

ISS - Signály a systémy Projektový protokol

Obsah

1	Vstu	Vstupný signál			
	1.1	Načítanie vstupného signálu	1		
	1.2	Výber znelého rámca	2		
	1.3		3		
	1.4	Spektrogram	4		
	1.5	Určenie rušivých frekvencií	4		
	1.6	Generovanie rušivého signálu	5		
2	2 Čistiaci filter		5		
	2.1	Spektrogram	5		
	2.2		5		
	2.3	Impulzné odozvy	6		
	2.4	Nulové body a póly	7		
	2.5	Frekvenčné charakteristiky	8		
	2.6	Filtrácia	8		
3	Záver		8		
4	Zdro	je	9		

1 Vstupný signál

1.1 Načítanie vstupného signálu

Obrázek 1: Graf vstupného signálu

Dĺžka signálu v sekundách: 4.65925 Dĺžka signálu vo vzorkoch: 74548

Maximálna hodnota: 0.113861083984375 **Minimálna hodnota:** -0.089080810546875

1.2 Výber znelého rámca

Obrázek 2: Graf vybraného znelého rámca

Vybraný rámec bol predom ustrednený pomocou funkcie **centralise_signal** a normalizovaný pomocou funkcie **normalise_signal**.

Algorithm 1: FUNKCIA PRE NASEKANIE RÁMCOV get_frames

```
Input: data
Output: dft\_array

1: num\_of\_values = 1024

2: value\_shadowing = 512

3: j = 0

4: data\_matrix = []

5: \mathbf{for} \ k = 0 \ \mathbf{to} \ int(data.size/value\_shadowing) \ \mathbf{do}

6: data\_matrix.append(data[j:num\_of\_values])

7: j = j + value\_shadowing

8: num\_of\_values = num\_of\_values + value\_shadowing

9: \mathbf{end} \ \mathbf{for}

10: \mathbf{return} \ data\_matrix
```

1.3 DFT

Obrázek 3: DFT vybraného znelého rámca

Algorithm 2: Funkcia na generovanie DFT

```
Input: data
Output: dft\_array

1: dft\_array = []
2: data\_len = len(data)
3: res = 0
4: \mathbf{for}\ k = 0\ \mathbf{to}\ data\_len\ \mathbf{do}
5: \mathbf{for}\ n = 0\ \mathbf{to}\ data\_len\ \mathbf{do}
6: res = res + (data[n]*np.exp(complex(0, ((-2*np.pi)/data\_len)*k*n)))
7: \mathbf{end}\ \mathbf{for}
8: dft\_array.append(res)
9: res = 0
10: \mathbf{end}\ \mathbf{for}
11: \mathbf{return}\ dft\_array
```

1.4 Spektrogram

Obrázek 4: Spektrogram celého vstupného signálu

1.5 Určenie rušivých frekvencií

Z predošlého grafu sme mohli vyčítať, že frekvencie rušívých frekvencií sú 625, 1250, 1875, 2500 Hz.

Obrázek 5: Spektrálna analýza vybraných rušivých frekvencií

1.6 Generovanie rušivého signálu

Jednotlivé vygenerované kosinusovky som spojil a následne vygeneroval jednotný signál.

2 Čistiaci filter

2.1 Spektrogram

Obrázek 6: Spektrogram prefiltrovaného signálu

2.2 Koeficienty

Koeficienty získané pomocou funkcie buttord:

Koeficienty pre filter 625Hz:

A: [0.96968306, -7.52550525, 25.78017798, -50.90526409, 63.361829, -50.90526409, 25.78017798, -7.52550525, 0.96968306] **B:** [1, -7.70105997, 26.17874137, -51.29525664, 63.35745028, -50.51170515, 25.3850742, -7.35351693, 0.94028524]

Koeficienty pre filter 1250Hz:

A: [0.96968306, -6.84194771, 21.98216606, -41.81505812, 51.4133232, -41.81505812, 21.98216606, -6.84194771, 0.96968306] **B:** [1, -7.00155641, 22.32196554, -42.13525072, 51.40954445, -41.49162307, 21.64522621, -6.68558145, 0.94028524]

Koeficienty pre filter 1875Hz:

A: [0.96968306, -5.74830096, 16.65724922, -29.87012105, 36.05279172, -29.87012105, 16.65724922, -5.74830096, 0.96968306]

B: [1, -5.88239712, 16.91466011, -30.09864033, 36.04985415, -29.63887761, 16.4018568, -5.61692897, 0.94028524]

Koeficienty pre filter **2500Hz**:

A: [0.96968306 -4.31011547 11.06294637 -18.25249641 21.66504327 -18.25249641 11.06294637 -4.31011547 0.96968306] **B:** [1, -4.41066168, 11.23380064, -18.39194432, 21.66298942, -18.1110059, 10.89322683, -4.21161184, 0.94028524]

2.3 Impulzné odozvy

Obrázek 7: Graf impulzných odoziev jednotlivých filtrov

2.4 Nulové body a póly

Obrázek 8: Graf nulových bodov a pólov jednotlivých filtrov

2.5 Frekvenčné charakteristiky

Obrázek 9: Graf frekvencných chrakteristík jednotlivých filtrov

2.6 Filtrácia

Obrázek 10: Graf vyfiltrovaného signálu

3 Záver

Výsledná nahrávka je podstatne čistejšia. Samotný hlas neznie byť nejak výrazne narušený. Občasne je veľmi jemne počuť (hlavne na začiatku a na konci nahrávky) pískanie, ktoré by bolo možné potlačiť presnejším určením intervalu prepúštaných pásiem cez filter alebo v prípade pískania na začiatku a konci náhravky aj možným minimálnym osekaním nahrávky nakoľko sa v týchto častiach nevyskytuje žiaden hlas.

4 Zdroje

- $[1] \ https://nbviewer.org/github/zmolikova/ISS_project_study_phase/blob/master/Zvuk_spektra_filtrace.ipynb$
- [2] https://docs.scipy.org/doc/
- [3] https://www.kite.com/python/docs/scipy.signal.butter