ADC

ADC Devices

- ADCs (analog-to-digital converters) are among the most widely used devices for data acquisition
- A physical quantity, like temperature, pressure, humidity, and velocity, etc., is converted to electrical (voltage, current) signals using a device called a transducer, or sensor
- We need an analog-to-digital converter to translate the analog signals to digital numbers, so microcontroller can read them

ADC804 Chip

- ADC804 IC is an analog-to-digital converter
 - It works with +5 volts and has a resolution of 8 bits
 - Conversion time is another major factor in judging an ADC
 - Conversion time is defined as the time it takes the ADC to convert the analog input to a digital (binary) number
 - In ADC804 conversion time varies depending on the clocking signals applied to CLK R and CLK IN pins, but it cannot be faster than 110 μs

CLK IN and CLK R

- CLK IN is an input pin connected to an external clock source
- To use the internal clock generator (also called self-clocking), CLK IN and CLK R pins are connected to a capacitor and a resistor, and the clock frequency is determined by

$$f = \frac{1}{1.1RC}$$

- Typical values are R = 10K ohms and C = 150 pF
- We get f = 606 kHz and the conversion time is 110 μs

□ Vref/2

- It is used for the reference voltage
 - If this pin is open (not connected), the analog input voltage is in the range of 0 to 5 volts (the same as the Vcc pin)
 - If the analog input range needs to be 0 to 4 volts, V_{ref}/2 is connected to 2 volts

Vref/2 Relation to Vin Range

Vref / 2(v)	Vin(V)	Step Size (mV)	
Not connected*	0 to 5	5/256=19.53	
2.0	0 to 4	4/255=15.62	
1.5	0 to 3	3/256=11.71	
1.28	0 to 2.56	2.56/256=10	
1.0	0 to 2	2/256=7.81	
0.5	0 to 1	1/256=3.90	

Step size is the smallest change can be discerned by an ADC

D0-D7

- > The digital data output pins
- These are tri-state buffered
 - The converted data is accessed only when CS = 0 and RD is forced low
- To calculate the output voltage, use the following formula

$$D_{out} = \frac{V_{in}}{step \ size}$$

- Dout = digital data output (in decimal),
- Vin = analog voltage, and
- step size (resolution) is the smallest change

ADC804 Chip

- Analog ground and digital ground
 - Analog ground is connected to the ground of the analog
 Vin
 - Digital ground is connected to the ground of the Vcc pin
- To isolate the analog Vin signal from transient voltages caused by digital switching of the output D0 – D7
 - This contributes to the accuracy of the digital data output

ADC804 Chip

- The following steps must be followed for data conversion by the ADC804 chip
 - Make CS = 0 and send a low-to-high pulse to pin WR to start conversion
 - Keep monitoring the INTR pin
 - If INTR is low, the conversion is finished
 - If the INTR is high, keep polling until it goes low
 - After the INTR has become low, we make CS = 0 and send a high-to-low pulse to the RD pin to get the data out of the ADC804

Testing ADC804

Testing ADC804

Examine the ADC804 connection to the 8051 in Figure 12-7. Write a program to monitor the INTR pin and bring an analog input into register A. Then call a hex-to ACSII conversion and data display subroutines. Do this continuously.

```
;p2.6=WR (start conversion needs to L-to-H pulse)
;p2.7 When low, end-of-conversion)
;p2.5=RD (a H-to-L will read the data from ADC chip)
;p1.0 - P1.7= D0 - D7 of the ADC804
            P1, #OFFH
      MOV
                       ;make P1 = input
           P2.6
BACK: CLR
                       ;WR = 0
           P2.6
      SETB
                       :WR = 1 L-to-H to start conversion
HERE: JB
            P2.7, HERE ; wait for end of conversion
      CLR P2.5
                      ;conversion finished, enable RD
            A,P1
                       ;read the data
      VOM
      ACALL CONVERSION ; hex-to-ASCII conversion
      ACALL DATA DISPLAY; display the data
      SETB
            p2.5
                        ;make RD=1 for next round
            BACK
      SJMP
```

8051 Connection to ADC804 with Self-Clocking

8051 Connection to ADC804 with Clock from XTAL2 of 8051

ADC808/809

- ADC808 has 8 analog inputs
 - It allows us to monitor up to 8 different transducers using only a single chip
 - The chip has 8-bit data output just like the ADC804
 - The 8 analog input channels are multiplexed and selected according to table below using three address pins, A, B, and C

ADC808 Analog Channel Selection

Selected Analog Channel	С	В	Α
INO	0	0	0
IN1	0	0	1
IN2	0	1	0
IN3	0	1	1
IN4	1	0	0
IN5	1	0	1
IN6	1	1	0
IN7	1	1	1

Steps to Program ADC808/809

- Select an analog channel by providing bits to A, B, and C addresses
- Activate the ALE pin
 - It needs an L-to-H pulse to latch in the address
- Activate SC (start conversion) by an H-to-L pulse to initiate conversion
- Monitor EOC (end of conversion) to see whether conversion is finished
- Activate OE (output enable) to read data out of the ADC chip
 - An H-to-L pulse to the OE pin will bring digital data out of the chip