- Operations are synchronized to a clock
 - For example, when a register is written

Datapath Timing

Instructions complete at clock edges

- Clock signal oscillates between high and low values
- Clock period is one full clock cycle
- State changes only on clock edge (either rising of falling edge)

Combinational logic transforms data during clock cycles

Datapath Timing

- Between clock edges
- Inputs come from state elements
- Outputs go to state elements
- Longest delay determines minimum clock period

JOHNS HOPKINS

UNIVERSITY

Building a Datapath

Performs Instruction Fetch

Building a Datapath

R-Format Instructions

- Read two register operands
- Perform arithmetic/logical operation
- Write register result

a. Registers b. ALU

Load/Store Instructions

Read register operands

JOHNS HOPKINS

- Calculate address using 16-bit offset
 - Use ALU, but sign-extend offset
- Load: Read memory and update register
- Store: Write register value to memory

a. Data memory unit

b. Sign extension unit

Building a Datapath

Branch Instructions

- Read register operands
- Compare operands
 - Use ALU, subtract and check Zero output
- Calculate target address
 - Sign-extend displacement
 - Shift left 2 places (word displacement)
 - Add it to PC
 - PC already incremented by instruction fetch

Building a Datapath

ep.jhu.edu

7

- One option is for the datapath to execute an instruction in one clock cycle
 - Each datapath element can only do one function at a time
 - Hence, we need separate instruction and data memories (Harvard Architecture)
- Use multiplexers where alternate data sources are used for different instructions

R-Type/Load/Store Datapath

UNIVERSITY

Full Datapath

- The datapath components have now been described
- Next, the ALU will be examined in more detail
- We will also see how the control unit produces the required signals