NOI2024 联合省选

第二试

时间: 2024 年 3 月 3 日 08:30 ~ 13:00

题目名称	迷宫守卫	重塑时光	最长待机
题目类型	传统型	传统型	传统型
目录	maze	timeline	sleep
可执行文件名	maze	timeline	sleep
输入文件名	maze.in	timeline.in	sleep.in
输出文件名	maze.out	timeline.out	sleep.out
每个测试点时限	0.5 秒	1.5 秒	2.0 秒
内存限制	512 MiB	1024 MiB	1024 MiB
测试点数目	20	20	25
测试点是否等分	是	是	是

提交源程序文件名

对于 C++ 语言	maze.cpp	timeline.cpp	sleep.cpp
-----------	----------	--------------	-----------

编译选项

对于 C++ 语言 -02 -std=c++14 -static	
----------------------------------	--

注意事项(请仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须 是 0。
- 3. 提交的程序代码文件的放置位置请参考各省的具体要求。
- 4. 因违反以上三点而出现的错误或问题,申诉时一律不予受理。
- 5. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 6. 选手提交的程序源文件必须不大于 100KB。
- 7. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 8. 全国统一评测时采用的机器配置为: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz, 内存 16GB。上述时限以此配置为准。
- 9. 只提供 Linux 格式附加样例文件。
- 10. 评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以此为准。

迷宫守卫 (maze)

【题目描述】

Alice 拥有一座迷宫,这座迷宫可以抽象成一棵拥有 2^n 个叶节点的满二叉树,总节点数目为 $(2^{n+1}-1)$,依次编号为 $1\sim (2^{n+1}-1)$ 。其中编号为 $2^n\sim (2^{n+1}-1)$ 的是叶节点,编号为 $1\sim (2^n-1)$ 的是非叶节点,且非叶节点 $1\leq u\leq (2^n-1)$ 的左儿子编号为 2u,右儿子编号为 (2u+1)。

每个非叶节点都有一个石像守卫,初始时,所有石像守卫均在沉睡。唤醒 u 点的石像守卫需要 w_u 的魔力值。

每个叶节点都有一个符文,v 点的符文记作 q_v 。保证 $q_{2^n}, q_{2^n+1}, \cdots, q_{2^{n+1}-1}$ 构成 $1 \sim 2^n$ 的排列。

探险者初始时持有空序列 Q,从节点 1 出发,按照如下规则行动:

- 到达叶节点 v 时,将 v 点的符文 q_v 添加到序列 Q 的末尾,然后返回父节点。
- 到达非叶节点 u 时:
 - 若该点的石像守卫已被唤醒,则只能先前往左儿子,(从左儿子返回后)再前往右儿子,(从右儿子返回后)最后返回父节点。
 - 若该点的石像守卫在沉睡,可以在以下二者中任选其一:
 - * 先前往左儿子, 再前往右儿子, 最后返回父节点。
 - * 先前往右儿子,再前往左儿子,最后返回父节点。

返回节点 1 时,探险结束。可以证明,探险者一定访问每个叶节点各一次,故此时 Q 的长度为 2^n 。

探险者 Bob 准备进入迷宫,他希望探险结束时的 Q 的字典序越小越好,与之相对,Alice 希望 Q 的字典序越大越好。

在 Bob 出发之前,Alice 可以选择一些魔力值花费之和不超过 K 的石像守卫,并唤醒它们。Bob 出发时,他能够知道 Alice 唤醒了哪些神像。若**双方都采取最优策略**,求序列 Q 的最终取值。

对于两个长度为 2^n 的序列 Q_1, Q_2 ,称 Q_1 字典序小于 Q_2 当且仅当以下条件成立:

- $\exists i \in [1, 2^n]$ 满足以下两个条件:
 - $\forall 1 \leq j < i, \ Q_{1,j} = Q_{2,j};$
 - $-Q_{1,i} < Q_{2,i} \circ$

【输入格式】

从文件 maze.in 中读入数据。

本题有多组测试数据。输入的第一行包含一个正整数 T,表示测试数据组数。接下来依次 T 组测试数据。对于每组测试数据:

- 第一行两个整数 n, K 表示迷宫规模和 Alice 可用于唤醒石像守卫的魔力值上限。
- 第二行 (2^n-1) 个整数 $w_1, w_2, \dots, w_{2^n-1}$ 表示唤醒各个石像守卫耗费的魔力值。
- 第三行 2^n 个整数 $q_{2^n}, q_{2^{n+1}}, \dots, q_{2^{n+1}-1}$ 表示各个叶节点上的符文。

【输出格式】

输出到文件 maze.out 中。

对于每组数据,输出一行 2^n 个整数 Q_1,Q_2,\cdots,Q_{2^n} ,表示双方都采取最优策略的情况下,序列 Q 的最终取值。

【样例1输入】

```
      1
      3

      2
      1
      0

      3
      1

      4
      2
      1

      5
      1
      1

      6
      1
      7

      2
      1

      8
      3

      9
      3
      2
      1
      2
      1

      10
      4
      2
      6
      3
      7
      1
      5
      8
```

【样例1输出】

【样例1解释】

- 第一组数据中,Alice 无法唤醒石像守卫,Bob 可以选择先访问叶节点 3,再访问叶节点 2,得 $Q = \{1, 2\}$ 。
- 第二组数据中,Alice 可以唤醒节点 1 的石像守卫,Bob 只能先访问叶节点 2,再访问叶节点 3,得 $Q = \{2,1\}$ 。
- 第三组数据中, Alice 的最优策略是唤醒节点 5,6 的石像守卫。

【样例 2】

见选手目录下的 maze/maze2.in 与 maze/maze2.ans。 该组数据满足特殊性质 A。

【样例 3】

见选手目录下的 maze/maze3.in 与 maze/maze3.ans。 该组数据满足特殊性质 B。

【样例 4】

见选手目录下的 maze/maze4.in 与 maze/maze4.ans。

【样例 5】

见选手目录下的 *maze/maze5.in* 与 *maze/maze5.ans*。

【子任务】

设 $\sum 2^n$ 表示单个测试点中所有测试数据的 2^n 的和。对于所有测试数据,保证

- $1 \le T \le 100$;
- $1 \le n \le 16$, $1 \le \sum 2^n \le 10^5$;
- $0 \le K \le 10^{12}$;
- $\forall 1 \le u \le (2^n 1)$, $0 \le w_u \le 10^{12}$;
- $q_{2^n}, q_{2^{n+1}}, \dots, q_{2^{n+1}-1}$ 构成 $1 \sim 2^n$ 的排列。

测试点编号	$n \leq$	$\sum 2^n \le$	特殊性质
$1 \sim 5$	4	80	无
6			A
$7 \sim 8$	6	200	В
$9 \sim 10$			无
11			A
$12 \sim 13$	11	4000	В
$14 \sim 15$			无
16			A
$17 \sim 18$	16	10^{5}	В
$19 \sim 20$			无

特殊性质 A: $\forall 2^n \le v \le (2^{n+1} - 1), q_v = (2^{n+1} - v).$

特殊性质 B: $\forall 1 \leq u \leq (2^n - 1)$, $w_u = 1$ 。

重塑时光(timeline)

【题目描述】

小 T 正在研究某段时间中所发生的事件。经观测,有 n 个编号为 $1 \sim n$ 的事件在 这段时间内按顺序依次发生,第 i 个发生的是事件 p_i 。这个描述事件发生顺序的排列 p 可称为这段时间的**时间线**。

突然,邪恶生物小 S 攻击了这条时间线,将这 n 个事件的发生顺序 p 变为了在所有长为 n 的排列中等概率随机选取的一个排列。不仅如此,小 S 还用剪刀把时间线剪断,通过进行 k 次操作,将排列 p 分割成了 (k+1) 段。

具体而言,在小 S 进行第 i 次操作时,排列 p 和之前所有插入的剪断点构成了一个长度为 (n+i-1) 的序列。该序列包括所有相邻元素之间和序列开头、末尾处共有 (n+i) 个插入位置。小 S 将从这些插入位置中等概率随机选取一个位置,插入一个新的剪断点。最后,小 S 从最终被插入的 k 个剪断点处把序列剪开,将排列 p 分割成了 (k+1) 段序列。这 (k+1) 段序列中可能有空序列。

为了拯救这条即将毁灭的时间线,小 T 决定把这 (k+1) 段序列按某种顺序重新拼接成一个长度为 n 的排列,形成一条新的时间线。不过,由于事件之间存在一定的逻辑关系,事件的发生时间之间也存在一些先后顺序要求。经研究,共存在 m 条先后顺序要求 (u,v),要求事件 u 的发生时间必须在事件 v 之前。也就是说,u 在时间线中的出现位置必须在 v 之前。

请你设计程序,计算有多大的概率,存在至少一种重新排列这 (k+1) 段序列,并将其重新拼接为一条新的时间线的方案,能够使所有的 m 条事件发生时间之间的先后顺序要求都得到满足。

为了避免精度误差,请你输出答案对 10^9+7 取模的结果。形式化地,可以证明答案可被表示为一最简分数 $\frac{p}{q}$,请你输出一个 x 满足 $0 \le x < 10^9+7$ 且 $qx \equiv p \mod (10^9+7)$ 。可以证明在题目条件下这样的 x 总是存在。

【输入格式】

从文件 timeline.in 中读入数据。

第一行三个整数 n, m, k,分别描述事件的个数,事件之间先后顺序的条数以及小 S 进行的剪断操作次数。

接下来 m 行,每行两个整数 u,v,表示一条事件发生时间的先后顺序要求。

【输出格式】

输出到文件 timeline.out 中。

输出一行一个整数,表示所求答案。

【样例1输入】

1 2 1 1

2 1 2

【样例1输出】

1 666666672

【样例1解释】

假如事件 1 的发生时间早于事件 2,那么无论怎样拼接都是可行方案,一定可以满足要求。否则,只有剪断时间线的位置位于事件 1 和事件 2 的发生时间之间,才能满足要求。答案为 $\frac{1}{2}+\frac{1}{2}\times\frac{1}{3}=\frac{2}{3}$ 。

【样例 2 输入】

1 3 0 2

【样例 2 输出】

1 1

【样例2解释】

没有任何事件发生时间之间的先后顺序要求,因此无论怎样拼接都是可行的方案, 答案为 1。

【样例3输入】

【样例3输出】

937500007

【样例 4】

见选手目录下的 *timeline/timeline4.in* 与 *timeline/timeline4.ans*。

【样例 5】

见选手目录下的 *timeline/timeline5.in* 与 *timeline/timeline5.ans*。 该组样例满足数据范围中的特殊性质 B。

【样例 6】

见选手目录下的 *timeline/timeline6.in* 与 *timeline/timeline6.ans*。 该组样例满足数据范围中的特殊性质 A。

【样例 7】

见选手目录下的 timeline/timeline7.in 与 timeline/timeline7.ans。

【子任务】

对于所有测试数据,

- $1 \le n \le 15$,
- $0 \le m \le \frac{n(n-1)}{2}$, $0 \le k \le n$,
- $1 \le u < v \le n$, 保证不存在两对 (u, v) 完全相同。

测试点	n	m	k	特殊性质
1	≤ 3	= n - 1	=0	В
2	≤ 5	$\leq \frac{n(n-1)}{2}$	(n	无
3, 4			$\leq n$	В
5		=n-1	=0	A
6	≤ 14			A
7		= 0		
8		$= \frac{n(n-1)}{2}$	$\leq n$	
9, 10	≤ 9	≤ 15		
11	≤ 13		=0	无
12		$\leq \frac{n(n-1)}{2}$		
$13 \sim 17$	≤ 14	$\geq \frac{1}{2}$	$\leq n$	
$18 \sim 20$	≤ 15			

特殊性质 A: 对于每个事件 x,至多存在一条先后顺序 (u,v) 使得 v=x。 特殊性质 B: 对于所有先后顺序 (u,v),均满足 u=1。

最长待机(sleep)

【题目描述】

精灵程序员小 ω 和小 \aleph 拥有无限的寿命,因此在写代码之余,它们经常玩一些对抗游戏来打发时间。尽管如此,时间还是太多,于是它们发明了一款专用于消磨时间的游戏:最长待机。

为了了解最长待机的规则,首先要了解精灵们使用的编程语言 Sleep++ 的规则:

- 程序由 n 个函数组成,第 $i(1 \le i \le n)$ 个函数具有种类 e_i 和子函数编号序列 $Q_i = (Q_{i,1}, Q_{i,2}, \dots, Q_{i,l_i})$ 。 Q_i 可以为空,此时 l_i 为 0。
- n 以及所有的 e_i 和 Q_i 可以由程序员任意给出,但它们需要满足以下所有条件:
 - -n > 1;
 - $\ \forall 1 \le i \le n, \ e_i \in \{0, 1\};$
 - ∀1 < i < n, Q_i 中元素两两不同且均为 [i+1,n] 中的整数;
 - $\forall 2 \leq j \leq n$, 恰好有一个 $Q_i (1 \leq i \leq n)$ 包含了 j。
- 调用函数 i(1 < i < n) 时,按顺序执行如下操作:
 - $若 e_i = 0$,令变量 r_i 为 1;否则程序员需要立即为 r_i 输入一个**正整数**值。
 - 若 Q_i 为空,程序等待 r_i 秒; 否则重复以下操作 r_i 次:
 - * 按顺序**调用**编号为 $Q_{i,1}, Q_{i,2}, \cdots, Q_{i,l_i}$ 的函数。
- 若一个种类为 1 的函数 i 被调用多次,则其每次调用都需要输入 r_i 。
- 我们认为,在函数调用中,除了"等待 r 秒"之外的操作不消耗任何时间,即函数调用、运行和输入都在瞬间完成。因此,一个时刻内程序员可能输入多个数。

可以证明,调用任意一个 Sleep++ 程序的任意一个函数,无论如何设定输入,消耗的时间总是有限的。

- "最长待机"的游戏规则如下:
- 小 ω 和小 🛚 准备好各自的 Sleep++ 程序并选择各自程序中的一个函数。它们互相知晓对方程序的结构以及选择的函数。
- 在时刻 0,小 ω 和小 \aleph 同时调用自己选择的函数,游戏开始。
- 在时刻 t ($t \ge 0$),双方可以看到对方在时刻 $0 \le (t-1)$ 输入的所有数字,并相应调整自己在时刻 t 输入的数字,但双方无法得知对方在时刻 t 输入的数字。
- 函数调用先结束的一方输掉游戏,另一方胜利。两个调用同时结束算作平局。

小 ω 和小 \otimes 都是绝顶聪明的,在它们眼中,如果有一方存在必胜策略,那么这局游戏是不公平的。换言之,双方都不存在必胜策略的游戏是公平的。

小 ω 写了一个n个函数的 Sleep++程序并进行了m次操作,操作有以下两种:

- 操作一: 给出 k, 将 e_k 修改为 $(1-e_k)$;
- 操作二: 给出 k,与小 \aleph 玩一局"最长待机",开始时小 ω 会调用自己的函数 k。

小 \x 信奉极简主义,它希望对于每一局游戏设计出函数个数最少的程序,使得选择其中某个函数能让这局游戏是公平的。你能帮它求出最少所需的函数个数吗?

可以证明,小 🛭 总是能设计一个程序并选择其中一个函数,使得游戏是公平的。

【输入格式】

从文件 sleep.in 中读入数据。

输入的第一行包含两个正整数 n, m,表示小 ω 的程序中函数的个数以及操作次数。接下来 n 行,第 i 行若干个整数,描述小 ω 程序中的函数 i:

- 前两个整数 e_i, l_i 表示函数种类和子函数编号序列长度;
- 接下来 l_i 个整数 $Q_{i,1}, Q_{i,2}, \cdots, Q_{i,l_i}$ 描述子函数编号序列。

接下来 m 行,第 j 行两个整数 o_j, k_j 描述一次操作,其中 $o_j=1$ 表示操作一, $o_j=2$ 表示操作二。

【输出格式】

输出到文件 sleep.out 中。

对于每个操作二输出一行一个整数,表示小 ⋈ 的程序中最少所需的函数个数。

【样例1输入】

```
1 3 6

2 0 2 2 3

3 0 0

4 0 0

5 2 1

6 1 3

7 2 1

8 1 3

9 1 2

10 2 1
```

【样例1输出】

```
    1 3
    2 3
    1
```

【样例1解释】

- 对于前两次游戏,小 Ν 可以给出与小 ω 完全一致的程序并在游戏开始时调用函数 1。可以证明不存在函数个数更少的方案。
- 对于第三次游戏,小 x 可以给出一个仅包含一个种类为 1 的函数的程序,并在游戏开始时调用函数 1。
 - 在时刻 0, 小 ω 输入其程序中的 r_2 , 小 \aleph 输入其程序中的 r_1 。
 - * 注意: r 变量在小 ω 和小 \aleph 的程序之间是独立的,不会互相影响。
 - 输入完成后, + ω 的程序在时刻 + ω 。
 - 由于两人在时刻 0 互不知道对方的决策,不能保证 $(r_2 + 1)$ 和 r_1 的大小关系,故双方均不存在必胜策略,这局游戏是公平的。

【样例 2】

见选手目录下的 sleep/sleep2.in 与 sleep/sleep2.ans。 该组数据满足特殊性质 AD。

【样例 3】

见选手目录下的 sleep/sleep3.in 与 sleep/sleep3.ans。 该组数据满足特殊性质 BD。

【样例 4】

见选手目录下的 sleep/sleep4.in 与 sleep/sleep4.ans。 该组数据满足特殊性质 D。

【样例 5】

见选手目录下的 sleep/sleep5.in 与 sleep/sleep5.ans。 该组数据满足特殊性质 C。

【子任务】

对于所有测试数据,

- $1 < n < 5 \times 10^5$, $1 < m < 2 \times 10^5$;
- $\forall 1 < i < n$, $e_i \in \{0, 1\}$, $0 < l_i < n$;
- $\forall 1 \le i \le n, 1 \le j \le l_i, i < Q_{i,j} \le n;$
- $\forall 1 \le i \le n, 1 \le p < q \le l_i, \ Q_{i,p} \ne Q_{i,q};$
- $\forall 2 \leq j \leq n$, 恰好有一个 $Q_i(1 \leq i \leq n)$ 包含了 j;

• $\forall 1 \leq j \leq m$, $1 \leq o_j \leq 2$, $1 \leq k_j \leq n$.

测试点编号	$n \leq$	$m \leq$	特殊性质
$1 \sim 2$	3	24	无
3		400	AD
4	80		BD
$5\sim6$			D
7		10^5	AD
8	3×10^5		BD
$9 \sim 10$			D
11			A
12			BC
13			В
$14 \sim 15$			С
$16 \sim 17$			无
$18 \sim 19$		2×10^5	A
20	5×10^5		BC
21			В
$22 \sim 23$			С
$24 \sim 25$			无

特殊性质 A: 保证

- 任意时刻 e₁ 均为 0;
- $\forall 2 \leq i \leq n$, $l_i \leq 1$;
- 操作二的 k 均为 1。

特殊性质 B: 保证

• 操作二的 k 满足当时的 e_k 为 1。

特殊性质 C: 保证

- $\forall 2 \leq i \leq n$, $i \in Q_{\lfloor \frac{i}{2} \rfloor}$;
- $\forall 1 \leq i \leq n$,序列 Q_i 单调递增。

特殊性质 D: 保证

- 操作二不超过 10 个;
- 操作二的 k 均为 1。