# Hochschule Mannheim Fakultät für Elektrotechnik

hoch

Mathematik 3 für Elektrotechniker Name:

SS 2009

Matrikelnr.:

Aufgabenstellung: Beck

Bearbeitungszeit: 120 min

Hilfsmittel: 2 DIN A4-Blätter handgeschriebene Formelsammlung

Bitte beachten Sie folgendes:

- Schreiben Sie Ihre Ausarbeitung gut lesbar auf die dafür vorgesehenen Blätter.
- Bei Platzmangel benutzen Sie die Blattrückseite.
- Schmierblätter mit Konzepten nicht mit abgeben.
- Ergebnisse, soweit vorhanden, heben Sie bitte geeignet hervor.
- Lösungsansatz und der Lösungsweg müssen sich zweifelsfrei erkennen lassen; Ansatz und Weg werden bewertet. Ein Ergebnis ohne Lösungsweg zählt nicht.
- Geben Sie die Klausurunterlagen in jedem Fall (mit eingetragenem Namen) ab.
- Nichtmuttersprachler wenden sich bei sprachlichen Schwierigkeiten rechtzeitig an den Dozenten, Textteile in Englisch werden akzeptiert.

#### **Punkteverteilung:**

| Aufgabe         | 1 |   | 2 |   |   |   |   | 3  | 4 |   | 5 |   | Cocomt |        |
|-----------------|---|---|---|---|---|---|---|----|---|---|---|---|--------|--------|
|                 | а | b | а | b | С | d | е |    | а | b | С | а | b      | Gesamt |
| Punkte          | 9 | 5 | 3 | 5 | 6 | 4 | 6 | 12 | 8 | 9 | 8 | 8 | 4      | 87     |
| Punkte erreicht |   |   |   |   |   |   |   |    |   |   |   |   |        |        |

### Aufgabe 1)

a) Untersuchen Sie auf lineare Unabhängigkeit:

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
,  $\vec{b} = \begin{pmatrix} -2 \\ -4 \end{pmatrix}$ 

$$\vec{a} = 3$$
,  $\vec{b} = 1$ 

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \vec{b} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \vec{c} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

b) Berechnen Sie die Koordinaten des Vektors  $\vec{b} = \begin{pmatrix} -3 \\ 3 \\ 5 \end{pmatrix}$  bezüglich der

Basis A = 
$$\left\{ \overrightarrow{a_1} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \overrightarrow{a_2} = \begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix}, \overrightarrow{a_3} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}$$



Gegeben sei die Matrix 
$$M = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$
.

- a) Ist die Matrix M invertierbar?
- b) Berechnen Sie die Eigenwerte der Matrix M.
- c) Berechnen Sie die zu den Eigenwerten gehörenden Eigenvektoren. Normieren Sie die Eigenvektoren so, dass deren x-Komponente jeweils eins ist.
- d) Die Matrix M stelle eine lineare Abbildung bezüglich der kanonischen Basis  $A = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} dar.$

Geben Sie eine Basis B an bezüglich der die Matrix der obigen Abbildung folgende Gestalt besitzt:  $M' = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ .

Geben Sie  $\alpha$  und  $\beta$  an.

e) Berechnen Sie die Transformationsmatrix T, anhand derer sich die Koordinaten eines Vektors v bezüglich der Basis A in seine Koordinaten bezüglich der neuen Basis B umrechnen lassen.

## Aufgabe 3)

Gegeben sei folgende Differentialgleichung:

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} - 3y = 2\cos(t) - 4\sin(t)$$

Berechnen Sie die allgemeine Lösung.

# Aufgabe 4)

- a) Berechnen Sie die Lösung der DGL  $x^3 + (y+1)^2 y' = 0$  mit y(0) = 0.
- b) Berechnen Sie die allgemeine Lösung der DGL  $y' = (x+y)^2 \,.$  (Hinweis: Die Stammfunktion der Funktion  $f(x) = \frac{1}{x^2+1}$  ist  $F(x) = \arctan(x) + C$ )
- c) Berechnen Sie die allgemeine Lösung der DGL  $y' \frac{y}{x} = x$



Gegeben sei folgender Scilab-Code:

```
function dydx=f(x,y);
dydx=x;
endfunction;
y0=2;x0=0;
x=0:0.5:4;
y=ode(y0,x0,x,f);
plot2d(x,y)
c=y(5)
```

- a) Skizzieren Sie die Kurve, die Scilab erstellt, in das unten dargestellte Koordinatensystem.
- b) Welchen Wert gibt Scilab für die Variable c aus?

