CONCEPT

Arduino for Ham Radio

Objectives

- Start from where you are... learn step-bystep
- Using your own Laptop
 - Revise from last course
 - Or start at the beginning
- True hands-on amateur radio, you contribute
- Build VFO and SDR receiver shields

Concept

- S1 Arduino, Learner
- S2 VFO & RTC
- S3 Eagle PCB design
- S4 ROTARY ENCODER & LCD
- S5 Build the VFO kit
- S6 SDR design
- S7 Build the SDR kit

New to Arduino?

Let's start at the beginning. Apologies to experienced users!

Experiment board

To start you need:

- A Windows PC or a Mac
- Arduino, Breadboard, wires, etc (Kit 1)
- LED & 220R
 Piezo active buzzer (Inclin Kit 2)

Kit 1 & 2

	Starter	Learner	VFO & RTC	VFO+ROT	VFO+ROT+LCD
Arduino UNO	х				
400 point BB	х				
Jumper wires	х				
LED		x			
220R		x			
Piezo buzzer		x			
Si5351 module			X	О	0
Rotary Encoder				х	0
I2C LCD			x		0
RTC module			x		
CR1220 battery			x		
F - M wires			х		О

Check your kits now

Kit 1

Plus FREE mounting plate

BREADBOARD ARDUINO UNO **USB CABLE**

WIRES

Kit 2

RTC

The Arduino UNO

Digital Input/Outputs D13-D0

USB From PC +5V power

Microcomputer +7-12V power

Power Outputs & Analog Inputs A0-A5 (or Digital I/O)

A4 & A5 = I2C serial bus SDA & SCL

Build your starter kit

Set up your PC

Club WiFi: Edimax AP

Password: 1234567890

 Previous course attendees: download the latest version!!!

Sketchbook location

- Create a folder, Documents / Arduino
- Start the Arduino program
- Go to Preferences, select the Arduino folder

Users/ antonyw	array Do	ocuments/Arduino		Brov
Editor language:	System	m Default		(requires restart of Arduin
Editor font size:	14	(requires restart	of Arduino))
Show verbose ou	tput du	ıring: 🗌 compilatio	n 🗌 upload	I
✓ Verify code af	ter uplo	oad		
Use external e	ditor			
Check for upd	ates or	n startup		
☑ Update sketch	files to	o new extension on	save (.pde -	-> .ino)
/Users/antonywa	atts/Lib	e edited directly in to orary/Arduino/prefer is not running)		

3

Copy the USB stick

- Copy the USB stick to your Arduino folder
 - Sketches
 - Libraries folder and libraries

USB stick

HELP and DOCS

Arduino folder

- Your Arduino folder should look like this:
 - Course notes and slides
 - Eagle PCB design example
 - Various HELP files
 - Libraries
 - Software sketches

Re-start Arduino

Plug in Board

During this course you will learn to code

Write Compile Upload

Source code -> Compiler -> Arduino UNO machine code binary

Software is the key

- Arduino programs are called Sketches
- The key to understanding and using Arduino is learning to code sketches
- Coding is done in a language called 'C'.
 - C is based on functions. int myFunction(int a, int b) { //do this }
- Human readable statements are typed into the Arduino IDE program editor
- Arduino IDE then compiles them to computer code and uploads them to your board

Sketches have a basic outline

- File > Sketchbook > My_Do_Nothing
- Sketches have a simple, basic structure
 - "include"
 - "define
 - "setup"
 - "loop"
 - "myFunction"
- We will see many sketches all with similar outlines

```
// My Do Nothing is a sketch outline, the sketch does
nothing
// example of an included library
#include <Arduino.h>
// example of a constant define
#define LED 13
// setup function, executed once on upload (->)
void setup() {
// loop function, executed over and over
void loop() {
  c = myFunction(a, b); // call a user function
// your own function, called by loop()
int myFunction(int a, int b) {
```


Let's run some

Learner sketches

Blink an LED

Send Morse Code

Wire up

My_Blink

- File > Sketchbook > My_Blink
- Click the Upload button
- The LED connected to pin 13 will blink
- Let's have look at the sketch code and understand it
- Make the LED flash faster...

Upload

My_Blink

```
// My Blink
// flashes a LED on pin 13
// pin number
#define LED 13
// the setup routine runs once when you upload (->) the sketch
void setup() {
  // initialise the digital pin 13 as an output
 pinMode(LED, OUTPUT);
// the loop runs over and over again, forever
void loop() {
  digitalWrite(LED, HIGH); // turn the LED on (HIGH voltage level)
                          // wait for 1 second (1000ms)
  delay(1000);
  digitalWrite(LED, LOW); // turn the LED off (LOW voltage leve)
  delay(1000);
                           // wait for 1 second
                 Change to 100 to flash faster
```


Send Morse

- Wire up the buzzer (GND D7)
- File > Sketchbook > My_Morse_KB
- Upload
- Open Monitor, enter text message e.g. "CQ DE <Your Call Sign> K"

- Challenge the guy next to you to read a your message!
- Buzzer could be replaced by key relay

Home work

- Have a look through the code for the My_Morse_KB sketch
- Read it line by line and understand what each line of code does

```
My_Morse_KB | Arduino 1.6.5
  My_Morse_KB
 1 // My_Morse_KB is a morse morse sender with KB input
 2 // active piezo buzzer on pin 7
 4 // include the special llibrary to generate morse dit/dah
 5 #include "MorseEnDecoder.h"
 7 // define a constant for words per minute
 8 #define WPM 5
10 // define a constant for the buzzer pin
11 #define BUZZER 7
12
13 // create a morseOut object
14 morseEncoder morseOut(BUZZER);
16 // setup runs once on upload
17 void setup() {
    // set BUZZER pin as an output
    pinMode(BUZZER, OUTPUT);
20
21 // start serial comms with Arduino IDE monitor window, over USB
    Serial.begin(9600);
    while (!Serial); // wait for USB connection
```


What is

CONCEPT?

Exciting, learning, sharing

Concept plan

Focus on HF

- Develop and build shields that plug into your Arduino
- Start with two shields
 - VFO with RTC
 - 40m SDR RX
- Sketches for modes: VFO, SDR, CW, SSB, QRSS, WSPR - plus others later

Shields vs Modes

	WSPR	QRSS	CW	SDRX	SDTX	DC RX
UNO	x	X	X	X	X	X
*RTC	X			[x]		
*VFO	X	X	X	X	X	X
*SDRX				X		
SDTX					X	
DC RX						X
PA	X	X	X		X	
LPF	X	X	X	X	X	X

CONCEPT

Being practical

- Later on you will be building the VFO & SDR shields, these carry SMDs
- Check you have a suitable soldering iron. Wire cutters. A small set of tweezers, a magnifier would be useful
- Hobby components has a very good soldering iron (40W temp controlled). Amazon has Solder Flux Pen + 0.3mm Solder and magnifiers.
- HOMEWORK: Before S2 Solder the header onto the Kit 2 VFO module

Next time

The serious stuff VFO and RTC modules