

Advanced Union-Find

Algorithms: Design and Analysis, Part II

Path Compression: The Hopcroft-Ullman Analysis

Hopcroft-Ullman Theorem

Theorem: [Hopcroft-Ullman 73] With Union by Rank and path compression, m UNION+FIND operations take $O(m \log^* n)$ time, where $\log^* n =$ the number of times you need to apply \log to n before the result is < 1.

[Will focus on interesting case where $m = \Omega(n)$]

Measuring Progress

Intuition: Installing shortcuts should significantly speed up subsequent FINDs+UNIONs.

Question: How to track this progress and quantify the benefit?

Idea: Consider a non-root object $x \longrightarrow \text{Recall: } \text{rank}[x] \text{ frozen}$

Progress measure: rank[parent[x]] - rank[x]

Path compression increases this progress measure: If x has old parent p, new parent $p' \neq p$, then rank[p'] > rank[p].

Proof Setup

Note: There are $O(\log^* n)$ different rank blocks.

Semantics: Traversal $x \to \operatorname{parent}(x)$ is "fast progress" \iff rank[parent[x]] in larger block than rank[x]

Definition: At a given point in time, call object x good if

- (1) x or x's parent is a root OR
- (2) rank[parent[x]] in larger block than rank[x]

x is bad otherwise.

Proof of Hopcroft-Ullman

Point: Every FIND visits only $O(\log^* n)$ good nodes $[2 + \# \text{ of rank blocks} = O(\log^* n)]$

Upshot: Total work done during m operations = $O(m \log^* n)$ (visits to good objects) + total # of visits to bad nodes (need to bound globally by separate argument)

Consider: A rank block $\{k+1, k+2, \dots, 2^k\}$.

Note: When a bad node is visited

its parent is changed to one with strictly larger rank \Rightarrow Can only happen 2^k times before x becomes good (forevermore).

Proof of Hopcroft-Ullman II

Total work: $O(m \log^* n) + O(\# \text{ visits to bad nodes})$.

 $\leq n$ for each of $O(\log^* n)$ rank blocks \checkmark

Consider: A rank block $\{k+1, k+2, \dots, 2^k\}$.

Last slide: For each object x with final rank in this block, # visits

to x while x is bad is $\leq 2^k$.

Rank Lemma: Total number of objects x with final rank in this rank block is $\sum_{i=k+1}^{2^k} n/2^i \le n/2^k$.

 $\leq n$ visits to bad objects in this rank block.

Recall: Only $O(\log^* n)$ rank blocks.

Total work: $O((m+n)\log^* n)$.