Transformaciones y Ponderación para corregir Inadecuaciones del Modelo

Carlos Enrique Ponce Villagran

Facultad de Ciencias Físico-Matemáticas

25 de noviembre de 2019

Contexto del Problema

Contexto del Problema

La siguiente tabla muestra la presión de vapor del agua para diversas temperaturas.

n	Temperatura(K)	Presión de vapor (mm Hg)
1	273	4.6
2	283	9.2
3	293	17.5
4	303	31.8
5	313	55.3
6	323	92.5
7	333	149.4
8	343	233.7
9	353	355.1
10	363	525.8
11	373	760

- a) Trazar un diagrama de dispersión. ¿Parece que será adecuado un modelo de línea recta?
- b) Ajustar el modelo rectilíneo. Calcular los estadísticos de resumen y las gráficas de residuales. ¿Cuáles son las conclusiones acerca de la adecuación del modelo?
- c) Según la ecuación de Clausius-Clapeyron, de la química física,

$$\ln(p_{\nu})\alpha - \frac{1}{T}$$

Repetir la parte b usando la transformación adecuada basada en esta información.

a) El diagrama de dispersión es el siguiente:

Figura: Diagrama de Dispersión de los Datos

Como podemos observar el modelo no tiene un comportamiento lineal lo cual es de esperarse ya que la presión tiende a aumentar bastante conforme la temperatura aumenta por lo que lo ideal seria aplicarle una transformación al modelo.

Coefficients:

Residual standard error: 117.6 on 9 degrees of

freedom

0.7756

F-statistic: 35.57 on 1 and 9 DF, p-value: 0.0002117

Figura: Análisis de Varianza

b) Para ajustar el modelo consideraremos a y' = log(y), ya que la presión tiende a seguir un crecimiento exponencial, de este supuesto tenemos que la diagrama de dispersión es:

Diagrama de Dispersión

Figura: Diagrama de Dispersión

Coefficients:

Residual standard error: 0.1755 on 9 degrees of

freedom

 $\label{eq:multiple} \textit{Multiple} \;\; \textit{R--squared}: \quad 0.9903\,, \qquad \textit{Adjusted} \;\; \textit{R--squared}:$

0.9892

F-statistic: 916.7 on 1 and 9 DF, p-value: 2.288e-10

Figura: Análisis de la varianza

- La prueba Shapiro-Wilk arroja un *p*-valor de 0.06254 por lo que a un nivel de significancia de 5 % la hipótesis nula de que los residuales estudentizados distribuyen normal no se rechaza.
- La prueba Durbin-Watson arroja D=0.3852354, con $D_L=1.08$ y $D_U=1.36$ a un nivel de significancia de 5 % entonces $D < D_L$ por lo que se rechaza la hipótesis nula por lo que la correlación entre los residuales es distinta de cero.

Como la varianza no llega a ser constante con esta transformación se decidió aplicar una transformación a la regresora por el método de Box-Tidwell que nos da $\alpha \approx$ 14, el modelo arrojo los siguientes datos:

Coefficients:

```
Estimate Std. Error t value Pr(>|t|) (Intercept) -7.812e+00 1.503e+00 -5.197 0.000566 Temp 7.665e-34 3.634e-36 210.917 < 2e-16
```

Residual standard error: 3.721 on 9 degrees of freedom Multiple R-squared: 0.9998, Adjusted R-squared: 0.9998

F-statistic: 4.449e+04 on 1 and 9 DF,

p-value: < 2.2e-16

Diagrama de Dispersión

Figura: Transformación a la Regresora con $x' = x^{14}$

Figura: Análisis de Varianza

- La prueba Shapiro-Wilk arroja un *p*-valor de 0.1287 por lo que aun nivel de significancia de 5 % la hipótesis nula de que los residuales estudentizados distribuyen normal no se rechaza.
- La prueba Durbin-Watson arroja D=1.164707, con $D_L=1.08$ y $D_U=1.36$ a un nivel de significancia de 5 % entonces $D_L < D < D_U$ por lo que la prueba es inconclusa.

c) Tomando al consideración de que $\ln\left(p_{\nu}\right)\alpha-\frac{1}{T}$ ajustaremos el modelo con $y'=\ln(y)$ y además x'=-1/x tenemos que el diagrama de dispersión se ajusta muy bien a un modelo lineal:

Diagrama de Dispersíon

Figura: Diagrama de Dispersión

Coefficients:

Residual standard error: 0.02067 on 9 degrees of

freedom

Multiple R-squared: 0.9999, Adjusted R-squared:

0.9999

F-statistic: 6.672e+04 on 1 and 9 DF,

p-value: < 2.2e-16

Figura: Análisis de la Varianza

- La prueba Shapiro-Wilk arroja un p-valor de 0.09603 por lo que aun nivel de significancia de 5 % la hipótesis nula de que los residuales estudentizados distribuyen normal no se rechaza.
- La prueba Durbin-Watson arroja D=0.372751, con $D_L=1.08$ y $D_U=1.36$ a un nivel de significancia de 5 % entonces $D < D_L$ por lo que se rechaza la hipótesis nula por lo que la correlación entre los residuales es distinta de cero.

