## Modelos de Computação CC1004

2015/2016

Exame – 04.07.2016

| duração: | 3h |
|----------|----|
|          |    |

|               |                                                                       |                        |                                                                                                                                      | _ |
|---------------|-----------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---|
| N.º           | Nome                                                                  |                        |                                                                                                                                      |   |
|               | Seja $L$ a linguagem de alfabetero ímpar de a's antes do b m          |                        | tituída pelas palavras que têm ab como subpalavra a                                                                                  | e |
|               | spresente as regras de uma GI $_{ m al}$ $K$ . Explique sucintamente, |                        | o seja linear à direita nem à esquerda e tenha símbolo ão de ${\cal L}.$                                                             | 0 |
|               |                                                                       |                        |                                                                                                                                      |   |
| <b>b</b> ) In | ndique uma expressão regular (                                        | (abreviada) que descre | creva L.                                                                                                                             | _ |
|               | esenhe o diagrama do AFD m<br>expressão regular (abreviada)           |                        | ce $L$ e descreva $\mathcal{L}_s = \{x \mid x \in \Sigma^* \text{ e } \hat{\delta}(s_0, x) = s\}$ pos, sendo $s_0$ o estado inicial. | r |
|               |                                                                       |                        |                                                                                                                                      |   |
| <b>d</b> ) U  | Jsando o corolário do Teorema                                         | a de Myhill-Nerode, p  | e, prove a correção do AFD que apresentou em <b>1c</b> ).                                                                            |   |
|               |                                                                       |                        |                                                                                                                                      |   |

| N.º  |                                             | Nome                           |                                                                                                                                                              |
|------|---------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Sejam $r = (((aa)^*) + Apresente uma GIC n$ |                                | $((aa) + (bb))^*)$ expressões regulares sobre $\Sigma = \{a, b\}$ .<br>$\mathcal{L}(r)$ . <b>b)</b> Apresente uma GIC não ambígua gere $\mathcal{L}(s)$ .    |
| c) ] | Desenhe o AFD mínii                         | mo que aceita $\mathcal{L}(r)$ | ). <b>d</b> ) Desenhe o AFD mínimo que aceita $\Sigma^{\star} \setminus \mathcal{L}(s)$ .                                                                    |
|      |                                             |                                | utómatos finitos que resultam da aplicação do método de Thomp-<br>a construção dada nas aulas.                                                               |
|      |                                             |                                |                                                                                                                                                              |
|      |                                             |                                | um AFD que reconhece $L$ . Apresente a prova de que $\mathcal{C}_x \subseteq [x]$ , de equivalência de $x$ para a relação $R_A$ e $R_L$ definidas nas aulas. |
|      |                                             |                                |                                                                                                                                                              |
|      |                                             |                                |                                                                                                                                                              |

(Continua)

## Resolva apenas um dos problemas 4. e 5.

**4.** Desenhe o diagrama de transição do AFD equivalente ao AFND representado à esquerda que resulta da aplicação do método de conversão (baseado em subconjuntos). Os estados devem ser **obrigatoriamente** designados por subconjuntos. Crie apenas os que são acessíveis do estado inicial.



**5.** Considere novamente o AFND representado em **4.** Suponha que se aplica o método de eliminação de estados e que na fase de eliminação se começa por remover  $s_2$  e a seguir  $s_1$ . Apresente o diagrama após a remoção de  $s_2$  e de  $s_1$  (não simplifique as expressões intermédias).



**6.** Considere a GIC  $G = (\{A, B\}, \{a, b, c\}, P, A)$ , com P dado por:

$$A \rightarrow AcA \mid cB$$

$$B \ o \ {
m aa} B \ | \ {
m aa} B {
m b} \ | \ {
m aa} \ | \ {
m b} \ | \ arepsilon$$

**b)** Indique a forma das palavras de  $\{A, B, a, b, c\}^*$  que se podem derivar a partir de B em G, numa derivação com n passos, para  $n \ge 1$ , se a regra  $B \to aaB$  for aplicada k vezes, com  $0 \le k \le n$ . Explique.

| 3 | 1 | , I | <u> </u> | C | 1 | , | <br>1 1 |
|---|---|-----|----------|---|---|---|---------|
|   |   | •   |          | • |   |   |         |
|   |   |     |          |   |   |   |         |
|   |   |     |          |   |   |   |         |
|   |   |     |          |   |   |   |         |
|   |   |     |          |   |   |   |         |
|   |   |     |          |   |   |   |         |
|   |   |     |          |   |   |   |         |
|   |   |     |          |   |   |   |         |
|   |   |     |          |   |   |   |         |
|   |   |     |          |   |   |   |         |
|   |   |     |          |   |   |   |         |

| N.º          |                                  | Nome                |                                                                               |
|--------------|----------------------------------|---------------------|-------------------------------------------------------------------------------|
|              | Indique uma GIC $G'$ n           |                     | <b>d</b> ) Prove que $cbccb \in \mathcal{L}(G')$ , aplicando o algoritmo CYK. |
| de (         | Chomsky tal que $\mathcal{L}(G)$ | $\mathcal{L}(G')$ . |                                                                               |
|              |                                  |                     |                                                                               |
|              |                                  |                     |                                                                               |
|              |                                  |                     |                                                                               |
|              |                                  |                     |                                                                               |
|              |                                  |                     |                                                                               |
|              |                                  |                     |                                                                               |
|              |                                  |                     |                                                                               |
|              |                                  |                     |                                                                               |
|              |                                  |                     |                                                                               |
|              |                                  |                     |                                                                               |
| e) l         | Explique em detalhe o            | como se obtém a     | a primeira e a última linha da tabela que apresentou em 6d).                  |
|              |                                  |                     |                                                                               |
|              |                                  |                     |                                                                               |
|              |                                  |                     |                                                                               |
|              |                                  |                     |                                                                               |
|              |                                  |                     |                                                                               |
|              |                                  |                     |                                                                               |
| <b>f</b> ) I | Prove que $G$ é ambígu           | <br>ıa.             | g) Use o teorema de Myhill-Nerode ou o lema da repetição. para                |
|              | 1 0                              |                     | mostrar que $\mathcal{L}(G)$ não é regular.                                   |
|              |                                  |                     |                                                                               |
|              |                                  |                     |                                                                               |
|              |                                  |                     |                                                                               |
|              |                                  |                     |                                                                               |
|              |                                  |                     |                                                                               |
|              |                                  |                     |                                                                               |
|              |                                  |                     |                                                                               |
|              |                                  |                     |                                                                               |
|              |                                  |                     |                                                                               |
| D            | •                                |                     | Ľ.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                        |

## Resolva apenas uma das alíneas seguintes

- **h)** Prove que a linguagem  $\mathcal{L}(G)$  não é ambígua. Justifique sucintamente a correção da resposta.
- i) Apresente um autómato de pilha que reconheça  $\mathcal{L}(G)$  por pilha vazia. Justifique sucintamente a correção.

Use o verso da folha para responder à questão.