<

0

6.4 다중공선성과 변수 선택

다중공선성(multicollinearity)란 독립 변수의 일부가 다른 독립 변수의 조합으로 표현될 수 있는 경우이다. 독립 변수의 사물 등리의 이 기가 사용 사과과 계기 가항 건 이에 반내했다. 이는 등리 범소의 고보사 행력이 되게 받아 이 이어 보다는 다른 보다 이 기가 되었다.

보스턴 집값 예측 문제에 응용

6.4 다중공선성과 변수 선택

∷ Contents

VIF

수들이 서로 독립이 아니라 상호상관관계가 강한 경우에 발생한다. 이는 독립 변수의 공분산 행렬이 full rank 이어야한다는 조건을 침해한다.

다음 데이터는 미국의 거시경제지표를 나타낸 것이다.

- TOTEMP Total Employment
- GNPDEFL GNP deflator
- GNP GNP
- UNEMP Number of unemployed
- ARMED Size of armed forces
- POP Population
- YEAR Year (1947 1962)

스캐터 플롯에서 보듯이 독립변수간의 상관관계가 강하다.

상관관계는 상관계수 행렬로도 살펴볼 수 있다.

dfX.corr()

	GNPDEFL	GNP	UNEMP	ARMED	POP	YEAR
GNPDEFL	1.000000	0.991589	0.620633	0.464744	0.979163	0.991149
GNP	0.991589	1.000000	0.604261	0.446437	0.991090	0.995273
UNEMP	0.620633	0.604261	1.000000	-0.177421	0.686552	0.668257
ARMED	0.464744	0.446437	-0.177421	1.000000	0.364416	0.417245
POP	0.979163	0.991090	0.686552	0.364416	1.000000	0.993953
YEAR	0.991149	0.995273	0.668257	0.417245	0.993953	1.000000

```
cmap = sns.light_palette("darkgray", as_cmap=True)
sns.heatmap(dfX.corr(), annot=True, cmap=cmap)
plt.show()
```


다중 공선성이 있으면 독립변수의 공분산 행렬의 조건수(conditional number)가 증가한다.

```
from sklearn.model_selection import train_test_split

def get_model1(seed):
    df_train, df_test = train_test_split(df, test_size=0.5, random_state=seed)
    model = sm.OLS.from_formula("TOTEMP ~ GNPDEFL + POP + GNP + YEAR + ARMED + UNEMP",
    data=df_train)
    return df_train, df_test, model.fit()

df_train, df_test, result1 = get_model1(3)
print(result1.summary())
```

Dep. Variable: TOT			MP	R-squ	ared:		1.000
Model:		(DLS	Adj.	R-squared:		0.997
Method:				F-statistic:			437.5
				<pre>Prob (F-statistic):</pre>			0.0366
Time:		18:13:38		Log-Likelihood:			-44.199
No. Observ	ations:		8	AIC:			102.4
Df Residua	ls:		1	BIC:			103.0
Df Model:			6				
Covariance	3 1	nonrobi					
	coef	std err		t	P> t	[0.025	0.975]
		2.97e+06					
GNPDEFL	106.2620	75.709	1	.404	0.394	-855.708	1068.232
POP	2.2959	0.725	3	.167	0.195	-6.915	11.506
GNP	-0.3997	0.120	-3	.339	0.185	-1.920	1.121
YEAR	6300.6231	1498.900	4	. 203	0.149	-1.27e+04	2.53e+04
ARMED	-0.2450	0.402	-0	.609	0.652	-5.354	4.864
		1.324					
mnibus:					 n-Watson:		1.713
Prob(Omnibus):		0.8	379	Jarqu	e-Bera (JB)	:	0.304
Skew:		0.3	300	Prob(JB):		0.859
Curtosis: 2.258		258	Cond. No. 2.016			2.01e+10	

또한 다음처럼 학습용 데이터와 검증용 데이터로 나누어 회귀분석 성능을 비교하면 과최적화가 발생하였음을 알 수 있다.

```
def calc_r2(df_test, result):
    target = df.loc[df_test.index].TOTEMP
    predict_test = result.predict(df_test)
    RSS = ((predict_test - target)**2).sum()
    TSS = ((target - target.mean())**2).sum()
    return 1 - RSS / TSS

test1 = []
for i in range(10):
    df_train, df_test, result = get_model1(i)
    test1.append(calc_r2(df_test, result))
```

```
[0.9815050656837723,
0.9738497543069347,
0.9879366369871746,
0.7588861967897188,
0.980720608930437,
0.8937889315168234,
0.8798563810651999,
0.9314665778963799,
0.8608525682180641,
0.9677198735170137]
```

독립변수가 서로 의존하게 되면 이렇게 과최적화(over-fitting) 문제가 발생하여 회귀 결과의 안정성을 해칠 가능성이 높아진다. 이를 방지하는 방법들은 다음과 같다.

- 변수 선택법으로 의존적인 변수 삭제
- PCA(principal component analysis) 방법으로 의존적인 성분 삭제
- 정규화(regularized) 방법 사용

VIF

다중 공선성을 없애는 가장 기본적인 방법은 다른 독립변수에 의존하는 변수를 없애는 것이다. 가장 의존적인 독립변수를 선택하는 방법으로는 VIF(Variance Inflation Factor)를 사용할 수 있다. VIF는 독립변수를 다른 독립변수로 선형회귀한 성능을 나타낸 것이다. i번째 변수의 VIF는 다음과 같이 계산한다.

$$VIF_i = \frac{\sigma^2}{(n-1)Var[X_i]} \cdot \frac{1}{1-R^2}$$

<

여기에서 R_i^2 는 다른 변수로 i번째 변수를 선형회귀한 성능(결정 계수)이다. 다른 변수에 의존적일 수록 VIF가 커진 다.

0

StatsModels에서는 variance inflation factor 명령으로 VIF를 계산한다.

```
from statsmodels.stats.outliers_influence import variance_inflation_factor

vif = pd.DataFrame()
vif["VIF Factor"] = [variance_inflation_factor(
    dfX.values, i) for i in range(dfX.shape[1])]
vif["features"] = dfX.columns
vif
```

features	VIF Factor	
GNPDEFL	12425.514335	0
GNP	10290.435437	1
UNEMP	136.224354	2
ARMED	39.983386	3
POP	101193.161993	4
YEAR	84709.950443	5

상관계수와 VIF를 사용하여 독립 변수를 선택하면 GNP, ARMED, UNEMP 세가지 변수만으로도 비슷한 수준의 성능이 나온다는 것을 알 수 있다.

```
def get_model2(seed):
    df_train, df_test = train_test_split(df, test_size=0.5, random_state=seed)
    model = sm.OLS.from_formula("TOTEMP ~ scale(GNP) + scale(ARMED) + scale(UNEMP)",
    data=df_train)
    return df_train, df_test, model.fit()

df_train, df_test, result2 = get_model2(3)
    print(result2.summary())
```

Dep. Variable:		TOTEMP	R-square	ed:		0.989
Model:		OLS	- 1		0.981	
Method: Le		east Squares	F-statistic:			118.6
		•	Prob (F-statistic):		0.000231	
		Log-Like				
No. Observations	:	8	AIC:			123.4
Df Residuals:		4	BIC:			123.7
Df Model:		3				
Covariance Type:		nonrobust				
=======================================						=======
	coef	std err		P> t 	-	-
Intercept 6.	538e+04					
scale(GNP) 43	38.7051	406.683	10.669	0.000	3209.571	5467.839
scale(ARMED) -8	12.1407	315.538	-2.574	0.062	-1688.215	63.933
scale(UNEMP) -13	73.0426	349.316	-3.931	0.017	-2342.898	-403.187
======== Omnibus:	======		 Durbin-V			2.032
Prob(Omnibus):				Bera (JB):		0.565
Skew:			Prob(JB):		0.754	
		1.958	' '			4.77

다중공선성을 제거한 경우에는 학습 성능과 검증 성능간의 차이가 줄어들었음을 확인할 수 있다. 즉, 과최적화가 발생 하지 않는다.

```
test2 = []
for i in range(10):
    df_train, df_test, result = get_model2(i)
    test2.append(calc_r2(df_test, result))

test2
```

```
0
```

```
[0.9763608388904907,
0.9841984331185702,
0.9687069366140136,
0.9397304053201785,
0.9773357061188462,
0.9561262155732316,
0.980385249669863,
0.9917361722470804,
0.9837134067639467,
0.9789512977093212]
```

```
plt.subplot(121)
plt.plot(test1, 'ro', label="검증 성능")
plt.hlines(result1.rsquared, 0, 9, label="학습 성능")
plt.legend()
plt.xlabel("시드값")
plt.ylabel("성능(결정계수)")
plt.title("다중공선성 제거 전")
plt.ylim(0.5, 1.2)
plt.subplot(122)
plt.plot(test2, 'ro', label="검증 성능")
plt.hlines(result2.rsquared, 0, 9, label="학습 성능")
plt.legend()
plt.xlabel("시드값")
plt.ylabel("성능(결정계수)")
plt.title("다중공선성 제거 후")
plt.ylim(0.5, 1.2)
plt.suptitle("다중공선성 제거 전과 제거 후의 성능 비교", y=1.04)
plt.tight_layout()
plt.show()
```

다중공선성 제거 전과 제거 후의 성능 비교

보스턴 집값 예측 문제에 응용

```
from sklearn.datasets import load_boston
boston = load_boston()

dfX0 = pd.DataFrame(boston.data, columns=boston.feature_names)

from patsy import dmatrix

formula = "scale(CRIM) + scale(I(CRIM ** 2)) + " + \
    "scale(ZN) + scale(I(ZN ** 2)) + scale(INDUS) + " + \
    "scale(NOX) + scale(RM) + scale(AGE) + " + \
    "scale(np.log(DIS)) + scale(RAD) + scale(TAX) + " + \
    "scale(np.log(PTRATIO)) + scale(B) + scale(np.log(LSTAT)) + CHAS"

dfX = dmatrix(formula, dfX0, return_type="dataframe")
dfy = pd.DataFrame(boston.target, columns=["MEDV"])
```

```
0
```

```
idx_outlier = \
    np.array([7, 54, 148, 152, 160, 214, 253, 267, 364, 365, 367, 368, 369,
                371, 372, 374, 380, 385, 397, 398, 399, 400, 401, 405, 409, 410,
                412, 413, 414, 415, 416, 418, 419, 426, 445, 489, 490, 492, 505,
                161, 162, 163, 166, 186, 195, 204, 225, 257, 267, 283, 368, 369,
                370, 371, 372])
idx = list(set(range(len(dfX))).difference(idx_outlier))
dfX = dfX.iloc[idx, :].reset_index(drop=True)
dfy = dfy.iloc[idx, :].reset_index(drop=True)
```

```
cmap = sns.light_palette("black", as_cmap=True)
sns.heatmap(dfX.corr(), annot=True, fmt='3.1f', cmap=cmap)
```



```
vif = pd.DataFrame()
vif["VIF Factor"] = [variance_inflation_factor(
    dfX.values, i) for i in range(dfX.shape[1])]
vif["features"] = dfX.columns
vif = vif.sort_values("VIF Factor").reset_index(drop=True)
vif
```

	VIF Factor	features
0	1.061624	CHAS
1	1.338325	scale(B)
2	1.478553	Intercept
3	1.780320	<pre>scale(np.log(PTRATIO))</pre>
4	2.596496	scale(RM)
5	3.748931	scale(AGE)
6	3.807459	scale(INDUS)
7	4.682812	<pre>scale(np.log(LSTAT))</pre>
8	5.071802	scale(NOX)
9	5.215025	<pre>scale(np.log(DIS))</pre>
10	9.107858	scale(TAX)
11	10.218588	<pre>scale(I(CRIM ** 2))</pre>
12	11.254736	scale(RAD)
13	11.751869	scale(I(ZN ** 2))
14	14.646056	scale(ZN)
15 cience	21.260182 eschool.net/03 machin	scale(CRIM) ne learning/06.04 다중공선성과 변수 선택.h

```
model_boston1 = sm.OLS(np.log(dfy), dfX)
result_boston1 = model_boston1.fit()
print(result_boston1.summary())
```

Dep. Variable:	ME	DV R-squa	red:		0.872	
Model:	0		-squared:		0.868	
Method:	Least Squar				199.9	
Date:	Sun, 23 Jun 20	19 Prob (1.56e-185	
Time:	18:13:	,		317.45		
No. Observations:	4	56 AIC:	· ·		-602.9	
Df Residuals:	4	40 BIC:			-536.9	
Df Model:		15				
Covariance Type:	nonrobu					
	coef	std err	t	P> t	[0.025	0.975]
Intercept	3.0338	0.007	433.880	0.000	3.020	3.048
scale(CRIM)	-0.3471	0.044	-7.976	0.000	-0.433	-0.262
scale(I(CRIM ** 2))	0.3075	0.071	4.331	0.000	0.168	0.447
scale(ZN)	-0.0465	0.022	-2.110	0.035	-0.090	-0.003
scale(I(ZN ** 2))	0.0440	0.020	2.206	0.028	0.005	0.083
scale(INDUS)	0.0037	0.012	0.323	0.747	-0.019	0.026
scale(NOX)	-0.0652	0.013	-5.001	0.000	-0.091	-0.046
scale(RM)	0.0999	0.011	9.195	0.000	0.079	0.123
scale(AGE)	-0.0273	0.011	-2.438	0.015	-0.049	-0.00
<pre>scale(np.log(DIS))</pre>	-0.1008	0.014	-7.368	0.000	-0.128	-0.074
scale(RAD)	0.1634	0.020	8.106	0.000	0.124	0.203
scale(TAX)	-0.0934	0.018	-5.153	0.000	-0.129	-0.058
scale(np.log(PTRATIO))) -0.0699	0.008	-8.872	0.000	-0.085	-0.054
scale(B)	0.0492	0.007	6.699	0.000	0.035	0.064
<pre>scale(np.log(LSTAT))</pre>	-0.1487	0.013	-11.074	0.000	-0.175	-0.122
CHAS	0.0659	0.026	2.580	0.010	0.016	0.116
Omnibus:	 28.6		ı-Watson:		1.309	
Prob(Omnibus):	0.0	00 Jarque	Jarque-Bera (JB):		43.266	
Skew:	0.4	65 Prob(J	Prob(JB):		4.03e-10	
Kurtosis:	4.1	88 Cond.	No.		35.2	

```
OLS Regression Results
______
                                MEDV R-squared:
                       OLS Adj. R-squared:
Least Squares F-statistic:
Model:
                                                                              0.834
                                                                              380.7
Method:
                    Sun, 23 Jun 2019 Prob (F-statistic):
Date:
                                                                        1.42e-172
Time: 18:13:41 Log-Likelihood:
No. Observations: 456 ATC
                                                                             260.52
                                                                             -507.0
                                   449 BIC:
Df Residuals:
                                                                              -478.2
Df Model:
                                     6
Covariance Type:
                            nonrobust
______
                             coef std err t P>|t| [0.025 0.975]

    Intercept
    3.0192
    0.007
    445.252
    0.000
    3.006
    3.033

    CHAS
    0.0884
    0.028
    3.141
    0.002
    0.033
    0.144

    scale(B)
    0.0558
    0.008
    6.989
    0.000
    0.040
    0.072

    scale(CRIM)
    -0.1179
    0.013
    -9.120
    0.000
    -0.143
    -0.092

    scale(np.log(PTRATIO))
    -0.0508
    0.007
    -6.936
    0.000
    -0.065

    scale(RM)
    0.1153
    0.011
    10.828
    0.000
    0.094

    scale(np.log(LSTAT))
    -0.1570
    0.011
    -14.179
    0.000
    -0.179

                                                                             -0.065
                                                                                          -0.036
                                                                                           0.136
                                                                                          -0.135
-----
                    29.141 Durbin-Watson:
Omnibus:
                                                                            1.113
                                 0.000 Jarque-Bera (JB):
0.483 Prob(JB):
Prob(Omnibus):
                                                                              42.637
Skew:
                                                                           5.51e-10
                                 4.145 Cond. No.
                                                                              5.91
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
```

https://datascienceschool.net/03 machine learning/06.04 다중공선성과 변수 선택.html

0 Comments - powered by utteranc.es

Write	Preview	
Sign in to	comment	
MI Styling wi Markdown is		Sign in with GitHub

•

By 김도형