第15回機械力学

減衰比と固有振動数

宇都宮大学 工学研究科 吉田勝俊

講義の情報 http://edu.katzlab.jp/lec/mdyn/

Last update: 2019.7.26 218

学習目標

- 数学モデルを「標準形」に変形する.
 - 振動系 $m\ddot{x} + c\dot{x} + kx = 0$ のパラメータを, 2 個 ζ , ω_n に集約.
 - 固有値を分りやすくする.
- 固有値とは別の動特性パラメータがある.
 - 減衰比とは?
 - 固有振動数とは?

变数变換

数学モデル $m\ddot{x} + c\dot{x} + kx = 0$ のパラメータを減らす.

(1) m>0 で割る: C=c/m, K=k/m とおけば,

$$\ddot{x} + C\dot{x} + Kx = 0$$

固有値は, $rac{-C\pm\sqrt{C^2-4K}}{2}$ となる.

(2) $\sqrt{2}$ 個のパラメータ を $\sqrt{1}$ 個のパラメータ にするため ,

$$C = 2\zeta\omega_n, \quad K = \omega_n^2$$

とおく
$$\ddot{x} + 2\zeta\omega_n\dot{x} + \omega_n^2x = 0$$
 標準形!
□ 固有値 = $\omega_n(-\zeta \pm \sqrt{\zeta^2 - 1})$

固有値のパターンが, ζ だけで決まる!

減衰比	ζ	$\frac{c}{2m\omega_n}$	$=\frac{c}{2\sqrt{mk}}$
固有振動数	ω_n	$\sqrt{\frac{k}{m}}$	

2種類の動特性パラメータ

■ 固有値:

構造
$$(m,c,k)$$
 動特性 $a\pm ib=\frac{-c\pm\sqrt{c^2-4mk}}{2m}$

- 固有値の実部 a ... 減衰特性
- 固有値の虚部 b ... 振動数
- 減衰比・固有振動数:

構造
$$(m,c,k)$$
 动特性 $(\zeta,\omega_n)=\left(\frac{c}{2\sqrt{mk}},\sqrt{\frac{k}{m}}\right)$

- 減衰比 ζ 減衰特性
- \blacksquare 固有振動数 ω_n … 振動数

発想は同じだが,使い勝手が違う.

減衰比ぐによる振動パターンの整列

■ 減衰比・固有振動数で書いた固有値:

$$s = \omega_n \left(-\zeta \pm \sqrt{\zeta^2 - 1} \right)$$

例題 13.1 (p.128)

残りの空欄を埋めよ.各区間の ζ を選び , 固有値を求めて表 13.1 p.122 と照合すればよい .

振動パターンの整列 (表13.3 p.128)

減衰比の範囲	名称	オーバーシュート
$\zeta = 0$	無減衰 (undampled)	有
$0 < \zeta < 1$	不足減衰 (under-damping)	有
$\zeta = 1$	臨界減衰 (critical damping)	無
$1 < \zeta$	過減衰 (over-damping)	無

オーバーシュート ... つりあい点を , 1 回以上 , 横切る動き方 .

第7回 機械力学レポート

機械力学サイト http://edu.katzlab.jp/lec/mdyn

- 第 15 週授業にて出題.
- レポート用紙:機械力学サイトからダウンロード・印刷.
 - 1 枚以内 . 裏面使用時は「裏につづく」と明記 . よく似たレポートは不正行為の証拠とする . (当期全単位 0)
- 提出期限:次回の前日 (次々回以降は受け取らない)
 - 公欠などは早めの提出で対応せよ.
- 提出先:機械棟 3F・システム力学研究室 (2) の BOX.