ABSTRACT OF THE DISCLOSURE

Compounds of general Formula I

 z^1 and z^2 in each case independently mean the residue $-(CH_2)_m - (C_6H_4)_q - (O)_k - (CH_2)_n - (C_6H_4)_1 - (O)_r - R,$ wherein

> m and n means the numbers 0-20, k, l, q and r means the numbers 0 and l, and R means a hydrogen atom, an optionally OR^{i} -substituted $\mathrm{C_{1}}\text{-}\mathrm{C_{6}}\text{-}\mathrm{alkyl}$ residue, or a CH_2COOR^1 group with R^1 meaning a hydrogen atom,

a C_1 - C_6 -alkyl residue, or a benzyl group, means a hydrogen atom and/or a metal ion equivalent X of an element of atomic number 21-29, 42, 44 or 57-83,

with the provisos that at least two the substituents \boldsymbol{X} stand for a metal ion equivalent; that one of the substituents \boldsymbol{Z}^1 and \boldsymbol{Z}^2 stands for a hydrogen and the other is not H; that -- if n and 1 each mean the number 0 -- kand r do not simultaneously mean the number 1; that -(0),-R is not -OH; and that z^1 and z^2 are not -CH₂-C₆H₄-O-CH₂-COOCH₂C₆H₅ or -CH₂-C₆H₄-O-(CH₂)₅-COOCH₂C₆H₅, as well as their salts with inorganic and/or organic

bases, amino acids or amino acid amides,

are valuable pharmaceutical agents, e.g., for NMR or X-

ger a