### Dynamic programming

- memoization
- decorator memoized / functools.cache
- systematic subproblem computation

```
|--(5, 5)|
    (5, 4)
     |--(4, 4)|
       |--(3, 3)|
        --(3, 2)
         |--(2, 2)|
           --(2, 1)
--(6, 4)
  --(5, 3)
    |--(4, 3)|
    | -- (3, 3)
        --(3, 2)
         |--(2, 2)|
          --(2, 1)
           |--(1, 1)|
           --(1, 0)
     --(4, 2)
       |--(3, 2)|
       | --(2, 2)
       |--(2, 1)|
       |--(1, 1)|
       --(1, 0)
        --(3, 1)
          |--(2, 1)|
          | -- (1, 1)
           -- (1, 0)
           --(2, 0)
```

identical computations

#### Binomial coefficient

$$\binom{n}{k} = \begin{cases} 1 & \text{if } k = 0 \text{ or } k = n \\ \binom{n-1}{k} + \binom{n-1}{k-1} & \text{otherwise} \end{cases}$$

```
binomial_recursive.py

def binomial(n, k):
    if k == 0 or k == n:
        return 1
    return binomial(n - 1, k) + binomial(n - 1, k - 1)
```

recursion tree for binomial (7,5)

## 

# Remember solutions already found (memoization)

- Technique sometimes applicable when running time otherwise becomes exponential
- Only applicable if stuff to be remembered is manageable

#### recursion tree for

```
binomial(7,5)
```

```
--(7, 5)
 1--(6, 5)
  | --(5, 5)
    --(5, 4)
     |--(4, 4)|
       --(4, 3)
      1--(3, 3)
          --(3, 2)
             1--(2, 2)
              --(2, 1)
             |--(1, 1)|
                 --(1, 0)
   --(6, 4)
    |--(5, 4)|
     --(5, 3)
       |--(4, 3)|
        --(4, 2)
          |--(3, 2)|
           --(3, 1)
              |--(2, 1) .
              --(2, 0)
```

# Binomial Coefficient Dynamic programming using a dictionary

```
binomial dictionary.py
answers = {} # answers[(n, k)] = binomial(n, k)
def binomial(n, k):
    if (n, k) not in answers:
        if k == 0 or k == n:
           answer = 1
        else:
            answer = binomial(n - 1, k) + binomial(n - 1, k - 1)
        answers[(n, k)] = answer
    return answers[(n, k)]
Python shell
> binomial(6, 3)
  20
> answers
\{(3, 3): 1, (2, 2): 1, (1, 1): 1, (1, 0): 1, (2, 1): 2, (3, 2): \}
  3, (4, 3): 4, (2, 0): 1, (3, 1): 3, (4, 2): 6, (5, 3): 10, (3, 1)
  0): 1, (4, 1): 4, (5, 2): 10, (6, 3): 20
```

Use a dictionary answers to store already computed values

reuse value stored in dictionary answers

## Question – What is the order of the size of the dictionary answers after calling binomial (n, k)?

```
binomial_dictionary.py
answers = {} # answers[(n, k)] = binomial(n, k)
def binomial(n, k):
    if (n, k) not in answers:
        if k == 0 or k == n:
            answer = 1
        else:
            answer = binomial(n - 1, k) + binomial(n - 1, k - 1)
        answers[(n, k)] = answer
    return answers[(n, k)]
```

- a) max(n, k)
- b) n + k
- c) n \* k
- d) n<sup>k</sup>
- e) k<sup>n</sup>
- f) Don't know

# Binomial Coefficient Dynamic programming using decorator

 Use a decorator (@memoize) that implements the functionality of remembering the results of previous function calls

```
Python shell (with @memoize)
binomial decorator trace.py
                                                          Python shell (without @memoize)
                                                                                             binomial memoize(5, 2)
                                                          binomial(5, 2)
def trace(f): # decorator to trace recursive calls
                                                                                             | binomial memoize(4, 2)
                                                            binomial(4, 2)
    indent = 0
                                                                                             | | binomial memoize(3, 2)
                                                            | binomial(3, 2)
                                                                                             | | | binomial memoize(2, 2)
    def wrapper(*args):
                                                             | | binomial(2, 2)
                                                                                             | | | > 1
                                                             | | > 1
        nonlocal indent
                                                             | | binomial(2, 1)
                                                                                             | | | binomial memoize(2, 1)
        spaces = '| ' * indent
                                                                  | binomial(1, 1)
                                                                                             | | | binomial memoize(1, 1)
                                                                                              |  |  |  > 1
        arg str = ', '.join(map(repr, args))
                                                                  | > 1
                                                               | | binomial(1, 0)
                                                                                              | | | binomial memoize(1, 0)
        print(spaces + f'{f. name }({arg str})')
                                                                | | > 1
                                                                                             | | | > 1
        indent += 1
                                                               | > 2
        result = f(*args)
                                                               > 3
        indent -= 1
                                                                                             | | binomial memoize(3, 1)
                                                               binomial(3, 1)
                                                                                             | | | binomial memoize(2, 1)
        print(spaces + f'> {result}')
                                                             | | binomial(2, 1)
                                                                                             | | | > 2 *
                                                               | | binomial(1, 1)
        return result
                                                                                             | | | binomial memoize(2, 0)
                                                               |  |  >  1
                                                                                             | | > 1
                                                                | | binomial(1, 0)
    return wrapper
                                                                                             | | > 3
                                                                 | > 1
def memoize(f):
                                                                                             I > 6
                                                                  > 2
    answers = {}
                                                                                             | binomial memoize(4, 1)
                                                             | | binomial(2, 0)
                                                                                             | | binomial memoize(3, 1)
                                                             | | > 1
   def wrapper(*args):
                                                                                             I I > 3 <sup>▲</sup>
                                                             | > 3
        if args not in answers:
                                                             > 6
                                                                                             | | binomial memoize(3, 0)
            answers[args] = f(*args)
                                                                                             | | > 1
                                                            binomial(4, 1)
                                                             | binomial(3, 1)
                                                                                            | > 4
       return answers[args]
                                                             | | binomial(2, 1)
                                                                                             > 10
    wrapper. name = f. name + ' memoize'
                                                             10
                                                                                                without assigning wrapper. name
                                                                | | > 1
   return wrapper
                                                                 | binomial(1, 0)
                                                                                                 the name shown would be wrapper
                                                                  | > 1
@trace
                                                                  > 2
@memoize
                                                              | binomial(2, 0)
def binomial(n, k):
                                                            | | > 1
   if k == 0 or k == n:
                                                               > 3
                                                            | binomial(3, 0)
                                                                                                 saved recursive calls
        return 1
                                                            | > 1
                                                                                                 when using memoization
   return binomial (n - 1, k) + binomial (n-1, k-1)
                                                          | > 4
                                                          > 10
print(binomial(5, 2))
                                                          10
```

#### Dynamic programming using cache decorator

```
bionomial_cache.py

from functools import cache

@cache
def binomial(n, k):
    if k == 0 or k == n:
        return 1
    else:
        return binomial(n - 1, k) + binomial(n - 1, k - 1)
```

- The decorators @cache (since Python 3.9) and @lru\_cache (maxsize=None) in the standard library functools supports the same as the decorator @memoize
- By default @lru\_cache at most remembers (caches) 128 previous function calls, always evicting
   Least Recently Used entries from its dictionary
- functools.cache can have problems when using sys.setrecursionlimit (e.g. with Python 3.13 on Windows)



### Subset sum using dynamic programming

• In the subset sum problem (Exercise 13.4) we are given a number x and a list of numbers L, and want to determine if a subset of L has sum x

$$L = [3, 7, 2, 11, 13, 4, 8]$$
  $x = 22 = 7 + 11 + 4$ 

- Let S(v, k) denote if it is possible to achieve value v with a subset of L[:k], i.e. S(v, k) = True if and only if a subset of the first k values in L has sum v
- S(v, k) can be computed from the recurrence

$$S(v,k) = \begin{cases} & \text{True} & \text{if } k = 0 \text{ and } v = 0 \\ & \text{False} & \text{if } k = 0 \text{ and } v \neq 0 \\ S(v,k-1) \text{ or } S(v-\mathbb{L}[k-1],k-1) & \text{otherwise} \end{cases}$$

#### Subset sum using dynamic programming

```
subset sum dp.py
def subset sum(x, L):
      @memoize
      def solve(value, k):
            if k == 0:
                  return value == 0
            return solve(value, k - 1) or solve(value - L[k - 1], k - 1)
      return solve(x, len(L))
Python shell
> subset sum(11, [2, 3, 8, 11, -1])
   True
> subset sum(6, [2, 3, 8, 11, -1])
  False
                                                     S(v,k) = \begin{cases} & \text{True} & \text{if } k = 0 \text{ and } v = 0 \\ & \text{False} & \text{if } k = 0 \text{ and } v \neq 0 \\ S(v,k-1) \text{ or } S(v-\mathbb{L}[k-1],k-1) & \text{otherwise} \end{cases}
```

## Question – What is a bound on the size order of the memoization table if all values are possitive integers?

```
subset sum dp.py
def subset sum(x, L):
    @memoize
    def solve(value, k):
        if k == 0:
            return value == 0
        return solve (value, k-1) or solve (value - L[k-1], k-1)
    return solve(x, len(L))
Python shell
> subset sum(11, [2, 3, 8, 11, -1])
  True
> subset sum(6, [2, 3, 8, 11, -1])
  False
```

- a) len(L)
- b) sum(L)
- c) x
- d) 2 len(L)
- e) len(L)
- f) len(L)\*sum(L)
- Don't know

### Subset sum using dynamic programming

```
subset sum dp.py
def subset sum solution(x, L):
    @memoize
                                   Python shell
   def solve(value, k):
        if k == 0:
                                   > subset sum solution(11, [2, 3, 8, 11, -1])
            if value == 0:
                                    [3, 8]
                return []
                                   > subset sum solution(6, [2, 3, 8, 11, -1])
            else:
                                     None
                return None
        solution = solve(value, k - 1)
        if solution != None:
            return solution
        solution = solve(value - L[k - 1], k - 1)
        if solution != None:
            return solution + [L[k - 1]]
        return None
    return solve(x, len(L))
```

#### Knapsack problem





- Objective: Find a subset of the objects that fits in the knapsack (sum of volume ≤ capacity) and has maximal value
- Example: If C = 5 and the volume and weights are given by the table, then the maximal value 15 can be achieved by the 2nd and 3rd object
- Let V(c, k) denote the maximum value achievable by a subset of the first k objects within capacity c

$$V(c,k) = \begin{cases} 0 & \text{if } k=0 \\ V(c,k-1) & \text{volume}[k-1] > c \\ \max\{V(c,k-1), \text{value}[k-1] + V(c-\text{volume}[k-1],k-1)\} & \text{otherwise} \end{cases}$$

#### Knapsack – maximum value

```
knapsack.py
def knapsack value (volume, value, capacity):
    @memoize
    def solve(c, k): # solve with capacity c and objects 0..k-1
        if k == 0: # no objects to put in knapsack
            return 0
        v = solve(c, k - 1) # try without object k-1
        if volume[k - 1] <= c: # try also with object k-1 if space
            v = \max(v, value[k-1] + solve(c - volume[k-1], k-1))
        return v
    return solve(capacity, len(volume))
Python shell
> volumes = [3, 3, 2, 5]
> values = [6, 7, 8, 9]
> knapsack value(volumes, values, 5)
 15
```

#### Knapsack – maximum value and objects

```
knapsack.py
def knapsack(volume, value, capacity):
    @memoize
    def solve(c, k): # solve with capacity c and objects 0..k-1
        if k == 0: # no objects to put in knapsack
            return 0, []
        v, solution = solve(c, k - 1) # try without object k-1
        if volume[k - 1] <= c: # try also with object k-1 if space
           v2, sol2 = solve(c - volume[k - 1], k - 1)
           v2 = v2 + value[k - 1]
           if v^2 > v:
                v = v2
                solution = sol2 + [k - 1]
        return v, solution
    return solve (capacity, len (volume))
Python shell
> volumes = [3, 3, 2, 5]
> values = [6, 7, 8, 9]
> knapsack(volumes, values, 5)
 (15, [1, 2])
```

#### Knapsack - Table

$$V(c,k) = \begin{cases} 0 & \text{if } k=0 \\ V(c,k-1) & \text{value}[k-1]>c \\ \max\{V(c,k-1), \text{value}[k-1]+V(c-\text{volume}[k-1],k-1)\} & \text{otherwise} \end{cases}$$



- systematic fill out table
- only need to remember two rows

#### Knapsack – Systematic table fill out

```
knapsack systematic.py
def knapsack (volume, value, capacity):
 1 solutions = [(0, [])] * (capacity + 1)
 2 for obj in range(len(volume)): 5
        for c in reversed(range(volume[obj], capacity + 1)):
            prev v, prev solution = solutions[c - volume[obj]]
            v = value[obj] + prev v
            if solutions[c][0] < v:
              (3) solutions[c] = v, prev solution + [obj]
    return solutions[capacity]
Python shell
> volumes = [3, 3, 2, 5]
> values = [6, 7, 8, 9]
> knapsack(volumes, values, 5)
  (15, [1, 2])
```

- $\bigcirc$  base case k = 0
- 2 consider each object
- 3 solutions[c:] current row
  solutions[:c] previous row
- 4 compute next row right-to-left
  - solutions[:volume[obj]]
    unchanged from previous row



#### Summary

 Dynamic programming is a general approach for recursive problems where one tries to avoid recomputing the same expressions repeatedly

#### Solution 1: Memoization

- add dictionary to function to remember previous results
- decorate with a @memoize decorator

#### Solution 2: Systematic table fill out

- can need to compute more values than when using memoization
- can discard results not needed any longer (reduced memory usage)

### Coding competitions and online judges

If you like to practice your coding skills, there are many online "judges" with numerous exercises and where you can upload and test your solutions.

- Project Euler
- Kattis
- CodeForces
- Topcoder