Title

D. Zack Garza

August 17, 2019

Contents

1	st of Topics
2	roups
	1 Definitions
	2.1.1 Subgroup Generated by a set $A \ldots \ldots \ldots \ldots \ldots$
	2.1.2 Free Group on a set X
	2.1.3 Centralizer of an element or a subgroup
	2.1.4 Center of a group
	2.1.5 Normalizer of a subgroup
	2.1.6 Normal Core of a subgroup
	2.1.7 Normal Closure of a subgroup
	2.1.8 Group Action of a group on a set
	2.1.9 Transitive group actions
	2.1.10 Orbit of a set element
	2.1.11 Stabilizer of a set element
	2.1.12 Automorphisms of a group
	2.1.13 Inner Automorphisms of a group
	2.1.14 Outer Automorphisms of a group
	2.1.15 Conjugacy Class of an element
	2.1.16 Characteristic subgroup
	2.1.17 Simple group
	2.1.18 Commutator of an element, or of subgroups
	2 Structural Results

1 List of Topics

Chapters 1-9 of Dummit and Foote

- Left and right cosets
- $\bullet \;\; {\rm Lagrange's \; theorem}$
- \bullet Isomorphism theorems
- Group generated by a subset
- Structure of cyclic groups
- Composite groups

- -HK is a subgroup iff HK = KH
- Normalizer
 - $-HK \leq H \text{ if } H \leq N_G(K)$
- Symmetric groups
 - Conjugacy classes are determined by cycle types
- Group actions
 - Actions of G on X are equivalent to homomorphisms from G into Sym(X)
- Cayley's theorem
- Orbits of an action
- Orbit stabilizer theorem
- Orbits act on left cosets of subgroups
- Subgroups of index p, the smallest prime dividing |G|, are normal
- Action of G on itself by conjugation
- Class equation
- p-groups
 - Have non trivial center
- p^2 groups are abelian
- Automorphisms, the automorphism group
 - Inner automorphisms
 - $Inn(G) \cong Z/Z(G)$
 - $Aut(S_n) = Inn(S_n)$ unless n = 6
 - Aut(G) for cyclic groups
 - $-G \cong \mathbb{Z}_p^n$, then $Aut(G) \cong GL_n(\mathbb{Z}_p)$
- Proof of Sylow theorems
- A_n is simple for $n \geq 5$
- Recognition of internal direct product
- Recognition of semi-direct product
- Classifications:
 - -pq
- Free group & presentations
- Commutator subgroup
- Solvable groups
 - $-S_n$ is solvable for $n \leq 4$
- Derived series
 - Solvable iff derived series reaches e
- Nilpotent groups
 - Nilpotent iff all sylow-p subgroups are normal
 - Nilpotent iff all maximal subgroups are normal
- Upper central series
 - Nilpotent iff series reaches G
- Lower central series
 - Nilpotent iff series reaches e
- Fratini's argument
- Rings
 - I maximal iff R/I is a field
 - Zorn's lemma
 - Chinese remainer theorem
 - Localization of a domain

- Field of fractions
- Factorization in domains
- Euclidean algorithm
- Gaussian integers
- Primes and irreducibles
- Domains
 - * Primes are irreducible
- UFDs
 - * Have GCDs
 - * Sometimes PIDs
- PIDs
 - * Noetherian
 - * Irreducibles are prime
 - * Are UFDs
 - * Have GCDs
- Euclidean domains
 - * Are PIDs
- Factorization in Z[i]
- Polynomial rings
- Gauss' lemma
- Remainder and factor theorem
- Polynomials
- Reducibility
- Rational root test
- Eisenstein's criterion

2 Groups

2.1 Definitions

2.1.1 Subgroup Generated by a set A

- $\langle A \rangle = \{a_1^{\pm 1}, a_2^{\pm 1}, \dots a_2^{\pm 1} : a_i \in A, n \in \mathbb{N}\}$
- Equivalently, the intersection of all H such that $A \subseteq H \leq G$

2.1.2 Free Group on a set X

 \bullet Equivalently, words over the alphabet X made into a group via concatenation

2.1.3 Centralizer of an element or a subgroup

• $C_G(a) = \{g \in G : ga = ag\}$

$$C_G(H) = \{g \in G : \forall h \in H, gh = hg\} = \bigcap_{h \in H} C_G(h)$$

- Note requires the same g on both sides!
- Facts:

$$- C_G(H) \le G$$

$$- C_G(H) \le N_G(H)$$

$$- C_G(G) = Z(G)$$

$$- C_H(a) = H \cap C_G(a)$$

2.1.4 Center of a group

- $Z(G) = \{g \in G : \forall x \in G, gx = xg\}$
- Facts

 $Z(G) = \bigcap_{a \in G} C_G(a)$

2.1.5 Normalizer of a subgroup

 $N_G(H) = \{ g \in G : gHg^{-1} = H \}$

- Equivalently, $\bigcup \{K : H \leq K \leq G\}$ (the largest $K \leq G$ for which $H \leq K$)
- ullet Equivalently, the stabilizer of H under G acting on its subgroups via conjugation
- Differs from centralizer; can have gh = h'g
- Facts:
 - $-C_G(H) \subseteq N_G(H) \leq G$
 - $-N_G(H)/C_G(H) \cong A \leq Aut(H)$
 - Given $H \subseteq G$, let

$$S(H) = \bigcup_{g \in G} gHg^{-1}$$

, so |S(H)| is the number of conjugates to H. Then

$$|S(H)| = [G: N_G(H)]$$

* i.e. the number of subgroups conjugate to H equals the index of the normalizer of H.

2.1.6 Normal Core of a subgroup

 $H_G = \bigcap_{g \in G} gHg^{-1}$

- Equivalently, $H_G = \langle N : N \leq G \& N \leq H \rangle$
 - Largest normal subgroup that contains H
- Equivalently, $H_G = \ker \psi$ where $\psi : G \to Sym(G/H); \ g \sim (xH) = (gx)H$
- Facts:
 - $-H_G \subseteq G$ and is an idempotent operation

2.1.7 Normal Closure of a subgroup

- $H^G = \{qHq^{-1} : q \in G\}$
- Equivalently,

$$H^G = \bigcap \{N : H \le N \le G\}$$

- (The smallest normal subgroup of G containing H)

2.1.8 Group Action of a group on a set

• Given as a function

$$\phi: G \times X \to X(g,x) \mapsto g \sim x$$

which gives rise to a function

$$\phi_q: X \to Xx \mapsto g \sim x$$

(which is a bijection) where \sim denotes a group element acting on a set element, and $\forall x \in X$,

$$-e \sim x = x$$

$$-(gh) \sim x = g \sim (h \sim x)$$

• Equivalently, a function

$$\psi:G\to Sym(X)g\mapsto \phi_g$$

$$\ker \psi = \bigcap_{x \in X} G_x$$

(intersection of all stabilizers)

- Interesting actions:
 - Left multiplication of G on G:

$$\phi: G \to G \to G \qquad g \mapsto \phi_g: G \to G \qquad h \mapsto gh$$

*
$$\mathcal{O}_x = G$$
 (transitive)

$$* G_x = e$$

- G acting via conjugation on itself:

$$\phi: G \to G \to G \qquad g \mapsto \psi_g: G \to G \qquad h \mapsto ghg^{-1}$$

- * A common notation is $x^g = g^{-1}xg$ which obeys $(x^g)^h = x^{gh}$
- * $\mathcal{O}_x = [x]$ (Conjugacy classes, so not generally transitive)

$$* G_x = \{g \in G : gxg^{-1} = g\} = C_G(x)$$

- G acting on $S = \{H : H \leq G\}$ via conjugation:

$$\phi: G \to S \to S$$
 $g \mapsto \psi_g: S \to S$ $H \mapsto gHg^{-1}$

*
$$\mathcal{O}_H=[H]=\{gHg^{-1}:g\in G\}$$
, conjugate subgroups of H * $G_x=N_G(H)=\{g\in G:gHg^{-1}=H\}$

$$* G_x = N_G(H) = \{g \in G : gHg^{-1} = H\}$$

2.1.9 Transitive group actions

- $\forall x, y \in X, \exists g \in G : g \sim x = y$
- Equivalent, actions with a single orbit

2.1.10 Orbit of a set element

$$\mathcal{O}_x = \{g \sim x : x \in X \} = \bigcup_{g \in G} \{g \sim x\}$$

- The set of all orbits is denoted X/G or $X_G = \{\mathcal{O}_x : x \in X\}$
- Partitions X according to the equivalence relation $x \cong y \iff \exists g \in G : g \sim x = y$
- G acts transitively on X when restricted to any single orbit

2.1.11 Stabilizer of a set element

- $G_x = \{g \in G : g \sim x = x\}$
- Facts:
 - $-G_x \leq G$, not usually normal
 - $-x, y \in \mathcal{O}_x \Rightarrow G_x$ is conjugate to G_y

2.1.12 Automorphisms of a group

• $Aut(G) = \{ \phi : G \to G : \phi \text{ is an isomorphism} \}$

2.1.13 Inner Automorphisms of a group

- $Inn(G) = \{ \phi_q \in Aut(G) : \phi_q(x) = gxg^{-1} \}$
- Also consider the map

$$\psi: G \to Aut(G)g \mapsto (\lambda: x \mapsto gxg^{-1})$$

Then $\operatorname{im} \psi = Inn(G), \ker \psi = Z(G)$

- Facts:
 - $-Inn(G) \leq Aut(G)$
 - $Inn(G) \cong G/Z(G)$

2.1.14 Outer Automorphisms of a group

• Out(G) = Aut(G)/Inn(G)

2.1.15 Conjugacy Class of an element

 $[a] = \{gag^{-1} : g \in G\} = \bigcup_{g \in G} \{gag^{-1}\}\$

- Equivalently, $[a] = \mathcal{O}_a$ under G acting on itself via conjugation
- Facts:
 - Equivalence relation, partitions the group
 - |[a]| divides |G|
 - $-a \in Z(G) \Rightarrow [a] = \{a\}$

2.1.16 Characteristic subgroup

• H char $G \iff \forall \phi \in Aut(G), \phi(H) = H$ - i.e., H is fixed by all automorphisms of G.

2.1.17 Simple group

- G is simple $\iff H \unlhd G \Rightarrow H = e$ or G
 - No non-trivial normal subgroups

2.1.18 Commutator of an element, or of subgroups

- $\bullet \quad [g,h]=ghg^{-1}h^{-1}$
- $[G, H] = \langle [g, h] : g \in G, h \in H \rangle$ (Subgroup generated by commutators)

2.2 Structural Results

- Cyclic \Rightarrow abelian
- G/Z(G) cyclic $\Rightarrow G$ is abelian
- Intersections of subgroups are also subgroups