Exploring the syntax-semantic interface using neurolinguistic decoding

- ANALYSIS

class probability

Success if...

Sophie Arana^{1,2}, Jan-MathijsSchoffelen¹, Tom Mitchell³ & Peter Hagoort^{1,2}

What neural mechanisms are at play when semantic information interacts with syntactic combinatorics during sentence reading?

T DESIGN

_ MATERIAL _

100 German sentence pairs. Two sentences share the prepositional phrase, but differ in either main verb (Type 1) or noun order (Type 2).

Example	Attachment	Type
The acrobat beats the clown with the rubbery hammer	Verb	1
The acrobat sees the clown with the rubbery hammer	Noun	1
The man sees the bird with the big binoculars	Verb	2
The bird sees the man with the big binoculars	Noun	2

All sentences are pre-tested for attachment and plausibility by 20 native German speakers.

SUPERVISED LEARNING the dog with the binoculars The man label 300 dimensions Verb (1) word semantics³ Noun (0 (word2vec) or attachment split data in windows of 100 ms with 80 ms overlap Concatenate trials x sensors*time feature space to one vector per trial **Train & Test** regression model Probabilistic Ridge classifier regression probabilistic classifier **Predict** word2vec embedded vector3 % Verb semantic vector

.. distance between

predicted vectors and

two left-out examplars

is smallest in correct

pairing.

% Noun

... probability is

higher for actual

class of left out item.

— EXPECTED OUTCOME ——

BINARY ATTACHMENT CLASSIFICATION ———

- 1. Above-chance accuracy in assiging the correct label (Verb or Noun attached) only after disambiguating last noun phrase.
- 2. Successful classification driven mostly by "channel" features located in superior temporal and inferior frontal sites⁴.

SEMANTIC VECTOR PREDICTION ———

- 1. Train regression model only on time window of verb presentation.
- 2. Test predictions across entire sentence time window (temporal generalization^{1,2})

- REFERENCES -

[1] Fyshe, A., Sudre, G., Wehbe, L., Rafidi, N., & Mitchell, T. M. (2016). bioRxiv, 089615.
[2] King, J. R., & Dehaene, S. (2014). Trends in cognitive sciences, 18(4), 203-210.
[3] Murphy, B., Talukdar, P., & Mitchell, T. (2012, June). In Proceedings of the First Joint Conference on Lexical and Computational Semantics (pp. 114-123). Association for Computational Linguistics
[4] Nelson, M. J., El Karoui, I., Giber, K., Yang, X., Cohen, L., Koopman, H., ... & Dehaene, S. (2017). Proceedings of the National Academy of Sciences, 201701590.

