Author: LAW MAN FAI

Problem statement: To build a CNN based model which can accurately detect melanoma. Melanoma is a type of cancer that can be deadly if not detected early. It accounts for 75% of skin cancer deaths. A solution which can evaluate images and alert the dermatologists about the presence of melanoma has the potential to reduce a lot of manual effort needed in diagnosis.

Importing Skin Cancer Data

To do: Take necessary actions to read the data

Importing all the important libraries

```
import pathlib
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import os
import PIL
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential

## If you are using the data by mounting the google drive, use the following :
from google.colab import drive
drive.mount('/content/gdrive')

##Ref:https://towardsdatascience.com/downloading-datasets-into-google-drive-via-google-colab-bcblb30b0166

Drive already mounted at /content/gdrive; to attempt to forcibly remount, call drive.mount("/content/gdrive", force_remount=True).
```

This assignment uses a dataset of about 2357 images of skin cancer types. The dataset contains 9 sub-directories in each train and test subdirectories. The 9 sub-directories contains the images of 9 skin cancer types respectively.

```
## Defining the path for train and test images
## Todo: Update the paths of the train and test dataset
data_dir_train = pathlib.Path("/content/gdrive/My Drive/CNN_assignment/Skin cancer ISIC The International Skin Imaging Collaboration/Train/"
data_dir_test = pathlib.Path("/content/gdrive/My Drive/CNN_assignment/Skin cancer ISIC The International Skin Imaging Collaboration/Test/")

image_count_train = len(list(data_dir_train.glob('*/*.jpg')))
print(image_count_train)
image_count_test = len(list(data_dir_test.glob('*/*.jpg')))
print(image_count_test)

2239
118
```

Load using keras.preprocessing

Let's load these images off disk using the helpful image_dataset_from_directory utility.

Create a dataset

Define some parameters for the loader:

```
batch_size = 32
img_height = 180
img_width = 180
```

Use 80% of the images for training, and 20% for validation.

```
## Write your train dataset here
## Note use seed=123 while creating your dataset using tf.keras.preprocessing.image_dataset_from_directory
```

```
## Note, make sure your resize your images to the size img_height*img_width, while writting the dataset
train ds = tf.keras.utils.image_dataset_from_directory(
    data_dir_train,
    validation split=0.2,
   subset="training",
   seed=123,
   image size=(img height, img width),
   batch_size=batch_size)
     Found 2239 files belonging to 9 classes.
     Using 1792 files for training.
## • Write • your • validation • dataset • here
## Note use seed=123 while creating your dataset using tf.keras.preprocessing.image_dataset_from_directory
## Note, make sure your resize your images to the size img_height*img_width, while writting the dataset
val_ds • = • tf.keras.utils.image_dataset_from_directory(
 • data_dir_train,
• validation_split=0.2,
• • subset="validation",
• • seed=123,
• • image size=(img height, • img width),
• • batch_size=batch_size)
     Found 2239 files belonging to 9 classes.
     Using 447 files for validation.
# List out all the classes of skin cancer and store them in a list.
\# You can find the class names in the class_names attribute on these datasets.
# These correspond to the directory names in alphabetical order.
class names = train ds.class names
print(class_names)
     ['actinic keratosis', 'basal cell carcinoma', 'dermatofibroma', 'melanoma', 'nevus', 'pigmented benign keratosis', 'seborrheic keratosis', 'squa
```

Visualize the data

Гэ

Todo, create a code to visualize one instance of all the nine classes present in the dataset

```
import matplotlib.pyplot as plt
### your code goes here, you can use training or validation data to visualize
plt.figure(figsize=(10, 10))
for images, labels in train_ds.take(1):
    for i in range(9):
        ax = plt.subplot(3, 3, i + 1)
        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        plt.axis("off")
```


The $image_batch$ is a tensor of the shape (32, 180, 180, 3). This is a batch of 32 images of shape 180x180x3 (the last dimension refers to color channels RGB). The $label_batch$ is a tensor of the shape (32,), these are corresponding labels to the 32 images.

Dataset. cache () keeps the images in memory after they're loaded off disk during the first epoch.

Dataset. prefetch() overlaps data preprocessing and model execution while training.

```
AUTOTUNE = tf.data.experimental.AUTOTUNE
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
```

▼ Create the model

Todo: Create a CNN model, which can accurately detect 9 classes present in the dataset. Use

layers. experimental. preprocessing. Rescaling to normalize pixel values between (0,1). The RGB channel values are in the [0, 255] range. This is not ideal for a neural network. Here, it is good to standardize values to be in the [0, 1]

```
num_classes = len(class_names)

model = Sequential([
    layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
    layers.Conv2D(16, 3, padding='same', activation='relu'),
    layers.MaxPooling2D(),
    layers.Conv2D(32, 3, padding='same', activation='relu'),
    layers.MaxPooling2D(),
    layers.Conv2D(64, 3, padding='same', activation='relu'),
    layers.MaxPooling2D(),
    layers.Flatten(),
    layers.Dense(128, activation='relu'),
    layers.Dense(num_classes,activation='softmax')
])
```

▼ Compile the model

Choose an appropirate optimiser and loss function for model training

Model: "sequential_4"

Layer (type)	Output Shape	Param #
rescaling_3 (Rescaling)	(None, 180, 180, 3)	0
conv2d_9 (Conv2D)	(None, 180, 180, 16)	448
max_pooling2d_9 (MaxPooling 2D)	(None, 90, 90, 16)	0
conv2d_10 (Conv2D)	(None, 90, 90, 32)	4640
max_pooling2d_10 (MaxPooling2D)	(None, 45, 45, 32)	0
conv2d_11 (Conv2D)	(None, 45, 45, 64)	18496
max_pooling2d_11 (MaxPooling2D)	(None, 22, 22, 64)	0
flatten_3 (Flatten)	(None, 30976)	0
dense_6 (Dense)	(None, 128)	3965056
dense_7 (Dense)	(None, 9)	1161
Total params: 3,989,801 Trainable params: 3,989,801 Non-trainable params: 0		

▼ Train the model

```
epochs = 20
history = model.fit(
    train_ds,
    validation data=val ds.
    epochs=epochs
     Epoch 1/20
     /usr/local/lib/python3.10/dist-packages/keras/backend.py:5612: UserWarning: "`sparse_categorical_crossentropy` received `from_logits=True`, but
       output, from_logits = _get_logits(
     56/56 [==
                                             - 27s 135ms/step - loss: 1.9872 - accuracy: 0.2846 - val loss: 1.6928 - val accuracy: 0.4251
     Epoch 2/20
     56/56 [
                                               1s 21ms/step - loss: 1.5269 - accuracy: 0.4632 - val_loss: 1.5486 - val_accuracy: 0.4720
     Epoch 3/20
     56/56 [==
                                               1s 20ms/step - loss: 1.3584 - accuracy: 0.5391 - val loss: 1.3728 - val accuracy: 0.5391
     Epoch 4/20
     56/56 [==
                                             - 1s 20ms/step - loss: 1.2748 - accuracy: 0.5463 - val_loss: 1.4094 - val_accuracy: 0.5190
     Epoch 5/20
                                             - 1s 20ms/step - loss: 1.1863 - accuracy: 0.5792 - val_loss: 1.4251 - val_accuracy: 0.5078
     56/56 [=
     Epoch 6/20
     56/56 [=
                                               1s 20ms/step - loss: 1.1387 - accuracy: 0.5837 - val_loss: 1.4940 - val_accuracy: 0.4922
     Epoch 7/20
     56/56
                                               1s 20ms/step - loss: 1.0748 - accuracy: 0.6144 - val_loss: 1.4424 - val_accuracy: 0.5235
     Epoch 8/20
     56/56 [==
                                             - 1s 20ms/step - loss: 1.0140 - accuracy: 0.6334 - val loss: 1.3746 - val accuracy: 0.5056
     Epoch 9/20
     56/56 [
                                             - 1s 26ms/step - 1oss: 0.9096 - accuracy: 0.6780 - val_loss: 1.4496 - val_accuracy: 0.5101
     Epoch 10/20
     56/56 T=
                                            - 1s 21ms/step - 1oss: 0.9106 - accuracy: 0.6685 - val_loss: 1.4259 - val_accuracy: 0.5168
     Epoch 11/20
     56/56 [=
                                               1s 23ms/step - 1oss: 0.7603 - accuracy: 0.7204 - val_loss: 1.4644 - val_accuracy: 0.5280
     Epoch 12/20
     56/56 [=
                                               1s 25ms/step - loss: 0.7166 - accuracy: 0.7427 - val_loss: 1.6434 - val_accuracy: 0.5459
     Epoch 13/20
     56/56 [=
                                               1s 25ms/step - 1oss: 0.6593 - accuracy: 0.7545 - val_loss: 1.8866 - val_accuracy: 0.4855
     Epoch 14/20
     56/56 [=
                                             - 1s 24ms/step - loss: 0.5553 - accuracy: 0.8036 - val loss: 1.8735 - val accuracy: 0.5213
     Epoch 15/20
     56/56
                                               1s 20ms/step - loss: 0.5139 - accuracy: 0.8136 - val loss: 1.8492 - val accuracy: 0.5324
     Epoch 16/20
     56/56 [==
                                             - 1s 20ms/step - loss: 0.4457 - accuracy: 0.8304 - val_loss: 1.7530 - val_accuracy: 0.5638
     Epoch 17/20
     56/56
                                               1s 20ms/step - loss: 0.4174 - accuracy: 0.8454 - val_loss: 1.9927 - val_accuracy: 0.5459
     Epoch 18/20
     56/56
                                             - 1s 20ms/step - loss: 0.3648 - accuracy: 0.8700 - val_loss: 1.9508 - val_accuracy: 0.5280
     Epoch 19/20
     56/56 [=
                                             - 1s 20ms/step - loss: 0.3611 - accuracy: 0.8644 - val loss: 2.1271 - val accuracy: 0.5391
     Epoch 20/20
     56/56 [
                                            - 1s 22ms/step - loss: 0.3193 - accuracy: 0.8789 - val loss: 2.1023 - val accuracy: 0.4989
```

Visualizing training results

```
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs range = range(epochs)
plt.figure(figsize=(8, 8))
plt. subplot (1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
```


▼ Todo: Write your findings after the model fit, see if there is an evidence of model overfit or underfit

Answer: The model has achieved only around 55% accuracy on the validation set but 95% accuracy, it is overfitting.

```
# Todo, visualize how your augmentation strategy works for one instance of training image.
plt.figure(figsize=(12, 12))
for images, labels in train_ds.take(1):
    for i in range(9):
        ax = plt.subplot(3, 3, i + 1)
        plt.imshow(data_augmentation(images)[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        plt.axis("off")
```


▼ Todo:

Create the model, compile and train the model

```
model = Sequential([
    layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
    layers.Conv2D(16, 3, padding='same', activation='relu'),
    layers.MaxPooling2D(),
    layers.Dropout(0.25),
    layers.Conv2D(32, 3, padding='same', activation='relu'),
    layers.MaxPooling2D(),
    layers.Conv2D(64, 3, padding='same', activation='relu'),
    layers.MaxPooling2D(),
    layers.Dropout(0.25),
    layers.Platten(),
    layers.Dense(128, activation='relu'),
    layers.Dropout(0.25),
    layers.Dropout(0.25),
```

```
layers.Dense(num_classes,activation='softmax')
```

Compiling the model

model.summary()

Model: "sequential 6"

Layer (type)	Output Shape	Param #
rescaling_4 (Rescaling)	(None, 180, 180, 3)	0
conv2d_12 (Conv2D)	(None, 180, 180, 16)	448
max_pooling2d_12 (MaxPooling2D)	(None, 90, 90, 16)	0
dropout_6 (Dropout)	(None, 90, 90, 16)	0
conv2d_13 (Conv2D)	(None, 90, 90, 32)	4640
max_pooling2d_13 (MaxPooling2D)	(None, 45, 45, 32)	0
conv2d_14 (Conv2D)	(None, 45, 45, 64)	18496
max_pooling2d_14 (MaxPooling2D)	(None, 22, 22, 64)	0
dropout_7 (Dropout)	(None, 22, 22, 64)	0
flatten_4 (Flatten)	(None, 30976)	0
dense_8 (Dense)	(None, 128)	3965056
dropout_8 (Dropout)	(None, 128)	0
dense_9 (Dense)	(None, 9)	1161

Total params: 3,989,801 Trainable params: 3,989,801 Non-trainable params: 0

Training the model

```
## Your code goes here, note: train your model for 20 epochs
epochs = 20
history = model.fit(
   train ds,
   validation_data=val_ds,
   epochs=epochs
    Epoch 1/20
    56/56 [===
                              Epoch 2/20
    56/56 [===
                                  ===] - 2s 28ms/step - loss: 2.0565 - accuracy: 0.1830 - val_loss: 2.0558 - val_accuracy: 0.2103
    Epoch 3/20
                                   =] - 2s 27ms/step - loss: 1.9952 - accuracy: 0.2606 - val_loss: 1.9393 - val_accuracy: 0.3512
    56/56 [===
    Epoch 4/20
    56/56 [===
                                  ===] - 2s 28ms/step - loss: 1.8933 - accuracy: 0.2958 - val_loss: 1.8854 - val_accuracy: 0.3289
    Epoch 5/20
                                   ==] - 2s 29ms/step - loss: 1.7834 - accuracy: 0.3532 - val_loss: 1.7000 - val_accuracy: 0.3870
    56/56 [=
    Epoch 6/20
    56/56 [===
                                 ====] - 2s 30ms/step - loss: 1.6527 - accuracy: 0.4141 - val_loss: 1.6702 - val_accuracy: 0.4251
    Epoch 7/20
    56/56 [
                                   ==] - 2s 28ms/step - loss: 1.6461 - accuracy: 0.4163 - val_loss: 1.6655 - val_accuracy: 0.4251
    Epoch 8/20
    56/56 [===
                                   ==] - 2s 28ms/step - loss: 1.5691 - accuracy: 0.4431 - val_loss: 1.5425 - val_accuracy: 0.5056
    Epoch 9/20
    56/56 [=
                                   ==] - 2s 27ms/step - loss: 1.4854 - accuracy: 0.4821 - val_loss: 1.4911 - val_accuracy: 0.5056
    Epoch 10/20
                               56/56 [=
    Epoch 11/20
```

```
56/56
                                         2s 27ms/step - loss: 1.3733 - accuracy: 0.5262 - val_loss: 1.3950 - val_accuracy: 0.5369
Epoch 12/20
56/56
                                         2s 29ms/step - loss: 1.3630 - accuracy: 0.5363 - val_loss: 1.4166 - val_accuracy: 0.5302
Epoch 13/20
56/56 [=
                                         2s 28ms/step - loss: 1.3291 - accuracy: 0.5424 - val_loss: 1.4306 - val_accuracy: 0.4966
Epoch 14/20
56/56 [=
                                       - 2s 28ms/step - loss: 1.2986 - accuracy: 0.5502 - val loss: 1.5042 - val accuracy: 0.4877
Epoch 15/20
                                       - 2s 28ms/step - loss: 1.2619 - accuracy: 0.5569 - val_loss: 1.3870 - val_accuracy: 0.5257
56/56 [=
Epoch 16/20
56/56 [
                                         2s 28ms/step - loss: 1.2303 - accuracy: 0.5725 - val_loss: 1.4934 - val_accuracy: 0.4899
Epoch 17/20
56/56 [=
                                         2s 28ms/step - loss: 1.1704 - accuracy: 0.5731 - val_loss: 1.3588 - val_accuracy: 0.5347
Epoch 18/20
56/56 [=
                                         2s 30ms/step - loss: 1.1869 - accuracy: 0.5837 - val_loss: 1.4270 - val_accuracy: 0.5280
Epoch 19/20
56/56 [==
                                         2s 29ms/step - loss: 1.1461 - accuracy: 0.6004 - val loss: 1.4237 - val accuracy: 0.5011
Epoch 20/20
56/56 [=
                                         2s 28ms/step - loss: 1.1064 - accuracy: 0.5910 - val_loss: 1.3429 - val_accuracy: 0.5391
```

Visualizing the results

```
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val loss = history.history['val loss']
epochs_range = range(epochs)
plt.figure(figsize=(8, 8))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
```


Todo: Write your findings after the model fit, see if there is an evidence of model overfit or underfit. Do you think there is some improvement now as compared to the previous model run?

Answer: ovewfit is still exist but the loss is few.

▼ Todo: Find the distribution of classes in the training dataset.

Context: Many times real life datasets can have class imbalance, one class can have proportionately higher number of samples compared to the others. Class imbalance can have a detrimental effect on the final model quality. Hence as a sanity check it becomes important to check what is the distribution of classes in the data.

```
from glob import glob
path\_list = [x \ for \ x \ in \ glob(os.path.join(data\_dir\_train, \ '*', \ '*.jpg'))]
lesion_list = [os.path.basename(os.path.dirname(y)) for y in glob(os.path.join(data_dir_train, '*', '*.jpg'))]
path_list += [x for x in glob(os.path.join(data_dir_test, '*', '*.jpg'))]
lesion_list += [os.path.basename(os.path.dirname(y)) for y in glob(os.path.join(data_dir_test, '*', '*.jpg'))]
df dict org = dict(zip(path list, lesion list))
org_df = pd.DataFrame(list(df_dict_org.items()), columns = ['Path', 'Label'])
org_df
                                                       Path
                                                                               Label
             /content/gdrive/My Drive/CNN_assignment/Skin c...
        0
                                                                      actinic keratosis
             /content/gdrive/My Drive/CNN_assignment/Skin c...
                                                                      actinic keratosis
        2
             /content/gdrive/My Drive/CNN_assignment/Skin c...
                                                                      actinic keratosis
        3
             /content/gdrive/My Drive/CNN assignment/Skin c...
                                                                      actinic keratosis
             /content/gdrive/My Drive/CNN_assignment/Skin c...
                                                                      actinic keratosis
             /content/gdrive/My Drive/CNN_assignment/Skin c... squamous cell carcinoma
       2352
       2353
             /content/gdrive/My Drive/CNN_assignment/Skin c... squamous cell carcinoma
             /content/gdrive/My Drive/CNN_assignment/Skin c...
       2354
                                                                       vascular lesion
             /content/gdrive/My Drive/CNN_assignment/Skin c...
                                                                       vascular lesion
       2355
       2356 /content/gdrive/My Drive/CNN_assignment/Skin c...
                                                                       vascular lesion
     2357 rows × 2 columns
len(df_dict_org)
     2357
count=[]
for i in class_names:
        count.append(len(list(data_dir_train.glob(i+'/*.jpg'))))
plt.figure(figsize=(10,10))
plt.barh(class_names,count)
```

<BarContainer object of 9 artists>

- ▼ Todo: Write your findings here:
 - Which class has the least number of samples?
 - Which classes dominate the data in terms proportionate number of samples?

Answer-1: seborrtheic keratosis has least number of samples

Answer-2:- pigmented benign keratosis and melanoma have proprtionate number of classes

Todo: Rectify the class imbalance

Context: You can use a python package known as Augmentor (https://augmentor.readthedocs.io/en/master/) to add more samples across all classes so that none of the classes have very few samples.

```
!pip install Augmentor
```

```
Requirement already satisfied: Augmentor in /usr/local/lib/python3.10/dist-packages (0.2.12)
Requirement already satisfied: Pillow>=5.2.0 in /usr/local/lib/python3.10/dist-packages (from Augmentor) (9.4.0)
Requirement already satisfied: tqdm>=4.9.0 in /usr/local/lib/python3.10/dist-packages (from Augmentor) (4.65.0)
Requirement already satisfied: numpy>=1.11.0 in /usr/local/lib/python3.10/dist-packages (from Augmentor) (1.22.4)
```

To use ${\tt Augmentor}$, the following general procedure is followed:

Initialised with 462 image(s) found.

- 1. Instantiate a Pipeline object pointing to a directory containing your initial image data set.
- 2. Define a number of operations to perform on this data set using your Pipeline object.
- 3. Execute these operations by calling the Pipeline's sample() method.

```
path_to_training_dataset="/content/gdrive/My Drive/CNN_assignment/Skin cancer ISIC The International Skin Imaging Collaboration/Train/"
import Augmentor
for i in class names:
       #p = Augmentor.Pipeline(path_to_training_dataset + i)
       p = Augmentor.Pipeline(path_to_training_dataset + i, output_directory='/content/gdrive/My Drive/CNN_assignment/Augmentor/'+i+'/')
       p.rotate(probability=0.7, max_left_rotation=10, max_right_rotation=10)
       p. sample (500) ## We are adding 500 samples per class to make sure that none of the classes are sparse.
     Initialised with 114 image(s) found.
     Output directory set to /content/gdrive/My Drive/CNN_assignment/Augmentor/actinic keratosis/.Processing <PIL.Image.Image image mode=RGB size=600
     Initialised with 376 image(s) found.
     Output directory set to /content/gdrive/My Drive/CNN_assignment/Augmentor/basal cell carcinoma/.Processing <PIL.Image.Image image mode=RGB size=
     Initialised with 95 image(s) found.
     Output directory set to /content/gdrive/My Drive/CNN_assignment/Augmentor/dermatofibroma/. Processing <PIL. Image. Image image mode=RGB size=600x45
     Initialised with 438 image(s) found.
     Output directory set to /content/gdrive/My Drive/CNN_assignment/Augmentor/melanoma/. Processing <PIL. JpegImagePlugin. JpegImageFile image mode=RGB
     Initialised with 357 image(s) found.
     Output directory set to /content/gdrive/My Drive/CNN_assignment/Augmentor/nevus/. Processing <PIL. Image. Image image mode=RGB size=824x719 at 0x7D
```

```
Output directory set to /content/gdrive/My Drive/CNN_assignment/Augmentor/pigmented benign keratosis/.Processing <PIL.Image.Image image mode=RGB Initialised with 77 image(s) found.

Output directory set to /content/gdrive/My Drive/CNN_assignment/Augmentor/seborrheic keratosis/.Processing <PIL.Image.Image image mode=RGB size=
```

Output directory set to /content/gdrive/My Drive/UNN_assignment/Augmentor/seborrheic keratosis/. Processing <PIL. Image. Image image mode=RGB size= Initialised with 181 image(s) found.

Output directory set to /content/gdrive/My Drive/CNN_assignment/Augmentor/squamous cell carcinoma/. Processing <PIL. Image. Image image mode=RGB si Initialised with 139 image(s) found.

 $Output \ directory \ set \ to \ /content/gdrive/My \ Drive/CNN_assignment/Augmentor/vascular \ lesion/. \ Processing \ <PIL. JpegImagePlugin. JpegImageFile \ image \ model of the processing of the processing$

Augmentor has stored the augmented images in the output sub-directory of each of the sub-directories of skin cancer types.. Lets take a look at total count of augmented images.

按兩下 (或按 Enter 鍵) 即可編輯

```
data_dir_train_aug = pathlib.Path('/content/gdrive/My Drive/CNN_assignment/Augmentor/')
```

```
image_count_train = len(list(data_dir_train_aug.glob('*/*.jpg')))
print(image_count_train)
     9000
%cd '/content/gdrive/My Drive/CNN assignment/Org With Aug Data'
     /content/gdrive/My\ Drive/CNN\_assignment/Org\_With\_Aug\_Data
# copy orginal train and augmented data into another folder
%cd '/content/gdrive/My Drive/CNN assignment/Augmentor/'
    -av * '/content/gdrive/My Drive/CNN_assignment/Org_With_Aug_Data/' >> /dev/null
     /content/gdrive/My Drive/CNN_assignment/Augmentor
%cd '/content/gdrive/My Drive/CNN_assignment/Skin cancer ISIC The International Skin Imaging Collaboration/Train'
%cp -av * '/content/gdrive/My Drive/CNN_assignment/Org_With_Aug_Data' >> /dev/null
     /content/gdrive/My Drive/CNN_assignment/Skin cancer ISIC The International Skin Imaging Collaboration/Train
%1s
     /content/gdrive/My Drive/CNN_assignment/Org_With_Aug_Data
      actinic keratosis'/ 'pigmented benign keratosis'/
basal cell carcinoma'/ 'seborrheic keratosis'/
                              'squamous cell carcinoma'/
      dermatofibroma/
                             'vascular lesion'/
      melanoma/
      nevus/
```

▼ Lets see the distribution of augmented data after adding new images to the original training data.

```
data_dir_train_aug='/content/gdrive/My Drive/CNN_assignment/Org_With_Aug_Data/'
path_list_new = [x for x in glob(os.path.join(data_dir_train_aug, '*', '*.jpg'))]
len(path_list_new)

11239

lesion_list_new = [os.path.basename(os.path.dirname(y)) for y in glob(os.path.join(data_dir_train_aug, '*', '*.jpg'))]
len(lesion_list_new)

11239

dataframe_dict_new = dict(zip(path_list_new, lesion_list_new))

df2 = pd.DataFrame(list(dataframe_dict_new.items()), columns = ['Path','Label'])
#new_df = org_df.append(df2)
new_df=pd.concat([org_df, df2], ignore_index=True)
```

```
new_df['Label'].value_counts()
     pigmented benign keratosis
                                    1940
                                    1892
     melanoma
     basal cell carcinoma
                                    1768
     nevus
                                    1730
     squamous cell carcinoma
                                    1378
     vascular lesion
                                    1281
     actinic keratosis
                                    1244
     dermatofibroma
                                    1206
     seborrheic keratosis
                                    1157
     Name: Label, dtype: int64
CountStatus = new df.value counts(new df['Label'].values, sort=True)
CountStatus.plot.barh()
```


So, now we have added 500 images to all the classes to maintain some class balance. We can add more images as we want to improve training process.

▼ Todo: Train the model on the data created using Augmentor

```
batch_size = 32
img_height = 180
img_width = 180
```

▼ Todo: Create a training dataset

```
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
   data_dir_train_aug,
   seed=123,
   validation_split = 0.2,
   subset ='training',
   image_size=(img_height, img_width),
   batch_size=batch_size)

Found 11239 files belonging to 9 classes.
   Using 8992 files for training.
```

▼ Todo: Create a validation dataset

```
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir_train_aug,
    seed=123,
    validation_split = 0.2,
    subset = 'validation',
    image_size=(img_height, img_width),
    batch_size=batch_size)
```

```
Found 11239 files belonging to 9 classes.
Using 2247 files for validation.

AUTOTUNE = tf. data.experimental.AUTOTUNE
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
```

▼ Todo: Create your model (make sure to include normalization)

```
model = Sequential([
    layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
    layers.Conv2D(16, 3, padding='same', activation='relu'),
    layers.MaxPooling2D(),
    layers.Conv2D(32, 3, padding='same', activation='relu'),
    layers.Conv2D(64, 3, padding='same', activation='relu'),
    layers.MaxPooling2D(),
    layers.MaxPooling2D(),
    layers.Dropout(0.25),
    layers.Flatten(),
    layers.Dense(128, activation='relu'),
    layers.Dropout(0.25),
    layers.Dense(num_classes,activation='softmax')
])
```

▼ Todo: Compile your model (Choose optimizer and loss function appropriately)

```
\label{lossentropy} $$ model. compile (optimizer='adam', \\ loss=tf. keras. losses. SparseCategoricalCrossentropy (from_logits=True), \\ metrics=['accuracy']) $$
```

▼ Todo: Train your model

```
epochs = 50
history = model.fit(
    train ds,
    validation data=val ds,
    epochs=epochs
     Epoch 1/50
     /usr/local/lib/python3.10/dist-packages/keras/backend.py:5612: UserWarning: "`sparse_categorical_crossentropy` received `from_logits=True`, b
       output, from_logits = _get_logits(
                                              - 84s 104ms/step - loss: 1.8689 - accuracy: 0.2815 - val loss: 1.6156 - val accuracy: 0.4108
     Epoch 2/50
     281/281 [=
                                             =] - 8s 28ms/step - loss: 1.3824 - accuracy: 0.4685 - val_loss: 1.2658 - val_accuracy: 0.5389
     Epoch 3/50
                                               - 8s 28ms/step - loss: 1.1722 - accuracy: 0.5582 - val_loss: 1.0824 - val_accuracy: 0.6088
     281/281 [=:
     Epoch 4/50
                                            =] - 9s 33ms/step - loss: 1.0239 - accuracy: 0.6219 - val_loss: 1.0819 - val_accuracy: 0.5964
     281/281 [=
     Epoch 5/50
     281/281 [==
                                               - 10s 36ms/step - 1oss: 0.8683 - accuracy: 0.6849 - val_loss: 0.7853 - val_accuracy: 0.7365
     Epoch 6/50
     281/281 [=
                                                8s 29ms/step - loss: 0.6960 - accuracy: 0.7450 - val_loss: 0.7591 - val_accuracy: 0.7339
     Epoch 7/50
     281/281 [=
                                            =] - 9s 31ms/step - loss: 0.5883 - accuracy: 0.7812 - val_loss: 0.5864 - val_accuracy: 0.7824
     Epoch 8/50
                                            =] - 8s 27ms/step - loss: 0.5246 - accuracy: 0.8102 - val_loss: 0.5043 - val_accuracy: 0.8242
     281/281 [=
     Epoch 9/50
     281/281 [==
                                            ==] - 8s 28ms/step - loss: 0.4625 - accuracy: 0.8292 - val_loss: 0.4716 - val_accuracy: 0.8385
     Epoch 10/50
     281/281 [===
                                            ==] - 8s 27ms/step - loss: 0.4051 - accuracy: 0.8534 - val_loss: 0.4791 - val_accuracy: 0.8505
     Epoch 11/50
     281/281 [==
                                                8s 28ms/step - loss: 0.3823 - accuracy: 0.8614 - val loss: 0.5677 - val accuracy: 0.7988
     Epoch 12/50
     281/281 [==
                                                8s 28ms/step - loss: 0.3655 - accuracy: 0.8643 - val_loss: 1.1829 - val_accuracy: 0.6538
     Epoch 13/50
     281/281 [=
                                            =] - 8s 27ms/step - loss: 0.3475 - accuracy: 0.8727 - val_loss: 0.4529 - val_accuracy: 0.8669
     Epoch 14/50
     281/281 [===
                                              - 8s 28ms/step - 1oss: 0.2956 - accuracy: 0.8896 - val_loss: 0.4458 - val_accuracy: 0.8549
     Epoch 15/50
     281/281 [==
                                            ] - 8s 27ms/step - loss: 0.2705 - accuracy: 0.8976 - val_loss: 0.4187 - val_accuracy: 0.8674
     Epoch 16/50
     281/281 [==
                                              - 8s 28ms/step - loss: 0.2657 - accuracy: 0.9025 - val loss: 0.4421 - val accuracy: 0.8687
     Epoch 17/50
     281/281 [=
                                            =] - 8s 28ms/step - loss: 0.2797 - accuracy: 0.8959 - val_loss: 0.4444 - val_accuracy: 0.8647
     Epoch 18/50
     281/281 [=
                                           ==] - 8s 29ms/step - loss: 0.2531 - accuracy: 0.9062 - val loss: 0.3707 - val accuracy: 0.8941
```

```
Epoch 19/50
281/281 [==
                                        - 8s 29ms/step - 1oss: 0.2268 - accuracy: 0.9157 - val_loss: 0.4549 - val_accuracy: 0.8718
Epoch 20/50
                                           8s 28ms/step - loss: 0.2370 - accuracy: 0.9117 - val_loss: 0.4682 - val_accuracy: 0.8603
281/281 [==
Epoch 21/50
281/281 [==
                                           8s 28ms/step - loss: 0.2247 - accuracy: 0.9155 - val loss: 0.4029 - val accuracy: 0.8901
Enoch 22/50
                                           8s 28ms/step - loss: 0.2154 - accuracy: 0.9135 - val_loss: 0.5238 - val_accuracy: 0.8540
281/281 [==
Epoch 23/50
281/281 [==
                                           8s 27ms/step - loss: 0.2289 - accuracy: 0.9114 - val_loss: 0.4271 - val_accuracy: 0.8785
Epoch 24/50
281/281 [==
                                           8s 28ms/step - loss: 0.1924 - accuracy: 0.9253 - val loss: 0.4257 - val accuracy: 0.8999
Epoch 25/50
281/281 [==
                                           8s 27ms/step - loss: 0.1943 - accuracy: 0.9295 - val_loss: 0.4275 - val_accuracy: 0.8723
Epoch 26/50
                                           8s 28ms/step - loss: 0.2081 - accuracy: 0.9220 - val loss: 0.4858 - val accuracy: 0.8652
281/281 [==
Epoch 27/50
281/281 [=:
                                           8s 27ms/step - loss: 0.1856 - accuracy: 0.9306 - val_loss: 0.4432 - val_accuracy: 0.8781
Epoch 28/50
```

▼ Todo: Visualize the model results

```
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(epochs)
plt.figure(figsize=(8, 8))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs range, val loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
```


▼ Todo: Analyze your results here. Did you get rid of underfitting/overfitting? Did class rebalance help?

Accuracy on training data is increased to around 85% by using Augmentor library.

The class rebalance is helped for overfitting issue.

For better accuracy, it can be solved by add more layer,neurons or adding dropout layers, and tuning the hyperparameter.