FEUP BASES DE DADOS

1. Red Bull Air Race

Descrição do problema

Pretende-se armazenar informação relativa a uma época da competição Red Bull Air Race. Nesta competição participam pilotos que se organizam em equipas. Cada piloto compete ao longo da época com um único modelo de avião.

Cada piloto é identificado por um número e pretende-se armanezar o seu primeiro e último nome, bem como a sua nacionalidade e data de nascimento. Relativamente à equipa, apenas é necessário saber a sua designação e país de origem. No entanto, cada modelo de avião é caracterizado pela sua potência, velocidade máxima, comprimento, largura e peso.

Ao longo da época, os pilotos competem em corridas que se realizam numa determinada cidade, num dado ano. É interessante saber em que país e data cada corrida se realizou bem como o número de pórticos da mesma e quantos pilotos são eliminados na primeira fase.

As corridas seguem uma 'mecânica a dois tempos'. A primera fase consiste em percorrer o percurso no menor tempo possível, combatendo somente contra o relógio. Esta fase é dividida em etapas: Treino Livre, Qualificação e Eliminação. Para cada etapa é interessante guardar o tempo, a posição relativa de cada piloto bem como os segundos de penalização. Os tempos obtidos na fase de Treino Livre ditam a ordem de saída para a Qualificação e a ordem desta para a Eliminação. O piloto com o pior tempo da Qualificação não segue para a Eliminação e os quatro piores da Eliminação nao seguem para a Segunda Fase.

A Segunda Fase é uma etapa de Duelo na qual os pilotos competem directamente 2 a 2 desde os Quartos-de-Final até à Final. É importante guardar a informação relativa a quem participou em que duelo, em que fase, com que tempo e com que penalidade.

O sistema de pontuação é linear, atribuindo 6 pontos ao vencedor até 1 ponto ao 6º classificado.

Diagrama de classes UML

João Mendes Moreira

FEUP BASES DE DADOS

Modelo relacional

Team(name, country)

Aircraft(model, horsepower, topspeed, width, height, weight)

Pilot(<u>num</u>, firstname, surname, nationality, birthday, name → Team, model → Aircraft)

Race(<u>location</u>, edition, country, date, gates, eliminations)

Participation(<u>num</u> → Pilot, [location, edition] → Race, trainingtime, trainingpos, trainingpenalty, qualificationtime, qualificationpos, qualificationpenalty)

Duel(<u>numpilot1</u> → Pilot, <u>numpilot2</u> → Pilot, <u>[location, edition]</u> → Race, dueltype, timepilot1, timepilot2, penaltypilot1, penaltypilot2)

Construção da base de dados

Utilizando SQL, crie as tabelas necessárias, incluindo as respectivas regras de integridade, para o modelo relacional dado.

[Exercício de Gabriel David, Vasco Vunhas, André Restivo]

2. Oficina

Utilizando SQL, crie as tabelas necessárias, incluindo as respectivas regras de integridade, para o diagrama de classes UML referente ao exercício sobre uma oficina de automóveis descrito no ficheiro BD-P-MC-Res.pdf. Antes de criar as tabelas verifique se as relações obtidas se encontram na Forma Normal de Boyce-Codd.

[Exercício de João Mendes Moreira]

3. Faculdade

Considere a BD das classificações obtidas nas várias provas realizadas pelos alunos nas cadeiras de um ou mais cursos, com as tabelas e instâncias de seguida apresentadas:

ALUNO		
nr	Nome	
100	João	
110	Manuel	
120	Rui	
130	Abel	
140	Fernando	
150	Ismael	

PROF	
<u>sigla</u>	Nome
ECO	Eugénio
FNF	Fernando
JLS	João

CADEII	RA		
cod	Design	curso	regente
TS1	Teoria dos Sistemas 1	IS	FNF
BD	Bases de Dados	IS	ECO
EIA	Estruturas de Informação e Algoritmos	IS	ECO
EP	Electrónica de Potência	AC	JLS
IE	Instalações Eléctricas	AC	JLS

João Mendes Moreira 2

FEUP BASES DE DADOS

PROVA

110 111			
<u>nr</u>	cod	<u>data</u>	nota
100	TS1	92-02-11	8
100	TS1	93-02-02	11
100	BD	93-02-04	17
100	EIA	92-01-29	16
100	EIA	93-02-02	13
110	EP	92-01-30	12
110	IE	92-02-05	10
110	IE	93-02-01	14
120	TS1	93-01-31	15
120	EP	93-02-04	13
130	BD	93-02-04	12
130	EIA	93-02-02	7
130	TS1	92-02-11	8
140	TS1	93-01-31	10
140	TS1	92-02-11	13
140	EIA	93-02-02	11
150	TS1	92-02-11	10
150	EP	93-02-02	11
150	BD	93-02-04	17
150	EIA	92-01-29	16
150	IE	93-02-02	13

Note que a chave da tabela PROVA é constituída pelos atributos **nr**, **cod** e **data**, permitindo guardar o resultado de mais do que uma prova por cadeira.

Construção da base de dados

Utilizando SQL, crie as tabelas necessárias, incluindo as respectivas regras de integridade, para o modelo relacional dado. Preencha as tabelas com as instâncias apresentadas.

[Baseado num exercício de Gabriel David]

João Mendes Moreira 3