Notes

Week 2

Module 1 Week 2B

Continuous Random Variables and the Normal Distribution

Random Variables

- A Continuous Random Variable can take on any value in an interval
- The probability of any single value is zero
- Probability Density Function (PDF)
 - The probability of a random variable takes on a value between a and b
 - Equal to the area under the PDF between a and b (via Integration)
- Cumulative Distribution Function (CDF)
 - The probability a random variable will take on a value equal to or less than some value.
 - Equal to the area under the CDF to the left of the value of interest.
- Uniform Distribution (Continuous)
 - All outcomes are equally likely
 - $-X \sim U(a,b)$
 - PDF:

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{for } x \in (a,b) \\ 0, & \text{otherwise} \end{cases}$$

- Mean = $\frac{1}{2}(a+b)$ Variance = $\frac{1}{12}(b-a)^2$

Normal Distribution

- Normal Distribution
 - By far, the most well-known and widely used probability distribution
 - Symmetric
 - Mean = Median = Mode
 - $-X \sim N(\mu, \sigma^2)$
 - PDF:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

- Mean = μ
 - Determines the center.
- Variance = σ^2
 - Determines the spread.
- Can be fully characterized by just Mean and Variance
- Standard Normal Distribution
 - Normal distribution of standardized values for easier comparisons when original Random Variables are measured in different units.
 - We can use one distribution, the standard normal distribution, to make probability statements about any normally distributed variable.
 - Remember, a variable is standardized by subtracting the mean from each value and dividing by the standard deviation. The units of measurement become Standard Deviations. For a Normal Distribution, these standardized values are called **Z-Scores**.

- If $X \sim N(\mu, \sigma^2)$, then $Z = \frac{X-\mu}{\sigma}$, where:
- $Z \sim (0,1)$
- Standardized version Z be used to calculate probabilities associated with any Normal Random Variable.
- PDF:

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$$

- Mean = 0
- Variance = Standard Deviation = 1
- The nice properties of the normal distribution facilitate calculating probabilities facilitates calculating probabilities. E.g.:
- Suppose $X \sim N(10,4)$
- What is the probability that X is greater than 14?
 - $\mathbb{P}(X > 14)$
 - Convert to standard normal distribution:
 - X = 14 corresponds to $Z = \frac{(14-10)}{2} = 2$
 - · 14 is 2 Standard Deviations above the mean of X
 - Using a statistical table for the Standard Normal Distribution (or a computer) we find:
 - · The area to the right of Z = 2 (i.e. to the right of X = 14) = 0.0228
- What is the probability that X is less than 8?
 - $\mathbb{P}(X < 8)$
 - Convert to standard normal distribution:
 - X = 8 corresponds to $Z = \frac{(8-10)}{2} = -1$
 - \cdot 8 is 1 Standard Deviations below the mean of X
 - Using a statistical table for the Standard Normal Distribution (or a computer) we find:
 - · The area to the left of Z = -1 (i.e. to the left of X = 8) = 0.1587
- What is the probability that X is in between 8 and 14?
 - $\mathbb{P}(8 < X < 14)$
 - The area in between Z-scores -1 and $2 = 1^{\circ}(0.0228 + 0.1587) = 0.8185$

Central limit theorem (CLT)

- The Central Limit Theorem (CLT) is one reason why the Normal Distribution is so important in statistical methods.
- Roughly, the CLT states that for a random variable X with a mean (μ) and finite variance (σ^2) the distribution of the sum of X and the mean of X are normally distributed.
 - $-\sum X \sim N(n\mu, n\sigma^2)$ $\sum \bar{X} \sim N(\mu, \frac{\sigma^2}{n})$
- Remember, random Sampling makes Statistics Random Variables.
 - Random Variables are described with a Probability Distribution
 - The Probability Distribution for a Statistic is called its Sampling Distribution
 - Sampling Distribution is what links an unobservable Population to the observed Sample of data
 - Many Statistics involve sums, making the CLT an important tool for characterizing the Sampling Distribution
- The *CLT* holds (if *n* is large enough) even if *X* is *not* normally distributed.