UNIVERSIDADE DEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA

DEPARTAMENTO DE INFORMÁTICA TEÓRICA

1 Semestre 2011 – 10/03/2011 a 18/07/2011

DISCIPLINA:

TEORIA DA COMPUTAÇÃO N

CÓDIGO: INF05501

Horário: Turma A - Segundas e Quartas das 8h30min - 10h10min

Turma B - Segundas e Quartas das 10h30min - 12h10min

Salas:

PROFESSOR: Prof. Dr. Tiarajú Asmuz Diverio - Turmas A e B

Carga Horária: 04 h/a semanais - 60 h

Natureza das aulas: Teóricas Créditos: 04 (quatro)

Curso: Bacharelado em Ciência da Computação

Engenharia da Computação

SÚMULA:

Noções de programas e máquinas.

Noção de computabilidade efetiva;

Máquinas de registradores e máquina de Turing;

Tese de Church;

Funções recursivas;

Solucionabilidade de problemas.

OBJETIVO:

Capacitar o aluno para o desenvolvimento sistematizado e formalizado das idéias, modelos e formalismos associados à computabilidade, formalizando as noções de programa, máquina, computação, equivalência de programas e máquinas universais, e para a investigação da solucionabilidade de problemas, utilizando as propriedades da solucionabilidade e o princípio da redução, determinando a classe de solucionabilidade dos problemas.

Livro - Texto:

[DIV2010] DIVERIO, Tiaraju A.; MENEZES, Paulo F. Blauth. Teoria da Computação – Máquinas Universais e Computabilidade.3 Edição. Porto Alegre: Bookman, 2011.

Semana Acadêmica: 23/5 a 27/5/2011.

CONTEÚDOS PROGRAMÁTICOS:

Item 1: Introdução

- 1.1 Notas Históricas
- 1.2 Abordagem
- 1.3 Conceitos Básicos

Item 2: Programas, Máquinas e Computações

- 2.1 Programas
- 2.1.1 Programa Monolítico
- 2.1.2 Programa Iterativo
- 2.1.3 Programa Recursivo
- 2.2 Máquinas
- 2.3 Computações e Funções Computadas
- 2.3.1 Computação
- 2.3.2 Função Computada
- 2.4 Equivalência de Programas e Máquinas
- 2.4.1 Equivalência Forte de Programas
- 2.4.2 Equivalência de Programas
- 2.4.3 Equivalência de Máquinas

Item 3: Verificação de Equivalência Forte de Programas

- 3.1 Máquina de Traços
- 3.2 Instruções Rotuladas Compostas
- 3.3 Equivalência Forte de Programas Monolíticos

Item 4: Máquinas de Registradores - Norma

- 4.1 Codificação de Conjuntos Estruturados
- 4.2 Definição da Máquina Norma
- 4.3 Máquina Norma como Máquina Universal
- 4.3.1 Operações e Testes
- 4.3.2 Valores Numéricos
- 4.3.3 Dados Estruturados
- 4.3.4 Endereçamento Indireto e Recursão
- 4.3.5 Cadeias de Caracteres

Item 5: Máquina de Turing

- 5.1 Noção Intuitiva
- 5.2 Noção como Máquina
- 5.3 Modelo Formal
- 5.4 Máquinas de Turing como Reconhecedores de Linguagens
- 5.5 Máquinas de Turing como Processadores de Funções

Item 6: Máquinas Universais e Hipótese de Church

- 6.1 Equivalência entre Máquinas de Turing e Norma
- 6.2 Modificações sobre as Máquinas de Turing
- 6.2.1 Maquina de Turing Não Deterministica
- 6.2.2 Máquina de Turing com Fita Infinita à Esquerda e à Direita
- 6.2.3 Máquina de Turing com Múltiplas Fitas
- 6.2.4 Outras Modificações sobre a Máquina de Turing
- 6.3 Hipótese de Church

Item 7: Outros Modelos de Máquinas Universais

- 7.1 Máquina de Post
- 7.2 Máquinas com Pilhas
- 7.3 Autômato com Duas Pilhas
- 7.4 Máquinas Não-Deterministicas
- 7.5 Hierarquia de Classes de Máquinas

Item 8: Funções Recursivas

- 8.1 Funções Recursivas de Kleene
- 8.1.1 Substituição Composicional
- 8.1.2 Recursão Primitiva
- 8.1.3 Minimização
- 8.1.4 Função Recursiva Parcial e Total
- 8.2 Cálculo Lambda
- 8.2.1 Aspectos Gerais do Cálculo Lambda
- 8.2.2 Linguagem Lambda
- 8.2.3 Variável Livre e Substituição
- 8.2.4 Cálculo Lambda
- 8.2.5 Tipos de dados básicos
- 8.2.6 Recursão e Ponto Fixo
- 8.2.7 Cálculo Lambda e Computabilidade
- 8.3 Funções Recursivas e Ciência da Computação
- 8.3.1 Importância das Funções Recursivas
- 8.3.2 Linguagem de Programação Funcional

Item 9: Computabilidade

- 9.1 Classes de Solucionabilidade de Problemas
- 9.2 Problemas de Decisão
- 9.3 Codificação de Programas
- 9.4 Problema da Auto Aplicação
- 9.5 Máquina de Redução
- 9.6 Problema da Parada
- 9.7 Outros Problemas de Decisão
- 9.8 Problema da Correspondência de Post
- 9.9 Propriedades da Solucionabilidade

Item 10: Conclusões

- 10.1 Resumo dos Principais Conceitos
- 10.2 Contribuições da Teoria da Computação

CRONOGRAMA:

 Item 1
 4h/a

 Item 2
 8h/a

 Item 3
 2h/a

proval 2h/a Total 16h/a Peso 2,5

 Item 4
 4h/a

 Item 5
 8h/a

 Item 6
 4h/a

 Item 7
 8h/a

prova2 2h/a Total 26h/a Peso 2,5

 Item 8
 6h/a

 Item 9
 10h/a

 Item 10
 4h/a

prova 3 Global 2h/a Total 22h/a Peso 3,5

SISTEMA DE AVALIAÇÃO:

- A avaliação é realizada através de três provas escritas e trabalhos teórico-práticos, a serem definidos durante o semestre, onde o aluno deverá atingir conceito mínimo C e ter frequência mínima de 75%.
- O conceito será calculado em função da média das provas e dos trabalhos. As provas totalizarão o peso 8.5 e os trabalhos peso 1,5.
- A atribuição dos conceitos será:

Conceito A: média no intervalo [9.0; 10.0]; Conceito B: média no intervalo [7.5; 9.0); Conceito C: média no intervalo [6.0; 7.5);

Conceito C: média no intervalo [6.0; 7.5) Conceito D: média inferior a 6.0.

Conceito FF: falta de frequência (conforme regimento da Universidade).

RECUPERAÇÃO:

- O aluno que não fizer uma das provas, por motivo de doença ou outro previsto no Regimento da Universidade, poderá solicitar a realização de uma Prova de Recuperação junto ao Protocolo Geral da Universidade. Para a realização da Prova de Recuperação, o aluno deverá ter seu pedido deferido pela junta médica.
- Alunos que: entregarem todos os trabalhos da disciplina, que tiverem uma frequência maior ou igual a 90% das aulas e que tiverem média final acima de 4,5 e inferior a 6,0 poderão desenvolver atividades de recuperação (trabalhos e prova), visando à obtenção do conceito C.
- Não estão previstas atividades de recuperação para melhoria de outros conceitos!

Professor Responsável pela Disciplina:

Prof. Dr. Tiarajú Asmuz Diverio

Sala: 208 do Prédio dos Professores Ramal: 6846

E-mail: diverio@inf.ufrgs.br

Moodle:

CRONOGRAMA DETALHADO:

Aula		Dia	Descrição
1.	14/3	S	Apresentação do programa da disciplina, critério de avaliação,
			bibliografia. Datas de provas e trabalhos.
2.	16/3	Q	Introdução.
3.	21/3	S	Programas, Máquinas e Computações - Programas
4.	23/3	Q	Programas Monolíticos, Iterativos e Recursivos
5.	28/3	S	Máquinas, Computações e Funções Computadas
6.	30/3	Q	Equivalências de Programas e Máquinas
7.	4/4	S	Verificação da Equivalência Forte de Programas
8.	6/4	Q	1 PROVA – capítulos 1, 2 e 3
9.	11/4	S	Máquinas de Registradores – Norma – Codificação de Programas
10.	13/4	Q	Máquina Norma como Máquina Universal
11.	18/4	S	Máquina de Turing – Noção Intuitiva e Modelo Formal
12.	20/4	Q	Máquina de Turing como Reconhecedores
13.	25/4	S	Máquina de Turing como Processadores de Funções –
14.	27/4	Q	Aula de exercícios (simulador)
15.	2/5	S	Máquinas Universais Equivalência Turing e Norma
16.	4/5	Q	Modificações na máquina de Turing e Tese de Church
17.	9/5	S	Outros Modelos de Máq. Universais –
18.	11/5	Q	Máquinas com Pilhas
19.	16/5	S	Autômatos com Pilhas
20.	18/5	Q	Aula de exercícios
21.	23/5	S	2 PROVA – capítulos 4, 5, 6 e 7
22.	25/5	Q	SEMANA ACADEMICA
23.	30/5	S	Funções Recursivas de Kleene
24.	1/6	Q	Cálculo Lambda - Linguagem Lambda
25.	6/6	S	Cálculo Lambda e teorema do ponto - fixo
26.	8/6	Q	Solucionabilidade: Classes de Solucionabilidade
27.	13/6	S	Codificação Bijetora e Problema da Autoaplicação
28.	15/6	Q	Problema da Parada e outros Problemas
29.	20/6	S	Sistema Normal de Post e o Problema da Correspondência
30.	22/6	Q	Propriedades da Solucionabilidade
31.	27/6	S	Conclusões
32.	29/6	Q	Revisão Final
33.	4/7	S	3 PROVA – Todos os capítulos
34.	6/7	Q	Entrega dos Conceitos
35.	11/7	S	Final do Semestre
	18/7	Q	ULTIMO DIA PARA PUBLICAR CONCEITOS

BIBLIOGRAFIA:

- [AHO92] AHO, A.; ULLMAN, J. **Foundations of Computer Science.** New York: Computer Science Press, 1992.
- [ARB81] ARBIB, M.; KFOURI, A; MOLL, R. A Basis for Theoretical Computer Science. New York: Springer Verlag, 1981.
- [BIR76] BIRD, Richard **Programs and Machines an introduction to the theory of computation.** London: John-Wiley, 1976.
- [BRA74] BRAINERD, W. S.; LANDWEBER L. H. **Theory of Computation.** New York: Wiley, 1974.
- [CLA90] CLARK, Keith; COWELL, Don. **Programs, machines and computation; an introduction to theory of computing.** London: McGraw-Hill, 1976.
- [DIV99] DIVERIO, Tiaraju A.; MENEZES, Paulo F. Blauth. Teoria da Computação Máquinas Universais e Computabilidade. Porto Alegre: Sagra-Luzzatto, 1999. 205p.
- [DIV2010] DIVERIO, Tiaraju A.; MENEZES, Paulo F. Blauth. Teoria da Computação Máquinas Universais e Computabilidade. 3 Edição. Porto Alegre: Bookman, 2011.
- [HOP79] HOPCROFT, J.; ULLMAN, J. Introduction to Automata Theory, Languages and Computation. Addison-Wesley, 1979.
- [LEW98] LEWIS, H. R.; PAPADIMITRIOU, C. H. **Elements of the theory of computation.** Upper Saddle River: Prentice Hall, 1998. 2 Ed. 361p.
- [MAN74] MANNA, Zohar. **Mathematical Theory of Computation.** New York: McGraw-Hill, 1974.
- [MEN90] MENEZES, P. Teoria da Computação. Porto Alegre: UFRGS, 1990.
- [MIN67] MINSKY, M. L. Computation: finite and infinite machines. Englewood Cliffs: Prentice Hall, 1967.
- [SER93] SERNADAS,C. Introdução à Teoria da Computação. Lisboa: Editorial Presença, 1993.