23 C Sur un parcours donné, la conso	omma-
tion y d'une voiture est donnée en fonctio	n de sa
vitesse moyenne x par le tableau suivant :	

80	90	100	110	120
4	4,8	6,3	8	10
	80		80 90 100 4 4,8 6,3	

- **1.** La consommation est-elle proportionnelle à la vitesse moyenne ? Justifier la réponse.
- **2. a)** Représenter le nuage de points correspondant à la série statistique $(x_i; y_i)$ dans un repère orthogonal du plan (on prendra 2 cm pour 10 km/h sur l'axe des abscisses et 1 cm pour 1 L sur l'axe des ordonnées).

b) Déterminer les coordonnées du point moyen G

- du nuage et le placer sur le graphique. c) À l'aide d'une calculatrice, donner une équation, sous la forme y = ax + b, de la droite d'ajustement affine de y en x par la méthode des moindres carrés et tracer cette droite (on arron-
- **d)** En utilisant cet ajustement, estimer la consommation aux 100 km (arrondie au dixième) de la voiture pour une vitesse de 130 km/h.

dira a au millième et b au centième).

3. La forme du nuage permet d'envisager un ajustement exponentiel.

On pose $z = \ln(y)$ et on admet que la droite d'ajustement obtenue pour les cinq points (x; z) du nuage par la méthode des moindres carrés, a pour équation :

$$z = 0.023 \ 4x - 0.508 \ 0.$$

- **a)** Écrire y sous la forme $y = A e^{Bx}$ (donner A et B arrondis à 10^{-4}).
- **b)** Tracer, sur le même graphique, la courbe d'équation $y = A e^{Bx}$ pour x élément de l'intervalle [80; 120].