e.
$$p = e^{10}, p^* = 22000$$

f.
$$p = 10^{\pi}, p^* = 1400$$

g.
$$p = 8!, p^* = 39900$$

h.
$$p = 9!, p^* = \sqrt{18\pi} (9/e)^9$$

2. Find the largest interval in which p^* must lie to approximate p with relative error at most 10^{-4} for each value of p.

$$\sqrt{2}$$

3. Suppose p^* must approximate p with relative error at most 10^{-3} . Find the largest interval in which p^* must lie for each value of p.

4. Perform the following computations (i) exactly, (ii) using three-digit chopping arithmetic, and (iii) using three-digit rounding arithmetic. (iv) Compute the relative errors in parts (ii) and (iii).

a.
$$\frac{4}{5} + \frac{1}{3}$$

b.
$$\frac{4}{5}$$
.

c.
$$\left(\frac{1}{3} - \frac{3}{11}\right) + \frac{3}{20}$$

d.
$$\left(\frac{1}{3} + \frac{3}{11}\right) - \frac{3}{20}$$

5. Use three-digit rounding arithmetic to perform the following calculations. Compute the absolute error and relative error with the exact value determined to at least five digits.

a.
$$133 + 0.921$$

c.
$$(121 - 0.327) - 119$$

d.
$$(121-119)-0.327$$

e.
$$\frac{\frac{13}{14} - \frac{6}{7}}{2e - 5.4}$$

f.
$$-10\pi + 6e - \frac{3}{62}$$

$$\mathbf{g.} \quad \left(\frac{2}{9}\right) \cdot \left(\frac{9}{7}\right)$$

h.
$$\frac{\pi - \frac{22}{7}}{\frac{1}{17}}$$

6. Repeat Exercise 5 using four-digit rounding arithmetic.

7. Repeat Exercise 5 using three-digit chopping arithmetic.

8. Repeat Exercise 5 using four-digit chopping arithmetic.

9. The first three nonzero terms of the Maclaurin series for the arctangent function are $x - (1/3)x^3 + (1/5)x^5$. Compute the absolute error and relative error in the following approximations of π using the polynomial in place of the arctangent:

a.
$$4\left[\arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{3}\right)\right]$$

b.
$$16 \arctan\left(\frac{1}{5}\right) - 4 \arctan\left(\frac{1}{239}\right)$$

10. The number e can be defined by $e = \sum_{n=0}^{\infty} (1/n!)$, where $n! = n(n-1) \cdots 2 \cdot 1$ for $n \neq 0$ and 0! = 1. Compute the absolute error and relative error in the following approximations of e:

a.
$$\sum_{n=0}^{5} \frac{1}{n!}$$

b.
$$\sum_{n=0}^{10} \frac{1}{n!}$$

11. Let

$$f(x) = \frac{x \cos x - \sin x}{x - \sin x}.$$

a. Find $\lim_{x\to 0} f(x)$.

b. Use four-digit rounding arithmetic to evaluate f(0.1).

c. Replace each trigonometric function with its third Maclaurin polynomial, and repeat part (b).

d. The actual value is f(0.1) = -1.99899998. Find the relative error for the values obtained in parts (b) and (c).

$$\mathbf{a.} \quad e \approx \sum_{n=0}^{5} \frac{1}{n!}$$

b.
$$e \approx \sum_{j=0}^{5} \frac{1}{(5-j)!}$$

c.
$$e \approx \sum_{n=0}^{10} \frac{1}{n!}$$

d.
$$e \approx \sum_{j=0}^{10} \frac{1}{(10-j)!}$$

3. The Maclaurin series for the arctangent function converges for $-1 < x \le 1$ and is given by

$$\arctan x = \lim_{n \to \infty} P_n(x) = \lim_{n \to \infty} \sum_{i=1}^n (-1)^{i+1} \frac{x^{2i-1}}{2i-1}.$$

- a. Use the fact that $\tan \pi/4 = 1$ to determine the number of *n* terms of the series that need to be summed to ensure that $|4P_n(1) \pi| < 10^{-3}$.
- b. The C++ programming language requires the value of π to be within 10^{-10} . How many terms of the series would we need to sum to obtain this degree of accuracy?
- 4. Exercise 3 details a rather inefficient means of obtaining an approximation to π . The method can be improved substantially by observing that $\pi/4 = \arctan \frac{1}{2} + \arctan \frac{1}{3}$ and evaluating the series for the arctangent at $\frac{1}{2}$ and at $\frac{1}{3}$. Determine the number of terms that must be summed to ensure an approximation to π to within 10^{-3} .
- 5. Another formula for computing π can be deduced from the identity $\pi/4 = 4 \arctan \frac{1}{5} \arctan \frac{1}{239}$. Determine the number of terms that must be summed to ensure an approximation to π to within 10^{-3} .
- 6. Find the rates of convergence of the following sequences as $n \to \infty$.

$$\mathbf{a.} \quad \lim_{n \to \infty} \sin \frac{1}{n} = 0$$

$$\mathbf{b.} \quad \lim_{n \to \infty} \sin \frac{1}{n^2} = 0$$

$$\mathbf{c.} \quad \lim_{n \to \infty} \left(\sin \frac{1}{n} \right)^2 = 0$$

d.
$$\lim_{n \to \infty} [\ln(n+1) - \ln(n)] = 0$$

7. Find the rates of convergence of the following functions as $h \to 0$.

$$\mathbf{a.} \quad \lim_{h \to 0} \frac{\sin h}{h} = 1$$

b.
$$\lim_{h \to 0} \frac{1 - \cos h}{h} = 0$$

$$c. \quad \lim_{h \to 0} \frac{\sin h - h \cos h}{h} = 0$$

d.
$$\lim_{h \to 0} \frac{1 - e^h}{h} = -1$$

8. a. How many multiplications and additions are required to determine a sum of the form

$$\sum_{i=1}^n \sum_{j=1}^i a_i b_j?$$

- b. Modify the sum in part (a) to an equivalent form that reduces the number of computations.
- 9. Let $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ be a polynomial, and let x_0 be given. Construct an algorithm to evaluate $P(x_0)$ using nested multiplication.
- 10. Example 5 of Section 1.2 gives alternative formulas for the roots x_1 and x_2 of $ax^2 + bx + c = 0$. Construct an algorithm with input a, b, c and output x_1 , x_2 that computes the roots x_1 and x_2 (which may be equal or be complex conjugates) using the best formula for each root.
- 11. Construct an algorithm that has as input an integer $n \ge 1$, numbers x_0, x_1, \ldots, x_n , and a number x and that produces as output the product $(x x_0)(x x_1) \cdots (x x_n)$.
- 12. Assume that

$$\frac{1-2x}{1-x+x^2} + \frac{2x-4x^3}{1-x^2+x^4} + \frac{4x^3-8x^7}{1-x^4+x^8} + \dots = \frac{1+2x}{1+x+x^2},$$