MIT OpenCourseWare http://ocw.mit.edu

18.02 Multivariable Calculus Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.02 Practice Exam 1 A

Problem 1. (15 points)

A unit cube lies in the first octant, with a vertex at the origin (see figure).

b) Find the cosine of the angle between OQ and OR.

Problem 2. (10 points)

The motion of a point P is given by the position vector $\vec{R} = 3\cos t \,\hat{\mathbf{i}} + 3\sin t \,\hat{\mathbf{j}} + t \,\hat{\mathbf{k}}$. Compute the velocity and the speed of P.

Problem 3. (15 points: 10, 5)

a) Let
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & -1 \\ 1 & 1 & 0 \end{bmatrix}$$
; then $\det(A) = 2$ and $A^{-1} = \frac{1}{2} \begin{bmatrix} 1 & a & b \\ -1 & -2 & 5 \\ 2 & 2 & -6 \end{bmatrix}$; find a and b .

b) Solve the system
$$AX = B$$
, where $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $B = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.

 \overline{C} In the matrix A, replace the entry 2 in the upper-right corner by c. Find a value of c for which the resulting matrix M is not invertible.

For this value of c the system MX = 0 has other solutions than the obvious one X = 0: find such a solution by using vector operations. (*Hint*: call U, V and W the three rows of M, and observe that MX = 0 if and only if X is orthogonal to the vectors U, V and W.)

Problem 4. (15 points)

The top extremity of a ladder of length L rests against a vertical wall, while the bottom is being pulled away. Find parametric equations for the midpoint P of the ladder, using as parameter the angle θ between the ladder and the horizontal ground.

Problem 5. (25 points: 10, 5, 10)

- a) Find the area of the space triangle with vertices $P_0:(2,1,0),\,P_1:(1,0,1),\,P_2:(2,-1,1).$
- b) Find the equation of the plane containing the three points P_0 , P_1 , P_2 .
- © Find the intersection of this plane with the line parallel to the vector $\vec{V} = \langle 1, 1, 1 \rangle$ and passing through the point S: (-1, 0, 0).

Problem 6. (20 points: 5, 5, 10)

- a) Let $\vec{R} = x(t)\hat{\mathbf{i}} + y(t)\hat{\mathbf{j}} + z(t)\hat{\mathbf{k}}$ be the position vector of a path. Give a simple intrinsic formula for $\frac{d}{dt}(\vec{R} \cdot \vec{R})$ in vector notation (not using coordinates).
 - b) Show that if \vec{R} has constant length, then \vec{R} and \vec{V} are perpendicular.
- c) let \vec{A} be the acceleration: still assuming that \vec{R} has constant length, and using vector differentiation, express the quantity $\vec{R} \cdot \vec{A}$ in terms of the velocity vector only.