Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	Е
1.1 Описание входных данных	7
1.2 Описание выходных данных	7
2 МЕТОД РЕШЕНИЯ	8
3 ОПИСАНИЕ АЛГОРИТМОВ	11
3.1 Алгоритм функции main	11
3.2 Алгоритм конструктора класса cl1	11
3.3 Алгоритм метода power класса cl1	12
3.4 Алгоритм конструктора класса cl2	12
3.5 Алгоритм метода power класса cl2	13
3.6 Алгоритм конструктора класса cl3	13
3.7 Алгоритм метода power класса cl3	13
3.8 Алгоритм конструктора класса cl4	14
3.9 Алгоритм метода power класса cl4	14
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	15
5 КОД ПРОГРАММЫ	19
5.1 Файл cl1.cpp	19
5.2 Файл cl1.h	19
5.3 Файл cl2.cpp	20
5.4 Файл cl2.h	20
5.5 Файл cl3.cpp	21
5.6 Файл cl3.h	21
5.7 Файл cl4.cpp	22
5.8 Файл cl4.h	22
5.9 Файл main.cpp	23
6 ТЕСТИРОВАНИЕ	24

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	25
----------------------------------	----

1 ПОСТАНОВКА ЗАДАЧИ

Иерархия наследования

Описать четыре класса которые последовательно наследуют друг друга, последовательными номерами классов 1,2,3,4.

Реализовать программу, в которой использовать единственный указатель на объект базового класса (номер класса 1).

Наследственность реализовать так, что можно было вызвать методы, принадлежащие объекту конкретного класса, только через объект данного класса.

В закрытом разделе каждого класса определены два свойства: строкового типа для наименования объекта и целого типа для значения определенного целочисленного выражения.

Описание каждого класса содержит один параметризированный конструктор с строковым и целочисленным параметром.

В реализации каждого конструктора объекта определяются значения закрытых свойств:

- Наименование объекта по шаблону: «значение строкового параметра»_«номер класса»;
- Целочисленного свойства значением выражения возведения в степень номера класса целочисленного значения параметра конструктора.

Еще в описании каждого класса определен метод с одинаковым наименованием для всех классов, реализующий вывод значений закрытых свойств класса.

В основной функции реализовать алгоритм:

- 1. Вводиться идентификатор и натуральное число от 2 до 10.
- 2. Создать объект класса 4, используя параметризированный конструктор,

которому в качестве аргументов передаются введенный идентификатор и натуральное число.

3. Построчно, для всех объектов согласно наследственности, от объекта базового (класс 1) до производного объекта (класса 4) вывести наименование объекта класса и значение целочисленного свойства.

1.1 Описание входных данных

Первая строка:

«идентификатор» «натуральное число»

Пример ввода:

Object 2

1.2 Описание выходных данных

Построчно (четыре строки):

«идентификатор»_«номер класса» «значение целочисленного свойства» Разделитель - 1 пробел.

Пример вывода:

Object_1 2

Object_2 4

Object_3 8

Object_4 16

2 МЕТОД РЕШЕНИЯ

Для решения задачи понадобится:

- объект потока ввода cin и объект потока вывода cout
- библиотека string
- указатель this
- переменная типа int
- 4 класса
- объекта четвертого класса

Класс cl1 базовый класс

```
Поля:

скрытые элементы:

string s1

int n1

методы:

открытые:

cl1(string s1, int n1) - конструктор класса;

защищенные:

void power() - вывод значений.
```

Класс cl2 наследует класс cl1

Поля: скрытые элементы: string s2 int n2 методы:

```
открытые:
cl2(string s2, int n2) - конструктор класса;
защищенные:
void power() - вывод значений.
Класс cl3 наследует класс cl2
Поля:
скрытые элементы:
string s3
int n3
методы:
открытые:
cl3(string s3, int n3) - конструктор класса;
защищенные:
void power() - вывод значений.
Класс cl4 наследует класс cl3
Поля:
скрытые элементы:
string s4
int n4
```

cl4(string s4, int n4) - конструктор класса;

void power() - вывод значений.

методы:

открытые:

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм функции main

Функционал: главный метод программы.

Параметры: нет.

Возвращаемое значение: int.

Алгоритм функции представлен в таблице 1.

Таблица 1 – Алгоритм функции таіп

Nº	Предикат	Действия	
1		ввод идентификатора и натуральное число от 2 до 10	2
2		создание объекта класса 4	
3		вывод наименование объекта класса и значение целочисленного свойства	Ø

3.2 Алгоритм конструктора класса cl1

Функционал: присваивание строкового параметра, номер класса и возведение в степень номер класса.

Параметры: string s1, int n1.

Алгоритм конструктора представлен в таблице 2.

Таблица 2 – Алгоритм конструктора класса cl1

Nº	Предикат	Действия	No
			перехода
1		присваивание строкового параметра, номер класса	2
2		возведение в степень номер класса	Ø

3.3 Алгоритм метода power класса cl1

Функционал: вывод идентификатора и натурального числа.

Параметры: нет.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода power класса cl1

N	҈ Предикат	Действия	N₂
			перехода
1	-	вывод идентификатора и натурального числа	Ø

3.4 Алгоритм конструктора класса cl2

Функционал: присваивание строкового параметра, номер класса и возведение в степень номер класса.

Параметры: string s2, int n2.

Алгоритм конструктора представлен в таблице 4.

Таблица 4 – Алгоритм конструктора класса cl2

No	Предикат	Действия	N₂
			перехода
1		присваивание строкового параметра, номер класса	2
2		возведение в степень номер класса	Ø

3.5 Алгоритм метода power класса cl2

Функционал: вывод идентификатора и натурального числа.

Параметры: нет.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 5.

Таблица 5 – Алгоритм метода power класса cl2

No	Предикат	Действия	No
			перехода
1		вывод идентификатора и натурального числа	Ø

3.6 Алгоритм конструктора класса cl3

Функционал: присваивание строкового параметра, номер класса и возведение в степень номер класса.

Параметры: string s3, int n3.

Алгоритм конструктора представлен в таблице 6.

Таблица 6 – Алгоритм конструктора класса cl3

No	Предикат	Действия	No
			перехода
1		присваивание строкового параметра, номер класса	2
2		возведение в степень номер класса	Ø

3.7 Алгоритм метода power класса cl3

Функционал: вывод идентификатора и натурального числа.

Параметры: нет.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 7.

Таблица 7 – Алгоритм метода power класса cl3

Ī	№ Предикат Действия		No	
				перехода
	1		вывод идентификатора и натурального числа	Ø

3.8 Алгоритм конструктора класса cl4

Функционал: присваивание строкового параметра, номер класса и возведение в степень номер класса.

Параметры: string s4, int n4.

Алгоритм конструктора представлен в таблице 8.

Таблица 8 – Алгоритм конструктора класса cl4

No	Предикат	Действия	No
			перехода
1		присваивание строкового параметра, номер класса	2
2		возведение в степень номер класса	Ø

3.9 Алгоритм метода power класса cl4

Функционал: вывод идентификатора и натурального числа.

Параметры: нет.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 9.

Таблица 9 – Алгоритм метода power класса cl4

N	Предикат	Действия	N₂
			перехода
1		вывод идентификатора и натурального числа	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-4.

Рисунок 2 – Блок-схема алгоритма

Рисунок 3 – Блок-схема алгоритма

Рисунок 4 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл cl1.cpp

Листинг 1 – cl1.cpp

```
#include "cl1.h"
#include <iostream>
#include <string>

using namespace std;

cl1::cl1(string s1, int n1)
{
    this->s1 = s1 + "_1";
    this->n1 = n1;
}

void cl1::power()
{
    cout << s1 << " " << n1 << endl;
}</pre>
```

5.2 Файл cl1.h

Листинг 2 – cl1.h

```
#ifndef __CL1_H
#define __CL1_H
#include <iostream>
#include <string>

using namespace std;

class cl1
{
  private:
    string s1;
    int n1;
  public:
    cl1(string s1, int n1);
    void power();
};
```

5.3 Файл cl2.cpp

Листинг 3 – cl2.cpp

```
#include "cl1.h"
#include cl2.h"
#include <iostream>
#include <string>

using namespace std;

cl2::cl2(string s2, int n2) : cl1(s2, n2)
{
    this->s2 = s2 + "_2";
    this->n2 = n2 * n2;
}

void cl2::power()
{
    cout << s2 << " " << n2 << endl;
}</pre>
```

5.4 Файл cl2.h

Листинг 4 - cl2.h

```
#ifndef __CL2_H
#define __CL2_H
#include "cl1.h"
#include <iostream>
#include <string>

using namespace std;

class cl2 : public cl1
{
  private:
        string s2;
        int n2;
  public:
        cl2(string s2, int n2);
        void power();
};
#endif
```

5.5 Файл cl3.cpp

Листинг 5 - cl3.cpp

```
#include "cl2.h"
#include cl3.h"
#include <iostream>
#include <string>

using namespace std;

cl3::cl3(string s3, int n3) : cl2(s3, n3)
{
    this->s3 = s3 + "_3";
    this->n3 = n3 * n3 * n3;
}

void cl3::power()
{
    cout << s3 << " " << n3 << endl;
}</pre>
```

5.6 Файл cl3.h

Листинг 6 - cl3.h

```
#ifndef __CL3_H
#define __CL3_H
#include "c12.h"
#include <iostream>
#include <string>

using namespace std;

class cl3 : public cl2
{
private:
    string s3;
    int n3;
public:
    cl3(string s3, int n3);
    void power();
};
#endif
```

5.7 Файл cl4.cpp

Листинг 7 – cl4.cpp

```
#include "cl3.h"
#include "cl4.h"
#include <iostream>
#include <string>

using namespace std;

cl4::cl4(string s4, int n4) : cl3(s4, n4)
{
         this->s4 = s4 + "_4";
         this->n4 = n4 * n4 * n4 * n4;
}

void cl4::power()
{
         cout << s4 << " " << n4;
}</pre>
```

5.8 Файл cl4.h

Листинг 8 – cl4.h

```
#ifndef __CL4_H
#define __CL4_H
#include "cl3.h"
#include <iostream>
#include <string>

using namespace std;

class cl4 : public cl3
{
private:
    string s4;
    int n4;
public:
    cl4(string s4, int n4);
    void power();
};
#endif
```

5.9 Файл таіп.срр

Листинг 9 – таіп.срр

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include <string>
#include "cl1.h"
#include "cl2.h"
#include "cl3.h"
#include "cl4.h"
using namespace std;
int main()
{
      string s;
      int n;
      cin >> s >> n;
      cl4 object(s, n);
      object.cl1::power();
      object.cl2::power();
      object.cl3::power();
      object.cl4::power();
      return(0);
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 10.

Таблица 10 – Результат тестирования программы

Входные данные	Ожидаемые выходные	Фактические выходные
	данные	данные
Object 2	Object_1 2	Object_1 2
	Object_2 4	Object_2 4
	Object_3 8	Object_3 8
	Object_4 16	Object_4 16

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Васильев А.Н. Объектно-ориентированное программирование на С++. Издательство: Наука и Техника. Санкт-Петербург, 2016г. 543 стр.
- 2. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2017. 624 с.
- 3. Методическое пособие для проведения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratorny h_rabot_3.pdf (дата обращения 05.05.2021).
- 4. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).