Artificial Intelligence

인공지능(AI) 개요

AiDA Lab.

강사 양석환

AI란 무엇인가?

- 흔히 생각하는 인공지능이란?
 - 컴퓨터를 이용하여 사람의 지능을 구현한 시스템
 - 사람보다 뛰어난 능력을 보유하므로
 - 인류에게 큰 도움을 주거나
 - 인류에게 큰 위협이 될 수 있는 존재

그러나...

특이점이라는 것이 발생한 후의 미래형 초 인공지능이라면 모를까..

• 인공지능(Artificial Intelligence, AI)이란 무엇인가?

• 인공지능이란

- 다양한 기술을 이용하여 사람이 하는 일을 흉내 내어 처리할 수 있는 시스템
- 다양한 기술이란
 - 기계, 전자, 컴퓨터 등 공학적인 기술
 - 예술로 표현할 수 있는 창의성을 포함... (하는 것을 목표로...)

정의(?)가 어머한 것 같은데 왜 그렇죠?

"지능"의 정의가 아직 명확하지 않음 아직 인간의 지능에 대해서는 밝혀지지 않은 영역이 많아서 명확하게 정의할 수 없음

AI란 무엇인가?

- 인간의 지능에 대하여 명확하게 밝혀지거나 정의되지 않음에 따라
 - 인공지능의 구현 방향은 지능적인 것으로 보이는 것을 흉내 내어 보자!
 - → 인간을 흉내 내자! 라는 것으로 귀결됨

- 인간을 흉내내기 위한 방향성
 - 기계적인 부분을 흉내 내자
 - 그 외의 부분을 흉내...... 어떻게든 해 보자

• 인간의 지능적(으로 보이는) 영역

- 기계적인 영역: 5감과 운동
 - 시각: Computer Vision → 영상 인식, 분류, 영역구분 등
 - 청각 / 발성: Audio 처리기술 → Al Speaker 등
 - 촉각, 후각, 미각: 센서 기술 연구 수준에서 머물고 있음. 최근 성과가 조금씩 나오는 중
 - 운동: 로봇 기술을 이용한 동작, 자세 제어
- 비 기계적인 영역
 - 사고: 현재 구현 불가능 → 데이터 처리, 의사결정, 언어처리 등으로 <mark>우회</mark>하여 구현
- → 주변에서 쉽게 볼 수 있는 인공지능의 연구/산업 분야

• AI의 구분

• AI 기술의 관계성

• AI 기술의 계통

• AI 기술의 계통

• 기호주의

- 흄의 귀납문제 :
 - 우리가 본 것에서 시작한 일반화를 → 보지 못한 것에까지 적용하는 일을..
 어떻게 하면 정당화 할 수 있을까?
 - → 정당화 할 수 있는 근거가 없다면 → 우리가 본 몇 가지 사례를 → 법칙으로 발전시킬 수 없음
- 기호주의란 경험으로 얻은 지식, 사고 체계를 논리적으로 귀결 시키는 과정
- 이러한 과정을 시스템으로 구현하는 것이 기호주의의 머신 러닝

• 기호주의 머신 러닝을 위한 하나의 예

• 데이트 신청의 성공 패턴

주일, 데이트 종류는 결정적인 조건이 아님 날씨, TV프로그램 중 중요한 조건이 있다고 추측 1~3 중에서 날씨가 쌀쌀한 경우가 있다면? 4의 경우, 날씨가 온화했다면? 1~3 중에서 TV 프로그램이 좋았다면? 4의 경우, TV 프로그램이 따분했다면?

경우	주일	데이트 종류	날씨	오늘 밤 TV 프로그램	데이트 성사 여부
1	주중	저녁식사	온화	따분함	승낙
2	주말	클럽	온화	따분함	승낙
3	주중	클럽	온화	따분함	승낙
4	주말	클럽	쌀쌀함	좋음	거절
5	주말	클럽	쌀쌀함	따분함	?

• 이처럼 데이터의 패턴을 분석, 그 결과를 예측할 수 있도록 학습하는 것이 기호주의의 머신 러닝

13

• 기호주의 머신 러닝의 문제점

- 우리가 발견한 패턴이 실제로 존재하는가? → 통계적 검증 필요, 수많은 데이터와 경우의 수
- 데이터에 적합한 단순한 가설을 선택한다면? → 사람이 편한 것이지 정확도, 성능 향상은 없음
- 기호주의 머신 러닝은 아는 것이 너무 적은 상태에서 학습 시작 → 결승점 도달 실패 확률 높음
- 역연역법을 통해서 논리적으로 예측하는 방안 → 나름대로 좋은 성과를 거둠. 그러나···
 - 너무 많은 규칙을 관리해야 함 → 계산량 문제 → 해결? → 의사결정트리 (스무고개놀이) 등
 - 잡음(무관한 데이터)에 쉽게 오류를 일으킴
 - 가장 큰 문제: 실제 개념은 규칙의 모음으로 간결하게 정의되는 일이 거의 없다는 사실

• 연결주의

- 심리학자 "헵"의 규칙을 기반으로 만들어진 유형
 - 헵: 신경과학자보다 먼저 신경세포의 연결방식을 제안한 심리학자
 - 헵의 규칙이란?
 - 시냅스의 앞과 뒤에서 동시에 신경세포가 흥분할 때, 해당 시냅스의 효율이 강화됨
 - 적당한 추측을 기반으로 심리학과 신경과학의 착상들을 통합해 놓음

- 연결주의 머신 러닝의 개념
 - 각 개념(데이터)와 기억은 두뇌에서 세포의 모임으로 나타난다
 - 개념(데이터)은 모든 곳에 조금씩 저장되어 있다.
 - 두뇌는 수십억의 신경세포가 동시에 동작하며 많은 계산을 수행한다. 그러나 각 신경세포는 1초에 1000번 정도 반응하므로 계산이 느리다(병렬시스템)
 - 신경세포에는 수천개의 신경 접합부가 있다. 등..

→ 두뇌가 어떻게 만들어지는가 이해해야 두뇌를 시뮬레이션(모의 실험)할 수 있으며 인공지능(머신 러닝)은 두뇌를 재 구축함으로써 구현 가능하다

- 연결주의 머신 러닝의 문제점
 - 두뇌, 신경의 구조, 작용 등에 대하여 아직 모르는 부분이 너무 많음
 - 연결주의 등장 당시의 기준으로 컴퓨터의 성능이 지나치게 낮음 (구현 불가능)
 - 병렬처리해야 하는 데이터가 너무 많음 등…

• 진화주의

- 진화론에서 출발하여 진화, 돌연변이 등을 통해 학습을 수행하는
 는 유전자 알고리즘 중심 연구
- 연결주의(신경망) 연구자였던 홀랜드가 생물학자 겸 통계학자 인 로널드 피셔의 "자연 선택의 유전 이론" 논문을 접한 후 제 안한 이론을 기반으로 함
- 가장 적응력이 높은 유전자만 살아남고 살아남은 유전자가 가 장 정확한, 또는 적절한 결과를 도출할 가능성이 크다

• 베이즈 주의

- 통계학의 일부인 베이즈 정리를 기반으로 한 머신 러닝
- 어떤 원인에서 어떤 결과가 일어날 가능성이 더 높을 수록
 → 그 결과가 나타났을 때 그것이 원인일 가능성이 더 높다 (확률적인 기반)
- 원인과 결과, 즉 인과관계에 대한 추론을 기반으로 학습, 예측을 진행함
- 그런데… 인간은 언어 추리가 연관되면 베이즈 추론(베이즈 정리를 기반으로 하는 추론)을 매우 잘 하는 것은 아니다. 인간은 원인의 사전 확률을 무시하는 경향이 있다.

• 베이즈 주의 머신 러닝 개념의 예

• 유추주의

- 사물, 현상에 대한 유추를 기반으로 학습을 진행하는 연구
- 통계학에서 먼저 알고리즘화 되기 시작했으며 컴퓨터 과학 전 분야에서 많은 연구가 진행되고 있는 분야
- 신경망, 기호주의, 유전자 알고리즘 등 다양한 머신 러닝 모델에도 영향을 끼침

• 유추주의 개념의 예시

- 역사상 악명높은 사기꾼 프랭크 애버그네일 주니어
- 의학적인 교육은 전혀 받지 않은 채로 1960년대 후반 애틀란타에서 1년 가까이 의사로 행세함
- 아무도 모르게…
- 행위
 - 빈 진료실에 들어감 \rightarrow 아무것도 모르는 환자 입실 \rightarrow 환자의 증상을 들음 \rightarrow 캐비닛에 들어있는 환자들의 진료 기록 검색 \rightarrow 유사한 다른 환자의 기록을 꺼내어 동일한 진단 내림 \rightarrow 1년 가까이 아무도 의심하지 않음

- 5가지 연구 유형에서…
 - 모든 것을 만족하는 알고리즘은 아직까지 나오지 않았음
 - 각 유형은 각각의 장, 단점을 가지며 어느 하나가 완벽한 모델은 없음
 - 최근의 추세는 각 유형이 서로 융합, 협력하여 서로의 단점을 보완하려는 움직임을 보이고 있음
 - 새로운 연구를 위해서도 서로의 장, 단점을 잘 알고 활용할 필요가 있음

• 최근의 인공지능 기술의 변화 추세

- 다양한 모델의 통합
 - 매우 다양한 모델이 존재함
 - 기존의 모델이 딥러닝 모델로 대체되는 경우가 많음
 - 기존 모델과 딥러닝 모델이 결합하는 경우도 많음

- 자연어처리 기술 → 언어모델 → 초거대AI → ChatGPT
 - 언어 처리 기술이 현재의 최대 이슈가 되고 있음

경제해야할점

2016~2018경 딥러닝 만능 주의 -> 딥러닝 모델은 만능이 아니다 -> 딥러닝 모델이 적합한 경우는 때로 있다

AI와 프로그래밍

- AI 기술은 컴퓨터를 기반으로 프로그램의 형태로 구현됨
 - 컴퓨터 프로그램이란?
 - 보유한 데이터를 입력하여
 - 우리가 원하는 결과 데이터를 만들어 내도록 지시하는
 - 명령어의 모임

어떤 데이터가 입력되면 → 어떻게 가공해서(Algorithm) → 어떤 형태의 데이터를 출력하라

어떤 데이터가 입력되면 → 어떻게 가공해서(Algorithm) → 어떤 형태의 데이터를 출력하라

