Asymptotic unidentifiability of peer effects in the linear-in-means model

Alex Hayes | PhD Defense

2024-04-04 @ 12:30 pm

Service Memorial Institute 133, Medical Sciences Center, UW-Madison

Department of Statistics, University of Wisconsin-Madison

Contagion: if my friends get sick, I am more likely to set sick

Direct effect: if I get vaccinated, I am less likely to get sick

Interference: if my friends get vaccinated, I am less likely to get sick

^{*} Not a causal talk. But causally inspired.

$$\frac{\mathbf{Y}_{i}}{\mathsf{sick?}} = \underbrace{\alpha}_{\substack{\mathsf{base} \\ \mathsf{rate}}} + \underbrace{\beta}_{\substack{\mathsf{contagion} \\ \mathsf{effect}}} \underbrace{\sum_{\substack{i \neq j \\ \mathsf{portion} \\ \mathsf{portion}}}^{\mathsf{A}_{ij}} \mathbf{Y}_{j} + \underbrace{\gamma}_{\substack{\mathsf{direct vaccinated?} \\ \mathsf{effect}}}^{\mathsf{T}_{i}} + \underbrace{\delta}_{\substack{\mathsf{interference} \\ \mathsf{effect}}} \underbrace{\sum_{\substack{i \neq j \\ \mathsf{portion} \\ \mathsf{vaccinated}}}^{\mathsf{A}_{ij}} \mathbf{T}_{j} + \underbrace{\varepsilon_{i}}_{\substack{\mathsf{error} \\ \mathsf{portion} \\ \mathsf{vaccinated}}}^{\mathsf{A}_{ij}} \mathbf{T}_{j} + \underbrace{\varepsilon_{i}}_{\substack{\mathsf{error} \\ \mathsf{poers}}}^{\mathsf{A}_{ij}} \mathbf{T}_{j} + \underbrace{\varepsilon_{\mathsf{error} \\ \mathsf{error}}}^{\mathsf{A}_{ij}}} \mathbf{T}_{j} + \underbrace{\varepsilon_{\mathsf{error} \\ \mathsf{error}}^{\mathsf{A}_{ij}}} \mathbf{T$$

Outcome
$$Y_i \in \{0,1\}$$

Treatment $T_i \in \{0,1\}$
Adjacency matrix $A \in \{0,1\}^{n \times n}$
Edge $i \sim j$ $A_{ij} \in \{0,1\}$
Node degree $d_i \in \mathbb{Z}^+$

^{*} In practice, no domain restrictions required for Y, T, A.

Let $G_{ij} = A_{ij}/d_i$ be the row-normalization of A. We express the previous model in matrix-vector notation as

$$\mathbf{Y} = \alpha \mathbf{1}_{n} + \beta \mathbf{G} \mathbf{Y} + \gamma \mathbf{T} + \delta \mathbf{G} \mathbf{T} + \varepsilon$$

If $|\beta| < 1$, then $I - \beta G$ is invertible and there is a unique solution

$$Y = (I - \beta G)^{-1}(\alpha 1_n + \gamma T + \delta G T + \varepsilon)$$

$$= \sum_{k=0}^{\infty} \beta^k G^k(\alpha 1_n + \gamma T + \delta G T + \varepsilon) \qquad \text{since } (I - \beta G)^{-1} = \sum_{k=0}^{\infty} \beta^k G^k$$

Proposition (Finite sample identification, Bramoullé et al. (2009))

Let ε be mean zero, i.i.d. noise and let

$$\mathbf{Y} = \alpha \mathbf{1}_{\mathbf{n}} + \beta \mathbf{G} \mathbf{Y} + \gamma \mathbf{T} + \delta \mathbf{G} \mathbf{T} + \varepsilon$$

Suppose that $|\beta| < 1$ and $\gamma\beta + \delta \neq 0$. If I, G and G^2 are linearly independent, in the sense that $aI + bG + cG^2 = 0$ requires a = b = c = 0, then α, β, γ and δ are identified.

 $\gamma\beta+\delta\neq 0$ means that there is either some interference effect, or some direct effect and some contagion effect, and if there are both, they don't cancel each other out.

Proposition

If $\gamma\beta+\delta\neq$ 0 and G has three or more distinct eigenvalues, then α,β,γ and δ are identified.

Promising! If G is from a stochastic blockmodel, identification likely.

THEORY SAYS MODEL IS IDENTIFIED

Disappearing asymptotic identification: a simple case (Li and Wager, 2022)

$$\underbrace{Y_{i}}_{\text{sick?}} = \underbrace{\alpha}_{\text{base rate}} + \underbrace{\gamma}_{\substack{\text{direct vaccinated?}}} + \underbrace{\delta}_{\substack{\text{interference effect} \\ \text{effect}}} \underbrace{\sum_{i \neq j} \frac{A_{ij}}{d_{i}} T_{j}}_{\substack{\text{portion vaccinated peers}}} + \underbrace{\varepsilon_{i}}_{\substack{\text{error}}}$$

Problem: GT term converges to a constant

$$\sum_{i
eq j} rac{\mathsf{A}_{ij}}{\mathsf{d}_i} \mathsf{T}_j o \pi$$

8

GY can also be a problem

Suppose no node is isolated (otherwise the intercept differs for isolated and connected nodes in reduced form) then the reduced form of Y is given by

$$\mathbf{Y} = \frac{\alpha}{1-\beta} \mathbf{1}_n + \gamma \mathbf{T} + (\gamma \beta + \delta) \sum_{k=0}^{\infty} \beta^k \mathbf{G}^{k+1} \mathbf{T} + \sum_{k=0}^{\infty} \beta^k \mathbf{G}^k \varepsilon$$

then

$$GY = \frac{\alpha}{1-\beta} \mathbf{1}_n + \underbrace{\gamma GT}_{\substack{\text{neighborhood} \\ \text{average}}} + \underbrace{(\gamma \beta + \delta) \sum_{k=0}^{\infty} \beta^k G^{k+2} T}_{\substack{\text{repeated} \\ \text{neighborhood} \\ \text{averages}}} + \underbrace{\sum_{k=0}^{\infty} \beta^k G^{k+1} \varepsilon}_{\substack{\text{neighborhood} \\ \text{repeated} \\ \text{averages}}}$$

9

$$GY = \frac{\alpha}{1-\beta} \mathbf{1}_n + \underbrace{\gamma GT}_{\substack{\text{neighborhood average}}} + \underbrace{(\gamma \beta + \delta) \sum_{k=0}^{\infty} \beta^k G^{k+2} T}_{\substack{\text{repeated neighborhood averages}}} + \underbrace{\sum_{k=0}^{\infty} \beta^k G^{k+1} \varepsilon}_{\substack{\text{neighborhood averages}}}$$

If neighborhood averages GT are converging, repeated neighborhood averages converge as well¹, because $G1_n = 1_n$ (neighborhood average of constants is constant)

¹Possibly under suitable conditions

Roughly, if

- 1. neighborhoods d_i are all getting larger in n, and
- 2. there is no CLT/LLN breaking strong dependence between network A and nodal covariate T

Then

$$\lim_{n\to\infty} GT \to C$$
 $C \in \mathbb{R}$ $\lim_{n\to\infty} GY \to C'$ $C' \in \mathbb{R}$

Then contagion and interference effects are the same for everyone, and indistinguishable from base rates

The direct effect γ is still identified.

Theorem (Identification failure when T independent of A)

Let ε be mean zero, i.i.d. noise and let

$$\mathbf{Y} = \alpha \mathbf{1}_{\mathbf{n}} + \beta \mathbf{G} \mathbf{Y} + \gamma \mathbf{T} + \delta \mathbf{G} \mathbf{T} + \varepsilon$$

Suppose $|\beta| < 1$. If T is sub-gamma and independent of the network A, and $\min_{i \in [n]} d_i = \omega(\log n)$, then there exists constants $C, C' \in \mathbb{R}$ such that

$$\begin{split} &\lim_{n\to\infty} \sup_{i\in[n]} |GT-1_nC| = o_p(1), & \text{and} \\ &\lim_{n\to\infty} \sup_{i\in[n]} \left| GY-1_nC' \right| = o_p(1). \end{split}$$

^{*} This covers fixed networks and conditioning on the network

Theorem (Identification failure in random dot product graphs)

Let ε be mean zero, i.i.d. noise and let

$$\mathbf{Y} = \alpha \mathbf{1}_{\mathbf{n}} + \beta \mathbf{G} \mathbf{Y} + \gamma \mathbf{T} + \delta \mathbf{G} \mathbf{T} + \varepsilon$$

Suppose $|\beta| < 1$. Let $(A, X) \sim RDPG(F, n)$ and let $T = X \in \mathbb{R}^{n \times d}$. Then there exists constants $C, C' \in \mathbb{R}^d$ such that

$$\lim_{n o \infty} \sup_{i \in [n]} |GT - 1_nC| = o_p(1),$$
 and $\lim_{n o \infty} \sup_{i \in [n]} |GY - 1_nC'| = o_p(1).$

Why this matters

- 1. Shalizi and Thomas (2011); McFowland and Shalizi (2021): homophily and contagion are non-parametrically confounded. Must make parametric assumptions to estimate contagion effects.
- 2. Bramoullé et al. (2020): most parametric contagion identification theory considers fixed n setting but not the $n \to \infty$ limit. Many results won't hold under stochastic blockmodels.

Open questions

- Do GT and GY ever not converge to constants?
- Are longitudinal contagion models also affected?
- What happens in sparse networks asymptotically?

Thank you! Questions?

Stay in touch

- **y** @alexpghayes
- ☑ alex.hayes@wisc.edu
- M https://www.alexpghayes.com
- nttps://github.com/alexpghayes

References

Bramoullé, Y., H. Djebbari, and B. Fortin (2009, May). Identification of peer effects through social networks. *Journal of Econometrics* 150(1), 41–55.

Bramoullé, Y., H. Djebbari, and B. Fortin (2020). Peer Effects in Networks: A

Survey. Annual Review of Economics 12(1), 603–629.

Li, S. and S. Wager (2022, March). Random Graph Asymptotics for Treatment

Effect Estimation under Network Interference. arXiv:2007.13302 [math, stat].

McFowland, E. and C. R. Shalizi (2021, July). Estimating Causal Peer Influence in Homophilous Social Networks by Inferring Latent Locations. *Journal of the American Statistical Association 0*(0), 1–12.

American Statistical Association 0(0), 1–12.

Shalizi, C. R. and A. C. Thomas (2011, May). Homophily and Contagion Are Generically Confounded in Observational Social Network Studies. Sociological Methods & Research 40(2), 211–239.