

EE 604 Digital Image Processing

Lecture outline

- Visualizing Fourier transform in 2D
- Homomorphic filtering
- Image restoration
 - Noise models
 - Denoising methods

Lecture outline

- Visualizing Fourier transform in 2D
- Homomorphic filtering
- Image restoration
 - Noise models
 - Denoising methods

Homomorphic filtering

Lecture outline

- Visualizing Fourier transform in 2D
- Homomorphic filtering
- Image restoration
 - Noise models
 - Denoising methods

What is image restoration?

- Recovering the original image from its corrupted version
- For some cases, enhancement and restoration are the same

Degradation model

$$g(x,y) = h(x,y) * f(x,y) + n(x,y)$$

Task: find original image f(x,y) from observed image g(x,y)

Lecture outline

- Visualizing Fourier transform in 2D
- Homomorphic filtering
- Image restoration
 - Noise models
 - Denoising methods

Noise models

$$p(z) = \frac{1}{\sqrt{(2\pi\sigma^2)}} e^{-(z-\bar{z})^2/2\sigma^2}$$

Noise models

Image restoration

Consider a noise-only degradation model

$$g(x,y) = f(x,y) + n(x,y)$$

- If noise may be estimated, we can get the original image
- How to estimate noise?
 - Do we have access to the imaging device?
 - Can we use the noisy image itself?

© Gonzalez and Woods, 2nd Ed

Lecture outline

- Visualizing Fourier transform in 2D
- Homomorphic filtering
- Image restoration
 - Noise models
 - Denoising methods

Image denoising

- In most cases, subtracting noise is not a practical solution.
- Spatial filtering
 - Mean filtering, Order-statistic filtering, ...

Mean filters

Arithmetic mean filter

$$\hat{f}(x,y) = \frac{1}{mn} \sum_{(s,t) \in S_{xy}} g(s,t)$$

Geometric mean filter

$$\hat{f}(x,y) = \left\{ \prod_{(s,t) \in S_{xy}} g(s,t) \right\}^{\frac{1}{mn}}$$

Weighted mean filter

$$\hat{f}(x,y) = \frac{1}{mn} \sum_{(s,t) \in S_{xy}} w(s,t)g(s,t)$$

 S_{xy} : local region

 $m \times n$: region size

Mean filtering

Order-statistic filters

Median filter

$$\hat{f}(x,y) = \underset{(s,t) \in S_{xy}}{\operatorname{median}} g(s,t)$$

Max filter

$$\hat{f}(x,y) = \max_{(s,t) \in S_{xy}} g(s,t)$$

Min filter

$$\hat{f}(x,y) = \min_{(s,t) \in S_{xy}} g(s,t)$$

Median filtering

Image denoising

In most cases, subtracting noise is not a practical solution.

Spatial filtering

Mean filtering, Order-statistic filtering,

Freq domain filtering

• High pass filtering, band-pass filtering

Periodic Noise

Image denoising

- In most cases, subtracting noise is not a practical solution.
- Spatial (local) filtering
 - Mean filtering, Order-statistic filtering, ...
- Freq domain filtering
 - Low pass filtering, band-pass filtering
- Non-local filtering
 - Non local means filtering [Buades et al., A non-local algorithm for image denoising, CVPR 2005]