GPU并行计算和 CUDA程序开发及优化

周 斌 2014年秋

课程概况

▶时间

- ▶ 7~16周 周六 上午 9:45~12:10
- ▶ 实验课程 9~16周 周六下午 14:00 17:00; 晚18:00-21:00;

> 地点

- ▶ 课程:西区3教副楼3C121
- > 实验: 电四楼209

人物

- > 老师+助教+同学
- 事件
 - ▶ 课程+实验+....

计划增加一次课程

- **时间**
 - ▶ 周日上午9:50~11:20及下午2:00~3:30
- > 地点
 - ▶ 课程:西区3教副楼3C121 或待定
- > 人物
 - > 老师+助教+同学
- 事件
 - 》课程.

DVIDIA. CUDA' FELLOW

授课老师

- ▶周 斌
 - ▶ 山东省科学院海仪所海洋遥感遥测研究室主任
 - ▶ NVIDIA CUDA Fellow、中科大客座研究员
 - ▶ 曾任NVIDIA 高性能计算开发技术资深工程师
 - ▶ 科研:信号和信息处理、视频图像处理
 - > 兴趣:数据分析,密码学和密码分析,无人机系统
 - ▶ 涉及领域:
 - ▶ 气象数值预报系统、视频图像处理、高速信号处理、 生物信息学、网络搜索、加密系统等
 - ▶ 关注GPU系统架构、高性能应用、移动互联网等

DVIDIA. CUDA FELLOW

授课老师

- ▶邮件:
 - synosy@gmail.com
- > 答疑:
 - ▶ 课上课下
 - ▶ QQ: GPU深度开发
 - ▶ 邮件
 - ▶ iqiyi 搜索 CUDA 教程
- ▶风格: 中英夹杂

名人堂

陈凯

曹旭磊

2012年秋季学期:李索恒

2013年春季学期:陈凯

2013年秋季学期:曹旭磊

? ? ? ?

成绩优秀的同学获得了NVIDIA公司提供的奖励本学期奖励继续么?

课程情况总结

- ▶ 2012年秋
 - ▶90人选课,平均成绩83分,除1人退课外,全部及 格并基本符合正态分布
 - ▶ 12个Project
 - ▶ 内 念: MD5&SHA-1; FDTD; Ray-tracing; Page-Rank; Sparse-Solver; Smith-Waterman....
 - ▶3人获得NVIDIA公司的奖励
- > 2013年春
 - > 23人选课,平均成绩85分,全部及格
 - ▶1人获得NVIDIA公司的奖励

课程情况总结

- ▶ 2013年秋
 - ▶ 168人选课,平均成绩85分,12人退课,全部及格并 基本符合正态分布;20个Project
 - ▶ 3人获得NVIDIA公司的奖励

The Students

- Gain the abilities of:
 - ▶ Construction of GPU hardware systems
 - ▶ CUDA/GPU Programming for their research work
 - Deploying CUDA-accelerated applications
- Highly Evaluted

	benefit(5.0)	Total Evaluation(5.0)	Teaching Overall
Univ. Average	4.29	4.31	38.83
School. Average	4.29	4.31	38.83
This Course	4.50	4.44	40.61

- Comments from students:
 - Of High quality, learned a lot, very useful. Hope continuing.
 - Very practical.
- Some Other Universities Students went to USTC for it.

The Projects

FDTD Simulation

Ray - Tracing CUDA + Hadoop

Sparse Solver 3D Reconstruction

Image&Video Processing

Speech Recognization

WPA2-PSK Attack

Machine Learning

Page Rank, Search Engine

Monte Carlo method

•••

3D wave equation: >100x Speedup (dubious)

3D实现环境(服务器)

CPU	E5-2620
GPU	Tesla K20c
CUDA	5.0
3-D Grid	Support

三种方式的结果对比

	执行时间(ms)
CPU	3170000
GPU3D	94.29084
GPU3D_SHARED	92.726463

z方向固定,k=128时, x, y, u的三维图

origin软件的分辨问题,在x,y方向上只取了64个点,进行作图,显得图形不圆滑,若是取所有点绘图,图形会非常圆滑

CUDA && Hadoop: Basic Function

FDTD Simulation: 10x Speedup

Video Multi-Target Tracking: Speedup 5x

Improvement needed

SIFT on GPU: 3x speedup

GPU-based Search Engine: 16x speedup

搜索首页

搜索结果

如果在中科大遇见你 中国科学技术大学新闻网

如果在<mark>中科大</mark>遇见你 中国科学技术大学新闻网 如果在<mark>中科大</mark>遇见你 2013-11-01 逍遥派 小掌门 如果在中科大遇见你,在初冬的早晨,要相约去吃一次食堂的早餐,慢慢的习惯,习惯阳光和你都在身旁,想要more

三千人腌250吨泡菜 -新华财经-新华网

PageRank=0.00003324

大教授more

中国新闻网 当地时间2013年11月13日,韩国首尔,韩国举行爱心泡菜分享活动,超过三千名参加者现场组成爱心形状,集体腌制250吨的泡菜。 1 1 支持键盘翻页←左右→ 分享到: 更多图片 中科大more

稀世粉钻8300万美元 -新华财经-新华网

PageRank=0.00003324

地时间11月13日,"粉红之星"粉钻在瑞士日内瓦拍卖,这枚罕见的宝石最终以8300万美元成交,写下史上宝石拍卖新高。图为"粉红之星"粉钻。(资料图) 1 1 支持键盘翻页 ←左右→ 分享到: 更多图片 中科大more

<u>[科技日报]接续断裂的创新链条— 中科大先研院为成果转化探路 中国科学技术大学新闻</u>网

PageRank=0.0000243

[科技日报]接续断裂的创新链条— 中科大先研院为成果转化探路 中国科学技术大学新闻网 [科技日报]接续断裂的创新链条— 中科大先研院为成果转化探路 2013-12-06 本报记者 吴长锋 11月11日more

黄山雨后现"佛光" -新华财经-新华网

PageRank=0.00002719

黄山风景区雨后放晴,云海飘荡。黄山风景区始信峰出现今年入冬以来最为持久的"佛光"奇观,令人叹为观止。中新社发方也广德 摄 图片来源: CNSPHOTO 1 1 支持键盘翻页 ←左右→ 分享到: 更多图片 中科大more

PCA on GPU: 5x Speedup

矩阵大小3072(样本数)*1024(特征数)

5x Speedup

GPU-SOM(Self Organizing Map): 50x

Data Clustering

DeFrog: RealTime, 20x Speedup

Image Enhancement: 6x

1,硬件平台: CPU-----Pentium 2.2GHz GPU-----G210M,计算能力1.2 2,软件平台: 操作系统为 windows XP 运行环境为 VS2008, cuda toolkit 5.5, opencv 3处理的图片的大小1200x800

	Data Transfer	Compute	Data Retrieve	Totally
CPU(ms)	14.211776	63.003777	11.579264	102.012772
GPU(ms)	1.878592	20.22376	2.439744	25.761248
GPU(ms)-Opt	1.878592	10.21354	2.439744	15.761248

▶ One of the world's Best SHA-1 on NVIDIA GPU

Performance Comparison

- GTX 460, 7 multiprocessors, 336 sp @ 1557MHz
 - '00000000' '00999999', totally 10^6 messages
 - Our competitors are set into brute-force mode

	SHA-1	MD5
Our implementation (Hash/s)	400.3M	671.5M
oclHashcat-lite (Hash/s)	361.0M	1329.3M
IGHASHGPU (Hash/s)	371.5M	675.1M

课程资源

- NVIDIA CUDA Zone
 - http://developer.nvidia.com/category/zone/cuda-zone
- 网络教材和课程
 - http://www.bb.ustc.edu.cn/
- 相关素材
 - > 将通过网络和电子邮件发布
- Others
 - 请各位多利用网络搜索引擎

预修课程和教材

- > 基础知识
 - ▶ 1) 计算机体系结构基础 2) C语言程序设计
 - ▶ 3) 计算机算法基础 4) 线性代数
- > 课程内容参考
- ▶ 1. CUDA C Programming Guide, NVIDIA Corp.
- ▶ 2. CUDA Best Practice Guide, NVIDIA Corp.
- ▶ 3. Programming Massively Parallel Processors, 2010, David Kirk and Wen-mei Hwu
- ▶ 声明:参考和引用了如下的工作
 - ▶ 1.Patrick Cozzi, CIS 565, University of Pennsylvania
 - **2**.
 - **3**.
 - ▶ 4. Udacity CS 344 Intro to Parallel Computing

Know the backgrounds and computer level of the students

- Many Students don't have solid programming backgrounds
- Adding Some contents about C programming will be helpful
- Add Some Basic Computer Architecture Contents
- Add Some Basic numerical methods
- Add some Parallel Computing contents

Prerequisite

- C Programming Language
- Basic Computer Architecture
- Basic Algebra and Numerical Methods
- Domain Knowledge
- Linux OS

Prerequisite

- Many students have high scores but not really know how and why
- Don't take Prerequisite seriously when they claim they are ok. They are really not!
- However, give them basic trainings and review on the prerequisites

课程定位

Applications

Parallel Computing & Numerical Methods

CUDA Course & Parallel Computing Related

OS & Driver level

CPU Architecture Details

GPU Architecture Details

课程目标

- 计算机,电子,自动化,生医等相关专业的硕士研究 生或高年级本科生
- ▶ 了解和掌握GPU并行计算系统的分析,设计,开发, 调试和优化方法
- > 系统分析能力,编程能力,开发经验

目标说明

- Not theoretical Algebra or Numerical methods
 - But needs to add some basic algebra
- Not Computer Architecture Course
 - But needs to add some basic contents
- Not Parallel Computing Course
 - But needs to add some contents

课程模式

- > 强调面向应用和实践
- > 最新的业界动态和技术
- ▶课堂讲解+上机实验
- 评分方式
 - ▶ 1) 平时作业和实验报告 40%
 - ▶ 2) 课程考试 25%
 - ▶ 3) 大作业 35%
- > 学生小组制

作业提交

- > 每周六,周日讲完课程布置作业
- ▶ 在下一个周四24:00之前提交
- > 提交方式
 - ▶ 网络系统: 以服务器时间为准
 - ▶ 电子邮件: 以我或助教的电脑时间为准
 - > 邮寄方式: 以当地邮局邮戳为准
 - ▶ 当面提交:以我或助教的手机手表时间为准
- ▶晚交一天扣本次作业10%的分,直至扣完
- 》严禁抄袭,凡抄袭和被抄袭者都是0分

开始课程之前的问题….

- ▶ 1) 为什么我们要使用计算机?
 - 为了更好地解决计算问题
- ▶ 2) 你需要什么样的计算机? 畅想…
 - > 速度更快
 - **)** 内存更大
 - > 无穷多的外存
 - > 智能化的接口

可惜世间总是太多无奈…

- ▶ 现在的CPU系统已经遇到各种瓶颈
- 內能向多核及并行系统发展
- ▶ 顺势而生的 GPU Graphics Processing Unit

内容

- ▶ 1) CPU体系架构概述
- ▶ 2) 并行程序设计概述
- ▶ 3) CUDA开发环境搭建和工具配置
- ▶ 4) GPU体系架构概述
- ▶ 5) GPU编程模型
- ▶ 6) CUDA编程(1)
- ▶ 7) CUDA编程 (2)
- ▶ 8) CUDA编程 (3)
- ▶ 9) CUDA程序分析和调试工具
- ▶ 10) CUDA程序基本优化
- ▶ 11) CUDA程序深入优化
- ▶ 12) 最新NVIDIA GPU 和 CUDA特性

- a) what to cover & what not to?
- b) GPU Architecture & CPU Architecture?
- c) CUDA Programming
- d) CUDA Optimizations
- e) advance Topics: MPI + CUDA, Multi-GPU, Clusters, Numerical Algorithms with GPU, OpenCL, OpenGL+CUDA, Cloud Computing

What to cover

- Basic C Programming & Linux OS
- Basic Computer Architecture
- Basic Parallel Computing
- Basic CPU Architecture
- Basic GPU Architecture
- CUDA Programming Language
- CUDA Optimization
- MPI+OpenMP
- Compiling & Debugging

What to cover

- Tools + Third Party Software
 - Compiling
 - Debugging Tools
 - Nsight, CUDA GDB
 - Visual Profiler
- Needed Linux OS

What NOT to cover?

- GPU architecture Details
- Pipeline
- Programmable Vertex and Pixel Processors
- Texture Details
- Low-level drivers

GPU Architecture & CPU Architecture?

- Basic Information will be enough
- ALU
- Register
- Data Path
- Cache
- Instruction Execution
- SIMD+SIMT
- SM,SMX Info

CUDA Programming

C Programming Improvements

Basic Programming Guide

Cover as much as possible

- No low-level programmingSuch as PTX, Assemble...
- 10 hours of class

CUDA Programming cont' d

- More Practice based
- Every class is followed by lab work①Lab work including whole development process
- Every class is followed by a small programming project
 - **10** Vector Add
 - Parallel reduction
 - Matrix Multiplication
 - Mand so on...
- Debugging & Profiling are to be added
- Tools
- More TA, more basic programming guidance.

CUDA Optimizations

- Know how and why
- Focusing on bottleneck analysis
- More bandwidth-limited applications
- Coalesced Memory Access
- Using Visual Profiler to find problems
- Emphasize Algorithm Design
- Not focusing on Program Optimization

Advance Topics

- \blacksquare MPI + CUDA,
- MultiGPU
- Remote GPU Clusters
 - To promote after-class study
- Numerical Algorithms with GPU
 - **10** Numerical Errors
- OpenCL
- OpenGL+CUDA
- Cloud Computing & Grid

Research Fields Related Contents

- Asking Students to participate in teaching
- ■Students work within 3~5 Groups
- Every group raise a specific topic
- Students give talks
- More research activities involvements

课程内容的关系

- 应用是最关键的
 - ▶ Application Driven!!!
- ▶ 并行处理:了解架构
- > 编程
- **优化**

▶ WebGL 展示

WebGL Skin

WebGL Water

http://madebyevan.com/webgl-water/

▶ GPU Compute + Real-Time Rendering

http://www.nvidia.com/object/GTX_400_games_demos.html

▶ 大作业:

硬件需求

- ▶ 上机实验需要具有 NVIDIA Fermi 以上的GPU
- ▶ 作业将同样需要,可以到实验室使用
- ▶ 更新驱动
 - http://www.nvidia.com/Download/index.aspx
- ▶如何看GPU型号?

软件和后续学习

- > 将学习使用Windows和 Linux 系统
- **▶**喜欢Linux系统
 - ▶ 相信科大同学的能力
- > 联系助教获得其他实验室资源
- 联系教师获得其他资源
- > 实验地点: 电四楼 209 实验室