1

Assignment 6

K.A. Raja Babu

Download all python codes from

https://github.com/ka-raja-babu/Matrix-Theory/tree/main/Assignment6/Codes

and latex-tikz codes from

https://github.com/ka-raja-babu/Matrix-Theory/ tree/main/Assignment6

1 Question No. 2.29

Find the coordinates of the focus, axis, the equation of the directrix and latus rectum of the parabola $y^2 = 8x$.

2 Solution

All parameters of parabola $y^2 = 8x$ can be summarised in table 2.1.

Note : Given general formula is valid only when parabola is in standard form i.e. $|\mathbf{V}| = 0$ and $\lambda_1 = 0$

Given parabola is

$$y^2 = 8x (2.0.1)$$

$$\implies y^2 - 8x = 0 \tag{2.0.2}$$

Vector form of given parabola is

$$\mathbf{x}^{T} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x} + 2 \begin{pmatrix} -4 & 0 \end{pmatrix} \mathbf{x} + 0 = 0 \tag{2.0.3}$$

: .

$$\mathbf{V} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \mathbf{u} = \begin{pmatrix} -4 \\ 0 \end{pmatrix}, f = 0 \tag{2.0.4}$$

 $\because |\mathbf{V}| = 0$ and $\lambda_1 = 0$ i.e. it is in standard form

 $\mathbf{P} = \mathbf{I} \implies \mathbf{p_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{2.0.5}$

$$\eta = \mathbf{u}^T \mathbf{p_1} = -4 \tag{2.0.6}$$

Para- meter	Sym- bol	Value	General Formula
Vertex	c	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$\begin{vmatrix} \mathbf{u}^T + \eta \mathbf{p_1}^T \\ \mathbf{V} \end{vmatrix} \mathbf{c}$ $= \begin{pmatrix} -f \\ \eta \mathbf{p_1} - \mathbf{u} \end{pmatrix}$
Focal Length	β	2	$\frac{1}{4} \left \frac{2\eta}{\lambda_2} \right $
Focus	F	$\begin{pmatrix} 2 \\ 0 \end{pmatrix}$	$\mathbf{F} = \mathbf{c} + \mathbf{a}^T$
Axis		$\begin{pmatrix} 0 & 1 \end{pmatrix} \mathbf{x} = 0$	$\mathbf{x} = \mathbf{F} + k\mathbf{m}$
Axis direction vector	v	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	$\mathbf{v}^T\mathbf{x} = 0$
Direct- rix nor- mal vector	v ₁	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\mathbf{v_1}\mathbf{v}^T = 0$
Direct- rix		$ (1 0) \mathbf{x} = -2 $	$\mathbf{v_1}^T \mathbf{x} = -\beta$
Latus rectum normal vector	v ₂	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\mathbf{v_2}\mathbf{v}^T = 0$
Latus rectum		$\begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{x} = 2$	$\mathbf{v_2}^T \mathbf{x} = \beta$
End points of latus rectum	M, N	$\begin{pmatrix} 2\\4 \end{pmatrix}, \begin{pmatrix} 2\\-4 \end{pmatrix}$	$\begin{pmatrix} \beta \\ \pm y(\beta) \end{pmatrix}$
Length of latus rectum	l	8	$ \mathbf{M} - \mathbf{N} $

TABLE 2.1: Parameters of parabola $y^2 = 8x$

The vertex \mathbf{c} is given by

$$\begin{pmatrix} -8 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{c} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \tag{2.0.7}$$

$$\implies \mathbf{c} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{2.0.8}$$

The focal length β is given by

$$\beta = \frac{1}{4} \left| \frac{2\eta}{\lambda_2} \right| = \frac{1}{4} \left| \frac{-8}{1} \right| = 2 \tag{2.0.9}$$

The focus **F** is given by

$$\mathbf{a} = \frac{-2\eta \begin{pmatrix} 1 & 0 \end{pmatrix}}{4} = \begin{pmatrix} 2 & 0 \end{pmatrix}$$
 (2.0.10)

$$\mathbf{F} = \mathbf{c} + \mathbf{a}^T = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \tag{2.0.11}$$

: Axis of parabola passes through both vertex and focus.

.. Axis of parabola is given by

$$\mathbf{m} = \mathbf{F} - \mathbf{c} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \tag{2.0.12}$$

$$\mathbf{x} = \mathbf{F} + k\mathbf{m} = \begin{pmatrix} 2 + 2k \\ 0 \end{pmatrix} \tag{2.0.13}$$

$$\implies \begin{pmatrix} 0 & 1 \end{pmatrix} \mathbf{x} = 0 \tag{2.0.14}$$

$$\implies \mathbf{v} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{2.0.15}$$

: Vertex of parabola is at equal distance from focus and directrix and is perpendicular to axis.

: Directrix of parabola is given by

$$\mathbf{v_1}\mathbf{v}^T = 0 \tag{2.0.16}$$

$$\implies \mathbf{v_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{2.0.17}$$

So,

$$\mathbf{v_1}^T \mathbf{x} = -\beta \tag{2.0.18}$$

$$\implies \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{x} = -2 \tag{2.0.19}$$

: Latus rectum of parabola passes through focus and is perpendicular to axis.

: Latus rectum of parabola is given by

$$\mathbf{v_2}\mathbf{v}^T = 0 \tag{2.0.20}$$

$$\implies \mathbf{v_2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{2.0.21}$$

So,

$$\mathbf{v_2}^T \mathbf{x} = \beta \tag{2.0.22}$$

Using Eigenvalue Decomposition,

Using Affine Transformation,

$$\implies \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{x} = 2 \tag{2.0.23}$$

End points of latus rectum are

$$\mathbf{M} = \begin{pmatrix} 2\\4 \end{pmatrix} \tag{2.0.24}$$

$$\mathbf{N} = \begin{pmatrix} 2 \\ -4 \end{pmatrix} \tag{2.0.25}$$

So, the length of latus rectum l is

$$l = ||\mathbf{M} - \mathbf{N}|| = 8 \tag{2.0.26}$$

Plot of given parabola

Fig. 2.1: Parabola $y^2 = 8x$

3 Appendix

General equation of a conic is given by

$$ax^{2} + 2bxy + cy^{2} + 2dx + 2ey + f = 0$$
 (3.0.1)

and can be expressed as

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{3.0.2}$$

where

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \tag{3.0.3}$$

$$\mathbf{u} = \begin{pmatrix} d & e \end{pmatrix} \tag{3.0.4}$$

$$\mathbf{x} = \mathbf{P}\mathbf{y} + \mathbf{c} \tag{3.0.5}$$

$$\mathbf{P}^T \mathbf{V} \mathbf{P} = \mathbf{D} \tag{3.0.6}$$

such that

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \tag{3.0.7}$$

$$\mathbf{P} = \begin{pmatrix} \mathbf{p_1} & \mathbf{p_2} \end{pmatrix}, \quad \mathbf{P}^T = \mathbf{P}^{-1} \tag{3.0.8}$$

Substituting (3.0.5) in (3.0.2), we get

$$(\mathbf{P}\mathbf{y} + \mathbf{c})^T \mathbf{V} (\mathbf{P}\mathbf{y} + \mathbf{c}) + 2\mathbf{u}^T (\mathbf{P}\mathbf{y} + \mathbf{c}) + f = 0 \quad (3.0.9)$$

which can be expressed as

$$\mathbf{y}^{T}\mathbf{P}^{T}\mathbf{V}\mathbf{P}\mathbf{y} + 2(\mathbf{V}\mathbf{c} + \mathbf{u})^{T}\mathbf{P}\mathbf{y}$$
$$+ \mathbf{c}^{T}\mathbf{V}\mathbf{c} + 2\mathbf{u}^{T}\mathbf{c} + f = 0 \quad (3.0.10)$$

From (3.0.10) and (3.0.6),

$$\mathbf{y}^{T}\mathbf{P}^{T}\mathbf{V}\mathbf{P}\mathbf{y} + 2(\mathbf{V}\mathbf{c} + \mathbf{u})^{T}\mathbf{P}\mathbf{y} + \mathbf{c}^{T}\mathbf{V}\mathbf{c} + 2\mathbf{u}^{T}\mathbf{c} + f = 0$$
(3.0.11)

When $|\mathbf{V}| = 0$, $\lambda_1 = 0$ and

$$\mathbf{V}\mathbf{p}_1 = 0, \mathbf{V}\mathbf{p}_2 = \lambda_2 \mathbf{p}_2 \tag{3.0.12}$$

Then, substituting (3.0.8) in (3.0.10),

$$\mathbf{y}^{T}\mathbf{D}\mathbf{y} + 2\left(\mathbf{c}^{T}\mathbf{V} + \mathbf{u}^{T}\right)\left(\mathbf{p}_{1} \quad \mathbf{p}_{2}\right)\mathbf{y} + \mathbf{c}^{T}\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right) + \mathbf{u}^{T}\mathbf{c} + f = 0 \quad (3.0.13)$$

$$\implies \mathbf{y}^T \mathbf{D} \mathbf{y} + 2 \left(\left(\mathbf{c}^T \mathbf{V} + \mathbf{u}^T \right) \mathbf{p}_1 \quad \left(\mathbf{c}^T \mathbf{V} + \mathbf{u}^T \right) \mathbf{p}_2 \right) \mathbf{y}$$
$$+ \mathbf{c}^T \left(\mathbf{V} \mathbf{c} + \mathbf{u} \right) + \mathbf{u}^T \mathbf{c} + f = 0 \quad (3.0.14)$$

$$\implies \mathbf{y}^T \mathbf{D} \mathbf{y} + 2 \left(\mathbf{u}^T \mathbf{p}_1 \left(\lambda_2 \mathbf{c}^T + \mathbf{u}^T \right) \mathbf{p}_2 \right) \mathbf{y}$$

+ $\mathbf{c}^T \left(\mathbf{V} \mathbf{c} + \mathbf{u} \right) + \mathbf{u}^T \mathbf{c} + f = 0 \quad (3.0.15)$

$$\implies \lambda_2 y_2^2 + 2 \left(\mathbf{u}^T \mathbf{p}_1 \right) y_1 + 2 y_2 \left(\lambda_2 \mathbf{c} + \mathbf{u} \right)^T \mathbf{p}_2 + \mathbf{c}^T \left(\mathbf{V} \mathbf{c} + \mathbf{u} \right) + \mathbf{u}^T \mathbf{c} + f = 0 \quad (3.0.16)$$

which is the equation of a parabola.

From (3.0.16), by comparing the coefficients of y_2^2 and y_1 , the focal length of the parabola is obtained as

$$\beta = \frac{1}{4} \left| \frac{2\mathbf{u}^T \mathbf{p}_1}{\lambda_2} \right| \tag{3.0.17}$$

Now,by choosing

$$\eta = \mathbf{u}^T \mathbf{p}_1 \tag{3.0.18}$$

such that

$$\mathbf{P}^{T}\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right) = \eta \begin{pmatrix} 1\\0 \end{pmatrix} \tag{3.0.19}$$

$$\mathbf{c}^{T} (\mathbf{V}\mathbf{c} + \mathbf{u}) + \mathbf{u}^{T}\mathbf{c} + f = 0$$
 (3.0.20)

Multiplying (3.0.19) by **P** yields

$$(\mathbf{Vc} + \mathbf{u}) = \eta \mathbf{p}_1, \tag{3.0.21}$$

which, upon substituting in (3.0.20) results in

$$\eta \mathbf{c}^T \mathbf{p}_1 + \mathbf{u}^T \mathbf{c} + f = 0 \tag{3.0.22}$$

(3.0.21) and (3.0.22) can be clubbed together to obtain

$$\begin{pmatrix} \mathbf{u}^T + \eta \mathbf{p_1}^T \\ \mathbf{V} \end{pmatrix} \mathbf{c} = \begin{pmatrix} -f \\ \eta \mathbf{p_1} - \mathbf{u} \end{pmatrix}$$
 (3.0.23)

So,when |V|=0, (3.0.2) can be expressed as

$$\mathbf{y}^T \mathbf{D} \mathbf{y} = -2\eta \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{y} \tag{3.0.24}$$

From (3.0.24), focus **F** can be calculated as

$$\mathbf{a} = \frac{-2\eta \begin{pmatrix} 1 & 0 \end{pmatrix}}{4} \tag{3.0.25}$$

$$\mathbf{F} = \mathbf{c} + \mathbf{a}^T \tag{3.0.26}$$

By using \mathbf{c} from (3.0.23) and \mathbf{F} from (3.0.26),axis can be calculated as

$$\mathbf{m} = \mathbf{F} - \mathbf{c}$$
 (**m** is direction vector) (3.0.27)

$$\mathbf{x} = \mathbf{F} + k\mathbf{m} \quad (k \in \mathbb{R}) \tag{3.0.28}$$

$$\implies$$
 vx = 0 (**v** is direction vector of **x**) (3.0.29)

Directrix is always perpendicular to axis such that

$$\mathbf{v_1}\mathbf{v}^T = 0$$
 ($\mathbf{v_1}$ is normal vector) (3.0.30)

Using (3.0.17),(3.0.29) and (3.0.30),directrix can be expressed as

$$\mathbf{v_1}^T \mathbf{x} = -\beta \tag{3.0.31}$$

Also, latus rectum is always perpendicular to axis such that

$$\mathbf{v_2}\mathbf{v}^T = 0$$
 ($\mathbf{v_2}$ is normal vector) (3.0.32)

Using (3.0.17),(3.0.29) and (3.0.32),latus rectum can be expressed as

$$\mathbf{v_2}^T \mathbf{x} = \beta \tag{3.0.33}$$

Using (3.0.1) and (3.0.17), intersection points of latus rectum can be expressed as

$$\mathbf{M} = \begin{pmatrix} \beta \\ y(\beta) \end{pmatrix}$$
 (3.0.34)
$$\mathbf{N} = \begin{pmatrix} \beta \\ -y(\beta) \end{pmatrix}$$
 (3.0.35)

$$\mathbf{N} = \begin{pmatrix} \beta \\ -y(\beta) \end{pmatrix} \tag{3.0.35}$$

Now, using (3.0.34) and (3.0.35), length of latus rectum can be expressed as

$$l = ||\mathbf{M} - \mathbf{N}|| \tag{3.0.36}$$