(1) Japanese Patent Application Laid-Open No. 11-186390 (1999) "MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE"

The following is English translation of an extract from the above-identified document relevant to the present application.

As shown in Fig. 5, an Al-Cu film 9 and a TiN/Ti film 8 of the parts other than the inside of a connection hole 5 and wiring trench 6 is removed by sequentially polishing by a CMP method for example. One of the conditions of polishing by this CMP method is that with slurry including formed silica on the basis of ammoniumhydroxide (NH₄ OH), the polishing pressure is set at 100 g/cm², the throughput is set at 100 cc/min, the temperature is set at 25 ~ 30 °C, and the revolution speed is set at 30 rpm for the surface plate and at 30 rpm for the polishing head.

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平11-186390

(43)公開日 平成11年(1999)7月9日

(51) Int.Cl. 6

識別記号

FΙ

H01L 21/90

21/3205

H01L 21/768

21/88

審査請求 未請求 請求項の数9 OL (全7頁)

(21)出願番号

特願平9-357210

(22)出願日

平成9年(1997)12月25日

(71)出願人 000002185

ソニー株式会社

東京都品川区北品川6丁目7番35号

(72)発明者 藤井 美香

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(74)代理人 弁理士 杉浦 正知

(54)【発明の名称】半導体装置の製造方法

(57)【要約】

【課題】 接続孔と配線溝とに導電材料を埋め込む場合 の埋め込み特性を向上させることができ、接続孔の内部 におけるエレクトロマイグレーション耐性を向上させる ことができ、配線信頼性を向上させることができる半導 体装置の製造方法を提供する。

【解決手段】 あらかじめ素子が形成されたSi基板1 上に下層配線層2およびTiN膜3を形成し、下層配線 層2およびTiN膜3を覆うようにして層間絶縁膜4を 形成する。層間絶縁膜4に接続孔5および配線溝6を形 成した後、選択CVD法により、接続孔5の内部に配線 溝6の底面より低い高さまでA1を埋め込み、接続孔プ ラグ7を形成する。全面にバリア層としてのTiN/T i膜8を形成し、TiN/Ti膜8上にAl-Cu膜を 形成した後、Al-Cu膜をリフローさせて接続孔5の 上部および配線溝6に埋め込む。CMP法により接続孔 5の上部および配線溝6の内部以外の部分のA1-Cu 膜を研磨除去することによって、溝配線10を形成す る。以上の工程を必要なだけ繰り返すことによって、所 望の半導体装置を製造する。

【特許請求の範囲】

【請求項1】 接続孔および配線溝を有し、上記接続孔 および上記配線溝が導電材料で埋め込まれた半導体装置 の製造方法において、

基板上に絶縁膜を形成する工程と、

上記絶縁膜に上記接続孔および上記配線溝を形成するエ 程と、

上記接続孔を上記配線溝の底面より低い高さまで第1の 導電材料で埋め込む工程と、

少なくとも上記第1の導電材料の露出している面を覆う 10 ようにして導電材料からなるバリア層を形成する工程 と、

上記接続孔の上部および上記配線溝を第2の導電材料で 埋め込む工程とを有することを特徴とする半導体装置の 製造方法。

【請求項2】 上記バリア層が、W、Ti、Ta、これ ちの合金、WN、TiN、TaN、TaSiNまたはW SiNからなる単層または積層膜であることを特徴とす る請求項1記載の半導体装置の製造方法。

【請求項3】 上記接続孔への上記第1の導電材料の埋 20 め込みを、選択成長法により行うことを特徴とする請求 項1記載の半導体装置の製造方法。

【請求項4】 上記接続孔への上記第1の導電材料の埋 め込みを、選択化学気相成長法により行うことを特徴と する請求項1記載の半導体装置の製造方法。

【請求項5】 上記接続孔の上部および上記配線溝への 上記第2の導電材料の埋め込みを、リフロー法、高圧リ フロー法、化学気相成長法、めっき法、または高温スパ ッタリング法により行うことを特徴とする請求項1記載 の半導体装置の製造方法。

【請求項6】 上記第1の導電材料が、A1、Cu、A g、Au、Zr、Wまたはこれらの合金であることを特 徴とする請求項1記載の半導体装置の製造方法。

【請求項7】 上記第2の導電材料が、A1、Cu、A g、Au、Zr、Wまたはこれらの合金であることを特 徴とする請求項1記載の半導体装置の製造方法。

【請求項8】 上記第1の導電材料がA1であり、上記 第2の導電材料がA1合金であることを特徴とする請求 項1記載の半導体装置の製造方法。

【請求項9】 上記第1の導電材料がA1であり、上記 40 第2の導電材料がCuまたはCu合金であることを特徴 とする請求項1記載の半導体装置の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、半導体装置の製 造方法に関し、特に、ダマシン(Damascene) 構造の配線 を有する半導体装置の製造に適用して好適なものであ る。

[0002]

や内部配線の微細化が進んでいる。その中で、ダマシン 技術は、層間絶縁膜の平坦化や微細な配線の形成が容易 であり、反応性イオンエッチング(RIE)法によるエ ッチングが困難であるとされている銅(Cu)などの導 電材料からなる配線の形成に適用することができる。さ らに、接続孔と配線とを同時に形成するデュアルダマシ ン(Dual Damascene)技術は、接続孔と配線との自己整合 (セルフアライン)が可能となるため、注目されてい る。

【0003】ここで、このデュアルダマシン技術の一例 を図10~図12を参照して説明する。すなわち、ま ず、図10に示すように、あらかじめトランジスタなど の素子や素子分離領域(図示せず)が形成された半導体 基板101上にSiО、膜などの層間絶縁膜102を形 成し、この層間絶縁膜102に接続孔103および配線 パターンの配線溝104を順次形成する。次に、図11 に示すように、アルミニウム(A1)、A1-Cuなど のA1合金またはCuなどの配線材料を成膜し、配線溝 104および接続孔103の内部に金属膜105を埋め 込む。その後、図12に示すように、配線溝104およ び接続孔103の内部以外の部分の金属膜105を化学 的機械研磨(CMP)法などによって除去することによ り、配線溝104の部分の溝配線106と、接続孔10 3の部分の接続孔プラグ107とを同時に形成する。

【0004】以上のようなデュアルダマシン技術におい ては、配線溝104および接続孔103の内部に金属膜 105を埋め込む技術として、化学気相成長(CVD) 法、リフロー法、高温スパッタリング法、あるいは高圧 リフロー法などがある。

30 [0005]

【発明が解決しようとする課題】しかしながら、従来、 高アスペクト比の接続孔103の内部および配線溝10 4への金属膜105の埋め込みを、その内部にポイド (空孔)を残すことなく行うのは困難であった。

【0006】また、配線の微細化に伴う一般的な問題と して、電流密度の増加によるエレクトロマイグレーショ ン(EM)耐性の劣化という問題がある。ここで、エレ クトロマイグレーションとは、A1原子などの配線を構 成する導電材料の原子が電子の流れにしたがって移動す る現象をいう。この現象について以下に詳細に説明す

【0007】すなわち、図13に示すように、Si基板 110上にA1などからなる下層配線111とTiN膜 などのバリアメタル112とが順次設けられており、そ の上に層間絶縁膜113が設けられている。この層間絶 縁膜113には、ダマシン技術によって、接続孔114 と配線パターンの配線溝115とが形成されており、こ れらの接続孔114および配線溝115の内部は、AI などの導電材料で埋め込まれている。配線溝115に埋 【従来の技術】LSIの高集積化に伴い、配線の多層化 50 め込まれた導電材料により上層溝配線116が構成され

ており、接続孔115に埋め込まれた導電材料により接 続孔プラグ117が構成されている。

【0008】さて、これらの下層配線111と上層溝配 線116との間に接続孔プラグ117を通じて電流が流 されると、それらの内部に電子の流れが発生する。そし て、この電子の流れにしたがって、接続孔プラグ117 を構成するA1などの導電材料の原子118、119が、 移動する。これらの導電材料の原子118、119など の移動が大量に生じると、接続孔114の内部で接続孔 プラグ117にボイド120が形成される。以上のよう 10 にして、エレクトロマイグレーションが進行する。

【0009】上述のようなデュアルダマシン技術によっ て形成された溝配線に限らず、接続孔に埋め込まれた接 続孔プラグと配線とがAlなどの導電材料から連続的に 形成されている場合においても、エレクトロマイグレー ションにより接続孔の内部に埋め込まれた導電材料の原 子がその上層の配線にまで移動してしまう。そのため、 微細な接続孔の内部でボイドが形成されやすくなり、配 線信頼性の低下を招いてしまう。

【0010】したがって、この発明の目的は、溝配線を 20 含む多層配線の形成において、接続孔と配線溝とに導電 材料を埋め込む場合、その埋め込み特性を向上させるこ とができるとともに、接続孔の内部から溝配線への導電 材料の原子の移動を防止することによって、多層配線の エレクトロマイグレーション耐性を向上させることがで き、配線信頼性を向上させることができる半導体装置の 製造方法を提供することにある。

[0011]

【課題を解決するための手段】上記目的を達成するため よび配線溝が導電材料で埋め込まれた半導体装置の製造 方法において、基板上に絶縁膜を形成する工程と、絶縁 膜に接続孔および配線溝を形成する工程と、接続孔を配 線溝の底面より低い高さまで第1の導電材料で埋め込む 工程と、少なくとも第1の導電材料の露出している面を 覆うようにして導電材料からなるバリア層を形成する工 程と、接続孔の上部および配線溝を第2の導電材料で埋 め込む工程とを有することを特徴とするものである。

【0012】ここで、「パリア層」とは、第1の導電材 料の原子の移動を阻止するためのものである。

【0013】この発明において、バリア層は、W、T i、Ta、これらの合金、WN、TiN、TaN、Ta SiN、WSiNなどからなる単層または積層膜であ り、典型的には、TiN/Ti膜である。

【0014】この発明において、典型的には、接続孔へ の第1の導電材料の埋め込みを選択成長法により行い、 好適には、選択CVD法により行う。

【0015】この発明において、典型的には、接続孔の 上部および配線溝への第2の導電材料の埋め込みを、リ フロー法、高圧リフロー法、CVD法、めっき法、また 50 ターンをマスクとして、RIE法により層間絶縁膜4を

は高温スパッタリング法により行う。

【0016】この発明において、典型的には、第1の導 電材料および第2の導電材料は、A1、Cu、Ag、A u、Zr、W、またはこれらの合金である。ここで、A 1合金としては、例えば、A1-Cu、A1-Si-C u、Al-Geなどが挙げられ、Cu合金としては、C u-Zrなどが挙げられる。

【0017】この発明において、典型的には、第1の導 電材料をA1とし、第2の導電材料をA1合金とする。 また、この発明において、第1の導電材料をA1とし、 第2の導電材料をCuまたはCu合金(例えば、Cu-Zrなど)としてもよい。

【0018】上述のように構成されたこの発明によれ ば、接続孔に溝配線の底面より低い高さまで第1の導電 材料を埋め込み、少なくとも第1の導電材料の露出面を 覆うようにしてバリア層を形成した後、接続孔の上部お よび配線溝に第2の導電材料を埋め込むようにしている ことにより、溝配線の形成において、第2の導電材料を 埋め込むべき部分の実効的なアスペクト比を低くするこ とができるので、接続孔および配線溝への第2の導電材 料の埋め込みを、その内部にボイドを残すことなく容易 に行うことができるとともに、接続孔の内部に埋め込ま れた第1の導電材料の原子が第2の導電材料からなる溝 配線に移動するのをバリア層によって防止することがで きるので、接続孔の内部におけるボイドの発生を抑制す ることができる。

[0019]

【発明の実施の形態】以下、この発明の実施形態につい て図面を参照しながら説明する。なお、以下の実施形態 に、この発明は、接続孔および配線溝を有し、接続孔お 30 の全図においては、同一または対応する部分には同一の 符号を付す。

> 【0020】まず、この発明の第1の実施形態による半 導体装置の製造方法について説明する。図1から図6 は、この第1の実施形態による半導体装置の製造方法を 示す。

> 【0021】まず、図1に示すように、通常のLSIプ ロセスにより例えばトランジスタなどの素子や素子分離 領域(図示せず)を形成したSi基板1上に、例えばA 1などからなる下層配線層2とバリアメタルとしてのT iN膜3とを順次形成する。次に、下層配線層2および TiN膜3を覆うようにして、Si基板1上の全面に例 えばSi〇、膜などの層間絶縁膜4を形成する。次に、 層間絶縁膜4上にリソグラフィエ程により接続孔の形成 位置に開口を有するレジストパターン (図示せず)を形 成した後、このレジストパターンをマスクとして例えば RIE法により層間絶縁膜4をエッチングすることによ って接続孔5を形成する。次に、レジストパターンを除 去する。次に、層間絶縁膜4上に配線パターンのレジス トパターン(図示せず)を形成した後、このレジストパ

5

エッチングすることによって、配線溝6を形成する。ここで、接続孔5の径を例えば0.30 μ m、その深さを例えば0.8 μ mとし、配線溝6の幅を例えば0.35 μ m、その深さを例えば0.5 μ mとする。

【0022】次に、図2に示すように、接続孔5の底部のTiN膜3の表面および層間絶縁膜4の表面のクリーニング処理を行った後、例えば選択CVD法により、接続孔5の内部に選択的に配線溝6の底面より低い高さまでA1を埋め込むことによって接続孔プラグ7を形成する。ここで、クリーニング処理条件の一例を挙げると、クリーニングガスとして三塩化ホウ素(BC1)を用い、その流量を100sccmとし、クリーニング時間を90秒間、RFパワーを200W、基板温度を20Cとする。また、この接続孔プラグ7の形成におけるCVD条件の一例を挙げると、反応ガスとして、DMAH(A1(CH,),H、Dimethyl aluminum hydride)を用い、その流量を0.11 g/min bydride)を用い、その流量を0.11 bydride0 bydride1 bydride2 bydride3 bydride3 bydride4 bydride6 bydride6 bydride7 bydride8 bydride9 by

【0023】次に、Si基板1をガス加熱装置(図示せず)内に搬入し、Si基板1の裏面を加熱することによ 20り、プレヒート処理を行う。ここで、このプレヒート処理条件の一例を挙げると、加熱ガスとしてArガスを用い、加熱時間を1分間、裏面のガス圧力を1000Paとし、加熱温度を500Cとする。

【0024】次に、図3に示すように、例えばDCマグネトロンスパッタリング法により、全面にTi膜およびTiN膜を順次形成することにより、下地パリア層としてのTiN/Ti膜8を形成する。これらのTi膜およびTiN膜の膜厚は、それぞれ例えば20nmおよび50nmである。ここで、TiN/Ti膜8の形成におけるスパッタ条件の一例を挙げると、Ti膜の形成におけるスパッタ条件の一例を挙げると、Ti膜の形成においては、プロセスガスとしてArガスを用い、その流量を100sccmとし、DCパワーを6kW、圧力を0.4Pa、基板加熱温度を200℃とし、TiN膜の形成においては、プロセスガスとしてArとN.との混合ガスを用い、それらの流量をそれぞれ20sccm、70sccmとし、DCパワーを12kW、圧力を0.4Pa、基板加熱温度を200℃とする。

【0025】次に、例えばDCマグネトロンスパッタリング法により、TiN/Ti膜8上に例えば、A1にC 40 uが少量添加されたA1-Cu膜9を形成する。このA 1-Cu膜9の膜厚は例えば1.5 μ mである。ここで、COA1-Cu膜9のスパッタ条件の一例を挙げると、プロセスガスとしてArガスを用い、その流量を100sccmとし、DCパワーを15kW、圧力を0.4 Pa、基板加熱温度を200Cとする。

【0026】次に、図4に示すように、Si基板1を、 リフロー装置 (図示せず) 内に真空搬送した後、例えば Arガスによって、このSi基板1の裏面に例えば1000Paの圧力を加えつつ例えば500Cの温度に加熱 することによって、A1-Cu膜9を例えば1分間リフローさせる。これにより、接続孔5の上部および配線溝6に<math>A1-Cu膜9が埋め込まれる。

【0027】次に、図5に示すように、例えばCMP法により接続孔5および配線溝6の内部以外の部分のA1ーCu膜9およびTiN/Ti膜8を順次研磨することにより除去する。ここで、このCMP法における研磨の条件の一例を挙げると、水酸化アンモニウム(NH、OH)ベースでフォームドシリカ含有のスラリーを用いて、研磨圧力を $100g/cm^i$ 、流量を100cc/min、温度を $25\sim30$ Cとし、回転数については定盤を30rpm、研磨ヘッドを30rpmとする。

【0028】以上の工程を経て、層間絶縁膜4の配線溝6にTiN/Ti膜8を下地パリア層とした溝配線10が形成される。

【0029】その後、上述と同様にして、図6に示すように、層間絶縁膜4上に層間絶縁膜11を形成する工程、層間絶縁膜11に接続孔12および配線溝13を形成する工程、接続孔プラグ14の形成の工程、下地バリア層としてのTiN/Ti膜15の形成の工程、配線溝13にA1合金膜を埋め込む工程、およびそのA1合金膜の不要部分を除去する工程を経て、溝配線16を形成する。以上により、所望の多層溝配線を有する半導体装置が製造される。

【0030】以上説明したように、この第1の実施形態 によれば、接続孔5に配線溝6の底面より低い高さまで Alからなる接続孔プラグ7を埋め込んだ後、接続孔5 の上部と配線溝6とにA1-Cu膜9を埋め込むように していることにより、Al-Cu膜9を埋め込むべき部 30 分の実効的なアスペクト比が低い状態から、A1-Cu 膜9を埋め込むことができるので、接続孔5の上部およ び配線溝6へのA1-Cu膜9の埋め込みをその内部に ボイドを残すことなく行うことができ、A1-Cu膜9 の接続孔5の上部および配線溝6への埋め込み特性を向 上させることができる。また、接続孔5に埋め込まれた 接続孔プラグ7の上面を覆うようにして、下地バリア層 としてのTiN/Ti膜8を形成し、このTiN/Ti 膜8上に溝配線10を形成するようにしていることによ り、接続孔プラグ7と溝配線10との間に電流を流した ときに、接続孔プラグ7のA1原子の溝配線10への移 動をTiN/Ti膜8によって防ぐことができるので、 接続孔プラグ7の内部にボイドが発生するのが抑制さ れ、接続孔プラグ7におけるエレクトロマイグレーショ ン耐性を向上させることができる。これによって、配線 信頼性を向上させることができ、高信頼性の多層配線を 有する半導体装置を得ることができる。

【0031】次に、この発明の第2の実施形態による半 導体装置の製造方法について説明する。

Arガスによって、このSi基板1の裏面に例えば10 【0032】この第2の実施形態においては、A1-C 00Paの圧力を加えつつ例えば500℃の温度に加熱 50 u膜9の接続孔5の上部および配線溝6への埋め込みを 7

高圧リフロー法により行うこと以外のことは第1の実施 形態と同様である。ここで、高圧リフロー法によるA1 - Cu膜9のリフロー条件の一例を挙げると、プロセス ガスとしてArガスを用い、圧力を70MPa、リフロー時間を1分間、基板加熱温度を450℃とする。

【0033】この第2の実施形態によれば、第1の実施 形態と同様の効果を得ることができる。

【0034】次に、この発明の第3の実施形態による半 導体装置の製造方法について説明する。

【0035】この第3の実施形態においては、まず、第 10 1の実施形態と同様にして、層間絶縁膜4に形成された接続孔5の内部に配線溝6の底面より低い高さまで接続孔プラグ7を埋め込んだ後、この接続孔プラグ7の上面を含んだ全面にTiN/Ti膜8を形成する工程まで行う。

【0036】次に、図7に示すように、例えばDCマグネトロンスパッタリング法により、TiN/Ti膜8上にCu膜21を形成する。ここで、このCu 膜21のスパッタ条件の一例を挙げると、プロセスガスとしてArガスを用い、その流量を100sccmとし、DCパワ 20一を15kW、圧力を0.4Pa、基板加熱温度を150Cとする。

【0037】次に、Si基板1を、リフロー装置の真空チャンバー(図示せず)内に真空搬送した後、Si基板1を例えば400°Cの温度で加熱し、Cu膜21を例えば10°Pa以下の圧力で、例えば5分間リフローさせる。これによって、図8に示すように、Cuが接続孔5の上部および配線溝6に埋め込まれる。

【0038】次に、図9に示すように、例えばCMP法により接続孔5および配線溝6の内部以外の部分のCu 30 膜21およびTiN/Ti膜8を順次研磨することにより除去する。ここで、このCMP法における研磨の条件の一例を挙げると、過酸化水素($H_{\rm L}$ O $_{\rm L}$) ベースでアルミナ含有のスラリーを用いて、研磨圧力を $100g/cm^{\rm L}$ 、流量を100cc/min、温度を $25\sim30$ Cとし、回転数については定盤を30rpm、研磨ヘッドを30rpmとする。

【0039】以上の工程を経て、層間絶縁膜4の配線溝6にTiN/Ti膜8を下地バリア層としたCuからなる溝配線22が形成される。

【0040】その後、層間絶縁膜4上に層間絶縁膜(図示せず)を形成し、上述の溝配線22の形成方法と同様にして、接続孔および配線溝の形成の工程からCMP法によるCu膜の研磨の工程までを必要な回数だけ順次繰り返して行うことにより、Cuからなる多層溝配線を形成する。以上により、所望の多層溝配線を有する半導体装置が製造される。

【0041】以上説明したように、この第3の実施形態によれば、接続孔5の内部に配線溝6の底面より低い高さまで接続孔プラグ7を埋め込み、この接続孔プラグ7 50

の上面を覆うようにして、TiN/Ti膜8を形成していることにより、第1の実施形態と同様の効果を得ることができるとともに、溝配線22の材料として、エレクトロマイグレーション耐性により優れたCuを用いていることにより、よりエレクトロマイグレーション耐性に優れた溝配線を有する半導体装置を得ることができる。

【0042】次に、この発明の第4の実施形態による半導体装置の製造方法について説明する。この第4の実施形態においては、CVD法により、Cu膜21を形成して接続孔5の上部および配線溝6に埋め込むこと以外のことは第3の実施形態と同様である。ここで、CVD条件の一例を挙げると、反応ガスとして、ガス化させたCu(hfac)(tmvs) (hexafluoro-acetyl-acetonate copper -I trimethyl-vinyl-silance)を用い、その流量を0.68g/minとし、キャリアガスとしてH.ガスを用い、その流量を1000sccmとし、圧力を0.3Pa、基板加熱温度を170℃とする。

【0043】この第4の実施形態によれば、第3の実施 形態と同様の効果を得ることができる。

【0044】以上、この発明の実施形態について具体的に説明したが、この発明は、上述の実施形態に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。

【0045】例えば、上述の実施形態において挙げた数値はあくまでも例に過ぎず、必要に応じてこれと異なる数値を用いてもよい。

【0046】また、例えば上述の第1から第4の実施形態においては、層間絶縁膜4に接続孔5を形成した後に配線溝6を形成するようにしているが、配線溝6を形成した後に接続孔5を形成するようにしてもよい。

[0047]

【発明の効果】以上説明したように、この発明によれば、接続孔を配線溝の底面より低い高さまで第1の導電材料で埋め込み、少なくともこの第1の導電材料の露出している面を覆うようにしてパリア層を形成した後、接続孔の上部および配線溝を第2の導電材料で埋め込むようにしていることにより、溝配線からなる多層配線の形成において、接続孔および配線溝への導電材料の埋め込み特性を向上させることができるとともに、接続孔の内部から溝配線への第1の導電材料の原子の移動を防止し、接続孔の内部におけるボイドの発生を抑制することができることによって、多層溝配線のエレクトロマイグレーション耐性を向上させることができ、配線信頼性に優れた多層配線を有する半導体装置を得ることができる。

【図面の簡単な説明】

【図1】この発明の第1の実施形態による半導体装置の 製造方法を説明するための断面図である。

【図2】この発明の第1の実施形態による半導体装置の 製造方法を説明するための断面図である。 9

【図3】この発明の第1の実施形態による半導体装置の 製造方法を説明するための断面図である。

【図4】この発明の第1の実施形態による半導体装置の 製造方法を説明するための断面図である。

【図5】この発明の第1の実施形態による半導体装置の 製造方法を説明するための断面図である。

【図6】この発明の第1の実施形態による半導体装置の 製造方法を説明するための断面図である。

【図7】この発明の第3の実施形態による半導体装置の 製造方法を説明するための断面図である。

【図8】この発明の第3の実施形態による半導体装置の 製造方法を説明するための断面図である。

【図9】この発明の第3の実施形態による半導体装置の 製造方法を説明するための断面図である。 【図10】従来のダマシン技術における問題点を説明するための断面図である。

【図11】従来のダマシン技術における問題点を説明するための断面図である。

【図12】従来のダマシン技術における問題点を説明するための断面図である。

【図13】エレクトロマイグレーションを説明するための断面図である。

【符号の説明】

 10 1・・・Si基板、2・・・下層配線層、4・・・層間 絶縁膜、5・・・接続孔、6・・・配線溝、7・・・接 続孔プラグ、8・・・TiN/Ti膜、9・・・A1ー Cu膜、10、22・・・溝配線

