

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere: R.

A....

finitos

Gramática

Matemáticas discretas II Lenguajes y gramáticas carlos.andres.delgado@correounivalle.edu.co

Carlos Andrés Delgado S. Raúl E Gutierrez de Piñerez R.

Facultad de Ingeniería. Universidad del Valle

Abril 2017

Matemáticas discretas II

Carlos Andrés Delgado S Raúl E Gutierrez de Piñerez R.

Autómat

O

Gramática

1 Lenguajes

2 Autómatas finitos

3 Gramáticas

Contenido

Matemáticas discretas II

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere:

Lenguajes

Autómata finitos

Gramática

1 Lenguajes

2 Autómatas finitos

3 Gramáticas

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere R.

discretas II

Lenguajes

Autómatas finitos

Gramática

El alfabeto

Un alfabeto es un conjunto finito no vacío cuyos elementos se llaman **símbolos**.

- Sea $\Sigma = \{a, b\}$ el alfabeto que consta de los símbolos a y b. Las siguientes son cadenas sobre Σ : aba, abaabaaa, aaaab.
- El alfabeto binario $\Sigma = \{0,1\}$ son las cadenas sobre Σ que se definen como secuencias finitas de ceros y unos.
- Las cadenas son secuencias ordenadas y finitas de símbolos. Por ejemplo, $w = aaab \neq w_1 = baaa$.
- Sea $\Sigma = \{a, b, c, \dots, x, y, z\}$ el alfabeto del idioma castellano.
- El alfabeto utilizado por muchos lenguajes de programación.
- Sea $\Sigma = \{a, b, c\}$ entonces podemos formar todas las cadenas sobre Σ incluyendo la cadena vacía.

Notación de alfabetos, cadenas y lenguajes

Matemáticas discretas II

Lenguajes

Notación usada en la teoría de lenguajes	
Σ, Γ	denotan alfabetos.
Σ^*	denota el conjunto de todas las cadenas que se pueden formar con los símbolos del alfabeto $\Sigma.$
a, b, c, d, e, \dots	denotan símbolos de un alfabeto.
u, v, w, x, y, z, \ldots $\alpha, \beta, \gamma, \ldots$	denotan cadenas, es decir, sucesiones finitas de símbolos de un alfabeto.
Ė	denota la cadena vacía, es decir, la única cadena que no tiene símbolos.
A,B,C,\dots,L,M,N,\dots	denotan lenguajes (definidos más adelante).

- Si bien un alfabeto Σ es un conjunto finito, Σ^* es siempre un conjunto infinito (enumerable).
- Hay que distinguir entre los siguientes cuatro objetos, que son diferentes entre sí: \emptyset , ϵ , $\{\emptyset\}$, $\{\epsilon\}$

Alfabetos

Operaciones con alfabetos

Si Σ es un alfabeto, $\sigma \in \Sigma$ denota que σ es un símbolo de Σ , por tanto, si

$$\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

se puede decir que $0 \in \Sigma$

Un alfabeto es simplemente un conjunto finito no vacío que cumple las siguientes propiedades, Dados Σ_1 y Σ_2 alfabetos

- Entonces $\Sigma_1 \cup \Sigma_2$ también es un alfabeto.
- \blacksquare $\Sigma_1 \cap \Sigma_2, \Sigma_1 \Sigma_2$ y $\Sigma_2 \Sigma_1$ también son alfabetos.

$$\sum_{1} = \{a, b, c\}$$

$$\sum_{2} = \{1, a, 2, b, c\}$$

$$\sum_{1} = \{9, 6, c\}$$

$$\sum_{1} = \{9, 6, c\}$$

$$\sum_{1} = \{2, 2\}$$

$$\sum_{2} = \{1, 2, 3, b, c\}$$

$$\sum_{1} = \{9, 6, c\}$$

$$\sum_{2} = \{2, 2\}$$

$$\sum_{2} = \{1, 2, 2\}$$

Matemáticas discretas II

Carlos Andrés Delgado S Raúl E Gutierres de Piñere R.

Lenguajes

Autóma finitos

Gramática

Conjunto Universal

El conjunto de todas las cadenas sobre un alfabeto $\Sigma,$ incluyendo la cadena vacía, se denota por Σ^*

- Sea $\Sigma = \{0,1\}$ $\Sigma^* = \{\epsilon,0,1,00,01,10,11,000,001,010,100,010,110,\ldots\}$
- Sea $\Sigma = \{a, b, c\}$, entonces $\Sigma^* = \{\epsilon, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, abc, baa, ...}$
- Sea $\Sigma = \{a, b\}$, entonces $\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, baa, ...\}$

Concatenación de cadenas

Cadenas

Dado un alfabeto Σ y dos cadenas $u, v \in \Sigma^*$, la concatenación de u y v se denota como $u \cdot v$ o simplemente uv y se define así:

- I Si $v = \epsilon$, entonces $u \cdot \epsilon = \epsilon \cdot u = u$, es decir, la concatenación de cualquier cadena u con la cadena vacía, a izquierda o derecha, es igual a u.
- Si $u = a_1 a_2 \dots a_n$, $v = b_1 b_2 \dots b_m$, entonces

$$u \cdot v = a_1 a_2 \dots a_n b_1 b_2 \dots b_m$$

Es decir, $u \cdot v$ es la cadena formada de escribir los símbolos de u y a continuación los símbolos de v.

Potencia de una cadena

Dada $w \in \Sigma^*$ y $n \in \mathbb{N}$, se define w^n de la siguiente forma

$$w^n = \begin{cases} \epsilon & \text{si } n = 0\\ \underbrace{uu \dots u}_{n-\text{veces}} & \text{si } n \ge 1 \end{cases}$$

Potencia de una cadena de manera recursiva

La potencia de una cadena se define como $w \in \Sigma^*$ para $n \in \mathbb{N}$

$$w^{n} = \begin{cases} \epsilon, & \text{si } n = 0\\ ww^{n-1}, & \text{si } n > 0 \end{cases}$$

Ejemplo. Sea una cadena w = acc sobre $\Sigma = \{a, c\}$ entonces podemos obtener $w^3 = ww^2 = wwww^0 = accaccacc\epsilon = (acc)^3$

Inversa de una cadena

Longitud de una cadena

La longitud de una cadena $w \in \Sigma^*$ se denota |w| y se define como el número de símbolos de w (contando los símbolos repetidos), es decir:

$$|w| = \begin{cases} 0, & \text{si } w = \varepsilon \\ n, & \text{si } w = a_1 a_2 \dots a_n \end{cases}$$

$$|aba|=3$$
, $|baaa|=4$

Reflexión o inversa de una cadena

La reflexión o inversa de una cadena $w \in \Sigma^*$ se denota como w' y se define así:

$$w' = \begin{cases} \epsilon, & \text{si } w = \varepsilon \\ a_n \dots a_2 a_1, & \text{si } w = a_1 a_2 \dots a_n \end{cases}$$

Matemáticas discretas II

Carlos Andrés Delgado: Raúl E Gutierre: de Piñere R.

Lenguajes

Autómatas finitos

Gramáticas

Inversa de una cadena de manera recursiva

La Inversa de una cadena Sea $u \in \Sigma^*$ entonces u^{-1} es la inversa.

$$w' = \begin{cases} w & \text{si } w = \varepsilon \\ y'a & \text{si } w = ay, a \in \Sigma, y \in \Sigma^* \end{cases}$$

■ Sea x='able' entonces obtener x¹

$$x^{l} = (able)^{l} = (ble)^{l}a$$
 $= (le)^{l}ba$
 $= (e)^{l}lba$
 $= (e)^{l}elba$
 $= elba$

- Sea la concatenación de las cadenas "ab" y "cd" que forma "abcd" sobre un alfabeto. Sabemos que $(abcd)^l = dcba$, por tanto $dcba = (cd)^l (ab)^l$. Por lo tanto, si w e y son cadenas y si x = wy, entonces $x^l = (wy)^l = y^l w^l$
- En general, $(x^l)^l = x$, para demostrar, suponga que $x = a_1 a_2 \dots a_n$.

Carlos Andrés Delgado : Raúl E Gutierre: de Piñere

Lenguajes Autómatas

Sufijos y prefijos

Cadena

Definición formal: Una cadena v es una subcadena o subpalabra de u si existen x, y tales que u = xvy. Nótese que x o y pueden ser ϵ y por lo tanto, la cadena vacía es una subcadena de cualquier cadena.

- Un *prefijo* de u es una cadena v tal que u = vw para alguna cadena $w \in \Sigma^*$. Se dice que v es un **prefijo propio** si $v \neq u$.
- Un *sufijo* de u es una cadena de v tal que u = wv para alguna cadena $w \in \Sigma^*$. Se dice que v es un **sufijo propio** si $v \neq u$.

Carlos Andrés Delgado S Raúl E Gutierrez de Piñerez

Lenguajes

Autómat finitos

Gramática

Ejemplo de cadenas que son sufijos y prefijos

Sea $\Sigma = \{a, b, c, d\}$ y u = bcbaadb

```
Prefijos de u

b

bc

bcb

bcba

bcbaa

bcbaad

bcbaadb
```

```
Sufijos de u

b

db

adb

aadb

baadb

baadb

cbaadb

bcbaadb
```


Carlos Andrés Delgado S Raúl E Gutierrez de Piñere: R.

Lenguajes

Gramáticas

La concatenación como una operación binaria

Operación binaria

Una **operación binaria** en un conjunto A es una función $f: A \times A \rightarrow A$, esta deberá satisfacer las siguientes propiedades:

- La operación binaria deberá estar definida para cada par ordenado de A, es decir, f asigna a UN elemento f(a, b) de A a cada par ordenado (a, b) de elementos de A.
- 2 Como una operación binaria es una función, sólo un elemento de *A* se asigna a cada par (*a*, *b*).
- Sea A = Z, se define a * b como a + b. Entonces, * es una operación binaria en Z.
- Sea A = Z⁺, se define a * b como a b. Entonces * no es una operación binaria ya que no asigna un elemento de A a cualquier par ordenado de elementos de A.

Carlos Andrés Delgado : Raúl E Gutierre: de Piñere R.

Lenguajes

finitos

Gramática

Concatenación de cadenas como una operación binaria

Concatenación

La operación de la concatenación \cdot es una operación binaria entre cadenas de un alfabeto Σ , esto es:

$$\cdot: \Sigma^* \times \Sigma^* \to \Sigma^*$$

Sean $u, v \in \Sigma^*$ y se denota por $u \cdot v$ o simplemente uv.

$$|uv|=|u|+|v|$$

- Dado el alfabeto Σ y dos cadena $w, u \in \Sigma^*$
 - Entonces $w \cdot \epsilon = \epsilon \cdot w = w$.
 - Si $u = a_1 a_2 a_3 \dots a_n$, $w = b_1 b_2 b_3 \dots b_m$, entonces,

$$u \cdot w = a_1 a_2 a_3 \dots a_n b_1 b_2 b_3 \dots b_m$$

Por tanto
$$|u \cdot w| = n + m$$

■ La concatenación de cadenas es asociativa. Es decir, si $u, v, w \in \Sigma^*$, entonces:

$$(uv)w = u(vw)$$

Semigrupo

Sea (Σ^*, \cdot) es un **semigrupo** el cual es un conjunto no vacío Σ^* junto con una operación binaria asociativa \cdot definida en Σ^* .

 \blacksquare El conjunto P(S), donde S es un conjunto, junto con la operación de la unión $(P(S), \cup)$ es un semigrupo y es también un semigrupo conmutativo.

(A U B) U C = A U (B U
$$\textcircled{e}$$
) $P(S) \times P(S) \rightarrow P(S)$

Sea
$$S = \{a, b\}$$
 entonces $\{a, b\} \cup (\emptyset \cup \{b\}) = (\{a, b\} \cup \emptyset) \cup \{b\}$

- El semigrupo (Σ^* , ·) no es un semigrupo cunmutativo porque para $u, w \in \Sigma^*$ no se cumple que $u \cdot w = w \cdot u$.
- Sea w = ac, $w_1 = ab$ y $w_2 = bb$ tal que w, w_1 , $w_2 \in \Sigma^*$ entonces

$$w(w_1 w_2) = (ww_1)w_2$$

 $ac(abbb) = (acab)bb$
 $acabbb = acabbb$

Andrés Delgado S Raúl E Gutierrez de Piñere R.

Lenguajes

Autómatas finitos

Gramáticas

Monoide

Un **monoide** es un semigrupo (S, *) que tiene idéntico.

■ El semigrupo P(S) con la operación de la unión tiene como idéntico a Ø ya que

$$\emptyset * A = \emptyset \cup A = A = A \cup \emptyset$$

- Sea $(\Sigma^*, \cdot, \epsilon)$ un **monoide** con las siguientes propiedades:
 - **I** Es una operación binaria, es decir la concatenación es cerrada. $\forall x, y \in \Sigma^*$, entonces $x \cdot y \in \Sigma^*$.
 - **2** La concatenación es un semigrupo (Σ^*, \cdot) y por tanto \cdot es asociativa $\forall x, y, z \in \Sigma^*, (xy)z = x(yz)$
 - 3 La cadena vacía ϵ es la idéntica para la concatenación: $\forall x \in \Sigma^*$, $\epsilon \cdot x = x \cdot \epsilon = x$

Matemáticas discretas II

Carlos Andrés Delgado Raúl E Gutierre de Piñere R.

Lenguajes

Autómata finitos

Lenguaje

Un *lenguaje* es un conjunto de palabras o cadenas. Un lenguaje L sobre un alfabeto Σ es un subconjunto de Σ^* y si $L=\Sigma^*$ es el lenguaje de todas las cadenas sobre Σ .

- Sea $L = \emptyset$ el lenguaje vacío
- $\blacksquare \emptyset \subseteq L \subseteq \Sigma^*$
- $\Sigma = \{a, b, c\}. L = \{a, aba, aca\}$
- $\Sigma = \{a, b, c\}. L = \{a, aa, aaa\} = \{a^n : n \ge 1\}$
- **1** $\Sigma = \{a, b, c\}. \ L = \{\epsilon, aa, aba, ab^2a, ab^3a\} = \{ab^na : n \ge 0\} \cup \{\epsilon\}$
- $\Sigma = \{a, b, c\}$. $L = \{w \in \Sigma^* : w \text{ no contiene el símbolo } c\}$. Por ejemplo, $abbaab \in L$ pero $abbcaa \notin L$.
- Sobre $\Sigma = \{0, 1, 2\}$ el lenguaje de las cadenas que tienen igual número de ceros, unos y dos's en cualquier orden.

Operaciones entre lenguajes

- Operaciones entre lenguajes; Sean A, B lenguajes sobre Σ entonces $A \cap B$, $A \cup B$, A B operaciones de conjuntos.
- Las operaciones lingüísticas son la concatenación, potencia, inverso y clausura.
- Sean A, B lenguajes sobre Σ entonces,

$$A \cup B = \{x | \mathbf{X} : x \in A \quad o \quad x \in B\}$$

$$\{a\} \cup \{b\} = \{a, b\}$$

 $\{a, ab\} \cup \{ab, aab, aaabb\} = \{a, ab, aab, aaabb\}$

Operaciones entre lenguajes

■ Sean A, B lenguajes sobre Σ entonces,

$$A \cap B = \{x | x \in A \quad y \quad x \in B\}$$

$$\{a, ab\} \cap \{ab, aab\} = \{ab\}$$

 $\{a, aab\} \cap \{a, ab, aab, aaabb\} = \{a, aab\}$
 $\{\epsilon\} \cap \{a, ab, aab, aaabb\} = \emptyset$

Complemento en Σ*:

$$\sim A = \{x \in \Sigma^* | x \notin A\}$$

 $\sim A = \Sigma^* - A$

 $A = \{ \text{ Cadenas de longitud par} \} \text{ sobre } \Sigma = \{a, b\}, \text{ entonces} \}$ \sim *A*={cadenas de longitud impar}.

Operaciones entre lenguajes

■ Sean A, B lenguajes sobre Σ entonces,

$$A - B = \{x | x : x \in A \quad y \quad x \notin B\}$$

Sea *B*: El lenguaje de todas las cadenas de ceros de cualquier longitud. Entonces:

Sea
$$A = \{0, 1\}^*$$
 y $B = \{0\}^*$ entonces

$$A - B = \{0, 1\}^* - \{0\}^* = 0^* 1(0 \cup 1)^*$$

 ${\it A}-{\it B}$ es el lenguaje de todas las cadenas de unos y ceros con almenos un uno.

Carlos Andrés Delgado S Raúl E Gutierres de Piñeres R.

Lenguajes

Autómata finitos

Gramática

Lenguajes

Lenguaje Universal

Si $\Sigma \neq \emptyset$, entonces Σ^* es el conjunto de todas las cadenas sobre Σ . Se le llama **lenguaje universal.**

lacksquare es un conjunto infinito de cadenas de longitud finita sobre Σ .

Teorema

Sean A y B dos lenguajes sobre el alfabeto Σ . Entonces A = B si y sólo si $A \subseteq B$ y $B \subseteq A$.

- \Rightarrow) Suponiendo que A = B, entonces si $x \in A$, como A = B entonces $x \in B$ por tanto $A \subseteq B$ de la misma forma si $x \in B$ entonces como A = B entonces $x \in A$ por lo tanto $B \subseteq A$.
 - \Leftarrow) Se demuestra que si $A \subseteq B$ y $B \subseteq A$ entonces A = B.

Lenguajes

del Valle

Matemáticas
discretas II

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere R.

Lenguajes

Autómatas finitos

Gramática

Sea el lenguaje del conjunto de cadenas con igual número de ceros y unos.

$$L_1 = \{\epsilon, 01, 10, 0011, 0101, 1001, 000111, \ldots\}$$

y sea

$$L = \{a^n b^n : n \ge 0\} \subset L_1 \subset \{0, 1\}^*$$

La concatenación de lenguajes de dos lenguajes A y B sobre Σ , notada por A.B o simplemente AB.

 $\blacksquare AB = \{uv : u \in A, v \in B\}$

$$A \cdot \emptyset = \cancel{0} \cdot A = \emptyset$$

$$A \cdot \emptyset = \{uw : u \in A, w \in \emptyset\} = \emptyset$$

AB={ 299, 996, 999, 9699, 9696, 96649

PERSON'E USCIO > CONSTENSINO ESU DUTO

Lenguajes

Matemáticas discretas II

Carlos Andrés Delgado Raúl E Gutierre de Piñere R.

Lenguajes

Autómata finitos

Gramática

 Las propiedad distributiva generalizada de la concatenación con respecto a la unión.

$$A \cdot \bigcup_{i \in I} B_i = \bigcup_{i \in I} (A \cdot B_i)$$

 $A \cdot \{\epsilon\} = \{uw : u \in A, w \in \{\epsilon\}\} = \{u : u \in A\} = A$

$$x \in A \cdot \bigcup_{i \in I} B_i \iff x = u \cdot v, u \in A, v \in \bigcup_{i \in I} B_i$$

$$\Leftrightarrow x = u \cdot v, u \in A, v \in B_j,$$

$$(A \cup B) \cup (C \cup D) \exists j \in I$$

$$\Leftrightarrow x \in A \cdot B_j, \exists j \in I$$

$$\Leftrightarrow x \in \bigcup_{i \in I} (A \cdot B_i)$$

(AB)((D) = A (BC)D

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere R.

Lenguajes

finitos

Gramática

Lenguajes

■ Ejemplo. Sean $A = \{ab\}, B_1 = \{a, b\}, y B_2 = \{abb, b\}$

$$A \cdot \bigcup_{i \in I} B_i = \bigcup_{i \in I} (A \cdot B_i)$$

$$A \cdot \bigcup_{i \in l=2} B_i = A \cdot (B_1 \cup B_2)$$

$$A \cdot \bigcup_{i \in l=2} B_i = \{ab\} \cdot (\{a, b\} \cup \{abb, b\})$$

$$\{ab\} \cdot (\{a, b\} \cup \{abb, b\}) = (\{ab\} \cdot (\{a, b\}) \cup (\{ab\} \cdot \{abb, b\}))$$

De igual forma se puede demostrar que:

$$\left(\bigcup_{i\in I}B_i\right)\cdot A=\bigcup_{i\in I}(B_i\cdot A)$$

Matemáticas discretas II

Lenguajes

La concatenación no es distributiva con respecto a la intersección, es decir, <u>Ino se cumple</u> que $A \cdot (B \cap C) = A \cdot B \cap A \cdot C$. Contraejemplo: Sea

 $A = \{a, \epsilon\}, B = \{\epsilon\}, C = \{a\}$ se tiene:

$$A \cdot (B \cap C) = \{a, \epsilon\} \cdot \emptyset = \emptyset$$

Por otro lado.

$$A \cdot B \cap A \cdot C = \{a, \epsilon\} \cdot \{\epsilon\} \cap \{a, \epsilon\} \cdot \{a\}$$
$$= \{a, \epsilon\} \cap \{a^2, a\} = a$$

Lenguajes

Matemáticas discretas II

Lenguajes

Potencia del lenguaje

Potencia del lenguaje Dado un lenguaje A sobre Σ y ($A \subseteq \Sigma^*$) y $n \in \mathbb{N}$, se define

$$A^{n} = \begin{cases} \{\epsilon\}, & \text{si } n = 0\\ A \cdot A^{n-1}, & \text{si } n \ge 1 \end{cases}$$

Ejemplo. Sea $A = \{ab\}$ sobre un alfabeto $\Sigma = \{a, b\}$, entonces:

Ejemplo. Sea
$$A = \{ab\}$$
 sobre un alfabeto $\Sigma = \{a, b\}$, $A^0 = \{\epsilon\}$ $A^1 = A = \{ab\}$ $A^2 = A \cdot A^1 = \{abab\}$ $A^3 = A \cdot A^2 = \{ababab\}$ $A^2 = \{ababab\}$ $A^3 = A \cdot A^2 = \{ababab\}$

Cerradura de Kleene

Def. formal de Cerradura de Kleene

La cerradura de Kleene de un lenguaje $A \subseteq \Sigma^*$ es la unión de las potencias: se denota por A*

$$A^* = \bigcup_{i>0} A^i = A^0 \cup A^1 \cup A^2 \cup \ldots \cup A^n$$

■ Observación: *A** se puede describir de la siguiente manera:

$$A^* = \{u_1u_2 \dots u_n : u_i \in A, n \geq 0\}$$

Es el conjunto de todas las concatenaciones de la cadena A, incluvendo ϵ

la cerradura positiva se denota por A⁺

$$A^{+} = \bigcup_{i \ge 1} A^{i} = A^{1} \cup A^{2} \cup A^{3} \cup \ldots \cup A^{n}$$

$$A^{*} = A^{\circ} \cup A^{+}$$

Cerradura de Kleene

Matemáticas discretas II

Andrés
Delgado S
Raúl E
Gutierrez
de Piñere
R.

Lenguajes

finitos

......

- Observe que $A^* = A^+ \cup \{\epsilon\}$ y $A^* = A^+$ si y solamente si $\epsilon \in A$
- $A^+ = A^* \cdot A = A \cdot A^*$

$$A \cdot A^* = A \cdot (A^0 \cup A^1 \cup A^2 \cup \ldots)$$
$$= (A^1 \cup A^2 \cup A^3 \cup \ldots)$$
$$= A^+$$

Se demuestra lo mismo que $A^+ = A^* \cdot A$

 $v_i \in A$, m > 0 De donde

 $A^* \cdot A^* = A^*$

Lenguajes

finitos

Gramática

 \Rightarrow), Sea un $x \in A^* \cdot A^*$, entonces $x = u \cdot v$, con $u \in A^*$ y $v \in A^*$ Por tanto $x = u \cdot v$, con $u = u_1 u_2 \dots u_n$, $u_i \in A$, n > 0 y $v = v_1 v_2 \dots v_m$,

$$X = u \cdot v = u_1 u_2 \dots u_n \cdot v_1 v_2 \dots v_m$$

con $u_i \in A$, $v_i \in A$, por lo tanto x, es una concatenación de n + m cadenas de A, así que $x \in A^*$.

≥ (←) Recíprocamente, si $x \in A^*$, entonces $x = x \cdot \varepsilon \in A^* \cdot A^*$. Esto prueba la igualdad de los conjuntos $A^* \cdot A^*$ y A^* .

Matemáticas discretas II

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere:

Lenguajes

Autómata finitos

Gramátic

- $(A^*)^n = A^*$, para todo n > 1
- $(A^*)^* = A^*$
 - $A^+ \cdot A^+ \subseteq A^+$

Contraejemplo de $A^+ \cdot A^+ = A^+$. Sea $\Sigma = \{a, b\}$, $A = \{a\}$ se tiene que

$$A^{+} = (A^{1} \cup A^{2} \cup A^{3} \cup ...)$$

= {a} \cup {aa} \cup {aaa \ldots}
= {a^{n} : n \ge 1}

Por otro lado,

$$A^{+} \cdot A^{+} = \{a, a^{2}, a^{3}, \ldots\} \cdot \{a, a^{2}, a^{3}, \ldots\}$$
$$= \{a^{2}, a^{3}, \ldots\}$$
$$= \{a^{n} : n \ge 2\}$$

Cerradura de Kleene

 $(A^*)^+ = A^*$

$$(A^*)^+ = (A^*)^1 \cup (A^*)^2 \cup (A^*)^3 \cup \dots$$

= $A^* \cup A^* \cup A^* \dots$
= A^*

 $(A^+)^* = A^*$

$$(A^{+})^{*} = (A^{+})^{0} \cup (A^{+})^{1} \cup (A^{+})^{2} \cup \dots$$

$$= \{\epsilon\} \cup A^{+} \cup A^{+}A^{+} \cup \dots$$

$$= A^{*} \cup \text{(conjuntos contenidos en } A^{+})$$

$$= A^{*}$$

 $(A^+)^+ = A^+$

$$(A^+)^+ = (A^+)^1 \cup (A^+)^2 \cup (A^+)^3 \cup \dots$$

$$= (A^+)^1 \cup (\text{conjuntos contenidos en } A^+)$$

$$= A^+$$

Propiedades

Operaciones claves en los lenguajes:

A+ S A+ S Z+

$$lacksquare$$
 $A^* \subseteq \Sigma^*$ $A^+ \subseteq \Sigma^+$

$$\quad \blacksquare \ \textit{A}^+ \subseteq \textit{A}^*$$

$$\quad \blacksquare \ \emptyset^0 = \{\varepsilon\}$$

$$\blacksquare$$
 \emptyset ^{n} = \emptyset , $n \ge 1$

$$\quad \blacksquare \ \emptyset^* = \{\varepsilon\} \qquad \emptyset^+ = \emptyset$$

Inverso de un lenguaje

Matemáticas discretas II

Lenguajes

Inverso de un lenguaje

Sea A sobre Σ , se define A^{\prime} como:

$$A^{\prime} = \{u^{\prime} : u \in A\}$$

Sean A y B lenguajes sobre Σ tal que $(A, B \subseteq \Sigma^*)$

$$(A.B)' = B'.A'$$

$$(A.B)' = B'.A'$$

$$x \in (A \cdot B)' \iff x = u', \text{ donde, } u \in A \cdot B$$

$$\iff x = u', \text{ donde, } u = vw, v \in A, w \in B$$

$$\iff x = (vw)', \text{ donde, } v \in A, w \in B$$

$$\iff x = w'v', \text{ donde, } v \in A, w \in B$$

$$\iff x = B'A'$$

$$A = \{aq, qb\} \quad B = \{q, b\} \quad a \in B \quad a \in B$$

$$A = \{aq, qb\} \quad a \in B \quad a \in B$$

$$A = \{aq, qb\} \quad a \in B \quad a \in B$$

Matemáticas discretas II

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere R.

Lenguajes

Autómatas finitos

Gramáticas

Propiedades del inverso de un lenguaje

Sean A y B lenguajes sobre Σ tal que $(A, B \subseteq \Sigma^*)$

$$(A \cup B)^I = A^I \cup B^I$$

$$(A \cap B)^I = A^I \cap B^I$$

$$(A')' = A$$

$$\blacksquare (A^*)^l = (A^l)^*$$

$$(A^+)' = (A')^+$$

Andrés
Delgado :
Raúl E
Gutierre:
de Piñere
R.

Lenguajes

finitos

Gramática

Lenguajes regulares

Los lenguajes regulares sobre un alfabeto $\boldsymbol{\Sigma}$ se definen recursivamente como:

- \emptyset , $\{\varepsilon\}$ y $\{a\}$, $a \in \Sigma$ son lenguajes regulares.
- si *A* y *B* son lenguajes regulares, también lo son:

$$A \cup B$$
 (Unión)
 $A \cdot B$ (Concatenación)
 A^* (Cerradura de Kleene)

Ejemplo 1. Dado $\Sigma = \{a, b\}$ el lenguaje A de todas las palabras que tienen exactamente una a: $A = \{b\}^* \cdot \{a\} \cdot \{b\}^*$

Ejemplo 2. Lenguaje de todas las cadenas que comienzan con b:

 $B = \{b\} \cdot \{(a \cup b)\}^*$

Ejemplo 3. Lenguaje de todas las cadenas que contienen la cadena ba:

$$C = \{(a \cup b)\}^* \cdot \{ba\} \cdot \{(a \cup b)\}^*$$

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere R.

Lenguajes

Autómatas finitos

Gramática:

Propiedades de clausura

Teorema

Si L, L₁ y L₂ son lenguajes regulares sobre un alfabeto Σ , también lo son:

- 1 $L_1 \cup L_2$
- L_1L_2
- 3 L+
- $\overline{L} = \Sigma^* L$
- 5 L*
- 6 $L_1 \cap L_2$
- $I_1 L_2$
- □ L1 \(\text{L2} -> \text{L1 \text{L2} \text{L2} \text{L2 \text{L3}}
 \]

Observación

Un sublenguaje (subconjunto) de un lenguaje regular no es necesariamente regular, es decir, la familia de los lenguajes regulares no es cerrada para subconjuntos.

Carios Andrés Delgado S Raúl E Gutierrez de Piñere: R.

Lenguajes

Autómatas finitos

Gramáticas

Propiedades de clausura

Observación

- Un lenguaje regular puede contener sublenguajes No-regulares. Sea $L = \{a^n b^n\}$ es un sublenguaje del lenguaje regular $a^* b^*$
- Todo lenguaje finito es regular y la unión finita de lenguajes regulares es regular.
- La unión infinita de lenguajes no necesariamente es regular.

$$L = \{a^n b^n : n \ge 1\} = \bigcup_{i > 1} \{a^i b^i\}$$

Donde cada $\{a^ib^i\}$ regular, pero L No lo es.

Carlos Andrés Delgado S Raúl E Gutierres de Piñere R.

Lenguajes

finitos

Definición formal de expresiones regulares

Las expresiones regulares sobre un alfabeto Σ se definen recursivamente como:

- \emptyset , ϵ y a, $a \in \Sigma$ son expresiones regulares.
- si A y B son expresiones regulares, también lo son:

 $A \cup B$ (Unión) $A \cdot B$ (Concatenación) A^* (Cerradura de Kleene)

- Son expresiones regulares *aab**, *ab*⁺, (*aaba**)⁺
- Sea el conjunto $\{\epsilon, aa, aba, ab^2a, ab^3a, ab^4a, ...\}$ entonces $\{\epsilon\} \cup ab_*^*a$ es una expresión regular.
- **E**xpresión regular de todas las cadenas impares sobre $\Sigma = \{a, b\}$

$$a(aa \cup ab \cup ba \cup bb)^* \cup b(aa \cup ab \cup ba \cup bb)^*$$

Expresiones regulares

Matemáticas discretas II

Carlos Andrés Delgado Raúl E Gutierre de Piñere R.

Lenguajes

Autómat finitos

Gramática

Teorema

Sean r, s y t expresiones regulares sobre Σ , entonces:

1.
$$r \cup s = s \cup r$$

2.
$$r \cup \emptyset = r = \emptyset \cup r$$

3.
$$r$$
 ∪ r = r

$$4. (r \cup s) \cup t = r \cup (s \cup t)$$

5.
$$r\varepsilon = r = \varepsilon r$$

6.
$$r\emptyset = \emptyset = \emptyset r$$

7.
$$(rs)t = r(st)$$

8.
$$r(s \cup t) = rs \cup rt \ y \ (r \cup s)t = rt \cup st$$

9.
$$r^* = r^{**} = r^*r^* = (\varepsilon \cup r)^* = r^*(r \cup \varepsilon) = (r \cup \varepsilon)r^* = \varepsilon \cup rr^*$$

10.
$$(r \cup s)^* = (r^* \cup s^*)^* = (r^*s^*)^* = (r^*s)^*r^* = r^*(sr^*)^*$$

11.
$$r(sr)^* = (rs)^* r$$

12.
$$(r^*s)^* = \varepsilon \cup (r \cup s)^*s$$

13.
$$(rs^*)^* = \varepsilon \cup r(r \cup s)^*$$

14.
$$s(r \cup \varepsilon)^*(r \cup \varepsilon) \cup s = sr^*$$

15.
$$rr^* = r^*r$$

Ejemplos expresiones regulares

Matemáticas discretas II

Lenguajes

Ejemplo 1. Muestre que si $r = s^*t$ implica que $r = sr \cup t$

$$r = s^*t = (\varepsilon \cup s^+)t$$
 ya que $s^* = \varepsilon \cup s^+$
 $= (\varepsilon \cup ss^*)t$
 $= \varepsilon t \cup s\underbrace{s^*t}_r$
 $= t \cup sr$
 $= sr \cup t$

Ejemplo 2. Probar que $(b \cup aa^*b) \cup (b \cup aa^*b)(a \cup ba^*b)^*(a \cup ba^*b)$ y $a^*b(a \cup ba^*b)^*$ son equivalentes.

Ejemplos expresiones regulares

Ejemplo 3. ¿Las siguientes expresiones regulares representan el mismo lenguaje?

$$(a^*b)^*$$
 y $\epsilon \cup (a \cup b)^*b$

Ejemplo 4. Demostrar que $r(sr)^* = (rs)^*r$

 \Rightarrow) Sea $w \in r(sr)^*$, entonces

$$w = r_0(s_1r_1)(s_2r_2)...(s_nr_n)$$
, para $n \ge 0$

$$W = r_0(s_1r_1)(s_2r_2)...(s_nr_n)$$

$$W = (r_0s_1)(r_1s_2)(r_2s_3)...(r_{n-1}s_n)r_n$$

Por lo tanto, $r(sr)^* \subseteq (rs)^*r$ \Leftarrow)

Sea $w \in (rs)^* r$, entonces

$$w = (r_0 s_0)(r_1 s_1) \dots (r_{n-1} s_{n-1}) r_n$$
, para $n \ge 0$

Lenguajes

Encontrar las expresiones regulares de los siguientes lenguajes

Ejemplo 5. $\Sigma = \{a, b\}$ Lenguaje de todas las palabras que comienzan con b y terminan con a.

$$b(a \cup b)^*a$$

Ejemplo 6. $\Sigma = \{a, b\}$ Lenguaje de todas las palabras que tienen exactamente dos a's

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere R.

Lenguajes

Autómatas finitos

Gramáticas

Ejercicios resueltos de expresiones regulares

Ejemplo 7. $\Sigma = \{a, b\}$ Lenguaje de todas las palabras que tienen un número par de símbolos (palabras de longitud par)

$$(aa \cup ab \cup ba \cup bb)^*$$

Ejemplo 8. $\Sigma = \{a, b\}$ Lenguaje de todas las palabras que tienen un número impar de símbolos (palabras de longitud impar)

$$a(aa \cup ab \cup ba \cup bb)^* \cup b(aa \cup ab \cup ba \cup bb)^*$$

Ejemplo 9. $\Sigma = \{a, b\}$ Lenguaje de todas las palabras que tienen un número par de a's.

$$b^*(ab^*a)^*b^*$$

Ejemplo 10. Sobre $\Sigma = \{0, 1\}$ lenguaje de todas las cadenas que tienen exactamente dos ceros:

Ejemplo 11. Sobre $\Sigma = \{0, 1\}$ lenguaje de todas las cadenas cuyo penúltimo símbolo, de izquierda a derecha, es un 0.

$$(0 \cup 1)^*0(0 \cup 1)$$

Matemátidiscretas II

Lenguajes

Expresiones regulares en la computación

- Las expresiones regulares sirven para la construcción de analizadores léxicos.
- http://regexpal.com/ es un testeador de expresiones regulares en java.

Representa palabras que comienzan por una letra mayúscula seguida de un espacio en blanco y de dos letras mayúsculas. Ejemplo, reconocería Ithaca NY. Por ejemplo, Palo Alto CA no la reconocería.

Contenido

Matemáticas discretas II

Autómatas

finitos

2 Autómatas finitos

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere: R.

Lenguaj

Autómatas finitos

Gramática

Introducción a los autómatas finitos

A.F de un interruptor

Uso de transiciones- ε para ayudar a reconocer palabras clave.

Reconocimiento de la palabra then

Un AFN-ε que acepta números decimales.

Autómatas finitos

Son máquinas abstractas que procesan cadenas, las cuales son aceptadas o rechazadas.

El autómata posee **unidad de control** que inicialmente escanea o lee la casilla desde el extremo izquierdo de la cinta. Tiene unos estados o configuraciones internas.

Matemáticas discretas II Carlos Andrés Delgado S. Raúl E

Autómatas finitos

Gramátic

Función de transición

Matemáticas discretas II

Carlos Andrés Delgados Raúl E Gutierres de Piñeres

Autómatas

finitos Gramática
$$\delta(q_0, a) = q_0$$
 $\delta(q_0, b) = q_1$
 $\delta(q_1, a) = q_1$ $\delta(q_1, b) = q_2$
 $\delta(q_2, a) = q_1$ $\delta(q_2, b) = q_1$.

 $\mathbf{r} = \{q_0, q_2\}$, estados de aceptación.

1.
$$u = \underline{aabab}$$
.

v = aababa

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere R.

Autómatas finitos

Gramática

Lenguaje aceptado por un autómata

Caso especial: la cadena λ es la cadena de entrada.

Dado un autómata M,el lenguaje aceptado o reconocido por M se denota ${\cal L}(M)$ y se define por

 $\begin{array}{ll} L(M) &:= & \{u \in \Sigma^* : M \text{ termina el procesamiento de la cadena} \\ & \text{de entrada } u \text{ en un estado } q \in F\}. \end{array}$

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere R.

Lenguaj

Autómatas finitos

Gramática

Autómatas finitos (FSAs: Finite State-Automata)

Los autómatas finitos se dividen en autómatas finitos deterministas (AFD) (es función) y en autómatas finitos no deterministas (AFN)(es una relación).

Autómata finito determinista

Sea $M = (Q, \Sigma, q_0, T, \delta)$ un AFD entonces:

- Σ: es el alfabeto de entrada.
- Q: es el conjunto de estados
- q₀:Estado inicial
- T: Conjunto de estados finales.
- $\delta: Q \times \Sigma \longrightarrow Q$ determina un único estado siguiente para el par $\delta(q_i, \gamma)$ correspondiente al estado actual y la entrada.

Un AFD puede ser representado por un grafo dirigido y etiquetado.

Gramátic

Ejemplo 1. Diseñar el AFD sobre $\Sigma = \{a, b\}$ que reconozca el lenguaje $L = a^* = \{\varepsilon, a, a^2, a^3, \ldots\}$

8	2	b
90	\mathbf{q}_0	\mathbf{q}_1
\mathbf{q}_1	\mathbf{q}_1	\mathbf{q}_1

$$\begin{split} &\delta(q_0,a)=q_0 & \delta(q_0,b)=q_1 \\ &\delta(q_1,a)=q_1 & \delta(q_1,b)=q_1 \end{split}$$

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere R.

Autómatas

Automata finitos

Gramática

Ejemplos finitos deterministas

Ejemplo 2. Diseñar el AFD sobre $\Sigma = \{a, b\}$ que reconozca el lenguaje $L = a^+ = \{a, a^2, a^3, \ldots\}$

Matemáticas discretas II

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere R.

Autómatas finitos

Gramática

Ejemplos autómatas finitos deterministas

Ejemplo 3. Diseñar el AFD sobre $\Sigma = \{a, b\}$ que reconozca el lenguaje de todas las cadenas que tienen un número par de símbolos

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere R.

Autómatas finitos

Gramática

Ejemplos autómatas finitos deterministas

Ejemplo 5. El diagrama y tabla de transición en cierta forma determinan si es un autómata finito determinista o no determinista.

Sea
$$\Sigma = \{a, b\}, Q = \{q_0, q_1, q_2\}$$

 q_0 : estado inicial

 $T = \{q_0, q_2\}$ estados finales o de aceptación.

Es importante anotar que en la tabla de transición por cada pareja (q_i, γ) hay un sólo estado q_i por eso δ es una función de transición. el lenguaje que reconoce este AFD es:

$$a^*(b(a+ba+bb)^*b) + a^*$$

Ahora como el estado inicial es un estado final este AFD reconoce arepsilon

discretas II

Ejemplos autómatas finitos deterministas

Ejemplo 6. Diseñar el AF sobre $\Sigma = \{0, 1\}$ que reconozca en binario el lenguaje de todos los múltiplos de 2.

Binario	Decimal
0	О
10	2
100	4
110	6
1000	8
1010	10
1100	12
1110	14
	1

Autómatas finitos

Gramática

Autómatas finitos No determinísticos

Sea $M = (Q, \Sigma, q_0, T, \triangle)$ un AFN entonces:

- Σ: es el alfabeto de entrada.
- Q: es el conjunto de estados
- q₀:Estado inicial
- T: Conjunto de estados finales.
- △: es una relación tal que:

$$(Q \times \Sigma) \rightarrow 2^Q$$

Donde 2^Q denota el conjunto potencia de Q o el conjunto de todos los subconjuntos de Q.

$$2^Q = \{A | A \subseteq Q\}$$

Ejemplos Autómatas finitos No determinísticos

Matemáticas discretas II

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere: R.

Autómatas finitos

Gramática

Ejemplo 1. Diseñar el AFN sobre $\Sigma = \{a,b\}$ que reconozca el lenguaje regular $a^*b \cup ab^*$

Δ	а	b
go.	$\{q_{1}, q_{4}\}$	(9)
q_1	(91)	(92)
92	ø	ø
g ₁	ø	ø
94	. 0	{q4}

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere R.

Lenguaj

Autómatas finitos

Gramática

Ejemplos Autómatas finitos No determinísticos

Ejemplo 2. Diseñar el AFN sobre $\Sigma = \{a, b\}$ que reconozca el lenguaje $(ab \cup aba)^*$

discretas II

Ejemplos Autómatas finitos No determinísticos

Ejemplo 3. Diseñar el AF sobre $\Sigma=\{0,1\}$ que reconozca el lenguaje de todas las cadenas que terminan en 01

Δ	0	1
90	$\{q_0, q_1\}$	q_0
q_1	ø	q_2
92	ø	ø

Autómatas finitos

Gramática

Ejemplos Autómatas finitos No determinísticos

Matemáticas discretas II Carlos Andrés

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere R.

Autómatas finitos

Gramática

Ejemplo 4. Obetener la expresión regular del siguiente AFN sobre $\Sigma = \{a, b\}.$

 $(a^*b^*)^*(aa \cup bb)(a^*b^*)^*$

Carlos Andrés Delgado Raúl E Gutierre de Piñere R.

Lengua

Autómatas finitos

Gramática

Equivalencia de AFN y AFD

Teorema

Sea $M = (Q, \Sigma, q_0, T, \triangle)$ un AFN. Entonces existe un AFD $M' = (Q', \Sigma', q'_0, T', \delta)$ tal que L(M) = L(M').

- El conjunto q_0 se corresponde con q'_0
- El conjunto de estados finales T' de Q' se corresponde con los conjuntos de estados de Q que contienen un estado de T
- El conjunto de estados de Q' se corresponde con el conjunto de estados de Q que se vaya formando mediante el análisis de una cadena sobre M

Matemáticas discretas II

Carlos Andrés Delgado : Raúl E Gutierre: de Piñere R.

Lenguaje

Autómatas finitos

Gramática

Autómatas equivalentes

Dos AFD son equivalentes M_1 y M_2 son equivalentes si $L(M_1) = L(M_2)$.

Sean M_1 y M_2 sobre el alfabeto $\sum = \{a\}$,

$$M_1: \longrightarrow \stackrel{a}{\overset{\circ}{\cdot}} \longrightarrow a \longrightarrow \circ, \qquad M_2: \longrightarrow {}^{\circ} -$$

$$L(M_1) = L(M_2) = a^*$$

Ejemplo 1. Consideremos el AFN M que acepta $a \cup (ab)^+$

Para este AFN se tiene:

$$egin{aligned} igtriangledown & igtriangledo$$

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere R.

Lengua

Autómatas finitos

Gramática

Ejemplos equivalencia de AFN y AFD

Entonces se verifica que la regla de transición es una función. Por tanto, $M' = (Q', \Sigma', q'_0, T', \delta)$ donde:

$$Q' = \{\emptyset, \{q_0\}, \{q_2\}, \{q_3\}, \{q_1, q_2\}\}$$

$$\Sigma' = \Sigma$$

$$s' = \{q_0\}$$

$$T' = \{\{q_3\}, \{q_1, q_2\}\}$$

y δ viene dada por la siguiente tabla:

δ	a	b
Ø	Ø	Ø
{90}	$\{q_{1},q_{2}\}$	Ø
[q2]	Ø	{q3}
$\{q_3\}$	{q2}	Ø
$\{q_1, q_2\}$	Ø	{q3}

Matemáticas discretas II

Autómatas finitos

Ejemplos equivalencia de AFN y AFD

Ejemplo 2. Consideremos el AFN M que acepta $(0 \cup 1)^*0(0 \cup 1)$

Caso desfavorable para la construcción de subconjuntos

Este AFN no tiene un AFD equivalente con menos de 2^n estados.

Crecimiento exponencial del número de estados para el AFD.

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere R.

Lengua

Autómatas finitos

Gramática

Intersección entre lenguajes regulares

Teorema

Si L_1 y L_2 son lenguajes regulares, también lo es $L_1 \cap L_2$.

Sean $L_1 = L(M_1)$ y $L_2 = L(M_2)$ donde: $M_1 = (Q_1, \Sigma_1, q_1, T_1, \delta_1)$ y $M_2 = (Q_2, \Sigma_2, q_2, T_2, \delta_2)$ Entonces construimos:

$$M = (\underline{Q_1 \times Q_2}, \Sigma_1 \cup \Sigma_2, (q_1, q_2), T_1 \times T_2, \delta)$$

donde

$$\delta: Q_1 \times Q_2 \times \Sigma \rightarrow Q_1 \times Q_2$$

 $\delta((q_i, q_j), a) = (\delta_1(q_i, a), \delta_2(q_j, a))$

Esta función satisface:

$$L(M) = L(M_1) \cap L(M_2)$$

Ejemplo intersección de lenguajes

Ejemplo. Construir el AFD que acepte el lenguaje L de todas las palabras sobre $\Sigma = \{a, b\}$ que tienen un número par de a's y un número par de b's.

Entonces el lenguaje $L(M) = L(M_1) \cap L(M_2)$ tiene cuatro estados: $Q_1 \times Q_2 = \{(q_1, q_2), (q_1, q_4), (q_3, q_2), (q_3, q_4)\}$ $T_1 \times T_2 = \{(q_1, q_2)\}$

Ejemplo intersección de lenguajes

Matemáticas discretas II

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere: R.

Autómatas finitos

Gramática

Entonces δ se define como:

$$\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)) = (q_3, q_2)
\delta((q_1, q_2), b) = (\delta_1(q_1, b), \delta_2(q_2, b)) = (q_1, q_4)
\delta((q_1, q_4), a) = (\delta_1(q_1, a), \delta_2(q_4, a)) = (q_3, q_4)
\delta((q_1, q_4), b) = (\delta_1(q_1, b), \delta_2(q_4, b)) = (q_1, q_2)
\delta((q_3, q_2), a) = (\delta_1(q_3, a), \delta_2(q_2, a)) = (q_1, q_2)
\delta((q_3, q_4), b) = (\delta_1(q_3, b), \delta_2(q_2, b)) = (q_3, q_4)
\delta((q_3, q_4), a) = (\delta_1(q_3, a), \delta_2(q_4, a)) = (q_1, q_4)
\delta((q_3, q_4), b) = (\delta_1(q_3, b), \delta_2(q_4, b)) = (q_3, q_2)$$

Carlos Andrés Delgado : Raúl E Gutierre: de Piñere R.

Lenguaje

Autómatas finitos

Gramátic:

Toerema de Kleene

Autómatas con ε -transiciones

Autómatas con ε -transiciones: Un autómata con ε -transiciones es un AFN $M=(Q,\Sigma,q_0,T,\triangle)$ en el que la relación de transición está definida así:

$$\triangle: Q \times (\Sigma \cup \varepsilon) \longrightarrow 2^Q$$

La ε -transición permite al autómata cambiar internamente de estado sin consumir el símbolo leído sobre la cinta.

Donde 2^Q denota el conjunto potencia de Q o el conjunto de todos los subconjuntos de Q.

$$2^Q = \{A | A \subseteq Q\}$$

Andrés
Delgado S
Raúl E
Gutierrez
de Piñere:
R.

Autómatas

finitos Gramática **Ejemplo 1.** Se puede representar el lenguaje de la expresión regular a^* sin necesidad de colocar el estado inicial como estado final.

Ejemplos

del Valle

Matemáticas
discretas II

Andrés
Andrés
Delgado S
Raúl E
Gutierrez
de Piñere
R.

Autómatas

finitos

Ejemplo 2. Sea el siguiente AFN- ε

La ε -transición en el AFN permite que se reconozcan cadenas como:

w=aaab

w=abbbbaaa

w=a

w=b

Expresión regular del autómata

*a** *b* ∪ *ab** *a**

Autómatas finitos

Ejemplos

Ejemplo 3. Construir un AFN- ε que reconozca sobre $\Sigma = \{a, b, c\}$, el lenguaje $L = a^*b^*c^*$

El siguiente AFN reconoce el mismo lenguaje que reconoce el AFN- ε anterior.

Andrés Delgado Raúl E Gutierre de Piñere R.

Lenguaj

Autómatas finitos

Cromóticos

Teorema de Kleene

Teorema

Teorema de Kleene. Un lenguaje regular si y sólo si es aceptado por un autómata finito (AFD o AFN o AFN- ε)

- Construcción de autómatas finitos a partir de expresiones regulares.
- Construcción de expresiones regulares a partir de autómatas:
 - 1 Lema de Arden (Ecuaciones de Lenguaje)
 - 2 Conversión de AFN a expresiones regulares por eliminación de estados.

Andrés Delgado Raúl E Gutierre de Piñere R.

Lenguaje

Autómatas finitos

Gramática

Autómatas finitos y lenguajes regulares

Teorema

Dado un AFN- ε $M = (Q, \Sigma, q_0, T, \triangle)$, se puede construir un AFN M' equivalente a M, es decir L(M) = L(M').

Teorema

Un lenguaje regular si y sólo si es aceptado por un autómata finito (AFD o AFN o AFN- ε)

Autómatas finitos

Autómatas finitos y lenguajes regulares

Teorema

Para toda expresión regular R se puede construir un AFN- ϵ M tal que L(R) = L(M).

Paso Básico

EL autómata

acepta el lenguaje vacío Ø

Autómatas finitos y lenguajes regulares

■ EL autómata

acepta el lenguaje $\{\epsilon\}$

■ EL autómata

acepta el lenguaje {a}

Andrés
Delgado :
Raúl E
Gutierre:
de Piñere

Autómatas finitos

Gramática

Autómatas finitos y lenguajes regulares

PASO INDUCTIVO

1. Existe un autómata que acepta $R \cup S$

Sean $M_1 = (Q_1, \Sigma_1, s_1, T_1, \Delta_1)$ y $M_2 = (Q_2, \Sigma_2, s_2, T_2, \Delta_2)$ para el nuevo $M = (Q, \Sigma, s, T, \triangle)$ tenemos que:

- $\Sigma = \Sigma_1 \cup \Sigma_2$
- **2** En T se agrega un estado s' si y sólo si

$$\triangle = \triangle_1 \cup \triangle_2 \cup \{(s, \epsilon, s_1), (s, \epsilon, s_2)\} \cup \{(T_1, \epsilon, s'), (T_2, \epsilon, s')\}$$

s' es un estado final NUEVO.

3 $Q = Q_1 \cup Q_2 \cup \{s\} \cup \{s'\}$ donde s es el nuevo estado inicial.

Autómatas finitos

Autómatas finitos y lenguajes regulares

Por ejemplo se construye $ab \cup ba$.

Ejemplo. Sobre $\Sigma = \{a, b\}$ el lenguaje de todas las palabras sobre Σ que tienen un n

Autómatas finitos y lenguajes regulares

2. Autómata que acepta $R \cdot S$

Sean $M_1 = (Q_1, \Sigma_1, s_1, T_1, \Delta_1)$ y $M_2 = (Q_2, \Sigma_2, s_2, T_2, \Delta_2)$ para el nuevo AFN $M = (Q, \Sigma, s, T, \triangle)$ que acepta $L(M_1) \cdot L(M_2)$ tenemos que:

$$s_1 = s$$

$$T = T_2$$

$$\triangle = \triangle_1 \cup \triangle_2 \cup (T_1 \times \{\epsilon\} \times s2)$$

Autómatas finitos y lenguajes regulares

3. Autómata que reconoce R*

Sean $M_1 = (Q_1, \Sigma_1, s_1, T_1, \triangle_1)$ entonces el nuevo AFN $M = (Q, \Sigma, s, T, \triangle)$ que acepta $L(M) = (L(M_1))^*$ viene dado por

- 1 $Q = Q_1 \cup \{s\} \cup \{s'\}$, donde s' es un nuevo estado final.
- $T = \{s'\}$

Carlos Andrés Delgado S Raúl E Gutierres de Piñere R.

Lenguaje

Autómatas finitos

Ecuaciones de lenguaje

Ecuacion del lenguaje

Sea Σ un alfabeto y sean E y A subconjuntos de Σ^* , entonces la ecuación del lenguaje $X = E \cup A \cdot X$ admite la solición $X = A^* \cdot E$ cualquier otra solución Y deberá contener $A \cdot X$, además $\epsilon \notin A$, $X = A^* \cdot E$ es la única solución.

Autómatas finitos

Ejemplos ecuaciones de lenguaje

Ejemplo 1. Encontrar la expresión del siguiente AFD.

Entones el sistema de ecuaciones a resolver:

Ejemplos ecuaciones de lenguaje

Ejemplo 2. Encontrar la expresión regular del siguiente AFD usando el lema del Arden:

El siguiente es el sistema de ecuaciones a resolver:

$$x_0 = ax_0 + bx_1 + \epsilon$$

$$x_1 = ax_1 + bx_2$$

$$x_2 = (a \cup b)x_1 + \epsilon$$

Ecuaciones de lenguaje

Teorema

Sean $n \ge 2$ considere el sistema de ecuaciones cuyas incognitas x_1, x_2, \ldots, x_n dado por:

$$\begin{array}{rcl} x_1 & = & E_1 \cup A_{11}x_1 \cup A_{12}x_2 \cup \ldots \cup A_{1,n}x_n \\ x_2 & = & E_2 \cup A_{21}x_1 \cup A_{22}x_2 \cup \ldots \cup A_{2,n}x_n \\ & \vdots \\ x_{n-1} & = & E_{n-1} \cup A_{(n-1)1}x_1 \cup \ldots \cup A_{(n-1),n}x_n \\ x_n & = & E_n \cup A_{n1}x_1 \cup A_{n2}x_2 \cup \ldots \cup A_{n,n}x_n \end{array}$$

Entonces el sistema tiene una única solución:

■
$$En \forall i, j \in \{1, \ldots, n\}, \epsilon \notin A_i$$

Carlos Andrés Delgado S Raúl E Gutierres de Piñere R.

Lenguajes Autómatas

finitos

Ecuaciones de lenguaje

■ Entonces el nuevo sistema se obtiene hasta n-1:

$$x_{1} = \widehat{E}_{1} \cup \widehat{A}_{11}x_{1} \cup \widehat{A}_{12}x_{2} \cup \ldots \cup \widehat{A}_{1,(n-1)}x_{n-1}$$

$$x_{2} = \widehat{E}_{2} \cup \widehat{A}_{21}x_{1} \cup \widehat{A}_{22}x_{2} \cup \ldots \cup \widehat{A}_{2,(n-1)}x_{n-1}$$

$$\vdots$$

$$x_{n-1} = \widehat{E}_{n-1} \cup \widehat{A}_{(n-1)1}x_{1} \cup \ldots \cup \widehat{A}_{(n-1),(n-1)}x_{n-1}$$

Entonces \hat{E}_i y \hat{A}_{ij} se definen como:

$$\begin{array}{lcl} \widehat{E}_{i} & = & E_{i} \cup (A_{in}A_{nn}^{*}E_{n}), & i=1,\ldots,n-1 \\ \widehat{A}_{ij} & = & A_{ij} \cup (A_{in}A_{nn}^{*}A_{nj}), & \forall_{i,j}=1,\ldots,n-1 \end{array}$$

Donde:

$$E_i = \begin{cases} \emptyset & \text{si} \quad q_i \notin F \\ \epsilon & \text{si} \quad q_i \in F \end{cases}$$

Ejemplo ecuaciones de lenguaje

Ejemplo 1. Obtener la expresión regular del siguiente AFD usando ecuaciones del lenguaje y la solución única.

El sistema de ecuaciones inicial es:

$$x_1 = ax_1 + bx_2$$

$$x_2 = bx_1 + ax_2 + \epsilon$$

 $X_1 = E_1 \cup A_{11}X_1 \cup A_{12}X_2 \cup ... \cup A_{1,n}X_n$

Autómatas finitos

Ejemplo ecuaciones de lenguaje

Se aplica el teorema de solución de ecuaciones:

$$x_1 = \widehat{\underline{\mathcal{E}}}_1 + \widehat{A}_{11}x_1$$

Se obtiene \widehat{E}_1

$$\widehat{E}_{1} = \underbrace{E_{1} + (A_{12}A_{22}^{*}E_{2})}_{\widehat{E}_{1}} = \underbrace{\emptyset}_{\underline{e}} + (b \cdot a^{*} \cdot \epsilon)$$

$$\widehat{E}_{1} = ba^{*}$$

Se obtiene \widehat{A}_{11}

$$\hat{A}_{11} = A_{11} + (A_{12}A_{22}^*A_{21})
\hat{A}_{11} = a + (b \cdot a^* \cdot b)
\hat{A}_{11} = a + b\underline{a}^*b$$

discretas II

Autómatas

finitos

Reemplazando \widehat{E}_1 y \widehat{A}_{11} en x_1

$$x_1 = \widehat{E}_1 + \widehat{A}_{11}x_1$$
$$x_1 = ba^* + (a + ba^*b)x_1$$

Aplicando solución única se tiene:

$$x_1 = (a + ba^*b)^*ba^*$$

$$X = A^*E$$
 $X = E + A_X$
 $E = ba^* A = (9 + ba^* b)$
 $(9 + ba^* b)^* ba^*$

Sistema de ecuaciones por reducción de variables

Matemáticas discretas II

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere R.

Autómatas

finitos Gramática

$$x_{1} = \widehat{E}_{1} \cup \widehat{A}_{11}x_{1} \cup \widehat{A}_{12}x_{2} \cup \widehat{A}_{13}x_{3}$$

$$x_{2} = \widehat{E}_{2} \cup \widehat{A}_{21}x_{1} \cup \widehat{A}_{22}x_{2} \cup \widehat{A}_{23}x_{3}$$

$$x_{3} = \widehat{E}_{3} \cup \widehat{A}_{31}x_{1} \cup \widehat{A}_{32}x_{2} \cup \widehat{A}_{33}x_{3}$$

Jniversidad del Valle Matemáti-

cas discretas II

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere R.

Lenguaje

finitos

Gramáticas

Contenido

1 Lenguajes

2 Autómatas finitos

3 Gramáticas

Gramáticas

LENGUAJES Y GRAMATICAS

Según Chomsky los tipos de gramáticas se clasifican así:

Carlos Andrés Delgado : Raúl E Gutierre: de Piñere R.

Autómat

Gramáticas

Gramáticas

Gramáticas Regulares (Tipo 3)

Una gramática regular G es una 4-tupla $G=(N,\Sigma,S,P)$ que consiste de un conjunto N de no terminales, un alfabeto Σ , un símbolo inicial S y de un conjunto de producciones P. Las reglas son de la forma $A \to w$, donde $A \in N$ y w es una cadena sobre $\Sigma \cup N$ que satisface lo siguiente:

- w contiene un no terminal como máximo.
- Si w contiene un no terminal, entonces es el símbolo que está en el extremo derecho de w.
- El conjunto de reglas P se define así:

$$P \subseteq N \times \Sigma^*(N \cup \epsilon)$$
 o $P \subseteq N \times (N \cup \epsilon)\Sigma^*$

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere R.

Autómat finitos

Gramáticas

Definición de gramática regular por la derecha

Gramáticas regulares

Sobre

$$G = (N, \Sigma, S, P)$$

Una gramática es regular por la derecha si sus producciones son de la forma:

$$) \{ \begin{array}{l} A \longrightarrow wB, & w \in \sum^*, B \in N \\ A \longrightarrow \underline{\varepsilon} \end{array} \})$$

Ejemple Considere la siguiente gramática regular $G = (N, \Sigma, S, P)$, que genera a^* , donde $\Sigma = \{a, b\}$, $N = \{S, A\}$

$$P: S \to aA \mid \varepsilon$$

 $A \to aA \mid c$ E, $Q \mid Q \mid A \mid A$

Ejemplo. Sea la siguiente gramática regular $G = (N, \Sigma, S, P)$ que genera el lenguaje de la expresión regular $(a \cup b)^*$

$$\Sigma = \{a, b\}$$
 $N = \{S, A\}$
 $P: S \longrightarrow aS \mid bS \mid \varepsilon$

Carlos Andrés Delgado : Raúl E Gutierre: de Piñere R.

Autómata

Gramáticas

Gramáticas regulares

1

Ejemplo Considere la siguiente gramática regular $G = (N, \Sigma, S, P)$, que genera $(a \cup b)^+$, donde $\Sigma = \{a,b\}$, $N = \{S,A\}$

 $P: S \rightarrow aS \mid bS \mid a \mid b$

Ejemplo Considere la siguiente gramática regular $G = (N, \Sigma, S, P)$, que genera a^+b^+ , donde $\Sigma = \{a,b\}$, $N = \{S,A\}$

 $P: S \rightarrow aS \mid aA$ $A \rightarrow bA \mid b$

Ejemplo Considere la siguiente gramática regular $G = (N, \Sigma, S, P)$, que genera a^*b^* , donde $\Sigma = \{a,b\}$, $N = \{S,A\}$

 $P: S \rightarrow aS \mid bA \mid_{\underline{\varepsilon}}$

 $A \rightarrow bA \mid \varepsilon$

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere

Autómata finitos

Gramáticas

Gramáticas independientes del contexto

Gramáticas tipo 2

Una gramática independiente del contexto $G=(N,\Sigma,S,P)$ consiste de un conjunto N de no terminales, un alfabeto Σ , un símbolo inicial S y de un conjunto N de producciones N.

Definición

Sea $G = (N, \Sigma, S, P)$ una gramática independiente del contexto. El lenguaje generado por G (o el lenguaje de G) denotado por L(G), es el conjunto de todas las cadenas de terminales que se derivan del estado inicial S. en otras palabras:

$$L(G) = \{ w \in \Sigma^* / S \Rightarrow^* w \}$$
$$P \subseteq N \times (N \cup \Sigma)^*$$

Sea $G = (N, \Sigma, S, P)$ una gramática con $\Sigma = \{0, 1\}$ el conjunto $N = \{S\}$ y P el conjunto de producciones:

$$S \longrightarrow \epsilon$$

Ejemplo. Una GIC que genera el lenguaje de los palíndromes sobre $\Sigma = \{a, b\}$

$$S \longrightarrow aSa \mid bSb \mid a \mid b \mid \varepsilon$$

Ejemplo. Una GIC que genera el siguiente lenguaje sobre $\Sigma = \{a, b\}$ Sea

$$L = \{a^n b^m | n \le m \le 2n\}$$

$$S \longrightarrow aSb \mid aSbb \mid \varepsilon$$

GICs especiales

El lenguaje de todas las cadenas de paréntesis anidados y equilibrados, por ejemplo:

(())(()), entonces la gramática sería:

$$S \longrightarrow (S)S \mid \varepsilon$$

Sea $T = \{0, 1, (,), +, *, \emptyset, \varepsilon\}$. T es el conjunto de símbolos usados para definir el lenguaje de las expresiones regulares sobre $\Sigma = \{0, 1\}$. Se puede diseñar un GIC que genere las expresiones regulares.

$$S \longrightarrow S + S \mid SS \mid S^* \mid (S) \mid 0 \mid 1 \mid \emptyset \mid \varepsilon$$

Carlos Andrés Delgado S Raúl E Gutierrez de Piñerez R.

Lenguaje Autómata

Gramáticas

Gramáticas no restringidas

Sea una 4-tupla $G=(N,\Sigma,S,P)$ que consiste de un conjunto N de no terminales, un alfabeto Σ , un símbolo inicial S y de un conjunto de producciones P.

- N es el alfabeto de símbolos no terminales
- Σ al alfabeto tal que $N \cap \Sigma = \emptyset$
- $S \in N$ es el símbolo inicial
- P es el conjunto de reglas de producciones de la forma $\alpha \to \beta$, donde $\alpha \in (N \cup \Sigma)^+$ y $\beta \in (N \cup \Sigma)^*$, es decir

$$P \subset (N \cup \Sigma)^+ \times (N \cup \Sigma)^*$$

Gramáticas no restringidas (Gramáticas de tipo 0 y 1)

Ejemplo Sea $G = (N, \Sigma, S, P)$ una gramática con $\Sigma = \{0, 1, 2\}$ el conjunto $N = \{S, A, B\}$ y P el conjunto de producciones:

$$S \longrightarrow 0SAB \mid \varepsilon$$
 $S \longrightarrow 0SAB$
 $BA \longrightarrow AB$ $00SABAB$
 $0A \longrightarrow 01$ $00ABAB$
 $1A \longrightarrow 11$ $00AABB$
 $1B \longrightarrow 12$ $001ABB$
 $2B \longrightarrow 22$ $0011BB$
 $00112B$

El lenguaje que genera esta gramática dependiente del contexto es:

$$L(G) = \{0^n 1^n 2^n / n = 0, 1, 2, \dots\}$$

Sea w=001122 una cadena que puede ser reconocida por la gramática y que además pertenece al lenguaje.

Gutierre de Piñer R.

Autómata finitos

Gramáticas

Matemáticas discretas II

Carlos Andrés Delgado Raúl E Gutierre de Piñer R.

Autómat

Gramáticas

Tipos de gramáticas

P-9 AB THO TRANS
P-9 S C P-N

[Tipos	os de gramáticos		
ſ	Tipo	Transiciones	Restrictioner en la productioner $w_{i_1} \rightarrow w_{i_2}$	
ľ			Sin restrictiones	
1	1		$l(w_1) < l(w_1)$, o $w_1 = e$	
7[2	$P \subseteq N \times (N \cup \Sigma)^+$	$w_{\rm j}=A$, siends A un simbolo no terminal	
-[3	$\begin{array}{l} P \subseteq N \times \Sigma'(N \cup x) \\ 0 \\ P \subseteq N \times (N \cup x) \Sigma \end{array}$	$\mathbf{w}_1=A$ y $\mathbf{w}_1=aB$ o $\mathbf{w}_1=a$ sendo $A,B\in N$ y $a\in \Gamma$ o $S\to e$	

- la familia de los lenguajes de tipo i contiene a la familia de tipo i + 1.
- $\blacksquare \ \textit{GR} \subseteq \textit{GIC} \subseteq \textit{GDC} \subseteq \textit{GEF}$

Gramática	Longuajo	Maquina
Tip o 0: Gramática rin restricciones	Recursivamente ensenerables/sin sestricciones	Máquina de Turing (MT)
Tipo 1: Gramitica sensible del contexto	Dependiente del contecto	Autómata Linealra ente Acotado (ALA
Tipo 2: Granultica de contexto libre	Independiente del contexto	Autologata de Pala (AP
Tipo 3: Gramifica Ragalar	Regular	Autómata finito (AF)

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere R.

Lengua Autóma

Gramáticas

Arboles de derivación

Ambigüedad

Una gramática se dice que es ambigua si hay dos o más árboles de derivación distintos para la misma cadena. una gramática en la cual, para toda cadena w, todas las derivaciones de w tienen el mismo árbol de derivación, es no ambigua.

Ejemplos arboles de derivación

Matemáticas discretas II

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere R.

Autómat

Gramáticas

Ejemplo 2. Consideremos la siguiente gramática:

 $S \longrightarrow SbS \mid ScS \mid a$

y se la cadena w = abaca y sus derivaciones:

■
$$S \Rightarrow SbS \Rightarrow SbScS \Rightarrow SbSca \Rightarrow abaca$$

 $\blacksquare S \Rightarrow ScS \Rightarrow SbScS \Rightarrow abScS \Rightarrow abacS \Rightarrow abaca$

La forma de Backus-Naur

Matemáticas discretas II

Andrés
Delgado S
Raúl E
Gutierres
de Piñere
R.

Autómatas finitos Gramáticas

Forma de Backus-Naur

La forma de Backus-Naur se emplea para especificar reglas sintácticas de muchos lenguajes de programación y de lenguaje natural: En lugar de utilizar el símbolo \longrightarrow usamos ::= y colocamos los símbolos no terminales entre <>.

La forma BNF se usa frecuentemente para especificar la sintaxis de lenguajes de programación, como Java y LISP; lenguajes de bases de datos, como SQL, y lenguajes de marcado como XML.

Carlos Andrés Delgado S Raúl E Gutierrez de Piñere: R.

Autómata finitos

Gramáticas

```
La forma de Backus-Naur
```

Ejemplo 1. sea la siguiente GIC:

 $O \longrightarrow SN$ SV

SN --- articulo sustantivo

SV --- verbo sustantivo

 $articulo \longrightarrow el$

 $verbo \longrightarrow come$

 $sustantivo \longrightarrow perro \mid salchicha$

La forma Backus-Naur es:

< O > ::= < SN > < SV >

< SN >::=< articulo >< sustantivo >

< SV >::=< verbo >< sustantivo >

< articulo >::= el

< verbo >::= come

< sustantivo >::= perro | salchicha

Carlos Andrés Delgado S Raúl E Gutierrez de Piñerez R.

Autómatas finitos Gramáticas **Ejemplo 2.** Sea la siguiente gramática:

$$A \longrightarrow Aa \mid a \mid AB$$

La forma Backus-Naur es:

$$< A > ::= < A > a | a | < A > < B >$$

Ejemplo 3. La producción de enteros son signo en notación decimal. (Un **entero con signo** es un natural precedido por un signo más o un signo menos). La forma Backus-Naur para la gramática que produce los enteros con signo es:

<entero con signo >::=<signo><entero>
<signo >::= + | -

< entero >::=< dígito>|< dígito >< entero>

< digito > ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9