EXPONENTS: THE PRODUCT RULE

LEARNING GOAL

- 1. I can identify the **base** and the **exponent** in an exponential expression.
- 2. I can multiply exponential expressions using the **product rule.**

Write each expression in expanded form:

$$1.7^5 =$$

$$2. x^4 =$$

Write each expression using a single base and a power:

$$1.2 \cdot 2 \cdot 2 =$$

$$2.3x \cdot 3x \cdot 3x \cdot 3x =$$

Exponential Rules

Product Rule

$$a^{x} \times a^{y} = a^{x+y}$$

Quotient Rule

$$a^{x} \times a^{y} = a^{x+y}$$
 $a^{x} \div a^{y} = a^{x-y}$
 $a^{2} \times a^{3} = a^{5}$ $a^{7} \div a^{3} = a^{4}$

Power Rule

$$\left(a^{x}\right)^{y} = a^{xy}$$
$$\left(a^{7}\right)^{2} = a^{14}$$

$$\left(a^{7}\right)^{2}=a^{14}$$

Negative Rule

$$a^{-x} = \frac{1}{a^x}$$

$$a^{-4} = \frac{1}{a^4}$$

Zero Rule

$$a^{0} = 1$$

Exponents Worksheet 1

	Exponent Form	Base	Exponent	Expanded Form	Standard Form
1.	10^{2}				
2.				2 • 2 • 2	
3.		<u>1</u> 4	2		
4.	15 ¹				
5.				1 ·1 ·1 ·1	
6.	x^2				
7.		b	3		
8.				<i>y</i> ·y ·y ·y ·y ·y	>
9.		2 <i>x</i>	4		
10.				$5n \cdot 5n \cdot 5n$	>
11.	4(xy) ²				
12.				3-y-y-y-y	
13.		2xyz	3		_
14.	-2 <i>x</i> ⁶				>
15.		-4y	2		

Name:		

Exponents
Worksheet 1

Directions: Complete the table below.

Directions: Complete the chart below.

		Expanded Form	Single Base and a Power
1.	$2^{10} \cdot 2^2$		
2.	3 ² • 3 ⁴		
3.	5 ³ • 5 ⁶		
4.	$x^5 \cdot x$		
5.	$y^3 \cdot y^5$		
7.	$a^3 \cdot a^4$		
8.	$m^2 \bullet m$		
9.	$x^3 \cdot x^6 \cdot x^3 \cdot x^2$		
10.	$5y^3 \cdot y \cdot y^5$		
11.	$2b^3 \cdot 3b^{10}$		

12. Compare the 2^{nd} and 4^{th} columns in the table above. Describe, in words, what you notice about the relationship you see between them.