64036_Assignment_1

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)

```
##
                         dist
        speed
           : 4.0
                              2.00
##
    Min.
                    Min.
                           :
    1st Qu.:12.0
                    1st Qu.: 26.00
##
    Median:15.0
                    Median: 36.00
##
    Mean
            :15.4
                    Mean
                           : 42.98
                    3rd Qu.: 56.00
##
    3rd Qu.:19.0
    Max.
            :25.0
                           :120.00
                    Max.
```

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

summary(Online_Retail)

head(Online Retail) summary(Online Retail)

X1_test <- Online_Retail\$Country summary(X1_test) head(Online_Retail) spec(Online_Retail) summary(Online_Retail)

colSums(is.na(Online_Retail))

table(grepl("^C", Online Retail\$InvoiceNo))

 $table (Online_RetailCountry) revenue < -Online_RetailCountry) \%>\% \\ summarise \\ (sales=sum(Online_RetailQuantity*Online_RetailUnitPrice))$

revenue <- Online_Retail %>% group_by(Online_Retail\$Country) %>% summarise (Country_Count = n()) %>% mutate(country_percentage = (Country_Count/sum(Country_Count))*100) %>% filter(country_percentage>1)

 $str(revenue) \ str(Online_Retail) \ revenue \ \%>\% \ select(sales) \ precoftotal <- \ revenue \ sales * sum(revenue sales)$

 $\label{eq:contraction} \begin{array}{lll} \text{head}(\text{precoftotal}) & \text{Percents} & <& \text{Online_Retail} & \% > \% & \text{c}(\text{Online_Retail} & \text{Country}, Online_RetailQuantity}, \\ \text{Online_Retail} & UnitPrice) & \text{head}(Percents) & \text{summary}(Percents) & & -c(Online_RetailCountry}, \\ \text{Online_Retail} & & \text{Quantity}, Online_RetailUnitPrice}) & \text{summary}(Percent_1) \\ \end{array}$

 $percent_2 <- Online_Retail \%>\% \ select (Online_Retail Country, Online_Retail Quantity, Online_Retail \$UnitPrice)$

 ${\tt revenue}["percents"] < - {\tt revenue} sales/sum(sales) \ {\tt summary}(revenue) \ {\tt sum}(revenue \$ sales)$

summary(Online_Retail)

revenue <- Online_Retail %>% group_by(Online_RetailCountry)table(Online_RetailCountry)

Online Retail <- Online Retail %>% mutate(TransactionValue = Quantity * UnitPrice)

Online_Retail %>% group_by(Country) %>% summarise (sum_TransactionValue = sum(TransactionValue)) %>% filter (sum_TransactionValue > 130000)

Online_Retail %>% filter(Country == "Germany")

Germany <- Online_Retail %>% filter(Country == "Germany") hist(Germany\$TransactionValue,main = paste("Histogram of Germany Transactions"))

plot(Germany)

 $\label{lis.na} On line_Retail $$ CustomerID),] \%>\% group_by (CustomerID) \%>\% summarise (Customer_Count = n(), sum_total= sum(TransactionValue)) \%>\% arrange (desc(Customer_Count))$

Online_Retail [!is.na(Online_Retail\$CustomerID),] %>% group_by(CustomerID) %>% summarise (Customer_Count = n(),sum_total= sum(TransactionValue)) %>% arrange (desc(sum_total))

colMeans(is.na(Online Retail)*100)

 $\label{lem:contine} Online_Retail \%>\% \ group_by(Country) \%>\% \ summarise(CustomerID_Missing = sum(is.na(CustomerID))) \%>\% \ filter(CustomerID_Missing>0)$

Online Retail Cancelled <- Online Retail %>% filter(Country=="France",Quantity<0) %>% count()

 $Online_Retail_Total <- Online_Retail \%>\% \ filter(Country == "France") \%>\% \ count()$

 $(Online_Retail_Cancelled n/Online_Retail_rotaln)*100$

(149/8557)*100

 $\label{lem:condine_Retail} Online_Retail \%>\% \ group_by(StockCode) \%>\% \ summarise(sum_transactionvalue = sum(TransactionValue)) \\ \%>\% \ arrange(desc(sum_transactionvalue))$

length(unique(Online Retail\$CustomerID))

Temp=strptime(Online Retail\$InvoiceDate,format='\%m/\%d/\%Y \%H:\%M',tz='GMT')

Online Retail\$New Invoice Date <- as.Date(Temp)

Online_Retail $Invoice_Day_Week = weekdays(Online_RetailNew_Invoice_Date)$

Online_Retail\$New_Invoice_Hour = as.numeric(format(Temp, "%H"))

Online Retail\$New Invoice Month = as.numeric(format(Temp, "%m"))

Online_Retail %>% group_by(Invoice_Day_Week) %>% summarise(number_of_transactions=n()) %>% mutate(trans_percent = (number_of_transactions/sum(number_of_transactions))*100)