Probabilistic models 1 – The language of thought and Bayesian models

Reading: Piantadosi et al.: The logical primitives of thought

Jakub Dotlačil

Cognitive Modeling, 2019-2020

This class

- How are concepts/morphemes learned and stored?
 We will focus on rule-based learning and a symbolic system (the Language of Thought)
- How can logic, linguistics and a probability theory be combined to address the question of concept learning?

- wudsy and pointing to the figure in the middle
- Does *wudsy* expresses the concept 'green,' 'square,' 'green square,' the middle element...?

- How are kids to find out what concepts are denoted by words/morphemes?
- Word vs. morpheme:
- tall
- tall-est
- Excluding a few exceptions (cran-berry) we are interested in the meaning of morphemes

Concepts as a heap

Concepts structured

(Relations)

• Concepts as a heap

• Concepts structured

(Numbers)

Concepts as a heap

Concepts structured

Quantifiers: some, most, all, more than three, at least five...

Concept learning/storing

- Engineering: Neural network models, mainly hand in hand with visual cognition (Ronneberger et al., 2015)
- Psychology and linguistics: Prototype theory, conceptual spaces (Berlin and Kay, 1969; Gärdenfors, 2004; Lakoff, 1987)
- Linguistics and applied logic: natural language semantics with formal systems (e.g., first-order logic, higher order logics) (Montague, 1973)

We will look at the combination of applied logic (formal semantics) with cognitive modeling

- Probability and conditional probability
- 2 Language of thought and concept learning
- 3 Concept learning: Experiment
- 4 Concept learning: Modeling
- Word acquisition

- $P(\blacksquare) = P(\bullet) = P(\blacktriangle) = \frac{1}{3}$
- $P(\blacksquare \cup \bullet) = P(\blacksquare) + P(\bullet) = \frac{2}{3}$ etc.

Probability of space of events S

- $P(S) = 1, P(\emptyset) = 0$
- If events A_1, A_2, \ldots are independent, then

$$P(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} P(A_j)$$

• We hear 'green ...' What do we conclude?

- We hear 'green ...' What do we conclude?
- $P(\bullet|green) = ?, P(\bullet|green) = ?$ etc.
- P(A|B) the probability of A given B
- $P(A|B) = \frac{P(A \cap B)}{P(B)}$

- We hear 'green ...' What do we conclude?
- $P(\bullet|green) = ?, P(\bullet|green) = ?$ etc.
- P(A|B) the probability of A given B
- $P(A|B) = \frac{P(A \cap B)}{P(B)}$
- $P(\blacksquare|green) = \frac{P(\blacksquare \cap green)}{P(green)}$

- We hear 'green ...' What do we conclude?
- $P(\blacksquare|green) = \frac{P(\blacksquare \cap green)}{P(green)} = \frac{1}{2}$ $P(\blacktriangle|green) = \frac{P(\blacktriangle \cap green)}{P(green)} = \frac{1}{2}$

- We hear 'green ...' What do we conclude?
- $P(\blacksquare|green) = \frac{P(\blacksquare \cap green)}{P(green)} = \frac{1}{2}$ $P(\blacktriangle|green) = \frac{P(\blacktriangle \cap green)}{P(green)} = \frac{1}{2}$

Things to note:

- P(A|B) the probability of A given B (what information does observing event *B* provide about event *A*?)
- Conditional probability is a probability $(P(\cdot|B))$ forms a probability space)
- In fact, we can think of any probability as conditional probability P(A) = P(A|S)

Two girls' paradox:

- Mr. Jones has two children. The older child is a girl (B). What is the probability that both children are girls (A)?
- Mr. Jones has two children. At least one of them is a girl (C). What is the probability that both children are girls (A)?

Two girls' paradox:

- Mr. Jones has two children. The older child is a girl (B). What is the probability that both children are girls (A)?
- Mr. Jones has two children. At least one of them is a girl (C). What is the probability that both children are girls (A)?

Some assumptions $-P(boy) = P(girl) = \frac{1}{2}$, the sex of one kid does not influence the sex of the other kid

Two girls' paradox:

- Mr. Jones has two children. The older child is a girl (B). What is the probability that both children are girls (A)?
- **2** Mr. Jones has two children. At least one of them is a girl (C). What is the probability that both children are girls (A)?

Some assumptions $-P(boy) = P(girl) = \frac{1}{2}$, the sex of one kid does not influence the sex of the other kid

• events: $\{bb, bg, gb, gg\}$

Two girls' paradox:

- Mr. Jones has two children. The older child is a girl (B). What is the probability that both children are girls (A)?
- Mr. Jones has two children. At least one of them is a girl (C). What is the probability that both children are girls (A)?

Some assumptions $-P(boy) = P(girl) = \frac{1}{2}$, the sex of one kid does not influence the sex of the other kid

- events: {*bb*, *bg*, *gb*, *gg*}
- $P(A|B) = \frac{P(\{gg\})}{P(\{gb,gg\})} = \frac{1}{2}$
- $P(A|C) = \frac{P(\{gg\})}{P(\{bg,gb,gg\})} = \frac{1}{3}$

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

•
$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

•
$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

•
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$
 (Bayes' rule)

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

•
$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

•
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

(Bayes' rule)

•
$$P(B) = \sum_{i} P(A_i \cap B) = \sum_{i} P(B|A_i)P(A_i)$$

(LOTP)

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

•
$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

•
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$
 (Bayes' rule)

•
$$P(B) = \sum_{i} P(A_i \cap B) = \sum_{i} P(B|A_i)P(A_i)$$
 (LOTP)

•
$$P(A|B) = \frac{P(B|A)P(A)}{\sum_{i} P(B|A_i)P(A_i)}$$
 (Bayes' rule+LOTP)

- One fair coin $(P(H) = \frac{1}{2})$, one coin which lands Heads with $P(H) = \frac{3}{4}$.
- You pick one coin randomly and land H three times.
- What is the probability that you picked a fair coin?

- One fair coin $(P(H) = \frac{1}{2})$, one coin which lands Heads with $P(H) = \frac{3}{4}$.
- You pick one coin randomly and land H three times.
- What is the probability that you picked a fair coin?

$$P(F|A) = \frac{P(A|F)P(F)}{P(A)}$$

- One fair coin $(P(H) = \frac{1}{2})$, one coin which lands Heads with $P(H) = \frac{3}{4}$.
- You pick one coin randomly and land H three times.
- What is the probability that you picked a fair coin?

$$P(F|A) = \frac{P(A|F)P(F)}{P(A)}$$

$$= \frac{P(A|F)P(F)}{P(A|F)P(F) + P(A|NF)P(NF)}$$

- One fair coin $(P(H) = \frac{1}{2})$, one coin which lands Heads with $P(H) = \frac{3}{4}$.
- You pick one coin randomly and land H three times.
- What is the probability that you picked a fair coin?

$$P(F|A) = \frac{P(A|F)P(F)}{P(A)}$$

$$= \frac{P(A|F)P(F)}{P(A|F)P(F) + P(A|NF)P(NF)}$$

$$= \frac{(1/2)^3 \cdot 1/2}{(1/2)^3 \cdot 1/2}$$

- One fair coin $(P(H) = \frac{1}{2})$, one coin which lands Heads with $P(H) = \frac{3}{4}$.
- You pick one coin randomly and land H three times.
- What is the probability that you picked a fair coin?

$$P(F|A) = \frac{P(A|F)P(F)}{P(A)}$$

$$= \frac{P(A|F)P(F)}{P(A|F)P(F) + P(A|NF)P(NF)}$$

$$= \frac{(1/2)^3 \cdot 1/2}{(1/2)^3 \cdot 1/2 + (3/4)^3 \cdot 1/2}$$

$$= 0.23$$

•
$$P(A|B) = \frac{P(B|A)P(A)}{\sum_{i} P(B|A_i)P(A_i)}$$
 (Bayes' rule+LOTP)

- P(A|B) the posterior probability
- P(A) the prior probability
- P(B|A) the likelihood
- P(B) the evidence

Random variable:

• A random variable is a function from *S* (sample space) to the real numbers *R*.

Quick exercise:

- You throw a coin twice. Possible outcomes:
 S = {HH, HT, TH, TT}
- Random variable X (number of heads): X(HH) = 2, X(HT) = 1, X(TH) = 1, X(TT) = 0

When X is discrete – we are interested in **probability mass function** of X

Random variable:

• A random variable is a function from *S* (sample space) to the real numbers *R*.

Quick exercise:

- You throw a coin twice. Possible outcomes:
 S = {HH, HT, TH, TT}
- Random variable *X* (number of heads):

$$X(HH) = 2, X(HT) = 1, X(TH) = 1, X(TT) = 0$$

When *X* is discrete – we are interested in **probability mass function** of *X*

$$P(X = 0) = \frac{1}{4}, P(X = 1) = \frac{1}{2}, P(X = 2) = \frac{1}{4}$$

Random variable:

• A random variable is a function from *S* (sample space) to the real numbers *R*.

When *X* is continuous – we are interested in **probability density function** of *X*

E.g., say *X* is the height of a person in USA

$$P(X \ge 162) = 0.5, P(X \ge 190) = 0.003$$

Some commonly used distributions have a special name:

- Normal distribution (probability density function) $X \sim Norm(\mu, \sigma^2)$
- Bernoulli distribution (probability mass function) $X \sim Bern(p)$

Bernoulli distribution Bern(p): P(X = 1) = p, P(X = 0) = 1 - p

Learning concepts as posterior probabilities

- Let's say you hear *wudsy* and see pointing to the figure in the middle
- Does it correspond to 'green', to 'square', to 'green square', to the middle element...?
- *h* hypothesis about meaning of *wudsy*
- *P*(*b*)
- P(h|I) I novel information
- We will now explore h. Once we know how to formulate h and the corresponding P(h), P(h|I) follows from Bayes' rule.

Learning concepts as posterior probabilities

- Let's say you hear *wudsy* and see pointing to the figure in the middle
- Does it correspond to 'green', to 'square', to 'green square', to the middle element...?
- *h* hypothesis about meaning of *wudsy*
- *P*(*b*)
- P(h|I) I novel information
- We will now explore h. Once we know how to formulate h and the corresponding P(h), P(h|I) follows from Bayes' rule.

Language of thought Fodor, 1975

- A set of computational primitives
- The primitives can be combined into more complex objects by rule-based mechanisms

CFG:

- \bullet START \rightarrow P
- $P \to P \wedge Q$
- $P \to P \vee Q$
- \bullet P \rightarrow TRUE
- \bigcirc P \rightarrow FALSE
- $\bigcirc P \rightarrow COLOR(o)$
- $P \rightarrow SIZE(o)$
- Solution
 Solution</

CFG:

- $\mathbf{0}$ START \rightarrow P
- $P \to P \land Q$
- $P \to P \vee Q$
- \bullet P \rightarrow TRUE
- \bigcirc P \rightarrow FALSE
- \bigcirc P \rightarrow COLOR(o)
- $P \rightarrow SIZE(o)$
- Solution
 Solution</
- 9 SIZE \rightarrow size1|size2|size3

wudsy:

CFG:

- $\mathbf{0}$ START \rightarrow P
- $P \to P \land Q$
- $P \to P \lor Q$
- \bullet P \rightarrow TRUE
- \bigcirc P \rightarrow FALSE
- \bullet P \rightarrow COLOR(o)
- $P \rightarrow SIZE(o)$
- Solution
 Solution</

CFG:

- $\mathbf{0}$ START \rightarrow P
- $P \to P \land Q$
- $P \to P \lor Q$
- \bullet P \rightarrow TRUE
- \bigcirc P \rightarrow FALSE
- $\bigcirc P \rightarrow COLOR(o)$
- $P \rightarrow SIZE(o)$
- Solution
 Solution</

Probabilistic language of thought

PCFG:

	(1.0)
$ P \to P \land Q $	$(\frac{1}{6})$
	$(\frac{1}{6})$
	$(\frac{1}{6})$
\circ P \rightarrow FALSE	$(\frac{1}{6})$
6 $P \rightarrow COLOR(o)$	$(\frac{1}{6})$
$ P \to SIZE(o) $	$(\frac{1}{6})$
\odot COLOR \rightarrow blue green yellow	$(\frac{1}{3})$
9 SIZE \rightarrow size1 size2 size3	$(\frac{1}{3})$

Probabilistic language of thought

wudsy:
$$P(b) = \frac{1}{6}$$

START

|
TRUE

wudsy: $P(b) = \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{1944}$
START

|
blue(o) \vee size2(o)

More complex hypotheses are penalized (they receive lower prior probability)

•
$$P(h|l) = \frac{P(l|h) \cdot P(h)}{P(l)}$$

PCFG:

$$P \to \neg P$$

$$\bullet$$
 P \rightarrow TRUE

wudsy:

(1.0)

•
$$P(h|l) = \frac{P(l|h) \cdot P(h)}{P(l)}$$

PCFG:

$$P \to \neg P$$

$$\mathbf{6}$$
 P \rightarrow TRUE

(1.0)

wudsy:

TRUE FALSE ¬FALSE ¬TRUE

•
$$P(S1|L) = \frac{1 \cdot 1/3}{1 \cdot 1/3 + 1 \cdot 1/9} = \frac{3}{4}$$

(1.0)

•
$$P(h|l) = \frac{P(l|h) \cdot P(h)}{P(l)}$$

PCFG:

$$P \to \neg P$$

$$P \to \mathsf{TRUE}$$

$$\bullet$$
 P \rightarrow FALSE

wudsy:

TRUE FALSE ¬FALSE ¬TRUE

•
$$P(S1|L) = \frac{1 \cdot 1/3}{1 \cdot 1/3 + 1 \cdot 1/9} = \frac{3}{4}$$

•
$$P(S2|L) = \frac{0.1/3}{1.1/3 + 1.1/9} = 0$$

•
$$P(h|l) = \frac{P(l|h) \cdot P(h)}{P(l)}$$

PCFG:

$$\begin{array}{l} \textbf{2} & \textbf{P} \rightarrow \neg \ \textbf{P} \\ \textbf{3} & \textbf{P} \rightarrow \mathsf{TRUE} \end{array}$$

$$\begin{array}{c} P \to FROE \\ \hline & P \to FALSE \end{array}$$

wudsy:

TRUE FALSE ¬FALSE ¬TRUE

•
$$P(S1|L) = \frac{1 \cdot 1/3}{1 \cdot 1/3 + 1 \cdot 1/9} = \frac{3}{4}$$
 • $P(S3|L) = \frac{1 \cdot 1/9}{1 \cdot 1/3 + 1 \cdot 1/9} = \frac{1}{4}$

•
$$P(S2|L) = \frac{0.1/3}{1.1/3 + 1.1/9} = 0$$
 • $P(S4|L) = \frac{0.1/3}{1.1/3 + 1.1/9} = 0$

Likelihood in the model

- P(l = L|h) = 1 if h derives L, 0 otherwise
- f(h) = 1 if h derives L
- P(l|h) Bernoulli(f(h))
- Alternatives different parameter for Bernoulli: $f(h) = \alpha$ if h derives L
- P(l|h) = Bernoulli(f(h))
- Set $\alpha = 0.9$

Likelihood in the model

- P(l = L|h) = 1 if h derives L, 0 otherwise
- f(h) = 1 if h derives L
- P(l|h) Bernoulli(f(h))
- Alternatives different parameter for Bernoulli: $f(b) = \alpha$ if h derives L
- P(l|h) = Bernoulli(f(h))
- Set $\alpha = 0.9$

- $P(S1|L) = \frac{0.9 \cdot 1/3}{0.9 \cdot 1/3 + 0.1 \cdot 1/3 + 0.9 \cdot 1/9 + 0.1 \cdot 1/9} = 0.675$
- $P(S2|L) = \frac{0.1 \cdot 1/3}{0.9 \cdot 1/3 + 0.1 \cdot 1/3 + 0.9 \cdot 1/9 + 0.1 \cdot 1/9} = 0.075$
- $P(S3|L) = \frac{0.9 \cdot 1/9}{0.9 \cdot 1/3 + 0.1 \cdot 1/3 + 0.9 \cdot 1/9 + 0.1 \cdot 1/9} = 0.225$
- $P(S4|L) = \frac{0.1 \cdot 1/3}{0.9 \cdot 1/3 + 0.1 \cdot 1/3 + 0.9 \cdot 1/9 + 0.1 \cdot 1/9} = 0.025$

Things to note

- LOT penalizes complex hypotheses
- Learning (via Bayesian update) shifts probabilities to accommodate novel information
- The update by the information can be noisy
- Due to coherency of Bayes' rule, the update can be sequential or in one swoop

How does the probabilistic model of LOT fit human data?

• Experiment from Piantadosi et al. (2016)

How does the probabilistic model of LOT fit human data?

• Experiment from Piantadosi et al. (2016)

 The model should predict the path of the human learning of individual concepts

Bayesian model structure of cognitive model

Bernoulli distribution:

- $X \sim Bern(p)$ response 1 appears with probability p; response 0 appears with probability 1-p
- $Bern(f(h, \alpha))$
- $f(h, \alpha) \alpha$ if h returns x
- 1α if *h* returns $y \neq x$

Dirichlet Distribution:

- $p \sim DirichletDist(v)$
- Suppose we only have two rules:
 - $\mathbf{0} \ P \to FALSE$
 - $\mathbf{Q} \ \mathbf{P} \to \mathsf{TRUE}$

```
P(Rule2) = p
P(Rule1) = 1-p
p based on DirichletDist(1,1)
```


Dirichlet Distribution:

- $p \sim DirichletDist(v)$
- Suppose we only have two rules:
 - $\mathbf{0} \ P \rightarrow FALSE$
 - $\mathbf{Q} \ \mathbf{P} \to \mathsf{TRUE}$

P(Rule2) = p

P(Rule1) = 1-p

p based on DirichletDist(1,1) after Rule2 was used;

DirichletDist(1,2)

Dirichlet Distribution:

- $p \sim DirichletDist(v)$
- Suppose we only have two rules:
 - $\mathbf{0} \ P \rightarrow FALSE$
 - $\mathbf{Q} \ \mathbf{P} \to \mathbf{TRUE}$

P(Rule2) = p

P(Rule1) = 1-p

p based on DirichletDist(1,1) after Rule2 was used again;

DirichletDist(1,3)

Dirichlet Distribution:

- $p \sim DirichletDist(v)$
- Suppose we only have two rules:
 - $\mathbf{1}$ P \rightarrow FALSE
 - $\mathbf{Q} \ \mathbf{P} \to \mathsf{TRUE}$

P(Rule2) = p

P(Rule1) = 1-p

p based on DirichletDist(100,100)

Dirichlet Distribution:

- $p \sim DirichletDist(v)$
- Suppose we only have two rules:
 - $\mathbf{1}$ P \rightarrow FALSE
 - $\mathbf{Q} \ \mathbf{P} \to \mathsf{TRUE}$

P(Rule2) = p

P(Rule1) = 1-p

p based on DirichletDist(100,100) after Rule2 was used

Bayesian model structure for data analysis

The model is not solved analytically; rather, we sample from posterior and inspect the samples (MCMC techniques) (Kruschke, 2011) (cf. exercise)

Bayesian modeling: details

- The 2nd Bayesian model is trained on part of the data
- The cognitive model is evaluted on held-out data by using the maximum point estimates for parameters D_{**} , α

Bayesian modeling: details

- The 2nd Bayesian model is trained on part of the data
- The cognitive model is evaluted on held-out data by using the maximum point estimates for parameters D_{**} , α
- The model fit could be evaluated directly on the same data on which it was trained
- However, model comparison requires different training and testing data sets

Bayesian modeling: results I

Results on selected held-out datasets

• (a) and (b) as cases of successful fit to human data

Bayesian modeling: results I

Results on selected held-out datasets

• (a) and (b) as cases of successful fit to human data

• (e) and (f) as cases of successful fit to human data

Bayesian modeling: results II

- Simple Boolean (similar to the one presented on previous slides)
- Full Boolean (Simple Boolean, Biconditional and Simple conditional)
- Horn clauses (all expressions conjunctions of Horn clauses)
- DNF (disjunctive normal form disjunctions of conjunctions)
- CNF (conjunctive normal form conjunctions of disjunctions)
- NAND (the only primitive is not-and $(P \uparrow Q = \neg (P \land Q)))$
- NOR (the only primitive is not-or $(P \downarrow Q = \neg (P \lor Q)))$

Bayesian modeling: results II

• The fit of the model to the held-out human data

Grammar	H.O.LL	FP	$R_{response}^2$	R_{mean}^2
FULLBOOLEAN	-16296.84	27	.88	.60
BICONDITIONAL	-16305.13	26	.88	.64
CNF	-16332.39	26	.89	.69
DNF	-16343.87	26	.89	.66
SIMPLEBOOLEAN	-16426.91	25	.87	.70
IMPLIES	-16441.29	26	.87	.70
HORNCLAUSE	-16481.90	27	.87	.65
NAND	-16815.60	24	.84	.61
NOR	-16859.75	24	.85	.58

H.O.L.L. - log-likelihood on held-out data, FP - # of free params, \mathbb{R}^2 - correlation between model and human responses

According to H.O.L.L., FullBoolean is the best model

Bayesian modeling: results III

For any left symbol, all expansions form a probability space $\frac{\partial P(F)}{\partial x} \sim \frac{SIZF[SHAPF](OUOP)}{2} \sim \frac{1}{2}$

e.g., $P(F \to SIZE|SHAPE|COLOR) \approx \frac{1}{3}$

red dot – max. a posteriori estimate bars – 95% HPD

Bayesian modeling: results III

For any left symbol, all expansions form a probability space e.g., $P(F \to SIZE|SHAPE|COLOR) \approx \frac{1}{3}$

Numbers close to 1 – reusing rules; due to prior or data modeled? why is MAP outside of HDP? some rules – very low probability – why?

red dot – max. a posteriori estimate bars – 95% HPD

Bayesian modeling: results IV

• Results of other parameters

- Both α and γ are used for responses
- cf. $P(l = T | h, \alpha, \gamma) = \alpha + (1 \alpha) \cdot \gamma$ if h generates $T = (1 \alpha) \cdot (1 \gamma)$ if h generates F
- A relatively low value for α

- The fit to the model is quite impressive
- How strong evidence do we have that FullBoolean is correct?
- Artificialities of learning (kids' rooms are messy)
- Artificialities of concepts
 Blue → circle
- and, or, nor, *nand; all, some, no, *nall
- The model could almost as easily learn *nor* as *nand*

Learning counting

- A second take: learning counting
- Several grammars based on Language of Thought

```
One-knower
                                 Two-knower
   \lambda S. (if (singleton? S)
                                            \lambda S. (if (singleton? S)
             "one"
                                                      "one"
             undef)
                                                     (if (doubleton? S)
                                                         "two"
                                                         undef))
Three-knower
                                 CP-knower
 \lambda S. (if (singleton? S)
                                  \lambda S. (if (singleton? S)
          "one"
                                            "one"
          (if (doubleton? S)
                                           (next (L (set-difference S
              "two"
                                                                    (select S)))))
             (if (tripleton? S)
              "three"
             undef))
```

Piantadosi: Learning and the language of thought. MIT Thesis.

Learning counting: results

 Recursion acquired after enough evidence accumulated for one, two three, four

- Rule-based symbolic models are useful in describing/explaining concept learning
- The models capture adult learning of novel concepts and (less explored) children acquisition

- Rule-based symbolic models are useful in describing/explaining concept learning
- The models capture adult learning of novel concepts and (less explored) children acquisition
- Since the compositional/computational system is used beyond word level, the models could form a natural connection between sentence meaning and word meaning

- Rule-based symbolic models are useful in describing/explaining concept learning
- The models capture adult learning of novel concepts and (less explored) children acquisition
- Since the compositional/computational system is used beyond word level, the models could form a natural connection between sentence meaning and word meaning
- Interaction between modeling and experimentation

- Rule-based symbolic models are useful in describing/explaining concept learning
- The models capture adult learning of novel concepts and (less explored) children acquisition
- Since the compositional/computational system is used beyond word level, the models could form a natural connection between sentence meaning and word meaning
- Interaction between modeling and experimentation
- However, the models are limited:
 - They investigate small sub-domains (numbers, quantifiers,...)

- Rule-based symbolic models are useful in describing/explaining concept learning
- The models capture adult learning of novel concepts and (less explored) children acquisition
- Since the compositional/computational system is used beyond word level, the models could form a natural connection between sentence meaning and word meaning
- Interaction between modeling and experimentation
- However, the models are limited:
 - They investigate small sub-domains (numbers, quantifiers,...)
 - They do not study meaning in communication (next lecture)

References I

- Berlin, Brent and Paul Kay (1969). Basic color terms: Their university and evolution. California UP.
- Fodor, Jerry A (1975). The language of thought. Vol. 5. Harvard university press.
- Gärdenfors, Peter (2004). Conceptual spaces: The geometry of thought. MIT press.
- Kruschke, John K. (2011). Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/Elsevier.
- Lakoff, George (1987). Women, fire, and dangerous things. University of Chicago press.
 - Montague, Richard (1973). "The proper treatment of quantification in ordinary English". In: *Approaches to Natural Language*. Ed. by Patrick Suppes Jaakko Hintikka Julius Moravcsik. Dordrecht: Reidel, pp. 221–242.

References II

Ronneberger, Olaf et al. (2015). "U-net: Convolutional networks for biomedical image segmentation". In: *International Conference on Medical image computing and computer-assisted intervention*. Springer, pp. 234–241.