A Penalized Weighted Least Squares Approach For Restoring Data Corrupted With Signal-Dependent Noise

UNIVERSITÉ ----—PARIS-EST

Audrey Repetti, Emilie Chouzenoux and Jean-Christophe Pesquet

Université Paris-Est, Laboratoire d'Informatique Gaspard Monge, France {first.last}@univ-paris-est.fr

INTRODUCTION

- ★ Primal-dual proximal splitting approach for convex optimization
- ★ Fast convergence thanks to a preconditioning strategy
- *Restoration of images corrupted with additive Gaussian noise with signal-dependent variance

PROBLEM

$$\underset{\boldsymbol{x} \in \mathcal{H}}{\text{minimize}} \ f(\boldsymbol{x}) = h(\boldsymbol{x}) + g_0(\boldsymbol{x}) + \sum_{j=1}^{J} g_j(\boldsymbol{L}_j \boldsymbol{x}) \tag{1}$$

- \mathcal{H} and $(\mathcal{G}_i)_{1 \leq i \leq J}$ real Hilbert spaces
- $h: \mathcal{H} \to \mathbb{R}$, convex, differentiable with Lipschitzian gradient
- g_0 and $(g_i)_{1 \le i \le J}$ proper lsc convex functions defined resp. on \mathcal{H} and $(\mathcal{G}_i)_{1 \le i \le J}$
- $\forall j \in \{1, \dots, J\}$, $L_i \colon \mathcal{H} \to \mathcal{G}_i$ non-zero bounded linear operator

CONVEX OPTIMIZATION TOOLS

For R positive definite self-adjoint linear operator from \mathcal{H} to \mathcal{H} :

- ullet Weighted norm: $orall oldsymbol{x} \in \mathcal{H}, \|oldsymbol{x}\|_{oldsymbol{R}} = \langle oldsymbol{x} \mid oldsymbol{R}oldsymbol{x}
 angle^{1/2}$
- Proximal operator: ψ proper lsc convex function defined on $(\mathcal{H}, \|\cdot\|_{\mathbf{R}})$, $\forall \boldsymbol{v} \in \mathcal{H}, \operatorname{prox}_{\boldsymbol{R},\psi}(\boldsymbol{v}) = \operatorname{arg\,min}_{\boldsymbol{\xi} \in \mathcal{H}} \psi(\boldsymbol{\xi}) + \frac{1}{2} \|\boldsymbol{\xi} - \boldsymbol{v}\|_{\boldsymbol{R}}^2$

ALGORITHM Preconditioned M+L FBF

Let $(\gamma_k)_{k\in\mathbb{N}}$ be a sequence of $[\varepsilon, (1-\varepsilon)/\tau]$ with $\varepsilon \in (0, 1/(\tau+1))$, $au = \mu^{(\mathbf{Q})} + \sqrt{\sum_{j=1}^{J} \|\mathbf{R}_j^{1/2} \mathbf{L}_j \mathbf{Q}^{1/2}\|^2}$, where $\mu^{(\mathbf{Q})}$ is a Lipschitz constant of ∇ $(h \circ Q^{1/2})$.

Initialization: Let $x_0 \in \mathcal{H}$, and, for every $j \in \{1, ..., J\}$, let $v_{j,0} \in \mathcal{G}_j$

Iterations: For $k = 0, \dots$

$$\begin{vmatrix} \boldsymbol{y}_{1,k} = \boldsymbol{x}_k - \gamma_k \boldsymbol{Q} (\nabla h(\boldsymbol{x}_k) + \sum_{j=1}^J \boldsymbol{L}_j^* \boldsymbol{v}_{j,k}) \\ \boldsymbol{p}_{1,k} = \operatorname{prox}_{\boldsymbol{Q}^{-1},\gamma_k g_0} (\boldsymbol{y}_{1,k}) \\ \operatorname{For} \ j = 1, \dots, J \\ | \ \boldsymbol{y}_{2,j,k} = \boldsymbol{v}_{j,k} + \gamma_k \boldsymbol{R}_j \boldsymbol{L}_j \boldsymbol{x}_k \end{vmatrix}$$
 (2)

$$egin{aligned} oldsymbol{g}_{2,j,k} &= \operatorname{prox}_{oldsymbol{R}_j^{-1},\gamma_k g_j^*}(oldsymbol{y}_{2,j,k}) \ oldsymbol{q}_{2,j,k} &= oldsymbol{p}_{2,j,k} + \gamma_k oldsymbol{R}_j oldsymbol{L}_j oldsymbol{p}_{1,k} \end{aligned}$$

$$\mathbf{q}_{2,j,k} - \mathbf{p}_{2,j,k} + \gamma_k \mathbf{p}_{2,j,k}$$

$$oxed{oldsymbol{v}_{j,k+1} = oldsymbol{v}_{j,k} - oldsymbol{y}_{2,j,k} + oldsymbol{q}_{2,j,k}}.$$

$$oldsymbol{q}_{1,k} = oldsymbol{p}_{1,k} - \gamma_k oldsymbol{Q} ig(
abla h(oldsymbol{p}_{1,k}) + \sum_{j=1}^J oldsymbol{L}_j^* oldsymbol{p}_{2,j,k}ig)$$

 $\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{y}_{1,k} + \mathbf{q}_{1,k}$

 \star Low computational cost of (2) and (3) for

$$\begin{cases} g_0 \text{ separable and } Q \text{ positive diagonal,} \\ \forall j \in \{1, \dots, J\}, R_j = \rho_j \text{ Id, } \rho_j > 0 \end{cases}$$

- \blacktriangleright Appropriate choice for Q, $R_i \Rightarrow$ Acceleration of convergence rate

CONVERGENCE RESULT

Under appropriate technical assumptions, there exists Theorem: $\hat{\boldsymbol{x}} \in \mathcal{H}$ solution to Problem (1) such that $\boldsymbol{x}_k \to \hat{\boldsymbol{x}}$ and $\boldsymbol{p}_{1,k} \to \hat{\boldsymbol{x}}$.

SIGNAL-DEPENDENT NOISE MODEL

 $oldsymbol{b}(oldsymbol{H}\overline{oldsymbol{x}})$

- $\bullet H \in \mathbb{R}^{N \times N}$ observation matrix with non-negative elements
- $\bullet b(H\overline{x}) = (b_n([H\overline{x}]_n)_{1 \le n \le N}, b_n : [0, +\infty) \to [0, +\infty) : z_n \mapsto \sqrt{\alpha z_n + \beta} w_n,$ with $\alpha \geqslant 0$, $\beta > 0$ and $(w_n)_{1 \leqslant n \leqslant N}$ realization of $\boldsymbol{W} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_N)$
- **⋆ Data fidelity term:**

$$\forall \boldsymbol{x} \in [0, +\infty)^N, \ h(\boldsymbol{x}) = \frac{1}{2} \sum_{n=1}^N \frac{(y_n - [\boldsymbol{H}\boldsymbol{x}]_n)^2}{\alpha [\boldsymbol{H}\boldsymbol{x}]_n + \beta}$$

 $\star g_0 = \iota_{[0,255]^N}$, J=1 and $g_1=\lambda$ tv, with $\lambda>0$ regularization parameter

SNR=22 **dB**, **MSSIM**=0.525

SNR=19.15 **dB**, **MSSIM**=0.644

SNR=20.16 **dB**, **MSSIM**=0.569

SNR=27.1 **dB**, **MSSIM**=0.835 **SNR**=25.11 **dB**, **MSSIM**=0.854 **SNR**=24.14 **dB**, **MSSIM**=0.887 = 10⁵ = 10 $^{\circ}$ 1 Iterations (k)1 Iterations (k)Iterations (\bar{k}) $\widehat{\overline{x}}$ 10 5

10⁻⁵

From top to bottom: noisy blurred images ($\alpha = 0.1$ and $\beta = 50$), restored images, $(\|\boldsymbol{x}_k - \hat{\boldsymbol{x}}\|)_k$ and $(f(\boldsymbol{x}_k) - f(\hat{\boldsymbol{x}}))_k$ using the proposed algorithm and its non preconditioned version.