1.1 1.1 We know that both $\{a\}$ and $\{a,b\}$ are subset of $\{a,b\}$, thus $\{a,b\}$, $\{a\} \in \mathcal{P}(\{a,b\})$, it means that $\{\{a,b\},\{a\}\}\subseteq \mathcal{P}(\{a,b\})$ which implies $\{\{a,b\},\{a\}\}\in \mathcal{P}(\mathcal{P}(\{a,b\}))$.

we have $a, b \in \{a, b\}$, but $(a, b) = \{\{a\}, \{a, b\}\}$ which means that there is some $C \in (a, b)$ such tha $a, b \in C$, thus $a, b \in \bigcup (a, b)$.

if $a, b \in A$ then $\{a, b\}$ and $\{a\}$ both are subset of A, thus $\{a, b\}, \{a\} \in \mathcal{P}(A)$, again it implies that $\{\{a, b\}, \{a\}\} \subseteq \mathcal{P}(A)$, thus $(a, b) = \{\{a, b\}, \{a\}\} \in \mathcal{P}(A)$).

- **1.2** 1.2 if a and b exist, then by axiom of pairing and powerset $T = \mathcal{P}(\mathcal{P}(\{a,b\}))$ exist and by previous exercise $(a,b) \in T$. because (a,b,c) = ((a,b),c) by previous argument we have $(a,b,c) \in \mathcal{P}(\mathcal{P}(\{(a,b),c\}))$ which clearly exist.
- **1.3** if (a,b) = (b,a), it follows from Theorem 1.2 that a = b and b = a, so a = b.
- **1.4** if (a, b, c) = (a', b', c') then ((a, b), c) = ((a', b'), c'), by Theorem 1.2 we have (*) (a, b) = (a', b') and c = c', but again by Theorem 1.2 and (*) we have a = a' and b = b'.
- **1.5** Let $a = \emptyset$, $b = \{a\}$ and $c = \{b\}$, then if ((a, b), c) = (a, (b, c)) we get $(a, b) = a = \emptyset = \{\{a\}, \{a, b\}\}$ which is a contradiction.
- **1.6** We first prove that:
 - (1) a = c or $d = \square$.
 - (2) b = d or $c = \triangle$.

To prove (1): $\{\{a,\Box\},\{b,\Delta\}\} = \{\{c,\Box\},\{d,\Delta\}\}\)$ implies either (\bullet) $\{a,\Box\} = \{c,\Box\}\)$ or (\star) $\{a,\Box\} = \{d,\Delta\}$, if (\bullet) then either a=c or $a=\Box$, if first we are done, if the second then $\{a,\Box\} = \{\Box\} = \{c,\Box\}$ which means $a=\Box=c$, thus in both case a=c. if (\star) then either a=d or $a=\Delta$, if first then $\{a,\Box\} = \{a,\Delta\}$ which implies $\Delta=\Box$, contradiction, so we have $a=\Delta$, then $\{\Delta,\Box\} = \{d,\Delta\}$ which implies $d=\Box$. so we have either a=c or $d=\Box$.

To prove (2):

We also have (*) $\{b, \triangle\} = \{c, \square\}$ or (**) $\{b, \triangle\} = \{d, \triangle\}$, if (*) then either b = c or $b = \square$, if first then $\{b, \triangle\} = \{b, \square\}$ which implies a contradiction: $\triangle = \square$, therefore the second case only remains which implies $c = \triangle$. if (**) then either b = d or $b = \square$, if first we are done, if the second then $\{\square, \triangle\} = \{d, \triangle\}$ which implies $b = \square = d$, so in both case we have b = d. so we have either (2) b = d or $c = \triangle$.

So we have (1) and (2), assume that b=d from (2), now consider (1), if first case then we are done. if the second then $b=d=\square$, therefore $\{\{a,\square\},\{\square,\Delta\}\}=\{\{c,\square\},\{\square,\Delta\}\}$ which implies a=c.

Assume the second case of (2), then by first case of (1) we have $a = c = \triangle$, therefore $\{\{\triangle, \square\}, \{b, \triangle\}\} = \{\{\triangle, \square\}, \{d, \triangle\}\}$ which implies b = d.

Now consider the second case of (1), then we have $d = \square$ and $c = \triangle$ then $\{\{a, \square\}, \{b, \triangle\}\}\} = \{\{\triangle, \square\}, \{\square, \triangle\}\}\} = \{\{\square, \triangle\}\}$, then $a = \triangle = c$ and $b = \square = d$, we are done.