0.1 CMC 红宝书高代习题

例题 0.1 设 $n \ge 3$, n 阶矩阵

$$A = \begin{pmatrix} 1 & a & \cdots & a \\ a & 1 & \cdots & a \\ \vdots & \vdots & & \vdots \\ a & a & \cdots & 1 \end{pmatrix},$$

计算 rank(A).

解

$$|A| = \begin{vmatrix} (n-1)a+1 & a & \cdots & a \\ (n-1)a+1 & 1 & \cdots & a \\ \vdots & \vdots & & \vdots \\ (n-1)a+1 & a & \cdots & 1 \end{vmatrix} = [(n-1)a+1] \begin{vmatrix} 1 & a & \cdots & a \\ 0 & 1-a & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1-a \end{vmatrix}$$
$$= [(n-1)a+1](1-a)^{n-1}$$

 $\ddot{a} \neq 1$ 且 $a \neq \frac{1}{1-n}$,则 $|A| \neq 0$, $\operatorname{rank}(A) = n$. 若 a = 1,易知 $\operatorname{rank}(A) = 1$. 若 $a = \frac{1}{1-n}$,容易看出 A 的前 n-1 行、n-1 列构成的子矩阵为对角占优矩阵,行列式不为 0. 所以 $\operatorname{rank}(A) = n-1$.

例题 0.2 设 A 为 2023 阶非零实矩阵. A_{ij} 为 A 中元素 a_{ij} 的代数余子式且 $A_{ij}=a_{ij}$. 求 A 的秩与行列式.

解 由于 $A \neq 0$,不妨设 $a_{kl} \neq 0$. A 按第 k 行展开有

$$|A| = a_{k1}^2 + a_{k2}^2 + \dots + a_{kn}^2 \neq 0.$$

故 rank(A) = 2023.

由已知有 A 的伴随矩阵 $A^* = A^T$. 所以由 $AA^* = |A|E$ 有 $AA^T = |A|E$. 两边取行列式有

$$|A|^2 = |A|^{2023}$$
.

注意到 $|A| \neq 0$, 所以 $|A|^{2021} = 1$. 又 |A| 为实数, 所以 |A| = 1.

例题 0.3 设 1013 阶实方阵 A 可对角化且满足

$$A^2 - 1013A + 2022E = 0$$

和

$$rank(\boldsymbol{A} - 2\boldsymbol{E}) = 3.$$

求A的特征值.

 \mathbf{m} 由于 \mathbf{A} 可对角化, 故 \mathbf{A} 的每个特征值的代数重数等于其几何重数, 令 $\mathbf{\lambda}$ 为 \mathbf{A} 的特征值, 则有

$$\lambda^2 - 1013\lambda + 2022 = 0,$$

即

$$(\lambda - 2)(\lambda - 1011) = 0,$$

$$\lambda_1 = 2, \quad \lambda_2 = 1011.$$

故 A 的特征值只可能是 $\lambda_1=2,\lambda_2=1011$. 注意到 $\mathrm{rank}(A-2E)=3<1013$. 所以 |A-2E|=0, 故 2 是 A 的一个特征值.

由于可对角化,特征值 2 的代数重数等于其几何重数. 由于 (A-2E)x=0 的解空间维数为 1013-rank(A-2E)=1010,因此 2 作为 A 的特征值,其代数重数为 1010. 故 A 还有其他特征值,且一定为 1011. 其代数重数为 1013-1010=3. 至此 A 的全部特征值为 $\lambda_1=2(1010$ 重), $\lambda_2=1011(3$ 重).

例题 0.4

解

例题 0.5	
解	
例题 0.6 解	
例题 0.7 解	
例题 0.8	
解 例题 0.9	
解	
例题 0.10 解	
例题 0.11 解	_
例题 0.12 解	
例题 0.13 解	
例题 0.14	
例题 0.15	
解	
例题 0.16 解	
例题 0.17 解	
例题 0.18 解	
例题 0.19	
M	

例题 0.20 解	
例题 0.21 解	
例题 0.22 解	
例题 0.23 解	
例题 0.24 解	
例题 0.25 解	
例题 0.26 解	
例题 0.27 解	
例题 0.28 解	
例题 0.29 解	
例题 0.30	
例题 0.31	
例题 0.32	
解	