# Utilizando o Tiva: Registradores e Clock EMB5642 - Aula 4



## Mapa de Memória

#### Table 2-4. Memory Map

| Start       | End         | Description                                                          | For details,<br>see page |  |  |
|-------------|-------------|----------------------------------------------------------------------|--------------------------|--|--|
| Memory      |             |                                                                      |                          |  |  |
| 0000.0000x0 | 0x0003.FFFF | On-chip Flash                                                        | 540                      |  |  |
| 0x0004.0000 | 0x1FFF.FFFF | Reserved                                                             | -                        |  |  |
| 0x2000.0000 | 0x2000.7FFF | Bit-banded on-chip SRAM                                              | 525                      |  |  |
| 0x2000.8000 | 0x21FF.FFFF | Reserved                                                             | -                        |  |  |
| 0x2200.0000 | 0x220F.FFFF | Bit-band alias of bit-banded on-chip SRAM starting at<br>0x2000.0000 | 525                      |  |  |
| 0x2210.0000 | 0x3FFF.FFFF | Reserved                                                             | -                        |  |  |
| Peripherals |             |                                                                      |                          |  |  |
| 0x4000.0000 | 0x4000.0FFF | Watchdog timer 0                                                     | 776                      |  |  |
| 0x4000.1000 | 0x4000.1FFF | Watchdog timer 1                                                     | 776                      |  |  |
| 0x4000.2000 | 0x4000.3FFF | Reserved                                                             | -                        |  |  |
| 0x4000.4000 | 0x4000.4FFF | GPIO Port A                                                          | 658                      |  |  |
| 0x4000.5000 | 0x4000.5FFF | GPIO Port B                                                          | 658                      |  |  |

92 June 12, 2014

Texas Instruments-Production Data

## Escrevendo em um registrador

```
#define ESC_REG(x)
(*((volatile uint32_t *)(x)))
```

## Aplicação!

- Piscar um led!
- LED RGB PF1, PF2 e PF3.
- Led Verde!



## Fontes de Clock Principais

#### Precision Internal Oscillator (PIOSC)

• 16 MHz ± 3%

## Main Oscillator (MOSC) using... • An external single-ended clock source • An external crystal

#### Internal 30 kHz Oscillator

- $30 \text{ kHz} \pm 50\%$
- Intended for use during Deep-Sleep power-saving modes

#### Hibernation Module Clock Source

- 32,768Hz crystal
- Intended to provide the system with a real-time clock source



### Fontes de Clock para CPU

The CPU can be driven by any of the fundamental clocks ...

- Internal 16 MHz
- Main
- Internal 30 kHz
- External Real-Time
- Plus -
- The internal PLL (400 MHz)
- The internal 16MHz oscillator divided by four (4MHz ± 3%)

| Clock Source       | Drive PLL? | Used as SysClk? |
|--------------------|------------|-----------------|
| Internal 16MHz     | Yes        | Yes             |
| Internal 16Mhz/4   | No         | Yes             |
| Main Oscillator    | Yes        | Yes             |
| Internal 30 kHz    | No         | Yes             |
| Hibernation Module | No         | Yes             |
| PLL                | -          | Yes             |



#### Tiva C Series Clock Tree – Pag. 222



Datasheet TM4C123GH6PM
Capítulo 5 – pág 212
5.2.5 Clock Control
5.3 Initialization and Configuration

#### 5.3 Initialization and Configuration

The PLL is configured using direct register writes to the RCC/RCC2 register. If the RCC2 register is being used, the USERCC2 bit must be set and the appropriate RCC2 bit/field is used. The steps required to successfully change the PLL-based system clock are:

- Bypass the PLL and system clock divider by setting the BYPASS bit and clearing the USESYS
  bit in the RCC register, thereby configuring the microcontroller to run off a "raw" clock source
  and allowing for the new PLL configuration to be validated before switching the system clock
  to the PLL.
- Select the crystal value (XTAL) and oscillator source (OSCSRC), and clear the PWRDN bit in RCC/RCC2. Setting the XTAL field automatically pulls valid PLL configuration data for the appropriate crystal, and clearing the PWRDN bit powers and enables the PLL and its output.
- 3. Select the desired system divider (SYSDIV) in RCC/RCC2 and set the USESYS bit in RCC. The SYSDIV field determines the system frequency for the microcontroller.
- 4. Wait for the PLL to lock by polling the PLLLRIS bit in the Raw Interrupt Status (RIS) register.
- Enable use of the PLL by clearing the BYPASS bit in RCC/RCC2.

#### Register 8: Run-Mode Clock Configuration (RCC), offset 0x060

The bits in this register configure the system clock and oscillators.

Important: Write the RCC register prior to writing the RCC2 register.

Run-Mode Clock Configuration (RCC)

Base 0x400F.E000 Offset 0x060 Type RW, reset 0x078E.3AD1



| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                   |
|-----------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:28     | reserved | RO   | 0x0   | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 27        | ACG      | RW   | 0     | Auto Clock Gating                                                                                                                                                                             |

This bit specifies whether the system uses the Sleep-Mode Clock Gating Control (SCGCn) registers and Deep-Sleep-Mode Clock Gating Control (DCGCn) registers if the microcontroller enters a Sleep or Deep-Sleep mode (respectively).

Pág.

#### **Anderson Wedderhoff Spengler**

E-mail: anderson.spengler@ufsc.br

Telefone: +55 (48) 3721 7489

