

AGENDA

- Introduction
- Previous Work
- Method
- Result
- Conclusion

INTRODUCTION

2D OBJECT CLASSIFICATION

Deep Learning for 2D Object Classification

- Convolutional Neural Network (CNN) for 2D images works really well
 - AlexNet, ResNet, & GoogLeNet

R-CNN → Fast R-CNN → Faster R-CNN → Mask R-CNN

 Recent 2D image classification can even extract precise boundaries of objects (FCN → Mask R-CNN)

[1] He et al., Mask R-CNN (2017)

3D OBJECT CLASSIFICATION

Deep Learning for 3D Object Classification

- 3D object classification approaches are getting more attentions
 - Collecting 3D point data is easier and cheaper than before (LiDAR & other sensors)
 - Size of data is bigger than 2D images
 - Open datasets are increasing
 - Recent researches approaches human level detection accuracy
 - MVCNN, ShapeNet, PointNet, VoxNet, VoxelNet, & VRN Ensemble

[2] Zhou and Tuzel, VoxelNet (2017)

GOALS

The goals of our method

 Evaluating & comparing different types of Neural Network models for 3D object classification

- Providing the generic framework to test multiple 3D neural network models
 - Simple & easy to implement neural network models
 - Fast preprocessing (remove bottleneck of loading, sampling, & jittering 3D data)

PREVIOUS WORK

3D POINT-BASED APPROACHES

3D Points → Neural Nets

- PointNet
 - First 3D point-based classification
 - Unordered dataset
 - Transform → Multi-Layer
 Perceptron (MLP) → Max Pool (MP)
 → Classification

PIXEL-BASED APPROACHES

3D → 2D Projections → Neural Nets

Multi-Layer Perceptron (MLP)

Convolutional Neural Network (CNN)

 Multi-View Convolutional Neural Network (MVCNN)

[4] Krizhevsky et al., AlexNet (2012)

[3] Su et al., MVCNN (2015)

VOXEL-BASED APPROACHES

3D Points → Voxels → Neural Nets

VoxNet

VRN Ensemble

VoxelNet

[2] Zhou and Tuzel, VoxelNet (2017)

METHOD

PREPROCESSING

Requirement

- Loading 3D polygonal objects
- Required Operations on 3D objects
 - Sampling, Shuffling, Jittering, Scaling, & Rotating
 - Projection, & Voxelization
- Python interface is not that good for multi-core processing (or multi-threading)
 - # of objects is notoriously for single-core processing

FRAMEWORK

Basic Pipeline

3D DATASETS

MODELNET10

Princeton ModelNet Data

http://modelnet.cs.princeton.edu/

10 Categories

4,930 Objects (2 GB)

OFF (CAD) File Format

MODELNET40

Princeton ModelNet Data

http://modelnet.cs.princeton.edu/

40 Categories

12,431 Objects (10 GB)

OFF (CAD) File Format

SHAPENET CORE V2

ShapeNet

https://www.shapenet.org/

55 Categories

51,191 Objects (90 GB)

OBJ File Format

Point-Based Models

NEURAL NETWORK MODELS

Pixel-Based Models

Voxel-Based Models

Types of Models

- Preprocessing:
 - Rotate randomly
 - Scale randomly
 - Uniform sampling on 3D object surfaces
 - Sample 2048 points
 - Shuffle points

- Tested Models
 - Multi-Layer Perceptron (MLP)
 - Multi Rotational MLPs
 - Single Orientation CNN
 - Multi Rotational CNNs
 - Multi Rotational Resample & Max Pool Layers
 - ResNet-like

MLP

Multi Rotational MLPs

Single Orientation CNN

Multi Rotational CNNs

Multi Rotational Resample & Max Pool Layers

ResNet-like

Types of Models

- Preprocessing:
 - Sample 8192 points
 - Same as point-based models
 - Depth-only orthogonal projection
 - 32x32 or 64x64
 - Generating multiple rotations
 - 64x64x5 & 64x64x10

- Tested Models:
 - MLP

Depth-Only Orthogonal MVCNN

MLP

Depth-Only Orthogonal MVCNN

Types of Models

- Preprocessing:
 - Sample 8192 points
 - Same as point based models
 - Voxelization
 - 3D points → Voxels
 - Each voxel has intensity 0.0 ~ 1.0
 - how many points hit same voxel
 - 32x32x32 & 64x64x64

- Tested Models:
 - MLP
 - CNN
 - ResNet-like

MLP

CNN

Class Onehot Vector

ResNet-like

IMPLEMENTATION

System Setup

- System: Ubuntu 16.04, RAM 32 GB & 64 GB, & SSD 512 GB
- NVIDIA Quadro P6000, Quadro M6000, & GeForce Titan X
- GCC 5.2.0 for C++ 11x
- Python 3.5
- TensorFlow-GPU v1.5.0
- NumPy 1.0

HYPER PARAMETERS

- Object Perturbation
 - Random Rotations: -25 ~ 25 degree
 - Random Scaling: 0.7 ~ 1.0
- Learning Rate: 0.0001
- Keep Probability (Dropout layer): 0.7
- Max Epochs: 1000
- Batch Size: 32
- Number of Random Rotations: 20
- Voxel Dim: 32x32x32
- MVCNN Number of Views: 5

RESULT

MODELNET10 # OF TEST & TRAIN OBJECTS

MODELNET 10 ACCURACY

MODELNET40 # OF TEST & TRAIN OBJECTS

MODELNET40 ACCURACY

MODELNET40 ACCURACY 7 CATEGORIES (# OF TRAIN OBJECTS > 400)

MODELNET40, 7 CATEGORIES ACCURACY

MODELNET40 ACCURACY 10 CATEGORIES (# OF TRAIN OBJECTS > 300)

MODELNET40, 10 CATEGORIES ACCURACY

MODELNET40 ACCURACY 17 CATEGORIES (# OF TRAIN OBJECTS > 200)

MODELNET40, 17 CATEGORIES ACCURACY

MODELNET10 PERFORMANCE

MODELNET40 PERFORMANCE

SHAPENET CORE V2 ACCURACY

- ShapeNet has pretty big dataset
 - 90 GB of dataset
 - Only tested 3 NN models
 - Point MP
 - Depth-Only MVCNN
 - Voxel CNN

TRAIN ACCURACY GRAPH

TEST ACCURACY GRAPH

CROSS ENTROPY CONVERGENCE GRAPH

CONCLUSION

CONCLUSION

Models

- Voxel ResNet and Voxel CNN provide best result on 3D object classification
- Unordered vs. Ordered: Unordered data (point cloud) could be learned, but lower accuracy and higher computation cost than ordered data
- Projection vs. Voxelization: Voxelization provides better result with similar computation cost (converge faster, & more precise)
- Strict comparisons with previous methods are not done yet
 - Sampling and jittering methods are different (cannot directly compare yet)

CONCLUSION

Dataset Evaluation

- ModelNet10 & ModelNet40
 - Some categories have too small training and testing objects
 - Lowering classification accuracy
- ModelNet40, 7 categories (# of training objects > 400)
 - Achieved 98% accuracy
 - Partial dataset from ModelNet40 (Categories that have more than 400 3D objects)
 - # of train 3D objects in a category matters
- ShapeNetCore.v2
 - # of 3D objects are big enough, but many object but many duplicated objects

FUTURE WORK

- Running entire procedures in CUDA
 - Using NVIDIA GVDB → Will have advantages of Sparse Voxels
- Strict comparisons with previous methods
 - PointNet, VRN Ensemble, etc
- Extending methods to captured dataset (e.g. KITTI)
- Train set is too small
 - Need to investigate whether Generative Adversarial Networks (GAN) can alleviate this problem or not

REFERENCE

- [1] He et al., 2017, Mask R-CNN
- [2] Zhou and Tuzel, 2017, VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
- [3] Su et al., 2015, Multi-view convolutional neural networks for 3d shape recognition
- [4] Krizhevsky et al., 2012, ImageNet Classification with Deep Convolutional Neural Networks
- [5] Qi et al., 2017, Pointnet: Deep learning on point sets for 3d classification and segmentation
- [6] Maturana and Scherer, 2015, VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition
- [7] Broke et al., 2016, Generative and Discriminative Voxel Modeling with Convolutional Neural Networks

- [8] He et al., 2016, Deep residual learning for image recognition
- [9] Goodfellow et al., 2014, Generative adversarial nets
- [10] Girshick, 2015, Fast R-CNN
- [11] Ren et al., 2015, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
- [12] Chang et al., 2015, ShapeNet: An Information-Rich 3D Model Repository
- [13] Wu et al., 2015, 3D ShapeNets: A Deep Representation for Volumetric Shapes
- [14] Wu et al., 2014, 3D ShapeNets for 2.5D Object Recognition and Next-Best-View Prediction

