CS 3313 Foundations of Computing:

Exam2 Review

https://gw-cs3313.github.io/

Pushdown Automata (PDA)

- Intuition: think of PDA as a NFA with stack storage
 - Stack storage implies first-in last-out
 - If you use stack as counter variable, then effectively one counter
- Nondeterministic: the PDA can have a choice of next moves
 For each choice, the PDA can:
 - 1. Change state, and also
 - Replace the top symbol on the stack by a sequence of zero or more symbols.
 - Zero symbols = "pop."
 - Many symbols = sequence of "pushes".
 - Stack alphabet = symbols that can be stored on stack
 - To store the type of input read, we can associate a stack symbol with each input symbol, ex: X for a, Y for b, etc.
 - Z is starting stack symbol

Example 1: L = { w | w has equal number of a's and b's}

- Logic: (start state is q₀ and start stack is Z)
 - Stack symbols X for input a, Y for input b
 - For every a in the input, there is a b that cancels it out
 - Push X if you read an a, with Z or X at TOS
 - Push Y if you read a b, with Z or Y at TOS
 - If you read a and Y is TOS, then "pop" (cancel a with a previous b)
 - If you read b and X is TOS, then "pop" (cancel b with a previous a)
 - If you have an equal number then at the end of input you will have
 - Empty string to read on input
 - Start stack on TOS
 - (q, λ , Z) is the ID (Instantaneous description)

This is the type of reasoning (w/ states) you want to provide; instead of just rewrite everything in δ form.

Example 2: $L = \{ a^m b^n \mid n=m \text{ or } n=2m \}$

- Strings of the form aaabbb or aaabbbbbb
- Use non-determinism to design the PDA:
 - PDA1 accepts n=m or
 - PDA2 accepts n=2m
 - Start PDA in q_0 and jump non-deterministically on empty string input to PDA1 or PDA2
 - Important: in both PDA1 and PDA2, to check for pattern of b's after a's, we need to change state after reading b.
- PDA1 starts in q_1
 - For every a in input, push X. For every b, pop one X
- PDA2 starts in q_2
 - For every a in input, push 2 X's. For every b, pop one X
- If either PDA1 or PDA2 accept then PDA M accepts.

Example 3: $L = \{ w w^R \mid w \text{ in } \{a,b\}^* \}$

- Recognizing *wcw*^R was "easy"
 - Keep pushing input until you read c
 - After reading c, compare input with TOS
 - The location of c gives you the 'midpoint' (the middle of the string)
- In ww^R there is no c in input to denote midpoint
- So "guess" non-deterministically
 - If it is the midpoint then input you read = last input you read (i.e. TOS)
 - After midpoint, "match" input with TOS (read a, X is TOS; read b with Y as TOS)...until you hit end of string and Z as TOS
- Ex: abbbba
 - a ↑ bbbba can this be the midpoint?
 - ab†bbba can this be the midpoint?
 - abb ↑ bba can this be midpoint?
 - abbb to ba can this be midpoint?

Questions regarding PDAs from HW

Note how to pop multiple chars.

Context Free Grammars

- Designing grammar for a given language
 - Ex: { ww^R }: generating from the "outside" to the "inside" –key characteristic of CFG
 - Ex: {aⁿb²ⁿ }:
 - generate from outside to inside
 - "count" two b's for every a, generate 2 b's for every a
 - Ex: {aⁿbⁿ} ∪ {aⁿb²ⁿ} : "parallel" generation generating two parallel paths
 - One for {aⁿbⁿ} and other for {aⁿb²ⁿ}
 - Ex: $\{a^m b^n c^k \mid m = n + k, m, n, k \ge 0\}$
 - Each generated a is matched with either a b or a c
 - "progressively" generating: one path leads to another

Cleanup and Simplification of CFGs

- Useless productions & useless symbols
 - Useless if variable A does not derive any terminal string
 - Useless if variable A is not reachable from S
- Removing λ productions
 - Nullable variables: variable that can derive empty string
 - Replace nullable variables in production
 - Can lead to unit productions
- Removing unit productions

Grammar Cleanup Example

```
S \rightarrow aA \mid AC \mid aBB A \rightarrow aaA \mid \lambda B \rightarrow bB \mid bbC C \rightarrow B
```

- 1. Remove λ-productions Order matters!
 - A is nullable, replace S →aA | AC and A → aaA with S →aA | AC | a | C and A → aaA | aa to get grammar:

```
- S \rightarrow aA \mid AC \mid a \mid C \mid aBB and A \rightarrow aaA \mid aa
- B \rightarrow bB \mid bbC C \rightarrow B
```

2. Remove unit productions: $S \rightarrow C$, $C \rightarrow B$, and S = >* B to get:

```
- S \rightarrow aA | AC | a | bB | bbC | aBB A \rightarrow aaA | aa

- B \rightarrow bB | bbC C \rightarrow bB | bbC
```

- 3. Remove useless Prod.
 - (i) B, C do not derive terminal string: eliminate all productions containing B, C
 - (<u>Note</u>: Not just erasing all the B's and C's.)
 - Final grammar: $S \rightarrow aA \mid a$ $A \rightarrow aaA \mid aa$

CNF grammar

• : A CFG G = (V, T, P, S) is in Chomsky Normal Form (CNF) if all productions are of the form

- \circ $A \rightarrow BC$, or
- $\circ A \rightarrow a$,

• Ex 1: G_1 with production rules:

- $\circ S \rightarrow AS \mid a$
- $\circ A \rightarrow SA \mid b$
- Is G_1 in CNF?

■ Ex 2: *G*₂ with production rules:

- $\circ S \rightarrow AS \mid AAS$
- $\circ A \rightarrow SA \mid aa$
- Is G₂ in CNF?...Convert:
- $\bullet S \to AS \mid AD_1 \qquad D_1 \to AS$
- $A \rightarrow SA \mid B_a B_a \qquad B_a \rightarrow a$

CYK Algorithm

- w_{ij} : substring (of input w) that starts at position i and has length j
 - $w = w_{ln}$
- V_{ij} : set of variables that derive w_{ij}
 - If $S \in V_{In}$ then w is generated by the grammar
- $V_{ij} = \bigcup_{1 \le k \le j-1} \left\{ A \mid A \to BC \text{ and } B \in V_{ik}, C \in V_{i+kj-k} \right\}$

Example: Application of CYK Algorithm

- $S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$
- w = baaba (length 5), so i,j iterate from 1 to 5.

				\dot{I}		
	ł)	a	a	b	a
•	В		A, C	A, C	В	A, C
J	S, A		В	S, C	A, S	
	{}		В	В		
	{}		В	Pattern		
	Į	7		comput	ation	
	S, À	, C				

S is in V_{15} therefore w is in L(G)

Questions regarding CFGs from HW

Properties of CFLs

- Closure Properties...CFLs are closed under:
 - Union, Concatenation, Star Closure
 - Homomorphism
 - Intersection with regular languages
- Decision properties: algorithms for
 - Emptiness, finiteness, membership (does w belong to the language)
- To prove a language is CFL, provide a CFG or PDA
- To prove a language is not CFL, prove using pumping lemma
 - Assume it is CFL and derive a contradiction

Statement of the CFL Pumping Lemma

For every context-free language L

There is an integer n, such that

For every string z in L of length \geq n

There exists z = uvwxy such that:

- 1. $|vwx| \leq n$.
- 2. |vx| > 0.
- 3. For all $i \ge 0$, $uv^i wx^i y$ is in L.
 - You cannot fix the value of n
 - vwx can fall anywhere in the string as long as it satisfies $|vwx| \le n$

=> have to consider all cases for vwx

Examples L_1 : { $a^i \mid i$ is a prime number}

- L_1 : { $a^i \mid i \text{ is a prime number}$ } ...NOT CFL
 - Intuition: We need to run some kind of algorithm that has to remember which primes have been checked with i.
 - Application of pumping lemma similar to proof that this language is not regular and we only have one case for splitting the string into uvwxy
- L_2 : { $w \mid w \{a,b,c\}$ *, and $n_a(w) = n_b(w) * n_c(w)$ }
 - Intuition: we need to keep track of number of b's and c's, and then multiply the two...multiplication using repeated addition implies we need to store two variables $(n_b(w))$ and $n_c(w)$: likely not context free
 - This language does not place restrictions on the pattern
 - We can have a's after b's etc.

L_2 : { $w \mid w \{a,b,c\}^*$, and $n_a(w) = n_b(w)^*n_c(w)$ }

- Assume context free, let n be the constant of the lemma
- We need to pick values for $n_a(w)$, $n_b(w)$, $n_c(w)$ which will make it easy to prove the $n_a(w)$ in pumped string cannot be the product of $n_b(w)$ and $n_c(w)$
- Additionally, pick a pattern that makes it easier to determine the different cases of vwx

L_2 : { $w \mid w \{a,b,c\}^*$, and $n_a(w) = n_b(w)^*n_c(w)$

- Assume context free, let n be the constant of the lemma
 - Additionally, pick a pattern and values that makes it easier to determine the different cases of *vwx*
- Let n be the constant and pick $z = a^m b^n c^n$ where $m = n^2$
 - why pick this as z?
 - We want to construct an instance of $n_b(w) * n_c(w)$ which will make it easier to contradict: if we pick perfect squares then we know that the next perfect square after n^2 is $(n+1)^2$ which is (2n+1) more than n^2
 - Lemma states, $|vwx| \le n$ and $|vx| \ge 1$
- Next: look at the possible cases for where vwx could be
 - We need to find a contradiction for each of these cases

aa....aabb......bbcc.....cc

L_2 : { $w \mid w \{a,b,c\}^*$, and $n_a(w) = n_b(w)^*n_c(w)$

- look at the possible cases for where vwx could be
 - We need to find a contradiction for each of these cases

Observation:

vx in cases 1,2,3 consist of one type of symbol/terminal vx in cases 4,5 consists of two types of symbols

Cases 4

$$L_{3=} \{ w \mid w \{a,b,c\}^*, and n_a(w) = n_b(w)^*n_c(w) \}$$

- Case 4: vx consists of j a's and k b's we don't care about the exact pattern
- From conditions of the lemma, $|vwx| \le n$ and $|vx| \ge 1$ implies

$$(j+k) > 0$$
 and $(j+k) \le n$

- Therefore, $z' = uv^2wx^2y$ will have
 - $n_a(z') = (n^2 + j)$ (number of a's)
 - $n_b(z') = (n + k)$
 - $n_c(z') = n$
- Question: is $(n^2 + j) = n(n+k)$?
 - If $n^2 + j = n^2 + nk$ then j = nk
 - If k=0 then j=0 contradiction since (j+k)>0
 - If k > 0 then $j = nk \ge n$ and thus (j+k) > n contradiction since (j+k) < n

Example: $L_{3} = \{x w w^{R} y \mid x=y, x,y \in \{0,1\}^{*}, w \in \{a,b\}^{*}\}$

- Intuition: While recognizing ww^R can be done using a stack, recognizing x=y implies a stack storage is not sufficient
 - This property is like the language ww see book for proof that it is not context free.
- Application of pumping lemma:
 - Approach 1: carefully choose the string so we can simplify the proof choose $w=\lambda$ and $z=0^n1^n0^n1^n$ Note the difference between
 - Approach 2: use closure properties... a string and a language.
 - CFLs are closed under intersection with regular language
 - Therefore if L₃ is CFL, then $L = L_3 \cap \{0,1\}^*$ is CFL
 - But $L = \{ww \mid x \text{ in } \{0,1\}^*\} \leftarrow$
 - Observation: Applying closure properties can sometimes simplify the proof

Questions regarding CFLs from HW