Steel Column Design

Required steel area calculation

$$A_{req} = \frac{N_{ED}}{\frac{f_y}{\gamma_M}}$$

where: N_{ED} is the load action on the column f_y is steel yield strength γ_M is material safety factor

Section selection from the universal steel column sheet

The provided steel section have: Depth, width, flange thickness, web thickness, root radius and radius of gyration on both axis

Identifying the class of the section
 Outstand flange

$$\frac{c}{t} = \frac{B - t_w - 2 x r}{2t}$$

Internal compression part

$$\frac{c}{t} = \frac{D - 2t_f - 2xr}{t}$$

	Flange outstand limiting value, c/t _f	Web in bending limiting value, d/t _w
Class 1	9ε	72 ε
Class 2	10 ε	83 ε
Class 3	14 ε	124 ε
Class 4	If it does not meet Class 3 requirements, the section is classified as Class 4	

where
$$\varepsilon = (275/f_y)^{0.5}$$

Compression resistance (clause 6.2.4 of EC3-1-1)

$$\frac{N_{ED}}{N_{c,Rd}} \le 1.0$$

N_{Ed} is the design value of the axial compression;

N_{c,Rd} is the design resistance to axial compression, given by the minimum of:

i) Plastic resistance

$$N_{c,Rd} = A * f_y / \gamma_M$$
 (class 1,2 or 3)

$$N_{c,Rd} = A_{eff} * f_v / \gamma_M$$
 (class 4)

ii) Buckling resistance - $N_{b,Rd}$, in general the flexural buckling resistance, which govern the design of a member in pure compression.

Buckling lengths – Assuming that the design forces were obtained by a second order structural analysis, the buckling lengths are considered (conservatively) equal to the real lengths (mid-distance between floors), given by:

Buckling in the plan x-z (around x) = L_{Ex}

Buckling in the plan y-z (around y) = L_{Ey}

Determination of the slenderness coefficient

$$\lambda_1 = \pi \sqrt{\frac{E}{f_y}}$$

where $\,:\,$ E is elastic modulus of the steel f_y is steel yield strength

$$\lambda_x = L_{Ex} / i_x$$
 $\lambda_x^* = \lambda_x / \lambda_1$

$$\lambda_y = L_{Ey} / i_y$$
 $\lambda_y^* = \lambda_y / \lambda_1$

where : ${\lambda_x}^*$ and ${\lambda_y}^*$ is slenderness coefficient which ever maximum is used to design

• Calculation of reduction factor χ_{min}

h/b \sim 1 and t_f < 100mm (Buckling curve can be used)

Flexural buckling around x curve b (α =0.34)

Flexural buckling around y curve c (α =0.49)

$$\lambda_{y}^{*} > \lambda_{x}^{*}$$

$$\alpha \text{ curve c} > \alpha \text{ curve b}$$

$$\chi_{min} => \chi_{z}$$

$$\chi_{min} => \chi_{z}$$

$$\Phi = 0.5[1 + \alpha(\lambda^{*}-0.2) + \lambda^{*2}]$$

$$X_{min} = \frac{1}{\Phi + \sqrt{\Phi^{2} - \lambda^{*2}}}$$

$$N_{b,Rd} = \chi_z A f_y \gamma_M$$

 $\frac{N_{ED}}{N_{b,RD}} \leq 1.0~$, N_{Ed} is the design value of the axial compression; N_{b,Rd} is the design buckling resistance.