CSE 40647/60647 Data Science (Spring 2018) Lecture 22: Frequent Pattern Mining: FP-Growth

_		•			
Hren	ment	itemset	m	1111	nσ
1100	ucni	110111301	, 111	ш	ЦΚ

0	Direct has	ning and pru	nıng: DHI	P (Park, C	hen, Yu(a	<u>SIGMOD</u>	´95)	
<u> </u>	1.10					0 11 1	·OMBBN	
ertic	cal data fori	nat approach	ı: Eclat (Z	Cakı, Parth	asarathy,	Ogihara, L	1(<i>a</i>)KDD′9	97)
requ	ent pattern	projection as	nd growth	: FPgrowt	th (Han, P	ei, Yin @S	SIGMOD'	00)
	•	,						,
	temset mini							
atter	n growth-b	ased approac	ch: CLOS	ET+ (Wai	ng et al. (a	(KDD'03)		

Name (NetID):

Given a transaction database:

Tid	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

Use FP-Growth to find frequent itemsets if $min_sup = 2$.

Hint: (FP-Growth)

Solution:

- Find frequent single items and partition the database based on each such item
- Recursively grow frequent patterns by doing the above for each partitioned database (also called *conditional database*)
- To facilitate efficient processing, an efficient data structure, FP-tree, can be constructed
- Recursively construct and mine (conditional) FP-trees
- Until the resulting FP-tree is empty, or until it contains only one path single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

Answer: 1-itemsets: A:2, B:3, C:3, E:3; 2-itemsets: AC:2, BC: 2, BE: 3, CE: 2; 3-itemset: BCE: 2.