## Adaptive Constructive Interval Disjunction

Bertrand Neveu, Gilles Trombettoni

Imagine, LIGM, University Paris-Est (France) LIRMM, University of Montpellier (France)

ICTAI, Washington D.C., November the 4<sup>th</sup>, 2013

### Plan

- Brief introduction to interval methods
- 2 3B-consistency, CID-consistency
- 3 ACID
- Experiments

### **Outline**

- Brief introduction to interval methods
- 2 3B-consistency, CID-consistency
- 3 ACID
- Experiments

### Interval, box, NCSP

#### Interval, box

- Interval  $[x_i] = [\underline{x_i}, \overline{x_i}] \equiv \{x_i \in \mathbb{R}, \underline{x_i} \leq x_i \leq \overline{x_i}\}$  (floating-point bounds)
- A (parallel to axes) **box** [x] is a Cartesian product of intervals:  $[x_1] \times ... \times [x_i] \times ... \times [x_n]$
- width or size of an interval:  $w([x_i]) := \overline{x_i} \underline{x_j}$  width of a box  $w([x]) := Max_n(w([x_i]))$  perimeter of a box:  $Peri([x]) := \sum_i w([x_i])$
- Remark: a union of boxes is not a box...
  - ... the **Hull** operator approximates the union of a set S of boxes by the smallest box including all points in S.

# Numerical CSP (NCSP)

#### Numerical CSP P = (x, [x], c)

- $x = \{x_1, ..., x_i, ..., x_n\}$ : real-valued variables
- [x]: a box (domain)
- c: a set of (linear or nonlinear) numerical constraints (equations and inequalities)
- solution of P: values of x in [x] that satisfy c

## Example of NCSP (AOL-legentil.bch from COPRIN benchmark)

```
Variables
x in [1e-10, pi/2-1e-10];
v in [0, pi/2-1e-10];
z in [-1e8, 1e8];
Constraints
10/3*\cos(x)/\sin(x)^2+4*(1+\tan(x)^2)/\cos(y)
  +z*(-50/3*sin(y)*cos(x)/(sin(x)^2*(3.5-5*sin(y)))
  -10/3 \times \cos(x) / \sin(x)^2 - 4 \times (1 + \tan(x)^2) / \cos(y) = 0;
4*tan(x)*sin(y)/cos(y)^2+z*(50/3*cos(y)/(sin(x))
  *(3.5-5*\sin(v))+250/3*\sin(v)*\cos(v)/(\sin(x))
  *(3.5-5*\sin(y))^2-4*\tan(x)*\sin(y)/\cos(y)^2=0;
50/3*\sin(y)/(\sin(x)*(3.5-5*\sin(y)))+20+10/3/\sin(x)
  -4 * tan(x) / cos(v) = 0;
                                            4 D > 4 A > 4 B > 4 B > B
```

## Applications in several fields

- nonconvex constraint systems satisfaction and global optimization
- geolocalization (GPS navigation device)
- robotics (mobile robots, Simultaneous Localization And Mapping, parallel robot design)
- robust parameter estimation (calibration)
- proof of mathematical property
- ...

Solving 
$$\{f_1(x_1,x_2)=0, f_2(x_1,x_2)=0\}$$



Solving 
$$\{f_1(x_1,x_2)=0, f_2(x_1,x_2)=0\}$$



Solving 
$$\{f_1(x_1,x_2)=0, f_2(x_1,x_2)=0\}$$



Solving 
$$\{f_1(x_1,x_2)=0, f_2(x_1,x_2)=0\}$$



Solving 
$$\{f_1(x_1, x_2) = 0, f_2(x_1, x_2) = 0\}$$



Solving 
$$\{f_1(x_1, x_2) = 0, f_2(x_1, x_2) = 0\}$$



Solving 
$$\{f_1(x_1, x_2) = 0, f_2(x_1, x_2) = 0\}$$



Solving 
$$\{f_1(x_1, x_2) = 0, f_2(x_1, x_2) = 0\}$$



Solving 
$$\{f_1(x_1, x_2) = 0, f_2(x_1, x_2) = 0\}$$



Solving 
$$\{f_1(x_1, x_2) = 0, f_2(x_1, x_2) = 0\}$$



# Stronger (CP) consistency



# Stronger (CP) consistency



# Stronger (CP) consistency



### **Outline**

- Brief introduction to interval methods
- 2 3B-consistency, CID-consistency
- 3 ACID
- Experiments

### SAC and Partition-1-AC consistencies for CSP

#### SAC [Debruyne+Bessiere, IJCAI 1997]

A value  $(x_i, v)$  is SAC-consistent w.r.t. a CSP P iff the subproblem  $P_{x_i=v}$  is not arc-inconsistent

 $\Rightarrow$  *v* can be removed from the domain of  $x_i$  if  $P_{x_i=v}$  is arc-inconsistent (hence has no solution)

#### Partition-1-AC [Bennaceur+Affane, CP 2001]

P is P-1-AC iff P is P-1-AC w.r.t. each variable of P

*P* is P-1-AC w.r.t. a variable  $x_i$  of domain  $\{v_1, ..., v_k, ... v_n\}$  iff all the values  $(x_i, v)$  in *P* belong to  $AC(P_{x_i=v_n}) \cup ... \cup AC(P_{x_i=v_n})$ 

 $\Rightarrow$  the procedure VarP-1-AC enforcing  $AC(P_{x_i=v_1}) \cup ... \cup AC(P_{x_i=v_n})$  filters the values in P removed by each subproblem  $AC(P_{x_i=v_n})$ 











### CID: Adaptation of P-1-AC to NCSP

3B-consistency [Lhomme, IJCAI 1993] CID-consistency [Trombettoni+Chabert, CP 2007]



### Remarks

- Var3BCID can remove values in all dimensions
- CID-consistency only slightly stronger than 3B-consistency in practice
- converges more quickly onto the fixpoint and often in less than n calls to Var3B (n = #variables)
- ACID: new scheme for calling the var3BCID procedure

### **Outline**

- Brief introduction to interval methods
- 3B-consistency, CID-consistency
- 3 ACID
- Experiments

### 3B/SAC/CID/3BCID: standard scheme

Two nested loops:

### **ACID**

New scheme with only one loop: a given number numVarCID of variables are "varcided":

```
Algorithm ACID (P = (x, [x], c), numVarCID, s_{3B}, s_{CID}, h)
Reorder the variables x with heuristic h
for i from 1 to numVarCID do

| Var3BCID (x_i, s_{3B}, s_{CID}, P)
end
end.
```

New: Use a branching heuristic to order the variables to be varcided

⇒ ACID: filtering algorithm with four parameters: **numVarCID**, s3B/sCID (#slices), **variable selection heuristic** *h* 

## Main contribution: selecting parameter values

Most parameters experimentally fixed to default values that are robust to modifications:

- heuristic h: branching heuristic fixed to smearSumRel
- s<sub>3B</sub>: #slices fixed to 10
- s<sub>CID</sub>: #slices fixed to 1

numVarCID is auto-adapted during search!

### Auto-adaptation of numVarCID

Principle: measure/learn the number of calls to Var3BCID implying a stagnation in filtering (domain size = box perimeter)



### Auto-adaptation of numVarCID

Divide search into rounds of 1000 nodes each. Each round interleaves a learning phase (50 nodes) and an exploitation phase (950 nodes):

- Initialization: k := #variables / 2
- During the search: switch j := #node modulo 1000
- case j < 50: short learning phase:</p>
  - achieve 2.k calls to var3BCID
  - compute/learn the index i in 0..2k corresponding to the last improvement in filtering
    - (i s.t. additional filtering from i + 1 to 2.k is very small)
- case j = 50: k takes the average of the last 50 i values learnt
- case 50 < j < 1000: long exploitation phase:</li>
   Call ACID with numVarCID = k

Detailed pseudo-code and other two (less effective) policies are described in the paper.

### Outline

- Brief introduction to interval methods
- 3B-consistency, CID-consistency
- 3 ACID
- Experiments

#### **Protocol**

Tests on **constraint satisfaction** instances:

all the 26 instances from the COPRIN benchmark suite solved in [2, 3600] seconds by ACID or a competitor.

Tests on **constrained global optimization** instances:

all the 40 instances from the Coconut benchmark suite solved in [2, 3600] seconds by ACID or a competitor.

Competitors: same satisfaction or optimization strategy differing only in the constraint programming filtering operator:

- HC4: constraint propagation
- 3BCID-fp: standard operator (old scheme with two nested loops)
- 3BCID-n: simplification of ACID with no auto-adaptation: the number of vacided variables is fixed to n (i.e., every variable is varcided once)

## Results in constraint satisfaction (synthesis)

|                            | ACID   | HC4     | 3BCID-fp | 3BCID-n |
|----------------------------|--------|---------|----------|---------|
| #solved instances < 3,600  | 26     | 20      | 23       | 24      |
| #solved instances < 10,000 | 26     | 21      | 26       | 26      |
| Average gain factor        | 1      | 1.42    | 1.20     | 1.09    |
| Maximum gain factor        | 1      | 7.69    | 3.85     | 1.72    |
| Maximum loss               | 0      | 4%      | 26%      | 14%     |
| Total time                 | 23,594 | >72,192 | 37,494   | 27,996  |
| Total gain factor          | 1      | > 3     | 1.59     | 1.19    |

gain factor = time(X) / time(ACID)

loss = (time(ACID) - time(X)) / time(X)

Details in the paper  $\Rightarrow$  ACID is never the worst, is often (14 on 26) the best, is never far from the best.

## Results in constrained optimization (synthesis)

|                     | ACID  | HC4    | 3BCID-fp | 3BCID-n |
|---------------------|-------|--------|----------|---------|
| #solved instances   | 40    | 40     | 40       | 40      |
| Average gain factor | 1     | 1.11   | 1.30     | 1.14    |
| Maximum gain factor | 1     | 5.88   | 3.57     | 2.85    |
| Maximum loss        | 0     | 47%    | 4%       | 23%     |
| Total time          | 9,380 | 10,289 | 12,950   | 11,884  |
| Total gain factor   | 1     | 1.10   | 1.39     | 1.26    |

#### Details in the paper $\Rightarrow$

- ACID is never the worst,
- is the best for 12 on 40 instances,
- not far from the best (< 10% loss in performance) on 23 instances,
- loses between 10% and 47% on 5 instances.

### Conclusion

Compared to 3B (close to SAC in CSP) or HC4 (constraint propagation):

- ACID requires no additional parameter (all parameters fixed or auto-adapted)
- ACID brings the best performance on average
- the losses in performance are rare and small
- the gains in performance are sometimes significant

Remark: Differences lowered by other significant algorithmic operators in the strategy: Interval Newton in satisfaction, X-Newton and upperbounding in optimization

⇒ ACID added to the by-default satisfaction and optimization strategies of lbex