프로그래밍 언어 응용

chapter07

배열

제공된 자료는 훈련생의 수업을 돕기 위한 것으로, 타인과 공유하시면 안됩니다.

Contents

part.1 배열

part.2 다차원 배열

part.3 ArrayList 클래스

part.4 배열 응용 프로그램 만들기

배열

배열이란 무엇인가?

배열이란?

- 자료형이 동일한 자료형의 데이터를 순차적으로 저장하는 자료구조이다.
- 대량의 데이터를 관리할 때 사용한다.

배열의 선언과 생성

배열을 선언할 때는 [] 대괄호 기호를 사용하여 배열 형식을 나타낸다. 배열을 생성할 때는 "new" 키워드를 사용하고, 배열의 길이를 지정해야 한다.

자료형[] 배열이름 = new 자료형[크기];

int[] arr = new int[3];

배열

배열을 선언하고 동시에 값을 초기화할 때, {} 안에 값을 나열하여 초기화할 수 있다. 이 때 배열의 길이는 중괄호 안에 나열된 요소의 개수에 따라 자동으로 결정된다. 따라서 "new int[]" 코드를 생략할 수 있다.

int[] arr = new int[] { 1, 2, 3 };

01

배열의 각 요소에 값을 넣거나 값을 가져올 때는 [] 인덱스 연산자를 사용한다.

인덱스 연산자는 배열 요소의 위치를 찾아 주는 역할을 한다.

배열의 길이가 n이라면, 인덱스는 0부터 시작하여 n-1까지의 값을 가진다.

int age = arr[0];

배열

객체배열이란?

- 객체배열은 참조자료형을 저장하는 배열을 의미한다.
- 이 배열은 실제 객체가 아닌 주소를 저장한다.
- 객체 배열의 각 요소에는 인스턴스를 생성하고 저장할 수 있다.

Book[] arr = new Book[3];

arr[0] = new Book("태백산맥");

arr[1] = new Book("토지");

arr[2] = new Book("어린왕자");

[0]	[1]	[2]
null	null	null

다차원배열은 무엇일까?

다차원 배열이란?

- 다차원배열은 테이블 형태의 데이터를 저장하거나, 평면이나 공간을 표현할 때 사용한다.
- 이차원 이상으로 구현된 배열을 다차원배열이라고 한다.
- 다차원 배열은 일차원 배열을 여러 개 조합하여 만들 수 있다.

격자 형태의 지도

다차원배열

이차원 배열은 수학의 행렬 구조와 비슷하고, 일차원 배열을 여러 개 묶어서 만들 수 있다. 이러한 구조를 이용하여 행렬 형태의 데이터를 표현할 수 있다.

ArrayList 클래스

기본배열의 단점과 ArrayList

ArrayList란?

- 리스트는 순서가 있는 데이터의 모음으로, 배열과 비슷한 기능을 제공한다.
- 리스트는 요소의 순서를 유지하면서, 동적으로 요소를 추가하거나 삭제할 수 있다.

배열과 리스트의 차이점

- 한번 생성된 배열의 크기는 변경할 수 없고, 연속된 메모리 공간을 사용한다.
- 리스트는 요소가 추가 또는 삭제됨에 따라 동적으로 크기를 변경할 수 있고, 메모리 공간을 유연하게 사용한다.

ArrayList 클래스

ArrayList 클래스의 주요 메소드

메소드	설명	
boolean add(E e)	요소 하나를 배열에 추가한다	
int size()	리스트의 크기를 반환한다	
E get(int index)	리스트의 index 위치에 있는 요소를 반환한다	
E remove(int index)	리스트의 index 위치에 있는 요소를 삭제한다	
boolean isEmpty()	리스트가 비어 있는지 확인한다	

리스트의 특징

- 리스트를 생성할 때는 <>기호 안에 자료형을 선언해야 하고, 자료형은 클래스 타입만 사용 할 수 있다.
- 리스트는 요소가 추가되거나 삭제될 때, 동적으로 크기가 변경된다.
- 리스트는 데이터를 관리할 수 있는 다양한 속성과 메소드를 제공한다.

ArrayList<Integer> list = new ArrayList<Integer>();
list.add(10);
list.add(20);
list.add(30);
list.add(1, 40);
list.remove(2);

배열응용 프로그램 만들기 학생 성적 관리 프로그램 만들기

- 1. 학생 클래스 설계
- 학생의 기본정보와 학생이 수강하는 과목들을 저장한다.
- 2. 과목 클래스 설계
- 과목의 이름과 성적을 저장한다.
- 3. 프로그램 구현
- 학생 객체를 생성하고, 해당 학생이 수강하는 과목을 추가한다.
- 학생마다 수강하는 과목의 수가 다를 수 있다.

학생1

이름: 둘리

학년: 1

수강과목: 국어, 수학 (2)

학생2

이름: 도우너

학년: 3

수강과목: 국어, 영어, 과학, 사회 (4)

학생 클래스

이름

학년

수강과목리스트

과목 클래스

과목의 이름

점수