Tourists

Nome	Tourists
File di input	standard input
File di output	standard output
Limite di tempo	4 secondi
Limite di memoria	256 megaottetti

Ci sono n città in Utopia, numerate da 1 a n. Ci sono anche n-1 strade bidirezionali che collegano le città. È possibile viaggiare tra ogni coppia di città usando solo queste strade. Dato che Utopia è molto bella, ci sono m turisti, numerati da 1 a m, che stanno attualmente visitando lo stato. Inizialmente l'i-esimo turista sta visitando la città a_i . È possibile che più di un turista sia nella stessa città; ovvero, può essere che $a_i=a_i$ per una coppia i,j tale che $i\neq j$.

Ogni turista ha un'opinione su quanto sia interessante la loro visita di Utopia, rappresentata con un numero. Inizialmente l'opinione di ogni turista è 0. Per incoraggiare visite successive, il governo di Utopia vuole aumentare l'opinione del paese organizzando eventi in città selezionate. Quando un evento si tiene nella città c, tutti i turisti che si trovano lì in quel momento avranno la loro opinione aumentata di d, dove d è un valore che dipende dal tipo di evento.

Alcuni dei turisti hanno programmato di viaggiare tra le città durante la loro permanenza in Utopia. Anche se viaggiare da una città all'altra non richieda quasi alcun tempo grazie alle efficienti strade di Utopia, è comunque fastidioso e quindi riduce l'opinione dei turisti. Per essere precisi, un turista che viaggia in un percorso che consiste di k strade ridurrà la propria opinione di k (i turisti scelgono sempre la strada più corta tra le due città).

Ti è richiesto dal governo di Utopia di tenere traccia dell'opinione dei turisti man mano che viaggiano attraverso il paese. Come parte di questa richiesta, ti saranno date q query come parte dell'input. Ti è richiesto di eseguire e rispondere a tutte le query nell'ordine in cui appaiono nell'input.

Input

La prima riga dell'input contiene tre interi n,m,q ($2 \le n \le 200\,$ 000, $1 \le m,q \le 500\,$ 000) - il numero di città, turisti e query, rispettivamente.

La seconda riga contiene m interi $a_1, a_2, ..., a_m$ ($1 \le a_i \le n$), dove a_i rappresenta la città iniziale dell'i-esimo turista.

Le successive n-1 righe contengono ciascuna 2 interi: v_i e w_i ($i \le v_i$, $w_i \le n$, $v_i \ne w_i$), che indicano che esiste una strada tra le città v_i e w_i .

Le successive q righe descrivono le query nell'ordine in cui sono chieste. Ogni riga è in una delle seguenti tre forme:

- La lettera 't' seguita da tre interi f_i , g_i , c_i ($1 \le f_i \le g_i \le m$, $1 \le c_i \le n$), che indica che tutti i turisti con numeri da f_i a g_i (inclusi) viaggiano verso la città c_i . Coloro che già sono nella città c_i non si muovono, e la loro opinione non cambia.
- La lettera 'e' seguita da due interi c_i , d_i ($1 \le c_i \le n$, $0 \le d_i \le 10^9$), che indica che nella città c_i si tiene un evento che aumenta l'opinione dei turisti di d_i .
- La lettera 'q' seguita da uno degli interi v_i ($1 \le v_i \le m$), che rappresenta una domanda sull'opinione del turista v_i .

È garantito che esista almeno una query di tipo 'q' nell'input.

Output

Scrivi la risposta per tutte le query di tipo 'q', ciascuna sulla sua riga, nell'ordine in cui sono state richieste.

Sottoproblemi

Subtask 1 (10 punti): $n, m, q \le 200$

Subtask 2 (15 punti): $n,m,q \leq$ 2 000

Subtask 3 (25 punti): $m,q \leq$ 2 000

Subtask 4 (25 punti): Nessuna query di tipo 'e'

Subtask 5 (25 punti): Nessuna limitazione aggiuntiva.

Esempio di input

Esempio di output

0 -1 9 4 -7