

复变函数与积分变换

张神星 (合肥工业大学)

办公室: 翡翠科教楼 B1810 东

Email: zhangshenxing@hfut.edu.cn

课件地址: https://zhangshenxing.gitee.io

第五章 留数

1 孤立奇点

第一节 孤立奇点

- 孤立奇点的类型
- 零点与极点
- 函数在 ∞ 的性态

孤立奇点

我们先根据奇点附近洛朗展开的形式来对其进行分类,以便于分类计算留数.

例

考虑函数 $f(z)=\frac{1}{\sin(1/z)}$, 显然 $0,z_k=\frac{1}{k\pi}$ 是奇点, k 是非零整数. 因为 $\lim_{k\to +\infty}z_k=0$, 所以 0 的任何一个去心邻域内都有奇点. 此时无法选取一个圆环域 $0<|z|<\delta$ 作 f(z) 的洛朗展开, 因此我们不考虑这类奇点.

孤立奇点的定义

定义

如果 z_0 是 f(z) 的一个奇点, 且 z_0 的某个邻域内没有其它奇点, 则称 z_0 是 f(z) 的一个孤立奇点.

例

- z=0 是 $e^{\frac{1}{z}}, \frac{\sin z}{z}$ 的孤立奇点.
- z=-1 是 $\frac{1}{z(z+1)}$ 的孤立奇点.
- z=0 不是 $\frac{1}{\sin(1/z)}$ 的孤立奇点.

若 f(z) 只有有限多个奇点,则这些奇点都是孤立奇点.

孤立奇点的分类

如果 f(z) 在孤立奇点 z_0 的去心邻域 $0 < |z - z_0| < \delta$ 内解析,则可以作 f(z) 的洛朗展开. 根据该洛朗级数主要部分的项数,我们可以将孤立奇点分为三种:

孤立奇点类型	洛朗级数特点	$\lim_{z o z_0}f(z)$
可去奇点	没有主要部分	存在且有限
<i>m</i> 阶极点	主要部分只有有限项非零 最低次为 -m 次	∞
本性奇点	主要部分有无限项非零	不存在且不为 ∞

可去奇点的定义

定义

若 f(z) 在孤立奇点 z_0 的去心邻域的洛朗级数没有主要部分,即

$$f(z) = c_0 + c_1(z - z_0) + c_2(z - z_0)^2 + \cdots, \quad 0 < |z - z_0| < \delta,$$

是幂级数, 则称 z_0 是 f(z) 的可去奇点.

设 g(z) 为右侧幂级数的和函数, 则 g(z) 在 $|z-z_0|<\delta$ 上解析, 且除 z_0 外 f(z)=g(z). 通过补充或修改定义 $f(z_0)=g(z_0)=c_0$, 可使得 f(z) 也在 z_0 解析. 这就是 ''可去'' 的含义.

定理

 z_0 是 f(z) 的可去奇点 $\iff \lim_{z \to z_0} f(z)$ 存在且有限 $\iff \lim_{z \to z_0} (z - z_0) f(z) = 0.$

例题: 可去奇点

例

$$f(z) = \frac{\sin z}{z} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} + \cdots$$

没有负幂次项, 因此 0 是可去奇点. 也可以从 $\lim_{z} zf(z) = \sin 0 = 0$ 看出.

例

$$f(z) = \frac{e^z - 1}{z} = 1 + \frac{z}{2!} + \frac{z^2}{3!} + \cdots$$

没有负幂次项,因此 0 是可去奇点. 也可以从 $\lim_{z\to 0} zf(z) = e^0 - 1 = 0$ 看出.

本性奇点的定义

定义

若 f(z) 在孤立奇点 z_0 的去心邻域的洛朗级数主要部分有无限多项非零,则称 z_0 是 f(z) 的本性奇点.

例

由于
$$e^{\frac{1}{z}} = 1 + \frac{1}{z} + \frac{1}{2z^2} + \cdots$$
, 因此 0 是本性奇点.

定理

 z_0 是 f(z) 的本性奇点 $\iff \lim_{z \to z_0} f(z)$ 不存在也不是 ∞ .

事实上我们有皮卡大定理: 对于本性奇点 z_0 的任何一个去心邻域, f(z) 的像取遍所有复数, 至多有一个取不到.

可去奇点的性质比较简单,而本性奇点的性质又较为复杂,因此我们主要关心的是极点的情形.

定义

 $\overline{\mathbf{p}}$ $\overline{\mathbf$

$$f(z) = \frac{c_{-m}}{(z - z_0)^m} + \dots + c_0 + c_1(z - z_0) + \dots, \ 0 < |z - z_0| < \delta,$$

其中 $c_{-m} \neq 0, m \geq 1$, 则称 z_0 是 f(z) 的 m 阶极点或 m 级极点.

极点的定义

$$g(z) = c_{-m} + c_{-m+1}(z - z_0) + c_{-m+2}(z - z_0)^2 + \cdots,$$

则 g(z) 在 z_0 解析且非零, 且

$$f(z) = \frac{g(z)}{(z - z_0)^m}, 0 < |z - z_0| < \delta.$$

定理

- (1) z_0 是 f(z) 的 m 阶极点 $\iff \lim_{z\to z_0} (z-z_0)^m f(z)$ 存在且非零.
- (2) z_0 是 f(z) 的极点 $\iff \lim_{z \to z_0} f(z) = \infty$.

典型例题: 函数的极点

例

$$f(z)=\dfrac{3z+2}{z^2(z+2)}$$
, 由于 $\lim_{z\to 0}z^2f(z)=1$, 因此 0 是二阶极点. 同理 -2 是一阶极点.

练习

求
$$f(z)=rac{1}{z^3-z^2-z+1}$$
 的奇点,并指出极点的阶.

答案

-1 是一阶极点, 1 是二阶极点.

我们来研究极点与零点的联系,并给出极点的阶的计算方法.

定义

如果 f(z) 在解析点 z_0 处的泰勒级数最低次项幂次是 $m \ge 1$, 即

$$f(z) = c_m(z - z_0)^m + c_{m+1}(z - z_0)^{m+1} + \cdots, \ 0 < |z - z_0| < \delta,$$

其中 $c_m \neq 0$, 则称 z_0 是 f(z) 的 m 阶零点.

此时
$$f(z) = (z - z_0)^m g(z)$$
, $g(z)$ 在 z_0 解析且 $g(z_0) \neq 0$.

定理

设 f(z) 在 z_0 解析. z_0 是 m 阶零点当且仅当

$$f(z_0) = f'(z_0) = \dots = f^{(m-1)}(z_0) = 0, \quad f^{(m)}(z_0) \neq 0.$$

例题: 函数的零点

例

 $\overline{f(z)} = z(z-1)^3$ 有一阶零点 0 和三阶零点 1.

1列

 $\overline{f(z)} = \sin z - z$. 由于

$$f(z) = \frac{z^3}{3!} - \frac{z^5}{5!} + \cdots$$

因此 0 是三阶零点.

定理

非零的解析函数的零点总是孤立的.

证明

设 f(z) 是区域 D 上的非零解析函数, $z_0 \in D$ 是 f(z) 的一个零点. 由于 f(z) 不恒为零, 因此存在 $m \ge 1$ 使得在 z_0 的一个邻域内 $f(z) = (z - z_0)^m g(z)$, g(z) 在 z_0 处解析且非零.

内
$$f(z)=(z-z_0)^mg(z)$$
, $g(z)$ 在 z_0 处解析且非零. 对于 $\varepsilon=\frac{1}{2}|g(z_0)|$, 存在 $\delta>0$ 使得当 $z\in \mathring{U}(z_0,\delta)\subseteq D$ 时, $|g(z)-g(z_0)|<\varepsilon$. 从而 $g(z)\neq 0$, $f(z)\neq 0$.

由此可知,一旦我们知道了解析函数在一串有极限的数列上的值,这个解析函数本身就被唯一决定了.

为了统一地研究零点和极点, 我们引入下述记号. 设 z_0 是 f(z) 的可去奇点、极点或解析点. 记 $\operatorname{ord}(f,z_0)$ 为 f(z) 在 z_0 的洛朗展开的最低次项幂次.

不难看出, 如果 $\operatorname{ord}(f, z_0) \ge 0$, 则 z_0 是可去奇点或解析点. 如果 $\operatorname{ord}(f, z_0) = -m < 0$, 则 z_0 是 m 阶极点.

可去奇点和极点判定方法

如果 $\operatorname{ord}(f, z_0) = m, \operatorname{ord}(g, z_0) = n,$ 那么

$$\operatorname{ord}\left(\frac{f}{g}, z_0\right) = m - n, \quad \operatorname{ord}(fg, z_0) = m + n.$$

函数的零点, 极点和阶

证明

设 $f_0(z)$ 为幂级数 $(z-z_0)^{-m}f(z)$ 的和函数, $g_0(z)$ 为幂级数 $(z-z_0)^{-n}g(z)$ 的和函数, 则 $f_0(z),g_0(z)$ 在 z_0 解析且非零. 因此 $\frac{f_0(z)}{g_0(z)},f_0(z)g_0(z)$ 在 z_0 解析且非零. 由

$$\frac{f(z)}{g(z)} = (z - z_0)^{m-n} \frac{f_0(z)}{g_0(z)}, \quad f(z)g(z) = (z - z_0)^{m+n} f_0(z)g_0(z)$$

可知命题成立.

典型例题: 函数的极点

推论

设 z_0 是 f(z) 的 m 阶零点, 是 g(z) 的 n 阶零点.

- (1) 若 $m \ge n$, 则 z_0 是 $\frac{f(z)}{g(z)}$ 的可去奇点.
- (2) 若 m < n 时,则 z_0 是 $\frac{f(z)}{g(z)}$ 的 n m 阶极点.

单选题: (2021 年 B 卷) z=0 是函数 $f(z)=\frac{e^z-1}{z^2}$ 的(A)阶极

点. (A) 1 (B) 2 (C) 3 (D) 4

___解

z² | 数5积6变换 ▶ 第五章 留数 ▶ 1.無立击点 ▶ B 零 純 核 0 是 e^z — 1 的一阶零 点. 因 例

$$z = 0$$
 是 $f(z) = \frac{(e^z - 1)^3 z^2}{\sin z^7}$ 的几阶极点?

解

由于
$$(\sin z)'(0) = \cos 0 = 1$$
, 所以 0 是 $\sin z$ 的一阶零点. 因此 $\operatorname{ord}(f,0) = 3 + 2 - 7 = -2$, 0 是二阶极点.

典型例题: 函数的极点

练习

求 $f(z) = \frac{(z-5)\sin z}{(z-1)^2 z^2 (z+1)^3}$ 的奇点.

答案

1是二阶极点, 0是一阶极点, -1是三阶极点.

当我们把复平面扩充成闭复平面后,从几何上看它变成了一个球面. 这样的一个球面是一种封闭的曲面,它具有某些整体性质. 当我们需要计算一个闭路上函数的积分的时候,我们需要研究闭路内部每一个奇点处的洛朗展开,从而得到相应的小闭路上的积分. 如果在这个闭路内部的奇点比较多,而外部的奇点比较少时,这样计算就不太方便. 此时如果通过变量替换 $z=\frac{1}{t}$,转而研究闭路外部奇点处的洛朗展开,便可减少所需考虑的奇点个数,从而降低所需的计算量. 因此我们需要研究函数在 ∞ 的性态.

定义

如果函数 f(z) 在 ∞ 的去心邻域 $R<|z|<+\infty$ 内没有奇点, 则 称 ∞ 是 f(z) 的孤立奇点.

设
$$g(t) = f\left(\frac{1}{t}\right)$$
, 则研究 $f(z)$ 在 ∞ 的性质可以转为研究 $g(t)$

在 0 的性质. g(t) 在圆环域 $0 < |t| < \frac{1}{R}$ 上解析, 0 是它的孤立奇点.

定义

如果 0 是 g(t) 的可去奇点 (m) 阶极点、本性奇点), 则称 ∞ 是 f(z) 的可去奇点 (m) 阶极点、本性奇点).

函数在 ∞ 的性态

设 f(z) 在圆环域 $R < |z| < +\infty$ 的洛朗展开为

$$f(z) = \dots + \frac{c_{-2}}{z^2} + \frac{c_{-1}}{z} + c_0 + c_1 z + c_2 z^2 + \dots$$

则 g(t) 在圆环域 $0 < |t| < \frac{1}{R}$ 的洛朗展开为

$$g(t) = \dots + \frac{c_2}{t^2} + \frac{c_1}{t} + c_0 + c_{-1}t + c_{-2}t^2 + \dots$$

∞ 类型	洛朗级数特点	$\lim_{z o \infty} f(z)$
可去奇点	没有正幂次部分	存在且有限
m 阶极点	正幂次部分只有有限项非零 最高次为 m 次	∞
本性奇点	正幂次部分有无限项非零	不存在且不为 ∞

例题: ∞ 的奇点类型

例

$$f(z)=\dfrac{z}{z+1}$$
. 由 $f(\infty)=\lim_{z\to\infty}f(z)=1$ 可知 ∞ 是可去奇点. 事实上此时 $f(z)$ 在 $1<|z|<+\infty$ 内的洛朗展开为

$$f(z) = \frac{1}{1 + \frac{1}{z}} = 1 - \frac{1}{z} + \frac{1}{z^2} - \frac{1}{z^3} + \cdots$$

例题: ∞ 的奇点类型

例

函数 $f(z)=z^2+\frac{1}{z}$ 含有正次幂项且最高次为 2, 因此 ∞ 是 2 阶极点.

例

 $\overline{\mathcal{Q}_p(z)}$ 是 $n \ge 1$ 次多项式, 则 ∞ 是 p(z) 的 n 阶极点.

例题: ∞ 的奇点类型

例

函数

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \cdots$$

含有无限多正次幂项,因此 ∞ 是本性奇点. 事实上,如果函数 f(z) 在复平面上处处解析,且 f(z) 不是多项式,则 ∞ 是它的本件奇点.

夏变函数与积分变换 ▶第五章 留数 ▶1 孤立奇点 ▶ C 函数在 ∞ 的性态

典型例题: 奇点的类型

例

函数
$$f(z) = \frac{(z^2-1)(z-2)^3}{(\sin \pi z)^3}$$
 在扩充复平面内有哪些什么类型的

奇点, 并指出奇点的阶.

解

- 整数 $z = k \neq \pm 1, 2$ 是 $\sin \pi z$ 的 1 阶零点, 因此是 f(z) 的 3 阶极点.
- $z = \pm 1$ 是 $z^2 1$ 的 1 阶零点, 因此是 f(z) 的 2 阶极点.
- 由于奇点 $1, 2, 3, \dots \to \infty$, 因此 ∞ 不是孤立奇点.

典型例题: 奇点的类型

练习

函数 $f(z)=\frac{z^2+4\pi^2}{z^3(e^z-1)}$ 在扩充复平面内有哪些什么类型的奇点,并指出奇点的阶.

答案

- z = 0 是 4 阶极点.
- $z = \pm 2\pi i$ 是可去奇点.
- $z = \infty$ 不是孤立奇点.

例题: 证明复数域是代数封闭的*

例

证明非常数复系数多项式 p(z) 总有复零点.

证明

假设多项式 p(z) 没有复零点, 那么 $f(z)=\frac{1}{p(z)}$ 在复平面上处处解析, 从而 f(z) 在 0 处可以展开为幂级数. 由于 ∞ 是 p(z) 的极点, $\lim_{z \to \infty} p(z) = \infty$. 因此 $\lim_{z \to \infty} f(z) = 0$, ∞

是 f(z) 的可去奇点. 这意味着 f(z) 在 0 处的洛朗展开没有正幂次项. 二者结合可知 f(z) 只能是常数, 矛盾!

设 z_1 是 n 次多项式 p(z) 的零点, 则 $\dfrac{p(z)}{z-z_1}$ 是 n-1 次多项式.

归纳可知, p(z) 可以分解为

$$p(z) = (z - z_1) \cdots (z - z_n).$$