

Learning Dirichlet Priors for Affordance Aware Planning

David Abel & Gabriel Barth-Maron, James MacGlashan, Stefanie Tellex Dept. of Computer Science, Brown University

Goal

Enable autonomous agents to learn how to plan efficiently in massive stochastic state spaces.

Background

Affordances: Direct agent toward relevant action possibilities.

"What [the environment] offers [an] animal, what [the environment] provides or furnishes, either for good or ill"

- J.J. Gibson, 1977

Formalism:

$$\Delta = \langle p, g \rangle \longmapsto \mathcal{A}'$$

p = predicate on states

g = lifted goal description

 \mathcal{A}' = subset of MDP Actions

Domain: Minecraft

≈ Turing Complete Legos

Affordance Example

 $\Delta_1 = \langle nearPlane, atLoc \rangle \longmapsto \{move\}$ $\Delta_2 = \langle nearTrench, atLoc \rangle \longmapsto \{place\}$

If Δ 's predicate is true and Δ 's goal type matches the current goal, use Δ 's actions

Learning

Goal: For a given state, for each affordance, learn which actions are most relevant:

$$\Pr(\mathcal{A}^* \mid s, \Delta_1 \dots \Delta_K)$$

Graphical Model:

s = 00-MDP State

 $\Delta =$ Affordance $\alpha =$ Action Counts

 β = Action Set Size Counts

 $\lambda =$ Distribution on Actions

 $\eta=$ Distribution on Action Set Size

 $\mathcal{A}^* = \bigcup_{i=1}^n \mathcal{A}'_{i}$

Where:

$$\Pr(\lambda \mid \alpha) = DirMult(\alpha)$$

$$\Pr(n \mid \beta) = Dir(\beta)$$

Learning Example

1) For each activated affordance, count:

lpha= number of worlds in which

used in each world

 $-\Delta_1 = \langle \checkmark nearTrench, \checkmark atGoal \rangle$ $\Delta_1.\alpha.moveRight++, \ \Delta_1.\alpha.moveForward++, \ \Delta_1.\alpha.placeRight++$

2) When solving the MDP on a new state space, in each state s:

$$\mathcal{A}^* = \bigcup_{i=1}^K (\Delta_i.getActions(s))$$

3) Where

 $\Delta_1.\beta.3++$

 $\Delta_i.getActions(s)$:

 $\lambda \leftarrow DirMult(\Delta_i.\alpha)$ $n \leftarrow Dir(\Delta_i.\beta)$ $\mathcal{A}' \leftarrow_n \lambda$ return: A'

Results

