EE3900 Gate Assignment-2

V Rahul - AI20BTECH11030

Download all python codes from

https://github.com/vrahul02/EE3900/tree/main/ Gate-Assignment-2/Codes

and latex-tikz codes from

https://github.com/vrahul02/EE3900/tree/main/ Gate-Assignment-2/Gate-Assignment-2. tex

PROBLEM GATE EC-2006 Q.53

A system with input x[n] and output y[n] is given as $y[n] = \left(\sin \frac{5}{6}\pi n\right) x(n)$. The system is:

- 1) linear, stable and invertible
- 2) non-linear, stable and non-invertible
- 3) linear, stable and non-invertible
- 4) linear, unstable and invertible

Solution

For linearity,

$$x(n) = x_1(n) (0.0.1)$$

$$\implies y_1(n) = \left(\sin\frac{5}{6}\pi n\right) x_1(n) \tag{0.0.2}$$

$$x(n) = x_2(n) (0.0.3)$$

$$\implies y_1(n) = \left(\sin\frac{5}{6}\pi n\right) x_1(n) \tag{0.0.4}$$

If

$$x(n) = x_1(n) + x_2(n) (0.0.5)$$

$$\implies y(n) = \left(\sin\frac{5}{6}\pi n\right)x_1(n) + \left(\sin\frac{5}{6}\pi n\right)x_1(n)$$
(0.0.6)

$$y(n) = \left(\sin\frac{5}{6}\pi n\right)(x_1(n) + x_2(n)) \tag{0.0.7}$$

$$\therefore y(n) = y_1(n) + y_2(n) \tag{0.0.8}$$

Thus, it is a linear system

Also for a bounded input we get bounded output.

Thus it is a stable system. Now if

$$n = 0$$
 (0.0.9)

$$y(n) = 0 (0.0.10)$$

And

$$n = 2$$
 (0.0.11)

$$y(n) = 0 (0.0.12)$$

For different values of input, output is same. Thus the system is non-invertible

Linearity	Linear
Stability	Stable
Invertibility	Non-Invertible

Thus option 3) is correct Numerical examples:

(a)
$$x(n) = 1$$

$$y(n) = \sin \frac{5}{6}\pi n \tag{0.0.13}$$

Fig. (a): Plot of output vs n when x(n) = 1

(b)
$$x(n) = n$$

$$y(n) = \left(\sin \frac{5}{6}\pi n\right) n \qquad (0.0.14)$$

Fig. (b): Plot of output vs n when x(n) = n