Math 435 10/01/2025 Notes

October 1, 2025

Timothy Tarter
James Madison University
Department of Mathematics

Review

Definition 1. Given metric spaces (X, d_X) and (Y, d_y) , a function $f: X \to Y$ is continuous at $x_0 \in X$ if for all $\epsilon > 0$ there exists $\delta > 0$ such that $d_x(x_0, x) < \delta$ then $d_y(f(x_0), f(x)) < \epsilon$.

Equivalently,

Definition 2. Let X and Y bet topological spaces. A map $f: X \to Y$ is topologically continuous if for $U \stackrel{\circ}{\subset} Y$, $f^{-1}(U) \stackrel{\circ}{\subset} X$. (Inverse images of open sets are open).

Today

• Continuous functions and homeomorphisms.

Example 1. Let $X = \{a, b, c, d\}$, $Y = \{1, 2, 3\}$ with $\mathcal{U}_x = \{\{a, b, c, d\}, \{\}, \{a, b\}, \{c\}, \{c, d\}, \{a, b, c\}\}\}$ and $\mathcal{U}_y = \{\{1, 2, 3\}, \{\}, \{1\}, \{2\}, \{1, 2\}\}$. Let $f: X \to Y$ be defined by

- f(a) = 2
- f(b) = 2
- f(c) = 1
- f(d) = 3.

Additionally, let $g: X \to Y$ be defined by

- $\bullet \ g(a) = 1$
- g(b) = 2
- g(c) = 2
- g(d) = 3.

Claim: f is t-cont, g is not.

Proof (f is t-cont): $f^{-1}(\{1\}) = \{c\} \overset{\circ}{\subset} X$. $f^{-1}(\{2\}) = \{a,b\} \overset{\circ}{\subset} X$. $f^{-1}(\{1,2\}) = \{a,b,c\} \overset{\circ}{\subset} X$. $f^{-1}(Y) = X \overset{\circ}{\subset} X$. So f is t-cont.

Proof (g is not t-cont): $g^{-1}(\{2\}) = \{b, c\} \overset{\circ}{\not\subset} X$.

Proposition 1. Continuity depends on the function <u>and</u> the topologies!

Proposition 2. Any $f: X \to Y$ is continuous if the topology on X is the discrete topology (OR the indiscrete topology and f is surjective).

Proposition 3. A continuous map doesn't necessarily preserve the topological structure. A map which does is called a homeomorphism, which is a bijective continuous map $f: X \to Y$ such that if $U \stackrel{\circ}{\subset} X$, then $f(U) \stackrel{\circ}{\subset} Y$.

Example 2. $id: X \to X$ has $id^{-1}(U) = U$ for any open U in X, so it is continuous.

Example 3. $c: X \to Y$ is a constant map $c(x) = y_0$ is continuous.

Theorem 1. Let $Y \subseteq X$ with the subspace topology. Consider the inclusion $\iota: Y \to X$. It is continuous. The subspace topology is the coarsest (smallest) topology on Y such that ι is continuous.

Theorem 2. Given a space X, a set A, and a surjection $p: X \to A$, p is continuous with respect to the quotient topology. Moreover, it is the finest topology on A such that p is continuous.