Two Example With Beamer Page 97 to 100

Mohammadamin Raisi Student Number :970087192 Unit : Tehran Shomal - Shahriar

January 12, 2021

Example 6 - Page 97

 $6.\ \,$ Convert the following NFA to an equivalent DFA.

Solution:

Σ		
States	0	1
q_0	q_0	q_0, q_1
q_1	q_2	q_2
q_0	-	q_1

([q_0] is the initial state and [q_1] is the final state) **Solution:** Conversion is done in the following ways:

\sum		
States	0	1
$[q_0]$	$[q_0]$	$[q_0, q_1]$
$[q_0,q_1]$	$[q_0, q_2]$	$[q_0, q_1, q_2]$
$[q_0,q_1,q_2]$	$[q_0, q_2]$	$[q_0,q_1,q_2]$
$[q_0, q_2]$	$[q_0]$	$[q_0,q_1,q_2]$

Rename $[q_0]$ as A, $[q_0,q_1]$ as B, $[q_0,q_1,q_2]$ as C, and $[q_0,q_2]$ as D. The beginning state is A, and final states are B and C.

\sum		
States	0	1
Α	Α	В
В	D	C
C	D	C
D	Α	C

Example 9 - Page 99

8. Construct a DFA equivalent to the following NDFA given in the following figure. [UPTU 2004]

Solution: The tabular representation of the NDFA is

Next State			
Present State	0	1	
90	q 3	$\{q_0,q_1\}$	
q_1	Ø	q_2	
q_2	q_2	$\{q_2,q_4\}$	
q_3	q_4	Ø	
9 4	q_4	q_4	

 $(q_0$ is the initial state and q_4 is the final state) The corresponding DFA is

\sum		
States	0	1
$\{q_0\}$	$\{q_3\}$	$\{q_0,q_1\}$
$\{q_3\}$	$\{q_4\}$	$\{\emptyset\}$
$\{q_4\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0,q_1\}$	$\{q_{2}\}$	$\{q_2,q_4\}$
$\{q_2\}$	$\{q_2\}$	$\{q_2,q_4\}$
$\{q_2,q_4\}$	$\{q_2,q_4\}$	$\{q_2,q_4\}$
{∅ }	{∅}	{Ø}

Here $\{q_0\}$ is the beginning state, and $\{q_4\}$, and $\{q_0,q_1\}$ are the final states.

(Draw a transitional diagram to complete the answer.)