

10/534082

JC06 Rec'd ST/PTO 05 MAY 2005

SEQUENCE LISTING

<110> HINUMA, Shuji
KOBAYASHI, Makoto
HABATA, Yugo
HARADA, Masataka
OKUBO, Shoichi
YOSHIDA, Hiromi
NISHI, Kazunori

<120> A Novel Ligand For FPRL1 And Its Use

<130> G05-0027

<150> PCT/JP2003/014138
<151> 2003-11-06

<150> JP 2002-324189
<151> 2002-11-07

<150> JP 2002-367119
<151> 2002-12-18

<150> JP 2003-59073
<151> 2003-03-05

<150> JP 2003-191359
<151> 2003-07-03

<150> PCT/JP03/14138
<151> 2003-11-06

<160> 24

<210> 1
<211> 13
<212> PRT
<213> Porcine

<400> 1
Met Phe Val Asn Arg Trp Leu Tyr Ser Thr Asn His Lys
1 5 10

<210> 2
<211> 351
<212> PRT
<213> Human

<400> 2
Met Glu Thr Asn Phe Ser Thr Pro Leu Asn Glu Tyr Glu Glu Val Ser
5 10 15
Tyr Glu Ser Ala Gly Tyr Thr Val Leu Arg Ile Leu Pro Leu Val Val
20 25 30
Leu Gly Val Thr Phe Val Leu Gly Val Leu Gly Asn Gly Leu Val Ile
35 40 45
Trp Val Ala Gly Phe Arg Met Thr Arg Thr Val Thr Thr Ile Cys Tyr

50	55	60
Leu Asn Leu Ala Leu Ala Asp Phe Ser Phe Thr Ala Thr Leu Pro Phe		
65	70	75
Leu Ile Val Ser Met Ala Met Gly Glu Lys Trp Pro Phe Gly Trp Phe		
85	90	95
Leu Cys Lys Leu Ile His Ile Val Val Asp Ile Asn Leu Phe Gly Ser		
100	105	110
Val Phe Leu Ile Gly Phe Ile Ala Leu Asp Arg Cys Ile Cys Val Leu		
115	120	125
His Pro Val Trp Ala Gln Asn His Arg Thr Val Ser Leu Ala Met		
130	135	140
Val Ile Val Gly Pro Trp Ile Leu Ala Leu Val Leu Thr Leu Pro Val		
145	150	155
Phe Leu Phe Leu Thr Thr Val Thr Ile Pro Asn Gly Asp Thr Tyr Cys		
165	170	175
Thr Phe Asn Phe Ala Ser Trp Gly Gly Thr Pro Glu Glu Arg Leu Lys		
180	185	190
Val Ala Ile Thr Met Leu Thr Ala Arg Gly Ile Ile Arg Phe Val Ile		
195	200	205
Gly Phe Ser Leu Pro Met Ser Ile Val Ala Ile Cys Tyr Gly Leu Ile		
210	215	220
Ala Ala Lys Ile His Lys Lys Gly Met Ile Lys Ser Ser Arg Pro Leu		
225	230	235
Arg Val Leu Thr Ala Val Val Ala Ser Phe Phe Ile Cys Trp Phe Pro		
245	250	255
Phe Gln Leu Val Ala Leu Leu Gly Thr Val Trp Leu Lys Glu Met Leu		
260	265	270
Phe Tyr Gly Lys Tyr Lys Ile Ile Asp Ile Leu Val Asn Pro Thr Ser		
275	280	285
Ser Leu Ala Phe Phe Asn Ser Cys Leu Asn Pro Met Leu Tyr Val Phe		
290	295	300
Val Gly Gln Asp Phe Arg Glu Arg Leu Ile His Ser Leu Pro Thr Ser		
305	310	315
Leu Glu Arg Ala Leu Ser Glu Asp Ser Ala Pro Thr Asn Asp Thr Ala		
325	330	335
Ala Asn Ser Ala Ser Pro Pro Ala Glu Thr Glu Leu Gln Ala Met		
340	345	350

<210> 3

<211> 1053

<212> DNA

<213> Human

<400> 3

atggaaacca	acttctccac	tcctctgaat	gaatatgaag	aagtgtccta	tgagtctgct	60
ggctacactg	ttctgcggat	cctccattg	gtggtgcttg	gggtcacctt	tgtcctcggg	120
gtcctggca	atgggcttgt	gatctgggtg	gctggattcc	ggatgacacg	cacagtccacc	180
accatctgtt	acctgaacct	ggccctggct	gactttctt	tcacggccac	attaccattc	240
ctcattgtct	ccatggccat	gggagaaaaa	tggcctttt	gtgggttcct	gtgttaagtt	300
attcacatcg	tggtgacat	caacctcttt	ggaagtgtct	tcttgattgg	tttcattgca	360
ctggaccgct	gcattttgtt	cctgcatcca	gtctggcccc	agaaccaccc	cactgtgagt	420
ctggccatga	aggtgatcgt	cggaccttgg	attcttgctc	tagtccttac	cttgccagtt	480
ttcctctttt	tgactacagt	aactattcca	aatggggaca	catactgtac	tttcaacttt	540
gcattctggg	gtggcacccc	tgaggagagg	ctgaagggtgg	ccattaccat	gctgacagcc	600
agagggatta	tccggtttgt	cattggcttt	agcttgccga	tgtccattgt	tgccatctgc	660
tatgggctca	ttgcagccaa	gatccacaaa	aagggcatga	ttaaatccag	ccgtccctta	720
cggttcctca	ctgctgtgg	ggcttctttc	ttcatctgtt	ggttccctt	tcaactgggtt	780

gccttctgg gcaccgtctg gctcaaagag atgttgcct atggcaagta caaaatcatt	840
gacatcctgg ttaacccaac gagctccctg gccttctca acagctgcct caaccccatg	900
cttacgtct ttgtggcca agacttccga gagagactga tccactccct gcccaccagt	960
ctggagaggg ccctgtctga ggactcagcc ccaactaatg acacggctgc caattctgct	1020
tcacccctcagagactga gttacaggca atg	1053

<210> 4
<211> 351
<212> PRT
<213> Rat

<400> 4			
Met Glu Ala Asn Tyr Ser Ile Pro Leu Asn Val Ser Glu Val Val Val			
5 10 15			
Tyr Asp Ser Thr Ile Ser Arg Val Leu Trp Ile Leu Thr Met Val Val			
20 25 30			
Leu Ser Ile Thr Phe Val Leu Gly Val Leu Gly Asn Gly Leu Val Ile			
35 40 45			
Trp Val Ala Gly Phe Arg Met Val His Thr Val Thr Thr Thr Cys Phe			
50 55 60			
Leu Asn Leu Ala Leu Ala Asp Phe Ser Phe Thr Val Thr Leu Pro Phe			
65 70 75 80			
Phe Val Ile Ser Ile Ala Met Lys Glu Lys Trp Pro Phe Gly Trp Phe			
85 90 95			
Leu Cys Lys Leu Val His Ile Val Val Asp Ile Asn Leu Phe Gly Ser			
100 105 110			
Val Phe Leu Ile Ala Leu Ile Ala Leu Asp Arg Cys Ile Cys Val Leu			
115 120 125			
His Pro Val Trp Ala Gln Asn His Arg Thr Val Ser Leu Ala Arg Lys			
130 135 140			
Val Val Val Gly Pro Trp Ile Leu Ala Leu Ile Leu Thr Leu Pro Ile			
145 150 155 160			
Phe Ile Phe Met Thr Thr Val Arg Ile Pro Gly Gly Asn Val Tyr Cys			
165 170 175			
Thr Phe Asn Phe Ala Ser Trp Gly Asn Thr Ala Glu Glu Leu Leu Asn			
180 185 190			
Ile Ala Asn Thr Phe Val Thr Val Arg Gly Ser Ile Arg Phe Ile Ile			
195 200 205			
Gly Phe Ile Met Pro Met Ser Ile Val Ala Ile Cys Tyr Gly Leu Ile			
210 215 220			
Ala Val Lys Ile His Arg Arg Ala Leu Val Asn Ser Ser Arg Pro Leu			
225 230 235 240			
Arg Val Leu Thr Ala Val Val Ala Ser Phe Phe Ile Cys Trp Phe Pro			
245 250 255			
Phe Gln Leu Val Ala Leu Leu Gly Thr Ile Trp Phe Lys Glu Ser Leu			
260 265 270			
Phe Ser Gly Arg Tyr Lys Ile Leu Asp Met Trp Val His Pro Thr Ser			
275 280 285			
Ser Leu Ala Tyr Phe Asn Ser Cys Leu Asn Pro Met Leu Tyr Ala Phe			
290 295 300			
Met Gly Gln Asp Phe His Glu Arg Leu Ile His Ser Leu Pro Ser Ser			
305 310 315 320			
Leu Glu Arg Ala Leu Ser Glu Asp Ser Gly Gln Thr Ser Asp Thr Gly			
325 330 335			
Ile Ser Ser Ala Leu Pro Pro Val Asn Ile Asp Ile Lys Ala Ile			
340 345 350			

<210> 5
<211> 1053
<212> DNA
<213> Rat

<400> 5
atggaaggcca actattccat ccctctgaat gtatcagaag tggttgtcta tgattctacc 60
atctccagag ttttggat cctcacaatg gtggttctct ccatcacctt tgcctgggt 120
gtgctggta atggactagt gatctggta gctggattcc ggatggtaca cactgtcacc 180
actacctgtt ttctgaatct agcttggct gacttctt tcacagtgc tctaccattc 240
tttgtcatct caattgctat gaaagaaaaa tggcctttg gatggttcct gtgtaaatta 300
gttcacattg tagtagacat aaacctctt ggaagtgtct tcctgattgc ttaattgcc 360
ttggaccgct gcatttgcgt cctgcattca gtctggctc agaaccaccc cactgtgagc 420
ctggcttagga aggtgggtgt tggccctgg attttagctc tgattctcac tttgcccatt 480
tttattttca tgactacagt tagaattcct ggaggcaatg tgtactgtac attcaacttc 540
gcattcctgg gtaacactgc tgaagaacta ttgaacatag ctaacactt tgtaacagtt 600
agagggagca tcaggttcat tattggcttc ataatgccta tgtccattgt tgccatctgc 660
tatggactca tcgctgtcaa gatccacaga agagcaattt ttaattccag ccgtccatta 720
agagtcctta cagcagttgt ggcttccttc tttatctgtt ggttccctt tcaactggtg 780
gcccttttag gtacaatctg gtttaaagag tcattgttta gtgtcgttta caaaattctt 840
gacatgtggg ttcacccaaac cagctcattt gcctacttca atagttgcct caatccaatg 900
ctctatgctt tcatggccca ggactttcat gaaagactga ttcatcccgc gccttccagt 960
ctggagagag ccctgagtga ggactctggc caaaccagtg atacaggcat cagttctgct 1020
ttacccctgt taaaacattga tataaaagca ata 1053

<210> 6
<211> 351
<212> PRT
<213> Mouse

<400> 6
Met Glu Ser Asn Tyr Ser Ile His Leu Asn Gly Ser Glu Val Val Val
5 10 15
Tyr Asp Ser Thr Ile Ser Arg Val Leu Trp Ile Leu Ser Met Val Val
20 25 30
Val Ser Ile Thr Phe Phe Leu Gly Val Leu Gly Asn Gly Leu Val Ile
35 40 45
Trp Val Ala Gly Phe Arg Met Pro His Thr Val Thr Thr Ile Trp Tyr
50 55 60
Leu Asn Leu Ala Leu Ala Asp Phe Ser Phe Thr Ala Thr Leu Pro Phe
65 70 75 80
Leu Leu Val Glu Met Ala Met Lys Glu Lys Trp Pro Phe Gly Trp Phe
85 90 95
Leu Cys Lys Leu Val His Ile Val Val Asp Val Asn Leu Phe Gly Ser
100 105 110
Val Phe Leu Ile Ala Leu Ile Ala Leu Asp Arg Cys Ile Cys Val Leu
115 120 125
His Pro Val Trp Ala Gln Asn His Arg Thr Val Ser Leu Ala Arg Lys
130 135 140
Val Val Val Gly Pro Trp Ile Phe Ala Leu Ile Leu Thr Leu Pro Ile
145 150 155 160
Phe Ile Phe Leu Thr Thr Val Arg Ile Pro Gly Gly Asp Val Tyr Cys
165 170 175
Thr Phe Asn Phe Gly Ser Trp Ala Gln Thr Asp Glu Glu Lys Leu Asn
180 185 190
Thr Ala Ile Thr Phe Val Thr Thr Arg Gly Ile Ile Arg Phe Leu Ile
195 200 205

Gly Phe Ser Met Pro Met Ser Ile Val Ala Val Cys Tyr Gly Leu Ile
 210 215 220
 Ala Val Lys Ile Asn Arg Arg Asn Leu Val Asn Ser Ser Arg Pro Leu
 225 230 235 240
 Arg Val Leu Thr Ala Val Val Ala Ser Phe Phe Ile Cys Trp Phe Pro
 245 250 255
 Phe Gln Leu Val Ala Leu Leu Gly Thr Val Trp Phe Lys Glu Thr Leu
 260 265 270
 Leu Ser Gly Ser Tyr Lys Ile Leu Asp Met Phe Val Asn Pro Thr Ser
 275 280 285
 Ser Leu Ala Tyr Phe Asn Ser Cys Leu Asn Pro Met Leu Tyr Val Phe
 290 295 300
 Met Gly Gln Asp Phe Arg Glu Arg Phe Ile His Ser Leu Pro Tyr Ser
 305 310 315 320
 Leu Glu Arg Ala Leu Ser Glu Asp Ser Gly Gln Thr Ser Asp Ser Ser
 325 330 335
 Thr Ser Ser Thr Ser Pro Pro Ala Asp Ile Glu Leu Lys Ala Pro
 340 345 350

<210> 7

<211> 1053

<212> DNA

<213> Mouse

<400> 7

atggaatcca	actactccat	ccatctgaat	ggatcagaag	tggtggttta	tgattctacc	60
atctccagag	ttctgtggat	cctctcaatg	gtgggtgtct	ccatcactt	ttcccttgg	120
gtgctggca	atggactagt	gatttggta	gctggattcc	ggatgccaca	cactgtcacc	180
actatcttgt	atctgaatct	agcattggct	gacttttctt	tcacagcaac	tctaccattc	240
cttcttgtt	aaatggctat	gaaagaaaaaa	tggcctttt	gctgggtcct	gtgtaaattt	300
gttcacattt	tggttagatgt	aaacctgttt	ggaagtgtct	tcttgcattgc	tctcattgcc	360
ttggaccgct	gcattttgtt	tctgcatcca	gtctgggctc	agaaccaccc	cactgtgagc	420
ctggcttagga	aggtggttt	tggcccttgg	atttttgtct	tgattctcac	tttgcattt	480
tttattttct	tgactactgt	tagaattcct	ggaggagatg	tgtattgtac	attcaacttt	540
ggatcctggg	ctcaaactga	tgaagaaaaag	ttgaacacag	ctatcactt	tgtaacaact	600
agagggatca	tcaggttcct	tattggtttc	agcatgcccc	tgtcaattgt	tgctgtttgc	660
tatggactca	ttgctgtcaa	gatcaacaga	agaaacctt	ttaattccag	ccgtccttta	720
cgagtcctta	cagcagttgt	ggcttccttc	tttatctgct	ggttccctt	ttagctgt	780
gcccttttgg	gcacagtcgt	gtttaaagag	acattgttta	gtggtagtta	taaaattctt	840
gacatgtttg	ttaacccaac	aagctcattt	gcttacttca	atagttgtct	caatccgatg	900
ctctatgttt	tcatgggcca	ggactttcgt	gagagattt	ttcattccct	gccttatagt	960
cttgagagag	ccctgagtga	ggattctgg	caaaccagt	attcaagcac	cagttctact	1020
tcacccctctg	cagacatttga	gttaaaggcc	cca			1053

<210> 8

<211> 42

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 8

aaacagtcga ccaccatgga atccaaactac tccatccatc tg 42

<210> 9

<211> 33

<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 9
ctttctagat catggggcct ttaactcaat gtc 33

<210> 10
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 10
atctggtag ctggattccg gatg 24

<210> 11
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 11
tctttcatga aagtccctggc ccatgaa 27

<210> 12
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 12
aggaattcta actgttagtca tgaa 24

<210> 13
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 13
acagtttagag ggagcatcag gttc 24

<210> 14
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 14
ataaaagtcga ccaccatgga agccaaactat tccatccctc tga 43

<210> 15
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 15
aaatcttagat catattgctt ttatataat gtttaca 37

<210> 16
<211> 13
<212> PRT
<213> Human

<400> 16
Met Phe Ala Asp Arg Trp Leu Phe Ser Thr Asn His Lys
1 5 10

<210> 17
<211> 15
<212> PRT
<213> Porcine

<400> 17
Met Thr Asn Ile Arg Lys Ser His Pro Leu Met Lys Ile Ile Asn
1 5 10 15

<210> 18
<211> 16
<212> PRT
<213> Porcine

<400> 18
Met Thr Asn Ile Arg Lys Ser His Pro Leu Met Lys Ile Ile Asn Asn
1 5 10 15

<210> 19
<211> 15
<212> PRT
<213> Human

<400> 19
Met Thr Pro Met Arg Lys Ile Asn Pro Leu Met Lys Leu Ile Asn
1 5 10 15

<210> 20
<211> 16
<212> PRT
<213> Human

<400> 20

Met Thr Pro Met Arg Lys Ile Asn Pro Leu Met Lys Leu Ile Asn His
1 5 10 15

<210> 21

<211> 15

<212> PRT

<213> Porcine

<400> 21

Met Phe Val Asn Arg Trp Leu Tyr Ser Thr Asn His Lys Asp Ile
1 5 10 15

<210> 22

<211> 15

<212> PRT

<213> Human

<400> 22

Met Phe Ala Asp Arg Trp Leu Phe Ser Thr Asn His Lys Asp Ile
1 5 10 15

<210> 23

<211> 18

<212> PRT

<213> Porcine

<400> 23

Met Thr Asn Ile Arg Lys Ser His Pro Leu Met Lys Ile Ile Asn Asn Ala Phe
1 5 10 15

<210> 24

<211> 18

<212> PRT

<213> Human

<400> 24

Met Thr Pro Met Arg Lys Ile Asn Pro Leu Met Lys Leu Ile Asn His Ser Phe
1 5 10 15