Localization

In a general ring with 1, or even a general domain, elements typically do not have multiplicative inverses. Those which do are called units and are very special. In this section we will see how a domain can be "extended" to a larger ring so that any given element can be made into a unit.

Definition 1 (Multiplicative subset). Let R be a domain and $S \subseteq R$. We say that S is a multiplicative subset of R if $0 \notin R$ and if S is closed under multiplication.

Domains have plenty of multiplicative sets. For instance, the set of all nonzero elements is multiplicative. If $a \in R$ is not zero, then the set $S = \{1, a, a^2, a^3, \ldots\}$ of powers of a is multiplicative.

Here is the punch line of this section.

If $S \subseteq R$ is a multiplicative subset, then we can construct a new ring, T, which contains R as a subset, but in which the elements of S are units.

Proposition 1. Let R be a domain and $S \subseteq R$ a multiplicative subset. We define a relation Φ on the cartesian product $S \times R$ as follows:

$$(s_1, r_1)\Phi(s_2, r_2)$$
 iff $r_1s_2 = r_2s_1$.

This relation Φ is an equivalence.

Proof.

- rs = rs for all $r \in R$ and $s \in S$, so that $(s, r)\Phi(s, r)$.
- Suppose $(s_1, r_1)\Phi(s_2, r_2)$. Then $r_1s_2 = r_2s_1$, so that $r_2s_1 = r_1s_2$, and thus $(s_2, r_1)\Phi(s_1, r_1)$.
- Suppose $(s_1, r_1)\Phi(s_2, r_2)$ and $(s_2, r_2)\Phi(s_3, r_3)$. Now $r_1s_2 = r_2s_1$ and $r_2s_3 = r_3s_2$. We then have $r_1s_2r_2s_3 = r_2s_1r_3s_2$; rearranging (since R is commutative) and using cancellation, we have $r_1s_3 = r_3s_1$. So $(s_1, r_1)\Phi(s_3, r_3)$ as needed.

Since Φ is an equivalence, it induces a partition on the set $S \times R$. We will denote this quotient set $S^{-1}R = (S \times R)/\Phi$, and denote the equivalence class of (s,r) by $\frac{r}{s}$.

Proposition 2. Let R be a domain with $S \subseteq R$ a multiplicative subset. Define operations + and \cdot on $S^{-1}R$ as follows.

$$\frac{r_1}{s_1} + \frac{r_2}{s_2} = \frac{r_1 s_2 + r_2 s_1}{s_1 s_2} \quad \text{and} \quad \frac{r_1}{s_1} \cdot \frac{r_2}{s_2} = \frac{r_1 r_2}{s_1 s_2}.$$

Then we have the following.

- 1. + and \cdot are well-defined.
- 2. $S^{-1}R$, with these operations, is an integral domain, which we call the localization of R at S.
- 3. If $t \in S$, then the mapping $\iota : R \to S^{-1}R$ given by $\iota(r) = \frac{rt}{t}$ is an injective ring homomorphism, and $\iota(t)$ is a unit in $S^{-1}R$.

Proof. (super tedious) \Box

So $S^{-1}R$ is a new ring which contains a "copy" (homomorphic image) of R, within which the elements of S become units.

Definition 2. Let R be a domain and let $D = \{x \in R \mid x \neq 0\}$ be the multiplicative subset of all nonzero elements of R. Then the localization $D^{-1}R$ is a field, called the field of fractions of R.

For example, \mathbb{Q} is properly defined as the field of fractions of \mathbb{Z} .

Special things

Proposition 3. If R is a UFD and $S \subseteq R$ any multiplicative set, then $S^{-1}R$ is also a UFD.

Proof. (type this) \Box

Proposition 4. If R is a Euclidean domain and $S \subseteq R$ any multiplicative set, then $S^{-1}R$ is a Euclidean domain.

Proof. (type this) \Box

Exercises

- 1. (do stuff in $\mathbb{Z}[\frac{1}{2}]$)
- 2. (universal property of localization)
- 3. Let R be a GCD domain, with F its field of fractions. An element $\frac{a}{b} \in F$ is said to be reduced (or in lowest terms) if gcd(a,b) = 1.
 - (a) Show that every element of F has a reduced representative.
 - (b) Show that reduced fractions are unique in the following sense: If $\frac{a}{b} = \frac{c}{d}$ are both reduced, then c = au and d = bu for some unit u.