On satisfiable Tseitin formulas, branching programs and tree-width

Ludmila Glinskih (PDMI RAS) based on joint work with Dmitry Itsykson (PDMI RAS)

Branching program

- Acyclic directed graph
- Two sinks: 1-sink and 0-sink
- All vertices are labeled by variables
- Value: sink label at the end of the path that corr. to the subst.
- Size = number of nodes

Nondeterministic branching program

- Has nodes without labels
- Value equals one if there exists a path from source to 1-sink
- Size = number of labeled nodes

Read-k branching program (k-BP)

• Every path has only *k* occurrences of each variable

Ordered binary decision diagram (OBDD)

• 1-BP in which all variables on all paths occur in the same order

Tseitin formula

- Defined on a graph
- Variables on edges
- 0-1 values in vertices
- *True* iff for every vertex the sum of values on its edges equals its label

Criterion of satisfiability:

Tseitin formula is satisfiable iff for every connected component the sum of labels of vertices is even.

Tree and path decomposition

Tree decomposition of a graph:

- 1. Vertices "bags" are sets of vertices of G = (V, E)
- 2. If $(a, b) \in E$ then there is a bag with a and b
- 3. All bags with the same vertex form a tree

Path decomposition of a graph:

- 1,2 are the same
- 3. All bags with the same vertex form a path

Width of a decomposition is the size of a maximal bag in it minus 1.

Tree- (path-) width of a graph is the minimal width among all its tree (path) decompositions.

Main result:

1-NBP for satisfiable Tseitin formula on a graph G has size $2^{\Omega(t^{\delta})}$, where t is the tree-width of G, δ is a constant.

To prove this lower bound we use the **Excluded Grid Theorem** by Robertson and Seymour:

Every graph G of a tree-width t has a grid minor of size t^{δ} , where δ is a constant.

Minor of G is a subgraph of G that can be obtained from G by a sequence of edge contractions, edge and vertex deletions.

To prove the Main lemma we used our previous result:

Theorem: 1-NBP for a satisfiable Tseitin formula on a graph G has at least $2^{|V|-k_G(I)-k_G(|E|-I)-I+1}$ nodes, where the value $k_G(I)$ denotes the maximal number of connected components that can be obtained from G by deleting I edges.

has size $2^{\Omega(n)}$

we choose

I = |E|/2

Using this lemma for $n \times n$ grid graph we need to calculate values of $k_G(I)$ and $k_G(|E|-I)$ for some I in a way that the difference of their sum from |V| will be linear in n.

We also obtained an **upper bound** for **OBDD** for satisfiable Tseitin formulas:

Theorem: a satisfiable Tseitin formula on graph G can be computed by an **OBDD** of size $O(m2^{p+1})$, where m is the number of edges and p is the path-width of G.

We build **OBDD** layer-by-layer, each layer corresponds to one edge. Each edge corresponds to the first bag where it appears in the decomposition.

For every edge and its bag we add at most 2^{p+1} vertices that correspond to all possible values of parity in vertices from that bag.

