109

Final Exam

Show relevant work, where appropriate, answers without support may receive little or no credit.

Total: 109 points

1. A collection of logical operators is said to be functionally complete if every compound statement is logically equivalent to one <u>involving only these operators</u>. The operator " \downarrow " is defined as NOR (i.e. Not OR, $p \downarrow q = \neg(p \lor q)$). Show that the operator " \downarrow " is functionally complete by expressing the following statements using only " \downarrow ."

(12 points)

 $p \Leftrightarrow p \lor p$ (12 points) $p \lor p \equiv \neg (p \lor p) \equiv \neg p$

 $\sqrt{p \times q} \Rightarrow (p \vee q) \vee (p \vee q) = \frac{1}{(p \vee q) \vee (p \vee q)} = \frac{1}{(p \vee q)}$

=7(7pV7q) $= p \wedge q$

 $(p \lor p) = 7p Se \left[7p \lor q \right] \lor \left[7p \lor q \right]$ $= 7 \left[7p \lor q \right] \lor \left[7p \lor q \right]$ $= 7 \left[7p \lor q \right] \lor \left(7p \lor q \right]$ $= 7p \lor q = p \rightarrow q$ $= 7p \lor q = p \rightarrow q$

 $^{\prime}$ 4. For the following recurrence relations with the given initial conditions (12 points) a) Use iterative approach find $a_n = 3a_{n-1} - 8$, $a_0 = 10$ b) Use mathematical induction to prove the formula obtained in a) is correct. (a) $a_n = 3(3a_{n-2} - 8) - 8 = 3(3[3a_{n-3} - 8] - 8) - 8 = 3^3a_{n-3} - [8 + 8(3) + 8(3)]$ $= -\frac{3^{n}a_{n-n} - 8\left[1 + 3 + 3^{2} + - + 3^{n-1}\right]}{1 - 3^{n}(a_{0}) - 8\left(\frac{1 - 3^{n}}{1 - 3}\right)} =$ $3^{n}(10) - 4(3^{n} - 1) = 6 \cdot 3^{n} + 4 = 2 \cdot 3^{n+1} + 4$ MI proof Basic Step: n = 0 -) a left = 10 right 1 = 6+4=10 reft = nght So the basic Hep is proved Industive step Assume ar = 2.3k+1+4 Is ant = 2.3 k+2 +4 +rue? art = 31an - 8 = 3 (2.3kH +4)-8 = 2.3k+2+12-8=213k+2+4 So Ak+1 = 2,3k+2+4V

So The Inductive Step is proved

So The Inductive Step is proved

The principle of MI, the statement is time,

5. (10 points) Suppose that a and have points) Suppose that a and b are integers, $a \equiv 4 \pmod{7}$, and $b \equiv 6 \pmod{7}$. Find the integer c with $-6 \le c \le 6$ such that (You may have multiple solutions.) \sqrt{a} c \equiv 3a (mod 7) a-4 = 7k - 1 a = 7k+4, b=6=7p-1 6=7p+6 c = B (7x+4) (mod 7) c mod 7 = (7(3k)+12) (mod 7) = 12 mod 7 = 5 cmod 7=5 -1 e=7m+5-1-6 < c < 6 -7 (= 5,-2

$$C = [(7K+4)^{2} - (7p+6)^{2}] \pmod{7}$$

$$C = [(7K+4)^{2} - (7p+6)^{2}] \pmod{7}$$

$$C = \sqrt{2}K^{2} + 2(7k)(4) + 16 - (7^{2}p^{2} + 2(7p)(6) + 36] \pmod{7}$$

$$= -20 \mod 7 = 1$$

$$C \mod 7 = 1$$

$$C = 7l + 1$$

Use the Euclidean Algorithm to find gcd(277,123).

$$277 = |23(2)+3|$$
 $|23 = 3|(3)+30$
 $|3| = 30(1)+1 \rightarrow (cd(227, |23)=1)$
 $|30 = |(30)+0 \rightarrow (cd(227, |23)=1)$

b) Express gcd (277,123) as a linear combination of 277 and 123.

$$1 = 31 - 30 = 31 - (123 - 31(3)) = 30 = 123 - 31(3)$$

$$= 4(31) - 123 = 4(277 - 123(2)) - 123$$

$$= 4 \cdot 277 - 9 \cdot 123$$

$$30 = 123 - 31(3)$$

 $31 = 277 - 123(2)$

7. Do any 4 of the following 6 problems. (ie. Prove or disprove.) Write down the question number that you choose. (40 points)
The proof of a and b are integers and $a + b$ is even, then $a^2 + b^2$ is even.
If at bi) ever -) at b = 2k - (a+b) = (2h) - 1 a2+2ab+6 = 4k2
$a^{2}/b^{2} = 4k^{2} - 2ab = 2(2k^{2} - ab) = 2M$ where $M = 2k^{2} - ab \in \mathbb{Z}/Sha$ So by the defination of remains
K, 4, 6 E/L
So the Hatement is time.
b) $3 (n^3+3n^2+2n)$ for $n \ge 1$
Basic steps n=1 4 3 1 (13+3(1)2+2(1)) -131 (1+3+2)-1316 basics
manorive step + Assume 3 (k3+3k2+2k) - 3m = 13+212-121
Is $3 \left[((k+1)^3 + 3(k+1)^2 + 2(k+1)) + me \right]$ $(k+1)^3 + 3(k+1)^2 + 2(k+1) = k^3 + 3k^2 + 3k + 1 + 3(k^2 + 2k+1) + 2(k+1) =$
$k^{3} + 3k^{2} + 3k + 1 + 3k^{2} + 6k + 3 + 2k + 2 = k^{3} + 6k^{2} + 11k + 6 = 12$ c) log ₂ 10 is irrational.
c) log ₂ 10 is irrational.

(b) $= k^3 + 3k^2 + 2k + 3k^2 + 9k + 6$ $=3m+3(k^2+3k+2)$ by industive = $3(\text{rnt}k^2 + 3k + 2)$ hypothesis =3 N where N=m+k2+3k+2 eZ since m, k & 21 which 13 dixtrible by 3 3 1 (kH)3+3(kH)2+2(kH) V So the industrie step is proved, By the principle of MI, the statement is time.

0,1,1,2,3,5, d) $\sum_{i=1}^{n} f_i = f_{n+2} - 1$, where f_i is the i^{th} Fibonacci number. In proof by SMI

Busic step $n = 1 + \sum_{i=1}^{n} \frac{\text{Left}}{1+2-1} = f_3 = 1 = 1$ Tuductive Step : Assume P(1) 1 P(2) 1 1 P(k-) 1 AP(k) are time. In partialar, P(K) => = fi = fk+2-1-1 fk+2 = = fi+1 P(k-1) => = fx+1-1 +fk+1== = fi+1 Is P(k+1)-true? i.e. 15 = f_K+3-1 +me? fx+3 = fx+2 tfx+1 = (\frac{\x}{\x} fi)+1)+((\frac{\x}{\x} fi)+1) = \frac{\x}{\x} \frac{\x}{\x} fi)+1) = \frac{\x}{\x} \frac{\x}{\x} fi)+1) = \frac{\x}{\x} \frac{\x}{\x} fi)+1) = \frac{\x}{\x} \frac{\x}{\x} fi)+1 = \frac{\x}{ By defn. hypothaesis Ty proof by MI feft

Basic step: n=4 \Rightarrow 2(4)+3=1Industrie step: Assume 2K+3 = 2K $\begin{cases} 2^{k+1} = 2^{k} \cdot 2 = 2^{k} + 2^{k} \ge 2^{k} + 2^{3} \\ \ge 2^{k} + 2^{1} \end{cases}$ Is 2(WH)+3 <2 kH +me? 2(k+1)+3=2k+5 $=2k+3+2 \neq 2^{k}+2^{l}$ by industive hypothesis 5. $2(k+1)+3 \le 2^k+2^l \le 2^{k+1}$ so $2(k+1)+3 \le 2^{k+1}$ so the inductive step is proved. By the prheiple of MI, the hequality is time.

=f,+f2+f3+-+fx+1+f,+f2+-+fx-1+1 = f, + [f2+f]+[f3+f2]+ + [fn+fk-1]+2 1+2+f3+f4++++++++++ =1+1+f3+f4+ +161+1 = fittf2+f3+f4+ + fk+1+1 = \$ 10+1 So fints = \(\xi\) fi + 1 \(\xi\) \(\xi\) fi = \(\frac{f_i}{h_{+3}} - 1\)

So the inductive step is proved

by the principle of SMI, the statement is proved.

f)
$$\left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + a_n = S_n$$

- I. Find an expression for a_n , the nth term of the series. Include the domain for n
- II. Find an expression for S_n , the sum of the series
- III. Prove the formula for the sum using the method of induction.

8.	True or False. (The reason is not necessary) (10 points)
	a) $(p \rightarrow \neg q) \land q) \rightarrow \neg p$ is a tautology.
	b) $\forall x \in Z^+[x \neq 0 \rightarrow \exists y \in Q^+(xy = 2)]$
	The I
	c) $f(x) = x^3 + 5$ is bijection. from Z to Z.
	Falce
	d) If $A = \{1,2,3,4,5\}, B = \{x \mid x \text{ is an integer and } x^2 \le 25\}, \text{ then } B \subseteq A$
	False
	e) (123 mod 19 + 342 mod 19) mod 19 = 9
	f) If p and q are primes (>2), then $pq + 1$ is never primes.
	g) 14, 17, 85 are pairwise relatively prime
	False
	h) (763) ₈ +(147) ₈ =(1032) ₈
	i) If A is a 6 x 4 matrix and B is a 4 x 5 matrix, then AB has 16 entries.
	"Some math majors left the campus for the weekend" and "All
	j) The premises Some matrinal research seniors left the campus for the weekend" imply the conclusion "Some seniors are

math majors."

Bonus (10 points)

Let I_0 be an equilateral triangle with sides of length 20. The figure I_1 is obtained by replacing the middle third of each side of I_0 by a new outward equilateral triangle with sides of length $\frac{20}{3}$. The process is repeated where I_{n+1} is obtained by replacing the middle third of each side of I_n by a new outward equilateral triangle with sides of length $\frac{20}{3^n}$.

- a) Let P_n be the perimeter of I_n . Find the explicit expression of P_n
- b) Let A_n be the area of I_n . Find the explicit expression of A_n