KU-BIG 홈커밍

Object Detection

권지혜. 이은진. 명재성 구형석. 유정아. 원혜진

프로젝트 소개

O Instagram

인스타그램 피드 object detection을 통한,

유저에게 어울리는 음악 추천

#꿀잼_예상 #딥러닝 #크롤링

2020.04.23

예상 결과물

당신의

🗿 Instagram

ID를 입력해주세요

chungjizzle

당신과 어울리는 음악은? GO

당신과 어울리는 음악은?

진행 방향

진행 방향

이미지 크롤링 예시

상세 내용

1. 데이터 크롤링

1) Selenium을 활용하여 Instagram crawler를 생성합니다.


```
from selenium.webdriver.chrome.options import Options
from selenium.common.exceptions import NoSuchElementException
import urllib.parse
import urllib.request
import time
import datetime
import csv
def scroll down(webdriver):
    webdriver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
    time.sleep(3)
def add photo(webdriver) :
    temp list = []
    one_photo = webdriver.find_elements_by_class_name("FFVAD")
    for n in one photo:
        temp = {}
        temp['alt'] = n.get_attribute('alt')
        temp['src'] = n.get attribute('src')
        temp list.append(temp)
   return temp_list
#넘어오는 형식은 [{alt:내용, src:주소1},{alt:내용, src:주소}]
#검색을 원하는 insta ID
insta_id = input("Input Your Insta ID : ")
url = "https://www.instagram.com/" + insta id
webdriver = Chrome('C:/Users/sak17/chromedriver.exe')
webdriver.get(url)
session = webdriver.requests_session
response = session.get(url)
#포스트의 총 개수
len post = webdriver.find element by class name('q47SY').text
photo_list = []
try:
    while True:
       for n in add photo(webdriver):
           if n in photo list:
               pass
           else:
               photo list.append(n)
        scroll down(webdriver)
        if(int(len post) == len(photo list)):
           break
except:
for i. n in enumerate(photo list):
   urllib.request.urlretrieve(n['src'],str(i)+'.jpg')
```

Input Your Insta ID: dlwlrma

{'alt': 'Photo by 이지금 on May 06, 2020. 이미지: 사람 1명', 'src': 'https://instagram.ficn6-1.fna.fbcdn.net/v/t51.2885-15/sh0.08/e35/s640x64 0/95568948_167961974580082_5631483226254233821_n.jpg?_nc_ht=instagram.ficn6-1.fna.fbcdn.net&_nc_cat=1&_nc_ohc=xad0WZnB7YsAX-10x9V&oh=036c286c49f6690227c0758c87e9477 a&oe=5EE53399'}, {'alt': 'Photo by 이지금 on May 05, 2020. 이미지: 사람 1명, 근접 촬영', 'src': 'https://instagram.ficn6-1.fna.fbcdn.net/v/t51.2885-15/sh0.08/e35/s640x64 0/95862917_159376382232187_2379713728898820327_n.jpg?_nc_ht=instagram.ficn6-1.fna.fbcdn.net&_nc_cat=1&_nc_ohc=JUaPepdg0J8AX-DFfwC&oh=277793407e0227a6b9df366b9c57877 2&oe=5EE5FA68'}.

Object Detection **GIAI**

In [1]:

```
# !pip install —upgrade google-cloud-vision
```

In [1]:

In [12]:

Labels:
Hair
Hairstyle
Lip
Beauty
Long hair
Shoulder
Jaw
Brown hair
Gesture
Finger

딥러닝 기초 스터디 (1주차)

3 blue 1 brown

About Deep Learning

Neural Network
Neurons, Layers, Weights, Biases

Activation function - sigmoid, ReLU / Cost function

Backpropagation / Gradient Descent

이후 스터디

Lecture 9

CS231n: Convolutional Neural Networks for Visual Recognition

Spring 2020

Previous Years: [Winter 2015] [Winter 2016] [Spring 2017] [Spring 2018] [Spring 2019]

Lecture 5 Tuesday Convolutional Neural Networks

April 21 History

Convolution and pooling

ConvNets outside vision

Tuesday **CNN Architectures**May 5 AlexNet, VGG, GoogLeNet, ResNet, etc

Faster R-CNN

PR-012: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

이후 일정

5/18~5/23	CNN, Faster R-CNN △H[[
5/23~5/30	크롤링, Object Detection 구현
5/31~6/06	Labeling된 데이터 유형화 작업
6/07~6/10	음악 추천 웹서비스 구현

고민 사항

고민 사항

(Object Detection)

- 1. 직접 구현
 - Faster R-CNN을 밑단부터
- 2. 기존 API 사용

Keras	코드에 대한 공부는 진행	Label 80~90개 정도
Google Vision		Label 1900개 정도

고민 사항

〈Label 유형화〉

Object Detection 결과로 나온 Label들을 어떻게 유형화할 것인가?

Label들을 vectorization 해서 가장 거리가 가까운 유형과 연결? 등등 고민 중입니다.

〈음악 추천〉

유형별로 어떤 음악을 추천할 것인가?

유형별로 미리 음악을 설정해 놓을지. 새로운 음악 추천 알고리즘을 찾아볼지. 등등 고민 중입니다.

감사합니다

