POSTGRESQL

FAPESC – DESENVOLVEDORES PARA TECNOLOGIA DA INFORMAÇÃO

FRANCIELE PETRY

Franciele.petry@unoesc.edu.br

https://www.postgresql.org/

- O <u>PostgreSQL</u> é também considerado por muitos como um sistema de gerenciamento de banco de dados objeto-relacional (SGBDOR), tendo sido o pioneiro em muitos conceitos objeto-relacionais que agora estão se tornando disponíveis em alguns bancos de dados comerciais
 - O projeto POSTGRES foi iniciado em 1985, sendo uma evolução do projeto <u>Ingres</u>, liderado pelo Professor <u>Michael Stonebraker</u> (ganhador do Prêmio Turing de 2014), foi patrocinado pelas seguintes instituições: Defense Advanced Research Projects Agency (DARPA); Army Research Office (ARO); National Science Foundation (NSF); e ESL, Inc.
 - Ele foi lançado para uso externo em 1996 no Departamento de Ciência da Computação da Universidade da Califórnia em Berkeley
 - O PostgreSQL descende deste código original de Berkeley, possuindo o código-fonte aberto e fornecendo suporte às linguagens SQL92/SQL99, além de outras funcionalidades modernas

- O PostgreSQL é um dos <u>SGBDs</u> de código aberto (<u>licença BSD</u>) mais avançados que existem atualmente, contando com recursos como
 - Multiplataforma: Windows, Linux, <u>FreeBSD</u>, <u>OpenBSD</u>, macOS
 - Consultas complexas
 - Chaves estrangeiras
 - Integridade transacional
 - Controle de concorrência multiversão (MVCC)
 - Tipos de dados geométricos, endereços de rede, JSON, XML e arrays
 - Gatilhos (triggers)
 - Visões (views)
 - Linguagem procedural em várias linguagens (PL/pgSQL, PL/Python, PL/Java, PL/Perl) para procedimentos armazenados (stored procedures)
 - Estrutura para guardar dados georreferenciados PostGIS
 - Criptografia
 - Criação de tabelas temporárias
- Acompanhamento de slow query

- Recursos (continuação...)
 - Suporte ao modelo híbrido objeto-relacional
 - Herança de tabelas
 - Sobrecarga de funções
 - Recuperação em um ponto no tempo (PITR)
 - Transações agrupadas (<u>savepoints</u>)
 - Múltiplas transações online concorrentes entre usuários
 - Expressões regulares
 - Subconsultas
 - Suporte a <u>rules</u> (sistema de regras que reescreve diretivas SQL)
 - Sofisticado planejador de consultas (otimizador)
 - Suporta conjuntos de caracteres internacionais com codificação de caracteres multibyte, Unicode e sua ordenação por localização
 - Indexação por texto
 - Busca full-text

- Apresenta conformidade com o padrão <u>ACID</u>
 - Atomicidade: Suporta transações, ou todas as operações são efetuadas, ou nenhuma é
 - Consistência: As regras de integridade devem ser obedecidas para não levar um banco de dados a um estado inconsistente
 - Isolamento: Evita que transações concorrentes interfiram umas nas outras
- Durabilidade: Transações bem sucedidas devem persistir no banco de dados, mesmo em casos de quedas de energia, travamentos ou erros

TIPOS DE DADOS BÁSICOS

Tipos de Dados Mais Comuns									
Numéricos									
Tipo	Tamanho	Apelido		Faixa					
SMALLINT	2 bytes	inteiro pequeno		32768 a +32767					
INTEGER ou INT	4 bytes	inteiro		214748	2147483648 até +2147483647				
BIGINT	8 bytes	inteiro longo		9223372036854775808 a +9223372036854775807					
NUMERIC(p,e) / DECIMAL(p,e)				tamanho variável, precisão especificada pelo usuário. Exato e sem limite e – escala (casas decimais) p – precisão (total de dígitos, inclusive escala)					
REAL ou FLOAT	4 bytes	ponto flutuante		precisão	precisão variável, não exato e precisão de 6 dígitos				
DOUBLE PRECISION	8 bytes	dupla precisão		precisão	precisão variável, não exato e precisão de 15 dígitos				
Caracteres									
Tipo			Apelido			Faixa			
CHARACTER VARYING(n) ou VARCHAR(n)		AR(n)	caractere tamanho variável		variável	comprimento variável, com limite			
CHARACTER(n)ou CHAR(n)			caractere tamanho fixo		fixo	comprimento fixo			
TEXT		comprimento variável e ilimitado							
			Data/H	lora					
Tipo	Tamanho	Apelido			Faixa				
TIMESTAMP[(p)] [without time zone]	8 bytes	data e hora sem zor		na 47:	4713 AC a 5874897 DC				
TIMESTAMP [(p)] [with time zone]	8 bytes	data e hora com zor		na 47:	4713 AC a 5874897 DC				
INTERVAL	12 bytes	intervalo de tempo		173	178000000 anos a 178000000 anos				
DATE	4 bytes	somente data		47:	4713 AC até 32767 DC				
TIME [(p)] [without time zone]	8 bytes	somente a hora		00:	00:00:00.00 até 23:59:59.99				

[(p)] é a precisão, que varia de 0 a 6 e o default é 2.

8 bytes

[with time zone]

		Booleanos		
Tipo	Tamanho	Apelido	Faixa	
TRUE			't', 'true', 'y', 'yes' e '1'	
FALSE			'f', 'false', 'n', 'no', '0'	
Apenas um dos dois e	estados. O terce	iro estado, desconhecido, é re	presentado pelo NULL.	

somente a hora

00:00:00.00 até 23:59:59.99

DBEAVER + POSTGRESQL

DBEAVER + POSTGRESQL

DBEAVER + POSTGRESQL

CREATE DATABASE

```
create database nome_do_banco_de_dados;
create database floricultura;
```


CREATE TABLE

```
    □ CREATE TABLE departamentos (
     id departamento SERIAL PRIMARY KEY,
     nome VARCHAR(50) NOT NULL
 );
→ CREATE TABLE cargos (
     id cargo SERIAL PRIMARY KEY,
     id departamento INTEGER NOT NULL,
     nome VARCHAR(50) NOT NULL,
     FOREIGN KEY (id departamento) REFERENCES departamentos(id departamento)
 );
CREATE TABLE funcionarios (
     id SERIAL PRIMARY KEY,
     nome VARCHAR(60) NOT NULL,
     escolaridade tipo escolaridade,
     id_cargo INTEGER REFERENCES cargos(id_cargo),
     salario DECIMAL NOT NULL
 );
```


Apoiadores:

INSERINDO DADOS

```
INSERT INTO table_name (column1, column2, column
3, ...)
VALUES (value1, value2, value3, ...);
```

```
INSERT INTO departamentos VALUES(1, 'TI');
INSERT INTO cargos VALUES(1, 1, 'Desenvolvedor');
INSERT INTO funcionarios VALUES(1, 'André', 'Especialização', 1, 1000);
```


SELECIONANDO DADOS

Cláusula	Finalidade	
SELECT	Determina quais colunas serão incluídas no conjunto resultado da consulta. * significa todos os campos.	
FROM	Identifica a(s) tabela(s) de onde serão retirados os dados e como as tabelas deverão ser unidas.	
WHERE	Filtra os resultados.	
GROUP BY	Agrupa registros por meio de valores comuns dos campos.	
HAVING	Filtra os resultados dos grupos.	
ORDER BY	Ordena as linhas do resultado final usando um ou mais campos.	

```
SELECT * FROM funcionarios ORDER BY nome;

SELECT * FROM funcionarios ORDER BY nome ASC;

SELECT * FROM funcionarios ORDER BY nome DESC;
```


- I. Utilize o comando SELECT para listar os registros por ordem de salário, dos mais altos para os mais baixos.
- 2. Use as funções SUM, MAX, MIN e AVG para descobrir, respectivamente, qual a soma, o maior, o menor e a média dos salários.

O parâmetro DISTINCT evita que valores repetidos sejam mostrados em uma consulta.

Exemplo: SELECT DISTINCT escolaridade FROM funcionarios;

Exercícios:

- 3. Utilize o parâmetro DISTINCT para listar todos os cargos da tabela funcionarios.
- 4. Utilize o parâmetro DISTINCT para listar todos os departamentos da tabela cargos.

O parâmetro GROUP BY realiza operações COUNT, SUM, AVG, MAX e MIN baseadas em agrupamentos.

Exemplo: Calcular a média de salário de cada função registrada na tabela funcionarios.

SELECT id_cargo, AVG(salario) FROM funcionarios GROUP BY id_cargo;

O parâmetro COUNT realiza a contagem dos registros de uma tabela, podendo ainda atender a um critério de filtragem.

Exemplo: SELECT COUNT(*) FROM funcionarios;

Exercícios:

5. Utilize o parâmetro COUNT para descobrir quantos funcionários possuem escolaridade 'Especialização'.

6.Utilize o parâmetro COUNT para descobrir quantos funcionários ganham acima de R\$ 1000,00.

O parâmetro HAVING é parecido com o parâmetro WHERE. A diferença é que ele é usado para filtrar os dados do argumento GROUP BY.

Exemplo: Listar apenas os cargos cujos salários médios sejam acima de R\$ 1000,00

SELECT id_cargo, AVG(salario) FROM funcionarios GROUP BY id_cargo HAVING AVG(salario)>1000;

UPDATE E DELETE

UPDATE nome_da_tabela SET nome_da_coluna I = valor_da_coluna I, nome_da_coluna 2 = valor_da_coluna 2 WHERE condição;

UPDATE cargos **SET** nome = 'Analista' **WHERE** id_cargo='I';

DELETE

DELETE FROM table_name WHERE condition;

DELETE FROM funcionarios **WHERE** nome = 'Fran';

