Thrust from a rocket engine

* Thrust & thrust coefficient:
$$F = mv_2 + (P_2 - P_3) A_2$$

$$F = F_{opt} + P_1 A_1 \left(\frac{P_2}{P_1} - \frac{P_3}{P_1}\right) \frac{A_2}{A_1} \qquad \left\{\begin{array}{c} F_{opt} & \text{when } P_2 = P_3 \\ \hline F_{opt} & \text{when } P_2 = P_3 \end{array}\right\}$$

$$Is = I_{sopt} + \frac{c^* E}{g_o} \left(\frac{P_2}{P_1} - \frac{P_3}{P_1}\right) \qquad \left\{\begin{array}{c} I_{s} & \text{for new } P_2 & \text{on for new} \\ E & \text{can be calculated.} \end{array}\right\}$$

Thrust from a rocket engine

$$F = \frac{A_{i}v_{t}}{V_{t}} V_{2} + (P_{2} - P_{3}) A_{2} \qquad \qquad (General for all pockets)$$

$$F = A_{t} P_{i} \sqrt{\frac{2 k^{2}}{k-i}} \left(\frac{2}{k+i}\right)^{\frac{k+i}{k-i}} \left[1 - \left(\frac{P_{2}}{P_{i}}\right)^{\frac{k-i}{k}}\right] + \left(P_{2} - P_{3}\right) A_{2}$$

$$\qquad \qquad \qquad (Ideal rocket)$$

$$\therefore F \propto R_{t}, P_{i} & f\left(\frac{P_{i}}{P_{2}}\right) & f(k) \Rightarrow Ideal Thrust Equation.$$

Thrust from a rocket engine

The thrust coefficient,
$$C_F = \frac{F}{P_1 \cdot A_1}$$
 *Represents amplification factor $\iota v \cdot \delta \cdot t$ · an imaginary socket with pressure P_1 of auting on area At .

$$C_F = \frac{v_2^2 A_2}{P_1 \cdot A_1^2 V_2} + \frac{P_2}{P_1} \cdot \frac{A_2}{At} - \frac{P_3}{P_1} \cdot \frac{A_2}{At}$$

$$C_F = \begin{cases} \frac{2k^2}{k-1} \left(\frac{2}{k+1}\right)^{\frac{k+1}{k-1}} \left[1 - \left(\frac{P_2}{P_1}\right)^{\frac{k-1}{k}}\right] + \frac{P_2 - P_3}{P_1} \cdot \frac{A_2}{At} \end{cases}$$

$$C_F = \frac{2k^2}{k-1} \left(\frac{2}{k+1}\right)^{\frac{k+1}{k-1}} \left[1 - \left(\frac{P_2}{P_1}\right)^{\frac{k-1}{k}}\right] + \frac{P_2 - P_3}{P_1} \cdot \frac{A_2}{At}$$

$$C_F = \frac{2k^2}{k-1} \cdot \frac{2k}{k+1} \cdot \frac{2k}{k+$$

Optimum expansion condition

$$F = \dot{m}v_2 + (P_2 - P_3)A_2$$

Over-expanded and Under-expanded Nozzles

CASE STUDY: Thrust variation in underexpanded, optimally expanded and overexpanded nozzle in a given ambient condition – case study

 $k = 1.2, MW = 24, T_1 = 3600 \text{ K}, P_1 = 5 \text{ MPa}, P_3 = 0.05 \text{ Mpa}, \text{mass flow rate} = 100 \text{ kg/s}$

	P ₂ (MPa)	v ₂ (m/s)	F _M (N)	$A_2 (m^2)$	$\mathbf{F}_{\mathbf{P}}(\mathbf{N})$	F(N)
Underexpande d nozzle (P2>P3)	0.1	2677	267700	0.243	12150	279850
Optimum expansion (P2=P3)	0.05	2832	283200	0.409	0	283200
Overexpanded nozzle (P2 <p3)< td=""><td>0.025</td><td>2963</td><td>296300</td><td>0.696</td><td>-17400</td><td>278900</td></p3)<>	0.025	2963	296300	0.696	-17400	278900

Over-expanded and Under-expanded Nozzles

$$F = m.v_2 + (P_2 - P_3).A_2$$

Under-expansion to optimum expansion

$$v_2 = \sqrt{\frac{2k}{k-1}} R \cdot T_1 \left[1 - \left(\frac{\rho_2}{\rho_1} \right)^{\frac{k-1}{k}} \right]$$

Optimum to over-expansion
Area increases at much faster rate than the velocity of the jet

Real Nozzles

Flow separation

Observed in case of over-expanded nozzles

Separation occurs when the flow passes through the normal shock wave in divergent section

The jet leaves as reduced diameter from the point of separation

Separation point depends on the exact conditions at the exit plane

Summerfield criterion: Flow separation generally occurs when P2 <= 0.4 P3

It also depends on the local Mach number; but the formulations are mostly empirical

Flow separation

CF for separated flow is larger than the corresponding attached flow; but smaller than the optimum thrust

Flow separation is not desirable for following reasons:

Unnecessary long nozzle (large weight)

Uneven flow separation is possible which may lead to side forces

Stage	A2/At	Duxing flight	THE SE	Sea level static test
Booster/ First stage	6	Is=267		Is = 267 sec.
Second	10	312 5	ec	Is = 254 sec.
Third	40	Under expansion 334 se	c -od	Over expansion 245 sec
	444	Under expansion		Flow separation caused by over-expansion.

Inlet gas velocity

When $A_1/A_t > 4$, the inlet velocity of the gases may be neglected (v_1^0)

However, space and weight constraints sometimes require smaller combustion chambers

The inlet gas velocity cannot be neglected in such cases

The gases in the combustion chamber expand as heat is added \rightarrow energy necessary to accelerate expanding gases within the combustion chamber causes a pressure drop \rightarrow reduction in thrust

Throatless rocket motor: Energy loss is maximum when throat diameter and chamber diameter are equal

Chamber pressure at the nozzle inlet is smaller for smaller values of A1/At

Inlet gas velocity

throat area ration	Throat Pressure (%)	Thoust reduction (%)	Specific Impulse reduction (%)
00	100	0	0
3.5	~ 99	1.5	0.31
2.0	~ 96	5.0	0.55
1.0	~ 81	19.5	1.34

Divergence Loss

$$\lambda = \frac{\text{Exhaust gas momentum with angle } \infty}{\text{Ideal gas momentum (axial)}}$$

$$\lambda = \frac{1}{2} \left(1 + \cos \infty \right)$$

Half angle
$$(\infty)$$

0 1
2 0.9997
6 0.9972
10 0.9924
15 0.983
20 0.9698

High value of half divergence angle to attain required value of area expansion ratio in shorter length → more divergence loss

Typical values of half divergence angle for conical nozzles – 12-18 degrees

Bell shaped nozzle

80% bell nozzle: Length of the nozzle is 80% of the conical nozzle for similar area expansion ratio

The rate of increase in the area decreases along the length of the nozzle

Large expansion just after the throat through the expansion waves (strong favorable pressure gradient)

After inflection point, weak compression waves form when the flow is turned along the axial direction

Hence, the design of the contour should be such that the weak compression waves should not merge to form a strong shock

Bell shaped nozzle

Minimize the divergence loss; Reduce the length of the nozzle and hence the dead weight of the hardware

Other minor losses in the nozzle

Lower flow velocity in boundary layer: Wall friction dissipates some energy. Typical reduction in c $\sim 0.5 - 1.5\%$

Multiphase flow: solid particles and liquid droplets ~ up to 5% loss

Gradual erosion of throat region increases the throat diameter by $^{\sim}$ 1-6% $\xrightarrow{\rightarrow}$ reduction in chamber pressure and thrust by $^{\sim}$ 1-6 %

Real gas behaviour: Changes in k, Cp, MW due to non-equilibrium flow \rightarrow typical loss in thrust by 0.2 – 0.7%