Analiza matematyczna 1 Wykład 8, Ciągłość funkcji

1 Ciągłość funkcji w punkcie

Załóżmy, że funkcja y = f(x) jest określona w otoczeniu $(x_0 - r, x_0 + r)$ punktu x_0 dla pewnego r > 0.

Definicja 1. (ciągłości funkcji w punkcie)

Mówimy, że funkcja f jest ciągła w punkcie x_0 , jeżeli

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Poniżej widzimy wykresy funkcji: po lewej - ciągłej w punkcie x_0 , po prawej - nieciągłej w punkcie x_0 :

Rozważając jedynie otoczenie lewostronne $(x_0 - r, x_0]$ (analogicznie - prawostronne: $[x_0, x_0 + r)$) punktu x_0 oraz odpowiednio granice lewostronne i prawostronne otrzymujemy pojęcie funkcji lewo - i prawostronnie ciągłej w punkcie x_0 .

Zgodnie z definicją Heinego granicy funkcji w punkcie, ciągłość funkcji f w punkcie x_0 oznacza, że dla dowolnego ciągu argumentów (x_n) dążącego do x_0 zachodzi równość

$$\lim_{n \to \infty} f(x_n) = f\left(\lim_{n \to \infty} x_n\right).$$

Z kolei definicja Cauchy'ego granicy funkcji w punkcie daje lokalne zachowanie znaku przez funkcję ciągłą w punkcie x_0 . Mianowicie, jeżeli funkcja f jest funkcją ciągłą w punkcie x_0 i $f(x_0) > 0$, to f przyjmuje wartości dodatnie na pewnym przedziale

zawierającym x_0 . Jest tak dlatego, że wystarczy w definicji Cauchy'ego granicy funkcji w punkcie x_0 dla $\epsilon = \frac{f(x_0)}{2}$ dobrać $\delta > 0$ takie, aby dla $x \in (x_0 - \delta, x_0 + \delta)$ zachodziła nierówność

$$0 < \frac{f(x_0)}{2} < f(x) < \frac{3f(x_0)}{2}.$$

Przykład 1. Zbadać ciągłość funkcji $f(x) = x \lfloor x \rfloor$ w punktach $x_1 = 0$ i $x_2 = 1$.

1) Dla $x \in [-1, 0)$ mamy f(x) = -x, wiec

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (-x) = 0.$$

Dla $x \in [0,1)$ mamy f(x) = 0, wiec

$$\lim_{x \to 0^+} f(x) = 0,$$

a ponieważf(0) = 0, więc funkcja f jest ciągła w punkcie $x_1 = 0$.

2) Dla $x \in [0, 1)$ mamy f(x) = 0, wiec

$$\lim_{x \to 1^{-}} f(x) = 0.$$

Dla $x \in [1, 2)$ mamy f(x) = x, wiec

$$\lim_{x \to 1^+} f(x) = 1,$$

a ponieważ f(1) = 1, więc funkcja f jest prawostronnie ciągła w punkcie $x_2 = 1$.

Przykład 2. Zbadać ciągłość funkcji

$$f(x) = \begin{cases} \frac{e^x - x - 1}{x} & \text{dla } x < 0, \\ 0 & \text{dla } x = 0, \\ \sqrt{x} \sin \frac{1}{x} & \text{dla } x > 0, \end{cases}$$

w punkcie $x_0 = 0$.

Mamy

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{e^{x} - x - 1}{x} = \lim_{x \to 0^{-}} \frac{e^{x} - 1}{x} - 1 = 0,$$

a z nierówności

$$\left| \sqrt{x} \sin \frac{1}{x} \right| \le \sqrt{x}$$

wynika, że

$$\lim_{x \to 0^+} \sqrt{x} \sin \frac{1}{x} = 0$$

oraz f(0) = 0. Więc funkcja f jest ciągła w punkcie $x_0 = 0$.

Nieciągłość funkcji f w punkcie x_0 może powstać tylko w dwóch powodów:

- gdy nie istnieje granica $\lim_{x \to x_0} f(x)$ albo
- gdy $\lim_{x \to x_0} f(x) \neq f(x_0)$.

Definicja 2.

Mówimy, że funkcja f ma w punkcie x_0 nieciągłość pierwszego rodzaju, jeżeli istnieją skończone granice jednostronne: lewostronna $\lim_{x\to x_0-} f(x)$ i prawostronna $\lim_{x\to x_0+} f(x)$, ale

$$\lim_{x \to x_{0-}} f(x) \neq f(x_0) \text{ lub } \lim_{x \to x_{0+}} f(x) \neq f(x_0).$$

Nieciągłość I rodzaju typu "skok":

Nieciągłość I rodzaju typu "luka":

Definicja 3.

Mówimy, że funkcja f ma w punkcie x_0 nieciągłość drugiego rodzaju, jeżeli co najmniej jedna z granic jednostronnych

$$\lim_{x \to x_{0^-}} f(x) \quad \text{lub} \quad \lim_{x \to x_{0^+}} f(x)$$

nie istnieje lub jest niewłaściwa.

Nieciągłość II rodzaju (granice jednostronne są niewłaściwe):

Nieciągłość II rodzaju (granica jednostronna nie istnieje):

Przeanalizujemy kilka przykładów.

Przykład 3. Zbadać rodzaj nieciągłości funkcji

$$f(x) = \begin{cases} \frac{\operatorname{tg} 2x}{x} & \text{dla } x < 0, \\ 0 & \text{dla } x = 0, \\ \frac{2^{x} - 1}{x} & \text{dla } x > 0, \end{cases}$$

w punkcie $x_0 = 0$.

Mamy

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{\operatorname{tg} 2x}{x} = \lim_{x \to 0^{-}} \left(\frac{\sin 2x}{2x} \cdot \frac{2}{\cos 2x} \right) = 1 \cdot \frac{2}{1} = 2$$

oraz

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{2^x - 1}{x} = \ln 2$$

i f(0) = 0. Więc f ma w punkcie $x_0 = 0$ nieciągłość I rodzaju.

Przykład 4. Zbadać rodzaj nieciągłości funkcji

$$f(x) = \begin{cases} 1 - \sin\frac{1}{x} & \text{dla } x < 0, \\ 0 & \text{dla } x = 0, \\ \sqrt{x}\sin\frac{1}{x} & \text{dla } x > 0, \end{cases}$$

w punkcie $x_0 = 0$.

Mamy

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \sqrt{x} \sin \frac{1}{x} = 0 = f(0),$$

a jednocześnie granica lewostronna

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \left(1 - \sin \frac{1}{x} \right)$$

nie istnieje. Więc funkcja fma w punkcie $x_0=0$ nieciągłość II rodzaju.

 $\mathbf{Przykład}$ 5. Zbadać rodzaj nieciągłości funkcji

$$f(x) = \begin{cases} \frac{1}{1+e^{\frac{1}{x}}} & \text{dla } x \neq 0, \\ 0 & \text{dla } x = 0, \end{cases}$$

w punkcie $x_0 = 0$.

Mamy

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{1}{1 + e^{\frac{1}{x}}} = \frac{1}{1 + e^{-\infty}} = \frac{1}{1 + 0} = 1$$

oraz

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1}{1 + e^{\frac{1}{x}}} = \frac{1}{1 + e^{\infty}} = \frac{1}{1 + \infty} = 0 = f(0).$$

Więc funkcja f ma w punkcie $x_0 = 0$ nieciągłość I rodzaju.

2 Działania na funkcjach ciągłych

Twierdzenie 1.(o ciągłości sumy, różnicy, iloczynu i ilorazu funkcji) Jeżeli funkcje f i g są ciągłe w punkcie x_0 , to:

- 1. funkcja f + g jest ciągła w punkcie x_0 ;
- 2. funkcja f g jest ciągła w punkcie x_0 ;
- 3. funkcja $f \cdot g$ jest ciągła w punkcie x_0 ;
- 4. funkcja $\frac{f}{g}$ jest ciągła w punkcie x_0 , o ile $g(x_0) \neq 0$.

Twierdzenie 2. (o ciągłości funkcji złożonej) Jeżeli

- 1. funkcja f jest ciągła w punkcie x_0 ,
- 2. funkcja g jest ciągła w punkcie $y_0 = f(x_0)$,

to funkcja złożona $g \circ f$ jest ciągła w punkcie x_0 .

3 Ciągłość funkcji elementarnych

- Ciągłość dowolnego wielomianu w dowolnym punkcie prostej rzeczywistej wynika z twierdzenia o ciągłości w punkcie sumy i iloczynu funkcji.
- Każda funkcja wymierna (tzn. iloraz dwóch wielomianów) jest ciągła na mocy twierdzenia o ciągłości ilorazu funkcji ciągłych w dowolnym punkcie prostej rzeczywistej, oprócz punktów w których zeruje się jej mianownik.
- Ciągłość funkcji wykładniczej w dowolnym punkcie prostej rzeczywistej (z definicji Heinego granicy funkcji w punkcie)

• Funkcja logarytmiczna jest ciągła na przedziale $(0, \infty)$, ponieważ dla dowolnego $x_0 \in (0, \infty)$ mamy

$$\lim_{x \to x_0} (\ln x - \ln x_0) = \lim_{x \to x_0} \ln \frac{x}{x_0} = \lim_{x \to x_0} \ln \left(1 + \frac{x - x_0}{x_0} \right) = 0,$$

ponieważ

$$\lim_{x \to x_0} \frac{x - x_0}{x_0} = 0.$$

- Ciągłość funkcji potęgowej na dodatniej części osi Ox wynika z ciągłości funkcji logarytmicznej, wykładniczej i twierdzenia o ciągłości funkcji złożonej, ponieważ dla dowolnego α oraz dowolnego x>0 prawdziwa jest tożsamość $x^{\alpha}=e^{\alpha \ln x}$.
- Ciągłość funkcji trygonometrycznych na przykładzie sinusa:

$$\lim_{x \to x_0} (\sin x - \sin x_0) = \lim_{x \to x_0} 2 \sin \frac{x - x_0}{2} \cos \frac{x + x_0}{2} = 0,$$

ponieważ

$$0 \le \left| 2\sin\frac{x - x_0}{2}\cos\frac{x + x_0}{2} \right| \le |x - x_0|.$$

Dla cosinusa mamy:

$$\cos x = \sin\left(\frac{\pi}{2} - x\right),\,$$

a tangens i cotanges są ciągłe, jako iloraz sinusa i cosinusa.

Przykład 6. Obliczyć następujące granice:

a)
$$\lim_{x \to 0} \frac{\ln(1 + \sin x)}{x}$$
, b) $\lim_{x \to 0} \frac{\sin(2^x - 1)}{\ln(1 + x)}$, c) $\lim_{x \to 0^+} (\sin x)^{\lg x}$.

Rozwiązanie. a) Dokonujmy przekształcenia

$$\frac{\ln(1+\sin x)}{x} = \frac{\ln(1+\sin x)}{\sin x} \cdot \frac{\sin x}{x}.$$

Wiemy już, że

$$\lim_{x \to 0} \frac{\sin x}{x} = 1,$$

więc wystarczy pokazać, że

$$\lim_{x \to 0} \frac{\ln\left(1 + \sin x\right)}{\sin x} = \mathbf{1}.$$

Zauważmy jednak, że funkcja

$$f(x) = \frac{\ln(1 + \sin x)}{\sin x}$$

jest złożeniem $f = h \circ g$, gdzie

$$g(x) = \sin x, \quad h(x) = \frac{\ln(1+x)}{x},$$

więc żądana równość wynika z twierdzenia o granicy funkcji złożonej. Zatem

$$\lim_{x \to 0} \frac{\ln(1 + \sin x)}{x} = \lim_{x \to 0} \frac{\ln(1 + \sin x)}{\sin x} \cdot \lim_{x \to 0} \frac{\sin x}{x} = 1 \cdot 1 = 1.$$

b) Znowu zróbmy przekształcenie

$$\frac{\sin(2^x - 1)}{\ln(1 + x)} = \frac{\sin(2^x - 1)}{2^x - 1} \cdot \frac{2^x - 1}{x} \cdot \frac{x}{\ln(1 + x)}.$$

Funkcja $f(x) = \frac{\sin(2^x - 1)}{2^x - 1}$ jest złożeniem $f = h \circ g$, gdzie $g(x) = 2^x - 1$, $h(x) = \frac{\sin x}{x}$. Zatem potrzebna równość

$$\lim_{x \to 0} \frac{\sin(2^x - 1)}{2^x - 1} = 1$$

wynika z twierdzenia o granicy funkcji złożonej. Stąd

$$\lim_{x \to 0} \frac{\sin(2^x - 1)}{\ln(1 + x)} = \lim_{x \to 0} \frac{\sin(2^x - 1)}{2^x - 1} \cdot \lim_{x \to 0} \frac{2^x - 1}{x} \cdot \lim_{x \to 0} \frac{x}{\ln(1 + x)} = 1 \cdot \ln 2 \cdot 1 = \ln 2.$$

c) Zapiszmy tak

$$(\sin x)^{\operatorname{tg} x} = \left((\sin x)^{\sin x} \right)^{\frac{1}{\cos x}}$$

Funkcja $f(x) = (\sin x)^{\sin x}$ jest złożeniem $f = h \circ g$, gdzie $g(x) = \sin x$, $h(x) = x^x$, więc $\lim_{x \to 0^+} (\sin x)^{\sin x} = 1$, a ponieważ $\lim_{x \to 0} \cos x = 1$, więc, zgodnie z twierdzeniem o arytmetyce granic, mamy

$$\lim_{x \to 0^+} (\sin x)^{\lg x} = \lim_{x \to 0^+} \left((\sin x)^{\sin x} \right)^{\frac{1}{\cos x}} = 1.$$

4 Twierdzenia o funkcjach ciągłych

Twierdzenie 3. (Weierstrassa o ograniczoności funkcji ciągłej)

Jeżeli funkcja jest ciągła na przedziale domkniętym i ograniczonym, to jest na nim ograniczona.

Założenie domkniętości przedziału jest istotne, bo np. funkcja $f(x)=\operatorname{tg} x$ jest ciągła na przedziałe $(0,\frac{\pi}{2})$, ale nie jest na nim ograniczona. Także założenie ograniczoności przedziału jest istotne, bo np. funkcja f(x)=x jest ciągła na przedziałe $[0,\infty)$, ale nie jest na nim ograniczona. Podobnie założenie ciągłości funkcji jest istotne, bo np. funkcja

$$f(x) = \begin{cases} \operatorname{tg} x & \operatorname{dla} & x \in \left[0, \frac{\pi}{2}\right) \\ 0 & \operatorname{dla} & x = \frac{\pi}{2} \end{cases}$$

nie jest ograniczona na przedziale domkniętym $[0,\frac{\pi}{2}]$

Twierdzenie 4. (Weierstrassa o osiąganiu kresów)

Jeżeli funkcja f jest ciągła na przedziale domkniętym [a,b], to

$$\exists \ c \in [a,b] \ f(c) = \inf_{x \in [a,b]} f(x) \quad \text{oraz} \quad \exists \ d \in [a,b] \ f(d) = \sup_{x \in [a,b]} f(x).$$

Z powyższego twierdzenia wynika np. że wśród trójkątów równoramiennych wpisanych w okrąg o promieniu R istnieje taki, który ma największe pole i taki, który ma największy obwód.

Twierdzenie 5. (Darboux o przyjmowaniu wartości pośrednich)

Jeżeli funkcja f jest ciągła na przedziale domkniętym [a,b] oraz spełnia warunek f(a) < f(b), to

$$\forall w \in (f(a), f(b)) \quad \exists c \in (a, b) \quad f(c) = w.$$

Przykład 7. Uzasadnić, że podana funkcja przyjmuje określoną wartość na wskazanym przedziale:

a)
$$f(x) = \sin x + \cos x, w = \frac{1}{3}, [0, \pi].$$

Zauważmy, że

$$f(x) = \sin x + \cos x = \sin x - \sin \left(x - \frac{\pi}{2}\right) = 2\sin \frac{\pi}{4}\cos \left(x + \frac{\pi}{2}\right) = \sqrt{2}\cos \left(x + \frac{\pi}{4}\right)$$

oraz f(0) = 1 i $f(\pi) = -1$. Funkcja f jest ciągła na przedziale $[0, \pi]$. Zatem przyjmuje wszystkie wartości pośrednie między -1 a 1, czyli w szczególności wartość $\frac{1}{3}$.

b)
$$f(x) = 2^x - x^2, w = \frac{1}{10}, [1, 3].$$

Twierdzenie 5. (Darboux o miejscach zerowych funkcji)

Jeżeli funkcja f jest ciągła na przedziale domkniętym [a,b] oraz spełnia warunek $f(a) \cdot f(b) < 0$, to istnieje punkt $c \in (a,b)$ taki, że f(c) = 0.

Rozważmy równanie

$$2^x = \sqrt{|x|}$$

w przedziale $\left[-1,-\frac{1}{4}\right]$. Funkcje $f(x)=2^x$ oraz $g(x)=\sqrt{|x|}$ są ciągłe na \mathbb{R} . Tworzymy funkcję $h(x)=f(x)-g(x)=2^x-\sqrt{|x|}$, która też jest ciągła na \mathbb{R} . Zauważmy, że $h(-1)=\frac{1}{2}-1=-\frac{1}{2}<0$ i $h\left(-\frac{1}{4}\right)=\frac{1}{\sqrt[4]{2}}-\frac{1}{2}>0$. Więc z twierdzenia Darboux o miejscach zerowych funkcji wynika, że w przedziale $\left(-1,-\frac{1}{4}\right)$ znajduje się punkt x_0 , w którym funkcja h przyjmuje wartość 0, tzn. $2^{x_0}=\sqrt{|x_0|}$. Ponieważ funkcja f jest funkcją ściśle rosnącą, a funkcja g jest funkcją ściśle malejącą na $(-\infty,0)$, więc h jest funkcją ściśle rosnącą na $(-\infty,0)$, czyli jest dokładnie jeden taki punkt w $(-\infty,0)$.

Przykład 8. Uzasadnić, że podane równania mają jedno rozwiązanie we wskazanym przedziale:

a)
$$x^4 = 4^x$$
, $(-\infty, 0]$, b) $\ln x = 2 - x$, $[1, 2]$, c) $x^4 + x - 1 = 0$, $(0, \infty)$.