Lineární zobrazení

Sloupcové vektory

Vektory bereme sloupcové

V této kapitole opět pracujeme s vektory jako se sloupci.

Lineární zobrazení

Lineární zobrazení (transformace)

Nechť V, W jsou vektorové prostory nad polem reálných čísel. Zobrazení (transformace) $f: V \to W$ se nazývá lineární, jestli platí

- $f(\alpha \overline{u}) = \alpha f(\overline{u})$ pro každé $\overline{u} \in V$ a každé $\alpha \in \mathbb{R}$,
- $f(\overline{u} + \overline{v}) = f(\overline{u}) + f(\overline{v})$ pro každé $\overline{u}, \overline{v} \in V$.

(Analogicky by se definovalo lineární zobrazení mezi vektorovými prostory nad libovolným polem F.)

Některé vlastnosti lineárního zobrazení

Lineární kombinace se zachovávají:

$$f(c_1\overline{v}_1+\cdots c_n\overline{v}_n)=c_1f(\overline{v}_1)+\cdots+c_nf(\overline{v}_n)$$

• Nulový vektor prostoru V se zobrazí na nulový vektor W:

$$f(\overline{o}) = \overline{o}$$

Příklad – rozhodnutí o linearitě

Příklad

Pro zadané zobrazení $f\colon \mathbb{R}^2 \to \mathbb{R}^2$ najděte obrazy zadaných vektorů $\overline{a}, \overline{b}, \overline{c}, \overline{d}$ a rozhodněte, jestli je zobrazení lineární.

a)
$$f(\overline{v}) = [v_1^2 - v_2^2, 2v_1v_2]^{\mathrm{T}}$$
, $\overline{a} = [1, 0]^{\mathrm{T}}$, $\overline{b} = [1, 1]^{\mathrm{T}}$, $\overline{c} = [2, 1]^{\mathrm{T}}$, $\overline{d} = [3, 3]^{\mathrm{T}}$

b)
$$f(\overline{v}) = [v_1 + v_2, v_1 - v_2]^T$$
, $\overline{a} = [1, 0]^T$, $\overline{b} = [0, 1]^T$, $\overline{c} = [1, 2]^T$, $\overline{d} = [3, 6]^T$

a) Nejprve dosadíme:

$$f(\overline{a}) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, f(\overline{b}) = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, f(\overline{c}) = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, f(\overline{d}) = \begin{bmatrix} 0 \\ 18 \end{bmatrix}.$$

Vidíme, že zobrazení lineární není, protože např. $\overline{c} = \overline{a} + \overline{b}$, ale $f(\overline{c}) \neq f(\overline{a}) + f(\overline{b})$. Kromě toho také např. $\overline{d} = 3\overline{b}$, ale $f(\overline{d}) \neq 3f(\overline{b})$

b) Opět dosadíme:

$$f(\overline{a}) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, f(\overline{b}) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, f(\overline{c}) = \begin{bmatrix} 3 \\ -1 \end{bmatrix}, f(\overline{d}) = \begin{bmatrix} 9 \\ -3 \end{bmatrix}.$$

Zde to s linearitou vypadá nadějně, např. $\overline{d}=3\overline{c}$ a $f(\overline{d})=3f(\overline{c})$, dále $\overline{c}=\overline{a}+2\overline{b}$ a $f(\overline{c})=f(\overline{a})+2f(\overline{b})$. Dokážeme, že toto f opravdu lineární je:

•
$$f(\alpha \overline{v}) = f\left(\begin{bmatrix} \alpha v_1 \\ \alpha v_2 \end{bmatrix}\right) = \begin{bmatrix} \alpha v_1 + \alpha v_2 \\ \alpha v_1 - \alpha v_2 \end{bmatrix} = \alpha \begin{bmatrix} v_1 + v_2 \\ v_1 - v_2 \end{bmatrix} = \alpha f(\overline{v})$$

•
$$f(\overline{u} + \overline{v}) = f\left(\begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix}\right) = \begin{bmatrix} u_1 + v_1 + u_2 + v_2 \\ u_1 + v_1 - (u_2 + v_2) \end{bmatrix} = \begin{bmatrix} u_1 + u_2 \\ u_1 - u_2 \end{bmatrix} + \begin{bmatrix} v_1 + v_2 \\ v_1 - v_2 \end{bmatrix} = f(\overline{u}) + f(\overline{v})$$

Příklad – pokračování – maticový zápis

Každý vektor $\overline{v} \in \mathbb{R}^2$ lze zapsat jako $\overline{v} = [v_1, v_2]^T = v_1\overline{e}_1 + v_2\overline{e}_2$. Proto platí (konkrétně pro náš příklad):

$$f(\overline{v}) = v_1 f(\overline{e}_1) + v_2 f(\overline{e}_2) = v_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + v_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

Srovnejte se zadáním zobrazení f, to lze přepsat pomocí téže matice:

$$f(\overline{v}) = \begin{bmatrix} v_1 + v_2 \\ v_1 - v_2 \end{bmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

Matice lineárního zobrazení, zatím ve standardní bázi

Zápis zobrazení pomocí matice

Každé lineární zobrazení $f: \mathbb{R}^m \to \mathbb{R}^n$ lze zapsat jako

$$f(\overline{v}) = (f(\overline{e}_1) \cdots f(\overline{e}_m)) \begin{bmatrix} v_1 \\ \vdots \\ v_m \end{bmatrix} = \begin{pmatrix} f_{11} & f_{12} & \cdots & f_{1m} \\ \vdots & & & \vdots \\ f_{n1} & f_{n2} & \cdots & f_{nm} \end{pmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_m \end{bmatrix}$$

Matice lineárního zobrazení

Matici

$$\begin{pmatrix} f_{11} & f_{12} & \cdots & f_{1m} \\ \vdots & & & \vdots \\ f_{n1} & f_{n2} & \cdots & f_{nm} \end{pmatrix},$$

jejíž sloupce jsou obrazy vektorů $\overline{e}_1, \dots, \overline{e}_m$, nazveme maticí lineárního zobrazení f vzhledem ke standardní bázi.

Příklad – matice rotace v $\mathbb{R}^{2^{l}}$

Příklad

Nechť lineární zobrazení $f\colon \mathbb{R}^2 \to \mathbb{R}^2$ přiřazuje vektoru $\overline{v} \in \mathbb{R}^2$ vektor $\overline{w} \in \mathbb{R}^2$, který vznikl otočením vektoru \overline{v} o úhel φ v kladném směru. Najděte matici tohoto zobrazení.

Rozmyslete si (pomocí geometrické podstaty věci), že se jedná opravdu o lineární zobrazení. K nalezení jeho matice stačí určit obrazy bázových vektorů $\overline{e}_1, \overline{e}_2$.

Pomocí obrázku (sem bude dodán časem; na přednášce byl) zjistíme, že

$$f(\overline{e}_1) = \begin{bmatrix} \cos \varphi \\ \sin \varphi \end{bmatrix}, \quad f(\overline{e}_2) = \begin{bmatrix} -\sin \varphi \\ \cos \varphi \end{bmatrix}$$

Matice rotace je proto

$$\begin{pmatrix}
\cos\varphi & -\sin\varphi \\
\sin\varphi & \cos\varphi
\end{pmatrix}$$

Jádro a obor hodnot lineárního zobrazení

Jádro lineárního zobrazení

Je-li $f\colon V\to W$ lineární zobrazení, pak jeho jádro (angl. kernel) je podmnožina prostoru V definovaná jako

$$\ker f = \{ \overline{v} \in V; f(\overline{v}) = \overline{o} \}.$$

Obor hodnot (obraz) lineárního zobrazení

Je-li $f\colon V\to W$ lineární zobrazení, pak jeho obor hodnot (obraz, angl. image) je podmnožina prostoru W definovaná jako

$$\operatorname{Im} f = \{ \overline{w} \in W ; \text{ existuje } v \in V, \text{ pro které je } f(\overline{v}) = \overline{w} \}.$$

Jádro a obor hodnot jsou vektorové prostory

- $\bullet \ker f$ je vektorový podprostor prostoru V.
- $\operatorname{Im} f$ je vektorový podprostor prostoru W.

Příklad – jádro a obor hodnot – část a)

Příklad

Najděte jádro a obor hodnot lineárního zobrazení $f\colon \mathbb{R}^2 \to \mathbb{R}^2$

a)
$$f(\overline{v}) = \begin{bmatrix} v_1 + v_2 \\ v_1 - v_2 \end{bmatrix}$$

Jádro: Hledáme všechny vektory, které se zobrazí na nulový vektor:

Všimněme si, že matice soustavy, resp. matice daného zobrazení je regulární. Proto má homogenní soustava pouze jediné, a to nulové, řešení. Jádro je tedy

$$\ker f = \{[0,0]^{\mathrm{T}}\}\$$

Obor hodnot: Hledáme všechny možné "výsledky". Tj. ptáme se, pro které vektory $\overline{w} = [w_1, w_2]^T$ má následující soustava rovnic řešení.

Tedy soustava má pro každé $\overline{w} \in \mathbb{R}^2$ řešení, a to právě jedno. Vhodnou volbou \overline{v} nám jako výsledek může vyjít jakýkoli vektor z \mathbb{R}^2 , což opět souviselo s tím, že matice zobrazení je regulární. Obor hodnot je

$$\mathrm{Im}\, f=\mathbb{R}^2$$

Příklad – jádro a obor hodnot – část b)

Příklad

Najděte jádro a obor hodnot lineárního zobrazení $f\colon \mathbb{R}^2 \to \mathbb{R}^2$

b)
$$f(\overline{v}) = \begin{bmatrix} v_1 - 2v_2 \\ -2v_1 + 4v_2 \end{bmatrix}$$

Jádro:

Matice soustavy, resp. matice daného zobrazení je singulární. Proto má homogenní soustava nekonečně mnoho řešení. Jádro tvoří přímku v \mathbb{R}^2 ,

$$\ker f = \{[2t,t]^{\mathrm{T}}; t \in \mathbb{R}\}, \quad \dim(\ker f) = 1, \quad \mathsf{b\'{a}zov\'{y}} \ \mathsf{vektor} \ \mathsf{je} \ \mathsf{nap\'{r}}. \ [2,1]^{\mathrm{T}}.$$

Obor hodnot: Pro které vektory $\overline{w} = [w_1, w_2]^{\mathrm{T}}$ má následující soustava rovnic řešení?

Aby existovalo řešení, musí platit $w_2 + 2w_1 = 0$. Tedy soustava má řešení pro každé $\overline{w} = [s, -2s]^T$, $s \in \mathbb{R}$. Obor hodnot tvoří přímku v \mathbb{R}^2 .

$$\operatorname{Im} f = \{[s, -2s]^{\operatorname{T}}; s \in \mathbb{R}\}, \quad \operatorname{dim}(\operatorname{Im} f) = 1, \quad \operatorname{bázový vektor je např.} \left[1, -2\right]^{\operatorname{T}}.$$

Jen pro ilustraci: Zkuste do f dosadit několik různých vektorů. Výsledek vždy bude násobkem vektoru $[1,-2]^{\mathrm{T}}$.

Příklad – pokračování části b)

Příklad

Dále najděte všechny vektory, jejichž obraz je $\overline{w} = [1, -2]^{T}$.

Řešením jsou všechny vektory tvaru

$$\overline{v} = egin{bmatrix} 1+2t \ t \end{bmatrix} = egin{bmatrix} 1 \ 0 \end{bmatrix} + t egin{bmatrix} 2 \ 1 \end{bmatrix}, t \in \mathbb{R}, \quad \mathsf{nap\check{r}}. \quad egin{bmatrix} 1 \ 0 \end{bmatrix}, egin{bmatrix} 3 \ 1 \end{bmatrix}, egin{bmatrix} 5 \ 2 \end{bmatrix}, \ldots$$

Všimněte si, že $[1,0]^{\rm T}$ je jeden konkrétní vektor, jehož obraz je $[1,-2]^{\rm T}$, a přičítáme k němu vektor, který leží v jádru f. To znamená, že dva vektory, jejichž rozdíl leží v jádru f, mají v f stejný obraz.

Příklad – jádro a obor hodnot – část c)

Příklad

Najděte jádro a obor hodnot lineárního zobrazení $f\colon \mathbb{R}^5 o \mathbb{R}^3$

c)
$$f(\overline{v}) = \begin{bmatrix} v_1 - 2v_2 + v_3 - v_4 + 3v_5 \\ -2v_1 + 4v_2 - v_3 + 2v_4 - v_5 \\ -v_1 + 2v_2 + v_4 + 2v_5 \end{bmatrix}$$

Budeme současně hledat jádro i obor hodnot: Na pravou stranu položíme vektor $\overline{w} = [w_1, w_2, w_3]$. U jádra budeme hledat řešení pro $\overline{w} = \overline{o}$; u oboru hodnot budeme zkoumat, pro které \overline{w} nějaké řešení existuje. Soustavu hned zapíšeme do matíce:

$$\begin{pmatrix} 1 & -2 & 1 & -1 & 3 & | & w_1 \\ -2 & 4 & -1 & 2 & -1 & | & w_2 \\ -1 & 2 & 0 & 1 & 2 & | & w_3 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 1 & -1 & 3 & | & w_1 \\ 0 & 0 & 1 & 0 & 5 & | & w_2 + 2w_1 \\ 0 & 0 & 1 & 0 & 5 & | & w_3 + w_1 \end{pmatrix} \sim \\ \sim \begin{pmatrix} 1 & -2 & 1 & -1 & 3 & | & w_1 \\ 0 & 0 & 1 & 0 & 5 & | & w_2 + 2w_1 \\ 0 & 0 & 0 & 0 & 0 & | & w_3 - w_2 - w_1 \end{pmatrix}$$

Pro určení jádra řešíme soustavu

Ve vektorech z jádra jsou 3 nezávisle volitelné parametry, tedy $\dim(\ker f) = 3$. V jádru leží všechny vektory tvaru

$$\overline{v} = \left[\begin{array}{c} 2p+s+2t \\ p \\ -5t \\ s \\ t \end{array} \right] = p \left[\begin{array}{c} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{array} \right] + s \left[\begin{array}{c} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{array} \right] + t \left[\begin{array}{c} 2 \\ 0 \\ -5 \\ 0 \\ 1 \end{array} \right], \quad p,s,t \in \mathbb{R}$$

Příklad – jádro a obor hodnot – část c) – pokračování

Bázi jádra proto tvoří vektory

$$\begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ -5 \\ 0 \\ 1 \end{bmatrix}.$$

Tyto vektory jsme mohli dostat jednak výše uvedeným rozepsáním libovolného vektoru z jádra nebo také volbou parametrů postupně p=1, s=0, t=0; p=0, s=1, t=0; p=0, s=0, t=1. Ověřte. Že všechny tyto tři vektory po dosazení do f dalí nulový vektor!

Obor hodnot: Aby soustava rovnic s pravou stranou \overline{w} měla řešení, musí platit

$$w_3 - w_2 - w_1 = 0$$
, tj. $w_3 = w_1 + w_2$

Obor hodnot je tedy

$$\mathrm{Im}\, f = \{[w_1, w_2, w_1 + w_2]^{\mathrm{T}}; w_1, w_2 \in \mathbb{R}\}\$$

Protože jsou zde dva nezávisle volitelné parametry, $\dim(\operatorname{Im} f) = 2$ a bázi oboru hodnot tvoří např. vektory

$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

Otázka k zamyšlení

V tomto příkladu byl definiční obor zobrazení f prostor \mathbb{R}^5 . Dimenze jádra byla 3, dimenze oboru hodnot 2. Platí 5=3+2. Je to náhoda, nebo zákonitost?

Vztah mezi dimenzemi V, $\ker f$ a $\operatorname{Im} f$

Vztah mezi dimenzemi V, $\ker f$ a $\operatorname{Im} f$

Je-li $f\colon V\to W$ lineární zobrazení mezi konečně rozměrnými prostory V a W, pak platí

$$\dim(\ker f) + \dim(\operatorname{Im} f) = \dim V.$$

Prohlédněte si znovu i části a), b) předchozího příkladu a porovnejte dimenze. V části a) bylo jádro jen $\{\overline{o}\}$.

Takový prostor má nulovou dimenzi.

Jiná cesta, jak hledat bázi ${ m Im}\, f$

Je-li $f\colon V\to W$ lineární zobrazení, pak je jeho obor hodnot generován obrazy bázových vektorů prostoru V, tj. sloupci matice zobrazení. Hledáme-li bázi, vybereme z těchto generátorů maximální množinu nezávislých vektorů – podle pozic pivotů po eliminaci, viz přednáška o vektorových prostorech.

 $V \ p \v redchoz \'im \ p \v r\'ikladu \ by \ tedy \ b \'azi \ oboru \ hodnot \ mohly \ tvo \v rit \ p \r rvn\'i \ a \ t \v ret\'i \ sloupec \ matice \ zobrazen\'i, \ tj. \ vektory$

$$[1,-2,-1]^T,[1,-1,0]^T.$$
 Sami ověřte, že generují stejný prostor jako $[1,0,1]_{\square}^T,[0,1_{\blacksquare}1]_{\square}^T.$

Injektivní (prosté) zobrazení

Injektivní zobrazení – připomenutí z IDM

Zobrazení $f\colon V\to W$ (ne nutně mezi vektorovými prostory, ne nutně lineární) se nazývá injektivní (prosté), jestliže $f(u)=f(v)\Rightarrow u=v$ pro každé $u,v\in V$, tj. nemůže se stát, že bychom pro dva různé prvky V dostali stejný obraz.

Speciálně u lineárního zobrazení platí

$$f(\overline{u}) = f(\overline{v}) \Rightarrow f(\overline{u} - \overline{v}) = f(\overline{u}) - f(\overline{v}) = \overline{o} \Rightarrow \overline{u} - \overline{v} \in \ker f$$

Kdy je lineární zobrazení injektivní

Lineární zobrazení f je injektivní $\Leftrightarrow \ker f = \{\overline{o}\}\$

Surjektivní zobrazení a bijekce, inverzní zobrazení

Surjektivní zobrazení – připomenutí z IDM

Zobrazení $f\colon V\to W$ (ne nutně mezi vektorovými prostory, ne nutně lineární) se nazývá surjektivní (na množinu), jestliže ke každému $w\in W$ existuje $v\in V$, pro které je w=f(v).

Bijektivní zobrazení – připomenutí z IDM

Zobrazení $f: V \to W$ (ne nutně mezi vektorovými prostory, ne nutně lineární) se nazývá bijektivní, je-li injektivní i surjektivní.

Inverzní zobrazení – připomenutí z IDM

Ke každému bijektivnímu zobrazení $f\colon V\to W$ existuje inverzní zobrazení $f^{-1}\colon W\to V$, pro které platí

$$v = f^{-1}(w) \Leftrightarrow w = f(v).$$

Izomorfismus

Izomorfismus

Zobrazení $f: V \to W$, které je lineární a bijektivní, se nazývá izomorfismus.

Inverzní zobrazení je opět lineární

Je-li $f:V\to W$ izomorfismus, pak jeho inverze je izomorfismus W na V. Tzn. inverze k lineárnímu zobrazení je opět lineární zobrazení.

Izomorfní prostory

Vektorové prostory V,W, mezi kterými existuje izomorfismus, se nazývají izomorfní.

Matice lineárního zobrazení – obecně

Vyjádření lineárního zobrazení pomocí matice

Nechť f je lineární zobrazení mezi konečně rozměrnými prostory a nechť $A=[\overline{a}_1,\ldots,\overline{a}_m]$ je báze prostoru V a $B=[\overline{b}_1,\ldots,\overline{b}_n]$ báze prostoru W. Je-li $\overline{w}=f(\overline{v})$, pak platí

$$[\overline{w}]_{B} = \begin{pmatrix} f_{11} & f_{12} & \cdots & f_{1m} \\ f_{21} & f_{22} & \cdots & f_{2m} \\ \vdots & & & \vdots \\ f_{n1} & f_{n2} & \cdots & f_{nm} \end{pmatrix} [\overline{v}]_{A},$$

kde i-tý sloupec matice, tj. vektor $[f_{1i}, f_{2i}, \ldots, f_{ni}]^{\mathrm{T}}$, je tvořen souřadnicemi $f(\overline{a}_i)$ v bázi B.

Matice lineárního zobrazení vzhledem k daným bázím

Výše uvedenou matici

$$\begin{pmatrix} f_{11} & f_{12} & \cdots & f_{1m} \\ f_{21} & f_{22} & \cdots & f_{2m} \\ \vdots & & & \vdots \\ f_{n1} & f_{n2} & \cdots & f_{nm} \end{pmatrix}$$

nazveme maticí lineárního zobrazení f vzhledem k bázím A a B.

Odvození pro m = 3, n = 2

Je-li dim V=3, dim W=2 a $A=[\overline{\mathfrak{z}}_1,\overline{\mathfrak{z}}_2,\overline{\mathfrak{z}}_3]$ je báze prostoru V a $B=[\overline{b}_1,\overline{b}_2]$ báze W, pak pro každé $\overline{v}\in V$ platí

$$\overline{v} = v_1 \overline{a}_1 + v_2 \overline{a}_2 + v_3 \overline{a}_3, \quad tj. [\overline{v}]_A = [v_1, v_2, v_3]^T$$

$$f(\overline{v}) = f(v_1 \overline{a}_1 + v_2 \overline{a}_2 + v_3 \overline{a}_3) = v_1 f(\overline{a}_1) + v_2 f(\overline{a}_2) + v_3 f(\overline{a}_3)$$

Vektory $f(\overline{a}_i)$, i = 1, 2, 3 jsou prvky W, a proto mají své souřadnice v bázi B:

$$\begin{array}{lll} f(\overline{a}_1) & = & f_{11}\overline{b}_1 + f_{21}\overline{b}_2 \\ f(\overline{a}_2) & = & f_{12}\overline{b}_1 + f_{22}\overline{b}_2 \\ f(\overline{a}_3) & = & f_{13}\overline{b}_1 + f_{23}\overline{b}_2 \end{array}$$

Dosazením máme

$$\begin{split} f(\overline{v}) &= v_1(f_{11}\overline{b}_1 + f_{21}\overline{b}_2) + v_2(f_{12}\overline{b}_1 + f_{22}\overline{b}_2) + v_3(f_{13}\overline{b}_1 + f_{23}\overline{b}_2) \\ &= (f_{11}v_1 + f_{12}v_2 + f_{13}v_3)\overline{b}_1 + (f_{21}v_1 + f_{22}v_2 + f_{23}v_3)\overline{b}_2 \end{split}$$

Tedy souřadnice vektoru $\overline{w} = f(\overline{v})$ v bázi B jsou

$$[\overline{w}]_B = \begin{bmatrix} f_{11}v_1 + f_{12}v_2 + f_{13}v_3 \\ f_{21}v_1 + f_{22}v_2 + f_{23}v_3 \end{bmatrix} = \begin{pmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \end{pmatrix} [\overline{v}]_A$$

Změna matice zobrazení při změně bází

Jak se změní matice zobrazení, jestliže v prostoru V přejdeme od báze A k bázi A' a v prostoru W od báze A k bázi B'?

Označíme-li matici zobrazení vzhledem k bázím A a B jako F, máme

$$[f(\overline{v})]_B = F[\overline{v}]_A$$

Dosadíme za $[f(\overline{v})]_B$ a $[\overline{v}]_A$ pomocí příslušných matice přechodu mezi bázemi A, A' a B, B':

$$C_{(B,B')}[f(\overline{v})]_{B'} = FC_{(A,A')}[\overline{v}]_{A'} \quad \Rightarrow \quad [f(\overline{v})]_{B'} = \left(C_{(B,B')}\right)^{-1} FC_{(A,A')}[\overline{v}]_{A'}$$

Změna matice zobrazení při změně bází

Je-li F matice zobrazení $f\colon V\to W$ vzhledem k bázím A v prostoru V a B v prostoru W, pak při změně báze prostoru V na A' a prostoru W na B' je matice zobrazení vzhledem k těmto bázím

$$F' = \left(\mathit{C}_{(B,B')} \right)^{-1} \mathit{FC}_{(A,A')} \quad \mathsf{neboli} \quad F' = \mathit{C}_{(B',B)} \mathit{FC}_{(A,A')},$$

kde $C_{(B,B')},\,C_{(B',B)},\,C_{(A,A')}$ jsou příslušné matice přechodu mezi bázemi. Pak platí

$$[f(\overline{v})]_{B'} = F'[\overline{v}]_{A'}.$$

Příklad – matice ortogonální projekce

Příklad

Nechť lineární zobrazení $f \colon \mathbb{R}^2 \to \mathbb{R}^2$ přiřazuje vektoru $\overline{v} \in \mathbb{R}^2$ jeho ortogonální projekci do přímky $y = \frac{1}{3} x$. Najděte matici tohoto zobrazení (vzhledem ke standardní bázi) a pak pomocí ní najděte ortogonální průmět vektoru $u = [-5, -5]^T$ do této přímky.

Příklad – matice ortogonální projekce

Příklad

Nechť lineární zobrazení $f:\mathbb{R}^2\to\mathbb{R}^2$ přiřazuje vektoru $\overline{v}\in\mathbb{R}^2$ jeho ortogonální projekci do přímky $y=\frac{1}{3}$ x. Najděte matici tohoto zobrazení (vzhledem ke standardní bázi) a pak pomocí ní najděte ortogonální průmět vektoru $u=[-5,-5]^{\mathrm{T}}$ do této přímky.

Sami si rozmyslete (z geometrické podstaty věci), že se opravdu jedná o lineární zobrazení. Nejprve najdeme matici ortogonální projekce do souřadnicové osy x. Obraz jakéhokoli vektoru $\overline{v} = [v_1, v_2]^T$ je $[v_1, 0]^T$. Matice ortogonálního průmětu do osy x je proto

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

Směrový vektor přímky $y=\frac{1}{3}$ x je $\overline{a}_1=[3,1]^T$ a vektor na něj kolmý je $\overline{a}_2=[-1,3]^T$. Vezmeme teď tyto dva vektory jako bází ve "vstupním" prostoru $V=\mathbb{R}^2$ i ve "výstupním" prostoru $W=\mathbb{R}^2$, tzn pracujeme s bázemi $A=B=[\overline{a}_1,\overline{a}_2]$. Platí

$$[\overline{a}_1]_A = [1, 0]^T$$
, $[\overline{a}_2]_A = [0, 1]^T$, $f(\overline{a}_1) = \overline{a}_1$, $f(\overline{a}_2) = \overline{o}$.

Proto je matice zobrazení f vzhledem k bázím A, B stejná jako matice projekce do osy x vzhledem ke standardní bází.

Příklad – matice ortogonální projekce – pokračování

Matice vzhledem ke standardní bázi $E=[\overline{e}_1,\overline{e}_2]$ bude

$$C_{(E,B)}\begin{pmatrix}1&&0\\0&&0\end{pmatrix}C_{(A,E)},\quad \text{přičemž}\quad C_{(E,B)}=\begin{pmatrix}3&&-1\\1&&3\end{pmatrix}\quad C_{(A,E)}=\begin{pmatrix}3&&-1\\1&&3\end{pmatrix}^{-1}=\frac{1}{10}\begin{pmatrix}3&&1\\-1&&3\end{pmatrix}$$

Tedy matice ortogonální projekce do přímky $y=\frac{1}{3}x$ vzhledem ke standardní bázi je

$$P=\begin{pmatrix}3&-1\\1&3\end{pmatrix}\begin{pmatrix}1&0\\0&0\end{pmatrix}\frac{1}{10}\begin{pmatrix}3&1\\-1&3\end{pmatrix}=\frac{1}{10}\begin{pmatrix}9&3\\3&1\end{pmatrix}.$$

Pro kontrolu můžeme ověřit, že $P[3,1]^{\mathrm{T}}=[3,1]^{\mathrm{T}}$ a $P[-1,3]^{\mathrm{T}}=[0,0]^{\mathrm{T}}$.

Všimněte si, že matice je singulární. Jestliže známe projekci, nemůžeme jednoznačně říct, čeho je to projekce. Proto inverzní matice k matici ortogonální projekce do vlastního podprostoru nemůže existovat.

Projekce vektoru $u = [-5, -5]^{T}$ do přímky $y = \frac{1}{2} \times je$

$$\frac{1}{10} \begin{pmatrix} 9 & 3 \\ 3 & 1 \end{pmatrix} \begin{bmatrix} -5 \\ -5 \end{bmatrix} = \begin{bmatrix} -6 \\ -2 \end{bmatrix},$$

porovnejte s výsledkem získaným na jedné z předchozích přednášek.

Matice ortogonální projekce se obvykle počítá jinou metodou

Příklad tu byl spíš na ukázku toho, že ve vhodné bázi může být matice transformace velmi jednoduchá a dokážeme ji pak převést do jiné báze. Na nalezení matice ortogonální projekce se používá obvykle jiný postup.

Lineární zobrazení je dáno obrazy libovolné báze

Lineární zobrazení je dáno obrazy libovolné báze

Je-li $f\colon V\to W$ lineární zobrazení, $A=[\overline{a}_1,\ldots,\overline{a}_m]$ báze prostoru V a známe-li vektory $f(\overline{a}_i), i=1,\ldots,m$, je tím zobrazení f jednoznačně dáno, tj. dokážeme nalézt obraz libovolného vektoru z prostoru V.

Příklad

Nechť $f \colon \mathbb{R}^3 \to \mathbb{R}^2$ je lineární zobrazení, pro které platí

$$f\left(\begin{bmatrix}1\\0\\-1\end{bmatrix}\right) = \begin{bmatrix}1\\2\end{bmatrix}, \quad f\left(\begin{bmatrix}0\\1\\2\end{bmatrix}\right) = \begin{bmatrix}-1\\0\end{bmatrix}, \quad f\left(\begin{bmatrix}1\\2\\4\end{bmatrix}\right) = \begin{bmatrix}2\\3\end{bmatrix}.$$

Najděte jeho matici vzhledem ke standardním bázím \mathbb{R}^3 a \mathbb{R}^2 (neboli: najděte obrazy vektorů standardní báze).

Ukážeme dva postupy. Jeden je založený na maticích přechodu. Použijeme-li ve "vstupním" prostoru $V=\mathbb{R}^3$ bázi $A=[[1,0,-1]^{\mathrm{T}},[0,1,2]^{\mathrm{T}},[1,2,4]^{\mathrm{T}}]$, je matice zobrazení vzhledem k této bázi ve V a ke standardní bázi \mathbb{R}^2

$$\begin{pmatrix} 1 & -1 & 2 \\ 2 & 0 & 3 \end{pmatrix}$$

Příklad – pokračování

Matice vzhledem ke standardním bázím je proto

$$F = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 0 & 3 \end{pmatrix} C_{(A,E)} = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ -1 & 2 & 4 \end{pmatrix}^{-1} = \begin{pmatrix} 4 & -7 & 3 \\ 3 & -2 & 1 \end{pmatrix}$$

Výpočet inverzní matice a násobení jsme zde již nerozepisovali. Pro kontrolu ověřte, že násobením touto maticí opravdu dostaneme výsledky uvedené v zadání!

Druhá metoda spočívá v tom, že jestliže známe $f(\overline{u})$ a $f(\overline{v})$, pak např. $f(\overline{u}-2\overline{v})=f(\overline{u})-2f(\overline{v})$ apod. Tedy budeme-li se vzory provádět klasické řádkové úpravy, budou se tyto úpravy přenášet i na obrazy. Hledáme-li obrazy standardní báze, můžeme si vstupní vektory napsat jako řádky matice, vedle nich položit obrazy a levou část postupně upravovat na jednotkovou matici. Tím získáme obrazy standardní báze jako řádky v pravé části matice. Pak je přepíšeme do sloupců a máme matici zobrazení vzhledem ke standardní bázi.

$$\begin{pmatrix} & \textit{vzor} & \textit{obraz} \\ 1 & 0 & -1 & | & 1 & 2 \\ 0 & 1 & 2 & | & -1 & 0 \\ 1 & 2 & 4 & | & 2 & 3 \end{pmatrix} \sim \begin{pmatrix} & \textit{vzor} & \textit{obraz} \\ 1 & 0 & -1 & | & 1 & 2 \\ 0 & 1 & 2 & | & -1 & 0 \\ 0 & 2 & 5 & | & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} & \textit{vzor} & \textit{obraz} \\ 1 & 0 & -1 & | & 1 & 2 \\ 0 & 1 & 2 & | & -1 & 0 \\ 0 & 0 & 1 & | & 3 & 1 \end{pmatrix} \sim \begin{pmatrix} & \textit{vzor} & \textit{obraz} \\ 1 & 0 & -1 & | & 1 & 2 \\ 0 & 1 & 2 & | & -1 & 0 \\ 0 & 0 & 1 & | & 3 & 1 \end{pmatrix} \sim \begin{pmatrix} & \textit{vzor} & \textit{obraz} \\ 1 & 0 & -1 & | & 1 & 2 \\ 0 & 1 & 2 & | & -1 & 0 \\ 0 & 0 & 1 & | & 3 & 1 \end{pmatrix} \sim \begin{pmatrix} & \textit{vzor} & \textit{obraz} \\ 1 & 0 & -1 & | & 1 & 2 \\ 0 & 1 & 2 & | & -1 & 0 \\ 0 & 0 & 1 & | & 3 & 1 \end{pmatrix}$$

$$\begin{pmatrix} vzor & obraz \\ 1 & 0 & -1 & 1 & 2 \\ 0 & 1 & 2 & -1 & 0 \\ 0 & 0 & 1 & 3 & 1 \end{pmatrix} \sim \begin{pmatrix} vzor & obraz \\ 1 & 0 & 0 & 4 & 3 \\ 0 & 1 & 0 & -7 & -2 \\ 0 & 0 & 1 & 3 & 1 \end{pmatrix} \quad \Rightarrow \quad F = \begin{pmatrix} 4 & -7 & 3 \\ 3 & -2 & 1 \end{pmatrix}$$

Zkuste tento postup aplikovat i na předchozí příklad s maticí ortogonální projekce.

Role determinantu při lineární transformaci

Role determinantu při lineární transformaci

Je-li $f:\mathbb{R}^2 \to \mathbb{R}^2$ lineární zobrazení a F jeho matice, pak absolutní hodnota jejího determinantu |F| udává, kolikrát se zvětší obsah rovinného obrazce po transformaci. Podobně pro $f:\mathbb{R}^3 \to \mathbb{R}^3$ podle determinantu matice zobrazení poznáme, kolikrát se změní objem prostorového tělesa.

Všimněte si, že determinant matice rotace v \mathbb{R}^2 je roven 1. Znamená to, že při otočení se obsah obrazce nezmění. Naopak determinant matice ortogonální projekce do přímky je nulový. Každý obrazec se při projekci zdeformuje do úsečky a jeho obsah je nulový.