SRN					1		
SKIN							

PES University, Bengaluru (Established under Karnataka Act No. 16 of 2013)

UE17EC202

DECEMBER 2020: END SEMESTER ASSESSMENT (ESA), B.TECH Analog Circuit Design

Tim	ne: 3 Hrs	Answer All Questions	Max Marks: 100						
1 a	Define the diffusion and transition capacitance of a PN junction diode. With relevant diagram explain the reverse recovery time (t_{rr}) in a diode.								
b	Determine vo	o for the network shown in Fig. 1.b. using a	silicon diode with V_T = 0.7 V.						
c)	(ii) The input	nagnitude gain corresponding to a decibel gap power to a device is 10,000 W at a voltage the output impedance is 20 Ω . Find the po	of 1000 V. The output power is						
2 a)	With neat cir signal equival	cuit diagram explain the Common gate M ent model.	OSFET amplifier and its small 7						
b)	With the help MOSFET. Als	of neat diagram, explain the construction as so sketch the characteristics.	nd operation of a depletion type 6						
c)	Design the cir 0 V . The MOS $V_{DD} = +2$.	cuit of Fig. 2.c. to establish a drain current SFET has $V_T = 1 \text{ V}$, $\mu_n C_{ox} = 60 \mu\text{A} / \text{V}^2$, L = 5 V	of 1 mA and a drain voltage of 7 = 3 μm, and W= 100 μm.						
	$V_{SS} = -2.5$	Fig.2.c.							

		SRN						
3	a)	With a neat circuit diagram explain the frequency response of Common emitter amplifier.						
	b)	For a class B amplifier operation, show that the maximum conversion efficiency obtainable is 78.5%.						
	c)	For a class B amplifier providing a 20V peak signal to a 16Ω load (speaker) and a power supply of $V_{CC} = 30$ V, determine the input power, output power, and circuit efficiency.	7					
4	a)	With a neat block diagram derive an expression for the input and output impedances of the voltage series feedback.	7					
	b)	Determine the voltage gain, input, and output impedance with feedback for voltage series feedback having $A=100$, $Ri=10$ K Ω , $Ro=20$ K Ω for feedback of (a) - 0.1 and (b) - 0.5.	6					
	c)	Explain the Nyquist criteria to determine the stability of an amplifier. Define Gain margin and Phase margin.	7					
	a)	Derive an expression for the output of Inverting integrator and inverting differentiator circuits.	7					
-	b)	With the help of neat circuit diagram briefly explain the operation of an instrumentation amplifier.	6					
-	c)	Explain the operation of Monostable multivibrator using 555 timer.	7					