Data Imputation (deal with missing values)

- It is a method for retaining the majority of datasets data and information by substituting missing data with a different value
- if only few of the values are missing ,we can perform imputation
- · there are different methods for imputation
 - Using the mean value
 - Using the median value
 - Using the most frequent value
 - filling missing value with a constant
- · Sem exams and electric bills

In [1]:

```
from sklearn.impute import SimpleImputer
```

In [6]:

```
import numpy as np
import pandas as pd
di={
    "a":pd.Series([12,34,45,np.nan,56],index=[1,2,3,4,5]),
    "b":pd.Series([90,89,78,89],index=[1,3,4,5]),
    "c":pd.Series([13,45,35,35],index=[1,2,3,4])
}
df=pd.DataFrame(di)
df
```

Out[6]:

```
        a
        b
        c

        1
        12.0
        90.0
        13.0

        2
        34.0
        NaN
        45.0

        3
        45.0
        89.0
        35.0

        4
        NaN
        78.0
        35.0

        5
        56.0
        89.0
        NaN
```

In [7]:

```
si=SimpleImputer(strategy="median")
si.fit_transform(df)
```

Out[7]:

```
array([[12., 90., 13.],

[34., 89., 45.],

[45., 89., 35.],

[39.5, 78., 35.],

[56., 89., 35.]])
```

```
In [8]:
df.median()
Out[8]:
а
     39.5
     89.0
b
     35.0
C
dtype: float64
In [9]:
sm=SimpleImputer(strategy='mean')
sm.fit_transform(df)
Out[9]:
array([[12. , 90. , 13.
       [34., 86.5, 45.
       [45., 89., 35.
       [36.75, 78. , 35.
                           ],
       [56., 89., 32.
                           ]])
In [10]:
df.mean()
Out[10]:
     36.75
а
     86.50
h
     32.00
dtype: float64
In [11]:
sf=SimpleImputer(strategy="most_frequent")
sf.fit_transform(df)
C:\Users\meena\anaconda3\lib\site-packages\sklearn\impute\_base.py:49: Fut
ureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), th
e default behavior of `mode` typically preserves the axis it acts along. I
n SciPy 1.11.0, this behavior will change: the default value of `keepdims`
will become False, the `axis` over which the statistic is taken will be el
iminated, and the value None will no longer be accepted. Set `keepdims` to
True or False to avoid this warning.
 mode = stats.mode(array)
Out[11]:
array([[12., 90., 13.],
       [34., 89., 45.],
       [45., 89., 35.],
       [12., 78., 35.],
```

[56., 89., 35.]])

```
In [12]:
```

```
si=SimpleImputer(strategy="constant",fill_value=-1)
si.fit_transform(df)
Out[12]:
```

Task

load titanic dataset

array([[12., 90., 13.],

[34., -1., 45.], [45., 89., 35.], [-1., 78., 35.], [56., 89., -1.]])

· clean data by using SimpleImputer

Feature scaling

- Feature scaling is a preprocessing technique that involves transforming the values of features or variables in a dataset to a similar scale
- · real world datasets contains features that are varying in agnitute, units or range
- Inorder to convert these features on the samescale, we need to perform feature scaling

```
In [ ]:
```

```
[10kg, 100tons, 800gms, 70gms] ---> weights
kgs
10+100+800+70
```

Scaling techniques

- · Standardizing Data
- Data Range
- · Normalizing Data
- Robust scaling

Standardizing data

- Converting raw data into standard format to make it easier to understand
- The standard format refers to data that has 0 mean and unit variance(i.e standard deviation=1). the
 process of converting data into this format is called Data Standardization
- · Improves the performance of model
- Standardization rescales data to have mean=0 and standard deviation of 1
- · the formula for this is (x-mean)/standard deviation

In [13]:

adv=pd.read_csv("Advertising.csv")
adv

Out[13]:

	TV	radio	newspaper	sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	9.7
197	177.0	9.3	6.4	12.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	13.4

200 rows × 4 columns

In [14]:

adv.head()

Out[14]:

	TV	radio	newspaper	sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9

In [15]:

import seaborn as sns

In [17]:

```
sns.kdeplot(adv["TV"]) # kernel density plot to display how data is distributed as area
sns.kdeplot(adv["radio"])
sns.kdeplot(adv["newspaper"])
sns.kdeplot(adv["sales"])
```

Out[17]:

<AxesSubplot:xlabel='TV', ylabel='Density'>

In [18]:

```
adv["TV"][0]
```

Out[18]:

230.1

In [21]:

```
# std_data=(x-mean)/std(x)

(adv["TV"][0]-adv["TV"].mean())/adv["TV"].std()
```

Out[21]:

0.9674245973763037

```
In [20]:
adv["TV"].mean()
Out[20]:
147.0425
In [22]:
from sklearn.preprocessing import scale
In [25]:
scl=scale(adv)
scl
Out[25]:
array([[ 9.69852266e-01,
                          9.81522472e-01, 1.77894547e+00,
         1.55205313e+00],
       [-1.19737623e+00,
                          1.08280781e+00,
                                           6.69578760e-01,
        -6.96046111e-01],
       [-1.51615499e+00, 1.52846331e+00,
                                           1.78354865e+00,
        -9.07405869e-01],
       [ 5.20496822e-02, 1.21785493e+00,
                                           1.28640506e+00,
         8.60330287e-01],
       [ 3.94182198e-01, -8.41613655e-01,
                                           1.28180188e+00,
        -2.15683025e-01],
       [-1.61540845e+00,
                          1.73103399e+00, 2.04592999e+00,
        -1.31091086e+00],
       [-1.04557682e+00, 6.43904671e-01, -3.24708413e-01,
        -4.27042783e-01],
       [-3.13436589e-01, -2.47406325e-01, -8.72486994e-01,
        -1.58039455e-01],
       [-1.61657614e+00, -1.42906863e+00, -1.36042422e+00,
```

-1.77205942e+001.

In [27]:

scl_data=pd.DataFrame(scl,columns=adv.columns)
scl_data

Out[27]:

	TV	radio	newspaper	sales
0	0.969852	0.981522	1.778945	1.552053
1	-1.197376	1.082808	0.669579	-0.696046
2	-1.516155	1.528463	1.783549	-0.907406
3	0.052050	1.217855	1.286405	0.860330
4	0.394182	-0.841614	1.281802	-0.215683
195	-1.270941	-1.321031	-0.771217	-1.234053
196	-0.617035	-1.240003	-1.033598	-0.830548
197	0.349810	-0.942899	-1.111852	-0.234898
198	1.594565	1.265121	1.640850	2.205347
199	0.993206	-0.990165	-1.005979	-0.119610

200 rows × 4 columns

In [29]:

```
sns.kdeplot(scl_data["TV"])
sns.kdeplot(scl_data["radio"])
sns.kdeplot(scl_data["newspaper"])
sns.kdeplot(scl_data["sales"])
```

Out[29]:

<AxesSubplot:xlabel='TV', ylabel='Density'>

In [31]:

```
adv.mean()
```

Out[31]:

TV 147.0425 radio 23.2640 newspaper 30.5540 sales 14.0225

dtype: float64

In [32]:

```
adv.std()
```

Out[32]:

TV 85.854236 radio 14.846809 newspaper 21.778621 sales 5.217457

dtype: float64

```
In [33]:
```

```
scl_data.mean().round(3)
```

Out[33]:

TV 0.0 radio -0.0 newspaper 0.0 sales -0.0 dtype: float64

In [34]:

```
scl_data.std().round(3)
```

Out[34]:

TV 1.003 radio 1.003 newspaper 1.003 sales 1.003 dtype: float64

Data range

- · Scale the data by compressing it into a fixed range
- one of the biggest use case for this is compressing data into the range[0,1]
- MinMaxScaler

In [35]:

```
adv.head()
```

Out[35]:

	TV	radio	newspaper	sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9

In [36]:

```
from sklearn.preprocessing import MinMaxScaler
```

In [37]:

```
mnscl=MinMaxScaler()
```

```
In [38]:
mnscale=mnscl.fit transform(adv)
In [43]:
mnscale
Out[43]:
array([[0.77578627, 0.76209677, 0.60598065, 0.80708661],
       [0.1481231, 0.79233871, 0.39401935, 0.34645669],
       [0.0557998, 0.92540323, 0.60686016, 0.30314961],
       [0.50997633, 0.83266129, 0.51187335, 0.66535433],
       [0.60906324, 0.21774194, 0.51099384, 0.44488189],
       [0.02705445, 0.9858871, 0.65699208, 0.22047244],
       [0.19208657, 0.66129032, 0.20404573, 0.4015748],
       [0.4041258, 0.39516129, 0.09938434, 0.45669291],
       [0.02671627, 0.04233871, 0.00615655, 0.12598425],
       [0.67331755, 0.05241935, 0.18381706, 0.35433071],
       [0.2211701, 0.11693548, 0.21020229, 0.27559055],
       [0.72370646, 0.48387097, 0.03254178, 0.62204724],
       [0.07811972, 0.70766129, 0.5769569, 0.2992126],
       [0.32735881, 0.15322581, 0.06068602, 0.31889764],
       [0.68785932, 0.66330645, 0.40193492, 0.68503937],
       [0.65843761, 0.96169355, 0.46262093, 0.81889764],
       [0.22691917, 0.73790323, 1.
                                          , 0.42913386],
       [0.94927291. 0.7983871 . 0.48812665. 0.8976378 ].
In [39]:
mnscale.min()
Out[39]:
0.0
In [40]:
mnscale.max()
Out[40]:
1.0
In [41]:
adv.min()
Out[41]:
             0.7
TV
radio
             0.0
             0.3
newspaper
sales
             1.6
```

dtype: float64

Normalizing data

- · want to scale the individual data observations(i.e rows)
- · Used in classification probelem and data mining
- · when clustering data we need to apply L2 normalization to each row
- L2 normalization applied to particular row of a data array
- . L2 norm of a row is the squareroot of the sum of the squared values for the row

```
In [44]:
home=pd.read_csv("HomeBuyer.csv")
In [45]:
home
In [47]:
from sklearn.preprocessing import Normalizer
In [48]:
norm=Normalizer()
In [49]:
nor_data=norm.fit_transform(home)
In [50]:
nor_data
                                             . . .
In [51]:
nor data.min()
Out[51]:
0.0
```

```
In [52]:
```

nor_data.max()

Out[52]:

0.9999999807797668

Robust scaling

- · Deal with outliers (data point which is significantly further away from the other data points
- · Robustly scale the data i.e avoid being affected by the outliers
- Scaling by using data's mean and interquartile range(IQR)
- · Here mean affected but median remains same
- · Subtract the median fro each data value then scale to the IQR

In [53]:

```
adv.head()
```

Out[53]:

	TV	radio	newspaper	sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9

In [54]:

from sklearn.preprocessing import RobustScaler

In [55]:

```
rscl=RobustScaler()
```

In [56]:

rscl=rscl.fit transform(adv)

In [57]:

rscl_data=pd.DataFrame(rscl,columns=adv.columns)
rscl_data

Out[57]:

	TV	radio	newspaper	sales
0	0.556248	0.561205	1.343122	1.309609
1	-0.728626	0.617702	0.598145	-0.355872
2	-0.917619	0.866290	1.346213	-0.512456
3	0.012115	0.693032	1.012365	0.797153
4	0.214953	-0.455744	1.009274	0.000000
195	-0.772240	-0.723164	-0.369397	-0.754448
196	-0.384562	-0.677966	-0.545595	-0.455516
197	0.188647	-0.512241	-0.598145	-0.014235
198	0.926618	0.719397	1.250386	1.793594
199	0.570093	-0.538606	-0.527048	0.071174

200 rows × 4 columns

In [59]:

```
sns.kdeplot(rscl_data["TV"])
sns.kdeplot(rscl_data["radio"])
sns.kdeplot(rscl_data["newspaper"])
sns.kdeplot(rscl_data["sales"])
```

Out[59]:

<AxesSubplot:xlabel='TV', ylabel='Density'>

In []: