For these problems, you should justify your answers. You do not need to provide a rigorous mathematical proof, but rather an informal argument.

Problem 1. Let A and B be sets.

- (i) Under what conditions do we have $A \times B = B \times A$?
- (ii) When is it true that $|\mathscr{P}(A) \times \mathscr{P}(A)| = |\mathscr{P}(A \times A)|$?
- (iii) What can you conclude if $A B = \emptyset$?
- (iv) Describe in words the set $X = (A \times A) D$, where the subset $D \subseteq A \times A$ is given by $D = \{(a, a) : a \in A\}$.

Solution. (i) When, A = B, when $A = \emptyset$, or when $B = \emptyset$. Or rephrased: $A \times B = B \times A \iff (A = B) \vee (A = \emptyset) \vee (B = \emptyset)$ Proof by contraposition: Suppose $A \neq B \neq \emptyset$, where $x \in A$ but $x \notin B$. Then, $\{(x,b) : b \in B\} \subseteq (A \times B)$ and $\{(x,b) : b \in B\} \nsubseteq (B \times A)$. Because at least one member is present in $(A \times B)$ and not $(B \times A)$, $(A \times B) \neq (B \times A)$. The other cases are trivial: if A = B, then $A \times B = A \times A = B \times A$. The cartesian product of any set and the emptyset is the emptyset, because their are no elements to iterate over.

(ii)
$$|\mathscr{P}(A) \times \mathscr{P}(A)| = |\mathscr{P}(A \times A)|$$

 $|\mathscr{P}(A)| \cdot |\mathscr{P}(A)| = 2^{(|A| \cdot |A|)}$
 $2^{|A|} \cdot 2^{|A|} = 2^{(|A|^2)}$
 $2^{2|A|} = 2^{(|A|^2)}$
 $2|A| = |A|^2$
 $0 = |A|^2 - 2|A| = |A|(|A| - 2)$
Thus, $|A| \in \{0, 2\}$

(iii) $A - B = \{x : x \in A, x \notin B\} = \emptyset$

No x in A that's not in B, thus, $\forall x(\neg(x \in B) \to \neg(x \in A))$. Applying logical inference of contraposition: $\forall x((x \in A) \to (x \in B))$. For every x in A, it is also in B. This is the definition of a subset. Thus, $A \subset B$.

Problem 2. Determine whether each of the following is true or false; justify your answer.

- (i) $\mathbb{R}^2 \subset \mathbb{R}^3$
- (ii) $A \times \emptyset = \emptyset$ for every set A.

- (iii) If $A \subseteq B$, then $\mathscr{P}(A) \subseteq \mathscr{P}(B)$. (iv) If $\mathscr{P}(A) \subseteq \mathscr{P}(B)$, then $A \subseteq B$.

~ .		_
Solution.		