UNIVERSIDAD NACIONAL TECNOLÓGICA DE LIMA SUR

Escuela académico Profesional de Ingeniería de Sistemas

FACULTAD DE INGENIERÍA Y GESTIÓN

"APLICACIÓN DE LOS MÉTODOS NUMÉRICOS AL MODELADO DEL FÁRMACO AZT Y LA SUPERVIVENCIA CON SIDA"

DOCENTE

Chavez Sanchez Wilmer Pedro

APELLIDOS Y NOMBRES

- Aquino Llacsa Carlos Daniel
- Lopez Izaguirre Keneth Kerk
- Quijahuaman Cordova, Ronald Manuel
- Narvaez Villafuerte, Marlon Jean Pool

ESPECIALIDAD

Ingeniería de Sistemas

LIMA – PERÚ 2021

RESUMEN

Este trabajo nos da una visión de cómo podemos vincular modelos matemáticos en la medicina, en este trabajo abordaremos cómo podemos estimar la probabilidad de supervivencia del SIDA con el tratamiento de zidovudina (AZT), lo estimaremos a partir de tres modelos matemáticos: el método de Euler, el método de Taylor de segundo orden y por último, el método de Runge Kutta. Los resultados se compararán con el estimado real y las estimaciones de los métodos.

PALABRAS CLAVES: Modelos matemáticos, Síndrome de Inmunodeficiencia Adquirida, zidovudina (AZT), método de Taylor, método de Euler, método de Runge Kutta.

AGRADECIMIENTOS

El presente trabajo fue realizado con mucho esmero, para demostrar que es posible aplicar los conocimientos aprendidos en la asignatura de Métodos Numéricos, consideramos que lo más importante de aprender un nuevo conocimiento es tener la capacidad de crear, modelar e implementar, esos conocimientos en la vida real, de tal manera que como ingenieros podamos resolver situaciones problemáticas brindando la solución más eficiente, así mismo lograr un mejoramiento de la sociedad con nuestros conocimientos aprendidos.

Agradecemos a todas los intelectuales como Carl David Runge, Martin Wilhelm Kutta y el propio Leonhard Euler que han aportado valiosos conocimientos a la sociedad, para que gracias a ellos se haya podido desarrollar el presente trabajo, implementando sus conocimientos de una manera rigurosa. Consideramos que la mejor manera de honrar sus aportes, es creando nuevos campos del saber en base a sus valiosos aportes.

También queremos agradecer al profesor Chavez Sanchez Wilmer Pedro por motivarnos a invertir más de 15 horas en la idealización, investigación, comprensión, desarrollo e implementación del presente trabajo.

A si mismo agradecemos todas las coincidencias del universo que hizo que en este preciso momento, sigamos vivos para terminar satisfactoriamente el desarrollo de este trabajo.

Finalmente, pero no menos importante queremos agradecer a todos nuestros familiares que gracias a su gran apoyo incondicional pudimos dedicarnos al desarrollo del presente trabajo.

ÍNDICE

PROBLEMÁTICA	5
Descripción general	5
Justificación	5
Pregunta de la investigación	5
Objetivos de la investigación	5
Objetivo general	5
Objetivos específicos	5
DEFINICIONES	6
Método de Euler:	6
Método de Euler Mejorado	6
Método de Runge Kutta de orden 4	6
REVISIÓN BIBLIOGRÁFICA	7
METODOLOGÍA	7
Obtención de los datos y manejo de la información	7
Cálculos fundamentados en la teoría del curso	8
Método de Euler	8
Método de Euler Mejorado	12
Método de Runge-Kutta	14
ANÁLISIS DE LOS RESULTADOS	20
CONCLUSIONES Y RECOMENDACIONES	21
Conclusiones	21
Recomendaciones	21
RIBLIOGRAFÍA	21

ÍNDICE DE FIGURAS

Figura 1: Curva de la solución para el método de Euler.4	7
Figura 2: Curva de la solución para el método de Euler mejorado	8
Figura 3: Curva de la solución para el método de Euler mejorado	12
Figura 4-5: Tabla de la implementación de Euler cuando $t_1 = 0.1 \text{ y } t_1 = 0.05$	13
Figura 6: Tabla de la implementación de Euler cuando $t_1 = 0.025$ parte 1	14
Figura 7: Tabla de la implementación de Euler cuando $t_1 = 0.025~\text{parte}~2$	15
Figura 8: Tabla de valores iniciales y constantes	16
Figura 9: Tabla de la implementación de Euler Mejorado cuando $t_1 = 0.1$	16
Figura 10: Tabla de la implementación de Euler Mejorado cuando $t_1 = 0.05$	17
Figura 11: Tabla de la implementación de Euler Mejorado cuando $t_1 = 0.025$ parte 1	17
Figura 12: Tabla de la implementación de Euler Mejorado cuando $t_1 = 0.025$ parte 2	18
Figura 13: Tabla de valores iniciales y constantes	19
Figura 14: Tabla de la implementación de Runge-Kutta 4 cuando t_1 = 0.1 parte 1	19
Figura 15: Tabla de la implementación de Runge-Kutta 4 cuando $t_1 = 0.1$ parte 2	19
Figura 16: Tabla de la implementación de Runge-Kutta 4 cuando t_1 = 0.05 parte 1	20
Figura 17: Tabla de la implementación de Runge-Kutta 4 cuando t_1 = 0.05 parte 2	21
Figura 18: Tabla de la implementación de Runge-Kutta 4 cuando t_1 = 0.025 parte 1	22
Figura 19: Tabla de la implementación de Runge-Kutta 4 cuando $t_1 = 0.025$ parte 2	22
Figura 20: Tabla de la implementación de Runge-Kutta 4 cuando $t_1 = 0.025$ parte 3	23
Figura 21: Tabla de la implementación de Runge-Kutta 4 cuando t_1 = 0.025 parte 4	24
Figura 22: Tabla cruzada de los resultados porcentuales de cada método con sus respectivos valores de \mathbf{t}_1	24

1 PROBLEMÁTICA

1.1 Descripción general

El Virus de la Inmunodeficiencia Humana (VIH), como los demás virus, no es una célula y no tiene metabolismo, ni se puede reproducir fuera de una célula viva. Su

información genética se encuentra en dos cadenas idénticas de ARN (ácido ribonucleico). Para reproducirse, debe emplear el aparato reproductor de la célula que invade a fin de producir copias exactas ARN. Lo que hace el VIH es transcribir su ARN pasándolo a ADN (ácido desoxirribonucleico) con una enzima, la transcriptasa inversa, que está presente en el virus. El ADN viral, de doble cadena, emigra al núcleo de la célula invadida y se intercala en el genoma de ésta, con ayuda de otra enzima viral, la integrasa. Quedan así integrados el ADN viral y el ADN celular. Cuando la célula invadida recibe un estímulo para reproducirse, el ADN proviral se transcribe y forma ARN viral y se sintetizan nuevas partículas virales.

El impacto de la zidovudina (azidotimidina o AZT, del inglés azidothymidine) sobre la supervivencia de quienes desarrollan el síndrome de Inmunodeficiencia Adquirida (SIDA) por infección con el VIH. Puesto que la zidovudina inhibe a la transcriptasa inversa del virus e interrumpe la síntesis de la cadena de ADN en el laboratorio, se esperaba que sirviera para desacelerar o detener el avance de la infección con VIH en los humanos. La causa de que el VIH sea tan peligroso es que, además de ser un virus rápidamente mutante, ataca en forma selectiva a los linfocitos ayudantes T (vitales en el sistema inmunológico del anfitrión) porque se enlaza a la molécula CD4 de la superficie celular. Los linfocitos T (células CD4 T o células T4) son fundamentales en la organización de una defensa contra cualquier infección. Aunque los parámetros inmunológicos del sistema inmunitario en un anfitrión infectado con VIH cambian cuasi estáticamente tras la etapa aguda de la infección, miles de millones de linfocitos T4 y VIH; son destruidos y reemplazados cada día durante un periodo de incubación que puede durar dos décadas o más. La densidad de linfocitos T4 es un marcador muy común para evaluar el avance de la enfermedad porque su disminución es paralela al deterioro del sistema inmunitario infectado por VIH.

La presente investigación no pretende tener un aporte directo al tratamiento del VIH y la utilización del AZT, sino aplicar métodos numéricos para resolver la ecuación diferencial modelada.

1.2 Justificación

Este presente trabajo de investigación tiene como propósito describir el impacto de la zidovudina (azidotimidina o AZT) sobre la supervivencia de quienes desarrollan el Síndrome de Inmunodeficiencia Adquirida por infección con el VIH

aplicando tres métodos numéricos (Euler, Euler Mejorado y Runge Kuta4) dando como resultado datos significativos en los estudios de otros fármacos en el sector de BIOCUBAFARMA.

1.3 Pregunta de la investigación

¿Es posible resolver el modelo del avance viral AZT sobre los sobrevivientes del VIH mediante los métodos numéricos tales cómo: Euler, Euler mejorado y Rugen Kutta de orden 4 ?

1.4 Objetivos de la investigación

1.4.1 Objetivo general

La utilización del desarrollo y conclusión de la investigación para la aplicación en el sector Biofarmacéutico

1.4.2 Objetivos específicos

En cuanto a la investigación del presente documento, se quiere llegar a la utilización de los métodos numéricos para la modelización y solución de la problemática.

Facilitar el proceso de desarrollo mediante la implementación de un asistente matemático Con los resultados obtenidos mediante los métodos aplicados, hacer una comparación de estas mismas y proceder con el respectivo análisis.

2 DEFINICIONES

2.1 Método de Euler:

Es un procedimiento de integración numérica para resolver Ecuaciones Diferenciales Ordinarias (EDO) a partir de un valor inicial dado. El método de Euler es el más simple de los métodos numéricos para resolver un problema de valor inicial, y el más simple de los Métodos de Runge Kutta (RK1).

La fórmula iterativa que se aplica es:

2.2 Método de Euler Mejorado(Método Heun)

Este método se basa en la misma idea del método anterior, pero hace un refinamiento en la aproximación, tomando un promedio entre ciertas pendientes.

La fórmula que se aplica de forma iterativa es:

$$Wi + 1 = Wi + h[f(Ti, Wi) + f(Ti + 1, W'i + 1)]/2; W'i + 1 = Wi + hf(Ti)$$

Figura 2: Curva de la solución para el método de Euler mejorado.

2.3 Método de Runge Kutta de orden 4

Esta es una familia de métodos muy utilizada debido a su gran exactitud. Existen muchas versiones y modificaciones, pero todas trabajan bajo el mismo principio básico, tomando una ponderación entre ciertas pendientes. En este caso se muestra el método de Runge Kutta de orden 4 (RK4) que es el que se va a utilizar. El método RK4 está dado por la Ecuación :

$$Wi + 1 = Wi + \frac{h(k1 + 2k2 + 2k3 + k4)}{6};$$

$$k1 = f(Ti, Wi)$$

$$k2 = f\left(Ti + \frac{h}{2}, Wi + k1\frac{h}{2}\right)$$

$$k3 = f\left(Ti + \frac{h}{2}, Wi + k2\frac{h}{2}\right)$$

$$k4 = f(Ti + h, Wi + k3h)$$

k1: es la pendiente al principio del intervalo.

k2: es la pendiente en el punto medio del intervalo, usando k1 para determinar el valor de Y en el punto Xn+h2 usando el método de Euler.

k3: es otra vez la pendiente del punto medio, pero ahora usando k2 para determinar el valor de *Y*.

k4: es la pendiente al final del intervalo, con el valor de Y determinado por k3.

Así, el siguiente valor (yn+1) es determinado por el presente valor (yn) más el producto del tamaño del intervalo (h) por una pendiente estimada. La pendiente es un promedio ponderado de pendientes. Promediando las cuatro pendientes, se les asigna mayor peso a las pendientes en el punto medio :

$$pendiente = \frac{k_1 + 2k_2 + 2k_3 + k_4}{6}$$

2.4 Zidovudina(Azidotimidina O AZT):

Zidovudina, **Azidotimidina** o **AZT** fue el primer medicamento antirretroviral (ARV), aprobado como un medicamento indicado para personas con infección por VIH por su efecto en la supresión de la replicación viral, aunque no representa una cura y no garantiza la disminución de la cantidad de enfermedades relacionadas con la infección por el virus. La zidovudina no evita la transmisión del VIH a otras personas. Es comercializado bajo el nombre de Retrovir y Retrovis.

2.5 VIH(Virus de Inmunodeficiencia Humana) y SIDA(Síndrome de Inmunodeficiencia Adquirida):

El virus de la inmunodeficiencia humana (VIH) es un lentivirus (un género de la familia retrovirus) que causa la infección por VIH. Se trata de un virus que provoca el desarrollo del síndrome de inmunodeficiencia adquirida (sida), una enfermedad que progresa hacia el fallo del sistema inmune, lo que permite que se desarrollen infecciones oportunistas y cánceres potencialmente mortales, cuando los niveles de linfocitos T CD4+ están por debajo de 200 por mililitro. Sin tratamiento, se estima que la sobrevida promedio después de la infección de VIH es de nueve a once años, dependiendo del subtipo de VIH. La infección por VIH ocurre únicamente a través de los siguientes fluidos de las personas infectadas: sangre, semen, flujo vaginal, líquido preseminal y leche de lactancia. Dentro de estos fluidos corporales, el VIH está presente como partículas libres y como virus dentro de células inmunes infectadas.

3 REVISIÓN BIBLIOGRÁFICA

El uso de modelos matemáticos para enfermedades ha aumentado considerablemente en los últimos tiempos, ya que proporcionan información resumida útil para tomar decisiones e instituir medidas para el control o erradicación de enfermedades infecciosas.

Estos al modificarlos se pueden representar o descubrir situaciones que dificilmente se pueden obtener mediante experimentación. En conclusión, los métodos numéricos contribuyen a prevenir futuras situaciones patológicas, determinar la prevalencia e incidencia y coadyuvar a tomar decisiones objetivas para el control o supresión de las enfermedades infecciosas.

Según Luís Comenge, primer director del Instituto de Higiene Urbana de Barcelona, en un texto publicado en 1899, «sin el legítimo criterio aritmético, la ciencia de la salud y la enfermedad se reduciría a un cúmulo de intuiciones y sospechas». La salud pública precisaba estadísticas veraces y científicamente interpretadas. En aquellas fechas se publicaron numerosos trabajos que mostraban, a través de la descripción estadística poblacional, la realidad del vivir y morir que caracterizaba a las principales ciudades españolas de la época. (Bernabeu, J. 2007).

Ejemplos de como los métodos numéricos pueden ayudar en la prevención y control de enfermedades son los siguientes:

- Uno de los métodos más usados para el modelamiento de huesos son los métodos de los elementos finitos.
- El método de Euler-Lagrange es muy utilizado para tener un estimado sobre el crecimiento de tumores, planificación y dosificación de radioterapia.

4 METODOLOGÍA

4.1 Obtención de los datos y manejo de la información

El impacto de la AZT en los años 80 y comienzos de los 90 sobre la supervivencia de quienes desarrollan SIDA por infección del VIH, concluye el siguiente modelo matemático de la solución de la Ecuación Diferencial Ordinaria de primer orden, como también muestra(Kramer, 1996).

$$\frac{dS(t)}{dt} = -k(S(t) - S_{in})$$
... (ecuación 1)

Donde:

t: Representa el tiempo transcurrido hasta la aparición del Sida.

S_{in}: Fracción inmortal.

K: probabilidad de morir por unidad de tiempo en el momento t.

S(t): La fracción del grupo que sigue viva en el momento t.

t: Variable independiente

S: Variable dependiente

Si aplicamos en el modelo la técnica de separación de variables, tendremos como resultado lo siguiente:

$$S(t) = S_{in} + (1 - S_{in})e^{-kt_i}$$

... (ecuación 2)

4.2 Cálculos fundamentados en la teoría del curso

Para poder darle una posible solución al problema, aplicaremos tres métodos: Método de Euler, método de Euler Mejorado, método de Runge-Kutta.

Nota: No se toma en cuenta para los siguientes cálculos la aplicación del programa de mínimos cuadrados.

4.2.1 Método de Euler

Expresamos la EDO de la siguiente manera:

(2) en (1)
$$\frac{dS(t)}{dt} = -k(S_{in} + (1 - S_{in})e^{-kt} - S_{in})$$
.... (ecuación 3)

Ahora le damos la forma de ecuación iterativa:

$$\begin{split} S_{i+1} &= S_i + hf(t_i, S_i) \\ donde \ f(t_i, S_i) &= -k(S_{in} + (1 - S_{in})e^{-kt_i} - S_{in}) \\ f(t_i, S_i) &= -k(1 - S_{in})e^{-kt_i} \\ S_{i+1} &= S_i + h[-k(1 - S_{in})e^{-kt_i}] \\ S_{i+1} &= S_i - hk(1 - S_{in})e^{-kt_i} \\ \end{split}$$
.... (ecuación 4)

Donde:

 S_{i+1} : Representa el valor de Euler

Ya habiendo hallado la ecuación iterativa pasamos a generar los valores aproximados, tenemos que tener en cuenta los siguientes valores de las variables constantes y variables iniciales:

Valor inicial	Valor
tl	0.1
S0	1

Constantes	Valor
K	0.8
Sin	0.03
h	0.0001

Figura 3: Tabla de valores iniciales y constantes

Seguidamente creamos las tablas en base a la ecuación 3 y los valores iniciales y constantes:

Evaluaremos con $t_1 = 0.1$, $t = \{0.1, 0.2, 0.3, ..., 1\}$; $t = \{0,1\}$

i	ti	Si	f(ti, Si)	Si+1	porcentaje
0	0	1.00000000000000000000	-0.7760000000000000000	0.92074115395237500	92.074%
1	0.1	0.999922400000000000	-0.716338284796029000	0.88590741386468400	88.591%
2	0.2	0.999850766171520000	-0.661263580237780000	0.85365660413525800	85.366%
3	0.3	0.999784639813497000	-0.610423220187645000	0.82363233843579700	82.363%
4	0.4	0.999723597491478000	-0.563491652769184000	0.79554726567027600	79.555%
5	0.5	0.999667248326201000	-0.520168355723656000	0.76916631011235500	76.917%
6	0.6	0.999615231490628000	-0.480175912041565000	0.74429470879611800	74.429%
7	0.7	0.999567213899424000	-0.443258233546680000	0.72076928712324100	72.077%
8	0.8	0.999522888076070000	-0.409178921057406000	0.69845197451998300	69.845%
9	0.9	0.999481970183964000	-0.377719750624938000	0.67722490347498200	67.722%
10	1	0.999444198208901000	-0.348679276154964000	0.65698664945908000	65.699%

Figura 4: Tabla de la implementación de Euler cuando t_1 = 0.1 Evaluaremos con t_1 = 0.05, t= $\{0, 0.05, 0.1, ..., 1\}$; t [0,1]

i	ti	Si	f(ti, Si)	Si+1	porcentaje
0	0	1.00000000000000000000	-0.776000000000000000	0.920741153952375000	92.074%
1	0.05	0.999922400000000000	-0.745572604782203000	0.902937829731465000	90.294%
2	0.1	0.999847842739522000	-0.716338284796029000	0.885832856604205000	88.583%
3	0.15	0.999776208911042000	-0.688250258892514000	0.869373615390147000	86.937%
4	0.2	0.999707383885153000	-0.661263580237780000	0.853513221848891000	85.351%
5	0.25	0.999641257527129000	-0.635335064388514000	0.838209721785715000	83.821%
6	0.3	0.999577724020690000	-0.610423220187645000	0.823425422642990000	82.343%
7	0.35	0.999516681698671000	-0.586488183369643000	0.809126334710043000	80.913%
8	0.4	0.999458032880335000	-0.563491652769184000	0.795281701059133000	79.528%
9	0.45	0.999401683715058000	-0.541396829031120000	0.781863599818248000	78.186%
10	0.5	0.999347544032154000	-0.520168355723656000	0.768846605818308000	76.885%
11	0.55	0.999295527196582000	-0.499772262760518000	0.756207501284012000	75.621%
12	0.6	0.999245549970306000	-0.480175912041565000	0.743925027275796000	74.393%
13	0.65	0.999197532379102000	-0.461347945224871000	0.731979669181565000	73.198%
14	0.7	0.999151397584579000	-0.443258233546680000	0.720353470808396000	72.035%
15	0.75	0.999107071761225000	-0.425877829608964000	0.709029872615746000	70.903%
16	0.8	0.999064483978264000	-0.409178921057406000	0.697993570422177000	69.799%
17	0.85	0.999023566086158000	-0.393134786075698000	0.687230391551796000	68.723%
18	0.9	0.998984252607551000	-0.377719750624938000	0.676727185898569000	67.673%
19	0.95	0.998946480632488000	-0.362909147359689000	0.666471729802147000	66.647%
20	1	0.998910189717752000	-0.348679276154964000	0.656452640967930000	65.645%

Figura 5: Tabla de la implementación de Euler cuando t_1 = 0.05 Evaluaremos con t_1 = 0.025, t= $\{0, 0.25, 0.5, ..., 1\}$; t [0,1]

i	ti	Si	f(ti, Si)	Si+1	porcentaje
0	0	1.0000000000000000000	-0.776000000000000000	0.92074115395237500	92.074%
1	0.025	0.999922400000000000	-0.760634170486042000	0.91171024788240000	91.171%
2	0.05	0.999846336582951000	-0.745572604782203000	0.90286176631441700	90.286%
3	0.075	0.999771779322473000	-0.730809278061377000	0.89418851362469300	89.419%
4	0.1	0.999698698394667000	-0.716338284796029000	0.88568371225935100	88.568%
5	0.125	0.999627064566187000	-0.702153836395905000	0.87734097090972100	87.734%
6	0.15	0.999556849182548000	-0.688250258892514000	0.86915425566165200	86.915%
7	0.175	0.999488024156659000	-0.674621990669473000	0.86111786379131000	86.112%
8	0.2	0.999420561957592000	-0.661263580237780000	0.85322639992133000	85.323%
9	0.225	0.999354435599568000	-0.648169684055147000	0.84547475428663300	84.547%
10	0.25	0.999289618631162000	-0.635335064388514000	0.83785808288974900	83.786%
11	0.275	0.999226085124723000	-0.622754587218883000	0.83037178935182000	83.037%
12	0.3	0.999163809666002000	-0.610423220187645000	0.82301150828830200	82.301%
13	0.325	0.999102767343983000	-0.598336030583567000	0.81577309005812000	81.577%
14	0.35	0.999042933740924000	-0.586488183369643000	0.80865258675229600	80.865%
15	0.375	0.998984284922588000	-0.574874939249013000	0.80164623930304300	80.165%
16	0.4	0.998926797428663000	-0.563491652769184000	0.79475046560746100	79.475%
17	0.425	0.998870448263386000	-0.552333770463785000	0.78796184957144600	78.796%
18	0.45	0.998815214886339000	-0.541396829031120000	0.78127713098953000	78.128%
19	0.475	0.998761075203436000	-0.530676453548788000	0.77469319618521700	77.469%
20	0.5	0.998708007558081000	-0.520168355723656000	0.76820706934423500	76.821%

Figura 6: Tabla de la implementación de Euler cuando $t_{\scriptscriptstyle 1}\!=0.025~parte~1$

21	0.525	0.998655990722509000	-0.509868332176484000	0.76181590447999800	76.182%
22	0.55	0.998605003889291000	-0.499772262760518000	0.75551697797672100	75.552%
23	0.575	0.998555026663015000	-0.489876108913374000	0.74930768166101100	74.931%
24	0.6	0.998506039052124000	-0.480175912041565000	0.74318551635761400	74.319%
25	0.625	0.998458021460920000	-0.470667791937003000	0.73714808588923200	73.715%
26	0.65	0.998410954681726000	-0.461347945224871000	0.73119309148419000	73.119%
27	0.675	0.998364819887203000	-0.452212643842216000	0.72531832655908100	72.532%
28	0.7	0.998319598622819000	-0.443258233546680000	0.71952167184663600	71.952%
29	0.725	0.998275272799464000	-0.434481132454752000	0.71380109084169900	71.380%
30	0.75	0.998231824686219000	-0.425877829608964000	0.70815462554074000	70.815%
31	0.775	0.998189236903258000	-0.417444883573467000	0.70258039245242200	70.258%
32	0.8	0.998147492414901000	-0.409178921057405000	0.69707657885881400	69.708%
33	0.825	0.998106574522795000	-0.401076635565558000	0.69164143930855100	69.164%
34	0.85	0.998066466859238000	-0.393134786075697000	0.68627329232487700	68.627%
35	0.875	0.998027153380631000	-0.385350195742134000	0.68097051731294500	68.097%
36	0.9	0.997988618361057000	-0.377719750624938000	0.67573155165207500	67.573%
37	0.925	0.997950846385994000	-0.370240398444323000	0.67055488795981900	67.055%
38	0.95	0.997913822346150000	-0.362909147359689000	0.66543907151580900	66.544%
39	0.975	0.997877531431414000	-0.355723064772853000	0.66038269783428000	66.038%
40	1	0.997841959124937000	-0.348679276154964000	0.65538441037511500	65.538%

Figura 7: Tabla de la implementación de Euler cuando $t_1 = 0.025$ parte 2

4.2.2 Método de Euler Mejorado

Para poder hacer uso del Método de Euler Mejorado debemos de expresarlo de la siguiente manera:

$$\begin{split} S_{i+1} &= S_i + \frac{h}{2} \Big[f(t_i, S_i) - f(t_{i+1}, S^*_{i+1}) \Big] \\ S_{i+1} &= S_i + \frac{h}{2} \Big[-k(S_i - S_{in}) + k(S^*_{i+1} - S_{in}) \Big] \\ S_{i+1} &= S_i + \frac{h}{2} \Big[-kS_i + kS_{in} + kS^*_{i+1} - kS_{in} \Big] \\ S_{i+1} &= S_i + \frac{h}{2} \Big[-kS_i + kS^*_{i+1} \Big] \\ S_{i+1} &= S_i - \frac{kh}{2} \Big[S_i - S^*_{i+1} \Big] \\ & \qquad \qquad \dots \text{ (ecuación 5)} \end{split}$$

Donde:

 S^*_{i+1} : Representa el valor de Euler

 S_{i+1} : Representa el valor de Euler Mejorado

Ahora pasamos a generar las tablas en base a la función iterativa, teniendo en cuenta las siguientes variables constantes y variables iniciales:

Valor inicial	Valor
t1	0.1
S0	1

Constantes	Valor
K	0.8
Sin	0.03
h	0.0001

Figura 8: Tabla de valores iniciales y constantes

Evaluaremos con $t_1 = 0.1$, $t = \{0.1, 0.2, 0.3, ..., 1\}$; t = [0,1]

i	ti	Si	f(ti, Si)	Si+1*	Si+1	porcentaje
0	0	1.00000000000000000000	-0.7760000000000000000	0.92074115395237500	0.92081558359853300	92.082%
1	0.1	0.999922400000000000	-0.716338284796029000	0.88590741386468400	0.88597448709371800	88.597%
2	0.2	0.999850766171520000	-0.661263580237780000	0.85365660413525800	0.85371688272680100	85.372%
3	0.3	0.999784639813497000	-0.610423220187645000	0.82363233843579700	0.82368633466576000	82.369%
4	0.4	0.999723597491478000	-0.563491652769184000	0.79554726567027600	0.79559544778228000	79.560%
5	0.5	0.999667248326201000	-0.520168355723656000	0.76916631011235500	0.76920910691039800	76.921%
6	0.6	0.999615231490628000	-0.480175912041565000	0.74429470879611800	0.74433251356641500	74.433%
7	0.7	0.999567213899424000	-0.443258233546680000	0.72076928712324100	0.72080246102952400	72.080%
8	0.8	0.999522888076070000	-0.409178921057406000	0.69845197451998300	0.69848084957554600	69.848%
9	0.9	0.999481970183964000	-0.377719750624938000	0.67722490347498200	0.67724978516737600	67.725%
10	1	0.999444198208901000	-0.348679276154964000	0.65698664945908000	0.65700781908474500	65.701%

Figura 9: Tabla de la implementación de Euler Mejorado cuando $t_1 = 0.1$

Evaluaremos con $t_1 = 0.05$, $t = \{0, 0.05, 0.1, ..., 1\}$; t = [0,1]

i	ti	Si	f(ti, Si)	Si+1*	Si+1	porcentaje
0	0	1.00000000000000000000	-0.7760000000000000000	0.92074115395237500	0.92081558359853300	92.082%
1	0.05	0.999922400000000000	-0.745572604782203000	0.90293782973146500	0.90300850760913300	90.301%
2	0.1	0.999847842739522000	-0.716338284796029000	0.88583285660420500	0.88589992983324000	88.590%
3	0.15	0.999776208911042000	-0.688250258892514000	0.86937361539014700	0.86943722431229500	86.944%
4	0.2	0.999707383885153000	-0.661263580237780000	0.85351322184889100	0.85357350044043300	85.357%
5	0.25	0.999641257527129000	-0.635335064388514000	0.83820972178571500	0.83826679803072500	83.827%
6	0.3	0.999577724020690000	-0.610423220187645000	0.82342542264299000	0.82347941887295400	82.348%
7	0.35	0.999516681698671000	-0.586488183369643000	0.80912633471004300	0.80917736791450000	80.918%
8	0.4	0.999458032880335000	-0.563491652769184000	0.79528170105913300	0.79532988317113700	79.533%
9	0.45	0.999401683715058000	-0.541396829031120000	0.78186359981824800	0.78190903797779500	78.191%
10	0.5	0.999347544032154000	-0.520168355723656000	0.76884660581830800	0.76888940261635200	76.889%
11	0.55	0.999295527196582000	-0.499772262760518000	0.75620750128401200	0.75624775498925100	75.625%
12	0.6	0.999245549970306000	-0.480175912041565000	0.74392502727579600	0.74396283204609200	74.396%
13	0.65	0.999197532379102000	-0.461347945224871000	0.73197966918156500	0.73201511526156000	73.202%
14	0.7	0.999151397584579000	-0.443258233546680000	0.72035347080839600	0.72038664471467900	72.039%
15	0.75	0.999107071761225000	-0.425877829608964000	0.70902987261574600	0.70906085731074100	70.906%
16	0.8	0.999064483978264000	-0.409178921057406000	0.69799357042217700	0.69802244547774000	69.802%
17	0.85	0.999023566086158000	-0.393134786075698000	0.68723039155179600	0.68725723330342200	68.726%
18	0.9	0.998984252607551000	-0.377719750624938000	0.67672718589856900	0.67675206759096300	67.675%
19	0.95	0.998946480632488000	-0.362909147359689000	0.66647172980214700	0.66649472172684900	66.649%
20	1	0.998910189717752000	-0.348679276154964000	0.65645264096793000	0.65647381059359600	65.647%

Figura 10: Tabla de la implementación de Euler Mejorado cuando t_1 = 0.05 Evaluaremos con t_1 = 0.25, t= {0, 0.25, 0.5, ..., 1}; t [0,1]

i	ti	Si	f(ti, Si)	Si+1*	Si+1	Porcentaje
0	0	1.00000000000000000000	-0.7760000000000000000	0.92074115395237500	0.92081558359853300	92.082%
1	0.025	0.999922400000000000	-0.760634170486042000	0.91171024788240000	0.91178278281336400	91.178%
2	0.05	0.999846336582951000	-0.745572604782203000	0.90286176631441700	0.90293244419208400	90.293%
3	0.075	0.999771779322473000	-0.730809278061377000	0.89418851362469300	0.89425737122187100	89.426%
4	0.1	0.999698698394667000	-0.716338284796029000	0.88568371225935100	0.88575078548838500	88.575%
5	0.125	0.999627064566187000	-0.702153836395905000	0.87734097090972100	0.87740629484961500	87.741%
6	0.15	0.999556849182548000	-0.688250258892514000	0.86915425566165200	0.86921786458380100	86.922%
7	0.175	0.999488024156659000	-0.674621990669473000	0.86111786379131000	0.86117979118396200	86.118%
8	0.2	0.999420561957592000	-0.661263580237780000	0.85322639992133000	0.85328667851287200	85.329%
9	0.225	0.999354435599568000	-0.648169684055147000	0.84547475428663300	0.84553341606778600	84.553%
10	0.25	0.999289618631162000	-0.635335064388514000	0.83785808288974900	0.83791515913475800	83.792%
11	0.275	0.999226085124723000	-0.622754587218883000	0.83037178935182000	0.83042731063871100	83.043%
12	0.3	0.999163809666002000	-0.610423220187645000	0.82301150828830200	0.82306550451826500	82.307%
13	0.325	0.999102767343983000	-0.598336030583567000	0.81577309005812000	0.81582559047408700	81.583%
14	0.35	0.999042933740924000	-0.586488183369643000	0.80865258675229600	0.80870361995675300	80.870%
15	0.375	0.998984284922588000	-0.574874939249013000	0.80164623930304300	0.80169583327514300	80.170%
16	0.4	0.998926797428663000	-0.563491652769184000	0.79475046560746100	0.79479864771946500	79.480%
17	0.425	0.998870448263386000	-0.552333770463785000	0.78796184957144600	0.78800864660454500	78.801%
18	0.45	0.998815214886339000	-0.541396829031120000	0.78127713098953000	0.78132256914907700	78.132%
19	0.475	0.998761075203436000	-0.530676453548788000	0.77469319618521700	0.77473730111541100	77.474%
20	0.5	0.998708007558081000	-0.520168355723656000	0.76820706934423500	0.76824986614227900	76.825%

Figura 11: Tabla de la implementación de Euler Mejorado cuando $t_1 = 0.025$ parte 1

	1	i	i	i	i i	
21	0.525	0.998655990722509000	-0.509868332176484000	0.76181590447999800	0.76185741770976600	76.186%
22	0.55	0.998605003889291000	-0.499772262760518000	0.75551697797672100	0.75555723168196000	75.556%
23	0.575	0.998555026663015000	-0.489876108913374000	0.74930768166101100	0.74934669937810200	74.935%
24	0.6	0.998506039052124000	-0.480175912041565000	0.74318551635761400	0.74322332112791000	74.322%
25	0.625	0.998458021460920000	-0.470667791937003000	0.73714808588923200	0.73718470027100300	73.718%
26	0.65	0.998410954681726000	-0.461347945224871000	0.73119309148419000	0.73122853756418400	73.123%
27	0.675	0.998364819887203000	-0.452212643842216000	0.72531832655908100	0.72535262596373300	72.535%
28	0.7	0.998319598622819000	-0.443258233546680000	0.71952167184663600	0.71955484575291900	71.955%
29	0.725	0.998275272799464000	-0.434481132454752000	0.71380109084169900	0.71383315998766700	71.383%
30	0.75	0.998231824686219000	-0.425877829608964000	0.70815462554074000	0.70818561023573500	70.819%
31	0.775	0.998189236903258000	-0.417444883573467000	0.70258039245242200	0.70261031258700100	70.261%
32	0.8	0.998147492414901000	-0.409178921057405000	0.69707657885881400	0.69710545391437700	69.711%
33	0.825	0.998106574522795000	-0.401076635565558000	0.69164143930855100	0.69166928836669900	69.167%
34	0.85	0.998066466859238000	-0.393134786075697000	0.68627329232487700	0.68630013407650300	68.630%
35	0.875	0.998027153380631000	-0.385350195742134000	0.68097051731294500	0.68099637006707700	68.100%
36	0.9	0.997988618361057000	-0.377719750624938000	0.67573155165207500	0.67575643334446900	67.576%
37	0.925	0.997950846385994000	-0.370240398444323000	0.67055488795981900	0.67057881616132700	67.058%
38	0.95	0.997913822346150000	-0.362909147359689000	0.66543907151580900	0.66546206344051100	66.546%
39	0.975	0.997877531431414000	-0.355723064772853000	0.66038269783428000	0.66040477034741400	66.040%
40	1	0.997841959124937000	-0.348679276154964000	0.65538441037511500	0.65540558000078000	65.541%

Figura 12: Tabla de la implementación de Euler Mejorado cuando $t_1 = 0.025$ parte 2

4.2.3 Método de Runge-Kutta

Para poder hacer uso del Método de Runge-Kutta debemos de expresar de la siguiente manera:

$$K_{1} = f(t_{i}, S_{i})$$

$$pero: f(t_{i}, S_{i}) = -k(1 - S_{in})e^{-kt_{i}}$$

$$entonces:$$

$$K_{1} = -k(1 - S_{in})e^{-kt_{i}}$$

$$K_{2} = f(t_{i} + \frac{h}{2}, S_{i} + \frac{h}{2}K_{1})$$

$$K_{3} = f(t_{i} + \frac{h}{2}, S_{i} + \frac{h}{2}K_{2})$$

$$K_{4} = f(t_{i} + h, S_{i} + hK_{3})$$

$$S_{i+1} = S_{i} + \frac{h}{6}(K_{1} + 2K_{2} + 2K_{3} + K_{4}) \qquad ... \text{ (ecuación 5)}$$

Donde:

 S_{i+1} : Representa el valor de Runge-Kutta4

Ahora pasamos a generar las tablas en base a la función iterativa, teniendo en cuenta las siguientes variables constantes y variables iniciales:

Valor inicial	Valor
tl	0.1
S0	1

Constantes	Valor
K	0.8
Sin	0.03
h	0.0001

Figura 13: Tabla de valores iniciales y constantes

Evaluaremos con t_1 = 1, t= {0.1, 0.2, 0.3, ..., 1}; t [0,1]

i	ti	Si	K1=f(ti, Si)	ti+h/2	ti+h	К2
0	0	1.0000000000000000000000000000000000000	-0.7760000000000000000	0.00005	0.0001	-0.775968960620792000
1	0.1	0.999922403103917000	-0.716338284796029000	0.10005	0.1001	-0.716309631837700000
2	0.2	0.999850772140714000	-0.661263580237780000	0.20005	0.2001	-0.661237130223574000
3	0.3	0.999784648427674000	-0.610423220187645000	0.30005	0.3001	-0.610398803747170000
4	0.4	0.999723608547283000	-0.563491652769184000	0.40005	0.4001	-0.563469113553861000
5	0.5	0.999667261635913000	-0.520168355723656000	0.50005	0.5001	-0.520147549405556000
6	0.6	0.999615246880958000	-0.480175912041565000	0.60005	0.6001	-0.480156705389219000
7	0.7	0.999567231210407000	-0.443258233546680000	0.70005	0.7001	-0.443240503571940000
8	0.8	0.999522907160038000	-0.409178921057406000	0.80005	0.8001	-0.409162554227902000
9	0.9	0.999481990904604000	-0.377719750624938000	0.90005	0.9001	-0.377704642137085000
10	1	0.999444220440380000	-0.348679276154964000	1.00005	1.0001	-0.348665329262857000

Figura 14: Tabla de la implementación de Runge-Kutta 4 cuando $t_{\scriptscriptstyle 1}\!=0.1$ parte 1

КЗ	К4	Si+1	Porcentaje
-0.775968960620792000	-0.775937922483134000	0.92074115705629200	92.074%
-0.716309631837700000	-0.716280980025467000	0.88590741983387800	88.591%
-0.661237130223574000	-0.661210681267348000	0.85365661274943600	85.366%
-0.610398803747170000	-0.610374388283333000	0.82363234949160200	82.363%
-0.563469113553861000	-0.563446575240088000	0.79554727897998800	79.555%
-0.520147549405556000	-0.520126743919693000	0.76916632550268500	76.917%
-0.480156705389219000	-0.480137499505124000	0.74429472610710100	74.429%
-0.443240503571940000	-0.443222774306385000	0.72076930620720900	72.077%
-0.409162554227902000	-0.409146188053059000	0.69845199524062300	69.845%
-0.377704642137085000	-0.377689534253559000	0.67722492570646100	67.722%
-0.348665329262857000	-0.348651382928615000	0.65698667308523900	65.699%

Figura 15: Tabla de la implementación de Runge-Kutta 4 cuando $t_{\scriptscriptstyle 1}\!=0.1$ parte 2

Evaluaremos con t_1 = 0.05, t= {0, 0.05, 0.1, ..., 1}; t [0,1]

i	ti	Si	K1=f(ti, Si)	ti+h/2	ti+h	K2
0	0	1.0000000000000000000000000000000000000	-0.7760000000000000000	0.00005	0.0001	-0.775968960620792000
1	0.05	0.999922403103917000	-0.745572604782203000	0.05005	0.0501	-0.745542782474462000
2	0.1	0.999847848825650000	-0.716338284796029000	0.10005	0.1001	-0.716309631837700000
3	0.15	0.999776217862447000	-0.688250258892514000	0.15005	0.1501	-0.688222729432751000
4	0.2	0.999707395589485000	-0.661263580237780000	0.20005	0.2001	-0.661237130223574000
5	0.25	0.999641271876445000	-0.635335064388514000	0.25005	0.2501	-0.635309651494200000
6	0.3	0.999577740911279000	-0.610423220187645000	0.30005	0.3001	-0.610398803747170000
7	0.35	0.999516701030888000	-0.586488183369643000	0.35005	0.3501	-0.586464724311493000
8	0.4	0.999458054558441000	-0.563491652769184000	0.40005	0.4001	-0.563469113553861000
9	0.45	0.999401707647071000	-0.541396829031120000	0.45005	0.4501	-0.541375173591071000
10	0.5	0.999347570129697000	-0.520168355723656000	0.50005	0.5001	-0.520147549405556000
11	0.55	0.999295555374743000	-0.499772262760518000	0.55005	0.5501	-0.499752272269820000
12	0.6	0.999245580147503000	-0.480175912041565000	0.60005	0.6001	-0.480156705389219000
13	0.65	0.999197564476951000	-0.461347945224871000	0.65005	0.6501	-0.461329491676135000
14	0.7	0.999151431527771000	-0.443258233546680000	0.70005	0.7001	-0.443240503571940000
15	0.75	0.999107107477402000	-0.425877829608964000	0.75005	0.7501	-0.425860794836478000
16	0.8	0.999064521397907000	-0.409178921057406000	0.80005	0.8001	-0.409162554227902000
17	0.85	0.999023605142473000	-0.393134786075698000	0.85005	0.8501	-0.393119060998758000
18	0.9	0.998984293236363000	-0.377719750624938000	0.90005	0.9001	-0.377704642137085000
19	0.95	0.998946522772139000	-0.362909147359689000	0.95005	0.9501	-0.362894631284119000
20	1	0.998910233309001000	-0.348679276154964000	1.00005	1.0001	-0.348665329262857000

Figura 16: Tabla de la implementación de Runge-Kutta 4 cuando $t_1\!=0.05~parte~1$

К3	K 4	Si+1	Porcentaje
-0.775968960620792000	-0.775937922483134000	0.92074115705629200	92.074%
-0.745542782474462000	-0.745512961359589000	0.90293783581759300	90.294%
-0.716309631837700000	-0.716280980025467000	0.88583286555561000	88.583%
-0.688222729432751000	-0.688195201074145000	0.86937362709447900	86.937%
-0.661237130223574000	-0.661210681267348000	0.85351323619820700	85.351%
-0.635309651494200000	-0.635284239616381000	0.83820973867630400	83.821%
-0.610398803747170000	-0.610374388283333000	0.82342544197520700	82.343%
-0.586464724311493000	-0.586441266191686000	0.80912635638815000	80.913%
-0.563469113553861000	-0.563446575240088000	0.79528172499114600	79.528%
-0.541375173591071000	-0.541353519017221000	0.78186362591579100	78.186%
-0.520147549405556000	-0.520126743919693000	0.76884663399646900	76.885%
-0.499752272269820000	-0.499732282578725000	0.75620753146120800	75.621%
-0.480156705389219000	-0.480137499505124000	0.74392505937364500	74.393%
-0.461329491676135000	-0.461311038865527000	0.73197970312475700	73.198%
-0.443240503571940000	-0.443222774306385000	0.72035350652457300	72.035%
-0.425860794836478000	-0.425843760745369000	0.70902991003538900	70.903%
-0.409162554227902000	-0.409146188053059000	0.69799360947849200	69.799%
-0.393119060998758000	-0.393103336550809000	0.68723043218060800	68.723%
-0.377704642137085000	-0.377689534253559000	0.67672722803822000	67.673%
-0.362894631284119000	-0.362880115789179000	0.66647177339339600	66.647%
-0.348665329262857000	-0.348651382928615000	0.65645268595385900	65.645%

Figura 17: Tabla de la implementación de Runge-Kutta 4 cuando $t_{\scriptscriptstyle I}$ = 0.05~parte~2

Evaluaremos con $t_1 = 0.25$, $t = \{0, 0.25, 0.5, ..., 1\}$; t = [0,1]

i	ti	Si	K1=f(ti, Si)	ti+h/2	ti+h	К2
0	0	1.00000000000000000000	-0.7760000000000000000	0.00005	0.0001	-0.775968960620792000
1	0.025	0.999922403103917000	-0.760634170486042000	0.02505	0.0251	-0.760603745727722000
2	0.05	0.999846342729324000	-0.745572604782203000	0.05005	0.0501	-0.745542782474462000
3	0.075	0.999771788451057000	-0.730809278061377000	0.07505	0.0751	-0.730780046274894000
4	0.1	0.999698710446410000	-0.716338284796029000	0.10005	0.1001	-0.716309631837700000
5	0.125	0.999627079483207000	-0.702153836395905000	0.12505	0.1251	-0.702125750804164000
6	0.15	0.999556866908108000	-0.688250258892514000	0.15005	0.1501	-0.688222729432751000
7	0.175	0.999488044635146000	-0.674621990669473000	0.17505	0.1751	-0.674595006329537000
8	0.2	0.999420585134495000	-0.661263580237780000	0.20005	0.2001	-0.661237130223574000
9	0.225	0.999354461421455000	-0.648169684055147000	0.22505	0.2251	-0.648143757786314000
10	0.25	0.999289647045659000	-0.635335064388514000	0.25005	0.2501	-0.635309651494200000
11	0.275	0.999226116080493000	-0.622754587218883000	0.27505	0.2751	-0.622729677533592000
12	0.3	0.999163843112723000	-0.610423220187645000	0.30005	0.3001	-0.610398803747170000
13	0.325	0.999102803232332000	-0.598336030583567000	0.32505	0.3251	-0.598312097621007000
14	0.35	0.999042972022554000	-0.586488183369643000	0.35005	0.3501	-0.586464724311493000
15	0.375	0.998984325550107000	-0.574874939249013000	0.37505	0.3751	-0.574851944711337000
16	0.4	0.998926840355621000	-0.563491652769184000	0.40005	0.4001	-0.563469113553861000
17	0.425	0.998870493444250000	-0.552333770463785000	0.42505	0.4251	-0.552311677554828000
18	0.45	0.998815262276480000	-0.541396829031120000	0.45005	0.4501	-0.541375173591071000
19	0.475	0.998761124759107000	-0.530676453548788000	0.47505	0.4751	-0.530655226915182000
20	0.5	0.998708059236401000	-0.520168355723656000	0.50005	0.5001	-0.520147549405556000

Figura 18: Tabla de la implementación de Runge-Kutta 4 cuando $t_{\rm l}\!=0.025~{\rm parte}~1$

21	0.525	0.998656044481447000	-0.509868332176484000	0.52505	0.5251	-0.509847937851086000
22	0.55	0.998605059687648000	-0.499772262760518000	0.55005	0.5501	-0.499752272269820000
23	0.575	0.998555084460408000	-0.489876108913374000	0.57505	0.5751	-0.489856514260914000
24	0.6	0.998506098808968000	-0.480175912041565000	0.60005	0.6001	-0.480156705389219000
25	0.625	0.998458083138417000	-0.470667791937003000	0.62505	0.6251	-0.470648965601855000
26	0.65	0.998411018241844000	-0.461347945224871000	0.65005	0.6501	-0.461329491676135000
27	0.675	0.998364885292664000	-0.452212643842216000	0. 67505	0.6751	-0.452194555698228000
28	0.7	0.998319665837082000	-0.443258233546680000	0.70005	0.7001	-0.443240503571940000
29	0.725	0.998275341786713000	-0.434481132454752000	0.72505	0.7251	-0.434463753557034000
30	0.75	0.998231895411346000	-0.425877829608964000	0.75005	0.7501	-0.425860794836478000
31	0.775	0.998189309331851000	-0.417444883573467000	0.77505	0.7751	-0.417428186112076000
32	0.8	0.998147566513229000	-0.409178921057405000	0.80005	0.8001	-0.409162554227902000
33	0.825	0.998106650257795000	-0.401076635565559000	0.82505	0.8251	-0.401060592820993000
34	0.85	0.998066544198502000	-0.393134786075697000	0.85005	0.8501	-0.393119060998758000
35	0.875	0.998027232292392000	-0.385350195742134000	0.87505	0.8751	-0.385334782042580000
36	0.9	0.997988698814177000	-0.377719750624938000	0.90005	0.9001	-0.377704642137085000
37	0.925	0.997950928349953000	-0.370240398444322000	0.92505	0.9251	-0.370225589124573000
38	0.95	0.997913905791031000	-0.362909147359689000	0.95005	0.9501	-0.362894631284118000
39	0.975	0.997877616327893000	-0.355723064772853000	0.97505	0.9751	-0.355708836134837000
40	1	0.997842045444270000	-0.348679276154964000	1.00005	1.0001	-0.348665329262857000

Figura 19: Tabla de la implementación de Runge-Kutta 4 cuando $t_{\rm l}\!=0.025~{\rm parte}~2$

К3	K4	Si+1	Porcentaje
-0.775968960620792000	-0.775937922483134000	0.92074115705629200	92.074%
-0.760603745727722000	-0.760573322186368000	0.91171025402877300	91.171%
-0.745542782474462000	-0.745512961359589000	0.90286177544300000	90.286%
-0.730780046274894000	-0.730750815657659000	0.89418852567643600	89.419%
-0.716309631837700000	-0.716280980025467000	0.88568372717637000	88.568%
-0.702125750804164000	-0.702097666335825000	0.87734098863528100	87.734%
-0.688222729432751000	-0.688195201074145000	0.86915427614014000	86.915%
-0.674595006329537000	-0.674568023068953000	0.86111788696821400	86.112%
-0.661237130223574000	-0.661210681267348000	0.85322642574321700	85.323%
-0.648143757786314000	-0.648117832554510000	0.84547478270113100	84.547%
-0.635309651494200000	-0.635284239616381000	0.83785811384551800	83.786%
-0.622729677533592000	-0.622704768844667000	0.83037182279854100	83.037%
-0.610398803747170000	-0.610374388283333000	0.82301154417665100	82.301%
-0.598312097621007000	-0.598288165615745000	0.81577312833975000	81.577%
-0.586464724311493000	-0.586441266191685000	0.80865262737981600	80.865%
-0.574851944711337000	-0.574828951093424000	0.80164628223000200	80.165%
-0.563469113553861000	-0.563446575240088000	0.79475051078832600	79.475%
-0.552311677554828000	-0.552289585529569000	0.78796189696158700	78.796%
-0.541375173591071000	-0.541353519017221000	0.78127718054520000	78.128%
-0.530655226915182000	-0.530634001130624000	0.77469324786353700	77.469%
-0.520147549405556000	-0.520126743919693000	0.76820712310317300	76.821%

Figura 20: Tabla de la implementación de Runge-Kutta 4 cuando $t_{\rm l}\!=0.025~{\rm parte}~3$

	-0.509847937851086000	-0.509827544341445000	0.76181596027835500	76.182%
	-0.499752272269820000	-0.499732282578725000	0.75551703577411300	75.552%
	-0.489856514260914000	-0.489836920392223000	0.74930774141785500	74.931%
	-0.480156705389219000	-0.480137499505124000	0.74318557803511100	74.319%
	-0.470648965601855000	-0.470630140019745000	0.73714814944935100	73.715%
	-0.461329491676135000	-0.461311038865527000	0.73119315688965000	73.119%
	-0.452194555698228000	-0.452176468277750000	0.72531839377334500	72.532%
	-0.443240503571940000	-0.443222774306385000	0.71952174083388400	71.952%
_	-0.434463753557034000	-0.434446375354458000	0.71380116156682600	71.380%
	-0.425860794836478000	-0.425843760745368000	0.70815469796933300	70.815%
_	-0.417428186112076000	-0.417411489318569000	0.70258046655075000	70.258%
_	-0.409162554227902000	-0.409146188053059000	0.69707665459381400	69.708%
	-0.401060592820993000	-0.401044550718124000	0.69164151664781500	69.164%
	-0.393119060998758000	-0.393103336550809000	0.68627337123663700	68.627%
	-0.385334782042580000	-0.385319368959562000	0.68097059776606600	68.097%
	-0.377704642137085000	-0.377689534253559000	0.67573163361603400	67.573%
	-0.370225589124573000	-0.370210780397185000	0.67055497140470100	67.055%
_	-0.362894631284118000	-0.362880115789179000	0.66543915641228800	66.544%
_	-0.355708836134837000	-0.355694608065955000	0.66038278415361400	66.038%
_	-0.348665329262857000	-0.348651382928615000	0.65538449808912800	65.538%
-				

Figura 21: Tabla de la implementación de Runge-Kutta 4 cuando $t_1 = 0.025~parte~4$

5 ANÁLISIS DE LOS RESULTADOS

- Según el valor de t₁ y sus respectivo método numérico se llega a lo siguiente:

Valor de t ₁₊₁	Euler	Euler Mejorado	Runge-Kutta 4
t ₁ = 1	65.699%	65.701%	65.699%
$t_1 = 0.5$	65.645%	65.647%	65.645%
$t_1 = 0.25$	65.538%	65.541%	65.538%

Figura 22: Tabla cruzada de los resultados porcentuales de cada método con sus respectivos valores de $t_{\rm l}$

- A un menor t₁ se obtendrá un resultado más refinado en cualquiera de los tres métodos.

- Se puede visualizar que los métodos de Euler Mejorado y Runge-Kutta son más eficientes que el método de Euler.
- Para que se evidencie de una mejor manera la eficiencia de Euler Mejorado y Runge-Kutta con respecto a Euler, se tendrá que trabajar con una gran cantidad de datos, como por ejemplo una matriz de 500 x 500 o superior.
- Se utiliza Runge-Kutta 4, es decir hasta el K₄, porque de K₄ hacia adelante no hay gran diferencia en aproximaciones del resultado, y el hecho de solo tomar K₄ optimiza los cálculos numéricos y con ello los recursos de la pc.
- Hay una variación de los resultados del presente trabajo y de la bibliografía de donde se obtuvo los datos, esta variación se da debido a que no se tiene en cuenta la aplicación del programa de mínimos cuadrados.

6 CONCLUSIONES Y RECOMENDACIONES

6.1 Conclusiones

En la siguiente aplicación de métodos numéricos se compararon los tres métodos numéricos para describir el impacto de la zidovudina (AZT) sobre la supervivencia de los que desarrollan el Síndrome de Inmunodeficiencia Adquirida (SIDA), la comparación con el valor real mostró que el método de Runge Kutta 4 tuvo la mayor aproximación al valor real, seguido del método de Euler Mejorado y por último el método de Euler. Aunque se muestra que el método de Euler es el más simple de los tres métodos.

El uso de los métodos numéricos en medicina es muy importante, ya que nos muestra el comportamiento de las enfermedades por medio de ajustes de datos experimentales, modelados numéricos con elementos finitos es una herramienta fundamental para hacer simulaciones, utilizando diferentes métodos lineales y no lineales.

6.2 Recomendaciones

Como se aprecia en las tablas el método de Euler no proporciona una solución cercana a la real, mientras los otros dos son capaces de generarla. En la tabla de Runge Kutta 4 se observa que los resultados coinciden estrechamente con los resultados reales. Por último, se recomienda utilizar el método de Runge Kutta 4 para obtener una mayor

precisión en los resultados requeridos, y se puede añadir que a un menor valor de t1 se obtendrá un resultado más refinado en cualquier los métodos mencionados.

Los resultados muestran que la zidovudina no es efectiva para detener la replicación en todas las cepas del VIH, se percibe que quienes la recibieron terminaron muriendo casi tan rápido como aquellos que no la tomaron. Por lo tanto, la capacidad inicial del AZT para prolongar la supervivencia con VIH finalmente cede y la infección vuelve a su progresión.

Se estima que la farmacoterapia con AZT extiende la supervivencia de un paciente infectado con VIH cinco o seis meses en promedio.

7 BIBLIOGRAFÍA

- Anguiano, A. M. (2017, noviembre 12). *Método de Runge Kutta 40 orden*. Youtube. https://www.youtube.com/watch?v=YCLUN-2EOB8
- Bernabeu-Mestre, J. (2007). Estadística y salud pública: el argumento del método numérico. *Gaceta sanitaria*, 21(5), 416-417. https://doi.org/10.1157/13110450
- D. G. Zill, A. E. G. Hernández, and EF. López. (2002). Ecuaciones diferenciales con aplicaciones de modelado. Wordpress.com.
 https://cutbertblog.files.wordpress.com/2019/01/zill-d.g.-ecuaciones-diferenciales-con-aplicaciones-de-modelado-cengage-learning-2009.pdf
- Easterbrook, P. J., Emami, J., Moyle, G., & Gazzard, B. G. (1993). *Progressive CD4 Cell Depletion and Death in Zidovudine-Treated Patients*. 6(8), 927-929. https://journals.lww.com/jaids/abstract/1993/08000/progressive_cd4_cell_depletion_and_death_in.10.aspx
- González, I. R., & Peña, A. B. (2020, marzo 30). *Aplicación de métodos numéricos utilizando MATLAB al modelado del fármaco AZT y la supervivencia con SIDA*. Edu.pe. https://revistas.ulasalle.edu.pe/innosoft/article/view/12/3

- Kramer, I. (1991). Is AIDS an invariably fatal disease?: A model analysis of AIDS survival curves. *Mathematical and Computer Modelling*, *15*(9), 1-19. https://doi.org/10.1016/0895-7177(91)90001-n
- Kramer, I. (1996). The impact of zidovudine (AZT) therapy on the survivability of those with the progressive HIV infection. *Mathematical and Computer Modelling*, 23(3), 1-14. https://doi.org/10.1016/0895-7177(95)00229-4
- MateGuat. (2020, julio 6). *Método de Euler Mejorado | Ecuaciones Diferenciales | Soluciones numéricas*. Youtube.

 https://www.youtube.com/watch?v=VXuWv_K47XU
- Montesinos-López, O. A., & Hernández-Suárez, C. M. (2007). Modelos matemáticos para enfermedades infecciosas. *Salud publica de Mexico*, *49*(3), 218-226. https://doi.org/10.1590/s0036-36342007000300007
- Tabaco, M. A. C., & Montiel, N. F. L. (s. f.). *MÉTODOS NUMÉRICOS USADOS EN MEDICINA*. Scribd.com. Recuperado 24 de julio de 2021, de https://es.scribd.com/document/440006009/Metodos-numericos-en-la-medicina