

Pulse Height Analysis of 3D pCVD Diamond Detectors

RD42 Meeting

Michael Reichmann

8th May 2019

Table of Contents

- Introduction
- 2 3D Pixel Detector
- Pulse Height Calibration
- Analysis
- Conclusion

Introduction

- innermost tracking layers \rightarrow highest radiation damage $\mathcal{O}\left(\mathsf{GHz}/\mathsf{cm}^2\right)$
- ullet ightarrow R&D towards more radiation tolerant detector designs and/or materials

- ullet innermost tracking layers o highest radiation damage $\mathcal{O}\left(\mathsf{GHz}/\mathsf{cm}^2\right)$
- ullet ightarrow R&D towards more radiation tolerant detector designs and/or materials

Diamond as Detector Material:

- advantageous properties
- \bullet after $1\cdot 10^{16}\,\text{n/cm}^2$ the mean drift path in diamond larger than in silicon

M. Reichmann (¬Hzürich) 3D Pulse Height 8th May 2019 2

- ullet innermost tracking layers o highest radiation damage $\mathcal{O}\left(\mathsf{GHz}/\mathsf{cm}^2\right)$
- → R&D towards more radiation tolerant detector designs and/or materials

Diamond as Detector Material:

- advantageous properties
- \bullet after $1\cdot 10^{16}\,\text{n/cm}^2$ the mean drift path in diamond larger than in silicon

Work at ETH:

- investigate signals and radiation tolerance in various detector designs:
 - ▶ Pad Detectors → whole diamond as single cell readout
 - ▶ Pixel Detectors → diamond sensor on pixel readout chip
 - ightharpoonup 3D Pixel Detectors ightarrow 3D diamond detector on pixel readout chip

M. Reichmann (Fullzürich) 3D Pulse Height 8th May 2019

- ullet innermost tracking layers o highest radiation damage $\mathcal{O}\left(\mathsf{GHz}/\mathsf{cm}^2\right)$
- ightarrow R&D towards more radiation tolerant detector designs and/or materials

Diamond as Detector Material:

- advantageous properties
- \bullet after $1\cdot 10^{16}\,\text{n}/\text{cm}^2$ the mean drift path in diamond larger than in silicon

Work at ETH:

- investigate signals and radiation tolerance in various detector designs:
 - ► Pad Detectors
 - ▶ Pixel Detectors
 - ▶ 3D Pixel Detectors → this talk

M. Reichmann (FTH zürich)

	II6-A2	II6-B6
manufacturer	II-VI Inc.	II-VI Inc.
diamond type	poly-crystal	poly-crystal
size	\sim 4 mm $ imes$ 4 mm	\sim 4 mm $ imes$ 4 mm
thickness	\sim 500 μ m	455 μm
irradiation	none	none
construction	summer 2016	summer 2017
3D drilling	Oxford	Oxford
3D cell size	$150\mu m imes 100\mu m$	$50\mu m imes 50\mu m$
columns	20 × 30 (600)	60 × 62 (3720)
pixel chip	PSI46digV2.1respin (CMS)	PSI46digV2.1respin (CMS)
pixel pitch	$150\mu extsf{m} imes 100\mu extsf{m}$	$150\mu extsf{m} imes 100\mu extsf{m}$
ganged cells	1 imes 1	2×3 (6 cells)
bump & wire bonding	Princeton	Princeton

Table: 3D Pixel Detector Properties.

Detectors

	II6-A2	II6-B6	
manufacturer	II-VI Inc.	II-VI Inc.	
diamond type	poly-crystal	poly-crystal	
size	\sim 4 mm $ imes$ 4 mm	\sim 4 mm $ imes$ 4 mm	
thickness	\sim 500 μ m	455 μm	
irradiation	none	none	
construction	summer 2016	summer 2017	
3D drilling	Oxford	Oxford	
3D cell size	$150\mu m imes 100\mu m$	$50\mu m imes 50\mu m$	
columns	20 × 30 (600)	60 × 62 (3720)	
pixel chip	PSI46digV2.1respin (CMS)	PSI46digV2.1respin (CMS)	
pixel pitch	$150\mu extsf{m} imes 100\mu extsf{m}$	$150\mu extsf{m} imes 100\mu extsf{m}$	
ganged cells	1 imes 1	2×3 (6 cells)	
bump & wire bonding	Princeton	Princeton	

Table: 3D Pixel Detector Properties.

- \bullet II6-A2 broke in October 2016 (chip malfunctioned) \rightarrow successful re-bonding
- II6-B6 has long history of breaking ...

M. Reichmann (FIHzürich) 3D Pulse Height 8th May 2019

Measurements

	Oct 16	May 17	Aug 17	Sep 18	Oct 18	Nov 18
place	PSI	PSI	PSI	CERN	CERN	PSI
116-A2	✓	✓	✓	✓	✓	✓
II6-B6	X	X	✓	✓	✓	✓

Table: 3D Pixel Detector Measurements.

- standard rate and voltage scans
- rise time scans: change of amplifier rise time at fixed flux and voltage
- angle scans: change of incident angle at fixed flux and voltage

Measurements

	Oct 16	May 17	Aug 17	Sep 18	Oct 18	Nov 18
place	PSI	PSI	PSI	CERN	CERN	PSI
116-A2	✓	✓	✓	✓	✓	✓
116-B6	X	X	✓	✓	✓	✓

Table: 3D Pixel Detector Measurements.

- standard rate and voltage scans
- rise time scans: change of amplifier rise time at fixed flux and voltage
- angle scans: change of incident angle at fixed flux and voltage

History of II6-B2:

- 06/2017 sensor processing and detector fabrication
- 08/2017 first measurement \rightarrow wrong chip calibration \rightarrow high threshold ($\sim 10 \, \text{ke}$)
- 04/2018 several pixels malfunction \rightarrow re-bump-bonding to new chip
- 06/2018 sensor detaches while shipping \rightarrow re-bump-bonding, fixate with silguard
- 11/2018 efficiency worsens and sensor detaches again

M. Reichmann (FIHzürich) 8th May 2019

3D Pixel Detector

Diamond as Particle Detector

(a) Detector Schematics

(b) 15 cm ø pCVD Diamond Wafer

- detectors operated as ionisation chambers
- metallisation on both sides
- poly-crystals produced in large wafers

M. Reichmann (all zürich) 3D Pulse Height 8th May 2019

Working Principle

- after large radiation fluence all detectors become trap limited
- bias and readout electrode inside detector material
- ullet same thickness D o same amount of induced charge o shorter drift distance L
- increase collected charge in detectors with limited mean drift path (Schubweg)

M. Reichmann (FIHzürich) 8th May 2019

Bump Bonding

(a) Bump bond schematics

- (b) 3×2 bump pads
- electrodes (columns) drilled with femto-second laser
- connection to bias and readout with surface metallisation
- ganging of cells to match pixel pitch of readout-chip (ROC)
- small gap (\sim 15 µm) to the surface to avoid a high voltage break-through

M. Reichmann (FIHzürich) 8th May 2019 7 / 12

Pulse Height Calibration

Pixel Unit Cell

- ullet inject calibration signal (\sim vcal) through sensor into same circuit as real signals
- shaping, amplification, threshold check
- set amplification offset
- ullet convert to 8 bit adc value with adjustable scale o readout

M. Reichmann (FIHzürich) 8th May 2019

ADC Calibration

(a) ADC calibration for single pixel.

(b) Error function fit.

9 / 12

- measure adc values for calibration pulses with different vcal
- adc follows error function and saturates for high vcal
- fit every pixel and save fit parameters
- adjust adc offset and range with DACs of the chip

M. Reichmann (FIHzürich) 3D Pulse Height 8th May 2019

Vcal Calibration

(a) Zn target.

(b) Mo target.

(a) Ag target.

(b) Sn target.

 \bullet measure energy spectra of \mathcal{K}_{α} lines of four metal targets using ADC-calibration

Vcal Calibration

Figure: Vcal Calibration.

- ullet measure energy spectra of K_{lpha} lines of four metal targets using ADC-calibration
- linear dependence of energy [e] and vcal
- ullet fit K_{lpha} points with straight line (similar for each chip)
- impossible to do calibration with diamond (energy too low)

M. Reichmann (all zürich) 3D Pulse Height 8th May 2019

Vcal Calibration

- measure energy spectra of K_{α} lines of four metal targets using ADC-calibration
- linear dependence of energy [e] and vcal
- fit K_{α} points with straight line (similar for each chip)
- impossible to do calibration with diamond (energy too low)
 - use general values from silicon: $e = 46.5 \cdot vcal$

M. Reichmann (ITH zürich)

Analysis

Cut	Excluded Events
event range	first minute of the run due to various beam conditions
beam interruptions	during rate changes of the beam due to beam interruption
aligned	DUT and Telescope are not aligned (event-wise)
trigger phase	Chip trigger timing is incorrect
tracks	not all telescope planes have exactly one cluster
chi2 (x/y)	badly fit tracks (>50 % quantile)
track slope (x/y)	large angles of the tracks (>2 deg)
rhit	large DUT residual (>100 mm)
pixel mask	noisy pixels
fiducial	not in selected (fiducial) area of the DUT

Table: Analysis cut flow.

- cuts applied in order of the table
- largest contribution usually by chi2, tracks and fiducial cuts

Conclusion

Conclusion

empty

moreempty

moremoreempty

