

Universidade Tecnológica Federal do Paraná Campus Toledo

Curso de Engenharia Eletrônica

ET45A – Sinais e Sistemas Prof. Eduardo Vinicius Kuhn

5ª LISTA DE EXERCÍCIOS

1) Para cada um dos sinais fornecidos abaixo, identifique i) a frequência e o período fundamental do sinal; e ii) as harmônicas que compõem o referido sinal.

a)
$$x(t) = \cos\left(\frac{2}{3}t + \frac{\pi}{6}\right) + \sin\left(\frac{4}{5}t + \frac{\pi}{4}\right)$$

b)
$$x(t) = [sen(3t) + sen(5t)]^2$$

2) Determine o período fundamental e os coeficientes da série (exponencial) de Fourier do sinal ilustrado na Figura 1. Em seguida, trace o espectro de magnitude e fase do sinal.

- 3) Considerando os sinais mostrados na Figura 2,
- a) obtenha os coeficientes a_k e b_k da série (trigonométrica) de Fourier;
- b) trace o espectro de magnitude e de fase de cada sinal; e
- c) discuta o motivo dos termos em seno e/ou cosseno estarem ausentes em cada caso.

Figura 2.

4) Para os seguintes sinais periódicos em que $T_0 = 6$, determine:

$$x(t) = 1 + \cos(\omega_0 t)$$

$$y(t) = \operatorname{sen}(\omega_0 t + \pi)$$

$$z(t) = x(t)y(t)$$

- a) os coeficientes da série (exponencial) de Fourier de x(t) e de y(t) (por inspeção);
- b) os coeficientes da série de Fourier de z(t) a partir da propriedade da multiplicação; e
- c) a potência de z(t) a partir dos coeficientes da série de Fourier (teorema de Parseval).
- 5) Considerando que $\omega_0 = \pi/2$, obtenha x(t) a partir do espectro de magnitude [mostrado na Figura 3(a)] e do espectro de fase [mostrado na Figura 3(b)].

Figura 3.

6) Determine a transformada de Fourier do sinail periódico apresentado abaixo em função dos coeficientes da série de Fourier.

$$x(t) = 1 + \cos\left(6\pi t + \frac{\pi}{8}\right)$$

Universidade Tecnológica Federal do Paraná Campus Toledo

Curso de Engenharia Eletrônica

ET45A – Sinais e Sistemas Prof. Eduardo Vinicius Kuhn

7) Considere que a resposta em frequência de um dado sistema linear e invariante no tempo (LIT) causal é dada por

$$H(j\omega) = \frac{j\omega}{(j\omega)^2 L + j\omega + \frac{1}{C}}$$

onde $L=10\,\mathrm{mH}$ e $C=100\,\mathrm{\mu F}$. Então, levando em conta que $H(\mathrm{j}\omega)$ caracteriza um filtro passa-faixa com frequência central de $\omega_{\mathrm{c}}=\sqrt{10^6}$, determine a saída (aproximada) y(t) para o sinal periódico x(t) ilustrado na Figura 1 com $T=2\pi$ ms e $T_0=\pi/2$ ms. Note que as componentes de frequência fora da banda passante devem ser assumidas igual a zero.

- 8) Para o sinal periódico x(t) ilustrado na Figura 2,
- a) determine os coeficientes da série de Fourier e a frequência fundamental;
- b) esboce o espectro de magnitude e fase (use o MATLAB® se necessário); e
- c) comprove a aplicabilidade do teorema de Parseval, dado que

$$\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}.$$

Universidade Tecnológica Federal do Paraná Campus Toledo

Curso de Engenharia Eletrônica

ET45A – Sinais e Sistemas Prof. Eduardo Vinicius Kuhn

RESPOSTAS

1) a)
$$\omega_0 = \frac{2}{15}$$
, $T_0 = 15\pi$ - Quinta e sexta harmônica.

b)
$$\omega_0=2$$
 , $T_0=\pi$ - Primeira, terceira, quarta e quinta harmônica.

2)
$$T_0 = 2$$
, $c_0 = 0$ e $c_k = \frac{A(-1)^k}{k\pi} e^{j\frac{\pi}{2}}$

3) a) Figura 2(a)
$$a_0 = \frac{1}{2}, \quad a_k = 0, \quad k \neq 0 \qquad b_k = -\frac{1}{\pi k}$$
 Figura 2(b)
$$a_0 = \frac{1}{2}, \quad a_k = \mathrm{sinc}\left(k\frac{\pi}{2}\right) \quad b_k = 0, \quad \forall k$$

- b) -----
- c) A Figura 2(a) não apresenta simetria enquanto a Figura 2(b) apresenta simetria par.

4) a)
$$x(t) \to c_0 = 1$$
, $c_1 = c_{-1} = \frac{1}{2}$ $y(t) \to d_1 = d_{-1}^* = -\frac{1}{2j}$
b) $z(t) \to e_1 = e_{-1}^* = -\frac{1}{2j}$ e $e_2 = e_{-2}^* = -\frac{1}{4j}$
c) $P_z = \frac{5}{8}$

5)
$$x(t) = 1 + 2\cos(2\pi t) - 2\sin\left(\frac{3}{2}\pi t\right) - 2\cos(\pi t) + 2\sin\left(\frac{\pi}{2}t\right)$$

6)
$$X(\omega) = \pi e^{-j\frac{\pi}{8}} \delta(\omega + 6\pi) + 2\pi \delta(\omega) + \pi e^{j\frac{\pi}{8}} \delta(\omega - 6\pi)$$

- 7) Veja o material complementar.
- 8) Veja o material complementar.