Synth²: Boosting Visual-Language Models with Synthetic Captions and Image Embeddings

Sahand Sharifzadeh *,1 , Christos Kaplanis 1 , Shreya Pathak 1 , Dharshan Kumaran 1 , Anastasija Ilic 1 , Jovana Mitrovic 1 , Charles Blundell 1 and Andrea Banino *,1

*Equal contributions, ¹Google DeepMind

Figure 1 | (A) Traditional dataset curation pipelines require a human in the loop to collect and annotate images. (B) We study whether we can reverse this pipeline with generative models, i.e. by first sampling synthetic captions from an LLM and then synthetically generating images from those. (C) By operating in the image embedding space, we also propose to bypass computationally expensive encoder/decoder steps, optimizing and integrating the process within VLM training.

Figure 2 \mid Examples of synthetic captions and synthetic images generated by LLM and text-to-image generator.

Figure 3 | We introduce a VLM framework that leverages LLMs and image generation models to create synthetic image-text pairs for efficient training. We can train a VLM from both nonsynthetic (A) and synthetic (B) data as shown in this figure. Our model trained with the added synthetic pairs demonstrates impressive image captioning performance, significantly reducing the need for human annotated images.

Table 1 | A taxonomy of related work on synthetic data for training vision models.

Generator	Method	Generator Model	Generated Set	Caption Class	Caption Type	Evaluation Setting
Canonical Concept Mapping	Sharifzadeh et al. (2021)	Linear	Scene Graph Embedding	Scene Graphs		
	Sharifzadeh et al. (2022)			Complex Text	Human Generated	SG Classification
	Mishra et al. (2022)		Mixed pairs such as			
	Greff et al. (2022)		(Segmentation, Images)			
Simulation/Rendering Engine	Zheng et al. (2020)	Mix	(Optimal Flow, Videos)	N/A	N/A	Mix
	de Melo et al. (2022)		(Depth Maps, Images)			
	Cascante-Bonilla et al. (2023)	Mix	(Captions, Images)	Complex Text	Rule-based	Vision Encoder
	Azizi et al. (2023)	SD				
Off-the-shelf Image Generator	Fan et al. (2023)	Imagen	Images	Single Word	ImageNet Classes	Classifier
		MUSE				
	Li et al. (2023c)	SD	Images	Complex Text	Human Generated	VLM
Controlled Image Generator	Synth ²	MUSE	Text, Embeddings & Images	Complex Text	Human & LLM Generated	VLM