CMSC426: Project 3 Rotobrush: Segmenting deformable objects in a video

Chahat Deep Singh and Chethan M Parameshwara

Perception and Robotics Group, University of Maryland, College Park prg.cs.umd.edu

CMSC426: Project 3 Rotobrush: Segmenting deformable objects in a video

What is segmentation?

• Given a point/pixel $x_{i,j}$ in the image

• $x \in \text{object 1 or 2 or } \dots$

• $x \in \mathcal{F}$ or \mathcal{B}

Why do we need segmentation?

- Medical Imaging
- Face Detection
- Pedestrian Detection
- Traffic sign detection
- For recognition tasks
- Video Surveillance
- Action localization
- And much, much more...

CMSC426: Project 3 Rotobrush: Segmenting deformable objects in a video

Problems with Deformable objects

Segmenting the object of interest in the first frame

Let's call it foreground or \mathcal{F} for ease.

Rest everything is background or \mathcal{B}

Use 'roipoly' in MATLAB.

Create Local Classifiers

Create Local Windows

For each local Window

Input

Create Mask

Local Window (initLocalWindows.m)

Color model (initColorModels.m)

Color model (initColorModels.m)

Color model (initColorModels.m)

Shape model (initShapeConfidences.m)

Shape model (initShapeConfidences.m)

$$\sigma_s = \begin{cases} \sigma_{min} + a(f_c - f_{cutoff})^r & f_{cutoff} < f_c \le 1, \\ \sigma_{min} & 0 \le f_c \le f_{cutoff}, \end{cases}$$

Shape model (initShapeConfidences.m)

Local Window Propagation (calculateGlobalAffine.m)

Optical Flow Wrapping (localFlowWrap.m)

Updating the Shape and Color Models (updateModels.m)

$$p_{\mathcal{F}}^k(x) = f_s(x) L^{t+1}(x) + (1 - f_s(x)) \ p_c(x)$$

$$p_{\mathcal{F}}(x) = \frac{\sum_{k} p_{\mathcal{F}}^{k}(x) (|x - c_{k}| + \epsilon)^{-1}}{\sum_{k} (|x - c_{k}| + \epsilon)^{-1}}$$

Updating the Shape and Color Models (updateModels.m)

Updating the Shape and Color Models (updateModels.m)

Pseudo-code (myRotobrush.m)

Algorithm 1 Rotobrush 1: procedure MYROTOBRUSH 2: set parameters load images create mask initLocalWindows() 5: initColorModels() ▶ initialize Color model 6: initShapeConfidences() for every image do 8: calculateGlobalAffine() > transform between previous and current frames 9: localFlowWarp() ▷ local warping based on optical flow 10: updateModels() ▶ update color and shape model 11: end for 12: 13: end procedure

CMSC426: Project 3 Deadline: Nov 13 2018 (Midnight)

Chahat Deep Singh and Chethan M Parameshwara

Perception and Robotics Group, University of Maryland, College Park prg.cs.umd.edu

Thank You!

