Inhaltsverzeichnis

1	Einf	führung	2
	1.1	Inhalt	2
2	Kryptologie		3
	2.1	Grundbegriffe und einfache Verfahren	3
		2.1.1 Verschlüsselung erfordert	3
		2.1.2 Beispiel für (nicht sicheres) symm. Verfahren	4
		2.1.3 Prinzip von Kerkhoffs (1835-1903)	4
3	One	-Time-Pad und perfekte Sicherheit	6
	3.1	One-Time-Pad	6
	3.2	Perfekte Sicherheit	7
4	Sym	nmetrische Blockchiffre	8
	4.1	Blockchiffre	8
5	Affi	n-lineare Chiffre	9
	5.1	Vorbemerkung	9
		5.1.1 $n \times m$ -Matrix	9
		5.1.2 Quadritsche Matrix $(n \times n)$	10
	5.2	Affin-lineare Chiffren	10
6	Der	Advanced Encryption Standard (AES)	13
	6.1	Mathematische Methoden gebraucht fuer AES	13
	6.2	SubBytes-Transfer	14
	6.3	Shift Rows Transformation	15
	6.4	Mix Columns Transformation	15
	6.5	Schlüsselerzeugung	15
7	Seci	ret Sharing	17
	7.1	(k,n) - Schwellenwertsysteme	17
		7.1.1 Konstruktion	17
		7.1.2 Verteilung der Teilgeheimnisse	17
		7.1.3 Rekonstruktion(sversuch) des Geheimnisses	18

Einführung

1.1 Inhalt

Übertragung (Speicherung) von Daten: Schutz vor:

- zufälligen oder systematischen (physikalischen bedingten) Störungen
- Abhören, absichtliche Veränderung von Dritten (Kryptologie / Verschlüsselung)

Kryptologie:

- symmetrische Verfahren
- asymmetrische Verfahren (Public-Key Verfahren)
- Authentifizierung
- Signaturen

Codierungstheorie

- Fehlererkennung und Fehlerkorrektur
- lineare Blockcodes
- Decodierverfahren

Kryptologie

2.1 Grundbegriffe und einfache Verfahren

Abbildung 2.1: Schaubild der Kryptologie

2.1.1 Verschlüsselung erfordert

- Verschlüsselungsverfahren, Algorithmus (Funktion)
- Schlüssel k_e (encryption key)

 $E(m, k_e) = c$ E=Verschl.Fkt., m=Klartext, c=Chiffretext $E(m_1, k_e) \neq E(m, k_e)$ für $m_1 \neq m_2$ $D(c, k_d) = m$ (k_d zu k_e gehöriger Dechiffrierschlüssel!)

 $k_d = k_e$ (oder k_d leicht aus k_e zu berechnen): <u>symmetrisches Verschl.verf.</u>, ansonsten <u>asymm. Verschl.verf.</u>. Ist k_d nur sehr schwer (oder garnicht) zu k_e berechenbar, so kann k_e veröffentl. werden: Public-Key-Verfahren.

2.1.2 Beispiel für (nicht sicheres) symm. Verfahren

- a) $R = S = \{0, 1, ..., 25\}$ Verfahren: Verschiebechiffre Schlüssel: $i \in \{0, 1, ..., 25\}$ Verfahren $x \in \mathbb{R} \longrightarrow x + i \mod 26 = y$ $y \longmapsto y - i \mod 26 = y$
 - $m = x_1...x_2 \longrightarrow c = (x_1 + i \mod 26)...(x_n + i \mod 26), E(m, i)$ Unsicher, weil Schlüsselmenge klein ist (Brute Force Angriff).

b) R,S, Schlüsselmenge=Menge aller Permutationen von $\{1, ..., 25\} = S_{26}$ Verschl.: Wähle Permuation π

$$x \in \mathbb{R} \longrightarrow \pi(x) = y$$
Entschl.: $y \longrightarrow \pi^{-1}(y) = x$

$$m = x_1 \dots x_r \to c = \pi(x_1) \dots \pi(x_r)$$

$$\begin{pmatrix} 0 & 1 & 2 & \dots & 25 \\ 3 & 17 & 4 & \dots & 13 \end{pmatrix} \longrightarrow \pi(0) = 3, \text{ u.s.w.}$$

Anzahl der Permutationen: $|S_{26}| = 26! \approx 4 \cdot 10^{26} \longrightarrow \text{Brute-Force Angriff}$ nicht mehr möglich!

Warum? Man muss im Schnitt 50% der Permutationen testen. Angenommen man könnte 10¹2 Perm. pro Sekunde testen.

Aufwand: $2 \cdot 10^{14}$ Sekunden $\approx 6.000.000$ Jahre

Trotzdem unsicher!

Grund: Charakteristiches Häufigkeitsverteilung von Buchstaben in natürlichspr. Texten.

Verfahren beinhalten viele Verschlüsselungsmöglichkeiten, abhängig von der Auswahl des Schlüssels.

Verfahren bekannt, aber Schlüssel k_d geheim!

2.1.3 Prinzip von Kerkhoffs (1835-1903)

Sicherheit eines Verschlüsselungsverfahren darf nicht von der Geheimhaltung des Verfahrens, sondern nur von der Geheimhaltung des verwendeten Schlüssels abhängen!

Kryptologie besteht aus Kryptographie (Entwurf) und der Kryptoanalyse (Angriff). Angriffserfolge:

- Schlüssel k_d wird gefunden
- Eine zu der Dechiffrierfunktion $D(\cdot, k_d)$ äquivalente Funktion finden ohne Kenntnis von k_d
- gewisste Chiffretexte werden entschlüsselt

Arten von Angriffen

- Ciphertext-Only Angriff
- Known-Plaintext Angriff
- Chosen-Plaintext Angriff
- Chosen-Ciphertext Angriff

One-Time-Pad und perfekte Sicherheit

```
Lauftextverschlüsselung Alphabet \mathbb{Z}_k = \{0, 1, \dots, k-1\} In \mathbb{Z}_k kann man addieren und multiplizieren mit mod \, k. Klartext x_1, x_2, \dots, x_n Schlüsselwort k_1, k_2, \dots, k_n x_1 + k_1 \, mod \, k, x_n + k_n \, mod \, k \leftarrow \text{Chiffretext} Mit natürlichsprachlichen Texten ist das Verfahren unsicher. \mathbb{Z}_2 = \{0, 1\}, 1 \oplus 1 = 0 = 0 \oplus 0, 0 \oplus 1 = 1 = 1 \oplus 0 \Rightarrow XOR Klartext in \mathbb{Z}_2^n = \{(x_1, \dots, x_n) : x_i \in \mathbb{Z}_2\} Schlüssel: Zufallsfolge über \mathbb{Z}_2 der Länge n. m Klartext, k Zufallsfolge (beide Länge n) c = m \oplus k, (x_1, \dots, x_n) \oplus (k_1, \dots, k_n) := (x_1 \oplus k_1, \dots, x_n \oplus k_n)
```

3.1 One-Time-Pad

Schlüssel k darf nur einmal verwendet werden!

$$m_1 \oplus k = c_1, m_2 \oplus k = c_2, c_1 \oplus c_2 = m_1 \oplus k \oplus m_2 \oplus k = m_1 \oplus m_2$$

Wieder nur Lauftext → unsicher!

 m_1 und m_2 lässt sich ermitteln.

Zufallsfolge der Länge n: eigentlich unsinniger Begriff. Da jedes Bit unabhängig von anderen mit Wahrscheinlichkeit $\frac{1}{2}$ erzeugt wird (Output einer binär symmetrischen Quelle)

Jede Folge der Länge n ist gleich wahrscheinlich (Wahrscheinlichkeit $\frac{1}{2}n$ One-Time-Pad ist perfekt sicher.

3.2 Perfekte Sicherheit

Ein Verschlüsselungsverfahren ist perfekt sicher, falls gilt: Für jeden Klartext m und jedem Chiffretext c (der festen Länge n)

pr(m|c) = pr(m)

 $pr(m|c) \rightarrow$ A-posteriori-Wahrscheinlichkeit (Wahrscheinlichkeit, dass m Klartext, wenn c empfangen wurde)

 $pr(m) \rightarrow A$ -priori-Wahrscheinlichkeit

Beispiel: Substitutionschiffre aus Kapitel 2.

n = 5, m = HALLO, pr(m) > 0

Ang:c = QITUA wird empfangen, $LL \neq TU \rightarrow pr(m|c) = 0$

nicht perfekt sicher.

One-Time-Pad ist perfekt sicher.

(Bayes'sche Formel) $m \oplus k$

Jede Folge c lässt sich mit geeignetem k in der Form $c = m \oplus k$ erhalten.

Wähle $k = m \oplus c, m \oplus k = m \oplus m \oplus c = c$

Bei gegebenem m und zufällige gewählten Schlüssel k ist jeder Chiffretext gleichwertig.

Symmetrische Blockchiffre

4.1 Blockchiffre

Zerlege Klartext in Blöcke (Strings) der Länge *n*. Jeder Block wird einzeln verschlüsselt (in der Regel wieder in einem Block der Länge *n*). Gleiche Blöcke werden gleich verschlüsselt.

Wieviele Blockchiffren der Länge n gibt es?

Alphabet
$$\mathbb{Z}_2 = \{0, 1\}$$

$$|\{(0,\ldots,0),(0,\ldots,1),\ldots,(1,\ldots,1)\}|=2^n$$

Block

Blockchiffre = Permuation der 2^n Blöcke.

 $(2^n)!$ Blockchiffre

Wenn alle verwendet werden:

Schlüssel = Permuation der 2^n Blöcke

$$(x_{1,1},\ldots,x_{1,n},x_{2,1},\ldots,x_{2,n},\ldots)$$
 $n \cdot 2^n$ Bit

Zur Speicherung eines Schlüssels werden $n \cdot 2^n$ Bit benötigt.

Zum Beispiel:

$$n = 64, 64 \cdot 2^{64} = 2^{70} \approx 1$$
 ZetaByte ≈ 1 Milliarde Festplatten à 1 TB

Illusional!

Konsequenz: Verwende Verfahren, wo nur ein kleiner Teil der Permutation als Schlüssel verwendet wird und so sich die Schlüssel dann in kürzerer Fom darstellt.

Affin-lineare Chiffre

5.1 Vorbemerkung

5.1.1 $n \times m$ -Matrix

$$\begin{pmatrix} a_{11} & \dots & a_{1m} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nm} \end{pmatrix}$$

 $1 \times n = \text{Zeilenvektor} = (a_1, \dots, a_m)$

$$n \times 1 = \text{Spaltenvektor} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

z.B. $a_{ij} \in \mathbb{R}$, $a_{ij} \in \mathbb{Z}$ oder $a_{ij} \in R$, R Ring $n \times m$ -Matrix A,B

$$\begin{pmatrix} a_{11} & \dots & a_{1m} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nm} \end{pmatrix} + \begin{pmatrix} b_{11} & \dots & b_{1m} \\ \vdots & & \vdots \\ b_{n1} & \dots & b_{nm} \end{pmatrix} := \begin{pmatrix} a_{11} + b_{11} & \dots & a_{1m} + b_{1m} \\ \vdots & & \vdots \\ a_{n1} + b_{n1} & \dots & a_{nm} + b_{nm} \end{pmatrix}$$

$$A = n \times m, B = m \times k,$$

$$A \cdot B \begin{pmatrix} c_{1l} & \dots & c_{1k} \\ \vdots & & \vdots \\ c_{m1} & \dots & c_{mk} \end{pmatrix} = n \times k$$

$$c_{1l} = (a_{i1} \cdot b_{ij}) + (a_{i2} \cdot b_{2j}) + \ldots + (a_{im} \cdot b_{mj})$$

$$(A+B)\cdot C = A\cdot B + B\cot C$$

Im Allgemeinem: $A \cdot B \neq B \cdot A$

5.1.2 Quadritsche Matrix $(n \times n)$

$$E_n = \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix}$$

$$A = n \times n$$
, $A \cdot E_n = E_n \cdot A = A$

 $A n \times n$ -Matrix über kommutativen Ring R mit Eins.

Wann existiert Matrix A^{-1} (Inverse Matrix) mit $A^{-1} \cdot A = A \cdot A^{-1} = E_n$?

 $det(A) \in R$ Determinante von A

$$2 \times 2$$
-Matrix $det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{21} \end{pmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$
A hostitat inverse Matrix A det A in B oin inverse

A besitzt inverse Matrix $\Leftrightarrow det(A)$ in R ein inverses besitzt

(z.B. R Körper, $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}_p$, $det(A) \neq 0$

$$A^{-1} = \begin{pmatrix} \frac{1}{det(A)} \cdot b_{11} & \dots & \frac{1}{det(A)} \cdot b_{1m} \\ \vdots & & \vdots \\ \frac{1}{det(A)} \cdot b_{n1} & \dots & \frac{1}{det(A)} \cdot b_{nm} \end{pmatrix}$$

 $A_{ji} = (n-1) \times (n-1)$ -Matrix, die aus A durchstreichen der j-ten Zeile und i-ten

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} A^{-1} = \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$

$$R = \mathbb{Z}_k \{0, 1, \dots, k\}$$

Addition und Multiplikation in $\mathbb{Z}_k(\oplus, \odot)$

normale Add. und Mult. mit mod k

5.2 Affin-lineare Chiffren

Klartextalphabet = Chiffretextalphabet = \mathbb{Z}_k (k = 2, k = 26)

Wähle $n \times n$ -Matrix A über \mathbb{Z}_k und Zeilenvektor b der Länge n über \mathbb{Z}_k . Dies wird der Schlüssel sein für die Chiffrierung.

Blockchiffre der Länge n. Block = Zeilenvektor der Länge n über \mathbb{Z}_k . Klartextblock v

Chiffretextblock $v \cdot A + b =: w$

 $v \rightarrow v \cdot A + b =: w \cdot w - b = v \cdot A$ benötigen: A^{-1} existiert (d.h. ggT(det(A), k) = 1)

Dechiffrierung: $(w - b) \cdot A^{-1} = v \cdot A \cdot A^{-1} = v \cdot E_n = v$

(wenn immer b=0 gewählt wird, dann lineare Chiffren, Hill-Chiffren)

Beispiel:

$$A = \begin{pmatrix} 1 & 3 \\ 3 & 2 \end{pmatrix} \mathbb{Z}_6$$

Blockchiffre der Länge $n \det(A) = 1 \cdot 2 - 3 \cdot 3 = -7 = 5$ inverse in \mathbb{Z}_6

$$\frac{1}{det(A)} = det(A)^{-1} = 5$$

$$A^{-1} = 5 \cdot \begin{pmatrix} 2 & -3 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} 10 & -15 \\ -15 & 5 \end{pmatrix} = \begin{pmatrix} 4 & 3 \\ 3 & 5 \end{pmatrix}$$

Test:

$$A \cdot A^{-1} = \begin{pmatrix} 1 & 3 \\ 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 4 & 3 \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} 4+9 & 3+15 \\ 12+6 & 9+10 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Verschlüsselung:

Schlüssel: $A = \begin{pmatrix} 1 & 3 \\ 3 & 2 \end{pmatrix} b = (3, 5)$

Klartextblock: (1, 2)

Chiffretextblock:

$$w = (1,2) \cdot \begin{pmatrix} 1 & 3 \\ 3 & 2 \end{pmatrix} + (3,5) = (1,1) + (3,5) = (4,0)$$

Entschlüsselung:

$$(w-b) \cdot A^{-1} = (1,1) \cdot \begin{pmatrix} 4 & 3 \\ 3 & 5 \end{pmatrix} = (1,2)$$

 $\mathbb{Z}_2: n^2 + n$ Bit zur Speicherung eines Schlüssels.

Wieviele inverse Matrizen über \mathbb{Z}_2 mit n = 64?

$$(2^{64} - 1) \cdot (2^{64} - 2) \cdot \dots \cdot (2^{64} - 2^{63}) \approx 0.29 \cdot 2^{4096}$$

Verfahren ist unsicher gegenüber Known-Plaintext-Angriffe.

(A, b) Schlüssel, A inverse $n \times n$ -Matrix über $\mathbb{Z}_k, b \in \mathbb{Z}_k^n$

Angenommen Angreifer kennt n+1 Klartext/Chiffretextpaare verschlüsselt mit $(A, b), v_0, v_1, \dots, v_n, w_0, \dots, w_n$

Dann kann er haufig (A, b) bestimmen.

$$V = \begin{pmatrix} v_1 - v_0 \\ v_2 - v_0 \\ \vdots \\ v_n - v_0 \end{pmatrix} n \times n\text{-Matrix}$$

Angenommen: V ist invertierbar. Setze $W = \begin{pmatrix} w_1 - w_0 \\ \vdots \\ w_n - w_0 \end{pmatrix}$

$$V \cdot A = \begin{pmatrix} (v_1 - v_0) \cdot A \\ \vdots \\ (v_n - v_0) \cdot A \end{pmatrix} = \begin{pmatrix} v_1 \cdot A + b - v_0 \cdot A + b \\ \vdots \\ v_n \cdot A + b - v_0 \cdot A + b \end{pmatrix} = \begin{pmatrix} w_1 - w_0 \\ \vdots \\ w_n - w_0 \end{pmatrix} = W$$

 $V \cdot A$ bekannt, also auch V^{-1} :

$$A = V^{-1} \cdot w$$

 $b = w_0 - v_0 \cdot A$
Beispiel: $n = 2, k = 25 \{A, \dots, Z\} = \{0, \dots, 25\}$

$$V = \begin{pmatrix} 10 & -3 \\ 11 & 15 \end{pmatrix} = \begin{pmatrix} 10 & 23 \\ 11 & 15 \end{pmatrix}, \ W = \begin{pmatrix} 14 & 7 \\ 21 & 2 \end{pmatrix}$$

$$det(V) = 10 \cdot 15 + 33 = 183 \equiv 1 \pmod{26}$$

$$V^{-1} = \begin{pmatrix} 15 & 3 \\ -11 & 10 \end{pmatrix} = \begin{pmatrix} 15 & 3 \\ 15 & 10 \end{pmatrix}$$

$$A = V^{-1} \cdot W = \begin{pmatrix} 15 & 3 \\ 15 & 10 \end{pmatrix} \cdot \begin{pmatrix} 14 & 7 \\ 21 & 2 \end{pmatrix} = \begin{pmatrix} 210 + 63 & 105 + 6 \\ 210 + 210 & 105 + 20 \end{pmatrix} = \begin{pmatrix} 13 & 7 \\ 4 & 21 \end{pmatrix}$$

$$b = w_0 - v_0 \cdot A = (13, 4) - (7, 4) \cdot \begin{pmatrix} 13 & 7 \\ 4 & 21 \end{pmatrix} = (10, 1)$$

Test:

$$v_1 \cdot A + b = w_1, v_2 \cdot A + b = w_2$$

Der Advanced Encryption Standard (AES)

6.1 Mathematische Methoden gebraucht fuer AES

Seit 70er Jahren gab es DES (Blocklänge 64 Bit, Schlüssellänge 56 Bit)

Nachfolger des DES: Daemen, Rijmen (Belgier) Rijndael-Verfahren → AES (2002 FIPS 197)

Iterierte Blockchiffre

Version mit 128 Bit Block und Schlüsselänge.

<BILD VON EINER RUNDE VON AES KOMMT HIER HIN>

Vorbemerkung: 128-Bit Blöcke werden dargestellt als:

$$\begin{pmatrix} a_{01} & a_{02} & \dots & a_{03} \\ a_{10} & a_{11} & \dots & a_{13} \\ \vdots & \vdots & \vdots & \vdots \\ a_{30} & \dots & \dots & a_{33} \end{pmatrix}$$

Jedes a_{ij} = Byte

128er Block $\stackrel{\wedge}{=} a_{00}a_{10}a_{20} \dots a_{01}a_{11} \dots a_{33}$ (spaltenweise gelesen)

endlicher Körper: einfachste Möglichkeit \mathbb{Z}_p (p Primzahl) \mathbb{F}_{2^8} Körper mit $2^8=256$ Elementen

Menge: Polynome vom Grad < 8 über \mathbb{Z}_2

$$b_7 x^7 + \ldots + b_1 x + b_0, b_i \in \mathbb{Z}_2$$

 (b_7, b_6, \dots, b_0) Byte

Addition = normale Addition von Polynomen Multiplikation = normale Multiplikation von Polynomen + Reduktion modulo irreduzibler Polynom vom Grad 8. $(x^8 + x^4 + x^3 + x + 1)$

Bsp.

$$(x^7 + x + 1) \odot (x^3 + x) = x^{10} + x^8 + x^4 + x^3 + x^2 + x$$

$$x^{10} + x^8 + x^4 + x^3 + x^2 + x \mod x^8 + x^4 + x^3 + x + 1$$

$$x^{10} + x^8 + x^4 + x^3 + x^2 + x \div x^8 + x^4 + x^3 + x + 1 = x^2 + 1$$

$$x^{10} + x^6 + x^5 + x^3 + x^2$$

$$x^8 + x^6 + x^5 + x^4 + x$$

$$x^8 + x^4 + x^3 + x + 1$$

$$x^6 + x^5 + x^3 + 1 \leftarrow$$

$$(x^7 + x + 1) \odot (x^3 + x) = x^6 + x^5 + x^3 + 1$$

In \mathbb{F}_{2^8} hat jedes Element $\neq 0$ ein Inverses bzgl. \odot : $g \neq 0.Ex.g^{-1} \in \mathbb{F}_{2^8} : g \odot g^{-1} = 1$

Erweiterte Euklid. Algo. für Polynome:

$$g \neq 0$$
 (Grad ≤ 7) $h = x^8 + x^4 + x^3 + x + 1$ irred. $ggT(g, h) = 1$

EEA:
$$u, v \in \mathbb{Z}_2[x] : u \cdot g + v \cdot h = 1$$

 $u \mod h =: g^{-1}$
 $g^{-1} \odot g = ((u \mod h) \cdot g) \mod h = u \cdot g \mod h = (1 - vh) \mod h = 1 \mod h = 1$

6.2 SubBytes-Transfer

$$S_{i-1} = \begin{pmatrix} a_{01} & a_{02} & \dots & a_{03} \\ a_{10} & a_{11} & \dots & a_{13} \\ \vdots & \vdots & \vdots & \vdots \\ a_{30} & \dots & \dots & a_{33} \end{pmatrix}, a_{ij} \text{ Bytes}$$

Sei g eines dieser Bytes, $g = (b_7b_6 \dots b_0), b_i \in \mathbb{Z}_2$

- 1. Schritt: Fasse g als Element in \mathbb{F}_{2^8} auf. Ist g = (0, ..., 0), so lasse g unverändert. Ist $g \neq (0, ..., 0)$, so ersetzte g durch g^{-1} .
- 2. Schritt: Ergebnis nach Schritt 1: \tilde{g} wird folgenderm. Transformiert $\tilde{g} \cdot A + b = \tilde{\tilde{g}}$ (affin-lin. Transformation) (\tilde{g} : g-schlange, $\tilde{\tilde{g}}$:g-doppel-schlange)

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ & & & & & & & \end{pmatrix} \rightarrow \text{zykl. Shift der vorherigen Zeile um 1 Stel-}$$

le nach rechts.

$$b = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

Shritt 1 und 2 werden kombiniert, nicht jedes mal berechnet. Alle möglichen Shifts (2^8 viele) sind in einer 16x16 Matrix und wird per Table-Lookup nachgeschlagen. $g = (b_7b_6b_5b_4b_3b_2b_1b_0)$ $b_7b_6b_5b_4 = 0$ bis 15 (Zeile) $b_3b_2b_1b_0$ (Spalte)

6.3 Shift Rows Transformation

6.4 Mix Columns Transformation

4x4-Matrix, Einträge als Elemente in \mathbb{F}_{2^8} auffassen.

Multiplikation von links mit Matrix (Mult. der Eintr. in
$$\mathbb{F}_{2^8}$$
) :
$$\begin{pmatrix} x & x+1 & 1 & 1 \\ 1 & x & x+1 & 1 \\ 1 & 1 & x & x+1 \\ x+1 & 1 & 1 & x \end{pmatrix}$$
$$x \stackrel{\triangle}{=} \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

6.5 Schlüsselerzeugung

Ausgangsschlüssel hat 128 Bit. (16er String in Hexcode)

Schreibe als 4x4-Matrix von Bytes. 4 Spalten w(0), w(1), w(2), w(4). Definiere weitere 40 Spalten à 4 Bytes.

$$w(i-1)$$
 sei schon definiert.
 $4 \nmid i : w(i) := w(i-4) \oplus w(i-1)$ (byteweise XOR)
 $4 \mid i : w(i) := w(i-4) \oplus T(w(i-1))$ (T Transformation)
T?
 $w(i-1) = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}, \ a, \dots, dBytes$

Wende auf
$$b,c,d,a$$
 SubBytes-Transformation an $\to e,f,g,h$ $(b\to e)$ $r(i)=\begin{pmatrix}0&0&0&0&0&1&0\end{pmatrix}^{\frac{(i-4)}{4}}$ Potenz. in \mathbb{F}_{2^8}

$$T(w(i-1)) = \begin{pmatrix} e \oplus r(i) \\ f \\ g \\ h \end{pmatrix}$$

Rundenschlüssel K_i : 4x4-Matrix mit Spalten w(4i), w(4i+1), w(4i+2), w(4i+3)

(Nebenbemerkung: Linear heisst f(x + y) = f(x) + f(y))

Secret Sharing

Geheimnis wird auf mehrere Teilnehmer verteilt (Teilgeheimnisse), so dass gewisse Teilmengen der Teilnehmer das Geheimnis mit ihren Teilgeheimnissen rekonstruieren können, die anderen nicht.

$$T = \{t_1, \dots, t_n\}, k < n \pmod{\text{Teilnehmer}}$$

Jede Teilmenge von T mit mindestens k Teilnehmer sollen Geheimnis rekonstruieren können, Teilmengen von T mit weniger als k Teilnehmer nicht.

7.1 (k, n) - Schwellenwertsysteme

1979 Shamir (How to share a secret)

7.1.1 Konstruktion

Vereinbarung von großer Primzahl p, mindestens $p \ge n + 1$

$$g \in \mathbb{Z}_p = \{0, \dots, p-1\}$$

7.1.2 Verteilung der Teilgeheimnisse

Dealer wählt zufällig
$$a_1, \ldots, a_{k-1} \in \mathbb{Z}_p, a_{k-1} \neq 0, k$$
 = Schwelle $f(x) = g + a_1x + \ldots + a_{k-1}x^{k-1} \in \mathbb{Z}_p[x]$ $(a_1, \ldots, a_{k-1} \text{ hält er geheim, natürlich auch g})$

Dealer wählt zufällig $x_1, \ldots, x_n \in \mathbb{Z}_p$ (paarweise verschieden). Teilnehmer t_i erhält als Teilgeheimnis $(x_i, f(x_i))$ (Punkt auf Polynom) Bei x = 0 hast du g.

7.1.3 Rekonstruktion(sversuch) des Geheimnisses

k Teilnehmer $(x_{i_1}, f(x_{i_1})), \dots, (x_{i_k}, f(x_{i_k}))$

Durch diese Punkte ist f eindeutig bestimmt, z.B. durch Lagrange-Interpol.:

$$f(x_{i_i}) = g_{i_i}$$

$$f(x) = \sum_{j=1}^{k} g_{i_j} \cdot \frac{(x - x_{i_1}), \dots, (x - x_{i_{j-1}})(x - x_{i_{j+1}}), \dots, (x - x_{i_k})}{(x_{i_j} - x_{i_1}), \dots, (x_{i_j} - x_{i_{j-1}})(x_{i_j} - x_{i_{j+1}}), \dots, ((x_{i_j} - x_{i_k})}$$

$$f(0) = g$$

$$g = \sum_{j=1}^{k} g_{i_j} \prod_{l=j} \frac{x_{i_l}}{(x_{i_l} - x_{i_j})}$$
Rei mehr als k Tailnehmer selbe Ergebnis

Bei mehr als k Teilnehmer selbe Ergebnis.

Weniger als k Teilnehmer (k'): Anderes Polynom wegen weniger Punkte, also warscheinlich anderer g.

Erzeugen Polynom vom Grad $\leq k' - 1$

Für alle $k \in \mathbb{Z}_p$ existiert gleich viele Polynome vom Grad $\leq k'-1$ durch die vorgegebene k' Punkte, die bei h durch y-Achse gehen.