The following picture shows the code I have written:

```
def custom_score(game, player):
    if game.is_loser(player): return float("-inf")
    if game.is_winner(player): return float("inf")
    own_moves = len(game.get_legal_moves(player))
    opp_moves = len(game.get_legal_moves(game.get_opponent(player)))
    return float(-opp_moves) float(len(game.get_legal_moves(player)))
def custom_score_2(game, player):
    if game.is_loser(player): return float("-inf")
    if game.is_winner(player): return float("inf")
    own_moves = len(game.get_legal_moves(player))
    opp_moves = len(game.get_legal_moves(game.get_opponent(player)))
    return float(2*own_moves - opp_moves)
def custom_score_3(game, player):
    if game.is_loser(player): return float("-inf")
    if game.is winner(player): return float("inf")
    own moves = len(game.get legal moves(player))
    opp_moves = len(game.get_legal_moves(game.get_opponent(player)))
    return float(own_moves - 2*opp_moves)
```

custom_score is only focused upon reducing opponent's move, which is inverse to open_move_score. custom_score_2 and custom_score_3 are variants of improved_score. custom_score_2 is more favored to increase own_moves, while custom_score_3 is more favored to decrease opp_moves.

How to read this table? e.g. the first slot: AB_Custom_2 wins 10 and lost 0 over Random. Because the first 2 move is random, the result may have some fluctuation.

For player type, AlphaBetaPlayer > MinimaxPlayer > RandomPlayer. This is expected, because RandomPlayer has no optimization, and AlphaBetaPlayer has iterative deepening that can think "deeper" than depth-limited MinimaxPlayer.

For evaluation functions, the tested 4 functions are quite similar, considering that the first 2 move is random and may cause fluctuation. A full run costs 15 minutes. My result is

This script evaluates the performance of the custom_score evaluation function against a baseline agent using alpha-beta search and iterative deepening (ID) called `AB_Improved`. The three `AB_Custom` agents use ID and alpha-beta search with the custom_score functions defined in game_agent.py.

Match #	Opponent	AB_Improved		AB_Custom		AB_Custom_2		AB_Custom_3	
		Won	Lost	Won	Lost	Won	Lost	Won	Lost
1	Random	9	1	9	1	10	0	10	0
2	MM_Open	8	2	8	2	8	2	8	2
3	MM_Center	9	1	9	1	9	1	9	1
4	MM_Improved	6	4	8	2	7	3	7	3
5	AB_Open	6	4	3	7	5	5	5	5
6	AB_Center	4	6	6	4	5	5	6	4
7	AB_Improved	4	6	6	4	6	4	4	6
	Win Rate:	65.7%		70.0%		71.4%		70.0%	

I would recommend custom_score_2 because of the following 3 reasons:

- 1. rate: it has the **best overall winning rate**
- 2. complexity: this is actually very straightforward. Because the winning criterion of the eliminate game is no legal move of opponent, it doesn't matter how many moves I have.
- 3. depth: because opp_moves is considered, its actual depth is **one layer**deeper than open score if given the same depth limitation.