# 0.1 定积分

# 0.1.1 建立积分递推

例题 0.1 计算  $\int_0^{\frac{\pi}{2}} \cos^n x \sin(nx) dx, n \in \mathbb{N}$ . 证明 利用分部积分和和差化积公式可得

$$I_{n} = \int_{0}^{\frac{\pi}{2}} \cos^{n} x \sin(nx) dx = \int_{0}^{\frac{\pi}{2}} \cos^{n-1} x \cdot \cos x \sin(nx) dx$$

$$= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos^{n-1} x \cdot [\sin((n+1)x) + \sin((n-1)x)] dx$$

$$= \frac{I_{n-1}}{2} + \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos^{n-1} x [\sin(nx) \cos x + \cos(nx) \sin x] dx$$

$$= \frac{I_{n-1}}{2} + \frac{I_{n}}{2} - \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos^{n-1} x \cos(nx) d\cos x$$

$$= \frac{I_{n-1} + I_{n}}{2} - \frac{1}{2n} \int_{0}^{\frac{\pi}{2}} \cos(nx) d\cos^{n} x$$

$$= \frac{I_{n-1} + I_{n}}{2} + \frac{1}{2n} - \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos^{n} x \sin(nx) dx$$

$$= \frac{I_{n-1} + I_{n}}{2} + \frac{1}{2n} - \frac{I_{n}}{2}$$

$$= \frac{I_{n-1} + I_{n}}{2} + \frac{1}{2n} - \frac{I_{n}}{2}$$

$$= \frac{I_{n-1} + I_{n}}{2} + \frac{1}{2n} - \frac{I_{n}}{2}$$

故  $I_n = \frac{I_{n-1}}{2} + \frac{1}{2n}$ , 则两边同乘  $2^n$ (强行裂项)

$$2^{n}I_{n} = 2^{n-1}I_{n-1} + \frac{2^{n-1}}{n}, n = 1, 2, \cdots$$

又注意到  $I_0 = 0$ , 从而

$$2^{n}I_{n} = 0 + \sum_{k=1}^{n} \frac{2^{k-1}}{k} \Rightarrow I_{n} = \frac{1}{2^{n}} \sum_{k=1}^{n} \frac{2^{k-1}}{k}.$$

## 命题 0.1

(1) 
$$\int_0^{\pi} \frac{\sin(nx)}{\sin x} dx = \begin{cases} 0, & n \text{ % and } x \\ \pi, & n \text{ % and } x \end{cases}$$

$$(2) \int_0^\pi \frac{\sin^2(nx)}{\sin^2 x} \mathrm{d}x = n\pi$$

(2) 
$$\int_0^{\pi} \frac{\sin^2(nx)}{\sin^2 x} dx = n\pi.$$
(3) 
$$\int_0^{\pi} \frac{\sin^2(nx)}{\sin x} dx = \sum_{k=1}^n \frac{2}{2k-1}.$$

笔记 提示: $\sin^2 x - \sin^2 y = \sin(x - y)\sin(x + y)$ (证明见命题??).

(1) 
$$i \exists I_n = \int_0^\pi \frac{\sin(nx)}{\sin x} dx$$
,  $i \exists I_{n+2} - I_n = \int_0^\pi \frac{\sin((n+2)x) - \sin(nx)}{\sin x} dx = \int_0^\pi \frac{2\cos((n+1)x)\sin x}{\sin x} dx = 2\int_0^\pi \cos((n+1)x) dx = 0$ .

于是

$$\int_0^\pi \frac{\sin(nx)}{\sin x} \, \mathrm{d}x = I_n = I_{n-2} = \dots = \left\{ \begin{array}{ll} I_0, & n 为 偶数 \\ I_1, & n 为 奇数 \end{array} \right. = \left\{ \begin{array}{ll} 0, & n 为 偶数 \\ \pi, & n 为 奇数 \end{array} \right.$$

(2) 
$$\[ \Box I_n = \int_0^\pi \frac{\sin^2(nx)}{\sin^2 x} \, \mathrm{d}x, \] \]$$

$$I_{n+1} - I_n = \int_0^\pi \frac{\sin^2((n+1)x) - \sin^2(nx)}{\sin^2 x} dx = \int_0^\pi \frac{\sin x \cdot \sin((2n+1)x)}{\sin^2 x} dx$$
$$= \int_0^\pi \frac{\sin((2n+1)x)}{\sin x} dx \xrightarrow{\text{$\Rightarrow \not = 0.1(1)$}} \pi. \tag{1}$$

于是

$$\int_0^{\pi} \frac{\sin^2(nx)}{\sin^2 x} dx = I_n = \pi + I_{n-1} = \dots = (n-1)\pi + I_1 = n\pi.$$

(3) 
$$\exists I_n = \int_0^\pi \frac{\sin^2(nx)}{\sin x} \, \mathrm{d}x, \ \mathbb{M}$$

$$I_{n+1} - I_n = \int_0^\pi \frac{\sin^2((n+1)x) - \sin^2(nx)}{\sin x} dx = \int_0^\pi \frac{\sin x \cdot \sin((2n+1)x)}{\sin x} dx$$
$$= \int_0^\pi \sin((2n+1)x) dx = \frac{1}{2n+1} \cos((2n+1)x) \Big|_{\pi}^0 = \frac{2}{2n+1}.$$
 (2)

于是

$$\int_0^{\pi} \frac{\sin^2(nx)}{\sin x} dx = I_n = \frac{2}{2n-1} + I_{n-1} = \dots = \sum_{k=1}^{n-1} \frac{2}{2k+1} + I_1 = \sum_{k=0}^{n-1} \frac{2}{2k+1} = \sum_{k=1}^{n} \frac{2}{2k-1}.$$

例题 0.2 设 a > 1, 计算积分  $\int_0^{\frac{\pi}{2}} \ln(a^2 - \cos^2 x) dx$ .

**注** 很多情况下不需求出被积函数的原函数, 只需充分利用换元、分部积分以及被积函数的性质, 即可求出积分的值. 见下述解法二.

解 解法一:设  $a_0 = a > 1$ . 构造数列如下:

$$a_{n+1} = 2a_n^2 - 1$$
  $(n = 0, 1, \dots),$ 

则由例题??可知, 存在 $x_0 > 0$  使得

$$a_0 = \operatorname{ch}(x_0), \quad a_n = \operatorname{ch}(2^n x_0),$$

其中  $ch(x) = \frac{1}{2}(e^x + e^{-x})$ . 可以解得

$$x_0 = \ln\left(a_0 + \sqrt{a_0^2 - 1}\right). \tag{3}$$

故

$$a_n = \frac{e^{2^n x_0} + e^{-2^n x_0}}{2}.$$

设

$$I_n = \int_0^\pi \ln(a_n - \cos x) \, \mathrm{d}x,$$

则

$$I_0 = \int_0^{\pi} \ln(a_0 - \cos x) \, dx = \int_0^{\frac{\pi}{2}} \ln(a_0 - \cos x) \, dx + \int_{\frac{\pi}{2}}^{\pi} \ln(a_0 - \cos x) \, dx$$
$$= \int_0^{\frac{\pi}{2}} \ln(a_0 - \cos x) \, dx + \int_0^{\frac{\pi}{2}} \ln(a_0 + \cos x) \, dx$$
$$= \int_0^{\frac{\pi}{2}} \ln(a_0^2 - \cos^2 x) \, dx = \int_0^{\frac{\pi}{2}} \ln\left(a_0^2 - \frac{1 + \cos 2x}{2}\right) \, dx$$

$$= \int_0^{\frac{\pi}{2}} \ln\left(\frac{a_1 - \cos 2x}{2}\right) dx = \frac{1}{2} \int_0^{\pi} \ln\left(\frac{a_1 - \cos x}{2}\right) dx = \frac{1}{2} I_1 - \frac{\pi}{2} \ln 2.$$

同理,有

$$I_n = \frac{1}{2}I_{n+1} - \frac{\pi}{2}\ln 2. \tag{4}$$

由此递推公式,可得

$$I_0 = \frac{1}{2^n} I_n - \left(1 + \frac{1}{2} + \dots + \frac{1}{2^{n-1}}\right) \frac{\pi}{2} \ln 2.$$
 (5)

因为

$$I_n = \int_0^{\pi} \ln(a_n - \cos x) \, dx = \int_0^{\pi} \ln\left(\frac{e^{2^n x_0} + e^{-2^n x_0}}{2} - \cos x\right) \, dx$$
$$= 2^n x_0 \pi + \int_0^{\pi} \ln\left(\frac{1 + e^{-2^{n+1} x_0}}{2} - e^{-2^n x_0} \cos x\right) \, dx,$$

所以

$$\frac{1}{2^n}I_n \to x_0\pi \quad (n \to +\infty).$$

故从式(5)可得

$$I_0 = x_0 \pi - \pi \ln 2 = \pi \ln \left( \frac{a_0 + \sqrt{a_0^2 - 1}}{2} \right),$$

即所求的积分为

$$\int_0^{\frac{\pi}{2}} \ln(a^2 - \sin^2 x) \, \mathrm{d}x = \int_0^{\frac{\pi}{2}} \ln(a^2 - \cos^2 x) \, \mathrm{d}x = \pi \ln\left(\frac{a + \sqrt{a^2 - 1}}{2}\right).$$

解法二: 我们有

$$F(a) = \int_0^{\frac{\pi}{2}} \ln(a^2 - \cos^2 x) \, dx = \int_0^{\pi} \ln(a - \cos x) \, dx.$$

由定理??,关于 a 求导得到

$$F'(a) = \int_0^{\pi} \frac{1}{a - \cos x} \, \mathrm{d}x \xrightarrow{\text{ $\mathcal{T}$ fix $d$}} \int_0^{+\infty} \frac{2}{a(1 + t^2) - (1 - t^2)} \, \mathrm{d}t = \frac{\pi}{\sqrt{a^2 - 1}}, \quad a > 1.$$

因此

$$F(a) = \int_{1}^{a} F'(a) da = \pi \ln \left( a + \sqrt{a^2 - 1} \right) + C, \quad a > 1.$$

结合

$$F(1) = 2 \int_0^{\frac{\pi}{2}} \ln \sin x \, dx = -\pi \ln 2.$$

可得

$$\int_0^{\frac{\pi}{2}} \ln(a^2 - \cos^2 x) \, \mathrm{d}x = \pi \ln \left( \frac{a + \sqrt{a^2 - 1}}{2} \right), \quad a > 1.$$

### 0.1.2 区间再现

#### 定理 0.1 (区间再现恒等式)

当下述积分有意义时, 我们有

1.

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx = \frac{1}{2} \int_{a}^{b} [f(x) + f(a+b-x)] dx = \int_{a}^{\frac{a+b}{2}} [f(x) + f(a+b-x)] dx.$$

$$\int_0^\infty f(x) \mathrm{d} x = \int_0^1 f(x) \mathrm{d} x + \int_1^\infty f(x) \mathrm{d} x = \int_0^1 \left[ f(x) + \frac{f(\frac{1}{x})}{x^2} \right] \mathrm{d} x.$$

笔记 注意: 倒代换具有将 [0,1] 转化为 [1,+∞) 的功能.

证明 证明是显然的.(第1问中最后一个等号是由轴对称得到的)

1. 
$$\int_0^{\frac{\pi}{2}} \ln \sin x dx = -\frac{\pi}{2} \ln 2.$$

2. 
$$\int_0^{\frac{\pi}{2}} \ln \cos x dx = -\frac{\pi}{2} \ln 2.$$
3. 
$$\int_0^1 \frac{\ln(1+x)}{1+x^2} dx = \frac{\pi}{8} \ln 2.$$

3. 
$$\int_0^1 \frac{\ln(1+x)}{1+x^2} dx = \frac{\pi}{8} \ln 2$$

证明

1.

$$I = \int_0^{\frac{\pi}{2}} \ln \sin x dx = \int_0^{\frac{\pi}{4}} \left[ \ln \cos x + \ln \left( \frac{\pi}{2} - x \right) \right] dx$$

$$= \int_0^{\frac{\pi}{4}} \ln (\cos x \sin x) dx = \int_0^{\frac{\pi}{4}} \ln \frac{1}{2} dx + \int_0^{\frac{\pi}{4}} \ln (\sin 2x) dx$$

$$= -\frac{\pi}{4} \ln 2 + \frac{1}{2} \int_0^{\frac{\pi}{2}} \ln \sin x dx = -\frac{\pi}{4} \ln 2 + \frac{1}{2} I$$

$$\implies I = \int_0^{\frac{\pi}{2}} \ln \cos x dx = -\frac{\pi}{2} \ln 2.$$

2.

$$I = \int_0^{\frac{\pi}{2}} \ln \cos x dx = \int_0^{\frac{\pi}{2}} \ln \sin x dx = \int_0^{\frac{\pi}{4}} \left[ \ln \cos x + \ln \left( \frac{\pi}{2} - x \right) \right] dx$$

$$= \int_0^{\frac{\pi}{4}} \ln (\cos x \sin x) dx = \int_0^{\frac{\pi}{4}} \ln \frac{1}{2} dx + \int_0^{\frac{\pi}{4}} \ln (\sin 2x) dx$$

$$= -\frac{\pi}{4} \ln 2 + \frac{1}{2} \int_0^{\frac{\pi}{2}} \ln \sin x dx = -\frac{\pi}{4} \ln 2 + \frac{1}{2} I$$

$$\implies I = \int_0^{\frac{\pi}{2}} \ln \cos x dx = -\frac{\pi}{2} \ln 2.$$

3. 解法一:

$$\int_0^1 \frac{\ln(1+x)}{1+x^2} dx \xrightarrow{\frac{x=\tan\theta}{4}} \int_0^{\frac{\pi}{4}} \frac{\ln(1+\tan\theta)}{1+\tan\theta^2} d\tan\theta = \int_0^{\frac{\pi}{4}} \frac{\sec^2\theta \cdot \ln(1+\tan\theta)}{\sec^2\theta} d\theta$$

$$= \int_0^{\frac{\pi}{4}} \ln(1+\tan\theta) d\theta = \int_0^{\frac{\pi}{8}} \left[ \ln(1+\tan\theta) + \ln\left(1+\tan\left(\frac{\pi}{4}-\theta\right)\right) \right] d\theta$$

$$= \int_0^{\frac{\pi}{8}} \left[ \ln(1+\tan\theta) + \ln\left(1+\frac{1-\tan\theta}{1+\tan\theta}\right) \right] d\theta$$

$$= \int_0^{\frac{\pi}{8}} \left[ \ln(1+\tan\theta) + \ln\frac{2}{1+\tan\theta} \right] d\theta$$

$$= \int_0^{\frac{\pi}{8}} \ln 2d\theta = \frac{\pi}{8} \ln 2.$$

解法二:考虑含参量积分

$$\varphi(\alpha) = \int_0^1 \frac{\ln(1 + \alpha x)}{1 + x^2} \, \mathrm{d}x, \quad \alpha \in [0, 1].$$

显然  $\varphi(0) = 0, \varphi(1) = I$ , 且函数  $\frac{\ln(1+\alpha x)}{1+x^2}$  在  $R = [0,1] \times [0,1]$  上满足定理**??** 的条件, 于是

$$\varphi'(\alpha) = \int_0^1 \frac{x}{(1+x^2)(1+\alpha x)} \, \mathrm{d}x.$$

因为

$$\frac{x}{(1+x^2)(1+\alpha x)} = \frac{1}{1+\alpha^2} \left( \frac{\alpha+x}{1+x^2} - \frac{\alpha}{1+\alpha x} \right),$$

所以

$$\varphi'(\alpha) = \frac{1}{1+\alpha^2} \left( \int_0^1 \frac{\alpha}{1+x^2} \, dx + \int_0^1 \frac{x}{1+x^2} \, dx - \int_0^1 \frac{\alpha}{1+\alpha x} \, dx \right)$$

$$= \frac{1}{1+\alpha^2} \left[ \alpha \arctan x \Big|_0^1 + \frac{1}{2} \ln \left( 1 + x^2 \right) \Big|_0^1 - \ln \left( 1 + \alpha x \right) \Big|_0^1 \right]$$

$$= \frac{1}{1+\alpha^2} \left[ \alpha \cdot \frac{\pi}{4} + \frac{1}{2} \ln 2 - \ln \left( 1 + \alpha \right) \right].$$

因此

$$\int_0^1 \varphi'(\alpha) \, d\alpha = \int_0^1 \frac{1}{1+\alpha^2} \left[ \frac{\pi}{4} \alpha + \frac{1}{2} \ln 2 - \ln (1+\alpha) \right] \, d\alpha$$

$$= \frac{\pi}{8} \ln \left( 1 + \alpha^2 \right) \Big|_0^1 + \frac{1}{2} \ln 2 \arctan \alpha \Big|_0^1 - \varphi(1)$$

$$= \frac{\pi}{8} \ln 2 + \frac{\pi}{8} \ln 2 - \varphi(1)$$

$$= \frac{\pi}{4} \ln 2 - \varphi(1).$$

另一方面,

$$\int_0^1 \varphi'(\alpha) \, d\alpha = \varphi(1) - \varphi(0) = \varphi(1),$$

所以  $I = \varphi(1) = \frac{\pi}{8} \ln 2$ .

例题 **0.3** 计算 1.  $\int_0^\infty \frac{\ln x}{x^2 + a^2} dx, a > 0.$ 

$$2. \int_0^\infty \frac{\ln x}{x^2 + x + 1} \mathrm{d}x.$$

$$3. \int_0^1 \frac{\ln x}{\sqrt{x - x^2}} \mathrm{d}x.$$

1. 注意到

$$\int_{0}^{+\infty} \frac{\ln x}{x^{2} + a^{2}} dx \xrightarrow{x=at} \frac{1}{a} \int_{0}^{+\infty} \frac{\ln(at)}{1 + t^{2}} dt = \frac{1}{a} \int_{0}^{+\infty} \frac{\ln a}{1 + t^{2}} dt + \frac{1}{a} \int_{0}^{+\infty} \frac{\ln t}{1 + t^{2}} dt = \frac{\pi \ln a}{2a} + \frac{1}{a} \int_{0}^{+\infty} \frac{\ln t}{1 + t^{2}} dt.$$
 (6)

$$\int_0^{+\infty} \frac{\ln t}{1+t^2} dt \xrightarrow{t=\frac{1}{x}} \int_0^{+\infty} \frac{\ln \frac{1}{x}}{1+\frac{1}{x^2}} \frac{1}{x^2} dx = \int_0^{+\infty} \frac{-\ln x}{1+x^2} dx \Longrightarrow \int_0^{+\infty} \frac{\ln t}{1+t^2} dt = 0.$$

于是再结合(6)式可得

$$\int_0^{+\infty} \frac{\ln x}{x^2 + a^2} \mathrm{d}x = \frac{\pi \ln a}{2a}.$$

2.

$$\int_0^\infty \frac{\ln x}{x^2 + x + 1} dx \xrightarrow{x = \frac{1}{t}} \int_0^\infty \frac{-\ln t}{1 + \frac{1}{t} + \frac{1}{t^2}} d\frac{1}{t} = \int_0^{+\infty} \frac{-\ln t}{1 + t + t^2} dt \Longrightarrow \int_0^\infty \frac{\ln x}{x^2 + x + 1} dx = 0.$$

3.

$$\int_0^1 \frac{\ln x}{\sqrt{x - x^2}} dx \xrightarrow{\frac{x - \sin^2 y}{2}} \int_0^{\frac{\pi}{2}} \frac{\ln \sin^2 y}{\sqrt{\sin^2 y (1 - \sin^2 y)}} d\sin^2 y$$

$$= 4 \int_0^{\frac{\pi}{2}} \ln \sin y dy \xrightarrow{\text{(4.5)}} 4 \cdot \left(-\frac{\pi}{2} \ln 2\right) = -2\pi \ln 2.$$

1. 对  $n \in \mathbb{N}$ , 计算  $\int_{-\pi}^{\pi} \frac{\sin(nx)}{(1+2^x)\sin x} dx$ . 2.  $\int_{-\pi}^{\pi} \frac{x \sin x \arctan e^x}{1+\cos^2 x} dx$ .

 $J_{-\pi}$  1+cos<sup>2</sup> x3. 对  $n \in \mathbb{N}$ , 计算  $\int_{0}^{2\pi} \sin(\sin x + nx) dx$ .

$$\int_{-\pi}^{\pi} \frac{\sin(nx)}{(1+2^x)\sin x} dx = \int_{-\pi}^{0} \left[ \frac{\sin(nx)}{(1+2^x)\sin x} + \frac{\sin(nx)}{(1+2^{-x})\sin x} \right] dx = \int_{-\pi}^{0} \frac{\sin(nx)}{\sin x} \left( \frac{1}{1+2^x} + \frac{1}{1+2^{-x}} \right) dx$$

$$= \int_{-\pi}^{0} \frac{\sin(nx)}{\sin x} \cdot \frac{2+2^x+2^{-x}}{2+2^x+2^{-x}} dx = \int_{-\pi}^{0} \frac{\sin(nx)}{\sin x} dx = \int_{0}^{\pi} \frac{\sin(nx)}{\sin x} dx \xrightarrow{\text{Algebra}} \begin{cases} 0, n \text{ Algebra} \\ \pi, n \text{ Algebra} \end{cases}.$$

 $\int_{-\pi}^{\pi} \frac{x \sin x \arctan e^{x}}{1 + \cos^{2} x} dx = \int_{-\pi}^{0} \left( \frac{x \sin x \arctan \tan e^{x}}{1 + \cos^{2} x} + \frac{x \sin x \arctan \tan e^{-x}}{1 + \cos^{2} x} \right) dx = \int_{-\pi}^{0} \frac{x \sin x}{1 + \cos^{2} x} (\arctan e^{x} + \arctan e^{-x}) dx$  $\frac{\text{$\Rightarrow$} \cancel{2}??(1)}{\text{$\Rightarrow$}} \int_{-1}^{0} \frac{x \sin x}{1 + \cos^{2} x} \cdot \frac{\pi}{2} dx = \frac{\pi}{2} \int_{-1}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx$  $= \frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \left( \frac{x \sin x}{1 + \cos^{2} x} + \frac{(\pi - x) \sin x}{1 + \cos^{2} x} \right) dx = \frac{\pi^{2}}{2} \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1 + \cos^{2} x} dx$  $= \frac{\pi^2}{2} \arctan \cos x \Big|_{\pi}^0 = \frac{\pi^2}{2} \cdot \frac{\pi}{4} = \frac{\pi^3}{9}.$ 

3.

$$\int_0^{2\pi} \sin(\sin x + nx) \, dx = \int_0^{2\pi} \sin[\sin(2\pi - x) + n(2\pi - x)] \, dx$$

$$= \int_0^{2\pi} \sin(-\sin x - nx) \, dx = -\int_0^{2\pi} \sin(\sin x + nx) \, dx$$

$$\implies \int_0^{2\pi} \sin(\sin x + nx) \, dx = 0.$$

例题 **0.5** 计算  $\int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^2)(1+x^{2019})}$ .

$$\int_{0}^{+\infty} \frac{\mathrm{d}x}{\left(1+x^{2}\right)\left(1+x^{2019}\right)} = \int_{0}^{+\infty} \frac{\mathrm{d}x}{\left(1+x^{2}\right)\left(1+x^{2019}\right)}$$

$$\frac{t^{-\frac{1}{x}}}{\int_{0}^{+\infty} \frac{t^{2019}\mathrm{d}t}{\left(1+t^{2}\right)\left(1+t^{2019}\right)}} = \frac{1}{2} \int_{0}^{+\infty} \frac{\left(1+x^{2019}\right)\mathrm{d}x}{\left(1+x^{2}\right)\left(1+x^{2019}\right)}$$

$$= \frac{1}{2} \int_{0}^{+\infty} \frac{\mathrm{d}x}{1+x^{2}} = \frac{\pi}{4}.$$

# 0.1.3 Frullani(傅汝兰尼) 积分

# 定理 0.2 (Frullani(傅汝兰尼) 积分)

设  $f \in C(0, +\infty)$ .

1. 若存在极限

$$\lim_{x \to 0^+} f(x), \lim_{x \to +\infty} f(x),\tag{7}$$

则对 a,b>0 有

$$\int_0^\infty \frac{f(ax) - f(bx)}{x} dx = \left[ \lim_{x \to 0^+} f(x) - \lim_{x \to +\infty} f(x) \right] \ln \frac{b}{a}.$$

2. 若存在极限和积分

$$\lim_{x \to 0^+} f(x) = \alpha, \int_A^\infty \frac{f(x)}{x} dx.$$
 (8)

则对 a, b > 0, 有

$$\int_0^\infty \frac{f(ax) - f(bx)}{x} dx = \alpha \ln \frac{b}{a}.$$

3. 若存在极限和积分

$$\lim_{x \to +\infty} f(x) = \alpha, \int_0^1 \frac{f(x)}{x} dx. \tag{9}$$

则对 a,b>0, 有

$$\int_0^\infty \frac{f(ax) - f(bx)}{x} dx = \alpha \ln \frac{a}{b}.$$

4. 若 f 是周期 T > 0 函数且  $\lim_{x \to 0^+} f(x)$  存在,则对 a, b > 0 有

$$\int_0^\infty \frac{f(ax) - f(bx)}{x} dx = \left[ \lim_{x \to 0^+} f(x) - \frac{1}{T} \int_0^T f(x) dx \right] \ln \frac{b}{a}.$$

5. 若 f 满足  $\lim_{x \to 0^+} f(x)$ ,  $\lim_{x \to +\infty} \frac{1}{x} \int_0^x f(y) dy$  存在, 则对 a, b > 0 有

$$\int_0^\infty \frac{f(ax) - f(bx)}{x} \mathrm{d}x = \left[ \lim_{x \to 0^+} f(x) - \lim_{x \to +\infty} \frac{1}{x} \int_0^x f(y) \mathrm{d}y \right] \ln \frac{b}{a}.$$

1. 给定  $A > \delta > 0$ , 考虑

$$\int_{\delta}^{A} \frac{f(ax) - f(bx)}{x} dx = \int_{\delta}^{A} \frac{f(ax)}{x} dx - \int_{\delta}^{A} \frac{f(bx)}{x} dx$$

$$= \int_{a\delta}^{aA} \frac{f(x)}{x} dx - \int_{b\delta}^{bA} \frac{f(x)}{x} dx$$

$$= \int_{bA}^{aA} \frac{f(x)}{x} dx - \int_{b\delta}^{a\delta} \frac{f(x)}{x} dx$$

$$\frac{\Re \beta + \text{tig}}{x} f(\theta_1) \int_{bA}^{aA} \frac{1}{x} dx - f(\theta_2) \int_{b\delta}^{a\delta} \frac{1}{x} dx,$$

这里  $\theta_1 \in (aA,bA), \theta_2 \in (a\delta,b\delta)$ , 于是让  $A \to +\infty, \delta \to 0^+$ , 由(7), 我们知

$$\int_0^\infty \frac{f(ax) - f(bx)}{x} dx = \left[ \lim_{x \to 0^+} f(x) - \lim_{x \to +\infty} f(x) \right] \ln \frac{b}{a}.$$

2. 给定  $A > \delta > 0$ . 考虑

$$\int_{\delta}^{A} \frac{f(ax) - f(bx)}{x} dx = \int_{\delta}^{A} \frac{f(ax)}{x} dx - \int_{\delta}^{A} \frac{f(bx)}{x} dx$$

$$= \int_{a\delta}^{aA} \frac{f(x)}{x} dx - \int_{b\delta}^{bA} \frac{f(x)}{x} dx$$

$$= \int_{bA}^{aA} \frac{f(x)}{x} dx - \int_{b\delta}^{a\delta} \frac{f(x)}{x} dx$$

$$\frac{\Re \beta + \text{$\mathbb{I}$ cps}}{\mathbb{I}$ gas } \int_{bA}^{aA} \frac{f(x)}{x} dx - f(\theta) \int_{b\delta}^{a\delta} \frac{1}{x} dx,$$

这里  $\theta \in (a\delta, b\delta)$ , 于是让  $A \to +\infty$ ,  $\delta \to 0^+$ , 由 (8), 我们知

$$\int_0^\infty \frac{f(ax) - f(bx)}{x} dx = \alpha \ln \frac{b}{a}.$$

3. 给定  $A > \delta > 0$ , 考虑

$$\begin{split} \int_{\delta}^{A} \frac{f(ax) - f(bx)}{x} \mathrm{d}x &= \int_{\delta}^{A} \frac{f(ax)}{x} \mathrm{d}x - \int_{\delta}^{A} \frac{f(bx)}{x} \mathrm{d}x \\ &= \int_{a\delta}^{aA} \frac{f(x)}{x} \mathrm{d}x - \int_{b\delta}^{bA} \frac{f(x)}{x} \mathrm{d}x \\ &= \int_{bA}^{aA} \frac{f(x)}{x} \mathrm{d}x - \int_{b\delta}^{a\delta} \frac{f(x)}{x} \mathrm{d}x \\ &= \frac{\Re \beta + \text{deg}}{x} f(\theta) \int_{bA}^{aA} \frac{1}{x} \mathrm{d}x - \int_{b\delta}^{a\delta} \frac{f(x)}{x} \mathrm{d}x, \end{split}$$

这里  $\theta \in (aA, bA)$ , 于是让  $A \to +\infty$ ,  $\delta \to 0^+$ , 由(9), 我们知

$$\int_0^\infty \frac{f(ax) - f(bx)}{x} dx = \alpha \ln \frac{a}{b}.$$

4. 给定  $A > \delta > 0$ , 考虑

$$\begin{split} \int_{\delta}^{A} \frac{f(ax) - f(bx)}{x} \mathrm{d}x &= \int_{\delta}^{A} \frac{f(ax)}{x} \mathrm{d}x - \int_{\delta}^{A} \frac{f(bx)}{x} \mathrm{d}x \\ &= \int_{a\delta}^{aA} \frac{f(x)}{x} \mathrm{d}x - \int_{b\delta}^{bA} \frac{f(x)}{x} \mathrm{d}x \\ &= \int_{bA}^{aA} \frac{f(x)}{x} \mathrm{d}x - \int_{b\delta}^{a\delta} \frac{f(x)}{x} \mathrm{d}x \\ &= \frac{\pi \beta + \text{dig}}{x} \int_{bA}^{aA} \frac{f(x)}{x} \mathrm{d}x - f(\theta) \int_{b\delta}^{a\delta} \frac{1}{x} \mathrm{d}x \\ &= \int_{b}^{a} \frac{f(Ax)}{x} \mathrm{d}x - f(\theta) \int_{b\delta}^{a\delta} \frac{1}{x} \mathrm{d}x, \end{split}$$

这里  $\theta \in (a\delta, b\delta)$ . 现在

$$\lim_{\delta \to 0^+} \left( -f(\theta) \int_{b\delta}^{a\delta} \frac{1}{x} dx \right) = \lim_{x \to 0^+} f(x) \ln \frac{b}{a}.$$

由 Riemann 引理, 我们有

$$\lim_{A \to +\infty} \int_{b}^{a} \frac{f(Ax)}{x} dx = \int_{b}^{a} \frac{1}{x} dx \cdot \frac{1}{T} \int_{0}^{T} f(x) dx = -\frac{1}{T} \int_{0}^{T} f(x) dx \cdot \ln \frac{b}{a},$$

这就证明了

$$\int_0^\infty \frac{f(ax) - f(bx)}{x} \mathrm{d}x = \left[ \lim_{x \to 0^+} f(x) - \frac{1}{T} \int_0^T f(x) \mathrm{d}x \right] \ln \frac{b}{a}.$$

5. 上一问证明中把使用的 Riemann 引理用平均值极限版本的 Riemann 引理代替即可.

# 0.1.4 化成多元累次积分(换序)

#### 命题 0.3

证明:

$$(1) \int_0^\infty e^{-x^2} \mathrm{d}x = \frac{\sqrt{\pi}}{2}.$$

$$(2) \int_0^\infty \frac{\sin x}{x} \mathrm{d}x = \frac{\pi}{2}.$$

(3) 
$$\int_0^\infty \sin x^2 dx, \int_0^\infty \cos x^2 dx = \sqrt{\frac{\pi}{8}}.$$

# 拿 笔记 本结果可以直接使用.

证明

(1) 注意到

$$\left(\int_{0}^{+\infty} e^{-x^{2}} dx\right)^{2} = \left(\int_{0}^{+\infty} e^{-x^{2}} dx\right) \left(\int_{0}^{+\infty} e^{-y^{2}} dy\right) = \frac{\mathbb{E} \int_{0}^{+\infty} e^{-y^{2}} dy \operatorname{ffr} \otimes \operatorname{ffr} \otimes$$

故 
$$\int_0^\infty e^{-x^2} \mathrm{d}x = \frac{\sqrt{\pi}}{2}.$$

(2) 注意到

$$\int_0^{+\infty} \sin x e^{-yx} \, dx = \operatorname{Im} \int_0^{+\infty} e^{ix - yx} \, dx = \operatorname{Im} \int_0^{+\infty} e^{-(y - i)x} \, dx = \operatorname{Im} \frac{1}{y - i} = \operatorname{Im} \frac{y + i}{y^2 + 1} = \frac{1}{y^2 + 1}.$$

因此就有

$$\int_0^{+\infty} \frac{\sin x}{x} \, dx = \int_0^{+\infty} \sin x \left( \int_0^{+\infty} e^{-yx} \, dy \right) \, dx = \int_0^{+\infty} dy \int_0^{+\infty} \sin x e^{-yx} \, dx$$
$$= \int_0^{+\infty} dy \left( \text{Im} \int_0^{+\infty} e^{ix - yx} \right) \, dx = \int_0^{+\infty} \frac{1}{v^2 + 1} \, dy = \frac{\pi}{2}.$$

当然本题也可以直接利用分部积分计算  $\int_0^{+\infty} \sin x e^{-yx} dx = \frac{1}{y^2 + 1}$ .

(3) 注意到

$$\int_0^{+\infty} e^{-ax^2} dx = \frac{x = \frac{t}{\sqrt{a}}}{\sqrt{a}} \frac{1}{\sqrt{a}} \int_0^{+\infty} e^{-t^2} dt = \frac{1}{2} \sqrt{\frac{\pi}{a}}, \quad a > 0.$$

并且  $-i = e^{-\frac{\pi}{2}i}$ , 从而  $\sqrt{-i} = e^{-\frac{\pi}{4}i} = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$ . 于是

$$\int_0^{+\infty} (\cos x^2 - i \sin x^2) dx = \int_0^{+\infty} e^{-ix^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{i}} = \frac{1}{2} \sqrt{-i\pi}$$
$$= \frac{\sqrt{\pi}}{2} \left( \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} i \right) = \frac{\sqrt{2\pi}}{4} - \frac{\sqrt{2\pi}}{4} i.$$

故

$$\int_0^{+\infty} \cos x^2 \, dx = \text{Re} \int_0^{+\infty} (\cos x^2 - i \sin x^2) \, dx = \text{Re} \left( \frac{\sqrt{2\pi}}{4} - \frac{\sqrt{2\pi}}{4} i \right) = \frac{\sqrt{2\pi}}{4} = \sqrt{\frac{\pi}{8}},$$

$$\int_0^{+\infty} \sin x^2 \, dx = \text{Im} \int_0^{+\infty} (\cos x^2 - i \sin x^2) \, dx = \text{Im} \left( \frac{\sqrt{2\pi}}{4} - \frac{\sqrt{2\pi}}{4} i \right) = \frac{\sqrt{2\pi}}{4} = \sqrt{\frac{\pi}{8}}.$$

例题 **0.6** 计算  $\int_0^1 \sin \ln \frac{1}{x} \cdot \frac{x^b - x^a}{\ln x} dx \ (b > a > 0).$ 

证明

$$\begin{split} \int_0^1 \sin \ln \frac{1}{x} \cdot \frac{x^b - x^a}{\ln x} \mathrm{d}x &= \int_0^1 \sin \ln \frac{1}{x} \left( \int_a^b x^y \mathrm{d}y \right) \mathrm{d}x = \int_a^b \mathrm{d}y \int_0^1 x^y \sin \ln \frac{1}{x} \mathrm{d}x \\ &= \underbrace{\frac{x = e^{-t}}{1 - t}} \int_a^b \mathrm{d}y \int_{+\infty}^0 e^{-ty} \sin t \mathrm{d}e^{-t} = \int_a^b \mathrm{d}y \int_0^{+\infty} e^{-t(y+1)} \sin t \mathrm{d}t \\ &= \underbrace{\frac{\phi \not \sqsubseteq 0.3(2)}{1 + (y+1)^2}} \int_a^b \frac{1}{1 + (y+1)^2} \mathrm{d}y = \arctan \left( b + 1 \right) - \arctan \left( a + 1 \right). \end{split}$$

# 0.1.5 化成含参积分(求导)

例题 0.7 设  $a, b \ge 0$  且不全为 0, 计算  $\int_0^{\frac{\pi}{2}} \ln \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx$ .

**注** 实际上, 根据 a > b 时得到的结果, 可以看出  $F(a,b) = \pi \ln \frac{a+b}{2}$  对 a,b 有轮换对称性, 故这个结果对其他情况显然也成立.

证明 设  $F(a,b) = \int_0^{\frac{\pi}{2}} \ln\left(a^2 \cos^2 x + b^2 \sin^2 x\right) dx$ , 当 a > b 时, 则

$$\frac{\partial}{\partial b}F(a,b) = \int_0^{\frac{\pi}{2}} \frac{\partial}{\partial b} \ln\left(a^2 \cos^2 x + b^2 \sin^2 x\right) dx = \int_0^{\frac{\pi}{2}} \frac{2b \sin^2 x}{a^2 \cos^2 x + b^2 \sin^2 x} dx$$

$$= \int_0^{\frac{\pi}{2}} \frac{2b \tan^2 x}{a^2 + b^2 \tan^2 x} dx = \int_0^{+\infty} \frac{2bt^2}{(a^2 + b^2 t^2)(1 + t^2)} dt$$

$$= \frac{1}{a^2 - b^2} \int_0^{+\infty} \left(\frac{2a^2b}{a^2 + b^2 t^2} - \frac{2b}{1 + t^2}\right) dt$$

$$= \frac{1}{a^2 - b^2} \int_0^{+\infty} \frac{2a^2b}{a^2 + b^2 t^2} dt - \frac{2b}{a^2 - b^2} \int_0^{+\infty} \frac{1}{1 + t^2} dt$$

$$= \frac{2b}{a^2 - b^2} \int_0^{+\infty} \frac{1}{1 + \left(\frac{b}{a}t\right)^2} dt - \frac{b\pi}{a^2 - b^2}$$

$$= \frac{2b}{a^2 - b^2} \cdot \frac{a}{b} \cdot \frac{\pi}{2} - \frac{b\pi}{a^2 - b^2} = \frac{\pi}{a + b}.$$

于是

$$F(a,b) = F(a,0) + \int_0^b \frac{\partial}{\partial b'} F(a,b') db' = F(a,0) + \int_0^b \frac{\pi}{a+b'} db'$$

$$= 2 \int_0^{\frac{\pi}{2}} \ln(a\cos x) dx + \pi \ln \frac{a+b}{a} \xrightarrow{\text{MM 0.2}} \pi \ln \frac{a+b}{2}.$$

当 a < b 时, 类似可得  $F(a,b) = \pi \ln \frac{a+b}{2}$ . 当 a = b 时,  $F(a,b) = \int_0^{\frac{\pi}{2}} \ln a^2 dx = \pi \ln a = \pi \ln \frac{a+b}{2}$ . 综上, 对  $\forall a,b \geqslant 0$ , 都有  $F(a,b) = \pi \ln \frac{a+b}{2}$ .

# 0.1.6 级数展开方法

积分和求和换序 
$$\sum_{n=1}^{\infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \sum_{n=1}^{\infty} f_n(x) dx$$
, 等价于 
$$\lim_{m \to \infty} \sum_{n=1}^{m} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \sum_{n=1}^{\infty} f_n(x) dx.$$

又由于有限和随意交换, 因此上式等价于

$$\lim_{m \to \infty} \int_a^b \sum_{n=1}^m f_n(x) dx = \int_a^b \sum_{n=1}^\infty f_n(x) dx,$$

于是

$$\sum_{n=1}^{\infty} \int_{a}^{b} f_{n}(x) dx = \int_{a}^{b} \sum_{n=1}^{\infty} f_{n}(x) dx \Longleftrightarrow \lim_{m \to \infty} \int_{a}^{b} \sum_{n=m+1}^{\infty} f_{n}(x) dx = 0.$$

例题 **0.8** 计算  $\int_0^\infty \frac{x}{1+e^x} dx$ . 解 由于

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n, \quad 0 < x < 1.$$

并且 $0 < e^{-x} < 1$ ,故

$$\int_0^{+\infty} \frac{x}{1+e^x} dx = \int_0^{+\infty} \frac{xe^{-x}}{1+e^{-x}} dx = \int_0^{+\infty} x \sum_{n=0}^{\infty} (-1)^n e^{-(n+1)x} dx$$

$$= \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} (-1)^n \int_0^{+\infty} xe^{-(n+1)x} dx = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)^2}$$

$$= \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} - \sum_{n=0}^{\infty} \frac{1}{(2n)^2}.$$

又因为  $\sum_{1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ , 所以

$$\sum_{n=0}^{\infty} \frac{1}{(2n)^2} = \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{24},$$

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \sum_{n=1}^{\infty} \frac{1}{n^2} - \sum_{n=0}^{\infty} \frac{1}{(2n)^2} = \frac{\pi^2}{8}.$$

故

$$\int_0^{+\infty} \frac{x}{1+e^x} dx = \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} - \sum_{n=0}^{\infty} \frac{1}{(2n)^2} = \frac{\pi^2}{8} - \frac{\pi^2}{24} = \frac{\pi^2}{12}.$$

下面证明(??)式换序成立, 等价于证明  $\lim_{m \to +\infty} \int_0^{+\infty} \sum_{n=0}^{\infty} x(-1)^n e^{-(n+1)x} dx = 0$ . 由交错级数不等式及  $xe^{-(n+1)x}$  关于 n非负递减,对 $\forall m \in \mathbb{N}$ ,都有

(1) 
$$\sum_{n=1}^{\infty} \frac{q^n \sin(nx)}{n} = \arctan \frac{q \sin x}{1 - q \cos x}, |q| \leqslant 1.$$

(2) 
$$\sum_{n=1}^{\infty} \frac{q^n \cos(nx)}{n} = -\frac{1}{2} \ln(1 + q^2 - 2q \cos x), |q| \le 1.$$

$$(3) \sum_{n=1}^{\infty} \frac{q^n \cos(nx)}{n!} = e^{q \cos x} \cos(q \sin x) - 1, |q| \leqslant 1, x \in \mathbb{R}.$$

$$(4) \sum_{n=1}^{\infty} \frac{q^n \sin(nx)}{n!} = e^{q \cos x} \sin(q \sin x), |q| \leqslant 1, x \in \mathbb{R}.$$

$$\operatorname{Ln} z = \ln |z| + i(\arg z + 2k\pi), k \in \mathbb{Z}.$$

我们定义主值支

$$\ln z = \ln |z| + i \arg z.$$

本部分内容无需记忆, 只需要大概有个可以算的感觉即可, 实际做题中可以围绕这种级数给出构造.证明 ⑦表示取虚部. 聚表示取实部.

(1) 利用欧拉公式有

$$\sum_{n=1}^{\infty} \frac{q^n \sin(nx)}{n} = \Im\left(\sum_{n=1}^{\infty} \frac{q^n e^{inx}}{n}\right) = \Im\left(\sum_{n=1}^{\infty} \frac{(qe^{ix})^n}{n}\right) = \Im(-\ln(1 - qe^{ix}))$$
$$= -\Im\left(\ln|1 - qe^{ix}| + i\frac{-q\sin x}{1 - q\cos x}\right) = \arctan\frac{q\sin x}{1 - q\cos x}.$$

(2) 利用欧拉公式有

$$\sum_{n=1}^{\infty} \frac{q^n \cos(nx)}{n} = -\Re \left( \ln|1 - qe^{ix}| + i \frac{-q\sin x}{1 - q\cos x} \right) = -\frac{1}{2} \ln\left[ (1 - q\cos x)^2 + q^2\sin^2 x \right]$$
$$= -\frac{1}{2} \ln(1 + q^2 - 2q\cos x).$$

(3) 利用欧拉公式有

$$\sum_{n=1}^{\infty} \frac{q^n \cos(nx)}{n!} = \Re\left(\sum_{n=1}^{\infty} \frac{(qe^{ix})^n}{n!}\right) = \Re\left(e^{qe^{ix}} - 1\right) = \Re\left(e^{q\cos x + iq\sin x} - 1\right)$$
$$= \Re\left(e^{q\cos x}\cos(q\sin x) - 1 + ie^{q\cos x}\sin(q\sin x)\right)$$
$$= e^{q\cos x}\cos(q\sin x) - 1.$$

(4) 利用(3)有

$$\sum_{n=1}^{\infty} \frac{q^n \sin(nx)}{n!} = \Im \left( e^{q \cos x} \cos(q \sin x) - 1 + i e^{q \cos x} \sin(q \sin x) \right)$$
$$= e^{q \cos x} \sin(q \sin x).$$

**例题 0.9** 计算

1.  $\int_0^{2\pi} e^{\cos x} \cos(\sin x) dx.$ 

2. 
$$\int_0^{\pi} \ln(1 - 2a\cos x + a^2) dx, a \in (0, +\infty) \setminus \{1\}.$$

注由1的证明可得

$$e^{\cos x}\cos(\sin x) = \operatorname{Re}\left(\sum_{n=0}^{\infty} \frac{(e^{\mathrm{i}x})^n}{n!}\right) = \operatorname{Re}\left(\sum_{n=0}^{\infty} \frac{e^{\mathrm{i}nx}}{n!}\right) = \sum_{n=0}^{\infty} \frac{\cos(nx)}{n!}.$$

实际上,上式就是命题 0.4(3)的结论.

注 第 2 问也可以用含参积分求导的方法进行计算(这个方法更容易想到).

证明

1.

$$\int_{0}^{2\pi} e^{\cos x} \cos(\sin x) \, dx = \text{Re} \left( \int_{0}^{2\pi} e^{\cos x} e^{i \sin x} dx \right) = \text{Re} \left( \int_{0}^{2\pi} e^{\cos x + i \sin x} dx \right)$$

$$= \text{Re} \left( \int_{0}^{2\pi} e^{e^{ix}} dx \right) = \text{Re} \left[ \int_{0}^{2\pi} \sum_{n=0}^{+\infty} \frac{\left(e^{ix}\right)^{n}}{n!} dx \right] = \text{Re} \left[ \sum_{n=0}^{+\infty} \int_{0}^{2\pi} \frac{\left(e^{ix}\right)^{n}}{n!} dx \right]$$

$$= \text{Re} \left( \sum_{n=0}^{+\infty} \int_{0}^{2\pi} \frac{e^{inx}}{n!} dx \right) = \text{Re} \left( \int_{0}^{2\pi} \frac{e^{i \cdot 0 \cdot x}}{n!} dx + \sum_{n=1}^{+\infty} \frac{e^{2\pi i x} - 1}{i n \cdot n!} \right)$$

$$= \text{Re} \left( \int_{0}^{2\pi} 1 dx + 0 \right) = 2\pi.$$

2. 注意到当  $a \in (0,1)$  时,有

$$\sum_{n=1}^{\infty} \frac{a^n \cos(nx)}{n} = \text{Re}\left[\sum_{n=1}^{\infty} \frac{(ae^{ix})^n}{n}\right] = -\text{Re}\left[\ln(1 - ae^{ix})\right]$$

$$= -\text{Re}\left[\ln|1 - ae^{ix}| + i\arg(1 - ae^{ix})\right] = -\ln|1 - ae^{ix}|$$

$$= -\ln|(1 - a\cos x) + ai\sin x| = -\frac{1}{2}\ln(1 + a^2 - 2a\cos x).$$

于是当 $a \in (0,1)$ 时,就有

$$\int_0^{\pi} \ln(1 - 2a\cos x + a^2) dx = -\frac{1}{2} \int_0^{\pi} \sum_{n=1}^{\infty} \frac{a^n \cos(nx)}{n} dx = 0.$$

$$\int_0^{\pi} \ln(1 - 2a\cos x + a^2) dx = \pi \ln a^2 + \int_0^{\pi} \ln\left(\frac{1}{a^2} - \frac{2}{a}\cos x + 1\right) dx = \pi \ln a^2 = 2\pi \ln a.$$

又由  $\ln(1-2a\cos x+a^2)$  关于 a 的偏导存在可知  $\int_0^\pi \ln(1-2a\cos x+a^2)\mathrm{d}x$  关于 a 连续. 于是由

$$\int_0^{\pi} \ln(1 - 2a\cos x + a^2) dx = 2\pi \ln a, \quad \forall a > 1.$$

可知当a=1时,我们有

$$\int_0^{\pi} \ln(2 - 2\cos x) dx = \lim_{a \to 1^+} \int_0^{\pi} \ln(1 - 2a\cos x + a^2) dx = \lim_{a \to 1^+} (2\pi \ln a) = 0.$$

定义 0.1 (多重对数函数-Li<sub>2</sub> 函数)

定义

$$\operatorname{Li}_2(x) \triangleq \sum_{n=1}^{\infty} \frac{x^n}{n^2}, \quad x \in [-1, 1].$$

命题 0.5

(1) 
$$\operatorname{Li}_2(x) + \operatorname{Li}_2(1-x) = \frac{\pi^2}{6} - \ln x \cdot \ln(1-x), x \in (0,1).$$

(2) 
$$\operatorname{Li}_{2}(1) = \sum_{n=1}^{\infty} \frac{1}{n^{2}} = \frac{\pi^{2}}{6}$$
,  $\operatorname{Li}_{2}(0) = 0$ ,  $\operatorname{Li}_{2}\left(\frac{1}{2}\right) = \frac{\pi^{2}}{12} - \frac{1}{2}\ln^{2}\frac{1}{2}$ .

证明

(1)  $\exists f(x) \triangleq \text{Li}_2(x), F(x) \triangleq f(x) + f(1-x) + \ln x \ln(1-x).$   $\exists f(x) \in \text{Li}_2(x), F(x) \triangleq f(x) + f(1-x) + \ln x \ln(1-x).$ 

$$f'(x) = \sum_{n=1}^{\infty} \frac{x^{n-1}}{n} = -\frac{1}{x} \ln(1-x).$$

于是

$$F'(x) = -\frac{1}{x}\ln(1-x) + \frac{\ln x}{1-x} - \frac{\ln x}{1-x} + \frac{\ln(1-x)}{x} = 0.$$

故 
$$F(x) \equiv F(1) = f(0) + f(1) = 0 + \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
.

(2) 显然  $\text{Li}_2(1) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ ,  $\text{Li}_2(0) = 0$ . 由 (1) 可得

$$\operatorname{Li}_{2}\left(\frac{1}{2}\right) + \operatorname{Li}_{2}\left(\frac{1}{2}\right) = 2\operatorname{Li}_{2}\left(\frac{1}{2}\right) = \frac{\pi^{2}}{6} - \ln^{2}\frac{1}{2} \implies \operatorname{Li}_{2}\left(\frac{1}{2}\right) = \frac{\pi^{2}}{12} - \frac{1}{2}\ln^{2}\frac{1}{2}.$$

例题 **0.10** 计算  $\int_0^{\frac{1}{2}} \frac{\ln x}{1-x} \, \mathrm{d}x$ .

解

$$\int_0^{\frac{1}{2}} \frac{\ln x}{1-x} \, dx = \int_{\frac{1}{2}}^1 \frac{\ln(1-x)}{x} \, dx = -\sum_{n=1}^\infty \frac{1}{n} \int_{\frac{1}{2}}^1 x^{n-1} \, dx$$
$$= -\sum_{n=1}^\infty \frac{1}{n^2} + \sum_{n=1}^\infty \frac{1}{2^n n^2} = -\frac{\pi^2}{6} + \text{Li}_2\left(\frac{1}{2}\right)$$
$$\frac{4\pi}{2} \frac{1}{2} \cdot \frac{1}{2}$$

### 0.1.7 重积分计算

#### 定理 0.3 (二重积分换序)

证明:

$$\int_{a}^{b} dx \int_{a}^{x} f(x, y) dy = \int_{a}^{b} dy \int_{y}^{b} f(x, y) dx,$$
(10)

其中 f(x,y) 是在由直线 y=a,x=b,y=x 所围成的三角形 ( $\Delta$ ) 上连续的任意函数.

证明

命题 0 6

设 f(x) 在 [a,b] 上连续, 试证: 对任意  $x \in (a,b)$ , 有

$$\int_{a}^{x} dx_{1} \int_{a}^{x_{1}} dx_{2} \cdots \int_{a}^{x_{n}} f(x_{n+1}) dx_{n+1} = \frac{1}{n!} \int_{a}^{x} (x - y)^{n} f(y) dy, \quad n = 1, 2, \cdots.$$

证明 当 n=1 时,由二重积分换序可知

$$\int_{a}^{x} dx_{1} \int_{a}^{x_{1}} f(x_{2}) dx_{2} = \int_{a}^{x} dx_{2} \int_{x_{2}}^{x} f(x_{2}) dx_{1} = \int_{a}^{x} (x - x_{2}) f(x_{2}) dx_{2} = \int_{a}^{x} (x - y) f(y) dy.$$

设原结论对 n = k - 1 的情形成立, 考虑 n = k 的情形, 由归纳假设可知

$$\int_{a}^{x_{1}} dx_{1} \cdots \int_{a}^{x_{k}} f(x_{k+1}) dx_{k+1} = \frac{1}{(k-1)!} \int_{a}^{x_{1}} (x_{1} - y)^{k-1} f(y) dy.$$

于是再利用二重积分换序得

$$\int_{a}^{x} dx_{1} \int_{a}^{x_{1}} dx_{2} \cdots \int_{a}^{x_{k}} f(x_{k+1}) dx_{k+1} = \frac{1}{(k-1)!} \int_{a}^{x} dx_{1} \int_{a}^{x_{1}} (x_{1} - y)^{k-1} f(y) dy$$

$$= \frac{1}{(k-1)!} \int_{a}^{x} dy \int_{y}^{x} (x_{1} - y)^{k-1} f(y) dx_{1}$$

$$= \frac{1}{k!} \int_{a}^{x} (x - y)^{k} f(y) dy.$$

故由数学归纳法知原结论成立.

**例题 0.11** 求定义在星形区域  $D = \{(x,y) \mid x^{\frac{2}{3}} + y^{\frac{2}{3}} \leqslant 1\}$  上满足 f(1,0) = 1 的正值连续函数 f 使得  $\iint \frac{f(x,y)}{f(y,x)} dxdy$ 

达到最小, 并求出这个最小值. 解 对积分  $I=\iint\limits_{\Omega} \frac{f(x,y)}{f(y,x)}\,\mathrm{d}x\mathrm{d}y$  作变换  $x\to y,\ y\to x,$  由 D 的对称性, 知  $I=\iint\limits_{\Omega} \frac{f(y,x)}{f(x,y)}\,\mathrm{d}x\mathrm{d}y.$  因而由均值不等式 可得

$$I = \frac{1}{2} \iint\limits_{D} \left( \frac{f(x, y)}{f(y, x)} + \frac{f(y, x)}{f(x, y)} \right) dxdy \geqslant \iint\limits_{D} 1 dxdy = \sigma(D),$$

这里 $\sigma(D)$ 是D的面积.

$$I - \sigma(D) = \frac{1}{2} \iint\limits_{D} \left( \sqrt{\frac{f(x,y)}{f(y,x)}} - \sqrt{\frac{f(y,x)}{f(x,y)}} \right)^{2} dxdy \geqslant 0.$$

 $I = \sigma(D)$  当且仅当 f(x, y) = f(y, x). 故所求函数为所有满足 f(x, y) = f(y, x) 及 f(1, 0) = 1 的连续正值函数. D 的边界的参数方程为

$$x = \cos^3 \varphi$$
,  $y = \sin^3 \varphi$  ( $0 \le \varphi \le 2\pi$ ),

故I的最小值为

$$\sigma(D) = \iint_{D} 1 \, dx dy = 4 \iint_{\substack{0 \le r \le 1 \\ 0 \le \varphi \le \frac{\pi}{2}}} 3r \sin^{2} \varphi \cos^{2} \varphi \, dr d\varphi$$
$$= 6 \int_{0}^{\frac{\pi}{2}} \sin^{2} \varphi \cos^{2} \varphi \, d\varphi = \frac{3}{8}\pi.$$

所以所求最小值是  $\frac{3}{8}\pi$ , 且当 f(x,y) = f(y,x) 并满足 f(1,0) = 1 时, 取到该最小值.

例题 **0.12** 求证:  $\iint (xy)^{xy} dxdy = \int_0^1 t^t dt.$ 

证明 首先化为累次积分

$$\iint_{[0,1]^2} (xy)^{xy} \, dxdy = \int_0^1 dx \int_0^1 (xy)^{xy} \, dy = \int_0^1 dx \int_0^x \frac{t^t}{x} \, dt = \int_0^1 \frac{f(x)}{x} \, dx,$$

其中  $f(x) = \int_0^x t^t dt$ . 由分部积分,

$$\int_0^1 \frac{f(x)}{x} \, \mathrm{d}x = f(x) \ln x \Big|_0^1 - \int_0^1 x^x \ln x \, \mathrm{d}x = -\int_0^1 x^x \ln x \, \mathrm{d}x.$$

因为  $(x^x)' = x^x \ln x + x^x$ , 所以

$$\int_0^1 x^x \ln x \, dx = \int_0^1 ((x^x)' - x^x) \, dx = -\int_0^1 x^x \, dx.$$

于是

$$\iint_{[0,1]^2} (xy)^{xy} \, \mathrm{d}x \mathrm{d}y = \int_0^1 t^t \, \mathrm{d}t.$$

例题 0.13 计算二重积分  $I = \iint_D \operatorname{sgn}(x^2 - y^2 + 2) \, dx dy$ , 其中  $D = \{(x, y) \mid x^2 + y^2 \le 4\}$ .

解设D在第一象限部分为 $D_1$ ,则由对称性

$$I = 4 \iint_{D_1} \operatorname{sgn}(x^2 - y^2 + 2) \, dx dy.$$

设  $D_2$  是  $D_1$  中使得  $x^2-y^2+2<0$  的部分,  $D_3$  是  $D_1$  中使得  $x^2-y^2+2\geqslant 0$  的部分, 则  $D_1=D_2\cup D_3$ . 因此

$$I = 4 \left[ \iint_{D_3} dxdy - \iint_{D_2} dxdy \right] = 4[\sigma(D_3) - \sigma(D_2)]$$
$$= 4 \left[ \frac{1}{4} \cdot \pi \cdot 2^2 - 2\sigma(D_2) \right] = 4\pi - 8\sigma(D_2),$$

其中  $\sigma(D_2)$ ,  $\sigma(D_3)$  分别表示  $D_2$  和  $D_3$  的面积. 在极坐标  $x = r\cos\varphi$ ,  $y = r\sin\varphi$  之下,  $D_2$  为

$$\left\{ (r,\varphi) \mid \frac{\pi}{3} \leqslant \varphi \leqslant \frac{\pi}{2}, \sqrt{-\frac{2}{\cos 2\varphi}} \leqslant r \leqslant 2 \right\}.$$

因而

$$\sigma(D_2) = \iint_{D_2} dx dy = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} d\varphi \int_{\sqrt{-\frac{2}{\cos 2\varphi}}}^{2} r dr$$

$$= \frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \left( 4 + \frac{2}{\cos 2\varphi} \right) d\varphi = \frac{\pi}{3} + \frac{1}{2} \int_{\frac{2\pi}{3}}^{\pi} \frac{1}{\cos \varphi} d\varphi$$

$$= \frac{\pi}{3} - \frac{1}{2} \ln(2 + \sqrt{3}),$$

故

$$I = \frac{4\pi}{3} + 4\ln(2 + \sqrt{3}).$$

例题 **0.14** 设  $D = \{(x, y) \mid x^2 + y^2 \le 1\}$ . 求  $I = \iint_D \left| \frac{x + y}{\sqrt{2}} - x^2 - y^2 \right| dxdy$ .

解 由极坐标变换  $x = r \cos \varphi$ ,  $y = r \sin \varphi$ ,  $0 \le r \le 1$ ,  $0 \le \varphi \le 2\pi$ , 有

$$\begin{split} I &= \iint\limits_{\substack{0 \leqslant r \leqslant 1 \\ 0 \leqslant \varphi \leqslant 2\pi}} \left| \frac{\cos \varphi + \sin \varphi}{\sqrt{2}} - r \right| r^2 \mathrm{d}r \mathrm{d}\varphi \\ &= \iint\limits_{\substack{0 \leqslant r \leqslant 1 \\ 0 \leqslant \varphi \leqslant 2\pi}} \left| \sin \left( \varphi + \frac{\pi}{4} \right) - r \right| r^2 \mathrm{d}r \mathrm{d}\varphi = \iint\limits_{\substack{0 \leqslant r \leqslant 1 \\ 0 \leqslant \varphi \leqslant 2\pi}} \left| \sin \varphi - r \right| r^2 \mathrm{d}r \mathrm{d}\varphi \\ &= \iint\limits_{\substack{0 \leqslant r \leqslant 1 \\ 0 \leqslant \varphi \leqslant \pi}} \left| \sin \varphi - r \right| r^2 \mathrm{d}r \mathrm{d}\varphi + \iint\limits_{\substack{0 \leqslant r \leqslant 1 \\ \pi \leqslant \varphi \leqslant 2\pi}} \left| \sin \varphi - r \right| r^2 \mathrm{d}r \mathrm{d}\varphi \\ &= \iint\limits_{\substack{0 \leqslant r \leqslant 1 \\ 0 \leqslant \varphi \leqslant \pi}} \left| \sin \varphi - r \right| r^2 \mathrm{d}r \mathrm{d}\varphi + \iint\limits_{\substack{0 \leqslant r \leqslant 1 \\ 0 \leqslant \varphi \leqslant \pi}} \left( \sin \varphi + r \right) r^2 \mathrm{d}r \mathrm{d}\varphi. \end{split}$$

因此,有

$$I = \int_0^{\pi} d\varphi \int_0^{\sin\varphi} (\sin\varphi - r)r^2 dr + \int_0^{\pi} d\varphi \int_{\sin\varphi}^1 (r - \sin\varphi)r^2 dr$$
$$+ \int_0^{\pi} d\varphi \int_0^{\sin\varphi} (\sin\varphi + r)r^2 dr + \int_0^{\pi} d\varphi \int_{\sin\varphi}^1 (\sin\varphi + r)r^2 dr$$
$$= \int_0^{\pi} d\varphi \int_0^{\sin\varphi} 2\sin\varphi \cdot r^2 dr + \int_0^{\pi} d\varphi \int_{\sin\varphi}^1 2r \cdot r^2 dr$$

$$\begin{split} &= \int_0^\pi \frac{2}{3} \sin^4 \varphi \mathrm{d} \varphi + \int_0^\pi \frac{1}{2} (1 - \sin^4 \varphi) \mathrm{d} \varphi \\ &= \frac{1}{6} \int_0^\pi \sin^4 \varphi \mathrm{d} \varphi + \frac{\pi}{2} = \frac{1}{6} \cdot \frac{3\pi}{8} + \frac{\pi}{2} = \frac{9}{16} \pi. \end{split}$$

**例题 0.15** 设 f 是定义在正方形  $S = \{(x,y) \mid 0 \le x \le 1, 0 \le y \le 1\}$  上的四阶连续可微函数, 在 S 的边界上为零, 并且

$$\left| \frac{\partial^4 f}{\partial x^2 \partial y^2} \right| \leqslant M.$$

求证:

$$\left| \iint_{S} f(x, y) \, \mathrm{d}x \, \mathrm{d}y \right| \leqslant \frac{1}{144} M.$$

证明 考虑函数 g(x,y) = x(1-x)y(1-y). 易知

$$\frac{\partial^4 g}{\partial x^2 \partial y^2} = 4, \quad \iint_S g(x, y) \, \mathrm{d}x \mathrm{d}y = \frac{1}{36}.$$

因为 f 在 S 的边界上为零, 所以  $\frac{\partial^2 f}{\partial v^2}$  在 x = 0 和 x = 1 时为零. 于是

$$\iint_{S} \frac{\partial^{4} f}{\partial x^{2} \partial y^{2}} \cdot g \, dx dy = \int_{0}^{1} dy \int_{0}^{1} \frac{\partial^{4} f}{\partial x^{2} \partial y^{2}} \cdot g \, dx$$

$$= \int_{0}^{1} dy \left( \frac{\partial^{3} f}{\partial x \partial y^{2}} \cdot g \Big|_{x=0}^{1} - \int_{0}^{1} \frac{\partial^{3} f}{\partial x \partial y^{2}} \cdot \frac{\partial g}{\partial x} \, dx \right)$$

$$= -\int_{0}^{1} dy \int_{0}^{1} \frac{\partial^{3} f}{\partial x \partial y^{2}} \cdot \frac{\partial g}{\partial x} \, dx$$

$$= -\int_{0}^{1} dy \left( \frac{\partial^{2} f}{\partial y^{2}} \cdot \frac{\partial g}{\partial x} \Big|_{x=0}^{1} - \int_{0}^{1} \frac{\partial^{2} f}{\partial y^{2}} \cdot \frac{\partial^{2} g}{\partial x^{2}} \, dx \right)$$

$$= \int_{0}^{1} dy \int_{0}^{1} \frac{\partial^{2} f}{\partial y^{2}} \cdot \frac{\partial^{2} g}{\partial x^{2}} \, dx$$

$$= \iint_{S} \frac{\partial^{2} f}{\partial y^{2}} \cdot \frac{\partial^{2} g}{\partial x^{2}} \, dx dy.$$

同理,由于  $\frac{\partial^2 g}{\partial x^2}$  在 y=0 和 y=1 时为零,作与上面类似的推导,可得

$$\iint_{S} \frac{\partial^{4} g}{\partial x^{2} \partial y^{2}} \cdot f \, dx dy = \iint_{S} \frac{\partial^{2} f}{\partial y^{2}} \cdot \frac{\partial^{2} g}{\partial x^{2}} \, dx dy.$$

因此

$$\iint_{S} \frac{\partial^{4} f}{\partial x^{2} \partial y^{2}} \cdot g \, dx dy = \iint_{S} \frac{\partial^{4} g}{\partial x^{2} \partial y^{2}} \cdot f \, dx dy.$$

从而

$$\left| \iint_{S} f \, dx dy \right| = \frac{1}{4} \left| \iint_{S} 4f \, dx dy \right| = \frac{1}{4} \left| \iint_{S} \frac{\partial^{4} g}{\partial x^{2} \partial y^{2}} f \, dx dy \right|$$
$$= \frac{1}{4} \left| \iint_{S} \frac{\partial^{4} f}{\partial x^{2} \partial y^{2}} \cdot g \, dx dy \right| \leqslant \frac{M}{4} \iint_{S} g \, dx dy = \frac{M}{144}.$$

#### 定理 **0.4** (Poincaré(庞加莱) 不等式)

设  $\varphi, \psi$  是 [a, b] 上的连续函数, f 在区域  $D = \{(x, y) \mid a \le x \le b, \varphi(x) \le y \le \psi(x)\}$  上连续可微, 且有  $f(x, \varphi(x)) = 0$   $(x \in [a, b])$ . 则存在 M > 0, 使得

$$\iint_D f^2(x, y) \, dx dy \leqslant M \iint_D (f'_y(x, y))^2 \, dx dy.$$

 $\Diamond$ 

证明 由 Newton-Leibniz 公式和 Cauchy 不等式可得

$$f^{2}(x, y) = [f(x, y) - f(x, \varphi(x))]^{2} = \left(\int_{\varphi(x)}^{y} \frac{\partial f}{\partial t}(x, t) dt\right)^{2}$$
  
$$\leq (y - \varphi(x)) \int_{\varphi(x)}^{y} \left(\frac{\partial f}{\partial t}(x, t)\right)^{2} dt,$$

因此

$$\iint_{D} f^{2}(x, y) \, dxdy = \int_{a}^{b} dx \int_{\varphi(x)}^{\psi(x)} f^{2}(x, y) \, dy$$

$$\leqslant \int_{a}^{b} dx \int_{\varphi(x)}^{\psi(x)} (y - \varphi(x)) \, dy \int_{\varphi(x)}^{y} \left(\frac{\partial f}{\partial t}(x, t)\right)^{2} \, dt$$

$$= \int_{a}^{b} dx \int_{\varphi(x)}^{\psi(x)} \left(\frac{\partial f}{\partial t}(x, t)\right)^{2} dt \int_{t}^{\psi(x)} (y - \varphi(x)) \, dy$$

$$\leqslant \int_{a}^{b} dx \int_{\varphi(x)}^{\psi(x)} \left(\frac{\partial f}{\partial t}(x, t)\right)^{2} dt \int_{\varphi(x)}^{\psi(x)} (y - \varphi(x)) \, dy$$

$$= \int_{a}^{b} dx \int_{\varphi(x)}^{\psi(x)} \frac{1}{2} (\psi(x) - \varphi(x))^{2} \left(\frac{\partial f}{\partial t}(x, t)\right)^{2} dt$$

$$\leqslant M \int_{a}^{b} \left(\int_{\varphi(x)}^{\psi(x)} \left(\frac{\partial f}{\partial t}(x, t)\right)^{2} dt\right) dx$$

$$= M \iint_{D} \left(\frac{\partial f}{\partial y}(x, y)\right)^{2} dxdy,$$

这里 M 是满足  $M > \max_{q \le x \le b} \frac{1}{2} (\psi(x) - \varphi(x))^2$  的常数.

例题 **0.16** 设 a > 0,  $\Omega_n(a): x_1 + x_2 + \dots + x_n \leq a, x_i \geq 0$   $(i = 1, 2, \dots, n)$ . 求积分

$$I_n(a) = \int \cdots \int_{\Omega_m(a)} x_1 x_2 \cdots x_n dx_1 dx_2 \cdots dx_n.$$

解 作变换  $x_i = at_i, i = 1, 2, \dots, n, 则$ 

$$I_n(a) = a^{2n} \int \cdots \int_{\Omega_n(1)} t_1 t_2 \cdots t_n dt_1 dt_2 \cdots dt_n = a^{2n} I_n(1).$$

再用累次积分,可得

$$I_{n}(1) = \int \cdots \int_{\Omega_{n}(1)} t_{1}t_{2} \cdots t_{n} dt_{1} dt_{2} \cdots dt_{n}$$

$$= \int_{0}^{1} t_{n} dt_{n} \int \cdots \int_{t_{1}+t_{2}+\cdots+t_{n-1} \leqslant 1-t_{n}} t_{1} \cdots t_{n-1} dt_{1} \cdots dt_{n-1}$$

$$= \int_{0}^{1} t_{n} I_{n-1}(1-t_{n}) dt_{n} = \int_{0}^{1} t_{n}(1-t_{n})^{2(n-1)} I_{n-1}(1) dt_{n}.$$

因此,

$$I_n(1) = \frac{1}{2n(2n-1)}I_{n-1}(1).$$

注意到  $I_1(1) = \int_0^1 t dt = \frac{1}{2}$ . 由上面的递推公式, 可得  $I_n(1) = \frac{1}{(2n)!}$ . 故  $I_n(a) = \frac{a^{2n}}{(2n)!}$ .

### 0.1.8 其他

例题 **0.17** 证明积分  $\int_0^\infty e^{-ax^2 - \frac{b}{x^2}} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}} e^{-2\sqrt{ab}}, a, b > 0.$ 

$$\int_{0}^{+\infty} e^{-x^{2} - \frac{b}{x^{2}}} dx = e^{-2\sqrt{b}} \int_{0}^{+\infty} e^{-\left(x - \frac{\sqrt{b}}{x}\right)^{2}} dx \xrightarrow{\underline{y} = \frac{\sqrt{b}}{x}} e^{-2\sqrt{b}} \int_{0}^{+\infty} \frac{\sqrt{b}}{y^{2}} e^{-\left(\frac{\sqrt{b}}{y} - y\right)^{2}} dy$$

$$= \frac{e^{-2\sqrt{b}}}{2} \int_0^{+\infty} \left(1 + \frac{\sqrt{b}}{y^2}\right) e^{-\left(y - \frac{\sqrt{b}}{y}\right)^2} dy = \frac{e^{-2\sqrt{b}}}{2} \int_0^{+\infty} e^{-\left(y - \frac{\sqrt{b}}{y}\right)^2} d\left(y - \frac{\sqrt{b}}{y}\right)$$
$$= \frac{e^{-2\sqrt{b}}}{2} \int_{-\infty}^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2} e^{-2\sqrt{b}}.$$

于是对  $\forall a > 0$ , 就有

$$\int_0^{+\infty} e^{-ax^2 - \frac{b}{x^2}} dx = \frac{1}{\sqrt{a}} \int_0^{+\infty} e^{-x^2 - \frac{ab}{x^2}} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}} e^{-2\sqrt{ab}}.$$

例题 **0.18** 计算  $\int_0^\infty \frac{\cos(ax)}{1+x^2} dx, a \in \mathbb{R}.$ 

 $\frac{1}{1+x^2}$  本题可以用复变函数的方法 (留数定理) 来计算. 但是我们这里用基本的高等数学的方法来计算.  $\int_0^\infty \frac{\sin{(ax)}}{1+x^2} dx$  这个积分没办法算出具体的初等数值.

证明

$$\int_{0}^{+\infty} \frac{\cos(ax)}{1+x^{2}} dx = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{\cos(ax)}{1+x^{2}} dx = \frac{1}{2} \int_{-\infty}^{+\infty} \cos(ax) \left( \int_{0}^{+\infty} e^{-(1+x^{2})y} dy \right) dx$$

$$= \frac{1}{2} \int_{-\infty}^{+\infty} \left( \int_{0}^{+\infty} e^{-(1+x^{2})y} \cos(ax) dy \right) dx = \frac{1}{2} \int_{-\infty}^{+\infty} \int_{0}^{+\infty} e^{-(1+x^{2})y} \cos(ax) dy dx$$

$$= \frac{1}{2} \int_{0}^{+\infty} \left( \int_{-\infty}^{+\infty} e^{-(1+x^{2})y} \cos(ax) dx \right) dy = \frac{1}{2} \int_{0}^{+\infty} e^{-y} \left( \int_{-\infty}^{+\infty} e^{-x^{2}y} \cos(ax) dx \right) dy$$

$$= \frac{1}{2} \operatorname{Re} \left( \int_{0}^{+\infty} e^{-y} \left( \int_{-\infty}^{+\infty} e^{-x^{2}y + iax} dx \right) dy \right) = \frac{1}{2} \operatorname{Re} \left( \int_{0}^{+\infty} e^{-y} \left( \int_{-\infty}^{+\infty} e$$

例题 **0.19** 计算  $\int_0^\infty \frac{1}{(1+x^8)^2} \mathrm{d}x$ .

注 由命题??可知对 ∀c > 0 都有

$$\frac{1}{t^s} = \frac{1}{\Gamma(s)} \int_0^{+\infty} y^{s-1} e^{-ty} dy, \forall t \in \mathbb{R}.$$

本题的核心想法就是利用上式将  $\frac{z}{1+x^8}$  转化成积分形式.

证明 注意到

$$\int_0^{+\infty} y e^{-(1+x^8)y} dy \xrightarrow{\frac{y=\frac{z}{1+x^8}}{1+x^8}} \frac{1}{(1+x^8)^2} \int_0^{+\infty} z e^{-z} dz = \frac{1}{(1+x^8)^2},$$

因此

$$\int_{0}^{+\infty} \frac{1}{(1+x^{8})^{2}} dx = \int_{0}^{+\infty} \left( \int_{0}^{+\infty} y e^{-(1+x^{8})y} dy \right) dx = \int_{0}^{+\infty} \left( \int_{0}^{+\infty} y e^{-(1+x^{8})y} dx \right) dy$$

$$= \int_{0}^{+\infty} y e^{-y} \left( \int_{0}^{+\infty} e^{-x^{8}y} dx \right) dy \xrightarrow{\frac{x=y^{-\frac{1}{8}}z^{\frac{1}{8}}}{2}} \int_{0}^{+\infty} y e^{-y} \left( \int_{0}^{+\infty} y^{-\frac{1}{8}} e^{-z} dz^{\frac{1}{8}} \right) dy$$

$$= \frac{1}{8} \int_{0}^{+\infty} y^{\frac{7}{8}} e^{-y} \left( \int_{0}^{+\infty} z^{-\frac{7}{8}} e^{-z} dz \right) dy = \frac{1}{8} \int_{0}^{+\infty} y^{\frac{7}{8}} e^{-y} \Gamma\left(\frac{1}{8}\right) dy$$

$$= \frac{1}{8} \Gamma\left(\frac{15}{8}\right) \Gamma\left(\frac{1}{8}\right) = \frac{1}{8} \cdot \frac{7}{8} \Gamma\left(\frac{7}{8}\right) \Gamma\left(\frac{1}{8}\right)$$

$$\frac{??}{64\sin\left(\frac{\pi}{8}\right)} = \frac{7\pi}{32\sqrt{2-\sqrt{2}}}.$$

例题 0.20 计算积分  $I=\int_{-1}^2 \frac{1+x^2}{1+x^4} \,\mathrm{d}x$ . 注 在此例中  $I\neq F(2)-F(-1)$ . 这是因为 F 并不是 f 在区间 [-1,2] 上的原函数. 解 在不包含 0 的区间上作变换  $t=x-\frac{1}{x}$  得

$$\int \frac{1+x^2}{1+x^4} dx = \int \frac{x-\frac{1}{x}}{2+\left(x-\frac{1}{x}\right)^2} dx = \int \frac{dt}{2+t^2}$$
$$= \frac{1}{\sqrt{2}} \arctan \frac{t}{\sqrt{2}} + C = \frac{1}{\sqrt{2}} \arctan \frac{x^2-1}{\sqrt{2}x} + C.$$

这说明在区间 [-1,0) 和 (0,2] 上, 函数  $f(x) = \frac{1+x^2}{1+x^4}$  的一个原函数是

$$F(x) = \frac{1}{\sqrt{2}} \arctan \frac{x^2 - 1}{\sqrt{2}x}.$$

因此

$$\int_{-1}^{0} f(x) dx = F(0^{-}) - F(-1) = \frac{\pi}{2\sqrt{2}} - 0 = \frac{\pi}{2\sqrt{2}},$$

$$\int_{0}^{2} f(x) dx = F(2) - F(0^{+}) = \frac{1}{\sqrt{2}} \arctan \frac{3}{2\sqrt{2}} + \frac{\pi}{2\sqrt{2}}.$$

故

$$I = \int_{-1}^{0} f(x) dx + \int_{0}^{2} f(x) dx = \frac{\pi}{\sqrt{2}} + \frac{1}{\sqrt{2}} \arctan \frac{3}{2\sqrt{2}}.$$