Appln. No. 10/591,653 Amd. dated March 10, 2010 Reply to Office Action of December 17, 2009

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (Currently Amended) A hyaluronic acid-methotrexate conjugate, wherein methotrexate is conjugated with a carboxyl group of hyaluronic acid, a hyaluronic acid derivative, or a salt thereof through a linker containing a peptide chain consisting of 1 to 8 amino acids; or a salt of the conjugate.
- 2. (Currently Amended) The hyaluronic acid-methotrexate conjugate or the salt thereof according to claim 1, wherein the linker contains a peptide chain consisting of 1 to 8 amino acids and a C_{2-20} alkylenediamine chain, wherein the alkylenediamine chain optionally has 1 to 5 oxygen atoms inserted thereinto and/or is optionally substituted by a carboxyl group or a C_{1-6} alkoxycarbonyl group.
- 3. (Currently Amended) The hyaluronic acid-methotrexate conjugate or the salt thereof according to claim 1 or 2, wherein the conjugation rate of methotrexate is 0.5% to 4.5% based on the total carboxyl groups of hyaluronic acid.

- 2 -

- 4. (Currently Amended) The hyaluronic acid-methotrexate conjugate <u>or the salt thereof</u> according to claim 1, wherein the molecular weight of hyaluronic acid is 600,000 daltons or more.
- 5. (Currently Amended) The hyaluronic acid-methotrexate conjugate <u>or the salt thereof</u> according to claim 1, wherein methotrexate conjugated with the linker is represented by formula (I), (II), (III), or (IV):

[Formula 1]

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ N & &$$

[Formula 2]

$$\begin{array}{c|c}
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& &$$

[Formula 3]

[Formula 4]

wherein R_1 and R_2 are each independently a hydroxy group, an amino group, a C_{1-6} alkoxy group, a C_{1-6} alkylamino group, or a di- C_{1-6} alkylamino group; L_0 is the conjugation position of the linker.

6. (Currently Amended) The hyaluronic acid-methotrexate conjugate or the salt thereof according to claim 1, wherein the linker containing a peptide chain and methotrexate conjugated with the linker is represented by formula (I') or (II'):

[Formula 5]

[Formula 6]

$$NH_2$$
 NH_2 NH_3 NH_3 NH_4 NH_4 NH_5 NH_5 NH_5 NH_6 NH_6

wherein R_1 and R_2 are each independently a hydroxy group, an amino group, a $C_{1\text{-}6}$ alkoxy group, a $C_{1\text{-}6}$ alkylamino group, or a di- $C_{1\text{-}6}$ alkylamino group;

L is a linker represented by formula (X):

[Formula 7]

$$-Q_{1}-N-Q_{2}-N-[HA]$$
 R_{11} R_{12}
(X)

wherein Q_1 forms, together with -NH- binding thereto, a peptide chain consisting of 1 to 8 amino acids; residues of amino acids contained in the peptide chain are each independently optionally substituted or protected by one or more groups selected from the group consisting of a C_{1-6} alkyl group, a C_{1-6} alkylcarbonyl group, a C_{1-6} alkoxycarbonyl group, a formyl group, a C_{1-6} alkylsulfonyl group, and a C_{6-10} arylsulfonyl group; amide bonds contained in the peptide chain are each independently optionally substituted on the nitrogen atom by one or more C_{1-6} alkyl groups and/or C_{1-6} alkylcarbonyl groups; and carboxyl groups contained in the residues are each independently optionally converted to an amide group optionally substituted by one or two C_{1-6} alkyl groups;

 R_{11} and R_{12} are each independently a hydrogen atom or a $C_{1\text{-}6}$ alkyl group;

 Q_2 is $C_{2\text{-}20}$ alkylene, wherein the alkylene optionally has 1 to 5 oxygen atoms inserted thereinto and/or is optionally substituted by a carboxyl group or a $C_{1\text{-}6}$ alkoxycarbonyl group; and

[HA] represents the position of conjugation with <u>the hyaluronic</u> acid, <u>derivative</u>, <u>or salt thereof</u>, and the linker forms an amide bond with a carboxyl group contained in the hyaluronic acid, <u>derivative or salt thereof</u>.

- 7. (Currently Amended) A pharmaceutical composition containing the hyaluronic acid-methotrexate conjugate or the salt thereof according to claim 1 as an active ingredient.
- 8. (Currently Amended) A therapeutic drug for joint diseases, containing the hyaluronic acid-methotrexate conjugate or the salt thereof according to claim 1 as an active ingredient.
- 9. (Original) The therapeutic drug for joint diseases according to claim 8, which is a topical preparation for administration into the joint.
- 10. (Currently Amended) A compound of formula (Va) or (Vb): [Formula 8]

$$\begin{array}{c|c} & & & & \\ & & & \\ N & & & \\ N & & & \\ H_2N & N & N & \\ \end{array}$$

[Formula 9]

$$NH_2$$
 NH_2 NH_3 NH_3

wherein R_1 and R_2 are each independently a hydroxy group, an amino group, a $C_{1\text{-}6}$ alkoxy group, a $C_{1\text{-}6}$ alkylamino group, or a di- $C_{1\text{-}6}$ alkylamino group;

 L_1 is a linker represented by formula (X'):

[Formula 10]

$$-Q_1 - Q_2 - Q_3 - H$$
 $R_{11} - R_{12}$
 (X')

wherein Q_1 forms, together with -NH- binding thereto, a peptide chain consisting of 1 to 8 amino acids; residues of amino acids contained in the peptide chain are each independently optionally substituted or protected by one or more groups selected from the group consisting of a C_{1-6} alkyl group, a C_{1-6} alkylcarbonyl group, a C_{1-6} alkoxycarbonyl group, a formyl group, a C_{1-6} alkylsulfonyl group, and a C_{6-10} arylsulfonyl group; amide bonds contained in the

peptide chain are each independently optionally substituted on the nitrogen atom by one or more C_{1-6} alkyl groups and/or C_{1-6} alkylcarbonyl groups; and carboxyl groups contained in the residues are each independently optionally converted to an amide group optionally substituted by one or two C_{1-6} alkyl groups;

 $$R_{11}$$ and $$R_{12}$$ are each independently a hydrogen atom or a $$C_{1\text{-}6}$$ alkyl group; and

 Q_2 is a $C_{2\text{-}20}$ alkylene, wherein the alkylene optionally has 1 to 5 oxygen atoms inserted thereinto and/or is optionally substituted by a carboxyl group or a $C_{1\text{-}6}$ alkoxycarbonyl group.

11. (Currently Amended) A process for producing the hyaluronic acid-methotrexate conjugate or the salt thereof according to claim 1, which comprises the steps of reacting the compound of formula (Va) or (Vb) with hyaluronic acid, a hyaluronic acid derivative, or a salt thereof, and converting a carboxyl group of the hyaluronic acid, derivative, or salt thereof to an N-substituted amide group, wherein (Va) and (Vb) are as follows:

[Formula 8]

$$NH_2$$
 NH_2
 NH_3
 NH_2
 NH_3
 NH_3
 NH_4
 NH_2
 NH_4
 NH_5
 NH_5

[Formula 9]

$$NH_2$$
 NH_2
 NH_2
 NH_3
 NH_3

wherein R_1 and R_2 are each independently a hydroxy group, an amino group, a C_{1-6} alkoxy group, a C_{1-6} alkylamino group, or a di- C_{1-6} alkylamino group;

 L_1 is a linker represented by formula (X'):

[Formula 10]

$$Q_1 N Q_2 N H$$
 $R_{11} R_{12}$
 (X')

wherein Q_1 forms, together with -NH- binding thereto, a peptide chain consisting of 1 to 8 amino acids; residues of amino acids contained in the peptide chain are each independently optionally substituted or protected by one or more groups selected from the group consisting of a C_{1-6} alkyl group, a C_{1-6} alkylcarbonyl group, a C_{1-6} alkoxycarbonyl group, a formyl group, a C_{1-6} alkylsulfonyl group, and a C_{6-10} arylsulfonyl group; amide bonds contained in the

peptide chain are each independently optionally substituted on the nitrogen atom by one or more C_{1-6} alkyl groups and/or C_{1-6} alkylcarbonyl groups; and carboxyl groups contained in the residues are each independently optionally converted to an amide group optionally substituted by one or two C_{1-6} alkyl groups;

 $$R_{11}$$ and $$R_{12}$$ are each independently a hydrogen atom or a $$C_{1\mbox{-}6}$$ alkyl group; and

 Q_2 is a $C_{2\text{-}20}$ alkylene, wherein the alkylene optionally has 1 to 5 oxygen atoms inserted thereinto and/or is optionally substituted by a carboxyl group or a $C_{1\text{-}6}$ alkoxycarbonyl group.

- 12. (Currently Amended) The hyaluronic acid-methotrexate conjugate or the salt thereof according to claim 2, wherein the molecular weight of hyaluronic acid is 600,000 daltons or more.
- 13. (Currently Amended) The hyaluronic acid-methotrexate conjugate or the salt thereof according to claim 3, wherein the molecular weight of hyaluronic acid is 600,000 daltons or more.
- 14. (Currently Amended) The hyaluronic acid-methotrexate conjugate <u>or the salt thereof</u> according to claim 2, wherein methotrexate conjugated with the linker is represented by formula (I), (II), (III), or (IV):

[Formula 1]

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

[Formula 2]

$$NH_2$$
 NH_3 NH_3

[Formula 3]

[Formula 4]

wherein R_1 and R_2 are each independently a hydroxy group, an amino group, a C_{1-6} alkoxy group, a C_{1-6} alkylamino group, or a di- C_{1-6} alkylamino group; L_0 is the conjugation position of the linker.

15. (Currently Amended) The hyaluronic acid-methotrexate conjugate or the salt thereof according to claim 3, wherein methotrexate conjugated with the linker is represented by formula (I), (II), (III), or (IV):

[Formula 1]

$$\begin{array}{c|c} & & & & & & & \\ & & & & & & \\ NH_2 & & & & & \\ H_2N & & & & \\ \end{array}$$

[Formula 2]

$$\begin{array}{c|c} & & & \\ & & & \\ N & &$$

[Formula 3]

[Formula 4]

wherein R_1 and R_2 are each independently a hydroxy group, an amino group, a C_{1-6} alkoxy group, a C_{1-6} alkylamino group, or a di- C_{1-6} alkylamino group; L_0 is the conjugation position of the linker.

16. (Currently Amended) The hyaluronic acid-methotrexate conjugate <u>or the salt thereof</u> according to claim 4, wherein methotrexate conjugated with the linker is represented by formula (I), (II), (III), or (IV):

[Formula 1]

$$\begin{array}{c|c} & & & & & & \\ & & & & & \\ NH_2 & & & & & \\ NH_2 & & & & & \\ NH_2 & & & & & \\ NH_3 & & & & \\ H_2 N & N & & & \\ \end{array}$$

[Formula 2]

$$NH_2$$
 NH_2
 NH_3
 NH_3

[Formula 3]

[Formula 4]

wherein R_1 and R_2 are each independently a hydroxy group, an amino group, a C_{1-6} alkoxy group, a C_{1-6} alkylamino group, or a di- C_{1-6} alkylamino group; L_0 is the conjugation position of the linker.

17. (Currently Amended) The hyaluronic acid-methotrexate conjugate or the salt thereof according to claim 2, wherein the linker containing a peptide chain and methotrexate conjugated with the linker is represented by formula (I') or (II'):

Appln. No. 10/591,653 Amd. dated March 10, 2010 Reply to Office Action of December 17, 2009

[Formula 5]

[Formula 6]

wherein R_1 and R_2 are each independently a hydroxy group, an amino group, a C_{1-6} alkoxy group, a C_{1-6} alkylamino group, or a di- C_{1-6} alkylamino group;

L is a linker represented by formula (X):

[Formula 7]

$$\begin{array}{cccc}
-Q_1 & N & Q_2 & N & [HA] \\
R_{11} & R_{12}
\end{array}$$
(X)

wherein Q_1 forms, together with -NH- binding thereto, a peptide chain consisting of 1 to 8 amino acids; residues of amino acids contained in the peptide chain are each independently optionally substituted or protected by one or more groups selected from the group consisting of a C_{1-6} alkyl group, a C_{1-6} alkylcarbonyl group, a C_{1-6} alkoxycarbonyl group, a formyl group, a C_{1-6} alkylsulfonyl group, and a C_{6-10} arylsulfonyl group; amide bonds contained in the peptide chain are each independently optionally substituted on the nitrogen atom by one or more C_{1-6} alkyl groups and/or C_{1-6} alkylcarbonyl groups; and carboxyl groups contained in the residues are each independently optionally converted to an amide group optionally substituted by one or two C_{1-6} alkyl groups;

 R_{11} and R_{12} are each independently a hydrogen atom or a $C_{1\text{-}6}$ alkyl group;

 Q_2 is C_{2-20} alkylene, wherein the alkylene optionally has 1 to 5 oxygen atoms inserted thereinto and/or is optionally substituted by a carboxyl group or a C_{1-6} alkoxycarbonyl group; and

[HA] represents the position of conjugation with <u>the</u> hyaluronic acid, <u>derivative</u>, <u>or salt thereof</u>, and the linker forms an amide bond with a carboxyl group contained in the hyaluronic acid, <u>derivative</u>, <u>or salt thereof</u>.