

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
9 August 2001 (09.08.2001)

PCT

(10) International Publication Number
WO 01/58029 A1

(51) International Patent Classification⁷:

H04B 1/12

(74) Agent: **SCHOENMAKER, Maarten**; Internationaal Oc-
troibureau B.V., Prof Holstlaan 6, NL-5656 AA Eind-
hoven (NL).

(21) International Application Number:

PCT/EP01/00353

(22) International Filing Date: 12 January 2001 (12.01.2001)

(81) Designated State (*national*): JP.

(25) Filing Language:

English

(84) Designated States (*regional*): European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE, TR).

(26) Publication Language:

English

Published:

— *with international search report*

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(30) Priority Data:

00200379.6

4 February 2000 (04.02.2000) EP

(71) Applicant: **KONINKLIJKE PHILIPS ELECTRON-
ICS N.V. [NL/NL]**; Groenewoudseweg 1, NL-5621 BA
Eindhoven (NL).

(72) Inventor: **KASPERKOVITZ, Wolfdietrich, G.**; Prof.
Holstlaan 6, NL-5656 AA Eindhoven (NL).

(54) Title: RADIO FM RECEIVER

(57) Abstract: A radio FM receiver is provided with a receiver portion with quadrature channels for converting received radio frequency signals into center frequency quadrature signals, a center frequency filter circuit connected to the former for suppressing undesirable image frequencies, and a first quadrature PLL demodulator for demodulating the obtained center frequency quadrature signals, said PLL being tuned to the carrier frequency within the selected frequency band. An error detector is furthermore present for detecting amplitude and phase errors in the quadrature channels, which error detector in response to the quadrature components of the center frequency signals, the quadrature signals of a VCO in the quadrature PLL demodulator, and the filtered difference said quadrature components of the center frequency signal, supplies amplitude and phase correction signals to a quadrature channel correction network which is provided between the filter circuit and the quadrature PLL demodulator.

WO 01/58029 A1

Radio FM receiver

The invention relates to a radio FM receiver provided with a receiver portion for converting received radio frequency signals into center frequency quadrature signals, a center frequency filter circuit connected thereto for suppressing undesirable image frequencies, and a quadrature PLL (phase locked loop) demodulator with a VCO (voltage-controlled oscillator) for demodulating the obtained center frequency quadrature signals, said PLL being attuned to the carrier frequency within the selected frequency band.

Amplitude and phase errors occur in the receiver portion and the filter circuit, with the result that undesirable image frequencies are insufficiently suppressed. These amplitude and phase errors are dependent on the input frequency, i.e. on the carrier frequency within the selected frequency band and on the amplitude of the received input signal. It is known to correct such amplitude and phase errors between the quadrature channels in the receiver, for example from US-A-5,134,404 or US-A-5,263,196. The correction methods described therein, however, are highly complicated and insufficiently accurate.

It is an object of the invention to provide means whereby in a comparatively simple manner the amplitude and phase errors are eliminated to a high degree independently of the input frequency and the amplitude of the input signals, such that a considerably improved image frequency suppression is obtained.

According to the invention, the radio FM receiver is for this purpose characterized in that an error detector is present for detecting amplitude and phase errors in the quadrature channels, which error detector, in response to the quadrature components of the center frequency signals, the quadrature signals of the VCO in the quadrature PLL demodulator, and the filtered difference of said quadrature components of the center frequency signals, supplies amplitude and phase correction signals to a quadrature channel correction network which is provided between the filter circuit and the quadrature PLL demodulator.

In a preferred embodiment, the error detector is provided with a second quadrature PLL demodulator with a VCO (voltage-controlled oscillator) for demodulating the obtained center frequency quadrature signals, wherein the PLL is attuned to the carrier frequency of the image signals within the selected frequency band, with a non-linear

processing unit which generates mixing signals in the first and second PLL demodulators after being supplied with the quadrature signals from the two VCOs, and with two mixing stages to each of which one of the mixing signals is supplied as well as the filtered difference of the quadrature signals from the first quadrature PLL demodulator, which mixing stages give off said correction signals after filtering.

It is furthermore possible to correct amplitude and phase errors in the quadrature channels in that only a calibration signal is supplied to the input of the receiver portion instead of reception signals obtained through the antenna. The error detector can be connected during such a calibration, whereas the connection of the error detector to the quadrature channels may be broken outside this calibration. Although the error detector can thus be given a simpler construction, the amplitude and phase errors in the quadrature channels are only corrected then for a certain calibration frequency and a certain calibration signal amplitude. Amplitude and phase errors will continue to arise for frequencies and amplitudes differing from the above.

The invention will now be explained in more detail with reference to the accompanying drawing, in which:

Fig. 1 is a block diagram of an embodiment of a radio FM receiver according to the invention; and

Figs. 2A-D contain a number of amplitude (A)-frequency (ω) diagrams serving to elucidate the operation of the radio FM receiver shown in Fig. 1.

The radio FM receiver shown in Fig. 1 comprises an antenna 1, a receiver portion 2 for converting received radio frequency signals into center frequency quadrature signals i' and q' by means of an oscillator signal with a frequency ω_0 . Let us assume that besides a desired signal with a carrier wave frequency ω_C also an undesirable signal is received with a carrier wave frequency $\omega_{C'}$, which frequency is imaged with respect to the oscillator frequency ω_0 such that upon a conversion to the center frequency this undesirable signal falls within the bandwidth of the desired reception channel. This situation is depicted in Fig. 2A. This shows the amplitudes of the desired carrier wave frequency ω_C and the undesirable carrier wave frequency $\omega_{C'}$. These two signals lie on either side of the oscillator frequency ω_0 , with $\omega_0 - \omega_C = \omega_{IF}$, and $\omega_{C'} - \omega_0 = \omega_{IF} + \delta\omega$, $\delta\omega$ being so small that the undesirable signal after conversion to the center frequency will lie within the bandwidth of the desired reception channel. This situation is depicted in Fig. 2B.

The radio FM receiver is further provided with a polyphase center frequency filter 3 in which the undesirable signals are suppressed and signals ie and qe are obtained which still contain undesirable signal components because the undesirable signals are not fully suppressed. This situation is depicted in Fig. 2C. The degree of suppression is
5 dependent on the quadrature errors in the signals i' and q' and on those in the polyphase center frequency filter 3. The output signals of this polyphase filter ie and qe can be represented by the relations: $ie = i' + q'(90^\circ \text{ phase-rotated})$, and $qe = q' - i'(90^\circ \text{ phase-rotated})$, respectively. Only one of the two signals ie and qe would suffice for suppressing the undesirable signals without the occurrence of quadrature errors. Both signals ie and qe are
10 necessary, however, for correcting quadrature errors, so that a further suppression of undesirable signals can be obtained.

After demodulation in a quadrature PLL (phase locked loop), a number of undesirable signals are obtained after tuning to the center frequency, the signal having the frequency $\delta\omega$ being the most unpleasant one. The amplitude and the phase of this undesirable
15 signal are directly proportional to the amplitude of the undesirable center frequency carrier wave frequency $\omega + \delta\omega$ and directly proportional to the amplitude and phase errors in the center frequency signals ie and qe. This undesirable signal ST may be represented by the expression:

$$ST = A \{ \Delta A \sin \delta\omega t + \Delta \Phi \cos \delta\omega t \},$$

20 in which A is the amplitude of the undesirable carrier wave frequency ω_C , ΔA is the relative amplitude error between the quadrature channels, and $\Delta \Phi$ is the phase error between the quadrature channels.

The demodulator 4 included in the radio FM receiver for this purpose is built up from a quadrature PLL (phase locked loop), as noted above, and comprises two mixing
25 stages 5 and 6, a quadrature VCO (voltage-controlled oscillator) 7, a differentiator 8, and a low-pass filter 9. The demodulator is connected to the polyphase center frequency filter 3 via a correction circuit 10. As will be explained in more detail further below, the quadrature output signals of the filter 3, i.e. the signals ie and qe, are corrected as to their amplitude and phase, and the obtained quadrature signals i and q are supplied to the demodulator 4. If the
30 VCO 7 is tuned to the center frequency of the desired signals, the filtered output signal V_O of the differentiator 8 will be zero for the desired quadrature signals. The filtered difference signal of the demodulator is then only formed by said signal ST. The VCO 7 then supplies the signals $I_w = \sin \omega_{IF} t$ and $Q_w = \cos \omega_{IF} t$.

To derive the amplitude error ΔA and the phase error $\Delta \Phi$ from the signal ST, the radio FM receiver in addition comprises an error detection circuit 11. This circuit is built up from a demodulator 12 in the form of a quadrature PLL, a non-linear signal processing unit 13, two mixing stages 14 and 15, and low-pass filters 16 and 17 connected thereto. The 5 demodulator is built up in the same manner here as the demodulator 4 and comprises two mixing stages 18 and 19, a quadrature VCO 20, a differentiator 21, and a low-pass filter 22. The VCO 20 is tuned here to the center frequency of the undesirable signals, i.e. to the frequency $\omega + \delta\omega$ of the signals i and q, and thus supplies signals $I_U = \sin(\omega_{IF} + \delta\omega)t$ and $Q_U = \cos(\omega_{IF} + \delta\omega)t$.

10 The demodulated signals I_w and Q_w obtained in the demodulator 4 and the demodulated signals I_U and Q_U obtained in the demodulator 12 are supplied to the non-linear processing unit 13 which calculates from these supplied signals the following signals, which are then given to the respective connected mixing stages 14 and 15:

$$I_w * Q_U - Q_w * I_U \text{ and } I_w * I_U + Q_w * Q_U.$$

15 The signal $I_w * Q_U - Q_w * I_U$ is directly proportional to $\sin\delta\omega t$, while the signal $I_w * I_U + Q_w * Q_U$ is directly proportional to $\cos\delta\omega t$, so that mixing of these signals in the respective mixing stages 14 and 15 with the signal $ST = A\{\Delta A \sin\delta\omega t + \Delta \Phi \cos\delta\omega t\}$ with subsequent filtering in the low-pass filters 16 and 17, respectively, yields signals which are proportional to ΔA and $\Delta \Phi$. The latter signals are supplied to the correction circuit 10 and 20 serve as a control signal for correcting the amplitude and phase errors in the quadrature channels of the radio FM receiver.

CLAIMS:

1. A radio FM receiver provided with a receiver portion for converting received radio frequency signals into center frequency quadrature signals, a center frequency filter circuit connected thereto for suppressing undesirable image frequencies, and a quadrature PLL (phase locked loop) demodulator with a VCO (voltage-controlled oscillator) for

5 demodulating the obtained center frequency quadrature signals, said PLL being attuned to the carrier frequency within the selected frequency band, characterized in that an error detector is present for detecting amplitude and phase errors in the quadrature channels, which error detector, in response to the quadrature components of the center frequency signals, the quadrature signals of the VCO in the quadrature PLL demodulator, and the filtered difference 10 of said quadrature components of the center frequency signals, supplies amplitude and phase correction signals to a quadrature channel correction network which is provided between the filter circuit and the quadrature PLL demodulator.

2. A radio FM receiver as claimed in claim 1, characterized in that the error

15 detector is provided with a second quadrature PLL demodulator with a VCO (voltage-controlled oscillator) for demodulating the obtained center frequency quadrature signals, wherein the PLL is attuned to the carrier frequency of the image signals within the selected frequency band, with a non-linear processing unit which generates mixing signals in the first and second PLL demodulators after being supplied with the quadrature signals from the two 20 VCOs, and with two mixing stages to each of which one of the mixing signals is supplied as well as the filtered difference of the quadrature signals from the first quadrature PLL demodulator, which mixing stages give off said correction signals after filtering.

3. A radio FM receiver as claimed in claim 2, characterized in that the filtered

25 difference of the quadrature signals from the first quadrature PLL can be represented by the relation $ST = A\{\Delta A \sin\delta\omega t + \Delta\Phi \cos\delta\omega t\}$,

in which A is the amplitude of the undesirable carrier wave frequency ω_C , ΔA is the relative amplitude error between the quadrature channels, and $\Delta\Phi$ is the phase error between the quadrature channels, while the output signals of the non-linear processing unit are directly

proportional to the values $\sin\delta\omega t$ and $\cos\delta\omega t$, the latter mixing stages providing signals which are proportional to ΔA and $\Delta\Phi$ after filtering.

1/2

FIG. 1

2/2

FIG. 2A

FIG. 2B

FIG. 2C

FIG. 2D

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 H04B1/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 H04B H03D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 826 180 A (GOLAN MORDECHAY) 20 October 1998 (1998-10-20) abstract; figure 3 ----	1-3
A	DE 195 30 812 A (BARTELS OLIVER) 18 January 1996 (1996-01-18) claim 1; figure 1 ----	1-3
A	US 5 430 770 A (ABBEY DUANE L) 4 July 1995 (1995-07-04) abstract; claims 1,7; figures 1,1 ----	1-3
A	US 5 134 404 A (PETERSON ROBERT A) 28 July 1992 (1992-07-28) cited in the application abstract; figure 4 ----	1-3

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

19 April 2001

03/05/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Kolbe, W

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 5826180	A 20-10-1998	NONE	
DE 19530812	A 18-01-1996	NONE	
US 5430770	A 04-07-1995	NONE	
US 5134404	A 28-07-1992	NONE	