Quu ノート -微分積分Ⅱ-

責任者 Quu

最終更新 2025/01/10

概要

微分積分学入門についてのノート.

主に, 多変数微分積分, ベクトル解析, 複素解析について扱う.

このノートを読む前に

この本の読み方とか、この本が扱う内容について書く予定. 今回から英語人名にすることとか、「.」や「,」を使うことも触れる.

目次

第Ⅰ部	基礎数学	6
§ 1	集合論基礎	7
1.1	集合とは	7
1.2	記号論理	9
1.3	集合の演算....................................	12
1.4	直積集合	14
1.5	写像	15
1.6	濃度	16
1.7	実数の連続性	17
§ 2	行列と行列式	18
§ 3	偏微分	19
§ 4	多重積分	20
第 II 音	ボ ベクトル解析	21
§ 5	ベクトルの性質と演算	22
§ 6	ベクトル値関数とその微分	23
§7	曲線の解析	24
§ 8	曲面論入門	25
§ 9	微分演算子	26
§10	線積分と面積分	27
第 III	部 複素解析	2 8
§11	複素数	29
§12	複素関数とその微分	30
§13	複素線積分	31
§14	級数	32
§15	留数定理	33

目次		5
§16	解析接続	34
§17	Riemann 面	35
第 IV	部 相対性理論	36
§18	特殊相対論入門	37
§19	パラドクスの解決	38
§20	数学的準備	39
§21	相対論的力学	40
§22	一般相対論への展望	41
第Ⅴ部	部 Lebesgue 積分入門	42
§23	可測空間	43
§24	測度	44
§25	可測関数	45
§26	積分	46
§27	収束定理	47
第 VI	部を終わりに	48

第I部

基礎数学

ここでは、数学をするうえで必要となる最低限の基礎知識を学ぶ. 主に、集合論基礎、線形代数のうちベクトル、行列、行列式の基礎が含まれる. また、多変数関数について微分・積分を定義する. いわゆる偏微分、重積分というもので、これらの概念を習得することは、数学、物理、工学を学ぶ上で重要である.

§1 集合論基礎 7

§1 集合論基礎

集合とその演算,写像,濃度について軽く触れ,実数論についても少し触れる.

1.1 集合とは

集合とは端的に言えば、 $\underline{600}$ 集まりである。実数の集まりでも整数の集まりでもよいし、関数の集まりでもよい。もっと具体的に、犬、猫、人間、など、ともかく何かを集めた集まりである。ある集合に対して、あるものがその集合に含まれていた場合、そのものを集合の要素や元という。集合を構成するものといってもよいだろう。aが集合 A の要素であることを次のように表記し、a は A に属するという。

$$a \in A \ \sharp \ t \ t \ A \ni a$$
 (1.1)

また、a が A の要素でないことは $a \not\in A$ または $A \not\ni a$ と表記する。例えば、A が 6 の約数全てであるとき、 $1 \in A, 2 \in A$ であるが、 $5 \not\in A$ である。なお、集合が集合たるためには、その集める範囲が明確に定義できていなければならない。例えば、学校内の美人な学生全体の集まりは、美人の定義が定まっていないから集合ではないのである。大きい服すべての集まり、おいしい食べ物全体の集まりなども同様の理由で集合ではない。

集合はものの集まりであるから、その要素の個数について気になるところである.要素の個数が0か自然数で表せる集合を有限集合といい、それ以外の集合を無限集合という.また、要素の個数が0、すなわち要素を何も持たない集合を空集合といい、 \emptyset とかく.有限集合としては例えば先ほど例に挙げた6の約数全ての集合がある.無限集合としては、自然数全体の集合、実数全体の集合などがある.

様々な集合を考えることができるが、特別な記号で表せる集合があるから紹介しておこう.これらは一般的に、たいてい断りなく用いられる.

№ = 自然数全体の集合

図 = 整数全体の集合

◎ = 有理数全体の集合

ℝ = 実数全体の集合

ℂ = 複素数全体の集合

集合を表す方法として、その要素をすべて書き並べる表し方がある。これを**列記法**または**外延的記法**という。これを用いて、先ほど例示した 6 の約数全ての集合を表す。

$$A = \{-6, -3, -2, -1, 1, 2, 3, 6\} \tag{1.2}$$

もちろん, 元を書き並べる順序をかえても同じ集合である。また, 重複して書かれた要素は一つのものとして考え, 同じ要素を重複して書くようなことはしない。しかし, 要素の数が多くなれば, 要素を全て並べて書くことは困難になることは容易に想像できる。例えば 100 万以下の自然数すべての集合を列記法でかく作業は途方もないだろう。そこで, 集合の要素となる条件 (範囲, 性質) を書いて, それを満たす要素全体として集合を表す方法も存在する。これを説明法や内包的記法という。これを用いて先ほどの (1.2) を書くと

$$A = \{x \mid x \text{ は } 6 \text{ の約数全体 } \} \tag{1.3}$$

1.1 集合とは 8

となる.このように、説明法では集合を要素 x の条件 P(x) を用いて $\{x \mid P(x)\}$ とかく.また、(1.3) は $\{x \in \mathbb{Z} \mid x$ は 6 の約数全体 $\}$ とも書かれる.最初の x の前に大前提の $x \in \mathbb{Z}$ を書くのである.このほかにも、特別な集合の場合は固有の表し方もある.例えば、閉区間、開区間の表し方がそうである.

義務教育中に習ったように、自然数 $\mathbb N$ のすべての要素は整数 $\mathbb Z$ に含まれている.これは、 $\mathbb N$ が $\mathbb Z$ に '包まれている' ような状態であると理解できる.一般に、二つの集合 A,B について、A の全ての要素が B の要素であるとき、A は B の部分集合であるといい、

$$A \subset B \ \sharp \mathcal{L} \ \mathsf{l} \ \mathsf{l}$$

とかく. この場合, A は B に包まれている, または B は A を包むという. 反対に, $A \subset B$ ではないことを $A \not\subset B$ とかく. 明らかに, $A \subset A$ である. また, $A \subset B$, $B \subset C$ ならば $A \subset C$ であることも, 明らかであろう. $A \subset B$ かつ $A \supset B$ であるとき, A = B とかき, 二つの集合 A, B は等しいという.

 $A \subset B$ かつ $A \neq B$ であるとき, A は B の真部分集合であるといい, これを強調したい時 $A \subsetneq B$ とかく. 例えば, $\mathbb N$ は $\mathbb Z$ の真部分集合である.

集合 A に対して、A の部分集合全体の集合を A の巾集合といい、 $\mathfrak{P}(A)$ 、 $\mathcal{P}(A)$ 、 $\mathcal{P}(A)$ 、 $\mathcal{P}(A)$ 、 $\mathcal{P}(A)$ 、本ノートでは、最後の記法 2^A を採用することにする.巾集合は、その要素全てが集合である.一般に、どの要素も集合であるような集合を集合族という.*1

例えば、 $A = \{1,2,3\}$ のとき $2^A = \{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$ である。空集合が入っていることに疑問が浮かぶ人もいるだろうから説明しておこう。空集合とは、要素を一つも持たない集合であるから、論理として「a が A に含まれていない」ならば「a は \emptyset に含まれていない」が任意の集合 A に対して成り立つ。実際、前半の「」の真偽にかかわらず成り立つから、これは正しいと納得されるだろう.*2 このときこの命題の対偶*3を取れば、「a が \emptyset に含まれている」ならば「a は A に含まれている」が成り立つ。すなわち、空集合は任意の集合の部分集合であることがわかる。

^{*1} 集合族は、一般にドイツ文字や花文字で表される慣習がある.

 $^{^{*2}}$ これは次小節を見ることでより納得がいくはずである.

^{*3} 次小節参照.

1.2 記号論理 9

1.2 記号論理

ここでは集合論を展開するために便利な記号論理について必要最小限に留めて述べる.

一般に,数学の定理は

$$p \Rightarrow q \quad (p \, \& \, \& \, \& \, d \,) \tag{1.5}$$

の形をしていることが多い. p をこの定理の仮定, q を結論という. p,q のように, 真偽の定まる文章を命題という. 命題によっては, それ自身がある複数の命題によって構成されている場合がある. 例えば, a=1 かつ b=2 は a=1 という命題と b=2 という命題が「かつ」によって結合されている. このように, 数学に現れる命題を結合するものは, 次の三種類がある.

$$p \wedge q$$
, $p \vee q$, $p \Rightarrow q$

 \wedge は「かつ」, \vee は「または」, \Rightarrow^{*4} は「ならば」を表す.*⁵ 特に, $p \Rightarrow q \wedge p \Leftarrow q$ であるとき, p と q は同値であるといい, $p \Leftrightarrow q$ とかく.

次に、命題の否定を考える。命題 p に対して、その否定は「p でない」となり、これを $\neg p$ とかく.以上で紹介した記号 \land , \lor , \neg , \Rightarrow , \Leftrightarrow を論理演算子という.命題の合成命題を否定する際には、書き方に注意を払う必要がある.例えば、 $p \land q$ という命題を否定するときに $\neg p \land q$ と書いてはいけない.この場合、「p ではない」かつq であるという命題になっているからである.正しくは、 $\neg (p \land q)$ とかく.

ある命題が真である場合や偽である場合に、それを数値で表すことができたら便利である。そこで、命題が真である場合、その命題の真理値は 1 であるといい、偽のとき、その命題の真理値は 0 であるということにする。例えば、p,q の真理値がそれぞれ 1,0 であるとき、 $p \wedge q$ の真理値は 1 である。この時重要なのは、 $p \wedge q$ の真偽を判断するときに、 $p \wedge q$ の命題の意味を解釈することなく、p,q の真偽だけから判断できたということである。よって、命題 p_1,p_2,\ldots,p_n の合成命題 p が与えられたときは、p の真偽に重要なのは論理式の構造と p_1,p_2,\ldots,p_n の真偽だけということになる。

そこで、各命題 p_1, p_2, \ldots, p_n の真理値のすべての組み合わせについて P を計算した表を考え、これを P の真理値表という. 以下に $p \wedge q$ の真理値表を示す.

p	q	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

表 1: p ∧ q の真理値表

二つの合成命題 P,Q が与えられたとき、真理値表において P,Q の真理値表が一致するとき、P と Q は論理的に同値であるといい, $P\equiv Q$ とかく.試しに, $\neg(p\wedge q)$ と $(\neg p)\vee(\neg q)$ が論理的に同値であることを示してみる.(次ページ)

 $^{^{*4}}$ $p \Rightarrow q$ はこの命題が真であるとすでに分かっているときによく用いられる.まだこの命題が真であるかがわかっていない場合などは $p \to q$ と書いて区別する.

 $^{^{*5}}$ \land を論理積, \lor を論理和という.

1.2 記号論理 10

以下の表を見ればわかるように、 $\neg(p \land q)$ と $(\neg p) \lor (\neg q)$ の真理値はすべて一致している.これより直ちにこれら二つの論理が同値であることがわかる.

p	q	$p \wedge q$	$\neg(p \land q)$	$\neg p$	$\neg q$	$(\neg p) \vee (\neg q)$
	0		1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

表 2: 真理値表による命題の比較

上記の方法とまったく同様にして、 $\neg(p \lor q)$ と $(\neg p) \land (\neg q)$ が示されるから、以下の **De Morgan の法則**が成り立つことがわかる.

$$\neg (p \land q) \equiv (\neg p) \lor (\neg q) \tag{1.6}$$

$$\neg(p \lor q) \equiv (\neg p) \land (\neg q) \tag{1.7}$$

De Morgan の法則は最も基本的な論理演算の法則であるから、しっかり理解しておこう.この二つの式から双対性の概念が見えるがここでは触れない.

De Morgan の法則を用いれば、 \land 、 \lor の含まれる合成命題については否定できるが、 \Rightarrow が含まれた命題を否定する際はどうすればよいだろうか.一度ここでもっとも簡単な形である $p \Rightarrow q$ について考察してみよう.すぐわかるのは p が真の場合、q が真ならば真、偽ならば偽であるとなることである.問題は p が偽の場合である.このとき q が成り立っていようがいまいが(仮定がそもそも偽であるから)真偽には関係のないような気がする.そこでp が偽のときには $p \Rightarrow q$ は偽であると定めることにしよう.このように定めるのは、例えば「任意の自然数 n に対して $n > 2 \Rightarrow n > \sqrt{5}$ 」という命題を考える際に便利だからである.普通に考えてみればこの命題はもちろん真なのであるが、これまでの考え方に則ると、n = 2 のとき「 $2 > 2 \Rightarrow 2 > \sqrt{5}$ 」が真でなければならない.なぜなら n は任意の自然数だからである.このような場合,下線部のように定めることで,任意の自然数に対して命題が真であるようにできるのだ.よって, $p \Rightarrow q$ の真偽は $\neg p \lor q$ の真偽と一致することがわかる.よって, $\neg (p \Rightarrow q) \equiv \neg (\neg p \lor q) \equiv \neg (\neg p) \land (\neg q) \equiv p \land (\neg q)$ となる.ここで, $\neg (\neg p) \equiv p$ であることを用いた.これは真理値表を用いて簡単に示せる.以上をまとめると

$$\neg(p \Rightarrow q) \equiv p \land (\neg q) \tag{1.8}$$

が得られる.

二つの命題 p,q に対して、 $p\Rightarrow q$ が正しくても $q\Rightarrow p$ が正しいとは限らない。例えば、微分可能であるならば連続であるが、連続で会っても微分可能ではないのが好例である。 $q\Rightarrow p$ を $p\Rightarrow q$ の逆といい、 $\neg q\Rightarrow \neg p$ を対偶という。今述べたように、命題 $p\Rightarrow q$ が真であっても逆は真であるとは限らないが、対偶についてはどうだろうか。対偶の論理式を式変形してみると $\neg q\Rightarrow \neg p\equiv \neg (\neg q)\vee (\neg p)\equiv q\vee (\neg p)\equiv p\Rightarrow q$ となる。*6 すなわち、 $p\Rightarrow q$ とその対偶の真偽は一致する。これは、 $p\Rightarrow q$ の命題を証明する際には、その対偶を証明してもよいということを示している。

^{*6} 何も言わず $p \lor q \equiv q \lor p$ を用いてしまったが、本来は真理値表で確かめる必要がある.ただ、直感的に明らかであろう.

1.2 記号論理 11

最後に、限定記号について述べておこう.これはこれから多く出てくるからしっかり理解しよう.変数を含む文章で、変数に値を代入する値と命題になるものを命題関数や述語という.命題も命題関数も含めて単に命題とよぶ.例えば、 $p(x)\equiv x$ は 2 と等しい という命題関数を考えてみる.ここに x=2 を代入した命題 $p(2)\equiv 2$ は 2 と等しい は真である.一方 x=1 を代入した命題 p(1) は偽である.

ここで気になってくるのが、ある命題関数を考えたときに、この命題は全てのxについて成立しているのか、それともあるxについて成立しているかであろう。このときの「全ての (任意の)」や「ある (或る)」という言葉を限定語という。例えば、「三角形の内角の和は 180° 」という命題は「全ての三角形」に対して成立している。この「全ての」や「ある」を表す記号として、 \forall 、 \exists がある。それぞれ 'For all' または 'For any'、'Exist' に由来する記号で、前者を全称記号、後者を存在記号という。これらをまとめて限定記号という。これを用いて、全ての実数に対しその平方が 0 または正であるという命題は $\forall x \in \mathbb{R}[x^2 \geq 0]$ と書ける。また、実数全体で定義された関数 f(x) に対して、f(x) = x となる実数 x が存在するという命題は $\exists x \in \mathbb{R}[f(x) = x]$ と書ける。

限定記号を用いれば, $\varepsilon-N$ 論法による極限の定義を簡単な論理式で書くことができる. 試しに, 数列 $\{a_n\}$ が $a_n\to\alpha$ となることを限定記号を用いて書いてみると

$$\forall \varepsilon > 0, \exists N > 0, \forall n \in \mathbb{N} [n > N \Rightarrow |a_n - \alpha| < \varepsilon]$$

となる. この書き方のほうがどの変数が何に依存しているかがすっきりしていて見やすいと思う.

最後に、全称記号および存在記号付きの命題を否定すると、それらが互いに入れ替わることを証明なしに述べて終わる.

$$\neg \left(^{\forall} x \in X \left[p(x) \right] \right) \equiv {}^{\exists} x \in X \left[\neg p(x) \right] \tag{1.9}$$

$$\neg \left(\exists x \in X \left[p(x) \right] \right) \equiv \forall x \in X \left[\neg p(x) \right] \tag{1.10}$$

しかし、これは直感的には理解しやすい.例えば (1.9) であれば、任意の x について成り立っていることを否定するのだから、(少なくとも一つは) 成り立たないような x が存在しなければならない.そして、この式に両辺否定を取れば (1.10) がすぐさま導かれる.

1.3 集合の演算 12

1.3 集合の演算

集合に話を戻す.二つの集合 A,B について、その和と積に対応するものを考えよう.それらは以下のように定められる.

$$A \cup B = \{x \mid x \in A \lor x \in B\} \tag{1.11}$$

$$A \cap B = \{x \mid x \in A \land x \in B\} \tag{1.12}$$

集合 $A \cup B$ を $A \in B$ の和集合といい, $A \cap B$ を $A \in B$ の共通部分という. 定義から明らかに次式が成り立つ.

$$A \subset A \cup B, \quad B \subset A \cup B$$
 (1.13)

$$A \cap B \subset A, \quad A \cap B \subset B$$
 (1.14)

しかし、せっかく記号論理を学んだのだから、上式を証明してみるのもよいだろう。試しに、(1.13) を示してみることにしよう。対称性から、示すべき命題は、 $x \in A \to x \in A \cup B$ で十分である。 $x \in A \to x \in A \lor x \in B$ であり、右辺は和集合の定義そのものだから、示された。やはり明らかであったが、簡単な命題でも記号論理の威力が垣間見えるだろう。

二つの集合が共通の要素を一つも持たない場合, 共通部分に含まれる要素は存在しない. この場合, 要素数は 0 であるから空集合である. 集合 A,B に対し, $A\cap B=\emptyset$ であるとき, A と B は交わらない (互いに素である) という. 逆に, $A\cap B\neq\emptyset$ のとき, 二つの集合は交わるという.

集合演算の基本的な性質について述べよう. 以下に式を列挙する.

$$A \cup B = B \cup A, \quad A \cap B = B \cap A \tag{1.15}$$

$$(A \cup B) \cup C = A \cup (B \cup C) \tag{1.16}$$

$$(A \cap B) \cap C = A \cap (B \cap C) \tag{1.17}$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \tag{1.18}$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \tag{1.19}$$

(1.15) は交換法則, (1.16), (1.17) は結合法則, (1.18), (1.19) は分配法則である. これらはすべて定義から記号論理を駆使して簡単に証明できる. ここでは, (1.18) のみ証明することにする.

Proof. 示すのは、 $x \in A \cup (B \cap C) \leftrightarrow x \in (A \cup B) \cap (A \cup C)$ である。 $x \in A \cup (B \cap C) \leftrightarrow x \in A \vee x \in B \cap C \leftrightarrow x \in A \vee (x \in B \wedge x \in C)$ であるから、命題に関する分配法則が成立すればよい。真理値表を書けば わかるように、 $p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$ だから、 $x \in A \cup (B \cap C) \leftrightarrow (x \in A \vee x \in B) \wedge (x \in A \vee x \in C) \leftrightarrow x \in A \cup B \wedge x \in A \cup C \leftrightarrow x \in (A \cup B) \cap (A \cup C)$ となる。以上より、(1.18) が示された.

二つの集合 A, B に対して、差に対応するものを考える.これは以下のように定義する.

$$A - B = \{x \mid x \in A \land x \notin B\} \tag{1.20}$$

集合 A-B を A と B の**差集合**という.一般に, $A-B \neq B-A$ である.等号が成り立つのは A=B の場合 のみである.これは実数の場合と同様であるから理解しやすい.

1.3 集合の演算 13

数学では、ある集合を基礎として、その要素について考察する場合が多い。例えば、Quu ノート I では実数の集合 $\mathbb R$ において、その微分積分等を考察していた。このような、特定の集合 Ω の要素と部分集合について議論する場合、 Ω を全体集合という。全体集合にはよく Ω,U といった記号が用いられる。全体集合 Ω が与えられたとき、考察の対象となる集合 $A\subset\Omega$ に対して、 $\Omega-A$ を考えることができる。この差集合 $\Omega-A$ を Ω における A の補集合といい、 A^c とかく、 A^c に対して、 A^c に対して、 A^c に対して、 A^c に対して、 A^c とかく。 A^c に対して、 A^c に対して、 A^c とかく。 A^c に対して、 A^c に対して、 A^c とかく。 A^c に対して、 A^c に対し、 A^c に対して、 A^c に対して、 A^c に対して、 A^c に対して、 A^c に対して、 A^c に対し、 A^c に対し、 A^c に対して、 A^c

以降, 特別断りがない場合 Ω を全体集合とする. 任意の $A \subset \Omega$ に対して, 以下が成り立つ.

$$(A^c)^c = A (1.21)$$

$$A \cup A^c = \Omega \tag{1.22}$$

$$A \cap A^c = \emptyset \tag{1.23}$$

$$\Omega^c = \varnothing, \quad \varnothing^c = \Omega \tag{1.24}$$

$$A \cup \Omega = \Omega \tag{1.25}$$

$$A \cap \Omega = A \tag{1.26}$$

これらは補集合の定義からすぐさま導かれるから、ここでは述べない. 各自で試されるとよいであろう. 補集合について重要なのは次の De Morgan の法則である.

$$(A \cup B)^c = A^c \cap B^c \tag{1.27}$$

$$(A \cap B)^c = A^c \cup B^c \tag{1.28}$$

これは記号論理で述べた De Morgan の法則の法則 (1.6),(1.7) からすぐさま導かれるから、これも証明は略する. これに加えて、補集合については、以下の等式が重要である.

$$A - B = A \cap B^c \tag{1.29}$$

Proof. 前提として, $A, B \subset \Omega$ であることに注意しよう.

$$x \in A - B \leftrightarrow x \in A \land x \notin B$$
$$\leftrightarrow x \in A \land x \in B^c$$
$$\leftrightarrow x \in A \cap B^c$$

以上より、等式が示された.

集合の勉強をする際に、そのイメージを持たせるために、よく Venn 図が紹介されている。しかし上で見たように、Venn 図を使おうが使わまいが、集合の命題は記号論理の演算を用いて機械的に解くことができる。むしる、今後扱う命題では図で書くと複雑な場合が多い。そのためこのノートでは Venn 図については一切触れない。興味がある人は適当な集合論の本を参考にしてみるとよいだろう。

図 1: 共通部分 $A \cap B$ の Venn 図

^{*7} c は complement の頭文字.

1.4 直積集合 14

1.4 直積集合

Quu ノート I において、実数 $\mathbb R$ は数直線ととらえることができると説明した。同様にして、二つの数直線を直交させてできる平面についても、この平面上の各点と二つの数直線の値とを対応付けることができるだろう。これは、関数のグラフを書く時にすでに(直接言及されていないだけで)学んだことである。この平面の各点は、二つの集合 $\mathbb R$ 、 $\mathbb R$ の各要素を対にしたもの全てを集めた集合といえよう。

一般に、二つの集合 A, B に対して

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$
 (1.30)

を A と B の直積集合または単に直積という.ここで、(a,b) は二つのもの a,b から作られる対となるもので、これを順序対という.順序対は集合と違って、 $(a,b) \neq (b,a)$ となる.つまり、対の順序が違えばそれは違うものとみなす.二つの順序対 (a,b)、(a',b') が等しいのは a=a'、b=b' となるときに限るとする.

直積を用いれば、先ほど例で挙げた平面も $\mathbb{R} \times \mathbb{R}$ と書けるとわかる。ただこの場合、同一の集合の直積であるから簡単に \mathbb{R}^2 と書くことにしよう。この記法は、任意の集合 A の直積 $A \times A$ についても用いられる。すなわち、 $A \times A = A^2$ である。

直積の具体例を挙げよう。例えば、 $A=\{1,2,3\}, B=\{2,3\}$ とすると、 $A\times B=\{(1,2),(1,3),(2,2),(2,3),(3,2),(3,3)\}$ であり、 $B\times A=\{(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}$ である。このように、一般に直積では交換法則が成り立たない

直積 $A \times B$ において, A,B どちらか一方が空集合であれば順序対が存在しないので, この場合 $A \times B$ は空集合になる.

今は二つの集合について、それぞれの要素から順序対を作っていた。これを n 個の集合の場合に拡張しよう。 n 個の集合 A_1,A_2,\cdots,A_n に対して、それらの直積集合を

$$A_1 \times A_2 \times \dots \times A_n = \{ (a_1, a_2, \cdot, a_n) \mid a_1 \in A_1, a_2 \in A_2, \dots, a_n \in A_n \}$$
 (1.31)

によって定める. (a_1,a_2,\cdots,a_n) は順序対である. n 個の場合でも二つの順序対が等しいのは, 並べられた各要素の値が等しい場合に限るとする. また, $A_1=A_2=\cdots=A_n=A$ のとき, この直積集合を A^n とかく.

直積は、もっと一般に集合系に対して定義される.しかし、微分積分を学ぶ上では上記の定義で十分であるからここでは述べない.こちらも、興味がある人は集合論の本を参考にしてほしい.

<u>1.5</u> 写像

1.5 写像

1.6 濃度 16

1.6 濃度

1.7 実数の連続性 17

1.7 実数の連続性

§2 行列と行列式 18

§2 行列と行列式

ベクトルのイメージとその和・差について、内積についても述べる、外積はベクトル解析のときに述べる、 続いて、行列についてその定義を述べ、和・差・積について述べる、転置行列と逆行列についても述べる、行列 式は、一般の定義を述べ、その後 2x2 と 3x3 について計算方法を述べる。余因子展開についてその計算方法を 述べる。 §3 偏微分 **19**

§3 偏微分

多変数関数をまず具体例で挙げ、その後偏微分について解説する. 二変数テイラー展開及び積分記号下の微分まで述べる.

§4 多重積分 **20**

§4 多重積分

多重積分についてまず二重積分についてその定義を話す。かんたんな計算ののちに三重積分も述べる。その後、変数返還について、一次変換の場合について厳密な証明を行い、それ以外は感覚的なものにとどめる。

第Ⅱ部

ベクトル解析

ベクトル解析は、理工系の学生にとって馴染み深いものと聞く. たいていの物理科と電気科の学生は、電磁気学にて顔を合わせることになるだろう. よく電磁気学は、ベクトル解析をふんだんに用いるから難しいと言われているが、少なくともベクトル解析単体で見ればそこまで難しいものではない. そして何よりベクトル解析は楽しいものである. ここでは、まずベクトルについての基礎知識について述べた後、ベクトル値関数についてその微分積分を定義する. その後、空間上の曲線および曲面の解析についてすこし述べ、ベクトル解析の顔ともいえる微分演算子について述べる. 電磁気学ではよく用いられる Gauss の発散定理および Stokes の定理についても扱う.

§5 ベクトルの性質と演算

数学基礎で述べたことと多少重複するが、内積、外積およびそれらの性質を述べる. スカラー三重積とベクトル三重積も述べる.

§6 ベクトル値関数とその微分

ベクトル値関数について述べたのち、それらの微分積分を定義する。ただし、積分は定義のみで深く触れない。

§7 曲線の解析 **24**

§7 曲線の解析

曲線について解析する. 平面曲線について述べて, 空間曲線でも議論する. Frenet-Serret の公式まで.

§8 曲面論入門 **25**

§8 曲面論入門

曲面について解析する.基本量を導出し、Gauss 曲率と平均曲率を紹介する.

§9 微分演算子 **26**

§9 微分演算子

ベクトル場とスカラー場について説明する. その後各微分演算子について述べる.

§10 線積分と面積分 **27**

§10 線積分と面積分

線積分と面積分について定義を述べる。 Gauss の定理と Stokes の定理について述べ,電磁気学への応用をしてみる.

第Ⅲ部

複素解析

複素解析は、数学の中で最も美しい理論の一つと言われる。複素関数(複素数から複素数へ対応させる関数)に対して、正則という概念が定義できる。正則性とはかんたんに言えば微分可能性のことなのであるが、驚くべきことにこの正則性を満たせば、それらを微分した関数も正則性を保つのである。これらの性質を含め、正則関数の解析の基本となるのは Cauchy の積分定理である。ここでは、複素数についてその基本的な性質を述べ、複素関数および複素微分について定義し、複素平面上での積分を述べる。その後、Cauchy の積分定理をはじめとする、正則関数に関する多くの定理を証明する。その中には実積分の計算に対してたいへん有効な留数定理もある。この理論の美しさをじっくり味わってほしい。

§11 複素数 **29**

§11 複素数

複素数についてその基礎知識を述べる. 複素平面上の領域も. De Moivre の定理まで述べる.

§12 複素関数とその微分

複素関数について定義し、その性質について簡単に述べる。 Cauchy-Riemann の方程式も述べる。 初等関数についても述べる。

§13 複素線積分 **31**

§13 複素線積分

かんたんな線積分の計算をして、Cauchy の積分定理を述べる。Cauchy の積分公式や Goursat の定理などの多数定理を述べる。最大値の原理については証明させる?

§14 級数 **32**

§14 級数

複素数列について、その収束等を定義し、複素級数についても定義する. べキ級数や Taylor 展開、Maclaurin 展開についても述べる. Laurent 展開を重点的に扱う. 特異点とその分類も述べる.Picard の大定理は入れない. 無限遠点の Laurent 展開も述べる.

§15 留数定理 **33**

§15 留数定理

留数について定義を述べて、留数定理を示す.その後、実積分の計算を行う.無限遠での留数についても述べる.

§16 解析接続 **34**

§16 解析接続

解析接続について簡単な例を挙げ、一致の定理を証明して、解析接続の一意性について説明する.

§17 Riemann 面 **35**

§17 Riemann 面

余裕があれば、多価関数と Riemann 面についてすこしだけ述べる.

第IV部

相対性理論

相対性理論… それはかの天才物理学者 Einstein が作り上げた物理学の中で最も美しい理論である. 理科や宇宙が好きな小学生であればほとんどの人があこがれていたものであると思うし, それ以外の人でも、相対性理論から導かれる不思議な世界 (双子のパラドクスなど) について聞いたことがある人も多いと思う. 相対性理論が美しいといわれるその所以は, たった一つの物理的要請に真摯に従って計算することで、重力場の基礎方程式 (いわゆる, Einstein 方程式) までたどり着けるところであろう. その要請とは, 「物理学の法則は, 座標系に依存しない形式に書かれなければならない」という, 実に自然な, 当然ともいえる要請である. この要請から, さまざまな相対性理論の世界が開けることには, ただただ驚嘆するばかりである.

相対性理論は、一般に非常に難しいといわれている。確かに、相対性理論、特に一般相対性理論を真に理解するには、数学の Riemann 幾何学について熟知していないといけないだろう。しかし、特殊相対性理論に限って言えば、かんたんな力学の知識さえあれば(一部を除いて)理解することができる。また、一般相対性理論に関しても、重力場の方程式を導くだけであれば必要な Riemann 幾何学の知識も特別難しいものではないのである。

ここでは、特殊相対性理論について、よく子供向けの科学本などに載っている事象を中心に数学的に理解していく。また、一般相対性理論についても軽く触れる。

§18 特殊相対論入門 **37**

§18 特殊相対論入門

Galilei 変換についてと慣性系について述べる. 光速度不変の原理について, 実験結果から述べ, Lorentz 変換を導出する. Minkowski 時空上の距離, 世界間隔について説明する. このとき Lorentz 変換に対して不変であることを述べる. 固有時間などについても述べる.

§19 パラドクスの解決 **38**

§19 パラドクスの解決

パラドクスをここで解決する. 双子のパラドクスと時計のパラドクス

§20 数学的準備 **39**

§20 数学的準備

ベクトルやテンソルについて, かんたんに定義する.

§21 相対論的力学 **40**

§21 相対論的力学

相対論上で力学を展開する. $E=mc^2$ の導出や変分原理についても扱う. 双子のパラドクスを変分原理を用いて解決する.

§22 一般相対論への展望 **41**

§22 一般相対論への展望

Riemann 幾何学の ds^2 を紹介して、等価原理について $\Gamma=0$ であることを紹介する.

第V部

Lebesgue 積分入門

積分好きなら一度は聞いたことがあるのが、この Lebesgue 積分である. Lebesgue 積分は、単なる数学の枠を飛び越えて、物理学や工学で必須の Fourier 解析や、偏微分方程式、また確率論などのいたるところに顔を出す非常に重要な概念である. それにもかかわらず、この Lebesgue 積分はなかなかに難しく、習得にも時間がかかる. これは Lebesgue 積分が素朴な Riemann 積分と違って内容がいささか抽象的であることが原因であるように思える. さらに、集合論に関する知識も必要であり、学ぶための敷居が高い. そこでここでは、Lebesgue 積分論のうち、特に重要であるものを選択して系統的に学べるよう、構成を工夫した.端的に言えば、極限と積分の順序交換ができる単調収束定理へ最短経路で学べるようになっているのである. なおこの Lebesgue 積分は、Riemann 積分と対照的に、しばしばグラフを横に切る積分であると説明される. 実際まちがってはないが、実際に Lebesgue 積分を学んでいると、横に切っているというイメージはあまりないので注意してほしい.

§23 可測空間 **43**

§23 可測空間

集合体, σ -集合体の定義を述べ, 可測空間を定義する. 部分集合族から生成される σ -集合体や可測分割等も述べる.

§24 測度 **44**

§24 測度

集合関数の定義および測度の定義を述べる。様々な測度の例を述べる。測度の基本的な性質についても示す。 μ -零集合についても触れ、完備測度空間を定義する。完備測度への測度の拡張が存在し、しかもそれが一意であることを述べる。

§25 可測関数 **45**

§25 可測関数

可測関数の定義,基本的性質を述べる. 単関数を定義し,任意の正なる可測関数に対して,収束する単関数の 単調増加列が存在することを示す. ほとんど到る所 (almost everywhere) についても触れる. §26 積分 **46**

§26 積分

積分を定義し、諸性質を述べる. 関数が連続であれば、Riemann 積分と Lebesgue 測度に対する積分 (Lebesgue 積分) が一致することも述べる.

§27 収束定理 **47**

§27 収束定理

Lebesgue の有界収束定理を証明する. 適用例などをみてその威力を体感する.

第 VI 部

終わりに