第四章 动态规划

4.4 动态规划在经济管理中的应用

修贤超

机电工程与自动化学院 上海大学

xcxiu@shu.edu.cn

■ 背包问题

① 一位旅行者携带背包去登山,已知他所能承受的背包重量限度为akg,现有n种可供他选择背入背包,第i种物品的单件重量为 a_i kg,其价值 (可以是表明本物品对登山的重要性的数量指标) 是携带数量 x_i 的函数 $c_i(x_i)$ (i=1,2,n)。 问旅行者应如何选择携带各种物品的件数,以使总价值最大?

■ 背包问题

- $flue{a}$ 一位旅行者携带背包去登山,已知他所能承受的背包重量限度为akg,现有 n 种可供他选择背入背包,第 i 种物品的单件重量为 a_i kg,其价值 (可以是表明本物品对登山的重要性的数量指标) 是携带数量 x_i 的函数 $c_i(x_i)$ (i=1,2,n)。 问旅行者应如何选择携带各种物品的件数,以使总价值最大?
- f Q 设 x_i 为第 i 种物品装入的件数,则背包问题可归结为如下形式的整数规划模型

max
$$z = \sum_{i=1}^{n} c_i(x_i)$$

s.t.
$$\begin{cases} \sum_{i=1}^{n} a_i x_i \le a \\ x_i \ge 0 \text{ 且为整数 } (i = 1, \dots, n) \end{cases}$$

- □ 阶段: 将可装入物品按 1, ..., n 排序, 每段装一种物品, 共划分为 n 个阶段, 即 k = 1, ..., n
- flue <mark>状态变量</mark>: 在第 k 段开始时,背包中允许装入前 k 种物品的总重量为 s_{k+1}
- \square 决策变量: 装入第 k 种物品的件数, 记 x_k

- □ 阶段: 将可装入物品按 1, ..., n 排序, 每段装一种物品, 共划分为 n 个阶段, 即 k = 1, ..., n
- lue <mark>状态变量:</mark> 在第 k 段开始时,背包中允许装入前 k 种物品的总重量为 s_{k+1}
- \square 决策变量: 装入第 k 种物品的件数, 记 x_k
- \square 状态转移方程: $s_k = s_{k+1} a_k x_k$

- © 阶段: 将可装入物品按 $1, \ldots, n$ 排序, 每段装一种物品, 共划分为 n 个阶段, 即 $k = 1, \ldots, n$
- $lue{k}$ <mark>状态变量:</mark> 在第 k 段开始时,背包中允许装入前 k 种物品的总重量为 s_{k+1}
- \square 决策变量: 装入第 k 种物品的件数, 记 x_k
- \square 状态转移方程: $s_k = s_{k+1} a_k x_k$
- \Box 允许决策集合: $D_k(s_{k+1}) = \{x_k \mid 0 \le x_k \le [s_{k+1}/a_k], x_k$ 为整数}

- □ 阶段: 将可装入物品按 1, ..., n 排序, 每段装一种物品, 共划分为 n 个阶段, 即 k = 1, ..., n
- $lue{k}$ <mark>状态变量:</mark> 在第 k 段开始时,背包中允许装入前 k 种物品的总重量为 s_{k+1}
- \square 决策变量: 装入第 k 种物品的件数, 记 x_k
- \square 状态转移方程: $s_k = s_{k+1} a_k x_k$
- \square 允许决策集合: $D_k(s_{k+1}) = \{x_k \mid 0 \le x_k \le [s_{k+1}/a_k], x_k$ 为整数}
- $flue{flue{f L}}$ 最优指标函数:表示在背包中允许装入物品的总重量不超过 s_{k+1} kg,采用最优策略只装前 k 种物品时的最大使用价值,记 $f_k(s_{k+1})$

- 动态规划顺序解法
 - □ 顺序递推方程

$$\begin{cases} f_k(s_{k+1}) = \max_{x_k = 0, 1, \dots, [s_{k+1}/a_k]} \{c_k(x_k) + f_{k-1}(s_{k+1} - a_k x_k)\} \\ f_0(s_1) = 0 \end{cases}$$

- 动态规划顺序解法
 - □ 顺序递推方程

$$\begin{cases} f_k(s_{k+1}) = \max_{x_k = 0, 1, \dots, [s_{k+1}/a_k]} \{c_k(x_k) + f_{k-1}(s_{k+1} - a_k x_k)\} \\ f_0(s_1) = 0 \end{cases}$$

□ 用前向动态规划方法逐步计算出 $f_1(s_2), f_2(s_3), \ldots, f_n(s_{n+1})$ 及相应的决策函数 $x_1(s_1), x_2(s_3), \ldots, x_n(s_{n+1})$,最后得到的 $f_n(a)$ 即为所求的最大价值,相应的最优策略则由反推计算得出。

- 动态规划顺序解法
 - □ 顺序递推方程

$$\begin{cases} f_k(s_{k+1}) = \max_{x_k = 0, 1, \dots, [s_{k+1}/a_k]} \{c_k(x_k) + f_{k-1}(s_{k+1} - a_k x_k)\} \\ f_0(s_1) = 0 \end{cases}$$

- □ 用前向动态规划方法逐步计算出 $f_1(s_2), f_2(s_3), \ldots, f_n(s_{n+1})$ 及相应的决策函数 $x_1(s_1), x_2(s_3), \ldots, x_n(s_{n+1})$,最后得到的 $f_n(a)$ 即为所求的最大价值,相应的最优策略则由反推计算得出。

■ 例 1

□ 有一辆最大货运量为 10t 的卡车, 用以装载 3 种货物, 每种货物的单位重量及相应单位价值如下。应如何装载可使总价值最大?

货物编号 i	1	2	3
单位重量 $(t)(a_i)$	3	4	5
单位价值 c_i	4	5	6

■ 例 1

□ 有一辆最大货运量为 10t 的卡车, 用以装载 3 种货物, 每种货物的单位重量及相应单位价值如下。应如何装载可使总价值最大?

货物编号 i	1	2	3
单位重量 $(t)(a_i)$	3	4	5
单位价值 c_i	4	5	6

 \square 设第 i 种货物装载的件数为 x_i (i=1,2,3),则问题可表为

■ 例 1

□ 有一辆最大货运量为 10t 的卡车, 用以装载 3 种货物, 每种货物的单位重量及相应单位价值如下。应如何装载可使总价值最大?

货物编号 i	1	2	3
单位重量 $(t)(a_i)$	3	4	5
单位价值 c_i	4	5	6

 \square 设第 i 种货物装载的件数为 x_i (i=1,2,3),则问题可表为

max
$$z = 4x_1 + 5x_2 + 6x_3$$

s.t.
$$\begin{cases} 3x_1 + 4x_2 + 5x_3 \le 10 \\ x_1, x_2, x_3 \ge 0$$
且为整数

- 例 1
 - \square 当 k=1 时,有

$$f_1(s_2) = \max_{0 \le 3x_1 \le s_2, \ x_1 \text{ pressure}} \{4x_1\}$$

$$f_1(s_2) = \max_{0 \le x_1 \le s_2/3, \ x_1 \text{ piets}} \ \{4x_1\} = 4[s_2/3]$$

- 例 1
 - \square 当 k=1 时,有

$$f_1(s_2) = \max_{0 \le 3x_1 \le s_2, \ x_1 \text{ prop } \{4x_1\}$$

$$f_1(s_2) = \max_{0 < x_1 < s_2/3, \ x_1 \text{ new }} \{4x_1\} = 4[s_2/3]$$

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5 6 7 8 9 10
$f_1(s_2) \mid 0 \mid 0 \mid 0 \mid 4 \mid 4 \mid$	4 8 8 8 12 12
$x_1^* \mid 0 \mid 0 \mid 0 \mid 1 \mid 1 \mid$	1 2 2 2 3 3

- 例 1
 - \square 当 k=2 时,有

$$f_2(s_3) = \max_{0 \le 4x_2 \le s_s, \ x_2 \text{ neg}} \{5x_2 + f_1(s_3 - 4x_2)\}$$

$$f_2(s_3) = \max_{0 \le x_2 \le s_3/4, \ x_2 \text{ product}} \{5x_2 + f_1(s_3 - 4x_2)\}$$

■ 例 1

 \square 当 k=2 时,有

$$f_2(s_3) = \max_{0 \le 4x_2 \le s_s, \ x_2 \text{ yield}} \{5x_2 + f_1(s_3 - 4x_2)\}$$

$$f_2(s_3) = \max_{0 \le x_2 \le s_3/4, \ x_2 \text{ pressure}} \{5x_2 + f_1(s_3 - 4x_2)\}$$

s ₂ 0 1 2 3 4 5 6 7 8	9	10
x ₂ 0 0 0 0 0 1 0 1 0 1 0 1 0 1 2	0 1 2	0 1 2
$c_2 + f_2 \mid 0 \mid 0 \mid 0 \mid 4 \mid 45 \mid 45 \mid 85 \mid 89 \mid 8910$	12 9 10	12 13 10
$f_2(s_3) \mid 0 \mid 0 \mid 0 \mid 4 \mid 5 \mid 5 \mid 8 \mid 9 \mid 10$	12	13
x ₂ * 0 0 0 0 1 1 0 1 2	0	1

- 例 1
 - \square 当 k=3 时,有

$$f_3(s_4) = \max_{0 \le x_3 \le \lfloor s_4/5 \rfloor} \{6x_3 + f_2(s_4 - 5x_3)\}$$

$$= \max_{x_3 = 0, 1, 2} \{3x_3 + f_2(10 - 5x_3)\}$$

$$= \max \{f_2(10), 6 + f_2(5), 12 + f_2(0)\}$$

$$= \max \{13, 6 + 5, 12 + 0\}$$

$$= 13$$

- 例 1

$$f_3(s_4) = \max_{0 \le x_3 \le [s_4/5]} \{6x_3 + f_2(s_4 - 5x_3)\}$$

$$= \max_{x_3 = 0, 1, 2} \{3x_3 + f_2(10 - 5x_3)\}$$

$$= \max \{f_2(10), 6 + f_2(5), 12 + f_2(0)\}$$

$$= \max \{13, 6 + 5, 12 + 0\}$$

$$= 13$$

- □ 最大价值为 13

- 小结
 - □ 背包问题
 - □ 生产经营问题
 - □ 设备更新问题
 - □ 复合系统工作可靠性问题
 - □ 货郎担问题
- 马氏决策规划

$Q\&\mathcal{A}$

Thank you! 感谢您的聆听和反馈