Week 7: Search Tree Data Structures

Searching 6/73

An extremely common application in computing

- given a (large) collection of *items* and a *key* value
- find the item(s) in the collection containing that key
 - o item = (key, val₁, val₂, ...) (i.e. a structured data type)
 - key = value used to distinguish items (e.g. student ID)

Applications: Google, databases,

... Searching 7/73

Since searching is a very important/frequent operation, many approaches have been developed to do it

Linear structures: arrays, linked lists, files

Arrays = random access. Lists, files = sequential access.

Cost of searching:

	Array	List	File
Unsorted	O(n)	O(n)	O(n)
	(linear scan)	(linear scan)	(linear scan)
Sorted	O(log n)	O(n)	O(log n)
	(binary search)	(linear scan)	(seek, seek,)

- O(n) ... linear scan (search technique of last resort)
- O(log n) ... binary search, search trees (trees also have other uses)

Also (cf. COMP9021): hash tables (O(1), but only under optimal conditions)

... Searching 8/73

Maintaining the order in sorted arrays and files is a costly operation.

Search trees are as efficient to search but more efficient to maintain.

Example: the following tree corresponds to the sorted array [2, 5, 10, 12, 14, 17, 20, 24, 29, 30, 31, 32]:

7/72

Tree Data Structures

9/73

Trees are connected graphs

- consisting of nodes and edges (called links), with no cycles (no "up-links")
- each node contains a data value (or key+data)
- each node has links to $\leq k$ other child nodes (k=2 below)

... Tree Data Structures

10/73

Trees are used in many contexts, e.g.

- representing hierarchical data structures (e.g. expressions)
- efficient searching (e.g. sets, symbol tables, ...)

... Tree Data Structures

11/73

Trees can be used as a data structure, but also for *illustration*.

E.g. showing evaluation of a prefix arithmetic expression

... Tree Data Structures

12/73

Binary trees (k=2 children per node) can be defined recursively, as follows:

A binary tree is either

- empty (contains no nodes)
- consists of a *node*, with two *subtrees*
 - o node contains a value
 - left and right subtrees are binary trees

... Tree Data Structures

13/73

Other special kinds of tree

- *m-ary tree*: each internal node has exactly *m* children
- Ordered tree: all left values < root, all right values > root
- Balanced tree: has ≅minimal height for a given number of nodes
- Degenerate tree: has ≅maximal height for a given number of nodes

Search Trees

14/73

Binary search trees (or BSTs) have the characteristic properties

- each node is the root of 0, 1 or 2 subtrees
- all values in any left subtree are less than root
- all values in any right subtree are greater than root
- these properties applies over all nodes in the tree

perfectly balanced trees have the properties

- #nodes in left subtree = #nodes in right subtree
- this property applies over all nodes in the tree

... Binary Search Trees

16/73

Operations on BSTs:

- insert(Tree,Item) ... add new item to tree via key
- delete(Tree, Key) ... remove item with specified key from tree
- search(Tree,Key) ... find item containing key in tree
- plus, "bookkeeping" ... new(), free(), show(), ...

Notes:

- in general, nodes contain Items; we just show Item. key
- keys are unique (not technically necessary)

... Binary Search Trees

17/73

Examples of binary search trees:

Shape of tree is determined by order of insertion.

... Binary Search Trees

18/73

Level of node = path length from root to node

Height (or: depth) of tree = max path length from root to leaf

Height-balanced tree: ∀ nodes: height(left subtree) = height(right subtree) ± 1

Time complexity of tree algorithms is typically *O(height)*

Exercise #1: Insertion into BSTs

19/73

For each of the sequences below

- start from an initially empty binary search tree
- show tree resulting from inserting values in order given
- (a) 4 2 6 5 1 7 3
- (b) 6 5 2 3 4 7 1
- (c) 1 2 3 4 5 6 7

Assume new values are always inserted as new leaf nodes

- (a) the balanced tree from 3 slides ago (height = 2)
- (b) the non-balanced tree from 3 slides ago (height = 4)
- (c) a fully degenerate tree of height 6

Representing BSTs

21/73

Binary trees are typically represented by node structures

• containing a value, and pointers to child nodes

Most tree algorithms move *down* the tree. If upward movement needed, add a pointer to parent.

... Representing BSTs

22/73

Typical data structures for trees ...

We ignore items ⇒ data in Node is just a key

... Representing BSTs

23/73

Abstract data vs concrete data ...

Tree Algorithms

Most tree algorithms are best described recursively

Insertion into BSTs

26/73

Insert an item into appropriate subtree

Tree Traversal

Iteration (traversal) on ...

- Lists ... visit each value, from first to last
- Graphs ... visit each vertex, order determined by DFS/BFS/...

For binary Trees, several well-defined visiting orders exist:

- preorder (NLR) ... visit root, then left subtree, then right subtree
- *inorder* (LNR) ... visit left subtree, then root, then right subtree
- postorder (LRN) ... visit left subtree, then right subtree, then root
- level-order ... visit root, then all its children, then all their children

... Tree Traversal

Consider "visiting" an expression tree like:

NLR: + * 1 3 - * 5 7 9 (prefix-order: useful for building tree)

LNR: 1 * 3 + 5 * 7 - 9 (infix-order: "natural" order)

LRN: 1 3 * 5 7 * 9 - + (postfix-order: useful for evaluation)
Level: + * - 1 3 * 9 5 7 (level-order: useful for printing tree)

Exercise #2: Tree Traversal

29/73

Show NLR, LNR, LRN traversals for the tree

NLR (preorder): 20 10 5 2 14 12 17 30 24 29 32 31

LNR (inorder): 2 5 10 12 14 17 20 24 29 30 31 32

LRN (postorder): 2 5 12 17 14 10 29 24 31 32 30 20

Exercise #3: Non-recursive traversals

31/73

Write a non-recursive *preorder* traversal algorithm.

Assume that you have a stack ADT available.

```
Input tree t

push t onto new stack S
while stack is not empty do
    t = pop(S)
    print data(t)
    if right(t) is not empty then
    push right(t) onto S
```

if left(t) is not empty then

showBSTreePreorder(t):

end if

```
push left(t) onto S
end if
end while
```

Joining Two Trees

33/73

An auxiliary tree operation ...

Tree operations so far have involved just one tree.

An operation on two trees: $t = joinTrees(t_1, t_2)$

- Pre-conditions:
 - takes two BSTs; returns a single BST
 - \circ max(key(t₁)) < min(key(t₂))
- Post-conditions:
 - result is a BST (i.e. fully ordered)
 - $\circ~$ containing all items from t_1 and t_2

... Joining Two Trees

34/73

Method for performing tree-join:

- find the min node in the right subtree (t₂)
- replace min node by its right subtree
- elevate min node to be new root of both trees

Advantage: doesn't increase height of tree significantly

 $x \le height(t) \le x+1$, where $x = max(height(t_1), height(t_2))$

Variation: choose deeper subtree; take root from there.

... Joining Two Trees

35/73

Joining two trees:

Note: t2' may be less deep than t2

... Joining Two Trees

Implementation of tree-join

```
joinTrees (t_1, t_2):
   Input trees t_1, t_2
   Output t_1 and t_2 joined together
   if t_1 is empty then return t_2
   else if t_2 is empty then return t_1
   e1se
      curr=t<sub>2</sub>, parent=NULL
      while left(curr) is not empty do // find min element in t<sub>2</sub>
         parent=curr
         curr=left(curr)
      end while
      if parent≠NULL then
         left(parent) = right(curr) // unlink min element from parent
         right (curr)=t<sub>2</sub>
      end if
      1eft (curr)=t_1
                                       // curr is new root
      return curr
   end if
```

Exercise #4: Joining Two Trees

37/73

Join the trees

Deletion from BSTs

39/73

Insertion into a binary search tree is easy.

Deletion from a binary search tree is harder.

Four cases to consider ...

• empty tree ... new tree is also empty

- zero subtrees ... unlink node from parent
- one subtree ... replace by child
- two subtrees ... replace by successor, join two subtrees

... Deletion from BSTs

40/73

Case 2: item to be deleted is a leaf (zero subtrees)

Just delete the item

... Deletion from BSTs

41/73

Case 2: item to be deleted is a leaf (zero subtrees)

... Deletion from BSTs

42/73

Case 3: item to be deleted has one subtree

Replace the item by its only subtree

... Deletion from BSTs

Case 3: item to be deleted has one subtree

... Deletion from BSTs

44/73

Case 4: item to be deleted has two subtrees

Version 1: right child becomes new root, attach left subtree to min element of right subtree

... Deletion from BSTs

45/73

Case 4: item to be deleted has two subtrees

... Deletion from BSTs

46/73

Case 4: item to be deleted has two subtrees

Version 2: join left and right subtree

... Deletion from BSTs

47/73

Case 4: item to be deleted has two subtrees

... Deletion from BSTs

48/73

Pseudocode (version 2 for case 4)

```
TreeDelete(t, item):
   Input tree t, item
  Output t with item deleted
   if t is not empty then
                                  // nothing to do if tree is empty
      if item < data(t) then
                                  // delete item in left subtree
         left(t) = TreeDelete(left(t), item)
      else if item > data(t) then // delete item in right subtree
        right(t)=TreeDelete(right(t), item)
                                   // node 't' must be deleted
      e1se
         if left(t) and right(t) are empty then
                                            // O children
           new=empty tree
         else if left(t) is empty then
                                             // 1 child
            new=right(t)
        else if right(t) is empty then
           new=1eft(t)
                                             // 1 child
         else
           new=joinTrees(left(t), right(t)) // 2 children
         free memory allocated for current node t
         t=new
      end if
   end if
  return t
```

Balanced Binary Search Trees

Goal: build binary search trees which have

minimum height ⇒ minimum worst case search cost

Best balance you can achieve for tree with N nodes:

- abs(#nodes(LeftSubtree) #nodes(RightSubtree)) ≤ 1, for every node
- height of $log_2N \Rightarrow$ worst case search O(log N)

Operations for Rebalancing

50/73

To assist with rebalancing, we consider new operations:

Left rotation

• move right child to root; rearrange links to retain order

Right rotation

• move left child to root; rearrange links to retain order

Insertion at root

• each new item is added as the new root node

Tree Rotation 51/73

In tree below: $t_1 < n_2 < t_2 < n_1 < t_3$

... Tree Rotation 52/73

Method for rotating tree T right:

- N₁ is current root; N₂ is root of N₁'s left subtree
- N₁ gets new left subtree, which is N₂'s right subtree
- N₁ becomes root of N₂'s new right subtree
- N₂ becomes new root

Left rotation: swap left/right in the above.

Cost of tree rotation: *O*(1)

... Tree Rotation 53/73

Algorithm for right rotation:

```
\begin{tabular}{ll} rotateRight(n_1): \\ & | & Input & tree & n_1 \\ & | & Output & n_1 & rotated & to & the & right \\ & | & if & n_1 & is & empty & or & left(n_1) & is & empty & then \\ & | & return & n_1 \\ & | & end & if \\ & | & n_2 = left(n_1) \\ & | & left(n_1) = right(n_2) \\ & | & right(n_2) = n_1 \\ & | & return & n_2 \\ \end{tabular}
```


Exercise #5: Tree Rotation

Show the result of rotateRight(t)

Exercise #6: Tree Rotation

56/73

Write the algorithm for left rotation

Insertion at Root

58/73

Previous description of BSTs inserted at leaves.

Different approach: insert new item at root.

Potential disadvantages:

• large-scale rearrangement of tree for each insert

Potential advantages:

- recently-inserted items are close to root
- low cost if recent items more likely to be searched

... Insertion at Root 59/73

Method for inserting at root:

- base case:
 - o tree is empty; make new node and make it root
- recursive case:
 - o insert new node as root of appropriate subtree
 - lift new node to root by rotation

... Insertion at Root 60/73

Exercise #7: Insertion at Root

61/73

Consider the tree t:

Show the result of insertAtRoot (t, 24)

... Insertion at Root 63/73

Analysis of insertion-at-root:

- same complexity as for insertion-at-leaf: *O(height)*
- tendency to be balanced, but no balance guarantee
- benefit comes in searching
 - o for some applications, search favours recently-added items
 - insertion-at-root ensures these are close to root
- could even consider "move to root when found"
 - effectively provides "self-tuning" search tree
 - ⇒ more on this in week 8 (real balanced trees)

Randomised BST Insertion

64/73

Effects of order of insertion on BST shape:

- best case (for at-leaf insertion): keys inserted in pre-order (median key first, then median of lower half, median of upper half, etc.)
- worst case: keys inserted in ascending/descending order
- average case: keys inserted in random order $\Rightarrow O(\log_2 n)$

Tree ADT has no control over order that keys are supplied.

Can the algorithm itself introduce some randomness?

In the hope that this randomness helps to balance the tree ...

... Randomised BST Insertion

65/73

How can a computer pick a number at random?

• it cannot

Software can only produce pseudo random numbers.

- a pseudo random number may appear unpredictable
 - but is actually predictable
- ⇒ implementation may deviate from expected theoretical behaviour
 - more on this in week 10

... Randomised BST Insertion

• Pseudo random numbers in C:

```
rand() // generates random numbers in the range 0 .. RAND_MAX where the constant RAND_MAX is defined in stdlib. h (depends on the computer: on the CSE network, RAND_MAX = 2147483647)
```

To convert the return value of rand() to a number between 0 .. RANGE

compute the remainder after division by RANGE+1

... Randomised BST Insertion

67/73

Approach: normally do leaf insert, randomly do root insert.

```
insertRandom(tree, item)
    Input tree, item
    Output tree with item randomly inserted

if tree is empty then
    return new node containing item
end if
// p/q chance of doing root insert
if random number mod q
```

E.g. 30% chance \Rightarrow choose p=3, q=10

... Randomised BST Insertion

68/73

Cost analysis:

- similar to cost for inserting keys in random order: O(log n)
- does not rely on keys being supplied in random order

Approach can also be applied to deletion:

- standard method promotes inorder successor to root
- for the randomised method ...
 - promote inorder successor from right subtree, OR
 - promote inorder predecessor from left subtree

Application of BSTs: Sets

69/73

Trees provide efficient search.

Sets require efficient search

- to find where to insert/delete
- to test for set membership

Logical to implement a set ADT via BSTree

... Application of BSTs: Sets

70/73

Assuming we have Tree implementation

- which precludes duplicate key values
- which implements insertion, search, deletion

then Set implementation is

... Application of BSTs: Sets

71/73

After SetInsert(s,4):

After SetDelete(s,2):

... Application of BSTs: Sets

72/73

Concrete representation:

```
#include "BSTree.h"

typedef struct SetRep {
   int nelems;
   Tree root;
} SetRep;
```

```
typedef SetRep *Set;

Set newSet() {
    Set S = malloc(sizeof(SetRep));
    assert(S != NULL);
    S->nelems = 0;
    S->root = newTree();
    return S;
}
```

Summary 73/73

- Binary search tree (BST) data structure
- Tree traversal
- Basic BST operation: insertion, join, deletion, rotation
- Randomised at-leaf/at-root insertion
- Suggested reading:
 - o Sedgewick, Ch. 12.5-12.6, 12.8

Produced: 24 Oct 2022