Scalable Automatic Machine Learning with H2O

Santa Clara University
May 2018

H₂O.ai

Erin LeDell Ph.D.

@ledell

What is H2O?

H2O.ai, the company

H2O, the platform

- Founded in 2012
- Advised by Stanford Professors Hastie, Tibshirani & Boyd
- · Headquarters: Mountain View, California, USA
- Open Source Software (Apache 2.0 Licensed)
- R, Python, Scala, Java and Web Interfaces
- Distributed Machine Learning Algorithms for Big Data

Agenda

- H2O Platform
- Intro to Automatic Machine Learning (AutoML)
- H2O AutoML Overview
- Pro Tips
- Demo

Slides https://tinyurl.com/scu-automl

H20 Platform

H2O Machine Learning Platform

- Distributed (multi-core + multi-node) implementations of cutting edge ML algorithms.
- Core algorithms written in high performance Java.
- APIs available in R, Python, Scala; web GUI.
- Easily deploy models to production as pure Java code.
- · Works on Hadoop, Spark, EC2, your laptop, etc.

H2O Distributed Computing

H2O Cluster

- Multi-node cluster with shared memory model.
- All computations in memory.
- Each node sees only some rows of the data.
- No limit on cluster size.

Distributed data frames (collection of vectors).

- Columns are distributed (across nodes) arrays.
- Works just like R's data.frame or Python Pandas DataFrame

H20 Frame

H2O Machine Learning Features

- Supervised & unsupervised machine learning algos (GBM, RF, DNN, GLM, Stacked Ensembles, etc.)
- · Imputation, normalization & auto one-hot-encoding
- Automatic early stopping
- · Cross-validation, grid search & random search
- · Variable importance, model evaluation metrics, plots

Intro to Automatic Machine Learning

Aspects of Automatic Machine Learning

Data Prep

Model
Generation

Ensembles

Aspects of Automatic Machine Learning

Data Preprocessing

Model Generation

Ensembles

- Imputation, one-hot encoding, standardization
- Feature selection and/or feature extraction (e.g. PCA)
- Count/Label/Target encoding of categorical features
- Cartesian grid search or random grid search
- Bayesian Hyperparameter Optimization
- Individual models can be tuned using a validation set
- Ensembles often out-perform individual models
- Stacking / Super Learning (Wolpert, Breiman)
- Ensemble Selection (Caruana)

H2O's AutoML

H2O Machine Learning Platform

- Open source, distributed (multi-core + multi-node) implementations of cutting edge ML algorithms.
- Core algorithms written in high performance Java.
- APIs available in R, Python, Scala; web GUI.
- Easily deploy models to production as pure Java code.
- · Works on Hadoop, Spark, AWS, your laptop, etc.

H2O AutoML (current release)

Data Preprocessing

Model Generation

Ensembles

- Imputation, one-hot encoding, standardization
- Feature selection and/or feature extraction (e.g. PCA)
- Count/Label/Target encoding of categorical features
- Cartesian grid search or random grid search
- Bayesian Hyperparameter Optimization
- Individual models can be tuned using a validation set
- Ensembles often out-perform individual models:
- Stacking / Super Learning (Wolpert, Breiman)
- Ensemble Selection (Caruana)

Random Grid Search & Stacking

- Random Grid Search combined with Stacked Ensembles is a powerful combination.
- Ensembles perform particularly well if the models they are based on (1) are individually strong, and (2) make uncorrelated errors.
- Stacking uses a second-level metalearning algorithm to find the optimal combination of base learners.

Stacking (aka Super Learner Algorithm)

- Start with design matrix, X, and response, y
- Specify L base learners (with model params)
- · Specify a metalearner (just another algorithm)
- Perform k-fold CV on each of the L learners

Stacking (aka Super Learner Algorithm)

$$\operatorname{n}\left\{\left[\begin{matrix} p_1 \end{matrix}\right] \cdots \left[\begin{matrix} p_L \end{matrix}\right] \left[\begin{matrix} y \end{matrix}\right] \to \operatorname{n}\left\{\left[\begin{matrix} & Z \end{matrix}\right] \left[\begin{matrix} y \end{matrix}\right] \right. \quad \text{"Level-one"} \right. \\ \mathsf{data} \right\}$$

- Collect the predicted values from k-fold CV that was performed on each of the L base learners
- Column-bind these prediction vectors together to form a new design matrix, Z
- Train the metalearner using Z, y

H2O AutoML

- Basic data pre-processing (as in all H2O algos).
- Trains a random grid of GBMs, DNNs, GLMs, etc. using a carefully chosen hyper-parameter space
- Individual models are tuned using a validation set.
- Two Stacked Ensembles are trained ("All Models" ensemble & a lightweight "Best of Family" ensemble).
- Returns a sorted "Leaderboard" of all models.

Available in H20 >= 3.14

H2O AutoML in Flow GUI

H2O AutoML in R

Example

```
library(h2o)
h2o.init()
train <- h2o.importFile("train.csv")
aml <- h2o.automl(y = "response_colname",</pre>
                   training_frame = train,
                   max_runtime_secs = 600)
lb <- aml@leaderboard</pre>
```

H2O AutoML in Python

Example

```
import h2o
from h2o.automl import H2OAutoML
h2o.init()
train = h2o.import_file("train.csv")
aml = H20AutoML(max_runtime_secs = 600)
aml.train(y = "response_colname",
          training_frame = train)
lb = aml.leaderboard
```

H2O AutoML Leaderboard

model_id	auc	logloss
StackedEnsemble_AllModels_0_AutoML_20171121_012135	0.788321	0.554019
StackedEnsemble_BestOfFamily_0_AutoML_20171121_012135	0.783099	0.559286
GBM_grid_0_AutoML_20171121_012135_model_1	0.780554	0.560248
GBM_grid_0_AutoML_20171121_012135_model_0	0.779713	0.562142
GBM_grid_0_AutoML_20171121_012135_model_2	0.776206	0.564970
GBM_grid_0_AutoML_20171121_012135_model_3	0.771026	0.570270
DRF_0_AutoML_20171121_012135	0.734653	0.601520
XRT_0_AutoML_20171121_012135	0.730457	0.611706
GBM_grid_0_AutoML_20171121_012135_model_4	0.727098	0.666513
GLM_grid_0_AutoML_20171121_012135_model_0	0.685211	0.635138

Example Leaderboard for binary classification

AutoML Pro Tips!

Before you press the "red button"

AutoML Pro Tips: Input Frames

- Don't use leaderboard_frame unless you really need to; use cross-validation metrics to generate the leaderboard instead (default).
- If you only provide training_frame, it will chop off 20% of your data for a validation set to be used in early stopping. To control this proportion, you can split the data yourself and pass a validation_frame manually.

AutoML Pro Tips: Exclude Algos

- If you have sparse, wide data (e.g. text), use the exclude_algos argument to turn off the tree-based models (GBM, RF).
- If you want tree-based algos only, turn off GLM and DNNs via exclude_algos.

AutoML Pro Tips: Time & Model Limits

- AutoML will stop after 1 hour unless you change max_runtime_secs.
- Running with max_runtime_secs is not reproducible since available resources on a machine may change from run to run. Set max_runtime_secs to a big number (e.g. 99999999) and use max_models instead.

AutoML Pro Tips: Cluster memory

- Reminder: All H2O models are stored in H2O Cluster memory.
- Make sure to give the H2O Cluster a lot of memory if you're going to create hundreds or thousands of models.
- e.g. $h2o.init(max_mem_size = "80G")$

After you press the "red button"

AutoML Pro Tips: Early Stopping

- If you're expecting more models than are listed in the leaderboard, or the run is stopping earlier than max_runtime_secs, this is a result of the default "early stopping" settings.
- To allow more time, increase the number of stopping_rounds and/or decrease value of stopping_tolerance.

AutoML Pro Tips: Add More Models

- If you want to add (train) more models to an existing AutoML project, just make sure to use the same training set and project_name.
- If you set the same seed twice it will give you identical models as the first run (not useful), so change the seed or leave it unset.

AutoML Pro Tips: Saving Models

 You can save any of the individual models created by the AutoML run. The model ids are listed in the leaderboard.

• If you're taking your leader model (probably a Stacked Ensemble) to production, we'd recommend using "Best of Family" since it only contains 5 models and gets most of the performance of the "All Models" ensemble.

H2O AutoML Tutorial

H2O AutoML Tutorial

https://tinyurl.com/automl-h2oworld17

Code available here

H2O Resources

- Documentation: http://docs.h2o.ai
- Tutorials: https://github.com/h2oai/h2o-tutorials
- Slidedecks: https://github.com/h2oai/h2o-meetups
- Videos: https://www.youtube.com/user/0xdata
- Stack Overflow: https://stackoverflow.com/tags/h2o
- Google Group: https://tinyurl.com/h2ostream
- Gitter: http://gitter.im/h2oai/h2o-3
- Events & Meetups: http://h2o.ai/events

Contribute to H2O!

Get in touch over email, Gitter or JIRA.

https://github.com/h2oai/h2o-3/blob/master/CONTRIBUTING.md

Thank you!

@ledell on Github, Twitter erin@h2o.ai

http://www.stat.berkeley.edu/~ledell