DSC680_CCPB_EDA

January 30, 2022

[1]: from ipynb.fs.full.DSC680_CCPB_Data_Preprocessing import *

****** Customer Churn Dataset*******

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype		
0	RowNumber	10000 non-null	int64		
1	CustomerId	10000 non-null	int64		
2	Surname	10000 non-null	object		
3	CreditScore	10000 non-null	int64		
4	Geography	10000 non-null	object		
5	Gender	10000 non-null	object		
6	Age	10000 non-null	int64		
7	Tenure	10000 non-null	int64		
8	Balance	10000 non-null	float64		
9	NumOfProducts	10000 non-null	int64		
10	HasCrCard	10000 non-null	int64		
11	IsActiveMember	10000 non-null	int64		
12	EstimatedSalary	10000 non-null	float64		
13	Exited	10000 non-null	int64		
dtypes: $float64(2)$ int64(0) object(3)					

dtypes: float64(2), int64(9), object(3)

memory usage: 1.1+ MB

****** number of unique classes of each attributes**********

RowNumber	10000
CustomerId	10000
Surname	2932
CreditScore	460
Geography	3

Gender	2
Age	70
Tenure	11
Balance	6382
NumOfProducts	4
HasCrCard	2
IsActiveMember	2
EstimatedSalary	9999
Exited	2

dtype: int64

****** description of the dataset********

	RowNumber	CustomerId	CreditScore	Age	Tenure	\
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	
	Balance	NumOfProduc	ts HasCrCard	d IsActiveMemb	er \	
count	10000.000000	10000.0000	00 10000.00000	10000.0000	000	
mean	76485.889288	1.5302	0.70550	0.5151	.00	
std	62397.405202	0.5816	54 0.45584	0.4997	'97	
min	0.000000	1.0000	0.00000	0.0000	000	
25%	0.000000	1.0000	0.00000	0.0000	000	
50%	97198.540000	1.0000	00 1.00000	1.0000	000	
75%	127644.240000	2.0000	00 1.00000	1.0000	000	
max	250898.090000	4.0000	00 1.00000	1.0000	000	
	EstimatedSala	ary Exi	ted			
count	10000.0000	000 10000.000	000			
mean	100090.2398	0.203	700			
std	57510.4928	0.402	769			
min	11.5800	0.000	000			
25%	51002.1100	0.000	000			
50%	100193.9150	0.000	000			
75%	149388.2475	0.000	000			
max	199992.4800	1.000	000			

****** Sample Data from file********

0 1 2 3 4	RowNumbe	1 : 2 : 3 : 4	stome 15634 15647 15619 15701 15737	602 311 304 354	Surname Hargrave Hill Onio Boni Mitchell	CreditScore 619 608 502 699 850	France Spain France	Female Female Female	42 39	\
	Tenure	Bala	ance	Num	OfProducts	HasCrCard	IsActiveMe	mber \		
0	2	(0.00		1	1		1		
1	1	8380	7.86		1	0		1		
2	8	159660	08.0		3	1		0		
3	1	(0.00		2	0		0		
4	2	125510	0.82		1	1		1		
	Estimate	edSala	ry E	xite	d					
0	10	1348.8	88		1					
1	11	12542.	58		0					
2	11	13931.	57		1					
3	9	93826.6	63		0					
4	7	79084.	10		0					

****** dropped columns [CustomerId,RowNumber,Surname] ********

CreditScore	int64
Geography	object
Gender	object
Age	int64
Tenure	int64
Balance	float64
NumOfProducts	int64
HasCrCard	int64
IsActiveMember	int64
EstimatedSalary	float64
Exited	int64

dtype: object

*********Check number of NaN or NULL*********

```
CreditScore
                   0
Geography
                    0
Gender
                    0
Age
                    0
Tenure
                    0
Balance
                    0
NumOfProducts
HasCrCard
IsActiveMember
EstimatedSalary
                   0
Exited
                    0
dtype: int64
```

1 Analyze and Visualize features - EDA

```
[2]: import matplotlib.pyplot as plt import seaborn as sns import numpy as np
```

```
[3]: # boxplot for numerical feature
print ("\n\n************************* \n\n")
   _,axss = plt.subplots(2,3, figsize=[20,10])
sns.boxplot(x='Exited', y ='CreditScore', data=ccpb_df, ax=axss[0][0])
sns.boxplot(x='Exited', y ='Age', data=ccpb_df, ax=axss[0][1])
sns.boxplot(x='Exited', y ='Tenure', data=ccpb_df, ax=axss[0][2])
sns.boxplot(x='Exited', y ='NumOfProducts', data=ccpb_df, ax=axss[1][0])
sns.boxplot(x='Exited', y ='Balance', data=ccpb_df, ax=axss[1][1])
sns.boxplot(x='Exited', y ='EstimatedSalary', data=ccpb_df, ax=axss[1][2])
```

*******boxplot for numerical features*********

[3]: <AxesSubplot:xlabel='Exited', ylabel='EstimatedSalary'>


```
[5]: # Analyze correlation among "Exited" and other Categorical Features
print ("\n\n************"+"\033[1m"+"Analyze correlation among Exited and other

Categorical Features"+ "\033[0m"+"************************

_,axss = plt.subplots(2,2, figsize=[20,10])
sns.countplot(x='Exited', hue='Geography', data=ccpb_df, ax=axss[0][0])
sns.countplot(x='Exited', hue='Gender', data=ccpb_df, ax=axss[0][1])
sns.countplot(x='Exited', hue='HasCrCard', data=ccpb_df, ax=axss[1][0])
sns.countplot(x='Exited', hue='IsActiveMember', data=ccpb_df, ax=axss[1][1])
```

*******Analyze correlation among Exited and other Categorical Features**********

[5]: <AxesSubplot:xlabel='Exited', ylabel='count'>


```
[6]: # Analyze Correlation between numerical feature using Heatmap plot

print ("\n\n***********"+"\033[1m"+"Analyze Correlation between numerical feature

ousing Heatmap plot"+ "\033[0m"+"****************\n\n")

correlation = ccpb_df[['IsActiveMember','HasCrCard','CreditScore', 'Age',

output 'Tenure', 'NumOfProducts','Balance', 'EstimatedSalary']].corr()

sns.heatmap(correlation)
```

******Analyze Correlation between numerical feature using Heatmap plot***********

[6]: <AxesSubplot:>

*********Correlation statistics********

	IsActiveMember	HasCrCard	CreditScore	Age	Tenure	\
IsActiveMember	1.000000	-0.011866	0.025651	0.085472	-0.028362	
HasCrCard	-0.011866	1.000000	-0.005458	-0.011721	0.022583	
CreditScore	0.025651	-0.005458	1.000000	-0.003965	0.000842	
Age	0.085472	-0.011721	-0.003965	1.000000	-0.009997	
Tenure	-0.028362	0.022583	0.000842	-0.009997	1.000000	
NumOfProducts	0.009612	0.003183	0.012238	-0.030680	0.013444	
Balance	-0.010084	-0.014858	0.006268	0.028308	-0.012254	
${\tt EstimatedSalary}$	-0.011421	-0.009933	-0.001384	-0.007201	0.007784	

NumOfProducts Balance EstimatedSalary

```
0.009612 -0.010084
IsActiveMember
                                                 -0.011421
HasCrCard
                      0.003183 -0.014858
                                                 -0.009933
CreditScore
                      0.012238 0.006268
                                                 -0.001384
Age
                     -0.030680 0.028308
                                                 -0.007201
Tenure
                      0.013444 -0.012254
                                                  0.007784
NumOfProducts
                      1.000000 -0.304180
                                                  0.014204
Balance
                     -0.304180 1.000000
                                                  0.012797
                      0.014204 0.012797
                                                  1.000000
EstimatedSalary
```

******Balance Distribution EDA*********

[8]: Text(0, 0.5, 'NumOfcustomers')

[9]: # what balance did people exit bank?

```
print ("\n\n*********"+"\033[1m"+"What is the minumum balance of the customers

→who exited the bank?"+ "\033[0m"+"***********************
\n\n")

ccpb_exit_df=ccpb_df[ccpb_df.Exited==1]

ccpb_exit_df.Balance.mean()

plt.xlabel('Exited')

plt.ylabel('NumOfProducts')

# when exited.. was the number of products 0?

ccpb_exit_df.NumOfProducts.hist()

# peope who exited had 1 product

# (affinity of leaving when only 1 product is more as probably : not keen in

→other products.)
```

*******What is the minumum balance of the customers who exited the bank?*********

[9]: <AxesSubplot:xlabel='Exited', ylabel='NumOfProducts'>


```
[12]: #No of Exited vs Active get the percentage split figure print ("\n\n*********"+"\033[1m"+"What is the Percentage of loyal customers vs_\u00e4 \u2012churn customers?"+ "\033[0m"+"************ \n\n")
```

*******What is the Percentage of loyal customers vs churn customers?**********

Observation: 79.6% customers are loyal and 20.4 % are not. Hence it is considered as biased distribution

```
[22]: print ("\n\n*********"+"\033[1m"+"Customer's Credit Score Distribution"+_{\square} _{\hookrightarrow}"\033[0m"+"*********** \n\n")
```

********Customer's Credit Score Distribution*********

[22]: Text(0.5, 1.0, 'CreditScore')


```
[23]: # this plot is to show how Geography play a role at the customer churn
print ("\n\n*********************** \n\n")
Geosplit = ccpb_df.Geography.value_counts()
Geovalues = ccpb_df['Geography'].value_counts().values.tolist()
Geolabels = ccpb_df['Geography'].value_counts().keys().tolist()
colors = ['#C4E51A', '#3BBCC4', '#3B1AE5']
fig2, f2 = plt.subplots()
```

```
f2.pie(Geovalues, labels=Geolabels, colors = colors, autopct='%1.

if%%', shadow=True, startangle=90)

# Equal aspect ratio ensures that pie is drawn as a circle
f2.axis('equal')
plt.tight_layout()
plt.title('Percentage split based on Geography')
plt.show()
```

Percentage split based on Geography


```
f3.pie(Gendervalues,labels=GenderLabels, colors = colors, autopct='%1.

if%%',shadow=True, startangle= 90)

# Equal aspect ratio ensures that pie is drawn as a circle
f3.axis('equal')
plt.title('Percentage split based on Gender')
plt.tight_layout()
plt.show()
```

*********Customer churn rate w.r.t Gender*********

Percentage split based on Gender


```
[25]: # this plot is to show how HasCrCard play a role at the customer churn

print ("\n\n**************************\n\n")

HasCardvalues = ccpb_df['HasCrCard'].value_counts().values.tolist()

HasCardlabels = ["Having Card" , "No Card"]

colors = ['#99ff99','#ffcc99']

fig5, f5 = plt.subplots()

f5.pie(HasCardvalues ,labels=HasCardlabels, colors = colors,autopct='%1.

$\ind 1f\%'\', \shadow=True, \startangle=60)$
```

```
f5.axis('equal')
plt.title('Percentage split based on Card Possession')
plt.tight_layout()
plt.show()
```

********Customer churn rate w.r.t CreditCard**********

Percentage split based on Card Possession


```
[19]: print ("\n\n********"+"\033[1m"+"Correlation Matrix"+_\)

$\insightarrow$"\033[0m"+"*************** \n\n")$

fig, ax = plt.subplots()

fig.set_size_inches(11.7, 8.27)

sns.set(font_scale = 0.75)

sns.heatmap(ccpb_df.corr(), annot = True, fmt = ".6f")

plt.show()
```



```
[26]: # Graphical representation of the target label percentage before upsampling
      print ("\n\n*******"+"\033[1m"+"Churn Rate w.r.t target label -Exited"+"
      \rightarrow"\033[0m"+"*********** \n\n")
      total_len = len(ccpb_df['Exited'])
      sns.set()
      sns.countplot(ccpb_df.Exited).set_title('Churn Rate')
      ax = plt.gca()
      for p in ax.patches:
          height = p.get_height()
          ax.text(p.get_x() + p.get_width()/2.,
                  height + 2,
                  '{:.2f}%'.format(100 * (height/total_len)),
                  fontsize=14, ha='center', va='bottom')
      sns.set(font_scale=1.5)
      ax.set_xlabel("Labels for exited column")
      ax.set_ylabel("Numbers of records")
      plt.show()
```

*********Churn Rate w.r.t target label -Exited***********

C:\Users\aditya.sumbaraju\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

2 Visualizing outliers

```
print ("\n\n********"+"\033[1m"+"Outlier w.r.t "+ i +

→"\033[0m"+"************ \n\n")
   v_outliers(i)
```

********Outlier w.r.t CreditScore*********

C:\Users\aditya.sumbaraju\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

*********Outlier w.r.t Age*********

C:\Users\aditya.sumbaraju\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version

0.12, the only valid positional argument will be 'data', and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

C:\Users\aditya.sumbaraju\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

C:\Users\aditya.sumbaraju\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

********Outlier w.r.t Balance*********

0 50000 100000 150000 200000 250000 Balance

*********Outlier w.r.t NumOfProducts*********

C:\Users\aditya.sumbaraju\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

C:\Users\aditya.sumbaraju\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

*********Outlier w.r.t EstimatedSalary*********

Observations: Seems like CreditScore, Age, NumOfProducts have outliers

```
[27]: outliers = ['Age', 'CreditScore', 'NumOfProducts']
[32]: # create a function to remove the outliers
      def rm_outlier(input_data,feature):
          qt1 = input_data[feature].quantile(0.25)
          qt3 = input_data[feature].quantile(0.75)
          iqr = qt3 - qt1
          point_low = qt1 - 1.5 * iqr
          point_high = qt3 + 1.5 * iqr
          cleaned_df = input_data.loc[(input_data[feature] > point_low) &__
       →(input_data[feature] < point_high)]</pre>
          return cleaned_df
[33]: # clean the dataset by removing outliers
      ccpb_df_cleaned =_
      →rm_outlier(rm_outlier(ccpb_df, 'Age'), 'CreditScore'), 'NumOfProducts')
      print(ccpb_df.shape)
      print(ccpb_df_cleaned.shape)
     (10000, 11)
     (9516, 11)
```

```
[34]: # CORRELATION MATRIX OF THE DATA

plt.figure(figsize = (15,8))

list_corr = ['CreditScore' ,'Age' ,'Tenure' ,'Balance' ,'NumOfProducts'

→,'EstimatedSalary' ,'Exited']

sns.heatmap(ccpb_df_cleaned[list_corr].corr(), annot = True, linecolor =

→"black", lw = 0.5, fmt= '.2f')
```

[34]: <AxesSubplot:>

[36]: ccpb_df_cleaned.groupby(ccpb_df_cleaned["Exited"])["Age"].mean()

[36]: Exited

0 36.089197 1 43.793583

Name: Age, dtype: float64

Observation: as the age of the customer increases, the customer losing rate increases.

Average age of customers who did not exit the bank: 36

Average age of customers exit bank: 43

[]: