

Niveau: 2ème Année cycle ingénieur

Matière: Séries Temporelles Enseignante: Amira GASMI Durée: 1H30

Examen principal P3, Mars 2024

Aucune documentation n'est permise.
 Arrondir tous les calculs au 3^{ème} chiffre après la virgule.

- Nombre de pages : 02.

EXERCICE 1 : (10 points)

On considère le modèle suivant: $Y_t = -0.4Y_{t-1} + 0.12Y_{t-2} + \varepsilon_t$. Avec : ε_t est un bruit blanc.

1) De quel modèle s'agit-il ? (1 point)

2) Montrer que la fonction de covariance d'ordre K vérifie la relation suivante :

$$\gamma_K = a\gamma_{K-1} + b\gamma_{K-2}$$
, $\forall K \ge 2$.

Où a et b sont des constantes à préciser. (2 points)

3) Déterminer la variance de (ε_t) pour que la variance de (Y_t) soit égale à 1. (2 points)

4) Vérifier si le processus $\{Y_t\}$ est stationnaire et inversible. (2 points)

5) Calculer le coefficient d'autocorrélation ρ_1 . (1 point)

6) Ecrire les équations de Yule-Walker et tracer le corrélogramme correspondant à ce processus pour K = 1, ..., 4. (2 points)

EXERCICE 2 : (04 points)

1) Rappeler la définition d'un bruit blanc. (1,5 points)

2) Soient ε_t et u_t deux bruits blancs. Montrer que les séries X_t et Y_t ont les mêmes fonctions d'autocorrélation, sachant que : $X_t = \varepsilon_t - \theta \varepsilon_{t-1}$ et $Y_t = u_t - \frac{1}{\theta} u_{t-1}$. (2,5 points) Avec : $\theta \in]-1,0[\cup]0,1[$.

EXERCICE 3: (06 points)

On se propose d'étudier la stationnarité de la chronique « taux d'inflation » en Tunisie. Les données sont annuelles et couvrent la période 1966 - 2018. Pour ce faire, nous avons effectué le test de racine unitaire de Dickey et Fuller Augmenté (Test ADF) avec le logiciel EViews. Les résultats se présentent dans le tableau ci-joint. On vous demande de :

1) Indiquer le modèle retenu pour effectuer le test ADF sur la série étudiée et écrire son équation. (1,5 points)

Page 1 sur 2

- 2) Vérifier si la série « INFLATION » est stationnaire au risque de 5%. Justifier la réponse.

 (3 points)
- 3) En déduire le type de processus et proposer une méthode appropriée de stationnarisation, si la série est non stationnaire. (1,5 points)

Augmented Dickey-Fuller Unit Root Test on INFLATION

Null Hypothesis: INFLATION has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 10 (Automatic - based on AIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.907056	0.1707
Test critical values:	1% level	-4.192337	
	5% level	-3.520787	
	10% level	-3.191277	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(INFLATION)

Method: Least Squares

Sample (adjusted): 1977 2018

Included observations: 42 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
INFLATION(-1)	-1.091257	0.375382	-2.907056	0.0069
D(INFLATION(-1))	0.298591	0.357242	0.835821	0.4101
D(INFLATION(-2))	0.532547	0.352480	1.510858	0.1416
D(INFLATION(-3))	0.534619	0.297378	1.797775	0.0826
D(INFLATION(-4))	0.371792	0.256149	1.451468	0.1574
D(INFLATION(-5))	0.254113	0.216759	1.172332	0.2506
D(INFLATION(-6))	0.299328	0.190114	1.574468	0.1262
D(INFLATION(-7))	0.206709	0.163710	1.262653	0.2168
D(INFLATION(-8))	0.352287	0.141275	2.493616-	0.0186
D(INFLATION(-9))	0.384352	0.121335	3.167696	0.0036
D(INFLATION(-10))	0.223563	0.097150	2.301222	7 0.0288
C	11.77855_	4.456142	2.643218	0.0131
@TREND("1966")	-0.160457	0.070426	-2.278365	0.0303
R-squared	0.606453	Mean dependent var		0.085386
Adjusted R-squared	0.443605	S.D. dependent var		3.320751
S.E. of regression	2.477010	Akaike info criterion		4.900655
Sum squared resid	177.9318	Schwarz criterion		5.438505
Log likelihood	-89.91376	Hannan-Quinn criter.		5.097799
F-statistic	3.724058	Durbin-Wats		2.082481
Prob(F-statistic)	0.001845			