 bus controller module; an oscillator chip had sheared at the leads. Also, several capacitors had sheared off of the optic receiver module. None of the sheared parts had glue attaching them to the printed wiring board (PWB). The modules were repaired, and on all modules, all of the components which were not glued to the PWBs were glued. This improvement was implemented on the set of flight modules. Testing continued.

The vibration testing continued through the lateral axis and through the longitudinal axis sinusoidal and performance tests without failure, however, two anomalies occurred. The first was not related to vibration testing. The 1553 bus stopped updating several times during and between vibration tests. Turning the power to the EOA off and then on always restored normal operation. This is the same anomaly explained in section 5.1. The other anomaly may have been related to the minimum structural vibration test since it occurred during part of both the vertical and longitudinal axes minimum structural vibration tests even though it did not occur during the lateral axis minimum structural vibration test. It dealt with the optic spectrums reported by the EOA CCD array receiver. A new method of monitoring the sensors was used after the last failure. Instead of monitoring the sensor positions, the raw optical sensor data was monitored. For a portion of the minimum structural rigidity tests, the optic data power levels jumped around quite a bit but maintained their shapes unless they saturated the receiver. The anomaly was not a concern since the equipment did not need to operate during the minimum structural rigidity test, and the spectrum shapes were stable.

The last failure occurred during the longitudinal minimum structural rigidity test, and has already been discussed. The power supply failed during the test.

6.2.4. Electromagnetic Interference (EMI) Test

EOA #1 failed to meet the conducted and radiated emission limits in MIL-STD-461 Part 2 due to spikes in the data; the majority of the conducted and radiated emissions data meets those limits. EMI data sheets are in the EMI section of the Environmental Test Plan in APPENDIX A. EMI experts have examined this data and do not feel that the EOA poses an EMI threat to the aircraft since the outages are few and the majority of the outages are small.

EOA #1 was a good EMI test article since it probably has more emissions than EOA #2 based on the performance of the two EOAs. EOA #2 has never failed while EOA #1 has stopped updating the 1553 bus. This was probably due to internal EOA emissions causing errors in the optic decoding modules.

The antennae types used in this test are: rod for 14kHz to 25MHz, biconical for 25MHz to 200MHz, log spiral for 200MHz to 1GHz, and a different size log spiral for 1GHz to 10GHz. The data plots in the EMI section of the Environmental Test Plan contain narrowband and broadband data for each frequency. The data taken with the biconical antenna includes horizontally and vertically polarized antenna data.

APPENDIX A Test Plans and Data Sheets for Optic, Integration, and Environmental Tests

APPENDIX A

FOCSI EOA and SENSOR TEST PLANS and DATA SHEETS

(OPTIC, INTEGRATION, AND ENVIRONMENTAL TEST PLANS)

AVIONICS INTEGRATION CENTER
MCDONNELL DOUGLAS CORPORATION
SAINT LOUIS, MISSOURI

TABLE OF CONTENTS FOCSI TEST PLAN

FOCSI EUA and Sensor Optic Test Plan	• • • • • • • • • • • • • • • • • • • •	1
1.0 SCOPE	•••••	1
2.0 APPLICABLE DOCUMENTS	• • • • • • • • • • • • • • • • • • • •	1
2.1 McDonnell Douglas Corporation Documents	• • • • • • • • • • • • • • • • • • • •	1
3.0 SUMMARY	•••••	1
3.1 Test Plan Objective		1
3.2 Location	• • • • • • • • • • • • • • • • • • • •	1
3.3 Standard Conditions	• • • • • • • • • • • • • • • • • • • •	2
3.4 Equipment	•••••	2
3.5 Specific Tests	• • • • • • • • • • • • • • • • • • • •	2
3.5.1 EOA Tests	• • • • • • • • • • • • • • • • • • • •	2
3.5.1.1 WDM Analog and Digital Source Tests	• • • • • • • • • • • • • • • • • • • •	2
3.5.1.1.1 Allowed Power Variation with Wavelength and Time Tes	st	2
3.5.1.1.2 Repeatability Test	• • • • • • • • • • • • • • • • • • • •	2
3.5.1.1.3 Minimum Power Spectral Density Test	• • • • • • • • • • • • • • • • • • • •	2
3.5.1.1.4 Wavelength Range Test	• • • • • • • • • • • • • • • • • • • •	2
3.5.1.1.5 Maximum Excitation Off Leakage Allowed Test	• • • • • • • • • • • • • • • • • • • •	2
3.5.1.1.6 Repetition Rate and Source Duty Factor Test	• • • • • • • • • • • • • • • • • • • •	2
3.5.1.1.7 Required Rise and Fall Time Test	• • • • • • • • • • • • • • • • • • • •	2
3.5.1.2 WDM Analog and Digital Receiver and WDM TRD Received	er Tests	4
3.5.1.3 WDM TRD Source Tests	• • • • • • • • • • • • • • • • • • • •	4
3.5.1.3.1 Minimum Peak Power Test	• • • • • • • • • • • • • • • • • • • •	4
3.5.1.3.2 Wavelength Range Test	• • • • • • • • • • • • • • • • • • • •	4
3.5.1.3.3 Maximum Repetition Rate Test	• • • • • • • • • • • • • • • • • • • •	4
3.5.1.3.4 Minimum Source Modulation Depth Test	• • • • • • • • • • • • • • • • • • • •	4
3.5.2 Sensor Tests	• • • • • • • • • • • • • • • • • • • •	4
3.5.2.1 Sensor Insertion Loss Test	• • • • • • • • • • • • • • • • • • • •	4
3.5.2.2 Contrast Ratio Test	• • • • • • • • • • • • • • • • • • • •	5
3.5.2.3 Dynamic Range Test	• • • • • • • • • • • • • • • • • • • •	5
3.5.2.4 Reference Integrity Test		5
3.5.2.5 Signal Duration Test	• • • • • • • • • • • • • • • • • • • •	5
3.5.2.6 Channel Characteristics Test	• • • • • • • • • • • • • • • • • • • •	5
3.5.2.7 Power Conversion Efficiency Test		5
3.5.2.8 Excitation to Signal Delay Test		5
3.6 Failure Handling		5

4.0 TEST PROCEDURES	6
4.1 Equipment	6
4.2 WDM Analog and Digital Source Test	6
4.2.1 General Preparation for Optic Signal Analyzer Tests	6
4.2.2 Allowed Power Variation with Wavelength and Time Test (Part I)	6
4.2.3 Repeatability Test (Part I)	6
4.2.4 Allowed Power Variation with Wavelength and Time Test (Part II)	7
4.2.5 Minimum Power Spectral Density Test	7
4.2.6 Allowed Power Variation with Wavelength and Time Test (Part III)	7
4.2.7 Repeatability Test (Part II)	8
4.2.8 Wavelength Range Test	8
4.2.9 Repeatability Test (Part III)	8
4.2.10 General Preparation for Photodiode/Oscilloscope Tests	8
4.2.11 Maximum Excitation Off Leakage Allowed Test	8
4.2.12 Repetition Rate and Source Duty Factor Test	9
4.2.13 Required Rise and Fall Time Test	9
4.3 WDM TRD Source Test	10
4.3.1 General Preparation for Optic Signal Analyzer Tests	10
4.3.2 Minimum Peak Power Test	10
4.3.3 Wavelength Range Test	10
4.3.4 General Preparation for Photodiode/Oscilloscope Tests	10
4.3.5 Maximum Repetition Rate Test	10
4.3.6 General Preparation for Lab Test PC / EOA Signal Analyzer Mode Tests	11
4.3.7 Minimum Source Modulation Depth Test	11
4.4 WDM Analog and Digital Receiver Test	11
4.4.1 General Preparation	11
4.4.2 Saturation and Noise Level Test	12
4.4.3 Dark Current Level Test	12
4.5 WDM TRD Receiver Test	13
4.5.1 General Preparation	13
4.5.2 Saturation and Noise Level Test	13
4.5.3 Dark Current Level Test	13
4.6 Stabilizer Sensor Test Procedure	14
4.6.1 General Preparation	14
4.6.2 Sensor Insertion Loss Test	14
4.6.3 Contrast Ratio Test	14
A. 6. A. Channel Characteristics Test	15

4.7 Rudder Sensor Test Procedure	15
4.8 Pitch Stick Sensor Procedure	15
4.8.1 General Preparation	15
4.8.2 Sensor Insertion Loss Test	16
4.8.3 Dynamic Range Test	16
4.8.4 Reference Integrity Test	17
4.8.5 Channel Characteristics Test	17
4.9 Rudder Pedal Sensor Test Procedure	18
4.10 Trailing Edge Flap Sensor Test Procedure	18
4.11 Leading Edge Flap Sensor Test Procedure	18
4.11.1 General Preparation	18
4.11.2 Sensor Insertion Loss Test	18
4.11.3 Contrast Ratio Test	19
4.11.4 Channel Characteristics Test	19
4.12 Power Lever Control Sensor Test Procedure	19
4.13 Nose Wheel Steering Sensor Test Procedure	20
4.14 Total Pressure Sensor Test Procedure	20
4.14.1 General Preparation	20
4.14.2 Sensor Insertion Loss Test	20
4.14.3 Dynamic Range Test	20
4.14.4 Reference Integrity Test	21
4.14.5 Channel Characteristics Test	22
4.15 Total Temperature Test Procedure ,	22
4.15.1 General Preparation	22
4.15.2 Signal Duration Test and Excitation to Signal Delay Test	22
4.15.3 Channel Characteristics Test	23
4.15.4 Power Conversion Efficiency Test	23
A D. LOUI. GITTEDO	

FOCSI EOA and Sensor Integration Test Plan	55
6.0 SCOPE	55
7.0 APPLICABLE DOCUMENTS	55
7.1 McDonnell Douglas Corporation Documents	55
7.2 General Electric Company Documents	55
7.3 Government Documents	56
8.0 SUMMARY	56
8.1 Test Plan Objective	56
8.2 Location	56
8.3 Standard Conditions	56
8.4 Equipment	56
8.5 Specific Tests	56
8.5.1 EOA Tests	56
8.5.1.1 Power Dissipation Test	56
8.5.1.2 1553 Multiplex Bus Test	58
8.5.1.3 Spectrum Analyzer Mode Test	58
8.5.2 Linear and Rotary Position Sensor Tests	58
8.5.2.1 Null Offset Test	58
8.5.2.2 Resolution Test	58
8.5.2.3 Range Test	58
8.5.2.4 Linearity Test	58
8.5.3 Total Pressure Sensor Tests	58
8.5.3.1 Leak Test	58
8.5.3.2 Warm Up Test	58
8.5.3.3 Room Temperature Conversion Accuracy/Hysteresis Test	59
8.5.3.4 "Cold" and "Hot" Conversion Accuracy/Hysteresis Test	59
8.5.3.5 G-Sensitivity Test	59
8.5.3.6 "Creep" Test	59
8.5.4 Total Temperature Probe Tests	59
8.5.4.1 Platinum Resistor Thermometer (PRT) Element Accuracy Test	59
8.5.4.2 Initial Room Temperature Check-Out	59
8.5.4.3 Deicing Heater Operation Test	60
8.5.4.4 General Thermal Test	60
8 6 Failure Handling	4۵

9.0 TEST PROCEDURES	60
9.1 Equipment	60
9.2 EOA Functional Operation Test	61
9.2.1 Power Dissipation Test	61
9.2.2 1553 Multiplex Bus Test	61
9.2.3 EOA Spectrum Analyzer Mode Test	61
9.3 Stabilizer Sensor Test Procedure	62
9.3.1 General Preparation	62
9.3.2 Null Offset Test	62
9.3.3 Resolution Test	62
9.3.4 Range Test	63
9.3.5 Linearity Test	63
9.4 Rudder Sensor Test Procedure	64
9.5 Pitch Stick Sensor Procedure	64
9.6 Rudder Pedal Sensor Test Procedure	64
9.7 Trailing Edge Flap Sensor Test Procedure	64
9.7.1 General Preparation	64
9.7.2 Null Offset Test	65
9.7.3 Resolution Test	65
9.7.4 Range Test	65
9.7.5 Linearity Test	66
9.8 Leading Edge Flap Sensor Test Procedure	67
9.9 Power Lever Control Sensor Test Procedure	67
9.10 Nose Wheel Steering Sensor Test Procedure	67
9.11 Total Pressure Sensor Test Procedure	67
9.11.1 General Preparation	67
9.11.2 Leak Test	68
9.11.3 Warm Up Test	68
9.11.4 Room Temperature Conversion Accuracy/Hysteresis Test	68
9.11.5 "Cold" and "Hot" Conversion Accuracy/Hysteresis Test	69
9.11.6 G—Sensitivity Test	69
9.11.7 "Creep" Test	69
9.11.8 "Jitter"/Short-Term Stability Test	70
9.11.9 Humidity Sensitivity Test	70
	70
9.12.1 Platinum Resistor Thermometer (PRT) Element Accuracy Test	70
9.12.2 Initial Room Temperature Check-Out of PRT and TRD Interfaces	71
9.12.3 Deicing Heater Operation Test	72
	72
O DATA SHEETS	72

FOCSI EOA Environmental Test Plan	99
11.0 SCOPE	99
12.0 APPLICABLE DOCUMENTS	99
12.1 McDonnell Douglas Corporation Documents	99
12.2 Government Documents	99
13.0 SUMMARY	99
13.1 Test Plan Objective	99
13.2 Location	99
13.3 Standard Conditions	99
13.4 Equipment	99
13.5 Specific Tests	100
13.5.1 Functional Test	100
13.5.2 Monitor Test	100
13.5.3 Vibration Test	100
13.5.4 Thermal Test	100
13.5.5 Altitude Test Procedure	100
13.5.6 Electromagnetic Interference Test	100
13.5.7 Final Verification Test	100
13.6 Failure Handling	100
14.0 TEST PROCEDURES	101
14.1 Equipment	101
14.2 Functional Test Procedure (Used during the environmental tests. Not a stand alone test.)	101
14.3 Vibration Test Procedure	101
14.3.2 Resonance Survey Test	102
14.3.3 Performance Random Vibration Test	102
14.3.4 Minimum Structural Rigidity Random Vibration Test	102
14.4 Thermal Test Procedure	104
14.5 Altitude Test Procedure	104
14.6 Electromagnetic Interference Test Procedure	105
14.7 Final Verification Test Procedure	105
15 A DATA CHEETC	10"

TABLE OF CONTENTS DATA SHEETS

EOA and Sensor Optic Test Plan Data Sheets	
5.1 WDM ANALOG and DIGITAL SOURCE TEST DATA SHEET	. 25
5.2 WDM TRD SOURCE TEST DATA SHEET	. 28
5.3 WDM ANALOG and DIGITAL RECEIVER TEST DATA SHEET	29
5.4 WDM TRD RECEIVER TEST DATA SHEET	29
5.5 STABILIZER SENSOR DATA SHEET	30
5.6 RUDDER SENSOR DATA SHEET	33
5.7 PITCH STICK SENSOR DATA SHEET	36
5.8 RUDDER PEDAL SENSOR DATA SHEET	38
5.9 TRAILING EDGE FLAP SENSOR DATA SHEET	41
5.10 LEADING EDGE FLAP SENSOR DATA SHEET	43
5.11 POWER LEVER CONTROL SENSOR DATA SHEET	46
5.13 NOSE WHEEL STEERING SENSOR DATA SHEET	49
5.14 TOTAL PRESSURE SENSOR DATA SHEET	51
5.15 TOTAL TEMPERATURE SENSOR DATA SHEET	53
EOA and Sensor Integration Test Plan Data Sheets	
10.1 EOA FUNCTIONAL OPERATION DATA SHEET	73
10.2 STABILIZER SENSOR DATA SHEET	74
10.3 RUDDER SENSOR DATA SHEET	76
10.4 PITCH STICK SENSOR DATA SHEET	78
10.5 RUDDER PEDAL SENSOR DATA SHEET	80
10.6 TRAILING EDGE FLAP SENSOR DATA SHEET	82
10.7 LEADING EDGE FLAP SENSOR DATA SHEET	84
10.8 POWER LEVER CONTROL SENSOR DATA SHEET	86
10.9 NOSE WHEEL STEERING SENSOR DATA SHEET	88
10.10 TOTAL PRESSURE SENSOR DATA SHEET	
10.11 TOTAL TEMPERATURE PROBE DATA SHEET	97
EOA Environmental Test Plan Data Sheets	
15.1 VIBRATION TEST DATA SHEET	106
15.2 THERMAL TEST DATA SHEET	100
15.3 ALTITUDE TEST DATA SHEET	107
15.4 ELECTROMAGNETIC INTERFERENCE TEST DATA SHEET	109
15.5 FINAL VERIFICATION TEST DATA SHEET (RUDDER PEDAL SENSOR)	110
The second secon	110

FOCSI EOA and Sensor Optic Test Plan Rev. 4/15/93

1.0 SCOPE

This test plan establishes the documents, equipment, and procedures necessary to verify the optical performance of the McDonnell Douglas Corporation (MDC) Fiber Optic Control System Integration (FOCSI) Electro-Optic Architecture (EOA) and the FOCSI Fiber Optic Sensors.

2.0 APPLICABLE DOCUMENTS

The following documents of the issue shown form a part of this test plan to the extent specified.

2.1 McDonnell Douglas Corporation Documents

WS-AD-3239 Electro-optic Architecture Procurement Specification Rev. A

WS-AD-3238 Fiber Optic Sensor Procurement Specification Rev. A

EOA Interface Control Document (ICD) 21 May 1991 (FOCSI Electro-Optic Architecture ICD)

Stabilizer Sensor Interface Control Document (ICD) (FOCSI Fiber Optic Sensor ICD)

Rudder Sensor ICD (FOCSI Fiber Optic Sensor ICD)

Pitch Stick Sensor ICD (FOCSI Fiber Optic Sensor ICD)

Rudder Pedal Sensor ICD (FOCSI Fiber Optic Sensor ICD)

Trailing Edge Flap Sensor ICD (FOCSI Fiber Optic Sensor ICD)

Leading Edge Flap Sensor ICD (FOCSI Fiber Optic Sensor ICD)

Power Lever Control Angle Sensor ICD (FOCSI Fiber Optic Sensor ICD)

Nose Wheel Steering Sensor ICD (FOCSI Fiber Optic Sensor ICD)

Total Pressure Sensor ICD (FOCSI Fiber Optic Sensor ICD)

Air Data Temperature Sensor ICD 13 March 1991 (FOCSI Fiber Optic Sensor ICD)

3.0 SUMMARY

3.1 Test Plan Objective

The objective of the test is to verify the optical performance of the EOA and the sensors. This will be accomplished by comparing the optic performance of the EOA and sensors to the expected performance listed in the corresponding Procurement Specifications and ICDs.

3.2 Location

All tests will be performed at the MDC Avionics Laboratories or Environmental Test Facilities.

3.3 Standard Conditions

All tests shall be performed at prevailing laboratory temperatures, barometric pressures, and humidities unless otherwise specified.

3.4 Equipment

The test equipment consists of commercially available equipment and is listed in Table I. The equipment setup is shown in Figure 1.

3.5 Specific Tests

3.5.1 EOA Tests

3.5.1.1 WDM Analog and Digital Source Tests

3.5.1.1.1 Allowed Power Variation with Wavelength and Time Test

The source power must not vary greatly over wavelength or time so the sensors are provided with a stable power source. Examining the source fluctuations at power up and at another time many minutes after power up will determine the power variation with wavelength and time.

3.5.1.1.2 Repeatability Test

The source power must be repeatable each time it is used so the sensors are provided with a consistent power source. Comparing the source power values between a powered up state and other powered up states will determine the repeatability of the source.

3.5.1.1.3 Minimum Power Spectral Density Test

The source must provide sufficient power for the sensors to operate correctly. Examining the minimum power of the full strength source will determine the minimum power spectral density.

3.5.1.1.4 Wavelength Range Test

The source must produce power in the wavelengths needed to excite the sensors. Examining the minimum and maximum wavelengths which meet the minimum power spectral density will determine if the correct wavelength range is produced.

3.5.1.1.5 Maximum Excitation Off Leakage Allowed Test

A source which is off must not leak enough power to excite the sensors. Comparing the power generated when the source is on with the power generated when the source is off will determine if the excitation off leakage is below the maximum value allowed.

3.5.1.1.6 Repetition Rate and Source Duty Factor Test

The source must produce pulsed excitation to allow the receiver to transfer information during the source off time. The source on time affects the resolution of the sensor while the frequency of the excitation affects the maximum update rate of the sensor. Examining the period and the on and off times of the excitation will determine the repetition rate and source duty factor.

3.5.1.1.7 Required Rise and Fall Time Test

The pulsed source must produce quick on/off transitions so a source which is slow to turn on does not fail to excite the sensors or so a source which is slow to turn off does not continue to excite the sensors. Examining a rising and falling edge will determine the rise and fall times.

Optic Test Configuration for the Following Sensors (100/120/138 fiber):

Optic Test Configuration for the Temperature Sensor (200/220/235 fiber):

Note: 1. The photodiode/oscilloscope and the signal analyzer detectors can be used to test both the source and the sensor; the positions in the above diagrams are just examples.2. The optic cable line lengths so not represent relative or specific lengths.

Optic Testing Configuration Figure 1

3.5.1.2 WDM Analog and Digital Receiver and WDM TRD Receiver Tests

3.5.1.2.1 Saturation and Noise Level Test

The receiver is able to decode sensor signals if the signals are within the power density range of the receiver. Decreasing the power to the receiver while monitoring the power to the receiver as the receiver output signal changes from being clipped due to receiver saturation to not being clipped will determine the saturation level of the receiver.

Increasing the power to the receiver while monitoring the power to the receiver as the receiver output signal changes from containing noise from the receiver noise level to containing no noise from the receiver noise level will determine the noise level of the receiver.

3.5.1.2.2 Dark Current Level Test

The receiver has a noise level due to electron excitation which is dependent upon temperature even when there is no signal into the receiver. This noise level is the dark current. After the receiver has reached its operating temperature, examining the power reported by the receiver when there is no input to the receiver will determine the dark current level of the receiver.

3.5.1.3 WDM TRD Source Tests

3.5.1.3.1 Minimum Peak Power Test

The source must provide sufficient power for the sensors to operate correctly. Examining the smallest peak power of a full strength source will determine the minimum peak power.

3.5.1.3.2 Wavelength Range Test

The source must produce power in the wavelengths needed to excite the sensors. Examining the minimum and maximum wavelengths which meet the minimum peak power will determine if the correct wavelength range is produced.

3.5.1.3.3 Maximum Repetition Rate Test

The frequency of the sinusoidal source must be sufficient to maintain an adequate update rate but must not be too great so the sensor is saturated. Examining the period of the sine wave source will determine the maximum repetition rate.

3.5.1.3.4 Minimum Source Modulation Depth Test

The maximum strength to minimum strength range of the source determines the amount of source adjustment that can be performed to account for problems with attenuation or saturation in the system. Examining the power at the maximum source strength and at the minimum source strength will determine the source modulation depth.

3.5.2 Sensor Tests

3.5.2.1 Sensor Insertion Loss Test

The power attenuation of the sensor must not cause the sensor output to be in the receiver noise level. For the digital sensors, the insertion loss is calculated for the sensor signal wavelength. For the analog sensors, the insertion loss is calculated for the signal and reference wavelengths. Comparing the optic power output of the source and cables with the optic power output of the source, cables, and sensor will determine the sensor insertion loss.

3.5.2.2 Contrast Ratio Test

For digital sensors, the power leakage between the high and low signals within one channel must not interfere with the ability of the receiver to distinguish between high and low states. Comparing the maximum and minimum optic power output in each sensor channel will determine the contrast ratio of the sensor.

3.5.2.3 Dynamic Range Test

For analog sensors, the dynamic range of the sensor signal must be large enough and at the correct levels so the receiver can decode the sensor signal. Comparing the difference between the maximum and minimum optic power output at the signal wavelength while normalizing with respect to the reference wavelength will determine the dynamic range of the sensor.

3.5.2.4 Reference Integrity Test

For analog sensors, the reference path must reject interfering signals from the signal path. Reference integrity is a measure of this interchannel crosstalk. If the sensor reference is not corrupted and the dynamic range is sufficient, the receiver will be able to distinguish the various levels of the signal. Examining the variation of the reference wavelength power at the maximum and minimum sensor signals will determine the integrity of the reference signal.

3.5.2.5 Signal Duration Test

For time rate of decay sensor, the sensor signal duration is the amount of time the sensor outputs a meaningful signal while the source is off. The sensor must output a sufficient signal length so the receiver is able to read and decode the sensor signal. Monitoring the length of time the sensor signal continues to be output after the source pulse is off will determine the signal duration.

3.5.2.6 Channel Characteristics Test

The sensor must have proper channel characteristics so the sensor signal can be decoded properly. Examining the sensor signal on an optic signal analyzer will determine various signal characteristics: the number of channels, the center frequency of the channels, the width of the channels, the operation of the subchannels, and the spectral range of the set of channels.

3.5.2.7 Power Conversion Efficiency Test

For the time rate of decay sensor, comparing the optic power entering the sensor with the modulated optic power output by the sensor will determine the efficiency of the sensor at converting source power to signal power.

3.5.2.8 Excitation to Signal Delay Test

For the time rate of decay sensor, comparing the timing of changes in the source power with the timing of changes in the sensor output signal will determine the source excitation to sensor signal delay.

3.6 Failure Handling

Failures during the test procedure will be recorded, analyzed, and corrected. For a failure, the remaining portion of the current test will be completed provided the unit under test will not be damaged, a correction will be implemented, and the failed test will be repeated.

4.0 TEST PROCEDURES

4.1 Equipment

Table I
Optic Test Plan Equipment List

ITEM	DESCRIPTION	MANUFACTURER AND MODEL	RANGE	ACCURACY
1	FOCSI Test PC – IBM Clone PC (386) 1553 Interface Board	DTK MDC		
2	Optical Signal Analyzer	Anritsu MS9030A Display MS9701B Analyzer		
3	Optical Attenuator	Photodyne 1950XR		Tark 1
4	Photodiode Detector	Mitsubishi Electric FU-04-PD-N	850nm	Sensitivity 0.55 A/W
5	Digital Storage Oscilloscope	Tektronix 2432		

4.2 WDM Analog and Digital Source Test

4.2.1 General Preparation for Optic Signal Analyzer Tests

- 4.2.1.1 Connect together the EOA, the 100/120/138 optic fiber cables, the sensor, and the optic signal analyzer detector to test the source as shown in Figure 1.
- 4.2.1.2 All optic connections are assumed to be clean, low loss connections using proper methods.

4.2.2 Allowed Power Variation with Wavelength and Time Test (Part I)

4.2.2.1 Procedure (Part I)

4.2.2.1.1 Immediately after the EOA is turned on, record the source power at 750nm, 765nm, 780nm, 795nm, 810nm, 825nm, 840nm, 855nm, 870nm, 885nm, and 900nm. Print the graph of the spectrum.

4.2.2.2 Data Evaluation and Expected Results

4.2.2.2.1 The variations in power in the same wavelengths determine the power variation with time while the variations in power in one spectrum over different wavelengths determine the power variation with wavelength. This section, 4.2.2, along with sections 4.2.4 and 4.2.6 make up the Allowed Power Variation with Wavelength and Time Test. See section 4.2.6 for the expected results.

4.2.3 Repeatability Test (Part I)

4.2.3.1 Procedure (Part I)

4.2.3.1.1 After the EOA has been ON for at least five minutes, record the source power at 750nm, 775nm, 800nm, 825nm, 850nm, 875nm, and 900nm. Print the graph of the spectrum.

4.2.3.2 Data Evaluation and Expected Results

4.2.3.2.1 The variations in power at similar wavelengths determine the source repeatability. This section, 4.2.3, along with sections 4.2.7 and 4.2.9 make up the Repeatability Test. See section 4.2.9 for the expected results.

4.2.4 Allowed Power Variation with Wavelength and Time Test (Part II)

4.2.4.1 Procedure (Part II)

4.2.4.1.1 After the EOA has been ON for at least ten minutes, record the source power at 750nm, 765nm, 780nm, 795nm, 810nm, 825nm, 840nm, 855nm, 870nm, 885nm, and 900nm. Print the graph of the spectrum.

4.2.4.2 Data Evaluation and Expected Results

4.2.4.2.1 The variations in power in the same wavelengths determine the power variation with time while the variations in power in the same spectrum over different wavelengths determine the power variation with wavelength. This section, 4.2.4, along with sections 4.2.2 and 4.2.6 make up the Allowed Power Variation with Wavelength and Time Test. The power variations between sections 4.2.2 and 4.2.4 are due to EOA warm up.

4.2.5 Minimum Power Spectral Density Test

4.2.5.1 Procedure

4.2.5.1.1 With the source at full power, record the minimum power output and the wavelength at which it occurs. Print the graph of the spectrum.

4.2.5.2 Data Evaluation and Expected Results

4.2.5.2.1 The minimum power per unit wavelength over the spectrum range is the minimum power spectral density. The source must produce at least the minimum power spectral density so there is enough power for the sensors. The minimum power spectral density is listed in the EOA ICD and data sheet.

4.2.6 Allowed Power Variation with Wavelength and Time Test (Part III)

4.2.6.1 Procedure (Part III)

4.2.6.1.1 After the EOA has been ON for at least twenty minutes, record the source power at 750nm, 765nm, 780nm, 795nm, 810nm, 825nm, 840nm, 855nm, 870nm, 885nm, and 900nm. Print the graph of the spectrum.

4.2.6.2 Data Evaluation and Expected Results

4.2.6.2.1 The variations in power in the same wavelengths determine the power variation with time while the variations in power in the same spectrum over different wavelengths determine the power variation with wavelength. This section, 4.2.6, along with sections 4.2.2 and 4.2.4 make up the Allowed Power Variation with Wavelength and Time Test. The power variations between sections 4.2.4 and 4.2.6 are normal operating variations. The power variation over time and over the wavelength range is limited so the sensors will be supplied with a consistent and stable power source. The allowed power variation with wavelength and time is listed in the EOA ICD and the data sheet.

4.2.7 Repeatability Test (Part II)

4.2.7.1 Procedure (Part II)

4.2.7.1.1 Remove power from the EOA for fifteen minutes. Restore power to the EOA, and after five minutes, record the source power at 750nm, 775nm, 800nm, 825nm, 850nm, 875nm, and 900nm. Print the graph of the spectrum.

4.2.7.2 Data Evaluation and Expected Results

4.2.7.2.1 The variations in power at similar wavelengths determine the source repeatability. This section, 4.2.7, along with sections 4.2.3 and 4.2.9 make up the Repeatability Test. See section 4.2.9 for the data evaluation and expected results.

4.2.8 Wavelength Range Test

4.2.8.1 Procedure

4.2.8.1.1 Record the short and long wavelengths which mark the range of the source power which meets the minimum power spectral density requirement. Print the graph of the spectrum.

4.2.8.2 Data Evaluation and Expected Results

4.2.8.2.1 The source must supply sufficient power over the wavelength range to satisfy the input power requirements of the sensors. The minimum and maximum wavelengths are listed in the EOA ICD and the data sheet.

4.2.9 Repeatability Test (Part III)

4.2.9.1 Procedure (Part III)

4.2.9.1.1 Remove power from the EOA for fifteen minutes. Restore power to the EOA, and after five minutes, record the source power at 750nm, 775nm, 800nm, 825nm, 850nm, 875nm, and 900nm. Print the graph of the spectrum.

4.2.9.2 Data Evaluation and Expected Results

4.2.9.2.1 The variations in power at similar wavelengths determine the source repeatability. Find the largest difference between the three power values at each wavelength from sections 4.2.3, 4.2.7, and 4.2.9. The source wavelength averaged power must be repeatable from use to use to provide the sensors with a consistent power source. This section, 4.2.9, along with sections 4.2.3 and 4.2.7 make up the Repeatability Test. The repeatability value is listed in the EOA ICD and the data sheet.

4.2.10 General Preparation for Photodiode/Oscilloscope Tests

- 4.2.10.1 Connect together the EOA, the 100/120/138 optic fiber cables, the sensor, and the photodiode and oscilloscope detector to test the source as shown in Figure 1.
- 4.2.10.2 All optic connections are assumed to be clean, low loss connections using proper methods.

4.2.11 Maximum Excitation Off Leakage Allowed Test

4.2.11.1 Procedure

4.2.11.1.1 Record the photodiode detector resistor value and the sensitivity to be able to calculate the optic power per volt gain of the photodiode detector.

- 4.2.11.1.2 During the source ON time, print the waveform with the minimum power per unit wavelength over the spectrum range. Record the minimum power per unit wavelength. This is the source ON minimum power spectral density.
- 4.2.11.1.3 During the source OFF time, print the waveform with the maximum power per unit wavelength over the spectrum range. Record the maximum power per unit wavelength. This is the source OFF maximum power spectral density.

4.2.11.2 Data Evaluation and Expected Results

4.2.11.2.1 The excitation off leakage is the maximum power spectral density of the OFF source. The maximum excitation off leakage allowed is 20dB below the minimum power spectral density of the ON source to prevent an Off source from exciting the sensors. The maximum excitation off leakage allowed is listed in the EOA ICD and the data sheet.

4.2.12 Repetition Rate and Source Duty Factor Test

4.2.12.1 Procedure

- 4.2.12.1.1 Save a waveform which shows 10 to 100 source pulses but is still able to magnify one pulse to determine its period. The oscilloscope resolution must be small enough to accurately show the period of the single pulse. The group of pulses is to show the single pulse is a typical pulse. Record the period of the single pulse. Print the graphs of the group of pulses and the magnification of the single pulse.
- 4.2.12.1.2 For the single pulse, record the source on time and the source off time.

4.2.12.2 Data Evaluation

4.2.12.2.1 The period of one typical pulse determines the frequency of the source; take the inverse of the period to determine the repetition rate, the number of source pulses per second.

The ratio of the time the source is on to the total period time is the source duty factor.

Duty Factor(in %) = (Source ON Time / (Source ON Time + Source OFF Time)) X 100

4.2.12.3 Expected Results

4.2.12.3.1 The source produces pulsed excitation to allow the receiver to deliver sensor information during the source off time. The source must produce a consistent repetition rate to ensure a sufficient update rate for decoding sensor information. The source duty factor must be large enough to ensure proper resolution and information transfer. The source on time determines the receiver resolution of the sensor signal while the source off time must be sufficient to allow the receiver to transfer the sensor information. The repetition rate and duty factor are listed in the EOA ICD and the data sheet.

4.2.13 Required Rise and Fall Time Test

4.2.13.1 Procedure

4.2.13.1.1 Save a waveform which shows one rising edge of the power ON transition and one falling edge of the power OFF transition. On the rising edge, record the rise time between 10% and 90% source power. On the falling edge, record the fall time between 90% and 10% source power. Print the graph of the rising and falling edges.

4.2.13.2 Data Evaluation and Expected Results

4.2.13.2.1 The rise and fall times determine the sharpness of the source on and off transitions. The rise and fall times must be less than 100ns to ensure the source provides relatively instantaneous full on power or full off power to the sensors. This prevents the sensors from receiving insufficient power when the source is on and too much power when the source is off which could result in ambiguous sensor values. The rise and fall times are listed in the EOA ICD and the data sheet.

4.3 WDM TRD Source Test

4.3.1 General Preparation for Optic Signal Analyzer Tests

- 4.3.1.1 Connect together the EOA, the 200/220/235 optic fiber cables, the optic coupler, the sensor, and the optic signal analyzer detector to test the source as shown in Figure 1.
- 4.3.1.2 All optic connections are assumed to be clean, low loss connections using proper methods.
- 4.3.2 Minimum Peak Power Test
- 4.3.2.1 Procedure
- 4.3.2.1.1 While the source is set to produce its maximum strength power output, record the smallest peak power output by the source. Print the graph of the source spectrum.
- 4.3.2.2 Data Evaluation and Expected Results
- 4.3.2.2.1 The source must produce at least the minimum peak power so there is enough power for the sensor. The minimum peak power is listed in the EOA ICD and the data sheet.
- 4.3.3 Wavelength Range Test
- 4.3.3.1 Procedure
- 4.3.3.1.1 Record the short and long wavelengths which mark the range of the source power which meets the minimum peak power requirement. Print the graph of the spectrum.
- 4.3.3.2 Data Evaluation and Expected Results
- 4.3.3.2.1 The source must supply sufficient power in the wavelength range to satisfy the input power requirements of the sensor. For this TRD sensor, the power can be concentrated in a portion of the range and does not have to be distributed over the full range. The minimum and maximum wavelengths are listed in the EOA ICD and the data sheet.

4.3.4 General Preparation for Photodiode/Oscilloscope Tests

- 4.3.4.1 Connect together the EOA, the 200/220/235 optic fiber cables, the optic coupler, the sensor, and the photodiode and oscilloscope detector to test the source as shown in Figure 1.
- 4.3.4.2 All optic connections are assumed to be clean, low loss connections using proper methods.
- 4.3.5 Maximum Repetition Rate Test
- 4.3.5.1 Procedure
- 4.3.5.1.1 Save a waveform which shows 10 to 100 sinusoidal source periods but is still able to magnify one period. The oscilloscope resolution must be small enough to accurately show the period of the sine wave. The group of periods is to show the single period is a typical period. Record the period. Print the graphs of the group of periods and the magnification of the single period.

4.3.5.2 Data Evaluation and Expected Results

4.3.5.2.1 The frequency of one typical period determines the frequency of the source; take the inverse of the single period to determine the repetition rate, the number of source periods per second. The source produces constant sinusoidal excitation, and the receiver decodes sensor information from the phase shift difference between the source and sensor signal. The source must produce a specific and consistent repetition rate to ensure a sufficient update rate for decoding sensor information while not saturating the sensor. The maximum repetition rate is listed in the EOA ICD and the data sheet.

4.3.6 General Preparation for Lab Test PC / EOA Signal Analyzer Mode Tests

- 4.3.6.1 Connect together the EOA, the 200/220/235 optic fiber cables, the optic coupler, the sensor, and the FOCSI Test PC to test the source as in Figure 1 (substitute the lab test PC for the photodiode and oscilloscope detector).
- 4.3.6.2 All optic connections are assumed to be clean, low loss connections using proper methods.
- 4.3.6.3 Use the FOCSI Test PC to place the EOA in the signal analyzer mode.
- 4.3.7 Minimum Source Modulation Depth Test
- 4.3.7.1 Procedure
- 4.3.7.1.1 Use the FOCSI Test PC to adjust the EOA source LED current to its maximum strength. Print the spectrum.
- 4.3.7.1.2 Use the FOCSI Test PC to adjust the EOA source LED current to its minimum strength. Print the spectrum.
- 4.3.7.1.3 Record the wavelength of the smallest change in power output between the maximum and minimum LED current spectrums, and record the maximum and minimum values at that wavelength.
- 4.3.7.2 Data Evaluation
- 4.3.7.2.1 The source modulation depth (SMD) is the difference in power the source outputs at its maximum LED current strength and at its minimum LED current strength.
 SMD = Power During Max. LED Current Power During Min. LED Current

4.3.7.3 Expected Results

4.3.7.3.1 The minimum source modulation depth determines the amount of source current adjustment available to correct various problems in the system. The problems may deal with the sensor, receiver, interconnecting cables, or other items which affect optic attenuation and saturation. The minimum source modulation depth is listed in the EOA ICD and in the data sheet. Due to source LED behavior, the source spectrum shape will not remain constant as the LED current is varied.

4.4 WDM Analog and Digital Receiver Test

4.4.1 General Preparation

4.4.1.1 Connect together the EOA, the 100/120/138 optic fiber cables of one sensor port, the variable optic attenuator, and the FOCSI Test PC as shown in the analog and digital receiver test setup shown in Figure 2.

- 4.4.1.2 Adjust the source to maximum output and the attenuator to zero loss.
- 4.4.1.3 Configure the EOA to Spectrum Analyzer Mode, and adjust the FOCSI Test PC display to monitor the port showing the input from the attenuator.

WDM Analog and Digital Receiver Test Setup

4.4.2 Saturation and Noise Level Test

4.4.2.1 Procedure

- 4.4.2.1.1 Starting from zero attenuation, increase the attenuation until the receiver shows an entire source signal which is not clipped due to receiver saturation.
- 4.4.2.1.2 Record the port number, the maximum power level reported by the receiver on the FOCSI Test PC when the receiver shows an entire source signal which is not clipped due to receiver saturation, and the wavelength of the maximum power level.
- 4.4.2.1.3 Continue to increase the attenuation until the receiver noise level is evident in the source signal.

 Decrease the attenuation until there is no noise in the source signal.
- 4.4.2.1.4 Record the minimum power level reported by the receiver on the FOCSI Test PC when the receiver shows a source signal which does not contain noise from the receiver noise level, and record the wavelength of the minimum power level.

4.4.2.2 Data Evaluation and Expected Results

4.4.2.2.1 The values obtained for the saturation and noise levels should be equal to the EOA ICD values of Maximum Digital Signal Power Density and Minimum Analog Signal Power Density respectively. Those values are given in the data sheet as well as the EOA ICD. The mixture of digital and analog signal power density is used since they define the largest receiver input range and the test signal is not used as an analog or digital signal.

4.4.3 Dark Current Level Test

4.4.3.1 Procedure

4.4.3.1.1 Disconnect the attenuator from the EOA and cap the EOA optic signal receive connector, J1.

4.4.3.1.2 Record the maximum power level reported by the receiver on the FOCSI Test PC when the EOA port has no input, and record the wavelength of the maximum power.

4.4.3.2 Data Evaluation and Expected Results

4.4.3.2.1 The value obtained for dark current is only for information. The EOA ICD does not specify an expected value for the dark current. Dark current is expected to be temperature dependent.

4.5 WDM TRD Receiver Test

4.5.1 General Preparation

- 4.5.1.1 Connect together the EOA, the 200/220/235 optic fiber cables of the TRD sensor port, the variable optic attenuator, the 800nm source which simulates the sensor signal, and the FOCSI Test PC as shown in the TRD receiver test setup shown in Figure 2.
- 4.5.1.2 Adjust the source to maximum output and the attenuator to zero loss.
- 4.5.1.3 Configure the EOA to Spectrum Analyzer Mode, and adjust the FOCSI Test PC display to monitor the port showing the input from the attenuator.

4.5.2 Saturation and Noise Level Test

4.5.2.1 Procedure

- 4.5.2.1.1 Starting from zero attenuation, increase the attenuation until the receiver shows an entire source signal which is not clipped due to receiver saturation.
- 4.5.2.1.2 Record the port number, the maximum power level reported by the receiver on the FOCSI Test PC when the receiver shows an entire source signal which is not clipped due to receiver saturation, and the wavelength of the maximum power level.
- 4.5.2.1.3 Continue to increase the attenuation until the receiver noise level is evident in the source signal.

 Decrease the attenuation until there is no noise in the source signal.
- 4.5.2.1.4 Record the minimum power level reported by the receiver on the FOCSI Test PC when the receiver shows a source signal which does not contain noise from the receiver noise level, and record the wavelength of the minimum power level.

4.5.2.2 Data Evaluation and Expected Results

4.5.2.2.1 The values obtained for the saturation and noise levels should be equal to the EOA ICD values of Maximum Signal Power Density and Minimum Signal Power Density respectively. Those values are given in the data sheet as well as the EOA ICD.

4.5.3 Dark Current Level Test

4.5.3.1 Procedure

- 4.5.3.1.1 Disconnect the attenuator from the EOA and cap the EOA optic receive connector, J1.
- 4.5.3.1.2 Record the maximum power level reported by the receiver on the FOCSI Test PC when the EOA port has no input, and record the wavelength of the maximum power.

4.5.3.2 Data Evaluation and Expected Results

4.5.3.2.1 The value obtained for dark current is only for information. The EOA ICD does not specify an expected value for the dark current. Dark current is expected to be temperature dependent.

4.6 Stabilizer Sensor Test Procedure

- 4.6.1 General Preparation
- 4.6.1.1 Use the optic signal analyzer to perform the tests unless different test equipment is specified.
- 4.6.1.2 Prepare the optic signal analyzer to analyze signals in the 750 to 900 nm range. This range of wavelengths will be assumed in all tests.
- 4.6.1.3 Connect together the optic source, sensor, and signal analyzer with optic cables as shown in Figure 1. This setup will be the same for all tests unless stated otherwise.
- 4.6.1.4 All optic connections are assumed to be clean, low loss connections using proper methods.
- 4.6.1.5 Sensor measurements will include the effects of both mating halves of the connectors attached to the sensor while cable and connector losses outside of the sensor are to be about 3.0dB (or more).

4.6.2 Sensor Insertion Loss Test

- 4.6.2.1 Procedure
- 4.6.2.1.1 At the sensor output cable, print the spectrum of the sensor power output in the 750 to 900 nm wavelength range. Record the wavelengths and sensor power values at the sensor peaks.
- 4.6.2.1.2 Remove the sensor from the source to signal analyzer path and connect the optic cables together.
- 4.6.2.1.3 At the same point in 4.6.2.1.1, print the spectrum of source power output in the 750 to 900 nm wavelength range. Record the source power values at the wavelengths of the sensor peaks.
- 4.6.2.2 Data Evaluation
- 4.6.2.2.1 The sensor insertion loss (IL) for a wavelength (λ_i) is the attenuation of the sensor at that wavelength given by the formula

Sensor IL = Source power at λ_i - Sensor power λ_i

For each wavelength which is a peak in the sensor power output, calculate the sensor insertion loss at that wavelength. Then, find the average of the insertion losses which is the insertion loss for the sensor.

The sensor insertion loss must be small enough to prevent the sensor signal from sinking into the noise level of the receiver.

- 4.6.2.3 Expected Results
- 4.6.2.3.1 The maximum sensor insertion loss is listed in the sensor ICD and data sheet.
- 4.6.3 Contrast Ratio Test
- 4.6.3.1 Procedure
- 4.6.3.1.1 Locate the sensor value where each bit is the same (e.g. 111111111111), and print the graph of the sensor output pattern. (Note: The first channel is for synchronization so it will always be a one.) This is the worst case position to calculate the contrast ratio since the subchannel pattern (the channels are differential) is alternating high and low signals which eliminates any greater or lesser than normal power readings due to high or low signals being next to each other, and it accounts for crosstalk.

4.6.3.1.2 At the output of the sensor, record the power of the high and low signals in each channel.

4.6.3.2 Data Evaluation

4.6.3.2.1 The contrast ratio is given by the formula

Contrast Ratio = Max. channel power – Min. channel power.

Calculate the contrast ratio for each channel, and record the minimum contrast ratio.

The contrast ratio must be large enough so the receiver can distinguish between high and low signals with no ambiguity.

4.6.3.3 Expected Results

4.6.3.3.1 The minimum contrast ratio is listed in the sensor ICD and data sheet.

4.6.4 Channel Characteristics Test

4.6.4.1 Procedure

- 4.6.4.1.1 Record the sensor value used as the typical sensor signal viewed on the optic signal analyzer to determine the following.
- 4.6.4.1.2 Record the number of discrete wavelength bands (channels) used to transmit sensor data.
- 4.6.4.1.3 Record the wavelength of the beginning of the first and the end of the last channel.
- 4.6.4.1.4 Record the widths of all channels.
- 4.6.4.1.5 Record the widths of the obvious guardbands, the low band between adjacent high subchannels.

4.6.4.2 Data Evaluation

4.6.4.2.1 The number of channels, the channel locations, the widths of the channels, and the widths of the guard bands must be consistent with the values given in the sensor ICD in order for the EOA to correctly interpret the sensor signals.

4.6.4.3 Expected Results

4.6.4.3.1 The number, location, and widths of the channels and the widths of the guardbands are given in the sensor ICD and data sheet.

4.7 Rudder Sensor Test Procedure

4.7.1 Perform test procedure 4.6 for the Rudder Sensor.

4.8 Pitch Stick Sensor Procedure

4.8.1 General Preparation

- 4.8.1.1 Use the optic signal analyzer to perform the tests unless different test equipment is specified.
- 4.8.1.2 Prepare the optic signal analyzer to analyze signals in the 750 to 900 nm range. This range of wavelengths will be assumed in all tests.
- 4.8.1.3 Connect together the optic source, sensor, and signal analyzer with optic cables as shown in Figure 1. This setup will be the same for all tests unless stated otherwise.

- 4.8.1.4 All optic connections are assumed to be clean, low loss connections using proper methods.
- 4.8.1.5 Sensor measurements will include the effects of both mating halves of the connectors attached to the sensor while cable and connector losses outside of the sensor are to be 3.0dB or less.

4.8.2 Sensor Insertion Loss Test

- 4.8.2.1 Procedure
- 4.8.2.1.1 At the sensor output cable, print the spectrum of the sensor power output in the 750 to 900 nm wavelength range. Record the wavelengths and peak values of the sensor reference and the sensor signal.
- 4.8.2.1.2 Remove the sensor from the source to signal analyzer path and connect the optic cables together.
- 4.8.2.1.3 At the same point in 4.8.2.1.1, print the spectrum of source power output in the 750 to 900 nm wavelength range. Record the source values at the wavelengths of the peak values of the sensor reference and the sensor signal.

4.8.2.2 Data Evaluation

4.8.2.2.1 The sensor insertion loss (IL) for a wavelength (λ_i) is the attenuation of the sensor at that wavelength given by the formula

Sensor IL = Source power at λ_i - Sensor power λ_i

Calculate the insertion loss for the wavelength which contains the peak of the sensor reference and for the wavelength which contains the peak of the sensor signal.

The sensor insertion loss must be small enough to prevent the sensor signal from sinking into the noise level of the receiver.

- 4.8.2.3 Expected Results
- 4.8.2.3.1 The maximum sensor insertion loss is listed in the sensor ICD and data sheet.
- 4.8.3 **Dynamic Range Test**
- 4.8.3.1 Procedure
- 4.8.3.1.1 Locate the sensor value which produces the smallest sensor signal power, print the output spectrum, and record the power levels of the peak sensor signal and the reference value at the peak sensor signal.
- 4.8.3.1.2 Locate the sensor value which produces the largest sensor signal power, print the output spectrum, and record the power levels of the peak sensor signal and the reference value at the peak sensor signal.

4.8.3.2 Data Evaluation

4.8.3.2.1 Dynamic Range, in dB with the sensor signal normalized by the reference, is given by the formula Dynamic Range = (Max. Sensor Signal Power – Reference Power at max. sensor signal) – (Min. Sensor Signal Power – Reference Power at min. sensor signal).

The lower end of the sensor dynamic range must be greater than the noise level of the sensor so valid data will be output. The upper end of the dynamic range must be less than the receiver's input dynamic range to ensure the receiver is not saturated. Sufficient dynamic range also ensures that crosstalk from the reference path to the signal path, which is actually signal wavelength light leaking through the reference path, will not affect the ability of the receiver to distinguish the various states of the sensor signal.

4.8.3.3 Expected Results

4.8.3.3.1 The minimum and maximum values of the dynamic range are given in the sensor ICD and data sheet.

4.8.4 Reference Integrity Test

4.8.4.1 Procedure

4.8.4.1.1 Use the values for the peak reference power with minimum sensor signal and maximum sensor signal recorded in the Dynamic Range Test sections 4.8.3.1.1 and 4.8.3.1.2.

4.8.4.2 Data Evaluation

- 4.8.4.2.1 The reference integrity determines the ratio of the reference variation to the reference value. This test deals with the reference wavelength power that leaks through the sensor signal path and is combined with the power from the reference path. Since the reference leakage passes through the gradient filter plate and is filtered depending upon the gradient of the plate, changes in the filter plate gradient which determine the sensor signal will also cause changes in the reference leakage. The reference leakage must be a very small fraction of the minimum reference value. The smallest reference value occurs at the smallest sensor signal value.
- 4.8.4.2.2 Reference Integrity is calculated as follows. Note the changes in units.

 Reference Variation (mW) =

Reference Power at Max. Sensor Signal(mW) – Reference Power at Min. Sensor Signal(mW). Reference Integrity (dB) = Reference Variation(dB) – Reference Power at Min. Sensor Signal(dB).

The reference variation must be small enough so that the receiver will always have a consistent reference. Sufficient reference integrity along with sufficient dynamic range will ensure that crosstalk will not affect the ability of the receiver to distinguish the various states of the sensor.

4.8.4.3 Expected Results

4.8.4.3.1 Reference integrity is given in the sensor ICD and data sheet.

4.8.5 Channel Characteristics Test

4.8.5.1 Procedure

- 4.8.5.1.1 At the sensor output, record the sensor signal pattern used as the typical sensor signal viewed on the optic signal analyzer to determine the following.
- 4.8.5.1.2 Record the number of discrete wavelength bands (channels) used to transmit sensor data.
- 4.8.5.1.3 Record the center wavelengths of the channels.
- 4.8.5.1.4 Record the widths of all channels.

4.8.5.2 Data Evaluation

4.8.5.2.1 The number of channels, the channel locations, and the widths of the channels must be consistent with the values given in the sensor ICD in order for the EOA to correctly interpret the sensor signals.

4.8.5.3 Expected Results

4.8.5.3.1 The number, location, and widths of the channels are given in the sensor ICD and data sheet.

4.9 Rudder Pedal Sensor Test Procedure

4.9.1 Perform test procedure 4.6 for the Rudder Pedal Sensor.

4.10 Trailing Edge Flap Sensor Test Procedure

4.10.1 Perform test procedure 4.8 for the Trailing Edge Flap Sensor.

4.11 Leading Edge Flap Sensor Test Procedure

4.11.1 General Preparation

- 4.11.1.1 Use the optic signal analyzer to perform the tests unless different test equipment is specified.
- 4.11.1.2 Prepare the optic signal analyzer to analyze signals in the 750 to 900 nm range. This range of wavelengths will be assumed in all tests.
- 4.11.1.3 Connect together the optic source, sensor, and signal analyzer with optic cables as shown in Figure 1. This setup will be the same for all tests unless stated otherwise.
- 4.11.1.4 All optic connections are assumed to be clean, low loss connections using proper methods.
- 4.11.1.5 Sensor measurements will include the effects of both mating halves of the connectors attached to the sensor while cable and connector losses outside of the sensor are to be 3.0dB or less.

4.11.2 Sensor Insertion Loss Test

4.11.2.1 Procedure

- 4.11.2.1.1 At the sensor output cable, print the spectrum of the sensor power output in the 750 to 900 nm wavelength range. Record the wavelengths and sensor power values at the sensor peaks.
- 4.11.2.1.2 Remove the sensor from the source to signal analyzer path and connect the optic cables together.
- 4.11.2.1.3 At the same point in 4.11.2.1.1, print the spectrum of source power output in the 750 to 900 nm wavelength range. Record the source power values at the wavelengths of the sensor peaks.

4.11.2.2 Data Evaluation

4.11.2.2.1 The sensor insertion loss (IL) for a wavelength (λ_i) is the attenuation of the sensor at that wavelength given by the formula

Sensor IL = Source power at λ_i - Sensor power λ_i

For each wavelength which is a peak in the sensor power output, calculate the sensor insertion loss at that wavelength. Then, find the average of the insertion losses which is the insertion loss for the sensor.

The sensor insertion loss must be small enough to prevent the sensor signal from sinking into the noise level of the receiver.

4.11.2.3 Expected Results

4.11.2.3.1 The maximum sensor insertion loss is listed in the sensor ICD and data sheet.

4.11.3 Contrast Ratio Test

4.11.3.1 Procedure

- 4.11.3.1.1 Locate the sensor value where each bit is the same (e.g. 111111111111), and print the graph of the sensor output pattern. (Note: The first three channels are for synchronization so they will always be a one.) This is the worst case position to calculate the contrast ratio since the subchannel pattern (the channels are differential) is alternating high and low signals which eliminates any greater or lesser than normal power readings due to high or low signals being next to each other, and it accounts for crosstalk.
- 4.11.3.1.2 At the output of the sensor, record the power of the high and low signals in each channel.
- 4.11.3.2 Data Evaluation
- 4.11.3.2.1 The contrast ratio is given by the formula

Contrast Ratio = Max. channel power – Min. channel power.

Calculate the contrast ratio for each channel, and record the minimum contrast ratio.

The contrast ratio must be large enough so the receiver can distinguish between high and low signals with no ambiguity.

- 4.11.3.3 Expected Results
- 4.11.3.3.1 The minimum contrast ratio is listed in the sensor ICD and data sheet.
- 4.11.4 Channel Characteristics Test
- 4.11.4.1 Procedure
- 4.11.4.1.1 Record the sensor value used as the typical sensor signal viewed on the optic signal analyzer. To determine the following characteristics, the widths of the three synchronization pulses can be used to determine the location of the other channels; the other channels may be difficult to identify as they may seem to run together.
- 4.11.4.1.2 Record the number of discrete wavelength bands (channels) used to transmit sensor data.
- 4.11.4.1.3 Record the wavelength of the beginning of the first and the end of the last channel.
- 4.11.4.1.4 Record the widths of all channels.
- 4.11.4.2 Data Evaluation
- 4.11.4.2.1 The number of channels, the channel locations, and the widths of the channels must be consistent with the values given in the sensor ICD in order for the EOA to correctly interpret the sensor signals.
- 4.11.4.3 Expected Results
- 4.11.4.3.1 The number, location, and widths of the channels are given in the sensor ICD and data sheet.
- 4.12 Power Lever Control Sensor Test Procedure
- 4.12.1 Perform test procedure 4.6 for the Power Lever Control Sensor.

4.13 Nose Wheel Steering Sensor Test Procedure

4.13.1 Perform test procedure 4.8 for the Nose Wheel Steering Sensor.

4.14 Total Pressure Sensor Test Procedure

- 4.14.1 General Preparation
- 4.14.1.1 Use the optic signal analyzer to perform the tests unless different test equipment is specified.
- 4.14.1.2 Prepare the optic signal analyzer to analyze signals in the 750 to 900 nm range. This range of wavelengths will be assumed in all tests.
- 4.14.1.3 Connect together the optic source, sensor, and signal analyzer with optic cables as shown in Figure 1. This setup will be the same for all tests unless stated otherwise.
- 4.14.1.4 All optic connections are assumed to be clean, low loss connections using proper methods.
- 4.14.1.5 Sensor measurements will include the effects of both mating halves of the connectors attached to the sensor while cable and connector losses outside of the sensor are to be 3.0dB or less.

4.14.2 Sensor Insertion Loss Test

- 4.14.2.1 Procedure
- 4.14.2.1.1 At the sensor output cable, print the spectrum of the sensor power output in the 750 to 900 nm wavelength range. Record the wavelengths and peak values of the sensor reference and the sensor signal.
- 4.14.2.1.2 Remove the sensor from the source to signal analyzer path and connect the optic cables together.
- 4.14.2.1.3 At the same point in 4.14.2.1.1, print the spectrum of source power output in the 750 to 900 nm wavelength range. Record the source values at the wavelengths of the peak values of the sensor reference and the sensor signal.

4.14.2.2 Data Evaluation

4.14.2.2.1 The sensor insertion loss (IL) for a wavelength (λ_i) is the attenuation of the sensor at that wavelength given by the formula

Sensor IL = Source power at λ_i – Sensor power λ_i

Calculate the insertion loss for the wavelength which contains the peak of the sensor reference and for the wavelength which contains the peak of the sensor signal.

The sensor insertion loss must be small enough to prevent the sensor signal from sinking into the noise level of the receiver.

4.14.2.3 Expected Results

4.14.2.3.1 The maximum sensor insertion loss is listed in the sensor ICD and data sheet.

4.14.3 Dynamic Range Test

- 4.14.3.1 Procedure
- 4.14.3.1.1 Locate the sensor value which produces the smallest sensor signal power, print the output spectrum, and record the power levels of the peak sensor signal and the reference value at the peak sensor signal.

4.14.3.1.2 Locate the sensor value which produces the largest sensor signal power, print the output spectrum, and record the power levels of the peak sensor signal and the reference value at the peak sensor signal.

4.14.3.2 Data Evaluation

4.14.3.2.1 Dynamic Range, in dB with the sensor signal normalized by the reference, is given by the formula

Dynamic Range = (Max. Sensor Signal Power - Reference Power at max. sensor signal) - (Min. Sensor Signal Power - Reference Power at min. sensor signal).

The lower end of the sensor dynamic range must be greater than the noise level of the sensor so valid data will be output. The upper end of the dynamic range must be less than the receiver's input dynamic range to ensure the receiver is not saturated. Sufficient dynamic range also ensures that crosstalk from the reference path to the signal path, which is actually signal wavelength light leaking through the reference path, will not affect the ability of the receiver to distinguish the various states of the sensor signal.

4.14.3.3 Expected Results

4.14.3.3.1 The minimum and maximum values of the dynamic range are given in the sensor ICD and data sheet.

4.14.4 Reference Integrity Test

4.14.4.1 <u>Procedure</u>

4.14.4.1.1 Use the values for the peak reference power with minimum sensor signal and maximum sensor signal recorded in the Dynamic Range Test sections 4.14.3.1.1 and 4.14.3.1.2.

4.14.4.2 Data Evaluation

4.14.4.2.1 The reference integrity determines the ratio of the reference variation to the reference value. This test deals with the reference wavelength power that leaks through the sensor signal path and is combined with the power from the reference path. Since the reference leakage passes through the gradient filter plate and is filtered depending upon the gradient of the plate, changes in the filter plate gradient which determine the sensor signal will also cause changes in the reference leakage. The reference leakage must be a very small fraction of the minimum reference value. The smallest reference value occurs at the smallest sensor signal value.

4.14.4.2.2 Reference Integrity is calculated as follows. Note the changes in units. Reference Variation (mW) =

Reference Power at Max. Sensor Signal(mW) – Reference Power at Min. Sensor Signal(mW). Reference Integrity (dB) = Reference Variation(dB) – Reference Power at Min. Sensor Signal(dB).

The reference variation must be small enough so that the receiver will always have a consistent reference. Sufficient reference integrity along with sufficient dynamic range will ensure that crosstalk will not affect the ability of the receiver to distinguish the various states of the sensor.

4.14.4.3 Expected Results

4.14.4.3.1 Reference integrity is given in the sensor ICD and data sheet.

4.14.5 Channel Characteristics Test

- 4.14.5.1 Procedure
- 4.14.5.1.1 At the sensor output, record the sensor signal pattern used as the typical sensor signal viewed on the optic signal analyzer to determine the following.
- 4.14.5.1.2 Record the number of discrete wavelength bands (channels) used to transmit sensor data.
- 4.14.5.1.3 Record the center wavelengths of the channels.
- 4.14.5.1.4 Record the widths of all channels.
- 4.14.5.2 Data Evaluation
- 4.14.5.2.1 The number of channels, the channel locations, and the widths of the channels must be consistent with the values given in the sensor ICD in order for the EOA to correctly interpret the sensor signals.
- 4.14.5.3 Expected Results
- 4.14.5.3.1 The number, location, and widths of the channels are given in the sensor ICD and data sheet.
- 4.15 <u>Total Temperature Test Procedure</u>
- 4.15.1 General Preparation
- 4.15.1.1 Use the optic signal analyzer to perform the tests unless different test equipment is specified.
- 4.15.1.2 Prepare the optic signal analyzer to analyze signals in the 650 to 675 nm range for the source and the 750 to 900 nm range for the sensor. These wavelength ranges will be assumed in all tests.
- 4.15.1.3 Connect together the optic source, sensor, and signal analyzer with optic cables as shown in Figure 1. This setup will be the same for all tests unless stated otherwise.
- 4.15.1.4 All optic connections are assumed to be clean, low loss connections using proper methods.
- 4.15.1.5 Sensor measurements will include the effects of both mating halves of the connectors attached to the sensor while cable and connector losses outside of the sensor are to be 3.0dB or less. If necessary, the effect of the optic coupler will be accounted for in the test procedure and data evaluation.
- 4.15.2 Signal Duration Test and Excitation to Signal Delay Test
- 4.15.2.1 Procedure
- 4.15.2.1.1 To perform this test, use the photodiode and oscilloscope as the detector.
- 4.15.2.1.2 At the sensor input, record the source output as it turns on and off.
- 4.15.2.1.3 At the sensor output, record the rise and decay of the sensor signal as the source is on and off.
- 4.15.2.2 Data Evaluation
- 4.15.2.2.1 Compare the plots and match the rise and decay patterns to determine when the source is on and off relative to when the sensor signal responds.

4.15.2.3 Expected Results

4.15.2.3.1 The expected sensor signal duration value and excitation to signal delay value are listed in the sensor ICD and data sheet.

4.15.3 Channel Characteristics Test

4.15.3.1 Procedure

- 4.15.3.1.1 At the sensor output, record the sensor signal pattern used as the typical sensor signal viewed on the optic signal analyzer to determine the following.
- 4.15.3.1.2 Record the number of discrete wavelength bands (channels) used to transmit sensor data.
- 4.15.3.1.3 Record the center wavelength of the channel.
- 4.15.3.1.4 Record the width of the channel.
- 4.15.3.2 Data Evaluation
- 4.15.3.2.1 The number of channels, the channel locations, and the widths of the channels must be consistent with the values given in the sensor ICD in order for the EOA to correctly interpret the sensor signals.
- 4.15.3.3 Expected Results
- 4.15.3.3.1 The number, location, and widths of the channels are given in the sensor ICD and data sheet.
- 4.15.4 Power Conversion Efficiency Test
- 4.15.4.1 <u>Procedure</u>
- 4.15.4.1.1 At the sensor input (on the sensor side of the optic coupler), record the source power.
- 4.15.4.1.2 At the sensor output (on the EOA side of the optic coupler), record the source backreflection and the sensor modulated signal output power at the beginning of the signal decay.
- 4.15.4.1.3 Obtain the coupler attenuation from the vendor quality assurance report and measure the attenuation in both directions. With the optic signal analyzer, check the difference in attenuation between the two directions at the sensor signal peak.
- 4.15.4.2 Data Evaluation
- 4.15.4.2.1 Convert each measured value from dBm to mWatts so the power conversion efficiency can be calculated. Use the formula: dBm = 10log(mWatts).
- 4.15.4.2.2 Obtain power readings at the sensor side of the coupler by accounting for the effects of the coupler attenuation and source backreflection on the sensor signal. Source backreflection adds to the measured sensor power while the coupler attenuation subtracts from the measured sensor power.
- 4.15.4.2.3 Use values in mWatts in the following formula to calculate the power conversion efficiency. Power Conversion Efficiency (in %) = (((Sensor Signal Power at Coupler Output X Coupler Attenuation)/Source Backreflection at Coupler Output)/Source Power at Sensor Input) X 100.

The power conversion efficiency, the amount of power the sensor outputs relative to the source, must be large enough so the sensor output signal is larger than the receiver noise level.

4.15.4.2.4 Use values in dBm in the following formula to calculate the conversion loss.

Conversion Loss = (Sensor Signal Power at Coupler Output – Source Backreflection at Coupler Output + Coupler Attenuation) – Source Power at Sensor Input.

4.15.4.3 Expected Results

- 4.15.4.3.1 The expected coupler attenuation is given in the coupler quality assurance report as 3.7, 3.9, 4.1, or 4.3dB with the loss depending upon which optic coupler ports are used. The actual loss should be close to 4.0dB, but the loss may exceed the given values.
- 4.15.4.3.2 The minimum power conversion efficiency is given in the sensor ICD and data sheet.
- 4.15.4.3.3 The minimum conversion loss is the minimum power conversion efficiency stated in different units.

5.0 DATA SHEETS

Brol Kesler EOA SNI Source 5.1 WDM ANALOG and DIGITAL SOURCE TEST DA	ATA SHEET			
1/22/93	PASS FAIL			
5.1.1 Allowed Power Variation with Wavelength and Time Test (4.2.2)	TASSE TAIL			
5.1.1.1 Attach the graphs of the source spectrums behind this data sheet.				
Source Power at Three Different Times at the Given Wavelengths	Max. Difference			
PART I (4.2.2) PART II (4.2.4) PART III (4.2.6)	Over Time			
750nm -45.75 dBm 750nm -46.375 dBm 750nm -46.5 dBm	1.75 dB			
765nm -45.0 dBm 765nm -45.5 dBm 765nm -45.5 dBm	0.5 dB			
780nm -44.75 dBm 780nm -45.0 dBm 780nm -45.125 dBm	0.375 dB			
795nm -44,625 dBm 795nm -44,875 dBm 795nm -44,875 dBm	0.25 dB			
810nm -44.875 dBm 810nm -45.125 dBm 810nm -45.0 dBm	0.25 dB			
825nm -44.875 dBm 825nm -45.125 dBm 825nm -45.125 dBm	0.25 dB			
840nm -44,25 dBm 840nm -44,625 dBm 840nm -44,625 dBm	0.375 dB			
855nm -43,375 dBm 855nm -44.0 dBm 855nm -44.0 dBm	0.625 dB			
870nm -42.25 dBm 870nm -42.75 dBm 870nm -42.75 dBm	0.5 dB			
885nm -41.25 dBm 885nm -41.75 dBm 885nm -41.75 dBm	0.5 dB			
900nm -42.375 dBm 900nm -42./25 dBm 900nm -42.0 dBm	0.375 dB			
Maximum Difference Over the Wavelength Range at Three Different Ti	mes			
Part I 4.5 dB Part II 4.6 dB Part III 4.75 dB				
Maximum Power Variation Over Time //75 dB Experiments (Actually should be +/-1.5dB but the ICD sh	ected: +/-3.0dB nows +/-3.0dB)			
Maximum Power Variation Over Wavelength 4.75 dB Expected: +/-3.0dB (Actually should be +/-1.5dB but the ICD shows +/-3.0dB)				
Comments: ±3.018 gives range of 6.018				

T40D	PASS FAIL
5.1.2 <u>Repeatability Test (4.2.3, 4.2.7, and 4.2.9)</u> 5.1.2.1 Attach the graphs of the source spectrums behind this data sheet.	TAXCE TIME
Source Power at Three Different Uses at the Given Wavelengths	
PART I (4.2.3) PART II (4.2.7) PART III (4.2.9)	Largest Difference
750nm -46.25 dBm 750nm -46.75 dBm 750nm -46.625 dBm	m <u>0.5</u> dB
775nm -45.0 dBm 775nm -45.5 dBm 775nm -45.125 dB	m 0.5 dB
800nm -44.875 dBm 800nm -45.125 dBm 800nm -44.875 dB	m 0.25 dB
825nm -45.0 dBm 825nm -45.25 dBm 825nm -45.0 dB	m 0.25 dB
850nm -44.125 dBm 850nm -44.5 dBm 850nm -44.25 dB	m 0,375 dB
875nm -42.25 dBm 875nm -42.625 dBm 875nm -42.5 dB	m 0.375 dB
900nm -42.0 dBm 900nm -42.125 dBm 900nm -41.875 dB	m 0.25 dB
	erence Expected: 8.0dB
Comments:	1
Conmierus.	
5.1.3 Minimum Power Spectral Density Test (4.2.5)	PASS FAIL
5.1.3.1 Attach the graph of the source spectrum behind this data sheet.	
Wavelength of the Minimum Power Spectral Density 750 nm	
	Expected: ≥ -38.0dBm/nm
Comments: The maximum power reading is -41.25 dBm on the graph for se	
The maximum points reading is 271.20 dom on the graph for se	action 4.L.L.
5.1.4 Wavelength Range Test (4.2.8)	PASS FAIL
5.1.4.1 Attach the graph of the source spectrum behind this data sheet.	
	Expected: ≤750nm
See Comments	_
Long Wavelengthnm /	Expected: ≥900nm
Comments: None of the source spectrum & meets the Marine D	S 1 3 St. San La Allow

Variation with Wavelength and Time Tests for source sectrum values.

5.1.5 Maximum Excitation Off Leakage Allowed Test (4.2.11)	PASS FAIL			
5.1.5.1 Attach the graphs of the source spectrums behind this data sheet.				
Gain of the Photodiode Detector = P _{det} (W) = Detector Voltage	e/(2R _f X Detector Sensitivty)			
$R_f = 100 \text{k.s.}$ Detector Sensitivity = $0.55 \frac{A_{mp}}{W_{cht}}$	{dB=10LogW}			
Source ON Minimum Power Spectral Density (PSD) 3.24	Volt = -45.3 dB			
Source OFF Maximum Power Spectral Density (PSD)				
The maximum allowed Excitation Off Leakage is 20dB below	the Source ON Min. PSD.			
Source ON Min. PSD – Source OFF Max. PSD = $\frac{19.1}{4}$ dB	Expected: ≥ 20dB			
Comments:				
E1 (Describber Detected Co. D.). T. (D.) (4010)	74 Cd - 74 T C			
5.1.6 Repetition Rate and Source Duty Factor Test (4.2.12)	PASS FAIL			
5.1.6.1 Attach the graphs of the source spectrums behind this data s	heet.			
Repetition Rate:				
Period of a Single Pulse 10.00 msec.				
Repetition Rate /00 pulses/second Ex	xpected: 100 +/- 1 pulses/sec.			
Comments:	•			
Duty Factor:				
Source ON Time 8.96 msecond Source O	FF Time 1.04 msecond			
Duty Factor (in %) = (Source ON Time / (Source ON Time+	Source OFF Time)) X 100			
9019	_			
Duty Factor 89.6%	Expected: 90% +/-1%			
Comments:				
545D : 1D: 1D: D : (4040)	7.00□ 7.7□			
5.1.7 Required Rise and Fall Time Test (4.2.13)	PASS FAIL_			
5.1.7.1 Attach the graph of the source spectrum behind this data she	et.			
Rise Time 20.0 nsec Ex	epected: < 100nsec.			
Fall Time 28.0 psec Ex	epected: < 100nsec.			
Comments: This 4st was a Could be a few to the state of t				

EDA S/N 1 Source Spectrums

EDA S/N OOL
WOM Anclos / Objital Source

Repetition Rate Test

CH1 1V A 10ms 875mV VERT 90.100ms WINDOW

CH1 MAX = 3.2400 V CH1 MIN = 40.000mV HISTO? CH1 PER = 10.000ms EOA S/NOOI

WOM Amloy/Digital Source

Duty Cycle Source ON Time

CH1 1V A 2ms 3.02 V VERT 8.9600ms WINDOW

CH1 MAX = 3.2800 V CH1 MIN = 360.00mV

EOA S/N 001
WDM Anelog/Digital Source

Duty Cycle Source OFF Time

CH1 1V A 2ms 3.02 V VERT

1.0400ms WINDOW

CH1 MAX = 3.2800 V CH1 MIN = 40.000mV EDA SINDOL War Analog / Digital Source

Rise and Fall Test

CH1

A 200us 3.02 V VERT

LO RES?

CH1 RISE = 20.000us CH1 FALL = 28.000us

Bral Kessler 5/N001 4/23/03

5.2 WDM TRD SOURCE TEST DATA SHEET

	4/23/93	
	5.2.1 Minimum Peak Power Test (4.3.2)	PASS FAIL
	5.2.1.1 Attach the graph of the source spectrum behind this data sheet.	
	Minimum Peak Power of Source 37.8 dBm	Expected: -17.5dBm
	Comments: The 2x2 compler attenuation is 4.0 lB. This ne	eds to be added to the measured
	power to eliminate the effect of the coupler (-41.8 + 4.0 =	-37.8)
	5.2.2 Wavelength Range Test (4.3.3)	PASS FAII
	5.2.2.1 Attach the graph of the source spectrum behind this data sheet.	
	Short Wavelength 580 nm	Expected: < 675nm
	Long Wavelength 1050 nm	Expected: > 650nm
	Comments: None of the spectrum meets the minimum peak power	r to st 77 combount suppose the some
	13 340 down from the maximum value are 650mm to 686mm	The test data for the temperature sensor
127/93	shows the full wavelength range of the source. 5.2.3 Maximum Repetition Rate Test (4.3.5)	PASS FAIL
	5.2.3.1 Attach the graphs of the source spectrums behind this data sheet.	
	Period of Sinusoidal Waveform 1.004 msec.	
	Repetition Rate 996 pulses/second	Expected: ≤1000pulses/sec.
	Comments:	
	5.2.4 Minimum Source Modulation Depth Test (4.3.7)	PASS FAIL See comments
	5.2.4.1 Attach the graphs of the source spectrums behind this data sheet.	at control s
	Wavelength of Smallest Power Change 672.9 nm	
	Max. Power at Wavelength -41.8 dBm Min. Power a	t Wavelength <u>-42.0</u> dBm
	Source Modulation Depth (SMD) is the minimum range of source SMD = Power During Max. LED Current – Power During Min. L.	e power adjustment ED Current
	Source Modulation Depth 0.2 dB	Expected: ≥ 15dB
	Comments: The TRD source power cannot be adjusted. It is	is fixel upon power up and the
	Source output is constant. The values given are the minor van	riations occurring in normal operation.
	A-42	

EDA S/NI TRD Source Spectrums

ORIGINAL PACE IS OF POOR QUALITY

TRD Source 5/N DOI

Repetition Rate Test

CH1 1V A 1ms 875mV VERT 9.0000ms WINDOW

CH1 MAX = 1.1200 V CH1 MIN = 80.000mV TRD Source S/NOOI

Repetition Rate Test

CH1 1V A 200us 875mV VERT 2.0140ms WINDOW

CH1 MAX = 1.1200 V CH1 MIN = 120.00mV CH1 PER = 1.0040ms Brad Kessler EDA S/NI and S/N2 6/27/93

5.3 WDM ANALOG and DIGITAL RECEIVER TEST DATA SHEET

	5.3.1 Saturation and Noise Level Test (4.4.2) PASS FAIL
	PC Display Port Number Source to Receiver Wraparound (The range passas) (The port number is equal to the connector pin number)
	Dixel he value of 7
	Saturation Level 910 dBmat All nm are the 1024 Expected: 60dBm/nm
	Pixel Source.
	obtained from EUA
PC	Comments: The source did not saturate with the attenuator in line. Also, the vendor reports that the
th.	display does not show the noise level; the receiver does not decode sensors below a pixel value of 30 even ugh the spectrum can still be seen on the display. See below for the range of the WDM Receiver.
	5.3.2 Dark Current Level Test (4.4.3) PASS FAIL
	J.J.Z Dark Current Level 1651 (4.4.5)
	Dark Current Level dBm at nm No Expected Value
	Comments: No source output is displayed when the receiver connector is covered.
	- Contract to Contract.
	Range of WDM Receiver (The range can be calculated even though the absolute maximum and minimum values of the range cannot be calculated
	This calculated range is for room
Kange in	db = 10 log (880) = 27.5 1B Range temperature, and temperature Those tests are not possible
	5.4 WDM TRD RECEIVER TEST DATA SHEET There is no PC display for the
	5.4.1 Saturation and Noise Level Test (4.5.2) PASS FAIL
	Port Number (The port number is equal to the connector pin number)
	Saturation Level dBm at nm Expected: TBD dBm/nm
	Noise LeveldBm atnm Expected: TBD dBm/nm
	Comments:
	5.4.2 Dark Current Level Test (4.5.3) PASS FAIL
	Dark Current LeveldBm atnm No Expected Value
	Comments:

Brad Kessler

EDASource 5/N2 5.1 WDM ANALOG and DIGITAL SOURCE TEST 4/22/93 PASS FAIL 5.1.1 Allowed Power Variation with Wavelength and Time Test (4.2.2) 5.1.1.1 Attach the graphs of the source spectrums behind this data sheet. Source Power at Three Different Times at the Given Wavelengths Max. Difference PART III (4.2.6) Over Time PART I (4.2.2) PART II (4.2.4) 0.25 -45.625 4575 -45.5 dBm 750nm dBm 750nm dBm dΒ 750nm 44.75 -44.875 dBm 765nm 0.25 dBm 765nm dBm dB765nm -44.625 -44,625 -44.75 0.125 780nm dBm 780nm dBm 780nm dBm dB -44,75 -44.75 44.75 0.0 dBm 795nm dBm 795nm dBm dB795nm -45.125 0.125 -45.0 dBm 810nm -45,0 dBm dΒ 810nm dBm 810nm -45.5 -45.375 dBm 825nm 45,375 0.125 dBm 825nm dB 825nm dBm -45.5 -45.375 dBm 840nm 0.125 dB 840nm dBm 840nm dBm 0.125 -45.25 -45.25 -45,375 dBm 855nm dBm 855nm dBm dB 855nm -44.0 -44.125 dBm 870nm -44.125 0.125 dBm 870nm dBm dB 870nm -43.625 43.5 -43,5 0.125 dBm 885nm dBm 885nm dBm dB 885nm -45.25 -46.0 0.75 dBm 900nm dBm 900nm dB dBm 900nm Maximum Difference Over the Wavelength Range at Three Different Times 2.375 2.125 Part III Part II 0.75 dB Maximum Power Variation Over Time Expected: +/-3.0dB (Actually should be +/-1.5dB but the ICD shows +/-3.0dB)

A-48

(Actually should be +/-1.5dB but the ICD shows +/-3.0dB)

dBExpected: +/-3.0dB

Maximum Power Variation Over Wavelength

+ 3.0 dB gives range of 6.0 dB

Comments:

·	
5.1.2 Repeatability Test (4.2.3, 4.2.7, and 4.2.9)	PASS FAIL
5.1.2.1 Attach the graphs of the source spectrums behind this data sheet.	
Source Power at Three Different Uses at the Given Wavelengths PART I (4.2.3) PART II (4.2.7) PART III (4.2.9) Lar	gest Difference
750nm -45.625 dBm 750nm -46.25 dBm 750nm -45.25 dBm	/.odB
775nm -44.625 dBm 775nm -45.25 dBm 775nm -44.125 dBm	<i>i.125</i> dB
800nm -44.75 dBm 800nm -45.25 dBm 800nm -44.25 dBm	1.0 dB
825nm -45.375 dBm 825nm -46.0 dBm 825nm -44.875 dBm	1.125 dB
850nm -45.5 dBm 850nm -46.0 dBm 850nm -45.125 dBm	0.875 dB
875nm -43.75 dBm 875nm -44.375 dBm 875nm -43.25 dBm	1.125 dB
900nm -45.5 dBm 900nm -45.75 dBm 900nm -44.875 dBm	0.875 dB
Maximum Difference Comments:	e Expected: 8.0dB
5.1.3 Minimum Power Spectral Density Test (4.2.5)	PASS FAIL
5.1.3.1 Attach the graph of the source spectrum behind this data sheet.	
Wavelength of the Minimum Power Spectral Density 843.8 750.0 nm	
Minimum Power Spectral Density 45.625 dBm/nm Expec	ted: ≥-38.0dBm/nm
Comments: The maximum power realing is 43.375 dBm procedure 4.2.3.	
5.1.4 Wavelength Range Test (4.2.8)5.1.4.1 Attach the graph of the source spectrum behind this data sheet.	PASS FAIL
Short Wavelength nm > See Comments Expec	ted: ≤750nm
Long Wavelength nm Expec	ted: ≥900nm
Comments: None of the source spectrum meets the Minimum Power Spectr	I sail All I
Power Variation with Wavelength and Time test for source Spectr	a seemsity. See the Hillowed

5.1.5 Maximum Excitation Off Leakage Allowed Test (4.2	2.11) PASS FAIL
5.1.5.1 Attach the graphs of the source spectrums behind this d	lata sheet.
Gain of the Photodiode Detector = P _{det} (W) = Detector Vo	oltage/(2R _f X Detector Sensitivty)
$R_f = \frac{100 \text{ kg}}{100 \text{ kg}}$ Detector Sensitivity = $0.55 \frac{\text{Å}}{\text{W}}$	{dB=10LogW}
Source ON Minimum Power Spectral Density (PSD) 3.	Volt = -44.4 dB
Source OFF Maximum Power Spectral Density (PSD)	$Volt = \begin{bmatrix} -61.4 \\ \end{bmatrix} dB$
The maximum allowed Excitation Off Leakage is 20dB be	elow the Source ON Min. PSD.
Source ON Min. PSD – Source OFF Max. PSD = 17.0	dB Expected: ≥ 20dB
Comments:	6
5.1.6 Repetition Rate and Source Duty Factor Test (4.2.12)	PASS FAIL
5.1.6.1 Attach the graphs of the source spectrums behind this da	ata sheet.
Repetition Rate:	
Period of a Single Pulse 10-00 msec.	
Repetition Rate 100 pulses/second	Expected: 100 +/- 1 pulses/sec.
Comments:	
•	
Duty Factor:	
Source ON Time 8.96 msecond Source	re OFF Time 1.04 m second
Duty Factor (in %) = (Source ON Time / (Source ON Time	ne+ Source OFF Time)) X 100
Duty Factor 89.6%	Expected: 90% +/-1%
Comments:	Expected: 90% +/-1%
Comments.	
5.1.7 Required Rise and Fall Time Test (4.2.13)	PASS FAIL
5.1.7.1 Attach the graph of the source spectrum behind this data	sheet.
Rise Time 28.000 insec	Expected: < 100nsec.
Fall Time 28,000 psec.	Expected: < 100nsec.
Comments: This test was effected by the oscilloscope of	72. Solution

EDA S/N 2 WDM Source Spectrums

OMIGINAL PAGE IS OF POOR QUALITY

EOA S/N2 WAM Source Spectrums

ORGINAL PAGE IS OF POOR QUALITY EOA S/N 002 WOM Analog/OBital Source

Repetition Rate Test

CH1 1V

A 10ms 3.50 V VERT

90.000ms

WINDOW

CH! MIN = 80.000mV CH! MAX = 3.9600 V EOA S/N 002 WOM Analoy/Digital Source

Duty Cycle Source ON Time

CH1 1V A 2ms 3.28 V VERT 8.9600ms WINDOW

ECA S/N 002 WDM Analog/Digital Source

Duty Cycle Source OFF Time

CH1 1V A 2ms 3.28 V VERT

1.0400ms WINDOW

EOA S/N 202 WDM Analog/Digital Source

Rise and Fall Test

CH1 11

1V A 200us 2.80 V VERT

CH1 RISE = 28.000us CH1 FALL = 28.000us

	Bral Kessler TRO S/N 002 4/23/43	5.2 WDM TRD SOURCE TEST DA	ATA SHEET	
î	5.2.1 Minimum Peak P	Power Test (4.3.2)	PASS FAIL	
5	5.2.1.1 Attach the graph o	of the source spectrum behind this data sh	neet.	
l	Minimum Peak Power	of Source -33.95 dBm	Expected: -17.5dBm	
(Comments: The 2x2	compler attenuation is 4.01B. This mu	ast be added to the measured power to	
	eliminate the effects o	f the coupler. (-37.95 + 4.0 = -33,9	95)	
5	5.2.2 Wavelength Rang	re Test (4.3.3)	PASS FAIL	
5	5.2.2.1 Attach the graph o	of the source spectrum behind this data sh	eet.	
9	Short Wavelength 57	nm	Expected: < 675nm	
Ι	Long Wavelength 105	nm nm	Expected: > 650nm	
	of the TRD some	wavelength's meat the minimum power 655 nm to 683 nm. The data sheats for	test. The wavelengths at which the power the temperature sensors show the full van	is se
6/27/93	5.2.3 <u>Maximum Repeti</u>	tion Rate Test (4.3.5)	PASS FAIL	
5	5.2.3.1 Attach the graphs	of the source spectrums behind this data s	sheet.	
F	Period of Sinusoidal W	aveform 1.012 msec.		
F	Repetition Rate 990	pulses/second	Expected: ≤1000pulses/sec.	
C	Comments:			
		•		
5	5.2.4 Minimum Source	Modulation Depth Test (4.3.7)	PASS FAIL	
5	2.2.4.1 Attach the graphs	of the source spectrums behind this data s	sheet. See comments	
V	Wavelength of Smalles	t Power Changenm		
N	Max. Power at Waveler	ngthdBm Min. Pov	ver at WavelengthdBm	
S	-	oth (SMD) is the minimum range of so	- ,	

Comments: The TRD source is not adjustable. The power output is fixed upon power up. The only variations are the small variations due to normal operation (See TRD SNI data sheet for this section.)

Expected: $\geq 15dB$

Source Modulation Depth

EOA SN 2 TRD Source Spectrums

EOA S/NOOZ

Repetition Rate Test

CH1 500mV A 1ms 3.28 V VERT
9.0100ms WINDOW

CH1 MAX = 1.1600 V CH1 MIN = 100.00mV EDA S/N 002 TRD Source

Repetition Rate Test

CH1 500mV

A 200us 3.28 V VERT

2.0000ms

WINDOW

HISTO?

CH1 PER = 1.0120ms

Brad Kessler EDA. S/NI and S/NZ 6/27/93 DIGITAL RECEIVER TEST DATA SHEET PASS FAIL 5.3.1 Saturation and Noise Level Test (4.4.2) (The range passas Source to Receiver Wrapare PC Display (The port number is equal to the connector pin number) Port Number The pixel values 910 Saturation Level CCD array can The value of 30 was Expected: -86dBm/nm Comments: The source did not saturate with the attenuator in line. Also, the vendor reports that the PC display does not show the noise level; the receiver does not decode sensors below a pixel value of 30 even though the spectrum can still be seen on the display. See below for the range of the WDM Receiver. PASS FAIL 5.3.2 Dark Current Level Test (4.4.3) No Expected Value Dark Current Level dBm at Comments: No source output is displayed when the receiver connector is covered. Range of WDM Receiver (The range can be calculated even though the absolute maximum as I minimum values of the range cannot be calculated 910-30=880 These tests are not possible. Range in dB = 10 log (880) = 29.5 dB Range There is no PC display for the 5.4 WDM TRD RECEIVER TES TRD source. PASS FAIL

5.4.1 Saturation and Noise Level Test (4.5.2)

(The port number is equal to the connector pin number)

dBm at ______nm Expected: TBD dBm/nm

dBm at _____nm Expected: TBD dBm/nm

Port Number

Noise Level

Comments:

Saturation Level

5.4.2 Dark Current Level Test (4.5.3)

Dark Current Level dBm at nm No Expected Value

Comments:

		Z.418 6.518 3
	c.758 C.128 [1]	4.108 0.508 [2]
	0.948 2.548 01	H'76L 9'EBL H
- between high and low	8.758 & 2.258 P	9'L&L C'S&L &
II - between highs	8528 0.728 8	0'08L 8'LLL (2)
0 - between lows	7.128 0.018 F	3.557 3.237 1
, , , ,	Guesthand A to A	To A Ladband
		Comments:
	Band 11/12 5.0 nm	mm 8.5 II/0I basd
7.2 01/6 bas	$\frac{8.5}{100}$ e/8 basd	Band 7/8
mn 5.2 7/8 bns	Band 5/6 band	min %. Z & brind
and 3.4 2.6 bns	H mn $\frac{2.2}{2.2}$ $\epsilon/2$ basd	Band 1/2 7.2 nm
Expected: 2.5nm		System Widths Guardband Widths
,	مه محلا لهد هن.	Kui blues " 2.24
thank charbor resolution is Others so the	sens too small, but the equity	2 11 Luman 2 5.058
		2'228 8'188
08 Z	1977 - 1777 - Channel 1978	a:L
	PART 158 Signal	40 1:85L - 8:76L 2:88L
ino themselves with the manufactures are	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	HiPTT 42 PAPET
stews these chemils widths. If messured	e ggp between chemels I and 2	71 1° 74 77 0 4787 1 71 9:35L
the willey before the chemnel to the midpoint	ane measured from the midpoint of pater the channel.	Comments: Change Lights
Channel 12 8.0 nm		Channel 10 8.0 nm
Thannel 9 8.4 nm	Channel 8 8.0 nm	Channel 7 8,4 nm
Channel 6 8.4 nm	Channel 5 8,6 nm	Channel 4 8,6
mn 8.8 E lennsh		Channel 1 9,8
zxpected: 8.5nm +/- 0.5nm	د 🛈 امعامب پر	Channel Widths
		Comments:
•		
mu878 of mu948 : betreeted:	wu 3/193 Jaureu	Ending Wavelength of Last (
		Comments:
Expected: 750nm to 770nm	min 3.827 Isninsh	O terifi Navelength of First C

Stabilizer 1

5.5 STABILIZER SENSOR DATA SHEET

Performed by: Brad Kessler Date: 12/15/92 Test Article Serial Number: 2
5.5.1 Sensor Insertion Loss Test (4.6.2) PASS FAIL
5.5.1.1 Attach the graphs of the sensor and source output power spectrums behind this data sheet.
Insertion Loss (IL) = Source Power at Sensor Peak – Sensor Power at Sensor Peak.
Insertion Losses at each Peak in the Sensor Output Power Spectrum (may not fill all boxes)
Peak 1 765 nm Signal Power 65.15 dB Source Power 48.95 dB IL 16.2 dB
Peak 2 777 nm Signal Power -64.7 dB Source Power -48.65 dB IL 16.65 dB
Peak 3 786 nm Signal Power -64.85 dB Source Power -48.55 dB IL /6.3 dB
Peak 4 795 nm Signal Power - 64.75 dB Source Power - 48.4 dB IL 16.35 dB
Peak 5 803 nm Signal Power -65.1 dB Source Power -48.4 dB IL 16.7 dB
Peak 6 811 nm Signal Power -65.25 dB Source Power -48.7 dB IL /6.55 dB
Peak 7 820 nm Signal Power -65.7 dB Source Power -49.1 dB IL 16.6 dB
Peak 8 828 nm Signal Power - 65.95 dB Source Power - 49.3 dB IL 16.65 dB
Peak 9 836 nm Signal Power -66.8 dB Source Power 49.55 dB IL 17.25 dB
Peak 10 845 nm Signal Power 66.75 dB Source Power 49.8 dB IL 16.95 dB
Peak 11 852 nm Signal Power - 66.6 dB Source Power - 49.65 dB IL 16.95 dB
Peak 12 860 nm Signal Power -66.35 dB Source Power -49.3 dB IL 17.05 dB
Overall Sensor Insertion Loss = Average of Individual Peak Insertion Losses.
Sensor Insertion Loss /6.6 dB Expected: ≤ 24dB
Comments:

	_/ _
5.5.2 Contrast Ratio Test (4.6.3)	PASS FAIL
5.5.2.1 Attach the graphs of the sensor bit pattern behind this data sheet.	
Subchannel Amplitudes (Maximum / Minimum)	
Channel 1 -65.2 -75.8 dBm Channel 2 -64.7 -75.5 dBm Channel 3 -64.9	9/74.6 dBm
Channel 4 - 48 / -75.1 dBm Channel 5 65.1 / -75.0 dBm Channel 6 -65.3	-754 dBm
Channel 7 -65.7/-75.5 dBm Channel 8 -66.0/-75.7 dBm Channel 9 -668	-75.8 dBm
Channel 10 - 668 - 76.1 dBm Channel 11 - 66.6 - 75.9 dBm Channel 12 -	66.4 -76.4 dBm
Contrast Ratio = Maximum Channel Power - Minimum Channel Power.	
Channel Contrast Ratios	
Channel 1 10.6 dB Channel 2 10.8 dB Channel 3 9.7	dB
Channel 4 10.3 dB Channel 5 9.9 dB Channel 6 10.1	dB
Channel 7 9.8 dB Channel 8 9.7 dB Channel 9 9.5	2dB
Channel 10 9.3 dB Channel 11 9.3 dB Channel 12 10	.o dB
Minimum Contrast Ratio 9.0 dB Expected	:≥6.0dB
Comments:	

		_/ _
5.5.3 Channel Characteristics Test (4.6.4)		PASS FAIL
5.5.3.1 Attach the graph of the typical sensor value behind this data sheet.		PASS FAIL But note channel widths and spearaband widths
Number of Discrete Channels 12	expected:	
Comments:		

Initial V	Vavelength of First	Channel 759 nm	Expected: 750nm to 770nm	
Comme	nts:			
Ending Comme	Wavelength of Las	ot Channel 864,6 nm	Expected: 846nm to 878nm	
Channel		220	Expected: 8.5nm +/- 0.5nm	
Channel	1 11.0 nm	Channel 2 /0.8 nm	Channel 3 8.6 nm	7 - 7
Channel	4 8.8 nm	Channel 5 8.2 nm	Channel 6 8.6 nm	
Channel	7 8.4 nm	Channel 8 %.0 nm	Channel 9 8.2 nm	
Channel	10 8.0 nm		Channel 12 8.4 nm	
	nts: Channel wilth	is measured from milpoint; end of channel.	in valley at beginning of channel to	milpoint
754.8 170.8 781.6			s the widths of channels land Z.	 (
790.2	measured nea	+ the beginning of the rise as	nd the end of the fall of the ch	ennel c
799.0 807.2	the measure	ments are:		
815.8 824.2	768.0 -759.8 Cha	nnel 1 8.2 nm -713, 6	Channel 2 8.0 hm	
832.2 840.4	8.2	8.0		
848,4 856.Z	2) The equipment n	eraham FC		a as a man willed
864.6	of the last 3	Channels is a 8.1 nm. Se Ch	15 a4nm so the 7.8 may be 8.0. Th	a accorage wish,
Guardba	nd Widths	in section	Expected: 2.5nm	
Band 1/2	5.8 nm	Band 2/3 2.6 nm	Band 3/4 2.2 nm	
Band 4/5	2.4 nm	Band 5/6 2.2 nm	Band 6/7 2.6 nm	
Band 7/8	1.8 nm	Band 8/9 2.4 nm	Band 9/10 3.8 nm	
Band 10/	11 2.6 nm	Band 11/12 3.6 nm		
Commen	ts: The guardbands	were difficult to low wie	h. Where does the guestland start as	1 17
Guarlban	- · · -	The acar inguis	n. West of the guestiand start as	ed Chd !
1 ②	768.8 774.6 780.0 782.6		0 - guardband between highs	
3	787.8 710.0		- quandband between lows	
4	798. 6 801.0		- guardband between high an	1 low
5	307.2 809.4			- -
<u>(b)</u>	814,4 817.0			
8	821.8 823.6 829.6 832.0			
<u> </u>	838.2 842.0	A-68		
© 7 % F() E	847.0 849.6	•5		
تنسا	854.2 857.8			

Stabilizer 2

5.6 RUDDER SENSOR DATA SHEET

Performed by: Brad Kessler Date: 12/15/92 Test Article Serial Number: 00/		
5.6.1 Sensor Insertion Loss Test (4.7.2) PASS FAIL		
5.6.1.1 Attach the graphs of the sensor and source output power spectrums behind this data sheet.		
Insertion Loss (IL) = Source Power at Sensor Peak – Sensor Power at Sensor Peak.		
Insertion Losses at each Peak in the Sensor Output Power Spectrum (may not fill all boxes)		
Peak 1 765.8 nm Signal Power -68.9 dB Source Power -51.15 dB IL 17.75 dB		
Peak 2 7766 nm Signal Power 68.3 dB Source Power 50.7 dB IL 17.6 dB		
Peak 3 784.6 nm Signal Power -67.9 dB Source Power -50.65 dB IL 17.25 dB		
Peak 4 793.8 nm Signal Power -68.0 dB Source Power -50.45 dB IL 17.55 dB		
Peak 5 802.2 nm Signal Power 68.05 dB Source Power 50.45 dB IL 17.6 dB		
Peak 6 8/0.6 nm Signal Power -68.1 dB Source Power -50.8 dB IL 17.3 dB		
Peak 7 819.4 nm Signal Power 68.45 dB Source Power 51.25 dB IL 17.2 dB		
Peak 8 827.8 nm Signal Power -6855 dB Source Power -51.45 dB IL 17.1 dB		
Peak 9 835.8 nm Signal Power 68.2 dB Source Power 51.7 dB IL 16.5 dB		
Peak 10 844.2 nm Signal Power -685 dB Source Power - 51.95 dB IL 16.55 dB		
Peak 11 852.2 nm Signal Power 68.25 dB Source Power 51.85 dB IL 16.4 dB		
Peak 12 860.6 nm Signal Power 68.0 dB Source Power 51.35 dB IL 16.65 dB		
Peak 13 868.6 nm Signal Power 67.55 dB Source Power 50.65 dB IL 16.4 dB		
Overall Sensor Insertion Loss = Average of Individual Peak Insertion Losses.		
Sensor Insertion Loss 17.1 dB Expected: ≤24dB		
Comments:		

5.6.2 Contrast Ratio Test (4.7.3)	PASS FAIL
5.6.2.1 Attach the graphs of the sensor opposite bit pattern behind this data sheet.	
Subchannel Amplitudes (Maximum / Minimum)	
Channel 1 -68.9 -77.1 dBm Channel 2 -68.3 -72.9 dBm Channel 3 -67.5	3/-72.g dBm
Channel 4 - 68.0 - 72.4 dBm Channel 5 - 68.1 -72.4 dBm Channel 6 - 68.1	72.6 dBm
Channel 7 -68.5/-72.6 dBm Channel 8 -68.6/-72.6 dBm Channel 9 -68.2	-72.6 dBm
Channel 10 -68.5 -72.6 dBm Channel 11 -68.3 -72.1 dBm Channel 12 -68.3 -72.1	68.0/-71.1 dBm
Channel 13 =67.1 / -75.8 dBm	
Contrast Ratio = Maximum Channel Power - Minimum Channel Power.	
Channel Contrast Ratios	
Channel 1 8.2 dB Channel 2 4.6 dB Channel 3 4.9	dB
Channel 4 4.4 dB Channel 5 4.3 dB Channel 6 4.5	dB
Channel 7 4.1 dB Channel 8 4.0 dB Channel 9 4.4	dB
Channel 10 4.1 dB Channel 11 3.8 dB Channel 12 3.1	dB
Channel 13 8.7 dB	
Minimum Contrast Ratio 3.1 dB Expected:	≥ 6.0dB
Comments:	-0.045
5.6.3 Channel Characteristics Test (4.7.4)	PASS FAIL (
5.6.3.1 Attach the graph of the typical sensor value behind this data sheet.	PASS FAIL But note channel wilths and guardband wilths
Number of Discrete Channels /3 Expected:	/

Comments:

	Initial Wavelength of First Channel 759.4 nm E	Expected: 750nm to 770nm
	Ending Wavelength of Last Channel 873,4 nm E	expected: 854nm to 887nm
	-> See (2)	Expected: 8.5nm +/- 0.5nm Channel 3 8.8 nm
	Channel 4 8.8 nm Channel 5 8.4 nm C	Channel 6 8.8 nm
	Channel 7 8,4 nm Channel 8 8,2 nm C	Channel 9 8.2 nm
	Channel 10 8.0 nm Channel 11 8.0 nm C	Thannel 12 8.2 nm
	Channel 13 9.2 nm below	
1	Comments: Channel widths are measured from the midpoint of the velley after the channel peak. 7594 77016 1) The beginning wavelength is too far from the realists in Itial wavelength gives: 770.2 7804 7812 7850 8064 815.2 1 Instead of measuring from the middle of the gap rear the beginning and ending of the peak, the vel 848.0 848.0 3 The ending wavelength was too far on the end of the	istic start of tise of chamel 1. Using a more Channel 1 [8.8] nm between Channels 1 and 2, and instead measure hue for channel 2 is: -72.72 8.2 Channel 2 [8.2] n
	864.2 \$73.7 Guardband Widths 24 Chenn 13 8.4 ham	Expected: 2.5nm
	Band 1/2 3.8 nm Band 2/3 2.6 nm B	and 3/4 2.6 nm
	Band 4/5 3.8 nm Band 5/6 2.4 nm B	and 6/7 3.0 nm
	Band 7/8 2.6 nm Band 8/9 2.2 nm B	and 9/10 2.2 nm
	Band 10/11 3.4 nm Band 11/12 28 nm B	and 12/13 3.0 nm
	Comments: Guardband \(\) \(\	between highs - between lows - between high and low

Rudder 001

5.6 RUDDER SENSOR DATA SHEET

Performed by: Bral Kessler Date: 4/23/93 Test Article Serial Number: 002		
5.6.1 Sensor Insertion Loss Test (4.7.2) PASS FAIL		
5.6.1 Sensor Insertion Loss Test (4.7.2) PASS FAIL		
6.1.1 Attach the graphs of the sensor and source output power spectrums behind this data sheet.		
nsertion Loss (IL) = Source Power at Sensor Peak - Sensor Power at Sensor Peak.		
nsertion Losses at each Peak in the Sensor Output Power Spectrum (may not fill all boxes)		
Peak 1 763.0 nm Signal Power -66.2 dB Source Power -47.45 dB IL 18.75 dB		
Peak 2 773.4 nm Signal Power -65.4 dB Source Power -47.0 dB IL 18.4 dB		
Peak 3 781.4 nm Signal Power -65.25 dB Source Power -47.0 dB IL 18.25 dB		
Peak 4 790.2 nm Signal Power -65.25 dB Source Power -47.05 dB IL 18.2 dB		
eak 5 798.6 nm Signal Power 65.15 dB Source Power 47.05 dB IL 18.1 dB		
eak 6 8%.6 nm Signal Power -64.8 dB Source Power -47.2 dB IL 17.6 dB		
eak 7 815.0 nm Signal Power -64.95 dB Source Power -47.45 dB IL 17.5 dB		
eak 8 823.4 nm Signal Power -65.05 dB Source Power -47.65 dB IL 17.4 dB		
eak 9 831.0 nm Signal Power dB Source Power 47.65 dB IL 17.25 dB		
eak 10 839.0 nm Signal Power -64.75 dB Source Power -47.65 dB IL 17.1 dB		
eak 11 847.4 nm Signal Power -64.85 dB Source Power -47.75 dB IL 17.1 dB		
eak 12 854.6 nm Signal Power -64.55 dB Source Power -47.7 dB IL 16.85 dB		
eak 13 862.6 nm Signal Power -64.0 dB Source Power -47.35 dB IL 16.65 dB		
Overall Sensor Insertion Loss = Average of Individual Peak Insertion Losses.		
ensor Insertion Loss 17.6 dB Expected: ≤24dB		
omments:		

5.6.2 Contrast Ratio Test (4.7.3)	PASS FAIL
5.6.2.1 Attach the graphs of the sensor opposite bit pattern behind this data sheet.	
Subchannel Amplitudes (Maximum / Minimum)	
Channel 1 -66.2/-74.7 dBm Channel 2 -65.4/-72.6 dBm Channel 3 -65.3	dBm
Channel 4 -65.3 /-72.2 dBm Channel 5 -65.2 /-72.1 dBm Channel 6 -64.8	/-72.0 dBm
Channel 7 -65.0 /-72.1 dBm Channel 8 -65.1 /-72.3 dBm Channel 9 -64.9	/-71.7 dBm
Channel 10 -64.8 /-71.9 dBm Channel 11 -64.9 /-71.5 dBm Channel 12 -6	4.6 /-71.2 dBm
Channel 13 -64.0 /-73.4 dBm	
Contrast Ratio = Maximum Channel Power - Minimum Channel Power.	
Channel Contrast Ratios	
Channel 1 8.5 dB Channel 2 7.2 dB Channel 3 6.5	dB
Channel 4 6.9 dB Channel 5 6.9 dB Channel 6 7.2	dB
Channel 7 7.1 dB Channel 8 7.2 dB Channel 9 6.8	dB
Channel 10 7.1 dB Channel 11 6.6 dB Channel 12 6.0	ø dB
Channel 13 9.4 dB	
Minimum Contrast Ratio 6.6 dB Expected:	≥ 6.0dB
Comments:	
5.6.3 Channel Characteristics Test (4.7.4)	PASS FAIL
5.6.3.1 Attach the graph of the typical sensor value behind this data sheet.	See channel widths test
Number of Discrete Channels 13 Expected:	13

Comments:

Initial Wavelength of First C	hannel 758.6 nm	Expected: 750nm to 770nm
Ending Wavelength of Last (Comments:	Channel 867.4 nm	Expected: 854nm to 887nm
Channel Widths		Expected: 8.5nm +/- 0.5nm
Channel 1 8.4 nm	Channel 2 8.0 nm	Channel 3 8.4 nm
Channel 4 8.4 nm	Channel 5 8.4 nm	Channel 6 8.4 nm
Channel 7 8.4 nm	Channel 8 8.0 nm	Channel 9 8.0 nm
Channel 10 8.5 nm	Channel 11 7.6 nm	Channel 12 9.0 nm
Channel 13 8.4 nm	See 2 below	
(758.6 Valley after the che (758.6 There is a gap (7177.4 either channel (785.8 widths of (785.8 widths of (781.2 802.6 (811.0 (2) Failure) (819.4)	between the peaks of channels I and well or 2. It shows up in the gue channels I and 2, both channels	valley before the channel peak to the midpoint of the 2 which is not included in the channel width of ariband widths. If this gap were included in the would fail the Channel width range. To O. Mam, however, the channels on either side could be part of channel 11.
Guardband Widths		Expected: 2.5nm
Band 1/2 3,6 nm	Band 2/3 2.4 nm	Band 3/4 nm
Band 4/5 2.4 nm	Band 5/6 2.0 nm	Band 6/7 2.4 nm
Band 7/8 2.4 nm	Band 8/9 2.4 nm	Band 9/10 2.0 nm
Band 10/11 2.0 nm	Band 11/12 2.4 nm	Band 12/13 2.0 nm
Comments: General to 1 1 766.2 768 2 776.2 778.6 3 784.6 797.0 4 793.4 795.8 5 804.8 803.8 6 809.8 812.2 7 818.2 920.6	Guardband \(\frac{\lambda}{9}\) \(\frac{834.2}{834.2}\) \(\frac{8}{836.2}\) \(\frac{10}{847.2}\) \(\frac{847.2}{844.2}\) \(\frac{844.8}{857.8}\) \(\frac{857.8}{859.8}\)	The guardbands are measured as the width of the valley between channel peaks. The edges of guardbands are arbitrarily exacted chosen as the point on the rise of the channel peak that isn't two far away from the valley floor.

5.7 PITCH STICK SENSOR DATA SHEET

Performed by: Brad Kessler Date: 12/16/92 lest Article Serial Number: 081
5.7.1 Sensor Insertion Loss Test (4.8.2) PASS FAIL
5.7.1.1 Attach the graphs of the sensor and source output power spectrums behind this data sheet.
Insertion Loss = Source Peak Power - Sensor Peak Power.
Reference Peak Power -67.1 dBm at 776.2 nm
Source Peak Power at Reference WavelengthdBm
Reference Insertion Loss /8.2 dB Expected: ≤ TBD dB
Signal Peak Power -64.3 dBm at 874.6 nm
Source Peak Power at Signal WavelengthdBm
Signal Insertion Loss 15.7 dB Expected: ≤ 20dB
Comments:
5.7.2 Dynamic Range Test (4.8.3) PASS FAIL
5.7.2 Dynamic Range Test (4.8.3) 5.7.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet.
5.7.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals
5.7.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet.
5.7.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet. Minimum Sensor Signal -72.25 dBm
5.7.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet. Minimum Sensor Signal — 72.25 — dBm Reference Power at Minimum Sensor Signal — 67.1 — dBm Maximum Sensor Signal — 64.3 — dBm Reference Power at Maximum Sensor Signal — 67.1 — dBm
5.7.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet. Minimum Sensor Signal 72.25 dBm Reference Power at Minimum Sensor Signal 67.1 dBm Maximum Sensor Signal 68m
5.7.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet. Minimum Sensor Signal 72.25 dBm Reference Power at Minimum Sensor Signal 6Bm Maximum Sensor Signal 764.3 dBm Reference Power at Maximum Sensor Signal 767.1 dBm Dynamic Range = (Max. Sensor Signal 7 Reference Power at max. sensor signal) -

5.7.3 Reference Integrity Test (4.8.4)	PASS FAII
Reference Power at Min. Sensor Signal -67.1 dBm	=>mW
Reference Power at Max. Sensor Signal -67.1 dBm	=>mW
Reference Variation (mW) = Reference Power at Max. Sensor Signal(mW) – Reference Power	er at Min. Sensor Signal(mW)
Reference Variation O.O mW =>	dB
Reference Integrity (dB) = Reference Variation(dB) – Reference P	ower at Min. Sensor Signal(dB)
Reference Integrity -67.1 dB	Expected: ≤ -26dB
Comments:	
5.7.4 Channel Characteristics Test (4.8.5)	PASS FAIL
5.7.4.1 Attach the graph of the typical sensor value behind this data shee	et.
Number of Discrete Channels 2	Expected: 2
Comments: Both the reference and signal contain two local peaks. The two	
Comments: Both the reference and signal contain two local peaks. The two the two signal peaks differ by 1-35dB.	reference peaks differ by 0.05dB while
Comments: Both the reference and signal contain two local peaks. The two the two signal peaks differ by 1.35 dB. Center Wavelength of High Frequency Signal 776.2 nm	reference peaks differ by 0.05dB while
Comments: Both the reference and signal contain two local peaks. The two the two signal peaks differ by 1.35 & B. Center Wavelength of High Frequency Signal 776.2 nm Comments: Reference Channel	reference yeaks differ by 0.05 dB while Expected: 787nm
Comments: Both the reference and signal contain two local peaks. The two the two signal peaks differ by 1.35 dB. Center Wavelength of High Frequency Signal 776.2 nm Comments: Reference Channel Center Wavelength of Low Frequency Signal 874.6 nm	Expected: 863nm Expected: \(< 75\text{nm} \) Expected: \(< 75\text{nm} \) 849.8 to 900nm

Pitch Stick 001

5.7 PITCH STICK SENSOR DATA SHEET

5.7.1 Sensor Insertion Loss Test (4.8.2) PASS FAIL
5.7.1.1 Attach the graphs of the sensor and source output power spectrums behind this data sheet.
Insertion Loss = Source Peak Power - Sensor Peak Power.
Reference Peak Power 69.75 dBm at 771.8 nm
Source Peak Power at Reference WavelengthdBm
Reference Insertion Loss 21.65 dB Expected: ≤ TBD dB
Signal Peak Power -64.9 dBm at 885.0 nm
Source Peak Power at Signal WavelengthdBm
Signal Insertion Loss 20.2 dB Expected: ≤ 20dB
Comments: The actual insertion bis is only 0.218 over the expected value. The EOA should be able to work with this slight out of tolerance.
5.7.2 Dynamic Range Test (4.8.3) PASS FAIL
5.7.2 Dynamic Range Test (4.8.3) 5.7.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet.
5.7.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals
5.7.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet.
5.7.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet. Minimum Sensor Signal 73.3 dBm
5.7.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet. Minimum Sensor Signal 73.3 dBm Reference Power at Minimum Sensor Signal 769.95 dBm
5.7.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet. Minimum Sensor Signal 73.3 dBm Reference Power at Minimum Sensor Signal 69.95 dBm Maximum Sensor Signal 6Bm
5.7.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet. Minimum Sensor Signal

5.7.3 Reference Integrity Test (4.8.4)	PASS FAIL
Reference Power at Min. Sensor Signal -69. 9 5 dBm	=> 1.0/158 x 10 ⁻⁷ mW
Reference Power at Max. Sensor Signal -69.75 dBm	=> 1.05925 x10 ⁻⁷ mW
Reference Variation (mW) = Reference Power at Max. Sensor Signal(mW) – Reference Power	r at Min. Sensor Signal(mW)
Reference Variation 4.76743×10^{-9} mW => -83.22	_dB
Reference Integrity (dB) = Reference Variation(dB) - Reference Po	ower at Min. Sensor Signal(dB)
Reference Integrity -/3.27 dB	Expected: ≤-26dB
Comments:	
·	
5.7.4 Channel Characteristics Test (4.8.5)	PASS FAIL
5.7.4.1 Attach the graph of the typical sensor value behind this data shee	t.
Number of Discrete Channels 2	Expected: 2
Comments: The small peaks in the reference and sensor signal were nepecks were counted.	ot counted as peaks. Only the large
Center Wavelength of High Frequency Signal 771.8 nm	Expected: 787nm
Comments: Reference Channel	
Center Wavelength of Low Frequency Signal \$85.0 nm	Expected: 863nm
Comments: Signal Channel	
Channel Widths	Expected: ≤75nm
High Frequency Width 45.8 nm Low Frequence	ry Width 50.0 nm

OF POOR QUALITY

Pitch Stick 002

5.8 RUDDER PEDAL SENSOR DATA SHEET

Performed by: Brad Kessler Date: 12/16/92 Test Article Serial Number: 001			
5.8.1 Sensor Insertion Loss Test (4.9.2) PASS FAIL			
5.8.1.1 Attach the graphs of the sensor and source output power spectrums behind this data sheet.			
Insertion Loss (IL) = Source Power at Sensor Peak - Sensor Power at Sensor Peak.			
Insertion Losses at each Peak in the Sensor Output Power Spectrum (may not fill all boxes)			
Peak 1 763.4 nm Signal Power -67.35 dB Source Power -51.0 dB IL /6.35 dB			
Peak 2 774.2 nm Signal Power -67.15 dB Source Power -50.65 dB IL 16.5 dB			
Peak 3 782.2 nm Signal Power 67.25 dB Source Power 50.6 dB IL 16.65 dB			
Peak 4 791.0 nm Signal Power -67.15 dB Source Power -50.55 dB IL 16.6 dB			
Peak 5 799.4 nm Signal Power 66.8 dB Source Power 55.2 dB IL 16.6 dB			
Peak 6 907.8 nm Signal Power -67.55 dB Source Power -50.35 dB IL 17.2 dB			
Peak 7 816.2 nm Signal Power -67.95 dB Source Power -50.8 dB IL 17.15 dB			
Peak 8 824.2 nm Signal Power -68.45 dB Source Power -51.15 dB IL 17.3 dB			
Peak 9 832.2 nm Signal Power 68.9 dB Source Power 51.3 dB IL 17.6 dB			
Peak 10 840.2 nm Signal Power -69.4 dB Source Power -57.6 dB IL 17.8 dB			
Peak 11 948.2 nm Signal Power - 69.6 dB Source Power -51.7 dB IL 17.9 dB			
Peak 12 855.8 nm Signal Power -69.35 dB Source Power -51.5 dB IL 17.85 dB			
Peak 13 863.8 nm Signal Power 68.85 dB Source Power 50.8 dB IL 18.05 dB			
Overall Sensor Insertion Loss = Average of Individual Peak Insertion Losses.			
Sensor Insertion Loss 17.2 dB Expected: ≤ 24dB			
Comments:			

5.8.2 Contrast Ratio Test (4.9.3)	PASS FAII
5.8.2.1 Attach the graphs of the sensor opposite bit pattern behind this	s data sheet.
Subchannel Amplitudes (Maximum / Minimum)	*
Channel 1 -67.4/-78.6 dBm Channel 2 -67.2/-75.8 dBm Cl	hannel 3 -67.3 /-76.3 dBm
Channel 4 -67.2/-76.1 dBm Channel 5 -66.8 /-75.9 dBm Ch	annel 6 -67.6 /-77.1 dBm
Channel 7 -68.0 -76.6 dBm Channel 8 -68.5 -77.0 dBm Ch	annel 9 -68.9 /-77.3 dBm
Channel 10 -69.4 / -78.2 dBm Channel 11 -69.6 / -78.0 dBm (Channel 12 -69.4 /-77.6 dBm
Channel 13 -68.9 / -78.4 dBm	
Contrast Ratio = Maximum Channel Power – Minimum Chann	el Power.
Channel Contrast Ratios	
Channel 1 11.2 dB Channel 2 8.6 dB Cha	nnel 3 9. 0 dB
Channel 4 8.9 dB Channel 5 9.1 dB Cha	nnel 6 9.5 dB
Channel 7 8.6 dB Channel 8 8.5 dB Cha	nnel 9 8.4 dB
Channel 10 8.8 dB Channel 11 8.4 dB Cha	nnel 12 8,2 dB
Channel 13 9.5 dB	
Minimum Contrast Ratio 8.2 dB	Expected: 6.0dB
Comments:	

5.8.3 Channel Characteristics Test (4.9.4)		BA CC] EATILE
5.8.3.1 Attach the graph of the typical sensor value behind this data sheet.		PA55(FAIL See Channel Width Note guardbond wilde
Number of Discrete Channels /3	Expected:	13	
Comments:			

A 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Band 10/13 8.5 El/21 band mm 5.5 SI/11 band mm 4.5 II/01 band
mn %2 01/9 basd mn %2 9/7 basd mn %2 8/7 basd
mn Hz 7/9 basd mn J.Z 3/2 basd mn HE 2/4 basd
mn 2.5 4/6 basd mn 2.5 5/2 basd mn 5.5 2/1 basd
Cruardband Widths Expected: 2.5nm
stoors edge of passing so there is no room for adjusting the subjective mispoints of the channels
Sizes Sizes Sizes Of channel 8 are 8:4nn and 8.2 nm, this channel wilt could be 8.0 nm.
Some the resolution of the
0.81 Z Jenney 2 0.00LL
7'87'
Welly mesuranent to mer the rise and fall of the nast
Comments: Chemel with are measured from midgent of valley before channel peck to mil point of vally after channel peak,
Channel 13 mm
Channel 10 & nm Channel 11 7.6 nm Channel 12 8.2 nm
Channel 7 8.7 nm Channel 8 7.8 nm Channel 9 8.2 nm
Channel 4 8,6 nm Channel 5 8,2 nm Channel 6 8,4 nm
Channel 1 9,2 nm Channel 2 9,4 nm Channel 3 8.8 nm
Channel Widths Expected: 8.5nm +/- 0.5nm
Comments:
Ending Wavelength of Last Channel 867.0 nm Expected: 854nm to 887nm
Comments:
Initial Wavelength of First Channel 759.4 nm Expected: 750nm to 770nm

5.8 RUDDER PEDAL SENSOR DATA SHEET

Performed by: Brad Kassler Date: 12/16/92 Test Article Serial Number: 002
5.8.1 Sensor Insertion Loss Test (4.9.2) PASS FAIL
5.8.1.1 Attach the graphs of the sensor and source output power spectrums behind this data sheet.
Insertion Loss (IL) = Source Power at Sensor Peak – Sensor Power at Sensor Peak.
Insertion Losses at each Peak in the Sensor Output Power Spectrum (may not fill all boxes)
Peak 1 765.8 nm Signal Power 72.95 dB Source Power 50.8 dB IL 22.15 dB
Peak 2 776.6 nm Signal Power 72.3 dB Source Power 50.5 dB IL 21.8 dB
Peak 3 785.0 nm Signal Power -72.45 dB Source Power - 50.45 dB IL 22.0 dB
Peak 4 793.8 nm Signal Power - 72.3 dB Source Power - 50.35 dB IL 21.95 dB
Peak 5 902.6 nm Signal Power - 72.5 dB Source Power - 50.3 dB IL 22.2 dB
Peak 6 816.6 nm Signal Power -72.55 dB Source Power -506 dB IL 21.95 dB
Peak 7 819.0 nm Signal Power 72.5 dB Source Power 51.0 dB IL 21.5 dB
Peak 8 827.0 nm Signal Power -72.6 dB Source Power -51.15 dB IL 21.45 dB
Peak 9 835.0 nm Signal Power -73.1 dB Source Power -51.4 dB IL 21.7 dB
Peak 10 843.4 nm Signal Power 73.35 dB Source Power 51.65 dB IL 21.7 dB
Peak 11 851.0 nm Signal Power -73.3 dB Source Power -51.55 dB IL 21.75 dB
Peak 12 859.0 nm Signal Power 72.65 dB Source Power 51.2 dB IL 21.45 dB
Peak 13 867.0 nm Signal Power -71.95 dB Source Power -50.5 dB IL 20.45 dB
Overall Sensor Insertion Loss = Average of Individual Peak Insertion Losses.
Sensor Insertion Loss 21.7 dB Expected: ≤24dB
Comments:

5.8.2 Contrast Ratio Test (4.9.3)	PASS FAIL
5.8.2.1 Attach the graphs of the sensor opposite bit pattern behind this data sheet.	
Subchannel Amplitudes (Maximum / Minimum)	
Channel 1 -730/-80.3 dBm Channel 2 -72.3 / -79.0 dBm Channel 3 -72.5	5/-78.9 dBm
Channel 4 -72.3 / -78.3 dBm Channel 5 -72.5 / -78.6 dBm Channel 6 -72.6	/-78.5 dBm
Channel 7 -72.5 -78.8 dBm Channel 8 -72.6 / -78.2 dBm Channel 9 -73.1	/-78.5 dBm
Channel 10 -73.4 -79.6 dBm Channel 11 -73.3 -79.2 dBm Channel 12 -7.	2.7 -78.7 dBm
Channel 13 -72.0/-78.8 dBm	
Contrast Ratio = Maximum Channel Power - Minimum Channel Power.	
Channel Contrast Ratios	
Channel 1 7.3 dB Channel 2 6.7 dB Channel 3 6.4	<u>∕</u> _dB
Channel 4 6.0 dB Channel 5 6.1 dB Channel 6 5.	9 dB
Channel 7 6.3 dB Channel 8 5.6 dB Channel 9 5.6	dB
Channel 10 6.2 dB Channel 11 5.9 dB Channel 12 6.	<u>o</u> dB
Channel 13 6.8 dB	
Minimum Contrast Ratio 5.4 dB Expected:	: 6.0dB
Comments:	
5.9.2 Channel Characteristics Test (4.9.4)	PAGE FATIFI
5.8.3 <u>Channel Characteristics Test (4.9.4)</u>5.8.3.1 Attach the graph of the typical sensor value behind this data sheet.	PASS FAIL See Chennel widths note grandband widths
5.5.5.1 Attact the graph of the typical sensor value benind this data sheet.	(note guard band widths
Number of Discrete Channels /3 Expected:	13

Comments:

1 1 18.83 1 1 1 18.83 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Band 1/2 2.6 nm Band 2/3 3.7 nm Band 3/4 3.0 nm Band 4/5 7.8 nm Band 5/6 2.4 nm Band 1/2 2.6 nm Band 1/2 2.6 nm Band 1/2 3.6 nm Band 1/2 1/3 3.6 nm
Comments: Chonnel withs are measured between the midpoints of the valleys on either site of the people. 770.0 785.8 780.8 3 Using measurements close to the vise and full of the people gimes; 172.8 789.4 798.4 806.4 806.4 806.4 806.4 806.7
Channel Widths Channel I 5.4 nm Channel 2 8.5 nm Channel I 8.8 nm Channel I 8.8 nm Channel I 8.9 nm Channel I 8.0 nm
Initial Wavelength of First Channel 765.8 nm Expected: 750nm to 770nm Comments: Ending Wavelength of Last Channel 867.0 nm Expected: 854nm to 887nm Comments:

Rudder Pedal 002

5.9 TRAILING EDGE FLAP SENSOR DATA SHEET

Performed by: Brad Kessler Date: 12/16/92 Test Article Serial Number: 001
5.9.1 Sensor Insertion Loss Test (4.10.2) PASS FAIL
5.9.1.1 Attach the graphs of the sensor and source output power spectrums behind this data sheet.
Insertion Loss = Source Peak Power - Sensor Peak Power.
Reference Peak Power -65.4 dBm at 777.0 nm
Source Peak Power at Reference WavelengthdBm
Reference Insertion Loss 17.5 dB Expected: ≤ TBD dB
Signal Peak Power -64.5 dBm at 875.4 nm
Source Peak Power at Signal Wavelength -47,7 dBm
Signal Insertion Loss /6.8 dB Expected: ≤20dB
Comments:
5.9.2 Dynamic Range Test (4.10.3) PASS FAIL
5.9.2 Dynamic Range Test (4.10.3) 5.9.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet.
5.9.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet. Minimum Sensor Signal -71.95 dBm
5.9.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet. 4+ 875.8
5.9.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet. Minimum Sensor Signal -71.95 dBm 4+ 775.8
5.9.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet. Minimum Sensor Signal -71.95 dBm Reference Power at Minimum Sensor Signal dBm Reference Power at Minimum Sensor Signal dBm
5.9.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet. Minimum Sensor Signal -71.95 dBm Reference Power at Minimum Sensor Signal -66.1 dBm Maximum Sensor Signal -64.5 dBm
5.9.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet. Minimum Sensor Signal

	\
5.9.3 Reference Integrity Test (4.10.4)	(or see Turks and PASS FAIL
Reference Power at Min. Sensor Signal -66.1	dBm => 2.4547 xo ⁻¹ mW
Reference Power at Max. Sensor Signal -65.4	dBm => 2.884 x/0 ⁻⁷ XW
Reference Variation (mW) = Reference Power at Max. Sensor Signal(mW) – Ref	erence Power at Min. Sensor Signal(mW)
Reference Variation 4.2932 xo-8 MW =>	-73,67 dB
Reference Integrity (dB) = Reference Variation(dB) –	Reference Power at Min. Sensor Signal(dB)
Reference Integrity 7.6 dB	Expected: ≤-26dB
Comments: Near the edge of the cole plate (Iming up shaft respectively), the reference band changes dram	the arrow and the hush mark on the sensor and
readable due to noise. The signal band in this	atleally toward lower power until it is not area is still readable however
	, .
5.9.4 Channel Characteristics Test (4.10.5)	PASS FAIL
5.9.4.1 Attach the graph of the typical sensor value behind	this data sheet.
Number of Discrete Channels 2	Expected: 2
Comments:	
Center Wavelength of High Frequency Signal 777.	nm Expected: 787nm
Comments: Reference Channel	
Center Wavelength of Low Frequency Signal 875.4	nm Expected: 863nm
Comments: Signal Channel	
Channel Widths	Expected: ≤75nm 855.2 + 9∞.0 nm
	ow Frequency Width 49.8 nm
Comments:	

Trailing Edge Flap ool

ORIONAL PAGE IS OF POOR QUALITY

5.9 TRAILING EDGE FLAP SENSOR DATA SHEET

Performed by: Brad Kessler Date: 12/17/92	Test Article Serial Number: 002
5.9.1 Sensor Insertion Loss Test (4.10.2)	PASS FAIL
5.9.1.1 Attach the graphs of the sensor and source output po	ower spectrums behind this data sheet.
Insertion Loss = Source Peak Power - Sensor Peak Pow	ver.
Reference Peak Power -62.2 dBm at	776.2 nm
Source Peak Power at Reference Wavelength	. 65 dBm
Reference Insertion Loss /// dB	Expected: ≤ TBD dB
Signal Peak Power -61.5 dBm at 87	5.4 nm
Source Peak Power at Signal Wavelength	dBm
Signal Insertion Loss /// dB Comments:	Expected: ≤20dB
	,
5.9.2 <u>Dynamic Range Test (4.10.3)</u>	PASS FAIL
5.9.2.1 Attach the graphs of the output power spectrums with behind this data sheet.	h the maximum and minimum sensor signals
Minimum Sensor Signal 71.4 dBm	at 77b.6nm
Reference Power at Minimum Sensor Signal -62.2	
Maximum Sensor Signal -61.5 dBm	·
Reference Power at Maximum Sensor Signal62	2dBm
Dynamic Range = (Max. Sensor Signal – Reference Pow (Min. Sensor Signal – Reference Powe	
Dynamic Range 9.85 dB	Expected: Min. 15dB Max. TBD
Comments: 4	

Comments: Near the point on the code plate where the hash mark on the shaft aligns with the arrows the sensor case, the reference band disappears to zero as the shaft is turned away from the code plate, moving off the tracks on the code plate. See the print out labeled "Info" for a plot of the reduced reference power. The measurements for these tests were taken at the minimum sensor signal where the reference channel remained constant over the majority of the code plate. This eliminates the anomalous area of the code plate.

A-95

5.9.3 Reference Integrity Test (4.10.4)	PASS FAIL
Reference Power at Min. Sensor Signal -62.25 dBm	=> 5.957 x/0 ⁻⁷ XW
Reference Power at Max. Sensor Signal —62.2 dBm	=> 6.026 x10-7
Reference Variation (mW) = Reference Power at Max. Sensor Signal(mW) – Reference Power	er at Min. Sensor Signal(mW)
Reference Variation $6.897 \times 10^{-9} \text{ MW} => -81.61$	dB
Reference Integrity (dB) = Reference Variation(dB) - Reference Pe	ower at Min. Sensor Signal(dB)
Reference Integrity -19.4 dB	Expected: ≤ -26dB
Comments:	
5.9.4 Channel Characteristics Test (4.10.5)	PASS FAII
5.9.4.1 Attach the graph of the typical sensor value behind this data shee	et.
Number of Discrete Channels 2	Expected: 2
Comments:	
Center Wavelength of High Frequency Signal 776.2 nm	Expected: 787nm
Comments:	
Center Wavelength of Low Frequency Signal 875.4 nm	Expected: 863nm
Comments:	
Channel Widths	Expected: ≤75nm
High Frequency Width 51.0 nm Low Frequen	<u> </u>
Comments:	

Trailing Edge Flap 002

Near farmed of code plate. Among from lining up has bencok on Shake with arrows on sensor case.

ORIGINAL PAGE IS OF POOR QUALITY

5.10 LEADING EDGE FLAP SENSOR DATA SHEET

Comments:

5.10.2 Contrast Ratio Test (4.11.3
5.10.2.1 Attach the graphs of the ser

PASS FAIL

Insertion Loss

5.10.2.1 Attach the graphs of the sensor opposite bit pattern behind this data sheet.

Contrast Ratio = Maximum Channel Power - Minimum Channel Power.

Channel Contrast Ratios 5.4 8.2 Channel 1 dВ Channel 2 Channel 3 7.1 dB dB Channel 4 13.1 dΒ Channel 5 6.8 Channel 6 8.0 dB dB 10.4 8.9 6.8 Channel 7 Channel 8 dB dB Channel 9 dB 8.2 9.9 5.7 Channel 10 Channel 11 dB dΒ Channel 12 dB 9.2 Channel 13 dB

Minimum Contrast Ratio 5.4 dB Expected: 6.0dB with 28dB Insertion Loss or 5.0dB with ≤ 27dB

Comments: Noise may be affecting the contrast ratio results.

	001-A	9'98&
		HILB
		8°L98 8°6S8
		8.178
•		F1 E F8 81 S E 8
		8.758
to less then Orthma	2491-34200610	Z.628
Marie threatening in increments shall	striction at 46mons	<i>ት'</i> 11 <i>8</i> ሉ' £ <mark>ዓ</mark> ያ
pnent did not measure in increments small	Acceptable since the cons	8'S6L
18.8 mm or a Altina average. It. 15	there is a difference of	h'L8L 9'8LL
channel 12 and the end of channel 13	D Between the beginning of	Comments: Marker A
		Channel 13 R.2 nm
Channel 12 9.6 nm	Channel 11 8.5	Channel 10 S.c. nm
Channel 9 8.4 nm	Channel 8 7.6 nm	Channel 7 8.0 nm
Channel 6 7.5 nm	Channel 5 8.8 nm	Channel 4 8.0 nm
Channel 3 7.c nm	Channel 2 8.4 nm	Channel 1 8.5 nm
Expected: 8.5nm +/- 0.9nm	,	Channel Widths
Expected: 860nm to 900nm		Ending Wavelength of Last
	mn 3.388 Isnned)	Comments: Ending Wavelength of Last
Expected: 750nm to 785nm	mn 3.388 Isnned)	Ending Wavelength of Last
	channel errors cannot combin channel [778.6] nm Channel [886.6] nm	may vary by +/-0.9nm; the Initial Wavelength of First Comments: Ending Wavelength of Last
e to exceed spectral width range. Expected: 750nm to 785nm	channel errors cannot combin channel [778.6] nm Channel [886.6] nm	The spectral width range is may vary by +/-0.9nm; the may vary by +/-0.9nm; the Initial Wavelength of First Comments:
e to exceed spectral width range. Expected: 750nm to 785nm	110nm minimum to 115nm master combined to a second of the	Spectral Width: The spectral width range is may vary by +/-0.9nm; the Initial Wavelength of First Comments: Ending Wavelength of Last
Expected: 13 aximum even though each channel e to exceed spectral width range. Expected: 750nm to 785nm	110nm minimum to 115nm ms channel errors cannot combin Channel 3.877 Isnm Channel 886.6	Number of Discrete Chann Comments: Spectral Width: The spectral width range is may vary by +/-0.9nm; the Initial Wavelength of First Comments:
Expected: 13 aximum even though each channel e to exceed spectral width range. Expected: 750nm to 785nm	els 13 channel sensor value behind this els 13 channel errors cannot combin channel errors cannot combin mn 2.887 mm	Number of Discrete Chann Comments: Spectral Width: The spectral width range is may vary by +/-0.9nm; the Initial Wavelength of First Comments:

Leading Edge Flap 0043

5.10 LEADING EDGE FLAP SENSOR DATA SHEET

	Performed by: Brad Kessler Date: 12/14/92 Test Article Serial Number: 45
	5.10.1 Sensor Insertion Loss Test (4.11.2) PASS FAIL
	5.10.1.1 Attach the graphs of the sensor and source output power spectrums behind this data sheet.
	Insertion Loss (IL) = Source Power at Sensor Peak - Sensor Power at Sensor Peak.
	Insertion Losses at each Peak in the Sensor Output Power Spectrum (may not fill all boxes)
	Peak 1 783 nm Signal Power - 71.75 dB Source Power - 47.8 dB II 23.95 dB
	Peak 2 791 nm Signal Power 71.65 dB Source Power 47.65 dB IL 24.0 dB
	Peak 3 798 nm Signal Power - 70.7 dB Source Power - 47.5 dB IL 23.2 dB
	Peak 4 911 nm Signal Power - 70.6 dB Source Power - 47.85 dB IL 22.75 dB
<i>(</i> .)	Peak 5 819 nm Signal Power -70.75 dB Source Power -48.2 dB IL 22.55 dB
The high)	→ Peak 6 827 nm Signal Power -7005 dB Source Power -48.4 dB IL 21.65 dB
	Peak 7 835 nm Signal Power -70.45 dB Source Power -48.65 dB IL 22.3 dB
	Peak 8 943 nm Signal Power -71.05 dB Source Power -49.0 dB IL 22.05 dB
	Peak 9 851 nm Signal Power -71.0 dB Source Power -48.95 dB IL 22.05 dB
	Peak 10 859 nm Signal Power -70.55 dB Source Power -48.55 dB IL 22.0 dB
	Peak 11 867 nm Signal Power -70.2 dB Source Power -47.95 dB IL 22.25 dB
	Peak 12 376 nm Signal Power -69.85 dB Source Power -47.55 dB IL 22.3 dB
	Peak 13 nm Signal Power -70.95 dB Source Power -48.0 dB IL 22.95 dB
	Overall Sensor Insertion Loss = Average of Individual Peak Insertion Losses.
	Sensor Insertion Loss 22.6 dB Expected: 28dB with 6.0dB Contrast Ratio
	or ≤ 27 dB with 5.0dB
	Comments:
	1 ATTITUDES

5.10.2 <u>Contrast Ratio Test (4.11.3)</u>	PASS FAIL
5.10.2.1 Attach the graphs of the sensor opposite bit pattern behind this data sheet.	
Subchannel Amplitudes (Maximum / Minimum)	
Channel 1	7/-75.0 dBm
Channel 4 -70.6/-81.4 dBm Channel 5 -70.8/-74.2 dBm Channel 6 -70.1	/-74.3 dBm
Channel 7 -71.0 -74.2 dBm Channel 8 -71.1 -74.6 dBm Channel 9 -71.0	/-74.3 dBm
Channel 10 -70.6/-74.2 dBm Channel 11 -70.2/-73.5 dBm Channel 12 -	49.9 /-73.8 dBm
Channel 13 -71.0 /-72.6 dBm	
Contrast Ratio = Maximum Channel Power – Minimum Channel Power.	
Channel Contrast Ratios	
Channel 1 5.7 dB Channel 2 3.5 dB Channel 3 4.3	3 dB
Channel 4 10.8 dB Channel 5 3.4 dB Channel 6 4.2	dB
Channel 7 3.2 dB Channel 8 3.5 dB Channel 9 3.3	dB
Channel 10 3.6 dB Channel 11 3.3 dB Channel 12 3.6	dB
Channel 13 1.6 dB	
Minimum Contrast Ratio 1.6 dB Expected: 6.0dB	with 28dB

Expected: 6.0dB with 28dB

Insertion Loss or 5.0dB with $\leq 27dB$ **Insertion Loss**

Comments:

Minimum Contrast Ratio

5.10.3 Channel Characteristics Test (4.11.4) 5.10.3.1 Attach the graph of the typical sensor value behind this data sheet. 13 Number of Discrete Channels Expected: 13 Comments: Spectral Width: The spectral width range is 110nm minimum to 115nm maximum even though each channel may vary by +/-0.9nm; the channel errors cannot combine to exceed spectral width range. 777.8 Initial Wavelength of First Channel Expected: 750nm to 785nm Comments: Ending Wavelength of Last Channel L Expected: 860nm to 900nm Comments: Spectral WILK = 277.8 110.8nm Channel Widths Expected: 8.5nm + /- 0.9nmسماعط 🛈 معک 9,6 8.4 Channel 1 Channel 3 nm Channel 2 nm 8.4 Channel 4 10.8 Channel 6 8,0 Channel 5 nm nm nm 8.0 7.6 Channel 7 8.0 Channel 8 Channel 9 nm nm nm 8.0 8.4 Channel 10 Channel 12 Channel 11 nm 9.2 Channel 13 nm Comments: Marker \(\hat{hm} \) The measurements above were taken in the middle of the valleys between adjacent channels. FAILURE The width of channel 3 could be "84mm, and the width of channel 4 could be ~ 8.0 nm, however, this would leave a ~4.0 nm gap between channels 3 and 4.

A-104

879.4 888.6 Leading Edge Flap 0045

ORIGINAL PAGE IS OF POOR QUALITY

A-105

5.11 POWER LEVER CONTROL SENSOR DATA SHEET

Performed by: Bcal Kessler Date: 6/21/93 Test Article Serial Number: 00/
5.11.1 Sensor Insertion Loss Test (5.12.2) PASS FAIL
5.12.1 Attach the graphs of the sensor and source output power spectrums behind this data sheet.
Insertion Loss (IL) = Source Power at Sensor Peak - Sensor Power at Sensor Peak.
Insertion Losses at each Peak in the Sensor Output Power Spectrum (may not fill all boxes)
Peak 1 757.0 nm Signal Power -69.75 dB Source Power -46.5 dB IL 23.25 dB
Peak 2 765.4 nm Signal Power -69.25 dB Source Power -46.05 dB IL 23.2 dB
Peak 3 775.4 nm Signal Power -68.65 dB Source Power -45.75 dB IL 22.9 dB
Peak 4 782.6 nm Signal Power -68.35 dB Source Power -45.75 dB IL 22.6 dB
Peak 5 7906 nm Signal Power -68.6 dB Source Power -45.75 dB IL 22.85 dB
Peak 6 799.0 nm Signal Power 68.55 dB Source Power 45.75 dB IL 22.8 dB
Peak 7 807.0 nm Signal Power 68.55 dB Source Power 45.9 dB IL 22.65 dB
Peak 8 815.4 nm Signal Power -68.75 dB Source Power -46.15 dB IL 22.6 dB
Peak 9 823.4 nm Signal Power -68.3 dB Source Power -46.35 dB IL 21.95 dB
Peak 10 833.8 nm Signal Power 68.75 dB Source Power 46.4 dB IL 22.35 dB
Peak 11 842.2 nm Signal Power -68-8 dB Source Power -46.45 dB IL 22.35 dB
Peak 12 849.8 nm Signal Power -68.9 dB Source Power -46.6 dB IL 22.3 dB
Peak 13 857.8 nm Signal Power -68.6 dB Source Power -46.45 dB IL 22.15 dB
Peak 14 865.8 nm Signal Power -67.75 dB Source Power -45.9 dB IL 21.85 dB
Peak 15 873.4 nm Signal Power -67.2 dB Source Power -45.35 dB IL 21.85 dB
Overall Sensor Insertion Loss = Average of Individual Peak Insertion Losses.
Sensor Insertion Loss 22.51 dB Expected: ≤24dB
Comments:

5.12.2 Contrast Ratio Test (5.12.3)	PASS FAIL
5.12.3 Attach the graphs of the sensor opposite bit pattern behind this	data sheet.
Subchannel Amplitudes (Maximum / Minimum)	
Channel 1 -49.8 /-76.4 dBm Channel 2 -49.3 /-77.5 dBm Cha	nnel 3 - 68.7 /-73.5 dBm
Channel 4 -68.4 / -74.0 dBm Channel 5 -68.6 / -74.6 dBm Cha	nnel 6 <u>- 68.6</u> <u>- 74.7</u> dBm
Channel 7 -68.6 /-75.0 dBm Channel 8 -68.8 /-75.6 dBm Cha	nnel 9 $\frac{-62.3}{-77.9}$ dBm
Channel 10 -68.8 /-75.3 dBm Channel 11 -68.8 /-75.1 dBm C	hannel 12 -68.9/-74.9 dBm
Channel 13 -68.6 / -74.8 dBm Channel 14 -67.8 / -73.6 dBm C	hannel 15 -67.2 /-75.8 dBm
Contrast Ratio = Maximum Channel Power - Minimum Channel	l Power.
Channel Contrast Ratios	
Channel 1 6.6 dB Channel 2 8.2 dB Char	nnel 3 <u>4.8</u> dB
Channel 4 5.6 dB Channel 5 6.0 dB Char	nnel 6 6.1 dB
Channel 7 6.4 dB Channel 8 6.8 dB Chan	nel 9 9.6 dB
Channel 10 6.5 dB Channel 11 6.3 dB Chan	nel 12 6.0 dB
Channel 13 6.2 dB Channel 14 5.8 dB Chan	nel 15 8.6 dB
Minimum Contrast Ratio 4.8 dB	Expected: 6.0dB
Comments:	•
	·
•	
	·
5.12.4 Channel Characteristics Test (5.12.4)	PASS FAIL
5.12.4.1 Attach the graph of the typical sensor value behind this data sho	PASS FAIL See channel widths
	_
Number of Discrete Channels 15	Expected: 15

Comments:

PLC ool

ONGINAL PAGE IS OF POOR QUALITY

5.11 POWER LEVER CONTROL SENSOR DATA SHEET

Performed by: Brad Kessler Date: 4/21/93 Test Article Serial Number: 002
5.11.1 Sensor Insertion Loss Test (5.12.2) PASS FAIL
5.12.1 Attach the graphs of the sensor and source output power spectrums behind this data sheet.
Insertion Loss (IL) = Source Power at Sensor Peak – Sensor Power at Sensor Peak.
Insertion Losses at each Peak in the Sensor Output Power Spectrum (may not fill all boxes)
Peak 1 763.8 nm Signal Power -64.85 dB Source Power -47.25 dB IL 17.6 dB
Peak 2 772.6 nm Signal Power -64.85 dB Source Power -46.95 dB IL 17.9 dB
Peak 3 782.6 nm Signal Power -64.9 dB Source Power -46.6 dB IL 18.3 dB
Peak 4 791.0 nm Signal Power -65.3 dB Source Power -46.45 dB IL 18.85 dB
Peak 5 797.8 nm Signal Power 64.7 dB Source Power 46.4 dB IL 18.3 dB
Peak 6 808.6 nm Signal Power -65.15 dB Source Power -46.6 dB IL 18.55 dB
Peak 7 8/6.6 nm Signal Power -65.5 dB Source Power -46.75 dB IL 18.75 dB
Peak 8 8 25.0 nm Signal Power -65.7 dB Source Power -46.75 dB IL 18.95 dB
Peak 9 833.0 nm Signal Power -65.75 dB Source Power -46.45 dB IL 19.3 dB
Peak 10 841.4 nm Signal Power -65.4 dB Source Power -46.15 dB IL 19.25 dB
Peak 11 849.0 nm Signal Power -65.5 dB Source Power -45.95 dB IL 19.55 dB
Peak 12 857.0 nm Signal Power -65.3 dB Source Power -45.6 dB IL 19.7 dB
Peak 13 865.0 nm Signal Power -65.1 dB Source Power -45.15 dB IL 19.95 dB
Peak 14 873.0 nm Signal Power -64.6 dB Source Power -44.35 dB IL 20.25 dB
Peak 15 880.6 nm Signal Power -64.2 dB Source Power -43.8 dB IL 20.4 dB
Overall Sensor Insertion Loss = Average of Individual Peak Insertion Losses.
Sensor Insertion Loss 19.04 dB Expected: ≤24dB
Comments:

5.12.2 Contrast Ratio Test (5.12.3)	PASS FAIL
5.12.3 Attach the graphs of the sensor opposite bit pattern behind this data s	heet.
Subchannel Amplitudes (Maximum / Minimum)	
Channel 1 -44.9 -74.9 dBm Channel 2 -44.9 -74.5 dBm Channel	3 -64.9 /-71.8 dBm
Channel 4 -65.3 /-71.2 dBm Channel 5 -64.7 /-74.8 dBm Channel	6-65.2 -74.2 dBm
Channel 7 -65.5 / -74.7 dBm Channel 8 -65.7 / -74.8 dBm Channel 9	9-65.8 /-74.3 dBm
Channel 10 -65.4 /-74.5 dBm Channel 11 -65.5 /-74.1 dBm Channel	el 12 -65.3 /-73.4 dBm
Channel 13 -65.1 /-73.2 dBm Channel 14 -64.6 /-72.9 dBm Channel	el 15 -64.2 /-72.8 dBm
Contrast Ratio = Maximum Channel Power - Minimum Channel Pow	er.
Channel Contrast Ratios	
Channel 1 10.0 dB Channel 2 9.6 dB Channel 3	6.9 dB
Channel 4 5.9 dB Channel 5 10.1 dB Channel 6	9.0 dB
Channel 7 9.2 dB Channel 8 9.1 dB Channel 9	8,5 dB
Channel 10 9.1 dB Channel 11 8.6 dB Channel 12	2 8.1 dB
Channel 13 8.1 dB Channel 14 8.3 dB Channel 15	5 8.6 dB
Minimum Contrast Ratio 5.9 dB	Expected: 6.0dB
Comments: The actual contrast ratio of 5.9 is close enough to +	<i>L</i>
The EDA should be able to work with this O.IdB out	te expected value of 6.0.
	Towner.
·	
5.12.4 Channel Characteristics Test (5.12.4)	PASS FAIL
5.12.4.1 Attach the graph of the typical sensor value behind this data sheet.	See channel widths
Number of Discrete Channels	ected: 15
Comments:	

5.13 NOSE WHEEL STEERING SENSOR DATA SHEET

Performed by: Brad Kossler Date: 12/17/92 Test Article Serial Number: 001
5.13.1 Sensor Insertion Loss Test (4.13.2) PASS FAIL
5.13.1.1 Attach the graphs of the sensor and source output power spectrums behind this data sheet.
Insertion Loss = Source Peak Power - Sensor Peak Power.
Reference Peak Power -63.9 dBm at 777.4 nm
Source Peak Power at Reference WavelengthdBm
Reference Insertion Loss 12.5 dB Expected: ≤ TBD dB
Signal Peak Power -64.65 dBm at 875.4 nm
Source Peak Power at Signal Wavelength -51.05 dBm
Signal Insertion Loss / 3.6 dB Expected: ≤ 20dB
Comments:
E 12 2 Demania Panca Tost (4.12.2)
5.13.2 Dynamic Range Test (4.13.3) PASS FAIL F12.3.1 Attach the graphs of the output power creations with the maximum and minimum consort.
5.13.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet.
5.13.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor
5.13.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet.
5.13.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet. Minimum Sensor Signal = -84.0 dBm
5.13.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet. Minimum Sensor Signal = -84.0 dBm Reference Power at Minimum Sensor Signal -63.75 dBm
5.13.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet. Minimum Sensor Signal = -84.0 dBm Reference Power at Minimum Sensor Signal = -63.75 dBm Maximum Sensor Signal = -64.65 dBm
5.13.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet. Minimum Sensor Signal = -84.0 dBm Reference Power at Minimum Sensor Signal = -63.75 dBm Maximum Sensor Signal = -63.9 dBm Reference Power at Maximum Sensor Signal = -63.9 dBm Dynamic Range = (Max. Sensor Signal - Reference Power at max. sensor signal) -
5.13.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet. Minimum Sensor Signal \$\approx -84.0\$ dBm Reference Power at Minimum Sensor Signal \$-63.75\$ dBm Maximum Sensor Signal \$\approx -64.65\$ dBm Reference Power at Maximum Sensor Signal \$\approx -63.9\$ dBm Dynamic Range = (Max. Sensor Signal - Reference Power at max. sensor signal) - (Min. Sensor Signal - Reference Power at min. sensor signal) Dynamic Range \$\begin{array} 19.5 dB \text{ Expected: Min. 15dB} \text{ Expected: Min. 15dB}

PASS FAIL
=> 4.2170 ×10-7
=> 4.0738 x/o ⁻⁷ X/W
ver at Min. Sensor Signal(mW)
Power at Min. Sensor Signal(dB)
Expected: ≤-26dB
ignal is liss than the reference power at 3 Reference variation was found by subtraction. The Reference Integrity was found by
PASS FAIL
eet.
Expected: 2
Expected: 787nm
Expected: 863nm
Expected: ≤75nm 950.2 to 900,0 nm
cy Width 49.8 nm

Nose Wheel Steering 001

ORIGINAL PAGE IS OF POOR QUALITY

5.13 NOSE WHEEL STEERING SENSOR DATA SHEET

Performed by: Brad Kessler Date: 12/17/92 Test Article Serial Number: 002
5.13.1 Sensor Insertion Loss Test (4.13.2) PASS FAIL
5.13.1.1 Attach the graphs of the sensor and source output power spectrums behind this data sheet.
Insertion Loss = Source Peak Power - Sensor Peak Power.
Reference Peak Power 71.1 dBm at 775.0 nm
Source Peak Power at Reference WavelengthdBm
Reference Insertion Loss 20.√ dB Expected: ≤ TBD dB
Signal Peak Power -69.6 dBm at 875.8 nm
Source Peak Power at Signal Wavelength -50.5 dBm
Signal Insertion Loss 19.1 dB Expected: ≤ 20dB Comments:
5.13.2 Dynamic Range Test (4.13.3) PASS FAIL
5.13.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet.
Minimum Sensor Signal = -82.5 dBm
Reference Power at Minimum Sensor Signal 73.4 dBm
Maximum Sensor Signal -69.6 dBm
Reference Power at Maximum Sensor SignaldBm
Dynamic Range = (Max. Sensor Signal – Reference Power at max. sensor signal) – (Min. Sensor Signal – Reference Power at min. sensor signal)
Dynamic Range /0.6 dB Expected: Min. 15dB
Max. TBD

5.13.3 Reference Integrity Test (4.13.4)	PASS FAIL
Reference Power at Min. Sensor Signal -73.4 dBm	=> 4.5709 ×0 ⁻⁸ mW
Reference Power at Max. Sensor Signal -71.1 dBm	=> 7.7625 x10-8
Reference Variation (mW) = Reference Power at Max. Sensor Signal(mW) – Reference Power	r at Min. Sensor Signal(mW)
Reference Variation $3.19/6 \times 10^{-8}$ mW => -74.96	dB
Reference Integrity (dB) = Reference Variation(dB) – Reference Po	wer at Min. Sensor Signal(dB)
Reference Integrity -/.6 dB	Expected: ≤-26dB
Comments:	
5.13.4 Channel Characteristics Test (4.13.5)	PASS FAIL
5.13.4.1 Attach the graph of the typical sensor value behind this data she	et.
Number of Discrete Channels 2	Expected: 2
Comments:	
Center Wavelength of High Frequency Signal 775.0 nm	Expected: 787nm
Comments:	·
Center Wavelength of Low Frequency Signal 875.8 nm	Expected: 863nm
Comments:	
Channel Widths	Expected: ≤ 75nm 849.8 to 900.00m
High Frequency Width 49.8 nm Low Frequence	cy Width 50.2 nm
Comments:	

At maximum signal only of the code plate, the reference channel At maximum signal on the signal channel remains fairly constant drops to seem but the signal channel remains fairly constant

ORIGINAL PAGE IS OF POOR QUALITY

5.14 TOTAL PRESSURE SENSOR DATA SHEET

Performed by: Brad Kessler Date: 6/22/93 Test Article Serial Number: 4030-32-01
5.14.1 Sensor Insertion Loss Test (4.14.2) PASS FAIL
5.14.1.1 Attach the graphs of the sensor and source output power spectrums behind this data sheet.
Insertion Loss = Source Peak Power - Sensor Peak Power.
Reference Peak Power -59.375 dBm at 779.6 nm Fran 769.8 + 789.4
Source Peak Power at Reference WavelengthdBm
Reference Insertion Loss 13.75 dB Expected: ≤ 18.7dB
Signal Peak Power -60.375 dBm at 885.0 nm
Source Peak Power at Signal Wavelength -43.625 dBm
Signal Insertion Loss /6.75 dB Expected: ≤ 17.5dB
Comments:
5.14.2 Dynamic Range Test (4.14.3) PASS FAIL
5.14.2 <u>Dynamic Range Test (4.14.3)</u> 5.14.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet.
5.14.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor
5.14.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet.
5.14.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet. Minimum Sensor Signal —63.25 dBm
5.14.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet. Minimum Sensor Signal —63.25 dBm Reference Power at Minimum Sensor Signal —59.375 dBm
5.14.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet. Minimum Sensor Signal —63.25 dBm Reference Power at Minimum Sensor Signal —59.375 dBm Maximum Sensor Signal —60.375 dBm
5.14.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet. Minimum Sensor Signal —63.25 dBm Reference Power at Minimum Sensor Signal —59.375 dBm Maximum Sensor Signal —60.375 dBm Reference Power at Maximum Sensor Signal —59.375 dBm Dynamic Range = (Max. Sensor Signal – Reference Power at max. sensor signal) – (Min. Sensor Signal – Reference Power at min. sensor signal) Dynamic Range 2.875 dB Expected: Min. 2.7dB
5.14.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet. Minimum Sensor Signal —63.25 dBm Reference Power at Minimum Sensor Signal —59.375 dBm Maximum Sensor Signal —60.375 dBm Reference Power at Maximum Sensor Signal —79.375 dBm Dynamic Range = (Max. Sensor Signal — Reference Power at max. sensor signal) — (Min. Sensor Signal — Reference Power at min. sensor signal) Dynamic Range 2.875 dB Expected: Min. 2.7dB Max. 3.3dB
5.14.2.1 Attach the graphs of the output power spectrums with the maximum and minimum sensor signals behind this data sheet. Minimum Sensor Signal —63.25 dBm Reference Power at Minimum Sensor Signal —59.375 dBm Maximum Sensor Signal —60.375 dBm Reference Power at Maximum Sensor Signal —59.375 dBm Dynamic Range = (Max. Sensor Signal – Reference Power at max. sensor signal) — (Min. Sensor Signal – Reference Power at min. sensor signal) Dynamic Range 2.875 dB Expected: Min. 2.7dB Max. 3.3dB Comments:

5.14.3 Reference Integrity Test (4.14.4)	PASS FAII
Reference Power at Min. Sensor Signal -59.375 dBm	=>mW
Reference Power at Max. Sensor Signal -59.375 dBm	=>mW
Reference Variation (mW) = Reference Power at Max. Sensor Signal(mW) – Reference Power	er at Min. Sensor Signal(mW)
Reference Variation mW => 0.0	dB
Reference Integrity (dB) = Reference Variation(dB) - Reference P	ower at Min. Sensor Signal(dB)
Reference Integrity -59,375 dB	Expected: ≤ -30dB
Comments:	
	/
5.14.4 Channel Characteristics Test (4.14.5)	PASS FAII
5.14.4 <u>Channel Characteristics Test (4.14.5)</u>5.14.4.1 Attach the graph of the typical sensor value behind this data she	PASS FAIL
	PASS FAII
5.14.4.1 Attach the graph of the typical sensor value behind this data she	
5.14.4.1 Attach the graph of the typical sensor value behind this data she Number of Discrete Channels 2	
5.14.4.1 Attach the graph of the typical sensor value behind this data she Number of Discrete Channels 2 Comments:	Expected: 2
5.14.4.1 Attach the graph of the typical sensor value behind this data she Number of Discrete Channels 2 Comments: Center Wavelength of High Frequency Signal 779.6 nm	Expected: 2
5.14.4.1 Attach the graph of the typical sensor value behind this data she Number of Discrete Channels 2 Comments: Center Wavelength of High Frequency Signal 779.6 nm Comments:	Expected: 2 Expected: 780nm
5.14.4.1 Attach the graph of the typical sensor value behind this data she Number of Discrete Channels 2 Comments: Center Wavelength of High Frequency Signal 779.6 nm Comments: Center Wavelength of Low Frequency Signal 885.0 nm Comments:	Expected: 2 Expected: 780nm Expected: 870nm ted: 55nm +0/-5nm
5.14.4.1 Attach the graph of the typical sensor value behind this data she Number of Discrete Channels 2 Comments: Center Wavelength of High Frequency Signal 779.6 nm Comments: Center Wavelength of Low Frequency Signal 885.0 nm Comments: Channel Widths Expect 1750.2 to 8/3.8 nm Low Frequency Width 63.8 nm Low Frequency Signal 885.0 nm	Expected: 2 Expected: 780nm Expected: 870nm ted: 55nm +0/-5nm 839.8 to 9020nm by Width 60.2 nm
5.14.4.1 Attach the graph of the typical sensor value behind this data she Number of Discrete Channels 2 Comments: Center Wavelength of High Frequency Signal 779.6 nm Comments: Center Wavelength of Low Frequency Signal 885.0 nm Comments:	Expected: 2 Expected: 780nm Expected: 870nm ted: 55nm +0/-5nm 839.8 to 9020nm by Width 60.2 nm

Total Pressure

5.15 TOTAL TEMPERATURE SENSOR DATA SHEET

Performed by: Brad Kessler Date: 6/22/93 Test Article Serial Number: 2
5.15.1 Signal Duration and Excitation to Signal Delay Test (4.15.2) PASS FAIL
5.15.1.1 Attach the graphs of the sensor and source rise and decay behind this data sheet.
Sensor Signal Duration 280 µsec. Expected: 175µsec. +/- 125µsec.
Comments: At room temperature.
Excitation to Signal Delay msec. Expected: 0.0µsec.
Comments: Not measured due lack of second photodiode detector during testing. It was being used
for other purposes.
5.15.2 Channel Characteristics Test (4.15.3) PASS FAIL
5.15.2.1 Attach the graph of the typical sensor value behind this data sheet.
Number of Discrete Channels / Expected: 1
Comments: The channel consists of a peak value and a long tail which is at least 6dB below
the peak value

Center Wavelength of Signal 753 nm Expected: 800nm
Comments: The wavelength given is the peak of the sensor signal and not the center of the
Whole spectrum sensor signal. The senk ville of the sensor signal is the area of interest
and not the tent of the sensor signal.
Channel Width 36.0 nm Expected: Maximum of 200nm (Probably Will Be Less)
Comments: The width given is the width of the peak area of the sensor signal and not the width of the whole sensor signal including it his to the
width of the whole sensor signal including the tail. The tail of the sensor signal is about 250 nm wide

5.15.3	<u>Power</u>	Conversion	Efficiency	Test	(4.15.4)	į

	PASS	FAIL
--	------	------

5.15.3.1 Attach the graphs of the source power and the sensor value behind this data sheet.

5.15.3.2 After recording the spectrum analyzer power measurement, convert it to milliwatts using the formula: dBm = 10log(mWatt)

Power Measurements from Optic Spectrum Analyzer => Conversion to mWatts -27.5 Source Power at Sensor Input dBm 2.738 X10-10 Sensor Signal Power at Coupler Output -65.625 dBm 13.75 Source Backreflection PWR at Coupler Output dB 23.714 2.512 Coupler Attenuation 4.0

Use the values in mW to calculate the Power Conversion Efficiency.

Power Conversion Efficiency =

(((Sensor Signal Power at Coupler Output X Coupler Attenuation)/Source Backreflection PWR at Coupler Output)/Source Power at Sensor Input) X 100.

Minimum Power Conversion Efficiency 0.00/6 %

Expected: 0.16% Which is a sensor output power that is 28dB below the source power.

Use the values in dBm to calculate the Conversion Loss.

Conversion Loss = (Sensor Signal Power at Coupler Output – Source Backreflection PWR at Coupler Output + Coupler Attenuation) – Source Power at Sensor Input.

Conversion Loss -47.875 dB Expected: ≥ -28 dB

Comments: The failure may be due to the fact that these measurements were taken of the power levels at certain wavelengths (the peaks of the source and sensor signals) as opposed to the total power of the source and sensor signal over their whole support spectrum,

Total Indicated Temperature S/N 002

Whole TRD Source and sensor spectrum

EOA S/N 002 as Source
Temperature Sensor S/N 002

CH1 MAX = 62.000 mVCH1 MIN = 26.000 mV

5.15 TOTAL TEMPERATURE SENSOR DATA SHEET

Performed by: Brad Kessler Date: 6/22/	73 Test Article Serial Number: 3
5.15.1 Signal Duration and Excitation to Signal I	Delay Test (4.15.2) PASS FAIL
5.15.1.1 Attach the graphs of the sensor and source ri	se and decay behind this data sheet.
Sensor Signal Duration 270 µsec.	Expected: 175µsec. +/- 125µsec.
Comments: At room temperature	
,	
Excitation to Signal Delayms	sec. Expected: 0.0µsec.
Comments: Not measured due to leck of secon	d photodicale detector. It is being used for
other purposes.	provide defector. It is being used for
5.15.2 Channel Characteristics Test (4.15.3)	PASS
5.15.2.1 Attach the graph of the typical sensor value be	ehind this data sheet.
Number of Discrete Channels	Expected: 1
Comments:	Expected. 1
Center Wavelength of Signal 753 nm	Expected: 800nm
Comments: The wavelength given is the Book of	the sensor signal and not the center of the whole
sensor signal. The peak value of the signal is	the area of interest and not the fail of the
, ,	AND HOLI HER PAIL OF HER
Channel Width 36.0 nm	Expected: Maximum of 200nm (Probably Will Be Less)
Comments: The width given is the width of 1	he peak area of the sensor signal and not the width
of the whole sensor signal including the tail.	The tail of the sensor signal is about 250 nm wide.

5.15.3 Power Conversion Efficiency Test (4.15.4)	PASS FAIL
5.15.3.1 Attach the graphs of the source power and the sensor value beh	ind this data sheet.
5.15.3.2 After recording the spectrum analyzer power measurement, corformula: dBm = 10log(mWatt)	overt it to milliwatts using the
Power Measurements from Optic Spectrum Analyzer	=> Conversion to mWatts
Source Power at Sensor Input -27.5 dBm	=> [1.778 x/0 ⁻⁶] *W
Sensor Signal Power at Coupler Output -65.75 dBm	=> 2.661 x/5-10
Source Backreflection PWR at Coupler Output /3.75 dB	=> 23.714
Coupler Attenuation 4.0 dB	=> 2.512
Use the values in mW to calculate the Power Conversion Efficience Power Conversion Efficiency = (((Sensor Signal Power at Coupler Output X Coupler Attenuation)/Source Output)/Source Power at Sensor Input) X 100.	
Minimum Power Conversion Efficiency 0.0016 %	Expected: 0.16% Which is a sensor output power that is 28dB below the source power.
Use the values in dBm to calculate the Conversion Loss. Conversion Loss = (Sensor Signal Power at Coupler Output – Sour Coupler Output + Coupler Attenuation) – Sour	
Conversion Loss -48.0 dB	Expected: ≥ -28dB
Comments: The failure may be due to the fact that these m	ecisuments were taken of the
Power levels at the peak wavelengths of the source and sense	ar signal as opposed to the
total power of the source and sensor signal over their is	whole astput spectrum.

See data for Temp. S/N 002 for Source power and for Source backreflection power

EDA SINCOZ as source

CH1 MAX = 35.000mV CH1 MIN = 14.000mV

2XZ Coupler Attenuation in Both Directions Compared

2x2 Compler attenuation difference when passing light in apposite directions.

OF POOR QUALITY

FOCSI EOA and Sensor Integration Test Plan

Rev. 5/17/93

6.0 SCOPE

This test plan establishes the documents, equipment, and procedures necessary to verify the integrated operation of the Electro-Optic Architecture (EOA) and the Fiber Optic Sensors being developed by McDonnell Douglas Corporation (MDC) under the NASA Fiber Optic Control System Integration (FOCSI) contract NAS3–25796.

7.0 APPLICABLE DOCUMENTS

The following documents of the issue shown form a part of this test plan to the extent specified.

7.1 McDonnell Douglas Corporation Documents

WS-AD-3239 Electro-optic Architecture Procurement Specification Rev. A8 Dec 89

WS-AD-3238 Fiber Optic Sensor Procurement Specification Rev. A11 Dec 89

PS 74-650056 Procurement Specification for Actuator, Trim - Control System Longitudinal Feel

74J638000 Transducer, Motional Pickup Longitudinal Control Sensor

Stabilizer Sensor Interface Control Document (ICD) (FOCSI Fiber Optic Sensor ICD)

Rudder Sensor ICD (FOCSI Fiber Optic Sensor ICD)

Pitch Stick Sensor ICD (FOCSI Fiber Optic Sensor ICD)

Rudder Pedal Sensor ICD (FOCSI Fiber Optic Sensor ICD)

Trailing Edge Flap Sensor ICD (FOCSI Fiber Optic Sensor ICD)

Leading Edge Flap Sensor ICD (FOCSI Fiber Optic Sensor ICD)

Power Lever Control Angle Sensor ICD (FOCSI Fiber Optic Sensor ICD)

Nose Wheel Steering Sensor ICD (FOCSI Fiber Optic Sensor ICD)

Total Pressure Sensor ICD (FOCSI Fiber Optic Sensor ICD)

Air Data Temperature Sensor ICD (FOCSI Fiber Optic Sensor ICD)

FOCSI Multiplex Bus ICDRev. B

7.2 General Electric Company Documents

E-75.05-4B Interface Control Sheets - Actuator, Stabilizer

E-75.05-9E Interface Control Sheets - Actuator, Rudder

E-75.05-19A Interface Control Sheets - Actuator, Rudder Pedal Sensor Assembly

E-75.05-5D Interface Control Sheets - Actuator, Trailing Edge Flap

E-75.05-6C Interface Control Sheets - Servovalve Assembly, Hydraulic, Leading Edge Flap

E-75.05-24 Interface Control Sheets - Power Lever Control

E-75.05-10D Interface Control Sheets - Power Unit, Nose Wheel Steering

7.3 Government Documents

MIL-E-5400T Electronic Equipment, Airborne, General Specification for

MIL-STD-810D Environmental Test Methods and Engineering Guidelines

MIL-STD-1553B Aircraft Internal Time Division Command/Response Multiplex Data Bus (Notice 2)

8.0 SUMMARY

8.1 Test Plan Objective

The objective of the test is to verify the integrated operation of the EOA and the sensors. This will be accomplished by comparing the performance of the optic sensor to position, pressure, and temperature sensors which may be a current aircraft sensors or calibrated laboratory devices. Only the sensor being tested will be connected with the EOA. The procedures will directly verify the system output via the MIL–STD–1553 multiplex data bus and will indirectly verify the operation of the sensors, the EOA's signal processing, and the optic interface between the EOA and the sensors.

8.2 Location

All tests will be performed at the MDC Avionics Laboratories or Environmental Test Facilities.

8.3 Standard Conditions

All tests shall be performed at prevailing laboratory temperatures, barometric pressures, and humidities unless otherwise specified.

8.4 Equipment

The test equipment consists of commercially available equipment and MDC designed equipment and is listed in Table I. The position sensor equipment setup is shown in Figure 1. The Pressure and Temperature equipment is shown in Figure 2 and Figure 3 respectively.

8.5 Specific Tests

8.5.1 <u>EOA Tests</u>

8.5.1.1 Power Dissipation Test

Measuring the current and voltage on the first powering up of the complete EOA will determine the power dissipated by the EOA. Comparing the actual power dissipation to calculated power dissipation will show if the power portion of the EOA is assembled correctly.

Integration Configuration

Figure 1

8.5.1.2 1553 Multiplex Bus Test

Monitoring the 1553 Multiplex Bus while the EOA bus controller and the EOA microprocessor transmit and receive messages will determine if the 1553 Multiplex Bus is operating correctly.

8.5.1.3 Spectrum Analyzer Mode Test

Placing the EOA in spectrum analyzer mode and viewing the CCD array information gathered from the optic sensors will determine if the source, sensors, and receiver are operating correctly.

8.5.2 Linear and Rotary Position Sensor Tests

8.5.2.1 Null Offset Test

Examining the variation during a thirty second continuous recording of the EOA output while the sensor is at null position will determine the null offset of the sensor. The null offset is noise in the analog sensors and is state changes in the digital sensors. The null offset is controlled by the sensor ICD.

8.5.2.2 Resolution Test

Continuous recording of the sensor position while moving the sensor very slowly and in very small increments will determine the sensor resolution. The sensor resolution must be smaller than the maximum sensor null offset.

8.5.2.3 Range Test

Recording the sensor position at the ends of the sensor movement will determine the range of the sensor. The sensor must be able to report the full range of the actuator.

8.5.2.4 Linearity Test

Performing a linear regression on equally spaced sensor positions over the full range of the sensor will determine the nonlinearity of the sensor. The nonlinearity of the sensor is the largest deviation of the individual data points from the best straight line through those points.

8.5.3 Total Pressure Sensor Tests

8.5.3.1 Leak Test

After establishing a relatively high pressure at the sensor input, the system is isolated from the pressure controller and the rate of decreasing pressure is measured. This change in pressure is primarily attributable to leakage within the sensor assembly. The rate of change in pressure is reported as the sensor's leak rate.

8.5.3.2 Warm Up Test

Conventional pressure sensors have integrated electronics that typically warm up the entire sensor assembly after a "cold" power up. This warming can have a significant effect on the sensor accuracy during the critical time period of aircraft take—off. The warm up test is a standard procedure for conventional pressure sensor evaluation. However, since this FOCSI sensor is passive with no active electronics within the sensor assembly, no warm up effects are expected to be detected.

8.5.3.3 Room Temperature Conversion Accuracy/Hysteresis Test

Pressure sensor accuracy is measured throughout its operating range in 3.000 in. Hg increments at room temperature using a calibrated pressure controller. Each test point is reached with increasing and decreasing pressures to identify any hysteresis. Results of this test will reflect sensor accuracy/repeatability in converting the optical signal measured by the EOA to a "real" pressure reading at room temperature.

8.5.3.4 "Cold" and "Hot" Conversion Accuracy/Hysteresis Test

The same test as above only conducted at more extreme temperatures within the sensor's operating range. This test will characterize sensor accuracy/repeatability at different ambient temperatures.

8.5.3.5 G-Sensitivity Test

At room temperature and constant input pressure, the unit will be positioned along each of its 3 axes, establishing relative 2 G changes. The sensor's static output will be recorded in 6 different positions. Significant differences in sensor error, holding all test conditions except for sensor orientation constant, will be attributable to gravitational sensitivities.

8.5.3.6 "Creep" Test

Short–term sensor response to a "step" input at room temperature will be measured. The sensor will be allowed to stabilize with an input of 80.000 in. Hg. The input pressure will then be decreased to 2.000 in. Hg as quickly as possible without overshoot. Sensor output will be monitored as a function of time with the constant 2.000 in. Hg input to determine if the sensor "creeps" to a final value.

8.5.3.7 "<u>Iitter</u>"/Short-Term Stability Test

Determine the "scatter" in pressure readings by taking many samples of the sensor output at constant pressure. If possible with the test set—up, vary the internal update rate and relate it to the sensor's short–term stability.

8.5.3.8 Humidity Sensitivity Test

Establish relatively humid air at the sensor input with input pressure controlled at 30.000 in. Hg. Identify any sensitivity to the condition.

8.5.4 <u>Total Temperature Probe Tests</u>

8.5.4.1 Platinum Resistor Thermometer (PRT) Element Accuracy Test

Two temperature calibration test points will be used to verify the accuracy of the probe's two platinum resistor elements. An ice bath (32.0 degrees F) and a bath of boiling distilled water (212.0 degrees F) will be used to establish the test points.

8.5.4.2 Initial Room Temperature Check-Out

General operation of the probe integrated with the EOA and Air Data Computer (ADC) will be verified. Mux bus data transmitted from the EOA and the ADC will be monitored by the PC Based Data Acquisition System. This test will not focus on evaluating probe accuracy, but rather on

verifying proper transmission of probe parameters. The ADC Built-In-Test (BIT) words will be monitored for failures.

8.5.4.3 Deicing Heater Operation Test

The proper operation of the probe heater will be verified by measuring the amount of power drawn after 5 minutes. The ADC will be monitored for BIT failures.

8.5.4.4 General Thermal Test

An oven will be used to expose the probe to a range of ambient temperatures. The PRT sensor will be used as a general reference to evaluate the accuracy of the optical TRD element. Both readings will be taken simultaneously at stable ambient temperature test points. The ADC will be monitored for BIT fails.

8.6 Failure Handling

Failures during the test procedure will be recorded, analyzed, and corrected. For a failure, the remaining portion of the current test will be completed provided the unit under test will not be damaged, a correction will be implemented, and the failed test will be repeated.

9.0 TEST PROCEDURES

9.1 Equipment

Table I Integration Test Plan Equipment List

	megration rest ran Equipment List						
ITEM	DESCRIPTION	MANUFACTURER AND MODEL	RANGE	ACCURACY			
1	Flight Control Computer Bench	MDC					
2	FOCSI Test PC – IBM Clone PC (386) 1553 Interface Board	DTK MDC					
3	Hydraulic Bench	Engineered Sales,Inc	3500psi				
4	Position and Force Sensor (PFS) Test Set	MDC	+/-3.0"	+/- 0.001" to +/- 0.005"			
5	Rotary Sensor Test Set	Klinger Scientific	360 ⁰				
6	Air Data Computer Bench	MDC					
7	ADT-222 Pressure Controller	Sperry Flight Systems	2.000 to 80.000 in. Hg	0.001 to 0.004 in. Hg			
8							

9.2 EOA Functional Operation Test

9.2.1 Power Dissipation Test

- 9.2.1.1 Procedure
- 9.2.1.1.1 Before turning on power to the EOA, connect a multimeter configured for measuring current between the the 28Volt source power and the EOA input power connector. Use another multimeter to measure the 28Volt source while under load.
- 9.2.1.1.2 Record the current into the EOA and the source voltage level.
- 9.2.1.2 Data Evaluation
- 9.2.1.2.1 Calculate the power dissipation of the EOA which is given by the formula Power Dissipation = Source Voltage X Input Current
- 9.2.1.3 Expected Results
- 9.2.1.3.1 Using the calculated values of power dissipation for the EOA modules and the efficiency of the power supply, the following values were calculated.

Power Dissipation at: 5V = 38.45W, 15V = 7.29W, -15V = 7.05W. Total = 52.79W Power Supply efficiency range = Minimum of 69% with a nominal of 72%. Power Dissipation at 28V: 52.79W/69% = 76.51W Max., 52.79W/72% = 73.32W Nominal

9.2.2 1553 Multiplex Bus Test

- 9.2.2.1 Procedure
- 9.2.2.1.1 Connect together the FOCSI EOA 1553 bus and the FOCSI Test PC 1553 bus.
- 9.2.2.1.2 Turn on the 1553 Test PC in monitor mode and configure it for recording EOA data.
- 9.2.2.1.3 Turn on the FOCSI EOA with the bus controller in bus controller mode.
- 9.2.2.1.4 Monitor the EOA bus controller and EOA microprocessor as they transmit and receive messages.
- 9.2.2.2 Data Evaluation
- 9.2.2.2.1 Verify that the EOA bus controller sends the proper messages and that the EOA microprocessor responds with the proper messages.
- 9.2.2.3 Expected Results
- 9.2.2.3.1 The EOA bus controller and EOA microprocessor should transmit and receive messages according to the FOCSI Multiplex Bus ICD.
- 9.2.3 EOA Spectrum Analyzer Mode Test
- 9.2.3.1 Procedure
- 9.2.3.1.1 Turn on the FOCSI EOA with the bus controller in bus controller mode, and the microprocessor in spectrum analyzer mode.

9.2.3.1.2 Visually monitor the spectrum analyzer output to verify the system operation.

9.2.3.2 Data Evaluation

9.2.3.2.1 Verify the source is operating and the sensors show the characteristic output. The digital sensors will show many peaks and valleys which correspond to the digital code plate. The analog sensors will show two peaks; one peak is the sensor signal and the other is the reference.

9.2.3.3 Expected Results

9.2.3.3.1 The spectrum analyzer mode shows the correct operation of the source, sensor, receiver, and the interconnecting fiber because the raw electrical data out of the receiver is displayed.

9.3 Stabilizer Sensor Test Procedure

- 9.3.1 General Preparation
- 9.3.1.1 Connect together the FOCSI EOA 1553 bus and the personal computer (PC) 1553 bus.
- 9.3.1.2 Turn on the PC 1553 bus controller and configure it for recording sensor and EOA data.
- 9.3.1.3 Turn on the FOCSI EOA with the bus controller in monitor mode.
- 9.3.1.4 Mount the sensor on the Position and Force Sensor (PFS) Test Set.
- 9.3.2 Null Offset Test
- 9.3.2.1 Procedure
- 9.3.2.1.1 With the sensor at the null position, use the FOCSI Test PC to record the largest sensor position over thirty seconds. Monitor the PFS Test Set to ensure it is always constant for the test.
- 9.3.2.2 Data Evaluation
- 9.3.2.2.1 If the PFS Test Set ever varied, repeat this test. The largest sensor value recorded is the sensor null offset.
- 9.3.2.3 Expected Results
- 9.3.2.3.1 Regardless of the environmental conditions, the sensor null position should be equal to or less than the value stated in the sensor ICD and repeated in the data sheet.
- 9.3.3 Resolution Test
- 9.3.3.1 Procedure
- 9.3.3.1.1 Record the PFS Test Set position, and with the FOCSI Test PC, record the sensor position. (Any position is acceptable.)
- 9.3.3.1.2 Use the PFS Test Set to move the sensor with very small and slow increments of movement until the sensor position changes.
- 9.3.3.1.3 Record the PFS Test Set position, and with the FOCSI Test PC, record the sensor position.
- 9.3.3.2 Data Evaluation
- 9.3.3.2.1 Determine the smallest sensor resolution by recording the smallest increment of change reported by the sensor. Compare the smallest sensor position change with the resolution value and the

maximum null offset to determine if the sensor can report a position as small as the expected resolution and null offset.

9.3.3.3 Expected Results

9.3.3.3.1 The sensor should be able to report a position equal to the resolution and equal to or smaller than the maximum null offset values given in the Fiber Optic Sensor Procurement Specification and repeated in the data sheet. The digital and analog sensors should be able to sense movement with 2¹⁰ bits of resolution over the specified range but the analog sensors will probably sense movement with 2⁹ bits of resolution or even less resolution.

9.3.4 Range Test

- 9.3.4.1 Procedure
- 9.3.4.2 Use the PFS Test Set to move the sensor to one full stroke position.
- 9.3.4.2.1 Record the PFS Test Set position, and with the FOCSI Test Equipment, record the sensor position.
- 9.3.4.3 Use the PFS Test Set to move the sensor to the opposite full stroke position.
- 9.3.4.3.1 Record the PFS Test Set position, and with the FOCSI Test Equipment, record the sensor position.
- 9.3.4.4 Data Evaluation
- 9.3.4.4.1 The sensor readings at the full stroke positions define the range of the sensor.
- 9.3.4.5 Expected Results
- 9.3.4.5.1 The sensor readings should be greater than or equal to the range specified in the Fiber Optic Sensor Procurement Specification and repeated in the data sheet.

9.3.5 Linearity Test

- 9.3.5.1 Procedure
- 9.3.5.1.1 Use the PFS Test Set to move the sensor to the null position, and record the sensor and PFS Test Set positions.
- 9.3.5.1.2 Move the sensor to five equally spaced points from the null position up to and including a full stroke position, and record the sensor and PFS Test Set positions at those points.
- 9.3.5.1.3 Try to move the sensor a little beyond its full stroke position (DO NOT Force the sensor!) and then back to the full stroke position to approach that position from the opposite side. Record the sensor and PFS Test Set positions at the same points as in step 9.3.5.1.2 as the sensor is moved from the full stroke position to the null position. This introduces hysteresis.
- 9.3.5.1.4 Move the sensor to five equally spaced points from the null position up to and including the opposite full stroke position, and record the sensor and PFS Test Set positions at those points.
- 9.3.5.1.5 Try to move the sensor a little beyond the opposite full stroke position (DO NOT Force the sensor!) and then back to the opposite full stroke position to approach that position from the opposite side. Record the sensor and PFS Test Set positions at the same points as in step 9.3.5.1.4 as the sensor is moved from the opposite full stroke position to the null position. This introduces hysteresis.

9.3.5.2 Data Evaluation

- 9.3.5.2.1 Place the recorded sensor and PFS Test Set positions in a spreadsheet for linear reduction.
- 9.3.5.2.2 Use a linear regression (least squares) program to determine the best straight line (PFS Test Set position versus sensor position) through the 23 total points taken in 9.3.5.1. Also, perform a standard deviation analysis on the points.
- 9.3.5.2.3 Record the slope, constant, and the other statistics from the linear regression. Also, record the standard deviation.
- 9.3.5.2.4 Use the best straight line and the standard deviation to calculate the linear regressed range of the null and full stroke values by performing the following:
 Plug the x-values of the senser positions at null and the full stroke values into the equation of the best straight line to find the regressed y-values. Then add and subtract the standard deviation to the resulting y-values to obtain the linear regressed range of the null and full stroke values.
- 9.3.5.2.5 Calculate the distance between the individual points and the best straight line. Record the sensor nonlinearity which is the largest deviation of the individual data points from the best straight line.
- 9.3.5.3 Expected Results
- 9.3.5.3.1 The slope of the best straight line should be one since both the sensor and PFS Test Set should be at the same positions.
- 9.3.5.3.2 The actual data points at the null and full stroke positions should fall within the linear regressed range at the same points.
- 9.3.5.3.3 The nonlinearity of the sensors should not exceed the nonlinearity stated in the Fiber Optic Sensor Procurement Specification and repeated in the data sheet.

9.4 Rudder Sensor Test Procedure

9.4.1 Repeat procedure 9.3 for the Rudder sensor.

9.5 Pitch Stick Sensor Procedure

9.5.1 Repeat procedure 9.3 for the Pitch Stick sensor.

9.6 Rudder Pedal Sensor Test Procedure

9.6.1 Repeat procedure 9.3 for the Rudder Pedal Sensor.

9.7 Trailing Edge Flap Sensor Test Procedure

- 9.7.1 General Preparation
- 9.7.1.1 Connect together the FOCSI EOA 1553 bus and the FOCSI Test PC 1553 bus.
- 9.7.1.2 Turn on the PC 1553 bus controller and configure it for recording sensor and EOA data.
- 9.7.1.3 Turn on the FOCSI EOA with the bus controller in monitor mode.

9.7.1.4 Mount the FOCSI sensor onto the Rotary Sensor Test Set.

9.7.2 Null Offset Test

9.7.2.1 Procedure

9.7.2.1.1 With the sensor at the null angle, use the FOCSI Test PC to record the largest sensor position over thirty seconds. Monitor the Rotary Sensor Test Set to ensure it is always constant for the test.

9.7.2.2 Data Evaluation

9.7.2.2.1 If the Rotary Sensor Test Set ever varied, repeat this test. The largest sensor value recorded is the sensor null offset.

9.7.2.3 Expected Results

9.7.2.3.1 Regardless of the environmental conditions, the sensor null angle should be equal to or less than the value stated in the sensor ICD and repeated in the data sheet.

9.7.3 Resolution Test

9.7.3.1 Procedure

- 9.7.3.1.1 Record the Rotary Sensor Test Set angle, and with the FOCSI Test PC, record the sensor angle. (Any angle is acceptable.)
- 9.7.3.1.2 Use the Rotary Sensor Test Set to move the sensor with very small and slow increments of movement until the sensor angle changes.
- 9.7.3.1.3 Record the Rotary Sensor Test Set angle, and with the FOCSI Test PC, record the sensor angle.

9.7.3.2 Data Evaluation

9.7.3.2.1 Determine the smallest sensor resolution by recording the smallest increment of change reported by the sensor. Compare the smallest sensor angle change with the resolution value and the maximum null offset to determine if the sensor can report an angle as small as the expected resolution and null offset.

9.7.3.3 Expected Results

9.7.3.3.1 The sensor should be able to report an angle equal to the resolution and equal to or smaller than the maximum null offset values given in the Fiber Optic Sensor Procurement Specification and repeated in the data sheet. The digital and analog sensors should be able to sense movement with 2¹⁰ bits of resolution over the specified range but the analog sensors will probably sense movement with 2⁹ bits of resolution or even less resolution.

9.7.4 Range Test

9.7.4.1 Procedure

- 9.7.4.2 Use the Rotary Sensor Test Set to move the sensor to one full stroke angle.
- 9.7.4.2.1 Record the Rotary Sensor Test Set angle, and with the FOCSI Test Equipment, record the sensor angle.

- 9.7.4.3 Use the Rotary Sensor Test Set to move the sensor to the opposite full stroke angle.
- 9.7.4.3.1 Record the Rotary Sensor Test Set angle, and with the FOCSI Test Equipment, record the sensor angle.

9.7.4.4 Data Evaluation

9.7.4.4.1 The sensor readings at the full stroke angles define the range of the sensor.

9.7.4.5 Expected Results

9.7.4.5.1 The sensor readings should be greater than or equal to the range specified in the Fiber Optic Sensor Procurement Specification and repeated in the data sheet.

9.7.5 Linearity Test

9.7.5.1 Procedure

- 9.7.5.1.1 Use the Rotary Sensor Test Set to move the sensor to the null angle, and record the sensor and Rotary Sensor Test Set angles.
- 9.7.5.1.2 Move the sensor to five equally spaced points from the null angle up to and including a full stroke angle, and record the sensor and Rotary Sensor Test Set angles at those points.
- 9.7.5.1.3 Try to move the sensor a little beyond its full stroke angle (DO NOT Force the sensor!) and then back to the full stroke angle to approach that angle from the opposite side. Record the sensor and Rotary Sensor Test Set angles at the same points as in step 9.3.5.1.2 as the sensor is moved from the full stroke angle to the null angle. This introduces hysteresis.
- 9.7.5.1.4 Move the sensor to five equally spaced points from the null angle up to and including the opposite full stroke angle, and record the sensor and Rotary Sensor Test Set angles at those points.
- 9.7.5.1.5 Try to move the sensor a little beyond the opposite full stroke angle (DO NOT Force the sensor!) and then back to the opposite full stroke angle to approach that angle from the opposite side. Record the sensor and Rotary Sensor Test Set angles at the same points as in step 9.3.5.1.4 as the sensor is moved from the opposite full stroke angle to the null angle. This introduces hysteresis.

9.7.5.2 Data Evaluation

- 9.7.5.2.1 Place the recorded sensor and Rotary Sensor Test Set angles in a spreadsheet for linear reduction.
- 9.7.5.2.2 Use a linear regression (least squares) program to determine the best straight line (Rotary Sensor Test Set angle versus sensor angle) through the 23 total points taken in 9.3.5.1. Also, perform a standard deviation analysis on the points.
- 9.7.5.2.3 Record the slope, constant, and the other statistics from the linear regression. Also, record the standard deviation.
- 9.7.5.2.4 Use the best straight line and the standard deviation to calculate the linear regressed range of the null and full stroke values by performing the following:

Plug the x-values of the senser angles at null and the full stroke values into the equation of the best straight line to find the regressed y-values. Then add and subtract the standard deviation to the resulting y-values to obtain the linear regressed range of the null and full stroke values.

9.7.5.2.5 Calculate the distance between the individual points and the best straight line. Record the sensor nonlinearity which is the largest deviation of the individual data points from the best straight line.

9.7.5.3 Expected Results

- 9.7.5.3.1 The slope of the best straight line should be one since both the sensor and Rotary Sensor Test Set should be at the same angles.
- 9.7.5.3.2 The actual data points at the null and full stroke angles should fall within the linear regressed range at the same points.
- 9.7.5.3.3 The nonlinearity of the sensors should not exceed the nonlinearity stated in the Fiber Optic Sensor Procurement Specification and repeated in the data sheet.

9.8 <u>Leading Edge Flap Sensor Test Procedure</u>

9.8.1 Repeat procedure 9.7 for the Leading Edge Flap Sensor.

9.9 Power Lever Control Sensor Test Procedure

9.9.1 Repeat procedure 9.7 for the Power Lever Control Sensor.

9.10 Nose Wheel Steering Sensor Test Procedure

9.10.1 Repeat procedure 9.7 for the Nose Wheel Steering Sensor.

9.11 <u>Total Pressure Sensor Test Procedure</u>

9.11.1 General Preparation

9.11.1.1 Connect the Total Pressure Sensor and the PC-based 1553 Bus Controller to the EOA. Connect the ADT-222 Pressure Controller/Monitor to the AN-4 pneumatic interface of the Total Pressure Sensor using metal tubing. Pneumatic tubing should not exceed 10 in³ of volume. See Figure 2.

Total Pressure Sensor Test Set-Up
Figure 2

9.11.2 Leak Test

9.11.2.1 Procedure

9.11.2.1.1 Power up the unit and allow it to warm up at room temperature for at least 30 minutes. Then establish a 55.000 in. Hg input to the sensor with the ADT–222. Start recording the sensor output with the Bus Controller at 5 second intervals. After 30 seconds, put the ADT–222 into its "Measure" mode. Observe the ADT–222 display and start recording its readings at 5 second intervals. Continue to record both sensor and ADT–222 data for 2 minutes.

9.11.2.2 Data Evaluation

9.11.2.2.1 Compute the leak rate (in. Hg per minute) based on (1) the sensor output data and (2) the ADT-222 data.

9.11.2.3 Expected Results

9.11.2.3.1 The two computed leak rates should not vary by more than 0.002 in. Hg and neither should exceed 0.010 in. Hg per minute.

9.11.3 Warm Up Test

9.11.3.1 Procedure

9.11.3.1.1 Allow the unit to rest unpowered at room temperature for at least 2 hours with 30.000 in. Hg applied to its input. Make note of the room temperature and the sensor's orientation. Power up the sensor and start recording its output at 1 second intervals for 2 minutes. Between t=2 minutes and t=10 minutes increase interval to 3 seconds. Between t=10 minutes and t=30 minutes sample at 5 second intervals. Between t=30 minutes and t=60 minutes, use 10 second intervals.

9.11.3.2 Data Evaluation

9.11.3.2.1 Plot sensor error (Measured Pressure - Input Pressure) as a function of time.

9.11.3.3 Expected Results

9.11.3.3.1 Since the sensor is completely passive without any on-sensor electronics, there should not be any detectable warm-up effects. Observed accuracy should be within the Vendor's stated tolerance of 0.50 % of Full-Scale.

9.11.4 Room Temperature Conversion Accuracy/Hysteresis Test

9.11.4.1 Procedure

9.11.4.1.1 Make note of the room temperature and sensor orientation. Starting with an input pressure of 29.000 in. Hg and going down in 3.000 in. Hg increments, take 10 readings of the sensor output with the Bus Controller at each test point. When 2.000 in. Hg is reached, take readings with pressure increasing to 80.000 in. Hg and then back down to 29.000 in. Hg in 3.000 in Hg increments.

9.11.4.2 Data Evaluation

9.11.4.2.1 Develop a table showing the average, maximum (most positive), and minimum (most negative) error at each test point. Plot the average sensor error at each test point.

- 9.11.4.3 Expected Results
- 9.11.4.3.1 All measured errors at all test points should fall within the Vendor's stated tolerance of 0.50% of Full-Scale. No significant hysteresis effects should be apparent.
- 9.11.5 "Cold" and "Hot" Conversion Accuracy/Hysteresis Test
- 9.11.5.1 Procedure
- 9.11.5.1.1 Place sensor in oven and allow to soak, powered up, for at least 30 minutes at a "Cold" ambient oven temperature of -32 degrees F. Follow test data collection procedure as outlined in Paragraph 9.11.4.1.1. Repeat for a "Hot" temperature of 149 degrees F. Note that care should be taken to protect the optical connector from unreasonable exposure to temperature chamber conditions.
- 9.11.5.2 Data Evaluation
- 9.11.5.2.1 Same as Paragraph 9.11.4.2.1.
- 9.11.5.3 Expected Results
- 9.11.5.3.1 Same as Paragraph 9.11.4.3.1.
- 9.11.6 G-Sensitivity Test
- 9.11.6.1 Procedure
- 9.11.6.1.1 Allow the sensor to stabilize in a given position at room temperature for at least 30 minutes with an input of 30.000 in. Hg. Take 10 samples of the sensor output. Rotate the sensor about its 3 axes such that a total of 6 different positions are established. Take 10 samples in each stabilized position.
- 9.11.6.2 Data Evaluation
- 9.11.6.2.1 Find the maximum and minimum errors, and compute the average sensor error in each position.
- 9.11.6.3 Expected Results
- 9.11.6.3.1 Sensitivity to gravitational forces, if any exist, should not result in errors that exceed the Vendor's stated tolerance of 0.50 % of Full–Scale.
- 9.11.7 "Creep" Test
- 9.11.7.1 Procedure
- 9.11.7.1.1 At room temperature, establish an input of 80.000 in. Hg to the sensor. As quickly as possible, without overshoot and without exceeding a rate of 50 in. Hg per second, drop the input to 2.000 in. Hg and start to take sensor output readings at 1 second intervals for 5 minutes.
- 9.11.7.2 Data Evaluation
- 9.11.7.2.1 Plot the sensor error as a function of time.
- 9.11.7.3 Expected Results
- 9.11.7.3.1 Sensor "Creep" should not result in errors that exceed the Vendor's stated tolerance of 0.50 % of Full-Scale.

9.11.8 "Jitter"/Short-Term Stability Test

- 9.11.8.1 Procedure
- 9.11.8.1.1 Power up the unit and allow it to warm—up at room temperature for at least 60 minutes. Establish a stable input pressure of 30.000 in. Hg. and take approximately 100 samples. If controllable, change the internal update rate of the sensor to support output data rates of 1 Hz and 100 Hz and take 100 readings for each. Change input pressure to the upper and lower operating extremes and repeat the data collection stated above.
- 9.11.8.2 Data Evaluation
- 9.11.8.2.1 Develop scatter plots of sensor error for each test condition.
- 9.11.8.3 Expected Results
- 9.11.8.3.1 Jitter should not be more than 0.01% of the set pressure.
- 9.11.9 Humidity Sensitivity Test
- 9.11.9.1 Procedure
- 9.11.9.1.1 Connect plastic aircraft tubing to the input of the sensor. Connect metal tubing from the pneumatic controller to the plastic tubing. Place the sensor and all of the plastic tubing into an environmental chamber and let the unit and tubing soak for 60 minutes at 149 °F. Follow test data collection procedure as outlined in Paragraph 9.11.4.1.1.
- 9.11.9.2 Data Evaluation
- 9.11.9.2.1 Same as Paragraph 9.11.9.2.2. In addition, calculate the differences seen in the Hot Conversion Accuracy Test (Paragraph 9.11.5.2.1) and this test and identify any differences in results attributable to humidity effects.
- 9.11.9.3 Expected Results
- 9.11.9.3.1 Same as Paragraph 9.11.4.3.1.
- 9.12 Total Temperature Probe Test Procedure
- 9.12.1 Platinum Resistor Thermometer (PRT) Element Accuracy Test
- 9.12.1.1 <u>Procedure</u>
- 9.12.1.1.1 Connect a digital multimeter to each of the 2 Platinum Resistor Thermometer (PRT) elements to measure each of their resistances. Soak the sensor in an ice bath (32.0 degrees F) and allow the PRT resistance values to stabilize. Verify the ice bath temperature with a thermocouple. Sample the PRT values 10 times each. Repeat the above in a bath of boiling distilled water (212.0 degrees F).
- 9.12.1.2 Data Evaluation
- 9.12.1.2.1 Calculate and record the average resistance of each PRT at each temperature.
- 9.12.1.3 Expected Results
- 9.12.1.3.1 All of the individual sampled readings should fall within the following ranges: 50.00 +/-0.05 Ohms at 32.0 degrees F and 69.63 +/-0.15 Ohms at 212.0 degrees F.

9.12.2 Initial Room Temperature Check-Out of PRT and TRD Interfaces

9.12.2.1 Procedure

9.12.2.1.1 Connect PRT inputs/outputs of the probe to the Air Data Computer (ADC) through the ADC Test Bench Breakout Panel. This includes excitation and return signals. Connect the optical Time Rate of Decay (TRD) signals to the FOCSI EOA. Tie the PC-based 1553 Bus Controller to the ADC 1553 Bus (via the ADC Test Bench Breakout Panel) and to the EOA 1553 Bus. See Figure 3.

Total Temperature Probe Test Set-Up Figure 3

9.12.2.2 Turn on power to the ADC Test Bench and apply power to the ADC. Set static and pitot pressure inputs into the ADC such that approximately 0 knot airspeed and sea level conditions are established. Record the room temperature. Monitor and record the 1553 temperature mux output of the ADC. At the same time monitor and record the TRD-derived Total Temperature reported by the EOA.

9.12.2.3 Data Evaluation

9.12.2.3.1 Calculate the average, minimum, and maximum values of the PRT-derived Total and Ambient Temperatures recorded. Since the ADC automatically performs a deicing correction on the PRT-derived measurements, compensate the recorded ADC 1553 data appropriately to remove this correction. Calculate the average, minimum, and maximum values of the TRD-derived total temperature recorded. Monitor the ADC BIT Status words.

9.12.2.4 Expected Results

9.12.2.4.1 The average temperature outputs should correspond to the room temperature and simulated ground conditions, +/-2.0 degrees F. No BIT failures should be detected by the ADC.

9.12.3 Deicing Heater Operation Test

9.12.3.1 Procedure

9.12.3.1.1 Connect a 400 Hz power supply to the input of a Watt/Amp Meter and connect the meter's output to the deicing heater inputs of the probe. Turn on the 400 Hz power to the deicing heater. Starting at power up, measure the power drawn by the probe with the Watt/Amp Meter every 30 seconds for 10 minutes.

9.12.3.2 Data Evaluation

9.12.3.2.1 Plot the collected data.

9.12.3.3 Expected Results

9.12.3.3.1 Confirm that the probe heater operates within specifications, drawing < 170 Watts after 5 minutes. No BIT failures should be detected.

9.12.4 General Thermal Test

9.12.4.1 Procedure

9.12.4.1.1 Turn off the power to the probe deicing heater. Place the probe in a temperature chamber. Note that care should be taken to protect the optical connector and fibers from unreasonable exposure to temperature chamber conditions. Set the oven temperature such that the PRT-based total temperature reading stabilizes at -100 +/-5 degrees F. Record the ambient oven temperature as measured by a thermocouple located in the air close to the sensor. Sample both PRT- and TRD-based temperatures with the PC Bus Controller. Repeat the process at +50 degree F intervals up to +450 degrees F.

9.12.4.2 Data Evaluation

9.12.4.2.1 Compensate the collected ADC data to remove the deicing correction. Compare the stabilized values of the PRT- and TRD-based temperature readings at all test points. Determine the difference between the two at each test point. Relate these to the stabilized ambient oven temperature at each test point.

9.12.4.3 Expected Results

9.12.4.3.1 The difference between the two probe readings at each test point should not be greater than +/- 0.5 degrees F. The ambient oven temperature should not vary from either of the probe readings by more than +/- 2.0 degrees F.

10.0 DATA SHEETS

10.1 EOA FUNCTIONAL OF EXAMEN DATA SHEET	
Performed by: Brad Kessler Date: 3/93 Test Article Serial Number: EoA #/	
10.1.1 Power Dissipation Test (9.2.1) PASS FAIL	
Source Voltage 27.6 V Expected: 28 Volts	
Input Current 2.37 A Expected: 2.6 Amps to 2.7 Amps	
Power Dissipation = Source Voltage X Input Current	
Power Dissipation 65.4 W Expected: 73.3 Watts to 76.5 Watts	
Comments: The power draw of the flight worthy EDA modules is probably different what was expected for the prototype EDA modules since some of the cards were redesigned, the power draw should be less than what were probably worst case calculations.	than ined.
10.1.2 1553 Multiplex Bus Offset Test (9.2.2) PASS FAIL	
10.1.2.1 Write comments on the behavior of the EOA bus controller and the EOA microprocessor.	
Comments: The bus controller is requesting messages properly, and the decoding processor	- 13
responding properly, as shown on an oscilloscope display. The messages are occurring at a	20 Hz
and the waveforms look good for all transmissions. The transmissions alternate between	n the
A bus and the B bus due to the bus controller software changing busses wh	
Manchester encoding decoding errors are detected. A bus analyzer shows that the m	sseye
are being sent and received properly. An apparent status word failure is probably equising shitching between busses. This is a nuisance error only.	j the
10.1.3 EOA Spectrum Analyzer Mode Test (9.2.3) PASS FAIL	
10.1.3.1 Write comments on the behavior of the EOA source and the sensors.	
Comments: The source to receiver wraparound and all of the sensors are visible on the	

spectrum display. With a duty cycle of 9 mseconds on and Imscool off, & many sensors saturated the display. As the duty cycle is decreased, the source and sensor Spectrums decrease in power, and fewer sensors saturate their display port.

10.2 STABILIZER SENSOR DATA SHEET

0,00.

Performed by: Brad Kessler Date: 1/20/93 Test Article Serial Number: 1
10.2.1 Null Offset Test (9.3.2) PASS FAIL
10.2.1.1 Record the largest sensor and actuator values.
Sensor Null Offset ± 0.045 inches Expected: $\leq +/-0.018$ in.
PFS Test Set Value 4.000 inches Expected: Any constant value.
Comments: Theoxtremes are listed as the Null offset. The most value reported most of the time i
10.2.2 Resolution Test (9.3.3) PASS FAIL
10.2.2.1 Record the smallest change in the sensor and actuator positions.
PFS Test Set Initial Position 1.000 in. and Ending Position 1.002 in.
Sensor Resolution in. Expected: $\leq +/-0.018$ in. Estimated: $2(3.56)/2^{10} \approx 0.0070$ in. Proc. Spec.: 0.00174 in.
Commonto
Comments: Sensor changed from avg. of 0.988 to 1.013 4 difference of 0.025.
10.2.3 Range Test (9.3.4) PASS FAIL
10.22 P
10.2.3 <u>Range Test (9.3.4)</u> PASS FAIL
10.2.3 Range Test (9.3.4) 10.2.3.1 Record the sensor and PFS Test Set full stroke positions.
10.2.3 Range Test (9.3.4) 10.2.3.1 Record the sensor and PFS Test Set full stroke positions. Sensor Positions - Full Stroke -3.56in. Expected: -3.56in.
10.2.3 Range Test (9.3.4) 10.2.3.1 Record the sensor and PFS Test Set full stroke positions. Sensor Positions - Full Stroke -3.560 in. Expected: -3.56in. + Full Stroke 3.560 in. Expected: +3.56in. PFS Test Set Positions - Full Stroke -3.561 in. Expected: -3.56in. + Full Stroke 3.546 in. Expected: +3.56in.
10.2.3 Range Test (9.3.4) 10.2.3.1 Record the sensor and PFS Test Set full stroke positions. Sensor Positions - Full Stroke -3.560 in. Expected: -3.56in. + Full Stroke 3.560 in. Expected: +3.56in. PFS Test Set Positions - Full Stroke -3.561 in. Expected: -3.56in.

10.2.4 Linearity Test (9.3.5)

	/ _
PASS 1	FAIL

Record Sensor Positions at the		POSITION AND FORCE SENSOR (PFS) TEST SET POSITIONS							
PFS Positions	-3.560	-2.670	-1. <i>7</i> 50	-0.890	0.000	0.890	1.750	2.670	3.560
0 to +Full Stroke		<u> </u>	·	L	0.300	0.867	1.761	2.700	3.529
+Full Stroke to 0					0,649	0.936	1,754	2.693	3.539
0 to -Full Stroke	-3.511	-2.638	-1,726	-0.842	×				
-Full Stroke to 0	-3.529	-2.711	-1.726	-0.936	-0.052				eta e a se e e e e e e e e e e e e e e e e

- 10.2.4.1 Print the spreadsheet containing the PFS Test Set vs. sensor positions and the linear regression and standard deviation analysis on those points, and attach it behind this data sheet.
- 10.2.4.2 Record the slope, constant, and standard deviation values.

Slope 0.996 Expected: 1.0 Constant 0.008 Expected: 0
Standard Deviation 0.034

Comments:

10.2.4.3 Calculate the linear regressed range of the null and full stroke values, and account for the standard deviation to find the linear regressed range of the null and full stroke values. y = mx + b, where m = slope, b = constant, x = sensor positions linear regressed range = (y - standard deviation) to (y + standard deviation)

Comments:

10.2.4.4 Calculate the deviations of the actual data points from the best straight line and record the largest deviation.

1		1 at 0.050	
Sensor Nonlinearity	-0.060	in.	Expected: $\leq +/-0.0356$ in

Comments:

FOXIDATA.XLS

Stabilizer Sensor S/N 001

Reference (inches)	Sensor (inches)
0	0
0.89	0.867
1.75	1.761
2.67	2.7
3.56	3.529
3.56	3.539
2.67	2.693
1.75	1.754
0.89	0.936
0	0.049
-0.89	-0.842
-1.75	-1.726
-2.67	-2.638
-3.56	-3.511
-3.56	-3.529
-2.67	-2.711
-1.75	-1.726
-0.89	-0.936
0	-0.052

Least :	Squares Fi	(y = mx + b)		
Results Map		Results		
m	b	0.996371	0.008263	
se m	se b	0.003509	0.007832	
r squared	se y	0.999789	0.034139	
F	df	80604.12	17	
ss reg	ss resid	93.94277	0.019813	

Least Square Fit Results Key
m = slope
b = y-intercept
se m = standard error for slope
se b = standard error for y-intercept
r squared = coefficient of determination
se y = standard error for the y estimate
(se y = standard deviation)
F = the F statistic
df = degrees of freedom
ss reg = regression sum of squares
ss resid = residual sum of squares

10.2 STABILIZER SENSOR DATA SHEET

Performed by: Brail Kosder Date	77	st Article Serial N	umber: Z	
10.2.1 Null Offset Test (9.3.2)	E	oA#2	PASS FAIL	
10.2.1.1 Record the largest sensor and actua	itor values.			
Sensor Null Offset $\frac{+0.052}{-0.073}$ i	A <i>v</i> ₅ , -0.010 inches	Expected: ≤+/-	- 0.018 in.	en e
PFS Test Set Value 2.000 ii	nches	Expected: Any o	constant value.	
Comments: The extremes are listed as	s the Null Offset.	The value most of	ten reported is	-0.010.
			,	
10.2.2 <u>Resolution Test (9.3.3)</u>			PASS FAIL	
10.2.2.1 Record the smallest change in the se	ensor and actuator p	ositions.		
PFS Test Set Initial Position /.000	in. and End	ding Position 0	. 978 i	n.
Sensor Resolution 0.022 in	Estim	ted: $\leq +/-0.018$ is ated: $2(3.56)/2^{10}$ compared: 0.00174 in.		
Comments: The sensor changed f	rom 0.985 to 1	0.964 for a diff	Gerence of 0.0	021
·	•			
			,	
10.2.3 <u>Range Test (9.3.4)</u>			PASS FAIL	
10.2.3.1 Record the sensor and PFS Test Set	full stroke positions.			
Sensor Positions - Full Stroke -	- 3,560 in.	Expected	: -3.56in.	
+ Full Stroke	3.560 in.	Expected	: +3.56in.	
PFS Test Set Positions – Full Stroke	-3.610 in.	Expected	: –3.56in.	
+ Full Stroke	3.576 in.	Expected	: +3.56in.	
Comments: The PFS values were to	orken when the sen	sor readings Were	- at the extrem	nes consistant

10.2.4 Linearity Test (9.3.5)

	/ _
PASS -	FAIL

Record Sensor Positions at the		POSITION AND FORCE SENSOR (PFS) TEST SET POSITIONS							
PFS Positions	-3.560	-2.670	-1. <i>7</i> 50	-0.890	0.000	0.890	1.750	2.670	3.560
0 to +Full Stroke		·			0,000	0.780	1.737	2,589	3.58
+Full Stroke to 0					0.056	0.835	1.730	2,728	3.501
0 to -Full Stroke	-3.518	-2.627	-1.726	-0,797	-			12(,20	7.2
-Full Stroke to 0	-3, 5 68	-2.728	-1,761	-0.926	-0.035				

- 10.2.4.1 Print the spreadsheet containing the PFS Test Set vs. sensor positions and the linear regression and standard deviation analysis on those points, and attach it behind this data sheet.
- 10.2.4.2 Record the slope, constant, and standard deviation values.

Slope 0.489	Expected: 1.0	Constant -0.009	Expected: 0
Standard Deviation	0.051		
Comments:			

10.2.4.3 Calculate the linear regressed range of the null and full stroke values, and account for the standard deviation to find the linear regressed range of the null and full stroke values. y = mx + b, where m = slope, b = constant, x = sensor positions

y = mx + b, where m = slope, b = constant, x = sensor positions linear regressed range = (y - standard deviation) to (y + standard deviation)

Comments:

10.2.4.4 Calculate the deviations of the actual data points from the best straight line and record the largest deviation.

•		at 2.699	
Sensor Nonlinearity	0.096	in.	Expected: $\leq +/-0.0356$ in
Comments:			

FOXIDATA.XLS

Stabilizer Sensor S/N 002

Reference (inches)	Sensor (inches)
0	0
0.89	0.78
1.75	1.737
2.67	2.589
3.56	3.508
3.56	3.501
2.67	2.728
1.75	1.73
0.89	0.835
0	0.056
-0.89	-0.797
-1.75	-1.726
-2.67	- 2.627
-3.56	-3.518
-3.56	-3.508
-2.67	-2.728
-1.75	-1.761
-0.89	-0.926
0	-0.035

Least Squares Fit $(y = mx + b)$				
Results Map		Results		
m	b	0.989123	-0.00853	
se m	se b	0.005225	0.01166	
r squared	se y	0.999526	0.050824	
F	df	35841.62	17	
ss reg	ss resid	92.58111	0.043912	

Least Square Fit Results Key
m = slope
b = y-intercept
se m = standard error for slope
se b = standard error for y-intercept
r squared = coefficient of determination
se y = standard error for the y estimate
(se y = standard deviation)
F = the F statistic
df = degrees of freedom
ss reg = regression sum of squares
ss resid = residual sum of squares

10.3 RUDDER SENSOR DATA SHEET

Performed by: Bred Kessler Date: 6/21/93 Test Article Serial Number: 001
10.3.1 Null Offset Test (9.4.2) PASS FAIL
10.3.1.1 Record the PFS Test Set value during the test and the largest sensor value.
Sensor Null Offset $\frac{+0.007}{-0.011}$ inches $\frac{Av_30.002}{\text{inches}}$ Expected: $\leq +/-0.0032$ in.
PFS Test Set Value 3.000 inches Expected: Any constant value.
Comments: The extremes are listed as the null offset. The value most often reported is -0.002.
The state of the s
10.3.2 Resolution Test (9.4.3) PASS FAIL
10.3.2.1 Record the PFS Test Set position and the smallest change in the sensor position.
PFS Test Set Initial Position 0.200 in. and Ending Position 0.201 in.
Sensor Resolution in. Expected: $\leq +/-0.0032$ in. Estimated: $2(0.665)/2^{10} \simeq 0.0013$ in. Proc. Spec.: 0.00032 in.
Comments: The sensor changed from 0.190 to 0.192 for a difference of 0.002.
10.3.3 Range Test (9.4.4) PASS FAIL
10.3.3.1 Record the sensor and PFS Test Set full stroke positions.
Sensor Positions – Full Stroke – 0.665 in. Expected: –0.665 in.
+ Full Stroke + c.665 in. Expected: +0.665 in.
PFS Test Set Positions – Full Stroke – 0.663 in. Expected: –0.665in.
+ Full Stroke +0.665 in. Expected: +0.665in.
Comments: The PFS positions were taken when the sensor value read the extreme fairly consistantly.

10.3.4 Linearity Test (9.4.5)

	/ _
PASS _	FAIL

Record Sensor Positions at the		POSITION AND FORCE SENSOR (PFS) TEST SET POSITIONS							
PFS Positions	-0.665	-0.499	-0.333	-0.166	0.000	0.166	0.333	0.499	0.665
0 to +Full Stroke		<u> </u>			-0,001	0.173	0.330	0.442	0.659
+Full Stroke to 0					-0.003	0.166	0.332	0.493	0.661
0 to -Full Stroke	-0.661	-0.475	-0.332	-0.167	×		10,352	1 3.1.5	3.2
-Full Stroke to 0	-0.660	-0.511	-0.335	-0.177	-0.003				5.24

10.3.4.1 Print the spreadsheet containing the PFS Test Set vs. sensor positions and the linear regression and standard deviation analysis on those points, and attach it behind this data sheet.

10.3.4.2 Record the slope, constant, and standard deviation values.

Slope 0.986	Expected: 1.0	Constant 0.∞4	Expected: 0
Standard Deviation	0.0141264		
Comments:			

Commicities.

10.3.4.3 Calculate the linear regressed range of the null and full stroke values, and account for the standard deviation to find the linear regressed range of the null and full stroke values. y = mx + b, where m = slope, b = constant, x = sensor positions linear regressed range = (y - standard deviation) to (y + standard deviation)

Comments:

10.3.4.4 Calculate the deviations of the actual data points from the best straight line and record the largest deviation.

	•	-1 at 0.499	
Sensor Nonlinearity	-0.046	in.	Expected: $\leq +/-0.0033$ in.

Rudder Sensor S/N 001

Defense en die else N	
Reference (inches)	Sensor (inches)
0	-0.001
0.166	0.173
0.333	0.33
0.499	0.442
0.665	0.659
0.665	0.661
0.499	0.493
0.333	0.332
0.166	0.166
0	-0.003
-0.166	-0.167
-0.333	-0.332
-0.499	-0.475
-0.665	-0.661
-0.665	-0.66
-0.499	-0.511
-0.333	-0.335
-0.166	-0.177
. 0	-0.003

Least Squares Fit $(y = mx + b)$						
Results	з Мар	Res	sults			
m	b	0.985565	-0.00363			
se m	se b	0.007718	0.003226			
r squared	se y	0.998958	0.014061			
F	df	16305.26	17			
ss reg	ss resid	3.223566	0.003361			

Least Square Fit Results Key
m = slope
b = y-intercept
se m = standard error for slope
se b = standard error for y-intercept
r squared = coefficient of determination
se y = standard error for the y estimate
(se y = standard deviation)
F = the F statistic
df = degrees of freedom
ss reg = regression sum of squares
ss resid = residual sum of squares

10.3 RUDDER SENSOR DATA SHEET

Performed by: Bra	1 Kessler	Date: 6/15/93		rticle Serial N	umber: <u>002</u>
10.3.1 Null Offset T	est (9.4.2)		EoA#2		PASS FAIL
10.3.1.1 Record the PI	35 Test Set valu	e during the test ar	nd the largest	sensor value.	
Sensor Null Offset	±0.002	inches		Expected	$4: \le +/-0.0032 \text{ in.}$
PFS Test Set Value	3.000	inches	Ex	pected: Any o	constant value.
Comments:				•	
10.3.2 Resolution Te	st (9.4.3)				PASS FAIL
10.3.2.1 Record the PF	S Test Set posit	ion and the smalles	st change in th	ne sensor positi	on.
PFS Test Set Initial F	osition - o.	16/ in. a	and Ending	Position - 0	.163 in.
Sensor Resolution	0.002	in.	Estimated:	$\leq +/-0.0032$ $2(0.665)/2^{10}$ 0.00032 in.	
Comments: Sensor	- changed fro	m -0.150 to -c).15/ L	difference of	0.001,
10.3.3 <u>Range Test (9.</u>	<u>4.4)</u>				PASS FAIL
10.3.3.1 Record the sen	sor and PFS Te	st Set full stroke po	ositions.		
Sensor Positions	- Full Stroke	- 0.665	in.	Expected:	-0.665in.
	+ Full Strok	e 0.665	in.	Expected:	+0.665in.
PFS Test Set Position	s – Full Stroke	-0.672	in.	Expected:	-0.665in.
	+ Full Strok		in.	Expected:	
Comments: The PF	s values were	taken when the	Sensor value	reported the	extremes consistantly

10.3.4 Linearity Test (9.4.5)

	/
PASS 🗹	FAIL

Record Sensor Positions at the		POSITION AND FORCE SENSOR (PFS) TEST SET POSITIONS							
PFS Positions	-0.665	-0.499	-0.333	-0.166	0.000	0.166	0.333	0.499	0.665
0 to +Full Stroke		<u></u>			0.001	0.164	0.331	0.493	0.660
+Full Stroke to 0					0.006	0.176	0.336	0.511	0.661
0 to -Full Stroke	-0.657	-0.489	-0.325	-0.151	×			10.511	0,661
-Full Stroke to 0	-0,661	-0. 5 59	-0.335	-0.176	-0.006				

- 10.3.4.1 Print the spreadsheet containing the PFS Test Set vs. sensor positions and the linear regression and standard deviation analysis on those points, and attach it behind this data sheet.
- 10.3.4.2 Record the slope, constant, and standard deviation values.

Slope 0.996 Expected: 1.0 Constant 0.002 Expected: 0
Standard Deviation 0.008
Comments:

Commicnes

10.3.4.3 Calculate the linear regressed range of the null and full stroke values, and account for the standard deviation to find the linear regressed range of the null and full stroke values. y = mx + b, where m = slope, b = constant, x = sensor positions linear regressed range = (y - standard deviation) to (y + standard deviation)

Comments:

10.3.4.4 Calculate the deviations of the actual data points from the best straight line and record the largest deviation.

Sensor Nonlinearity 0.013 in. $an\lambda -0.166$ Expected: $\leq +/-0.0033$ in.

Rudder Sensor S/N 002

Reference (inches)	Sensor (inches)
0	0.001
0.166	0.164
0.333	0.331
0.499	0.493
0.665	0.66
0.665	0.661
0.499	0.511
0.333	0.336
0.166	0.176
0	0.006
-0.166	-0.151
-0.333	-0.325
-0.499	-0.489
-0.665	-0.657
-0.665	-0.661
-0.499	-0.509
-0.333	-0.335
-0.166	-0.176
0	-0.006

Least S	Squares Fit	(y = mx	+ b)	
Results	Мар	Results		
m	b	0.996343	0.001579	
se m	se b	0.004194	0.001753	
r squared	se y	0.999699	0.00764	
Ļ.	df	56443.86	17	
ss reg	ss resid	3.294452	0.000992	

Least Square Fit Results Key
m = slope
b = y-intercept
se m = standard error for slope
se b = standard error for y-intercept
r squared = coefficient of determination
se y = standard error for the y estimate
(se y = standard deviation)
F = the F statistic
df = degrees of freedom
ss reg = regression sum of squares
ss resid = residual sum of squares

10.4 PITCH STICK SENSOR DATA SHEET

Performed by: Bred Kessler	Date: 6/19/93	Test Article	e Serial Nu	mber: <u>001</u>
10.4.1 Null Offset Test (9.5.2)		EoA#1	-	PASS FAIL
10.4.1.1 Record the PFS Test Set value	e during the test and	the largest senso	or value.	
Sensor Null Offset $\frac{+0.030}{-0.0}$	Avg0.	.004	Expected:	\leq +/- 0.010 in.
PFS Test Set Value 4.000	inches	Expecte	ed: Any co	nstant value.
Comments: The extremes are list	ted as the Mull offse	t. The value m	est often m	eported was -0.004.
10.4.2 <u>Resolution Test (9.5.3)</u>]	PASS FAIL
10.4.2.1 Record PFS Test Set position	and the smallest chan	ge in the sensor	position.	
PFS Test Set Initial Position	1000 in. and	d Ending Posi	tion 1.0	03 in.
Sensor Resolution 0.003	E	Expected: $\leq +/2$ Estimated: 3.03 Proc. Spec.: 0.0	$3/2^9 \simeq 0.008$	59 in. or greater
Comments: The sensor change	1 from 1.057 to 1.0	68 for a diff	ference of	0.611.
10.4.3 <u>Range Test (9.5.4)</u>	4C 46 N 4 1		F	PASS FAIL
10.4.3.1 Record the sensor and PFS Te	est Set full stroke posit	ions.		
Sensor Positions – Full Strok	e -0.763	⊒in. I	Expected: -	-1.01in.
+ Full Strok	xe 2-15 1.950	_lin. I	Expected: -	+2.02in.
PFS Test Set Positions – Full Strok	e -0.700	in. I	Expected: -	-1.01in.
+ Full Strok	ce 2,010	in. H	Expected: -	+2.02in.
Comments: The sensor was begin	and to the W	et e dan i	<i>t.l.</i>	
so the sensor was not puched to	move any many	t ment - 1	The negative	stroke and being reached
hand so as not to possibly by	reak the sensor no.	n negative a	rection. A	soul in -
(Note: 2.010 was mistakenly used as	N. 162	-mice a may	· - 7 − 0	1017 to 2.020.

	10.4.4	Linearity '	Test (9.5.5)
--	--------	-------------	--------------

		Due to negative full Stroke not being reached.
PACC	EAII	full Strake not
	тилц	being reached.

Record Sensor Positions at the		POSITI	ON AND	FORCE S	ENSOR (I	PFS) TEST	SET POS	ITIONS	
PFS Positions	-1.010	-0.631	-0.253	+0.126	0.505	0.884	1.263	1.641	2.020
0 to +Full Stroke	The mid-	-stroke is he zero to	0.505, so t	his is	0.550	0.967	1.330	1.691	1.946
+Full Stroke to 0		n linear o			0.554	0.957	1,318	1.694	1.955
0 to -Full Stroke	-0.769	-0.695	-0.307	0.136	X		1	1.077	1
-Full Stroke to 0	-0.779	-0.695	-0.284	0.117	0.552				

10.4.4.1 Print the spreadsheet containing the PFS Test Set vs. sensor positions and the linear regression and standard deviation analysis on those points, and attach it behind this data sheet.

10.4.4.2 Record the slope, constant, and standard deviation values.

Slope 8.976	Expected: 1.0	Constant 0.047	Expected: 0
Standard Deviation	0.087		

Comments: This sensor would probably pass the linearity if the decoding was adjusting to reach the full negative stroke.

10.4.4.3 Calculate the linear regressed range of the null and full stroke values, and account for the standard deviation to find the linear regressed range of the null and full stroke values. y = mx + b, where m = slope, b = constant, x = sensor positions linear regressed range = (y - standard deviation) to (y + standard deviation)

Comments:

10.4.4.4 Calculate the deviations of the actual data points from the best straight line and record the largest deviation.

Pitch Stick Sensor S/N 001

Reference (inches)	Sensor (inches)
0.505	0.55
0.884	0.967
1.263	1.33
1.641	1.691
2.01	1.946
2.01	1.955
1.641	1.694
1.263	1.318
0.884	0.957
0.505	0.554
0.126	0.136
-0.253	-0.307
-0.631	-0.695
-1.01	-0.769
-1.01	-0.779
-0.631	-0.695
-0.253	-0.284
0.126	0.117
0.505	0.552

Least S	Squares Fit	(y = mx	+ b)				
Results	Мар	Results					
m	b	0.975785	0.047098				
se m	se b	0.021056	0.022647				
r squared	se y	0.992147	0.08721				
F	df	2147.704	17				
ss reg	ss resid	16.33452	0.129295				

Least Square Fit Results Key
m = slope
b = y-intercept
se m = standard error for slope
se b = standard error for y-intercept
r squared = coefficient of determination
se y = standard error for the y estimate
(se y = standard deviation)
F = the F statistic
df = degrees of freedom
ss reg = regression sum of squares
ss resid = residual sum of squares

10.4 PITCH STICK SENSOR DATA SHEET

Performed by: <u>Brad Kessier</u> Date: <u>6/19/9</u>	
10.4.1 Null-Offset Test (9.5.2)	FOA#2 PASS FAIL
10.4.1.1 Record the PFS Test Set value during the test a	and the largest sensor value.
Sensor Null Offset $+0.047/-0.053$ inches	Expected: $\leq +/-0.010$ in.
PFS Test Set Value 4,000 inches	Expected: Any constant value.
Comments: The extremes are listed as the Null	olfset. The most often reported value is -0.003
	;
10.4.2 <u>Resolution Test (9.5.3)</u>	PASS FAIL
10.4.2.1 Record PFS Test Set position and the smallest of	change in the sensor position.
PFS Test Set Initial Position 1.2/0 in	and Ending Position 1.214 in.
Sensor Resolution 0.004 in.	Expected: $\leq +/-0.010$ in. Estimated: $3.03/2^9 \approx 0.0059$ in. or greater Proc. Spec.: 0.00098 in.
Comments: The sensor changed from 1.131 to	1.155 for a lifterence of 0.024.
10.4.3 <u>Range Test (9.5.4)</u>	PASS FAIL
10.4.3.1 Record the sensor and PFS Test Set full stroke p	positions.
Sensor Positions – Full Stroke = -0.783	positions. Senser broke John Measuring in. Expected: -1.01in.
+ Full Stroke 2.020	in. Expected: +2.02in.
Tan otrone	
PFS Test Set Positions – Full Stroke	in. Expected: -1.01in.
+ Full Stroke 2.16	in. Expected: +2.02in.
Comments: The sensor broke while trying to rea	uh the negative full stroke. The glad that holds the
two halves (internally) failed. The end caps w	nere forced too hard against the middle tube.

10.4.4 <u>Linearity T</u>	The sensor broke during the Range Test so no Linearity data was taken.	PASS FAII
		17100 17A11
Record Sensor	POSITION AND FORCE SENIOR (PES) TEST ST	T DOCTTIONIC

Record Sensor Positions at the		POSITI	ON AND	FORCE S	ENSOR (I	PFS) TEST	SET POS	ITIONS	
PFS Positions	-1.010	1.263	1.641	2.020					
0 to +Full Stroke	The mid-	stroke is	0.505, so t	his is					
+Full Stroke to 0	used as t regressio							 	
0 to -Full Stroke									L
-Full Stroke to 0					!				

10.4.4.1 Print the spreadsheet containing the PFS Test Set vs. sensor positions and the linear regression and standard deviation analysis on those points, and attach it behind this data sheet.

standard deviation analysis on those points, and attach it behind this data sheet.
10.4.4.2 Record the slope, constant, and standard deviation values.
Slope Expected: 1.0 Constant Expected: 0
Standard Deviation
Comments:
10.4.4.3 Calculate the linear regressed range of the null and full stroke values, and account for the standard deviation to find the linear regressed range of the null and full stroke values. y = mx + b, where m = slope, b = constant, x = sensor positions linear regressed range = (y - standard deviation) to (y + standard deviation) Actual Null Position in. Regressed Range in. to
Actual Min. Full Stroke Position in. Regressed Range in. to in.
Actual Max. Full Stroke Position in. Regressed Range in. to in.
Comments:
0.4.4.4 Calculate the deviations of the actual data points from the best straight line and record the largest deviation.
Sensor Nonlinearity \int in. \int Expected: $\leq +/-0.0202$ in. Comments:

Pitch Stick Sensor S/N 002

{SENSOR BROKE DURING TESTING.} {NO LINEARITY DATA WAS TAKEN.}

Reference (inches)	Sensor (inches)
0.505	0
0.884	0
1.263	0
1.641	0
2.01	0
2.01	0
1.641	0
1.263	0
0.884	0
0.505	0
0.126	0
-0.253	0
-0.631	0
-1.01	0
-1.01	0
-0.631	0
-0.253	0
0.126	0
0.505	0

Least S	Squares Fit	(y = mx	+ b)
Results Map		Re	sults
m	b	0	0
se m	se b	0	0
r squared	se y	1	0
F	df	#NUM!	17
ss reg	ss resid	0	0

Least Square Fit Results Key
m = slope
b = y-intercept
se m = standard error for slope
se b = standard error for y-intercept
r squared = coefficient of determination
se y = standard error for the y estimate
(se y = standard deviation)
F = the F statistic
df = degrees of freedom
ss reg = regression sum of squares
ss resid = residual sum of squares

10.5 RUDDER PEDAL SENSOR DATA SHEET

Performed by: Bro	1) Kessler Date: 6/21/4	73 Test Artic	le Serial Number: oci
10.5.1 Null Offset Te	est (9.6.2)	EOA#1	PASS FAIL
10.5.1.1 Record the PF	S Test Set value during the test	and the largest sen	sor value.
Sensor Null Offset	±0.001 inches	3,0.000	Expected: $\leq +/-0.0045$ in.
PFS Test Set Value	3,000 inches	Expec	ted: Any constant value.
Comments:			
10.5.2 <u>Resolution Tes</u>	st (9.6.3)		PASS FAIL
	5 Test Set position and the small	lest change in the s	
			, , , , , , , , , , , , , , , , , , ,
PFS Test Set Initial P	osition 0.400 in	a. and Ending Pos	ition 0.402 in.
Sensor Resolution	0.09 2 in.	Expected: ≤ + Estimated: 2(0 Proc. Spec.: 0.	$(0.75)/2^{10} \approx 0.0015$ in.
Comments: The second	sor changel from . 0.397 to	0.399 for a di	. Herence of 0.002.
10.5.3 <u>Range Test (9.6</u>			PASS FAIL
10.5.3.1 Record the sens	sor and PFS Test Set full stroke	positions.	
Sensor Positions	- Full Stroke -0.75c	in.	Expected: -0.750in.
	+ Full Stroke 0.750	in.	Expected: +0.750in.
PFS Test Set Positions	s – Full Stroke <u>–0.75</u> 4	in.	Expected: -0.750in.
	+ Full Stroke 0.750	in.	Expected: +0.750in.
Comments: The PFS	s values were taken when the	Sensor reading read	ed the extremes.

10.5.4 Linearity Test (9.6.5)

Record Sensor Positions at the	POSITION AND FORCE SENSOR (PFS) TEST SET POSITIONS								
PFS Positions	0.750	-0.563	-0.375	-0.188	0.000	0.188	0.375	0.563	0.750
0 to +Full Stroke		<u> </u>	·		ರಿಎಂ	0.188	0.375	0.563	0.749
+Full Stroke to 0					0.004	0.192	0.379	C.566	0.750
0 to -Full Stroke	-0.746	-0.560	-0.372	-0.185	×				1
-Full Stroke to 0	70-750	-0.564	-0.375	-0.188	0.000				7.4

10.5.4.1 Print the spreadsheet containing the PFS Test Set vs. sensor positions and the linear regression and standard deviation analysis on those points, and attach it behind this data sheet.

10.5.4.2 Record the slope, constant, and standard deviation values.

Slope 0,999	Expected: 1.0	Constant 0.001	Expected: 0
Standard Deviation	0.002	·	
Comments:			

Committee.

10.5.4.3 Calculate the linear regressed range of the null and full stroke values, and account for the standard deviation to find the linear regressed range of the null and full stroke values. y = mx + b, where m = slope, b = constant, x = sensor positions linear regressed range = (y - standard deviation) to (y + standard deviation)

Comments:

10.5.4.4 Calculate the deviations of the actual data points from the best straight line and record the largest deviation.

at -2563, 0.010, 0.188, 0.375

Sensor Nonlinearity	0.003	in.	Expected: $\leq +/-0.0019$ in
Comments:			

Rudder Pedal Sensor S/N 001

Reference (inches)	Sensor (inches)
0	0
0.188	
	0.188
0.375	0.375
0.563	0.563
0.75	0.749
0.75	0.75
0.563	0.566
0.375	0.379
0.188	0.192
0	0.004
-0.188	-0.185
-0.375	-0.372
-0.563	-0.56
-0.75	-0.746
-0.75	-0.75
-0.563	-0.564
-0.375	-0.375
-0.188	-0.188
0	0

Least Squares Fit $(y = mx + b)$				
Results Map		Results		
m	b	0.999378	0.001368	
se m	se b	0.00095	0.000448	
r squared	se y	0.999985	0.001952	
F	df	1106351	17	
ss reg	ss resid	4.216506	6.48E-05	

Least Square Fit Results Key
m = slope
b = y-intercept
se m = standard error for slope
se b = standard error for y-intercept
r squared = coefficient of determination
se y = standard error for the y estimate
(se y = standard deviation)
F = the F statistic
df = degrees of freedom
ss reg = regression sum of squares
ss resid = residual sum of squares

10.5 RUDDER PEDAL SENSOR DATA SHEET

Performed by: Bred Kessler Date: 6/15/93 Test Article Serial Number: 002	
10.5.1 Null Offset Test (9.6.2) PASS FAIL	
10.5.1.1 Record the PFS Test Set value during the test and the largest sensor value.	,+5)
Sensor Null Offset $\frac{+o.coy}{-o.cos}$ inches Expected: $\leq +/-0.0045$ in.	
PFS Test Set Value 3.000 inches Expected: Any constant value.	
Comments: The value of -0.005 co-12 be from -0.0054 to -0.0045 so it is possible that	
the Nall Offset is within the exactly range if	
not the case, the Null Offset is extremely close to passing.	
10.5.2 Resolution Test (9.6.3) PASS FAIL	
10.5.2.1 Record the PFS Test Set position and the smallest change in the sensor position.	
PFS Test Set Initial Position 0.152 in. and Ending Position 0.154 in.	
Sensor Resolution C. $\mathfrak{p} \mathfrak{p} \mathfrak{p} \mathfrak{p} \mathfrak{p} \mathfrak{p} \mathfrak{p} \mathfrak{p} $	
Comments: The sensor changed from 0.150 to 0.152 for a difference of 0.002.	
0.5.3 Range Test (9.6.4)	
0.5.3.1 Record the sensor and PFS Test Set full stroke positions.	
Sensor Positions – Full Stroke – 0.750 in. Expected: –0.750in.	
+ Full Stroke 0.750 in. Expected: +0.750in.	
PFS Test Set Positions – Full Stroke –0.757 in. Expected: –0.750in.	
+ Full Stroke 0.750 in. Expected: +0.750in.	
Comments: The PFS readings were taken when the sensor value was at the extreme consistantly.	

10.5.4 Linearity Test (9.6.5)

	/
PASS 🗹	FAIL

Record Sensor Positions at the		POSITI	ON AND	FORCE S	ENSOR ()	PFS) TEST	SET POS	ITIONS	
PFS Positions	-0.750	-0.563	-0.3 <i>7</i> 5	-0.188	0.000	0.188	0.375	0.563	0.750
0 to +Full Stroke			\	<u> </u>	-3,002	0.186	0.375	0.562	0.748
+Full Stroke to 0					0.006	0.193	0.331	0.569	0.750
0 to -Full Stroke	-0.745	-0.558	-0.375	-0.182	×		1 - 1 - 1		
-Full Stroke to 0	~0.750	-0.565	-0.377	-0.188	-0.002				

10.5.4.1 Print the spreadsheet containing the PFS Test Set vs. sensor positions and the linear regression and standard deviation analysis on those points, and attach it behind this data sheet.

10.5.4.2 Record the slope, constant, and standard deviation values.

Slope /.000	Expected: 1.0	Constant O. DCI	Expected: 0
Standard Deviation	D-004		
C			

Comments:

10.5.4.3 Calculate the linear regressed range of the null and full stroke values, and account for the standard deviation to find the linear regressed range of the null and full stroke values. y = mx + b, where m = slope, b = constant, x = sensor positions linear regressed range = (y - standard deviation) to (y + standard deviation)

Comments:

10.5.4.4 Calculate the deviations of the actual data points from the best straight line and record the largest deviation.

	at -0.188,	مون و (375) 3.565
Sensor Nonlinearity 0.005	in.	Expected: $\leq +/-0.0019$ in.

Rudder Pedal Sensor S/N 002

	.	1.6	17.0				<u> </u>	,	-		,		,w.		,	grounder	process.		
Sensor (inches)	-0.002	0.186	0.375	0.562	0.748	0.75	0.569	0.381	0.193	9000	-0.182	-0.375	-0.558	-0.745	-0.75	-0.565	-0.377	-0.188	-0.002
Reference (inches)	0	0.188	0.375	0.563	0.75	0.75	0.563	0.375	0.188	0	-0.188	-0.375	-0.563	-0.75	-0.75	-0.563	-0.375	-0.188	0

Least (east Squares Fit	$(\lambda = mx + b)$	(q+
Results Map	: Мар	Res	Results
ر	q	9666'0	0.9996 0.001368
sem	g es	0.001701	0.000802
squared se y	xe y	0.999951	0.003496
	df	345192.5	17
ss reg	ss resid	4.218377	0.000208

£
Least Square Fit Results Key
m = slope
b = y-intercept
se m = standard error for slope
se b = standard error for y-intercept
r squared = coefficient of determination
se $y = standard error for the y estimate$
(se $y = standard deviation$)
F = the F statistic
df = degrees of freedom
ss reg = regression sum of squares
ss resid = residual sum of squares

10.6 TRAILING EDGE FLAP SENSOR DATA SHEET

Performed by: <u>Br.</u>	id Kessler	Date:_	6/20/93	Test Art	icle Serial N	umber: <u>001</u>
FOR THIS SENS(For easy comparis				+/-75°, SEN		GE= +/-4.050inches.
10.6.1 Null Offset T	<u>est (9.7.2)</u>					PASS FAIL
10.6.1.1 Record the Ro	otary Sensor Tes	st Set valı	ue during th	e test and the	e largest sens	or value.
Sensor Null Offset	± 0.123	in.	Avg, = 0.000	Expe	ected: <u><</u> +/-	- 0.898deg = 0.049in.
Rotary Sensor Test S	Set Value	0.000	deg.	Expe	ected: Any o	constant value.
Comments: The ex	tremes are lis	ted as 4	Le N-11 of	fset. The va	he reported	most often is o.coc
10.6.2 Resolution Te	est (9.7.3)					PASS FAIL
10.6.2.1 Record the Ro	tary Sensor Tes	t Set ang	le and the sn	nallest chang	e in the senso	or angle.
RSTS Initial Angle	-5.692	deg	, and Endir	ng Angle	-6.259	deg.
Sensor Resolution	0. 5 67	deg	Estimate	d: 2(75)/2 ⁹	+/- 0.898 d 2 0.29 deg 0.037deg =	leg = 0.049in. or greater = 0.016in. 0.002 in.
Comments: The sa	ensor changed	from -c).183 to 0	.574 inclus	for a diffe	creace of 0.091 inclusion
10.6.3 <u>Range Test (9.</u>	<u>7.4)</u>					PASS FAIL
10.6.3.1 Record the ser	nsor and Rotary	Sensor T	est Set full s	roke positio	ns.	
Sensor Angles	– Full Stroke	-4	₂ 50]in.	Expected:	-4.050in.
	+ Full Stroke	e 4.	;50	_lin.	Expected:	4.050in.
RSTS Angles	– Full Stroke	-4/	. 593	deg.	Expected:	-75deg = -4.050in.
	+ Full Stroke	2 46	,,222	deg.	Expected:	+75deg = 4.050in.
Comments: The ref	erence did not	reach ±	75° but +	& sensor 1	reached in C	u e le

10.6.4 Linearity Test (9.7.5)

7

Record Sensor			ROTARY	SENSOR	(RS) TES	T SET PO	SITIONS	***	
Positions at the RS Positions	-4.050 -75.00 ⁰	-3.0375 -56.25 ⁰	-2.025 -37.50 ⁰	-1.0125 -18.75 ⁰	0.000 0.00 ⁰	1.0125 18.75 ⁰	2.025 37.50 ⁰	3.0375 56.25 ⁰	4.050 75.00 ⁰
0 to +Full Stroke					0.000	1,627	3.306	Over Trivel	Over
+Full Stroke to 0					70.083	1.603	3.242	Over	aur Travel
0 to -Full Stroke	Linder Travel	Under	- 3,698	-1.869	×				
-Full Stroke to 0	Under	Under	-3,642	-1.837	-0.071				ey va.

10.6.4.1 Print the spreadsheet containing the Rotary Sensor Test Set vs. sensor angles and the linear regression and standard deviation analysis on those points, and attach it behind this data sheet.

10.6.4.2 Record the slope, constant, and standard deviation values.

Slope 1.219	Expected: 1.0	Constant -0.075	Expected: 0
Standard Deviation	0.719		

Comments:

10.6.4.3 Calculate the linear regressed range of the null and full stroke values, and account for the standard deviation to find the linear regressed range of the null and full stroke values. y = mx + b, where m = slope, b = constant, x = sensor angles linear regressed range = (y - standard deviation) to (y + standard deviation)

Comments:

10.6.4.4 Calculate the deviations of the actual data points from the best straight line and record the largest deviation.

deviation.		#-37.5°	
Sensor Nonlinearity	-1.225	in.	Expected: $\leq +/-0.75 \text{deg} = 0.0405 \text{in}$
Comments.			

Trailing Edge Flap Sensor S/N 001

Reference (inches)	Sensor (inches)
0	0
1.0125	1.627
2.025	3.306
3.0375	4.05
4.05	4.05
4.05	4.05
3.0375	4.05
2.025	3.242
1.0125	1.603
0	-0.083
-1.0125	-1.869
-2.025	-3.698
-3.0375	-4.05
-4.05	-4.05
-4.05	-4.05
-3.0375	-4.05
-2.025	-3.642
-1.0125	-1.837
0	-0.071

Least :	Squares Fit	(y = mx + b)						
Results	з Мар	Results						
m	b	1.219029	-0.07484					
se m se b		0.064794	0.16487					
r squared	r squared se y		0.718652					
F df		353.9662	17					
ss reg	ss resid	182.8097	8.779836					

Least Square Fit Results Key
m = slope
b = y-intercept
se m = standard error for slope
se b = standard error for y-intercept
r squared = coefficient of determination
se y = standard error for the y estimate
(se y = standard deviation)
F = the F statistic
df = degrees of freedom
ss reg = regression sum of squares
ss resid = residual sum of squares

10.6 TRAILING EDGE FLAP SENSOR DATA SHEET

Performed by: Br	ad Kessler	Date: 6/19	•	Test Articl E>A#1	le Serial Numbe	er: <u>002</u>
FOR THIS SENSO			NGE= +/-	-75°, SENS	OR RANGE= +	-/-4.050inches.
For easy compariso	on, all values h	ave been coi	nverted i	to inches.		
10.6.1 Null Offset Te	st (9.7.2)				PAS	SS FAIL
10.6.1.1 Record the Rot	tary Sensor Test	Set value dur	ing the te	est and the la	argest sensor valı	ue.
Sensor Null Offset	+ 0.075/-0.07	Avg. = in.	-2. 55 0	Expect	ted: ≤+/-0.898	8deg = 0.049in.
Rotary Sensor Test S	et Value	,000	deg.	Expect	ted: Any consta	ant value.
Comments: The mil	point of this :	cenur is "	- 2.550	, not 0.00	c. The Nall C	offset values are t
篇 differences betw	sen -2.550 an	d the high .	and low	readings as	2.550. Aug	. value = -2.550, m
Value = -2.474,		e = -2.625.			73.4.0	FAIL
10.6.2 Resolution Tes	t (9.7.3)				PAS	SP FAIL
10.6.2.1 Record the Rot	ary Sensor Test	Set angle and	the smal	lest change	in the sensor ang	le.
RSTS Initial Angle	26.168	deg. and	Ending	Angle	26.267	deg.
Sensor Resolution	0.099	deg. Est	timated:	2(75)/2 ⁹ =	/- 0.898 deg = 2 0.29 deg or gre 037deg = 0.002	eater = 0.016in.
Comments: The sen		-2 -00		-	•	
770 320	iser changes 4	vom 3.071	b to 3	.152 tor	a difference of	t U.U.O. Inches.
10.6.3 <u>Range Test (9.7</u>	7.4)				PAS	S FAIL
10.6.3.1 Record the sens	sor and Rotary S	ensor Test Se	t full stro	ke positions	5.	
Sensor Angles	– Full Stroke	- 4,050	j	n.	Expected: -4.0	950in.
	+ Full Stroke	-0.820	<u> </u>	n.	Expected: 4.05	0in.
RSTS Angles	– Full Stroke	65.83	34	leg.	Expected: -75	deg = -4.050in.
	+ Full Stroke	-78.06	2	leg.	Expected: +75	deg = 4.050in.
Comments: This se	unsor never re	siches the 7	م سندگور	rincel (

10.6.4 <u>Linearity Test (9.7.5)</u>

PASC	FAII	J/
LASS[]	ГАІЦ	

di

Record Sensor			ROTARY	SENSOF	(RS) TES	T SET PO	SITIONS		
Positions at the RS Positions	-4.050 -75.00 ⁰	-3.0375 -56.25 ⁰	-2.025 -37.50 ⁰	-1.0125 -18.75 ⁰	0.000 0.00 ⁰	1.0125 18.75 ⁰	2.025 37.50 ⁰	3.0375 56.25 ⁰	4.050 75.00 ⁰
0 to +Full Stroke				·	-2.542	-2,993	-3,333	-3,797	Over
+Full Stroke to 0						-2.981		-3.757	Over Travel
0 to -Full Stroke	-0.934	-1.437	-1.805	-2.170	\times		21,107		Liravei
-Full Stroke to 0	-0.954	-1.413	-1.797	-2.122	-2.530				

10.6.4.1 Print the spreadsheet containing the Rotary Sensor Test Set vs. sensor angles and the linear regression and standard deviation analysis on those points, and attach it behind this data sheet.

10.6.4.2 Record the slope, constant, and standard deviation values.

Slope -0.386	Expected: 1.0	Constant -2.558	Expected: 0
-	·		Expected. 0
Standard Deviation		1	(
	sensor is fairly linear bu	t it a not correllate with	the reference. See the Plot of
the data.			
10.6.4.3 Calculate the	linear regressed range of the	null and full stroke values, ar	nd account for the
	nation to find the linear regre	ssed range of the null and full	stroke values.
,	ressed range = $(y - standard)$	onstant, x = sensor angles deviation) to (y + standard de	viation) This date was not con
Actual Null Angle	in. R	Regressed Range	in. to being is fair off from reference that the
	•		in. for this section ma
Actual Min. Full Str	oke Angle	in. Regressed Range	in. to
		5	in.
Actual Max. Full St	roke Angle	in. Regressed Range	in. to
			in.
Comments:			m.
10.6.4.4 Calculate the deviation.	deviations of the actual data p	points from the best straight li	ne and record the largest
Sensor Nonlinearity	in.	Expected: ≤ +	-/- 0.75deg = 0.0405in.
Comments:		•	O Service

Trailing Edge Flap Sensor S/N 002

Reference (inches)	Sensor (inches)
0	-2.542
1.0125	-2.993
2.025	-3.333
3.0375	-3.797
4.05	<i>-</i> 4.05
4.05	-4.05
3,0375	-3.757
2.025	-3.397
1.0125	-2.981
0	-2.534
-1.0125	-2.17
-2.025	-1.805
-3.0375	-1.437
-4.05	-0.934
-4.05	-0.954
-3.0375	-1.413
-2.025	-1.797
-1.0125	-2.122
0	-2.53

Least S	Squares Fi	t (y = mx	+ b)
Results	з Мар	Res	sults
m	b	-0.38599	-2.55768
se m se b		0.004107	0.01045
r squared se y		0.998079	0.04555
F df		8833.755	17
ss reg	ss resid	18.32852	0.035272

Least Square Fit Results Key
m = slope
b = y-intercept
se m = standard error for slope
se b = standard error for y-intercept
r squared = coefficient of determination
se y = standard error for the y estimate
(se y = standard deviation)
F = the F statistic
df = degrees of freedom
ss reg = regression sum of squares
ss resid = residual sum of squares

							_
					Sensor	is not decoded EDA#1 or EDA#1	<u> </u>
:	10.7 LEADIN	IG EDGE FL	AP SENS	OR DATA	SHEET		
Performed by: Bra	ad Kessler	Date: 6/19/	<u>93</u> Te	st Article Se	rial Nur	nber: <u>0043</u>	
10.7.1 Null Offset Te	est (9.8.2)				. 1	PASS FAIL	
10.7.1.1 Record the Ro	tary Sensor Tes	t Set value dur	ing the test	and the larges	st sensor	value.	
Sensor Null Offset		deg.		Expected:	≤+/-0	.30 deg	
Rotary Sensor Test S	Set Value		deg.	Expected:	Any coi	nstant value.	
Comments:							
10.7.2 <u>Resolution Te</u>	st (9.8.3)				F	PASS FAIL	
10.7.2.1 Record the Ro	tary Sensor Test	Set angle and	the smalles	t change in th	e sensor	angle.	
RSTS Initial Angle		deg. and	Ending A	ngle		deg.	
Sensor Resolution		deg.		Expected: Estimated: Proc. Spec.	$43/2^{10}$	<u>~</u> 0.042 deg	
Comments:							
		٠					
10.7.3 <u>Range Test (9.</u>	8.4)				F	PASS FAIL	
10.7.3.1 Record the sen	sor and Rotary	Sensor Test Se	t full stroke	positions.			
Sensor Angles	– Full Stroke	2	deg	g. Exp	ected: -	-21.5 (- 7) deg	
	+ Full Strok	e	deg	g. Exp	ected: -	+21.5 (+36) deg	
RSTS Angles	– Full Stroke		deg	g. Exp	ected: -	-21.5 deg	
	+ Full Strok	e	deş	g. Exp	ected: -	+21.5 deg	
Comments:							

10.7.4 <u>Linearity</u> 1	<u> [est (9.8.5</u>	Σ					P	ASS I	FAIL
Record Sensor Positions at the			ROTARY	(SENSO	R (RS) TES	T SET PO	SITIONS		
RS Positions	-21.500	-16.125	-10.750	<i>-</i> 5.375	0.000	5.375	10.750	16.125	21.500
0 to +Full Stroke				L	1				
+Full Stroke to 0									
0 to -Full Stroke						·	*		<u> </u>
-Full Stroke to 0									
10.7.4.1 Print the spregression 10.7.4.2 Record the	and stand slope, cor	ard devia	tion analy d standard	sis on the	ose points,	and attac	h it behin	d this data	ar 1 sheet.
Standard Deviation		ecteu. 1.			Constant		⊒ Ехре	ected: 0	
Comments:									
10.7.4.3 Calculate the standard do y = mx linear re	eviation to + b, wh	ofind the sere $m = s$	linear regi lope, b = 0	ressed rar constant,	d full strokinge of the $x = sensor$ on) to $(y + sensor)$	null and fi angles	ull stroke	values.	}
Actual Null Angle		d	eg.	I	Regressed	Range		deg deg.	
Actual Min. Full S	stroke An	gle		deg.	Regress	ed Rang	e	d	eg. to deg.
Actual Max. Full S	Stroke Ar	igle		deg.	Regress	ed Rang	e	d	leg. to deg.
Comments:									Ü
10.7.4.4 Calculate th deviation.	e deviatio	ns of the a	actual data	a points fi	rom the be	st straigh	t line and	record the	e largest
Sensor Nonlineari	ty		deg.		Ex	pected: <	≤+/-0.6 ¹	75 deg	

10.7 LEADING EDGE FLAP SENSOR DATA SHEET

Performed by:	ad Kessler	Date: 6/19/93	Test Artic	cle Serial Nu	mber:_ ∞45
10.7.1 Null Offset Te	est (9.8.2)				PASS FAIL
10.7.1.1 Record the Ro	tary Sensor Tes	st Set value during the	test and the	largest sensor	value.
Sensor Null Offset		deg.	Expe	cted: <u>≤</u> +/−().30 deg
Rotary Sensor Test S	et Value	deg.	Expe	cted: Any co	nstant value.
Comments:					
10.7.2 Resolution Tes	st (9.8.3)			;	PASS FAIL
10.7.2.1 Record the Rot	tary Sensor Tes	t Set angle and the sma	llest change	e in the sensor	angle.
RSTS Initial Angle		deg. and Ending	g Angle		deg.
Sensor Resolution		deg.	Estim	eted: ≤+/-0 ated: 43/2 ¹⁰ Spec.: 0.0330	<u>~</u> 0.042 deg
Comments:				-	Ü
		•			
10.7.3 <u>Range Test (9.8</u>	<u>3.4)</u>			I	PASS FAIL
10.7.3.1 Record the sens	sor and Rotary	Sensor Test Set full str	oke position	ıs.	
Sensor Angles	– Full Stroke	e	deg.	Expected:	–21.5 (–7) deg
	+ Full Stroke	e	deg.	Expected:	+21.5 (+36) deg
RSTS Angles	– Full Stroke	9	deg.	Expected:	-21.5 deg
	+ Full Stroke	e	deg.	Expected:	+21.5 deg
Comments:					

10.7.4 Linearity	<u>Геst (9.8.5</u>)					P.	ASS I	AIL
Record Sensor			ROTARY	SENSOI	R (RS) TES	T SET PO	SITIONS		
Positions at the RS Positions	-21.500	-16.125	-10.750	-5.375	0.000	5.375	10.750	16.125	21.500
0 to +Full Stroke			L	<u> </u>					
+Full Stroke to 0									
0 to –Full Stroke									
-Full Stroke to 0								····	
10.7.4.1 Print the spregression	and stand	ard devia	tion analy	sis on the	se points,		~		
10.7.4.2 Record the	siope, cor	isiani, and	i Stanuarc	i deviano.	n vaiues.				
Slope	Ехр	ected: 1.	0	(Constant		Expe	ected: 0	
Standard Deviati	on								
Comments:									
10.7.4.3 Calculate t standard d y = mx linear r	leviation to	o find the tere $m = s$	linear regislope, b = 0	ressed rar constant,	nge of the r x = sensor	null and f angles	ull stroke	values.	•
Actual Null Angl	le	d	eg.]	Regressec	l Range		deg	
Actual Min. Full	Stroke Ar	ngle		deg.	Regress	sed Rang	e	ld	eg. to deg.
Actual Max. Full	Stroke Aı	ngle		deg.	Regress	sed Rang	e		leg. to
Comments:									
10.7.4.4 Calculate the deviation.	he deviatio	ons of the	actual dat	a points f	rom the be	est straigh	t line and	record the	e largest
Sensor Nonlinear	itv		deg.		Ex	pected:	< +/- 0.6	75 deg	

10.8 POWER LEVER CONTROL SENSOR DATA SHEET

Performed by: <u>B.</u>	-al Kessler	Date: <u>6/21/4</u>	73 Test A	article Serial Number: <u>o</u>	0/
10.8.1 Null Offset To	est (9.9.2)			PASS_	FAIL
10.8.1.1 Record the Ro	otary Sensor Te	st Set value durii	ng the test and	the largest sensor value.	
Sensor Null Offset		deg.		Expected: $\leq +/-0.3$	325 deg
Rotary Sensor Test S	Set Value		deg. Ex	pected: Any constant va	ılue.
Comments:					
10.8.2 <u>Resolution Te</u>	st (9.9.3)			PASS	FAIL
10.8.2.1 Record the Ro	tary Sensor Tes	st Set angle and tl	he smallest cha	nge in the sensor angle.	
RSTS Initial Angle		deg. and E	Ending Angle	deg.	
Sensor Resolution		deg.	Estimated	≤+/-0.325 deg : 2(65)/2 ¹⁰ ≈ 0.13 deg :: 0.0168 deg	
Comments:					
		•			
10.8.3 <u>Range Test (9.</u>	9.4)			PASS 1	FAIL
10.8.3.1 Record the sen	sor and Rotary	Sensor Test Set f	full stroke posi	tions.	
Sensor Angles	– Full Strok	e	deg.	Expected: -65 deg	
	+ Full Strok	e	deg.	Expected: +65 deg	
RSTS Angles	– Full Strok	е	deg.	Expected: -65 deg	
	+ Full Strok	e	deg.	Expected: +65 deg	
Comments:					

10.8.4 Linearity T	'est (9.9. <u>5</u>	Σ					P.	ASS I	FAIL 🗌
Record Sensor Positions at the			ROTARY	SENSOR	(RS) TES	T SET PO	SITIONS		· · · · · · · · · · · · · · · · · · ·
RS Positions	0.000	16.250	32.5000	48.750	65.000	81.250	97.5000	113.750	130.000
0 to +Full Stroke +Full Stroke to 0									
0 to -Full Stroke -Full Stroke to 0							·		
10.8.4.1 Print the sp	and stand	ard devia	tion analy	sis on tho	se points,				
10.8.4.2 Record the	slope, con	istant, and	d standard	l deviatio	n values.		_		
Slope	Exp	ected: 1.	0	(Constant		Expe	ected: 0	
Standard Deviation	on								
Comments:									
10.8.4.3 Calculate the standard de y = mx - linear re	eviation to + b, wh gressed ra	o find the ere m = s ange = (y		ressed rar constant, : d deviatio	ge of the : x = sensor	null and f angles standard	ull stroke	values.	
Actual Min. Full S		<u> </u>	······································	deg.	Ü	sed Rang	e	deg.	leg. to
Actual Max. Full S	Stroke A1	ngle		deg.	Regres	sed Rang	ge	c	_ldeg. leg. to ldeg. deg.
Comments:									J
10.8.4.4 Calculate th deviation.	e deviatio	ns of the	actual dat	a points fi	rom the be	est straigh	t line and	record the	e largest
Sensor Nonlineari	ty		deg.	Expected			+/- 0.175 -/- 1.5 de)0

10.8 POWER LEVER CONTROL SENSOR DATA SHEET

Performed by:	Brad Kessler Date: 6/19/93	Test Article Serial 1	Number: 002
10.8.1 Null Offset	: Test (9.9.2)	E0A #2	PASS FAIL
10.8.1.1 Record the	Rotary Sensor Test Set value during the	e test and the largest sen	sor value.
Sensor Null Offse	et ± 0.064 deg. Aug, = 6	S,000 Expecte	ed: ≤+/-0.325 deg
Rotary Sensor Tes	st Set Value 0.000 deg.	Expected: Any	constant value.
Comments: M.1-3	stroke of this sensor is 65,000°	so the Null Offset	data is given as the
difference bets	ween 65,000° and the maximum.	and minimum values i	read.
Aug = 65.000,	Max = 65.064, min = 64.936.		
10.8.2 Resolution	Test (9.9.3)		PASS FAIL
10.8.2.1 Record the	Rotary Sensor Test Set angle and the sn	nallest change in the sens	sor angle.
	0.05		
RSTS Initial Angle	2 <i>9.50</i> 0 deg. and Endir	ng Angle 29.579	deg.
Sensor Resolution	E	Expected: $\leq +/-0.325$ Estimated: $2(65)/2^{10} \simeq$ Proc. Spec.: 0.0168 deg	0.13 deg
Comments: Sens	or changel from 29.990 to 30	2117 for a difference	of 0.127.
	·		
10.8.3 <u>Range Test (</u>	(9.9.4)		PASS FAIL
10.8.3.1 Record the s	ensor and Rotary Sensor Test Set full st	roke positions.	
Sensor Angles	- Full Stroke 0.000	deg. Expected	0.000 1: –65 deg
	+ Full Stroke /30-000	1	/30,000 l: +65 deg
RSTS Angles	- Full Stroke -1.110	7	0,800 l: -65 deg
	+ Full Stroke (32.030	_deg. Expected	130.000 l: +65 deg
Comments: 7	RST) values were taken where +		, -

10.84	Linearit	v Test	(9.9.5)
10.0.1	TILL COLLEGE	, LCDC	(/././/

PASS 🗹	FAIL	

Record Sensor Positions at the		ROTARY SENSOR (RS) TEST SET POSITIONS							
RS Positions	0.000	16.250	32.5000	48.750	65.000	81.250	97.5000	113.750	130.000
0 to +Full Stroke	1	-Stroke is	650 so +6	is is used	65,000	81.012	97.087	112.654	128.284
+Full Stroke to 0		ero to ma		er regression	63,602	79.741	95.943	112.146	128.284
0 to -Full Stroke	Under	15.186	31.007	46.891	X				
-Full Stroke to 0	Under Travel	15.376	31.642	47.845	64.047				4 4 £

10.8.4.1 Print the spreadsheet containing the Rotary Sensor Test Set vs. sensor angles and the linear regression and standard deviation analysis on those points, and attach it behind this data sheet.

10.8.4.2 Record the slope, constant, and standard deviation values.

Slope 0.993 Expected: 1.0 Constant -0.539 Expected: 0
Standard Deviation 0.563
Comments: This senier is close to failing the linearity. The correlation to the reference could be beth
10.8.4.3 Calculate the linear regressed range of the null and full stroke values, and account for the standard deviation to find the linear regressed range of the null and full stroke values. y = mx + b, where m = slope, b = constant, x = sensor angles linear regressed range = (y - standard deviation) to (y + standard deviation)
Actual Null Angle 65.000/63.602 deg. Regressed Range 63.424 deg. to
Actual Min. Full Stroke Angle 15.376 deg. Regressed Range 15.030 deg. to (at 16.250°) (16.156 deg.
Actual Max. Full Stroke Angle 125.284 deg. Regressed Range 127.949 deg. to
Comments:
10.8.4.4 Calculate the deviations of the actual data points from the best straight line and record the largest deviation.
Sensor Nonlinearity 1.013 deg. Expected: Linear from $\leq +/-0.175$ deg at 0^0 to $\leq +/-1.5$ deg at 65^0

Power Lever Control Sensor S/N 002

5-4-	
Reference (degrees)	Sensor (degrees)
65	65
81.25	81.012
97.5	97.087
113.75	112.654
130	128.284
130	128.284
113.75	112.146
97.5	95.943
81.25	79.741
65	63.602
48.75	46.891
32.5	31.007
16.25	15.186
0	0
0	0
16.25	15.376
32.5	31.642
48.75	47.845
65	64.047

Least Squares Fit $(y = mx + b)$				
Results	: Мар	Results		
m	b	0.9927	-0.53882	
se m	se b	0.003164	0.242879	
r squared	se y	0.999827	0.563215	
F	df	98440.8	17	
ss reg	ss resid	31226.55	5.392595	

Least Square Fit Results Key
m = slope
b = y-intercept
se m = standard error for slope
se b = standard error for y-intercept
r squared = coefficient of determination
se y = standard error for the y estimate
(se y = standard deviation)
F = the F statistic
df = degrees of freedom
ss reg = regression sum of squares
ss resid = residual sum of squares

10.9 NOSE WHEEL STEERING SENSOR DATA SHEET

Performed by: <u>Bra</u>	1 Kessler	Date: 6/z0/93	Test Articl	e Serial Numbe	r: <u>00 </u>
10.9.1 Null Offset To	est (9.10.2)		EOA#1	PAS	S FAIL
10.9.1.1 Record the Ro	otary Sensor Tes	st Set value during the	test and the la	ırgest sensor valı	ıe.
Sensor Null Offset	+2.273/-2.41	9 deg. Avg. = 0.0	73	Expected: ≤+	/- 0.186 deg
Rotary Sensor Test S	Set Value 0	0.000 deg.	Expect	ed: Any consta	nt value.
Comments:					
					fores
10.9.2 Resolution Te	st (9.10.3)			PAS	FAIL!
10.9.2.1 Record the Ro	tary Sensor Test	t Set angle and the sm	allest change i	n the sensor angl	e.
RSTS Initial Angle	75.474	deg. and Endin	g Angle 7	5.739	deg.
Sensor Resolution	0.265	Es	xpected: ≤+, stimated: 2(7 oc. Spec.: 0.0	$(5)/2^9 \approx 0.29 \text{ deg}$	g
Comments: Sensor	changel fro	m 28.446 to 33.	504 for a.	difference of	5.058
		,			
10.9.3 <u>Range Test (9.</u>	<u>10.4)</u>			PASS	FAIL FAIL
10.9.3.1 Record the sen	sor and Rotary	Sensor Test Set full st	oke positions.		
Sensor Angles	– Full Stroke	-75.00	deg.	Expected: -75	deg
	+ Full Stroke	75.000	deg.	Expected: +75	deg
RSTS Angles	– Full Stroke	-114.864	deg.	Expected: -75 a	deg
	+ Full Stroke	3.833	deg.	Expected: +75	deg
Comments: The se	insor reachi	full stroke for s	م داند می ا	200-12	1 1 1
	tionship to t		NOSIFING HAR P	yarak extrep	nes, but there

10.9.4 <u>Linearity Test (9.10.5)</u>

PASSI FAIL 9	PASS	FAIL	/
--------------	------	------	---

Record Sensor Positions at the	ROTARY SENSOR (RS) TEST SET POSITIONS								
RS Positions	<i>–7</i> 5.000	-56.250	-37.500	-18. <i>7</i> 50	0.000	18. <i>7</i> 50	37.500	56.250	75.000
0 to +Full Stroke				<u> </u>	~ 0. 220	Over	over.	over	over
+Full Stroke to 0					0.000	Travel	Over Travel	Travel Over Travel	over,
0 to -Full Stroke	-48:387	-36.290	-24.047		×	T PROPER	120001	12001	Travel
Es-11 Canalia (a O)	-48-754			-12.170	0,660				

10.9.4.1 Print the spreadsheet containing the Rotary Sensor Test Set vs. sensor angles and the linear regression and standard deviation analysis on those points, and attach it behind this data sheet.

10.9.4.2 Record the slope, constant, and standard deviation values.

Slope 0.992 Expected: 1.0 Constant 18.749 Expected: 0	
Standard Deviation 18.383 Comments: The negative travel portion is fairly linear but does not correllate to the reference. The positive portion is sessing greatly effecting the slope, intercept, and standard devication. 10.9.4.3 Calculate the linear regressed range of the null and full stroke values, and account for the standard deviation to find the linear regressed range of the null and full stroke values. y = mx + b, where m = slope, b = constant, x = sensor angles linear regressed range = (y - standard deviation) to (y + standard deviation)	tv
Actual Null Angledeg. Regressed Rangedeg. to	
Actual Min. Full Stroke Angledeg. Regressed Rangedeg. deg. deg.	
Actual Max. Full Stroke Angle deg. Regressed Range deg. to	+
Comments:	
10.9.4.4 Calculate the deviations of the actual data points from the best straight line and record the largest deviation.	
Sensor Nonlinearity deg. Expected: Linear from $\leq +/-0.188$ deg at 0^0 to $\leq +/-1.5$ deg at 75^0	
Comments: This section was not completed since the positive range being over travel affected the Slope, y-intercept, and standard deviation so much that it makes it is like to the	

Nose Wheel Steering Sensor S/N 001

Reference (degrees)	Sensor (degrees)
0	-0.22
18.75	75
37.5	75
56.25	<i>7</i> 5
75	75
75	75
56.25	75
37.5	75
18.75	75
0	0
-18.75	-12.61
-37.5	-24.047
-56.25	-36.29
-75	-48.387
- 75	-48.754
-56.25	-37.243
-37.5	-24.707
-18.75	-12.17
0	0.66

Least S	Squares F	if $(y = mx)$	(y = mx + b)			
Results	Мар	Res	Results			
m	b	0.991756	18.74905			
se m	se b	0.089499	4.217304			
r squared	se y	0.878391	18.3828			
F	df	122.792	17			
ss reg	ss resid	41494.78	5744.766			

Least Square Fit Results Key
m = slope
b = y-intercept
se m = standard error for slope
se b = standard error for y-intercept
r squared = coefficient of determination
se y = standard error for the y estimate
(se y = standard deviation)
F = the F statistic
df = degrees of freedom
ss reg = regression sum of squares
ss resid = residual sum of squares

10.9 NOSE WHEEL STEERING SENSOR DATA SHEET

Performed by: Brad	Kessler	Date: 6/15/93		e Serial N	umber: <u>00 2</u>		
10.9.1 Null Offset Tes	t (9.10.2)		E0A #2		PASS FAIL		
10.9.1.1 Record the Rotary Sensor Test Set value during the test and the largest sensor value.							
Sensor Null Offset	± 0.953	deg.		Expected	: ≤+/-0.186 deg		
Rotary Sensor Test Se	t Value 0.	ರಿಂ೦ deg.	Expect	ed: Any o	constant value.		
Comments:							
10.9.2 Resolution Test	(9.10.3)				PASS FAIL		
10.9.2.1 Record the Rota	ry Sensor Test :	Set angle and the sm	allest change i	n the senso	or angle.		
RSTS Initial Angle	26.263	deg. and Endin	g Angle	27.036	deg.		
Sensor Resolution	0.773		xpected: ≤+				
	Estimated: 2(75)/2 ⁹ <u>~</u> 0.29 deg Proc. Spec.: 0.0366 deg						
Commonts			•	Ŭ			
Comments: Sensor	changed fro	m ,26.833 to	26.906 fr	a differe	ence of 0.073.°		
10.9.3 <u>Range Test (9.10</u>	0.4)				PASS FAIL		
10.9.3.1 Record the sense	or and Rotary S	Sensor Test Set full st	roke positions	•			
			٦.	-			
Sensor Angles	– Full Stroke	~ 75.000	Jdeg. ¬	Expected:	-75 deg		
	+ Full Stroke	75.000	_deg.	Expected:	+75 deg		
RSTS Angles	– Full Stroke	-48.332	deg.	Expected:	–75 deg		
	+ Full Stroke	115.857	deg.	Expected:	+75 deg		
Comments: The sensor	- reaches full	Stroke, but does r	not correllate	e to the r	eference.		
In the positive	direction, th	, sensor reads ≈	710 from	RSTS 50.087	to 115.857 and then		
From 115.857"+	o 43.606.				·		

10.9.4 Linearity Test (9.10.5)

Comments:

PASC	FAII	
1'A55	PAIL	

Record Sensor Positions at the	ROTARY SENSOR (RS) TEST SET POSITIONS								
RS Positions	-75.000	-56.250	-37.500	-18.750	0.000	18.750	. 37.500	56.250	75.000
0 to +Full Stroke					-0.073	19,282	32,991	69.868	71.628
+Full Stroke to 0					-0.293	22.141	5 3,152	71.701	71.628
0 to –Full Stroke	-70.235	-61.804	-44.941	-22.067	×				
-Full Stroke to 0	-71.041	-71.848	-47,141	-17.155	2.933				

- 10.9.4.1 Print the spreadsheet containing the Rotary Sensor Test Set vs. sensor angles and the linear regression and standard deviation analysis on those points, and attach it behind this data sheet.
- 10.9.4.2 Record the slope, constant, and standard deviation values.

Slope 1.067 Expected: 1.0 Constant 0.459 Expected: 0	
Standard Deviation 7.721 Comments: The hysteresis of this sensor is fairly large. The maximum and minimum strokes of this sensor nearly reached many degrees short of the reference max, and min, values, but no overtravel occurs. 10.9.4.3 Calculate the linear regressed range of the null and full stroke values, and account for the is a long range standard deviation to find the linear regressed range of the null and full stroke values. y = mx + b, where m = slope, b = constant, x = sensor angles linear regressed range = (y - standard deviation) to (y + standard deviation) Stroke length.	of a alve
Actual Null Angle 2.933/-0.293 deg. Regressed Range -7.262 deg. to	
Actual Min. Full Stroke Angle 71.041 deg. Regressed Range 787.291 deg. to 71.849 deg.	
Actual Max. Full Stroke Angle 71.628 deg. Regressed Range 72.768 deg. to 88.210 deg.	
Comments:	
10.9.4.4 Calculate the deviations of the actual data points from the best straight line and record the largest deviation.	
Sensor Nonlinearity 12.678 deg. Expected: Linear from $\leq +/-0.188$ deg at 0^0 to $\leq +/-1.5$ deg at 75^0	

FOXIDATA.XLS

Nose Wheel Steering Sensor S/N 002

Reference (degrees)	Sensor (degrees)
0	-0.073
18.75	19.282
37.5	32.991
56.25	69.868
75	71.628
75	71.628
56.25	71. <i>7</i> 01
37.5	53.152
18.75	22.141
0	-0.293
-18.75	-22.067
-37.5	-44.941
-56.25	-61.804
-75	-70.235
-75	-71.041
-56.25	-71.848
-37.5	-47.141
-18.75	-17.155
0	2.933

Least S	Squares Fit	(y = mx + b)			
Results	Мар	Results			
m	b	1.06706	0.459263		
se m	se b	0.03759	1.771265		
r squared	se y	0.979339	7.720767		
F	df	805.8254	17		
ss reg	ss resid	48035.45	1013.374		

Maria
Least Square Fit Results Key
m = slope
b = y-intercept
se m = standard error for slope
se b = standard error for y-intercept
r squared = coefficient of determination
se y = standard error for the y estimate
(se y = standard deviation)
F = the F statistic
df = degrees of freedom
ss reg = regression sum of squares
ss resid = residual sum of squares

Sensor is not decoded by EDA#1 or EDA#2

10.10 TOTAL PRESSURE SENSOR DATA SHEET

Performed by: Date:	lest Article Serial Number: 4030 - 32 - o
10.10.1 <u>Leak Test (9.11.2)</u>	PASS FAIL
10.10.1.1 Print the file containing the sensor output	t data and attach it behind this data sheet.
10.10.1.2 Attach a copy of the ADT-222 data behin	d this data sheet.
Sensor Data Leak Rate in. Expected: ≤ 0.010 in Hg per minute.	Hg per minute
ADT-222 Data Leak Rate Expected: ≤ 0.010 in Hg per minute.	in. Hg per minute
(Sensor Data Leak Rate minus ADT–222 Data Expected: ≤ 0.002 in Hg per minute.	Leak Rate) in. Hg per minute
Comments:	
10.10.2 Warm Up Test (9.11.3)	PASS FAIL
Room Temperature degree	es F
10.10.2.1 Attach to this data sheet a description/sk	etch of the sensor orientation.
10.10.2.2 Print the file containing the sensor output	data and attach it behind this data sheet.
10.10.2.3 Attach a copy of the error plot as a function	on of time.
Maximum Observed Error Expected: ≤ 0.40 in Hg.	in. Hg
Comments:	

10.10.3 Room Temperature Conversion Accuracy/Hysteresis Test (9.11.4) PASS FAIL
Room Temperature degrees F
10.10.3.1 Attach to this data sheet a description/sketch of the sensor orientation.
10.10.3.2 Print the file containing the sensor output data and attach it behind this data sheet.
10.10.3.3 Attach a copy of the error plot as a function of time. Fill in the table below.
Dec. The state of

Room Temperature Test Results (in. Hg)

Input	Maximum	Minimum	Average	Input	Maximum	Minimum	Average
Pressure	Error	Error	Error	Pressure	Error	Error	Error
29.000				56.000			
26.000				59.000			
23.000				62.000			
20.000				65.000			
17.000				68.000			
14.000				71.000			
11.000				74.000			
8.000				<i>77</i> .000			
5.000				80.000			
2.000				77.000			
5.000				74.000			
8.000				71.000			
11.000				68.000			
14.000				65.000			
17.000				62.000			
20.000				59.000	- 7		
23.000				56.000			
26.000				53.000			
29.000				50.000			
32.000				47.000			
35.000				44.000			
38.000							
41.000				41.000			
44.000				38.000			
				35.000			
47.000				32.000			
50.000				29.000			
53.000				.			

Maximum Observed Error	in. Hg
Expected: \leq 0.40 in Hg.	
Comments:	

10.10.4 "Cold" and "Hot" Conversion Accuracy/Hysteresis Test (9.11.5) PASS FAIR	
"Cold" Oven Temperature degrees F	
10.10.4.1 Attach to this data sheet a description/sketch of the sensor orientation during "cold" test.	
10.10.4.2 Print the file containing the "cold" sensor output data and attach it behind this data sheet.	
10.10.4.3 Attach a copy of the "cold" error plot as a function of time. Fill in the table below.	
"Cold" Temperature Test Results	

"Cold" Temperature Test Results (in. Hg)

Input	Maximum	Minimum	Average	Input	Maximum	Minimum	Average
Pressure	Error	Error	Error	Pressure	Error	Error	Error
29.000		<u> </u>		56.000			
26.000				59.000			
23.000				62.000			<u></u>
20.000				65.000			
17.000				68.000			
14.000				71.000			
11.000				74.000			
8.000				77.000			
5.000				80.000			
2.000				<i>7</i> 7.000			
5.000				74.000			
8.000				71.000			
11.000				68.000			
14.000				65.000			
17.000				62.000			
20.000				59.000			
23.000				56.000			
26.000				53.000			
29.000				50.000			
32.000				47.000			
35.000				44.000			
38.000				41.000			
41.000				38.000			
44.000				35.000			
47.000				32.000	1		
50.000				29.000			
53.000							

Maximum Observed Error	in. Hg
Expected: ≤ 0.40 in Hg.	Ü
Comments:	

"Hot" Oven Temperature degrees F
10.10.4.4 Attach to this data sheet a description/sketch of the sensor orientation during "hot" test.
10.10.4.5 Print the file containing the "hot" sensor output data and attach it behind this data sheet.
10.10.4.6 Attach a copy of the "hot" error plot as a function of time. Fill in the table below.

"Hot" Temperature Test Results (in. Hg)

Input Pressure	Maximum Error	Minimum Error	Average Error	Input Pressure	Maximum Error	Minimum Error	Average
29.000		ZZ, TO,	23101	56.000	Elioi	Enor	Error
26.000				59.000			
23.000							
20.000				62.000			
17.000				65.000			
14.000				68.000			
				71.000			
11.000				74.000			
8.000				<i>77</i> .000			
5.000				80.000			
2.000				<i>77</i> .000			
5.000				74.000			
8.000				7 1.000			
11.000				68.000			
14.000				65.000			
17.000				62.000			
20.000				59.000			
23.000				56.000			
26.000				53.000			
29.000				50.000			
32.000				47.000			
35.000				44.000			
38.000				41.000			
41.000				38.000			
44.000				35.000			
47.000							
50.000				32.000			
				29.000			
53.000			l		L		

Maximum Observed Error] in. Hg
Expected: ≤ 0.40 in Hg.	 11 6. 118
Comments:	

10.10.5 <u>G</u> —Sensitivity Test	<u>(9.11.6)</u>				PASS FAIL
Room Temperature		degrees	F		
10.10.5.1 Attach to this data	sheet a descr	ription/sketo	ch of the senso	or orientatio	n in each of its 6 positions.
10.10.5.2 Print the file contain table below.	ining the sen	sor output d	ata and attacl	n it behind th	nis data sheet. Fill in the
		_	y Test Results Hg)		
	Sensor Position 1 2 3 4 5	Maximum Error	Minimum Error	Average Error	
Maximum Observed Error Expected: ≤ 0.40 in Hg.	or	i	n. Hg		
Comments:					
10.10.6 "Creep" Test" (9.1	1.7)				PASS FAIL
Room Temperature		degrees	F		
10.10.6.1 Attach to this data	sheet a descr	ription/sketc	h of the senso	or orientation	n.
10.10.6.2 Print the file contain	ning the sen	sor output da	ata and attach	it behind th	is data sheet.
10.10.6.3 Attach a copy of th	e error plot a	as a function	of time.		
Maximum Observed Erro Expected: ≤ 0.40 in Hg.	or	iı	n. Hg		
Comments:					

10.10.7 "Jitter" / Short-Term Stability Test (9.11.8)	PASS FAIL
Room Temperature degrees F	
10.10.7.1 Attach to this data sheet a description/sketch of the sensor orientation.	
10.10.7.2 Print the file containing the sensor output data and attach it behind this day	ta sheet.
10.10.7.3 Attach a copy of the error plot as a function of time.	
Maximum Observed Error in. Hg Expected: ≤ 0.40 in Hg.	
Comments:	

10.10.8 <u>Humidity Sensitivity Test (9.11.9)</u>	PASS FAIL
Room Temperature degrees F	
10.10.8.1 Attach to this data sheet a description/sketch of the sensor orien	tation during "hot" test.
10.10.8.2 Print the file containing the "hot" sensor output data and attach	it behind this data sheet.
10.10.8.3 Attach a copy of the Humidity Sensitivity error plot as a function plot between this test and the "Hot" Test as a function of input p	n of time. Also attach an error ressure. Fill in the table below.
Humidity Sensitivity Test Results	artining and the second se

(in. Hg)

erage	Aver	Minimum Error	Maximum Error	Input Pressure	Average Error	Minimum Error	Maximum Error	Input Pressure
Error	EH	Liidi	LITOI	56.000	LITOI			29.000
				59.000				26.000
				62.000				23.000
				65.000				20.000
>				68.000				17.000
				71.000				14.000
				74.000				11.000
				77.000				8.000
				80.000				5.000
···				77.000				2.000
				74.000				5.000
				71.000				8.000
				68.000				11.000
				65.000				14.000
				62.000				17.000
	<u></u>			59.000	·			20.000
				56.000				23.000
				53.000				26.000
				50.000				29.000
				<u>47.000</u>	——il			32.000
				44.000				35.000
								38.000
				ĭ			1	
			· · · · · · · · · · · · · · · · · · ·					
								
			-	27.000				
				41.000 38.000 35.000 32.000 29.000				38.000 41.000 44.000 47.000 50.000 53.000

	 1
Maximum Observed Error	in. Hg
Expected: \leq 0.40 in Hg.	. 0
Comments:	

10.11 TOTAL TEMPERATURE PROBE DATA SHEET

Performed by: Jeff Snether Date: 6/23/93 Test Article Serial Number: Z
10.11.1 PRT Element Accuracy Test (9.12.1)
10.11.1.1 Ice Bath Temperature 32 degrees F
10.11.1.2 Attach the ice bath PRT data behind this data sheet.
All samples within 50.00 +/- 0.05 Ohms? YES NO
10.11.1.3 Average Ice Bath Resistance of PRT 1 49.992 Ohms
10.11.1.4 Average Ice Bath Resistance of PRT 2 49.995 Ohms
10.11.1.5 Boiling Distilled Water Bath Temperature degrees F 10.11.1.6 Attach the boiling distilled water bath PRT data behind this data shoot
10.11.1.6 Attach the boiling distilled water bath PRT data behind this data sheet. Not used since the PRT performed so well
All samples within 69.63 +/- 0.15 Ohms? YES NO
10.11.1.7 Average Boiling Water Bath Resistance of PRT 1 Ohms
10.11.1.8 Average Boiling Water Bath Resistance of PRT 2 Ohms
Comments: The ice bath temperature was verified with a thermocouple. The resistance readings
are very stable.
NOTE
The following tests were not performed since the EDA's cannot devole the TRD element very well. For example 10.11.2 Initial Room Temperature Check-Out (9.12.2) PASS FAIL / See result
Room Temperature degrees F
10.11.2.1 Print the file containing the sensor output data and attach it behind this data sheet. Fill in the table below.

Compensated Temperature Readings (Degrees F)

Temp Reading	Maximum Error	Minimum Error	Average Error
PRT Total Temp			
PRT Amb. Temp			
TRD Total Temp			

Average temperature outputs within +/- 2.0 degrees F of simulation? YES NO
ADC BIT Fails? YES NO
Comments:
10.11.3 Deicing Heater Operation Test (9.12.3) PASS FAIL
Room Temperature degrees F
10.11.3.1 Attach the deicing heater power data and plot to the back of this sheet.
·
Maximum Power Drawn After 5 Minutes Watts
Expected: < 170 Watts
Comments:
10.11.4 General Thermal Test (9.12.4) PASS FAIL
10.11.4.1 Attach all PRT and TRD temperature data to the back of this sheet.
10.11.4.2 Attach ambient oven temperature data to the back of this sheet.
10.11.4.3 Attach a listing of compensated PRT temperature data to the back of this sheet.
Maximum Difference Between PRT and TRD Readings at a Given Test Point
Degrees F
Expected: $\leq +/-0.50$ degrees F
Maximum Difference Between Oven Temperature and Either PRT or TRD Readings at a Giver Test Point
Degrees F
Expected: $\leq +/-2.00$ degrees F
Comments:

10.11 TOTAL TEMPERATURE PROBE DATA SHEET

Performed by: Jeff Snethen Date: 6/23/93 Test Article Serial Number: 03
10.11.1 PRT Element Accuracy Test (9.12.1) PASS FAIL
10.11.1.1 Ice Bath Temperature 32 degrees F
10.11.1.2 Attach the ice bath PRT data behind this data sheet.
All samples within 50.00 +/- 0.05 Ohms? YES NO
10.11.1.3 Average Ice Bath Resistance of PRT 1 50.038 Ohms
10.11.1.4 Average Ice Bath Resistance of PRT 2 50.008 Ohms
10.11.1.5 Boiling Distilled Water Bath Temperature degrees F A Second Point was
10.11.1.6 Attach the boiling distilled water bath PRT data behind this data sheet. PRT performed so well
All samples within 69.63 +/- 0.15 Ohms? YES NO at 32°F.
10.11.1.7 Average Boiling Water Bath Resistance of PRT 1 Ohms
10.11.1.8 Average Boiling Water Bath Resistance of PRT 2 Ohms
Comments: The ice bath temperature was verified with a thermocouple. The resistance readings are
Very Stable.
10.11.2 Initial Room Temperature Check-Out (9.12.2) PASS FAIL
Room Temperature degrees F
10.11.2.1 Print the file containing the sensor output data and attach it behind this data sheet. Fill in the

Compensated Temperature Readings (Degrees F)

Temp Reading	Maximum Error	Minimum Error	Average Error
PRT Total Temp			
PRT Amb. Temp			
TRD Total Temp	34°8C	7°8	"

Figure 2

FOCSI EOA Environmental Test Plan

Rev. 6/28/93

11.0 SCOPE

This test plan establishes the documents, equipment, and procedures necessary to verify the operation of the Electro-Optic Architecture (EOA) under the required vibration, thermal, altitude, and electromagnetic environments.

12.0 APPLICABLE DOCUMENTS

The following documents of the issue shown form a part of this test plan to the extent specified.

12.1 McDonnell Douglas Corporation Documents

WS-AD-3239 Electro-optic Architecture Procurement Specification Rev. A8 DEC 89

12.2 Government Documents

MIL-E-5400T Electronic Equipment, Airborne, General Specification for

MIL-STD-461C Electromagnetic Emission and Susceptibility Requirements for the Control of Electromagnetic Interference

MIL-STD-462 Electromagnetic Interference Characteristics, Measurement of

MIL-STD-704D Aircraft Electrical Power Characteristics

MIL-STD-810D Environmental Test Methods and Engineering Guidelines

13.0 SUMMARY

13.1 Test Plan Objective

The objective of the test is to verify the operation of the EOA when exposed to various environmental extremes. This will be accomplished by comparing the performance of the EOA during and after the environmental test to its performance before the environmental test.

13.2 Location

All tests will be performed at the MDC Avionics Laboratories or Environmental Test Facilities.

13.3 Standard Conditions

All tests shall be performed at prevailing laboratory temperatures, barometric pressures, and humidities unless otherwise specified.

13.4 Equipment

The test equipment consists of commercially available equipment and MDC designed equipment and is listed in Table I.

13.5 Specific Tests

13.5.1 Functional Test

Recording the output of the sensors as they remain at a constant value will determine if the EOA is functioning properly. This test is performed initially to establish baseline results and then after each environmental test to verify proper operation.

13.5.2 Monitor Test

Recording the position sensors' output of a constant value as the environmental tests are performed will determine if the EOA is functioning properly during the test. This test is not listed as the Monitor Test in the procedures but is performed as part of each test procedure.

13.5.3 Vibration Test

Performing three vibration tests – sinusoidal resonance survey, sinusoidal resonance dwell and frequency cycling, and random frequency vibration – will determine the ability of the EOA to operate under the expected vibration environment.

13.5.4 Thermal Test

Cycling the temperature of the air surrounding the EOA from room temperature to 75° C to -30° C to room temperature will determine the ability of the EOA to operate under the expected temperature environment.

13.5.5 Altitude Test Procedure

Cycling the pressure surrounding the EOA from room pressure to sea level pressure to the pressure at 50,000 feet to room pressure will determine the ability of the EOA to operate under the expected pressure environment.

13.5.6 Electromagnetic Interference Test

Obtaining the EM radiation and conduction output of the EOA will determine how the EOA will affect the aircraft.

13.5.7 Final Verification Test

The Integration Test Procedure for one of the sensors will be performed to determine the effect of the environmental tests on the integrated operation of the EOA and a sensor.

13.6 Failure Handling

Failures during the test procedure will be recorded, analyzed, and corrected. For a failure, the remaining portion of the current test will be completed provided the unit under test will not be damaged, a correction will be implemented, and the failed test will be repeated.

14.0 TEST PROCEDURES

14.1 Equipment

Table I Environmental Test Plan Equipment List

ITEM	DESCRIPTION	MANUFACTURER AND MODEL	RANGE	ACCURACY
1	FOCSI Test PC – IBM Clone PC (386) 1553 Interface Board	DTK 386 MDC 74T054099–1001		
2	Vibration Table	MDC	-	
3	Temperature Chamber	Delta Design 7600	125 ⁰ C + -40 ⁰ C -	
4	Altitude Chamber	MDC		
5	Electromagnetic Chamber	MDC		

14.2 Functional Test Procedure (Used during the environmental tests. Not a stand alone test.)

14.2.1 Procedure

- 14.2.1.1 Connect the sensors to the EOA so that the sensors will not be disturbed and the sensor values will remain constant. If possible, adjust the sensors to some approximate known value to establish a baseline sensor value.
- 14.2.1.2 Use the FOCSI Test PC to record the position of each sensor.

14.2.2 Data Evaluation

14.2.2.1 Examine the sensor values recorded throughout the environmental test to determine if the sensor values changed or other unexpected things occurred.

14.2.3 Expected Results

14.2.3.1 The sensor values will be constant throughout testing.

14.3 Vibration Test Procedure

14.3.1 General Preparation

- 14.3.1.1 Place the EOA in its holding fixture and attach it to the vibration table. Connect to the EOA the sensors and FOCSI Test PC which are off of the vibration table.
- 14.3.1.2 Attach accelerometers to the EOA and record their responses.
- 14.3.1.3 Use the FOCSI Test PC to monitor the constant sensor values as the vibration tests are performed. Record the sensor values throughout the test, and record any sensor reading deviations.
- 14.3.1.4 The following tests will be performed in each of the three orthogonal axes, with each of the tests being completed in one axis before the tests are performed in the next axis.

14.3.2 Resonance Survey Test

- 14.3.2.1 <u>Procedure</u>
- 14.3.2.1.1 A sinusoidal frequency sweep shall be made over 10 minutes from 5 to 2000Hz at the lesser amplitude of 0.024 inch peak–to–peak or +/-2g.
- 14.3.2.1.2 Perform the Functional Test 14.2.
- 14.3.2.2 Data Evaluation
- 14.3.2.2.1 Note the resonant points and describe the modes of each resonant point.
- 14.3.2.3 Expected Results
- 14.3.2.3.1 The EOA will survive the test, and the sensor values will be constant throughout testing.
- 14.3.3 Performance Random Vibration Test
- 14.3.3.1 Procedure
- 14.3.3.1.1 Perform the random vibration profiled in Figure 1 over 30 minutes.
- 14.3.3.1.2 Perform the Functional Test 14.2.
- 14.3.3.2 Data Evaluation
- 14.3.3.2.1 Note the resonant points and describe the modes of each resonant point.
- 14.3.3.3 Expected Results
- 14.3.3.3.1 The EOA will survive the test, and the sensor values will be constant throughout testing.
- 14.3.4 Minimum Structural Rigidity Random Vibration Test
- 14.3.4.1 Procedure
- 14.3.4.1.1 Perform the random vibration profiled in Figure 2 over 60 minutes.
- 14.3.4.1.2 Perform the Functional Test 14.2.
- 14.3.4.2 Data Evaluation
- 14.3.4.2.1 Note the resonant points and describe the modes of each resonant point.
- 14.3.4.3 Expected Results
- 14.3.4.3.1 The EOA will survive the test, and the sensor values will be constant throughout testing.
- 14.3.5 Repeat 14.3 for the remaining axes.

14.4 Thermal Test Procedure

14.4.1 Procedure

- 14.4.1.1 Place the EOA and temperature sensor into the temperature chamber, and connect the sensors and FOCSI Test PC to the EOA.
- 14.4.1.2 Place a thermocouple through a vent hole in the EOA chassis module access cover into the space between the front panel and the power supply to measure the EOA internal temperature. Place a thermocouple in the temperature chamber near the EOA to measure the ambient air around the EOA.
- 14.4.1.3 Use the FOCSI Test PC to monitor the constant sensor values as the temperature is changed from room temperature to 75° to -30°C to room temperature. Record the sensor values every five degrees of chamber ambient temperature when increasing or decreasing temperature, and every five minutes when holding the chamber at -30° or 75°C.
- 14.4.1.4 Slowly raise the temperature to 75°C and hold for one hour while recording sensor values.
- 14.4.1.5 Slowly lower the temperature to -30°C and hold for one hour while recording sensor values.
- 14.4.1.6 Raise the temperature of the chamber to room temperature, and monitor the sensor values for fifteen minutes while recording the sensor values.
- 14.4.1.7 Perform the Functional Test 14.2.
- 14.4.2 Data Evaluation
- 14.4.2.1 The recorded EOA outputs should show constant sensor values with no deviations.
- 14.4.3 Expected Results
- 14.4.3.1 The EOA will survive the test, and the sensor values will be constant throughout testing

14.5 Altitude Test Procedure

- 14.5.1 Procedure
- 14.5.1.1 Place the EOA and pressure sensor into the altitude chamber, and connect the sensors and FOCSI Test PC to the EOA.
- 14.5.1.2 Route the thermocouple through one of the the EOA chassis air and moisture equalization holes and attach the thermocouple inside the EOA near the power supply. The temperature must not greatly exceed the maximum internal operating temperature recorded in Thermal Test Procedure.
- 14.5.1.3 Operate the EOA until the temperature inside begins to stabilize. Abort the test if the temperature greatly exceeds the internal operating temperature recorded in Thermal Test Procedure.
- 14.5.1.4 Use the FOCSI Test PC to monitor the constant sensor values as the altitude is changed from room altitude to 50,000 feet to room altitude. Record the sensor values as much as possible while increasing or decreasing pressure and every 5 minutes while holding at a constant pressure.
- 14.5.1.5 Evacuate the chamber at a rate of 500ft/sec to a pressure equaling 50,000 feet and hold for one hour while recording sensor values.

- 14.5.1.6 Raise the pressure in the chamber at a rate of 1000ft/sec until room pressure is reached, and continue to monitor the sensor values for fifteen minutes while recording sensor values.
- 14.5.1.7 Perform the Functional Test 14.2.
- 14.5.2 Data Evaluation
- 14.5.2.1 The recorded EOA outputs should show constant sensor values with no deviations.
- 14.5.3 Expected Results
- 14.5.3.1 The EOA will survive the test, and the sensor values will be constant throughout testing
- 14.6 Electromagnetic Interference Test Procedure
- 14.6.1 Procedure
- 14.6.1.1 Place the EOA into the EMI chamber, and set up the EOA and cabling per MIL-STD-462. Make sure the EOA chassis is bonded to the ground plane. Except for the first two meters of the power and 1553 cables, shield all of those cables including the 1553 termination resistor..
- 14.6.1.2 When the EOA is on, check the operation of the LEDs in J2 and the operation of the 1553 bus with an oscilloscope. The LEDs should be on, and the 1553 activity should show four command words with four responses.
- 14.6.1.3 Measure the EM radiation and conduction from the operating EOA according to MIL-STD-462 and MIL-STD-461C (Class A1) RE02 and CE03.
- 14.6.2 Data Evaluation and Expected Results
- 14.6.2.1 The radiated and conducted emissions of the EOA should be within the limits specified by MIL-STD-461C (Class A1) RE02 and CE03.
- 14.7 Final Verification Test Procedure
- 14.7.1 Procedure
- 14.7.1.1 Perform the Integration Test Plan procedure for one of the sensors. (The Rudder Pedal Sensor.)
- 14.7.2 Data Evaluation
- 14.7.2.1 Compare the original Integration Test Plan results with the Final Verification Test results.
- 14.7.3 Expected Results
- 14.7.3.1 The Final Verification Test results will match the original Integration Test Plan results.
- 15.0 DATA SHEETS

15.1 VIBRATION TEST DATA SHEET

15.1.1 Resonance Survey Test (14.3.2) 6/28/93 Brad Kessler PASS FAIL
15.1.2 Print each of the sensor data files for the constant values and attach them behind this data sheet.
All of the Sensors values are constant YES NO Expect Yes.
15.1.3 Vibration results will be in a technical report; attach it behind the Vibration Test data sheets. Vertical (Y) Comments: Sensor's Connected Pressure Sensor's Not Connected Pressure Sin 4030-32-01 Test pool Test pool Nws pool Left pool Pressure Is on vibration Fixture with EDA Front Rudler Pedal pool Steb 1: 2er 2 Rudler 002 15.1.4 Performance Random Vibration Test (14.3.3) PASS FAII
15.1.4.1 Print each of the sensor data files for the constant values and attach them behind this data sheet.
All of the Sensors values are constant YES NO Expect Yes.
15.1.4.2 Vibration results will be in a technical report; attach it behind the Vibration Test data sheets.
Comments:
15.1.5 Minimum Structural Rigidity Random Vibration Test (14.3.4) PASS FAIL
15.1.5.1 Print each of the sensor data files for the constant values and attach them behind this data sheet.
All of the Sensors values are constant YES NO Expect Yes.
15.1.5.2 Vibration results will be in a technical report; attach it behind the Vibration Test data sheets.
Comments: The longitudinal minimum structural rigidity was not completed due to a faiture in the power supply. The other axes did have this test run on them and successfully passed.

TECHNICAL MEMORANDUM ENGINEERING LABORATORIES

REPORT TYPE: FINAL TECH MEMO: 253.93.0153.01
DATE: 19 AUG 93 REV:

TITLE: FOCSI VIBRATION TEST

DISTRIBUTION NAME DEPT MODEL NO: CRAD MODEL TYPE: CRAD C.E. Brickey 253 REQ DOC: TR 705-285 A.J. Dillard* 257 TEST ART DELIVERY: 28 JUN 93 B.L. Kessler 318 CHARGE NO: M8Q-CH-136 H.L. Stewart 253 SET-UP START: 28 JUN 93 Dept. Files* 253 CONTRACT NO: Engr. Support** 349 TEST START: 28 JUN 93 *Page 1 only TEST COMP.: 14 JUL 93 REQUESTING DEPT: 318 **Original Report

PART NUMBER: UNKNOWN

QUANTITY: 1 TEARDOWN COMP.: 15 JUL 93

TEST ARTICLE DESCRIPTION: Electro-Optic

Architecture for the Fiber Optic Control System

Integration Program MANUFACTURER: MDA-EAST

TEST ARTICLE DISPOSITION: Returned to Project

TEST LOCATION/FACILITY/NO.: BLDG 102 VIBRATION LAB, ST. LOUIS

TEST CATEGORY: GENERAL DEVELOPMENT

TUNNEL OCCUPANCY HOURS: N/A TEST RUNS/DATA POINTS: 12/4

TYPE OF DATA ACQUIRED: ACCELERATION

NO OF DATA CHANNELS: 4

TEST VARIABLES AND CONDITIONS: Ambient Lab Conditions

OTHER LAB REPORTS: NONE SUPPLEMENTARY REPORTS: NONE

KEYWORDS:

1. STRUCTURAL DYNAMICS
2. VIBRATION
3. ACCELERATION
4. DYNAMIC
5. 6.
7. 8.

1. TEST OBJECTIVE: The object of this test was to determine if the Electro-Optic Architecture (EOA) Unit would operate properly during the vibration test program.

2. ABSTRACT OF RESULTS: The EOA exhibited several problems during the vibration test. Any conclusions as to the ability of the EOA to operate properly during the vibration test is left to project.

PREPARED BY: H.L. STEWART

LEAD ENGINEER

MATERIALS & STRUCTURES LAB

APPROVED BY: T.A. HILL TECHNICAL SPECIALIST

MATERIALS & STRUCTURES LAB

RELEASED PAGE 1 OF 56

- 3. Vibration testing was conducted on an Electro-Optic Architecture (EOA) unit, an optic to electric decoder, for the Fiber Optic Control System Integration Program (FOCSI). The object of this test was to determine if the EOA would operate properly during the vibration test program. The test program included a sinusoidal (sine) vibration resonance survey, a random vibration performance test, and a random vibration minimum structrual rigidity test.
- The test fixture, obtained from the Navy by the Project, was attached to the vibration exciter vertical adapter for testing in the vertical axis or to the horizonal table for testing in the horizontal axes. The EOA was attached to the fixture via the normal attachment method, pins on the rear and thumb screw/hinge fastners on the front. A triaxial accelerometer was bonded to the fixture and the inline channel was used as the control accelerometer. The signals from the control accelerometer were connected, via a charge amplifier, to a digital vibration control system which used the signal in the closed-loop feedback circuit to control the vibration test Three triaxial accelerometers (R1, R2, R3) were environment. bonded to the EOA, reference Figure 1, and the inline channels were used to monitor the frequency response of the EOA at these locations. The signals from these accelerometers were connected to, via charge amplifiers, the auxiliary channels of the vibration control system to obtain the frequency response plots. During the second vertical axis test and for the remainder of the test, accelerometers R1, R2 and R3 were removed from the unit. Two uniaxial accelerometers (R4 and R5) and one triaxial accelerometer were used to monitor the the frequency response of the EOA. Accelerometer R4 was bonded to the Bus Controller (BC) Card (in the longitudinal axis), accelerometer R5 to the back plane between slots 2 and 3 (in the lateral axis) and accelerometer R6 to the front top corner (reference Figure 1) to monitor the frequency response at these locations.
- 5. The test program consisted of a sine resonance survey, a random vibration performance test, and a random vibration minimum structural rigidity test, as stated in MDC Report A3376 Addendum II, paragraphs, 4.2.2 and 4.2.17. The resonance survey consisted of a 10 minute sine sweep from 10 to 2000 Hz with the input levels of Figure 2 (0.024 inch double amplitude or 2 g peak whichever was less). The frequency was swept at a logarithmic rate. The performance test consisted of subjecting the EOA to the vibration spectrum of Figure 3 for 30 minutes per axis. The minimum structural test consisted of subjecting the EOA to the vibration spectrum of Figure 4 for 60 minutes per axis. A Project representative used the FOCSI Test Computer to monitor and record the the EOA constant sensor values during the vibration test.
- The actual vibration test program conducted and the results obtained are presented in Table 1. The input (control) and

response plots obtained during the test program are presented in Figures 5 through 52. The sine frequency response plots present transfer function (Xfer Mag) versus frequency. plots obtained during the random tests present power spectral density (g2/Hz) versus frequency. The EOA exhibited some problems (no monitor update) after 10 minutes and 10 seconds of the performance test in the vertical axis (first axis). The problems were with the two 1773/1553 cards. The two cards were removed, the "data bus" jumpered, and testing continued. The EOA also exhibited some additional problems after 6 minutes and 38 seconds of the structural rigidity test in the vertical axis. The EOA was returned to the avionics lab for repairs and the test was reinitiated in the vertical axis. The vibration test was then completed in the vertical and lateral axes with no additional problems. However, the EOA's internal power supply failed after 23 minutes and 16 seconds of the structural rigidity test in the longitudinal axis. Project decided to stop testing at this point, since the EOA had passed the performance test requirements.

 Any conclusions as to the ability of the EOA to operate properly during the vibration test is left to the Project.

FIGURE 1 - SKETCH OF THE EOA SHOWING THE LOCATION OF THE CONTROL ACCELEROMETER AND RESPONSE ACCELEROMETERS R1, R2, R3, & R6

FIGURE 2

FIGURE 7

FIGURE 8

MCDONNELL DOUGLAS

FIGURE 10

FIGURE 11

MCDONNELL DOUGLAS

FIGURE 25

FIGURE 26

FIGURE 27

FIGURE 28

2000

McDonnell Douglas Aprospace

607

91

10.

607

eeM 110

0 I

T/N 7 SINE RESONANCE SURVEY LAT AXIS

Freeuency, Hz

FIGURE 30

FIGURE 31

FIGURE 36

FIGURE 38

FIGURE 41

2000

McDonnell Douglas Aerosp

607

91

10.

607

66M Xter

CTL R4

01

FIGURE 42

LIGNUE 45 - EBEGNENCA BESPONSE

T/N 10 SINE BESONANCE SURVEY LONG AXIS

Freeuency, Hz

McDonnell Douglas Aerospace

FIGURE 49

FIGURE 50

McDonnell Douglas Aerospace

5000

McDonnell Douglas Aerospace

8P 0

607

ØŢ

100.

607

E 01

0'4'22 11#6

2813 11.41

\$1 €2∨Hz

B6 AuA

150 DOE

McDonnell Douglas Aerospace

TABLE 1 - CHRONOLOGICAL VIBRATION TEST LOG FIBER OPTIC CONTROL SYSTEM INTEGRATION (FOCSI) PROGRAM ELECTRO-OPTIC ARCHITECTURE (EOA) UNIT

TEST	TEST	TEST	TEST	TEST	LUTDDATTO	II FEST	
DATE	AXIS	NO.	TYPE	TEST FREQUENCY	VIBRATION INPUT	TIME	REMARKS
	""		1115	(Hz)	LEVEL	(min)	
06-28-93	Vert.	1	Resonant Survey	10-2000	Figure 2	20	The test was conducted in two 10 minute sweeps to obtain the frequency response plots.
06-29-93	Vert.	2	Performance	10-2000	4.4 grms	30	The test was stopped after 10 minutes & 10 seconds when the monitoring system stopped updating. The two 1553/1773 converter cards were removed, the data bus was jumpered together and testing resumed. The test was completed without additional problems.
		3	Structural Rigidity	10-2000	7.7 grms	6.6	The test was stopped after 6 minutes & 38 seconds when the monitoring system stopped updating again.
		****					The EOA was repaired and testing was reinitiated (without the two converter cards) in the vertical axis. Accels R1, R2, & R3 were removed and R4, R5, & R6 were installed.
07-13-93	Vert.	4	Structural Rigidity	10-2000	7.8 grms	60	No failures detected.
		5	Performance	10-2000	4.3 grms	30	No fallures detected.
		6	Resonant Survey	10-2000	Figure 2	20	The test was conducted in two 10 minute sweeps to obtain the frequency response plots.
	Lat.	7	Resonant Survey	10-2000	Figure 2	10	The frequency response plots were obtained in one sweep for this test.
		8	Structural Rigidity	10-2000	7.7 grms	60	No failures detected.
07-14-93	Lat.	9	Performance	10-2000	4.4 grms	30	No failures detected.
	Long.	10	Resonant Survey	10-2000	Figure 2		The frequency response plots were obtained in one sweep for this test.
		11	Performance	10-2000	4.4 grms	30	No failures detected.
		12	Structural Rigidity	10-2000	7.7 grms		The test was stopped after 23 minutes & 16 seconds due to a failure of the internal power supply. Project decided to stop testing, since the EOA had successfully completed the performance level test.

Sensor Values for Vibration Test in Vertical Axis

MSG 2 Sensor Values

EOA

RT

* DONE

WD	VALUE NAME		WD VALUE	NAME
1	64FE Total Temp 4	196.559 DeqR	>FAULT	UTrav
2	4800 Pitot Pressure	1.250 Hg		UTrav UPwr
	4F2B Long. Stick	_	>FAULT	OSlew
4	5334 Right TEF		>FAULT	OSlew
		·24.267 Deg		
	5BFF Right LEF		>FAULT	OTrav OSlew
7	5C00 Power Lever Cntl	0.000 Deg	>FAULT	UTrav UPwr
	233E Rudder Pedal			
9	6501 Left Stabilator	-1.771 In	>FAULT	OSlew
10	2954 Left Rudder	-0.223 In		
3	max= 1.351 min= 1.351	avg= 1.351	8 max= 0.	467 min= 0.466 avg= 0.466
4	max= 2.118 min= 1.888	avg= 2.003	9 $max = -1$.	771 $min = -2.356$ avg = -2.064
5	max=-19.428 min=-28.519	avg=-23.974	10 max= -0 .	141 min= -0.226 avg= -0.183

RT

* DONE

ENTER DATA preXSweep

TG 2 Sensor Values

EOA

WD	VALU	E NAME			WD VALUE	NAME
1	D7FE	Total Temp	909.462	DegR	>FAULT	UTrav
2	4800	Pitot Pressure	1.250	Нg	>FAULT	UTrav UPwr
3	4F1E	Long. Stick	1.354	In	>FAULT	OSlew
4	5323	Right TEF	2.308	In	>FAULT	OSlew
	5558		-24.560	Deg	>FAULT	OSlew
6	5BFF	Right LEF	36.000	Deg	>FAULT	OTrav OSlew
7	5C00	Power Lever Cntl	0.000	Deg	>FAULT	UTrav UPwr
8	233D	Rudder Pedal	0.466	In		
9	64AA	Left Stabilator	-2.377	In	>FAULT	OSlew
10	2952	Left Rudder	-0.226	In		

```
3 max= 1.448 min= 1.300 avg= 1.374 8 max= 0.468 min= 0.466 avg= 0.467
4 max= 2.363 min= 1.706 avg= 2.035 9 max= -1.764 min= -2.968 avg= -2.366
5 max=-16.642 min=-29.252 avg=-22.947 10 max= -0.223 min= -0.233 avg= -0.228
ENTER DATA preXSweep
```

* DONE

™SG 2 Sensor Values

WD	VALUE	: NAI	I E			WD VALUE	NAME		
1	64FE	Total	Temp	496.559	DeqR	>FAULT	UTrav		
			Pressure	1.250	Hg	>FAULT	UTrav	UPwr	
3	0F74	Long.	Stick	1.608	In				
4	5305	Right	TEF	2.071	In	>FAULT	OSlew		
		NWS		-24.267	Deg	>FAULT	OSlew		
6	5800	Right	LEF	-7.000	Deg	>FAULT	UTrav	OSlew	
7	5C00	Power	Lever Cntl	0.000	Deg	>FAULT	UTrav	UPwr	變
8	233D	Rudder	Pedal	0.466	In				*) *
9	2500	Left S	Stabilator	-1.778	In				and the second
10	2954	Left F	Rudder	-0.223	In				
						•	0.460		0.467
			min=1.51						avg= 0.467
) min= 1.77						avg= -2.088
5	max=-	18.988	3 min=-27.49	93 avg=-2	23.240	10 max= -	-0.151 m	n = -0.233	avg= -0.192

RT 4 EOA

* DONE

ENTER DATA SWP, 100HZ

3G 2 Sensor Values

WD	VALUE	E NAME			WD VALUE	NAME
1	74FE	Total Temp	496.559	DegR	>FAULT	UTrav
		Pitot Pressure	1.250	Hg	>FAULT	UTrav UPwr
3	0F24	Long. Stick	1.371	In		
4	12C8	Right TEF	1.588	In		
5	554F	NWS	-25.880	Deg	>FAULT	OSlew
6	5800	Right LEF	-7.000	Deg	>FAULT	UTrav OSlew
7	5C00	Power Lever Cntl	0.000	Deg	>FAULT	UTrav UPwr
8	233F	Rudder Pedal	0.468	In		
9	6601	Left Stabilator	0.010	In	>FAULT	OSlew
10	2954	Left Rudder	-0.223	In		

```
3 max= 1.448 min= 1.339 avg= 1.394 8 max= 0.468 min= 0.466 avg= 0.467
4 max= 2.237 min= 1.588 avg= 1.912 9 max= -1.771 min= -2.412 avg= -2.091
5 max=-18.402 min=-27.933 avg=-23.167 10 max= -0.151 min= -0.226 avg= -0.189
ENTER DATA SWP,500HZ
```

MSG 2 Sensor Values

* DONE

ENTER DATA POSTXSWP

WD	VALUE NAME	WD VALUE NAME
2 3 4 5 6 7 8 9	D7FE Total Temp 909.462 DegR 4800 Pitot Pressure 1.250 Hg 1.303 In 52B8 Right TEF 1.461 In 552B NWS -31.158 Deg 5800 Right LEF -7.000 Deg 5C00 Power Lever Cntl 233E Rudder Pedal 0.467 In 24AA Left Stabilator 2954 Left Rudder -0.223 In	>FAULT OSlew
4	max= 1.475 min= 1.371 avg= 1.423 max= 2.213 min= 1.762 avg= 1.987 max=-19.428 min=-26.466 avg=-22.947	8 max= 0.468 min= 0.436 avg= 0.452 9 max= -1.764 min= -2.412 avg= -2.088 10 max= -0.151 min= -0.229 avg= -0.190 ENTER DATA SWP,1000HZ
	4 EOA	* DONE
٦G	2 Sensor Values	
WD	VALUE NAME	WD VALUE NAME
		WD VALUE NAME

3 max= 1.697 min= 1.525 avg= 1.611 8 max= 0.468 min= 0.466 avg= 0.467 4 max= 2.300 min= 1.944 avg= 2.122 9 max= -1.764 min= -2.377 avg= -2.071 5 max=-17.815 min=-24.413 avg=-21.114 10 max= -0.223 min= -0.233 avg= -0.228

MSG 2 Sensor Values

* DONE

WD	VALU	E NAME			MD ATTOE	NAME
1	74FE	Total Temp	496.559	DegR	>FAULT	UTrav
2	4800	Pitot Pressure	1.250	Hg	>FAULT	UTrav UPwr
3	OEDE	Long. Stick	1.164	In		
4	52A7	Right TEF	1.326	In	>FAULT	OSlew
5	551C	NWS	-33.358	Deg	>FAULT	OSlew
6	5BFF	Right LEF	36.000	Deg	>FAULT	OTrav OSlew
7	5C00	Power Lever Cntl	0.000	Deg	>FAULT	UTrav UPwr
8	233D	Rudder Pedal	0.466	In		
9	2502	Left Stabilator	-1.764	In		
10	2952	Left Rudder	-0.226	In		

3 max= 1.200 min= 1.117 avg= 1.158 8 max= 0.467 min= 0.466 avg= 0.466 4 max= 1.920 min= 1.683 avg= 1.801 9 max= -1.737 min= -2.968 avg= -2.352 5 max=-30.425 min=-38.783 avg=-34.604 10 max= -0.223 min= -0.226 avg= -0.224 ENTER DATA PRE RAND

> Performance Test

RT 4 EOA

3G 2 Sensor Values

WD	VALUI	E NAME			WD VALUE	NAME
1	64FE	Total Temp	496.559	DegR	>FAULT	UTrav
2	4800	Pitot Pressure	1.250	Нg	>FAULT	UTrav UPwr
3	0EBF	Long. Stick	1.072	In		
4	52BD	Right TEF	1.500	In	>FAULT	OSlew
5	14F9	NWS	-38.490	Deg		
6	5BFF	Right LEF	36.000	Deg	>FAULT	OTrav OSlew
7	5C00	Power Lever Cntl	0.000	Deg	>FAULT	UTrav UPwr
8	233E	Rudder Pedal	0.467	In		
9	6502	Left Stabilator	-1.764	In	>FAULT	OSlew
10	2954	Left Rudder	-0.223	In		

3	max=	1.185	min=	1.072	avg=	1.128	8	max=	0.468	min=	0.466	avg=	0.467
4	max=	1.849	min=	1.469	avg=	1.659	9	max=	-1.737	min=	-2.968	avg=	-2.352
5	max=-	-27.199	min=-	-39.956	avg=-	33.578	10	max=	-0.223	min=	-0.233	avg=	-0.228
										1	ENTER DA	זק בדע	RE RAND

* DONE

MSG 2 Sensor Values

WD	VALUI	E NAI	ME			WD	VALUE	E NAM	Œ			
1	0000	Total	Temp	360.000	DeaR							
2	0000	Pitot	Pressure	1,250	Ha							
3	0000	Long.	Stick	-1.010	In							
4	0000	Right	TEF	-4.050	In							
5	0000	NWŚ		-75.000	Deg							
6	0000	Right	LEF	-7.000	Dea							
7	0000	Power	Lever Cntl	0.000	Deg							
				-0.750								
9	0000	Left S	Stabilator	-3.560	In							
10	0000	Left F	Rudder	-0.665	In							
1	max=3	60.000	min=360.00	00 avg=3	60.000	6	max=	-7.000	min = -7	.000 a	avg= -7.	.000
2	max≃	1.250	min= 1.25	0 avg=	1.250	7	max=	0.000	min= 0	.000 a	avg= 0.	.000
3	max=	-1.010	min = -1.01	0 avg=	-1.010	8	max=	-0.750	min = -0	.750 a	avg = -0.	750
4	max=	-4.050	min = -4.05	0 avg=	-4.050				min = -3			
5	max=-	75.000	min=-75.00	00 avg=-	75.000	10	max=	-0.665	min = -0	.665 a	avg= -0.	665
								,	ENT	ER DAT	rand+	-5MIN
	•	Sensor d	uta processor a s A from EDA	activity ove	cr 1553 b	ous s	topped u	ip dating,	Removed 1	173/1553.	m_1,1,-	
		1553 bu	S A from EVA	sl-+ 2 to s	lot 3, an.	ره ک	timed	testing.	وسلوره نامع 20	1 (, .	3 1	MYLLIES
RT	4	EOA			,				20 MINUTES	lett in	Kundom f	57+
	_	_									* DONE	;
**9G	2	Senso	r Values									
MD.	VALUE	NAM	TET			T.T.D.	*** * ***	37336				
WD	AWTOR	IVAIN	E			WD	VALUE	NAM	E.			
1	74FE	Total	Temp	496.559	DegR	>	FAULT	UTr	av			
2	4800	Pitot	Pressure	1.250	Hg	>	FAULT		av UPwr			
3	4E75	Long.	Stick	0.853	In	>	FAULT					
4	131E	Right	TEF	2.268	In							
5	1595	NWS	TEF 	-15.616	Deg							
6	5BFF	Right	LEF	36.000	Deg	>	FAULT	OTr	av OSlew			
		D	T 1 3									

3 max= 0.933 min= 0.868 avg= 0.900 8 max= 0.468 min= 0.466 avg= 0.467
4 max= 2.379 min= 2.086 avg= 2.233 9 max= 0.010 min= -2.968 avg= -1.479
5 max=-13.123 min=-17.229 avg=-15.176 10 max= -0.223 min= -0.606 avg= -0.415

ENTER DATA PRE RANDen
Restert. Actually Random +/Once

-->FAULT

-->FAULT

0.000 Deg

0.466 In

0.010 In

-0.226 In

RT 4 FOA 'C 2 Sensor Values

7 5C00 Power Lever Cntl

8 633D Rudder Pedal

10 2952 Left Rudder

9 2601 Left Stabilator

WD VALUE NAME

WD VALUE NAME

UTrav UPwr

OSlew

```
RT 4 EOA
```

WD VALUE

MSG 2 Sensor Values

NAME

* DONE

```
1 E8FE Total Temp
                        496.559 DegR
                                       -->FAULT
                                                  UTrav
 2 4800 Pitot Pressure
                         1.250 Hg
                                       -->FAULT
                                                  UTrav UPwr
 3 4F89 Long. Stick
                                                  OSlew
                          1.670 In
                                       -->FAULT
 4 5326 Right TEF
                          2.332 In
                                                  OSlew
                                       -->FAULT
 5 5565 NWS
                        -22.654 Deg
                                                  OSlew
                                       -->FAULT
 6 5BFF Right LEF
                                       -->FAULT
                         36.000 Deg
                                                  OTrav OSlew
 7 5C00 Power Lever Cntl 0.000 Deg
                                       -->FAULT
                                                  UTrav UPwr
 8 233D Rudder Pedal
                         0.466 In
 9 6501 Left Stabilator
                         -1.771 In
                                       -->FAULT
                                                  OSlew
10 294C Left Rudder
                         -0.233 In
3 max= 1.434 min= 0.915 avg= 1.174 8 max= 0.468 min= 0.466 avg= 0.467
 4 max= 2.126 min= 1.928 avg= 2.027 9 max= -1.771 min= -2.968 avg= -2.370
5 max=-20.455 min=-22.361 avg=-21.408 10 max= -0.151 min= -0.233 avg= -0.192
                                                         ENTER DATA RAND-SMIN
RT
   4
        EOA
                                                                   * DONE
MSG 2
        Sensor Values
```

WD VALUE

NAME

WD	VALUI	E NAME			WD VALUE	NAME
1	D7FE	Total Temp	909.462	DegR	>FAULT	UTrav
2	4800	Pitot Pressure	1.250	Hg	>FAULT	UTrav UPwr
		Long. Stick	1.271	In	>FAULT	OSlew
4	5312	Right TEF	2.173	In	>FAULT	OSlew
5	5563	NWS	-22.947	Deg	>FAULT	OSlew
6	5BFF	Right LEF	36.000	Deg	>FAULT	OTrav
7	5C00	Power Lever Cntl	0.000	Deg	>FAULT	UTrav UPwr
8	233D	Rudder Pedal	0.466	In		
9	64AA	Left Stabilator	-2.377	In	>FAULT	OSlew
10	2952	Left Rudder	-0.226	In		

```
3 max= 1.428 min= 0.915 avg= 1.171 8 max= 0.468 min= 0.433 avg= 0.451
4 max= 2.213 min= 1.785 avg= 1.999 9 max= -1.771 min= -2.968 avg= -2.370
5 max=-20.601 min=-23.974 avg=-22.287 10 max= -0.223 min= -0.233 avg= -0.228
ENTER DATA RAND+20MIN
```

+25

WD VALUE

* DONE

MSG 2 Sensor Values

NAME

WD.	VALUE	NAME			MD ATOR	NAME
		Total Temp	496.559	DegR	>FAULT	UTrav
2	4800 I	Pitot Pressure	1.250	Hq	>FAULT	UTrav UPwr
3	OF2B I	Long. Stick	1.392	In		
4	52F3 F	Right TEF	1.928	In	>FAULT	OSlew
		ws.	-21.921	Deg		
6	5BFF F	Right LEF	36.000	_	>FAULT	OTrav OSlew
7	5C00 I	Power Lever Cntl	0.000	Deg	>FAULT	UTrav UPwr
8	233D F	Rudder Pedal	0.466	_		- · · · · · · · - · · -
9	64AA I	Left Stabilator	-2.377	In	>FAULT	OSlew
10	2952 I	Left Rudder	-0.226	In		

3 max= 1.442 min= 1.360 avg= 1.401 8 max= 0.467 min= 0.466 avg= 0.466 4 max= 2.142 min= 1.928 avg= 2.035 9 max= -1.771 min= -2.968 avg= -2.370 5 max=-21.041 min=-23.827 avg=-22.434 10 max= -0.150 min= -0.233 avg= -0.192 ENTER DATA POST RAND

WID TOATTE

RT 4 EOA

* DONE

"SG 2 Sensor Values

WD	VALUE	E NAME			WD VALUE	NAME
		Total Temp	496.55 9	DegR	>FAULT	UTrav
		Pitot Pressure	1.250	Ħg	>FAULT	UTrav UPwr
		Long. Stick	1.407	In		
4	52F0	Right TEF	1.904	In	>FAULT	OSlew
	156A		-21.921	Deg		
6	5BFF	Right LEF	36.000	Deg	>FAULT	OTrav
7	5C00	Power Lever Cntl	0.000	Deg	>FAULT	UTrav UPwr
8	6329	Rudder Pedal	0.436	In	>FAULT	OSlew
9	6455	Left Stabilator	-2.968	In	>FAULT	OSlew
10	2952	Left Rudder	-0.226	In		

3 max= 1.448 min= 1.404 avg= 1.426 8 max= 0.467 min= 0.466 avg= 0.466 4 max= 2.063 min= 2.015 avg= 2.039 9 max= -2.356 min= -2.968 avg= -2.662 5 max=-21.041 min=-23.827 avg=-22.434 10 max= -0.151 min= -0.226 avg= -0.189 ENTER DATA POST RAND

* DONE

MSG 2 Sensor Values

WD	VALUE NAME	WD VALUE	NAME
2 3 4	E8FE Total Temp 496.559 DegR 4800 Pitot Pressure 1.250 Hg 4F17 Long. Stick 1.333 In 1305 Right TEF 2.071 In 1574 NWS -20.455 Deg	>FAULT	UTrav UPwr
	5BFF Right LEF 36.000 Deg	>FAULT	OTrav OSlew
	5C00 Power Lever Cntl 0.000 Deg	>FAULT	UTrav UPwr
	233E Rudder Pedal 0.467 In		
	6455 Left Stabilator -2.968 In	>FAULT	OSlew
	2952 Left Rudder -0.226 In		
3 4	max= 1.336 min= 1.262 avg= 1.299 max= 2.356 min= 1.904 avg= 2.130 max=-19.135 min=-23.827 avg=-21.481	9 max= -1	.467 min= 0.466 avg= 0.466 .764 min= -2.377 avg= -2.071 .223 min= -0.226 avg= -0.224 ENTER DATA PRE STRUCT

RT 4 EOA

* DONE

TGG 2 Sensor Values

WD	VALUE NAME		WD VALUE	NAME
1	64FE Total Temp	496.559 DegR	>FAULT	UTrav
		1.250 Hg		UTrav UPwr
3	0F10 Long. Stick	1.312 In		
	1317 Right TEF			
	1573 NWS	-20.601 Deg		
6	5BFF Right LEF	36.000 Deg	>FAULT	OTrav
	5C00 Power Lever Cntl	-	>FAULT	UTrav UPwr
8	233D Rudder Pedal	0.466 In		
	6455 Left Stabilator	-2.968 In	>FAULT	OSlew
10	294C Left Rudder	-0.233 In		
_	1 220 min- 1 2	74 2378 1 206	0 may- 0	.468 min= 0.464 avg= 0.466
	max= 1.339 min= 1.23			.764 min = -2.968 avg = -2.366
	max= 2.245 min= 1.93			
5	max=-19.428 min=-24.12	20 avg=-21.//4	TO max= -0	.141 min= -0.233 avg= -0.187
				ENTER DATA PRE STRUCT

WD VALUE

* DONE

MSG 2 Sensor Values

NAME

2 4800 Pitot Pressure

1 64FE Total Temp 496.559 DegR

2	4800	Pitot Pressure	1.250 Hg	>FAULT	UTrav UPwr	
3	OEA6	Long. Stick	0.998 In			
4	1303	Right TEF	2.055 In			
5	1569	NWS	-22.067 Deg			
6	5800	Right LEF	-7.000 Deg	>FAULT	UTrav OSlew	
7	5C00	Power Lever Cntl	0.000 Deg	>FAULT		
8	233F	Rudder Pedal	0.468 In	- 	02112	
9	6502	Left Stabilator	-1.764 In	>FAULT	OSlew	
10	2952	Left Rudder	-0.226 In			
_		1 001				
3	max=	1.031 min= 0.96	59 avg= 1.000	8 max = 0	0.468 min= 0.466 avg= 0.467	
4	max =	2.261 min= 1.95	52 avg= 2.106		764 min = -2.377 avg = -2.071	
		10 125 min 22 00		30		

5 max=-19.135 min=-22.067 av \tilde{g} =-20.601 10 max= -0.223 min= -0.233 av \tilde{g} = -0.228

WD VALUE

-->FAULT

NAME

UTrav

RT 4 EOA

™SG 2 Sensor Values

* DONE

ENTER DATA PRE STRUCT

WD	VALU	E NAME			WD VALUE	NAME
		Total Temp	496.559		>FAULT	UTrav
		Pitot Pressure	1.250	Hg	>FAULT	UTrav UPwr
		Long. Stick	0.652	In	>FAULT	OSlew
		Right TEF	2.229	In	>FAULT	OSlew
	1568		-22.214	Deg		
		Right LEF	36.000		>FAULT	OTrav OSlew
7	5C00	Power Lever Cntl	0.000	Deg	>FAULT	UTrav UPwr
8	6358	Rudder Pedal	0.505		>FAULT	OSlew
9	2455	Left Stabilator	-2.968	In		
10	6800	Left Rudder	-0.665		>FAULT	

```
3 max= 0.989 min= 0.583 avg= 0.786 8 max= 0.468 min= 0.466 avg= 0.467
4 max= 2.419 min= 1.991 avg= 2.205 9 max= -1.764 min= -2.968 avg= -2.366
5 max=-19.575 min=-23.240 avg=-21.408 10 max= -0.141 min= -0.233 avg= -0.187
                                                                                                                                             ENTER DATA ST STRUCT
```

15.2 THERMAL TEST DATA SHEET

15.2.1 Thermal Test (14.4) 6/26/93 BridKessler 15.2.1.1 Print each of the sensor data files for the constant values and attach them behind this data sheet. EOA Maximum Internal Operating Temperature with 75°C Ambient Temperature YES NO All of the Sensors values are constant Expect Yes. Comments: EOA#2 contains all its modules for this test. Test articles The EDA minimum operating temp. with an E0A # 2 ambient chamber temp. of -30°C is -25°C Pitch Stick 001 TEF 001 NWS 002 any time or > Not decoded by EOA atpany temperature including room temperature. LEF PLC 002 Rudder Pedal 002 -> Not decoded well by EOA at my time independent of temperature. Some good readings were taken over the full temperature range. Rudder 002 Temperature Not connected Pressure Not connected

Pass/Fail comments:

The digital sensors, PLC, Stab, and Rudder, were decoded well throughout test. The EOA would pass if only the digital sensors were used.

The analog sensors, Pitch Stick, Trailing Edge Flop, and Nose wheel Steering, were not decoded well throughout the test. The decoded value drifts as the EOA temperature moves away from room temperature.

Analog Sensor Good Devoling over EOA temp, range of:

Pitch Stick +26°C to -30°C +5 minutes and +10°C to +60°C.

Trailing Edge Flap +26°C to -10°C and +30°C to +55°C.

Nose wheel Steering +26°C to -5°C.

Sensor Data for Thermal Test

```
RT
       RT
                 EOA #2
                                                                                     * DONE
   G
                 Sensor Values
                                                                                Time 12:00pm
                                     Not Connected
                                                       Error
WD
                   NAME
                                                   VALUE VALUE
                                      ngineeringun
        1 C5FF Total Temp
                                   634.731 DegR
                                                     ->FAULT
                                                                UTrav
 2
        2 4BFF Pitot Pressure
                                    80.000 Hg
                                                    -->FAULT
                                                                OTrav UPwr
 3
        3 OCDO Long. Stick
                                    -0.394 In
 4
        4 528B Right TEF
                                     1.105 In
                                                    -->FAULT
 5
        5 56C1 NWS
                                    28.372 Deg
                                                    -->FAULT
                                                                OSlew
 6
                                                                UTrav OSlew -> Not decoded
        6 5800 Right LEF
                                    -7.000 Deg
                                                    -->FAULT
 7
        7 1EFF Power Lever Cntl
                                    97.468 Deg
                                                                                 properly by EDA
 8
        8 22C7 Rudder Pedal
                                     0.293 In
 9
        9 2432 Left Stabilator
                                    -3.212 In
10
       10 68DE Left Rudder
                                    -0.376 In
                                                    -->FAULT
                                                                OSlew
           Maximum, Minimum, and Average values for each
                                                     6 max=
                                                              4.223 min=
                                                                           4.223 avg=
           sensor at the given temperature.
                                                       max= 97.468 min= 97.341 avg= 97.405
 3 :
        3 \text{ max} = -0.320 \text{ min} = -0.394 \text{ avg} = -0.357
                                                     8 max=
                                                              0.294 min= 0.293 avg= 0.293
 4 :
        4 max= 1.231 min= 0.922 avg= 1.077
                                                     9 max = -3.191 min = -3.212 avg = -3.202
 5 :
        5 max= 27.786 min= 23.680 avg= 25.733
                                                    10 max= -0.382 min= -0.496 avg= -0.439
                                                                         ENTER DATA 26C, 28C
                                                               Chamber Ambient Temperature J
RT
                                                              Internal EOA Ambient Temperature
       RT
           4
                 EOA
                                                                                    * DONE
  G
      Gد…
           2
                Sensor Values
WD '
       WD VALUE
                   NAME
                                                   VALUE VALUE
                                                                NAME
 1 !
        1 7DFF Total Temp
                                   634.731 DegR
                                                   -->FAULT
                                                                UTrav
 2 4
        2 4BFF Pitot Pressure
                                    80.000 Hg
                                                   -->FAULT
                                                                OTrav UPwr
 3 (
        3 OCE7 Long. Stick
                                    -0.326 In
 4!
        4 1286 Right TEF
                                     1.065 In
 5
        5
         16B9 NWS
                                    27.199 Deg
 6
        6 5800 Right LEF
                                    -7.000 Deg
                                                    -->FAULT
                                                                UTrav OSlew
7
        7 1EFF Power Lever Cntl
                                    97.468 Deg
8
       8 62C7 Rudder Pedal
                                     0.293 In
                                                    ->FAULT
9:
       9 2432 Left Stabilator
                                    -3.212 In
10 (
       10 6800 Left Rudder
                                    -0.665 In
                                                    -->FAULT
                                                                UTrav OSlew
                                                    6 max= 4.223 min= 4.223 avg=: 4.223
                                                    7 max= 97.468 min= 97.214 avg= 97.341
3 r
       3 \text{ max} = -0.302 \text{ min} = -0.424 \text{ avg} = -0.363
                                                    8 max= 0.294 min= 0.282 avg= 0.288
4 I
                1.287 min= 0.907 avg= 1.097
                                                    9 max = -3.191 min = -3.212 avg = -3.202
5 I
        5 max= 30.425 min= 24.120 avg= 27.273
                                                   10 max= -0.387 min= -0.562 avg= -0.475
                                                                         ENTER DATA 20C, 27C
                                                                 Chamber Ambient Temp.
                                                                Internal EDA Ambient Temp:
```

```
D VA WD VALUE
                 NAME
                                                WD VALUE
                                                            NAME
1 54
      1 4800 Total Temp
                                360.000 DegR
                                                -->FAULT
                                                            UTrav
2 4B
      2 4BFF Pitot Pressure
                                 80.000 Hg
                                                -->FAULT
                                                            OTrav UPwr
3 4C
      3 4CF3 Long. Stick
                                 -0.290 In
                                                -->FAULT
                                                            OSlew
4 52
      4 1296 Right TEF
                                  1.192 In
5 16
      5 56B7 NWS
                                 26.906 Deg
                                                -->FAULT
6 58
      6 5800 Right LEF
                                 -7.000 Deg
                                                -->FAULT
                                                            UTrav OSlew
7 1E 7 1EFF Power Lever Cntl
                                97.468 Deg
8 22
      8 22C7 Rudder Pedal
                                 0.293 In
9 24
      9 2432 Left Stabilator
                                 -3.212 In
0 68 10 6800 Left Rudder
                                 -0.665 In
                                                -->FAULT
                                                            UTrav OSlew
                                                 6 max= 4.223 min= 4.223 avg=
                                                 7 max= 97.468 min= 97.214 avg= 97.341
3 ma
      3 max= -0.243 min= -0.329 avg= -0.286 8 max= 0.294 min= 0.285 avg= 0.290 4 max= 1.287 min= 1.010 avg= 1.148 9 max= -3.191 min= -3.212 avg= -3.202
1 ma
5 ma
      5 max= 31.452 min= 24.560 avg= 28.006 10 max= -0.376 min= -0.497 avg= -0.437
                                                                    ENTER DATA -5C, 7C
 ^4 RT
              EOA
                                                                               * DONE
۰G
      ,G 2
              Sensor Values
VA WD VALUE
                NAME
                                                WD VALUE
                                                           NAME
 7D
      1 7000 Total Temp
                               360.000 DegR
                                                -->FAULT
                                                           UTrav
 4B
      2 4BFF Pitot Pressure
                                80.000 Hg
                                                -->FAULT
                                                            OTrav UPwr
 4C
      3 OCF3 Long. Stick
                                 -0.290 In
 52
      4 128C Right TEF
                                  1.112 In
 56
     5 56A3 NWS
                                 23.974 Deg
                                                -->FAULT
                                                           OSlew
 58
      6 5BFF Right LEF
                                 36.000 Deg
                                                -->FAULT
                                                           OTrav OSlew
 1E
     7 1EFF Power Lever Cntl 97.468 Deg
 22
      8 22C7 Rudder Pedal
                                 0.293 In
 24
     9 2432 Left Stabilator
                                 -3.212 In
68
    10 6800 Left Rudder
                                 -0.665 In
                                                -->FAULT
                                                           UTrav OSlew
                                                 6 max= 4.223 min= 4.223 avg= 4.223
                                                 7 max= 97.468 min= 97.468 avg= 97.468
ma
      3 \text{ max} = -0.234 \text{ min} = -0.332 \text{ avg} = -0.283
                                                8 max= 0.294 min= 0.288 avg= 0.291
      4 max= 1.287 min= 1.017 avg= 1.152
                                               9 max= -3.212 min= -3.212 avg= -3.212
ma
ma
      5 max= 30.132 min= 24.560 avg= 27.346 10 max= -0.495 min= -0.538 avg= -0.516
                                                                    ENTER DATA -10C, 3C
```

* DONE

T 4 RT

G 2

EOA

Sensor Values

G 2 Sensor Values

* DONE

WD	VALUE NAME	WD VALUE NAME
1	4800 Total Temp 360.000 DegR	>FAULT UTrav
	4BFF Pitot Pressure 80.000 Hg 0CDD Long. Stick -0.355 In	>FAULT OTrav
4	1242 Right TEF 0.527 In	
	566A NWS 15.616 Deg	>FAULT OSlew
	5800 Right LEF -7.000 Deg	>FAULT UTrav
	1EFF Power Lever Cntl 97.468 Deg	
8	6338 Rudder Pedal 0.458 In	>FAULT OSlew
9	2432 Left Stabilator -3.212 In	
10	6800 Left Rudder -0.665 In	>FAULT UTrav
4	max= -0.302 min= -0.391 avg= -0.347 max= 0.764 min= 0.439 avg= 0.602 max= 17.522 min= 12.830 avg= 15.176	6 max= 4.223 min= 4.223 avg= 4.223 7 max= 97.468 min= 97.341 avg= 97.405 8 max= 0.464 min= 0.293 avg= 0.378 9 max= -3.212 min= -3.212 avg= -3.212 10 max= -0.495 min= -0.497 avg= -0.496 ENTER DATA -15C, -3C

RT 4 EOA

G 2 Sensor Values

WD	VALUE NAME	WD	VALUE N	AME
2 3 4 5 6 7 8 9	4BFF Pitot Pressure 4CE7 Long. Stick -0 1243 Right TEF 0 1662 NWS 14 5800 Right LEF -7 1EFF Power Lever Cntl 97	.000 Hg> .326 In> .534 In .443 Deg .000 Deg> .468 Deg .293 In .212 In	>FAULT O	Trav Trav Slew Trav OSlew Trav OSlew
4	max= -0.317 min= -0.370 av max= 0.645 min= 0.455 av max= 15.469 min= 12.243 av	vg= -0.344 8 vg= 0.550 9	max= 97.40 max= 0.29 max= -3.23	23 min= 4.223 avg= 4.223 68 min= 97.468 avg= 97.468 94 min= 0.293 avg= 0.293 12 min= -3.212 avg= -3.212 95 min= -0.496 avg= -0.495 ENTER DATA -20C, -9C

* DONE

G 2 Sensor Values

WI	VALU:	E NAME		WD VALUE	NAME	
1	5400	Total Temp	360.000 DegR	>FAULT	UTrav	
2	4BFF	Pitot Pressure	80.000 Hg	>FAULT	OTrav	
3	OCEA	Long. Stick	-0.317 In			
4	1246	Right TEF	0.558 In			
5	1662	NWS	14.443 Deg	•		
6	5 5BFF	Right LEF	36.000 Deg	>FAULT	OTrav	
7	1EFF	Power Lever Cntl	97.468 Deg			*
8	22C7	Rudder Pedal	0.293 In			
9	2432	Left Stabilator	-3.212 In			
10	6881	Left Rudder	-0.497 In	>FAULT	OSlew	***
4	max=	-0.296 min= -0.35 0.661 min= 0.50 16.642 min= 13.27	3 avg= 0.582	8 max= 0 9 max= -3	.468 min= 97.34 .294 min= 0.29 .212 min= -3.21 .400 min= -0.49 ENTER	3 avg= 0.293 2 avg= -3.212

RT 4 EOA

G 2 Sensor Values

* DONE

Time 12:45 pm

	,			7	ime 12:48 pm
WD V	ALUE NAME		WD VALUE	NAME	
2 41	BFF Pitot Pressure 8	0.000 Hg		UTrav OTrav	
4 5	239 Right TEF		>FAULT >FAULT	OSlew OSlew	
6 58 7 11	800 Right LEF - EFF Power Lever Cntl 9	7.000 Deg 7.468 Deg	>FAULT	UTrav	
9 24	432 Left Stabilator -	3.212 In		OSlew UTrav	
3 ma 4 ma	ax= -0.290 min= -0.370 ax= 0.550 min= 0.321 ax= 13.270 min= 9.164	avg= -0.330 avg= 0.435	6 max= 4. 7 max= 97. 8 max= 0. 9 max= -3.	223 min= 4.223 468 min= 97.341 294 min= 0.287 212 min= -3.212 493 min= -0.497	avg= 97.405 avg= 0.290 avg= -3.212

* DONE

2 Sensor Values

WD	VALUE NAME	WD VALUE NAME
2 3 4 5 6 7 8 9	7000 Total Temp 360.000 DegR 4BFF Pitot Pressure 80.000 Hg 4CE6 Long. Stick -0.329 In 522D Right TEF 0.360 In 564D NWS 11.364 Deg 5800 Right LEF -7.000 Deg 1EFF Power Lever Cntl 97.468 Deg 62C7 Rudder Pedal 0.293 In 2432 Left Stabilator -3.212 In 6800 Left Rudder -0.665 In	>FAULT UTrav >FAULT OTrav >FAULT OSlew >FAULT OSlew >FAULT OSlew
3 4	max= -0.240 min= -0.335 avg= -0.287 max= 0.693 min= 0.321 avg= 0.507 max= 14.150 min= 8.138 avg= 11.144	7 max= 97.468 min= 97.341 avg= 97.405 8 max= 0.294 min= 0.293 avg= 0.293 9 max= -3.212 min= -3.212 avg= -3.212

* DONE

G 2 Sensor Value	5			
WD VALUE NAME		WD VALUE	NAME	
1 7DFF Total Temp 2 4BFF Pitot Pressure 3 0D1C Long. Stick 4 1284 Right TEF	-0.169 In		UTrav OTrav	
5 5689 NWS 6 5800 Right LEF 7 5C00 Power Lever Cr	20.161 Deg -7.000 Deg	>FAULT >FAULT	UTrav OSlew	
8 22C7 Rudder Pedal 9 2432 Left Stabilato	0.293 In or -3.212 In			
10 6800 Left Rudder	-0.665 In	>FAULT	UTrav OSlew	Į.
3 max= -0.133 min= -0 4 max= 1.279 min= 0 5 max= 25.440 min= 17	0.827 avg= 1.053	8 max= 0 9 max= -3	.468 min= 97.341 .463 min= 0.293 .212 min= -3.212 .491 min= -0.496	avg= 0.378 avg= -3.212
				ATA -30+10M-22

Ambient Chamber Temp. at -30°C at 10 minutes. Theral EOA Temp in °C.

G 2 Sensor Values

* DONE

WD	VALUE NAME		WD VALUE	NAME	
	4000 Total Temp	360.000 DegR	>FAULT	UTrav	
2	4BFF Pitot Pressure	80.000 Hg	>FAULT	OTrav	
3	0D34 Long. Stick	-0.098 In			
4	12C2 Right TEF	1.540 In			
5	56CF NWS	30.425 Deg	>FAULT		
6	5800 Right LEF	-7.000 Deg	>FAULT	UTrav OSlew	
7	1EFF Power Lever Cntl				
8	633C Rudder Pedal	0.464 In	>FAULT	OSlew	
9	2432 Left Stabilator	-3.212 In			6
10	6800 Left Rudder	-0.665 In	>FAULT	UTrav OSlew	
_				.468 min= 97.341	
	max = -0.036 min = -0.14			.464 min= 0.293	
	max= 1.572 min= 1.16			.212 min= -3.212	
5	max= 31.305 min= 23.24	0 avg= 27.273	10 max= -0 .	.495 min= -0.496	avg= -0.495
				ENTER DA	ATA -30+15M-23
					•

RT 4 EOA

G 2 Sensor Values

WD	VALUE NAME	WD	VALUE :	NAME
		000 DegR		UTrav
2	4BFF Pitot Pressure 80.	000 Hg	->FAULT	OTrav OSlew
	OD3E Long. Stick -0.			
	12CC Right TEF 1.			
	16DE NWS 32.	625 Deg	1	
6	5800 Right LEF -7.	000 Deg	->FAULT	UTrav OSlew
7	1EFF Power Lever Cntl 97.	468 Deg		
8	6338 Rudder Pedal 0.	458 In	->FAULT	OSlew
9	2432 Left Stabilator -3.	212 In		
10	6882 Left Rudder -0.	496 In	->FAULT	OSlew
		6	max= 4.	223 min= 4.223 avg= 4.223
2	max= 79.769 min= 70.301 av			468 min= 97.341 avg= 97.405
3	max = -0.012 min = -0.104 av			463 min= -0.438 avg= 0.012
4.	max= 1.722 min= 1.405 av			212 min= -3.212 avg= -3.212
5	max= 33.504 min= 26.466 av	rg = 29.985 10	max = -0.	493 min= -0.539 avg= -0.516
		_		ENTER DATA -30+20M-24

G 2 Sensor Values

* DONE

WD	VALUE NAME	WD VALUE	NAME
2 3 4 5	5400 Total Temp 360.000 D 4BE1 Pitot Pressure 77.691 H 0D45 Long. Stick -0.047 I 12D5 Right TEF 1.690 I 16E8 NWS 34.091 D	g>FAULT n n	UTrav OSlew
7 8 9	5800 Right LEF	eg>FAULT eg n n	UTrav OSlew
3 4	max= 79.846 min= 70.839 avg= 75 max= -0.006 min= -0.077 avg= -0 max= 1.793 min= 1.580 avg= 1 max= 34.238 min= 29.692 avg= 31	.041 8 max= 0. .687 9 max= -3.	.468 min= 97.341 avg= 97.405 .464 min= -0.439 avg= 0.012 .212 min= -3.226 avg= -3.219 .493 min= -0.497 avg= -0.495 ENTER DATA -30+25M-24

RT 4 EOA

G 2 Sensor Values

WD VALUE	NAME		WD VALUE	NAME
2 4BA3 P. 3 4D4D L. 4 12DD R. 5 56F5 NI 6 5800 R. 7 5C00 P. 8 62C7 Ri 9 2432 L.	itot Pressure ong. Stick ight TEF WS ight LEF ower Lever Cntl	1.754 In 35.997 Deg -7.000 Deg 0.000 Deg 0.293 In	>FAULT>FAULT>FAULT>FAULT>FAULT	OSlew UTrav OSlew UTrav OSlew
3 max= (4 max= 3	9.846 min= 66.45 0.003 min= -0.07 1.857 min= 1.67 5.117 min= 31.45	1 avg= -0.034 5 avg= 1.766	6 max= -4. 7 max= 97. 8 max= 0. 9 max= -3.	.394 min= -4.394 avg= -4.394 .468 min= 97.341 avg= 97.405 .464 min= 0.293 avg= 0.378 .212 min= -3.212 avg= -3.212 .495 min= -0.497 avg= -0.496 ENTER DATA -30+30M-24

'G 2 Sensor Values

* DONE

WD	VALUE NAME	WD VALUE NAME	
1	55FF Total Temp 634.731 DegR	>FAULT UTrav	
2	4BB8 Pitot Pressure 74.534 Hg	>FAULT OSlew	
3	0D4E Long. Stick -0.021 In		
4	12EC Right TEF 1.873 In		
5	16DC NWS 32.331 Deg		
	5800 Right LEF -7.000 Deg	>FAULT UTrav OSlew	
7	1EFF Power Lever Cntl 97.468 Deg		
8	22C7 Rudder Pedal 0.293 In		
9	2432 Left Stabilator -3.212 In		
	6800 Left Rudder -0.665 In	>FAULT UTrav OSlew	and the second of the second
_	70 mag !	6 max = -4.394 min = -4.394	
	max= 79.769 min= 66.067 avg= 72.91		
	max = 0.009 min = -0.068 avg = -0.03		avg= 0.000
	max= 1.920 min= 1.714 avg= 1.81		avg = -3.212
5	max= 35.411 min= 31.305 avg= 33.35	3 10 max= -0.376 min= -0.496	
	-		TA -30+35M-25

RT 4 EOA

G 2 Sensor Values

WD	VALUE	NAME		WD VALUE	NAME
1	4800 T	otal Temp	360.000 DegR	>FAULT	UTrav
2	4B9C P		72.379 Hg	>FAULT	OSlew
3	4D50 L		-0.015 In		
		ight TEF			OSlew
		WŠ			
6	5800 R	ight LEF	-7.000 Deg	>FAULT	UTrav OSlew
7	1EFF P	ower Lever Cntl	97.468 Deg		
		udder Pedal			
		eft Stabilator			
			-0.665 In	>FAULT	UTrav OSlew
				6 max = -4	.394 min= -4.394 avg= -4.394
2	max = 79	9.846 min= 64.296	6 avg= 72.071		.468 min= 97.341 avg= 97.405
3	max=	0.021 min = -0.053	3 avg = -0.016		.463 min= 0.293 avg= 0.378
4	max=	1.912 min= 1.683	3 avg= 1.797	9 max = -3	.212 min= -3.212 avg= -3.212
5	max = 3	5.557 min= 32.185	5 avg= 33.871		.422 min= -0.496 avg= -0.459
			_		ENTER DATA -30+40M-25

* DONE

`SG 2 Sensor Values

wD	VALUE NAME	WD VALUE	NAME	
	6000 Total Temp 360.0	000 DegR>FAULT	UTrav	
2		L50 Hg>FAULT		
3	OD51 Long. Stick -0.0)12 In		
4	52DF Right TEF 1.7	770 In>FAULT	OSlew	
5		31 Deg	332311	
6		000 Deg>FAULT	UTrav	
7		68 Deg		
8		63 In>FAULT	OSlew	
9	2432 Left Stabilator -3.2	12 In		
10	6883 Left Rudder -0.4	95 In>FAULT	OSlew	
		6 max= -4	4.394 min= -4.394 avg= -	-4.394
2	max= 76.382 min= 64.450 avg	= 70.416	7.468 min= 97.341 avg= 9	
	max = 0.024 min = -0.053 avg	= -0.015 8 max= (0.463 min= -0.444 avg=	
4	max= 1.952 min= 1.714 avg	= 1.833 9 max= -3	3.212 min= -3.212 avg= -	
5	max= 36.144 min= 32.185 avg	= 34.164 10 max= $-($	0.493 min= -0.497 avg= -	-0.495
			ENTER DATA -30	

RT 4 EOA

G 2 Sensor Values

WD	VALUE NAM	ME			WD	VALU	E NAM	Œ			
	7DFF Total		634.731	DegR		>FAUL	T UT:	av			
2	4B93 Pitot	Pressure	71.686			>FAUL		ew			
3	0D51 Long.	Stick	-0.012	_							
4	12E4 Right	TEF	1.809	In							
5	16EE NWS		34.971	Dea							
6	5800 Right	LEF	-7.000	Deg	:	>FAUL	r UT1	av o	Slew		
7	1EFF Power	Lever Cntl	97.468								
8	22C7 Rudder	Pedal	0.293								
9	2432 Left S	Stabilator									
	6AED Left R		0.309		:	FAUL!	r osl	.ew			
					_						
_	70 20 <i>c</i>				6	max=	-4.394	min	= -4.394	avg=	-4.394
2	max = 78.306	min= 65.60	5 avg= 7	1.956					= 97.341		
3	max = 0.033	min = -0.03	6 avg= -	-0.001	8	max =	0.458	min	= 0.293	avg=	0.375
4.	max = 1.983	min= 1.76	2 avg=	1.873	9	max=	-3.212	min	= -3.212	ava=	-3.212
5	max = 35.997	min= 32.62	5 avg= 3	34.311					= -0.496		
			_								0+45M-25
											+50M

* DONE

MSG 2 Sensor Values

```
WD VALUE
          NAME
                                        WD VALUE
                                                   NAME
                                                   UTrav
1 7C00 Total Temp
                         360.000 DegR
                                        -->FAULT
                                                   OSlew
2 4B6B Pitot Pressure
                         68.607 Hg
                                        -->FAULT
                                                   OSlew
                                        -->FAULT
3 4D5F Long. Stick
                         0.030 In
                          1.849 In
4 12E9 Right TEF
5 16F1 NWS
                          35.411 Deg
6 5800 Right LEF
                                                   UTrav OSlew
                          -7.000 Deg
                                        -->FAULT
                                                   UTrav OSlew
7 5C00 Power Lever Cntl
                         0.000 Deg
                                        -->FAULT
8 632C Rudder Pedal
                                        -->FAULT
                                                   OSlew
                          0.441 In
9 2432 Left Stabilator
                          -3.212 In
10 6800 Left Rudder
                                        -->FAULT
                                                   UTrav
                          -0.665 In
                                         6 \text{ max} = -4.394 \text{ min} = -4.394 \text{ avg} = -4.394
2 max= 79.538 min= 67.067 avg= 73.303
                                       7 max= 97.468 min= 97.468 avg= 97.468
3 max= 0.036 min= -0.059 avg= -0.012 8 max= 0.464 min= 0.293 avg= 0.378
4 max= 1.968 min= 1.778 avg= 1.873 9 max= -3.212 min= -3.212 avg= -3.212
5 max= 36.437 min= 32.331 avg= 34.384 10 max= -0.493 min= -0.496 avg= -0.495
                                                           ENTER DATA -30+50M-25
                                                                          +55M
```

RT 4 EOA

MSG 2 Sensor Values

* DONE

Time 1:45 pm

			:	1 ml 1.73 pm
WD	VALUI	E NAME		WD VALUE NAME
1	7DFF	Total Temp	634.731 DegR	>FAULT UTrav
2	4B7D	Pitot Pressure	69.993 Hg	>FAULT OSlew
3	0D54	Long. Stick	-0.003 In	
		Right TEF	1.801 In	>FAULT OSlew
5	56E4	NWS	33.504 Deg	>FAULT OSlew
6	5800	Right LEF	-7.000 Deg	>FAULT UTrav OSlew
7	1EFF	Power Lever Cntl	97.468 Deg	
8	22C7	Rudder Pedal	0.293 In	
9	2432	Left Stabilator	-3.212 In	
10	6882	Left Rudder	-0.496 In	>FAULT OSlew
				6 max= -4.394 min= -4.394 avg= -4.394
2	max=	72.995 min= 68.91	5 avg= 70.955	7 max= 97.468 min= 97.341 avg= 97.405
3	max=	0.039 min = -0.03	6 avg= 0.001	8 max= 0.463 min= 0.293 avg= 0.378
4	max=	1.944 min= 1.78	5 avg= 1.865	
5	max=	36.730 min= 32.77	1 avg= 34.751	10 max= -0.493 min= -0.496 avg= -0.495
			-	ENTER DATA -30+60M-25

G 2 Sensor Values

* DONE

WD	VALUE NAME	WD VALUE NAME
	7DFF Total Temp 634.731 DegR	>FAULT UTrav
2	4B2B Pitot Pressure 63.680 Hg	>FAULT OSlew
	OD57 Long. Stick 0.006 In	
4	52DE Right TEF 1.762 In	>FAULT OSlew
5	16EB NWS 34.531 Deg	
	5800 Right LEF -7.000 Deg	>FAULT UTrav OSlew
7	5C00 Power Lever Cntl 0.000 Deg	>FAULT UTrav OSlew
	22C7 Rudder Pedal 0.293 In	
9	2432 Left Stabilator -3.212 In	
10	6800 Left Rudder -0.665 In	>FAULT UTrav OSlew
2	75 201 70 270	6 $max = -4.394 min = -4.394 avg = -4.394$
	max= 75.381 min= 70.070 avg= 72.725	7 max= 97.468 min= 97.341 avg= 97.405
	max = 0.041 min = -0.036 avg = 0.003	8 max= 0.463 min= 0.293 avg= 0.378
4	max= 1.968 min= 1.770 avg= 1.869	9 max = -3.212 min = -3.212 avg = -3.212
5	max= 36.290 min= 32.478 avg= 34.384	10 max= -0.495 min= -0.536 avg= -0.515
		ENTER DATA -25C, -24C
		·

RT 4 EOA

G 2 Sensor Values

WD	VALUE NAME		WD VALUE	NAME
		360.000 DegR	>FAULT	UTrav
3	4D58 Long. Stick	74.611 Hg 0.009 In	>FAULT	OSlew
	The state of the s	1.880 In	. TIA 111 m	003
		33.651 Deg -7.000 Deg		OSlew UTrav OSlew
7	1EFF Power Lever Cntl	97.468 Deg	7 110 22	
		0.293 In		
	2432 Left Stabilator			
10	2882 Left Rudder	-0.496 In		
			6 may= -4	.394 min= -4.394 avg= -4.394
2	max= 75.381 min= 64.912	avg= 70.147		.468 min= 97.468 avg= 97.468
3	max = 0.024 min = -0.036	avg= -0.006		.464 min= 0.293 avg= 0.378
	max= 1.912 min= 1.722		9 max = -3	.212 min= -3.212 avg= -3.212
5	max= 35.997 min= 32.625	avg= 34.311	10 max= -0.	.493 min= -0.496 avg= -0.495 ENTER DATA -20C, -21C

* DONE

G 2 Sensor Values

WD	VALUI	E NAME		WD VALUE	NAME	
		Total Temp Pitot Pressure	360.000 DegR 68.453 Hg		UTrav OSlew	
3	4D51	_	-0.012 In		OSlew	
5	56EB	_			OSlew UTrav	
7	1EFF	Power Lever Cntl Rudder Pedal	97.468 Deg 0.293 In		OSlew	*:
9	2432	Left Stabilator Left Rudder			UTrav	in the second of the second
				6 max= -4.	394 min= -4.394	avg= -4.394
		79.461 min= 68.83 -0.006 min= -0.06		7 max = 97.	468 min= 97.468 464 min= -0.441	avg= 97.468
4	max=	1.873 min= 1.73 34.971 min= 31.01	0 avg= 1.801	9 max = -3.	212 min= -3.212 376 min= -0.496	avg= -3.212 avg= -0.436
					ENTER DA	TA -15C, -16C

RT 4 EOA

* DONE

G 2 Sensor Values

WD	VALUE	E NAME		WD VALUE	NAME
1	5400	Total Temp	360.000 DegR	>FAULT	UTrav
2	4BB3	Pitot Pressure	74.150 Hg	>FAULT	OSlew
3	4D44	Long. Stick	-0.050 In	>FAULT	OSlew
4	52C9	Right TEF	1.595 In	>FAULT	OSlew
5	56C5	NWS	28.959 Deg	>FAULT	OSlew
6	5800	Right LEF	-7.000 Deg	>FAULT	UTrav OSlew
7	1EFF	Power Lever Cntl	97.468 Deg		
8	22C7	Rudder Pedal	0.293 In		
9	2432	Left Stabilator	-3.212 In		
10	6882	Left Rudder	-0.496 In	>FAULT	OSlew
2	max=	79.615 min= 68.22	22 avg= 73.919	7 max= 97	.468 min= 97.341 avg= 97.405
		0.018 min= -0.05			.461 min= 0.293 avg= 0.377
		1.793 min= 1.61			.212 $min = -3.212$ $avg = -3.212$
		33.651 min= 30.57			.495 min= -0.497 avg= -0.496
			•		ENTER DATA -10C, -12C

G 2 Sensor Values

* DONE

WD	VALUE NAME	WD VALUE NAME
2 3 4 5 6 7 8 9	7DFF Total Temp 634.731 DegR 4B91 Pitot Pressure 71.532 Hg 4D39 Long. Stick -0.083 In 12BB Right TEF 1.485 In 56BC NWS 27.639 Deg 590B Right LEF 4.223 Deg 5C00 Power Lever Cntl 0.000 Deg 22C7 Rudder Pedal 0.293 In 2432 Left Stabilator -3.212 In 6800 Left Rudder -0.665 In	>FAULT OSlew>FAULT OSlew>FAULT OSlew
3 4	max= 79.846 min= 78.614 avg= 79.230 max= -0.039 min= -0.116 avg= -0.077 max= 1.619 min= 1.279 avg= 1.449 max= 30.718 min= 24.560 avg= 27.639	7 max= 97.468 min= 97.341 avg= 97.405 8 max= 0.463 min= 0.293 avg= 0.378 9 max= -3.212 min= -3.212 avg= -3.212 10 max= -0.493 min= -0.497 avg= -0.495 ENTER DATA -5C, -7C

RT 4 EOA

G 2 Sensor Values

* DONE

Time 2:10 pm

				lime Zillipm
WD	VALUE NAME		WD VALUE	NAME
1	55FF Total Temp 634.	31 DegR	>FAULT	UTrav
2		00 Hg		OTrav
	4D22 Long. Stick -0.:			OSlew
		66 In		OSlew
		94 Deg	>TROLL	Oblew
		00 Deg	>FAULT	IIIIwar AClari
		68 Deg	>FAULI	UTrav OSlew
		93 In		
	2432 Left Stabilator -3.2	73 III		
10	6862 Left Rudder -0.5	12 111 20 Tm		
10	oooz hert Rudder -0.5	38 IN	>FAULT	OSlew
			6 max= 4	.223 min= 4.223 avg= 4.223
2	may- 0 110 min 0 000		7 max = 97	.468 min= 97.341 avg= 97.405
.) 4	max = -0.118 min = -0.228 avg	= -0.173		.294 min= 0.293 avg= 0.293
4	max= 1.390 min= 0.970 avo	= 1.180	9 max= -3	.212 min= -3.212 avg= -3.212
5	max= 27.639 min= 20.161 avg	= 23.900	10 max = -0	.495 min= -0.496 avg= -0.495
				ENTER DATA OC, -2C

G 2 Sensor Values

* DONE

WD	VALU	E NAME		WD VALUE	NAME	
1	47FF	Total Temp	910.000 DegR	>FAULT	UTrav	
2	4BFF	Pitot Pressure	80.000 Hg	>FAULT	OTrav	
		Long. Stick				
		Right TEF				
5	1654	NWS	12.390 Deg			
6	5800	Right LEF		>FAULT	UTrav OSlew	
		Power Lever Cntl				
		Rudder Pedal		>FAULT	OSlew	
9	2432	Left Stabilator	-3.212 In			
10	6800	Left Rudder	-0.665 In	>FAULT	UTrav OSlew	A Spirit
4	max=	-0.207 min= -0.34 0.907 min= 0.40 18.842 min= 8.43	8 avg= 0.657	8 max= 0 9 max= -3	.212 min= -3.212 .376 min= -0.497	avg= 0.372 avg= -3.212
RT	4	EOA				* DONE
)ر	. 2	Sensor Values		-		~ DONE
WD	VALUE	E NAME		WD VALUE	NAME	

WD	VALUI	E NAME			WD VALUE	NAME
1	7DFF	Total Temp	634.731	DegR	>FAULT	UTrav
2	4BFF	Pitot Pressure	80.000	Hg	>FAULT	OTrav
3	4CD4	Long. Stick	-0.382	In	>FAULT	OSlew
4	1213	Right TEF	0.154	In		
	562A		6.232	Deg	>FAULT	OSlew
6	5800	Right LEF	-7.000	Deg	>FAULT	UTrav
7	1EFF	Power Lever Cntl	97.468	Deg		
8	22C7	Rudder Pedal	0.293	In		
9	2432	Left Stabilator	-3.212	In		
10	2882	Left Rudder	-0.496	In		

7 max= 97.468 min= 97.341 avg= 97.405 3 max= -0.314 min= -0.403 avg= -0.358 8 max= 0.458 min= 0.293 avg= 0.375 4 max= 0.447 min= 0.099 avg= 0.273 9 max= -3.212 min= -3.212 avg= -3.212 5 max= 11.217 min= 4.619 avg= 7.918 10 max= -0.495 min= -0.497 avg= -0.496 ENTER DATA 10C, 6C

G 2 Sensor Values

7 1EFF Power Lever Cntl 97.468 Deg

8 22C7 Rudder Pedal

9 2432 Left Stabilator

10 6800 Left Rudder

* DONE

WD V	ALUE N	AME		WD VALUE	NAME	
2 41 3 00 4 12	BFF Pito CEB Long 24B Right	l Temp t Pressure . Stick t TEF	634.731 DegR 80.000 Hg -0.314 In 0.598 In 15.616 Deg	>FAULT >FAULT	UTrav OTrav	
6 58 7 11 8 22 9 24	800 Right EFF Power 2C7 Rudde	LEF Lever Cntl Pedal Stabilator Rudder	-7.000 Deg 97.468 Deg 0.293 In	>FAULT	UTrav OSlew	
4 ma	ax= 0.65	0.4	71 avg= 0.562	8 max= 0 9 max= -3	7.468 min= 97.341 0.466 min= 0.293 3.212 min= -3.212 0.376 min= -0.497 ENTER D	avg = 0.379
RT 4	4 EOA					
Sد	2 Sens	or Values				* DONE
WD VA	ALUE NA	ME		WD VALUE	NAME	
2 4B 3 0C 4 12 5 16	BFF Pitot CE4 Long. 245 Right 563 NWS	Pressure Stick TEF	634.731 DegR 80.000 Hg -0.335 In 0.550 In 14.589 Deg	>FAULT >FAULT		
	00 Right	LEF	-7.000 Deg	>FAULT	UTrav	

7 max= 97.468 min= 97.341 avg= 97.405 3 max= -0.302 min= -0.367 avg= -0.335 8 max= 0.294 min= 0.287 avg= 0.290 4 max= 0.637 min= 0.432 avg= 0.534 9 max= -3.212 min= -3.212 avg= -3.212 5 max= 15.469 min= 11.804 avg= 13.636 10 max= -0.376 min= -0.496 avg= -0.436 ENTER DATA 20C, 16C

-->FAULT

OSlew

0.293 In

-3.212 In

-0.665 In

'G 2 Sensor Values

* DONE

Time 2:35pm

WD	VALU	E NAME		WD VALUE	NAME	
			634.731 DegR		UTrav	
2	4BFF	Pitot Pressure	80.000 Hg	>FAULT	OTrav	
		Long. Stick	-0.338 In	>FAULT	OSlew	
4	5260	Right TEF	0.764 In	>FAULT	OSlew	
5	1691	NWS	21.334 Deg			
6	5800	Right LEF	-7.000 Deg	>FAULT	UTrav OSlew	
		Power Lever Cntl				
8	22C8	Rudder Pedal	0.294 In			
		Left Stabilator				
		Left Rudder				541. · · · · · · · · · · · · · · · · · · ·
3 4	max= max=	-0.267 min= -0.36 0.994 min= 0.66 23.240 min= 17.66	1 avg= -0.314 1 avg= 0.827	8 max= 0 9 max= -3	.387 min = -0.497	avg= 0.293 avg= -3.212
חת	A	EOX				

RT 4 EOA

G 2 Sensor Values

* DONE

Time 2:39 pm

WD	VALUI	E NAME		WD VALUE	NAME
		Total Temp	634.731 DegR	>FAULT	UTrav
2	4BFF	Pitot Pressure	80.000 Hg	>FAULT	OTrav
3	0CF2	Long. Stick	-0.293 In		
4	529B	Right TEF	1.231 In	>FAULT	OSlew
5	56B9	NWS	27.199 Deg	>FAULT	OSlew
6	5800	Right LEF	-7.000 Deg	>FAULT	
7	1EFF	Power Lever Cntl			
8	22C7	Rudder Pedal	0.293 In		
9	2432	Left Stabilator	-3.212 In		
10	6883	Left Rudder	-0.495 In	>FAULT	OSlew
4	max=	-0.222 min= -0.32 1.326 min= 1.04 29.252 min= 23.24	1 avg= 1.184	7 max= 97 8 max= 0 9 max= -3	.223 min= 4.223 avg= 4.223 .468 min= 97.341 avg= 97.405 .294 min= 0.284 avg= 0.289 .191 min= -3.212 avg= -3.202 .385 min= -0.496 avg= -0.441 ENTER DATA 30C, 26C

G 2 Sensor Values

* DONE

WD	VALUE NAME		WD VALUE	NAME
2 3 4 5 6 7 8 9	OCEF Long. Stick - 5297 Right TEF 56A7 NWS 2 5800 Right LEF - 5C00 Power Lever Cntl 22C7 Rudder Pedal 2432 Left Stabilator -	0.000 Hg 0.302 In 1.200 In 4.560 Deg 7.000 Deg 0.000 Deg 0.293 In	>FAULT>FAULT>FAULT>FAULT>FAULT	OSlew OSlew UTray OSlew
4	max= -0.240 min= -0.352 a max= 1.295 min= 0.970 a max= 31.891 min= 22.507 a	avg= 1.132	8 max= 0. 9 max= -3.	468 min= 97.468 avg= 97.468 294 min= 0.287 avg= 0.290 191 min= -3.226 avg= -3.209 254 min= -0.496 avg= -0.121 ENTER DATA 35C, 31C

RT 4 EOA

G 2 Sensor Values

	,				
WD	VALUE	NAME		WD VALUE	NAME
1	7000	Total Temp	360.000 DegR	>FAULT	UTrav
2	4BFF	Pitot Pressure	80.000 Hg	>FAULT	OTrav UPwr
3	OCE7		-0.326 In	_	
		Right TEF			
			28.959 Deg		
		Right LEF	-7.000 Deg	>FAULT	UTrav OSlew
		Power Lever Cntl	97.468 Deg	>1 HOD1	ollav oblew
		Rudder Pedal			
9	2432	Left Stabilator	-3.212 Tn		
10	6800	Left Rudder	-0.665 In	>FAULT	TITI
			0.005 111	>FROTI	UTrav
				7 mar- 07	460 min 07 074 min 07 046
3	may=	-0.252 min= -0.36	:4 arra0 ann		.468 min= 97.214 avg= 97.341
1.	mav-	1 262 min 0 00	24 avy0.308	8 max= 0	.294 min= 0.284 avg= 0.289
	max-	1.203 min= 0.90	/ avg= 1.085	9 max = -3	.191 min= -3.212 avg= -3.202
3	max=	30.572 min= 22.80	1 avg= 26.686	10 max = -0	.376 min= -0.496 avg= -0.436
					ENTER DATA 40C. 36C

G 2 Sensor Values

G 2 Sensor Values	
WD VALUE NAME	WD VALUE NAME
1 55FF Total Temp 634.731 DegR 2 4BFF Pitot Pressure 80.000 Hg 3 OCDA Long. Stick -0.364 In	>FAULT UTrav >FAULT OTrav UPwr
4 5291 Right TEF 1.152 In 5 16AA NWS 25.000 Deg	>FAULT OSlew
6 590B Right LEF 4.223 Deg 7 1EFF Power Lever Cntl 97.468 Deg 8 22C7 Rudder Pedal 0.293 In 9 2432 Left Stabilator -3.212 In 10 2882 Left Rudder -0.496 In	>FAULT OSlew
4 max= 1.334 min= 0.922 avg= 1.128	7 max= 97.468 min= 97.341 avg= 97.405 8 max= 0.294 min= 0.293 avg= 0.293 9 max= -3.191 min= -3.212 avg= -3.202 10 max= -0.376 min= -0.497 avg= -0.437 ENTER DATA 45C, 39C
RT 4 EOA	
G 2 Sensor Values	* DONE
, someof variable	Time 2:50pm
WD VALUE NAME	WD VALUE NAME
1 7DFF Total Temp 634.731 DegR 2 4BFF Pitot Pressure 80.000 Hg 3 OCE5 Long. Stick -0.332 In	>FAULT UTrav >FAULT OTrav UPwr
4 128E Right TEF 1.128 In 5 16B0 NWS 25.880 Deg 6 5800 Right LEF -7.000 Deg 7 1EFF Power Lever Cntl 97.468 Deg 8 22C8 Rudder Pedal 0.294 In	>FAULT UTrav OSlew
9 2432 Left Stabilator -3.212 In 10 6882 Left Rudder -0.496 In	>FAULT OSlew
3 max= -0.296 min= -0.391 avg= -0.344 4 max= 1.302 min= 1.025 avg= 1.164 5 max= 27.346 min= 23.534 avg= 25.440	7 max= 97.468 min= 97.341 avg= 97.405 8 max= 0.294 min= 0.293 avg= 0.293 9 max= -3.191 min= -3.212 avg= -3.202 10 max= -0.493 min= -0.496 avg= -0.495 ENTER DATA 50C, 43C

G 2 Sensor Values

* DONE

WD	VALUE NAME		WD VALUE	NAME
2 3 4 5 6 7 8 9	4CD3 Long. Stick 5287 Right TEF 16AC NWS 5800 Right LEF 5C00 Power Lever Cntl 22C7 Rudder Pedal 2432 Left Stabilator	80.000 Hg -0.385 In 1.073 In 25.293 Deg -7.000 Deg 0.000 Deg 0.293 In	>FAULT >FAULT >FAULT	OSlew OSlew UTrav OSlew
4	max = 1.176 min = 0.978	avg= 1.077	8 max= 0. 9 max= -3.	468 min= 97.214 avg= 97.341 294 min= 0.293 avg= 0.293 191 min= -3.212 avg= -3.202 495 min= -0.496 avg= -0.495 ENTER DATA 55C, 47C

RT 4 EOA

G 2 Sensor Values

WD	VALUE NAME	WD VALUE	NAME
2 3 4	OCDF Long. Stick -0	0.000 Hg>FAULT 0.350 In 0.915 In	UTrav OTrav UPwr
6 7 8 9	56A7 NWS 24 5800 Right LEF -7 1EFF Power Lever Cntl 97 22C7 Rudder Pedal 0 2432 Left Stabilator -3 6800 Left Rudder -0	7.000 Deg>FAULT 7.468 Deg 0.293 In 3.212 In	OSlew UTrav
4	max= -0.317 min= -0.450 a max= 1.105 min= 0.875 a max= 26.173 min= 22.067 a	7 max= 97. avg= -0.384 8 max= 0. avg= 0.990 9 max= -3.	223 min= 4.223 avg= 4.223 468 min= 97.341 avg= 97.405 294 min= 0.284 avg= 0.289 191 min= -3.226 avg= -3.209 376 min= -0.502 avg= -0.439 ENTER DATA 60C, 51C

G 2 Sensor Values

* DONE

WD	VALUE NAME		WD VALUE	NAME	
		360.000 DegR	>FAULT	UTrav	
	4BFF Pitot Pressure	80.000 Hg	>FAULT	OTrav UPwr	
	OCCC Long. Stick	-0.406 In			
	<u> </u>	0.843 In	>FAULT	OSlew	
	16A3 NWS	23.974 Deg			
6	5BFF Right LEF	36.000 Deg	>FAULT	OTrav OSlew	
7	1EFF Power Lever Cntl	97.468 Deg			
8	22C7 Rudder Pedal	0.293 In			
9	2432 Left Stabilator	-3.212 In			
10	68DD Left Rudder	-0.378 In	>FAULT	OSlew	
4	max= -0.305 min= -0.509 max= 1.073 min= 0.637 max= 24.707 min= 16.789	7 avg= 0.855	7 max= 97. 8 max= 0. 9 max= -3.	.223 min= 4.223 .468 min= 97.341 .294 min= 0.282 .191 min= -3.212 .495 min= -0.539 ENTER DA	avg= 97.405 avg= 0.288 avg= -3.202

RT 4 EOA

G 2 Sensor Values

WD	VALUI	E NAME			WD VALUE	NAME
1	5400	Total Temp	360.000	DegR	>FAULT	UTrav
2	4B4B	Pitot Pressure	66.144		>FAULT	OSlew UPwr
3	OCC9	Long. Stick	-0.415	In		
4	1254	Right TEF	0.669	In		
5	5699	NWS	22.507	Deg	>FAULT	OSlew
6	5800	Right LEF	-7.000	Deg	>FAULT	UTrav
7	1EFF	Power Lever Cntl	97.468	Deg		
8	22C7	Rudder Pedal	0.293	In		
9	2432	Left Stabilator	-3.212	In		
10	6874	Left Rudder	-0.514	In	>FAULT	OSlew

```
7 max= 97.468 min= 97.214 avg= 97.341

3 max= -0.412 min= -0.560 avg= -0.486 8 max= 0.294 min= 0.282 avg= 0.288

4 max= 0.851 min= 0.519 avg= 0.685 9 max= -3.191 min= -3.212 avg= -3.202

5 max= 21.334 min= 12.390 avg= 16.862 10 max= -0.493 min= -0.496 avg= -0.495

ENTER DATA 70C, 60C
```

* DONE

G 2 Sensor Values

Time 3:00pm

WD	VALUE NAME	WD V	ALUE NAME	
1	7DFF Total Temp 63	4.731 DegR>F	AULT UTrav	
2			AULT OSlew	
3		_	AULT OSlew	
4	1231 Right TEF			
	5652 NWS 1	2.097 Deg>F	AULT OSlew	
	5800 Right LEF -	7.000 Deg>F	AULT UTrav	OSlew
	1EFF Power Lever Cntl 9	7.468 Deg		
		0.293 In		
	2432 Left Stabilator -	3.212 In		
10	6800 Left Rudder -	0.665 In>F	AULT UTrav	
4	max= -0.471 min= -0.601 a max= 0.637 min= 0.368 a max= 17.815 min= 11.510 a	7 m avg= -0.536 8 m avg= 0.503 9 m	ax= 97.468 mi ax= 0.294 mi ax= -3.191 mi	in= 4.223 avg= 4.223 in= 97.214 avg= 97.341 in= 0.291 avg= 0.293 in= -3.212 avg= -3.202 in= -0.540 avg= -0.517 ENTER DATA 75C, 65C

RT 4 EOA

* DONE

G 2 Sensor Values

WD	VALUE NAME		WD VALUE	NAME
1	4000 Total Temp 3	60.000 DegR	>FAULT	UTrav
2	48DE Pitot Pressure	18.339 Hg	>FAULT	OSlew UPwr
3		-0.643 In		
4	5263 Right TEF	0.788 In	>FAULT	OSlew
5	5693 NWS	21.628 Deg	>FAULT	OSlew
6		-7.000 Deg		
	5F3B Power Lever Cntl 1	.05.093 Deg	>FAULT	OSlew
8	22C7 Rudder Pedal	0.293 In		
	2432 Left Stabilator			
		-0.539 In	>FAULT	OSlew
			7 max= 97	.468 min= 97.341 avg= 97.405
3	max = -0.533 min = -0.666	avg = -0.600		.294 min= 0.291 avg= 0.293
				.191 min= -3.226 avg= -3.209
5	max= 23.240 min= 16.349	avg= 19.795		.378 min= -0.496 avg= -0.437
		_		ENTER DATA 75C+5M 69C
			Δ.,	his + Ches has Town at 75°C at First
			TW	Then commer imposi is car sminutes)
	•			abient Chamber Temp. at 75°C at 5 minutes.) Internal EDA Temp.

'G 2 Sensor Values

* DONE

WD	VALUE	NAME			WD VALUE	NAME	
		Total Temp Pitot Pressure	635.269 29.578			UTrav OSlew UPwr	
3	4C59		-0.746	In		OSlew	
5	5657	NWS Right LEF		Deg		OSlew OTrav OSlew	
· 7	1EFF	Power Lever Cntl Rudder Pedal	97.468 0.293	Deg			
		Left Stabilator Left Rudder	-3.226 -0.493		>FAULT	OSlew	
						223 min= 4.223 468 min= 97.214	
3	max=	-0.666 min= -0.83	5 avg= -	0.751		294 min= 0.282	
		0.566 min= 0.33			9 max = -3.	191 min= -3.226	avg= -3.209
5	max=	15.029 min= 9.01	8 avg= 1	2.023	10 max= -0.	376 min= -0.497 ENTER DA	avg= -0.437 ATA 75+10M 72C

RT 4 EOA

G 2 Sensor Values

* DONE

WD	VALUI	E NAME		WD VALUE	NAME
1	D7FF	Total Temp	910.000 DegR	>FAULT	UTrav
2	4A24	Pitot Pressure	43.435 Hg	>FAULT	OSlew UPwr
3	4C3D	Long. Stick	-0.829 In	>FAULT	OSlew
4	5216	Right TEF	0.178 In	>FAULT	OSlew
		NWS		>FAULT	OSlew
6	5800	Right LEF	-7.000 Deg	>FAULT	UTrav OSlew
7	5EFE	Power Lever Cntl	97.341 Deg	>FAULT	OSlew
8	22C7	Rudder Pedal	0.293 In		
9	2432	Left Stabilator	-3.212 In		
10	6874	Left Rudder	-0.514 In	>FAULT	OSlew
				7 max= 97	.468 min= 97.341 avg= 97.405
3	max=	-0.723 min = -0.84	4 avg = -0.783		.458 min= 0.282 avg= 0.370
					.191 min= -3.212 avg= -3.202
		10.191 min= -0.95			.492 min= -0.562 avg= -0.527
			-		ENTER DATA 75+15M 73C

'G 2 Sensor Values

* DONE

WD	VALUI	E NAME		WD VALUE	NAME
		Total Temp	360.000 DegR	>FAULT	UTrav
2	4A21	Pitot Pressure	43.204 Hg	>FAULT	UPwr
3	4C3F	Long. Stick	-0.823 In	>FAULT	OSlew
. 4	120E	Right TEF	0.115 In		
5	5622	NWS	5.059 Deg	>FAULT	OSlew
6	590B	Right LEF	4.223 Deg		OSlew
		Power Lever Cntl	97.341 Deg		
8	22C7	Rudder Pedal	0.293 In		
		Left Stabilator	-3.212 In		
		Left Rudder	-0.422 In	>FAULT	OSlew
				6 max= 4.2	223 min= 4.223 avg= 4.223
					468 min= 97.341 avg= 97.405
3	max=	-0.758 min = -0.85	3 avg = -0.806	8 max= 0.2	294 min= 0.282 avg= 0.288
4	max=	0.265 min= 0.02	8 avg= 0.146		191 min= -3.212 avg= -3.202
5	max=	7.111 min= 1.54	0 avg= 4.326		493 min = -0.535 avg = -0.021
			-		ENTER DATA 75+20M 75C

RT 4 EOA

G 2 Sensor Values

* DONE

WD	VALUE NAME	•	WD VALUE	NAME	
	4800 Total Temp	360.000 DegR	>FAULT	UTrav	
2	49C2 Pitot Pressure	35.891 Hg	>FAULT	UPwr	
	4C52 Long. Stick	-0.767 In		OSlew	
4	5230 Right TEF	0.384 In	>FAULT	OSlew	
5	5651 NWS	11.950 Deg		OSlew	•
6	5BFF Right LEF	36.000 Deg	>FAULT	OTrav OSlew	
7	5EFF Power Lever Cn				
8	22C7 Rudder Pedal				
9	2432 Left Stabilato	r -3.212 In			
10	6800 Left Rudder	-0.665 In	>FAULT	UTrav OSlew	
			7 max= 97	7.468 min= 97.343	1 avg = 97.405
3	max = -0.711 min = -0	.835 $avg = -0.773$		0.468 min= 0.282	
	max= 0.360 min= 0				
	max= 14.883 min= 5				
		, , , , , , , , , , , , , , , , , , ,			DATA 75+25M 76C

G 2 Sensor Values

WD	VALUI	E NAME		WD VALUE	NAME	
1	4000	Total Temp	360.000 DegR	>FAULT	UTrav	
2	49D6	Pitot Pressure	37.430 Hg	>FAULT	OSlew UPwr	
3	0C6B	Long. Stick	-0.693 In			
4	5234	Right TEF	0.416 In	>FAULT	OSlew	
5	5659	NWS	13.123 Deg	>FAULT	OSlew	1 N. W.
6	590B	Right LEF	4.223 Deg	>FAULT	OSlew	
7	5C00	Power Lever Cntl	0.000 Deg	>FAULT	UTrav OSlew	
8	22C7	Rudder Pedal	0.293 In			
9	2432	Left Stabilator	-3.212 In			• •
10	68DE	Left Rudder	-0.376 In	>FAULT	OSlew	And the second second second
4	max=	-0.640 min= -0.76 0.653 min= 0.25 15.762 min= 10.33	7 avg= 0.455	7 max=104 8 max= 0 9 max= -2	.223 min= 4.223 .966 min= 97.341 .464 min= 0.282 .133 min= -3.212 .493 min= -0.496 ENTER Di	avg=101.153 avg= 0.373 avg= -2.673

RT 4 EOA

* DONE

G 2 Sensor Values

WD	VALUE NAME		WD VALUE	NAME	
	FCFF Total Temp 49D1 Pitot Press			UTrav	
	0C70 Long. Stick	3	>rAULI	OSIEW OPWI	
4	5251 Right TEF	0.645 In	>FAULT	OSlew	
5	565B NWS	13.416 Deg	>FAULT	OSlew	
6	5BA9 Right LEF	32.385 Deg	>FAULT	OSlew	
7	5EFF Power Lever	Cntl 97.468 Deg	>FAULT	OSlew	
8	22C7 Rudder Peda	l 0.293 In			
9	2432 Left Stabil	ator -3.212 In			
10	6800 Left Rudder	-0.665 In	>FAULT	UTrav OSlew	
		-0.693 avg= -0.634 - 0.527 avg= 0.653	7 max= 97. 8 max= 0.	223 min= 4.223 468 min= 97.214 468 min= 0.282 191 min= -3.226	avg= 97.341 avg= 0.375
		11.070 avg= 14.150		497 min= -0.497	

"SG 2 Sensor Values

* DONE

WD	VALUE	NAME		W	D VALUE	NAME			
		<u> </u>	634.731 D	_	->FAULT	UTrav	_		
			27.346 H	_	->FAULT		Pwr		
			-0.533 I	in –	->FAULT	OSlew			
			0.954 I	In					
5	165B	NWS	13.416 D	eq .					
6	5800	Right LEF	-7.000 D)eq -	->FAULT	UTrav O	Slew		
7	5C00	Power Lever Cntl	0.000 D	ea -	->FAULT	UTrav			
			0.293 I						
9	2430	Left Stabilator	-3.226 I	n					
10	6800		-0.665 I		->FAULT	UTrav O	Slew		
3	max=	-0.483 min= -0.63	7 avg= -0		6 max= 4. 7 max=105. 8 max= 0.	093 min=	= 97.341	avg=1	01.217
4	max=	1.144 min= 0.77	2 avg = 0		9 max = -3.				
		19.575 min= 12.24			0 max= 0.		-0.496	avg=	

RT 4 EOA

G 2 Sensor Values

* DONE

WD	VALUE NAME	W	D VALUE	NAME		
1 2	F7FE Total Temp 909. 4A04 Pitot Pressure 40.	-		UTrav OSlew UPw	r	
3	4CCB Long. Stick -0.	409 In -	->FAULT	OSlew		
4 5	527A Right TEF 0. 5670 NWS 16.	970 In - 496 Deg -	·->FAULT ·->FAULT			
6	5BFF Right LEF 36.	000 Deg -	->FAULT	OTrav OS1	ew	
	5EFF Power Lever Cntl 97. 22C7 Rudder Pedal 0.	468 Deg -	·->FAULT	OSlew		
9	2432 Left Stabilator -3.	212 In				
10	6AD3 Left Rudder 0.	275 In -	->FAULT	OSlew		
4	max= -0.409 min= -0.566 av max= 1.429 min= 1.010 av max= 21.628 min= 12.683 av	g= -0.487 g= 1.219	7 max= 97. 8 max= 0. 9 max= -3.	468 min= 464 min= 191 min= 376 min=	4.223 avg= 97.087 avg= 9 0.282 avg= -3.226 avg= - -0.376 avg= - NTER DATA 75+	7.278 0.373 3.209 0.376

"SG 2 Sensor Values

WD	VALUE	NAME			WD VALUE	NAME			
1	77FE I	otal Temp	909.462	DegR	>FAULT	UTrav			
2	4A51 F	Pitot Pressure	46.899	Hg	>FAULT	OSlew U	Pwr		
3	4CCC I	Long. Stick	-0.406	In	>FAULT	OSlew			
4	52AE R	Right TEF	1.382	In	>FAULT	OSlew			
5	1683 N	เพริ	19.282	Deg				dest of	
6	5BFF R	Right LEF	36.000	Deg	>FAULT	OTrav O	Slew		
7	5EFF P	Power Lever Cntl	97.468	Deg	>FAULT	OSlew		\$	
8	62C7 R	Rudder Pedal	0.293	In	>FAULT	OSlew		e e	
9	2432 I	Left Stabilator	-3.212	In					
10	6ABB I	Left Rudder	0.244	In	>FAULT	OSlew			- 1 - 1
4	max=	-0.382 min= -0.50 1.437 min= 0.98 20.601 min= 15.46	6 avg=	1.211	8 max= 0 9 max= -3	.468 min:	= 0.282 = -3.226 = -0.496	avg= 97.341 avg= 0.375 avg= -3.215 avg= 0.033 TA 75+50M 7	-

RT 4 EOA

* DONE

G 2 Sensor Values

WD	VALUI	E NAME		WD VALUE	NAME
1	EC00	Total Temp	360.000 DegR	>FAULT	UTrav
2	4AD7	Pitot Pressure	57.214 Hg	>FAULT	OSlew UPwr
		Long. Stick			
		Right TEF		>FAULT	OSlew
		NWŚ			OSlew
		Right LEF			
		Power Lever Cntl	_		
		Rudder Pedal			
		Left Stabilator			
		Left Rudder	-0.665 In	>FAULT	UTrav
					.468 min= 97.468 avg= 97.468
		-0.308 min = -0.43			.458 min= 0.282 avg= 0.370
4,	max=	1.445 min= 1.04	ll avg= 1.243	9 max = -3	.212 min= -3.247 avg= -3.229
5	max=	23.827 min= 16.93	35 avg= 20.381	10 max = 0	.257 $min = -0.379$ $avg = -0.061$
			-		ENTER DATA 75+55M 78C

```
RT 4 EOA
```

WD VALUE NAME

TGG 2 Sensor Values

* DONE

Time 4:00pm

2 3 4 5 6 7 8 9	4AAF 4CE1 5283 567E 5BFF 1EFF 22C7 2432	Right TEF NWS Right LEF Power Lever Cntl Rudder Pedal Left Stabilator	-0.344 In 1.041 In 18.548 Deg 36.000 Deg 97.468 Deg 0.293 In	>FAULT >FAULT >FAULT	OSlew OSlew OSlew
4	max=	-0.281 min= -0.40 1.405 min= 1.10 23.974 min= 16.64	5 avg= 1.25	2 8 max= 0. 5 9 max= -3.	468 min= 89.971 avg= 93.719 467 min= 0.282 avg= 0.375 122 min= -3.226 avg= -3.174 497 min= 0.241 avg= 0.369 ENTER DATA 75+60M 78C

WD VALUE

NAME

RT 4 EOA

'G 2 Sensor Values

* DONE

WD	VALUE	E NAME		WD VALUE	NAME
1	5400	Total Temp	360.000 DegR	>FAULT	UTrav
2	4B0F	Pitot Pressure	61.525 Hg	>FAULT	OSlew UPwr
		Long. Stick	-0.264 In	>FAULT	OSlew
		Right TEF			
		NWS		,	
		Right LEF	-7.000 Deg	>FAULT	UTrav OSlew
7	5C00	Power Lever Cntl	0.000 Deg		UTrav OSlew
		Rudder Pedal			
		Left Stabilator			
			0.552 In	>FAULT	OSlew
				7 max= 97	.468 min= 97.341 avg= 97.405
3	max=	-0.246 min = -0.36	37 avg = -0.307		.294 min= 0.282 avg= 0.288
				9 max = -3	.191 min= -3.226 avg= -3.209
5	max=	22.507 min= 16.64	2 avg= 19.575		.387 min= -0.387 avg= -0.387
			-		ENTER DATA 70C, 75C

G 2 Sensor Values

* DONE

WD	VALUI	E NAME				WD VAL	UE 1	NAME			
1	4800	Total Ter	mp :	360.000	DegR	>FAU	LT 1	UTrav			
2	4ACF	Pitot Pre	essure	56.598		>FAU	LT (OSlew	UPwr		
3	OCF4	Long. St:	ick	-0.287	In						
4	527E	Right TE	F	1.002	In	>FAU	LT (OSlew			
5	569B	NWS				>FAU		OSlew			
6	5800	Right LEI	F			>FAU			OSlew		
7	5C00	Power Lev	ver Cntl	0.000	Deg	>FAU	ניד נ	JTrav	-		
8	22C7	Rudder Pe	edal	0.293	In						
			bilator								
			der			>FAU	LT (Slew			
						7 max=	= 97.4	168 m	in= 89.971	avg=	93.719
3	max=	-0.222 mi	in = -0.403	3 avg= -	-0.312	8 max=	= 0.4	168 m	in= 0.282	avg=	0.375
4	max=	1.437 mi	in= 0.986	avg=	1.211	9 max=	= 3.2	212 m	in = -3.226	ava=	-0.007
5	max=	25.000 mi	in= 14.883	3 avg = 1	9.941	10 max=	= 0.5	562 m	in = -0.493	avg=	0.034
				_					ENTER D		
											•
		4									

RT 4 EOA

G 2 Sensor Values

* DONE

WD	VALUI	E NAME		WD VALUE	NAME
1	E900	Total Temp	497.634 DegR	>FAULT	UTrav
2	4ABF		55.367 Hg	>FAULT	OSlew UPwr
3	0CC6	Long. Stick	-0.424 In		
4	127C	Right TEF	0.986 In		
		NWS		>FAULT	OSlew
6	5BFF	Right LEF	36.000 Deg		OTrav OSlew
7	5EFF	Power Lever Cntl	97.468 Deg		
8	22C7	Rudder Pedal	0.293 In		
9	64CD	Left Stabilator	-2.133 In	>FAULT	OSlew
10	6857	Left Rudder	-0.552 In	>FAULT	OSlew
4	max=	-0.358 min= -0.50 1.136 min= 0.84 17.669 min= 13.12	3 avg= 0.990	7 max= 97 8 max= 0 9 max= -3	.223 min= 4.223 avg= 4.223 .468 min= 97.214 avg= 97.341 .464 min= 0.282 avg= 0.373 .191 min= -3.226 avg= -3.209 .557 min= -0.401 avg= 0.078 ENTER DATA 60C, 68C

G 2 Sensor Values

WD	VALUE NAME		WD VALUE	NAME
	4000 Total Temp	360.000 DegR	>FAULT	UTrav
		47.130 Hg	>FAULT	OSlew UPwr
	0C9C Long. Stick	-0.548 In		
4	126F Right TEF	0.883 In		
5	564E NWS	11.510 Deg	>FAULT	OSlew
6	5800 Right LEF	-7.000 Deg	>FAULT	UTrav OSlew
7	5C00 Power Lever Cntl	0.000 Deg		
8	22C6 Rudder Pedal	0.291 In		
9	2432 Left Stabilator	-3.212 In		
10	6800 Left Rudder	-0.665 In	>FAULT	UTrav
4	max= -0.412 min= -0.57 max= 1.002 min= 0.62 max= 16.642 min= 7.55	9 avg= 0.816	7 max= 98 8 max= 0 9 max= -3	.223 min= 4.223 avg= 4.223 .485 min= 97.214 avg= 97.849 .468 min= 0.282 avg= 0.375 .191 min= -3.226 avg= -3.209 .557 min= -0.496 avg= 0.031 ENTER DATA 55C, 65C

RT 4 EOA

G 2 Sensor Values

* DONE

Time 4:25pm

				•	rime 7:23pm
WD	VALUI	E NAME		WD VALUE	NAME
1	73FF	Total Temp 91	10.000 DegR	>FAULT	UTrav
2	4A56	Pitot Pressure 4	17.284 Hg	>FAULT	UPwr
		Long. Stick -		·;	
4	523A	Right TEF	0.463 In	>FAULT	
5	163E	NWS	9.164 Deg		
			•	>FAULT	OTrav OSlew
			7.468 Deg		
8	22C7	Rudder Pedal			
9	2432	Left Stabilator -	-3.212 In		
10	2AC2	Left Rudder	0.253 In		•
				6 max = 4.	223 min= 4.223 avg= 4.223
					468 min= 97.341 avg= 97.405
3	max=	-0.578 min = -0.678	avg= -0.628		458 min= 0.282 avg= 0.370
4	max=	0.487 min= 0.281	avg= 0.384	9 max = -3.	191 min= -3.247 avg= -3.219
		12.243 min= 6.525			253 min= -0.496 avg= -0.122
					ENTER DATA 50C, 61C

MSG 2 Sensor Values

WD	VALU	E NAME		WD VALUE	NAME	
2 3 4	4A69 0C79 1220	Pitot Pressure	360.000 DegR 48.746 Hg -0.652 In 0.257 In	>FAULT >FAULT		
6	5020	Right LEF	_		OSlew	
			-7.000 Deg	>FAULT	UTrav OSlew	
		Power Lever Cntl	97.468 Deg			
			0.293 In			
9	2432	Left Stabilator	-3.212 In			4
10	6886		-0.491 In	>FAULT	OSlew	
4	max=	-0.598 min= -0.705 0.313 min= 0.051 9.457 min= 5.645	avq = 0.182	7 max= 97. 8 max= 0. 9 max= -3.	.376 min= -0.496	avg= 97.341 avg= 0.288 avg= -3.209

RT 4 EOA

SG 2 Sensor Values

* DONE

WD	VALUE NAME		WD VALUE	NAME
1	55FF Total Temp	634.731 DegR	>FAULT	UTrav
2	4A79 Pitot Pressure	49.978 Hg	>FAULT	UPwr
	4C7B Long. Stick	-0.646 In	>FAULT	OSlew
4	120B Right TEF	0.091 In		
5	5627 NWS	5.792 Deg	>FAULT	OSlew
6	5BFF Right LEF	36.000 Deg	>FAULT	
7	1EFF Power Lever Cntl	97.468 Deg		
8	22C8 Rudder Pedal	0.294 In		
9	2432 Left Stabilator	-3.212 In		
10	68DE Left Rudder	-0.376 In	>FAULT	OSlew
3	max= -0.616 min= -0.71	7 avg0 666	7 max= 97	.223 min= 4.223 avg= 4.223 .468 min= 97.087 avg= 97.278
4	max = 0.234 min = -0.03	6 avg = 0.000	o max- u	.294 min= 0.282 avg= 0.288 .191 min= -3.212 avg= -3.202
5	max= 11.217 min= 4.32	6 avg= 7.771	10 max= -0	.376 min= -0.497 avg= -0.437 ENTER DATA 40C, 53C

MSG 2 Sensor Values

WD	VALUE NAME	WD VALUE NAME
	er .	
	EFFF Total Temp 910.000 DegR 4A37 Pitot Pressure 44.897 Hg	
	4A37 Pitot Pressure 44.897 Hg 4C7C Long. Stick -0.643 In	
1	5234 Right TEF 0.416 In	>FAULT OSlew >FAULT OSlew
	1652 NWS 12.097 Deg	>FAULT OSlew
	5BFF Right LEF 36.000 Deg	>FAULT OTrav OSlew
	1EFF Power Lever Cntl 97.468 Deg	FIRST OTTAV OBJEW
	22C7 Rudder Pedal 0.293 In	
	2432 Left Stabilator -3.212 In	
10	2882 Left Rudder -0.496 In	
	_	7 max= 97.468 min= 96.960 avg= 97.214
3	max = -0.548 min = -0.714 avg = -0.63	1 8 max= $0.294 \text{ min} = 0.282 \text{ avg} = 0.288$
4	max = 0.337 min = -0.099 avg = 0.119	9 max= -3.191 min= -3.212 avg= -3.202 7 10 max= -0.376 min= -0.497 avg= -0.437
5	max= 15.909 min= 6.085 avg= 10.99	
		ENTER DATA 35C, 49C
יחים	4 EOA	
4.1	4 LOA	4 DOME
MSG	G 2 Sensor Values	* DONE
	,	V.
WD	VALUE NAME	WD VALUE NAME
	7000 Total Temp 360.000 DegR	
	4996 Pitot Pressure 32.504 Hg	>FAULT OSlew UPwr
	4CB0 Long. Stick -0.489 In	>FAULT OSlew
	126D Right TEF 0.867 In	
	_	>FAULT OSlew
	5800 Right LEF -7.000 Deg	>FAULT UTrav OSlew
0	1EFF Power Lever Cntl 97.468 Deg	
0	22C7 Rudder Pedal 0.293 In	
	22C7 Rudder Pedal 0.293 In 2432 Left Stabilator -3.212 In	- A FAULT OCT OF
	22C7 Rudder Pedal 0.293 In	>FAULT OSlew
	22C7 Rudder Pedal 0.293 In 2432 Left Stabilator -3.212 In	,
	22C7 Rudder Pedal 0.293 In 2432 Left Stabilator -3.212 In	6 max= 4.223 min= 4.223 avg= 4.223
10	22C7 Rudder Pedal 0.293 In 2432 Left Stabilator -3.212 In 68DD Left Rudder -0.378 In	6 max= 4.223 min= 4.223 avg= 4.223 7 max= 98.358 min= 97.214 avg= 97.786
10	22C7 Rudder Pedal 0.293 In 2432 Left Stabilator -3.212 In 68DD Left Rudder -0.378 In max= -0.483 min= -0.572 avg= -0.527	6 max= 4.223 min= 4.223 avg= 4.223 7 max= 98.358 min= 97.214 avg= 97.786 8 max= 0.294 min= 0.282 avg= 0.288
10 3 4	22C7 Rudder Pedal 0.293 In 2432 Left Stabilator -3.212 In 68DD Left Rudder -0.378 In max= -0.483 min= -0.572 avg= -0.527 max= 0.867 min= 0.614 avg= 0.740	6 max= 4.223 min= 4.223 avg= 4.223 7 max= 98.358 min= 97.214 avg= 97.786 8 max= 0.294 min= 0.282 avg= 0.288 9 max= -3.191 min= -3.226 avg= -3.209
10 3 4	22C7 Rudder Pedal 0.293 In 2432 Left Stabilator -3.212 In 68DD Left Rudder -0.378 In max= -0.483 min= -0.572 avg= -0.527	6 max= 4.223 min= 4.223 avg= 4.223 7 max= 98.358 min= 97.214 avg= 97.786 8 max= 0.294 min= 0.282 avg= 0.288 9 max= -3.191 min= -3.226 avg= -3.209

'G 2 Sensor Values

* DONE

Time 4:52 pm

WD	VALUI	E NAME		WD VALUE	NAME	
		Total Temp	360.000 DegR	>FAULT	UTrav	
		Pitot Pressure	41.202 Hg	>FAULT	OSlew UPwr	
		Long. Stick	-0.548 In	>FAULT	OSlew	
4	522A	Right TEF	0.337 In	>FAULT	OSlew	
5	163E	NWS	9.164 Deg			
6	5800	Right LEF	-7.000 Deg	>FAULT	UTrav	
· 7	1EFF	Power Lever Cntl	97.468 Deg			
8	22C0	Rudder Pedal	0.282 In			
9	2432	Left Stabilator	-3.212 In			
10	6882	Left Rudder	-0.496 In	>FAULT	OSlew	2.5
				7 max = 98	.223 min= 4.223 a	avg= 97.913
		-0.474 min = -0.58			.294 min= 0.282 a	
					.191 min= -3.212 a	
5	max=	15.616 min= 9.01	.8 avg= 12.317	10 max= -0	.491 min= -0.496 a ENTER DAT	avg= -0.493 TA 25C, 33C

RT 4 EOA

* DONE

G 2 Sensor Values

WD	VALUE NAME	WD VALUE NAME
2 3 4	4B03 Pitot Pressure 60.601 Hg 0CC0 Long. Stick -0.441 In 125E Right TEF 0.748 In	>FAULT UTrav >FAULT OSlew UPwr
6 7 8 9	167F NWS 18.695 Deg 5800 Right LEF -7.000 Deg 1EFF Power Lever Cntl 97.468 Deg 22C7 Rudder Pedal 0.293 In 64CD Left Stabilator -2.133 In 6882 Left Rudder -0.496 In	>FAULT OSlew
4.	max= -0.397 min= -0.506 avg= -0.452 max= 0.994 min= 0.645 avg= 0.820 max= 21.774 min= 14.736 avg= 18.255	9 max= -3.191 min= -3.212 avg= -3.202

SC 2 Sensor Values

D	VALUE	NAME		WD VALUE	NAME
2 3 4 5 6 7 8 9	4BFF 1 4CBC 1 5292 1 5688 1 590B 1 1EFF 1 22C7 1 2432 1	Pitot Pressure Long. Stick Right TEF NWS Right LEF Power Lever Cntl Rudder Pedal Left Stabilator	-0.453 In 1.160 In 20.015 Deg 4.223 Deg 97.468 Deg 0.293 In		
4	max=	-0.326 min= -0.45 1.097 min= 0.74 23.534 min= 17.22	18 avg= 0.922	7 max= 97 8 max= 0 9 max= -3	.223 min= 4.223 avg= 4.223 .468 min= 97.214 avg= 97.341 .294 min= 0.293 avg= 0.293 .191 min= -3.212 avg= -3.202 .495 min= -0.496 avg= -0.495 ENTER DATA 25+10M 31C

T 4 EOA

ISC 2 Sensor Values

* DONE

Time 5:07 pm

ΙD	VALUE	E NAME		WD VALUE	NAME
			634.731 DegR		
2	4BD8	Pitot Pressure	76.998 Hg	>FAULT	OSlew UPwr
3	OCC1	Long. Stick	-0.438 In		
4	1272	Right TEF	0.907 In		
5	5683	NWS	19.282 Deg	>FAULT	OSlew
6	590B	Right LEF	4.223 Deg	>FAULT	OSlew
7	1EFF	Power Lever Cntl	97.468 Deg		
8	22C7	Rudder Pedal	0.293 In		
9	2432	Left Stabilator	-3.212 In		
LO	6800	Left Rudder	-0.665 In	>FAULT	UTrav OSlew
				7 max= 97	.468 min= 97.214 avg= 97.341
3	max=	-0.320 min= -0.43	8 avg = -0.379		.294 min= 0.282 avg= 0.288
		1.089 min= 0.81			.212 min= -3.212 avg= -3.212
		23.680 min= 17.81			.495 min = -0.496 avg = -0.495
•					ENTER DATA 25+15M 30C

15.3 ALTITUDE TEST DATA SHEET

6/28/93 Brad Kessler

15.3.1 Altitude Test (14.5)

TECHNICAL MEMORANDUM ENGINEERING LABORATORIES

(DEPT.YR.TM.SEQ)

REPORT TYPE: FINAL TECH MEMO: 257.93.0105.01
DATE: 20 AUG 93 REV:

TITLE: FOCSI ALTITUDE TEST OF EOA AVIONICS BOX

•		DISTRIBUTION	
		NAME	DEPT
MODEL NO: CRAD	MODEL TYPE: CRAD	B. L. Kessler	318
REQ DOC: TR 705-284		D. J. Williams	318
	F ART DELIVERY: 28 JUN 93	A. E. Dillard	260W
CHARGE NO: M8Q-CH-136		J. L. Williford	260W
	SET-UP START: 28 JUN 93	R. W. Jordan	260W
CONTRACT NO: N/A		T. L. Pulliam *	260W
	TEST START: 28 JUN 93	TR Control **	
REQUESTING DEPT: 318	TEST COMP.: 28 JUN 93	* Page 1 Only	
PART NUMBER: NONE		** Original Report	
ATT 4 3700 T 007 T 0			

QUANTITY: 1 TEARDOWN COMP.: 29 JUN 93

TEST ARTICLE DESCRIPTION: Avionics development

package for fiber optics control sensor

integration

MANUFACTURER: MDA-EAST

TEST ARTICLE DISPOSITION: Return to D318
TEST LOCATION/FACILITY/NO.: B103, ST. LOUIS

TEST CATEGORY: DESIGN DEVELOPMENT

TUNNEL OCCUPANCY HOURS: N/A TEST RUNS/DATA POINTS: 1/250

TYPE OF DATA ACQUIRED: PRESSURE, TEMPERATURE

NO OF DATA CHANNELS: 3

TEST VARIABLES AND CONDITIONS: Pressure altitude vs. time

OTHER LAB REPORTS: NONE SUPPLEMENTARY REPORTS: NONE

KEYWORDS:

1. MISCELLANEOUS 2. AVIONICS 3. CHAMBER 4. PRESSURE 5. ALTITUDE 6. TEMPERATURE

- 1. TEST OBJECTIVE: The purpose of the test was to verify the performance of the EOA when exposed to a simulated altitude of 50,000 feet.
- 2. ABSTRACT OF RESULTS: The EOA was exposed to a simulated altitude of 50,000 feet while operating for a one hour period. One anomaly occurred during the test. The unit was reset and operated properly for the balance of the test.

PREPARED BY: R. W. JORDAN

LEAD TECHNICIAN

ENVIORNMENTAL & SYSTEMS LAB

APPROVED BY: J. L. WILLIFORD

TECHNICAL SPECIALIST

ENVIRONMENTAL & SYSTEMS LAB

RELEASED

PAGE 1 OF 5

McDonnell Douglas Aerospace

- 3. The test article was an Electro Optics Assembly (EOA) package which is part of the Fiber Optics Control Sensor Integration (FOCSI) program. The test article was placed in the MDA Combined Environmental Test (CET) chamber on a laboratory supplied support fixture. The cabling required to operate the EOA was brought out of the chamber on a feed-through port to the ground support equipment. One type T thermocouple was routed inside the EOA to measure internal air temperature. A second type T thermocouple was used to measure chamber air temperature. Chamber air was measured and recorded, but was not controlled. The test article installation in the CET chamber is shown in Figure 1.
- 4. Following a checkout at laboratory ambient pressure, the chamber was evacuated to a pressure altitude of 50,000 feet at a rate of 30,000 feet per minute. This pressure was maintained for one hour with the EOA operating. At approximately 35 minutes into the altitude test, the EOA operator reported that the unit had stopped updating. The unit was reset and functioned normally for the remainder of the test. It was not readily apparent whether the anomaly was related to the altitude exposure. At the completion of the one-hour test, the chamber pressure was adjusted to laboratory ambient at a rate of 60,000 feet per minute. The recorded pressure altitude and temperature data are presented in Figure 2.
- 5. Following the test, the EOA was removed from the chamber and returned to Dept. 318.

MCDONNELL DOUGLAS

FIGURE 2

McDonnell Douglas Aerospace

TABLE 1 - LIST OF EQUIPMENT AND INSTRUMENTS

Equipment and instruments used in this test are listed below. Applicable calibration records are available for inspection. All calibration maintenance and certification of MCAIR electrical, electronic and mechanical equipment is conducted in accordance with MIL-C-45662 and MDC Process Specification 20503.

<u>Item</u>	Manufacturer <u>& Model No</u>	Serial or Laboratory No.
Data System Tape Recorder Digital Meter Video Display	MDC T-056168-7 Tektronix 4923 Doric 400 Hazeltine 1510	090627 - 078924 B198486 006864
Digital Printer	Epson FX 80	107123-1
Capacitance Manometer	MKS 122AA	691753
Power Supply	MKS CDR-2	691757

Sensor Data for Altitude Test

	D			41.1	Jensor Lata Tor	MITITUDE 1	est	
	RT	4	EOA d	Ħ!				
	MSG	2	Sens	or Values				* DONE
	WD	HEX	E NA	ME_		MY VALUE	Error NAME	
			Total		771.290 DegR	>FAULT	UTrav	
			Pitot Long.	Pressure Stick	1.250 Hg 1.131 In	>FAULT	UTrav UPwr	
	4	52BE	Right		1.508 In	>FAULT	OSlew	
			NWS		39.663 Deg	>FAULT		
				LEF	-7.000 Deg	>FAULT		
				Lever Cntl r Pedal	0.000 Deg	>FAULT	UTrav OSlew	UPwr
				r Pedal Stabilator	0.121 In	` ``````````````	001	•
			Left I		-2.078 In -0.116 In	>FAULT	OSlew	
						, 9 may - 0	127 mi-	054 2 255
	4 1	max=	1.754	1 min= 1.04	9 avg= 1.130	8 max= 0.	.13/ min= 0.0	054 avg= 0.095 224 avg= -2.151
	5 1	max=	40.689	min= 1.23	$^{19} \text{ avg} = 1.496$	9 max= -2.	.078 min= -2.7	224 avg= -2.151 164 avg= -0.083
	•			, maii 30.27	3 avg- 33.404	IO max— -O.		R DATA: start ALT
							114 1 111	Initial Altitude
								Initial Altitude
]	RT	4	EOA					* DONE
1	™SG	2	Senso	or Values				* DONE
1		VALUI				WD VALUE	NAME	
			Total		909.462 DegR	>FAULT	UTrav	
			Pitot Long.	Pressure Stick	1.250 Hg	>FAULT	UTrav UPwr	
			Right		1.137 In 1.690 In	>FAULT	OSlew	
		1708			38.783 Deg	>LHOUI	ODIEM	
			Right	LEF		>FAULT	OTrav OSlew	
	7 5	5C00	Power	Lever Cntl	0.000 Deg		UTrav OSlew U	JPwr
			Rudder	Pedal	0.122 In			· -
_	9 6	4C2	Left S		-2.210 In		OSlew	
1	ιυ 6	982	Left R	uader	-0.163 In	>FAULT	OSlew	
	2	.=			_			74 avg= 5.442
	3 m	ax=	1.182	min= 1.019	9 avg= 1.100	8 max= 0.	137 min = -0.0	54 avg= 0.042
	4 M	ldX=	1.007	min= 1.160	0 avg= 1.413	9 max= -2.	078 min = -2.2	10 avg= -2.144
	اللا د	iax=	42.009	mTII= 2T.T28	8 avg= 36.584	10 max= -0.		64 avg= -0.140 DATA: LAB ALT

MSG 2 Sensor Values

WD VALUE NAME	WD VALUE NAME
1 E7FE Total Temp 909.462 DegR	>FAULT UTrav
2 4800 Pitot Pressure 1.250 Hg	>FAULT UTrav UPwr
3 4E91 Long. Stick 0.936 In	>FAULT OSlew
3 4E91 Long. Stick 0.936 In 4 1290 Right TEF 1.144 In 5 572B NWS 43.915 Deg	
5 572B NWS 43.915 Deg 6 5800 Right LEF -7.000 Deg	>FAULT OSlew
6 5800 Right LEF -7.000 Deg	>FAULT UTrav OSlew
7 5C00 Power Lever Cntl 0.000 Deg	>FAULT UTrav UPwr
8 2252 Rudder Pedal 0.121 In 9 64C2 Left Stabilator -2.210 In	>FAULT
10 29A5 Left Rudder -0.118 In	>FROLI
10 29A5 Delt Ruddel -0.116 III	
3 max= 0.954 min= 0.841 avg= 0.897	8 max= 0.137 min= 0.098 avg= 0.117 9 max= -2.078 min= -2.210 avg= -2.144 10 max= -0.116 min= -0.164 avg= -0.140
4 max= 1.809 min= 1.057 avg= 1.433	9 $max = -2.078 min = -2.210 avg = -2.144$
5 max= 41.422 min= 35.557 avg= 38.490	10 max= -0.116 min= -0.164 avg= -0.140
	ENTER DATA: EOA@30C
	Internal EOA Temperature Stabilizing
DE 4 FOR	j
RT 4 EOA	
	* DONE
TGG 2 Sensor Values	* DONE
GG 2 Sensor Values	* DONE
TG 2 Sensor Values	* DONE
WD VALUE NAME	* DONE WD VALUE NAME
WD VALUE NAME	WD VALUE NAME
WD VALUE NAME 1 D2FD Total Temp 771.290 DegR	WD VALUE NAME>FAULT UTrav
WD VALUE NAME 1 D2FD Total Temp 771.290 DegR 2 4800 Pitot Pressure 1.250 Hg	WD VALUE NAME>FAULT UTrav>FAULT UTrav UPwr
WD VALUE NAME 1 D2FD Total Temp 771.290 DegR 2 4800 Pitot Pressure 1.250 Hg 3 4E74 Long. Stick 0.850 In	WD VALUE NAME >FAULT UTrav >FAULT UTrav UPwr >FAULT OSlew
WD VALUE NAME 1 D2FD Total Temp 771.290 DegR 2 4800 Pitot Pressure 1.250 Hg 3 4E74 Long. Stick 0.850 In 4 5294 Right TEF 1.176 In	WD VALUE NAME >FAULT UTrav >FAULT UTrav UPwr >FAULT OSlew >FAULT OSlew
WD VALUE NAME 1 D2FD Total Temp 771.290 DegR 2 4800 Pitot Pressure 1.250 Hg 3 4E74 Long. Stick 0.850 In 4 5294 Right TEF 1.176 In 5 571F NWS 42.155 Deg	WD VALUE NAME >FAULT UTrav >FAULT UTrav UPwr >FAULT OSlew >FAULT OSlew >FAULT OSlew
WD VALUE NAME 1 D2FD Total Temp 771.290 DegR 2 4800 Pitot Pressure 1.250 Hg 3 4E74 Long. Stick 0.850 In 4 5294 Right TEF 1.176 In 5 571F NWS 42.155 Deg 6 58A7 Right LEF 0.020 Deg	WD VALUE NAME >FAULT UTrav>FAULT UTrav UPwr>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT OSlew
WD VALUE NAME 1 D2FD Total Temp 771.290 DegR 2 4800 Pitot Pressure 1.250 Hg 3 4E74 Long. Stick 0.850 In 4 5294 Right TEF 1.176 In 5 571F NWS 42.155 Deg 6 58A7 Right LEF 0.020 Deg 7 5C00 Power Lever Cntl 0.000 Deg	WD VALUE NAME >FAULT UTrav>FAULT UTrav UPwr>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT OSlew
WD VALUE NAME 1 D2FD Total Temp 771.290 DegR 2 4800 Pitot Pressure 1.250 Hg 3 4E74 Long. Stick 0.850 In 4 5294 Right TEF 1.176 In 5 571F NWS 42.155 Deg 6 58A7 Right LEF 0.020 Deg	WD VALUE NAME >FAULT UTrav>FAULT UTrav UPwr>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT OSlew
WD VALUE NAME 1 D2FD Total Temp 771.290 DegR 2 4800 Pitot Pressure 1.250 Hg 3 4E74 Long. Stick 0.850 In 4 5294 Right TEF 1.176 In 5 571F NWS 42.155 Deg 6 58A7 Right LEF 0.020 Deg 7 5C00 Power Lever Cntl 0.000 Deg 8 625D Rudder Pedal 0.137 In	WD VALUE NAME >FAULT UTrav>FAULT UTrav UPwr>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT OSlew
WD VALUE NAME 1 D2FD Total Temp 771.290 DegR 2 4800 Pitot Pressure 1.250 Hg 3 4E74 Long. Stick 0.850 In 4 5294 Right TEF 1.176 In 5 571F NWS 42.155 Deg 6 58A7 Right LEF 0.020 Deg 7 5C00 Power Lever Cntl 0.000 Deg 8 625D Rudder Pedal 0.137 In 9 24C2 Left Stabilator -2.210 In	WD VALUE NAME >FAULT UTrav>FAULT UTrav UPwr>FAULT OSlew>FAULT OSlew
WD VALUE NAME 1 D2FD Total Temp 771.290 DegR 2 4800 Pitot Pressure 1.250 Hg 3 4E74 Long. Stick 0.850 In 4 5294 Right TEF 1.176 In 5 571F NWS 42.155 Deg 6 58A7 Right LEF 0.020 Deg 7 5C00 Power Lever Cntl 0.000 Deg 8 625D Rudder Pedal 0.137 In 9 24C2 Left Stabilator -2.210 In	WD VALUE NAME >FAULT UTrav>FAULT UTrav UPwr>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT OSlew
WD VALUE NAME 1 D2FD Total Temp 771.290 DegR 2 4800 Pitot Pressure 1.250 Hg 3 4E74 Long. Stick 0.850 In 4 5294 Right TEF 1.176 In 5 571F NWS 42.155 Deg 6 58A7 Right LEF 0.020 Deg 7 5C00 Power Lever Cntl 0.000 Deg 8 625D Rudder Pedal 0.137 In 9 24C2 Left Stabilator -2.210 In 10 69EE Left Rudder -0.023 In	WD VALUE NAME >FAULT UTrav>FAULT UTrav UPwr>FAULT OSlew>FAULT OSlew
WD VALUE NAME 1 D2FD Total Temp 771.290 DegR 2 4800 Pitot Pressure 1.250 Hg 3 4E74 Long. Stick 0.850 In 4 5294 Right TEF 1.176 In 5 571F NWS 42.155 Deg 6 58A7 Right LEF 0.020 Deg 7 5C00 Power Lever Cntl 0.000 Deg 8 625D Rudder Pedal 0.137 In 9 24C2 Left Stabilator -2.210 In 10 69EE Left Rudder -0.023 In	WD VALUE NAME >FAULT UTrav>FAULT UTrav UPwr>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT UTrav OSlew UPwr>FAULT OSlew>FAULT OSlew >FAULT OSlew 8 max= 0.020 min= 0.020 avg= 0.020
WD VALUE NAME 1 D2FD Total Temp 771.290 DegR 2 4800 Pitot Pressure 1.250 Hg 3 4E74 Long. Stick 0.850 In 4 5294 Right TEF 1.176 In 5 571F NWS 42.155 Deg 6 58A7 Right LEF 0.020 Deg 7 5C00 Power Lever Cntl 0.000 Deg 8 625D Rudder Pedal 0.137 In 9 24C2 Left Stabilator -2.210 In 10 69EE Left Rudder -0.023 In 3 max= 0.930 min= 0.815 avg= 0.872 4 max= 1.738 min= 1.271 avg= 1.504	WD VALUE NAME >FAULT UTrav>FAULT UTrav UPwr>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT UTrav OSlew UPwr>FAULT OSlew>FAULT OSlew >FAULT OSlew 6 max= 0.020 min= 0.020 avg= 0.020 8 max= 0.144 min= 0.096 avg= 0.120 9 max= -2.078 min= -2.224 avg= -2.151
WD VALUE NAME 1 D2FD Total Temp 771.290 DegR 2 4800 Pitot Pressure 1.250 Hg 3 4E74 Long. Stick 0.850 In 4 5294 Right TEF 1.176 In 5 571F NWS 42.155 Deg 6 58A7 Right LEF 0.020 Deg 7 5C00 Power Lever Cntl 0.000 Deg 8 625D Rudder Pedal 0.137 In 9 24C2 Left Stabilator -2.210 In 10 69EE Left Rudder -0.023 In	WD VALUE NAME >FAULT UTrav>FAULT UTrav UPwr>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT OSlew>FAULT UTrav OSlew UPwr>FAULT OSlew>FAULT OSlew >FAULT OSlew 8 max= 0.020 min= 0.020 avg= 0.020

Internal EDA Temperature Stable

MSG 2 Sensor Values

WD	VALUE	E NAME			WD VALUE	NAME	
1	D2FD	Total Temp	771.290	DegR	>FAULT	UTrav	
2	4800	Pitot Pressure	1.250	Hq	>FAULT	UTrav UPwr	
3	0E77	<u> </u>	0.859	-			
4	5297	Right TEF	1.200	In	>FAULT	OSlew	
5	56FE	NWS	37.317	Deg	>FAULT	OSlew	
6	5BFF	Right LEF	36.000	Deg	>FAULT	OTrav OSlew	Q A
7	5C00	Power Lever Cntl	0.000	Deg	>FAULT	UTrav UPwr	44.
8	6252	Rudder Pedal	0.121	In	>FAULT	OSlew	
9	24D5	Left Stabilator	-2.078	In			
10	6981	Left Rudder	-0.164	In	>FAULT	OSlew	
					6 max = 0.	.020 min= 0.020	avg= 0.020
		_			•		
		0.974 min= 0.829					
		1.722 min= 1.263					
5	max=	42.302 min= 36.144	l avg= 3:	9.223	10 max= -0 .	.116 min= -0.164	_
						ENTER DA	TA: UP IN ALT
						Begin Ascend	in Altitude 5
RT	4	EOA					

* DONE

G 2 Sensor Values

WD	VALUE NAME	WD VALUE NAME
1	F4F9 Total Temp 493.871 DegR	>FAULT UTrav
2	4800 Pitot Pressure 1.250 Hg	>FAULT UTrav UPwr
3	4F0F Long. Stick 1.309 In	>FAULT OSlew
4	52A5 Right TEF 1.310 In	>FAULT OSlew
5	570F NWS 39.809 Deg	>FAULT OSlew
6	5800 Right LEF -7.000 Deg	>FAULT UTrav
7	5C00 Power Lever Cntl 0.000 Deg	>FAULT UTrav OSlew UPwr
	625D Rudder Pedal 0.137 In	
9	24C2 Left Stabilator -2.210 In	
	69FF Left Rudder -0.001 In	>FAULT OSlew
		6 max= 5.610 min= 5.610 avg= 5.610
3	max= 1.451 min= 1.250 avg= 1.351	8 max= 0.137 min= -0.054 avg= 0.042
		9 max= -2.078 min= -2.224 avg= -2.151
	max= 42.595 min= 36.730 avg= 39.663	
	-	ENTER DATA: UP+15SEC

15 seconds after beginning ascend.

MSG 2 Sensor Values

WD	VALU!	E NAME				WD '	VALUE	NAME	
1	D2FD	Total Tem	ıp	771.290	DegR	>]	FAULT	UTrav	
2	4800	Pitot Pre	ssure	1.250	Hg	 >]	FAULT	UTrav	UPwr
		Long. Sti		1.377	In	 >]	FAULT	OSlew	
4	52F8	Right TEF	1	1.968	In	>]	FAULT	OSlew	
5	572B	NWS		43.915	Deg	 >]	FAULT	OSlew	
6	5800	Right LEF	•	-7.000	Deg	 >]	FAULT	UTrav	
7	5C00	Power Lev	er Cntl	0.000	Deg	>]	FAULT	UTrav	UPwr
8	625D	Rudder Pe	dal	0.137	In	>]	FAULT	OSlew	
9	24C2	Left Stab	ilator	-2.210	In				
10	29A5	Left Rudd	er	-0.118	In				

3 max= 1.442 min= 1.309 avg= 1.376 8 max= 0.137 min= 0.121 avg= 0.129 4 max= 1.762 min= 1.366 avg= 1.564 9 max= -2.078 min= -2.210 avg= -2.144 5 max= 42.595 min= 37.757 avg= 40.176 10 max= -0.023 min= -0.164 avg= -0.094 ENTER DATA UP+30SEC

RT 4 EOA

* DONE

™SG 2 Sensor Values

WD	VALUE NAME	WD VALUE NAME
1	72FD Total Temp 771.290 DegR	>FAULT UTrav
2	4800 Pitot Pressure 1.250 Hg	
3	4F31 Long. Stick 1.410 In	>FAULT OSlew
4	12DC Right TEF 1.746 In	
	1717 NWS 40.982 Deg	
6	5800 Right LEF -7.000 Deg	>FAULT UTrav
7	5C00 Power Lever Cntl 0.000 Deg	>FAULT UTrav OSlew UPwr
	625D Rudder Pedal 0.137 In	
9	24C0 Left Stabilator -2.224 In	
10	29A6 Left Rudder -0.116 In	
		6 max= 0.020 min= 0.020 avg= 0.020
		•
3	max= 1.439 min= 1.277 avg= 1.358	8 8 max= 0.146 min= 0.096 avg= 0.121
4	max= 1.880 min= 1.271 avg= 1.576	6 9 max= -2.133 min= -2.224 avg= -2.178
5	max= 44.795 min= 37.170 avg= 40.98	2 10 max= -0.001 min= -0.164 avg= -0.083
	•	ENTER DATA 50,000FT

MSG 2 Sensor Values

WD VALUE NAME	WD VALUE NAME
1 E7FE Total Temp 909.462 DegR 2 4800 Pitot Pressure 1.250 Hg	>FAULT UTrav >FAULT UTrav UPwr
3 OF1E Long. Stick 1.354 In 4 52D8 Right TEF 1.714 In 5 1718 NWS 41.129 Deg	>FAULT OSlew
6 5800 Right LEF -7.000 Deg 7 5C00 Power Lever Cntl 0.000 Deg 8 225D Rudder Pedal 0.137 In	>FAULT UTrav OSlew >FAULT UTrav OSlew UPwr
9 24C2 Left Stabilator -2.210 In 10 6981 Left Rudder -0.164 In	>FAULT OSlew
	6 max= 0.020 min= 0.020 avg= 0.020
3 max= 1.380 min= 1.277 avg= 1.328 4 max= 1.873 min= 1.287 avg= 1.580 5 max= 45.235 min= 37.610 avg= 41.422	8 max= 0.137 min= 0.098 avg= 0.117 9 max= -2.078 min= -2.210 avg= -2.144 10 max= -0.016 min= -0.164 avg= -0.090 ENTER DATA: 50K+5MIN
RT 4 EOA	
*SG 2 Sensor Values	* DONE
WD VALUE NAME	WD VALUE NAME
1 D2FD Total Temp 771.290 DegR 2 4800 Pitot Pressure 1.250 Hg 3 OEF7 Long. Stick 1.238 In 4 12BA Right TEF 1.477 In	>FAULT UTrav >FAULT UTrav UPwr
5 570B NWS 39.223 Deg 6 5800 Right LEF -7.000 Deg 7 5C00 Power Lever Cntl 0.000 Deg 8 6242 Rudder Pedal 0.098 In	>FAULT UTrav >FAULT UTrav OSlew UPwr
9 24C2 Left Stabilator -2.210 In 10 29A5 Left Rudder -0.118 In	

3 max= 1.407 min= 1.238 avg= 1.322 8 max= 0.137 min= 0.098 avg= 0.117 4 max= 1.706 min= 1.326 avg= 1.516 9 max= -2.078 min= -2.224 avg= -2.151 5 max= 44.062 min= 37.170 avg= 40.616 10 max= -0.023 min= -0.164 avg= -0.094 ENTER DATA 50K+10MIN

```
EOA
RT 4
                                                                       * DONE
                             EDA#1 Stopped updating 1553 at 50,000 ft + 15 minutes
MSG 2
         Sensor Values
WD VALUE
           NAME
                                         WD VALUE
                                                    NAME
 1 72FD Total Temp
                          771.290 DegR
                                         -->FAULT
                                                    UTrav
 2 4800 Pitot Pressure
                           1.250 Hg
                                         -->FAULT
                                                    UTrav UPwr
 3 OF13 Long. Stick
                           1.321 In
 4 529B Right TEF
                           1.231 In
                                         -->FAULT
                                                    OSlew
 5 1712 NWS
                          40.249 Deg
 6 5800 Right LEF
                          -7.000 Deg
                                         -->FAULT
                                                    UTrav OSlew
 7 5C00 Power Lever Cntl 0.000 Deg
8 225D Rudder Pedal 0.137 In
                                         -->FAULT
                                                    UTrav OSlew UPwr
 9 24C2 Left Stabilator
                          -2.210 In
10 29A6 Left Rudder
                          -0.116 In
 3 max= 1.321 min= 1.321 avg= 1.321
                                         8 max= 0.137 min= 0.137 avg= 0.137
                                         9 max= -2.210 min= -2.210 avg= -2.210
 5 max= 40.249 min= 40.249 avg= 40.249 10 max= -0.116 min= -0.116 avg= -0.116
                                                            ENTER DATA 50K+15MIN
RT
  4
         EOA
                                                                      * DONE
***3G 2
        Sensor Values
WD VALUE
           NAME
                                        WD VALUE
                                                    NAME
1 72FD Total Temp
                         771.290 DegR
                                                    UTrav
                                         -->FAULT
2 4800 Pitot Pressure
                          1.250 Hg
                                         -->FAULT
                                                    UTrav UPwr
3 0F13 Long. Stick
                           1.321 In
4 529B Right TEF
                           1.231 In
                                         -->FAULT
                                                    OSlew
5 1712 NWS
                          40.249 Deg
6 5800 Right LEF
                          -7.000 Deg
                                         -->FAULT
                                                   UTrav OSlew
7 5C00 Power Lever Cntl 0.000 Deg
                                                   UTrav OSlew UPwr
                                        -->FAULT
8 225D Rudder Pedal
                           0.137 In
```

3 max= 1.321 min= 1.321 avg= 1.321 8 max= 0.137 min= 0.137 avg= 0.137 9 max= -2.210 min= -2.210 avg= -2.210 5 max= 40.249 min= 40.249 avg= 40.249 10 max= -0.561 min= -0.561 avg= -0.561 ENTER DATA 50K+20MIN

-2.210 In

-0.561 In

9 24C2 Left Stabilator

10 0050 Left Rudder

MSG 2 Sensor Values

* DONE

WD	VALUE NAME	WD VALUE NAME
1	72FD Total Temp 771.290 DegR	>FAULT UTrav
2	4800 Pitot Pressure 1.250 Hg	
	OF13 Long. Stick 1.321 In	
	529B Right TEF 1.231 In	>FAULT OSlew
	1712 NWS 40.249 Deg	
6	5800 Right LEF -7.000 Deg	>FAULT UTrav OSlew
7	5C00 Power Lever Cntl 0.000 Deg	>FAULT UTrav OSlew UPwr
	225D Rudder Pedal 0.137 In	
9	24C2 Left Stabilator -2.210 In	
10	0050 Left Rudder -0.561 In	
	max= 1.321 min= 1.321 avg= 1.321 max= 40.249 min= 40.249 avg= 40.249	9 max= -2.210 min= -2.210 avg= -2.210
RT	4 EOA	
* *\$G	2 Sensor Values	* DONE
WD	VALUE NAME	WD VALUE NAME
1	72FD Total Temp 771.290 DegR	>FAULT UTrav

WD	VALUI	E NAME			WD VALUE	NAME		
		Total Temp	771.290	DegR	>FAULT	UTrav		
2	4800	Pitot Pressure	1.250	Hg	>FAULT	UTrav	UPwr	
3	0F13	Long. Stick	1.321	In				
4	529B	Right TEF	1.231	In	>FAULT	OSlew		
5	1712	NWS	40.249	Deg				
6	5800	Right LEF	-7.000		>FAULT	UTrav	OSlew	
7	5C00	Power Lever Cntl	0.000	Deg	>FAULT	UTrav	OSlew	UPwr
8	225D	Rudder Pedal	0.137	In				
9	24C2	Left Stabilator	-2.210	In				
10	0050	Left Rudder	-0.561	In				

3 max= 1.321 min= 1.321 avg= 1.321 8 max= 0.137 min= 0.137 avg= 0.137 9 max= -2.210 min= -2.210 avg= -2.210 5 max= 40.249 min= 40.249 avg= 40.249 10 max= -0.561 min= -0.561 avg= -0.561 ENTER DATA 50K+30MIN

MSG 3 EOA Fault Management

* DONE

WD VALUE NAME

WD VALUE NAME

1 0000 Download Status

2 0001 Reference Level

3 0206 Reference Port 1

4 0288 Reference Port 2

5 0249 Reference Port 3

6 0171 Reference Port 4

7 0000 Reference Port 5

8 0000 DAC Test Results 9 0000 Feedback Results

ENTER DATA

RT 4 EOA

"SG 3 EOA Fault Management

* DONE

WD VALUE NAME

WD VALUE NAME

1 0000 Download Status

2 0001 Reference Level

3 0206 Reference Port 1

4 0288 Reference Port 2

5 0249 Reference Port 3 6 0171 Reference Port 4

7 0000 Reference Port 5

8 0000 DAC Test Results

9 0000 Feedback Results

ENTER DATA NO UPDATE

Check of Sensor fault reporting as part of troubleshooting

WD VALUE

NAME

RT 4 EOA

WD VALUE

MSG 4 Sensor Error Management

* DONE

1 0002 Error Total Temp 2 0012 Err Pitot Press.

NAME

3 0000 Err Long. Stick

4 0004 Error TEF

5 0000 Error NWS

6 0006 Error LEF

7 0016 Err Pwr Lev Cntl

8 0000 Err Rudder Pedal

9 0000 Error Stabilator

10 0000 Error Rudder

ENTER DATA NO UPDATE

EOA RT 4

Selected Mode * DONE

WD VALUE NAME

WD VALUE NAME

1 0003 Selected Mode

2 0000 Selected Submode

ENTER DATA NO UPDATE

```
RT
                EOA
                                                                             * DONE
MSG
      MSG 2
                Sensor Values
7 DW
      WD VALUE
                  NAME
                                               WD VALUE
                                                          NAME
1 5
       1 72FD Total Temp
                                771.290 DegR
                                               -->FAULT
                                                          UTrav
2 4
       2 4800 Pitot Pressure
                                  1.250 Hg
                                               -->FAULT
                                                          UTrav UPwr
3 C
       3 OF13 Long. Stick
                                 1.321 In
4 5
       4 529B Right TEF
                                 1.231 In
                                               -->FAULT
                                                          OSlew
5 1
       5 1712 NWS
                                 40.249 Deg
6 5
       6 5800 Right LEF
                                 -7.000 Deg
                                               -->FAULT
                                                          UTrav OSlew
7 5
       7 5C00 Power Lever Cntl
                                               -->FAULT
                                 0.000 Deg
                                                          UTrav OSlew UPwr
                                 0.137 In
8 6
       8 225D Rudder Pedal
9 2
       9 24C2 Left Stabilator
                                 -2.210 In
.0 2
      10 0050 Left Rudder
                                -0.561 In
3 m
       3 max= 1.321 min= 1.321 avg= 1.321
                                                8 max= 0.137 min= 0.137 avg= 0.137
4 m
                                                9 max= -2.210 min= -2.210 avg= -2.210
5 m
       5 max= 40.249 min= 40.249 avg= 40.249 10 max= -0.561 min= -0.561 avg= -0.561
                                                                  ENTER DATA 50K+35MIN
Т
                                 EDA#1 resumed 1553 updates after a power reset
      RT
               EOA
                                                                            * DONE
                                 at 50,000 ft. + 40 minutes.
٩G
      MSG 2
               Sensor Values
D V
      WD VALUE
                 NAME
                                               WD VALUE
                                                          NAME
1 E
       1 F2F9 Total Temp
                               769.140 DegR
                                               -->FAULT
                                                          UTrav
2 4
       2 4800 Pitot Pressure
                                1.250 Hg
                                                          UTrav UPwr
                                               -->FAULT
3 4
       3 4EFC Long. Stick
                                 1.253 In
                                               -->FAULT
                                                          OSlew
45
       4 52B7 Right TEF
                                 1.453 In
                                               -->FAULT
                                                          OSlew
5 1
       5 5707 NWS
                                38.636 Deg
                                              -->FAULT
                                                          OSlew
6 5
       6 58A7 Right LEF
                                0.020 Deg
                                              -->FAULT
                                                          UTrav OSlew
7 5
      7 5C00 Power Lever Cntl
                               0.000 Deg
                                              -->FAULT
                                                          UTrav UPwr
8 6
      8 627E Rudder Pedal
                                 0.185 In
                                              -->FAULT
                                                         OSlew
9 2
      9 24C9 Left Stabilator
                                -2.161 In
0 6
      10 69A5 Left Rudder
                                -0.118 In
                                              -->FAULT
                                                          OSlew
                                               6 max= 0.020 min= 0.020 avg= 0.020
      3 max= 1.336 min= 1.176 avg= 1.256 8 max= 0.185 min= 0.096 avg= 0.141
3 m
      4 max= 1.722 min= 1.128 avg= 1.425 9 max= -2.105 min= -2.224 avg= -2.165
      5 max= 45.528 min= 37.903 avg= 41.716 10 max= -0.001 min= -0.164 avg= -0.083
5 m
                                                                 ENTER DATA 50K+40MIN
```

```
RT 4
            EOA
                                                                      * DONE
 2 MSG 2 Sensor Values
VALUE WD VALUE
              NAME
                                          WD VALUE
                                                    NAME
F4FS
    1 E7FE Total Temp 909.462 DegR
                                          -->FAULT
                                                    UTrav
180( 2 4800 Pitot Pressure
                            1.250 Hg
                                          -->FAULT
                                                    UTrav UPwr
OFO5 3 4EA6 Long. Stick
                             0.998 In
                                          -->FAULT
                                                    OSlew
52AI
   4 5278 Right TEF
                            0.954 In
                                          -->FAULT
                                                    OSlew
56F3
    5 56F6 NWS
                           36.144 Deg
                                          -->FAULT
                                                    OSlew
    6 58C0 Right LEF
380C
                            1.070 Deg
                                          -->FAULT
                                                    OSlew
5COC 7 5COO Power Lever Cntl 0.000 Deg
                                          -->FAULT UTrav OSlew UPwr
5252 8 623E Rudder Pedal
                            0.092 In
                                          -->FAULT
                                                    OSlew
24C9 9 24C9 Left Stabilator -2.161 In
<sup>598]</sup> 10 29EE Left Rudder
                            -0.023 In
max= 3 max= 1.146 min= 1.057 avg= 1.102 8 max= 0.134 min= 0.098 avg= 0.116
ax= 4 max= 1.310 min= 1.192 avg= 1.251 9 max= -2.105 min= -2.168 avg= -2.137
ax = 5 max = 36.877 min = 33.358 avg = 35.117 10 max = -0.001 min = -0.164 avg = -0.083
                                                            ENTER DATA: DESC+5SEC
                                                     Descend in altitude + 5 seconds )
4
   RT 4
           EOA
                                                                      * DONE
2 MGG 2 Sensor Values
ALU WD VALUE
             NAME
                                         WD VALUE
                                                   NAME
```

2FI 1 E7FE Total Temp 909.462 DegR UTrav -->FAULT 308 2 4800 Pitot Pressure UTrav UPwr 1.250 Hg -->FAULT ED7 3 4ED1 Long. Stick 1.126 In OSlew -->FAULT 29E 4 52A6 Right TEF 1.318 In -->FAULT OSlew 72A 5 56E6 NWS 33.798 Deg -->FAULT OSlew 8CC 6 5800 Right LEF -7.000 Deg -->FAULT UTrav OSlew COC 7 5C00 Power Lever Cntl 0.000 Deg 24E 8 624D Rudder Pedal 0.114 In -->FAULT UTrav OSlew UPwr 24E 8 624D Rudder Pedal 4C8 9 24C8 Left Stabilator -->FAULT OSlew -2.168 In 9A6 10 29FC Left Rudder -0.005 In

ax= 3 max= 1.155 min= 1.063 avg= 1.109 8 max= 0.184 min= 0.051 avg= 0.117 ax= 4 max= 1.200 min= 1.200 avg= 1.200 9 max= -2.161 min= -2.168 avg= -2.165 ax= 5 max= 39.076 min= 31.745 avg= 35.411 10 max= -0.001 min= -0.164 avg= -0.083 ENTER DATA DESC+15SEC

MSG 2 Sensor Values

WD	VALUE NAME	WD VALUE NAME
2 3	72FD Total Temp 771.290 DegR 4800 Pitot Pressure 1.250 Hg 0EE1 Long. Stick 1.173 In	>FAULT UTrav >FAULT UTrav UPwr
5 6 7 8 9	1290 Right TEF	>FAULT UTrav OSlew
		6 max= 1.070 min= 1.070 avg= 1.070
4	max= 1.211 min= 1.078 avg= 1.145 max= 1.302 min= 0.962 avg= 1.132 max= 36.584 min= 30.132 avg= 33.358	8 max= 0.144 min= 0.043 avg= 0.094 9 max= -2.105 min= -2.224 avg= -2.165 10 max= -0.001 min= -0.164 avg= -0.083 ENTER DATA DESC+60SEC
RT	4 EOA 2 Sensor Values	* DONE
WD	VALUE NAME	WD VALUE NAME
2 3 4 5 6 7 8 9	E7FE Total Temp 909.462 DegR 4800 Pitot Pressure 1.250 Hg 4EE8 Long. Stick 1.194 In 528E Right TEF 1.128 In 16DD NWS 32.478 Deg 5800 Right LEF -7.000 Deg 5C00 Power Lever Cntl 0.000 Deg 6261 Rudder Pedal 0.143 In 24C9 Left Stabilator -2.161 In 2981 Left Rudder -0.164 In	>FAULT UTray UPwr >FAULT OSlew >FAULT UTray OSlew

Return to Room Altitude

ENTER DATA: ROOM ALT.

6 max= 0.020 min= 0.020 avg= 0.020

3 max= 1.250 min= 1.128 avg= 1.189 8 max= 0.168 min= 0.027 avg= 0.098 4 max= 1.421 min= 0.820 avg= 1.120 9 max= -2.105 min= -2.168 avg= -2.137 5 max= 35.997 min= 28.812 avg= 32.405 10 max= -0.023 min= -0.187 avg= -0.105

Sensor Values

```
WD VALUE
           NAME
                                         WD VALUE
                                                     NAME
1 D2FD Total Temp
                         771.290 DegR
                                         -->FAULT
                                                     UTrav
2 4800 Pitot Pressure
                           1.250 Hg
                                                    UTrav UPwr
                                         -->FAULT
3 4F0B Long. Stick
                           1.297 In
                                         -->FAULT
 4 5264 Right TEF
                           0.796 In
                                                    OSlew
                                         -->FAULT
5 56F9 NWS
                          36.584 Deg
                                                    OSlew
                                         -->FAULT
6 5BFF Right LEF
                          36.000 Deg
                                         -->FAULT
                                                    OTrav OSlew
7 5C00 Power Lever Cntl
                          0.000 Deg
                                         -->FAULT
                                                    UTrav UPwr
8 626D Rudder Pedal
                           0.161 In
                                         -->FAULT
                                                    OSlew
9 24C9 Left Stabilator
                          -2.161 In
10 69EE Left Rudder
                          -0.023 In
                                         -->FAULT
                                                    OSlew
```

```
3 max= 1.336 min= 1.235 avg= 1.285 8 max= 0.184 min= 0.049 avg= 0.117
4 max= 1.445 min= 0.756 avg= 1.101 9 max= -2.161 min= -2.168 avg= -2.165
5 max= 36.437 min= 31.598 avg= 34.018 10 max= -0.116 min= -0.164 avg= -0.140
                                                                                                                                               ENTER DATA: RM ALT+5M
```

Room Altitude + 5 minutes ŖТ EOA Repeated Data * DONE Sensor Values WD VALUE NAME WD VALUE NAME 1 D2FD Total Temp &Trav 771.290 DegR -->FAULT 2 4800 Pitot Pressure 1.250 Hg -->FAULT UTrav UPwr 3 4F0B Long. Stick -->FAULT 1.297 In 4 5264 Right TEF 0.796 In ->∕FAULT OSlew 5 56F9 NWS 36.584 Deg ->FAULT OSlew 6 5BFF Right LEF 36.000 Degs -->FAULT OTrav OSlew 7 5C00 Power Lever Cntl 0.000 Deg ->FAULT UTrav UPwr 8 626D Rudder Pedal 0.161 In **≻**≽FAULT OSlew 9 24C9 Left Stabilator -2.161 In 10 69EE Left Rudder -0.023 In ->FAULT OSlew

3 max= 1.336 min= 1.235 avg= 1.285 8 max= 0.184 min= 0.049 avg= 0.117 4 max= 1.445 min= 0.756 avg= 1.101 9 max= -2.161 min= -2.168 avg= -2.165 5 max= 36.437 min= 31.598 avg= 34.018 10 max= -0.116 min= -0.164 avg= -0.140 ENTER DATA RM ALT+5M

Values

NAME **VALUE**

WD VALUE

* DONE

MSG 2 Sensor Values

NAME

1	CFF6	Total Temp	905.161 DegR	>FAULT UTrav
2	4800	Pitot Pressure	1.250 Hg	>FAULT UTrav UPwr
3	4F0D	Long. Stick	1.303 In	>FAULT OSlew
4	128C	Right TEF	1.112 In	
5	16DF	NWS	32.771 Deg	
6	5800	Right LEF	-7.000 Deg	>FAULT UTrav OSlew
7	5C00	Power Lever Cntl	0.000 Deg	>FAULT UTrav UPwr
8	6211	Rudder Pedal	0.026 In	>FAULT OSlew
9	24C8	Left Stabilator	-2.168 In	
10	69EE	Left Rudder	-0.023 In	>FAULT OSlew
				•
3	max=	1.333 min= 1.23	8 avg= 1.285	8 max= 0.168 min= 0.045 avg= 0.106
		1.342 min= 1.03		9 max= -2.161 min= -2.168 avg= -2.165
		35.704 min= 32.77		10 max= -0.003 min= -0.164 avg= -0.084

WD VALUE

NAME

RT 4 EOA

MSG 2 Sensor Values

* DONE

ENTER DATA RM ALT+10M

WD	VALU	E NAME			WD VALUE	NAME
		Total Temp Pitot Pressure	907.849	_	>FAULT >FAULT	UTrav UTrav UPwr
_		Long. Stick	1.232	_	>FAULT	OSlew
		Right TEF	1.065	In	>FAULT	OSlew
5	56FA	NWS	36.730	Deg	>FAULT	OSlew
6	5800	Right LEF	-7.000	Deg	>FAULT	UTrav OSlew
7	5C00	Power Lever Cntl	0.000	Deg	>FAULT	UTrav UPwr
8	6222	Rudder Pedal	0.051	In	>FAULT	
9	24C9	Left Stabilator	-2.161	In		
10	29A5	Left Rudder	-0.118	In		

```
3 max= 1.294 min= 1.226 avg= 1.260 8 max= 0.098 min= 0.004 avg= 0.051
4 max= 1.374 min= 0.938 avg= 1.156 9 max= -2.161 min= -2.168 avg= -2.165
5 max= 35.557 min= 31.305 avg= 33.431 10 max= -0.001 min= -0.119 avg= -0.060
ENTER DATA:RM ALT+15M
```

Room Altitude + 15 minutes

15.4 ELECTROMAGNETIC INTERFERENCE TEST DATA SHEET

15.4.1 Electromagnetic Test (14.6) 2/28/93 Bral Kessler / Chris Au PASS FAIL V

15.4.1.1 Attach the report containing the graphs of the EOA EM radiation and conduction behind this data sheet.

Expected:

The conducted emissions will meet the requirements of MIL-STD-461C (class A1) CE03.

CE03: See figures 2-2 and 2-3 of MIL-STD-461C.

Comments:

EOA#1 failed to meet the limits specified in MIL-STD-461 Part 2 CEO3 limits due to Spikes in the conducted emissions. The majority of the conducted emissions are below the limits in MIL-STD-461 Part 2 CEO3.

EDA EMI Sources

200 to 250 kHZ - Power supply switching frequency

IMHZ - 1553 bus data rate

4 mHz - Litton optic decoding modules' clock

16 mHz - 1750/1553 module clock

64 MHZ - 1773/1553 converter module EPLDs operating frequency

The radiated emissions will meet the requirements of MIL-STD-461C (class A1) RE02.

RE02: See figures 2-11 and 2-12 of MIL-STD-461C.

Comments:

EOA#1 field to meet the limits specified in MIL-STD-461 Part 2 REOZ limits due to spikes in the radiated emissions. The majority of the conducted emissions are below the limits in MIL-STD-461 Part 2 REOZ.

See CE03 comments for EDA EMI Sources.

1.0 EMC TESTS

MIL-STD-461C CE03 and RE02 testing was performed on the Fiber Optic Control System Integration (FOCSI) in an informal qualification test. CE07 testing was originally intended to be tested but was deferred because of questions regarding applicability.

- 2.0 CE03 (Conducted Emissions on Power Leads: 15 kHz to 50 MHz)
- 2.1 The CE03 test consisted of measuring the narrowband and broadband conducted emissions on the 28 VDC high and return power lines of the FOCSI. Testing was performed to determine compliance with emission levels identified in MIL-STD-461C Part 2 for aircraft equipment.
- The FOCSI was bonded to the ground plane with a lead weight placed on top of the unit. This weight provided sufficient bonding through the front feet of the unit. Bonding measured to be 1.5 m Ω . Power required for the operation of the FOCSI was 28 VDC and was provided through 10 uFd feed through capacitors as identified in MIL-STD-462. Bonding of the 10 uFd capacitors to the ground plane was measured to be 0.25 m Ω .
- 2.3 The FOCSI was in a full up configuration with the LEDs illuminated. The power and signal lines were in considerable excess of the two meters necessary to perform RE02. Because RE02 was performed prior to CE03, most of the power and signal bundles were shielded with aluminum foil. The foil shields were then grounded to the ground plane. Two meters of both power and signal lines were left unshielded. A resistive load was used to terminate the signal line output containing MUX data. This was monitored prior to testing as a functional test of the FOCSI.
- The test setup consisted of using a Solar 6741 current probe transducer to detect the emissions on the power lines and an HP 85685A preselector and an HP 8566B spectrum analyzer to measure the emission amplitude and frequency. A computer controller is used to automate the test applying necessary transducer factors and cable losses, and displaying, storing, and plotting the results. The copy of the customized test file used for automating CE03 testing of the FOCSI is included in Enclosure 1. The current probe transducer and cable loss tables are also included.
- 2.5 Ambient levels were measured on both the 28 VDC high and return to confirm that the test set up provided emission levels well below the required specification. The 28 VDC power leads were then checked individually with the FOCSI powered on. Plots from these tests can be found in Enclosure 2.
- 2.6 As the test results indicate, the FOCSI does not meet MIL-STD-461C Part 2 CE03 limits. Narrowband and broadband emissions for each line were plotted in addition to the limit lines. Outages were printed for any peak above this limit. Those emissions that exceeded one limit but not the other (i.e. out

of specification on the narrowband specification but passes the broadband specification and vice versa) were examined individually to determine whether it was a narrowband or broadband emission. The change in amplitude of greater or less than 3 dB at two impulse bandwidths away from the peak center frequency test was used to make this distinction. These are penciled in beside the print out of each peak.

- 3.0 **RE02** (Radiated Emissions from Electric Field: 14 kHz to 10 GHz)
- 3.1 The RE02 test consisted of measuring the narrowband and broadband emissions from the FOCSI. Because we are testing to MIL-STD-461C, testing was performed to 10 GHz.
- 3.2 The FOCSI was bonded to the ground plane with a lead weight placed on top of the unit. This weight provided sufficient bonding through the front feet of the unit. Bonding measured to be 1.5 m Ω . Power required for the operation of the FOCSI was 28 VDC and was provided through 10 uFd feed through capacitors as identified in MIL-STD-462. Bonding of the 10 uFd capacitors to the ground plane was measured to be 0.25 m Ω .
- 3.3 The FOCSI was in a full up configuration with the LEDs illuminated. Operation of the FOCSI was stand alone so no wires into or out of the anechoic chamber were necessary. The power and signal lines were in considerable excess of the two meters necessary to perform RE02. Preliminary RE02 measurements were taken with the power and signal bundles unshielded. These emissions were well out of specification. Because of this, most of the power and signal bundles were shielded with aluminum foil. The foil shields were then grounded to the ground plane. Two meters of both power and signal lines were left unshielded. A resistive load was used to terminate the signal line output containing MUX data. This resistive load was also shielded.
- 3.4 For the RE02 test, the test set, spectrum analyzer, preselector, computer, hard drive, and plotter were all located outside of the shielded anechoic room to prevent test equipment noise from corrupting the radiated emission measurements during testing of the FOCSI. The only equipment in the room during testing was the FOCSI, associated cabling, and the required receiving antennas. The EMI software and computer were used to control the test, store and plot the results, and calculate the broadband and narrow band emission levels. The setup table, antenna factors, impulse bandwidths, and cable losses used by the EMI software are all included in Enclosure 3.
- 3.5 Ambient levels were measured to be well below the required radiated emission specification. Power was then applied to the FOCSI and radiated emissions from the unit were measured. Plots from these tests can be found in Enclosure 4.

As the test results indicate, the FOCSI does not meet MIL-STD-461C Part 2 RE02 limits. Narrowband and broadband emissions for each line were plotted in addition to the limit lines. Outages were printed for any peak above this limit. Those emissions that exceeded one limit but not the other (i.e. out of specification on the narrowband specification but passes the broadband specification and vice versa) were examined individually to determine whether it was a narrowband or broadband emission. The change in amplitude of greater or less than 3 dB at two impulse bandwidths away from the peak center frequency test was used to make this distinction. These are penciled in beside the print out of each peak.

PEAK#	FREQ (MHz)	(dBuA)	DELTA
1	4.291	26.3	6.3
(2) (3) 4	12.01	23	3.0 NB (data)
~3	15.07	2 3	3.0 NB
4	22.06	26.7	6.7
5	23.92	29.6	9.6
	27.9	22.4	2.4 NB (inta)
.	30.01	22.2	2.2 NB (data)
8	36.16	30.5	10.5
9	37.96	22.8	2.8 NB (data) .2 NB (data)
10	42.18	20.2	.2 NB (data)
11	46.86	30.5	10.5
12	48.01	36.4	16.4

NB= Narrow Band Emission
BB = Broad Band Emission

PEAK#	FREQ (MHz)	(dBuA)	DELTA
1	4.291	26.3	6.3
(3)	12.01	23	3.0 NB (data)
3	15.07	23	3.0 NB
4	22.06	26.7	6.7
5	23.92	29.6	9.6
6 7	27.9	22.4	2.4NB (data)
.	30.01	22.2	2.2 NB (ónia)
8	36.16	30.5	10.5
9	37.96	22.8	
10	42.18	20.2	2.8 NB (data) .2 NB (data)
11	46.86	30.5	10.5
12	48.01	36.4	16.4

PEAK#	FREQ (MHz)	(dBuA)	DELTA
1	4.291	26.3	6.3
(2)	12.01	23	3.0 NB (data)
34	15.07	23	3.0 NB
4	22.06	26.7	6.7
5	23.92	29.6	9.6
(a)(A) (a)(a)	27.9	22.4	2.4 NB (data)
.	30.01	22.2	2.2 NB (sata)
8	36.16	30.5	10.5
(9)	37.96	22.8	2.8 NB (data) .2 NB (data)
10	42.18	20.2	.2 N3 (data)
11	46.86	30.5	10.5
12	48.01	36.4	16.4

Peaks above 0 dB of Limit Line #1 peak criteria = 6 dB

PEAK#	FREQ (MHz)	(dBuA/MHz)	DELTA
1	4.291	53	3.0
2	15.07	50.4	.4
3	22.06	53.7	3.7
4	23.92	56.5	8.5
5	36.16	58.2	8.2
6	46.86	57.5	7.5
7	48.01	63.8	13.8

Peaks above 0 dB of Limit Line #1 peak criteria = 6 dB

PEAK#	FREQ (MHz)	(dBuA/MHz)	DELTA
1	4.291	53	3.0
2	15.07	50.4	. 4
3	22.06	53.7	3.7
4	23.92	56.5	6.5
5	36.16	58.2	8.2
6	46.86	57.5	7.5
7	48.01	63.8	13.8

Peaks above 0 dB of Limit Line #1 peak criteria = 6 dB

PEAK#	FREQ (MHz)	(dBuA/MHz)	DELTA
1	4.291	53	3.0
2	15.07	50.4	.4
3	22.06	53.7	3.7
4	23.92	56.5	6.5
5	36.16	58.2	8.2
6	46.86	57.5	7.5
7	48.01	63.8	13.8

Peaks above 0 dB of Limit Line #1 peak criteria = 6 dB

PEAK#	FREQ (MHz)	(dBuA)	DELTA
1	4.291	25.4	5.4 N ¹³
2	12.01	24.2	4.2
N(3) 4 15 (6)(7)	13.56	21	1.0 20
(4)	15.07	21.7	1.7 NB
5	22.06	26.1	6.1
(€	27.9	23.7	3.7 NB (dafa)
(2)	34.72	24.3	3.7 NB (dala) 4.3 NB (dala)
8	36.16	24.7	4.7
8 (a) (8)	37.9 6	21.4	1.4 NB (data)
10	45.74	32.8	12.8 NB
11	48.01	29.3	9.3

PEAK#	FREQ (MHz)	(dBuA)	DELTA
1	4.291	25.4	5.4 N ¹³
2	12.01	24.2	4.2
N (3) (4) JD (6) (7)	13.56	21	1.0 20
(4)	15.07	21.7	1.7 NB
5	22.06	26.1	6.1
(<u>6</u>)	27.9	23.7	3.7 NB (dafa) 4.3 NB (dafa)
	34.72	24.3	4.3 NB (Sata)
8	36.16	24.7	4.7
9	37.96	21.4	1.4 NB (data)
10	45.74	32.8	12.8 NB
11	48.01	29.3	9.3

PEAK#	FREQ (MHz)	(dBuA)	DELTA
1	4.291	25.4	5.4 NB
2	12.01	24.2	4.2
N(3) (4) JD (6) (7)	13.56	21	1.0 25
(4)	15.07	21.7	1.7 NB
5	22.06	26.1	6.1
(<u>6</u>)	27.9	23.7	3.7 NB (data) 4.3 NB (sata)
	34.72	24.3	4.3 NB (Safa)
8	36.16	24.7	4.7
8 9 9	37.96	21.4	1.4 NB (data)
10	45.74	32.8	12.8 NB
11	48.01	29.3	9.3

Peaks above 0 dB of Limit Line #1 peak criteria = 6 dB

PEAK#	FREQ (MHz)	(dBuA/MHz)	DELTA	
1	4.291	52.6	2.6	NB
2	12.01	51.7	1.7	
3	22.06	53	3.0	
4	36.16	53.8	3.8	
5	48.01	60.2	10.2	

PEAK#	FREQ (MHz)	(dBuA/MHz)	DELTA	
1	4.291	52.6	2.6	NB
2	12.01	51.7	1.7	_
3	22.06	53	3.0	
4	36.16	53.8	3.8	
5	48.01	60.2	10.2	

Peaks above 0 dB of Limit Line #1 peak criteria = 6 dB

PEAK#	FREQ (MHz)	(dBuA/MHz)	DELTA
1,	4.291	52.6	2.6 NB
2	12.01	51.7	1.7 83
3	22.06	53	3.0
4	36.16	53.8	3.8
5	48.01	60.2	10.2

PEAK#	FREQ (MHz)	(dBuV/M)	DELTA
① 2	4.023	34.9	1.3 NB
2	4.16	42.5	9.0
3	12.02	33.8	2.4
4	28.07	39.7	9.0
4(5)6	36.29	34.7	2.3 NB
6	47.98	36	1.7
7(8)(9) 0 10 11	56.1	38.8	3.5
.8	60.66	40.5	4.8 NB
<u>,9</u>)	64.14	37.5	1.3 NB
10	67.07	36.7	.2 NB
	71.72	40.3	3.4 NB
12	107.2	43.2	3.6
13	128.17	44.2	3.4
(14)	226.51	49	4.4 NB

NB = Narrow Band Emission
BB = Broad Bond Emission

PEAK#	FREQ (MHz)	(dBuV/M)	DELTA
<u>①</u> 2	4.023	34.9	1.3 NB
2	4.16	42.5	9.0
3	12.02	33.8	2.4
4	28.07	39.7	9.0
4(in)6	36. 29	34.7	2.3 NB
6	47.98	36	1.7
7	56.1	38.8	3.5
70000	60.66	40.5	4.8 NB
(9)	64.14	37.5	1.3 NB
10	67.07	36.7	.2 NB
(11)	71.72	40.3	3.4 NB
12	107.2	43.2	3.6
13	128.17	44.2	3.4
(14)	226.51	49	4.4 NB

PEAK#	FREQ (MHz)	(dBuV/M)	DELTA
2	4.023	34.9	1.3 NE
	4.16	42.5	9.0
3	12.02	33.8	2.4
4	28.07	39.7	9.0
(5	36.29	34.7	2.3 NB
4(5)67(8)9(8)	47.98	36	1.7
7	56.1	38.8	3.5
(8)	60.66	40.5	4.8 NB
(9)	64.14	37.5	1.3 NB
10	67.07	36.7	.2 NB
(1)	71.72	40.3	3.4 NB
12	107.2	43.2	3.6
13	128.17	44.2	3.4
(14)	226.51	49	4.4 NB

PEAK#	FREQ (MHz)	(dBuV/M)	DELTA
1	47.98	41.3	7.0
2	51.88	39.5	4.7
3	56.1	46.8	11.5
4	58.01	41.3	5.8
5	59.99	43	7.2
5 (b) 7 (b) (9	62.73	36.7	.6 NB
7	64.14	38.3	2.1 NB
8	71.72	41.5	4.6 NB
<u>(9</u>)	83.85	38.9	.9 NB
10	167.55	43.3	.7 "
11	185.27	44.9	1.6

PEAK#	FREQ (MHz)	(dBuV/M)	DELTA
1	47.98	41.3	7.0
2	51.88	39.5	4.7
3	56.1.	46.8	11.5
4	58.01	41.3	5.8
5_	59.99	43	7.2
6	62.73	36.7	.6 NB
\mathcal{I}	64.14	38.3	2.1 NB
8	71.72	41.5	4.6 NB
(a) (~) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a	83.85	38.9	.9 NB
10	167.55	43.3	.7
11	185.27	44.9	1.6

PEAK#	FREQ (MHz)	(dBuV/M)	DELTA
1	47.98	41.3	7.0
2	51.88	39.5	4.7
3	56.1	45.8	11.5
4	58.01	41.3	5.8
5_	59.99	43	7.2
6)7/8(9) 10	62.73	36.7	.6 NB
7	64.14	38.3	2.1 NB
8	71.72	41.5	4.6 NB
ુ9.`	83.85	38.9	.9 NB
10	167.55	43.3	.7
11	185.27	44.9	1.6

Peaks above 0 dB of Limit Line #1 peak criteria = 6 dB

PEAK#	FREQ (MHz)	(dBuV/M/MHz)	DELTA
1	4.16	89.5	6.3
2	12.02	81.5	3.3
③	21.96	75.6	.3 173
4	28.07	76.5	2.3
5	47.98	71.8	. 1
6	56.1	74	3.1
(A) (B) (B)	58.01	72.2	1.4 NB
(8)	59.99	76.9	6.3 NB
9	107.2	70.3	2.4
10	128.17	73	6.0
\mathbb{Q}	185.27	69.9	4.5 NB

PEAK#	FREQ (MHz)	(dBuV/M/MHz)	DELTA
1	4.16	89.5	6. 3
2	12.02	81.5	3.3
3	21.96	75.6	.3 N73
4	28.07	76.5	2.3
5	47.9 8	71.8	. 1
6	56.1	74	3.1
(T) (B) (9)	58.01	72.2	1.4 NB
(8)	59.99	76.9	6.3 NB
9	107.2	70.3	2.4
10	128.17	73	6.0
Q	185.27	69.9	4.5 NB

Peaks above 0 dB of Limit Line #1 peak criteria = 6 dB

PEAK#	FREQ (MHz)	(dBuV/M/MHz)	DELTA
1	4.16	89.5	6.3
2	12.02	81.5	3.3
3	21.96	75.6	.3 M3
4	28.07	76.5	2.3
5	47.9 8	71.8	.1
6	56.1	.74	3.1
789	58.01	72.2	1.4 NB
(8)	59.99	76.9	6.3 NB
9	107.2	70.3	2.4
10	128.17	73	6.0
\mathbf{Q}	185.27	69.9	4.6 NB
			-

Peaks above 0 dB of Limit Line #1 peak criteria = 6 dB

PEAK#	FREQ (MHz)	(dBuV/M/MHz)	DELTA
1	47.98	78.1	6.4
2	51.88	75.3	4.0
3	56.1	83.1	12.2
4	58.01	73.5	2.7
5	59.99	77.2	6.6
6	167.55	69.8	4.0
7	185.27	71.9	6.6
(8)	191.58	68.7	3.5 NB

PEAK#	FREQ (MHz)	(dBuV/M/MHz)	DELTA
1	47.98	78.1	6.4
2	51.88	75.3	4.0
3	56.1	83.1	12.2
4	58.01	73.5	2.7
5	59.99	77.2	6.6
6	167.55	69.8	4.0
7	185.27	71.9	6.6
8	191.58	68.7	3.5 NB

PEAK#	FREQ (MHz)	(dBuV/M/MHz)	DELTA
1	47.98	78.1	5.4
2	51.88	75.3	4.0
3	56.1	83.1	12.2
4	58.01	73.5	2.7
5	59.99	77.2	6.6
6	167.55	69.8	4.0
7	185.27	71.9	6.6
(8)	191.58	68.7	3.5 NB

15.5 FINAL VERIFICATION TEST DATA SHEET (RUDDER PEDAL SENSOR)

15.5.1 Final Verification Test (14.7)	PASS FAIL				
Performed by: Brad Kessler Date: 7/16/93	Test Article Serial Number: 001				
15.5.2 Null Offset Test (9.6.2)	EOA#/ PASSU FAIL				
15.5.2.1 Record the PFS Test Set value during the test and t	he largest sensor value.				
Sensor Null Offset ± 0.001 inches Avg, 0.0	Expected: ≤+/-0.0045 in.				
PFS Test Set Value 2.500 inches	Expected: 0.000 in.				
Comments:					
15.5.3 <u>Resolution Test (9.6.3)</u>	PASS FAIL				
15.5.3.1 Record the PFS Test Set position and the smallest cl	hange in the sensor position.				
PFS Test Set Initial Position 0.500 in. and	I Ending Position 0.502 in.				
Sensor Resolution 0.002 in. Expected: $\leq +/-0.0045$ in. Estimated: $2(0.75)/2^{10} \approx 0.0015$ in. Proc. Spec.: 0.00037 in.					
Comments: The sensor changed from 0.505 +	o 0.507 for a difference of 0.002.				
15.5.4 Range Test (9.6.4)	PASS FAIL				
15.5.4.1 Record the sensor and PFS Test Set full stroke positi	ons.				
Sensor Positions - Full Stroke -0.750	in. Expected: –0.750in.				
+ Full Stroke 0.75°	in. Expected: +0.750in.				
PFS Test Set Positions – Full Stroke – 0.773	lin. Expected: -0.750in.				
+ Full Stroke 0.745	in. Expected: +0.750in.				
Comments: The PFS values were taken when the	- sensor readings reached the extremes.				

15.5.5 Linearity Test (9.6.5)

PASS 🗹	FAIL

Record Sensor Positions at the		POSITION AND FORCE SENSOR (PFS) TEST SET POSITIONS							
PFS Positions	-0.750	-0.563	-0.375	-0.188	0.00	0.188	0.375	0.563	0.750
0 to +Full Stroke					0.000	0.188	0.376	0.565	0.750
+Full Stroke to 0					0,006	0,198	0.381	0.569	0.750
0 to -Full Stroke	-0.740	-0,543	-0.363	-0.176	2	Ontra	0.38	0.367	0.730
-Full Stroke to 0	-0.750	-0,570		~0.188	-0.004				

15.5.5.1 Print the spreadsheet containing the PFS Test Set vs. sensor positions and the linear regression and standard deviation analysis on those points, and attach it behind this data sheet.

15.5.5.2 Record the slope, constant, and standard deviation values.

Slope 0.998	Expected: 1.0	Constant 0.004	Expected: 0
Standard Deviation	0.007		
Comments:			

15.5.5.3 Calculate the linear regressed range of the null and full stroke values, and account for the standard deviation to find the linear regressed range of the null and full stroke values.
y = mx + b, where m = slope, b = constant, x = sensor positions linear regressed range = (y - standard deviation) to (y + standard deviation)

Comments:

15.5.5.4 Calculate the deviations of the actual data points from the best straight line and record the largest deviation.

	at -0.563	
Sensor Nonlinearity 0.015	in.	Expected: $\leq +/-0.0019$ in

Comments: The sensor nonlinearity is larger than expected but the overall results are good.

FOXIDATA.XLS

Environmental Final Perfomance Test (Rudder Pedal Sensor S/N 001)

Reference (inches)	Sensor (inches)
0	0
0.188	0.188
0.375	0.376
0.563	0.565
0.75	0.75
0.75	0.75
0.563	0.569
0.375	0.381
0.188	- 0.198
0	0.006
-0.188	-0.176
-0.375	-0.363
-0.563	-0.543
-0.75	-0.74
-0.75	-0.75
-0.563	-0.57
-0.375	-0.381
-0.188	-0.188
0	-0.004

Least Squares Fit $(y = mx + b)$					
Results	Мар	Results			
m	b	0.997556	0.003579		
se m	se b	0.003408	0.001606		
r squared	se y	0.999802	0.007002		
L.	df	85694.03	17		
ss reg	ss resid	4.201145	0.000833		

Least Square Fit Results Key
m = slope
b = y-intercept
se m = standard error for slope
se b = standard error for y-intercept
r squared = coefficient of determination
se y = standard error for the y estimate
(se y = standard deviation)
F = the F statistic
df = degrees of freedom
ss reg = regression sum of squares
ss resid = residual sum of squares

