## This Page Is Inserted by IFW Operations and is not a part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

10

15

## CLAIMS

1. An organic luminescence device, comprising: a pair of electrodes each disposed on a substrate, and at least one luminescence layer comprising an organic compound disposed between the electrodes; wherein the luminescence layer comprises a non-luminescent first organic compound and a phosphorescent second organic compound represented by formula (1) shown below, and the second organic compound is present at a concentration of at least 8 wt. % in the luminescence layer:

$$ML_mL'_n$$
 (1),

wherein M is a metal atom of Ir, Pt, Rh or Pd; L and L' are mutually different bidentate ligands; m is 1, 2 or 3; n is 0, 1 or 2 with the proviso that m+n is 2 or 3; a partial structure  $ML_m$  is represented by formula (2) shown below and a partial structure  $ML'_n$  is represented by formula (3), (4) or (5) shown below:



wherein N and C are nitrogen and carbon atoms, respectively; A and A' are respectively a cyclic group capable of having a substituent and bonded to the

metal atom M via the carbon atom; B, B' and B" are respectively a cyclic group represented by a formula of (6) - (14) shown below capable of having a substituent and connected to the metal atom M via the nitrogen atom:

{wherein the substituent is selected from a
halogen atom, a cyano group, a nitro group, a

trialkylsilyl group (of which the alkyl groups are
independently a linear or branched alkyl group having
1 to 8 carbon atoms), a linear or branched alkyl group
having 1 to 20 carbon atoms (of which the alkyl group
can include one or non-neighboring two or more

methylene groups that can be replaced with -O-, -S-,
-CO-, -CO-O-, -O-CO-, -CH=CH- or -C≡C- and the alkyl
group can include a hydrogen atom that can be replaced

10

15

20

25

with a fluorine atom), or an aromatic cyclic group capable of having a substituent (of which the substituent is selected from a halogen atom, a cyano group, a nitro group, a linear or branched alkyl group having 1 to 20 carbon atoms (of which the alkyl group can include one or non-neighboring two or more methylene groups that can be replaced with -O-, -S-, -CO-, -CO-O-, -O-CO-, -CH=CH- or -C=C- and the alkyl group can include a hydrogen atom that can be replaced with a fluorine atom)};

A and B, and A' and B' are respectively bonded to each other via a covalent bond;

E and G are independently a linear or branched alkyl group having 1 to 20 carbon atoms (of which the alkyl group can include a hydrogen atom that can be optionally replaced with a fluorine atom), or an aromatic cyclic group capable of having a substituent (of which the substituent is selected from a halogen atom, a cyano group, a nitro group, a trialkylsilyl group (of which the alkyl groups are independently a linear or branched alkyl group having 1 to 8 carbon atoms), a linear or branched alkyl group having 1 to 20 carbon atoms (of which the alkyl group can include one or non-neighboring two or more methylene groups that can be replaced with -O-, -S-, -CO-, -CO-O-, -O-CO-, -CH=CH- or -C=C- and the alkyl group can include a hydrogen atom that can be replaced

10

15

20

25

with a fluorine atom)},

J is a hydrogen atom, a halogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms (of which the alkyl group can include a hydrogen atom that can be optionally replaced with a fluorine atom), or an aromatic cyclic group capable of having a substituent {of which the substituent is selected from a halogen atom, a cyano group, a nitro group, a trialkylsilyl group (of which the alkyl groups are independently a linear or branched alkyl group having 1 to 8 carbon atoms), or a linear or branched alkyl group having 1 to 20 carbon atoms (of which the alkyl group can include one or non-neighboring two or more methylene groups that can be replaced with -O-, -S-, -CO-, -CO-O-, -O-CO-, -CH=CH- or  $-C\equiv C-$  and the alkyl group can include a hydrogen atom that can be replaced with a fluorine atom)};

wherein the compound represented by the formula (1) includes at least one cyclic group having a substituent.

2. An organic luminescence device according to Claim 1, comprising: a pair of electrodes each disposed on a substrate, and at least one luminescence layer comprising an organic compound disposed between the electrodes; wherein the luminescence layer comprises a non-luminescent first organic compound and

a phosphorescent second organic compound represented by the above-mentioned formula (1), and the second organic compound is present at a concentration in the luminescence layer that is higher than a concentration at which an cyclic group represented by the formula (1) but containing no substituent in any of the cyclic groups A and A' or the cyclic groups B and B' exhibits a maximum luminescence characteristic.

- 3. An organic luminescence device according to Claim 1, comprising: a pair of electrodes each disposed on a substrate, and at least one luminescence layer comprising an organic compound disposed between the electrodes; wherein the luminescence layer comprises a non-luminescent first organic compound and a phosphorescent second organic compound represented by the above-mentioned formula (1), and the second organic compound is present at a prescribed concentration of at least 8 wt. % in the luminescence layer providing a maximum luminescence characteristic.
  - 4. An organic luminescence device according to Claim 1, wherein the partial structure  ${\rm ML'}_n$  in the formula (1) is represented by the formula (3).

5. An organic luminescence device according to Claim 1, wherein the partial structure ML'  $_{n}$  in the

25

formula (1) is represented by the formula (4).

- 6. An organic luminescence device according to Claim 1, wherein the partial structure  $ML'_n$  in the formula (1) is represented by the formula (5).
  - 7. An organic luminescence device according to Claim 1, wherein n in the formula (1) is 0.
- 8. An organic luminescence device according to Claim 1, wherein the substituent of the compound of the formula (1) is fluorine.
- 9. An organic luminescence device according to
  15 Claim 1, wherein the substituent of the compound of
  the formula (1) is a trifluoromethyl group.
- 10. An organic luminescence device according to Claim 1, wherein the substituent of the compound of the formula (1) is an alkyl group.
  - 11. An organic luminescence device according to Claim 2, wherein said maximum luminescence characteristic is a maximum luminescence luminance.
  - 12. An organic luminescence device according to Claim 2, wherein said maximum luminescence

25

1,0

15

characteristic is a maximum current.

- 13. An organic luminescence device according to Claim 2, wherein said maximum luminescence characteristic is an external luminescence efficiency.
- 14. An organic luminescence device according to Claim 2, wherein said maximum luminescence characteristic is a ratio of luminescence flux/power consumption obtained by dividing a luminescence flux by a power consumption.
- 15. An organic luminescence device according to Claim 1, wherein phosphorescence is emitted from the luminescence layer by applying a voltage between the electrodes.
- 16. A picture display apparatus, comprising an organic luminescence device according to Claim 1, and a drive circuit for supplying display data.