0.1 正定型与正定阵

0.1.1 正定型与正定阵

命题 0.1 (正定阵的判定准则)

设A是n阶实对称矩阵,则A是正定阵的充要条件是以下条件之一:

- (1) A 合同于单位矩阵 I_n ;
- (2) 存在非异实矩阵 C, 使得 A = C'C;
- (3) A的n个顺序主子式全大于零;
- (4) A的所有主子式全大于零;
- (5) A的所有特征值全大于零.

 $\frac{1}{12}$ (2) 实际上给出了一种利用非异实阵构造正定阵的方式, 即若 A 是非异实矩阵, 则 A'A 必是正定阵. 证明

- (1) 参考定理??.
- (2) 参考命题??.
- (3) 参考定理??.
- (4) 参考命题??和定理??.
- (5) 参考推论??.

命题 0.2

设A是n阶正定实对称矩阵,S是n阶实反对称矩阵,求证:

- (1) $|A + S| \ge |A| + |S|$, 且等号成立当且仅当 $n \le 2$ 或当 $n \ge 3$ 时, S = 0.
- (2) $|A+S| \ge |A|$, 且等号成立当且仅当 S=0.

证明 证法一:设 C 为非异实矩阵,使得 $C'AC = I_n$. 注意到问题的条件和结论在同时合同变换 $A \mapsto C'AC$, $S \mapsto C'SC$ 下不改变 (不等式两边同乘 $|C|^2$),故不妨从一开始就假设 $A = I_n$ 为合同标准型,从而由命题??即得结论.

证法二:由正定阵与实反称阵可同时合同对角化可知,存在可逆矩阵C,使得

$$C'AC = I_n$$
, $C'SC = \operatorname{diag} \left\{ \begin{pmatrix} 0 & b_1 \\ -b_1 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & b_r \\ -b_r & 0 \end{pmatrix}, 0, \dots, 0 \right\}$

其中 b_1, \ldots, b_r 是非零实数. 因此我们有

$$|C'||A+S||C| = |C'AC+C'SC| = \left| \operatorname{diag} \left\{ \begin{pmatrix} 1 & b_1 \\ -b_1 & 1 \end{pmatrix}, \dots, \begin{pmatrix} 1 & b_r \\ -b_r & 1 \end{pmatrix}, 1, \dots, 1 \right\} \right|$$

$$= (1+b_1^2)(1+b_2^2)\cdots(1+b_r^2) \geqslant 1 = |C'||A||C|,$$

且等号成立的充要条件是r=0, 这也等价于C'SC=O, 即S=O.

例题 **0.1** 设 $A, B \in \mathbb{R}^{n \times n}$ 都是反对称矩阵且 A 可逆. 证明:

$$|A^2 - B| \geqslant |A|^2.$$

证明 由 A 是实反称阵且 A 可逆知

$$A = -A^T \Longrightarrow |A| = (-1)^n |A| \Longrightarrow n$$
 A B B A

由命题??知 A 的特征值都是纯虚数, 从而 A^2 的特征值都是负数, 故 A^2 负定. 因此存在可逆实阵 C, 使得 A^2 =

=

 $-C^TC$. 于是

$$|A^{2} - B| = |-C^{T}C - B| = (-1)^{n}|C^{T}C + B|$$
$$= |C|^{2}|I_{n} + (C^{-1})^{T}BC^{-1}|$$
$$= |A|^{2}|I_{n} + (C^{-1})^{T}BC^{-1}|.$$

因为 B 是实反称阵, 所以由命题??知 B 的特征值只能是 0 或纯虚数. 又共轭复特征值成对出现, 故可不妨设 B 的全体特征值为 $0, \dots, 0, \pm a_1 i, \dots, \pm a_k i (a_i \in \mathbb{R})$, 则

$$|I_n + (C^{-1})^T B C^{-1}| = \prod_{i=1}^k (1 + a_i^2) \ge 1.$$

故

$$|A^2 - B| = |A|^2 |I_n + (C^{-1})^T B C^{-1}| \ge |A|^2.$$

例题 0.2 设 A 为实方阵, $A + A^T$ 为正定矩阵, 但 $A \neq A^T$, 证明:

$$|A + A^T| < |2A|.$$

证明 记 $R = A + A^T$, $S = A - A^T$, 则 R 是正定阵, S 是实反称阵, 注意到

$$2A = A + A^T + A - A^T = R + S,$$

故只需证

$$|R| < |R + S|$$
.

由命题??知, 存在可逆阵 C, 使得 $R = C^T C$. 从而

$$|R + S| = |C^T C + S| = |C^T C| |I + (C^{-1})^T S C^{-1}| = |R| |I + (C^{-1})^T S C^{-1}|.$$

因为S为实反称阵,所以 $(C^{-1})^TSC^{-1}$ 也为实反称阵.由实反称阵的特征值全为0或纯虚数,且共轭复特征值成对出现,故可设 $I+(C^{-1})^TSC^{-1}$ 的全体特征值为

$$1, \dots, 1, 1 \pm a_1 i, \dots, 1 \pm a_k i,$$

其中 $a_i \in \mathbb{R}$. 从而

$$|R+S| = |R||I+(C^{-1})^TSC^{-1}| = |R|\prod_{i=1}^k (1+a_i^2) > |R|.$$

命题 0.3

设 A.B 都是 n 阶正定实对称矩阵. c 是正实数. 求证:

- (1) A^{-1} , A^* , A + B, cA 都是正定阵;
- (2) 若 D 是非异实矩阵,则 D'AD 是正定阵;
- (3) 若 A B 是正定阵, 则 $B^{-1} A^{-1}$ 也是正定阵.

证明

- (1) 利用正定阵的判定准则 (2), 由已知存在非异实矩阵 C, 使得 A = C'C, 从而 $A^{-1} = (C'C)^{-1} = C^{-1}(C')^{-1} = C^{-1}(C^{-1})'$, 故 A^{-1} 是正定阵. 又 $A^* = (C'C)^* = C^*(C')^* = C^*(C^*)'$, 故 A^* 是正定阵. 对任一非零实列向量 α , $\alpha'(A+B)\alpha = \alpha'A\alpha + \alpha'B\alpha > 0$, 从而 A+B 是正定阵. 注意到, 若 A 是正定阵, 即使 B 只是半正定阵, 通过上述方法也能推出 A+B 是正定阵. 同理可证 CA 也是正定阵.
- (2) 由 (1) 相同的记号可得 D'AD = D'C'CD = (CD)'(CD), 因为 CD 是可逆矩阵, 故 D'AD 是正定阵.
- (3) 由命题??可知 $B^{-1} A^{-1} = (B + B(A B)^{-1}B)^{-1}$, 再由 (1) 和 (2) 即得 $B^{-1} A^{-1}$ 是正定阵.

命题 0.4

设 $A \neq m$ 阶正定实对称矩阵, $B \neq m \times n$ 实矩阵, 求证: $B'AB \neq m$ 是正定阵的充要条件是 r(B) = n.

证明 由 A 的正定性可知, 存在可逆阵 C, 使得 A = C'C, 从而 B'AB = B'C'CB = (CB)'(CB) 且 CB 是实矩阵, 故 B'AB 至少是半正定的, 并且 x'(B'AB)x = (Bx)'A(Bx) = 0 当且仅当 Bx = 0. 因此, B'AB 是正定阵当且仅当 Bx = 0只有零解,再由线性方程组的求解理论可知,这也当且仅当 r(B) = n.

命题 0.5

设 A 为 n 阶正定实对称矩阵, n 维实列向量 α , β 满足 $\alpha'\beta > 0$, 求证: $H = A - \frac{A\beta\beta'A}{B'AB} + \frac{\alpha\alpha'}{\alpha'B}$ 是正定阵.

证明 根据定义只要证明对任一实列向量 x, 均有 $x'Hx \ge 0$, 且等号成立当且仅当 x = 0 即可. 一方面, 由 $\alpha'\beta > 0$ 可知, $\frac{x'(\alpha\alpha')x}{\alpha'\beta} = \frac{(\alpha'x)^2}{\alpha'\beta} \geqslant 0$,等号成立当且仅当 $\alpha'x = 0$.另一方面,由 A 正定可知,存在非异实矩阵 C,使得 A = C'C.设 $C\beta = (b_1, b_2, \cdots, b_n)'$, $Cx = (x_1, x_2, \cdots, x_n)'$,则由 Cauchy - Schwarz 不等式可知

$$x'Ax - \frac{x'A\beta\beta'Ax}{\beta'A\beta} = (Cx)'(Cx) - \frac{(Cx)'(C\beta)(C\beta)'(Cx)}{(C\beta)'(C\beta)}$$
$$= \left(\sum_{i=1}^{n} b_i^2\right)^{-1} \left(\left(\sum_{i=1}^{n} b_i^2\right) \left(\sum_{i=1}^{n} x_i^2\right) - \left(\sum_{i=1}^{n} b_i x_i\right)^2\right) \geqslant 0$$

等号成立当且仅当 b_i 与 x_i 成比例, 即存在实数 k, 使得 $Cx = kC\beta$, 即 $x = k\beta$. 由上述计算可得 $x'Hx \ge 0$, 且等号 成立当且仅当 $\alpha' x = 0$ 且 $x = k\beta$, 再由 $\alpha' \beta > 0$ 可得 k = 0, 从而 x = 0, 结论得证.

例题 0.3 求证: 下列 n 阶实对称矩阵 $A = (a_{ij})$ 都是正定阵, 其中

(1)
$$a_{ij} = \frac{1}{i+j}$$
;

(2)
$$a_{ij} = \frac{1}{i+j-1}$$
;

(3)
$$a_{ij} = \frac{1}{i+i+1}$$
.

证明

(1) 注意到 A 的 n 个顺序主子式都是具有相同形状的 Cauchy 行列式, 故要证明它们全大于零, 只要证明 A 的行 列式大于零即可. 对 A 的所有 m 阶顺序主子式, 在 Cauchy 行列式中, 令 $a_i = b_i = i (1 \le i \le m)$, 则由 Cauchy 行列式可得

$$|A| = \begin{vmatrix} (1+1)^{-1} & (1+2)^{-1} & \cdots & (1+m)^{-1} \\ (2+1)^{-1} & (2+2)^{-1} & \cdots & (2+m)^{-1} \\ \vdots & \vdots & & \vdots \\ (m+1)^{-1} & (m+2)^{-1} & \cdots & (m+m)^{-1} \end{vmatrix} = \frac{\prod\limits_{1 \le i < j \le m} (j-i)^2}{\prod\limits_{1 \le i < j \le m} (i+j)} > 0.$$

故 A 是正定矩阵.

(2) 考虑 A 的所有 m 阶顺序主子式, 在 Cauchy 行列式中, 令 $a_i = b_i = i - \frac{1}{2} (1 \leqslant i \leqslant m)$, 则由 Cauchy 行列式可得

$$|A| = \begin{vmatrix} (1 - \frac{1}{2} + 1 - \frac{1}{2})^{-1} & (1 - \frac{1}{2} + 2 - \frac{1}{2})^{-1} & \cdots & (1 - \frac{1}{2} + m - \frac{1}{2})^{-1} \\ (2 - \frac{1}{2} + 1 - \frac{1}{2})^{-1} & (2 - \frac{1}{2} + 2 - \frac{1}{2})^{-1} & \cdots & (2 - \frac{1}{2} + m - \frac{1}{2})^{-1} \\ \vdots & \vdots & & \vdots \\ (m - \frac{1}{2} + 1 - \frac{1}{2})^{-1} & (m - \frac{1}{2} + 2 - \frac{1}{2})^{-1} & \cdots & (m - \frac{1}{2} + m - \frac{1}{2})^{-1} \end{vmatrix} = \frac{\prod\limits_{1 \le i < j \le m} (j - i)^2}{\prod\limits_{1 \le i < j \le m} (i + j - 1)} > 0.$$

故 A 为正定阵.

(3) 考虑 A 的所有 m 阶顺序主子式, 在 Cauchy 行列式中, 令 $a_i = b_i = i + \frac{1}{2} (1 \le i \le m)$, 则由 Cauchy 行列式可得

$$|A| = \begin{vmatrix} (1 + \frac{1}{2} + 1 + \frac{1}{2})^{-1} & (1 + \frac{1}{2} + 2 + \frac{1}{2})^{-1} & \cdots & (1 + \frac{1}{2} + m + \frac{1}{2})^{-1} \\ (2 + \frac{1}{2} + 1 + \frac{1}{2})^{-1} & (2 + \frac{1}{2} + 2 + \frac{1}{2})^{-1} & \cdots & (2 + \frac{1}{2} + m + \frac{1}{2})^{-1} \\ \vdots & \vdots & & \vdots \\ (m + \frac{1}{2} + 1 + \frac{1}{2})^{-1} & (m + \frac{1}{2} + 2 + \frac{1}{2})^{-1} & \cdots & (m + \frac{1}{2} + m + \frac{1}{2})^{-1} \end{vmatrix} = \frac{\prod\limits_{1 \le i < j \le m} (j - i)^2}{\prod\limits_{1 \le i < j \le m} (i + j + 1)} > 0.$$

故 A 为正定阵.

命题 0.6

设A 是n 阶实对称矩阵, 求证: 若A 是主对角元全大于零的严格对角占优阵, 则A 是正定阵.

证明 注意到 A 的 n 个顺序主子阵仍然是主对角元全大于零的严格对角占优阵, 故要证明 A 的 n 个顺序主子式全大于零, 只要证明 A 的行列式大于零即可, 而这由命题??即得, 因此 A 是正定阵.

命题 0.7

设 $A \neq n$ 阶实对称矩阵, 求证: 必存在正实数 k, 使得对任一 n 维实列向量 α , 总有

$$-k\alpha'\alpha \leqslant \alpha'A\alpha \leqslant k\alpha'\alpha$$

证明 设 $A = (a_{ij})$, 我们总可以取到充分大的正实数 k, 使得

$$k \pm a_{ii} > \sum_{j=1, j \neq i}^{n} |a_{ij}|, \quad 1 \leqslant i \leqslant n$$

即 $kI_n \pm A$ 是主对角元全大于零的严格对角占优阵, 由命题 0.6可得 $kI_n \pm A$ 为正定阵, 从而对任一 n 维实列向量 α , 总有 $\alpha'(kI_n \pm A)\alpha \ge 0$, 从而结论得证.

命题 0.8

设 α, β 为 n 维非零实列向量, 求证: $\alpha'\beta > 0$ 成立的充要条件是存在 n 阶正定实对称矩阵 A, 使得 $\alpha = A\beta$.

证明 先证充分性. 若存在 n 阶正定实对称矩阵 A, 使得 $\alpha = A\beta$, 则 $\alpha'\beta = (A\beta)'\beta = \beta'A\beta > 0$. 下面用两种方法来证明必要性.

证法一:注意到问题的条件和结论在矩阵变换 $A \mapsto C'AC$, $\alpha \mapsto C'\alpha$, $\beta \mapsto C^{-1}\beta$ 下不改变, 故不妨从一开始 就假设 $\beta = e_n = (0, \cdots, 0, 1)'$ (这等价于将原来的 β 放在非异阵 C 的最后一列), $\alpha = (a_1, \cdots, a_{n-1}, a_n)'$, 则 $\alpha'\beta > 0$ 等价于 $a_n > 0$. 设 $A = \begin{pmatrix} tI_{n-1} & \alpha_{n-1} \\ \alpha'_{n-1} & a_n \end{pmatrix}$, 其中 $\alpha_{n-1} = (a_1, \cdots, a_{n-1})'$ 且 $t \gg 0$, 则由行列式的降阶公式可得

$$|A| = |tI_{n-1}|(a_n - \alpha'_{n-1}(tI_{n-1})^{-1}\alpha_{n-1}) = t^{n-2}(a_nt - a_1^2 - \dots - a_{n-1}^2) > 0$$

又 A 的前 n-1 个顺序主子式都大于零, 故 A 为正定阵且满足 $\alpha = Ae_n = A\beta$.

证法二: 设 $A = I_n - \frac{\beta \beta'}{\beta' \beta} + \frac{\alpha \alpha'}{\alpha' \beta}$, 则由命题 0.5可知 A 为正定阵. 不难验证 $A\beta = \alpha$ 成立, 故结论得证.

命题 0.9

设A,B 是n 阶实矩阵, 使得A'B'+BA 是正定阵, 求证: A,B 都是非异阵.

证明 用反证法证明. 若 A 为奇异阵,则存在非零实列向量 α ,使得 $A\alpha = 0$.将正定阵 A'B' + BA 左乘 α' ,右乘 α

可得

$$0 < \alpha'(A'B' + BA)\alpha = (A\alpha)'(B'\alpha) + (B'\alpha)'(A\alpha) = 0$$

这就导出了矛盾. 同理可证 B 也是非异阵.

例题 0.4 设 A, B, C 都是 n 阶正定实对称矩阵, $g(t) = |t^2A + tB + C|$ 是关于 t 的多项式, 求证: g(t) 所有复根的实部都小于零.

注 若 A 是正定实对称矩阵,则 A 合同于单位矩阵 I_n ,即存在非异实矩阵 C,使得 $A = C'I_nC$.因为 C 是实矩阵,故可把上式中的 C' 改写成 \overline{C}' ,从而 A 复相合于 I_n ,于是 A 也是正定 Hermite 矩阵.因此在处理实矩阵问题的过程中,如果遇到了复特征值和复特征向量,那么可以自然地把正定实对称矩阵看成是一种特殊的正定 Hermite 矩阵,从而其正定性可延拓到复数域上.

证明 任取 g(t) 的一个复根 t_0 , 则 $|t_0^2 A + t_0 B + C| = 0$, 故存在非零复列向量 α , 使得 $(t_0^2 A + t_0 B + C)\alpha = 0$. 将上述等式左乘 $\overline{\alpha}'$, 可得

$$(\overline{\alpha}' \mathbf{A} \alpha) t_0^2 + (\overline{\alpha}' \mathbf{B} \alpha) t_0 + (\overline{\alpha}' \mathbf{C} \alpha) = 0$$

注意到 A,B,C 也是正定 Hermite 矩阵, 故 $a=\overline{\alpha}'A\alpha>0$, $b=\overline{\alpha}'B\alpha>0$, $c=\overline{\alpha}'C\alpha>0$, 并且 t_0 是二次方程 $at^2+bt+c=0$ 的根. 若 t_0 是实根,则 $t_0<0$, 否则将由 $t_0\geqslant 0$ 得到 $at_0^2+bt_0+c\geqslant c>0$, 这就推出了矛盾. 若 t_0 是虚根,则 t_0 的实部为 $-\frac{b}{2a}<0$, 结论得证.

命题 0.10

设 $A = (a_{ij})$ 是 n 阶正定实对称矩阵, P_{n-1} 是 A 的第 n-1 个顺序主子式, 求证: $|A| \leq a_{nn}P_{n-1}$.

证明 证法一: 设 $A = \begin{pmatrix} A_{n-1} & \alpha \\ \alpha' & a_{nn} \end{pmatrix}$,用第三类分块初等变换求得 $|A| = \begin{vmatrix} A_{n-1} & \alpha \\ \alpha' & a_{nn} \end{vmatrix} = \begin{vmatrix} A_{n-1} & \alpha \\ O & a_{nn} - \alpha' A_{n-1}^{-1} \alpha \end{vmatrix} = (a_{nn} - \alpha' A_{n-1}^{-1} \alpha)|A_{n-1}|$

因为 A 正定, 所以 A_{n-1} 也正定, 从而 A_{n-1}^{-1} 也正定, 于是 $\alpha' A_{n-1}^{-1} \alpha \geqslant 0$. 因此

$$|A| = (a_{nn} - \alpha' A_{n-1}^{-1} \alpha) |A_{n-1}| \le a_{nn} |A_{n-1}| = a_{nn} P_{n-1}$$

证法二:由行列式性质,有

$$|\mathbf{A}| = \begin{vmatrix} a_{11} & \cdots & a_{1,n-1} & a_{1n} \\ a_{21} & \cdots & a_{2,n-1} & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n-1,1} & \cdots & a_{n-1,n-1} & a_{n-1,n} \\ a_{n1} & \cdots & a_{n,n-1} & 0 \end{vmatrix} + \begin{vmatrix} a_{11} & \cdots & a_{1,n-1} & 0 \\ a_{21} & \cdots & a_{2,n-1} & 0 \\ \vdots & \vdots & \vdots & \vdots \\ a_{n-1,1} & \cdots & a_{n-1,n-1} & 0 \\ a_{n1} & \cdots & a_{n,n-1} & a_{nn} \end{vmatrix}$$

今

$$g(x_1, x_2, \dots, x_{n-1}) = \begin{vmatrix} a_{11} & \cdots & a_{1,n-1} & x_1 \\ a_{21} & \cdots & a_{2,n-1} & x_2 \\ \vdots & \vdots & \vdots & & \\ a_{n-1,1} & \cdots & a_{n-1,n-1} & x_{n-1} \\ x_1 & \cdots & x_{n-1} & 0 \end{vmatrix}$$

则

$$|A| = g(a_{1n}, a_{2n}, \cdots, a_{n-1,n}) + a_{nn}P_{n-1}$$

因为 A 的第 n-1 个顺序主子阵是正定阵, 故由命题 0.17可知 $g(a_{1n},a_{2n},\cdots,a_{n-1,n}) \leqslant 0$, 从而 $|A| \leqslant a_{nn}P_{n-1}$.

推论 0.1

设 $A = (a_{ij})$ 是 n 阶正定实对称矩阵, 求证: $|A| \leq a_{11}a_{22}\cdots a_{nn}$, 且等号成立当且仅当 A 是对角矩阵.

证明 设 $A = \begin{pmatrix} A_{n-1} & \alpha \\ \alpha' & a_{nn} \end{pmatrix}$, 则由命题 0.10可得 $|A| \leq a_{nn}P_{n-1}$, 且等号成立当且仅当 $\alpha = 0$. 又 A_{n-1} 也是正定阵,故不断迭代下去, 可得

$$|A| \leqslant a_{nn}P_{n-1} \leqslant a_{n-1,n-1}a_{nn}P_{n-2} \leqslant \cdots \leqslant a_{11}a_{22}\cdots a_{nn}$$

且等号成立当且仅当A是对角矩阵.

命题 0.11 (Fischer 不等式)

设 $A \in \mathbb{R}^{p \times p}, D \in \mathbb{R}^{q \times q}$, 考虑半正定矩阵 $M = \begin{pmatrix} A & B \\ B^T & D \end{pmatrix}$, 则

 $|M|\leqslant |A||D|.$

且等号成立当且仅当 B = O.

证明 证法一: 因为 M 半正定, 所以所有主子式非负, 因此 A,D 半正定. 考虑 $M+tI_{p+q}, A+tI_p, B+tI_q, t>0$ 并让 $t\to 0^+$ 可以不妨设 A,D 都是正定的. 利用正定矩阵存在正定平方根, 注意到

$$W = \begin{pmatrix} A^{-1/2} & 0 \\ 0 & D^{-1/2} \end{pmatrix} \begin{pmatrix} A & B \\ B^T & D \end{pmatrix} \begin{pmatrix} A^{-1/2} & 0 \\ 0 & D^{-1/2} \end{pmatrix} = \begin{pmatrix} I_p & A^{-1/2}BD^{-1/2} \\ D^{-1/2}B^TA^{-1/2} & I_q \end{pmatrix},$$

我们有

$$\frac{\det M}{\det A \cdot \det D} = \det W \mathop {\lesssim} \limits_{\substack{ \text{ $ \psi$ fix} \\ \text{ $ \#$ t $index t $} \neq \, 0}} \left(\frac{\operatorname{tr}(W)}{p+q} \right)^{p+q} = 1,$$

现在就有

 $\det M \leqslant \det A \cdot \det D.$

且等号成立当且仅当 B = O.

证法二: 因为 M 半正定, 所以所有主子式非负, 因此 A,D 半正定. 考虑 $M+tI_{p+q}, A+tI_p, B+tI_q, t>0$ 并让 $t\to 0^+$ 可以不妨设 A,D 都是正定的. 从而存在非异实矩阵 C_1,C_2 , 使得 $C_1'AC_1=I_r$, $C_2'DC_2=I_{n-r}$. 令 $C=\mathrm{diag}\{C_1,C_2\}$, 则

$$C'MC = \begin{pmatrix} C'_1 A C_1 & C'_1 B C_2 \\ C'_2 B' C_1 & C'_2 D C_2 \end{pmatrix} = \begin{pmatrix} I_r & C'_1 B C_2 \\ C'_2 B' C_1 & I_{n-r} \end{pmatrix}$$

仍是正定阵. 由推论 0.1可得 $|C'MC| \le 1$,且等号成立当且仅当 $C_1'BC_2 = O$,即 $|M| \le |C|^{-2} = |C_1|^{-2}|C_2|^{-2} = |A||D|$,且等号成立当且仅当 B = O.

证法三:因为 M 半正定, 所以所有主子式非负, 因此 A,D 半正定. 考虑 $M+tI_{p+q}, A+tI_p, B+tI_q, t>0$ 并让 $t\to 0^+$ 可以不妨设 A,D 都是正定的. 从而可对题中矩阵进行下列对称分块初等变换:

$$\begin{pmatrix} A & B \\ B' & D \end{pmatrix} \rightarrow \begin{pmatrix} A & B \\ O & D - B'A^{-1}B \end{pmatrix} \rightarrow \begin{pmatrix} A & O \\ O & D - B'A^{-1}B \end{pmatrix},$$

得到的矩阵仍正定, 从而 $D - B'A^{-1}B$ 是正定阵. 因为第三类分块初等变换不改变行列式的值. 故

$$\begin{vmatrix} A & B \\ B' & D \end{vmatrix} = |A||D - B'A^{-1}B|.$$

注意到 $D = (D - B'A^{-1}B) + B'A^{-1}B$, 其中 $B'A^{-1}B$ 是半正定阵, 故由命题??可得

$$|D| \ge |D - B'A^{-1}B| + |B'A^{-1}B| \ge |D - B'A^{-1}B|,$$

上述不等式的两个等号都成立当且仅当 $B'A^{-1}B = O$. 由 $O = B'A^{-1}B = (A^{-\frac{1}{2}}B)'(A^{-\frac{1}{2}}B)$ 取迹后可得 $A^{-\frac{1}{2}}B = O$, 从而 B = O, 于是上述不等式的两个等号都成立当且仅当 B = O. 综上所述, 我们有

$$\begin{vmatrix} A & B \\ B' & D \end{vmatrix} = |A||D - B'A^{-1}B| \leqslant |A||D|,$$

等号成立当且仅当B=O.

命题 0.12

设 $A \ge n$ 阶实矩阵, $A = (B, C) \ge A$ 的一个分块, 其中 $B \ge A$ 的前 k 列组成的矩阵, $C \ge A$ 的后 n - k 列组成的矩阵. 求证:

$$|\mathbf{A}|^2 \leqslant |\mathbf{B}'\mathbf{B}||C'C|$$

证明 若 A 不是可逆矩阵,则 |A| = 0,从而由命题??(2) 可知 B'B, C'C 都是半正定阵,故由命题??(2) 可得 $|B'B| \ge 0$, $|C'C| \ge 0$,从而上式显然成立. 现设 A 是可逆矩阵,则由命题??(1) 可知

$$A'A = \left(\begin{array}{c} B' \\ C' \end{array} \right) \left(B \quad C \right) = \left(\begin{matrix} B'B & B'C \\ C'B & C'C \end{matrix} \right).$$

是正定阵, 再由Fischer 不等式即得结论.

定义 0.1 (亚正定阵)

设 M 为 n 阶实矩阵, 若对任意的非零实列向量 α , 总有 $\alpha' M \alpha > 0$, 则称 M 是亚正定阵.

命题 0.13

亚正定矩阵 A 的所有特征值的实部都大于零.

证明 设 $\lambda_0 = a + bi$ 是 A 的特征值, η 是属于 λ_0 的特征向量. 将 η 的实部和虚部分开, 记为 $\eta = \alpha + i\beta$, 则 $A(\alpha + i\beta) = (a + bi)(\alpha + i\beta)$. 分开实部和虚部可得 $A\alpha = a\alpha - b\beta$, $A\beta = b\alpha + a\beta$, 于是 $\alpha'A\alpha = a\alpha'\alpha - b\alpha'\beta$, $\beta'A\beta = b\beta'\alpha + a\beta'\beta$. 因此再由 A 为亚正定矩阵可得

$$\alpha' A \alpha + \beta' A \beta = a(\alpha' \alpha + \beta' \beta) > 0.$$

又 $\alpha'\alpha + \beta'\beta \ge 0$, 故 a > 0.

定理 0.1

证明下列结论等价:

- (1) M 是亚正定阵;
- (2) M+M' 是正定阵;
- (3) M = A + S, 其中 A 是正定实对称矩阵, S 是实反对称矩阵.

注 命题 0.13告诉我们: 亚正定阵 M 的特征值的实部都大于零, 由此可得 M 的行列式值大于零. 事实上, 这一结论还可以由命题 0.2得到, 即 $|M| = |A + S| \ge |A| > 0$. 另外, 这一结论还能给出命题 0.9的证法 2, 即由 BA + (BA)' 正定可知 BA 亚正定, 从而 |BA| > 0, 于是 A, B 都是非异阵.

ATE BE

1. (1) \Rightarrow (2): 将 $\alpha' M \alpha > 0$ 转置后可得 $\alpha' M' \alpha > 0$, 再将两式相加后可得 $\alpha' (M + M') \alpha > 0$ 对任意的非零实列 向量 α 都成立, 因此 M + M' 是正定阵.

- 2. (2) \Rightarrow (3): 令 $A = \frac{1}{2}(M + M')$ 为 M 的对称化, $S = \frac{1}{2}(M M')$ 为 M 的反对称化, 则结论成立.
- 3. (3) \Rightarrow (1): 由命题**??**可知, 对任意的非零实列向量 α , 总有 $\alpha'M\alpha = \alpha'A\alpha + \alpha'S\alpha = \alpha'A\alpha > 0$, 即 M 为亚正定阵.

0.1.2 负定型与负定阵

定理 0.2

设 $f(x_1, x_2, \dots, x_n)$ 是实二次型, A 是相伴的实对称矩阵, 则

- (1)f 是负定型或半负定型当且仅当 -f 是正定型或半正定型;
- (2)A 是负定阵或半负定阵当且仅当 -A 是正定阵或半正定阵.

注 由这个定理 0.2可知, 负定型或半负定型 (负定阵或半负定阵) 的问题通常都可以转化成正定型或半正定型 (正定阵或半正定阵) 的问题来研究.

证明 由(半)正定、负定型(阵)的定义易得.

引理 0.1

设 $f(x_1, x_2, \dots, x_n)$ 是实二次型, A 是相伴的实对称矩阵, $\mathbf{x} = (x_1, x_2, \dots, x_n)'$, 则

- (1) f 是正定型的充要条件是若 $f(x) \leq 0$, 则 x = 0.
- (2)f 是半正定型的充要条件是若 f(x) < 0,则 x = 0.
- (3) f 是负定型的充要条件是若 $f(x) \ge 0$, 则 x = 0.
- (4) f 是半负定型的充要条件是若 f(x) > 0, 则 x = 0.

证明 证明是显然的.

命题 0.14

设 $A \neq n$ 阶实对称矩阵, $P_1, P_2, \dots, P_n \neq A$ 的 n 个顺序主子式, 求证 A 负定的充要条件是:

$$P_1 < 0, P_2 > 0, \cdots, (-1)^n P_n > 0$$

证明 A 负定当且仅当 -A 正定,由正定阵的顺序主子式判定法即得结论.

命题 0.15

设 A 为 n 阶实对称矩阵, 求证:

- (1) A 是负定阵的充要条件是存在 n 阶非异实矩阵 C, 使得 A = -C'C.
- (2) A 是半负定阵的充要条件是存在 n 阶实矩阵 C, 使得 A = -C'C, 特别地, $|A| = (-1)^n |C|^2$.

证明 由命题??和定理 0.2立得.

命题 0.16

设 A 是 n 阶负定实对称矩阵, 求证: A^{-1} 也是负定阵; 当 n 为偶数时, A^* 是负定阵, 当 n 为奇数时, A^* 是正定阵.

证明 因为 A 负定, 故存在非异实矩阵 C, 使得 A = -C'C. 于是 $A^{-1} = -C^{-1}(C')^{-1} = -C^{-1}(C^{-1})'$ 也是负定阵; 由伴随矩阵的性质 2 可得 $A^* = (-1)^{n-1}C^*(C')^* = (-1)^{n-1}C^*(C^*)'$, 故当 n 为偶数时, $A^* = -C^*(C^*)'$ 是负定阵; 当 n 为

奇数时, $A^* = C^*(C^*)'$ 是正定阵.

命题 0.17

设有实二次型 $f(x_1,x_2,\cdots,x_n)=x'Ax$, 其中 $A=(a_{ij})$ 是 n 阶正定实对称矩阵, 求证下列实二次型是负定型:

$$g(x_1, x_2, \dots, x_n) = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} & x_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & x_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & x_n \\ x_1 & x_2 & \cdots & x_n & 0 \end{vmatrix} = \begin{vmatrix} A & \mathbf{x} \\ \mathbf{x}' & 0 \end{vmatrix}.$$

证明 证法一:由命题??可得

$$g(x_1, x_2, \dots, x_n) = -\sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j = -x' A^* x$$

其中 A_{ij} 是元素 a_{ij} 的代数余子式, A^* 是 A 的伴随矩阵. 因为 A 正定, 故由命题 0.3可知 A^* 也正定, 从而 g 为负 定型.

证法二: 因为 A 正定, 所以 |A| > 0, 故由降阶公式可得

$$g(x_1, x_2, \dots, x_n) = |A|(0 - x'A^{-1}x) = -|A|(x'A^{-1}x)$$

再由命题 0.3可知 A^{-1} 也正定, 即 $x'A^{-1}x$ 是正定型, 从而 g 为负定型.

证法三:设 $\alpha = (a_1, a_2, \cdots, a_n)'$ 为实列向量, 要证 g 是负定型, 等价地只要证明: 若 $g(\alpha) \ge 0$, 则 $\alpha = 0$ 即可. 作 n+1 变元二次型 h(y) = y'By, 其中 $B = \begin{pmatrix} A & \alpha \\ \alpha' & 0 \end{pmatrix}$, 则 $|B| = g(\alpha) \ge 0$. 又已知 A 正定, 因此 B 的前 n 个顺序主子式 为正数. 由命题??可知,h 是半正定型, 从而 B 是半正定阵. 注意到 B 的第 (n+1,n+1) 元素为零, 故由命题??可知 $\alpha = 0$.