

MATAKULIAH TEORI BAHASA & AUTOMATA

Rahmiati, M.Kom

Pertemuan 8– Finite State Automata dengan Output (Mesin Moore)

- Suatu keterbatasan dari FSA yang sudah dipelajari sebelumnya adalah: keputusannya terbatas pada diterima atau ditolak. Otomata tsb biasa disebut dengan accepter
- (dalam hal ini FSA).
 Kita dapat mengkonstruksi sebuah FSA yang memiliki keputusan beberapa keluaran (output), dalam hal ini otomata tersebut dikenal sebagai transducer.
- Pada mesin Moore, output akan berasosiasi dengan state.

M=(Q, Σ, δ, S,	Δ, λ)	
Dimana:		
Q	=	himpunan state
Σ	=	himpunan simbol input
δ	=	fungsi transisi
S	=	state awal, dimana S□ Q
Δ	=	himpunan output
λ	=	fungsi output untuk setiap output

Contoh Mesin Moore

Misalnya kita ingin memperoleh sisa pembagian (modulus) suatu bilangan dengan 3, dimana input dinyatakan dengan biner.

Konfigurasi mesinnya adalah

```
sbb: Q = \{q_0, q_1, q_2\}

\Sigma = \{0, 1\} S = q_0

\Delta = \{0, 1, 2\} untuk output pada kasus mod dengan 3, kemungkinan sisa pembagiannya adalah 1, 2 atau 3
```


Gambar 7.1. Mesin Moore untuk MOD 3

Coba buktikan untuk:

- 5 MOD 3.
- 10 MOD 3

(Input nya harus dirubah dulu kedalam biner)

Mesin Moore dengan 6 Tuple $M = (Q, \Sigma, \delta, S, \Delta, \lambda)$

- Q = Himpunan State
- Σ = Himpunan simbol input
- δ = Fungsi transisi
- S = State awal, $S \in Q$
- Δ = Himpunan output
- λ = Fungsi output untuk setiap state Contoh : konfigurasi mesin
- Q = $\{q_0, q_1, q_2\}$
- $\Sigma = \{0, 1\}$
- $\triangle = \{0, 1, 2\}$
- $S = (q_0)$
- $\lambda(\mathbf{q}_0) = \mathbf{0}$
- $\lambda(q_1) = 1$
- $\lambda(q_2) = 2$

Mesin Moore untuk modulus 3

5 mod 3 = ? mod→hasil dari sisa pembagian bilangan biner 5 = 101

urutkan state:

$$\delta(q_0, 101) = \delta(q_1, 01) = \delta(q_2, 1) = q_2$$

Berakhir pada q₂

$$\lambda (q_2) = 2 \mod 3 = 2$$

Mesin Moore

- Buat konfigurasi mesin tersebut
- -Jika mesin menerima input "1101011", output ?

$$\delta (q_0, 1101011) = \delta (q_1, 101011) = \delta (q_3, 01011)$$

=
$$\delta$$
 (q₃, 1011) = δ (q₄, 011) = δ (q₂, 11) = δ (q₅, 1) = q₅

Input = 1101011	$\lambda (q_0) = 0$
Output = 1334255	$\lambda (q_1) = 1$
$Q = \{q_0, q_1, q_2, q_3, q_4, q_4\}$	$\lambda (q_2) = 2$
$\Sigma = \{0, 1\}$	$\lambda (q_3) = 3$
Δ = { 0, 1, 2, 3, 4, 5 }	$\lambda (q_4) = 4$
$S = q_0$	$\lambda (q_4) = 4$
A	

LATIHAN:

- 1. Jlka Mesin Moore pada contoh soal didapat " 1010101101011 ",
 - ?
- 2. Pada Mesin Moore Modulus 3
 - \rightarrow 40 mod 3?
 - \rightarrow 55 mod 3?
 - \rightarrow 73 mod 3?
- 3. Pada mesin Mealy jika input " 0110011011 " apakah diterima ?

Output

$$=\delta(q_5, 0101101011) = \delta(q_1, 101101011) = \delta(q_3, 01101011)$$
 5 1

4 2

3 4

Output = 1251334425134

Input= 1010101101011

$$\delta(q_5, 0101101011) = \delta(q_1, 1)$$

$$3(q_5, 0.101101011) - 0 (q_1, 1)$$

$$S(q_5, 0.101101011) = O(q_1, 1)$$

$$(\mathsf{q}_5, \mathsf{o}_1, \mathsf{o}_1, \mathsf{o}_1, \mathsf{o}_1) = \mathsf{o}_1(\mathsf{q}_1, \mathsf{o}_1)$$

$$(\mathsf{q}_5, \mathsf{U} \mathsf{U} \mathsf{U} \mathsf{U} \mathsf{U} \mathsf{U} \mathsf{U}) = \mathsf{O}(\mathsf{q}_1, \mathsf{U})$$

= δ (q₅, 011) = δ (q₁, 11) = δ (q₃, 1) = q₄ 5

= δ (q₃, 1101011) = δ (q₄, 101011) = δ (q₄, 01011) = δ (q₂, 101) 3

2. * 40 mod 3 bilangan biner 40 = 101000 urutkan state :

$$\delta (q_0, 101000) = \delta (q_1, 01000) = \delta (q_2, 1000)$$

=
$$\delta$$
 (q₂, 000) = δ (q₁, 00) = δ (q₁, 0) = q₁

Berakhir pada

$$\lambda (q_1) = 1 40 \mod 3 = 1$$


```
55 mod 3
bilangan biner 55 = 110111
urutkan state:
   \delta (q_0, 110111) = \delta (q_1, 10111) = \delta (q_0, 0111)
= \delta(q_0, 111) = \delta(q_1, 11) = \delta(q_1, 1) = q_1
Berakhir pada Q1
\delta (q_1) = 1
55 \mod 3 = 1
73 mod 3
bilangan biner 73 = 1001001
  \delta (q_0, 1001001) = \delta (q_1, 001001) = \delta (q_2, 01001)
=\delta(q_1, 1001) = \delta(q_0, 001) = \delta(q_0, 01)
= \delta (q_0, 1) = q_1
berakhir pada q1
\lambda (q_1) = 1 73 mod 3 = 1
```


3. Jika input " 011001101011 ", apakah diterima ?
$$\delta \ (q_0, \, 011001101011) = \delta \ (q_1, \, 11001101011) = \delta \ (q_2, \, 1001101011)$$

$$T \qquad T$$

$$= \delta \ (q_2, \, 001101011) = \delta \ \ (q_1, \, 01101011) = \delta \ \ (q_1, \, 1011) \ \ Y \qquad T \qquad T$$

$$= \delta \ (q_2, \, 101011) = \delta \ \ (q_2, \, 01011) = \delta \ \ \ (q_1, \, 1011) \ \ T \qquad T$$

$$= \delta \ (q_2, \, 011) = \delta \ \ (q_1, \, 11) = \delta \ \ \ \ (q_2, \, 1)$$

 $= q_2 T T T T$