

TFG del Grado en Ingeniería Informática

Ampliación de web para la docencia de métodos de aprendizaje semi-supervisado

Presentado por Mario Sanz Pérez en Universidad de Burgos — 21 de mayo de 2024

Tutor: Dr. Álvar Arnaiz González

El Dr. Álvar Arnaiz González, profesor del departamento de Ingeniería Informática, área de Lenguajes y Sistemas informáticos.

Expone:

Que el alumno D. Mario Sanz Pérez, con DNI 71482918E, ha realizado el Trabajo final de Grado en Ingeniería Informática titulado «Ampliación de web para la docencia de métodos de aprendizaje semi-supervisado».

Y que dicho trabajo ha sido realizado por el alumno bajo la dirección del que suscribe, en virtud de lo cual se autoriza su presentación y defensa.

En Burgos, 21 de mayo de 2024

 V° . B° . del Tutor:

Dr. Álvar Arnaiz González

Resumen

En este primer apartado se hace una ${f breve}$ presentación del tema que se aborda en el proyecto.

Descriptores

aprendizaje automático, aprendizaje semisupervisado, ensambles, grafos, algoritmos, página web

Abstract

A **brief** presentation of the topic addressed in the project.

Keywords

machine learning, semisupervised learning, ensembles, graphs, algorithms, web page $\,$

Índice general

In	dice general	iii
Ín	dice de figuras	\mathbf{v}
Ín	dice de tablas	vi
1.	Introducción	1
2.	Objetivos del proyecto	3
	2.1. Objetivos técnicos	3
	2.2. Objetivos de desarrollo <i>software</i>	4
3.	Conceptos teóricos	5
	3.1. Aprendizaje automático	5
	3.2. Aprendizaje semisupervisado	9
	3.3. Ensembles	23
4.	Técnicas y herramientas	25
	4.1. Técnicas	25
	4.2. Herramientas	29
5.	Aspectos relevantes del desarrollo del proyecto	33
	5.1. Lectura artículos científicos	33
	5.2. Trabajo Preexistente	34
	5.3. Algoritmos	
6.	Trabajos relacionados	49

IV	ÍNDICE GENERAL
7. Conclusiones y Líneas de trabajo futuras	51
Bibliografía	53

Índice de figuras

3.1.	Reducción de dimensionalidad	8
3.2.	Smoothness assumption y Low-density assumption [16]	10
3.3.	Manifold assumption [9]	11
3.4.	Cluster assumption [9]	11
3.5.	Clasificación de los diferentes algoritmos que pretenden incorpo-	
	rar datos no etiquetados a métodos de clasificación. Basado en	
	[16]	12
3.6.	Concepto de bagging [15]	23
3.7.	Concepto de boosting [15]	24
4.1.	Procedimiento en la metodología SCRUM [12]	26
5.1.	Prototipo de visualizacion de algoritmo Co-Forest	36
5.2.	Comparación algoritmo CoForest utilizando diversos datasets .	38
5.3.	Visualización correcta de las 4 fases de construcción del grafo	
	con el algoritmo GBILI utilizando el dataset de iris data, cada	
	color de una instancia representa una clase	42
5.4.	Mapa de calor que representa el $accuracy$ para el algoritmo LGC	
	con rangos de valores $tolerance=[0.1, 8]$ y $alpha=[0.01, 1]$. Se	
	muestran los resultados para los datasets: iris, breast cancer y	
	wine	44
5.5.	Mapa de calor que representa el $accuracy$ para el algoritmo LGC	
	con rangos de valores $alpha=[0.90, 0.99]$ y $tolerance=[0.00001, 1]$.	
	Se muestran los resultados para los datasets: iris, breast cancer y	
	wine	46

Índice de tablas

1. Introducción

Descripción del contenido del trabajo y del estructura de la memoria y del resto de materiales entregados.

2. Objetivos del proyecto

Este apartado explica de forma precisa y concisa cuales son los objetivos que se persiguen con la realización del proyecto. Se puede distinguir entre los objetivos marcados por los requisitos del software a construir y los objetivos de carácter técnico que plantea a la hora de llevar a la práctica el proyecto.

Para comprender los objetivos concretos es útil dar un contexto y contar el objetivo general del proyecto. Este trabajo se encuentra en el ámbito del aprendizaje automático, más concretamente en el aprendizaje semisupervisado, tratando de comprender su utilidad y profundizar en algunos de sus algoritmos; y en el ámbito del desarrollo web, con la intención de mejorar una página web ya existente que permite visualizar los algoritmos anteriores. Por lo tanto se podrían detallar tres objetivos generales:

- Investigación exhaustiva sobre aprendizaje semisupervisado y sus algoritmos.
- Implementación de los algoritmos elegidos.
- Desarrollo web para la visualización del resultado de estos algoritmos.

2.1. Objetivos técnicos

Se definen los siguientes objetivos técnicos:

- 1. Implementar distintos algoritmos de aprendizaje semisupervisado, basados en artículos científicos para conseguir una mayor eficiencia.
- 2. Comparar las implementaciones propias con otras ajenas para comprobar su funcionamiento

- 3. Continuar el desarrollo de la web ya implementada: para mejorar su funcionamiento y añadir nuevas funcionalidades.
- 4. Aprender a realizar estudios de comparación de nuevas tecnologías: además de familiarizarse con las ya usadas.

2.2. Objetivos de desarrollo software

Se definen los siguientes objetivos de desarrollo de software:

- 1. Implementación de nuevos algoritmos utilizando librerías como *Scickit-Learn* y la úlima versión de python a fecha de inicio del proyecto (*Python 3.11.5*)
- 2. Implementar un código limpio y estandarizado.
- 3. Crear nuevas interfaces de usuario de visualización de algoritmos, basadas en la idea original.
- 4. Mejorar ciertas funcionalidades de la web anterior.
- 5. Conocer métodos de internacionalización, como babel.
- 6. Documentar el proceso de desarrollo: de manera resumida y con información útil.
- 7. Familiarizarse con la metodología ágil *Scrum*.

8.

3. Conceptos teóricos

En esta sección se resumirán los conceptos teóricos básicos y necesarios para comprender el trabajo. Principalmente se presentará el aprendizaje automático y luego se profundizará en el aprendizaje semisupervisado.

3.1. Aprendizaje automático

El aprendizaje automático (*Machine Learning* en inglés) es el campo de la inteligencia artificial (IA) que se centra en el uso de datos y en el desarrollo de algoritmos para imitar la manera de aprender de los humanos [7]. La esencia radica en la capacidad de los sistemas informáticos para aprender de datos y realizar tareas sin intervención humana directa, si no descubriendo patrones y tendencias en los mismos. A estos sistemas se les conoce como **modelos**, los cuales pueden mejorar su rendimiento y adaptarse a nuevas situaciones basándose en la experiencia pasada.

Según [5], existen cuatro etapas principales en el desarrollo de un modelo. El primer paso consiste en seleccionar y preparar el conjunto de datos (dataset) que utilizará el modelo para aprender a resolver el problema para el que se ha diseñado. En el segundo paso se selecciona el algoritmo para ejecutar sobre el dataset. Este dependerá del tamaño y el tipo de los datos de entrada y del tipo de problema que se está resolviendo. El tercer paso consiste en entrenar el algoritmo hasta que la mayoría de los resultados sean los esperados. El cuarto y último paso trata de usar el modelo sobre nuevos datos y hacer una evaluación para una posible mejora.

Según los datos que se seleccionen en el primer paso, podemos tener dos ramas distintas en el aprendizaje automático [11]:

- Predictiva: también caracterizada por utilizar el aprendizaje supervisado, es decir, datos de entrada etiquetados.
- Descriptiva: al contrario, utiliza el aprendizaje no supervisado, con datos de entrada no etiquetados.

Aprendizaje supervisado

El aprendizaje supervisado es un tipo de aprendizaje automático en el que los modelos son entrenados utilizando conjuntos de datos etiquetados, en los que se basarán las decisiones y predicciones. Los conjuntos de datos contienen ejemplos emparejados de variables de entrada (o características) y de salida (o etiquetas). La esencia de este tipo de aprendizaje se basa en la capacidad del modelo para aprender la relación funcional entre las entradas y las salidas, permitiéndole hacer predicciones precisas sobre nuevos datos no vistos anteriormente [6]. De ahí su clasificación como «predictiva» en la sección anterior. Dos tareas habituales dentro del aprendizaje supervisado son:

- Clasificación: los modelos asignan categorías o clases a las entradas no etiquetadas. Dentro de este tipo se puede encontrar la clasificación binaria y la multi-clase. La primera se ve en un caso como la clasificación de correos electrónicos marcadas como spam o no spam (solo una etiqueta). Y la segunda se puede ver en cualquier ejemplo en el que haya mas de dos clases, como al establecer si un paciente tiene alto, medio o bajo riesgo de muerte ante una operación.
- Regresión: es similar a la clasificación, pero en vez de asignar un valor discreto, ahora es un valor continuo. Un ámbito común en el que se suele dar es en la economía, con la predicción de acciones o ventas.

También es importante comentar las principales fases que forman este aprendizaje y los posibles problemas o desafíos que pueden surgir, ya que pueden servir para tener en cuenta en los algoritmos concretos a implementar. En la mayoría de algoritmos que utilizan datos etiquetados, estos se dividen en tres conjuntos: entrenamiento, validación y prueba. El conjunto de entrenamiento se utiliza para ajustar los parámetros del modelo, el conjunto de validación para ajustar los hiperparámetros y prevenir el sobreajuste y el conjunto de prueba apra evaluar el rendimiento final. El sobreajuste u overfitting es uno de los principales problemas del aprendizaje automático y ocurre cuando el modelo se ajusta demasiado a los datos de entrenamiento, es decir, los memoriza en vez de generalizar.

Aprendizaje no supervisado

El aprendizaje no supervisado hace referencia a los tipos de problemas en los que se utiliza un modelo para caracterizar o extraer relaciones en los datos. A diferencia del aprendizaje supervisado, estos algoritmos descubren la estructura implícita de un conjunto de datos utilizando únicamente características de entrada y no clases o categorías. Ya que no existen etiquetas en los datos, los métodos no supervisados se utilizan normalmente para crear una representación concisa de los datos, posibilitando la generación de contenido creativo a partir de ellos. Por ejemplo, si tenemos una gran cantidad de fotografías sin clasificar, un modelo no supervisado encontraría relaciones entre las características para poder organizar automáticamente las imágenes en grupos [14]. Principalmente, se pueden clasificar en tres diferentes tareas:

- Clustering: segmentación o agrupamiento. Consiste en la identificación de grupos o clusters en función de sus similitudes y diferencias. Dentro de este tipo, se puede diferenciar un agrupamiento exclusivo, donde los datos pertenencen a un unico grupo, y un agrupamiento superpuesto, donde los datos pueden perteneces a varias agrupaciones. El ejemplo de las fotografías entra dentro de esta categoría.
- Reglas de asociación: utiliza una medida de interés para obtener un conjunto de reglas sólidas que permitan descubrir asociaciones interesantes entre las características de un conjunto de datos. La principal aplicación es el «análisis de cestas de compra», que se usa para determinar los patrones de compra de los clientes en funcion de las relaciones entre productos.
- Reducción de dimensionalidad: estos algoritmos buscan reducir la complejidad de un conjunto de datos de alta dimensión a espacios de baja dimensión sin perder propiedades fundamentales de los datos originales. Este tipo de algoritmos se utiliza en la fase de análisis de datos, facilitando la representación gráfica. Se puede ver un ejemplo a continuación.

Figura 3.1: Reducción de dimensionalidad

En la tabla 3.1 se resumen las principales diferencias entre aprendizaje supervisado y no supervisado:

	Supervisado	No supervisado
Objetivo	Aproximar una función que asigna entradas a salidas a partir de un conjunto de datos clasificados.	Crear una representación concisa de los datos, posibi- litando la generación de con- tenido creativo a partir de ellos.
Complejidad	Simple	Mayor
Entrada	Se conoce el número de clases (datos etiquetados).	No se conoce el número de clases (datos no etiquetados).
Salida Genera un valor de salida esperado.		No se tienen valores de sali- da asociados
Tareas	Clasificación, Regresión	Clustering, Reglas de asociación, Reducción de dimensionalidad

Tabla 3.1: Comparación aprendizaje supervisado y no supervisado [14].

3.2. Aprendizaje semisupervisado

Como el nombre sugiere, el aprendizaje semisupervisado se encuentra entre los dos tipos vistos anteriormente. Los algoritmos dentro de esta estrategia se basan en extender cualquiera de los aprendizajes, supervisado o no supervisado, para añadir información adicional que el otro no proporciona [19].

Los métodos de clasificación semi-supervisada intentan utilizar puntos de datos no etiquetados para generar un modelo cuyo rendimiento supere el de los modelos obtenidos al utilizar solo datos etiquetados [16].

Por ejemplo, imaginemos que se esta trabajando en la clasificación de imágenes médicas para identificar diferentes tipos de enfermedades. En este caso, consideramos específicamente la detección temprana de ciertos tipos de cáncer a partir de imágenes de tomografías. En un enfoque supervisado, podríamos entrenar un modelo utilizando un conjunto de datos etiquetado que incluye imágenes con diagnósticos de cáncer y sin cáncer. Sin embargo, la obtención de un gran conjunto de datos etiquetado puede ser costosa y consume tiempo. En un escenario de aprendizaje semisupervisado, además de los datos etiquetados, podríamos tener un conjunto de datos mucho más grande que incluye imágenes no etiquetadas. Algunas de estas pueden contener señales sutiles o características asociadas con el cáncer que no han sido previamente etiquetadas.

El modelo de aprendizaje semisupervisado podría analizar estas imágenes no etiquetadas y descubrir patrones que podrian indicar la presencia temprana de cáncer. Por ejemplo, podría aprender a reconocer características microscopicas especificas de las imagenes que no son evidentes para el ojo humano. Cuando se encuentra con nuevas imágenes no etiquetadas que comparten estas características, el modelo podría clasificarlas como indicativas de la presencia de cáncer, incluso si no ha visto exactamente esas características en el conjunto de datos etiquetado. Existe una condición necesaria en el aprendizaje semisupervisado: la distribución marginal subyacente p(x) sobre el espacio de entrada debe contener información acerca de la distribución posterior p(x|y) [16]. Es decir, la naturaleza de los datos no etiquetados debe contener información útil para inferir las etiquetas correspondientes. Esta suposición es básica y en la mayoría de los ejemplos se cumple. Aún asi, como la manera de interactuar entre p(x) y p(x|y) no es siempre la misma, se pueden tomar malas decisiones que conllevarían un rendimiento cada vez peor. Por esta razón, existen tres principales suposiciones que

todo conjunto de datos de un algoritmo semisupervisado debe cumplir para funcionar correctamente.

- Smoothness assumption: traducida como suposición de suavidad, consiste en que para dos puntos x_1 y x_2 que están cerca en una región densa, entonces sus correspodientes salidas (o etiquetas) y_1 y y_2 deben ser las mismas. Esto es útil sobretodo con datos no eitquetados, ya que por la propiedad transitiva, dos puntos que no estén relativamente cerca, pueden ser de la misma clase.
- Low-density assumption: esta suposición está definida sobre la distribución de datos de entrada p(x) y dice que el límite de decisión en la clasificación debe pasar antes por un área de poca densidad que por una de mayor densidad. Esto se puede observar en la figura 3.2.

Figura 3.2: Smoothness assumption y Low-density assumption [16]

■ Manifold assumption: esta suposición afirma que los datos utilizados se encuentran en un manifold de baja dimensión incrustado en un espacio de mayor dimensión. En otras palabras, los datos, en lugar de proceder de cualquier parte del espacio, deben proceder de estos manifolds de dimensiones más bajas [9].

Figura 3.3: Manifold assumption [9]

En algunas ocasiones, aparece una cuarta suposición: *cluster assum-ption*. Esta indica que dos datos que pertenecen a un mismo *cluster*, pertenecen también a la misma clase. Se tomará esta suposición como una generalización de las tres anteriores [16].

Figura 3.4: Cluster assumption [9]

No hay una clasificación oficial de algoritmos de aprendizaje semisupervisado, pero sí se pueden encontrar aproximaciones teniendo en cuenta las suposiciones en las que estan basadas los algoritmos y en cómo se relacionan con los algoritmos supervisados y no supervisados.

Figura 3.5: Clasificación de los diferentes algoritmos que pretenden incorporar datos no etiquetados a métodos de clasificación. Basado en [16]

Métodos inductivos

Los métodos inductivos pretenden construir un clasificador que pueda generar predicciones para cualquier objeto del espacio de entrada. En el entrenamiento de este clasificador o modelo se pueden utilizar datos no etiquetados, pero las predicciones cuando hay varios son independientes entre sí una vez finalizado el entrenamiento.

- Wrapper methods: Estos métodos entrenan inicialmente clasificadores con datos etiquetados y luego utilizan las predicciones para generar datos adicionales etiquetados. Los clasificadores se vuelven a entrenar con estos datos pseudo-etiquetados.
- Unsupervised preprocessing: Estos métodos extraen características útiles, pre-agrupan datos o determinan parámetros iniciales de aprendizaje de manera no supervisada, pero solo se aplican a datos originalmente etiquetados. Mejoran el rendimiento de clasificadores supervisados al utilizar información de datos no etiquetados durante la etapa de preprocesamiento.
- Intrinsecally semi-supervised: Incorporan directamente datos no etiquetados en la función objetivo o procedimiento de optimización. Son extensiones de métodos supervisados al entorno semisupervisado. Maximizan la información obtenida de datos no etiquetados durante el proceso de aprendizaje.

Métodos transductivos

A diferencia de los métodos inductivos, los métodos transductivos no construyen un modelo para todo el espacio de entrada. En su lugar, su poder predictivo se limita exactamente a los objetos que encuentra durante la fase de entrenamiento. Por lo tanto, los métodos transductivos no tienen fases de entrenamiento y predicción distintas [16].

El aprendizaje transductivo puede ahorrar tiempo y es preferible cuando el objetivo se orienta a mejorar nuestro conocimiento sobre el conjunto de datos sin etiquetar. Sin embargo, este enfoque tiene limitaciones, especialmente cuando queremos entender causas y efectos dentro de los datos. Básicamente, aunque el aprendizaje transductivo es útil para hacer inferencias específicas sobre los datos no etiquetados basándose en los datos etiquetados, no es adecuado ni efectivo para estudiar o predecir relaciones causales, es decir, cómo un factor directamente provoca otro. Esto se debe a que el aprendizaje transductivo se centra sólo en los datos presentes durante el entrenamiento y no generaliza más allá de estos. [9]. Los métodos transductivos suelen definir un grafo sobre todos los puntos de datos, tanto etiquetados como no etiquetados, codificando la similitud entre pares de puntos de datos con aristas posiblemente ponderadas. Estos algoritmos se dividen en tres pasos: creación del grafo, ponderación del grafo (matriz de pesos) e inferencia (se refiere al proceso de asignar etiquetas o categorías a los nodos no etiquetados

en un grafo utilizando la información de los nodos etiquetados y la estructura del grafo).

Construccion de grafos

El primer paso es la construcción de la matriz de adyacencia, que indica la presencia de aristas entre pares de nodos. Existen tres métodos posibles de construcción de grafos:

- ε neighbourhood: conecta cada nodo a todos los nodos a los que la distancia es como máximo ε . La medida de distancia normal suele ser euclídea. La estructura depende en gran medida de la elección de ε y de la medida de distancia.
- k nearest neighbours: cada nodo se conecta a sus k vecinos más cercanos según alguna medida de distancia. Ocurre un problema que tiene dos soluciones: symmetric k nearest neighbours, que construye una arista si i o j estan en el "vecindario" de k y mutual k-nearest neighbours que la construye si ambos están en la k vecindad del otro.
- b-matching: el anterior método suele originar grafos en los que cada nodo no tiene k vecinos, lo que está demostrado que afecta al rendimiento del clasificador. El objetivo del b-matching es encontrar el subconjunto de aristas en el grafo completo de forma que cada nodo tenga grado b y la suma de los pesos de las aristas sea máxima.

El segundo paso de la construcción del grafo es ponderarlo (dar pesos a las aristas). En primer lugar, se construye una matriz de adyacencia completa utilizando una función k y después se obtiene la matriz de pesos W mediante sparsification¹. Uno de los métodos más populares es el de ponderación de bordes gausiano. Otro es el de linear neighbourhood propagation (LNP) que se basa en que cualquier punto de datos pueda aproximarse como una combinación lineal de sus vecinos. El algoritmo LNP asume una estructura del grafo conocida y fija. Sin embargo, en lugar de fijar la estructura del grafo, también se puede inferir simultáneamente la estructura del grafo y los pesos de las aristas reconstruyendo linealmente los nodos basándose en todos los demás nodos.

¹Sparsification es el proceso de eliminar elementos menos significativos de una matriz o aristas en un grafo, con el fin de hacer la estructura más esparcida y eficiente en términos de almacenamiento y procesamiento.

Fase de inferencia

Existen diferentes maneras de llevar a cabo esta fase:

- Asignación de etiquetas duras: grafo min-cut: se añade un único nodo fuente v+, conectado con peso infinito a los puntos de datos positivos y un único nodo v− conectado con peso infinito a los puntos de datos negativos. Por lo tanto, determinar el corte mínimo consiste en encontrar un conjunto de aristas con un peso combinado mínimo que, cuando se eliminan, dan como resultado un grafo sin rutas desde el nodo de origen hasta el noso de destino. Los nodos conectados a v+ se etiquetan como positivos y los conectados a v− como negativos. Este enfoque puede conducir a que casi todos los datos se etiqueten con la misma.
- Asignación probabilística de etiquetas: campos aleatorios de Markov: el anterior método solo produce etiquetas de clase y no probabilidades, lo que es una gran desventaja. La idea principal detrás de los CRF es calcular la probabilidad conjunta de todas las etiquetas dadas las observaciones y las relaciones entre etiquetas vecinas. Esto se hace utilizando una función de energía que mide cuán compatibles son las etiquetas y las características observadas. Luego, se utiliza una distribución exponencial para traducir la función de energía en una distribución de probabilidad.
- Asignación probabilística eficiente de etiquetas: campos aleatorios gaussianos: La principal mejora de los GRFs con respecto a los MRFs es que los GRFs permiten una estimación más eficiente de las probabilidades de asignación de etiquetas.
- Local and global consistency: La última propuesta no maneja bien el ruido de las etiquetas ya que las etiquetas verdaderas se fijan a los puntos de datos etiquetados. En segundo lugar, en los grafos irregulares, la influencia de los nodos con un grado alto es relativamente grande. La solución es el método LGC. El primer problema se resuelve penalizando el error cuadratico entre la etiqueta verdadera y la etiqueta estimada. El segundo problema se resuelve regularizando el termino de penalización para los puntos de datos no etiquetados mediante los grados de los nodos.

Co-Forest

El co-forest es una versión semisupervisada del método de clasificación random forest, diseñado para usar tanto datos etiquetados como no etiquetados. En este método, los árboles de decisión (que conforman el random forest) se entrenan en un proceso iterativo utilizando subconjuntos de datos etiquetados junto con pseudo-etiquetas seleccionadas de los datos no etiquetados basadas en su alta confiabilidad. La confiabilidad de estas pseudo-etiquetas es evaluada por todos los árboles del ensemble excepto el árbol que está siendo entrenado en ese momento, denominado el conjunto concomitante. El entrenamiento continúa hasta que se alcanza un criterio de parada definido como el Out Of Bag Error(OOBE), que mide el error de predicción del conjunto concomitante usando solo aquellos árboles que no incluyeron una muestra específica de los datos etiquetados en su entrenamiento [8]. A continuación se muestra el pseudocódigo y una explicación más extensa:

Algoritmo 1: Co-Forest

31 return H

```
Input: Conjunto de datos etiquetados L, conjunto de datos no
               etiquetados U, número de árboles n, umbral de confianza \theta,
               sumatorio de confianzas inicial W_{inicial} y parámetros para los
               árboles de decision p
    Output: Ensemble de árboles entrenado H
 1 for i = 0, ..., n-1 do
         L_i \leftarrow Bootstrap(L)
         h_i = \text{EntrenarArbol}(L_i, p)
         \hat{e}_{i,t} \leftarrow 0.5
         W_{i,0} \leftarrow W_{inicial}
 6 end for
 7 t \leftarrow 0
    while Algún árbol reciba pseudo-etiquetas do
         t \leftarrow t + 1
 9
         for i = 0, ..., n - 1 do
10
             \hat{e}_{i,t} \leftarrow \text{EstimateError}(H_i, L)
11
             L'_{i,t} \leftarrow \emptyset
12
             if \hat{e}_{i,t} < \hat{e}_{i,t-1} then
13
                  W_{max} = \hat{e}_{i,t-1} W_{i,t-1} / \hat{e}_{i,t}
14
                  U'_{i,t} \leftarrow \text{Submuestrear}(U, H_i, W_{max})
15
                  W_{i,t} \leftarrow 0
16
                  foreach x_i \in U'_{i,t} do
17
                       if Confianza(H_i, x_i) > \theta then
18
                            L'_{i,t} \leftarrow L'_{i,t} \cup x_j, H_i(x_j)
19
                            W_{i,t} \leftarrow W_{i,t} + \text{Confianza}(H_i, x_i)
20
                       end if
\mathbf{21}
                  end foreach
22
             end if
\mathbf{23}
         end for
\mathbf{24}
         for i = 0, ..., n-1 do
25
             if (e_{i,t} * W_{i,t} < e_{i,t-1} * W_{i,t-1}) then
26
                  h_i = \text{ReentrenarArbol}(L_i \cup L'_{i,t})
27
             end if
28
         end for
29
30 end while
```

Inicialización de Variables:

- Cada árbol del *ensemble*, h_i , se inicializa entrenándolo con una muestra bootstrap del conjunto etiquetado L.
- Se establece un error estimado inicial, $\hat{e}_{i,t}$, a 0.5 para cada árbol.
- Se asigna el sumatorio de confianzas inicial a cada árbol. Basado en el estudio comentado en la sección 5.3.

Proceso iterativo:

- El bucle continúa mientras al menos un árbol pueda recibir nuevas pseudo-etiquetas para entrenamiento.
- Se estima el error actual (OOBE) del árbol usando el conjunto etiquetado.
- Se inicializa un conjunto temporal $L'_{i,t}$ para acumular nuevas pseudoetiquetas aceptadas.
- Si el error estimado del árbol mejora (disminuye respecto a la iteración anterior), se procede a submuestrear el conjunto no etiquetado U basándose en el peso máximo W_{max} , que ajusta la cantidad de datos a submuestrear en función de la mejora en el error.
- Cada dato submuestreado se evalúa, y si la confianza en su pseudoetiqueta supera el umbral θ , se añade al conjunto temporal $L'_{i,t}$ con su correspondiente pseudo-etiqueta, y se actualiza el sumatorio de confianzas para ese árbol.

Reentrenamiento de árboles: Después de evaluar y potencialmente agregar nuevas pseudo-etiquetas, se decide si reentrenar el árbol. Esto se basa en una comparación del producto de error y sumatorio de confianzas actual contra el de la iteración anterior. Si el producto actual es menor, se procede a reentrenar el árbol incorporando las nuevas pseudo-etiquetas. Esto ayuda a mantener la calidad del modelo y a evitar el sobreajuste.

Graph-based on informativeness of labeled instances(GBILI)

El algoritmo GBILI o Construcción de Grafos Basada en la Informatividad de Instancias Etiquetadas es un método de construcción de grafos para el aprendizaje semisupervisado. Su principal característica es que se basa en la informatividad de las instancias etiquetadas para relacionar nodos dentro del grafo, pudiendo aprovechar después esta conectividad para predecir las etiquetas de los datos no etiquetados. Se utilizan los métodos de k-vecinos más cercanos y k-vecinos más cercanos mutuos para inicializar el grafo. En el pseudocódigo 2, propuesto en [3], se puede ver el proceso detallado.

Metodología

El algoritmo aprovecha la información de las etiquetas disponibles para priorizar las conexiones entre los vértices, especialmente aquellos que están más cerca de un punto etiquetado, convirtiendo así estos puntos etiquetados en hubs a medida que aumenta el valor de k. Los pasos que sigue son:

- 1. Generación de la Matriz de Distancias: Se crea una matriz de distancias D usando la distancia euclidiana para determinar los k vecinos más cercanos de cada elemento.
- 2. Configuración de Parámetros: Se establece el parámetro k con un valor natural y se genera una lista de puntos etiquetados L.
- 3. Búsqueda de Vecinos Más Cercanos: Para cada vértice v_i , se encuentran sus k vecinos más cercanos.
- 4. Determinación de Vecinos Mutuos: Se identifican los k vecinos mutuos para v_i .
- 5. Cálculo de la Informatividad: Se calcula la suma de las distancias desde v_i a cada elemento de vecinos mutuos y desde estos elementos hasta un punto etiquetado. Se establece una conexión entre v_i y v_j que minimice esta suma. Este aspecto puede verse confuso y por ello se comenta en la sección 19
- 6. Post-procesamiento del Grafo: Se conectan los componentes aislados mediante una búsqueda en anchura (BFS) para encontrar componentes en la red. Los componentes sin puntos etiquetados se conectan con componentes vecinos que tienen puntos etiquetados, limitando el número de nuevas conexiones para evitar una red demasiado densa.

Algoritmo 2: GBILI

```
Input: Conjunto de datos etiquetados L, conjunto de datos no
           etiquetados U, número de vecinos más cercanos K
   Output: Grafo G
 1 generar matriz de distancias D entre todos los puntos de datos
 2 establecer el parámetro K
 3 for i=1; i < |V|; i + + do
       for k=1; k < K; k + + do
          for j=1; j < |V|; j + + do
 \mathbf{5}
              if D(v_i, v_i) es el kNN then
 6
                 listakNN(v_i) \leftarrow v_i
 7
              end if
 8
          end for
 9
      end for
10
      for j=1; j < listakNN(v_i); j + + do
11
          for k=1; k < K; k + + do
12
              if D(v_i, v_i) es el kNN then
13
                 listaMutuoskNN(v_i) \leftarrow v_i
14
              end if
15
          end for
16
       end for
17
       for j=1; j < listaMutuoskNN(v_i); j + + do
18
          for l=1; l < L; l + + do
19
              if D(v_i, v_j) + D(v_j, v_i) es mínima then
20
                 G \leftarrow e_{i,i}
21
              end if
22
          end for
23
      end for
24
25 end for
   Componentes = BFS(G)
   for i = 1; i < |V|; i + + do
       if Componentes(v_i) \notin L then
28
          for k = 1; k < listakNN(v_i); k + + do
29
              if Componentes(v_k) \in L then
30
                 G \leftarrow e_{i,k}
31
              end if
32
          end for
33
      end if
34
35 end for
36 return G
```

Como se comenta en uno de los pasos, hay ciertos puntos en este algoritmo que deben ser comentados para evitar confusión en la implementación. Además, para este trabajo en concreto, el algoritmo sufre ciertas modificaciones (con la misma idea teórica) que se comentan en la sección 19.

Local and Global Consistency

Este algoritmo aborda el problema general de aprender a partir de grafos, utilizando tanto datos etiquetados como no etiquetados. Dado un conjunto de puntos X y un conjunto de etiquetas L, los primeros l puntos tienen etiquetas y los puntos restantes no están etiquetados. El objetivo es predecir las etiquetas de los puntos no etiquetados. Esta fuertemente basado en dos de las suposiciones comentadas previamente: Los puntos cercanos tienden a tener la misma etiqueta y los puntos en la misma estructura (como un clúster) probablemente tengan la misma etiqueta.

La idea principal es que cada punto propague iterativamente su información de etiqueta a sus vecinos hasta que se alcance un estado global estable. El pseudocódigo 3 y las aclaraciones siguientes están basados en el artículo [18].

- Crear la matriz de afinidad: Calcula una matriz W que mide la similitud entre cada par de puntos en X. Si dos puntos están muy cerca entre sí, su valor en la matriz W será alto. Los valores en la diagonal de la matriz (que corresponden a la similitud de un punto consigo mismo) se establecen en cero.
- Normalizar² la matriz de afinidad: Ajusta la matriz W para obtener una nueva matriz S. Esto es necesario para asegurar que los valores se propaguen correctamente en los pasos siguientes.
- Propagar la información de etiquetas: Comienza con una matriz inicial F que contiene las etiquetas conocidas. Repite un proceso en el que cada punto actualiza su etiqueta basada en las etiquetas de sus puntos vecinos y sus etiquetas iniciales. Este proceso se repite hasta que las etiquetas dejan de cambiar significativamente.
- Asignar etiquetas finales: Una vez que la propagación de etiquetas ha convergido (ya no cambia mucho), asigna a cada punto la etiqueta de la clase con la que tiene mayor afinidad. Esto se hace eligiendo la

 $^{^2}$ **Normalizar** es un proceso en el que se ajustan los valores de una matriz o conjunto de datos para que sean más comparables y manejables

etiqueta que corresponde al valor más alto en la matriz F para cada punto.

```
Algoritmo 3: Local and Global Consistency
   Input: Conjunto de puntos X = \{x_1, \dots, x_l, x_{l+1}, \dots, x_n\} \subseteq \mathbb{R}^m,
            conjunto de etiquetas L = \{1, \dots, c\}
   Output: Etiquetas predichas para los puntos no etiquetados
 1 Paso 1: Formar la matriz de afinidad W
  for i = 1 to n do
       for j = 1 to n do
 3
           if i \neq j then
 4
              W_{ij} \leftarrow \exp(-\|x_i - x_j\|^2 / 2\epsilon^2)
           end if
 6
           else
 7
               W_{ii} \leftarrow 0
 8
           end if
 9
       end for
10
11 end for
12 Paso 2: Construir la matriz S = D^{-1/2}WD^{-1/2}
13 D es una matriz diagonal con el elemento (i, i) igual a la suma de la
    i-ésima fila de W
14 Paso 3: Iterar F^{(t+1)} = \alpha S F^{(t)} + (1-\alpha)Y hasta la convergencia
15 \alpha es un parámetro \in (0,1)
16 Paso 4: Asignar etiquetas
17 Deja que F^* denote el límite de la secuencia \{F^{(t)}\}
18 for i = 1 to n do
       y_i \leftarrow \arg\max_{j \leq c} F_{ij}^*
19
20 end for
21 return Etiquetas predichas para los puntos no etiquetados
```

Este algoritmo, como se ha podido llegar a observar, podría no usar directamente la unión física entre nodos del grafo, es decir, no utilizar el paso anterior de construcción del grafo, y aún así, funcionar correctamente, ya que dispondría de la información que da la matriz de distancias. Por ello, para el interés de este trabajo, es necesario buscar una manera de utilizar esta información, la cual se comenta en la seccion 19

23

3.3. Ensembles

Los sistemas basados en *ensembles* se refieren al proceso de combinar las opiniones de un conjunto de modelos diferentes para tomar una decisión final. Se ha descubierto que los *ensembles* pueden producir resultados más favorables en comparación con los sistemas de un solo experto en una amplia gama de aplicaciones. La creación de un *ensemble* implica generar componentes individuales del sistema y luego combinar sus clasificaciones. En este contexto, se destacan dos técnicas principales: *bagging* y *boosting* [13].

Bagging

El Bagging, o Bootstrap Aggregating, es una técnica que mejora la estabilidad y precisión de los algoritmos de aprendizaje automático. Funciona mediante la creación de múltiples versiones de un predictor y utilizando estos para obtener un conjunto agregado. Se generan diferentes conjuntos de entrenamiento, cada uno mediante muestreo con reemplazo del conjunto original, y se entrena un modelo en cada uno de ellos. La decisión final se toma por mayoría de votos para clasificación o el promedio en regresión. Esta técnica es particularmente efectiva con modelos que tienen alta varianza.

Figura 3.6: Concepto de bagging [15]

Boosting

El Boosting es un enfoque que construye secuencialmente un conjunto de modelos; cada nuevo modelo se enfoca en corregir los errores cometidos por los modelos anteriores. AdaBoost, uno de los algoritmos de boosting más conocidos, ajusta los pesos de las instancias incorrectamente clasificadas para que modelos posteriores se enfoquen más en ellas. A diferencia del bagging, el boosting puede aumentar el riesgo de sobreajuste si el conjunto de datos es ruidoso, pero generalmente produce modelos más precisos.

Figura 3.7: Concepto de boosting [15]

4. Técnicas y herramientas

En este apartado se tratará de presentar las técnicas llevadas a cabo para desarrollar el proyecto y también las herramientas utilizadas durante todo el proceso.

4.1. Técnicas

En el ámbito del desarrollo de software, la selección adecuada de técnicas es fundamental para la eficacia y la sostenibilidad del proyecto. Este apartado se enfoca en las técnicas específicas implementadas en este trabajo.

SCRUM

Para explicar esta sección se utilizará el manual de la certificación oficial Scrum Master de Scrum Manager [12].

Figura 4.1: Procedimiento en la metodología SCRUM [12]

La metodología ágil Scrum se diferencia de las metodologías clásicas en su enfoque iterativo y flexible hacia la gestión de proyectos. Mientras que las metodologías clásicas, como el modelo en cascada, siguen un enfoque secuencial y predeterminado, Scrum promueve la adaptabilidad y la colaboración continua. Facilita respuestas rápidas a los cambios a través de ciclos cortos de desarrollo llamados Sprints, permitiendo a los equipos evaluar el progreso y ajustar el rumbo con frecuencia.

Roles

- Desarrolladores: Encargados de crear el producto, los desarrolladores son fundamentales para la ejecución técnica del proyecto, aportando habilidades específicas para alcanzar los objetivos del Sprint.
- Propietario del producto(*Product Owner*): Define el alcance y las prioridades del proyecto, manteniendo la pila del producto actualizada para reflejar las necesidades del negocio, asegurando que el trabajo del equipo de desarrollo aporte el máximo valor.
- **Scrum Master**: Facilitador y guía del equipo Scrum, el Scrum Master ayuda a implementar Scrum, asegurándose de que se sigan las prácticas y procesos, y trabaja para eliminar obstáculos que puedan impedir el progreso del equipo.

Artefactos

■ Pila del producto(*Product Backlog*): Lista ordenada de todo lo necesario para el producto, gestionada por el *Product Owner*, que establece los requisitos y prioridades.

- Pila del sprint(*Sprint Backlog*): Conjunto de elementos seleccionados de la pila del producto para ser desarrollados durante el sprint, junto con un plan para entregar el incremento del producto y lograr el objetivo del Sprint.
- Incremento: La suma de todos los elementos de la pila del producto completados durante un sprint y todos los sprints anteriores, que cumple con los criterios de aceptación y asegura que el producto es potencialmente entregable.

Eventos

- *Sprint*: un periodo fijo durante el cual se crea un incremento del producto potencialmente entregable. Suele ser entre una y cuatro semanas.
- Planificación del sprint: sesion al inicio del sprint donde el equipo selecciona trabajo de la pila del producto para completar durante el sprint.
- Reunión diaria: breve reunion diaria para sincronizar actividades y crear un plan para el proximo dia, facilitando la colaboración.
- Revisión del sprint: al final del sprint, el equipo presenta el incremento a los interesados, recopilando retroalimentación para futuras iteraciones.
- Retrospectiva del sprint: oportunidad para el equipo scrum de inspeccionarse a sí mismo y crear un plan de mejoras para el proximo sprint.

PEP 8

En el desarrollo de este proyecto, se ha seguido la guía de estilo **PEP8** para el lenguaje de programación Python, [17]. *PEP8* es un documento que proporciona convenciones para el código Python. El cumplimiento de estas convenciones es crucial para garantizar una base de código coherente, legible

y eficiente. Entre sus características, esta guía de estilo cobra importancia en:

- Legibilidad: La claridad y la simplicidad del código se priorizan, haciendo que sea más fácil de leer y entender para cualquier desarrollador que lo lea.
- Consistencia: Seguir una guía de estilo común promueve la uniformidad en la base de código, lo que facilita la colaboración entre múltiples desarrolladores (pensando en posibles modificaciones futuras).
- Mantenibilidad: Un código bien estructurado y formateado según PEP8 es más sencillo de mantener, depurar y ampliar.

Los aspectos clave de PEP8 adoptados en el proyecto son:

- Formato de Código: Se ha prestado especial atención al uso adecuado de espacios en blanco, sangrías y alineaciones para mejorar la legibilidad. Manteniendo un límite de línea máximo de 80.
- Convenciones de Nomenclatura: Las variables, funciones, clases y módulos se nombran siguiendo las recomendaciones de *PEP8*, lo que facilita la comprensión de su propósito y alcance.
- Guía de Importaciones: Los módulos se importan de una manera ordenada y coherente, evitando conflictos y facilitando la identificación de dependencias.
- Comentarios y Docstrings: Se utilizan comentarios y cadenas de documentación para explicar el propósito y el funcionamiento de todos los bloques de código, mejorando así la comprensibilidad del código.

Principios SOLID y Patrones de diseño

Se ha adoptado los principios SOLID como fundamentos clave para un diseño de software eficiente y mantenible. Estos principios orientan la estructura de nuestro código, asegurando que sea flexible ante cambios y extensiones futuras.

• S (Responsabilidad Única): Cada componente tiene un solo propósito, facilitando las pruebas y minimizando las dependencias.

- O (Abierto/Cerrado): El código está preparado para la expansión sin necesidad de modificar lo existente, reduciendo los errores al introducir nuevas funcionalidades.
- L (Sustitución de Liskov): Las clases derivadas pueden sustituir a sus clases base sin alterar el comportamiento esperado, garantizando la consistencia del sistema.
- I (Segregación de Interfaces): Se utilizan interfaces específicas para evitar la implementación de métodos innecesarios, promoviendo un código más limpio y modular.
- **D** (Inversión de Dependencias): se debe depender de abstracciones en lugar de implementaciones concretas, lo que disminuye el acoplamiento y mejora la testabilidad.

Posibilidad de añadir algun patron

4.2. Herramientas

En este proyecto, se ha empleado una variedad de herramientas esenciales que han facilitado un desarrollo eficiente y efectivo. A continuación, se detallan las herramientas clave utilizadas y cómo han ayudado en los resultados finales.

Programas

En esta sección se comentarán todos aquellos programas que se han utilizado durante el desarrollo, ya sea de código, documentación o planificación. Se inluyen aplicaciones tanto de escritorio como web.

Visual Studio Code

Visual Studio Code, ha sido el IDE principal utilizado en el proyecto, abarcando tanto el desarrollo web como la creación de algoritmos. Su amplia gama de extensiones lo convierte en una herramienta extremadamente versátil y potente, capaz de adaptarse a diversas necesidades de programación. Las funcionalidades como el resaltado de sintaxis, la depuración integrada, el control de versiones Git, la personalización a través de extensiones, como soporte para diferentes lenguajes de programación y herramientas de desarrollo, y la posibilidad de uso de LATEX, han sido las claves para que sea el entorno de programación elegido.

TeXstudio

Para la documentación del proyecto, se ha utilizado TeXstudio, un editor especializado en IATEX. Su interfaz intuitiva y las características como la vista previa en tiempo real, la comprobación ortográfica, el resaltado de sintaxis y los atajos de teclado para una escritura más rápida, hacen que sea una aplicación fácil de usar para principantes en el lenguaje.

Git (GitHub)

El control de versiones y la planificación del proyecto se han gestionado a través de Git, utilizando GitHub como plataforma de hospedaje para el código fuente.

Taiga

Taiga se ha utilizado para la planificación de sprints y la gestión ágil del proyecto. Esta herramienta permite organizar tareas, priorizar actividades y seguir el progreso de forma clara y estructurada. Quizá no sea la que más funcionalidades de, pero al tratarse de un único desarrollador, cumple con lo que se buscaba.

Zapier

Zapier se ha utilzada para conectar aplicaciones como GitHub y Taiga para agilizar el proceso de planificación. Mediante la creación de 'triggers', se puede crear un issue en GitHub y que aparezca automáticamente en Taiga o vicebersa.

Excalidraw

Excalidraw ha sido utilizado para crear dibujos y diagramas de forma amena y sencilla. Esta herramienta web ofrece la capacidad de diseñar tanto diagramas que parecen hechos a mano como figuras más formales.

w3schools

Para la resolución de dudas específicas y el aprendizaje de nuevas tecnologías, se ha recurrido a menudo a w3schools. Esta plataforma en línea ha sido una fuente de tutoriales, ejemplos de código y referencias, facilitando el rápido entendimiento de nuevas técnicas de desarrollo web.

Bibliotecas

El desarrollo de este proyecto se ha apoyado en una serie de bibliotecas esenciales tanto para el *backend* como para el *frontend*, proporcionando una amplia gama de funcionalidades, desde el desarrollo web hasta el análisis de datos. A continuación, se detalla una lista de las principales bibliotecas empleadas:

- Babel: utilizada para las traducciones en la web, compilando en los lenguajes correspondientes.
- Flask: framework de Python para el desarrollo de aplicaciones web.
- Mypy: herramienta de verificación de tipos estáticos para Python, permite un desarrollo más seguro al detectar incompatibilidades de tipo.
- **Pylint**: analiza el código Python en busca de errores, permite un código más limpio y estándar. Ayuda a seguir la guía de estilo *PEP8* antes comentada.
- SQLAlchemy: ORM(Object-Relational Mapping) de Python que facilita la interacción con bases de datos mediante código Python en lugar de SQL puro.
- Scikit-learn: Biblioteca de aprendizaje automático para Python, incluye una amplia variedad de algoritmos y herramientas para análisis de datos.
- Numpy: Proporciona soporte para arrays y matrices grandes y multidimensionales, junto con una colección de funciones matemáticas para operar con estos objetos.
- Pandas: Ofrece estructuras de datos y herramientas de análisis de datos de alto rendimiento y fácil de usar para Python.
- Bootstrap: Framework de desarrollo web para diseño de sitios y aplicaciones web «responsive», incluye tanto CSS como componentes de JavaScript.
- D3.js: Biblioteca de JavaScript para producir visualizaciones de datos dinámicas y interactivas en navegadores web.

5. Aspectos relevantes del desarrollo del proyecto

En la sección que sigue, se abordan los aspectos más significativos que han marcado el desarrollo de este proyecto. Se detalla cómo cada elección ha influido en la trayectoria y los resultados del proyecto.

5.1. Lectura artículos científicos

Se ha decidido incluir la lectura de artículos científicos como aspectos relevantes ya que son una parte significativa de todo el trabajo, llevando bastante tiempo en aquellos que son más técnicos. Además proporcionan una base sólida de teorías y métodos que pueden ser utilizadas tanto para el trabajo como para otras situaciones. Todos ellos están en inglés por lo que también se mejora esta habilidad, notando cierta mejora de comprensión en los últimos artículos. Un artículo científico es un informe escrito y publicado en una revista con cierto prestigio que describe resultados originales de investigación. Estos artículos son fundamentales para la difusión del conocimiento científico y suelen seguir un formato estructurado que incluye una introducción, metodología, resultados, discusión y conclusiones.

Para este trabajo se han leido 2 tipos de artículos, los *surveys* o resúmenes sobre un tema y los artículos de implementación de algoritmos:

■ A Survey on Semi-Supervised Learning [16]: Este artículo proporciona una revisión exhaustiva del campo del aprendizaje semi-supervisado. Gracias a este artículo se consigue una base sólida en este

tipo de aprendizaje y se comprenden cuales son los desafios actuales y las direcciones futuras en la investigación en este campo.

- Ensemble Based Systems in Decision Making [13]: Este artículo revisa el uso de sistemas basados en ensembles para la toma de decisiones. Estos sistemas combinan múltiples clasificadores para mejorar la precisión y la robustez del proceso de decisión. Destaca cómo los sistemas de ensamblaje pueden superar las limitaciones de los clasificadores individuales y proporcionar decisiones más confiables y precisas.
- Improve Computer-Aided Diagnosis With Machine Learning Techniques Using Undiagnosed Samples [8]: Los autores presentan el método Co-Forest, una técnica semi-supervisada que combina múltiples clasificadores de árboles de decisión para mejorar la precisión del diagnóstico. Se discuten los beneficios de incorporar datos no etiquetados en el proceso de entrenamiento y se presentan resultados experimentales que demuestran la eficacia de esta metodología en varias aplicaciones médicas.
- Graph Construction Based on Labeled Instances for Semisupervised Learning [3]: Los autores presentan un método para la construcción de grafos basado en instancias etiquetadas para el aprendizaje semi-supervisado. La idea principal es utilizar la información de las instancias etiquetadas para guiar la construcción del grafo.
- Learning with Local and Global Consistency [18]: Este artículo introduce un algoritmo para el aprendizaje con consistencia local y global. Los autores describen cómo el algoritmo itera para ajustar las etiquetas de las instancias no etiquetadas, combinando la información de las instancias vecinas y la información inicial. Se demuestra que este enfoque es eficaz para tareas de clasificación semi-supervisada.

5.2. Trabajo Preexistente

La elección de este trabajo se realiza por el gran interés en la inteligencia artificial y el aprendizaje automático, pero también por el hecho de que ya existía un trabajo realizado por otro alumno un año atrás (David Martínez Acha – https://vass.dmacha.dev/). Esto ayudaría mucho en el desarrollo ya que serviría como referencia para muchas dudas.

El plan original era hacer mi propia página web educativa desde cero, pero mostrando otra serie de algoritmos semisupervisados (ensembles y grafos) en lugar de los ya existentes. Con el desarrollo del primer algoritmo surge la idea por parte del tutor de basar el proyecto en esta otra página desarrollada por David Martínez. De esta manera, el tiempo que hubiera empleado en aprender e implementar la web desde cero, se emplea en comprender todo el código programado por David, aprovechando también la gestión de cuentas de usuarios. Aún así, se deja total libertad para cambiar e implementar lo que haga falta para mejorar el proyecto original.

El tiempo empleado en ajustarse al nuevo código fue de dos sprints, ya que no solo trataba de leer código, sino de comprender las técnicas de HTML, css y javascript que se utilizan, junto con bibliotecas como Bootstrap. Aún así, el tiempo ganado es considerable y da pie a poder implementar más algoritmos y pensar en ideas que mejoran la web. Inicialmente se piensa que con un fork a su repositorio de GitHub, [1], se puede trabajar mejor, pero de esta manera se perderían las tareas y commits hechos hasta la fecha en el repositorio de este proyecto. Por esto se decide descargar el contenido y copiarlo a el proyecto ya en desarrollo.

La documentación de David [2], sirve de gran ayuda y también se heredan partes de ella, como los trabajos relacionados y conceptos teóricos. También se tiene en cuenta las líneas de trabajo futuras desarrolladas para poder implementarlas en este trabajo.

Cambios en la web

Gran parte de la web se reutiliza, pero a medida que se desarrolla el proyecto surgen nuevas ideas que modifican parte del comportamiento de la web que ya existía. Esta sección servirá para remarcar esas pequeñas o grandes modificaciones que sufre el diseño inicial y cual es la idea de esta nueva funcionalidad. La primera idea de cambio que surge es la de modificar la funcionalidad de configuración de un algoritmo. Visualizando páginas web, se da con una página que muestra algoritmos de aprendizaje automático [4], pero no de la misma manera que David. En esta página se permite configurar y ver resultados y estadísticas en una única ventana, con la gran diferencia de que no muetra el paso a paso en cada algoritmo, sino directamente el resultado final de la clasificación. El primer prototipo se hace pensando en esta idea, quedando algo parecido a la figura 5.1:

Figura 5.1: Prototipo de visualizacion de algoritmo Co-Forest

Posteriormente, gracias al tutor nos damos cuenta de que si la idea es mostrar la ejecución paso a paso, que los parámetros de configuración estén en la misma pantalla, no es de gran ayuda. Por esto, se decide volver a la versión del trabajo base y modificar las plantillas necesarias para adaptarlas a los nuevos algoritmos.

Configuración de parámetros: Cuando tratamos con archivos de datos preparados para estos algoritmos, siempre se suele dar el caso de que la clase o etiqueta suele ser la última columna. Por esto, se ha mantenido la opción de seleccionar el atributo deseado, pero saldrá por defecto la clase en la caja de entrada. Esto además permite mayor agilidad a la hora de hacer pruebas de visualización ya que no hay que gastar tiempo en seleccionar esta opción.

Gráfica de estadísticas específicas: el cambio que se ha realizado en esta parte ha sido la opción de marcar o desmarcar todos los clasificadores para ver su traza en la gráfica de estadísticas. Sirve sobretodo en el caso del Co-Forest por el hecho de que puede haber gran cantidad de árboles, y querer ver uno concreto con la configuración anterior llevaba una perdida de tiempo innecesaria desmarcando uno por uno el resto de clasificadores.

Utilizar fichero por defecto: en la versión anterior se dedica una ventana entera a la selección del archivo, permitiendo descargar varios ficheros de prueba para luego subirlos. La idea aquí es agilizar el proceso de utilizar estos ficheros de prueba, aunque manteniendo la opción de

descarga, permitiendo que al pulsar en un dataset de prueba pase a la fase de configuración directamente, sin tener que cargarlo desde las descargas.

5.3. Algoritmos

En esta sección se comentarán los aspectos más relevantes en la implementación de los algoritmos semisupervisados.

Co-Forest

En la implementación de este algoritmo de nuevo se parte con una gran ventaja. El año anterior otra alumna había implementado el mismo algoritmo para otro proyecto. Dentro de esta aplicación, Patricia Hernando, hizo sus propios estudios, los cuales se han aprovechado en este trabajo. Basado fuertemente en el pseudocodigo del artículo [8], la implementación se ve alterada por el parámetro W, el cual establece la confianza en las muestras para ser seleccionada o no. Resumiendo el estudio de Patricia, como se puede ver en el pseudocodigo del articulo, hay una ecuación donde el valor de W esta dividiendo. Esto es un problema ya que según establece el algoritmo puede llegar a valer cero, provocando así una indeterminación. Uno de los estudios de Patricia determina que una de las mejores soluciones a esto es iniciar el parámetro W al minimo entre 100 y el 10 % de la cantidad de muestras etiquetadas que hay. Como se puede ver en el pseudocodigo de la sección tres, esto se aprovecha, evitando así posibles problemas. Para determinar si el algoritmo definitivo es bueno, se compara con el de Patricia, evaluando como varía el valor de accuracy en cada iteración del algoritmo. Los resultados se muestran en la figura 5.2

Grafos

En este apartado se comentarán todos los aspectos relevantes relacionados con la implementación de los algoritmos basados en grafos. Desde sus posibles interpretaciones y modificaciones con respecto al código original, a los diferentes estudios de comparación.

Comparativa de bibliotecas de grafos

Cuando se quiere implementar un algoritmo basado en grafos, lo ideal es utilizar una biblioteca que ayude a automatizar y mejorar el código. En *Python*, existen varias bibliotecas que ayudan en esta tarea, tres de ellas son:

Figura 5.2: Comparación algoritmo CoForest utilizando diversos datasets

NetworkX, **igraph** y **graph-tool**. En esta sección se resumirá el estudio realizado para elegir la opción que mejor se adapte a las especificaciones.

Todas ellas ayudan en la construcción de grafos, pero para empezar es necesario dejar claro para que se va a utilizar esta biblioteca. En cuanto al tamaño de los grafos, no necesariamente se necesita algo que maneje grafos muy grandes (más de 10000 nodos) de manera efectiva. La mayoría de datasets utilizados tendrán muchas menos instancias. En cuanto a la velocidad, se busca algo que sea efectivo pero sin necesidad de buscar lo mejor o más rápido, ya que los datos de entrada no van a suponer un gran esfuerzo. También hay que tener en cuenta la integración que se llevará a cabo posteriormente en la web, posiblemente con herramientas como d3.js.

Tras una primera búsqueda queda claro que la herramienta de *graph-tool* tiene un objetivo mucho más amplio y está pensado para proyectos con grafos grandes. De hecho es una herramienta que no se instala con *pip* sino que necesita otra instalación.

Por lo tanto, descartada una opción, se realizará una pequeña prueba para llegar a una conclusión. A continuación se muestra el pseudocódigo utilizado para la comparación de herramientas.

```
Algoritmo 4: NetworkX vs igraph
```

```
Input: Dataset de prueba L (digits)
   Output: Grafo G en formato JSON
 1 \ timer \leftarrow startTimer()
 \mathbf{2} \ G \leftarrow \emptyset
 D \leftarrow pairwiseDistances(L) // Matriz de distancias
 4 for i = 0 to |L| - 1 do
       // Agregar vértices al grafo para cada muestra de L
       G \leftarrow addNode(i)
 7 end for
 s k \leftarrow 5
  for i = 0 to |L| - 1 do
       kNN \leftarrow getKNearestNeighbors(D[i], k)
10
       for j \in kNN do
11
           // Añadir arista entre i y j con el peso de la distancia
12
           G \leftarrow addEdge(i, j, D[i][j])
13
       end for
14
15 end for
16 timer \leftarrow stopTimer()
17 print("Tiempo de construcción y kNN: ", timer)
18 JSONGraph \leftarrow convertToJSON(G)
19 return G
```

Lo que se ha querido representar es el tiempo que tarda en construir el grafo y calcular los k vecinos más cercanos (kNN) para cada nodo. A su vez también se ha estudiado cuánta facilidad existe a la hora de convertir el grafo a formato JSON, para que pueda ser procesado después por herramientas como d3.js.

Los resultados obtenidos han sido los siguientes:

Ejecución 1:

NetworkX: Construction and kNN time: 0.0044 seconds igraph: Construction and kNN time: 0.0134 seconds

Ejecución 2:

NetworkX: Construction and kNN time: 0.0020 seconds igraph: Construction and kNN time: 0.0111 seconds

A su vez, en el uso del formato *JSON* se encuentra más útil el uso de NetworkX ya que incluye un método propio de exportación (*nx.readwrite.json_graph*). Por el contrario, con *igraph*, habría que constuir un diccionario recorriendo los nodos y enlaces y posteriormente pasarlo a formato *JSON*.

En conclusión, ante los resultados obtenidos la idea era usar NetworkX para todas las fases del algoritmo, pero por simplicidad y facilidad en la implementación de los algoritmos, finalmente solo se utilizará para las ayudas en la visualización, y no como estructura principal de almacenamiento de los datos.

Modificaciones GBILI

Con respecto al algoritmo GBILI, surgen varias complicaciones o cuestiones de implementación que los autores no dejan claro. En este apartado se comentan las que se creen son más relevantes.

- 1. Visualización por pasos en la web: desde un principio se tiene claro que lo ideal es tener una visualización por pasos del grafo, localizando las principales fases y mostrando como van cambiando hasta llegar a la inferencia. En este caso, el pseudocódigo 2 muestra que hay un bucle principal en el que cada lista se va construyendo para cada nodo recorrido en este bucle externo. Para la visualización requerida esto no es lo ideal, ya que no podemos aislar las principales fases: lista de vecinos, lista de vecinos mutuos, grafo de distancias mínimas y grafo definitivo. Por todo esto, se decide seguir la misma estructura pero implementando todas estas estructuras de forma consecutiva.
- 2. Grafo no dirigido: en todo momento durante la implementación se conoce que cualquier enlace dentro del grafo es bidireccional, es decir, el grafo es no dirigido. Pero en una de las implementaciones esto no se sigue, lo que da en una estructura dirigida, que al realizar el seguimiento del código produce situaciones erróneas y confusas.

- 3. Dificultades de interpretación del pseucocódigo: en el código del artículo pueden surgir ciertas dudas de como hace algún paso. Estas son: al hacer la búsqueda en anchura, dice que debe retornar la componente (subgrafo aislado) del grafo completo, posteriormente, esta sintaxis la utiliza para los nodos individuales. Después de consultarlo con el tutor se llega a la conclusión de que la búsqueda en anchura realmente devuelve todo el conjunto de componentes del grafo y posteriormente se accede a la que pertenece cada nodo individual. Otra sintaxis que puede llevar a confusión es la que encontramos en la línea 20. Cuando comprueba que la distancia es mínima, la suma la hace dentro de los dos bucles, lo que puede llevar a interpretación de que esa condición se debe cumplir dentro del bucle interno. En esta situación, pongamos el siguiente ejemplo: la lista actual de vecinos mutuos es 0: [1, 2], 1: [0]... y dos de los nodos etiquetados son [3, 4...]. Se accede a la lista de vecinos del nodo 0 y despues se recorre toda la lista de nodos etiquetados. Viendo esto sabríamos que obtendríamos una distancia mínima hasta un nodo etiquetado, pero siempre se estaría guardando el enlace entre los nodos vecinos, obteniendo la misma estructura que la lista de vecinos mutuos. Por ello, al implementarlo, hay que tener en cuenta que esta condición debe ir fuera del bucle interno, para poder coger de verdad la mínima distancia entre un nodo y sus vecinos.
- 4. Visualización con NetworkX: Para tener un primer acercamiento a una visualización y también para comprobar que el algoritmo ha seguido correctamente la influencia de los nodos etiquetados, se decide mostrar los 4 pasos gráficamente. Un aspecto importante en la implementación es que con networkX, a la hora de construir el grafo, debe estar ordenado de la misma manera que los datos de entrada al algoritmo, si no mostrará información falsa, como nodos pintados como etiquetados que no lo son.

Figura 5.3: Visualización correcta de las 4 fases de construcción del grafo con el algoritmo GBILI utilizando el *dataset* de *iris data*, cada color de una instancia representa una clase

LGC adaptado a grafos

En el algoritmo original de Consistencia Local y Global, la matriz de afinidad W se construye utilizando una función exponencial sobre la matriz de distancias entre los puntos. Sin embargo, dado que en este caso ya se ha construido un grafo G, utilizaremos esta información para definir la matriz de afinidad W. Específicamente, W será una matriz binaria donde $W_{ij}=1$ si hay un enlace entre los nodos i y j en el grafo G, y $W_{ij}=0$ de lo contrario. Esta modificación aprovecha la estructura del grafo previamente construida, además, es la misma seguida por loa autores de [3]. Aunque es una opción algo «brusca», debe funcionar cuando los parámetros de los algoritmos son lo suficientemente buenos.

Este ajuste del algoritmo de Consistencia Local y Global permite aprovechar la estructura del grafo construido a partir de los puntos de datos, en lugar de basarse únicamente en la matriz de distancias. Esta modificación es especialmente útil cuando se tiene información topológica adicional, mejorando potencialmente la precisión en la inferencia de etiquetas para los puntos no etiquetados.

Un apunte importante es que cuando se estaba implementando esta modificación, se piensa que la matriz de afinidad se debe de construir aplicando la misma fórmula que antes, pero tomando como matriz de distancias las

nuevas medidas de 0s y 1s. Esto no debe ser así y fue corregido ya que si no la matriz de afinidad ya no sería esa matriz binaria que utilizan los autores del artículo original.

Para comprobar la buena funcionalidad del algoritmo LGC se realizará un estudio que tiene como objetivo evaluar la influencia de dos parámetros clave como son el parámetro alpha y la tolerancia. Para esto es necesario construir previamente el grafo, por ello se usará el algoritmo GBILI y se le dará un valor de k vecinos igual a 10, que es el valor que los autores de [3] indican con el cual a partir de él los resultados se estabilizan. La eficacia del modelo se medirá en términos de precisión (accuracy).

En una primera implementación, se quiere ver la zona de valores donde mejores resultados se obtienen. Los valores de *alpha* y *tolerance* en este caso tendrán un rango amplio para focalizarse después en una zona concreta. Después de tres ejecuciones con diferentes datasets, se pueden ver los resultados en la figura 5.4.

Figura 5.4: Mapa de calor que representa el accuracy para el algoritmo LGC con rangos de valores tolerance=[0.1, 8] y alpha=[0.01, 1]. Se muestran los resultados para los datasets: iris, $breast\ cancer\ y\ wine$.

Lo que se puede observar en estas representaciones es que la tolerancia debe tener un valor más pequeño para que el algoritmo pueda realizar más de una iteración. En los tres gráficos coincide que las zonas rojas (valores más altos) se encuentran en la esquina inferior izquierda, es decir, tolerancia más pequeña y un valor de alpha más cercano a 1. Partiendo de la premisa que nos dan los autores en el artículo [18], en el que indican que utilizan un valor de alpha de 0.99 para sus ejecuciones, la evaluación de momento va por buen camino. Cuánto mayor sea el conjunto de datos de entrada, como pasa con el ejemplo de wine, la accuracy disminuye para estos parámetros de entrada, una hipotesis ante esto es porque la tolerancia está frenando antes de que la matriz F converja a valores reales. Para comprobar esto, se realizará otro estudio ahora con un rango de valores entre alpha=[0.90, 0.99] y una tolerancia=[0.00001, 1]. Se puede observar en la figura 5.5

Figura 5.5: Mapa de calor que representa el accuracy para el algoritmo LGC con rangos de valores $alpha=[0.90,\,0.99]$ y $tolerance=[0.00001,\,1]$. Se muestran los resultados para los datasets: iris, breast cancer y wine.

En cuanto a los dos primeros gráficos, se observa que los resultados son muy buenos a lo largo de todo el gráfico, con una accuracy cerca o por encima del 90 % en todos los casos. En cambio, al evaluar el último gráfico se ve que aún disminuyendo los valores de tolerancia, la precisión no ha conseguido mejorar como los otros dos. Aún así los resultados en esta última figura indican que los mejores resultados se encuentran en un alpha cercano a 0.99, al igual que establecen los autores del artículo original.

6. Trabajos relacionados

En esta sección, se analizarán los trabajos relacionados con el proyecto, destacando cómo cada uno de ellos ha influido y enriquecido el desarrollo. Es esencial reconocer y comprender estos trabajos, ya que ofrecen una base sobre la cual podemos construir, identifican oportunidades para la innovación y permiten evitar la repetición de errores pasados

Visualizador de Algoritmos SemiSupervisados (VASS)

Un pilar fundamental en el desarrollo de este proyecto es el trabajo realizado por David Martinez Acha. Este trabajo no solo ha sentado las bases conceptuales sino que también ha proporcionado una implementación práctica de gran valor. Se hereda directamente todo el esfuerzo de David, incluyendo sus investigaciones y los trabajos relacionados que identificó como relevantes en su estudio. Esta herencia es particularmente valiosa en lo que respecta a la implementación de la web, donde la infraestructura y el diseño preexistentes ofrecen una plataforma robusta desde la cual se puede avanzar sin partir de cero.

La implementación web desarrollada por David se destaca por su claridad, ofreciendo un punto de partida sólido para propias innovaciones. Aprovechar esta base preexistente permite enfocarse en la expansión y mejora de la funcionalidad, en lugar de invertir tiempo y recursos significativos en reconstruir lo que ya se ha logrado con éxito.

En resumen, la aplicación de David tiene 2 grandes funcionalidades separadas: los algoritmos y la gestión de usuarios. Lo que realmente importa para este proyecto es la implementación web de la parte de los algoritmos. Se tiene una pantalla principal donde permite seleccinar el algoritmo, una posterior donde se introduce el dataset, una ventana de configuración de

parámetros del algoritmo y por úlitmo la visualización de los resultados. La idea es mantener las mismas funcionalidades en el mismo orden, pudiendo modificar o extender ciertas partes gráficas que unifiquen o lo hagan más sencillo.

ML Algorithm Visualizer

Como ya se ha comentado en la sección anterior, esta página web fue importante en el planteamiento del primer diseño de la web. Se trata de una página web de visualización de algoritmos de aprendizaje automático. Con un diseño compacto te permite seleccionar el modelo con sus paramétros y unos segundos más tarde te mostrará el resultado en la misma página. Es aquí donde se diferencia del objetivo de este proyecto, donde se busca tener las ejecuciones separadas paso por paso.

Aprendizaje semisupervisado en ciberseguridad

Este trabajo corresponde con el Trabajo Fin de Grado de Patricia Hernando. Pese a ser una herramienta destinada a la ciberseguridad, tiene relación con el actual trabajo en el uso de algoritmos semisupervisados. Permite ver la implementación y la explicación del código del Co-forest. Como ya se ha comentado, son de gran ayuda los estudios realizados para mejorar este algoritmo, ya que sirven para mostrar en la web una opción que permita seleccionar distintos valores y localizar diferencias en los resultados.

7. Conclusiones y Líneas de trabajo futuras

Todo proyecto debe incluir las conclusiones que se derivan de su desarrollo. Éstas pueden ser de diferente índole, dependiendo de la tipología del proyecto, pero normalmente van a estar presentes un conjunto de conclusiones relacionadas con los resultados del proyecto y un conjunto de conclusiones técnicas. Además, resulta muy útil realizar un informe crítico indicando cómo se puede mejorar el proyecto, o cómo se puede continuar trabajando en la línea del proyecto realizado.

Bibliografía

[1]

- [2] David Martinez Acha. Herramienta docente para la visualización en web de algoritmod de aprendizaje semi-supervisado. *Universidad de Burgos*, 2023.
- [3] Lilian Berton and Alneu De Andrade Lopes. Graph construction based on labeled instances for semi-supervised learning. In 2014 22nd International Conference on Pattern Recognition, pages 2477–2482, 2014.
- [4] Sagnik Bhattacharya. Ml algorithm visualizer. https://ml-visualizer.herokuapp.com/, 2020. [Internet; descargado 1-abril-2024].
- [5] DataScientest. Machine learning: definicion, funcionamiento, usos. https://datascientest.com/es/machine-learning-definicion-funcionamiento-usos, 2021. [Internet; descargado 16-enero-2024].
- [6] emeritus. What is supervised learning in machine learning? a comprehensive guide. https://emeritus.org/blog/ai-and-ml-supervised-learning/, 2023. [Internet; descargado 17-enero-2024].
- [7] ibm. What is machine learning? https://www.ibm.com/topics/machine-learning, 2019. [Internet; descargado 15-enero-2024].
- [8] Ming Li and Zhi-Hua Zhou. Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. *IEEE transactions on systems, man, and cybernetics Part A: Systems and Humans*, 37(6):1088–1098, 2007.

54 BIBLIOGRAFÍA

[9] Vidushi Meel. What is semi-supervised machine learning? a gentle introduction. https://viso.ai/deep-learning/semi-supervised-machine-learning-models/, 2021. [Internet; descargado 18-enero-2024].

- [10] Cristina Ortega. Anova: Qué es y cómo hacer un análisis de la varianza. https://www.questionpro.com/blog/es/anova/, 2022. [Internet; descargado 15-mayo-2024].
- [11] César García Osorio and José Francisco Diez Pastor. Aprendizaje automático. Introducción y problemas tipo. Sistemas Inteligentes, 2022.
- [12] Marta Palacio. Scrum Master. Scrum Manager, 2021.
- [13] R. Polikar. Ensemble based systems in decision making. *IEEE Circuits and systems magazine*, 6(3):21–45, 2006.
- [14] Kurtis Pykes. Introduction to unsupervised learning. https://www.datacamp.com/blog/introduction-to-unsupervised-learning, 2024. [Internet; descargado 17-enero-2024].
- [15] Soumya. Bagging vs boosting in machine learning. https://www.geeksforgeeks.org/bagging-vs-boosting-in-machine-learning/, 2022. [Internet; descargado 20-marzo-2024].
- [16] Jesper E. van Engelen and Holger H. Hoos. A survey on semi supervised learning. *Machine Learning*, 109:373–400, 2020.
- [17] Guido van Rossum, Barry Warsaw, and Alyssa Coghlan. Pep 8 style guide for python code. https://peps.python.org/pep-0008/, 2013. [Internet; descargado 28 de marzo de 2024].
- [18] Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard Schölkopf. Learning with local and global consistency. Advances in neural information processing systems, 16, 2003.
- [19] Xiaojin Zhu and Andrew B. Goldberg. *Introduction to Semi-Supervised Learning*. Morgan and Claypool, 2009.