MAT346 - Analyse II Donné par Mario Lambert

Julien Houle

Automne 2025

Table des matières

1	Intégration	2
	1 Intégrales de Riemann	2
	Critère d'intégrabilité	4
	Inégalité du triangle	7
	Théorème de Darboux	9
	Loi de la moyenne	11
	Théorème fondamental du calcul différentiel et intégral	12

Chapitre 1 Intégration

Section 1.1 Intégrales de Riemann

Notation.

 $\mathcal{B}[c,d] = \{f : [a,b] \to \mathbb{R} | f \text{ est born\'ee} \}.$

 $\mathcal{R}[a,b] = \{f : [a,b] \to \mathbb{R} | f \text{ est bornée et intégrable} \}.$

 $\mathcal{C}[a,b] = \{f : [a,b] \to \mathbb{R} | f \text{ est born\'ee et continue} \}.$

On suppose nos fonctions bornées.

Définition.

a) Une partition de [a, b] est un ensemble fini de points $\Delta = \{x_0, x_1, \dots, x_n\} \subseteq [a, b]$ t.q. $a = x_0 < x_1 < x_2 < x_1 < x_2 < x_2$ $\ldots < x_{n-1} < x_n = b.$

b) L'ensemble des partitions de [a, b] est $\Omega[a, b]$.

c) On dit Δ' est plus fine que Δ , noté $\Delta' \geq \Delta$, si $\Delta' \supseteq \Delta$.

d) Raffinement commun de Δ_1 et Δ_2 , noté $\Delta_1 \vee \Delta_2$, est la partition de [a,b] formée de $\Delta_1 \cup \Delta_2$ ordonnés.

e) La norme de Δ , notée $\|\Delta\|$, est $\|\Delta\| = \max_{i=1}^n |x_i - x_{i-1}|$.

f)

$$\overline{M}(f, [x_{i-1}, x_1]) = \sup_{x \in [x_{i-1}, x_1]} f(x)$$

$$\underline{M}(f, [x_{i-1}, x_1]) = \inf_{x \in [x_{i-1}, x_1]} f(x)$$

$$\underline{M}(f, [x_{i-1}, x_1]) = \inf_{x \in [x_{i-1}, x_1]} f(x)$$

Remarque.

$$||x|| \ge 0$$

$$||\lambda x|| = |\lambda| ||x||$$

$$||x + y|| = ||x|| + ||y||$$

Définition.

a) La somme de Riemann par excès (ou supérieure) de f pour la partition Δ est

$$\overline{S}(f, \Delta) = \sum_{i=1}^{n} \overline{M}(f, [x_{i-1}, x_i]) \cdot (x_i - x_{i-1})$$

b) La somme de Riemann par défaut (ou inférieure) de f pour la partition Δ est

$$\underline{S}(f, \Delta) = \sum_{i=1}^{n} \underline{M}(f, [x_{i-1}, x_i]) \cdot (x_i - x_{i-1})$$

Proposition.

a)
$$\underline{M}(f, [a, b]) \cdot (b - a) \leq \underline{S}(f, \Delta), \forall \Delta \in \Omega [a, b]$$

b)
$$\underline{S}(f,\Delta) \le \overline{S}(f,\Delta)$$

c)
$$\overline{S}(f,\Delta) \le \overline{M}(f,[a,b]) \cdot (b-a)$$

Proposition. Si $\Delta' \geq \Delta$, alors $\overline{S}(f, \Delta') \leq \overline{S}(f, \Delta)$.

 $d\'{e}monstration.$

Sans perte de généralité, supposons

$$\Delta : a = x_0 < x_1 < \dots < x_{i-1} < x_i < \dots < x_n = b$$

$$\Delta' : a = x_0 < x_1 < \ldots < x_{i-1} < \bar{x} < x_i < \ldots < x_n = b$$

On a

$$\overline{S}(f,\Delta) - \overline{S}(f,\Delta') = \left[\overline{M} \left(f, [x_{i-1}, x_i] \right) \cdot (x_1 - x_{i-1}) \right]$$

$$- \left[\overline{M} \left(f, [x_{i-1}, \overline{x}] \right) \cdot (\overline{x} - x_{i-1}) + \overline{M} \left(f, [\overline{x}, x_i] \right) \cdot (x_i - \overline{x}) \right]$$

$$= (x_i - \overline{x}) \left[\overline{M} \left(f, [x_{i-1}, x_i] \right) - \overline{M} \left(f, [\overline{x}, x_i] \right) \right]$$

$$+ (\overline{x} - x_{i-1}) \left[\overline{M} \left(f, [x_{i-1}, x_i] \right) - \overline{M} \left(f, [x_{i-1}, \overline{x}] \right) \right]$$

$$> 0$$

Proposition. Si $\Delta' \geq \Delta$, alors $\underline{S}(f, \Delta') \geq \underline{S}(f, \Delta)$

 $d\'{e}monstration.$

Remarque. $\underline{S}(f, \Delta) = -\overline{S}(-f, \Delta)$.

Corollaire. $\forall \Delta_1, \Delta_2 \in \Omega[a, b], \underline{S}(f, \Delta_1) \leq \overline{S}(f, \Delta_2)$

 $d\'{e}monstration.$

On a $\Delta_1 \vee \Delta_2 \geq \Delta_1$. Ainsi,

$$\underline{S}(f, \Delta_1) \leq \underline{S}(f, \Delta_1 \vee \Delta_2)$$

$$\leq \overline{S}(f, \Delta_1 \vee \Delta_2)$$

$$\leq \overline{S}(f, \Delta_2)$$

Définition.

- a) La somme par défaut de f est $\underline{S}(f) = \sup_{\Delta \in \Omega[a,b]} \underline{S}(f,\Delta)$.
- b) La somme par excès de f est $\overline{S}(f) = \inf_{\Delta \in \Omega[a,b]} \overline{S}(f,\Delta)$.

Théorème. $\underline{S}(f) \leq \overline{S}(f)$

 $d\'{e}monstration.$

Soit $\Delta_1 \in \Omega[a, b]$

 $\underline{S}(f) = \sup \underline{S}(f, \Delta)$ est le plus petit majorant des $\underline{S}(f, \Delta)$ avec $\Delta \in \Omega[a, b]$.

Du corollaire précédant, on a que $\underline{S}(f, \Delta) \leq \overline{S}(f, \Delta_1)$.

Donc, $\overline{S}(f, \Delta_1)$ est un majorant des $\underline{S}(f, \Delta)$.

Ainsi, $\underline{S}(f) \leq \overline{\overline{S}}(f, \Delta_1)$.

De même, $\overline{S}(f) = \inf \overline{S}(f, \Delta)$ est le plus grand minorant des $\overline{S}(f, \Delta)$ avec $\Delta \in \Omega[a, b]$.

Comme $\underline{S}(f)$ est un minorant des $\overline{S}(f, \Delta)$, on a que $\underline{S}(f) \leq \overline{S}(f)$.

Définition.

Soit $f \in \mathcal{B}[a,b]$. On dit que f est intégrable au sens de Riemann sur [a,b] si $\underline{S}(f) = \overline{S}(f)$ et on note $f \in \mathcal{R}[a,b]$. La valeur commune de $\underline{S}(f)$ et $\overline{S}(f)$ est notée $\int_a^b f(x) \ dx$

Critère d'intégrabilité

Théorème (Critère d'intégrabilité).

 $Soit \ f \in \mathcal{B} \ [a,b]. \ Alors \ f \in \mathcal{R} \ [a,b] \ si, \ et \ seulement \ si, \ (\forall \varepsilon > 0) \ (\exists \Delta = \Delta(\varepsilon) \in \Omega \ [a,b]) \ t.q. \ \overline{S}(f,\Delta) - \underline{S}(f,\Delta) < \varepsilon.$

 $d\'{e}monstration.$

 (\Rightarrow) Supposons $f \in \mathcal{R}[a,b]$.

Soit $\varepsilon > 0$.

On a
$$\int_a^b f = \overline{S}(f) = \inf \overline{S}(f, \Delta)$$
.

 $\text{Comme } \overline{S}(f) + \frac{\varepsilon}{2} \text{ ne peut minorer } \overline{S}(f,\Delta), \text{ alors } \exists \Delta_1 \in \Omega \left[a,b\right] \text{ t.q. } \overline{S}(f,\Delta_1) < \overline{S}(f) + \frac{\varepsilon}{2}.$

De même,
$$\int_a^b f = \underline{S}(f) = \sup \underline{S}(f, \Delta)$$
.

 $\text{Comme }\underline{S}(f)-\frac{\varepsilon}{2} \text{ ne peut majorer }\underline{S}(f,\Delta), \text{ alors } \exists \Delta_2 \in \Omega \left[a,b\right] \text{ t.q. }\underline{S}(f,\Delta_2) > \underline{S}(f)-\frac{\varepsilon}{2}.$

Posons $\Delta = \Delta(\varepsilon) = \Delta_1 \vee \Delta_2$.

On a

$$\begin{split} \overline{S}(f,\Delta) - \underline{S}(f,\Delta) &\leq \overline{S}(f,\Delta_1) - \underline{S}(f,\Delta_2) \\ &< \overline{S}(f) + \frac{\varepsilon}{2} - \left(\underline{S}(f) - \frac{\varepsilon}{2}\right) \\ &= \left(\overline{S}(f) - \underline{S}(f)\right) + \varepsilon \\ &= \varepsilon \end{split}$$

 (\Leftarrow) Soit $\varepsilon > 0$.

Alors $\exists \Delta$ t.g. $\overline{S}(f, \Delta) - S(f, \Delta) < \varepsilon$.

Mais alors,

$$\varepsilon > \overline{S}(f, \Delta) - \underline{S}(f, \Delta)$$

 $\geq \overline{S}(f) - \underline{S}(f)$
 ≥ 0

Du théorème du sandwich, $\overline{S}(f) = \underline{S}(f)$, car $\varepsilon > 0$ est arbitraire.

Donc, $f \in \mathcal{R}[a, b]$.

Corollaire. S'il existe $\Delta \in \Omega[a, b]$ t.q. $\overline{S}(f, \Delta) = \underline{S}(f, \Delta)$, alors $f \in \mathcal{R}[a, b]$.

Théorème. Toute fonction continue sur [a,b] est intégrable sur [a,b].

 $d\'{e}monstration.$

Soit $f \in \mathcal{C}[a,b]$.

Soit $\varepsilon > 0$.

Par la proposition d'Archimède, $\exists n \in \mathbb{Z} \text{ t.g. } n\varepsilon > b - a$.

f est uniformément continue sur [a,b] si $(\forall \varepsilon > 0)$ $(\exists \delta > 0)$ t.q. pour $x,y \in [a,b], |x-y| < \delta \Rightarrow |f(x)-f(y)| < \varepsilon$. Rappel.

Si f est continue sur [a, b], alors f est uniformément continue sur [a, b].

Comme $f \in \mathcal{C}[a, b]$, elle est uniformément continue sur [a, b].

Alors, $\exists \delta > 0$ t.q. pour $x, y \in [a, b], |x - y| < \delta \Rightarrow |f(x) - f(y)| < \frac{1}{n}$.

Soit donc $\Delta \in \Omega[a,b]: a = x_0 < x_1, \ldots < x_n = b \text{ avec } \|\Delta\| < \delta$. Alors, $\overline{M}(f,[x_{i-1},x_i]) - \underline{M}(f,[x_{i-1},x_i]) < \frac{1}{n}$.

Remarque. $\overline{M}(f, [x_{i-1}, x_i]) - \underline{M}(f, [x_{i-1}, x_i])$ peut être noté $\operatorname{osc}_f([x_{i-1}, x_i])$.

On obtient

$$\overline{S}(f,\Delta) - \underline{S}(f,\Delta) = \sum_{i=1}^{n} \left[\overline{M} \left(f, [x_{i-1}, x_i] \right) - \underline{M} \left(f, [x_{i-1}, x_i] \right) \right] (x_i - x_{i-1})$$

$$< \frac{1}{n} \sum_{i=1}^{n} (x_i - x_{i-1})$$

$$= \frac{b-a}{n}$$

$$< \varepsilon$$

Donc $f \in \mathcal{R}[a, b]$.

Théorème. Toute $f:[a,b] \to \mathbb{R}$ monotone est intégrable.

démonstration.

- (1) Si f est constante, alors $\overline{S}(f, \Delta) \underline{S}(f, \Delta) = 0 < \varepsilon$.
- (2) Si f est croissante,

Soit
$$\varepsilon > 0$$

Soit
$$n \in \mathbb{N}$$
 t.q. $n\varepsilon > (b-a)(f(b)-f(a))$

Soit
$$\Delta : a = x_0 < x_1 < \ldots < x_n = b \text{ avec } x_i = a + i \frac{b-a}{n}, i \in [0..n]$$

On a

$$\overline{S}(f,\Delta) - \underline{S}(f,\Delta) = \sum_{i=1}^{n} \left[\overline{M} \left(f, [x_{i-1}, x_i] \right) - \underline{M} \left(f, [x_{i-1}, x_i] \right) \right] (x_i - x_{i-1})$$

$$= \sum_{i=1}^{n} \left[f(x_i) - f(x_{i-1}) \right] \left(\frac{b-a}{n} \right)$$

$$= \frac{b-a}{n} \left[f(b) - f(a) \right]$$

$$< \varepsilon$$

Donc, $f \in \mathcal{R}[a, b]$.

(3) Si f est décroissante, alors -f est croissante et $-f \in \mathcal{R}[a,b]$. Donc, $f \in \mathcal{R}[a, b]$.

Théorème.

Si
$$f_1, f_2 \in \mathcal{R}[a, b]$$
, alors $f_1 + f_2 \in \mathcal{R}[a, b]$ et $\int (f_1 + f_2) = \int f_1 + \int f_2$.

 $d\'{e}monstration.$

Soit $\varepsilon > 0$.

Comme
$$f_i \in \mathcal{R}[a, b], \exists \Delta_i \in \Omega[a, b] \text{ t.q. } \overline{S}(f_i, \Delta_i) - \underline{S}(f_i, \Delta_i) < \frac{\varepsilon}{2}.$$

Soit
$$\Delta = \Delta_1 \vee \Delta_2$$
.

Alors,
$$\overline{S}(f_i, \Delta) - \underline{S}(f_i, \Delta) < \frac{\varepsilon}{2}$$
.

Supposons
$$\Delta : a = x_0 < x_1 < \dots < x_n = b$$
.

On a

$$\overline{S}(f_1 + f_2, \Delta) \leq \overline{S}(f_1, \Delta) + \overline{S}(f_2, \Delta)$$

$$\underline{S}(f_1 + f_2, \Delta) \geq \underline{S}(f_1, \Delta) + \underline{S}(f_2, \Delta)$$

Car $\sup(f_1 + f_2) \le \sup f_1 + \sup f_2$ et $\inf(f_1 + f_2) \ge \inf f_1 + \inf f_2$. Alors,

$$\overline{S}(f_1 + f_2, \Delta) - \underline{S}(f_1 + f_2, \Delta) \leq \overline{S}(f_1, \Delta) + \overline{S}(f_2, \Delta) - \underline{S}(f_1, \Delta) - \underline{S}(f_2, \Delta)$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Donc, $f_1 + f_2 \in \mathcal{R}[a, b]$. De plus,

$$\int_{a}^{b} f_{1} + f_{2} \leq \overline{S}(f_{1} + f_{2}, \Delta)$$

$$\leq \overline{S}(f_{1}, \Delta) + \overline{S}(f_{2}, \Delta)$$

$$\leq \underline{S}(f_{1}, \Delta) + \frac{\varepsilon}{2} + \underline{S}(f_{2}, \Delta) + \frac{\varepsilon}{2}$$

$$\leq \int_{a}^{b} f_{1} + \frac{\varepsilon}{2} + \int_{a}^{b} f_{2} + \frac{\varepsilon}{2}$$

Donc,
$$\int_a^b f_1 + f_2 \le \int_a^b f_1 + \int_a^b f_2$$
.

Ainsi, $\int_a^b f_1 + f_2 < \int_a^b f_1 + \int_a^b f_2 + \varepsilon$, $\forall \varepsilon > 0$. Donc, $\int_a^b f_1 + f_2 \le \int_a^b f_1 + \int_a^b f_2$. De même, on peut montrer que $\int_a^b f_1 + f_2 \ge \int_a^b f_1 + \int_a^b f_2$. Donc, $\int_a^b f_1 + f_2 = \int_a^b f_1 + \int_a^b f_2$.

Donc,
$$\int_a^b f_1 + f_2 = \int_a^b f_1 + \int_a^b f_2$$
.

Théorème.

Si $f \in \mathcal{R}[a,b]$ et $\lambda \in \mathbb{R}$, alors $\lambda f \in \mathcal{R}[a,b]$ et $\int \lambda f = \lambda \int f$.

 $d\'{e}monstration.$

Laissé en exercice.

Utiliser $\frac{\varepsilon}{\lambda}$ et $\overline{S}(\lambda f, \Delta) = \lambda \overline{S}(f, \Delta)$.

Corollaire.

Si $f, g \in \mathcal{R}[a, b]$, alors $f \leq g \Rightarrow \int f \leq \int g$.

 $d\'{e}monstration.$

$$g - f \ge 0 \Rightarrow \int g - f \ge 0 \Rightarrow \int g - \int f \ge 0.$$

Inégalité du triangle

Théorème (Inégalité du triangle).

Si
$$f \in \mathcal{R}[a,b]$$
, alors $|f| \in \mathcal{R}[a,b]$ et $|\int f| \le \int |f|$.

 $d\'{e}monstration.$

Soit $\varepsilon > 0$

Alors, $\exists \Delta \in \Omega [a, b]$ t.q. $\overline{S}(f, \Delta) - \underline{S}(f, \Delta) < \varepsilon$.

On a

$$\overline{S}(|f|, \Delta) - \underline{S}(|f|, \Delta) = \sum_{i=1}^{n} \left[\overline{M}(|f|, [x_{i-1}, x_i]) - \underline{M}(|f|, [x_{i-1}, x_i]) \right] (x_i - x_{i-1})$$

$$\leq \sum_{i=1}^{n} \left[\overline{M}(f, [x_{i-1}, x_i]) - \underline{M}(f, [x_{i-1}, x_i]) \right] (x_i - x_{i-1})$$

$$= \overline{S}(f, \Delta) - \underline{S}(f, \Delta)$$

$$< \varepsilon$$

Donc, $|f| \in \mathcal{R}[a, b]$.

Enfin,

$$-|f| \le f \le |f| \Rightarrow -\int |f| \le \int f \le \int |f|$$

 $\Rightarrow \int f \le \int |f|$

Théorème.

Si $f \in \mathcal{R}[a, b]$ et $a \leq c < d \leq b$, alors $f|_{[c,d]} \in \mathcal{R}[a, b]$.

 $d\'{e}monstration.$

Soit $\varepsilon > 0$

Comme $f \in \mathcal{R}[a, b], \exists \Delta_1 \in \Omega[a, b] \text{ t.q. } \overline{S}(f, \Delta_1) - \underline{S}(f, \Delta_1) < \varepsilon.$

Soit Δ_2 le raffinement de Δ_1 en ajoutant les points c et d.

Alors, $\overline{S}(f, \Delta_2) - \underline{S}(f, \Delta_2) \leq \overline{S}(f, \Delta_1) - \underline{S}(f, \Delta_1) < \varepsilon$

Donc, $f \in \mathcal{R}[c, d]$.

Théorème.

Si
$$f \in \mathcal{R}[a,b]$$
 et $a < c < b$, alors $\int_a^b f = \int_a^c f + \int_c^b f$.

 $d\'{e}monstration.$

Soit $\varepsilon > 0$

$$f \in \mathcal{R}[a,b] \Rightarrow f \in \mathcal{R}[a,c] \Rightarrow \exists \Delta_1 \in \Omega[a,c] \text{ t.q. } \overline{S}(f,\Delta_1) - \underline{S}(f,\Delta_1) < \frac{\varepsilon}{2}.$$

De même, $\exists \Delta_2 \in \Omega [c, b]$ t.q. $\overline{S}(f, \Delta_2) - \underline{S}(f, \Delta_2) < \frac{\varepsilon}{2}$.

Posons $\Delta = \Delta_1 \vee \Delta_2$. Alors, $\Delta \in \Omega[a, b]$ et

$$\begin{split} \int_a^b f &\leq \overline{S}(f, \Delta) \\ &= \overline{S}(f, \Delta_1) + \overline{S}(f, \Delta_2) \\ &\leq \underline{S}(f, \Delta_1) + \frac{\varepsilon}{2} + \underline{S}(f, \Delta_2) + \frac{\varepsilon}{2} \\ &= \underline{S}(f, \Delta_1) + \underline{S}(f, \Delta_2) + \varepsilon \\ &\leq \int_a^c f + \int_c^b f + \varepsilon \end{split}$$

Comme $\varepsilon > 0$ est arbitraire, on a $\int_a^b f \leq \int_a^c f + \int_c^b f$. De même, $\int_a^b f \geq \int_a^c f + \int_c^b f$.

Théorème. Soit $f \in \mathcal{B}[a,b]$. Soit $n \in \mathbb{N}$.

Si f possède n discontinuités dans [a,b], alors $f \in \mathcal{R}[a,b]$.

 $d\'{e}monstration.$

Pour n = 0, $f \in \mathcal{C}[a, b]$, donc $f \in \mathcal{R}[a, b]$ est un résultat connu.

Supposons l'énoncé vrai pour n.

Supposons que $f \in \mathcal{B}[a, b]$ admet n + 1 discontinuités.

Soit $\varepsilon > 0$.

Soit
$$M = \sup_{x \in [a,b]} |f(x)|$$

Il y a deux cas à considérer

1. a ou b est une discontinuité

SPDG, supposons que a est la discontinuité.

Soit $\eta \in \mathbb{R}^+$ t.q. a est l'unique discontinuité de $[a, a + \eta]$ et $\eta < \frac{\varepsilon}{4M}$.

Alors, $[a + \eta, b]$ contient n discontinuités.

De l'hypothèse de récurrence, $f \in \mathcal{R} [a + \eta, b]$.

Il existe donc $\Delta \in \Omega [a + \eta, b]$ t.q. $\overline{S}(f, \Delta) - \underline{S}(f, \Delta) < \frac{\varepsilon}{2}$.

Posons $\Delta_{\varepsilon} = \Delta \vee \{a\}.$

On a donc

$$\overline{S}(f, \Delta_{\varepsilon}) - \underline{S}(f, \Delta_{\varepsilon}) = \left(\overline{S}(f, \Delta) - \underline{S}(f, \Delta)\right) + \left(\overline{M}(f, [a, a + \eta]) - \underline{M}(f, [a, a + \eta])\right) \eta$$

$$< \frac{\varepsilon}{2} + 2M\eta$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

2. ni a ni b ne sont des discontinuités

Soit $c \in]a, b[$ qui est une discontinuité de f.

Soit $\eta \in \mathbb{R}^+$ t.q. c est l'unique discontinuité de $[c-\eta,c+\eta] \subset [a,b]$ et $\eta < \frac{\varepsilon}{8M}$.

Alors, $[a, c - \eta]$ et $[c + \eta, b]$ contiennent au plus n discontinuités, par l'hypothèse de récurrence

$$\exists \Delta_1 \in \Omega [a, c - \eta] \text{ t.q. } \overline{S}(f, \Delta_1) - \underline{S}(f, \Delta_1) < \frac{\varepsilon}{4}.$$

$$\exists \Delta_2 \in \Omega \ [c + \eta, b] \ \text{t.q.} \ \overline{S}(f, \Delta_2) - \underline{S}(f, \Delta_2) < \frac{\varepsilon}{4}.$$

Posons $\Delta_{\varepsilon} = \Delta_1 \vee \Delta_2$.

On a donc

$$\overline{S}(f, \Delta_{\varepsilon}) - \underline{S}(f, \Delta_{\varepsilon}) = \left[\overline{S}(f, \Delta_{1}) - \underline{S}(f, \Delta_{1})\right] + \left[\overline{S}(f, \Delta_{2}) - \underline{S}(f, \Delta_{2})\right]$$

$$+ \left[\overline{M}\left(f, [c - \eta, c + \eta]\right) - \underline{M}\left(f, [c - \eta, c + \eta]\right)\right] (2\eta)$$

$$< \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + 4M\eta$$

$$< \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Théorème. Soient $f:[a,b] \to [c,d] \in \mathcal{R}[a,b]$ et $g:[c,d] \to \mathbb{R} \in \mathcal{C}[c,d]$. Alors $g \circ f \in \mathcal{R}[a,b]$.

Remarque. L'hypothèse que $g \in \mathcal{C}[c,d]$ est nécessaire.

Exemple.

$$f:[0,1] \to \mathbb{R}$$

$$x \mapsto \begin{cases} \frac{1}{n} & \text{si} \quad x = \frac{m}{n} \text{ et pgcd}(m,n) = 1\\ 0 & \text{sinon} \end{cases}$$
 Fonction de Dirichlet modifiée.

$$g: [0,1] \to \mathbb{R}$$

$$x \mapsto \begin{cases} 1 & \text{si } x > 0 \\ 0 & \text{sinon} \end{cases}$$

$$f, g \in \mathcal{R} [a, b].$$

$$g \circ f(x) = \begin{cases} 1 & \text{si} & x \in \mathbb{Q} \\ 0 & \text{sinon} \end{cases}$$

$$g \circ f \notin \mathcal{R} [a, b].$$

Fonction de Dirichlet.

Lemme. Si $f \in \mathcal{B}[a,b]$, $\Delta, \Delta' \in \Omega[a,b]$ et Δ' s'obtient de Δ en ajoutant un unique point, alors $\overline{S}(f,\Delta) - \overline{S}(f,\Delta') \leq$ $2\overline{M}(|f|,[a,b])\cdot ||\Delta||.$

 $d\'{e}monstration.$

Soient
$$\Delta : a = x_0 < x_1 < \ldots < x_{i-1} < x_i < \ldots < x_n = b$$
.
 $\Delta' : a = x_0 < x_1 < \ldots < x_{i-1} < \bar{x} < x_i < \ldots < x_n = b$.

$$\overline{S}(f,\Delta) - \overline{S}(f,\Delta') = \overline{M}\left(f, [x_{i-1}, x_i]\right) \cdot (x_i - x_{i-1}) - \overline{M}\left(f, [x_{i-1}, \bar{x}]\right) \cdot (\bar{x} - x_{i-1}) - \overline{M}\left(f, [\bar{x}, x_i]\right) \cdot (x_i - \bar{x})$$

$$= (\bar{x} - x_{i-1})\left(\overline{M}\left(f, [x_{i-1}, x_i]\right) - \overline{M}\left(f, [x_{i-1}, \bar{x}]\right)\right) + (x_i - \bar{x})\left(\overline{M}\left(f, [x_{i-1}, x_{-i}]\right) - \overline{M}\left(f, [\bar{x}, x_i]\right)\right)$$

$$\leq 2\overline{M}\left(|f|, [x_{i-1}x_i]\right)\left((\bar{x} - x_{i-1}) - (x_i - \bar{x})\right)$$

$$\leq 2\overline{M}\left(|f|, [a, b]\right) \|\Delta\|$$

Corollaire. Si $f \in \mathcal{B}[a,b], \ \Delta, \Delta' \in \Omega[a,b]$ et Δ' s'obtient de Δ en ajoutant p points, au plus un point par sous-intervalle de Δ , alors $\overline{S}(f,\Delta) - \overline{S}(f,\Delta') \leq 2p\overline{M}(|f|,[a,b]) \cdot ||\Delta||$.

Théorème de Darboux

Théorème (Darboux, 1875).

 $Si \ f \in \mathcal{B}[a,b], \ alors$

$$\overline{S}(f) = \lim_{\|\Delta\| \to 0} \overline{S}(f, \Delta) \qquad \underline{S}(f) = \lim_{\|\Delta\| \to 0} \underline{S}(f, \Delta)$$

9

démonstration.

Soit $\varepsilon > 0$.

Puisque $\overline{S}(f) = \inf \overline{S}(f, \Delta)$, on a que $\overline{S}(f) + \frac{\varepsilon}{2}$ n'est pas un minorant des $\overline{S}(f, \Delta)$.

Ainsi,
$$\exists \Delta_0 : a = x_0 < \ldots < x_n = b \text{ t.q. } \overline{S}(f, \Delta_0) < \overline{S}(f) + \frac{\varepsilon}{2}.$$

Soit $\delta > 0$ t.q. $\delta < \min_{i \in [1..n]} |x_i - x_{i-1}| \text{ et } \delta < \frac{\varepsilon}{4(n-1)\overline{M}(|f|, [a, b])}.$

 $\begin{array}{l} \text{Soit } \Delta \in \Omega \left[{a,b} \right] \text{ t.q. } \|\Delta\| < \delta. \\ \text{Alors, } \|\Delta\| \xrightarrow[n \to \infty]{} 0. \end{array}$

Considérons $\Delta' = \Delta \vee \Delta_0$.

Comme $\|\Delta'\| \le \|\Delta\| < \|\Delta_0\|$, aucun sous-intervalle ouvert de Δ ne contient plus d'un point de Δ_0 .

Comme Δ' s'obtient de Δ en ajoutant au plus n-1 points $(x_1, x_2, \ldots, x_{n-1})$,

$$\begin{split} \overline{S}(f,\Delta) - \overline{S}(f,\Delta') &\leq 2(n-1)\overline{M}\left(|f|,[a,b]\right)\|\Delta\| \\ &< 2(n-1)\overline{M}\left(f,[a,b]\right)\delta \\ &< \frac{\varepsilon}{2} \end{split}$$

On a donc

$$\overline{S}(f, \Delta) \leq \overline{S}(f, \Delta') + \frac{\varepsilon}{2}$$

$$< \overline{S}(f, \Delta_0) + \frac{\varepsilon}{2}$$

$$< \overline{S}(f) + \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \overline{S}(f) + \varepsilon$$

Comme $\varepsilon > 0$ est arbitraire, on a donc

$$\lim_{\|\Delta\| \to 0} \overline{S}(f, \Delta) = \overline{S}(f)$$

Enfin,

$$\begin{split} \lim_{\|\Delta\| \to 0} \underline{S}(f, \Delta) &= \lim_{\|\Delta\| \to 0} -\overline{S}(-f, \Delta) \\ &= -\lim_{\|\Delta\| \to 0} \overline{S}(-f, \Delta) \\ &= -\overline{S}(-f) \\ &= \underline{S}(f) \end{split}$$

Définition. Soit $f \in \mathcal{B}[a,b]$.

Soit $\Delta : a = x_0 < x_1 < \ldots < x_n = b \in \Omega [a, b].$

Soient $\bar{x}_i \in [x_{i-1}, x_i]$, pour $i \in [1..n]$.

Le nombre réel

$$S(f, \Delta, \{\bar{x}_i\}) = \sum_{i=1}^{n} f(\bar{x}_i) \cdot (x_i - x_{i-1})$$

est appelé somme de Riemann de la fonction f correspondant à la partition Δ et aux points $\{\bar{x}_i\}_{i\in[1..n]}$.

Théorème.

Soit $f \in \mathcal{R}[a,b]$.

Alors, $(\forall \varepsilon > 0)$, $(\exists \delta = \delta(\varepsilon))$ t.g. pour toute partition Δ de [a, b] avec $||\Delta|| < \delta$ et pour tout choix de points $\{\bar{x}_i\}$, on a

$$\left| \int_{a}^{b} f - S(f, \Delta, \{\bar{x}_i\}) \right| < \varepsilon$$

c'est-à-dire.

$$\lim_{\|\Delta\| \to 0} S(f, \Delta, \{\bar{x}_i\}) = \int_a^b f$$

10

démonstration.

On a $\underline{S}(f, \Delta) \leq S(f, \Delta, \{\bar{x}_i\}) \leq \overline{S}(f, \Delta)$.

Donc,

$$\underline{S}(f) = \lim_{\|\Delta\| \to 0} \underline{S}(f, \Delta) \le \lim_{\|\Delta\| \to 0} S(f, \Delta, \{\bar{x}_i\}) \le \lim_{\|\Delta\| \to 0} \overline{S}(f, \Delta) = \overline{S}(f)$$

Comme $f \in \mathcal{R}[a, b]$, on a $\underline{S}(f) = \overline{S}(f) = \int_a^b f$.

Par le théorème du sandwich, $S(f, \Delta, \{\bar{x}_i\}) = \int_a^b f$.

Loi de la moyenne

Théorème (Loi de la moyenne).

Soit $f \in \mathcal{R}[a,b]$.

Alors,
$$\exists \mu \in \left[\underline{M}\left(f,\left[a,b\right]\right), \overline{M}\left(f,\left[a,b\right]\right)\right] \ t.q. \int_{a}^{b} f = (b-a) \cdot \mu.$$

démonstration.

Soit ϕ la fonction donnée par $\phi(x) = (b-a)x$.

On a $\underline{M}(f, [a, b]) \leq f \leq \overline{M}(f, [a, b])$.

Done

$$\phi(\underline{M}\left(f,[a,b]\right)) = (b-a)\underline{M}\left(f,[a,b]\right) = \int_{a}^{b} \underline{M}\left(f,[a,b]\right) \leq \int_{a}^{b} f \leq \overline{M}\left(f,[a,b]\right) = (b-a)\overline{M}\left(f,[a,b]\right) = \phi(\overline{M}\left(f,[a,b]\right))$$

Rappel.

Théorème (Théorème de valeur intermédiaire).

f continue sur [a,b], f(a) < c < f(b) implique $\exists x_0 \in [a,b]$ t.q. $f(x_0) = c$.

Comme ϕ est continue sur $[\underline{M}(f,[a,b]),\overline{M}(f,[a,b])]$, du TVI, $\exists \mu \in [\underline{M}(f,[a,b]),\overline{M}(f,[a,b])]$ t.q. $\phi(\mu) = c$ pour tout $c \in [\phi(\underline{M}(f,[a,b])),\phi(\overline{M}(f,[a,b]))]$.

En particulier, si
$$c = \int_a^b f$$
, $\exists \mu$ t.q. $\phi(\mu) = \int_a^b c$, c'est-à-dire t.q. $(b-a)\mu = \int_a^b f$.

Théorème.

Soit $f \in \mathcal{R}[a,b]$.

F:
$$[a,b] \rightarrow \mathbb{R}$$

$$x \mapsto F(x) = \int_{a}^{x} f(f)dt$$

Alors,

- a) $|F(x_1) F(x_2)| \le \overline{M}(|f|, [a, b])(b a) \cdot |x_1 x_2| \text{ pour tous } x_1, x_2 \in [a, b];$
- b) F est uniformément continue sur [a, b];
- c) Si f est continue, alors F est différentiable et F' = f.

démonstration.

a) Supp $x_1 > x_2$

On a

$$|F(x_1) - F(x_2)| = \left| \int_a^{x_1} f - \int_a^{x_2} f \right|$$

$$= \left| \int_{x_2}^{x_1} f \right|$$

$$\leq \int_{x_2}^{x_1} |f|$$

$$\leq \int_{x_2}^{x_1} \overline{M} (|f|, [a, b])$$

$$= \overline{M} (|f|, [a, b]) \cdot |x_1 - x_2|$$

b) Soit $\varepsilon > 0$.

Prenons
$$\delta = \frac{\varepsilon}{\overline{M}(|f|, [a, b])}$$
.

Soient $x, y \in [a, b]$ avec $|x - y| < \delta$.

Alors,

$$\begin{split} |F(x) - F(y)| &\leq \overline{M} \left(|f| \,, [a,b] \right) \cdot |x - y| \\ &< \overline{M} \left(|f| \,, [a,b] \right) \cdot \delta \\ &= \varepsilon \end{split}$$

c) Soit $x_0 \in [a, b]$.

On a

$$F'(x_0) = \lim_{x \to x_0} \frac{F(x) - F(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{\int_a^x f - \int_a^{x_0}}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{\int_{x_0}^x f}{x - x_0}$$
Loi de la moyenne
$$\lim_{x \to x_0} \frac{(x - x_0)f(x_0 + \theta(x - x_0))}{x - x_0}$$

$$= \lim_{x \to x_0} f(x_0 + \theta(x - x_0))$$

$$= f(x_0)$$

Théorème fondamental du calcul différentiel et intégral