Course contents: Review

Bioinformatics: introduction	DONE
SSH, Unix commands, running programs in unix	DONE
Bioinformatics Databases	DONE
Sequence alignment: algorithms and online resources	DONE
Protein sequence analysis	DONE
Protein secondary and tertiary structure	DONE
Protein structure prediction	DONE
Phylogeny: methods and applications	DONE
Online resources in Bioinformatics/programming	DONE
Machine learning techniques/Genome analysis	Ongoing

Proteins: secondary databases

Globular proteins
Fibrous proteins
Membrane proteins

Cytoplasm

Inner membrane α-helical

Periplasm

Outer membrane β-barrel (TMβ)

Outer space

Figure 1.9

PDBTM

Database for membrane proteins

Algorithm to (TMDET) to identify the membrane spanning regions from 3D structure

- Protein is cut into 1Å slices and compute the membrane exposed area of hydrophobic (F, G, I, L, M, V, W and Y) and hydrophilic residues
- Hydrophobic factor is the hydrophobic area divided by total surface area.
- Structure factor is defined as the product of three factors, the straightness, turn and end-chain factor. These factors depend on the projection of Ca atoms of the residues i-3, i and i+3 onto a normal vector of membrane planes.
- The objective function (Q-value) is the average of the products of the hydrophobic factor and the structure factor in each slice.

PDBTM: Protein Data Bank of Transmembrane Proteins

search pdb_id:1prc Submit


```
<TMTYPE>Tm Alpha</TMTYPE>
   <SPRES>Tm_Alpha</SPRES>
   <PDBKWRES>ves</PDBKWRES>
  <PDBKWORD>Membrane</PDBKWORD>
 </RAWRES>
▼<MEMBRANE>
  <NORMAL X="0.00000000" Y="0.00000000" Z="17.75000000"/>
    <ROWX X="0.83854312" Y="-0.09631874" Z="-0.53625381" T="-52.36920929"/>
    <ROWY X="0.00000000" Y="0.98424947" Z="-0.17678508" T="-14.93281200"/>
    <ROWZ X="0.54483527" Y="0.14824191" Z="0.82533562" T="-33.65978378"/>
  </TMATRIX>
</MEMBRANE>
▼ < CHAIN CHAINID="A" NUM TM="7" TYPE="alpha">
    MESPIQIFRG EPGPTCAPSA CLPPNSSAWF PGWAEPDSNG SAGSEDAQLE PAHISPAIPV IITAVYSVVF
    MNSWPFGDVL CKIVISIDYY NMFTSIFTLT MMSVDRYIAV CHPVKALDFR TPLKAKIINI CIWLLSSSVG
    IIIVCYTLMI LRLKSVRLLS GSREKDRNLR RITRLVLVVV AVFVVCWTPI HIFILVEALG STSHSTAALS
    RNTVODPAYL RDIDGMNKPV
   </SEQ>
  <REGION seq beg="1" pdb beg="1" seq end="59" pdb end="59" type="1"/>
  <REGION seq_beg="60" pdb_beg="60" seq_end="87" pdb_end="87" type="H"/>
  <REGION seq_beg="88" pdb_beg="88" seq_end="90" pdb_end="90" type="2"/>
  <REGION seq_beg="91" pdb_beg="91" seq_end="118" pdb_end="118" type="H"/>
  <REGION seq beg="119" pdb beg="119" seq end="132" pdb end="132" type="1"/>
   <REGION seq beg="133" pdb beg="133" seq end="158" pdb end="158" type="H"/>
  <REGION seq beg="159" pdb_beg="159" seq_end="172" pdb_end="172" type="2"/>
   <REGION seq beg="173" pdb beg="173" seq end="195" pdb end="195" type="H"/>
  <REGION seq_beg="196" pdb_beg="196" seq_end="225" pdb_end="225" type="1"/>
  <REGION seq beg="226" pdb_beg="226" seq_end="250" pdb_end="250" type="H"/>
  <REGION seq_beg="251" pdb_beg="251" seq_end="272" pdb_end="272" type="2"/>
  <REGION seq_beg="273" pdb_beg="273" seq_end="294" pdb_end="294" type="H"/>
  <REGION seq_beg="295" pdb_beg="295" seq_end="307" pdb_end="307" type="1"/>
  <REGION seq_beg="308" pdb_beg="308" seq_end="334" pdb_end="334" type="H"/>
  <REGION seq beg="335" pdb beg="335" seq end="380" pdb end="380" type="2"/>
 </CHAIN>
</pdbtm>
```

Different structural classes

4MBN

all-α

Dominated by α -helices α >40; β <5

3CNA

all-β

Dominated by β -strands β >40; α <20

4LYZ

 $\alpha + \beta$

Helices and strands tend to Segregate $\alpha>15$; $\beta>10$

1TIM

 α/β

Helices and strands mix each other $\alpha>15$; $\beta>10$

Structural Classification of Proteins

Provides a detailed and comprehensive description of the structural and evolutionary relationships of the proteins of known structure.

For each protein, the classification has the hierarchical levels, family, superfamily, fold and structural class.

Family: C-type lysozyme

Fold: Lysozyme-like common alpha+beta motif for the active site region

Structural class: α+β

The structure can be identified with a six letter code (11z1__; 5th Chain; 6th Domain

Protein: Lysozyme from Human (Homo sapiens)

Lineage:

- 1. Root: scop
- 2. Class: Alpha and beta proteins (a+b) [53931]
- Mainly antiparallel beta sheets (segregated alpha and beta regions)
- 3. Fold: Lysozyme-like [53954]
- common alpha+beta motif for the active site region 4. Superfamily: Lysozyme-like [53955]
- 5. Family: C-type lysozyme [53960]
- 6. Protein: Lysozyme [53961]
 - ubiquitous in a variety of tissues and secretions
- 7. Species: Human (Homo sapiens) [53969]

PDB Entry Domains:

- 1. 1jsf[36410] complexed with no3
- 2. 1iwu 🗸 🗸
- complexed with cl
- 1. chain a [76891] 🚨 🗷 🗓
- complexed with cl 1. chain a [76890] 25 L
- 4. 1iwv 🚨 🚾
- - complexed with cl 1. chain a [76892] B 🗷 🗓
- 5. <u>1iww 🔤 🚾</u>
 - complexed with cl

CATH: Hierarchical classification of protein domain structures

Provides class information for all the structures in PDB.

The four main levels of CATH classification are protein class (C), architecture (A), topology (T) and homologous superfamily (H).

CATH: Hierarchical classification of protein domain structures

Class is the simplest level, and it essentially describes the secondary structure composition of each domain.

Architecture summarizes the shape revealed by the orientations of the secondary structure units, such as barrels and sandwiches.

At the topology level, sequential connectivity is considered, such that members of the same architecture might have quite different topologies.

The homologous superfamilies cluster proteins with highly similar structures and functions.

The CATH classification for human lysozyme: Architecture of orthogonal bundle and it is assigned as all-α class proteins in CATH.

SCOP and **CATH**: Comparison

Usually CATH and SCOP have similar classification for structural class.

It may be possible to have different assignments in SCOP and CATH.

Proteins: percentage of helical (or strand) content is high and strand (helix) content is less or vice versa.

In human lysozyme, the content of α -helical structures is 31% and that of β -strands is 8%.

Based on the high content of α -helix it was classified as all- α proteins in CATH

Due to the presence of α -helices and β -strands SCOP classified it as $\alpha+\beta$ protein.

Protein structure analysis

Contact maps

A protein contact map represents the distance between all possible residue pairs of a threedimensional protein structure using a binary two-dimensional matrix.

For two residues *i* and *j*, the *ij* element of the matrix is 1 if the two residues are closer than a predetermined threshold, and 0 otherwise.

Various contact definitions have been proposed: The distance between the C_{α} - C_{α} atom with threshold 6-12 Å; distance between C_{β} - C_{β} atoms with threshold 6-12 Å (C_{α} is used for Glycine); distance between the side-chain centers of mass; or consideration of any atom and lower threshold 4.5-6 Å.

Construction of contact maps

Ca atoms (limit of 8Å)

Y 1 (1) (1) (1)							- TO 100 A 100		1111		
ATOM	1	N	MET	A .	1	36.644	-24.949	8.853	1.00	29.12	N
ATOM	2	CA	MET	A	1	36.942	-23.581	8.984	1.00	19.55	С
ATOM	3	С	MET	A	1	35.712	-22.887	9.526	1.00	22.27	С
ATOM	4	0	MET	A	1	34.626	-23.375	9.258	1.00	18.31	0
ATOM	5	CB	MET	A	1	37.365	-23.090	7.599	1.00	8.40	С
ATOM	6	CG	MET	A	1	37.639	-21.603	7.644	1.00	30.36	С
ATOM	7	SD	MET	A	1	39.309	-21.106	7.226	1.00	39.80	ສ
ATOM	8	CE	MET	A	1	40.241	-22.126	8.356	1.00	44.83	С
ATOM	9	N	ASN	A	2	35.890	-21.796	10.310	1.00	17.74	N
ATOM	10	CA	ASN	A	2	34.809	-21.015	10.918	1.00	5.91	С
ATOM	11	С	ASN	A	2	35.236	-19.557	10.931	1.00	11.34	С
ATOM	12	0	ASN	A	2	36.390	-19.244	10.620	1.00	9.58	0
ATOM	13	CB	ASN	A	2	34.487	-21.602	12.355	1.00	9.68	С
ATOM	14	CG	ASN	A	2	35.645	-21.566	13.309	1.00	11.82	С
ATOM	15	OD1	ASN	A	2	36.176	-20.496	13.515	1.00	18.42	0
ATOM	16	ND2	ASN	A	2	36.013	-22.685	13.919	1.00	9.43	N
ATOM	17	N	ILE	A	3	34.315	-18.689	11.287	1.00	6.65	N
ATOM	18	CA	ILE	A	3	34.543	-17.262	11.353	1.00	10.61	С
ATOM	19	С	ILE		3	35.794	-16.849	12.198	1.00	14.73	С
ATOM	20	0	ILE	A	3	36.530	-15.891	11.865	1.00	13.47	0
ATOM	21	СВ	ILE		3	33.235	-16.515	11.748	1.00	6.98	С
ATOM	22	CG1	ILE		3	33.352	-14.965	11.537	1.00	7.31	С
ATOM	23	CG2			3	32.955	-16.849	13.220		12.46	С
ATOM	24	CD1	ILE		3	33.729	-14.545	10.094	1.00	7.03	С
ATOM	25	N	PHE		4	36.027	-17.510	13.335	1.00	6.09	N
ATOM	26	CA	PHE		4	37.178	-17.109	14.110	1.00	6.45	С
ATOM	27	С	PHE		4		-17.460	13.428	1.00	7.23	С
ATOM	28	0	PHE		4		-16.667	13.450		11.23	0
ATOM	29	СВ	PHE		4		-17.747	15.496		13.74	С
ATOM	30	CG	PHE		4		-17.216	16.290		22.31	С
ATOM	31		PHE		4		-17.879	16.239		14.28	С
ATOM	32		PHE		4		-16.097	17.122		12.02	С
ATOM	33		PHE		4		-17.415	17.016		13.79	С
ATOM	34		PHE		4		-15.603	17.909		15.06	c
ATOM	35	CZ	PHE		4		-16.322	17.873		15.21	C
ATOM	36	N	GLU		5		-18.674	12.852	1.00	9.52	N
ATOM	37	CA	GLU		5		-19.063	12.152		16.61	С
ATOM	38	С	GLU		5		-18.177	10.940		14.11	С
ATOM:	39	0	GLH	ù	5	41 077	-17 723	10 662	1 00	10 00	^

ATOM 2 CA MET A 1 36.942 -23.581 8.984 1.00 19.55 C ATOM 10 CA ASN A 2 34.809 -21.015 10.918 1.00 5.91 C ATOM 18 CAILE A 3 34.543 -17.262 11.353 1.00 10.61 C ATOM 26 CA PHE A 4 37.178 -17.109 14.110 1.00 6.45 C ATOM 37 CA GLU A 5 39.746 -19.063 12.152 1.00 16.61 C ATOM 46 CA MET A 6 39.005 -17.022 9.081 1.00 8.98 C ATOM 54 CA LEU A 7 39.394 -13.637 10.850 1.00 9.64 C ATOM 62 CA ARG A 8 42.437 -14.708 12.525 1.00 19.95 C ATOM 73 CA ILE A 9 44.096 -15.463 9.190 1.00 11.21 C ATOM 81 CA ASP A 10 43.052 -12.038 7.999 1.00 14.11 C

Construct contact map?

Inter-residue contacts: Definition

Basic concepts:

The amino acid residues, which are in contact with each other in the native structure (8Å)

Their respective locations in the amino acid sequence

Classification

Distance of separation between amino acid residues in a polypeptide chain

s: short ($< \pm 3$ residues)

m: medium (\pm 3 or \pm 4 residues)

1: long ($> \pm 4$ residues)

(further divided into small bins of 10 residues)

Gromiha, MM and Selvaraj, S. (2004) Prog. Biophys. Mol. Biol. 86, 235-277.

Representation

Inter-residue contacts can be pictorially represented by contact maps.

Short-range contacts:

diagonal residues

Medium-range contacts:

close to diagonal residues

Long-range contacts:

far away from the diagonal.

Secondary structure

DSSP: Dictionary of

Secondary Structure of

Proteins

Algorithm:

Hydrogen bonding pattern

Download the program dssp-2

Command:

./dssp-2 input output

ftp://ftp.cmbi.kun.nl/

```
Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-APR-2004
REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637
HEADER
          HYDROLASE (O-GLYCOSYL)
                                                     12-OCT-84
COMPND
          LYSOZYME (E.C.3.2.1.17)
SOURCE
          HUMAN (HOMO $SAPIENS
AUTHOR
          P.J.ARTYMIUK, C.C.F.BLAKE
 130
      1
                O TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL, INTRACHAIN, INTERCHAIN)
  6787.0
           ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2)
  89 68.5
             TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I) -->H-N(J)
                                                                      , SAME NUMBER PER 100 RESIDUES
   2
      1.5
             TOTAL NUMBER OF HYDROGEN BONDS IN
                                                      PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES
   12
      9.2
             TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES
   2
      1.5
             TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I) -->H-N(I-5), SAME NUMBER PER 100 RESIDUES
             TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I) -->H-N(I-4), SAME NUMBER PER 100
   1
      0.8
      0.8
             TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I) -->H-N(I-3), SAME NUMBER PER 100 RESIDUES
             TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I) -->H-N(I-2), SAME NUMBER PER 100
   0
      0.0
      0.0
             TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I) -->H-N(I-1), SAME NUMBER PER 100 RESIDUES
   0
      0.0
             TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I) -->H-N(I+O), SAME NUMBER PER 100
   0
   Π
      0.0
             TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I) -->H-N(I+1), SAME NUMBER PER 100 RESIDUES
   9
       6.9
             TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I) -->H-N(I+2), SAME NUMBER PER 100
  25 19.2
             TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I) -->H-N(I+3), SAME NUMBER PER 100 RESIDUES
  34 26.2
                                              OF TYPE O(I) -->H-N(I+4), SAME NUMBER PER 100
                                                                                                         HISTOGRAMS OF ***
                                                                                                    RESIDUES PER ALPHA HELIX
                                                                                                    PARALLEL BRIDGES PER LADDER
                                                                                                    ANTIPARALLEL BRIDGES PER LADDER
                                                                                                    LADDERS PER SHEET
                                              N-H-->0
                                                         \bigcirc -->H-N
                                                                     N-H-->0
                                                                                            TCO
                                                                                                  KAPPA ALPHA
                                                                                                                              X-CA
                                                                                                                                     Y-CA
                                                                                                                                             Z-CA
                                              0, 0.0
                                                         39,-2.6
                                                                      0, 0.0
                                                                                  2,-0.7
                                                                                             .000
                                                                                                                               1.9
                                                                                                                                     20.6
                                                                                                                                             21.1
                                                                                                  360.0 360.0 360.0 146.7
         2
             V
                            39
                                      99
                                                         37. - 0.2
                                                                     38. - 0.1
                                                                                          -0.949
                                                                                                  360.0-145.6-104.2 112.9
                                                                                                                                     19.8
                                                                                                                                             18.5
         3
                             0
                                              35, -2.4
                                                          2,-0.2
                                                                     -2,-0.7
                                                                                     0.0
                                                                                          -0.453
                                                                                                                                     22.4
                                                                                                                                             18.9
                                      10
                                                                                                   10.1-122.2
                              0
                                              -2,-0.1
                                                          4,-2.6
                                                                                  5,-0.3
                                                                                          -0.657
                                                                                                                                     23.7
                                                                                                                                             16.0
                                                                      1,-0.1
                                                                                                   34.8-107.1 -82.3 155.8
                                                                      1,-0.2
                              0
                                      91
                                              -2,-0.2
                                                          4,-2.1
                                                                                  5,-0.1
                                                                                           0.886 115.0
                                                                                                         37.2 -56.3 -50.8
                                                                                                                              13.1
                                                                                                                                     23.1
                                                                                                                                             16.5
                                                          4,-2.5
                                                                      2,-0.2
                                                                                                                                     26.7
                                                                                                                                             17.2
                                               1,-0.2
                                                                                 -1,-0.2
                                                                                           0.826 112.9
                                                                                                         58.3 -78.4 -24.6
                             0
                                                          4,-2.3
                                                                                                                                     27.5
                                                                                                                                             19.2
                                               1,-0.2
                                                                      2,-0.2
                                                                                 -1,-0.2
                                                                                           0.907 109.6
                                                                                                         45.4 -60.1
                                                                                                                              11.1
                    X S+
                                                                      2,-0.2
                                                                                                                                             21.5
                                              -4, -2.6
                                                          4,-3.2
                                                                                  5,-0.3
                                                                                                                                     24.6
   9
                    X S+
                                                          4,-2.1
                                                                     -5,-0.3
                                                                                                                                     25.6
                                                                                                                                             21.7
                                              -4, -2.1
                                                                                 -2,-0.2
                                                                                           0.937 111.4
                                                                                                         43.9 -61.1
                                                                                                                              15.7
   10
        10
                    X S+
                                     114
                                              -4,-2.5
                                                          4,-2.5
                                                                      2,-0.2
                                                                                 -1,-0.2
                                                                                                         51.9 -67.4 -34.7
                                                                                                                                     29.2
                                                                                                                                             22.8
                    X S+
                                                                      1,-0.2
                                                                                                                                     27.8
                                                                                                                                             25.3
        11
                                 0
                                      29
                                              -4,-2.3
                                                          4,-1.3
                                                                                 -2,-0.2
                                                                                           0.910 111.0
                                                                                                         46.7 -66.8
   11
                                                                      2,-0.2
   12
                    <>S+
                                              -4,-3.2
                                                          5,-2.5
                                                                                  6,-0.3
                                                                                                                                             26.8
                                                                                                                                             27.0
   13
        13
                   ≻<5≲+
                                 0
                                      89
                                              -4,-2.1
                                                          3,-1.8
                                                                     -5,-0.3
                                                                                  5,-0.3
                                                                                           0.970 109.3
                                                                                                         47.8 -61.0 -44.3
                                                                                                                              17.3
                                                                                                                                     28.3
                                                                      1,-0.3
                                                                                                                                             28.9
        14
                   3<5S+
                                              -4,-2.5
                                                         -1,-0.2
                                                                                 -2,-0.2
                                                                                           0.809 106.9
                                                                                                         58.1 -67.8
                                                                                                                                     30.5
   14
                   3<5≲-
                                 0
                                              -4,-1.3
                                                         -1,-0.3
                                                                     -5,-0.2
                                                                                 -2,-0.2
                                                                                           0.399 121.3-107.0 -91.0
                                                                                                                              14.0
                                                                                                                                     27.6
                                                                                                                                             31.3
   15
                                                                                                                       6.3
                                                                                           0.719
        16
                   < 55+
                                 0
                                                         -3,-0.2
                                                                     -4,-0.3
                                                                                 -2,-0.1
                                                                                                   79.9 128.7
                                                                                                                                     27.4
                                                                                                                                             32.3
  16
                                              -3,-1.8
                                                                      2,-0.1
   17
        17
                     <
                                 0
                                              -5,-2.5
                                                          3,-1.7
                                                                                  2,-0.6
                                                                                           0.625
                                                                                                  35.2 105.3 -87.8 -19.2
                                                                                                                              18.7
                                                                                                                                     24.2
                                                                                                                                             30.5
        18
                                              -6,-0.3
                                                          6,-0.2
                                                                     -5,-0.3
                                                                                          -0.578 104.8
                                                                                                                              21.8
                                                                                                                                     25.4
                                                                                                                                             28.6
   18
                                                                                  4,-0.1
        19
             G
                             0
                                 0
                                              4,-2.4
                                                          3,-2.1
                                                                     -2,-0.6
                                                                                           0.604
                                                                                                  88.0
                                                                                                                                     23.9
                                                                                                                                             30.6
   19
                      S+
                                                                                  2,-0.4
                                                                                                        164.0
                                                                                                                       6.3
                                                                                                                              24.8
  20
             Y
                      S-B
                                  OB
                                                          3,-1.6
                                                                      3,-0.8
                                                                                          -0.584
                                                                                                  80.4
                                                                                                                                     22.6
                                                                                                                                             33.4
                                              -3,-1.7
                                                                                 -1,-0.3
                                                                                                               -63.8 126.7
                                                                      1,-0.2
  21
        21
             R
                                              -2,-0.4
                                                         -1,-0.3
                                                                                  3,-0.1
                                                                                           0.784 134.6 -56.6
                                                                                                                              24.8
                                                                                                                                     20.0
                                                                                                                                             35.2
                                                                                                               46.1
  22
        22
             G
                      S+
                             0
                                             -3, -2.1
                                                          2,-0.7
                                                                      1,-0.2
                                                                                 -1,-0.2
                                                                                           0.507 104.9 132.1
                                                                                                               83.1
                                                                                                                              27.2
                                                                                                                                     20.4
                                                                                                                                             32.3
                            20
  23
                                              -3,-1.6
                                                         -4,-2.4
                                                                     -6,-0.1
                                                                                          -0.753
                                                                                                   50.3-136.2-103.2 121.5
                                                                                                                                     19.5
                                                                                                                                             29.6
                                                                                 -3,-0.8
```

Secondary structure

Solvent accessibility

Hydrogen bonding partners/ Electrostatic energy

Solvent accessibility

The solvent accessible surface area is defined as the locus of the centre of the solvent molecule as it rolls over the van der Waals surface of the protein.

Generally, a sphere of water is assumed to be the solvent molecule with a radius 1.4 Å.

The solute molecule is represented by a set of interlocking spheres of appropriate van der Waals radii assigned to each atom

The solvent molecule is rolled along the envelope of the van der Waals surface at planes conveniently sectioned.

The accessible surface area of an atom of radius r is then the area on the surface of sphere of radius $R = r + r_{\text{solv}}$ on each point of which the center of the solvent molecule can be placed in contact with this atom without penetrating any other atoms of the solute molecule.

- The solvent accessible surface area (ASA) is calculated using the formula (Lee and Richards, 1971):
- ASA = $\sum [R/(R^2 Z_i^2)^{1/2}] L_i . D; D = \nabla Z/2 + \nabla'Z$
- where, L_i is the length of the arc computed on a given section i, Z_i is the perpendicular distance from the center of the sphere to the section i, ∇Z is the spacing between the sections and $\nabla' Z$ is $\nabla Z/2$ or $R-Z_i$, whichever is smaller. Summation is over all of the arcs drawn for the given atom.

Methods

ACCESS: Lee and Richards (1978)

NACCESS: Hubbard and Thornton (1993)

ASC: Eisenhaber and Argos (1993)

DSSP: Kabsch and Sandor (1983)

GETAREA: Fraczkiewicz and Braun (1998)

Comparison index	ACCESS	DSSP	NACCESS	ASC	GETAREA
Standalone executable availability	Yes	Yes	Licensed	Yes	No
Online calculations/ database	No	Yes	No	Yes	Yes
Polar and nonpolar area	No	No	Yes	No	Yes
Atom-wise surface area	Yes	No	Yes	Yes	Yes
Source code availability	No	Yes	No	Yes	No
Choice of probe radius	Yes	No	Yes	Yes	No
Choice of van der Waals and other parameters	Yes	No	Yes	Yes	By Manual editing
Secondary structure	No	Yes	No	No	No
Reference	and Richards, 1978	Kabsch and Sander, 1983	Hubbard and Thornton, 1993	Eisenhaber and , 1993	Fraczkiewicz and Braun, 1998

```
Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-APR-2004
REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637
HEADER
          HYDROLASE (O-GLYCOSYL)
                                                     12-OCT-84
COMPND
          LYSOZYME (E.C.3.2.1.17)
SOURCE
          HUMAN (HOMO $SAPIENS
AUTHOR
          P.J.ARTYMIUK, C.C.F.BLAKE
 130
      1
                O TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL, INTRACHAIN, INTERCHAIN)
  6787.0
           ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2)
  89 68.5
             TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I) -->H-N(J)
                                                                      , SAME NUMBER PER 100 RESIDUES
   2
      1.5
             TOTAL NUMBER OF HYDROGEN BONDS IN
                                                      PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES
   12
      9.2
             TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES
   2
      1.5
             TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I) -->H-N(I-5), SAME NUMBER PER 100 RESIDUES
             TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I) -->H-N(I-4), SAME NUMBER PER 100
   1
      0.8
      0.8
             TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I) -->H-N(I-3), SAME NUMBER PER 100 RESIDUES
             TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I) -->H-N(I-2), SAME NUMBER PER 100
   0
      0.0
      0.0
             TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I) -->H-N(I-1), SAME NUMBER PER 100 RESIDUES
   0
      0.0
             TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I) -->H-N(I+O), SAME NUMBER PER 100
   0
   Π
      0.0
             TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I) -->H-N(I+1), SAME NUMBER PER 100 RESIDUES
   9
       6.9
             TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I) -->H-N(I+2), SAME NUMBER PER 100
  25 19.2
             TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I) -->H-N(I+3), SAME NUMBER PER 100 RESIDUES
  34 26.2
                                              OF TYPE O(I) -->H-N(I+4), SAME NUMBER PER 100
                                                                                                         HISTOGRAMS OF ***
                                                                                                    RESIDUES PER ALPHA HELIX
                                                                                                    PARALLEL BRIDGES PER LADDER
                                                                                                    ANTIPARALLEL BRIDGES PER LADDER
                                                                                                    LADDERS PER SHEET
                                              N-H-->0
                                                         \bigcirc -->H-N
                                                                     N-H-->0
                                                                                            TCO
                                                                                                  KAPPA ALPHA
                                                                                                                              X-CA
                                                                                                                                     Y-CA
                                                                                                                                             Z-CA
                                              0, 0.0
                                                         39,-2.6
                                                                      0, 0.0
                                                                                  2,-0.7
                                                                                             .000
                                                                                                                               1.9
                                                                                                                                     20.6
                                                                                                                                             21.1
                                                                                                  360.0 360.0 360.0 146.7
         2
             V
                            39
                                      99
                                                         37. - 0.2
                                                                     38. - 0.1
                                                                                          -0.949
                                                                                                  360.0-145.6-104.2 112.9
                                                                                                                                     19.8
                                                                                                                                             18.5
         3
                             0
                                              35, -2.4
                                                          2,-0.2
                                                                     -2,-0.7
                                                                                     0.0
                                                                                          -0.453
                                                                                                                                     22.4
                                                                                                                                             18.9
                                      10
                                                                                                   10.1-122.2
                              0
                                              -2,-0.1
                                                          4,-2.6
                                                                                  5,-0.3
                                                                                          -0.657
                                                                                                                                     23.7
                                                                                                                                             16.0
                                                                      1,-0.1
                                                                                                   34.8-107.1 -82.3 155.8
                                                                      1,-0.2
                              0
                                      91
                                              -2,-0.2
                                                          4,-2.1
                                                                                  5,-0.1
                                                                                           0.886 115.0
                                                                                                         37.2 -56.3 -50.8
                                                                                                                              13.1
                                                                                                                                     23.1
                                                                                                                                             16.5
                                                          4,-2.5
                                                                      2,-0.2
                                                                                                                                     26.7
                                                                                                                                             17.2
                                               1,-0.2
                                                                                 -1,-0.2
                                                                                           0.826 112.9
                                                                                                         58.3 -78.4 -24.6
                             0
                                                          4,-2.3
                                                                                                                                     27.5
                                                                                                                                             19.2
                                               1,-0.2
                                                                      2,-0.2
                                                                                 -1,-0.2
                                                                                           0.907 109.6
                                                                                                         45.4 -60.1
                                                                                                                              11.1
                    X S+
                                                                      2,-0.2
                                                                                                                                             21.5
                                              -4, -2.6
                                                          4,-3.2
                                                                                  5,-0.3
                                                                                                                                     24.6
   9
                    X S+
                                                          4,-2.1
                                                                     -5,-0.3
                                                                                                                                     25.6
                                                                                                                                             21.7
                                              -4, -2.1
                                                                                 -2,-0.2
                                                                                           0.937 111.4
                                                                                                         43.9 -61.1
                                                                                                                              15.7
   10
        10
                    X S+
                                     114
                                              -4,-2.5
                                                          4,-2.5
                                                                      2,-0.2
                                                                                 -1,-0.2
                                                                                                         51.9 -67.4 -34.7
                                                                                                                                     29.2
                                                                                                                                             22.8
                    X S+
                                                                      1,-0.2
                                                                                                                                     27.8
                                                                                                                                             25.3
        11
                                 0
                                      29
                                              -4,-2.3
                                                          4,-1.3
                                                                                 -2,-0.2
                                                                                           0.910 111.0
                                                                                                         46.7 -66.8
   11
                                                                      2,-0.2
   12
                    <>S+
                                              -4,-3.2
                                                          5,-2.5
                                                                                  6,-0.3
                                                                                                                                             26.8
                                                                                                                                             27.0
   13
        13
                   ≻<5≲+
                                 0
                                      89
                                              -4,-2.1
                                                          3,-1.8
                                                                     -5,-0.3
                                                                                  5,-0.3
                                                                                           0.970 109.3
                                                                                                         47.8 -61.0 -44.3
                                                                                                                              17.3
                                                                                                                                     28.3
                                                                      1,-0.3
                                                                                                                                             28.9
        14
                   3<5S+
                                              -4,-2.5
                                                         -1,-0.2
                                                                                 -2,-0.2
                                                                                           0.809 106.9
                                                                                                         58.1 -67.8
                                                                                                                                     30.5
   14
                   3<5≲-
                                 0
                                              -4,-1.3
                                                         -1,-0.3
                                                                     -5,-0.2
                                                                                 -2,-0.2
                                                                                           0.399 121.3-107.0 -91.0
                                                                                                                              14.0
                                                                                                                                     27.6
                                                                                                                                             31.3
   15
                                                                                                                       6.3
                                                                                           0.719
        16
                   < 55+
                                 0
                                                         -3,-0.2
                                                                     -4,-0.3
                                                                                 -2,-0.1
                                                                                                   79.9 128.7
                                                                                                                                     27.4
                                                                                                                                             32.3
  16
                                              -3,-1.8
                                                                      2,-0.1
   17
        17
                     <
                                 0
                                              -5,-2.5
                                                          3,-1.7
                                                                                  2,-0.6
                                                                                           0.625
                                                                                                  35.2 105.3 -87.8 -19.2
                                                                                                                              18.7
                                                                                                                                     24.2
                                                                                                                                             30.5
        18
                                              -6,-0.3
                                                          6,-0.2
                                                                     -5,-0.3
                                                                                          -0.578 104.8
                                                                                                                              21.8
                                                                                                                                     25.4
                                                                                                                                             28.6
   18
                                                                                  4,-0.1
        19
             G
                             0
                                 0
                                              4,-2.4
                                                          3,-2.1
                                                                     -2,-0.6
                                                                                           0.604
                                                                                                  88.0
                                                                                                                                     23.9
                                                                                                                                             30.6
   19
                      S+
                                                                                  2,-0.4
                                                                                                        164.0
                                                                                                                       6.3
                                                                                                                              24.8
  20
             Y
                      S-B
                                  OB
                                                          3,-1.6
                                                                      3,-0.8
                                                                                          -0.584
                                                                                                  80.4
                                                                                                                                     22.6
                                                                                                                                             33.4
                                              -3,-1.7
                                                                                 -1,-0.3
                                                                                                               -63.8 126.7
                                                                      1,-0.2
  21
        21
             R
                                              -2,-0.4
                                                         -1,-0.3
                                                                                  3,-0.1
                                                                                           0.784 134.6 -56.6
                                                                                                                              24.8
                                                                                                                                     20.0
                                                                                                                                             35.2
                                                                                                               46.1
  22
        22
             G
                      S+
                             0
                                             -3, -2.1
                                                          2,-0.7
                                                                      1,-0.2
                                                                                 -1,-0.2
                                                                                           0.507 104.9 132.1
                                                                                                               83.1
                                                                                                                              27.2
                                                                                                                                     20.4
                                                                                                                                             32.3
                            20
  23
                                              -3,-1.6
                                                         -4,-2.4
                                                                     -6,-0.1
                                                                                          -0.753
                                                                                                   50.3-136.2-103.2 121.5
                                                                                                                                     19.5
                                                                                                                                             29.6
                                                                                 -3,-0.8
```

Secondary structure

Solvent accessibility

Hydrogen bonding partners/ Electrostatic energy

GETAREA

Calculation of Solvent Accessible Surface Areas, Atomic Solvation Energies and Their Gradients for Macromolecules

Robert Fraczkiewicz and Werner Braun

Sealy Center for Structural Biology University of Texas Medical Branch Galveston, TX 77555, USA

Quite often a biomolecular researcher wants to quickly calculate solvent accessible surface area or solvation energy of, for example, a protein molecule but does not have time/resources/skills/will to find and install an appropriate software. GETAREA, our efficient method of calculating the solvent accesible surface area [1,2] implemented in program FANTOM, can be directly accessed through this form. An on-line manual is available. Atomic coordinates should be supplied in PDB format. Please cite reference [1] in publications that use our service. Comments are welcome, please mail them to webraun@utmb.edu. Sample Getarea output: getarea.pdf

References:

- 1. Fractkiewicz, R. and Braun, W. (1998) "Exact and Efficient Analytical Calculation of the Accessible Surface Areas and Their Gradients for Macromolecules" J. Comp. Chem., 19, 319-333.
- 2. Fraczkiewicz, R. and Braun, W. "A New Efficient Algorithm for Calculating Solvent Accessible Surface Areas of Macromolecules" presented at the Third Electronic Computational Chemistry Conference; Northern Illinois University; November 1996; World Wide Web.

1.4	
1.4	
n	y or n, Default is n
gromiha@iitm.ac.in	For information purpose only
2. Area/energy per residue	v
Reset to Default valu	98

GLN	32	98.49	34.65	6.46	9	33 CA	LYS	3	9.	APOLAR area/energy
THR	33	76.88	62.60	12.26	6				~.	UNKNOW area/energy
ALA	34	6.64	6.64	6.24		34 C	LYS	3	υ.	
						35 O	LYS	3	3.	
GLU	35	119.15	44.05	17.76	10	36 CB	LYS	3	25.	Total area/energy
PHE	36	20.53	20.53	3.05	1			-		
LYS	37	109.82	52.86	13.38	0	37 CG	LYS	3	13.	Number of surface atoms
пр	31	109.02	34.00	13.30	9	38 CD	LYS	3	35.	
						area and the same of the same			w/s 14 14	Number of buried atoms

APOLAR	area/energy	=	5001.36
UNKNOW	area/energy	=	0.00
Total	area/energy	=	8496.85

Number	of	surface	atoms	=	723

586

Pictorial representation: ASAView

ASAview is an algorithm and a database of schematic representations of solvent accessibility of residues in a protein.

In this program, a characteristic two-dimensional spiral plot of solvent accessibility has been implemented for providing a convenient graphical view of residues in terms of their exposed surface areas.

Further, the sequential plots are also provided in the form of bar charts.

Online plots of the proteins included in the entire Protein Data Bank (PDB), are provided for the whole protein as well as their chains separately.

ASAview

Spiral view

blue, red, green, gray and yellow colors indicates the positively charged, negatively charged, polar, non-polar and Cys residues, respectively. The size of the sphere shows the relative ASA

S. Ahmad, M.M. Gromiha and A. Sarai, (2004) BMC Bioinformatics

ASAview

Percentage Accessibility

Percentage accessibility

Ratio between

Accessible surface area computed with 3D structure and

Accessible surface area in extended state

Gly-X-Gly or Ala-X-Ala

The values are Ala-110.2; Asp-144.1; Cys-140.4; Glu-174.7; Phe-200.7; Gly-78.7; His-181.9; Ile-185.0; Lys-205.7; Leu-183.1; Met-200.1; Asn-146.4; Pro-141.9; Gln-178.6; Arg-229.0; Ser-117.2; Thr-138.7; Val-153.7; Trp-240.5; Tyr-213.7 (the units are in A**2).

ASA less than 5%: Buried

ASA between 5% and 20%: Partially buried

ASA between 20% and 50%: Partially exposed

ASA more than 50%: Exposed.