The secret of the number 5

Ingo Blechschmidt

32th Chaos Communication Congress

December 28th, 2015

Dedicated to Prof. Dr. Jost-Hinrich Eschenburg.

Outline

- A design pattern in nature
- Continued fractions
 - Examples
 - Calculating the continued fraction expansion
 - Best approximations using continued fractions
- **3** Approximations of π
- 4 The Mandelbrot fractal
- **5** Spirals in nature
- The ananas from SpongeBob SquarePants

A design pattern in nature

$$1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \cdots}}} = 2$$

$$1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \cdots}}} = 7$$

Crucial observation: Setting

$$x := ? - 1 = \frac{1}{2 + \frac{1}{2$$

$$1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \cdots}}} = ?$$

Crucial observation: Setting

$$x := ? - 1 = \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \cdots}}}$$

there is the identity

$$\frac{1}{2+x} = x$$

Crucial observation: Setting

$$x := ? - 1 = \frac{1}{2 + \frac{1}{2 + \cdot \cdot}},$$

there is the identity

$$\frac{1}{2+x}=x.$$

Crucial observation: Setting

$$x := ? - 1 = \frac{1}{2 + \frac{1}{2 + \cdot \cdot}},$$

there is the identity

$$\frac{1}{2+x}=x.$$

Multiplying by the denominator, we obtain $1 = x \cdot (2 + x)$,

Crucial observation: Setting

$$x := ? - 1 = \frac{1}{2 + \frac{1}{2 + \cdot \cdot}},$$

there is the identity

$$\frac{1}{2+x}=x.$$

Multiplying by the denominator, we obtain $1 = 2x + x^2$,

Crucial observation: Setting

$$x := ? - 1 = \frac{1}{2 + \frac{1}{2 + \cdot \cdot \cdot}},$$

there is the identity

$$\frac{1}{2+x}=x.$$

Multiplying by the denominator, we obtain $1 = 2x + x^2$, so we only have to solve the quadratic equation $0 = x^2 + 2x - 1$,

Crucial observation: Setting

$$x := ? - 1 = \frac{1}{2 + \frac{1}{2 + \cdots}},$$

there is the identity

$$\frac{1}{2+x}=x.$$

Multiplying by the denominator, we obtain $1 = 2x + x^2$, so we only have to solve the quadratic equation $0 = x^2 + 2x - 1$, thus

$$x = \frac{-2 + \sqrt{8}}{2} = -1 + \sqrt{2}$$
 or $x = \frac{-2 - \sqrt{8}}{2} = -1 - \sqrt{2}$.

It's the positive possibility.

More examples

$$1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \cdots}}} = \sqrt{2}$$

$$2 + \frac{1}{4 + \frac{1}{4 + \frac{1}{4 + \cdots}}} = \sqrt{5}$$

$$3 + \frac{1}{6 + \frac{1}{6 + \frac{1}{6 + \cdots}}} = \sqrt{10}$$

More examples

$$[1; 2, 2, 2, \ldots] = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \cdots}}} = \sqrt{2}$$

$$[2;4,4,4,\ldots] = 2 + \frac{1}{4 + \frac$$

$$[3; 6, 6, 6, \ldots] = 3 + \frac{1}{6 + \frac{1}{6$$

More examples

$$\sqrt{2} = [1; 2, 2, 2, 2, 2, 2, \dots]$$

$$\sqrt{5} = [2; 4, 4, 4, 4, 4, 4, \dots]$$

$$\sqrt{10} = [3; 6, 6, 6, 6, 6, 6, \dots]$$

$$\sqrt{6} = [2; 2, 4, 2, 4, 2, 4, \ldots]$$

$$\sqrt{14} = [3; 1, 2, 1, 6, 1, 2, \ldots]$$

The Euclidean algorithm

Recall
$$\sqrt{2}=[1;2,2,2,\ldots]=1.41421356\ldots$$

$$1.41421356\ldots=1\cdot 1.000000000\ldots+.41421356\ldots$$

$$1.00000000\ldots=2\cdot 0.41421356\ldots+0.17157287\ldots$$

$$0.41421356\ldots=2\cdot 0.17157287\ldots+0.07106781\ldots$$

$$0.17157287\ldots=2\cdot 0.07106781\ldots+0.02943725\ldots$$

$$0.07106781\ldots=2\cdot 0.02943725\ldots+0.01219330\ldots$$

$$0.02943725\ldots=2\cdot 0.01219330\ldots+0.00505063\ldots$$
 :

Why does the Euclidean algorithm give the continued fraction coefficients? Let's write

$$x = a_0 \cdot 1 + r_0$$

$$1 = a_1 \cdot r_0 + r_1$$

$$r_0 = a_2 \cdot r_1 + r_2$$

$$r_1 = a_3 \cdot r_2 + r_3$$

and so on, where the numbers a_n are natural numbers and the residues r_n are smaller than the second factor of the respective adjacent product. Then:

$$x = a_0 + r_0 = a_0 + 1/(1/r_0)$$

$$= a_0 + 1/(a_1 + r_1/r_0) = a_0 + 1/(a_1 + 1/(r_0/r_1))$$

$$= a_0 + 1/(a_1 + 1/(a_2 + r_2/r_1)) = \cdots$$

In the beautiful language Haskell, the code for lazily calculating the infinite continued fraction expansion is only one line long (the type declaration is optional).

```
cf :: Double -> [Integer] cf x = a : cf (1 / (x - fromIntegral a)) where a = floor x
```

So the continued fraction expansion of a number x begins with a, the integral part of x, and continues with the continued fraction expansion of 1/(x-a).

Note that because of floating-point inaccuracies, only the first few terms of the expansion are reliable. For instance, cf (sqrt 6) could yield [2,2,4,2,4,2,4,2,4,2,4,2,4,2,1,48,2,4,6,1,...].

Best approximations using continued fractions

Theorem

Cutting off the infinite fraction expansion of a number x yields a fraction a/b which is closest to x under all fractions with denominator < b.

$$\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}}} \longrightarrow 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}} = \frac{17}{12} \approx 1.42$$

Best approximations using continued fractions

Theorem

Cutting off the infinite fraction expansion of a number x yields a fraction a/b which is closest to x under all fractions with denominator < b.

$$\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \cdots}}} \longrightarrow 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}} = \frac{17}{12} \approx 1.42$$

Bonus. The bigger the coefficient after the cut-off is, the better is the approximation a/b.

More precisely, the bonus statement is that the distance from x to a/b is less than $1/(a_na_{n+1})$, where a_n is the last coefficient to be included in the cut-off and a_{n+1} is the first coefficient after the cut-off.

Approximations of π

$$\pi = 3.1415926535... = 3 + \frac{1}{7 + \frac{1}{15 + \frac{1}{1 + \frac{1}{292 + \cdots}}}}$$

- 1 3
- [3;7] = 22/7 = $\underline{3.14}28571428...$
- $[3; 7, 15] = 333/106 = \underline{3.1415}094339...$
- $[3; 7, 15, 1] = 355/113 = \underline{3.141592}9203...$

The Mandelbrot fractal

The Mandelbrot fractal

The Fibonacci numbers show up in the Mandelbrot fractal.

See http://math.bu.edu/DYSYS/FRACGEOM2/node7.html for an explanation of why the Fibonacci numbers show up in the Mandelbrot fractal.

Spirals in nature

1.6180339 874989484 20 (200 points)

The ananas from SpongeBob SquarePants

By Vi Hart, recreational mathemusician.