0.1 Calculate the boiling point increase of a 8m $C_6H_{12}O_6$ aqueous solution. $T_b^{solvent}$ =100°C and k_b =0.512°C/m.

0.6 Calculate the freezing point of a 2m I_2 solution on benzene. $T_f^{solvent}$ =5.5°C and k_f =4.9°C/m.

0.2 Calculate the boiling point of a 3m $C_6H_{12}O_6$ aqueous solution. $T_b^{solvent}$ =100°C and k_b =0.512°C/m.

0.7 The vapor pressure of cyclohexane is 100hPa at 20 $^{\circ}$ C. Calculate the vapor pressure lowering of the solution resulting of mixing 3moles of cyclohexane and 4 moles of I_2 .

0.3 Calculate the boiling point increase of a 8m KCl aqueous solution. $T_b^{solvent}$ =100°C and k_b =0.512°C/m.

0.8 The vapor pressure of cyclohexane is 100hPa at 20° C. Calculate the vapor pressure of the solution resulting of mixing 3moles of cyclohexane and 4 moles of I_2 .

0.4 Calculate the boiling point of a 3m CaCl₂ aqueous solution. $T_b^{solvent}$ =100°C and k_b =0.512°C/m.

0.9 The vapor pressure of cyclohexane is 100hPa at 20° C. Calculate the vapor pressure of the solution resulting of mixing 6moles of cyclohexane and 1 moles of I_2 .

0.5 Calculate the freezing point depression of a 2m I_2 solution on benzene. $T_f^{solvent}$ =5.5°C and k_f =4.9°C/m.

0.18 For the following colloids, indicate the nature of the dispersed and dispersing medium (liquid, solid or gas): (a) soda water (b) cake (c) midst (d) smoke (e) froth	0.22 Calculate the <i>i</i> factor for the following chemicals: (a) NaNO ₃ (b) NaCl (c) CaI ₂ (d) MgCl ₂
0.19 Break down the following electrolytes in ions, if possible: (a) $SnCl_4$ (b) $CuCl_2$ (c) $Ba(OH)_2$ (d) $CuSO_3$ (e) $MgSO_4$	0.23 We dissolve 0.5 moles of solute in 1L of solution reaching a effective concentration of solute particles of 0.9M. Calculate the Van't Hoff factor.
0.20 Break down the following electrolytes in ions, if possible: (a) CaI_2 (b) KNO_3 (c) $CaSO_4$ (d) $FeSO_4$	0.24 We dissolve 3 moles of solute in 1L of solution. Given that Van't Hoff factor of the solute is 3, calculate the nominal solute concentration and the effective concentration of particles on solution.
0.21 Calculate the i factor for the following chemicals: (a) Mg(NO ₃ (b) CuSO ₄ (c) FeCl ₃	0.25 Can the percent dissociation of a electrolyte be more than 2? Elaborate.

0.34 We prepare an $C_6H_{12}O_6$ (MW=180g/mL) solution by mixing 5g of solute in 100mL of water giving 102mL of solution. Calculate: (a) the molarity (b) the molality

0.35

0.36

Answersv. 26 **0.1** 4.01°C **0.2** 101.5°C **0.3** 8.19°C **0.4** 104.07°C **0.5** -4.3°C **0.6** -4.3°C **0.7** -42.85hPa **0.8** 42.8hPa **0.9** 85.71hPa **0.10** -50hPa **0.11** 146.62atm **0.12** -14.28hPa **0.13** none **0.14** The more concentrated (left side). **0.15** (a) 1.4×10^{-4} M/atm (b) 1.2×10^{-4} M **0.16** (a) 1.4×10^{-3} M/atm (b) 7.00×10^{-4} M **0.17** (a) pumice stone lava (dispersed: gas; dispersing: solid) (b) cheese (dispersed: liquid; dispersing: solid) (c) paint (dispersed: solid; dispersing: liquid) (d) clouds (dispersed: liquid; dispersing: gas) **0.18** (a) soda water (dispersed: gas; dispersing: liquid) (b) cake (dispersed: gas; dispersing: solid) (c) midst (dispersed: liquid; dispersing: gas) (d) smoke (dispersed: solid; dispersing: gas) (e) froth (dispersed: gas; dispersing: liquid) **0.19** (a) SnCl₄ (Sn⁴⁺ + 4Cl⁻) (b) CuCl₂ (Cu²⁺ + 2Cl⁻) (c) Ba(OH)₂ (Ba²⁺ + 2OH⁻) (d) CuSO₃ (Cu²⁺ + SO₃²⁻) (e) MgSO₄ (Mg²⁺ + SO₄²⁻) **0.20** (a) CaI₂ (Ca²⁺ + 2I⁻) (b) KNO₃ (K⁺ + NO₃⁻) (c) CaSO₄ (Ca²⁺ + SO₄²⁻) (d) FeSO₄ (Fe²⁺ + SO₄²⁻) **0.21** (a) Mg(NO₃)₂ (b) CuSO₄ (c) FeCl₃ **0.22** (a) NaNO₃ (b) NaCl (c) CaI₂ (d) MgCl₂ **0.23** 1.8 **0.24** $c^{nominal}$ =9M; $c^{effective}$ =9M **0.25** No as the maximum value should be one. **0.26** No as the maximum value should be one. **0.27** (a) 25m (b) 0.97m (c) 4.85m **0.28** (a) 7.14% (b) 20% (c) 33.3% **0.29** (a) 0.03 (b) 0.06 (c) 0.09 **0.30** (a) 1.02g/mL (b) 0.98g/mL **0.31** (a) 1.55M (b) 0.03 (c) 84% **0.32** (a) 0.26M (b) 0.27M (c) 0.45% **0.33** (a) 4.76% (b) 0.005 **0.34** (a) 0.27M (b) 0.28m **0.35** 162g/mol **0.36** 155g/mol