Formalisation of Ground Resolution and CDCL in Isabelle/HOL

Mathias Fleury and Jasmin Blanchette

$March\ 23,\ 2016$

Contents

1	Par	tial Clausal Logic 3
	1.1	Marked Literals
		1.1.1 Definition
		1.1.2 Entailment
		1.1.3 Defined and undefined literals
	1.2	Backtracking
	1.3	Decomposition with respect to the marked literals
	1.4	Negation of Clauses
	1.5	Other
2	NO	T's CDCL
	2.1	Auxiliary Lemmas and Measure
	2.2	Initial definitions
		2.2.1 The state
		2.2.2 Definition of the operation
	2.3	DPLL with backjumping
		2.3.1 Definition
		2.3.2 Basic properties
		2.3.3 Termination
		2.3.4 Normal Forms
	2.4	CDCL
		2.4.1 Learn and Forget
		2.4.2 Definition of CDCL
	2.5	CDCL with invariant
	2.6	Termination
		2.6.1 Restricting learn and forget
	2.7	CDCL with restarts
		2.7.1 Definition
		2.7.2 Increasing restarts
	2.8	Merging backjump and learning
		2.8.1 Instantiations
3	DP	LL as an instance of NOT 99
	3.1	DPLL with simple backtrack
	3.2	Adding restarts

4	DP:	${ m LL}$
	4.1	Rules
	4.2	Invariants
	4.3	Termination
	4.4	Final States
	4.5	Link with NOT's DPLL
		4.5.1 Level of literals and clauses
		4.5.2 Properties about the levels
5	Wei	idenbach's CDCL 125
	5.1	The State
	5.2	Special Instantiation: using Triples as State
	5.3	CDCL Rules
	5.4	Invariants
	9.2	5.4.1 Properties of the trail
		5.4.2 Better-Suited Induction Principle
		$5.4.3$ Compatibility with $op \sim \dots $
		5.4.4 Conservation of some Properties
		5.4.5 Learned Clause
		5.4.6 No alien atom in the state
		5.4.7 No duplicates all around
		5.4.8 Conflicts and co
		5.4.9 Putting all the invariants together
		5.4.10 No tautology is learned
	5.5	CDCL Strong Completeness
	5.6	Higher level strategy
	0.0	5.6.1 Definition
		5.6.2 Invariants
		5.6.3 Literal of highest level in conflicting clauses
		5.6.4 Literal of highest level in marked literals
		5.6.5 Strong completeness
		5.6.6 No conflict with only variables of level less than backtrack level 194
		5.6.7 Final States are Conclusive
	5.7	Termination
	5.8	No Relearning of a clause
	5.9	Decrease of a measure
6	Sim	aple Implementation of the DPLL and CDCL 233
U	6.1	Common Rules
	0.1	6.1.1 Propagation
		6.1.2 Unit propagation for all clauses
		6.1.3 Decide
	6.2	Simple Implementation of DPLL
	0.2	6.2.1 Combining the propagate and decide: a DPLL step
		6.2.2 Adding invariants
		6.2.3 Code export
	6.3	CDCL Implementation
	0.0	6.3.1 Definition of the rules
		6.3.2 The Transitions

7	7.1	k between Weidenbach's and NOT's CDCL Inclusion of the states)7/
	•		
	7.2	Additional Lemmas between NOT and W states	
	7.3	More lemmas conflict—propagate and backjumping	
		7.3.1 Termination	
		7.3.2 More backjumping	280
	7.4	CDCL FW	294
	7.5	FW with strategy	303
		7.5.1 The intermediate step	303
	7.6	Adding Restarts	
9	2-W	Vatched-Literal 3	862
9			
9	9.1	Datastructure and Access Functions	362
9	9.1 9.2	Datastructure and Access Functions	362 363
9	9.1 9.2 9.3	Datastructure and Access Functions	362 363 371
9	9.1 9.2 9.3 9.4	Datastructure and Access Functions	362 363 371 373
9	9.1 9.2 9.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	362 363 371 373
9	9.1 9.2 9.3 9.4	Datastructure and Access Functions	362 363 371 373 382

theory Partial-Annotated-Clausal-Logic imports Partial-Clausal-Logic

begin

1 Partial Clausal Logic

We here define marked literals (that will be used in both DPLL and CDCL) and the entailment corresponding to it.

1.1 Marked Literals

1.1.1 Definition

```
datatype ('v, 'lvl, 'mark) ann-literal = is-marked: Marked (lit-of: 'v literal) (level-of: 'lvl) | is-proped: Propagated (lit-of: 'v literal) (mark-of: 'mark) lemma ann-literal-list-induct[case-names nil marked proped]: assumes P [] and \land L l xs. P xs \Longrightarrow P (Marked L l \# xs) and \land L m xs. P xs \Longrightarrow P (Propagated L m \# xs) shows P xs using assms apply (induction xs, simp) by (rename-tac a xs, case-tac a) auto
```

```
lemma is-marked-ex-Marked:
  is-marked L \Longrightarrow \exists K \ lvl. \ L = Marked \ K \ lvl
 by (cases L) auto
type-synonym ('v, 'l, 'm) ann-literals = ('v, 'l, 'm) ann-literal list
definition lits-of :: ('a, 'b, 'c) ann-literal list \Rightarrow 'a literal set where
lits-of Ls = lit-of ' (set Ls)
lemma lits-of-empty[simp]:
 lits-of [] = \{\}  unfolding lits-of-def by auto
lemma lits-of-cons[simp]:
  lits-of (L \# Ls) = insert (lit-of L) (lits-of Ls)
 unfolding lits-of-def by auto
lemma lits-of-append[simp]:
  lits-of (l @ l') = lits-of l \cup lits-of l'
 unfolding lits-of-def by auto
lemma finite-lits-of-def[simp]: finite (lits-of L)
 unfolding lits-of-def by auto
lemma lits-of-rev[simp]: lits-of (rev\ M) = lits-of M
  unfolding lits-of-def by auto
lemma set-map-lit-of-lits-of[simp]:
  set (map \ lit-of \ T) = lits-of \ T
 unfolding lits-of-def by auto
abbreviation unmark where
unmark M \equiv (\lambda a. \{\#lit\text{-}of a\#\}) \text{ '} set M
lemma atms-of-ms-lambda-lit-of-is-atm-of-lit-of[simp]:
  atms-of-ms (unmark M') = atm-of ' lits-of M'
 unfolding atms-of-ms-def lits-of-def by auto
lemma lits-of-empty-is-empty[iff]:
  lits-of M = \{\} \longleftrightarrow M = []
 by (induct M) auto
1.1.2 Entailment
definition true-annot :: ('a, 'l, 'm) ann-literals \Rightarrow 'a clause \Rightarrow bool (infix \modelsa 49) where
 I \models a C \longleftrightarrow (lits \text{-} of I) \models C
definition true-annots :: ('a, 'l, 'm) ann-literals \Rightarrow 'a clauses \Rightarrow bool (infix \models as 49) where
 I \models as \ CC \longleftrightarrow (\forall \ C \in CC. \ I \models a \ C)
lemma true-annot-empty-model[simp]:
  \neg [] \models a \psi
 unfolding true-annot-def true-cls-def by simp
lemma true-annot-empty[simp]:
  \neg I \models a \{\#\}
 unfolding true-annot-def true-cls-def by simp
```

```
lemma empty-true-annots-def[iff]:
  [] \models as \ \psi \longleftrightarrow \psi = \{\}
  unfolding true-annots-def by auto
lemma true-annots-empty[simp]:
  I \models as \{\}
  unfolding true-annots-def by auto
lemma true-annots-single-true-annot[iff]:
  I \models as \{C\} \longleftrightarrow I \models a C
  unfolding true-annots-def by auto
lemma true-annot-insert-l[simp]:
  M \models a A \Longrightarrow L \# M \models a A
  unfolding true-annot-def by auto
lemma true-annots-insert-l [simp]:
  M \models as A \Longrightarrow L \# M \models as A
  unfolding true-annots-def by auto
lemma true-annots-union[iff]:
  M \models as A \cup B \longleftrightarrow (M \models as A \land M \models as B)
  unfolding true-annots-def by auto
lemma true-annots-insert[iff]:
  M \models as \ insert \ a \ A \longleftrightarrow (M \models a \ a \land M \models as \ A)
  unfolding true-annots-def by auto
Link between \models as and \models s:
\mathbf{lemma}\ true\text{-}annots\text{-}true\text{-}cls\text{:}
  I \models as \ CC \longleftrightarrow (lits - of \ I) \models s \ CC
  unfolding true-annots-def Ball-def true-annot-def true-clss-def by auto
lemma in-lit-of-true-annot:
  a \in lits\text{-}of\ M \longleftrightarrow M \models a \{\#a\#\}
  unfolding true-annot-def lits-of-def by auto
lemma true-annot-lit-of-notin-skip:
  L \# M \models a A \Longrightarrow lit\text{-}of L \notin \# A \Longrightarrow M \models a A
  unfolding true-annot-def true-cls-def by auto
{f lemma}\ true{-}clss{-}singleton{-}lit{-}of{-}implies{-}incl:
  I \models s \ unmark \ MLs \Longrightarrow lits \text{-} of \ MLs \subseteq I
  unfolding true-clss-def lits-of-def by auto
lemma true-annot-true-clss-cls:
  MLs \models a \psi \implies set (map (\lambda a. \{\#lit\text{-}of a\#\}) MLs) \models p \psi
  unfolding true-annot-def true-clss-cls-def true-cls-def
  by (auto dest: true-clss-singleton-lit-of-implies-incl)
\mathbf{lemma}\ \mathit{true-annots-true-clss-cls}:
  MLs \models as \psi \implies set (map (\lambda a. \{\#lit\text{-}of a\#\}) MLs) \models ps \psi
  by (auto
```

```
dest: true-clss-singleton-lit-of-implies-incl
    simp add: true-clss-def true-annots-def true-annot-def lits-of-def true-cls-def
    true-clss-clss-def)
lemma true-annots-marked-true-cls[iff]:
  map\ (\lambda M.\ Marked\ M\ a)\ M \models as\ N \longleftrightarrow set\ M \models s\ N
proof -
 have *: lits-of (map (\lambda M. Marked M a) M) = set M unfolding lits-of-def by force
 show ?thesis by (simp add: true-annots-true-cls *)
lemma true-annot-singleton[iff]: M \models a \{\#L\#\} \longleftrightarrow L \in lits-of M
  unfolding true-annot-def lits-of-def by auto
\mathbf{lemma}\ true\text{-}annots\text{-}true\text{-}clss\text{-}clss:
  A \models as \Psi \Longrightarrow unmark A \models ps \Psi
  unfolding true-clss-clss-def true-annots-def true-clss-def
    dest!: true-clss-singleton-lit-of-implies-incl
    simp add: lits-of-def true-annot-def true-cls-def)
lemma true-annot-commute:
  M @ M' \models a D \longleftrightarrow M' @ M \models a D
  unfolding true-annot-def by (simp add: Un-commute)
lemma true-annots-commute:
  M @ M' \models as D \longleftrightarrow M' @ M \models as D
  unfolding true-annots-def by (auto simp add: true-annot-commute)
lemma true-annot-mono[dest]:
  set \ I \subseteq set \ I' \Longrightarrow I \models a \ N \Longrightarrow I' \models a \ N
 using true-cls-mono-set-mset-l unfolding true-annot-def lits-of-def
  by (metis (no-types) Un-commute Un-upper1 image-Un sup.orderE)
\mathbf{lemma} \ \mathit{true-annots-mono}:
  set\ I \subseteq set\ I' \Longrightarrow I \models as\ N \Longrightarrow I' \models as\ N
 unfolding true-annots-def by auto
         Defined and undefined literals
1.1.3
definition defined-lit :: ('a, 'l, 'm) ann-literal list \Rightarrow 'a literal \Rightarrow bool
  where
defined-lit I L \longleftrightarrow (\exists l. Marked L l \in set I) \lor (\exists P. Propagated L P \in set I)
  \vee (\exists l. \ Marked \ (-L) \ l \in set \ I) \ \vee (\exists P. \ Propagated \ (-L) \ P \in set \ I)
abbreviation undefined-lit :: ('a, 'l, 'm) ann-literal list \Rightarrow 'a literal \Rightarrow bool
where undefined-lit IL \equiv \neg defined-lit IL
lemma defined-lit-rev[simp]:
  defined-lit (rev\ M)\ L \longleftrightarrow defined-lit M\ L
  unfolding defined-lit-def by auto
\mathbf{lemma}\ atm\text{-}imp\text{-}marked\text{-}or\text{-}proped:
  assumes x \in set I
 shows
    (\exists l. Marked (- lit-of x) l \in set I)
```

```
\vee (\exists l. \ Marked \ (lit\text{-}of \ x) \ l \in set \ I)
   \vee (\exists l. \ Propagated \ (- \ lit - of \ x) \ l \in set \ I)
   \vee (\exists l. Propagated (lit-of x) l \in set I)
  using assms ann-literal.exhaust-sel by metis
lemma literal-is-lit-of-marked:
  assumes L = lit - of x
  shows (\exists l. \ x = Marked \ L \ l) \lor (\exists l'. \ x = Propagated \ L \ l')
 using assms by (cases x) auto
\mathbf{lemma}\ true\text{-}annot\text{-}iff\text{-}marked\text{-}or\text{-}true\text{-}lit:
  defined-lit I \ L \longleftrightarrow ((lits\text{-}of \ I) \models l \ L \lor (lits\text{-}of \ I) \models l \ -L)
  unfolding defined-lit-def by (auto simp add: lits-of-def rev-image-eqI
    dest!: literal-is-lit-of-marked)
lemma consistent-interp (lits-of I) \Longrightarrow I \modelsas N \Longrightarrow satisfiable N
  by (simp add: true-annots-true-cls)
lemma defined-lit-map:
  defined-lit Ls L \longleftrightarrow atm\text{-}of \ L \in (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) 'set Ls
 unfolding defined-lit-def apply (rule iffI)
   using image-iff apply fastforce
 by (fastforce simp add: atm-of-eq-atm-of dest: atm-imp-marked-or-proped)
lemma defined-lit-uminus[iff]:
  defined-lit I (-L) \longleftrightarrow defined-lit I L
  unfolding defined-lit-def by auto
lemma Marked-Propagated-in-iff-in-lits-of:
  defined-lit I L \longleftrightarrow (L \in lits\text{-}of \ I \lor -L \in lits\text{-}of \ I)
  unfolding lits-of-def defined-lit-def
  by (auto simp: rev-image-eqI) (rename-tac x, case-tac x, auto)+
lemma consistent-add-undefined-lit-consistent[simp]:
  assumes
    consistent-interp (lits-of Ls) and
    undefined-lit Ls L
  shows consistent-interp (insert L (lits-of Ls))
  using assms unfolding consistent-interp-def by (auto simp: Marked-Propagated-in-iff-in-lits-of)
lemma decided-empty[simp]:
  \neg defined-lit [] L
  unfolding defined-lit-def by simp
1.2
        Backtracking
fun backtrack-split :: ('v, 'l, 'm) ann-literals
  \Rightarrow ('v, 'l, 'm) ann-literals \times ('v, 'l, 'm) ann-literals where
backtrack-split [] = ([], [])
backtrack-split (Propagated L P # mlits) = apfst ((op #) (Propagated L P)) (backtrack-split mlits) |
backtrack-split (Marked L l \# mlits) = ([], Marked L l \# mlits)
lemma backtrack-split-fst-not-marked: a \in set (fst (backtrack-split l)) \Longrightarrow \neg is-marked a
  by (induct l rule: ann-literal-list-induct) auto
```

```
snd\ (backtrack-split\ l) \neq [] \Longrightarrow is-marked\ (hd\ (snd\ (backtrack-split\ l)))
 by (induct l rule: ann-literal-list-induct) auto
lemma backtrack-split-list-eq[simp]:
 fst (backtrack-split l) @ (snd (backtrack-split l)) = l
 by (induct l rule: ann-literal-list-induct) auto
lemma backtrack-snd-empty-not-marked:
  backtrack\text{-}split\ M = (M'', []) \Longrightarrow \forall\ l \in set\ M. \ \neg\ is\text{-}marked\ l
 by (metis append-Nil2 backtrack-split-fst-not-marked backtrack-split-list-eq snd-conv)
\mathbf{lemma}\ backtrack\text{-}split\text{-}some\text{-}is\text{-}marked\text{-}then\text{-}snd\text{-}has\text{-}hd\text{:}
  \exists l \in set \ M. \ is\text{-marked} \ l \Longrightarrow \exists M' \ L' \ M''. \ backtrack\text{-split} \ M = (M'', L' \# M')
 by (metis backtrack-snd-empty-not-marked list.exhaust prod.collapse)
Another characterisation of the result of backtrack-split. This view allows some simpler proofs,
since take While and drop While are highly automated:
lemma backtrack-split-takeWhile-dropWhile:
  backtrack-split M = (takeWhile (Not o is-marked) M, dropWhile (Not o is-marked) M)
proof (induct M)
 case Nil show ?case by simp
 case (Cons L M) thus ?case by (cases L) auto
qed
       Decomposition with respect to the marked literals
1.3
The pattern get-all-marked-decomposition [] = [([], [])] is necessary otherwise, we can call the
hd function in the other pattern.
fun get-all-marked-decomposition :: ('a, 'l, 'm) ann-literals
  \Rightarrow (('a, 'l, 'm) ann-literals \times ('a, 'l, 'm) ann-literals) list where
get-all-marked-decomposition (Marked L l \# Ls) =
  (Marked\ L\ l\ \#\ Ls,\ [])\ \#\ get\ -all\ -marked\ -decomposition\ Ls\ []
get-all-marked-decomposition (Propagated L P# Ls) =
  (apsnd\ ((op\ \#)\ (Propagated\ L\ P))\ (hd\ (get-all-marked-decomposition\ Ls)))
   \# tl (qet-all-marked-decomposition Ls)
get-all-marked-decomposition [] = [([], [])]
value get-all-marked-decomposition [Propagated A5 B5, Marked C4 D4, Propagated A3 B3,
  Propagated A2 B2, Marked C1 D1, Propagated A0 B0]
lemma \ get-all-marked-decomposition-never-empty[iff]:
  get-all-marked-decomposition M = [] \longleftrightarrow False
 by (induct M, simp) (rename-tac a xs, case-tac a, auto)
lemma get-all-marked-decomposition-never-empty-sym[iff]:
  [] = get\text{-}all\text{-}marked\text{-}decomposition } M \longleftrightarrow False
 using get-all-marked-decomposition-never-empty[of M] by presburger
lemma get-all-marked-decomposition-decomp:
  hd (get-all-marked-decomposition S) = (a, c) \Longrightarrow S = c @ a
proof (induct S arbitrary: a c)
 case Nil
 thus ?case by simp
```

```
next
 case (Cons \ x \ A)
 thus ?case by (cases x; cases hd (get-all-marked-decomposition A)) auto
qed
{\bf lemma}~get-all-marked-decomposition-backtrack-split:
 backtrack-split\ S=(M,M')\longleftrightarrow hd\ (get-all-marked-decomposition\ S)=(M',M)
proof (induction S arbitrary: M M')
 case Nil
 thus ?case by auto
next
 case (Cons\ a\ S)
 thus ?case using backtrack-split-takeWhile-dropWhile by (cases a) force+
\mathbf{lemma} \ \ get-all-marked-decomposition-nil-backtrack-split-snd-nil:
 get-all-marked-decomposition S = [([], A)] \Longrightarrow snd (backtrack-split S) = []
 by (simp add: get-all-marked-decomposition-backtrack-split sndI)
\textbf{lemma} \ \textit{get-all-marked-decomposition-length-1-fst-empty-or-length-1}:
 assumes get-all-marked-decomposition M = (a, b) \# []
 shows a = [] \lor (length \ a = 1 \land is\text{-marked} \ (hd \ a) \land hd \ a \in set \ M)
 using assms
proof (induct M arbitrary: a b)
 case Nil thus ?case by simp
next
 case (Cons \ m \ M)
 show ?case
   proof (cases m)
     case (Marked l mark)
     thus ?thesis using Cons by simp
   next
     case (Propagated 1 mark)
     thus ?thesis using Cons by (cases get-all-marked-decomposition M) force+
   qed
qed
\mathbf{lemma}\ get-all-marked-decomposition-fst-empty-or-hd-in-M:
 assumes get-all-marked-decomposition M = (a, b) \# l
 shows a = [] \lor (is\text{-}marked (hd a) \land hd a \in set M)
 using assms apply (induct M arbitrary: a b rule: ann-literal-list-induct)
   apply auto[2]
  {\bf by} \ (metis \ UnCI \ backtrack-split-snd-hd-marked \ get-all-marked-decomposition-backtrack-split
   get-all-marked-decomposition-decomp hd-in-set list.sel(1) set-append snd-conv)
\mathbf{lemma}\ \textit{get-all-marked-decomposition-snd-not-marked}\colon
 assumes (a, b) \in set (get-all-marked-decomposition M)
 and L \in set b
 shows \neg is-marked L
 using assms apply (induct M arbitrary: a b rule: ann-literal-list-induct, simp)
 by (rename-tac L' l xs a b, case-tac get-all-marked-decomposition xs; fastforce)+
lemma tl-qet-all-marked-decomposition-skip-some:
 assumes x \in set (tl (get-all-marked-decomposition M1))
 shows x \in set (tl (get-all-marked-decomposition (M0 @ M1)))
```

```
using assms
 by (induct M0 rule: ann-literal-list-induct)
    (auto\ simp\ add:\ list.set-sel(2))
{\bf lemma}\ hd-get-all-marked-decomposition-skip-some:
 assumes (x, y) = hd (get-all-marked-decomposition M1)
 shows (x, y) \in set (get-all-marked-decomposition (M0 @ Marked K i # M1))
 using assms
proof (induct M\theta)
 case Nil
 thus ?case by auto
next
 case (Cons\ L\ M0)
 hence xy: (x, y) \in set (get-all-marked-decomposition (M0 @ Marked K i # M1)) by blast
 show ?case
   proof (cases L)
     case (Marked \ l \ m)
     thus ?thesis using xy by auto
   next
     case (Propagated\ l\ m)
     thus ?thesis
      using xy Cons.prems
      by (cases get-all-marked-decomposition (M0 @ Marked K i \# M1))
         (auto\ dest!:\ get-all-marked-decomposition-decomp
           arg\text{-}cong[of\ get\text{-}all\text{-}marked\text{-}decomposition - - hd])
   ged
qed
{\bf lemma}\ \textit{get-all-marked-decomposition-snd-union}:
 set M = \bigcup (set 'snd 'set (get-all-marked-decomposition M)) \cup \{L \mid L. is-marked L \land L \in set M\}
 (is ?MM = ?UM \cup ?LsM)
proof (induct M arbitrary:)
 case Nil
 thus ?case by simp
next
 case (Cons\ L\ M)
 show ?case
   proof (cases L)
     case (Marked a l) note L = this
     hence L \in ?Ls (L \# M) by auto
     moreover have ?U(L\#M) = ?UM unfolding L by auto
     moreover have ?M M = ?U M \cup ?Ls M using Cons.hyps by auto
     ultimately show ?thesis by auto
   next
     case (Propagated a P)
     thus ?thesis using Cons.hyps by (cases (get-all-marked-decomposition M)) auto
   qed
qed
{\bf lemma}\ in-get-all-marked-decomposition-in-get-all-marked-decomposition-prepend:
 (a, b) \in set (get-all-marked-decomposition M') \Longrightarrow
   \exists b'. (a, b' \otimes b) \in set (get-all-marked-decomposition (M \otimes M'))
 apply (induction M rule: ann-literal-list-induct)
   apply (metis append-Nil)
  apply auto[]
```

```
by (rename-tac L' m xs, case-tac get-all-marked-decomposition (xs @ M')) auto
\mathbf{lemma} \ \ \textit{get-all-marked-decomposition-remove-unmarked-length}:
 assumes \forall l \in set M'. \neg is-marked l
 shows length (get-all-marked-decomposition (M' @ M''))
   = length (get-all-marked-decomposition M'')
 using assms by (induct M' arbitrary: M" rule: ann-literal-list-induct) auto
lemma get-all-marked-decomposition-not-is-marked-length:
 assumes \forall l \in set M'. \neg is-marked l
 shows 1 + length (get-all-marked-decomposition (Propagated <math>(-L) P \# M))
   = length (get-all-marked-decomposition (M' @ Marked L l \# M))
using assms get-all-marked-decomposition-remove-unmarked-length by fastforce
lemma qet-all-marked-decomposition-last-choice:
 assumes tl (get-all-marked-decomposition (M' @ Marked L l \# M)) \neq []
 and \forall l \in set M'. \neg is-marked l
 and hd (tl (qet-all-marked-decomposition (M' @ Marked L l \# M)) = (M0', M0)
 shows hd (get-all-marked-decomposition (Propagated (-L) P \# M)) = (M0', Propagated (-L) P \#
M0)
 using assms by (induct M' rule: ann-literal-list-induct) auto
lemma get-all-marked-decomposition-except-last-choice-equal:
 assumes \forall l \in set M'. \neg is-marked l
 shows tl (get-all-marked-decomposition (Propagated (-L) P \# M))
   = tl \ (tl \ (get\text{-}all\text{-}marked\text{-}decomposition \ (M' @ Marked \ L \ l \ \# \ M)))
 using assms by (induct M' rule: ann-literal-list-induct) auto
lemma get-all-marked-decomposition-hd-hd:
 assumes get-all-marked-decomposition Ls = (M, C) \# (M0, M0') \# l
 shows tl\ M = M0' @ M0 \land is\text{-}marked\ (hd\ M)
 using assms
proof (induct Ls arbitrary: M C M0 M0' l)
 case Nil
 thus ?case by simp
next
 case (Cons a Ls M C M0 M0' l) note IH = this(1) and q = this(2)
 { fix L level
   assume a: a = Marked \ L \ level
   have Ls = M0' @ M0
     using g a by (force intro: get-all-marked-decomposition-decomp)
   hence tl\ M = M0' @ M0 \land is\text{-marked } (hd\ M) using g\ a\ by\ auto
 }
 moreover {
   fix LP
   assume a: a = Propagated L P
   have tl\ M = M0' @ M0 \land is\text{-}marked\ (hd\ M)
     using IH Cons.prems unfolding a by (cases get-all-marked-decomposition Ls) auto
 ultimately show ?case by (cases a) auto
qed
lemma qet-all-marked-decomposition-exists-prepend[dest]:
 assumes (a, b) \in set (get-all-marked-decomposition M)
 shows \exists c. M = c @ b @ a
```

```
using assms apply (induct M rule: ann-literal-list-induct)
   apply simp
  by (rename-tac L' m xs, case-tac get-all-marked-decomposition xs;
   auto dest!: arg-cong[of get-all-marked-decomposition - - hd]
     get-all-marked-decomposition-decomp)+
\mathbf{lemma}\ get-all-marked-decomposition-incl:
 assumes (a, b) \in set (get-all-marked-decomposition M)
 shows set b \subseteq set M and set a \subseteq set M
 using assms get-all-marked-decomposition-exists-prepend by fastforce+
lemma get-all-marked-decomposition-exists-prepend':
 assumes (a, b) \in set (get-all-marked-decomposition M)
 obtains c where M = c @ b @ a
 using assms apply (induct M rule: ann-literal-list-induct)
   apply auto[1]
  by (rename-tac L' m xs, case-tac hd (get-all-marked-decomposition xs),
   auto dest!: qet-all-marked-decomposition-decomp simp add: list.set-sel(2))+
\mathbf{lemma}\ union\text{-}in\text{-}get\text{-}all\text{-}marked\text{-}decomposition\text{-}is\text{-}subset}:
 assumes (a, b) \in set (get-all-marked-decomposition M)
 shows set \ a \cup set \ b \subseteq set \ M
 using assms by force
definition all-decomposition-implies :: 'a literal multiset set
 \Rightarrow (('a, 'l, 'm) ann-literal list \times ('a, 'l, 'm) ann-literal list) list \Rightarrow bool where
all-decomposition-implies N S
  \longleftrightarrow (\forall (Ls, seen) \in set \ S. \ unmark \ Ls \cup N \models ps \ unmark \ seen)
lemma all-decomposition-implies-empty[iff]:
  all-decomposition-implies N \parallel \mathbf{unfolding}  all-decomposition-implies-def by auto
lemma all-decomposition-implies-single[iff]:
  all-decomposition-implies N [(Ls, seen)]
   \longleftrightarrow unmark\ Ls \cup N \models ps\ unmark\ seen
 unfolding all-decomposition-implies-def by auto
lemma all-decomposition-implies-append[iff]:
  all-decomposition-implies N (S @ S')
   \longleftrightarrow (all-decomposition-implies N S \land all-decomposition-implies N S')
  unfolding all-decomposition-implies-def by auto
lemma all-decomposition-implies-cons-pair[iff]:
  all-decomposition-implies N ((Ls, seen) \# S')
   \longleftrightarrow (all-decomposition-implies N [(Ls, seen)] \land all-decomposition-implies N S')
 unfolding all-decomposition-implies-def by auto
lemma all-decomposition-implies-cons-single[iff]:
  all-decomposition-implies N (l \# S') \longleftrightarrow
   (unmark\ (fst\ l) \cup N \models ps\ unmark\ (snd\ l) \land
     all-decomposition-implies NS')
 unfolding all-decomposition-implies-def by auto
```

 ${\bf lemma}\ all\text{-}decomposition\text{-}implies\text{-}trail\text{-}is\text{-}implied\text{:}}$

```
assumes all-decomposition-implies N (get-all-marked-decomposition M)
 shows N \cup \{\{\#lit\text{-}of\ L\#\}\ | L.\ is\text{-}marked\ L \land L \in set\ M\}
   \models ps \ (\lambda a. \ \{\#lit\text{-}of \ a\#\}) \ `\bigcup (set \ `snd \ `set \ (get\text{-}all\text{-}marked\text{-}decomposition } M))
using assms
proof (induct length (get-all-marked-decomposition M) arbitrary: M)
 case \theta
 thus ?case by auto
next
  case (Suc n) note IH = this(1) and length = this(2)
  {
   assume length (get-all-marked-decomposition M) \leq 1
   then obtain a b where g: get-all-marked-decomposition M = (a, b) \# []
     by (cases get-all-marked-decomposition M) auto
   moreover {
     assume a = []
     hence ?case using Suc.prems g by auto
   moreover {
     assume l: length a = 1 and m: is-marked (hd a) and hd: hd a \in set M
     hence (\lambda a. \{\#lit\text{-}of \ a\#\}) \ (hd \ a) \in \{\{\#lit\text{-}of \ L\#\} \ | L. \ is\text{-}marked \ L \land L \in set \ M\} \ by \ auto
     hence H: unmark \ a \cup N \subseteq N \cup \{\{\#lit\text{-}of \ L\#\} \mid L. \ is\text{-}marked \ L \land L \in set \ M\}
       using l by (cases a) auto
     have f1: (\lambda m. \{\#lit\text{-}of m\#\}) 'set a \cup N \models ps (\lambda m. \{\#lit\text{-}of m\#\})'set b
       using Suc. prems unfolding all-decomposition-implies-def g by simp
     have ?case
       unfolding g apply (rule true-clss-clss-subset) using f1 H by auto
   ultimately have ?case using get-all-marked-decomposition-length-1-fst-empty-or-length-1 by blast
 moreover {
   assume length (get-all-marked-decomposition M) > 1
   then obtain Ls\theta \ seen\theta \ M' where
     Ls0: get-all-marked-decomposition M = (Ls0, seen0) \# get-all-marked-decomposition M' and
     length': length (get-all-marked-decomposition M') = n and
     M'-in-M: set M' \subseteq set M
     using length apply (induct M)
       apply simp
     by (rename-tac a M, case-tac a, case-tac hd (get-all-marked-decomposition M))
        (auto simp add: subset-insertI2)
   {
     assume n = 0
     hence get-all-marked-decomposition M' = [] using length' by auto
     hence ?case using Suc.prems unfolding all-decomposition-implies-def Ls0 by auto
   moreover {
     assume n: n > 0
     then obtain Ls1 seen1 l where Ls1: get-all-marked-decomposition M' = (Ls1, seen1) \# l
       using length' by (induct M', simp) (rename-tac a xs, case-tac a, auto)
     have all-decomposition-implies N (get-all-marked-decomposition M')
       using Suc. prems unfolding Ls0 all-decomposition-implies-def by auto
     hence N: N \cup \{\{\#lit\text{-}of L\#\} \mid L. \text{ is-marked } L \land L \in set M'\}
         \models ps\ (\lambda a. \{\#lit\text{-}of\ a\#\})\ `\bigcup (set\ `snd\ `set\ (get\text{-}all\text{-}marked\text{-}decomposition\ }M'))
       using IH length' by auto
```

```
have l: N \cup \{\{\#lit\text{-}of L\#\} \mid L. \text{ is-marked } L \land L \in set M'\}
  \subseteq N \cup \{\{\#lit\text{-}of\ L\#\}\ | L.\ is\text{-}marked\ L \land L \in set\ M\}
  using M'-in-M by auto
hence \Psi N: N \cup \{\{\#lit\text{-}of L\#\} \mid L. \text{ is-marked } L \land L \in set M\}
  \models ps \ (\lambda a. \ \{\#lit\text{-}of \ a\#\}) \ ` \bigcup (set \ `snd \ `set \ (get\text{-}all\text{-}marked\text{-}decomposition } M'))
  using true-clss-subset[OF\ l\ N] by auto
have is-marked (hd Ls0) and LS: tl Ls0 = seen1 @ Ls1
  using get-all-marked-decomposition-hd-hd[of M] unfolding Ls0 Ls1 by auto
have LSM: seen 1 @ Ls1 = M' using get-all-marked-decomposition-decomp[of M'] Ls1 by auto
have M': set M' = Union (set 'snd' set (get-all-marked-decomposition M'))
 \cup \{L \mid L. \text{ is-marked } L \land L \in \text{set } M'\}
 using get-all-marked-decomposition-snd-union by auto
 assume Ls\theta \neq [
 hence hd Ls0 \in set M using get-all-marked-decomposition-fst-empty-or-hd-in-M Ls0 by blast
 hence N \cup \{\{\#lit\text{-of }L\#\} \mid L. \text{ is-marked } L \wedge L \in set M\} \models p (\lambda a. \{\#lit\text{-of }a\#\}) (hd Ls\theta)
    using \langle is\text{-}marked \ (hd \ Ls\theta) \rangle by (metis \ (mono\text{-}tags, \ lifting) \ UnCI \ mem\text{-}Collect\text{-}eq
      true-clss-cls-in)
} note hd-Ls\theta = this
have l: (\lambda a. \{\#lit\text{-}of\ a\#\}) \ `(\bigcup (set\ `snd\ `set\ (get\text{-}all\text{-}marked\text{-}decomposition\ }M'))
    \cup \{L \mid L. \text{ is-marked } L \land L \in \text{set } M'\})
  = (\lambda a. \{ \#lit - of a \# \})
     \bigcup (set 'snd 'set (get-all-marked-decomposition M'))
     \cup \{\{\#lit\text{-}of\ L\#\}\ | L.\ is\text{-}marked\ L \land L \in set\ M'\}
 by auto
have N \cup \{\{\#lit\text{-}of\ L\#\}\ | L.\ is\text{-}marked\ L \land L \in set\ M'\} \models ps
        (\lambda a. \{\#lit\text{-}of \ a\#\}) \cdot (\bigcup (set \cdot snd \cdot set \ (get\text{-}all\text{-}marked\text{-}decomposition } M'))
           \cup \{L \mid L. \text{ is-marked } L \land L \in \text{set } M'\})
  unfolding l using N by (auto simp add: all-in-true-clss-clss)
hence N \cup \{\{\#lit\text{-}of\ L\#\} \mid L.\ is\text{-}marked\ L \land L \in set\ M'\} \models ps\ unmark\ (tl\ Ls0)
  using M' unfolding LS LSM by auto
hence t: N \cup \{\{\#lit\text{-}of L\#\} \mid L. \text{ is-marked } L \land L \in set M'\}
  \models ps \ unmark \ (tl \ Ls0)
  by (blast intro: all-in-true-clss-clss)
hence N \cup \{\{\#lit\text{-}of\ L\#\}\ | L.\ is\text{-}marked\ L \land L \in set\ M\}
  \models ps \ unmark \ (tl \ Ls\theta)
  using M'-in-M true-clss-clss-subset [OF - t,
    of N \cup \{\{\#lit\text{-}of\ L\#\}\ | L.\ is\text{-}marked\ L \land L \in set\ M\}\}
  by auto
hence N \cup \{\{\#lit\text{-}of\ L\#\}\ | L.\ is\text{-}marked\ L \land L \in set\ M\} \models ps\ unmark\ Ls0
  using hd-Ls\theta by (cases Ls\theta, auto)
moreover have unmark\ Ls\theta\ \cup\ N\ \models ps\ unmark\ seen\theta
  using Suc. prems unfolding Ls0 all-decomposition-implies-def by simp
moreover have \bigwedge M Ma. (M::'a \ literal \ multiset \ set) \cup Ma \models ps \ M
  by (simp add: all-in-true-clss-clss)
ultimately have \Psi: N \cup \{\{\#lit\text{-}of\ L\#\}\ | L.\ is\text{-}marked\ L \land L \in set\ M\} \models ps
    unmark seen0
  by (meson true-clss-clss-left-right true-clss-clss-union-and true-clss-clss-union-l-r)
have (\lambda a. \{\#lit\text{-}of a\#\}) '(set seen0
     \cup (\bigcup x \in set (get-all-marked-decomposition M'). <math>set (snd x)))
   = unmark \ seen 0
```

```
\cup (\lambda a. \{\#lit\text{-}of a\#\}) \circ (\bigcup x \in set (get\text{-}all\text{-}marked\text{-}decomposition } M'). set (snd x))
       by auto
      hence ?case unfolding Ls0 using \Psi \Psi N by simp
    ultimately have ?case by auto
  ultimately show ?case by arith
qed
\mathbf{lemma}\ all\text{-}decomposition\text{-}implies\text{-}propagated\text{-}lits\text{-}are\text{-}implied\text{:}}
  assumes all-decomposition-implies N (get-all-marked-decomposition M)
 shows N \cup \{\{\# lit\text{-}of L\#\} \mid L. \text{ is-marked } L \land L \in set M\} \models ps \text{ unmark } M
    (is ?I \models ps ?A)
proof -
 have ?I \models ps (\lambda a. \{\#lit\text{-}of a\#\}) ` \{L \mid L. is\text{-}marked } L \land L \in set M\}
    by (auto intro: all-in-true-clss-clss)
  moreover have ?I \models ps (\lambda a. \{\#lit\text{-}of a\#\}) ` | | (set `snd `set (qet\text{-}all\text{-}marked\text{-}decomposition } M))
    using all-decomposition-implies-trail-is-implied assms by blast
  ultimately have N \cup \{\{\#lit\text{-}of\ m\#\}\ | m.\ is\text{-}marked\ m \land m \in set\ M\}
    \models ps \ (\lambda m. \ \{\#lit\text{-}of \ m\#\}) \ ` \bigcup (set \ `snd \ `set \ (get\text{-}all\text{-}marked\text{-}decomposition} \ M))
      \cup (\lambda m. \{\#lit\text{-}of \ m\#\}) \ `\{m \ | m. \ is\text{-}marked \ m \land m \in set \ M\}
      by blast
  thus ?thesis
    by (metis (no-types) get-all-marked-decomposition-snd-union[of M] image-Un)
ged
\mathbf{lemma}\ all\text{-}decomposition\text{-}implies\text{-}insert\text{-}single\text{:}}
  all-decomposition-implies N M \Longrightarrow all-decomposition-implies (insert C N) M
  unfolding all-decomposition-implies-def by auto
1.4
        Negation of Clauses
definition CNot :: 'v \ clause \Rightarrow 'v \ clauses \ \mathbf{where}
CNot \ \psi = \{ \{\#-L\#\} \mid L. \ L \in \# \ \psi \} \}
lemma in-CNot-uminus[iff]:
  shows \{\#L\#\} \in CNot \ \psi \longleftrightarrow -L \in \# \ \psi
 using assms unfolding CNot-def by force
lemma CNot-singleton[simp]: CNot \{\#L\#\} = \{\{\#-L\#\}\}\} unfolding CNot-def by auto
lemma CNot\text{-}empty[simp]: CNot \{\#\} = \{\} unfolding CNot\text{-}def by auto
lemma CNot-plus[simp]: CNot (A + B) = CNot A \cup CNot B unfolding CNot-def by auto
lemma CNot\text{-}eq\text{-}empty[iff]:
  CNot\ D = \{\} \longleftrightarrow D = \{\#\}
  unfolding CNot-def by (auto simp add: multiset-eqI)
lemma in-CNot-implies-uminus:
 assumes L \in \# D
 and M \models as \ CNot \ D
 shows M \models a \{\#-L\#\} \text{ and } -L \in lits\text{-}of M
  using assms by (auto simp add: true-annots-def true-annot-def CNot-def)
lemma CNot\text{-}remdups\text{-}mset[simp]:
  CNot (remdups-mset A) = CNot A
```

```
unfolding CNot-def by auto
lemma Ball-CNot-Ball-mset[simp] :
  (\forall x \in CNot \ D. \ P \ x) \longleftrightarrow (\forall L \in \# \ D. \ P \ \{\#-L\#\})
 unfolding CNot-def by auto
lemma consistent-CNot-not:
  assumes consistent-interp I
  shows I \models s \ CNot \ \varphi \Longrightarrow \neg I \models \varphi
  using assms unfolding consistent-interp-def true-clss-def true-cls-def by auto
lemma total-not-true-cls-true-clss-CNot:
  assumes total-over-m I \{\varphi\} and \neg I \models \varphi
  shows I \models s \ CNot \ \varphi
  using assms unfolding total-over-m-def total-over-set-def true-clss-def true-cls-def CNot-def
   apply clarify
  by (rename-tac x L, case-tac L) (force intro: pos-lit-in-atms-of neg-lit-in-atms-of)+
lemma total-not-CNot:
  assumes total-over-m I \{\varphi\} and \neg I \models s \ CNot \ \varphi
  shows I \models \varphi
  using assms total-not-true-cls-true-clss-CNot by auto
lemma atms-of-ms-CNot-atms-of [simp]:
  atms-of-ms (CNot C) = atms-of C
  unfolding atms-of-ms-def atms-of-def CNot-def by fastforce
\mathbf{lemma}\ true\text{-}clss\text{-}clss\text{-}contradiction\text{-}true\text{-}clss\text{-}cls\text{-}false:
  C \in D \Longrightarrow D \models ps \ CNot \ C \Longrightarrow D \models p \ \{\#\}
  unfolding true-clss-cls-def true-clss-cls-def total-over-m-def
  by (metis Un-commute atms-of-empty atms-of-ms-CNot-atms-of atms-of-ms-insert atms-of-ms-union
   consistent-CNot-not insert-absorb sup-bot.left-neutral true-clss-def)
lemma true-annots-CNot-all-atms-defined:
  assumes M \models as \ CNot \ T and a1: \ L \in \# \ T
  shows atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\ M
  by (metis assms atm-of-uminus image-eqI in-CNot-implies-uminus(1) true-annot-singleton)
\mathbf{lemma} \ \mathit{true-clss-clss-false-left-right}:
  assumes \{\{\#L\#\}\}\cup B\models p \{\#\}
  shows B \models ps \ CNot \ \{\#L\#\}
  unfolding true-clss-cls-def true-clss-cls-def
proof (intro allI impI)
  \mathbf{fix}\ I
 assume
   tot: total-over-m I (B \cup CNot \{\#L\#\}) and
   cons:\ consistent\mbox{-}interp\ I and
   I: I \models s B
 have total-over-m I (\{\{\#L\#\}\}\cup B) using tot by auto
  hence \neg I \models s insert \{\#L\#\} B
   using assms cons unfolding true-clss-cls-def by simp
  thus I \models s \ CNot \ \{\#L\#\}
   using tot I by (cases L) auto
qed
```

```
\mathbf{lemma} \ true\text{-}annots\text{-}true\text{-}cls\text{-}def\text{-}iff\text{-}negation\text{-}in\text{-}model}:
  M \models as \ CNot \ C \longleftrightarrow (\forall \ L \in \# \ C. \ -L \in lits \text{-} of \ M)
  unfolding CNot-def true-annots-true-cls true-clss-def by auto
lemma consistent-CNot-not-tautology:
  consistent-interp M \Longrightarrow M \models s \ CNot \ D \Longrightarrow \neg tautology \ D
  by (metis atms-of-ms-CNot-atms-of consistent-CNot-not satisfiable-carac' satisfiable-def
    tautology-def total-over-m-def)
lemma atms-of-ms-CNot-atms-of-ms: atms-of-ms (CNot CC) = atms-of-ms {CC}
  by simp
lemma total-over-m-CNot-toal-over-m[simp]:
  total-over-m \ I \ (CNot \ C) = total-over-set I \ (atms-of C)
  unfolding total-over-m-def total-over-set-def by auto
lemma uminus-lit-swap: -(a::'a \ literal) = i \longleftrightarrow a = -i
  by auto
lemma true-clss-cls-plus-CNot:
  assumes CC-L: A \models p CC + \{\#L\#\}
 and CNot\text{-}CC: A \models ps \ CNot \ CC
  shows A \models p \{\#L\#\}
  unfolding true-clss-cls-def true-clss-cls-def CNot-def total-over-m-def
proof (intro allI impI)
  assume tot: total-over-set I (atms-of-ms (A \cup \{\{\#L\#\}\}))
 and cons: consistent-interp I
 and I: I \models s A
 let ?I = I \cup \{Pos \ P | P. \ P \in atms-of \ CC \land P \notin atm-of `I'\}
 have cons': consistent-interp ?I
    using cons unfolding consistent-interp-def
    by (auto simp add: uminus-lit-swap atms-of-def rev-image-eqI)
  have I': ?I \models s A
    using I true-clss-union-increase by blast
  have tot-CNot: total-over-m ?I (A \cup CNot CC)
    using tot atms-of-s-def by (fastforce simp add: total-over-m-def total-over-set-def)
  hence tot-I-A-CC-L: total-over-m ?I (A \cup \{CC + \{\#L\#\}\})
    using tot unfolding total-over-m-def total-over-set-atm-of by auto
  hence ?I \models CC + \{\#L\#\} \text{ using } CC\text{-}L \text{ cons' } I' \text{ unfolding } true\text{-}clss\text{-}cls\text{-}def \text{ by } blast
  moreover
    have ?I \models s \ CNot \ CC \ using \ CNot-CC \ cons' \ I' \ tot-CNot \ unfolding \ true-clss-clss-def by auto
    hence \neg A \models p \ CC
      by (metis (no-types, lifting) I' atms-of-ms-CNot-atms-of-ms atms-of-ms-union cons'
        consistent-CNot-not tot-CNot total-over-m-def true-clss-cls-def)
    hence \neg ?I \models CC using \langle ?I \models s \ CNot \ CC \rangle \ cons' \ consistent - CNot - not \ by \ blast
  ultimately have ?I \models \{\#L\#\} by blast
  thus I \models \{\#L\#\}
    by (metis (no-types, lifting) atms-of-ms-union cons' consistent-CNot-not tot total-not-CNot
      total-over-m-def total-over-set-union true-clss-union-increase)
qed
lemma true-annots-CNot-lit-of-notin-skip:
 assumes \mathit{LM} \colon \mathit{L} \ \# \ \mathit{M} \models \mathit{as} \ \mathit{CNot} \ \mathit{A} \ \text{and} \ \mathit{LA} \colon \mathit{lit-of} \ \mathit{L} \notin \!\!\!\# \ \mathit{A} \ -\mathit{lit-of} \ \mathit{L} \notin \!\!\!\# \ \mathit{A}
```

```
shows M \models as \ CNot \ A
  using LM unfolding true-annots-def Ball-def
proof (intro allI impI)
  \mathbf{fix} l
  assume H: \forall x. \ x \in \mathit{CNot}\ A \longrightarrow L \# M \models ax and l: \ l \in \mathit{CNot}\ A
 hence L \# M \models a l by auto
  thus M \models a l using LA l by (cases L) (auto simp add: CNot-def)
 qed
\mathbf{lemma}\ true\text{-}clss\text{-}clss\text{-}union\text{-}false\text{-}true\text{-}clss\text{-}clss\text{-}cnot\text{:}
  A \cup \{B\} \models ps \{\{\#\}\} \longleftrightarrow A \models ps \ CNot \ B
  using total-not-CNot consistent-CNot-not unfolding total-over-m-def true-clss-clss-def
 by fastforce
lemma true-annot-remove-hd-if-notin-vars:
  assumes a \# M' \models a D
 and atm-of (lit-of a) \notin atms-of D
  shows M' \models a D
  using assms true-cls-remove-hd-if-notin-vars unfolding true-annot-def by auto
\mathbf{lemma}\ \mathit{true}\textit{-}\mathit{annot}\textit{-}\mathit{remove}\textit{-}\mathit{if}\textit{-}\mathit{notin}\textit{-}\mathit{vars}\text{:}
  assumes M @ M' \models a D
  and \forall x \in atms\text{-}of D. x \notin atm\text{-}of \text{ } its\text{-}of M
  shows M' \models a D
  using assms apply (induct M, simp)
  using true-annot-remove-hd-if-notin-vars by force+
{f lemma}\ true\mbox{-}annots\mbox{-}remove\mbox{-}if\mbox{-}notin\mbox{-}vars:
  assumes M @ M' \models as D
 and \forall x \in atms\text{-}of\text{-}ms \ D. \ x \notin atm\text{-}of \ `lits\text{-}of \ M
 shows M' \models as D unfolding true-annots-def
  using assms true-annot-remove-if-notin-vars[of M M']
  unfolding true-annots-def atms-of-ms-def by force
\mathbf{lemma}\ \mathit{all-variables-defined-not-imply-cnot}:
  assumes \forall s \in atms\text{-}of\text{-}ms \{B\}. \ s \in atm\text{-}of \text{ `lits-}of A
  and \neg A \models a B
 shows A \models as \ CNot \ B
  unfolding true-annot-def true-annots-def Ball-def CNot-def true-lit-def
proof (clarify, rule ccontr)
  assume LB: L \in \# B and \neg lits of A \models l - L
  hence atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\ A
    using assms(1) by (simp add: atm-of-lit-in-atms-of lits-of-def)
  hence L \in lits-of A \vee -L \in lits-of A
    using atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set by metis
  hence L \in lits-of A using \langle \neg lits-of A \models l - L \rangle by auto
  thus False
    using LB assms(2) unfolding true-annot-def true-lit-def true-cls-def Bex-mset-def
    by blast
qed
lemma CNot\text{-}union\text{-}mset[simp]:
  CNot (A \# \cup B) = CNot A \cup CNot B
  unfolding CNot-def by auto
```

1.5 Other

```
abbreviation no-dup L \equiv distinct \pmod{(\lambda l. atm-of (lit-of l))} L
lemma no-dup-rev[simp]:
 no\text{-}dup \ (rev \ M) \longleftrightarrow no\text{-}dup \ M
 by (auto simp: rev-map[symmetric])
lemma no-dup-length-eq-card-atm-of-lits-of:
 assumes no-dup M
 shows length M = card (atm-of 'lits-of M)
 using assms unfolding lits-of-def by (induct M) (auto simp add: image-image)
lemma distinct consistent-interp:
  no-dup M \Longrightarrow consistent-interp (lits-of M)
proof (induct M)
 case Nil
 show ?case by auto
next
 case (Cons\ L\ M)
 hence a1: consistent-interp (lits-of M) by auto
 have a2: atm-of (lit-of L) \notin (\lambda l. atm-of (lit-of l)) 'set M using Cons.prems by auto
 have undefined-lit M (lit-of L)
   using a2 image-iff unfolding defined-lit-def by fastforce
 thus ?case
   using a1 by simp
qed
\mathbf{lemma}\ distinct\text{-} get\text{-}all\text{-}marked\text{-}decomposition\text{-}no\text{-}dup:
 assumes (a, b) \in set (get-all-marked-decomposition M)
 and no-dup M
 shows no-dup (a @ b)
 using assms by force
lemma true-annots-lit-of-notin-skip:
 assumes L \# M \models as \ CNot \ A
 and -lit-of L \notin \# A
 and no-dup (L \# M)
 shows M \models as \ CNot \ A
proof -
 have \forall l \in \# A. -l \in lits\text{-}of (L \# M)
   using assms(1) in-CNot-implies-uminus(2) by blast
 moreover
   have atm\text{-}of\ (lit\text{-}of\ L) \notin atm\text{-}of\ `lits\text{-}of\ M
     using assms(3) unfolding lits-of-def by force
   hence - lit-of L \notin lits-of M unfolding lits-of-def
     by (metis (no-types) atm-of-uminus imageI)
 ultimately have \forall l \in \# A. -l \in lits\text{-}of M
   using assms(2) unfolding Ball-mset-def by (metis insertE lits-of-cons uminus-of-uminus-id)
 thus ?thesis by (auto simp add: true-annots-def)
qed
type-synonym 'v clauses = 'v clause multiset
abbreviation true-annots-mset (infix \models asm 50) where
I \models asm \ C \equiv I \models as \ (set\text{-}mset \ C)
```

```
abbreviation true-clss-clss-m:: 'a clauses \Rightarrow 'a clauses \Rightarrow bool (infix \models psm \ 50) where
I \models psm \ C \equiv set\text{-}mset \ I \models ps \ (set\text{-}mset \ C)
Analog of [?N \models ps ?B; ?A \subseteq ?B] \implies ?N \models ps ?A
lemma true\text{-}clss\text{-}clssm\text{-}subsetE: N \models psm\ B \Longrightarrow A \subseteq \#\ B \Longrightarrow N \models psm\ A
  \mathbf{using}\ \mathit{set-mset-mono}\ \mathit{true-clss-clss-subsetE}\ \mathbf{by}\ \mathit{blast}
abbreviation true-clss-cls-m: 'a clauses \Rightarrow 'a clause \Rightarrow bool (infix \models pm \ 50) where
I \models pm \ C \equiv set\text{-}mset \ I \models p \ C
abbreviation distinct-mset-mset :: 'a multiset multiset \Rightarrow bool where
distinct-mset-mset \Sigma \equiv distinct-mset-set (set-mset \Sigma)
abbreviation all-decomposition-implies-m where
all-decomposition-implies-m A B \equiv all-decomposition-implies (set-mset A) B
abbreviation atms-of-msu where
atms-of-msu U \equiv atms-of-ms (set-mset U)
abbreviation true-clss-m:: 'a interp \Rightarrow 'a clauses \Rightarrow bool (infix \modelssm 50) where
I \models sm \ C \equiv I \models s \ set\text{-}mset \ C
abbreviation true-clss-ext-m (infix \models sextm 49) where
I \models sextm \ C \equiv I \models sext \ set\text{-mset} \ C
end
theory CDCL-NOT
imports Partial-Annotated-Clausal-Logic List-More Wellfounded-More Partial-Clausal-Logic
begin
```

2 NOT's CDCL

 $\mathbf{declare}$ set-mset-minus-replicate-mset[simp]

2.1 Auxiliary Lemmas and Measure

```
lemma no-dup-cannot-not-lit-and-uminus:
    no-dup M \Longrightarrow - lit-of xa = lit-of x \Longrightarrow x \in set M \Longrightarrow xa \notin set M by (metis atm-of-uminus distinct-map inj-on-eq-iff uminus-not-id')

lemma true-clss-single-iff-incl:
    I \models s single 'B \longleftrightarrow B \subseteq I unfolding true-clss-def by auto

lemma atms-of-ms-single-atm-of[simp]:
    atms-of-ms \{\{\#lit\text{-}of\ L\#\}\ | L.\ P\ L\} = atm-of '\{lit\text{-}of\ L\ | L.\ P\ L\} unfolding atms-of-ms-def by auto

lemma atms-of-uminus-lit-atm-of-lit-of:
    atms-of \{\#-\ lit\text{-}of\ x.\ x\in \#\ A\#\} = atm-of '(lit\text{-}of\ `(set\text{-}mset\ A)) unfolding atms-of-ms-single-image-atm-of-lit-of:
    atms-of-ms ((\lambda x.\ \{\#lit\text{-}of\ x\#\}) 'A) = atm-of '(lit\text{-}of\ `A) unfolding atms-of-ms-def by auto
```

This measure can also be seen as the increasing lexicographic order: it is an order on bounded sequences, when each element is bounded. The proof involves a measure like the one defined here (the same?).

```
definition \mu_C :: nat \Rightarrow nat \Rightarrow nat \ list \Rightarrow nat \ \textbf{where}
\mu_C \ s \ b \ M \equiv (\sum i=0..< length \ M. \ M!i * b^ (s+i-length \ M))
lemma \mu_C-nil[simp]:
 \mu_C \ s \ b \ [] = \theta
 unfolding \mu_C-def by auto
lemma \mu_C-single[simp]:
  \mu_C \ s \ b \ [L] = L * b \ \widehat{} \ (s - Suc \ \theta)
  unfolding \mu_C-def by auto
\mathbf{lemma}\ \mathit{set-sum-atLeastLessThan-add}\colon
  (\sum i = k.. < k + (b::nat). \ f \ i) = (\sum i = 0.. < b. \ f \ (k+i))
  by (induction b) auto
\mathbf{lemma}\ set\text{-}sum\text{-}atLeastLessThan\text{-}Suc:
  (\sum i=1..<Suc\ j.\ f\ i) = (\sum i=0..<j.\ f\ (Suc\ i))
 using set-sum-atLeastLessThan-add[of - 1 j] by force
lemma \mu_C-cons:
  \mu_C \ s \ b \ (L \# M) = L * b \ (s - 1 - length M) + \mu_C \ s \ b \ M
proof -
  have \mu_C \ s \ b \ (L \# M) = (\sum i = 0.. < length \ (L \# M). \ (L \# M)! \ i * b^ \ (s + i - length \ (L \# M)))
   unfolding \mu_C-def by blast
  also have ... = (\sum i=0..<1. (L\#M)!i * b^{(s+i-length (L\#M))})
                + (\sum i=1... < length (L\#M). (L\#M)!i * b^ (s+i-length (L\#M)))
    \mathbf{by} \ (\mathit{rule} \ \mathit{setsum-add-nat-ivl}[\mathit{symmetric}]) \ \mathit{simp-all}
  finally have \mu_C s b (L \# M) = L * b ^ (s - 1 - length M)
                 + (\sum i=1..< length\ (L\#M).\ (L\#M)!i*b^ (s+i-length\ (L\#M)))
    by auto
 moreover {
   have (\sum i=1..< length\ (L\#M).\ (L\#M)!i*b^ (s+i-length\ (L\#M))) = (\sum i=0..< length\ (M).\ (L\#M)!(Suc\ i)*b^ (s+(Suc\ i)-length\ (L\#M)))
    {\bf unfolding} \ length-Cons \ set\text{-}sum\text{-}atLeastLessThan\text{-}Suc \ {\bf by} \ blast
   also have ... = (\sum i=0.. < length(M). M!i * b^(s+i-length(M)))
   finally have (\sum i=1...< length\ (L\#M).\ (L\#M)!i*b^(s+i-length\ (L\#M)))=\mu_C\ s\ b\ M
     unfolding \mu_C-def.
  ultimately show ?thesis by presburger
qed
lemma \mu_C-append:
  assumes s \ge length \ (M@M')
  shows \mu_C \ s \ b \ (M@M') = \mu_C \ (s - length \ M') \ b \ M + \mu_C \ s \ b \ M'
  have \mu_C \ s \ b \ (M@M') = (\sum i = 0.. < length \ (M@M'). \ (M@M')!i * b^ (s + i - length \ (M@M')))
   unfolding \mu_C-def by blast
  moreover then have ... = (\sum i=0.. < length M. (M@M')!i * b^ (s+i - length (M@M')))
                + (\sum i = length \ M.. < length \ (M@M'). \ (M@M')!i * b^ (s + i - length \ (M@M')))
   by (auto intro!: setsum-add-nat-ivl[symmetric])
  moreover
```

```
have \forall i \in \{0... < length M\}. (M@M')!i * b^ (s+i-length (M@M')) = M!i * b^ (s-length M')
     +i-length M
     using \langle s \geq length \ (M@M') \rangle by (auto simp add: nth-append ac-simps)
    then have \mu_C (s - length M') b M = (\sum i=0.. < length M. (M@M')!i * b^ (s + i - length)
(M@M')))
     unfolding \mu_C-def by auto
 ultimately have \mu_C s b (M@M') = \mu_C (s - length M') b M
               + (\sum i = length \ M.. < length \ (M@M'). \ (M@M')!i * b^ (s + i - length \ (M@M')))
    by auto
 moreover {
   have (\sum i = length \ M.. < length \ (M@M'). \ (M@M')!i * b^ (s + i - length \ (M@M'))) =
         (\sum i=0..< length\ M'.\ M'!i*b^(s+i-length\ M'))
    unfolding length-append set-sum-atLeastLessThan-add by auto
   then have (\sum i=length\ M...< length\ (M@M').\ (M@M')!i*b^ (s+i-length\ (M@M'))) = \mu_C\ s\ b
M'
     unfolding \mu_C-def.
 ultimately show ?thesis by presburger
qed
lemma \mu_C-cons-non-empty-inf:
 assumes M-ge-1: \forall i \in set \ M. \ i \geq 1 \ and \ M: \ M \neq []
 shows \mu_C \ s \ b \ M \ge b \ \widehat{} \ (s - length \ M)
 using assms by (cases M) (auto simp: mult-eq-if \mu_C-cons)
Duplicate of "/src/HOL/ex/NatSum.thy" (but generalized to (0::'a) \le k)
lemma sum-of-powers: 0 \le k \Longrightarrow (k-1) * (\sum i=0... < n. \ k^i) = k^n - (1::nat)
 apply (cases k = 0)
   apply (cases n; simp)
 by (induct n) (auto simp: Nat.nat-distrib)
In the degenerated cases, we only have the large inequality holds. In the other cases, the
following strict inequality holds:
lemma \mu_C-bounded-non-degenerated:
 fixes b :: nat
 assumes
   b > \theta and
   M \neq [] and
   M-le: \forall i < length M. M!i < b and
   s > length M
 shows \mu_C \ s \ b \ M < b \hat{s}
proof -
 consider (b1) b=1 | (b) b>1 using (b>0) by (cases b) auto
 then show ?thesis
   proof cases
     case b1
     then have \forall i < length M. M!i = 0 using M-le by auto
     then have \mu_C \ s \ b \ M = \theta unfolding \mu_C-def by auto
     then show ?thesis using \langle b > 0 \rangle by auto
   next
     case b
     have \forall i \in \{0... < length M\}. M!i * b^*(s+i-length M) \leq (b-1) * b^*(s+i-length M)
      using M-le \langle b > 1 \rangle by auto
     then have \mu_C \ s \ b \ M \le (\sum i=0... < length \ M. \ (b-1) * b^ (s+i-length \ M))
       using \langle M \neq | \rangle \langle b > 0 \rangle unfolding \mu_C-def by (auto intro: setsum-mono)
```

```
also
      have \forall i \in \{0.. < length M\}. (b-1) * b^{(s+i-length M)} = (b-1) * b^{(i+k-length M)}
        by (metis Nat.add-diff-assoc2 add.commute assms(4) mult.assoc power-add)
      then have (\sum i=0...< length\ M.\ (b-1)*b^ (s+i-length\ M))
        = (\sum i=0... < length M. (b-1)*b^i*b^i*b^i(s-length M))
        by (auto simp add: ac-simps)
     also have ... = (\sum i=0.. < length \ M. \ b^i) * b^k = length \ M) * (b-1)
       \mathbf{by}\ (simp\ add:\ setsum-left-distrib\ setsum-right-distrib\ ac\text{-}simps)
     finally have \mu_C \ s \ b \ M \le (\sum i=0... < length \ M. \ b \ i) * (b-1) * b \ (s - length \ M)
      by (simp add: ac-simps)
     also
      have (\sum i=0..< length\ M.\ b^i)*(b-1) = b^i(length\ M) - 1
        using sum-of-powers[of b length M] \langle b > 1 \rangle
        by (auto simp add: ac-simps)
     finally have \mu_C \ s \ b \ M \le (b \ \widehat{\ } (length \ M) - 1) * b \ \widehat{\ } (s - length \ M)
      by auto
     also have ... < b \cap (length M) * b \cap (s - length M)
      using \langle b > 1 \rangle by auto
     also have \dots = b \hat{s}
      by (metis assms(4) le-add-diff-inverse power-add)
     finally show ?thesis unfolding \mu_C-def by (auto simp add: ac-simps)
   \mathbf{qed}
qed
In the degenerate case b = (0::'a), the list M is empty (since the list cannot contain any
lemma \mu_C-bounded:
 fixes b :: nat
 assumes
   M-le: \forall i < length M. M!i < b and
   s \geq length M
   b > 0
 shows \mu_C \ s \ b \ M < b \ \hat{s}
proof -
  consider (M\theta) M = [] \mid (M) b > \theta and M \neq []
   using M-le by (cases b, cases M) auto
 then show ?thesis
   proof cases
     case M0
     then show ?thesis using M-le \langle b > 0 \rangle by auto
   next
     case M
     show ?thesis using \mu_C-bounded-non-degenerated [OF M assms(1,2)] by arith
   qed
qed
When b = 0, we cannot show that the measure is empty, since 0^0 = 1.
lemma \mu_C-base-\theta:
 assumes length M \leq s
 shows \mu_C \ s \ \theta \ M \leq M!\theta
proof -
   assume s = length M
   moreover {
```

```
fix n have (\sum i=0..< n.\ M \ ! \ i*(0::nat) \ \widehat{\ } i) \leq M \ ! \ 0 apply (induction\ n\ rule:\ nat-induct) by simp\ (rename-tac\ n,\ case-tac\ n,\ auto) } ultimately have ?thesis unfolding \mu_C-def by auto } moreover { assume length\ M < s then have \mu_C\ s\ 0\ M = 0 unfolding \mu_C-def by auto} ultimately show ?thesis using assms unfolding \mu_C-def by linarith qed
```

2.2 Initial definitions

2.2.1 The state

We define here an abstraction over operation on the state we are manipulating.

```
locale dpll-state =
  fixes
    trail :: 'st \Rightarrow ('v, unit, unit) ann-literals and
    clauses :: 'st \Rightarrow 'v \ clauses \ \mathbf{and}
    prepend-trail :: ('v, unit, unit) \ ann-literal \Rightarrow 'st \Rightarrow 'st \ and
    tl-trail :: 'st \Rightarrow 'st and
    \mathit{add\text{-}\mathit{cls}_{NOT}} :: 'v \; \mathit{clause} \Rightarrow 'st \Rightarrow 'st \; \mathbf{and} \;
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st
  assumes
    trail-prepend-trail[simp]:
      \bigwedgest L. undefined-lit (trail st) (lit-of L) \Longrightarrow trail (prepend-trail L st) = L # trail st
    tl-trail[simp]: trail(tl-trail(S)) = tl(trail(S)) and
    trail-add-cls_{NOT}[simp]: \land st \ C. \ no-dup \ (trail \ st) \Longrightarrow trail \ (add-cls_{NOT} \ C \ st) = trail \ st \ and
    trail-remove-cls_{NOT}[simp]: \land st \ C. \ trail \ (remove-cls_{NOT} \ C \ st) = trail \ st \ and
    clauses-prepend-trail[simp]:
      \bigwedgest L. undefined-lit (trail st) (lit-of L) \Longrightarrow clauses (prepend-trail L st) = clauses st
      and
    clauses-tl-trail[simp]: \bigwedge st. clauses (tl-trail st) = clauses st and
    clauses-add-cls_{NOT}[simp]:
      \bigwedge st\ C.\ no\text{-}dup\ (trail\ st) \Longrightarrow clauses\ (add\text{-}cls_{NOT}\ C\ st) = \{\#C\#\} + clauses\ st\ and
    clauses-remove-cls<sub>NOT</sub>[simp]: \bigwedgest C. clauses (remove-cls<sub>NOT</sub> C st) = remove-mset C (clauses st)
begin
function reduce-trail-to<sub>NOT</sub> :: 'a list \Rightarrow 'st \Rightarrow 'st where
reduce-trail-to_{NOT} F S =
  (if length (trail S) = length F \vee trail S = [] then S else reduce-trail-to<sub>NOT</sub> F (tl-trail S))
\mathbf{by} \; \mathit{fast} +
termination by (relation measure (\lambda(-, S)). length (trail S))) auto
declare reduce-trail-to_{NOT}.simps[simp\ del]
lemma
  shows
  reduce-trail-to<sub>NOT</sub>-nil[simp]: trail S = [] \implies reduce-trail-to<sub>NOT</sub> F S = S and
  reduce-trail-to_{NOT}-eq-length[simp]: length (trail S) = length F \Longrightarrow reduce-trail-to_{NOT} F S = S
```

```
by (auto simp: reduce-trail-to<sub>NOT</sub>.simps)
lemma reduce-trail-to_{NOT}-length-ne[simp]:
  length (trail S) \neq length F \Longrightarrow trail S \neq [] \Longrightarrow
    reduce-trail-to<sub>NOT</sub> F S = reduce-trail-to<sub>NOT</sub> F (tl-trail S)
  by (auto simp: reduce-trail-to<sub>NOT</sub>.simps)
lemma trail-reduce-trail-to_{NOT}-length-le:
  assumes length F > length (trail S)
 shows trail (reduce-trail-to<sub>NOT</sub> FS) = []
  using assms by (induction F S rule: reduce-trail-to<sub>NOT</sub>.induct)
  (simp\ add:\ less-imp\-diff-less\ reduce\-trail-to_{NOT}.simps)
lemma trail-reduce-trail-to_{NOT}-nil[simp]:
  trail (reduce-trail-to_{NOT} [] S) = []
  by (induction [] S rule: reduce-trail-to<sub>NOT</sub>.induct)
  (simp\ add:\ less-imp-diff-less\ reduce-trail-to_{NOT}.simps)
lemma clauses-reduce-trail-to<sub>NOT</sub>-nil:
  clauses (reduce-trail-to_{NOT} [] S) = clauses S
  by (induction [] S rule: reduce-trail-to<sub>NOT</sub>.induct)
  (simp\ add:\ less-imp-diff-less\ reduce-trail-to_{NOT}.simps)
\mathbf{lemma} \ \textit{trail-reduce-trail-to}_{NOT}\text{-}\textit{drop}\text{:}
  trail (reduce-trail-to_{NOT} F S) =
   (if \ length \ (trail \ S) \ge length \ F
   then drop (length (trail S) – length F) (trail S)
   else [])
  apply (induction F S rule: reduce-trail-to<sub>NOT</sub>.induct)
  apply (rename-tac F S, case-tac trail S)
  apply auto
  apply (rename-tac list, case-tac Suc (length list) > length F)
  prefer 2 apply simp
  apply (subgoal-tac Suc (length list) – length F = Suc (length list – length F))
  apply simp
  apply simp
  done
lemma reduce-trail-to<sub>NOT</sub>-skip-beginning:
  assumes trail S = F' \otimes F
  shows trail (reduce-trail-to_{NOT} F S) = F
  using assms by (auto simp: trail-reduce-trail-to<sub>NOT</sub>-drop)
lemma reduce-trail-to_{NOT}-clauses[simp]:
  clauses (reduce-trail-to_{NOT} F S) = clauses S
  by (induction F S rule: reduce-trail-to<sub>NOT</sub>.induct)
  (simp\ add:\ less-imp-diff-less\ reduce-trail-to_{NOT}.simps)
abbreviation trail-weight where
trail-weight\ S \equiv map\ ((\lambda l.\ 1 + length\ l)\ o\ snd)\ (get-all-marked-decomposition\ (trail\ S))
definition state\text{-}eq_{NOT}:: 'st \Rightarrow 'st \Rightarrow bool (infix \sim 50) where
S \sim T \longleftrightarrow trail \ S = trail \ T \wedge clauses \ S = clauses \ T
```

```
lemma state-eq_{NOT}-ref[simp]:
  S \sim S
  unfolding state-eq_{NOT}-def by auto
lemma state-eq_{NOT}-sym:
  S \sim T \longleftrightarrow T \sim S
  unfolding state-eq_{NOT}-def by auto
lemma state-eq_{NOT}-trans:
  S \sim T \Longrightarrow T \sim U \Longrightarrow S \sim U
  unfolding state-eq_{NOT}-def by auto
lemma
  shows
    state\text{-}eq_{NOT}\text{-}trail: S \sim T \Longrightarrow trail S = trail T \text{ and }
    state\text{-}eq_{NOT}\text{-}clauses: S \sim T \Longrightarrow clauses S = clauses T
  unfolding state-eq_{NOT}-def by auto
\mathbf{lemmas}\ state\text{-}simp_{NOT}[simp] =\ state\text{-}eq_{NOT}\text{-}trail\ state\text{-}eq_{NOT}\text{-}clauses
\mathbf{lemma} \ \mathit{trail-eq-reduce-trail-to}_{NOT}\text{-}\mathit{eq} :
  trail\ S = trail\ T \Longrightarrow trail\ (reduce-trail-to_{NOT}\ F\ S) = trail\ (reduce-trail-to_{NOT}\ F\ T)
  apply (induction F S arbitrary: T rule: reduce-trail-to<sub>NOT</sub>.induct)
  \mathbf{by} \ (\textit{metis tl-trail reduce-trail-to}_{NOT}\text{-}\textit{eq-length reduce-trail-to}_{NOT}\text{-}\textit{length-ne reduce-trail-to}_{NOT}\text{-}\textit{nil})
lemma reduce-trail-to_{NOT}-state-eq_{NOT}-compatible:
  assumes ST: S \sim T
  shows reduce-trail-to<sub>NOT</sub> F S \sim reduce-trail-to<sub>NOT</sub> F T
  have clauses (reduce-trail-to<sub>NOT</sub> F S) = clauses (reduce-trail-to<sub>NOT</sub> F T)
    using ST by auto
  moreover have trail (reduce-trail-to<sub>NOT</sub> F S) = trail (reduce-trail-to<sub>NOT</sub> F T)
    using trail-eq-reduce-trail-to<sub>NOT</sub>-eq[of S T F] ST by auto
  ultimately show ?thesis by (auto simp del: state-simp<sub>NOT</sub> simp: state-eq<sub>NOT</sub>-def)
qed
lemma trail-reduce-trail-to_{NOT}-add-cls_{NOT}[simp]:
  no-dup (trail S) \Longrightarrow
    trail\ (reduce-trail-to_{NOT}\ F\ (add-cls_{NOT}\ C\ S)) = trail\ (reduce-trail-to_{NOT}\ F\ S)
  by (rule trail-eq-reduce-trail-to<sub>NOT</sub>-eq) simp
\mathbf{lemma}\ reduce\text{-}trail\text{-}to_{NOT}\text{-}trail\text{-}tl\text{-}trail\text{-}decomp[simp]}:
  trail\ S = F' @ Marked\ K\ () \# F \Longrightarrow
     trail (reduce-trail-to_{NOT} F (tl-trail S)) = F
  \mathbf{apply} \ (\mathit{rule}\ \mathit{reduce-trail-to}_{NOT}\mathit{-skip-beginning}[\mathit{of}\ \mathit{-}\ \mathit{tl}\ (\mathit{F'}\ @\ \mathit{Marked}\ \mathit{K}\ ()\ \#\ [])])
  by (cases F') (auto simp add:tl-append reduce-trail-to<sub>NOT</sub>-skip-beginning)
end
2.2.2
           Definition of the operation
locale propagate-ops =
  dpll-state trail clauses prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT} for
    trail :: 'st \Rightarrow ('v, unit, unit) ann-literals and
    clauses :: 'st \Rightarrow 'v \ clauses \ \mathbf{and}
    prepend-trail :: ('v, unit, unit) \ ann-literal \Rightarrow 'st \Rightarrow 'st \ and
```

```
tl-trail :: 'st \Rightarrow 'st and
    add-cls_{NOT} remove-cls_{NOT}:: 'v clause <math>\Rightarrow 'st \Rightarrow 'st and
    propagate\text{-}cond :: ('v, unit, unit) \ ann\text{-}literal \Rightarrow 'st \Rightarrow bool
begin
inductive propagate_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool where
propagate_{NOT}[intro]: C + \{\#L\#\} \in \# clauses S \Longrightarrow trail S \models as CNot C
    \implies undefined-lit (trail S) L
    \implies propagate-cond (Propagated L ()) S
    \implies T \sim prepend-trail (Propagated L ()) S
    \implies propagate_{NOT} S T
inductive-cases propagate_{NOT}E[elim]: propagate_{NOT} S T
end
locale decide-ops =
  dpll-state trail clauses prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT} for
    trail :: 'st \Rightarrow ('v, unit, unit) ann-literals and
    clauses :: 'st \Rightarrow 'v \ clauses \ and
    prepend-trail :: ('v, unit, unit) ann-literal \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-cls_{NOT} remove-cls_{NOT}:: 'v clause <math>\Rightarrow 'st \Rightarrow 'st
inductive decide_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool where
decide_{NOT}[intro]: undefined-lit (trail S) L \Longrightarrow atm\text{-}of \ L \in atms\text{-}of\text{-}msu \ (clauses \ S)
  \implies T \sim prepend-trail (Marked L ()) S
  \implies decide_{NOT} \ S \ T
inductive-cases decide_{NOT}E[elim]: decide_{NOT} S S'
locale backjumping-ops =
  dpll-state trail clauses prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT}
    trail :: 'st \Rightarrow ('v, unit, unit) ann-literals and
    clauses :: 'st \Rightarrow 'v \ clauses \ {\bf and}
    prepend-trail::('v, unit, unit) \ ann-literal \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} remove-cls_{NOT}:: 'v clause \Rightarrow 'st \Rightarrow 'st +
  fixes
    backjump\text{-}conds :: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool
begin
inductive backjump where
trail\ S = F' @ Marked\ K\ () \#\ F
   \implies T \sim prepend-trail \ (Propagated \ L \ ()) \ (reduce-trail-to_{NOT} \ F \ S)
   \implies C \in \# clauses S
   \implies trail \ S \models as \ CNot \ C
   \implies undefined\text{-}lit\ F\ L
   \implies atm\text{-}of\ L \in atms\text{-}of\text{-}msu\ (clauses\ S)\ \cup\ atm\text{-}of\ `(lits\text{-}of\ (trail\ S))
   \implies clauses \ S \models pm \ C' + \{\#L\#\}
   \implies F \models as \ CNot \ C'
   \implies backjump\text{-}conds\ C\ C'\ L\ S\ T
   \implies backjump \ S \ T
inductive-cases backjumpE: backjump S T
end
```

2.3 DPLL with backjumping

```
locale dpll-with-backjumping-ops =
  dpll-state trail clauses prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT} +
  propagate-ops\ trail\ clauses\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}\ propagate-conds\ +
  decide-ops\ trail\ clauses\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}\ +
  backjumping-ops\ trail\ clauses\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}\ backjump-conds
    trail :: 'st \Rightarrow ('v, unit, unit) ann-literals and
    clauses :: 'st \Rightarrow 'v \ clauses \ and
    prepend-trail :: ('v, unit, unit) ann-literal \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} remove-cls_{NOT}:: 'v clause \Rightarrow 'st \Rightarrow 'st and
    propagate\text{-}conds:: ('v, unit, unit) \ ann\text{-}literal \Rightarrow 'st \Rightarrow bool \ and
    inv :: 'st \Rightarrow bool and
    backjump\text{-}conds:: 'v\ clause \Rightarrow 'v\ clause \Rightarrow 'v\ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool +
  assumes
      bj-can-jump:
      \bigwedge S \ C \ F' \ K \ F \ L.
        inv S \Longrightarrow
        no-dup (trail S) \Longrightarrow
        trail\ S = F' @ Marked\ K\ () \# F \Longrightarrow
         C \in \# clauses S \Longrightarrow
         trail S \models as CNot C \Longrightarrow
         undefined-lit F L \Longrightarrow
        atm-of L \in atm-of-msu (clauses S) \cup atm-of '(lits-of (F' \otimes Marked K \otimes F)) \Longrightarrow
         clauses S \models pm \ C' + \{\#L\#\} \Longrightarrow
        F \models as \ CNot \ C' \Longrightarrow
         \neg no-step backjump S
begin
```

We cannot add a like condition atms-of $C' \subseteq atms-of-ms$ N because to ensure that we can backjump even if the last decision variable has disappeared.

The part of the condition $atm\text{-}of\ L\in atm\text{-}of$ ' $lits\text{-}of\ (F'\ @\ Marked\ K\ ()\ \#\ F)$ is important, otherwise you are not sure that you can backtrack.

2.3.1 Definition

We define dpll with backjumping:

```
inductive dpll-bj :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where bj-decide_{NOT}: decide_{NOT} S S' \Longrightarrow dpll-bj S S' \mid bj-propagate_{NOT}: propagate_{NOT} S S' \Longrightarrow dpll-bj S S' \mid bj-backjump: backjump S S' \Longrightarrow dpll-bj S S'

lemmas dpll-bj-induct = dpll-bj.induct[split-format(complete)]

thm dpll-bj-induct[OF dpll-with-backjumping-ops-axioms]

lemma dpll-bj-all-induct[consumes 2, case-names decide_{NOT} propagate_{NOT} backjump]: fixes S T :: 'st

assumes

dpll-bj S T and

inv S

\bigwedge L T. undefined-lit (trail S) L \Longrightarrow atm-of L \in atms-of-msu (clauses S)

\Longrightarrow T \sim prepend-trail (Marked L ()) S

\Longrightarrow P S T and

\bigwedge C L T. C + {\#L\#} \in\# clauses S \Longrightarrow trail S \models as CNot C \Longrightarrow undefined-lit (trail S) L
```

```
\implies T \sim prepend-trail (Propagated L ()) S
     \implies P S T  and
   \bigwedge C \ F' \ K \ F \ L \ C' \ T. \ C \in \# \ clauses \ S \Longrightarrow F' @ \ Marked \ K \ () \ \# \ F \models as \ CNot \ C
     \implies trail \ S = F' @ Marked \ K \ () \# F
     \implies undefined\text{-}lit\ F\ L
     \implies atm-of L \in atms-of-msu (clauses S) \cup atm-of '(lits-of (F' @ Marked K () # F))
     \implies clauses S \models pm C' + \{\#L\#\}
     \implies F \models as \ CNot \ C'
     \implies T \sim prepend-trail (Propagated L ()) (reduce-trail-to_{NOT} F S)
     \implies P S T
 shows P S T
 apply (induct \ T \ rule: dpll-bj-induct[OF \ local.dpll-with-backjumping-ops-axioms])
    apply (rule\ assms(1))
   using assms(3) apply blast
  apply (elim \ propagate_{NOT}E) using assms(4) apply blast
 apply (elim backjumpE) using assms(5) \langle inv S \rangle by simp
2.3.2
         Basic properties
First, some better suited induction principle lemma dpll-bj-clauses:
 assumes dpll-bj S T and inv S
 shows clauses S = clauses T
 using assms by (induction rule: dpll-bj-all-induct) auto
No duplicates in the trail lemma dpll-bj-no-dup:
 assumes dpll-bj S T and inv S
 and no-dup (trail S)
 shows no-dup (trail T)
 using assms by (induction rule: dpll-bj-all-induct)
  (auto simp add: defined-lit-map reduce-trail-to<sub>NOT</sub>-skip-beginning)
Valuations lemma dpll-bj-sat-iff:
 assumes dpll-bj S T and inv S
 shows I \models sm \ clauses \ S \longleftrightarrow I \models sm \ clauses \ T
 using assms by (induction rule: dpll-bj-all-induct) auto
Clauses lemma dpll-bj-atms-of-ms-clauses-inv:
 assumes
   dpll-bj S T and
   inv S
 shows atms-of-msu (clauses\ S) = atms-of-msu (clauses\ T)
 using assms by (induction rule: dpll-bj-all-induct) auto
lemma dpll-bj-atms-in-trail:
 assumes
   dpll-bj S T and
   inv S and
   atm\text{-}of \cdot (lits\text{-}of \ (trail \ S)) \subseteq atms\text{-}of\text{-}msu \ (clauses \ S)
 shows atm-of ' (lits-of (trail\ T)) \subseteq atms-of-msu (clauses\ S)
 using assms by (induction rule: dpll-bj-all-induct)
  (auto simp: in-plus-implies-atm-of-on-atms-of-ms reduce-trail-to_{NOT}-skip-beginning)
lemma dpll-bj-atms-in-trail-in-set:
 assumes dpll-bj S T and
   inv S and
```

```
atms-of-msu (clauses\ S) \subseteq A and
  atm\text{-}of \ (lits\text{-}of \ (trail \ S)) \subseteq A
  shows atm-of ' (lits-of (trail\ T)) \subseteq A
  using assms by (induction rule: dpll-bj-all-induct)
  (auto simp: in-plus-implies-atm-of-on-atms-of-ms)
lemma dpll-bj-all-decomposition-implies-inv:
 assumes
   dpll-bj S T and
   inv: inv S and
   decomp: all-decomposition-implies-m (clauses S) (get-all-marked-decomposition (trail S))
 shows all-decomposition-implies-m (clauses T) (get-all-marked-decomposition (trail T))
 using assms(1,2)
proof (induction rule:dpll-bj-all-induct)
 case decide_{NOT}
 then show ?case using decomp by auto
  case (propagate_{NOT} \ C \ L \ T) note propa = this(1) and undef = this(3) and T = this(4)
 let ?M' = trail (prepend-trail (Propagated L ()) S)
 let ?N = clauses S
 obtain a y l where ay: get-all-marked-decomposition ?M' = (a, y) \# l
   by (cases get-all-marked-decomposition ?M') fastforce+
  then have M': ?M' = y @ a using get-all-marked-decomposition-decomp of ?M' by auto
 have M: get-all-marked-decomposition (trail S) = (a, tl y) \# l
   using ay undef by (cases get-all-marked-decomposition (trail S)) auto
  have y_0: y = (Propagated L()) \# (tl y)
   using ay undef by (auto simp add: M)
 from arg-cong[OF this, of set] have y[simp]: set y = insert (Propagated L ()) (set (tl y))
   by simp
 have tr-S: trail <math>S = tl \ y \ @ \ a
   using arg-cong[OF M', of tl] y_0 M get-all-marked-decomposition-decomp by force
 have a-Un-N-M: unmark a \cup set-mset ?N \models ps unmark (tl \ y)
   using decomp ay unfolding all-decomposition-implies-def by (simp add: M)+
 moreover have unmark a \cup set\text{-mset ?}N \models p \{\#L\#\} \text{ (is ?}I \models p \text{-)}
   proof (rule true-clss-cls-plus-CNot)
     show ?I \models p C + \{\#L\#\}
       using propagate NOT. prems by (auto dest!: true-clss-clss-in-imp-true-clss-cls)
   \mathbf{next}
     have (\lambda m. \{\#lit\text{-of } m\#\}) 'set ?M' \models ps \ CNot \ C
       using \langle trail \ S \models as \ CNot \ C \rangle undef by (auto simp add: true-annots-true-clss-clss)
     have a1: (\lambda m. \{\#lit\text{-of } m\#\}) 'set a \cup (\lambda m. \{\#lit\text{-of } m\#\})'set (tl\ y) \models ps\ CNot\ C
       using propagate_{NOT}.hyps(2) tr-S true-annots-true-clss-clss
       by (force simp add: image-Un sup-commute)
     have a2: set-mset (clauses S)\cup unmark a
       \models ps \ unmark \ (tl \ y)
       using calculation by (auto simp add: sup-commute)
     show (\lambda m. \{\#lit\text{-of } m\#\}) 'set a \cup set\text{-mset} (clauses S) \models ps CNot C
       proof -
         have set-mset (clauses S) \cup (\lambda m. {#lit-of m#}) 'set a \models ps
           (\lambda m. \{\#lit\text{-}of \ m\#\}) 'set a \cup (\lambda m. \{\#lit\text{-}of \ m\#\})'set (tl \ y)
           using a2 true-clss-clss-def by blast
         then show (\lambda m. \{\#lit\text{-}of m\#\}) 'set a \cup set\text{-}mset (clauses S) \models ps \ CNot \ C
          using a1 unfolding sup-commute by (meson true-clss-clss-left-right
            true-clss-clss-union-and true-clss-clss-union-l-r)
```

```
qed
   qed
 ultimately have unmark a \cup set\text{-mset } ?N \models ps \ unmark \ ?M'
   unfolding M' by (auto simp add: all-in-true-clss-clss image-Un)
 then show ?case
   using decomp T M undef unfolding ay all-decomposition-implies-def by (auto simp add: ay)
next
 case (backjump\ C\ F'\ K\ F\ L\ D\ T) note confl=this(2) and tr=this(3) and undef=this(4)
   and L = this(5) and N-C = this(6) and vars-D = this(5) and T = this(8)
 have decomp: all-decomposition-implies-m (clauses S) (get-all-marked-decomposition F)
   using decomp unfolding tr all-decomposition-implies-def
   by (metis (no-types, lifting) get-all-marked-decomposition.simps(1)
     qet-all-marked-decomposition-never-empty hd-Cons-tl insert-iff list.sel(3) list.set(2)
     tl-qet-all-marked-decomposition-skip-some)
 moreover have unmark (fst (hd (get-all-marked-decomposition F)))
    \cup set-mset (clauses S)
   \models ps \ unmark \ (snd \ (hd \ (get-all-marked-decomposition \ F)))
   by (metis all-decomposition-implies-cons-single decomp get-all-marked-decomposition-never-empty
     hd-Cons-tl)
 moreover
   have vars-of-D: atms-of D \subseteq atm-of ' lits-of F
     using \langle F \models as \ CNot \ D \rangle unfolding atms-of-def
     by (meson image-subset mem-set-mset-iff true-annots-CNot-all-atms-defined)
 obtain a b li where F: get-all-marked-decomposition F = (a, b) \# li
   by (cases get-all-marked-decomposition F) auto
 have F = b @ a
   using get-all-marked-decomposition-decomp[of F a b] F by auto
 have a-N-b:unmark a \cup set-mset (clauses S) \models ps unmark b
   using decomp unfolding all-decomposition-implies-def by (auto simp add: F)
 have F-D:unmark <math>F \models ps \ CNot \ D
   using \langle F \models as \ CNot \ D \rangle by (simp add: true-annots-true-clss-clss)
 then have unmark \ a \cup unmark \ b \models ps \ CNot \ D
   unfolding \langle F = b \otimes a \rangle by (simp add: image-Un sup.commute)
 have a-N-CNot-D: unmark a \cup set-mset (clauses S)
   \models ps \ CNot \ D \cup unmark \ b
   apply (rule true-clss-clss-left-right)
   using a-N-b F-D unfolding \langle F = b @ a \rangle by (auto simp add: image-Un ac-simps)
 have a-N-D-L: unmark a \cup set-mset (clauses S) \models p D + \{\#L\#\}
   by (simp \ add: N-C)
 have unmark\ a \cup set\text{-}mset\ (clauses\ S) \models p\ \{\#L\#\}
   using a-N-D-L a-N-CNot-D by (blast intro: true-clss-cls-plus-CNot)
 then show ?case
   using decomp T tr undef unfolding all-decomposition-implies-def by (auto simp add: F)
qed
2.3.3
        Termination
Using a proper measure lemma length-get-all-marked-decomposition-append-Marked:
```

length (get-all-marked-decomposition (F' @ Marked K () # F)) =length (qet-all-marked-decomposition F')

```
+ length (get-all-marked-decomposition (Marked K () \# F))
 by (induction F' rule: ann-literal-list-induct) auto
\mathbf{lemma}\ take\text{-}length\text{-}get\text{-}all\text{-}marked\text{-}decomposition\text{-}marked\text{-}sandwich\text{:}}
  take (length (get-all-marked-decomposition F))
     (map\ (f\ o\ snd)\ (rev\ (get-all-marked-decomposition\ (F'\ @\ Marked\ K\ ()\ \#\ F))))
    map\ (f\ o\ snd)\ (rev\ (get-all-marked-decomposition\ F))
proof (induction F' rule: ann-literal-list-induct)
 case nil
 then show ?case by auto
next
 case (marked K)
 then show ?case by (simp add: length-qet-all-marked-decomposition-append-Marked)
  case (proped L \ m \ F') note IH = this(1)
 obtain a b l where F': get-all-marked-decomposition (F' @ Marked K () \# F) = (a, b) \# l
   by (cases get-all-marked-decomposition (F' @ Marked K () \# F)) auto
 have length (get-all-marked-decomposition F) – length l = 0
   using length-get-all-marked-decomposition-append-Marked [of F' K F]
   unfolding F' by (cases get-all-marked-decomposition F') auto
  then show ?case
   using IH by (simp \ add: F')
ged
\mathbf{lemma}\ length\text{-} get\text{-}all\text{-}marked\text{-}decomposition\text{-}length:}
  length (qet-all-marked-decomposition M) \leq 1 + length M
 by (induction M rule: ann-literal-list-induct) auto
lemma length-in-get-all-marked-decomposition-bounded:
 assumes i:i \in set (trail-weight S)
 shows i \leq Suc \ (length \ (trail \ S))
proof -
  obtain a b where
   (a, b) \in set (qet-all-marked-decomposition (trail S)) and
   ib: i = Suc (length b)
   using i by auto
  then obtain c where trail S = c @ b @ a
   using get-all-marked-decomposition-exists-prepend' by metis
 from arg-cong[OF this, of length] show ?thesis using i ib by auto
qed
```

Well-foundedness The bounds are the following:

- 1 + card (atms-of-ms A): card (atms-of-ms A) is an upper bound on the length of the list. As get-all-marked-decomposition appends an possibly empty couple at the end, adding one is needed.
- 2 + card (atms-of-ms A): card (atms-of-ms A) is an upper bound on the number of elements, where adding one is necessary for the same reason as for the bound on the list, and one is needed to have a strict bound.

abbreviation unassigned-lit :: 'b literal multiset set \Rightarrow 'a list \Rightarrow nat where

```
unassigned-lit N M \equiv card (atms-of-ms N) - length M
lemma dpll-bj-trail-mes-increasing-prop:
 fixes M :: ('v, unit, unit) ann-literals and N :: 'v \ clauses
 assumes
   dpll-bj S T and
   inv S and
   NA: atms-of-msu \ (clauses \ S) \subseteq atms-of-ms \ A \ \mathbf{and}
   MA: atm\text{-}of `lits\text{-}of (trail S) \subseteq atms\text{-}of\text{-}ms A  and
   n-d: no-dup (trail S) and
   finite: finite A
 shows \mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T)
   > \mu_C \ (1+card \ (atms-of-ms \ A)) \ (2+card \ (atms-of-ms \ A)) \ (trail-weight \ S)
 using assms(1,2)
proof (induction rule: dpll-bj-all-induct)
 case (propagate_{NOT} \ C \ L) note CLN = this(1) and MC = this(2) and undef - L = this(3) and T = this(3)
 have incl: atm-of 'lits-of (Propagated L () # trail S) \subseteq atms-of-ms A
   using propagate_{NOT}.hyps propagate_{noT}.propagate_{NOT} dpll-bj-atms-in-trail-in-set bj-propagate<sub>NOT</sub>
   NA MA CLN by (auto simp: in-plus-implies-atm-of-on-atms-of-ms)
 have no-dup: no-dup (Propagated L () \# trail S)
   using defined-lit-map n-d undef-L by auto
 obtain a b l where M: get-all-marked-decomposition (trail S) = (a, b) \# l
   by (cases get-all-marked-decomposition (trail S)) auto
 have b-le-M: length b \leq length (trail S)
   using get-all-marked-decomposition-decomp[of trail S] by (simp add: M)
 have finite (atms-of-ms A) using finite by simp
 then have length (Propagated L () # trail S) \leq card (atms-of-ms A)
   using incl finite unfolding no-dup-length-eq-card-atm-of-lits-of [OF no-dup]
   by (simp add: card-mono)
 then have latm: unassigned-lit A b = Suc (unassigned-lit A (Propagated L d \# b))
   using b-le-M by auto
 then show ?case using T undef-L by (auto simp: latm M \mu_C-cons)
 case (decide_{NOT} L) note undef L = this(1) and MC = this(2) and T = this(3)
 have incl: atm-of 'lits-of (Marked L () \# (trail S)) \subseteq atms-of-ms A
   using dpll-bj-atms-in-trail-in-set bj-decide_{NOT} decide_{NOT}.decide_{NOT} [OF\ decide_{NOT}.hyps]\ NA\ MA
MC
   by auto
 have no-dup: no-dup (Marked L () \# (trail S))
   using defined-lit-map n-d undef-L by auto
 obtain a b l where M: get-all-marked-decomposition (trail S) = (a, b) \# l
   by (cases get-all-marked-decomposition (trail S)) auto
 then have length (Marked L () \# (trail S)) \leq card (atms-of-ms A)
   using incl finite unfolding no-dup-length-eq-card-atm-of-lits-of [OF no-dup]
   by (simp add: card-mono)
 then have latm: unassigned-lit A (trail S) = Suc (unassigned-lit A (Marked L lv # (trail S)))
   by force
 show ?case using T undef-L by (simp add: latm \mu_C-cons)
next
 case (backjump C F' K F L C' T) note undef-L = this(4) and MC = this(1) and tr-S = this(3)
and
```

```
L = this(5) and T = this(8)
 have incl: atm-of 'lits-of (Propagated L () \# F) \subseteq atms-of-ms A
   using dpll-bj-atms-in-trail-in-set NA MA tr-S L by auto
 have no-dup: no-dup (Propagated L () \# F)
   using defined-lit-map n-d undef-L tr-S by auto
 obtain a b l where M: get-all-marked-decomposition (trail S) = (a, b) \# l
   by (cases get-all-marked-decomposition (trail S)) auto
 have b-le-M: length b \leq length (trail S)
   using get-all-marked-decomposition-decomp[of trail S] by (simp add: M)
 have fin-atms-A: finite (atms-of-ms A) using finite by simp
 then have F-le-A: length (Propagated L () \# F) \leq card (atms-of-ms A)
   using incl finite unfolding no-dup-length-eq-card-atm-of-lits-of [OF no-dup]
   by (simp add: card-mono)
 have tr-S-le-A: length (trail\ S) \le (card\ (atms-of-ms\ A))
   using n-d MA by (metis fin-atms-A card-mono no-dup-length-eq-card-atm-of-lits-of)
 obtain a b l where F: get-all-marked-decomposition F = (a, b) \# l
   by (cases get-all-marked-decomposition F) auto
 then have F = b @ a
   using get-all-marked-decomposition-decomp[of Propagated L () \# F a
     Propagated L() \# b] by simp
 then have latm: unassigned-lit A b = Suc (unassigned-lit A (Propagated L () \# b))
    using F-le-A by simp
 obtain rem where
   rem:map\ (\lambda a.\ Suc\ (length\ (snd\ a)))\ (rev\ (get-all-marked-decomposition\ (F'\ @\ Marked\ K\ ()\ \#\ F)))
   = map (\lambda a. Suc (length (snd a))) (rev (get-all-marked-decomposition F)) @ rem
   using take-length-get-all-marked-decomposition-marked-sandwich [of F \lambda a. Suc (length a) F' K]
   unfolding o-def by (metis append-take-drop-id)
 then have rem: map (\lambda a. Suc (length (snd a)))
     (get-all-marked-decomposition (F' @ Marked K () # F))
   = rev \ rem \ @ \ map \ (\lambda a. \ Suc \ (length \ (snd \ a))) \ ((get-all-marked-decomposition \ F))
   by (simp add: rev-map[symmetric] rev-swap)
 have length (rev rem @ map (\lambda a. Suc (length (snd a))) (get-all-marked-decomposition F))
        \leq Suc (card (atms-of-ms A))
   using arq-cong[OF rem, of length] tr-S-le-A
   length-qet-all-marked-decomposition-length[of F' @ Marked K () \# F] tr-S by auto
 moreover
   { \mathbf{fix} \ i :: nat \ \mathbf{and} \ xs :: 'a \ list
     have i < length xs \Longrightarrow length xs - Suc i < length xs
     then have H: i < length \ xs \implies rev \ xs \ ! \ i \in set \ xs
      using rev-nth of i xs unfolding in-set-conv-nth by (force simp add: in-set-conv-nth)
   } note H = this
   have \forall i < length rem. rev rem! i < card (atms-of-ms A) + 2
     using tr-S-le-A length-in-get-all-marked-decomposition-bounded of - S unfolding tr-S
     by (force simp add: o-def rem dest!: H intro: length-get-all-marked-decomposition-length)
 ultimately show ?case
   using \mu_C-bounded of rev rem card (atms-of-ms A)+2 unassigned-lit A l T undef-L
   by (simp add: rem \mu_C-append \mu_C-cons F tr-S)
qed
lemma dpll-bj-trail-mes-decreasing-prop:
 assumes dpll: dpll-bj S T and inv: inv S and
 N-A: atms-of-msu (clauses S) \subseteq atms-of-ms A and
```

```
M-A: atm\text{-}of ' lits\text{-}of (trail\ S) \subseteq atms\text{-}of\text{-}ms\ A and
  nd: no\text{-}dup \ (trail \ S) \ \mathbf{and}
 fin-A: finite A
 shows (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
              -\mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T)
           <(2+card\ (atms-of-ms\ A)) \cap (1+card\ (atms-of-ms\ A))
             -\mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight S)
proof -
 let ?b = 2 + card (atms-of-ms A)
 let ?s = 1 + card (atms-of-ms A)
 let ?\mu = \mu_C ?s ?b
 have M'-A: atm-of 'lits-of (trail T) \subseteq atms-of-ms A
   by (meson M-A N-A dpll dpll-bj-atms-in-trail-in-set inv)
 have nd': no-dup (trail\ T)
   \mathbf{using} \ \langle dpll\text{-}bj \ S \ T \rangle \ dpll\text{-}bj\text{-}no\text{-}dup \ nd \ inv \ \mathbf{by} \ blast
  { fix i :: nat and xs :: 'a list
   have i < length xs \Longrightarrow length xs - Suc i < length xs
   then have H: i < length \ xs \implies xs \mid i \in set \ xs
     using rev-nth[of i xs] unfolding in-set-conv-nth by (force simp add: in-set-conv-nth)
  \} note H = this
 have l-M-A: length (trail\ S) \le card\ (atms-of-ms\ A)
   by (simp add: fin-A M-A card-mono no-dup-length-eq-card-atm-of-lits-of nd)
 have l-M'-A: length (trail\ T) \leq card\ (atms-of-ms\ A)
   by (simp add: fin-A M'-A card-mono no-dup-length-eq-card-atm-of-lits-of nd')
 have l-trail-weight-M: length (trail-weight T) \leq 1 + card (atms-of-ms A)
    using l-M'-A length-get-all-marked-decomposition-length[of trail T] by auto
  have bounded-M: \forall i < length (trail-weight T). (trail-weight T)! i < card (atms-of-ms A) + 2
   using length-in-get-all-marked-decomposition-bounded [of - T] l-M'-A
   by (metis (no-types, lifting) Nat.le-trans One-nat-def Suc-1 add.right-neutral add-Suc-right
     le-imp-less-Suc less-eq-Suc-le nth-mem)
 from dpll-bj-trail-mes-increasing-prop[OF dpll inv N-A M-A nd fin-A]
 have \mu_C ?s ?b (trail-weight S) < \mu_C ?s ?b (trail-weight T) by simp
 moreover from \mu_C-bounded[OF bounded-M l-trail-weight-M]
   have \mu_C ?s ?b (trail-weight T) < ?b ^ ?s by auto
  ultimately show ?thesis by linarith
qed
lemma wf-dpll-bj:
 assumes fin: finite A
 shows wf \{(T, S), dpll-bj S T\}
   \land atms-of-msu (clauses S) \subseteq atms-of-ms A \land atm-of 'lits-of (trail S) \subseteq atms-of-ms A
   \land no-dup (trail S) \land inv S}
  (is wf ?A)
proof (rule wf-bounded-measure[of -
       \lambda-. (2 + card (atms-of-ms A))^(1 + card (atms-of-ms A))
       \lambda S. \ \mu_C \ (1+card \ (atms-of-ms \ A)) \ (2+card \ (atms-of-ms \ A)) \ (trail-weight \ S)])
 \mathbf{fix} \ a \ b :: 'st
 let ?b = 2 + card (atms-of-ms A)
 let ?s = 1 + card (atms-of-ms A)
 let ?\mu = \mu_C ?s ?b
 assume ab: (b, a) \in \{(T, S). dpll-bj \ S \ T \}
   \land atms-of-msu (clauses S) \subseteq atms-of-ms A \land atm-of 'lits-of (trail S) \subseteq atms-of-ms A
```

```
\land no-dup (trail S) \land inv S}
  have fin-A: finite (atms-of-ms A)
   using fin by auto
  have
   dpll-bj: dpll-bj a b and
   N-A: atms-of-msu (clauses a) \subseteq atms-of-ms A and
   M-A: atm-of ' lits-of (trail\ a) \subseteq atms-of-ms\ A and
   nd: no-dup (trail a) and
   inv: inv a
   using ab by auto
  have M'-A: atm-of ' lits-of (trail\ b) \subseteq atms-of-ms\ A
   by (meson M-A N-A (dpll-bj a b) dpll-bj-atms-in-trail-in-set inv)
  have nd': no-dup (trail b)
   using \langle dpll-bj \ a \ b \rangle \ dpll-bj-no-dup \ nd \ inv by blast
  { fix i :: nat \text{ and } xs :: 'a \text{ list}
   have i < length xs \Longrightarrow length xs - Suc i < length xs
     by auto
   then have H: i < length \ xs \implies xs \mid i \in set \ xs
     using rev-nth[of\ i\ xs] unfolding in-set-conv-nth by (force simp\ add:\ in-set-conv-nth)
  \} note H = this
 have l-M-A: length (trail\ a) \leq card\ (atms-of-ms\ A)
   by (simp add: fin-A M-A card-mono no-dup-length-eq-card-atm-of-lits-of nd)
  have l-M'-A: length (trail b) < card (atms-of-ms A)
   by (simp add: fin-A M'-A card-mono no-dup-length-eq-card-atm-of-lits-of nd')
  have l-trail-weight-M: length (trail-weight b) \leq 1 + card (atms-of-ms A)
    using l-M'-A length-get-all-marked-decomposition-length of trail b by auto
 have bounded-M: \forall i < length (trail-weight b). (trail-weight b)! i < card (atms-of-ms A) + 2
   using length-in-get-all-marked-decomposition-bounded[of - b] l-M'-A
   by (metis (no-types, lifting) Nat.le-trans One-nat-def Suc-1 add.right-neutral add-Suc-right
     le-imp-less-Suc less-eq-Suc-le nth-mem)
 from dpll-bj-trail-mes-increasing-prop[OF dpll-bj inv N-A M-A nd fin]
 have \mu_C ?s ?b (trail-weight a) < \mu_C ?s ?b (trail-weight b) by simp
 moreover from \mu_C-bounded[OF bounded-M l-trail-weight-M]
 have \mu_C ?s ?b (trail-weight b) \leq ?b ^ ?s by auto ultimately show ?b ^ ?s \leq ?b ^ ?s \wedge
         \mu_C ?s ?b (trail-weight b) \leq ?b ^ ?s \wedge
         \mu_C ?s ?b (trail-weight a) < \mu_C ?s ?b (trail-weight b)
   by blast
qed
```

2.3.4 Normal Forms

We prove that given a normal form of DPLL, with some invariants, the either N is satisfiable and the built valuation M is a model; or N is unsatisfiable.

Idea of the proof: We have to prove tat satisfiable $N, \neg M \models as N$ and there is no remaining step is incompatible.

- 1. The decide rules tells us that every variable in N has a value.
- 2. $\neg M \models as N$ tells us that there is conflict.

- 3. There is at least one decision in the trail (otherwise, M is a model of N).
- 4. Now if we build the clause with all the decision literals of the trail, we can apply the backjump rule.

The assumption are saying that we have a finite upper bound A for the literals, that we cannot do any step no-step dpll-bj S

```
theorem dpll-backjump-final-state:
  fixes A :: 'v \ literal \ multiset \ set \ and \ S \ T :: 'st
  assumes
   atms-of-msu (clauses S) \subseteq atms-of-ms A and
   atm\text{-}of ' lits\text{-}of (trail\ S) \subseteq atms\text{-}of\text{-}ms\ A and
   no-dup (trail S) and
   finite A and
   inv: inv S and
   n-s: no-step dpll-bj S and
    decomp: all-decomposition-implies-m (clauses S) (get-all-marked-decomposition (trail S))
  shows unsatisfiable (set-mset (clauses S))
   \vee (trail S \models asm\ clauses\ S \wedge satisfiable\ (set\text{-mset}\ (clauses\ S)))
proof -
  let ?N = set\text{-}mset \ (clauses \ S)
 let ?M = trail S
  consider
     (sat) satisfiable ?N and ?M \modelsas ?N
    |(sat')| satisfiable ?N and \neg ?M \models as ?N
    (unsat) unsatisfiable ?N
   by auto
  then show ?thesis
   proof cases
     case sat' note sat = this(1) and M = this(2)
     obtain C where C \in ?N and \neg ?M \models a C using M unfolding true-annots-def by auto
     obtain I :: 'v \ literal \ set \ where
       I \models s ?N  and
       cons: consistent-interp I and
       tot: total-over-m I ?N and
       atm-I-N: atm-of 'I \subseteq atms-of-ms ?N
       using sat unfolding satisfiable-def-min by auto
     \textbf{let} \ ?I = I \cup \{P|\ P.\ P \in \textit{lits-of} \ ?M \land \textit{atm-of} \ P \notin \textit{atm-of} \ `I'\}
     let ?O = \{ \{ \#lit\text{-of } L \# \} \mid L. \text{ is-marked } L \land L \in set ?M \land atm\text{-of } (lit\text{-of } L) \notin atms\text{-of-ms } ?N \} 
     have cons-I': consistent-interp ?I
       using cons using (no-dup ?M) unfolding consistent-interp-def
       by (auto simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set lits-of-def
         dest!: no-dup-cannot-not-lit-and-uminus)
     have tot-I': total-over-m ?I (?N \cup unmark ?M)
       using tot atms-of-s-def unfolding total-over-m-def total-over-set-def
       by fastforce
     have \{P \mid P. P \in lits\text{-}of ?M \land atm\text{-}of P \notin atm\text{-}of `I\} \models s ?O
       using \langle I \models s ? N \rangle atm-I-N by (auto simp add: atm-of-eq-atm-of true-clss-def lits-of-def)
     then have I'-N: ?I \models s ?N \cup ?O
       using \langle I \models s ? N \rangle true-clss-union-increase by force
     have tot': total-over-m ?I (?N \cup ?O)
       using atm-I-N tot unfolding total-over-m-def total-over-set-def
       by (force simp: image-iff lits-of-def dest!: is-marked-ex-Marked)
     have atms-N-M: atms-of-ms ?N \subseteq atm-of ' lits-of ?M
```

```
proof (rule ccontr)
    assume ¬ ?thesis
    then obtain l :: 'v where
     l-N: l \in atms-of-ms ?N and
     l-M: l \notin atm-of ' lits-of ?M
     by auto
    have undefined-lit ?M (Pos l)
      using l-M by (metis Marked-Propagated-in-iff-in-lits-of
        atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set literal.sel(1))
    from bj-decide_{NOT}[OF\ decide_{NOT}[OF\ this]] show False
      using l-N n-s by (metis\ literal.sel(1)\ state-eq_{NOT}-ref)
 qed
have ?M \models as CNot C
 by (metis \ C \in set\text{-}mset\ (clauses\ S)) \ (\neg\ trail\ S \models a\ C)\ all\text{-}variables\text{-}defined\text{-}not\text{-}imply\text{-}cnot
 atms-N-M\ atms-of-atms-of-ms-mono\ atms-of-ms-CNot-atms-of\ atms-of-ms-CNot-atms-of-ms
  subset-eq)
have \exists l \in set ?M. is\text{-}marked l
 proof (rule ccontr)
    let ?O = \{ \{ \#lit\text{-of } L \# \} \mid L. \text{ is-marked } L \land L \in set ?M \land atm\text{-of } (lit\text{-of } L) \notin atms\text{-of-ms } ?N \} 
    have \vartheta[iff]: \Lambda I. \ total-over-m \ I \ (?N \cup ?O \cup unmark ?M)
      \longleftrightarrow total\text{-}over\text{-}m \ I \ (?N \cup unmark ?M)
      unfolding total-over-set-def total-over-m-def atms-of-ms-def by auto
    assume ¬ ?thesis
    then have [simp]:\{\{\#lit\text{-}of\ L\#\}\ | L.\ is\text{-}marked\ L \land L \in set\ ?M\}
      =\{\{\#lit\text{-of }L\#\}\mid L. \text{ is-marked }L \land L \in set ?M \land atm\text{-of }(lit\text{-of }L) \notin atms\text{-of-ms }?N\}
     by auto
    then have ?N \cup ?O \models ps \ unmark \ ?M
      using all-decomposition-implies-propagated-lits-are-implied[OF decomp] by auto
    then have ?I \models s \ unmark \ ?M
      using cons-I' I'-N tot-I' \langle ?I \models s ?N \cup ?O \rangle unfolding \vartheta true-clss-clss-def by blast
    then have lits-of ?M \subseteq ?I
      unfolding true-clss-def lits-of-def by auto
    then have ?M \models as ?N
      using I'-N \lor C \in ?N \lor \neg ?M \models a C \lor cons-I' atms-N-M
     by (meson \ \langle trail \ S \models as \ CNot \ C \rangle \ consistent-CNot-not \ rev-subsetD \ sup-qe1 \ true-annot-def
        true-annots-def true-cls-mono-set-mset-l true-clss-def)
    then show False using M by fast
 qed
from List.split-list-first-propE[OF\ this] obtain K:: 'v\ literal\ and
  F F' :: ('v, unit, unit) ann-literal list where
 M-K: ?M = F' @ Marked K () # <math>F and
 nm: \forall f \in set \ F'. \ \neg is\text{-}marked \ f
 unfolding is-marked-def by (metis (full-types) old.unit.exhaust)
let ?K = Marked K ()::('v, unit, unit) ann-literal
have ?K \in set ?M
 unfolding M-K by auto
let ?C = image\text{-}mset \ lit\text{-}of \ \{\#L \in \#mset \ ?M. \ is\text{-}marked \ L \land L \neq ?K\#\} :: 'v \ literal \ multiset
let ?C' = set\text{-}mset \ (image\text{-}mset \ (\lambda L::'v \ literal. \ \{\#L\#\}) \ (?C+\{\#lit\text{-}of \ ?K\#\}))
have ?N \cup \{\{\#lit\text{-of }L\#\} \mid L. \text{ is-marked } L \land L \in set ?M\} \models ps \text{ unmark }?M
 using all-decomposition-implies-propagated-lits-are-implied [OF\ decomp].
moreover have C': ?C' = \{\{\#lit\text{-of }L\#\} \mid L. \text{ is-marked } L \land L \in set ?M\}
 unfolding M-K apply standard
    apply force
```

```
using IntI by auto
ultimately have N-C-M: ?N \cup ?C' \models ps \ unmark \ ?M
have N-M-False: ?N \cup (\lambda L. \{\#lit\text{-}of L\#\}) \text{ '} (set ?M) \models ps \{\{\#\}\}\}
 using M \triangleleft ?M \models as \ CNot \ C \triangleleft \ \langle C \in ?N \rangle unfolding true-clss-clss-def true-annots-def Ball-def
 true-annot-def by (metis consistent-CNot-not sup.orderE sup-commute true-clss-def
   true-clss-singleton-lit-of-implies-incl true-clss-union true-clss-union-increase)
have undefined-lit F 	ext{ } K 	ext{ using } \langle no\text{-}dup \text{ } ?M \rangle \text{ } unfolding \text{ } M\text{-}K \text{ } by \text{ } (simp \text{ } add: \text{ } defined\text{-}lit\text{-}map)
moreover
 have ?N \cup ?C' \models ps \{\{\#\}\}\}
   proof -
     have A: ?N \cup ?C' \cup unmark ?M =
        ?N \cup unmark ?M
       unfolding M-K by auto
     show ?thesis
       using true-clss-clss-left-right[OF N-C-M, of {{#}}] N-M-False unfolding A by auto
 have ?N \models p image\text{-mset uminus } ?C + \{\#-K\#\}
   unfolding true-clss-cls-def true-clss-clss-def total-over-m-def
   proof (intro allI impI)
     \mathbf{fix}\ I
     assume
       tot: total-over-set I (atms-of-ms (?N \cup \{image-mset\ uminus\ ?C+ \{\#-K\#\}\})) and
       cons: consistent-interp I and
     have (K \in I \land -K \notin I) \lor (-K \in I \land K \notin I)
       using cons tot unfolding consistent-interp-def by (cases\ K) auto
     have tot': total-over-set I
        (atm\text{-}of 'lit\text{-}of '(set ?M \cap \{L. is\text{-}marked } L \land L \neq Marked K ()\}))
       using tot by (auto simp add: atms-of-uminus-lit-atm-of-lit-of)
      { \mathbf{fix} \ x :: ('v, unit, unit) \ ann-literal}
       assume
         a3: lit-of x \notin I and
         a1: x \in set ?M and
         a4: is\text{-}marked x  and
         a5: x \neq Marked K ()
       then have Pos (atm\text{-}of\ (lit\text{-}of\ x)) \in I \lor Neg\ (atm\text{-}of\ (lit\text{-}of\ x)) \in I
         using a5 a4 tot' a1 unfolding total-over-set-def atms-of-s-def by blast
       moreover have f6: Neg (atm-of (lit-of x)) = - Pos (atm-of (lit-of x))
         by simp
       ultimately have - lit-of x \in I
         using f6 a3 by (metis (no-types) atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
           literal.sel(1)
      } note H = this
     have \neg I \models s ?C'
       using \langle ?N \cup ?C' \models ps \{ \{ \# \} \} \rangle tot cons \langle I \models s ?N \rangle
       unfolding true-clss-clss-def total-over-m-def
       by (simp add: atms-of-uminus-lit-atm-of-lit-of atms-of-ms-single-image-atm-of-lit-of)
      then show I \models image\text{-mset uminus } ?C + \{\#-K\#\}
       unfolding true-clss-def true-cls-def Bex-mset-def
       using \langle (K \in I \land -K \notin I) \lor (-K \in I \land K \notin I) \rangle
       by (auto dest!: H)
   qed
```

```
moreover have F \models as \ CNot \ (image-mset \ uminus \ ?C)
       using nm unfolding true-annots-def CNot-def M-K by (auto simp add: lits-of-def)
     ultimately have False
       using bj-can-jump[of S F' K F C - K
         image-mset uminus (image-mset lit-of \{\# L : \# \text{ mset } ?M. \text{ is-marked } L \land L \neq Marked K ()\#\}\}
         \langle C \in ?N \rangle n-s \langle ?M \models as\ CNot\ C \rangle bj-backjump inv \langle no\text{-}dup\ (trail\ S) \rangle unfolding M-K by auto
       then show ?thesis by fast
   \mathbf{qed} auto
qed
end
locale dpll-with-backjumping =
  dpll-with-backjumping-ops trail clauses prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT}
  propagate-conds inv backjump-conds
 for
    trail :: 'st \Rightarrow ('v, unit, unit) ann-literals and
   clauses :: 'st \Rightarrow 'v \ clauses \ and
   prepend-trail :: ('v, unit, unit) ann-literal \Rightarrow 'st \Rightarrow 'st and tl-trail :: 'st \Rightarrow 'st and
   add-cls_{NOT} remove-cls_{NOT}:: 'v clause <math>\Rightarrow 'st \Rightarrow 'st and
   propagate\text{-}conds :: ('v, unit, unit) \ ann\text{-}literal \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
   inv :: 'st \Rightarrow bool and
   backjump\text{-}conds :: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool
 assumes dpll-bj-inv:\bigwedge S T. dpll-bj S T \Longrightarrow inv S \Longrightarrow inv T
begin
\mathbf{lemma}\ rtranclp-dpll-bj-inv:
  assumes dpll-bj^{**} S T and inv S
  shows inv T
  using assms by (induction rule: rtranclp-induct)
   (auto simp add: dpll-bj-no-dup intro: dpll-bj-inv)
lemma rtranclp-dpll-bj-no-dup:
  assumes dpll-bj^{**} S T and inv S
  and no-dup (trail S)
  shows no-dup (trail\ T)
  using assms by (induction rule: rtranclp-induct)
  (auto simp add: dpll-bj-no-dup dest: rtranclp-dpll-bj-inv dpll-bj-inv)
lemma rtranclp-dpll-bj-atms-of-ms-clauses-inv:
  assumes
    dpll-bj^{**} S T and inv S
  shows atms-of-msu (clauses\ S) = atms-of-msu (clauses\ T)
  using assms by (induction rule: rtranclp-induct)
   (auto dest: rtranclp-dpll-bj-inv dpll-bj-atms-of-ms-clauses-inv)
lemma rtranclp-dpll-bj-atms-in-trail:
  assumes
    dpll-bj^{**} S T and
   inv S and
   atm-of ' (lits-of (trail S)) \subseteq atms-of-msu (clauses S)
  shows atm\text{-}of ' (lits\text{-}of\ (trail\ T))\subseteq atms\text{-}of\text{-}msu\ (clauses\ T)
  using assms apply (induction rule: rtranclp-induct)
  using dpll-bj-atms-in-trail dpll-bj-atms-of-ms-clauses-inv rtranclp-dpll-bj-inv by auto
```

```
\mathbf{lemma}\ rtranclp\text{-}dpll\text{-}bj\text{-}sat\text{-}iff\colon
  assumes dpll-bj^{**} S T and inv S
 \mathbf{shows}\ I \models sm\ clauses\ S \longleftrightarrow I \models sm\ clauses\ T
  using assms by (induction rule: rtranclp-induct)
   (auto dest!: dpll-bj-sat-iff simp: rtranclp-dpll-bj-inv)
\mathbf{lemma}\ rtranclp\text{-}dpll\text{-}bj\text{-}atms\text{-}in\text{-}trail\text{-}in\text{-}set:
  assumes
    dpll-bj^{**} S T and
   inv S
   atms-of-msu (clauses S) \subseteq A and
   atm\text{-}of ' (lits\text{-}of (trail S)) \subseteq A
  shows atm\text{-}of ' (lits\text{-}of\ (trail\ T))\subseteq A
  using assms
   by (induction rule: rtranclp-induct)
       (auto dest: rtranclp-dpll-bj-inv
        simp add: dpll-bj-atms-in-trail-in-set rtranclp-dpll-bj-atms-of-ms-clauses-inv
           rtranclp-dpll-bj-inv)
\mathbf{lemma}\ rtranclp\text{-}dpll\text{-}bj\text{-}all\text{-}decomposition\text{-}implies\text{-}inv:
  assumes
    dpll-bj^{**} S T and
   inv S
   all-decomposition-implies-m (clauses S) (qet-all-marked-decomposition (trail S))
  shows all-decomposition-implies-m (clauses T) (get-all-marked-decomposition (trail T))
  using assms by (induction rule: rtranclp-induct)
   (auto intro: dpll-bj-all-decomposition-implies-inv simp: rtranclp-dpll-bj-inv)
lemma rtranclp-dpll-bj-inv-incl-dpll-bj-inv-trancl:
  \{(T, S), dpll-bj^{++} S T\}
   \land atms-of-msu (clauses S) \subseteq atms-of-ms A \land atm-of 'lits-of (trail S) \subseteq atms-of-ms A
   \land no-dup (trail S) \land inv S}
    \subseteq \{(T, S). \ dpll-bj \ S \ T \land atms-of-msu \ (clauses \ S) \subseteq atms-of-ms \ A \}
       \land atm-of 'lits-of (trail S) \subseteq atms-of-ms A \land no-dup (trail S) \land inv S}<sup>+</sup>
    (is ?A \subset ?B^+)
proof standard
  \mathbf{fix} \ x
  assume x-A: x \in ?A
  obtain S T::'st where
   x[simp]: x = (T, S) by (cases x) auto
  have
    dpll-bj^{++} S T and
   atms-of-msu (clauses S) \subseteq atms-of-ms A and
   atm\text{-}of ' lits\text{-}of (trail\ S) \subseteq atms\text{-}of\text{-}ms\ A and
   no-dup (trail S) and
    inv S
   using x-A by auto
  then show x \in ?B^+ unfolding x
   proof (induction rule: tranclp-induct)
      case base
      then show ?case by auto
   next
      case (step T U) note step = this(1) and ST = this(2) and IH = this(3)[OF this(4-7)]
       and N-A = this(4) and M-A = this(5) and nd = this(6) and inv = this(7)
```

```
have [simp]: atms-of-msu (clauses\ S) = atms-of-msu (clauses\ T)
       using step rtranclp-dpll-bj-atms-of-ms-clauses-inv tranclp-into-rtranclp inv by fastforce
     have no-dup (trail T)
       using local.step nd rtranclp-dpll-bj-no-dup tranclp-into-rtranclp inv by fastforce
     moreover have atm-of ' (lits-of (trail\ T)) \subseteq atms-of-ms A
       by (metis inv M-A N-A local.step rtranclp-dpll-bj-atms-in-trail-in-set
         tranclp-into-rtranclp)
     moreover have inv T
        using inv local.step rtranclp-dpll-bj-inv tranclp-into-rtranclp by fastforce
     ultimately have (U, T) \in ?B using ST N-A M-A inv by auto
     then show ?case using IH by (rule trancl-into-trancl2)
   qed
qed
lemma wf-tranclp-dpll-bj:
 assumes fin: finite A
  shows wf \{(T, S), dpll-bj^{++} S T\}
   \land atms-of-msu (clauses S) \subseteq atms-of-ms A \land atm-of 'lits-of (trail S) \subseteq atms-of-ms A
   \land \ \textit{no-dup} \ (\textit{trail} \ S) \ \land \ \textit{inv} \ S \}
  \mathbf{using} \ \textit{wf-trancl}[\textit{OF} \ \textit{wf-dpll-bj}[\textit{OF} \ \textit{fin}]] \ \textit{rtranclp-dpll-bj-inv-incl-dpll-bj-inv-trancl}
  by (rule wf-subset)
lemma dpll-bj-sat-ext-iff:
  dpll-bj \ S \ T \Longrightarrow inv \ S \Longrightarrow I \models sextm \ clauses \ S \longleftrightarrow I \models sextm \ clauses \ T
  by (simp add: dpll-bj-clauses)
lemma rtranclp-dpll-bj-sat-ext-iff:
  dpll-bj^{**} S T \Longrightarrow inv S \Longrightarrow I \models sextm \ clauses S \longleftrightarrow I \models sextm \ clauses T
  by (induction rule: rtranclp-induct) (simp-all add: rtranclp-dpll-bj-inv dpll-bj-sat-ext-iff)
theorem full-dpll-backjump-final-state:
  fixes A :: 'v \ literal \ multiset \ set \ and \ S \ T :: 'st
  assumes
   full: full \ dpll-bj \ S \ T \ \mathbf{and}
   atms-S: atms-of-msu (clauses S) \subseteq atms-of-ms A and
   atms-trail: atm-of 'lits-of (trail S) \subseteq atms-of-ms A and
   n-d: no-dup (trail S) and
   finite A and
   inv: inv S and
   decomp: all-decomposition-implies-m (clauses S) (qet-all-marked-decomposition (trail S))
  shows unsatisfiable (set-mset (clauses S))
  \vee (trail T \models asm\ clauses\ S \land satisfiable\ (set\text{-mset}\ (clauses\ S)))
proof -
  have st: dpll-bj^{**} S T and no-step dpll-bj T
   using full unfolding full-def by fast+
  moreover have atms-of-msu (clauses T) \subseteq atms-of-ms A
   {\bf using} \ atms{-}S \ inv \ rtranclp{-}dpll{-}bj{-}atms{-}of{-}ms{-}clauses{-}inv \ st \ {\bf by} \ blast
  moreover have atm-of 'lits-of (trail T) \subseteq atms-of-ms A
    using atms-S atms-trail inv rtranclp-dpll-bj-atms-in-trail-in-set st by auto
  moreover have no-dup (trail T)
   using n-d inv rtranclp-dpll-bj-no-dup st by blast
  moreover have inv: inv T
   using inv rtranclp-dpll-bj-inv st by blast
  moreover
```

```
have decomp: all-decomposition-implies-m (clauses T) (get-all-marked-decomposition (trail T))
     using \langle inv S \rangle decomp rtranclp-dpll-bj-all-decomposition-implies-inv st by blast
  ultimately have unsatisfiable (set-mset (clauses T))
   \vee (trail T \models asm\ clauses\ T \land satisfiable\ (set\text{-mset}\ (clauses\ T)))
   using (finite A) dpll-backjump-final-state by force
  then show ?thesis
   by (meson (inv S) rtranclp-dpll-bj-sat-iff satisfiable-carac st true-annots-true-cls)
qed
corollary full-dpll-backjump-final-state-from-init-state:
 fixes A :: 'v \ literal \ multiset \ set \ and \ S \ T :: 'st
 assumes
   full: full \ dpll-bj \ S \ T \ \mathbf{and}
   trail S = [] and
   clauses\ S=N and
   inv S
 shows unsatisfiable (set-mset N) \vee (trail T \models asm N \land satisfiable (set-mset N))
 using assms full-dpll-backjump-final-state of S T set-mset N by auto
\mathbf{lemma}\ tranclp\text{-}dpll\text{-}bj\text{-}trail\text{-}mes\text{-}decreasing\text{-}prop\text{:}
  assumes dpll: dpll-bj<sup>++</sup> S T and inv: inv S and
  N-A: atms-of-msu (clauses S) \subseteq atms-of-ms A and
  M-A: atm\text{-}of ' lits\text{-}of (trail\ S) \subseteq atms\text{-}of\text{-}ms\ A and
 n-d: no-dup (trail S) and
 fin-A: finite A
 shows (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
              -\mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T)
          < (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
              -\mu_C \ (1+card \ (atms-of-ms \ A)) \ (2+card \ (atms-of-ms \ A)) \ (trail-weight \ S)
 using dpll
proof (induction)
 {f case}\ base
 then show ?case
   using N-A M-A n-d dpll-bj-trail-mes-decreasing-prop fin-A inv by blast
  case (step T U) note st = this(1) and dpll = this(2) and IH = this(3)
 have atms-of-msu (clauses S) = atms-of-msu (clauses T)
   using rtranclp-dpll-bj-atms-of-ms-clauses-inv by (metis dpll-bj-clauses dpll-bj-inv inv st
     tranclpD)
  then have N-A': atms-of-msu (clauses T) \subseteq atms-of-ms A
    using N-A by auto
  moreover have M-A': atm-of ' lits-of (trail\ T) \subseteq atms-of-ms\ A
   by (meson M-A N-A inv rtranclp-dpll-bj-atms-in-trail-in-set st dpll
     tranclp.r-into-trancl tranclp-into-rtrancl tranclp-trans)
 moreover have nd: no-dup (trail T)
   by (metis inv n-d rtranclp-dpll-bj-no-dup st tranclp-into-rtranclp)
 moreover have inv T
   by (meson dpll dpll-bj-inv inv rtranclp-dpll-bj-inv st tranclp-into-rtranclp)
 ultimately show ?case
   using IH dpll-bj-trail-mes-decreasing-prop[of T U A] dpll fin-A by linarith
qed
end
```

2.4 CDCL

2.4.1 Learn and Forget

```
locale learn-ops =
  dpll-state trail clauses prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT}
  for
    trail :: 'st \Rightarrow ('v, unit, unit) \ ann-literals \ and
    clauses :: 'st \Rightarrow 'v \ clauses \ \mathbf{and}
    prepend-trail :: ('v, unit, unit) ann-literal \Rightarrow 'st \Rightarrow 'st and tl-trail :: 'st \Rightarrow 'st and
    add-cls_{NOT} remove-cls_{NOT}:: 'v clause <math>\Rightarrow 'st \Rightarrow 'st +
    learn\text{-}cond :: 'v \ clause \Rightarrow 'st \Rightarrow bool
begin
inductive learn :: 'st \Rightarrow 'st \Rightarrow bool where
clauses\ S \models pm\ C \Longrightarrow atms-of\ C \subseteq atms-of-msu\ (clauses\ S) \cup atm-of\ `(lits-of\ (trail\ S))
  \implies learn\text{-}cond\ C\ S
  \implies T \sim add\text{-}cls_{NOT} \ C \ S
  \implies learn \ S \ T
inductive-cases learn_{NOT}E: learn S T
lemma learn-\mu_C-stable:
  assumes learn S T and no-dup (trail S)
  shows \mu_C \ A \ B \ (trail-weight \ S) = \mu_C \ A \ B \ (trail-weight \ T)
  using assms by (auto elim: learn_{NOT}E)
end
locale forget-ops =
  dpll-state trail clauses prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT}
    trail :: 'st \Rightarrow ('v, unit, unit) ann-literals and
    clauses :: 'st \Rightarrow 'v \ clauses \ {\bf and}
    prepend-trail :: ('v, unit, unit) \ ann-literal \Rightarrow 'st \Rightarrow 'st \ and \ tl-trail :: 'st \Rightarrow 'st \ and
    add\text{-}cls_{NOT} remove-cls_{NOT}:: 'v clause \Rightarrow 'st \Rightarrow 'st +
  fixes
    forget\text{-}cond :: 'v \ clause \Rightarrow 'st \Rightarrow bool
inductive forget_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool where
forget_{NOT}: clauses S - replicate-mset (count (clauses S) C) C \models pm \ C
  \implies forget-cond C S
  \implies C \in \# \ clauses \ S
  \implies T \sim remove\text{-}cls_{NOT} \ C \ S
  \Longrightarrow forget_{NOT} \ S \ T
inductive-cases forget_{NOT}E: forget_{NOT} S T
lemma forget-\mu_C-stable:
  assumes forget_{NOT} S T
  shows \mu_C \ A \ B \ (trail-weight \ S) = \mu_C \ A \ B \ (trail-weight \ T)
  using assms by (auto elim!: forget_{NOT}E)
end
locale learn-and-forget_{NOT} =
  learn-ops\ trail\ clauses\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}\ learn-cond\ +
  forget-ops\ trail\ clauses\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}\ forget-cond
  for
```

```
trail :: 'st \Rightarrow ('v, unit, unit) ann-literals and
    clauses :: 'st \Rightarrow 'v \ clauses \ \mathbf{and}
    prepend-trail :: ('v, unit, unit) ann-literal \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    \mathit{add\text{-}\mathit{cls}_{NOT}} \mathit{remove\text{-}\mathit{cls}_{NOT}}:: 'v\ \mathit{clause} \Rightarrow 'st \Rightarrow 'st and
    learn\text{-}cond\ forget\text{-}cond\ ::\ 'v\ clause \Rightarrow 'st \Rightarrow bool
begin
inductive learn-and-forget<sub>NOT</sub> :: 'st \Rightarrow 'st \Rightarrow bool
where
lf-learn: learn \ S \ T \Longrightarrow learn-and-forget_{NOT} \ S \ T \mid
lf-forget: forget_{NOT} S T \Longrightarrow learn-and-forget_{NOT} S T
end
2.4.2
            Definition of CDCL
{\bf locale}\ conflict \hbox{-} driven \hbox{-} clause \hbox{-} learning \hbox{-} ops =
  dpll-with-backjumping-ops trail clauses prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT}
    propagate-conds inv backjump-conds +
  learn-and-forget<sub>NOT</sub> trail clauses prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT} learn-cond
    forget-cond
    for
       trail :: 'st \Rightarrow ('v, unit, unit) ann-literals and
       clauses :: 'st \Rightarrow 'v \ clauses \ {\bf and}
       prepend-trail :: ('v, unit, unit) \ ann-literal \Rightarrow 'st \Rightarrow 'st \ and
       tl-trail :: 'st \Rightarrow 'st and
       add-cls_{NOT} remove-cls_{NOT}:: 'v clause <math>\Rightarrow 'st \Rightarrow 'st and
       propagate\text{-}conds:: ('v, unit, unit) \ ann\text{-}literal \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
       inv :: 'st \Rightarrow bool and
       backjump\text{-}conds:: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
       learn\text{-}cond\ forget\text{-}cond\ ::\ 'v\ clause \Rightarrow 'st \Rightarrow bool
begin
inductive cdcl_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
c-dpll-bj: dpll-bj S S' \Longrightarrow cdcl_{NOT} S S'
c-learn: learn \ S \ S' \Longrightarrow cdcl_{NOT} \ S \ S'
c-forget<sub>NOT</sub>: forget_{NOT} S S' \Longrightarrow cdcl_{NOT} S S'
lemma cdcl_{NOT}-all-induct[consumes 1, case-names dpll-bj learn forget_{NOT}]:
  fixes S T :: 'st
  assumes cdcl_{NOT} S T and
     dpll: \bigwedge T. \ dpll-bj \ S \ T \Longrightarrow P \ S \ T \ and
    learning:
       \bigwedge C T. clauses S \models pm \ C \Longrightarrow
       atms-of C \subseteq atms-of-msu (clauses\ S) \cup atm-of ' (lits-of (trail\ S)) \Longrightarrow
       T \sim add\text{-}cls_{NOT} \ C S \Longrightarrow
       P S T and
    forgetting: \bigwedge C T. clauses S - replicate-mset (count (clauses S) C) C \models pm \ C \Longrightarrow
       C \in \# clauses S \Longrightarrow
       T \sim remove\text{-}cls_{NOT} \ C S \Longrightarrow
       PST
  shows P S T
  using assms(1) by (induction rule: cdcl_{NOT}.induct)
  (auto intro: assms(2, 3, 4) elim!: learn_{NOT}E forget<sub>NOT</sub>E)+
```

lemma $cdcl_{NOT}$ -no-dup:

assumes

```
cdcl_{NOT} S T and
   inv S and
   no-dup (trail S)
 shows no-dup (trail T)
 using assms by (induction rule: cdcl_{NOT}-all-induct) (auto intro: dpll-bj-no-dup)
Consistency of the trail lemma cdcl_{NOT}-consistent:
 assumes
   cdcl_{NOT} S T and
   inv S and
   no-dup (trail S)
 shows consistent-interp (lits-of (trail T))
 using cdcl_{NOT}-no-dup[OF\ assms]\ distinct consistent-interp by fast
The subtle problem here is that tautologies can be removed, meaning that some variable can
disappear of the problem. It is also possible that some variable of the trail are not in the clauses
anymore.
lemma cdcl_{NOT}-atms-of-ms-clauses-decreasing:
 assumes cdcl_{NOT} S Tand inv S and no-dup (trail S)
 shows atms-of-msu (clauses T) \subseteq atms-of-msu (clauses S) \cup atm-of ' (lits-of (trail S))
 using assms by (induction rule: cdcl_{NOT}-all-induct)
   (auto dest!: dpll-bj-atms-of-ms-clauses-inv set-mp simp add: atms-of-ms-def Union-eq)
lemma cdcl_{NOT}-atms-in-trail:
 assumes cdcl_{NOT} S Tand inv S and no-dup (trail S)
 and atm\text{-}of ' (lits\text{-}of\ (trail\ S))\subseteq atms\text{-}of\text{-}msu\ (clauses\ S)
 shows atm-of ' (lits-of (trail\ T)) \subseteq atms-of-msu (clauses\ S)
 using assms by (induction rule: cdcl_{NOT}-all-induct) (auto simp add: dpll-bj-atms-in-trail)
lemma cdcl_{NOT}-atms-in-trail-in-set:
 assumes
   cdcl_{NOT} S T and inv S and no-dup (trail S) and
   atms-of-msu (clauses S) \subseteq A and
   atm\text{-}of \ (lits\text{-}of \ (trail \ S)) \subseteq A
 shows atm\text{-}of ' (lits\text{-}of\ (trail\ T))\subseteq A
 using assms
 by (induction rule: cdcl_{NOT}-all-induct)
    (simp-all\ add:\ dpll-bj-atms-in-trail-in-set\ dpll-bj-atms-of-ms-clauses-inv)
lemma cdcl_{NOT}-all-decomposition-implies:
 assumes cdcl_{NOT} S T and inv S and n-d[simp]: no-dup (trail S) and
   all-decomposition-implies-m (clauses S) (get-all-marked-decomposition (trail S))
 shows
   all-decomposition-implies-m (clauses T) (qet-all-marked-decomposition (trail T))
 using assms(1,2,4)
proof (induction rule: cdcl_{NOT}-all-induct)
 case dpll-bj
 then show ?case
    using dpll-bj-all-decomposition-implies-inv n-d by blast
\mathbf{next}
 case learn
 then show ?case by (auto simp add: all-decomposition-implies-def)
```

case (forget_{NOT} C T) note cls-C = this(1) and C = this(2) and T = this(3) and iniv = this(4)

and

```
decomp = this(5)
  show ?case
   unfolding all-decomposition-implies-def Ball-def
   proof (intro allI, clarify)
     \mathbf{fix} \ a \ b
     assume (a, b) \in set (get-all-marked-decomposition (trail <math>T))
     then have unmark a \cup set\text{-mset} (clauses S) \models ps unmark b
       using decomp T by (auto simp add: all-decomposition-implies-def)
     moreover
       have C \in set\text{-}mset \ (clauses \ S)
         by (simp \ add: \ C)
       then have set-mset (clauses T) \models ps set-mset (clauses S)
         by (metis (no-types) T clauses-remove-cls<sub>NOT</sub> cls-C insert-Diff order-refl
           set-mset-minus-replicate-mset(1) state-eq_{NOT}-clauses true-clss-clss-def
           true-clss-clss-insert)
     ultimately show unmark a \cup set-mset (clauses T)
       \models ps \ unmark \ b
       using true-clss-clss-generalise-true-clss-clss by blast
   qed
\mathbf{qed}
Extension of models lemma cdcl_{NOT}-bj-sat-ext-iff:
 assumes cdcl_{NOT} S Tand inv S and n-d: no-dup (trail S)
 shows I \models sextm \ clauses \ S \longleftrightarrow I \models sextm \ clauses \ T
 using assms
proof (induction rule: cdcl_{NOT}-all-induct)
 case dpll-bj
 then show ?case by (simp add: dpll-bj-clauses)
 case (learn C T) note T = this(3)
  \{ \text{ fix } J \}
   assume
     I \models sextm \ clauses \ S \ and
     I \subseteq J and
     tot: total-over-m J (set-mset (\{\#C\#\} + (clauses\ S))) and
     cons: consistent-interp\ J
   then have J \models sm \ clauses \ S \ unfolding \ true-clss-ext-def \ by \ auto
   moreover
     with \langle clauses \ S \models pm \ C \rangle have J \models C
       using tot cons unfolding true-clss-cls-def by auto
   ultimately have J \models sm \{\#C\#\} + clauses S by auto
 then have H: I \models sextm \ (clauses \ S) \Longrightarrow I \models sext \ insert \ C \ (set\text{-mset} \ (clauses \ S))
   unfolding true-clss-ext-def by auto
 show ?case
   apply standard
     using T n-d apply (auto\ simp\ add:\ H)[]
   using T n-d apply simp
   by (metis Diff-insert-absorb insert-subset subsetI subset-antisym
     true-clss-ext-decrease-right-remove-r)
next
  case (forget_{NOT} \ C \ T) note cls\text{-}C = this(1) and T = this(3)
  \{ \text{ fix } J \}
   assume
```

```
I \models sext \ set\text{-}mset \ (clauses \ S) - \{C\} \ \mathbf{and}
     I \subseteq J and
     tot: total\text{-}over\text{-}m \ J \ (set\text{-}mset \ (clauses \ S)) \ and
     cons: consistent-interp J
   then have J \models s \ set\text{-}mset \ (clauses \ S) - \{C\}
     unfolding true-clss-ext-def by (meson Diff-subset total-over-m-subset)
   moreover
     with cls-C have J \models C
       using tot cons unfolding true-clss-cls-def
       by (metis Un-commute forget<sub>NOT</sub>.hyps(2) insert-Diff insert-is-Un mem-set-mset-iff order-refl
         set-mset-minus-replicate-mset(1))
   ultimately have J \models sm \ (clauses \ S) by (metis \ insert\text{-}Diff\text{-}single \ true\text{-}clss\text{-}insert)
 then have H: I \models sext \ set\text{-mset} \ (clauses \ S) - \{C\} \Longrightarrow I \models sextm \ (clauses \ S)
   unfolding true-clss-ext-def by blast
 show ?case using T by (auto simp: true-clss-ext-decrease-right-remove-r H)
qed
end — end of conflict-driven-clause-learning-ops
        CDCL with invariant
2.5
locale conflict-driven-clause-learning =
  conflict-driven-clause-learning-ops +
 assumes cdcl_{NOT}-inv: \bigwedge S T. cdcl_{NOT} S T \Longrightarrow inv S \Longrightarrow inv T
begin
sublocale dpll-with-backjumping
 apply unfold-locales
 using cdcl_{NOT}. simps cdcl_{NOT}-inv by auto
lemma rtranclp-cdcl_{NOT}-inv:
  cdcl_{NOT}^{**} S T \Longrightarrow inv S \Longrightarrow inv T
 by (induction rule: rtranclp-induct) (auto simp add: cdcl_{NOT}-inv)
lemma rtranclp-cdcl_{NOT}-no-dup:
 assumes cdcl_{NOT}^{**} S T and inv S
 and no-dup (trail S)
 shows no-dup (trail T)
 using assms by (induction rule: rtranclp-induct) (auto intro: cdcl_{NOT}-no-dup rtranclp-cdcl_{NOT}-inv)
lemma rtranclp-cdcl_{NOT}-trail-clauses-bound:
 assumes
   \mathit{cdcl} : \mathit{cdcl}_{NOT}^{**} \ S \ T \ \mathbf{and}
   inv: inv S and
   n-d: no-dup (trail S) and
   atms-clauses-S: atms-of-msu (clauses S) \subseteq A and
   atms-trail-S: atm-of '(lits-of (trail S)) \subseteq A
 shows atm-of '(lits-of (trail T)) \subseteq A \land atms-of-msu (clauses T) \subseteq A
 using cdcl
proof (induction rule: rtranclp-induct)
 case base
 then show ?case using atms-clauses-S atms-trail-S by simp
 case (step T U) note st = this(1) and cdcl_{NOT} = this(2) and IH = this(3)
 have inv T using inv st rtranclp-cdcl_{NOT}-inv by blast
```

```
have no-dup (trail\ T)
   using rtranclp-cdcl_{NOT}-no-dup[of S T] st cdcl_{NOT} inv n-d by blast
  then have atms-of-msu (clauses U) \subseteq A
   using cdcl_{NOT}-atms-of-ms-clauses-decreasing [OF cdcl_{NOT}] IH n-d \langle inv T \rangle by auto
  moreover
   have atm-of '(lits-of (trail U)) \subseteq A
     using cdcl_{NOT}-atms-in-trail-in-set[OF cdcl_{NOT}, of A] \langle no\text{-}dup \ (trail \ T) \rangle
     by (meson atms-trail-S atms-clauses-S IH \langle inv | T \rangle | cdcl_{NOT})
 ultimately show ?case by fast
qed
lemma rtranclp-cdcl_{NOT}-all-decomposition-implies:
  assumes cdcl_{NOT}^{**} S T and inv S and no-dup (trail S) and
   all-decomposition-implies-m (clauses S) (get-all-marked-decomposition (trail S))
 shows
   all-decomposition-implies-m (clauses T) (get-all-marked-decomposition (trail T))
  using assms by (induction)
  (auto intro: rtranclp-cdcl_{NOT}-inv cdcl_{NOT}-all-decomposition-implies rtranclp-cdcl_{NOT}-no-dup)
lemma rtranclp-cdcl_{NOT}-bj-sat-ext-iff:
  assumes cdcl_{NOT}^{**} S Tand inv S and no-dup (trail S)
 shows I \models sextm \ clauses \ S \longleftrightarrow I \models sextm \ clauses \ T
  using assms apply (induction rule: rtranclp-induct)
  using cdcl_{NOT}-bj-sat-ext-iff by (auto intro: rtranclp-cdcl_{NOT}-inv rtranclp-cdcl_{NOT}-no-dup)
definition cdcl_{NOT}-NOT-all-inv where
cdcl_{NOT}-NOT-all-inv A \ S \longleftrightarrow (finite \ A \land inv \ S \land atms-of-msu \ (clauses \ S) \subseteq atms-of-ms \ A
   \land atm-of 'lits-of (trail S) \subseteq atms-of-ms A \land no-dup (trail S))
lemma cdcl_{NOT}-NOT-all-inv:
 assumes cdcl_{NOT}^{**} S T and cdcl_{NOT}-NOT-all-inv A S
 shows cdcl_{NOT}-NOT-all-inv A T
 using assms unfolding cdcl_{NOT}-NOT-all-inv-def
 by (simp\ add:\ rtranclp-cdcl_{NOT}-inv\ rtranclp-cdcl_{NOT}-no-dup\ rtranclp-cdcl_{NOT}-trail-clauses-bound)
abbreviation learn-or-forget where
learn-or-forget S T \equiv (\lambda S T. learn S T \vee forget_{NOT} S T) S T
lemma rtranclp-learn-or-forget-cdcl_{NOT}:
  learn-or-forget^{**} S T \Longrightarrow cdcl_{NOT}^{**} S T
 using rtranclp-mono[of learn-or-forget cdcl_{NOT}] cdcl_{NOT}.c-learn cdcl_{NOT}.c-forget_{NOT} by blast
lemma learn-or-forget-dpll-\mu_C:
 assumes
   l-f: learn-or-forget** S T and
   dpll: dpll-bj \ T \ U \ {\bf and}
   inv: cdcl_{NOT}-NOT-all-inv \ A \ S
 shows (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
     -\mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight U)
   < (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
      - \mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight S)
    (is ?\mu U < ?\mu S)
proof -
 have ?\mu\ S=?\mu\ T
```

```
using l-f
   proof (induction)
     \mathbf{case}\ base
     then show ?case by simp
   next
     case (step \ T \ U)
     moreover then have no-dup (trail T)
       using rtranclp-cdcl_{NOT}-no-dup[of S T] cdcl_{NOT}-NOT-all-inv-def inv
       rtranclp-learn-or-forget-cdcl_{NOT} by auto
     ultimately show ?case
       using forget-\mu_C-stable learn-\mu_C-stable inv unfolding cdcl_{NOT}-NOT-all-inv-def by presburger
   qed
  moreover have cdcl_{NOT}-NOT-all-inv A T
    using rtranclp-learn-or-forget-cdcl_{NOT} cdcl_{NOT}-NOT-all-inv l-f inv by blast
 ultimately show ?thesis
   using dpll-bj-trail-mes-decreasing-prop[of T U A, OF dpll] finite
   unfolding cdcl_{NOT}-NOT-all-inv-def by linarith
qed
lemma infinite-cdcl_{NOT}-exists-learn-and-forget-infinite-chain:
 assumes
   \bigwedge i. \ cdcl_{NOT} \ (f \ i) \ (f(Suc \ i)) \ and
   inv: cdcl_{NOT}-NOT-all-inv \ A \ (f \ \theta)
 shows \exists j. \forall i \geq j. learn-or-forget (f i) (f (Suc i))
 using assms
proof (induction (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
    -\mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight (f 0))
   arbitrary: f
   rule: nat-less-induct-case)
 case (Suc n) note IH = this(1) and \mu = this(2) and cdcl_{NOT} = this(3) and inv = this(4)
 consider
     (dpll-end) \exists j. \ \forall i \geq j. \ learn-or-forget \ (f \ i) \ (f \ (Suc \ i))
   |(dpll\text{-more}) \neg (\exists j. \forall i \geq j. learn\text{-or-forget } (f i) (f (Suc i)))|
   by blast
  then show ?case
   proof cases
     case dpll-end
     then show ?thesis by auto
   next
     case dpll-more
     then have j: \exists i. \neg learn (f i) (f (Suc i)) \land \neg forget_{NOT} (f i) (f (Suc i))
       by blast
     obtain i where
       \neg learn\ (f\ i)\ (f\ (Suc\ i)) \land \neg forget_{NOT}\ (f\ i)\ (f\ (Suc\ i)) and
       \forall k < i. learn-or-forget (f k) (f (Suc k))
       proof -
         obtain i_0 where \neg learn (f i_0) (f (Suc i_0)) \land \neg forget_{NOT} (f i_0) (f (Suc i_0))
           using j by auto
         then have \{i. i \leq i_0 \land \neg learn (f i) (f (Suc i)) \land \neg forget_{NOT} (f i) (f (Suc i))\} \neq \{\}
         \mathbf{let} \ ?I = \{i. \ i \leq i_0 \ \land \ \neg \ learn \ (f \ i) \ (f \ (Suc \ i)) \ \land \neg forget_{NOT} \ (f \ i) \ (f \ (Suc \ i))\}
         let ?i = Min ?I
         have finite ?I
           by auto
         have \neg learn (f?i) (f(Suc?i)) \land \neg forget_{NOT} (f?i) (f(Suc?i))
```

```
using Min-in[OF \langle finite?I \rangle \langle ?I \neq \{\} \rangle] by auto
         moreover have \forall k < ?i. learn-or-forget (f k) (f (Suc k))
           using Min.coboundedI[of \{i. i \leq i_0 \land \neg learn (f i) (f (Suc i)) \land \neg forget_{NOT} (f i)\}
             (f(Suc\ i)), simplified
           by (meson \leftarrow learn\ (f\ i_0)\ (f\ (Suc\ i_0)) \land \neg\ forget_{NOT}\ (f\ i_0)\ (f\ (Suc\ i_0)) \land less-imp-le
             dual-order.trans not-le)
         ultimately show ?thesis using that by blast
       qed
     \mathbf{def}\ g \equiv \lambda n.\ f\ (n + Suc\ i)
     have dpll-bj (f i) (g \theta)
       using \langle \neg learn (f i) (f (Suc i)) \wedge \neg forget_{NOT} (f i) (f (Suc i)) \rangle cdcl_{NOT} cdcl_{NOT}.cases
       g-def by auto
       \mathbf{fix} \ j
       assume j \leq i
       then have learn-or-forget** (f \ \theta) \ (f \ j)
         apply (induction j)
          apply simp
         by (metis (no-types, lifting) Suc-leD Suc-le-lessD rtranclp.simps
           \forall k < i. \ learn \ (f \ k) \ (f \ (Suc \ k)) \lor forget_{NOT} \ (f \ k) \ (f \ (Suc \ k)) \rangle
     then have learn-or-forget^{**} (f \ 0) (f \ i) by blast
     then have (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
           -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight (g \theta))
       < (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
          -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight (f 0))
       using learn-or-forget-dpll-\mu_C[of f \ 0 \ f \ i \ g \ 0 \ A] \ inv \langle dpll-bj \ (f \ i) \ (g \ 0) \rangle
       unfolding cdcl_{NOT}-NOT-all-inv-def by linarith
     moreover have cdcl_{NOT}-i: cdcl_{NOT}^{**} (f \theta) (g \theta)
       using rtranclp-learn-or-forget-cdcl_{NOT}[of f \ 0 \ f \ i] \ \langle learn-or-forget^{**} \ (f \ 0) \ (f \ i) \rangle
       cdcl_{NOT}[of\ i] unfolding g-def by auto
     moreover have \bigwedge i. \ cdcl_{NOT} \ (g \ i) \ (g \ (Suc \ i))
       using cdcl_{NOT} g-def by auto
     moreover have cdcl_{NOT}-NOT-all-inv A (g \theta)
       using inv cdcl_{NOT}-i rtranclp-cdcl_{NOT}-trail-clauses-bound g-def cdcl_{NOT}-NOT-all-inv by auto
     ultimately obtain j where j: \bigwedge i. i > j \implies learn-or-forget (q i) (q (Suc i))
       using IH unfolding \mu[symmetric] by presburger
     show ?thesis
       proof
         {
           \mathbf{fix} \ k
           assume k \ge j + Suc i
           then have learn-or-forget (f k) (f (Suc k))
             using j[of k-Suc \ i] unfolding g-def by auto
         then show \forall k \ge j + Suc \ i. \ learn-or-forget \ (f \ k) \ (f \ (Suc \ k))
           by auto
       qed
   qed
next
  case \theta note H = this(1) and cdcl_{NOT} = this(2) and inv = this(3)
 show ?case
   proof (rule ccontr)
     assume ¬ ?case
```

```
then have j: \exists i. \neg learn (f i) (f (Suc i)) \land \neg forget_{NOT} (f i) (f (Suc i))
        by blast
      obtain i where
        \neg learn\ (f\ i)\ (f\ (Suc\ i)) \land \neg forget_{NOT}\ (f\ i)\ (f\ (Suc\ i)) and
        \forall k < i. learn-or-forget (f k) (f (Suc k))
        proof -
          obtain i_0 where \neg learn (f i_0) (f (Suc i_0)) \land \neg forget_{NOT} (f i_0) (f (Suc i_0))
            using j by auto
          then have \{i.\ i \leq i_0 \land \neg learn\ (f\ i)\ (f\ (Suc\ i)) \land \neg forget_{NOT}\ (f\ i)\ (f\ (Suc\ i))\} \neq \{\}
          let ?I = \{i. \ i \leq i_0 \land \neg learn \ (f \ i) \ (f \ (Suc \ i)) \land \neg forget_{NOT} \ (f \ i) \ (f \ (Suc \ i))\}
          let ?i = Min ?I
          have finite ?I
            by auto
          have \neg learn (f?i) (f(Suc?i)) \land \neg forget_{NOT} (f?i) (f(Suc?i))
            using Min-in[OF \langle finite?I \rangle \langle ?I \neq \{\} \rangle] by auto
          moreover have \forall k < ?i. learn-or-forget (f k) (f (Suc k))
            using Min.coboundedI[of \{i.\ i \leq i_0 \land \neg learn\ (f\ i)\ (f\ (Suc\ i)) \land \neg\ forget_{NOT}\ (f\ i)
               (f(Suc\ i)), simplified
            by (meson \leftarrow learn\ (f\ i_0)\ (f\ (Suc\ i_0)) \land \neg\ forget_{NOT}\ (f\ i_0)\ (f\ (Suc\ i_0)) \land less-imp-le
               dual-order.trans not-le)
          ultimately show ?thesis using that by blast
        qed
      have dpll-bj (f i) (f (Suc i))
        using \langle \neg learn (f i) (f (Suc i)) \wedge \neg forget_{NOT} (f i) (f (Suc i)) \rangle cdcl_{NOT} cdcl_{NOT}.cases
        \mathbf{by} blast
        \mathbf{fix} \ j
        assume j \leq i
        then have learn-or-forget^{**} (f \ \theta) (f \ j)
          apply (induction j)
           apply simp
          by (metis (no-types, lifting) Suc-leD Suc-le-lessD rtranclp.simps
            \forall k < i. \ learn \ (f \ k) \ (f \ (Suc \ k)) \lor forget_{NOT} \ (f \ k) \ (f \ (Suc \ k)) \lor)
      then have learn-or-forget^{**} (f \ \theta) (f \ i) by blast
      then show False
        using learn-or-forget-dpll-\mu_C[off\ 0\ f\ i\ f\ (Suc\ i)\ A]\ inv\ 0
        \langle dpll-bj \ (f \ i) \ (f \ (Suc \ i)) \rangle unfolding cdcl_{NOT}-NOT-all-inv-def by linarith
    qed
qed
lemma wf-cdcl_{NOT}-no-learn-and-forget-infinite-chain:
  assumes
    no-infinite-lf: \bigwedge f j. \neg (\forall i \geq j. learn-or-forget (f i) (f (Suc i)))
 shows wf \{(T, S). \ cdcl_{NOT} \ S \ T \land cdcl_{NOT}\text{-}NOT\text{-}all\text{-}inv \ A \ S\} \ (is \ wf \ \{(T, S). \ cdcl_{NOT} \ S \ T
        \land ?inv S\})
  unfolding wf-iff-no-infinite-down-chain
proof (rule ccontr)
  assume ¬¬(∃f. \forall i. (f (Suc i), f i) ∈ {(T, S). cdcl_{NOT} S T \land ?inv S})
  then obtain f where
    \forall i. \ cdcl_{NOT} \ (f \ i) \ (f \ (Suc \ i)) \land \ ?inv \ (f \ i)
  then have \exists j. \ \forall i \geq j. \ learn-or-forget \ (f \ i) \ (f \ (Suc \ i))
```

```
using infinite-cdcl_{NOT}-exists-learn-and-forget-infinite-chain[of f] by meson
  then show False using no-infinite-lf by blast
qed
lemma inv-and-tranclp-cdcl-_{NOT}-tranclp-cdcl_{NOT}-and-inv:
  cdcl_{NOT}^{++} S T \land cdcl_{NOT}-NOT-all-inv A S \longleftrightarrow (\lambda S T. cdcl_{NOT} S T \land cdcl_{NOT}-NOT-all-inv A
S)^{++} S T
  (is ?A \land ?I \longleftrightarrow ?B)
proof
 assume ?A \land ?I
 then have ?A and ?I by blast+
 then show ?B
   apply induction
     apply (simp add: tranclp.r-into-trancl)
   by (metis\ (no-types,\ lifting)\ cdcl_{NOT}-NOT-all-inv\ tranclp.simps\ tranclp-into-rtranclp)
next
 assume ?B
 then have ?A by induction auto
 moreover have ?I using \langle ?B \rangle translpD by fastforce
 ultimately show ?A \land ?I by blast
qed
lemma wf-tranclp-cdcl_{NOT}-no-learn-and-forget-infinite-chain:
 assumes
   no-infinite-lf: \bigwedge f j. \neg (\forall i \geq j. learn-or-forget (f i) (f (Suc i)))
 shows wf \{(T, S). \ cdcl_{NOT}^{++} \ S \ T \land cdcl_{NOT}\text{-}NOT\text{-}all\text{-}inv \ A \ S\}
 using wf-trancl[OF wf-cdcl_{NOT}-no-learn-and-forget-infinite-chain[OF no-infinite-lf]]
 apply (rule wf-subset)
 by (auto simp: trancl-set-tranclp inv-and-tranclp-cdcl-_{NOT}-tranclp-cdcl_{NOT}-and-inv)
lemma cdcl_{NOT}-final-state:
 assumes
   n-s: no-step cdcl_{NOT} S and
   inv: cdcl_{NOT}-NOT-all-inv \ A \ S and
   decomp: all-decomposition-implies-m \ (clauses \ S) \ (get-all-marked-decomposition \ (trail \ S))
 shows unsatisfiable (set-mset (clauses S))
   \vee (trail S \models asm\ clauses\ S \wedge satisfiable\ (set\text{-mset}\ (clauses\ S)))
proof -
 have n-s': no-step dpll-bj S
   using n-s by (auto simp: cdcl_{NOT}.simps)
 show ?thesis
   apply (rule dpll-backjump-final-state[of S A])
   using inv decomp n-s' unfolding cdcl_{NOT}-NOT-all-inv-def by auto
lemma full-cdcl_{NOT}-final-state:
 assumes
   full: full cdcl_{NOT} S T and
   inv: cdcl_{NOT}-NOT-all-inv A S and
   n-d: no-dup (trail S) and
   decomp: all-decomposition-implies-m (clauses S) (get-all-marked-decomposition (trail S))
 shows unsatisfiable (set-mset (clauses T))
   \vee (trail T \models asm\ clauses\ T \land satisfiable\ (set\text{-mset}\ (clauses\ T)))
proof -
 have st: cdcl_{NOT}^{**} S T and n-s: no-step cdcl_{NOT} T
```

```
using full unfolding full-def by blast+
  have n\text{-}s': cdcl_{NOT}-NOT-all-inv A T
    using cdcl_{NOT}-NOT-all-inv inv st by blast
  moreover have all-decomposition-implies-m (clauses T) (qet-all-marked-decomposition (trail T))
    using cdcl_{NOT}-NOT-all-inv-def decomp inv rtranclp-cdcl_{NOT}-all-decomposition-implies st by auto
  ultimately show ?thesis
    using cdcl_{NOT}-final-state n-s by blast
qed
end — end of conflict-driven-clause-learning
2.6
         Termination
           Restricting learn and forget
2.6.1
{\bf locale}\ conflict-driven-clause-learning-learning-before-backjump-only-distinct-learnt=
  conflict-driven-clause-learning trail clauses prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT}
  propagate-conds inv backjump-conds
  \lambda C S. distinct-mset C \wedge \neg tautology C \wedge learn-restrictions <math>C S \wedge \neg tautology C
    (\exists F \ K \ d \ F' \ C' \ L. \ \textit{trail} \ S = F' \ @ \ \textit{Marked} \ K \ () \ \# \ F \ \land \ C = C' + \{\#L\#\} \ \land \ F \models \textit{as} \ \textit{CNot} \ C' \}
      \wedge C' + \{\#L\#\} \notin \# clauses S)
  \lambda C S. \neg (\exists F' F K d L. trail S = F' @ Marked K () \# F \land F \models as CNot (C - \{\#L\#\}))
    \land forget-restrictions C S
    for
      trail :: 'st \Rightarrow ('v, unit, unit) ann-literals and
      clauses :: 'st \Rightarrow 'v \ clauses \ and
      prepend-trail :: ('v, unit, unit) \ ann-literal \Rightarrow 'st \Rightarrow 'st \ and
      tl-trail :: 'st \Rightarrow 'st and
      add-cls_{NOT} remove-cls_{NOT}:: 'v clause <math>\Rightarrow 'st \Rightarrow 'st and
      propagate\text{-}conds :: ('v, unit, unit) \ ann\text{-}literal \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
      inv :: 'st \Rightarrow bool \text{ and }
      backjump\text{-}conds :: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
      learn-restrictions forget-restrictions :: 'v clause \Rightarrow 'st \Rightarrow bool
begin
lemma cdcl_{NOT}-learn-all-induct[consumes 1, case-names dpll-bj learn forget_{NOT}]:
  fixes S T :: 'st
  assumes cdcl_{NOT} S T and
    dpll: \bigwedge T. dpll-bj S T \Longrightarrow P S T and
    learning:
      \bigwedge C \ F \ K \ F' \ C' \ L \ T. \ clauses \ S \models pm \ C
      \implies atms-of C \subseteq atms-of-msu (clauses S) \cup atm-of ' (lits-of (trail S))
      \implies distinct-mset C \implies \neg tautology C \implies learn-restrictions C S
      \implies trail S = F' \otimes Marked K () # F <math>\implies C = C' + \{\#L\#\} \implies F \models as \ CNot \ C'
      \implies C' + \{\#L\#\} \notin \# clauses S \implies T \sim add\text{-}cls_{NOT} C S
      \implies P S T  and
    forgetting: \bigwedge C T. clauses S - replicate-mset (count (clauses S) C) C \models pm \ C
      \implies C \in \# \ clauses \ S
      \implies \neg (\exists F' \ F \ K \ L. \ trail \ S = F' \ @ \ Marked \ K \ () \# F \land F \models as \ CNot \ (C - \{\#L\#\}))
      \implies T \sim remove\text{-}cls_{NOT} \ C \ S
      \Longrightarrow \textit{forget-restrictions} \ C \ S \Longrightarrow P \ S \ T
  shows P S T
  using assms(1)
  apply (induction rule: cdcl_{NOT}.induct)
```

apply (auto dest: assms(2) simp add: learn-ops-axioms)[]

apply (auto elim!: learn-ops.learn.cases[OF learn-ops-axioms] dest: assms(3))[]

```
apply (auto elim!: forget-ops.forget_{NOT}.cases[OF\ forget-ops-axioms]\ dest!:\ assms(4))
  done
lemma rtranclp-cdcl_{NOT}-inv:
  cdcl_{NOT}^{**} S T \Longrightarrow inv S \Longrightarrow inv T
  apply (induction rule: rtranclp-induct)
  apply simp
  using cdcl_{NOT}-inv unfolding conflict-driven-clause-learning-def
  conflict-driven-clause-learning-axioms-def by blast
{f lemma}\ learn-always-simple-clauses:
  assumes
   learn: learn S T and
   n-d: no-dup (trail S)
 shows set-mset (clauses T – clauses S)
    \subseteq simple-clss (atms-of-msu (clauses S) \cup atm-of 'lits-of (trail S))
proof
  fix C assume C: C \in set\text{-mset} (clauses T - clauses S)
  have distinct-mset C \neg tautology C using learn C n-d by (elim learn NOTE; auto)+
  \mathbf{then}\ \mathbf{have}\ C\in \mathit{simple-clss}\ (\mathit{atms-of}\ C)
   {\bf using} \ distinct\text{-}mset\text{-}not\text{-}tautology\text{-}implies\text{-}in\text{-}simple\text{-}clss} \ {\bf by} \ blast
  moreover have atms-of C \subseteq atms-of-msu (clauses S) \cup atm-of 'lits-of (trail S)
   using learn C n-d by (elim learn NOTE) (auto simp: atms-of-ms-def atms-of-def image-Un
     true-annots-CNot-all-atms-defined)
  moreover have finite (atms-of-msu (clauses S) \cup atm-of 'lits-of (trail S))
    by auto
  ultimately show C \in simple-clss (atms-of-msu (clauses S) \cup atm-of 'lits-of (trail S))
   using simple-clss-mono by (metis (no-types) insert-subset mk-disjoint-insert)
definition conflicting-bj-clss S \equiv
  \{C+\#L\#\}\mid C\ L.\ C+\#L\#\}\in \#\ clauses\ S\ \land\ distinct-mset\ (C+\#L\#\})\ \land\ \neg tautology\ (C+\#L\#\})
    \land (\exists F' \ K \ F. \ trail \ S = F' @ Marked \ K \ () \# F \land F \models as \ CNot \ C) \}
lemma conflicting-bj-clss-remove-cls_{NOT}[simp]:
  conflicting-bj-clss\ (remove-cls_{NOT}\ C\ S) = conflicting-bj-clss\ S - \{C\}
  unfolding conflicting-bj-clss-def by fastforce
lemma conflicting-bj-clss-add-cls_{NOT}-state-eq:
  T \sim add\text{-}cls_{NOT} \ C' \ S \Longrightarrow no\text{-}dup \ (trail \ S) \Longrightarrow conflicting\text{-}bj\text{-}clss \ T
   = conflicting-bj-clss S
     \cup (if \exists C L. C' = C + \{\#L\#\} \land distinct\text{-mset} (C + \{\#L\#\}) \land \neg tautology (C + \{\#L\#\})
    \wedge (\exists F' \ K \ d \ F. \ trail \ S = F' @ Marked \ K \ () \# F \wedge F \models as \ CNot \ C)
     then \{C'\} else \{\}
  unfolding conflicting-bj-clss-def by auto metis+
lemma conflicting-bj-clss-add-cls_{NOT}:
  no-dup (trail S) \Longrightarrow
  conflicting-bj-clss (add-cls_{NOT} C'S)
   = conflicting-bj-clss S
     \cup (if \exists C L. C' = C + \{\#L\#\} \land distinct\text{-mset} (C + \{\#L\#\}) \land \neg tautology (C + \{\#L\#\})
    \wedge (\exists F' \ K \ d \ F. \ trail \ S = F' \ @ \ Marked \ K \ () \ \# \ F \ \wedge \ F \models as \ CNot \ C)
     then \{C'\} else \{\})
  using conflicting-bj-clss-add-cls_{NOT}-state-eq by auto
```

```
lemma conflicting-bj-clss-incl-clauses:
   conflicting-bj-clss \ S \subseteq set-mset \ (clauses \ S)
  unfolding conflicting-bj-clss-def by auto
lemma finite-conflicting-bj-clss[simp]:
  finite\ (conflicting-bj-clss\ S)
  using conflicting-bj-clss-incl-clauses[of S] rev-finite-subset by blast
lemma learn-conflicting-increasing:
  no\text{-}dup\ (trail\ S) \Longrightarrow learn\ S\ T \Longrightarrow conflicting-bj\text{-}clss\ S \subseteq conflicting-bj\text{-}clss\ T
 apply (elim\ learn_{NOT}E)
  by (subst conflicting-bj-clss-add-cls_{NOT}-state-eq[of T]) auto
abbreviation conflicting-bj-clss-yet b S \equiv
  3 \hat{b} - card (conflicting-bj-clss S)
abbreviation \mu_L :: nat \Rightarrow 'st \Rightarrow nat \times nat where
 \mu_L b S \equiv (conflicting-bj-clss-yet b S, card (set-mset (clauses S)))
\mathbf{lemma}\ do\text{-}not\text{-}forget\text{-}before\text{-}backtrack\text{-}rule\text{-}clause\text{-}learned\text{-}clause\text{-}untouched\text{:}}
  assumes forget_{NOT} S T
  shows conflicting-bj-clss S = conflicting-bj-clss T
  using assms apply induction
  unfolding conflicting-bj-clss-def
  by (metis (no-types, lifting) Diff-insert-absorb Set.set-insert clauses-remove-cls_{NOT}
   diff-union-cancelR insert-iff mem-set-mset-iff order-refl set-mset-minus-replicate-mset(1)
   state-eq_{NOT}-clauses state-eq_{NOT}-trail trail-remove-cls_{NOT})
lemma forget-\mu_L-decrease:
  assumes forget_{NOT}: forget_{NOT} S T
 shows (\mu_L \ b \ T, \mu_L \ b \ S) \in less-than <*lex*> less-than
proof -
  have card (set-mset (clauses T)) < card (set-mset (clauses S))
   using forget_{NOT} apply induction
   by (metis card-Diff1-less clauses-remove-cls_{NOT} finite-set-mset mem-set-mset-iff order-refl
     set-mset-minus-replicate-mset(1) state-eq_{NOT}-clauses)
   unfolding do-not-forget-before-backtrack-rule-clause-learned-clause-untouched [OF\ forget_{NOT}]
   by auto
qed
lemma set-condition-or-split:
   \{a. (a = b \lor Q \ a) \land S \ a\} = (if \ S \ b \ then \ \{b\} \ else \ \{\}) \cup \{a. \ Q \ a \land S \ a\}
  by auto
lemma set-insert-neq:
  A \neq insert \ a \ A \longleftrightarrow a \notin A
 by auto
lemma learn-\mu_L-decrease:
  assumes learnST: learn S T and n-d: no-dup (trail S) and
   A: atms-of-msu (clauses S) \cup atm-of 'lits-of (trail S) \subseteq A and
  fin-A: finite A
 shows (\mu_L \ (card \ A) \ T, \mu_L \ (card \ A) \ S) \in less-than <*lex*> less-than
proof -
```

```
have [simp]: (atms-of-msu\ (clauses\ T)\cup atm-of\ `lits-of\ (trail\ T))
 = (atms\text{-}of\text{-}msu\ (clauses\ S) \cup\ atm\text{-}of\ ``lits\text{-}of\ (trail\ S))
 using learnST n-d by (elim\ learn_{NOT}E) auto
then have card\ (atms-of-msu\ (clauses\ T) \cup atm-of\ `lits-of\ (trail\ T))
 = card (atms-of-msu (clauses S) \cup atm-of 'lits-of (trail S))
 by (auto intro!: card-mono)
then have 3: (3::nat) \widehat{\ } card (atms-of-msu\ (clauses\ T)\cup atm-of\ (lits-of\ (trail\ T))
 = 3 \ \widehat{} \ card \ (atms-of-msu \ (clauses \ S) \cup atm-of \ (trail \ S))
 by (auto intro: power-mono)
moreover have conflicting-bj-clss S \subseteq conflicting-bj-clss T
 using learnST n-d by (simp add: learn-conflicting-increasing)
moreover have conflicting-bj-clss S \neq conflicting-bj-clss T
 using learnST
 proof (elim\ learn_{NOT}E,\ goal\text{-}cases)
   case (1 C) note clss-S = this(1) and atms-C = this(2) and inv = this(3) and T = this(4)
   then obtain F K F' C' L where
     tr-S: trail\ S = F' \otimes Marked\ K\ () \# F and
     C: C = C' + \{\#L\#\} \text{ and }
     F: F \models as \ CNot \ C' and
     C\text{-}S\text{:}C' + \{\#L\#\} \not\in \# \ clauses \ S
     by blast
   moreover have distinct-mset C \neg tautology C using inv by blast+
   ultimately have C' + \{\#L\#\} \in conflicting-bj\text{-}clss\ T
     using T n-d unfolding conflicting-bj-clss-def by fastforce
   moreover have C' + \{\#L\#\} \notin conflicting-bj\text{-}clss \ S
     using C-S unfolding conflicting-bj-clss-def by auto
   ultimately show ?case by blast
 qed
moreover have fin-T: finite (conflicting-bj-clss T)
 using learnST by induction (auto simp add: conflicting-bj-clss-add-cls_{NOT})
ultimately have card (conflicting-bj-clss T) \geq card (conflicting-bj-clss S)
 using card-mono by blast
moreover
 have fin': finite (atms-of-msu (clauses T) \cup atm-of 'lits-of (trail T))
 have 1:atms-of-ms (conflicting-bj-clss T) \subseteq atms-of-msu (clauses T)
   unfolding conflicting-bj-clss-def atms-of-ms-def by auto
 have 2: \land x. \ x \in conflicting-bj-clss \ T \Longrightarrow \neg \ tautology \ x \land \ distinct-mset \ x
   unfolding conflicting-bj-clss-def by auto
 have T: conflicting-bj-clss T
 \subseteq simple-clss (atms-of-msu (clauses T) \cup atm-of `lits-of (trail T))
   by standard (meson 1 2 fin' \( \) finite (conflicting-bj-clss \( T \) \( \) simple-clss-mono
     distinct-mset-set-def simplified-in-simple-clss subsetCE sup.coboundedI1)
moreover
 then have \#: 3 \cap card (atms-of-msu (clauses T) \cup atm-of `lits-of (trail T))
     > card (conflicting-bj-clss T)
   by (meson Nat.le-trans simple-clss-card simple-clss-finite card-mono fin')
 have atms-of-msu (clauses T) \cup atm-of 'lits-of (trail T) \subseteq A
   using learn_{NOT}E[OF\ learnST]\ A by simp
 then have 3 \cap (card \ A) \geq card \ (conflicting-bj-clss \ T)
   using # fin-A by (meson simple-clss-card simple-clss-finite
     simple-clss-mono\ calculation(2)\ card-mono\ dual-order.trans)
ultimately show ?thesis
```

```
 \begin{array}{c} \textbf{using} \ psubset\text{-}card\text{-}mono[OF \ fin\text{-}T\ ]} \\ \textbf{unfolding} \ less\text{-}than\text{-}iff \ lex\text{-}prod\text{-}def\ } \textbf{by} \ clarify \\ (meson\ \langle conflicting\text{-}bj\text{-}clss\ S \neq conflicting\text{-}bj\text{-}clss\ T \rangle \\ \langle conflicting\text{-}bj\text{-}clss\ S \subseteq conflicting\text{-}bj\text{-}clss\ T \rangle \\ diff\text{-}less\text{-}mono2\ le\text{-}less\text{-}trans\ not\text{-}le\ psubsetI) \\ \textbf{qed} \end{array}
```

We have to assume the following:

- inv S: the invariant holds in the inital state.
- A is a (finite finite A) superset of the literals in the trail atm-of ' lits-of $(trail\ S) \subseteq atms$ -of- $ms\ A$ and in the clauses atms-of- $msu\ (clauses\ S) \subseteq atms$ -of- $ms\ A$. This can the the set of all the literals in the starting set of clauses.
- no-dup (trail S): no duplicate in the trail. This is invariant along the path.

```
definition \mu_{CDCL} where
\mu_{CDCL} \ A \ T \equiv ((2 + card \ (atms-of-ms \ A)) \ \widehat{\ } (1 + card \ (atms-of-ms \ A))
              -\mu_C \ (1+card \ (atms-of-ms \ A)) \ (2+card \ (atms-of-ms \ A)) \ (trail-weight \ T),
          conflicting-bj-clss-yet (card (atms-of-ms A)) T, card (set-mset (clauses T)))
lemma cdcl_{NOT}-decreasing-measure:
 assumes
   cdcl_{NOT} S T and
   inv: inv S and
   atm-clss: atms-of-msu (clauses S) \subseteq atms-of-ms A and
   atm-lits: atm-of 'lits-of (trail S) \subseteq atms-of-ms A and
   n-d: no-dup (trail S) and
   fin-A: finite A
 shows (\mu_{CDCL} A T, \mu_{CDCL} A S)
          \in less-than <*lex*> (less-than <*lex*> less-than)
 using assms(1)
proof induction
 case (c-dpll-bj\ T)
 from dpll-bj-trail-mes-decreasing-prop[OF this(1) inv atm-clss atm-lits n-d fin-A]
 show ?case unfolding \mu_{CDCL}-def
   by (meson in-lex-prod less-than-iff)
  case (c\text{-}learn\ T) note learn = this(1)
 then have S: trail S = trail T
   using inv atm-clss atm-lits n-d fin-A
   by (elim\ learn_{NOT}E) auto
 show ?case
   using learn-\mu_L-decrease OF learn - \alpha atm-clss atm-lits fin-A n-d unfolding S \mu_{CDCL}-def by auto
 case (c\text{-}forget_{NOT}\ T) note forget_{NOT} = this(1)
 have trail S = trail \ T \ \mathbf{using} \ forget_{NOT} \ \mathbf{by} \ induction \ auto
 then show ?case
   using forget-\mu_L-decrease[OF\ forget_{NOT}] unfolding \mu_{CDCL}-def by auto
qed
lemma wf-cdcl_{NOT}-restricted-learning:
 assumes finite A
 shows wf \{(T, S).
   (atms-of-msu\ (clauses\ S)\subseteq atms-of-ms\ A\wedge atm-of\ `lits-of\ (trail\ S)\subseteq atms-of-ms\ A
```

```
\land no-dup (trail S)
   \wedge inv S)
   \land cdcl_{NOT} S T 
 by (rule wf-wf-if-measure' of less-than <*lex*> (less-than <*lex*> less-than)
    (auto\ intro:\ cdcl_{NOT} - decreasing - measure[OF - - - - assms])
definition \mu_C':: 'v literal multiset set \Rightarrow 'st \Rightarrow nat where
\mu_C' A T \equiv \mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T)
definition \mu_{CDCL}' :: 'v \ literal \ multiset \ set \Rightarrow 'st \Rightarrow nat \ \mathbf{where}
\mu_{CDCL}' A T \equiv
 ((2+card\ (atms-of-ms\ A)) \cap (1+card\ (atms-of-ms\ A)) - \mu_C'\ A\ T) * (1+3^card\ (atms-of-ms\ A)) *
  + conflicting-bj-clss-yet (card (atms-of-ms A)) T * 2
 + card (set\text{-}mset (clauses T))
lemma cdcl_{NOT}-decreasing-measure':
 assumes
   cdcl_{NOT} S T and
   inv: inv S and
   atms\text{-}clss:\ atms\text{-}of\text{-}msu\ (clauses\ S)\subseteq atms\text{-}of\text{-}ms\ A\ \mathbf{and}
   atms-trail: atm-of 'lits-of (trail S) \subseteq atms-of-ms A and
   n-d: no-dup (trail S) and
   fin-A: finite A
 shows \mu_{CDCL}' A T < \mu_{CDCL}' A S
 using assms(1)
proof (induction rule: cdcl_{NOT}-learn-all-induct)
 case (dpll-bj\ T)
 then have (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A)) - \mu_C' A T
   < (2+card (atms-of-ms A)) \hat{} (1+card (atms-of-ms A)) - \mu_C A S
   using dpll-bj-trail-mes-decreasing-prop fin-A inv n-d atms-clss atms-trail
   unfolding \mu_C'-def by blast
  then have XX: ((2+card\ (atms-of-ms\ A)) \cap (1+card\ (atms-of-ms\ A)) - \mu_C'\ A\ T) + 1
   \leq (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A)) - \mu_C' A S
   by auto
  from mult-le-mono1[OF this, of <math>(1 + 3 \cap card (atms-of-ms A))]
  have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A T) *
     (1 + 3 \widehat{card} (atms-of-ms A)) + (1 + 3 \widehat{card} (atms-of-ms A))
   \leq ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A S)
     * (1 + 3 \cap card (atms-of-ms A))
   unfolding Nat.add-mult-distrib
   by presburger
 moreover
   have cl-T-S: clauses T = clauses S
     using dpll-bj.hyps inv dpll-bj-clauses by auto
   have conflicting-bj-clss-yet (card (atms-of-ms A)) S < 1 + 3 and (atms-of-ms A)
   by simp
  ultimately have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A T)
     * (1 + 3 \cap card (atms-of-ms A)) + conflicting-bj-clss-yet (card (atms-of-ms A)) T
   <((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A S) *(1 + 3 \cap card (atms-of-ms A))
A))
   by linarith
  then have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A T)
       * (1 + 3 \cap card (atms-of-ms A))
     + conflicting-bj-clss-yet (card (atms-of-ms A)) T
```

```
<((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A S)
       * (1 + 3 \hat{} card (atms-of-ms A))
     + conflicting-bj-clss-yet (card (atms-of-ms A)) S
   by linarith
  then have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A T)
     *(1 + 3 \cap card (atms-of-ms A)) * 2
   + conflicting-bj-clss-yet (card (atms-of-ms A)) T * 2
   <((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A S)
     * (1 + 3 \cap card (atms-of-ms A)) * 2
   + conflicting-bj-clss-yet (card (atms-of-ms A)) S * 2
   by linarith
 then show ?case unfolding \mu_{CDCL}'-def cl-T-S by presburger
next
  case (learn C F' K F C' L T) note clss-S-C = this(1) and atms-C = this(2) and dist = this(3)
   and tauto = this(4) and learn-restr = this(5) and tr-S = this(6) and C' = this(7) and
   F-C = this(8) and C-new = this(9) and T = this(10)
 have insert C (conflicting-bj-clss S) \subseteq simple-clss (atms-of-ms A)
   proof -
     have C \in simple\text{-}clss (atms\text{-}of\text{-}ms A)
       by (metis (no-types, hide-lams) Un-subset-iff atms-of-ms-finite simple-clss-mono
         contra\mbox{-}subset D\mbox{\ } dist\mbox{\ } distinct\mbox{-}mset\mbox{-}not\mbox{-}tautology\mbox{-}implies\mbox{-}in\mbox{-}simple\mbox{-}clss
         dual-order.trans fin-A atms-C atms-clss atms-trail tauto)
     moreover have conflicting-bj-clss S \subseteq simple-clss (atms-of-ms A)
       unfolding conflicting-bj-clss-def
       proof
         \mathbf{fix} \ x :: \ 'v \ literal \ multiset
         assume x \in \{C + \{\#L\#\} \mid CL. \ C + \{\#L\#\} \in \# \ clauses \ S \}
           \land distinct\text{-mset} \ (C + \{\#L\#\}) \land \neg \ tautology \ (C + \{\#L\#\})
           \land (\exists F' \ K \ F. \ trail \ S = F' @ Marked \ K \ () \# F \land F \models as \ CNot \ C) \}
         then have \exists m \ l. \ x = m + \{\#l\#\} \land m + \{\#l\#\} \in \# \ clauses \ S
           \land distinct\text{-mset} \ (m + \{\#l\#\}) \land \neg \ tautology \ (m + \{\#l\#\})
           \land (\exists ms \ l \ msa. \ trail \ S = ms \ @ Marked \ l \ () \ \# \ msa \ \land \ msa \models as \ CNot \ m)
          by blast
         then show x \in simple\text{-}clss (atms\text{-}of\text{-}ms A)
           by (meson atms-clss atms-of-atms-of-ms-mono atms-of-ms-finite simple-clss-mono
             distinct-mset-not-tautology-implies-in-simple-clss fin-A finite-subset
             mem-set-mset-iff set-rev-mp)
       ged
     ultimately show ?thesis
       by auto
  then have card (insert C (conflicting-bj-clss S)) \leq 3 \widehat{} (card (atms-of-ms A))
   by (meson Nat.le-trans atms-of-ms-finite simple-clss-card simple-clss-finite
     card-mono fin-A)
  moreover have [simp]: card (insert\ C\ (conflicting-bj-clss\ S))
   = Suc (card ((conflicting-bj-clss S)))
   by (metis (no-types) C' C-new card-insert-if conflicting-bj-clss-incl-clauses contra-subsetD
     finite-conflicting-bj-clss mem-set-mset-iff)
 moreover have [simp]: conflicting-bj-clss (add-cls<sub>NOT</sub> CS) = conflicting-bj-clss S \cup \{C\}
    using dist tauto F-C n-d by (subst conflicting-bj-clss-add-cls<sub>NOT</sub>)
    (force simp add: ac\text{-simps } C' \text{ tr-}S)+
  ultimately have [simp]: conflicting-bj-clss-yet (card (atms-of-ms A)) S
   = Suc\ (conflicting-bj-clss-yet\ (card\ (atms-of-ms\ A))\ (add-cls_{NOT}\ C\ S))
 have 1: clauses T = clauses (add-cls<sub>NOT</sub> CS) using T by auto
```

```
have 2: conflicting-bj-clss-yet (card (atms-of-ms A)) T
   = conflicting-bj-clss-yet (card (atms-of-ms A)) (add-cls_{NOT} C S)
   using T unfolding conflicting-bj-clss-def by auto
  have \beta: \mu_C' A T = \mu_C' A (add-cls_{NOT} C S)
   using T unfolding \mu_C'-def by auto
  have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A (add-cls_{NOT} C S))
   * (1 + 3 \cap card (atms-of-ms A)) * 2
   = ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A S)
   * (1 + 3 \cap card (atms-of-ms A)) * 2
     using n-d unfolding \mu_C'-def by auto
 moreover
   have conflicting-bj-clss-yet (card (atms-of-ms A)) (add-cls<sub>NOT</sub> CS)
       * 2
     + card (set\text{-}mset (clauses (add\text{-}cls_{NOT} CS)))
     < conflicting-bj-clss-yet (card (atms-of-ms A)) S * 2
     + card (set\text{-}mset (clauses S))
     by (simp\ add:\ C'\ C\text{-}new\ n\text{-}d)
 ultimately show ?case unfolding \mu_{CDCL}'-def 1 2 3 by presburger
next
  case (forget_{NOT} \ C \ T) note T = this(4)
 have [simp]: \mu_C' A (remove-cls_{NOT} C S) = \mu_C' A S
   unfolding \mu_C'-def by auto
 have forget_{NOT} S T
   apply (rule forget_{NOT}.intros) using forget_{NOT} by auto
  then have conflicting-bj-clss T = conflicting-bj-clss S
   using do-not-forget-before-backtrack-rule-clause-learned-clause-untouched by blast
  moreover have card (set-mset (clauses T)) < card (set-mset (clauses S))
   by (metis T card-Diff1-less clauses-remove-cls<sub>NOT</sub> finite-set-mset forget<sub>NOT</sub>.hyps(2)
     mem-set-mset-iff order-refl set-mset-minus-replicate-mset(1) state-eq_{NOT}-clauses)
 ultimately show ?case unfolding \mu_{CDCL}'-def
   by (metis (no-types) T \ \langle \mu_C \rangle A (remove-cls<sub>NOT</sub> CS) = \mu_C \rangle A S \rangle add-le-cancel-left
     \mu_C'-def not-le state-eq<sub>NOT</sub>-trail)
qed
lemma cdcl_{NOT}-clauses-bound:
 assumes
   cdcl_{NOT} S T and
   inv S and
   atms-of-msu (clauses S) \subseteq A and
   atm\text{-}of \ (lits\text{-}of \ (trail \ S)) \subseteq A \ \mathbf{and}
   n-d: no-dup (trail S) and
   fin-A[simp]: finite A
 shows set-mset (clauses T) \subseteq set-mset (clauses S) \cup simple-clss A
 using assms
proof (induction rule: cdcl_{NOT}-learn-all-induct)
 case dpll-bj
 then show ?case using dpll-bj-clauses by simp
 case forget_{NOT}
 then show ?case using clauses-remove-cls_{NOT} unfolding state-eq_{NOT}-def by auto
  case (learn C F K d F' C' L) note atms-C = this(2) and dist = this(3) and tauto = this(4) and
  T = this(10) and atms-clss-S = this(12) and atms-trail-S = this(13)
 have atms-of C \subseteq A
   using atms-C atms-clss-S atms-trail-S by auto
```

```
then have simple-clss\ (atms-of\ C)\subseteq simple-clss\ A
   by (simp add: simple-clss-mono)
  then have C \in simple\text{-}clss A
   using finite dist tauto
   by (auto dest: distinct-mset-not-tautology-implies-in-simple-clss)
  then show ?case using T n-d by auto
qed
\mathbf{lemma}\ \mathit{rtranclp-cdcl}_{NOT}\text{-}\mathit{clauses-bound} \colon
  assumes
    cdcl_{NOT}^{**} S T and
   inv S and
   atms-of-msu (clauses S) \subseteq A and
   atm\text{-}of \ (lits\text{-}of \ (trail \ S)) \subseteq A \ \mathbf{and}
   n-d: no-dup (trail S) and
   finite: finite A
  shows set-mset (clauses T) \subseteq set-mset (clauses S) \cup simple-clss A
  using assms(1-5)
proof induction
  \mathbf{case}\ base
  then show ?case by simp
next
  case (step T U) note st = this(1) and cdcl_{NOT} = this(2) and IH = this(3)[OF\ this(4-7)] and
    inv = this(4) and atms-clss-S = this(5) and atms-trail-S = this(6) and finite-cls-S = this(7)
  have inv T
   using rtranclp-cdcl_{NOT}-inv st inv by blast
  moreover have atms-of-msu (clauses T) \subseteq A and atm-of 'lits-of (trail T) \subseteq A
   \mathbf{using}\ \mathit{rtranclp-cdcl}_{NOT}\text{-}\mathit{trail-clauses-bound}[\mathit{OF}\ \mathit{st}]\ \mathit{inv}\ \mathit{atms-clss-S}\ \mathit{atms-trail-S}\ \mathit{n-d}\ \mathbf{by}\ \mathit{blast+}
  moreover have no-dup (trail T)
  using rtranclp-cdcl_{NOT}-no-dup[OF\ st\ \langle inv\ S\rangle\ n-d] by simp
  ultimately have set-mset (clauses U) \subseteq set-mset (clauses T) \cup simple-clss A
   using cdcl_{NOT} finite n-d by (auto simp: cdcl_{NOT}-clauses-bound)
  then show ?case using IH by auto
qed
lemma rtranclp-cdcl_{NOT}-card-clauses-bound:
  assumes
    cdcl_{NOT}^{**} S T and
   inv S and
   atms-of-msu (clauses S) \subseteq A and
   atm\text{-}of \ (lits\text{-}of \ (trail \ S)) \subseteq A \ \mathbf{and}
   n-d: no-dup (trail S) and
   finite: finite A
  shows card (set-mset (clauses T)) \leq card (set-mset (clauses S)) + 3 ^ (card A)
  using rtranclp-cdcl_{NOT}-clauses-bound [OF assms] finite by (meson Nat.le-trans
   simple-clss-card simple-clss-finite card-Un-le card-mono finite-UnI
   finite-set-mset nat-add-left-cancel-le)
lemma rtranclp-cdcl_{NOT}-card-clauses-bound':
  assumes
    cdcl_{NOT}^{**} S T and
   inv S and
   atms-of-msu (clauses S) \subseteq A and
   atm\text{-}of \ (lits\text{-}of \ (trail \ S)) \subseteq A \ \mathbf{and}
```

```
n-d: no-dup (trail S) and
   finite: finite A
  shows card \{C|C, C \in \# clauses T \land (tautology C \lor \neg distinct-mset C)\}
   \leq card \{C | C. C \in \# clauses S \land (tautology C \lor \neg distinct\text{-mset } C)\} + 3 \cap (card A)
   (is card ?T \leq card ?S + -)
  using rtranclp-cdcl_{NOT}-clauses-bound[OF assms] finite
proof -
 have ?T \subseteq ?S \cup simple\text{-}clss A
   using rtranclp-cdcl_{NOT}-clauses-bound [OF assms] by force
  then have card ?T \leq card (?S \cup simple-clss A)
   using finite by (simp add: assms(5) simple-clss-finite card-mono)
 then show ?thesis
   by (meson le-trans simple-clss-card card-Un-le local finite nat-add-left-cancel-le)
lemma rtranclp-cdcl_{NOT}-card-simple-clauses-bound:
 assumes
   cdcl_{NOT}^{**} S T and
   inv S and
   atms-of-msu (clauses S) \subseteq A and
   atm\text{-}of \ (lits\text{-}of \ (trail \ S)) \subseteq A \ \mathbf{and}
   n-d: no-dup (trail S) and
   finite: finite A
  shows card (set\text{-}mset (clauses T))
  \leq card \{C. \ C \in \# \ clauses \ S \land (tautology \ C \lor \neg distinct-mset \ C)\} + 3 \cap (card \ A)
   (is card ?T < card ?S + -)
  using rtranclp-cdcl_{NOT}-clauses-bound[OF assms] finite
proof -
 have \bigwedge x. \ x \in \# \ clauses \ T \Longrightarrow \neg \ tautology \ x \Longrightarrow \ distinct\text{-mset} \ x \Longrightarrow x \in simple\text{-}clss \ A
   using rtranclp-cdcl_{NOT}-clauses-bound [OF assms] by (metis (no-types, hide-lams) Un-iff assms(3)
     atms-of-atms-of-ms-mono simple-clss-mono contra-subset D
     distinct-mset-not-tautology-implies-in-simple-clss local.finite mem-set-mset-iff
     subset-trans)
  then have set-mset (clauses T) \subseteq ?S \cup simple-clss A
   using rtranclp-cdcl_{NOT}-clauses-bound[OF assms] by auto
  then have card(set\text{-}mset\ (clauses\ T)) < card\ (?S \cup simple\text{-}clss\ A)
   using finite by (simp add: assms(5) simple-clss-finite card-mono)
  then show ?thesis
   by (meson le-trans simple-clss-card card-Un-le local finite nat-add-left-cancel-le)
qed
definition \mu_{CDCL}'-bound :: 'v literal multiset set \Rightarrow 'st \Rightarrow nat where
\mu_{CDCL}'-bound A S =
 ((2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))) * (1 + 3 ^ card (atms-of-ms A)) * 2
    + 2*3 \cap (card (atms-of-ms A))
    + \ card \ \{C. \ C \in \# \ clauses \ S \land (tautology \ C \lor \neg distinct\text{-mset } C)\} + 3 \ \widehat{\ } (card \ (atms\text{-of-ms } A))
lemma \mu_{CDCL}'-bound-reduce-trail-to<sub>NOT</sub>[simp]:
 \mu_{CDCL}'-bound A (reduce-trail-to<sub>NOT</sub> M S) = \mu_{CDCL}'-bound A S
 unfolding \mu_{CDCL}'-bound-def by auto
lemma rtranclp-cdcl_{NOT}-\mu_{CDCL}'-bound-reduce-trail-to<sub>NOT</sub>:
 assumes
   cdcl_{NOT}^{**} S T and
   inv S and
```

```
atms-of-msu (clauses S) \subseteq atms-of-ms A and
   atm\text{-}of \ (lits\text{-}of \ (trail \ S)) \subseteq atms\text{-}of\text{-}ms \ A \ \mathbf{and}
   n-d: no-dup (trail S) and
   finite: finite (atms-of-ms A) and
   U: U \sim reduce-trail-to<sub>NOT</sub> M T
 shows \mu_{CDCL}' A U \leq \mu_{CDCL}'-bound A S
 have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A U)
   \leq (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
   by auto
  then have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A U)
       * (1 + 3 \cap card (atms-of-ms A)) * 2
   \leq (2 + card (atms-of-ms A)) \hat{} (1 + card (atms-of-ms A)) * (1 + 3 \hat{} card (atms-of-ms A)) * 2
   using mult-le-mono1 by blast
 moreover
   have conflicting-bj-clss-yet (card (atms-of-ms A)) T * 2 < 2 * 3 and (atms-of-ms A)
     by linarith
 moreover have card (set-mset (clauses U))
     \leq card \{C. C \in \# clauses S \land (tautology C \lor \neg distinct-mset C)\} + 3 \cap card (atms-of-ms A)
   using rtranclp-cdcl_{NOT}-card-simple-clauses-bound [OF assms(1-6)] U by auto
  ultimately show ?thesis
   unfolding \mu_{CDCL}'-def \mu_{CDCL}'-bound-def by linarith
qed
lemma rtranclp-cdcl_{NOT}-\mu_{CDCL}'-bound:
 assumes
   cdcl_{NOT}^{**} S T and
   inv S and
   atms-of-msu (clauses S) \subseteq atms-of-ms A and
   atm\text{-}of \ (lits\text{-}of \ (trail \ S)) \subseteq atms\text{-}of\text{-}ms \ A \ \mathbf{and}
   n-d: no-dup (trail S) and
   finite: finite (atms-of-ms A)
 shows \mu_{CDCL}' A T \leq \mu_{CDCL}'-bound A S
proof -
 have \mu_{CDCL}' A (reduce-trail-to<sub>NOT</sub> (trail T) T) = \mu_{CDCL}' A T
   unfolding \mu_{CDCL}'-def \mu_{C}'-def conflicting-bj-clss-def by auto
 then show ?thesis using rtranclp-cdcl<sub>NOT</sub>-\mu_{CDCL}'-bound-reduce-trail-to<sub>NOT</sub>[OF assms, of - trail T]
   state-eq_{NOT}-ref by fastforce
qed
lemma rtranclp-\mu_{CDCL}'-bound-decreasing:
 assumes
   cdcl_{NOT}^{**} S T and
   inv S and
   atms-of-msu (clauses\ S) \subseteq atms-of-ms A and
   atm\text{-}of \ (lits\text{-}of \ (trail \ S)) \subseteq atms\text{-}of\text{-}ms \ A \ \mathbf{and}
   n-d: no-dup (trail S) and
   finite[simp]: finite\ (atms-of-ms\ A)
 shows \mu_{CDCL}'-bound A T \leq \mu_{CDCL}'-bound A S
proof -
 have \{C.\ C \in \#\ clauses\ T \land (tautology\ C \lor \neg\ distinct\text{-mset}\ C)\}
   \subseteq \{C. \ C \in \# \ clauses \ S \land (tautology \ C \lor \neg \ distinct\text{-mset} \ C)\} \ (is \ ?T \subseteq ?S)
   proof (rule Set.subsetI)
     fix C assume C \in ?T
     then have C-T: C \in \# clauses T and t-d: tautology C \vee \neg distinct-mset C
```

```
by auto
      then have C \notin simple\text{-}clss (atms\text{-}of\text{-}ms A)
        by (auto dest: simple-clssE)
      then show C \in ?S
        using C-T rtranclp-cdcl_{NOT}-clauses-bound[OF assms] t-d by force
  then have card \{C.\ C \in \#\ clauses\ T \land (tautology\ C \lor \neg\ distinct\text{-mset}\ C)\} \le
    card \{C. C \in \# clauses S \land (tautology C \lor \neg distinct\text{-}mset C)\}
    by (simp add: card-mono)
  then show ?thesis
    unfolding \mu_{CDCL}'-bound-def by auto
qed
end — end of conflict-driven-clause-learning-learning-before-backjump-only-distinct-learnt
2.7
         CDCL with restarts
2.7.1
           Definition
locale restart-ops =
  fixes
    cdcl_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool and
    restart :: 'st \Rightarrow 'st \Rightarrow bool
begin
inductive cdcl_{NOT}-raw-restart :: 'st \Rightarrow 'st \Rightarrow bool where
cdcl_{NOT} S T \Longrightarrow cdcl_{NOT}-raw-restart S T
restart \ S \ T \Longrightarrow cdcl_{NOT}-raw-restart S \ T
end
{\bf locale}\ conflict \hbox{-} driven \hbox{-} clause \hbox{-} learning \hbox{-} with \hbox{-} restarts =
  conflict-driven-clause-learning trail clauses prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT}
  propagate-conds inv backjump-conds learn-cond forget-cond
    for
      trail :: 'st \Rightarrow ('v, unit, unit) ann-literals and
      clauses :: 'st \Rightarrow 'v \ clauses \ and
      prepend-trail :: ('v, unit, unit) \ ann-literal \Rightarrow 'st \Rightarrow 'st \ and
      tl-trail :: 'st \Rightarrow 'st and
      add-cls_{NOT} remove-cls_{NOT}:: 'v clause \Rightarrow 'st \Rightarrow 'st and
      propagate\text{-}conds :: ('v, unit, unit) \ ann\text{-}literal \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
      inv :: 'st \Rightarrow bool and
      backjump\text{-}conds:: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
      learn\text{-}cond\ forget\text{-}cond\ ::\ 'v\ clause\ \Rightarrow\ 'st\ \Rightarrow\ bool
begin
lemma cdcl_{NOT}-iff-cdcl_{NOT}-raw-restart-no-restarts:
  cdcl_{NOT} \ S \ T \longleftrightarrow restart ops.cdcl_{NOT} -raw-restart \ cdcl_{NOT} \ (\lambda - -. \ False) \ S \ T
  (is ?C S T \longleftrightarrow ?R S T)
proof
  fix S T
  then show ?R \ S \ T by (simp \ add: restart-ops.cdcl_{NOT}-raw-restart.intros(1))
next
  \mathbf{fix} \ S \ T
  assume ?R\ S\ T
  then show ?CST
```

```
\begin{array}{l} \textbf{apply}\;(cases\;rule:\;restart\text{-}ops.cdcl_{NOT}\text{-}raw\text{-}restart.cases)\\ \textbf{using}\;(?R\;S\;T)\;\textbf{by}\;fast+\\ \textbf{qed}\\ \\ \textbf{lemma}\;\;cdcl_{NOT}\text{-}cdcl_{NOT}\text{-}raw\text{-}restart:\\ \;\;cdcl_{NOT}\;S\;T\implies restart\text{-}ops.cdcl_{NOT}\text{-}raw\text{-}restart\;cdcl_{NOT}\;restart\;S\;T\\ \textbf{by}\;(simp\;\;add:\;restart\text{-}ops.cdcl_{NOT}\text{-}raw\text{-}restart.intros(1))\\ \textbf{end} \end{array}
```

2.7.2 Increasing restarts

To add restarts we needs some assumptions on the predicate (called $cdcl_{NOT}$ here):

- a function f that is strictly monotonic. The first step is actually only used as a restart to clean the state (e.g. to ensure that the trail is empty). Then we assume that $(1::'a) \leq f$ n for $(1::'a) \leq n$: it means that between two consecutive restarts, at least one step will be done. This is necessary to avoid sequence. like: full restart full ...
- a measure μ : it should decrease under the assumptions bound-inv, whenever a $cdcl_{NOT}$ or a restart is done. A parameter is given to μ : for conflict- driven clause learning, it is an upper-bound of the clauses. We are assuming that such a bound can be found after a restart whenever the invariant holds.
- we also assume that the measure decrease after any $cdcl_{NOT}$ step.
- an invariant on the states $cdcl_{NOT}$ -inv that also holds after restarts.
- it is not required that the measure decrease with respect to restarts, but the measure has to be bound by some function μ -bound taking the same parameter as μ and the initial state of the considered $cdcl_{NOT}$ chain.

```
locale cdcl_{NOT}-increasing-restarts-ops =
  restart-ops cdcl_{NOT} restart for
     restart :: 'st \Rightarrow 'st \Rightarrow bool and
     cdcl_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool +
  fixes
    f :: nat \Rightarrow nat and
    bound-inv :: 'bound \Rightarrow 'st \Rightarrow bool and
    \mu :: 'bound \Rightarrow 'st \Rightarrow nat and
    cdcl_{NOT}-inv :: 'st \Rightarrow bool and
    \mu-bound :: 'bound \Rightarrow 'st \Rightarrow nat
  assumes
    f: unbounded f and
    f-ge-1:\bigwedge n. n \ge 1 \implies f n \ne 0 and
    bound-inv: \bigwedge A \ S \ T. cdcl_{NOT}-inv S \Longrightarrow bound-inv A \ S \Longrightarrow cdcl_{NOT} \ S \ T \Longrightarrow bound-inv A \ T and
     cdcl_{NOT}-measure: \bigwedge A \ S \ T. cdcl_{NOT}-inv S \Longrightarrow bound-inv A \ S \Longrightarrow cdcl_{NOT} \ S \ T \Longrightarrow \mu \ A \ T < \mu
A S and
     measure-bound2: \bigwedge A \ T \ U. \ cdcl_{NOT}-inv T \Longrightarrow bound-inv A \ T \Longrightarrow cdcl_{NOT}^{**} \ T \ U
        \implies \mu \ A \ U \leq \mu \text{-bound } A \ T \ \text{and}
    measure-bound4: \bigwedge A \ T \ U. \ cdcl_{NOT}-inv T \Longrightarrow bound-inv A \ T \Longrightarrow cdcl_{NOT}^{**} \ T \ U
        \Longrightarrow \mu-bound A\ U \le \mu-bound A\ T and
     cdcl_{NOT}-restart-inv: \bigwedge A\ U\ V. cdcl_{NOT}-inv U\Longrightarrow restart\ U\ V\Longrightarrow bound-inv A\ U\Longrightarrow bound-inv
A V
       and
```

```
exists-bound: \bigwedge R S. cdcl_{NOT}-inv R \Longrightarrow restart R S \Longrightarrow \exists A. bound-inv A S and
   cdcl_{NOT}-inv: \bigwedge S T. cdcl_{NOT}-inv S \Longrightarrow cdcl_{NOT} S T \Longrightarrow cdcl_{NOT}-inv T and
   cdcl_{NOT}-inv-restart: \bigwedge S T. cdcl_{NOT}-inv S \Longrightarrow restart S T \Longrightarrow cdcl_{NOT}-inv T
begin
lemma cdcl_{NOT}-cdcl_{NOT}-inv:
 assumes
   (cdcl_{NOT} \widehat{\hspace{1em}} n) S T and
   cdcl_{NOT}-inv S
 shows cdcl_{NOT}-inv T
 using assms by (induction n arbitrary: T) (auto intro:bound-inv cdcl_{NOT}-inv)
lemma cdcl_{NOT}-bound-inv:
 assumes
   (cdcl_{NOT} \widehat{\hspace{1em}} n) S T and
   cdcl_{NOT}-inv S
   bound-inv A S
 shows bound-inv A T
  using assms by (induction n arbitrary: T) (auto intro:bound-inv cdcl_{NOT}-cdcl_{NOT}-inv)
lemma rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv:
 assumes
   cdcl_{NOT}^{**} S T and
   cdcl_{NOT}-inv S
 shows cdcl_{NOT}-inv T
 using assms by induction (auto intro: cdcl_{NOT}-inv)
lemma rtranclp-cdcl_{NOT}-bound-inv:
 assumes
   cdcl_{NOT}^{**} S T and
   bound-inv A S and
   cdcl_{NOT}-inv S
 shows bound-inv A T
 using assms by induction (auto intro:bound-inv rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv)
lemma cdcl_{NOT}-comp-n-le:
 assumes
   (cdcl_{NOT} \cap (Suc \ n)) \ S \ T \ and
   bound-inv A S
   cdcl_{NOT}-inv S
 shows \mu A T < \mu A S - n
 using assms
proof (induction n arbitrary: T)
 case \theta
 then show ?case using cdcl_{NOT}-measure by auto
next
 case (Suc\ n) note IH = this(1)[OF - this(3)\ this(4)] and S-T = this(2) and b-inv = this(3) and
 obtain U: 'st where S-U: (cdcl_{NOT} \cap (Suc\ n)) S U and U-T: cdcl_{NOT} U T using S-T by auto
 then have \mu A U < \mu A S - n using IH[of U] by simp
 moreover
   have bound-inv A U
     using S-U b-inv cdcl_{NOT}-bound-inv c-inv by blast
   then have \mu A T < \mu A U using cdcl_{NOT}-measure [OF - U-T] S-U c-inv cdcl_{NOT}-cdcl_{NOT}-inv
by auto
```

```
ultimately show ?case by linarith
qed
lemma wf-cdcl_{NOT}:
  wf \{(T, S). \ cdcl_{NOT} \ S \ T \land cdcl_{NOT} \text{-inv } S \land bound\text{-inv } A \ S\} \ (is \ wf \ ?A)
 apply (rule wfP-if-measure2[of - - \mu A])
 using cdcl_{NOT}-comp-n-le[of \theta - - A] by auto
lemma rtranclp-cdcl_{NOT}-measure:
 assumes
   cdcl_{NOT}^{**} S T and
   bound-inv A S and
   cdcl_{NOT}-inv S
 shows \mu A T \leq \mu A S
 using assms
proof (induction rule: rtranclp-induct)
  case base
 then show ?case by auto
next
  case (step T U) note IH = this(3)[OF \ this(4) \ this(5)] and st = this(1) and cdcl_{NOT} = this(2) and
   b\text{-}inv = this(4) and c\text{-}inv = this(5)
 have bound-inv A T
   by (meson\ cdcl_{NOT}-bound-inv rtranclp-imp-relpowp\ st\ step.prems)
 moreover have cdcl_{NOT}-inv T
   using c-inv rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv st by blast
 ultimately have \mu A U < \mu A T using cdcl_{NOT}-measure [OF - - cdcl_{NOT}] by auto
 then show ?case using IH by linarith
qed
lemma cdcl_{NOT}-comp-bounded:
 assumes
   bound-inv A S and cdcl_{NOT}-inv S and m \geq 1 + \mu A S
 shows \neg (cdcl_{NOT} \curvearrowright m) S T
 using assms cdcl_{NOT}-comp-n-le[of m-1 S T A] by fastforce
    • f n < m ensures that at least one step has been done.
inductive cdcl_{NOT}-restart where
restart-step: (cdcl_{NOT} \ \widehat{\ } m) \ S \ T \Longrightarrow m \ge f \ n \Longrightarrow restart \ T \ U
  \implies cdcl_{NOT}\text{-}restart\ (S,\ n)\ (U,\ Suc\ n)\ |
restart-full: full1 cdcl_{NOT} S T \Longrightarrow cdcl_{NOT}-restart (S, n) (T, Suc n)
lemmas cdcl_{NOT}-with-restart-induct = cdcl_{NOT}-restart.induct[split-format(complete),
  OF\ cdcl_{NOT}-increasing-restarts-ops-axioms
lemma cdcl_{NOT}-restart-cdcl_{NOT}-raw-restart:
  cdcl_{NOT}-restart S \ T \Longrightarrow cdcl_{NOT}-raw-restart** (fst S) (fst T)
proof (induction rule: cdcl_{NOT}-restart.induct)
 case (restart-step m \ S \ T \ n \ U)
  then have cdcl_{NOT}^{**} S T by (meson \ relpowp-imp-rtranclp)
  then have cdcl_{NOT}-raw-restart** S T using cdcl_{NOT}-raw-restart.intros(1)
   rtranclp-mono[of\ cdcl_{NOT}\ cdcl_{NOT}-raw-restart] by blast
 moreover have cdcl_{NOT}-raw-restart T U
   using \langle restart\ T\ U \rangle\ cdcl_{NOT}-raw-restart.intros(2) by blast
  ultimately show ?case by auto
```

```
next
  case (restart-full\ S\ T)
 then have cdcl_{NOT}^{**} S T unfolding full1-def by auto
 then show ?case using cdcl_{NOT}-raw-restart.intros(1)
    rtranclp-mono[of\ cdcl_{NOT}\ cdcl_{NOT}-raw-restart] by auto
qed
lemma cdcl_{NOT}-with-restart-bound-inv:
 assumes
   cdcl_{NOT}-restart S T and
   bound-inv A (fst S) and
   cdcl_{NOT}-inv (fst S)
 shows bound-inv A (fst T)
  using assms apply (induction rule: cdcl_{NOT}-restart.induct)
   prefer 2 apply (metis rtranclp-unfold fstI full1-def rtranclp-cdcl<sub>NOT</sub>-bound-inv)
 by (metis\ cdcl_{NOT}\text{-}bound\text{-}inv\ cdcl_{NOT}\text{-}cdcl_{NOT}\text{-}inv\ cdcl_{NOT}\text{-}restart\text{-}inv\ fst\text{-}conv)
lemma cdcl_{NOT}-with-restart-cdcl_{NOT}-inv:
 assumes
   cdcl_{NOT}\text{-}restart\ S\ T and
    cdcl_{NOT}-inv (fst S)
 shows cdcl_{NOT}-inv (fst T)
  using assms apply induction
   apply (metis\ cdcl_{NOT} - cdcl_{NOT} - inv\ cdcl_{NOT} - inv - restart\ fst - conv)
  apply (metis fstI full-def full-unfold rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv)
 done
\mathbf{lemma}\ rtranclp\text{-}cdcl_{NOT}\text{-}with\text{-}restart\text{-}cdcl_{NOT}\text{-}inv:
   cdcl_{NOT}-restart** S T and
    cdcl_{NOT}-inv (fst S)
 shows cdcl_{NOT}-inv (fst T)
 using assms by induction (auto intro: cdcl_{NOT}-with-restart-cdcl_{NOT}-inv)
lemma rtranclp-cdcl_{NOT}-with-restart-bound-inv:
 assumes
    cdcl_{NOT}-restart** S T and
   cdcl_{NOT}-inv (fst S) and
   bound-inv A (fst S)
  shows bound-inv A (fst T)
  using assms apply induction
  apply (simp\ add: cdcl_{NOT}-cdcl_{NOT}-inv\ cdcl_{NOT}-with-restart-bound-inv)
  using cdcl_{NOT}-with-restart-bound-inv rtranclp-cdcl_{NOT}-with-restart-cdcl_{NOT}-inv by blast
lemma cdcl_{NOT}-with-restart-increasing-number:
  cdcl_{NOT}-restart S T \Longrightarrow snd T = 1 + snd S
 by (induction rule: cdcl_{NOT}-restart.induct) auto
locale cdcl_{NOT}-increasing-restarts =
  cdcl_{NOT}-increasing-restarts-ops restart cdcl_{NOT} f bound-inv \mu cdcl_{NOT}-inv \mu-bound
   trail :: 'st \Rightarrow ('v, unit, unit) ann-literals and
   clauses :: 'st \Rightarrow 'v \ clauses \ {\bf and}
   prepend-trail :: ('v, unit, unit) \ ann-literal \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
```

```
tl-trail :: 'st \Rightarrow 'st and
    add-cls_{NOT} remove-cls_{NOT}:: 'v clause <math>\Rightarrow 'st \Rightarrow 'st and
    f :: nat \Rightarrow nat and
    restart :: 'st \Rightarrow 'st \Rightarrow bool and
    bound-inv :: 'bound \Rightarrow 'st \Rightarrow bool and
    \mu :: 'bound \Rightarrow 'st \Rightarrow nat and
    cdcl_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool and
    cdcl_{NOT}-inv :: 'st \Rightarrow bool and
    \mu-bound :: 'bound \Rightarrow 'st \Rightarrow nat +
  assumes
    measure-bound: \bigwedge A \ T \ V \ n. \ cdcl_{NOT}-inv T \Longrightarrow bound-inv A \ T
      \implies cdcl_{NOT}\text{-restart }(T, n) \ (V, Suc \ n) \implies \mu \ A \ V \leq \mu\text{-bound } A \ T \ \text{and}
    cdcl_{NOT}-raw-restart-\mu-bound:
      cdcl_{NOT}-restart (T, a) (V, b) \Longrightarrow cdcl_{NOT}-inv T \Longrightarrow bound-inv A T
        \implies \mu-bound A \ V \le \mu-bound A \ T
begin
lemma rtranclp-cdcl_{NOT}-raw-restart-\mu-bound:
  cdcl_{NOT}-restart** (T, a) (V, b) \Longrightarrow cdcl_{NOT}-inv T \Longrightarrow bound-inv A T
    \implies \mu-bound A \ V \le \mu-bound A \ T
  apply (induction rule: rtranclp-induct2)
  apply simp
  by (metis cdcl_{NOT}-raw-restart-\mu-bound dual-order.trans fst-conv
    rtranclp-cdcl_{NOT}-with-restart-bound-inv rtranclp-cdcl_{NOT}-with-restart-cdcl_{NOT}-inv)
lemma cdcl_{NOT}-raw-restart-measure-bound:
  cdcl_{NOT}-restart (T, a) (V, b) \Longrightarrow cdcl_{NOT}-inv T \Longrightarrow bound-inv A T
    \implies \mu \ A \ V \leq \mu \text{-bound } A \ T
 apply (cases rule: cdcl_{NOT}-restart.cases)
    apply simp
    using measure-bound relpowp-imp-rtrancly apply fastforce
  by (metis full-def full-unfold measure-bound2 prod.inject)
lemma rtranclp-cdcl_{NOT}-raw-restart-measure-bound:
  cdcl_{NOT}-restart** (T, a) (V, b) \Longrightarrow cdcl_{NOT}-inv T \Longrightarrow bound-inv A T
    \implies \mu \ A \ V \leq \mu \text{-bound } A \ T
  apply (induction rule: rtranclp-induct2)
    apply (simp add: measure-bound2)
  by (metis dual-order.trans fst-conv measure-bound2 r-into-rtranclp rtranclp.rtrancl-refl
    rtranclp-cdcl_{NOT}-with-restart-bound-inv rtranclp-cdcl_{NOT}-with-restart-cdcl_{NOT}-inv
    rtranclp-cdcl_{NOT}-raw-restart-\mu-bound)
lemma wf-cdcl_{NOT}-restart:
  wf \{(T, S). \ cdcl_{NOT}\text{-restart} \ S \ T \land cdcl_{NOT}\text{-inv} \ (fst \ S)\}\ (is \ wf \ ?A)
proof (rule ccontr)
  assume ¬ ?thesis
  then obtain g where
    g: \bigwedge i. \ cdcl_{NOT}-restart (g\ i)\ (g\ (Suc\ i)) and
    cdcl_{NOT}-inv-g: \bigwedge i. \ cdcl_{NOT}-inv (fst \ (g \ i))
    unfolding wf-iff-no-infinite-down-chain by fast
  have snd-g: \bigwedge i. snd (g i) = i + snd (g 0)
    apply (induct-tac i)
      apply simp
      by (metis Suc-eq-plus1-left add.commute add.left-commute
```

```
cdcl_{NOT}-with-restart-increasing-number g)
then have snd - g - \theta: \bigwedge i. i > \theta \Longrightarrow snd(g i) = i + snd(g \theta)
have unbounded-f-g: unbounded (\lambda i. f (snd (g i)))
  using f unfolding bounded-def by (metis add.commute f less-or-eq-imp-le snd-q
    not-bounded-nat-exists-larger not-le le-iff-add)
{ fix i
  have H: \bigwedge T Ta m. (cdcl_{NOT} \ ^{\frown} m) T Ta \Longrightarrow no-step cdcl_{NOT} T \Longrightarrow m = 0
   apply (case-tac m) by simp (meson relpowp-E2)
  have \exists T m. (cdcl_{NOT} \curvearrowright m) (fst (g i)) T \land m \geq f (snd (g i))
    using g[of\ i] apply (cases rule: cdcl_{NOT}-restart.cases)
     apply auto
    using g[of Suc \ i] \ f-ge-1 apply (cases rule: cdcl_{NOT}-restart.cases)
    apply (auto simp add: full1-def full-def dest: H dest: tranclpD)
    using H Suc-leI leD by blast
} note H = this
obtain A where bound-inv A (fst (q 1))
  using g[of \ \theta] \ cdcl_{NOT}-inv-g[of \ \theta] apply (cases rule: cdcl_{NOT}-restart.cases)
    apply (metis One-nat-def cdcl_{NOT}-inv \ exists-bound \ fst-conv \ relpowp-imp-rtranclp
      rtranclp-induct)
    using H[of 1] unfolding full1-def by (metis One-nat-def Suc-eq-plus 1 diff-is-0-eq' diff-zero
     f-ge-1 fst-conv le-add2 relpowp-E2 snd-conv)
let ?j = \mu-bound A (fst (g 1)) + 1
obtain j where
  j: f (snd (g j)) > ?j and j > 1
  using unbounded-f-g not-bounded-nat-exists-larger by blast
   fix i j
   have cdcl_{NOT}-with-restart: j \geq i \implies cdcl_{NOT}-restart** (g \ i) \ (g \ j)
    apply (induction j)
      apply simp
     by (metis g le-Suc-eq rtranclp.rtrancl-into-rtrancl rtranclp.rtrancl-reft)
} note cdcl_{NOT}-restart = this
have cdcl_{NOT}-inv (fst (g (Suc \theta)))
  by (simp add: cdcl_{NOT}-inv-g)
have cdcl_{NOT}-restart** (fst (g\ 1), snd (g\ 1)) (fst (g\ j), snd (g\ j))
  using \langle j > 1 \rangle by (simp \ add: \ cdcl_{NOT}\text{-}restart)
have \mu A (fst (g \ j)) \leq \mu-bound A (fst (g \ 1))
  apply (rule rtranclp-cdcl_{NOT}-raw-restart-measure-bound)
  using \langle cdcl_{NOT}\text{-}restart^{**} (fst (g\ 1),\ snd\ (g\ 1)) (fst (g\ j),\ snd\ (g\ j)) apply blast
     apply (simp \ add: \ cdcl_{NOT} - inv-g)
     using \langle bound\text{-}inv \ A \ (fst \ (g \ 1)) \rangle apply simp
  done
then have \mu \ A \ (fst \ (g \ j)) \le ?j
  by auto
have inv: bound-inv A (fst (g j))
  using \langle bound\text{-}inv \ A \ (fst \ (g \ 1)) \rangle \langle cdcl_{NOT}\text{-}inv \ (fst \ (g \ (Suc \ 0))) \rangle
  \langle cdcl_{NOT}\text{-}restart^{**} \ (fst \ (g \ 1), \ snd \ (g \ 1)) \ (fst \ (g \ j), \ snd \ (g \ j)) \rangle
  rtranclp-cdcl_{NOT}-with-restart-bound-inv by auto
obtain T m where
  cdcl_{NOT}-m: (cdcl_{NOT} \curvearrowright m) (fst (g j)) T and
  f-m: f (snd (g j)) <math>\leq m
  using H[of j] by blast
have ?j < m
```

```
using f-m j Nat.le-trans by linarith
  then show False
   using \langle \mu \ A \ (fst \ (g \ j)) \leq \mu \text{-bound} \ A \ (fst \ (g \ 1)) \rangle
   cdcl_{NOT}-comp-bounded[OF inv cdcl_{NOT}-inv-g, of ] cdcl_{NOT}-inv-g cdcl_{NOT}-m
   \langle ?j < m \rangle by auto
qed
lemma cdcl_{NOT}-restart-steps-bigger-than-bound:
 assumes
   cdcl_{NOT}-restart S T and
   bound-inv A (fst S) and
   cdcl_{NOT}-inv (fst S) and
   f (snd S) > \mu-bound A (fst S)
 shows full1 cdcl_{NOT} (fst S) (fst T)
 using assms
proof (induction rule: cdcl_{NOT}-restart.induct)
 case restart-full
  then show ?case by auto
  case (restart-step m S T n U) note st = this(1) and f = this(2) and bound-inv = this(4) and
   cdcl_{NOT}-inv = this(5) and \mu = this(6)
  then obtain m' where m: m = Suc m' by (cases m) auto
 have \mu A S - m' = 0
   using f bound-inv cdcl_{NOT}-inv \mu m rtranclp-cdcl_{NOT}-raw-restart-measure-bound by fastforce
 then have False using cdcl<sub>NOT</sub>-comp-n-le[of m' S T A] restart-step unfolding m by simp
 then show ?case by fast
qed
lemma rtranclp-cdcl_{NOT}-with-inv-inv-rtranclp-cdcl<sub>NOT</sub>:
 assumes
   inv: cdcl_{NOT}-inv S and
   binv: bound-inv A S
 shows (\lambda S \ T. \ cdcl_{NOT} \ S \ T \land \ cdcl_{NOT}-inv S \land bound-inv A \ S)^{**} \ S \ T \longleftrightarrow cdcl_{NOT}^{**} \ S \ T
   (is ?A^{**} S T \longleftrightarrow ?B^{**} S T)
 apply (rule iffI)
   using rtranclp-mono[of ?A ?B] apply blast
 apply (induction rule: rtranclp-induct)
   using inv binv apply simp
 by (metis (mono-tags, lifting) binv inv rtranclp.simps rtranclp-cdcl_{NOT}-bound-inv
   rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv)
lemma no-step-cdcl_{NOT}-restart-no-step-cdcl_{NOT}:
 assumes
   n-s: no-step cdcl_{NOT}-restart S and
   inv: cdcl_{NOT}-inv (fst S) and
   binv: bound-inv A (fst S)
 shows no-step cdcl_{NOT} (fst S)
proof (rule ccontr)
 assume ¬ ?thesis
  then obtain T where T: cdcl_{NOT} (fst S) T
 then obtain U where U: full (\lambda S T. cdcl_{NOT} S T \wedge cdcl_{NOT}-inv S \wedge bound-inv A S) T U
    using wf-exists-normal-form-full[OF wf-cdcl<sub>NOT</sub>, of A T] by auto
 moreover have inv-T: cdcl_{NOT}-inv T
```

```
using \langle cdcl_{NOT} \ (fst \ S) \ T \rangle \ cdcl_{NOT}-inv inv by blast
  moreover have b\text{-}inv\text{-}T: bound\text{-}inv\ A\ T
    using \langle cdcl_{NOT} \ (fst \ S) \ T \rangle \ binv \ bound-inv \ inv \ by \ blast
  ultimately have full cdcl_{NOT} T U
    using rtranclp-cdcl_{NOT}-with-inv-inv-rtranclp-cdcl_{NOT} rtranclp-cdcl_{NOT}-bound-inv
    rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv unfolding full-def by blast
  then have full cdcl_{NOT} (fst S) U
    using T full-fullI by metis
  then show False by (metis n-s prod.collapse restart-full)
qed
end
2.8
        Merging backjump and learning
locale \ cdcl_{NOT}-merge-bj-learn-ops =
  dpll-state trail clauses prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT} +
  decide-ops\ trail\ clauses\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}\ +
 forget-ops\ trail\ clauses\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}\ forget-cond\ +
  propagate-ops\ trail\ clauses\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}\ propagate-conds
  for
    trail :: 'st \Rightarrow ('v, unit, unit) ann-literals and
    clauses :: 'st \Rightarrow 'v \ clauses \ {\bf and}
    prepend-trail :: ('v, unit, unit) \ ann-literal \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    tl-trail :: 'st \Rightarrow 'st and
    add-cls_{NOT} remove-cls_{NOT}:: 'v clause <math>\Rightarrow 'st \Rightarrow 'st and
    propagate\text{-}conds :: ('v, unit, unit) \ ann\text{-}literal \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
    forget\text{-}cond :: 'v \ clause \Rightarrow 'st \Rightarrow bool +
 fixes backjump-l-cond :: 'v clause \Rightarrow 'v clause \Rightarrow 'v literal \Rightarrow 'st \Rightarrow bool
begin
inductive backjump-l where
backjump-l: trail S = F' \otimes Marked K () \# F
   \implies no\text{-}dup \ (trail \ S)
   \Rightarrow T \sim prepend-trail (Propagated L ()) (reduce-trail-to_{NOT} F (add-cls_{NOT} (C' + \{\#L\#\}) S))
   \implies C \in \# clauses S
   \implies trail \ S \models as \ CNot \ C
   \implies undefined\text{-}lit\ F\ L
   \implies atm-of L \in atms-of-msu (clauses S) \cup atm-of ' (lits-of (trail S))
   \implies clauses \ S \models pm \ C' + \{\#L\#\}
   \implies F \models as \ CNot \ C'
   \implies backjump-l\text{-}cond \ C\ C'\ L\ T
   \implies backjump-l \ S \ T
inductive-cases backjump-lE: backjump-l S T
inductive cdcl_{NOT}-merged-bj-learn :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
cdcl_{NOT}-merged-bj-learn-decide_{NOT}: decide_{NOT} S S' \Longrightarrow cdcl_{NOT}-merged-bj-learn S S' \mid
cdcl_{NOT}-merged-bj-learn-propagate<sub>NOT</sub>: propagate_{NOT} S S' \Longrightarrow cdcl_{NOT}-merged-bj-learn S S' \mid
cdcl_{NOT}-merged-bj-learn-backjump-l: backjump-l S S' \Longrightarrow cdcl_{NOT}-merged-bj-learn S S' \mid
cdcl_{NOT}-merged-bj-learn-forget<sub>NOT</sub>: forget_{NOT} S S' \Longrightarrow cdcl_{NOT}-merged-bj-learn S S'
lemma cdcl_{NOT}-merged-bj-learn-no-dup-inv:
  cdcl_{NOT}-merged-bj-learn S \ T \Longrightarrow no-dup (trail \ S) \Longrightarrow no-dup (trail \ T)
  apply (induction rule: cdcl_{NOT}-merged-bj-learn.induct)
```

using defined-lit-map apply fastforce using defined-lit-map apply fastforce

apply (force simp: defined-lit-map elim!: backjump-lE)[]

```
using forget_{NOT}.simps apply auto[1]
  done
end
locale\ cdcl_{NOT}-merge-bj-learn-proxy =
  cdcl_{NOT}-merge-bj-learn-ops trail clauses prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT}
    propagate-conds forget-conds \lambda C C' L' S. backjump-l-cond C C' L' S
    \land distinct\text{-mset} (C' + \{\#L'\#\}) \land \neg tautology (C' + \{\#L'\#\})
  for
    trail :: 'st \Rightarrow ('v, unit, unit) ann-literals and
    clauses :: 'st \Rightarrow 'v \ clauses \ and
    prepend-trail :: ('v, unit, unit) \ ann-literal \Rightarrow 'st \Rightarrow 'st \ and
    tl-trail :: 'st \Rightarrow 'st and
    add-cls_{NOT} remove-cls_{NOT}:: 'v clause <math>\Rightarrow 'st \Rightarrow 'st and
    propagate\text{-}conds:: ('v, unit, unit) \ ann\text{-}literal \Rightarrow 'st \Rightarrow bool \ and
    forget\text{-}conds :: 'v \ clause \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
    backjump\text{-}l\text{-}cond :: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow bool + \\
    inv :: 'st \Rightarrow bool
  assumes
     bj-merge-can-jump:
     \bigwedge S \ C \ F' \ K \ F \ L.
       inv S
       \implies trail \ S = F' @ Marked \ K \ () \# F
       \implies C \in \# clauses S
       \implies trail \ S \models as \ CNot \ C
       \implies undefined\text{-}lit\ F\ L
       \implies atm-of L \in atms-of-msu (clauses S) \cup atm-of ' (lits-of (F' \otimes Marked K () \# F))
       \implies clauses S \models pm C' + \{\#L\#\}
       \implies F \models as \ CNot \ C'
       \implies \neg no\text{-step backjump-l } S and
     \mathit{cdcl-merged-inv} \colon \bigwedge S \ T. \ \mathit{cdcl}_{NOT}\text{-}\mathit{merged-bj-learn} \ S \ T \Longrightarrow \mathit{inv} \ S \Longrightarrow \mathit{inv} \ T
abbreviation backjump-conds where
backjump\text{-}conds \equiv \lambda\text{-} C L \text{--}. distinct\text{-}mset (C + \{\#L\#\}) \land \neg tautology (C + \{\#L\#\})
sublocale dpll-with-backjumping-ops trail clauses prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT}
  propagate-conds inv backjump-conds
proof (unfold-locales, goal-cases)
  case 1
  \{ \text{ fix } S S' \}
    assume bj: backjump-l S S' and no-dup (trail S)
    then obtain F' K F L C' C where
      S': S' \sim prepend-trail (Propagated L ()) (reduce-trail-to_{NOT} F)
        (tl-trail(add-cls_{NOT} (C' + \{\#L\#\}) S)))
        and
      tr-S: trail S = F' @ Marked K () # <math>F and
      C: C \in \# clauses S  and
      tr-S-C: trail S \models as CNot C and
      undef-L: undefined-lit F L and
      atm-L: atm-of L \in atms-of-msu (clauses S) \cup atm-of 'lits-of (trail S) and
      cls-S-C': clauses <math>S \models pm \ C' + \{\#L\#\}  and
      F-C': F \models as \ CNot \ C' and
      \mathit{dist} \colon \mathit{distinct}\text{-}\mathit{mset}\ (\mathit{C'} + \{\#L\#\}) and
      not-tauto: \neg tautology (C' + {\#L\#})
```

```
by (elim\ backjump-lE)\ simp
    have \exists S'. backjumping-ops.backjump trail clauses prepend-trail tl-trail backjump-conds S S'
      apply rule
      \mathbf{apply} \ (\textit{rule backjumping-ops.backjump.intros})
                apply unfold-locales
                using tr-S apply simp
              apply (rule state-eq_{NOT}-ref)
             using C apply simp
            using tr-S-C apply simp
          using undef-L apply simp
         using atm-L apply simp
        \mathbf{using}\ \mathit{cls}\text{-}\mathit{S}\text{-}\mathit{C'}\ \mathbf{apply}\ \mathit{simp}
       using F-C' apply simp
      using dist not-tauto apply simp
      done
    } note H = this(1)
  then show ?case using 1 bj-merge-can-jump by meson
qed
end
locale \ cdcl_{NOT}-merge-bj-learn-proxy2 =
  cdcl_{NOT}-merge-bj-learn-proxy trail clauses prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT}
    propagate-conds forget-conds backjump-l-cond inv
  for
    trail :: 'st \Rightarrow ('v, unit, unit) ann-literals and
    clauses :: 'st \Rightarrow 'v \ clauses \ \mathbf{and}
    prepend-trail :: ('v, unit, unit) \ ann-literal \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    tl-trail :: 'st \Rightarrow 'st and
    add-cls_{NOT} remove-cls_{NOT}:: 'v clause <math>\Rightarrow 'st \Rightarrow 'st and
    propagate\text{-}conds:: ('v, unit, unit) \ ann\text{-}literal \Rightarrow 'st \Rightarrow bool \ and
    inv :: 'st \Rightarrow bool \text{ and }
    forget\text{-}conds :: 'v \ clause \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
    backjump\text{-}l\text{-}cond :: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow bool
begin
{f sublocale} conflict-driven-clause-learning-ops trail clauses prepend-trail tl-trail add-cls_{NOT}
  remove-cls<sub>NOT</sub> propagate-conds inv backjump-conds \lambda C -. distinct-mset C \wedge \neg tautology C
  forget-conds
  by unfold-locales
end
locale \ cdcl_{NOT}-merge-bj-learn =
  cdcl_{NOT}-merge-bj-learn-proxy2 trail clauses prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT}
    propagate-conds inv forget-conds backjump-l-cond
  for
    trail :: 'st \Rightarrow ('v, unit, unit) ann-literals and
    clauses :: 'st \Rightarrow 'v \ clauses \ and
    prepend-trail :: ('v, unit, unit) ann-literal \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} remove-cls_{NOT}:: 'v clause \Rightarrow 'st \Rightarrow 'st and
    propagate\text{-}conds:: ('v, unit, unit) \ ann\text{-}literal \Rightarrow 'st \Rightarrow bool \ and
    inv :: 'st \Rightarrow bool and
    forget\text{-}conds :: 'v \ clause \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
```

```
backjump\text{-}l\text{-}cond :: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow bool +
  assumes
     dpll-bj-inv: \bigwedge S \ T. \ dpll-bj \ S \ T \Longrightarrow inv \ S \Longrightarrow inv \ T and
     \textit{learn-inv} \colon \bigwedge S \ T. \ \textit{learn} \ S \ T \Longrightarrow \textit{inv} \ S \Longrightarrow \textit{inv} \ T
begin
interpretation cdcl_{NOT}:
   conflict-driven-clause-learning\ trail\ clauses\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}
   propagate-conds inv backjump-conds \lambda C -. distinct-mset C \wedge \neg tautology C forget-conds
  apply unfold-locales
 apply (simp\ only:\ cdcl_{NOT}.simps)
  using cdcl_{NOT}-merged-bj-learn-forget_{NOT} cdcl-merged-inv learn-inv
  by (auto simp add: cdcl_{NOT}.simps dpll-bj-inv)
lemma backjump-l-learn-backjump:
  assumes bt: backjump-l S T and inv: inv S and n-d: no-dup (trail S)
 shows \exists C' L. learn S (add-cls_{NOT} (C' + \{\#L\#\}) S)
    \wedge backjump (add-cls<sub>NOT</sub> (C' + {#L#}) S) T
    \land atms-of \ (C' + \{\#L\#\}) \subseteq atms-of-msu \ (clauses \ S) \cup atm-of \ `(lits-of \ (trail \ S))
proof -
   obtain C F' K F L l C' where
     tr-S: trail S = F' @ Marked K () # F and
     T: T \sim prepend-trail \ (Propagated \ L \ l) \ (reduce-trail-to_{NOT} \ F \ (add-cls_{NOT} \ (C' + \{\#L\#\}) \ S)) and
     C-cls-S: C \in \# clauses S and
     tr-S-CNot-C: trail\ S \models as\ CNot\ C and
     undef: undefined-lit F L and
     \mathit{atm\text{-}L:}\ \mathit{atm\text{-}of}\ L \in \mathit{atms\text{-}of\text{-}msu}\ (\mathit{clauses}\ S) \ \cup \ \mathit{atm\text{-}of}\ `(\mathit{lits\text{-}of}\ (\mathit{trail}\ S))\ \mathbf{and}
     clss-C: clauses S \models pm \ C' + \{\#L\#\} and
     F \models as \ CNot \ C' and
     distinct: distinct-mset (C' + \{\#L\#\}) and
     not-tauto: \neg tautology (C' + {\#L\#})
     using bt inv by (elim backjump-lE) simp
   have atms-C': atms-of C' \subseteq atm-of ' (lits-of F)
     proof -
       obtain ll :: 'v \Rightarrow ('v \ literal \Rightarrow 'v) \Rightarrow 'v \ literal \ set \Rightarrow 'v \ literal \ where
         \forall v f L. v \notin f 'L \vee v = f (ll \ v f L) \wedge ll \ v f L \in L
         bv moura
       then show ?thesis unfolding tr-S
         by (metis\ (no\text{-}types)\ \langle F \models as\ CNot\ C' \rangle\ atm\text{-}of\text{-}in\text{-}atm\text{-}of\text{-}set\text{-}iff\text{-}in\text{-}set\text{-}or\text{-}uminus\text{-}in\text{-}set}
           atms-of-def in-CNot-implies-uminus(2) mem-set-mset-iff subsetI)
   then have atms-of (C' + \{\#L\#\}) \subseteq atms-of-msu (clauses\ S) \cup atm-of ' (lits-of\ (trail\ S))
     using atm-L tr-S by auto
   moreover have learn: learn S (add-cls<sub>NOT</sub> (C' + \{\#L\#\}) S)
     apply (rule learn.intros)
         apply (rule clss-C)
       using atms-C' atm-L apply (fastforce simp add: tr-S in-plus-implies-atm-of-on-atms-of-ms)
     apply standard
      apply (rule distinct)
      apply (rule not-tauto)
      apply simp
     done
   moreover have bj: backjump (add-cls_{NOT} (C' + \{\#L\#\}) S) T
     apply (rule backjump.intros)
     using \langle F \models as \ CNot \ C' \rangle C-cls-S tr-S-CNot-C undef T distinct not-tauto n-d
```

```
by (auto simp: tr-S state-eq_{NOT}-def simp del: state-simp_{NOT})
  ultimately show ?thesis by auto
qed
lemma cdcl_{NOT}-merged-bj-learn-is-tranclp-cdcl_{NOT}:
  cdcl_{NOT}-merged-bj-learn S T \Longrightarrow inv S \Longrightarrow no-dup (trail S) \Longrightarrow cdcl_{NOT}^{++} S T
\mathbf{proof}\ (induction\ rule:\ cdcl_{NOT}\text{-}merged\text{-}bj\text{-}learn.induct)
 case (cdcl_{NOT}-merged-bj-learn-decide<sub>NOT</sub> T)
  then have cdcl_{NOT} S T
   using bj-decide_{NOT} cdcl_{NOT}.simps by fastforce
 then show ?case by auto
next
  case (cdcl_{NOT}-merged-bj-learn-propagate<sub>NOT</sub> T)
 then have cdcl_{NOT} S T
   using bj-propagate<sub>NOT</sub> cdcl_{NOT}.simps by fastforce
 then show ?case by auto
  case (cdcl_{NOT}-merged-bj-learn-forget_{NOT} T)
  then have cdcl_{NOT} S T
    using c-forget_{NOT} by blast
  then show ?case by auto
next
  case (cdcl_{NOT}-merged-bj-learn-backjump-l T) note bt = this(1) and inv = this(2) and
    n-d = this(3)
  obtain C' :: 'v \ literal \ multiset \ and \ L :: 'v \ literal \ where
    f3: learn S (add-cls<sub>NOT</sub> (C' + \{\#L\#\}) S) \land
      backjump \ (add\text{-}cls_{NOT} \ (C' + \{\#L\#\}) \ S) \ T \ \land
      atms-of\ (C' + \{\#L\#\}) \subseteq atms-of-msu\ (clauses\ S) \cup atm-of\ `its-of\ (trail\ S)
    using n-d backjump-l-learn-backjump[OF bt inv] by blast
  then have f4: cdcl_{NOT} S (add\text{-}cls_{NOT} (C' + \{\#L\#\}) S)
    using n-d c-learn by blast
  have cdcl_{NOT} (add\text{-}cls_{NOT} (C' + \{\#L\#\}) S) T
    using f3 n-d bj-backjump c-dpll-bj by blast
  then show ?case
    using f4 by (meson tranclp.r-into-trancl tranclp.trancl-into-trancl)
qed
\mathbf{lemma}\ rtranclp\text{-}cdcl_{NOT}\text{-}merged\text{-}bj\text{-}learn\text{-}is\text{-}rtranclp\text{-}cdcl_{NOT}\text{-}and\text{-}inv\text{:}}
  cdcl_{NOT}-merged-bj-learn** S \rightarrow inv S \implies no-dup (trail S) \implies cdcl_{NOT}** S \rightarrow inv T
proof (induction rule: rtranclp-induct)
 case base
 then show ?case by auto
next
  case (step T U) note st = this(1) and cdcl_{NOT} = this(2) and IH = this(3)[OF\ this(4-)] and
   inv = this(4) and n-d = this(5)
 have cdcl_{NOT}^{**} T U
   using cdcl_{NOT}-merged-bj-learn-is-tranclp-cdcl_{NOT}[OF\ cdcl_{NOT}]\ IH
   cdcl_{NOT}.rtranclp-cdcl_{NOT}-no-dup inv n-d by auto
  then have cdcl_{NOT}^{**} S U using IH by fastforce
 moreover have inv U using n\text{-}d IH (cdcl_{NOT}^{**} T U) cdcl_{NOT}.rtranclp\text{-}cdcl_{NOT}\text{-}inv by blast
 ultimately show ?case using st by fast
qed
lemma rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT}:
  cdcl_{NOT}-merged-bj-learn** S T \Longrightarrow inv S \Longrightarrow no-dup (trail S) \Longrightarrow cdcl_{NOT}** S T
```

```
using rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT}-and-inv by blast
lemma rtranclp-cdcl_{NOT}-merged-bj-learn-inv:
  cdcl_{NOT}-merged-bj-learn** S T \Longrightarrow inv S \Longrightarrow no\text{-}dup \ (trail \ S) \Longrightarrow inv \ T
  using rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT}-and-inv by blast
definition \mu_C':: 'v literal multiset set \Rightarrow 'st \Rightarrow nat where
\mu_C' A T \equiv \mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T)
definition \mu_{CDCL}'-merged :: 'v literal multiset set \Rightarrow 'st \Rightarrow nat where
\mu_{CDCL}'-merged A T \equiv
 ((2+card\ (atms-of-ms\ A)) \cap (1+card\ (atms-of-ms\ A)) - \mu_C'\ A\ T) * 2 + card\ (set-mset\ (clauses\ T))
lemma cdcl_{NOT}-decreasing-measure':
 assumes
   cdcl_{NOT}-merged-bj-learn S T and
   inv: inv S and
   atm-clss: atms-of-msu (clauses S) \subseteq atms-of-ms A and
   \mathit{atm\text{-}trail} \colon \mathit{atm\text{-}of} ' \mathit{lits\text{-}of} ( \mathit{trail}\ S ) \subseteq \mathit{atms\text{-}of\text{-}ms}\ A and
   n-d: no-dup (trail S) and
   fin-A: finite A
  shows \mu_{CDCL}'-merged A T < \mu_{CDCL}'-merged A S
  using assms(1)
proof induction
  case (cdcl_{NOT}-merged-bj-learn-decide<sub>NOT</sub> T)
  have clauses S = clauses T
   using cdcl_{NOT}-merged-bj-learn-decide<sub>NOT</sub>.hyps by auto
 moreover have
   (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
      -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T)
    <(2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
      -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight S)
   apply (rule dpll-bj-trail-mes-decreasing-prop)
   using cdcl_{NOT}-merged-bj-learn-decide<sub>NOT</sub> fin-A atm-clss atm-trail n-d inv
   by (simp-all\ add:\ bj-decide_{NOT}\ cdcl_{NOT}-merged-bj-learn-decide_{NOT}.hyps)
  ultimately show ?case
   unfolding \mu_{CDCL}'-merged-def \mu_{C}'-def by simp
next
  case (cdcl_{NOT}-merged-bj-learn-propagate<sub>NOT</sub> T)
 have clauses S = clauses T
   using cdcl_{NOT}-merged-bj-learn-propagate<sub>NOT</sub>.hyps
   by (simp\ add:\ bj\text{-}propagate_{NOT}\ inv\ dpll\text{-}bj\text{-}clauses)
 moreover have
   (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
      -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T)
    <(2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
      -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight S)
   apply (rule dpll-bj-trail-mes-decreasing-prop)
   using inv n-d atm-clss atm-trail fin-A by (simp-all add: bj-propagate<sub>NOT</sub>
     cdcl_{NOT}-merged-bj-learn-propagate<sub>NOT</sub>.hyps)
  ultimately show ?case
   unfolding \mu_{CDCL}'-merged-def \mu_{C}'-def by simp
next
```

case $(cdcl_{NOT}$ -merged-bj-learn-forget_{NOT} T)

have card (set-mset (clauses T)) < card (set-mset (clauses S))

```
using \langle forget_{NOT} \ S \ T \rangle by (metis \ card\text{-}Diff1\text{-}less
     cdcl_{NOT}-merged-bj-learn-forget<sub>NOT</sub>.hyps clauses-remove-cls_{NOT} finite-set-mset forget<sub>NOT</sub>E
     mem\text{-}set\text{-}mset\text{-}iff\ order\text{-}refl\ set\text{-}mset\text{-}minus\text{-}replicate\text{-}mset(1)\ state\text{-}eq_{NOT}\text{-}clauses)
  moreover
   have trail\ S = trail\ T
     using \langle forget_{NOT} \ S \ T \rangle by (auto elim: forget_{NOT} E)
   then have
     (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
       -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T)
      = (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
       -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight S)
      by auto
  ultimately show ?case
   unfolding \mu_{CDCL}'-merged-def \mu_{C}'-def by simp
next
 {f case} \ (cdcl_{NOT} \text{-}merged\text{-}bj\text{-}learn\text{-}backjump\text{-}l\ } T) \ {f note} \ bj\text{-}l = this(1)
 obtain C'L where
   learn: learn S (add-cls<sub>NOT</sub> (C' + \{\#L\#\}) S) and
   bj: backjump (add-cls<sub>NOT</sub> (C' + \{\#L\#\}) S) T and
   atms-C: atms-of (C' + \#L\#) \subseteq atms-of-msu (clauses\ S) \cup atm-of ' (lits-of (trail\ S))
   \mathbf{using}\ \mathit{bj-l}\ \mathit{inv}\ \mathit{backjump-l-learn-backjump}\ \mathit{n-d}\ \mathit{atm-clss}\ \mathit{atm-trail}\ \mathbf{by}\ \mathit{blast}
  have card-T-S: card (set-mset (clauses\ T)) <math>\leq 1 + card (set-mset (clauses\ S))
   using bj-l inv by (force elim!: backjump-lE simp: card-insert-if)
 have
   ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
      -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T))
   < ((2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
      \mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A))
          (trail-weight\ (add-cls_{NOT}\ (C' + \{\#L\#\})\ S)))
   apply (rule dpll-bj-trail-mes-decreasing-prop)
        using bj bj-backjump apply blast
       using cdcl_{NOT}.c-learn cdcl_{NOT}.cdcl_{NOT}-inv inv learn apply blast
      using atms-C atm-clss atm-trail n-d clauses-add-cls<sub>NOT</sub> apply simp apply fast
     using atm-trail n-d apply simp
    apply (simp \ add: n-d)
   using fin-A apply simp
  then have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
     -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T))
   <((2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
      -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight S))
   using n-d by auto
  then show ?case
   using card-T-S unfolding \mu_{CDCL}'-merged-def \mu_{C}'-def by linarith
qed
lemma wf-cdcl_{NOT}-merged-bj-learn:
 assumes
   fin-A: finite A
 shows wf \{(T, S).
   (inv\ S \land atms\text{-}of\text{-}msu\ (clauses\ S) \subseteq atms\text{-}of\text{-}ms\ A \land atm\text{-}of\ (trail\ S) \subseteq atms\text{-}of\text{-}ms\ A
   \land no-dup (trail S))
   \land cdcl_{NOT}-merged-bj-learn S T
  apply (rule wfP-if-measure[of - - \mu_{CDCL}'-merged A])
  using cdcl_{NOT}-decreasing-measure' fin-A by simp
```

```
lemma tranclp-cdcl_{NOT}-cdcl_{NOT}-tranclp:
  assumes
    cdcl_{NOT}-merged-bj-learn<sup>++</sup> S T and
    inv: inv S and
    atm-clss: atms-of-msu (clauses S) \subseteq atms-of-ms A and
   atm-trail: atm-of 'lits-of (trail S) \subseteq atms-of-ms A and
   n-d: no-dup (trail S) and
   fin-A[simp]: finite\ A
  shows (T, S) \in \{(T, S).
   (inv\ S \land atms\text{-}of\text{-}msu\ (clauses\ S) \subseteq atms\text{-}of\text{-}ms\ A \land atm\text{-}of\ (trail\ S) \subseteq atms\text{-}of\text{-}ms\ A
   \land no-dup (trail S))
   \land cdcl_{NOT}-merged-bj-learn S T}<sup>+</sup> (is - \in ?P^+)
  using assms(1)
proof (induction rule: tranclp-induct)
  case base
  then show ?case using n-d atm-clss atm-trail inv by auto
  case (step T U) note st = this(1) and cdcl_{NOT} = this(2) and IH = this(3)
  have cdcl_{NOT}^{**} S T
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT})
   using st \ cdcl_{NOT} \ inv \ n-d atm-clss atm-trail inv \ by \ auto
  have inv T
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-inv)
     using inv st cdcl<sub>NOT</sub> n-d atm-clss atm-trail inv by auto
  moreover have atms-of-msu (clauses\ T) \subseteq atms-of-ms A
   \mathbf{using}\ cdcl_{NOT}.rtranclp-cdcl_{NOT}-trail-clauses-bound[OF\ \langle cdcl_{NOT}^{**}\ S\ T\rangle\ inv\ n\text{-}d\ atm\text{-}clss\ atm\text{-}trail]
  moreover have atm\text{-}of ' (lits\text{-}of\ (trail\ T))\subseteq atms\text{-}of\text{-}ms\ A
   \mathbf{using}\ cdcl_{NOT}.rtranclp-cdcl_{NOT}-trail-clauses-bound[OF\ \langle cdcl_{NOT}^{**}\ S\ T\rangle\ inv\ n\text{-}d\ atm\text{-}clss\ atm\text{-}trail]
   by fast
  moreover have no-dup (trail T)
   using cdcl_{NOT}.rtranclp-cdcl_{NOT}-no-dup[OF \langle cdcl_{NOT}^{**} S T \rangle inv n-d] by fast
  ultimately have (U, T) \in P
   using cdcl_{NOT} by auto
  then show ?case using IH by (simp add: trancl-into-trancl2)
qed
lemma wf-tranclp-cdcl_{NOT}-merged-bj-learn:
  assumes finite A
  shows wf \{(T, S).
   (inv\ S\ \land\ atms\ of\ msu\ (clauses\ S)\subseteq atms\ of\ ms\ A\ \land\ atm\ of\ (trail\ S)\subseteq atms\ of\ ms\ A
   \land no-dup (trail S))
   \land \ cdcl_{NOT}\text{-}merged\text{-}bj\text{-}learn^{++} \ S \ T}
  apply (rule wf-subset)
  apply (rule wf-trancl[OF wf-cdcl_{NOT}-merged-bj-learn])
  using assms apply simp
  using tranclp-cdcl_{NOT}-cdcl_{NOT}-tranclp[OF - - - - - \langle finite A \rangle] by auto
lemma backjump-no-step-backjump-l:
  backjump \ S \ T \Longrightarrow inv \ S \Longrightarrow \neg no\text{-step backjump-l } S
  apply (elim backjumpE)
 apply (rule bj-merge-can-jump)
   apply auto[7]
  by blast
```

```
lemma cdcl_{NOT}-merged-bj-learn-final-state:
 fixes A :: 'v \ literal \ multiset \ set \ and \ S \ T :: 'st
 assumes
   n-s: no-step cdcl_{NOT}-merged-bj-learn S and
   atms-S: atms-of-msu (clauses S) \subseteq atms-of-ms A and
   atms-trail: atm-of 'lits-of (trail S) \subseteq atms-of-ms A and
   n-d: no-dup (trail S) and
   finite A and
   inv: inv S and
   decomp: all-decomposition-implies-m (clauses S) (get-all-marked-decomposition (trail S))
 shows unsatisfiable (set-mset (clauses <math>S))
   \vee (trail S \models asm\ clauses\ S \land satisfiable\ (set\text{-mset}\ (clauses\ S)))
proof -
 let ?N = set\text{-}mset \ (clauses \ S)
 let ?M = trail S
 consider
     (sat) satisfiable ?N and ?M \models as ?N
   |(sat')| satisfiable ?N and \neg ?M \models as ?N
   (unsat) unsatisfiable ?N
   by auto
  then show ?thesis
   proof cases
     case sat' note sat = this(1) and M = this(2)
     obtain C where C \in ?N and \neg ?M \models a C using M unfolding true-annots-def by auto
     obtain I :: 'v literal set where
       I \models s ?N  and
       cons: consistent-interp I and
       tot: total-over-m I ?N and
       atm-I-N: atm-of 'I \subseteq atms-of-ms ?N
       using sat unfolding satisfiable-def-min by auto
     let ?I = I \cup \{P \mid P. P \in lits\text{-}of ?M \land atm\text{-}of P \notin atm\text{-}of `I'\}
     let ?O = \{ \{ \# lit\text{-of } L \# \} \mid L. \text{ is-marked } L \land L \in set ?M \land atm\text{-of } (lit\text{-of } L) \notin atms\text{-of-ms } ?N \}
     have cons-I': consistent-interp ?I
       using cons using (no-dup\ ?M) unfolding consistent-interp-def
       by (auto simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set lits-of-def
         dest!: no-dup-cannot-not-lit-and-uminus)
     have tot-I': total-over-m ?I (?N \cup unmark ?M)
       using tot atms-of-s-def unfolding total-over-m-def total-over-set-def
       by fastforce
     have \{P \mid P. P \in lits\text{-}of ?M \land atm\text{-}of P \notin atm\text{-}of `I\} \models s ?O
       using \langle I \models s ? N \rangle atm-I-N by (auto simp add: atm-of-eq-atm-of true-clss-def lits-of-def)
     then have I'-N: ?I \models s ?N \cup ?O
       using \langle I \models s ? N \rangle true-clss-union-increase by force
     have tot': total-over-m ?I (?N \cup ?O)
       using atm-I-N tot unfolding total-over-m-def total-over-set-def
       by (force simp: image-iff lits-of-def dest!: is-marked-ex-Marked)
     have atms-N-M: atms-of-ms ?N \subseteq atm-of ' lits-of ?M
       proof (rule ccontr)
         assume ¬ ?thesis
         then obtain l :: 'v where
           l-N: l \in atms-of-ms ?N and
           l\text{-}M: l \notin atm\text{-}of ' lits\text{-}of ?M
          by auto
```

```
have undefined-lit ?M (Pos l)
      using l-M by (metis Marked-Propagated-in-iff-in-lits-of
        atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set literal.sel(1))
    have decide_{NOT} S (prepend-trail (Marked (Pos l) ()) S)
     by (metis \langle undefined\text{-}lit ?M (Pos \ l) \rangle decide_{NOT}.intros \ l\text{-}N \ literal.sel(1)
        state-eq_{NOT}-ref)
    then show False
      using cdcl_{NOT}-merged-bj-learn-decide<sub>NOT</sub> n-s by blast
 qed
have ?M \models as CNot C
 by (metis atms-N-M \langle C \in ?N \rangle \langle \neg ?M \models a C \rangle all-variables-defined-not-imply-cnot
    atms-of-atms-of-ms-mono atms-of-ms-CNot-atms-of-ms-CNot-atms-of-ms subset CE)
have \exists l \in set ?M. is\text{-}marked l
 proof (rule ccontr)
    let ?O = \{ \{ \#lit\text{-of } L \# \} \mid L. \text{ is-marked } L \land L \in set ?M \land atm\text{-of } (lit\text{-of } L) \notin atms\text{-of-ms } ?N \} 
    have \vartheta[iff]: \Lambda I. total-over-m I (?N \cup ?O \cup unmark ?M)
      \longleftrightarrow total\text{-}over\text{-}m \ I \ (?N \cup unmark \ ?M)
     unfolding total-over-set-def total-over-m-def atms-of-ms-def by auto
    assume ¬ ?thesis
    then have [simp]:\{\{\#lit\text{-}of\ L\#\}\ | L.\ is\text{-}marked\ L \land L \in set\ ?M\}
      = \{ \{ \#lit\text{-of } L \# \} \mid L. \text{ is-marked } L \land L \in set ?M \land atm\text{-of } (lit\text{-of } L) \notin atms\text{-of-ms } ?N \}
     by auto
    then have ?N \cup ?O \models ps \ unmark \ ?M
      using all-decomposition-implies-propagated-lits-are-implied [OF decomp] by auto
    then have ?I \models s \ unmark \ ?M
      using cons-I' I'-N tot-I' \langle ?I \models s ?N \cup ?O \rangle unfolding \vartheta true-clss-clss-def by blast
    then have lits-of ?M \subseteq ?I
      unfolding true-clss-def lits-of-def by auto
    then have ?M \models as ?N
     using I'-N \ \langle C \in ?N \rangle \ \langle \neg ?M \models a \ C \rangle \ cons-I' \ atms-N-M
     by (meson \ (trail \ S \models as \ CNot \ C) \ consistent-CNot-not \ rev-subsetD \ sup-ge1 \ true-annot-def
        true-annots-def true-cls-mono-set-mset-l true-clss-def)
    then show False using M by fast
  qed
from List.split-list-first-propE[OF this] obtain K :: 'v \ literal \ and \ d :: unit \ and
  F F' :: ('v, unit, unit) ann-literal list where
 M-K: ?M = F' @ Marked K () # <math>F and
 nm: \forall f \in set \ F'. \ \neg is\text{-}marked \ f
 unfolding is-marked-def by (metis (full-types) old.unit.exhaust)
let ?K = Marked K ()::('v, unit, unit) ann-literal
have ?K \in set ?M
 unfolding M-K by auto
let ?C = image\text{-}mset \ lit\text{-}of \ \{\#L \in \#mset \ ?M. \ is\text{-}marked \ L \land L \neq ?K \#\} :: 'v \ literal \ multiset
let ?C' = set\text{-mset} \ (image\text{-mset} \ (\lambda L::'v \ literal. \{\#L\#\}) \ (?C + \{\#lit\text{-of} \ ?K\#\}))
have ?N \cup \{\{\#lit\text{-of }L\#\} \mid L. \text{ is-marked } L \land L \in set ?M\} \models ps \ unmark ?M
 using all-decomposition-implies-propagated-lits-are-implied [OF\ decomp].
moreover have C': ?C' = \{\{\#lit\text{-of }L\#\} \mid L. \text{ is-marked } L \land L \in set ?M\}
 unfolding M-K apply standard
    apply force
 using IntI by auto
ultimately have N-C-M: ?N \cup ?C' \models ps \ unmark \ ?M
have N-M-False: ?N \cup (\lambda L. \{\#lit\text{-of }L\#\}) \text{ '} (set ?M) \models ps \{\{\#\}\}\}
```

```
using M \triangleleft ?M \models as \ CNot \ C \triangleleft ?N \rangle unfolding true-clss-clss-def true-annots-def Ball-def true-annot-def by (metis consistent-CNot-not sup.orderE sup-commute true-clss-def true-clss-singleton-lit-of-implies-incl true-clss-union true-clss-union-increase)
```

```
have undefined-lit F K using \langle no\text{-}dup ?M \rangle unfolding M\text{-}K by (simp \ add: defined\text{-}lit\text{-}map)
moreover
 have ?N \cup ?C' \models ps \{\{\#\}\}\}
   proof -
     have A: ?N \cup ?C' \cup unmark ?M =
       ?N \cup unmark ?M
       unfolding M-K by auto
     show ?thesis
       using true-clss-clss-left-right[OF N-C-M, of {{#}}}] N-M-False unfolding A by auto
   qed
 have ?N \models p image\text{-mset uminus } ?C + \{\#-K\#\}
   unfolding true-clss-cls-def true-clss-cls-def total-over-m-def
   proof (intro allI impI)
     \mathbf{fix}\ I
     assume
       tot: total-over-set I (atms-of-ms (?N \cup \{image-mset\ uminus\ ?C+ \{\#-K\#\}\})) and
       cons: consistent-interp I and
       I \models s ?N
     have (K \in I \land -K \notin I) \lor (-K \in I \land K \notin I)
       using cons tot unfolding consistent-interp-def by (cases K) auto
     have tot': total-over-set I
        (atm\text{-}of 'lit\text{-}of '(set ?M \cap \{L. is\text{-}marked L \land L \neq Marked K ()\}))
       using tot by (auto simp add: atms-of-uminus-lit-atm-of-lit-of)
     { \mathbf{fix} \ x :: ('v, unit, unit) \ ann-literal}
       assume
         a3: lit-of x \notin I and
         a1: x \in set ?M and
         a4: is\text{-}marked x \text{ and }
         a5: x \neq Marked K ()
       then have Pos (atm\text{-}of\ (lit\text{-}of\ x)) \in I \lor Neg\ (atm\text{-}of\ (lit\text{-}of\ x)) \in I
         using a5 a4 tot' a1 unfolding total-over-set-def atms-of-s-def by blast
       moreover have f6: Neg (atm-of (lit-of x)) = - Pos (atm-of (lit-of x))
       ultimately have - lit-of x \in I
         using f6 a3 by (metis (no-types) atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
           literal.sel(1)
     } note H = this
     have \neg I \models s ?C'
       using \langle ?N \cup ?C' \models ps \{ \{ \# \} \} \rangle tot cons \langle I \models s ?N \rangle
       unfolding true-clss-clss-def total-over-m-def
       by (simp add: atms-of-uminus-lit-atm-of-lit-of atms-of-ms-single-image-atm-of-lit-of)
     then show I \models image\text{-mset uminus } ?C + \{\#-K\#\}
       unfolding true-clss-def true-cls-def Bex-mset-def
       using \langle (K \in I \land -K \notin I) \lor (-K \in I \land K \notin I) \rangle
       by (auto dest!: H)
   qed
moreover have F \models as \ CNot \ (image-mset \ uminus \ ?C)
 using nm unfolding true-annots-def CNot-def M-K by (auto simp add: lits-of-def)
ultimately have False
 using bj-merge-can-jump[of S F' K F C - K
```

```
image-mset uminus (image-mset lit-of \{\# L : \# \text{ mset } ?M. \text{ is-marked } L \land L \neq Marked K ()\#\}\}
          \langle C \in ?N \rangle n-s \langle ?M \models as \ CNot \ C \rangle bj-backjump inv unfolding M-K
          by (auto simp: cdcl_{NOT}-merged-bj-learn.simps)
        then show ?thesis by fast
    qed auto
qed
\mathbf{lemma}\ \mathit{full-cdcl}_{NOT}\text{-}\mathit{merged-bj-learn-final-state}:
  fixes A :: 'v \ literal \ multiset \ set \ and \ S \ T :: 'st
  assumes
    full: full cdcl_{NOT}-merged-bj-learn S T and
    atms-S: atms-of-msu (clauses S) \subseteq atms-of-ms A and
    \textit{atms-trail: atm-of' ilts-of (trail S)} \subseteq \textit{atms-of-ms} \ A \ \mathbf{and}
    n-d: no-dup (trail S) and
    finite A and
    inv: inv S and
    decomp: all-decomposition-implies-m (clauses S) (get-all-marked-decomposition (trail S))
  shows unsatisfiable (set-mset (clauses T))
    \vee (trail T \models asm\ clauses\ T \land satisfiable\ (set\text{-mset}\ (clauses\ T)))
proof -
  have st: cdcl_{NOT}-merged-bj-learn** S T and n-s: no-step cdcl_{NOT}-merged-bj-learn T
    using full unfolding full-def by blast+
  then have st: cdcl_{NOT}^{**} S T
    \mathbf{using} \ \mathit{inv} \ \mathit{rtranclp-cdcl}_{NOT}\text{-}\mathit{merged-bj-learn-is-rtranclp-cdcl}_{NOT}\text{-}\mathit{and-inv} \ \mathit{n-d} \ \mathbf{by} \ \mathit{auto}
  have atms-of-msu (clauses T) \subseteq atms-of-ms A and atm-of 'lits-of (trail T) \subseteq atms-of-ms A
    \mathbf{using}\ cdcl_{NOT}.rtranclp-cdcl_{NOT}-trail-clauses-bound[\mathit{OF}\ st\ inv\ n-d\ atms-S\ atms-trail]\ \mathbf{by}\ blast+
  moreover have no-dup (trail T)
    using cdcl_{NOT}.rtranclp-cdcl_{NOT}-no-dup\ inv\ n-d\ st\ by blast
  moreover have inv T
    using cdcl_{NOT}.rtranclp-cdcl_{NOT}-inv inv st by blast
  moreover have all-decomposition-implies-m (clauses T) (get-all-marked-decomposition (trail T))
    using cdcl_{NOT}.rtranclp-cdcl_{NOT}-all-decomposition-implies inv st decomp n-d by blast
  ultimately show ?thesis
    using cdcl_{NOT}-merged-bj-learn-final-state[of T A] \langle finite \ A \rangle n-s by fast
qed
end
2.8.1
          Instantiations
locale\ cdcl_{NOT}-with-backtrack-and-restarts =
  conflict-driven-clause-learning-learning-before-backjump-only-distinct-learnt trail clauses
    prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}\ propagate-conds\ inv\ backjump-conds
    learn-restrictions forget-restrictions
  for
    trail :: 'st \Rightarrow ('v, unit, unit) ann-literals and
    clauses :: 'st \Rightarrow 'v \ clauses \ \mathbf{and}
    prepend-trail :: ('v, unit, unit) \ ann-literal \Rightarrow 'st \Rightarrow 'st \ and
    tl-trail :: 'st \Rightarrow 'st and
    add-cls_{NOT} remove-cls_{NOT}:: 'v clause <math>\Rightarrow 'st \Rightarrow 'st and
    propagate\text{-}conds:: ('v, unit, unit) \ ann\text{-}literal \Rightarrow 'st \Rightarrow bool \ and
    inv :: 'st \Rightarrow bool and
    backjump\text{-}conds:: 'v\ clause \Rightarrow 'v\ clause \Rightarrow 'v\ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool\ \mathbf{and}
    learn-restrictions forget-restrictions :: 'v clause \Rightarrow 'st \Rightarrow bool
  fixes f :: nat \Rightarrow nat
```

```
assumes
    unbounded: unbounded f and f-ge-1: \bigwedge n. n \geq 1 \implies f n \geq 1 and
    inv\text{-restart:} \land S \ T. \ inv \ S \Longrightarrow \ T \sim reduce\text{-trail-to}_{NOT} \ ([]::'a \ list) \ S \Longrightarrow inv \ T
begin
lemma bound-inv-inv:
  assumes
    inv S and
    n-d: no-dup (trail S) and
    atms-clss-S-A: atms-of-msu (clauses S) \subseteq atms-of-ms A and
    atms-trail-S-A:atm-of 'lits-of (trail S) \subseteq atms-of-ms A and
    finite A and
    cdcl_{NOT}: cdcl_{NOT} S T
  shows
    atms-of\text{-}msu (clauses T) \subseteq atms-of\text{-}ms A and
    atm\text{-}of ' lits\text{-}of (trail T) \subseteq atms\text{-}of\text{-}ms A and
    finite A
proof -
  have cdcl_{NOT} S T
    using \langle inv S \rangle cdcl_{NOT} by linarith
  then have atms-of-msu (clauses\ T)\subseteq atms-of-msu (clauses\ S)\cup atm-of 'lits-of (trail\ S)
    \mathbf{by} \ (meson\ conflict\text{-}driven\text{-}clause\text{-}learning\text{-}ops.cdcl_{NOT}\text{-}atms\text{-}of\text{-}ms\text{-}clauses\text{-}decreasing}
      conflict-driven-clause-learning-ops-axioms n-d)
  then show atms-of-msu (clauses T) \subseteq atms-of-ms A
    using atms-clss-S-A atms-trail-S-A by blast
next
  show atm\text{-}of ' lits\text{-}of (trail T) \subseteq atms\text{-}of\text{-}ms A
    by (meson (inv S) atms-clss-S-A atms-trail-S-A cdcl_{NOT} cdcl_{NOT}-atms-in-trail-in-set n-d)
next
 \mathbf{show}\ \mathit{finite}\ \mathit{A}
    using \langle finite \ A \rangle by simp
sublocale cdcl_{NOT}-increasing-restarts-ops \lambda S T. T \sim reduce-trail-to<sub>NOT</sub> ([]::'a list) S cdcl_{NOT} f
  \lambda A \ S. \ atms-of-msu \ (clauses \ S) \subseteq atms-of-ms \ A \land atm-of \ `lits-of \ (trail \ S) \subseteq atms-of-ms \ A \land
 \mu_{CDCL}' \lambda S. inv S \wedge no\text{-}dup (trail S)
 \mu_{CDCL} '-bound
 apply unfold-locales
          apply (simp add: unbounded)
          using f-ge-1 apply force
        using bound-inv-inv apply meson
        apply (rule cdcl_{NOT}-decreasing-measure'; simp)
        apply (rule rtranclp-cdcl<sub>NOT</sub>-\mu_{CDCL}'-bound; simp)
       apply (rule rtranclp-\mu_{CDCL}'-bound-decreasing; simp)
      apply auto[]
    apply auto
  using cdcl_{NOT}-inv cdcl_{NOT}-no-dup apply blast
  using inv-restart apply auto[]
  done
abbreviation cdcl_{NOT}-l where
cdcl_{NOT}-l \equiv
  conflict-driven-clause-learning-ops.cdcl_{NOT} trail clauses prepend-trail tl-trail add-cls_{NOT}
```

```
remove-cls<sub>NOT</sub> propagate-conds (\lambda- - - S T. backjump S T)
  (\lambda C\ S.\ distinct\text{-mset}\ C\ \land\ \neg\ tautology\ C\ \land\ learn\text{-restrictions}\ C\ S
   \land (\exists F \ K \ F' \ C' \ L. \ trail \ S = F' @ Marked \ K \ () \# F \land C = C' + \{\#L\#\}\}
      \land F \models as \ CNot \ C' \land C' + \{\#L\#\} \notin \# \ clauses \ S))
  (\lambda C S. \neg (\exists F' F K L. trail S = F' @ Marked K () \# F \land F \models as CNot (C - \{\#L\#\}))
  \land forget-restrictions C(S)
lemma cdcl_{NOT}-with-restart-\mu_{CDCL}'-le-\mu_{CDCL}'-bound:
  assumes
    cdcl_{NOT}: cdcl_{NOT}-restart (T, a) (V, b) and
    cdcl_{NOT}-inv:
     inv T
     no-dup (trail T) and
    bound-inv:
     atms\text{-}of\text{-}msu\ (clauses\ T)\subseteq atms\text{-}of\text{-}ms\ A
     atm\text{-}of ' lits\text{-}of ( trail\ T) \subseteq atms\text{-}of\text{-}ms\ A
     finite A
  shows \mu_{CDCL}' A V \leq \mu_{CDCL}'-bound A T
  using cdcl_{NOT}-inv bound-inv
proof (induction rule: cdcl_{NOT}-with-restart-induct[OF cdcl_{NOT}])
  case (1 m S T n U) note U = this(3)
  show ?case
   apply (rule rtranclp-cdcl_{NOT}-\mu_{CDCL}'-bound-reduce-trail-to<sub>NOT</sub>[of S T])
        using \langle (cdcl_{NOT} \ \widehat{\ } \ m) \ S \ T \rangle apply (fastforce dest!: relpowp-imp-rtranclp)
       using 1 by auto
next
  case (2 S T n) note full = this(2)
  show ?case
   apply (rule rtranclp-cdcl<sub>NOT</sub>-\mu_{CDCL}'-bound)
   using full 2 unfolding full1-def by force+
qed
lemma cdcl_{NOT}-with-restart-\mu_{CDCL}'-bound-le-\mu_{CDCL}'-bound:
  assumes
    cdcl_{NOT}: cdcl_{NOT}-restart (T, a) (V, b) and
    cdcl_{NOT}-inv:
     inv T
     no-dup (trail T) and
   bound-inv:
     atms-of-msu (clauses T) \subseteq atms-of-ms A
     atm\text{-}of \ (trail \ T) \subseteq atms\text{-}of\text{-}ms \ A
     finite A
  shows \mu_{CDCL}'-bound A \ V \leq \mu_{CDCL}'-bound A \ T
  using cdcl_{NOT}-inv bound-inv
proof (induction rule: cdcl_{NOT}-with-restart-induct[OF cdcl_{NOT}])
  case (1 m S T n U) note U = this(3)
 have \mu_{CDCL}'-bound A T \leq \mu_{CDCL}'-bound A S
    apply (rule rtranclp-\mu_{CDCL}'-bound-decreasing)
        using \langle (cdcl_{NOT} \ \widehat{} \ m) \ S \ T \rangle apply (fastforce dest: relpowp-imp-rtranclp)
       using 1 by auto
  then show ?case using U unfolding \mu_{CDCL}'-bound-def by auto
  case (2 S T n) note full = this(2)
 show ?case
   apply (rule rtranclp-\mu_{CDCL}'-bound-decreasing)
```

```
using full 2 unfolding full1-def by force+
qed
sublocale cdcl_{NOT}-increasing-restarts - - - - - f
   \lambda S \ T. \ T \sim reduce-trail-to_{NOT} \ ([]::'a \ list) \ S
  \lambda A \ S. \ atms-of-msu \ (clauses \ S) \subseteq atms-of-ms \ A
    \land atm-of 'lits-of (trail S) \subseteq atms-of-ms A \land finite A
  \mu_{CDCL}' \ cdcl_{NOT}
   \lambda S. inv S \wedge no\text{-}dup (trail S)
  \mu_{CDCL}'-bound
 apply unfold-locales
  using cdcl_{NOT}-with-restart-\mu_{CDCL}'-le-\mu_{CDCL}'-bound apply simp
  using cdcl_{NOT}-with-restart-\mu_{CDCL}'-bound-le-\mu_{CDCL}'-bound apply simp
 done
lemma cdcl_{NOT}-restart-all-decomposition-implies:
 assumes cdcl_{NOT}-restart S T and
   inv (fst S) and
   no-dup (trail (fst S))
   all-decomposition-implies-m (clauses (fst S)) (get-all-marked-decomposition (trail (fst S)))
  \mathbf{shows}
   all-decomposition-implies-m (clauses (fst T)) (get-all-marked-decomposition (trail (fst T)))
  using assms apply (induction)
  using rtranclp-cdcl_{NOT}-all-decomposition-implies by (auto dest!: tranclp-into-rtranclp
   simp: full1-def)
\mathbf{lemma}\ rtranclp\text{-}cdcl_{NOT}\text{-}restart\text{-}all\text{-}decomposition\text{-}implies\text{:}}
 assumes cdcl_{NOT}-restart** S T and
   inv: inv (fst S) and
   n-d: no-dup (trail (fst S)) and
   decomp:
     all-decomposition-implies-m (clauses (fst S)) (get-all-marked-decomposition (trail (fst S)))
   all-decomposition-implies-m (clauses (fst T)) (get-all-marked-decomposition (trail (fst T)))
 using assms(1)
proof (induction rule: rtranclp-induct)
  then show ?case using decomp by simp
next
  case (step \ T \ u) note st = this(1) and r = this(2) and IH = this(3)
 have inv (fst T)
   using rtranclp-cdcl_{NOT}-with-restart-cdcl_{NOT}-inv[OF\ st] inv n-d by blast
 moreover have no-dup (trail\ (fst\ T))
   using rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv[OF st] inv n-d by blast
  ultimately show ?case
   using cdcl_{NOT}-restart-all-decomposition-implies r IH n-d by fast
qed
lemma cdcl_{NOT}-restart-sat-ext-iff:
 assumes
    st: cdcl_{NOT}-restart S T and
   n-d: no-dup (trail (fst S)) and
   inv: inv (fst S)
 shows I \models sextm \ clauses \ (fst \ S) \longleftrightarrow I \models sextm \ clauses \ (fst \ T)
 using assms
```

```
proof (induction)
  case (restart\text{-}step \ m \ S \ T \ n \ U)
 then show ?case
   using rtranclp-cdcl_{NOT}-bj-sat-ext-iff n-d by (fastforce\ dest!:\ relpowp-imp-rtranclp)
next
 case restart-full
 then show ?case using rtranclp-cdcl_{NOT}-bj-sat-ext-iff unfolding full1-def
 by (fastforce dest!: tranclp-into-rtranclp)
qed
lemma rtranclp-cdcl_{NOT}-restart-sat-ext-iff:
 assumes
   st: cdcl_{NOT}\text{-}restart^{**} \ S \ T \ \mathbf{and}
   n-d: no-dup (trail (fst S)) and
   inv: inv (fst S)
 shows I \models sextm \ clauses \ (fst \ S) \longleftrightarrow I \models sextm \ clauses \ (fst \ T)
 using st
proof (induction)
 case base
 then show ?case by simp
next
 case (step T U) note st = this(1) and r = this(2) and IH = this(3)
 have inv (fst T)
   using rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv[OF st] inv n-d by blast+
  moreover have no-dup (trail\ (fst\ T))
   using rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv rtranclp-cdcl_{NOT}-no-dup st inv n-d by blast
  ultimately show ?case
   using cdcl_{NOT}-restart-sat-ext-iff[OF r] IH by blast
theorem full-cdcl_{NOT}-restart-backjump-final-state:
 fixes A :: 'v \ literal \ multiset \ set \ and \ S \ T :: 'st
 assumes
   full: full cdcl_{NOT}-restart (S, n) (T, m) and
   atms-S: atms-of-msu (clauses S) \subseteq atms-of-ms A and
   \textit{atms-trail: atm-of' ilts-of (trail S)} \subseteq \textit{atms-of-ms} \ A \ \mathbf{and}
   n-d: no-dup (trail S) and
   fin-A[simp]: finite A and
   inv: inv S and
   decomp: all-decomposition-implies-m (clauses S) (get-all-marked-decomposition (trail S))
 shows unsatisfiable (set-mset (clauses S))
   \vee (lits-of (trail T) \models sextm clauses S \wedge satisfiable (set-mset (clauses S)))
proof -
 have st: cdcl_{NOT}\text{-}restart^{**} (S, n) (T, m) and
   n-s: no-step cdcl_{NOT}-restart (T, m)
   using full unfolding full-def by fast+
 have binv-T: atms-of-msu (clauses T) \subseteq atms-of-ms A atm-of 'lits-of (trail T) \subseteq atms-of-ms A
   \mathbf{using}\ rtranclp\text{-}cdcl_{NOT}\text{-}with\text{-}restart\text{-}bound\text{-}inv[OF\ st,\ of\ A]\ inv\ n\text{-}d\ atms\text{-}S\ atms\text{-}trail}
   by auto
  moreover have inv-T: no-dup (trail\ T) inv\ T
   using rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv[OF st] inv n-d by auto
  moreover have all-decomposition-implies-m (clauses T) (get-all-marked-decomposition (trail T))
   using rtranclp-cdcl_{NOT}-restart-all-decomposition-implies [OF st] inv n-d
    decomp by auto
  ultimately have T: unsatisfiable (set-mset (clauses T))
```

```
\vee (trail T \models asm\ clauses\ T \land satisfiable\ (set\text{-mset}\ (clauses\ T)))
   using no-step-cdcl<sub>NOT</sub>-restart-no-step-cdcl<sub>NOT</sub>[of (T, m) A] n-s
    cdcl_{NOT}-final-state[of T A] unfolding cdcl_{NOT}-NOT-all-inv-def by auto
  have eq-sat-S-T:\bigwedge I. I \models sextm \ clauses \ S \longleftrightarrow I \models sextm \ clauses \ T
   using rtranclp-cdcl_{NOT}-restart-sat-ext-iff[OF st] inv n-d atms-S
        atms-trail by auto
  have cons-T: consistent-interp (lits-of (trail T))
   using inv-T(1) distinct consistent-interp by blast
  consider
      (unsat) unsatisfiable (set-mset (clauses T))
   |(sat)| trail T \models asm \ clauses \ T and satisfiable \ (set\text{-mset} \ (clauses \ T))
   using T by blast
  then show ?thesis
   proof cases
      case unsat
      then have unsatisfiable (set-mset (clauses S))
       \mathbf{using}\ eq\text{-}sat\text{-}S\text{-}T\ consistent\text{-}true\text{-}clss\text{-}ext\text{-}satisfiable\ true\text{-}clss\text{-}imp\text{-}true\text{-}cls\text{-}ext}
       unfolding satisfiable-def by blast
      then show ?thesis by fast
   next
      case sat
      then have lits-of (trail T) \models sextm clauses S
       using rtranclp-cdcl_{NOT}-restart-sat-ext-iff [OF st] inv n-d atms-S
        atms-trail by (auto simp: true-clss-imp-true-cls-ext true-annots-true-cls)
      moreover then have satisfiable (set-mset (clauses S))
         using cons-T consistent-true-clss-ext-satisfiable by blast
      ultimately show ?thesis by blast
   qed
qed
end — end of cdcl_{NOT}-with-backtrack-and-restarts locale
locale most-general-cdcl<sub>NOT</sub> =
    dpll-state trail clauses prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT} +
   propagate-ops\ trail\ clauses\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}\ propagate-conds\ +
   backjumping-ops\ trail\ clauses\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}\ \lambda- - - - . True
  for
    trail :: 'st \Rightarrow ('v, unit, unit) ann-literals and
   clauses :: 'st \Rightarrow 'v \ clauses \ \mathbf{and}
   prepend-trail :: ('v, unit, unit) \ ann-literal \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
   tl-trail :: 'st \Rightarrow 'st and
   add-cls_{NOT} remove-cls_{NOT}:: 'v clause \Rightarrow 'st \Rightarrow 'st and
   propagate\text{-}conds :: ('v, unit, unit) \ ann\text{-}literal \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
   inv :: 'st \Rightarrow bool
begin
lemma backjump-bj-can-jump:
  assumes
   tr-S: trail S = F' @ Marked K () # <math>F and
    C: C \in \# clauses S  and
    tr-S-C: trail S \models as CNot C and
   undef: undefined-lit F L and
   atm-L: atm-of L \in atms-of-msu (clauses S) \cup atm-of '(lits-of (F' @ Marked K () \# F)) and
   cls-S-C': clauses <math>S \models pm \ C' + \{\#L\#\}  and
    F-C': F \models as \ CNot \ C'
  shows \neg no\text{-}step\ backjump\ S
   using backjump.intros[OF tr-S - C tr-S-C undef - cls-S-C' F-C',
```

```
of prepend-trail (Propagated L -) (reduce-trail-to<sub>NOT</sub> FS)] atm-L unfolding tr-S
    by (auto simp: state-eq_{NOT}-def simp del: state-simp_{NOT})
sublocale dpll-with-backjumping-ops - - - - - inv \lambda- - - - . True
  using backjump-bj-can-jump by unfold-locales auto
end
The restart does only reset the trail, contrary to Weidenbach's version. But there is a forget
locale\ cdcl_{NOT}-merge-bj-learn-with-backtrack-restarts =
  cdcl_{NOT}-merge-bj-learn trail clauses prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT}
    propagate-conds inv forget-conds
    \lambda C C' L' S. distinct-mset (C' + \{\#L'\#\}) \wedge backjump-l-cond C C' L' S
    trail :: 'st \Rightarrow ('v, unit, unit) ann-literals and
    clauses :: 'st \Rightarrow 'v \ clauses \ {\bf and}
    prepend-trail :: ('v, unit, unit) \ ann-literal \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    tl-trail :: 'st \Rightarrow 'st and
    add-cls_{NOT} remove-cls_{NOT}:: 'v clause <math>\Rightarrow 'st \Rightarrow 'st and
    propagate\text{-}conds:: ('v, unit, unit) \ ann\text{-}literal \Rightarrow 'st \Rightarrow bool \ and
    inv :: 'st \Rightarrow bool and
    forget\text{-}conds :: 'v \ clause \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
    backjump-l-cond :: 'v clause \Rightarrow 'v clause \Rightarrow 'v literal \Rightarrow 'st \Rightarrow bool
  fixes f :: nat \Rightarrow nat
  assumes
    unbounded: unbounded f and f-ge-1: \bigwedge n. n \geq 1 \implies f n \geq 1 and
    inv\text{-restart:} \land S \ T. \ inv \ S \Longrightarrow \ T \sim reduce\text{-trail-to}_{NOT} \ [] \ S \Longrightarrow inv \ T
begin
interpretation cdcl_{NOT}:
   conflict-driven-clause-learning-ops trail clauses prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT}
   propagate-conds inv backjump-conds (\lambda C -. distinct-mset C \wedge \neg tautology C) forget-conds
  by unfold-locales
interpretation cdcl_{NOT}:
   conflict-driven-clause-learning trail clauses prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT}
   propagate-conds inv backjump-conds (\lambda C -. distinct-mset C \wedge \neg tautology C) forget-conds
  apply unfold-locales
  \mathbf{using}\ cdcl_{NOT}\text{-}merged\text{-}bj\text{-}learn\text{-}forget_{NOT}\ cdcl\text{-}merged\text{-}inv\ learn\text{-}inv
  by (auto simp add: cdcl_{NOT}.simps dpll-bj-inv)
definition not-simplified-cls A = \{ \#C \in \# A. \ tautology \ C \lor \neg distinct-mset \ C \# \}
lemma simple-clss-or-not-simplified-cls:
  assumes atms-of-msu (clauses S) \subseteq atms-of-ms A and
    x \in \# clauses S  and finite A
 shows x \in simple\text{-}clss (atms\text{-}of\text{-}ms A) \lor x \in \# not\text{-}simplified\text{-}cls (clauses S)
proof -
  consider
      (simpl) \neg tautology x  and distinct-mset x
     (n\text{-}simp) tautology x \vee \neg distinct\text{-}mset x
    by auto
```

```
then show ?thesis
   proof cases
     case simpl
     then have x \in simple-clss (atms-of-ms A)
       by (meson assms atms-of-atms-of-ms-mono atms-of-ms-finite simple-clss-mono
         distinct-mset-not-tautology-implies-in-simple-clss finite-subset
         mem\text{-}set\text{-}mset\text{-}iff\ subsetCE)
     then show ?thesis by blast
   next
     case n-simp
     then have x \in \# not-simplified-cls (clauses S)
       using \langle x \in \# \ clauses \ S \rangle unfolding not-simplified-cls-def by auto
     then show ?thesis by blast
   qed
qed
lemma cdcl_{NOT}-merged-bj-learn-clauses-bound:
    cdcl_{NOT}-merged-bj-learn S T and
   inv: inv S and
   \mathit{atms\text{-}\mathit{clss}} \colon \mathit{atms\text{-}\mathit{of\text{-}msu}} \ (\mathit{clauses} \ S) \subseteq \mathit{atms\text{-}\mathit{of\text{-}ms}} \ A \ \mathbf{and}
   atms-trail: atm-of '(lits-of (trail S)) \subseteq atms-of-ms A and
   n-d: no-dup (trail S) and
   fin-A[simp]: finite A
  shows set-mset (clauses T) \subseteq set-mset (not-simplified-cls (clauses S))
   \cup simple-clss (atms-of-ms A)
 using assms
proof (induction rule: cdcl_{NOT}-merged-bj-learn.induct)
 case cdcl_{NOT}-merged-bj-learn-decide_{NOT}
 then show ?case using dpll-bj-clauses by (force dest!: simple-clss-or-not-simplified-cls)
next
  case cdcl_{NOT}-merged-bj-learn-propagate<sub>NOT</sub>
 then show ?case using dpll-bj-clauses by (force dest!: simple-clss-or-not-simplified-cls)
next
  case cdcl_{NOT}-merged-bj-learn-forget<sub>NOT</sub>
 then show ?case using clauses-remove-cls_{NOT} unfolding state-eq_{NOT}-def
   by (force elim!: forget_{NOT}E dest: simple-clss-or-not-simplified-cls)
next
  case (cdcl_{NOT}-merged-bj-learn-backjump-l T) note bj = this(1) and inv = this(2) and
   atms-clss = this(3) and atms-trail = this(4) and n-d = this(5)
 have cdcl_{NOT}^{**} S T
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT})
   using \langle backjump-l \ S \ T \rangle inv cdcl_{NOT}-merged-bj-learn.simps n-d by blast+
 have atm\text{-}of '(lits\text{-}of (trail T)) \subseteq atms\text{-}of\text{-}ms A
   \mathbf{using}\ cdcl_{NOT}.rtranclp-cdcl_{NOT}-trail-clauses-bound[OF\ \langle cdcl_{NOT}^{**}\ S\ T\rangle]\ inv\ atms-trail\ atms-clss
   n-d by auto
  have atms-of-msu (clauses T) \subseteq atms-of-ms A
  \mathbf{using}\ cdcl_{NOT}.rtranclp-cdcl_{NOT}-trail-clauses-bound[OF\ \langle cdcl_{NOT}^{**}\ S\ T\rangle\ inv\ n-d\ atms-clss\ atms-trail]
   by fast
 moreover have no-dup (trail\ T)
   using cdcl_{NOT}.rtranclp-cdcl_{NOT}-no-dup[OF \langle cdcl_{NOT}^{**} S T \rangle inv n-d] by fast
 obtain F' K F L l C' C where
   tr-S: trail S = F' @ Marked K () # F and
```

```
T: T \sim prepend-trail \ (Propagated \ L \ l) \ (reduce-trail-to_{NOT} \ F \ (add-cls_{NOT} \ (C' + \{\#L\#\}) \ S)) and
    C \in \# clauses S  and
    trail S \models as CNot C  and
    undef: undefined-lit FL and
    atm\text{-}of\ L = atm\text{-}of\ K\ \lor\ atm\text{-}of\ L \in atms\text{-}of\text{-}msu\ (clauses\ S)
     \vee atm-of L \in atm-of ' (lits-of F' \cup lits-of F) and
    clauses S \models pm C' + \{\#L\#\} and
    F \models as \ CNot \ C' and
    dist: distinct\text{-}mset \ (C' + \{\#L\#\}) \ \mathbf{and}
    tauto: \neg tautology (C' + \{\#L\#\}) and
    backjump-l-cond C C' L T
   using \langle backjump-l | S | T \rangle apply (induction rule: backjump-l.induct) by auto
  have atms-of C' \subseteq atm-of `(lits-of F)
   using \langle F \models as\ CNot\ C' \rangle by (simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
     atms-of-def image-subset-iff in-CNot-implies-uminus(2))
  then have atms-of (C'+\{\#L\#\}) \subseteq atms-of-ms A
   using T \land atm\text{-}of \land lits\text{-}of \ (trail \ T) \subseteq atms\text{-}of\text{-}ms \ A \land tr\text{-}S \ undef \ n\text{-}d \ by \ auto
  then have simple-clss\ (atms-of\ (C' + \{\#L\#\})) \subseteq simple-clss\ (atms-of-ms\ A)
   apply - by (rule simple-clss-mono) (simp-all)
  then have C' + \{\#L\#\} \in simple\text{-}clss (atms\text{-}of\text{-}ms A)
   using distinct-mset-not-tautology-implies-in-simple-clss[OF dist tauto]
   by auto
  then show ?case
   using T inv atms-clss undef tr-S n-d
   by (force dest!: simple-clss-or-not-simplified-cls)
qed
lemma cdcl_{NOT}-merged-bj-learn-not-simplified-decreasing:
 assumes cdcl_{NOT}-merged-bj-learn S T
 shows (not\text{-}simplified\text{-}cls\ (clauses\ T)) \subseteq \#\ (not\text{-}simplified\text{-}cls\ (clauses\ S))
  using assms apply induction
  prefer 4
  unfolding not-simplified-cls-def apply (auto elim!: backjump-lE forget<sub>NOT</sub>E)[3]
  by (elim\ backjump-lE) auto
lemma rtranclp-cdcl_{NOT}-merged-bj-learn-not-simplified-decreasing:
  assumes cdcl_{NOT}-merged-bj-learn** S T
  shows (not-simplified-cls (clauses T)) \subseteq \# (not-simplified-cls (clauses S))
  using assms apply induction
   apply simp
  by (drule\ cdcl_{NOT}\text{-}merged\text{-}bj\text{-}learn\text{-}not\text{-}simplified\text{-}decreasing})\ auto
lemma rtranclp-cdcl_{NOT}-merged-bj-learn-clauses-bound:
  assumes
    cdcl_{NOT}-merged-bj-learn** S T and
    inv S and
   atms-of-msu (clauses S) \subseteq atms-of-ms A and
   atm\text{-}of \ (lits\text{-}of \ (trail \ S)) \subseteq atms\text{-}of\text{-}ms \ A \ \mathbf{and}
   n-d: no-dup (trail S) and
   finite[simp]: finite A
  shows set-mset (clauses T) \subseteq set-mset (not-simplified-cls (clauses S))
   \cup simple-clss (atms-of-ms A)
  using assms(1-5)
proof induction
```

```
case base
   then show ?case by (auto dest!: simple-clss-or-not-simplified-cls)
   case (step T U) note st = this(1) and cdel_{NOT} = this(2) and IH = this(3)[OF\ this(4-7)] and
      inv = this(4) and atms-clss-S = this(5) and atms-trail-S = this(6) and finite-cls-S = this(7)
   have st': cdcl_{NOT}^{**} S T
      using inv \ rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT}-and-inv st \ n-d by blast
   have inv T
      using inv \ rtranclp-cdcl_{NOT}-merged-bj-learn-inv st \ n-d by blast
   moreover
      have atms-of-msu (clauses T) \subseteq atms-of-ms A and
         atm\text{-}of \ (trail \ T) \subseteq atms\text{-}of\text{-}ms \ A
         \mathbf{using}\ cdcl_{NOT}.rtranclp-cdcl_{NOT}-trail-clauses-bound[\mathit{OF}\ st']\ inv\ atms-clss-S\ atms-trail-S\ n-degree and the substitution of the s
         by blast+
   moreover moreover have no-dup (trail T)
      using cdcl_{NOT}.rtranclp-cdcl_{NOT}-no-dup[OF \langle cdcl_{NOT}^{**} S T \rangle inv n-d] by fast
   ultimately have set-mset (clauses U)
      \subseteq set-mset (not-simplified-cls (clauses T)) \cup simple-clss (atms-of-ms A)
      using cdcl_{NOT} finite cdcl_{NOT}-merged-bj-learn-clauses-bound
      by (auto intro!: cdcl_{NOT}-merged-bj-learn-clauses-bound)
   moreover have set-mset (not-simplified-cls (clauses T))
      \subseteq set-mset (not-simplified-cls (clauses S))
      using rtranclp-cdcl_{NOT}-merged-bj-learn-not-simplified-decreasing [OF\ st] by auto
   ultimately show ?case using IH inv atms-clss-S
      by (auto dest!: simple-clss-or-not-simplified-cls)
ged
abbreviation \mu_{CDCL}'-bound where
\mu_{CDCL}'-bound A T == ((2+card (atms-of-ms A)) ^ (1+card (atms-of-ms A))) * 2
       + card (set\text{-}mset (not\text{-}simplified\text{-}cls(clauses T)))
       + 3 \hat{} card (atms-of-ms A)
lemma rtranclp-cdcl_{NOT}-merged-bj-learn-clauses-bound-card:
   assumes
      cdcl_{NOT}-merged-bj-learn** S T and
      inv S and
      atms-of-msu (clauses S) \subseteq atms-of-ms A and
      atm\text{-}of \ (lits\text{-}of \ (trail \ S)) \subseteq atms\text{-}of\text{-}ms \ A \ \mathbf{and}
      n-d: no-dup (trail S) and
      finite: finite A
  shows \mu_{CDCL}'-merged A T \leq \mu_{CDCL}'-bound A S
proof -
   have set-mset (clauses T) \subseteq set-mset (not-simplified-cls(clauses S))
      \cup simple-clss (atms-of-ms A)
      using rtranclp-cdcl_{NOT}-merged-bj-learn-clauses-bound[OF assms].
   moreover have card (set-mset (not-simplified-cls(clauses S))
        \cup simple-clss (atms-of-ms A))
      < card (set\text{-}mset (not\text{-}simplified\text{-}cls(clauses S))) + 3 ^ card (atms\text{-}of\text{-}ms A)
      by (meson Nat.le-trans atms-of-ms-finite simple-clss-card card-Un-le finite
         nat-add-left-cancel-le)
   ultimately have card (set-mset (clauses T))
      \leq card (set\text{-}mset (not\text{-}simplified\text{-}cls(clauses S))) + 3 \cap card (atms\text{-}of\text{-}ms A)
      by (meson Nat.le-trans atms-of-ms-finite simple-clss-finite card-mono
         finite-UnI finite-set-mset local.finite)
   moreover have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A T) * 2
```

```
\leq (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) * 2
   by auto
 ultimately show ?thesis unfolding \mu_{CDCL}'-merged-def by auto
qed
sublocale cdcl_{NOT}-increasing-restarts-ops \lambda S T. T \sim reduce-trail-to<sub>NOT</sub> ([]::'a list) S
  cdcl_{NOT}-merged-bj-learn f
  \lambda A \ S. \ atms-of-msu \ (clauses \ S) \subseteq atms-of-ms \ A
    \land atm-of 'lits-of (trail S) \subseteq atms-of-ms A \land finite A
  \mu_{CDCL}'-merged
   \lambda S. inv S \wedge no\text{-}dup (trail S)
  \mu_{CDCL}'-bound
  apply unfold-locales
            using unbounded apply simp
           using f-qe-1 apply force
          apply (blast dest!: cdcl_{NOT}-merged-bj-learn-is-tranclp-cdcl<sub>NOT</sub> tranclp-into-rtranclp
            cdcl_{NOT}.rtranclp-cdcl_{NOT}-trail-clauses-bound)
         apply (simp add: cdcl_{NOT}-decreasing-measure')
        using rtranclp-cdcl_{NOT}-merged-bj-learn-clauses-bound-card apply blast
        apply (drule rtranclp-cdcl_{NOT}-merged-bj-learn-not-simplified-decreasing)
        apply (auto dest!: simp: card-mono set-mset-mono)
     apply simp
     apply auto[]
    using cdcl_{NOT}-merged-bj-learn-no-dup-inv cdcl-merged-inv apply blast
   apply (auto simp: inv-restart)[]
   done
lemma cdcl_{NOT}-restart-\mu_{CDCL}'-merged-le-\mu_{CDCL}'-bound:
   cdcl_{NOT}-restart T V
   inv (fst T) and
   no-dup (trail (fst T)) and
   atms-of-msu (clauses (fst T)) \subseteq atms-of-ms A and
   atm\text{-}of \ (trail \ (fst \ T)) \subseteq atms\text{-}of\text{-}ms \ A \ \mathbf{and}
   finite A
 shows \mu_{CDCL}'-merged A (fst V) \leq \mu_{CDCL}'-bound A (fst T)
 using assms
proof induction
 case (restart\text{-}full\ S\ T\ n)
 show ?case
   unfolding fst-conv
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-clauses-bound-card)
   using restart-full unfolding full1-def by (force dest!: tranclp-into-rtranclp)+
 case (restart-step m S T n U) note st = this(1) and U = this(3) and inv = this(4) and
   n-d = this(5) and atms-clss = this(6) and atms-trail = this(7) and finite = this(8)
 then have st': cdcl_{NOT}-merged-bj-learn** S T
   by (blast dest: relpowp-imp-rtranclp)
  then have st'': cdcl_{NOT}^{**} S T
   using inv n-d apply - by (rule rtranclp-cdcl<sub>NOT</sub>-merged-bj-learn-is-rtranclp-cdcl<sub>NOT</sub>) auto
 have inv T
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-inv)
     using inv st' n-d by auto
  then have inv U
   using U by (auto simp: inv-restart)
```

```
have atms-of-msu (clauses\ T) \subseteq atms-of-ms A
   \mathbf{using}\ cdcl_{NOT}.rtranclp-cdcl_{NOT}-trail-clauses-bound[\mathit{OF}\ st'']\ inv\ atms-clss\ atms-trail\ n-d
  then have atms-of-msu (clauses\ U) \subseteq atms-of-ms A
   using U by simp
  have not-simplified-cls (clauses U) \subseteq \# not-simplified-cls (clauses T)
   using \langle U \sim reduce\text{-}trail\text{-}to_{NOT} \mid \mid T \rangle by auto
  moreover have not-simplified-cls (clauses T) \subseteq \# not-simplified-cls (clauses S)
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-not-simplified-decreasing)
   using ((cdcl_{NOT} - merged - bj - learn \ ^ m) \ S \ T) by (auto dest!: relpowp-imp-rtranclp)
  ultimately have U-S: not-simplified-cls (clauses U) \subseteq \# not-simplified-cls (clauses S)
   by auto
  have (set\text{-}mset\ (clauses\ U))
   \subseteq set-mset (not-simplified-cls (clauses U)) \cup simple-clss (atms-of-ms A)
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-clauses-bound)
        apply simp
       using \langle inv \ U \rangle apply simp
      using \langle atms-of\text{-}msu \ (clauses \ U) \subseteq atms-of\text{-}ms \ A \rangle apply simp
     using U apply simp
    using U apply simp
   using finite apply simp
   done
  then have f1: card (set\text{-}mset (clauses U)) \leq card (set\text{-}mset (not\text{-}simplified\text{-}cls (clauses U))
   \cup simple-clss (atms-of-ms A))
   by (simp add: simple-clss-finite card-mono local.finite)
  moreover have set-mset (not-simplified-cls (clauses U)) \cup simple-clss (atms-of-ms A)
   \subseteq set-mset (not-simplified-cls (clauses S)) \cup simple-clss (atms-of-ms A)
   using U-S by auto
  then have f2:
    card\ (set\text{-}mset\ (not\text{-}simplified\text{-}cls\ (clauses\ U)) \cup simple\text{-}clss\ (atms\text{-}of\text{-}ms\ A))
      \leq card \ (set\text{-}mset \ (not\text{-}simplified\text{-}cls \ (clauses \ S)) \cup simple\text{-}clss \ (atms\text{-}of\text{-}ms \ A))
   by (simp add: simple-clss-finite card-mono local.finite)
 moreover have card (set-mset (not-simplified-cls (clauses S))
     \cup simple-clss (atms-of-ms A))
    \leq card \ (set\text{-}mset \ (not\text{-}simplified\text{-}cls \ (clauses \ S))) + card \ (simple\text{-}clss \ (atms\text{-}of\text{-}ms \ A))
   using card-Un-le by blast
  moreover have card (simple-clss (atms-of-ms A)) \leq 3 \hat{} card (atms-of-ms A)
   using atms-of-ms-finite simple-clss-card local finite by blast
  ultimately have card (set-mset (clauses U))
    \leq card \ (set\text{-}mset \ (not\text{-}simplified\text{-}cls \ (clauses \ S))) + 3 \cap card \ (atms\text{-}of\text{-}ms \ A)
   by linarith
  then show ?case unfolding \mu_{CDCL}'-merged-def by auto
lemma cdcl_{NOT}-restart-\mu_{CDCL}'-bound-le-\mu_{CDCL}'-bound:
 assumes
    cdcl_{NOT}-restart T V and
   no-dup (trail (fst T)) and
   inv (fst T) and
   fin: finite A
  shows \mu_{CDCL}'-bound A (fst V) \leq \mu_{CDCL}'-bound A (fst T)
  using assms(1-3)
```

```
proof induction
  case (restart-full\ S\ T\ n)
  have not-simplified-cls (clauses T) \subseteq \# not-simplified-cls (clauses S)
   \mathbf{apply} (rule rtranclp-cdcl<sub>NOT</sub>-merged-bj-learn-not-simplified-decreasing)
   using \langle full1 \ cdcl_{NOT}-merged-bj-learn S \ T \rangle unfolding full1-def
   by (auto dest: tranclp-into-rtranclp)
  then show ?case by (auto simp: card-mono set-mset-mono)
next
  case (restart-step m S T n U) note st = this(1) and U = this(3) and n-d = this(4) and inv = this(4)
this(5)
  then have st': cdcl_{NOT}-merged-bj-learn** S T
   by (blast dest: relpowp-imp-rtranclp)
  then have st'': cdcl_{NOT}^{**} S T
   using inv n-d apply - by (rule rtranclp-cdcl<sub>NOT</sub>-merged-bj-learn-is-rtranclp-cdcl<sub>NOT</sub>) auto
  have inv T
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-inv)
     using inv st' n-d by auto
  then have inv U
   using U by (auto simp: inv-restart)
  have not-simplified-cls (clauses U) \subseteq \# not-simplified-cls (clauses T)
   using \langle U \sim reduce\text{-}trail\text{-}to_{NOT} \mid T \rangle by auto
  moreover have not-simplified-cls (clauses T) \subseteq \# not-simplified-cls (clauses S)
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-not-simplified-decreasing)
   using \langle (cdcl_{NOT}\text{-}merged\text{-}bj\text{-}learn \ ^{\sim} m) \ S \ T \rangle by (auto dest!: relpowp-imp-rtranclp)
  ultimately have U-S: not-simplified-cls (clauses U) \subseteq \# not-simplified-cls (clauses S)
   by auto
  then show ?case by (auto simp: card-mono set-mset-mono)
qed
sublocale cdcl_{NOT}-increasing-restarts - - - - - - f \lambda S T. T \sim reduce-trail-to<sub>NOT</sub> ([]::'a list) S
  \lambda A \ S. \ atms-of-msu \ (clauses \ S) \subseteq atms-of-ms \ A
    \land atm-of 'lits-of (trail S) \subseteq atms-of-ms A \land finite A
  \mu_{CDCL}'-merged cdcl_{NOT}-merged-bj-learn
   \lambda S. \ inv \ S \ \land \ no\text{-}dup \ (trail \ S)
   \lambda A \ T. \ ((2+card\ (atms-of-ms\ A)) \ \widehat{\ } \ (1+card\ (atms-of-ms\ A))) \ *\ 2
    + card (set\text{-}mset (not\text{-}simplified\text{-}cls(clauses T)))
    + 3 \hat{} card (atms-of-ms A)
  {\bf apply} \ unfold\text{-}locales
    using cdcl_{NOT}-restart-\mu_{CDCL}'-merged-le-\mu_{CDCL}'-bound apply force
   using cdcl_{NOT}-restart-\mu_{CDCL}'-bound-le-\mu_{CDCL}'-bound by fastforce
lemma cdcl_{NOT}-restart-eq-sat-iff:
  assumes
    cdcl_{NOT}-restart S T and
    no-dup (trail (fst S))
    inv (fst S)
  shows I \models sextm \ clauses \ (fst \ S) \longleftrightarrow I \models sextm \ clauses \ (fst \ T)
  using assms
proof (induction rule: cdcl_{NOT}-restart.induct)
  case (restart-full\ S\ T\ n)
  then have cdcl_{NOT}-merged-bj-learn** S T
   by (simp add: tranclp-into-rtranclp full1-def)
  then show ?case
   \mathbf{using}\ cdcl_{NOT}.rtranclp-cdcl_{NOT}\text{-}bj\text{-}sat\text{-}ext\text{-}iff\ restart\text{-}full.prems(1,2)
```

```
rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT} by auto
next
  case (restart\text{-}step \ m \ S \ T \ n \ U)
  then have cdcl_{NOT}-merged-bj-learn** S T
   by (auto simp: tranclp-into-rtranclp full1-def dest!: relpowp-imp-rtranclp)
  then have I \models sextm \ clauses \ S \longleftrightarrow I \models sextm \ clauses \ T
   using cdcl_{NOT}.rtranclp-cdcl_{NOT}-bj-sat-ext-iff restart-step.prems(1,2)
   rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT} by auto
 moreover have I \models sextm \ clauses \ T \longleftrightarrow I \models sextm \ clauses \ U
   using restart-step.hyps(3) by auto
 ultimately show ?case by auto
qed
lemma rtranclp-cdcl_{NOT}-restart-eq-sat-iff:
 assumes
   cdcl_{NOT}-restart** S T and
   inv: inv (fst S) and n-d: no-dup(trail (fst S))
 shows I \models sextm \ clauses \ (fst \ S) \longleftrightarrow I \models sextm \ clauses \ (fst \ T)
 using assms(1)
proof (induction rule: rtranclp-induct)
  case base
 then show ?case by simp
next
 case (step\ T\ U) note st=this(1) and cdcl=this(2) and IH=this(3)
 have inv (fst T) and no-dup (trail (fst T))
   using rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv using st inv n-d by blast+
 then have I \models sextm\ clauses\ (fst\ T) \longleftrightarrow I \models sextm\ clauses\ (fst\ U)
   using cdcl_{NOT}-restart-eq-sat-iff cdcl by blast
 then show ?case using IH by blast
qed
lemma cdcl_{NOT}-restart-all-decomposition-implies-m:
   cdcl_{NOT}-restart S T and
   inv: inv (fst S) and n-d: no-dup(trail (fst S)) and
   all-decomposition-implies-m (clauses (fst S))
     (qet-all-marked-decomposition\ (trail\ (fst\ S)))
 shows all-decomposition-implies-m (clauses (fst T))
     (get-all-marked-decomposition\ (trail\ (fst\ T)))
  using assms
proof (induction)
 case (restart-full S T n) note full = this(1) and inv = this(2) and n-d = this(3) and
   decomp = this(4)
 have st: cdcl_{NOT}-merged-bj-learn** S T and
   n-s: no-step cdcl_{NOT}-merged-bj-learn T
   using full unfolding full1-def by (fast dest: tranclp-into-rtranclp)+
 have st': cdcl_{NOT}^{**} S T
   using inv rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT}-and-inv st n-d by auto
 have inv T
   using rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv[OF\ st]\ inv\ n-d\ by\ auto
  then show ?case
   using cdcl_{NOT}. rtranclp-cdcl_{NOT}-all-decomposition-implies [OF - n-d \ decomp] st' inv by auto
next
 case (restart-step m S T n U) note st = this(1) and U = this(3) and inv = this(4) and
   n-d = this(5) and decomp = this(6)
```

```
show ?case using U by auto
qed
lemma rtranclp-cdcl_{NOT}-restart-all-decomposition-implies-m:
 assumes
   cdcl_{NOT}-restart** S T and
   inv: inv (fst S) and n-d: no-dup(trail (fst S)) and
   decomp: all-decomposition-implies-m (clauses (fst S))
     (get-all-marked-decomposition\ (trail\ (fst\ S)))
 shows all-decomposition-implies-m (clauses (fst T))
     (qet-all-marked-decomposition (trail (fst T)))
 using assms
proof (induction)
 case base
 then show ?case using decomp by simp
next
  case (step T U) note st = this(1) and cdcl = this(2) and IH = this(3)[OF\ this(4-)] and
   inv = this(4) and n-d = this(5) and decomp = this(6)
 have inv (fst T) and no-dup (trail (fst T))
   using rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv using st inv n-d by blast+
  then show ?case
   using cdcl_{NOT}-restart-all-decomposition-implies-m[OF cdcl] IH by auto
qed
lemma full-cdcl_{NOT}-restart-normal-form:
 assumes
   full: full cdcl_{NOT}-restart S T and
   inv: inv (fst S) and n-d: no-dup(trail (fst S)) and
   decomp: all-decomposition-implies-m (clauses (fst S))
     (get-all-marked-decomposition\ (trail\ (fst\ S))) and
   atms-cls: atms-of-msu (clauses (fst S)) \subseteq atms-of-ms A and
   atms-trail: atm-of 'lits-of (trail (fst S)) \subseteq atms-of-ms A and
   fin: finite A
 shows unsatisfiable (set-mset (clauses (fst S)))
   \vee lits-of (trail (fst T)) \models sextm clauses (fst S) \wedge satisfiable (set-mset (clauses (fst S)))
proof -
 have inv-T: inv (fst T) and n-d-T: no-dup (trail (fst T))
   \mathbf{using} \ \mathit{rtranclp-cdcl}_{NOT}\text{-}\mathit{with-restart-cdcl}_{NOT}\text{-}\mathit{inv} \ \mathbf{using} \ \mathit{full} \ \mathit{inv} \ \mathit{n-d} \ \mathbf{unfolding} \ \mathit{full-def} \ \mathbf{by} \ \mathit{blast} +
 moreover have
   atms-cls-T: atms-of-msu (clauses (fst T)) \subseteq atms-of-ms A and
   atms-trail-T: atm-of ' lits-of (trail (fst T)) \subseteq atms-of-ms A
   using rtranclp-cdcl_{NOT}-with-restart-bound-inv[of S T A] full atms-cls atms-trail fin inv n-d
   unfolding full-def by blast+
  ultimately have no-step cdcl_{NOT}-merged-bj-learn (fst T)
   apply
   apply (rule no-step-cdcl<sub>NOT</sub>-restart-no-step-cdcl<sub>NOT</sub>[of - A])
      using full unfolding full-def apply simp
     apply simp
   using fin apply simp
  moreover have all-decomposition-implies-m (clauses (fst T))
   (get-all-marked-decomposition\ (trail\ (fst\ T)))
   using rtranclp-cdcl_{NOT}-restart-all-decomposition-implies-m[of S T] inv n-d decomp
   full unfolding full-def by auto
  ultimately have unsatisfiable (set-mset (clauses (fst T)))
```

```
\vee trail (fst T) \models asm clauses (fst T) \wedge satisfiable (set-mset (clauses (fst T)))
   apply (rule cdcl_{NOT}-merged-bj-learn-final-state)
   using atms-cls-T atms-trail-T fin n-d-T fin inv-T by blast+
 then consider
     (unsat) unsatisfiable (set-mset (clauses (fst T)))
    (sat) trail (fst T) \models asm clauses (fst T)  and satisfiable (set-mset (clauses (fst T)))
   by auto
 then show unsatisfiable (set-mset (clauses (fst S)))
   \vee lits-of (trail (fst T)) \models sextm clauses (fst S) \wedge satisfiable (set-mset (clauses (fst S)))
   proof cases
     case unsat
     then have unsatisfiable (set-mset (clauses (fst S)))
      unfolding satisfiable-def apply auto
      using rtranclp-cdcl_{NOT}-restart-eq-sat-iff[of S T ] full inv n-d
      consistent-true-clss-ext-satisfiable\ true-clss-imp-true-cls-ext
      unfolding satisfiable-def full-def by blast
     then show ?thesis by blast
   next
     case sat
     then have lits-of (trail (fst T)) \models sextm clauses (fst T)
       using true-clss-imp-true-cls-ext by (auto simp: true-annots-true-cls)
     then have lits-of (trail (fst T)) \models sextm clauses (fst S)
      using rtranclp-cdcl_{NOT}-restart-eq-sat-iff[of S T] full inv n-d unfolding full-def by blast
     moreover then have satisfiable (set-mset (clauses (fst S)))
      using consistent-true-clss-ext-satisfiable distinct consistent-interp n-d-T by fast
     ultimately show ?thesis by fast
   qed
qed
corollary full-cdcl_{NOT}-restart-normal-form-init-state:
 assumes
   init-state: trail S = [] clauses S = N and
   full: full cdcl_{NOT}-restart (S, \theta) T and
   inv: inv S
 shows unsatisfiable (set-mset N)
   \vee lits-of (trail (fst T)) \models sextm N \wedge satisfiable (set-mset N)
 using full-cdcl_{NOT}-restart-normal-form[of (S, \theta) T] assms by auto
end
end
theory DPLL-NOT
imports CDCL-NOT
begin
```

3 DPLL as an instance of NOT

3.1 DPLL with simple backtrack

```
locale dpll-with-backtrack
begin
inductive backtrack :: ('v, unit, unit) \ ann-literal list \times 'v clauses
\Rightarrow ('v, unit, unit) ann-literal list \times 'v clauses \Rightarrow bool where
backtrack-split (fst S) = (M', L \# M) \Longrightarrow is-marked L \Longrightarrow D \in \# snd S
```

```
\implies fst S \models as CNot D \implies backtrack S (Propagated (-(lit\text{-}of L)) () \# M, snd S)
inductive-cases backtrackE[elim]: backtrack (M, N) (M', N')
lemma backtrack-is-backjump:
    fixes MM':: ('v, unit, unit) ann-literal list
    assumes
         backtrack: backtrack (M, N) (M', N') and
         no-dup: (no-dup \circ fst) (M, N) and
         decomp: all-decomposition-implies-m \ N \ (get-all-marked-decomposition \ M)
         shows
                \exists C F' K F L l C'.
                       M = F' \otimes Marked K () \# F \wedge
                       M' = Propagated \ L \ l \ \# \ F \land N = N' \land C \in \# \ N \land F' @ Marked \ K \ d \ \# \ F \models as \ CNot \ C \land M \land F' \land M \land M \land F' \land M \land M \land F' \land 
                       undefined-lit\ F\ L\ \land\ atm-of\ L\ \in\ atms-of-msu\ N\ \cup\ atm-of\ `lits-of\ (F'\ @\ Marked\ K\ d\ \#\ F)\ \land
                       N \models pm C' + \{\#L\#\} \land F \models as CNot C'
proof -
    let ?S = (M, N)
    let ?T = (M', N')
    obtain F F' P L D where
         b-sp: backtrack-split M = (F', L \# F) and
         is-marked L and
         D \in \# \ snd \ ?S \ and
         M \models as \ CNot \ D \ and
         bt: backtrack ?S (Propagated (-(lit\text{-}of\ L))\ P\ \#\ F,\ N) and
         M': M' = Propagated (- (lit-of L)) P \# F and
         [simp]: N' = N
     using backtrackE[OF backtrack] by (metis backtrack fstI sndI)
    let ?K = lit - of L
    let C = image\text{-mset lit-of } \{\#K \in \#mset M. is\text{-marked } K \land K \neq L\#\} :: 'v \text{ literal multiset } \}
    let ?C' = set\text{-}mset \ (image\text{-}mset \ single \ (?C+\{\#?K\#\}))
    obtain K where L: L = Marked K () using (is-marked L) by (cases L) auto
    have M: M = F' @ Marked K () \# F
         using b-sp by (metis L backtrack-split-list-eq fst-conv snd-conv)
    moreover have F' @ Marked K () \# F \models as CNot D
         using \langle M \models as \ CNot \ D \rangle unfolding M.
    moreover have undefined-lit F(-?K)
         using no-dup unfolding M L by (simp add: defined-lit-map)
    moreover have atm\text{-}of\ (-K) \in atm\text{-}of\text{-}msu\ N\ \cup\ atm\text{-}of\ `its\text{-}of\ (F'\ @\ Marked\ K\ d\ \#\ F)
         by auto
    moreover
         have set-mset N \cup ?C' \models ps \{\{\#\}\}\
             proof -
                 have A: set-mset N \cup ?C' \cup unmark M =
                       set\text{-}mset\ N\ \cup\ unmark\ M
                       unfolding M L by auto
                 have set-mset N \cup \{\{\#lit\text{-of }L\#\} \mid L. \text{ is-marked } L \land L \in set M\}
                           \models ps \ unmark \ M
                       using all-decomposition-implies-propagated-lits-are-implied [OF decomp].
                  moreover have C': ?C' = \{\{\#lit\text{-}of\ L\#\}\ | L.\ is\text{-}marked\ L \land L \in set\ M\}
                       unfolding ML apply standard
                           apply force
                       using IntI by auto
                  ultimately have N-C-M: set-mset N \cup ?C' \models ps \ unmark \ M
                       by auto
```

```
have set-mset N \cup (\lambda L. \{\#lit\text{-of }L\#\}) \text{ '} (set M) \models ps \{\{\#\}\}\}
     unfolding true-clss-clss-def
     proof (intro allI impI, goal-cases)
        case (1 I) note tot = this(1) and cons = this(2) and I-N-M = this(3)
       have I \models D
         using I-N-M \langle D \in \# \ snd \ ?S \rangle unfolding true-clss-def by auto
       moreover have I \models s \ CNot \ D
         using \langle M \models as \ CNot \ D \rangle unfolding M by (metis 1(3) \langle M \models as \ CNot \ D \rangle
           true-annots-true-cls true-cls-mono-set-mset-l true-clss-def
           true-clss-singleton-lit-of-implies-incl true-clss-union)
       ultimately show ?case using cons consistent-CNot-not by blast
     qed
   then show ?thesis
     using true-clss-clss-left-right[OF N-C-M, of {{#}}] unfolding A by auto
  qed
have N \models pm \ image-mset \ uminus \ ?C + \{\#-?K\#\}
  unfolding true-clss-cls-def true-clss-clss-def total-over-m-def
  proof (intro allI impI)
   \mathbf{fix}\ I
   assume
     tot: total-over-set I (atms-of-ms (set-mset N \cup \{image-mset\ uminus\ ?C + \{\#-\ ?K\#\}\})) and
     cons: consistent-interp I and
     I \models sm N
   have (K \in I \land -K \notin I) \lor (-K \in I \land K \notin I)
     using cons tot unfolding consistent-interp-def L by (cases K) auto
   have tI: total-over-set I (atm-of 'it-of '(set\ M \cap \{L.\ is-marked L \land L \neq Marked\ K\ d\}))
     using tot by (auto simp add: L atms-of-uminus-lit-atm-of-lit-of)
   then have H: \bigwedge x.
        lit\text{-}of \ x \notin I \Longrightarrow x \in set \ M \Longrightarrow is\text{-}marked \ x
        \implies x \neq Marked \ K \ d \implies -lit \text{-} of \ x \in I
     proof -
       \mathbf{fix} \ x :: ('v, unit, unit) \ ann-literal
       assume a1: x \neq Marked K d
       assume a2: is-marked x
       assume a3: x \in set M
       assume a4: lit-of x \notin I
       have atm\text{-}of\ (lit\text{-}of\ x) \in atm\text{-}of\ `lit\text{-}of\ `
         (set M \cap \{m. \text{ is-marked } m \land m \neq Marked K d\})
         using a3 a2 a1 by blast
        then have Pos (atm\text{-}of\ (lit\text{-}of\ x)) \in I \vee Neg\ (atm\text{-}of\ (lit\text{-}of\ x)) \in I
         using tI unfolding total-over-set-def by blast
        then show - lit-of x \in I
         using a4 by (metis (no-types) atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
           literal.sel(1,2)
     qed
   have \neg I \models s ?C'
     using \langle set\text{-}mset\ N\cup\ ?C'\models ps\ \{\{\#\}\}\rangle\ tot\ cons\ \langle I\models sm\ N\rangle
     unfolding true-clss-clss-def total-over-m-def
     by (simp add: atms-of-uninus-lit-atm-of-lit-of atms-of-ms-single-image-atm-of-lit-of)
   then show I \models image\text{-}mset\ uminus\ ?C + \{\#-\ lit\text{-}of\ L\#\}
     unfolding true-clss-def true-cls-def Bex-mset-def
     using \langle (K \in I \land -K \notin I) \lor (-K \in I \land K \notin I) \rangle
     unfolding L by (auto dest!: H)
  qed
```

```
moreover
   have set F' \cap \{K. \text{ is-marked } K \land K \neq L\} = \{\}
     using backtrack-split-fst-not-marked[of - M] b-sp by auto
   then have F \models as \ CNot \ (image-mset \ uminus \ ?C)
      unfolding M CNot-def true-annots-def by (auto simp add: L lits-of-def)
  ultimately show ?thesis
   using M' \langle D \in \# snd ?S \rangle L by force
qed
lemma backtrack-is-backjump':
 fixes M M' :: ('v, unit, unit) ann-literal list
 assumes
   backtrack: backtrack S T and
   no\text{-}dup: (no\text{-}dup \circ fst) \ S \ \text{and}
   decomp: all-decomposition-implies-m (snd S) (qet-all-marked-decomposition (fst S))
   shows
       \exists C F' K F L l C'.
        fst S = F' @ Marked K () \# F \land
         T = (Propagated \ L \ l \ \# \ F, \ snd \ S) \land C \in \# \ snd \ S \land fst \ S \models as \ CNot \ C
         \land undefined-lit F \ L \land atm\text{-of} \ L \in atm\text{-of-msu} \ (snd \ S) \cup atm\text{-of} \ `fits\text{-of} \ (fst \ S) \land 
         snd S \models pm C' + \{\#L\#\} \land F \models as CNot C'
 apply (cases S, cases T)
 using backtrack-is-backjump[of fst S snd S fst T snd T] assms by fastforce
sublocale dpll-state fst snd \lambda L (M, N). (L \# M, N) \lambda (M, N). (tl M, N)
 \lambda C (M, N). (M, \{\#C\#\} + N) \lambda C (M, N). (M, remove-mset C N)
 by unfold-locales auto
sublocale backjumping-ops fst snd \lambda L (M, N). (L \# M, N) \lambda (M, N). (tl M, N)
 \lambda C (M, N). (M, \#C\#\} + N) \lambda C (M, N). (M, remove-mset\ C\ N) \lambda- - - S T. backtrack S T
 by unfold-locales
lemma backtrack-is-backjump":
 fixes M M' :: ('v, unit, unit) ann-literal list
 assumes
   backtrack: backtrack S T and
   no-dup: (no-dup \circ fst) S and
   decomp: all-decomposition-implies-m (snd S) (qet-all-marked-decomposition (fst S))
   shows backjump S T
proof -
  obtain C F' K F L l C' where
   1: fst S = F' @ Marked K () \# F and
   2: T = (Propagated \ L \ l \ \# \ F, \ snd \ S) and
   3: C \in \# snd S and
   4: fst S \models as CNot C and
   5: undefined-lit F L and
   6: atm\text{-}of\ L\in atm\text{-}of\text{-}msu\ (snd\ S)\cup atm\text{-}of\ `lits\text{-}of\ (fst\ S)\ and
    7: snd S \models pm C' + \{\#L\#\}  and
   8: F \models as \ CNot \ C'
 using backtrack-is-backjump'[OF assms] by blast
 show ?thesis
   using backjump.intros[OF 1 - 3 4 5 6 7 8] 2 backtrack 1 5
   by (auto simp: state-eq_{NOT}-def simp del: state-simp_{NOT})
qed
```

```
\mathbf{lemma} \ \ can\text{-}do\text{-}bt\text{-}step\text{:}
  assumes
    M: fst \ S = F' @ Marked \ K \ d \ \# \ F \ and
    C \in \# \ snd \ S \ \mathbf{and}
    C: fst \ S \models as \ CNot \ C
  shows \neg no-step backtrack S
proof -
 obtain L G' G where
   backtrack-split (fst S) = (G', L \# G)
   unfolding M by (induction F' rule: ann-literal-list-induct) auto
 moreover then have is-marked L
    by (metis\ backtrack-split-snd-hd-marked\ list.distinct(1)\ list.sel(1)\ snd-conv)
 ultimately show ?thesis
    using backtrack.intros[of S G' L G C] \langle C \in \# snd S \rangle C unfolding M by auto
qed
end
sublocale dpll-with-backtrack \subseteq dpll-with-backjumping-ops fst snd \lambda L (M, N). (L \# M, N)
  \lambda(M, N). (tl M, N) \lambda C (M, N). (M, \{\#C\#\} + N) \lambda C (M, N). (M, remove-mset C N) \lambda- -. True
 \lambda(M, N). no-dup M \wedge all-decomposition-implies-m N (get-all-marked-decomposition M)
  \lambda- - - S T. backtrack S T
 by unfold-locales (metis (mono-tags, lifting) dpll-with-backtrack.backtrack-is-backjump''
  dpll-with-backtrack.can-do-bt-step prod.case-eq-if comp-apply)
sublocale dpll-with-backtrack \subseteq dpll-with-backjumping fst snd \lambda L (M, N). (L \# M, N)
  \lambda(M, N). (tl M, N) \lambda C (M, N). (M, \{\#C\#\} + N) \lambda C (M, N). (M, remove-mset C N) \lambda- -. True
 \lambda(M, N). no-dup M \wedge all-decomposition-implies-m N (get-all-marked-decomposition M)
 \lambda- - - S T. backtrack S T
 apply unfold-locales
 using dpll-bj-no-dup dpll-bj-all-decomposition-implies-inv apply fastforce
 done
sublocale dpll-with-backtrack \subseteq conflict-driven-clause-learning-ops
 fst snd \lambda L (M, N). (L \# M, N)
 \lambda(M, N). (tl M, N) \lambda C (M, N). (M, \{\#C\#\} + N) \lambda C (M, N). (M, remove-mset C N) \lambda- -. True
 \lambda(M, N). no-dup M \wedge all-decomposition-implies-m N (qet-all-marked-decomposition M)
 \lambda- - - S T. backtrack S T \lambda- -. False \lambda- -. False
 by unfold-locales
sublocale dpll-with-backtrack \subseteq conflict-driven-clause-learning
 fst snd \lambda L (M, N). (L \# M, N)
 \lambda(M, N). (tl M, N) \lambda C (M, N). (M, \{\#C\#\} + N) \lambda C (M, N). (M, remove-mset C N) \lambda- -. True
 \lambda(M, N). no-dup M \wedge all-decomposition-implies-m N (get-all-marked-decomposition M)
 \lambda- - - S T. backtrack S T \lambda- -. False \lambda- -. False
 apply unfold-locales
 using cdcl_{NOT}.simps\ dpll-bj-inv\ forget_{NOT}E\ learn_{NOT}E\ by blast
context dpll-with-backtrack
begin
{f lemma} wf-tranclp-dpll-inital-state:
 assumes fin: finite A
 shows wf \{((M'::('v, unit, unit) ann-literals, N'::'v clauses), ([], N))|M'N'N.
    dpll-bj^{++} ([], N) (M', N') \land atms-of-msu N \subseteq atms-of-ms A}
  using wf-tranclp-dpll-bj[OF\ assms(1)] by (rule\ wf-subset) auto
```

```
{\bf corollary}\ \mathit{full-dpll-final-state-conclusive}:
 fixes M M' :: ('v, unit, unit) ann-literal list
 assumes
   full: full dpll-bj ([], N) (M', N')
 shows unsatisfiable (set-mset N) \vee (M' \models asm N \wedge satisfiable (set-mset N))
 using assms full-dpll-backjump-final-state of ([],N) (M',N') set-mset N by auto
corollary full-dpll-normal-form-from-init-state:
 fixes M M' :: ('v, unit, unit) ann-literal list
 assumes
   full: full dpll-bj ([], N) (M', N')
 shows M' \models asm \ N \longleftrightarrow satisfiable (set-mset \ N)
proof -
 have no-dup M'
   using rtranclp-dpll-bj-no-dup[of([], N)(M', N')]
   full unfolding full-def by auto
  then have M' \models asm N \implies satisfiable (set-mset N)
   using distinct consistent-interp satisfiable-carac' true-annots-true-cls by blast
 then show ?thesis
  using full-dpll-final-state-conclusive [OF full] by auto
qed
lemma cdcl_{NOT}-is-dpll:
  cdcl_{NOT} S T \longleftrightarrow dpll-bj S T
 by (auto simp: cdcl_{NOT}.simps learn.simps forget<sub>NOT</sub>.simps)
Another proof of termination:
lemma wf \{(T, S). dpll-bj S T \wedge cdcl_{NOT}-NOT-all-inv A S\}
 unfolding cdcl_{NOT}-is-dpll[symmetric]
 by (rule wf-cdcl_{NOT}-no-learn-and-forget-infinite-chain)
  (auto simp: learn.simps forget<sub>NOT</sub>.simps)
end
3.2
       Adding restarts
locale dpll-with backtrack-and-restarts =
  dpll-with-backtrack +
 fixes f :: nat \Rightarrow nat
 assumes unbounded: unbounded f and f-ge-1: \land n. n \ge 1 \implies f n \ge 1
begin
 sublocale cdcl_{NOT}-increasing-restarts fst snd \lambda L (M, N). (L \# M, N) \lambda (M, N). (tl M, N)
   \lambda C (M, N). (M, \#C\#\} + N) \lambda C (M, N). (M, remove-mset\ C\ N) f \lambda (-, N) S. S = ([], N)
  \lambda A \ (M,\ N). \ atms-of-msu \ N \subseteq atms-of-ms \ A \land atm-of \ `its-of \ M \subseteq atms-of-ms \ A \land finite \ A
   \land all-decomposition-implies-m N (get-all-marked-decomposition M)
 \lambda A \ T. \ (2+card \ (atms-of-ms \ A)) \ \widehat{\ } \ (1+card \ (atms-of-ms \ A))
             -\mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T) dpll-bj
 \lambda(M, N). no-dup M \wedge all-decomposition-implies-m N (get-all-marked-decomposition M)
 \lambda A -. (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
 apply unfold-locales
         apply (rule unbounded)
        using f-ge-1 apply fastforce
       apply (smt dpll-bj-all-decomposition-implies-inv dpll-bj-atms-in-trail-in-set
         dpll-bj-clauses dpll-bj-no-dup prod.case-eq-if)
      apply (rule dpll-bj-trail-mes-decreasing-prop; auto)
     apply (rename-tac A T U, case-tac T, simp)
```

```
 \begin{array}{c} \textbf{apply} \ (\textit{rename-tac} \ A \ T \ U, \ \textit{case-tac} \ U, \ \textit{simp}) \\ \textbf{using} \ \textit{dpll-bj-clauses} \ \textit{dpll-bj-all-decomposition-implies-inv} \ \textit{dpll-bj-no-dup} \ \textbf{by} \ \textit{fastforce} + \\ \textbf{end} \\ \\ \textbf{end} \\ \textbf{theory} \ \textit{DPLL-W} \\ \textbf{imports} \ \textit{Main} \ \textit{Partial-Clausal-Logic} \ \textit{Partial-Annotated-Clausal-Logic} \ \textit{List-More} \ \textit{Wellfounded-More} \\ \textit{DPLL-NOT} \\ \textbf{begin} \end{array}
```

4 DPLL

4.1 Rules

```
type-synonym 'a dpll_W-ann-literal = ('a, unit, unit) ann-literal type-synonym 'a dpll_W-ann-literals = ('a, unit, unit) ann-literals type-synonym 'v dpll_W-state = 'v dpll_W-ann-literals × 'v clauses abbreviation trail :: 'v \ dpll_W-state \Rightarrow 'v dpll_W-ann-literals where trail \equiv fst abbreviation clauses :: 'v \ dpll_W-state \Rightarrow 'v clauses \ where <math>clauses \equiv snd

The definition of DPLL is given in figure 2.13 page 70 of CW. inductive dpll_W :: 'v \ dpll_W-state \Rightarrow 'v dpll_W-state \Rightarrow bool where propagate: C + \{\#L\#\} \in \# \ clauses \ S \implies trail \ S \models as \ CNot \ C \implies undefined-lit \ (trail \ S) \ L \implies dpll_W \ S \ (Propagated \ L \ () \# \ trail \ S, \ clauses \ S) \mid decided: undefined-lit \ (trail \ S) \ L \implies dpll_W \ S \ (Marked \ L \ () \# \ trail \ S, \ clauses \ S) \mid backtrack: backtrack-split \ (trail \ S) \ = (M', L \# M) \implies is-marked \ L \implies D \in \# \ clauses \ S \implies trail \ S \models as \ CNot \ D \implies dpll_W \ S \ (Propagated \ (- \ (lit-of \ L)) \ () \# \ M, \ clauses \ S)
```

4.2 Invariants

```
lemma dpll_W-distinct-inv:
 assumes dpll_W S S'
 and no-dup (trail S)
 shows no-dup (trail S')
 using assms
proof (induct rule: dpll_W.induct)
 case (decided L S)
 then show ?case using defined-lit-map by force
next
 case (propagate\ C\ L\ S)
 then show ?case using defined-lit-map by force
next
 case (backtrack S M' L M D) note extracted = this(1) and no-dup = this(5)
 show ?case
   using no-dup backtrack-split-list-eq[of trail S, symmetric] unfolding extracted by auto
qed
lemma dpll_W-consistent-interp-inv:
 assumes dpll_W S S'
 and consistent-interp (lits-of (trail S))
 and no-dup (trail S)
```

```
shows consistent-interp (lits-of (trail S'))
  using assms
proof (induct rule: dpll<sub>W</sub>.induct)
 case (backtrack\ S\ M'\ L\ M\ D) note extracted = this(1) and marked = this(2) and D = this(4) and
    cons = this(5) and no\text{-}dup = this(6)
 have no-dup': no-dup M
   by (metis (no-types) backtrack-split-list-eq distinct.simps(2) distinct-append extracted
     list.simps(9) map-append no-dup snd-conv)
  then have insert (lit-of L) (lits-of M) \subseteq lits-of (trail S)
   using backtrack-split-list-eq[of trail S, symmetric] unfolding extracted by auto
  then have cons: consistent-interp (insert (lit-of L) (lits-of M))
   using consistent-interp-subset cons by blast
 moreover
   have lit-of L \notin lits-of M
     using no-dup backtrack-split-list-eq[of trail S, symmetric] extracted
     unfolding lits-of-def by force
 moreover
   have atm-of (-lit\text{-}of\ L) \notin (\lambda m.\ atm\text{-}of\ (lit\text{-}of\ m)) 'set M
     using no-dup backtrack-split-list-eq[of trail S, symmetric] unfolding extracted by force
   then have -lit-of L \notin lits-of M
     unfolding lits-of-def by force
  ultimately show ?case by simp
qed (auto intro: consistent-add-undefined-lit-consistent)
lemma dpll_W-vars-in-snd-inv:
 assumes dpll_W S S'
 and atm-of ' (lits-of (trail\ S)) \subseteq atms-of-msu (clauses\ S)
 shows atm-of '(lits-of (trail S')) \subseteq atms-of-msu (clauses S')
 using assms
proof (induct rule: dpll<sub>W</sub>.induct)
 case (backtrack\ S\ M'\ L\ M\ D)
  then have atm\text{-}of\ (lit\text{-}of\ L) \in atms\text{-}of\text{-}msu\ (clauses\ S)
   using backtrack-split-list-eq[of trail S, symmetric] by auto
 moreover
   have atm\text{-}of ' lits\text{-}of (trail\ S) \subseteq atms\text{-}of\text{-}msu (clauses\ S)
     using backtrack(5) by simp
   then have \bigwedge xb. \ xb \in set \ M \Longrightarrow atm\text{-}of \ (lit\text{-}of \ xb) \in atm\text{-}of\text{-}msu \ (clauses \ S)
     using backtrack-split-list-eq[symmetric, of trail S] backtrack.hyps(1)
     unfolding lits-of-def by auto
 ultimately show ?case by (auto simp : lits-of-def)
qed (auto simp: in-plus-implies-atm-of-on-atms-of-ms)
lemma atms-of-ms-lit-of-atms-of: atms-of-ms ((\lambda a. \{\#lit\text{-}of \ a\#\}) \ 'c) = atm\text{-}of \ 'lit\text{-}of \ 'c
  unfolding atms-of-ms-def using image-iff by force
Lemma theorem 2.8.2 page 71 of CW
lemma dpll_W-propagate-is-conclusion:
 assumes dpll_W S S'
 and all-decomposition-implies-m (clauses S) (get-all-marked-decomposition (trail S))
 and atm\text{-}of ' lits\text{-}of (trail\ S) \subseteq atms\text{-}of\text{-}msu (clauses\ S)
 shows all-decomposition-implies-m (clauses S') (get-all-marked-decomposition (trail S'))
 using assms
proof (induct rule: dpll<sub>W</sub>.induct)
  case (decided L S)
  then show ?case unfolding all-decomposition-implies-def by simp
```

```
next
  case (propagate CLS) note inS = this(1) and cnot = this(2) and IH = this(4) and undef =
this(3) and atms-incl = this(5)
 let ?I = set (map (\lambda a. \{\#lit - of a\#\}) (trail S)) \cup set - mset (clauses S)
 have ?I \models p C + \{\#L\#\} by (auto simp add: inS)
  moreover have ?I \models ps CNot C using true-annots-true-clss-cls cnot by fastforce
  ultimately have ?I \models p \{\#L\#\} using true-clss-cls-plus-CNot[of ?I \ C \ L] in S by blast
  {
   assume get-all-marked-decomposition (trail\ S) = []
   then have ?case by blast
  }
 moreover {
   assume n: get-all-marked-decomposition (trail S) \neq []
   have 1: \bigwedge a b. (a, b) \in set (tl (get-all-marked-decomposition (trail S)))
     \implies (unmark a \cup set\text{-mset} (clauses S)) \models ps unmark b
     using IH unfolding all-decomposition-implies-def by (fastforce simp add: list.set-set(2) n)
   moreover have 2: \bigwedge a c. hd (get-all-marked-decomposition (trail S)) = (a, c)
     \implies (unmark a \cup set\text{-mset} (clauses S)) \models ps (unmark c)
     by (metis IH all-decomposition-implies-cons-pair all-decomposition-implies-single
       list.collapse n)
   moreover have 3: \bigwedge a c. hd (get-all-marked-decomposition (trail S)) = (a, c)
     \implies (unmark \ a \cup set\text{-mset} \ (clauses \ S)) \models p \ \{\#L\#\}
     proof -
       \mathbf{fix} \ a \ c
       assume h: hd (get-all-marked-decomposition (trail S)) = (a, c)
      have h': trail S = c @ a using qet-all-marked-decomposition-decomp h by blast
       have I: set (map\ (\lambda a.\ \{\#lit\text{-}of\ a\#\})\ a) \cup set\text{-}mset\ (clauses\ S)
        \cup \ unmark \ c \models ps \ CNot \ C
        using \langle I | = ps \ CNot \ C \rangle unfolding h' by (simp add: Un-commute Un-left-commute)
        atms-of-ms (CNot C) \subseteq atms-of-ms (set (map (\lambda a. {#lit-of a#}) a) \cup set-mset (clauses S))
          and
        atms-of-ms (unmark c) \subseteq atms-of-ms (set (map (\lambda a. {#lit-of a#})) a)
          \cup set-mset (clauses S))
          apply (metis CNot-plus Un-subset-iff atms-of-atms-of-ms-mono atms-of-ms-CNot-atms-of
           atms-of-ms-union in S mem-set-mset-iff sup.cobounded I2)
        using in S atms-of-atms-of-ms-mono atms-incl by (fastforce simp: h')
       then have unmark a \cup set-mset (clauses S) \models ps \ CNot \ C
        using true-clss-clss-left-right[OF - I] h 2 by auto
       then show unmark a \cup set\text{-mset} (clauses S) \models p \{\#L\#\}
        by (metis (no-types) Un-insert-right in Sinsert I1 mk-disjoint-insert in Sinem-set-mset-iff
          true-clss-cls-in true-clss-cls-plus-CNot)
     qed
   ultimately have ?case
     by (cases hd (get-all-marked-decomposition (trail S)))
       (auto simp: all-decomposition-implies-def)
 ultimately show ?case by auto
 case (backtrack\ S\ M'\ L\ M\ D) note extracted = this(1) and marked = this(2) and D = this(3) and
   cnot = this(4) and cons = this(4) and IH = this(5) and atms-incl = this(6)
 have S: trail\ S = M' @ L \# M
   using backtrack-split-list-eq[of trail S] unfolding extracted by auto
 have M': \forall l \in set M'. \neg is-marked l
```

```
using extracted backtrack-split-fst-not-marked[of - trail S] by simp
have n: get-all-marked-decomposition (trail S) \neq [] by auto
then have all-decomposition-implies-m (clauses S) ((L \# M, M')
        \# tl (get-all-marked-decomposition (trail S)))
 by (metis (no-types) IH extracted get-all-marked-decomposition-backtrack-split list.exhaust-sel)
then have 1: unmark\ (L \# M) \cup set\text{-mset}\ (clauses\ S) \models ps(\lambda a.\{\#lit\text{-of}\ a\#\}) 'set M'
 by simp
moreover
 have unmark\ (L \# M) \cup unmark\ M' \models ps\ CNot\ D
   by (metis (mono-tags, lifting) S Un-commute cons image-Un set-append
     true-annots-true-clss-clss)
 then have 2: unmark\ (L \# M) \cup set\text{-mset}\ (clauses\ S) \cup unmark\ M'
     \models ps \ CNot \ D
   by (metis (no-types, lifting) Un-assoc Un-left-commute true-clss-clss-union-l-r)
ultimately
 have set (map \ (\lambda a. \ \{\#lit\text{-}of \ a\#\}) \ (L \# M)) \cup set\text{-}mset \ (clauses \ S) \models ps \ CNot \ D
   using true-clss-clss-left-right by fastforce
 then have set (map \ (\lambda a. \ \# lit - of \ a\# \}) \ (L \# M)) \cup set - mset \ (clauses \ S) \models p \ \{\# \}
   by (metis (mono-tags, lifting) D Un-def mem-Collect-eq set-mset-def
     true-clss-clss-contradiction-true-clss-cls-false)
 then have IL: unmark M \cup set\text{-mset}\ (clauses\ S) \models p \{\#-lit\text{-}of\ L\#\}
   using true-clss-clss-false-left-right by auto
show ?case unfolding S all-decomposition-implies-def
 proof
   \mathbf{fix} \ x \ P \ level
   assume x: x \in set (get-all-marked-decomposition)
     (fst (Propagated (- lit-of L) P \# M, clauses S)))
   let ?M' = Propagated (-lit-of L) P \# M
   let ?hd = hd (get-all-marked-decomposition ?M')
   let ?tl = tl \ (qet\text{-}all\text{-}marked\text{-}decomposition }?M')
   have x = ?hd \lor x \in set ?tl
     using x
     by (cases get-all-marked-decomposition ?M')
        auto
   moreover {
     assume x': x \in set ?tl
     have L': Marked (lit-of L) () = L using marked by (cases L, auto)
     have x \in set (get-all-marked-decomposition (M' @ L \# M))
       using x' get-all-marked-decomposition-except-last-choice-equal [of M' lit-of L P M]
       L' by (metis\ (no\text{-}types)\ M'\ list.set\text{-}sel(2)\ tl\text{-}Nil)
     then have case x of (Ls, seen) \Rightarrow unmark Ls \cup set-mset (clauses S)
       \models ps \ unmark \ seen
       using marked IH by (cases L) (auto simp add: S all-decomposition-implies-def)
   moreover {
     assume x': x = ?hd
     have tl: tl \ (get\text{-}all\text{-}marked\text{-}decomposition} \ (M' @ L \# M)) \neq []
       proof -
         have f1: \ \ \ ms. \ length \ (get-all-marked-decomposition \ (M' @ ms))
          = length (get-all-marked-decomposition ms)
          by (simp add: M' get-all-marked-decomposition-remove-unmarked-length)
         have Suc (length (get-all-marked-decomposition M)) \neq Suc 0
          by blast
         then show ?thesis
          using f1 marked by (metis (no-types) get-all-marked-decomposition.simps(1) length-tl
```

```
list.sel(3) \ list.size(3) \ ann-literal.collapse(1))
         qed
       obtain M\theta' M\theta where
         L0: hd (tl (get-all-marked-decomposition (M' \otimes L \# M))) = (M0, M0')
         by (cases hd (tl (get-all-marked-decomposition (M' @ L \# M))))
       have x'': x = (M0, Propagated (-lit-of L) P # <math>M0')
         unfolding x' using get-all-marked-decomposition-last-choice tl M' L0
         by (metis marked ann-literal.collapse(1))
       obtain l-get-all-marked-decomposition where
         get-all-marked-decomposition (trail S) = (L \# M, M') \# (M0, M0') \#
          l-qet-all-marked-decomposition
         using get-all-marked-decomposition-backtrack-split extracted by (metis (no-types) L0 S
          hd-Cons-tl \ n \ tl)
       then have M = M0' @ M0 using get-all-marked-decomposition-hd-hd by fastforce
       then have IL': unmark M0 \cup set-mset (clauses S)
         \cup unmark M0' \models ps \{\{\#- lit\text{-}of L\#\}\}\}
         using IL by (simp add: Un-commute Un-left-commute image-Un)
       moreover have H: unmark \ M0 \cup set\text{-}mset \ (clauses \ S)
         \models ps \ unmark \ M0'
         using IH x" unfolding all-decomposition-implies-def by (metis (no-types, lifting) L0 S
          list.set-sel(1) list.set-sel(2) old.prod.case tl tl-Nil)
       ultimately have case x of (Ls, seen) \Rightarrow unmark Ls \cup set\text{-mset} (clauses S)
         \models ps \ unmark \ seen
         using true-clss-clss-left-right unfolding x'' by auto
     ultimately show case x of (Ls, seen) \Rightarrow
       unmark\ Ls \cup set\text{-}mset\ (snd\ (?M',\ clauses\ S))
         \models ps \ unmark \ seen
       unfolding snd-conv by blast
   qed
\mathbf{qed}
Lemma theorem 2.8.3 page 72 of CW
theorem dpll_W-propagate-is-conclusion-of-decided:
 assumes dpll_W S S'
 and all-decomposition-implies-m (clauses S) (qet-all-marked-decomposition (trail S))
 and atm\text{-}of ' lits\text{-}of (trail\ S) \subseteq atms\text{-}of\text{-}msu (clauses\ S)
 shows set-mset (clauses S') \cup {{#lit-of L#} |L. is-marked L \land L \in set (trail S')}
   \models ps \ (\lambda a. \ \{\#lit\text{-}of \ a\#\}) \ `\bigcup (set \ `snd \ `set \ (get\text{-}all\text{-}marked\text{-}decomposition} \ (trail \ S')))
 using all-decomposition-implies-trail-is-implied [OF dpll_W-propagate-is-conclusion [OF assms]].
Lemma theorem 2.8.4 page 72 of CW
lemma only-propagated-vars-unsat:
 assumes marked: \forall x \in set M. \neg is\text{-marked } x
 and DN: D \in N and D: M \models as CNot D
 and inv: all-decomposition-implies N (get-all-marked-decomposition M)
 and atm-incl: atm-of ' lits-of M \subseteq atms-of-ms N
 shows unsatisfiable N
proof (rule ccontr)
 assume \neg unsatisfiable N
  then obtain I where
   I: I \models s N \text{ and }
   cons: consistent-interp I and
   tot: total-over-m I N
   unfolding satisfiable-def by auto
```

```
then have I-D: I \models D
   using DN unfolding true-clss-def by auto
 have l0: \{\{\#lit\text{-}of\ L\#\}\ | L.\ is\text{-}marked\ L \land L \in set\ M\} = \{\}\ using\ marked\ by\ auto
 have atms-of-ms (N \cup unmark M) = atms-of-ms N
   using atm-incl unfolding atms-of-ms-def lits-of-def by auto
  then have total-over-m I (N \cup (\lambda a. \{\#lit\text{-of } a\#\}) ` (set M))
   using tot unfolding total-over-m-def by auto
  then have I \models s (\lambda a. \{\#lit\text{-}of a\#\}) ' (set M)
   using all-decomposition-implies-propagated-lits-are-implied [OF inv] cons I
   unfolding true-clss-clss-def l0 by auto
  then have IM: I \models s \ unmark \ M \ by \ auto
   \mathbf{fix} \ K
   assume K \in \# D
   then have -K \in lits\text{-}of M
     by (auto split: split-if-asm
       intro: allE[OF\ D[unfolded\ true-annots-def\ Ball-def],\ of\ \{\#-K\#\}])
   then have -K \in I using IM true-clss-singleton-lit-of-implies-incl by fastforce
 then have \neg I \models D using cons unfolding true-cls-def consistent-interp-def by auto
 then show False using I-D by blast
qed
lemma dpll_W-same-clauses:
 assumes dpll_W S S'
 shows clauses S = clauses S'
 using assms by (induct rule: dpll_W.induct, auto)
lemma rtranclp-dpll_W-inv:
 assumes rtranclp \ dpll_W \ S \ S'
 and inv: all-decomposition-implies-m (clauses S) (get-all-marked-decomposition (trail S))
 and atm-incl: atm-of 'lits-of (trail S) \subseteq atms-of-msu (clauses S)
 and consistent-interp (lits-of (trail S))
 and no-dup (trail S)
 shows all-decomposition-implies-m (clauses S') (qet-all-marked-decomposition (trail S'))
 and atm\text{-}of ' lits\text{-}of (trail\ S') \subseteq atms\text{-}of\text{-}msu (clauses\ S')
 and clauses S = clauses S'
 and consistent-interp (lits-of (trail S'))
 and no-dup (trail S')
 using assms
proof (induct rule: rtranclp-induct)
 case base
 show
   all-decomposition-implies-m (clauses S) (get-all-marked-decomposition (trail S)) and
   atm-of ' lits-of (trail\ S) \subseteq atms-of-msu\ (clauses\ S) and
   clauses S = clauses S and
   consistent-interp (lits-of (trail S)) and
   no-dup (trail S) using assms by auto
\mathbf{next}
  case (step S' S'') note dpll_W Star = this(1) and IH = this(3,4,5,6,7) and
   dpll_W = this(2)
 moreover
   assume
```

```
inv: all-decomposition-implies-m (clauses S) (get-all-marked-decomposition (trail S)) and
     atm-incl: atm-of 'lits-of (trail S) \subseteq atms-of-msu (clauses S) and
     cons: consistent-interp (lits-of (trail S)) and
     no-dup (trail S)
  ultimately have decomp: all-decomposition-implies-m (clauses S')
   (get-all-marked-decomposition (trail <math>S')) and
   atm-incl': atm-of 'lits-of (trail S') \subseteq atms-of-msu (clauses S') and
   snd: clauses S = clauses S' and
   cons': consistent-interp (lits-of (trail\ S')) and
   no-dup': no-dup (trail S') by blast+
  show clauses S = clauses S'' using dpll_W-same-clauses [OF \ dpll_W] and by metis
 \mathbf{show}\ all\text{-}decomposition\text{-}implies\text{-}m\ (clauses\ S^{\prime\prime})\ (get\text{-}all\text{-}marked\text{-}decomposition\ (trail\ S^{\prime\prime}))
   using dpll_W-propagate-is-conclusion [OF dpll_W] decomp atm-incl' by auto
 show atm-of 'lits-of (trail S'') \subseteq atms-of-msu (clauses S'')
   using dpll_W-vars-in-snd-inv[OF dpll_W] atm-incl atm-incl' by auto
 show no-dup (trail S'') using dpll_W-distinct-inv[OF dpll_W] no-dup' dpll_W by auto
 show consistent-interp (lits-of (trail S''))
   using cons' no-dup' dpll_W-consistent-interp-inv[OF dpll_W] by auto
\mathbf{qed}
definition dpll_W-all-inv S \equiv
  (all-decomposition-implies-m \ (clauses \ S) \ (get-all-marked-decomposition \ (trail \ S))
 \land atm-of 'lits-of (trail S) \subseteq atms-of-msu (clauses S)
 \land consistent-interp (lits-of (trail S))
 \land no-dup (trail S))
lemma dpll_W-all-inv-dest[dest]:
  assumes dpll_W-all-inv S
 shows all-decomposition-implies-m (clauses S) (qet-all-marked-decomposition (trail S))
 and atm-of 'lits-of (trail S) \subseteq atms-of-msu (clauses S)
 and consistent-interp (lits-of (trail S)) \land no-dup (trail S)
 using assms unfolding dpll_W-all-inv-def lits-of-def by auto
lemma rtranclp-dpll_W-all-inv:
 assumes rtranclp \ dpll_W \ S \ S'
 and dpll_W-all-inv S
 shows dpll_W-all-inv S'
 using assms rtranclp-dpll_W-inv[OF\ assms(1)] unfolding dpll_W-all-inv-def\ lits-of-def\ by\ blast
lemma dpll_W-all-inv:
 assumes dpll_W S S'
 and dpll_W-all-inv S
 shows dpll_W-all-inv S'
 using assms rtranclp-dpll_W-all-inv by blast
lemma rtranclp-dpll_W-inv-starting-from-\theta:
 assumes rtranclp dpll<sub>W</sub> S S'
 and inv: trail S = []
 shows dpll_W-all-inv S'
proof -
 have dpll_W-all-inv S
   using assms unfolding all-decomposition-implies-def dpllw-all-inv-def by auto
 then show ?thesis using rtranclp-dpll_W-all-inv[OF\ assms(1)] by blast
qed
```

```
lemma dpll_W-can-do-step:
 assumes consistent-interp (set M)
 and distinct M
 and atm\text{-}of ' (set\ M)\subseteq atms\text{-}of\text{-}msu\ N
 shows rtranclp dpll_W ([], N) (map (\lambda M. Marked M ()) M, N)
 using assms
proof (induct M)
 case Nil
 then show ?case by auto
next
 case (Cons\ L\ M)
 then have undefined-lit (map (\lambda M. Marked M ()) M) L
   unfolding defined-lit-def consistent-interp-def by auto
 moreover have atm-of L \in atms-of-msu N using Cons.prems(3) by auto
 ultimately have dpll_W (map (\lambda M. Marked M ()) M, N) (map (\lambda M. Marked M ()) (L \# M), N)
   using dpll_W.decided by auto
 moreover have consistent-interp (set M) and distinct M and atm-of 'set M \subseteq atms-of-msu N
   using Cons.prems unfolding consistent-interp-def by auto
 ultimately show ?case using Cons.hyps by auto
qed
definition conclusive-dpll_W-state (S:: 'v dpll_W-state) \longleftrightarrow
 (trail\ S \models asm\ clauses\ S \lor ((\forall\ L \in set\ (trail\ S).\ \neg is\text{-}marked\ L)
 \land (\exists C \in \# clauses \ S. \ trail \ S \models as \ CNot \ C)))
lemma dpll_W-strong-completeness:
 assumes set M \models sm N
 and consistent-interp (set M)
 and distinct M
 and atm\text{-}of ' (set\ M)\subseteq atms\text{-}of\text{-}msu\ N
 shows dpll_{W}^{**} ([], N) (map (\lambda M. Marked M ()) M, N)
 and conclusive-dpll_W-state (map\ (\lambda M.\ Marked\ M\ ())\ M,\ N)
 show rtrancly dpll_W ([], N) (map (\lambda M. Marked M ()) M, N) using dpll_W-can-do-step assms by auto
 have map (\lambda M. Marked M ()) M \models asm N  using assms(1) true-annots-marked-true-cls by auto
 then show conclusive-dpll<sub>W</sub>-state (map (\lambda M. Marked M ()) M, N)
   unfolding conclusive-dpll_W-state-def by auto
qed
lemma dpll_W-sound:
 assumes
   rtranclp \ dpll_W \ ([], \ N) \ (M, \ N) and
   \forall S. \neg dpll_W (M, N) S
 shows M \models asm N \longleftrightarrow satisfiable (set-mset N) (is ?A \longleftrightarrow ?B)
proof
 let ?M' = lits - of M
 assume ?A
 then have ?M' \models sm\ N by (simp\ add:\ true\text{-}annots\text{-}true\text{-}cls)
 moreover have consistent-interp ?M'
   using rtranclp-dpll_W-inv-starting-from-0[OF assms(1)] by auto
 ultimately show ?B by auto
\mathbf{next}
```

```
assume ?B
 show ?A
   proof (rule ccontr)
     assume n: \neg ?A
     have (\exists L. \ undefined-lit \ M \ L \land \ atm-of \ L \in \ atms-of-msu \ N) \lor (\exists \ D \in \#N. \ M \models as \ CNot \ D)
      proof -
         obtain D :: 'a \ clause \ \text{where} \ D : D \in \# \ N \ \text{and} \ \neg \ M \models a \ D
          using n unfolding true-annots-def Ball-def by auto
         then have (\exists L. undefined-lit M L \land atm-of L \in atms-of D) \lor M \models as CNot D
           unfolding true-annots-def Ball-def CNot-def true-annot-def
           using atm-of-lit-in-atms-of true-annot-iff-marked-or-true-lit true-cls-def by blast
         then show ?thesis
          by (metis Bex-mset-def D atms-of-atms-of-ms-mono mem-set-mset-iff rev-subsetD)
       qed
     moreover {
      assume \exists L. \ undefined\text{-}lit \ M \ L \land atm\text{-}of \ L \in atms\text{-}of\text{-}msu \ N
      then have False using assms(2) decided by fastforce
     moreover {
      assume \exists D \in \#N. M \models as CNot D
       then obtain D where DN: D \in \# N and MD: M \models as \ CNot \ D by auto
         assume \forall l \in set M. \neg is\text{-}marked l
         moreover have dpll_W-all-inv ([], N)
          using assms unfolding all-decomposition-implies-def dpllw-all-inv-def by auto
         ultimately have unsatisfiable (set-mset N)
          using only-propagated-vars-unsat[of M D set-mset N] DN MD
          rtranclp-dpll_W-all-inv[OF\ assms(1)] by force
         then have False using \langle ?B \rangle by blast
       }
       moreover {
         assume l: \exists l \in set M. is\text{-}marked l
         then have False
          using backtrack[of(M, N) - - D]DNMD assms(2)
            backtrack-split-some-is-marked-then-snd-has-hd[OF l]
          by (metis backtrack-split-snd-hd-marked fst-conv list.distinct(1) list.sel(1) snd-conv)
       ultimately have False by blast
     ultimately show False by blast
    qed
qed
4.3
       Termination
definition dpll_W-mes M n =
  map \ (\lambda l. \ if \ is-marked \ l \ then \ 2 \ else \ (1::nat)) \ (rev \ M) \ @ \ replicate \ (n - length \ M) \ 3
lemma length-dpll_W-mes:
 assumes length M \leq n
 shows length (dpll_W - mes\ M\ n) = n
 using assms unfolding dpll_W-mes-def by auto
lemma distinct card-atm-of-lit-of-eq-length:
 assumes no-dup S
 shows card (atm\text{-}of ' lits\text{-}of S) = length S
```

```
using assms by (induct S) (auto simp add: image-image lits-of-def)
lemma dpll_W-card-decrease:
 assumes dpll: dpll_W S S' and length (trail S') \leq card vars
 and length (trail S) \leq card vars
 shows (dpll_W-mes (trail\ S') (card\ vars), dpll_W-mes (trail\ S) (card\ vars))
   \in lexn \{(a, b). a < b\} (card vars)
 using assms
proof (induct rule: dpll_W.induct)
 case (propagate \ C \ L \ S)
 have m: map (\lambda l. if is-marked l then 2 else 1) (rev (trail S))
     @ replicate (card vars - length (trail S)) 3
    = map (\lambda l. if is\text{-}marked l then 2 else 1) (rev (trail S)) @ 3
       \# replicate (card vars - Suc (length (trail S))) 3
    using propagate.prems[simplified] using Suc-diff-le by fastforce
 then show ?case
   using propagate.prems(1) unfolding dpll_W-mes-def by (fastforce simp add: lexn-conv assms(2))
 case (decided \ S \ L)
 have m: map (\lambda l. if is-marked l then 2 else 1) (rev (trail <math>S))
     @ replicate (card vars - length (trail S)) 3
   = map(\lambda l. if is-marked l then 2 else 1) (rev (trail S)) @ 3
     \# replicate (card vars - Suc (length (trail S))) 3
   using decided.prems[simplified] using Suc-diff-le by fastforce
 then show ?case
   using decided.prems unfolding dpll_W-mes-def by (force simp add: lexn-conv assms(2))
next
 \mathbf{case}\ (\mathit{backtrack}\ S\ \mathit{M'}\ \mathit{L}\ \mathit{M}\ \mathit{D})
 have L: is-marked L using backtrack.hyps(2) by auto
 have S: trail\ S = M' @ L \# M
   using backtrack.hyps(1) backtrack-split-list-eq[of\ trail\ S] by auto
 show ?case
   using backtrack.prems L unfolding dpll_W-mes-def S by (fastforce simp add: lexn-conv assms(2))
qed
Proposition theorem 2.8.7 page 73 of CW
lemma dpll_W-card-decrease':
 assumes dpll: dpll_W S S'
 and atm-incl: atm-of 'lits-of (trail S) \subseteq atms-of-msu (clauses S)
 and no-dup: no-dup (trail S)
 shows (dpll_W-mes (trail\ S')\ (card\ (atms-of-msu\ (clauses\ S'))),
        dpll_W-mes (trail S) (card (atms-of-msu (clauses S)))) \in lex \{(a, b), a < b\}
proof -
 have finite (atms-of-msu (clauses S)) unfolding atms-of-ms-def by auto
 then have 1: length (trail S) \leq card (atms-of-msu (clauses S))
   using distinct card-atm-of-lit-of-eq-length [OF no-dup] atm-incl card-mono by metis
 moreover
   have no-dup': no-dup (trail S') using dpll dpll<sub>W</sub>-distinct-inv no-dup by blast
   have SS': clauses S' = clauses S using dpll by (auto dest!: dpll_W-same-clauses)
   have atm-incl': atm-of 'lits-of (trail S') \subseteq atms-of-msu (clauses S')
     using atm-incl dpll dpll_W-vars-in-snd-inv[OF dpll] by force
   have finite (atms-of-msu (clauses S'))
     unfolding atms-of-ms-def by auto
   then have 2: length (trail S') < card (atms-of-msu (clauses S))
```

```
ultimately have (dpll_W - mes \ (trail \ S') \ (card \ (atms-of-msu \ (clauses \ S))),
     dpll_W-mes (trail S) (card (atms-of-msu (clauses S))))
   \in lexn \{(a, b). \ a < b\} \ (card \ (atms-of-msu \ (clauses \ S)))
   using dpll_W-card-decrease [OF assms(1), of atms-of-msu (clauses S)] by blast
  then have (dpll_W - mes \ (trail \ S') \ (card \ (atms-of-msu \ (clauses \ S))),
         dpll_W-mes (trail S) (card (atms-of-msu (clauses S)))) \in lex \{(a, b). a < b\}
   unfolding lex-def by auto
  then show (dpll_W - mes \ (trail \ S') \ (card \ (atms-of-msu \ (clauses \ S'))),
        dpll_W-mes (trail S) (card (atms-of-msu (clauses S)))) \in lex \{(a, b), a < b\}
   using dpll_W-same-clauses [OF assms(1)] by auto
qed
lemma wf-lexn: wf (lexn \{(a, b), (a::nat) < b\} (card (atms-of-msu (clauses S))))
proof -
 have m: \{(a, b), a < b\} = measure id by auto
 show ?thesis apply (rule wf-lexn) unfolding m by auto
qed
lemma dpll_W-wf:
  wf \{(S', S). dpll_W - all - inv S \wedge dpll_W S S'\}
 apply (rule wf-wf-if-measure' OF wf-lex-less, of - -
         \lambda S.\ dpll_W-mes (trail S) (card (atms-of-msu (clauses S)))])
 using dpll_W-card-decrease' by fast
lemma dpll_W-tranclp-star-commute:
  \{(S', S).\ dpll_W - all - inv\ S \land dpll_W\ S\ S'\}^+ = \{(S', S).\ dpll_W - all - inv\ S \land tranclp\ dpll_W\ S\ S'\}
   (is ?A = ?B)
proof
  \{ \text{ fix } S S' \}
   assume (S, S') \in ?A
   then have (S, S') \in ?B
     by (induct rule: trancl.induct, auto)
 then show ?A \subseteq ?B by blast
  { fix S S'
   assume (S, S') \in ?B
   then have dpll_W^{++} S' S and dpll_W-all-inv S' by auto
   then have (S, S') \in ?A
     proof (induct rule: tranclp.induct)
       case r-into-trancl
       then show ?case by (simp-all add: r-into-trancl')
     next
       case (trancl-into-trancl S S' S'')
       then have (S', S) \in \{a. \ case \ a \ of \ (S', S) \Rightarrow dpll_W - all - inv \ S \land dpll_W \ S \ S'\}^+ by blast
       moreover have dpll_W-all-inv S'
         using rtranclp-dpll_W-all-inv[OF\ tranclp-into-rtranclp[OF\ trancl-into-trancl.hyps(1)]]
         trancl-into-trancl.prems by auto
       ultimately have (S'', S') \in \{(pa, p), dpll_W - all - inv p \land dpll_W p pa\}^+
         using \langle dpll_W - all - inv S' \rangle trancl-into-trancl.hyps(3) by blast
       then show ?case
         using \langle (S', S) \in \{a. \ case \ a \ of \ (S', S) \Rightarrow dpll_W - all - inv \ S \land dpll_W \ S \ S'\}^+ \rangle by auto
     qed
```

```
then show ?B \subseteq ?A by blast
lemma dpll_W-wf-tranclp: wf \{(S', S). dpll_W-all-inv S \wedge dpll_W^{++} S S'\}
  unfolding dpll_W-tranclp-star-commute[symmetric] by (simp add: dpll_W-wf wf-trancl)
lemma dpll_W-wf-plus:
  shows wf \{(S', ([], N)) | S'. dpll_W^{++} ([], N) S'\}  (is wf ?P)
 apply (rule wf-subset [OF dpll_W-wf-tranclp, of ?P])
 using assms unfolding dpll_W-all-inv-def by auto
        Final States
4.4
lemma dpll_W-no-more-step-is-a-conclusive-state:
  assumes \forall S'. \neg dpll_W S S'
  shows conclusive-dpll_W-state S
proof -
  have vars: \forall s \in atms\text{-}of\text{-}msu \ (clauses \ S). \ s \in atm\text{-}of \ (trail \ S)
   proof (rule ccontr)
      assume \neg (\forall s \in atms\text{-}of\text{-}msu \ (clauses \ S). \ s \in atm\text{-}of \ (trail \ S))
      then obtain L where
        L-in-atms: L \in atms-of-msu (clauses S) and
        L-notin-trail: L \notin atm\text{-}of \text{ } its\text{-}of \text{ } (trail S) \text{ } \mathbf{by} \text{ } met is
      obtain L' where L': atm\text{-}of\ L' = L\ by\ (meson\ literal.sel(2))
      then have undefined-lit (trail\ S)\ L'
       unfolding Marked-Propagated-in-iff-in-lits-of by (metis L-notin-trail atm-of-uninus imageI)
      then show False using dpll_W.decided assms(1) L-in-atms L' by blast
   qed
  show ?thesis
   proof (rule ccontr)
      assume not-final: ¬ ?thesis
      then have
       \neg trail S \models asm clauses S  and
       (\exists L \in set \ (trail \ S). \ is\text{-}marked \ L) \lor (\forall C \in \#clauses \ S. \ \neg trail \ S \models as \ CNot \ C)
       unfolding conclusive-dpll_W-state-def by auto
      moreover {
       assume \exists L \in set \ (trail \ S). is-marked L
       then obtain L\ M'\ M where L: backtrack-split (trail S) = (M', L\ \#\ M)
         using backtrack-split-some-is-marked-then-snd-has-hd by blast
       obtain D where D \in \# clauses S and \neg trail S \models a D
         using \langle \neg trail \ S \models asm \ clauses \ S \rangle unfolding true-annots-def by auto
       then have \forall s \in atms\text{-}of\text{-}ms \{D\}. s \in atm\text{-}of \ (trail \ S)
         using vars unfolding atms-of-ms-def by auto
       then have trail S \models as \ CNot \ D
         using all-variables-defined-not-imply-cnot [of D] \langle \neg trail \ S \models a \ D \rangle by auto
       moreover have is-marked L
         \mathbf{using}\ L\ \mathbf{by}\ (metis\ backtrack-split-snd-hd-marked\ list.distinct(1)\ list.sel(1)\ snd-conv)
       ultimately have False
         using assms(1) dpll_W.backtrack\ L\ \langle D\in\#\ clauses\ S\rangle\ \langle trail\ S\models as\ CNot\ D\rangle\ by\ blast
      }
      moreover {
       assume tr: \forall C \in \#clauses \ S. \ \neg trail \ S \models as \ CNot \ C
       obtain C where C-in-cls: C \in \# clauses S and trC: \neg trail S \models a C
         using \langle \neg trail \ S \models asm \ clauses \ S \rangle unfolding true-annots-def by auto
       have \forall s \in atms\text{-}of\text{-}ms \{C\}. s \in atm\text{-}of \text{ } its\text{-}of \text{ } (trail S)
```

```
using vars \langle C \in \# clauses S \rangle unfolding atms-of-ms-def by auto
      then have trail S \models as \ CNot \ C
        by (meson C-in-cls tr trC all-variables-defined-not-imply-cnot)
      then have False using tr C-in-cls by auto
     ultimately show False by blast
   qed
\mathbf{qed}
lemma dpll_W-conclusive-state-correct:
 assumes dpll_{W}^{**} ([], N) (M, N) and conclusive-dpll_{W}-state (M, N)
 shows M \models asm \ N \longleftrightarrow satisfiable (set-mset \ N) (is ?A \longleftrightarrow ?B)
proof
 let ?M' = lits - of M
 assume ?A
 then have ?M' \models sm \ N by (simp \ add: true-annots-true-cls)
 moreover have consistent-interp ?M'
   using rtranclp-dpll_W-inv-starting-from-0[OF assms(1)] by auto
 ultimately show ?B by auto
next
 assume ?B
 show ?A
   proof (rule ccontr)
     assume n: \neg ?A
     have no-mark: \forall L \in set M. \neg is-marked L \exists C \in \# N. M \models as CNot C
      using n \ assms(2) unfolding conclusive-dpll_W-state-def by auto
     moreover obtain D where DN: D \in \# N and MD: M \models as \ CNot \ D using no-mark by auto
     ultimately have unsatisfiable (set-mset N)
      using only-propagated-vars-unsat rtranclp-dpll_W-all-inv[OF\ assms(1)]
      unfolding dpll_W-all-inv-def by force
     then show False using \langle ?B \rangle by blast
   qed
qed
       Link with NOT's DPLL
4.5
interpretation dpll_{W-NOT}: dpll-with-backtrack.
lemma state-eq_{NOT}-iff-eq[iff, simp]: dpll_{W-NOT}.state-eq_{NOT} S T \longleftrightarrow S = T
 unfolding dpll_{W-NOT}.state-eq_{NOT}-def by (cases S, cases T) auto
declare dpll_W-_{NOT}.state-simp_{NOT}[simp\ del]
lemma dpll_W-dpll_W-bj:
 assumes inv: dpll_W-all-inv S and dpll: dpll_W S T
 shows dpll_{W-NOT}.dpll-bj S T
 using dpll inv
 apply (induction rule: dpll_W.induct)
    using dpll_W-_{NOT}.dpll-bj.simps apply fastforce
   using dpll_{W-NOT}. bj-decide<sub>NOT</sub> apply fastforce
 apply (frule\ dpll_{W-NOT}.backtrack.intros[of - - - -],\ simp-all)
 apply (rule dpll_W-_{NOT}.dpll-bj.bj-backjump)
 apply (rule dpll_{W-NOT}. backtrack-is-backjump",
   simp-all\ add:\ dpll_W-all-inv-def)
 done
```

```
lemma dpll_W-bj-dpll:
 assumes inv: dpll_W-all-inv S and dpll: dpll_W-_{NOT}.dpll-bj S T
 shows dpll_W S T
 using dpll
 apply (induction rule: dpll_W-_{NOT}.dpll-bj.induct)
   apply (elim dpll_{W-NOT}.decide_{NOT}E, cases S)
   using decided apply fastforce
  apply (elim dpll_W-_{NOT}.propagate_{NOT}E, cases S)
  using dpll_W.simps apply fastforce
 apply (elim \ dpll_{W-NOT}.backjumpE, \ cases \ S)
  by (simp add: dpll_W.simps\ dpll-with-backtrack.backtrack.simps)
lemma rtranclp-dpll_W -rtranclp-dpll_W -_{NOT}:
  assumes dpll_W^{**} S T and dpll_W-all-inv S
 shows dpll_{W-NOT}.dpll-bj^{**} S T
 using assms apply (induction)
  apply simp
 by (auto intro: rtranclp-dpll_W-all-inv\ dpll_W-dpll_W-bj\ rtranclp.rtrancl-into-rtrancl)
lemma rtranclp-dpll-rtranclp-dpll_W:
 assumes dpll_{W-NOT}.dpll-bj^{**} S T and dpll_{W}-all-inv S
 shows dpll_W^{**} S T
 using assms apply (induction)
  apply simp
 by (auto intro: dpll_W-bj-dpll rtranclp.rtrancl-into-rtrancl rtranclp-dpll_W-all-inv)
lemma dpll-conclusive-state-correctness:
 assumes dpll_{W-NOT}.dpll-bj^{**} ([], N) (M, N) and conclusive-dpll_{W}-state (M, N)
 shows M \models asm N \longleftrightarrow satisfiable (set-mset N)
proof -
 have dpll_W-all-inv ([], N)
   unfolding dpll_W-all-inv-def by auto
 show ?thesis
   apply (rule dpll_W-conclusive-state-correct)
     apply (simp\ add: \langle dpll_W \text{-}all\text{-}inv\ ([],\ N)\rangle\ assms(1)\ rtranclp\text{-}dpll\text{-}rtranclp\text{-}dpll_W)
   using assms(2) by simp
qed
end
theory CDCL-W-Level
imports Partial-Annotated-Clausal-Logic
begin
```

4.5.1 Level of literals and clauses

Getting the level of a variable, implies that the list has to be reversed. Here is the funtion after reversing.

```
fun get-rev-level :: ('v, nat, 'a) ann-literals \Rightarrow nat \Rightarrow 'v literal \Rightarrow nat where get-rev-level [] - - = 0 | get-rev-level (Marked l level \# Ls) n L = (if atm-of l = atm-of L then level else get-rev-level Ls level L) | get-rev-level (Propagated l - \# Ls) n L = (if atm-of l = atm-of L then n else get-rev-level Ls n L)

abbreviation get-level M L \equiv get-rev-level (rev M) 0 L
```

```
lemma get-rev-level-uminus[simp]: get-rev-level M n(-L) = get-rev-level M n L
 by (induct arbitrary: n rule: get-rev-level.induct) auto
lemma atm-of-notin-get-rev-level-eq-0[simp]:
 assumes atm-of L \notin atm-of ' lits-of M
 shows get-rev-level M n L = 0
 using assms by (induct M arbitrary: n rule: ann-literal-list-induct) auto
lemma get-rev-level-ge-0-atm-of-in:
 assumes get-rev-level M n L > n
 shows atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\ M
 using assms by (induct M arbitrary: n rule: ann-literal-list-induct) fastforce+
In get-rev-level (resp. get-level), the beginning (resp. the end) can be skipped if the literal is
not in the beginning (resp. the end).
lemma get-rev-level-skip[simp]:
 assumes atm\text{-}of L \notin atm\text{-}of ' lits\text{-}of M
 shows get-rev-level (M @ Marked K i \# M') n L = get-rev-level (Marked K i \# M') i L
 using assms by (induct M arbitrary: n i rule: ann-literal-list-induct) auto
lemma qet-rev-level-notin-end[simp]:
 assumes atm\text{-}of L \notin atm\text{-}of 'lits\text{-}of M'
 shows get-rev-level (M @ M') n L = get-rev-level M n L
 using assms by (induct M arbitrary: n rule: ann-literal-list-induct) auto
If the literal is at the beginning, then the end can be skipped
lemma qet-rev-level-skip-end[simp]:
 assumes atm\text{-}of\ L\in atm\text{-}of\ `lits\text{-}of\ M
 shows get-rev-level (M @ M') n L = get-rev-level M n L
 using assms by (induct arbitrary: n rule: ann-literal-list-induct) auto
lemma get-level-skip-beginning:
 assumes atm\text{-}of L' \neq atm\text{-}of (lit\text{-}of K)
 shows get-level (K \# M) L' = get-level M L'
  using assms by auto
lemma get-level-skip-beginning-not-marked-rev:
  assumes atm-of L \notin atm-of 'lit-of '(set S)
 and \forall s \in set \ S. \ \neg is\text{-}marked \ s
 shows get-level (M @ rev S) L = get-level M L
 using assms by (induction S rule: ann-literal-list-induct) auto
lemma get-level-skip-beginning-not-marked[simp]:
 assumes atm-of L \notin atm-of 'lit-of '(set S)
 and \forall s \in set S. \neg is\text{-}marked s
 shows get-level (M @ S) L = get-level M L
 using get-level-skip-beginning-not-marked-rev[of L rev S M] assms by auto
lemma get-rev-level-skip-beginning-not-marked[simp]:
 assumes atm\text{-}of \ L \notin atm\text{-}of \ `lit\text{-}of \ `(set \ S)
 and \forall s \in set \ S. \ \neg is\text{-}marked \ s
 shows get-rev-level (rev\ S\ @\ rev\ M)\ 0\ L=get-level M\ L
```

using get-level-skip-beginning-not-marked-rev[of L rev S M] assms by auto

```
lemma get-level-skip-in-all-not-marked:
 fixes M :: ('a, nat, 'b) ann-literal list and L :: 'a literal
 assumes \forall m \in set M. \neg is\text{-}marked m
 and atm\text{-}of \ L \in atm\text{-}of \ `lit\text{-}of \ `(set \ M)
 shows get-rev-level M n L = n
 using assms by (induction M rule: ann-literal-list-induct) auto
lemma \ get-level-skip-all-not-marked[simp]:
 fixes M
 defines M' \equiv rev M
 assumes \forall m \in set M. \neg is\text{-}marked m
 shows get-level M L = 0
proof -
 have M: M = rev M'
   unfolding M'-def by auto
 show ?thesis
   using assms unfolding M by (induction M' rule: ann-literal-list-induct) auto
qed
abbreviation MMax M \equiv Max (set\text{-}mset M)
the \{\#0::'a\#\} is there to ensures that the set is not empty.
definition get-maximum-level :: ('a, nat, 'b) ann-literal list \Rightarrow 'a literal multiset \Rightarrow nat
get-maximum-level M D = MMax (\{\#0\#\} + image-mset (get-level M) D)
lemma get-maximum-level-ge-get-level:
 L \in \# D \Longrightarrow get\text{-}maximum\text{-}level\ M\ D \ge get\text{-}level\ M\ L
 unfolding get-maximum-level-def by auto
lemma get-maximum-level-empty[simp]:
 get-maximum-level M \{\#\} = 0
 unfolding get-maximum-level-def by auto
lemma get-maximum-level-exists-lit-of-max-level:
 D \neq \{\#\} \Longrightarrow \exists L \in \# D. \text{ qet-level } M L = \text{qet-maximum-level } M D
 unfolding get-maximum-level-def
 apply (induct D)
  apply simp
 by (rename-tac D x, case-tac D = \{\#\}) (auto simp add: max-def)
lemma get-maximum-level-empty-list[simp]:
 get-maximum-level [] <math>D = 0
 unfolding get-maximum-level-def by (simp add: image-constant-conv)
lemma get-maximum-level-single[simp]:
 get-maximum-level M \{ \#L\# \} = get-level M L
 unfolding get-maximum-level-def by simp
lemma get-maximum-level-plus:
 get-maximum-level M (D + D') = max (get-maximum-level M D) (get-maximum-level M D')
 by (induct D) (auto simp add: get-maximum-level-def)
```

lemma qet-maximum-level-exists-lit:

```
assumes n: n > 0
 and max: get-maximum-level MD = n
  shows \exists L \in \#D. get-level ML = n
proof -
  have f: finite (insert 0 ((\lambda L. get-level ML) 'set-mset D)) by auto
  then have n \in ((\lambda L. \ get\text{-level } M \ L) \ `set\text{-mset } D)
   using n \max Max-in[OF f] unfolding get-maximum-level-def by simp
  then show \exists L \in \# D. get-level ML = n by auto
qed
lemma get-maximum-level-skip-first[simp]:
  assumes atm-of L \notin atms-of D
 shows get-maximum-level (Propagated L C \# M) D = get-maximum-level M D
  using assms unfolding get-maximum-level-def atms-of-def
   atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
  by (smt\ atm\text{-}of\text{-}in\text{-}atm\text{-}of\text{-}set\text{-}in\text{-}uminus\ get\text{-}level\text{-}skip\text{-}beginning\ image\text{-}iff\ ann\text{-}literal.sel}(2)
   multiset.map-conq\theta)
lemma get-maximum-level-skip-beginning:
  assumes DH: atms-of D \subseteq atm-of 'lits-of H
  \mathbf{shows}\ \textit{get-maximum-level}\ (\textit{c}\ @\ \textit{Marked}\ \textit{Kh}\ i\ \#\ \textit{H})\ \textit{D} = \textit{get-maximum-level}\ \textit{H}\ \textit{D}
proof -
 have (get\text{-}rev\text{-}level\ (rev\ H\ @\ Marked\ Kh\ i\ \#\ rev\ c)\ 0) 'set-mset D
     = (get\text{-}rev\text{-}level (rev H) 0) \cdot set\text{-}mset D
   using DH unfolding atms-of-def
   by (metis (no-types, lifting) get-rev-level-skip-end image-cong image-subset-iff lits-of-rev)+
 then show ?thesis using DH unfolding get-maximum-level-def by auto
qed
lemma qet-maximum-level-D-single-propagated:
  get-maximum-level [Propagated x21 x22] D = 0
proof -
 have A: insert \theta ((\lambda L. \theta) ' (set-mset D \cap \{L. atm-of x21 = atm-of L\})
     \cup (\lambda L. \ \theta) ' (set-mset D \cap \{L. \ atm\text{-of } x21 \neq atm\text{-of } L\})) = \{\theta\}
 show ?thesis unfolding get-maximum-level-def by (simp add: A)
qed
lemma get-maximum-level-skip-notin:
 assumes D: \forall L \in \#D. atm\text{-}of L \in atm\text{-}of 'lits\text{-}of M
 shows get-maximum-level MD = get-maximum-level (Propagated x21 x22 \# M) D
proof -
  have A: (get\text{-}rev\text{-}level\ (rev\ M\ @\ [Propagated\ x21\ x22])\ 0) 'set-mset D
     = (get\text{-}rev\text{-}level \ (rev\ M)\ \theta) \text{ 'set-mset } D
   using D by (auto intro!: image-cong simp add: lits-of-def)
  show ?thesis unfolding get-maximum-level-def by (auto simp: A)
qed
lemma qet-maximum-level-skip-un-marked-not-present:
  assumes \forall L \in \#D. atm\text{-}of L \in atm\text{-}of ' lits\text{-}of aa and
 \forall m \in set M. \neg is\text{-}marked m
  shows get-maximum-level aa D = get-maximum-level (M @ aa) D
  using assms by (induction M rule: ann-literal-list-induct)
  (auto intro!: get-maximum-level-skip-notin[of D - @ aa] simp add: image-Un)
```

```
fun get-maximum-possible-level:: ('b, nat, 'c) ann-literal list \Rightarrow nat where
get-maximum-possible-level [] = 0
get-maximum-possible-level (Marked K i \# l) = max i (get-maximum-possible-level l) |
qet-maximum-possible-level (Propagated - - \# l) = qet-maximum-possible-level l
lemma get-maximum-possible-level-append[simp]:
 qet-maximum-possible-level (M@M')
   = max (get\text{-}maximum\text{-}possible\text{-}level M) (get\text{-}maximum\text{-}possible\text{-}level M')
 by (induct M rule: ann-literal-list-induct) auto
lemma qet-maximum-possible-level-rev[simp]:
 get-maximum-possible-level (rev\ M) = get-maximum-possible-level M
 by (induct M rule: ann-literal-list-induct) auto
lemma qet-maximum-possible-level-qe-qet-rev-level:
 max (get\text{-}maximum\text{-}possible\text{-}level M) i \ge get\text{-}rev\text{-}level M i L
 by (induct M arbitrary: i rule: ann-literal-list-induct) (auto simp add: le-max-iff-disj)
lemma get-maximum-possible-level-ge-get-level[simp]:
 get-maximum-possible-level M <math>\geq get-level M L
 using get-maximum-possible-level-ge-get-rev-level[of rev - 0] by auto
lemma get-maximum-possible-level-ge-get-maximum-level[simp]:
 get-maximum-possible-level M \ge get-maximum-level M D
 using get-maximum-level-exists-lit-of-max-level unfolding Bex-mset-def
 by (metis qet-maximum-level-empty qet-maximum-possible-level-qe-qet-level le0)
fun get-all-mark-of-propagated where
get-all-mark-of-propagated [] = [] |
get-all-mark-of-propagated (Marked - - \# L) = get-all-mark-of-propagated L
get-all-mark-of-propagated (Propagated - mark \# L) = mark \# get-all-mark-of-propagated L
lemma get-all-mark-of-propagated-append[simp]:
 get-all-mark-of-propagated (A @ B) = get-all-mark-of-propagated A @ get-all-mark-of-propagated B
 by (induct A rule: ann-literal-list-induct) auto
         Properties about the levels
fun get-all-levels-of-marked :: ('b, 'a, 'c) ann-literal list \Rightarrow 'a list where
get-all-levels-of-marked [] = []
get-all-levels-of-marked (Marked l level \# Ls) = level \# get-all-levels-of-marked Ls |
get-all-levels-of-marked (Propagated - - # Ls) = get-all-levels-of-marked Ls
lemma qet-all-levels-of-marked-nil-iff-not-is-marked:
 get-all-levels-of-marked xs = [] \longleftrightarrow (\forall x \in set \ xs. \ \neg is\text{-marked} \ x)
 using assms by (induction xs rule: ann-literal-list-induct) auto
lemma get-all-levels-of-marked-cons:
 get-all-levels-of-marked (a \# b) =
   (if is-marked a then [level-of a] else []) @ get-all-levels-of-marked b
 by (cases a) simp-all
lemma get-all-levels-of-marked-append [simp]:
 qet-all-levels-of-marked (a @ b) = qet-all-levels-of-marked a @ qet-all-levels-of-marked b
 by (induct a) (simp-all add: get-all-levels-of-marked-cons)
```

```
lemma in-get-all-levels-of-marked-iff-decomp:
  i \in set \ (get-all-levels-of-marked \ M) \longleftrightarrow (\exists \ c \ K \ c'. \ M = c \ @ Marked \ K \ i \ \# \ c') \ (is \ ?A \longleftrightarrow ?B)
proof
 assume ?B
 then show ?A by auto
next
 assume ?A
 then show ?B
   \mathbf{apply}\ (induction\ M\ rule:\ ann\text{-}literal\text{-}list\text{-}induct)
     apply auto
    apply (metis append-Cons append-Nil get-all-levels-of-marked.simps(2) set-ConsD)
   by (metis append-Cons get-all-levels-of-marked.simps(3))
qed
lemma qet-rev-level-less-max-qet-all-levels-of-marked:
 get-rev-level M n L \leq Max (set (n \# get-all-levels-of-marked M))
 by (induct M arbitrary: n rule: get-all-levels-of-marked.induct)
    (simp-all add: max.coboundedI2)
lemma get-rev-level-ge-min-get-all-levels-of-marked:
 assumes atm\text{-}of\ L\in atm\text{-}of\ ``lits\text{-}of\ M"
 shows get-rev-level M n L \ge Min (set (n \# get-all-levels-of-marked <math>M))
 using assms by (induct M arbitrary: n rule: get-all-levels-of-marked.induct)
   (auto simp add: min-le-iff-disj)
lemma get-all-levels-of-marked-rev-eq-rev-get-all-levels-of-marked[simp]:
  get-all-levels-of-marked (rev\ M) = rev\ (get-all-levels-of-marked M)
 by (induct M rule: get-all-levels-of-marked.induct)
    (simp-all\ add:\ max.coboundedI2)
\mathbf{lemma} \ get\text{-}maximum\text{-}possible\text{-}level\text{-}max\text{-}get\text{-}all\text{-}levels\text{-}of\text{-}marked:}
  get-maximum-possible-level M = Max (insert \ 0 \ (set \ (get-all-levels-of-marked M)))
 by (induct M rule: ann-literal-list-induct) (auto simp: insert-commute)
lemma get-rev-level-in-levels-of-marked:
  qet-rev-level M n L \in \{0, n\} \cup set (qet-all-levels-of-marked M)
 by (induction M arbitrary: n rule: ann-literal-list-induct) (force simp add: atm-of-eq-atm-of)+
lemma get-rev-level-in-atms-in-levels-of-marked:
  atm-of L \in atm-of ' (lits-of M) \Longrightarrow get-rev-level M n L \in \{n\} \cup set (get-all-levels-of-marked M)
  by (induction M arbitrary: n rule: ann-literal-list-induct) (auto simp add: atm-of-eq-atm-of)
lemma get-all-levels-of-marked-no-marked:
  (\forall l \in set \ Ls. \ \neg \ is\text{-}marked \ l) \longleftrightarrow get\text{-}all\text{-}levels\text{-}of\text{-}marked} \ Ls = []
 by (induction Ls) (auto simp add: get-all-levels-of-marked-cons)
lemma qet-level-in-levels-of-marked:
 qet-level M L \in \{0\} \cup set \ (qet-all-levels-of-marked M)
 using get-rev-level-in-levels-of-marked[of rev M 0 L] by auto
The zero is here to avoid empty-list issues with last:
{\bf lemma}\ \textit{get-level-get-rev-level-get-all-levels-of-marked}:
 assumes atm\text{-}of\ L \notin atm\text{-}of\ `(lits\text{-}of\ M)
 shows get-level (K @ M) L = get-rev-level (rev K) (last (0 \# get-all-levels-of-marked (rev M)))
```

```
L
 using assms
proof (induct M arbitrary: K)
 case Nil
 then show ?case by auto
next
 case (Cons\ a\ M)
 then have H: \bigwedge K. get-level (K @ M) L
   = \textit{get-rev-level (rev K) (last (0 \# \textit{get-all-levels-of-marked (rev M)))} \ L
   by auto
 have get-level ((K @ [a]) @ M) L
   = get\text{-}rev\text{-}level \ (a \# rev \ K) \ (last \ (0 \# get\text{-}all\text{-}levels\text{-}of\text{-}marked \ (rev \ M))) \ L
   using H[of K @ [a]] by simp
 then show ?case using Cons(2) by (cases a) auto
qed
lemma get-rev-level-can-skip-correctly-ordered:
 assumes
   no-dup M and
   atm\text{-}of \ L \notin atm\text{-}of \ (\textit{lits-}of \ M) \ \textbf{and}
   get-all-levels-of-marked M = rev [Suc \ 0.. < Suc \ (length \ (get-all-levels-of-marked M))]
 shows get-rev-level (rev\ M\ @\ K)\ 0\ L=get-rev-level K\ (length\ (get-all-levels-of-marked M))\ L
 using assms
proof (induct M arbitrary: K rule: ann-literal-list-induct)
 case nil
 then show ?case by simp
next
 case (marked L' i M K)
 then have
   i: i = Suc (length (qet-all-levels-of-marked M)) and
   get-all-levels-of-marked\ M=rev\ [Suc\ 0..< Suc\ (length\ (get-all-levels-of-marked\ M))]
   by auto
  then have get-rev-level (rev M \otimes (Marked L' i \# K)) \ 0 \ L
   = get\text{-rev-level (Marked } L' i \# K) \text{ (length (get-all-levels-of-marked } M)) } L
   using marked by auto
 then show ?case using marked unfolding i by auto
 case (proped L' D M K)
 then have get-all-levels-of-marked M = rev [Suc \ 0... < Suc \ (length \ (get-all-levels-of-marked \ M))]
   by auto
 then have get-rev-level (rev M @ (Propagated L' D \# K)) 0 L
   = get-rev-level (Propagated L' D \# K) (length (get-all-levels-of-marked M)) L
   using proped by auto
 then show ?case using proped by auto
qed
\mathbf{lemma} \ \ \textit{get-level-skip-beginning-hd-get-all-levels-of-marked}:
 assumes atm\text{-}of \ L \notin atm\text{-}of ' lits\text{-}of \ S
 and get-all-levels-of-marked S \neq []
 shows get-level (M@S) L = get-rev-level (rev M) (hd (get-all-levels-of-marked S)) L
 using assms
proof (induction S arbitrary: M rule: ann-literal-list-induct)
 case nil
 then show ?case by (auto simp add: lits-of-def)
\mathbf{next}
```

```
case (marked K m) note notin = this(2) then show ?case by (auto simp add: lits-of-def) next case (proped L l) note IH = this(1) and L = this(2) and neq = this(3) show ?case using IH[of\ M@[Propagated\ L\ l]]\ L\ neq by (auto simp add: atm-of-eq-atm-of) qed end theory CDCL-W imports Partial-Annotated-Clausal-Logic List-More CDCL-W-Level Wellfounded-More begin declare set-mset-minus-replicate-mset[simp] lemma Bex-set-set-Bex-set[iff]: (\exists\ x\in set-mset C.\ P) \longleftrightarrow (\exists\ x\in \#C.\ P) by auto
```

5 Weidenbach's CDCL

declare $upt.simps(2)[simp \ del]$

5.1 The State

```
locale state_W =
  fixes
    trail :: 'st \Rightarrow ('v, nat, 'v clause) ann-literals and
    init-clss :: 'st \Rightarrow 'v clauses and
    learned-clss :: 'st \Rightarrow 'v \ clauses \ and
    backtrack-lvl :: 'st \Rightarrow nat and
    conflicting :: 'st \Rightarrow'v clause option and
    cons-trail :: ('v, nat, 'v clause) ann-literal \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-init-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st and
    add-learned-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls:: 'v\ clause \Rightarrow 'st \Rightarrow 'st\ \mathbf{and}
    update-backtrack-lvl :: nat \Rightarrow 'st \Rightarrow 'st and
    update-conflicting :: 'v clause option \Rightarrow 'st \Rightarrow 'st and
    init-state :: 'v clauses \Rightarrow 'st and
    restart-state :: 'st \Rightarrow 'st
  assumes
    trail-cons-trail[simp]:
      \bigwedge L st. undefined-lit (trail st) (lit-of L) \Longrightarrow trail (cons-trail L st) = L # trail st and
    trail-tl-trail[simp]: \land st. trail (tl-trail st) = tl (trail st) and
    trail-add-init-cls[simp]:
      \bigwedge st\ C.\ no\text{-}dup\ (trail\ st) \Longrightarrow trail\ (add\text{-}init\text{-}cls\ C\ st) = trail\ st\ \mathbf{and}
    trail-add-learned-cls[simp]:
      \bigwedge C st. no-dup (trail st) \Longrightarrow trail (add-learned-cls C st) = trail st and
    trail-remove-cls[simp]:
      \bigwedge C st. trail (remove-cls C st) = trail st and
    trail-update-backtrack-lvl[simp]: \land st \ C. \ trail \ (update-backtrack-lvl \ C \ st) = trail \ st \ and
    trail-update-conflicting[simp]: \bigwedge C st. trail (update-conflicting C st) = trail st and
    init-clss-cons-trail[simp]:
```

```
\bigwedge M st. undefined-lit (trail st) (lit-of M)\Longrightarrow init-clss (cons-trail M st) = init-clss st
  and
init-clss-tl-trail[simp]:
  \bigwedge st. \ init\text{-}clss \ (tl\text{-}trail \ st) = init\text{-}clss \ st \ \mathbf{and}
init-clss-add-init-cls[simp]:
  \bigwedge st\ C.\ no-dup\ (trail\ st) \Longrightarrow init-clss\ (add-init-cls\ C\ st) = \{\#C\#\} + init-clss\ st\ and
init-clss-add-learned-cls[simp]:
  \bigwedge C st. no-dup (trail st) \Longrightarrow init-clss (add-learned-cls C st) = init-clss st and
init-clss-remove-cls[simp]:
  \bigwedge C st. init-clss (remove-cls C st) = remove-mset C (init-clss st) and
init-clss-update-backtrack-lvl[simp]:
  \bigwedge st\ C.\ init\text{-}clss\ (update\text{-}backtrack\text{-}lvl\ C\ st) = init\text{-}clss\ st\ \mathbf{and}
init-clss-update-conflicting[simp]:
  \bigwedge C st. init-clss (update-conflicting C st) = init-clss st and
learned-clss-cons-trail[simp]:
  \bigwedge M st. undefined-lit (trail st) (lit-of M) \Longrightarrow
    learned-clss (cons-trail M st) = learned-clss st and
learned-clss-tl-trail[simp]:
  \bigwedge st.\ learned\text{-}clss\ (tl\text{-}trail\ st) = learned\text{-}clss\ st and
learned-clss-add-init-cls[simp]:
  \bigwedge st\ C.\ no\text{-}dup\ (trail\ st) \Longrightarrow learned\text{-}clss\ (add\text{-}init\text{-}cls\ C\ st) = learned\text{-}clss\ st\ and
learned-cls-add-learned-cls[simp]:
  \bigwedge C st. no-dup (trail st) \Longrightarrow learned-clss (add-learned-cls C st) = \{\#C\#\} + learned-clss st
  and
learned-clss-remove-cls[simp]:
  \bigwedge C st. learned-clss (remove-cls C st) = remove-mset C (learned-clss st) and
learned-clss-update-backtrack-lvl[simp]:
  \bigwedge st\ C.\ learned\text{-}clss\ (update\text{-}backtrack\text{-}lvl\ C\ st) = learned\text{-}clss\ st\ \mathbf{and}
learned-clss-update-conflicting[simp]:
  \bigwedge C st. learned-clss (update-conflicting C st) = learned-clss st and
backtrack-lvl-cons-trail[simp]:
  \bigwedge M st. undefined-lit (trail st) (lit-of M) \Longrightarrow
    backtrack-lvl (cons-trail M st) = backtrack-lvl st and
backtrack-lvl-tl-trail[simp]:
  \bigwedge st.\ backtrack-lvl\ (tl-trail\ st) = backtrack-lvl\ st and
backtrack-lvl-add-init-cls[simp]:
  \bigwedgest C. no-dup (trail st) \Longrightarrow backtrack-lvl (add-init-cls C st) = backtrack-lvl st and
backtrack-lvl-add-learned-cls[simp]:
  \bigwedge C st. no-dup (trail st) \Longrightarrow backtrack-lvl (add-learned-cls C st) = backtrack-lvl st and
backtrack-lvl-remove-cls[simp]:
  \bigwedge C st. backtrack-lvl (remove-cls C st) = backtrack-lvl st and
backtrack-lvl-update-backtrack-lvl[simp]:
  \bigwedge st\ k.\ backtrack-lvl\ (update-backtrack-lvl\ k\ st) = k\ \mathbf{and}
backtrack-lvl-update-conflicting[simp]:
  \bigwedge C st. backtrack-lvl (update-conflicting C st) = backtrack-lvl st and
conflicting-cons-trail[simp]:
  \bigwedge M st. undefined-lit (trail st) (lit-of M) \Longrightarrow
    conflicting (cons-trail M st) = conflicting st  and
conflicting-tl-trail[simp]:
  \bigwedge st. conflicting (tl-trail st) = conflicting st and
conflicting-add-init-cls[simp]:
  \bigwedge st\ C.\ no\text{-}dup\ (trail\ st) \Longrightarrow conflicting\ (add\text{-}init\text{-}cls\ C\ st) = conflicting\ st\ and
```

```
conflicting-add-learned-cls[simp]:
     \bigwedge C st. no-dup (trail st) \Longrightarrow conflicting (add-learned-cls C st) = conflicting st and
    conflicting-remove-cls[simp]:
     \bigwedge C st. conflicting (remove-cls C st) = conflicting st and
    conflicting-update-backtrack-lvl[simp]:
     \bigwedge st\ C.\ conflicting\ (update-backtrack-lvl\ C\ st) = conflicting\ st\ and
    conflicting-update-conflicting[simp]:
     \bigwedge C st. conflicting (update-conflicting C st) = C and
    init-state-trail[simp]: \bigwedge N. trail (init-state N) = [] and
    init-state-clss[simp]: \bigwedge N. init-clss (init-state N) = N and
    init-state-learned-clss[simp]: \bigwedge N. learned-clss (init-state N) = \{\#\} and
    init-state-backtrack-lvl[simp]: \bigwedge N. backtrack-lvl (init-state N) = 0 and
    init-state-conflicting[simp]: \bigwedge N. conflicting (init-state N) = None and
   trail-restart-state[simp]: trail (restart-state S) = [] and
    init-clss-restart-state[simp]: init-clss (restart-state S) = init-clss S and
   learned-clss-restart-state[intro]: learned-clss (restart-state S) \subseteq \# learned-clss S and
    backtrack-lvl-restart-state[simp]: backtrack-lvl (restart-state S) = 0 and
    conflicting-restart-state [simp]: conflicting (restart-state S) = None
begin
definition clauses :: 'st \Rightarrow 'v clauses where
clauses \ S = init\text{-}clss \ S + learned\text{-}clss \ S
lemma
 shows
    clauses-cons-trail[simp]:
     undefined-lit (trail\ S)\ (lit\text{-}of\ M) \Longrightarrow clauses\ (cons\text{-}trail\ M\ S) = clauses\ S and
    clss-tl-trail[simp]: clauses (tl-trail S) = clauses S and
    clauses-add-learned-cls-unfolded:
     no\text{-}dup \ (trail \ S) \implies clauses \ (add\text{-}learned\text{-}cls \ U \ S) = \{\# \ U\#\} + learned\text{-}clss \ S + init\text{-}clss \ S
     and
    clauses-add-init-cls[simp]:
     no\text{-}dup \ (trail \ S) \Longrightarrow clauses \ (add\text{-}init\text{-}cls \ N \ S) = \{\#N\#\} + init\text{-}clss \ S + learned\text{-}clss \ S \ and
    clauses-update-backtrack-lvl[simp]: clauses (update-backtrack-lvl k S) = clauses S and
    clauses-update-conflicting[simp]: clauses (update-conflicting D S) = clauses S and
    clauses-remove-cls[simp]:
      clauses (remove-cls \ C \ S) = clauses \ S - replicate-mset (count (clauses \ S) \ C) \ C and
    clauses-add-learned-cls[simp]:
     no\text{-}dup\ (trail\ S) \Longrightarrow clauses\ (add\text{-}learned\text{-}cls\ C\ S) = \{\#C\#\} + clauses\ S\ and\ S
    clauses-restart[simp]: clauses (restart-state S) \subseteq \# clauses S and
    clauses-init-state[simp]: \bigwedge N. clauses (init-state N) = N
   prefer 9 using clauses-def learned-clss-restart-state apply fastforce
   by (auto simp: ac-simps replicate-mset-plus clauses-def intro: multiset-eqI)
abbreviation state :: 'st \Rightarrow ('v, nat, 'v clause) ann-literal list \times 'v clauses \times 'v clauses
  \times nat \times 'v clause option where
state\ S \equiv (trail\ S,\ init-clss\ S,\ learned-clss\ S,\ backtrack-lvl\ S,\ conflicting\ S)
abbreviation incr-lvl :: 'st \Rightarrow 'st where
incr-lvl \ S \equiv update-backtrack-lvl \ (backtrack-lvl \ S + 1) \ S
definition state-eq :: 'st \Rightarrow 'st \Rightarrow bool (infix \sim 50) where
```

```
S \sim T \longleftrightarrow state \ S = state \ T
lemma state-eq-ref[simp, intro]:
  S \sim S
 unfolding state-eq-def by auto
lemma state-eq-sym:
  S \sim T \longleftrightarrow T \sim S
 unfolding state-eq-def by auto
lemma state-eq-trans:
  S \sim T \Longrightarrow T \sim U \Longrightarrow S \sim U
 unfolding state-eq-def by auto
lemma
 shows
    state-eq-trail: S \sim T \Longrightarrow trail \ S = trail \ T and
    state-eq-init-clss: S \sim T \Longrightarrow init-clss S = init-clss T and
    state-eq-learned-clss: S \sim T \Longrightarrow learned-clss S = learned-clss T and
    state-eq-backtrack-lvl: S \sim T \Longrightarrow backtrack-lvl S = backtrack-lvl T and
    state-eq-conflicting: S \sim T \Longrightarrow conflicting S = conflicting T and
    state-eq-clauses: S \sim T \Longrightarrow clauses \ S = clauses \ T and
    state-eq-undefined-lit: S \sim T \Longrightarrow undefined-lit (trail S) L = undefined-lit (trail T) L
  unfolding state-eq-def clauses-def by auto
lemmas state-simp[simp] = state-eq-trail state-eq-init-clss state-eq-learned-clss
  state-eq\mbox{-}backtrack\mbox{-}lvl\ state-eq\mbox{-}conflicting\ state-eq\mbox{-}clauses\ state-eq\mbox{-}undefined\mbox{-}lit
\mathbf{lemma}\ atms-of\text{-}ms\text{-}learned\text{-}clss\text{-}restart\text{-}state\text{-}in\text{-}atms\text{-}of\text{-}ms\text{-}learned\text{-}clss}I[intro]:
  x \in atms\text{-}of\text{-}msu \ (learned\text{-}clss \ (restart\text{-}state \ S)) \Longrightarrow x \in atms\text{-}of\text{-}msu \ (learned\text{-}clss \ S)
 by (meson\ atms-of-ms-mono\ learned-clss-restart-state\ set-mset-mono\ subset CE)
function reduce-trail-to :: 'a list \Rightarrow 'st \Rightarrow 'st where
reduce-trail-to F S =
  (if \ length \ (trail \ S) = length \ F \lor trail \ S = [] \ then \ S \ else \ reduce-trail-to \ F \ (tl-trail \ S))
by fast+
termination
 by (relation measure (\lambda(-, S)). length (trail S))) simp-all
declare reduce-trail-to.simps[simp del]
lemma
 shows
  reduce-trail-to-nil[simp]: trail S = [] \implies reduce-trail-to F S = S and
  reduce-trail-to-eq-length[simp]: length (trail S) = length F \Longrightarrow reduce-trail-to F S = S
  by (auto simp: reduce-trail-to.simps)
lemma reduce-trail-to-length-ne:
  length (trail S) \neq length F \Longrightarrow trail S \neq [] \Longrightarrow
    reduce-trail-to F S = reduce-trail-to F (tl-trail S)
  by (auto simp: reduce-trail-to.simps)
lemma trail-reduce-trail-to-length-le:
  assumes length F > length (trail S)
  shows trail\ (reduce-trail-to\ F\ S)=[]
```

```
using assms apply (induction F S rule: reduce-trail-to.induct)
 by (metis (no-types, hide-lams) length-tl less-imp-diff-less less-irreft trail-tl-trail
   reduce-trail-to.simps)
lemma trail-reduce-trail-to-nil[simp]:
  trail (reduce-trail-to [] S) = []
 apply (induction []:: ('v, nat, 'v clause) ann-literals S rule: reduce-trail-to.induct)
 \mathbf{by}\ (\mathit{metis\ length-0-conv\ reduce-trail-to-length-ne\ reduce-trail-to-nil})
lemma clauses-reduce-trail-to-nil:
  clauses (reduce-trail-to [] S) = clauses S
proof (induction [] S rule: reduce-trail-to.induct)
 case (1 Sa)
 then have clauses (reduce-trail-to ([::'a \ list) \ (tl-trail Sa)) = clauses (tl-trail Sa)
   \vee trail Sa = []
   by fastforce
  then show clauses (reduce-trail-to ([]::'a list) Sa) = clauses Sa
   by (metis (no-types) length-0-conv reduce-trail-to-eq-length clss-tl-trail
     reduce-trail-to-length-ne)
qed
lemma reduce-trail-to-skip-beginning:
 assumes trail S = F' @ F
 shows trail (reduce-trail-to F S) = F
 using assms by (induction F' arbitrary: S) (auto simp: reduce-trail-to-length-ne)
lemma clauses-reduce-trail-to[simp]:
  clauses (reduce-trail-to F S) = clauses S
 apply (induction F S rule: reduce-trail-to.induct)
 by (metis clss-tl-trail reduce-trail-to.simps)
lemma conflicting-update-trial[simp]:
  conflicting (reduce-trail-to F(S) = conflicting(S)
 apply (induction F S rule: reduce-trail-to.induct)
 by (metis conflicting-tl-trail reduce-trail-to.simps)
lemma backtrack-lvl-update-trial[simp]:
  backtrack-lvl (reduce-trail-to F S) = backtrack-lvl S
 apply (induction F S rule: reduce-trail-to.induct)
 by (metis backtrack-lvl-tl-trail reduce-trail-to.simps)
lemma init-clss-update-trial[simp]:
  init-clss (reduce-trail-to F(S) = init-clss S
 apply (induction F S rule: reduce-trail-to.induct)
 by (metis init-clss-tl-trail reduce-trail-to.simps)
lemma learned-clss-update-trial[simp]:
  learned-clss (reduce-trail-to F(S) = learned-clss S
 apply (induction F S rule: reduce-trail-to.induct)
 by (metis learned-clss-tl-trail reduce-trail-to.simps)
lemma trail-eq-reduce-trail-to-eq:
  trail\ S = trail\ T \Longrightarrow trail\ (reduce-trail-to\ F\ S) = trail\ (reduce-trail-to\ F\ T)
 apply (induction F S arbitrary: T rule: reduce-trail-to.induct)
 by (metis trail-tl-trail reduce-trail-to.simps)
```

```
\mathbf{lemma}\ reduce\text{-}trail\text{-}to\text{-}state\text{-}eq_{NOT}\text{-}compatible:
 assumes ST: S \sim T
 shows reduce-trail-to F S \sim reduce-trail-to F T
proof -
 have trail (reduce-trail-to F(S)) = trail (reduce-trail-to F(T))
   using trail-eq-reduce-trail-to-eq[of S T F] ST by auto
 then show ?thesis using ST by (auto simp del: state-simp simp: state-eq-def)
qed
lemma reduce-trail-to-trail-tl-trail-decomp[simp]:
 trail\ S = F' \otimes Marked\ K\ d\ \#\ F \Longrightarrow (trail\ (reduce-trail-to\ F\ S)) = F
 apply (rule reduce-trail-to-skip-beginning of - F' @ Marked K d # []])
 by (cases F') (auto simp add:tl-append reduce-trail-to-skip-beginning)
lemma reduce-trail-to-add-learned-cls[simp]:
  no-dup (trail S) \Longrightarrow
   trail\ (reduce-trail-to\ F\ (add-learned-cls\ C\ S)) = trail\ (reduce-trail-to\ F\ S)
 by (rule trail-eq-reduce-trail-to-eq) auto
lemma reduce-trail-to-add-init-cls[simp]:
  no-dup (trail S) \Longrightarrow
   trail\ (reduce-trail-to\ F\ (add-init-cls\ C\ S)) = trail\ (reduce-trail-to\ F\ S)
 by (rule trail-eq-reduce-trail-to-eq) auto
lemma reduce-trail-to-remove-learned-cls[simp]:
  trail\ (reduce-trail-to\ F\ (remove-cls\ C\ S)) = trail\ (reduce-trail-to\ F\ S)
 by (rule trail-eq-reduce-trail-to-eq) auto
lemma reduce-trail-to-update-conflicting[simp]:
  trail\ (reduce-trail-to\ F\ (update-conflicting\ C\ S)) = trail\ (reduce-trail-to\ F\ S)
 by (rule trail-eq-reduce-trail-to-eq) auto
lemma reduce-trail-to-update-backtrack-lvl[simp]:
  trail\ (reduce-trail-to\ F\ (update-backtrack-lvl\ C\ S)) = trail\ (reduce-trail-to\ F\ S)
 by (rule trail-eq-reduce-trail-to-eq) auto
{\bf lemma}\ in-get-all-marked-decomposition-marked-or-empty:
 assumes (a, b) \in set (get-all-marked-decomposition M)
 shows a = [] \lor (is\text{-marked } (hd \ a))
 using assms
proof (induct M arbitrary: a b)
 case Nil then show ?case by simp
next
 case (Cons \ m \ M)
 show ?case
   proof (cases m)
     case (Marked l mark)
     then show ?thesis using Cons by auto
     case (Propagated 1 mark)
     then show ?thesis using Cons by (cases get-all-marked-decomposition M) force+
   qed
qed
```

```
\mathbf{lemma}\ in\text{-}get\text{-}all\text{-}marked\text{-}decomposition\text{-}trail\text{-}update\text{-}trail[simp]}:
 assumes H: (L \# M1, M2) \in set (get-all-marked-decomposition (trail S))
 shows trail\ (reduce-trail-to\ M1\ S)=M1
proof -
 obtain K mark where
   L: L = Marked K mark
   using H by (cases L) (auto dest!: in-qet-all-marked-decomposition-marked-or-empty)
 obtain c where
   tr-S: trail S = c @ M2 @ L \# M1
   using H by auto
 show ?thesis
   by (rule reduce-trail-to-trail-tl-trail-decomp[of - c @ M2 K mark])
    (auto simp: tr-SL)
qed
\mathbf{fun}\ append\text{-}trail\ \mathbf{where}
append-trail [] S = S |
append-trail (L \# M) S = append-trail M (cons-trail L S)
lemma trail-append-trail:
  no\text{-}dup\ (M\ @\ trail\ S) \Longrightarrow trail\ (append\text{-}trail\ M\ S) = rev\ M\ @\ trail\ S
 by (induction M arbitrary: S) (auto simp: defined-lit-map)
lemma init-clss-append-trail:
  no\text{-}dup\ (M\ @\ trail\ S) \Longrightarrow init\text{-}clss\ (append\text{-}trail\ M\ S) = init\text{-}clss\ S
 by (induction M arbitrary: S) (auto simp: defined-lit-map)
lemma learned-clss-append-trail:
  no\text{-}dup\ (M\ @\ trail\ S) \Longrightarrow learned\text{-}clss\ (append\text{-}trail\ M\ S) = learned\text{-}clss\ S
 by (induction M arbitrary: S) (auto simp: defined-lit-map)
lemma conflicting-append-trail:
  no\text{-}dup\ (M\ @\ trail\ S) \Longrightarrow conflicting\ (append\text{-}trail\ M\ S) = conflicting\ S
 by (induction M arbitrary: S) (auto simp: defined-lit-map)
lemma backtrack-lvl-append-trail:
  no\text{-}dup \ (M @ trail \ S) \Longrightarrow backtrack\text{-}lvl \ (append\text{-}trail \ M \ S) = backtrack\text{-}lvl \ S
 by (induction M arbitrary: S) (auto simp: defined-lit-map)
lemma clauses-append-trail:
  no\text{-}dup\ (M @ trail\ S) \Longrightarrow clauses\ (append\text{-}trail\ M\ S) = clauses\ S
 by (induction M arbitrary: S) (auto simp: defined-lit-map)
lemmas state-access-simp =
  trail-append-trail\ init-clss-append-trail\ learned-clss-append-trail\ backtrack-lvl-append-trail
  clauses-append-trail\ conflicting-append-trail
This function is useful for proofs to speak of a global trail change, but is a bad for programs
and code in general.
fun delete-trail-and-rebuild where
delete-trail-and-rebuild MS = append-trail (rev\ M) (reduce-trail-to ([]:: 'v\ list)\ S)
end
```

5.2 Special Instantiation: using Triples as State

5.3 CDCL Rules

Because of the strategy we will later use, we distinguish propagate, conflict from the other rules

```
locale
  cdcl_W =
   state<sub>W</sub> trail init-clss learned-clss backtrack-lvl conflicting cons-trail tl-trail add-init-cls
   add\text{-}learned\text{-}cls\ remove\text{-}cls\ update\text{-}backtrack\text{-}lvl\ update\text{-}conflicting\ init\text{-}state}
   restart\text{-}state
  for
    trail :: 'st \Rightarrow ('v, nat, 'v clause) ann-literals and
    init-clss :: 'st \Rightarrow 'v clauses and
    learned-clss :: 'st \Rightarrow 'v \ clauses \ \mathbf{and}
    backtrack-lvl :: 'st \Rightarrow nat and
    conflicting :: 'st \Rightarrow'v clause option and
    cons-trail :: ('v, nat, 'v clause) ann-literal \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-init-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st and
    add-learned-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls:: 'v\ clause \Rightarrow 'st \Rightarrow 'st\ \mathbf{and}
    update-backtrack-lvl :: nat \Rightarrow 'st \Rightarrow 'st and
    update-conflicting :: 'v clause option \Rightarrow 'st \Rightarrow 'st and
    init-state :: 'v clauses \Rightarrow 'st and
    restart-state :: 'st \Rightarrow 'st
begin
inductive propagate :: 'st \Rightarrow 'st \Rightarrow bool where
propagate-rule[intro]:
  state\ S = (M,\ N,\ U,\ k,\ None) \Longrightarrow\ C + \{\#L\#\} \in \#\ clauses\ S \Longrightarrow M \models as\ CNot\ C
  \implies undefined-lit (trail S) L
  \implies T \sim cons\text{-trail} (Propagated L (C + \{\#L\#\})) S
  \implies propagate S T
inductive-cases propagateE[elim]: propagate\ S\ T
thm propagateE
inductive conflict :: 'st \Rightarrow 'st \Rightarrow bool where
conflict-rule[intro]: state S = (M, N, U, k, None) \Longrightarrow D \in \# clauses S \Longrightarrow M \models as CNot D
  \implies T \sim update\text{-conflicting (Some D) } S
  \implies conflict \ S \ T
inductive-cases conflictE[elim]: conflict S S'
inductive backtrack :: 'st \Rightarrow 'st \Rightarrow bool where
backtrack-rule[intro]: state S = (M, N, U, k, Some (D + \{\#L\#\}))
  \implies (Marked K (i+1) # M1, M2) \in set (get-all-marked-decomposition M)
  \implies get-level M L = k
  \implies get-level M L = get-maximum-level M (D+\{\#L\#\})
  \implies get-maximum-level MD = i
  \implies T \sim cons\text{-trail} (Propagated L (D+{\#L\#}))
             (reduce-trail-to M1
               (add\text{-}learned\text{-}cls\ (D + \{\#L\#\}))
                 (update-backtrack-lvl i
                   (update\text{-}conflicting\ None\ S))))
```

```
\implies backtrack \ S \ T
inductive-cases backtrackE[elim]: backtrack S S'
{f thm}\ backtrack E
inductive decide :: 'st \Rightarrow 'st \Rightarrow bool where
decide-rule[intro]: state S = (M, N, U, k, None)
\implies undefined-lit M L \implies atm-of L \in atms-of-msu (init-clss S)
\implies T \sim cons\text{-trail (Marked L (k+1)) (incr-lvl S)}
\implies decide \ S \ T
inductive-cases decideE[elim]: decide S S'
thm decideE
inductive skip :: 'st \Rightarrow 'st \Rightarrow bool where
skip-rule[intro]: state S = (Propagated L C' \# M, N, U, k, Some D) \Longrightarrow -L \notin \# D \Longrightarrow D \neq \{\#\}
  \implies T \sim tl\text{-trail } S
  \implies skip \ S \ T
inductive-cases skipE[elim]: skip S S'
thm skipE
get-maximum-level (Propagated L (C + \{\#L\#\}\}) \# M) D = k \lor k = 0 is equivalent to
get-maximum-level (Propagated L (C + \{\#L\#\}\}) \# M) D = k
inductive resolve :: 'st \Rightarrow 'st \Rightarrow bool where
resolve-rule[intro]:
 state\ S = (Propagated\ L\ (C + \{\#L\#\})\ \#\ M,\ N,\ U,\ k,\ Some\ (D + \{\#-L\#\}))
  \implies get-maximum-level (Propagated L (C + {#L#}) # M) D = k
 \implies T \sim update\text{-conflicting (Some (D \# \cup C)) (tl\text{-trail } S)}
  \implies resolve \ S \ T
inductive-cases resolveE[elim]: resolve S S'
thm resolveE
inductive restart :: 'st \Rightarrow 'st \Rightarrow bool where
restart: state S = (M, N, U, k, None) \Longrightarrow \neg M \models asm clauses S
\implies T \sim restart\text{-}state S
\implies restart \ S \ T
inductive-cases restartE[elim]: restart S T
thm restartE
We add the condition C \notin \# init\text{-}clss S, to maintain consistency even without the strategy.
inductive forget :: 'st \Rightarrow 'st \Rightarrow bool where
forget-rule: state S = (M, N, \{\#C\#\} + U, k, None)
  \implies \neg M \models asm \ clauses \ S
 \implies C \notin set (get-all-mark-of-propagated (trail S))
  \implies C \notin \# init\text{-}clss S
 \implies C \in \# learned\text{-}clss S
  \implies T \sim remove\text{-}cls \ C \ S
  \Longrightarrow forget S T
inductive-cases forgetE[elim]: forget S T
inductive cdcl_W-rf :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
restart: restart S T \Longrightarrow cdcl_W-rf S T
forget: forget S T \Longrightarrow cdcl_W-rf S T
inductive cdcl_W-bj :: 'st \Rightarrow 'st \Rightarrow bool where
skip[intro]: skip \ S \ S' \Longrightarrow cdcl_W -bj \ S \ S'
resolve[intro]: resolve S S' \Longrightarrow cdcl_W-bj S S'
```

```
backtrack[intro]: backtrack \ S \ S' \Longrightarrow cdcl_W - bj \ S \ S'
inductive-cases cdcl_W-bjE: cdcl_W-bj S T
inductive cdcl_W-o:: 'st \Rightarrow 'st \Rightarrow bool for S:: 'st where
decide[intro]: decide S S' \Longrightarrow cdcl_W - o S S'
bj[intro]: cdcl_W - bj \ S \ S' \Longrightarrow cdcl_W - o \ S \ S'
inductive cdcl_W :: 'st \Rightarrow 'st \Rightarrow bool \text{ for } S :: 'st \text{ where}
propagate: propagate S S' \Longrightarrow cdcl_W S S'
conflict: conflict S S' \Longrightarrow cdcl_W S S'
other: cdcl_W-o S S' \Longrightarrow cdcl_W S S'
rf: cdcl_W - rf S S' \Longrightarrow cdcl_W S S'
lemma rtranclp-propagate-is-rtranclp-cdcl_W:
  propagate^{**} S S' \Longrightarrow cdcl_W^{**} S S'
 by (induction rule: rtranclp-induct) (fastforce dest!: propagate)+
lemma cdcl_W-all-rules-induct[consumes 1, case-names propagate conflict forget restart decide skip
    resolve backtrack]:
  fixes S :: 'st
  assumes
    cdcl_W: cdcl_W S S' and
    propagate: \bigwedge T. \ propagate \ S \ T \Longrightarrow P \ S \ T \ {\bf and}
    conflict: \bigwedge T. conflict S T \Longrightarrow P S T and
    forget: \bigwedge T. forget S T \Longrightarrow P S T and
    restart: \bigwedge T. restart S T \Longrightarrow P S T and
    decide: \bigwedge T. decide S T \Longrightarrow P S T and
    skip: \bigwedge T. \ skip \ S \ T \Longrightarrow P \ S \ T \ and
    resolve: \bigwedge T. resolve S T \Longrightarrow P S T and
    \mathit{backtrack} \colon \bigwedge T.\ \mathit{backtrack}\ S\ T \Longrightarrow P\ S\ T
  shows P S S'
  using assms(1)
proof (induct S' rule: cdcl_W.induct)
  case (propagate S') note propagate = this(1)
  then show ?case using assms(2) by auto
\mathbf{next}
  case (conflict S')
  then show ?case using assms(3) by auto
next
  case (other S')
  then show ?case
    proof (induct rule: cdcl_W-o.induct)
      case (decide\ U)
      then show ?case using assms(6) by auto
    next
      case (bi S')
      then show ?case using assms(7-9) by (induction rule: cdcl_W-bj.induct) auto
    qed
next
  case (rf S')
  then show ?case
    by (induct rule: cdcl<sub>W</sub>-rf.induct) (fast dest: forget restart)+
qed
```

```
lemma cdcl_W-all-induct consumes 1, case-names propagate conflict forget restart decide skip
    resolve backtrack]:
  fixes S :: 'st
  assumes
    cdcl_W: cdcl_W S S' and
    propagateH: \bigwedge C L T. C + \{\#L\#\} \in \# clauses S \Longrightarrow trail S \models as CNot C
      \implies undefined-lit (trail S) L \implies conflicting S = None
      \implies T \sim cons\text{-trail} (Propagated L (C + {\#L\#})) S
      \implies P S T and
    conflictH: \bigwedge D \ T. \ D \in \# \ clauses \ S \Longrightarrow conflicting \ S = None \Longrightarrow trail \ S \models as \ CNot \ D
      \implies T \sim update\text{-conflicting (Some D) } S
      \implies P S T and
    forgetH: \bigwedge C \ T. \ \neg trail \ S \models asm \ clauses \ S
      \implies C \notin set (get-all-mark-of-propagated (trail S))
      \implies C \notin \# init\text{-}clss S
      \implies C \in \# learned\text{-}clss S
      \implies conflicting S = None
      \implies T \sim remove\text{-}cls \ C \ S
      \implies P S T \text{ and}
    restartH: \bigwedge T. \neg trail \ S \models asm \ clauses \ S
      \implies conflicting S = None
      \implies T \sim restart\text{-}state S
      \implies P S T \text{ and}
    decideH: \bigwedge L \ T. \ conflicting \ S = None \implies undefined-lit \ (trail \ S) \ L
      \implies atm\text{-}of \ L \in atms\text{-}of\text{-}msu \ (init\text{-}clss \ S)
      \implies T \sim cons-trail (Marked L (backtrack-lvl S + 1)) (incr-lvl S)
      \implies P S T \text{ and}
    skipH: \land L \ C' \ M \ D \ T. \ trail \ S = Propagated \ L \ C' \# \ M
      \implies conflicting \ S = Some \ D \Longrightarrow -L \notin \# \ D \Longrightarrow D \neq \{\#\}
      \implies T \sim tl\text{-}trail\ S
      \implies P S T  and
    resolveH: \bigwedge L \ C \ M \ D \ T.
      trail\ S = Propagated\ L\ (\ (C + \{\#L\#\}))\ \#\ M
      \implies conflicting S = Some (D + \{\#-L\#\})
      \implies get-maximum-level (Propagated L (C + {#L#}) # M) D = backtrack-lvl S
      \implies T \sim (update\text{-}conflicting (Some (D \# \cup C)) (tl\text{-}trail S))
      \implies P S T and
    backtrackH: \bigwedge K \ i \ M1 \ M2 \ L \ D \ T.
      (Marked\ K\ (Suc\ i)\ \#\ M1,\ M2)\in set\ (get-all-marked-decomposition\ (trail\ S))
      \implies get-level (trail S) L = backtrack-lvl S
      \implies conflicting S = Some (D + \{\#L\#\})
      \implies get-maximum-level (trail S) (D+{#L#}) = get-level (trail S) L
      \implies get-maximum-level (trail S) D \equiv i
      \implies T \sim cons\text{-trail} (Propagated L (D+\{\#L\#\}))
                (reduce-trail-to M1
                  (add\text{-}learned\text{-}cls\ (D + \{\#L\#\})
                    (update-backtrack-lvl i
                       (update\text{-}conflicting\ None\ S))))
      \implies P S T
 shows P S S'
  using cdcl_W
proof (induct S S' rule: cdcl_W-all-rules-induct)
  case (propagate S')
  then show ?case by (elim propagateE) (frule propagateH; simp)
\mathbf{next}
```

```
case (conflict S')
  then show ?case by (elim conflictE) (frule conflictH; simp)
  case (restart S')
 then show ?case by (elim restartE) (frule restartH; simp)
next
 case (decide\ T)
 then show ?case by (elim decideE) (frule decideH; simp)
next
 case (backtrack S')
 then show ?case by (elim backtrackE) (frule backtrackH; simp del: state-simp add: state-eq-def)
next
  case (forget S')
 then show ?case using forgetH by auto
next
 case (skip S')
 then show ?case using skipH by auto
 case (resolve S')
 then show ?case by (elim resolveE) (frule resolveH; simp)
qed
lemma cdcl_W-o-induct[consumes 1, case-names decide skip resolve backtrack]:
 fixes S :: 'st
 assumes cdcl_W: cdcl_W-o S T and
   decideH: \bigwedge L \ T. \ conflicting \ S = None \Longrightarrow undefined-lit \ (trail \ S) \ L
     \implies atm\text{-}of \ L \in atms\text{-}of\text{-}msu \ (init\text{-}clss \ S)
     \implies T \sim cons-trail (Marked L (backtrack-lvl S + 1)) (incr-lvl S)
      \implies P S T  and
   skipH: \bigwedge L \ C' \ M \ D \ T. \ trail \ S = Propagated \ L \ C' \# \ M
     \implies conflicting S = Some \ D \implies -L \notin \# \ D \implies D \neq \{\#\}
     \implies T \sim tl\text{-trail } S
     \implies P S T  and
   resolveH: \land L \ C \ M \ D \ T.
     trail\ S = Propagated\ L\ (\ (C + \{\#L\#\}))\ \#\ M
     \implies conflicting S = Some (D + \{\#-L\#\})
     \implies qet-maximum-level (Propagated L (C + {#L#}) # M) D = backtrack-lvl S
     \implies T \sim update\text{-conflicting (Some (D #<math>\cup C)) (tl-trail S)}
     \implies P S T  and
   backtrackH: \bigwedge K \ i \ M1 \ M2 \ L \ D \ T.
     (Marked\ K\ (Suc\ i)\ \#\ M1,\ M2)\in set\ (qet-all-marked-decomposition\ (trail\ S))
     \implies get-level (trail S) L = backtrack-lvl S
     \implies conflicting S = Some (D + \{\#L\#\})
     \implies get-level (trail S) L = get-maximum-level (trail S) (D+\{\#L\#\})
     \implies get-maximum-level (trail S) D \equiv i
     \implies T \sim cons\text{-trail} (Propagated L (D+\{\#L\#\}))
              (reduce-trail-to M1
                (add\text{-}learned\text{-}cls\ (D+\{\#L\#\})
                  (update-backtrack-lvl i
                    (update\text{-}conflicting\ None\ S))))
     \implies P S T
 shows P S T
  using cdcl_W apply (induct T rule: cdcl_W-o.induct)
  using assms(2) apply auto[1]
 apply (elim\ cdcl_W - bjE\ skipE\ resolveE\ backtrackE)
```

```
apply (frule skipH; simp)
  apply (frule resolveH; simp)
  apply (frule backtrackH; simp-all del: state-simp add: state-eq-def)
  done
thm cdcl_W-o.induct
lemma cdcl_W-o-all-rules-induct[consumes 1, case-names decide backtrack skip resolve]:
  fixes S T :: 'st
  assumes
    cdcl_W-o S T and
   \bigwedge T. decide S T \Longrightarrow P S T and
   \bigwedge T. backtrack S T \Longrightarrow P S T and
   \bigwedge T. skip S T \Longrightarrow P S T and
   \bigwedge T. resolve S T \Longrightarrow P S T
  shows P S T
  using assms by (induct T rule: cdcl_W-o.induct) (auto simp: cdcl_W-bj.simps)
lemma cdcl<sub>W</sub>-o-rule-cases[consumes 1, case-names decide backtrack skip resolve]:
  fixes S T :: 'st
  assumes
    cdcl_W-o S T and
    decide\ S\ T \Longrightarrow P and
   backtrack \ S \ T \Longrightarrow P \ \mathbf{and}
   skip \ S \ T \Longrightarrow P \ {\bf and}
   resolve S T \Longrightarrow P
  using assms by (auto simp: cdcl_W-o.simps cdcl_W-bj.simps)
```

5.4 Invariants

5.4.1 Properties of the trail

We here establish that: * the marks are exactly 1..k where k is the level * the consistency of the trail * the fact that there is no duplicate in the trail.

```
lemma backtrack-lit-skiped:
 assumes L: get-level (trail S) L = backtrack-lvl S
 and M1: (Marked\ K\ (i+1)\ \#\ M1,\ M2) \in set\ (get-all-marked-decomposition\ (trail\ S))
 and no-dup: no-dup (trail S)
 and bt-l: backtrack-lvl S = length (get-all-levels-of-marked (trail S))
 and order: get-all-levels-of-marked (trail S)
   = rev ([1..<(1+length (get-all-levels-of-marked (trail S)))])
 shows atm-of L \notin atm-of ' lits-of M1
proof
 let ?M = trail S
 assume L-in-M1: atm-of L \in atm-of ' lits-of M1
 obtain c where Mc: trail S = c @ M2 @ Marked K (i + 1) \# M1 using M1 by blast
 \mathbf{have}\ \mathit{atm\text{-}of}\ L \not\in \mathit{atm\text{-}of}\ `\mathit{lits\text{-}of}\ \mathit{c}
   using L-in-M1 no-dup mk-disjoint-insert unfolding Mc lits-of-def by force
 have g\text{-}M\text{-}eq\text{-}g\text{-}M1: get\text{-}level\ ?M\ L=get\text{-}level\ M1\ L
   using L-in-M1 unfolding Mc by auto
 have g: get-all-levels-of-marked <math>M1 = rev [1.. < Suc \ i]
   using order unfolding Mc
   by (auto simp del: upt-simps dest!: append-cons-eq-upt-length-i
           simp add: rev-swap[symmetric])
  then have Max (set (0 \# get-all-levels-of-marked (rev M1))) < Suc i by auto
```

```
then have get-level M1 L < Suc i
   using get-rev-level-less-max-get-all-levels-of-marked[of rev M1 0 L] by linarith
 moreover have Suc\ i \leq backtrack-lvl\ S using bt-l by (simp\ add:\ Mc\ g)
 ultimately show False using L g-M-eq-g-M1 by auto
qed
lemma cdcl_W-distinctinv-1:
 assumes
   cdcl_W S S' and
   no-dup (trail S) and
   backtrack-lvl\ S = length\ (get-all-levels-of-marked\ (trail\ S)) and
   get-all-levels-of-marked\ (trail\ S) = rev\ [1..<1+length\ (get-all-levels-of-marked\ (trail\ S))]
 shows no-dup (trail S')
 using assms
proof (induct rule: cdcl<sub>W</sub>-all-induct)
 case (backtrack\ K\ i\ M1\ M2\ L\ D\ T) note decomp = this(1) and L = this(2) and T = this(6) and
   n-d = this(7)
 obtain c where Mc: trail S = c @ M2 @ Marked K (i + 1) \# M1
   using decomp by auto
 have no-dup (M2 @ Marked K (i + 1) # M1)
   using Mc n-d by fastforce
 moreover have atm\text{-}of \ L \notin (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) ' set M1
   using backtrack-lit-skiped[of S L K i M1 M2] L decomp backtrack.prems
   by (fastforce simp: lits-of-def)
 moreover then have undefined-lit M1 L
    by (simp add: defined-lit-map)
 ultimately show ?case using decomp T n-d by simp
qed (auto simp: defined-lit-map)
lemma cdcl_W-consistent-inv-2:
 assumes
   cdcl_W S S' and
   no-dup (trail S) and
   backtrack-lvl\ S = length\ (get-all-levels-of-marked\ (trail\ S)) and
   get-all-levels-of-marked\ (trail\ S) = rev\ [1..<1+length\ (get-all-levels-of-marked\ (trail\ S))]
 shows consistent-interp (lits-of (trail S'))
 using cdcl<sub>W</sub>-distinctinv-1[OF assms] distinct consistent-interp by fast
lemma cdcl_W-o-bt:
 assumes
   cdcl_W-o S S' and
   backtrack-lvl S = length (get-all-levels-of-marked (trail S)) and
   get-all-levels-of-marked (trail\ S) =
     rev ([1..<(1+length (get-all-levels-of-marked (trail S)))]) and
   n-d[simp]: no-dup (trail S)
 shows backtrack-lvl S' = length (get-all-levels-of-marked (trail <math>S'))
 using assms
proof (induct rule: cdcl_W-o-induct)
 case (backtrack K i M1 M2 L D T) note decomp = this(1) and T = this(6) and level = this(8)
 have [simp]: trail (reduce-trail-to M1 S) = M1
   using decomp by auto
 obtain c where M: trail\ S = c @ M2 @ Marked\ K\ (i+1) \# M1 using decomp by auto
 have rev (get-all-levels-of-marked (trail <math>S))
   = [1..<1+ (length (get-all-levels-of-marked (trail S)))]
   using level by (auto simp: rev-swap[symmetric])
```

```
moreover have atm\text{-}of \ L \notin (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) 'set M1
   using backtrack-lit-skiped of S L K i M1 M2 backtrack (2,7,8,9) decomp
   by (fastforce simp add: lits-of-def)
 moreover then have undefined-lit M1 L
    by (simp add: defined-lit-map)
 moreover then have no-dup (trail T)
   using T decomp n-d by (auto simp: defined-lit-map M)
 ultimately show ?case
   using T n-d unfolding M by (auto dest!: append-cons-eq-upt-length simp del: upt-simps)
qed auto
lemma cdcl_W-rf-bt:
 assumes
   cdcl_W-rf S S' and
   backtrack-lvl\ S = length\ (qet-all-levels-of-marked\ (trail\ S)) and
   get-all-levels-of-marked\ (trail\ S) = rev\ [1..<(1+length\ (get-all-levels-of-marked\ (trail\ S)))]
 shows backtrack-lvl S' = length (get-all-levels-of-marked (trail S'))
 using assms by (induct rule: cdcl_W-rf.induct) auto
lemma cdcl_W-bt:
 assumes
   cdcl_W S S' and
   backtrack-lvl\ S = length\ (get-all-levels-of-marked\ (trail\ S)) and
   get-all-levels-of-marked (trail S)
   = rev ([1..<(1+length (get-all-levels-of-marked (trail S)))]) and
   no-dup (trail S)
 shows backtrack-lvl S' = length (get-all-levels-of-marked (trail S'))
 using assms by (induct rule: cdcl_W.induct) (auto simp add: cdcl_W-o-bt cdcl_W-rf-bt)
lemma cdcl_W-bt-level':
 assumes
   cdcl_W S S' and
   backtrack-lvl\ S = length\ (get-all-levels-of-marked\ (trail\ S)) and
   qet-all-levels-of-marked (trail S)
     = rev ([1..<(1+length (get-all-levels-of-marked (trail S)))]) and
   n-d: no-dup (trail S)
 shows get-all-levels-of-marked (trail S')
   = rev ([1..<(1+length (get-all-levels-of-marked (trail S')))])
 using assms
proof (induct rule: cdcl_W-all-induct)
 case (decide L T) note undef = this(2) and T = this(4)
 let ?k = backtrack-lvl S
 let ?M = trail S
 let ?M' = Marked L (?k + 1) \# trail S
 have H: get-all-levels-of-marked ?M = rev [Suc 0..<1+length (get-all-levels-of-marked ?M)]
   using decide.prems by simp
 have k: ?k = length (get-all-levels-of-marked ?M)
   using decide.prems by auto
 have qet-all-levels-of-marked ?M' = Suc ?k \# qet-all-levels-of-marked ?M by simp
 then have get-all-levels-of-marked ?M' = Suc ?k \#
     rev [Suc \ 0..<1+length \ (get-all-levels-of-marked \ ?M)]
   using H by auto
 moreover have ... = rev [Suc \ 0.. < Suc \ (1 + length \ (get-all-levels-of-marked ?M))]
   unfolding k by simp
 finally show ?case using T undef by (auto simp add: defined-lit-map)
```

```
next
 case (backtrack K i M1 M2 L D T) note decomp = this(1) and confli = this(2) and T = this(6)
   all-marked = this(8) and bt-lvl = this(7)
 have atm\text{-}of \ L \notin (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) ' set \ M1
   using backtrack-lit-skiped of S L K i M1 M2 backtrack (2,7,8,9) decomp
   by (fastforce simp add: lits-of-def)
 moreover then have undefined-lit M1 L
    by (simp add: defined-lit-map)
 then have [simp]: trail T = Propagated L (D + {\#L\#}) \# M1
   using T decomp n-d by auto
 obtain c where M: trail\ S = c @ M2 @ Marked\ K\ (i+1) \# M1 using decomp by auto
 have get-all-levels-of-marked (rev (trail S))
   = [Suc \ 0...<2 + length \ (get-all-levels-of-marked \ c) + (length \ (get-all-levels-of-marked \ M2)]
             + length (get-all-levels-of-marked M1))]
   using all-marked bt-lvl unfolding M by (auto simp add: rev-swap[symmetric] simp del: upt-simps)
 then show ?case
   using T by (auto simp add: rev-swap M dest!: append-cons-eq-upt(1) simp del: upt-simps)
qed auto
We write 1 + length (get-all-levels-of-marked (trail S)) instead of backtrack-lvl S to avoid non
termination of rewriting.
definition cdcl_W-M-level-inv (S:: 'st) \longleftrightarrow
 consistent-interp (lits-of (trail S))
 \wedge no-dup (trail S)
 \land backtrack-lvl S = length (get-all-levels-of-marked (trail <math>S))
 \land get-all-levels-of-marked (trail S)
     = rev ([1..<1+length (get-all-levels-of-marked (trail S))])
lemma cdcl_W-M-level-inv-decomp:
 assumes cdcl_W-M-level-inv S
 shows consistent-interp (lits-of (trail S))
 and no-dup (trail S)
 using assms unfolding cdcl<sub>W</sub>-M-level-inv-def by fastforce+
lemma cdcl_W-consistent-inv:
 fixes S S' :: 'st
 assumes
   cdcl_W S S' and
   cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms cdcl_W-consistent-inv-2 cdcl_W-distinctinv-1 cdcl_W-bt cdcl_W-bt-level'
 unfolding cdcl<sub>W</sub>-M-level-inv-def by meson+
lemma rtranclp-cdcl_W-consistent-inv:
 assumes cdcl_W^{**} S S'
 and cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms by (induct rule: rtranclp-induct)
 (auto intro: cdcl_W-consistent-inv)
lemma tranclp\text{-}cdcl_W\text{-}consistent\text{-}inv:
 assumes cdcl_W^{++} S S'
 and cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
```

```
using assms by (induct rule: tranclp-induct)
 (auto intro: cdcl_W-consistent-inv)
lemma cdcl_W-M-level-inv-S0-cdcl_W[simp]:
 cdcl_W-M-level-inv (init-state N)
 unfolding cdcl_W-M-level-inv-def by auto
\mathbf{lemma}\ cdcl_W\text{-}M\text{-}level\text{-}inv\text{-}get\text{-}level\text{-}le\text{-}backtrack\text{-}lvl\text{:}}
 assumes inv: cdcl_W-M-level-inv S
 shows get-level (trail S) L \leq backtrack-lvl S
 have get-all-levels-of-marked (trail\ S) = rev\ [1..<1 + backtrack-lvl\ S]
   using inv unfolding cdcl_W-M-level-inv-def by auto
 then show ?thesis
   using qet-rev-level-less-max-qet-all-levels-of-marked[of rev (trail S) 0 L]
   by (auto simp: Max-n-upt)
qed
lemma backtrack-ex-decomp:
 assumes M-l: cdcl_W-M-level-inv S
 and i-S: i < backtrack-lvl S
 shows \exists K \ M1 \ M2. (Marked K \ (i+1) \ \# \ M1, \ M2) \in set \ (get-all-marked-decomposition \ (trail \ S))
proof -
 let ?M = trail S
 have
   g: get-all-levels-of-marked (trail S) = rev [Suc 0... < Suc (backtrack-lvl S)]
   using M-l unfolding cdcl_W-M-level-inv-def by simp-all
 then have i+1 \in set (get-all-levels-of-marked (trail S))
   using i-S by auto
 then obtain c \ K \ c' where tr-S: trail \ S = c \ @ Marked \ K \ (i + 1) \# \ c'
   using in-get-all-levels-of-marked-iff-decomp[of i+1 trail S] by auto
 obtain M1 M2 where (Marked K (i + 1) # M1, M2) \in set (get-all-marked-decomposition (trail S))
   unfolding tr-S apply (induct c rule: ann-literal-list-induct)
     apply auto[2]
   apply (rename-tac L m xs,
       case-tac hd (get-all-marked-decomposition (xs @ Marked K (Suc i) \# c')))
   apply (case-tac get-all-marked-decomposition (xs @ Marked K (Suc i) \# c'))
   by auto
 then show ?thesis by blast
qed
```

5.4.2 Better-Suited Induction Principle

assumes

We generalise the induction principle defined previously: the induction case for backtrack now includes the assumption that undefined-lit M1 L. This helps the simplifier and thus the automation.

 $\mathbf{lemma}\ backtrack\text{-}induction\text{-}lev[consumes\ 1,\ case\text{-}names\ M\text{-}devel\text{-}inv\ backtrack}]\text{:}$

```
bt: backtrack S T and inv: cdcl_W-M-level-inv S and backtrackH: \bigwedge K i M1 M2 L D T. (Marked K (Suc i) \# M1, M2) \in set (get-all-marked-decomposition (trail S)) \Longrightarrow get-level (trail S) L = backtrack-lvl S
```

```
\implies conflicting S = Some (D + \{\#L\#\})
     \implies get-level (trail S) L = get-maximum-level (trail S) (D+\{\#L\#\})
     \implies get-maximum-level (trail S) D \equiv i
     \implies undefined-lit M1 L
     \implies T \sim cons\text{-trail} (Propagated L (D+{\#L\#}))
               (reduce-trail-to M1
                 (add\text{-}learned\text{-}cls\ (D + \{\#L\#\}))
                   (update-backtrack-lvl\ i
                     (update\text{-}conflicting\ None\ S))))
     \implies P S T
 shows P S T
proof -
  obtain K i M1 M2 L D where
    decomp: (Marked K (Suc i) \# M1, M2) \in set (get-all-marked-decomposition (trail S)) and
    L: qet-level (trail S) L = backtrack-lvl S and
   confl: conflicting S = Some (D + \{\#L\#\}) and
   lev-L: get-level (trail S) L = get-maximum-level (trail S) (D+\{\#L\#\}) and
   lev-D: get-maximum-level (trail S) D \equiv i and
    T: T \sim cons-trail (Propagated L (D+{#L#}))
               (reduce-trail-to M1
                 (add\text{-}learned\text{-}cls\ (D + \{\#L\#\})
                   (update-backtrack-lvl i
                     (update\text{-}conflicting\ None\ S))))
   using bt by (elim backtrackE) metis
  have atm\text{-}of\ L \notin (\lambda l.\ atm\text{-}of\ (lit\text{-}of\ l)) 'set M1
   using backtrack-lit-skiped[of S L K i M1 M2] L decomp bt confl lev-L lev-D inv
   unfolding cdcl_W-M-level-inv-def
   by (fastforce simp add: lits-of-def)
  then have undefined-lit M1 L
   by (auto simp: defined-lit-map)
  then show ?thesis
   using backtrackH[OF decomp L confl lev-L lev-D - T] by simp
qed
lemmas\ backtrack-induction-lev2 = backtrack-induction-lev[consumes\ 2,\ case-names\ backtrack]
lemma cdcl_W-all-induct-lev-full:
  fixes S :: 'st
  assumes
    cdcl_W: cdcl_W S S' and
   inv[simp]: cdcl_W-M-level-inv S and
   propagateH: \land C \ L \ T. \ C + \{\#L\#\} \in \# \ clauses \ S \Longrightarrow trail \ S \models as \ CNot \ C
      \implies undefined-lit (trail S) L \implies conflicting S = None
     \implies T \sim cons\text{-trail} (Propagated L (C + {\#L\#})) S
     \implies cdcl_W-M-level-inv S
     \implies P S T  and
    conflictH: \bigwedge D \ T. \ D \in \# \ clauses \ S \Longrightarrow conflicting \ S = None \Longrightarrow trail \ S \models as \ CNot \ D
     \implies T \sim update\text{-conflicting (Some D) } S
     \implies P S T \text{ and}
   forgetH: \bigwedge C \ T. \ \neg trail \ S \models asm \ clauses \ S
      \implies C \notin set (get-all-mark-of-propagated (trail S))
     \implies C \notin \# init\text{-}clss S
     \implies C \in \# learned\text{-}clss S
     \implies conflicting S = None
```

```
\implies T \sim remove\text{-}cls \ C \ S
     \implies cdcl_W-M-level-inv S
     \implies P S T  and
    restartH: \bigwedge T. \neg trail \ S \models asm \ clauses \ S
      \implies conflicting S = None
     \implies T \sim restart\text{-}state S
     \implies cdcl_W-M-level-inv S
     \implies P S T  and
    decideH: \Lambda L \ T. \ conflicting \ S = None \implies undefined-lit \ (trail \ S) \ L
     \implies atm\text{-}of \ L \in atms\text{-}of\text{-}msu \ (init\text{-}clss \ S)
     \implies T \sim cons-trail (Marked L (backtrack-lvl S + 1)) (incr-lvl S)
     \implies cdcl_W-M-level-inv S
      \implies P S T  and
   skipH: \bigwedge L \ C' \ M \ D \ T. \ trail \ S = Propagated \ L \ C' \# \ M
     \implies conflicting S = Some \ D \implies -L \notin \# \ D \implies D \neq \{ \# \}
     \implies T \sim tl\text{-trail } S
     \implies cdcl_W-M-level-inv S
     \implies P S T  and
    resolveH: \land L \ C \ M \ D \ T.
     trail\ S = Propagated\ L\ (\ (C + \{\#L\#\}))\ \#\ M
     \implies conflicting S = Some (D + \{\#-L\#\})
     \implies get-maximum-level (Propagated L (C + {#L#}) # M) D = backtrack-lvl S
     \implies T \sim (update\text{-}conflicting (Some (D \# \cup C)) (tl\text{-}trail S))
     \implies cdcl_W-M-level-inv S
     \implies P S T  and
   backtrackH: \bigwedge K i M1 M2 L D T.
     (Marked\ K\ (Suc\ i)\ \#\ M1,\ M2)\in set\ (get-all-marked-decomposition\ (trail\ S))
     \implies get-level (trail S) L = backtrack-lvl S
     \implies conflicting S = Some (D + \{\#L\#\})
     \implies get-maximum-level (trail S) (D+{#L#}) = get-level (trail S) L
     \implies get-maximum-level (trail S) D \equiv i
     \implies undefined-lit M1 L
     \implies T \sim cons\text{-trail} (Propagated L (D+\{\#L\#\}))
               (reduce-trail-to M1
                 (add\text{-}learned\text{-}cls\ (D + \{\#L\#\})
                   (update-backtrack-lvl i
                     (update\text{-}conflicting\ None\ S))))
     \implies cdcl_W-M-level-inv S
     \implies P S T
  shows P S S'
 using cdcl_W
proof (induct S' rule: cdcl_W-all-rules-induct)
  case (propagate S')
  then show ?case by (elim propagateE) (frule propagateH; simp)
next
  case (conflict S')
  then show ?case by (elim conflictE) (frule conflictH; simp)
  case (restart S')
  then show ?case by (elim restartE) (frule restartH; simp)
next
  then show ?case by (elim decideE) (frule decideH; simp)
next
  case (backtrack S')
```

```
then show ?case
   apply (induction rule: backtrack-induction-lev)
    apply (rule inv)
   by (rule backtrackH;
     fastforce simp del: state-simp simp add: state-eq-def dest!: HOL.meta-eq-to-obj-eq)
next
 case (forget S')
 then show ?case using forgetH by auto
next
 case (skip S')
 then show ?case using skipH by auto
next
  case (resolve S')
 then show ?case by (elim resolveE) (frule resolveH; simp)
qed
lemmas cdcl_W-all-induct-lev2 = cdcl_W-all-induct-lev-full[consumes 2, case-names propagate conflict
 forget restart decide skip resolve backtrack]
lemmas cdcl_W-all-induct-lev = cdcl_W-all-induct-lev-full[consumes 1, case-names lev-inv propagate
  conflict forget restart decide skip resolve backtrack
thm cdcl_W-o-induct
lemma cdcl_W-o-induct-lev[consumes 1, case-names M-lev decide skip resolve backtrack]:
 fixes S :: 'st
 assumes
   cdcl_W: cdcl_W-o S T and
   inv[simp]: cdcl_W-M-level-inv S and
   decideH: \bigwedge L \ T. \ conflicting \ S = None \Longrightarrow \ undefined-lit \ (trail \ S) \ L
     \implies atm\text{-}of \ L \in atms\text{-}of\text{-}msu \ (init\text{-}clss \ S)
     \implies T \sim cons-trail (Marked L (backtrack-lvl S + 1)) (incr-lvl S)
     \implies cdcl_W-M-level-inv S
     \implies P S T  and
   skipH: \land L \ C' \ M \ D \ T. \ trail \ S = Propagated \ L \ C' \# M
     \implies conflicting S = Some \ D \implies -L \notin \!\!\!/ \!\!\!/ \ D \implies D \neq \{\#\}
     \implies T \sim tl\text{-trail } S
     \implies cdcl_W-M-level-inv S
     \implies P S T \text{ and}
   resolveH: \bigwedge L \ C \ M \ D \ T.
     trail\ S = Propagated\ L\ (\ (C + \{\#L\#\}))\ \#\ M
     \implies conflicting S = Some (D + \{\#-L\#\})
     \implies get-maximum-level (Propagated L (C + {#L#}) # M) D = backtrack-lvl S
     \implies T \sim \textit{update-conflicting (Some (D \# \cup \textit{C})) (tl-trail \textit{S})}
     \implies cdcl_W-M-level-inv S
     \implies P S T \text{ and}
   backtrackH: \bigwedge K i M1 M2 L D T.
     (Marked\ K\ (Suc\ i)\ \#\ M1,\ M2)\in set\ (get-all-marked-decomposition\ (trail\ S))
     \implies get-level (trail S) L = backtrack-lvl S
     \implies conflicting S = Some (D + \{\#L\#\})
     \implies get-level (trail S) L = get-maximum-level (trail S) (D+\{\#L\#\})
     \implies get-maximum-level (trail S) D \equiv i
     \implies undefined-lit M1 L
     \implies T \sim cons\text{-trail} (Propagated L (D+\{\#L\#\}))
               (reduce-trail-to M1
                 (add\text{-}learned\text{-}cls\ (D+\{\#L\#\})
```

```
(update-backtrack-lvl\ i
                  (update\text{-}conflicting\ None\ S))))
     \implies cdcl_W-M-level-inv S
     \implies P S T
 shows P S T
 using cdcl_W
proof (induct S T rule: cdcl_W-o-all-rules-induct)
 case (decide\ T)
 then show ?case by (elim decideE) (frule decideH; simp)
next
 case (backtrack S')
 then show ?case
   using inv apply (induction rule: backtrack-induction-lev2)
   by (rule backtrackH)
     (fastforce simp del: state-simp simp add: state-eq-def dest!: HOL.meta-eq-to-obj-eq)+
\mathbf{next}
 case (skip S')
 then show ?case using skipH by auto
next
 case (resolve S')
 then show ?case by (elim resolveE) (frule resolveH; simp)
lemmas cdcl_W-o-induct-lev2 = cdcl_W-o-induct-lev[consumes 2, case-names decide skip resolve
 backtrack]
5.4.3
        Compatibility with op \sim
lemma propagate-state-eq-compatible:
 assumes
   propagate S T  and
   S \sim S' and
   T \sim T'
 shows propagate S' T'
 using assms apply (elim propagateE)
 apply (rule propagate-rule)
 by (auto simp: state-eq-def clauses-def simp del: state-simp)
lemma conflict-state-eq-compatible:
 assumes
   conflict S T and
   S \sim S' and
   T \sim T'
 shows conflict S' T'
 using assms apply (elim conflictE)
 apply (rule conflict-rule)
 by (auto simp: state-eq-def clauses-def simp del: state-simp)
{f lemma}\ backtrack	ext{-}state	ext{-}eq	ext{-}compatible:
 assumes
   backtrack \ S \ T \ {\bf and}
   S \sim S' and
   T \sim T' and
   inv: cdcl_W-M-level-inv S
 shows backtrack S' T'
 using assms apply (induction rule: backtrack-induction-lev)
```

```
using inv apply simp
 apply (rule backtrack-rule)
       apply auto[5]
 by (auto simp: state-eq-def clauses-def cdcl_W-M-level-inv-def simp del: state-simp)
{f lemma}\ decide-state-eq-compatible:
 assumes
   decide S T and
   S \sim S' and
   T \sim T'
 shows decide S' T'
 using assms apply (elim decideE)
 apply (rule decide-rule)
 by (auto simp: state-eq-def clauses-def simp del: state-simp)
\mathbf{lemma}\ skip\text{-}state\text{-}eq\text{-}compatible:
 assumes
   skip S T and
   S \sim S' and
   T \sim T'
 shows skip S' T'
 using assms apply (elim \ skipE)
 apply (rule skip-rule)
 by (auto simp: state-eq-def clauses-def HOL.eq-sym-conv[of - \# - trail -]
    simp del: state-simp dest: arg-cong[of - # trail - trail - tl])
{f lemma}\ resolve-state-eq-compatible:
 assumes
   resolve S T  and
   S \sim S' and
   T \sim T'
 shows resolve S' T'
 using assms apply (elim\ resolveE)
 apply (rule resolve-rule)
 by (auto simp: state-eq-def clauses-def HOL.eq-sym-conv[of - # - trail -]
    simp del: state-simp dest: arg-cong[of - # trail - trail - tl])
lemma forget-state-eq-compatible:
 assumes
   forget S T and
   S \sim S' and
   T \sim T'
 shows forget S' T'
 using assms apply (elim forgetE)
 apply (rule forget-rule)
 by (auto simp: state-eq-def clauses-def HOL.eq-sym-conv[of \{\#-\#\} + --]
    simp del: state-simp dest: arg-cong[of - # trail - trail - tl])
lemma cdcl_W-state-eq-compatible:
 assumes
   cdcl_W \ S \ T \ \mathbf{and} \ \neg restart \ S \ T \ \mathbf{and}
   S \sim S' and
   T \sim T' and
   inv: \ cdcl_W-M-level-inv \ S
 shows cdcl_W S' T'
```

```
using assms by (meson assms backtrack-state-eq-compatible bj cdcl_W.simps\ cdcl_W-bj.simps
   cdcl_W-o-rule-cases cdcl_W-rf. cases cdcl_W-rf. restart conflict-state-eq-compatible decide
   decide-state-eq-compatible forget forget-state-eq-compatible
   propagate-state-eq-compatible resolve-state-eq-compatible
   skip-state-eq-compatible)
lemma cdcl_W-bj-state-eq-compatible:
 assumes
   cdcl_W-bj S T and cdcl_W-M-level-inv S
   S \sim S' and
   T \sim T'
 shows cdcl_W-bj S' T'
 using assms
 by induction (auto
   intro: skip-state-eq-compatible backtrack-state-eq-compatible resolve-state-eq-compatible)
lemma tranclp-cdcl_W-bj-state-eq-compatible:
 assumes
   cdcl_W-bj^{++} S T and inv: cdcl_W-M-level-inv S and
   S \sim S' and
   T \sim T'
 shows cdcl_W-bj^{++} S' T'
 using assms
\mathbf{proof} (induction arbitrary: S' T')
 case base
 then show ?case
   using cdcl_W-bj-state-eq-compatible by blast
next
 case (step\ T\ U) note IH = this(3)[OF\ this(4-5)]
 have cdcl_W^{++} S T
   using tranclp-mono[of\ cdcl_W-bj\ cdcl_W] other step.hyps(1) by blast
 then have cdcl_W-M-level-inv T
   using inv tranclp-cdcl<sub>W</sub>-consistent-inv by blast
 then have cdcl_W-bj^{++} T T'
   using \langle U \sim T' \rangle cdcl_W-bj-state-eq-compatible[of T U] \langle cdcl_W-bj T U \rangle by auto
 then show ?case
   using IH[of T] by auto
qed
         Conservation of some Properties
lemma level-of-marked-ge-1:
 assumes
   cdcl_W S S' and
   inv: cdcl_W-M-level-inv S and
   \forall L \ l. \ Marked \ L \ l \in set \ (trail \ S) \longrightarrow l > 0
 shows \forall L \ l. \ Marked \ L \ l \in set \ (trail \ S') \longrightarrow l > 0
 using assms apply (induct rule: cdcl_W-all-induct-lev2)
 by (auto dest: union-in-get-all-marked-decomposition-is-subset simp: cdcl_W-M-level-inv-decomp)
lemma cdcl_W-o-no-more-init-clss:
 assumes
   cdcl_W-o SS' and
   inv: cdcl_W-M-level-inv S
 shows init-clss S = init-clss S'
 using assms by (induct rule: cdcl_W-o-induct-lev2) (auto simp: cdcl_W-M-level-inv-decomp)
```

```
lemma tranclp-cdcl_W-o-no-more-init-clss:
   cdcl_W-o^{++} S S' and
   inv: cdcl_W-M-level-inv S
  shows init-clss S = init-clss S'
  using assms apply (induct rule: tranclp.induct)
  by (auto dest: cdcl_W-o-no-more-init-clss
   dest!: tranclp-cdcl_W-consistent-inv dest: tranclp-mono-explicit[of <math>cdcl_W-o - - cdcl_W]
   simp: other)
lemma rtranclp-cdcl_W-o-no-more-init-clss:
 assumes
   cdcl_W-o** S S' and
   inv: cdcl_W-M-level-inv S
 shows init-clss S = init-clss S'
 using assms unfolding rtranclp-unfold by (auto intro: tranclp-cdcl_W-o-no-more-init-clss)
lemma cdcl_W-init-clss:
  cdcl_W \ S \ T \Longrightarrow cdcl_W \text{-}M\text{-}level\text{-}inv \ S \Longrightarrow init\text{-}clss \ S = init\text{-}clss \ T
 by (induct rule: cdcl_W-all-induct-lev2) (auto simp: cdcl_W-M-level-inv-def)
lemma rtranclp-cdcl_W-init-clss:
  cdcl_W^{**} S T \Longrightarrow cdcl_W-M-level-inv S \Longrightarrow init-clss S = init-clss T
  by (induct rule: rtranclp-induct) (auto dest: cdcl_W-init-clss rtranclp-cdcl_W-consistent-inv)
lemma tranclp\text{-}cdcl_W\text{-}init\text{-}clss:
  cdcl_W^{++} S T \Longrightarrow cdcl_W-M-level-inv S \Longrightarrow init-clss S = init-clss T
  using rtranclp-cdcl_W-init-clss[of S T] unfolding rtranclp-unfold by auto
```

5.4.5 Learned Clause

This invariant shows that:

- the learned clauses are entailed by the initial set of clauses.
- the conflicting clause is entailed by the initial set of clauses.
- the marks are entailed by the clauses. A more precise version would be to show that either these marked are learned or are in the set of clauses

```
lev-inv: cdcl_W-M-level-inv S
 shows cdcl_W-learned-clause S'
 using assms(1) lev-inv learned
proof (induct\ rule:\ cdcl_W-all-induct-lev2)
 case (backtrack K i M1 M2 L D T) note decomp = this(1) and confl = this(3) and undef = this(6)
 and T = this(7)
 show ?case
   using decomp confl learned undef T lev-inv unfolding cdcl_W-learned-clause-def
   by (auto dest!: get-all-marked-decomposition-exists-prepend
     simp: clauses-def \ cdcl_W-M-level-inv-decomp dest: true-clss-clss-left-right)
next
 case (resolve L C M D) note trail = this(1) and confl = this(2) and lvl = this(3) and
   T = this(4)
 moreover
   have init-clss S \models psm \ learned-clss S
     using learned trail unfolding cdcl<sub>W</sub>-learned-clause-def clauses-def by auto
   then have init-clss S \models pm \ C + \{\#L\#\}
     using trail learned unfolding cdcl_W-learned-clause-def clauses-def
     by (auto dest: true-clss-clss-in-imp-true-clss-cls)
 ultimately show ?case
   using learned
   by (auto dest: mk-disjoint-insert true-clss-clss-left-right
     simp\ add: cdcl_W-learned-clause-def clauses-def
     intro: true-clss-cls-union-mset-true-clss-cls-or-not-true-clss-cls-or)
next
 case (restart T)
 then show ?case
   using learned-clss-restart-state[of T]
   by (auto dest!: get-all-marked-decomposition-exists-prepend
     simp: clauses-def \ state-eq-def \ cdcl_W-learned-clause-def
      simp del: state-simp
    dest: true-clss-clssm-subsetE)
 case propagate
 then show ?case using learned by (auto simp: cdcl<sub>W</sub>-learned-clause-def clauses-def)
next
 case conflict
 then show ?case using learned
   by (auto simp: cdcl_W-learned-clause-def clauses-def true-clss-clss-in-imp-true-clss-cls)
next
 case forget
 then show ?case
   using learned by (auto simp: cdcl<sub>W</sub>-learned-clause-def clauses-def split: split-if-asm)
\mathbf{qed} (auto simp: cdcl_W-learned-clause-def clauses-def)
lemma rtranclp-cdcl_W-learned-clss:
 assumes
   cdcl_W^{**} S S' and
   cdcl_W-M-level-inv S
   cdcl_W-learned-clause S
 shows cdcl_W-learned-clause S'
 using assms by induction (auto dest: cdcl_W-learned-clss intro: rtranclp-cdcl_W-consistent-inv)
```

5.4.6 No alien atom in the state

This invariant means that all the literals are in the set of clauses. **definition** no-strange-atm $S' \longleftrightarrow ($ $(\forall T. conflicting S' = Some T \longrightarrow atms-of T \subseteq atms-of-msu (init-clss S'))$ $\land (\forall L \ mark. \ Propagated \ L \ mark \in set \ (trail \ S')$ $\longrightarrow atms-of \ (mark) \subseteq atms-of-msu \ (init-clss \ S'))$ \land atms-of-msu (learned-clss S') \subseteq atms-of-msu (init-clss S') \land atm-of ' (lits-of (trail S')) \subseteq atms-of-msu (init-clss S')) **lemma** no-strange-atm-decomp: assumes no-strange-atm S**shows** conflicting $S = Some \ T \Longrightarrow atms-of \ T \subseteq atms-of-msu \ (init-clss \ S)$ and $(\forall L \ mark. \ Propagated \ L \ mark \in set \ (trail \ S)$ $\rightarrow atms\text{-}of \ (mark) \subseteq atms\text{-}of\text{-}msu \ (init\text{-}clss \ S))$ and atms-of-msu (learned-clss $S) \subseteq atms$ -of-msu (init-clss S)and atm-of ' $(lits\text{-}of\ (trail\ S))\subseteq atms\text{-}of\text{-}msu\ (init\text{-}clss\ S)$ using assms unfolding no-strange-atm-def by blast+ **lemma** no-strange-atm-S0 [simp]: no-strange-atm (init-state N) unfolding no-strange-atm-def by auto lemma $cdcl_W$ -no-strange-atm-explicit: assumes $cdcl_W S S'$ and $lev: cdcl_W$ -M-level-inv S and $conf: \forall T. \ conflicting \ S = Some \ T \longrightarrow atms-of \ T \subseteq atms-of-msu \ (init-clss \ S) \ {\bf and}$ $marked: \forall L \ mark. \ Propagated \ L \ mark \in set \ (trail \ S)$ $\longrightarrow atms$ -of $mark \subseteq atms$ -of- $msu \ (init$ - $clss \ S)$ and learned: atms-of-msu (learned-clss S) $\subseteq atms$ -of-msu (init-clss S) and $trail: atm-of `(lits-of (trail S)) \subseteq atms-of-msu (init-clss S)$ **shows** $(\forall T. conflicting S' = Some T \longrightarrow atms-of T \subseteq atms-of-msu (init-clss S')) \land$ $(\forall L \ mark. \ Propagated \ L \ mark \in set \ (trail \ S')$ $\longrightarrow atms\text{-}of \ (mark) \subseteq atms\text{-}of\text{-}msu \ (init\text{-}clss \ S')) \land$ atms-of-msu (learned-clss S') $\subseteq atms$ -of-msu (init-clss S') \wedge atm-of ' $(lits\text{-}of\ (trail\ S'))\subseteq atms\text{-}of\text{-}msu\ (init\text{-}clss\ S')$ (is $?C\ S'\wedge\ ?M\ S'\wedge\ ?U\ S'\wedge\ ?V\ S')$ using assms(1,2)**proof** (induct rule: $cdcl_W$ -all-induct-lev2) case (propagate C L T) note C-L = this(1) and undef = this(3) and confl = this(4) and T = this(5)have C (cons-trail (Propagated L (C + {#L#})) S) using confl undef by auto moreover have atms-of $(C + \{\#L\#\}) \subseteq atms$ -of-msu (init-clss S) by (metis (no-types) atms-of-atms-of-ms-mono atms-of-ms-union clauses-def mem-set-mset-iff C-L learned set-mset-union sup.orderE) then have ?M (cons-trail (Propagated L ($C + \{\#L\#\}$)) S) using undef **by** (simp add: marked) moreover have ?U (cons-trail (Propagated L (C + $\{\#L\#\}$)) S) using learned undef by auto moreover have ?V (cons-trail (Propagated L (C + $\{\#L\#\}\))$ S) using C-L learned trail undef unfolding clauses-def by (auto simp: in-plus-implies-atm-of-on-atms-of-ms) ultimately show ?case using T by auto case $(decide\ L)$ then show ?case using learned marked conf trail unfolding clauses-def by auto

```
next
  case (skip\ L\ C\ M\ D)
 then show ?case using learned marked conf trail by auto
next
  case (conflict D T) note T = this(4)
 have D: atm-of 'set-mset D \subseteq \bigcup (atms-of '(set-mset (clauses S)))
   using \langle D \in \# \ clauses \ S \rangle by (auto simp add: atms-of-def atms-of-ms-def)
 moreover {
   \mathbf{fix} \ xa :: 'v \ literal
   assume a1: atm-of 'set-mset D \subseteq (\bigcup x \in set\text{-mset (init-clss } S). atms-of x)
     \cup (| ] x \in set\text{-}mset (learned-clss S). atms-of x)
   assume a2: (\bigcup x \in set\text{-}mset \ (learned\text{-}clss \ S). \ atms\text{-}of \ x) \subseteq (\bigcup x \in set\text{-}mset \ (init\text{-}clss \ S). \ atms\text{-}of \ x)
   assume xa \in \# D
   then have atm\text{-}of\ xa \in UNION\ (set\text{-}mset\ (init\text{-}clss\ S))\ atms\text{-}of
     using a2 a1 by (metis (no-types) Un-iff atm-of-lit-in-atms-of atms-of-def subset-Un-eq)
   then have \exists m \in set\text{-}mset \ (init\text{-}clss \ S). \ atm\text{-}of \ xa \in atms\text{-}of \ m
     by blast
   } note H = this
  ultimately show ?case using conflict.prems T learned marked conf trail
   unfolding atms-of-def atms-of-ms-def clauses-def
    by (auto simp add: H)
next
 case (restart T)
 then show ?case using learned marked conf trail by auto
  case (forget C T) note C = this(3) and C-le = this(4) and confl = this(5) and
   T = this(6)
 have H: \bigwedge L mark. Propagated L mark \in set (trail\ S) \Longrightarrow atms-of\ mark \subseteq atms-of-msu\ (init-clss\ S)
   using marked by simp
 show ?case unfolding clauses-def apply standard
   using conf T trail C unfolding clauses-def apply (auto dest!: H)[]
   apply standard
    using T trail C apply (auto dest!: H)
   apply standard
     using T learned C C-le atms-of-ms-remove-subset[of set-mset (learned-clss S)] apply (auto)[]
   using T trail C apply (auto simp: clauses-def lits-of-def)[]
  done
next
 case (backtrack K i M1 M2 L D T) note decomp = this(1) and confl = this(3) and undef = this(6)
   and T = this(7)
 have ?C T
   using conf T decomp undef lev by (auto simp: cdcl_W-M-level-inv-decomp)
 moreover have set M1 \subseteq set (trail S)
   using backtrack.hyps(1) by auto
  then have M: ?M T
   using marked conf undef confl T decomp lev
   by (auto simp: image-subset-iff clauses-def cdcl_W-M-level-inv-decomp)
  moreover have ?UT
   using learned decomp conf confl T undef lev unfolding clauses-def
   by (auto simp: cdcl_W-M-level-inv-decomp)
 moreover have ?V T
   using M conf confl trail T undef decomp lev by (force simp: cdcl_W-M-level-inv-decomp)
 ultimately show ?case by blast
next
  case (resolve L C M D T) note trail-S = this(1) and confl = this(2) and T = this(4)
```

```
let ?T = update\text{-conflicting (Some (remdups-mset (D + C))) (tl-trail S)}
 have ?C?T
   using confl trail-S conf marked by simp
 moreover have ?M ?T
   using confl trail-S conf marked by auto
 moreover have ?U ?T
   using trail learned by auto
 moreover have ?V ?T
   using confl trail-S trail by auto
 ultimately show ?case using T by auto
qed
lemma cdcl_W-no-strange-atm-inv:
 assumes cdcl_W S S' and no-strange-atm S and cdcl_W-M-level-inv S
 shows no-strange-atm S'
 using cdcl_W-no-strange-atm-explicit[OF assms(1)] assms(2,3) unfolding no-strange-atm-def by fast
lemma rtranclp-cdcl_W-no-strange-atm-inv:
 assumes cdcl_W^{**} S S' and no-strange-atm S and cdcl_W-M-level-inv S
 shows no-strange-atm S'
 using assms by induction (auto intro: cdcl_W-no-strange-atm-inv rtranclp-cdcl_W-consistent-inv)
```

5.4.7 No duplicates all around

This invariant shows that there is no duplicate (no literal appearing twice in the formula). The last part could be proven using the previous invariant moreover.

```
definition distinct\text{-}cdcl_W\text{-}state\ (S::'st)
  \longleftrightarrow ((\forall T. conflicting S = Some T \longrightarrow distinct-mset T)
    \land distinct-mset-mset (learned-clss S)
    \land \ \textit{distinct-mset-mset} \ (\textit{init-clss} \ S)
    \land (\forall L \ mark. \ (Propagated \ L \ mark \in set \ (trail \ S) \longrightarrow distinct-mset \ (mark))))
lemma distinct\text{-}cdcl_W\text{-}state\text{-}decomp:
  assumes distinct\text{-}cdcl_W\text{-}state\ (S::'st)
  shows \forall T. conflicting S = Some \ T \longrightarrow distinct\text{-mset} \ T
  and distinct-mset-mset (learned-clss S)
  and distinct-mset-mset (init-clss S)
  and \forall L \ mark. \ (Propagated \ L \ mark \in set \ (trail \ S) \longrightarrow distinct-mset \ (mark))
  using assms unfolding distinct-cdcl<sub>W</sub>-state-def by blast+
lemma distinct\text{-}cdcl_W\text{-}state\text{-}decomp\text{-}2:
  assumes distinct\text{-}cdcl_W\text{-}state\ (S::'st)
  shows conflicting S = Some \ T \Longrightarrow distinct\text{-mset} \ T
  using assms unfolding distinct-cdcl<sub>W</sub>-state-def by auto
lemma distinct\text{-}cdcl_W\text{-}state\text{-}S0\text{-}cdcl_W[simp]:
  distinct-mset-mset N \implies distinct-cdcl<sub>W</sub>-state (init-state N)
  unfolding distinct-cdcl_W-state-def by auto
lemma distinct\text{-}cdcl_W\text{-}state\text{-}inv:
  assumes
    cdcl_W S S' and
    cdcl_W-M-level-inv S and
    distinct-cdcl_W-state S
  shows distinct\text{-}cdcl_W\text{-}state\ S'
```

```
using assms
proof (induct\ rule:\ cdcl_W-all-induct-lev2)
 case (backtrack K i M1 M2 L D)
 then show ?case
   unfolding distinct-cdcl_W-state-def
   by (fastforce dest: get-all-marked-decomposition-incl simp: cdcl<sub>W</sub>-M-level-inv-decomp)
next
 case restart
 then show ?case unfolding distinct-cdclw-state-def distinct-mset-set-def clauses-def
 using learned-clss-restart-state[of S] by auto
next
 case resolve
 then show ?case
   by (auto simp add: distinct-cdcl_W-state-def distinct-mset-set-def clauses-def
     distinct-mset-single-add
     intro!: distinct-mset-union-mset)
qed (auto simp add: distinct-cdcl<sub>W</sub>-state-def distinct-mset-set-def clauses-def)
lemma rtanclp-distinct-cdcl_W-state-inv:
 assumes
   cdcl_W^{**} S S' and
   cdcl_W-M-level-inv S and
   distinct-cdcl_W-state S
 shows distinct\text{-}cdcl_W\text{-}state\ S'
 using assms apply (induct rule: rtranclp-induct)
 using distinct-cdcl<sub>W</sub>-state-inv rtranclp-cdcl<sub>W</sub>-consistent-inv by blast+
```

5.4.8 Conflicts and co

This invariant shows that each mark contains a contradiction only related to the previously defined variable.

```
abbreviation every-mark-is-a-conflict :: 'st \Rightarrow bool where
every-mark-is-a-conflict S \equiv
\forall L \ mark \ a \ b. \ a @ Propagated \ L \ mark \# b = (trail \ S)
  \longrightarrow (b \models as \ CNot \ (mark - \{\#L\#\}) \land L \in \# \ mark)
definition cdcl_W-conflicting S \equiv
  (\forall T. conflicting S = Some T \longrightarrow trail S \models as CNot T)
 \land every-mark-is-a-conflict S
\mathbf{lemma}\ backtrack-atms-of-D-in-M1:
 fixes M1 :: ('v, nat, 'v clause) ann-literals
 assumes
   inv: cdcl_W-M-level-inv S and
   undef: undefined-lit M1 L and
   i: get\text{-}maximum\text{-}level (trail S) D = i \text{ and }
   decomp: (Marked K (Suc i) \# M1, M2)
      \in set (get-all-marked-decomposition (trail S)) and
   S-lvl: backtrack-lvl S = get-maximum-level (trail S) (D + \{\#L\#\}) and
   S-confl: conflicting S = Some (D + \{\#L\#\}) and
   undef: undefined-lit M1 L and
    T: T \sim (cons\text{-trail} (Propagated L (D+\{\#L\#\}))
                 (reduce-trail-to M1
                    (add\text{-}learned\text{-}cls\ (D + \{\#L\#\})
                       (update-backtrack-lvl i
```

```
(update\text{-}conflicting\ None\ S))))) and
   confl: \forall T. conflicting S = Some \ T \longrightarrow trail \ S \models as \ CNot \ T
 shows atms-of D \subseteq atm-of 'lits-of (tl (trail T))
proof (rule ccontr)
 let ?k = get\text{-}maximum\text{-}level (trail S) (D + {\#L\#})
 have trail S \models as \ CNot \ D using confl S-confl by auto
  then have vars-of-D: atms-of D \subseteq atm-of 'lits-of (trail S) unfolding atms-of-def
   by (meson image-subsetI mem-set-mset-iff true-annots-CNot-all-atms-defined)
 obtain M0 where M: trail S = M0 @ M2 @ Marked K (Suc i) \# M1
   using decomp by auto
 have max: get-maximum-level (trail S) (D + \{\#L\#\})
   = length (get-all-levels-of-marked (M0 @ M2 @ Marked K (Suc i) \# M1))
   using inv unfolding cdcl<sub>W</sub>-M-level-inv-def S-lvl M by simp
  assume a: \neg ?thesis
  then obtain L' where
   L': L' \in atms\text{-}of D \text{ and }
   L'-notin-M1: L' \notin atm-of ' lits-of M1
   using T undef decomp inv by (auto simp: cdcl_W-M-level-inv-decomp)
  then have L'-in: L' \in atm-of 'lits-of (M0 @ M2 @ Marked K (i + 1) # [])
   using vars-of-D unfolding M by force
  then obtain L'' where
   L^{\prime\prime} \in \# D \text{ and }
   L^{\prime\prime}: L^{\prime}= atm-of L^{\prime\prime}
   using L'L'-notin-M1 unfolding atms-of-def by auto
 have lev-L'':
   get-level (trail S) L'' = get-rev-level (Marked K (Suc i) \# rev M2 @ rev M0) (Suc i) L''
   using L'-notin-M1 L'' M by (auto simp del: qet-rev-level.simps)
  have qet-all-levels-of-marked (trail\ S) = rev\ [1..<1+?k]
   using inv S-lvl unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
  then have get-all-levels-of-marked (M0 @ M2)
   = rev \left[ Suc \left( Suc i \right) ... < Suc \left( get\text{-}maximum\text{-}level \left( trail S \right) \left( D + \left\{ \#L\# \right\} \right) \right) \right]
   unfolding M by (auto simp:rev-swap[symmetric] dest!: append-cons-eq-upt-length-i-end)
  then have M: qet-all-levels-of-marked M0 @ qet-all-levels-of-marked M2
   = rev \left[ Suc \left( Suc \, i \right) ... < Suc \left( length \left( get-all-levels-of-marked \left( M0 @ M2 @ Marked K \left( Suc \, i \right) \# M1 \right) \right) \right]
   unfolding max unfolding M by simp
 have get-rev-level (Marked K (Suc i) \# rev (M0 @ M2)) (Suc i) L''
   \geq Min \ (set \ ((Suc \ i) \ \# \ get-all-levels-of-marked \ (Marked \ K \ (Suc \ i) \ \# \ rev \ (M0 \ @ M2))))
   using get-rev-level-ge-min-get-all-levels-of-marked of L''
     rev (M0 @ M2 @ [Marked K (Suc i)]) Suc i] L'-in
   unfolding L'' by (fastforce simp add: lits-of-def)
  also have Min (set ((Suc i) # get-all-levels-of-marked (Marked K (Suc i) # rev (M0 @ M2))))
   = Min (set ((Suc \ i) \# get-all-levels-of-marked (rev (M0 @ M2))))  by auto
  also have ... = Min (set ((Suc i) # get-all-levels-of-marked M0 @ get-all-levels-of-marked M2))
   by (simp add: Un-commute)
 also have ... = Min (set ((Suc i) \# [Suc (Suc i)... < 2 + length (get-all-levels-of-marked M0))
   + (length (get-all-levels-of-marked M2) + length (get-all-levels-of-marked M1))]))
   unfolding M by (auto simp add: Un-commute)
  also have ... = Suc\ i by (auto\ intro:\ Min-eqI)
 finally have get-rev-level (Marked K (Suc i) # rev (M0 @ M2)) (Suc i) L'' \geq Suc i.
  then have get-level (trail S) L'' \ge i + 1
   using lev-L'' by simp
```

```
then have get-maximum-level (trail S) D \ge i + 1
   using get-maximum-level-ge-get-level [OF \langle L'' \in \# D \rangle, of trail S] by auto
 then show False using i by auto
qed
lemma distinct-atms-of-incl-not-in-other:
 assumes
   a1: no-dup (M @ M') and a2:
   atms-of D \subseteq atm-of ' lits-of M'
 shows \forall x \in atms\text{-}of D. x \notin atm\text{-}of 'lits\text{-}of M
proof -
  \{ \mathbf{fix} \ aa :: 'a \}
   have ff1: \bigwedge l ms. undefined-lit ms l \vee atm-of l
     \in set (map (\lambda m. atm-of (lit-of (m:('a, 'b, 'c) ann-literal))) ms)
     by (simp add: defined-lit-map)
   have ff2: \bigwedge a. a \notin atms-of D \lor a \in atm-of `lits-of M'
     using a2 by (meson subsetCE)
   have ff3: \bigwedge a. \ a \notin set \ (map \ (\lambda m. \ atm-of \ (lit-of \ m)) \ M')
     \vee a \notin set (map (\lambda m. atm-of (lit-of m)) M)
     using a1 by (metis (lifting) IntI distinct-append empty-iff map-append)
   have \forall L \ a \ f. \ \exists \ l. \ ((a::'a) \notin f \ `L \lor (l::'a \ literal) \in L) \land (a \notin f \ `L \lor f \ l = a)
   then have aa \notin atms\text{-}of D \lor aa \notin atm\text{-}of ' lits\text{-}of M
     using ff3 ff2 ff1 by (metis (no-types) Marked-Propagated-in-iff-in-lits-of) }
  then show ?thesis
   by blast
qed
lemma cdcl_W-propagate-is-conclusion:
 assumes
   cdcl_W S S' and
   inv: cdcl_W-M-level-inv S and
   decomp: all-decomposition-implies-m (init-clss S) (get-all-marked-decomposition (trail S)) and
   learned: cdcl_W-learned-clause S and
   confl: \forall T. conflicting S = Some \ T \longrightarrow trail \ S \models as \ CNot \ T and
   alien: no-strange-atm S
 shows all-decomposition-implies-m (init-clss S') (qet-all-marked-decomposition (trail S'))
 using assms(1,2)
proof (induct\ rule:\ cdcl_W-all-induct-lev2)
 case restart
 then show ?case by auto
next
  case forget
 then show ?case using decomp by auto
next
 case conflict
 then show ?case using decomp by auto
 case (resolve L C M D) note tr = this(1) and T = this(4)
 let ?decomp = qet-all-marked-decomposition M
 have M: set ?decomp = insert (hd ?decomp) (set (tl ?decomp))
   by (cases ?decomp) auto
 show ?case
   using decomp tr T unfolding all-decomposition-implies-def
   by (cases hd (get-all-marked-decomposition M))
```

```
(auto\ simp:\ M)
next
 case (skip\ L\ C'\ M\ D) note tr=this(1) and T=this(5)
 have M: set (get-all-marked-decomposition M)
   = insert (hd (qet-all-marked-decomposition M)) (set (tl (qet-all-marked-decomposition M)))
   by (cases get-all-marked-decomposition M) auto
 show ?case
   using decomp tr T unfolding all-decomposition-implies-def
   by (cases\ hd\ (get-all-marked-decomposition\ M))
      (auto simp add: M)
next
  case decide note S = this(1) and undef = this(2) and T = this(4)
 show ?case using decomp T undef unfolding S all-decomposition-implies-def by auto
 case (propagate C L T) note propa = this(2) and undef = this(3) and T = this(5)
 obtain a y where ay: hd (get-all-marked-decomposition (trail S)) = (a, y)
   by (cases hd (qet-all-marked-decomposition (trail S)))
  then have M: trail\ S = y @ a using qet-all-marked-decomposition-decomp by blast
  have M': set (get-all-marked-decomposition (trail S))
   =insert\ (a,\ y)\ (set\ (tl\ (get-all-marked-decomposition\ (trail\ S))))
   using ay by (cases get-all-marked-decomposition (trail S)) auto
  have unmark \ a \cup set\text{-}mset \ (init\text{-}clss \ S) \models ps \ unmark \ y
   using decomp ay unfolding all-decomposition-implies-def
   by (cases get-all-marked-decomposition (trail S)) fastforce+
  then have a-Un-N-M: unmark a \cup set-mset (init-clss S)
   \models ps \ unmark \ (trail \ S)
   unfolding M by (auto simp add: all-in-true-clss-clss image-Un)
 have unmark a \cup set\text{-mset} (init-clss S) \models p \{\#L\#\} (is ?I \models p -)
   proof (rule true-clss-cls-plus-CNot)
     show ?I \models p C + \{\#L\#\}
       using propa propagate.prems learned confl unfolding M
      by (metis\ Un-iff\ cdcl_W\ -learned\ -clause\ -def\ clauses\ -def\ mem\ -set\ -mset\ -iff\ propagate\ .hyps(1)
        set\text{-}mset\text{-}union\ true\text{-}clss\text{-}cls\text{-}in\text{-}imp\text{-}true\text{-}clss\text{-}cls\ true\text{-}clss\text{-}cs\text{-}mono\text{-}l2
        union-trus-clss-clss)
   next
     have (\lambda m. \{\#lit\text{-}of m\#\}) 'set (trail S) \models ps \ CNot \ C
       using \langle (trail\ S) \models as\ CNot\ C \rangle\ true-annots-true-clss-clss\ by\ blast
     then show ?I \models ps \ CNot \ C
       using a-Un-N-M true-clss-clss-left-right true-clss-clss-union-l-r by blast
   qed
  moreover have \bigwedge aa\ b.
     \forall (Ls, seen) \in set (get-all-marked-decomposition (y @ a)).
       unmark\ Ls \cup set\text{-}mset\ (init\text{-}clss\ S) \models ps\ unmark\ seen
   \implies (aa, b) \in set (tl (get-all-marked-decomposition <math>(y @ a)))
   \implies unmark \ aa \cup set\text{-}mset \ (init\text{-}clss \ S) \models ps \ unmark \ b
   by (metis (no-types, lifting) case-prod-conv get-all-marked-decomposition-never-empty-sym
     list.collapse\ list.set-intros(2))
  ultimately show ?case
   using decomp T undef unfolding ay all-decomposition-implies-def
   ay by auto
next
 case (backtrack K i M1 M2 L D T) note decomp' = this(1) and lev-L = this(2) and conf = this(3)
```

```
and
   undef = this(6) and T = this(7)
 have \forall l \in set M2. \neg is\text{-}marked l
   using get-all-marked-decomposition-snd-not-marked backtrack.hyps(1) by blast
 obtain M0 where M: trail S = M0 @ M2 @ Marked K (i + 1) \# M1
   using decomp' by auto
 show ?case unfolding all-decomposition-implies-def
   proof
     \mathbf{fix} \ x
     assume x \in set (get-all-marked-decomposition (trail T))
     then have x: x \in set (get-all-marked-decomposition (Propagated L ((D + {\#L\#})) \# M1))
      using T decomp' undef inv by (simp add: cdcl_W-M-level-inv-decomp)
     let ?m = get-all-marked-decomposition (Propagated L ((D + {\#L\#})) \# M1)
     let ?hd = hd ?m
     let ?tl = tl ?m
     have x = ?hd \lor x \in set ?tl
      using x by (cases ?m) auto
     moreover {
      assume x \in set ?tl
      then have x \in set (get-all-marked-decomposition (trail S))
        using tl-get-all-marked-decomposition-skip-some[of x] by (simp \ add: \ list.set-sel(2) \ M)
      then have case x of (Ls, seen) \Rightarrow unmark Ls
             \cup set-mset (init-clss (T))
             \models ps \ unmark \ seen
        using decomp learned decomp confl alien inv T undef M
        unfolding all-decomposition-implies-def cdcl<sub>W</sub>-M-level-inv-def
        by auto
     }
     moreover {
      assume x = ?hd
      obtain M1' M1" where M1: hd (get-all-marked-decomposition M1) = (M1', M1")
        by (cases hd (get-all-marked-decomposition M1))
      then have x': x = (M1', Propagated L ((D + {\#L\#})) \# M1'')
        using \langle x = ?hd \rangle by auto
      have (M1', M1'') \in set (get-all-marked-decomposition (trail S))
        using M1[symmetric] hd-qet-all-marked-decomposition-skip-some[OF M1[symmetric],
          of M0 @ M2 - i + 1 unfolding M by fastforce
      then have 1: unmark M1' \cup set-mset (init-clss S)
        \models ps \ unmark \ M1''
        using decomp unfolding all-decomposition-implies-def by auto
        have trail S \models as \ CNot \ D using conf confl by auto
        then have vars-of-D: atms-of D \subseteq atm-of 'lits-of (trail S)
          unfolding atms-of-def
          by (meson image-subset mem-set-mset-iff true-annots-CNot-all-atms-defined)
        have vars-of-D: atms-of D \subseteq atm-of ' lits-of M1
          using backtrack-atms-of-D-in-M1 of S M1 L D i K M2 T backtrack inv conf confl
         by (auto simp: cdcl_W-M-level-inv-decomp)
        have no-dup (trail S) using inv by (auto simp: cdcl<sub>W</sub>-M-level-inv-decomp)
        then have vars-in-M1:
         \forall x \in atms\text{-}of D. \ x \notin atm\text{-}of \ 'lits\text{-}of \ (M0 @ M2 @ Marked K \ (i+1) \# [])
          using vars-of-D distinct-atms-of-incl-not-in-other of M0 @M2 @ Marked K (i + 1) \# [
           M1
          unfolding M by auto
        have M1 \models as \ CNot \ D
```

```
using vars-in-M1 true-annots-remove-if-notin-vars[of M0 @ M2 @ Marked K <math>(i+1) \# []
            M1 \ CNot \ D (trail \ S \models as \ CNot \ D) unfolding M \ lits - of - def by simp
        have M1 = M1'' @ M1' by (simp add: M1 get-all-marked-decomposition-decomp)
        have TT: unmark M1' \cup set\text{-}mset (init\text{-}clss S) \models ps CNot D
          using true-annots-true-clss-cls[OF \land M1 \models as \ CNot \ D] true-clss-clss-left-right[OF \ 1,
            of CNot D unfolding \langle M1 = M1'' \otimes M1' \rangle by (auto simp add: inf-sup-aci(5,7))
        have init-clss S \models pm D + \{\#L\#\}
          using conf learned cdcl_W-learned-clause-def confl by blast
        then have T': unmark M1' \cup set-mset (init-clss S) \models p D + \{\#L\#\} by auto
        have atms-of (D + \{\#L\#\}) \subseteq atms-of-msu (clauses S)
          using alien conf unfolding no-strange-atm-def clauses-def by auto
        then have unmark M1' \cup set-mset (init-clss S) \models p \{\#L\#\}
          using true-clss-cls-plus-CNot[OF T' TT] by auto
       ultimately
        have case x of (Ls, seen) \Rightarrow unmark Ls
          \cup set-mset (init-clss T)
          \models ps \ unmark \ seen \ using \ T' \ T \ decomp' \ undef \ inv \ unfolding \ x'
          by (simp add: cdcl_W-M-level-inv-decomp)
     ultimately show case x of (Ls, seen) \Rightarrow unmark Ls \cup set-mset (init-clss T)
       \models ps \ unmark \ seen \ \mathbf{using} \ T \ \mathbf{by} \ auto
   qed
\mathbf{qed}
lemma cdcl_W-propagate-is-false:
 assumes
   cdcl_W S S' and
   lev: cdcl_W-M-level-inv S and
   learned: cdcl_W-learned-clause S and
   decomp: all-decomposition-implies-m (init-clss S) (get-all-marked-decomposition (trail S)) and
   confl: \forall T. conflicting S = Some \ T \longrightarrow trail \ S \models as \ CNot \ T and
   alien: no-strange-atm S and
   mark-confl: every-mark-is-a-conflict S
 shows every-mark-is-a-conflict S'
 using assms(1,2)
proof (induct rule: cdcl_W-all-induct-lev2)
 case (propagate CLT) note undef = this(3) and T = this(5)
 show ?case
   proof (intro allI impI)
     fix L' mark a b
     assume a @ Propagated L' mark \# b = trail T
     then have (a=[] \land L=L' \land mark=C+\{\#L\#\} \land b=trail\ S)
       \vee tl a @ Propagated L' mark # b = trail S
       using T undef by (cases a) fastforce+
     moreover {
       assume tl\ a\ @\ Propagated\ L'\ mark\ \#\ b=trail\ S
       then have b \models as \ CNot \ (mark - \{\#L'\#\}) \land L' \in \# mark
        using mark-confl by auto
     }
     moreover {
      assume a=[] and L=L' and mark=C+\{\#L\#\} and b=trail\ S
       then have b \models as \ CNot \ (mark - \{\#L\#\}) \land L \in \# \ mark
        using \langle trail \ S \models as \ CNot \ C \rangle by auto
     ultimately show b \models as \ CNot \ (mark - \{\#L'\#\}) \land L' \in \# \ mark \ by \ blast
```

```
qed
next
 case (decide L) note undef[simp] = this(2) and T = this(4)
 have \bigwedge a \ La \ mark \ b. a \ @ \ Propagated \ La \ mark \ \# \ b = Marked \ L \ (backtrack-lvl \ S+1) \ \# \ trail \ S
   \implies tl a @ Propagated La mark # b = trail S by (case-tac a, auto)
 then show ?case using mark-conft T unfolding decide.hyps(1) by fastforce
next
 case (skip\ L\ C'\ M\ D\ T) note tr=this(1) and T=this(5)
 show ?case
   proof (intro allI impI)
     fix L' mark a b
     assume a @ Propagated L' mark \# b = trail T
     then have a @ Propagated L' mark \# b = M using tr T by simp
     then have (Propagated L C' # a) @ Propagated L' mark # b = Propagated L C' # M by auto
     moreover have \forall La \ mark \ a \ b. \ a @ Propagated \ La \ mark \ \# \ b = Propagated \ L \ C' \ \# \ M
       \longrightarrow b \models as \ CNot \ (mark - \{\#La\#\}) \land La \in \# mark
      using mark-confl unfolding skip.hyps(1) by simp
     ultimately show b \models as \ CNot \ (mark - \{\#L'\#\}) \land L' \in \# \ mark \ by \ blast
   qed
next
 case (conflict D)
 then show ?case using mark-confl by simp
next
 case (resolve L C M D T) note tr-S = this(1) and T = this(4)
 show ?case unfolding resolve.hyps(1)
   proof (intro allI impI)
     fix L' mark a b
     assume a @ Propagated L' mark \# b = trail T
     then have Propagated L ( (C + \{\#L\#\})) \# M
      = (Propagated\ L\ (\ (C + \{\#L\#\}))\ \#\ a)\ @\ Propagated\ L'\ mark\ \#\ b
      using T tr-S by auto
     then show b \models as \ CNot \ (mark - \{\#L'\#\}) \land L' \in \# \ mark
      using mark-confl unfolding resolve.hyps(1) by presburger
   qed
\mathbf{next}
 case restart
 then show ?case by auto
next
 case forget
 then show ?case using mark-confl by auto
 case (backtrack K i M1 M2 L D T) note decomp = this(1) and conf = this(3) and undef = this(6)
and
   T = this(7)
 have \forall l \in set M2. \neg is\text{-}marked l
   using get-all-marked-decomposition-snd-not-marked backtrack.hyps(1) by blast
 obtain M0 where M: trail S = M0 @ M2 @ Marked K (i + 1) \# M1
   using backtrack.hyps(1) by auto
 have [simp]: trail (reduce-trail-to M1 (add-learned-cls (D + {#L#}))
   (update-backtrack-lvl \ i \ (update-conflicting \ None \ S)))) = M1
   using decomp lev by (auto simp: cdcl_W-M-level-inv-decomp)
 show ?case
   proof (intro allI impI)
     fix La mark a b
     assume a @ Propagated La mark \# b = trail T
```

```
then have (a = [] \land Propagated\ La\ mark = Propagated\ L\ (D + \{\#L\#\}) \land b = M1)
      \vee tl a @ Propagated La mark # b = M1
      using M T decomp undef by (cases a) (auto)
     moreover {
      assume A: a = [] and
        P: Propagated La mark = Propagated L ( (D + \{\#L\#\})) and
      have trail S \models as \ CNot \ D using conf confl by auto
      then have vars-of-D: atms-of D \subseteq atm-of 'lits-of (trail S)
        unfolding atms-of-def
        by (meson image-subset mem-set-mset-iff true-annots-CNot-all-atms-defined)
      have vars-of-D: atms-of D \subseteq atm-of 'lits-of M1
        using backtrack-atms-of-D-in-M1 [of S M1 L D i K M2 T] T backtrack lev confl by auto
      have no-dup (trail S) using lev by (auto simp: cdcl_W-M-level-inv-decomp)
      then have vars-in-M1: \forall x \in atms-of D. x \notin
        atm-of ' lits-of (M0 @ M2 @ Marked K (i + 1) # [])
        using vars-of-D distinct-atms-of-incl-not-in-other of M0 @ M2 @ Marked K (i + 1) \# [
          M1] unfolding M by auto
      have M1 \models as \ CNot \ D
        using vars-in-M1 true-annots-remove-if-notin-vars[of M0 @ M2 @ Marked K (i + 1) \# [] M1
          then have b \models as \ CNot \ (mark - \{\#La\#\}) \land La \in \# mark
        using P b by auto
     moreover {
      assume tl\ a\ @\ Propagated\ La\ mark\ \#\ b=M1
      then obtain c' where c' @ Propagated La mark \# b = trail S unfolding M by auto
      then have b \models as \ CNot \ (mark - \{\#La\#\}) \land La \in \# \ mark
        using mark-confl by blast
     ultimately show b \models as \ CNot \ (mark - \{\#La\#\}) \land La \in \# \ mark \ by \ fast
   qed
qed
lemma cdcl_W-conflicting-is-false:
 assumes
   cdcl_W S S' and
   M-lev: cdcl_W-M-level-inv S and
   confl-inv: \forall T. \ conflicting \ S = Some \ T \longrightarrow trail \ S \models as \ CNot \ T \ and
   marked-confl: \forall L \text{ mark } a \text{ b. } a @ Propagated L \text{ mark } \# b = (trail S)
      \longrightarrow (b \models as \ CNot \ (mark - \{\#L\#\}) \land L \in \# \ mark) \ \mathbf{and}
     dist: distinct-cdcl_W-state S
 shows \forall T. conflicting S' = Some \ T \longrightarrow trail \ S' \models as \ CNot \ T
 using assms(1,2)
proof (induct\ rule:\ cdcl_W-all-induct-lev2)
 case (skip\ L\ C'\ M\ D) note tr\text{-}S = this(1) and T = this(5)
 then have Propagated L C' \# M \models as CNot D using assms skip by auto
 moreover
   have L \notin \# D
     proof (rule ccontr)
      assume ¬ ?thesis
      then have -L \in lits-of M
        using in-CNot-implies-uminus(2)[of D L Propagated L C' # M]
        \langle Propagated \ L \ C' \# M \models as \ CNot \ D \rangle \ \mathbf{by} \ simp
      then show False
```

```
by (metis\ M-lev\ cdcl_W\ -M-level-inv-decomp(1)\ consistent-interp-def\ insert-iff
          lits-of-cons ann-literal.sel(2) skip.hyps(1))
     qed
  ultimately show ?case
   using skip.hyps(1-3) true-annots-CNot-lit-of-notin-skip T unfolding cdcl_W-M-level-inv-def
    by fastforce
next
 case (resolve L C M D T) note tr = this(1) and confl = this(2) and T = this(4)
 show ?case
   proof (intro allI impI)
     fix T'
     have tl\ (trail\ S) \models as\ CNot\ C\ using\ tr\ assms(4)\ by\ fastforce
     moreover
      have distinct-mset (D + \{\#-L\#\}) using confl dist
        unfolding distinct-cdcl_W-state-def by auto
      then have -L \notin \# D unfolding distinct-mset-def by auto
      have M \models as \ CNot \ D
        proof -
          have Propagated L ( (C + \{\#L\#\})) \# M \modelsas CNot D \cup CNot \{\#-L\#\}
            using confl tr confl-inv by force
          then show ?thesis
            using M-lev \langle -L \notin \# D \rangle tr true-annots-lit-of-notin-skip
            unfolding cdcl_W-M-level-inv-def by force
        qed
     moreover assume conflicting T = Some T'
     ultimately
      show trail T \models as CNot T'
      using tr T by auto
qed (auto simp: assms(2) cdcl_W-M-level-inv-decomp)
lemma cdcl_W-conflicting-decomp:
 assumes cdcl_W-conflicting S
 shows \forall T. conflicting S = Some \ T \longrightarrow trail \ S \models as \ CNot \ T
 and \forall L \ mark \ a \ b. \ a @ Propagated \ L \ mark \ \# \ b = (trail \ S)
    \longrightarrow (b \models as \ CNot \ (mark - \{\#L\#\}) \land L \in \# \ mark)
 using assms unfolding cdcl<sub>W</sub>-conflicting-def by blast+
lemma cdcl_W-conflicting-decomp2:
 assumes cdcl_W-conflicting S and conflicting <math>S = Some \ T
 shows trail S \models as \ CNot \ T
 using assms unfolding cdcl<sub>W</sub>-conflicting-def by blast+
lemma cdcl_W-conflicting-decomp2':
 assumes
   cdcl_W-conflicting S and
   conflicting S = Some D
 shows trail S \models as CNot D
 using assms unfolding cdcl_W-conflicting-def by auto
lemma cdcl_W-conflicting-S0-cdcl_W[simp]:
  cdcl_W-conflicting (init-state N)
 unfolding cdcl_W-conflicting-def by auto
```

5.4.9 Putting all the invariants together

```
lemma cdcl_W-all-inv:
 assumes cdcl_W: cdcl_W S S' and
 1: all-decomposition-implies-m (init-clss S) (get-all-marked-decomposition (trail S)) and
 2: cdcl_W-learned-clause S and
 4: cdcl_W-M-level-inv S and
 5: no\text{-}strange\text{-}atm \ S \ \mathbf{and}
 7: distinct\text{-}cdcl_W\text{-}state\ S and
 8: cdcl_W-conflicting S
 shows all-decomposition-implies-m (init-clss S') (qet-all-marked-decomposition (trail S'))
 and cdcl_W-learned-clause S'
 and cdcl_W-M-level-inv S'
 and no-strange-atm S'
 and distinct-cdcl_W-state S'
 and cdcl_W-conflicting S'
proof -
 show S1: all-decomposition-implies-m (init-clss S') (get-all-marked-decomposition (trail S'))
   using cdcl_W-propagate-is-conclusion[OF cdcl_W 4 1 2 - 5] 8 unfolding cdcl_W-conflicting-def
   by blast
 show S2: cdcl_W-learned-clause S' using cdcl_W-learned-clss[OF \ cdcl_W \ 2 \ 4].
 show S4: cdcl_W-M-level-inv S' using cdcl_W-consistent-inv[OF cdcl_W 4].
 show S5: no-strange-atm S' using cdcl_W-no-strange-atm-inv[OF cdcl_W 5 4].
 show S7: distinct-cdcl_W-state S' using distinct-cdcl_W-state-inv[OF cdcl_W 4 7].
 show S8: cdcl_W-conflicting S'
    \textbf{using} \ \ cdcl_W \ -conflicting \ -is -false [OF \ cdcl_W \ 4 \ - \ - \ 7] \ \ 8 \ \ cdcl_W \ -propagate \ -is -false [OF \ cdcl_W \ 4 \ 2 \ 1 \ - \ 7] 
   unfolding cdcl_W-conflicting-def by fast
qed
lemma rtranclp-cdcl_W-all-inv:
 assumes
   cdcl_W: rtranclp \ cdcl_W \ S \ S' and
   1: all-decomposition-implies-m (init-clss S) (get-all-marked-decomposition (trail S)) and
   2: cdcl_W-learned-clause S and
   4: cdcl_W-M-level-inv S and
   5: no-strange-atm S and
   7: distinct\text{-}cdcl_W\text{-}state\ S and
   8: cdcl_W-conflicting S
 \mathbf{shows}
   all-decomposition-implies-m (init-clss S') (get-all-marked-decomposition (trail S')) and
   cdcl_W-learned-clause S' and
   cdcl_W-M-level-inv S' and
   no-strange-atm S' and
   distinct-cdcl_W-state S' and
   cdcl_W-conflicting S'
  using assms
proof (induct rule: rtranclp-induct)
 case base
   case 1 then show ?case by blast
   case 2 then show ?case by blast
   case 3 then show ?case by blast
   case 4 then show ?case by blast
   case 5 then show ?case by blast
   case 6 then show ?case by blast
next
```

```
case (step S' S'') note H = this
   case 1 with H(3-7)[OF\ this(1-6)] show ?case using cdcl_W-all-inv[OF\ H(2)]
       H by presburger
   case 2 with H(3-7)[OF\ this(1-6)] show ?case using cdcl_W-all-inv[OF\ H(2)]
       H by presburger
   case 3 with H(3-7)[OF\ this(1-6)] show ?case using cdcl_W-all-inv[OF\ H(2)]
       H by presburger
   case 4 with H(3-7)[OF\ this(1-6)] show ?case using cdcl_W-all-inv[OF\ H(2)]
       H by presburger
   case 5 with H(3-7)[OF\ this(1-6)] show ?case using cdcl_W-all-inv[OF\ H(2)]
       H by presburger
   case 6 with H(3-7)[OF\ this(1-6)] show ?case using cdcl_W-all-inv[OF\ H(2)]
       H by presburger
qed
lemma all-invariant-S0-cdcl_W:
 assumes distinct-mset-mset N
 shows all-decomposition-implies-m (init-clss (init-state N))
                               (get-all-marked-decomposition (trail (init-state N)))
 and cdcl_W-learned-clause (init-state N)
 and \forall T. conflicting (init-state N) = Some T \longrightarrow (trail\ (init-state\ N)) \models as\ CNot\ T
 and no-strange-atm (init-state N)
 and consistent-interp (lits-of (trail (init-state N)))
 and \forall L \ mark \ a \ b. \ a \ @ \ Propagated \ L \ mark \ \# \ b = \ trail \ (init\text{-state } N) \longrightarrow
    (b \models as \ CNot \ (mark - \{\#L\#\}) \land L \in \# \ mark)
 and distinct\text{-}cdcl_W\text{-}state\ (init\text{-}state\ N)
 using assms by auto
lemma cdcl_W-only-propagated-vars-unsat:
 assumes
   marked: \forall x \in set \ M. \ \neg \ is\text{-}marked \ x \ \mathbf{and}
   DN: D \in \# \ clauses \ S \ and
   D: M \models as \ CNot \ D \ \mathbf{and}
   inv: all-decomposition-implies-m N (get-all-marked-decomposition M) and
   state: state S = (M, N, U, k, C) and
   learned-cl: cdcl_W-learned-clause S and
   atm-incl: no-strange-atm S
 shows unsatisfiable (set-mset N)
proof (rule ccontr)
 assume \neg unsatisfiable (set-mset N)
  then obtain I where
   I: I \models s \ set\text{-}mset \ N \ \mathbf{and}
   cons: consistent-interp I and
   tot: total\text{-}over\text{-}m \ I \ (set\text{-}mset \ N)
   unfolding satisfiable-def by auto
 have atms-of-msu N \cup atms-of-msu U = atms-of-msu N
   using atm-incl state unfolding total-over-m-def no-strange-atm-def
    by (auto simp add: clauses-def)
  then have total-over-m I (set-mset N) using tot unfolding total-over-m-def by auto
 moreover have N \models psm\ U using learned-cl state unfolding cdcl_W-learned-clause-def by auto
  ultimately have I-D: I \models D
   using I DN cons state unfolding true-clss-def true-clss-def Ball-def
  by (metis Un-iff \langle atms	ext{-}of	ext{-}msu \; N \; \cup \; atms	ext{-}of	ext{-}msu \; U = atms	ext{-}of	ext{-}msu \; N 
angle \; atms	ext{-}of	ext{-}ms	ext{-}union \; clauses	ext{-}def
   mem-set-mset-iff prod.inject set-mset-union total-over-m-def)
```

```
have l0: \{\{\#lit\text{-}of\ L\#\}\ | L.\ is\text{-}marked\ L \land L \in set\ M\} = \{\}\ using\ marked\ by\ auto
  have atms-of-ms (set-mset N \cup unmark M) = atms-of-msu N
   using atm-incl state unfolding no-strange-atm-def by auto
  then have total-over-m I (set-mset N \cup (\lambda a. \{\#lit\text{-of } a\#\})) ' (set M))
   using tot unfolding total-over-m-def by auto
  then have I \models s (\lambda a. \{\#lit\text{-}of a\#\}) ` (set M)
   using all-decomposition-implies-propagated-lits-are-implied [OF inv] cons I
   unfolding true-clss-clss-def l0 by auto
  then have IM: I \models s \ unmark \ M \ by \ auto
   \mathbf{fix} \ K
   assume K \in \# D
   then have -K \in lits\text{-}of M
     using D unfolding true-annots-def Ball-def CNot-def true-annot-def true-cls-def true-lit-def
     Bex-mset-def by (metis (mono-tags, lifting) count-single less-not-reft mem-Collect-eq)
   then have -K \in I using IM true-clss-singleton-lit-of-implies-incl lits-of-def by fastforce
 then have \neg I \models D using cons unfolding true-cls-def true-lit-def consistent-interp-def by auto
 then show False using I-D by blast
qed
We have actually a much stronger theorem, namely all-decomposition-implies ?N (get-all-marked-decomposition
?M) \Longrightarrow ?N \cup \{\{\#lit\text{-}of L\#\} \mid L. \text{ is-marked } L \land L \in set ?M\} \models ps \ unmark ?M, \text{ that show that}
the only choices we made are marked in the formula
lemma
 assumes all-decomposition-implies-m N (get-all-marked-decomposition M)
 and \forall m \in set M. \neg is\text{-}marked m
 shows set-mset N \models ps \ unmark \ M
proof -
 have T: \{\{\#lit\text{-}of\ L\#\}\ | L.\ is\text{-}marked\ L\wedge L\in set\ M\}=\{\}\ using\ assms(2)\ by\ auto
 then show ?thesis
   using all-decomposition-implies-propagated-lits-are-implied [OF assms(1)] unfolding T by simp
lemma conflict-with-false-implies-unsat:
 assumes
   cdcl_W: cdcl_W S S' and
   lev: cdcl_W-M-level-inv S and
   [simp]: conflicting S' = Some \{\#\} and
   learned: cdcl_W-learned-clause S
 shows unsatisfiable (set-mset (init-clss S))
 using assms
proof -
 have cdcl_W-learned-clause S' using cdcl_W-learned-clss cdcl_W learned lev by auto
  then have init-clss S' \models pm \{\#\} using assms(3) unfolding cdcl_W-learned-clause-def by auto
  then have init-clss S \models pm \{\#\}
   using cdcl_W-init-clss[OF\ assms(1)\ lev] by auto
  then show ?thesis unfolding satisfiable-def true-clss-cls-def by auto
\mathbf{lemma}\ conflict\text{-}with\text{-}false\text{-}implies\text{-}terminated:
 assumes cdcl_W S S'
 and conflicting S = Some \{\#\}
```

```
shows False using assms by (induct rule: cdcl<sub>W</sub>-all-induct) auto
```

5.4.10 No tautology is learned

This is a simple consequence of all we have shown previously. It is not strictly necessary, but helps finding a better bound on the number of learned clauses.

```
lemma learned-clss-are-not-tautologies:
  assumes
    cdcl_W S S' and
   lev: cdcl_W-M-level-inv S and
   conflicting: cdcl_W-conflicting S and
   no-tauto: \forall s \in \# learned\text{-}clss S. \neg tautology s
  shows \forall s \in \# learned\text{-}clss S'. \neg tautology s
  using assms
proof (induct rule: cdcl_W-all-induct-lev2)
  case (backtrack K i M1 M2 L D) note confl = this(3)
  have consistent-interp (lits-of (trail S)) using lev by (auto simp: cdcl_W-M-level-inv-decomp)
  moreover
   have trail S \models as \ CNot \ (D + \{\#L\#\})
     using conflicting confl unfolding cdcl_W-conflicting-def by auto
   then have lits-of (trail S) \modelss CNot (D + {#L#}) using true-annots-true-cls by blast
  ultimately have \neg tautology (D + \{\#L\#\}) using consistent-CNot-not-tautology by blast
  then show ?case using backtrack no-tauto
   by (auto simp: cdcl_W-M-level-inv-decomp split: split-if-asm)
next
  case restart
  then show ?case using learned-clss-restart-state state-eq-learned-clss no-tauto
   by (metis (no-types, lifting) ball-msetE ball-msetI mem-set-mset-iff set-mset-mono subsetCE)
ged auto
definition final\text{-}cdcl_W\text{-}state (S:: 'st)
  \longleftrightarrow (trail S \models asm init-clss S
   \vee ((\forall L \in set \ (trail \ S). \ \neg is\text{-}marked \ L) \land
      (\exists C \in \# init\text{-}clss \ S. \ trail \ S \models as \ CNot \ C)))
definition termination-cdcl_W-state (S:: 'st)
   \longleftrightarrow (trail S \models asm init-clss S
    \vee ((\forall L \in atms\text{-}of\text{-}msu \ (init\text{-}clss \ S). \ L \in atm\text{-}of \ (its\text{-}of \ (trail \ S))
       \land (\exists C \in \# init\text{-}clss \ S. \ trail \ S \models as \ CNot \ C)))
        CDCL Strong Completeness
fun mapi :: ('a \Rightarrow nat \Rightarrow 'b) \Rightarrow nat \Rightarrow 'a \ list \Rightarrow 'b \ list where
mapi - - [] = [] |
mapi f n (x \# xs) = f x n \# mapi f (n - 1) xs
lemma mark-not-in-set-mapi[simp]: L \notin set M \Longrightarrow Marked L k \notin set (mapi Marked i M)
  by (induct M arbitrary: i) auto
lemma propagated-not-in-set-mapi[simp]: L \notin set M \Longrightarrow Propagated L k \notin set (mapi Marked i M)
  by (induct M arbitrary: i) auto
lemma image-set-mapi:
 f 'set (mapi\ g\ i\ M) = set\ (mapi\ (\lambda x\ i.\ f\ (g\ x\ i))\ i\ M)
```

```
by (induction M arbitrary: i) auto
lemma mapi-map-convert:
 \forall x \ i \ j. \ f \ x \ i = f \ x \ j \Longrightarrow mapi \ f \ i \ M = map \ (\lambda x. \ f \ x \ 0) \ M
 by (induction M arbitrary: i) auto
lemma defined-lit-mapi: defined-lit (mapi Marked i M) L \longleftrightarrow atm-of L \in atm-of 'set M
 by (induction M) (auto simp: defined-lit-map image-set-mapi mapi-map-convert)
lemma cdcl_W-can-do-step:
 assumes
   consistent-interp (set M) and
   distinct\ M and
   atm\text{-}of \text{ '} (set M) \subseteq atms\text{-}of\text{-}msu N
 shows \exists S. rtranclp \ cdcl_W \ (init\text{-state } N) \ S
   \land state S = (mapi \ Marked \ (length \ M) \ M, \ N, \{\#\}, \ length \ M, \ None)
 using assms
proof (induct M)
 case Nil
 then show ?case by auto
next
 case (Cons\ L\ M) note IH=this(1)
 have consistent-interp (set M) and distinct M and atm-of 'set M \subseteq atms-of-msu N
   using Cons.prems(1-3) unfolding consistent-interp-def by auto
  then obtain S where
   st: cdcl_{W}^{**} (init-state N) S and
   S: state \ S = (mapi \ Marked \ (length \ M) \ M, \ N, \ \{\#\}, \ length \ M, \ None)
   using IH by auto
 let ?S_0 = incr-lvl \ (cons-trail \ (Marked \ L \ (length \ M + 1)) \ S)
 have undefined-lit (mapi Marked (length M) M) L
   using Cons. prems(1,2) unfolding defined-lit-def consistent-interp-def by fastforce
 moreover have init-clss S = N
   using S by blast
 moreover have atm\text{-}of\ L\in atms\text{-}of\text{-}msu\ N\ using\ Cons.prems(3)\ by\ auto
 moreover have undef: undefined-lit (trail S) L
   using S (distinct (L\#M)) (calculation(1)) by (auto simp: defined-lit-map) defined-lit-map)
 ultimately have cdcl_W S ?S<sub>0</sub>
   using cdcl_W.other[OF cdcl_W-o.decide[OF decide-rule]OF S,
     of L ?S_0]] S by (auto simp: state-eq-def simp del: state-simp)
  then show ?case
   using st S undef by (auto intro!: exI[of - ?S_0])
qed
lemma cdcl_W-strong-completeness:
 assumes
   set M \models s set\text{-}mset N  and
   consistent-interp (set M) and
   distinct M and
   atm\text{-}of (set M) \subseteq atms\text{-}of\text{-}msu N
 obtains S where
   state S = (mapi \ Marked \ (length \ M) \ M, \ N, \ \{\#\}, \ length \ M, \ None) and
   rtranclp\ cdcl_W\ (init\text{-}state\ N)\ S\ and
   final-cdcl_W-state S
proof -
 obtain S where
```

```
st: rtranclp\ cdcl_W\ (init\text{-state}\ N)\ S and 
S: state\ S = (mapi\ Marked\ (length\ M)\ M,\ N,\ \{\#\},\ length\ M,\ None)
using cdcl_W\text{-}can\text{-}do\text{-}step[OF\ assms(2-4)] by auto
have lits\text{-}of\ (mapi\ Marked\ (length\ M)\ M) = set\ M
by (induct\ M,\ auto)
then have mapi\ Marked\ (length\ M)\ M \models asm\ N\ using\ assms(1)\ true\text{-}annots\text{-}true\text{-}cls\ by\ metis
then have final\text{-}cdcl_W\text{-}state\ S
using S unfolding final\text{-}cdcl_W\text{-}state\text{-}def\ by\ auto
then show ?thesis\ using\ that\ st\ S\ by\ blast
qed
```

5.6 Higher level strategy

The rules described previously do not lead to a conclusive state. We have to add a strategy.

5.6.1 Definition

```
lemma tranclp-conflict-iff[iff]:
 full1 conflict S S' \longleftrightarrow conflict S S'
proof -
 have trancly conflict S S' \Longrightarrow conflict S S'
   unfolding full1-def by (induct rule: tranclp.induct) force+
 then have tranclp conflict S S' \Longrightarrow conflict S S' by (meson rtranclpD)
 then show ?thesis unfolding full1-def by (metis conflictE option.simps(3)
    conflicting-update-conflicting state-eq-conflicting tranclp.intros(1))
qed
inductive cdcl_W-cp :: 'st \Rightarrow 'st \Rightarrow bool where
conflict'[intro]: conflict \ S \ S' \Longrightarrow cdcl_W - cp \ S \ S' \mid
propagate': propagate \ S \ S' \Longrightarrow cdcl_W - cp \ S \ S'
lemma rtranclp-cdcl_W-cp-rtranclp-cdcl_W:
  cdcl_W - cp^{**} S T \Longrightarrow cdcl_W^{**} S T
 by (induction rule: rtranclp-induct) (auto simp: cdcl_W-cp.simps dest: cdcl_W.intros)
lemma cdcl_W-cp-state-eq-compatible:
 assumes
   cdcl_W-cp S T and
   S \sim S' and
    T \sim T'
 shows cdcl_W-cp S' T'
 using assms
 apply (induction)
   using conflict-state-eq-compatible apply auto[1]
 using propagate' propagate-state-eq-compatible by auto
lemma tranclp-cdcl_W-cp-state-eq-compatible:
 assumes
   cdcl_W-cp^{++} S T and
   S \sim S' and
   T \sim T'
 shows cdcl_W-cp^{++} S' T'
 using assms
proof induction
 case base
```

```
then show ?case
   using cdcl_W-cp-state-eq-compatible by blast
next
 case (step \ U \ V)
 obtain ss :: 'st where
   cdcl_W-cp S ss \wedge cdcl_W-cp^{**} ss U
   by (metis\ (no\text{-}types)\ step(1)\ tranclpD)
 then show ?case
   by (meson\ cdcl_W\text{-}cp\text{-}state\text{-}eq\text{-}compatible\ rtranclp.rtrancl-into\text{-}rtrancl\ rtranclp-into\text{-}tranclp2
     state-eq-ref step(2) step(4) step(5)
qed
lemma option-full-cdcl_W-cp:
  conflicting S \neq None \Longrightarrow full \ cdcl_W - cp \ S \ S
unfolding full-def rtranclp-unfold tranclp-unfold by (auto simp add: cdcl<sub>W</sub>-cp.simps)
lemma skip-unique:
  skip \ S \ T \Longrightarrow skip \ S \ T' \Longrightarrow T \sim T'
 by (fastforce simp: state-eq-def simp del: state-simp)
lemma resolve-unique:
  \mathit{resolve}\ S\ T \Longrightarrow \mathit{resolve}\ S\ T' \Longrightarrow \ T \sim\ T'
 by (fastforce simp: state-eq-def simp del: state-simp)
lemma cdcl_W-cp-no-more-clauses:
 assumes cdcl_W-cp S S'
 shows clauses S = clauses S'
 using assms by (induct rule: cdcl_W-cp.induct) (auto elim!: conflictE propagateE)
lemma tranclp-cdcl_W-cp-no-more-clauses:
 assumes cdcl_W-cp^{++} S S'
 shows clauses S = clauses S'
 using assms by (induct rule: tranclp.induct) (auto dest: cdcl_W-cp-no-more-clauses)
lemma rtranclp-cdcl_W-cp-no-more-clauses:
 assumes cdcl_W-cp^{**} S S'
 shows clauses S = clauses S'
 using assms by (induct rule: rtranclp-induct) (fastforce dest: cdcl<sub>W</sub>-cp-no-more-clauses)+
lemma no-conflict-after-conflict:
  conflict \ S \ T \Longrightarrow \neg conflict \ T \ U
 by fastforce
lemma no-propagate-after-conflict:
  conflict \ S \ T \Longrightarrow \neg propagate \ T \ U
 by fastforce
lemma tranclp-cdcl_W-cp-propagate-with-conflict-or-not:
 assumes cdcl_W-cp^{++} S U
 shows (propagate^{++} S U \land conflicting U = None)
   \vee (\exists T D. propagate^{**} S T \wedge conflict T U \wedge conflicting U = Some D)
proof -
 have propagate^{++} S U \vee (\exists T. propagate^{**} S T \wedge conflict T U)
   using assms by induction
   (force\ simp:\ cdcl_W\text{-}cp.simps\ tranclp-into-rtranclp\ dest:\ no-conflict-after-conflict
```

```
no-propagate-after-conflict)+
 moreover
   have propagate^{++} S U \Longrightarrow conflicting U = None
     unfolding translp-unfold-end by auto
   have \bigwedge T. conflict T \ U \Longrightarrow \exists D. conflicting U = Some \ D
     by auto
 ultimately show ?thesis by meson
lemma cdcl_W-cp-conflicting-not-empty[simp]: conflicting S = Some D \implies \neg cdcl_W-cp S S'
proof
 assume cdcl_W-cp \ S \ S' and conflicting \ S = Some \ D
 then show False by (induct rule: cdcl_W-cp.induct) auto
qed
lemma no-step-cdcl_W-cp-no-conflict-no-propagate:
 assumes no-step cdcl_W-cp S
 shows no-step conflict S and no-step propagate S
 using assms conflict' apply blast
 by (meson assms conflict' propagate')
CDCL with the reasonable strategy: we fully propagate the conflict and propagate, then we
apply any other possible rule cdcl_W-o S S' and re-apply conflict and propagate full cdcl_W-cp
S'S''
inductive cdcl_W-stgy :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
conflict': full1 \ cdcl_W - cp \ S \ S' \Longrightarrow cdcl_W - stgy \ S \ S'
\textit{other': } \textit{cdcl}_{W}\textit{-o} \textit{ S S'} \implies \textit{no-step } \textit{cdcl}_{W}\textit{-cp } \textit{ S} \implies \textit{full } \textit{cdcl}_{W}\textit{-cp } \textit{ S' S''} \implies \textit{cdcl}_{W}\textit{-stay } \textit{ S S''}
5.6.2
        Invariants
These are the same invariants as before, but lifted
lemma cdcl_W-cp-learned-clause-inv:
 assumes cdcl_W-cp S S'
 shows learned-clss S = learned-clss S'
 using assms by (induct rule: cdcl<sub>W</sub>-cp.induct) fastforce+
lemma rtranclp-cdcl_W-cp-learned-clause-inv:
 assumes cdcl_W-cp^{**} S S'
 shows learned-clss S = learned-clss S'
 using assms by (induct rule: rtranclp-induct) (fastforce dest: cdcl<sub>W</sub>-cp-learned-clause-inv)+
lemma tranclp-cdcl_W-cp-learned-clause-inv:
 assumes cdcl_W-cp^{++} S S'
 shows learned-clss S = learned-clss S'
 using assms by (simp add: rtranclp-cdcl_W-cp-learned-clause-inv tranclp-into-rtranclp)
lemma cdcl_W-cp-backtrack-lvl:
 assumes cdcl_W-cp S S'
 shows backtrack-lvl S = backtrack-lvl S'
 using assms by (induct rule: cdcl_W-cp.induct) fastforce+
lemma rtranclp-cdcl_W-cp-backtrack-lvl:
 assumes cdcl_W-cp^{**} S S'
 shows backtrack-lvl S = backtrack-lvl S'
```

```
lemma cdcl_W-cp-consistent-inv:
 assumes cdcl_W-cp S S'
 and cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms
proof (induct rule: cdcl_W-cp.induct)
 case (conflict')
 then show ?case using cdcl_W-consistent-inv cdcl_W.conflict by blast
next
 case (propagate' S S')
 have cdcl_W S S'
   using propagate'.hyps(1) propagate by blast
 then show cdcl_W-M-level-inv S'
   using propagate'.prems(1) cdcl_W-consistent-inv propagate by blast
qed
lemma full1-cdcl_W-cp-consistent-inv:
 assumes full1 cdcl_W-cp S S'
 and cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms unfolding full1-def
proof -
 have cdcl_W-cp^{++} S S' and cdcl_W-M-level-inv S using assms unfolding full1-def by auto
 then show ?thesis by (induct rule: tranclp.induct) (blast intro: cdcl<sub>W</sub>-cp-consistent-inv)+
qed
lemma rtranclp-cdcl_W-cp-consistent-inv:
 assumes rtranclp\ cdcl_W-cp\ S\ S'
 and cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms unfolding full1-def
 by (induction rule: rtranclp-induct) (blast intro: cdcl_W-cp-consistent-inv)+
lemma cdcl_W-stgy-consistent-inv:
 assumes cdcl_W-stqy SS'
 and cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms apply (induct rule: cdcl_W-stgy.induct)
 unfolding full-unfold by (blast intro: cdcl_W-consistent-inv full1-cdcl_W-cp-consistent-inv
   cdcl_W.other)+
lemma rtranclp-cdcl_W-stgy-consistent-inv:
 assumes cdcl_W-stgy^{**} S S'
 and cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms by induction (auto dest!: cdcl_W-stgy-consistent-inv)
lemma cdcl_W-cp-no-more-init-clss:
 assumes cdcl_W-cp S S'
 shows init-clss S = init-clss S'
 using assms by (induct rule: cdcl_W-cp.induct) auto
lemma tranclp-cdcl_W-cp-no-more-init-clss:
```

using assms by (induct rule: rtranclp-induct) (fastforce dest: cdcl_W-cp-backtrack-lvl)+

```
assumes cdcl_W-cp^{++} S S'
 shows init-clss S = init-clss S'
  using assms by (induct rule: tranclp.induct) (auto dest: cdcl_W-cp-no-more-init-clss)
lemma cdcl_W-stgy-no-more-init-clss:
  assumes cdcl_W-stgy S S' and cdcl_W-M-level-inv S
 shows init-clss S = init-clss S'
 using assms
 apply (induct rule: cdcl_W-stgy.induct)
  unfolding full1-def full-def apply (blast dest: tranclp-cdcl<sub>W</sub>-cp-no-more-init-clss
   tranclp-cdcl_W-o-no-more-init-clss)
 by (metis\ cdcl_W-o-no-more-init-clss rtranclp-unfold tranclp-cdcl_W-cp-no-more-init-clss)
lemma rtranclp-cdcl_W-stgy-no-more-init-clss:
  assumes cdcl_W-stgy^{**} S S' and cdcl_W-M-level-inv S
 shows init-clss S = init-clss S'
 using assms
 apply (induct rule: rtranclp-induct, simp)
 using cdcl_W-stqy-no-more-init-clss by (simp add: rtrancl_P-cdcl<sub>W</sub>-stqy-consistent-inv)
lemma cdcl_W-cp-drop While-trail':
  assumes cdcl_W-cp S S'
 obtains M where trail S' = M @ trail S and (\forall l \in set M. \neg is\text{-marked } l)
 using assms by induction fastforce+
lemma rtranclp-cdcl_W-cp-drop\ While-trail':
 assumes cdcl_W-cp^{**} S S'
 obtains M:: ('v, nat, 'v clause) ann-literal list where
   trail \ S' = M @ trail \ S \ and \ \forall \ l \in set \ M. \ \neg is\text{-}marked \ l
 using assms by induction (fastforce dest!: cdcl<sub>W</sub>-cp-dropWhile-trail')+
lemma cdcl_W-cp-drop While-trail:
 assumes cdcl_W-cp S S'
 shows \exists M. trail S' = M @ trail S \land (\forall l \in set M. \neg is-marked l)
 using assms by induction fastforce+
lemma rtranclp-cdcl_W-cp-drop While-trail:
 assumes cdcl_W-cp^{**} S S'
 shows \exists M. trail S' = M @ trail S \land (\forall l \in set M. \neg is-marked l)
 using assms by induction (fastforce dest: cdcl<sub>W</sub>-cp-drop While-trail)+
This theorem can be seen a a termination theorem for cdcl_W-cp.
\mathbf{lemma}\ \mathit{length}\text{-}\mathit{model}\text{-}\mathit{le-vars}\text{:}
 assumes
   no-strange-atm S and
   no-d: no-dup (trail S) and
   finite\ (atms-of-msu\ (init-clss\ S))
 shows length (trail\ S) \le card\ (atms-of-msu\ (init-clss\ S))
proof -
 obtain M \ N \ U \ k \ D where S: state \ S = (M, \ N, \ U, \ k, \ D) by (cases \ state \ S, \ auto)
 have finite (atm\text{-}of ' lits\text{-}of (trail S))
   using assms(1,3) unfolding S by (auto simp add: finite-subset)
 \mathbf{have}\ \mathit{length}\ (\mathit{trail}\ S) = \mathit{card}\ (\mathit{atm-of}\ \lq\ \mathit{lits-of}\ (\mathit{trail}\ S))
   using no-dup-length-eq-card-atm-of-lits-of no-d by blast
  then show ?thesis using assms(1) unfolding no-strange-atm-def
```

```
by (auto simp add: assms(3) card-mono)
qed
lemma cdcl_W-cp-decreasing-measure:
 assumes
   cdcl_W: cdcl_W-cp S T and
   M-lev: cdcl_W-M-level-inv S and
   alien: no-strange-atm S
 shows (\lambda S. \ card \ (atms-of-msu \ (init-clss \ S)) - length \ (trail \ S)
     + (if \ conflicting \ S = None \ then \ 1 \ else \ 0)) \ S
   > (\lambda S. \ card \ (atms-of-msu \ (init-clss \ S)) - length \ (trail \ S)
     + (if \ conflicting \ S = None \ then \ 1 \ else \ 0)) \ T
 using assms
proof -
 have length (trail T) \leq card (atms-of-msu (init-clss T))
   apply (rule length-model-le-vars)
      using cdcl_W-no-strange-atm-inv alien M-lev apply (meson cdcl_W cdcl_W.simps cdcl_W-cp.cases)
     using M-lev cdcl_W cdcl_W-cp-consistent-inv cdcl_W-M-level-inv-def apply blast
     using cdcl_W by (auto simp: cdcl_W-cp.simps)
 with assms
 show ?thesis by induction (auto split: split-if-asm)+
qed
lemma cdcl_W-cp-wf: wf {(b,a). (cdcl_W-M-level-inv a \land no-strange-atm a)
 \land cdcl_W - cp \ a \ b
 apply (rule wf-wf-if-measure' of less-than - -
     (\lambda S. \ card \ (atms-of-msu \ (init-clss \ S)) - length \ (trail \ S)
       + (if \ conflicting \ S = None \ then \ 1 \ else \ 0))))
   apply simp
 using cdcl<sub>W</sub>-cp-decreasing-measure unfolding less-than-iff by blast
lemma rtranclp-cdcl_W-all-struct-inv-cdcl_W-cp-iff-rtranclp-cdcl_W-cp:
 assumes
   lev: cdcl_W-M-level-inv S and
   alien: no-strange-atm S
 shows (\lambda a \ b. \ (cdcl_W - M - level - inv \ a \land no - strange - atm \ a) \land cdcl_W - cp \ a \ b)^{**} \ S \ T
   \longleftrightarrow cdcl_W - cp^{**} S T
  (is ?IST \longleftrightarrow ?CST)
proof
 assume
   ?IST
 then show ?C S T by induction auto
next
 assume
   ?CST
 then show ?IST
   proof induction
     case base
     then show ?case by simp
     case (step T U) note st = this(1) and cp = this(2) and IH = this(3)
     have cdcl_W^{**} S T
       by (metis rtranclp-unfold cdcl_W-cp-conflicting-not-empty cp st
        rtranclp-propagate-is-rtranclp-cdcl_W tranclp-cdcl_W-cp-propagate-with-conflict-or-not)
     then have
```

```
cdcl_W-M-level-inv T and
       no-strange-atm T
        using \langle cdcl_W^{**} \mid S \mid T \rangle apply (simp \ add: \ assms(1) \ rtranclp-cdcl_W-consistent-inv)
       using \langle cdcl_W^{**} \mid S \mid T \rangle alien rtranclp-cdcl_W-no-strange-atm-inv lev by blast
     then have (\lambda a \ b. \ (cdcl_W - M - level - inv \ a \land no - strange - atm \ a)
       \wedge \ cdcl_W - cp \ a \ b)^{**} \ T \ U
       using cp by auto
     then show ?case using IH by auto
   qed
qed
lemma cdcl_W-cp-normalized-element:
 assumes
   lev: cdcl_W-M-level-inv S and
   no-strange-atm S
 obtains T where full\ cdcl_W-cp\ S\ T
proof
 let ?inv = \lambda a. (cdcl_W - M - level - inv \ a \land no - strange - atm \ a)
 obtain T where T: full (\lambda a \ b. ?inv a \wedge cdcl_W-cp a \ b) S T
   using cdcl_W-cp-wf wf-exists-normal-form[of <math>\lambda a \ b. ?inv \ a \land cdcl_W-cp \ a \ b]
   unfolding full-def by blast
   then have cdcl_W-cp^{**} S T
     using rtranclp-cdcl_W-all-struct-inv-cdcl_W-cp-iff-rtranclp-cdcl_W-cp assms unfolding full-def
     by blast
   moreover
     then have cdcl_W^{**} S T
       using rtranclp-cdcl_W-cp-rtranclp-cdcl_W by blast
     then have
       cdcl_W-M-level-inv T and
       no-strange-atm T
        using \langle cdcl_W^{**} \mid S \mid T \rangle apply (simp \ add: \ assms(1) \ rtranclp-cdcl_W-consistent-inv)
       using \langle cdcl_W^{**} \mid S \mid T \rangle assms(2) rtranclp-cdcl<sub>W</sub>-no-strange-atm-inv lev by blast
     then have no-step cdcl_W-cp T
       using T unfolding full-def by auto
   ultimately show thesis using that unfolding full-def by blast
qed
lemma in-atms-of-implies-atm-of-on-atms-of-ms:
  C + \{\#L\#\} \in \#A \implies x \in atms\text{-}of \ C \implies x \in atms\text{-}of\text{-}msu \ A
  \mathbf{by} \ (\textit{metis add.commute atm-iff-pos-or-neg-lit atms-of-atms-of-ms-mono contra-subsetD} \\
   mem-set-mset-iff multi-member-skip)
{\bf lemma}\ propagate{-no-stange-atm}:
 assumes
   propagate S S' and
   no-strange-atm S
 shows no-strange-atm S'
 using assms by induction
  (auto simp add: no-strange-atm-def clauses-def in-plus-implies-atm-of-on-atms-of-ms
   in-atms-of-implies-atm-of-on-atms-of-ms)
lemma always-exists-full-cdcl<sub>W</sub>-cp-step:
 assumes no-strange-atm S
 shows \exists S''. full cdcl_W-cp S S''
 using assms
```

```
proof (induct card (atms-of-msu (init-clss S) – atm-of 'lits-of (trail S)) arbitrary: S)
  case \theta note card = this(1) and alien = this(2)
  then have atm: atms-of-msu (init-clss S) = atm-of 'lits-of (trail S)
   unfolding no-strange-atm-def by auto
  { assume a: \exists S'. conflict S S'
   then obtain S' where S': conflict S S' by metis
   then have \forall S''. \neg cdcl_W - cp S' S'' by auto
   then have ?case using a S' cdclw-cp.conflict' unfolding full-def by blast
  }
 moreover {
   assume a: \exists S'. propagate SS'
   then obtain S' where propagate S S' by blast
   then obtain M N U k C L where S: state S = (M, N, U, k, None)
   and S': state S' = (Propagated \ L \ (\ (C + \{\#L\#\})) \ \# \ M, \ N, \ U, \ k, \ None)
   and C + \{\#L\#\} \in \# clauses S
   and M \models as \ CNot \ C
   and undefined-lit M L
   using propagate by auto
   have atms-of-msu U \subseteq atms-of-msu N using alien S unfolding no-strange-atm-def by auto
   then have atm\text{-}of\ L\in atms\text{-}of\text{-}msu\ (init\text{-}clss\ S)
     using \langle C + \{\#L\#\} \in \# \ clauses \ S \rangle S unfolding atms-of-ms-def clauses-def by force+
   then have False using \langle undefined-lit M L\rangle S unfolding atm unfolding lits-of-def
     by (auto simp add: defined-lit-map)
 ultimately show ?case by (metis cdcl<sub>W</sub>-cp.cases full-def rtranclp.rtrancl-reft)
  case (Suc n) note IH = this(1) and card = this(2) and alien = this(3)
  { assume a: \exists S'. conflict S S'
   then obtain S' where S': conflict S S' by metis
   then have \forall S''. \neg cdcl_W - cp S' S'' by auto
   then have ?case unfolding full-def Ex-def using S' cdcl<sub>W</sub>-cp.conflict' by blast
  }
 moreover {
   assume a: \exists S'. propagate SS'
   then obtain S' where propagate: propagate S S' by blast
   then obtain M N U k C L where
     S: state \ S = (M, N, U, k, None) and
     S': state S' = (Propagated\ L\ (\ (C + \{\#L\#\}))\ \#\ M,\ N,\ U,\ k,\ None) and
     C + \{\#L\#\} \in \# clauses S \text{ and }
     M \models as \ CNot \ C and
     undefined-lit ML
     by fastforce
   then have atm\text{-}of\ L \notin atm\text{-}of ' lits\text{-}of\ M
     unfolding lits-of-def by (auto simp add: defined-lit-map)
   moreover
     have no-strange-atm S' using alien propagate propagate-no-stange-atm by blast
     then have atm-of L \in atms-of-msu N using S' unfolding no-strange-atm-def by auto
     then have \bigwedge A. \{atm\text{-}of\ L\} \subseteq atms\text{-}of\text{-}msu\ N\ -\ A\ \lor\ atm\text{-}of\ L\in A\ \text{by}\ force
   moreover have Suc\ n - card\ \{atm\text{-}of\ L\} = n\ by\ simp
   \mathbf{moreover} \ \mathbf{have} \ \mathit{card} \ (\mathit{atms-of-msu} \ \mathit{N} \ - \ \mathit{atm-of} \ \lq \ \mathit{lits-of} \ \mathit{M}) = \mathit{Suc} \ \mathit{n}
    using card S S' by simp
   ultimately
     have card (atms-of-msu\ N-atm-of\ `insert\ L\ (lits-of\ M))=n
       by (metis (no-types) Diff-insert card-Diff-subset finite.emptyI finite.insertI image-insert)
     then have n = card (atms-of-msu (init-clss S') - atm-of 'lits-of (trail S'))
```

```
using card S S' by simp
            then have a1: Ex (full cdcl_W-cp S') using IH (no-strange-atm S') by blast
            have ?case
                  proof -
                        obtain S'' :: 'st where
                               ff1: cdcl_W-cp^{**} S' S'' \wedge no-step cdcl_W-cp S''
                               using a1 unfolding full-def by blast
                        have cdcl_W-cp^{**} S S'
                               using ff1 cdcl_W-cp.intros(2)[OF\ propagate]
                               by (metis (no-types) converse-rtranclp-into-rtranclp)
                        then have \exists S''. cdcl_W-cp^{**} S S'' \land (\forall S'''. \neg cdcl_W-cp S'' S''')
                               using ff1 by blast
                        then show ?thesis unfolding full-def
                               by meson
                  qed
      ultimately show ?case unfolding full-def by (metis cdcl_W-cp.cases rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl
qed
```

5.6.3 Literal of highest level in conflicting clauses

One important property of the $local.cdcl_W$ with strategy is that, whenever a conflict takes place, there is at least a literal of level k involved (except if we have derived the false clause). The reason is that we apply conflicts before a decision is taken.

```
abbreviation no-clause-is-false :: 'st \Rightarrow bool where
no-clause-is-false \equiv
  \lambda S. \ (conflicting \ S = None \longrightarrow (\forall \ D \in \# \ clauses \ S. \ \neg trail \ S \models as \ CNot \ D))
\textbf{abbreviation} \ \textit{conflict-is-false-with-level} :: \textit{'st} \Rightarrow \textit{bool} \ \textbf{where}
conflict-is-false-with-level S \equiv \forall D. conflicting S = Some D \longrightarrow D \neq \{\#\}
  \longrightarrow (\exists L \in \# D. \ get\text{-level (trail S)} \ L = backtrack\text{-lvl S})
{f lemma} not-conflict-not-any-negated-init-clss:
  assumes \forall S'. \neg conflict S S'
 shows no-clause-is-false S
  using assms state-eq-ref by blast
lemma full-cdcl_W-cp-not-any-negated-init-clss:
  assumes full cdcl_W-cp S S'
  shows no-clause-is-false S'
  using assms not-conflict-not-any-negated-init-clss unfolding full-def by blast
lemma full1-cdcl_W-cp-not-any-negated-init-clss:
  assumes full1 cdcl_W-cp S S'
  shows no-clause-is-false S'
  using assms not-conflict-not-any-negated-init-clss unfolding full1-def by blast
lemma cdcl_W-stgy-not-non-negated-init-clss:
 assumes cdcl_W-stqy SS'
 shows no-clause-is-false S'
  using assms apply (induct rule: cdcl_W-stgy.induct)
  using full1-cdcl_W-cp-not-any-negated-init-clss full-cdcl_W-cp-not-any-negated-init-clss by metis+
lemma rtranclp-cdcl_W-stgy-not-non-negated-init-clss:
  assumes cdcl_W-stgy^{**} S S' and no-clause-is-false S
```

```
shows no-clause-is-false S'
 using assms by (induct rule: rtranclp-induct) (auto simp: cdcl_W-stgy-not-non-negated-init-clss)
lemma cdcl_W-stgy-conflict-ex-lit-of-max-level:
 assumes cdcl_W-cp S S'
 and no-clause-is-false S
 and cdcl_W-M-level-inv S
 shows conflict-is-false-with-level S'
 using assms
proof (induct rule: cdcl_W-cp.induct)
 case conflict'
 then show ?case by auto
\mathbf{next}
 case propagate'
 then show ?case by auto
qed
lemma no-chained-conflict:
 assumes conflict S S'
 and conflict S' S''
 shows False
 using assms by fastforce
lemma rtranclp-cdcl_W-cp-propa-or-propa-conft:
 assumes cdcl_W-cp^{**} S U
 shows propagate^{**} S U \vee (\exists T. propagate^{**} S T \wedge conflict T U)
 using assms
proof induction
 case base
 then show ?case by auto
next
 case (step U V) note SU = this(1) and UV = this(2) and IH = this(3)
 consider (confl) T where propagate** S T and conflict T U
   | (propa) propagate** S U using IH by auto
 then show ?case
   proof cases
     case confl
     then have False using UV by auto
     then show ?thesis by fast
   next
     also have conflict U \ V \ v propagate U \ V using UV by (auto simp add: cdcl_W-cp.simps)
     ultimately show ?thesis by force
   qed
qed
\mathbf{lemma}\ \mathit{rtranclp-cdcl}_W\text{-}\mathit{co-conflict-ex-lit-of-max-level}\colon
 assumes full: full cdcl_W-cp S U
 and cls-f: no-clause-is-false S
 and conflict-is-false-with-level S
 and lev: cdcl_W-M-level-inv S
 shows conflict-is-false-with-level U
proof (intro allI impI)
 \mathbf{fix} D
 assume confl: conflicting U = Some D and
```

```
D: D \neq \{\#\}
consider (CT) conflicting S = None \mid (SD) D' where conflicting S = Some D'
 by (cases conflicting S) auto
then show \exists L \in \#D. get-level (trail U) L = backtrack-lvl U
 proof cases
   case SD
   then have S = U
     by (metis (no-types) assms(1) cdcl<sub>W</sub>-cp-conflicting-not-empty full-def rtranclpD tranclpD)
   then show ?thesis using assms(3) confl D by blast-
 next
   case CT
   have init-clss U = init-clss S and learned-clss U = learned-clss S
     using assms(1) unfolding full-def
      apply (metis (no-types) rtranclpD tranclp-cdcl_W-cp-no-more-init-clss)
     by (metis\ (mono-tags,\ lifting)\ assms(1)\ full-def\ rtranclp-cdcl_W-cp-learned-clause-inv)
   obtain T where propagate^{**} S T and TU: conflict T U
     proof -
      have f5: U \neq S
        using confl CT by force
      then have cdcl_W-cp^{++} S U
        by (metis full full-def rtranclpD)
      have \bigwedge p pa. \neg propagate p pa \lor conflicting pa =
        (None::'v literal multiset option)
        by auto
      then show ?thesis
        using f5 that tranclp-cdcl_W-cp-propagate-with-conflict-or-not[OF \langle cdcl_W-cp<sup>++</sup> S U\rangle]
        full confl CT unfolding full-def by auto
     qed
   have init-clss T = init-clss S and learned-clss T = learned-clss S
     using TU \langle init\text{-}clss \ U = init\text{-}clss \ S \rangle \langle learned\text{-}clss \ U = learned\text{-}clss \ S \rangle by auto
   then have D \in \# clauses S
     using TU confl by (fastforce simp: clauses-def)
   then have \neg trail S \models as CNot D
     using cls-f CT by simp
   moreover
     obtain M where tr-U: trail U = M @ trail S and nm: \forall m \in set M. \neg is-marked m
      by (metis (mono-tags, lifting) assms(1) full-def rtranclp-cdcl<sub>W</sub>-cp-dropWhile-trail)
     have trail U \models as \ CNot \ D
      using TU confl by auto
   ultimately obtain L where L \in \# D and -L \in lits\text{-}of M
     unfolding tr-U CNot-def true-annots-def Ball-def true-annot-def true-cls-def by auto
   moreover have inv-U: cdcl_W-M-level-inv U
    by (metis\ cdcl_W - stgy. conflict'\ cdcl_W - stgy-consistent-inv\ full\ full-unfold\ lev)
   moreover
     have backtrack-lvl\ U = backtrack-lvl\ S
      using full unfolding full-def by (auto dest: rtranclp-cdcl<sub>W</sub>-cp-backtrack-lvl)
   moreover
     have no-dup (trail U)
      using inv-U unfolding cdcl_W-M-level-inv-def by auto
     { \mathbf{fix} \ x :: ('v, \ nat, \ 'v \ literal \ multiset) \ ann-literal \ \mathbf{and}
        xb :: ('v, nat, 'v literal multiset) ann-literal
      assume a1: atm\text{-}of\ L = atm\text{-}of\ (lit\text{-}of\ xb)
      moreover assume a2: -L = lit - of x
```

```
moreover assume a3: (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) ' set M
            \cap (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) \ `set \ (trail \ S) = \{\}
          moreover assume a4: x \in set M
          moreover assume a5: xb \in set (trail S)
          moreover have atm\text{-}of (-L) = atm\text{-}of L
            by auto
          ultimately have False
           by auto
        then have LS: atm-of L \notin atm-of 'lits-of (trail S)
          using \langle -L \in lits\text{-}of M \rangle \langle no\text{-}dup \ (trail \ U) \rangle unfolding tr\text{-}U \ lits\text{-}of\text{-}def by auto
      ultimately have get-level (trail U) L = backtrack-lvl U
        proof (cases get-all-levels-of-marked (trail S) \neq [], goal-cases)
          case 2 note LD = this(1) and LM = this(2) and inv - U = this(3) and US = this(4) and
            LS = this(5) and ne = this(6)
          have backtrack-lvl\ S=0
            using lev ne unfolding cdcl_W-M-level-inv-def by auto
          moreover have get-rev-level (rev M) \theta L = \theta
            using nm by auto
          ultimately show ?thesis using LS ne US unfolding tr-U
           by (simp add: get-all-levels-of-marked-nil-iff-not-is-marked lits-of-def)
          case 1 note LD = this(1) and LM = this(2) and inv-U = this(3) and US = this(4) and
            LS = this(5) and ne = this(6)
          have hd (get-all-levels-of-marked (trail S)) = backtrack-lvl S
            using ne\ lev unfolding cdcl_W-M-level-inv-def
           by (cases get-all-levels-of-marked (trail S)) auto
          moreover have atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\ M
            using \langle -L \in lits \text{-} of M \rangle by (simp \ add: \ atm \text{-} of \text{-} in \text{-} atm \text{-} of \text{-} set \text{-} iff \text{-} in \text{-} set \text{-} or \text{-} uminus \text{-} in \text{-} set
              lits-of-def)
          ultimately show ?thesis
            using nm ne unfolding tr-U
            using get-level-skip-beginning-hd-get-all-levels-of-marked[OF LS, of M]
               get-level-skip-in-all-not-marked[of rev M L backtrack-lvl S]
            unfolding lits-of-def US
            by auto
          qed
      then show \exists L \in \#D. get-level (trail U) L = backtrack-lvl U
        using \langle L \in \# D \rangle by blast
    qed
qed
         Literal of highest level in marked literals
definition mark-is-false-with-level :: 'st \Rightarrow bool where
mark-is-false-with-level S' \equiv
 \forall D \ M1 \ M2 \ L. \ M1 \ @ \ Propagated \ L \ D \# \ M2 = trail \ S' \longrightarrow D - \{\#L\#\} \neq \{\#\}
    \longrightarrow (\exists L.\ L \in \#\ D \land get\text{-}level\ (trail\ S')\ L = get\text{-}maximum\text{-}possible\text{-}level\ M1)
definition no-more-propagation-to-do:: 'st \Rightarrow bool where
no-more-propagation-to-do S \equiv
 \forall D\ M\ M'\ L.\ D + \{\#L\#\} \in \#\ clauses\ S \longrightarrow trail\ S = M'\ @\ M \longrightarrow M \models as\ CNot\ D
    \longrightarrow undefined-lit M \ L \longrightarrow get-maximum-possible-level M < backtrack-lvl S
    \longrightarrow (\exists L. \ L \in \# \ D \land get\text{-level (trail S)} \ L = get\text{-maximum-possible-level M})
```

```
lemma propagate-no-more-propagation-to-do:
 assumes propagate: propagate S S'
 and H: no-more-propagation-to-do S
 and M: cdcl_W-M-level-inv S
 shows no-more-propagation-to-do S'
 using assms
proof -
 obtain M N U k C L where
   S: state \ S = (M, N, U, k, None) and
   S': state S' = (Propagated \ L \ ((C + \{\#L\#\})) \# M, N, U, k, None) and
   C + \{\#L\#\} \in \# clauses S \text{ and }
   M \models as \ CNot \ C \ and
   undefined-lit M L
   using propagate by auto
 let ?M' = Propagated L ((C + {\#L\#})) \# M
 show ?thesis unfolding no-more-propagation-to-do-def
   proof (intro allI impI)
     fix D M1 M2 L'
     assume D-L: D + \{\#L'\#\} \in \# clauses S'
     and trail S' = M2 @ M1
     and get-max: get-maximum-possible-level M1 < backtrack-lvl S'
     and M1 \models as \ CNot \ D
     and undef: undefined-lit M1 L'
     have the M2 @ M1 = trail S \vee (M2 = [] \wedge M1 = Propagated L ((C + {\#L\#})) \# M)
      using \langle trail \ S' = M2 @ M1 \rangle \ S' \ S by (cases \ M2) auto
     moreover {
      assume tl M2 @ M1 = trail S
      moreover have D + \{\#L'\#\} \in \# clauses S using D-L S S' unfolding clauses-def by auto
      moreover have get-maximum-possible-level M1 < backtrack-lvl S
        using get-max S S' by auto
      ultimately obtain L' where L' \in \# D and
        get-level (trail S) L' = get-maximum-possible-level M1
        using H \langle M1 \mid = as \ CNot \ D \rangle undef unfolding no-more-propagation-to-do-def by metis
      moreover
        { have cdcl_W-M-level-inv S'
            using cdcl_W-consistent-inv[OF - M] cdcl_W.propagate[OF propagate] by blast
          then have no-dup ?M' using S' unfolding cdcl_W-M-level-inv-def by auto
          moreover
           have atm\text{-}of L' \in atm\text{-}of \text{ '}(lits\text{-}of M1)
             using \langle L' \in \# D \rangle \langle M1 \models as \ CNot \ D \rangle by (metis atm-of-uninus image-eqI
               in-CNot-implies-uminus(2))
            then have atm\text{-}of\ L'\in\ atm\text{-}of\ `(\ lits\text{-}of\ M)
             \mathbf{using} \ \langle tl \ M2 \ @ \ M1 \ = \ trail \ S \rangle \ S \ \mathbf{by} \ auto
          ultimately have atm-of L \neq atm-of L' unfolding lits-of-def by auto
      ultimately have \exists L' \in \# D. get-level (trail S') L' = get-maximum-possible-level M1
        using S S' by auto
     moreover {
      assume M2 = [] and M1: M1 = Propagated L ((C + {\#L\#})) \# M
      have cdcl_W-M-level-inv S'
        using cdcl_W-consistent-inv[OF - M] cdcl_W.propagate[OF propagate] by blast
      then have get-all-levels-of-marked (trail S') = rev ([Suc \theta..<(Suc \theta+k)])
        using S' unfolding cdcl_W-M-level-inv-def by auto
      then have get-maximum-possible-level M1 = backtrack-lvl S'
```

```
using get-maximum-possible-level-max-get-all-levels-of-marked of M1 S' M1
        by (auto intro: Max-eqI)
      then have False using get-max by auto
     ultimately show \exists L. L \in \# D \land get-level (trail S') L = get-maximum-possible-level M1 by fast
  qed
\mathbf{qed}
\mathbf{lemma}\ conflict-no-more-propagation-to-do:
 assumes conflict: conflict S S'
 and H: no-more-propagation-to-do S
 and M: cdcl_W-M-level-inv S
 \mathbf{shows}\ no\text{-}more\text{-}propagation\text{-}to\text{-}do\ S'
 using assms unfolding no-more-propagation-to-do-def conflict.simps by force
lemma cdcl_W-cp-no-more-propagation-to-do:
 assumes conflict: cdcl_W-cp S S'
 and H: no-more-propagation-to-do S
 and M: cdcl_W-M-level-inv S
 shows no-more-propagation-to-do S'
 using assms
 proof (induct\ rule:\ cdcl_W-cp.induct)
 case (conflict' S S')
 then show ?case using conflict-no-more-propagation-to-do[of S S'] by blast
next
 case (propagate' S S') note S = this
 show 1: no-more-propagation-to-do S'
   using propagate-no-more-propagation-to-do [of SS'] S by blast
lemma cdcl_W-then-exists-cdcl_W-stgy-step:
 assumes
   o: cdcl_W-o S S' and
   alien: no-strange-atm S and
   lev: cdcl_W-M-level-inv S
 shows \exists S'. \ cdcl_W-stgy SS'
 obtain S'' where full cdcl_W-cp S' S''
   \textbf{using} \ always-exists-full-cdcl_W-cp-step \ alien \ cdcl_W-no-strange-atm-inv \ cdcl_W-o-no-more-init-clss
    o other lev by (meson\ cdcl_W-consistent-inv)
 then show ?thesis
   using assms by (metis always-exists-full-cdcl<sub>W</sub>-cp-step cdcl<sub>W</sub>-stgy.conflict' full-unfold other')
qed
lemma backtrack-no-decomp:
 assumes S: state S = (M, N, U, k, Some (D + \{\#L\#\}))
 and L: get-level ML = k
 and D: get-maximum-level M D < k
 and M-L: cdcl_W-M-level-inv S
 shows \exists S'. \ cdcl_W \text{-}o \ S \ S'
proof -
 have L-D: get-level M L = get-maximum-level M (D + \{\#L\#\})
   using L D by (simp add: get-maximum-level-plus)
 let ?i = get\text{-}maximum\text{-}level\ M\ D
 obtain K M1 M2 where K: (Marked\ K\ (?i+1)\ \#\ M1,\ M2) \in set\ (get-all-marked-decomposition
```

```
M
   using backtrack-ex-decomp[OF M-L, of ?i] D S by auto
 show ?thesis using backtrack-rule[OF S K L L-D] by (meson bj cdcl<sub>W</sub>-bj.simps state-eq-ref)
qed
lemma cdcl_W-stgy-final-state-conclusive:
 assumes termi: \forall S'. \neg cdcl_W \text{-}stgy S S'
 and decomp: all-decomposition-implies-m (init-clss S) (get-all-marked-decomposition (trail S))
 and learned: cdcl_W-learned-clause S
 and level-inv: cdcl_W-M-level-inv S
 and alien: no-strange-atm S
 and no-dup: distinct\text{-}cdcl_W\text{-}state\ S
 and confl: cdcl_W-conflicting S
 and confl-k: conflict-is-false-with-level S
 shows (conflicting S = Some \{\#\} \land unsatisfiable (set-mset (init-clss S)))
        \vee (conflicting S = None \wedge trail S \models as set-mset (init-clss S))
proof -
 let ?M = trail S
 let ?N = init\text{-}clss S
 let ?k = backtrack-lvl S
 let ?U = learned\text{-}clss S
 have conflicting S = Some \{\#\}
       \vee conflicting S = None
       \vee (\exists D \ L. \ conflicting \ S = Some \ (D + \{\#L\#\}))
   apply (cases conflicting S, auto)
   by (rename-tac C, case-tac C, auto)
 moreover {
   assume conflicting S = Some \{ \# \}
   then have unsatisfiable (set-mset (init-clss S))
     using assms(3) unfolding cdcl_W-learned-clause-def true-clss-cls-def
     by (metis (no-types, lifting) Un-insert-right atms-of-empty satisfiable-def
       sup-bot.right-neutral total-over-m-insert total-over-set-empty true-cls-empty)
  }
 moreover {
   assume conflicting S = None
   { assume \neg ?M \models asm ?N
     have atm\text{-}of ' (lits-of ?M) = atms\text{-}of\text{-}msu ?N (is ?A = ?B)
      proof
         show ?A \subseteq ?B using alien unfolding no-strange-atm-def by auto
         show ?B \subseteq ?A
          proof (rule ccontr)
            assume \neg ?B \subseteq ?A
            then obtain l where l \in ?B and l \notin ?A by auto
            then have undefined-lit ?M (Pos l)
              using \langle l \notin ?A \rangle unfolding lits-of-def by (auto simp add: defined-lit-map)
            then have \exists S'. \ cdcl_W \text{-}o \ S \ S'
              using cdcl_W-o.decide\ decide.intros\ (l \in ?B) no-strange-atm-def
              by (metis (conflicting S = None) literal.sel(1) state-eq-def)
            then show False
              using termi\ cdcl_W-then-exists-cdcl_W-stgy-step[OF - alien] level-inv by blast
          qed
       obtain D where \neg ?M \models a D \text{ and } D \in \# ?N
         using \langle \neg ?M \models asm ?N \rangle unfolding lits-of-def true-annots-def Ball-def by auto
       have atms-of D \subseteq atm-of ' (lits-of ?M)
```

```
using \langle D \in \#?N \rangle unfolding \langle atm\text{-}of \cdot (lits\text{-}of?M) = atms\text{-}of\text{-}msu?N \rangle atms-of-ms-def
      by (auto simp add: atms-of-def)
     then have a1: atm-of 'set-mset D \subseteq atm-of 'lits-of (trail S)
      by (auto simp add: atms-of-def lits-of-def)
     have total-over-m (lits-of ?M) \{D\}
      using \langle atms-of \ D \subseteq atm-of \ (lits-of \ ?M) \rangle atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
      by (fastforce simp: total-over-set-def)
     then have ?M \models as \ CNot \ D
      using total-not-true-cls-true-clss-CNot \langle \neg trail \ S \models a \ D \rangle \ true-annot-def
      true-annots-true-cls by fastforce
     then have False
      proof -
        obtain S' where
          f2: full\ cdcl_W-cp S\ S'
          by (meson alien always-exists-full-cdcl<sub>W</sub>-cp-step level-inv)
        then have S' = S
          using cdcl_W-stgy.conflict'[of S] by (metis (no-types) full-unfold termi)
        then show ?thesis
          using f2 \langle D \in \# init\text{-}clss S \rangle \langle conflicting S = None \rangle \langle trail S \models as CNot D \rangle
          clauses-def full-cdcl_W-cp-not-any-negated-init-clss by auto
      qed
 then have ?M \models asm ?N by blast
}
moreover {
 assume \exists D \ L. \ conflicting \ S = Some \ (D + \{\#L\#\})
 then obtain D L where LD: conflicting S = Some (D + \#L\#) and lev-L: get-level ?M L = ?k
    by (metis (mono-tags) bex-msetE confl-k insert-DiffM2 multi-self-add-other-not-self
      union-eq-empty)
 let ?D = D + \{\#L\#\}
 have ?D \neq \{\#\} by auto
 have ?M \models as CNot ?D using confl LD unfolding cdcl_W-conflicting-def by auto
 then have ?M \neq [] unfolding true-annots-def Ball-def true-annot-def true-cls-def by force
 { have M: ?M = hd ?M \# tl ?M using (?M \neq []) list.collapse by fastforce}
   assume marked: is-marked (hd?M)
   then obtain k' where k': k' + 1 = ?k
     using level-inv M unfolding cdcl<sub>W</sub>-M-level-inv-def
     by (cases hd (trail S); cases trail S) auto
   obtain L' l' where L': hd ?M = Marked L' l' using marked by (cases hd ?M) auto
   have marked-hd-tl: get-all-levels-of-marked (hd (trail S) \# tl (trail S))
     = rev [1..<1 + length (get-all-levels-of-marked ?M)]
    using level-inv lev-L M unfolding cdcl<sub>W</sub>-M-level-inv-def M[symmetric]
    by blast
   then have l'-tl: l' \# get-all-levels-of-marked (<math>tl ? M)
     = rev [1..<1 + length (get-all-levels-of-marked ?M)] unfolding L' by simp
   moreover have ... = length (get-all-levels-of-marked ?M)
     \# rev [1..< length (get-all-levels-of-marked ?M)]
     using M Suc-le-mono calculation by (fastforce simp add: upt.simps(2))
   finally have
     l' = ?k and
     g-r: get-all-levels-of-marked (tl (trail S))
      = rev [1..< length (get-all-levels-of-marked (trail S))]
     using level-inv lev-L M unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
   have *: \bigwedge list. no-dup list \Longrightarrow
        -L \in lits-of list \Longrightarrow atm-of L \in atm-of ' lits-of list
```

```
by (metis\ atm\text{-}of\text{-}uminus\ imageI)
have L' = -L
 proof (rule ccontr)
   assume ¬ ?thesis
   moreover have -L \in lits-of ?M using confl LD unfolding cdcl_W-conflicting-def by auto
   ultimately have get-level (hd (trail S) # tl (trail S)) L = get-level (tl ?M) L
     using cdcl_W-M-level-inv-decomp(1)[OF level-inv] unfolding L' consistent-interp-def
    by (metis (no-types, lifting) L' M atm-of-eq-atm-of get-level-skip-beginning insert-iff
      lits-of-cons ann-literal.sel(1))
   moreover
    have length (get-all-levels-of-marked\ (trail\ S)) = ?k
      using level-inv unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
    then have Max (set (0 \# get\text{-all-levels-of-marked} (tl (trail S)))) = ?k - 1
      unfolding q-r by (auto simp add: Max-n-upt)
     then have get-level (tl ?M) L < ?k
      using get-maximum-possible-level-ge-get-level[of tl ?M L]
      by (metis One-nat-def add.right-neutral add-Suc-right diff-add-inverse2
        qet-maximum-possible-level-max-qet-all-levels-of-marked k' le-imp-less-Suc
        list.simps(15)
   finally show False using lev-L M by auto
have L: hd ?M = Marked (-L) ?k using \langle l' = ?k \rangle \langle L' = -L \rangle L' by auto
have g-a-l: get-all-levels-of-marked ?M = rev [1..<1 + ?k]
 using level-inv lev-L M unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
have g-k: get-maximum-level (trail S) D \leq ?k
 using get-maximum-possible-level-ge-get-maximum-level[of ?M]
   get-maximum-possible-level-max-get-all-levels-of-marked [of ?M]
 by (auto simp add: Max-n-upt q-a-l)
have get-maximum-level (trail S) D < ?k
 proof (rule ccontr)
   assume ¬ ?thesis
   then have get-maximum-level (trail S) D = ?k using M g-k unfolding L by auto
   then obtain L' where L' \in \# D and L-k: get-level ?M L' = ?k
     using get-maximum-level-exists-lit[of ?k ?M D] unfolding k'[symmetric] by auto
   have L \neq L' using no-dup \langle L' \in \# D \rangle
     unfolding distinct-cdcl<sub>W</sub>-state-def LD by (metis add.commute add-eq-self-zero
      count-single count-union less-not-refl3 distinct-mset-def union-single-eq-member)
   have L' = -L
    proof (rule ccontr)
      assume ¬ ?thesis
      then have get-level ?M L' = get-level (tl ?M) L'
        using M \langle L \neq L' \rangle get-level-skip-beginning[of L' hd? M tl? M] unfolding L
        by (auto simp: atm-of-eq-atm-of)
      moreover have \dots < ?k
        proof -
          { assume a1: get-level (tl (trail S)) L' = backtrack-lvl S
           assume a2: rev (qet\text{-}all\text{-}levels\text{-}of\text{-}marked} (tl (trail S))) =
             [Suc \ 0..< backtrack-lvl \ S]
           have k' + Suc \theta = backtrack-lvl S
             using k' by presburger
           then have False
             using a2 a1 by (metis (no-types) Max-n-upt Zero-neq-Suc add-diff-cancel-left'
               add-diff-cancel-right' diff-is-0-eq
```

```
get-all-levels-of-marked-rev-eq-rev-get-all-levels-of-marked
                 get-rev-level-less-max-get-all-levels-of-marked list.set(2) set-upt)
            then show ?thesis
              using g-r get-rev-level-less-max-get-all-levels-of-marked[of rev (tl?M) 0 L]
              l'-tl calculation[symmetric] g-a-l L-k
              by (auto simp: Max-n-upt cdcl_W-M-level-inv-def rev-swap[symmetric])
          qed
        finally show False using L-k by simp
     then have taut: tautology (D + \{\#L\#\})
       using \langle L' \in \# D \rangle by (metis add.commute mset-leD mset-le-add-left multi-member-this
         tautology-minus)
     have consistent-interp (lits-of ?M)
       using level-inv unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
     then have \neg ?M \models as \ CNot \ ?D
       using taut by (metis (no-types) \langle L' = -L \rangle \langle L' \in \#D \rangle add.commute consistent-interp-def
        in-CNot-implies-uminus(2) mset-leD mset-le-add-left multi-member-this)
     moreover have ?M \models as \ CNot \ ?D
       using confl no-dup LD unfolding cdcl_W-conflicting-def by auto
     ultimately show False by blast
   qed
 then have False
   \mathbf{using}\ backtrack-no\text{-}decomp[\mathit{OF}\ -\ \langle \mathit{get-level}\ (\mathit{trail}\ \mathit{S})\ \mathit{L}\ =\ backtrack\text{-}lvl\ \mathit{S}\rangle\ -\ level\text{-}inv]
   LD alien termi by (metis cdcl_W-then-exists-cdcl_W-stgy-step level-inv)
}
moreover {
 assume \neg is-marked (hd ?M)
 then obtain L' C where L'C: hd ?M = Propagated L' C by (cases hd ?M, auto)
 then have M: ?M = Propagated L' C \# tl ?M \text{ using } (?M \neq []) list.collapse by fastforce
 then obtain C' where C': C = C' + \{\#L'\#\}
   using confl unfolding cdcl_W-conflicting-def by (metis append-Nil diff-single-eq-union)
  { assume -L' \notin \# ?D
   then have False
     using bj[OF\ cdcl_W-bj.skip[OF\ skip-rule[OF\ -\ \langle -L'\notin\#\ ?D\rangle\ \langle ?D\neq \{\#\}\rangle,\ of\ S\ C\ tl\ (trail\ S)\ -
     termi M by (metis LD alien cdcl<sub>W</sub>-then-exists-cdcl<sub>W</sub>-stqy-step state-eq-def level-inv)
 moreover {
   assume -L' \in \# ?D
   then obtain D' where D': ?D = D' + \{\#-L'\#\} by (metis insert-DiffM2)
   have g-r: get-all-levels-of-marked (Propagated L' C \# tl \ (trail \ S))
     = rev [Suc \ 0.. < Suc \ (length \ (get-all-levels-of-marked \ (trail \ S)))]
     using level-inv M unfolding cdcl_W-M-level-inv-def by auto
   have Max (insert 0 (set (get-all-levels-of-marked (Propagated L' C # tl (trail S))))) = ?k
     using level-inv M unfolding g-r cdcl_W-M-level-inv-def set-rev
     by (auto simp add:Max-n-upt)
   then have get-maximum-level (Propagated L' C # tl ?M) D' < ?k
     using qet-maximum-possible-level-qe-qet-maximum-level[of Propagated L' C # tl ?M]
     unfolding qet-maximum-possible-level-max-qet-all-levels-of-marked by auto
   then have get-maximum-level (Propagated L' C # tl?M) D' = ?k
     \vee get-maximum-level (Propagated L' C # tl ?M) D' < ?k
     using le-neq-implies-less by blast
   moreover {
     assume g-D'-k: get-maximum-level (Propagated L' C # tl ?M) D' = ?k
```

```
have False
          proof -
            have f1: get-maximum-level (trail S) D' = backtrack-lvl S
              using M g-D'-k by auto
            have (trail S, init-clss S, learned-clss S, backtrack-lvl S, Some (D + \{\#L\#\}))
              = state S
              by (metis (no-types) LD)
            then have cdcl_W-o S (update-conflicting (Some (D' \# \cup C')) (tl-trail S))
              using f1 bj[OF cdcl_W-bj.resolve[OF resolve-rule[of S L' C' tl ?M ?N ?U ?k D']]]
              C'D'M by (metis state-eq-def)
            then show ?thesis
              \mathbf{by}\ (\mathit{meson}\ \mathit{alien}\ \mathit{cdcl}_W\text{-}\mathit{then-exists-cdcl}_W\text{-}\mathit{stgy-step}\ \mathit{termi}\ \mathit{level-inv})
          qed
       }
       moreover {
         assume get-maximum-level (Propagated L' C # tl ?M) D' < ?k
         then have False
          proof -
            assume a1: get-maximum-level (Propagated L' C \# tl (trail S)) D' < backtrack-lvl S
            obtain mm:: 'v literal multiset and ll:: 'v literal where
              f2: conflicting S = Some (mm + \{\#ll\#\})
                 get-level (trail S) ll = backtrack-lvl S
              using LD \langle get\text{-level } (trail S) | L = backtrack\text{-lvl } S \rangle by blast
            then have f3: get-maximum-level (trail S) D' \leq get-level (trail S) ll
              using M at by force
            have lev-neg: get-level (trail S) ll \neq get-maximum-level (trail S) D'
              using f2 M calculation(2) by presburger
            have f1: trail S = Propagated L' C \# tl (trail S)
                conflicting S = Some (D' + \{\#-L'\#\})
              using D' LD M by force+
            have f2: conflicting S = Some \ (mm + \{\#ll\#\})
               get-level (trail S) ll = backtrack-lvl S
              using f2 by force+
            have ll = -L'
              by (metis (no-types) D' LD lev-neq option.inject f2 f3 le-antisym
                get-maximum-level-ge-get-level insert-noteq-member)
            then show ?thesis
              using f2 f1 M backtrack-no-decomp[of S]
              by (metis\ (no\text{-}types)\ a1\ alien\ cdcl_W\text{-}then\text{-}exists\text{-}cdcl_W\text{-}stgy\text{-}step\ level\text{-}inv\ termi)}
          qed
       ultimately have False by blast
     ultimately have False by blast
   ultimately have False by blast
 ultimately show ?thesis by blast
qed
lemma cdcl_W-cp-tranclp-cdcl_W:
  cdcl_W-cp S S' \Longrightarrow cdcl_W^{++} S S'
  apply (induct rule: cdcl_W-cp.induct)
  \textbf{by} \ (meson \ cdcl_W. conflict \ cdcl_W. propagate \ tranclp. r-into-trancl \ tranclp. trancl-into-trancl) +
```

```
lemma tranclp-cdcl_W-cp-tranclp-cdcl_W:
  cdcl_W-cp^{++} S S' \Longrightarrow cdcl_W^{++} S S'
  apply (induct rule: tranclp.induct)
   apply (simp add: cdcl_W-cp-tranclp-cdcl_W)
   by (meson\ cdcl_W-cp-tranclp-cdcl<sub>W</sub> tranclp-trans)
lemma cdcl_W-stgy-tranclp-cdcl_W:
  cdcl_W-stgy S S' \Longrightarrow cdcl_W^{++} S S'
proof (induct rule: cdcl_W-stgy.induct)
 case conflict'
  then show ?case
  unfolding full1-def by (simp add: tranclp-cdcl_W-cp-tranclp-cdcl<sub>W</sub>)
next
  case (other' S' S'')
  then have S' = S'' \vee cdcl_W - cp^{++} S' S''
   by (simp add: rtranclp-unfold full-def)
  then show ?case
   using other' by (meson cdcl_W.other cdcl_W-axioms tranclp.r-into-trancl
     tranclp-cdcl_W-cp-tranclp-cdcl_W tranclp-trans)
qed
lemma tranclp-cdcl_W-stgy-tranclp-cdcl_W:
  cdcl_W-stgy^{++} S S' \Longrightarrow cdcl_W^{++} S S'
  apply (induct rule: tranclp.induct)
  using cdcl_W-stgy-tranclp-cdcl_W apply blast
  by (meson\ cdcl_W-stgy-tranclp-cdcl<sub>W</sub> tranclp-trans)
lemma rtranclp-cdcl_W-stgy-rtranclp-cdcl_W:
  cdcl_W-stgy^{**} S S' \Longrightarrow cdcl_W^{**} S S'
  using rtranclp-unfold[of\ cdcl_W\ -stgy\ S\ S']\ tranclp-cdcl_W\ -stgy\ -tranclp-cdcl_W[of\ S\ S']\ by auto
lemma cdcl_W-o-conflict-is-false-with-level-inv:
 assumes
   cdcl_W-o S S' and
   lev: cdcl_W-M-level-inv S and
   confl-inv: conflict-is-false-with-level S and
   n-d: distinct-cdcl_W-state S and
   conflicting: cdcl_W-conflicting S
 shows conflict-is-false-with-level S'
  using assms(1,2)
proof (induct rule: cdcl_W-o-induct-lev2)
 case (resolve L C M D T) note tr-S = this(1) and confl = this(2) and T = this(4)
 have -L \notin H D using n-d confl unfolding distinct-cdcl<sub>W</sub>-state-def distinct-mset-def by auto
 moreover have L \notin \# D
   proof (rule ccontr)
     assume ¬ ?thesis
     moreover have Propagated L (C + \{\#L\#\}) \# M \models as CNot D
      using conflicting conflicting conflicting cdcl<sub>W</sub>-conflicting-def by auto
     ultimately have -L \in lits-of (Propagated L ( (C + \{\#L\#\})) \# M)
      using in-CNot-implies-uminus(2) by blast
     moreover have no-dup (Propagated L ( (C + \{\#L\#\})) \# M)
       using lev tr-S unfolding cdcl_W-M-level-inv-def by auto
     ultimately show False unfolding lits-of-def by (metis consistent-interp-def image-eqI
       list.set-intros(1) lits-of-def ann-literal.sel(2) distinct consistent-interp)
   qed
```

```
ultimately
   have g-D: get-maximum-level (Propagated L (C + \{\#L\#\}\}) \# M) D
     = get-maximum-level M D
   proof -
     have \forall a \ f \ L. \ ((a::'v) \in f \ `L) = (\exists \ l. \ (l::'v \ literal) \in L \land a = f \ l)
       by blast
     then show ?thesis
       using get-maximum-level-skip-first of L D (C + \#L\#)M unfolding atms-of-def
       by (metis\ (no\text{-}types) \leftarrow L \notin \# D) \land L \notin \# D) \land atm\text{-}of\text{-}eq\text{-}atm\text{-}of\ mem\text{-}set\text{-}mset\text{-}iff})
   qed
 { assume
     get-maximum-level (Propagated L (C + \{\#L\#\}\) # M) D = backtrack-lvl S and
     backtrack-lvl S > 0
   then have D: qet-maximum-level M D = backtrack-lvl S unfolding q-D by blast
   then have ?case
     using tr-S (backtrack-lvl S>0) qet-maximum-level-exists-lit[of backtrack-lvl S M D] T
     by auto
  }
  moreover {
   assume [simp]: backtrack-lvl\ S = 0
   have \bigwedge L. get-level M L = 0
     proof -
       \mathbf{fix}\ L
       have atm\text{-}of\ L \notin atm\text{-}of\ `(lits\text{-}of\ M) \Longrightarrow get\text{-}level\ M\ L = 0\ \mathbf{by}\ auto
       moreover {
         assume atm\text{-}of L \in atm\text{-}of \text{ } (lits\text{-}of M)
         have g-r: get-all-levels-of-marked M = rev [Suc 0..<Suc (backtrack-lvl S)]
           using lev tr-S unfolding cdcl_W-M-level-inv-def by auto
         have Max (insert \ 0 \ (set \ (get-all-levels-of-marked \ M))) = (backtrack-lvl \ S)
           unfolding g-r by (simp \ add: Max-n-upt)
         then have get-level ML = 0
          using get-maximum-possible-level-ge-get-level[of M L]
          {\bf unfolding} \ \textit{get-maximum-possible-level-max-get-all-levels-of-marked} \ {\bf by} \ \textit{auto}
       ultimately show get-level ML = 0 by blast
   then have ?case using get-maximum-level-exists-lit-of-max-level[of D\#\cup CM] tr-S T
     by (auto simp: Bex-mset-def)
 ultimately show ?case using resolve.hyps(3) by blast
next
  case (skip\ L\ C'\ M\ D\ T) note tr\text{-}S = this(1) and D = this(2) and T = this(5)
  then obtain La where La \in \# D and get-level (Propagated L C' \# M) La = backtrack-lvl S
   using skip confl-inv by auto
  moreover
   have atm-of La \neq atm-of L
     proof (rule ccontr)
       assume ¬ ?thesis
       then have La: La = L using \langle La \in \# D \rangle \langle -L \notin \# D \rangle by (auto simp add: atm-of-eq-atm-of)
       have Propagated L C' \# M \models as CNot D
         using conflicting tr-S D unfolding cdcl_W-conflicting-def by auto
       then have -L \in lits\text{-}of M
         using \langle La \in \# D \rangle in-CNot-implies-uninus(2)[of D L Propagated L C' \# M] unfolding La
         by auto
```

```
then show False using lev tr-S unfolding cdcl<sub>W</sub>-M-level-inv-def consistent-interp-def by auto
     qed
   then have get-level (Propagated L C' \# M) La = get-level M La by auto
 ultimately show ?case using D tr-S T by auto
qed (auto split: split-if-asm simp: cdcl<sub>W</sub>-M-level-inv-decomp)
5.6.5
         Strong completeness
lemma cdcl_W-cp-propagate-confl:
 assumes cdcl_W-cp S T
 shows propagate^{**} S T \lor (\exists S'. propagate^{**} S S' \land conflict S' T)
 using assms by induction blast+
lemma rtranclp-cdcl_W-cp-propagate-conft:
 assumes cdcl_W-cp^{**} S T
 shows propagate^{**} S T \lor (\exists S'. propagate^{**} S S' \land conflict S' T)
 by (simp add: assms rtranclp-cdcl<sub>W</sub>-cp-propa-or-propa-confl)
lemma cdcl_W-cp-propagate-completeness:
 assumes MN: set M \models s set-mset N and
  cons: consistent-interp (set M) and
  tot: total\text{-}over\text{-}m \ (set \ M) \ (set\text{-}mset \ N) \ \mathbf{and}
  lits-of (trail\ S) \subseteq set\ M and
  init-clss S = N and
 propagate^{**} S S' and
 learned-clss S = {\#}
 shows length (trail\ S) \leq length\ (trail\ S') \land lits\text{-}of\ (trail\ S') \subseteq set\ M
 using assms(6,4,5,7)
proof (induction rule: rtranclp-induct)
 case base
 then show ?case by auto
next
 case (step \ Y \ Z)
 note st = this(1) and propa = this(2) and IH = this(3) and lits' = this(4) and NS = this(5) and
   learned = this(6)
 then have len: length (trail S) \leq length (trail Y) and LM: lits-of (trail Y) \subseteq set M
    by blast+
 obtain M'N'UkCL where
   Y: state \ Y = (M', N', U, k, None) and
   Z: state Z = (Propagated \ L \ (C + \{\#L\#\}) \ \# \ M', \ N', \ U, \ k, \ None) and
   C: C + \{\#L\#\} \in \# clauses \ Y \ and
   M'-C: M' \models as \ CNot \ C and
   undefined-lit (trail Y) L
   using propa by auto
 have init-clss S = init-clss Y
   using st by induction auto
  then have [simp]: N' = N using NS Y Z by simp
 have learned-clss Y = \{\#\}
   using st learned by induction auto
  then have [simp]: U = \{\#\} using Y by auto
  have set M \models s \ CNot \ C
   using M'-C LM Y unfolding true-annots-def Ball-def true-annot-def true-clss-def true-cls-def
   by force
  moreover
```

have set $M \models C + \{\#L\#\}$

```
using MN C learned Y unfolding true-clss-def clauses-def
     by (metis NS (init-clss S = init-clss Y) (learned-clss Y = \{\#\}) add.right-neutral
       mem-set-mset-iff)
 ultimately have L \in set M by (simp \ add: cons \ consistent-CNot-not)
 then show ?case using LM len Y Z by auto
qed
lemma completeness-is-a-full1-propagation:
 fixes S :: 'st and M :: 'v literal list
 assumes MN: set M \models s set-mset N
 and cons: consistent-interp (set M)
 and tot: total-over-m (set M) (set-mset N)
 and alien: no-strange-atm S
 and learned: learned-clss S = \{\#\}
 and clsS[simp]: init-clss\ S = N
 and lits: lits-of (trail S) \subseteq set M
 shows \exists S'. propagate^{**} S S' \land full cdcl_W-cp S S'
 obtain S' where full: full cdcl_W-cp S S'
   using always-exists-full-cdcl_W-cp-step alien by blast
 then consider (propa) propagate** S S'
   \mid (confl) \exists X. propagate^{**} S X \land conflict X S'
   using rtranclp-cdcl_W-cp-propagate-confl unfolding full-def by blast
 then show ?thesis
   proof cases
     case propa then show ?thesis using full by blast
   next
     case confl
     then obtain X where
       X: propagate^{**} S X and
       Xconf: conflict X S'
     by blast
     have clsX: init-clss\ X = init-clss\ S
      using X by induction auto
     have learnedX: learned-clss X = \{\#\} using X learned by induction auto
     obtain E where
       E: E \in \# init\text{-}clss \ X + learned\text{-}clss \ X \ and
      Not-E: trail\ X \models as\ CNot\ E
      using Xconf by (auto simp add: conflict.simps clauses-def)
     have lits-of (trail\ X) \subseteq set\ M
      using cdcl_W-cp-propagate-completeness [OF assms(1-3) lits - X learned] learned by auto
     then have MNE: set M \models s \ CNot \ E
      using Not-E
      by (fastforce simp add: true-annots-def true-annot-def true-clss-def true-cls-def)
     have \neg set M \models s set-mset N
       using E consistent-CNot-not[OF cons MNE]
       unfolding learnedX true-clss-def unfolding clsX clsS by auto
     then show ?thesis using MN by blast
   qed
qed
See also cdcl_W-cp^{**} ?S ?S' \Longrightarrow \exists M. trail ?S' = M @ trail ?S \land (\forall l \in set M. \neg is-marked l)
lemma rtranclp-propagate-is-trail-append:
 propagate^{**} S T \Longrightarrow \exists c. trail T = c @ trail S
 by (induction rule: rtranclp-induct) auto
```

```
\mathbf{lemma}\ rtranclp	ext{-}propagate	ext{-}is	ext{-}update	ext{-}trail:
 propagate^{**} S T \Longrightarrow cdcl_W-M-level-inv S \Longrightarrow T \sim delete-trail-and-rebuild (trail T) S
proof (induction rule: rtranclp-induct)
 case base
 then show ?case unfolding state-eq-def by (auto simp: cdcl<sub>W</sub>-M-level-inv-decomp state-access-simp)
next
  case (step\ T\ U) note IH=this(3)[OF\ this(4)]
 moreover have cdcl_W-M-level-inv U
   using rtranclp\text{-}cdcl_W\text{-}consistent\text{-}inv \langle propagate^{**} \ S \ T \rangle \langle propagate \ T \ U \rangle
   rtranclp-mono[of\ propagate\ cdcl_W]\ cdcl_W-cp-consistent-inv\ propagate'
   rtranclp-propagate-is-rtranclp-cdcl_W step.prems by blast
   then have no-dup (trail U) unfolding cdcl_W-M-level-inv-def by auto
 ultimately show ?case using \(\rho propagate T U \rangle \) unfolding state-eq-def
   by (fastforce simp: state-access-simp)
qed
lemma cdcl_W-stgy-strong-completeness-n:
 assumes
   MN: set M \models s set-mset N and
   cons: consistent-interp (set M) and
   tot: total\text{-}over\text{-}m \ (set \ M) \ (set\text{-}mset \ N) \ \mathbf{and}
   atm-incl: atm-of ' (set M) \subseteq atms-of-msu N and
   distM: distinct M and
   length: n \leq length M
 shows
   \exists M' \ k \ S. \ length \ M' \geq n \land
     \mathit{lits\text{-}of}\ M^{\,\prime}\subseteq\,\mathit{set}\ M\ \wedge
     no-dup M' \wedge
     S \sim update-backtrack-lvl\ k\ (append-trail\ (rev\ M')\ (init-state\ N))\ \wedge
     cdcl_W-stgy** (init-state N) S
 using length
proof (induction \ n)
 case \theta
 have update-backtrack-lvl 0 (append-trail (rev []) (init-state N)) \sim init-state N
   by (auto simp: state-eq-def simp del: state-simp)
 moreover have
   0 \leq length [] and
   lits-of [] \subseteq set M and
   cdcl_W-stgy** (init-state N) (init-state N)
   and no-dup
   by (auto simp: state-eq-def simp del: state-simp)
 ultimately show ?case using state-eq-sym by blast
next
 case (Suc n) note IH = this(1) and n = this(2)
  then obtain M' k S where
   l-M': length <math>M' \ge n and
   M': lits-of M' \subseteq set M and
   n\text{-}d[simp]: no-dup M' and
   S: S \sim update-backtrack-lvl\ k\ (append-trail\ (rev\ M')\ (init-state\ N)) and
   st: cdcl_W - stgy^{**} (init-state N) S
   by auto
 have
   M: cdcl_W-M-level-inv S and
   alien: no-strange-atm S
```

```
using rtranclp-cdcl_W-consistent-inv[OF rtranclp-cdcl_W-stgy-rtranclp-cdcl_W[OF st]]
       rtranclp-cdcl_W-no-strange-atm-inv[OF\ rtranclp-cdcl_W-stgy-rtranclp-cdcl_W[OF\ st]]
       S unfolding state-eq-def cdcl<sub>W</sub>-M-level-inv-def no-strange-atm-def by auto
{ assume no-step: \neg no-step propagate S
   obtain S' where S': propagate^{**} S S' and full: full cdcl_W-cp S S'
       using completeness-is-a-full1-propagation [OF assms(1-3), of S] alien M'S
       by (auto simp: state-access-simp)
   have lev: cdcl_W-M-level-inv S'
       using MS' rtranclp-cdcl<sub>W</sub>-consistent-inv rtranclp-propagate-is-rtranclp-cdcl<sub>W</sub> by blast
   then have n-d'[simp]: no-dup (trail S')
       unfolding cdcl_W-M-level-inv-def by auto
   have length (trail S) \leq length (trail S') \wedge lits-of (trail S') \subseteq set M
       using S' full cdcl_W-cp-propagate-completeness[OF assms(1-3), of S] M' S
       by (auto simp: state-access-simp)
   moreover
       have full: full1 cdcl_W-cp S S'
          \mathbf{using} \ \mathit{full} \ \mathit{no-step} \ \mathit{no-step-cdcl}_W \ \mathit{-cp-no-conflict-no-propagate}(2) \ \mathbf{unfolding} \ \mathit{full1-def} \ \mathit{full1-def} \ \mathit{full1-def} \ \mathit{full1-def} \ \mathit{full2-def} \ \mathit{full2-def} \ \mathit{full3-def} \ \mathit{f
          rtranclp-unfold by blast
       then have cdcl_W-stgy S S' by (simp \ add: \ cdcl_W-stgy.conflict')
   moreover
       have propa: propagate^{++} S S' using S' full unfolding full1-def by (metis \ rtranclpD) tranclpD)
       have trail\ S = M' using S by (auto simp: state-access-simp)
       with propa have length (trail S') > n
          using l-M' propa by (induction rule: tranclp.induct) auto
   moreover
       have stS': cdcl_W-stgy^{**} (init-state N) S'
          using st\ cdcl_W-stgy.conflict'[OF full] by auto
       then have init-clss S' = N using stS' rtranclp-cdcl<sub>W</sub>-stgy-no-more-init-clss by fastforce
   moreover
       have
           [simp]: learned-clss\ S' = \{\#\} and
           [simp]: init-clss S' = init-clss S and
           [simp]: conflicting S' = None
          using tranclp-into-rtranclp[OF \langle propagate^{++} S S' \rangle] S
          rtranclp-propagate-is-update-trail[of S S'] S M unfolding state-eq-def
          by (auto simp: state-access-simp)
       have S-S': S' \sim update-backtrack-lvl (backtrack-lvl S')
          (append-trail\ (rev\ (trail\ S'))\ (init-state\ N))\ \mathbf{using}\ S
          by (auto simp: state-eq-def state-access-simp simp del: state-simp)
       have cdcl_W-stgy** (init-state (init-clss S')) S'
          apply (rule rtranclp.rtrancl-into-rtrancl)
          using st unfolding (init-clss S' = N) apply simp
          using \langle cdcl_W \text{-}stgy \ S \ S' \rangle by simp
   ultimately have ?case
       apply -
       apply (rule exI[of - trail S'], rule exI[of - backtrack-lvl S'], rule exI[of - S'])
       using S-S' by (auto simp: state-eq-def simp del: state-simp)
}
moreover {
   assume no-step: no-step propagate S
   have ?case
       proof (cases length M' \geq Suc \ n)
          case True
          then show ?thesis using l-M'M' st M alien S by fastforce
```

```
next
 case False
 then have n': length M' = n using l-M' by auto
 have no-confl: no-step conflict S
   proof -
     \{ \mathbf{fix} D \}
      assume D \in \# N and M' \models as \ CNot \ D
      then have set M \models D using MN unfolding true-clss-def by auto
      moreover have set M \models s \ CNot \ D
        using \langle M' \models as \ CNot \ D \rangle \ M'
        by (metis le-iff-sup true-annots-true-cls true-clss-union-increase)
      ultimately have False using cons consistent-CNot-not by blast
     then show ?thesis using S by (auto simp: conflict.simps true-clss-def state-access-simp)
   qed
 have lenM: length M = card (set M) using distM by (induction M) auto
 have no-dup M' using S M unfolding cdcl_W-M-level-inv-def by auto
 then have card (lits-of M') = length M'
   by (induction M') (auto simp add: lits-of-def card-insert-if)
 then have lits-of M' \subset set M
   using n M' n' len M by auto
 then obtain m where m: m \in set M and undef-m: m \notin lits-of M' by auto
 moreover have undef: undefined-lit M' m
   using M' Marked-Propagated-in-iff-in-lits-of calculation (1,2) cons
   consistent-interp-def by blast
 moreover have atm\text{-}of m \in atm\text{-}of\text{-}msu \ (init\text{-}clss \ S)
   using atm-incl calculation S by (auto simp: state-access-simp)
 ultimately
   have dec: decide S (cons-trail (Marked m(k+1)) (incr-lvl S))
     using decide.intros[of S rev M' N - k m
       cons-trail (Marked m (k + 1)) (incr-lvl S)] S
     by (auto simp: state-access-simp)
 let S' = cons-trail (Marked m(k+1)) (incr-lvl S)
 have lits-of (trail S') \subseteq set M using m M' S undef by (auto simp: state-access-simp)
 moreover have no-strange-atm ?S'
   using alien dec M by (meson cdcl<sub>W</sub>-no-strange-atm-inv decide other)
 ultimately obtain S" where S": propagate** ?S' S" and full: full cdclw-cp ?S' S"
   using completeness-is-a-full1-propagation [OF assms(1-3), of ?S'] S undef
   by (auto simp: state-access-simp)
 have cdcl_W-M-level-inv ?S'
   using M dec rtranclp-mono of decide cdcl_W by (meson cdcl_W-consistent-inv decide other)
 then have lev'': cdcl_W-M-level-inv S''
   \mathbf{using}\ S^{\prime\prime}\ rtranclp\text{-}cdcl_W\text{-}consistent\text{-}inv\ rtranclp\text{-}propagate\text{-}is\text{-}rtranclp\text{-}cdcl_W\ }\mathbf{by}\ blast
 then have n-d": no-dup (trail S")
   unfolding cdcl_W-M-level-inv-def by auto
 have length (trail ?S') \leq length (trail S'') \wedge lits-of (trail S'') \subseteq set M
   using S'' full cdcl_W-cp-propagate-completeness OF assms(1-3), of S' S' m M' S undef
   by (simp add: state-access-simp)
 then have Suc n < length (trail S'') \wedge lits-of (trail S'') \subseteq set M
   using l-M' S undef by (auto simp: state-access-simp)
 moreover
   have cdcl_W-M-level-inv (cons-trail (Marked m (Suc (backtrack-lvl S)))
     (update-backtrack-lvl (Suc (backtrack-lvl S)) S))
     using S (cdcl_W - M - level - inv (cons-trail (Marked m (k + 1)) (incr-lvl S))) by auto
   then have S'': S'' \sim update-backtrack-lvl (backtrack-lvl <math>S'')
```

```
(append-trail\ (rev\ (trail\ S''))\ (init-state\ N))
          using rtranclp-propagate-is-update-trail[OF S''] S undef n-d'' lev''
          by (auto simp del: state-simp simp: state-eq-def state-access-simp)
        then have cdcl_W-stgy** (init-state N) S''
          using cdcl_W-stgy.intros(2)[OF decide[OF dec] - full] no-step no-confl st
          by (auto simp: cdcl_W-cp.simps)
      ultimately show ?thesis using S'' n-d" by blast
     qed
 }
 ultimately show ?case by blast
qed
lemma cdcl_W-stgy-strong-completeness:
 assumes MN: set M \models s set-mset N
 and cons: consistent-interp (set M)
 and tot: total-over-m (set M) (set-mset N)
 and atm-incl: atm-of '(set M) \subseteq atms-of-msu N
 and distM: distinct M
 shows
   \exists M' k S.
     lits-of M' = set M \wedge
     S \sim update-backtrack-lvl\ k\ (append-trail\ (rev\ M')\ (init-state\ N))\ \wedge
     cdcl_W-stgy^{**} (init-state N) S \wedge
     final-cdcl_W-state S
proof -
 from cdcl_W-stgy-strong-completeness-n[OF assms, of length M]
 obtain M' k T where
   l: length M \leq length M' and
   M'-M: lits-of M' \subseteq set M and
   no-dup: no-dup: M' and
   T: T \sim update-backtrack-lvl\ k\ (append-trail\ (rev\ M')\ (init-state\ N)) and
   st: cdcl_W - stgy^{**} (init-state N) T
   by auto
 have card (set M) = length M using distM by (simp add: distinct-card)
 moreover
   have cdcl_W-M-level-inv T
     using rtranclp-cdcl_W-stqy-consistent-inv[OF st] T by auto
   then have card (set ((map (\lambda l. atm-of (lit-of l)) M'))) = length M'
     using distinct-card no-dup by fastforce
 moreover have card (lits-of M') = card (set ((map (\lambda l. atm-of (lit-of l)) M')))
   using no-dup unfolding lits-of-def apply (induction M') by (auto simp add: card-insert-if)
 ultimately have card (set M) \leq card (lits-of M') using l unfolding lits-of-def by auto
 then have set M = lits-of M'
   using M'-M card-seteq by blast
 moreover
   then have M' \models asm N
     using MN unfolding true-annots-def Ball-def true-annot-def true-clss-def by auto
   then have final-cdcl<sub>W</sub>-state T
     using T no-dup unfolding final-cdcl<sub>W</sub>-state-def by (auto simp: state-access-simp)
 ultimately show ?thesis using st T by blast
qed
```

5.6.6 No conflict with only variables of level less than backtrack level

This invariant is stronger than the previous argument in the sense that it is a property about all possible conflicts.

```
definition no-smaller-confl (S::'st) \equiv
 (\forall\,M\;K\;i\;M'\;D.\;M'\;@\;Marked\;K\;i\;\#\;M=\mathit{trail}\;S\longrightarrow D\in\#\;\mathit{clauses}\;S
   \longrightarrow \neg M \models as \ CNot \ D)
lemma no-smaller-confl-init-sate[simp]:
 no-smaller-confl (init-state N) unfolding no-smaller-confl-def by auto
lemma cdcl_W-o-no-smaller-confl-inv:
 fixes S S' :: 'st
 assumes
   cdcl_W-o S S' and
   lev: cdcl_W-M-level-inv S and
   max-lev: conflict-is-false-with-level S and
   smaller: no-smaller-confl S and
   no-f: no-clause-is-false S
 shows no-smaller-confl S'
 using assms(1,2) unfolding no-smaller-confl-def
proof (induct rule: cdcl_W-o-induct-lev2)
 case (decide L T) note confl = this(1) and undef = this(2) and T = this(4)
 have [simp]: clauses T = clauses S
   using T undef by auto
 show ?case
   proof (intro allI impI)
     \mathbf{fix}\ M^{\prime\prime}\ K\ i\ M^\prime\ Da
     assume M'' @ Marked K i \# M' = trail T
     and D: Da \in \# local.clauses T
     then have tl M'' @ Marked K i \# M' = trail S
      \vee (M'' = [] \wedge Marked \ K \ i \# M' = Marked \ L \ (backtrack-lvl \ S + 1) \# trail \ S)
      using T undef by (cases M'') auto
     moreover {
      assume tl M'' @ Marked K i \# M' = trail S
      then have \neg M' \models as \ CNot \ Da
        using D T undef no-f confl smaller unfolding no-smaller-confl-def smaller by fastforce
     moreover {
      assume Marked K i \# M' = Marked L (backtrack-lvl S + 1) \# trail S
      then have \neg M' \models as \ CNot \ Da \ using \ no-f \ D \ confl \ T \ by \ auto
     ultimately show \neg M' \models as \ CNot \ Da by fast
  qed
next
 then show ?case using smaller no-f max-lev unfolding no-smaller-confl-def by auto
next
 case skip
 then show ?case using smaller no-f max-lev unfolding no-smaller-confl-def by auto
 case (backtrack K i M1 M2 L D T) note decomp = this(1) and confl = this(3) and undef = this(6)
   and T = this(7)
 obtain c where M: trail S = c @ M2 @ Marked K (i+1) # M1
   using decomp by auto
```

```
show ?case
   proof (intro allI impI)
     fix M ia K' M' Da
     assume M' @ Marked K' ia \# M = trail T
     then have tl \ M' @ Marked \ K' \ ia \# M = M1
       using T decomp undef lev by (cases M') (auto simp: cdcl_W-M-level-inv-decomp)
     assume D: Da \in \# clauses T
     moreover{
       assume Da \in \# clauses S
       then have \neg M \models as \ CNot \ Da \ using \ \langle tl \ M' \ @ \ Marked \ K' \ ia \ \# \ M = M1 \rangle \ M \ confl \ undef \ smaller
         unfolding no-smaller-confl-def by auto
     moreover {
       assume Da: Da = D + \{\#L\#\}
       have \neg M \models as \ CNot \ Da
         proof (rule ccontr)
          assume ¬ ?thesis
           then have -L \in lits-of M unfolding Da by auto
           then have -L \in lits-of (Propagated L ((D + {\#L\#})) \# M1)
            using UnI2 \langle tl \ M' \ @ Marked \ K' \ ia \ \# \ M = M1 \rangle
            by auto
           moreover
            have backtrack S
              (cons-trail\ (Propagated\ L\ (D+\{\#L\#\}))
                (reduce-trail-to\ M1\ (add-learned-cls\ (D+\{\#L\#\}))
                (update-backtrack-lvl \ i \ (update-conflicting \ None \ S)))))
              using backtrack.intros[of S] backtrack.hyps
              by (force simp: state-eq-def simp del: state-simp)
            then have cdcl_W-M-level-inv
              (cons-trail\ (Propagated\ L\ (D+\{\#L\#\}))
                (reduce\text{-}trail\text{-}to\ M1\ (add\text{-}learned\text{-}cls\ (D+\{\#L\#\})
                (update-backtrack-lvl\ i\ (update-conflicting\ None\ S)))))
              using cdcl_W-consistent-inv[OF - lev] other[OF bj] by auto
            then have no-dup (Propagated L (D + \{\#L\#\}) \# M1)
              using decomp undef lev unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
          ultimately show False by (metis consistent-interp-def distinct consistent-interp
            insertCI\ lits-of-cons\ ann-literal.sel(2))
        \mathbf{qed}
     }
     ultimately show \neg M \models as \ CNot \ Da
       using T undef \langle Da = D + \{\#L\#\} \Longrightarrow \neg M \models as \ CNot \ Da \rangle \ decomp \ lev
       \mathbf{unfolding}\ \mathit{cdcl}_W\text{-}\mathit{M-level-inv-def}\ \mathbf{by}\ \mathit{fastforce}
   qed
qed
lemma conflict-no-smaller-confl-inv:
 assumes conflict S S'
 and no-smaller-confl S
 shows no-smaller-confl S'
 using assms unfolding no-smaller-confl-def by fastforce
lemma propagate-no-smaller-confl-inv:
 assumes propagate: propagate S S'
 and n-l: no-smaller-confl S
```

```
shows no-smaller-confl S'
 unfolding no-smaller-confl-def
proof (intro allI impI)
 fix M' K i M'' D
 assume M': M'' @ Marked K i \# M' = trail S'
 and D \in \# clauses S'
 obtain M N U k C L where
   S: state \ S = (M, N, U, k, None) \ and
   S': state S' = (Propagated\ L\ (\ (C + \{\#L\#\}))\ \#\ M,\ N,\ U,\ k,\ None) and
   C + \{\#L\#\} \in \# clauses S \text{ and }
   M \models as \ CNot \ C and
   undefined-lit M L
   using propagate by auto
 have tl \ M'' \otimes Marked \ K \ i \ \# \ M' = trail \ S \ using \ M' \ S \ S'
   by (metis Pair-inject list.inject list.sel(3) ann-literal.distinct(1) self-append-conv2
     tl-append2)
 then have \neg M' \models as \ CNot \ D
   using \langle D \in \# \ clauses \ S' \rangle n-l S \ S' \ clauses-def unfolding no-smaller-confl-def by auto
 then show \neg M' \models as \ CNot \ D by auto
qed
lemma cdcl_W-cp-no-smaller-confl-inv:
 assumes propagate: cdcl_W-cp S S'
 and n-l: no-smaller-confl S
 shows no-smaller-confl S'
 using assms
proof (induct rule: cdcl_W-cp.induct)
 \mathbf{case} \ (\mathit{conflict'} \ S \ S')
 then show ?case using conflict-no-smaller-confl-inv[of S S'] by blast
next
 case (propagate' S S')
 then show ?case using propagate-no-smaller-confl-inv[of S S'] by fastforce
lemma rtrancp-cdcl_W-cp-no-smaller-confl-inv:
 assumes propagate: cdcl_W-cp^{**} S S'
 and n-l: no-smaller-confl S
 shows no-smaller-confl S'
 using assms
proof (induct rule: rtranclp-induct)
 case base
 then show ?case by simp
next
 case (step S' S'')
 then show ?case using cdcl_W-cp-no-smaller-confl-inv[of S' S''] by fast
lemma trancp-cdcl_W-cp-no-smaller-confl-inv:
 assumes propagate: cdcl_W-cp^{++} S S'
 and n-l: no-smaller-confl S
 shows no-smaller-confl S'
 using assms
proof (induct rule: tranclp.induct)
 case (r\text{-}into\text{-}trancl\ S\ S')
 then show ?case using cdcl_W-cp-no-smaller-confl-inv[of SS'] by blast
```

```
next
 case (trancl-into-trancl S S' S'')
 then show ?case using cdcl_W-cp-no-smaller-confl-inv[of S' S''] by fast
qed
lemma full-cdcl_W-cp-no-smaller-confl-inv:
 assumes full cdcl_W-cp S S'
 and n-l: no-smaller-confl S
 shows no-smaller-confl S'
 using assms unfolding full-def
 using rtrancp-cdcl_W-cp-no-smaller-confl-inv[of SS'] by blast
lemma full1-cdcl_W-cp-no-smaller-confl-inv:
 assumes full1 cdcl_W-cp S S'
 and n-l: no-smaller-confl S
 shows no-smaller-confl S'
 using assms unfolding full1-def
 using trancp-cdcl_W-cp-no-smaller-confl-inv[of SS'] by blast
\mathbf{lemma}\ \mathit{cdcl}_W\textit{-stgy-no-smaller-confl-inv}:
 assumes cdcl_W-stgy SS'
 and n-l: no-smaller-confl S
 and conflict-is-false-with-level S
 and cdcl_W-M-level-inv S
 shows no-smaller-confl S'
 using assms
proof (induct\ rule:\ cdcl_W-stgy.induct)
 case (conflict' S')
 then show ?case using full1-cdcl<sub>W</sub>-cp-no-smaller-confl-inv[of SS'] by blast
next
 case (other' S' S'')
 have no-smaller-confl S'
   using cdcl_W-o-no-smaller-confl-inv[OF other'.hyps(1) other'.prems(3,2,1)]
   not\text{-}conflict\text{-}not\text{-}any\text{-}negated\text{-}init\text{-}clss\ other'.hyps(2)\ \mathbf{by}\ blast
 then show ?case using full-cdcl<sub>W</sub>-cp-no-smaller-confl-inv[of S' S''] other'.hyps by blast
qed
lemma conflict-conflict-is-no-clause-is-false-test:
 assumes conflict S S'
 and (\forall D \in \# init\text{-}clss \ S + learned\text{-}clss \ S. \ trail \ S \models as \ CNot \ D
     \rightarrow (\exists L. \ L \in \# \ D \land get\text{-level (trail S)} \ L = backtrack\text{-lvl S)})
 shows \forall D \in \# init\text{-}clss S' + learned\text{-}clss S'. trail S' \models as CNot D
     \rightarrow (\exists L. \ L \in \# D \land get\text{-level (trail } S') \ L = backtrack\text{-lvl } S')
 using assms by auto
lemma is-conflicting-exists-conflict:
 assumes \neg(\forall D \in \#init\text{-}clss\ S' + learned\text{-}clss\ S'. \neg\ trail\ S' \models as\ CNot\ D)
 and conflicting S' = None
 shows \exists S''. conflict S' S''
 using assms clauses-def not-conflict-not-any-negated-init-clss by fastforce
lemma cdcl_W-o-conflict-is-no-clause-is-false:
 fixes S S' :: 'st
 assumes
```

```
cdcl_W-o S S' and
   lev: cdcl_W-M-level-inv S and
   max-lev: conflict-is-false-with-level S and
   no-f: no-clause-is-false S and
   no-l: no-smaller-confl S
  shows no-clause-is-false S'
   \vee (conflicting S' = None
        \rightarrow (\forall D \in \# clauses S'. trail S' \models as CNot D
           \longrightarrow (\exists L. \ L \in \# D \land get\text{-level (trail } S') \ L = backtrack\text{-lvl } S')))
 using assms(1,2)
proof (induct\ rule:\ cdcl_W-o-induct-lev2)
 case (decide L T) note S = this(1) and undef = this(2) and T = this(4)
 show ?case
   proof (rule HOL.disjI2, clarify)
     \mathbf{fix} D
     assume D: D \in \# clauses T and M-D: trail T \models as CNot D
     let ?M = trail S
     let ?M' = trail\ T
     let ?k = backtrack-lvl S
     have \neg ?M \models as \ CNot \ D
        using no-f D S T undef by auto
     have -L \in \# D
      proof (rule ccontr)
        assume ¬ ?thesis
        have ?M \models as CNot D
          unfolding true-annots-def Ball-def true-annot-def CNot-def true-cls-def
          proof (intro allI impI)
            \mathbf{fix} \ x
            assume x: x \in \{ \{ \# - L \# \} \mid L. L \in \# D \}
            then obtain L' where L': x = \{\#-L'\#\}\ L' \in \#\ D by auto
            obtain L'' where L'' \in \# x and lits-of (Marked L (?k + 1) \# ?M) \models l L''
             using M-D x T undef unfolding true-annots-def Ball-def true-annot-def CNot-def
              true-cls-def Bex-mset-def by auto
            show \exists L \in \# x. lits-of ?M \models l L unfolding Bex-mset-def
             count-single insertE less-numeral-extra(3) lits-of-cons ann-literal.sel(1)
               true-lit-def uminus-of-uminus-id)
          qed
        then show False using \langle \neg ?M \models as \ CNot \ D \rangle by auto
     have atm\text{-}of L \notin atm\text{-}of ' (lits\text{-}of ?M)
      using undef defined-lit-map unfolding lits-of-def by fastforce
     then have get-level (Marked L (?k + 1) # ?M) (-L) = ?k + 1 by simp
     then show \exists La. La \in \# D \land get\text{-}level ?M' La = backtrack\text{-}lvl T
      using \langle -L \in \# D \rangle T undef by auto
   qed
next
 case resolve
 then show ?case by auto
next
 case skip
 then show ?case by auto
\mathbf{next}
  case (backtrack K i M1 M2 L D T) note decomp = this(1) and undef = this(6) and T = this(7)
```

```
proof (rule HOL.disjI2, clarify)
     assume Da: Da \in \# clauses T
     and M-D: trail\ T \models as\ CNot\ Da
     obtain c where M: trail S = c @ M2 @ Marked K (i + 1) \# M1
       using decomp by auto
     have tr-T: trail T = Propagated\ L\ (D + \{\#L\#\})\ \#\ M1
       using T decomp undef lev by (auto simp: cdcl_W-M-level-inv-decomp)
     have backtrack S T
      using backtrack.intros backtrack.hyps T by (force simp del: state-simp simp: state-eq-def)
     then have lev': cdcl_W-M-level-inv T
       using cdcl_W-consistent-inv lev other by blast
     then have -L \notin lits-of M1
       unfolding cdcl_W-M-level-inv-def lits-of-def
      proof -
        have consistent-interp (lits-of (trail S)) \land no-dup (trail S)
          \land backtrack-lvl S = length (qet-all-levels-of-marked (trail <math>S))
          \land get-all-levels-of-marked (trail S)
            = rev [1..<1 + length (get-all-levels-of-marked (trail S))]
          using lev \ cdcl_W-M-level-inv-def by blast
        then show -L \notin lit\text{-}of 'set M1
          by (metis (no-types) One-nat-def add.right-neutral add-Suc-right
            atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set backtrack.hyps(2)
            cdcl_W.backtrack-lit-skiped\ cdcl_W-axioms\ decomp\ lits-of-def)
       ged
     { assume Da \in \# \ clauses \ S
       then have \neg M1 \models as \ CNot \ Da \ using \ no-l \ M \ unfolding \ no-smaller-confl-def \ by \ auto
     moreover {
      assume Da: Da = D + \{\#L\#\}
      have \neg M1 \models as \ CNot \ Da \ using (-L \notin lits of \ M1) \ unfolding \ Da \ by \ simp
     ultimately have \neg M1 \models as \ CNot \ Da
       using Da T undef decomp lev by (fastforce simp: cdcl_W-M-level-inv-decomp)
     then have -L \in \# Da
       using M-D \leftarrow L \notin lits-of M1 \rightarrow in-CNot-implies-uminus(2)
         true-annots-CNot-lit-of-notin-skip T unfolding tr-T
       by (smt\ insert\text{-}iff\ lits\text{-}of\text{-}cons\ ann\text{-}literal.sel(2))
     have g-M1: get-all-levels-of-marked M1 = rev [1..< i+1]
       using lev lev' T decomp undef unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
     have no-dup (Propagated L (D + \{\#L\#\}) \# M1)
       using lev lev' T decomp undef unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
     then have L: atm-of L \notin atm-of 'lits-of M1 unfolding lits-of-def by auto
     have get-level (Propagated L ((D + {\#L\#})) \# M1) (-L) = i
       using get-level-get-rev-level-get-all-levels-of-marked[OF L,
        of [Propagated\ L\ ((D + \{\#L\#\}))]]
       by (simp add: g-M1 split: if-splits)
     then show \exists La. La \in \# Da \land qet\text{-level (trail } T) La = backtrack\text{-lvl } T
       using \langle -L \in \# Da \rangle T decomp undef lev by (auto simp: cdcl_W-M-level-inv-def)
   qed
qed
lemma full1-cdcl_W-cp-exists-conflict-decompose:
 assumes confl: \exists D \in \# clauses S. trail S \models as CNot D
```

show ?case

```
and full: full cdcl_W-cp S U
 and no-confl: conflicting S = None
 shows \exists T. propagate^{**} S T \land conflict T U
proof -
  consider (propa) propagate^{**} S U
       (confl) T where propagate^{**} S T and conflict T U
  using full unfolding full-def by (blast dest:rtranclp-cdcl<sub>W</sub>-cp-propa-or-propa-confl)
  then show ?thesis
   proof cases
     case confl
     then show ?thesis by blast
   next
     case propa
     then have conflicting U = None
      using no-confl by induction auto
     moreover have [simp]: learned-clss U = learned-clss S and
      [simp]: init-clss\ U = init-clss\ S
      using propa by induction auto
     moreover
      obtain D where D: D \in \#clauses U and
        trS: trail S \models as CNot D
        using confl clauses-def by auto
      obtain M where M: trail U = M @ trail S
        using full rtranclp-cdcl_W-cp-drop\ While-trail\ unfolding\ full-def\ by\ meson
      have tr-U: trail U \models as \ CNot \ D
        apply (rule true-annots-mono)
        using trS unfolding M by simp-all
     have \exists V. conflict U V
      using \langle conflicting \ U = None \rangle \ D \ clauses-def \ not-conflict-not-any-negated-init-clss \ tr-U
     then have False using full cdcl<sub>W</sub>-cp.conflict' unfolding full-def by blast
     then show ?thesis by fast
   qed
qed
lemma full1-cdcl_W-cp-exists-conflict-full1-decompose:
 assumes confl: \exists D \in \#clauses S. trail S \models as CNot D
 and full: full cdcl_W-cp S U
 and no-confl: conflicting S = None
 shows \exists T D. propagate^{**} S T \land conflict T U
   \land trail T \models as \ CNot \ D \land conflicting \ U = Some \ D \land D \in \# \ clauses \ S
proof
 obtain T where propa: propagate^{**} S T and conf: conflict T U
   using full1-cdcl_W-cp-exists-conflict-decompose[OF\ assms] by blast
 have p: learned-clss T = learned-clss S init-clss T = init-clss S
    using propa by induction auto
 have c: learned-clss\ U = learned-clss\ T init-clss\ U = init-clss\ T
    using conf by induction auto
 obtain D where trail T \models as \ CNot \ D \land conflicting \ U = Some \ D \land D \in \# \ clauses \ S
   using conf p \ c by (fastforce \ simp: \ clauses-def)
  then show ?thesis
   using propa conf by blast
qed
lemma cdcl_W-stgy-no-smaller-confl:
```

```
assumes cdcl_W-stgy S S'
 and n-l: no-smaller-confl S
 and conflict-is-false-with-level S
 and cdcl_W-M-level-inv S
 and no-clause-is-false S
 and distinct\text{-}cdcl_W\text{-}state\ S
 and cdcl_W-conflicting S
 shows no-smaller-confl S'
 using assms
proof (induct rule: cdcl_W-stgy.induct)
 case (conflict' S')
 show no-smaller-confl S'
   using conflict'.hyps conflict'.prems(1) full1-cdcl<sub>W</sub>-cp-no-smaller-confl-inv by blast
 case (other' S' S'')
 have lev': cdcl_W-M-level-inv S'
   using cdcl_W-consistent-inv other other'.hyps(1) other'.prems(3) by blast
 show no-smaller-confl S''
   using cdcl_W-stqy-no-smaller-confl-inv[OF cdcl_W-stqy.other'[OF other'.hyps(1-3)]]
   other'.prems(1-3) by blast
qed
lemma cdcl_W-stgy-ex-lit-of-max-level:
 assumes cdcl_W-stgy S S'
 and n-l: no-smaller-confi S
 and conflict-is-false-with-level S
 and cdcl_W-M-level-inv S
 and no-clause-is-false S
 and distinct\text{-}cdcl_W\text{-}state\ S
 and cdcl_W-conflicting S
 shows conflict-is-false-with-level S'
 using assms
proof (induct rule: cdcl_W-stgy.induct)
 case (conflict' S')
 have no-smaller-confl S'
   using conflict'.hyps\ conflict'.prems(1)\ full1-cdcl_W-cp-no-smaller-confl-inv\ by\ blast
 moreover have conflict-is-false-with-level S'
   using conflict'.hyps conflict'.prems(2-4)
   rtranclp-cdcl_W-co-conflict-ex-lit-of-max-level[of S S']
   unfolding full-def full1-def rtranclp-unfold by presburger
 then show ?case by blast
next
  case (other' S' S'')
 have lev': cdcl_W-M-level-inv S'
   using cdcl_W-consistent-inv other other '.hyps(1) other'.prems(3) by blast
 moreover
   have no-clause-is-false S'
     \lor (conflicting S' = None \longrightarrow (\forall D \in \#clauses S'. trail S' \models as CNot D
          \rightarrow (\exists L. \ L \in \# D \land qet\text{-level (trail } S') \ L = backtrack\text{-lvl } S')))
     using cdcl_W-o-conflict-is-no-clause-is-false[of S S'] other'.hyps(1) other'.prems(1-4) by fast
 moreover {
   assume no-clause-is-false S'
   {
     assume conflicting S' = None
     then have conflict-is-false-with-level S' by auto
```

```
moreover have full cdcl_W-cp S' S''
     by (metis (no-types) other'.hyps(3))
   ultimately have conflict-is-false-with-level S''
     using rtranclp-cdcl_W-co-conflict-ex-lit-of-max-level[of S' S''] lev' (no-clause-is-false S')
     by blast
 moreover
 {
   assume c: conflicting S' \neq None
   have conflicting S \neq None using other'.hyps(1) c
     by (induct rule: cdcl_W-o-induct) auto
   then have conflict-is-false-with-level S'
     using cdcl_W-o-conflict-is-false-with-level-inv[OF other'.hyps(1)]
     other'.prems(3,5,6,2) by blast
   moreover have cdcl_W-cp^{**} S' using other'.hyps(3) unfolding full-def by auto
   then have S' = S'' using c
     by (induct rule: rtranclp-induct)
        (fastforce\ intro:\ option.exhaust)+
   ultimately have conflict-is-false-with-level S'' by auto
 ultimately have conflict-is-false-with-level S'' by blast
moreover {
  assume
    confl: conflicting S' = None and
    D-L: \forall D \in \# clauses S'. trail S' \models as CNot D
      \longrightarrow (\exists L. \ L \in \# D \land get\text{-level (trail } S') \ L = backtrack\text{-lvl } S')
  { assume \forall D \in \#clauses S'. \neg trail S' \models as CNot D
    then have no-clause-is-false S' using confl by simp
    then have conflict-is-false-with-level S'' using calculation (3) by presburger
  moreover {
    \mathbf{assume} \ \neg (\forall \ D {\in} \# \ clauses \ S'. \ \neg \ trail \ S' \models as \ CNot \ D)
    then obtain TD where
      propagate^{**} S' T and
      conflict TS'' and
      D: D \in \# clauses S' and
      trail \ S'' \models as \ CNot \ D \ \mathbf{and}
      conflicting S'' = Some D
      using full1-cdcl_W-cp-exists-conflict-full1-decompose[OF - - confl]
      other'(3) by (metis (mono-tags, lifting) ball-msetI bex-msetI conflictE state-eq-trail
        trail-update-conflicting)
    obtain M where M: trail S'' = M @ trail S' and nm: \forall m \in set M. \neg is-marked m
      using rtranclp-cdcl_W-cp-drop While-trail other'(3) unfolding full-def by meson
    have btS: backtrack-lvl S'' = backtrack-lvl S'
      using other'.hyps(3) unfolding full-def by (metis rtranclp-cdcl<sub>W</sub>-cp-backtrack-lvl)
    have inv: cdcl_W-M-level-inv S''
      by (metis (no-types) cdcl<sub>W</sub>-stgy.conflict' cdcl<sub>W</sub>-stgy-consistent-inv full-unfold lev'
        other'.hyps(3)
    then have nd: no\text{-}dup \ (trail \ S'')
      by (metis\ (no\text{-}types)\ cdcl_W\text{-}M\text{-}level\text{-}inv\text{-}decomp(2))
    have conflict-is-false-with-level S^{\prime\prime}
      proof cases
        assume trail\ S' \models as\ CNot\ D
        moreover then obtain L where
```

```
L \in \# D and
    lev-L: get-level (trail S') L = backtrack-lvl S'
    using D-L D by blast
  moreover
    have LS': -L \in lits-of (trail S')
      using \langle trail \ S' \models as \ CNot \ D \rangle \ \langle L \in \# \ D \rangle \ in\text{-}CNot\text{-}implies\text{-}uminus(2) \ by \ blast
    \{ \mathbf{fix} \ x :: ('v, nat, 'v \ literal \ multiset) \ ann-literal \ \mathbf{and} \}
        xb :: ('v, nat, 'v \ literal \ multiset) \ ann-literal
      assume a1: x \in set (trail S') and
        a2: xb \in set M  and
        a3: (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) 'set M \cap (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) 'set (trail \ S')
          = \{\} and
         a4: -L = lit - of x and
         a5: atm\text{-}of \ L = atm\text{-}of \ (lit\text{-}of \ xb)
      moreover have atm\text{-}of (lit\text{-}of x) = atm\text{-}of L
        using a4 by (metis (no-types) atm-of-uminus)
      ultimately have False
        using a5 a3 a2 a1 by auto
    then have atm\text{-}of \ L \notin atm\text{-}of ' lits\text{-}of \ M
      using nd LS' unfolding M by (auto simp add: lits-of-def)
    then have get-level (trail S'') L = get-level (trail S') L
      unfolding M by (simp add: lits-of-def)
  ultimately show ?thesis using btS \ \langle conflicting S'' = Some D \rangle by auto
next
  assume \neg trail\ S' \models as\ CNot\ D
  then obtain L where L \in \# D and LM: -L \in lits\text{-}of M
    using \langle trail \ S^{\prime\prime} \models as \ CNot \ D \rangle
      by (auto simp add: CNot-def true-cls-def M true-annots-def true-annot-def
            split: split-if-asm)
  { fix x :: ('v, nat, 'v \ literal \ multiset) \ ann-literal \ and
      xb :: ('v, nat, 'v literal multiset) ann-literal
    assume a1: xb \in set (trail S') and
      a2: x \in set M and
      a3: atm\text{-}of \ L = atm\text{-}of \ (lit\text{-}of \ xb) \ \mathbf{and}
      a4: -L = lit - of x and
      a5: (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) 'set M \cap (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) 'set (trail \ S')
    moreover have atm\text{-}of\ (lit\text{-}of\ xb) = atm\text{-}of\ (-L)
      using a3 by simp
    ultimately have False
      by auto }
  then have LS': atm-of L \notin atm-of 'lits-of (trail S')
    using nd \langle L \in \# D \rangle LM unfolding M by (auto simp add: lits-of-def)
  show ?thesis
    proof cases
      assume ne: get-all-levels-of-marked (trail S') = []
      have backtrack-lvl\ S^{\prime\prime}=\ \theta
        using inv ne nm unfolding cdcl<sub>W</sub>-M-level-inv-def M
        by (simp add: qet-all-levels-of-marked-nil-iff-not-is-marked)
      moreover
        have a1: get-level ML = 0
          using nm by auto
        then have get-level (M @ trail S') L = 0
          by (metis LS' get-all-levels-of-marked-nil-iff-not-is-marked
```

```
get-level-skip-beginning-not-marked lits-of-def ne)
             ultimately show ?thesis using \langle conflicting S'' = Some D \rangle \langle L \in \# D \rangle unfolding M
              by auto
           \mathbf{next}
             assume ne: get-all-levels-of-marked (trail S') \neq []
             have hd (get-all-levels-of-marked (trail <math>S')) = backtrack-lvl S'
               using ne lev' M nm unfolding cdcl<sub>W</sub>-M-level-inv-def
               by (cases get-all-levels-of-marked (trail S'))
               (simp-all add: get-all-levels-of-marked-nil-iff-not-is-marked[symmetric])
             moreover have atm\text{-}of L \in atm\text{-}of \text{ '} lits\text{-}of M
               using \langle -L \in lits\text{-}of M \rangle
               by (simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set lits-of-def)
             ultimately show ?thesis
               using nm ne \langle L \in \#D \rangle \langle conflicting S'' = Some D \rangle
                 qet-level-skip-beginning-hd-qet-all-levels-of-marked [OF LS', of M]
                 get-level-skip-in-all-not-marked[of rev M L backtrack-lvl S']
               unfolding lits-of-def btS M
               by auto
           qed
       \mathbf{qed}
    ultimately have conflict-is-false-with-level S" by blast
 moreover
  {
   assume conflicting S' \neq None
   have no-clause-is-false S' using \langle conflicting S' \neq None \rangle by auto
   then have conflict-is-false-with-level S'' using calculation(3) by presburger
 ultimately show ?case by fast
qed
lemma rtranclp-cdcl_W-stgy-no-smaller-confl-inv:
 assumes
   cdcl_W-stgy^{**} S S' and
   n-l: no-smaller-confl S and
   cls-false: conflict-is-false-with-level S and
   lev: cdcl_W-M-level-inv S and
   no-f: no-clause-is-false S and
   dist: distinct-cdcl_W-state S and
   conflicting: cdcl_W-conflicting S and
   decomp: all-decomposition-implies-m (init-clss S) (get-all-marked-decomposition (trail S)) and
   learned: cdcl_W-learned-clause S and
   alien: no-strange-atm S
  shows no-smaller-confl S' \wedge conflict-is-false-with-level S'
  using assms(1)
proof (induct rule: rtranclp-induct)
 case base
 then show ?case using n-l cls-false by auto
  case (step S' S'') note st = this(1) and cdcl = this(2) and IH = this(3)
 have no-smaller-confl S' and conflict-is-false-with-level S'
   using IH by blast+
 moreover have cdcl_W-M-level-inv S'
   using st lev rtranclp-cdcl_W-stgy-rtranclp-cdcl_W
```

```
by (blast intro: rtranclp-cdcl_W-consistent-inv)+
  moreover have no-clause-is-false S'
   using st no-f rtranclp-cdcl<sub>W</sub>-stgy-not-non-negated-init-clss by presburger
  moreover have distinct\text{-}cdcl_W\text{-}state\ S'
   using rtanclp-distinct-cdcl_W-state-inv[of\ S\ S'] lev rtranclp-cdcl_W-stay-rtranclp-cdcl_W[OF\ st]
   dist by auto
  moreover have cdcl_W-conflicting S'
   using rtranclp-cdcl_W-all-inv(6)[of SS'] st alien conflicting decomp dist learned lev
    rtranclp-cdcl_W-stgy-rtranclp-cdcl_W by blast
  ultimately show ?case
   using cdcl_W-stgy-no-smaller-confl[OF cdcl] cdcl_W-stgy-ex-lit-of-max-level[OF cdcl] by fast
qed
5.6.7
         Final States are Conclusive
\mathbf{lemma}\ full\text{-}cdcl_W-stgy-final-state-conclusive-non-false:
 fixes S' :: 'st
 assumes full: full cdcl_W-stqy (init-state N) S'
 and no\text{-}d: distinct\text{-}mset\text{-}mset\ N
 and no-empty: \forall D \in \#N. D \neq \{\#\}
 shows (conflicting S' = Some \{\#\} \land unsatisfiable (set-mset (init-clss <math>S')))
   \lor (conflicting S' = None \land trail S' \models asm init-clss S')
proof -
 let ?S = init\text{-state } N
 have
   termi: \forall S''. \neg cdcl_W \text{-stgy } S' S'' \text{ and }
   step: cdcl_W-stgy** (init-state N) S' using full unfolding full-def by auto
  moreover have
   learned: cdcl_W-learned-clause S' and
   level-inv: cdcl_W-M-level-inv S' and
   alien: no-strange-atm S' and
   no-dup: distinct-cdcl_W-state S' and
   confl: cdcl_W-conflicting S' and
```

```
using no-d tranclp-cdcl<sub>W</sub>-stgy-tranclp-cdcl<sub>W</sub>[of ?S S'] step rtranclp-cdcl<sub>W</sub>-all-inv(1-6)[of ?S S'] unfolding rtranclp-unfold by auto moreover have \forall D \in \#N. \neg [] \models as CNot D using no-empty by auto then have confl-k: conflict-is-false-with-level S' using rtranclp-cdcl<sub>W</sub>-stgy-no-smaller-confl-inv[OF step] no-d by auto show ?thesis using cdcl<sub>W</sub>-stgy-final-state-conclusive[OF termi decomp learned level-inv alien no-dup confl confl-k].
```

decomp: all-decomposition-implies-m (init-clss S') (get-all-marked-decomposition (trail S'))

```
lemma conflict-is-full1-cdcl<sub>W</sub>-cp:
assumes cp: conflict S S'
shows full1 cdcl<sub>W</sub>-cp S S'
proof —
have cdcl_W-cp S S' and conflicting S' \neq N one using cp cdcl_W-cp.intros by auto then have cdcl_W-cp<sup>++</sup> S S' by blast
moreover have n0-step cdcl_W-cp S'
using \langle conflicting S' \neq N0 n0 by \langle m0 tis cdcl_W-cp-conflicting-not-empty option.exhaust)
ultimately show full1 cdcl_W-cp S S' unfolding full1-def by blast+
```

qed

```
qed
```

```
lemma cdcl_W-cp-fst-empty-conflicting-false:
 assumes cdcl_W-cp S S'
 and trail S = []
 and conflicting S \neq None
 shows False
 using assms by (induct rule: cdcl_W-cp.induct) auto
lemma cdcl_W-o-fst-empty-conflicting-false:
 assumes cdcl_W-o SS'
 and trail S = [
 and conflicting S \neq None
 shows False
 using assms by (induct rule: cdcl_W-o-induct) auto
lemma cdcl_W-stgy-fst-empty-conflicting-false:
 assumes cdcl_W-stgy SS'
 and trail\ S = []
 and conflicting S \neq None
 shows False
 using assms apply (induct rule: cdcl_W-stgy.induct)
  using tranclpD cdcl_W-cp-fst-empty-conflicting-false unfolding full1-def apply metis
  using cdcl_W-o-fst-empty-conflicting-false by blast
thm cdcl_W-cp.induct[split-format(complete)]
lemma cdcl_W-cp-conflicting-is-false:
  cdcl_W-cp\ S\ S' \Longrightarrow conflicting\ S = Some\ \{\#\} \Longrightarrow False
 by (induction rule: cdcl_W-cp.induct) auto
lemma rtranclp-cdcl_W-cp-conflicting-is-false:
  cdcl_W - cp^{++} S S' \Longrightarrow conflicting S = Some \{\#\} \Longrightarrow False
 apply (induction rule: tranclp.induct)
 by (auto dest: cdcl_W-cp-conflicting-is-false)
lemma cdcl_W-o-conflicting-is-false:
  cdcl_W-o S S' \Longrightarrow conflicting <math>S = Some \{\#\} \Longrightarrow False
 by (induction rule: cdcl_W-o-induct) auto
lemma cdcl_W-stgy-conflicting-is-false:
  cdcl_W-stgy S S' \Longrightarrow conflicting <math>S = Some \{\#\} \Longrightarrow False
 apply (induction rule: cdcl_W-stgy.induct)
   unfolding full1-def apply (metis (no-types) cdcl<sub>W</sub>-cp-conflicting-not-empty tranclpD)
  unfolding full-def by (metis conflict-with-false-implies-terminated other)
lemma rtranclp-cdcl_W-stgy-conflicting-is-false:
  cdcl_W-stgy** S S' \Longrightarrow conflicting <math>S = Some \{\#\} \Longrightarrow S' = S
 apply (induction rule: rtranclp-induct)
   apply simp
 using cdcl_W-stgy-conflicting-is-false by blast
lemma full-cdcl_W-init-clss-with-false-normal-form:
 assumes
   \forall m \in set M. \neg is\text{-marked } m \text{ and }
```

```
E = Some D and
   state S = (M, N, U, 0, E)
   full\ cdcl_W-stgy S\ S' and
   all-decomposition-implies-m (init-clss S) (get-all-marked-decomposition (trail S))
   cdcl_W-learned-clause S
   cdcl_W-M-level-inv S
   no-strange-atm S
   distinct-cdcl_W-state S
   cdcl_W-conflicting S
 shows \exists M''. state S' = (M'', N, U, 0, Some {\#})
 using assms(10,9,8,7,6,5,4,3,2,1)
proof (induction M arbitrary: E D S)
 case Nil
 then show ?case
   using rtranclp-cdcl_W-stqy-conflicting-is-false unfolding full-def cdcl_W-conflicting-def by auto
 case (Cons\ L\ M) note IH=this(1) and full=this(8) and E=this(10) and inv=this(2-7) and
   S = this(9) and nm = this(11)
 obtain K p where K: L = Propagated K p
   using nm by (cases L) auto
 have every-mark-is-a-conflict S using inv unfolding cdcl_W-conflicting-def by auto
 then have MpK: M \models as\ CNot\ (p - \{\#K\#\}) \text{ and } Kp: K \in \# p
   using S unfolding K by fastforce+
 then have p: p = (p - \{\#K\#\}) + \{\#K\#\}
   by (auto simp add: multiset-eq-iff)
 then have K': L = Propagated K (((p - {\#K\#}) + {\#K\#}))
   using K by auto
 consider (D) D = \{\#\} \mid (D') \ D \neq \{\#\}  by blast
 then show ?case
   proof cases
     case D
     then show ?thesis
      using full rtranclp-cdcl_W-stgy-conflicting-is-false S unfolding full-def E D by auto
   next
     case D'
     then have no-p: no-step propagate S and no-c: no-step conflict S
      using S E by auto
     then have no-step cdcl_W-cp S by (auto simp: cdcl_W-cp.simps)
     have res-skip: \exists T. (resolve S \ T \land no-step skip S \land full \ cdcl_W-cp T \ T)
      \vee (skip S T \wedge no-step resolve S \wedge full cdcl<sub>W</sub>-cp T T)
      proof cases
        assume -lit-of L \notin \# D
        then obtain T where sk: skip S T and res: no-step resolve S
        using S that D' K unfolding skip.simps E by fastforce
        have full\ cdcl_W-cp\ T\ T
          using sk by (auto simp add: option-full-cdcl<sub>W</sub>-cp)
        then show ?thesis
          using sk res by blast
        assume LD: \neg -lit - of L \notin \# D
        then have D: Some D = Some ((D - \{\#-lit\text{-of }L\#\}) + \{\#-lit\text{-of }L\#\})
         by (auto simp add: multiset-eq-iff)
        have \bigwedge L. get-level M L = 0
```

```
by (simp add: nm)
         then have get-maximum-level (Propagated K (p - \{\#K\#\} + \{\#K\#\}) \# M) (D - \{\#-1\})
K\#\}) = 0
          \mathbf{using} LD get-maximum-level-exists-lit-of-max-level
          proof -
           obtain L' where get-level (L\#M) L' = get-maximum-level (L\#M) D
             using LD get-maximum-level-exists-lit-of-max-level of D L#M by fastforce
           then show ?thesis by (metis (mono-tags) K' bex-msetE get-level-skip-all-not-marked
             get-maximum-level-exists-lit nm not-gr\theta)
         qed
        then obtain T where sk: resolve S T and res: no-step skip S
         using resolve-rule [of S K p - \{\#K\#\} M N U 0 (D - \{\#-K\#\})]
          update-conflicting (Some (remdups-mset (D - \{\#-K\#\} + (p - \{\#K\#\})))) (tl-trail S)]
          S unfolding K' D E by fastforce
        have full cdcl_W-cp T T
          using sk by (auto simp add: option-full-cdcl<sub>W</sub>-cp)
        then show ?thesis
         using sk res by blast
      qed
     then have step-s: \exists T. cdcl_W-stgy S T
      using \langle no\text{-}step\ cdcl_W\text{-}cp\ S \rangle\ other' by (meson\ bj\ resolve\ skip)
     have get-all-marked-decomposition (L \# M) = [([], L \# M)]
      using nm unfolding K apply (induction M rule: ann-literal-list-induct, simp)
        by (rename-tac L l xs, case-tac hd (get-all-marked-decomposition xs), auto)+
     then have no-b: no-step backtrack S
      using nm S by auto
     have no-d: no-step decide S
      using S E by auto
     have full-S-S: full cdcl_W-cp S
      using S E by (auto simp add: option-full-cdcl<sub>W</sub>-cp)
     then have no-f: no-step (full1 cdcl_W-cp) S
      unfolding full-def full1-def rtranclp-unfold by (meson tranclpD)
     obtain T where
      s: cdcl_W-stgy S T and st: cdcl_W-stgy^{**} T S'
      using full step-s full unfolding full-def by (metis rtranclp-unfold tranclpD)
     have resolve S T \vee skip S T
      using s no-b no-d res-skip full-S-S unfolding cdcl<sub>W</sub>-stqy.simps cdcl<sub>W</sub>-o.simps full-unfold
      full1-def
      by (auto dest!: tranclpD simp: cdcl_W-bj.simps)
     then obtain D' where T: state T = (M, N, U, 0, Some D')
      using S E by auto
     have st-c: cdcl_W^{**} S T
      using E \ T \ rtranclp-cdcl_W-stgy-rtranclp-cdcl_W s by blast
     have cdcl_W-conflicting T
      using rtranclp-cdcl_W-all-inv(6)[OF\ st-c\ inv(6,5,4,3,2,1)].
     show ?thesis
      apply (rule IH[of T])
              using rtranclp-cdcl_W-all-inv(6)[OF st-c inv(6,5,4,3,2,1)] apply blast
             using rtranclp-cdcl_W-all-inv(5)[OF st-c inv(6,5,4,3,2,1)] apply blast
            using rtranclp-cdcl_W-all-inv(4)[OF st-c inv(6,5,4,3,2,1)] apply blast
           using rtranclp-cdcl_W-all-inv(3)[OF st-c inv(6,5,4,3,2,1)] apply blast
          using rtranclp-cdcl_W-all-inv(2)[OF st-c inv(6,5,4,3,2,1)] apply blast
          using rtranclp-cdcl_W-all-inv(1)[OF st-c inv(6,5,4,3,2,1)] apply blast
```

```
apply (metis full-def st full)
         using T E apply blast
        apply auto[]
       using nm by simp
   qed
qed
lemma full-cdcl_W-stgy-final-state-conclusive-is-one-false:
 fixes S' :: 'st
 assumes full: full cdcl_W-stgy (init-state N) S'
 and no-d: distinct-mset-mset N
 and empty: \{\#\} \in \# N
 shows conflicting S' = Some \{\#\} \land unsatisfiable (set-mset (init-clss S'))
proof -
 let ?S = init\text{-state } N
 have cdcl_W-stgy** ?S S' and no-step cdcl_W-stgy S' using full unfolding full-def by auto
 then have plus-or-eq: cdcl_W-stgy<sup>++</sup> ?S S' \vee S' = ?S unfolding rtranclp-unfold by auto
 have \exists S''. conflict ?S S'' using empty not-conflict-not-any-negated-init-clss by force
  then have cdcl_W-stgy: \exists S'. cdcl_W-stgy ?S S'
   using cdcl_W-cp.conflict'[of ?S] conflict-is-full1-cdcl_W-cp cdcl_W-stgy.intros(1) by metis
 have S' \neq ?S using (no-step cdcl_W-stgy S') cdcl_W-stgy by blast
  then obtain St:: 'st where St: cdcl<sub>W</sub>-stgy ?S St and cdcl<sub>W</sub>-stgy** St S'
   using plus-or-eq by (metis (no-types) \langle cdcl_W - stqy^{**} ? S S' \rangle converse-rtranclpE)
 have st: cdcl_{W}^{**} ?S St
   by (simp add: rtranclp-unfold (cdcl_W-stgy ?S St) cdcl_W-stgy-tranclp-cdcl_W)
 have \exists T. conflict ?S T
   using empty not-conflict-not-any-negated-init-clss by force
  then have fullSt: full1 \ cdcl_W-cp \ ?S \ St
   using St unfolding cdcl_W-stgy.simps by blast
  then have bt: backtrack-lvl St = (0::nat)
   using rtranclp-cdcl_W-cp-backtrack-lvl unfolding full1-def
   by (fastforce dest!: tranclp-into-rtranclp)
  have cls-St: init-clss St = N
   using fullSt cdcl<sub>W</sub>-stqy-no-more-init-clss[OF St] by auto
 have conflicting St \neq None
   proof (rule ccontr)
     assume ¬ ?thesis
     then have \exists T. conflict St T
       \mathbf{using}\ empty\ cls\text{-}St[]\ conflict\text{-}rule[of\ St\ trail\ St\ N\ learned\text{-}clss\ St\ backtrack\text{-}lvl\ St
         \{\#\}
       by (auto simp: clauses-def)
     then show False using fullSt unfolding full1-def by blast
   qed
 have 1: \forall m \in set (trail St). \neg is-marked m
   using fullSt unfolding full1-def by (auto dest!: tranclp-into-rtranclp
     rtranclp-cdcl_W-cp-drop\ While-trail)
 have 2: full\ cdcl_W-stgy St\ S'
   using \langle cdcl_W \text{-}stgy^{**} \mid St \mid S' \rangle \langle no\text{-}step \mid cdcl_W \text{-}stgy \mid S' \rangle \mid bt \text{ unfolding } full\text{-}def \text{ by } auto
 have 3: all-decomposition-implies-m
     (init-clss\ St)
     (get-all-marked-decomposition
```

```
(trail\ St)
  using rtranclp-cdcl_W-all-inv(1)[OF\ st]\ no-d\ bt\ by\ simp
  have 4: cdcl_W-learned-clause St
   using rtranclp-cdcl_W-all-inv(2)[OF\ st]\ no-d\ bt\ by\ simp
  have 5: cdcl_W-M-level-inv St
   using rtranclp-cdcl_W-all-inv(3)[OF\ st]\ no-d\ bt\ by\ simp
  have 6: no-strange-atm St
   using rtranclp-cdcl_W-all-inv(4)[OF\ st]\ no-d\ bt\ by\ simp
 have 7: distinct\text{-}cdcl_W\text{-}state\ St
   using rtranclp-cdcl_W-all-inv(5)[OF\ st]\ no-d\ bt\ by\ simp
 have 8: cdcl_W-conflicting St
   using rtranclp-cdcl_W-all-inv(6)[OF\ st]\ no-d\ bt\ by\ simp
 have init-clss S' = init-clss St and conflicting S' = Some \{\#\}
    using (conflicting St \neq None) full-cdcl<sub>W</sub>-init-clss-with-false-normal-form[OF 1, of - St]
    2 3 4 5 6 7 8 St apply (metis \( cdcl_W - stgy^{**} \) St S'\( rtranclp - cdcl_W - stgy - no-more-init-clss \)
   using \langle conflicting St \neq None \rangle full-cdcl<sub>W</sub>-init-clss-with-false-normal-form[OF 1, of - - St - -
     S' \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8  by (metis bt option.exhaust prod.inject)
  moreover have init-clss S' = N
   using \langle cdcl_W-stgy** (init-state N) S' \rangle rtranclp-cdcl_W-stgy-no-more-init-clss by fastforce
  moreover have unsatisfiable (set-mset N)
   by (meson empty mem-set-mset-iff satisfiable-def true-cls-empty true-clss-def)
  ultimately show ?thesis by auto
qed
lemma full-cdcl_W-stgy-final-state-conclusive:
 fixes S' :: 'st
 assumes full: full cdcl_W-stgy (init-state N) S' and no-d: distinct-mset-mset N
 shows (conflicting S' = Some \{\#\} \land unsatisfiable (set-mset (init-clss S')))
   \lor (conflicting S' = None \land trail S' \models asm init-clss S')
  using assms full-cdcl_W-stgy-final-state-conclusive-is-one-false
 full-cdcl_W-stgy-final-state-conclusive-non-false by blast
lemma full-cdcl_W-stgy-final-state-conclusive-from-init-state:
 fixes S' :: 'st
 assumes full: full cdcl_W-stqy (init-state N) S'
 and no-d: distinct-mset-mset N
 shows (conflicting S' = Some \{\#\} \land unsatisfiable (set-mset N))
   \vee (conflicting S' = None \wedge trail S' \models asm N \wedge satisfiable (set-mset N))
proof -
 have N: init-clss S' = N
   using full unfolding full-def by (auto dest: rtranclp-cdcl<sub>W</sub>-stgy-no-more-init-clss)
  consider
     (confl) conflicting S' = Some \{\#\} and unsatisfiable (set-mset (init-clss S'))
   | (sat) \ conflicting \ S' = None \ and \ trail \ S' \models asm \ init-clss \ S'
   using full-cdcl_W-stgy-final-state-conclusive[OF\ assms] by auto
  then show ?thesis
   proof cases
     case confl
     then show ?thesis by (auto simp: N)
   next
     case sat
     have cdcl_W-M-level-inv (init-state N) by auto
     then have cdcl_W-M-level-inv S'
```

```
using full rtranclp-cdcl<sub>W</sub>-stgy-consistent-inv unfolding full-def by blast then have consistent-interp (lits-of (trail S')) unfolding cdcl_W-M-level-inv-def by blast moreover have lits-of (trail S') \modelss set-mset (init-clss S') using sat(2) by (auto simp add: true-annots-def true-annot-def true-clss-def) ultimately have satisfiable (set-mset (init-clss S')) by simp then show ?thesis using sat unfolding N by blast qed end end theory CDCL-W-Termination imports CDCL-W begin context cdcl_W begin
```

5.7 Termination

The condition that no learned clause is a tautology is overkill (in the sense that the no-duplicate condition is enough), but we can reuse *simple-clss*.

The invariant contains all the structural invariants that holds,

```
definition cdcl_W-all-struct-inv where
  cdcl_W-all-struct-inv S =
   (no\text{-}strange\text{-}atm\ S \land cdcl_W\text{-}M\text{-}level\text{-}inv\ S)
   \land (\forall s \in \# learned\text{-}clss S. \neg tautology s)
   \land distinct-cdcl<sub>W</sub>-state S \land cdcl<sub>W</sub>-conflicting S
   \land all-decomposition-implies-m (init-clss S) (qet-all-marked-decomposition (trail S))
   \land cdcl_W-learned-clause S)
lemma cdcl_W-all-struct-inv-inv:
 assumes cdcl_W S S' and cdcl_W-all-struct-inv S
 shows cdcl_W-all-struct-inv S'
 unfolding cdcl_W-all-struct-inv-def
proof (intro HOL.conjI)
  show no-strange-atm S'
   using cdcl_W-all-inv[OF assms(1)] assms(2) unfolding cdcl_W-all-struct-inv-def by auto
 show cdcl_W-M-level-inv S'
   using cdcl_W-all-inv[OF assms(1)] assms(2) unfolding cdcl_W-all-struct-inv-def by fast
  show distinct\text{-}cdcl_W\text{-}state\ S'
    using cdcl_W-all-inv[OF assms(1)] assms(2) unfolding cdcl_W-all-struct-inv-def by fast
 show cdcl_W-conflicting S'
    using cdcl_W-all-inv[OF assms(1)] assms(2) unfolding cdcl_W-all-struct-inv-def by fast
  show all-decomposition-implies-m (init-clss S') (get-all-marked-decomposition (trail S'))
    using cdcl_W-all-inv[OF\ assms(1)]\ assms(2) unfolding cdcl_W-all-struct-inv-def\ by\ fast
 show cdcl_W-learned-clause S'
    using cdcl_W-all-inv[OF assms(1)] assms(2) unfolding cdcl_W-all-struct-inv-def by fast
 show \forall s \in \#learned\text{-}clss S'. \neg tautology s
   using assms(1)[THEN learned-clss-are-not-tautologies] assms(2)
   unfolding cdcl_W-all-struct-inv-def by fast
qed
lemma rtranclp-cdcl_W-all-struct-inv-inv:
 assumes cdcl_W^{**} S S' and cdcl_W-all-struct-inv S
```

```
shows cdcl_W-all-struct-inv S'
  using assms by induction (auto intro: cdcl_W-all-struct-inv-inv)
lemma cdcl_W-stgy-cdcl_W-all-struct-inv:
  cdcl_W-stgy S T \Longrightarrow cdcl_W-all-struct-inv S \Longrightarrow cdcl_W-all-struct-inv T
 by (meson\ cdcl_W\text{-}stqy\text{-}tranclp\text{-}cdcl_W\ rtranclp\text{-}cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}inv\ rtranclp\text{-}unfold})
lemma rtranclp-cdcl_W-stgy-cdcl_W-all-struct-inv:
  cdcl_W-stgy** S T \Longrightarrow cdcl_W-all-struct-inv S \Longrightarrow cdcl_W-all-struct-inv T
 by (induction rule: rtranclp-induct) (auto intro: cdcl_W-stgy-cdcl_W-all-struct-inv)
       No Relearning of a clause
5.8
lemma cdcl_W-o-new-clause-learned-is-backtrack-step:
 assumes learned: D \in \# learned-clss T and
  new: D \notin \# learned\text{-}clss S  and
  cdcl_W: cdcl_W-o S T and
  lev: cdcl_W-M-level-inv S
 shows backtrack S T \land conflicting <math>S = Some \ D
  using cdcl_W lev learned new
proof (induction rule: cdcl_W-o-induct-lev2)
  case (backtrack K i M1 M2 L C T) note decomp = this(1) and undef = this(6) and T = this(7)
and
    D-T = this(9) and D-S = this(10)
  then have D = C + \{\#L\#\}
   using not-gr\theta lev by (auto simp: cdcl_W-M-level-inv-decomp)
  then show ?case
   using T backtrack.hyps(1-5) backtrack.intros by auto
\mathbf{qed} auto
lemma cdcl_W-cp-new-clause-learned-has-backtrack-step:
 assumes learned: D \in \# learned-clss T and
 new: D \notin \# learned\text{-}clss S  and
  cdcl_W: cdcl_W-stgy S T and
  lev: cdcl_W-M-level-inv S
 shows \exists S'. backtrack S S' \land cdcl_W-stgy** S' T \land conflicting S = Some D
  using cdcl_W learned new
proof (induction rule: cdcl_W-stgy.induct)
 case (conflict' S')
 then show ?case
   unfolding full1-def by (metis (mono-tags, lifting) rtranclp-cdcl_W-cp-learned-clause-inv
     tranclp-into-rtranclp)
next
 case (other' S' S'')
  then have D \in \# learned\text{-}clss S'
   unfolding full-def by (auto dest: rtranclp-cdcl<sub>W</sub>-cp-learned-clause-inv)
 then show ?case
   using cdcl_W-o-new-clause-learned-is-backtrack-step[OF - \langle D \notin \# \ learned-clss S \rangle \langle cdcl_W-o S S' \rangle]
   \langle full\ cdcl_W\text{-}cp\ S'\ S'' \rangle\ lev\ \mathbf{by}\ (metis\ cdcl_W\text{-}stgy.conflict'\ full-unfold\ r\text{-}into\text{-}rtranclp
     rtranclp.rtrancl-refl)
qed
lemma rtranclp-cdcl_W-cp-new-clause-learned-has-backtrack-step:
  assumes learned: D \in \# learned-clss T and
  new: D \notin \# learned\text{-}clss S \text{ and }
```

 $cdcl_W$: $cdcl_W$ - $stgy^{**}$ S T and

```
lev: cdcl_W-M-level-inv S
 shows \exists S' S''. cdcl_W-stgy^{**} S S' \land backtrack S' S'' \land conflicting S' = Some D \land
   cdcl_W-stgy^{**} S^{\prime\prime} T
  using cdcl_W learned new
proof (induction rule: rtranclp-induct)
 case base
  then show ?case by blast
next
 case (step T U) note st = this(1) and o = this(2) and IH = this(3) and
   D\text{-}U = this(4) and D\text{-}S = this(5)
 show ?case
   proof (cases \ D \in \# \ learned\text{-}clss \ T)
     case True
     then obtain S' S'' where
       st': cdcl_W - stqy^{**} S S' and
       bt: backtrack S' S" and
       confl: conflicting S' = Some D and
       st'': cdcl_W-stqy^{**} S'' T
       using IH D-S by metis
     then show ?thesis using o by (meson rtranclp.simps)
   next
     case False
     have cdcl_W-M-level-inv T
       using lev rtranclp-cdcl_W-stgy-consistent-inv st by blast
     then obtain S' where
       bt: backtrack T S' and
       st': cdcl_W - stgy^{**} S' U and
       confl: conflicting T = Some D
       using cdcl_W-cp-new-clause-learned-has-backtrack-step[OF D-U False o]
       by metis
     then have cdcl_W-stgy^{**} S T and
       backtrack \ T \ S' and
       conflicting T = Some D  and
       cdcl_W-stgy^{**} S' U
       using o st by auto
     then show ?thesis by blast
   qed
qed
lemma propagate-no-more-Marked-lit:
 assumes propagate S S'
 shows Marked K i \in set (trail\ S) \longleftrightarrow Marked\ K i \in set (trail\ S')
 using assms by auto
{f lemma}\ conflict	ext{-}no	ext{-}more	ext{-}Marked	ext{-}lit:
 assumes conflict S S'
 shows Marked K i \in set (trail\ S) \longleftrightarrow Marked\ K i \in set (trail\ S')
 using assms by auto
lemma cdcl_W-cp-no-more-Marked-lit:
 assumes cdcl_W-cp S S'
 shows Marked K i \in set (trail\ S) \longleftrightarrow Marked\ K i \in set (trail\ S')
 using assms apply (induct rule: cdcl_W-cp.induct)
 using conflict-no-more-Marked-lit propagate-no-more-Marked-lit by auto
```

```
lemma rtranclp-cdcl_W-cp-no-more-Marked-lit:
 assumes cdcl_W-cp^{**} S S'
 shows Marked K i \in set (trail\ S) \longleftrightarrow Marked\ K i \in set (trail\ S')
 using assms apply (induct rule: rtranclp-induct)
 using cdcl_W-cp-no-more-Marked-lit by blast+
lemma cdcl_W-o-no-more-Marked-lit:
 assumes cdcl_W-o S S' and cdcl_W-M-level-inv S and \neg decide S S'
 shows Marked K i \in set (trail S') \longrightarrow Marked K i \in set (trail S)
 using assms
proof (induct rule: cdcl_W-o-induct-lev2)
 case backtrack note decomp = this(1) and undef = this(6) and T = this(7) and lev = this(8)
 then show ?case
   by (auto simp: cdcl_W-M-level-inv-decomp)
next
 case (decide\ L\ T)
 then show ?case by blast
qed auto
lemma cdcl_W-new-marked-at-beginning-is-decide:
 assumes cdcl_W-stgy S S' and
 lev: cdcl_W-M-level-inv S and
 trail \ S' = M' @ Marked \ L \ i \ \# \ M \ and
 trail S = M
 shows \exists T. decide S T \land no-step cdcl_W-cp S
 using assms
proof (induct\ rule:\ cdcl_W-stgy.induct)
 case (conflict' S') note st = this(1) and no\text{-}dup = this(2) and S' = this(3) and S = this(4)
 have cdcl_W-M-level-inv S'
   using full1-cdcl_W-cp-consistent-inv no-dup st by blast
 then have Marked L i \in set (trail S') and Marked L i \notin set (trail S)
   using no-dup unfolding SS' cdcl<sub>W</sub>-M-level-inv-def by (auto simp add: rev-image-eqI)
 then have False
   using st rtranclp-cdcl<sub>W</sub>-cp-no-more-Marked-lit[of SS']
   unfolding full1-def rtranclp-unfold by blast
 then show ?case by fast
 case (other' T U) note o = this(1) and ns = this(2) and st = this(3) and no\text{-}dup = this(4) and
   S' = this(5) and S = this(6)
 have cdcl_W-M-level-inv U
   by (metis\ (full-types)\ lev\ cdcl_W.simps\ cdcl_W-consistent-inv\ full-def\ o
     other'.hyps(3) rtranclp-cdcl_W-cp-consistent-inv)
 then have Marked\ L\ i \in set\ (trail\ U) and Marked\ L\ i \notin set\ (trail\ S)
   using no-dup unfolding S S' cdcl<sub>W</sub>-M-level-inv-def by (auto simp add: rev-image-eqI)
 then have Marked\ L\ i \in set\ (trail\ T)
   using st rtranclp-cdcl<sub>W</sub>-cp-no-more-Marked-lit unfolding full-def by blast
 then show ?case
   using cdcl_W-o-no-more-Marked-lit[OF o] (Marked L i \notin set (trail S)) ns lev by meson
qed
lemma cdcl_W-o-is-decide:
 assumes cdcl_W-o S' T and cdcl_W-M-level-inv S'
 trail T = drop \ (length \ M_0) \ M' @ Marked \ L \ i \ \# \ H @ Mand
 \neg (\exists M'. trail S' = M' @ Marked L i \# H @ M)
 shows decide S' T
```

```
using assms
proof (induction\ rule: cdcl_W-o-induct-lev2)
   case (backtrack K i M1 M2 L D)
   then obtain c where trail S' = c @ M2 @ Marked K (Suc i) \# M1
      by auto
   then show ?case
      using backtrack by (cases drop (length M_0) M') (auto simp: cdcl_W-M-level-inv-def)
next
   case decide
  show ?case using decide-rule[of S'] decide(1-4) by auto
qed auto
\mathbf{lemma}\ rtranclp\text{-}cdcl_W\text{-}new\text{-}marked\text{-}at\text{-}beginning\text{-}is\text{-}decide} :
   assumes cdcl_W-stgy^{**} R U and
   trail\ U=M'\ @\ Marked\ L\ i\ \#\ H\ @\ M\ and
   trail R = M and
   cdcl_W-M-level-inv R
   shows
      \exists S \ T \ T'. \ cdcl_W-stgy** R \ S \land \ decide \ S \ T \land \ cdcl_W-stgy** T \ U \land \ cdcl_W-stgy** S \ U \land \ cdcl_W-stgy**
         no\text{-step } cdcl_W\text{-cp } S \wedge trail \ T = Marked \ L \ i \ \# \ H \ @ \ M \wedge trail \ S = H \ @ \ M \wedge cdcl_W\text{-stgy} \ S \ T' \wedge In \ Graph \ Gr
         cdcl_W-stgy^{**} T' U
   using assms
proof (induct arbitrary: M H M' i rule: rtranclp-induct)
   case base
   then show ?case by auto
   case (step T U) note st = this(1) and IH = this(3) and s = this(2) and
      U = this(4) and S = this(5) and lev = this(6)
   show ?case
      proof (cases \exists M'. trail T = M' \otimes M arked L i \# H \otimes M)
         case False
         with s show ?thesis using U s st S
            proof induction
               case (conflict' W) note cp = this(1) and nd = this(2) and W = this(3)
               then obtain M_0 where trail W = M_0 @ trail T and nmarked: \forall l \in set M_0. \neg is-marked l
                  using rtranclp-cdcl_W-cp-dropWhile-trail unfolding full1-def rtranclp-unfold by meson
               then have MV: M' @ Marked L i \# H @ M = M_0 @ trail T unfolding W by simp
               then have V: trail\ T = drop\ (length\ M_0)\ (M'\ @\ Marked\ L\ i\ \#\ H\ @\ M)
                  by auto
               have take While (Not o is-marked) M' = M_0 @ take While (Not o is-marked) (trail T)
                  using arg-cong[OF MV, of takeWhile (Not o is-marked)] nmarked
                  by (simp add: takeWhile-tail)
               from arg-cong[OF this, of length] have length M_0 \leq length M'
                  unfolding length-append by (metis (no-types, lifting) Nat.le-trans le-add1
                     length-take While-le)
               then have False using nd V by auto
               then show ?case by fast
               case (other' T' U) note o = this(1) and ns = this(2) and cp = this(3) and nd = this(4)
                  and U = this(5) and st = this(6)
               obtain M_0 where trail U = M_0 @ trail T' and nmarked: \forall l \in set M_0. \neg is-marked l
                  using rtranclp-cdcl_W-cp-drop While-trail cp unfolding full-def by meson
               then have MV: M' @ Marked L i \# H @ M = M_0 @ trail T' unfolding U by simp
               then have V: trail T' = drop \ (length \ M_0) \ (M' @ Marked \ L \ i \ \# \ H @ M)
                 by auto
```

```
have take While (Not o is-marked) M' = M_0 @ take While (Not o is-marked) (trail T')
       using arg-cong[OF MV, of takeWhile (Not o is-marked)] nmarked
       by (simp add: takeWhile-tail)
     from arg-cong[OF this, of length] have length M_0 \leq length M'
       unfolding length-append by (metis (no-types, lifting) Nat.le-trans le-add1
         length-take While-le)
     then have tr-T': trail T' = drop (length M_0) M' @ Marked L i # H @ M using V by auto
     then have LT': Marked L i \in set (trail T') by auto
     moreover
      have cdcl_W-M-level-inv T
        using lev rtranclp-cdcl<sub>W</sub>-stgy-consistent-inv step.hyps(1) by blast
       then have decide T T' using o nd tr-T' cdcl_W-o-is-decide by metis
     ultimately have decide\ T\ T' using cdcl_W-o-no-more-Marked-lit[OF o] by blast
     then have 1: cdcl_W-stgy^{**} R T and 2: decide T T' and 3: cdcl_W-stgy^{**} T' U
       using st other'.prems(4)
       by (metis cdcl<sub>W</sub>-stgy.conflict' cp full-unfold r-into-rtranclp rtranclp.rtrancl-refl)+
     have [simp]: drop\ (length\ M_0)\ M' = []
       using \langle decide\ T\ T' \rangle \langle Marked\ L\ i \in set\ (trail\ T') \rangle nd tr-T'
       by (auto simp add: Cons-eq-append-conv)
     have T': drop (length M_0) M' @ Marked L i # H @ M = Marked L i # trail T
       using \langle decide\ T\ T' \rangle \langle Marked\ L\ i \in set\ (trail\ T') \rangle nd tr-T'
     have trail T' = Marked L i \# trail T
       using \langle decide\ T\ T' \rangle \langle Marked\ L\ i \in set\ (trail\ T') \rangle\ tr\text{-}T'
      by auto
     then have 5: trail T' = Marked L i \# H @ M
        using append.simps(1) list.sel(3) local.other'(5) tl-append2 by (simp add: tr-T')
     have \theta: trail T = H @ M
       by (metis\ (no\text{-}types)\ (trail\ T'=Marked\ L\ i\ \#\ trail\ T)
         \langle trail\ T' = drop\ (length\ M_0)\ M'\ @\ Marked\ L\ i\ \#\ H\ @\ M\rangle\ append-Nil\ list.sel(3)\ nd
         tl-append2)
     have 7: cdcl_W-stgy^{**} T U using other'.prems(4) st by auto
     have 8: cdcl_W-stgy T U cdcl_W-stgy** U U
       using cdcl_W-stgy.other'[OF other'(1-3)] by simp-all
     show ?case apply (rule exI[of - T], rule exI[of - T'], rule exI[of - U])
       using ns 1 2 3 5 6 7 8 by fast
   qed
next
 case True
 then obtain M' where T: trail T = M' @ Marked L i \# H @ M by metis
 from IH[OF this S lev] obtain S' S'' S''' where
   1: cdcl_W-stgy^{**} R S' and
   2: decide S' S" and
   \mathcal{Z}: cdcl_W-stgy^{**} S^{\prime\prime} T and
   4: no\text{-}step \ cdcl_W\text{-}cp \ S' and
   6: trail\ S'' = Marked\ L\ i\ \#\ H\ @\ M and
   7: trail S' = H @ M and
   8: cdcl_W-stgy^{**} S' T and
   9: cdcl_W-stqy S' S''' and
   10: cdcl_W-stgy^{**} S''' T
     by blast
 have cdcl_W-stgy^{**} S'' U using s \langle cdcl_W-stgy^{**} S'' T \rangle by auto
 moreover have cdcl_W-stgy^{**} S' U using 8 s by auto
 moreover have cdcl_W-stgy^{**} S''' U using 10 s by auto
 ultimately show ?thesis apply - apply (rule exI[of - S'], rule exI[of - S''])
```

```
using 1 2 4 6 7 8 9 by blast
   qed
qed
lemma rtranclp-cdcl<sub>W</sub>-new-marked-at-beginning-is-decide':
  assumes cdcl_W-stgy^{**} R U and
  trail\ U = M' @ Marked\ L\ i \ \#\ H\ @\ M\ and
  trail R = M and
  cdcl_W-M-level-inv R
 shows \exists y \ y'. \ cdcl_W - stgy^{**} \ R \ y \land cdcl_W - stgy \ y \ y' \land \neg \ (\exists c. \ trail \ y = c \ @ \ Marked \ L \ i \ \# \ H \ @ \ M)
   \wedge (\lambda a \ b. \ cdcl_W \text{-stgy } a \ b \ \wedge (\exists c. \ trail \ a = c \ @ Marked \ L \ i \ \# \ H \ @ M))^{**} \ y' \ U
proof -
  fix T'
  obtain S' T T' where
   st: cdcl_W - stgy^{**} R S' and
   decide S' T and
    TU: cdcl_W - stgy^{**} T U and
   no-step cdcl_W-cp S' and
   trT: trail\ T = Marked\ L\ i\ \#\ H\ @\ M and
   trS': trail S' = H @ M and
   S'U: cdcl_W \text{-}stgy^{**} S'U and
   S'T': cdcl_W-stgy S' T' and
    T'U: cdcl_W - stgy^{**} T'U
   using rtranclp-cdcl_W-new-marked-at-beginning-is-decide[OF assms] by blast
  have n: \neg (\exists c. trail S' = c @ Marked L i \# H @ M) using trS' by auto
  show ?thesis
   using rtranclp-trans[OF st] rtranclp-exists-last-with-prop[of <math>cdcl_W-stgy S' T'-
       \lambda a -. \neg (\exists c. trail \ a = c @ Marked \ L \ i \# H @ M), \ OF \ S'T' \ T'U \ n]
     by meson
\mathbf{qed}
lemma beginning-not-marked-invert:
 assumes A: M @ A = M' @ Marked K i \# H and
 nm: \forall m \in set M. \neg is\text{-}marked m
 shows \exists M. A = M @ Marked K i \# H
proof -
  have A = drop \ (length \ M) \ (M' @ Marked \ K \ i \ \# \ H)
   using arg-cong[OF A, of drop (length M)] by auto
 moreover have drop \ (length \ M) \ (M' @ Marked \ K \ i \ \# \ H) = drop \ (length \ M) \ M' @ Marked \ K \ i \ \# \ H
   \mathbf{using} \ nm \ \mathbf{by} \ (\textit{metis} \ (\textit{no-types}, \ \textit{lifting}) \ \textit{A} \ \textit{drop-Cons'} \ \textit{drop-append} \ \textit{ann-literal.disc}(1) \ \textit{not-gr0}
     nth-append nth-append-length nth-mem zero-less-diff)
 finally show ?thesis by fast
qed
lemma cdcl_W-stgy-trail-has-new-marked-is-decide-step:
  assumes cdcl_W-stqy S T
  \neg (\exists c. trail S = c @ Marked L i \# H @ M) and
  (\lambda a \ b. \ cdcl_W-stgy a \ b \land (\exists \ c. \ trail \ a = c @ Marked \ L \ i \# H @ M))^{**} \ T \ U \ and
  \exists M'. trail \ U = M' @ Marked \ L \ i \# H @ M \ and
  lev: cdcl_W-M-level-inv S
 shows \exists S'. decide S S' \land full \ cdcl_W - cp \ S' \ T \land no\text{-step} \ cdcl_W - cp \ S
  using assms(3,1,2,4,5)
proof induction
  case (step \ T \ U)
  then show ?case by fastforce
```

```
next
 case base
 then show ?case
   proof (induction rule: cdcl_W-stgy.induct)
    case (conflict' T) note cp = this(1) and nd = this(2) and M' = this(3) and no-dup = this(3)
    then obtain M' where M': trail T = M' @ Marked L i \# H @ M by metis
    obtain M" where M": trail T = M" @ trail S and nm: \forall m \in set M". \neg is-marked m
      using cp unfolding full1-def
      by (metis\ rtranclp-cdcl_W-cp-drop\ While-trail'\ tranclp-into-rtranclp)
    have False
      using beginning-not-marked-invert of M'' trail S M' L i H @ M M' nm nd unfolding M''
      by fast
    then show ?case by fast
    case (other'\ T\ U') note o=this(1) and ns=this(2) and cp=this(3) and nd=this(4)
      and trU' = this(5)
    have cdcl_W - cp^{**} T U' using cp unfolding full-def by blast
    from rtranclp-cdcl_W-cp-dropWhile-trail[OF this]
    have \exists M'. trail T = M' @ Marked L i \# H @ M
      using trU' beginning-not-marked-invert[of - trail T - L i H @ M] by metis
    then obtain M' where M': trail T = M' @ Marked L i \# H @ M
      by auto
    with o lev nd cp ns
    show ?case
      proof (induction rule: cdcl_W-o-induct-lev2)
        case (decide L) note dec = this(1) and cp = this(5) and ns = this(4)
        then have decide S (cons-trail (Marked L (backtrack-lvl S + 1)) (incr-lvl S))
         using decide.hyps decide.intros[of S] by force
        then show ?case using cp decide.prems by (meson decide-state-eq-compatible ns state-eq-ref
         state-eq-sym)
      \mathbf{next}
        case (backtrack K j M1 M2 L' D T) note decomp = this(1) and cp = this(3)
         and undef = this(6) and T = this(7) and trT = this(12) and ns = this(4)
        obtain MS3 where MS3: trail S = MS3 @ M2 @ Marked K (Suc j) \# M1
         using get-all-marked-decomposition-exists-prepend[OF decomp] by metis
        have tl \ (M' @ Marked \ L \ i \ \# \ H \ @ \ M) = tl \ M' \ @ Marked \ L \ i \ \# \ H \ @ \ M
         using lev trT T lev undef decomp by (cases M') (auto simp: cdcl_W-M-level-inv-decomp)
        then have M'': M1 = tl M' @ Marked L i \# H @ M
         using arg-cong[OF trT[simplified], of tl] T decomp undef lev
         by (simp\ add:\ cdcl_W-M-level-inv-decomp)
        have False using nd MS3 T undef decomp unfolding M'' by auto
        then show ?case by fast
      qed auto
    qed
qed
lemma rtranclp-cdcl_W-stgy-with-trail-end-has-trail-end:
 assumes (\lambda a\ b.\ cdcl_W-stgy a\ b \land (\exists\ c.\ trail\ a=c\ @\ Marked\ L\ i\ \#\ H\ @\ M))^{**}\ T\ U and
 \exists M'. trail U = M' @ Marked L i \# H @ M
 shows \exists M'. trail T = M' @ Marked L i \# H @ M
 using assms by (induction rule: rtranclp-induct) auto
lemma cdcl_W-o-cannot-learn:
 assumes
   cdcl_W-o y z and
```

```
lev: cdcl_W-M-level-inv y and
   trM: trail\ y = c @ Marked\ Kh\ i \# H\ and
   DL: D + \{\#L\#\} \notin \# learned\text{-}clss \ y \ \text{and}
   DH: atms-of D \subseteq atm-of 'lits-of H  and
   LH: atm\text{-}of \ L \notin atm\text{-}of \ 'lits\text{-}of \ H \ \mathbf{and}
   learned: \forall T. conflicting y = Some T \longrightarrow trail y \models as CNot T and
   z: trail z = c' @ Marked Kh i # H
 shows D + \{\#L\#\} \notin \# learned\text{-}clss z
 using assms(1-2) trM DL DH LH learned z
proof (induction rule: cdcl_W-o-induct-lev2)
 case (backtrack\ K\ j\ M1\ M2\ L'\ D'\ T) note decomp = this(1) and confl = this(3) and levD = this(5)
   and undef = this(6) and T = this(7)
 obtain M3 where M3: trail\ y = M3 @ M2 @ Marked\ K\ (Suc\ j) \# M1
   using decomp get-all-marked-decomposition-exists-prepend by metis
 have M: trail\ y = c @ Marked\ Kh\ i \# H using trM by simp
 have H: get-all-levels-of-marked (trail y) = rev [1..<1 + backtrack-lvl y]
   using lev unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
 have c' \otimes Marked Kh i \# H = Propagated L' (D' + {\#L'\#}) \# trail (reduce-trail-to M1 y)
   using backtrack.prems(6) decomp undef T lev by (force simp: cdcl_W-M-level-inv-def)
 then obtain d where d: M1 = d @ Marked Kh i \# H
   by (metis (no-types) decomp in-get-all-marked-decomposition-trail-update-trail list.inject
     list.sel(3) ann-literal.distinct(1) self-append-conv2 tl-append2)
 have i \in set (get-all-levels-of-marked (M3 @ M2 @ Marked K (Suc j) \# d @ Marked Kh i \# H))
   by auto
 then have i > 0 unfolding H[unfolded M3 d] by auto
 show ?case
   proof
     assume D + \{\#L\#\} \in \# learned\text{-}clss T
     then have DLD': D + \{\#L\#\} = D' + \{\#L'\#\}
      using DL T neq0-conv undef decomp lev by (fastforce simp: cdcl_W-M-level-inv-def)
     have L-cKh: atm-of L \in atm-of 'lits-of (c @ [Marked Kh i])
      using LH learned M DLD'[symmetric] confl by (fastforce simp add: image-iff)
     have get-all-levels-of-marked (M3 @ M2 @ Marked K (j + 1) \# M1)
      = rev \left[1..<1 + backtrack-lvl y\right]
      using lev unfolding cdcl_W-M-level-inv-def M3 by auto
     from arg-cong OF this, of \lambda a. (Suc j) \in set a have backtrack-lvl y \geq j by auto
     have DD'[simp]: D = D'
      proof (rule ccontr)
        assume D \neq D'
        then have L' \in \# D using DLD' by (metis add.left-neutral count-single count-union
          diff-union-cancelR neq0-conv union-single-eq-member)
        then have get-level (trail y) L' \leq get-maximum-level (trail y) D
          using get-maximum-level-ge-get-level by blast
        moreover {
          have get-maximum-level (trail\ y)\ D = get-maximum-level H\ D
           using DH unfolding M by (simp add: get-maximum-level-skip-beginning)
           have get-all-levels-of-marked (trail y) = rev [1..<1 + backtrack-lvl y]
             using lev unfolding cdcl_W-M-level-inv-def by auto
           then have get-all-levels-of-marked H = rev [1... < i]
             unfolding M by (auto dest: append-cons-eq-upt-length-i
               simp\ add:\ rev-swap[symmetric])
           then have get-maximum-possible-level H < i
             using get-maximum-possible-level-max-get-all-levels-of-marked [of H] \langle i > 0 \rangle by auto
```

```
ultimately have get-maximum-level (trail y) D < i
      by (metis (full-types) dual-order.strict-trans nat-neq-iff not-le
        get-maximum-possible-level-ge-get-maximum-level) }
   moreover
     have L \in \# D'
      by (metis DLD' \langle D \neq D' \rangle add.left-neutral count-single count-union diff-union-cancelR
        neg0-conv union-single-eq-member)
     then have get-maximum-level (trail y) D' \geq get-level (trail y) L
       using get-maximum-level-ge-get-level by blast
   moreover {
     have get-all-levels-of-marked (c @ [Marked Kh i]) = rev [i... < backtrack-lvl y+1]
       using append-cons-eq-upt-length-i-end[of rev (get-all-levels-of-marked H) i
        rev (get-all-levels-of-marked c) Suc 0 Suc (backtrack-lvl y)] H
       unfolding M apply (auto simp add: rev-swap[symmetric])
        by (metis (no-types, hide-lams) Nil-is-append-conv Suc-le-eq less-Suc-eq list.sel(1)
          rev.simps(2) rev-rev-ident upt-Suc upt-rec)
     have get-level (trail y) L = get-level (c @ [Marked Kh i]) L
       using L-cKh LH unfolding M by simp
     have get-level (c @ [Marked Kh i]) L \geq i
       using L-cKh
         \langle get-all-levels-of-marked \ (c @ [Marked Kh i]) = rev \ [i.. < backtrack-lvl \ y + 1] \rangle
       backtrack.hyps(2) calculation(1,2) by auto
     then have get-level (trail y) L \geq i
       using M \setminus get-level (trail y) L = get-level (c @ [Marked Kh i]) L \setminus by auto }
   moreover have get-maximum-level (trail y) D' < \text{get-level (trail y) } L
     using \langle j \leq backtrack-lvl \ y \rangle \ backtrack.hyps(2,5) \ calculation(1-4) by linarith
   ultimately show False using backtrack.hyps(4) by linarith
 qed
then have LL': L = L' using DLD' by auto
have nd: no-dup (trail y) using lev unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
{ assume D: D' = \{\#\}
 then have j: j = 0 using levD by auto
 have \forall m \in set M1. \neg is\text{-}marked m
   using H unfolding M3j
   by (auto simp add: rev-swap[symmetric] qet-all-levels-of-marked-no-marked
     dest!: append-cons-eq-upt-length-i)
 then have False using d by auto
moreover {
 assume D[simp]: D' \neq \{\#\}
 have i \leq j
   using H unfolding M3 d by (auto simp add: rev-swap[symmetric]
     dest: upt-decomp-lt)
 have j > \theta apply (rule ccontr)
   using H \langle i > \theta \rangle unfolding M3 d
   \mathbf{by}\ (\mathit{auto}\ \mathit{simp}\ \mathit{add}\colon \mathit{rev-swap}[\mathit{symmetric}]\ \mathit{dest}!\colon \mathit{upt-decomp-lt})
 obtain L^{\prime\prime} where
   L'' \in \#D' and
   L''D': get-level (trail y) L'' = get-maximum-level (trail y) D'
   using get-maximum-level-exists-lit-of-max-level[OF D, of trail y] by auto
 have L''M: atm\text{-}of\ L'' \in atm\text{-}of\ `its\text{-}of\ (trail\ y)
   using get-rev-level-ge-0-atm-of-in of 0 rev (trail y) L'' (j>0) levD L''D' by auto
 then have L'' \in lits\text{-}of \pmod{Kh} i \# d
   proof -
```

```
{
            assume L''H: atm-of L'' \in atm-of ' lits-of H
            have get-all-levels-of-marked H = rev [1..<<math>i]
              using H unfolding M
              by (auto simp add: rev-swap[symmetric] dest!: append-cons-eq-upt-length-i)
            moreover have get-level (trail y) L'' = get-level H L''
              using L''H unfolding M by simp
            ultimately have False
              using levD \langle j > 0 \rangle get-rev-level-in-levels-of-marked of rev H 0 L'' \langle i \leq j \rangle
              unfolding L''D'[symmetric] nd by auto
           then show ?thesis
            using DD'DH \langle L'' \in \# D' \rangle atm-of-lit-in-atms-of contra-subsetD by metis
       then have False
         using DH \langle L'' \in \#D' \rangle nd unfolding M3 d
         by (auto simp add: atms-of-def image-iff image-subset-iff lits-of-def)
     ultimately show False by blast
   qed
qed auto
lemma cdcl_W-stgy-with-trail-end-has-not-been-learned:
 assumes cdcl_W-stgy y z and
  cdcl_W-M-level-inv y and
  trail\ y = c\ @\ Marked\ Kh\ i\ \#\ H\ {\bf and}
  D + \{\#L\#\} \notin \# learned\text{-}clss \ y \ \text{and}
  DH: atms-of D \subseteq atm-of `lits-of H  and
  LH: atm\text{-}of \ L \notin atm\text{-}of \ 'lits\text{-}of \ H \ \mathbf{and}
 \forall T. \ conflicting \ y = Some \ T \longrightarrow trail \ y \models as \ CNot \ T \ and
  trail\ z = c' \ @\ Marked\ Kh\ i\ \#\ H
 shows D + \{\#L\#\} \notin \# learned\text{-}clss z
 using assms
proof induction
 case conflict'
 then show ?case
   unfolding full1-def using tranclp-cdclw-cp-learned-clause-inv by auto
next
  case (other' T U) note o = this(1) and cp = this(3) and lev = this(4) and trY = this(5) and
   notin = this(6) and DH = this(7) and LH = this(8) and confl = this(9) and trU = this(10)
 obtain c' where c': trail T = c' @ Marked Kh i \# H
   using cp beginning-not-marked-invert[of - trail T c' Kh i H]
     rtranclp-cdcl_W-cp-drop While-trail[of T U] unfolding trU full-def by fastforce
 show ?case
   using cdcl_W-o-cannot-learn[OF o lev trY notin DH LH confl c']
     rtranclp-cdcl<sub>W</sub>-cp-learned-clause-inv cp unfolding full-def by auto
qed
lemma rtranclp-cdcl_W-stqy-with-trail-end-has-not-been-learned:
 assumes (\lambda a\ b.\ cdcl_W-stgy a\ b \land (\exists\ c.\ trail\ a=c\ @\ Marked\ K\ i\ \#\ H\ @\ \|))^{**}\ S\ z and
  cdcl_W-all-struct-inv S and
  trail S = c @ Marked K i \# H  and
  D + \{\#L\#\} \notin \# learned\text{-}clss \ S \ and
  DH: atms-of D \subseteq atm-of 'lits-of H  and
  LH: atm\text{-}of \ L \notin atm\text{-}of \ 'lits\text{-}of \ H \ \mathbf{and}
```

```
\exists c'. trail z = c' @ Marked K i # H
 shows D + \{\#L\#\} \notin \# learned\text{-}clss z
 using assms(1-4,7)
proof (induction rule: rtranclp-induct)
 case base
 then show ?case by auto[1]
next
  case (step T U) note st = this(1) and s = this(2) and IH = this(3)[OF this(4-6)]
   and lev = this(4) and trS = this(5) and DL-S = this(6) and trU = this(7)
 obtain c where c: trail T = c @ Marked K i \# H  using s by auto
 obtain c' where c': trail U = c' @ Marked K i # H using trU by blast
 have cdcl_{W}^{**} S T
   proof -
     have \forall p \ pa. \ \exists s \ sa. \ \forall sb \ sc \ sd \ se. \ (\neg \ p^{**} \ (sb::'st) \ sc \ \lor \ p \ s \ sa \ \lor \ pa^{**} \ sb \ sc)
       \land (\neg pa \ s \ sa \lor \neg p^{**} \ sd \ se \lor pa^{**} \ sd \ se)
       by (metis (no-types) mono-rtranclp)
     then have cdcl_W-stgy** S T
       using st by blast
     then show ?thesis
       using rtranclp-cdcl_W-stgy-rtranclp-cdcl_W by blast
   qed
  then have lev': cdcl_W-all-struct-inv T
   using rtranclp-cdcl_W-all-struct-inv-inv[of S T] lev by auto
  then have confl': \forall Ta. conflicting T = Some Ta \longrightarrow trail T \models as CNot Ta
   unfolding cdcl_W-all-struct-inv-def cdcl_W-conflicting-def by blast
 show ?case
   apply (rule cdcl_W-stqy-with-trail-end-has-not-been-learned[OF - - c - DH LH confl' c'])
   using s lev' IH c unfolding cdcl<sub>W</sub>-all-struct-inv-def by blast+
lemma cdcl_W-stgy-new-learned-clause:
 assumes cdcl_W-stgy S T and
   lev: cdcl_W-M-level-inv S and
   E \notin \# learned\text{-}clss S and
   E \in \# learned\text{-}clss T
 shows \exists S'. backtrack S S' \land conflicting S = Some E \land full cdcl_W - cp S' T
 using assms
proof induction
 case conflict'
  then show ?case unfolding full1-def by (auto dest: tranclp-cdclw-cp-learned-clause-inv)
 case (other' T U) note o = this(1) and cp = this(3) and not-yet = this(5) and learned = this(6)
 have E \in \# learned\text{-}clss T
   using learned cp rtranclp-cdclw-cp-learned-clause-inv unfolding full-def by auto
 then have backtrack \ S \ T and conflicting \ S = Some \ E
   using cdcl_W-o-new-clause-learned-is-backtrack-step[OF - not-yet o] lev by blast+
 then show ?case using cp by blast
qed
lemma cdcl_W-stgy-no-relearned-clause:
 assumes
   invR: cdcl_W-all-struct-inv R and
   st': cdcl_W - stgy^{**} R S and
   bt: backtrack S T and
   confl: conflicting S = Some E and
```

```
already-learned: E \in \# clauses S and
   R: trail R = []
 shows False
proof -
 have M-lev: cdcl_W-M-level-inv R
   using invR unfolding cdcl_W-all-struct-inv-def by auto
  have cdcl_W-M-level-inv S
   using M-lev assms(2) rtranclp-cdcl_W-stgy-consistent-inv by blast
  with bt obtain D L M1 M2-loc K i where
    T: T \sim cons-trail (Propagated L ((D + {#L#})))
      (reduce\text{-}trail\text{-}to\ M1\ (add\text{-}learned\text{-}cls\ (D+\{\#L\#\})
        (update-backtrack-lvl (get-maximum-level (trail S) D) (update-conflicting None S))))
     and
   decomp: (Marked K (Suc (get-maximum-level (trail S) D)) \# M1, M2-loc) \in
              set (qet-all-marked-decomposition (trail S)) and
   k: get-level (trail S) L = backtrack-lvl S and
   level: get-level (trail S) L = get-maximum-level (trail S) (D+\{\#L\#\}) and
   confl-S: conflicting S = Some (D + \{\#L\#\}) and
   i: i = get\text{-}maximum\text{-}level (trail S) D and
   undef: undefined-lit M1 L
   by (induction rule: backtrack-induction-lev2) metis
  obtain M2 where
   M: trail \ S = M2 \ @ Marked \ K \ (Suc \ i) \# M1
  using get-all-marked-decomposition-exists-prepend [OF decomp] unfolding i by (metis append-assoc)
  have invS: cdcl_W-all-struct-inv S
   using invR rtranclp-cdcl_W-all-struct-inv-inv rtranclp-cdcl_W-stgy-rtranclp-cdcl_W st' by blast
  then have conf: cdcl_W-conflicting S unfolding cdcl_W-all-struct-inv-def by blast
  then have trail S \models as CNot (D + \{\#L\#\})  unfolding cdcl_W-conflicting-def confl-S by auto
  then have MD: trail S \models as \ CNot \ D by auto
 have lev': cdcl<sub>W</sub>-M-level-inv S using invS unfolding cdcl<sub>W</sub>-all-struct-inv-def by blast
 have get-lvls-M: get-all-levels-of-marked (trail\ S) = rev\ [1.. < Suc\ (backtrack-lvl\ S)]
   using lev' unfolding cdcl_W-M-level-inv-def by auto
 have lev: cdcl_W-M-level-inv R using invR unfolding cdcl_W-all-struct-inv-def by blast
  then have vars-of-D: atms-of D \subseteq atm-of ' lits-of M1
   using backtrack-atms-of-D-in-M1[OF lev' undef - decomp - - - T] conft-S conf T decomp k level
   lev' i undef unfolding cdclw-conflicting-def by (auto simp: cdclw-M-level-inv-def)
 have no-dup (trail S) using lev' by (auto simp: cdcl<sub>W</sub>-M-level-inv-decomp)
 have vars-in-M1:
   \forall x \in atms\text{-}of \ D. \ x \notin atm\text{-}of \ (lits\text{-}of \ (M2 \ @ [Marked \ K \ (get\text{-}maximum\text{-}level \ (trail \ S) \ D+1)])
     apply (rule vars-of-D distinct-atms-of-incl-not-in-other of
     M2 @ Marked K (get-maximum-level (trail S) D + 1) \# [] M1 D])
     using \langle no\text{-}dup \ (trail \ S) \rangle M \ vars\text{-}of\text{-}D \ \mathbf{by} \ simp\text{-}all
 have M1-D: M1 \models as CNot D
   using vars-in-M1 true-annots-remove-if-notin-vars of M2 @ Marked K (i + 1) \# [] M1 CNot D
   \langle trail \ S \models as \ CNot \ D \rangle \ M \ by \ simp
 have get-lvls-M: get-all-levels-of-marked (trail\ S) = rev\ [1.. < Suc\ (backtrack-lvl\ S)]
   using lev' unfolding cdcl_W-M-level-inv-def by auto
  then have backtrack-lvl S > 0 unfolding M by (auto split: split-if-asm simp add: upt.simps(2))
 obtain M1' K' Ls where
```

```
M': trail\ S = Ls @ Marked\ K'\ (backtrack-lvl\ S) \# M1' and
 Ls: \forall l \in set \ Ls. \ \neg \ is\text{-}marked \ l \ \mathbf{and}
 set M1 \subseteq set M1'
 proof -
   let ?Ls = takeWhile (Not o is-marked) (trail S)
   have MLs: trail\ S = ?Ls @ drop\ While\ (Not\ o\ is-marked)\ (trail\ S)
   have drop While (Not o is-marked) (trail S) \neq [] unfolding M by auto
   moreover
     from hd-dropWhile OF this have is-marked (hd (dropWhile (Not o is-marked) (trail S)))
       by simp
   ultimately
     obtain K' K'k where
       K'k: drop While (Not o is-marked) (trail S)
         = Marked K' K'k \# tl (drop While (Not o is-marked) (trail S))
       by (cases drop While (Not \circ is-marked) (trail S);
          cases hd (drop While (Not \circ is-marked) (trail S)))
   moreover have \forall l \in set ?Ls. \neg is\text{-}marked l using set\text{-}takeWhileD by force
   moreover
     have get-all-levels-of-marked (trail S)
            = K'k \# qet-all-levels-of-marked (tl (drop While (Not \circ is-marked) (trail S)))
       apply (subst MLs, subst K'k)
       using calculation(2) by (auto simp add: get-all-levels-of-marked-no-marked)
     then have K'k = backtrack-lvl S
     using calculation(2) by (auto split: split-if-asm simp add: qet-lvls-M upt.simps(2))
   moreover have set M1 \subseteq set (tl (dropWhile (Not o is-marked) (trail S)))
     unfolding M by (induction M2) auto
   ultimately show ?thesis using that MLs by metis
 qed
have get-lvls-M: get-all-levels-of-marked (trail\ S) = rev\ [1.. < Suc\ (backtrack-lvl\ S)]
 using lev' unfolding cdcl_W-M-level-inv-def by auto
then have backtrack-lvl S > 0 unfolding M by (auto split: split-if-asm simp add: upt.simps(2) i)
have M1'-D: M1' \models as\ CNot\ D using M1-D\ (set\ M1 \subseteq set\ M1') by (auto intro: true-annots-mono)
have -L \in lits-of (trail S) using conf confl-S unfolding cdcl_W-conflicting-def by auto
have lvls-M1': get-all-levels-of-marked\ M1' = rev\ [1... < backtrack-lvl\ S]
 using get-lvls-M Ls by (auto simp add: get-all-levels-of-marked-no-marked M'
   split: split-if-asm \ simp \ add: \ upt.simps(2))
have L-notin: atm-of L \in atm-of 'lits-of Ls \vee atm-of L = atm-of K'
 proof (rule ccontr)
   assume ¬ ?thesis
   then have atm-of L \notin atm-of 'lits-of (Marked K' (backtrack-lvl S) # rev Ls) by simp
   then have get-level (trail S) L = get-level M1' L
     unfolding M' by auto
   then show False using get-level-in-levels-of-marked[of M1 ' L] \langle backtrack-lvl S > 0 \rangle
   unfolding k lvls-M1' by auto
 qed
obtain YZ where
  RY: cdcl_W \text{-}stgy^{**} R Y \text{ and }
  YZ: cdcl_W-stgy YZ and
  nt: \neg (\exists c. trail \ Y = c @ Marked \ K' (backtrack-lvl \ S) \# M1' @ []) and
  Z: (\lambda a \ b. \ cdcl_W \text{-stgy} \ a \ b \land (\exists \ c. \ trail \ a = c \ @ \ Marked \ K' \ (backtrack\text{-lvl} \ S) \ \# \ M1' \ @ \ []))^{**}
            ZS
```

```
using rtranclp-cdcl_W-new-marked-at-beginning-is-decide'[OF st'--lev, of Ls K']
   backtrack-lvl S M1' []]
 unfolding R M' by auto
have [simp]: cdcl_W-M-level-inv Y
 using RY lev rtranclp-cdcl<sub>W</sub>-stgy-consistent-inv by blast
obtain M' where trZ: trail\ Z = M' @ Marked\ K' (backtrack-lvl\ S) \# M1'
  using rtranclp-cdcl_W-stgy-with-trail-end-has-trail-end[OF Z] M' by auto
have no-dup (trail Y)
 using RY lev rtranclp-cdcl_W-stgy-consistent-inv unfolding cdcl_W-M-level-inv-def by blast
then obtain Y' where
 dec: decide Y Y' and
  Y'Z: full cdcl_W-cp Y' Z and
 no-step cdcl_W-cp Y
 using cdcl_W-stgy-trail-has-new-marked-is-decide-step[OF YZ nt Z] M' by auto
have trY: trail\ Y = M1'
 proof -
   obtain M' where M: trail Z = M' @ Marked K' (backtrack-lvl S) # M1'
     using rtranclp-cdcl_W-stqy-with-trail-end-has-trail-end[OF Z] M' by auto
   obtain M" where M": trail Z = M" @ trail Y' and \forall m \in set M". \neg is-marked m
     using Y'Z rtranclp-cdcl<sub>W</sub>-cp-dropWhile-trail' unfolding full-def by blast
   obtain M''' where trail Y' = M''' @ Marked K' (backtrack-lvl S) # M1'
     using M'' unfolding M
     by (metis\ (no\text{-types},\ lifting)\ \forall m\in set\ M''.\ \neg\ is\text{-marked}\ m\rangle\ beginning\text{-not-marked-invert})
   then show ?thesis using dec nt by (induction M''') auto
 qed
have Y-CT: conflicting Y = None \text{ using } \langle decide \ Y \ Y' \rangle \text{ by } auto
have cdcl_W^{**} R Y by (simp add: RY rtranclp-cdcl<sub>W</sub>-stgy-rtranclp-cdcl<sub>W</sub>)
then have init-clss Y = init-clss R using rtranclp-cdclW-init-clss [of R Y] M-lev by auto
{ assume DL: D + \{\#L\#\} \in \# clauses \ Y
 have atm\text{-}of \ L \notin atm\text{-}of ' lits\text{-}of \ M1
   apply (rule backtrack-lit-skiped[of S])
   using decomp i k lev' unfolding cdcl_W-M-level-inv-def by auto
 then have LM1: undefined-lit M1 L
   by (metis Marked-Propagated-in-iff-in-lits-of atm-of-uninus image-eqI)
 have L-trY: undefined-lit (trail Y) L
   using L-notin (no-dup (trail S)) unfolding defined-lit-map trY M'
   by (auto simp add: image-iff lits-of-def)
 have \exists Y'. propagate YY'
   using propagate-rule[of Y] DL M1'-D L-trY Y-CT trY DL by (metis state-eq-ref)
 then have False using \langle no\text{-}step\ cdcl_W\text{-}cp\ Y\rangle\ propagate' by blast
}
moreover {
 assume DL: D + \{\#L\#\} \notin \# clauses Y
 have lY-lZ: learned-clss Y = learned-clss Z
   using dec Y'Z rtranclp-cdcl<sub>W</sub>-cp-learned-clause-inv[of Y' Z] unfolding full-def
   by auto
 have invZ: cdcl_W-all-struct-inv Z
   by (meson\ RY\ YZ\ invR\ r\text{-}into\text{-}rtranclp\ rtranclp\text{-}cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}inv)
     rtranclp-cdcl_W-stqy-rtranclp-cdcl_W)
 have D + \{\#L\#\} \notin \#learned\text{-}clss S
   apply (rule rtranclp-cdcl_W-stgy-with-trail-end-has-not-been-learned [OF Z invZ\ trZ])
      using DL lY-lZ unfolding clauses-def apply simp
     apply (metis (no-types, lifting) (set M1 \subseteq set M1') image-mono order-trans
       vars-of-D lits-of-def)
    using L-notin (no-dup (trail S)) unfolding M' by (auto simp add: image-iff lits-of-def)
```

```
then have False
     using already-learned DL confl st' M-lev unfolding M'
     by (simp add: \langle init\text{-}clss \ Y = init\text{-}clss \ R \rangle clauses-def confl-S
       rtranclp-cdcl_W-stgy-no-more-init-clss)
 ultimately show False by blast
qed
lemma rtranclp-cdcl_W-stgy-distinct-mset-clauses:
 assumes
   invR: cdcl_W-all-struct-inv R and
   st: cdcl_W - stgy^{**} R S and
   dist: distinct-mset (clauses R) and
   R: trail R = []
 shows distinct-mset (clauses S)
 using st
proof (induction)
 case base
  then show ?case using dist by simp
  case (step \ S \ T) note st = this(1) and s = this(2) and IH = this(3)
 from s show ?case
   proof (cases rule: cdcl_W-stgy.cases)
     case conflict'
     then show ?thesis
      using IH unfolding full1-def by (auto dest: tranclp-cdcl<sub>W</sub>-cp-no-more-clauses)
   next
     case (other' S') note o = this(1) and full = this(3)
     have [simp]: clauses T = clauses S'
      using full unfolding full-def by (auto dest: rtranclp-cdcl<sub>W</sub>-cp-no-more-clauses)
     show ?thesis
      using o IH
      proof (cases rule: cdcl_W-o-rule-cases)
        case backtrack
        moreover
          have cdcl_W-all-struct-inv S
            using invR rtranclp-cdcl_W-stgy-cdcl_W-all-struct-inv st by blast
          then have cdcl_W-M-level-inv S
            unfolding cdcl_W-all-struct-inv-def by auto
        ultimately obtain E where
          conflicting S = Some E  and
          cls-S': clauses <math>S' = \{\#E\#\} + clauses S
          using \langle cdcl_W \text{-}M\text{-}level\text{-}inv S \rangle
          by (induction rule: backtrack-induction-lev2) (auto simp: cdcl<sub>W</sub>-M-level-inv-decomp)
        then have E \notin \# clauses S
          using cdcl_W-stgy-no-relearned-clause R invR local.backtrack st by blast
        then show ?thesis using IH by (simp add: distinct-mset-add-single cls-S')
      qed auto
   qed
\mathbf{qed}
lemma cdcl_W-stgy-distinct-mset-clauses:
 assumes
   st: cdcl_W - stgy^{**} \ (init-state \ N) \ S \ {\bf and}
   no-duplicate-clause: distinct-mset N and
```

```
no-duplicate-in-clause: distinct-mset-mset N shows distinct-mset (clauses S) using rtranclp-cdcl_W-stgy-distinct-mset-clauses[OF - st] assms by (auto simp: cdcl_W-all-struct-inv-def distinct-cdcl_W-state-def)
```

5.9 Decrease of a measure

```
fun cdcl_W-measure where
cdcl_W-measure S =
  [(3::nat) \cap (card (atms-of-msu (init-clss S))) - card (set-mset (learned-clss S)),
   if conflicting S = None then 1 else 0,
   if conflicting S = None then card (atms-of-msu (init-clss S)) – length (trail S)
   else length (trail S)
{\bf lemma}\ length{-model-le-vars-all-inv}:
 assumes cdclw-all-struct-inv S
 shows length (trail\ S) \le card\ (atms-of-msu\ (init-clss\ S))
 using assms length-model-le-vars of S unfolding cdcl_W-all-struct-inv-def
 by (auto simp: cdcl_W-M-level-inv-decomp)
end
context cdcl_W
begin
\mathbf{lemma}\ \mathit{learned-clss-less-upper-bound}\colon
 fixes S :: 'st
 assumes
   distinct-cdcl_W-state S and
   \forall s \in \# learned\text{-}clss S. \neg tautology s
 shows card(set\text{-}mset\ (learned\text{-}clss\ S)) \leq 3 \cap card\ (atms\text{-}of\text{-}msu\ (learned\text{-}clss\ S))
proof -
 have set-mset (learned-clss S) \subseteq simple-clss (atms-of-msu (learned-clss S))
   apply (rule simplified-in-simple-clss)
   using assms unfolding distinct-cdclw-state-def by auto
  then have card(set\text{-}mset\ (learned\text{-}clss\ S))
   \leq card \ (simple-clss \ (atms-of-msu \ (learned-clss \ S)))
   by (simp add: simple-clss-finite card-mono)
  then show ?thesis
   by (meson atms-of-ms-finite simple-clss-card finite-set-mset order-trans)
\mathbf{qed}
lemma lexn3[intro!, simp]:
  a < a' \lor (a = a' \land b < b') \lor (a = a' \land b = b' \land c < c')
   \implies ([a::nat, b, c], [a', b', c']) \in lexn \{(x, y). x < y\} \ 3
 apply auto
 unfolding lexn-conv apply fastforce
 unfolding lexn-conv apply auto
 apply (metis\ append.simps(1)\ append.simps(2))+
 done
lemma cdcl_W-measure-decreasing:
 fixes S :: 'st
 assumes
   cdcl_W S S' and
   no-restart:
```

```
\neg (learned\text{-}clss\ S \subseteq \#\ learned\text{-}clss\ S' \land [] = trail\ S' \land conflicting\ S' = None)
    and
   learned-clss S \subseteq \# learned-clss S' and
   no-relearn: \bigwedge S'. backtrack SS' \Longrightarrow \forall T. conflicting S = Some \ T \longrightarrow T \notin \# \ learned-clss \ S
   alien: no-strange-atm S and
   M-level: cdcl_W-M-level-inv S and
   no-taut: \forall s \in \# learned-clss S. \neg tautology s and
   no-dup: distinct\text{-}cdcl_W\text{-}state\ S and
   confl: cdcl_W-conflicting S
 shows (cdcl_W-measure S', cdcl_W-measure S) \in lexn \{(a, b). a < b\} 3
 using assms(1) M-level assms(2,3)
proof (induct rule: cdcl_W-all-induct-lev2)
 case (propagate C L) note undef = this(3) and T = this(4) and conf = this(5)
 have propa: propagate S (cons-trail (Propagated L (C + \{\#L\#\})) S)
   using propagate-rule[OF - propagate.hyps(1,2)] propagate.hyps by auto
 then have no-dup': no-dup (Propagated L ( (C + \{\#L\#\})) \# trail S)
   by (metis\ M-level\ cdcl_W-M-level-inv-decomp(2)\ ann-literal.sel(2)\ propagate'
     r-into-r-tranclp r-tranclp-c-dcl_W-c-p-consistent-inv t-rail-c-ons-t-rail undef)
 let ?N = init\text{-}clss S
 have no-strange-atm (cons-trail (Propagated L (C + \{\#L\#\})) S)
   using alien cdcl_W.propagate cdcl_W-no-strange-atm-inv propa M-level by blast
 then have atm-of 'lits-of (Propagated L ( (C + \{\#L\#\})) \# trail S)
   \subseteq atms-of-msu \ (init-clss \ S)
   using undef unfolding no-strange-atm-def by auto
 then have card (atm-of 'lits-of (Propagated L ((C + \{\#L\#\})) \# trail S)
   \leq card (atms-of-msu (init-clss S))
   by (meson atms-of-ms-finite card-mono finite-set-mset)
 then have length (Propagated L ( (C + \{\#L\#\})) \# trail S) \leq card (atms-of-msu ?N)
   using no-dup-length-eq-card-atm-of-lits-of no-dup' by fastforce
 then have H: card (atms-of-msu (init-clss S)) - length (trail S)
   = Suc (card (atms-of-msu (init-clss S)) - Suc (length (trail S)))
   by simp
 show ?case using conf T undef by (auto simp: H)
 case (decide L) note conf = this(1) and undef = this(2) and T = this(4)
 moreover
   have dec: decide S (cons-trail (Marked L (backtrack-lvl S + 1)) (incr-lvl S))
     using decide.intros decide.hyps by force
   then have cdcl_W : cdcl_W : (cons-trail (Marked L (backtrack-lvl S + 1)) (incr-lvl S))
     using cdcl_W.simps by blast
 moreover
   have lev: cdcl_W-M-level-inv (cons-trail (Marked L (backtrack-lvl S + 1)) (incr-lvl S))
     using cdcl_W M-level cdcl_W-consistent-inv[OF cdcl_W] by auto
   then have no-dup: no-dup (Marked L (backtrack-lvl S + 1) # trail S)
     using undef unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
   have no-strange-atm (cons-trail (Marked L (backtrack-lvl S + 1)) (incr-lvl S))
     using M-level alien calculation(4) cdcl<sub>W</sub>-no-strange-atm-inv by blast
   then have length (Marked L ((backtrack-lvl S) + 1) # (trail S))
     \leq card (atms-of-msu (init-clss S))
     using no-dup clauses-def undef
     length-model-le-vars[of\ cons-trail\ (Marked\ L\ (backtrack-lvl\ S\ +\ 1))\ (incr-lvl\ S)]
     by fastforce
 ultimately show ?case using conf by auto
```

```
next
 case (skip\ L\ C'\ M\ D) note tr=this(1) and conf=this(2) and T=this(5)
 show ?case using conf T unfolding clauses-def by (simp add: tr)
next
 case conflict
 then show ?case by simp
next
 case resolve
 then show ?case using finite unfolding clauses-def by simp
 case (backtrack K i M1 M2 L D T) note decomp = this(1) and conf = this(3) and undef = this(6)
and
   T = this(7) and lev = this(8)
 let ?S' = T
 have bt: backtrack S ?S'
   using backtrack.hyps backtrack.intros[of S - - - - D L K i] by auto
 have D + \{\#L\#\} \notin \# learned\text{-}clss S
   using no-relearn conf bt by auto
 then have card-T:
   card\ (set\text{-}mset\ (\#D + \#L\#\}\#\} + learned\text{-}clss\ S)) = Suc\ (card\ (set\text{-}mset\ (learned\text{-}clss\ S)))
   by (simp \ add:)
 have distinct\text{-}cdcl_W\text{-}state ?S'
   using bt M-level distinct-cdcl<sub>W</sub>-state-inv no-dup other by blast
 moreover have \forall s \in \#learned\text{-}clss ?S'. \neg tautology s
   using learned-clss-are-not-tautologies[OF <math>cdcl_W.other[OF \ cdcl_W-o.bj]OF
     cdcl_W-bj.backtrack[OF bt]]]] M-level no-taut confl by auto
 ultimately have card (set-mset (learned-clss T)) \leq 3 \hat{} card (atms-of-msu (learned-clss T))
     by (auto simp: clauses-def learned-clss-less-upper-bound)
   then have H: card (set-mset (\{\#D + \{\#L\#\}\#\} + learned\text{-}clss\ S))
     using T undef decomp lev by (auto simp: cdcl_W-M-level-inv-decomp)
 moreover
   have atms-of-msu (\{\#D + \{\#L\#\}\#\} + learned-clss S) \subseteq atms-of-msu (init-clss S)
     using alien conf unfolding no-strange-atm-def by auto
   then have card-f: card (atms-of-msu (\{\#D + \{\#L\#\}\#\} + learned\text{-}clss\ S))
     < card (atms-of-msu (init-clss S))
     by (meson atms-of-ms-finite card-mono finite-set-mset)
   then have (3::nat) \widehat{\ } card (atms-of-msu\ (\{\#D+\{\#L\#\}\#\}+learned-clss\ S))
     \leq 3 \hat{} card (atms-of-msu (init-clss S)) by simp
 ultimately have (3::nat) \widehat{\ } card (atms-of-msu\ (init-clss\ S))
   \geq card (set\text{-}mset (\{\#D + \{\#L\#\}\#\} + learned\text{-}clss S))
   using le-trans by blast
 then show ?case using decomp undef diff-less-mono2 card-T T lev
   by (auto simp: cdcl_W-M-level-inv-decomp)
next
 case restart
 then show ?case using alien by (auto simp: state-eq-def simp del: state-simp)
 case (forget C T)
 then have C \in \# learned-clss S and C \notin \# learned-clss T
 then show ?case using forget(9) by (simp \ add: mset-leD)
qed
```

lemma propagate-measure-decreasing:

```
fixes S :: 'st
 assumes propagate S S' and cdcl_W-all-struct-inv S
 shows (cdcl_W-measure S', cdcl_W-measure S) \in lexn \{(a, b), a < b\} 3
 apply (rule cdcl_W-measure-decreasing)
 using assms(1) propagate apply blast
         using assms(1) apply (auto simp add: propagate.simps)[3]
      using assms(2) apply (auto simp\ add:\ cdcl_W-all-struct-inv-def)
 done
lemma conflict-measure-decreasing:
 fixes S :: 'st
 assumes conflict S S' and cdcl_W-all-struct-inv S
 shows (cdcl_W-measure S', cdcl_W-measure S) \in lexn \{(a, b). a < b\} 3
 apply (rule cdcl_W-measure-decreasing)
 using assms(1) conflict apply blast
         using assms(1) apply (auto simp add: propagate.simps)[3]
       using assms(2) apply (auto simp\ add: cdcl_W-all-struct-inv-def)
 done
{\bf lemma}\ decide{-}measure{-}decreasing:
 fixes S :: 'st
 assumes decide\ S\ S' and cdcl_W-all-struct-inv S
 shows (cdcl_W-measure S', cdcl_W-measure S) \in lexn \{(a, b), a < b\} 3
 apply (rule cdcl_W-measure-decreasing)
 using assms(1) decide other apply blast
         using assms(1) apply (auto simp add: propagate.simps)[3]
       using assms(2) apply (auto simp \ add: \ cdcl_W-all-struct-inv-def)
 done
lemma trans-le:
 trans \{(a, (b::nat)). a < b\}
 unfolding trans-def by auto
lemma cdcl_W-cp-measure-decreasing:
 fixes S :: 'st
 assumes cdcl_W-cp S S' and cdcl_W-all-struct-inv S
 shows (cdcl_W-measure S', cdcl_W-measure S) \in lexn \{(a, b), a < b\} 3
 using assms
proof induction
 case conflict'
 then show ?case using conflict-measure-decreasing by blast
next
 case propagate'
 then show ?case using propagate-measure-decreasing by blast
qed
lemma tranclp-cdcl_W-cp-measure-decreasing:
 fixes S :: 'st
 assumes cdcl_W-cp^{++} S S' and cdcl_W-all-struct-inv S
 shows (cdcl_W-measure S', cdcl_W-measure S) \in lexn \{(a, b), a < b\} 3
 using assms
proof induction
 case base
 then show ?case using cdcl_W-cp-measure-decreasing by blast
\mathbf{next}
```

```
case (step T U) note st = this(1) and step = this(2) and IH = this(3) and inv = this(4)
  then have (cdcl_W-measure T, cdcl_W-measure S) \in lexn \{a. case \ a \ of \ (a, b) \Rightarrow a < b\} 3 by blast
 moreover have (cdcl_W-measure U, cdcl_W-measure T) \in lexn \{a. case \ a \ of \ (a, \ b) \Rightarrow a < b\} 3
   using cdcl_W-cp-measure-decreasing [OF step] rtranclp-cdcl_W-all-struct-inv-inv inv
   tranclp-cdcl_W-cp-tranclp-cdcl_W[OF st]
   unfolding trans-def rtranclp-unfold
   \mathbf{by} blast
 ultimately show ?case using lexn-transI[OF trans-le] unfolding trans-def by blast
lemma cdcl_W-stgy-step-decreasing:
 fixes R S T :: 'st
 assumes cdcl_W-stgy S T and
  cdcl_W-stgy^{**} R S
  trail R = [] and
  cdcl_W-all-struct-inv R
 shows (cdcl_W-measure T, cdcl_W-measure S) \in lexn \{(a, b). a < b\} 3
proof -
 have cdcl_W-all-struct-inv S
   using assms
   by (metis rtranclp-unfold rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv tranclp-cdcl<sub>W</sub>-stqy-tranclp-cdcl<sub>W</sub>)
  with assms show ?thesis
   proof induction
     case (conflict' V) note cp = this(1) and inv = this(5)
     show ?case
       \mathbf{using} \ tranclp-cdcl_W\text{-}cp\text{-}measure\text{-}decreasing[OF\ HOL.conjunct1[OF\ cp[unfolded\ full1\text{-}def]]\ inv]}
   next
     case (other' T U) note st = this(1) and H = this(4,5,6,7) and cp = this(3)
     have cdcl_W-all-struct-inv T
      using cdcl_W-all-struct-inv-inv other other'.hyps(1) other'.prems(4) by blast
     from tranclp-cdcl_W-cp-measure-decreasing [OF - this]
     have le-or-eq: (cdcl_W-measure U, cdcl_W-measure T) \in lexn \{a. case a of (a, b) \Rightarrow a < b\} 3 \vee
       cdcl_W-measure U = cdcl_W-measure T
      using cp unfolding full-def rtranclp-unfold by blast
     moreover
      have cdcl_W-M-level-inv S
        using cdcl_W-all-struct-inv-def other'.prems(4) by blast
      with st have (cdcl_W-measure T, cdcl_W-measure S) \in lexn \{a. case \ a \ of \ (a, b) \Rightarrow a < b\} 3
      proof (induction rule: cdcl_W-o-induct-lev2)
        case (decide\ T)
        then show ?case using decide-measure-decreasing H by blast
         case (backtrack K i M1 M2 L D T) note decomp = this(1) and undef = this(6) and T =
this(7)
        have bt: backtrack S T
          apply (rule backtrack-rule)
          using backtrack.hyps by auto
        then have no-relearn: \forall T. conflicting S = Some \ T \longrightarrow T \notin \# \ learned-clss \ S
          using cdcl_W-stgy-no-relearned-clause[of R S T] H
          unfolding cdcl_W-all-struct-inv-def clauses-def by auto
        have inv: cdcl_W-all-struct-inv S
          using \langle cdcl_W - all - struct - inv S \rangle by blast
        show ?case
```

```
apply (rule cdcl_W-measure-decreasing)
                using bt cdcl_W-bj.backtrack cdcl_W-o.bj other apply simp
                using bt T undef decomp inv unfolding cdcl_W-all-struct-inv-def
                cdcl_W-M-level-inv-def apply auto[]
               using bt T undef decomp inv unfolding cdclw-all-struct-inv-def
                cdcl_W-M-level-inv-def apply auto[]
              using bt no-relearn apply auto[]
             using inv unfolding cdcl_W-all-struct-inv-def apply simp
            using inv unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-M-level-inv-def apply simp
           using inv unfolding cdcl_W-all-struct-inv-def apply simp
          using inv unfolding cdcl_W-all-struct-inv-def apply simp
          using inv unfolding cdcl_W-all-struct-inv-def by simp
      next
        case skip
        then show ?case by force
      next
        case resolve
        then show ?case by force
      aed
     ultimately show ?case
      by (metis lexn-transI transD trans-le)
   qed
qed
lemma tranclp-cdcl_W-stgy-decreasing:
 fixes R S T :: 'st
 assumes cdcl_W-stgy^{++} R S
 trail R = [] and
 cdcl_W-all-struct-inv R
 shows (cdcl_W-measure S, cdcl_W-measure R) \in lexn \{(a, b). a < b\} 3
 using assms
 apply induction
  using cdcl_W-stgy-step-decreasing [of R - R] apply blast
 using cdcl_W-stgy-step-decreasing[of - - R] tranclp-into-rtranclp[of cdcl_W-stgy R]
 lexn-transI[OF trans-le, of 3] unfolding trans-def by blast
lemma tranclp-cdcl_W-stgy-S0-decreasing:
 fixes R S T :: 'st
 assumes pl: cdcl_W-stgy^{++} (init-state N) S and
 no-dup: distinct-mset-mset N
 shows (cdcl_W-measure S, cdcl_W-measure (init-state N)) \in lexn \{(a, b), a < b\}
proof -
 have cdcl_W-all-struct-inv (init-state N)
   using no-dup unfolding cdcl_W-all-struct-inv-def by auto
 then show ?thesis using pl tranclp-cdcl_W-stgy-decreasing init-state-trail by blast
qed
lemma wf-tranclp-cdcl_W-stgy:
 wf \{(S::'st, init\text{-state } N) | S N. distinct\text{-mset-mset } N \wedge cdcl_W\text{-stqy}^{++} \text{ (init\text{-state } N) } S\}
 apply (rule wf-wf-if-measure'-notation2[of lexn \{(a, b). a < b\} 3 - - cdcl_W-measure])
  apply (simp add: wf wf-lexn)
 using tranclp-cdcl_W-stgy-S0-decreasing by blast
end
```

end

6 Simple Implementation of the DPLL and CDCL

6.1 Common Rules

6.1.1 Propagation

```
The following theorem holds:
lemma lits-of-unfold[iff]:
  (\forall c \in set \ C. \ -c \in lits \text{-} of \ Ms) \longleftrightarrow Ms \models as \ CNot \ (mset \ C)
  unfolding true-annots-def Ball-def true-annot-def CNot-def mem-set-multiset-eq by auto
The right-hand version is written at a high-level, but only the left-hand side is executable.
definition is-unit-clause :: 'a literal list \Rightarrow ('a, 'b, 'c) ann-literal list \Rightarrow 'a literal option
 where
 is-unit-clause l M =
   (case List.filter (\lambda a.\ atm\text{-of}\ a \notin atm\text{-of}\ `lits\text{-of}\ M) l of
     a \# [] \Rightarrow if M \models as CNot (mset l - \{\#a\#\}) then Some a else None
   | - \Rightarrow None \rangle
definition is-unit-clause-code :: 'a literal list \Rightarrow ('a, 'b, 'c) ann-literal list
  \Rightarrow 'a literal option where
 is-unit-clause-code l M =
   (case List.filter (\lambda a. atm-of a \notin atm-of 'lits-of M) l of
     a \# [] \Rightarrow if (\forall c \in set (remove1 \ a \ l). \ -c \in lits of M) then Some a else None
   | - \Rightarrow None \rangle
\mathbf{lemma}\ is\text{-}unit\text{-}clause\text{-}is\text{-}unit\text{-}clause\text{-}code[code]:}
  is-unit-clause l M = is-unit-clause-code l M
proof -
  have 1: \bigwedge a. (\forall c \in set \ (remove1 \ a \ l). - c \in lits of \ M) \longleftrightarrow M \models as \ CNot \ (mset \ l - \{\#a\#\})
    using lits-of-unfold[of remove1 - l, of - M] by simp
    unfolding is-unit-clause-code-def is-unit-clause-def 1 by blast
qed
lemma is-unit-clause-some-undef:
 assumes is-unit-clause l M = Some a
 shows undefined-lit M a
proof -
  have (case [a \leftarrow l \ . \ atm\text{-}of \ a \notin atm\text{-}of \ `lits\text{-}of \ M] \ of \ [] \Rightarrow None
           [a] \Rightarrow if M \models as CNot (mset l - \{\#a\#\}) then Some a else None
          | a \# ab \# xa \Rightarrow Map.empty xa) = Some a
    using assms unfolding is-unit-clause-def.
  hence a \in set [a \leftarrow l : atm\text{-}of \ a \notin atm\text{-}of \ `lits\text{-}of \ M]
    apply (cases [a \leftarrow l : atm\text{-}of \ a \notin atm\text{-}of \ `lits\text{-}of \ M])
      apply simp
    apply (rename-tac aa list; case-tac list) by (auto split: split-if-asm)
  hence atm-of a \notin atm-of 'lits-of M by auto
  thus ?thesis
    by (simp add: Marked-Propagated-in-iff-in-lits-of
      atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)
```

```
\mathbf{qed}
```

```
lemma is-unit-clause-some-CNot: is-unit-clause l M = Some \ a \Longrightarrow M \models as \ CNot \ (mset \ l - \{\#a\#\})
  unfolding is-unit-clause-def
proof -
  assume (case [a \leftarrow l : atm\text{-}of \ a \notin atm\text{-}of \ `lits\text{-}of \ M] \ of \ [] \Rightarrow None
          | [a] \Rightarrow if M \models as CNot (mset l - \{\#a\#\}) then Some a else None
           a \# ab \# xa \Rightarrow Map.empty xa) = Some a
  thus ?thesis
    apply (cases [a \leftarrow l \ . \ atm\text{-}of \ a \notin atm\text{-}of \ `lits\text{-}of \ M], \ simp)
     apply simp
    apply (rename-tac aa list, case-tac list) by (auto split: split-if-asm)
qed
lemma is-unit-clause-some-in: is-unit-clause l M = Some \ a \Longrightarrow a \in set \ l
 unfolding is-unit-clause-def
proof -
 assume (case [a \leftarrow l : atm\text{-}of \ a \notin atm\text{-}of \ `lits\text{-}of \ M] \ of \ [] \Rightarrow None
         |a| \Rightarrow if M \models as CNot (mset l - \{\#a\#\}) then Some a else None
        \mid a \# ab \# xa \Rightarrow Map.empty xa) = Some a
  thus a \in set l
    by (cases [a \leftarrow l : atm\text{-}of \ a \notin atm\text{-}of \ `lits\text{-}of \ M])
       (fastforce dest: filter-eq-ConsD split: split-if-asm split: list.splits)+
qed
lemma is-unit-clause-nil[simp]: is-unit-clause [] M = None
  unfolding is-unit-clause-def by auto
         Unit propagation for all clauses
Finding the first clause to propagate
fun find-first-unit-clause :: 'a literal list list \Rightarrow ('a, 'b, 'c) ann-literal list
  \Rightarrow ('a literal \times 'a literal list) option where
find-first-unit-clause (a \# l) M =
  (case is-unit-clause a M of
    None \Rightarrow find\text{-}first\text{-}unit\text{-}clause \ l \ M
  | Some L \Rightarrow Some (L, a) |
find-first-unit-clause [] - = None
lemma find-first-unit-clause-some:
  find-first-unit-clause\ l\ M\ =\ Some\ (a,\ c)
  \implies c \in set \ l \land M \models as \ CNot \ (mset \ c - \{\#a\#\}) \land undefined-lit \ M \ a \land a \in set \ c
 apply (induction \ l)
    apply simp
  by (auto split: option.splits dest: is-unit-clause-some-in is-unit-clause-some-CNot
         is-unit-clause-some-undef)
lemma propagate-is-unit-clause-not-None:
  assumes dist: distinct c and
  M: M \models as \ CNot \ (mset \ c - \{\#a\#\}) \ and
  undef: undefined-lit M a and
  ac: a \in set c
  shows is-unit-clause c M \neq None
proof -
  \mathbf{have}\ [a {\leftarrow} c\ .\ atm\text{-}of\ a \not\in atm\text{-}of\ ``lits\text{-}of\ M"] = [a]
```

```
using assms
   proof (induction c)
     case Nil thus ?case by simp
   next
     case (Cons\ ac\ c)
     show ?case
       proof (cases a = ac)
         {f case}\ {\it True}
         thus ?thesis using Cons
           by (auto simp del: lits-of-unfold
                simp add: lits-of-unfold[symmetric] Marked-Propagated-in-iff-in-lits-of
                  atm-of-eq-atm-of atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)
       next
         case False
         hence T: mset \ c + \{\#ac\#\} - \{\#a\#\} = mset \ c - \{\#a\#\} + \{\#ac\#\}\}
           by (auto simp add: multiset-eq-iff)
         show ?thesis using False Cons
           by (auto simp add: T atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)
       qed
   \mathbf{qed}
  thus ?thesis
   using M unfolding is-unit-clause-def by auto
qed
lemma find-first-unit-clause-none:
  distinct\ c \Longrightarrow c \in set\ l \Longrightarrow\ M \models as\ CNot\ (mset\ c - \{\#a\#\}) \Longrightarrow undefined-lit\ M\ a \Longrightarrow a \in set\ c
  \implies find-first-unit-clause l M \neq None
 by (induction l)
    (auto\ split:\ option.split\ simp\ add:\ propagate-is-unit-clause-not-None)
6.1.3 Decide
fun find-first-unused-var :: 'a literal list list \Rightarrow 'a literal set \Rightarrow 'a literal option where
find-first-unused-var (a # l) <math>M =
  (case List.find (\lambda lit.\ lit \notin M \land -lit \notin M) a of
    None \Rightarrow find\text{-}first\text{-}unused\text{-}var\ l\ M
  \mid Some \ a \Rightarrow Some \ a) \mid
find-first-unused-var [] - = None
lemma find-none[iff]:
  List.find (\lambdalit. lit \notin M \land -lit \notin M) a = None \longleftrightarrow atm-of 'set a \subseteq atm-of ' M
 apply (induct a)
  using atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
   by (force simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)+
lemma find-some: List.find (\lambdalit. lit \notin M \land -lit \notin M) a = Some \ b \Longrightarrow b \in set \ a \land b \notin M \land -b \notin M
  unfolding find-Some-iff by (metis nth-mem)
lemma find-first-unused-var-None[iff]:
 find-first-unused-var l M = None \longleftrightarrow (\forall a \in set \ l. \ atm-of 'set a \subseteq atm-of ' M)
 by (induct l)
    (auto split: option.splits dest!: find-some
       simp add: image-subset-iff atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)
lemma find-first-unused-var-Some-not-all-incl:
  assumes find-first-unused-var\ l\ M = Some\ c
```

```
shows \neg(\forall a \in set \ l. \ atm\text{-}of \ `set \ a \subseteq atm\text{-}of \ `M)
proof -
 have find-first-unused-var l M \neq None
   using assms by (cases find-first-unused-var l M) auto
 thus \neg(\forall a \in set \ l. \ atm\text{-}of \ `set \ a \subseteq atm\text{-}of \ `M) by auto
qed
\mathbf{lemma}\ \mathit{find-first-unused-var-Some} :
 find-first-unused-var l M = Some \ a \Longrightarrow (\exists m \in set \ l. \ a \in set \ m \land a \notin M \land -a \notin M)
 by (induct l) (auto split: option.splits dest: find-some)
lemma find-first-unused-var-undefined:
 find-first-unused-var l (lits-of Ms) = Some \ a \Longrightarrow undefined-lit Ms a
 using find-first-unused-var-Some[of l lits-of Ms a] Marked-Propagated-in-iff-in-lits-of
 by blast
end
theory DPLL-W-Implementation
imports DPLL-CDCL-W-Implementation DPLL-W \sim \sim /src/HOL/Library/Code-Target-Numeral
begin
        Simple Implementation of DPLL
6.2
         Combining the propagate and decide: a DPLL step
6.2.1
definition DPLL-step :: int dpll_W-ann-literals \times int literal list list
  \Rightarrow int dpll<sub>W</sub>-ann-literals \times int literal list list where
DPLL\text{-}step = (\lambda(Ms, N).
  (case find-first-unit-clause N Ms of
   Some (L, -) \Rightarrow (Propagated L () \# Ms, N)
   if \exists C \in set \ N. \ (\forall c \in set \ C. \ -c \in lits \text{-of } Ms)
   then
     (case backtrack-split Ms of
       (-, L \# M) \Rightarrow (Propagated (- (lit-of L)) () \# M, N)
     | (-, -) \Rightarrow (Ms, N)
   else
   (case find-first-unused-var N (lits-of Ms) of
       Some a \Rightarrow (Marked \ a \ () \# Ms, \ N)
     | None \Rightarrow (Ms, N)))
Example of propagation:
value DPLL-step ([Marked (Neg 1) ()], [[Pos (1::int), Neg 2]])
We define the conversion function between the states as defined in Prop-DPLL (with multisets)
and here (with lists).
abbreviation toS \equiv \lambda(Ms::(int, unit, unit, unit) ann-literal list)
                    (N:: int\ literal\ list\ list).\ (Ms,\ mset\ (map\ mset\ N))
abbreviation toS' \equiv \lambda(Ms::(int, unit, unit) ann-literal list,
                        N:: int \ literal \ list \ list). \ (Ms, \ mset \ (map \ mset \ N))
Proof of correctness of DPLL-step
lemma DPLL-step-is-a-dpll<sub>W</sub>-step:
 assumes step: (Ms', N') = DPLL\text{-step}(Ms, N)
```

```
and neq: (Ms, N) \neq (Ms', N')
 shows dpll_W (toS Ms N) (toS Ms' N')
proof -
 let ?S = (Ms, mset (map mset N))
 { fix L E
   assume unit: find-first-unit-clause N Ms = Some (L, E)
   hence Ms'N: (Ms', N') = (Propagated L() \# Ms, N)
     using step unfolding DPLL-step-def by auto
   obtain C where
     C: C \in set \ N  and
     Ms: Ms \models as \ CNot \ (mset \ C - \{\#L\#\}) \ and
     undef: undefined-lit Ms L and
     L \in set \ C \ using \ find-first-unit-clause-some[OF \ unit] \ by \ metis
   have dpll_W (Ms, mset (map mset N))
       (Propagated\ L\ () \ \#\ fst\ (Ms,\ mset\ (map\ mset\ N)),\ snd\ (Ms,\ mset\ (map\ mset\ N)))
     apply (rule dpll_W.propagate)
     using Ms undef C \ \langle L \in set \ C \rangle unfolding mem-set-multiset-eq by (auto simp add: C)
   hence ?thesis using Ms'N by auto
 }
 moreover
 { assume unit: find-first-unit-clause N Ms = None
   assume exC: \exists C \in set \ N. \ Ms \models as \ CNot \ (mset \ C)
   then obtain C where C: C \in set \ N and Ms: Ms \models as \ CNot \ (mset \ C) by auto
   then obtain L M M' where bt: backtrack-split Ms = (M', L \# M)
     using step exC neg unfolding DPLL-step-def prod.case unit
     by (cases backtrack-split Ms, rename-tac b, case-tac b) auto
   hence is-marked L using backtrack-split-snd-hd-marked of Ms by auto
   have 1: dpll_W (Ms, mset (map mset N))
               (Propagated (-lit-of L) () \# M, snd (Ms, mset (map mset N)))
     apply (rule dpll_W.backtrack[OF - \langle is-marked L \rangle, of ])
     using C Ms bt by auto
   moreover have (Ms', N') = (Propagated (- (lit-of L)) () \# M, N)
     using step exC unfolding DPLL-step-def bt prod.case unit by auto
   ultimately have ?thesis by auto
 moreover
 \{ assume unit: find-first-unit-clause N Ms = None \}
   assume exC: \neg (\exists C \in set \ N. \ Ms \models as \ CNot \ (mset \ C))
   obtain L where unused: find-first-unused-var N (lits-of Ms) = Some L
     using step exC neg unfolding DPLL-step-def prod.case unit
     by (cases find-first-unused-var N (lits-of Ms)) auto
   have dpll_W (Ms, mset (map mset N))
            (Marked\ L\ ()\ \#\ fst\ (Ms,\ mset\ (map\ mset\ N)),\ snd\ (Ms,\ mset\ (map\ mset\ N)))
     apply (rule dpll_W.decided[of ?S L])
     using find-first-unused-var-Some[OF unused]
     by (auto simp add: Marked-Propagated-in-iff-in-lits-of atms-of-ms-def)
   moreover have (Ms', N') = (Marked L () \# Ms, N)
     using step exC unfolding DPLL-step-def unused prod.case unit by auto
   ultimately have ?thesis by auto
 ultimately show ?thesis by (cases find-first-unit-clause N Ms) auto
{f lemma} DPLL-step-stuck-final-state:
 assumes step: (Ms, N) = DPLL-step (Ms, N)
```

```
shows conclusive-dpll_W-state (toS Ms N)
proof -
 have unit: find-first-unit-clause N Ms = None
   using step unfolding DPLL-step-def by (auto split:option.splits)
 { assume n: \exists C \in set \ N. \ Ms \models as \ CNot \ (mset \ C)
   hence Ms: (Ms, N) = (case \ backtrack-split \ Ms \ of \ (x, \parallel) \Rightarrow (Ms, N)
                     (x, L \# M) \Rightarrow (Propagated (-lit-of L) () \# M, N))
     using step unfolding DPLL-step-def by (simp add:unit)
 have snd (backtrack-split Ms) = []
   proof (cases backtrack-split Ms, cases snd (backtrack-split Ms))
     \mathbf{fix} \ a \ b
     assume backtrack-split\ Ms = (a, b) and snd\ (backtrack-split\ Ms) = []
     thus snd\ (backtrack-split\ Ms) = [] by blast
   next
     fix a b aa list
     assume
       bt: backtrack-split\ Ms=(a,\ b) and
      bt': snd (backtrack-split Ms) = aa \# list
     hence Ms: Ms = Propagated (-lit-of aa) () \# list using Ms by auto
     have is-marked an using backtrack-split-snd-hd-marked of Ms bt bt' by auto
     moreover have fst (backtrack-split Ms) @ aa \# list = Ms
      using backtrack-split-list-eq[of Ms] bt' by auto
     ultimately have False unfolding Ms by auto
     thus snd\ (backtrack-split\ Ms) = [] by blast
   qed
   hence ?thesis
     using n backtrack-snd-empty-not-marked [of Ms] unfolding conclusive-dpll<sub>W</sub>-state-def
     by (cases backtrack-split Ms) auto
 }
 moreover {
   assume n: \neg (\exists C \in set \ N. \ Ms \models as \ CNot \ (mset \ C))
   hence find-first-unused-var\ N\ (lits-of\ Ms) = None
     using step unfolding DPLL-step-def by (simp add: unit split: option.splits)
   hence a: \forall a \in set \ N. \ atm-of \ `set \ a \subseteq atm-of \ `(lits-of \ Ms) by auto
   have fst (toS Ms N) \models asm snd (toS Ms N) unfolding true-annots-def CNot-def Ball-def
     proof clarify
      \mathbf{fix} \ x
      assume x: x \in set\text{-}mset (clauses (toS Ms N))
      hence \neg Ms \models as\ CNot\ x using n unfolding true-annots-def CNot-def Ball-def by auto
      moreover have total-over-m (lits-of Ms) \{x\}
        using a x image-iff in-mono atms-of-s-def
        unfolding total-over-m-def total-over-set-def lits-of-def by fastforce
      ultimately show fst (toS Ms N) \models a x
        using total-not-CNot[of\ lits-of Ms\ x] by (simp\ add:\ true-annot-def true-annots-true-cls)
   hence ?thesis unfolding conclusive-dpllw-state-def by blast
 ultimately show ?thesis by blast
qed
```

6.2.2 Adding invariants

```
Invariant tested in the function function DPLL-ci: int dpll_W-ann-literals \Rightarrow int literal list
  \Rightarrow int dpll<sub>W</sub>-ann-literals \times int literal list list where
DPLL-ci Ms N =
 (if \neg dpll_W - all - inv (Ms, mset (map mset N)))
  then (Ms, N)
  else
  let (Ms', N') = DPLL-step (Ms, N) in
  if (Ms', N') = (Ms, N) then (Ms, N) else DPLL-ci Ms'(N)
 by fast+
termination
proof (relation \{(S', S), (toS'S', toS'S) \in \{(S', S), dpll_W-all-inv S \land dpll_W S S'\}\})
 show wf \{(S', S).(toS' S', toS' S) \in \{(S', S). dpll_W - all - inv S \land dpll_W S S'\}\}
   using wf-if-measure-f[OF dpll_W-wf, of toS'] by auto
next
 fix Ms :: int \ dpll_W-ann-literals and N \ x \ xa \ y
 assume \neg \neg dpll_W - all - inv (to S Ms N)
 and step: x = DPLL-step (Ms, N)
 and x: (xa, y) = x
 and (xa, y) \neq (Ms, N)
 thus ((xa, N), Ms, N) \in \{(S', S), (toS', S', toS', S') \in \{(S', S), dpll_W - all - inv, S \land dpll_W, S, S'\}\}
   using DPLL-step-is-a-dpll<sub>W</sub>-step dpll<sub>W</sub>-same-clauses split-conv by fastforce
qed
No invariant tested function (domintros) DPLL-part:: int dpll_W-ann-literals \Rightarrow int literal list list
  int \ dpll_W-ann-literals \times int literal list list where
DPLL-part Ms N =
 (let (Ms', N') = DPLL\text{-}step (Ms, N) in
  if (Ms', N') = (Ms, N) then (Ms, N) else DPLL-part Ms'(N)
 by fast+
lemma snd-DPLL-step[simp]:
  snd\ (DPLL\text{-}step\ (Ms,\ N)) = N
 unfolding DPLL-step-def by (auto split: split-if option.splits prod.splits list.splits)
lemma dpll_W-all-inv-implieS-2-eq3-and-dom:
 assumes dpll_W-all-inv (Ms, mset (map mset N))
 shows DPLL-ci Ms N = DPLL-part Ms N \wedge DPLL-part-dom (Ms, N)
 using assms
proof (induct rule: DPLL-ci.induct)
 case (1 Ms N)
 have snd (DPLL\text{-step }(Ms, N)) = N by auto
 then obtain Ms' where Ms': DPLL-step (Ms, N) = (Ms', N) by (cases DPLL-step (Ms, N)) auto
 have inv': dpll_W-all-inv (toS\ Ms'\ N) by (metis\ (mono\text{-}tags)\ 1.prems\ DPLL\text{-}step\text{-}is\text{-}a\text{-}dpll_W\text{-}step)
   Ms' dpll_W-all-inv old.prod.inject)
  { assume (Ms', N) \neq (Ms, N)
   hence DPLL-ci~Ms'~N = DPLL-part~Ms'~N \land DPLL-part-dom~(Ms',~N) using 1(1)[of~-Ms'~N]
Ms'
     1(2) inv' by auto
   hence DPLL-part-dom (Ms, N) using DPLL-part.domintros Ms' by fastforce
   moreover have DPLL-ci Ms N = DPLL-part Ms N using 1.prems DPLL-part.psimps Ms
     \langle DPLL\text{-}ci\ Ms'\ N = DPLL\text{-}part\ Ms'\ N \land DPLL\text{-}part\text{-}dom\ (Ms',\ N) \rangle \ \langle DPLL\text{-}part\text{-}dom\ (Ms,\ N) \rangle \ \mathbf{by}
auto
```

```
ultimately have ?case by blast
 moreover {
   assume (Ms', N) = (Ms, N)
   hence ?case using DPLL-part.domintros DPLL-part.psimps Ms' by fastforce
 ultimately show ?case by blast
qed
lemma DPLL-ci-dpll_W-rtranclp:
 assumes DPLL-ci Ms N = (Ms', N')
 shows dpll_W^{**} (toS Ms N) (toS Ms' N)
 using assms
proof (induct Ms N arbitrary: Ms' N' rule: DPLL-ci.induct)
 case (1 Ms N Ms' N') note IH = this(1) and step = this(2)
 obtain S_1 S_2 where S:(S_1, S_2) = DPLL-step (Ms, N) by (cases DPLL-step (Ms, N)) auto
 { assume \neg dpll_W-all-inv (toS Ms N)
   hence (Ms, N) = (Ms', N) using step by auto
   hence ?case by auto
 }
 moreover
 { assume dpll_W-all-inv (toS Ms N)
   and (S_1, S_2) = (Ms, N)
   hence ?case using S step by auto
 }
 moreover
 { assume dpll_W-all-inv (toS Ms N)
   and (S_1, S_2) \neq (Ms, N)
   moreover obtain S_1' S_2' where DPLL-ci S_1 N = (S_1', S_2') by (cases DPLL-ci S_1 N) auto
   moreover have DPLL-ci Ms N = DPLL-ci S_1 N using DPLL-ci.simps[of Ms N] calculation
    proof -
      have (case (S_1, S_2) of (ms, lss) \Rightarrow
        if (ms, lss) = (Ms, N) then (Ms, N) else DPLL-ci ms N = DPLL-ci Ms N
        using S DPLL-ci.simps[of Ms N] calculation by presburger
      hence (if (S_1, S_2) = (Ms, N) then (Ms, N) else DPLL-ci S_1 N) = DPLL-ci Ms N
        by fastforce
      thus ?thesis
        using calculation(2) by presburger
   ultimately have dpll_W^{**} (to S_1'N) (to S_1'N) using IH[of(S_1, S_2) S_1 S_2] S step by simp
   moreover have dpll_W (toS Ms N) (toS S_1 N)
    by (metis DPLL-step-is-a-dpll<sub>W</sub>-step S(S_1, S_2) \neq (Ms, N)) prod.sel(2) snd-DPLL-step)
   ultimately have ?case by (metis (mono-tags, hide-lams) IH S (S_1, S_2) \neq (Ms, N))
    \langle DPLL\text{-}ci \ Ms \ N = DPLL\text{-}ci \ S_1 \ N \rangle \langle dpll_W\text{-}all\text{-}inv \ (toS \ Ms \ N) \rangle \ converse\text{-}rtranclp\text{-}into\text{-}rtranclp
    local.step)
 ultimately show ?case by blast
qed
lemma dpll_W-all-inv-dpll_W-tranclp-irrefl:
 assumes dpll_W-all-inv (Ms, N)
 and dpll_W^{++} (Ms, N) (Ms, N)
 shows False
```

```
proof -
 have 1: wf \{(S', S). dpll_W-all-inv S \wedge dpll_W^{++} S S'\} using dpll_W-wf-trancle by auto
 have ((Ms, N), (Ms, N)) \in \{(S', S), dpll_W - all - inv S \wedge dpll_W^{++} S S'\} using assms by auto
 thus False using wf-not-refl[OF 1] by blast
qed
lemma DPLL-ci-final-state:
 assumes step: DPLL-ci\ Ms\ N=(Ms,\ N)
 and inv: dpll_W-all-inv (toS Ms N)
 shows conclusive-dpll_W-state (toS Ms N)
proof -
 have st: dpll_W^{**} (toS Ms N) (toS Ms N) using DPLL-ci-dpll_W-rtranclp[OF step].
 have DPLL-step (Ms, N) = (Ms, N)
   proof (rule ccontr)
    obtain Ms' N' where Ms'N: (Ms', N') = DPLL-step (Ms, N)
      by (cases DPLL-step (Ms, N)) auto
    assume ¬ ?thesis
    hence DPLL-ci Ms' N = (Ms, N) using step inv st Ms'N[symmetric] by fastforce
    hence dpll_W^{++} (toS Ms N) (toS Ms N)
     by (metis DPLL-ci-dpll_W-rtranclp DPLL-step-is-a-dpll_W-step Ms'N \land DPLL-step (Ms, N) \neq (Ms, N)
N)
        prod.sel(2) \ rtranclp-into-tranclp2 \ snd-DPLL-step)
    thus False using dpll_W-all-inv-dpll_W-tranclp-irreft inv by auto
 thus ?thesis using DPLL-step-stuck-final-state[of Ms N] by simp
ged
\mathbf{lemma}\ DPLL\text{-}step\text{-}obtains:
 obtains Ms' where (Ms', N) = DPLL-step (Ms, N)
 unfolding DPLL-step-def by (metis (no-types, lifting) DPLL-step-def prod.collapse snd-DPLL-step)
lemma DPLL-ci-obtains:
 obtains Ms' where (Ms', N) = DPLL-ci Ms N
proof (induct rule: DPLL-ci.induct)
 case (1 \text{ Ms } N) note IH = this(1) and that = this(2)
 obtain S where SN: (S, N) = DPLL-step (Ms, N) using DPLL-step-obtains by metis
 { assume \neg dpll_W-all-inv (toS Ms N)
   hence ?case using that by auto
 }
 moreover {
   assume n: (S, N) \neq (Ms, N)
   and inv: dpll_W-all-inv (toS Ms N)
   have \exists ms. DPLL\text{-step }(Ms, N) = (ms, N)
    by (metis \land hesisa. (\land S. (S, N) = DPLL\text{-step} (Ms, N) \Longrightarrow thesisa) \Longrightarrow thesisa)
   hence ?thesis
    using IH that by fastforce
 }
 moreover {
   assume n: (S, N) = (Ms, N)
   hence ?case using SN that by fastforce
 ultimately show ?case by blast
qed
```

```
lemma DPLL-ci-no-more-step:
 assumes step: DPLL-ci\ Ms\ N=(Ms',\ N')
 shows DPLL-ci Ms' N' = (Ms', N')
 using assms
proof (induct arbitrary: Ms' N' rule: DPLL-ci.induct)
  case (1 \text{ Ms } N \text{ Ms' } N') note IH = this(1) and step = this(2)
 obtain S_1 where S:(S_1, N) = DPLL-step (Ms, N) using DPLL-step-obtains by auto
  { assume \neg dpll_W-all-inv (toS Ms N)
   hence ?case using step by auto
  }
 moreover {
   assume dpll_W-all-inv (toS\ Ms\ N)
   and (S_1, N) = (Ms, N)
   hence ?case using S step by auto
 moreover
  { assume inv: dpll_W-all-inv (toS\ Ms\ N)
   assume n: (S_1, N) \neq (Ms, N)
   obtain S_1' where SS: (S_1', N) = DPLL-ci S_1 N using DPLL-ci-obtains by blast
   \mathbf{moreover}\ \mathbf{have}\ \mathit{DPLL-ci}\ \mathit{Ms}\ \mathit{N} = \mathit{DPLL-ci}\ \mathit{S}_1\ \mathit{N}
     proof -
       have (case\ (S_1,\ N)\ of\ (ms,\ lss)\Rightarrow if\ (ms,\ lss)=(Ms,\ N)\ then\ (Ms,\ N)\ else\ DPLL-ci\ ms\ N)
        = DPLL-ci Ms N
        using S DPLL-ci.simps[of Ms N] calculation inv by presburger
       hence (if (S_1, N) = (Ms, N) then (Ms, N) else DPLL-ci S_1 N = DPLL-ci Ms N
        bv fastforce
       thus ?thesis
        using calculation n by presburger
     qed
   moreover
     have \mathit{DPLL\text{-}ci}\ S_1{'}\ N = (S_1{'},\ N) using \mathit{step}\ \mathit{IH}[\mathit{OF}\ \text{-}\ -\ S\ n\ \mathit{SS}[\mathit{symmetric}]] \mathit{inv}\ \mathit{by}\ \mathit{blast}
   ultimately have ?case using step by fastforce
 ultimately show ?case by blast
qed
lemma DPLL-part-dpll_W-all-inv-final:
 fixes M Ms':: (int, unit, unit) ann-literal list and
   N :: int \ literal \ list \ list
 assumes inv: dpll_W-all-inv (Ms, mset (map mset N))
 and MsN: DPLL-part Ms N = (Ms', N)
 shows conclusive-dpll<sub>W</sub>-state (toS Ms' N) \wedge dpll<sub>W</sub>** (toS Ms N) (toS Ms' N)
proof -
 have 2: DPLL-ci Ms N = DPLL-part Ms N using inv dpll_W-all-inv-implieS-2-eq3-and-dom by blast
  hence star: dpll_W^{**} (to S Ms N) (to S Ms' N) unfolding MsN using DPLL-ci-dpll<sub>W</sub>-rtranclp by
blast
 hence inv': dpll_W-all-inv (toS\ Ms'\ N) using inv\ rtranclp-dpll_W-all-inv by blast
  show ?thesis using star DPLL-ci-final-state[OF DPLL-ci-no-more-step inv] 2 unfolding MsN by
blast
qed
```

Embedding the invariant into the type

Defining the type typedef $dpll_W$ -state =

```
\{(M::(int, unit, unit) \ ann-literal \ list, \ N::int \ literal \ list \ list).
       dpll_W-all-inv (toS M N)}
 morphisms rough-state-of state-of
proof
   show ([],[]) \in \{(M,N), dpll_W-all-inv (toS M N)\} by (auto simp add: dpll_W-all-inv-def)
lemma
 DPLL-part-dom ([], N)
 using assms dpll_W-all-inv-implieS-2-eq3-and-dom[of [] N] by (simp\ add:\ dpll_W-all-inv-def)
Some type classes instantiation dpll_W-state :: equal
begin
definition equal-dpll_W-state :: dpll_W-state \Rightarrow dpll_W-state \Rightarrow bool where
equal-dpll_W-state SS' = (rough-state-of S = rough-state-of S')
 by standard (simp add: rough-state-of-inject equal-dpll<sub>W</sub>-state-def)
end
DPLL definition DPLL-step' :: dpll_W-state \Rightarrow dpll_W-state where
 DPLL-step' S = state-of (DPLL-step (rough-state-of S))
declare rough-state-of-inverse[simp]
lemma DPLL-step-dpll_W-conc-inv:
 DPLL-step (rough-state-of S) \in \{(M, N). dpll_W-all-inv (to SMN)}
 by (smt DPLL-ci.simps DPLL-ci-dpll<sub>W</sub>-rtranclp case-prodE case-prodI2 rough-state-of
   mem-Collect-eq old.prod.case\ prod.sel(2)\ rtranclp-dpll_W-all-inv\ snd-DPLL-step)
lemma rough-state-of-DPLL-step'-DPLL-step[simp]:
 rough-state-of (DPLL-step' S) = DPLL-step (rough-state-of S)
 using DPLL-step-dpll_W-conc-inv DPLL-step'-def state-of-inverse by auto
function DPLL-tot:: dpll_W-state \Rightarrow dpll_W-state where
DPLL-tot S =
 (let S' = DPLL-step' S in
  if S' = S then S else DPLL-tot S')
 by fast+
termination
proof (relation \{(T', T).
    (rough-state-of\ T',\ rough-state-of\ T)
      \in \{(S', S). (toS' S', toS' S)\}
            \in \{(S', S). dpll_W - all - inv S \land dpll_W S S'\}\}\}
 show wf \{(b, a).
        (rough-state-of b, rough-state-of a)
          \in \{(b, a). (toS'b, toS'a)\}
            \in \{(b, a). dpll_W - all - inv \ a \land dpll_W \ a \ b\}\}\}
   using wf-if-measure-f[OF wf-if-measure-f[OF dpll_W-wf, of toS'], of rough-state-of].
next
 fix S x
 assume x: x = DPLL-step' S
 and x \neq S
 have dpll_W-all-inv (case rough-state-of S of (Ms, N) \Rightarrow (Ms, mset (map mset N)))
   by (metis (no-types, lifting) case-prodE mem-Collect-eq old.prod.case rough-state-of)
 moreover have dpll_W (case rough-state-of S of (Ms, N) \Rightarrow (Ms, mset (map mset N)))
```

```
(case\ rough\text{-}state\text{-}of\ (DPLL\text{-}step'\ S)\ of\ (Ms,\ N) \Rightarrow (Ms,\ mset\ (map\ mset\ N)))
   proof -
     obtain Ms N where Ms: (Ms, N) = rough\text{-state-of } S by (cases rough\text{-state-of } S) auto
     have dpll_W-all-inv (toS'(Ms, N)) using calculation unfolding Ms by blast
     moreover obtain Ms' N' where Ms': (Ms', N') = rough\text{-}state\text{-}of (DPLL\text{-}step' S)
      by (cases rough-state-of (DPLL-step' S)) auto
     ultimately have dpll_W-all-inv (toS'(Ms', N')) unfolding Ms'
      by (metis (no-types, lifting) case-prod-unfold mem-Collect-eq rough-state-of)
     have dpll_W (toS Ms N) (toS Ms' N')
      apply (rule DPLL-step-is-a-dpll<sub>W</sub>-step[of Ms' N' Ms N])
      unfolding Ms Ms' using \langle x \neq S \rangle rough-state-of-inject x by fastforce+
     thus ?thesis unfolding Ms[symmetric] Ms'[symmetric] by auto
 ultimately show (x, S) \in \{(T', T). (rough-state-of T', rough-state-of T)\}
   \in \{(S', S). (toS' S', toS' S) \in \{(S', S). dpll_W - all - inv S \land dpll_W S S'\}\}\}
   by (auto simp add: x)
qed
lemma [code]:
DPLL-tot S =
 (let S' = DPLL-step' S in
  if S' = S then S else DPLL-tot S') by auto
lemma DPLL-tot-DPLL-step-DPLL-tot (simp]: DPLL-tot (DPLL-step' S) = DPLL-tot S
 apply (cases DPLL-step' S = S)
 apply simp
 unfolding DPLL-tot.simps[of S] by (simp del: DPLL-tot.simps)
lemma DOPLL-step'-DPLL-tot[simp]:
 DPLL-step' (DPLL-tot S) = DPLL-tot S
 by (rule DPLL-tot.induct[of \lambda S. DPLL-step' (DPLL-tot S) = DPLL-tot S[])
    (metis (full-types) DPLL-tot.simps)
lemma DPLL-tot-final-state:
 assumes DPLL-tot S = S
 shows conclusive-dpll_W-state (toS'(rough-state-of S))
proof -
 have DPLL-step' S = S using assms[symmetric] DOPLL-step'-DPLL-tot by metis
 hence DPLL-step (rough-state-of S) = (rough-state-of S)
   unfolding DPLL-step'-def using DPLL-step-dpllw-conc-inv rough-state-of-inverse
   by (metis rough-state-of-DPLL-step'-DPLL-step)
 thus ?thesis
   by (metis (mono-tags, lifting) DPLL-step-stuck-final-state old.prod.exhaust split-conv)
qed
lemma DPLL-tot-star:
 assumes rough-state-of (DPLL-tot S) = S'
 shows dpll_W^{**} (toS' (rough-state-of S)) (toS' S')
 using assms
proof (induction arbitrary: S' rule: DPLL-tot.induct)
 case (1 S S')
 let ?x = DPLL\text{-step}' S
```

```
{ assume ?x = S
   then have ?case using 1(2) by simp
 moreover {
   assume S: ?x \neq S
   have ?case
     apply (cases DPLL-step' S = S)
       using S apply blast
     by (smt 1.IH 1.prems DPLL-step-is-a-dpll<sub>W</sub>-step DPLL-tot.simps case-prodE2
       rough-state-of-DPLL-step'-DPLL-step rtranclp.rtrancl-into-rtrancl rtranclp.rtrancl-refl
       rtranclp-idemp split-conv)
 }
 ultimately show ?case by auto
lemma rough-state-of-rough-state-of-nil[simp]:
  rough-state-of (state-of ([], N)) = ([], N)
 apply (rule DPLL-W-Implementation.dpll_W-state.state-of-inverse)
 unfolding dpll_W-all-inv-def by auto
Theorem of correctness
lemma DPLL-tot-correct:
 assumes rough-state-of (DPLL-tot\ (state-of\ (([],\ N)))) = (M,\ N')
 and (M', N'') = toS'(M, N')
 shows M' \models asm \ N'' \longleftrightarrow satisfiable (set-mset \ N'')
proof -
 have dpll_{W}^{**} (toS'([], N)) (toS'(M, N')) using DPLL-tot-star[OF assms(1)] by auto
 moreover have conclusive-dpll_W-state (toS'(M, N'))
   \mathbf{using}\ \mathit{DPLL-tot-final-state}\ \mathbf{by}\ (\mathit{metis}\ (\mathit{mono-tags},\ \mathit{lifting})\ \mathit{DOPLL-step'-DPLL-tot}\ \mathit{DPLL-tot.simps}
     assms(1)
  ultimately show ?thesis using dpllw-conclusive-state-correct by (smt DPLL-ci.simps
   DPLL\text{-}ci\text{-}dpll_W\text{-}rtranclp\ assms(2)\ dpll_W\text{-}all\text{-}inv\text{-}def\ prod.case\ prod.sel(1)\ prod.sel(2)
   rtranclp-dpll_W-inv(3) rtranclp-dpll_W-inv-starting-from-0)
qed
6.2.3
         Code export
A conversion to DPLL-W-Implementation.dpllw-state definition Con :: (int, unit, unit) ann-literal
list \times int \ literal \ list \ list
                  \Rightarrow dpll_W-state where
  Con xs = state-of (if dpll_W-all-inv (toS (fst xs) (snd xs)) then xs else ([], []))
lemma [code abstype]:
  Con (rough-state-of S) = S
 using rough-state-of[of S] unfolding Con-def by auto
 declare rough-state-of-DPLL-step[code abstract]
lemma Con\text{-}DPLL\text{-}step\text{-}rough\text{-}state\text{-}of\text{-}state\text{-}of\text{[}simp\text{]}:
  Con\ (DPLL\text{-}step\ (rough\text{-}state\text{-}of\ s)) = state\text{-}of\ (DPLL\text{-}step\ (rough\text{-}state\text{-}of\ s))
  unfolding Con-def by (metis (mono-tags, lifting) DPLL-step-dpll<sub>W</sub>-conc-inv mem-Collect-eq
   prod.case-eq-if)
A slightly different version of DPLL-tot where the returned boolean indicates the result.
definition DPLL-tot-rep where
DPLL-tot-rep S =
```

```
(let\ (M,\ N)=(rough\text{-}state\text{-}of\ (DPLL\text{-}tot\ S))\ in\ (\forall\ A\in set\ N.\ (\exists\ a\in set\ A.\ a\in lits\text{-}of\ (M)),\ M))
```

One version of the generated SML code is here, but not included in the generated document. The only differences are:

- export 'a literal from the SML Module Clausal-Logic;
- export the constructor *Con* from *DPLL-W-Implementation*;
- export the *int* constructor from *Arith*.

 All these allows to test on the code on some examples.

```
end
theory CDCL-W-Implementation
imports DPLL-CDCL-W-Implementation CDCL-W-Termination
begin
notation image-mset (infixr '# 90)
type-synonym 'a cdcl_W-mark = 'a clause
type-synonym cdcl_W-marked-level = nat
\mathbf{type\text{-}synonym} \ 'v \ cdcl_W\text{-}ann\text{-}literal = ('v, \ cdcl_W\text{-}marked\text{-}level, \ 'v \ cdcl_W\text{-}mark) \ ann\text{-}literal
type-synonym 'v cdcl_W-ann-literals = ('v, cdcl_W-marked-level, 'v cdcl_W-mark) ann-literals
type-synonym 'v \ cdcl_W-state =
  'v\ cdcl_W-ann-literals \times\ 'v\ clauses \times\ 'v\ clauses \times\ nat \times\ 'v\ clause\ option
abbreviation trail :: 'a \times 'b \times 'c \times 'd \times 'e \Rightarrow 'a where
trail \equiv (\lambda(M, -), M)
abbreviation cons-trail:: 'a \Rightarrow 'a \ list \times 'b \times 'c \times 'd \times 'e \Rightarrow 'a \ list \times 'b \times 'c \times 'd \times 'e
cons-trail \equiv (\lambda L (M, S), (L \# M, S))
abbreviation tl-trail :: 'a list \times 'b \times 'c \times 'd \times 'e \Rightarrow 'a list \times 'b \times 'c \times 'd \times 'e where
tl-trail \equiv (\lambda(M, S), (tl M, S))
abbreviation clss :: 'a \times 'b \times 'c \times 'd \times 'e \Rightarrow 'b where
clss \equiv \lambda(M, N, -). N
abbreviation learned-clss :: 'a \times 'b \times 'c \times 'd \times 'e \Rightarrow 'c where
learned-clss \equiv \lambda(M, N, U, -). U
abbreviation backtrack-lvl :: 'a \times 'b \times 'c \times 'd \times 'e \Rightarrow 'd where
backtrack-lvl \equiv \lambda(M, N, U, k, -). k
abbreviation update-backtrack-lvl :: 'd \Rightarrow 'a \times 'b \times 'c \times 'd \times 'e \Rightarrow 'a \times 'b \times 'c \times 'd \times 'e
  where
update-backtrack-lvl \equiv \lambda k \ (M, N, U, -, S). \ (M, N, U, k, S)
abbreviation conflicting :: 'a \times 'b \times 'c \times 'd \times 'e \Rightarrow 'e where
conflicting \equiv \lambda(M, N, U, k, D). D
```

abbreviation update-conflicting:: $'e \Rightarrow 'a \times 'b \times 'c \times 'd \times 'e \Rightarrow 'a \times 'b \times 'c \times 'd \times 'e$

246

where

```
update-conflicting \equiv \lambda S (M, N, U, k, -). (M, N, U, k, S)
abbreviation S0\text{-}cdcl_W N \equiv (([], N, \{\#\}, 0, None):: 'v \ cdcl_W\text{-}state)
abbreviation add-learned-cls where
add\text{-}learned\text{-}cls \equiv \lambda\,C\ (M,\,N,\,U,\,S).\ (M,\,N,\,\{\#\,C\#\}\,+\,U,\,S)
abbreviation remove-cls where
remove-cls \equiv \lambda C (M, N, U, S). (M, remove-mset C N, remove-mset C U, S)
lemma trail-conv: trail (M, N, U, k, D) = M and
  clauses-conv: clss (M, N, U, k, D) = N and
  learned-clss-conv: learned-clss (M, N, U, k, D) = U and
  conflicting-conv: conflicting (M, N, U, k, D) = D and
  backtrack-lvl-conv: backtrack-lvl (M, N, U, k, D) = k
 by auto
lemma state-conv:
 S = (trail S, clss S, learned-clss S, backtrack-lvl S, conflicting S)
 by (cases S) auto
interpretation state_W trail clss learned-clss backtrack-lvl conflicting
 \lambda L (M, S). (L \# M, S)
 \lambda(M, S). (tl M, S)
 \lambda C (M, N, S). (M, \{\#C\#\} + N, S)
 \lambda C (M, N, U, S). (M, N, \{\#C\#\} + U, S)
 \lambda C (M, N, U, S). (M, remove\text{-mset } C N, remove\text{-mset } C U, S)
 \lambda(k::nat) \ (M, N, U, -, D). \ (M, N, U, k, D)
 \lambda D \ (M, \ N, \ U, \ k, \ -). \ (M, \ N, \ U, \ k, \ D)
 \lambda N. ([], N, \{\#\}, \theta, None)
 \lambda(-, N, U, -). ([], N, U, \theta, None)
 by unfold-locales auto
interpretation \ cdcl_W \ trail \ clss \ learned-clss \ backtrack-lvl \ conflicting
 \lambda L (M, S). (L \# M, S)
 \lambda(M, S). (tl M, S)
 \lambda C (M, N, S). (M, \{\#C\#\} + N, S)
 \lambda C (M, N, U, S). (M, N, \{\#C\#\} + U, S)
 \lambda C (M, N, U, S). (M, remove\text{-mset } C N, remove\text{-mset } C U, S)
 \lambda(k::nat) \ (M, N, U, -, D). \ (M, N, U, k, D)
 \lambda D (M, N, U, k, -). (M, N, U, k, D)
 \lambda N.~([],~N,~\{\#\},~\theta,~None)
 \lambda(-, N, U, -). ([], N, U, \theta, None)
 {f by} unfold-locales auto
declare clauses-def[simp]
lemma cdcl_W-state-eq-equality[iff]: state-eq S T \longleftrightarrow S = T
 unfolding state-eq-def by (cases S, cases T) auto
```

declare state-simp[simp del]

6.3 CDCL Implementation

6.3.1 Definition of the rules

```
Types lemma true-clss-remdups[simp]:
 I \models s \ (mset \circ remdups) \ `N \longleftrightarrow I \models s \ mset \ `N
 by (simp add: true-clss-def)
lemma satisfiable-mset-remdups[simp]:
  satisfiable \ ((mset \circ remdups) \ `N) \longleftrightarrow satisfiable \ (mset \ `N)
unfolding satisfiable-carac[symmetric] by simp
value backtrack-split [Marked (Pos (Suc 0)) ()]
value \exists C \in set \ [[Pos \ (Suc \ \theta), \ Neg \ (Suc \ \theta)]]. \ (\forall c \in set \ C. -c \in lits of \ [Marked \ (Pos \ (Suc \ \theta)) \ ()])
type-synonym cdcl_W-state-inv-st = (nat, nat, nat literal list) ann-literal list \times
 nat\ literal\ list\ list\ 	imes\ nat\ literal\ list\ list\ 	imes\ nat\ literal\ list\ option
We need some functions to convert between our abstract state nat\ cdcl_W-state and the concrete
state cdcl_W-state-inv-st.
fun convert :: ('a, 'b, 'c \ list) ann-literal \Rightarrow ('a, 'b, 'c \ multiset) ann-literal where
convert (Propagated \ L \ C) = Propagated \ L \ (mset \ C)
convert (Marked K i) = Marked K i
abbreviation convertC :: 'a \ list \ option \Rightarrow 'a \ multiset \ option \  where
convertC \equiv map\text{-}option \ mset
lemma convert-Propagated[elim!]:
  convert z = Propagated \ L \ C \Longrightarrow (\exists \ C'. \ z = Propagated \ L \ C' \land C = mset \ C')
 by (cases z) auto
lemma qet-rev-level-map-convert:
  qet-rev-level (map\ convert\ M)\ n\ x = qet-rev-level M\ n\ x
 by (induction M arbitrary: n rule: ann-literal-list-induct) auto
lemma get-level-map-convert[simp]:
  get-level (map\ convert\ M) = get-level M
 using get-rev-level-map-convert[of rev M] by (simp add: rev-map)
lemma get-maximum-level-map-convert[simp]:
  get-maximum-level (map convert M) D = get-maximum-level M D
 by (induction D)
    (auto simp add: get-maximum-level-plus)
lemma qet-all-levels-of-marked-map-convert[simp]:
  get-all-levels-of-marked (map\ convert\ M) = (get-all-levels-of-marked M)
 by (induction M rule: ann-literal-list-induct) auto
Conversion function
fun toS :: cdcl_W-state-inv-st \Rightarrow nat cdcl_W-state where
toS(M, N, U, k, C) = (map\ convert\ M,\ mset\ (map\ mset\ N),\ mset\ (map\ mset\ U),\ k,\ convert\ C)
Definition an abstract type
typedef\ cdcl_W-state-inv = \{S:: cdcl_W-state-inv-st. cdcl_W-all-struct-inv (toS\ S)\}
 morphisms rough-state-of state-of
proof
```

```
show ([],[],[], 0, None) \in \{S. \ cdcl_W - all - struct - inv \ (toS\ S)\}
   by (auto simp add: cdcl_W-all-struct-inv-def)
qed
instantiation cdcl_W-state-inv :: equal
begin
definition equal\text{-}cdcl_W\text{-}state\text{-}inv :: cdcl_W\text{-}state\text{-}inv \Rightarrow cdcl_W\text{-}state\text{-}inv \Rightarrow bool where
equal-cdcl_W-state-inv S S' = (rough-state-of S = rough-state-of S')
instance
 by standard (simp add: rough-state-of-inject equal-cdcl<sub>W</sub>-state-inv-def)
end
lemma lits-of-map-convert[simp]: lits-of (map\ convert\ M) = lits-of M
 by (induction M rule: ann-literal-list-induct) simp-all
lemma undefined-lit-map-convert[iff]:
  undefined-lit (map\ convert\ M)\ L \longleftrightarrow undefined-lit M\ L
 by (auto simp add: Marked-Propagated-in-iff-in-lits-of)
lemma true-annot-map-convert[simp]: map convert M \models a N \longleftrightarrow M \models a N
 by (induction M rule: ann-literal-list-induct) (simp-all add: true-annot-def)
lemma true-annots-map-convert[simp]: map convert M \models as N \longleftrightarrow M \models as N
 unfolding true-annots-def by auto
lemmas propagateE
{\bf lemma}\ find\mbox{-} first\mbox{-} unit\mbox{-} clause\mbox{-} some\mbox{-} is\mbox{-} propagate:
 assumes H: find-first-unit-clause (N @ U) M = Some (L, C)
 shows propagate (toS (M, N, U, k, None)) (toS (Propagated L C # M, N, U, k, None))
 using assms
 by (auto dest!: find-first-unit-clause-some simp add: propagate.simps
   intro!: exI[of - mset\ C - \{\#L\#\}])
6.3.2
         The Transitions
Propagate definition do-propagate-step where
do-propagate-step S =
 (case S of
   (M, N, U, k, None) \Rightarrow
     (case find-first-unit-clause (N @ U) M of
       Some (L, C) \Rightarrow (Propagated \ L \ C \# M, N, U, k, None)
     | None \Rightarrow (M, N, U, k, None))
 \mid S \Rightarrow S
lemma do-propgate-step:
  do\text{-}propagate\text{-}step\ S \neq S \Longrightarrow propagate\ (toS\ S)\ (toS\ (do\text{-}propagate\text{-}step\ S))
 apply (cases S, cases conflicting S)
  {f using} \ find-first-unit-clause-some-is-propagate [of \ clss \ S \ learned-clss \ S \ trail \ S --
   backtrack-lvl S
 by (auto simp add: do-propagate-step-def split: option.splits)
lemma do-propagate-step-option[simp]:
  conflicting S \neq None \Longrightarrow do\text{-}propagate\text{-}step S = S
  unfolding do-propagate-step-def by (cases S, cases conflicting S) auto
lemma do-propagate-step-no-step:
```

```
assumes dist: \forall c \in set \ (clss \ S \ @ \ learned\text{-}clss \ S). distinct c and
 prop-step: do-propagate-step S = S
 shows no-step propagate (toS S)
proof (standard, standard)
 \mathbf{fix} \ T
 assume propagate (toS S) T
 then obtain M N U k C L where
   toSS: toS S = (M, N, U, k, None) and
   T: T = (Propagated \ L \ (C + \{\#L\#\}) \ \# \ M, \ N, \ U, \ k, \ None) and
   MC: M \models as \ CNot \ C and
   undef: undefined-lit M L and
   CL: C + \{\#L\#\} \in \#N + U
   apply - by (cases to S S) auto
 let ?M = trail S
 let ?N = clss S
 let ?U = learned\text{-}clss S
 let ?k = backtrack-lvl S
 let ?D = None
 have S: S = (?M, ?N, ?U, ?k, ?D)
   using toSS by (cases S, cases conflicting S) simp-all
 have S: toS S = toS (?M, ?N, ?U, ?k, ?D)
   unfolding S[symmetric] by simp
 have
   M: M = map \ convert \ ?M \ and
   N: N = mset \ (map \ mset \ ?N) and
   U: U = mset \ (map \ mset \ ?U)
   using toSS[unfolded S] by auto
 obtain D where
   DCL: mset\ D = C + \{\#L\#\} and
   D: D \in set (?N @ ?U)
   using CL unfolding N U by auto
  obtain C'L' where
   set D: set D = set (L' \# C') and
   C': mset C' = C and
   L: L = L'
   using DCL by (metis\ ex-mset\ mset.simps(2)\ mset-eq-setD)
 have find-first-unit-clause (?N @ ?U) ?M \neq None
   \mathbf{apply} \ (\mathit{rule} \ \mathit{dist} \ \mathit{find-first-unit-clause-none}[\mathit{of} \ \mathit{D} \ ?N \ @ \ ?U \ ?M \ \mathit{L}, \ \mathit{OF} \ - \ \mathit{D} \ ])
      using D \ assms(1) apply auto[1]
     using MC setD DCL M MC unfolding C'[symmetric] apply auto[1]
    using M undef apply auto[1]
   unfolding setD L by auto
 then show False using prop-step S unfolding do-propagate-step-def by (cases S) auto
qed
Conflict fun find-conflict where
find\text{-}conflict M [] = None []
find-conflict M (N \# Ns) = (if (\forall c \in set \ N. -c \in lits-of \ M) then Some \ N else find-conflict \ M \ Ns)
lemma find-conflict-Some:
 find\text{-}conflict\ M\ Ns = Some\ N \Longrightarrow N \in set\ Ns \land M \models as\ CNot\ (mset\ N)
 by (induction Ns rule: find-conflict.induct)
    (auto split: split-if-asm)
```

```
lemma find-conflict-None:
 find\text{-}conflict\ M\ Ns = None \longleftrightarrow (\forall\ N\in set\ Ns.\ \neg M\models as\ CNot\ (mset\ N))
 by (induction Ns) auto
lemma find-conflict-None-no-confl:
  find-conflict M (N@U) = None \longleftrightarrow no-step conflict (toS (M, N, U, k, None))
 by (auto simp add: find-conflict-None conflict.simps)
definition do-conflict-step where
do-conflict-step S =
  (case S of
   (M, N, U, k, None) \Rightarrow
      (case find-conflict M (N @ U) of
       Some a \Rightarrow (M, N, U, k, Some a)
      | None \Rightarrow (M, N, U, k, None))
  \mid S \Rightarrow S)
lemma do-conflict-step:
  do\text{-}conflict\text{-}step\ S \neq S \Longrightarrow conflict\ (toS\ S)\ (toS\ (do\text{-}conflict\text{-}step\ S))
  apply (cases S, cases conflicting S)
  unfolding conflict.simps do-conflict-step-def
 by (auto dest!:find-conflict-Some split: option.splits)
lemma do-conflict-step-no-step:
  do\text{-}conflict\text{-}step\ S = S \Longrightarrow no\text{-}step\ conflict\ (toS\ S)
  apply (cases S, cases conflicting S)
 unfolding do-conflict-step-def
  using find-conflict-None-no-confl[of trail S clss S learned-clss S
      backtrack-lvl S
 by (auto split: option.splits)
lemma do\text{-}conflict\text{-}step\text{-}option[simp]:
  conflicting S \neq None \Longrightarrow do\text{-}conflict\text{-}step S = S
  unfolding do-conflict-step-def by (cases S, cases conflicting S) auto
lemma do-conflict-step-conflicting[dest]:
  do\text{-}conflict\text{-}step\ S \neq S \Longrightarrow conflicting\ (do\text{-}conflict\text{-}step\ S) \neq None
  unfolding do-conflict-step-def by (cases S, cases conflicting S) (auto split: option.splits)
definition do-cp-step where
do\text{-}cp\text{-}step\ S =
  (do\text{-}propagate\text{-}step\ o\ do\text{-}conflict\text{-}step)\ S
lemma cp-step-is-cdcl_W-cp:
  assumes H: do\text{-}cp\text{-}step \ S \neq S
  shows cdcl_W-cp (toS S) (toS (do-cp-step S))
proof -
  show ?thesis
  proof (cases do-conflict-step S \neq S)
   case True
   then show ?thesis
      by (auto simp add: do-conflict-step do-conflict-step-conflicting do-cp-step-def)
  next
   {\bf case}\ \mathit{False}
```

```
then have confl[simp]: do\text{-}conflict\text{-}step\ S=S\ \mathbf{by}\ simp
    show ?thesis
      proof (cases do-propagate-step S = S)
        {f case}\ {\it True}
        \textbf{then show}~? the sis
        using H by (simp \ add: \ do-cp-step-def)
      next
        case False
        let ?S = toS S
        let ?T = toS (do\text{-propagate-step } S)
        let ?U = toS (do\text{-}conflict\text{-}step (do\text{-}propagate\text{-}step S))
        have propase (to S) ? T using False do-propate-step by blast
        \mathbf{moreover} \ \mathbf{have} \ \mathit{ns:} \ \mathit{no-step} \ \mathit{conflict} \ (\mathit{toS} \ \mathit{S}) \ \mathbf{using} \ \mathit{confl} \ \mathit{do-conflict-step-no-step} \ \mathbf{by} \ \mathit{blast}
        ultimately show ?thesis
          using cdcl_W-cp.intros(2)[of ?S ?T] confl unfolding do-cp-step-def by auto
      qed
 qed
qed
lemma do-cp-step-eq-no-prop-no-confl:
  do\text{-}cp\text{-}step\ S = S \Longrightarrow do\text{-}conflict\text{-}step\ S = S \land do\text{-}propagate\text{-}step\ S = S
  by (cases S, cases conflicting S)
    (auto simp add: do-conflict-step-def do-propagate-step-def do-cp-step-def split: option.splits)
lemma no\text{-}cdcl_W\text{-}cp\text{-}iff\text{-}no\text{-}propagate\text{-}no\text{-}conflict:}
  no\text{-}step\ cdcl_W\text{-}cp\ S\longleftrightarrow no\text{-}step\ propagate\ S\land no\text{-}step\ conflict\ S
  by (auto simp: cdcl_W - cp. simps)
lemma do-cp-step-eq-no-step:
  assumes H: do-cp-step \ S = S \ \text{and} \ \forall \ c \in set \ (clss \ S \ @ \ learned-clss \ S). \ distinct \ c
 shows no-step cdcl_W-cp (toS\ S)
  unfolding no\text{-}cdcl_W\text{-}cp\text{-}iff\text{-}no\text{-}propagate\text{-}no\text{-}conflict
  using assms apply (cases S, cases conflicting S)
  using do-propagate-step-no-step[of S]
  \mathbf{by} \ (\textit{auto dest}!: \textit{do-cp-step-eq-no-prop-no-confl}[\textit{simplified}] \ \textit{do-conflict-step-no-step}
    split: option.splits)
lemma cdcl_W-cp-cdcl_W-st: cdcl_W-cp S S' \Longrightarrow cdcl_W^{**} S S'
 by (simp\ add:\ cdcl_W\text{-}cp\text{-}tranclp\text{-}cdcl_W\ tranclp\text{-}into\text{-}rtranclp)
lemma cdcl_W-cp-wf-all-inv:
  wf \{(S', S::'v::linorder\ cdcl_W\ -state).\ cdcl_W\ -all\ -struct\ -inv\ S \land cdcl_W\ -cp\ S\ S'\}
  (is wf ?R)
proof (rule wf-bounded-measure of - \lambda S. card (atms-of-msu (clss S))+1
    \lambda S.\ length\ (trail\ S) + (if\ conflicting\ S = None\ then\ 0\ else\ 1)],\ goal-cases)
  case (1 S S')
  then have cdcl_W-all-struct-inv S and cdcl_W-cp S S' by auto
  moreover then have cdcl_W-all-struct-inv S'
    using rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv cdcl<sub>W</sub>-cp-cdcl<sub>W</sub>-st by blast
  ultimately show ?case
    by (auto simp:cdcl_W-cp.simps elim!: conflictE propagateE
      dest: length-model-le-vars-all-inv)
qed
lemma cdcl_W-all-struct-inv-rough-state[simp]: cdcl_W-all-struct-inv (toS (rough-state-of S))
```

```
using rough-state-of by auto
lemma [simp]: cdcl_W-all-struct-inv (toS S) \Longrightarrow rough-state-of (state-of S) = S
 by (simp add: state-of-inverse)
lemma rough-state-of-state-of-do-cp-step[simp]:
  rough-state-of (state-of (do-cp-step (rough-state-of S))) = do-cp-step (rough-state-of S)
proof -
 have cdcl_W-all-struct-inv (toS (do-cp-step (rough-state-of S)))
   apply (cases\ do\ cp\ step\ (rough\ state\ of\ S) = (rough\ state\ of\ S))
     apply simp
   \mathbf{using} \ \ cp\text{-}step\text{-}is\text{-}cdcl_W\text{-}cp[of \ rough\text{-}state\text{-}of \ S] \ \ cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}rough\text{-}state[of \ S]}
   cdcl_W-cp-cdcl_W-st rtranclp-cdcl_W-all-struct-inv-inv by blast
 then show ?thesis by auto
qed
Skip fun do-skip-step :: cdcl_W-state-inv-st \Rightarrow cdcl_W-state-inv-st where
do-skip-step (Propagated L C \# Ls,N,U,k, Some D) =
  (if -L \notin set \ D \land D \neq []
 then (Ls, N, U, k, Some D)
  else (Propagated L C \#Ls, N, U, k, Some D)) |
do-skip-step S = S
lemma do-skip-step:
  do\text{-}skip\text{-}step\ S \neq S \Longrightarrow skip\ (toS\ S)\ (toS\ (do\text{-}skip\text{-}step\ S))
 apply (induction S rule: do-skip-step.induct)
 by (auto simp add: skip.simps)
lemma do-skip-step-no:
  do\text{-}skip\text{-}step\ S = S \Longrightarrow no\text{-}step\ skip\ (toS\ S)
 by (induction S rule: do-skip-step.induct)
    (auto simp add: other split: split-if-asm)
lemma do-skip-step-trail-is-None[iff]:
  do-skip-step S = (a, b, c, d, None) \longleftrightarrow S = (a, b, c, d, None)
 by (cases S rule: do-skip-step.cases) auto
Resolve fun maximum-level-code:: 'a literal list \Rightarrow ('a, nat, 'a literal list) ann-literal list \Rightarrow nat
 where
maximum-level-code [] - = 0
maximum-level-code (L \# Ls) M = max (get-level M L) (maximum-level-code Ls M)
lemma maximum-level-code-eq-get-maximum-level[code, simp]:
  maximum-level-code D M = get-maximum-level M (mset D)
 by (induction D) (auto simp add: get-maximum-level-plus)
fun do-resolve-step :: cdcl_W-state-inv-st \Rightarrow cdcl_W-state-inv-st where
do-resolve-step (Propagated L C \# Ls, N, U, k, Some D) =
  (if - L \in set \ D \land maximum-level-code \ (remove1 \ (-L) \ D) \ (Propagated \ L \ C \ \# \ Ls) = k
  then (Ls, N, U, k, Some (remdups (remove1 L C @ remove1 (-L) D)))
  else (Propagated L C \# Ls, N, U, k, Some D))
do-resolve-step S = S
lemma do-resolve-step:
  cdcl_W-all-struct-inv (toS S) \Longrightarrow do-resolve-step S \neq S
```

```
\implies resolve \ (toS\ S) \ (toS\ (do-resolve-step\ S))
proof (induction S rule: do-resolve-step.induct)
 case (1 L C M N U k D)
 then have
   -L \in set D and
   M: maximum-level-code \ (remove1 \ (-L) \ D) \ (Propagated \ L \ C \ \# \ M) = k
   by (cases mset D - \{\#-L\#\} = \{\#\},\
      auto dest!: get-maximum-level-exists-lit-of-max-level[of - Propagated L C \# M]
      split: split-if-asm)+
 have every-mark-is-a-conflict (toS (Propagated L C \# M, N, U, k, Some D))
   using 1(1) unfolding cdcl_W-all-struct-inv-def cdcl_W-conflicting-def by fast
 then have L \in set \ C by fastforce
 then obtain C' where C: mset\ C = C' + \{\#L\#\}
   by (metis add.commute in-multiset-in-set insert-DiffM)
 obtain D' where D: mset\ D = D' + \{\#-L\#\}
   using \langle -L \in set \ D \rangle by (metis add.commute in-multiset-in-set insert-DiffM)
 have D'L: D' + \{\# - L\#\} - \{\# - L\#\} = D' by (auto simp add: multiset-eq-iff)
 have CL: mset\ C - \{\#L\#\} + \{\#L\#\} = mset\ C\ using\ (L \in set\ C)\ by\ (auto\ simp\ add:\ multiset-eq-iff)
 have get-maximum-level (Propagated L (C' + \{\#L\#\}) \# map convert M) D' = k
   using M[simplified] unfolding maximum-level-code-eq-get-maximum-level C[symmetric] CL
   by (metis\ D\ D'L\ convert.simps(1)\ get-maximum-level-map-convert\ list.simps(9))
 then have
   resolve
      (map\ convert\ (Propagated\ L\ C\ \#\ M),\ mset\ '\#\ mset\ N,\ mset\ '\#\ mset\ U,\ k,\ Some\ (mset\ D))
      (map\ convert\ M,\ mset\ '\#\ mset\ N,\ mset\ '\#\ mset\ U,\ k,
       Some (((mset\ D - \{\#-L\#\})\ \#\cup\ (mset\ C - \{\#L\#\}))))
   unfolding resolve.simps
     by (simp \ add: \ C\ D)
 moreover have
   (map convert (Propagated L C # M), mset '# mset N, mset '# mset U, k, Some (mset D))
    = toS (Propagated L C \# M, N, U, k, Some D)
   by (auto simp: mset-map)
 moreover
   have distinct-mset (mset C) and distinct-mset (mset D)
     using \langle cdcl_W - all - struct - inv \ (toS \ (Propagated \ L \ C \ \# \ M, \ N, \ U, \ k, \ Some \ D) \rangle
     unfolding cdclw-all-struct-inv-def distinct-cdclw-state-def
     by auto
   then have (mset\ C - \{\#L\#\})\ \#\cup\ (mset\ D - \{\#-L\#\}) =
     remdups-mset (mset C - {\#L\#} + (mset D - {\#-L\#}))
     by (auto simp: distinct-mset-rempdups-union-mset)
   then have (map convert M, mset '# mset N, mset '# mset U, k,
   Some ((mset \ D - \{\#-L\#\}) \ \# \cup (mset \ C - \{\#L\#\})))
   = toS (do-resolve-step (Propagated L C \# M, N, U, k, Some D))
   using \langle -L \in set D \rangle M by (auto simp:ac-simps mset-map)
 ultimately show ?case
   by simp
qed auto
lemma do-resolve-step-no:
 do\text{-}resolve\text{-}step\ S = S \Longrightarrow no\text{-}step\ resolve\ (toS\ S)
 apply (cases S; cases hd (trail S); cases conflicting S)
 by (auto
   elim!: resolveE split: split-if-asm
   dest!: union-single-eq-member
```

```
lemma rough-state-of-state-of-resolve[simp]:
  cdcl_W-all-struct-inv (toS S) \Longrightarrow rough-state-of (state-of (do-resolve-step S)) = do-resolve-step S
 apply (rule state-of-inverse)
 apply (cases do-resolve-step S = S)
  apply simp
  by (blast dest: other resolve bj do-resolve-step cdcl_W-all-struct-inv-inv)
lemma do-resolve-step-trail-is-None[iff]:
  do-resolve-step S = (a, b, c, d, None) \longleftrightarrow S = (a, b, c, d, None)
 by (cases S rule: do-resolve-step.cases) auto
Backjumping fun find-level-decomp where
find-level-decomp M \mid D \mid k = None \mid
find-level-decomp M (L \# Ls) D k =
 (case (get-level M L, maximum-level-code (D @ Ls) M) of
   (i, j) \Rightarrow if \ i = k \land j < i \ then \ Some \ (L, j) \ else \ find-level-decomp \ M \ Ls \ (L\#D) \ k
lemma find-level-decomp-some:
 assumes find-level-decomp M Ls D k = Some(L, j)
 shows L \in set\ Ls \land get\text{-}maximum\text{-}level\ M\ (mset\ (remove1\ L\ (Ls\ @\ D))) = j \land get\text{-}level\ M\ L = k
 using assms
proof (induction Ls arbitrary: D)
 case Nil
 then show ?case by simp
 case (Cons L' Ls) note IH = this(1) and H = this(2)
 \mathbf{def} \ \mathit{find} \equiv (\mathit{if} \ \mathit{get-level} \ \mathit{M} \ \mathit{L'} \neq \mathit{k} \ \lor \ \neg \ \mathit{get-maximum-level} \ \mathit{M} \ (\mathit{mset} \ \mathit{D} + \mathit{mset} \ \mathit{Ls}) < \mathit{get-level} \ \mathit{M} \ \mathit{L'}
    then find-level-decomp M Ls (L' \# D) k
    else Some (L', get\text{-}maximum\text{-}level\ M\ (mset\ D\ +\ mset\ Ls)))
 have a1: \bigwedge D. find-level-decomp M Ls D k = Some(L, j) \Longrightarrow
    L \in set\ Ls \land get\text{-maximum-level}\ M\ (mset\ Ls + mset\ D - \{\#L\#\}) = j \land get\text{-level}\ M\ L = k
   using IH by simp
  have a2: find = Some(L, j)
   using H unfolding find-def by (auto split: split-if-asm)
  { assume Some (L', get\text{-maximum-level } M \ (mset \ D + mset \ Ls)) \neq find
   then have f3: L \in set\ Ls and get-maximum-level M (mset Ls + mset\ (L' \# D) - \{\#L\#\} = j
     using a1 IH a2 unfolding find-def by meson+
   moreover then have mset\ Ls + mset\ D - \{\#L\#\} + \{\#L'\#\} = \{\#L'\#\} + mset\ D + (mset\ Ls
-\{\#L\#\}
     by (auto simp: ac-simps multiset-eq-iff Suc-leI)
   ultimately have f_4: get-maximum-level M (mset Ls + mset D - \{\#L\#\} + \{\#L'\#\}\} = j
     by (metis (no-types) diff-union-single-conv mem-set-multiset-eq mset.simps(2) union-commute)
  } note f_4 = this
  have \{\#L'\#\} + (mset\ Ls + mset\ D) = mset\ Ls + (mset\ D + \{\#L'\#\})
     by (auto simp: ac-simps)
  then have
   (L = L' \longrightarrow get\text{-}maximum\text{-}level\ M\ (mset\ Ls + mset\ D) = j \land get\text{-}level\ M\ L' = k) and
   (L \neq L' \longrightarrow L \in set \ Ls \land get\text{-}maximum\text{-}level \ M \ (mset \ Ls + mset \ D - \{\#L\#\} + \{\#L'\#\}) = j \land
     get-level M L = k)
```

simp del: in-multiset-in-set get-maximum-level-map-convert

simp: in-multiset-in-set[symmetric] get-maximum-level-map-convert[symmetric])

```
using f4 a2 a1 [of L' \# D] unfolding find-def by (metis (no-types) add-diff-cancel-left'
     mset.simps(2) option.inject prod.inject union-commute)+
 then show ?case by simp
qed
lemma find-level-decomp-none:
 assumes find-level-decomp M Ls E k = None and mset (L\#D) = mset (Ls @ E)
 shows \neg(L \in set \ Ls \land get\text{-}maximum\text{-}level \ M \ (mset \ D) < k \land k = get\text{-}level \ M \ L)
 \mathbf{using}\ \mathit{assms}
proof (induction Ls arbitrary: E L D)
 case Nil
 then show ?case by simp
next
 case (Cons L' Ls) note IH = this(1) and find-none = this(2) and LD = this(3)
 have mset\ D + \{\#L'\#\} = mset\ E + (mset\ Ls + \{\#L'\#\}) \implies mset\ D = mset\ E + mset\ Ls
   by (metis add-right-imp-eq union-assoc)
 then show ?case
   using find-none IH[of L' \# E L D] LD by (auto simp add: ac-simps split: split-if-asm)
qed
fun bt-cut where
bt-cut i (Propagated - - \# Ls) = bt-cut i Ls
bt-cut i (Marked K k \# Ls) = (if k = Suc i then Some (Marked K k \# Ls) else bt-cut i Ls)
bt-cut i [] = None
lemma bt-cut-some-decomp:
  bt\text{-}cut\ i\ M = Some\ M' \Longrightarrow \exists\ K\ M2\ M1.\ M = M2\ @\ M' \land M' = Marked\ K\ (i+1)\ \#\ M1
 by (induction i M rule: bt-cut.induct) (auto split: split-if-asm)
lemma bt-cut-not-none: M = M2 @ Marked K (Suc i) \# M' \Longrightarrow bt-cut i M \neq None
 by (induction M2 arbitrary: M rule: ann-literal-list-induct) auto
lemma get-all-marked-decomposition-ex:
  \exists N. (Marked \ K \ (Suc \ i) \ \# \ M', \ N) \in set \ (get-all-marked-decomposition \ (M2@Marked \ K \ (Suc \ i) \ \# M')
M'))
 apply (induction M2 rule: ann-literal-list-induct)
   apply auto[2]
 by (rename-tac L m xs, case-tac qet-all-marked-decomposition (xs @ Marked K (Suc i) # M'))
  auto
\mathbf{lemma}\ bt\text{-}cut\text{-}in\text{-}get\text{-}all\text{-}marked\text{-}decomposition}:
  bt-cut i M = Some M' \Longrightarrow \exists M2. (M', M2) \in set (get-all-marked-decomposition M)
 by (auto dest!: bt-cut-some-decomp simp add: get-all-marked-decomposition-ex)
fun do-backtrack-step where
do-backtrack-step (M, N, U, k, Some D) =
  (case find-level-decomp MD [] k of
   None \Rightarrow (M, N, U, k, Some D)
 \mid Some (L, j) \Rightarrow
   (case bt-cut j M of
     Some (Marked - - # Ls) \Rightarrow (Propagated L D # Ls, N, D # U, j, None)
    - \Rightarrow (M, N, U, k, Some D)
do-backtrack-step S = S
```

```
\textbf{lemma} \ \textit{get-all-marked-decomposition-map-convert}:
 (get-all-marked-decomposition (map convert M)) =
   map\ (\lambda(a,\ b).\ (map\ convert\ a,\ map\ convert\ b))\ (get-all-marked-decomposition\ M)
 apply (induction M rule: ann-literal-list-induct)
   apply simp
 by (rename-tac L l xs, case-tac get-all-marked-decomposition xs; auto)+
lemma do-backtrack-step:
 assumes
   db: do-backtrack-step S \neq S and
   inv: cdcl_W-all-struct-inv (toS S)
 shows backtrack (toS S) (toS (do-backtrack-step S))
 proof (cases S, cases conflicting S, goal-cases)
   case (1 \ M \ N \ U \ k \ E)
   then show ?case using db by auto
   case (2 M N U k E C) note S = this(1) and confl = this(2)
   have E: E = Some \ C using S confl by auto
   obtain L j where fd: find-level-decomp M C [] k = Some (L, j)
     using db unfolding S E by (cases C) (auto split: split-if-asm option.splits)
   have L \in set\ C and get-maximum-level M (mset (remove1 L C)) = j and
     levL: get-level M L = k
     using find-level-decomp-some[OF fd] by auto
   obtain C' where C: mset\ C = mset\ C' + \{\#L\#\}
     using \langle L \in set \ C \rangle by (metis add.commute ex-mset in-multiset-in-set insert-DiffM)
   obtain M_2 where M_2: bt-cut j M = Some M_2
     using db fd unfolding S E by (auto split: option.splits)
   obtain M1 K where M1: M_2 = Marked K (Suc j) \# M1
     using bt-cut-some-decomp[OF M_2] by (cases M_2) auto
   obtain c where c: M = c @ Marked K (Suc j) # M1
     using bt-cut-in-get-all-marked-decomposition[OF <math>M_2]
     unfolding M1 by fastforce
   have get-all-levels-of-marked (map convert M) = rev [1..<Suc\ k]
     using inv unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def S by auto
   from arg-cong[OF this, of \lambda a. Suc j \in set a] have j \leq k unfolding c by auto
   have max-l-j: maximum-level-code C'M = j
     using db fd M_2 C unfolding S E by (auto
        split: option.splits list.splits ann-literal.splits
        dest!: find-level-decomp-some)[1]
   have get-maximum-level M (mset C) \geq k
     using \langle L \in set \ C \rangle get-maximum-level-ge-get-level levL by blast
   moreover have get-maximum-level M (mset C) \leq k
     using get-maximum-level-exists-lit-of-max-level[of mset CM] inv
       cdcl_W-M-level-inv-get-level-le-backtrack-lvl[of toS S]
     unfolding C \ cdcl_W \ -all \ -struct \ -inv \ -def \ S by (auto dest: sym[of \ get \ -evel \ --])
   ultimately have get-maximum-level M (mset C) = k by auto
   obtain M2 where M2: (M_2, M2) \in set (get-all-marked-decomposition M)
     using bt-cut-in-get-all-marked-decomposition [OF M_2] by metis
   have H: (reduce-trail-to (map convert M1)
     (add\text{-}learned\text{-}cls\ (mset\ C' + \{\#L\#\})
       (map\ convert\ M,\ mset\ (map\ mset\ N),\ mset\ (map\ mset\ U),\ j,\ None))) =
      (map\ convert\ M1,\ mset\ (map\ mset\ N),\ \{\#mset\ C'+\{\#L\#\}\#\}+mset\ (map\ mset\ U),\ j,\ None)
      apply (subst state-conv[of reduce-trail-to - -])
```

```
using M2 unfolding M1 by auto
   have
     backtrack
       (map convert M, mset '# mset N, mset '# mset U, k, Some (mset C))
      (Propagated\ L\ (mset\ C)\ \#\ map\ convert\ M1,\ mset\ '\#\ mset\ N,\ mset\ '\#\ mset\ U+\{\#mset\ C\#\},
j,
        None
     apply (rule backtrack-rule)
           unfolding C apply simp
          using Set.imageI[of(M_2, M_2) set(get-all-marked-decomposition M)]
                        (\lambda(a, b), (map\ convert\ a,\ map\ convert\ b))]\ M2
          apply (auto simp: get-all-marked-decomposition-map-convert M1)[1]
         using max-l-j levL \langle j \leq k \rangle apply (simp add: get-maximum-level-plus)
        using C \setminus get\text{-}maximum\text{-}level\ M\ (mset\ C) = k \setminus levL\ apply\ auto[1]
       using max-l-j apply simp
      apply (cases reduce-trail-to (map convert M1)
          (add\text{-}learned\text{-}cls\ (mset\ C' + \{\#L\#\}))
          (map\ convert\ M,\ mset\ (map\ mset\ N),\ mset\ (map\ mset\ U),\ j,\ None)))
      using M2 M1 H by (auto simp: ac-simps mset-map)
   then show ?case
     using M_2 fd unfolding S E M1 by (auto simp: mset-map)
   obtain M2 where (M_2, M2) \in set (get-all-marked-decomposition M)
     using bt-cut-in-get-all-marked-decomposition [OF M_2] by metis
qed
lemma do-backtrack-step-no:
 assumes db: do-backtrack-step S = S
 and inv: cdcl_W-all-struct-inv (toS S)
 shows no-step backtrack (toS S)
proof (rule ccontr, cases S, cases conflicting S, goal-cases)
 case 1
  then show ?case using db by (auto split: option.splits)
  case (2 M N U k E C) note bt = this(1) and S = this(2) and confl = this(3)
 obtain D L K b z M1 j where
   levL: get-level \ M \ L = get-maximum-level \ M \ (D + \{\#L\#\}) \ and
   k: k = get\text{-}maximum\text{-}level\ M\ (D + \{\#L\#\}) and
   j: j = get\text{-}maximum\text{-}level\ M\ D\ and
   CE: convertC E = Some (D + \{\#L\#\}) and
   decomp: (z \# M1, b) \in set (get-all-marked-decomposition M) and
   z: Marked K (Suc j) = convert z using bt unfolding S
     by (auto split: option.splits elim!: backtrackE
       simp: get-all-marked-decomposition-map-convert)
 have z: z = Marked K (Suc j) using z by (cases z) auto
  obtain c where c: M = c @ b @ Marked K (Suc j) # M1
   using decomp unfolding z by blast
 have get-all-levels-of-marked (map convert M) = rev [1..<Suc\ k]
   using inv unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def S by auto
 from arg\text{-}cong[OF\ this,\ of\ \lambda a.\ Suc\ j\in set\ a]\ \mathbf{have}\ k>j\ \mathbf{unfolding}\ c\ \mathbf{by}\ auto
 obtain CD' where
   E: E = Some \ C and
   C: mset \ C = mset \ (L \# D')
   using CE apply (cases E)
     apply simp
   by (metis\ ex-mset\ mset.simps(2)\ option.inject\ option.simps(9))
```

```
have D'D: mset D' = D
   using C CE E by auto
  have find-level-decomp M \ C \ [] \ k \neq None
   apply rule
   apply (drule find-level-decomp-none[of - - - - L D'])
   using C \langle k > j \rangle mset-eq-setD unfolding k[symmetric] D'D j[symmetric] levL by fastforce+
  then obtain L'j' where fd-some: find-level-decomp M C [] k = Some (L', j')
   by (cases find-level-decomp M \subset []k) auto
 have L': L' = L
   proof (rule ccontr)
     assume ¬ ?thesis
     then have L' \in \# D
       by (metis C\ D'D\ fd-some find-level-decomp-some in-multiset-in-set insert-iff list.simps(15))
     then have get-level M L' \leq get-maximum-level M D
       using qet-maximum-level-qe-qet-level by blast
     then show False using \langle k > j \rangle j find-level-decomp-some [OF fd-some] by auto
  then have j': j' = j using find-level-decomp-some [OF fd-some] j \in D'D by auto
 \mathbf{have}\ \mathit{btc}\text{-}\mathit{none}\text{:}\ \mathit{bt-cut}\ \mathit{j}\ \mathit{M} \neq \mathit{None}
   apply (rule bt-cut-not-none[of M - @ -])
   using c by simp
 show ?case using db unfolding S E
   by (auto split: option.splits list.splits ann-literal.splits
     simp\ add: fd-some\ L'j'\ btc-none
     dest: bt-cut-some-decomp)
qed
lemma rough-state-of-state-of-backtrack[simp]:
 assumes inv: cdcl_W-all-struct-inv (toS S)
 shows rough-state-of (state-of (do-backtrack-step S))= do-backtrack-step S
proof (rule state-of-inverse)
 have f2: backtrack \ (toS\ S) \ (toS\ (do-backtrack-step\ S)) \ \lor \ do-backtrack-step\ S = S
   using do-backtrack-step inv by blast
 have \bigwedge p. \neg cdcl_W - o(toS S) p \lor cdcl_W - all - struct - inv p
   using inv \ cdcl_W-all-struct-inv-inv other by blast
  then have do-backtrack-step S = S \vee cdcl_W-all-struct-inv (toS (do-backtrack-step S))
   using f2 by blast
  then show do-backtrack-step S \in \{S. \ cdcl_W - all - struct - inv \ (toS \ S)\}
   using inv by fastforce
qed
Decide fun do-decide-step where
do\text{-}decide\text{-}step\ (M,\ N,\ U,\ k,\ None) =
  (case find-first-unused-var N (lits-of M) of
   None \Rightarrow (M, N, U, k, None)
  | Some L \Rightarrow (Marked L (Suc k) \# M, N, U, k+1, None)) |
do\text{-}decide\text{-}step\ S=S
lemma do-decide-step:
  do\text{-}decide\text{-}step \ S \neq S \Longrightarrow decide \ (toS\ S) \ (toS\ (do\text{-}decide\text{-}step\ S))
 apply (cases S, cases conflicting S)
 defer
 apply (auto split: option.splits simp add: decide.simps Marked-Propagated-in-iff-in-lits-of
         dest: find-first-unused-var-undefined\ find-first-unused-var-Some
```

```
intro: atms-of-atms-of-ms-mono)[1]
proof -
  fix a :: (nat, nat, nat literal list) ann-literal list and
       b:: nat literal list list and c:: nat literal list list and
       d :: nat  and e :: nat  literal  list  option
   fix a :: (nat, nat, nat literal list) ann-literal list and
       b:: nat\ literal\ list\ list\ {f and} c:: nat\ literal\ list\ list\ {f and}
       d :: nat \text{ and } x2 :: nat \text{ literal and } m :: nat \text{ literal list}
   assume a1: m \in set b
   assume x2 \in set m
   then have f2: atm-of x2 \in atms-of (mset m)
     by simp
   have \bigwedge f. (f m::nat \ literal \ multiset) \in f 'set b
     using a1 by blast
   then have \bigwedge f. (atms-of\ (f\ m)::nat\ set) \subseteq atms-of-ms\ (f\ `set\ b)
    using atms-of-atms-of-ms-mono by blast
   then have \bigwedge n f. (n::nat) \in atms-of-ms (f `set b) \lor n \notin atms-of (f m)
     by (meson\ contra-subset D)
   then have atm\text{-}of \ x2 \in atms\text{-}of\text{-}ms \ (mset \ `set \ b)
     using f2 by blast
  } note H = this
  {
   \mathbf{fix}\ m::\ nat\ literal\ list\ \mathbf{and}\ x2
   have m \in set \ b \Longrightarrow x2 \in set \ m \Longrightarrow x2 \notin lits of \ a \Longrightarrow -x2 \notin lits of \ a \Longrightarrow
     \exists aa \in set \ b. \ \neg \ atm\text{-}of \ `set \ aa \subseteq atm\text{-}of \ `lits\text{-}of \ a
     by (meson atm-of-in-atm-of-set-in-uminus contra-subsetD rev-image-eqI)
  } note H' = this
 assume do-decide-step S \neq S and
    S = (a, b, c, d, e) and
    conflicting S = None
  then show decide (toS S) (toS (do-decide-step S))
   using HH' by (auto split: option.splits simp: decide.simps Marked-Propagated-in-iff-in-lits-of
      dest!: find-first-unused-var-Some)
qed
lemma do-decide-step-no:
  do\text{-}decide\text{-}step\ S = S \Longrightarrow no\text{-}step\ decide\ (toS\ S)
  by (cases S, cases conflicting S)
   (fastforce simp: atms-of-ms-mset-unfold atm-of-eq-atm-of Marked-Propagated-in-iff-in-lits-of
     split: option.splits)+
lemma rough-state-of-do-decide-step[simp]:
  cdcl_W-all-struct-inv (toS S) \Longrightarrow rough-state-of (state-of (do-decide-step S)) = do-decide-step S
proof (subst state-of-inverse, goal-cases)
 case 1
  then show ?case
   by (cases do-decide-step S = S)
     (auto dest: do-decide-step decide other intro: cdcl<sub>W</sub>-all-struct-inv-inv)
qed simp
lemma rough-state-of-state-of-do-skip-step[simp]:
  cdcl_W-all-struct-inv (toS S) \Longrightarrow rough-state-of (state-of (do-skip-step S)) = do-skip-step S
  apply (subst state-of-inverse, cases do-skip-step S = S)
```

```
apply simp
by (blast dest: other skip bj do-skip-step cdcl_W-all-struct-inv-inv)+
```

6.3.3 Code generation

Type definition There are two invariants: one while applying conflict and propagate and one for the other rules

```
declare rough-state-of-inverse[simp add]
definition Con where
  Con xs = state-of (if cdcl_W-all-struct-inv (toS (fst xs, snd xs)) then xs
  else ([], [], [], \theta, None))
lemma [code abstype]:
 Con (rough-state-of S) = S
 using rough-state-of [of S] unfolding Con-def by simp
definition do-cy-step' where
do\text{-}cp\text{-}step' S = state\text{-}of (do\text{-}cp\text{-}step (rough\text{-}state\text{-}of S))
typedef\ cdcl_W-state-inv-from-init-state = \{S::cdcl_W-state-inv-st. cdcl_W-all-struct-inv (toS\ S)
  \land cdcl_W - stgy^{**} (S0 - cdcl_W (clss (toS S))) (toS S)
 morphisms rough-state-from-init-state-of state-from-init-state-of
proof
  show ([],[], [], 0, None) \in \{S. \ cdcl_W - all - struct - inv \ (toS\ S)\}
   \land cdcl_W \text{-}stgy^{**} (S0\text{-}cdcl_W (clss (toS S))) (toS S)
   by (auto simp add: cdcl_W-all-struct-inv-def)
qed
instantiation cdcl_W-state-inv-from-init-state :: equal
definition equal-cdcl<sub>W</sub>-state-inv-from-init-state :: cdcl_W-state-inv-from-init-state \Rightarrow
  cdcl_W-state-inv-from-init-state \Rightarrow bool where
 equal\text{-}cdcl_W\text{-}state\text{-}inv\text{-}from\text{-}init\text{-}state\ S\ S'\longleftrightarrow
   (rough-state-from-init-state-of\ S=rough-state-from-init-state-of\ S')
instance
  by standard (simp add: rough-state-from-init-state-of-inject
    equal-cdcl_W-state-inv-from-init-state-def)
end
definition ConI where
  ConI S = state-from-init-state-of (if cdcl_W-all-struct-inv (toS (fst S, snd S)))
   \land cdcl_W - stgy^{**} (S0 - cdcl_W (clss (toS S))) (toS S) then S else ([], [], [], 0, None))
lemma [code abstype]:
  ConI (rough-state-from-init-state-of S) = S
  using rough-state-from-init-state-of [of S] unfolding ConI-def
  by (simp add: rough-state-from-init-state-of-inverse)
definition id-of-I-to:: cdcl_W-state-inv-from-init-state \Rightarrow cdcl_W-state-inv where
id\text{-}of\text{-}I\text{-}to\ S = state\text{-}of\ (rough\text{-}state\text{-}from\text{-}init\text{-}state\text{-}of\ S)
lemma [code abstract]:
  rough-state-of (id-of-I-to S) = rough-state-from-init-state-of S
  unfolding id-of-I-to-def using rough-state-from-init-state-of by auto
```

```
Conflict and Propagate function do-full1-cp-step :: cdcl_W-state-inv \Rightarrow cdcl_W-state-inv where
do-full1-cp-step S =
  (let S' = do\text{-}cp\text{-}step' S in
   if S = S' then S else do-full1-cp-step S')
by auto
termination
proof (relation \{(T', T). (rough-state-of T', rough-state-of T) \in \{(S', S).\}
  (toS\ S',\ toS\ S) \in \{(S',\ S).\ cdcl_W\ -all\ -struct\ -inv\ S\ \land\ cdcl_W\ -cp\ S\ S'\}\}\},\ goal\ -cases)
 show ?case
   using wf-if-measure-f[OF wf-if-measure-f[OF cdcl_W-cp-wf-all-inv, of toS], of rough-state-of].
next
  case (2 S' S)
  then show ?case
   unfolding do-cp-step'-def
   apply simp
   by (metis\ cp\text{-}step\text{-}is\text{-}cdcl_W\text{-}cp\ rough\text{-}state\text{-}of\text{-}inverse})
\mathbf{lemma}\ do\text{-}full1\text{-}cp\text{-}step\text{-}fix\text{-}point\text{-}of\text{-}do\text{-}full1\text{-}cp\text{-}step\text{:}
  do-cp-step(rough-state-of\ (do-full1-cp-step\ S)) = (rough-state-of\ (do-full1-cp-step\ S))
  by (rule do-full1-cp-step.induct[of \lambda S. do-cp-step(rough-state-of (do-full1-cp-step S))
       = (rough\text{-}state\text{-}of (do\text{-}full1\text{-}cp\text{-}step S))])
   (metis (full-types) do-full1-cp-step.elims rough-state-of-state-of-do-cp-step do-cp-step'-def)
{f lemma} in-clauses-rough-state-of-is-distinct:
  c \in set\ (clss\ (rough\text{-}state\text{-}of\ S)\ @\ learned\text{-}clss\ (rough\text{-}state\text{-}of\ S)) \Longrightarrow distinct\ c
  apply (cases rough-state-of S)
  using rough-state-of of S by (auto simp add: distinct-mset-set-distinct cdcl_W-all-struct-inv-def
    distinct-cdcl_W-state-def)
lemma do-full1-cp-step-full:
  full\ cdcl_W-cp (toS\ (rough\text{-}state\text{-}of\ S))
   (toS\ (rough-state-of\ (do-full1-cp-step\ S)))
  unfolding full-def
proof (rule conjI, induction S rule: do-full1-cp-step.induct)
  case (1 S)
  then have f1:
     cdcl_W - cp^{**} (toS (do-cp-step (rough-state-of S))) (
        toS (rough-state-of (do-full1-cp-step (state-of (do-cp-step (rough-state-of S))))))
     \vee state-of (do-cp-step (rough-state-of S)) = S
   using do-cp-step'-def rough-state-of-state-of-do-cp-step by fastforce
  have f2: \land c. (if c = state-of (do-cp-step (rough-state-of c))
       then c else do-full1-cp-step (state-of (do-cp-step (rough-state-of c))))
     = do-full1-cp-step c
   by (metis (full-types) do-cp-step'-def do-full1-cp-step.simps)
  have f3: \neg cdcl_W - cp \ (toS \ (rough-state-of \ S)) \ (toS \ (do-cp-step \ (rough-state-of \ S)))
   \vee state-of (do-cp-step (rough-state-of S)) = S
   \vee cdcl_W - cp^{++} (toS (rough-state-of S))
        (toS (rough-state-of (do-full1-cp-step (state-of (do-cp-step (rough-state-of S))))))
   using f1 by (meson rtranclp-into-tranclp2)
  { assume do-full1-cp-step S \neq S
   then have do-cp-step (rough-state-of S) = rough-state-of S
        \longrightarrow cdcl_W - cp^{**} \ (toS \ (rough-state-of \ S)) \ (toS \ (rough-state-of \ (do-full1-cp-step \ S)))
     \lor do\text{-}cp\text{-}step \ (rough\text{-}state\text{-}of \ S) \neq rough\text{-}state\text{-}of \ S
```

```
\land state-of (do-cp-step (rough-state-of S)) \neq S
     using f2 f1 by (metis (no-types))
   then have do-cp-step (rough-state-of S) \neq rough-state-of S
      \land state-of (do-cp-step (rough-state-of S)) \neq S
     \vee cdcl_W-cp** (toS (rough-state-of S)) (toS (rough-state-of (do-full1-cp-step S)))
     by (metis rough-state-of-state-of-do-cp-step)
   then have cdcl_W - cp^{**} (to S (rough-state-of S)) (to S (rough-state-of (do-full1-cp-step S)))
     using f3 f2 by (metis (no-types) cp-step-is-cdcl_W-cp tranclp-into-rtranclp) }
 then show ?case
   by fastforce
next
 show no-step cdcl_W-cp (toS (rough-state-of (do-full1-cp-step S)))
   apply (rule do-cp-step-eq-no-step[OF do-full1-cp-step-fix-point-of-do-full1-cp-step[of S]])
   using in-clauses-rough-state-of-is-distinct unfolding do-cp-step'-def by blast
qed
lemma [code abstract]:
rough-state-of (do-cp-step' S) = do-cp-step (rough-state-of S)
unfolding do-cp-step'-def by auto
The other rules fun do-other-step where
do-other-step S =
  (let T = do\text{-}skip\text{-}step S in
    if T \neq S
    then T
    else
      (let U = do-resolve-step T in
      if U \neq T
      then U else
      (let V = do-backtrack-step U in
      if V \neq U then V else do-decide-step V)))
lemma do-other-step:
 assumes inv: cdcl_W-all-struct-inv (toS S) and
 st: do\text{-}other\text{-}step \ S \neq S
 shows cdcl_W-o (toS\ S)\ (toS\ (do\text{-}other\text{-}step\ S))
 using st inv by (auto split: split-if-asm
   simp add: Let-def
   intro: do-skip-step do-resolve-step do-backtrack-step do-decide-step)
lemma do-other-step-no:
 assumes inv: cdcl_W-all-struct-inv (toS S) and
 st: do-other-step S = S
 shows no-step cdcl_W-o (toS S)
 using st inv by (auto split: split-if-asm elim: cdcl_W-bjE
   simp\ add: Let-def cdcl_W-bj.simps\ elim!: cdcl_W-o.cases
   dest!: do-skip-step-no do-resolve-step-no do-backtrack-step-no do-decide-step-no)
lemma rough-state-of-state-of-do-other-step[simp]:
 rough-state-of (state-of (do-other-step (rough-state-of S))) = do-other-step (rough-state-of S)
proof (cases do-other-step (rough-state-of S) = rough-state-of S)
 case True
 then show ?thesis by simp
next
 {f case} False
```

```
have cdcl_W-o (toS (rough-state-of S)) (toS (do-other-step (rough-state-of S)))
   by (metis False cdcl_W-all-struct-inv-rough-state do-other-step[of rough-state-of S])
  then have cdcl_W-all-struct-inv (toS (do-other-step (rough-state-of S)))
   using cdcl_W-all-struct-inv-inv cdcl_W-all-struct-inv-rough-state other by blast
  then show ?thesis
   by (simp add: CollectI state-of-inverse)
qed
definition do-other-step' where
do-other-step' S =
 state-of\ (do-other-step\ (rough-state-of\ S))
lemma rough-state-of-do-other-step'[code abstract]:
rough-state-of (do-other-step' S) = do-other-step (rough-state-of S)
apply (cases do-other-step (rough-state-of S) = rough-state-of S)
  unfolding do-other-step'-def apply simp
using do-other-step of rough-state-of S by (auto intro: cdcl_W-all-struct-inv-inv
  cdcl_W-all-struct-inv-rough-state other state-of-inverse)
definition do\text{-}cdcl_W\text{-}stgy\text{-}step where
do\text{-}cdcl_W\text{-}stgy\text{-}step\ S =
  (let T = do-full1-cp-step S in
    if T \neq S
    then T
    else
      (let \ U = (do\text{-}other\text{-}step'\ T)\ in
       (do-full1-cp-step\ U)))
definition do\text{-}cdcl_W\text{-}stgy\text{-}step' where
do-cdcl_W-stgy-step' S = state-from-init-state-of (rough-state-of (do-cdcl_W-stgy-step (id-of-I-to S)))
lemma toS-do-full1-cp-step-not-eq: do-full1-cp-step S <math>\neq S \Longrightarrow
   toS (rough-state-of S) \neq toS (rough-state-of (do-full1-cp-step S))
proof
 assume a1: do-full1-cp-step S \neq S
 then have S \neq do\text{-}cp\text{-}step' S
   by fastforce
  then show ?thesis
   by (metis\ (no\text{-}types)\ cp\text{-}step\text{-}is\text{-}cdcl_W\text{-}cp\ do\text{-}cp\text{-}step'\text{-}def\ do\text{-}cp\text{-}step\text{-}eq\text{-}no\text{-}step})
     do-full 1-cp-step-fix-point-of-do-full 1-cp-step\ in-clauses-rough-state-of-is-distinct
     rough-state-of-inverse)
qed
do-full1-cp-step should not be unfolded anymore:
declare do-full1-cp-step.simps[simp del]
Correction of the transformation lemma do-cdcl_W-stgy-step:
 assumes do\text{-}cdcl_W\text{-}stgy\text{-}step\ S \neq S
 shows cdcl_W-stgy (toS (rough-state-of S)) (toS (rough-state-of (do-cdcl_W-stgy-step S)))
proof (cases do-full1-cp-step S = S)
  case False
 then show ?thesis
   using assms do-full1-cp-step-full[of S] unfolding full-unfold do-cdclw-stqy-step-def
   by (auto intro!: cdcl_W-stgy.intros dest: toS-do-full1-cp-step-not-eq)
next
```

```
case True
 have cdcl_W-o (toS (rough-state-of S)) (toS (rough-state-of (do-other-step' S)))
   by (smt True assms cdcl<sub>W</sub>-all-struct-inv-rough-state do-cdcl<sub>W</sub>-stgy-step-def do-other-step
     rough-state-of-do-other-step' rough-state-of-inverse)
 moreover
   have
     np: no-step \ propagate \ (toS \ (rough-state-of \ S)) and
     nc: no-step \ conflict \ (toS \ (rough-state-of \ S))
       apply (metis True do-cp-step-eq-no-prop-no-confl
         do-full 1-cp-step-fix-point-of-do-full 1-cp-step \ do-propagate-step-no-step
         in-clauses-rough-state-of-is-distinct)
     by (metis True do-conflict-step-no-step do-cp-step-eq-no-prop-no-confl
       do-full1-cp-step-fix-point-of-do-full1-cp-step)
   then have no-step cdcl_W-cp (toS (rough-state-of S))
     by (simp\ add:\ cdcl_W\text{-}cp.simps)
 moreover have full\ cdcl_W-cp\ (toS\ (rough-state-of\ (do-other-step'\ S)))
   (toS\ (rough\text{-}state\text{-}of\ (do\text{-}full1\text{-}cp\text{-}step\ (do\text{-}other\text{-}step'\ S))))
   using do-full1-cp-step-full by auto
  ultimately show ?thesis
   using assms True unfolding do-cdcl_W-stgy-step-def
   by (auto intro!: cdcl_W-stgy.other' dest: toS-do-full1-cp-step-not-eq)
qed
lemma length-trail-toS[simp]:
  length (trail (toS S)) = length (trail S)
 by (cases S) auto
lemma conflicting-noTrue-iff-toS[simp]:
  conflicting\ (toS\ S) \neq None \longleftrightarrow conflicting\ S \neq None
 by (cases\ S) auto
lemma trail-toS-neq-imp-trail-neq:
  trail\ (toS\ S) \neq trail\ (toS\ S') \Longrightarrow trail\ S \neq trail\ S'
 by (cases S, cases S') auto
lemma do-skip-step-trail-changed-or-conflict:
  assumes d: do-other-step S \neq S
 and inv: cdcl_W-all-struct-inv (toS S)
 shows trail S \neq trail (do-other-step S)
proof -
 have M: \bigwedge M \ K \ M1 \ c. \ M = c @ K \# M1 \Longrightarrow Suc (length M1) \leq length M
   by auto
 have cdcl_W-M-level-inv (toS S)
   using inv unfolding cdcl_W-all-struct-inv-def by auto
 have cdcl_W-o (toS\ S)\ (toS\ (do-other-step\ S)) using do-other-step[OF\ inv\ d].
  then show ?thesis
   using \langle cdcl_W \text{-}M\text{-}level\text{-}inv \ (toS\ S) \rangle
   proof (induction to S (do-other-step S) rule: cdcl_W-o-induct-lev2)
     case decide
     then show ?thesis
       by (auto simp add: trail-toS-neq-imp-trail-neq)[]
   next
   case (skip)
   then show ?case
     by (cases S; cases do-other-step S) force
```

```
next
     case (resolve)
     then show ?case
       by (cases S, cases do-other-step S) force
   next
      case (backtrack K i M1 M2 L D) note decomp = this(1) and conft-S = this(3) and undef = this(3)
this(6)
       and U = this(7)
     have [simp]: cons-trail (Propagated L (D + {\#L\#}))
       (reduce-trail-to M1
         (add\text{-}learned\text{-}cls\ (D + \{\#L\#\}))
          (update-backtrack-lvl (get-maximum-level (trail (to S S)) D)
            (update\text{-}conflicting\ None\ (toS\ S)))))
       (Propagated L (D + \{\#L\#\})\# M1, mset (map mset (clss S)),
         \{\#D + \{\#L\#\}\#\} + mset (map mset (learned-clss S)),
         get-maximum-level (trail (toS S)) D, None)
       apply (subst state-conv[of cons-trail - -])
       using decomp undef by (cases S) auto
     then show ?case
       apply (cases do-other-step S)
      apply (auto split: split-if-asm simp: Let-def)
          apply (cases S rule: do-skip-step.cases; auto split: split-if-asm)
         apply (cases S rule: do-skip-step.cases; auto split: split-if-asm)
         apply (cases S rule: do-backtrack-step.cases;
          auto split: split-if-asm option.splits list.splits ann-literal.splits
            dest!: bt-cut-some-decomp simp: Let-def)
       using d apply (cases S rule: do-decide-step.cases; auto split: option.splits)
       done
   \mathbf{qed}
qed
{f lemma} do-full1-cp-step-induct:
  (\bigwedge S. \ (S \neq do\text{-}cp\text{-}step'\ S \Longrightarrow P\ (do\text{-}cp\text{-}step'\ S)) \Longrightarrow P\ S) \Longrightarrow P\ a0
 using do-full1-cp-step.induct by metis
lemma do-cp-step-neg-trail-increase:
 \exists c. trail (do-cp-step S) = c @ trail S \land (\forall m \in set c. \neg is-marked m)
 by (cases S, cases conflicting S)
    (auto simp add: do-cp-step-def do-conflict-step-def do-propagate-step-def split: option.splits)
lemma do-full1-cp-step-neq-trail-increase:
  \exists c. trail (rough-state-of (do-full1-cp-step S)) = c @ trail (rough-state-of S)
   \land (\forall m \in set \ c. \ \neg \ is\text{-marked} \ m)
 apply (induction rule: do-full1-cp-step-induct)
 apply (rename-tac S, case-tac do-cp-step' S = S)
   apply (simp add: do-full1-cp-step.simps)
  by (smt Un-iff append-assoc do-cp-step'-def do-cp-step-neg-trail-increase do-full1-cp-step.simps
   rough-state-of-state-of-do-cp-step set-append)
lemma do-cp-step-conflicting:
  conflicting (rough-state-of S) \neq None \Longrightarrow do-cp-step' S = S
  unfolding do-cp-step'-def do-cp-step-def by simp
```

```
lemma do-full1-cp-step-conflicting:
 conflicting (rough-state-of S) \neq None \implies do-full 1-cp-step S = S
 unfolding do-cp-step'-def do-cp-step-def
 apply (induction rule: do-full1-cp-step-induct)
 by (rename-tac S, case-tac S \neq do\text{-}cp\text{-}step' S)
  (auto simp add: do-full1-cp-step.simps do-cp-step-conflicting)
lemma do-decide-step-not-conflicting-one-more-decide:
 assumes
   conflicting S = None  and
   do-decide-step <math>S \neq S
 shows Suc (length (filter is-marked (trail S)))
   = length (filter is-marked (trail (do-decide-step S)))
 using assms unfolding do-other-step'-def
 by (cases S) (auto simp: Let-def split: split-if-asm option.splits
    dest!: find-first-unused-var-Some-not-all-incl)
lemma do-decide-step-not-conflicting-one-more-decide-bt:
 assumes conflicting S \neq None and
 do\text{-}decide\text{-}step\ S \neq S
 shows length (filter is-marked (trail S)) < length (filter is-marked (trail (do-decide-step S)))
 using assms unfolding do-other-step'-def by (cases S, cases conflicting S)
   (auto simp add: Let-def split: split-if-asm option.splits)
lemma do-other-step-not-conflicting-one-more-decide-bt:
 assumes
   conflicting (rough-state-of S) \neq None and
   conflicting (rough-state-of (do-other-step' S)) = None  and
   do-other-step' S \neq S
 shows length (filter is-marked (trail (rough-state-of S)))
   > length (filter is-marked (trail (rough-state-of (do-other-step'S))))
proof (cases S, goal-cases)
 case (1 \ y) note S = this(1) and inv = this(2)
 obtain M N U k E where y: y = (M, N, U, k, Some E)
   using assms(1) S inv by (cases y, cases conflicting y) auto
 have M: rough-state-of (state-of (M, N, U, k, Some E)) = (M, N, U, k, Some E)
   using inv y by (auto simp add: state-of-inverse)
 have bt: do-other-step' S = state-of (do-backtrack-step (rough-state-of S))
   proof (cases rough-state-of S rule: do-decide-step.cases)
     case 1
     then show ?thesis
      using assms(1,2) by auto[]
   \mathbf{next}
     case (2 \ v \ vb \ vd \ vf \ vh)
     have f3: \land c. (if do-skip-step (rough-state-of c) \neq rough-state-of c
       then do-skip-step (rough-state-of c)
       else if do-resolve-step (do-skip-step (rough-state-of c)) \neq do-skip-step (rough-state-of c)
           then do-resolve-step (do-skip-step (rough-state-of c))
           else if do-backtrack-step (do-resolve-step (do-skip-step (rough-state-of c)))
             \neq do-resolve-step (do-skip-step (rough-state-of c))
           then do-backtrack-step (do-resolve-step (do-skip-step (rough-state-of c)))
           else do-decide-step (do-backtrack-step (do-resolve-step
             (do-skip-step\ (rough-state-of\ c)))))
       = rough\text{-}state\text{-}of (do\text{-}other\text{-}step'c)
      by (simp add: rough-state-of-do-other-step')
```

```
have (trail (rough-state-of (do-other-step' S)), clss (rough-state-of (do-other-step' S)),
        learned-clss (rough-state-of (do-other-step' S)),
        backtrack-lvl (rough-state-of (do-other-step'S)), None)
      = rough\text{-}state\text{-}of (do\text{-}other\text{-}step'S)
      using assms(2) by (metis\ (no-types)\ state-conv)
     then show ?thesis
      using f3 2 by (metis (no-types) do-decide-step.simps(2) do-resolve-step-trail-is-None
        do-skip-step-trail-is-None rough-state-of-inverse)
   qed
 show ?case
   using assms(2) S unfolding bt y inv
   apply simp
   by (auto simp add: M bt-cut-not-none
        split:\ option.splits
        dest!: bt-cut-some-decomp)
qed
lemma do-other-step-not-conflicting-one-more-decide:
 assumes conflicting (rough-state-of S) = None and
 do-other-step' S \neq S
 shows 1 + length (filter is-marked (trail (rough-state-of S)))
   = length (filter is-marked (trail (rough-state-of (do-other-step' S))))
proof (cases S, goal-cases)
 case (1 \ y) note S = this(1) and inv = this(2)
 obtain M \ N \ U \ k where y: \ y = (M, \ N, \ U, \ k, \ None) using assms(1) \ S \ inv by (cases \ y) auto
 have M: rough-state-of (state-of (M, N, U, k, None)) = (M, N, U, k, None)
   using inv y by (auto simp add: state-of-inverse)
 have state-of (do\text{-}decide\text{-}step\ (M,\ N,\ U,\ k,\ None)) \neq state\text{-}of\ (M,\ N,\ U,\ k,\ None)
   using assms(2) unfolding do-other-step'-def y inv S by (auto simp add: M)
 then have f_4: do-skip-step (rough-state-of S) = rough-state-of S
   unfolding S M y by (metis (full-types) do-skip-step.simps(4))
 have f5: do-resolve-step (rough-state-of S) = rough-state-of S
   unfolding S M y by (metis (no-types) do-resolve-step.simps(4))
 have f6: do-backtrack-step (rough-state-of S) = rough-state-of S
   unfolding S M y by (metis (no-types) do-backtrack-step.simps(2))
 have do-other-step (rough-state-of S) \neq rough-state-of S
   using assms(2) unfolding S M y do-other-step'-def by (metis\ (no-types))
 then show ?case
   using f6 f5 f4 by (simp add: assms(1) do-decide-step-not-conflicting-one-more-decide
     do-other-step'-def)
qed
lemma rough-state-of-state-of-do-skip-step-rough-state-of[simp]:
 rough-state-of (state-of (do-skip-step (rough-state-of S))) = do-skip-step (rough-state-of S)
 by (smt do-other-step.simps rough-state-of-inverse rough-state-of-state-of-do-other-step)
lemma conflicting-do-resolve-step-iff[iff]:
 conflicting\ (do\text{-}resolve\text{-}step\ S) = None \longleftrightarrow conflicting\ S = None
 by (cases S rule: do-resolve-step.cases)
  (auto simp add: Let-def split: option.splits)
lemma conflicting-do-skip-step-iff[iff]:
 conflicting (do-skip-step S) = None \longleftrightarrow conflicting S = None
 by (cases S rule: do-skip-step.cases)
    (auto simp add: Let-def split: option.splits)
```

```
lemma conflicting-do-decide-step-iff[iff]:
  conflicting\ (do-decide-step\ S) = None \longleftrightarrow conflicting\ S = None
  by (cases S rule: do-decide-step.cases)
    (auto simp add: Let-def split: option.splits)
lemma conflicting-do-backtrack-step-imp[simp]:
  do-backtrack-step S \neq S \Longrightarrow conflicting (do-backtrack-step S) = None
  by (cases S rule: do-backtrack-step.cases)
    (auto simp add: Let-def split: list.splits option.splits ann-literal.splits)
\mathbf{lemma}\ \textit{do-skip-step-eq-iff-trail-eq}:
  do-skip-step S = S \longleftrightarrow trail (do-skip-step S) = trail S
  by (cases S rule: do-skip-step.cases) auto
lemma do-decide-step-eq-iff-trail-eq:
  do\text{-}decide\text{-}step\ S = S \longleftrightarrow trail\ (do\text{-}decide\text{-}step\ S) = trail\ S
  by (cases S rule: do-decide-step.cases) (auto split: option.split)
\mathbf{lemma}\ do\text{-}backtrack\text{-}step\text{-}eq\text{-}iff\text{-}trail\text{-}eq:
  do-backtrack-step S = S \longleftrightarrow trail (do-backtrack-step S) = trail S
  by (cases S rule: do-backtrack-step.cases)
    (auto split: option.split list.splits ann-literal.splits
       dest!: bt-cut-in-get-all-marked-decomposition)
lemma do-resolve-step-eq-iff-trail-eq:
  do\text{-}resolve\text{-}step\ S = S \longleftrightarrow trail\ (do\text{-}resolve\text{-}step\ S) = trail\ S
  by (cases S rule: do-resolve-step.cases) auto
lemma do-other-step-eq-iff-trail-eq:
  trail\ (do\text{-}other\text{-}step\ S) = trail\ S \longleftrightarrow do\text{-}other\text{-}step\ S = S
  by (auto simp add: Let-def do-skip-step-eq-iff-trail-eq[symmetric]
    do-decide-step-eq-iff-trail-eq[symmetric] do-backtrack-step-eq-iff-trail-eq[symmetric]
   do-resolve-step-eq-iff-trail-eq[symmetric])
lemma do-full1-cp-step-do-other-step'-normal-form[dest!]:
  assumes H: do\text{-}full1\text{-}cp\text{-}step (do\text{-}other\text{-}step' S) = S
  shows do-other-step' S = S \land do-full1-cp-step S = S
proof -
  let ?T = do\text{-}other\text{-}step' S
  { assume confl: conflicting (rough-state-of ?T) \neq None
   then have tr: trail\ (rough\text{-}state\text{-}of\ (do\text{-}full1\text{-}cp\text{-}step\ ?T)) = trail\ (rough\text{-}state\text{-}of\ ?T)
      using do-full1-cp-step-conflicting by auto
   have trail\ (rough-state-of\ (do-full1-cp-step\ (do-other-step'\ S))) = trail\ (rough-state-of\ S)
      using arg\text{-}cong[OF\ H,\ of\ \lambda S.\ trail\ (rough\text{-}state\text{-}of\ S)].
   then have trail (rough-state-of (do-other-step' S)) = trail (rough-state-of S)
      by (auto simp add: do-full1-cp-step-conflicting confl)
   then have do-other-step' S = S
      by (simp add: do-other-step-eq-iff-trail-eq do-other-step'-def
        del: do-other-step.simps)
  moreover {
   assume eq[simp]: do\text{-}other\text{-}step' S = S
   obtain c where c: trail (rough-state-of (do-full1-cp-step S)) = c @ trail (rough-state-of S)
```

```
moreover have trail\ (rough\text{-}state\text{-}of\ (do\text{-}full1\text{-}cp\text{-}step\ S)) = trail\ (rough\text{-}state\text{-}of\ S)
     using arg-cong[OF H, of \lambda S. trail (rough-state-of S)] by simp
   finally have c = [] by blast
   then have do-full1-cp-step S = S using assms by auto
   }
  moreover {
   assume confl: conflicting (rough-state-of ?T) = None and neq: do-other-step' S \neq S
   obtain c where
     c: trail\ (rough-state-of\ (do-full1-cp-step\ ?T)) = c\ @\ trail\ (rough-state-of\ ?T) and
     nm: \forall m \in set \ c. \ \neg \ is\text{-}marked \ m
     using do-full1-cp-step-neq-trail-increase by auto
   have length (filter is-marked (trail (rough-state-of (do-full1-cp-step ?T))))
      = length (filter is-marked (trail (rough-state-of ?T))) using nm unfolding c by force
   moreover have length (filter is-marked (trail (rough-state-of S)))
      \neq length (filter is-marked (trail (rough-state-of ?T)))
     using do-other-step-not-conflicting-one-more-decide[OF - neg]
     do-other-step-not-conflicting-one-more-decide-bt[of S, OF - confl neq]
     by linarith
   finally have False unfolding H by blast
 ultimately show ?thesis by blast
qed
lemma do-cdcl_W-stgy-step-no:
 assumes S: do\text{-}cdcl_W\text{-}stgy\text{-}step\ S = S
 shows no-step cdcl_W-stgy (toS (rough-state-of S))
proof -
   fix S'
   assume full1 cdcl_W-cp (toS (rough-state-of S)) S'
   then have False
     using do-full1-cp-step-full[of S] unfolding full-def S rtranclp-unfold full1-def
     by (smt \ assms \ do-cdcl_W-stgy-step-def \ tranclpD)
 moreover {
   fix S' S''
   assume cdcl_W-o (toS\ (rough\text{-}state\text{-}of\ S))\ S' and
    no-step propagate (toS (rough-state-of S)) and
    no-step conflict (toS (rough-state-of S)) and
    full\ cdcl_W-cp\ S'\ S''
   then have False
     using assms unfolding do\text{-}cdcl_W\text{-}stgy\text{-}step\text{-}def
     by (smt\ cdcl_W\mbox{-}all\mbox{-}struct\mbox{-}inv\mbox{-}rough\mbox{-}state\ do\mbox{-}full\mbox{1-}cp\mbox{-}step\mbox{-}do\mbox{-}other\mbox{-}step'\mbox{-}normal\mbox{-}form
       do-other-step-no rough-state-of-do-other-step')
 }
 ultimately show ?thesis using assms by (force simp: cdcl<sub>W</sub>-cp.simps cdcl<sub>W</sub>-stgy.simps)
qed
lemma toS-rough-state-of-state-of-rough-state-from-init-state-of [simp]:
  toS (rough-state-of (state-of (rough-state-from-init-state-of S)))
    = toS (rough-state-from-init-state-of S)
 using rough-state-from-init-state-of [of S] by (auto simp add: state-of-inverse)
```

```
lemma cdcl_W-cp-is-rtranclp-cdcl_W: cdcl_W-cp S T \Longrightarrow cdcl_W^{**} S T
  apply (induction rule: cdcl_W-cp.induct)
  using conflict apply blast
  using propagate by blast
lemma rtranclp-cdcl_W-cp-is-rtranclp-cdcl_W: cdcl_W-cp^{**} \ S \ T \Longrightarrow cdcl_W^{**} \ S \ T
  apply (induction rule: rtranclp-induct)
   apply simp
  by (fastforce dest!: cdcl_W-cp-is-rtranclp-cdcl<sub>W</sub>)
lemma cdcl_W-stgy-is-rtranclp-cdcl_W:
  cdcl_W-stgy S T \Longrightarrow cdcl_W^{**} S T
  apply (induction rule: cdcl_W-stgy.induct)
  using cdcl_W-stgy.conflict' rtranclp-cdcl_W-stgy-rtranclp-cdcl_W apply blast
  unfolding full-def by (fastforce dest!:other rtranclp-cdcl<sub>W</sub>-cp-is-rtranclp-cdcl<sub>W</sub>)
lemma cdcl_W-stgy-init-clss: cdcl_W-stgy S T \Longrightarrow cdcl_W-M-level-inv S \Longrightarrow clss S = clss T
  using rtranclp-cdcl_W-init-clss cdcl_W-stqy-is-rtranclp-cdcl_W by fast
lemma clauses-toS-rough-state-of-do-cdcl_W-stgy-step[simp]:
  clss\ (toS\ (rough-state-of\ (do-cdcl_W-stgy-step\ (state-of\ (rough-state-from-init-state-of\ S)))))
    = clss (toS (rough-state-from-init-state-of S)) (is - = clss (toS ?S))
  apply (cases do-cdcl<sub>W</sub>-stgy-step (state-of ?S) = state-of ?S)
   apply simp
  by (smt\ cdcl_W\ -all\ -struct\ -inv\ -def\ cdcl_W\ -all\ -struct\ -inv\ -rough\ -state\ cdcl_W\ -stgy\ -no\ -more\ -init\ -clss
    do-cdcl_W-stgy-step toS-rough-state-of-state-of-rough-state-from-init-state-of)
lemma rough-state-from-init-state-of-do-cdcl_W-stgy-step'[code abstract]:
 rough-state-from-init-state-of (do-cdcl<sub>W</sub>-stgy-step' S) =
   rough-state-of (do-cdcl_W-stgy-step (id-of-I-to S))
proof -
 let ?S = (rough\text{-}state\text{-}from\text{-}init\text{-}state\text{-}of S)
  have cdcl_W-stgy** (S0-cdcl_W (clss (toS (rough-state-from-init-state-of S))))
   (toS\ (rough-state-from-init-state-of\ S))
   using rough-state-from-init-state-of [of S] by auto
  moreover have cdcl_W-stqy^{**}
                 (toS (rough-state-from-init-state-of S))
                 (toS\ (rough\text{-}state\text{-}of\ (do\text{-}cdcl_W\text{-}stgy\text{-}step))
                   (state-of\ (rough-state-from-init-state-of\ S)))))
    using do\text{-}cdcl_W\text{-}stgy\text{-}step[of\ state\text{-}of\ ?S]
    by (cases do-cdcl<sub>W</sub>-stgy-step (state-of ?S) = state-of ?S) auto
  ultimately show ?thesis
   unfolding do\text{-}cdcl_W\text{-}stgy\text{-}step'\text{-}def id\text{-}of\text{-}I\text{-}to\text{-}def
   by (auto intro!: state-from-init-state-of-inverse)
qed
All rules together function do-all-cdclw-stqy where
do-all-cdcl_W-stgy S =
  (let \ T = do\text{-}cdcl_W\text{-}stgy\text{-}step'\ S\ in
  if T = S then S else do-all-cdcl<sub>W</sub>-stgy T)
by fast+
termination
proof (relation \{(T, S).
   (cdcl_W-measure (toS\ (rough-state-from-init-state-of T)),
    cdcl_W-measure (toS (rough-state-from-init-state-of S)))
```

```
\in lexn \{(a, b). a < b\} \ 3\}, goal-cases)
  case 1
  show ?case by (rule wf-if-measure-f) (auto intro!: wf-lexn wf-less)
next
  case (2 S T) note T = this(1) and ST = this(2)
  let ?S = rough-state-from-init-state-of S
  have S: cdcl_W - stgy^{**} (S0 - cdcl_W (clss (toS ?S))) (toS ?S)
   using rough-state-from-init-state-of [of S] by auto
  moreover have cdcl_W-stgy (toS (rough-state-from-init-state-of S))
   (toS\ (rough-state-from-init-state-of\ T))
   proof -
     have \bigwedge c. rough-state-of (state-of (rough-state-from-init-state-of c)) =
       rough-state-from-init-state-of c
       using rough-state-from-init-state-of by force
     then have do\text{-}cdcl_W\text{-}stgy\text{-}step (state-of (rough-state-from-init-state-of S))
       \neq state-of (rough-state-from-init-state-of S)
       using ST T by (metis (no-types) id-of-I-to-def rough-state-from-init-state-of-inject
         rough-state-from-init-state-of-do-cdcl_W-stgy-step')
     then show ?thesis
       \textbf{using} \ \textit{do-cdcl}_W \textit{-stgy-step} \ \textit{id-of-I-to-def} \ \textit{rough-state-from-init-state-of-do-cdcl}_W \textit{-stgy-step}' \ T
       by fastforce
   qed
  moreover
   have cdcl_W-all-struct-inv (toS (rough-state-from-init-state-of S))
     using rough-state-from-init-state-of [of S] by auto
   then have cdcl_W-all-struct-inv (S0\text{-}cdcl_W (clss (toS (rough-state-from-init-state-of S))))
     by (cases rough-state-from-init-state-of S)
        (auto simp add: cdcl_W-all-struct-inv-def distinct-cdcl_W-state-def)
  ultimately show ?case
   by (auto intro!: cdcl_W-stqy-step-decreasing[of - - S0-cdcl<sub>W</sub> (clss (toS ?S))]
     simp \ del: \ cdcl_W-measure.simps)
qed
thm do-all-cdcl_W-stgy.induct
lemma do-all-cdcl_W-stgy-induct:
  (\land S. (do\text{-}cdcl_W\text{-}stgy\text{-}step'\ S \neq S \Longrightarrow P\ (do\text{-}cdcl_W\text{-}stgy\text{-}step'\ S)) \Longrightarrow P\ S) \Longrightarrow P\ a0
 using do-all-cdcl_W-stqy.induct by metis
lemma no\text{-}step\text{-}cdcl_W\text{-}stgy\text{-}cdcl_W\text{-}all:
  no\text{-}step\ cdcl_W\text{-}stgy\ (toS\ (rough\text{-}state\text{-}from\text{-}init\text{-}state\text{-}of\ (do\text{-}all\text{-}cdcl_W\text{-}stgy\ S)))}
  apply (induction S rule: do-all-cdcl_W-stgy-induct)
 apply (rename-tac S, case-tac do-cdcl<sub>W</sub>-stgy-step' S \neq S)
proof -
  \mathbf{fix} \ Sa :: cdcl_W-state-inv-from-init-state
  assume a1: \neg do\text{-}cdcl_W\text{-}stgy\text{-}step' Sa \neq Sa
  { fix pp
   have (if True then Sa else do-all-cdcl<sub>W</sub>-stgy Sa) = do-all-cdcl<sub>W</sub>-stgy Sa
     using a1 by auto
   then have \neg cdcl_W-stqy (toS (rough-state-from-init-state-of (do-all-cdcl_W-stqy Sa))) pp
     using a1 by (metis (no-types) do-cdcl<sub>W</sub>-stgy-step-no id-of-I-to-def
        rough-state-from-init-state-of-do-cdcl_W-stgy-step'\ rough-state-of-inverse)
  then show no-step cdcl_W-stgy (toS (rough-state-from-init-state-of (do-all-cdcl_W-stgy Sa)))
   by fastforce
next
  \mathbf{fix} \ Sa :: cdcl_W-state-inv-from-init-state
```

```
assume a1: do\text{-}cdcl_W\text{-}stgy\text{-}step'\ Sa \neq Sa
    \implies no-step cdcl_W-stgy (toS (rough-state-from-init-state-of
     (do-all-cdcl_W-stqy\ (do-cdcl_W-stqy-step'\ Sa))))
  assume a2: do\text{-}cdcl_W\text{-}stgy\text{-}step' Sa \neq Sa
  have do-all-cdcl_W-stgy Sa = do-all-cdcl_W-stgy (do-cdcl_W-stgy-step' Sa)
   by (metis\ (full-types)\ do-all-cdcl_W-stgy.simps)
  then show no-step cdcl_W-stqy (toS (rough-state-from-init-state-of (do-all-cdcl_W-stqy Sa)))
   using a2 a1 by presburger
qed
lemma do-all-cdcl_W-stgy-is-rtranclp-cdcl_W-stgy:
  cdcl_W-stgy** (toS (rough-state-from-init-state-of S))
   (toS\ (rough\text{-}state\text{-}from\text{-}init\text{-}state\text{-}of\ (do\text{-}all\text{-}cdcl_W\text{-}stgy\ S)))
proof (induction S rule: do-all-cdcl<sub>W</sub>-stgy-induct)
  case (1 S) note IH = this(1)
  show ?case
   proof (cases do-cdcl<sub>W</sub>-stgy-step' S = S)
     case True
     then show ?thesis by simp
   next
     case False
     have f2: do-cdcl_W-stgy-step (id-of-I-to\ S) = id-of-I-to\ S \longrightarrow
        rough-state-from-init-state-of (do-cdcl<sub>W</sub>-stgy-step' S)
       = rough\text{-}state\text{-}of (state\text{-}of (rough\text{-}state\text{-}from\text{-}init\text{-}state\text{-}of S))
       using id-of-I-to-def rough-state-from-init-state-of-do-cdcl<sub>W</sub>-stqy-step' by presburger
     have f3: do-all-cdcl_W-stgy \ S = do-all-cdcl_W-stgy \ (do-cdcl_W-stgy-step' \ S)
       by (metis (full-types) do-all-cdcl_W-stgy.simps)
     have cdcl_W-stgy (toS (rough-state-from-init-state-of S))
         (toS\ (rough-state-from-init-state-of\ (do-cdcl_W-stgy-step'\ S)))
       = cdcl_W - stqy (toS (rough-state-of (id-of-I-to S)))
         (toS (rough-state-of (do-cdcl_W-stgy-step (id-of-I-to S))))
       using id-of-I-to-def rough-state-from-init-state-of-do-cdcl_W-stgy-step'
       toS-rough-state-of-state-of-rough-state-from-init-state-of by presburger
     then show ?thesis
       using f3 f2 IH do-cdcl_W-stgy-step by fastforce
   qed
qed
Final theorem:
lemma DPLL-tot-correct:
 assumes
   r: rough-state-from-init-state-of (do-all-cdcl<sub>W</sub>-stgy (state-from-init-state-of)
     (([], map\ remdups\ N, [], \theta, None)))) = S and
   S: (M', N', U', k, E) = toS S
  shows (E \neq Some \{\#\} \land satisfiable (set (map mset N)))
   \vee (E = Some {#} \wedge unsatisfiable (set (map mset N)))
proof -
 let ?N = map \ remdups \ N
 \mathbf{have} \ \mathit{inv:} \ \mathit{cdcl}_W \textit{-all-struct-inv} \ (\mathit{toS} \ ([], \ \mathit{map} \ \mathit{remdups} \ N, \ [], \ \theta, \ \mathit{None}))
   unfolding cdcl_W-all-struct-inv-def distinct-cdcl<sub>W</sub>-state-def distinct-mset-set-def by auto
  then have S0: rough-state-of (state-of ([], map remdups N, [], 0, None))
    = ([], map \ remdups \ N, [], \theta, None) \ by \ simp
  have 1: full cdcl_W-stgy (toS([], ?N, [], 0, None)) (toSS)
   unfolding full-def apply rule
     using do-all-cdcl_W-stqy-is-rtranclp-cdcl_W-stqy[of
```

```
state-from-init-state-of ([], map remdups N, [], \theta, None)] inv
       no-step-cdcl_W-stgy-cdcl_W-all
      by (auto simp del: do-all-cdcl<sub>W</sub>-stgy.simps simp: state-from-init-state-of-inverse
        r[symmetric])+
 moreover have 2: finite (set (map mset ?N)) by auto
 moreover have 3: distinct-mset-set (set (map mset ?N))
    unfolding distinct-mset-set-def by auto
 moreover
   have cdcl_W-all-struct-inv (to S S)
     by (metis\ (no\text{-}types)\ cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}rough\text{-}state\ }r
       toS-rough-state-of-state-of-rough-state-from-init-state-of)
   then have cons: consistent-interp (lits-of M')
     unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def S[symmetric] by auto
 moreover
   have clss\ (toS\ ([],\ ?N,\ [],\ \theta,\ None)) = clss\ (toS\ S)
     apply (rule rtranclp-cdcl_W-init-clss)
     using 1 unfolding full-def by (auto simp add: rtranclp-cdcl<sub>W</sub>-stgy-rtranclp-cdcl<sub>W</sub>)
   then have N': mset (map mset ?N) = N'
     using S[symmetric] by auto
  have (E \neq Some \{\#\} \land satisfiable (set (map mset ?N)))
   \vee (E = Some {#} \wedge unsatisfiable (set (map mset ?N)))
   using full-cdcl_W-stgy-final-state-conclusive unfolding N' apply rule
      using 1 apply simp
      using 2 apply simp
     using 3 apply simp
    using S[symmetric] N' apply auto[1]
  using S[symmetric] N' cons by (fastforce simp: true-annots-true-cls)
 then show ?thesis by auto
qed
```

The Code The SML code is skipped in the documentation, but stays to ensure that some version of the exported code is working. The only difference between the generated code and the one used here is the export of the constructor ConI.

```
end theory CDCL-WNOT imports CDCL-W-Termination CDCL-NOT begin
```

7 Link between Weidenbach's and NOT's CDCL

7.1 Inclusion of the states

```
declare upt.simps(2)[simp\ del]
sledgehammer-params[verbose]

context cdcl_W
begin

lemma backtrack-levE:
backtrack\ S\ S' \Longrightarrow cdcl_W-M-level-inv\ S \Longrightarrow
(\bigwedge D\ L\ K\ M1\ M2.
(Marked\ K\ (Suc\ (get-maximum-level\ (trail\ S)\ D))\ \#\ M1\ M2)
\in set\ (get-all-marked-decomposition\ (trail\ S)) \Longrightarrow
get-level\ (trail\ S)\ L=get-maximum-level\ (trail\ S)\ (D+\{\#L\#\})
```

```
undefined-lit M1 L \Longrightarrow
   S' \sim cons-trail (Propagated L (D + {#L#}))
     (reduce\text{-}trail\text{-}to\ M1\ (add\text{-}learned\text{-}cls\ (D+\{\#L\#\})
        (update-backtrack-lvl (get-maximum-level (trail S) D) (update-conflicting None S)))) \Longrightarrow
   backtrack-lvl\ S = get\text{-}maximum\text{-}level\ (trail\ S)\ (D + \{\#L\#\}) \Longrightarrow
    conflicting S = Some (D + \{\#L\#\}) \Longrightarrow P) \Longrightarrow
  using assms by (induction rule: backtrack-induction-lev2) metis
lemma backtrack-no-cdcl_W-bj:
  assumes cdcl: cdcl_W-bj T U and inv: cdcl_W-M-level-inv V
 shows \neg backtrack\ V\ T
  using cdcl inv
 apply (induction rule: cdcl_W-bj.induct)
   apply (elim\ skipE, force\ elim!: backtrack-levE[OF\ -\ inv]\ simp:\ cdcl_W\ -M-level\ -inv\ -def)
  apply (elim resolveE, force elim!: backtrack-levE[OF - inv] simp: cdcl<sub>W</sub>-M-level-inv-def)
  apply standard
 apply (elim backtrack-levE[OF - inv], elim backtrackE)
 apply (force simp del: state-simp simp add: state-eq-conflicting cdcl_W-M-level-inv-decomp)
  done
abbreviation skip-or-resolve :: 'st \Rightarrow 'st \Rightarrow bool where
skip\text{-}or\text{-}resolve \equiv (\lambda S \ T. \ skip \ S \ T \lor resolve \ S \ T)
lemma rtranclp-cdcl_W-bj-skip-or-resolve-backtrack:
  assumes cdcl_W-bj^{**} S U and inv: cdcl_W-M-level-inv S
 shows skip-or-resolve** S \ U \lor (\exists \ T. \ skip-or-resolve** S \ T \land backtrack \ T \ U)
 using assms
proof (induction)
  case base
  then show ?case by simp
  case (step U V) note st = this(1) and bj = this(2) and IH = this(3)[OF\ this(4)]
  consider
     (SU) S = U
     (SUp) \ cdcl_W - bj^{++} \ S \ U
   using st unfolding rtranclp-unfold by blast
  then show ?case
   proof cases
     case SUp
     have \bigwedge T. skip-or-resolve** S T \Longrightarrow cdcl_W** S T
       using mono-rtranclp[of skip-or-resolve cdcl_W] other by blast
     then have skip-or-resolve** S U
       using bj IH inv backtrack-no-cdcl<sub>W</sub>-bj rtranclp-cdcl<sub>W</sub>-consistent-inv[OF - inv] by meson
     then show ?thesis
       \mathbf{using} \ bj \ \mathbf{by} \ (\mathit{metis} \ (\mathit{no-types}, \ \mathit{lifting}) \ \mathit{cdcl}_W \text{-} \mathit{bj.cases} \ \mathit{rtranclp.simps})
   next
     case SU
     then show ?thesis
       using bj by (metis (no-types, lifting) cdcl<sub>W</sub>-bj.cases rtranclp.simps)
   qed
qed
```

275

lemma rtranclp-skip-or-resolve-rtranclp- $cdcl_W$:

```
skip\text{-}or\text{-}resolve^{**} \ S \ T \Longrightarrow cdcl_W^{**} \ S \ T
 by (induction rule: rtranclp-induct) (auto dest!: cdcl_W-bj.intros \ cdcl_W.intros \ cdcl_W-o.intros)
definition backjump-l-cond :: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow bool \ \mathbf{where}
backjump-l-cond \equiv \lambda C C' L' S. True
definition inv_{NOT} :: 'st \Rightarrow bool  where
inv_{NOT} \equiv \lambda S. \text{ no-dup (trail } S)
declare inv_{NOT}-def[simp]
end
fun convert-ann-literal-from-W where
convert-ann-literal-from-W (Propagated L -) = Propagated L ()
convert-ann-literal-from-W (Marked L -) = Marked L ()
abbreviation convert-trail-from-W::
 ('v, 'lvl, 'a) ann-literal list
   \Rightarrow ('v, unit, unit) ann-literal list where
convert-trail-from-W \equiv map \ convert-ann-literal-from-W
lemma lits-of-convert-trail-from-W[simp]:
  lits-of\ (convert-trail-from-W\ M) = lits-of\ M
 by (induction rule: ann-literal-list-induct) simp-all
lemma lit-of-convert-trail-from-W[simp]:
  lit-of (convert-ann-literal-from-WL) = lit-of L
 by (cases L) auto
lemma no-dup-convert-from-W[simp]:
 no-dup (convert-trail-from-WM) \longleftrightarrow no-dup M
 by (auto simp: comp-def)
lemma convert-trail-from-W-true-annots[simp]:
  convert-trail-from-WM \models as C \longleftrightarrow M \models as C
 by (auto simp: true-annots-true-cls)
lemma defined-lit-convert-trail-from-W[simp]:
  defined-lit (convert-trail-from-WS) L \longleftrightarrow defined-lit SL
 by (auto simp: defined-lit-map image-comp)
The values \theta and \{\#\} are dummy values.
\mathbf{fun}\ convert\text{-}ann\text{-}literal\text{-}from\text{-}NOT
 :: ('a, 'e, 'b) \ ann-literal \Rightarrow ('a, nat, 'a \ literal \ multiset) \ ann-literal \ where
convert-ann-literal-from-NOT (Propagated L -) = Propagated L {#} |
convert-ann-literal-from-NOT (Marked L -) = Marked L 0
abbreviation convert-trail-from-NOT where
convert-trail-from-NOT \equiv map\ convert-ann-literal-from-NOT
lemma undefined-lit-convert-trail-from-NOT[simp]:
  undefined-lit (convert-trail-from-NOT F) L \longleftrightarrow undefined-lit F L
 by (induction F rule: ann-literal-list-induct) (auto simp: defined-lit-map)
```

lemma lits-of-convert-trail-from-NOT:

```
lits-of (convert-trail-from-NOT F) = lits-of F
  by (induction F rule: ann-literal-list-induct) auto
lemma convert-trail-from-W-from-NOT[simp]:
  convert-trail-from-W (convert-trail-from-NOT M) = M
  by (induction rule: ann-literal-list-induct) auto
\mathbf{lemma}\ convert\text{-}trail\text{-}from\text{-}W\text{-}convert\text{-}lit\text{-}from\text{-}NOT[simp]:
  convert-ann-literal-from-W (convert-ann-literal-from-NOT L) = L
  by (cases L) auto
abbreviation trail_{NOT} where
trail_{NOT} S \equiv convert\text{-}trail\text{-}from\text{-}W (fst S)
lemma undefined-lit-convert-trail-from-W[iff]:
  undefined-lit (convert-trail-from-W M) L \longleftrightarrow undefined-lit M L
 by (auto simp: defined-lit-map image-comp)
lemma lit-of-convert-ann-literal-from-NOT[iff]:
  lit-of\ (convert-ann-literal-from-NOT\ L) = lit-of\ L
  by (cases L) auto
sublocale state_W \subseteq dpll-state
  \lambda S. convert-trail-from-W (trail S)
  clauses
  \lambda L \ S. \ cons-trail (convert-ann-literal-from-NOT L) S
  \lambda S. tl-trail S
 \lambda C S. add-learned-cls C S
 \lambda C S. remove-cls C S
 by unfold-locales (auto simp: map-tl o-def)
context state_W
begin
declare state-simp_{NOT}[simp\ del]
end
sublocale cdcl_W \subseteq cdcl_{NOT}-merge-bj-learn-ops
  \lambda S. convert-trail-from-W (trail S)
  clauses
  \lambda L\ S.\ cons	ext{-}trail\ (convert-ann-literal-from-NOT\ L)\ S
  \lambda S. tl-trail S
  \lambda C S. add-learned-cls C S
 \lambda C S. remove-cls C S
  \lambda- -. True
  \lambda- S. conflicting S = None
 \lambda C \ C' \ L' \ S. backjump-l-cond C \ C' \ L' \ S \ \wedge \ distinct\text{-mset} \ (C' + \{\#L'\#\}) \ \wedge \ \neg tautology \ (C' + \{\#L'\#\})
 by unfold-locales
sublocale cdcl_W \subseteq cdcl_{NOT}-merge-bj-learn-proxy
  \lambda S. convert-trail-from-W (trail S)
  clauses
  \lambda L \ S. \ cons-trail (convert-ann-literal-from-NOT L) S
  \lambda S. tl-trail S
 \lambda C S. \ add-learned-cls C S
  \lambda C S. remove-cls C S
```

```
\lambda- -. True
  \lambda- S. conflicting S = None \ backjump\text{-l-cond inv}_{NOT}
proof (unfold-locales, goal-cases)
  case 2
  then show ?case using cdcl_{NOT}-merged-bj-learn-no-dup-inv by (auto simp: comp-def)
next
  case (1 C' S C F' K F L)
  moreover
   let ?C' = remdups\text{-}mset C'
   have L \notin \# C'
      using \langle F \models as\ CNot\ C' \rangle \langle undefined\text{-}lit\ F\ L \rangle\ Marked\text{-}Propagated\text{-}in\text{-}iff\text{-}in\text{-}lits\text{-}of
      in-CNot-implies-uminus(2) by blast
   then have distinct-mset (?C' + {\#L\#})
      by (metis count-mset-set(3) distinct-mset-remdups-mset distinct-mset-single-add
        less-irrefl-nat mem-set-mset-iff remdups-mset-def)
  moreover
   have no-dup F
      using \langle inv_{NOT} S \rangle \langle convert-trail-from-W \ (trail S) = F' @ Marked K \ () \# F \rangle
      unfolding inv_{NOT}-def
      by (smt\ comp-apply\ distinct.simps(2)\ distinct-append\ list.simps(9)\ map-append
        no-dup-convert-from-W)
   then have consistent-interp (lits-of F)
      using distinct consistent-interp by blast
   then have \neg tautology (C')
      using \langle F \models as\ CNot\ C' \rangle consistent-CNot-not-tautology true-annots-true-cls by blast
   then have \neg tautology (?C' + \{\#L\#\})
      using \langle F \models as \ CNot \ C' \rangle \ \langle undefined\text{-}lit \ F \ L \rangle \ by \ (metis \ CNot\text{-}remdups\text{-}mset
        Marked-Propagated-in-iff-in-lits-of add.commute in-CNot-uminus tautology-add-single
        tautology-remdups-mset true-annot-singleton true-annots-def)
  show ?case
   proof -
      have f2: no-dup (convert-trail-from-W (trail S))
       using \langle inv_{NOT} | S \rangle unfolding inv_{NOT}-def by (simp \ add: \ o\text{-def})
      have f3: atm-of L \in atms-of-msu (clauses S)
       \cup atm-of 'lits-of (convert-trail-from-W (trail S))
       \mathbf{using} \ \langle convert\text{-}trail\text{-}from\text{-}W \ (trail \ S) = F' \ @ \ Marked \ K \ () \ \# \ F \rangle
        \langle atm\text{-}of \ L \in atms\text{-}of\text{-}msu \ (clauses \ S) \cup atm\text{-}of \ (its\text{-}of \ (F' @ Marked \ K \ () \# F) \rangle by auto
      have f_4: clauses S \models pm \ remdups\text{-mset} \ C' + \{\#L\#\}
       by (metis\ (no\text{-types})\ \langle L\notin\#\ C'\rangle\ \langle clauses\ S\models pm\ C'+\{\#L\#\}\rangle\ remdups-mset-singleton-sum(2)
          true-clss-cls-remdups-mset union-commute)
      have F \models as \ CNot \ (remdups-mset \ C')
       by (simp add: \langle F \models as \ CNot \ C' \rangle)
      then show ?thesis
       using f_4 f_3 f_2 \leftarrow tautology (remdups-mset <math>C' + \{\#L\#\})
       backjump-l.intros[OF - f2] \ calculation(2-5,9)
        state-eq_{NOT}-ref unfolding backjump-l-cond-def by blast
   qed
qed
sublocale cdcl_W \subseteq cdcl_{NOT}-merge-bj-learn-proxy2
  \lambda S. convert-trail-from-W (trail S)
  \lambda L S. cons-trail (convert-ann-literal-from-NOT L) S
  \lambda S. tl-trail S
  \lambda C S. add-learned-cls C S
```

```
\lambda C S. remove-cls C S \lambda- -. True inv_{NOT}
 \lambda- S. conflicting S = None \ backjump\text{-}l\text{-}cond
 by unfold-locales
sublocale cdcl_W \subseteq cdcl_{NOT}-merge-bj-learn
  \lambda S. convert-trail-from-W (trail S)
  clauses
  \lambda L \ S. \ cons-trail (convert-ann-literal-from-NOT L) S
 \lambda S. tl-trail S
 \lambda C S. add-learned-cls C S
 \lambda C S. remove-cls C S \lambda- -. True inv_{NOT}
 \lambda- S. conflicting S = None \ backjump-l-cond
 apply unfold-locales
  using dpll-bj-no-dup apply (simp add: comp-def)
 using cdcl_{NOT}-no-dup by (auto simp add: comp-def cdcl_{NOT}.simps)
context cdcl_W
begin
Notations are lost while proving locale inclusion:
notation state-eq<sub>NOT</sub> (infix \sim_{NOT} 50)
7.2
       Additional Lemmas between NOT and W states
lemma trail_W-eq-reduce-trail-to<sub>NOT</sub>-eq:
  trail\ S = trail\ T \Longrightarrow trail\ (reduce-trail-to_{NOT}\ F\ S) = trail\ (reduce-trail-to_{NOT}\ F\ T)
proof (induction F S arbitrary: T rule: reduce-trail-to<sub>NOT</sub>.induct)
 case (1 F S T) note IH = this(1) and tr = this(2)
  then have [] = convert-trail-from-W (trail S)
   \vee length F = length (convert-trail-from-W (trail S))
   \lor trail (reduce-trail-to_{NOT} \ F \ (tl-trail \ S)) = trail (reduce-trail-to_{NOT} \ F \ (tl-trail \ T))
   using IH by (metis (no-types) trail-tl-trail)
  then show trail (reduce-trail-to<sub>NOT</sub> FS) = trail (reduce-trail-to<sub>NOT</sub> FT)
   using tr by (metis (no-types) reduce-trail-to<sub>NOT</sub>.elims)
qed
lemma trail-reduce-trail-to<sub>NOT</sub>-add-learned-cls:
no-dup (trail S) \Longrightarrow
 trail\ (reduce-trail-to_{NOT}\ M\ (add-learned-cls\ D\ S)) = trail\ (reduce-trail-to_{NOT}\ M\ S)
by (rule\ trail_W - eq - reduce - trail - to_{NOT} - eq)\ simp
lemma reduce-trail-to_{NOT}-reduce-trail-convert:
  reduce-trail-to<sub>NOT</sub> CS = reduce-trail-to (convert-trail-from-NOT C) S
 apply (induction C S rule: reduce-trail-to<sub>NOT</sub>.induct)
 apply (subst reduce-trail-to<sub>NOT</sub>.simps, subst reduce-trail-to.simps)
 by auto
lemma reduce-trail-to-length:
  length M = length M' \Longrightarrow reduce-trail-to MS = reduce-trail-to M'S
 apply (induction M S arbitrary: rule: reduce-trail-to.induct)
 apply (rename-tac F S; case-tac trail S \neq []; case-tac length (trail S) \neq length M')
 by (simp-all add: reduce-trail-to-length-ne)
```

More lemmas conflict-propagate and backjumping 7.3

7.3.1 **Termination**

```
\mathbf{lemma}\ \mathit{cdcl}_W\text{-}\mathit{cp}\text{-}\mathit{normalized}\text{-}\mathit{element}\text{-}\mathit{all}\text{-}\mathit{inv}:
 assumes inv: cdcl_W-all-struct-inv S
 obtains T where full cdcl_W-cp S T
 using assms cdcl<sub>W</sub>-cp-normalized-element unfolding cdcl<sub>W</sub>-all-struct-inv-def by blast
thm backtrackE
lemma cdcl_W-bj-measure:
 assumes cdcl_W-bj S T and cdcl_W-M-level-inv S
 shows length (trail\ S) + (if\ conflicting\ S = None\ then\ 0\ else\ 1)
   > length (trail T) + (if conflicting T = None then 0 else 1)
  using assms by (induction rule: cdcl_W-bj.induct)
  (force\ dest:arg-cong[of - - length])
   intro: qet-all-marked-decomposition-exists-prepend
   elim!: backtrack-levE
   simp: cdcl_W - M - level - inv - def) +
lemma wf-cdcl_W-bj:
  wf \{(b,a). \ cdcl_W - bj \ a \ b \land cdcl_W - M - level - inv \ a\}
 apply (rule wfP-if-measure of \lambda-. True
     - \lambda T. length (trail T) + (if conflicting T = None then 0 else 1), simplified)
 using cdcl_W-bj-measure by blast
lemma cdcl_W-bj-exists-normal-form:
 assumes lev: cdcl_W-M-level-inv S
 shows \exists T. full \ cdcl_W-bj S \ T
proof -
  obtain T where T: full (\lambda a b. cdcl_W-bj a b \wedge cdcl_W-M-level-inv a) S T
   using wf-exists-normal-form-full[OF wf-cdcl<sub>W</sub>-bj] by auto
  then have cdcl_W-bj^{**} S T
    by (auto dest: rtranclp-and-rtranclp-left simp: full-def)
 moreover
   then have cdcl_W^{**} S T
     using mono-rtranclp[of cdcl_W-bj cdcl_W] cdcl_W.simps by blast
   then have cdcl_W-M-level-inv T
     using rtranclp-cdcl_W-consistent-inv lev by auto
 ultimately show ?thesis using T unfolding full-def by auto
{\bf lemma}\ rtranclp\text{-}skip\text{-}state\text{-}decomp\text{:}
 assumes skip^{**} S T and no-dup (trail S)
 shows
   \exists M. \ trail \ S = M \otimes trail \ T \land (\forall m \in set \ M. \neg is\text{-}marked \ m) and
    T \sim delete-trail-and-rebuild (trail T) S
 using assms by (induction rule: rtranclp-induct)
  (auto simp del: state-simp simp: state-eq-def state-access-simp)
         More backjumping
 assumes
```

Backjumping after skipping or jump directly lemma rtranclp-skip-backtrack-backtrack:

```
skip^{**} S T and
backtrack T W and
```

```
cdcl_W-all-struct-inv S
 shows backtrack S W
 using assms
proof induction
 case base
 then show ?case by simp
next
 case (step T V) note st = this(1) and skip = this(2) and IH = this(3) and bt = this(4) and
   inv = this(5)
 have skip^{**} S V
   using st skip by auto
 then have cdcl_W-all-struct-inv V
   using rtranclp-mono[of\ skip\ cdcl_W]\ assms(3)\ rtranclp-cdcl_W-all-struct-inv-inv\ mono-rtranclp
   by (auto dest!: bj other cdcl_W-bj.skip)
 then have cdcl_W-M-level-inv V
   unfolding cdcl_W-all-struct-inv-def by auto
 then obtain N k M1 M2 K D L U i where
   V: state V = (trail\ V,\ N,\ U,\ k,\ Some\ (D + \{\#L\#\})) and
   W: state W = (Propagated\ L\ (D + \{\#L\#\})\ \#\ M1,\ N,\ \{\#D + \{\#L\#\}\#\} +\ U,
     get-maximum-level (trail V) D, None) and
   decomp: (Marked K (Suc i) \# M1, M2)
     \in set (get-all-marked-decomposition (trail V)) and
   k = get\text{-}maximum\text{-}level (trail V) (D + \{\#L\#\}) and
   lev-L: get-level (trail V) L = k and
   undef: undefined-lit M1 L and
   W \sim cons-trail (Propagated L (D + {\#L\#}))
     (reduce\text{-}trail\text{-}to\ M1\ (add\text{-}learned\text{-}cls\ (D+\{\#L\#\})
       (update-backtrack-lvl (get-maximum-level (trail V) D) (update-conflicting None V))))and
   lev-l-D: backtrack-lvl V = get-maximum-level (trail V) (D + \{\#L\#\}) and
   conflicting V = Some (D + \{\#L\#\}) and
   i: i = get\text{-}maximum\text{-}level (trail V) D
   using bt by (elim backtrack-levE)
   (auto simp: cdcl_W-M-level-inv-decomp state-eq-def simp del: state-simp)+
 let ?D = (D + {\#L\#})
 obtain L'C' where
   T: state \ T = (Propagated \ L' \ C' \# trail \ V, \ N, \ U, \ k, \ Some \ ?D) and
   V \sim tl-trail T and
   -L' \notin \# ?D and
   ?D \neq \{\#\}
   using skip V by force
 let ?M = Propagated L' C' \# trail V
 have cdcl_W^{**} S T using bj cdcl_W-bj.skip mono-rtranclp[of skip cdcl_W S T] other st by meson
 then have inv': cdcl_W-all-struct-inv T
   using rtranclp-cdcl_W-all-struct-inv-inv inv by blast
 have M-lev: cdcl_W-M-level-inv T using inv' unfolding cdcl_W-all-struct-inv-def by auto
 then have n-d': no-dup ?M
   using T unfolding cdcl_W-M-level-inv-def by auto
 have k > 0
   using decomp M-lev T V unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
 then have atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\ (trail\ V)
   using lev-L get-rev-level-ge-0-atm-of-in V by fastforce
 then have L-L': atm\text{-}of L \neq atm\text{-}of L'
   using n-d' unfolding lits-of-def by auto
```

```
have L'-M: atm-of L' \notin atm-of 'lits-of (trail V)
   using n-d' unfolding lits-of-def by auto
  have ?M \models as CNot ?D
   using inv' T unfolding cdcl<sub>W</sub>-conflicting-def cdcl<sub>W</sub>-all-struct-inv-def by auto
  then have L' \notin \# ?D
   using L-L' L'-M unfolding true-annots-def by (auto simp add: true-annot-def true-cls-def
     atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set Ball-mset-def
     split: split-if-asm)
 have [simp]: trail (reduce-trail-to M1 T) = M1
   by (metis (mono-tags, lifting) One-nat-def Pair-inject T \lor V \sim tl-trail T \lor decomp
     diff-less in-qet-all-marked-decomposition-trail-update-trail length-greater-0-conv
     length-tl\ lessI\ list.\ distinct(1)\ reduce-trail-to-length-ne\ state-eq-trail
     trail-reduce-trail-to-length-le trail-tl-trail)
 have skip^{**} S V
   using st skip by auto
 have no-dup (trail\ S)
   using inv unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-M-level-inv-def by auto
  then have [simp]: init-clss S = N and [simp]: learned-clss S = U
   using rtranclp-skip-state-decomp[OF (skip^{**} S V)] V
   by (auto simp del: state-simp simp: state-eq-def state-access-simp)
  then have W-S: W \sim cons-trail (Propagated L (D + {#L#})) (reduce-trail-to M1
  (add-learned-cls\ (D + \#L\#)\ (update-backtrack-lvl\ i\ (update-conflicting\ None\ T))))
   using W i T undef M-lev by (auto simp del: state-simp simp: state-eq-def cdcl_W-M-level-inv-def)
 obtain M2' where
   (Marked\ K\ (i+1)\ \#\ M1,\ M2')\in set\ (get-all-marked-decomposition\ ?M)
   using decomp V by (cases hd (get-all-marked-decomposition (trail V)),
     cases get-all-marked-decomposition (trail V)) auto
 moreover
   from L-L' have get-level ?M L = k
     using lev-L \leftarrow L' \notin \# ?D \lor V by (auto split: split-if-asm)
 moreover
   have atm\text{-}of L' \notin atms\text{-}of D
     using \langle L' \notin \# ?D \rangle \langle -L' \notin \# ?D \rangle by (simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
       atms-of-def)
   then have get-level ?M L = get-maximum-level ?M (D+\{\#L\#\})
     using lev-l-D[symmetric] L-L' V lev-L by simp
  moreover have i = get-maximum-level ?M D
   using i \langle atm\text{-}of L' \notin atms\text{-}of D \rangle by auto
 moreover
 ultimately have backtrack T W
   using T(1) W-S by blast
  then show ?thesis using IH inv by blast
qed
\mathbf{lemma}\ \mathit{fst-get-all-marked-decomposition-prepend-not-marked}:
 assumes \forall m \in set MS. \neg is\text{-}marked m
 shows set (map\ fst\ (qet\text{-}all\text{-}marked\text{-}decomposition\ }M))
   = set (map fst (get-all-marked-decomposition (MS @ M)))
   using assms apply (induction MS rule: ann-literal-list-induct)
   by (rename-tac L m xs; case-tac get-all-marked-decomposition (xs @ M)) simp-all
See also [skip^{**} ?S ?T; backtrack ?T ?W; cdcl_W-all-struct-inv ?S] \implies backtrack ?S ?W
```

```
\mathbf{lemma}\ rtranclp\text{-}skip\text{-}backtrack\text{-}backtrack\text{-}end:}
 assumes
   skip: skip^{**} S T and
   bt: backtrack S W and
   inv: cdcl_W-all-struct-inv S
 shows backtrack T W
 using assms
proof -
 have M-lev: cdcl_W-M-level-inv S
   using bt inv unfolding cdcl_W-all-struct-inv-def by (auto elim!: backtrack-levE)
 then obtain k M M1 M2 K i D L N U where
   S: state S = (M, N, U, k, Some (D + {\#L\#})) and
   W: state W = (Propagated\ L\ (D + \{\#L\#\})\ \#\ M1,\ N,\ \{\#D + \{\#L\#\}\#\} +\ U,\ get\text{-maximum-level}
MD,
     None) and
   decomp: (Marked\ K\ (i+1)\ \#\ M1,\ M2)\in set\ (get-all-marked-decomposition\ M) and
   lev-l: qet-level M L = k and
   lev-l-D: get-level M L = get-maximum-level M (D + \{\#L\#\}) and
   i: i = get\text{-}maximum\text{-}level\ M\ D\ and
   undef: undefined-lit M1 L
   using bt by (elim backtrack-levE)
   (simp-all\ add:\ cdcl_W-M-level-inv-decomp\ state-eq-def\ del:\ state-simp)
 let ?D = (D + \{\#L\#\})
 have [simp]: no-dup (trail\ S)
   using M-lev by (auto simp: cdcl_W-M-level-inv-decomp)
 have cdcl_W-all-struct-inv T
   using mono-rtranclp[of skip cdcl_W] by (smt\ bj\ cdcl_W-bj.skip inv local.skip other
     rtranclp-cdcl_W-all-struct-inv-inv)
  then have [simp]: no-dup (trail\ T)
   unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def by auto
 obtain MS\ M_T where M\colon M=MS\ @\ M_T and M_T\colon M_T=trail\ T and nm\colon \forall\ m\in set\ MS.\ \neg is-marked
m
   using rtranclp-skip-state-decomp(1)[OF\ skip]\ S\ M-lev\ by auto
 have T: state T = (M_T, N, U, k, Some ?D)
   using M_T rtranclp-skip-state-decomp(2)[of S T] skip S
   by (auto simp del: state-simp simp: state-eq-def state-access-simp)
 have cdcl_W-all-struct-inv T
   apply (rule rtranclp-cdcl_W-all-struct-inv-inv[OF - inv])
   using bj cdcl_W-bj.skip local.skip other rtranclp-mono[of skip cdcl_W] by blast
  then have M_T \models as \ CNot \ ?D
   unfolding cdcl_W-all-struct-inv-def cdcl_W-conflicting-def using T by blast
  have \forall L \in \#?D. atm\text{-}of \ L \in atm\text{-}of \ `lits\text{-}of \ M_T
   proof -
     have f1: \land l. \neg M_T \models a \{\#-l\#\} \lor atm\text{-}of \ l \in atm\text{-}of \ `lits\text{-}of \ M_T \ 
       by (simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set in-lit-of-true-annot
         lits-of-def)
     have \bigwedge l. l \notin \# D \lor - l \in lits\text{-}of M_T
       using \langle M_T \models as\ CNot\ (D + \{\#L\#\}) \rangle multi-member-split by fastforce
     using f1 by (meson \ \ M_T \models as \ CNot \ (D + \#L\#)) \ ball-msetI \ true-annots-CNot-all-atms-defined)
   qed
 moreover have no-dup M
```

```
using inv S unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def by auto
  ultimately have \forall L \in \#?D. atm\text{-}of L \notin atm\text{-}of 'lits-of MS
   unfolding M unfolding lits-of-def by auto
  then have H: \Lambda L. L \in \#?D \Longrightarrow get\text{-level } M L = get\text{-level } M_T L
   unfolding M by (fastforce simp: lits-of-def)
  have [simp]: get-maximum-level M ?D = get-maximum-level M_T ?D
   by (metis \ (M_T \models as \ CNot \ (D + \#L\#))) M nm ball-msetI true-annots-CNot-all-atms-defined
     get-maximum-level-skip-un-marked-not-present)
 have lev-l': get-level M_T L = k
   using lev-l by (auto simp: H)
 have [simp]: trail (reduce-trail-to M1 T) = M1
   using T decomp M nm by (smt M_T append-assoc beginning-not-marked-invert
     get-all-marked-decomposition-exists-prepend reduce-trail-to-trail-tl-trail-decomp)
 have W: W \sim cons-trail (Propagated L (D + {#L#})) (reduce-trail-to M1
   (add-learned-cls\ (D + \{\#L\#\})\ (update-backtrack-lvl\ i\ (update-conflicting\ None\ T))))
   using W T i decomp undef by (auto simp del: state-simp simp: state-eq-def)
 have lev-l-D': get-level M_T L = get-maximum-level M_T (D+\{\#L\#\})
   using lev-l-D by (auto\ simp:\ H)
  have [simp]: get-maximum-level MD = get-maximum-level M_TD
   proof -
     have \bigwedge ms \ m. \ \neg \ (ms::('v, \ nat, \ 'v \ literal \ multiset) \ ann-literal \ list) \models as \ CNot \ m
        \lor (\forall l \in \#m. \ atm\text{-}of \ l \in atm\text{-}of \ `lits\text{-}of \ ms)
       by (simp\ add:\ atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set\ in-CNot-implies-uminus(2))
     then have \forall l \in \#D. atm\text{-}of \ l \in atm\text{-}of ' lits\text{-}of \ M_T
       using \langle M_T \models as \ CNot \ (D + \{\#L\#\}) \rangle by auto
     then show ?thesis
       by (metis M get-maximum-level-skip-un-marked-not-present nm)
   qed
  then have i': i = get-maximum-level M_T D
   using i by auto
  have Marked K(i + 1) \# M1 \in set (map fst (get-all-marked-decomposition M))
   using Set.imageI[OF decomp, of fst] by auto
  then have Marked K (i + 1) \# M1 \in set (map\ fst\ (get\text{-all-marked-decomposition}\ M_T))
   using fst-get-all-marked-decomposition-prepend-not-marked [OF\ nm] unfolding M by auto
 then obtain M2' where decomp': (Marked\ K\ (i+1)\ \#\ M1,\ M2') \in set\ (qet-all-marked-decomposition
M_T
   by auto
 then show backtrack T W
   using backtrack.intros[OF T decomp' lev-l'] lev-l-D' i' W by force
lemma cdcl_W-bj-decomp-resolve-skip-and-bj:
 assumes cdcl_W-bj^{**} S T and inv: cdcl_W-M-level-inv S
 shows (skip\text{-}or\text{-}resolve^{**} \ S \ T
   \vee (\exists U. \ skip-or-resolve^{**} \ S \ U \land backtrack \ U \ T))
 using assms
proof induction
 case base
 then show ?case by simp
  case (step T U) note st = this(1) and bj = this(2) and IH = this(3)
 have IH: skip-or-resolve** S T
   proof -
```

```
{ assume (\exists U. skip-or-resolve^{**} S U \land backtrack U T)
      then obtain V where
        bt: backtrack V T and
        skip-or-resolve** S V
        by blast
      have cdcl_W^{**} S V
        using \langle skip\text{-}or\text{-}resolve^{**} \mid S \mid V \rangle rtranclp\text{-}skip\text{-}or\text{-}resolve\text{-}rtranclp\text{-}cdcl_W} by blast
      then have cdcl_W-M-level-inv V and cdcl_W-M-level-inv S
        using rtranclp-cdcl_W-consistent-inv inv by blast+
      with bj bt have False using backtrack-no-cdcl<sub>W</sub>-bj by simp
     then show ?thesis using IH inv by blast
   qed
 show ?case
   using bj
   proof (cases rule: cdcl_W-bj.cases)
     case backtrack
     then show ?thesis using IH by blast
   qed (metis (no-types, lifting) IH rtranclp.simps)+
\mathbf{qed}
lemma resolve-skip-deterministic:
 resolve \ S \ T \Longrightarrow skip \ S \ U \Longrightarrow False
 by fastforce
lemma backtrack-unique:
 assumes
   bt-T: backtrack S T and
   bt-U: backtrack S U and
   inv: cdcl_W-all-struct-inv S
 shows T \sim U
proof -
 have lev: cdcl_W-M-level-inv S
   using inv unfolding cdcl_W-all-struct-inv-def by auto
 then obtain M N U' k D L i K M1 M2 where
   S: state S = (M, N, U', k, Some (D + {\#L\#})) and
   decomp: (Marked\ K\ (i+1)\ \#\ M1,\ M2)\in set\ (qet-all-marked-decomposition\ M) and
   get-level ML = k and
   get-level ML = get-maximum-level M(D+\{\#L\#\}) and
   get-maximum-level MD = i and
   T: state T = (Propagated\ L\ (\ (D + \{\#L\#\}))\ \#\ M1\ ,\ N,\ \{\#D + \{\#L\#\}\#\} +\ U',\ i,\ None) and
   undef: undefined-lit M1 L
   using bt-T by (elim\ backtrack-levE)
   (force\ simp:\ cdcl_W-M-level-inv-def\ state-eq-def\ simp\ del:\ state-simp)+
 obtain D'L'i'K'M1'M2' where
   S': state S = (M, N, U', k, Some (D' + \{\#L'\#\})) and
   decomp': (Marked K'(i'+1) \# M1', M2') \in set (get-all-marked-decomposition M) and
   qet-level ML' = k and
   get-level ML' = get-maximum-level M(D' + \{\#L'\#\}) and
   get-maximum-level MD' = i' and
   U: state \ U = (Propagated \ L' \ (D' + \{\#L'\#\}) \ \# \ M1', \ N, \ \{\#D' + \{\#L'\#\}\#\} \ + U', \ i', \ None) \ {\bf and}
   undef: undefined-lit M1' L'
   using bt-U lev S by (elim\ backtrack-levE)
   (force simp: cdcl_W-M-level-inv-def state-eq-def simp del: state-simp)+
```

```
obtain c where M: M = c @ M2 @ Marked K (i + 1) \# M1
   using decomp by auto
  obtain c' where M': M = c' @ M2' @ Marked K' (i' + 1) # M1'
   using decomp' by auto
  have marked: get-all-levels-of-marked M = rev [1..<1+k]
   using inv S unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-M-level-inv-def by auto
  then have i < k
   unfolding M
   by (force simp add: rev-swap[symmetric] dest!: arg-cong[of - - set])
 have [simp]: L = L'
   proof (rule ccontr)
     assume ¬ ?thesis
     then have L' \in \# D
       using S unfolding S' by (fastforce simp: multiset-eq-iff split: split-if-asm)
     then have get-maximum-level M D \ge k
       using \langle get\text{-}level \ M \ L' = k \rangle get\text{-}maximum\text{-}level\text{-}}ge\text{-}get\text{-}level by blast
     then show False using \langle get\text{-}maximum\text{-}level\ M\ D=i\rangle\ \langle i< k\rangle by auto
   qed
  then have [simp]: D = D'
   using S S' by auto
 have [simp]: i=i' using \langle qet-maximum-level M D'=i' \rangle \langle qet-maximum-level M D=i \rangle by auto
Automation in a step later...
 have H: \bigwedge a \ A \ B. insert a \ A = B \Longrightarrow a : B
   \mathbf{by} blast
  have get-all-levels-of-marked (c@M2) = rev [i+2..<1+k] and
   get-all-levels-of-marked (c'@M2') = rev [i+2..<1+k]
   using marked unfolding M
   using marked unfolding M'
   unfolding rev-swap[symmetric] by (auto dest: append-cons-eq-upt-length-i-end)
  from arg\text{-}cong[OF\ this(1),\ of\ set]\ arg\text{-}cong[OF\ this(2),\ of\ set]
    drop While \ (\lambda L. \ \neg is\text{-}marked \ L \lor level\text{-}of \ L \ne Suc \ i) \ (c @ M2) = [] \ \mathbf{and}
   drop While (\lambda L. \neg is\text{-marked } L \lor level\text{-of } L \neq Suc \ i) \ (c' @ M2') = []
     unfolding dropWhile-eq-Nil-conv Ball-def
     by (intro allI; rename-tac x; case-tac x; auto dest!: H simp add: in-set-conv-decomp)+
 then have M1 = M1'
   using arg\text{-}cong[OF\ M,\ of\ drop\ While\ ($\lambda L.\ \neg is\text{-}marked\ L\ \lor\ level\text{-}of\ L\ \neq\ Suc\ i)]}
   unfolding M' by auto
  then show ?thesis using T U by (auto simp del: state-simp simp: state-eq-def)
qed
\mathbf{lemma}\ \textit{if-can-apply-backtrack-no-more-resolve}:
 assumes
   skip: skip^{**} S U and
   bt: backtrack S T and
   inv: cdcl_W-all-struct-inv S
 shows \neg resolve\ U\ V
proof (rule ccontr)
 assume resolve: \neg\neg resolve\ U\ V
 obtain L \ C \ M \ N \ U' \ k \ D where
    U: state \ U = (Propagated \ L \ (\ (C + \{\#L\#\})) \ \# \ M, \ N, \ U', \ k, \ Some \ (D + \{\#-L\#\}))and
```

```
get-maximum-level (Propagated L (C + \{\#L\#\}\}) \# M) D = k and
 state V = (M, N, U', k, Some (D \# \cup C))
 using resolve by auto
have cdcl_W-all-struct-inv U
 using mono-rtranclp[of skip cdcl_W] by (meson bj cdcl_W-bj.skip inv local.skip other
   rtranclp-cdcl_W-all-struct-inv-inv)
then have [iff]: no-dup (trail\ S)\ cdcl_W-M-level-inv S and [iff]: no-dup (trail\ U)
 using inv unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def by blast+
then have
 S: init-clss \ S = N
    learned-clss S = U'
    backtrack-lvl S = k
    conflicting S = Some (D + \{\#-L\#\})
 using rtranclp-skip-state-decomp(2)[OF\ skip]\ U
 by (auto simp del: state-simp simp: state-eq-def state-access-simp)
obtain M_0 where
 tr-S: trail <math>S = M_0 @ trail U and
 nm: \forall m \in set M_0. \neg is-marked m
 using rtranclp-skip-state-decomp[OF skip] by blast
obtain M'D'L'iKM1M2 where
 S': state\ S = (M', N, U', k, Some\ (D' + \{\#L'\#\})) and
 decomp: (Marked K (i+1) \# M1, M2) \in set (get-all-marked-decomposition M') and
 get-level M'L' = k and
 get-level M'L' = get-maximum-level M'(D' + \{\#L'\#\}) and
 get-maximum-level M'D'=i and
 undef: undefined-lit M1 L' and
 T: state T = (Propagated \ L'(D' + \#L'\#)) \# M1, \ N, \#D' + \#L'\# + U', \ i, \ None)
 using bt by (elim backtrack-levE) (fastforce simp: S state-eq-def simp del:state-simp)+
obtain c where M: M' = c @ M2 @ Marked K (i + 1) \# M1
 using get-all-marked-decomposition-exists-prepend[OF decomp] by auto
have marked: get-all-levels-of-marked M' = rev [1..<1+k]
 using inv S' unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def by auto
then have i < k
 unfolding M by (force simp add: rev-swap[symmetric] dest!: arg-cong[of - - set])
have DD': D' + \{\#L'\#\} = D + \{\#-L\#\}
 using S S' by auto
have [simp]: L' = -L
 proof (rule ccontr)
   assume ¬ ?thesis
   then have -L \in \# D'
    using DD' by (metis add-diff-cancel-right' diff-single-trivial diff-union-swap
      multi-self-add-other-not-self)
   moreover
    have M': M' = M_0 @ Propagated L ((C + {\#L\#})) \# M
      using tr-S U S S' by (auto simp: lits-of-def)
    have no-dup M'
       using inv U S' unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-M-level-inv-def by auto
    have atm-L-notin-M: atm-of L \notin atm-of ' (lits-of M)
      using \langle no\text{-}dup \ M' \rangle \ M' \ U \ S \ S' \ \text{by} \ (auto \ simp: \ lits\text{-}of\text{-}def)
    have get-all-levels-of-marked M' = rev [1..<1+k]
      using inv US' unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def by auto
    then have get-all-levels-of-marked M = rev [1..<1+k]
      using nm\ M'\ S'\ U by (simp\ add:\ get-all-levels-of-marked-no-marked)
```

```
then have get-lev-L:
         get-level(Propagated L (C + {\#L\#}) \# M) L = k
         using get-level-get-rev-level-get-all-levels-of-marked[OF atm-L-notin-M,
          of [Propagated L ((C + {\#L\#}))]] by simp
      have atm\text{-}of L \notin atm\text{-}of ' (lits-of (rev M_0))
         using \langle no\text{-}dup \ M' \rangle \ M' \ U \ S' by (auto simp: lits-of-def)
       then have get-level M'L = k
         using get-rev-level-notin-end[of L rev M_0
          rev\ M\ @\ Propagated\ L\ (C\ +\ \{\#L\#\})\ \#\ []\ \theta]
         using tr-S get-lev-L M' U S' by (simp add:nm lits-of-def)
     ultimately have get-maximum-level M' D' \ge k
      by (metis get-maximum-level-ge-get-level get-rev-level-uminus)
     then show False
       using \langle i < k \rangle unfolding \langle get\text{-}maximum\text{-}level\ M'\ D' = i \rangle by auto
   qed
 have [simp]: D = D' using DD' by auto
 have cdcl_{W}^{**} S U
   using bj cdcl_W-bj.skip local.skip mono-rtranclp[of skip cdcl_W S U] other by meson
  then have cdcl_W-all-struct-inv U
   using inv rtranclp-cdcl_W-all-struct-inv-inv by blast
  then have Propagated L ( (C + \{\#L\#\})) \# M \models as CNot (D' + \{\#L'\#\})
   using cdcl_W-all-struct-inv-def cdcl_W-conflicting-def U by auto
  then have \forall L' \in \#D. atm-of L' \in atm-of 'lits-of (Propagated L ((C + \{\#L\#\})) \#M)
   by (metis CNot-plus CNot-singleton Un-insert-right \langle D=D' \rangle true-annots-insert ball-msetI
     atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set in-CNot-implies-uminus(2)
     sup-bot.comm-neutral)
  then have get-maximum-level M'D = k
    using tr-S nm U S'
      get-maximum-level-skip-un-marked-not-present[of D
        Propagated L (C + \{\#L\#\}) \# M M_0
    unfolding \langle get\text{-}maximum\text{-}level \ (Propagated \ L \ (C + \{\#L\#\}) \ \# \ M) \ D = k \rangle
    unfolding \langle D = D' \rangle
    by simp
  then show False
   using \langle get\text{-}maximum\text{-}level\ M'\ D' = i \rangle\ \langle i < k \rangle by auto
qed
lemma if-can-apply-resolve-no-more-backtrack:
 assumes
   skip: skip^{**} S U and
   resolve: resolve S T and
   inv: cdcl_W-all-struct-inv S
 shows \neg backtrack\ U\ V
  using assms
 by (meson if-can-apply-backtrack-no-more-resolve rtranclp.rtrancl-refl
   rtranclp-skip-backtrack-backtrack)
\mathbf{lemma}\ if\ can-apply-backtrack-skip\ or\ resolve\ is\ skip:
 assumes
   bt: backtrack S T and
   skip: skip-or-resolve^{**} S U and
   inv: cdcl_W-all-struct-inv S
  shows skip^{**} S U
 using assms(2,3,1)
 by induction (simp-all add: if-can-apply-backtrack-no-more-resolve)
```

```
lemma cdcl_W-bj-decomp:
 assumes cdcl_W-bj^{**} S W and cdcl_W-all-struct-inv S
 shows
   (\exists T \ U \ V. \ (\lambda S \ T. \ skip-or-resolve \ S \ T \land no-step \ backtrack \ S)^{**} \ S \ T
       \wedge (\lambda T U. resolve T U \wedge no-step backtrack T) T U
       \wedge skip^{**} U V \wedge backtrack V W
   \vee (\exists T \ U. \ (\lambda S \ T. \ skip\text{-}or\text{-}resolve \ S \ T \land no\text{-}step \ backtrack \ S)^{**} \ S \ T
       \wedge (\lambda T \ U. \ resolve \ T \ U \ \wedge \ no\text{-step backtrack} \ T) \ T \ U \ \wedge \ skip^{**} \ U \ W)
   \vee (\exists T. skip^{**} S T \land backtrack T W)
   \vee skip^{**} S W  (is ?RB S W \vee ?R S W \vee ?SB S W \vee ?S S W)
 using assms
proof induction
 case base
 then show ?case by simp
next
 case (step W X) note st = this(1) and bj = this(2) and IH = this(3)[OF\ this(4)] and inv = this(4)
 have \neg ?RB S W and \neg ?SB S W
   proof (clarify, goal-cases)
     case (1 \ T \ U \ V)
     have skip-or-resolve** S T
       using 1(1) by (auto dest!: rtranclp-and-rtranclp-left)
     then show False
      by (metis (no-types, lifting) 1(2) 1(4) 1(5) backtrack-no-cdcl<sub>W</sub>-bj
         cdcl_W-all-struct-inv-def cdcl_W-all-struct-inv-inv cdcl_W-o.bj local.bj other
         resolve\ rtranclp-cdcl_W-all-struct-inv-inv\ rtranclp-skip-backtrack-backtrack
         rtranclp-skip-or-resolve-rtranclp-cdcl_W step.prems)
   next
     case 2
     then show ?case by (meson\ assms(2)\ cdcl_W-all-struct-inv-def\ backtrack-no-cdcl_W-bj
       local.bj rtranclp-skip-backtrack-backtrack)
  then have IH: ?R S W \lor ?S S W using IH by blast
 have cdcl_{W}^{**} S W by (metis \ cdcl_{W} - o.bj \ mono-rtranclp \ other \ st)
  then have inv-W: cdcl_W-all-struct-inv W by (simp add: rtranclp-cdcl_W-all-struct-inv-inv
   step.prems)
 consider
     (BT) X' where backtrack W X'
   (skip) no-step backtrack W and skip W X
   (resolve) no-step backtrack W and resolve W X
   using bj \ cdcl_W-bj.cases by meson
  then show ?case
   proof cases
     case (BT X')
     then consider
         (bt) backtrack W X
       |(sk)| skip W X
       using bj if-can-apply-backtrack-no-more-resolve [of WWX'X] inv-Wcdcl_W-bj.cases by fast
     then show ?thesis
       proof cases
         case bt
         then show ?thesis using IH by auto
      next
```

```
case sk
      then show ?thesis using IH by (meson rtranclp-trans r-into-rtranclp)
   qed
next
  case skip
  then show ?thesis using IH by (meson rtranclp.rtrancl-into-rtrancl)
  case resolve note no-bt = this(1) and res = this(2)
  consider
      (RS) T U where
        (\lambda S \ T. \ skip\text{-}or\text{-}resolve \ S \ T \land no\text{-}step \ backtrack \ S)^{**} \ S \ T \ and
       resolve T U and
        no-step backtrack T and
        skip^{**} U W
    \mid (S) \quad skip^{**} \mid S \mid W
   using IH by auto
  then show ?thesis
   proof cases
      case (RS \ T \ U)
      have cdcl_W^{**} S T
        using RS(1) cdcl_W-bj.resolve cdcl_W-o.bj other skip
        mono-rtranclp[of (\lambda S\ T.\ skip-or-resolve\ S\ T\ \wedge\ no-step\ backtrack\ S)\ cdcl_W\ S\ T]
       by meson
      then have cdcl_W-all-struct-inv U
       by (meson\ RS(2)\ cdcl_W-all-struct-inv-inv cdcl_W-bj.resolve cdcl_W-o.bj other
          rtranclp-cdcl_W-all-struct-inv-inv step.prems)
      \{ \text{ fix } U'
        assume skip^{**} U U' and skip^{**} U' W
       have cdcl_W-all-struct-inv U'
          using \langle cdcl_W - all - struct - inv \ U \rangle \langle skip^{**} \ U \ U' \rangle \ rtranclp - cdcl_W - all - struct - inv - inv
             cdcl_W-o.bj rtranclp-mono[of\ skip\ cdcl_W] other skip\ \mathbf{by}\ blast
       then have no-step backtrack U
          using if-can-apply-backtrack-no-more-resolve [OF \langle skip^{**} \ U' \ W \rangle ] res by blast
      }
      with \langle skip^{**} \ U \ W \rangle
      have (\lambda S \ T. \ skip\text{-}or\text{-}resolve \ S \ T \land no\text{-}step \ backtrack \ S)^{**} \ U \ W
        proof induction
           case base
           then show ?case by simp
        next
         case (step V W) note st = this(1) and skip = this(2) and IH = this(3) and H = this(4)
           have \bigwedge U'. skip^{**} U' V \Longrightarrow skip^{**} U' W
            using skip by auto
           then have (\lambda S \ T. \ skip\text{-}or\text{-}resolve \ S \ T \land no\text{-}step \ backtrack \ S)^{**} \ U \ V
            using IH H by blast
           moreover have (\lambda S \ T. \ skip-or-resolve \ S \ T \land no-step \ backtrack \ S)^{**} \ V \ W
            by (simp add: local.skip r-into-rtranclp st step.prems)
           ultimately show ?case by simp
        qed
      then show ?thesis
        proof -
         have f1: \forall p \ pa \ pb \ pc. \neg p \ (pa) \ pb \lor \neg p^{**} \ pb \ pc \lor p^{**} \ pa \ pc
            \mathbf{by}\ (meson\ converse\text{-}rtranclp\text{-}into\text{-}rtranclp)
         have skip-or-resolve T U \wedge no-step backtrack T
```

```
then have (\lambda p \ pa. \ skip-or-resolve \ p \ pa \land no-step \ backtrack \ p)^{**} \ T \ W
                 proof -
                   have (\exists vr19 \ vr16 \ vr17 \ vr18. \ vr19 \ (vr16::'st) \ vr17 \land vr19^{**} \ vr17 \ vr18
                        \land \neg vr19^{**} vr16 vr18)
                     \vee \neg (skip\text{-}or\text{-}resolve\ T\ U\ \land\ no\text{-}step\ backtrack\ T)
                     \vee \neg (\lambda uu \ uua. \ skip-or-resolve \ uu \ uua \land no-step \ backtrack \ uu)^{**} \ U \ W
                     \vee (\lambda uu \ uua. \ skip-or-resolve \ uu \ uua \wedge no-step \ backtrack \ uu)^{**} \ T \ W
                     by force
                   then show ?thesis
                     by (metis (no-types) \langle (\lambda S \ T. \ skip-or-resolve \ S \ T \land no-step \ backtrack \ S)^{**} \ U \ W \rangle
                        \langle skip\text{-}or\text{-}resolve\ T\ U\ \land\ no\text{-}step\ backtrack\ T\rangle\ f1)
                 qed
              then have (\lambda p \ pa. \ skip\text{-}or\text{-}resolve \ p \ pa \land no\text{-}step \ backtrack \ p)^{**} \ S \ W
                 using RS(1) by force
              then show ?thesis
                 using no-bt res by blast
            qed
        next
          \mathbf{case}\ S
          \{ \text{ fix } U' \}
            assume skip^{**} S U' and skip^{**} U' W
            then have cdcl_W^{**} S U'
              using mono-rtranclp[of skip cdcl_W \ S \ U'] by (simp add: cdcl_W-o.bj other skip)
             then have cdcl_W-all-struct-inv U'
              by (metis (no-types, hide-lams) \langle cdcl_W - all - struct - inv S \rangle
                 rtranclp-cdcl_W-all-struct-inv-inv)
            then have no-step backtrack U'
               \mathbf{using} \ \textit{if-can-apply-backtrack-no-more-resolve} [\textit{OF} \ \langle \textit{skip}^{**} \ \textit{U'} \ \textit{W} \rangle \ ] \ \textit{res} \ \mathbf{by} \ \textit{blast}
          }
          with S
          have (\lambda S \ T. \ skip-or-resolve \ S \ T \land no-step \ backtrack \ S)^{**} \ S \ W
             proof induction
                case base
                then show ?case by simp
              case (step V W) note st = this(1) and skip = this(2) and IH = this(3) and H = this(4)
                have \bigwedge U'. skip^{**} U' V \Longrightarrow skip^{**} U' W
                  using skip by auto
                then have (\lambda S \ T. \ skip\text{-}or\text{-}resolve \ S \ T \land no\text{-}step \ backtrack \ S)^{**} \ S \ V
                  using IH H by blast
                moreover have (\lambda S \ T. \ skip\text{-}or\text{-}resolve \ S \ T \ \land \ no\text{-}step \ backtrack \ S)^{**} \ V \ W
                  by (simp add: local.skip r-into-rtranclp st step.prems)
                ultimately show ?case by simp
          then show ?thesis using res no-bt by blast
        qed
    qed
\mathbf{qed}
The case distinction is needed, since T \sim V does not imply that R^{**} T V.
lemma cdcl_W-bj-strongly-confluent:
  assumes
     cdcl_W-bj^{**} S V and
```

using RS(2) RS(3) by force

```
cdcl_W-bj^{**} S T and
    n-s: no-step cdcl_W-bj V and
    inv: cdcl_W-all-struct-inv S
  shows T \sim V \vee cdcl_W - bj^{**} T V
  using assms(2)
proof induction
 case base
  then show ?case by (simp \ add: \ assms(1))
next
  case (step T U) note st = this(1) and s-o-r = this(2) and IH = this(3)
 have cdcl_{W}^{**} S T
   using st mono-rtranclp[of cdcl_W-bj cdcl_W] other by blast
  then have lev-T: cdcl_W-M-level-inv T
   using inv rtranclp-cdcl<sub>W</sub>-consistent-inv[of S T]
   unfolding cdcl_W-all-struct-inv-def by auto
 consider
      (TV) T \sim V
    |(bj-TV)| cdcl_W-bj^{**} T V
   using IH by blast
  then show ?case
   proof cases
     case TV
     have no-step cdcl_W-bj T
       using \langle cdcl_W - M-level-inv T \rangle n-s cdcl_W-bj-state-eq-compatible [of T - V] TV by auto
     then show ?thesis
       using s-o-r by auto
   \mathbf{next}
     case bi-TV
     then obtain U' where
       T-U': cdcl_W-bj T U' and
       cdcl_W-bj^{**} U' V
       using IH n-s s-o-r by (metis rtranclp-unfold tranclpD)
     have cdcl_W^{**} S T
       by (metis (no-types, hide-lams) bj mono-rtranclp[of cdcl_W-bj cdcl_W] other st)
     then have inv-T: cdcl_W-all-struct-inv T
       by (metis (no-types, hide-lams) inv rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv)
     have lev-U: cdcl_W-M-level-inv U
       using s-o-r cdcl_W-consistent-inv lev-T other by blast
     show ?thesis
       using s-o-r
       proof cases
         case backtrack
         then obtain V0 where skip^{**} T V0 and backtrack V0 V
           \mathbf{using}\ IH\ if\text{-}can\text{-}apply\text{-}backtrack\text{-}skip\text{-}or\text{-}resolve\text{-}is\text{-}skip[OF\ backtrack\ -\ inv\text{-}T]}
           cdcl_W-bj-decomp-resolve-skip-and-bj
           by (meson\ bj-TV\ cdcl_W-bj.backtrack\ inv-T\ lev-T\ n-s
             rtranclp-skip-backtrack-backtrack-end)
         then have cdcl_W-bj^{**} T V\theta and cdcl_W-bj V\theta V
           using rtranclp-mono[of skip cdcl_W-bj] by blast+
         then show ?thesis
           \mathbf{using} \ \langle backtrack \ V0 \ V \rangle \ \langle skip^{**} \ T \ V0 \rangle \ backtrack-unique \ inv-T \ local.backtrack
           rtranclp-skip-backtrack-backtrack by auto
       next
```

```
case resolve
         then have U \sim U'
          by (meson T-U' cdcl<sub>W</sub>-bj.simps if-can-apply-backtrack-no-more-resolve inv-T
            resolve-skip-deterministic resolve-unique rtranclp.rtrancl-refl)
         then show ?thesis
           using \langle cdcl_W - bj^{**} \ U' \ V \rangle unfolding rtranclp-unfold
          by (meson T-U' bj cdcl<sub>W</sub>-consistent-inv lev-T other state-eq-ref state-eq-sym
             tranclp-cdcl_W-bj-state-eq-compatible)
       next
         case skip
         consider
            (sk) skip T U'
           | (bt) backtrack T U'
          using T-U' by (meson cdcl_W-bj.cases local.skip resolve-skip-deterministic)
         then show ?thesis
          proof cases
            case sk
            then show ?thesis
              using \langle cdcl_W - bj^{**} \ U' \ V \rangle unfolding rtranclp-unfold
              by (meson\ T\text{-}U'\ bj\ cdcl_W\text{-}all\text{-}inv(3)\ cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}def\ inv\text{-}T\ local.skip\ other
                tranclp-cdcl_W-bj-state-eq-compatible skip-unique state-eq-ref)
           next
            case bt
            have skip^{++} T U
              using local.skip by blast
            then show ?thesis
              using bt by (metis \langle cdcl_W - bj^{**} \ U' \ V \rangle \ backtrack \ inv-T \ tranclp-unfold-begin
                rtranclp-skip-backtrack-backtrack-end tranclp-into-rtranclp)
          qed
       \mathbf{qed}
   \mathbf{qed}
qed
lemma cdcl_W-bj-unique-normal-form:
 assumes
   ST: cdcl_W - bj^{**} S T  and SU: cdcl_W - bj^{**} S U  and
   n-s-U: no-step cdcl_W-bj U and
   n-s-T: no-step cdcl_W-bj T and
   inv: \ cdcl_W - all - struct - inv \ S
 shows T \sim U
proof
 have T \sim U \vee cdcl_W - bj^{**} T U
   using ST SU \ cdcl_W-bj-strongly-confluent inv n-s-U by blast
 then show ?thesis
   by (metis (no-types) n-s-T rtranclp-unfold state-eq-ref tranclp-unfold-begin)
qed
lemma full-cdcl_W-bj-unique-normal-form:
assumes full cdcl_W-bj S T and full cdcl_W-bj S U and
   inv: cdcl_W-all-struct-inv S
shows T \sim U
  using cdcl_W-bj-unique-normal-form assms unfolding full-def by blast
```

7.4 CDCL FW

```
inductive cdcl_W-merge-restart :: 'st \Rightarrow 'st \Rightarrow bool where
fw-r-propagate: propagate S S' \Longrightarrow cdcl_W-merge-restart S S'
fw-r-conflict: conflict S T \Longrightarrow full \ cdcl_W-bj T \ U \Longrightarrow cdcl_W-merge-restart S \ U \mid
fw-r-decide: decide\ S\ S' \Longrightarrow cdcl_W-merge-restart S\ S'
fw-r-rf: cdcl_W-rf S S' \Longrightarrow cdcl_W-merge-restart S S'
lemma cdcl_W-merge-restart-cdcl_W:
 assumes cdcl_W-merge-restart S T
 shows cdcl_{W}^{**} S T
 using assms
proof induction
  case (fw-r-conflict S T U) note confl = this(1) and bj = this(2)
 have cdcl_W \ S \ T \ using \ confl \ by \ (simp \ add: \ cdcl_W.intros \ r-into-rtranclp)
 moreover
   have cdcl_W-bj^{**} T U using bj unfolding full-def by auto
   then have cdcl_W^{**} T U by (metis\ cdcl_W - o.bj\ mono-rtranclp\ other)
 ultimately show ?case by auto
qed (simp-all \ add: \ cdcl_W-o.intros \ cdcl_W.intros \ r-into-rtranclp)
lemma cdcl_W-merge-restart-conflicting-true-or-no-step:
 assumes cdcl_W-merge-restart S T
 shows conflicting T = None \lor no\text{-step } cdcl_W T
 using assms
proof induction
 case (fw-r-conflict S T U) note confl = this(1) and n-s = this(2)
  { fix D V
   assume cdcl_W U V and conflicting U = Some D
   then have False
     using n-s unfolding full-def
     by (induction rule: cdcl_W-all-rules-induct) (auto dest!: cdcl_W-bj.intros)
 then show ?case by (cases conflicting U) fastforce+
qed (auto simp \ add: \ cdcl_W - rf. simps)
inductive cdcl_W-merge :: 'st \Rightarrow 'st \Rightarrow bool where
fw-propagate: propagate \ S \ S' \Longrightarrow cdcl_W-merge S \ S'
fw-conflict: conflict S T \Longrightarrow full \ cdcl_W-bj T \ U \Longrightarrow cdcl_W-merge S \ U \ |
fw-decide: decide \ S \ S' \Longrightarrow cdcl_W-merge S \ S'
fw-forget: forget \ S \ S' \Longrightarrow cdcl_W-merge S \ S'
lemma cdcl_W-merge-cdcl_W-merge-restart:
  cdcl_W-merge S T \Longrightarrow cdcl_W-merge-restart S T
 by (meson\ cdcl_W\text{-}merge.cases\ cdcl_W\text{-}merge-restart.simps\ forget)
lemma rtranclp-cdcl_W-merge-tranclp-cdcl_W-merge-restart:
  cdcl_W-merge** S T \Longrightarrow cdcl_W-merge-restart** S T
 using rtranclp-mono[of\ cdcl_W-merge\ cdcl_W-merge-restart]\ cdcl_W-merge-cdcl_W-merge-restart\ by blast
lemma cdcl_W-merge-rtranclp-cdcl_W:
  cdcl_W-merge S T \Longrightarrow cdcl_W^{**} S T
  using cdcl_W-merge-cdcl_W-merge-restart cdcl_W-merge-restart-cdcl_W by blast
lemma rtranclp-cdcl_W-merge-rtranclp-cdcl_W:
  cdcl_W-merge** S T \Longrightarrow cdcl_W** S T
```

```
lemma cdcl_W-merge-is-cdcl_{NOT}-merged-bj-learn:
 assumes
   inv: cdcl_W-all-struct-inv S and
   cdcl_W:cdcl_W-merge S T
 shows cdcl_{NOT}-merged-bj-learn S T
   \vee (no-step cdcl_W-merge T \wedge conflicting <math>T \neq None)
 using cdcl_W inv
proof induction
 case (fw-propagate S T) note propa = this(1)
 then obtain M N U k L C where
   H: state\ S = (M, N, U, k, None) and
   CL: C + \{\#L\#\} \in \# clauses S \text{ and }
   M-C: M \models as \ CNot \ C and
   undef: undefined-lit (trail S) L and
   T: T \sim cons-trail (Propagated L (C + {#L#})) S
   using propa by auto
 have propagate_{NOT} S T
   apply (rule propagate_{NOT}. propagate_{NOT}[of - CL])
   using H CL T undef M-C by (auto simp: state-eq_{NOT}-def state-eq-def clauses-def
     simp \ del: state-simp)
 then show ?case
   using cdcl_{NOT}-merged-bj-learn.intros(2) by blast
next
 case (fw-decide S T) note dec = this(1) and inv = this(2)
 then obtain L where
   undef-L: undefined-lit (trail S) L and
   atm-L: atm-of L \in atms-of-msu (init-clss S) and
   T: T \sim cons-trail (Marked L (Suc (backtrack-lvl S)))
     (update-backtrack-lvl (Suc (backtrack-lvl S)) S)
   by auto
 have decide_{NOT} S T
   apply (rule decide_{NOT}.decide_{NOT})
      using undef-L apply simp
    using atm-L inv unfolding cdcl_W-all-struct-inv-def no-strange-atm-def clauses-def apply auto[]
   using T undef-L unfolding state-eq-def state-eqNOT-def by (auto simp: clauses-def)
 then show ?case using cdcl_{NOT}-merged-bj-learn-decide_{NOT} by blast
next
 case (fw\text{-}forget\ S\ T) note rf = this(1) and inv = this(2)
 then obtain M N C U k where
    S: state S = (M, N, \{\#C\#\} + U, k, None) and
    \neg M \models asm \ clauses \ S \ and
    C \notin set (get-all-mark-of-propagated (trail S)) and
    C-init: C \notin \# init\text{-}clss S and
    C-le: C \in \# learned-clss S and
    T: T \sim remove\text{-}cls \ C \ S
   by auto
 have init-clss S \models pm \ C
   using inv C-le unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-learned-clause-def
   by (meson mem-set-mset-iff true-clss-cls-in-imp-true-clss-cls)
 then have S-C: clauses S - replicate-mset (count (clauses S) C) C \models pm \ C
   using C-init C-le unfolding clauses-def by (simp add: Un-Diff)
 moreover have H: init-clss\ S + (learned-clss\ S - replicate-mset\ (count\ (learned-clss\ S)\ C)\ C)
   = init\text{-}clss \ S + learned\text{-}clss \ S - replicate\text{-}mset \ (count \ (learned\text{-}clss \ S) \ C) \ C
```

```
using C-le C-init by (metis clauses-def clauses-remove-cls diff-zero gr0I
   init\text{-}clss\text{-}remove\text{-}cls\ learned\text{-}clss\text{-}remove\text{-}cls\ plus\text{-}multiset.rep\text{-}eq\ replicate\text{-}mset\text{-}0
   semiring-normalization-rules(5))
have forget_{NOT} S T
 apply (rule forget_{NOT}.forget_{NOT})
    using S-C apply blast
   using S apply simp
  using \langle C \in \# learned\text{-}clss S \rangle apply (simp \ add: \ clauses\text{-}def)
 using T C-le C-init by (auto
   simp: state-eq-def \ Un-Diff \ state-eq_{NOT}-def \ clauses-def \ ac-simps \ H
   simp del: state-simp)
then show ?case using cdcl_{NOT}-merged-bj-learn-forget<sub>NOT</sub> by blast
case (fw-conflict S T U) note confl = this(1) and bj = this(2) and inv = this(3)
obtain C_S where
  confl-T: conflicting T = Some C_S and
  C_S: C_S \in \# clauses S and
 tr-S-C_S: trail\ S \models as\ CNot\ C_S
 using confl by auto
have cdcl_W-all-struct-inv T
  using cdcl_W.simps\ cdcl_W-all-struct-inv-inv\ confl\ inv\ by blast
then have cdcl_W-M-level-inv T
  unfolding cdcl_W-all-struct-inv-def by auto
then consider
   (no\text{-}bt) skip\text{-}or\text{-}resolve^{**} T U
 | (bt) T' where skip-or-resolve** T T' and backtrack T' U
 using bj rtranclp-cdcl<sub>W</sub>-bj-skip-or-resolve-backtrack unfolding full-def by meson
then show ?case
 \mathbf{proof}\ \mathit{cases}
   case no-bt
   then have conflicting U \neq None
     using confl by (induction rule: rtranclp-induct) auto
   moreover then have no-step cdcl_W-merge U
     by (auto simp: cdcl_W-merge.simps)
   ultimately show ?thesis by blast
 next
   case bt note s-or-r = this(1) and bt = this(2)
   have cdcl_W^{**} T T'
     using s-or-r mono-rtranclp[of skip-or-resolve cdcl_W] rtranclp-skip-or-resolve-rtranclp-cdcl_W
     by blast
   then have cdcl_W-M-level-inv T'
     \mathbf{using} \ \mathit{rtranclp-cdcl}_W \textit{-}\mathit{consistent-inv} \ \langle \mathit{cdcl}_W \textit{-}\mathit{M-level-inv} \ T \rangle \ \mathbf{by} \ \mathit{blast}
   then obtain M1 M2 i D L K where
     confl-T': conflicting T' = Some (D + \{\#L\#\}) and
     M1-M2:(Marked\ K\ (i+1)\ \#\ M1,\ M2)\in set\ (get-all-marked-decomposition\ (trail\ T')) and
     get-level (trail T') L = backtrack-lvl T' and
     get-level (trail T') L = get-maximum-level (trail T') (D+\{\#L\#\}) and
     qet-maximum-level (trail T') D = i and
     undef-L: undefined-lit M1 L and
      U: U \sim cons-trail (Propagated L (D+{#L#}))
              (reduce-trail-to M1
                  (add\text{-}learned\text{-}cls\ (D + \{\#L\#\})
                     (update-backtrack-lvl\ i
                        (update\text{-}conflicting\ None\ T'))))
     using bt by (auto elim: backtrack-levE)
```

```
have [simp]: clauses S = clauses T
 using confl by auto
have [simp]: clauses T = clauses T'
 using s-or-r
 proof (induction)
   case base
   then show ?case by simp
 next
   case (step U V) note st = this(1) and s-o-r = this(2) and IH = this(3)
   have clauses U = clauses V
     using s-o-r by auto
   then show ?case using IH by auto
 qed
have inv-T: cdcl_W-all-struct-inv T
 by (meson\ cdcl_W\text{-}cp.simps\ confl\ inv\ r\text{-}into\text{-}rtranclp\ rtranclp\text{-}cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}inv}
   rtranclp-cdcl_W-cp-rtranclp-cdcl_W)
have cdcl_W^{**} T T'
 using rtranclp-skip-or-resolve-rtranclp-cdcl_W s-or-r by blast
have inv-T': cdcl_W-all-struct-inv T'
 using \langle cdcl_W^{**} \mid T \mid T' \rangle inv-T rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv by blast
have inv-U: cdcl_W-all-struct-inv U
 using cdcl_W-merge-restart-cdcl_W confl fw-r-conflict inv local.bj
 rtranclp-cdcl_W-all-struct-inv-inv by blast
have [simp]: init-clss S = init-clss T'
 using \langle cdcl_W^{**} T T' \rangle cdcl_W-init-clss confl cdcl_W-all-struct-inv-def conflict inv
 \mathbf{by} \ (\mathit{metis} \ \langle \mathit{cdcl}_W \text{-}\mathit{M-level-inv} \ \mathit{T} \rangle \ \mathit{rtranclp-cdcl}_W \text{-}\mathit{init-clss})
then have atm-L: atm-of L \in atms-of-msu \ (clauses \ S)
 using inv-T' confl-T' unfolding cdcl_W-all-struct-inv-def no-strange-atm-def clauses-def
 by auto
obtain M where tr-T: trail T = M @ trail T'
 using s-or-r by (induction rule: rtranclp-induct) auto
obtain M' where
 tr-T': trail T' = M' @ Marked K <math>(i+1) \# tl (trail U) and
 tr-U: trail\ U = Propagated\ L\ (D + {\#L\#})\ \#\ tl\ (trail\ U)
 using UM1-M2 undef-Linv-T' unfolding cdclw-all-struct-inv-def cdclw-M-level-inv-def
 by fastforce
\mathbf{def}\ M^{\prime\prime} \equiv M \ @\ M^{\prime}
 have tr-T: trail S = M'' \otimes Marked K (i+1) \# tl (trail U)
 using tr-T tr-T' confl unfolding M''-def by auto
have init-clss T' + learned-clss S \models pm D + \{\#L\#\}
 using inv-T' conft-T' unfolding cdcl_W-all-struct-inv-def cdcl_W-learned-clause-def clauses-def
 by simp
have reduce-trail-to (convert-trail-from-NOT (convert-trail-from-W M1)) S =
 reduce-trail-to M1 S
 by (rule reduce-trail-to-length) simp
moreover have trail (reduce-trail-to M1 S) = M1
 apply (rule reduce-trail-to-skip-beginning[of - M @ - @ M2 @ [Marked K (Suc i)]])
 using confl M1-M2 \langle trail \ T = M @ trail \ T' \rangle
   apply (auto dest!: qet-all-marked-decomposition-exists-prepend
     elim!: conflictE)
   by (rule sym) auto
ultimately have [simp]: trail (reduce-trail-to<sub>NOT</sub> (convert-trail-from-W M1) S) = M1
 using M1-M2 confl by (auto simp add: reduce-trail-to<sub>NOT</sub>-reduce-trail-convert)
have every-mark-is-a-conflict U
```

```
using inv-U unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-conflicting-def by simp
     then have tl (trail \ U) \models as \ CNot \ D
       by (metis add-diff-cancel-left' append-self-conv2 tr-U union-commute)
     have backjump-l S U
       \mathbf{apply} \ (\mathit{rule}\ \mathit{backjump-l}[\mathit{of} \ \text{----} \ \mathit{L}])
               using tr-T apply simp
              using inv unfolding cdclw-all-struct-inv-def cdclw-M-level-inv-def
              apply (simp add: comp-def)
             using U M1-M2 confl undef-L M1-M2 inv-T' inv unfolding cdcl<sub>W</sub>-all-struct-inv-def
             cdcl_W-M-level-inv-def apply (auto simp: state-eq_{NOT}-def
               trail-reduce-trail-to<sub>NOT</sub>-add-learned-cls)
            using C_S apply simp
           using tr-S-C_S apply simp
          using U undef-L M1-M2 inv-T' inv unfolding cdcl<sub>W</sub>-all-struct-inv-def
          cdcl_W-M-level-inv-def apply auto[]
          using undef-L atm-L apply (simp add: trail-reduce-trail-to_{NOT}-add-learned-cls)
         using \langle init\text{-}clss \ T' + learned\text{-}clss \ S \models pm \ D + \{\#L\#\} \rangle unfolding clauses-def apply simp
       apply (metis \langle tl (trail U) \models as CNot D \rangle convert-trail-from-W-true-annots)
       using inv-T' inv-U U conft-T' undef-L M1-M2 unfolding cdcl<sub>W</sub>-all-struct-inv-def
       distinct-cdcl_W-state-def by (simp\ add:\ cdcl_W-M-level-inv-decomp backjump-l-cond-def)
     then show ?thesis using cdcl_{NOT}-merged-bj-learn-backjump-l by fast
   qed
qed
abbreviation cdcl_{NOT}-restart where
cdcl_{NOT}-restart \equiv restart-ops.cdcl_{NOT}-raw-restart cdcl_{NOT} restart
lemma cdcl_W-merge-restart-is-cdcl_{NOT}-merged-bj-learn-restart-no-step:
 assumes
   inv: cdcl_W-all-struct-inv S and
   cdcl_W: cdcl_W-merge-restart S T
 shows cdcl_{NOT}-restart** S \ T \lor (no\text{-step } cdcl_W\text{-merge } T \land conflicting \ T \ne None)
proof -
  consider
     (fw) \ cdcl_W-merge S \ T
    (fw-r) restart S T
   using cdcl_W by (meson\ cdcl_W-merge-restart.simps cdcl_W-rf.cases fw-conflict fw-decide fw-forget
     fw-propagate)
  then show ?thesis
   proof cases
     case fw
     then have IH: cdcl_{NOT}-merged-bj-learn S T \vee (no-step \ cdcl_W-merge T \wedge conflicting \ T \neq None)
       using inv cdcl_W-merge-is-cdcl_{NOT}-merged-bj-learn by blast
     have invS: inv_{NOT} S
       using inv unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def by auto
     have ff2: cdcl_{NOT}^{++} S T \longrightarrow cdcl_{NOT}^{**} S T
         by (meson tranclp-into-rtranclp)
     have ff3: no-dup (convert-trail-from-W (trail S))
       using invS by (simp add: comp-def)
     have cdcl_{NOT} \leq cdcl_{NOT}-restart
       by (auto simp: restart-ops.cdcl_{NOT}-raw-restart.simps)
     then show ?thesis
       using ff3 ff2 IH cdcl_{NOT}-merged-bj-learn-is-tranclp-cdcl_{NOT}
       rtranclp-mono[of\ cdcl_{NOT}\ cdcl_{NOT}-restart]\ invS\ predicate2D\ {f by}\ blast
```

```
next
     then show ?thesis by (blast intro: restart-ops.cdcl_{NOT}-raw-restart.intros)
   qed
qed
abbreviation \mu_{FW} :: 'st \Rightarrow nat where
\mu_{FW} S \equiv (if no-step \ cdcl_W-merge \ S \ then \ 0 \ else \ 1+\mu_{CDCL}'-merged \ (set-mset \ (init-clss \ S)) \ S)
lemma cdcl_W-merge-\mu_{FW}-decreasing:
 assumes
   inv: cdcl_W-all-struct-inv S and
   fw: cdcl_W-merge S T
 shows \mu_{FW} T < \mu_{FW} S
proof -
 let ?A = init\text{-}clss S
 have atm-clauses: atms-of-msu (clauses S) \subseteq atms-of-msu ?A
   using inv unfolding cdcl<sub>W</sub>-all-struct-inv-def no-strange-atm-def clauses-def by auto
 have atm-trail: atm-of 'lits-of (trail S) \subseteq atms-of-msu ?A
   using inv unfolding cdcl_W-all-struct-inv-def no-strange-atm-def clauses-def by auto
 have n-d: no-dup (trail S)
   using inv unfolding cdcl_W-all-struct-inv-def by (auto simp: cdcl_W-M-level-inv-decomp)
 have [simp]: \neg no\text{-step } cdcl_W\text{-merge } S
   using fw by auto
 have [simp]: init-clss S = init-clss T
   using cdcl_W-merge-restart-cdcl_W [of S T] inv rtranclp-cdcl_W-init-clss
   unfolding cdcl_W-all-struct-inv-def
   by (meson\ cdcl_W\text{-}merge.simps\ cdcl_W\text{-}merge-restart.simps\ cdcl_W\text{-}rf.simps\ fw)
  consider
     (merged) \ cdcl_{NOT}-merged-bj-learn S \ T
   (n-s) no-step cdcl_W-merge T
   using cdcl_W-merge-is-cdcl_{NOT}-merged-bj-learn inv fw by blast
  then show ?thesis
   proof cases
     case merged
     then show ?thesis
       using cdcl<sub>NOT</sub>-decreasing-measure'[OF - - atm-clauses] atm-trail n-d
      by (auto split: split-if simp: comp-def)
   next
     case n-s
     then show ?thesis by simp
   qed
qed
lemma wf-cdcl<sub>W</sub>-merge: wf \{(T, S). cdcl_W-all-struct-inv S \wedge cdcl_W-merge S T\}
 apply (rule wfP-if-measure[of - - \mu_{FW}])
 using cdcl_W-merge-\mu_{FW}-decreasing by blast
lemma\ cdcl_W-all-struct-inv-tranclp-cdcl_W-merge-tranclp-cdcl_W-merge-cdcl_W-all-struct-inv:
 assumes
   inv: cdcl_W-all-struct-inv b
   cdcl_W-merge^{++} b a
 shows (\lambda S \ T. \ cdcl_W-all-struct-inv S \land \ cdcl_W-merge S \ T)^{++} \ b \ a
 using assms(2)
proof induction
```

```
case base
 then show ?case using inv by auto
 case (step c d) note st = this(1) and fw = this(2) and IH = this(3)
 have cdcl_W-all-struct-inv c
   using tranclp-into-rtranclp[OF\ st]\ cdcl_W-merge-rtranclp-cdcl_W
   assms(1) rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv rtranclp-mono[of cdcl<sub>W</sub>-merge cdcl<sub>W</sub>**] by fastforce
 then have (\lambda S \ T. \ cdcl_W-all-struct-inv S \wedge cdcl_W-merge S \ T)^{++} \ c \ d
   using fw by auto
 then show ?case using IH by auto
qed
lemma wf-tranclp-cdcl<sub>W</sub>-merge: wf \{(T, S). cdcl_W-all-struct-inv S \wedge cdcl_W-merge<sup>++</sup> S T\}
 using wf-trancl[OF wf-cdcl_W-merge]
 apply (rule wf-subset)
 by (auto simp: trancl-set-tranclp
   cdcl_W-all-struct-inv-tranclp-cdcl_W-merge-tranclp-cdcl_W-merge-cdcl_W-all-struct-inv)
lemma backtrack-is-full1-cdcl_W-bj:
 assumes bt: backtrack S T and inv: cdcl_W-M-level-inv S
 shows full1 cdcl_W-bj S T
proof -
 have no-step cdcl_W-bj T
   using bt inv backtrack-no-cdcl_W-bj by blast
 moreover have cdcl_W-bj^{++} S T
   using bt by auto
 ultimately show ?thesis unfolding full1-def by blast
qed
lemma rtrancl-cdcl_W-conflicting-true-cdcl_W-merge-restart:
 assumes cdcl_{W}^{**} S V and inv: cdcl_{W}-M-level-inv S and conflicting S = None
 shows (cdcl_W-merge-restart** S \ V \land conflicting \ V = None)
   \vee (\exists T U. cdcl_W-merge-restart** S T \wedge conflicting V \neq None \wedge conflict T U \wedge cdcl_W-bj** U V)
 using assms
proof induction
 case base
 then show ?case by simp
next
 case (step U V) note st = this(1) and cdcl_W = this(2) and IH = this(3)[OF\ this(4-)] and
   conf[simp] = this(5) and inv = this(4)
 from cdcl_W
 show ?case
   proof (cases)
     case propagate
     moreover then have conflicting\ U = None
      by auto
     moreover have conflicting V = None
      using propagate by auto
     ultimately show ?thesis using IH cdcl_W-merge-restart.fw-r-propagate[of U V] by auto
   next
     case conflict
     moreover then have conflicting\ U=None
      by auto
     moreover have conflicting V \neq None
      using conflict by auto
```

```
ultimately show ?thesis using IH by auto
next
 case other
 then show ?thesis
   proof cases
     case decide
     moreover then have conflicting U = None
       by auto
     ultimately show ?thesis using IH cdcl_W-merge-restart.fw-r-decide[of U V] by auto
   next
     case bj
     moreover {
       assume skip-or-resolve U V
       have f1: cdcl_W - bj^{++} U V
         by (simp add: local.bj tranclp.r-into-trancl)
       obtain T T' :: 'st where
         f2: cdcl_W-merge-restart** S \ U
           \lor cdcl_W-merge-restart** S \ T \land conflicting \ U \neq None
            \wedge conflict T T' \wedge cdcl_W-bj^{**} T' U
         using IH confl by blast
       then have ?thesis
         proof -
           have conflicting V \neq None \land conflicting U \neq None
            using \langle skip\text{-}or\text{-}resolve\ U\ V \rangle by auto
           then show ?thesis
            by (metis (no-types) IH f1 rtranclp-trans tranclp-into-rtranclp)
         qed
     }
     moreover {
       assume backtrack U V
       then have conflicting U \neq None by auto
       then obtain T T' where
         cdcl_W-merge-restart** S T and
         conflicting U \neq None and
         conflict\ T\ T' and
         cdcl_W-bj^{**} T' U
         using IH confl by meson
       have invU: cdcl_W-M-level-inv U
         using inv rtranclp-cdcl_W-consistent-inv step.hyps(1) by blast
       then have conflicting V = None
         using \langle backtrack \ U \ V \rangle inv by (auto elim: backtrack-levE
           simp: cdcl_W - M - level - inv - decomp)
       have full cdcl_W-bj T' V
         apply (rule rtranclp-fullI[of cdcl_W-bj T'UV])
           using \langle cdcl_W - bj^{**} T' U \rangle apply fast
         \mathbf{using} \ \langle backtrack \ U \ V \rangle \ backtrack-is\text{-}full1\text{-}cdcl_W\text{-}bj \ inv} U \ \mathbf{unfolding} \ full1\text{-}def \ full-def
         by blast
       then have ?thesis
         using cdcl_W-merge-restart.fw-r-conflict[of T T' V] \langle conflict T T' \rangle
         \langle cdcl_W \text{-}merge\text{-}restart^{**} \mid S \mid T \rangle \langle conflicting \mid V \mid = None \rangle \text{ by } auto
     ultimately show ?thesis by (auto simp: cdcl_W-bj.simps)
 qed
next
 case rf
```

```
moreover then have conflicting U = None and conflicting V = None
      by (auto simp: cdcl_W-rf.simps)
     ultimately show ?thesis using IH cdcl<sub>W</sub>-merge-restart.fw-r-rf[of U V] by auto
   qed
qed
lemma no\text{-}step\text{-}cdcl_W\text{-}no\text{-}step\text{-}cdcl_W\text{-}merge\text{-}restart: }no\text{-}step \ cdcl_W \ S \implies no\text{-}step \ cdcl_W\text{-}merge\text{-}restart
 by (auto simp: cdcl_W.simps cdcl_W-merge-restart.simps cdcl_W-o.simps cdcl_W-bj.simps)
lemma no-step-cdcl_W-merge-restart-no-step-cdcl_W:
 assumes
   conflicting S = None  and
   cdcl_W-M-level-inv S and
   no-step cdcl_W-merge-restart S
 shows no-step cdcl_W S
proof -
 { fix S'
   assume conflict S S'
   then have cdcl_W S S' using cdcl_W.conflict by auto
   then have cdcl_W-M-level-inv S'
     using assms(2) cdcl_W-consistent-inv by blast
   then obtain S'' where full\ cdcl_W-bj\ S'\ S''
     using cdcl_W-bj-exists-normal-form[of S'] by auto
   then have False
     using \langle conflict \ S \ S' \rangle \ assms(3) \ fw-r-conflict \ by \ blast
 then show ?thesis
   using assms unfolding cdcl_W.simps cdcl_W-merge-restart.simps cdcl_W-o.simps cdcl_W-bj.simps
   by fastforce
qed
lemma rtranclp-cdcl_W-merge-restart-no-step-cdcl_W-bj:
 assumes
   cdcl_W-merge-restart** S T and
   conflicting S = None
 shows no-step cdcl_W-bj T
 using assms
 apply (induction rule: rtranclp-induct)
  apply (fastforce simp: cdcl_W-bj.simps cdcl_W-rf.simps cdcl_W-merge-restart.simps full-def)
 apply (fastforce simp: cdcl_W-bj.simps cdcl_W-rf.simps cdcl_W-merge-restart.simps full-def)
 done
If conflicting S \neq None, we cannot say anything.
Remark that this theorem does not say anything about well-foundedness: even if you know that
one relation is well-founded, it only states that the normal forms are shared.
lemma conflicting-true-full-cdcl_W-iff-full-cdcl_W-merge:
 assumes confl: conflicting S = None and lev: cdcl_W-M-level-inv S
 shows full cdcl_W S V \longleftrightarrow full cdcl_W-merge-restart S V
 assume full: full cdcl_W-merge-restart S V
 then have st: cdcl_W^{**} S V
   using rtranclp-mono[of\ cdcl_W-merge-restart\ cdcl_W^{**}]\ cdcl_W-merge-restart-cdcl_W
   unfolding full-def by auto
```

```
have n-s: no-step cdcl_W-merge-restart V
   using full unfolding full-def by auto
 have n-s-bj: no-step cdcl_W-bj V
   using rtranclp-cdcl_W-merge-restart-no-step-cdcl<sub>W</sub>-bj conft full unfolding full-def by auto
  have \bigwedge S'. conflict V S' \Longrightarrow cdcl_W-M-level-inv S'
   using cdcl_W.conflict cdcl_W-consistent-inv lev rtranclp-cdcl_W-consistent-inv st by blast
  then have \bigwedge S'. conflict V S' \Longrightarrow False
   using n-s n-s-bj cdcl_W-bj-exists-normal-form cdcl_W-merge-restart.simps by meson
  then have n-s-cdcl_W: no-step cdcl_W V
   using n-s n-s-bj by (auto simp: cdcl<sub>W</sub>.simps cdcl<sub>W</sub>-o.simps cdcl<sub>W</sub>-merge-restart.simps)
 then show full cdcl_W S V using st unfolding full-def by auto
next
 assume full: full cdcl_W S V
 have no-step cdcl_W-merge-restart V
   using full no-step-cdcl_W-no-step-cdcl_W-merge-restart unfolding full-def by blast
  moreover
   consider
       (fw) cdcl_W-merge-restart** S V and conflicting V = None
     \mid (bj) \ T \ U \ \mathbf{where}
       cdcl_W-merge-restart** S T and
       conflicting V \neq None and
       conflict T U and
       cdcl_W-bj^{**} U V
     using full rtrancl-cdcl<sub>W</sub>-conflicting-true-cdcl<sub>W</sub>-merge-restart confl lev unfolding full-def
     by meson
   then have cdcl_W-merge-restart** S V
     proof cases
       case fw
       then show ?thesis by fast
     next
       case (bj \ T \ U)
      have no-step cdcl_W-bj V
         using full unfolding full-def by (meson cdcl_W-o.bj other)
       then have full cdcl_W-bj U V
         using \langle cdcl_W - bj^{**} U V \rangle unfolding full-def by auto
       then have cdcl_W-merge-restart T V
         using \langle conflict \ T \ U \rangle \ cdcl_W-merge-restart.fw-r-conflict by blast
       then show ?thesis using \langle cdcl_W-merge-restart** S T \rangle by auto
     qed
 ultimately show full cdcl_W-merge-restart S V unfolding full-def by fast
qed
lemma init-state-true-full-cdcl_W-iff-full-cdcl_W-merge:
 shows full cdcl_W (init-state N) V \longleftrightarrow full\ cdcl_W-merge-restart (init-state N) V
 by (rule conflicting-true-full-cdcl<sub>W</sub>-iff-full-cdcl<sub>W</sub>-merge) auto
```

7.5 FW with strategy

7.5.1 The intermediate step

```
inductive cdcl_W - s' :: 'st \Rightarrow 'st \Rightarrow bool where conflict': full1 \ cdcl_W - cp \ S \ S' \Longrightarrow cdcl_W - s' \ S \ S' \mid decide': decide \ S \ S' \Longrightarrow no-step \ cdcl_W - cp \ S \Longrightarrow full \ cdcl_W - cp \ S' \ S'' \Longrightarrow cdcl_W - s' \ S \ S'' \mid bj': full1 \ cdcl_W - bj \ S \ S' \Longrightarrow no-step \ cdcl_W - cp \ S \Longrightarrow full \ cdcl_W - cp \ S' \ S'' \Longrightarrow cdcl_W - s' \ S \ S''
```

```
inductive-cases cdcl_W-s'E: cdcl_W-s' S T
lemma rtranclp-cdcl_W-bj-full1-cdclp-cdcl_W-stgy:
  cdcl_W - bj^{**} S S' \Longrightarrow full \ cdcl_W - cp \ S' S'' \Longrightarrow cdcl_W - stgy^{**} S S''
proof (induction rule: converse-rtranclp-induct)
 case base
  then show ?case by (metis cdcl_W-stgy.conflict' full-unfold rtranclp.simps)
next
  case (step T U) note st = this(2) and bj = this(1) and IH = this(3)[OF\ this(4)]
 have no-step cdcl_W-cp T
   using bj by (auto simp add: cdcl_W-bj.simps)
 consider
     (U) U = S'
    | (U') U' where cdcl_W-bj U U' and cdcl_W-bj** U' S'
   using st by (metis converse-rtranclpE)
  then show ?case
   proof cases
     case U
     then show ?thesis
       using \langle no\text{-step } cdcl_W\text{-}cp | T \rangle cdcl_W\text{-}o.bj | local.bj | other' | step.prems | by | (meson r-into-rtranclp)
   next
     case U' note U' = this(1)
     have no-step cdcl_W-cp U
       using U' by (fastforce\ simp:\ cdcl_W\text{-}cp.simps\ cdcl_W\text{-}bj.simps)
     then have full cdcl_W-cp U U
       by (simp add: full-unfold)
     then have cdcl_W-stgy T U
       using \langle no\text{-}step\ cdcl_W\text{-}cp\ T \rangle\ cdcl_W\text{-}stgy.simps\ local.bj\ cdcl_W\text{-}o.bj\ \mathbf{by}\ meson
     then show ?thesis using IH by auto
   qed
qed
lemma cdcl_W-s'-is-rtranclp-cdcl<sub>W</sub>-stgy:
  cdcl_W-s' S T \Longrightarrow cdcl_W-stgy** S T
 apply (induction rule: cdcl_W-s'.induct)
   apply (auto intro: cdcl_W-stgy.intros)[]
  apply (meson decide other' r-into-rtranclp)
 by (metis\ full1-def\ rtranclp-cdcl_W-bj-full1-cdclp-cdcl_W-stqy\ tranclp-into-rtranclp)
lemma cdcl_W-cp-cdcl_W-bj-bissimulation:
 assumes
   full\ cdcl_W-cp\ T\ U and
   cdcl_W-bj^{**} T T' and
   cdcl_W-all-struct-inv T and
   no-step cdcl_W-bj T'
  shows full cdcl_W-cp T' U
   \vee (\exists U' U''. full \ cdcl_W - cp \ T' \ U'' \land full \ cdcl_W - bj \ U \ U' \land full \ cdcl_W - cp \ U' \ U'' \land \ cdcl_W - s'^** \ U \ U'')
 using assms(2,1,3,4)
proof (induction rule: rtranclp-induct)
 case base
 then show ?case by blast
 case (step T' T'') note st = this(1) and bj = this(2) and IH = this(3)[OF this(4,5)] and
```

full = this(4) and inv = this(5)

have $cdcl_W^{**}$ T T''

```
by (metis (no-types, lifting) cdcl_W-o.bj local.bj mono-rtranclp[of cdcl_W-bj cdcl_W T T''] other
      st rtranclp.rtrancl-into-rtrancl)
  then have inv-T'': cdcl_W-all-struct-inv T''
   using inv \ rtranclp-cdcl_W-all-struct-inv-inv by blast
  have cdcl_W-bj^{++} T T''
   using local.bj st by auto
  have full1 cdcl_W-bj T T''
   by (metis \langle cdcl_W - bj^{++} \ T \ T'' \rangle \ full 1-def \ step.prems(3))
  then have T = U
   proof
      obtain Z where cdcl_W-bj T Z
          by (meson\ tranclpD\ \langle cdcl_W\ -bj^{++}\ T\ T''\rangle)
      { assume cdcl_W - cp^{++} T U
       then obtain Z' where cdcl_W-cp T Z'
          by (meson\ tranclpD)
       then have False
          using \langle cdcl_W - bj \mid T \mid Z \rangle by (fastforce \ simp: \ cdcl_W - bj. simps \ cdcl_W - cp. simps)
      then show ?thesis
       using full unfolding full-def rtranclp-unfold by blast
  obtain U'' where full\ cdcl_W-cp\ T''\ U''
   using cdcl_W-cp-normalized-element-all-inv inv-T'' by blast
  moreover then have cdcl_W-stgy^{**} U U''
   by (metis \ \langle T = U \rangle \ \langle cdcl_W - bj^{++} \ T \ T'' \rangle \ rtranclp-cdcl_W - bj-full1-cdclp-cdcl_W - stqy \ rtranclp-unfold)
  moreover have cdcl_W-s'** U U''
   proof -
      obtain ss :: 'st \Rightarrow 'st where
       f1: \forall x2. (\exists v3. cdcl_W - cp x2 v3) = cdcl_W - cp x2 (ss x2)
       by moura
      have \neg cdcl_W - cp \ U \ (ss \ U)
       by (meson full full-def)
      then show ?thesis
       using f1 by (metis (no-types) \langle T = U \rangle \langle full1 \ cdcl_W-bj T \ T'' \rangle \ bj' \ calculation(1)
          r-into-rtranclp)
   qed
  ultimately show ?case
   using \langle full1 \ cdcl_W - bj \ T \ T'' \rangle \langle full \ cdcl_W - cp \ T'' \ U'' \rangle unfolding \langle T = U \rangle by blast
qed
lemma cdcl_W-cp-cdcl_W-bj-bissimulation':
  assumes
   full\ cdcl_W-cp\ T\ U and
    cdcl_W-bj^{**} T T' and
    cdcl_W-all-struct-inv T and
    no-step cdcl_W-bj T'
  shows full cdcl_W-cp T' U
   \lor \ (\exists \ U'. \ \mathit{full1} \ \mathit{cdcl}_W \mathit{-bj} \ U \ U' \land \ (\forall \ U''. \ \mathit{full} \ \mathit{cdcl}_W \mathit{-cp} \ U' \ U'' \longrightarrow \mathit{full} \ \mathit{cdcl}_W \mathit{-cp} \ T' \ U''
      \wedge \ cdcl_W - s'^{**} \ U \ U'')
  using assms(2,1,3,4)
proof (induction rule: rtranclp-induct)
  case base
  then show ?case by blast
next
  case (step T' T'') note st = this(1) and bj = this(2) and IH = this(3)[OF this(4,5)] and
```

```
full = this(4) and inv = this(5)
  have cdcl_W^{**} T T''
    by (metis (no-types, lifting) cdcl_W-o.bj local.bj mono-rtranclp[of cdcl_W-bj cdcl_W T T''] other st
      rtranclp.rtrancl-into-rtrancl)
  then have inv-T'': cdcl_W-all-struct-inv T''
    using inv rtranclp-cdcl_W-all-struct-inv-inv by blast
  have cdcl_W-bj^{++} T T''
    using local.bj st by auto
  have full1 cdcl_W-bj T T''
    by (metis \langle cdcl_W - bj^{++} \ T \ T'' \rangle \ full 1-def \ step.prems(3))
  then have T = U
    proof -
      obtain Z where cdcl_W-bj T Z
        by (meson\ tranclpD\ \langle cdcl_W - bj^{++}\ T\ T''\rangle)
      { assume cdcl_W-cp^{++} T U
        then obtain Z' where cdcl_W-cp T Z'
          by (meson\ tranclpD)
        then have False
          using \langle cdcl_W - bj \mid T \mid Z \rangle by (fastforce simp: cdcl_W - bj.simps \mid cdcl_W - cp.simps)
      then show ?thesis
        using full unfolding full-def rtranclp-unfold by blast
    qed
  \{ \text{ fix } U'' \}
    assume full\ cdcl_W-cp\ T^{\prime\prime}\ U^{\prime\prime}
    moreover then have cdcl_W-stqu^{**} U U^{\prime\prime}
      \textbf{by} \; (\textit{metis} \; \langle T = \textit{U} \rangle \; \langle \textit{cdcl}_W \; \textit{-bj} \; \overset{\leftarrow}{\textbf{+}} \; T \; T'' \rangle \; \textit{rtranclp-cdcl}_W \; \textit{-bj-full1-cdclp-cdcl}_W \; \textit{-stgy} \; \textit{rtranclp-unfold})
    moreover have cdcl_W-s'** U U''
      proof -
        obtain ss :: 'st \Rightarrow 'st where
          f1: \forall x2. (\exists v3. cdcl_W - cp x2 v3) = cdcl_W - cp x2 (ss x2)
          by moura
        have \neg cdcl_W-cp U (ss U)
          by (meson \ assms(1) \ full-def)
        then show ?thesis
          using f1 by (metis (no-types) \langle T = U \rangle \langle full1 \ cdcl_W-bj T \ T'' \rangle \ bj' \ calculation(1)
            r-into-rtranclp)
      ged
    ultimately have full cdcl_W-bj U T'' and cdcl_W-s'^{**} T'' U''
      using \langle full1 \ cdcl_W-bj T \ T'' \rangle \langle full \ cdcl_W-cp T'' \ U'' \rangle unfolding \langle T = U \rangle
      by (metis \langle full \ cdcl_W \ -cp \ T'' \ U'' \rangle \ cdcl_W \ -s'. simps \ full-unfold \ rtranclp. simps)
    }
  then show ?case
    using \langle full1\ cdcl_W-bj T\ T''\rangle full bj' unfolding \langle T=U\rangle full-def by (metis r-into-rtranclp)
lemma cdcl_W-stgy-cdcl_W-s'-connected:
 assumes cdcl_W-stqy S U and cdcl_W-all-struct-inv S
 shows cdcl_W-s' S U
    \vee (\exists U'. full1 \ cdcl_W-bj \ U \ U' \land (\forall U''. full \ cdcl_W-cp \ U' \ U'' \longrightarrow cdcl_W-s' \ S \ U''))
  using assms
proof (induction rule: cdcl_W-stgy.induct)
  case (conflict' T)
  then have cdcl_W-s' S T
```

```
using cdcl_W-s'.conflict' by blast
  then show ?case
   by blast
next
  case (other' T U) note o = this(1) and n-s = this(2) and full = this(3) and inv = this(4)
 show ?case
   using o
   proof cases
     case decide
     then show ?thesis using cdcl_W-s'.simps full n-s by blast
   next
     case bj
     have inv-T: cdcl_W-all-struct-inv T
      using cdcl_W-all-struct-inv-inv o other other'.prems by blast
     consider
        (cp) full cdcl_W-cp T U and no-step cdcl_W-bj T
      | (fbj) T' where full cdcl_W-bj TT'
      apply (cases no-step cdcl_W-bj T)
       using full apply blast
      using cdcl_W-bj-exists-normal-form[of T] inv-T unfolding cdcl_W-all-struct-inv-def
      by (metis full-unfold)
     then show ?thesis
      proof cases
        case cp
        then show ?thesis
          proof
            obtain ss :: 'st \Rightarrow 'st where
             f1: \forall s \ sa \ sb. \ (\neg full 1 \ cdcl_W - bj \ ssa \lor cdcl_W - cp \ s \ (ss \ s) \lor \neg full \ cdcl_W - cp \ sa \ sb)
               \vee \ cdcl_W \text{-}s' \ s \ sb
             using bj' by moura
            have full1 cdcl_W-bj S T
             by (simp\ add:\ cp(2)\ full1-def\ local.bj\ tranclp.r-into-trancl)
            then show ?thesis
              using f1 full n-s by blast
          qed
      next
        case (fbj U')
        then have full1 cdcl_W-bj S U'
          using bj unfolding full1-def by auto
        moreover have no-step cdcl_W-cp S
          using n-s by blast
        moreover have T = U
          using full fbj unfolding full1-def full-def rtranclp-unfold
          by (force dest!: tranclpD \ simp: cdcl_W - bj. simps)
        ultimately show ?thesis using cdcl_W-s'.bj'[of S U'] using fbj by blast
      qed
   qed
qed
lemma cdcl_W-stgy-cdcl_W-s'-connected':
 assumes cdcl_W\operatorname{-stgy} S\ U and cdcl_W\operatorname{-all-struct-inv} S
 shows cdcl_W-s' S U
   \vee (\exists U' U''. cdcl_W - s' S U'' \wedge full cdcl_W - bj U U' \wedge full cdcl_W - cp U' U'')
 using assms
proof (induction rule: cdcl_W-stgy.induct)
```

```
case (conflict' T)
 then have cdcl_W-s' S T
   using cdcl_W-s'.conflict' by blast
 then show ?case
   by blast
next
 case (other' TU) note o = this(1) and n-s = this(2) and full = this(3) and inv = this(4)
 show ?case
   using o
   proof cases
     case decide
     then show ?thesis using cdcl_W-s'.simps full n-s by blast
   \mathbf{next}
     case bj
     have cdcl_W-all-struct-inv T
      using cdcl_W-all-struct-inv-inv o other other'.prems by blast
     then obtain T' where T': full cdcl_W-bj T T'
      using cdcl_W-bj-exists-normal-form unfolding full-def cdcl_W-all-struct-inv-def by metis
     then have full cdcl_W-bj S T'
      proof -
        have f1: cdcl_W - bj^{**} T T' \wedge no\text{-}step \ cdcl_W - bj \ T'
          by (metis (no-types) T' full-def)
        then have cdcl_W-bj^{**} S T'
          by (meson converse-rtranclp-into-rtranclp local.bj)
        then show ?thesis
          using f1 by (simp add: full-def)
      qed
     have cdcl_W-bj^{**} T T'
      using T' unfolding full-def by simp
     have cdcl_W-all-struct-inv T
      using cdcl_W-all-struct-inv-inv o other other'.prems by blast
     then consider
        (T'U) full cdcl_W-cp T' U
      \mid (U) \ U' \ U''  where
          full cdcl_W-cp T' U'' and
          full1 cdcl_W-bj U U' and
          full cdcl_W-cp U' U'' and
          cdcl_W-s'** U U''
      using cdcl_W-cp-cdcl_W-bj-bissimulation[OF full <math>\langle cdcl_W-bj^{**} T T'\rangle] T' unfolding full-def
      by blast
     then show ?thesis by (metis T' cdcl<sub>W</sub>-s'.simps full-fullI local.bj n-s)
   qed
qed
lemma cdcl_W-stgy-cdcl_W-s'-no-step:
 assumes cdcl_W-stgy S U and cdcl_W-all-struct-inv S and no-step cdcl_W-bj U
 shows cdcl_W-s' S U
 using cdcl_W-stgy-cdcl_W-s'-connected[OF assms(1,2)] assms(3)
 by (metis (no-types, lifting) full1-def tranclpD)
lemma rtranclp-cdcl_W-stgy-connected-to-rtranclp-cdcl_W-s':
 assumes cdcl_W-stgy^{**} S U and inv: cdcl_W-M-level-inv S
 shows cdcl_W - s'^{**} S U \vee (\exists T. cdcl_W - s'^{**} S T \wedge cdcl_W - bj^{++} T U \wedge conflicting U \neq None)
 using assms(1)
proof induction
```

```
case base
then show ?case by simp
case (step T V) note st = this(1) and o = this(2) and IH = this(3)
from o show ?case
 proof cases
   case conflict'
   then have f2: cdcl_W - s' T V
    using cdcl_W-s'.conflict' by blast
   obtain ss :: 'st where
    f3: S = T \lor cdcl_W - stgy^{**} S ss \land cdcl_W - stgy ss T
    by (metis (full-types) rtranclp.simps st)
   obtain ssa :: 'st where
     cdcl_W-cp T ssa
    using conflict' by (metis (no-types) full1-def tranclpD)
   then have S = T
    using f3 by (metis (no-types) cdcl<sub>W</sub>-stgy.simps full-def full1-def)
   then show ?thesis
    using f2 by blast
 next
   case (other'\ U) note o=this(1) and n\text{-}s=this(2) and full=this(3)
   then show ?thesis
    using o
    proof (cases rule: cdcl_W-o-rule-cases)
      case decide
      then have cdcl_W-s'** S T
        using IH by auto
      then show ?thesis
       by (meson decide decide' full n-s rtranclp.rtrancl-into-rtrancl)
    next
      case backtrack
      consider
         (s') cdcl_W-s'^{**} S T
        |(bj)| S' where cdcl_W-s'^{**} S S' and cdcl_W-bj^{++} S' T and conflicting T \neq None
       using IH by blast
      then show ?thesis
        proof cases
         case s'
         moreover
           have cdcl_W-M-level-inv T
             using inv local.step(1) rtranclp-cdcl<sub>W</sub>-stgy-consistent-inv by auto
           then have full cdcl_W-bj T U
             using backtrack-is-full1-cdcl_W-bj backtrack by blast
           then have cdcl_W-s' T V
            using full bj' n-s by blast
         ultimately show ?thesis by auto
        next
         case (bj S') note S-S' = this(1) and bj-T = this(2)
         have no-step cdcl_W-cp S'
           using bj-T by (fastforce simp: cdcl_W-cp.simps cdcl_W-bj.simps dest!: tranclpD)
         moreover
           have cdcl_W-M-level-inv T
             using inv local.step(1) rtranclp-cdcl<sub>W</sub>-stgy-consistent-inv by auto
           then have full cdcl_W-bj T U
             using backtrack-is-full1-cdcl_W-bj backtrack by blast
```

```
then have full1\ cdcl_W-bj S'\ U
        using bj-T unfolding full1-def by fastforce
     ultimately have cdcl_W-s' S' V using full by (simp add: bj')
     then show ?thesis using S-S' by auto
   qed
next
 case skip
 then have [simp]: U = V
   using full converse-rtranclpE unfolding full-def by fastforce
 consider
     (s') cdcl_W-s'^{**} S T
   |(bj)| S' where cdcl_W-s'^{**} S S' and cdcl_W-bj^{++} S' T and conflicting T \neq None
   using IH by blast
 then show ?thesis
   proof cases
     case s'
     have cdcl_W-bj^{++} T V
      using skip by force
     moreover have conflicting V \neq None
      using skip by auto
     ultimately show ?thesis using s' by auto
   next
     case (bj S') note S-S' = this(1) and bj-T = this(2)
     have cdcl_W-bj^{++} S' V
      using skip bj-T by (metis \langle U = V \rangle cdcl<sub>W</sub>-bj.skip tranclp.simps)
     moreover have conflicting V \neq None
      using skip by auto
     ultimately show ?thesis using S-S' by auto
   qed
\mathbf{next}
 case resolve
 then have [simp]: U = V
   using full converse-rtranclpE unfolding full-def by fastforce
 consider
     (s') cdcl_W-s'^{**} S T
   (bj) S' where cdcl_W-s'** S S' and cdcl_W-bj<sup>++</sup> S' T and conflicting T \neq None
   using IH by blast
 then show ?thesis
   proof cases
     case s'
     have cdcl_W-bj^{++} T V
      using resolve by force
     moreover have conflicting V \neq None
      using resolve by auto
     ultimately show ?thesis using s' by auto
     case (bj S') note S-S' = this(1) and bj-T = this(2)
     have cdcl_W-bj^{++} S' V
      using resolve bj-T by (metis \langle U = V \rangle cdcl<sub>W</sub>-bj.resolve tranclp.simps)
     moreover have conflicting V \neq None
      using resolve by auto
     ultimately show ?thesis using S-S' by auto
   qed
```

```
qed
   \mathbf{qed}
qed
lemma n-step-cdcl_W-stgy-iff-no-step-cdcl_W-cl-cdcl_W-o:
 assumes inv: cdcl_W-all-struct-inv S
 shows no-step cdcl_W-s' S \longleftrightarrow no-step cdcl_W-cp S \land no-step cdcl_W-o S (is ?S' S \longleftrightarrow ?C S \land ?O S)
proof
 assume ?CS \land ?OS
 then show ?S'S
   by (auto simp: cdcl_W-s'.simps full1-def tranclp-unfold-begin)
next
 assume n-s: ?S' S
 have ?CS
   proof (rule ccontr)
     assume ¬ ?thesis
     then obtain S' where cdcl_W-cp S S'
     then obtain T where full1 \ cdcl_W-cp \ S \ T
       using cdcl_W-cp-normalized-element-all-inv inv by (metis (no-types, lifting) full-unfold)
     then show False using n-s cdcl_W-s'.conflict' by blast
   qed
 moreover have ?OS
   proof (rule ccontr)
     assume ¬ ?thesis
     then obtain S' where cdcl_W-o S S'
       by auto
     then obtain T where full cdcl_W-cp S' T
       using cdcl_W-cp-normalized-element-all-inv inv
       by (meson\ cdcl_W-all-struct-inv-def\ n-s
         cdcl_W-stgy-cdcl_W-s'-connected' cdcl_W-then-exists-cdcl_W-stgy-step)
     then show False using n-s by (meson \ \langle cdcl_W \text{-}o \ S \ S' \rangle \ cdcl_W \text{-}all\text{-}struct\text{-}inv\text{-}def
       cdcl_W-stgy-cdcl_W-s'-connected' cdcl_W-then-exists-cdcl_W-stgy-step inv)
   qed
 ultimately show ?C S \land ?O S by auto
qed
lemma cdcl_W-s'-tranclp-cdcl_W:
  cdcl_W-s' S S' \Longrightarrow cdcl_W^{++} S S'
proof (induct rule: cdcl_W-s'.induct)
 case conflict'
 then show ?case
   by (simp add: full1-def tranclp-cdcl<sub>W</sub>-cp-tranclp-cdcl<sub>W</sub>)
next
 case decide'
 then show ?case
   using cdcl_W-stgy.simps cdcl_W-stgy-tranclp-cdcl_W by (meson cdcl_W-o.simps)
 case (bj' Sa S'a S'') note a2 = this(1) and a1 = this(2) and n-s = this(3)
 obtain ss :: 'st \Rightarrow 'st \Rightarrow ('st \Rightarrow 'st \Rightarrow bool) \Rightarrow 'st where
   \forall x0 \ x1 \ x2. \ (\exists \ v3. \ x2 \ x1 \ v3 \ \land \ x2^{**} \ v3 \ x0) = (x2 \ x1 \ (ss \ x0 \ x1 \ x2) \ \land \ x2^{**} \ (ss \ x0 \ x1 \ x2) \ x0)
  then have f3: \forall p \ s \ sa. \ \neg \ p^{++} \ s \ sa \ \lor \ p \ s \ (ss \ sa \ s \ p) \ \land \ p^{**} \ (ss \ sa \ s \ p) \ sa
   by (metis (full-types) tranclpD)
 have cdcl_W-bj^{++} Sa S'a \wedge no-step cdcl_W-bj S'a
```

```
using a2 by (simp add: full1-def)
  then have cdcl_W-bj Sa (ss\ S'a\ Sa\ cdcl_W-bj) \land\ cdcl_W-bj** (ss\ S'a\ Sa\ cdcl_W-bj) S'a
    using f3 by auto
  then show cdcl_W^{++} Sa S"
   using a1 n-s by (meson bj other rtranclp-cdcl<sub>W</sub>-bj-full1-cdclp-cdcl<sub>W</sub>-stgy
      rtranclp-cdcl_W-stgy-rtranclp-cdcl_W rtranclp-into-tranclp2)
qed
lemma tranclp\text{-}cdcl_W\text{-}s'\text{-}tranclp\text{-}cdcl_W:
  cdcl_W-s'^{++} S S' \Longrightarrow cdcl_W<sup>++</sup> S S'
  apply (induct rule: tranclp.induct)
  using cdcl_W-s'-tranclp-cdcl<sub>W</sub> apply blast
  by (meson\ cdcl_W - s' - tranclp - cdcl_W\ tranclp - trans)
lemma rtranclp-cdcl_W-s'-rtranclp-cdcl_W:
   cdcl_W-s'^{**} S S' \Longrightarrow cdcl_W^{**} S S'
  using rtranclp-unfold[of\ cdcl_W-s'\ S\ S']\ tranclp-cdcl_W-s'-tranclp-cdcl_W[of\ S\ S'] by auto
lemma full-cdcl_W-stgy-iff-full-cdcl_W-s':
  assumes inv: cdcl_W-all-struct-inv S
  shows full cdcl_W-stgy S T \longleftrightarrow full <math>cdcl_W-s' S T (is ?S \longleftrightarrow ?S')
proof
  assume ?S'
  then have cdcl_W^{**} S T
   using rtranclp-cdcl_W-s'-rtranclp-cdcl_W[of\ S\ T] unfolding full-def by blast
  then have inv': cdcl_W-all-struct-inv T
   using rtranclp-cdcl_W-all-struct-inv-inv inv by blast
  have cdcl_W-stgy^{**} S T
   using \langle ?S' \rangle unfolding full-def
     using cdcl_W-s'-is-rtranclp-cdcl_W-stgy rtranclp-mono[of cdcl_W-s' cdcl_W-stgy**] by auto
  then show ?S
   using \langle ?S' \rangle inv' cdcl_W-stgy-cdcl_W-s'-connected' unfolding full-def by blast
  assume ?S
  then have inv-T:cdcl_W-all-struct-inv T
   by (metis assms full-def rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv rtranclp-cdcl<sub>W</sub>-stgy-rtranclp-cdcl<sub>W</sub>)
  consider
     (s') cdcl_W-s'^{**} S T
   |(st)| S' where cdcl_W - s'^{**} S S' and cdcl_W - bj^{++} S' T and conflicting T \neq None
   using rtranclp-cdcl_W-stqy-connected-to-rtranclp-cdcl_W-s'[of S T] inv \langle ?S \rangle
   unfolding full-def cdcl_W-all-struct-inv-def
   by blast
  then show ?S'
   proof cases
     case s'
     then show ?thesis
       by (metis \ \langle full \ cdcl_W \ -stgy \ S \ T \rangle \ inv \ -T \ cdcl_W \ -all \ -struct \ -inv \ -def \ cdcl_W \ -s'. simps
         cdcl_W-stqy.conflict' cdcl_W-then-exists-cdcl_W-stqy-step full-def
         n-step-cdcl<sub>W</sub>-stgy-iff-no-step-cdcl<sub>W</sub>-cl-cdcl<sub>W</sub>-o)
   next
     case (st S')
     have full cdcl_W-cp T T
       using option-full-cdcl<sub>W</sub>-cp st(3) by blast
     moreover
```

```
have n-s: no-step cdcl_W-bj T
         by (metis \langle full \ cdcl_W \text{-}stgy \ S \ T \rangle \ bj \ inv\text{-}T \ cdcl_W \text{-}all\text{-}struct\text{-}inv\text{-}def
           cdcl_W-then-exists-cdcl_W-stgy-step full-def)
       then have full1\ cdcl_W-bj S' T
         using st(2) unfolding full1-def by blast
     moreover have no-step cdcl_W-cp S'
       using st(2) by (fastforce dest!: tranclpD simp: cdcl_W-cp.simps cdcl_W-bj.simps)
     ultimately have cdcl_W-s' S' T
       using cdcl_W-s'.bj'[of S' T T] by blast
     then have cdcl_W-s'** S T
       using st(1) by auto
     moreover have no-step cdcl_W-s' T
       \mathbf{using} \ \mathit{inv-T} \ \mathbf{by} \ (\mathit{metis} \ \langle \mathit{full} \ \mathit{cdcl}_W \mathit{-cp} \ T \ T \rangle \ \langle \mathit{full} \ \mathit{cdcl}_W \mathit{-stgy} \ S \ T \rangle \ \mathit{cdcl}_W \mathit{-all-struct-inv-def}
         cdcl_W-then-exists-cdcl_W-stgy-step full-def n-step-cdcl_W-stgy-iff-no-step-cdcl_W-cl-cdcl_W-o)
     ultimately show ?thesis
       unfolding full-def by blast
   qed
qed
lemma conflict-step-cdcl_W-stgy-step:
  assumes
    conflict S T
    cdcl_W-all-struct-inv S
  shows \exists T. cdcl_W-stgy S T
proof
  obtain U where full\ cdcl_W-cp\ S\ U
   using cdcl_W-cp-normalized-element-all-inv assms by blast
  then have full cdcl_W-cp S U
   by (metis\ cdcl_W-cp. conflict'\ assms(1)\ full-unfold)
  then show ?thesis using cdcl<sub>W</sub>-stgy.conflict' by blast
qed
lemma decide-step-cdcl_W-stgy-step:
 assumes
    decide S T
    cdcl_W-all-struct-inv S
  shows \exists T. cdcl_W-stqy S T
proof -
  obtain U where full\ cdcl_W-cp\ T\ U
   using cdcl_W-cp-normalized-element-all-inv by (meson\ assms(1)\ assms(2)\ cdcl_W-all-struct-inv-inv
     cdcl_W-cp-normalized-element-all-inv decide other)
  then show ?thesis
   by (metis assms cdcl_W-cp-normalized-element-all-inv cdcl_W-stgy.conflict' decide full-unfold
      other')
qed
lemma rtranclp-cdcl_W-cp-conflicting-Some:
  cdcl_W - cp^{**} S T \Longrightarrow conflicting S = Some D \Longrightarrow S = T
  using rtranclpD tranclpD by fastforce
inductive cdcl_W-merge-cp: 'st \Rightarrow 'st \Rightarrow bool where
conflict'[intro]: conflict \ S \ T \Longrightarrow full \ cdcl_W-bj \ T \ U \ \Longrightarrow \ cdcl_W-merge-cp \ S \ U \ |
propagate'[intro]: propagate^{++} S S' \Longrightarrow cdcl_W \text{-merge-cp } S S'
```

lemma $cdcl_W$ -merge-restart-cases [consumes 1, case-names conflict propagate]:

```
assumes
   cdcl_W-merge-cp S U and
   \bigwedge T. conflict S \ T \Longrightarrow full \ cdcl_W-bj T \ U \Longrightarrow P and
   propagate^{++} S U \Longrightarrow P
  shows P
 using assms unfolding cdcl_W-merge-cp.simps by auto
lemma cdcl_W-merge-cp-tranclp-cdcl_W-merge:
  cdcl_W-merge-cp S T \Longrightarrow cdcl_W-merge<sup>++</sup> S T
 apply (induction rule: cdcl_W-merge-cp.induct)
   using cdcl_W-merge.simps apply auto[1]
  using tranclp-mono[of\ propagate\ cdcl_W-merge]\ fw-propagate\ \mathbf{by}\ blast
lemma rtranclp-cdcl_W-merge-cp-rtranclp-cdcl_W:
  cdcl_W-merge-cp^{**} S T \Longrightarrow cdcl_W^{**} S T
apply (induction rule: rtranclp-induct)
 apply simp
unfolding cdcl_W-merge-cp.simps by (meson cdcl_W-merge-restart-cdcl<sub>W</sub> fw-r-conflict
  rtranclp-propagate-is-rtranclp-cdcl_W rtranclp-trans tranclp-into-rtranclp)
lemma full1-cdcl_W-bj-no-step-cdcl_W-bj:
 full1 cdcl_W-bj S T \Longrightarrow no-step cdcl_W-cp S
 by (metis rtranclp-unfold cdcl_W-cp-conflicting-not-empty option.exhaust full1-def
   rtranclp-cdcl_W-merge-restart-no-step-cdcl_W-bj tranclpD)
inductive cdcl_W-s'-without-decide where
conflict'-without-decide[intro]: full1 cdcl_W-cp S S' \Longrightarrow cdcl_W-s'-without-decide S S'
bj'-without-decide[intro]: full1 cdcl_W-bj S S' \Longrightarrow no-step cdcl_W-cp S \Longrightarrow full \ cdcl_W-cp S' S''
     \implies cdcl_W-s'-without-decide S S''
lemma rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W:
  cdcl_W-s'-without-decide** S \ T \Longrightarrow cdcl_W** S \ T
 apply (induction rule: rtranclp-induct)
   apply simp
 by (meson\ cdcl_W - s'.simps\ cdcl_W - s'-tranclp-cdcl_W\ cdcl_W - s'-without-decide.simps
   rtranclp-tranclp-tranclp tranclp-into-rtranclp)
lemma rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W-s':
  cdcl_W-s'-without-decide** S \ T \Longrightarrow cdcl_W-s'** S \ T
proof (induction rule: rtranclp-induct)
 case base
 then show ?case by simp
next
  case (step y z) note a2 = this(2) and a1 = this(3)
 have cdcl_W-s' y z
   using a2 by (metis (no-types) bj' cdcl<sub>W</sub>-s'.conflict' cdcl<sub>W</sub>-s'-without-decide.cases)
 then show cdcl_W-s'** S z
   using a1 by (meson r-into-rtranclp rtranclp-trans)
qed
lemma rtranclp-cdcl_W-merge-cp-is-rtranclp-cdcl_W-s'-without-decide:
   cdcl_W-merge-cp^{**} S V
   conflicting S = None
 shows
```

```
(cdcl_W - s' - without - decide^{**} S V)
   \vee (\exists T. \ cdcl_W \text{-}s'\text{-}without\text{-}decide^{**} \ S \ T \land propagate^{++} \ T \ V)
   \vee (\exists T \ U. \ cdcl_W - s' - without - decide^{**} \ S \ T \land full 1 \ cdcl_W - bj \ T \ U \land propagate^{**} \ U \ V)
  using assms
proof (induction rule: rtranclp-induct)
 case base
  then show ?case by simp
next
 case (step U V) note st = this(1) and cp = this(2) and IH = this(3)[OF\ this(4)]
 from cp show ?case
   proof (cases rule: cdcl_W-merge-restart-cases)
     case propagate
     then show ?thesis using IH by (meson rtranclp-tranclp-tranclp-into-rtranclp)
     case (conflict U') note confl = this(1) and bj = this(2)
     have full1-U-U': full1 cdclw-cp U U'
       by (simp add: conflict-is-full1-cdcl<sub>W</sub>-cp local.conflict(1))
         (s') cdcl_W-s'-without-decide^{**} S U
        (propa) T' where cdcl_W-s'-without-decide** S T' and propagate^{++} T' U
       \mid (\mathit{bj-prop}) \ \mathit{T'} \ \mathit{T''} \ \mathbf{where}
           cdcl_W-s'-without-decide** S T' and
          full1\ cdcl_W-bj\ T'\ T'' and
          propagate^{**} T'' U
       using IH by blast
     then show ?thesis
       proof cases
         case s'
         have cdcl_W-s'-without-decide U U'
         using full1-U-U' conflict'-without-decide by blast
         then have cdcl_W-s'-without-decide** S U'
          using \langle cdcl_W - s' - without - decide^{**} S U \rangle by auto
         moreover have U' = V \vee full1 \ cdcl_W-bj U' \ V
           using bj by (meson full-unfold)
         ultimately show ?thesis by blast
       next
         case propa note s' = this(1) and T'-U = this(2)
         have full1 cdcl_W-cp T' U'
           using rtranclp-mono[of\ propagate\ cdcl_W-cp]\ T'-U\ cdcl_W-cp.propagate'\ full1-U-U'
           rtranclp-full1I[of\ cdcl_W-cp\ T'] by (metis\ (full-types)\ predicate2D\ predicate2I
            tranclp-into-rtranclp)
         have cdcl_W-s'-without-decide** S U'
          using \langle full1\ cdcl_W-cp T'\ U' \rangle conflict'-without-decide s' by force
         have full1 cdcl_W-bj U' V \vee V = U'
          by (metis (lifting) full-unfold local.bj)
         then show ?thesis
          using \langle cdcl_W - s' - without - decide^{**} S U' \rangle by blast
         case bj-prop note s' = this(1) and bj-T' = this(2) and T''-U = this(3)
         have no-step cdcl_W-cp T'
           using bj-T' full1-cdcl_W-bj-no-step-cdcl_W-bj by blast
         moreover have full1\ cdcl_W-cp\ T^{\prime\prime}\ U^{\prime}
           using rtranclp-mono[of\ propagate\ cdcl_W-cp]\ T''-U\ cdcl_W-cp.propagate'\ full1-U-U'
           rtranclp-full1I[of\ cdcl_W-cp\ T''] by blast
         ultimately have cdcl_W-s'-without-decide T' U'
```

```
using bj'-without-decide[of T' T'' U'] bj-T' by (simp add: full-unfold)
        then have cdcl_W-s'-without-decide** S U'
          using s' rtranclp.intros(2)[of - S T' U'] by blast
        then show ?thesis
          by (metis full-unfold local.bj rtranclp.rtrancl-refl)
       qed
   \mathbf{qed}
qed
lemma rtranclp-cdcl_W-s'-without-decide-is-rtranclp-cdcl_W-merge-cp:
 assumes
   cdcl_W-s'-without-decide^{**} S V and
   confl: conflicting S = None
 shows
   (cdcl_W - merge - cp^{**} S V \land conflicting V = None)
   \lor (cdcl_W \text{-}merge\text{-}cp^{**} \ S \ V \land conflicting \ V \neq None \land no\text{-}step \ cdcl_W \text{-}cp \ V \land no\text{-}step \ cdcl_W \text{-}bj \ V)
   \vee (\exists T. \ cdcl_W \text{-merge-} cp^{**} \ S \ T \land conflict \ T \ V)
  using assms(1)
proof (induction)
 case base
 then show ?case using confl by auto
next
  case (step\ U\ V) note st=this(1) and s=this(2) and IH=this(3)
 from s show ?case
   proof (cases rule: cdcl_W-s'-without-decide.cases)
     case conflict'-without-decide
     then have rt: cdcl_W-cp^{++} U V unfolding full1-def by fast
     then have conflicting U = None
       using tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of U V]
       conflict by (auto dest!: tranclpD simp: rtranclp-unfold)
     then have cdcl_W-merge-cp^{**} S U using IH by auto
     consider
        (propa) propagate^{++} U V
        \mid (confl') \ conflict \ U \ V
        (propa-confl') U' where propagate<sup>++</sup> U U' conflict U' V
       using tranclp-cdclw-cp-propagate-with-conflict-or-not[OF rt] unfolding rtranclp-unfold
       by fastforce
     then show ?thesis
       proof cases
        case propa
        then have cdcl_W-merge-cp UV
          by auto
        moreover have conflicting V = None
          using propa unfolding translp-unfold-end by auto
        ultimately show ?thesis using \langle cdcl_W-merge-cp^{**} S U \rangle by force
      next
        case confl'
        then show ?thesis using \langle cdcl_W-merge-cp^{**} S U by auto
        case propa-confl' note propa = this(1) and confl' = this(2)
        then have cdcl_W-merge-cp UU' by auto
        then have cdcl_W-merge-cp^{**} S U' using \langle cdcl_W-merge-cp^{**} S U \rangle by auto
        then show ?thesis using \langle cdcl_W \text{-merge-}cp^{**} \mid S \mid U \rangle confl' by auto
       qed
```

```
case (bj'-without-decide U') note full-bj = this(1) and cp = this(3)
     then have conflicting U \neq None
       using full-bj unfolding full1-def by (fastforce dest!: tranclpD simp: cdcl<sub>W</sub>-bj.simps)
     with IH obtain T where
       S-T: cdcl_W-merge-cp** S T and T-U: conflict T U
      using full-bj unfolding full1-def by (blast dest: tranclpD)
     then have cdcl_W-merge-cp T U'
       using cdcl_W-merge-cp.conflict'[of T U U'] full-bj by (simp add: full-unfold)
     then have S-U': cdcl_W-merge-cp^{**} S U' using S-T by auto
     consider
        (n-s) U'=V
       \mid (propa) \ propagate^{++} \ U' \ V
         (confl') conflict U' V
        (propa-confl') U'' where propagate<sup>++</sup> U' U'' conflict U'' V
      \mathbf{using} \ \mathit{tranclp-cdcl}_W \textit{-}\mathit{cp-propagate-with-conflict-or-not} \ \mathit{cp}
      unfolding rtranclp-unfold full-def by metis
     then show ?thesis
      proof cases
        case propa
        then have cdcl_W-merge-cp U' V by auto
        moreover have conflicting V = None
          using propa unfolding tranclp-unfold-end by auto
        ultimately show ?thesis using S-U' by force
      next
        case confl'
        then show ?thesis using S-U' by auto
      next
        case propa-confl' note propa = this(1) and confl = this(2)
        have cdcl_W-merge-cp U' U'' using propa by auto
        then show ?thesis using S-U' confl by (meson rtranclp.rtrancl-into-rtrancl)
      next
        case n-s
        then show ?thesis
          using S-U' apply (cases conflicting V = None)
           using full-bj apply simp
          by (metis cp full-def full-unfold full-bj)
      qed
   \mathbf{qed}
qed
lemma no-step-cdcl_W-s'-no-ste-cdcl_W-merge-cp:
 assumes
   cdcl_W-all-struct-inv S
   conflicting S = None
   no-step cdcl_W-s' S
 shows no-step cdcl_W-merge-cp S
  using assms apply (auto simp: cdcl_W-s'.simps cdcl_W-merge-cp.simps)
   using conflict-is-full1-cdcl<sub>W</sub>-cp apply blast
  using cdcl_W-cp-normalized-element-all-inv cdcl_W-cp.propagate' by (metis cdcl_W-cp.propagate'
   full-unfold tranclpD)
The no-step decide S is needed, since cdcl_W-merge-cp is cdcl_W-s' without decide.
\mathbf{lemma}\ conflicting\text{-}true\text{-}no\text{-}step\text{-}cdcl_W\text{-}merge\text{-}cp\text{-}no\text{-}step\text{-}s'\text{-}without\text{-}decide}:
 assumes
```

next

```
confl: conflicting S = None and
   inv: cdcl_W-M-level-inv S and
   n-s: no-step cdcl_W-merge-cp S
 shows no-step cdcl_W-s'-without-decide S
proof (rule ccontr)
 assume \neg no-step cdcl_W-s'-without-decide S
 then obtain T where
   cdcl_W: cdcl_W-s'-without-decide S T
   by auto
 then have inv-T: cdcl_W-M-level-inv T
   using rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W[of S T]
   rtranclp-cdcl_W-consistent-inv inv by blast
 from cdcl_W show False
   proof cases
     case conflict'-without-decide
     have no-step propagate S
      using n-s by blast
     then have conflict S T
      \mathbf{using}\ local.conflict'\ tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of\ S\ T]
      unfolding full1-def by (metis full1-def local.conflict'-without-decide rtranclp-unfold
        tranclp-unfold-begin)
     moreover
      then obtain T' where full\ cdcl_W-bj\ T\ T'
        using cdcl_W-bj-exists-normal-form inv-T by blast
     ultimately show False using cdcl_W-merge-cp.conflict' n-s by meson
   next
     case (bj'-without-decide S')
     then show ?thesis
      using confl unfolding full1-def by (fastforce simp: cdcl_W-bj.simps dest: tranclpD)
   qed
\mathbf{qed}
lemma\ conflicting-true-no-step-s'-without-decide-no-step-cdcl_W-merge-cp:
 assumes
   inv: cdcl_W-all-struct-inv S and
   n-s: no-step cdcl_W-s'-without-decide S
 shows no-step cdcl_W-merge-cp S
proof (rule ccontr)
 assume ¬ ?thesis
 then obtain T where cdcl_W-merge-cp S T
   by auto
 then show False
   proof cases
     case (conflict' S')
     then show False using n-s conflict'-without-decide conflict-is-full1-cdcl<sub>W</sub>-cp by blast
   next
     case propagate'
     moreover
      have cdcl_W-all-struct-inv T
        using inv by (meson local.propagate' rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv
          rtranclp-propagate-is-rtranclp-cdcl_W tranclp-into-rtranclp)
      then obtain U where full cdcl_W-cp T U
        using cdcl_W-cp-normalized-element-all-inv by auto
     ultimately have full 1 \ cdcl_W-cp \ S \ U
      using tranclp-full-full1I[of cdcl_W-cp S T U] cdcl_W-cp.propagate'
```

```
tranclp-mono[of propagate cdcl_W-cp] by blast
     then show False using conflict'-without-decide n-s by blast
   qed
qed
lemma no-step-cdcl_W-merge-cp-no-step-cdcl_W-cp:
 no\text{-step } cdcl_W\text{-}merge\text{-}cp \ S \Longrightarrow cdcl_W\text{-}M\text{-}level\text{-}inv \ S \Longrightarrow no\text{-step } cdcl_W\text{-}cp \ S
 using cdcl_W-bj-exists-normal-form cdcl_W-consistent-inv[OF cdcl_W.conflict, of S]
 by (metis\ cdcl_W - cp. cases\ cdcl_W - merge-cp. simps\ tranclp.intros(1))
lemma conflicting-not-true-rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj:
 assumes
   conflicting S = None  and
   cdcl_W-merge-cp^{**} S T
 shows no-step cdcl_W-bj T
 using assms(2,1) by (induction)
 (fastforce\ simp:\ cdcl_W-merge-cp.simps full-def tranclp-unfold-end cdcl_W-bj.simps)+
lemma conflicting-true-full-cdcl_W-merge-cp-iff-full-cdcl_W-s'-without-decode:
 assumes
   confl: conflicting S = None and
   inv: cdcl_W-all-struct-inv S
 shows
   full\ cdcl_W-merge-cp S\ V\longleftrightarrow full\ cdcl_W-s'-without-decide S\ V\ (\mathbf{is}\ ?fw\longleftrightarrow ?s')
proof
 assume ?fw
 then have st: cdcl_W-merge-cp^{**} S V and n-s: no-step cdcl_W-merge-cp V
   unfolding full-def by blast+
 have inv-V: cdcl_W-all-struct-inv V
   using rtranclp-cdcl_W-merge-cp-rtranclp-cdcl_W[of S V] \langle ?fw \rangle unfolding full-def
   by (simp add: inv rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv)
 consider
     (s') cdcl_W-s'-without-decide^{**} S V
   | (propa) T  where cdcl_W-s'-without-decide** S T  and propagate^{++} T V
   using rtranclp-cdcl_W-merge-cp-is-rtranclp-cdcl_W-s'-without-decide confl st n-s by metis
 then have cdcl_W-s'-without-decide** S V
   proof cases
     case s'
     then show ?thesis.
     case propa note s' = this(1) and propa = this(2)
     have no-step cdcl_W-cp V
      using no-step-cdcl<sub>W</sub>-merge-cp-no-step-cdcl<sub>W</sub>-cp n-s inv-V
      unfolding cdcl_W-all-struct-inv-def by blast
     then have full1\ cdcl_W-cp\ T\ V
      using propa translp-mono of propagate cdcl_W-cp] cdcl_W-cp.propagate' unfolding full1-def
      by blast
     then have cdcl_W-s'-without-decide T V
      using conflict'-without-decide by blast
     then show ?thesis using s' by auto
     case by note s' = this(1) and bj = this(2) and propa = this(3)
     have no-step cdcl_W-cp V
      using no-step-cdcl_W-merge-cp-no-step-cdcl_W-cp n-s inv-V
```

```
unfolding cdcl_W-all-struct-inv-def by blast
      then have full cdcl_W-cp U V
       using propa rtranclp-mono of propagate cdcl<sub>W</sub>-cp] cdcl<sub>W</sub>-cp.propagate' unfolding full-def
       by blast
      moreover have no-step cdcl_W-cp T
        using bj unfolding full1-def by (fastforce dest!: tranclpD simp:cdclw-bj.simps)
      ultimately have cdcl_W-s'-without-decide T V
        using bj'-without-decide[of T U V] bj by blast
      then show ?thesis using s' by auto
   qed
  moreover have no-step cdcl_W-s'-without-decide V
   proof (cases conflicting V = None)
      {\bf case}\ \mathit{False}
      { fix ss :: 'st
       have ff1: \forall s \ sa. \ \neg \ cdcl_W - s' \ s \ sa \ \lor \ full1 \ cdcl_W - cp \ s \ sa
         \vee (\exists sb. \ decide \ s \ sb \land no\text{-}step \ cdcl_W\text{-}cp \ s \land full \ cdcl_W\text{-}cp \ sb \ sa)
         \vee (\exists sb. full1 \ cdcl_W - bj \ s \ sb \land no\text{-step} \ cdcl_W - cp \ s \land full \ cdcl_W - cp \ sb \ sa)
         by (metis\ cdcl_W - s'.cases)
       have ff2: (\forall p \ s \ sa. \ \neg \ full1 \ p \ (s::'st) \ sa \lor p^{++} \ s \ sa \land no\text{-step} \ p \ sa)
         \land (\forall p \ s \ sa. \ (\neg p^{++} \ (s::'st) \ sa \lor (\exists s. \ p \ sa \ s)) \lor full1 \ p \ sa)
         by (meson\ full1-def)
       obtain ssa :: ('st \Rightarrow 'st \Rightarrow bool) \Rightarrow 'st \Rightarrow 'st \Rightarrow 'st where
         ff3: \forall p \ s \ sa. \ \neg \ p^{++} \ s \ sa \ \lor \ p \ s \ (ssa \ p \ s \ sa) \ \land \ p^{**} \ (ssa \ p \ s \ sa) \ sa
         by (metis (no-types) tranclpD)
       then have a3: \neg cdcl_W - cp^{++} V ss
         using False by (metis option-full-cdcl<sub>W</sub>-cp full-def)
       have \bigwedge s. \neg cdcl_W - bj^{++} V s
         using ff3 False by (metis confl st
            conflicting-not-true-rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj)
       then have \neg cdcl_W-s'-without-decide V ss
         using ff1 a3 ff2 by (metis cdcl_W-s'-without-decide.cases)
      then show ?thesis
       by fastforce
     \mathbf{next}
       \mathbf{case} \ \mathit{True}
       then show ?thesis
         using conflicting-true-no-step-cdcl<sub>W</sub>-merge-cp-no-step-s'-without-decide n-s inv-V
         unfolding cdcl_W-all-struct-inv-def by blast
   qed
  ultimately show ?s' unfolding full-def by blast
next
  assume s': ?s'
  then have st: cdcl_W-s'-without-decide** S V and n-s: no-step cdcl_W-s'-without-decide V
   unfolding full-def by auto
  then have cdcl_W^{**} S V
   using rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl<sub>W</sub> st by blast
  then have inv-V: cdcl<sub>W</sub>-all-struct-inv V using inv rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv by blast
  then have n-s-cp-V: no-step cdcl_W-cp V
   using cdcl_W-cp-normalized-element-all-inv[of V] full-fullI[of cdcl_W-cp V] n-s
   conflict'-without-decide conflicting-true-no-step-s'-without-decide-no-step-cdcl_W-merge-cp
   no-step-cdcl_W-merge-cp-no-step-cdcl_W-cp
   unfolding cdcl_W-all-struct-inv-def by presburger
  have n-s-bj: no-step cdcl_W-bj V
   proof (rule ccontr)
```

```
assume ¬ ?thesis
     then obtain W where W: cdcl_W-bj V W by blast
     have cdcl_W-all-struct-inv W
       using W \ cdcl_W.simps \ cdcl_W-all-struct-inv-inv \ inv-V \ by \ blast
     then obtain W' where full cdcl_W-bj V W'
      using cdcl_W-bj-exists-normal-form[of W] full-fullI[of cdcl_W-bj V W] W
      unfolding cdcl_W-all-struct-inv-def
      by blast
     moreover
      then have cdcl_W^{++} V W'
        using tranclp-mono[of\ cdcl_W-bj\ cdcl_W]\ cdcl_W.other\ cdcl_W-o.bj\ unfolding\ full1-def\ by\ blast
      then have cdcl_W-all-struct-inv W'
        by (meson\ inv-V\ rtranclp-cdcl_W\ -all-struct-inv-inv\ tranclp-into-rtranclp)
      then obtain X where full cdcl_W-cp W'X
        using cdcl_W-cp-normalized-element-all-inv by blast
     ultimately show False
      using bj'-without-decide n-s-cp-V n-s by blast
   qed
  from s' consider
     (cp-true) cdcl_W-merge-cp^{**} S V and conflicting V = None
   |(cp\text{-}false)| cdcl_W-merge-cp^{**} S V and conflicting V \neq None and no-step cdcl_W-cp V and
        no-step cdcl_W-bj V
   | (cp\text{-}confl) \ T \ \text{where} \ cdcl_W\text{-}merge\text{-}cp^{**} \ S \ T \ conflict \ T \ V
   using rtranclp-cdcl_W-s'-without-decide-is-rtranclp-cdcl_W-merge-cp[of\ S\ V]\ confl
   unfolding full-def by meson
  then have cdcl_W-merge-cp^{**} S V
   proof cases
     case cp\text{-}confl note S\text{-}T = this(1) and conf\text{-}V = this(2)
     have full cdcl_W-bj V
      using conf-V n-s-bj unfolding full-def by fast
     then have cdcl_W-merge-cp T V
      using cdcl_W-merge-cp.conflict' conf-V by auto
     then show ?thesis using S-T by auto
   qed fast+
  moreover
   then have cdcl_W^{**} S V using rtranclp-cdcl_W-merge-cp-rtranclp-cdcl<sub>W</sub> by blast
   then have cdcl_W-all-struct-inv V
     using inv rtranclp-cdcl_W-all-struct-inv-inv by blast
   then have no-step cdcl_W-merge-cp V
     using conflicting-true-no-step-s'-without-decide-no-step-cdcl_W-merge-cp s'
     unfolding full-def by blast
 ultimately show ?fw unfolding full-def by auto
qed
\mathbf{lemma}\ conflicting\text{-}true\text{-}full1\text{-}cdcl_W\text{-}merge\text{-}cp\text{-}iff\text{-}full1\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decode}:
 assumes
   confl: conflicting S = None and
   inv: cdcl_W-all-struct-inv S
 shows
   full1\ cdcl_W-merge-cp S\ V\longleftrightarrow full1\ cdcl_W-s'-without-decide S\ V
proof -
 have full cdcl_W-merge-cp S V = full cdcl_W-s'-without-decide S V
   using conflicting-true-full-cdcl_W-merge-cp-iff-full-cdcl_W-s'-without-decode inv
   by blast
  then show ?thesis unfolding full-unfold full1-def
```

```
by (metis (mono-tags) tranclp-unfold-begin)
qed
\mathbf{lemma}\ conflicting\text{-}true\text{-}full1\text{-}cdcl_W\text{-}merge\text{-}cp\text{-}imp\text{-}full1\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decode}:
 assumes
   fw: full1 cdcl_W-merge-cp S V and
   inv: cdcl_W-all-struct-inv S
 shows
   full1 cdcl_W-s'-without-decide S V
proof
 have conflicting S = None
   using fw unfolding full1-def by (auto dest!: tranclpD simp: cdclw-merge-cp.simps)
 then show ?thesis
   using conflicting-true-full1-cdcl<sub>W</sub>-merge-cp-iff-full1-cdcl<sub>W</sub>-s'-without-decode fw inv by blast
qed
inductive cdcl_W-merge-stgy where
fw-s-cp[intro]: full1\ cdcl_W-merge-cp S\ T \Longrightarrow cdcl_W-merge-stgy S\ T |
fw-s-decide[intro]: decide S T \Longrightarrow no-step cdcl_W-merge-cp S \Longrightarrow full \ cdcl_W-merge-cp T U
 \implies cdcl_W-merge-stgy S \ U
lemma cdcl_W-merge-stgy-tranclp-cdcl<sub>W</sub>-merge:
  assumes fw: cdcl_W-merge-stgy S T
 shows cdcl_W-merge^{++} S T
proof -
 \{  fix S T
   assume full1 cdcl_W-merge-cp \ S \ T
   then have cdcl_W-merge^{++} S T
     using tranclp-mono[of\ cdcl_W-merge-cp\ cdcl_W-merge^{++}]\ cdcl_W-merge-cp-tranclp-cdcl_W-merge
     unfolding full1-def
     by auto
  } note full1-cdcl_W-merge-cp-cdcl_W-merge = this
 show ?thesis
   using fw
   apply (induction rule: cdcl_W-merge-stgy.induct)
     using full1-cdcl_W-merge-cp-cdcl_W-merge apply simp
   unfolding full-unfold by (auto dest!: full1-cdcl<sub>W</sub>-merge-cp-cdcl<sub>W</sub>-merge fw-decide)
qed
lemma rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W-merge:
 assumes fw: cdcl_W-merge-stgy** S T
 shows cdcl_W-merge** S T
 using fw cdcl_W-merge-stgy-tranclp-cdcl<sub>W</sub>-merge rtranclp-mono[of cdcl_W-merge-stgy cdcl_W-merge<sup>++</sup>]
  unfolding tranclp-rtranclp-rtranclp by blast
lemma cdcl_W-merge-stgy-rtranclp-cdcl_W:
  cdcl_W-merge-stgy S T \Longrightarrow cdcl_W^{**} S T
 apply (induction rule: cdcl_W-merge-stgy.induct)
   using rtranclp-cdcl_W-merge-cp-rtranclp-cdcl_W unfolding full1-def
   apply (simp add: tranclp-into-rtranclp)
  \mathbf{using}\ rtranclp\text{-}cdcl_W\text{-}merge\text{-}cp\text{-}rtranclp\text{-}cdcl_W\ cdcl_W\text{-}o.decide\ cdcl_W.other\ \mathbf{unfolding}\ full\text{-}def
 by (meson r-into-rtranclp rtranclp-trans)
lemma rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W:
  cdcl_W-merge-stgy** S T \Longrightarrow cdcl_W** S T
```

```
lemma cdcl_W-merge-stgy-cases[consumes 1, case-names fw-s-cp fw-s-decide]:
  assumes
    cdcl_W-merge-stgy S U
   full1\ cdcl_W-merge-cp S\ U \Longrightarrow P
   \bigwedge T. decide S T \Longrightarrow no-step cdcl_W-merge-cp S \Longrightarrow full \ cdcl_W-merge-cp T U \Longrightarrow P
  shows P
  using assms by (auto simp: cdcl_W-merge-stgy.simps)
inductive cdcl_W-s'-w :: 'st \Rightarrow 'st \Rightarrow bool where
conflict': full1\ cdcl_W-s'-without-decide S\ S' \Longrightarrow cdcl_W-s'-w S\ S'
decide': decide \ S \ S' \Longrightarrow no-step \ cdcl_W-s'-without-decide \ S \Longrightarrow full \ cdcl_W-s'-without-decide \ S' \ S''
  \implies cdcl_W - s' - w \ S \ S''
lemma cdcl_W-s'-w-rtranclp-cdcl_W:
  cdcl_W-s'-w S T \Longrightarrow cdcl_W^{**} S T
  apply (induction rule: cdcl_W-s'-w.induct)
   using rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W unfolding full1-def
   apply (simp add: tranclp-into-rtranclp)
  using rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W unfolding full-def
  by (meson decide other rtranclp-into-tranclp2 tranclp-into-rtranclp)
lemma rtranclp-cdcl_W-s'-w-rtranclp-cdcl_W:
  cdcl_W-s'-w** S T \Longrightarrow cdcl_W** S T
  using rtranclp-mono[of cdcl_W-s'-w cdcl_W^{**}] cdcl_W-s'-w-rtranclp-cdcl_W by auto
lemma no-step-cdcl_W-cp-no-step-cdcl_W-s'-without-decide:
  assumes no-step cdcl_W-cp S and conflicting <math>S = None and inv: cdcl_W-M-level-inv S
  shows no-step cdcl_W-s'-without-decide S
  by (metis\ assms\ cdcl_W\text{-}cp.conflict'\ cdcl_W\text{-}cp.propagate'\ cdcl_W\text{-}merge\text{-}restart\text{-}cases\ tranclpD}
    conflicting-true-no-step-cdcl_W-merge-cp-no-step-s'-without-decide)
lemma no\text{-}step\text{-}cdcl_W\text{-}cp\text{-}no\text{-}step\text{-}cdcl_W\text{-}merge\text{-}restart:
  assumes no-step cdcl_W-cp S and conflicting <math>S = None
  shows no-step cdcl_W-merge-cp S
  by (metis\ assms(1)\ cdcl_W\text{-}cp.conflict'\ cdcl_W\text{-}cp.propagate'\ cdcl_W\text{-}merge\text{-}restart\text{-}cases\ tranclpD})
lemma after-cdcl_W-s'-without-decide-no-step-cdcl_W-cp:
  assumes cdcl_W-s'-without-decide S T
  shows no-step cdcl_W-cp T
  using assms by (induction rule: cdcl_W-s'-without-decide.induct) (auto simp: full1-def full-def)
lemma no\text{-}step\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decide\text{-}no\text{-}step\text{-}cdcl_W\text{-}cp}:
  cdcl_W-all-struct-inv S \Longrightarrow no-step cdcl_W-s'-without-decide S \Longrightarrow no-step cdcl_W-cp S
  by (simp\ add:\ conflicting\ -true-no\ -step\ -s'\ -without\ -decide\ -no\ -step\ -cdcl_W\ -merge\ -cp
    no-step-cdcl_W-merge-cp-no-step-cdcl_W-cp\ cdcl_W-all-struct-inv-def)
lemma after-cdcl_W-s'-w-no-step-cdcl_W-cp:
 assumes cdcl_W-s'-w S T and cdcl_W-all-struct-inv S
 shows no-step cdcl_W-cp T
  using assms
proof (induction rule: cdcl_W-s'-w.induct)
  case conflict'
  then show ?case
   by (auto simp: full1-def tranclp-unfold-end after-cdcl_W-s'-without-decide-no-step-cdcl_W-cp)
```

using $rtranclp-mono[of\ cdcl_W-merge-stgy\ cdcl_W^{**}]\ cdcl_W-merge-stgy-rtranclp-cdcl_W\$ by auto

```
next
 case (decide' \ S \ T \ U)
 moreover
   then have cdcl_W^{**} S U
     using rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W [of T U] cdcl_W.other[of S T]
     cdcl_W-o. decide unfolding full-def by auto
   then have cdcl_W-all-struct-inv U
     using decide'.prems\ rtranclp-cdcl_W-all-struct-inv-inv\ by blast
 ultimately show ?case
   using no-step-cdcl<sub>W</sub>-s'-without-decide-no-step-cdcl<sub>W</sub>-cp unfolding full-def by blast
qed
lemma rtranclp-cdcl_W-s'-w-no-step-cdcl_W-cp-or-eq:
 assumes cdcl_W-s'-w^{**} S T and cdcl_W-all-struct-inv S
 shows S = T \vee no\text{-step } cdcl_W\text{-}cp T
 using assms
proof (induction rule: rtranclp-induct)
 case base
  then show ?case by simp
next
  case (step \ T \ U)
 moreover have cdcl_W-all-struct-inv T
   using rtranclp-cdcl_W-s'-w-rtranclp-cdcl_W[of S U] assms(2) rtranclp-cdcl_W-all-struct-inv-inv
   rtranclp-cdcl_W-s'-w-rtranclp-cdcl_W step.hyps(1) by blast
  ultimately show ?case using after-cdcl<sub>W</sub>-s'-w-no-step-cdcl<sub>W</sub>-cp by fast
qed
lemma rtranclp-cdcl_W-merge-stgy'-no-step-cdcl_W-cp-or-eq:
 assumes cdcl_W-merge-stgy** S T and inv: cdcl_W-all-struct-inv S
 shows S = T \vee no\text{-step } cdcl_W\text{-}cp T
 using assms
proof (induction rule: rtranclp-induct)
 case base
 then show ?case by simp
next
  case (step \ T \ U)
 moreover have cdcl_W-all-struct-inv T
   using rtranclp-cdcl_W-merge-stqy-rtranclp-cdcl_W [of S U] assms(2) rtranclp-cdcl_W-all-struct-inv-inv
   rtranclp-cdcl_W-s'-w-rtranclp-cdcl_W step.hyps(1)
   by (meson\ rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W)
  ultimately show ?case
   using after-cdcl_W-s'-w-no-step-cdcl<sub>W</sub>-cp inv unfolding cdcl_W-all-struct-inv-def
   by (metis\ cdcl_W\ -all\ -struct\ -inv\ -def\ cdcl_W\ -merge\ -stgy. simps\ full1\ -def\ full\ -def
     no\text{-}step\text{-}cdcl_W\text{-}merge\text{-}cp\text{-}no\text{-}step\text{-}cdcl_W\text{-}cp rtranclp\text{-}cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}inv
     rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W tranclp.intros(1) tranclp-into-rtranclp)
qed
lemma no\text{-}step\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decide\text{-}no\text{-}step\text{-}cdcl_W\text{-}bj:
 assumes no-step cdcl_W-s'-without-decide S and inv: cdcl_W-all-struct-inv S
 shows no-step cdcl_W-bj S
proof (rule ccontr)
 assume ¬ ?thesis
  then obtain T where S-T: cdcl_W-bj S T
   by auto
 have cdcl_W-all-struct-inv T
```

```
using S-T cdcl_W-all-struct-inv-inv inv other by blast
  then obtain T' where full1 \ cdcl_W-bj \ S \ T'
   using cdcl_W-bj-exists-normal-form[of T] full-fullI S-T unfolding cdcl_W-all-struct-inv-def
   by metis
  moreover
   then have cdcl_W^{**} S T'
     using rtranclp-mono[of\ cdcl_W-bj\ cdcl_W]\ cdcl_W.other\ cdcl_W-o.bj\ tranclp-into-rtranclp[of\ cdcl_W-bj]
     {f unfolding}\ full 1-def {f by}\ (metis\ (full-types) predicate 2D\ predicate 2I)
   then have cdcl_W-all-struct-inv T'
     using inv rtranclp-cdcl_W-all-struct-inv-inv by blast
   then obtain U where full cdcl_W-cp T' U
     using cdcl_W-cp-normalized-element-all-inv by blast
  moreover have no-step cdcl_W-cp S
   using S-T by (auto simp: cdcl_W-bj.simps)
 ultimately show False
 using assms cdcl_W-s'-without-decide.intros(2)[of S T' U] by fast
qed
lemma cdcl_W-s'-w-no-step-cdcl_W-bj:
 assumes cdcl_W-s'-w S T and cdcl_W-all-struct-inv S
 shows no-step cdcl_W-bj T
  using assms apply induction
   using rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W rtranclp-cdcl_W-all-struct-inv-inv
   no\text{-}step\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decide\text{-}no\text{-}step\text{-}cdcl_W\text{-}bj unfolding full1-def
   apply (meson tranclp-into-rtranclp)
  using rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W rtranclp-cdcl_W-all-struct-inv-inv
   no\text{-}step\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decide\text{-}no\text{-}step\text{-}cdcl_W\text{-}bj} unfolding full-def
 by (meson\ cdcl_W - merge-restart - cdcl_W\ fw-r-decide)
lemma rtranclp-cdcl_W-s'-w-no-step-cdcl_W-bj-or-eq:
 assumes cdcl_W-s'-w** S T and cdcl_W-all-struct-inv S
 shows S = T \vee no\text{-step } cdcl_W\text{-bj } T
  using assms apply induction
   apply simp
 \mathbf{using} \ \mathit{rtranclp-cdcl}_W \textit{-s'-w-rtranclp-cdcl}_W \ \mathit{rtranclp-cdcl}_W \textit{-all-struct-inv-inv}
    cdcl_W-s'-w-no-step-cdcl_W-bj by meson
lemma rtranclp-cdcl_W-s'-no-step-cdcl_W-s'-without-decide-decomp-into-cdcl_W-merge:
 assumes
   cdcl_W-s'** R V and
   conflicting R = None  and
   inv: cdcl_W-all-struct-inv R
 shows (cdcl_W-merge-stgy** R\ V \land conflicting\ V = None)
  \lor (cdcl_W \text{-merge-stgy}^{**} R \ V \land conflicting \ V \neq None \land no\text{-step} \ cdcl_W \text{-bj} \ V)
  \vee (\exists S \ T \ U. \ cdcl_W-merge-stgy** R \ S \land no-step cdcl_W-merge-cp S \land decide \ S \ T
   \land cdcl_W-merge-cp^{**} T U \land conflict U V)
  \vee (\exists S \ T. \ cdcl_W-merge-stgy** R \ S \ \land \ no-step cdcl_W-merge-cp S \ \land \ decide \ S \ T
   \land \ cdcl_W-merge-cp^{**} \ T \ V
     \land conflicting V = None
  \lor (cdcl_W \text{-}merge\text{-}cp^{**} \ R \ V \land conflicting \ V = None)
 \vee (\exists U. cdcl_W-merge-cp^{**} R U \wedge conflict U V)
 using assms(1,2)
proof induction
  case base
 then show ?case by simp
```

```
next
    case (step V W) note st = this(1) and s' = this(2) and IH = this(3)[OF\ this(4)] and
        n-s-R = this(4)
    from s'
    show ?case
        proof cases
            case conflict'
            consider
                    (s') cdcl_W-merge-stgy** R V
                \mid (dec\text{-}confl) \mid S \mid T \mid U \text{ where } cdcl_W\text{-}merge\text{-}stgy^{**} \mid R \mid S \text{ and } no\text{-}step \ cdcl_W\text{-}merge\text{-}cp \mid S \text{ and } no\text{-}step \ cdcl_W\text{-}cp \mid S \text{ and } no\text{-}step \ cdcl_W\text{-}cp \mid S \text{ and } no\text{-}st
                         decide\ S\ T\ and\ cdcl_W-merge-cp^{**}\ T\ U\ and\ conflict\ U\ V
                | (dec) S T where cdcl_W-merge-stgy** R S and no-step cdcl_W-merge-cp S and decide S T
                        and cdcl_W-merge-cp^{**} T V and conflicting V = None
                    (cp) \ cdcl_W - merge - cp^{**} \ R \ V
                 | (cp\text{-}confl) \ U \text{ where } cdcl_W\text{-}merge\text{-}cp^{**} \ R \ U \text{ and } conflict \ U \ V
                using IH by meson
            then show ?thesis
                proof cases
                next
                    case s'
                    then have R = V
                        by (metis full1-def inv local.conflict' translp-unfold-begin
                             rtranclp-cdcl_W-merge-stgy'-no-step-cdcl_W-cp-or-eq)
                    consider
                             (V-W) V = W
                         | (propa) propagate^{++} V W  and conflicting W = None
                         | (propa-confl) V' where propagate** V V' and conflict V' W
                        using tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of V W] conflict'
                        unfolding full-unfold full1-def by meson
                    then show ?thesis
                        proof cases
                            case V-W
                            then show ?thesis using \langle R = V \rangle n-s-R by simp
                        next
                            case propa
                            then show ?thesis using \langle R = V \rangle by auto
                        next
                            case propa-confl
                            moreover
                                 then have cdcl_W-merge-cp^{**} V V'
                                     by (metis rtranclp-unfold cdcl_W-merge-cp.propagate' r-into-rtranclp)
                             ultimately show ?thesis using s' \langle R = V \rangle by blast
                        qed
                next
                    case dec\text{-}confl note - = this(5)
                    then have False using conflict' unfolding full1-def by (auto dest!: tranclpD)
                    then show ?thesis by fast
                next
                    case dec note T-V = this(4)
                    consider
                              (propa) propagate^{++} V W and conflicting W = None
                         (propa-confl) V' where propagate** V V' and conflict V' W
                        using tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of\ V\ W]\ conflict'
                         unfolding full1-def by meson
                    then show ?thesis
```

```
proof cases
                   case propa
                   then show ?thesis
                        by (meson T-V cdcl<sub>W</sub>-merge-cp.propagate' dec rtranclp.rtrancl-into-rtrancl)
                next
                   case propa-confl
                   then have cdcl_W-merge-cp^{**} T V'
                        using T-V by (metis rtranclp-unfold cdcl_W-merge-cp.propagate' rtranclp.simps)
                   then show ?thesis using dec propa-confl(2) by metis
       next
            case cp
            consider
                    (propa) \ propagate^{++} \ V \ W \ and \ conflicting \ W = None
                | (propa-conft) V' where propagate** V V' and conflict V' W
               using tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of V W] conflict'
                unfolding full1-def by meson
            then show ?thesis
                proof cases
                    case propa
                    then show ?thesis by (meson\ cdcl_W-merge-cp.propagate' cp rtranclp.rtrancl-into-rtrancl)
                next
                   case propa-confl
                   then show ?thesis
                        using propa-confl(2) by (metis rtranclp-unfold cdcl_W-merge-cp.propagate'
                            cp rtranclp.rtrancl-into-rtrancl)
               qed
       \mathbf{next}
            case cp-confl
            then show ?thesis using conflict' unfolding full1-def by (fastforce dest!: tranclpD)
        qed
next
    case (decide' \ V')
    then have conf-V: conflicting V = None
       by auto
    consider
          (s') cdcl_W-merge-stqy** R V
        \mid (dec\text{-}confl) \mid S \mid T \mid U \text{ where } cdcl_W\text{-}merge\text{-}stqy^{**} \mid R \mid S \text{ and } no\text{-}step \ cdcl_W\text{-}merge\text{-}cp \mid S \text{ and } no\text{-}step \ cdcl_W\text{-}cp \mid S \text{ and } no\text{-}step \ cdcl_W\text{-}cp \mid S \text{ and } no\text{-}st
                decide\ S\ T\ {\bf and}\ cdcl_W\mbox{-}merge\mbox{-}cp^{**}\ T\ U\ {\bf and}\ conflict\ U\ V
       (dec) S T where cdcl_W-merge-stgy** R S and no-step cdcl_W-merge-cp S and decide S T
                  and cdcl_W-merge-cp^{**} T V and conflicting V = None
        |(cp)| cdcl_W-merge-cp^{**} R V
        | (cp\text{-}confl) \ U \text{ where } cdcl_W\text{-}merge\text{-}cp^{**} \ R \ U \text{ and } conflict \ U \ V
        using IH by meson
    then show ?thesis
        proof cases
            case s'
            have confl-V': conflicting V' = None using decide'(1) by auto
            have full: full1 cdcl_W-cp\ V'\ W \lor (V' = W \land no\text{-}step\ cdcl_W-cp\ W)
                using decide'(3) unfolding full-unfold by blast
            consider
                    (V'-W) V'=W
                   (propa) propagate^{++} V' W and conflicting W = None
                | (propa-confl) V'' where propagate** V' V'' and conflict V'' W
                using tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of V W] decide'
```

```
by (metis \( full1 \) cdcl_W-cp \( V' \) W \\ V' = W \\ \( no\)-step \( cdcl_W-cp \) W \\ full1-def
    tranclp-cdcl_W-cp-propagate-with-conflict-or-not)
then show ?thesis
 proof cases
   case V'-W
   then show ?thesis
     using confl-V' local.decide'(1,2) s' conf-V
     no\text{-}step\text{-}cdcl_W\text{-}cp\text{-}no\text{-}step\text{-}cdcl_W\text{-}merge\text{-}restart[of\ V]\ \mathbf{by}\ blast
 next
   case propa
   then show ?thesis using local.decide'(1,2) s' by (metis cdcl<sub>W</sub>-merge-cp.simps conf-V
     no-step-cdcl_W-cp-no-step-cdcl_W-merge-restart r-into-rtranclp)
 next
   case propa-confl
   then have cdcl_W-merge-cp^{**} V' V''
     by (metis rtranclp-unfold cdcl_W-merge-cp.propagate' r-into-rtranclp)
   then show ?thesis
     using local.decide'(1,2) propa-confl(2) s' conf-V
     no-step-cdcl<sub>W</sub>-cp-no-step-cdcl<sub>W</sub>-merge-restart
     by metis
 qed
case (dec) note s' = this(1) and dec = this(2) and cp = this(3) and ns-cp-T = this(4)
have full cdcl_W-merge-cp \ T \ V
  unfolding full-def by (simp add: conf-V local.decide'(2)
   no\text{-}step\text{-}cdcl_W\text{-}cp\text{-}no\text{-}step\text{-}cdcl_W\text{-}merge\text{-}restart\ ns\text{-}cp\text{-}T)
moreover have no-step cdcl_W-merge-cp V
  by (simp add: conf-V local.decide'(2) no-step-cdcl<sub>W</sub>-cp-no-step-cdcl<sub>W</sub>-merge-restart)
moreover have no-step cdcl_W-merge-cp S
 by (metis dec)
ultimately have cdcl_W-merge-stgy S V
  using cp by blast
then have cdcl_W-merge-stgy** R V using s' by auto
consider
    (V'-W) V'=W
  | (propa) propagate^{++} V' W  and conflicting W = None
   (propa-confl) V'' where propagate** V' V'' and conflict V'' W
  using tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of V'W] decide'
  {f unfolding}\ full-unfold\ full 1-def {f by}\ meson
then show ?thesis
 proof cases
   case V'-W
   moreover have conflicting V' = None
     using decide'(1) by auto
   ultimately show ?thesis
     \mathbf{using} \ \langle cdcl_W \text{-}merge\text{-}stgy^{**} \ R \ V \rangle \ decide' \ \langle no\text{-}step \ cdcl_W \text{-}merge\text{-}cp \ V \rangle \ \mathbf{by} \ blast
 next
   case propa
   moreover then have cdcl_W-merge-cp V'W
     by auto
   ultimately show ?thesis
     using \langle cdcl_W \text{-}merge\text{-}stgy^{**} \ R \ V \rangle \ decide' \langle no\text{-}step \ cdcl_W \text{-}merge\text{-}cp \ V \rangle
     by (meson \ r-into-rtranclp)
 next
   case propa-confl
```

```
moreover then have cdcl_W-merge-cp^{**} V' V''
            by (metis\ cdcl_W-merge-cp.propagate' rtranclp-unfold tranclp-unfold-end)
          ultimately show ?thesis using \langle cdcl_W-merge-stgy** R V \rangle decide'
             \langle no\text{-}step\ cdcl_W\text{-}merge\text{-}cp\ V \rangle\ \mathbf{by}\ (meson\ r\text{-}into\text{-}rtranclp)
        qed
   next
      case cp
      have no-step cdcl_W-merge-cp V
        using conf-V local.decide'(2) no-step-cdcl<sub>W</sub>-cp-no-step-cdcl<sub>W</sub>-merge-restart by blast
      then have full cdcl_W-merge-cp R V
        unfolding full-def using cp by fast
      then have cdcl_W-merge-stgy** R V
        unfolding full-unfold by auto
      have full cdcl_W-cp V'W \lor (V' = W \land no\text{-step } cdcl_W\text{-cp } W)
        using decide'(3) unfolding full-unfold by blast
      consider
          (V'-W) V'=W
        |(propa)| propagate^{++} V' W  and conflicting W = None
        |\ (\textit{propa-confl})\ V^{\prime\prime}\ \textbf{where}\ \textit{propagate}^{**}\ V^{\prime}\ V^{\prime\prime}\ \textbf{and}\ \textit{conflict}\ V^{\prime\prime}\ W
        using tranclp-cdcl_W-cp-propagate-with-conflict-or-not [of V'W] decide'
        unfolding full-unfold full1-def by meson
      then show ?thesis
        proof cases
          case V'-W
          moreover have conflicting V' = None
            using decide'(1) by auto
          ultimately show ?thesis
            \mathbf{using} \ \langle cdcl_W\text{-}merge\text{-}stgy^{**} \ R \ V \rangle \ decide' \ \langle no\text{-}step \ cdcl_W\text{-}merge\text{-}cp \ V \rangle \ \mathbf{by} \ blast
        next
          case propa
          moreover then have cdcl_W-merge-cp V'W
            by auto
          ultimately show ?thesis using \langle cdcl_W-merge-stgy** R \ V \rangle \ decide'
            \langle no\text{-}step\ cdcl_W\text{-}merge\text{-}cp\ V \rangle by (meson\ r\text{-}into\text{-}rtranclp)
        next
          case propa-confl
          moreover then have \mathit{cdcl}_W\text{-}\mathit{merge\text{-}\mathit{cp}^{**}}\ \mathit{V'}\ \mathit{V''}
            \mathbf{by} \ (\mathit{metis} \ \mathit{cdcl}_W\text{-}\mathit{merge-cp.propagate'} \ \mathit{rtranclp-unfold} \ \mathit{tranclp-unfold-end})
          ultimately show ?thesis using \langle cdcl_W-merge-stgy** R V \rangle decide'
            \langle no\text{-}step\ cdcl_W\text{-}merge\text{-}cp\ V \rangle\ \mathbf{by}\ (meson\ r\text{-}into\text{-}rtranclp)
        qed
    next
      case (dec-confl)
      show ?thesis using conf-V dec\text{-}confl(5) by auto
   next
      case cp-confl
      then show ?thesis using decide' apply - by (intro HOL.disjI2) fastforce
  qed
next
  case (bj' \ V')
  then have \neg no\text{-}step\ cdcl_W\text{-}bj\ V
    by (auto dest: tranclpD simp: full1-def)
  then consider
```

```
(s') cdcl_W-merge-stgy** R V and conflicting V = None
 | (dec-confl) S T U where cdcl<sub>W</sub>-merge-stgy** R S and no-step cdcl<sub>W</sub>-merge-cp S and
     decide\ S\ T\ and\ cdcl_W-merge-cp^{**}\ T\ U\ and\ conflict\ U\ V
 \mid (dec) \mid S \mid T  where cdcl_W-merge-stqy^{**} \mid R \mid S and no-step cdcl_W-merge-cp \mid S and decide \mid S \mid T
     and cdcl_W-merge-cp^{**} T V and conflicting V = None
   (cp) cdcl_W-merge-cp^{**} R V and conflicting V = None
  | (cp\text{-}confl) \ U \text{ where } cdcl_W\text{-}merge\text{-}cp^{**} \ R \ U \text{ and } conflict \ U \ V
 using IH by meson
then show ?thesis
 proof cases
   case s' note - = this(2)
   then have False
     using bj'(1) unfolding full1-def by (force dest!: tranclpD simp: cdcl_W-bj.simps)
   then show ?thesis by fast
 next
   case dec note - = this(5)
   then have False
     using bj'(1) unfolding full1-def by (force dest!: tranclpD simp: cdcl_W-bj.simps)
   then show ?thesis by fast
 next
   case dec-confl
   then have cdcl_W-merge-cp UV'
     using bj' cdcl_W-merge-cp.intros(1)[of U \ V \ V'] by (simp add: full-unfold)
   then have cdcl_W-merge-cp^{**} T V'
     using dec\text{-}confl(4) by simp
   consider
       (V'-W) V'=W
     | (propa) propagate^{++} V' W  and conflicting W = None
     | (propa-confl) V'' where propagate** V' V'' and conflict V'' W
     using tranclp-cdcl_W-cp-propagate-with-conflict-or-not [of V'W] bj'(3)
     unfolding full-unfold full1-def by meson
   then show ?thesis
     proof cases
      case V'-W
      then have no-step cdcl_W-cp V'
        using bi'(3) unfolding full-def by auto
       then have no-step cdcl_W-merge-cp V'
        by (metis cdcl_W-cp.propagate' cdcl_W-merge-cp.cases tranclpD
          no-step-cdcl_W-cp-no-conflict-no-propagate(1)
       then have full cdcl_W-merge-cp T V'
        unfolding full1-def using \langle cdcl_W-merge-cp U V' \rangle dec-confl(4) by auto
       then have full cdcl_W-merge-cp T V'
        by (simp add: full-unfold)
       then have cdcl_W-merge-stgy S V'
        using dec\text{-}confl(3) cdcl_W-merge-stgy.fw-s-decide \langle no\text{-}step \ cdcl_W-merge-cp S \rangle by blast
       then have cdcl_W-merge-stgy** R V
        using \langle cdcl_W \text{-}merge\text{-}stgy^{**} R S \rangle by auto
       show ?thesis
        proof cases
          assume conflicting W = None
          then show ?thesis using \langle cdcl_W-merge-stgy** R \ V' \rangle \langle V' = W \rangle by auto
          assume conflicting W \neq None
          then show ?thesis
            using \langle cdcl_W-merge-stgy** R\ V' \rangle\ \langle V' = W \rangle by (metis\ \langle cdcl_W-merge-cp U\ V' \rangle
```

```
conflicting-not-true-rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj\ dec-confl(5)
            r-into-rtranclp conflictE)
      qed
   next
     case propa
     moreover then have cdcl_W-merge-cp V'W
      by auto
   rtranclp.rtrancl-into-rtrancl)
   next
     case propa-confl
     moreover then have cdcl_W-merge-cp^{**} V' V''
      by (metis\ cdcl_W-merge-cp.propagate' rtranclp-unfold tranclp-unfold-end)
   ultimately show ?thesis by (meson \langle cdcl_W - merge - cp^{**} \mid T \mid V' \rangle dec - confl(1-3) rtranclp-trans)
   \mathbf{qed}
next
 case cp note - = this(2)
 then show ?thesis using bj'(1) \langle \neg no\text{-step } cdcl_W\text{-}bj V \rangle
   conflicting-not-true-rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj by auto
\mathbf{next}
 case cp-confl
 then have cdcl_W-merge-cp U V' by (simp add: cdcl_W-merge-cp.conflict' full-unfold
   local.bj'(1)
 consider
     (V'-W) \ V' = W
   (propa) propagate^{++} V' W and conflicting W = None
   | (propa-confl) V'' where propagate** V' V'' and conflict V'' W
   using tranclp-cdcl_W-cp-propagate-with-conflict-or-not [of V'W] by
   unfolding full-unfold full1-def by meson
 then show ?thesis
   proof cases
     case V'-W
     show ?thesis
      proof cases
        assume conflicting V' = None
        then show ?thesis
          using V'-W \langle cdcl_W-merge-cp U V' \rangle cp-confl(1) by force
      next
        assume confl: conflicting V' \neq None
        then have no-step cdcl_W-merge-stgy V'
          by (fastforce simp: cdcl_W-merge-stgy.simps full1-def full-def
            cdcl_W-merge-cp.simps dest!: tranclpD)
        have no-step cdcl_W-merge-cp V'
          using confl by (auto simp: full1-def full-def cdcl_W-merge-cp.simps
          dest!: tranclpD)
        moreover have cdcl_W-merge-cp \ U \ W
          using V'-W \langle cdcl_W-merge-cp U V' \rangle by blast
        ultimately have full1 cdcl_W-merge-cp R V'
          using cp\text{-}confl(1) V'\text{-}W unfolding full 1\text{-}def by auto
        then have cdcl_W-merge-stgy R V'
        moreover have no-step cdcl_W-merge-stgy V'
          using confl \ (no\text{-}step \ cdcl_W\text{-}merge\text{-}cp \ V') by (auto \ simp: \ cdcl_W\text{-}merge\text{-}stgy.simps
           full1-def dest!: tranclpD)
```

```
ultimately have cdcl_W-merge-stgy** R V' by auto
               show ?thesis by (metis V'-W \land cdcl_W-merge-cp U \land V' \land cdcl_W-merge-stgy** R \land V' \land
                conflicting-not-true-rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj\ cp-confl(1)
                rtranclp.rtrancl-into-rtrancl step.prems)
             qed
         next
           case propa
           moreover then have cdcl_W-merge-cp V' W
             by auto
           ultimately show ?thesis using \langle cdcl_W-merge-cp U \ V' \rangle cp-confl(1) by force
          next
           case propa-confl
           moreover then have cdcl_W-merge-cp^{**} V' V''
             by (metis cdcl<sub>W</sub>-merge-cp.propagate' rtranclp-unfold tranclp-unfold-end)
           ultimately show ?thesis
             using \langle cdcl_W-merge-cp U|V'\rangle cp-confl(1) by (metis rtranclp.rtrancl-into-rtrancl
               rtranclp-trans)
          qed
      qed
   \mathbf{qed}
qed
lemma decide-rtranclp-cdcl_W-s'-rtranclp-cdcl_W-s':
 assumes
   dec: decide S T and
   cdcl_W-s'** T U and
   n-s-S: no-step cdcl_W-cp S and
   no-step cdcl_W-cp U
 shows cdcl_W-s'^{**} S U
 using assms(2,4)
proof induction
 case (step U(V)) note st = this(1) and s' = this(2) and IH = this(3) and n-s = this(4)
 consider
     (TU) T = U
   | (s'-st) T' where cdcl_W-s' T T' and cdcl_W-s'^{**} T' U
   using st[unfolded rtranclp-unfold] by (auto dest!: tranclpD)
 then show ?case
   proof cases
     case TU
     then show ?thesis
      proof -
        assume a1: T = U
        then have f2: cdcl_W - s' T V
          using s' by force
        obtain ss :: 'st where
          cdcl_W-s'^{**} S T \lor cdcl_W-cp T ss
          using a1 step.IH by blast
        then show ?thesis
          using f2 by (metis (full-types) cdcl<sub>W</sub>-s'.decide' cdcl<sub>W</sub>-s'E dec full1-is-full n-s-S
           rtranclp-unfold tranclp-unfold-end)
      qed
     case (s'-st T') note s'-T' = this(1) and st = this(2)
     have cdcl_W-s'** S T'
      using s'-T'
```

```
proof cases
         case conflict'
         then have cdcl_W-s' S T'
            using dec cdcl<sub>W</sub>-s'.decide' n-s-S by (simp add: full-unfold)
         then show ?thesis
            using st by auto
       next
         case (decide' T'')
         then have cdcl_W-s' S T
            using dec\ cdcl_W-s'.decide'\ n-s-S by (simp\ add:\ full-unfold)
         then show ?thesis using decide' s'-T' by auto
       next
         case bj'
         then have False
           using dec unfolding full1-def by (fastforce dest!: tranclpD simp: cdcl<sub>W</sub>-bj.simps)
         then show ?thesis by fast
     then show ?thesis using s' st by auto
   qed
\mathbf{next}
  case base
 then have full cdcl_W-cp T T
   by (simp add: full-unfold)
 then show ?case
   using cdcl_W-s'.simps dec n-s-S by auto
qed
lemma rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W-s':
 assumes
   cdcl_W-merge-stgy** R V and
   inv: cdcl_W-all-struct-inv R
 shows cdcl_W-s'** R V
 using assms(1)
proof induction
 \mathbf{case}\ base
 then show ?case by simp
 case (step S T) note st = this(1) and fw = this(2) and IH = this(3)
 have cdcl_W-all-struct-inv S
   using inv rtranclp-cdcl_W-all-struct-inv-inv rtranclp-cdcl_W-merge-styy-rtranclp-cdcl_W st by blast
  from fw show ?case
   proof (cases rule: cdcl_W-merge-stgy-cases)
     case fw-s-cp
     then show ?thesis
       proof
         assume a1: full1\ cdcl_W-merge-cp S\ T
         obtain ss :: ('st \Rightarrow 'st \Rightarrow bool) \Rightarrow 'st \Rightarrow 'st where
           f2: \bigwedge p \ s \ sa \ pa \ sb \ sc \ sd \ pb \ se \ sf. \ (\neg full 1 \ p \ (s::'st) \ sa \lor p^{++} \ s \ sa)
             \land (\neg pa \ (sb::'st) \ sc \lor \neg full1 \ pa \ sd \ sb) \land (\neg pb^{++} \ se \ sf \lor pb \ sf \ (ss \ pb \ sf)
             \vee full1 pb se sf)
           by (metis (no-types) full1-def)
         then have f3: cdcl_W-merge-cp^{++} S T
           using a1 by auto
         obtain ssa :: ('st \Rightarrow 'st \Rightarrow bool) \Rightarrow 'st \Rightarrow 'st \Rightarrow 'st where
           f_4: \bigwedge p \ s \ sa. \ \neg \ p^{++} \ s \ sa \ \lor \ p \ s \ (ssa \ p \ s \ sa)
```

```
by (meson tranclp-unfold-begin)
         then have f5: \Lambda s. \neg full1\ cdcl_W-merge-cp s S
           using f3 f2 by (metis (full-types))
         have \bigwedge s. \neg full\ cdcl_W-merge-cp s\ S
           using f4 f3 by (meson full-def)
         then have S = R
           using f5 by (metis (no-types) cdcl_W-merge-stgy.simps rtranclp-unfold st
             tranclp-unfold-end)
         then show ?thesis
           using f2 a1 by (metis\ (no-types)\ \langle cdcl_W - all - struct - inv\ S \rangle
             conflicting-true-full1-cdcl_W-merge-cp-imp-full1-cdcl_W-s'-without-decode
             rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W-s' rtranclp-unfold)
       qed
   next
     case (fw-s-decide S') note dec = this(1) and n-S = this(2) and full = this(3)
     moreover then have conflicting S' = None
       by auto
     ultimately have full cdcl_W-s'-without-decide S' T
       by (meson \ \langle cdcl_W \text{-}all\text{-}struct\text{-}inv \ S \rangle \ cdcl_W \text{-}merge\text{-}restart\text{-}cdcl_W \ fw\text{-}r\text{-}decide}
         rtranclp-cdcl_W-all-struct-inv-inv
         conflicting-true-full-cdcl_W-merge-cp-iff-full-cdcl_W-s'-without-decode)
     then have a1: cdcl_W - s'^{**} S' T
       unfolding full-def by (metis (full-types)rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W-s')
     have cdcl_W-merge-stgy** S T
       using fw by blast
     then have cdcl_W-s'** S T
       using decide-rtranclp-cdcl_W-s'-rtranclp-cdcl_W-s' a1 by (metis \langle cdcl_W-all-struct-inv S \rangle dec
         n-S no-step-cdcl_W-merge-cp-no-step-cdcl_W-cp cdcl_W-all-struct-inv-def
         rtranclp-cdcl_W-merge-stgy'-no-step-cdcl_W-cp-or-eq)
     then show ?thesis using IH by auto
   qed
qed
lemma rtranclp-cdcl_W-merge-stgy-distinct-mset-clauses:
  assumes invR: cdcl_W-all-struct-inv R and
  st: cdcl_W-merge-stgy^{**} R S and
  dist: distinct-mset (clauses R) and
  R: trail R = []
  shows distinct-mset (clauses S)
  using rtranclp-cdcl_W-stgy-distinct-mset-clauses[OF invR - dist R]
  invR st rtranclp-mono[of\ cdcl_W-s'\ cdcl_W-stqy^{**}]\ cdcl_W-s'-is-rtranclp-cdcl_W-stqy
  by (auto dest!: cdcl_W-s'-is-rtranclp-cdcl_W-stgy rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W-s')
lemma no\text{-}step\text{-}cdcl_W\text{-}s'\text{-}no\text{-}step\text{-}cdcl_W\text{-}merge\text{-}stgy:
  assumes
    inv: cdcl_W-all-struct-inv R and s': no-step cdcl_W-s' R
  \mathbf{shows}\ no\text{-}step\ cdcl_W\text{-}merge\text{-}stgy\ R
proof -
  { fix ss :: 'st
   obtain ssa :: 'st \Rightarrow 'st \Rightarrow 'st where
     ff1: \land s sa. \neg cdcl_W-merge-stgy s sa \lor full1 cdcl_W-merge-cp s sa \lor decide s (ssa s sa)
     using cdcl_W-merge-stgy.cases by moura
   obtain ssb :: ('st \Rightarrow 'st \Rightarrow bool) \Rightarrow 'st \Rightarrow 'st \Rightarrow 'st where
     ff2: \bigwedge p \ s \ sa. \ \neg \ p^{++} \ s \ sa \lor p \ s \ (ssb \ p \ s \ sa)
     \mathbf{by}\ (meson\ tranclp	ext{-}unfold	ext{-}begin)
```

```
obtain ssc :: 'st \Rightarrow 'st where
     ff3: \bigwedge s sa sb. (\neg cdcl_W - all - struct - inv <math>s \lor \neg cdcl_W - cp \ s \ sa \lor cdcl_W - s' \ s \ (ssc \ s))
       \land (\neg cdcl_W - all - struct - inv \ s \lor \neg cdcl_W - o \ s \ sb \lor cdcl_W - s' \ s \ (ssc \ s))
     using n-step-cdcl<sub>W</sub>-stgy-iff-no-step-cdcl<sub>W</sub>-cl-cdcl<sub>W</sub>-o by moura
   then have ff_4: \Lambda s. \neg cdcl_W - o R s
     using s' inv by blast
   have ff5: \bigwedge s. \neg cdcl_W - cp^{++} R s
     using ff3 ff2 s' by (metis inv)
   have \bigwedge s. \neg cdcl_W - bj^{++} R s
     using ff4 ff2 by (metis \ bj)
   then have \bigwedge s. \neg cdcl_W-s'-without-decide R s
     using ff5 by (simp add: cdcl_W-s'-without-decide.simps full1-def)
   then have \neg cdcl_W-s'-without-decide<sup>++</sup> R ss
     using ff2 by blast
   then have \neg cdcl_W-merge-stgy R ss
     using ff4 ff1 by (metis (full-types) decide full1-def inv
       conflicting-true-full1-cdcl_W-merge-cp-imp-full1-cdcl_W-s'-without-decode) }
  then show ?thesis
   by fastforce
\mathbf{qed}
lemma wf-cdcl_W-merge-cp:
  wf\{(T, S). \ cdcl_W \text{-all-struct-inv } S \land cdcl_W \text{-merge-cp } S \ T\}
 using wf-tranclp-cdcl_W-merge by (rule wf-subset) (auto simp: cdcl_W-merge-cp-tranclp-cdcl_W-merge)
lemma wf-cdcl_W-merge-stgy:
  wf\{(T, S). \ cdcl_W - all - struct - inv \ S \land cdcl_W - merge - stgy \ S \ T\}
 using wf-tranclp-cdcl_W-merge by (rule wf-subset)
  (auto simp add: cdcl_W-merge-stgy-tranclp-cdcl_W-merge)
lemma cdcl_W-merge-cp-obtain-normal-form:
 assumes inv: cdcl_W-all-struct-inv R
 obtains S where full cdcl_W-merge-cp R S
proof
  obtain S where full (\lambda S T. cdcl_W-all-struct-inv S \wedge cdcl_W-merge-cp S T) R S
   using wf-exists-normal-form-full[OF wf-cdcl<sub>W</sub>-merge-cp] by blast
  then have
   st: (\lambda S \ T. \ cdcl_W-all-struct-inv S \land cdcl_W-merge-cp S \ T)^{**} \ R \ S and
   n-s: no-step (\lambda S T. cdcl_W-all-struct-inv S \wedge cdcl_W-merge-cp S T) S
   unfolding full-def by blast+
  have cdcl_W-merge-cp^{**} R S
   using st by induction auto
 moreover
   have cdcl_W-all-struct-inv S
     using st inv
     apply (induction rule: rtranclp-induct)
       apply simp
     by (meson\ r-into-rtranclp\ rtranclp-cdcl_W-all-struct-inv-inv
       rtranclp-cdcl_W-merge-cp-rtranclp-cdcl_W)
   then have no-step cdcl_W-merge-cp S
     using n-s by auto
  ultimately show ?thesis
   using that unfolding full-def by blast
qed
```

```
lemma no-step-cdcl_W-merge-stgy-no-step-cdcl_W-s':
 assumes
   inv: cdcl_W-all-struct-inv R and
   confl: conflicting R = None and
   n-s: no-step cdcl_W-merge-stgy R
 shows no-step cdcl_W-s' R
proof (rule ccontr)
 assume ¬ ?thesis
 then obtain S where cdcl_W-s' R S by auto
 then show False
   proof cases
     case conflict'
     then obtain S' where full cdcl_W-merge-cp R S'
      by (metis\ (full-types)\ cdcl_W-merge-cp-obtain-normal-form\ cdcl_W-s'-without-decide.simps\ confl
        conflicting-true-no-step-cdcl_W-merge-cp-no-step-s'-without-decide full-def full-unfold inv
        cdcl_W-all-struct-inv-def)
     then show False using n-s by blast
     case (decide' R')
     then have cdcl_W-all-struct-inv R'
      using inv cdcl_W-all-struct-inv-inv cdcl_W.other cdcl_W-o.decide by meson
     then obtain R'' where full cdcl_W-merge-cp R' R''
      using cdcl_W-merge-cp-obtain-normal-form by blast
     moreover have no-step cdcl_W-merge-cp R
      by (simp add: conft local.decide'(2) no-step-cdcl<sub>W</sub>-cp-no-step-cdcl<sub>W</sub>-merge-restart)
     ultimately show False using n-s cdcl_W-merge-stqy.intros local.decide'(1) by blast
   next
     case (bj' R')
     then show False
      using confl no-step-cdcl<sub>W</sub>-cp-no-step-cdcl<sub>W</sub>-s'-without-decide inv
      unfolding cdcl_W-all-struct-inv-def by blast
   qed
qed
lemma rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj:
 assumes conflicting R = None and cdcl_W-merge-cp^{**} R S
 shows no-step cdcl_W-bj S
 using assms conflicting-not-true-rtranclp-cdcl<sub>W</sub>-merge-cp-no-step-cdcl<sub>W</sub>-bj by blast
lemma rtranclp-cdcl_W-merge-stgy-no-step-cdcl_W-bj:
 assumes confl: conflicting R = None and cdcl_W-merge-stgy** R S
 shows no-step cdcl_W-bj S
 using assms(2)
proof induction
 \mathbf{case}\ base
 then show ?case
   using confl by (auto simp: cdcl_W-bj.simps)
 case (step S T) note st = this(1) and fw = this(2) and IH = this(3)
 have confl-S: conflicting S = None
   using fw apply cases
   by (auto simp: full1-def cdcl_W-merge-cp.simps dest!: tranclpD)
 from fw show ?case
   proof cases
     case fw-s-cp
```

```
then show ?thesis
         using rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj confl-S
         by (simp add: full1-def tranclp-into-rtranclp)
    next
       case (fw-s-decide S')
       moreover then have conflicting S' = None by auto
       ultimately show ?thesis
         using conflicting-not-true-rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj
         unfolding full-def by meson
    qed
\mathbf{qed}
lemma full-cdcl_W-s'-full-cdcl_W-merge-restart:
  assumes
    conflicting R = None  and
    inv: cdcl_W-all-struct-inv R
  shows full cdcl_W-s' R V \longleftrightarrow full \ cdcl_W-merge-stgy R V (is ?s' \longleftrightarrow ?fw)
  assume ?s'
  then have cdcl_W-s'** R V unfolding full-def by blast
  have cdcl_W-all-struct-inv V
    \mathbf{using} \ \langle cdcl_W \text{-}s'^{**} \ R \ V \rangle \ inv \ rtranclp\text{-}cdcl_W \text{-}all\text{-}struct\text{-}inv\text{-}inv \ rtranclp\text{-}cdcl_W \text{-}s'\text{-}rtranclp\text{-}cdcl_W}
    by blast
  then have n-s: no-step cdcl_W-merge-stgy V
    using no\text{-}step\text{-}cdcl_W\text{-}s'-no\text{-}step\text{-}cdcl_W-merge\text{-}stqy by (meson \land full \ cdcl_W\text{-}s' \ R \ V) \ full\text{-}def)
  have n-s-bj: no-step cdcl_W-bj V
    by (metis \langle cdcl_W - all - struct - inv \ V \rangle \langle full \ cdcl_W - s' \ R \ V \rangle \ bj \ full - def
       n-step-cdcl<sub>W</sub>-stgy-iff-no-step-cdcl<sub>W</sub>-cl-cdcl<sub>W</sub>-o)
  have n-s-cp: no-step cdcl_W-merge-cp V
    proof -
       { fix ss :: 'st
         obtain ssa :: 'st \Rightarrow 'st where
           ff1: \forall s. \neg cdcl_W-all-struct-inv s \lor cdcl_W-s'-without-decide s (ssa s)
              \vee no-step cdcl_W-merge-cp s
           using conflicting-true-no-step-s'-without-decide-no-step-cdcl<sub>W</sub>-merge-cp by moura
         have (\forall p \ s \ sa. \neg full \ p \ (s::'st) \ sa \lor p^{**} \ s \ sa \land no\text{-step} \ p \ sa) and
           (\forall p \ s \ sa. \ (\neg p^{**} \ (s::'st) \ sa \lor (\exists s. \ p \ sa \ s)) \lor full \ p \ s \ sa)
           by (meson full-def)+
         then have \neg cdcl_W-merge-cp V ss
           \mathbf{using} \ \mathit{ff1} \ \mathbf{by} \ (\mathit{metis} \ (\mathit{no-types}) \ \land \mathit{cdcl}_W - \mathit{all-struct-inv} \ V \land \ \mathit{full} \ \mathit{cdcl}_W - \mathit{s'} \ \mathit{R} \ V \land \ \mathit{cdcl}_W - \mathit{s'}. \mathit{simps}
              cdcl_W-s'-without-decide.cases) }
       then show ?thesis
         \mathbf{by} blast
    qed
  consider
       (fw-no-confl) cdcl_W-merge-stgy** R V and conflicting V = None
      (fw\text{-}confl) \ cdcl_W\text{-}merge\text{-}stgy^{**} \ R \ V \ \mathbf{and} \ conflicting \ V \neq None \ \mathbf{and} \ no\text{-}step \ cdcl_W\text{-}bj \ V
    | \ (\mathit{fw-dec-conft}) \ \mathit{S} \ \mathit{T} \ \mathit{U} \ \mathbf{where} \ \mathit{cdcl}_{\mathit{W}}\text{-}\mathit{merge-stgy}^{**} \ \mathit{R} \ \mathit{S} \ \mathbf{and} \ \mathit{no-step} \ \mathit{cdcl}_{\mathit{W}}\text{-}\mathit{merge-cp} \ \mathit{S} \ \mathbf{and}
         decide\ S\ T\ and\ cdcl_W-merge-cp^{**}\ T\ U\ and\ conflict\ U\ V
    | (fw-dec-no-confl) S T where cdcl_W-merge-stgy** R S and no-step cdcl_W-merge-cp S and
         decide S T and cdcl_W-merge-cp^{**} T V and conflicting V = None
    |(cp\text{-}no\text{-}confl)| cdcl_W\text{-}merge\text{-}cp^{**} R V \text{ and } conflicting V = None
    | (cp\text{-}confl) \ U \text{ where } cdcl_W\text{-}merge\text{-}cp^{**} \ R \ U \text{ and } conflict \ U \ V
    using rtranclp-cdcl_W-s'-no-step-cdcl<sub>W</sub>-s'-without-decide-decomp-into-cdcl<sub>W</sub>-merge |OF|
       \langle cdcl_W - s'^{**} R \ V \rangle \ assms] by auto
```

```
then show ?fw
   proof cases
     case fw-no-confl
     then show ?thesis using n-s unfolding full-def by blast
     case fw-confl
     then show ?thesis using n-s unfolding full-def by blast
   next
     case fw-dec-confl
     have cdcl_W-merge-cp U V
       using n-s-bj by (metis cdcl_W-merge-cp.simps full-unfold fw-dec-confl(5))
     then have full1 cdcl_W-merge-cp T V
       unfolding full1-def by (metis fw-dec-confl(4) n-s-cp tranclp-unfold-end)
     then have cdcl_W-merge-stay S V using \langle decide\ S T \rangle \langle no-step cdcl_W-merge-cp\ S \rangle by auto
     then show ?thesis using n-s \langle cdcl_W-merge-stgy** R S \rangle unfolding full-def by auto
   next
     case fw-dec-no-confl
     then have full cdcl_W-merge-cp T V
       using n-s-cp unfolding full-def by blast
     then have cdcl_W-merge-stgy S V using \langle decide\ S T \rangle \langle no-step cdcl_W-merge-cp\ S \rangle by auto
     then show ?thesis using n\text{-}s \langle cdcl_W\text{-}merge\text{-}stgy^{**} R S \rangle unfolding full-def by auto
   next
     case cp-no-confl
     then have full\ cdcl_W-merge-cp R\ V
      by (simp add: full-def n-s-cp)
     then have R = V \vee cdcl_W-merge-stqy<sup>++</sup> R V
      by (metis (no-types) full-unfold fw-s-cp rtranclp-unfold tranclp-unfold-end)
     then show ?thesis
      by (simp add: full-def n-s rtranclp-unfold)
   next
     case cp-confl
     have full cdcl_W-bj V
       using n-s-bj unfolding full-def by blast
     then have full1 cdcl_W-merge-cp R V
       unfolding full1-def by (meson cdcl_W-merge-cp.conflict' cp-confl(1,2) n-s-cp
        rtranclp-into-tranclp1)
     then show ?thesis using n-s unfolding full-def by auto
   qed
\mathbf{next}
 assume ?fw
  then have cdcl_W^{**} R V using rtranclp-mono[of cdcl_W-merge-stqy cdcl_W^{**}]
   cdcl_W-merge-stgy-rtranclp-cdcl_W unfolding full-def by auto
  then have inv': cdcl<sub>W</sub>-all-struct-inv V using inv rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv by blast
 have cdcl_W-s'** R V
   using \langle fw \rangle by (simp add: full-def inv rtranclp-cdcl<sub>W</sub>-merge-stqy-rtranclp-cdcl<sub>W</sub>-s')
  moreover have no-step cdcl_W-s' V
   proof cases
     assume conflicting V = None
     then show ?thesis
       by (metis inv' \land full \ cdcl_W-merge-stgy R \ V \land full-def
        no-step-cdcl_W-merge-stgy-no-step-cdcl_W-s')
     assume confl-V: conflicting V \neq None
     then have no-step cdcl_W-bj V
     using rtranclp-cdcl_W-merge-stgy-no-step-cdcl_W-bj by (meson \land full \ cdcl_W-merge-stgy R \ V \land V
```

```
assms(1) full-def
           then show ?thesis using confl-V by (fastforce simp: cdcl_W-s'.simps full1-def cdcl_W-cp.simps
               dest!: tranclpD)
       qed
   ultimately show ?s' unfolding full-def by blast
lemma full-cdcl_W-stgy-full-cdcl_W-merge:
   assumes
       conflicting R = None and
       inv: cdcl_W-all-struct-inv R
   \mathbf{shows} \ \mathit{full} \ \mathit{cdcl}_W \textit{-stgy} \ R \ V \longleftrightarrow \mathit{full} \ \mathit{cdcl}_W \textit{-merge-stgy} \ R \ V
    \mathbf{by} \ (simp \ add: \ assms(1) \ full-cdcl_W-s'-full-cdcl_W-merge-restart \ full-cdcl_W-stgy-iff-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_W-s'-full-cdcl_
       inv)
lemma full-cdcl_W-merge-stgy-final-state-conclusive':
   fixes S' :: 'st
   assumes full: full cdcl_W-merge-stgy (init-state N) S'
   and no-d: distinct-mset-mset N
   shows (conflicting S' = Some \{\#\} \land unsatisfiable (set-mset N))
       \lor (conflicting S' = None \land trail S' \models asm N \land satisfiable (set-mset N))
proof -
   have cdcl_W-all-struct-inv (init-state N)
       using no-d unfolding cdcl_W-all-struct-inv-def by auto
   moreover have conflicting (init-state N) = None
       by auto
   ultimately show ?thesis
       by (simp add: full full-cdcl_W-stgy-final-state-conclusive-from-init-state
           full-cdcl_W-stgy-full-cdcl<sub>W</sub>-merge no-d)
qed
end
7.6
                Adding Restarts
locale \ cdcl_W-restart =
    cdcl<sub>W</sub> trail init-clss learned-clss backtrack-lvl conflicting cons-trail tl-trail
     add-init-cls
     add-learned-cls remove-cls update-backtrack-lvl update-conflicting init-state
     restart-state
        trail :: 'st \Rightarrow ('v, nat, 'v clause) ann-literals and
       init-clss :: 'st \Rightarrow 'v clauses and
       learned-clss :: 'st \Rightarrow 'v \ clauses \ and
       backtrack-lvl :: 'st \Rightarrow nat and
       conflicting :: 'st \Rightarrow'v clause option and
       cons-trail :: ('v, nat, 'v clause) ann-literal \Rightarrow 'st \Rightarrow 'st and
       tl-trail :: 'st \Rightarrow 'st and
       add-init-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st and
       add-learned-cls remove-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st and
       update-backtrack-lvl :: nat \Rightarrow 'st \Rightarrow 'st and
       update-conflicting :: 'v clause option \Rightarrow 'st \Rightarrow 'st and
       init-state :: 'v clauses \Rightarrow 'st and
       restart-state :: 'st \Rightarrow 'st +
```

```
fixes f :: nat \Rightarrow nat
assumes f : unbounded f
begin
```

The condition of the differences of cardinality has to be strict. Otherwise, you could be in a strange state, where nothing remains to do, but a restart is done. See the proof of well-foundedness.

```
inductive cdcl<sub>W</sub>-merge-with-restart where
restart-step:
  (cdcl_W-merge-stqy^{\sim}(card\ (set-mset\ (learned-clss\ T)) - card\ (set-mset\ (learned-clss\ S)))) S T
 \implies card (set-mset (learned-clss T)) - card (set-mset (learned-clss S)) > f n
 \implies restart \ T \ U \implies cdcl_W-merge-with-restart (S, n) \ (U, Suc \ n)
restart-full: full1 cdcl_W-merge-stgy S T \Longrightarrow cdcl_W-merge-with-restart (S, n) (T, Suc n)
lemma cdcl_W-merge-with-restart S T \Longrightarrow cdcl_W-merge-restart** (fst S) (fst T)
  by (induction rule: cdcl_W-merge-with-restart.induct)
  (auto dest!: relpowp-imp-rtranclp\ cdcl_W-merge-stgy-tranclp-cdcl_W-merge\ tranclp-into-rtranclp
    rtranclp-cdcl_W-merge-stqy-rtranclp-cdcl_W-merge-rtranclp-cdcl_W-merge-restart
    fw-r-rf cdcl_W-rf.restart
   simp: full1-def)
lemma cdcl_W-merge-with-restart-rtranclp-cdcl_W:
  cdcl_W-merge-with-restart S T \Longrightarrow cdcl_W^{**} (fst S) (fst T)
  by (induction rule: cdcl_W-merge-with-restart.induct)
  (auto dest!: relpowp-imp-rtranclp\ rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W\ cdcl_W.rf
   cdcl_W-rf.restart tranclp-into-rtranclp simp: full1-def)
lemma cdcl_W-merge-with-restart-increasing-number:
  cdcl_W-merge-with-restart S T \Longrightarrow snd T = 1 + snd S
 by (induction rule: cdcl_W-merge-with-restart.induct) auto
lemma full cdcl_W-merge-stay S T \Longrightarrow cdcl_W-merge-with-restart (S, n) (T, Suc n)
  using restart-full by blast
lemma cdcl_W-all-struct-inv-learned-clss-bound:
 assumes inv: cdcl_W-all-struct-inv S
 shows set-mset (learned-clss S) \subseteq simple-clss (atms-of-msu (init-clss S))
proof
 \mathbf{fix} \ C
 assume C: C \in set\text{-}mset \ (learned\text{-}clss \ S)
 have distinct-mset C
   using C inv unfolding cdcl_W-all-struct-inv-def distinct-cdcl_W-state-def distinct-mset-set-def
   by auto
 moreover have \neg tautology C
   using C inv unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-learned-clause-def by auto
 moreover
   have atms-of C \subseteq atms-of-msu (learned-clss S)
     using C by auto
   then have atms-of C \subseteq atms-of-msu (init-clss S)
   using inv unfolding cdcl_W-all-struct-inv-def no-strange-atm-def by force
  moreover have finite\ (atms-of-msu\ (init-clss\ S))
   using inv unfolding cdcl_W-all-struct-inv-def by auto
  ultimately show C \in simple-clss (atms-of-msu (init-clss S))
   using distinct-mset-not-tautology-implies-in-simple-clss simple-clss-mono
   by blast
```

```
lemma cdcl_W-merge-with-restart-init-clss:
  cdcl_W-merge-with-restart S T \Longrightarrow cdcl_W-M-level-inv (fst S) \Longrightarrow
  init-clss (fst S) = init-clss (fst T)
 using cdcl_W-merge-with-restart-rtranclp-cdcl<sub>W</sub> rtranclp-cdcl<sub>W</sub>-init-clss by blast
lemma
  wf \{(T, S). \ cdcl_W - all - struct - inv \ (fst \ S) \land cdcl_W - merge - with - restart \ S \ T\}
proof (rule ccontr)
 assume ¬ ?thesis
   then obtain g where
   g: \bigwedge i. \ cdcl_W-merge-with-restart (g\ i)\ (g\ (Suc\ i)) and
   inv: \bigwedge i. \ cdcl_W-all-struct-inv (fst (g\ i))
   unfolding wf-iff-no-infinite-down-chain by fast
  { fix i
   have init-clss\ (fst\ (g\ i))=init-clss\ (fst\ (g\ 0))
     apply (induction i)
      apply simp
     using g inv unfolding cdcl_W-all-struct-inv-def by (metis cdcl_W-merge-with-restart-init-clss)
   } note init-g = this
 let ?S = q \theta
 have finite (atms-of-msu\ (init-clss\ (fst\ ?S)))
   using inv unfolding cdcl_W-all-struct-inv-def by auto
  have snd-g: \bigwedge i. snd (g i) = i + snd (g 0)
   apply (induct-tac i)
     apply simp
   by (metis Suc-eq-plus1-left add-Suc cdcl_W-merge-with-restart-increasing-number g)
  then have snd-g-\theta: \bigwedge i. i > \theta \Longrightarrow snd (g i) = i + snd (g \theta)
   by blast
 have unbounded-f-g: unbounded (\lambda i. f (snd (g i)))
   using f unfolding bounded-def by (metis add.commute f less-or-eq-imp-le snd-g
     not-bounded-nat-exists-larger not-le le-iff-add)
 obtain k where
   f-g-k: f (snd (g k)) > card (simple-clss (atms-of-msu (init-clss (fst ?S)))) and
   k > card (simple-clss (atms-of-msu (init-clss (fst ?S))))
   using not-bounded-nat-exists-larger[OF unbounded-f-g] by blast
The following does not hold anymore with the non-strict version of cardinality in the definition.
  \{ \text{ fix } i \}
   assume no-step cdcl_W-merge-stgy (fst (g\ i))
   with q[of i]
   have False
     proof (induction rule: cdcl_W-merge-with-restart.induct)
       case (\textit{restart-step } T \ S \ n) note H = \textit{this}(1) and c = \textit{this}(2) and n\text{-}s = \textit{this}(4)
       obtain S' where cdcl_W-merge-stay SS'
         using H c by (metis gr-implies-not0 relpowp-E2)
       then show False using n-s by auto
     next
       case (restart-full S T)
       then show False unfolding full1-def by (auto dest: tranclpD)
   } note H = this
  obtain m T where
```

```
m: m = card \ (set\text{-}mset \ (learned\text{-}clss \ T)) - card \ (set\text{-}mset \ (learned\text{-}clss \ (fst \ (g \ k)))) and
   m > f \ (snd \ (g \ k)) and
   restart T (fst (g(k+1))) and
   cdcl_W-merge-stgy: (cdcl_W-merge-stgy \ ^{\frown} m) (fst\ (g\ k)) T
   using g[of k] H[of Suc k] by (force simp: cdcl_W-merge-with-restart.simps full1-def)
  have cdcl_W-merge-stgy** (fst (g k)) T
    using cdcl_W-merge-stgy relpowp-imp-rtranclp by metis
  then have cdcl_W-all-struct-inv T
   using inv[of k] rtranclp-cdcl_W-all-struct-inv-inv rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W
   by blast
  moreover have card (set-mset (learned-clss T)) - card (set-mset (learned-clss (fst (g k))))
     > card (simple-clss (atms-of-msu (init-clss (fst ?S))))
     unfolding m[symmetric] using \langle m > f \ (snd \ (g \ k)) \rangle f-g-k by linarith
   then have card (set-mset (learned-clss T))
     > card (simple-clss (atms-of-msu (init-clss (fst ?S))))
     by linarith
  moreover
   have init-clss (fst (g k)) = init-clss T
     \mathbf{using} \ \langle cdcl_W \text{-}merge\text{-}stgy^{**} \ (fst \ (g \ k)) \ T \rangle \ rtranclp\text{-}cdcl_W \text{-}merge\text{-}stgy\text{-}rtranclp\text{-}cdcl_W
     rtranclp-cdcl_W-init-clss inv unfolding cdcl_W-all-struct-inv-def by blast
   then have init-clss (fst ?S) = init-clss T
     using init-g[of k] by auto
  ultimately show False
   using cdcl_W-all-struct-inv-learned-clss-bound
   by (simp add: \langle finite\ (atms-of-msu\ (init-clss\ (fst\ (g\ 0)))) \rangle simple-clss-finite
      card-mono\ leD)
qed
lemma cdcl_W-merge-with-restart-distinct-mset-clauses:
  assumes invR: cdcl_W-all-struct-inv (fst R) and
  st: cdcl_W-merge-with-restart R S and
  dist: distinct\text{-}mset \ (clauses \ (fst \ R)) and
  R: trail (fst R) = []
  shows distinct-mset (clauses (fst S))
  using assms(2,1,3,4)
proof (induction)
  case (restart-full S T)
  then show ?case using rtranclp-cdcl_W-merge-stqy-distinct-mset-clauses[of S T] unfolding full1-def
   by (auto dest: tranclp-into-rtranclp)
next
  case (restart\text{-}step\ T\ S\ n\ U)
  then have distinct-mset (clauses T)
   \mathbf{using}\ \mathit{rtranclp-cdcl}_W\mathit{-merge-stgy-distinct-mset-clauses}[\mathit{of}\ S\ T]\ \mathbf{unfolding}\ \mathit{full1-def}
   by (auto dest: relpowp-imp-rtranclp)
  then show ?case using \langle restart \ T \ U \rangle by (metis clauses-restart distinct-mset-union fstI
    mset-le-exists-conv restart.cases state-eq-clauses)
qed
inductive cdcl<sub>W</sub>-with-restart where
restart-step:
  (cdcl_W\text{-stgy}^{\sim}(card\ (set\text{-mset}\ (learned\text{-}clss\ T)) - card\ (set\text{-mset}\ (learned\text{-}clss\ S))))\ S\ T\Longrightarrow
     card (set\text{-}mset (learned\text{-}clss T)) - card (set\text{-}mset (learned\text{-}clss S)) > f n \Longrightarrow
     restart \ T \ U \Longrightarrow
   cdcl_W-with-restart (S, n) (U, Suc n)
restart-full: full1 cdcl_W-stgy S T \Longrightarrow cdcl_W-with-restart (S, n) (T, Suc n)
```

```
lemma cdcl_W-with-restart-rtranclp-cdcl_W:
  cdcl_W-with-restart S \ T \Longrightarrow cdcl_W^{**} \ (fst \ S) \ (fst \ T)
  apply (induction rule: cdcl_W-with-restart.induct)
 by (auto dest!: relpowp-imp-rtranclp tranclp-into-rtranclp fw-r-rf
    cdcl_W-rf.restart rtranclp-cdcl_W-stqy-rtranclp-cdcl_W cdcl_W-merge-restart-cdcl_W
   simp: full1-def)
lemma cdcl_W-with-restart-increasing-number:
  cdcl_W-with-restart S T \Longrightarrow snd T = 1 + snd S
  by (induction rule: cdcl_W-with-restart.induct) auto
lemma full1 cdcl_W-stgy S T \Longrightarrow cdcl_W-with-restart (S, n) (T, Suc n)
  using restart-full by blast
lemma cdcl_W-with-restart-init-clss:
  cdcl_W-with-restart S T \implies cdcl_W-M-level-inv (fst S) \implies init-clss (fst S) = init-clss (fst T)
 using cdcl_W-with-restart-rtranclp-cdcl<sub>W</sub> rtranclp-cdcl<sub>W</sub>-init-clss by blast
  wf \{(T, S). \ cdcl_W - all - struct - inv \ (fst \ S) \land cdcl_W - with - restart \ S \ T\}
proof (rule ccontr)
 assume ¬ ?thesis
   then obtain g where
   g: \Lambda i. \ cdcl_W-with-restart (g \ i) \ (g \ (Suc \ i)) and
   inv: \bigwedge i. \ cdcl_W-all-struct-inv (fst (g\ i))
   unfolding wf-iff-no-infinite-down-chain by fast
  { fix i
   have init-clss (fst (g\ i)) = init-clss (fst (g\ 0))
     apply (induction i)
       apply simp
     using g inv unfolding cdcl_W-all-struct-inv-def by (metis cdcl_W-with-restart-init-clss)
   \} note init-g = this
 let ?S = g \theta
 have finite (atms-of-msu (init-clss (fst ?S)))
   using inv unfolding cdcl_W-all-struct-inv-def by auto
 have snd-g: \bigwedge i. snd (g \ i) = i + snd (g \ \theta)
   apply (induct-tac\ i)
     apply simp
   by (metis Suc-eq-plus1-left add-Suc cdcl<sub>W</sub>-with-restart-increasing-number q)
  then have snd - g - \theta: \bigwedge i. i > \theta \Longrightarrow snd(g i) = i + snd(g \theta)
   by blast
 have unbounded-f-g: unbounded (\lambda i. f (snd (g i)))
   using f unfolding bounded-def by (metis add.commute f less-or-eq-imp-le snd-g
     not-bounded-nat-exists-larger not-le le-iff-add)
 obtain k where
   f-g-k: f (snd (g k)) > card (simple-clss (atms-of-msu (init-clss (fst ?S)))) and
   k > card (simple-clss (atms-of-msu (init-clss (fst ?S))))
   using not-bounded-nat-exists-larger[OF unbounded-f-g] by blast
The following does not hold anymore with the non-strict version of cardinality in the definition.
  { fix i
   assume no-step cdcl_W-stgy (fst (g i))
   with g[of i]
```

```
have False
     proof (induction rule: cdcl_W-with-restart.induct)
       case (restart-step T S n) note H = this(1) and c = this(2) and n-s = this(4)
      obtain S' where cdcl_W-stgy S S'
         using H c by (metis gr-implies-not0 relpowp-E2)
       then show False using n-s by auto
     next
       \mathbf{case}\ (\mathit{restart-full}\ S\ T)
      then show False unfolding full1-def by (auto dest: tranclpD)
     qed
   } note H = this
 obtain m T where
   m: m = card (set\text{-}mset (learned\text{-}clss T)) - card (set\text{-}mset (learned\text{-}clss (fst <math>(g \ k))))) and
   m > f (snd (g k)) and
   restart T (fst (g(k+1))) and
   cdcl_W-merge-stgy: (cdcl_W-stgy ^{\sim} m) (fst (g \ k)) T
   using g[of k] H[of Suc k] by (force simp: cdcl_W-with-restart.simps full1-def)
  have cdcl_W-stgy^{**} (fst (g \ k)) T
   using cdcl_W-merge-stgy relpowp-imp-rtrancly by metis
  then have cdcl_W-all-struct-inv T
   using inv[of k] rtranclp-cdcl_W-all-struct-inv-inv rtranclp-cdcl_W-stgy-rtranclp-cdcl_W by blast
  moreover have card (set-mset (learned-clss T)) - card (set-mset (learned-clss (fst (g \ k))))
     > card (simple-clss (atms-of-msu (init-clss (fst ?S))))
     unfolding m[symmetric] using \langle m > f \ (snd \ (g \ k)) \rangle f-g-k by linarith
   then have card (set-mset (learned-clss T))
     > card (simple-clss (atms-of-msu (init-clss (fst ?S))))
     by linarith
 moreover
   have init-clss (fst (g k)) = init-clss T
     \mathbf{using} \ \langle cdcl_W \text{-}stgy^{**} \ (fst \ (g \ k)) \ T \rangle \ rtranclp\text{-}cdcl_W \text{-}stgy\text{-}rtranclp\text{-}cdcl_W \ rtranclp\text{-}cdcl_W \text{-}init\text{-}clss}
     inv unfolding cdcl_W-all-struct-inv-def
     by blast
   then have init-clss (fst ?S) = init-clss T
     using init-g[of k] by auto
  ultimately show False
   using cdcl_W-all-struct-inv-learned-clss-bound
   by (simp\ add: \langle finite\ (atms-of-msu\ (init-clss\ (fst\ (q\ \theta))))\rangle\ simple-clss-finite
     card-mono\ leD)
qed
lemma cdcl_W-with-restart-distinct-mset-clauses:
 assumes invR: cdcl_W-all-struct-inv (fst R) and
  st: cdcl_W-with-restart R S and
  dist: distinct-mset (clauses (fst R)) and
  R: trail (fst R) = []
 shows distinct-mset (clauses (fst S))
 using assms(2,1,3,4)
proof (induction)
 case (restart-full S T)
 then show ?case using rtranclp-cdcl_W-stgy-distinct-mset-clauses[of S T] unfolding full1-def
   by (auto dest: tranclp-into-rtranclp)
 case (restart-step T S n U)
 then have distinct-mset (clauses T) using rtranclp-cdcl<sub>W</sub>-stgy-distinct-mset-clauses of S T
   unfolding full1-def by (auto dest: relpowp-imp-rtranclp)
```

```
then show ?case using \langle restart \ T \ U \rangle by (metis\ clauses-restart\ distinct-mset-union\ fstI
   mset-le-exists-conv restart.cases state-eq-clauses)
qed
end
locale luby-sequence =
 fixes ur :: nat
 assumes ur > 0
begin
lemma exists-luby-decomp:
 fixes i :: nat
 shows \exists k :: nat. (2 \hat{k} - 1) \le i \land i < 2 \hat{k} - 1) \lor i = 2 \hat{k} - 1
proof (induction i)
 case \theta
 then show ?case
   by (rule\ exI[of\ -\ 0],\ simp)
  case (Suc\ n)
 then obtain k where 2 \hat{k} (k-1) \leq n \wedge n < 2 \hat{k} - 1 \vee n = 2 \hat{k} - 1
   \mathbf{by} blast
  then consider
     (st\text{-}interv) \ 2 \ \widehat{} \ (k-1) \le n \ \text{and} \ n \le 2 \ \widehat{} \ k-2
   | (end\text{-}interv) 2 \hat{\ } (k-1) \leq n \text{ and } n=2 \hat{\ } k-2
   |(pow2) n = 2^k - 1
   by linarith
  then show ?case
   proof cases
     case st-interv
     then show ?thesis apply - apply (rule\ exI[of\ -\ k])
       by (metis (no-types, lifting) One-nat-def Suc-diff-Suc Suc-lessI
         \langle 2 \cap (k-1) \leq n \wedge n < 2 \cap k-1 \vee n = 2 \cap k-1 \rangle diff-self-eq-0
         dual-order.trans le-SucI le-imp-less-Suc numeral-2-eq-2 one-le-numeral
         one-le-power\ zero-less-numeral\ zero-less-power)
   next
     case end-interv
     then show ?thesis apply - apply (rule exI[of - k]) by auto
   next
     then show ?thesis apply - apply (rule exI[of - k+1]) by auto
   qed
qed
Luby sequences are defined by:
   • 2^k - 1, if i = (2::'a)^k - (1::'a)
    • luby-sequence-core (i-2^{k-1}+1), if (2::'a)^{k-1} < i and i < (2::'a)^k - (1::'a)
Then the sequence is then scaled by a constant unit run (called ur here), strictly positive.
```

```
function luby-sequence-core :: nat \Rightarrow nat where
luby-sequence-core i =
  (if \exists k. \ i = 2\hat{k} - 1
  then 2^{(SOME k. i = 2^k - 1) - 1)}
  else luby-sequence-core (i-2\widehat{(SOME\ k.\ 2\widehat{(k-1)} \leq i \land i < 2\widehat{(k-1)} - 1) + 1))
```

```
by auto
termination
proof (relation less-than, goal-cases)
 case 1
  then show ?case by auto
next
  case (2 i)
 let ?k = (SOME \ k. \ 2 \ \hat{\ } (k-1) \le i \land i < 2 \ \hat{\ } k-1)
have 2 \ \hat{\ } (?k-1) \le i \land i < 2 \ \hat{\ } ?k-1
   apply (rule some I-ex)
   using 2 exists-luby-decomp by blast
  then show ?case
   proof -
     have \forall n \ na. \ \neg (1::nat) \leq n \lor 1 \leq n \ \widehat{\ } na
       by (meson one-le-power)
     then have f1: (1::nat) \le 2 \ (?k-1)
       using one-le-numeral by blast
     have f2: i - 2 \ (?k - 1) + 2 \ (?k - 1) = i
       using \langle 2 \cap (?k-1) \leq i \wedge i < 2 \cap ?k-1 \rangle le-add-diff-inverse2 by blast
     have f3: 2 \hat{\ }?k - 1 \neq Suc \ 0
       using f1 (2 \ \widehat{\ } (?k-1) \le i \land i < 2 \ \widehat{\ }?k-1) by linarith
     have 2 \hat{\ } ?k - (1::nat) \neq 0
       using \langle 2 \cap (?k-1) \leq i \wedge i < 2 \cap ?k-1 \rangle gr-implies-not0 by blast
     then have f_4: 2 \ \widehat{\ }?k \neq (1::nat)
       by linarith
     have f5: \forall n \ na. \ if \ na = 0 \ then \ (n::nat) \cap na = 1 \ else \ n \cap na = n * n \cap (na - 1)
       by (simp add: power-eq-if)
     then have ?k \neq 0
       using f4 by meson
     then have 2 \cap (?k-1) \neq Suc \ \theta
       \mathbf{using}\ \mathit{f5}\ \mathit{f3}\ \mathbf{by}\ \mathit{presburger}
     then have Suc \ \theta < 2 \ \widehat{\ } (?k-1)
       using f1 by linarith
     then show ?thesis
       using f2 less-than-iff by presburger
   qed
qed
declare luby-sequence-core.simps[simp del]
lemma two-pover-n-eq-two-power-n'-eq:
 assumes H: (2::nat) \hat{\ } (k::nat) - 1 = 2 \hat{\ } k' - 1
 shows k' = k
proof -
 have (2::nat) \hat{\ } (k::nat) = 2 \hat{\ } k'
   using H by (metis One-nat-def Suc-pred zero-less-numeral zero-less-power)
  then show ?thesis by simp
qed
lemma\ luby-sequence-core-two-power-minus-one:
  luby-sequence-core (2\hat{k}-1)=2\hat{k}-1 (is ?L=?K)
proof -
 have decomp: \exists ka. \ 2 \ \hat{k} - 1 = 2 \ \hat{k}a - 1
   by auto
```

```
have ?L = 2^{(SOME k'. (2::nat)^k - 1 = 2^k' - 1) - 1)}
   apply (subst luby-sequence-core.simps, subst decomp)
   by simp
 moreover have (SOME k'. (2::nat) k - 1 = 2k' - 1 = k
   apply (rule some-equality)
     apply simp
     using two-pover-n-eq-two-power-n'-eq by blast
 ultimately show ?thesis by presburger
qed
lemma different-luby-decomposition-false:
 assumes
   H: 2 \cap (k - Suc \ \theta) \leq i \text{ and }
   k': i < 2 \hat{k}' - Suc \theta and
   k-k': k > k'
 shows False
proof -
 have 2 \hat{k}' - Suc \theta < 2 \hat{k} - Suc \theta
   using k-k' less-eq-Suc-le by auto
 then show ?thesis
   using H k' by linarith
qed
\mathbf{lemma}\ \mathit{luby-sequence-core-not-two-power-minus-one}:
 assumes
   k-i: 2 \cap (k-1) \leq i and
   i-k: i < 2^k - 1
 shows luby-sequence-core i = luby-sequence-core (i - 2 \ (k - 1) + 1)
proof -
 have H: \neg (\exists ka. \ i = 2 \land ka - 1)
   proof (rule ccontr)
     assume ¬ ?thesis
     then obtain k'::nat where k': i = 2 \hat{k}' - 1 by blast
     have (2::nat) \hat{k}' - 1 < 2 \hat{k} - 1
      using i-k unfolding k'.
     then have (2::nat) \hat{k}' < 2 \hat{k}
      by linarith
     then have k' < k
      by simp
     have 2 \hat{\ } (k-1) \leq 2 \hat{\ } k' - (1::nat)
      using k-i unfolding k'.
     then have (2::nat) \hat{k} (k-1) < 2 \hat{k}'
      by (metis Suc-diff-1 not-le not-less-eq zero-less-numeral zero-less-power)
     then have k-1 < k'
      by simp
     show False using \langle k' < k \rangle \langle k-1 < k' \rangle by linarith
 have \bigwedge k \ k'. 2 \ (k - Suc \ 0) \le i \Longrightarrow i < 2 \ k - Suc \ 0 \Longrightarrow 2 \ (k' - Suc \ 0) \le i \Longrightarrow
   i < 2 \hat{k}' - Suc \ \theta \Longrightarrow k = k'
   by (meson different-luby-decomposition-false linorder-neqE-nat)
  then have k: (SOME \ k. \ 2 \ (k - Suc \ \theta) \le i \land i < 2 \ k - Suc \ \theta) = k
   using k-i i-k by auto
 show ?thesis
   apply (subst luby-sequence-core.simps[of i], subst H)
```

```
by (simp \ add: k)
qed
lemma unbounded-luby-sequence-core: unbounded luby-sequence-core
 unfolding bounded-def
proof
 assume \exists b. \forall n. luby-sequence-core n \leq b
 then obtain b where b: \bigwedge n. luby-sequence-core n \leq b
   by metis
 have luby-sequence-core (2^{(b+1)} - 1) = 2^{b}
   using luby-sequence-core-two-power-minus-one [of b+1] by simp
 moreover have (2::nat)^b > b
   by (induction b) auto
 ultimately show False using b[of 2^{(b+1)} - 1] by linarith
qed
abbreviation luby-sequence :: nat \Rightarrow nat where
luby-sequence n \equiv ur * luby-sequence-core n
lemma bounded-luby-sequence: unbounded luby-sequence
 using bounded-const-product[of ur] luby-sequence-axioms
 luby-sequence-def unbounded-luby-sequence-core by blast
lemma luby-sequence-core 0: luby-sequence-core 0 = 1
proof -
 have \theta: (\theta :: nat) = 2 \hat{\theta} - 1
   by auto
 show ?thesis
   by (subst 0, subst luby-sequence-core-two-power-minus-one) simp
qed
lemma luby-sequence-core n \geq 1
proof (induction n rule: nat-less-induct-case)
 case \theta
 then show ?case by (simp add: luby-sequence-core-0)
next
 case (Suc\ n) note IH = this
 consider
     (interv) k where 2 \ \widehat{} \ (k-1) \le Suc \ n and Suc \ n < 2 \ \widehat{} \ k-1
   |(pow2)| k where Suc n = 2 \hat{k} - Suc \theta
   using exists-luby-decomp[of Suc \ n] by auto
 then show ?case
    proof cases
     case pow2
     show ?thesis
       using luby-sequence-core-two-power-minus-one pow2 by auto
    next
     {\bf case}\ interv
     have n: Suc \ n - 2 \ \hat{\ } (k - 1) + 1 < Suc \ n
       by (metis Suc-1 Suc-eq-plus1 add.commute add-diff-cancel-left' add-less-mono1 gr0I
         interv(1) interv(2) le-add-diff-inverse2 less-Suc-eq not-le power-0 power-one-right
         power-strict-increasing-iff)
     show ?thesis
```

```
apply (subst luby-sequence-core-not-two-power-minus-one[OF interv])
        using IH n by auto
    qed
\mathbf{qed}
end
locale \ luby-sequence-restart =
  luby-sequence ur +
  cdcl<sub>W</sub> trail init-clss learned-clss backtrack-lvl conflicting cons-trail tl-trail
   add-init-cls
   add-learned-cls remove-cls update-backtrack-lvl update-conflicting init-state
   restart\text{-}state
  for
    ur :: nat  and
   trail :: 'st \Rightarrow ('v, nat, 'v clause) ann-literals and
   init-clss :: 'st \Rightarrow 'v clauses and
   learned-clss :: 'st \Rightarrow 'v clauses and
   backtrack-lvl :: 'st \Rightarrow nat and
   conflicting :: 'st \Rightarrow 'v \ clause \ option \ and
   cons-trail :: ('v, nat, 'v clause) ann-literal \Rightarrow 'st \Rightarrow 'st and
   tl-trail :: 'st \Rightarrow 'st and
   add-init-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st and
   add-learned-cls remove-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st and
    update-backtrack-lvl :: nat \Rightarrow 'st \Rightarrow 'st and
   update\text{-}conflicting :: 'v \ clause \ option \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
   init-state :: 'v clauses \Rightarrow 'st and
   restart-state :: 'st \Rightarrow 'st
begin
sublocale cdcl_W-restart - - - - - - - luby-sequence
 apply unfold-locales
 using bounded-luby-sequence by blast
end
end
theory CDCL-W-Incremental
imports CDCL-W-Termination
begin
8
      Incremental SAT solving
context cdcl_W
begin
This invariant holds all the invariant related to the strategy. See the structural invariant in
cdcl_W-all-struct-inv
definition cdcl_W-stgy-invariant where
cdcl_W-stgy-invariant S \longleftrightarrow
  conflict-is-false-with-level S
  \land no-clause-is-false S
  \land no-smaller-confl S
```

 \land no-clause-is-false S

```
lemma cdcl_W-stgy-cdcl<sub>W</sub>-stgy-invariant:
 assumes
  cdcl_W: cdcl_W-stgy S T and
  inv-s: cdcl_W-stgy-invariant S and
  inv: cdcl_W-all-struct-inv S
 shows
   cdcl_W-stqy-invariant T
 unfolding cdcl_W-stgy-invariant-def cdcl_W-all-struct-inv-def apply standard
   apply (rule cdcl_W-stgy-ex-lit-of-max-level[of S])
   using assms unfolding cdcl_W-stgy-invariant-def cdcl_W-all-struct-inv-def apply auto[7]
 apply standard
   using cdcl_W cdcl_W-stgy-not-non-negated-init-clss apply blast
 apply standard
  apply (rule cdcl_W-stgy-no-smaller-confl-inv)
  using assms unfolding cdcl_W-stgy-invariant-def cdcl_W-all-struct-inv-def apply auto[4]
 using cdcl_W cdcl_W-stgy-not-non-negated-init-clss by auto
lemma rtranclp-cdcl_W-stgy-cdcl_W-stgy-invariant:
 assumes
  cdcl_W: cdcl_W-stgy^{**} S T and
  inv-s: cdcl_W-stgy-invariant S and
  inv: cdcl_W-all-struct-inv S
 shows
   cdcl_W-stgy-invariant T
 using assms apply (induction)
   apply simp
 using cdcl_W-stgy-cdcl_W-stgy-invariant rtranclp-cdcl_W-all-struct-inv-inv
 rtranclp-cdcl_W-stgy-rtranclp-cdcl_W by blast
abbreviation decr-bt-lvl where
decr-bt-lvl \ S \equiv update-backtrack-lvl \ (backtrack-lvl \ S - 1) \ S
When we add a new clause, we reduce the trail until we get to the first literal included in C.
Then we can mark the conflict.
fun cut-trail-wrt-clause where
cut-trail-wrt-clause <math>C [] S = S
cut-trail-wrt-clause C (Marked L - \# M) S =
 (if -L \in \# C then S)
   else cut-trail-wrt-clause C M (decr-bt-lvl (tl-trail S)))
cut-trail-wrt-clause C (Propagated L - \# M) S =
 (if -L \in \# C \text{ then } S
   else cut-trail-wrt-clause C M (tl-trail S))
definition add-new-clause-and-update :: 'v literal multiset \Rightarrow 'st \Rightarrow 'st where
add-new-clause-and-update CS =
 (if trail S \models as \ CNot \ C
 then update-conflicting (Some C) (add-init-cls C (cut-trail-wrt-clause C (trail S) S))
 else add-init-cls CS)
{f thm} cut-trail-wrt-clause.induct
lemma init-clss-cut-trail-wrt-clause[simp]:
 init-clss (cut-trail-wrt-clause C M S) = init-clss S
 by (induction rule: cut-trail-wrt-clause.induct) auto
lemma learned-clss-cut-trail-wrt-clause[simp]:
```

```
learned-clss (cut-trail-wrt-clause C M S) = learned-clss S
 by (induction rule: cut-trail-wrt-clause.induct) auto
lemma conflicting-clss-cut-trail-wrt-clause[simp]:
 conflicting\ (cut\text{-}trail\text{-}wrt\text{-}clause\ C\ M\ S) = conflicting\ S
 by (induction rule: cut-trail-wrt-clause.induct) auto
lemma trail-cut-trail-wrt-clause:
 \exists M. \ trail \ S = M @ trail \ (cut\text{-}trail\text{-}wrt\text{-}clause \ C \ (trail \ S) \ S)
proof (induction trail S arbitrary: S rule: ann-literal-list-induct)
 then show ?case by simp
next
 case (marked L \ l \ M) note IH = this(1)[of \ decr-bt-lvl \ (tl-trail \ S)] and M = this(2)[symmetric]
 then show ?case using Cons-eq-appendI by fastforce+
next
 case (proped L \ l \ M) note IH = this(1)[of \ tl-trail \ S] and M = this(2)[symmetric]
 then show ?case using Cons-eq-appendI by fastforce+
qed
lemma n-dup-no-dup-trail-cut-trail-wrt-clause[simp]:
 assumes n-d: no-dup (trail\ T)
 shows no-dup (trail (cut-trail-wrt-clause C (trail T) T))
proof -
 obtain M where
   M: trail T = M @ trail (cut-trail-wrt-clause C (trail T) T)
   using trail-cut-trail-wrt-clause[of\ T\ C] by auto
 show ?thesis
   using n-d unfolding arg-cong[OF M, of no-dup] by auto
qed
lemma cut-trail-wrt-clause-backtrack-lvl-length-marked:
 assumes
    backtrack-lvl T = length (get-all-levels-of-marked (trail T))
 shows
 backtrack-lvl (cut-trail-wrt-clause C (trail T) T) =
    length (qet-all-levels-of-marked (trail (cut-trail-wrt-clause C (trail T) T)))
 using assms
proof (induction trail T arbitrary: T rule: ann-literal-list-induct)
 case nil
 then show ?case by simp
next
 case (marked L \ l \ M) note IH = this(1)[of \ decr-bt-lvl \ (tl-trail \ T)] and M = this(2)[symmetric]
   and bt = this(3)
 then show ?case by auto
next
 case (proped L l M) note IH = this(1)[of\ tl-trail\ T] and M = this(2)[symmetric] and bt = this(3)
 then show ?case by auto
qed
lemma cut-trail-wrt-clause-get-all-levels-of-marked:
 assumes get-all-levels-of-marked (trail T) = rev [Suc 0..<
   Suc\ (length\ (get-all-levels-of-marked\ (trail\ T)))]
 shows
   get-all-levels-of-marked (trail ((cut-trail-wrt-clause C (trail T) T))) = rev [Suc \theta...
```

```
Suc\ (length\ (get-all-levels-of-marked\ (trail\ ((cut-trail-wrt-clause\ C\ (trail\ T)\ T)))))]
  using assms
proof (induction trail T arbitrary: T rule: ann-literal-list-induct)
 case nil
 then show ?case by simp
next
 case (marked L \ l \ M) note IH = this(1)[of \ decr-bt-lvl \ (tl-trail \ T)] and M = this(2)[symmetric]
   and bt = this(3)
 then show ?case by (cases count CL = 0) auto
next
 case (proped L l M) note IH = this(1)[of tl-trail T] and M = this(2)[symmetric] and bt = this(3)
 then show ?case by (cases count CL = 0) auto
qed
lemma cut-trail-wrt-clause-CNot-trail:
 assumes trail\ T \models as\ CNot\ C
 shows
   (trail\ ((cut\text{-}trail\text{-}wrt\text{-}clause\ C\ (trail\ T)\ T))) \models as\ CNot\ C
 using assms
proof (induction trail T arbitrary: T rule: ann-literal-list-induct)
 case nil
 then show ?case by simp
next
 case (marked\ L\ l\ M) note IH=this(1)[of\ decr-bt-lvl\ (tl-trail\ T)] and M=this(2)[symmetric]
   and bt = this(3)
 show ?case
   proof (cases count C (-L) = \theta)
     case False
     then show ?thesis
       using IH M bt by (auto simp: true-annots-true-cls)
   \mathbf{next}
     {\bf case}\ {\it True}
     obtain mma :: 'v literal multiset where
       f6\colon (mma\in\{\{\#-l\#\}\mid l.\ l\in\#\ C\}\longrightarrow M\models a\ mma)\longrightarrow M\models as\ \{\{\#-l\#\}\mid l.\ l\in\#\ C\}
       using true-annots-def by moura
     have mma \in \{\{\#-l\#\} \mid l. \ l \in \#\ C\} \longrightarrow trail\ T \models a\ mma
       using CNot-def M bt by (metis (no-types) true-annots-def)
     then have M \models as \{ \{ \# - l \# \} \mid l. \ l \in \# \ C \}
       using f6 True M bt by force
     then show ?thesis
       using IH true-annots-true-cls M by (auto simp: CNot-def)
   qed
next
 case (proped L l M) note IH = this(1)[of tl-trail T] and M = this(2)[symmetric] and bt = this(3)
 show ?case
   proof (cases count C (-L) = \theta)
     case False
     then show ?thesis
       using IH M bt by (auto simp: true-annots-true-cls)
   next
     {f case}\ {\it True}
     obtain mma :: 'v literal multiset where
       f6: (mma \in \{\{\#-l\#\} \mid l. \ l \in \#\ C\} \longrightarrow M \models a\ mma) \longrightarrow M \models as \{\{\#-l\#\} \mid l. \ l \in \#\ C\}
       using true-annots-def by moura
     have mma \in \{\{\#-l\#\} \mid l. \ l \in \#\ C\} \longrightarrow trail\ T \models a\ mma
```

```
using CNot-def M bt by (metis (no-types) true-annots-def)
      then have M \models as \{ \{ \# - l \# \} \mid l. \ l \in \# \ C \}
       using f6 True M bt by force
      then show ?thesis
       using IH true-annots-true-cls M by (auto simp: CNot-def)
   qed
qed
\mathbf{lemma}\ \mathit{cut-trail-wrt-clause-hd-trail-in-or-empty-trail}:
  ((\forall L \in \#C. -L \notin lits - of (trail\ T)) \land trail (cut-trail-wrt-clause\ C\ (trail\ T)\ T) = [])
    \vee (-lit\text{-}of \ (hd \ (trail \ (cut\text{-}trail\text{-}wrt\text{-}clause \ C \ (trail \ T) \ T))) \in \# \ C
      \land length (trail (cut-trail-wrt-clause C (trail T) T)) \geq 1)
 using assms
proof (induction trail T arbitrary: T rule: ann-literal-list-induct)
 case nil
  then show ?case by simp
  case (marked\ L\ l\ M) note IH=this(1)[of\ decr-bt-lvl\ (tl-trail\ T)] and M=this(2)[symmetric]
  then show ?case by simp force
  case (proped L\ l\ M) note IH=this(1)[of\ tl\text{-}trail\ T] and M=this(2)[symmetric]
  then show ?case by simp force
qed
We can fully run cdcl_W-s or add a clause. Remark that we use cdcl_W-s to avoid an explicit
skip, resolve, and backtrack normalisation to get rid of the conflict C if possible.
inductive incremental-cdcl<sub>W</sub> :: 'st \Rightarrow 'st \Rightarrow bool for S where
add-confl:
  trail \ S \models asm \ init\text{-}clss \ S \Longrightarrow distinct\text{-}mset \ C \Longrightarrow conflicting \ S = None \Longrightarrow
  trail \ S \models as \ CNot \ C \Longrightarrow
  full\ cdcl_W-stgy
     (update\text{-}conflicting\ (Some\ C)\ (add\text{-}init\text{-}cls\ C\ (cut\text{-}trail\text{-}wrt\text{-}clause\ C\ (trail\ S)\ S)))\ T\Longrightarrow
   incremental\text{-}cdcl_W \ S \ T \ |
add-no-confl:
  trail \ S \models asm \ init-clss \ S \Longrightarrow \ distinct-mset \ C \Longrightarrow \ conflicting \ S = None \Longrightarrow
   \neg trail \ S \models as \ CNot \ C \Longrightarrow
  full\ cdcl_W-stgy (add-init-cls C\ S) T \implies
  incremental-cdcl_W S T
inductive add-learned-clss :: 'st \Rightarrow 'v clauses \Rightarrow 'st \Rightarrow bool for S :: 'st where
add-learned-clss-nil: add-learned-clss S \{\#\} S
add-learned-clss-plus:
  add-learned-clss S A T \Longrightarrow add-learned-clss S (\{\#x\#\} + A) (add-learned-cls x T)
declare add-learned-clss.intros[intro]
lemma Ex-add-learned-clss:
  \exists T. add\text{-}learned\text{-}clss \ S \ A \ T
 by (induction A arbitrary: S rule: multiset-induct) (auto simp: union-commute[of - \{\#-\#\}])
lemma add-learned-clss-trail:
  assumes add-learned-clss S \ U \ T and no-dup (trail \ S)
  shows trail\ T = trail\ S
  using assms by (induction rule: add-learned-clss.induct) (simp-all add: ac-simps)
lemma add-learned-clss-learned-clss:
```

```
assumes add-learned-clss S U T and no-dup (trail S)
 shows learned-clss T = U + learned-clss S
  using assms by (induction rule: add-learned-clss.induct)
  (auto simp: ac-simps dest: add-learned-clss-trail)
lemma add-learned-clss-init-clss:
 assumes add-learned-clss S \ U \ T and no-dup (trail \ S)
 shows init-clss T = init-clss S
 using assms by (induction rule: add-learned-clss.induct)
  (auto simp: ac-simps dest: add-learned-clss-trail)
lemma add-learned-clss-conflicting:
 assumes add-learned-clss S U T and no-dup (trail S)
 shows conflicting T = conflicting S
 using assms by (induction rule: add-learned-clss.induct)
  (auto simp: ac-simps dest: add-learned-clss-trail)
lemma add-learned-clss-backtrack-lvl:
 assumes add-learned-clss S \ U \ T and no-dup (trail \ S)
 shows backtrack-lvl T = backtrack-lvl S
 using assms by (induction rule: add-learned-clss.induct)
  (auto simp: ac-simps dest: add-learned-clss-trail)
lemma add-learned-clss-init-state-mempty[dest!]:
  add-learned-clss (init-state N) {#} T \Longrightarrow T = init-state N
  by (cases rule: add-learned-clss.cases) (auto simp: add-learned-clss.cases)
For multiset larger that 1 element, there is no way to know in which order the clauses are added.
But contrary to a definition fold-mset, there is an element.
lemma add-learned-clss-init-state-single[dest!]:
  add-learned-clss (init-state N) {#C#} T \Longrightarrow T = add-learned-cls C (init-state N)
 by (induction \{\#C\#\}\ T rule: add-learned-clss.induct)
  (auto simp: add-learned-clss.cases ac-simps union-is-single split: split-if-asm)
\mathbf{thm}\ rtranclp\text{-}cdcl_W\text{-}stgy\text{-}no\text{-}smaller\text{-}confl\text{-}inv\ cdcl_W\text{-}stgy\text{-}final\text{-}state\text{-}conclusive}
lemma\ cdcl_W-all-struct-inv-add-new-clause-and-update-cdcl_W-all-struct-inv:
 assumes
   inv-T: cdcl_W-all-struct-inv T and
   tr-T-N[simp]: trail T \models asm N and
   tr-C[simp]: trail\ T \models as\ CNot\ C and
   [simp]: distinct-mset C
 shows cdcl_W-all-struct-inv (add-new-clause-and-update C T) (is cdcl_W-all-struct-inv?T')
proof -
 \textbf{let} ? T = update\text{-}conflicting (Some \ C) (add\text{-}init\text{-}cls \ C (cut\text{-}trail\text{-}wrt\text{-}clause \ C (trail \ T) \ T))
 obtain M where
   M: trail \ T = M \ @ trail \ (cut-trail-wrt-clause \ C \ (trail \ T) \ T)
     using trail-cut-trail-wrt-clause[of T C] by blast
 have H[dest]: \Lambda x. \ x \in lits-of (trail\ (cut-trail-wrt-clause\ C\ (trail\ T)\ T)) \Longrightarrow
   x \in lits\text{-}of (trail T)
   using inv-T arg-cong[OF M, of lits-of] by auto
 have H'[dest]: \land x. \ x \in set \ (trail \ (cut\text{-}trail\text{-}wrt\text{-}clause \ C \ (trail \ T) \ T)) \Longrightarrow x \in set \ (trail \ T)
   using inv-T arg-cong[OF M, of set] by auto
 have H-proped: \bigwedge x. x \in set (get-all-mark-of-propagated (trail (cut-trail-wrt-clause C (trail T)
    T))) \Longrightarrow x \in set (get-all-mark-of-propagated (trail T))
```

```
have [simp]: no-strange-atm ?T
 using inv-T unfolding cdcl_W-all-struct-inv-def no-strange-atm-def add-new-clause-and-update-def
 cdcl_W-M-level-inv-def
 by (auto dest!: H H')
have M-lev: cdcl_W-M-level-inv T
 using inv-T unfolding cdcl_W-all-struct-inv-def by blast
then have no-dup (M @ trail (cut\text{-}trail\text{-}wrt\text{-}clause \ C \ (trail \ T) \ T))
 unfolding cdcl_W-M-level-inv-def unfolding M[symmetric] by auto
then have [simp]: no-dup (trail\ (cut\text{-}trail\text{-}wrt\text{-}clause\ C\ (trail\ T)\ T))
 by auto
have consistent-interp (lits-of (M @ trail (cut-trail-wrt-clause C (trail T) T)))
 using M-lev unfolding cdcl_W-M-level-inv-def unfolding M[symmetric] by auto
then have [simp]: consistent-interp (lits-of (trail (cut-trail-wrt-clause C (trail T) T)))
 unfolding consistent-interp-def by auto
have [simp]: cdcl_W-M-level-inv ?T
 using M-lev cut-trail-wrt-clause-get-all-levels-of-marked [of T C]
 unfolding cdcl_W-M-level-inv-def by (auto dest: H H'
   simp: M-lev\ cdcl_W-M-level-inv-def\ cut-trail-wrt-clause-backtrack-lvl-length-marked)
have [simp]: \land s. \ s \in \# \ learned\text{-}clss \ T \Longrightarrow \neg tautology \ s
 using inv-T unfolding cdcl_W-all-struct-inv-def by auto
have distinct\text{-}cdcl_W\text{-}state\ T
 using inv-T unfolding cdcl_W-all-struct-inv-def by auto
then have [simp]: distinct-cdcl_W-state ?T
 unfolding distinct-cdcl_W-state-def by auto
have cdcl_W-conflicting T
 using inv-T unfolding cdcl_W-all-struct-inv-def by auto
have trail ?T \models as CNot C
  by (simp add: cut-trail-wrt-clause-CNot-trail)
then have [simp]: cdcl_W-conflicting ?T
 unfolding cdcl_W-conflicting-def apply simp
 by (metis\ M\ (cdcl_W\ -conflicting\ T)\ append\ -assoc\ cdcl_W\ -conflicting\ -decomp(2))
have
  decomp-T: all-decomposition-implies-m \ (init-clss \ T) \ (get-all-marked-decomposition \ (trail \ T))
 using inv-T unfolding cdcl_W-all-struct-inv-def by auto
have all-decomposition-implies-m (init-clss ?T)
  (get-all-marked-decomposition (trail ?T))
 unfolding all-decomposition-implies-def
 proof clarify
   \mathbf{fix} \ a \ b
   assume (a, b) \in set (get-all-marked-decomposition (trail ?T))
   from in-get-all-marked-decomposition-in-get-all-marked-decomposition-prepend[OF this, of M]
   obtain b' where
     (a, b' \otimes b) \in set (get-all-marked-decomposition (trail T))
     using M by auto
   then have unmark\ a \cup set\text{-}mset\ (init\text{-}clss\ T) \models ps\ unmark\ (b' @ b)
```

using inv-T arg-cong[OF M, of get-all-mark-of-propagated] by auto

```
using decomp-T unfolding all-decomposition-implies-def by fastforce
     then have unmark \ a \cup set\text{-}mset \ (init\text{-}clss \ ?T)
           \models ps \ unmark \ (b @ b')
       by (simp add: Un-commute)
     then show unmark a \cup set\text{-}mset \ (init\text{-}clss \ ?T)
       \models ps \ unmark \ b
       by (auto simp: image-Un)
   \mathbf{qed}
 have [simp]: cdcl_W-learned-clause ?T
   using inv-T unfolding cdcl_W-all-struct-inv-def cdcl_W-learned-clause-def
   \mathbf{by}\ (\mathit{auto}\ \mathit{dest}!{:}\ \mathit{H-proped}\ \mathit{simp}{:}\ \mathit{clauses-def})
 show ?thesis
   using \langle all\text{-}decomposition\text{-}implies\text{-}m \quad (init\text{-}clss ?T)
   (qet-all-marked-decomposition (trail ?T))
   unfolding cdcl_W-all-struct-inv-def by (auto simp: add-new-clause-and-update-def)
qed
lemma cdcl_W-all-struct-inv-add-new-clause-and-update-cdcl_W-stgy-inv:
  assumes
    inv-s: cdcl_W-stgy-invariant T and
   inv: cdcl_W-all-struct-inv T and
   tr-T-N[simp]: trail T \models asm N and
   tr-C[simp]: trail\ T \models as\ CNot\ C and
   [simp]: distinct-mset C
 shows cdcl_W-stqy-invariant (add-new-clause-and-update C T) (is cdcl_W-stqy-invariant ?T')
proof -
 have cdcl_W-all-struct-inv ?T'
   \mathbf{using}\ cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}add\text{-}new\text{-}clause\text{-}and\text{-}update\text{-}cdcl_W\text{-}all\text{-}struct\text{-}inv\ assms\ \mathbf{by}\ blast
  then have
   no-dup-cut-T[simp]: no-dup (trail (cut-trail-wrt-clause C (trail T) T)) and
   n-d[simp]: no-dup (trail T)
   using cdcl_W-M-level-inv-decomp(2) cdcl_W-all-struct-inv-def inv
   n-dup-no-dup-trail-cut-trail-wrt-clause by blast+
  then have trail (add-new-clause-and-update C T) \models as CNot C
   by (simp add: add-new-clause-and-update-def cut-trail-wrt-clause-CNot-trail
     cdcl_W-M-level-inv-def cdcl_W-all-struct-inv-def)
 obtain MT where
    MT: trail T = MT @ trail (cut-trail-wrt-clause C (trail T) T)
   using trail-cut-trail-wrt-clause by blast
  consider
     (false) \ \forall L \in \#C. - L \notin lits-of (trail\ T) and trail\ (cut-trail-wrt-clause\ C (trail\ T)\ T) = []
   | (not\text{-}false) - lit\text{-}of (hd (trail (cut\text{-}trail\text{-}wrt\text{-}clause C (trail T) T)))} \in \# C \text{ and }
      1 \leq length (trail (cut-trail-wrt-clause C (trail T) T))
   using cut-trail-wrt-clause-hd-trail-in-or-empty-trail[of C T] by auto
  then show ?thesis
   proof cases
     case false note C = this(1) and empty-tr = this(2)
     then have [simp]: C = \{\#\}
       by (simp\ add:\ in\text{-}CNot\text{-}implies\text{-}uminus(2)\ multiset\text{-}eqI)
     show ?thesis
       using empty-tr unfolding cdcl_W-stgy-invariant-def no-smaller-confl-def
       cdcl_W-all-struct-inv-def by (auto simp: add-new-clause-and-update-def)
     case not-false note C = this(1) and l = this(2)
```

```
let ?L = -lit\text{-of} (hd (trail (cut\text{-trail-wrt-clause } C (trail T) T)))
have get-all-levels-of-marked (trail (add-new-clause-and-update C(T)) =
 rev [1..<1 + length (qet-all-levels-of-marked (trail (add-new-clause-and-update C T)))]
 using \langle cdcl_W-all-struct-inv ? T' \rangle unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def
 by blast
moreover
 have backtrack-lvl (cut-trail-wrt-clause \ C \ (trail \ T) \ T) =
   length (get-all-levels-of-marked (trail (add-new-clause-and-update C T)))
   using \langle cdcl_W-all-struct-inv ? T' \rangle unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def
   by (auto simp:add-new-clause-and-update-def)
moreover
 have no-dup (trail (cut-trail-wrt-clause C (trail T) T))
   using \langle cdcl_W-all-struct-inv ?T' \rangle unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def
   by (auto simp:add-new-clause-and-update-def)
 then have atm-of ?L \notin atm-of 'lits-of (tl (trail (cut-trail-wrt-clause C (trail T) T)))
   apply (cases trail (cut-trail-wrt-clause C (trail T) T))
   apply (auto)
   using Marked-Propagated-in-iff-in-lits-of defined-lit-map by blast
ultimately have L: get-level (trail (cut-trail-wrt-clause C (trail T) T)) (-?L)
  = length (get-all-levels-of-marked (trail (cut-trail-wrt-clause C (trail T) T)))
 using get-level-get-rev-level-get-all-levels-of-marked[OF]
   \langle atm\text{-}of ?L \notin atm\text{-}of `lits\text{-}of (tl (trail (cut-trail-wrt-clause C (trail T) T)))} \rangle
   of [hd (trail (cut-trail-wrt-clause C (trail T) T))]]
   apply (cases trail (add-init-cls C (cut-trail-wrt-clause C (trail T) T));
    cases hd (trail (cut-trail-wrt-clause C (trail T) T)))
   using l by (auto split: split-if-asm
     simp:rev-swap[symmetric] \ add-new-clause-and-update-def)
have L': length (get-all-levels-of-marked (trail (cut-trail-wrt-clause C (trail T) T)))
 = backtrack-lvl (cut-trail-wrt-clause C (trail T) T)
 using \langle cdcl_W-all-struct-inv ? T' \rangle unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def
 by (auto simp:add-new-clause-and-update-def)
have [simp]: no-smaller-confl (update-conflicting (Some C)
  (add\text{-}init\text{-}cls\ C\ (cut\text{-}trail\text{-}wrt\text{-}clause\ C\ (trail\ T)\ T)))
 unfolding no-smaller-confl-def
proof (clarify, goal-cases)
 case (1 \ M \ K \ i \ M' \ D)
 then consider
     (DC) D = C
   \mid (D\text{-}T)\ D\in \#\ clauses\ T
   by (auto simp: clauses-def split: split-if-asm)
 then show False
   proof cases
     case D-T
     have no-smaller-confl T
      using inv-s unfolding cdcl<sub>W</sub>-stqy-invariant-def by auto
     have (MT @ M') @ Marked K i \# M = trail T
       using MT 1(1) by auto
     thus False using D-T (no-smaller-confl T) 1(3) unfolding no-smaller-confl-def by blast
   next
     case DC note -[simp] = this
     then have atm\text{-}of\ (-?L) \in atm\text{-}of\ `(lits\text{-}of\ M)
```

```
using 1(3) C in-CNot-implies-uminus(2) by blast
           moreover
            have lit-of (hd (M' @ Marked K i \# [])) = -?L
               using l 1(1)[symmetric] inv
              by (cases trail (add-init-cls C (cut-trail-wrt-clause C (trail T) T)))
               (auto dest!: arg\text{-}cong[of\text{-}\#\text{-}\text{-}hd] simp: hd\text{-}append cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}def
                 cdcl_W-M-level-inv-def)
            from arg-cong[OF this, of atm-of]
            have atm\text{-}of\ (-?L) \in atm\text{-}of\ (lits\text{-}of\ (M'\ @\ Marked\ K\ i\ \#\ []))
               by (cases (M' @ Marked K i \# [])) auto
           moreover have no-dup (trail\ (cut\text{-}trail\text{-}wrt\text{-}clause\ C\ (trail\ T)\ T))
             using \langle cdcl_W-all-struct-inv ?T' unfolding cdcl_W-all-struct-inv-def
             cdcl_W-M-level-inv-def by (auto simp: add-new-clause-and-update-def)
           ultimately show False
             unfolding 1(1)[symmetric, simplified]
            apply auto
            using Marked-Propagated-in-iff-in-lits-of defined-lit-map apply blast
             by (metis IntI Marked-Propagated-in-iff-in-lits-of defined-lit-map empty-iff)
       ged
     qed
     show ?thesis using L L' C
       unfolding cdcl_W-stgy-invariant-def
       unfolding cdcl_W-all-struct-inv-def by (auto simp: add-new-clause-and-update-def)
   qed
qed
lemma full-cdcl_W-stgy-inv-normal-form:
 assumes
   full: full cdcl_W-stgy S T and
   inv-s: cdcl_W-stgy-invariant S and
   inv: cdcl_W-all-struct-inv S
 shows conflicting T = Some \{\#\} \land unsatisfiable (set-mset (init-clss S))
   \vee conflicting T = None \wedge trail \ T \models asm init-clss \ S \wedge satisfiable (set-mset (init-clss \ S))
proof
 have no-step cdcl_W-stgy T
   using full unfolding full-def by blast
 moreover have cdcl_W-all-struct-inv T and inv-s: cdcl_W-stqy-invariant T
   apply (metis cdcl<sub>W</sub>.rtranclp-cdcl<sub>W</sub>-stgy-rtranclp-cdcl<sub>W</sub> cdcl<sub>W</sub>-axioms full full-def inv
     rtranclp-cdcl_W-all-struct-inv-inv)
   by (metis full full-def inv inv-s rtranclp-cdcl_W-stgy-cdcl_W-stgy-invariant)
  ultimately have conflicting T = Some \{\#\} \land unsatisfiable (set-mset (init-clss T))
   \vee conflicting T = None \wedge trail T \models asm init-clss T
   using cdcl_W-stgy-final-state-conclusive[of T] full
   unfolding cdcl_W-all-struct-inv-def cdcl_W-stgy-invariant-def full-def by fast
  moreover have consistent-interp (lits-of (trail T))
   \mathbf{using} \ \langle cdcl_W \text{-}all\text{-}struct\text{-}inv \ T \rangle \ \mathbf{unfolding} \ cdcl_W \text{-}all\text{-}struct\text{-}inv\text{-}def \ cdcl_W \text{-}M\text{-}level\text{-}inv\text{-}def
   by auto
  moreover have init-clss S = init-clss T
   using inv unfolding cdcl_W-all-struct-inv-def
   by (metis\ rtranclp-cdcl_W-stgy-no-more-init-clss\ full\ full-def)
  ultimately show ?thesis
   by (metis satisfiable-carac' true-annot-def true-annots-def true-clss-def)
qed
```

lemma $incremental\text{-}cdcl_W\text{-}inv$:

```
assumes
   inc: incremental\text{-}cdcl_W S T and
   inv: cdcl_W-all-struct-inv S and
   s-inv: cdcl_W-stgy-invariant S
  shows
    cdcl_W-all-struct-inv T and
   cdcl_W-stqy-invariant T
  using inc
proof (induction)
 case (add\text{-}confl\ C\ T)
 let ?T = (update\text{-}conflicting (Some C) (add\text{-}init\text{-}cls C (cut\text{-}trail\text{-}wrt\text{-}clause C (trail S) S)))
 have cdcl_W-all-struct-inv ?T and inv-s-T: cdcl_W-stgy-invariant ?T
   using add-confl.hyps(1,2,4) add-new-clause-and-update-def
   cdcl_W-all-struct-inv-add-new-clause-and-update-cdcl_W-all-struct-inv inv apply auto[1]
   using add-confl.hyps(1,2,4) add-new-clause-and-update-def
    cdcl_W-all-struct-inv-add-new-clause-and-update-cdcl_W-stgy-inv inv s-inv by auto
  case 1 show ?case
    by (metis add-confl.hyps(1,2,4,5)) add-new-clause-and-update-def
      cdcl_W-all-struct-inv-add-new-clause-and-update-cdcl_W-all-struct-inv
      rtranclp-cdcl_W-all-struct-inv-inv rtranclp-cdcl_W-stgy-rtranclp-cdcl_W full-def inv)
 case 2 show ?case
   by (metis inv-s-T add-confl.hyps(1,2,4,5)) add-new-clause-and-update-def
     cdcl_W-all-struct-inv-add-new-clause-and-update-cdcl_W-all-struct-inv full-def inv
     rtranclp-cdcl_W-stgy-cdcl_W-stgy-invariant)
next
  case (add-no-confl\ C\ T)
 case 1
 have cdcl_W-all-struct-inv (add-init-cls CS)
   using inv \ (distinct\text{-}mset \ C) \ unfolding \ cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}def \ no\text{-}strange\text{-}atm\text{-}def
   cdcl_W-M-level-inv-def\ distinct-cdcl_W-state-def\ cdcl_W-conflicting-def\ cdcl_W-learned-clause-def\ cdcl_W-methods
   by (auto simp: all-decomposition-implies-insert-single clauses-def)
  then show ?case
   using add-no-confl(5) unfolding full-def by (auto intro: rtranclp-cdcl<sub>W</sub>-stgy-cdcl<sub>W</sub>-all-struct-inv)
  case 2 have cdcl_W-stgy-invariant (add-init-cls CS)
   using s-inv \langle \neg trail \ S \models as \ CNot \ C \rangle inv unfolding cdcl_W-stgy-invariant-def no-smaller-confl-def
   eq-commute[of - trail -] cdclw-M-level-inv-def cdclw-all-struct-inv-def
   \mathbf{by}\ (\mathit{auto}\ \mathit{simp}:\ \mathit{true-annots-true-cls-def-iff-negation-in-model}\ \mathit{clauses-def}\ \mathit{split}:\ \mathit{split-if-asm})
  then show ?case
   by (metis \langle cdcl_W - all - struct - inv \ (add - init - cls \ C \ S) \rangle add -no-confl. hyps(5) full-def
     rtranclp-cdcl_W-stgy-cdcl_W-stgy-invariant)
qed
lemma rtranclp-incremental-cdcl_W-inv:
 assumes
   inc: incremental - cdcl_W^{**} S T and
   inv: cdcl_W-all-struct-inv S and
   s-inv: cdcl_W-stgy-invariant S
  shows
    cdcl_W-all-struct-inv T and
   cdcl_W-stgy-invariant T
    using inc apply induction
   using inv apply simp
  using s-inv apply simp
  using incremental\text{-}cdcl_W\text{-}inv by blast+
```

```
lemma incremental-conclusive-state:
 assumes
   inc: incremental\text{-}cdcl_W S T and
   inv: cdcl_W-all-struct-inv S and
   s-inv: cdcl_W-stgy-invariant S
  shows conflicting T = Some \{\#\} \land unsatisfiable (set-mset (init-clss T))
   \vee conflicting T = None \wedge trail \ T \models asm \ init-clss \ T \wedge satisfiable (set-mset (init-clss \ T))
  using inc apply induction
 apply (metis Nitpick.rtranclp-unfold add-confl full-cdcl<sub>W</sub>-stgy-inv-normal-form full-def
   incremental-cdcl_W-inv(1) incremental-cdcl_W-inv(2) inv s-inv)
 by (metis\ (full-types)\ rtranclp-unfold\ add-no-confl\ full-cdcl_W-stgy-inv-normal-form
   full-def\ incremental-cdcl_W-inv(1)\ incremental-cdcl_W-inv(2)\ inv\ s-inv)
lemma tranclp-incremental-correct:
 assumes
   inc: incremental - cdcl_W^{++} S T and
   inv: cdcl_W-all-struct-inv S and
   s-inv: cdcl_W-stgy-invariant S
  shows conflicting T = Some \{\#\} \land unsatisfiable (set-mset (init-clss T))
   \vee conflicting T = None \wedge trail \ T \models asm \ init-clss \ T \wedge satisfiable (set-mset (init-clss \ T))
  using inc apply induction
  using assms incremental-conclusive-state apply blast
 by (meson incremental-conclusive-state inv rtranclp-incremental-cdcl<sub>W</sub>-inv s-inv
   tranclp-into-rtranclp)
lemma blocked-induction-with-marked:
  assumes
   n-d: no-dup (L \# M) and
   nil: P \mid  and
   append: \bigwedge M \ L \ M'. \ P \ M \Longrightarrow is-marked \ L \Longrightarrow \forall \ m \in set \ M'. \ \neg is-marked \ m \Longrightarrow no-dup \ (L \ \# \ M' \ @
     P(L \# M' @ M) and
   L: is-marked L
 shows
   P(L \# M)
 using n\text{-}d L
proof (induction card \{L' \in set M. is\text{-marked } L'\} arbitrary: L[M]
  case \theta note n = this(1) and n-d = this(2) and L = this(3)
 then have \forall m \in set M. \neg is\text{-}marked m by auto
  then show ?case using append[of []LM]L nil n-d by auto
next
  case (Suc n) note IH = this(1) and n = this(2) and n-d = this(3) and L = this(4)
 have \exists L' \in set M. is\text{-}marked L'
   proof (rule ccontr)
     \mathbf{assume} \ \neg ?thesis
     then have H: \{L' \in set \ M. \ is\text{-marked} \ L'\} = \{\}
     show False using n unfolding H by auto
   qed
  then obtain L' M' M'' where
   M: M = M' @ L' \# M'' and
   L': is-marked L' and
   nm: \forall m \in set M'. \neg is\text{-}marked m
```

```
by (auto elim!: split-list-first-propE)
  have Suc n = card \{L' \in set M. is\text{-marked } L'\}
  moreover have \{L' \in set \ M. \ is\text{-marked} \ L'\} = \{L'\} \cup \{L' \in set \ M''. \ is\text{-marked} \ L'\}
   using nm L' n-d unfolding M by auto
  moreover have L' \notin \{L' \in set M''. is\text{-marked } L'\}
   using n-d unfolding M by auto
  ultimately have n = card \{L'' \in set M''. is\text{-marked } L''\}
   using n L' by auto
  then have P(L' \# M'') using IH L' n-d M by auto
  then show ?case using append[of L' \# M'' L M'] nm L n-d unfolding M by blast
qed
lemma trail-bloc-induction:
 assumes
   n\text{-}d: no\text{-}dup\ M and
   nil: P [] and
   append: \bigwedge M \ L \ M'. \ P \ M \Longrightarrow is-marked \ L \Longrightarrow \forall \ m \in set \ M'. \ \neg is-marked \ m \Longrightarrow no-dup \ (L \ \# \ M' \ @
M) \Longrightarrow
     P(L \# M' @ M) and
    append-nm: \land M' M''. P M' \Longrightarrow M = M'' @ M' \Longrightarrow \forall m \in set M''. \neg is-marked m \Longrightarrow P M
 shows
    PM
proof (cases \{L' \in set \ M. \ is\text{-marked} \ L'\} = \{\})
  case True
  then show ?thesis using append-nm[of [] M] nil by auto
next
  case False
  then have \exists L' \in set M. is\text{-}marked L'
   by auto
  then obtain L' M' M'' where
   M: M = M' @ L' \# M'' and
   L': is-marked L' and
   nm: \forall m \in set M'. \neg is\text{-}marked m
   by (auto elim!: split-list-first-propE)
  have P(L' \# M'')
   apply (rule blocked-induction-with-marked)
      using n-d unfolding M apply simp
     using nil apply simp
    using append apply simp
   using L' by auto
  then show ?thesis
   using append-nm[of - M'] nm unfolding M by simp
inductive Tcons :: ('v, nat, 'v \ clause) \ ann-literals \Rightarrow ('v, nat, 'v \ clause) \ ann-literals \Rightarrow bool
 for M:('v, nat, 'v clause) ann-literals where
Tcons M [] |
Tcons\ M\ M' \Longrightarrow M = M'' @\ M' \Longrightarrow (\forall\ m \in set\ M''. \neg is-marked\ m) \Longrightarrow Tcons\ M\ (M'' @\ M')
Tcons\ M\ M' \Longrightarrow is\text{-marked}\ L \Longrightarrow M = M''' @\ L \#\ M'' @\ M' \Longrightarrow (\forall\ m \in set\ M''. \neg is\text{-marked}\ m) \Longrightarrow
  Tcons M (L \# M'' @ M')
lemma Tcons-same-end: Tcons M M' \Longrightarrow \exists M''. M = M'' @ M'
  by (induction rule: Tcons.induct) auto
```

end

end

9 2-Watched-Literal

 $\begin{array}{ll} \textbf{theory} \ \ CDCL\text{-}Two\text{-}Watched\text{-}Literals\\ \textbf{imports} \ \ CDCL\text{-}WNOT\\ \textbf{begin} \end{array}$

9.1 Datastructure and Access Functions

Only the 2-watched literals have to be verified here: the backtrack level and the trail that appear in the state are not related to the 2-watched algoritm.

```
datatype 'v twl-clause =
  TWL-Clause (watched: 'v) (unwatched: 'v)
abbreviation raw-clause :: 'v clause twl-clause \Rightarrow 'v clause where
  raw-clause C \equiv watched C + unwatched C
datatype ('a, 'b, 'c, 'd) twl-state =
  TWL-State (trail: 'a list) (init-clss: 'b)
   (learned-clss: 'b) (backtrack-lvl: 'c)
   (conflicting: 'd option)
type-synonym ('v, 'lvl, 'mark) twl-state-abs =
  (('v, 'lvl, 'mark) ann-literal, 'v clause twl-clause multiset, 'lvl, 'v clause) twl-state
abbreviation raw-init-clss where
  raw-init-clss S \equiv image-mset raw-clause (init-clss S)
abbreviation raw-learned-clss where
  raw-learned-clss S \equiv image-mset raw-clause (learned-clss S)
abbreviation clauses where
  clauses S \equiv init\text{-}clss S + learned\text{-}clss S
abbreviation raw-clauses where
 raw-clauses S \equiv image-mset raw-clause (clauses S)
definition
  candidates-propagate :: ('v, 'lvl, 'mark) twl-state-abs \Rightarrow ('v literal \times 'v clause) set
where
  candidates-propagate S =
  \{(L, raw\text{-}clause\ C) \mid L\ C.
    C \in \# clauses \ S \land watched \ C - mset-set \ (uminus \ `lits-of \ (trail \ S)) = \{ \#L\# \} \land 
   undefined-lit (trail\ S)\ L
definition candidates-conflict :: ('v, 'lvl, 'mark) twl-state-abs \Rightarrow 'v clause set where
  candidates-conflict S =
  \{raw\text{-}clause\ C\mid C.\ C\in\#\ clauses\ S\land watched\ C\subseteq\#\ mset\text{-}set\ (uminus\ `lits\text{-}of\ (trail\ S))\}
primrec (nonexhaustive) index :: 'a list \Rightarrow 'a \Rightarrow nat where
index (a \# l) c = (if a = c then 0 else 1 + index l c)
```

```
lemma index-nth:

a \in set \ l \Longrightarrow l \ ! \ (index \ l \ a) = a

by (induction l) auto
```

9.2 Invariants

We need the following property about updates: if there is a literal L with -L in the trail, and L is not watched, then it stays unwatched; i.e., while updating with rewatch it does not get swap with a watched literal L' such that -L' is in the trail.

```
\mathbf{primrec} \ \ watched\text{-}decided\text{-}most\text{-}recently :: ('v, 'lvl, 'mark) \ \ ann\text{-}literal \ list \Rightarrow 'v \ \ clause \ \ twl\text{-}clause
  \Rightarrow bool
  where
watched\text{-}decided\text{-}most\text{-}recently\ M\ (TWL\text{-}Clause\ W\ UW)\longleftrightarrow
  (\forall L' \in \#W. \ \forall L \in \#UW.
    -L' \in lits \text{-of } M \longrightarrow -L \in lits \text{-of } M \longrightarrow L \notin W \longrightarrow
      index \ (map \ lit-of \ M) \ (-L') \leq index \ (map \ lit-of \ M) \ (-L))
Here are the invariant strictly related to the 2-WL data structure.
primrec wf-twl-cls :: ('v, 'lvl, 'mark) ann-literal list <math>\Rightarrow 'v clause twl-clause \Rightarrow bool where
  wf-twl-cls M (TWL-Clause W UW) \longleftrightarrow
   distinct\text{-}mset\ W\ \land\ size\ W\ \le\ 2\ \land\ (size\ W\ <\ 2\ \longrightarrow\ set\text{-}mset\ UW\ \subseteq\ set\text{-}mset\ W)\ \land
   (\forall L \in \# W. -L \in \mathit{lits-of} \ M \longrightarrow (\forall L' \in \# \ \mathit{UW}. \ L' \notin \# \ W \longrightarrow -L' \in \mathit{lits-of} \ M)) \ \land
   watched-decided-most-recently M (TWL-Clause W UW)
lemma -L \in lits-of M \Longrightarrow \{i. map \ lit-of M!i = -L\} \neq \{\}
  unfolding set-map-lit-of-lits-of[symmetric] set-conv-nth
  by (smt Collect-empty-eq mem-Collect-eq)
lemma size-mset-2: size x1 = 2 \longleftrightarrow (\exists a \ b. \ x1 = \{\#a, b\#\})
  by (metis (no-types, hide-lams) Suc-eq-plus1 one-add-one size-1-singleton-mset
  size-Diff-singleton\ size-Suc-Diff1\ size-eq-Suc-imp-eq-union\ size-single\ union-single-eq-diff
  union-single-eq-member)
lemma distinct-mset-size-2: distinct-mset \{\#a, b\#\} \longleftrightarrow a \neq b
  unfolding distinct-mset-def by auto
lemma wf-twl-cls-annotation-indepnedant:
  assumes M: map lit-of M = map \ lit-of \ M'
  shows wf-twl-cls M (TWL-Clause W UW) \longleftrightarrow wf-twl-cls M' (TWL-Clause W UW)
proof -
  have lits-of M = lits-of M'
    using arg-cong[OF M, of set] by (simp add: lits-of-def)
  then show ?thesis
    by (simp add: lits-of-def M)
qed
lemma wf-twl-cls-wf-twl-cls-tl:
 assumes wf: wf-twl-cls M C and n-d: no-dup M
  shows wf-twl-cls (tl M) C
proof (cases M)
  case Nil
  then show ?thesis using wf
    by (cases C) (simp add: wf-twl-cls.simps[of tl -])
\mathbf{next}
```

```
case (Cons l M') note M = this(1)
  obtain W \ UW where C: C = TWL-Clause W \ UW
   by (cases C)
  \{ \text{ fix } L L' \}
   assume
     LW: L \in \# W and
     LM: -L \in lits-of M' and
     L'UW: L' \in \# UW and
     count\ W\ L'=\ \theta
   then have
     L'M: -L' \in lits\text{-}of M
     using wf by (auto simp: C M)
   have watched-decided-most-recently M C
     using wf by (auto simp: C)
   then have
     index \ (map \ lit of \ M) \ (-L) \leq index \ (map \ lit of \ M) \ (-L')
     using LM L'M L'UW LW \langle count W L' = 0 \rangle
     by (metis (no-types, lifting) C M bspec-mset insert-iff less-not-refl2 lits-of-cons
       watched-decided-most-recently.simps)
   then have -L' \in lits-of M'
     using \langle count \ W \ L' = 0 \rangle \ LW \ L'M by (auto simp: C M split: split-if-asm)
 moreover
   {
     \mathbf{fix} \ L' \ L
     assume
       L' \in \# W and
       L \in \# UW and
       L'M: -L' \in \mathit{lits}\text{-}\mathit{of}\; M' and
       -L \in lits-of M' and
       L \notin \# W
     moreover
      have lit-of l \neq -L'
      using n-d unfolding M
        by (metis (no-types) L'M M Marked-Propagated-in-iff-in-lits-of defined-lit-map
          distinct.simps(2) \ list.simps(9) \ set-map)
     moreover have watched-decided-most-recently M C
       using wf by (auto simp: C)
     ultimately have index (map lit-of M') (-L') \leq index (map lit-of M') (-L)
       by (fastforce simp: M C split: split-if-asm)
   }
 moreover have distinct-mset W and size W \leq 2 and (size W < 2 \longrightarrow set-mset UW \subseteq set-mset
W)
   using wf by (auto simp: CM)
 ultimately show ?thesis by (auto simp add: M C)
definition wf-twl-state :: ('v, 'lvl, 'mark) twl-state-abs \Rightarrow bool where
  wf-twl-state <math>S \longleftrightarrow (\forall C \in \# \ clauses \ S. \ wf-twl-cls \ (trail \ S) \ C) \land no-dup \ (trail \ S)
lemma wf-candidates-propagate-sound:
 assumes wf: wf-twl-state S and
   cand: (L, C) \in candidates-propagate S
 shows trail S \models as CNot (mset-set (set-mset C - \{L\})) \land undefined-lit (trail S) L
proof
```

```
\mathbf{def}\ M \equiv trail\ S
\operatorname{\mathbf{def}} N \equiv \operatorname{init-clss} S
\operatorname{\mathbf{def}}\ U \equiv \operatorname{learned-clss}\ S
note MNU-defs [simp] = M-def N-def U-def
obtain Cw where cw:
  C = raw-clause Cw
  Cw \in \# N + U
  watched\ Cw-mset\text{-}set\ (uminus\ `lits\text{-}of\ M)=\{\#L\#\}
  undefined-lit M L
  using cand unfolding candidates-propagate-def MNU-defs by blast
obtain W \ UW where cw-eq: Cw = TWL-Clause W \ UW
  by (cases Cw, blast)
have l\text{-}w: L \in \# W
  by (metis Multiset.diff-le-self cw(3) cw-eq mset-leD multi-member-last twl-clause.sel(1))
have wf-c: wf-twl-cls M Cw
  using wf \langle Cw \in \# N + U \rangle unfolding wf-twl-state-def by simp
have w-nw:
  distinct-mset\ W
  size W < 2 \Longrightarrow set\text{-}mset UW \subseteq set\text{-}mset W
  \bigwedge L \ L'. \ L \in \# \ W \Longrightarrow -L \in \mathit{lits-of} \ M \Longrightarrow L' \in \# \ UW \Longrightarrow L' \notin \# \ W \Longrightarrow -L' \in \mathit{lits-of} \ M
 using wf-c unfolding cw-eq by auto
have \forall L' \in set\text{-mset } C - \{L\}. -L' \in lits\text{-of } M
proof (cases size W < 2)
  \mathbf{case} \ \mathit{True}
  moreover have size W \neq 0
    using cw(3) cw-eq by auto
  ultimately have size W = 1
    by linarith
  then have w: W = \{ \#L\# \}
    by (metis (no-types, lifting) Multiset.diff-le-self cw(3) cw-eq single-not-empty
      size-1-singleton-mset subset-mset.add-diff-inverse union-is-single twl-clause.sel(1))
  from True have set-mset UW \subseteq set-mset W
    using w-nw(2) by blast
  then show ?thesis
    using w cw(1) cw-eq by auto
\mathbf{next}
  \mathbf{case}\ \mathit{sz2} \colon \mathit{False}
  show ?thesis
  proof
   \mathbf{fix} \ L'
    assume l': L' \in set\text{-}mset\ C - \{L\}
    have ex-la: \exists La. La \neq L \land La \in \# W
    proof (cases W)
     case empty
     thus ?thesis
        using l-w by auto
    next
      case lb: (add W' Lb)
```

```
show ?thesis
       proof (cases W')
         case empty
         thus ?thesis
           using lb sz2 by simp
         case lc: (add W'' Lc)
         thus ?thesis
          by (metis add-gr-0 count-union distinct-mset-single-add lb union-single-eq-member
       qed
     qed
     then obtain La where la: La \neq L La \in \# W
     then have La \in \# mset-set (uminus 'lits-of M)
       using cw(3)[unfolded\ cw\text{-}eq,\ simplified,\ folded\ M\text{-}def]
       by (metis count-diff count-single diff-zero not-gr0)
     then have nla: -La \in lits\text{-}of M
       by auto
     then show -L' \in lits-of M
     proof -
       have f1: L' \in set\text{-}mset\ C
         using l' by blast
       have f2: L' \notin \{L\}
         using l' by fastforce
       have \bigwedge l \ L. - (l::'a \ literal) \in L \lor l \notin uminus `L
         by force
       then have \bigwedge l. - l \in lits\text{-}of\ M \lor count\ \{\#L\#\}\ l = count\ (C - UW)\ l
         by (metis (no-types) add-diff-cancel-right' count-diff count-mset-set(3) cw(1) cw(3)
               cw-eq diff-zero twl-clause.sel(2))
       then show ?thesis
         by (smt comm-monoid-add-class.add-0 cw(1) cw-eq diff-union-cancelR ex-la f1 f2 insertCI
           less-numeral-extra(3) mem-set-mset-iff plus-multiset.rep-eq single.rep-eq
           twl-clause.sel(1) twl-clause.sel(2) w-nw(3))
     qed
   qed
 qed
 then show trail S \models as \ CNot \ (mset\text{-set} \ (set\text{-mset} \ C - \{L\}))
   unfolding true-annots-def by auto
 show undefined-lit (trail S) L
   using cw(4) M-def by blast
\mathbf{lemma} \ \textit{wf-candidates-propagate-complete} :
 assumes wf: wf-twl-state S and
   c\text{-}mem: C \in \# raw\text{-}clauses S and
   l-mem: L \in \# C and
   unsat: trail S \models as\ CNot\ (mset\text{-set}\ (set\text{-mset}\ C - \{L\})) and
   undef: undefined-lit (trail S) L
 shows (L, C) \in candidates-propagate S
proof -
 \mathbf{def}\ M \equiv trail\ S
 \operatorname{\mathbf{def}} N \equiv \operatorname{init-clss} S
```

```
\operatorname{\mathbf{def}}\ U \equiv \operatorname{learned-clss}\ S
{f note}\,\,\mathit{MNU-defs}\,\,[\mathit{simp}] = \mathit{M-def}\,\,\mathit{N-def}\,\,\mathit{U-def}
obtain Cw where cw: C = raw-clause Cw Cw \in \# N + U
  using c-mem by force
obtain W UW where cw-eq: Cw = TWL-Clause W UW
  by (cases Cw, blast)
have wf-c: wf-twl-cls M Cw
  using wf cw(2) unfolding wf-twl-state-def by simp
have w-nw:
  distinct-mset W
  size \ W < 2 \Longrightarrow set\text{-}mset \ UW \subseteq set\text{-}mset \ W
  \bigwedge L \ L'. \ L \in \# \ W \Longrightarrow -L \in \mathit{lits-of} \ M \Longrightarrow L' \in \# \ UW \Longrightarrow L' \notin \# \ W \Longrightarrow -L' \in \mathit{lits-of} \ M
 using wf-c unfolding cw-eq by auto
have unit-set: set-mset (W - mset\text{-set } (uminus \ `lits\text{-of } M)) = \{L\}
proof
  show set-mset (W - mset\text{-set } (uminus ' lits\text{-of } M)) \subseteq \{L\}
  proof
    \mathbf{fix} \ L'
    assume l': L' \in set\text{-}mset \ (W - mset\text{-}set \ (uminus \ `lits\text{-}of \ M))
    hence l'-mem-w: L' \in set-mset W
     by auto
    have L' \notin uminus ' lits-of M
     using distinct-mem-diff-mset[OF\ w-nw(1) l'] by simp
    then have \neg M \models a \{\#-L'\#\}
     using image-iff by fastforce
    moreover have L' \in \# C
      using cw(1) cw-eq l'-mem-w by auto
    ultimately have L' = L
      unfolding M-def by (metis unsat[unfolded CNot-def true-annots-def, simplified])
    then show L' \in \{L\}
      by simp
  qed
\mathbf{next}
  show \{L\} \subseteq set\text{-}mset \ (W - mset\text{-}set \ (uminus \ `lits\text{-}of \ M))
  proof clarify
    have L \in \# W
    proof (cases W)
      case empty
     thus ?thesis
        using w-nw(2) cw(1) cw-eq l-mem by auto
    \mathbf{next}
      case (add W' La)
     thus ?thesis
     proof (cases La = L)
        {f case}\ {\it True}
        thus ?thesis
          using add by simp
     next
        {f case}\ {\it False}
```

```
have -La \in lits\text{-}of M
            using False add cw(1) cw-eq unsat[unfolded\ CNot-def true-annots-def, simplified]
            by fastforce
          then show ?thesis
            by (metis M-def Marked-Propagated-in-iff-in-lits-of add add.left-neutral count-union
               cw(1) cw-eq gr0I l-mem twl-clause.sel(1) twl-clause.sel(2) undef union-single-eq-member
               w-nw(3)
        qed
      qed
      moreover have L \notin \# mset-set (uminus ' lits-of M)
        using Marked-Propagated-in-iff-in-lits-of undef by auto
      ultimately show L \in set-mset (W - mset-set (uminus 'lits-of M))
        by auto
    qed
  qed
  have unit: W - mset\text{-set} \ (uminus \ ' lits\text{-}of \ M) = \{\#L\#\}
    \mathbf{by}\ (\mathit{metis}\ \mathit{distinct}\text{-}\mathit{mset}\text{-}\mathit{minus}\ \mathit{distinct}\text{-}\mathit{mset}\text{-}\mathit{siet}\mathit{-}\mathit{mset}\text{-}\mathit{ident}\ \mathit{distinct}\text{-}\mathit{mset}\text{-}\mathit{singleton}
      set-mset-single unit-set w-nw(1)
  show ?thesis
    unfolding candidates-propagate-def using unit undef cw cw-eq by fastforce
qed
\mathbf{lemma}\ \textit{wf-candidates-conflict-sound} :
  assumes wf: wf\text{-}twl\text{-}state\ S and
    cand: C \in candidates\text{-}conflict S
  shows trail S \models as \ CNot \ C \land C \in \# \ image\text{-mset raw-clause} \ (clauses \ S)
proof
  \mathbf{def}\ M \equiv trail\ S
  \operatorname{\mathbf{def}} N \equiv \operatorname{init-clss} S
  \operatorname{\mathbf{def}}\ U \equiv \operatorname{\mathit{learned-clss}}\ S
  note MNU-defs [simp] = M-def N-def U-def
  obtain Cw where cw:
    C = raw\text{-}clause \ Cw
    Cw \in \# N + U
    watched Cw \subseteq \# mset\text{-set (uminus 'lits-of (trail S))}
    using cand[unfolded candidates-conflict-def, simplified] by auto
  obtain W UW where cw-eq: Cw = TWL-Clause W UW
    by (cases Cw, blast)
  have wf-c: wf-twl-cls M Cw
    using wf cw(2) unfolding wf-twl-state-def by simp
  have w-nw:
    distinct-mset W
    size \ W < 2 \Longrightarrow set\text{-}mset \ UW \subseteq set\text{-}mset \ W
    \bigwedge L \ L'. \ L \in \# \ W \Longrightarrow -L \in lits \text{-of} \ M \Longrightarrow L' \in \# \ UW \Longrightarrow L' \notin \# \ W \Longrightarrow -L' \in lits \text{-of} \ M
   using wf-c unfolding cw-eq by auto
  have \forall L \in \# C. -L \in lits\text{-}of M
  proof (cases\ W = \{\#\})
    {\bf case}\ {\it True}
```

```
then have C = \{\#\}
     using cw(1) cw-eq w-nw(2) by auto
   then show ?thesis
     by simp
 next
   case False
   then obtain La where la: La \in \#W
     using multiset-eq-iff by force
   \mathbf{show}~? the sis
   proof
     \mathbf{fix} \ L
     assume l: L \in \# C
     \mathbf{show}\ -L \in \mathit{lits-of}\ M
     proof (cases L \in \# W)
       case True
       thus ?thesis
         using cw(3) cw-eq by fastforce
       case False
       thus ?thesis
         by (smt\ M\text{-}def\ l\ add\text{-}diff\text{-}cancel\text{-}left'\ count\text{-}diff\ cw(1)\ cw(3)\ la\ cw\text{-}eq
           diff-zero elem-mset-set finite-imageI finite-lits-of-def gr0I imageE mset-leD
           uminus-of-uminus-id\ twl-clause.sel(1)\ twl-clause.sel(2)\ w-nw(3))
     qed
   qed
 qed
 then show trail S \models as \ CNot \ C
   unfolding CNot-def true-annots-def by auto
 show C \in \# image-mset raw-clause (clauses S)
   using cw by auto
qed
lemma wf-candidates-conflict-complete:
 assumes wf: wf\text{-}twl\text{-}state\ S and
   c\text{-}mem:\ C\in\#\ raw\text{-}clauses\ S\ \mathbf{and}
   unsat: trail S \models as CNot C
 shows C \in candidates-conflict S
proof -
 \mathbf{def}\ M \equiv trail\ S
 \mathbf{def}\ N \equiv \mathit{init-clss}\ S
 \operatorname{\mathbf{def}}\ U \equiv \operatorname{\mathit{learned-clss}}\ S
 note MNU-defs [simp] = M-def N-def U-def
 obtain Cw where cw: C = raw-clause Cw Cw \in \# N + U
   using c-mem by force
 obtain W \ UW where cw-eq: Cw = TWL-Clause W \ UW
   by (cases Cw, blast)
 have wf-c: wf-twl-cls M Cw
   using wf cw(2) unfolding wf-twl-state-def by simp
 have w-nw:
```

```
distinct-mset W
   size W < 2 \Longrightarrow set\text{-}mset UW \subseteq set\text{-}mset W
   \bigwedge L\ L'.\ L\in \#\ W \Longrightarrow -L\in \mathit{lits-of}\ M\Longrightarrow L'\in \#\ UW\Longrightarrow L'\notin \#\ W\Longrightarrow -L'\in \mathit{lits-of}\ M
  using wf-c unfolding cw-eq by auto
 have \bigwedge L. L \in \# C \Longrightarrow -L \in lits-of M
   unfolding M-def using unsat unfolded CNot-def true-annots-def, simplified by blast
  then have set-mset C \subseteq uminus ' lits-of M
   by (metis imageI mem-set-mset-iff subsetI uminus-of-uminus-id)
  then have set-mset W \subseteq uminus ' lits-of M
   using cw(1) cw-eq by auto
 then have subset: W \subseteq \# mset-set (uminus 'lits-of M)
   by (simp \ add: w-nw(1))
 have W = watched Cw
   using cw-eq twl-clause.sel(1) by simp
  then show ?thesis
   using MNU-defs cw(1) cw(2) subset candidates-conflict-def by blast
qed
typedef 'v wf-twl = {S::('v, nat, 'v \ clause) \ twl-state-abs. \ wf-twl-state \ S}
morphisms rough-state-of-twl twl-of-rough-state
proof -
 have TWL-State ([]::('v, nat, 'v clause) ann-literals)
   \{\#\}\ \{\#\}\ 0\ None \in \{S:: ('v, nat, 'v clause)\ twl-state-abs.\ wf-twl-state\ S\}
   by (auto simp: wf-twl-state-def)
 then show ?thesis by auto
qed
lemma [code abstype]:
  twl-of-rough-state (rough-state-of-twl S) = S
 by (fact CDCL-Two-Watched-Literals.wf-twl.rough-state-of-twl-inverse)
lemma wf-twl-state-rough-state-of-twl[simp]: wf-twl-state (rough-state-of-twl S)
 using rough-state-of-twl by auto
abbreviation candidates-conflict-twl :: 'v wf-twl \Rightarrow 'v literal multiset set where
candidates-conflict-twl S \equiv candidates-conflict (rough-state-of-twl S)
abbreviation candidates-propagate-twl :: 'v wf-twl \Rightarrow ('v literal \times 'v clause) set where
candidates-propagate-twl S \equiv candidates-propagate (rough-state-of-twl S)
abbreviation trail-twl :: 'a \ wf-twl \Rightarrow ('a, nat, 'a \ literal \ multiset) \ ann-literal \ list \ where
trail-twl\ S \equiv trail\ (rough-state-of-twl\ S)
abbreviation clauses-twl :: 'a wf-twl \Rightarrow 'a literal multiset multiset where
clauses-twl\ S \equiv raw-clauses\ (rough-state-of-twl\ S)
abbreviation init-clss-twl :: 'a wf-twl \Rightarrow 'a literal multiset multiset where
init-clss-twl S \equiv raw-init-clss (rough-state-of-twl S)
abbreviation learned-clss-twl :: 'a wf-twl \Rightarrow 'a literal multiset multiset where
learned-clss-twl S \equiv raw-learned-clss (rough-state-of-twl S)
abbreviation backtrack-lvl-twl where
```

```
backtrack-lvl-twl\ S \equiv backtrack-lvl\ (rough-state-of-twl\ S)
abbreviation conflicting-twl where
conflicting-twl\ S \equiv conflicting\ (rough-state-of-twl\ S)
lemma wf-candidates-twl-conflict-complete:
 assumes
   c\text{-}mem:\ C\in\#\ clauses\text{-}twl\ S\ \mathbf{and}
   unsat: trail-twl S \models as CNot C
 shows C \in candidates-conflict-twl S
 using c-mem unsat wf-candidates-conflict-complete wf-twl-state-rough-state-of-twl by blast
abbreviation update-backtrack-lvl where
  update-backtrack-lvl k S \equiv
   TWL-State (trail S) (init-clss S) (learned-clss S) k (conflicting S)
abbreviation update-conflicting where
  update-conflicting CS \equiv TWL-State (trail S) (init-clss S) (learned-clss S) (backtrack-lvl S) C
9.3
        Abstract 2-WL
definition tl-trail where
  tl-trail S =
   TWL-State (tl (trail S)) (init-clss S) (learned-clss S) (backtrack-lvl S) (conflicting S)
locale \ abstract-twl =
 fixes
   watch :: (v, nat, v clause) twl-state-abs \Rightarrow v clause \Rightarrow v clause twl-clause and
   rewatch :: (v, nat, v \ literal \ multiset) \ ann-literal \Rightarrow (v, nat, v \ clause) \ twl-state-abs \Rightarrow
     'v clause twl-clause \Rightarrow 'v clause twl-clause and
   linearize :: 'v \ clauses \Rightarrow 'v \ clause \ list \ {\bf and}
    restart-learned :: ('v, nat, 'v clause) twl-state-abs \Rightarrow 'v clause twl-clause multiset
    clause-watch: no-dup (trail S) \Longrightarrow raw-clause (watch S C) = C and
   wf-watch: no-dup (trail S) \Longrightarrow wf-twl-cls (trail S) (watch S C) and
   clause-rewatch: raw-clause (rewatch L S C') = raw-clause C' and
     no\text{-}dup\ (trail\ S) \Longrightarrow undefined\text{-}lit\ (trail\ S)\ (lit\text{-}of\ L) \Longrightarrow wf\text{-}twl\text{-}cls\ (trail\ S)\ C' \Longrightarrow
       wf-twl-cls (L \# trail S) (rewatch L S C')
     and
   linearize: mset (linearize N) = N and
   restart-learned: restart-learned S \subseteq \# learned-clss S
begin
lemma linearize-mempty[simp]: linearize {#} = []
 using linearize mset-zero-iff by blast
definition
  cons-trail :: ('v, nat, 'v clause) ann-literal \Rightarrow ('v, nat, 'v clause) twl-state-abs \Rightarrow
   ('v, nat, 'v clause) twl-state-abs
where
  cons-trail L S =
  TWL-State (L \# trail S) (image-mset (rewatch L S) (init-clss S))
    (image-mset (rewatch \ L \ S) \ (learned-clss \ S)) \ (backtrack-lvl \ S) \ (conflicting \ S)
```

definition

```
add-init-cls :: 'v clause \Rightarrow ('v, nat, 'v clause) twl-state-abs \Rightarrow
   ('v, nat, 'v clause) twl-state-abs
where
  add-init-cls C S =
   TWL	ext{-}State \ (trail \ S) \ (\{\#watch \ S \ C\#\} \ + \ init	ext{-}clss \ S) \ (backtrack	ext{-}lvl \ S)
    (conflicting S)
definition
  add-learned-cls :: 'v clause \Rightarrow ('v, nat, 'v clause) twl-state-abs \Rightarrow
   ('v, nat, 'v clause) twl-state-abs
where
  add-learned-cls C S =
   TWL-State (trail S) (init-clss S) (\{\#watch\ S\ C\#\} + learned-clss S) (backtrack-lvl S)
definition
  remove\text{-}cls :: 'v \ clause \Rightarrow ('v, \ nat, \ 'v \ clause) \ twl\text{-}state\text{-}abs \Rightarrow
   ('v, nat, 'v clause) twl-state-abs
where
  remove\text{-}cls \ C \ S =
   TWL	ext{-}State (trail S) (filter	ext{-}mset ($\lambda D$. raw-clause $D \neq C$) (init-clss S))
    (filter-mset (\lambda D. raw-clause D \neq C) (learned-clss S)) (backtrack-lvl S)
    (conflicting S)
definition init-state :: 'v clauses \Rightarrow ('v, nat, 'v clause) twl-state-abs where
  init-state N = fold \ add-init-cls (linearize \ N) (TWL-State [] {#} {#} 0 \ None)
lemma unchanged-fold-add-init-cls:
  trail\ (fold\ add\text{-}init\text{-}cls\ Cs\ (TWL\text{-}State\ M\ N\ U\ k\ C)) = M
  learned-clss (fold add-init-cls Cs (TWL-State M N U k C)) = U
  backtrack-lvl \ (fold \ add-init-cls \ Cs \ (TWL-State \ M \ N \ U \ k \ C)) = k
  conflicting (fold add-init-cls Cs (TWL-State M N U k C)) = C
  by (induct Cs arbitrary: N) (auto simp: add-init-cls-def)
lemma unchanged-init-state[simp]:
  trail\ (init\text{-state}\ N) = []
  learned-clss (init-state N) = {#}
  backtrack-lvl (init-state N) = 0
  conflicting\ (init\text{-}state\ N) = None
  unfolding init-state-def by (rule unchanged-fold-add-init-cls)+
lemma clauses-init-fold-add-init:
  no-dup M \Longrightarrow
  image-mset\ raw-clause\ (init-clss\ (fold\ add-init-cls\ Cs\ (TWL-State\ M\ N\ U\ k\ C)))=
  mset \ Cs + image-mset \ raw-clause \ N
 by (induct Cs arbitrary: N) (auto simp: add.assoc add-init-cls-def clause-watch)
lemma init-clss-init-state[simp]: image-mset raw-clause (init-clss (init-state N)) = N
 unfolding init-state-def by (simp add: clauses-init-fold-add-init linearize)
definition restart' where
  restart' S = TWL\text{-}State \ [] \ (init\text{-}clss \ S) \ (restart\text{-}learned \ S) \ 0 \ None
end
```

9.4 Instanciation of the previous locale

```
definition watch-nat :: (nat, nat, nat clause) twl-state-abs \Rightarrow nat clause \Rightarrow
  nat clause twl-clause where
  watch-nat S C =
  (let
      C' = remdups (sorted-list-of-set (set-mset C));
      negation-not-assigned = filter (\lambda L. -L \notin lits-of (trail S)) C';
      negation-assigned-sorted-by-trail = filter (\lambda L. L \in \# C) (map (\lambda L. -lit-of L) (trail S));
      W = take \ 2 \ (negation-not-assigned \ @ negation-assigned-sorted-by-trail);
      UW = sorted-list-of-multiset (C - mset W)
    in TWL-Clause (mset W) (mset UW))
lemma list-cases2:
  fixes l :: 'a \ list
 assumes
    l = [] \Longrightarrow P and
    \bigwedge x. \ l = [x] \Longrightarrow P and
   \bigwedge x \ y \ xs. \ l = x \# y \# xs \Longrightarrow P
  shows P
 by (metis assms list.collapse)
lemma filter-in-list-prop-verifiedD:
 assumes [L \leftarrow P : Q L] = l
 shows \forall x \in set \ l. \ x \in set \ P \land Q \ x
  using assms by auto
lemma no-dup-filter-diff:
  assumes n-d: no-dup M and H: [L \leftarrow map \ (\lambda L. - lit\text{-}of \ L) \ M. \ L \in \# \ C] = l
  shows distinct l
  unfolding H[symmetric]
 apply (rule distinct-filter)
  using n-d by (induction M) auto
\mathbf{lemma}\ watch-nat\text{-}lists\text{-}disjointD:
  assumes
    l: [L \leftarrow remdups (sorted-list-of-set (set-mset C)) . - L \notin lits-of (trail S)] = l and
    l': [L \leftarrow map \ (\lambda L. - lit - of \ L) \ (trail \ S) \ . \ L \in \# \ C] = l'
  shows \forall x \in set \ l. \ \forall y \in set \ l'. \ x \neq y
  by (auto simp: l[symmetric] l'[symmetric] lits-of-def)
lemma watch-nat-list-cases-witness[consumes 2, case-names nil-nil nil-single nil-other
  single-nil\ single-other\ other]:
    C :: 'v \ literal \ multiset \ {\bf and}
    C' :: 'v \ literal \ list \ \mathbf{and}
    S :: (('v, 'b, 'c) \ ann-literal, 'd, 'e, 'f) \ twl-state
    xs \equiv [L \leftarrow remdups \ C'. - L \notin lits \text{-} of \ (trail \ S)] and
    ys \equiv [L \leftarrow map \ (\lambda L. - lit - of \ L) \ (trail \ S) \ . \ L \in \# \ C]
  assumes
    n-d: no-dup (trail S) and
    C': set C' = set-mset C and
    nil-nil: xs = [] \Longrightarrow ys = [] \Longrightarrow P and
    nil-single:
```

```
\bigwedge a. \ xs = [] \Longrightarrow ys = [a] \Longrightarrow \ a \in \# \ C \Longrightarrow P \ \text{and}
    nil\text{-}other: \land a \ b \ ys'. \ xs = [] \Longrightarrow ys = a \ \# \ b \ \# \ ys' \Longrightarrow a \neq b \Longrightarrow P \ \text{and}
    single-nil: \land a. \ xs = [a] \Longrightarrow ys = [] \Longrightarrow P \ \mathbf{and}
    single-other: \bigwedge a\ b\ ys'.\ xs = [a] \Longrightarrow ys = b\ \#\ ys' \Longrightarrow a \neq b \Longrightarrow P and
    other: \bigwedge a\ b\ xs'. xs = a \# b \# xs' \Longrightarrow a \neq b \Longrightarrow P
  shows P
proof -
  note xs-def[simp] and ys-def[simp]
  have dist: distinct [L \leftarrow remdups \ C' \ . \ - \ L \notin lits \text{-} of \ (trail \ S)]
  then have H: \Lambda a \ xs. \ [L \leftarrow remdups \ C' \ . \ - \ L \notin lits \text{-} of \ (trail \ S)]
    \neq a \# a \# xs
    by force
  show ?thesis
  apply (cases [L \leftarrow remdups C'. - L \notin lits - of (trail S)]
         rule: list-cases2;
       cases [L \leftarrow map \ (\lambda L. - lit\text{-}of \ L) \ (trail \ S) \ . \ L \in \# \ C] \ rule: \ list\text{-}cases2)
           using nil-nil apply simp
          using nil-single apply (force dest: filter-in-list-prop-verifiedD)
        using nil-other
        apply (auto dest: filter-in-list-prop-verifiedD watch-nat-lists-disjointD
           no-dup-filter-diff[OF n-d] simp: H)[]
       using single-nil apply simp
      using single-other C' xs-def ys-def apply (smt imageE image-eqI list.set-intros(1) lits-of-def
         mem-Collect-eq set-filter set-map uminus-of-uminus-id)
     using single-other C' unfolding xs-def ys-def apply (smt imageE image-eqI list.set-intros(1)
       lits-of-def mem-Collect-eq set-filter set-map uminus-of-uminus-id)
    using other xs-def ys-def by (metis\ H)+
qed
lemma watch-nat-list-cases [consumes 1, case-names nil-nil nil-single nil-other single-nil
  single-other other]:
  fixes
    C:: 'v::linorder\ literal\ multiset\ {\bf and}
    S :: (('v, 'b, 'c) \ ann-literal, 'd, 'e, 'f) \ twl-state
  defines
    xs \equiv [L \leftarrow remdups \ (sorted-list-of-set \ (set-mset \ C)) \ . - L \notin lits-of \ (trail \ S)] and
    ys \equiv [L \leftarrow map \ (\lambda L. - lit - of L) \ (trail S) \ . \ L \in \# C]
  assumes
    n-d: no-dup (trail S) and
    nil-nil: xs = [] \Longrightarrow ys = [] \Longrightarrow P and
    nil-single:
      \bigwedge a. \ xs = [] \Longrightarrow ys = [a] \Longrightarrow \ a \in \# \ C \Longrightarrow P \ \text{and}
    nil\text{-}other: \land a \ b \ ys'. \ xs = [] \Longrightarrow ys = a \# b \# ys' \Longrightarrow a \neq b \Longrightarrow P \text{ and }
    single-nil: \land a. \ xs = [a] \Longrightarrow ys = [] \Longrightarrow P \ \mathbf{and}
    single-other: \land a \ b \ ys'. \ xs = [a] \Longrightarrow ys = b \ \# \ ys' \Longrightarrow a \neq b \Longrightarrow P \ {\bf and}
    other: \bigwedge a\ b\ xs'.\ xs = a\ \#\ b\ \#\ xs' \Longrightarrow a \neq b \Longrightarrow P
  using watch-nat-list-cases-witness OF n-d, of sorted-list-of-set (set-mset C) CP
  nil-nil nil-single nil-other single-nil single-other other
  unfolding xs-def[symmetric] ys-def[symmetric] by auto
lemma watch-nat-lists-set-union-witness:
  fixes
    C :: 'v \ literal \ multiset \ {\bf and}
```

```
C' :: 'v \ literal \ list \ \mathbf{and}
    S :: (('v, 'b, 'c) \ ann-literal, 'd, 'e, 'f) \ twl-state
   xs \equiv [L \leftarrow remdups \ C'. - L \notin lits \text{-} of \ (trail \ S)] and
   ys \equiv [L \leftarrow map \ (\lambda L. - lit - of L) \ (trail S) \ . \ L \in \# C]
  assumes n-d: no-dup (trail S) and C': set C' = set-mset C
  shows set-mset C = set xs \cup set ys
  using n-d C' uminus-lit-swap unfolding xs-def ys-def by (auto simp: lits-of-def)
lemma watch-nat-lists-set-union:
    C :: 'v::linorder\ literal\ multiset\ {\bf and}
   S :: (('v, 'b, 'c) \ ann-literal, 'd, 'e, 'f) \ twl-state
  defines
   xs \equiv [L \leftarrow remdups \ (sorted-list-of-set \ (set-mset \ C)). - L \notin lits-of \ (trail \ S)] and
   ys \equiv [L \leftarrow map \ (\lambda L. - lit - of \ L) \ (trail \ S) \ . \ L \in \# \ C]
  assumes n-d: no-dup (trail S)
  shows set-mset C = set \ xs \cup set \ ys
  using watch-nat-lists-set-union-witness[of S (sorted-list-of-set (set-mset C)) C, OF n-d]
  sorted-list-of-set xs-def ys-def by blast
lemma mset-intersection-inclusion: A + (B - A) = B \longleftrightarrow A \subseteq \# B
  apply (rule iffI)
  apply (metis mset-le-add-left)
  by (auto simp: ac-simps multiset-eq-iff subseteq-mset-def)
lemma clause-watch-nat:
  assumes no-dup (trail S)
 shows raw-clause (watch-nat S(C) = C
  using assms
  apply (cases rule: watch-nat-list-cases [OF \ assms(1), \ of \ C])
  by (auto dest: filter-in-list-prop-verifiedD simp: watch-nat-def Let-def
   mset-intersection-inclusion subseteq-mset-def)
lemma set-mset-is-single-in-mset-is-single:
  set\text{-}mset\ C = \{a\} \Longrightarrow x \in \#\ C \Longrightarrow x = a
  by fastforce
lemma index-uminus-index-map-uminus:
  -a \in set \ L \Longrightarrow index \ L \ (-a) = index \ (map \ uminus \ L) \ (a::'a \ literal)
 by (induction L) auto
lemma index-filter:
  a \in set \ L \Longrightarrow b \in set \ L \Longrightarrow P \ a \Longrightarrow P \ b \Longrightarrow
  index\ L\ a \leq index\ L\ b \longleftrightarrow index\ (filter\ P\ L)\ a \leq index\ (filter\ P\ L)\ b
 by (induction L) auto
lemma wf-watch-witness:
  fixes C :: 'a \ literal \ multiset and C' :: 'a \ literal \ list and
     S :: (('a, 'b, 'c) \ ann-literal, 'd, 'e, 'f) \ twl-state
     ass: negation-not-assigned \equiv filter (\lambda L. -L \notin lits-of (trail S)) (remdups C') and
     tr: negation-assigned-sorted-by-trail \equiv filter (\lambda L. L \in \# C) (map (\lambda L. -lit-of L) (trail S))
   defines
```

```
W: W \equiv take \ 2 \ (negation-not-assigned @ negation-assigned-sorted-by-trail)
 assumes
   n\text{-}d[simp]: no-dup (trail S) and
   C': set C' = set-mset C
 shows wf-twl-cls (trail S) (TWL-Clause (mset W) (C - mset W))
 unfolding wf-twl-cls.simps
proof (intro conjI, goal-cases)
 case 1
 then show ?case using n\text{--}d C' W unfolding ass tr
   by (cases rule: watch-nat-list-cases-witness[of S C' C])
   (auto dest: filter-in-list-prop-verifiedD
     simp: distinct-mset-add-single)
\mathbf{next}
 case 2
 then show ?case unfolding W by simp
next
 case 3
 then show ?case using n-d C'
   proof (cases rule: watch-nat-list-cases-witness[of S C' C])
     case nil-nil
     then have set-mset C = set [] \cup set []
      using C' watch-nat-lists-set-union-witness n-d by metis
     then show ?thesis
      by simp
   next
     case (nil-single a)
     then show ?thesis
      using watch-nat-lists-set-union-witness[of S C' C] C' 3
      by (auto dest!: arg-cong[of - [] set] simp: W ass tr)
   next
     case nil-other
     then show ?thesis
     using 3 by (auto dest!: arg-cong[of - [] set] simp: W ass tr)
   next
     case single-nil
     show ?thesis
      using watch-nat-lists-set-union-witness[of S C' C] C' 3 mset-leD
      by (auto simp: W ass tr single-nil)
   \mathbf{next}
     case single-other
     then show ?thesis
      using 3 by (auto dest!: arg-cong[of - [] set] simp: W ass tr)
   next
     case other
     then show ?thesis
      using 3 by (auto dest!: arg-cong[of - [] set] simp: W ass tr)
   qed
next
 case 4 note -[simp] = this
   fix a :: 'a \ literal \ and \ ys' :: 'a \ literal \ list \ and \ L :: 'a \ literal \ and
     L' :: 'a \ literal
   assume a1: [L \leftarrow remdups \ C'. - L \notin lits \text{-} of \ (trail \ S)] = [a]
   assume a2: set-mset C = insert \ L \ (insert \ a \ (set \ ys'))
   assume a3: L' \in \# C
```

```
assume a4: a \neq L'
   have set (L \# a \# ys') = set\text{-mset } C
     using a2 by auto
   then have L' \notin set \ [l \leftarrow remdups \ C'. - l \notin lits \text{-} of \ (trail \ S)]
     using a4 a1 by (metis list.set(1) list.set(2) singleton-iff)
   then have -L' \in lits\text{-}of (trail S)
     using a3 C' by simp
     } note H = this
 show ?case
   using n-d C' apply (cases rule: watch-nat-list-cases-witness[of S C' C])
     apply (auto dest: filter-in-list-prop-verifiedD
      simp: W ass tr lits-of-def C' filter-empty-conv)[4]
   using watch-nat-lists-set-union-witness[of S C' C] C'
   by (auto dest: filter-in-list-prop-verifiedD H simp: W ass tr)
next
 case 5
 from n-d C' show ?case
   proof (cases rule: watch-nat-list-cases-witness[of S C' C])
     case nil-nil
     then show ?thesis by (auto simp: W ass tr)
   next
     case nil-single
     then show ?thesis
      using watch-nat-lists-set-union-witness of S C' C by (auto simp: W ass tr)
   next
     case nil-other
     then show ?thesis
      unfolding watched-decided-most-recently.simps Ball-mset-def
      apply (intro\ allI\ impI)
      apply (subst index-uminus-index-map-uminus,
        simp add: index-uminus-index-map-uminus lits-of-def o-def)
      apply (subst index-uminus-index-map-uminus,
        simp add: index-uminus-index-map-uminus lits-of-def o-def)
      apply (subst index-filter[of - - \lambda L. L \in \# C])
      by (auto dest: filter-in-list-prop-verifiedD
        simp: uminus-lit-swap lits-of-def o-def W ass tr)
   next
     case single-nil
     then show ?thesis
       using watch-nat-lists-set-union-witness[of S C' C] C' by (auto simp: W ass tr)
   next
     case single-other
     then show ?thesis
      unfolding watched-decided-most-recently.simps Ball-mset-def
      apply (clarify)
      apply (subst index-uninus-index-map-uninus,
        simp add: index-uminus-index-map-uminus lits-of-def o-def)
      apply (subst index-uninus-index-map-uninus,
        simp add: index-uminus-index-map-uminus lits-of-def o-def)
      apply (subst index-filter[of - - \lambda L. L \in \# C])
      by (auto dest: filter-in-list-prop-verifiedD
        simp: W ass tr uminus-lit-swap lits-of-def o-def)
   next
```

```
case other
                 then show ?thesis
                       unfolding watched-decided-most-recently.simps
                      apply clarify
                      apply (subst index-uninus-index-map-uninus,
                             simp add: index-uminus-index-map-uminus lits-of-def o-def)[1]
                      apply (subst index-uninus-index-map-uninus,
                             simp add: index-uminus-index-map-uminus lits-of-def o-def)[1]
                      apply (subst index-filter[of - - - \lambda L. L \in \# C])
                       by (auto dest: filter-in-list-prop-verifiedD
                             simp: index-uminus-index-map-uminus lits-of-def o-def uminus-lit-swap
                                 W \ ass \ tr)
           qed
qed
lemma wf-watch-nat: no-dup (trail S) \Longrightarrow wf-twl-cls (trail S) (watch-nat S C)
      using wf-watch-witness[of S sorted-list-of-set (set-mset C) C]
      by (metis List.finite-set mset-sorted-list-of-multiset set-sorted-list-of-multiset
           sorted-list-of-set watch-nat-def)
definition
      rewatch-nat ::
      (nat, nat, nat \ literal \ multiset) \ ann-literal \Rightarrow (nat, nat, nat \ clause) \ twl-state-abs \Rightarrow
            nat\ clause\ twl\text{-}clause \Rightarrow\ nat\ clause\ twl\text{-}clause
where
      rewatch-nat\ L\ S\ C =
       (if - lit\text{-}of L \in \# watched C then
                 case filter (\lambda L'. L' \notin \# watched C \land -L' \notin lits-of (L \# trail S))
                             (sorted-list-of-multiset (unwatched C)) of
                       [] \Rightarrow C
                 \mid L' \# - \Rightarrow
                       TWL	ext{-}Clause \ (watched \ C - \{\#-\ lit\mbox{-}of\ L\#\} + \{\#L'\#\}) \ (unwatched\ C - \{\#L'\#\} + \{\#-\ lit\mbox{-}of\ L\#\} + \{\#-\ lit\mbo\ L\#\} + \{\#-\ lit\mbox{-}of\ L\#\} + \{\#-\ lit\mbox{-}of\ L\#\} + \{\#-\ 
L\#\})
            else
                 C
lemma clause-rewatch-witness:
      fixes UW :: 'a literal list and
           S :: (('a, 'b, 'c) \ ann-literal, 'd, 'e, 'f) \ twl-state \ and
           L:: ('a, 'b, 'c) \ ann-literal \ {\bf and} \ C:: 'a \ literal \ multiset \ twl-clause
      defines C' \equiv (if - lit \text{-} of L \in \# watched C then
                 case filter (\lambda L'. L' \notin \# watched C \wedge - L' \notin lits-of (L \# trail S)) UW of
                       [] \Rightarrow C
                 \mid L' \# - \Rightarrow
                        TWL	ext{-}Clause \ (watched \ C - \{\#-\ lit\mbox{-}of\ L\#\} + \{\#L'\#\}) \ (unwatched\ C - \{\#L'\#\} + \{\#-\ lit\mbox{-}of\ L\#\} + \{\#-\ lit\mbo\ L\#\} + \{\#-\ lit\mbox{-}of\ L\#\} + \{\#-\ lit\mbox{-}of\ L\#\} + \{\#-\ 
L\#\})
           else
                 C
      assumes
            UW: set \ UW = set\text{-}mset \ (unwatched \ C)
      shows raw-clause C' = raw-clause C
      using UW unfolding C'-def by (auto simp: subset-mset.add-diff-assoc2 multiset-eq-iff
            split: list.split dest: filter-in-list-prop-verifiedD)
```

```
\mathbf{lemma}\ clause\text{-}rewatch\text{-}nat\text{: }raw\text{-}clause\ (rewatch\text{-}nat\ L\ S\ C)=raw\text{-}clause\ C
    using clause-rewatch-witness[of sorted-list-of-multiset (unwatched C) C - S]
    by (auto simp: rewatch-nat-def Let-def split: list.split split-if-asm)
lemma filter-sorted-list-of-multiset-Nil:
    [x \leftarrow sorted\text{-}list\text{-}of\text{-}multiset\ M.\ p\ x] = [] \longleftrightarrow (\forall x \in \#\ M.\ \neg\ p\ x)
    by auto (metis empty-iff filter-set list.set(1) mem-set-mset-iff member-filter
       set-sorted-list-of-multiset)
lemma filter-sorted-list-of-multiset-ConsD:
    [x \leftarrow sorted\text{-}list\text{-}of\text{-}multiset M. p x] = x \# xs \Longrightarrow p x
    by (metis filter-set insert-iff list.set(2) member-filter)
lemma mset-minus-single-eq-mempty:
    a - \{\#b\#\} = \{\#\} \longleftrightarrow a = \{\#b\#\} \lor a = \{\#\}\}
   by (metis Multiset.diff-cancel add.right-neutral diff-single-eq-union
       diff-single-trivial zero-diff)
lemma size-mset-le-2-cases:
    assumes size W \leq 2
    shows W = \{\#\} \lor (\exists a. \ W = \{\#a\#\}) \lor (\exists a \ b. \ W = \{\#a,b\#\})
    by (metis One-nat-def Suc-1 Suc-eq-plus1-left assms linorder-not-less nat-less-le
       not-less-eq-eq le-iff-add size-1-singleton-mset
       size-eq-0-iff-empty size-mset-2)
lemma filter-sorted-list-of-multiset-eqD:
    assumes [x \leftarrow sorted\text{-}list\text{-}of\text{-}multiset A. p x] = x \# xs (is ?comp = -)
   \mathbf{shows}\ x\in \#\ A
proof -
    have x \in set ?comp
       using assms by simp
    then have x \in set (sorted-list-of-multiset A)
       by simp
    then show x \in \# A
       \mathbf{by} \ simp
qed
lemma clause-rewatch-witness':
    fixes UWC :: 'a literal list and
       S :: (('a, 'b, 'c) \ ann\text{-}literal, 'd, 'e, 'f) \ twl\text{-}state \ and
       L :: (\mbox{$'$}a, \mbox{$'$}b, \mbox{$'$}c) \ ann\text{-}literal \ \textbf{and} \ C :: \mbox{$'$}a \ literal \ multiset \ twl\text{-}clause
    defines C' \equiv (if - lit \text{-} of L \in \# watched C then
            case filter (\lambda L'. L' \notin \# watched C \land -L' \notin lits-of (L \# trail S)) UWC of
               [] \Rightarrow C
            \mid L' \# - \Rightarrow
                TWL	ext{-}Clause \ (watched \ C - \{\#-\ lit\mbox{-}of\ L\#\} + \{\#L'\#\}) \ (unwatched\ C - \{\#L'\#\} + \{\#-\ lit\mbox{-}of\ L\#\} + \{\#-\ lit\mbo\ L\#\} + \{\#-\ lit\mbox{-}of\ L\#\} + \{\#-\ lit\mbox{-}of\ L\#\} + \{\#-\ 
L\#\})
       else
            C
    assumes
        UWC: set\ UWC = set\text{-}mset\ (unwatched\ C) and
        wf: wf\text{-}twl\text{-}cls \ (trail \ S) \ C \ \mathbf{and}
       n-d: no-dup (trail S) and
        undef: undefined-lit (trail S) (lit-of L)
    shows wf-twl-cls (L \# trail S) C'
```

```
proof (cases - lit\text{-}of L \in \# watched C)
 case False
 then have wf-twl-cls (L \# trail S) C
   apply (cases C)
   using wf n-d undef apply (clarify)
   unfolding wf-twl-cls.simps
   apply (intro conjI)
       apply blast
      apply blast
     apply blast
    apply (smt ball-mset-cong bspec-mset insert-iff lits-of-cons nat-neq-iff twl-clause.sel(1)
      uminus-of-uminus-id)
    apply (auto simp: Marked-Propagated-in-iff-in-lits-of)
   done
 then show ?thesis
   using False C'-def by simp
next
 case falsified: True
 let ?unwatched-nonfalsified =
   [L' \leftarrow UWC. \ L' \notin \# \ watched \ C \land - L' \notin lits\text{-}of \ (L \# \ trail \ S)]
 obtain W \ UW where C: C = TWL-Clause W \ UW
   by (cases C)
 show ?thesis
 proof (cases ?unwatched-nonfalsified)
   case Nil
   show ?thesis
     using falsified Nil
    apply (simp only: wf-twl-cls.simps if-True list.cases C C'-def)
     apply (intro\ conjI)
     proof goal-cases
      case 1
      then show ?case using wf C by simp
     next
      case 2
      then show ?case using wf C by simp
     next
      case \beta
      then show ?case using wf C by simp
     next
      case 4
      have \bigwedge p l. filter p UWC \neq [] \lor l \notin set\text{-mset } UW \lor \neg p \ l
        using UWC unfolding C by (metis\ (no-types)\ filter-empty-conv\ twl-clause.sel(2))
      then show ?case
        using 4(2) unfolding Ball-mset-def by (metis (lifting) mem-set-mset-iff twl-clause.sel(1))
     next
      case 5
      then show ?case
        using C apply simp
        using wf by (smt ball-msetI bspec-mset not-gr0 uminus-of-uminus-id
          watched-decided-most-recently.simps wf-twl-cls.simps)
     \mathbf{qed}
 next
```

```
case (Cons\ L'\ Ls)
show ?thesis
 unfolding rewatch-nat-def C'-def
 using falsified Cons
 apply (simp only: wf-twl-cls.simps if-True list.cases C)
 apply (intro\ conjI)
 proof goal-cases
   case 1
   have distinct-mset (watched (TWL-Clause W UW))
     using wf unfolding C by auto
   moreover have L' \notin \# watched (TWL\text{-}Clause\ W\ UW) - \{\#-\ lit\text{-}of\ L\#\}
     using 1(2) not-gr0 by (fastforce dest: filter-in-list-prop-verifiedD)
   ultimately show ?case
     by (auto simp: distinct-mset-single-add)
 next
   case 2
   then show ?case using wf C by (metis insert-DiffM2 size-single size-union twl-clause.sel(1)
     wf-twl-cls.simps)
 next
   case 3
   then show ?case
     using wf C UWC by (force simp: mset-minus-single-eq-mempty dest: subset-singletonD)
 next
   case 4
   have H: \forall L \in \#W. - L \in lits\text{-}of (trail S) \longrightarrow
     (\forall L' \in \#UW. \ count \ W \ L' = 0 \longrightarrow -L' \in lits\text{-}of \ (trail \ S))
     using wf by (auto simp: C)
   have W: size W \leq 2 and W-UW: size W < 2 \longrightarrow set-mset UW \subseteq set-mset W
     using wf by (auto simp: C)
   have distinct: distinct-mset W
     using wf by (auto simp: C)
   show ?case
     using 4
     {\bf unfolding} \ \ C \ watched-decided-most-recently. simps \ Ball-mset-def \ twl-clause. sel
     apply (intro allI impI)
     apply (rename-tac \ xW \ xUW)
     apply (case-tac - lit-of L = xW; case-tac xW = xUW; case-tac L' = xW)
            apply (auto\ simp:\ uminus-lit-swap)[2]
          apply (force dest: filter-in-list-prop-verifiedD)
         using H size-mset-le-2-cases [OF \ W]
        using distinct apply (fastforce split: split-if-asm simp: distinct-mset-size-2)
        using distinct apply (fastforce split: split-if-asm simp: distinct-mset-size-2)
       using distinct apply (fastforce split: split-if-asm simp: distinct-mset-size-2)
      apply (force dest: filter-in-list-prop-verifiedD)
     using size-mset-le-2-cases[OF W] H by (fastforce simp: uminus-lit-swap
       dest: filter-sorted-list-of-multiset-ConsD filter-sorted-list-of-multiset-eqD)
 next
   case 5
   have H: \forall x. \ x \in \# \ W \longrightarrow -x \in lits-of (trail\ S) \longrightarrow (\forall x. \ x \in \# \ UW \longrightarrow count\ W \ x = 0)
     \longrightarrow -x \in lits\text{-}of\ (trail\ S))
     using wf by (auto simp: C)
   show ?case
     unfolding C watched-decided-most-recently.simps Ball-mset-def
```

```
proof (intro allI impI conjI, goal-cases)
          case (1 xW x)
         show ?case
           proof (cases - lit - of L = xW)
             case True
             then show ?thesis
              by (cases xW = x) (auto simp: uminus-lit-swap)
           \mathbf{next}
             case False note LxW = this
             have f9: L' \in set \ [l \leftarrow UWC \ . \ l \notin \# \ watched \ (TWL\text{-}Clause \ W \ UW)
                \land - l \notin lits\text{-}of (L \# trail S)]
              using 1(2) 5 by auto
             moreover then have f11: -xW \in lits-of (trail\ S)
              using 1(3) LxW unfolding lits-of-cons by (metis (no-types) insert-iff
                uminus-of-uminus-id)
             moreover then have xW \notin \#W
              using f9\ 1(2)\ H by (auto simp: C\ UWC)
             ultimately have False
               using 1 by auto
             then show ?thesis
              by fast
           qed
        qed
    \mathbf{qed}
 qed
qed
lemma wf-rewatch-nat':
 assumes
   wf: wf-twl-cls (trail S) C and
   n-d: no-dup (trail S) and
   undef: undefined-lit (trail S) (lit-of L)
 shows wf-twl-cls (L \# trail S) (rewatch-nat L S C)
 using clause-rewatch-witness' of sorted-list-of-multiset (unwatched C) C S L
 assms by (auto simp: rewatch-nat-def)
interpretation twl: abstract-twl watch-nat rewatch-nat sorted-list-of-multiset learned-clss
 apply unfold-locales
 apply (rule clause-watch-nat; simp)
 apply (rule wf-watch-nat; simp)
 apply (rule clause-rewatch-nat)
 apply (rule wf-rewatch-nat'; simp)
 apply (rule mset-sorted-list-of-multiset)
 apply (rule subset-mset.order-refl)
 done
      Interpretation for cdcl_W.cdcl_W
9.5
context abstract-twl
begin
```

9.5.1 Direct Interpretation

interpretation rough-cdcl: state_W trail raw-init-clss raw-learned-clss backtrack-lvl conflicting

```
cons\text{-}trail\ tl\text{-}trail\ add\text{-}init\text{-}cls\ add\text{-}learned\text{-}cls\ remove\text{-}cls\ update\text{-}backtrack\text{-}lvl
  update-conflicting init-state restart'
 apply unfold-locales
 apply (simp-all add: add-init-cls-def add-learned-cls-def clause-rewatch clause-watch
   cons-trail-def remove-cls-def restart'-def tl-trail-def)
 apply (rule image-mset-subseteq-mono[OF restart-learned])
 done
interpretation rough-cdcl: cdcl<sub>W</sub> trail raw-init-clss raw-learned-clss backtrack-lvl conflicting
  cons-trail tl-trail add-init-cls add-learned-cls remove-cls update-backtrack-lvl
  update-conflicting init-state restart'
 by unfold-locales
         Opaque Type with Invariant
declare rough-cdcl.state-simp[simp del]
definition cons-trail-twl:: ('v, nat, 'v literal multiset) ann-literal \Rightarrow 'v wf-twl \Rightarrow 'v wf-twl
 where
cons-trail-twl L S \equiv twl-of-rough-state (cons-trail L (rough-state-of-twl S))
lemma wf-twl-state-cons-trail:
  undefined-lit (trail\ S)\ (lit-of\ L) \Longrightarrow wf-twl-state\ S \Longrightarrow wf-twl-state\ (cons-trail\ L\ S)
 unfolding wf-twl-state-def by (auto simp: cons-trail-def wf-rewatch defined-lit-map)
\mathbf{lemma}\ rough\text{-}state\text{-}of\text{-}twl\text{-}cons\text{-}trail\text{:}
  undefined-lit (trail-twl S) (lit-of L) \Longrightarrow
   rough-state-of-twl (cons-trail-twl L S) = cons-trail L (rough-state-of-twl S)
  using rough-state-of-twl twl-of-rough-state-inverse wf-twl-state-cons-trail
  unfolding cons-trail-twl-def by blast
abbreviation add-init-cls-twl where
add-init-cls-twl CS \equiv twl-of-rough-state (add-init-cls C (rough-state-of-twl S))
lemma wf-twl-add-init-cls: wf-twl-state S \Longrightarrow wf-twl-state (add-init-cls L S)
 unfolding wf-twl-state-def by (auto simp: wf-watch add-init-cls-def split: split-if-asm)
\mathbf{lemma}\ rough\text{-}state\text{-}of\text{-}twl\text{-}add\text{-}init\text{-}cls:
  rough-state-of-twl (add-init-cls-twl L S) = add-init-cls L (rough-state-of-twl S)
 using rough-state-of-twl twl-of-rough-state-inverse wf-twl-add-init-cls by blast
abbreviation add-learned-cls-twl where
add-learned-cls-twl CS \equiv twl-of-rough-state (add-learned-cls C (rough-state-of-twl S))
lemma wf-twl-add-learned-cls: wf-twl-state S \Longrightarrow wf-twl-state (add-learned-cls L S)
 unfolding wf-twl-state-def by (auto simp: wf-watch add-learned-cls-def split: split-if-asm)
{\bf lemma}\ rough-state-of-twl-add-learned-cls:
  rough-state-of-twl (add-learned-cls-twl L S) = add-learned-cls L (rough-state-of-twl S)
  using rough-state-of-twl twl-of-rough-state-inverse wf-twl-add-learned-cls by blast
abbreviation remove-cls-twl where
remove\text{-}cls\text{-}twl\ C\ S \equiv twl\text{-}of\text{-}rough\text{-}state\ (remove\text{-}cls\ C\ (rough\text{-}state\text{-}of\text{-}twl\ S))
lemma wf-twl-remove-cls: wf-twl-state S \Longrightarrow wf-twl-state (remove-cls L(S))
  unfolding wf-twl-state-def by (auto simp: wf-watch remove-cls-def split: split-if-asm)
```

```
\mathbf{lemma}\ rough\text{-}state\text{-}of\text{-}twl\text{-}remove\text{-}cls\text{:}
  rough-state-of-twl (remove-cls-twl L(S)) = remove-cls L(rough-state-of-twl S)
 using rough-state-of-twl twl-of-rough-state-inverse wf-twl-remove-cls by blast
abbreviation init-state-twl where
init-state-twl N \equiv twl-of-rough-state (init-state N)
\mathbf{lemma} \ \textit{wf-twl-state-wf-twl-state-fold-add-init-cls}:
 assumes wf-twl-state S
 shows wf-twl-state (fold add-init-cls N S)
 using assms apply (induction N arbitrary: S)
  apply (auto simp: wf-twl-state-def)[]
  by (simp add: wf-twl-add-init-cls)
lemma wf-twl-state-epsilon-state[simp]:
  wf-twl-state (TWL-State [] {#} {#} <math>0 None)
 by (auto simp: wf-twl-state-def)
lemma wf-twl-init-state: wf-twl-state (init-state N)
  unfolding init-state-def by (auto intro!: wf-twl-state-wf-twl-state-fold-add-init-cls)
lemma rough-state-of-twl-init-state:
  rough-state-of-twl (init-state-twl N) = init-state N
 by (simp add: twl-of-rough-state-inverse wf-twl-init-state)
abbreviation tl-trail-twl where
tl-trail-twl S \equiv twl-of-rough-state (tl-trail (rough-state-of-twl S))
lemma wf-twl-state-tl-trail: wf-twl-state S \Longrightarrow wf-twl-state (tl-trail S)
 by (simp add: twl-of-rough-state-inverse wf-twl-init-state wf-twl-cls-wf-twl-cls-tl
   tl-trail-def wf-twl-state-def distinct-tl map-tl)
\mathbf{lemma}\ rough\text{-}state\text{-}of\text{-}twl\text{-}tl\text{-}trail\text{:}
  rough-state-of-twl (tl-trail-twl S) = tl-trail (rough-state-of-twl S)
 using rough-state-of-twl twl-of-rough-state-inverse wf-twl-state-tl-trail by blast
abbreviation update-backtrack-lvl-twl where
update-backtrack-lvl-twl \ k \ S \equiv twl-of-rough-state \ (update-backtrack-lvl \ k \ (rough-state-of-twl \ S))
lemma wf-twl-state-update-backtrack-lvl:
  wf-twl-state <math>S \implies wf-twl-state (update-backtrack-lvl k S)
 unfolding wf-twl-state-def by auto
\mathbf{lemma}\ rough\text{-}state\text{-}of\text{-}twl\text{-}update\text{-}backtrack\text{-}lvl:}
  rough-state-of-twl (update-backtrack-lvl-twl k S) = update-backtrack-lvl k
   (rough-state-of-twl\ S)
  using rough-state-of-twl twl-of-rough-state-inverse wf-twl-state-update-backtrack-lvl by fast
abbreviation update-conflicting-twl where
update-conflicting-twl k S \equiv twl-of-rough-state (update-conflicting k (rough-state-of-twl S))
lemma wf-twl-state-update-conflicting:
  wf-twl-state S \Longrightarrow wf-twl-state (update-conflicting k S)
 unfolding wf-twl-state-def by auto
```

```
\mathbf{lemma}\ rough\text{-}state\text{-}of\text{-}twl\text{-}update\text{-}conflicting:}
    rough-state-of-twl (update-conflicting-twl k S) = update-conflicting k
       (rough-state-of-twl\ S)
    using rough-state-of-twl twl-of-rough-state-inverse wf-twl-state-update-conflicting by fast
abbreviation raw-clauses-twl where
raw-clauses-twl S \equiv raw-clauses (rough-state-of-twl S)
abbreviation restart-twl where
restart-twl S \equiv twl-of-rough-state (restart' (rough-state-of-twl S))
lemma wf-wf-restart': wf-twl-state S \implies wf-twl-state (restart' S)
    unfolding restart'-def wf-twl-state-def apply standard
    apply clarify
    apply (rename-tac x)
     apply (subgoal-tac wf-twl-cls (trail S) x)
       apply (case-tac x)
    using restart-learned by fastforce+
lemma rough-state-of-twl-restart-twl:
    rough-state-of-twl (restart-twl S) = restart' (rough-state-of-twl S)
   by (simp add: twl-of-rough-state-inverse wf-wf-restart')
interpretation cdcl_W-twl-NOT: dpll-state
    \lambda S.\ convert-trail-from-W (trail-twl S)
   raw-clauses-twl
   \lambda L \ S. \ cons-trail-twl (convert-ann-literal-from-NOT L) S
   \lambda S. tl-trail-twl S
   \lambda C S. \ add-learned-cls-twl C S
   \lambda \ C \ S. \ remove\text{-}cls\text{-}twl \ C \ S
   apply unfold-locales
               apply (simp add: rough-state-of-twl-cons-trail)
              apply (metis rough-state-of-twl-tl-trail rough-cdcl.tl-trail)
            apply (metis rough-state-of-twl-add-learned-cls rough-cdcl.trail-add-cls_{NOT})
          apply (metis rough-state-of-twl-remove-cls rough-cdcl.trail-remove-cls)
        apply (simp add: rough-state-of-twl-cons-trail)
       apply (simp add: rough-state-of-twl-tl-trail)
      {\bf using} \ rough-cdcl. clauses-add-cls_{NOT} \ rough-cdcl. clauses-def \ rough-state-of-twl-add-learned-cls_{NOT} \ rough-cdcl. clauses-def \ rough-cdcl. clauses-def
     apply auto[1]
    using rough-cdcl.clauses-def rough-cdcl.clauses-remove-cls rough-state-of-twl-remove-cls by auto
interpretation cdcl_W-twl: state_W
    trail-twl
    init-clss-twl
    learned-clss-twl
    backtrack-lvl-twl
    conflicting-twl
    cons-trail-twl
    tl-trail-twl
    add-init-cls-twl
    add-learned-cls-twl
    remove-cls-twl
    update-backtrack-lvl-twl
```

```
update	ext{-}conflicting	ext{-}twl
     in it\text{-}state\text{-}twl
    restart-twl
    apply unfold-locales
    by (simp-all add: rough-state-of-twl-cons-trail rough-state-of-twl-tl-trail
         rough-state-of-twl-add-init-cls\ rough-state-of-twl-add-learned-cls\ rough-state-of-twl-remove-cls\ rough-state-of-twl-add-init-cls\ rough-state-of-twl-add-learned-cls\ rough-state-of-twl-add-init-cls\ rough-state-of-twl-add-init
        rough-state-of-twl-update-backtrack-lvl rough-state-of-twl-update-conflicting
        rough-state-of\text{-}twl\text{-}init\text{-}state\ rough-state-of\text{-}twl\text{-}restart\text{-}twl
        rough-cdcl.learned-clss-restart-state)
interpretation cdcl_W-twl: cdcl_W
     trail-twl
    init	ext{-}clss	ext{-}twl
     learned-clss-twl
     backtrack-lvl-twl
     conflicting-twl
     cons-trail-twl
     tl-trail-twl
     add-init-cls-twl
     add-learned-cls-twl
    remove	ext{-}cls	ext{-}twl
     update-backtrack-lvl-twl
     update	ext{-}conflicting	ext{-}twl
     init-state-twl
    restart-twl
    by unfold-locales
sublocale cdcl_W
     trail-twl
     init-clss-twl
     learned-clss-twl
     backtrack\text{-}lvl\text{-}twl
     conflicting-twl
     cons-trail-twl
     tl-trail-twl
     add-init-cls-twl
     add-learned-cls-twl
    remove	ext{-}cls	ext{-}twl
     update-backtrack-lvl-twl
     update\text{-}conflicting\text{-}twl
     init-state-twl
    restart-twl
    by (rule\ cdcl_W\text{-}twl.cdcl_W\text{-}axioms)
abbreviation state\text{-}eq\text{-}twl \text{ (infix } \sim TWL 51) \text{ where}
state-eq-twl\ S\ S' \equiv rough-cdcl.state-eq\ (rough-state-of-twl\ S)\ (rough-state-of-twl\ S')
notation cdcl_W-twl.state-eq (infix \sim 51)
declare cdcl_W-twl.state-simp[simp del]
     cdcl_W-twl-NOT.state-simp_{NOT}[simp\ del]
To avoid ambiguities:
no-notation state\text{-}eq\text{-}twl \text{ (infix } \sim 51)
definition propagate-twl where
propagate-twl\ S\ S'\longleftrightarrow
```

```
(\exists L \ C. \ (L, \ C) \in candidates\text{-}propagate\text{-}twl\ S
 \land S' \sim cons\text{-trail-twl} (Propagated L C) S
 \land conflicting-twl\ S = None
lemma propagate-twl-iff-propagate:
  assumes inv: cdcl_W-twl.cdcl_W-all-struct-inv S
 shows cdcl_W-twl.propagate S T \longleftrightarrow propagate-twl S T (is ?P \longleftrightarrow ?T)
proof
 assume ?P
 then obtain CL where
   conflicting (rough-state-of-twl S) = None  and
   CL-Clauses: C + \{\#L\#\} \in \# \ cdcl_W-twl.clauses S and
   tr-CNot: trail-twl S \models as CNot C and
   undef-lot: undefined-lit (trail-twl S) L and
   T \sim cons-trail-twl (Propagated L (C + {#L#})) S
   unfolding cdcl_W-twl.propagate.simps by blast
  have distinct-mset (C + \{\#L\#\})
   using inv CL-Clauses unfolding cdcl_W-twl.cdcl_W-all-struct-inv-def
   cdcl_W-twl.distinct-cdcl_W-state-def cdcl_W-twl.clauses-def distinct-mset-set-def
   \mathbf{by}\ (\mathit{metis}\ (\mathit{no-types},\ \mathit{lifting})\ \mathit{add-gr-0}\ \ \mathit{mem-set-mset-iff}\ \mathit{plus-multiset.rep-eq})
  then have C-L-L: mset\text{-set}\ (set\text{-}mset\ (C+\{\#L\#\})-\{L\})=C
   by (metis Un-insert-right add-diff-cancel-left' add-diff-cancel-right'
     distinct-mset-set-mset-ident finite-set-mset insert-absorb2 mset-set.insert-remove
     set-mset-single set-mset-union)
 have (L, C+\{\#L\#\}) \in candidates-propagate-twl S
   apply (rule wf-candidates-propagate-complete)
        using rough-state-of-twl apply auto[]
       using CL-Clauses unfolding cdcl_W-twl.clauses-def apply auto[]
      apply simp
     using C-L-L tr-CNot apply simp
    using undef-lot apply blast
    done
  show ?T unfolding propagate-twl-def
   apply (rule exI[of - L], rule exI[of - C + \{\#L\#\}])
   apply (auto simp: \langle (L, C + \{\#L\#\}) \in candidates\text{-}propagate\text{-}twl S \rangle
     \langle conflicting (rough-state-of-twl S) = None \rangle
   using \langle T \sim cons-trail-twl (Propagated L (C + {#L#})) S \sim cdcl_W-twl.state-eq-backtrack-lvl
   cdcl_W-twl.state-eq-conflicting cdcl_W-twl.state-eq-init-clss
   cdcl_W-twl.state-eq-learned-clss cdcl_W-twl.state-eq-trail rough-cdcl.state-eq-def by blast
next
 assume ?T
 then obtain L C where
   LC: (L, C) \in candidates-propagate-twl S and
   T: T \sim cons-trail-twl (Propagated L C) S and
   confl: conflicting (rough-state-of-twl S) = None
   unfolding propagate-twl-def by auto
 have [simp]: C - \{\#L\#\} + \{\#L\#\} = C
   using LC unfolding candidates-propagate-def
   by clarify (metis add.commute add-diff-cancel-right' count-diff insert-DiffM
     multi-member-last not-gr0 zero-diff)
 have C \in \# raw\text{-}clauses\text{-}twl\ S
   using LC unfolding candidates-propagate-def rough-cdcl.clauses-def by auto
  then have distinct-mset C
   using inv unfolding cdcl_W-twl.cdcl_W-all-struct-inv-def cdcl_W-twl.distinct-cdcl_W-state-def
   cdcl_W-twl.clauses-def distinct-mset-set-def rough-cdcl.clauses-def by auto
```

```
then have C-L-L: mset-set (set-mset C - \{L\}) = C - \{\#L\#\}
   by (metis \ C - \{\#L\#\} + \{\#L\#\} = C) add-left-imp-eq diff-single-trivial
     distinct-mset-set-mset-ident finite-set-mset mem-set-mset-iff mset-set.remove
     multi-self-add-other-not-self union-commute)
 show ?P
   apply (rule cdcl_W-twl.propagate.intros[of - trail-twl S init-clss-twl S
     learned-clss-twl S backtrack-lvl-twl S C-\{\#L\#\} L])
       using confl apply auto[]
      using LC unfolding candidates-propagate-def apply (auto simp: cdcl_W-twl.clauses-def)[]
     using wf-candidates-propagate-sound OF - LC rough-state-of-twl apply (simp add: C-L-L)
    using wf-candidates-propagate-sound[OF - LC] rough-state-of-twl apply simp
   using T unfolding cdcl_W-twl.state-eq-def rough-cdcl.state-eq-def by auto
no-notation CDCL-Two-Watched-Literals.twl.state-eq-twl (infix \sim TWL 51)
definition conflict-twl where
conflict-twl \ S \ S' \longleftrightarrow
 (\exists C. C \in candidates\text{-}conflict\text{-}twl\ S
 \land S' \sim update\text{-}conflicting\text{-}twl (Some C) S
 \land conflicting-twl S = None)
lemma conflict-twl-iff-conflict:
  shows cdcl_W-twl.conflict S T \longleftrightarrow conflict-twl S T (is ?C \longleftrightarrow ?T)
proof
 assume ?C
  then obtain M N U k C where
   S: rough-cdcl.state (rough-state-of-twl S) = (M, N, U, k, None) and
   C: C \in \# \ cdcl_W \text{-}twl. clauses \ S \ \text{and}
   M-C: M \models as CNot C and
   T: T \sim update\text{-}conflicting\text{-}twl (Some C) S
   by auto
 have C \in candidates-conflict-twl S
   apply (rule wf-candidates-conflict-complete)
      apply simp
     using C apply (auto\ simp:\ cdcl_W\text{-}twl.clauses\text{-}def)[]
   using M-C S by auto
  moreover have T \sim twl-of-rough-state (update-conflicting (Some C) (rough-state-of-twl S))
   using T unfolding rough-cdcl.state-eq-def cdcl_W-twl.state-eq-def by auto
  ultimately show ?T
   using S unfolding conflict-twl-def by auto
next
 assume ?T
 then obtain C where
   C: C \in candidates\text{-}conflict\text{-}twl\ S\ and
   T: T \sim update\text{-}conflicting\text{-}twl (Some C) S \text{ and}
   confl: conflicting-twl\ S = None
   unfolding conflict-twl-def by auto
 have C \in \# cdcl_W \text{-}twl.clauses S
   using C unfolding candidates-conflict-def cdcl<sub>W</sub>-twl.clauses-def by auto
moreover have trail-twl S \models as \ CNot \ C
   using wf-candidates-conflict-sound[OF - C] by auto
ultimately show ?C apply -
  apply (rule cdcl_W-twl.conflict.conflict-rule[of - - - - C])
  using confl T unfolding rough-cdcl.state-eq-def cdcl<sub>W</sub>-twl.state-eq-def by auto
qed
```

```
inductive cdcl_W-twl :: 'v \ wf-twl \Rightarrow 'v \ wf-twl \Rightarrow bool \ {\bf for} \ S :: 'v \ wf-twl \ {\bf where}
propagate: propagate-twl S S' \Longrightarrow cdcl_W-twl S S'
conflict: conflict-twl S S' \Longrightarrow cdcl_W-twl S S'
other: cdcl_W-twl.cdcl_W-o S S' \Longrightarrow cdcl_W-twl S S'
rf: cdcl_W - twl. cdcl_W - rf S S' \Longrightarrow cdcl_W - twl S S'
lemma cdcl_W-twl-iff-cdcl_W:
 assumes cdcl_W-twl.cdcl_W-all-struct-inv S
 shows cdcl_W-twl S T \longleftrightarrow cdcl_W-twl.cdcl_W S T
 by (simp\ add:\ assms\ cdcl_W\ -twl.\ cdcl_W\ .simps\ cdcl_W\ -twl.\ simps\ conflict\ -twl\ -iff\ -conflict
   propagate-twl-iff-propagate)
lemma rtranclp-cdcl_W-twl-all-struct-inv-inv:
 assumes cdcl_W-twl^{**} S T and cdcl_W-twl.cdcl_W-all-struct-inv S
 shows cdcl_W-twl.cdcl_W-all-struct-inv T
 using assms by (induction rule: rtranclp-induct)
  (simp-all\ add:\ cdcl_W-twl-iff-cdcl_W\ cdcl_W-twl.cdcl_W-all-struct-inv-inv)
lemma rtranclp-cdcl_W-twl-iff-rtranclp-cdcl_W:
 assumes cdcl_W-twl.cdcl_W-all-struct-inv S
 shows cdcl_W-twl^{**} S T \longleftrightarrow cdcl_W-twl.cdcl_W^{**} S T (is ?T \longleftrightarrow ?W)
proof
 assume ?W
 then show ?T
   proof (induction rule: rtranclp-induct)
     case base
     then show ?case by simp
   next
     case (step T U) note st = this(1) and cdcl = this(2) and IH = this(3)
     have cdcl_W-twl T U
       using assms st cdcl cdcl_W-twl.rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv cdcl_W-twl-iff-cdcl<sub>W</sub>
     then show ?case using IH by auto
   qed
next
 assume ?T
 then show ?W
   proof (induction rule: rtranclp-induct)
     case base
     then show ?case by simp
   next
     case (step\ T\ U) note st=this(1) and cdcl=this(2) and IH=this(3)
     have cdcl_W-twl.cdcl_W T U
       \mathbf{using} \ assms \ st \ cdcl \ rtranclp-cdcl_W-twl-all-struct-inv-inv \ cdcl_W-twl-iff-cdcl_W
       by blast
     then show ?case using IH by auto
   qed
qed
interpretation cdcl_{NOT}-twl: backjumping-ops
  \lambda S.\ convert-trail-from-W (trail-twl S)
  abstract-twl.raw-clauses-twl
 \lambda L \ (S:: \ 'v \ wf-twl).
   cons	ext{-}trail	ext{-}twl
```

```
(convert-ann-literal-from-NOT\ L)\ (S::\ 'v\ wf-twl)
  tl-trail-twl
  add-learned-cls-twl
  remove	ext{-}cls	ext{-}twl
  \lambda C - - (S:: 'v wf-twl) -. C \in candidates-conflict-twl S
 by unfold-locales
lemma reduce-trail-to<sub>NOT</sub>-skip-beginning-twl:
 assumes trail-twl\ S = convert-trail-from-NOT\ (F'@F)
 shows trail-twl (cdcl_W-twl.reduce-trail-to_{NOT} F S) = convert-trail-from-NOT F
 using assms by (induction F' arbitrary: S) auto
lemma reduce-trail-to_{NOT}-trail-tl-trail-twl-decomp[simp]:
  trail-twl\ S = convert-trail-from-NOT\ (F' @ Marked\ K\ () \#\ F) \Longrightarrow
    trail-twl\ (cdcl_W-twl.reduce-trail-to_{NOT}\ F\ (tl-trail-twl\ S)) = convert-trail-from-NOT\ F
 apply (rule reduce-trail-to<sub>NOT</sub>-skip-beginning-twl[of - tl (F' @ Marked K () \# [])])
 by (cases F') (auto simp add:tl-append rough-cdcl.reduce-trail-to<sub>NOT</sub>-skip-beginning)
lemma trail-twl-reduce-trail-to_{NOT}-drop:
  trail-twl \ (cdcl_W-twl.reduce-trail-to_{NOT} \ F \ S) =
   (if \ length \ (trail-twl \ S) \ge length \ F
   then drop (length (trail-twl S) – length F) (trail-twl S)
   else [])
 apply (induction F S rule: cdcl_W-twl.reduce-trail-to<sub>NOT</sub>.induct)
 apply (rename-tac \ F \ S)
 apply (case-tac trail-twl S)
  apply auto
 apply (rename-tac list)
 apply (case-tac Suc (length list) > length F)
  prefer 2 apply simp
 apply (subgoal-tac Suc (length list) – length F = Suc (length list – length F))
  apply simp
 apply simp
 done
interpretation cdcl_{NOT}-twl: dpll-with-backjumping-ops
  \lambda S.\ convert-trail-from-W\ (trail-twl\ S)
  abstract-twl.raw-clauses-twl
 \lambda L S.
   cons-trail-twl
     (convert-ann-literal-from-NOT\ L)\ S
  tl-trail-twl
  add-learned-cls-twl
  remove-cls-twl
 \lambda L \ S. \ lit-of \ L \in fst \ `candidates-propagate-twl \ S
 \lambda S. no-dup (trail-twl S)
 \lambda C - - S -. C \in candidates-conflict-twl S
proof (unfold-locales, goal-cases)
  case (1 \ C' \ S \ C \ F' \ K \ F \ L) note n-d=this(1) and n-d'=this(2) and undef=this(6)
 let ?T' = (cons-trail\ (Propagated\ L\ \{\#\})\ (rough-state-of-twl\ (cdcl_W-twl.reduce-trail-to_{NOT}\ F\ S)))
 let ?T = (cons-trail-twl \ (Propagated \ L \ \{\#\}) \ (cdcl_W-twl.reduce-trail-to_{NOT} \ F \ S))
 have tr-F-S: map\ lit-of (trail-twl\ (cdcl_W-twl\ reduce-trail-to_{NOT}\ F\ S)) =
   map lit-of (convert-trail-from-NOT F)
   apply (subst trail-twl-reduce-trail-to<sub>NOT</sub>-drop[of F S])
   using 1(1) arg-cong[OF 1(3), of length] arg-cong[OF 1(3), of map lit-of]
```

```
by (auto simp: o-def drop-map[symmetric])
 have no-dup (trail-twl S)
   using 1(1) by blast
  have wf-twl-state (rough-state-of-twl (cdcl_W-twl.reduce-trail-to_{NOT} F S))
   using wf-twl-state-rough-state-of-twl by blast
  moreover have undef': undefined-lit (trail-twl (cdcl_W-twl.reduce-trail-to<sub>NOT</sub> F S)) L
   using undef arg-cong[OF tr-F-S, of map atm-of] unfolding defined-lit-map image-set
   by (simp \ add: \ o\text{-}def)
  ultimately have wf-twl-state ?T'
   by (simp-all add: wf-twl-state-cons-trail)
  then have init-clss-twl ?T = init-clss-twl (cdcl_W-twl.reduce-trail-to<sub>NOT</sub> FS)
     using 1(6) by (simp add: undef')
 then have [simp]: init-clss-twl ?T = init-clss-twl S
    by (simp\ add:\ cdcl_W\ -twl.\ reduce\ -trail\ -to_{NOT}\ -reduce\ -trail\ -convert)
 have learned-clss-twl? T = learned-clss-twl (cdcl_W-twl.reduce-trail-to<sub>NOT</sub> F S)
   by (simp add: undef')
  moreover have learned-clss-twl (cdcl_W-twl.reduce-trail-to<sub>NOT</sub> FS)
   = learned\text{-}clss\text{-}twl\ S
   by (simp\ add:\ cdcl_W\ -twl.\ reduce\ -trail\ -to_{NOT}\ -reduce\ -trail\ -convert)
  ultimately have [simp]: learned-clss-twl ?T = learned-clss-twl S
   \mathbf{by} \ simp
 have tr-L-F-S: map lit-of (trail-twl ?T)
   = map\ lit-of\ (Propagated\ L\ \{\#\}\ \#\ convert-trail-from-NOT\ F)
   using undef' tr-F-S by (simp add: o-def)
  have C-confl-cand: C \in candidates-conflict-twl S
   apply(rule\ wf\ -candidates\ -twl\ -conflict\ -complete)
    using 1(1,4) apply (simp add: rough-cdcl.clauses-def)
   using 1(5) by (simp add: tr-L-F-S true-annots-true-cls lits-of-convert-trail-from-NOT)
 have cdcl_{NOT}-twl.backjump S
   (cons-trail-twl\ (convert-ann-literal-from-NOT\ (Propagated\ L\ ()))
     (cdcl_W - twl. reduce - trail - to_{NOT} F S))
   apply (rule cdcl_{NOT}-twl.backjump.intros[of S F' K F - L C, OF 1(3) - 1(4-6) - 1(8-9)])
    unfolding cdcl_W-twl-NOT.state-eq_{NOT}-def apply (metis\ convert-ann-literal-from-NOT.simps(1))
    using 1(7) 1(3) apply presburger
   using C-confl-cand by simp
  then show ?case
   by blast
qed
interpretation cdcl_{NOT}-twl: dpll-with-backjumping
 \lambda S. convert-trail-from-W (trail-twl S)
  abstract\hbox{-}twl.raw\hbox{-}clauses\hbox{-}twl
 \lambda L \ (S:: \ 'v \ wf\text{-}twl).
   cons-trail-twl
     (convert-ann-literal-from-NOT\ L)\ (S:: 'v\ wf-twl)
  tl-trail-twl
  add-learned-cls-twl
  remove-cls-twl
 \lambda L \ S. \ lit-of \ L \in fst \ `candidates-propagate-twl \ S
 \lambda S. no-dup (trail-twl S)
 \lambda C - - (S:: 'v \text{ wf-twl}) -. C \in candidates\text{-}conflict\text{-}twl S
 apply unfold-locales
```

```
using cdcl_{NOT}-twl.dpll-bj-no-dup by (simp\ add:\ o-def)
end
```

end

10 Implementation for 2 Watched-Literals

```
theory CDCL-Two-Watched-Literals-Implementation
imports CDCL-Two-Watched-Literals DPLL-CDCL-W-Implementation
begin
type-synonym 'v conc-twl-state =
 (('v, nat, 'v literal list) ann-literal, 'v literal list twl-clause list, nat, 'v literal list)
   twl-state
fun convert :: ('a, 'b, 'c list) ann-literal \Rightarrow ('a, 'b, 'c multiset) ann-literal where
convert (Propagated \ L \ C) = Propagated \ L \ (mset \ C) \mid
convert (Marked K i) = Marked K i
abbreviation convert-tr :: ('a, 'b, 'c \ list) ann-literals \Rightarrow ('a, 'b, 'c \ multiset) ann-literals
 where
convert-tr \equiv map\ convert
abbreviation convertC :: 'a \ literal \ list \ option \Rightarrow 'a \ clause \ option where
convertC \equiv map\text{-}option \ mset
\mathbf{fun} \ \mathit{raw-clause-l} :: 'v \ \mathit{list} \ \mathit{twl-clause} \ \Rightarrow 'v \ \mathit{multiset} \ \mathit{twl-clause} \ \ \mathbf{where}
 raw-clause-l (TWL-Clause UW W) = TWL-Clause (mset W) (mset UW)
abbreviation convert-clss: 'v literal list twl-clause list \Rightarrow 'v clause twl-clause multiset
convert-clss S \equiv mset (map raw-clause-l S)
fun raw-state-of-conc :: 'v conc-twl-state \Rightarrow ('v, nat, 'v clause) twl-state-abs where
raw-state-of-conc (TWL-State M N U k C) =
  TWL-State (convert-tr M) (convert-clss N) (convert-clss U) k (map-option mset C)
lemma
 raw-state-of-conc (tl-trail S) = tl-trail (raw-state-of-conc S)
 unfolding tl-trail-def by (induction S) (auto simp: map-tl)
\mathbf{typedef} \ 'v \ conv-twl-state = \{S:: \ 'v \ conc-twl-state. \ wf-twl-state \ (raw-state-of-conc \ S)\}
morphisms list-twl-state-of cls-twl-state
proof -
   by (auto simp: wf-twl-state-def)
   then show ?thesis by blast
qed
term list-twl-state-of
definition watch-list :: 'v conv-twl-state \Rightarrow 'v literal list \Rightarrow 'v literal list twl-clause where
  watch-list S' C =
  (let
     M = trail (list-twl-state-of S');
     C' = remdups C;
```

```
\begin{array}{l} negation\text{-}not\text{-}assigned = \textit{filter} \ (\lambda L. - L \notin \textit{lits-of}\ M)\ C';\\ negation\text{-}assigned\text{-}sorted\text{-}by\text{-}trail = \textit{filter} \ (\lambda L.\ L \in \textit{set}\ C)\ (\textit{map}\ (\lambda L.\ -\textit{lit-of}\ L)\ M);\\ W = \textit{take}\ 2\ (\textit{negation-not-assigned}\ @\ \textit{negation-assigned-sorted-by-trail});\\ UW = \textit{foldl}\ (\lambda a\ l.\ \textit{remove1}\ l\ a)\ C\ W\\ \textit{in}\ TWL\text{-}Clause\ W\ UW)\\ \\ \textbf{lemma}\ \textit{wf-watch-nat:}\ \textit{no-dup}\ (\textit{trail}\ (\textit{list-twl-state-of}\ S)) \Longrightarrow\\ \textit{wf-twl-cls}\ (\textit{trail}\ (\textit{list-twl-state-of}\ S))\ (\textit{raw-clause-l}\ (\textit{watch-list}\ S\ C))\\ \textbf{apply}\ (\textit{simp}\ \textit{only:}\ \textit{watch-list-def}\ \textit{Let-def}\ \textit{raw-clause-l.simps})\\ \textbf{using}\ \textit{wf-watch-witness}[\textit{of}\ (\textit{list-twl-state-of}\ S)\ C\ \textit{mset}\ C]\\ \textbf{oops} \\ \end{array}
```

 $\quad \text{end} \quad$