Reconstructing measures on shapes: an optimal transport perspective

Vincent Divol Inria Saclay - Datashape team Laboratoire Mathématiques d'Orsay vincentdivol.github.io January 5, 2021

Séminaire Palaisien

The minimax framework

- Model assumption: $X_1, \ldots, X_n \sim \mu \in \mathcal{P}$, where \mathcal{P} is a set of probability measures on \mathbb{R}^D .
- $\theta: \mathcal{P} \to E$ to estimate.
- Estimator: $\hat{\theta}_n : (\mathbb{R}^D)^n \to E$
- Loss function: $\mathcal{L}: E \times E \to [0, \infty]$ pseudo-metric.
- $\bullet \ \, \mathsf{Minimax} \ \, \mathsf{risk:} \ \, \mathcal{R}_n(\theta;\mathcal{P};\mathcal{L}) \mathrel{\mathop:}= \mathsf{inf}_{\hat{\theta}_n} \, \mathsf{sup}_{\mu \in \mathcal{P}} \, \mathbb{E}_{\mu^{\otimes n}} \mathcal{L}(\hat{\theta}_n,\theta(\mu))$

The minimax framework

- Model assumption: $X_1, \ldots, X_n \sim \mu \in \mathcal{P}_D^s$, where \mathcal{P}_D^s is the set of probability measures on \mathbb{R}^D contained in the ball of $H_p^s(\mathbb{R}^D)$ of radius R.
- $\theta(\mu) = f \in L_p(\mathbb{R}^D)$ to estimate.
- Estimator: $\hat{f}_n : (\mathbb{R}^D)^n \to L_p$
- Loss function: $\mathcal{L}(f,g) = ||f g||_{L_p}$ pseudo-metric.
- Minimax risk: $\mathcal{R}_n(f; \mathcal{P}_D^s; L_p) := \inf_{\hat{f}_n} \sup_{\mu \in \mathcal{P}_D^s} \mathbb{E}_{\mu \otimes n} \|\hat{f}_n f\|_{L_p}$

Kernel density estimation on the cube

- Let $K : \mathbb{R}^D \to \mathbb{R}$ be a kernel function: $\int K(v) dv = 1$, and $\int K(v) v^{\alpha} dv = 0$ for $0 < |\alpha| \le t =$ order of the kernel.
- Convolution: $K * \nu(x) = \int K(x y) d\nu(y)$.
- $\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$ is the empirical measure, $K_h = h^{-D} K(\cdot/h)$. Let $\hat{\mu}_{n,h} = K_h * \mu_n$.
- **Bias:** Linear operator: $A_h: \phi \mapsto K_h * \phi \phi$.

$$\|K_h * \mu - \mu\|_{L_p} = \|A_h \mu\|_{L_p} \le \|A_h\|_{H_p^s \to L_p} \|\mu\|_{H_p^s} \lesssim h^s R$$

• Variance: $Var(\hat{\mu}_{n,h}(x)) \leq \frac{1}{n} \mathbb{E} |K_h(X-x)|^2 \lesssim \frac{1}{nh^D}$

Kernel density estimation on the cube

$$\implies \mathbb{E}\|\hat{\mu}_{n,h} - \mu\|_{L_p} \lesssim h^s + \frac{1}{\sqrt{nh^D}}$$

• Choose $h \simeq n^{-\frac{1}{2s+D}}$: $\mathcal{R}_n(f, \mathcal{P}_D^s, \|\cdot\|_{L_p}) \asymp n^{-\frac{s}{2s+D}}$

Kernel density estimation on the cube

• Choose
$$h\simeq n^{-\frac{1}{2s+D}}$$
: $\mathcal{R}_n(f,\mathcal{P}_D^s,\|\cdot\|_{L_p})\asymp n^{-\frac{s}{2s+D}}$

Structural assumptions on the signal

n observations X_1, \ldots, X_n in \mathbb{R}^D with $n \ll D$.

White noise

Key assumption

There is a low *d*-dimensional structure underlying the observations \mathbb{X}_n .

 \rightarrow What assumptions should be made on the structure? (Sparsity, single/multi-index model, constraints on the shape of the support)

Structural assumptions on the signal

Figure 1: Sober & al. 2020

Figure 2: Martin & al. 2010

The delicate choice of the loss function

Problem

Observe: $X_1, \ldots, X_n \sim \mu$ where μ is supported on M is some (unknown) d-dimensional \mathcal{C}^k -manifold and μ has a density of regularity s (model $\mathcal{P}_d^{s,k}$). How to estimate μ ?

Choice of the loss: Pointwise \rightarrow [Berenfeld Hoffmann 2020, Pelletier 2005, Kerkyacharian & al. 2012] L_2 ? Total variation? Hellinger? Kullback-Leibler?

Theorem (A negative result)

For all n > 1,

$$\mathcal{R}_n(\mu, \mathcal{P}_d^{s,k}, \mathsf{TV}) \geq 1/2.$$

Wasserstein distances

[Gabriel Peyré's Twitter account]

Wasserstein distances

Definition (Wasserstein distance)

- μ , ν probability measures on \mathbb{R}^D .
- $\Pi(\mu, \nu)$ set of transport plans between μ and ν .

$$W_p(\mu, \nu) := \inf_{\pi \in \Pi(\mu, \nu)} \left(\int |\mathbf{x} - \mathbf{y}|^p \mathrm{d}\pi(\mathbf{x}, \mathbf{y}) \right)^{1/p}.$$

Wasserstein distances

Definition (Wasserstein distance)

- μ , ν probability measures on \mathbb{R}^D .
- $\Pi(\mu, \nu)$ set of transport plans between μ and ν .

$$W_p(\mu,
u) := \inf_{\pi \in \Pi(\mu,
u)} \left(\int |\mathbf{x} - \mathbf{y}|^p \mathrm{d}\pi(\mathbf{x}, \mathbf{y}) \right)^{1/p}.$$

Lemma ([Peyre 2018])

Let μ, ν be probability measures on a manifold M, with $\mu, \nu \geq f_{min} \mathrm{vol}_M$. Then,

$$W_p(\mu, \nu) \leq p^{-1/p} f_{\min}^{1/p-1} \|\mu - \nu\|_{\dot{H}_p^{-1}(M)}.$$

$$\| \frac{\mu}{\mu} - \nu \|_{\dot{H}^{-1}_{p}(M)} = \sup \{ (\frac{\mu}{\mu} - \nu)(\phi), \ \| \nabla \phi \|_{L_{p^{*}}(M)} \leq 1 \}$$

- If p = 1: Kantorovitch-Rubinstein duality formula.
- If d = 1: related to the distance between the cdf.

Kernel density estimation on M

Easy case: Assume that we have access to M.

- Let $K : \mathbb{R}^D \to \mathbb{R}$ be a smooth radial function with $\int_{\mathbb{R}^d} K(v) dv = 1$, of order t.
- Convolution: $K * \nu(x) = \int K(x y) d\nu(y)$.
- μ_n is the empirical measure, $K_h = h^{-d} K(\cdot/h)$. Let $\mu_{n,h}$ be the measure having density $K_h * \mu_n$ with respect to vol_M .
- **Bias:** Linear operator: $A_h: \phi \mapsto K_h * \phi \phi$.

$$\|K_h * \mu - \mu\|_{H_p^{-1}(M)} = \|A_h \mu\|_{H_p^{-1}(M)} \le \|A_h\|_{H_p^s(M) \to H_p^{-1}(M)} \|\mu\|_{H_p^s(M)} \lesssim h^{s+1} R$$

• Variance: (Harmonic analysis on M) $\mathbb{E}\|\mu_{n,h} - K_h * \mu\|_{H_p^{-1}(M)} \le \frac{h}{\sqrt{nh^d}}$

Kernel density estimation on M

Easy case: Assume that we have access to M.

$$\implies \mathbb{E}\|\mu_{n,h} - \mu\|_{H_p^{-1}(M)} \lesssim h^{s+1} + \frac{h}{\sqrt{nh^d}}$$

• Choose $h \simeq n^{-\frac{1}{2s+d}}$: $\mathcal{R}_n(f, \mathcal{P}_d^{s,k}, W_p) \asymp n^{-\frac{s+1}{2s+d}}$

Minimax estimation of the volume measure

• $\mu_{n,h}$ is **NOT** an estimator:

$$\mathrm{d}\mu_{n,h}(x) = (K_h * \mu_n)(x)\mathrm{d}\mathrm{vol}_{M}(x)$$

• Idea 1: $\widehat{\mathrm{vol}}_M = d$ -dimensional Hausdorff measure on some proxy \hat{M} of M.

Theorem (Aamari-Levrard 2019)

Let π_{X_i} the orthogonal projection on $T_{X_i}M$. There exists estimators \hat{T}_i of $T_{X_i}M$ and $\hat{\Psi}_i$ of Ψ_{X_i} such that, with high probability,

$$\forall v \in \hat{T}_i, |v| \leq \varepsilon \asymp \left(\frac{\ln n}{n}\right)^{\frac{1}{d}},$$

$$\angle (\hat{T}_i, T_{X_i}M) \lesssim \left(\frac{\ln n}{n}\right)^{\frac{k-1}{d}} \text{ and } |\hat{\Psi}_i(v) - \Psi_{X_i}(\pi_{X_i}(v))| \lesssim \left(\frac{\ln n}{n}\right)^{\frac{k}{d}}$$

$$o \hat{M} = \bigcup_{i=1}^n \hat{\Psi}_i(\hat{T}_i) \cap \mathcal{B}(X_i, \varepsilon)$$
 is ε^k -close from M ... bad idea.

Minimax estimation of the volume measure

 \bullet $\hat{\mu}_{n,h}$ is an estimator:

$$\mathrm{d}\hat{\mu}_{n,h}(x) = (K_h * \mu_n)(x) \mathrm{d}\widehat{\mathrm{vol}}_{M}(x)$$

• Idea 1: $\widehat{\mathrm{vol}}_M = d$ -dimensional Hausdorff measure on some proxy \hat{M} of M.

Theorem (Aamari-Levrard 2019)

Let π_{X_i} the orthogonal projection on $T_{X_i}M$. There exists estimators \hat{T}_i of $T_{X_i}M$ and $\hat{\Psi}_i$ of Ψ_{X_i} such that, with high probability,

$$\forall v \in \hat{T}_i, |v| \leq \varepsilon \asymp \left(\frac{\ln n}{n}\right)^{\frac{1}{d}},$$

$$\angle (\hat{T}_i, T_{X_i}M) \lesssim \left(\frac{\ln n}{n}\right)^{\frac{k-1}{d}} \text{ and } |\hat{\Psi}_i(v) - \Psi_{X_i}(\pi_{X_i}(v))| \lesssim \left(\frac{\ln n}{n}\right)^{\frac{k}{d}}$$

$$\rightarrow \hat{M} = \bigcup_{i=1}^{n} \hat{\Psi}_{i}(\hat{T}_{i}) \cap \mathcal{B}(X_{i}, \varepsilon)$$
 is ε^{k} -close from M ... bad idea.

Minimax estimation of the volume measure

- Idea 2: use an appropriate partition of unity.
 - 1. From \mathbb{X}_n , we build a set $\widetilde{\mathbb{X}}_n = \{X_1, \dots, X_J\}$ which is ε -sparse and ε -close from \mathbb{X}_n . (Farthest Point Sampling)
 - 2. There exists $\xi_j: \mathcal{B}(X_j, \varepsilon) \to [0, 1]$ with $\sum_{j=1}^J \xi_j \equiv 1$ on $M^{\varepsilon/4}$ and $\|\xi_j\|_{\mathcal{C}^1} \lesssim 1$.

$$\int \phi \operatorname{dvol}_{M} = \int_{M} \sum_{j=1}^{J} \xi_{j}(x) \phi(x) \operatorname{dvol}_{M}(x) = \sum_{j=1}^{J} \int_{\Psi_{X_{j}}(T_{X_{j}}M)} \xi_{j}(x) \phi(x) dx$$

Theorem

Define $\widehat{\mathrm{vol}}_M$ by $\int \phi \mathrm{d}\widehat{\mathrm{vol}}_M := \sum_{j=1}^J \int_{\hat{\Psi}_j(\hat{T}_j)} \xi_j(x) \phi(x) \mathrm{d}x$. Then, w.h.p.

$$W_p\left(\frac{\widehat{\operatorname{vol}}_M}{|\widehat{\operatorname{vol}}_M|},\frac{\operatorname{vol}_M}{|\operatorname{vol}_M|}\right)\lesssim \left(\frac{\ln n}{n}\right)^{\frac{k}{d}},$$

and this estimator is minimax on $\mathcal{P}_d^{s,k}$.

Toy example

$$d\hat{\mu}_{n,h}(x) = (K_h * \mu_n)(x) d\widehat{\text{vol}}_M(x)$$

- $X_1,\ldots,X_n \sim \mu$
- $Y_1, \ldots, Y_N \sim \hat{\mu}_{n,h}$

Original dataset vs enriched dataset

Thank you for your attention!

Previous results

 μ supported on M of dimension d with density f, $\mu_n=$ empirical measure.

• $W_p(\mu_n, \mu) \lesssim n^{-1/d} + n^{-1/(2p)}$ ([Weed, Bach 19], [Singh, Póczos 18], etc.)

If additionally $0 < f_{\min} \le f \le f_{\max}$:

- $W_p(\mu_n, \mu) \lesssim (\log n/n)^{1/d}$ [García Trillos & al. 19]
- $W_p(\hat{\mu}_n, \mu) \lesssim n^{-(s+1)/(2s+d)}$ if f is of regularity s and $M = [0, 1]^d$ [Weed, Berthet 19]

Here:

- Problem 1: *M* is **not flat**.
- Problem 2: *M* is **unknown**.

How do we quantify the regularity of a manifold?

Definition

The reach $\tau(M)$ of a manifold $M \subset \mathbb{R}^D$ is the largest radius r such that the projection on the manifold π_M is defined on $\{x \in \mathbb{R}^D, \ d(x, M) < r\}$.

Definition (C^k model for manifolds [Aamari-Levrard 2019])

 \mathcal{M}_d^k is the collection of d-dimensional manifolds $M \subset \mathbb{R}^D$ with $\tau(M) \geq \tau_{\min}$, and for all $x \in M$, M is locally the graph of a function $\Psi_x : T_xM \to \mathbb{R}^D$ with $\|\Psi_x\|_{\mathcal{C}^k} \leq L$.

Definition of the model

Definition (Sobolev spaces on manifolds)

Let $M \in \mathcal{M}_d^k$ and $0 \le s \le k-2$ an integer. We let

$$||f||_{H_p^s(M)} := \max_{0 \le l \le s} \left(\int_M ||d^l f(x)||_{\operatorname{op}}^p dx \right)^{1/p}$$

and $H_p^s(M)$ be the corresponding Banach space.

We let $\mathcal{P}_d^{s,k}=\mathcal{P}_{d,\tau_{\min},L_k,L_s,f_{\min},f_{\max}}^{s,k}$ be the set of probability distributions μ supported on some $M\in\mathcal{M}_{d,\tau_{\min},L_k}^k$, with density $f_{\min}\leq f\leq f_{\max}$ and $\|f\|_{H^s_0(M)}\leq L_s$.

$$\implies$$
 What is $\mathcal{R}_n(\mu, \mathcal{P}_d^{s,k}, W_p)$?