Existence of Solutions and Fixed Points

Motivation

▶ In the last lecture we learned how to analyze how the solution to a parameterized optimization and its value change with a parameter.

Motivation

- ▶ In the last lecture we learned how to analyze how the solution to a parameterized optimization and its value change with a parameter.
- ▶ In doing so, we assumed the existence of a solution.

Motivation

- In the last lecture we learned how to analyze how the solution to a parameterized optimization and its value change with a parameter.
- ▶ In doing so, we assumed the existence of a solution.
- Now we drop this assumption and explore how we can guarantee that a solution to an optimization problem exists.

Weierstrass Theorem

▶ One of the most basic existence theorems we have is the Weierstrass theorem.

Weierstrass Theorem

Theorem

A continuous functional on a compact set achieves a maximum and a minimum.

 $\blacktriangleright \text{ Let } M = \sup_{x \in X} f(x).$

- $\blacktriangleright \text{ Let } M = \sup_{x \in X} f(x).$
- ▶ There exists a sequence $x^n \in X$ with $f(x^n) \to M$.

- ▶ Let $M = \sup_{x \in X} f(x)$.
- ▶ There exists a sequence $x^n \in X$ with $f(x^n) \to M$.
- ▶ Since the set X is compact, there exists a convergent subsequence $x^m \to x^*$ and $f(x^m) \to M$

- $\blacktriangleright \text{ Let } M = \sup_{x \in X} f(x).$
- ▶ There exists a sequence $x^n \in X$ with $f(x^n) \to M$.
- ▶ Since the set X is compact, there exists a convergent subsequence $x^m \to x^*$ and $f(x^m) \to M$
- ▶ Since f is continuous, $f(x^m) \rightarrow f(x^*)$.

- ▶ Let $M = \sup_{x \in X} f(x)$.
- ▶ There exists a sequence $x^n \in X$ with $f(x^n) \to M$.
- ▶ Since the set X is compact, there exists a convergent subsequence $x^m \to x^*$ and $f(x^m) \to M$
- ▶ Since f is continuous, $f(x^m) \rightarrow f(x^*)$.
- We conclude that $f(x^*) = M$.

▶ In the last lecture we met the theorem of the maximum and focused on how the continuity of a problem ensures some degree of continuity in the the solution correspondence and value function.

- In the last lecture we met the theorem of the maximum and focused on how the continuity of a problem ensures some degree of continuity in the the solution correspondence and value function.
- ▶ The theorem of the maximum will also provide conditions that imply a nonempty solution correspondence.

Theorem

Consider the constrained maximization problem

$$\max_{x \in G(x)} f(x, \theta)$$

If $f: X \times \Theta \to \mathbb{R}$ is continuous and the constraint correspondence $G: \theta \rightrightarrows X$ is continuous and compact-valued, then the value function $V(\theta)$ is continuous and the solution correspondence $x^*(\theta)$ is non-empty, compact-valued, and upper hemicontinuous.

Theorem

Consider the constrained maximization problem

$$\max_{x \in G(x)} f(x, \theta)$$

If $f: X \times \Theta \to \mathbb{R}$ is continuous and the constraint correspondence $G: \theta \rightrightarrows X$ is continuous and compact-valued, then the value function $V(\theta)$ is continuous and the solution correspondence $x^*(\theta)$ is non-empty, compact-valued, and upper hemicontinuous.

▶ Why is $x^*(\theta)$ non-empty when the conditions of the theorem of the maximum are satisfied?

▶ Theorem

Consider the constrained maximization problem

$$\max_{x \in G(x)} f(x, \theta)$$

If $f: X \times \Theta \to \mathbb{R}$ is continuous and the constraint correspondence $G: \theta \rightrightarrows X$ is continuous and compact-valued, then the value function $V(\theta)$ is continuous and the solution correspondence $x^*(\theta)$ is non-empty, compact-valued, and upper hemicontinuous.

- ▶ Why is $x^*(\theta)$ non-empty when the conditions of the theorem of the maximum are satisfied?
- ► A useful extension of the theorem of the maximum is the convex maximum theorem.

▶ Theorem

Consider the constrained maximization problem

$$\max_{x \in G(x)} f(x, \theta)$$

If $f: X \times \Theta \to \mathbb{R}$ is continuous and the constraint correspondence $G: \theta \rightrightarrows X$ is continuous and compact-valued, then the value function $V(\theta)$ is continuous and the solution correspondence $x^*(\theta)$ is non-empty, compact-valued, and upper hemicontinuous.

- ▶ Why is $x^*(\theta)$ non-empty when the conditions of the theorem of the maximum are satisfied?
- ► A useful extension of the theorem of the maximum is the convex maximum theorem.
- It states that if we add quasi-concavity of f and convexity of $G(\theta)$ to the conditions of the theorem of the maximum, then $x^*(\theta)$ will also be convex-valued.

▶ In game theory, we exploit fixed point theorems to show the existence of an equilibrium.

- ▶ In game theory, we exploit fixed point theorems to show the existence of an equilibrium.
- ▶ Recall that a **fixed point** of a self-mapping $f: X \to X$ is a point x^* such that $f(x^*) = x^*$.

- In game theory, we exploit fixed point theorems to show the existence of an equilibrium.
- ▶ Recall that a **fixed point** of a self-mapping $f: X \to X$ is a point x^* such that $f(x^*) = x^*$.
- ▶ For a correspondence $G: X \to X$, a fixed point is a point x^* such that $x^* \in G(x^*)$.

▶ The typical problem we have in game theory is as follows.

- The typical problem we have in game theory is as follows.
- Let $x^*(x; y, \theta)$ solve

$$\max_{x} f_1(x; y, \theta)$$

and let $y^*(y; x, \theta)$ solve

$$\max_{y} f_2(y; x, \theta)$$

- ▶ The typical problem we have in game theory is as follows.
- Let $x^*(x; y, \theta)$ solve

$$\max_{x} f_1(x; y, \theta)$$

and let $y^*(y; x, \theta)$ solve

$$\max_{y} f_2(y; x, \theta)$$

▶ We want to find two points x^* and y^* such that $x^* \in x^*(x; y^*, \theta)$ and $y^* \in y^*(y; x^*, \theta)$.

- ▶ The typical problem we have in game theory is as follows.
- Let $x^*(x; y, \theta)$ solve

$$\max_{x} f_1(x; y, \theta)$$

and let $y^*(y; x, \theta)$ solve

$$\max_{y} f_2(y; x, \theta)$$

- ▶ We want to find two points x^* and y^* such that $x^* \in x^*(x; y^*, \theta)$ and $y^* \in y^*(y; x^*, \theta)$.
- If these points exist, we know that an equilibrium to the model exists.

Fixed Point Theorems

► Fixed point theorems will help us identify when an equilibrium exists when we cannot solve for one explicitly.

Fixed Point Theorems

- ► Fixed point theorems will help us identify when an equilibrium exists when we cannot solve for one explicitly.
- You have already encountered one fixed point theorem earlier in the lecture on metric spaces, the Contraction Mapping Theorem (also known as Banach's fixed point theorem).

Fixed Point Theorems

- ► Fixed point theorems will help us identify when an equilibrium exists when we cannot solve for one explicitly.
- You have already encountered one fixed point theorem earlier in the lecture on metric spaces, the Contraction Mapping Theorem (also known as Banach's fixed point theorem).
- One of the simplest fixed point theorems is Brouwer's fixed point theorem.

▶ Theorem

Let X be a nonempty, compact, convex subset of a finite dimensional normed linear space. Every continuous function $f: X \to X$ has a fixed point.

► Theorem

Let X be a nonempty, compact, convex subset of a finite dimensional normed linear space. Every continuous function $f: X \to X$ has a fixed point.

▶ The theorem is difficult to prove in general but is very simple to show on \mathbb{R} .

► Theorem

Let X be a nonempty, compact, convex subset of a finite dimensional normed linear space. Every continuous function $f: X \to X$ has a fixed point.

- ▶ The theorem is difficult to prove in general but is very simple to show on \mathbb{R} .
- Note that there may exist multiple fixed points.

▶ Returning to our example, we can create a new solution correspondence $b(x, y; \theta) \equiv x^*(x; y, \theta) \times y^*(y; x, \theta)$ where for a given θ , $b: X \times Y \to X \times Y$.

- ▶ Returning to our example, we can create a new solution correspondence $b(x, y; \theta) \equiv x^*(x; y, \theta) \times y^*(y; x, \theta)$ where for a given θ , $b: X \times Y \to X \times Y$.
- ▶ If $X \times Y$ is a nonempty, compact, convex subset of a finite dimensional normed linear space and if each of the solution correspondences is single-valued, continuous, and nonempty, then b has a fixed point, (x^*, y^*) .

- ▶ Returning to our example, we can create a new solution correspondence $b(x, y; \theta) \equiv x^*(x; y, \theta) \times y^*(y; x, \theta)$ where for a given θ , $b: X \times Y \to X \times Y$.
- ▶ If $X \times Y$ is a nonempty, compact, convex subset of a finite dimensional normed linear space and if each of the solution correspondences is single-valued, continuous, and nonempty, then b has a fixed point, (x^*, y^*) .
- Brouwer's theorem is very useful but requires strict assumptions.

- ▶ Returning to our example, we can create a new solution correspondence $b(x, y; \theta) \equiv x^*(x; y, \theta) \times y^*(y; x, \theta)$ where for a given θ , $b: X \times Y \to X \times Y$.
- ▶ If $X \times Y$ is a nonempty, compact, convex subset of a finite dimensional normed linear space and if each of the solution correspondences is single-valued, continuous, and nonempty, then b has a fixed point, (x^*, y^*) .
- Brouwer's theorem is very useful but requires strict assumptions.
- For example, it requires b to be single-valued.

- ▶ Returning to our example, we can create a new solution correspondence $b(x, y; \theta) \equiv x^*(x; y, \theta) \times y^*(y; x, \theta)$ where for a given θ , $b: X \times Y \to X \times Y$.
- ▶ If $X \times Y$ is a nonempty, compact, convex subset of a finite dimensional normed linear space and if each of the solution correspondences is single-valued, continuous, and nonempty, then b has a fixed point, (x^*, y^*) .
- Brouwer's theorem is very useful but requires strict assumptions.
- ► For example, it requires *b* to be single-valued.
- ► Kakutani's theorem relaxes this assumption and generalizes Brouwer's theorem to correspondences.

Kakutani's Fixed Point Theorem

► Theorem

Let X be a nonempty, compact, convex subset of a finite dimensional normed linear space. Every closed, convex-valued correspondence $G: S \rightrightarrows S$ has a fixed point.

Kakutani's Fixed Point Theorem

▶ Theorem

Let X be a nonempty, compact, convex subset of a finite dimensional normed linear space. Every closed, convex-valued correspondence $G: S \rightrightarrows S$ has a fixed point.

Now if $x^*(x; y, \theta)$ and $y^*(y; x, \theta)$ are not singletons, we can use Kakutani's theorem to show that if b is closed and convex-valued, then b has a fixed point.

When solving games, we can combine the theorem of the maximum with Kakutani's theorem to show the existence of an equilibrium.

- When solving games, we can combine the theorem of the maximum with Kakutani's theorem to show the existence of an equilibrium.
- Formally, a strategic game is comprised of

- When solving games, we can combine the theorem of the maximum with Kakutani's theorem to show the existence of an equilibrium.
- Formally, a strategic game is comprised of
 - N players

- When solving games, we can combine the theorem of the maximum with Kakutani's theorem to show the existence of an equilibrium.
- Formally, a strategic game is comprised of
 - N players
 - for each player i a nonempty set S_i of strategies

- When solving games, we can combine the theorem of the maximum with Kakutani's theorem to show the existence of an equilibrium.
- Formally, a strategic game is comprised of
 - N players
 - for each player i a nonempty set S_i of strategies
 - ▶ a utility function $u_i: S \to \mathbb{R}$ on the *strategy space* $S = S_1 \times S_2 \times ... \times S_n$

- When solving games, we can combine the theorem of the maximum with Kakutani's theorem to show the existence of an equilibrium.
- Formally, a strategic game is comprised of
 - N players
 - for each player i a nonempty set S_i of strategies
 - ▶ a utility function $u_i: S \to \mathbb{R}$ on the *strategy space* $S = S_1 \times S_2 \times ... \times S_n$
- ▶ If we assume that each *S_i* is nomempty, compact, and convex, then *S* is also nonempty, compact, and convex.

- When solving games, we can combine the theorem of the maximum with Kakutani's theorem to show the existence of an equilibrium.
- Formally, a strategic game is comprised of
 - N players
 - for each player i a nonempty set S_i of strategies
 - ▶ a utility function $u_i: S \to \mathbb{R}$ on the *strategy space* $S = S_1 \times S_2 \times ... \times S_n$
- ▶ If we assume that each S_i is nomempty, compact, and convex, then S is also nonempty, compact, and convex.
- ▶ Let $B_i(s) \equiv \arg\max_{s_i \in S_i} u_i(s)$

► Theorem (The Theorem of the Convex Maximum)

Consider the constrained maximization problem

$$\max_{x \in G(x)} f(x, \theta)$$

If $f: X \times \Theta \to \mathbb{R}$ is continuous and quasi-concave and the constraint correspondence $G: \theta \rightrightarrows X$ is continuous, compact-valued, and convex, then the value function $V(\theta)$ is continuous and the solution correspondence $x^*(\theta)$ is non-empty, compact-valued, upper hemicontinuous, and convex.

► Theorem (The Theorem of the Convex Maximum)

Consider the constrained maximization problem

$$\max_{x \in G(x)} f(x, \theta)$$

If $f: X \times \Theta \to \mathbb{R}$ is continuous and quasi-concave and the constraint correspondence $G: \theta \rightrightarrows X$ is continuous, compact-valued, and convex, then the value function $V(\theta)$ is continuous and the solution correspondence $x^*(\theta)$ is non-empty, compact-valued, upper hemicontinuous, and convex.

▶ If we assume that all u_i are continuous and quasi-concave, then each B_i is compact valued, convex valued, and upper hemicontinuous by the theorem of the convex maximum (recall that we assume S_i is nonempty, compact, and convex)

► Theorem (Kakutani)

► Theorem (Kakutani)

Let X be a nonempty, compact, convex subset of a finite dimensional normed linear space. Every closed, convex-valued correspondence $G: S \rightrightarrows S$ has a fixed point.

▶ Now let $B(s) = B_1(s) \times ... \times B_n(s)$

▶ Theorem (Kakutani)

- ▶ Now let $B(s) = B_1(s) \times ... \times B_n(s)$
- ▶ Then B(s) is a closed, convex-valued correspondence.

► Theorem (Kakutani)

- ▶ Now let $B(s) = B_1(s) \times ... \times B_n(s)$
- ▶ Then B(s) is a closed, convex-valued correspondence.
- Because S is nonempty, compact, and convex and B is closed and convex valued, by Kakutani's theorem, B has a fixed point.

► Theorem (Kakutani)

- ▶ Now let $B(s) = B_1(s) \times ... \times B_n(s)$
- ▶ Then B(s) is a closed, convex-valued correspondence.
- ▶ Because *S* is nonempty, compact, and convex and *B* is closed and convex valued, by Kakutani's theorem, *B* has a fixed point.
- ▶ We refer to this point as a **Nash equilibrium** of the game.

► Recall that Brouwer's fixed point theorem requires that *f* be continuous.

- Recall that Brouwer's fixed point theorem requires that f be continuous.
- As we saw in the previous lecture, continuity of an objective function may be too strict of an assumption.

- ▶ Recall that Brouwer's fixed point theorem requires that f be continuous.
- As we saw in the previous lecture, continuity of an objective function may be too strict of an assumption.
- Best response functions will also be prone to having some discontinuities.

- ▶ Recall that Brouwer's fixed point theorem requires that f be continuous.
- As we saw in the previous lecture, continuity of an objective function may be too strict of an assumption.
- Best response functions will also be prone to having some discontinuities.
- We would still like to know if a solution exists when this is the case.

► Theorem

Every increasing function $f: X \to X$ on a complete lattice (X, \succeq) has a greatest and lowest fixed point.

▶ Theorem

Every increasing function $f: X \to X$ on a complete lattice (X, \succeq) has a greatest and lowest fixed point.

ightharpoonup A compact subset of $\mathbb R$ is a complete lattice.

▶ Theorem

Every increasing function $f: X \to X$ on a complete lattice (X, \succeq) has a greatest and lowest fixed point.

- ▶ A compact subset of \mathbb{R} is a complete lattice.
- ► Therefore any increasing function on a compact subset of R has a fixed point.

▶ Theorem

Every increasing function $f: X \to X$ on a complete lattice (X, \succeq) has a greatest and lowest fixed point.

- ▶ A compact subset of \mathbb{R} is a complete lattice.
- ► Therefore any increasing function on a compact subset of R has a fixed point.
- ▶ This is not true of a decreasing function.