Ş

10

15

20

25

30

above, the DNA may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacteria and viral expression systems. Numerous gene delivery techniques are well known in the art, such as those described by Rolland, Crit. Rev. Therap. Drug Carrier Systems 15:143-198 (1998), and references cited therein. Appropriate nucleic acid expression systems contain the necessary DNA sequences for expression in the patient (such as a suitable promoter and terminating signal). Bacterial delivery systems involve the administration of a bacterium (such as Bacillus-Calmette-Guerrin) that expresses an immunogenic portion of the polypeptide on its cell surface or secretes such an epitope. In a preferred embodiment, the DNA may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the use of a nonpathogenic (defective), replication competent virus. Suitable systems are disclosed, for example, in Fisher-Floch et al., Proc. Natl. Acad. Sci. USA 86:317-321 (1989); Flexner et al., Ann. N.Y. Acad. Sci. 569:86-103 (1989); Flexner et al., Vaccine 8:17-21 (1990); U.S. Patent Nos. 4,603,112, 4,769,330, and 5,017,487; WO 89/01973; U.S. Patent No. 4,777,127; GB 2,200,651; EP 0,345,242; WO 91/02805; Berkner, Biotechniques 6:616-627 (1988); Rosenfeld et al., Science 252:431-434 (1991); Kolls et al., Proc. Natl. Acad. Sci. USA 91:215-219 (1994): Kass-Eisler et al., Proc. Natl. Acad. Sci. USA 90:11498-11502 (1993); Guzman et al., Circulation 88:2838-2848 (1993); and Guzman et al., Cir. Res. 73:1202-1207 (1993). Techniques for incorporating DNA into such expression systems are well known to those of ordinary skill in the art. The DNA may also be "naked," as described, for example, in Ulmer et al., Science 259:1745-1749 (1993) and reviewed by Cohen, *Science* 259:1691-1692 (1993). The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells. It will be apparent that a vaccine may comprise both a polynucleotide and a polypeptide component. Such vaccines may provide for an enhanced immune response.

It will be apparent that a vaccine may contain pharmaceutically acceptable salts of the polynucleotides and polypeptides provided herein. Such salts may be prepared from pharmaceutically acceptable non-toxic bases, including organic bases (e.g., salts of primary, secondary and tertiary amines and basic amino acids) and inorganic bases (e.g., sodium, potassium, lithium, ammonium, calcium and magnesium salts).

While any suitable carrier known to those of ordinary skill in the art may be employed in the vaccine compositions of this invention, the type of carrier will vary depending on the mode of administration. Compositions of the present invention may be

formulated for any appropriate manner of administration, including for example, topical, oral, nasal, intravenous, intracranial, intraperitoneal, subcutaneous or intramuscular administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactate polyglycolate) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Patent Nos. 4,897,268; 5,075,109; 5,928,647; 5,811,128; 5,820,883; 5,853,763; 5,814,344 and 5,942,252. One may also employ a carrier comprising the particulate-protein complexes described in U.S. Patent No. 5,928,647, which are capable of inducing a class I-restricted cytotoxic T lymphocyte responses in a host.

Such compositions may also comprise buffers (e.g., neutral buffered saline or phosphate buffered saline), carbohydrates (e.g., glucose, mannose, sucrose or dextrans), mannitol, proteins, polypeptides or amino acids such as glycine, antioxidants, bacteriostats, chelating agents such as EDTA or glutathione, adjuvants (e.g., aluminum hydroxide), solutes that render the formulation isotonic, hypotonic or weakly hypertonic with the blood of a recipient, suspending agents, thickening agents and/or preservatives. Alternatively, compositions of the present invention may be formulated as a lyophilizate. Compounds may also be encapsulated within liposomes using well known technology.

15

20

25

30

Any of a variety of immunostimulants may be employed in the vaccines of this invention. For example, an adjuvant may be included. Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, Bortadella pertussis or Mycobacterium species or Mycobacterium derived proteins. For example, delipidated, deglycolipidated M. vaccas ("pVac") can be used. In another embodiment, BCG is used as an adjuvant. In addition, the vaccine can be administered to a subject previously exposed to BCG. Suitable adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ); AS-2 and derivatives thereof (SmithKline Beecham, Philadelphia, PA); CWS, TDM, Leif, aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars;

cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF or interleukin-2, -7, or -12, may also be used as adjuvants.

S

10

15

 20°

Within the vaccines provided herein, the adjuvant composition is preferably designed to induce an immune response predominantly of the Th1 type. High levels of Th1-type cytokines (e.g., IFN-7, TNFa, IL-2 and IL-12) tend to favor the induction of cell mediated immune responses to an administered antigen. In contrast, high levels of Th2-type cytokines (e.g., IL-4, IL-5, IL-6 and IL-10) tend to favor the induction of humoral immune responses. Following application of a vaccine as provided herein, a patient will support an immune response that includes Th1- and Th2-type responses. Within a preferred embodiment, in which a response is predominantly Th1-type, the level of Th1-type cytokines will increase to a greater extent than the level of Th2-type cytokines. The levels of these cytokines may be readily assessed using standard assays. For a review of the families of cytokines, see Mosmann & Coffman, Ann. Rev. Immunol. 7:145-173 (1989).

Preferred adjuvants for use in eliciting a predominantly Th1-type response include, for example, a combination of monophosphoryl lipid A, preferably 3-de-O-acylsted monophosphoryl lipid A (3D-MPL), together with an aluminum salt. MPL adjuvants are available from Corixa Corporation (Scattle, WA; see US Patent Nos. 4,436,727; 4,877,611; 4,866,034 and 4,912,094). CpG-containing oligonucleotides (in which the CpG dinacleotide is unmethylated) also induce a predominantly Th1 response. Such oligonucleotides are well known and are described, for example, in WO 96/02555, WO 99/33488 and U.S. Patent Nos. 6,008,200 and 5,856,462. Immunostimulatory DNA sequences are also described, for example, by Sato et al., Science 273:352 (1996).

25 Another preferred adjuvant comprises a saponin, such as Quil A, or derivatives thereof, including QS21 and QS7 (Aquila Biopharmaceuticals Inc., Framingham, MA); Escin; Digitonin; or Gypsophila or Chenopodium quinoa saponins. Other preferred formulations include more than one saponin in the adjuvant combinations of the present invention, for example combinations of at least two of the following group comprising QS21, QS7, Quil A, β-escin, or digitonin.

Alternatively the saponin formulations may be combined with vaccine vehicles composed of chitosan or other polycationic polymers, polylactide and polylactide-co-glycolide particles, poly-N-acetyl glacosamine-based polymer matrix,

particles composed of polysaccharides or chemically modified polysaccharides, liposomes and lipid-based particles, particles composed of glycerol monoesters, etc. The saponins may also be formulated in the presence of cholesterol to form particulate structures such as liposomes or ISCOMs. Furthermore, the saponins may be formulated together with a polyoxyethylene ether or ester, in either a non-particulate solution or suspension, or in a particulate structure such as a paucilameter liposome or ISCOM. The saponins may also be formulated with excipients such as Carbopol[®] to increase viscosity, or may be formulated in a dry powder form with a powder excipient such as lactose.

3

10

15

20

25

30

In one preferred embodiment, the adjuvant system includes the combination of a monophosphoryl lipid A and a saponin derivative, such as the combination of QS21 and 3D-MPL. adjuvant, as described in WO 94/00153, or a less reactogenic composition where the QS21 is quenched with cholesterol, as described in WO 96/33739. Other preferred formulations comprise an oil-in-water emulsion and tocopherol. Another particularly preferred adjuvant formulation employing QS21, 3D-MPL. adjuvant and tocopherol in an oil-in-water emulsion is described in WO 95/17210.

Another enhanced adjuvant system involves the combination of a CpG-containing oligonucleotide and a saponin derivative particularly the combination of CpG and QS21 as disclosed in WO 00/09159. Preferably the formulation additionally comprises an oil in water emulsion and tocopherol.

Other preferred adjuvants include Montanide ISA 720 (Seppic, France), SAF (Chiron, California, United States), ISCOMS (CSL), MF-59 (Chiron), the SBAS series of adjuvants (e.g., SBAS-2, AS2, AS2, SBAS-4, or SBAS6, available from SmithKline Beecham, Rixensart, Belgium), Detox (Corixa, Hamilton, MT), RC-529 (Corixa, Hamilton, MT) and other aminoalkyl glucosaminide 4-phosphates (AGPs), such as those described in pending U.S. Patent Application Serial Nos. 08/853,826 and 09/074,720, the disclosures of which are incorporated herein by reference in their entireties, and polyoxyethylene ether adjuvants such as those described in WO 99/52549A1.

Other preferred adjuvants include adjuvant molecules of the general formula (i): HO(CH₂CH₂O)_a-A-R, wherein, n is 1-50, A is a bond or -C(O)-, R is C₁₋₅₀ alkyl or Phenyl C₁₋₅₀ alkyl.

One embodiment of the present invention consists of a vaccine formulation comprising a polyoxyethylene ether of general formula (I), wherein n is between 1 and 50, preferably 4-24, most preferably 9; the R component is $C_{1.50}$, preferably C_4 - C_{20} alkyl

and most preferably C₁₂ alkyl, and A is a bond. The concentration of the polyoxyethylene ethers should be in the range 0.1-20%, preferably from 0.1-10%, and most preferably in the range 0.1-1%. Preferred polyoxyethylene ethers are selected from the following group: polyoxyethylene-9-lauryl ether, polyoxyethylene-9-steoryl ether, polyoxyethylene-8-steoryl ether, polyoxyethylene-4-lauryl ether, polyoxyethylene-35-lauryl ether, and polyoxyethylene-23-lauryl ether. Polyoxyethylene ethers such as polyoxyethylene lauryl ether are described in the Merck index (12th edition: entry 7717). These adjuvant molecules are described in WO 99/52549.

5

10

15

20

25

30

The polyoxyethylene ether according to the general formula (I) above may, if desired, be combined with another adjuvant. For example, a preferred adjuvant combination is preferably with CpG as described in the pending UK patent application GB 9820956.2.

Any vaccine provided herein may be prepared using well known methods that result in a combination of antigen, immune response enhancer and a suitable carrier or excipient. The compositions described herein may be administered as part of a sustained release formulation (i.e., a formulation such as a capsule, sponge or gel (composed of polysaccharides, for example) that effects a slow release of compound following administration). Such formulations may generally be prepared using well known technology (see, e.g., Coombes et al., Vaccine 14:1429-1438 (1996)) and administered by, for example, oral, rectal or subcutaneous implantation, or by implantation at the desired target site. Sustained-release formulations may contain a polypeptide, polymacleotide or antibody dispersed in a carrier matrix and/or contained within a reservoir surrounded by a rate controlling membrane.

Carriers for use within such formulations are biocompatible, and may also be biodegradable; preferably the formulation provides a relatively constant level of active component release. Such carriers include microparticles of poly(lactide-co-glycolide), polyscrylate, latex, starch, cellulose, dextran and the like. Other delayed-release carriers include supramolecular biovectors, which comprise a non-liquid hydrophilic core (e.g., a cross-linked polysaccharide or oligosaccharide) and, optionally, an external layer comprising an amphiphilic compound, such as a phospholipid (see, e.g., U.S. Patent No. 5,151,254 and PCT applications WO 94/20078, WO/94/23701 and WO 96/06638). The amount of active compound contained within a sustained release formulation depends upon the site of implantation, the rate and expected duration of release and the nature of the condition to be treated or prevented.

Any of a variety of delivery vehicles may be employed within pharmaceutical compositions and vaccines to facilitate production of an antigen-specific immune response that targets tumor cells. Delivery vehicles include antigen presenting cells (APCs), such as dendritic cells, macrophages, B cells, monocytes and other cells that may be engineered to be efficient APCs. Such cells may, but need not, be genetically modified to increase the capacity for presenting the antigen, to improve activation and/or maintenance of the T cell response, to have anti-tamor effects *per se* and/or to be immunologically compatible with the receiver (i.e., matched HLA haplotype). APCs may generally be isolated from any of a variety of biological fluids and organs, including tumor and peritumoral tissues, and may be autologous, allogeneic, syngeneic or xenogeneic cells.

Certain preferred embodiments of the present invention use dendritic cells or progenitors thereof as antigen-presenting cells. Dendritic cells are highly potent APCs (Banchereau & Steinman, Nature 392:245-251 (1998)) and have been shown to be effective as a physiological adjuvant for eliciting prophylactic or therapeutic antitumor immunity (see Timmerman & Levy, Ann. Rev. Med. 50:507-529 (1999)). In general, dendritic cells may be identified based on their typical shape (stellate in situ, with marked cytoplasmic processes (dendrites) visible in vitro), their ability to take up, process and present antigens with high efficiency and their ability to activate naïve T cell responses. Dendritic cells may, of course, be engineered to express specific cell-surface receptors or ligands that are not commonly found on dendritic cells in vivo or ex vivo, and such modified dendritic cells are contemplated by the present invention. As an alternative to dendritic cells, secreted vesicles antigen-loaded dendritic cells (called exosomes) may be used within a vaccine (see Zitvogel et al., Nature Med. 4:594-600 (1998)).

Dendritic cells and progenitors may be obtained from peripheral blood, bone marrow, tumor-infiltrating cells, peritumoral tissues-infiltrating cells, lymph nodes, spleen, skin, umbilical cord blood or any other suitable tissue or fluid. For example, dendritic cells may be differentiated ex vivo by adding a combination of cytokines such as GM-CSF, IL-4, IL-13 and/or TNFa to cultures of monocytes harvested from peripheral blood. Alternatively, CD34 positive cells harvested from peripheral blood, umbilical cord blood or bone marrow may be differentiated into dendritic cells by adding to the culture medium combinations of GM-CSF, IL-3, TNFa, CD40 ligand, LPS, flt3 ligand and/or

other compound(s) that induce differentiation, maturation and proliferation of dendritic cells.

5

10

15

20

25

30

Dendritic cells are conveniently categorized as "immature" and "mature" cells, which allows a simple way to discriminate between two well characterized phenotypes. However, this nomenclature should not be construed to exclude all possible intermediate stages of differentiation. Immature dendritic cells are characterized as APC with a high capacity for antigen uptake and processing, which correlates with the high expression of Fcy receptor and mannose receptor. The mature phenotype is typically characterized by a lower expression of these markers, but a high expression of cell surface molecules responsible for T cell activation such as class I and class II MHC, adhesion molecules (e.g., CD54 and CD11) and costimulatory molecules (e.g., CD40, CD80, CD86 and 4-1BB).

APCs may generally be transfected with a polynucleotide encoding a protein (or portion or other variant thereof) such that the polypeptide, or an immunogenic portion thereof, is expressed on the cell surface. Such transfection may take place ex vivo, and a composition or vaccine comprising such transfected cells may then be used for therapeatic purposes, as described herein. Alternatively, a gene delivery vehicle that targets a dendritic or other antigen presenting cell may be administered to a patient, resulting in transfection that occurs in vivo. In vivo and ax vivo transfection of dendritic cells, for example, may generally be performed using any methods known in the art, such as those described in WO 97/24447, or the gene gun approach described by Mahvi et al., Immunology and Cell Biology 75:456-460 (1997). Antigen loading of dendritic cells may be achieved by incubating dendritic cells or progenitor cells with the polypeptide, DNA (naked or within a plasmid vector) or RNA; or with antigen-expressing recombinant bacterium or viruses (e.g., vaccinia, fewipox, adenovirus or lentivirus vectors). Prior to loading, the polypeptide may be covalently conjugated to an immunological partner that provides T cell help (e.g., a carrier molecule). Alternatively, a dendritic cell may be pulsed with a non-conjugated immunological partner, separately or in the presence of the polypeptide.

Vaccines and pharmaceutical compositions may be presented in unit-dose or multi-dose containers, such as sealed ampoules or vials. Such containers are preferably hermetically sealed to preserve sterility of the formulation until use. In general, formulations may be stored as suspensions, solutions or emulsions in oily or

aqueous vehicles. Alternatively, a vaccine or pharmaceutical composition may be stored in a freeze-dried condition requiring only the addition of a sterile liquid carrier immediately prior to use.

5 DIAGNOSTIC KITS

10

15

20

25

30

The present invention further provides kits for use within any of the above diagnostic methods. Such kits typically comprise two or more components necessary for performing a diagnostic assay. Components may be compounds, reagents, containers and/or equipment. For example, one container within a kit may contain a monoclonal antibody or fragment thereof that specifically binds to a protein. Such antibodies or fragments may be provided attached to a support material, as described above. One or more additional containers may enclose elements, such as reagents or buffers, to be used in the assay. Such kits may also, or alternatively, contain a detection reagent as described above that contains a reporter group suitable for direct or indirect detection of antibody binding.

Alternatively, a kit may be designed to detect the level of mRNA encoding a protein in a biological sample. Such kits generally comprise at least one oligonucleotide probe or primer, as described above, that hybridizes to a polynucleotide encoding a protein. Such an oligonucleotide may be used, for example, within a PCR or hybridization assay. Additional components that may be present within such kits include a second oligonucleotide and/or a diagnostic reagent or container to facilitate the detection of a polynucleotide encoding a protein of the invention.

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to one of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

EXAMPLES

The following examples are provided by way of illustration only and not by way of limitation. Those of skill in the art will readily recognize a variety of noncritical parameters that could be changed or modified to yield essentially similar results.

ã

Example 1: Guinea pig vaccination with MTB72F fusion protein and compositions with individual antigens

Guinca pigs were immunized with adjuvant alone (SBAS1, SBAS2, or ASAS7 plus A1(OH)3), MTB72F fusion protein in adjuvant, or TbH9 plus Ra35 antigen composition.

	Methods:		
	Groups:	1)	SBASI
15		2)	SBAS2
		3)	SBAS7 ÷ AI(OH)3
		4)	T5H9+Ra35 + SBAS1
		5)	TbH9+Ra35+SBAS2
		ő)	TbH9 + Ra35 + SBAS7(Al(OH)3)
20		7)	MTB72F in SBAS1
		8)	MTB72F in SBAS2
		9)	MTB72F in SBAS7+Ai(OH)3
		10)	PBS
		11)	BCG
25			
	2004 4	101	A STATE OF THE STA

Dosage: 4 µg each of TbH9 and Ra35 8 µg MTB72F

Protocol: 1st immunization, 2nd immunization approximately 3 weeks 30 later, 3rd immunization approximately two and a half weeks later.

Pre-challenge: DTH (delayed type hypersensitivity, used to determine antigenicity; 10 µg antigen)

Challenge: Aerosol with ~30 cfu Erdman strain

Post challenge monitoring: Weight loss

5 Death (~6 months post challenge)

Results:

1. DTH

Positive reaction to the immunizing antigens. Reactions to individual

antigens or the fusion protein were comparable. Skin test reactivity to PPD was only seen
with the BCG immunized groups

Protection: Guinea pigs vaccinated with MTB72F fusion protein afforded protection compared to those immunized with a mixture of antigens (see Figure 15).

Example 2: Mouse vaccination with MTB72F fusion protein and compositions with individual antigens

As described above, mice were immunized with adjuvant alone (SBAS2, SBAS2', SBAS2'', or SBAS6), MTB72F fusion protein in adjuvant, MTB72F DNA, MTB59F fusion protein in adjuvant, or TbH9, Ra35 and Ra12 antigen composition.

Methods:

	Groups:	1)	MTB72F÷ SBAS2
25		2)	MTB72F ÷ SBAS2°
		3)	MTB72F ÷ SBAS2"
		4)	MTB72F ÷ SBAS6
		5)	Ra12+ TbH9 + Ra35 in SBAS2
		6)	MTB59F in SBAS2
30		7)	SBAS2
		8)	MTB72F \pm delipidated, deglycolipidated $M.~vaccae$
		9)	MTB72F DNA
		10)	MTB72F +IFA
		11)	MTB72F + BCG

12) delipidated, deglycolipidated M. vaccae

- 13) BCG
- 14) Saline
- 15) MTB72F *SBAS2 (in house formulation)

S

30

20

30

S animals per group

Immunization schedule: First immunization, second immunization approximately 3 weeks later; third immunization approximately three weeks later.

Acrosol challenge approximately three months after first does

Spleen or lung cells were isolated and cultured; count CFU of cultures approximately three weeks after plating.

Dose: 8 μg MTB72F, 6.56 μg MTB59F, or 1.52, 4.3, and 2.24 μg, respectively, of Ra12, TbH9, and Ra35, mixed.

15 Results:

Of the AS adjuvants, AS2" + MTB72F gave the best protection in both the spicen and lung in this set of experiments (see Figures 2A and 2B). MTB72F gave ~1 log better protection than MTB59F in both spicen and lung in this set of experiments, indicating that Ra12 provides additional benefit. Mixture of 12/H9/35 + AS2 gave a better protection than MTB72F in this experiment. MTB72F DNA gave the best protection in this experiment, particularly in the spicen (>2 log). The protection was comparable in the lung to that seen with MTB72F protein + AS2", in this experiment.

25 Example 3: Guinea pig vaccination with MTB72F fusion protein and compositions with individual antigens

As described above, guinea pigs were immunized with adjuvant alone (SBAS2, SBAS2', SBAS2'', or SBAS6), MTB72F fusion protein in adjuvant, MTB72F DNA, MTB59F fusion protein in adjuvant, or TbH9, Ra35 and Ra12 antigen composition.

Methods:

Groups: 1) MTB72F + SBAS2

2) MTB72F + SBAS2"

		3)	MTB72F + SBAS2"	
		4)	MTB72F + SBAS6	
		5)	Ra12+ TbH9 + Ra35 in SBAS2	
		6)	MTB59F in SBAS2	
3		7)	SBAS2	
		8)	MTB72F + pvac	
		9)	MTB72F DNA	
		10)	MTB72F +IFA	
		11)	MTB72F + BCG	
1.0		12)	BCG	
		13)	Saline	
		14)	delipidated, deglycolipidated M. vaccae	
	Antigens:	٠		
15	· · · · · · · · · · · · · · · · · · ·	ne forms	ulated on a molar equivalent	
	5 amimals ps	n group	•	
	Injection vo	lume per	r dose is 250µl (IM) containing	
	MTB72F		20 µg	
20	Rai2, TbH9	, Ra35	3.8, 10.8, and 5.6 µg	
	MTB59F		16.4 µg	
	Schedule:			
		estion. 2s	nd immunization approximately three weeks later	c. 3nd
25	insmanization approximate			,
3000				
	Challenge:	- one and	d one half months after first immunization.	
	Results:			
30	~38 Wks po	st challe	nge	
	*			
	<u> Ciroups</u>		Alive State	
	G1. MTB72F + AS2		1/5 [losing weight]	

	G2. MTB72F + AS2'	2/5	[not gaining weight]
	G3. MTB72F + AS2"	3/5	[looking okay, but no weight gain]
	G4. MTB72F + AS6	2/5	[both these gaining weight]
	G5. MTBRa12+H9+Ra35 +AS2	4/5	(one maybe a bit peaked, but two gaining)
5	G6. MTB59F + AS2	2/5	(both losing a little)
	Q7. AS2	2/5	(both losing)
	G8. MTB72F + pVac	1/5	(not looking too good)
	G9. MTB72F DNA	3/5	[all holding steady]
	G10, MTB72F + IFA	2/5	[doing okay]
10	G11. MTB72F \div BCG		5/5 [eating very well]
	G12 BCG	4/5	(doing fine)
	G13 Saline	all de	ad .
	G14 pVac	2/5	[not gaining weight]

By 50 weeks post challenge, while 80% (4/5) of the guinea pigs immunized with BCG + Mtb72F were still alive, only 20% (1/5) of those immunized with BCG alone were alive. At 85 weeks, 4/5 of the guinea pigs immunized with BCG + Mtb72F were still alive and healthy (see Figure 7).

20 Example 4: Long term protection

As described above, guinea pigs were immunized with adjuvant alone (AS2 or AS2"), MTB72F fusion protein in adjuvant, TbH9, Ra35 and Ra12 antigen composition, or a variety of individual antigens in adjuvant.

35	Martinar

15

	GROUPS	ANTIGEN DOSE
	1. AS2" + MTB39 (TbH9)	20ug/250ul (IM)
	2, AS2" + MTB8.4 (DPV)	20ug
	3. AS2" + MTB9.9 (MTI)	20ug
30	4. AS2" + MTB41 (MTCC%2)	20ng
	5. AS2" + MTB40 (HTCC#1)	20ug
	6, AS2" + MTB9.8 (MSL)	20ug
	7. AS2" + MTB72F	20ng

8. AS2" + Ra12+TbH9 + Ra35 (moiar equivalent)

3.8 µg +10.8 µg +5.6 µg

9. AS2" + MTB71F + MTB72F+HTCC#1

20 µg +20 µg +10 µg

10. AS2" + Ra12

 $20 \mu g$

- 11. BCG
- 5 12. AS2"
 - 13. AS2 * MTB72F
 - 14. AS2+ Rs12+TbH9+Ra35
 - 15. AS2

10 Example 5: Monkey vaccination with MTB72F fusion protein and compositions with individual antigens

As described above, monkeys were instrumized with MTB72F fusion protein in SBAS2 adjuvant, or MTB8.4 antigen composition in adjuvant, or a mixture of MTB72F and MTB8.4.

15

Methods:

Groups

- 1. Saline
- 2. BCG

20

- 3. MTB8.4/AS2
- 4. MTB72F/AS2
- 5. MTB72F/AS2 (one arm) + MTB8.4/AS2 (other arm)

40 µg cach antigen

25

Results:

At 8 weeks post challenge, monkeys immunized with BCG are showing signs of infection

30

Current data for 16 weeks post challenge reveals the following trend:

Groups immunized with MTB72F (4 and 5) are holding on their weights and have low ESR values compared to group 3 (MTB8.4 immunization) (Tables 1 and 2).

Table 1

<u>Prophylactic Vaccine Study in Cynomolgus Monkeys with MTB8.4 and MTB72F formulated in AS2 26 Weeks Post Challenge</u>

		Net weight		
Groups	<u>ID</u>	Change (kg)	Chest X-my (onset)	Status
	1398 K	-24%	Pa, bil, prog (wk 8)	Alive
AS2	44378	-33%	Pa, bil, prog (wx4)	Dead
	2959G	-8.30%	Pa, bil, prog (wk4)	Alive
	605AE	-14.00%	Pa, rt, stable (wk 8)	Alive
	3436A	-15.00%	Neg	Alive
BCG	3642G	Plus 4.5%	Pa, rt, prog (wk 8)	Alive
	1190H	0%	Neg	Alive
	10511	-30%	Pa, rt, prog (wk 8)	Dead
	3665C	-25%	Pa, a, prog (wkS)	Dead
MTB8.4	2200F	-18.00%	Pn, rt, stable (wk8)	Alive
	1654J	-33.00%	Pn, bil, prog (wk4)	Dead
	4141C	~33%	Pn, bil, prog (wk4)	Dead
	3061C*	Died after IT chai	llenge	
MTB72F	1228G	Plus 3.6%	Bron, bil, stable for 3 mo (wk8)	Alive
	3462E	-2.20%	Neg	Alive
	4254C	Plus 1.21	Pn, rt, stable for 3 mo (wk4)	Alivo
	4496A	Plus 7%	Pn, rt, stable for I mo (wk 8)	Alive
MTB8.4	4422C	-39.00%	Pn, bil, prog (wk 4)	Dead
MTB72F	4416A	Plus 11%	Pn, rt, stable for 2 me (wk 12)	Alive
	2734E	Plus 12.5%	Susp infil rt, stable for 3 mo (wk 8)	Alive

Table 2

<u>Prophylactic Vaccine Study in Cynomoleus Monkeys with</u>

<u>MTB8.4 and MTB72F formulated in AS2</u>

Wks Post Challengs						
			ESR	t		
<u>Groups</u>	ID	4	8	12	16	16 wks Chest X-11
	1398K	3	3	10	19	Pn, bil, prograv
AS2	4437B	10	20	3		Died
	2959G	6	3	\$7.	0	Pn, rt, progrsv
	605AE	Ĭ	4	7	**	Pn, ri, stable
	3436A	0	8	7	15	Neg
BCG	3642G	0	ů 0	0	0	Pn, rt, prograv
40 X C C C	1190H	1	Ů	2	0	Neg
	10511	0	8	22	7	Pn, bil, w/furt pro
	A NOV 8.4.	~	~	30000	`	Died
	3665C	12	30	19		Died
MTB8.4	2200F	1	7	.2	0	Pn, rt, prograv
	1654J	20	8	21	7	Pn,bil,w/fur progr
	4141C	13	8	2	15	Pn,bil,w/fur progr
	or or to a source	TOOL A	2 2 200 2	ex.		
	3061C*		d after IT ch			'AN . Y F
MIB72F	1228G	0	ii.	20	0	Now stable
	3462E	0	0	0	0	Neg
	4254C	13	0	0	0	Pn, now stable
	4496A	**************************************	ž.	0	5	Pn, rt, w/furt prog
MTB8.4/	4422C	10	3	0		Died
MTB72F	4416A	6	0	1	0	Pn, now stable
	2734E	0	0	0	0	Susp infil, now str

Example 6: BCG priming experiment in monkeys

5 animals per group with four groups immunized with BCG and then rested, then immunized as described above and challenged. The following protocol will be used:

Š

	Groups	# animals	hemenizing Antigen	Antigen Dose
	1. Nothing	5	AS2	
	2. BCG	5	AS2	
	3. BCG	5	MTB72F	40ug
10	4. BCG	*	Ra12+TbH9+Ra35	Molar equiv of antigens in
				MTB72F dose
	5. BCG	4	MTB72F + MTB71F + MTB	40 40ug MTB72F
				40ug MTB72F
15			,	20ng MTB40

All antigens in formulated in AS2

Groups 4 and 5 have four animals each. Two of the BCG immunized monkeys died

	Groups	# amintals	Immunizing Antigen	Antigens for T cell
				proliferation and cytokine
				production assays
3	1. Nothing	5	AS2	PHA, PPD, MTB72F,
	MTB71F, HI	CC#1, DPV,		
				MTCC#2, Ra12, TbH9,
				Ra35, MSL, MTI
	2. BCG	5	AS2	PHA, PPD, MTB72F,
10				MTB71F, HTCC#1, DPV,
				MTCC#2, Ra12, TbH9,
				Ra35, MSL, MTI
	3. BCG	3	MTB72F	PHA, PPD, MTB72F, Ra12,
				TbH9, Ra35
15	4. BCG	4	Rs12+TbH9+Rs35	PHA, PPD, MTB72F, Rai2,
				TbH9, Ra35
	5. BCG	4	MTB72F + MTB71F + MTF	240 PHA, PPD, MTB72F,
				MTB71F, HTCC#1,
				DPV, MTCC-2, Rs12,
20				TbH9, Ra35, MSL,
				MTI

Example 7: Construction of Ra35MutSA and MTB72FMutSA

Expression of Mtb72f typically results in some breakdown products. In
addition, the expression of the full-length sequences of the mature or full length form of
Ra35 (Mtb32A) in E. coli has been difficult. The expressed product was only visible
after immunoblotting with a polycional rabbit anti-Ra35 Ab indicative of low levels of
protein expression. Even then, multiple specific species (bands) were detected indicative
of auto-catalytic breakdown (degradation) of the recombinant antigen. This was
presumed to be due to the expression of Ra35FL in E. coli as a biologically active form.

It has been previously shown that it was possible to express Ra35FL as two overlapping halves comprising the N-terminal (Ra35N-term, called Ra35) and C-term halves (Ra35C-term called Ra12). To enhance and stabilize the expression of the whole Ra35 molecule, a single point mutation was introduced at one of the residues

within the active-site triad (substitution of Ser to Ala; see Figures 6). This mutagenized form of Mtb32A can now be easily expressed at high levels in a stable form. In addition, to stabilize expression of Mtb72F, a single nucleotide substitution (T to G, resulting in a Ser to Ala change at position 710 of the fusion polypeptide) was incorporated in the sequence of Mtb72F at nucleotide position 2128 (see Figure 5).

This stabilization is also readily accomplished by mutagenizing any one, any two, or all three of the three residues comprising the active site triad in Ra35FL, Ra35, or Mtb72F or other fusion proteins comprising Ra35 (His, Asp, or Ser).

Mutagenesis can be performed using any technique known to one of skill in the art.

10

Ş

Example 8: Immunization of mice with Re35FLMutSA-ThH9 and MTB72FMutSA

Eight mice per group were immunized with the compositions listed below, which include the adjuvant AS2A. The mice were then challenged with *Mycobacterium tuberculosis*, and survival of the mice was measured.

15

20		
	Group	Concentration of protein or DNA
	1. Mtb72f protein	1.5 mg/mi
	2. Mtb72fDNA	1.2 mg/mi
	3. Mtb72f-85b protein	0.6 mg/mi
20	4. Mtb72f-85b DNA	1.1 mg/ml
	5. Mtb72f-MTI protein	1.3 mg/ml
	6. Mtb72f-MTI DNA	1.1 mg/ml
	7. Mib72f MutSA protein	1.7 mg/mi
	8. MTB3AMuiSA-TbH9 protein	2.4 mg/mi
25	9. BCG	
	10. AS2	
	11. vector alone	1.5 mg/ml
	12. saline	

WHAT IS CLAIMED IS

3

ě.

A composition comprising a MTB39 antigen (SEQ ID NO:12 or 1 § .. 14) or an immunogenic fragment thereof from a Mycobacterium species of the 2 inherculosis complex, and a MTB32A antigen (SEQ ID NO:2 or 4) or an immunogenic 3 fragment thereof from a Mycobacterium species of the tubesculosis complex. 4 The composition of claim 1, comprising a MTB39 antigen (SEQ) 1 2. ID NO:12 or 14) or an immunogenic fragment thereof from a Mycobacterium species of 2 the tuberculosis complex, and a polypeptide comprising at least 195 amino acids from the 3 N-terminus of a MTB32A antigen (SEQ ID NO:2 or 4) from a Mycobacterium species of 4 . the tuberculosis complex. The composition of claim 2, further comprising a polypeptide 3. 1 2 comprising at least about 132 amino acids from the C-terminus of MTB32A antigen (SEO ID NO:2 or 4) from a Mycobacterium species of the tuberculosis complex. 3 The composition of claims 1, 2, or 3, wherein the antigens are 3 å, 2 covalently linked, thereby forming a fusion polypeptide. \$ Ş. The composition of claim 4, wherein the fusion polypeptide has the amino acid sequence of MTB59F (SEQ ID NO:20). 2 7 The composition of claim 4, wherein the fusion polypeptide has the 6. 2 amino scid sequence of MTB72F (SEQ ID NO:16). 7. The composition of claim 4, wherein the fusion polypeptide has the 3 2 amino acid sequence of MTB72FMstSA (SEQ ID NO:18). The composition of claim 6 or 7, further comprising BCG. 8. ì 9, The composition of claim 6 or 7, further comprising at least one additional antigen from a Mycobacterium species of the tuberculosis complex, wherein 2

6 ID NO:37), 38 kD (SEQ ID NO:39), DPEP (SEQ ID NO:41), T5H4 (SEQ ID NO:43),

the antigen is selected from the group consisting of MTB8.4 antigen (SEQ ID NO:22),

MTB9.8 antigen (SEQ ID NO:24), MTB9.9 antigen (SEQ ID NO:27), MTB46 antigen (SEO ID NO:29), MTB41 antigen (SEQ ID NO:31), 38-1 (SEO ID NO:35), TbRa3 (SEQ

7 DPPD(SEQ ID NO:45), MTB82, Extl 4, ESAT-6 antigen (SEQ ID NO:33), MTB85

- 8 complex antigen, or α-crystalline antigen, or an immunogenic fragment thereof.
- I 10. The composition of claim 6 or 7, further comprising an adjuvant.
- I II. The composition of claim 4, wherein the antigens are covalently
- 2 linked via a chemical linker.
- 1 12. The composition of claim 11, wherein the chemical linker is an
- 2 amino acid linker.
- 1 13. The composition of claim 1, further comprising at least one
- 2 additional antigen from a Mycobacterium species of the tuberculosis complex, wherein
- 3 the antigen is selected from the group consisting of MTB 8.4 antigen (SEQ ID NO:22),
- 4 MTB9.8 antigen (SEQ ID NO:24), MTB9.9 antigen (SEQ ID NO:27), MTB40 auxigen
- 5 (SEQ ID NO:29), MTB41 antigen (SEQ ID NO:31), 38-1 (SEQ ID NO:35), TbRa3 (SEQ
- 6 ID NO:37), 38 kD (SEQ ID NO:39), DPEP (SEQ ID NO:41), T6H4 (SEQ ID NO:43),
- 7 DPPD(SEQ ID NO:45), MTB82, Erd14, ESAT-6 antigen (SEQ ID NO:33), MTB85
- 8 complex antigen, or α-crystalline antigen, or an immunogenic fragment thereof.
- 1 14. The composition of claim 1, further comprising an adjuvant.
- 15. The composition of claim 14, wherein the adjuvant comprises
- 2 QS21 and MPL.
- 16. The composition of claim 14, wherein the adjuvant is selected from
- 2 the group consisting of AS2, ENHANZYN, MPL, 3D-MPL, IFA, QS21, CWS, TDM,
- 3 AGP, CPG, Leif, saponin, and saponin mimetics.
- 17. The composition of claim 1, further comprising BCG or pVac.
- 18. The composition of claim 1, further comprising an NS1 antigen or
- 2 an immunogenic fragment thereof.
- 19. The composition of claim 1, wherein the Mycobacterium species is
- Mycobacterium tuberculosis.

1	 An expression cassette comprising a nucleic acid encoding s
2	MTB39 antigen (SEQ ID NO:12 or 14) or an immunogenic fragment thereof from a
3	Mycobacterium species of the tuberculosis complex, and a nucleic acid encoding a
4	MTB32A antigen (SEQ ID NO:2 or 4) or an immunogenic fragment thereof from a
S	Mycobacterium species of the tuberculosis complex.
*	23 Ph
1	21. The expression cassette of claim 20, comprising a nucleic acid
2	encoding a MTB39 autigen (SEQ ID NO:12 or 14) or an immunogenic fragment thereof
3	from a Mycobacterium species of the suberculosis complex, and a nucleic acid encoding a
4	polypeptide comprising at least 195 amino acids from the N-terminus of a MTB32A
Í	antigen (SEQ ID NO: 2 or 4) from a Mycobacterium species of the tuberculosis complex.
1	22. The expression cassette of claim 21, further comprising a nucleic
2	acid encoding a polypeptide comprising at least 132 amino acids of the C-terminus of a
3	MTB32A antigen (SEQ II) NO:2 or 4) from a Mycobacterium species of the tuberculosis
4	complex.
3	23. The expression cassette of claim 20, wherein the nucleic acid
1	•
2	encodes a fusion polypeptide comprising a MTB39 antigen (SEQ ID NO:12 or 14) or an
3	immunogenic fragment thereof and a nucleic acid encoding a MTB32A antigen (SEQ ID
4	NO:2 or 4) or an immunogenic fragment thereof.
1	24. The expression cassette of claim 23, wherein the nucleic acid
2	encodes a fusion polypeptide comprising a MTB39 antigen (SEQ ID NO:12 or 14) or an
3	immunogenic fragment thereof, and a polypeptide comprising at least 195 amino acids
4	from the N-terminus of a MTB32A antigen (SEQ ID NO:2 or 4).
1	25. The expression cassette of claim 24, wherein the fusion
2	polypeptide further comprises a polypeptide comprising at least 132 amino acids of the C-
3	terminus of a MTB32A antigen (SEQ ID NO:2 or 4).
1	26. The expression cassette of claim 24, wherein the nucleic acid
2	encodes a fusion polypeptide having the amino acid sequence of MTB59F (SEQ ID
3	NO:20).

27. The expression cassette of claim 26, wherein the nucleic acid has 1 the sequence of the nucleic acid encoding MTB59F (SEQ ID NO:19). 3 28. The expression cassette of claim 25, wherein the nucleic acid 1 encodes a fusion polypeptide having the amino acid sequence of MTB72F (SEQ ID ... 3 NO:16). 29. The expression cassette of claim 28, wherein the nucleic acid has 1 2 the sequence of the micleic acid encoding MTB72F (SEQ ID NO:15). 1 30. The expression cassette of claim 28, wherein the nucleic acid has 2 the sequence of the nucleic acid encoding MTB72FMutSA (SEQ ID NO:18). The expression cassette of claim 29or 30, further comprising a Ì 31. nucleic acid encoding at least one additional antigen from a Mycobacterium species of the 2 tuberculosis complex, wherein the antigen is selected from the group consisting 3 Z, ofMTB3.4 antigen (SEO ID NO:22), MTB9.8 antigen (SEQ ID NO:24), MTB9.9 antigen (SEO ID NO:27), MTB40 antigen (SEQ ID NO:29), MTB41 antigen (SEQ ID NO:31), 5 38-1 (SEO ID NO:35), TbR#3 (SEO ID NO:37), 38 kD (SEQ ID NO:39), DPEP (SEQ ID 6 7 NO:41), TbH4 (SEO ID NO:43), DPPD(SEQ ID NO:45), MTB82, Erd14, ESAT-6 8 antigen (SEO ID NO:33), MTB85 complex antigen, or a-crystalline antigen, or an 9 immunogenic fragment thereof. 8 32. The expression cassette of claim 20, further comprising a nucleic acid encoding at least one additional antigen from a Mycobacterium species of the 2

- 3 tuberculosis complex, wherein the antigen is selected from the group consisting
- 4 ofMTB8.4 satigen (SEQ ID NO:22), MTB9.8 antigen (SEQ ID NO:24), MTB9.9 antigen
- 5 (SEQ ID NO:27), MTB40 antigen (SEQ ID NO:29), MTB41 antigen (SEQ ID NO:31),
- 6 38-1 (SEQ ID NO:35), TbRa3 (SEQ ID NO:37), 38 kD (SEQ ID NO:39), DPEP (SEQ ID
- 7 NO:41), TbH4 (SEQ ID NO:43), DPPD(SEQ ID NO:45), MTB82, Erd14, ESAT-6
- 8 antigen (SEQ ID NO:33), MTB85 complex antigen, or α-crystalline antigen, or an
- 9 immunogenic fragment thereof.
- The expression cassette of claim 20, further comprising a nucleic acid encoding an NS1 antigen.

1 34. The expression cassette of claim 20, wherein the *Mycobacterium* 2 species is *Mycobacterium tuberculosis*.

- 35. A method for eliciting an immune response in a mammal, the
- 2 method comprising the step of administering to the mammal an immunologically
- 3 effective amount of a pharmaceutical composition comprising a MTB39 antigen (SEQ ID
- 4 NO:12 or 14) or an immunogenic fragment thereof from a Mycobacterium species of the
- 5 taberculosis complex, and a MTB32A antigen (SEQ ID NO:2 or 4) or an immunogenic
- 6 fragment thereof from a Mycobacterium species of the tuberculosis complex.
- 36. The method of claim 35, wherein the mammal has been immunized
- 2 with BCG.
- 37. The method of claim 35, wherein the mannual is a human.
- 1 38. The method of claim 35, wherein the composition is administered
- 2 prophylactically.
- 1 39. The method of claim 35, comprising a MTB39 antigen (SEQ ID)
- 2 NO:12 or 14) or an immunogenic fragment thereof from a Mycobacterium species of the
- 3 tuberculosis complex, and a polypeptide comprising at least 195 amino acids from the N-
- 4 terminus of a MTB32A antigen (SEO ID NO:2 or 4) from a Mycobacterium species of
- 5 the tuberculosis complex.
- 1 40. The method of claim 39, further comprising a polypeptide
- 2 comprising at least about 132 amino acids from the C-terminus of MTB32A antigen
- 3 (SEO ID NO: 2 or 4) from a Mycobacterium species of the tuberculosis complex.
- 3 41. The method of claim 35 or 39, wherein the antigens are covalently
- 2 linked, thereby forming a fusion protein.
- 1 42. The method of claim 41, wherein the fusion polypeptide has the
- 2 amino acid sequence of MTB59F (SEQ ID NO:20).
- 1 43. The method of claim 40, wherein the antigens are covalently
- 2 linked, thereby forming a fusion protein.

1 44. The method of claim 43, wherein the fusion polypeptide has the 2 amino acid sequence of MTB72F (SBQ ID NO:16).

- 1 45. The method of claim 43, wherein the fusion polypeptide has the
- 2 smino soid sequence of MTB72FMutSA (SEQ ID NO:18).
- 1 46. The method of claim 35, wherein the pharmaceutical composition
- 2 forther comprises an adjuvant.
- 1 47. The method of claim 46, wherein the adjuvant comprises QS21 and
- 2 MPL.
- 1 48. The method of claim 46, wherein the adjuvant is selected from the
- 2 group consisting of AS2, ENHANZYN, MPL, 3D-MPL, IFA, QS21, CWS, TDM, AGP,
- 3 CPG, Leif, saponin, and saponin mimetics.
- 1 49. A method for eliciting an immune response in a mammal, the
- 2 method comprising the step of administering to the mammal an immunologically
- 3 effective amount of an expression cassette comprising a nucleic acid encoding a MTB39
- 4 antigen (SEQ ID NO:12 or 14) or an immunogenic fragment thereof from a
- 5 Mycobacterium species of the tuberculosis complex, and a nucleic acid encoding a
- 6 MTB32A antigen (SEQ ID NO:2 or 4) or an immunogenic fragment thereof from a
- 7 Mycobacterium species of the tuberculosis complex.
- 1 50. The method of claim 49, wherein the mammal has been immunized
- 2 with BCG.
- 1 51. The method of claim 49, wherein the mammal is a human.
- 1 52. The method of claim 49, wherein the composition is administered
- 2 prophylactically.
- 1 53. The method of claim 49, wherein the nucleic acid encodes a fusion
- 2 polypeptide comprising a MTB39 antigen (SEQ ID NO:12 or 14) or an immunogenic
- 3 fragment thereof, and a polypeptide comprising at least 195 amino acids from the N-
- 4 terminus of a MTB32A antigen (SEQ ID NO:2 or 4).

1 54. The method of claim 53, further comprising a nucleic acid
2 encoding a polypeptide comprising at least 132 amino acids of the C-terminus of a
3 MTB32A antigen (SEQ ID NO:2 or 4) from a *Mycobacterium* species of the tuberculosis
4 complex.

55. The method of claim 49, wherein the nucleic acid encodes a fusion

- 1 55. The method of claim 49, wherein the nucleuc acid encodes a tusion 2 polypeptide comprising a MTB39 antigen (SEQ ID NO: 12 or 14) or an immunogenic 3 fragment thereof and a nucleic acid encoding a MTB32A antigen (SEQ ID NO:2 or 4) or 4 an immunogenic fragment thereof.
- 56. The method of claim 55, wherein the nucleic acid encodes a fusion polypeptide comprising a MTB39 antigen (SEQ ID NO:12 or 14) or an immunogenic fragment thereof, and a polypeptide comprising at least 195 amino acids from the N-terminus of a MTB32A autigen (SEQ ID NO: 2 or 4).
- 1 57. The method of claim 56, wherein the fusion polypeptide further
 2 comprises a polypeptide comprising at least 132 amino acids of the C-terminus of a
 3 MTB32A antigen (SEQ ID NO:2 or 4).
- 1 58. The method of claim 56, wherein the nucleic acid encodes a fusion 2 polypeptide having the amino acid sequence of MTB59F (SEQ ID NO:20).
- 1 59. The method of claim 58, wherein the nucleic acid has the nucleotide sequence of the nucleic acid encoding MTB59F (SEQ IDNO:19).
- 1 60. The method of claim 57, wherein the nucleic acid encodes a fusion 2 polypeptide having the amino acid sequence of MTB72F (SEQ ID NO:16).
- 1 61. The method of claim 57, wherein the nucleic acid encodes a fusion 2 polypoptide having the amino acid sequence of MTB72FMutSA (SEQ ID NO:18).
- 1 62. The method of claim 60, wherein the nucleic acid has the nucleotide sequence of the nucleic acid encoding MTB72F (SEQ IDNO:15).
- 1 63. The method of claim 60, wherein the nucleic acid has the 2 mucleotide sequence of the nucleic acid encoding MTB72FMutSA (SEQ ID NO:17).

1.	64.	An isolated nucleic acid encoding a MTB32A antigen from a			
2	Mycobacterium species of the tuberculosis complex, wherein at least one smino acid in				
3	the active site triad of the MTB32A antigen (SEQ ID NO:2 or 4) has been substituted by				
4	a different amino acid.				
1	65.	The nucleic acid of claim 64, wherein an serine residue			
2	corresponding to amir	no acid position 183 of SEQ ID NO:4 or position 207 of SEQ ID			
3	NO:2 has been substituted by another amino acid.				
1	ნ ნ.	The nucleic acid of claim 65, wherein an alanine residue has been			
2	substituted for the serine residue.				
1	67.	The nucleic acid of claim 66, wherein the nucleic acid comprises a			
2	nucleotide sequence of SEQ ID NO:5.				
I	68.	A composition comprising the nucleic acid of claim 64.			
l	69.	A micleic acid encoding a fusion polypeptide comprising the			
2	nucleic acid of claim (\$4.			
1	70.	An isolated MTB32A polypeptide from a Mycobacterium species			
2	of the tuberculosis cos	mplex, wherein at least one amino acid in the active site triad of the			
3	MTB32A antigen (SE	Q ID NO:2 or 4) has been substituted by a different amino acid.			
1	71.	The polypeptide of claim 70, wherein a serine residue			
2	corresponding to amir	corresponding to amino acid position 183 of SEQ ID NO:4 or amino acid position 207 of			
3	SEQ ID NO:2 has been substituted by snother amino acid.				
1	72.	The polypeptide of claim 71, wherein an alanine residue has been			
2	substituted for the serine residue.				
1	73.	A polypeptide of claim 72, wherein the polypeptide comprises an			
2	amino acid sequence of SEQ ID NO:6.				
1	74.	A composition comprising the polypeptide of claim 70.			
1	75.	A fusion polypeptide comprising the polypeptide of claim 70.			

1 76. An isolated nucleic acid encoding a fusion polypeptide comprising

- 2 a MTB39 antigen (SEQ ID NO:12 or 14) from a Mycobacterium species of the
- 3 tuberculosis complex, and an antigen comprising at least 195 amino acids from the N-
- 4 terminus of a MTB32A antigen (SEQ ID NO:2 or 4) from a Mycobacterium species of
- 5 the tuberculosis complex, wherein an amino acid of the active site triad of the MTB32A
- 6 antigen (SEQ ID NO:2 or 4) has been substituted by a different amino acid.
- 1 77. The nucleic acid of claim 76, wherein a serine residue
- 2 corresponding to amino acid at position 183 of SEQ ID NO:4 or position 207 or SEQ ID
- 3 NO:2 has been substituted by another amino acid.
- 1 78. The nucleic acid of claim 77, wherein an alanine residue has been
- 2 substituted for the serine residue.
- 79. A composition comprising the nucleic acid of claim 76.
- 1 80. A nucleic acid exceeding a fusion polypeptide comprising the
- 2 nucleic acid of claim 76.
- 1 81. A nucleic acid encoding a fasion polypeptide, wherein the nucleic
- 2 scid comprises a nucleotide sequence of SEQ ID NO:17.
- 82. A nucleic acid encoding a fasion polypeptide comprising an amino
- 2 acid sequence of SEO ID NO:18.
- 83. An isolated polypeptide encoding a fusion polypeptide comprising
- 2 a MTB39 (SEQ ID NO: 12 or 14) antigen from a Mycobacterium species of the
- 3 tuberculosis complex, and an antigen comprising at least 195 amino acids from the N-
- 4 terminus of a MTB32A antigen (SEQ ID NO:2 or 4) from a Mycobacterium species of
- 5 the tuberculosis complex, wherein an amino acid of the active site triad of the MTB32A
- 6 antigen (SEO ID NO:2 or 4) has been substituted by a different amino acid.
- 1 84. The polypeptide of claim 83, wherein an serinc residue
- 2 corresponding to amino acid position 183 of SEQ ID NO:4 or amino acid position 207 of
- 3 SEQ ID NO:2 has been substituted by another amino acid.

l 2	substituted for		The polypeptide of claim 83, wherein an alanine residue has been ne residue.
I		86.	A composition comprising the polypeptide of claim 83.
1		87.	A fusion polypeptide comprising the polypeptide of claim 83.
1	TT3 N3/N-19	88,	A fusion polypeptide comprising an amino acid sequence of SEQ

F/G. /.

Ra35 N-terminus DNA

	218	<u></u>	Ala		21a		
	Ser J	e e	# # \$0 \$1 \$1	T S	e Te		
L	0 0 0 0 0 0	e use	Val	Val.	8 4 8 8		
4	% Q, %	4. U 28 4.	Mis V	2 2 9 9 8	77 0 0 0 0		
tocognostatas tagacococas caccacocas acatococas frascacas trascasas tagascasas tagascasas tagascasas	Teg Teg W	174 174 180	E USE	## ## \$	a neg		
11 11 0 0 12 12 11 11 11 11 11 11 11 11 11 11 11	or Or T	CIV I	A CO	61y V	01 20 20 20 20		
cotogaccog aacaaccog tgatcgctggg atcggtggcg cocgtgcggt cyaagagaca gtcaacggcc	a s A	ren Ten					
			€	54 57 \$4	ž G		
	10 Y)	Ly s	Len	e E	M K		
	0 4 4	THE	~ 8 요	00 00 00 00 00 00 00 00 00 00 00 00 00	Gly Ala		
actagactaco actagactaca accaaccaca accaaccaca accaaca accaaca tgaccaaca tgaccaaca tgaccaaca tgaccaaca	e 41 61	5 10 8 10 4	Val.	ð	Arg		
	dsk	9 7	S	200	100 100 100		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ala a	П Ж	4 6 7 7 8	GIV	e G		
geegaettee toaacacoaa cytyctyaec gtygeetaec cygtygeetaec cygtygeeg toggattege gtgattege	10 m	## ## #>	0 Xi Qi	2 da 2	ne.		
	Arg	7 a 2	<u>ಭ</u> ಬ ೧,	20 20 20 20 20 20 20 20 20 20 20 20 20 2	T		
caattc	Q. R.	20 0 0 0 0 0	Ф М Н	@ 	# 		
ggaccggt gtggtcaa ctccggcc ctccggcc cgtgcaac cgtgcaac cgtcctag	a C	0 22 24	Za Za	# T	48 60 4		
	Ser Gla	Š	M M M M O	Asn	Asp		
# 4000 \$400 000 000 000 000 000 000 000 0		Val Gly	S		u O		
	Pro Pro Ala Lau S	ជ ប	Thr	Thr Asp 70	Tyr Asp Arg Thr Gln Asp 90		
)	org.	14 22 15 15	Š	Tur	Arg		
	0 14 8	Val Ala 25	हा हा	Gly Ala	48.00 90.00		
# ####################################	的 (%) (数)	e W	~ # #	S. C.	IÁI		
SUBSTITUTE SHEET (RULE 26)							

***	والمتحوق
7.7	4 000
100	1.0

<u> </u>	ä M	N 80 00	
01% 01% 01%	ne. Lea		
Ö	13 40 50	4 H	
930 130	Ser Asp	Pro Gly	
No.	Ser	bro	SS 13 00 00 00 00 00 00 00 00 00 00 00 00 00
Ser Gly Gly Gln 130	# 12 12 12 13	aro	A1.a
₩ © 00	e G	4 0	Ala Ala
01. 25. 25. 25.	Z a Z	Ala lle Gln 170	Tur
S S S S	II.	Asp Ala	С 8
z o z	Gla	0. 18 14	20 H
25 20 20 20 20 20 20 20 20 20 20 20 20 20	Gly Gln 145	Φ Δ1 Δ2	ă T
Val Ala Met	rear n	a S	Val Val
700	ह स	(2 (1) (2) (3) (4) (4)	8
# # # # # # # # # # # # # # # # # # #	~ [전 [>	rec	G G
2 TO	7 8 2	Gly Leu	Gly Gln 1 185
cly clu	220 140	n Sen T	Len
Val	Ö	ren Ten	Ž.
A. A.	0 2 0:	7hr 160	2 2 2
Val Ala 115	Val	61.u	Val.
Š	81.a	5 5	2 K 8 B 6 C
61y 61y 61y	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	e a	Gly Gly Bro
Ž U	o a	Š	Š
8 H	H H	# 55 # 55 # 55 # 55	CIA
			5

Mtb72f-mutsA Mtb72f-mutsa Mtb72f-mutSA mhhhhhhimaadneolsoggealelgoamalagoirsgessyyvhigptafig mtd72f Mtb72£ Mtb72£ MHRHHHHMTABDNFQLSQCSQCFALPIGQAMAIAGQIRSGGGSPTVHIGPTAFLG podvisviwotkspytrpnvtlargppaeavdpgalppeinsarnyagpgsas LGVVDNWGMGARVQRVVGSAPAASLGISTGDVITAVDGAPINSATAMADALWGHH podvisvimotksfetrtenvilargepärefivdegalppelinsarmyropgsas LGVVDNNGNGARVQRVVGSAPASIGISTGDVITAVDGAPINSATAMADALNGHH TERGL 6----| |----| |---3 (Q) ((U) ψ) Ψ) and Ind

Mtb72f-mutsA ivaracmidsvasdifsaasaficsvviglivgsvigssacimvaaaspyvamisv mtb72f lvaaaomndsvasdlesaasaeosvvmclivgswigssacimvaaaspyvammsv S S M (Q) (Q) (m)

Mtb72f-mutsa Mtb72£ tagoablitaaqvrvaaaaybtavgltvpppviaenrabimiliatnilgontpai taggabitaagvrvaaaavetaygitvpppviaenraelmillatnilsgntpai ে জে জ 64 (2)

Mtb72f-mutsA Mtb72£ avneaeygemaqdaamfgyaaatatatelefeeeapemtsaggllegaave avnerencembaodramicvartatatatleferrencegolieorarve (2) (7) 23.8

Mth72f-mutsa MED72£ BASDTAAANQIMMWVPQAIQQIAQPTQGTTPSSKIGGIMKTVSPHASPISMWVSM easdtaaanolmnnvpoaloolaoptogttpsskigglmktvsphrspisnmvsm (전 (전) (전)

Mtb72f~mutsA annhmsminscvsmintlssmingfapaaaqavqtaaqngvramsslgsslgss mt572f anninsminscventniissmikgfapaaaqavqtaaqngvramssigssigss භ ග ල 388

Mtb72f-mutsA Mtb72£ GLOGGVAANLORAASVGSLSVPQAWAANQAVTPAARALFLISLISAALAGPGQM GIGGGVAANIGRAASVGSISVPQAWAAANQAVTPAARAIPIISIISAAERGPSQM 650 450, 644, 604 1638 1638

E C C

SUBSTITUTE SHEET (RULE 26)

7/9

Mtb72f~mutsA Mtb72f-mutsa 数れないとれ At 0724 気れむコンか iggipuggmgaraggelsgvirupprpyumphspaaddiappalsgorfadffal PLDPSAMVAQVGPQVVNINTKLGYNNAVGAGTGIVIDPNGVVLTNNNVIAGATDI icolpycomcaraccciscvirvppryvmphspaacdjappaisodrfadffai. PLDPSAMVAQVGPQVVNINTKLGYNNAVGAGTGIVIDPNGVVLTNNHVIAGATDI NAFSVOSGQTYGVDVVGYDRTQDVAVLQLRGAGGLPSAAIGGGGVAVGEPVVAMGN ان ان ان 909 (C) (C) (T) (C) កៅ នោ នព

R#35

Mtb72f-mutsA NAFSVGSGQTYGVDVVGYDRTQDVAVLQLRGAGGLPSAAIGGGVAVGEPVVAMGN 80 80 80

Mtb72f-mutsA SGGQGGTPRAVPGRVVALGGTVQASDSLTGARETLNGLIQFDAAIQPGDSGGPVV MCb72f SGGGGGTPRAVPGRVVALGQTVQASDSLTGABETINGLIQFDAAIQPGLAGGPVV

Mtb72f-mutsA Mtb72£

FIG. 5. (CONTINUED)

9 SUBSTITUTE SHEET (RULE 26)

ngi.govvgmntaaS ngligovvgantaas

(Q) (Z)

S W

ThRa35 mutsA TbRa35 mutsA TbRa35 mat TDRa35 mat *JCAGTGIVIDPNGVVIINNHVIAGATDINAFSVGSGQTYGVDVVGYDRTQ* VGACTCIVIDENGVVITNRAVIAGATDINAFSVGSGQTYGVDVVGYDRTQ mihhhinifappalsqdafadfpalpldpsamvaqvgpqvvnintklgynna MHHHHHHHRAPPALSQDRFADFPALPLDPSAMVAQVGPQVVNINTKLCYWWA Ra35 N-term ş—ş (C) gangi pang

DVAVIQIRGAGGIPSAAIGGGVAVGEPVVAMGNSGGQGGTPRAVPGRVVA TDRA35 mutsa DVAVIOLAGAGGIPSAAIGGGVAVGEPVVAMGNSGGGGGTPRAVPGRVVA TDRa35 mat (-) (-) (-) 57 (2) (4)

Rall Cterm

LGQTVQASDSLTGAEETLNGLIQFDAAIQPGDSGGPVVNGLGQVVGMNTA TDRa35 mat LGQTVQASDSLTGAEETLNGLIQFDAAIQPGDBGGPVVNGLGQVVGMNTA TDRa35 mutSA end Ra35 Nterm . क्र ,---((C) (---)

aspniqisqeeqeraipicqamaiaqqirseqespivhicpiaiicicvv TdRa35 mutsa ASPNIQLSQGGGTAIPIGQAMAIAGQIRSGGGSPTVHIGPTAFLGLGVV TDRA35_mat 201 20 20 30

TbRa35_mat TbRa35_mutSA ONNGNGARVQRVVGSAPAASIGISTGDVITAVDGAPINSATAMADALNGH ONNONCARVQRVVGSAPASIGISTGDVITAVDGAPINSATAMADALNGH 200 (A)

TbRa35 mat TbRa35 mutsA

Ra12 hpodvisviwotksoctrionvilaboppa| 300

SUBSTITUTE SHEET (RULE 26)

F/G ...
SUBSTITUTE SHEET (RULE 26)

SECURNCE LISTING

```
- (2) INFORMATION FOR SEC ID NO:1: NTB32A (8e35 FG)
          (f) SEQUENCE CHARACTERISTICS:
               (A) LEMOTH: 1872 base pairs
               (B) TYPE: nucleic acid
10
               (C) STRANDRONESS: simple
               (D) TOPOLOGY: linear
         (xi) SECRENCE DESCRIPTION: ENQ ID NO:1:
    CACTACTTTO CTOTAGAAA ATCCTGCCGC CCGGASCCTT AAGGCTGGGA CAATTICTGA
     TAGCTACCCC GACACAGGAG GTTACGGGAT GAGCAATTCG CGCCGCCCCC CACTCAGGTG
     STINTEGITS CITABOSTSC TROCTOCOST COSSCIOSSC CIGGCOCOSS CRICESCOCA
     ORCRECCCO COORCCTTOT CSCASSACCS STICGECGAC TYCCOCCGC TXCCCCTCGA
     COCCORCOCO ATOSTOSCO AAGTESCOCO ACASCTOSTO AACATCAACA CCAAACTEKS
   CTACAACAAC GCCXFEMECG CCEGGACCGG CATCGTCATC GATCCCAACG GTGTCCTMCT
     GACCAACAAC CACSTGATCG CGGGGGGCAC CGACATCAAT GCGTTCAGCG TCGGCTCCGG
     CCARACCTAC GEOVICHATE TEXTERESTA TEACCECACC CAGGATUTCE CONTUCTECA
     OCTOCOCCOT OCCOGNOSCO TOCCGTCOGC GOCGATOGGT GUCUGCCTCS CGGTTWFTUA
     COTOSTORTO COGATOGRICA ACAGOROROS GUAGGRICAGA ACACOCOPTO CONTROCTOS
   CACOSTOSTO COCCTOCOCO AAACOSTOCA GECETTOGAT TOCTUACOS CTECOSAAGA
     GACRYYGAAC GESTTGATCC ASTTCGATGC COCCAATCCAS CCCOOFGATT COGGOSGGCC
     COTTOTICARO GEOGRAGIAC ACRITECTORIA TATURNINCIA ECCUEUTICOG ATRACTICOR
     SCTOTOCCAS GETESSCAGE GATTOCCAT TOUGATURGE CASSORATES CRATOROGRE
     COALATODEA TOSCOTORGE COTTACTORC CONTONTANT CONCOTRACTO COTTUCTORG
   CTTOGGTSTT GTCGACACA ACGGCAGGG OBEACGAGTE CAACGCFTGG TOGGAGCGC
     TOCOMONICA ACTOTOMICA TOTOCACOGO CURCUTURTO ACOMONICO ACMICACTO
     GATENACTOS GOURCESCOA TOGOSCACIO SOTVAACIOS CATOATOCOS STGADETCAT
     CTODETCARC TUGCARACCA ACTODESCEO CACOCETACA GERRACETER CATTURCOMA
     GORACICOTO OCCIDATITO TOPOREATAC CACCURCOS CODECCAATI GOATIGOCOC
     CASCOSTGAT TOCOGOSTGA GCOCCOGAGT TOCOTOTOCO GTGCGCGTGG CATTUTGGAA
     GCASTURACO AGGCAGRACA CASCOTTGAG CACCCTCCCC TECAGGGCAG TTACGTCGAA
     SOCCEPTOTOS TOSACCATOS GENTOCIANO SACTTOVACA GOSCOSCOSO CETACOCOCO
     GATOCKACCT GETTTARGCA CECCUTETTE TACKASSTRC TEGTECORGE GITCITOJAC
GCCARCICGE ACESTICCOS CHATCINOST QUACTCATOS ATCOCTOGA CIACCTGCAS
   TRECTTERICA TORACTECAT CTOTTROCOSC CUTTCCTACE ACTCACOSCT GUGGRADESC
     GETTACHACA THYRREACTT CTACAAGGTG CTGCCCGAAT TORGCACCGT CUACUATTTC
     orogeocras resacacese reaccesses serarecesea reareacesa cersivare
     AATCACACCT CGGAGTCGCA CCCCTGGTTT CAGGAGTCCC GCCGCGACCC AGAGGGACCC
     TACOGREGACY ANTACOTRONG GASCOLACKY MECHASCOCT ACACOGACGC CONSATUATE
     TICOTORCA COBAGAGACIC GARCIGGICA TICGATICITO TOCCICORCA OTTECTACITO
     OCACCOATTC TT
     (2) INFORMATION FOR SEQ ID NO:2:
50
          (i) SECURECE CHARACTERISTICS:
               (A) LENGTH: 355 amino scids
               (B) TYPE: amino acid
               (C) STRAMBEUNESS: single
33
               (b) TOPOLOGY: limear
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2: MT832A (Re3SFL)
          Met Ser Ann Ser Ang Ang Ang Ser Leu Ang Trp Ser Trp Leu Leu Ser
          I 5 15 Val Leu Ala Ala Val Gly Leu Gly Leu Ala Thr Ala Pro Ala Glu Ala
                     20 25 30
          Als Pro Pro Ala Leu Ser Sin Asp Arg Phe Ale Asp Phe Pro Ala Leu
            3$ 40
          Fro Leu Asp Pro Ser Ale Met Val Ale Ols Val Ale Pro Gls Val Val
65
          55 55
          Asn The Asm Thr Lys Len Gly Tyr Asn Asn Ala Val Gly Ala Gly Thr
                              20
                                                38
```

```
Gly The Val The Asp Pro Asn Gly Val Val Leu Thr Asn Asm His Val
                         90 95
        lle Ala Gly Ala Thr Asp lle Asn Ala Phe Ser Val Gly Ser Gly Gln
                 100 109 139
 Š
        The Tyr Gly Val Asp Val Val Gly Tyr Asp Arg Thr Gln Asp Val Ala
              118 120 125
        Val Leu Cln Leu Arg Gly Als Gly Gly Leu Fro Ser Als Ala Ile Gly
          130 135 140
        Cly Gly Val Ala Val Gly Glo Pro Val Val Ala Met Gly Asn Ser Gly
        145 150 150 150
10
        Gly Gln Gly Gly Thr Pro Arg Ala Val Pro Gly Arg Val Val Ala Lau
                     165 170 178
        Cly Cln Thr Val Gin Ala Ser Asp Ser Leu Thr Gly Ala Glu Glu Thr
                 180 185 190
15
        Len Azn Gly Len Tie Gin Pho Asp Ala Ala Ilo Gin Pro Gly Asp Ser
                   200
                                    205
        Cly Gly Pro Vel Val Asn Gly Leu Gly Gln Val Val Gly Met Asn Thr
         210 215 220
        Ala Ala Ser Asp Asa Phe Gin Leu Ser Gin Gly Gly Gin Gly Phe Ala
20
        225 230 235
        The Pro The Gly Tin Ala Mot Ala The Ala City Cha The Arg Ser Giy
                     248 280 285
        Gly Gly Ser Pro Thr Val His Ile Gly Pro Thr Ala Phe Lew Gly Lew
                  260 265 270
25
        Gly Val Val Asp Asm Asm Gly Asm Gly Ala Arg Val Gln Arg Val Val
              278
                               280 288
        Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val Ile
          290 295 300
        Thr Ala Val Asp Sly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala Asp
        105 110 315 320
Ala Leu Asn Gly His Nis Pro Gly Asp Val Ile Ser Val Asn Trp Glo
30
             325 339 335
        Thr Lys Ser Siy Sly Thr Arg Thr Sly Ass Val Thr Leo Ala Slu Sly
                         345 350
35
        Pro Pro Ala
               355
    <212> OMA
40
    kalio Rolf mature
    *400 × SEQ ID NO:3
    catatgosto accatoscos tosoyocoog coggootigt oguaggacog gittogeogac 60
    thorougue teoperaga programme abeginger aagtegeer aragesyte 120
    sacatosaca oceaactygg staceaaceac geogleggeng coggesecegg catogtosto 180
    galoccason giglogigot gaccasomac caeptgaton oppnonues onecatosat 240
    gogiteaqog toggotagg coasacotse ggegicging ig siggiteggit adgood 200
    caggatetes engigetes getergeget grengtages techetogen geogateget 360
    ggeggegteg eggtiggiga geoegtegic gegatgggca acageggigg geagggegga 420
    angeconging opgityconing magagingsto pogotogaco aasongingca garginggat 480
    togotgacog gigocgaaga gacattgaac gygitgatoc agitogatgo ogogatorag $40
    congregagy oppgrogged ogregioase sycchastan aggregiogy talgaseasy 600
    geogogicog ataxerioux goigiconxy gytygycxyy gaildyccat tengalogyy 660
    caggogatog ceatcocopy coagatocoa togogigogo ygicaccoac cyticatait 720
    gegodiacog culturingg diigggigit giogacaaca acggcaangy cycacgagic 780
    casegegagy togggagoge tenggoggda agteteggda tetedacegg egacgegate 840
    acogoggicg acygogotoc gatowactog geoscogoga tygoggacgo gottaacygy 900
    catcatocon organicat ringgigaco togosasona agingggong cangogiana 960
    ageaacetea cattegeous goyacetees gootgagaat to
                                                           1002
60
    e212× 283
    <213> Na35 mature
    <400> 88Q 30 80:4
63
    Mer Sis His His His His His Ala Pro Pro Ala Leu Ser Gln Asp Arg
                                   20
```

	Phe	ala	Asp	Phs 30	Pro	Ala	Lens	SEC	1.6u 35	Asp	Pro	ser.	Ala	36et 3.0	Val	Ala	
ă	Gis	Val	Gly 35	Pro	Gin	Val	Val	Asn 40	lle	Asn	Thr	Lys	lanu 45	Gly	Tyr	Asm	
	Ass	Ala 88	Val	Sly	alā	Gly	Thr 55	Sly	Ile	val	Ile	Asp 80	Pro	Asn	Gly	Val	
10	Val 65	Lebu	Thr	Ass	Asn	Bis 70	Va.	le	Ala	Gly	Ala 78	Mr	Asp	ile	Ass	Ala 80	
15	Phe	Ser	Val	Gly	Ser 89	Gly	Gln	Thr	Tyx	Gly 90	Val	Asp	Val	Val	31y 95	Tyr	
#.w/	Asp	Arg	Thr	Gln 100	ĄsĄ	Val	Ala	Val	leu 108	Cln	Les	Ang	Gly	212 110	Gly	Sly	
20	Less	Pro	Ser 115	Ala	Ala	Tie	Gly	320 320	Gly	Val	ala	Val	01y 125	93.0.	Pro	Val.	
	Val	Ala 130	Met	Sly	Asn	Ser	G1y 135	Gly	Glm	Gly	sty	Thr 140	Pro	Arg	Ala	Val	
25	Pro 145	01.y	Arg	Val	Val	Ala 150	Leu	GL y	Gin.	Thr	Val 155	als	Ala	Sex	Asp	Ser 160	
30	Len	The	Gly	Ala	Glu 168	Glu	The	Les	Asn.	Gly 170	Leu	210	Çlu	Phe	2.75	sig	
~~	Ala	Ile	Gin	180 Bro	Gly	Asp	Ser	Gly	Gly 185	Pro	Val	Val	äen	üly 190	leu	Gly	
35	Gin	vai.	721 135	Gly	Met	æs.	Tim	Ala 200	Ala	Ber	ges.	Asn	9ha 205	Sin	Less	Ser	
	Gin	318 814	Gly	Gln	Gly	Phe	Ala 315	Ils	Pro	11e	gly	01n 220	Ala	Mest	RIS	Ile	
40	A)a 225	Gly	Gla	zis	Arg	Sex 230	Sly	Gly	33y	Ser	9rc 235	Thr	Väl	His	lle	Gly 340	
45	Pro	Thx	Ala	8310	Leo 248	Gly	Legi	gly	981	Val 250	Asp	Asn	Asc.	Glž	Asn 255	Gly	
40	Ala	Arg	val	61a 266	Ārģ	Val	va)	gly	90r 269	Ala	Fed	Als	Ala	Ser 270	Len	Sly	
50	Ils	Ser	Thr 275	Gly	Asp	Val	110	Thr 280	pilk	Val.	Asp	GIY	Ala 285	Pro	ežī	Asn	
	Ser	Ala 290	Thy	Ala	Mes	Ala	Asp 295	BIK.	Les	asa	GĩÀ	His 300	His	Pro	Sly	Asp	
55	Val 305	Ile	Ser	Val	Thr	Trp 310	Gla	Thæ	Lys	Sor	Gly 315	Gly	Thr	Arg	Thr	Gly 320	
60	Asn	Val	Mar	Lests	%1& 32\$	Qin	Gly	Pro	Pro	Ala 330							
oro;		2> D1		i stato noto d	2006												
65	<608	Ö> 81	:359: :0 N	5 XIO.	1.5	Nega bok	n gg ga was	n jas jasassa	s becom	ا درونوارسون درونوارسون	ir fragsja	programmes	gerran s	י בוערניי	ng fire igin was	gyah gogili Skari	జ గ
	tto	acag.	1997 i	tgedi	acto	gw co	regte	sáðai	3 48 5	ggto	ತಿಬರದ	8891	999	ඉහළ 8	acag:	iteate loggie logge	120

5 10	gogi cagg ggog aogg cagg gaog cagg gaog cagg	itea; jatgi jacgi jeco; ttga; jegat; jega; jega; jate;	1993 (1993 (19	.0995 2995 2995 2996 2996 2986 2985 2985 2995 2995	teces pater general peter general peter general genera	15 C: 3: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5:	ikaa ibgoj ioogi igggi koati ibogi ibggi ibggi ibggi	octac gogge cogic cogic cogs coca coca	: 020 : 900 : 900 : 900 : 900 : 900 : 900 : 900	.gt.02 .gg.b; .ct.03 .ct.03 .gg.t; .ga.03 .ga.03 .ga.03 .ga.03 .ga.03	1809 1900 1900 1000 1000 1899 1808 1808	tegit scae saad sgat sgat saag botd tegit sgat	2000 1000 1000 1000 1000 1000 1000 1000	1886 (1886 (18	10800 108081 108081 108081 108081 108081 108081 108081	etcast NCSCC SCCSCC SCCSCS SCCS SCCS SCCSCS SCCS	300 380 480 480 540 560 720 780 840 820
20	4233		rt 13871 80 li														
20	Met	218	His	Ris	Ris 5	Nis	Nis	Ala	pro	Pro 10	Ala	î/esa	Ser	Gln	Asp 15	Ārģ	
25	Phe	Ala	gaa	Phe 20	Pro	Als	Leu	Pro	1.00% 2.5	Asp	Pro	Ser	Mla	Met 30	Val	Ala	
	Øln	Val	Gly 35	Pro	Gln	Val	Vai	Asn 40	Ile	naA	The	lys	1000 45	Sly	Tyr	Asn	
30	Ass	215 50	¥83.	GLY	Alæ	Gly	Thr SS	Gly	lle	Yal	Ile	Asp 60	Pro	Asn	Gly	Val.	
35	Val 85	Leu	Thr	Asn	Aen	His 70	Val	Ils	Ala	aly	%1& 75	Thr	qua	rle	Asn	Ala 80	
	edS	Ser	Val	giy	Sex 85	sly	Sin	Thr	Tyx	90 91y	Val	asp	Val	Val	Gly 98	Tyr	
40		-		100	•				105					310	Gly		
4.00			325					120					228		Pro		
45		230				•	135					140			Ala		
50	248					2.5%					135				Asp	160	
					169					178					Asp 178		
55				289					1.85					190	I.O.		
66°1			195	•				390					203		Editii 81 a		
60		216	-				215				,	226			Ala		
65	235					330					235					240	
	rau	anx.	23 B	8.333	243	49.3.	STANS.	ner 3.	* 68.4	250	11273	10011	esance.	ar's.	289 289	40%	

Als Arg Val Gin Arg Val Val Gly Ser Als Pro Als Als Ser Leu Gly 265 270

The Ser Thr Sly Asp Vol Ile Thr Ala Vol Asp Oly Ala Pro Ile Ass 5 275 286 285

Ser Als Thr Ala Met Als Asp Als Leu Asn Gly Sis Nis Pro Gly Asp 290 300

10 Val Sie Ser Val Thr Trp Oln Thr Lys Ser Gly Sly Thr Arg Thr Gly 305 315 320

Asn Val Thr Leu Ala Glu Gly Pro Pro Ala 335

15

 20°

- (2) INFORMATION FOR SEQ ID NO:7: Salf (MIBBLA M-term)
- (1) SEQUEECE CHARACTERISTICS:
 - (A) LEMOTH: 615 base pairs
 - (B) TYPE: mucleic soid
 - (C) STRANDEDSESS: single
 - (D) TOPOLOGY: linear
- 25 (xi) SECURISCE DESCRIPTION: SEQ ID NO:7:

- (2) INFORMATION FOR SEQ ID NO:8: Ra35 (WTB32A W-term)
- 40 (i) sequence characteristics:
 - (A) LENGTH: 205 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: Linear

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

hou Asn Sly Leu Ile Sin Phe Asp Ala Ala Ile Sin Pro Gly Asp Ser

Gly Gly Fro Val Val Asn Gly Leu Gly Gln Val Val Gly Met Asn Thr Ala Ala Ser 8 (2) INFORMATION FOR SEQ ID NO:9: 8012 (i) SEQUENCE CHARACTERISTICS: 18 (A) LEMTTH: 447 base pairs (B) TYPE: mucleic soid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 15 (xi) SECURECE DESCRIPTION: SEQ ID NO:3: ORGITATERAC ACEGODOCHI COGRAFACTI CORROTETCO CREGGEREC ARFERTIOSC CATTECNATE GOSCAGGEGA TEGECIATESE GGGCCASATE CUATCSGSTS GSGSGCCACC CACCETTCAT ATCRESCCIA COSCUTTUT CRECTTSGGT STISTURACA ACRACGGCAA 288 20 COGCOCACOA OTOCAACOCO TOOTOCOSOAS COCTOCOROS GCAROTOTOS GCATOTOCAC CONCURACITY ATCACCOCKS TOSACOBOGO TOTGATCRAC TOWNCOACCS CONTUNCONNA 300 COCOCTTARO OSCICATORTO COSOTOROVI CATURCOSTO ARCTOSCARA CORRESORO 360 COSCACCOCT ACASSCAACC TOACATTOSC COAGGGACCC CCGGCCTGAT TTCGTCGTGG 447 ATACCACCCS CCGGCCGGCC ANTIGGA 25 (2) INFORMATION FOR SEQ ID NO:10: Pal2 (i) SEQUENCE CHARACTERISTICS: (A) LEMMIN: 132 amino acids 30 (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: limear 35 (xi) SECUENCE DESCRIPTION: SEQ ID NO:10: Thr Ala Ala Ser Asp Asn the Gln Leu Ser Gln Gly Gly Gln Gly Phe Ala Ile Pro Ile Gly Gin Ala Mot Ale Ile Ala Gly Gin Ile Arg Ser 40 20 28 Cly Cly Cly Ser Fro Thr Val His Ile Cly Pro Thr Ala Fhe Low Cly 36 40 Leu Gly Val Val Asp Asn Asn Gly Asn Gly Ale Arg Val Glm Arg Val 98 60 45 Val Gly Ser Ala Fro Ala Ala Ser Lou Gly Ile Ser Thr Gly Asp Val 78 70 lle Thr Ala Val Asp Gly Ala Fro Ile Asn Ser Ala Thr Ala Wet Ala 98 98 85 Asp Ala Leu Ash Gly Mis His Pro Gly Asp Val Ile Ser Val Asm Trp 50 108 110 Sin Thr Lys Ser Sly Gly Thr Ary Thr Sly Asn Val Thr Leu Ala Glu 113 120 Gly Pro Pro Ala 3.30 55 (2) INFORMATION FOR SEQ ID NO:11: TEMP (i) SEQUENCE CHARACTERISTICS: 60 (A) LENGTH: 851 base pairs (B) TYPE: mucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 63 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11: CTSCAGGSTS SCSTGATGA SCSTCACCSC SOSSCAGGCC GAGCTGACCS CCSCCCAGGT 85.63

COSSCITORY GOODSCOT ACEAGACSON STATOSCOTS ACESTOCOCC CSCCGSTGAT

240

360

420

\$80

340

580

383

840

```
CECCHAGARC COTECTGRAC TEATGATTUT GATAGCURCC ARCCTUTTGG GECARARCAC
    CODESCENTO GOSGTONACE AGGOCGANTA OSGOSAGATO TUBECCONAS ACGOCGICOSO
    GATETTTESC TACGCOUCES COACOCCUAC GOCCACOGCO ACOTTOCTOC COTTOCACOA
   - GEOGROSCAG ATGACCAGOG CGGGTGGGGT CCTCGAGCAG GCCGCCGCGG TCGAGGAGGGC
   COCCUACACO SCCSCORGISA ACCASTISAT GNACARISTS COCCASGOSC TSAAACASTI
    GROCKARCOC AGRICAGESCA CCACECUTTO TECCAASCES SETSSCCTST 638A68AC8GT
    CTCGCGGCAT CGGTCCCCGA TCAGCAACAT GCTCTCGATG GCCAACAACC ACATGTCGAT
    GACCAACTCO GOTOTOTCOA TGACCAACAC CTTGAGCTCG ATGTTGAAGG GCTTTGCTCC
    GOOGSCOOCC GCCCAGGCCC TGCAAACCGC GGCGCAAAAC GGGGTCCGGG CGATGAGCTC
   GCTGGGCAGC TOGGTGXGTT CTTCGGGTCT GCGGGGTGGG GTGGCCGCCA ACTTGGGTCG
    ORCORDITOR STACRETATE STURCEGGGR TEGOGGRARA TRISCAMAST CTSTTURES
    GRACOSTSOT COORCOTANG GTTYACCOCOC GTTTYCTONA TGCGGTGAAC TYCGYCAACG
    GRANCAGTTA C
15
    (2) INFORMATION FOR SEQ ID ND:12:
        (1) SECUENCE CHARACTERISTICS:
            (A) LEMPTH: 263 amino acida
20
             (8) TYPE: amino soid
             (C) STRANDEDNESS: single
             (D) TOPOLOGY: linear
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12: These
25
        Val Ala Trp Met Ser Val Thr Ala Gly Gln Ala Glu Leu Thr Ala Ala
                                      10 15
        Cla Val Arg Val Ala Ala Ala Ala Tyr Glu Thr Ala Tyr Gly Seu Thr
           20 25 20
30.
        Val Pro Pro Pro Val ile Ala Glu Asa Ary Ala Glu Leu Met Ile Leu
         38 40 48
        The Ala Thr Asn Leu bew Gly Gin Asn Thr Dro Ala Ile Ala Val Asn
         50 58 69
        Glu Ala Glu Tyr Gly Glu Met Trp Ala Gln Asp Ala Ala Ala Met Phe
        68 75
        Sly Tyr Ala Ala Ala Thr Ala Thr Ala Thr Ala Thr Leo Leo Fro Pho
                98 99
        Gla Gla Ala Pro Gla Mat Thr Sar Ala Gly Gly Lea Lea Gla Gla Ala
                 100 105 130
40
        Ala Aln Vol Clu Glu Ala Sar Asp Tha Ala Ala Ala Asn Gln Isu Met
         115 120 125
        Asn Asn Val Pro Gln Ala Leu Lys Gin Leu Ala Sln Pro Thr Gln Gly
         130 135 240
        The The Pro See Ser Lys Len Sly Gly Len Trp Lys The Val Sex Fro
145 150 150 155
45
        His Arg Ser Pro Ile Ser Asn Met Val Sor Mat Ala Asn Asn His Met
                185 170 175
        Ser Met Thr Asn Ser Gly Vel Ser Met Thr Asn Thr Lou Ser Ser Met
180 180 180
30
        Lew Lys Cly Phe Ale Pro Als Ale Ale Ale Gin Ale Val Cin Thr Ale
             195 200 208
        Ala Gin Asn Gly Val Arg Ala Met Ser Ser Leu Gly Ser Ser Leu Gly
                            218 220
        ser Ser Gly Leu Gly Gly Gly Val Ala Ala Aso Lou Gly Arg Ala Ala
33
                  230 235 240
        Sec Val Ary Tyr Gly His Ary Asp Gly Gly Lys Tyr Ala Xaa Ser Gly
                   245
                               250
        Arg Arg Asn Gly Gly Pro Ala
                  260
60
    (2) INFORMATION FOR SEQ ID NO:13: ISHOFE
        (i) SEQUENCE CHARACTERISTICS:
            (A) LENGTH: 3058 base pairs
             (B) TYPE: mucleic soid
             (C) STRANDSINESS: single
             (D) TOPOLOGY: linear
```

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

S	GATCGTACCC	GTGCCLAGTGC	TOGGGCCGFT	TGAGGATOKA	GTGCACGTGT	CTTTCGTGAT	60
a,s	GGCATACCCA	gagatettos	00000000000	TGACACCCTG	CAGAGCATOG	GTGCTACCAC	120
	TOTOGCTACC	AATOCCOCTO	0000000000	CACCAACTECC	greenesses	COSCISCOGA	189
10	TOAGGTGTOG	GOGCTGACTG	CGGCGCACTT	CSCCGCACAT	GCSGCGATGT	ATCAGTCCGT	260
	G#000001000	GCTGCTGCGA	TYCATGACCA	GTYCGTGGCC	ACCCTYSCCA	SCASOSCCAG	300
3 €	CTOSTATSCS	GCCACTGAAG	TOOCCAATGC	accoacaacc	agctaagcca	OGRACAGICG	360
15	GCACGAGAAA	CCACGAGAAA	TAGGGACACU	TAATGGTGGA	7770200000	TTACCACCOS	420
	AGATCAACTC	COCCADGATO	TACUCCUGOC	OGGGTTCGGC	crosciacie	6000000000	480
20	ACATOTOGGA	CAGCGTGGCG	AGTGACCTGT	TTTCOGGCCGC	CICGGCGTTT	CASTOSSTOS	540
	TOTGGGGTOT	GACGGTGGGG	TOSTOGATAG	orroarceec	GGGICTGATG	erggoggogg	600
25	CCTCGCCGTA	rarescense	ATGAGCETCA	CCGCGGGGCA	GGCCGAGCTVI	ACCECCECCC	660
<u> 30</u>	AGGICCGGGG	TGCTGCGGCG	GCCTACGAGA	CHCCHTATGG	SCTGACEGTS	CCCCGGCGGG	720
	THATCHCOM	GARCOGTGCT	GAACTGATGA	TTUTSATAGE	GACCAACCTC	TTGGGGGGAAA	780
30	ACACCCCGGC	GATCGCGGTC	AACGAGGCCG	AATACGGGGGA	GATGTGGGCC	CAAGACGCCG	840
	COGOSATOTY	TOOCTACGCC	GCGGCGACGG	CGACGGCGAC	GSCGACGTTG	CTGCCGTTCG	905
35	AGGAGGCGCC	GUAGATGACC	AGCGCGGGTTG	GSCTCCTCGA	GC&GGCCGCC	GCCGTCGAGG	960
33	AGGCCTCOGA	CACCGOTGOS	SCHAACCAGT	TGATGAACAA	TOTOCCCCAG	GCGCTGCAAC	1020
	agctoscota	GCCCACGCAG	GGCACCACGC	CTTCTTCCAR	GCTGGGTSGC	CTOTOGAAGA	1080
40	CSCTCTCGCC	GCATCSGTCS	CCCATCAGCA	ACATROTOTO	GATGGCCAAC	AACCACATGT	1140
	CSATGACCAA	CTOGOGTGIC	TOGATOACCA	ACACCTTSAG	CTCGATGTTG	AAGGGCTTTG	1200
4 5	crecascass	COCCCCCAC	GCCGTGCAAA	COGCIGGOSCA	AAACGGGGGC	COSSCSATOR	1260
-4 7.3	GCTCSCT3GG	CASCIOSCIS	serrerross	GTCTGGGGGG	TOGGGTGGCC	GCCAACTTOG	1326
	erceedcaec	crossrossr	TOUTPOTOGG	TGCCGCAGGC	CTGGGCCGCG	GCCARCCAGG	1380
50	CARTCACOCC	0203603086	GCGCTGCCGC	TSACCASSCT	GACCAGOSCC	GCGGRAAGAG	1440
	GGCCCGGGGCA	GATGCTGGGC	00001180038	TOGGGCAGAT	GGGCGCCAGG	GCCOSTOGTS	1900
55	OSCTCAGTGG	TOTOCICCOT	@TTCCGCCGGC	GACCCTATGT	SATSOCSCAT	TCTCCGGCGG	1560
and only	CCGGCTAGGA	GROSOGGGGG	AGACTGTOGT	TATTTWACCA	GIGATCSOCS	GTCTCGGTGT	1620
	TTCCCCCGGGCC	GGCTATGACS	ACAGTCAATG	TGCATGACAA	GITACAGGIA	TTAGGTCCAG	1880
60	GTTCAACAAG	GAGACAGGCA	ACATOSCCTC	ACCTTTIATC	ACSUATOON	ACCCSATSCS	1740
	GGACATGGCC	GSCCATTITS	AGGTGCACGC	CCAGACGGTG	GAGGACGAGG	CTCGCCCGAT	1800
65	GIGGGGGTCC	GCGCARARCA	TITCOGGIGC	GOSCTOGAGT	GOCATOGCCG	AGGOVACCTC	1860
VW	GCTABACACC	ATOSUCCAGA	TGAATCAGGC	CTTTOSCAAC	ATOTTGAACA	TOCTOCACIO	1920
	OCTOCOTORC	######################################	GOSACGCCAA	CAACTACGAG	CASCNAGAGO	AGGCCTCCCA	1980

	GCASATOCTC	agcagcia.	LO GTO	'AGCOGCT	OCA9	KCACAA	r acer	PYACA	a G	MARK	KRAGI	i.	2040
	ACAGGTTCGA	TGROCATO	la cya	FCARTTC	8986	atoto	a ACCC	TCACG	a (X	icca:	CATO	:	2100
5	CSCRCTCAGG	coscorra	M QGA	.03C0GA0	CATO	YAGGCCI	a ecae	rourc	a n	men	00A200		2160
	GOGAGTGACT	TTTGGGGC	30 OGC	CGCTTCG	6036	socrac	C AGGG	gyyca	T T	rada Pada	sæerro	;	2220
10	OCCUPTANCE	TOCKOSTIC	at ota	LOGRGORG	aom	JACKĆO	T ACCO	GCAGS	A Ø	vrsci	vaac:	à.	2280
	GCCDGCAACA	ACATORCO	ea aac	:cgacagc	GCCE	negge	r ocag	CIGGG	e e	egædi	CCAC	3	2340
	GCCAASOCCA	oscacoro	IT GTA	CGAOYGA	. MOYY	recres	C GTGA	roctr	TO GR	erikek	KCAG1	y :	2400
15	CTARGUGGTC	ASTGCTGG	30 TOT	TOCTCCT	TTTC	MCTA	3 6060	errci	T C	BOTOK	TOW	×-	2460
	CAGTOCTOCT	casacros	ig ter	JAGNECTC	GAGC	COCCAG	g Tago	geogr	e e	rrcci	vreci	\$	2520
20	TTODICGTSI	TOTTOGGO	ja oga	ressence	0XCC	AGGCO	i atga	nagag	83 CY	KORGI	00030	ş.	2580
	GAAGATECCC	ACGAÇETO	IG TTC	NGCGTOS	TAC	OUTUTE	s TTCA	egoet	T C	nox	300T)	ê	2640
ندند	GTTOSACCAS	ATTTGGCG	oc aga	arcrectr	9000	iaaggo	g Grga	ACCCC	A 90	ORGON	(C3G)	8. 3	2700
25	GORODIVISTIS	TOGAGOTO	CT 000	KCCACCOSC	0800	rgpt	s TOGG	YCAGA	.G ()(FECTS	KOTAK	Ď.	2760
	CCCATCATAT	TEGGCAAC	na cito	MTTCGGC	gres	xxx	g regr	agatg	g a	rraci	RGCAG	š	2820
30	GOTTOCOCACC	CACOSCCA	39 AGC	xacttora	acm	acrac	c arca	GATTG	ia et	roca	ragri	*	2880
	GGTTCTGCAG	CECTECCA	38 CC6	0702000	CNGC	101930	s corn	TOGOG	ig Oi	iacc;	kago:	3	2540
A .8	0303793300	resersor	SA CCS	iacocoac	ccc	egacag	3 CCCC	086C3	e e	ÇAGGF.	rasa	ŝ	3000
35	GAAGAACOCC	agocagoo	3G 000	CORRECTE	- 6600	igaosti	g accr	agana	co	CAGG	223		3088
	Salt versioning	AANDAYA WAXA	vicinios an	ran, diana an il		V 00-3000							
40	(2) INFORM	BOUEBCE C	-			1.34.24.44							
		aquemon o (A) lengt (B) type:	8: <u>39</u> 1	. amino		\$							
45		(C) STRAN (C) TOPOL	SERCEC	K: sing	le								
بشهر		(D) ROSON SQUESCS D			1985. TI	5 - X 273 - 3 -	de o						
		al Asp Ph						a en	Star	n Fa	Šen	Mark	
50	ž	an susta est	2 2023	and the second		T.		rww		******	18		
	Tyr Al	la Gly Fr 20	o Oly	Ser Ala	Ser	Lea V	al Ala	818	Ala	Gln 30	Met	TEP	
55	Asim Si	er Vel Al	s see	Ass Leo	Pèse		la Ala	ser	Ala		Øln	Sar	
	everthe see	35			40				45				
	Val	al Trp Gl	y Leu	The Val	Gly	Ser T	rp Ils	Gly 60	Ser	883	Ala	ØJ?A	
60		et Val Al	a Ala		Pro	TVT V	al Ala	Tro	Met.	Ser	Val	Thr	
	85			70		0 - 1	78	. 8.				80	
65	ala G	ly Gln Al	a Glu 85	Len The	ala.	Als T		Ang	883	Als	Ala 88	Ala	

Als Tyr Glo Thr Alm Tyr Gly Leo Thr Val Pro Pro Pro Val Ile Ale 100 100 100

	eis	Asn	Arg 115	Ala	Glu	Leu	Met	11e 120	læu	lle	Ala	Thr	Asa 125	Leu	Leu	Gly
5	aln	Ass 130	Mir	Pro	Ala	110	Ala 135	Val	Asn.	Glia	Ala	Gla 140	Tyx	Gly	Gla	Mesti
10	Trp 145	ala	aln	qua	Ala	Ala 150	Ala	Mee	Fhe	Gly	Tyr 135	Ala	Ala	Mää	Thx	Ala 150
i.U	The	Ala	Thr	Als	Thr 165	Topy:	Leu	Pro	Phe	Glu 170	Glu	Ala	Pro	Ølu	Met 175	Thr
15	Ser	Ala	aly	01y 180	Liens	Lens	giu	Gln	Ala 185	AŽ&	Ala	Val	Giu.	Wlu 190	Ala	Ser
	Asp	Thr	Ala 195	Ala	sia	Asn	Gin	200 Deu	Met	Asa	Asn	Val	Pro 208	Øln	Als	tea
20	Gln	31.8 210	1990	83.8	Gin	Pro	Thr 235	Gln	Gly	Thr	The	Pro 220	Sex	Sec	Lyns	Lenu
25	325 325	Gly	Levis	Top	Lys	Thr	Val	Ser	Pro	Mis	Arg 235	Ser	Pro	ile	Ser	Asn 240
AL LI	Met	Val	Sex	Met	Ala 245	ksn	Asn	His	Met	Ser 250	Met	Thr	Asn	Sex	Oly 288	Val
30	Sex	Met	Thr	Asn 260	Thr	Leu	Ser	Ser	Met 265	Leu	Lys	Gly	क्षतंत्र	Ala 270	Pro	Ala
	Ala	Nla	Ala 275	Gln	Aïa	Val	Gln	785 085	Als	Ala	Øln	Asn	01y 285	Val	Arg	Ala
35	Met	8ex 290	Ser	Zeni.	Gly	Ser	Ser 295	Zeu.	aly	Ser	Sec	Gly 300	Leu	ar y	Gly	Gly
40	Val 365	Ala	Als	Asn	Læu	310 310	Arg	Ala	Ala	Ser	Val 315	Wly	ser	ben	Ser	V&3. 320
40	Pro	Gln	Ala	Tep	Ala 325	Ala	Ala	Asn	Gln	Ala 330	Val	Thr	Pro	Ala	Ala 335	Arg
45	Ala	Iæu.	Pro	1.00 340	TÀL	Ser	Losti	The	3er 345	Ala	Ala	Glu	Arg	Gly 350	Fino	Gly
	Gin	38%	Leu 355	@ly	Gly	Leu	Pro	Val 360	Oly	Gln	Met	Gly	Ala 365	Arg	Ala	aly
50	Gly	31y 370	Lou	Ser	gly	Val	Leu 375	Arg	Val	Pro	Pro	Arg 380	Pro	Tyx	Val	Met
55	710 385	Mis	Ser	Pro	Ala	Ala 390	Gly									
44	<210 > SE(NO si	15												
60	<213> (30) <213> Ar	h bifi														
		sori: obsi: siçni	n Mil	: 6î :72P	Art: (Rai:	1630: 2-330	191 : 19-R:	98qu 135 (ence or M	:txi :b32-	-Eus: -Mcb:	lon 19				
65	totagaaa	ea si	teetg	ątot:	a ce	rtaæ	isan	gane	atati	aca t	166	g sat t Hi: t			s Ris	

		cac Sis															104
5		tto Phe															1.52
10		tog Ser															300
15	Esena.	99c 93y 95															248
20	Arg 70	gtg Vai															396
	ទូន០	gtg Val															344
25		gog	gac Asp	gog Ala 105	obt Leu	aac Asn	81y 898	cat Ris	cat Xis 110	ese Pre	ggt	gac Asp	gtc Val	ato Ile 115	tog Ser	gtg Væl	392
30	ecc Thr	tgg Trp															440
35	Ala	gag Glu 135															488
40	9rc 150	988 614															836
, ,	ලදල	gtg Val															584
45	1,000	god Ala															632
50		tyg															880
55	2,6.2	gtg Yal 215															728
60	Ala 230	cag Gin															776
∞ (e	309	gtg Val															824
63		ata Ile															\$72

11

			gcc Ala 280														920
5			tac Tyr														\$68
10			gag Glu														1016
15			gog Alæ														1084
20			sat Asn														1112
			39.0 1981 903														1160
25			ogg Arg														1208
30			atg Met														1286
35			ang Lys														1304
40			caa Sin														1352
	ggt	bet Ser	tog Ser 440	ggt Gly	atg Leu	gge Gly	ggt Gly	999 Gly 445	gtg Val	gcc Ala	gec Ala	eac Asn	ttg Leu 450	ggt Gly	cog Arg	gog Ala	1490
45			gto Val		Ser	Leu	Ser		\$3.0	Tla	āla		83.0				1448
50			yel 18V														1496
55			gog Ala														7284
60			atg Met														1592
100 M			009 Pro \$20														2840
65			cog Pro														1888

			ata Leu														1736
	550	~~~	300.00	anaz.	2.4.45	555	ora sa	*****	3 000.00	11200	560	3000	ww3.		**********	\$65	
5			atc ĭle														1784
10			atc lle														1832
15			929 Ala 600														1880
20			tac Tyr														1928
269.5			otg Læu														1976
25			ggc Gly														2024
30			cag Gls														3072
35			caa Gin 580														2120
\$6\			aac Asn														2158
40			998 81y														2316
45			gog Ala		tagg	gabas	ಚಿತ್ರಾಗಿ	stoac	seast	33 C	\$800;	garag	* #9	38881	රෙයම්.		3268
	gate	genac	28.86 8	iãaco	:gaas	ŝ											2287
50	×33	1> S1 L> 7: }> 9!		3 80:	16												
55	<222	is A1 is O1 19	rtifi espri rote: ision	iptis in M	on of	Art	ÚŽÍ.						4.0				
60	Met I	His	Ris	His	Nis S	Nis	Sis	Thr	Ala	Ala 10	Sec	Asp	Ass	Phe	01a 15	Less	
	Sor	Gin	Gly	Gly 20	Cla	Gly	Phe	Ala	Ile 28	Pro	ils	Oly	Qln	Als 30	Met	Ala	
65	Ils	Ala	Gly 38	sla	Ile	Ang	ser	Gly 48	ara	Sly	Ser	Pro	Thr 45	Val	His	ïle	
	Gly	Pro	The	Ala	Fire	Lea	Gly	Less	31y	Val.	Val	Asp	Aso	nsa	Gly	Asn	

2,2 6.0 80 Sly Ala Arg Val Gin Arg Val Val Giy Ser Ala Pro Ala Ala Sor Lou £, Oly lie Ser Thr Gly Asp Val lie Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ale Thr Ale Met Ale Asp Ale Leu Asn Cly His His Pro Cly 10 108 Asp Val lie Ser Val Thr Trp Gln Thr Lys Ser Gly Gly Thr Arg Thr 15 Gly Asn Val Thr Let Ale Gla Gly Pro Pro Ale Gla Phe Met Vel Asp The Gly Als Leu Pro Pro Glu Tie Asn Ser Ala Arg Met Tyr Ala Gly 20 Pro Gly Ser Ala Ser Leu Val Ala Ala Ala Gin Mot Trp Asp Sor Val 3.70 3.68 Ala Ser Asp Leu Phe Sor Ala Ala Ser Ala Phe Gln Sor Val Val Trp 28 Gly Leu Thr Val Gly Ser Trp Ile Gly Ser Ser Ala Gly Leu Met Val 260 Ale Ale Ale Ser Fro Tyr Val Ala Trp Met Ser Val Thr Ale Gly Gln 30 Ala Glo Lou Thr Ale Ale Glo Val Arg Val Ale Ale Ale Ale Tyr Glu The Ala Typ Gly Les The Val Pro Pro Pro Val Ile Ala Glu Ass Arg 280 Ala Glo Leo Met Ile Leo Ils Ala Thr Asn Loo Lou Gly Glo Asn Thr 40 Pro Ale Tie Ale Val Asn Ole Ale Glu Tyr Gly Glu Met Trp Ale Glo Asp Ala Ala Ala Not Phe Gly Tyr Ala Ala Ala Thr Ala Thr Ala Thr 45 Ala Thr Leu Leu Pro Phe Sin Glu Ala Pro Sin Mot Thr Sov Ala Gly 50 Gly Lett Lett Gly Glo Alm Alm Alm Val Gly Gly Alm Ser Asp Thr Alm 336 Ala Ala Asn Gln Low Met Asn Asn Val Pro Gln Ala Leo Gln Gln Leo 345 55 . Ala Gin Pro Thr Gin Gly Thr Thr Pro Ser Ser Lys Leu Gly Gly Leu Trp Lye Thr Val Sor Pro His Ary Sor Pro Ile Ser Asn Met Val Ser 60 378 380 Mot Ala Aan Asn His Met Ser Met Thr Asn Ser Gly Val Ser Mot Thr 390 395 Asn Thr Les Ser Ser Met Les Lys Gly Phe Ala Pro Ala Ala Ala Arg

Gin Ala Val Gin Thr Ala Ala Gin Asa Gly Val Ary Ala Met Ser Ser

4.20 425 Leu Cly Ser Ser Leu Gly Ser Ser Gly Leu Gly Gly Gly Val Ala Ala Ÿ Asn Lou Gly Arg Ala Ala Ser Val Gly Ser Leu Ser Val Pro Gln Ala Tro Ala Ala Ala Asn Gin Ala Val Thr Pro Ala Ala Ary Ala Leu Pro 10 Leu Thr Ser Leu Thr Ser Ala Ala Glu Arg Gly Pro Gly Glo Met Leu \$5 Sly Gly Lou Pro Val Gly Gla Met Gly Ala Arg Ala Gly Gly Sly Leu Sor Gly Val Lou Arg Val Pro Pro Arg Pro Tyr Val Met Pro Ris Ser 20 Pro Ala Ala Cily Asp Ile Ala Pro Pro Ala Leu Ser Gin Asp Ary Phe 838 Als Asp The Pro Ala Lew Fro Lew Asp Fro Ser Als Met Val Als Glo 25 Val Gly Pro Gin Val Val Asn The Asn Thr Lys Lew Gly Tyr Asn Asn Ala Val Sly Ala Sly Thr Sly Ile Val Ile Asp Pro Asn Gly Val Val 30 383 Leu Thr Ash Ash Ris Val Ils Ala Gly Ala Thr Asp Ils Ash Ala Pha 800 35 Sor Val Gly Sor Gly Gla Thr Tyr Gly Val Asp Val Val Gly Tyr Asp Arg Thr Cln Asp Val Ala Val Leu Gln Leu Arg Gly Ala Gly Gly Lou 40 pro Ser Ala Ala Ile Gly Gly Gly Val Ala Val Gly Glu Pro Val Val **680** 45 Als Mer Gly Ass Ser Gly Gly Gln Gly Gly Thr Fro Arg Als Val Fro Cly Ang Val Val Ala Leu Gly Gln Thr Val Gln Ala Sor Asp Ser Leu 50 Thr Gly Ala Glu Glu Thr Leu Asm Gly Leu Ile Glm Phe Asp Ala Ala Tie Gin Pro Gly Amp Ser Gly Gly Pro Val Val Ams Gly Low Gly Glo 55 73.0 73.5 Val Val Gly Met Asn Thr Ala Ala Ser 60 <210> \$80 ID NO:17 <211> 2190 <23.2> 388A <23.35 WEB70FMEESA atgostoaco atcaposta caegospos tocesasta paragestasto coagegosta coagegosta 60

cappgattog coattoogat oppgeaggog atgorgatog oppgeagat ocgatoggg 120 oppgggtose coacogitos tatoppgoct acogositos inggelingg igitogiogan 180

```
ascaecygca ecygogosog agtocamogo gtyggtoggga gcyctocggo gycsagtoto 740
         ggostotoca coggogacgi gateaecgeg giogacggeg cicegateaa cicygoract 300
         gogatggogg acgogottma ogggcatcat oceggtgaog toatotoggt gacotggoas 360
         accaegicgg goggoeogog tacagggmac gigacatigg cogagggacc coopgoogaa $20
         ticatoging attrogogge griaceseeg gagateaset ocycyaggat grangeogge 460
         coggettogg cotogotygt gycogogyst cagatytygy acagogtygo gaytgacoty $40
         tittoggoog ogtoggogtt toagtoggtg gtotggggto tyacggtggg gtogtggata $00
         ggttogtogg ogggtotgæt ggtggoggog gootogoog: atgtggogtg gatgagogto 660
         acceptages aggorgaget gacceptages cagetotigs tightgriggs gigottatigas 720
         acquoglaty gydtgacygt goodocgopy gtgalogody agaaccgtgo igaactgaly 780
         attrigatag ogaccasoch ottoggggoss ascachongg ogatogoggt cashqaggon 840
         gastacogog agangtgggo ocasgaceon googogatgi inggotsogo ngoggogsog 900
         gogwoggogw oggegwogit gotgoegita gwggwggogo oggwgwigwo owgogogggt 960
         aggetectcy ageaggeoge ageggtegag gaggesteeg acacegoege agegaaceag 1020
15
         tigatgeaca atgigococa ggogoigosa cagoiggeoc ageocacgea gggosecacg 1080
         colicitate agregação de agreca opropaga a pasapate to a proposação de colicitado de colicitado de colocidad d
         sacsiggist ogsiggiosa caaccacats togsigados actogogost stossigado 1200
         ascacetten getegatett gangsgettt geteeggegg eggeegees gydegtgeam 1260
         accycygogo aaaacygygt cogygogaty agstegetyg gcagotoget gygitottog 1970
20^{-}
         gytorgogog grogggrage ogeommetrig gytogggogg octoggtogg ttogttgtog 1380
         ලවලදාලදාකුල පරවලපුලදාදල පුදුපාසකපාසකු පුදකලවාසනපාස සමුමුවමුල්වමුවල පුමුවමුල්වමුව 1440
         ctgaccagec tgaccagege egeggaaaga gggceeggge agatgetggg egggetgeeg 1500
         graggacege regardaces accomprage associated artificial fattoraced 1960
         cyacoctaig tgatgocyca tictorggoa googgogata tegeocogco ggeottging 1620
         caggacoggi togorgacti cocogogoty ocortogado egitogogat ggitogoccaa 1680
         giggggecae aggiggicae calcascace asactggget acascacge ogigggçice 1740
         goganogges tegicatogs tonesseggi giogigotgs cessessees egigateges 1800
         ggogocaccy acateaatgo gtteagegte ggotorggoo aasootsoyy ogtogatyty 1860
         grogograty accycaccoa egargrogog gryotecago teogogotec ogetegoote 1920
30
         controposs controping expresence officeration categories and 1960
         agoggtgggc agggcggaac gotccgtgcg gtgcctggca gggtggtogc gctcggctaa 2040
         acceptgraps ogtoggatte getgaceggt geogwagaga cattgaacegg gttgaterag 2100
         trogatgoog ogstoraget oggreatgeg geogygeres tegteakogg octaggackg 2160
         gtggtcggta tgsacecggc cgcgtcctag
35
         22105 SEC ID NO:18
         <211.5 728
         erras par
40
         <213× Mtb72FMutSA
         Met Mis Mis Mis Mis Mis Mis Thr Als Ala Ser Asp Asn Phe Gln Leu
45
         sor Gin Gly Gly Gin Gly The Ala Tie Pro Tie Gly Gin Ala Met Ala
                                                             28
         The Ale Gly Gle The Arg Ser Gly Gly Gly Ser Fro The Val Hiz Ile
50
         Gly Pro Thr Ala Phe Leu Gly Leu Gly Val Val Asp Asn Asn Gly Asn
         Giy Ala Arg Val Gln Arg Val Val Gly Ser Ala Pro Ala Ala Ser beu
55
         Gly lie Ser Thr Gly Asp Val lie Thr Ala Val Asp Gly Ala Pro lie
60
         Asn Ser Ala Thr Ala Met Ala Asp Ala Leu Asn Gly His His Ero Gly
         Asp Val Tie Ser Val The Trp Glo The Lys See Gly Gly The Arg The
65
         Gly Asn Val Thr Leu Ala Glu Gly Pro Pro Ala Glu Phe Met Val Asp
                                                 135
```

	945 145	Gly	Ala	Leu	Pro	Pro 150	Glu	Ile	Aso	Sec	Ala 188	Arg	Mot	Tyr	Alm	260
5	FDO	Gly	Ser	Ala	Ser 165	Zens	Val	Ala	Als	818 1.70	Sln	Not	zrp	Asp	80x 175	Val
	Ala	Ser	Asp	Leu 180	Phs	Ser	Ala	Alæ	30r 185	ELA	Phe	Gla	Ser	781 190	V&I	Trp
10	gjà	\$. 88	76r 199	Val	äly	Ser	Trp	11:0 200	Sly	Ser	Ser	Ala	Gly 305	Len	Met	Val
15	Als	Ala 218	Ala	Sor	Pro	Tyr	Yal 215	Als	Trp	Met	Ser	730 730	Thr	ala	Gly	Gla
	81a 225	\$lu	læu	Thr	Ala	31a 230	ßla	Yal	ārg	Val	Ala 235	Ala	Ala	&î&	Tyr	G1u 240
20	Thr	Ala	Tyr	Sly	Leu 245	The	Val	Pro	aro	Pro 250	vai	Tis	Ala	Glu	Aøn 255	Arg
	Als	eis	Lea	Nes 260	Ile	Lew	lle	Ala	Thr 265	Asn	Leu	Leu	Gly	Gln 270	Asn	Thr
25	Fro	Ala	11e 275	Ala	Val	Asn	Glu	Ala 280	Glu	Tyr	Gly	Glu	765 285	Trp	Ala	Gln
30	Asp	Ala 295	Ala	Ala	Met	Phe	395 395	1,7x.	Ala	Ala	Als	The 300	Ala	Thr	Ala	The
	Ala 305	Thr	Lowis	Leu	Pro	Phe 310	\$1u	Glu	älä	Fro	Slu IIS	Met	Thr	Ser	Ala	320
35				Glu	325					330					338	
4.N				Gln 340					345					380		
40			355	Thr				360					365			
45		370		Val			378					380				
	385			Asn		390					395					\$60
50				Swx	\$0 \$					420					415	
రా భా				Gin 420					425	-				\$30		
55		-	435	Ser				440			•		445			
50		480		Arg			455					460				
	488			als		470					475					480
65				Len	485					490					498	
	GIY	Giy	Løu	920 500	val	MIN	Gla	79%	Gly Ses	Sla	Ang	818.	ØJÅ.	Sly	@y.h	J. #40