機率與統計 Exercise1 Chapter1 B06505047 陳銘杰

Problem 1.1.3

a. $S = \{aaa, aaf, afa, aff, faa, faf, ffa, fff\}$

b.
$$Z_F = \{aaf, aff, faf, fff\}$$

 $X_A = \{aaa, aaf, afa, aff\}$

- c. No
- d. No
- e. $C = \{aaa, aaf, afa, faa\}$ $D = \{aff, faf, ffa, fff\}$
- f. Yes
- g. Yes

Problem 1.2.13

Define the set of events
$$\{A_i | i = 1,2,3...\}$$
 $i = 1,2...m$, $A_i = B_i$, $i > m$, $A_i = \emptyset$ $P[\bigcup_{i=1}^m B_i] = P[\bigcup_{i=1}^\infty A_i] = \sum_{i=1}^\infty P[A_i] = \sum_{i=1}^m P[A_i]$ $(i > m, A_i = \emptyset, P[\emptyset] = 0)$ $P[\bigcup_{i=1}^m B_i] = \sum_{i=1}^m P[A_i] = \sum_{i=1}^m P[B_i]$ $(i = 1,2...m, A_i = B_i)$ $=> P[\bigcup_{i=1}^m B_i] = \sum_{i=1}^m P[B_i]$

Problem 1.3.8

a.
$$P[L] = 0.16 \cdot P[H] = 0.1 \cdot P[LH] = 0.1 * P[L \cup H]$$

$$P[L \cup H] = P[L] + P[H] - P[LH]$$

$$10 * P[LH] = 0.16 + 0.1 - P[LH]$$

$$11 * P[LH] = 0.26$$

$$P[LH] = \frac{0.26}{11} = 0.024$$

b.
$$P[H|L] = \frac{P[LH]}{P[L]} = \frac{0.024}{0.16} = 0.148$$

Problem 1.4.3

a.

	H_0	H_1	H_2
F	P_0	P_1	P_2
V	P_3	P_4	P_5
	1		

$$P_0 + P_3 = P_1 + P_4 = P_2 + P_5 = \frac{1}{3}$$

$$P_0 + P_1 + P_2 = \frac{5}{12} \Rightarrow P_3 + P_4 + P_5 = \frac{7}{12}$$

1.

	H_0	H_{1}	H_2
F	$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{\epsilon}$
V	6 1	12	6 1
	- 6	$\overline{4}$	- 6

	H_0	H_1	H_2
F	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{12}$
V	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{4}$
3.			
	H_0	H_1	H_2
F	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{6}$
V	$\frac{1}{4}$	$\frac{1}{6}$	$\frac{1}{6}$

b.
$$P_0 = \frac{1}{4} \cdot P_4 = \frac{1}{6}$$

$$\Rightarrow P_3 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12} \cdot P_1 = \frac{1}{3} - \frac{1}{6} = \frac{1}{6}$$

$$\Rightarrow P_2 = \frac{5}{12} - \frac{1}{4} - \frac{1}{6} = 0 \cdot P_5 = \frac{7}{12} - \frac{1}{12} - \frac{1}{6} = \frac{1}{3}$$

$$\Rightarrow P_4 = \frac{1}{12} \cdot P_4 = \frac{1}{12} \cdot P_4 = \frac{1}{12} \cdot P_5 = \frac{1}{12} \cdot P_6 =$$

	H_0	H_1	H_2
F	1	1	0
	$\frac{\overline{4}}{4}$	- 6	
V	1	1	1
	12	- 6	3

Problem 1.5.11

a.
$$P[A \cap B^{C}]$$

$$= P[A] - P[A \cap B]$$

$$= P[A] - P[A]P[B]$$

$$= P[A](1 - P[B])$$

$$= P[A]P[B^{C}]$$

b.
$$P[A^{C} \cap B]$$

 $= P[B] - P[A \cap B]$
 $= P[B] - P[A]P[B]$
 $= P[B](1 - P[A])$
 $= P[B]P[A^{C}]$
 $= P[A^{C}]P[B]$

c.
$$P[A^{C} \cap B^{C}]$$

 $= 1 - P[A \cup B]$
 $= 1 - P[A] - P[B] + P[A \cap B]$
 $= 1 - P[A] - P[B] + P[A]P[B]$
 $= 1 - P[A] - P[B](1 - P[A])$
 $= (1 - P[A])(1 - P[B])$
 $= P[A^{C}]P[B^{C}]$