Ahmed Youssef

Cincinnati, OH • youssead@ucmail.uc.edu • + 1 (513) 208-7444

https://www.linkedin.com/in/ahmed-voussef9 | Homepage: https://advoussef.github.io

SKILLS

Programming Languages/Systems: Python, C++, SQL, Spark, Git, Docker, Linux, Bash scripting **Frameworks & Libraries:** PyTorch, TensorFlow, JAX, HuggingFace, NumPy, Pandas, Scikit-Learn, OpenCV **Technologies & Tools:** Large-Scale ML Training, LLM Fine-Tuning & Inference, High-Performance Computing (HPC), Parallel & Distributed Systems

Research & Engineering Expertise: Generative AI (VAEs, Normalizing Flows, Diffusion Models), AI Explainability, Model Optimization, Reinforcement Learning

Soft Skills: Research Leadership, Technical Writing, Multilingual (English, German, Arabic)

PROFESSIONAL EXPERIENCE

HEP-THEORY UNIVERSITY OF CINCINNATII – HEP THEORY GROUP Research Engineer & ML Scientist

Cincinnati, OH, US Jan 2020 -Present

- Led ML-driven simulations for scientific computing, leveraging generative AI for large-scale data modeling
- Designed a Monte Carlo reweighting framework that improved simulation accuracy and computational speed 3-4×
- Developed scalable parallel computing infrastructure, optimizing AI-driven particle collision simulations impacting 10,000+ researchers
- Built tools for exploratory AI research and automation in physics-informed ML

DEEP LEARNING & AI RESEARCHER

Jan 2022 -Present

- Designed scalable LLM fine-tuning & inference pipelines, improving model efficiency for multimodal applications
- Developed AI explainability techniques for Vision-Language Models (VLMs) and Large Language Models (LLMs)
- Engineered model compression and optimization techniques to reduce compute costs while maintaining accuracy
- Researched multimodal learning, representation learning, and robustness in generative models

UC CENTER FOR ENTREPRENEURSHIP Machine Learning & AI Product Engineer

Cincinnati, OH, US Jan 2023 -Present

- Developed an AI-driven quality control system, integrating computer vision & ML for automated defect detection
- Secured \$7,500 in funding for AI-driven innovation in industrial automation
- Led the deployment of scalable AI solutions, focusing on edge computing and real-time ML inference

PROJECTS

Few-Shot Abstractive Summarization for Style Transfer; published at ICNLP 2023

- Engineered efficient training infrastructure for LLM fine-tuning, optimizing parallelism and memory utilization
- Applied retrieval-augmented generation (RAG) techniques to enhance model generalization
- Implemented reinforcement learning-based tuning for task-specific LLM adaptation

Vision Language Models Unlocker

- Developed explainability techniques for LLMs & VLMs, improving interpretability in generative models
- Evaluated using the Google DeepMind Perception Test, ensuring trustworthiness & model robustness

EDUCATION

UNIVERSITY OF CINCINNATI

Ph.D. Candidate in Particle Physics (Focus in Machine Learning)

RUHR UNIVERSITY OF BOCHUM

Bachelor of Science in Physics

Cincinnati, OH Expected Grad: May 2025 Bochum, Germany Sep 2016 - Sep 2019

SELECTED PUBLICATIONS

NOTE: Authors in papers marked with (*) are listed alphabetically, as per field convention

- *"Data-Driven Reweighting for Monte Carlo Simulations", accepted at ML4PS workshop, NeurIPS 2024
- *"Towards data driven models of hadronization", ML4PS workshop, NeurIPS 2023
- "Hacking Generative Models with Differentiable Network Bending", ML4CD workshop, NeurIPS 2023
- "Few-Shot Abstractive Summarization for Text Style Transfer", ICNLP 2023
- "Normalizing Flows for Fragmentation and Hadronization", ML4PS workshop, NeurIPS 2022
- *"Towards a data-driven model of hadronization using normalizing flows", SciPost Phys. 17, 045 (2024)
- *"Earth Mover's Distance as a measure for CP-violation", JHEP, 10.1007/JHEP06(2023)098
- *"Modeling Hadronization using Machine Learning", SciPost Phys. 14, 027 (2023)
- *"Reweighting Monte Carlo Predictions and Automated Fragmentation Variations in Pythia 8", SciPost Phys. 16, 134 (2024)
- *"<u>Describing Hadronization via Histories and Observables for Monte-Carlo Event Reweighting</u>", arXiv preprint: 2410.06342 (2024)

SELECTED TALKS AND PRESENTATIONS

- "Bridging Physics and AI: ML for Particle Collision Simulation", Google DeepMind, London UK, Feb 2025
- "Data-Driven Reweighting for Monte Carlo Simulations", ML4PS, NeurIPS 2024
- "Hacking Generative Models with Differentiable Network bending", ML4CD, NeurIPS 2023,
- "Towards data-driven models of Hadronization", ML4PS, NeurIPS 2023
- "ML for Physics: Simulating Particle Collisions", CS and Math seminar, IST Austria, Jul 2024
- "Earth Mover's Distance as a measure for CP-violation", 12th international Conference on the CKM Unitarity Triangle, Santiago de Compostela, Spain, Sept 2023
- "Few-Shot Abstractive Summarization for Text Style Transfer", ICNLP 2023
- "Normalizing Flows for Fragmentation and Hadronization", ML4PS, NeurIPS 2022,
- "MLHAD: A Machine Learning based Simulation for Hadronization", Guest Lecturer in Particle Pheno, University Heidelberg, Heidelberg, Germany Jul 2023

SELECTED RESEARCH COMMUNITY INVOLVEMENT

Core Organizer, Muslim in ML Affinity Workshop, NeurIPS 2024

 Spearheaded a workshop for 160 participants, coordinating speakers from OpenAI, Carnegie Mellon, MIT

Reviewer, ML and Physical Science Workshop, NeurIPS 2024

Reviewed research submissions, shaping the ML & Physics research landscape

Convener, Computing, Analysis Tool, and Data Handling Session, Pheno 2024

• Led the session, overseeing abstract selection on ML applications in computational physics

SELECTED HONORS AND AWARDS

- URC Fellowship Top 10% research innovation recognition for research excellence in ML and AI
- **GSG Research Fellowship** Awarded for contributions to computational physics & A.
- Lab2Market Fellowship Secured \$5000 in funding for ML-driven innovation
- Pheno Travel Award (3× recipient) Recognized for research excellence in ML & HEP