Projekt	"Časově ohraničené úsilí, směřující k vytvoření unikátního produktu nebo služby". Čas a jedinečnost jeho výstupů, ho odlišují od procesu.
Projektový trojimperativ	Definice projektu je dána třemi veličinami, časem, kvalitou výstupu a zdroji. Změna jakékoliv z nich automaticky znamená, že musí dojít k odpovídající změně obou ostatních.
Charakteristiky projektu	rozsah, čas, náklady, kvalita, zdroje, rizika projektu
POS (Project Overview Statement)	Dokument, který by měl obsahovat: Problém a příležitosti Cíl projektu Obsah projektu Kritéria úspěchu Překážky rizika a předpoklady
FURPS	F (functionality) – funkčnost U (usability) – užitečnost R (reliability) – spolehlivost P (performace) – výkon S (supportability) – rozšiřitelnost

F (functionality) – funkčnost	Zaměřuje se na hlavní funkcionality a schopnosti programu, zda software podporuje byznys proces a bezpečnost systému.
U (usability) – užitečnost	Pohled lidského faktoru; jakým celkovým dojmem působí aplikace, dokumentace a školící materiály.
R (reliability) – spolehlivost	Jedná se o hodnocení četnosti a závažnost chyb, přesnosti zpracování vstupů a výstupů. Pro vyjádření spolehlivosti se často používá pojem MTFB (mean time between failures), což je střední doba mezi chybou nebo selháním. V této oblasti se také sledují možnosti obnovení provozu a zotavení výpadku.
P (performace) - výkon	Hodnocení celkové rychlosti odezev systému a zpracování klíčových byznys aktivit. Zároveň se sledují i technické parametry testovaného systému, např. vytížení zdrojů OS, zatížení síťového provozu, vytížení jednotlivých komponent systému.
S (supportability) – rozšiřitelnost	Rozšiřitelnosti aplikace v případě potřeby, možnosti údržby aplikace, její testovatelnosti. V této oblasti se taktéž hodnotí i přizpůsobitelnost a možnosti konfigurování.

Kick off meeting	Úvodní schůzka, která zaručuje, že projekt začíná v kontrolované a organizované podobě.
Analýza požadavků - Sběr požadavků Koho se ptát?	Uživatel vs. Zákazník Všichni vs. Produktový "šampion" (expert na produkt, má zodpovědnost za produkt ale nerozhoduje o zásadních věcech)
Analýza požadavků - Sběr požadavků Jak se ptát?	Workshop/Interview Sledování uživatelů Stávající dokumentace Dotazníky Šampion přímo v týmu (agilní přístup)
Analýza požadavků - Požadavky	Funkční požadavky: p odnikatelské požadavky, podnikatelská pravidla, uživatelská funkcionalita. Nefunkční (obecné) požadavky: kvalitativní parametry, požadavky na rozhraní, omezení.
Analýza požadavků - Obecné požadavky	Zákaznické: dostupnost, efektivita, flexibilita, integrita, kompatibilita, spolehlivost, odolnost, použitelnost (usability) Programátorské: udržovatelnost, přenositelnost, znovupoužitelnost, testovatelnost

Analýza požadavků - Vlastnosti dobrého požadavku	Úplnost Jednoznačnost Správnost Priorita (must/should have, nice to have) Proveditelnost Ověřitelnost (akceptační test)
Analýza požadavků - Životní cyklus požadavku	Sběr Oprava, doplnění nedostatků Výjasnění Přehodnocení Specifikace Přepis
Model užití (Use case) - Typy zobrazení	<i>Model:</i> Aktér, Případ užití, Hranice systému <i>Textová reprezentace:</i> Úspěšný a alternativní scénář(e), Počáteční a koncový stav
Model užití (Use case) - Co to je?	Use case je technika pro zdokumentování požadavku na nový systém, nebo změny na stavajíci systém. Poskytuje jeden nebo více scénářů, které zaznamenávají, jak by systém měl spolupracovat s koncovým uživatelem, nebo jiným systémem k dosažení konkrétních cílů.
Model užití (Use case) - Textový zápis	Podmínky (Preconditions) : podínky nutné před UC. Průběh: průběh tohoto UC. Alternativní průběh: Co se stane, když něco není, jak by mělo. Podmínky (Postcondition): Co nového se po dokončení této UC může.

Model procesů	Konceptuální (implementačně nezávislý) model všeho, co bude výsledek projektu dělat.
Model procesů - Značení	Start/cíl: černí puntík/bílý puntík s černou tečkou Aktivita: obdelník Rozhodování: kosočtverec Parelelní průběh: tlustá svislá čára
Model analitických tříd	Auto Barva Cens Pocet mist Danacki Alia zapujoeno Registrovaný uživatel si může půjčit více aut. Použití vztahu *. * často značí neznalost problematiky – viz další slide. 11 = Auto má pevně určené parkovací místo. Vždy se dá jednoznačně určit, které auto patří na které místo a obráceně.
Plán aktivit - WBS	Jedná se o jednoduchou analytickou techniku, jejímž cílem je rozložit projekt na jednotlivé činnosti až do takové úrovně podrobnosti, aby k nim bylo možné přiřadit odpovědnosti, pracnost a časový horizont.
Milníky	Milník má nulovou dobu trvání a identifikuje kritické místo v plánu. Dosažení tohoto stavu musí být naplánováno a také musí být stanoven čas, ve kterém ho dosáhneme. Etapy projektu na sebe vzájemně navazují, některé mohou běžet současně a vzniká tak síťový graf, ve kterém jsou zobrazeny souběžnosti a závislosti.

Odhad trvání aktivit/projektu	Podobnost s jinými aktivitami Historická data Rada experta Delphi technika (časový poker) Tříbodová technika
Harmonogram projektu	Je to časový plán projektu, který obsahuje posloupnost provedení jednotlivých činností, plánovaná data plnění těchto činností a klíčové milníky projektu. V praxi většinou vyjádřen formou Ganttova diagramu.
Gunttův model	Stanovit cíle projektu Zajistit finance Napsat POS 1 2 3
RACI (matice zodpovědnosti)	Používá se pro přiřazení a zobrazení odpovědností jednotlivých osob v nějakém úkolu. R - Responsible (Odpovědný za vyhotovení) A - Accountable (Odpovědný za úkol) C - Consulted (Možný konzultat k úkolu) I - Informed (Kdo má být informován)
Techniky odhadu rozpočtu	Analogie Podle WBS Tří fázový odhad

	SWOT- Interní analýza
SWOT analýza	analýza S: Silné stránky W: Slabé stránky Fřiležitosti Příležitosti Příležitosti S-O-Strategie: Vývoj nových metod, které jsou vhodné pro rozvoj silných stránek společnosti (projektu). S-T-Strategie: Použití silných stránek pro zamezení hrozeb. W-O-Strategie: Odstranění slabin pro vznik nových příležitostí. W-T-Strategie: Vývoj strategií, díky nimž je možné omezit hrozby, ohrožující naše slabé stránky.
ROI	Označuje poměr vydělaných peněz k penězům investovaným. ROI tedy udává výnos v procentech z utracené částky. ROI (%) = výnosy / investice * 100
Tabulka rizik	Musí obsahovat: Popis rizika Pravděpodobnost rizika Dopad rizika na trojúhelník Závažnost rizika Protiopatření Rizika jsou: Technická, Spojená s řízením, Organizační, Externí
Jak udržet projekt ITOB?	Pravidelné denní meetingy Práce ASAP Reportování ASAP Nebojte se Nehádejte – ptejte se Splňte, ale nepřekračujte požadavky S lidmi v týmu jednejte na rovinu ASAP (As Soon As Possible) = co nejdříve
EVA	Je nástroj pro zjišťování a dodržování kvality při realizaciprojektu. Díky ní lze dokázat, zda projekt po realizaci přináší či nepřináší peněžní hodnotu.

Reakce na skluz/prodražování	Změna plánu Změnou zdrojů Domluvou se zákazníkem
SCM	Jedná se o celý balík programových prostředků, který umožňuje propojení jednotlivých článků dodavatelského řetězce (dodavatel - výrobce - distributor - prodejce - zákazník), a tím podstatně zlepšuje jeho schopnost reagovat na požadavky zákazníka.
High cohesion – Vysoká soudržnost	Tato zásada říká, že každý objekt, každá metoda musejí mít jediný (a navíc jednoduchý) úkol, za nejž jsou zodpovědní.
Low coupling – Nízká provázanost	Říká že každá entita si má při plnění úkolů vystačit sama a minimálně se obracet na jiné entity. Tuto zásadu není možné dodržet, ale lze se k ní přiblížit, jinými slovy – počet vazeb mezi třidami by měl být minimální.
Demeterova pravidla	Ta říkají, že uvnitř metody bychom měli pracovat pouze s: Sebou samým Parametrem metody Atributem this Elementem kolekce, které je v atributu this Objektem vytvořeným uvnitř metody Volání metod s nízkým provázáním může vypadat takto: sales.GetPavment().GetAmmount()

DRY (Don't repeat yourself)	Kód je jen na jednom místě Není jen problém týmů "Každý kus znalostí musí mít jediné, jednoznačné, zastoupení v autoritativní systému."
Princip objektového návrhu GRASP	Je sada doporučení, principů a vodítek, sloužících k vytvoření kvalitnějšího objektového návrhu. Princip GRASP se zaměřuje se na rozdělení zodpovědností jednotlivým třídám a objektům. Zodpovědností se rozumí podúloha, kterou má třída nebo skupina tříd řešit.
GRASP - Creator	B by měla vytvářet A pokud: Instance B se skládají z A Instance B zaznamenávají A Instance B úzce využívají A Instance B mají informace nezbytné pro vznik A
GRASP - Polymorphism	Chování se mění na základě typu objektu.
GRASP - Controller	Třída označovaná jako controller (ovladač) je taková třída, která jako první zpracovává systémovou událost a zajišťuje její provedení.

Class model UML	Úrovně – konceptuální, designová a implementační. Konceptuální (analytický) model je vytvářen za účelem analýzy požadavků na software. Designový model (model návrhu) rozšiřuje a zpřesňuje např. o viditelnosti atributů a metod, datové typy ap.
Sekvenční diagram UML	Zobrazuje chování a spolupráci jednotlivých objektů v rámci jednoho případu užití.
Testování zahrnuje	Plánování testu Provedení testu Porozumění výsledkům testu Nápravná opatření
Testování provádí	Uživatel Tvůrce Tester (<i>Technická způsobilost, Tvůrčí myšlení, Kritické</i> myšlení, Praktické myšlení)
Proč testovat?	Čím dříve se chyby odhalí, tím nižší jsou náklady na jejich odstranění.

Cíl testování	Ověřit, že SW dělá přesně to, co je uvedeno ve specifikaci a dále jak je schopen se vyrovnat s nestandardními stavy, jak reaguje na chybu uživatele nebo chybu v datech, selhání jiné SW nebo HW komponenty, jak se vypořádá se zátěží a nedostatkem systémových zdrojů, zda se dokáže zotavit po havárii, zda je odolný vůči útokům, jak funguje na různých HW a SW konfiguracích, atd.
Black-box testing	Je realizováno bez znalosti vnitřní datové a programové struktury. To znamená, že tester nemá k dispozici žádnou dokumentaci, binární ani zdrojové kódy. Tento způsob testování vyžaduje testovací scénáře, které jsou buď poskytnuty testerovi, nebo si je tester u některých typů testů sám vytváří.
Black-box testing - Klady	Tester nemusí být technik. Ověří rozpory mezi systémem a specifikací Test cases mohou být vytvořeny hned jak je hotová funkční specifikace
Black-box testing - Zápory	Jsou třeba rozsáhlá testovací data (vstupy) Je těžké odhalit všechny důležité vstupy v omezeném čase Vysoká pravděpodobnost změny testovaného blackboxu během testování
Testování zátěže (Performance/Load)	Hlavní myšlenka: 1. Ověřit, že SW obstojí v běžném provozu 2. Zjistit, kdy to spadne Má smysl ho provádět až po dokončení SW Začít testovat na prázdné DB – co je pomalé na prázdné, určitě nebude rychlé na plné

Reakce na výsledky zátěžových testů	Koupit lepší železo Úprava kódu Varovná zpráva Omezení počtu transakcí
White-box testing	Základní myšlenka: To co je implementováno je implementováno správně? Je dostupná aplikace i kód
Unit testing	Testujeme nejmenší části programu Postupně postupujeme k větším celkům metoda> třída Každá testovana unit by neměla být závyslá na ostatních
Nástroje Unit testing	JUnit - <i>NetBeans</i> TestNG - <i>inspirace z Junit, vylepšení</i> xUnit frameworks - <i>C++, C#, PHP, Ruby, Python</i> dbUnit Code Coverage
Statické testování	Nevyžaduje běh softwaru, proto je možné s ním začít ještě před vytvořením prvního prototypu: I dokumentace je předmětem testování.

Dinamické testování	Vyžaduje existenci spustitelné verze softwaru a probíhá hlavně na základě poskytování různých vstupů a posuzování výstupů testovaného programu.
V - model	Sběr funkčních požadavků Sběr systémových požadavků Systémové testování Integrační testování Programování Unit testování
Řízení projektů používající agilní metodiky	Vize Týmová práce & spolupráce Jednoduchá pravidla Sdílení informací Lehké řízení Učení se Spokojený zákazník i programátor Za krátkou dobu, dodat kvaitní SW
Co Agilní přístup potřebuje?	Zkušené programátory Někoho s předchozí zkušeností s Agile Komunikační schopnosti Doporučeno v malých týmec, Zkušení programátoři, nekritické systémy
Žádost o změnu	Název změny/ID Žadatel Stručný popis změny a její zdůvodnění Podrobný popis změny Dopady do stávajícího prostředí Cena Časová náročnost

SCRUM	Agilní metodika řízení IT pro 4 až 15 osob v jedné místnosti. Figurují v dvě skupiny tzv. Pigs a Chickens. PIGS: osoby, které přímo souvisejí s vývojem aplikace. CHICKENS: uživatelé produktu, manažeři, kteří přímo nezodpovídají za vývoj
Dělení PIGS	Product Owner - osoba, která zodpovídá za priority, za to, co se bude v příštím sprintu implementovat a určuje implementační detaily. Scrum Master - ten, kdo má programátory odstínit od okolního světa. Řídí vývojáře, ale zároveň se stará o to, aby jim fungovaly počítače, měli dostupný software, řeší spory apod.
Dělení CHICKENS	Stakeholders – lidé od zákazníka, testeři, připomínky zvenčí. Managers – osoby, které pomáhají nastavit prostředí, ale nejsou nic zbývajícího
Fáze celého projektu v agilních metodikách	Nultá iterace – první krátká analýza a naprogramování nějaké základní činnosti, který se dá předvést Analýza změny implementace požadované vlastnosti Předvedení klientovi Pokud není produkt hotov, zpet k analýze Pokud ano - údržba, rozvoj
Stadia testování v projektu	Zahajovácí fáze: testování dokumentace, bez funkčního kódu, ověřování případů užití. Produkční fáze: testování nových funkcionalit, testování celého řešení k odevzdání. Dokončovací fáze a předávání: testování celého produktu, testování instalačního balíku produktu a upgradů.