

Serviço Nacional de Aprendizagem Industrial

PELO FUTURO DO TRABALHO

Internet das Coisas

Sensores e atuadores

Prof. Fernando Costenaro Silva

Sumário

- Alimentação
- Sensores:
 - Definição;
 - Exemplos:
 - Ultrassom
 - Temperatura
- Atuadores:
 - Definição;
 - Exemplos:
 - Relé
 - Servo (motor)

Alimentação

- A placa NodeMCU opera com tensão de 3,3 V nos pinos.
- Muitos periféricos operam com 5
 V e não funcionam com 3,3 V.
- VU VOUT USB fornece 5 V!
- Na placa com fundo branco: VIN = 5 V
- GPIO é tolerante a 5 V, então pode entrar 5 V nos pinos configurados como INPUT.

CUIDADO: NUNCA ligue o 5V diretamente no 3V ou no G (GND – 0V)!

Sensores

- Dispositivo que recebe e responde a um estímulo ou um sinal
- Quais são os nossos 5 sentidos e o que eles medem?
- Os sensores respondem com um sinal eléctricos um estímulo ou um sinal.
- Um transdutor por sua vez é um dispositivo que converte um tipo de energia em outra não necessariamente em um sinal eléctrico.

Sensores

- Tipos de energia detectados por sensores:
- Luz, som, temperatura, calor, radiação, resistências, corrente, tensão, potência, magnetismo, pressão, fluxo de gás e líquidos, químico, movimento, posição, orientação, proximidade, distância, etc.

 Sensor ultrassônico (modelo HC-SR04): Emite sinais (ondas ultrassônicas – acima de 40 KHz) que refletem e são lidas pelo sensor.

- Funcionamento:
- Trigger: comando para enviar a onda (8 pulsos)
- Echo: resposta do sensor
- Calcula a distância com base no tempo entre o comando e o recebimento do sinal de leitura do sensor

- Distância = (Tempo de duração do sinal de saída × velocidade do som) / 2
- Velocidade do som = 340 m/s;

• Ligação:

ESP8266	HC-SR04
VU	VCC
D4	Trig
D3	Echo
G	GND

OBS: NÃO FUNCIONA COM 3V!

IMPORTANTE: LIGAR NO VU APÓS ALIMENTAR A USB!

- Programação do servo:
 - Imprime na Serial a distância lida pelo sensor.

```
const int trigPin = 2; //D4
const int echoPin = 0; //D3

long duration;
int distance;

void setup() {
   pinMode(trigPin, OUTPUT);
   pinMode(echoPin, INPUT);
   Serial.begin(9600);
}
```

```
void loop() {
  digitalWrite(trigPin, LOW);
  delayMicroseconds(2);
  digitalWrite(trigPin, HIGH);
  delayMicroseconds(10);
  digitalWrite(trigPin, LOW);
  // le o tempo de resposta (Echo)
  duration = pulseIn(echoPin, HIGH);
  distance= duration*0.034/2;
  Serial.print("Distancia: ");
  Serial.println(distance);
  delay(500);
```


 Sensor de umidade e temperatura (modelo DHT11): Permite fazer leituras de temperaturas entre 0 a 50 Celsius e umidade entre 20 a 90%.

- Dois modelos:
 - 3 pinos
 - 4 pinos

• Ligação:

ESP8266	DHT11
D4	SIGNAL
3V	VCC
G	GND

- Se ficar instável:
 - Adicionar pull-up no sinal.

Instale a biblioteca DHT para o ESPx:

- Programação do dth11:
 - Imprime na Serial os valores lidos pelo sensor.

```
#include "DHTesp.h"
DHTesp dht;
#define DHT11_PIN 2
void setup(){
  Serial.begin(9600);
  dht.setup(DHT11_PIN, DHTesp::DHT11);
void loop(){
  delay(dht.getMinimumSamplingPeriod());
  float umidade = dht.getHumidity();
  float temperatura = dht.getTemperature();
  Serial.print("Temperatura = ");
  Serial.println(temperatura);
  Serial.print("Umidade = ");
  Serial.println(umidade);
  delay(1000);
```


Atuadores

- Basicamente um atuador é um dispositivo que converte a energia em movimento. Também são usados para acionar ou comandar outros dispositivos.
- Exemplos de energia:
 - pneumática, hidráulica ou elétrica
- Exemplos de atuadores:
 - Motor, cilindro hidráulico, lâmpada, auto-falante, relé, resistência elétrica, etc.

 Relé: O relé possibilita ligar/desligar aparelhos eletrônicos e eletrodomésticos (220 V AC) com sinais do sistema embarcado (ex.: 5 V DC).

• Ligação do relé:

• Ligação do relé:

ESP8266	RELÉ
D4	IN1
3V	VCC
G	GND

OBS: FUNCIONA MELHOR COM TENSÕES MAIORES, COMO 5V!

- Programação do relé:
- Saída digital simples com digitalWrite(pino, estado);
- Usar como base o código de exemplo do Blink
- Pino: D4
- Estados (se ligado no NA):
 - HIGH aciona
 - LOW desaciona
- E se ligar no NF?

- Servo motor: Usado para proporcionar a movimentação de pequenas cargas:
 - Menos do que 1Kg.cm em 3V
- Possui ângulo de rotação de 180 graus

- Ligação do Servo:
- O fio laranja pode ser usado em qualquer pino Dx

Fio	Pino
Laranja	D0
Vermelho	3V
Marron	G

OBS: FUNCIONA MELHOR COM TENSÕES MAIORES, COMO 5V!

- Programação do servo:
- Baixar os arquivos da biblioteca Servo para o ESP8266:
- https://github.com/esp8266/Arduino/tree/master/libraries/Servo/src
- (está disponibilizado no AVA em ZIP)

- Importar a biblioteca pela IDE do Arduino:
- Sketch
- Include Library
- Add .ZIP Library...

- Programação do servo:
- Incluir a biblioteca (Servo.h)
- Atribuir ao pino D0 (attach)
- Move ate a posição 0 graus (write)
- Move ate a posição 90 graus (write)

```
#include <Servo.h>
Servo servo:
void setup() {
 servo.attach(D0);
 servo.write(0);
 delay(2000);
void loop() {
 servo.write(90);
 delay(1000);
 servo.write(0);
 delay(1000);
```


Serviço Nacional de Aprendizagem Industrial

PELO FUTURO DO TRABALHO

0800 048 1212 **(f) (ii) (C)** sc.senai.br

Rodovia Admar Gonzaga, 2765 - Itacorubi - 88034-001 - Florianópolis, SC