IPs e Softcores Dispositivos Lógicos Programáveis

Prof. Renan Augusto Starke

Instituto Federal de Santa Catarina – IFSC Campus Florianópolis renan.starke@ifsc.edu.br

22 de maio de 2016

Ministério da Educação Secretaria de Educação Profissional e Tecnológica INSTITUTO FEDERAL DE SANTA CATARINA

Tópicos da aula

- Introdução
- 2 IPs
- Arquiteturas básicas
- Softcore NIOS II
- μCOSII

- Introdução
- ² IPs
- Arquiteturas básicas
- 4 Softcore NIOS II
- μCOSII

3/28

- Introdução
- 2 IPs
- Arquiteturas básicas
- 4 Softcore NIOS II
- 5 μCOSII

Intellectual Property

Um núcleo ou bloco IP é uma unidade lógica, célula ou projeto de circuito reutilizável que é parte intelectual de uma das partes: fornecedor do PLD, ferramenta de síntese, ... Este termo deriva do licenciamento de patentes ou copyright de partes do projeto. É frequemente utilizado nos projetos de ASICs (application-apecific Integrated Circuit) e FPGAs.

- A ideia é não reinventar a roda em todo o projeto
- Módulos comumente usados estão disponíveis, mas nem sempre são "livres"
- Blocos IPs implementados pelo fabricante tendem a ser otimizados para o dispositivo alvo
- IPs podem ser configurados através de uma ferramenta modificando parâmetros e adaptando-se a necessidade
- Disponíveis em VHDL ou Verilog

Exemplos:

- ► Soft IP cores: Nios II (Altera) e MicroBlaze (Xilinx)
- ► Hard IP cores: Cortex A9 + Cyclone V
- ► ROM, RAM, FIFO
- DSP Multiplier
- Flash memory
- ► PCI, PCIe
- JTAG

6/28

Após a configuração, a ferramenta gera um arquivo .cmp contendo a declaração do componente.

```
component data_ram
PORT
(
    address : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
    clock : IN STD_LOGIC := '1';
    data : IN STD_LOGIC VECTOR (15 DOWNTO 0);
    rden : IN STD_LOGIC := '1';
    wren : IN STD_LOGIC ;
    q : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)
);
end component;
```

9/28

- Introdução
- 2 IPs
- Arquiteturas básicas
- 4 Softcore NIOS II
- 5 μCOSII

Arquiteturas básicas

- Um sistema embarcado poder ser modelado, implementado e sintetizado através de uma linguagem de descrição de hardware
- No nosso caso: VHDL
- Construir um sistema embarcado com FPGA envolve:
 - análise dos requisitos do sistema
 - projeto de hardware
 - projeto de software

Sistema com processador/microcontrolador

Sistema básico:

- Processador
- Memória
- Entrada e saída
 - Pinos de propósito geral
 - Comunicação
 - ...
- Temporização
- Programação e depuração

Sistema com Dispositivo Lógico Programável (PLD)

Sistema básico:

- Componentes usuário
- Componentes licenciados (IPs)
- Máquinas de estado
- Entrada e saída
 - Pinos de propósito geral
 - Comunicação
 - ...
- Temporização
- Síntese e simulação

Sistema com PLD e software

Sistema básico:

- Processador (Softcore IP)
 - Programação e depuração
- PLD
 - Componentes usuário
 - Componentes licenciados (IPs)
 - Temporização
 - Síntese e simulação
- Entrada e saída

- Introdução
- 2 IPs
- Arquiteturas básicas
- 4 Softcore NIOS II
- 5 μCOSII

Análise de requisitos

Questões:

- Qual é o desempeno computacional que a aplicação requer?
- Quanto de banda ou throughput a aplicação requer?
- Quais são as interfaces necessárias?
- A aplicação necessita de software multithreaded?

Baseando-se nestas questões:

- Que tipo de processador será necessário?
- Quais componentes e de que tipo.
- É necessário o uso de sistema operacional de tempo real?
- Lógica de aceleração para:
 - DMA?
 - Instruções especiais de DSP?

Fluxo de desenvolvimento

Componentes básicos

- Componentes necessários para o processador:
 - Núcleo do NIOS II
 - Memória interna
 - Timer
 - JTAG Serial (UART)
 - Identificação do sistema
 - Entrada e saída
- Outros componentes de hardware:
 - Conexão com a entrada e saída: botões, LEDS, ...
 - Hardware de comunicação (UART, Ethernet, ...)
 - Filtros de DSP
 - Multiplicadores
 - Unidades MAC
 - **–** ...

Componentes básicos

QSys

Quartus → Tools → Qsys

Instância e interconexão com o PLD

Após a geração do QSYS, deve-se instanciar o softcore no projeto.

```
architecture rtl of DE2 115 is
  component nios_2 is
   port (
             : in std_logic := 'X'; -- clk
     clk clk
     reset_reset_n : in std_logic := 'X'; -- reset_n
     pio 0 external connection_export : out std_logic_vector(7 downto 0)
   );
  end component nios 2;
  signal reset_n : std_logic;
  signal pll locked : std logic;
  signal phase done : std logic;
begin
 reset n <= '1';
 cpu 0 : component nios 2
   port map ( clk clk => CLOCK 50, reset reset n => reset n,
       pio 0 external connection export => LEDG(7 downto 0)
 );
 end:
```

Geração dos componentes de software

Quartus \longrightarrow Tools \longrightarrow Nios II Software Build Tools for Eclipse Eclipse \longrightarrow File \longrightarrow Nios Application and BSP from Template

- Introdução
- 2 IPs
- Arquiteturas básicas
- 4 Softcore NIOS II
- μCOSII

- Dependendo da aplicação, é interessante utilizar um Sistema Operacional
- ightharpoonup É possível utilizar o μ COSII em conjunto com o PLDs da Altera
- μCOSII é um sistema operacional para tempo-real projetado para sistemas embarcados. Outros exemplos:
 - FreeRTOS
 - VxWorks
- μCOSII possui licença comercial, mas livre para aplicações educacionais

Application Software

µC/OS-II

(Processor Independent Code)

OS CORE.C OS MBOX.C OS_MEM.C OS_Q.C OS SEM.C OS_TASK.C OS TIME.C.

uCOS II.C uCOS_II.H

μC/OS-II Configuration (Application Specific)

OS CFG.H INCLUDES H

µC/OS-II Port (Processor Specific Code)

OS CPU.H OS_CPU_A.ASM OS CPU C.C

Software

Hardware

CPU

Timer

Geração dos componentes de software

Quartus \longrightarrow Tools \longrightarrow Nios II Software Build Tools for Eclipse Eclipse \longrightarrow File \longrightarrow Nios Application and BSP (Board Support Package) from Template

Integração Hardware e Software

Acesso ao hardware pelo software:

27/28

Exercícios

