Departamento de Ingeniería Matemática Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción

Guía 1: Topología Cálculo III

Ignacio Ruminot Aburto

1. Elementos Topologicos

Definición 1. Sea $\mathbf{x_0} \in \mathbb{R}^n$ y r > 0. Definimos una bola abierta de centro $\mathbf{x_0}$ y radio r como:

$$B\left(\mathbf{x_0}, r\right) := \left\{ \mathbf{x} \in \mathbb{R}^n : \|\mathbf{x} - \mathbf{x_0}\| < r \right\}. \tag{1}$$

Definición 2. Sea $\mathbf{x_0} \in \mathbb{R}^n$ y r > 0. Definimos una bola cerrado de centro $\mathbf{x_0}$ y radio r como:

$$\overline{B}(\mathbf{x}_0, r) := \{ \mathbf{x} \in \mathbb{R}^n : \|\mathbf{x} - \mathbf{x}_0\| \le r \}. \tag{2}$$

Definición 3. Sea $U \subseteq \mathbb{R}^n$, diremos que U es un **conjunto abierto** si para cada $\mathbf{x} \in U$ existe r > 0 tal que $B(\mathbf{x}, r) \subseteq U$.

Definición 4. Sea $A \subseteq \mathbb{R}^n$, diremos que \mathbf{x} es un **punto interior** de A si existe r > 0 tal que $B(\mathbf{x}, r) \subseteq A$.

Definición 5. Sea $A \subseteq \mathbb{R}^n$, no vacío y $\mathbf{x} \in \mathbb{R}^n$, diremos que \mathbf{x} es un **punto de acumulación** de A si para todo r > 0 se tiene que $\mathring{B}(\mathbf{x}, r) \cap A \neq \emptyset$.

Definición 6. Sea $A \subseteq \mathbb{R}^n$ y $\mathbf{x} \in \mathbb{R}^n$, diremos que \mathbf{x} es un **punto frontera** de A si para todo r > 0 se tiene que $B(\mathbf{x}, \mathbf{r}) \cap A \neq \emptyset$ y $B(\mathbf{x}, \mathbf{r}) \cap A^c \neq \emptyset$.

Definición 7. Sea $A \subseteq \mathbb{R}^n$ y $\mathbf{x} \in \mathbb{R}^n$, diremos que \mathbf{x} es un **punto adherente** de A si para todo r > 0 se tiene que $B(\mathbf{x}, \mathbf{r}) \cap A \neq \emptyset$.

Definición 8. Sea $A \subseteq \mathbb{R}^n$ y $\mathbf{x} \in \mathbb{R}^n$, diremos que \mathbf{x} es un **punto aislado** de A si existe r > 0 se tiene que $B(\mathbf{x}, \mathbf{r}) \cap A = {\mathbf{x}}$.

Definición 9. Sea $A \subseteq \mathbb{R}^n$, diremos que A es un conjunto **acotado** si existe r > 0 tal que $A \subseteq B(\theta, r)$.

Teorema 1 (Teorema de Heine-Borel). Un subconjunto $U \subseteq \mathbb{R}^n$ es compacto si y solo si es acotado y cerrado.