ECE 3030: Physical Foundations of Computer Engineering

Fall 2021

Homework 3—Total points 100

Due on Thursday 9/23/2020 at 11.59 am.

- Q1 Have you downloaded the textbook: Modern Semiconductor Devices for Integrated Circuits by Chenming Calvin Hu? Write down the web address of the textbook where one can freely download it from. [20 pts]
 - $\begin{tabular}{ll} \textbf{Solution to Q1:} Yes, I have downloaded the text book from this address: \\ \textbf{https://people.eecs.berkeley.edu/~hu/Book-Chapters-and-Lecture-Slides-download.html} \\ \end{tabular}$
- Q2 Draw the band diagram (the relative positions of conduction band edge E_C , valence band edge E_v , Fermi level E_F) for the four following cases. Clearly note $E_C E_F$, $E_F E_V$, $E_i E_F$, $E_G = E_C E_V$. E_i is the intrinsic Fermi level. Take $N_C = N_V = 10^{25} \text{ m}^{-3}$, $E_G = 1.1 \text{ eV}$, $n_i = 1.5 \times 10^{16} \text{ m}^{-3}$, kT = 0.026 eV. [60 pts]
 - (Q1.1) p-type, $N_A = 5 \times 10^{23} \text{ m}^{-3}$.
 - (Q1.2) p-type, $N_A = 5 \times 10^{21} \text{ m}^{-3}$.
 - (Q1.3) n-type, $N_D = 5 \times 10^{23} \text{ m}^{-3}$.
 - (Q1.4) n-type, $N_D = 5 \times 10^{21} \text{ m}^{-3}$.

Solution to Q2: Solution in the next two pages.

5.

$$\begin{array}{l} (5.2) & \text{ptype}_7 & \text{NA} = 5 \times 10^{21} \text{m}^{-3} \\ P = NA = NA & e & \frac{EV-EF}{KBT} \\ = D & EV-EF = KBT la & \frac{NA}{NA} \\ = 0.026 \ la & \frac{5 \times 10^{21}}{10^{25}} \\ = -0.198 \text{eV} \end{array}$$

5.3)
$$n + ypl$$
, $N_D = 5 \times 10^{23} \text{ m}^{-3}$

$$\eta = N_D = N_C e \frac{\text{Fe-Fc}}{\text{KBT}}$$

$$= D = F_C = \frac{\text{KBT.ln}(N_D)}{N_C}$$

$$= 0.076 \text{ln}(\frac{5 \times 10^{23}}{10^{25}})$$

$$= -0.078 \text{ eV}$$

(5.4)
$$N + ype$$
, $No = 5 \times 10^{21} \text{ m} - 3$

$$N = ND = NC e \frac{\text{FF-FC}}{\text{KBT}}$$

$$= D \text{ FF-FC} = \text{KBT ln} \left(\frac{ND}{NC} \right)$$

$$= 0.076 \text{ ln} \left(\frac{5 \times 10^{21}}{10^{25}} \right)$$

$$= -0.108 \text{ eV}$$

Q3 Explain in short why at absolute zero temperature silicon will not conduct any electric current. [20 pts]

Solution to Q3: Absolute temperature (0K) means there is no thermal energy. At this temperature, the valence electrons of Si are bound to its nucleus. Hence, when we apply a voltage across Si, there is no free electron, which means there is no current flowing through Si.