1.6 Смешанное произведение векторов

Смешанное произведение векторов является пятым действием с векторами и такую операцию будем обозначать римской цифрой (V). Операция (V) как и предыдущая операция (IV)(векторное произведение) вводится только для векторов из пространства V^3 (стереометрия).

Определение 1.26. Смешанным произведением трех векторов $\bar{a}, \bar{b}, \bar{c} \in V^3$ называют число, равное скалярному произведению двух векторов: $\overline{\text{вектора }\bar{a}}$ и вектора $[\bar{b},\bar{c}]$: $(\bar{a},\bar{b},\bar{c})=(\bar{a},[\bar{b},\bar{c}])$.

Из определения смешанного произведения следует, что в нем присутствует «смесь» двух операций: скалярного произведения и векторного произведения. Отсюда и название СМЕ-ШАННОЕ произведение. С этой точки зрения операция (V) НЕ является принципиально новой операцией, т.к. она выражается через две другие операции (III) и (IV). Однако смешанное произведение традиционно выделяют как самостоятельную операцию и значимость этой конструкции состоит в ряде ее замечательных свойств.

Рассмотрим свойства смешанного произведения. Если \bar{a}, b, \bar{c} НЕ компланарные векторы то на них можно построить параллелепипед, объем которого обозначим как v. Первое свойство операции (V):

$$(V.1) \ \text{Если \bar{a}, \bar{b}, \bar{c} не компланарны, то $v = \begin{cases} (\bar{a}, \bar{b}, \bar{c}), \text{ если тройка \bar{a}, \bar{b}, \bar{c} правая,} \\ -(\bar{a}, \bar{b}, \bar{c}), \text{ если тройка \bar{a}, \bar{b}, \bar{c} левая.} \end{cases}$$

 \mathcal{A} оказательство. Пусть $ar{a},\,ar{b},\,ar{c}$ есть ПРАВАЯ тройка векторов.

Изобразим эти векторы как на рис. 17(a).

Покажем, что на этом рисунке действительно изображена правая тройка \bar{a} , b, \bar{c} .

 ${
m C}$ конца вектора $ar{c}$ будем видеть вращение $ar{a}$ к $ar{b}$ кратчайшим путем ПРОТИВ часовой стрелки, следовательно тройка \bar{a}, b, \bar{c} – правая.

Параллелограмм, построенный на векторах \bar{b} и \bar{c} будем считать основанием параллелепипеда.

Если $S_{\text{осн}}$ его площадь, то по свойству (IV.1) (см. стр. 20)

Рассмотрим случай, когда тройка \bar{a} , \bar{b} , \bar{c} – ЛЕВАЯ. Сделаем новый чертеж: рис. 17(e). Проверим, что на этом рисунке действительно изображена левая тройка \bar{a}, b, \bar{c} . C конца вектора \bar{c} наблюдаем вращение \bar{a} к bкратчайшим путем ПО часовой стрелке, следовательно тройка \bar{a} , b, \bar{c} на рис. 17(e) есть левая тройка. Как и выше $S_{\text{осн}}[[\bar{b},\bar{c}]]$, но здесь угол $\frac{\pi}{2} < \theta \leqslant \pi$. Следовательно, $\cos \theta < 0$. Поэтому высота $h = -|\bar{a}|\cos \theta$. Таким образом, $v = S_{\text{осн}} \cdot h = |[\bar{b}, \bar{c}]|(-1)|\bar{a}|\cos\theta =$ $= -|\bar{a}||[\bar{b}, \bar{c}]|\cos\theta = -(\bar{a}, [\bar{b}, \bar{c}]) = -(\bar{a}, \bar{b}, \bar{c}).$

puc. 17(a)

Следующее свойство смешанного произведения называют:

(V.2) Критерий компланарности векторов. Векторы $\bar{a}, \bar{b}, \bar{c}$ компланарны $\Leftrightarrow (\bar{a}, \bar{b}, \bar{c}) = 0$.

Доказательство. 1. Необходимость. Пусть $(\bar{a}, \bar{b}, \bar{c}) = 0$. Надо доказать, что векторы $\bar{a}, \bar{b},$ \bar{c} компланарны. Вводим обозначения. Обозначим за θ угол между \bar{a} и $[\bar{b},\bar{c}]$ (см. рис. 17(a) или (e)). За φ обозначим угол между векторами \bar{b} , \bar{c} . Тогда из определений смешанного, скалярного и векторного произведений получаем:

$$(\bar{a}, \bar{b}, \bar{c}) = (\bar{a}, [\bar{b}, \bar{c}]) = |\bar{a}| |[\bar{b}, \bar{c}]| \cos \theta = |\bar{a}| |\bar{b}| |\bar{c}| \cos \theta \sin \varphi \qquad (*).$$

Из формулы (*) следует, что равенство может быть в трех взаимоисключающихся случаях: (1) Один из векторов \bar{a} , \bar{b} , \bar{c} равен нулю, тогда векторы \bar{a} , \bar{b} , \bar{c} компланарны;

- (2) Векторы \bar{a} , \bar{b} , \bar{c} не равны нулю, но $\sin \varphi = 0$. Тогда $\bar{b} \parallel \bar{c}$ и, следовательно, \bar{a} , \bar{b} , \bar{c} компланарны;
- (3) Векторы \bar{a} , \bar{b} , \bar{c} не равны нулю, $\sin \varphi \neq 0$, но $\cos \theta = 0$. Тогда $\theta = \frac{\pi}{2}$ и, следовательно, \bar{a} , \bar{b} , \bar{c} компланарны (см. рис. 17(a) или (b)).
- 2. <u>Достаточность</u>. Пусть \bar{a} , \bar{b} , \bar{c} компланарны и находятся в некоторой плоскости π . Надо доказать, что $(\bar{a}, \bar{b}, \bar{c}) = 0$.

Рассмотрим три взаимоисключающихся варианта компланарности для векторов $\bar{a}, \bar{b}, \bar{c}$:

- (1) Один из векторов \bar{a} , \bar{b} , \bar{c} равен нулю, тогда $(\bar{a}, \bar{b}, \bar{c}) = 0$ (следует из (*));
- (2) $\bar{a}, \bar{b}, \bar{c} \neq \bar{0}$ и $\bar{b} \parallel \bar{c}$, тогда $\varphi = 0 \Rightarrow \sin \varphi = 0$, и из (*) следует, что $(\bar{a}, \bar{b}, \bar{c}) = 0$;
- (3) $\bar{a}, \bar{b}, \bar{c} \neq \bar{0}$ и $\bar{b} \not\parallel \bar{c}$. Из определения векторного произведения следует, что $[\bar{b}, \bar{c}] \perp \pi \Rightarrow \theta = \frac{\pi}{2} \Rightarrow \cos \theta = 0$. Тогда из (*) следует, что $(\bar{a}, \bar{b}, \bar{c}) = 0$.
- (V.3) В результате циклической перестановки сомножителей в смешанном произведении значение произведения не меняется, а в противном меняет знак:

$$(\bar{a}, \bar{b}, \bar{c}) = (\bar{c}, \bar{a}, \bar{b}) = (\bar{b}, \bar{c}, \bar{a}) = -(\bar{b}, \bar{a}, \bar{c}) = -(\bar{c}, \bar{b}, \bar{a}) = -(\bar{a}, \bar{c}, \bar{b}).$$

Доказательство. Если \bar{a} , \bar{b} , \bar{c} компланарны, то из свойства (V.2) каждое из шести смешанных произведений равно нулю. Поэтому отметим, что \bar{a} , \bar{b} , \bar{c} НЕ компланарны. Пусть \bar{a} , \bar{b} , \bar{c} есть ПРАВАЯ тройка (для ЛЕВОЙ все будет аналогично). Из свойства (V.1) следует, что $v=(\bar{a},\bar{b},\bar{c})$. Выше было доказано, что в результате циклической перестановки векторов ориентация тройки НЕ меняется. Поэтому $(\bar{a},\bar{b},\bar{c})=(\bar{b},\bar{c},\bar{a})=(\bar{c},\bar{a},\bar{b})$.

Если в тройке \bar{a} , \bar{b} , \bar{c} поменять местами два вектора, например \bar{a} , \bar{b} : \bar{a} , \bar{b} , $\bar{c} \to \bar{b}$, \bar{a} , \bar{c} (не циклическая перестановка), то тройка становится левой. Из свойства (V.1) следует, что $v=-(\bar{a},\bar{b},\bar{c})$. Совершая циклическую перестановку множителей получаем остальные три равенства.

(V.4) Справедливо равенство $([\bar{a}, \bar{b}], \bar{c}) = (\bar{a}, [\bar{b}, \bar{c}]).$

Доказательство. Записываем цепочку равенств, поясняя каждый шаг. $([\bar{a}, \bar{b}], \bar{c}) =$ по свойству коммутативности скалярного произведения $= (\bar{c}, [\bar{a}, \bar{b}]) =$ по определению смешанного произведения $= (\bar{c}, \bar{a}, \bar{b}) =$ по свойству (V.3) смешанного произведения $= (\bar{a}, \bar{b}, \bar{c}) =$ по определению смешанного произведения $(\bar{a}, [\bar{b}, \bar{c}])$.

Замечание 1.16. Наше определение смешанного произведения есть $(\bar{a}, \bar{b}, \bar{c}) = (\bar{a}, [\bar{b}, \bar{c}])$. Доказанное здесь свойство (V.4) показывает, что можно давать альтернативное определение смешанного произведения: $(\bar{a}, \bar{b}, \bar{c}) = ([\bar{a}, \bar{b}], \bar{c})$. В некоторых учебниках именно так и поступают.

(V.5) Дистрибутивность для смешанного произведения. Для любых векторов $\bar{a}, \bar{a}_1, \bar{a}_2, \bar{b}, \bar{b}_1, \bar{b}_2, \bar{c}, \bar{c}_1, \bar{c}_2 \in V^3$ и для любых чисел $\lambda_1, \lambda_2, \mu_1, \mu_2, \eta_1, \eta_2 \in \mathbb{R}$ имеют место равенства:

$$(\lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2, \bar{b}, \bar{c}) = \lambda_1(\bar{a}_1, \bar{b}, \bar{c}) + \lambda_2(\bar{a}_2, \bar{b}, \bar{c})$$
 – дистрибутивность по первому множителю; $(\bar{a}, \mu_1 \bar{b}_1 + \mu_2 \bar{b}_2, \bar{c}) = \mu_1(\bar{a}, \bar{b}_1, \bar{c}) + \mu_2(\bar{a}, \bar{b}_2, \bar{c})$ – дистрибутивность по второму множителю; $(\bar{a}, \bar{b}, \eta_1 \bar{c}_1 + \eta_2 \bar{c}_2) = \eta_1(\bar{a}, \bar{b}, \bar{c}_1) + \eta_2(\bar{a}, \bar{b}, \bar{c}_2)$ – дистрибутивность по третьему множителю.

Доказательство. (1)Докажем дистрибутивность по первому множителю: $(\lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2, \bar{b}, \bar{c}) =$ по определению смешанного произведения $= (\lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2, [\bar{b}, \bar{c}]) =$ дистрибутивность скалярного произведения $= \lambda_1(\bar{a}_1, [\bar{b}, \bar{c}]) + \lambda_2(\bar{a}_2, [\bar{b}, \bar{c}]) =$ по определению смешанного произведения $= \lambda_1(\bar{a}_1, \bar{b}, \bar{c}) + \lambda_2(\bar{a}_2, \bar{b}, \bar{c})$.

- (2) Докажем дистрибутивность по второму множителю: $(\bar{a}, \mu_1 \bar{b}_1 + \mu_2 \bar{b}_2, \bar{c}) =$ по свойству (V.3) смешанного произведения $= -(\mu_1 \bar{b}_1 + \mu_2 \bar{b}_2, \bar{a}, \bar{c}) =$ по доказанной дистрибутивности смешанного произведения по первому множителю $= -\mu_1(\bar{b}_1, \bar{a}, \bar{c}) \mu_2(\bar{b}_2, \bar{a}, \bar{c}) =$ по свойству (V.3) смешанного произведения $= \mu_1(\bar{a}, \bar{b}_1, \bar{c}) + \mu_2(\bar{a}, \bar{b}_2, \bar{c})$.
- (3) Доказательство дистрибутивности по третьему множителю аналогично доказательству дистрибутивности смешанного произведения по второму множителю.

Вернемся несколько назад. При доказательстве свойств векторного произведения у нас оказалось НЕ доказанным свойство (IV.3) – свойство дистрибутивности векторного произведения: [$\lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2, \bar{b}$] = $\lambda_1 [\bar{a}_1, \bar{b}] + \lambda_2 [\bar{a}_2, \bar{b}]$ – дистрибутивность по первому множителю; [$\bar{a}, \mu_1 \bar{b}_1 + \mu_2 \bar{b}_2$] = $\mu_1 [\bar{a}, \bar{b}_1] + \mu_2 [\bar{a}, \bar{b}_2]$ – дистрибутивность по второму множителю.

Это свойство (IV.3) векторного произведения наиболее просто обосновывать с использованием доказанного свойства дистрибутивности смешанного произведения. Именно по этой причине доказательство свойства (IV.3) векторного произведения мы перебросили в данную лекцию.

Доказательство. Рассмотрим произвольный вектор $\bar{c} \in V^3$ и запишем для смешанного произведения свойство дистрибутивности по первому множителю: $(\lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2, \bar{b}, \bar{c}) = \lambda_1(\bar{a}_1, \bar{b}, \bar{c}) +$ $+ \lambda_2(\bar{a}_2, \bar{b}, \bar{c})$, которое в виду свойства (V.4) можно представить как

$$([\lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2, \bar{b}], \bar{c}) = \lambda_1([\bar{a}_1, \bar{b}], \bar{c}) + \lambda_2([\bar{a}_2, \bar{b}], \bar{c})$$

Введем в V^3 некоторый ортонормированный базис $E = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\}$ и в последнем равенстве в качестве вектора \bar{c} будем последовательно брать базисные векторы $\bar{e}_1, \bar{e}_2, \bar{e}_3$. Рассмотрим случай $\bar{c} = \bar{e}_1$:

$$([\lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2, \bar{b}], \bar{e}_1) = \lambda_1([\bar{a}_1, \bar{b}], \bar{e}_1) + \lambda_2([\bar{a}_2, \bar{b}], \bar{e}_1).$$

Теперь вспомним теорему о координатах вектора в ортонормированном базисе (см. стр. 17). Согласно этой теореме в ортонормированном базисе E:

 $([\lambda_1\bar{a}_1+\lambda_2\bar{a}_2,\bar{b}],\bar{e}_1)$ – первая координата вектора $[\lambda_1\bar{a}_1+\lambda_2\bar{a}_2,\bar{b}],$

 $([\bar{a}_1, \bar{\underline{b}}], \bar{e}_1)$ – первая координата вектора $[\bar{a}_1, \bar{\underline{b}}],$

 $([\bar{a}_2,\bar{b}],\bar{e}_1)$ – первая координата вектора $[\bar{a}_2,\bar{b}].$

Согласно правилам выполнения линейных операция с векторами в координатной форме (см. стр. 10) заключаем, что первые координаты пары векторов

$$[\lambda_1\bar{a}_1+\lambda_2\bar{a}_2,\bar{b}]$$
 и $\lambda_1[\bar{a}_1,\bar{b}]+\lambda_2[\bar{a}_2,\bar{b}]$

совпадают. Аналогичные рассуждения для случаев $\bar{c} = \bar{e}_2$ и $\bar{c} = \bar{e}_3$ показывают, что у последней пары векторов совпадают также и вторые и третьи координаты. Следовательно, это пара равных векторов, что доказывает дистрибутивность по первому множителю.

Дистрибутивность векторного произведения по второму множителю теперь доказывается просто. Рассмотрим векторное произведение $[\bar{a},\mu_1\bar{b}_1+\mu_2\bar{b}_2]$ и цепочку равенств: $[\bar{a},\mu_1\bar{b}_1+\mu_2\bar{b}_2]=$ антикоммутативность векторного произведения $=-[\mu_1\bar{b}_1+\mu_2\bar{b}_2,\bar{a}]=$ дистрибутивность векторного произведения по первому множителю $=-\mu_1[\bar{b}_1,\bar{a}]-\mu_2[\bar{b}_2,\bar{a}]=$ антикоммутативность векторного произведения $=\mu_1[\bar{a},\bar{b}_1]+\mu_2[\bar{a},\bar{b}_2]$. Дистрибутивность векторного произведения по второму множителю доказана.

1.7 Определители (детерминанты) второго и третьего порядков

Это один из самых коротких и скучных (в отличие от предыдущих) параграфов. Излагаемый здесь материал будет детально рассматриваться в курсе АЛГЕБРА. Однако последовательность изложения нашего курса вынуждает вводить некоторые конструкции ДО введения из в других дисциплинах.