Adaptivne riadenie

AR06 - LS2024

MRAC vstupno-výstupný

Obsah

,	MRC vo vieobecnosti	2
1.1		2
	O posorovateľovi stavu s redukovaným rádom Formulácia problému riadenia s referenčným modelom	- 4
1.2		5
1.2.1	Dustrácia na priklade systému 2. rádu	7
1.2.2	Zovšeobecnenie pre systém s. nidu	
1.3	Teoretický opis výsledného URO v stavovom priestore	7
1.3.1	Dustrácia na príklode systému 2. rádu	7
1.3.2	Zovšcobecnenie pre systém n. rádu	9
2	Cvičenie šieste ako príklad k téme MRC vo všeobezností	11
2.1	Ülolty	11
2.2	Ricienie úloh	12
2.2.1	Úloha prvá	12
		15
2.2.2	Cloha druhá	15
3	SPR prenosové funkcie, MKY lemma	24
3.5	Striktne positivne reálne prenosové funkcie	24
3.2	Meyerova-Kalmanova-Yakubovichova Lemma	24
3.0	sicyttota-Kamamina-Takinovicinos Leimia	2.4
- 4	Adaptačná odchýlka	25
4.1	Model sústavy a referenčný model	25
4.2	Zákon riadenia	25
4.3	Rovnica adaptačnej odchýlky	26
4-3	toruna mapacar) oncolay	
5	Zákon adaptácie pri n° – 1	27
6	Zákon adaptácie pri $n^* = 2$	29
6.1	Priamočiary postup	29
6.2	Metóda doplnenej odchýlky	32
6.2.1	Prvá možnost	32
6.2.2	Druhá možnost	33
7	Cvičenie siedme ako priklad k tême Zákon adaptácie pri n° l	34
7.1	Cycenie steume ako priktaŭ k teme Zukon adaptacie pri n - i	35
		35
7.2	Ricienie dioh	42
7.3	Dodatok k riešeniu (prevašne o nastavovaní rýchlosti adaptácie)	42
	Priklad k téme Zákon adaptácie pri $u^* = 2$	45
8.1	Celkový pohľad na úlohu	46
8.1.1	Celkový pohľad na riadený systém (z hľadiska návrhu riadiaceho systému)	47
8.9	Návrh adaptívneho riadiaceho systému	49
8.2.1	Model riadeného systéma	49
8.2.2	Ciel riadenia a referenció model	50
8.2.3		50
	Podmienky zhody	51
8.2.4	Otázka relatívneho stupňa rindeného systému	
8.2.5	Zákon riadenia	51
8.2.6	Zákon adaptácie	52
8.2.7	Vytvorenie predstavy o nastavení rýchlosti adaptácie	54
8.3	Nasadenie na uvožovaný nelineárny systém	56
	Otázky a úlohy	SN
9	Channey a minity	-8

1 MRC vo všeobecnosti

Misson-John, Mill') ja skraks pre Molisi Reference Control.
Variety of the Control of

$$\dot{x}_2(t) = A_{22}x_2(t) + (A_{21}x_1(t) + b_2u(t))$$
 (2a)
 $\dot{x}_1(t) = A_{12}x_2(t) + (A_{11}x_1(t) + b_1u(t))$ (2b)

návrhu pozorovateľa stavu $x_2(t)$ sa signály $x_1(t)$ a u(t) pove vstupy (platí $y(t) = x_1(t)$). Zároveň sa signál $\dot{x}_1(t)$ považuje za 5ho systému. Pozorovateľ stavu je preto v tvare

 $\dot{x}_2(t) = A_{22}\dot{x}_2(t) + (A_{21}x_1(t) + b_2u(t)) + L(\dot{x}_1(t) - A_{12}\dot{x}_2(t) - (A_{11}x_1(t) + b_1u(t)))$ (3)

$$\begin{split} z_0(t) &- x_0 z_0(t) + (v_0 z_0(t)) + v_0 z_0(t) - x_0 z_0(t) - x_0 z_0(t) - x_0(t) + v_0 z_0(t) \\ &\text{Pre dyba poworousis staw } z_0^2(t) \text{ plati } z_0^2(t) - z_0^2(t) - z_0^2(t). \text{ Dynamiku tejle dyby opisity: rousis } & z_0^2(t) - z_0^2(t) - 2z_0(t) - 2z_0^2(t). \text{ Dynamiku tejle dyby opisity: rousis } & z_0^2(t) - (A_2 - A_1)z_0^2(t) & \text{ With a poworousis in a symptotisty bill it in its.} \end{split}$$
 $\text{Z tobs vyply'ss, is velktot L and by t rectoring tal, its matter $A_2 - LA_1 z_0$ sayuputotisty stabilish. Febom dyba posorousis in a symptotisty bill it in its. Zhakania (termina) signalis <math>z_0^2(t) = z_0^2(t) + z_0^2(t)$. Particular signalis $z_0^2(t) = z_0^2(t) + z_0^2(t)$. Per to smoothin signali $z_0^2(t) = z_0^2(t) + z_0^2(t)$. Let $z_0^2(t) = z_0^2(t) + z_0^2(t)$. The shouldest is dispersion.

$$\begin{split} \dot{w}(t) &= (A_{22} - LA_{12}) \, w(t) + (A_{22} - LA_{11} + A_{22} L - LA_{12} L) \, y(t) + (b_2 - Lb_1) \, u(t) \, \, (5) \\ \\ ^1\text{Zikho ridednia} \, w(t) &= \Theta_1^T(t) x(t) + \Theta_2(t) r(t) \, \text{a sikon ridednia} \, w(t) = k^T(t) x(t) + l(t) r(t) \, \text{sa po} \, \\ \text{formaling sitelable siked-spl, in commelcine adaptions-split parameters <math>p$$
 inch.} \end{split}

$$w(t) = (sI - A_{22} + LA_{12})^{-1} (A_{21} - LA_{11} + A_{22}L - LA_{12}L) y(t)$$

$$+ (sI - A_{22} + LA_{12})^{-1} (b_2 - Lb_1) u(t)$$
(6)

né vyjadriť aj v tvare

$$w(t) = \text{diag}(g_u) \left[\frac{\alpha(s)}{\Lambda(s)}\right] u(t) + \text{diag}(g_y) \left[\frac{\alpha(s)}{\Lambda(s)}\right] y(t)$$
 (7)

$$\hat{x}_2(t) = \text{diag}(g_u) \left[\frac{\alpha(s)}{\Lambda(s)}\right] u(t) + \text{diag}(g_y) \left[\frac{\alpha(s)}{\Lambda(s)}\right] y(t) + Ly(t)$$
 (8)

V úvode časti uvedený ideálny člen $\Theta_1^{\dagger T}(t)x(t)$ je teda možné parametrizovať nasledovne. Stavový vektor x(t) je nahradený odhadom $\dot{x}(t) = [y(t) \quad \dot{x}_2(t)]^T$, a tiež sa rozdelí $\Theta_1^{\dagger}(t) = [k_y^4 \quad k_y^{\dagger T}]^T$, pričom $k_y^4 \in \mathbb{R}$, potom

 $\boldsymbol{\Theta}_{1}^{\star\top}(t)\hat{\boldsymbol{x}}(t) = \boldsymbol{k}_{u}^{\star}\boldsymbol{y}(t) + \boldsymbol{k}_{2}^{\star\top}\hat{\boldsymbol{x}}_{2}(t)$

... mane MRAC stavous ale stav x nie vzdy mome cheene MRAC urtipus vjutipus problem M=KX+lr riejenie: M= Kx+lr 2 je 20 2 dobré otézka ... & nech je vjstupom pozorovatela stavo... the noted - nights degr Agel existife opis: $\chi = A \times + \beta M$ 2=A2+bu+L(g-cx) profile x→x

delylka x×-x → a

X= ? ←ahcene stabil! *= x-x = Ax+by - Ax-by - L (cx-cx) ... volba L tak aby toto bolo stabilne ... X ... teda mose by vistyom posovovatelà stavu AVSAK! gotrebovali by sme Able ... (nemane v adapt. what &?

ordethie so

ordethie so

- Virtup mejakéholl ogn. Sistemu...

- linearneho...

oavametre a signaly ... oake ako zirhat &? = Ax-Lotx+bu+Ly epozorovatel, len v inom trave... \$12 - (A-LoT) 2+ bu + Ly Laplaceou operator $\gamma J + Md = \mathring{\chi} \left[(5J - A) - T_2 \right]$ Of I (I-L-) IT + Wolfer To John To Joh (2) N(s)=det(sI-(A-Lc]) oracine Gus) takže: rektor funkcii...

$$\hat{x}_2(t) = \text{diag}(g_u) \left[\frac{\alpha(s)}{\Lambda(s)} \right] u(t) + \text{diag}(g_g) \left[\frac{\alpha(s)}{\Lambda(s)} \right] y(t) + Ly(t)$$
 (8)

V úvode časti uvedený ideálny člen $\Theta_1^{\dagger T}(t)x(t)$ je teda možné parametrizovať nasledovne. Stavový vektor x(t) je nahradený odhadom $\dot{x}(t) = [y(t) \quad \dot{x}_2(t)]^T$, a tiež sa rozdelí $\Theta_1^{\dagger}(t) = [k_y^4 \quad k_y^{\dagger T}]^T$, pričom $k_y^4 \in \mathbb{R}$, potom

$$\begin{aligned} &\Theta_1^{\intercal}(t) \hat{x}(t) = k_y^* y(t) + k_2^{\intercal} \hat{x}_2(t) \\ &= k_y^* y(t) + k_2^{\intercal} \hat{\text{diag}}(g_u) \left[\frac{\alpha(s)}{\Lambda(s)} \right] u(t) + k_2^{\intercal} \hat{\text{diag}}(g_y) \left[\frac{\alpha(s)}{\Lambda(s)} \right] y(t) + k_2^{\intercal} ^T L y(t) \end{aligned}$$

$$\overline{\Theta}_{1}^{*T}\hat{x}(t) = \Theta_{1}^{*T} \left[\frac{\alpha(s)}{\Lambda(s)}\right] u(t) + \Theta_{2}^{*T} \left[\frac{\alpha(s)}{\Lambda(s)}\right] y(t) + \Theta_{3}^{*}y(t)$$
 (10)

kde sa vzhladom na (a) zaviedlo označenie $\Theta_1^{*T} = k_2^{*T} \mathrm{diag}(g_n), \; \Theta_2^{*T} = k_2^{*T} \mathrm{diag}(g_p)$ a $\Theta_2^{*T} = k_2^{*T} \mathrm{Li}_2$ Z uvedeného vyplýva, že ideálny stavový zákon riadenia použitý v predchádzajúcích častilach je možné re-parametrizovať do tvaru

$$u(t) = \Theta_1^{*T} \left[\frac{\alpha(s)}{\Lambda(s)} \right] u(t) + \Theta_2^{*T} \left[\frac{\alpha(s)}{\Lambda(s)} \right] y(t) + \Theta_3^* y(t) + \Theta_4^* r(t)$$
 (11)

V prvých dvoch členoch zákona riadenia (11) sú použité takzvané pomocné filtre. Tieto generujú pomocné signály $\nu_1(t)$ a $\nu_2(t)$ upresnené nižšie. Napríklad prvý člen pravej strany v rovnici (11) možno zapísať v tvare

$$y_{\nu_1}(t) = \Theta_1^{1T} \left[\frac{\alpha(s)}{\Lambda(s)} \right] u(t) = \frac{\Theta_{1(n-2)}^+ s^{n-2} + \dots + \Theta_{11}^+ s + \Theta_{10}^+}{s^{n-1} + \lambda_{n-2} s^{n-2} + \dots + \lambda_{11} s + \lambda_0} u(t) \qquad (12)$$

$$\dot{\nu}_1(t) = \Lambda \nu_1(t) + qu(t)$$
 (13a)
 $y_{\nu_1}(t) = \Theta_1^{\pi^T} \nu_1(t)$ (13b)

Z uvodeniko plyniu, žo pry pomecný filter ná v stavovom priotnet user $(s,0) = \lambda_{\rm eff}(1 - \lambda_{\rm eff}(1) + \mu_{\rm eff}(1))$, ko pry je pomecný filter ná v stavovom priotnet user $(s,0) = \lambda_{\rm eff}(1) + \mu_{\rm eff}(1)$, ko pry je pomecným filter ná stavový voktor preho pomecným filter ná stavový voktor preho pomecným filter ná stavový voktor preho pomecným filter ná v stavovom pomecným filter ná v stavovom pretester texa $r_{\rm eff}(1) + \mu_{\rm eff}(1)$, koho radamia vyalívajúci ku vstupov výstupoš signály riadeného systému je potom v tvare

$$u(t) = \Theta_1^{\star T} \nu_1(t) + \Theta_2^{\star T} \nu_2(t) + \Theta_3^{\star} y(t) + \Theta_4^{\star} r(t)$$
 (

Formulácia problému riadenia s referenčným modelom

Riešením MRC (Model Reference Control – Riadenie s referenciným modelom) problému je taký zákon riadenia u, ktorý zabezpečí, že výstup sústavy y sleduje výstup referenčného modelu y_m pri danom referenčnom signally r. Uvažujme sústavu opísanú prencosovo funkciou v tvare

$$\frac{y(s)}{u(s)} = k_p \frac{Z_p(s)}{R_p(s)}$$
(1)

kde $Z_p(s)$ je monický, hurwitzov polynóm stupňa $m,R_p(s)$ je monický polynóm stupňa n a k_p je txv. vysokofrekvenčné zosúlnenie sústavy. Relationy stupeň sústavy je $n^*=n$

4 | ARo6 - LS2024

Polynóm sa nazýva monický ak je koeficient pri najvyššej mocnine s (v tomto prípado) rovný jednotke. Polynóm sa nazýva hurwitzov ak sú reálne časti všetkých koreňov polynómu záporné.
Nech referenčný model je daný prenosorou funkciou v tvare

$$\frac{y_m(s)}{r(s)} = W_m(s) = k_m \frac{Z_m(s)}{R_m(s)}$$
(16)

(iii) kofeckvernácí zodlanienie referenčného modela, polyanou $Z_{m}(z)$ kofeckvernácí zodlanienie referenčného modela, polyanou $Z_{m}(z)$ a ze ve polyanou stupia ma, $R_{m}(z)$ mouský Hurvittov polyanou stupia ina, ktorý rieši MIIC problém je modeotový. Najkáře revetienie, nákty polyani názomoto bloenie reisienie MIC problém u duchálenom konkritanou príklade. Všeobecný tvar zákona riadenia, problém je

$$u = \Theta_1^{*\top} \frac{\alpha(s)}{\Lambda(s)} u + \Theta_2^{*\top} \frac{\alpha(s)}{\Lambda(s)} y + \Theta_3^* y + \Theta_4^* r$$
 (17)

kde $\alpha(s)$ je vektor obsahujúci morniny $s, \alpha(s) = [s^{n-2}, \dots, s, 1]^{\mathsf{T}}$ ak n ≥ 2 , inak $\alpha(s) = 0$. Vektory $\Theta_1^* \in \mathbb{R}^{n-\mathsf{T}}$, $\Theta_2^* \in \mathbb{R}^{n-\mathsf{T}}$ a skaláry $\Theta_2^* \in \mathbb{R}^{\mathsf{T}}$, $\Theta_3^* \in \mathbb{R}^{\mathsf{T}}$ sk i konštantné parametre zákoza riadenia, ktorých bodnoty hladáne. A(s) je lubovohný monický Hurvitzov polypnín stupín n – I obsahujúcí Za, go) ako faktor

$$\Lambda(s) = \Lambda_0(s)Z_m(s) \qquad (18)$$

a teda aj $\Lambda_0(s)$ je ľubovoľný monický Hurwitzov polyr

Uvažujme systém opísaný prenosovou funkciou v tvare

$$y(s) = k_p \frac{s + b_0}{s^2 + a_1 s + a_0} u(s)$$
 (1)

kde a_i,b_i sú konštanty ($b_0>0$). Referenčný model zvoľme tak aby mal rovnaký relatívny stupeň ako sústava.

$$y_m(s)=W_m(s)r(s)=k_m\frac{s+b_{0m}}{s^2+a_{1m}s+a_{0m}}r(s) \tag{20}$$
o konkrétnom príklade, zákon riadenia, ktorý rieši MRC problém je v tvare

 $u(s) = \Theta_1^* \frac{1}{(s+\lambda)} u(s) + \Theta_2^* \frac{1}{(s+\lambda)} y(s) + \Theta_3^* y(s) + \Theta_4^* r(s)$

kde sme použili
$$\alpha(s) = 1$$
 a $\Lambda(s) = (s + \lambda)$. V tomto prípade Θ_1^* , Θ_2^* aj Θ_3^* a Θ_4^* sú skalárne konštantv – parametre zákona riadenia. Zákon riadenia (21) možno upraviť

kde sme použili $\alpha(s)=1$ a $\Lambda(s)=(s+\lambda)$. V tomto pripade Θ_1^s , Θ_2^s aj Θ_3^s a Θ_4^s sú skalárne konštanty – parametre zákona riadenia. Zákon riadenia (21) možno upraviť

$$\begin{pmatrix} 1 - \frac{\Theta_1^4}{(s+\lambda)} \end{pmatrix} u(s) = \begin{pmatrix} \frac{\Theta_2^4}{(s+\lambda)} + \Theta_3^4 \end{pmatrix} y(s) + \Theta_1^2 r(s) \qquad (22a)$$

$$\begin{pmatrix} \left(\frac{s+\lambda}{s}\right) - \Theta_1^2 \\ \left(\frac{s+\lambda}{s}\right) \end{pmatrix} y(s) = \begin{pmatrix} \frac{\Theta_2^4}{(s+\lambda)} + \frac{\Theta_2^4}{(s+\lambda)} \end{pmatrix} y(s) + \frac{\Theta_2^4 r(s)}{(s+\lambda)} - \frac{\Theta_2^4}{(s+\lambda)} - \frac{\Theta_$$

5 | ARo6 - LS2024

Lakze: diag(dm) q(2) " + qid (db)q(2)

potom zakou riadenia:

... pouzili sme full-order observer

... ak povisjene pozorovatel s redukovanja redom tah že vjetup. 31.
je rovno jedna stavne veličina a nemosine
ju pozorovat
tak

PODMIENKY ZHODY

ilvstrovane na prihlade gys 2. vada

na skuške

Unavretý regulatný obvod $y = \frac{1}{k_{s}Z_{s}}(\frac{(2) + \Theta_{s}X_{s}}{\Lambda}) + \frac{1}{k_{s}}Z_{s}(\frac{(2) + \Theta_{s}X_{s}}{$

toto je bonnoud veferetu...

pr07 Strana 3

Označme v (48) jednotlivé vektory a maticu:

$$\dot{\nu}_1 = \Lambda \nu_1 + q u$$

 $= \Omega^{*\top} \nu$

Orasiene v (48) jednostivé voktory a maticu: $\begin{aligned} & p_1 = p_1 + q_2 \\ & p_3 = q_4 \end{aligned} \quad (42a) \\ & p_4 = q_4 \end{aligned} \quad (4p) \\ & Z \text{ aveclusiba vyplýna, še prej přídavný filter má v stavovam pristore ten <math>\hat{p}_1 = \Delta p_2 + q_3$ kde na je vektor pomeorých signistve generomých prvím pomeorým generatiomo (násový váktor prvého pomeoridno generatiom). Tento je nisobený parametrami zákona riadenia fyl. Analogicky, druhý přídavný filter má v stavovom pristorie tvár prej – Azy v gen 4 $p_2 + q_3 + p_4$ polipacia nislavom velobecamu tazu je superistorie tvár prej – Azy v gen 4 $p_2 + q_3 + p_4 + q_4 + q_5 + q$

$$\begin{array}{ll} \dot{x} = Ax + bu & (5\text{oa}) \\ \dot{\nu}_1 = \Lambda \nu_1 + qu & (5\text{ob}) \\ \dot{\nu}_2 = \Lambda \nu_2 + q e^{\mathsf{T}} x & (5\text{oc}) \end{array}$$

Potom v (39) sú

$$x = \begin{bmatrix} x \\ \nu_1 \\ \nu_2 \end{bmatrix}; \quad A_0 = \begin{bmatrix} A & 0 & 0 \\ 0 & \Lambda & 0 \\ qc^T & 0 & \Lambda \end{bmatrix}; \quad b_c = \begin{bmatrix} b \\ q \\ 0 \end{bmatrix}; \quad c_c^T = \begin{bmatrix} c^T & 0 & 0 \end{bmatrix}$$
(51)

Zákon riadenia (46) zapíšeme vo vektorovom tvare: $u = \Theta_c^{\,*T} Dx + \Theta_d^{\,*r} r$

kde
$$\Theta_c^* = \left[\Theta_3^* \quad \Theta_1^{+\top} \quad \Theta_2^{+\top}\right]^\top; \ \Theta_1^* \text{ by parameter alicona riadenia a maticu}$$

$$D = \begin{bmatrix} c^\top & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix}$$

sne naviedli práce peto aby one v zákore indenia (52) mobil primo pisať stavoý vektor x. Tur, x ktorem se zákon riadenia (52) viac podobů na pôvodný zápiu (46), a ktorý vyphýva prámoz (52) je $u = \Theta_1^{T} \nu_1 + \Theta_2^{T} \nu_2 + \Theta_2^{T} x + \Theta_3^{T} x \qquad (530)$ $u = \Theta_1^{T} \nu_1 + \Theta_2^{T} \nu_2 + \Theta_2^{T} x + \Theta_3^{T} x \qquad (530)$

$$u = \Theta_1^{*T} \nu_1 + \Theta_2^{*T} \nu_2 + \Theta_2^{*} c^T x + \Theta_2^{*r}$$
 (53a)
 $v = \Theta_2^{*T} v_1 + \Theta_2^{*T} v_2 + \Theta_2^{*r} v_3 + \Theta_2^{*r} v_4$ (53b)

Dosadením (52) do (39), v ktorej sú ale matice (51), získame iestore v tvare (44), a matica A_c má tvar

Twee (e.g., a mattex
$$A_c$$
 and twee $A_c = A_c + A_c + A_c = A_c = A_c + A_c = A_c$

Pretože takto všeobecne opásaný URO obsahuje ideálne parametre zákona riadenia, teda také, ktoré splňajú podmienky zhody musí sa tento zhodovať so všeobecným

24 | ARo6 - L52024

V tomto kurre ju vystějeme v menej všeobeceme v rekte je rystám daný trojicou A_c , \overline{B}_c , C_c a A_c sech je stabilná matíca. A $\{W_c(a)\}_c$, $\{A_c^T - A_c\}_c$ SPR, potom platí, že $A_c^T P + PA_c = -Q$ $\{A_c^T P + PA_c - Q\}$ bele $Q = Q^T > 0$. A je to prise fakt, $B = W_c = PA_c$ for vystůvěný kak platí $PB_c = C_c$, ktorý umodní zrechlovot žíklou odaplácíe kt., se v form vystupuje len odchýlka výstupuje veličin sústavy a referenčného moleln [-].

4 Adaptačná odchýlka

4.1 Model sústavy a referenčný model

Uvažujme sústavu opísanú prenesovou funkciou v tvare

$$\frac{y(s)}{u(s)} = k_p \frac{Z_p(s)}{R_p(s)}$$
(10)

bele $Z_n(s)$ je monický Hurvátov polymin supia na $Z_n(s)$ je monický polymin stupia na $Z_n(s)$ je monický polymin stupia na $Z_n(s)$ je monický polymin stupia na $Z_n(s)$ se tve vysokafriebenání zosilenení nistavya Relatívny stupeň sibava je na² – na – nie redposlabalnja, ne riaditva y zemář ni všatavy je zmísy. Pre zjednodněnie tid preposlabalnjam, že ná stupen na na polyminova nistane, prirom vo všeobeznosti zmáne nemninis byl. Koeficzeký polyminova $Z_n(s)$ na $Z_n(s)$ namente sistavy si nemníme. Hodroda a ramnicalou sozilamin Z_n nech je naime.

Sodkava v braz (vža) niho býl represencenosta opianov skarovom předotov v tvan

$$\dot{x} = Ax + bu$$
 (106a)
 $\dot{x} = e^{T}x$ (106b)

$$\frac{y_m(s)}{r(s)} - W_m(s) - k_m \frac{Z_m(s)}{R_m(s)}$$
(10)

 Λko bolo ukázané v predchádzajúcich témach predmetu, zákon riadenia v tvare

$$u = \Theta_1^{*\top} \frac{\alpha(s)}{\Lambda(s)} u + \Theta_2^{*\top} \frac{\alpha(s)}{\Lambda(s)} y + \Theta_3^* y + \Theta_4^* r$$
 (108)

zabezpečí, že priebeh výstupnej veličiny y sa zhoduje s priebehom výstupnej veličiny referenčného modelu
$$y_m$$
 ak sú parametre zákona vypočítané z podmienok zhody

$$\Theta_4^* = \frac{k_m}{k_p}$$
 (1098)
 $\Lambda = \Lambda_0 Z_m$ (1001)

pr07 Strana 6

$$\frac{y_m(s)}{r(s)} = W_m(s) - k_m \frac{Z_m(s)}{R_m(s)}$$
(107)

4.2 Zákon riadenia

$$u = \Theta_1^{\star T} \frac{\alpha(s)}{\Lambda(s)} u + \Theta_2^{\star T} \frac{\alpha(s)}{\Lambda(s)} y + \Theta_3^{\star} y + \Theta_4^{\star} r$$
 (108)

$$\begin{split} \Theta_{1}^{*} &= \frac{k_{p}}{k_{p}} & \text{(roga)} \\ \Theta_{2}^{*} &= \frac{k_{p}}{k_{p}} & \text{(roga)} \\ \Lambda &= \Lambda_{0} Z_{m} & \text{(rogb)} \\ R_{p} \left(\Lambda - \Theta_{1}^{*} \uparrow^{*} \alpha(s)\right) - k_{p} Z_{p} \left(\Theta_{2}^{*} \uparrow^{*} \alpha(s) + \Theta_{3}^{*} \Lambda\right) - Z_{p} \Lambda_{0} R_{m} & \text{(rogc)} \end{split}$$

25 | ARo6 - LS2024