Module 7: Series A Pipeline (CIVL 318)

Example 1:

A pump delivers $13.5\,\mathrm{L/s}$ of kerosene at $25^{\circ}\mathrm{C}$ from an underground vented storage tank to an elevated storage tank pressurized to $745\,\mathrm{kPa}$.

The suction pipe is 6-in Schedule 40 steel pipe and is $5.0\,\mathrm{m}$ long. It has a round-edged entrance with a radius of $r=15\,\mathrm{mm}$.

The discharge pipe is 3-in Schedule 40 steel pipe, is $11.0\,\mathrm{m}$ long and includes a fully open butterfly valve with $L_e/D=45.$

All elbows are "standard" with $L_e/D = 30$.

Determine the power drawn (the power in, P_I) by the pump, given that the pump has an efficiency of 73%

Example 2:

Gasoline at 25° C flows under gravity from tank A to tank B; both tanks are open to the atmosphere.

The 2-in Schedule 40 steel pipe has a square entrance and is $45.7\,\mathrm{m}$ in length. The 4-in Schedule 40 steel pipe contains a fully-open globe valve and is $87.5\,\mathrm{m}$ in length. There is a sudden enlargement between the two pipes, as shown. Both pipes are new commercial steel. All elbows are standard 90° .

Determine the elevation difference, y, between the surfaces of tanks A and B that is required to maintain a flow of $425\,\mathrm{L/min}$.

Example 3:

Water at 25 °C is pumped from tank A to tank B. Both tanks are open to the atmosphere.

The suction pipe is 4-in Schedule 40 steel pipe, has a well-rounded (r/D>0.15) entrance, contains a fully open globe valve, and is $17.0\,\mathrm{m}$ long.

The discharge pipe is 3-in Schedule 40 steel pipe, contains a fully open globe valve and three standard 90° elbows; it is $163.3 \,\mathrm{m}$ long.

The elevation difference between A and B is $y=12.75\,\mathrm{m}$ and the volume flow rate is $Q=900\,\mathrm{L/min}$.

If the pump is 78% efficient, determine the electrical power it uses.

Example 4:

Heavy machine oil (sg=0.89, $\eta=3.80\times10^{-2}\,\mathrm{Pa\cdot s})$ is circulated through a system repeatedly to test its stability.

The 8-inch Schedule steel pipe on the suction side of the pump has a square entrance and a length of $6.25\,\mathrm{m}$ and the 3.5-inch Schedule steel pipe on the discharge side of the pump has a length of $18.0\,\mathrm{m}$.

(Note that the 3.5-inch discharges into the atmosphere **above** the tank so there is no exit loss in this question!)

All elbows are long radius. The flow rate through the system is $13.5\,\mbox{L/s}.$

Determine the head added by the pump.