

F.E. (Semester – I) (RC) Examination, November/December 2015 BASIC ELECTRICAL ENGINEERING

Duration: 3 Hours

Total Marks: 100

Instructions: 1) Answer any five questions with atleast one question from each Module.

2) Assume suitable data, if required.

MODULE-I

1. a) With the help of V-I characteristics, define ideal and practical current sources. 5

b) For the circuit in Fig. 1-b, if current through the 5Ω resistor is 1A, find the current through all other resistors.

5

c) Find the current through load resistor $R_L = 11\,\Omega$, $16\,\Omega$ and $36\,\Omega$ using Thevenin's theorem for the circuit given in fig 1-c.

10

2. a) State and prove maximum power transfer theorem.

6

b) Obtain the node voltage matrix for the circuit given in fig. (2-b).

7

c) Find the equivalent resistance between points A and B shown in fig. (2-c).

MODULE-II

3. a) State and explain Ampere's Law.

5

b) Describe the concept of self Inductance.

5

- c) Fig. (3-c) shows a magnetic circuit with air gaps $Ig_1 = Ig_2 = Ig_3 = 1$ mm and coils $N_1 = 100$ turns and $N_2 = 200$ turns. The cross sectional area A of the circuit is 100 mm². Assume that the permeability of the core material approaches infinity and the ringing effect is negligible. Calculate
 - i) the self and mutual inductances
 - ii) the total magnetic energy stored in the system, if the currents in the coils are $I_1 = I_2 = 1A$.

10

6

8

6

6

iii) the mutual inductance between N₁ and N₂, if the air gap Ig₃ is closed.

- 4. a) Derive an expression for energy stored in a magnetic circuit.
 - b) A mild steel ring is having a mean circumference of 400 mm and cross sectional area of 500 mm². It is uniformly wound with a coil of 100 turns around it. Calculate
 - i) the reluctance of the ring
 - ii) the current required to produce a flux of 800 μ wb in the ring. (Given that μ_r is 380).
 - c) An iron core has a mean cross-sectional area of 0.005 m² and a mean circumference of 0.2 m. The iron core has a relative permeability of 20000. It is wrapped with 300 turns carrying 0.5 A of current.
 - i) What is the reluctance of the core?
 - ii) What is the inductance of the core and coil?
 - iii) What is the magnetic field intensity?
 - iv) What is the magnetic flux density?

MODULE - III

- 5. a) With respect to AC sinusoidal wave explain the following terms.
 - i) Frequency
- ii) Instantaneous value
- iii) Average value.
- b) A series RC circuit is fed by a voltage source $V \mid \underline{\theta}$. Find the expression for current in the circuit and the power factor of the circuit. Draw the phasor diagram.

	c)	A current of 4A flows through a non-inductive resistor of 25Ω in series with a choking coil when supplied at 250 V, 50 Hz. If the voltage drop across the resistance is 100 V and across the coil is 200 V, calculate (i) impedance, reactance and resistance of the coil (ii) power absorbed by the coil, and (iii) total power. Draw the phasor diagram.	8
6.	a)	Explain the following terms:	6
		i) Reactive power ii) Phase sequence	5
		iii) Unbalanced three phase system.	51 512
4	b)	A Δ connected load consists of three identical coils each of 20 Ω and 127.3 mH. It is supplied by a 400 V, 50 Hz, 3- ϕ supply. Determine (i) the phase current (ii) the line current.	6
	c)	Two inductive coils A and B are in parallel across a 100 V, 50 Hz single phase	O
	,	supply. Coil A takes a current of 10 A at 0.9 power factor and the total current for both the coils is 18 A at 0.8 power factor. Determine the equivalent resistance	10 10
		and equivalent reactance, the individual resistances of both the coils and the power factor of the coil.	0
		power radio of the con.	8
		MODULE – IV	
7.	a)	Explain the theory of operation of a single phase transformer. Hence derive emf equation of it.	6
	b)	What are different losses in a single phase transformer? Define efficiency of a transformer and derive the condition for maximum efficiency.	8
	c)	Three similar coils, each having a resistance of 3 Ω and an inductive reactance of 4 Ω are connected in Y across a 400 V, three-phase supply. Calculate the	
		readings on each of the two wattmeters connected to measure the power by the two-wattmeter method.	6
8.	a)	Show how a dynamometer type wattmeter measures DC as well as AC power. State the advantages and disadvantages of this instrument.	8
	b)	A 500 KVA single phase transformer has an efficiency of 95% at full load and also at 60% of full load both at upf.	
		i) separate out the losses of the transformer.	
		ii) determine the efficiency of the transformer at $\frac{1}{4}$ of the full load.	6
	C)	Define voltage regulation of transformer. A 100 KVA, 2200/220 V transformer has leakage reactance drop of 8% and resistance drop of 2%. Find its voltage regulation at full load and 0.8 pf lagging. Find also the power factor at which	
		the regulation will be zero.	6