Note: Your TA may not get to all the problems. This is totally fine, the discussion worksheets are not designed to be finished in an hour. The discussion worksheet is also a resource you can use to practice, reinforce, and build upon concepts discussed in lecture, readings, and the homework.

1 Midterm Prep: Divide and Conquer

Given a set of points $P = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$, a point $(x_i, y_i) \in P$ is Pareto-optimal if there does not exist any $j \neq i$ such that such that $x_j > x_i$ and $y_j > y_i$. In other words, there is no point in P above and to the right of (x_i, y_i) . Design a $O(n \log n)$ -time divide-and-conquer algorithm that given P, outputs all Pareto-optimal points in P.

(Hint: Split the array by x-coordinate. Show that all points returned by one of the two recursive calls is Pareto-optimal, and that you can get rid of all non-Pareto-optimal points in the other recursive call in linear time).

2 Midterm Prep: FFT

(a) Cubing the 9^{th} roots of unity gives the 3^{rd} roots of unity. Next to each of the third roots below, write down the corresponding 9^{th} roots which cube to it. The first has been filled for you. We will use ω_9 to represent the primitive 9^{th} root of unity, and ω_3 to represent the primitive 3^{rd} root.

```
\omega_3^0 : \omega_9^0, \quad ,
\omega_3^1 : \quad , \quad ,
\omega_3^2 : \quad , \quad ,
```

- (b) You want to run FFT on a degree-8 polynomial, but you don't like having to pad it with 0s to make the (degree+1) a power of 2. Instead, you realize that 9 is a power of 3, and you decide to work directly with 9th roots of unity and use the fact proven in part (a). Say that your polynomial looks like $P(x) = a_0 + a_1x + a_2x^2 + \ldots + a_8x^8$. Describe a way to split P(x) into three pieces (instead of two) so that you can make an FFT-like divide-and-conquer algorithm.
- (c) What is the runtime of FFT when we divide the polynomial into three pieces instead of two?

3 Midterm Prep: DFS

Suppose we just ran DFS on a directed (not necessarily strongly connected) graph G starting from vertex r, and have the pre-visit and post-visit numbers pre(v), post(v) for every vertex. We now delete vertex r and all edges adjacent to it to get a new graph G'. Given just the arrays pre(v), post(v), describe how to modify them to arrive at new arrays pre'(v), post'(v) such that pre'(v), post'(v) are a valid pre-visit and post-visit ordering for some DFS of G'.

4 Midterm Prep: Shortest Paths

You are given a strongly connected directed graph G = (V, E) with positive edge weights, and there is a special node $v_0 \in V$. Give an efficient algorithm that computes the length of the shortest path from s to t that passes through v_0 for all pairs s, t. Your algorithm should take $O(|V|^2 + |E| \log |V|)$ time.