

El modelo relacional Fundamentos de diseño de bases de datos

El modelo relacional

Bases de datos relacionales

- El concepto de relación
- Esquema de la base de datos
- Instancia de la base de datos
- Restricciones de integridad

Diseño de bases de datos relacionales

- El proceso de diseño de bases de datos
- Paso del modelo E/R al modelo relacional

El modelo de datos relacional organiza y representa los datos en forma de tablas o relaciones:

Una base de datos relacional es una colección de relaciones [tablas].

Representación lógica

Tabla

Fila

Columna

Representación física

Archivo secuencial

Registro

Campo

Modelo relacional

Relación

Tupla

Atributo

Bases de datos relacionales

El concepto de relación: Tuplas, atributos y dominios

id_trabajador	nombre	tarifa_hr	tipo_de_oficio	id_supv
1235	F. Aguilera	12,50	Electricista	1311
1412	A. Calvo	13,75	Fontanero	1540
2920	N. Marín	10,00	Carpintero	null
3231	O. Pons	17,40	Albañil	null
1540	J.M. Medina	11,75	Fontanero	null
1311	J.C. Cubero	15,50	Electricista	null
3001	D. Sánchez	8,20	Albañil	3231

El concepto de relación: Tuplas, atributos y dominios

- Atributo (A_i): Elemento susceptible de tomar valores (cada una de las columnas de la tabla).
- Dominio (D_i): Conjunto de valores que puede tomar un atributo (se considera finito).
- **Tupla:** Cada uno de los elementos que contiene una instancia de la relación (filas).

Bases de datos relacionales

El concepto de relación

Relación R(A_i...A_n)

Subconjunto del producto cartesiano $D_1 \times ... \times D_n$ (esto es, una tabla).

En una relación hay que distinguir dos aspectos:

- **Esquema de la relación**: Los atributos A₁..A_n p.ej. Trabajadores (id_trabajador, nombre, tarifa_hr, tipo_de_oficio, id_supv)
- **Instancia de la relación**: El conjunto de tuplas $\{(x_1,x_2,...,x_n)\} \subseteq D_1 \times D_2 \times ... \times D_n$ que la componen en cada momento.

El concepto de relación

Relación R(A_i...A_n)

Subconjunto del producto cartesiano $D_1 \times ... \times D_n$ (esto es, una tabla).

Consecuencias de la definición de relación como conjunto de tuplas:

- No existen tuplas duplicadas (concepto de clave primaria).
- No existe orden en las tuplas (ni en los atributos).

Bases de datos relacionales

Esquema de la base de datos

Una base de datos relacional es un conjunto finito de relaciones junto con una serie de restricciones o reglas de integridad:

- Restricción de integridad: Condición necesaria para preservar la corrección semántica de la base de datos.
- Esquema de la base de datos: Colección de esquemas de relaciones junto con las restricciones de integridad que se definen sobre las relaciones.

Instancia de la base de datos

- Instancia (o estado) de la base de datos: Colección de instancias de relaciones que verifican las restricciones de integridad.
- Base de datos relacional: Instancia de la base de datos junto con su esquema.

Bases de datos relacionales

Restricciones de integridad: Asociadas a las tuplas de una relación

p.ej. $0 \le \text{edad} \le 120$ impuestos $\le \text{sueldo}$

En ocasiones, no se conoce el valor de un atributo para una determinada tupla. En esos casos, a ese atributo de esa tupla se le asigna un valor nulo (null), que indica que el valor de ese atributo es desconocido o, simplemente, que ese atributo no es aplicable a esa tupla.

Restricciones de integridad: Asociadas a las relaciones de la base de datos

Clave primaria:

Conjunto de atributos seleccionados para identificar univocamente a las tuplas de una relación.

Integridad de entidad:

Los atributos de la clave primaria no pueden tomar valores nulos, ya que la clave primaria debe permitirnos identificar unívocamente cada tupla de la relación.

Bases de datos relacionales

Restricciones de integridad: Asociadas a las relaciones de la base de datos

Clave externa: Conjunto de atributos de una relación cuyos valores en las tuplas deben coincidir con valores de la clave primaria de las tuplas de otra relación.

Integridad referencial:

Todos los valores no nulos de una clave externa referencian valores reales de la clave referenciada.

Restricciones de integridad: Asociadas a las relaciones de la base de datos

La integridad referencial mantiene las conexiones en las bases de datos relacionales:

imparte.NRP ∈ profesor.NRP El profesor que imparte una asignatura debe existir en la tabla de profesores.

cuenta.sucursal ∈ sucursal.número Una cuenta tiene que pertenecer a una sucursal existente.

Diseño de bases de datos relacionales

El proceso de diseño de bases de datos

Problema:

Diseñar la estructura lógica y física de una o más bases de datos para atender a las necesidades de información de los usuarios en una organización para un conjunto definido de aplicaciones.

Actividades paralelas:

- Diseño del contenido y estructura de la base de datos.
- Diseño de las aplicaciones de la base de datos.

El proceso de diseño de bases de datos

Fase 1:

Análisis de requisitos

Recabar información sobre el uso que se piensa dar a la base de datos (elicitación de requisitos del sistema).

Fase 2:

Diseño conceptual (modelo E/R)

Creación de un esquema conceptual de la base de datos independiente del DBMS que se vaya a utilizar.

Diseño de bases de datos relacionales

El proceso de diseño de bases de datos

Fase 3:

Elección del sistema gestor de bases de datos

Elección del modelo de datos (tipo de DBMS) y del DBMS concreto (p.ej. relacional, multidimensional...).

■ Fase 4:

Diseño lógico

Creación del esquema conceptual para el modelo de datos del DBMS elegido (p.ej. paso del modelo E/R a un conjunto de tablas).

El proceso de diseño de bases de datos

Fase 5:

Diseño físico

Creación de la base de datos utilizando el DDL (lenguaje de definición de datos del DBMS).

Fase 6:

Uso y mantenimiento

Gestión de los datos utilizando el DML (lenguaje de manipulación de datos del DBMS).

Diseño de bases de datos relacionales

Del modelo E/R al modelo relacional: Diseño lógico de bases de datos relacionales

Transformación de un diagrama E/R en un esquema relacional (esto es, en un conjunto de tablas):

- 1. Se transforman en tablas todas los tipos de entidades y relaciones que aparecen en el diagrama E/R.
- 2. Se seleccionan las claves primarias para cada una de las tablas de nuestro esquema lógico.
- 3. Se fusionan aquellas tablas que compartan su clave primaria.

Del modelo E/R al modelo relacional: Entidades

Cada tipo de entidad da lugar a una tabla en la base de datos.

Atributos:

Los atributos del tipo de entidad.

Clave primaria:

Una de las claves candidatas del conjunto de entidades.

Diseño de bases de datos relacionales

Del modelo E/R al modelo relacional: Entidades débiles

Atributos:

Además de los atributos propios de la entidad débil, los atributos pertenecientes a la clave primaria de la entidad fuerte de la que depende existencialmente la entidad débil.

Clave primaria:

La clave primaria de la entidad fuerte más un conjunto de atributos propio de la entidad débil (discriminante)

Del modelo E/R al modelo relacional: Relaciones

Cada tipo de relación da lugar a una tabla en la base de datos.

Atributos:

Los atributos de las claves primarias de las entidades que intervienen en la relación más los atributos propios de la relación.

Del modelo E/R al modelo relacional: Relaciones

Clave primaria:

Si la relación no tiene atributos propios:

- Relación muchos a muchos: La unión de las claves de los conjuntos de entidades que intervienen.
- Relación uno a muchos: La clave correspondiente al conjunto de entidades que participa en la relación con cardinalidad "muchos".
- Relación uno a uno: Una de las claves de las entidades intervinientes en la relación (cualquiera).

Del modelo E/R al modelo relacional: Relaciones

Clave primaria:

Si hay atributos propios de la relación:

Los atributos correspondientes al tipo de relación, a los que tal vez añadiremos algunos atributos propios dependiendo de la semántica del problema.

Claves externas:

 Una por cada una de las claves primarias de las entidades que intervienen en la relación.

Diseño de bases de datos relacionales

Del modelo E/R al modelo relacional: Relaciones

NOTA

Las relaciones entre entidades débiles y fuertes no hay que pasarlas a tablas porque la relación se recoge como parte de la clave primaria de la entidad débil (la parte correspondiente a la clave primaria de la entidad fuerte es una clave externa que apunta a la tabla derivada de la entidad fuerte).

Del modelo E/R al modelo relacional: Fusión de tablas

Se pueden combinar en una sola todas las tablas que comparten su clave primaria.

p.ej. Las tablas derivadas de las relaciones muchos a uno se fusionan con las derivadas de las entidades que participan en la relación con cardinalidad N.

Diseño de bases de datos relacionales

Del modelo E/R al modelo relacional: Relaciones de generalización y especialización

Estrategia A: Una tabla por cada conjunto de entidades

Las particularizaciones heredan la clave primaria del conjunto de entidades de nivel superior (la cual será, en las tablas correspondientes a los subtipos, una clave externa que referencia a la tabla derivada del supertipo).

Del modelo E/R al modelo relacional: Relaciones de generalización y especialización

Estrategia B: Una tabla por cada caso particular

Las particularizaciones heredan todos los atributos de la entidad general.

Ejemplo:

Profesor (NRP, nombre, dirección... departamento, categoría) PAS (NRP, nombre, dirección... grupo, nivel)

Bibliografía

- C.J. Date:
 - "Introducción a los sistemas de bases de datos". Prentice Hall, 2001 [7ª edición]. ISBN 968-444-419-2.
- Ramez A. Elmasri & Shamkant B. Navathe: "Fundamentos de Sistemas de Bases de Datos".
 Addison-Wesley, 2007 [5^a edición]. ISBN 84-782-9085-0.
- Thomas M. Connolly & Carolyn E. Begg: "Sistemas de Bases de Datos" Addison-Wesley, 2005 [4ª edición]. ISBN 84-782-9075-3.
- Henry F. Korth, Abraham Silberschatz & S. Sudarshan: "Fundamentos de Bases de Datos".
 McGraw-Hill, 2006 [5^a edición]. ISBN 84-481-4644-1.
- Olga Pons, Nicolás Marín, Juan Miguel Medina, Silvia Acid & Mª Amparo Vila: "Introducción a las Bases de Datos: El modelo relacional". Paraninfo, 2005. ISBN 8497323963