- **2.** В результате сильного прокаливания 12.00 г смеси карбонатов кальция и магния получили такое количество CO_2 , в котором содержится $1.63 \cdot 20^{24}$ электронов. Вычислите состав исследуемой смеси в массовых процентах.
- Обозначим число моль CaCO₃ в смеси через X, а число моль MgCO₃ Y.
 Тогда, с учетом молярных масс карбонатов: 100X + 84Y = 12

Рассчитаем количество моль протонов: $n(e^-) = 1.63 \cdot 20^{24} / (6.02 \cdot 10^{23}) = 2.71$ моль Но в 1 моле CO_2 содержится 22 электрона, следовательно, $n(CO_2) = n(e^-)/22 = 0.123$ моль 2) Разложение карбонатов происходит по реакциям:

$$CaCO_3 = CaO + CO_2$$

$$MgCO_3 = MgO + CO_2$$

3) Число моль выделяющегося CO₂ соответствует числу моль карбоната, т.е. второе уравнение, необходимое для расчета состава смеси:

$$X + Y = 0.123$$

$$100X + 84Y = 12$$

Откуда
$$X = 0.104$$
 $Y = 0.019$

4) Macca CaCO₃ = $10.4 \, \Gamma$ MgCO₃ = $1.6 \, \Gamma$

$$w(CaCO_3) = 86.7 \% w(MgCO_3) = 13.3 \%$$

Рекомендации к оцениванию:

Определено количество моль CO₂

1 балл

2. Уравнения реакции по 0.5 балла

1 балл

Рассчитаны массовые доли CaCO₃ и MgCO₃

3 балла

ИТОГО: 5 баллов