Fundamentele limbajelor de programare

Programare funcțională. Lambda-calcul cu tipuri simple. Inferența tipurilor. Normalizare.

Traian Florin Şerbănuță și Andrei Sipoș

Facultatea de Matematică și Informatică, DL Info

Anul II, Semestrul II, 2024/2025

Sectiunea 1

Algoritmul de inferență a tipurilor

Reguli de deducție pentru tipuri (a la Curry)

•
$$\Gamma \uplus \{x : \sigma\} \vdash x : \sigma$$
 (VAR)
• $\frac{\Gamma \cup \{x : \sigma\} \vdash M : \tau}{\Gamma \vdash \lambda x . M : \sigma \to \tau}$ (ABS)
• $\frac{\Gamma \vdash M : \sigma \to \tau}{\Gamma \vdash M N : \tau}$ (APP)

Algoritmul de inferență a tipurilor

Pornim cu un λ termen fără tipuri în care toate variabilele legate au fost redenumite cu variabile noi. Atunci putem asocia fiecărei variabile x un tip X, unde X e variabilă.

Algoritm simplificat

$$c(x, Z) := \{X = Z\}$$

$$c(\lambda x. M, Z) := c(M, W) \cup \{Z = X \to W\}$$

$$c(M, X, Z) := c(M, W_1) \cup c(N, W_2) \cup \{W_1 = W_2 \to Z\}$$

Corectitudine Dacă θ unificator pentru c(M, Z), atunci $\Gamma_{\theta} \vdash M : \theta(Z)$, unde $\Gamma_{\theta} = \{x : \theta(X) \mid x \text{ variabilă}\}.$

Completitudine
$$\Gamma \vdash M : \sigma$$
 implică există θ unificator pentru $c(M, Z)$ cu $-\Gamma(x) = \Gamma_{\theta}(x) = \theta(X)$ pentru orice $x \in FV(M)$ și $-\theta(Z) = \sigma$

Corectitudinea algoritmului de inferență

Dacă θ unificator pentru c(M, Z), atunci $\Gamma_{\theta} \vdash M : \theta(Z)$, unde $\Gamma_{\theta} = \{x : \theta(X) \mid x \text{ variabilă}\}.$

Demonstratie

Inducție după structura lui *M*

- M = x: $c(M, Z) = \{X = Z\}$ evident, deoarece $x : \theta(X) \in \Gamma_{\theta}$ și $\theta(X) = \theta(Z)$ (regula VAR).
 - $\theta(X) = \theta(Z) \text{ (regula VAR)}.$ $\theta(X) = \theta(Z) \text{ (regula VAR)}.$ $\theta(X) = \theta(Z) \text{ (regula VAR)}.$

Fie
$$\theta$$
 unificator. At unci unificator pentru $c(N, W)$ și $\theta(Z) = \theta(X) \rightarrow \theta(W)$.

Din ip. inducție, $\Gamma_{\theta} \vdash N : \theta(W)$ Dar $x : \theta(X) \in \Gamma_{\theta}$, deci $\Gamma_{\theta} \vdash \lambda x.N : \theta(X) \rightarrow \theta(W) = \theta(Z)$ (regula ABS).

- M = N P: $c(M, Z) = c(N, W_1) \cup c(P, W_2) \cup \{W_1 = W_2 \rightarrow Z\}$ Fie θ unificator. Atunci unificator pentru $c(N, W_1)$, $c(P, W_2)$ și
- $\theta(W_1) = \theta(W_2) \to \theta(Z).$ Din ip. inducție, $\Gamma_{\theta} \vdash N : \theta(W_1) = \theta(W_2) \to \theta(Z)$ și $\Gamma_{\theta} \vdash P : \theta(W_2)$, de unde $\Gamma_{\theta} \vdash N P : \theta(Z)$ (regula APP).

Completitudinea algoritmului de inferență

Dacă $\Gamma \vdash M : \sigma$ atunci există θ unificator pentru c(M, Z) cu

- $\Gamma(x) = \Gamma_{\theta}(x)$ pentru orice $x \in FV(M)$ și
- $\theta(Z) = \sigma$

Demonstrație (inducție după $\Gamma \vdash M : \sigma$)

- $\Gamma \uplus \{x : \sigma\} \vdash x : \sigma$ (VAR) $c(x, Z) = \{X = Z\}, \text{ Aleg } \theta(X) = \theta(Z) = \sigma$ $\Gamma \sqcup \{x : \sigma\} \vdash M : \tau$
- $\frac{\Gamma \cup \{x : \sigma\} \vdash M : \tau}{\Gamma \vdash \lambda x. M : \sigma \to \tau} \text{ (ABS)}$ $c(\lambda x. M, Z) = c(M, W) \cup \{Z = X \to W\}$ Din ip. ind, fie θ unificator pt c(M, W) astfel încât $\theta(W) = \tau$ și $\Gamma(x) = \Gamma_{\theta}(x) \text{ pentru orice } x \in FV(M). \text{ Deoarece } Z \text{ nu apare în }$ $c(M, W), \text{ pot alege } \theta' = \theta[Z := \theta(X) \to \theta(W)] \text{ și observa că satisface conditiile.}$

Completitudinea algoritmului de inferență

Demonstrație (cont.)

$$\begin{array}{l} \bullet \quad \frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash M \; N : \tau} \\ c(M \; N, Z) = c(M, W_1) \cup c(N, W_2) \cup \{W_1 = W_2 \to Z\} \\ \text{Fie } \theta_M \; \text{unificator pt} \; c(M, W_1) \; \text{astfel încât} \; \theta_M(W_1) = \sigma \to \tau \; \text{și} \\ \Gamma(x) = \Gamma_{\theta_M}(x) \; \text{pentru orice} \; x \in FV(M). \\ \text{Fie } \theta_N \; \text{unificator pt} \; c(N, W_2) \; \text{astfel încât} \; \theta_N(W_2) = \sigma \; \text{și} \\ \Gamma(x) = \Gamma_{\theta_N}(x) \; \text{pentru orice} \; x \in FV(N). \\ \text{Definesc} \; \theta(U) := \begin{cases} \theta_M(U), \quad \text{dacă} \; U \; \text{apare în} \; c(M, W_1), \\ \theta_N(U), \quad \text{dacă} \; U \; \text{apare în} \; c(N, W_2), \\ \tau, \qquad \qquad \text{dacă} \; U = Z \end{cases}$$

E bine definit, deoarece variabilele comune între $c(M, W_1)$ și $c(N, W_2)$ pot fi doar variabilele libere, pe care trebuie să fie de acord cu Γ .

Secțiunea 2

Normalizare

Ce este Normalizarea?

: Normalizarea slabă

orice termen bine format se poate (beta-)reduce la o formă normală.

Normalizare puternică

orice termen bine format se (beta-)reduce la o formă normală pe orice cale.

Teorema de normalizare

În Calculul Lambda cu Tipuri Simple (CLTS), toți termenii bine formați sunt puternic normalizabili.

Reguli de bună formare (a la Church)

3.
$$\frac{t:A \to B \quad u:A}{t \ u:B}$$
 (Aplicatie)

Substituția și α -echivalența

Substituția și α -echivalența sunt bine definite pentru termeni cu tipuri:

- Substituția t: A[x:=N:B] este definită când tipul lui x este B și rezultatul are tipul A
 - se demonstrează (relativ) ușor prin inducție asupra lui t : A
- Alpha-echivalența permite înlocuirea variabilelor legate cu variabile de același tip

Beta-reducția

- $(\lambda x. t) u \Rightarrow t[x := u]$ (BETA)
 - se observă că dacă x are tipul A, și t:B atunci și u:A, pentru ca să putem avea termenul $(\lambda x.\ t)\ u:B$
 - deci substituția este bine definită și termenul obținut e de acelaș tip ca redex-ul
- Plus regulile de compatibilitate cu abstracția și aplicație (și ele sunt bine definite)

Reducerile pot apărea oriunde într-un termen (nu doar la vârf).

$$\frac{t \Rightarrow t'}{\lambda x. \ t \Rightarrow \lambda x. \ t'}$$

$$\frac{t \Rightarrow t'}{t \ u \Rightarrow t' \ u}$$

$$\frac{u \Rightarrow u'}{t \ u \Rightarrow t \ u'}$$

Subject reduction (conservarea tipului)

Lemă

Dacă $t: A ext{ si } t \Rightarrow t' ext{ atunci } t': A$.

Demonstratie

Inducție după relația de rescriere, folosind buna definiție a substituției pentru cazul de bază.

Forme normale (sintactic)

O formă normală este un termen care nu are nici un redex. Poate fi definită prin reguli:

•
$$FN(x)$$
 (FNVAR)
• $\frac{FN(t)}{FN(\lambda x.t)}$ (FNABS)
• $\frac{FN(u)}{FN(x \ u)}$ (FNAPP1)
• $\frac{FN(t \ u)}{FN((t \ u) \ v)}$ (FNAPP2)

Strategia generală

- 1. Definim noțiunea de SN (strongly normalizing).
- 2. Definim o interpretare a tipurilor prin mulțimi de termeni SN.
- 3. Demonstrăm că toți termenii bine formați aparțin acestor mulțimi.

Normalizare Puternică (SN)

- Un termen este puternic normalizabil dacă toate secvențele de reduceri beta se termină.
 - Adică: nu există reduceri infinite.
- Inductiv: cea mai mică mulțime care conține formele normale și e închisă la regula: dacă pentru orice t' astfel încât $t \to t'$ avem că t' e în mulțime, atunci și t e în mulțime
- SN(t) dacă FN(t) (SNFN) • SN(t') pentru orice t' pentru care $t \Rightarrow t'$ • SN(t) (SNACC)

Interpretarea tipurilor

Fie [[A]] interpretarea semantică a unui tip A, definită recursiv astfel:

Tipuri de bază $[[\alpha]]$ conține exact termeni puternic normalizabili de tip α

$$[[\alpha]] = \{t : \alpha \mid SN(t)\}$$

Tipuri săgeată $[[A \rightarrow B]]$ conține acei termeni care aplicați tuturor termenilor din [[A]] sunt în [[B]]

$$[[A \to B]] := \{t \mid \forall u \in [[A]], \ t \ u \in [[B]]\}$$

Proprietăți ale interpretării

- Dacă $t \in [[A \rightarrow B]]$ și $u \in [[A]]$, atunci $t \ u \in [[B]]$.
- Dacă $t \in [[A]]$ atunci t : A
- Toți termenii din interpretare sunt puternic normalizabili.
 - ullet Prin inducție: dacă $SN(t\ u)$ atunci și SN(t)

[[A]] conține variabilele de tip A

Lema

Pentru orice variabilă x de tip $A_1 \to \cdots \to A_n \to A$, $n \ge 0$ și orice secvență de termeni $t_i \in [[A_i]], \ x \ t_1 \cdots t_n \in [[A]]$

Demonstrație: inducție după A.

- $A = \alpha$. Reiese din definiție, deoarece $SN(x \ t_1 \cdots t_n)$ (nu adaugă redexuri noi față de t_i).
- $A=B \to C$. Fie $u \in [[B]]$. Instanțiem ipoteza de inducție pentru C cu n+1 și $A_{n+1}=B$ și $t_{n+1}=u$. Deci, x $t_1 \cdots t_n$ $u \in [[C]]$ Deoarece u ales arbitrar, x $t_1 \cdots t_n \in [[B \to C]]$

Corolar

Dacă x e de tip A, atunci $x \in [[A]]$

[A] e închisă la reductie

Lema

Dacă $t \in [[A]]$ și $t \Rightarrow t'$ atunci $t' \in [[A]]$.

Demonstratie: inductie după A.

- Dacă $A = \alpha$, atunci SN(t) și deci și t' : A și SN(t')
- Dacă $A = B \rightarrow C$, fie $u \in [[B]]$, arbitrar. Avem că $t \ u \in [[C]]$. Aplicând ipoteza de inductie pentru C si $t u \Rightarrow t' u$, reiese că $t' \ u \in [[B]]$

Deoarece u arbitrar ales, reiese că $t' \in [[B \rightarrow C]]$

Substituție compatibilă

Definiție

O substituție de la variabile la termeni se numește compatibilă (cu interpretarea) dacă duce orice variabilă de tip A într-un termen din [[A]], interpretarea lui A.

Proprietăți

- Substituția identitate este compatibilă.
- Dacă σ compatibilă, $t\sigma \in [[A]]$ și $t \Rightarrow t'$, atunci $t'\sigma \in [[A]]$.

Demonstratie

Deoarece substituția identitate este compatibilă și interpretarea unui tip conține doar termeni în SN, este suficient să demonstrăm următorul rezultat: Dacă t:A atunci pentru orice substituție compatibilă σ , $t\sigma \in [[A]]$.

Suficient: Dacă t: A atunci pentru orice substituție compatibilă σ , $t\sigma$ este bine format și aparține lui [[A]].

Demonstrație: inducție pe definiția lui t : A

```
• x:A dac\check{a}x are tipul A (Variabilă)
Atunci t\sigma=\sigma(x)\in[[A]] din definiția lui \sigma
• \dfrac{t:A\to B \qquad u:A}{t \ u:B} (Aplicație)
Din ipoteza de inducție, t\sigma\in[[A\to B]] și u\sigma\in[[A]], de unde (t\ u)\sigma=t\sigma\ u\sigma\in[[B]]
```

Demonstrație (continuare)

```
\frac{t:B}{\lambda x.\ t:A \to B} dacă x are tipul A (Abstracție) Din ipoteza de inducție, pentru orice \sigma compatibilă, t\sigma \in [[B]]. Fie \sigma compatibilă. Vrem ca (\lambda x.\ t)\sigma \in [[A \to B]] E suficient să arătăm următorul rezultat mai general (instanțiat pentru n=0): Dacă t\sigma \in [[A_1 \to \cdots A_n \to B]] pentru orice \sigma compatibilă și x de tip A_0 și u_i \in [[A_i]] pentru 0 \le i \le n, atunci pentru orice \sigma, (\lambda x.\ t)\sigma u_0 u_1 \cdots u_n \in [[B]].
```

```
Suficient: Dacă t\sigma \in [[A_1 \to \cdots A_n \to B]] pentru orice \sigma compatibilă și x de tip A_0 și u_i \in [[A_i]] pentru 0 \le i \le n, atunci pentru orice \sigma, (\lambda x.\ t)\sigma u_0\ u_1 \cdots u_n \in [[B]]
```

Demonstrație

```
Demonstrație prin inducție după B B=A_{n+1}\to B': trebuie să arăt că pentru orice \sigma, (\lambda x.\ t)\sigma u_0u_1\cdots u_n\in [[A_{n+1}\to B']]. Fie u_{n+1} arbitrar ales. Aplic ipoteza de inducție pentru B' și t\sigma\in [[A_1\to\cdots A_n\to A_{n+1}\to B']] și x de tip A_0 și u_i, 0\le i\le n+1 și obțin (\lambda x.\ t)\sigma u_0\ u_1\cdots u_n\ u_{n+1}\in [[B']] Concluzia urmează din faptul că u_{n+1} arbitrar ales.
```

Dacă $B = \alpha$, trebuie să arăt că $SN(((\lambda x. t)\sigma)u_0u_1\cdots u_n)$.

Suficient: Dacă $t\sigma \in [[A_1 \to \cdots A_n \to B]]$ pentru orice σ compatibilă și x de tip A_0 și $u_i \in [[A_i]]$ pentru $0 \le i \le n$, atunci pentru orice σ , $((\lambda x.\ t)\sigma)u_0\ u_1 \cdots u_n \in [[B]]$

Demonstratie (continuare)

Reducere la absurd. Avem $(\lambda x.\ t)\sigma = \lambda x.\ (t\sigma')$ unde $\sigma' = \sigma[x:=x]$. Fie $(\lambda x.\ t\sigma')u_0u_1\cdots u_n = t_0 \stackrel{n_0}{\Longrightarrow} t_1 \stackrel{n_1}{\Longrightarrow} \cdots$ o secvență infinită. Fie $t_k \stackrel{n_k}{\Longrightarrow} t_{k+1}$ primul pas pentru care $n_k = 1$ (trebuie să existe, pentru că toti ceilalti redecsi sunt în $t\sigma'$ sau u_i pentru vreun i si ei sunt in SN.

Atunci t_k e de forma $(\lambda x.\ t'\sigma'')u_0'u_1'\cdots u_n'$ unde $t\Rightarrow^* t',\ u_i\Rightarrow^* u_i'$ și pentru orice $y\in FV(t)\setminus\{x\},\ \sigma'(y)\Rightarrow^*\sigma''(y),$ iar pentru orice alt y, $\sigma''(y)=\sigma'(y).$ Deci $t_{k+1}=(t'\sigma''[x:=u_0'])u_1'\cdots u_n'.$ Din $t\sigma\in[[A_1\to\cdots A_n\to\alpha]]$ pentru orice $\sigma,$ iese că $t'\sigma\in[[A_1\to\cdots A_n\to\alpha]]$ pentru orice σ și aleg $\sigma=\sigma''[x:=u_0'],$ apoi folosind definiția interpretării iese că $(t'\sigma''[x:=u_0'])u_1'\cdots u_n'\in[[\alpha]]$ deci \hat{n}

Consecinte ale normalizării

- Nu există bucle infinite în CLTS.
- Programele scrise în acest sistem se termină întotdeauna.
- CLTS nu este Turing complet.
- Putem demonstra confluența mai simplu
 - Local confluentă și terminare implică confluentă

Concluzie

- Calculul Lambda cu Tipuri Simple are proprietatea de normalizare puternică.
- Am demonstrat acest lucru prin interpretarea semantică a tipurilor în termeni puternic normalizabili (Metoda lui Tait).
- Sistemul oferă garanția că orice funcție este totală.

Referințe

• H. Barendregt, The Lambda Calculus: Its Syntax and Semantics