Time-Based Ensembles for Prediction of Rare Events In News Streams

Nuno Moniz¹, Luís Torgo¹, Magdalini Eirinaki²

¹LIAAD – INESC Tec; Sciences College, University of Porto ²Department of Computer Engineering, San Jose State University

3nd International Workshop on Data Science for Social Media and Risk (SOMERIS @ ICDM'2016)

Introduction

- Thousands of news stories are read and shared through social media platforms every day.
- In news streams, once an item obtains a certain level of social feedback according to a given social media platform, its popularity becomes obvious.
- Most news remain relatively unpopular, and only a few may be considered as highly popular news.
- Predicting that a news item will be very popular as soon as it is published or in the first moments after, is very challenging.

Who benefits from this?

- In general, any entity that requires the identification of the most significant events in a fast and accurate manner in order to act.
- Examples include media advertising, content caching, movie revenue estimation, traffic management, macro-economic trends forecasting and early detection of catastrophes.

Previous Work

- The standard task of predicting the overall popularity of web content has been tackled by two types of approaches:
- Meta-data Based Models (a priori)
- Social Feedback Based Models (a posteriori)

Strengths/Weaknesses

- Meta-data Based Models (a priori)
- Does not depend on the popularity evolution of items;
- Allows for prediction when social feedback is unavailable or scarce;
- When social feedback becomes available, it does not update its predictions.
- Social Feedback Based Models (a posteriori)
- They are simple and fast (computationally);
- Does not depend on the description of news items;
- * Requires social feedback to be available.

Problem Definition

- The main task consists of predicting the number of tweets news will receive, being highly accurate for highly popular news stories.
- This task can be modelled as a non-standard regression problem, where the target variable is the number of tweets each incoming news item is expected to have after a certain period of time.
- In this work we set this period to two days.

Prediction of Rare Values

- A common issue is the imbalanced distribution of the target variable
- Standard learning algorithms bias the models towards the most frequent situations, away from user preference biases.
- Therefore, it is not clear if previous approaches to popularity prediction tasks are capable of predicting highly relevant news.
- The distribution of news items' popularity resembles a power-law distribution: the higher the popularity, the more relevant the case.

Relevance?

 Ribeiro [Ribeiro, 2011] proposes an approach to obtain a relevance function that maps the domain of continuous variables into a [0,1] scale of relevance: φ(Y): У → [0,1]

Our Proposal

- Time-Based Ensembles
- Combining a priori and a posteriori models in order to overcome their individual shortcomings and provide a more early and accurate prediction of the rare cases of highly popular news
- Models are combined using weighted averaging

Time-Based Ensembles

- Three assumptions that are the basis of our proposed hybrid strategy:
- 1) When social feedback is unavailable, only a priori models are able to predict news popularity;
- 2) When news items are recent, the available social feedback may be insufficient to confirm a priori predictions or to accurately predict popularity using a posteriori models;
- 3) As time passes since the publication of news, the available social feedback increases the accuracy of a posteriori predictions.

Models Ensemble

- The scarcity of social feedback is related to the recency of the events. Therefore, the alive-time t of news items is the main factor to consider when combining models of both strategies.
- A posteriori models' ability to accurately predict our target cases is related to the available data on the news items.
- We propose to relate the weights of each learner in an ensemble with the evolution of the mean proportion of the available data at a given time t, using train data to learn its evolution.

$$k_t = rac{\sum_i^j rac{p_i^t}{p_i^{t_f}}}{j}, n_i \in Tr,$$

Proposed Approaches

• The first proposed approach applies weighted averaging to the numeric predictions of a priori models, and of a posteriori models, where weights are associated as previously described.

$$\hat{y} = w_{po}^t \times \hat{y}_{po} + w_{pr}^t \times \hat{y}_{pr}.$$

• The second proposed approach applies weighted averaging to the relevance of the numeric predictions of a priori models and a posteriori models. To obtain a numeric prediction of popularity, we use the inverse function of relevance.

$$\hat{y} = \phi^{-1}(w_{po}^t \times \phi(\hat{y}_{po}) + w_{pr}^t \times \phi(\hat{y}_{pr})).$$

Experimental Evaluation

- 2 data sets: Google News and Twitter (~3 months and half)
- Monte Carlo Estimates (50% for training, 25% for testing)
- Significance tests: paired comparison using Wilcoxon signed rank tests (p<0.01)

Data

Methods

A priori models

We use the work of Moniz et al.^[1] which combines regression algorithms (Random Forest and SVM) with resampling strategies (under-sampling and SMOTEr).

- A posteriori models
- •We use the work of Szabo et al. [2] which proposes a constant scale and a linear log approaches.

[1] N. Moniz, L. Torgo, and F. Rodrigues, "Resampling approaches to improve news importance prediction." in IDA, 2014, pp. 215–226. [2] G. Szabo and B. A. Huberman, "Predicting the popularity of online content," Commun. ACM, vol. 53, no. 8, pp. 80–88, Aug. 2010.

Evaluation Metrics

- Standard evaluation metrics are not suitable to evaluate rare case prediction tasks (e.g. mse, mae, ...)
- We resort to the utility-based framework proposed by Ribeiro [Ribeiro, 2011]
- This framework proposes several evaluation metrics designed for rare case prediction tasks
- We use F-Score, based on the definition of precision and recall for regression proposed by Ribeiro [Ribeiro, 2011]

$$precision = \frac{\sum_{\phi(\hat{y}_i) > t_R} (1 + u(\hat{y}_i, y_i))}{\sum_{\phi(\hat{y}_i) > t_R} (1 + \phi(\hat{y}_i))} \qquad recall = \frac{\sum_{\phi(y_i) > t_R} (1 + u(\hat{y}_i, y_i))}{\sum_{\phi(y_i) > t_R} (1 + \phi(y_i))}$$

Results

	economy			microsoft			obama			palestine		
Model	$F1^1_{\phi}$	$F1_{\phi}^{2}$	$F1^3_\phi$	$F1^1_{\phi}$	$F1_{\phi}^{2}$	$F1^3_{\phi}$	$F1^1_{\phi}$	$F1_{\phi}^{2}$	$F1^3_{\phi}$	$F1^1_{\phi}$	$F1_{\phi}^{2}$	$F1^3_{\phi}$
rf.U	0.429	0.429	0.429	0.465	0.465	0.465	0.454	0.454	0.454	0.408	0.408	0.408
rf.U.ENS $_{\phi}$.CS	0.584	0.595	0.600	0.678	0.696	0.708	0.563	0.572	0.582	0.428	0.438	0.448
rf.U.ENS $_{\phi}$.LL	0.301	0.299	0.297	0.215	0.221	0.214	0.351	0.349	0.352	0.410	0.418	0.403
$rf.U.ENS_t.CS$	0.457	0.464	0.468	0.561	0.590	0.613	0.459	0.461	0.463	0.423	0.425	0.427
$rf.U.ENS_t.LL$	0.411	0.403	0.400	0.367	0.350	0.338	0.456	0.458	0.458	0.434	0.437	0.439
rf.SM	0.429	0.429	0.429	0.465	0.465	0.465	0.454	0.454	0.454	0.409	0.409	0.409
rf.SM.ENS $_{\phi}$.CS	0.584	0.595	0.600	0.678	0.696	0.709	0.563	0.572	0.582	0.428	0.437	0.448
rf.SM.ENS $_{\phi}$.LL	0.301	0.299	0.297	0.215	0.221	0.214	0.351	0.349	0.352	0.410	0.418	0.403
$rf.SM.ENS_t.CS$	0.457	0.464	0.468	0.562	0.590	0.613	0.460	0.461	0.464	0.423	0.425	0.427
$rf.SM.ENS_t.LL$	0.411	0.403	0.400	0.366	0.349	0.337	0.455	0.457	0.457	0.433	0.436	0.438
svm.U	0.444	0.444	0.444	0.461	0.461	0.461	0.056	0.056	0.056	0.450	0.450	0.450
svm.U.ENS $_{\phi}$.CS	0.583	0.594	0.599	0.678	0.695	0.708	0.562	0.568	0.579	0.404	0.438	0.441
svm.U.ENS $_{\phi}$.LL	0.301	0.298	0.296	0.215	0.221	0.214	0.350	0.348	0.350	0.410	0.417	0.403
svm.U.ENS _t .CS	0.478	0.487	0.493	0.610	0.634	0.650	0.480	0.481	0.485	0.509	0.492	0.488
$svm.U.ENS_t.LL$	0.432	0.423	0.420	0.392	0.370	0.354	0.547	0.550	0.546	0.538	0.549	0.555
svm.SM	0.441	0.441	0.441	0.471	0.471	0.471	0.047	0.047	0.047	0.446	0.446	0.446
svm.SM.ENS $_{\phi}$.CS	0.583	0.595	0.599	0.677	0.695	0.708	0.562	0.568	0.579	0.424	0.438	0.447
svm.SM.ENS $_{\phi}$.LL	0.301	0.298	0.297	0.215	0.221	0.214	0.350	0.348	0.350	0.410	0.418	0.403
$svm.SM.ENS_t.CS$	0.478	0.487	0.493	0.608	0.635	0.652	0.491	0.491	0.502	0.521	0.526	0.523
svm.SM.ENS $_t$.LL	0.430	0.421	0.418	0.390	0.369	0.352	0.546	0.549	0.546	0.516	0.536	0.545
ConstScale	0.539	0.552	0.560	0.656	0.675	0.689	0.503	0.513	0.525	0.395	0.413	0.416
LinearLog	0.275	0.274	0.272	0.197	0.204	0.197	0.321	0.318	0.322	0.399	0.406	0.393

Improvement?

vs. a posteriori

		ConstScale	e	LinearLog				
Model	$F1^1_{\phi}$	$F1_{\phi}^{2}$	$F1^3_{\phi}$	$F1^1_{\phi}$	$F1_{\phi}^{2}$	$F1^3_{\phi}$		
rfU.ENS $_{\phi}$	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
$rfU.ENS_t$	1.00	1.00	1.00	< 0.01	< 0.01	< 0.01		
rfSM.ENS $_{\phi}$	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
$rfSM.ENS_t$	1.00	1.00	1.00	< 0.01	< 0.01	< 0.01		
svmU.ENS $_{\phi}$	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
$svmU.ENS_t$	1.00	1.00	1.00	< 0.01	< 0.01	< 0.01		
svmSM.ENS $_{\phi}$	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
$svmSM.ENS_t$	1.00	1.00	1.00	< 0.01	< 0.01	< 0.01		

vs. a priori

	rfUNDER			rfSMOTE			svmUNDER			svmSMOTE		
Model	$F1^1_{\phi}$	$F1_{\phi}^{2}$	$F1^3_{\phi}$									
$ENS_{\phi}.CS$	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
$ENS_{\phi}.LL$	1.00	1.00	1.00	1.00	1.00	1.00	0.99	0.99	0.99	0.99	0.99	0.99
$ENS_t.CS$	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
$ENS_t.LL$	1.00	1.00	1.00	1.00	1.00	1.00	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

What about news aggregators?

Conclusions

- A new strategy for the early and accurate prediction of rare events in news streams is introduced;
- This strategy provides significant improvements over approach from both existing strategies;
- Results concerning the second proposed approach for timebased ensembles (time and relevance), when using the a posteriori model constant scaling, obtained the best overall results in all topics.

Thank you.

Nuno Moniz nmmoniz@inescporto.pt

Luís Torgo ltorgo@dcc.fc.up.pt

Magdalini Eirinaki magdalini.eirinaki@sjsu.edu

Code + Presentation @ github:nunompmoniz