${\rm A~Web~of~Worlds~presents}$ The Ultimate Cheat Sheet for Astrophysics Students

Lachlan Marnoch www.webofworlds.net

 $\begin{array}{c} {\rm v} \ 1.0 \\ {\rm July} \ 28, \ 2018 \end{array}$

Contents

1	Phy	rsics 5
	1.1	Motion
		1.1.1 Velocity
		1.1.2 Acceleration
		1.1.3 Newton's Laws
		1.1.4 Momentum
		1.1.5 Centripetal Force
		1.1.6 Kinetic Energy
		1.1.7 Projectile Motion
		1.1.8 Rotation
		1.1.9 Euler-Lagrange and the Hamiltonian
	1.2	Oscillations
		1.2.1 Springs
	1.3	Materials
		1.3.1 Density
	1.4	Energy
		1.4.1 Work
	1.5	Forces
		1.5.1 Buoyancy (Archimedes' Principle)
		1.5.2 Friction
	1.6	Waves
		1.6.1 Wavelength
		1.6.2 Angular Frequency
	1.7	Newtonian Gravity
		1.7.1 Force of Gravity
		1.7.2 Gravitational Potential (potential energy per unit mass) 8
		1.7.3 Gravitational field
		1.7.4 Gravitational Potential Energy
		1.7.5 Kepler's Third Law
	1.8	Electromagnetism
		1.8.1 Notation
		1.8.2 Maxwell's Equations
		1.8.3 Lorentz Force
		1.8.4 Electric Field
		1.8.5 Dipole moment
		1.8.6 Electric potential
		1.8.7 Electric potential difference
		1.8.8 Electric potential energy
		1.8.9 Charge densities
		1.8.10 Current densities
		1.8.11 Circuits
		1.8.12 Capacitors
		1.8.13 Magnetic fields
		1.8.14 Inductors
		1.8.15 Materials
	1.9	Special Relativity

		1.9.1	Interval	13
		1.9.2	Four-vectors	14
		1.9.3	Frames of Reference	15
		1.9.4	Proper Velocity	15
	1 10		al Relativity	15
	1.10		Metrics	15
			Rindler coordinates	16
			Einstein notation	16
			Christoffel symbols	16
			Covariant derivatives	17
				17
			Riemann curvature tensor	
			Ricci curvature tensor	17
			Einstein's equations	17
	1.11		odynamics	17
			Ideal Gases	17
			Microstates	17
			Entropy	18
		1.11.4	Black bodies	18
	1.12	Quant	um Mechanics	18
		1.12.1	The Uncertainty Principle	18
		1.12.2	Bras and Kets	18
		1.12.3	Rules for an Inner Product	18
			The Born Rule	18
			Expectation	18
			Variance	19
			Standard Deviation	19
			Trace	19
			Partial Trace	19
			The Schrödinger Equation	19
				-
		1.12.11	Heisenberg equation of motion	19
		1.12.11		-
2	Astı	1.12.11 1.12.12	Heisenberg equation of motion	19
2	Ast 1 2.1	1.12.11 1.12.12 rophys	Heisenberg equation of motion	19 19
2		1.12.11 1.12.12 rophys	Heisenberg equation of motion	19 19 22
2		1.12.11 1.12.12 rophys Astron 2.1.1	Heisenberg equation of motion Operators ics & Astronomy netry Redshift	19 19 22 22 22
2		1.12.11 1.12.12 rophys Astron 2.1.1 2.1.2	Heisenberg equation of motion Operators ics & Astronomy netry Redshift Apparent magnitude	19 19 22 22 22 22
2		1.12.11 1.12.12 rophys Astron 2.1.1 2.1.2 2.1.3	Heisenberg equation of motion Operators ics & Astronomy netry Redshift Apparent magnitude Absolute magnitude	19 19 22 22 22 22 22 22
2		1.12.11 1.12.12 rophys Astron 2.1.1 2.1.2 2.1.3 2.1.4	Heisenberg equation of motion Operators ics & Astronomy netry Redshift Apparent magnitude Absolute magnitude Relative magnitudes	19 19 22 22 22 22 22 22 22
2		1.12.11 1.12.12 rophys Astron 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5	Heisenberg equation of motion Operators ics & Astronomy netry Redshift Apparent magnitude Absolute magnitude Relative magnitudes Flux-magnitude relationship.	19 19 22 22 22 22 22 22 22 22
2		1.12.11 1.12.12 rophys Astron 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6	Heisenberg equation of motion Operators ics & Astronomy netry Redshift Apparent magnitude Absolute magnitude Relative magnitudes Flux-magnitude relationship Color	19 19 22 22 22 22 22 22 22 22 22
2	2.1	1.12.11 1.12.12 rophys Astron 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7	Heisenberg equation of motion Operators ics & Astronomy netry Redshift Apparent magnitude Absolute magnitude Relative magnitudes Flux-magnitude relationship Color Metallicity	19 19 22 22 22 22 22 22 22 22 22 22 22
2		1.12.11 1.12.12 rophys Astron 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 Stars	Heisenberg equation of motion Operators ics & Astronomy netry Redshift Apparent magnitude Absolute magnitude Relative magnitudes Flux-magnitude relationship Color Metallicity	19 19 22 22 22 22 22 22 22 22 22 22 22 22 22
2	2.1	1.12.11 1.12.12 rophys Astron 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 Stars . 2.2.1	Heisenberg equation of motion Operators ics & Astronomy netry Redshift Apparent magnitude Absolute magnitude Relative magnitudes Flux-magnitude relationship Color Metallicity Stellar Structure Equations	19 19 22 22 22 22 22 22 22 22 22 22 22 22 22
2	2.1	1.12.11 1.12.12 rophys Astron 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 Stars . 2.2.1 2.2.2	Heisenberg equation of motion Operators ics & Astronomy netry Redshift Apparent magnitude Absolute magnitude Relative magnitudes Flux-magnitude relationship Color Metallicity Stellar Structure Equations Timescales	19 19 22 22 22 22 22 22 22 22 22 22 22 22 23
2	2.1	1.12.11 1.12.12 rophys Astron 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 Stars 2.2.1 2.2.2 2.2.3	Heisenberg equation of motion Operators ics & Astronomy netry Redshift Apparent magnitude Absolute magnitude Relative magnitudes Flux-magnitude relationship Color Metallicity Stellar Structure Equations Timescales Gravitational potential energy	19 19 22 22 22 22 22 22 22 22 22 22 22 22 22
2	2.1	1.12.11 1.12.12 rophys Astron 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 Stars . 2.2.1 2.2.2 2.2.3 2.2.4	Heisenberg equation of motion Operators ics & Astronomy netry Redshift Apparent magnitude Absolute magnitude Relative magnitudes Flux-magnitude relationship Color Metallicity Stellar Structure Equations Timescales Gravitational potential energy Eddington Limit (hydrostatic equilibrium)	19 19 22 22 22 22 22 22 22 22 22 22 22 23 23
2	2.1	1.12.11 1.12.12 rophys Astron 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 Stars . 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	Heisenberg equation of motion Operators ics & Astronomy netry Redshift Apparent magnitude Absolute magnitude Relative magnitudes Flux-magnitude relationship Color Metallicity Stellar Structure Equations Timescales Gravitational potential energy Eddington Limit (hydrostatic equilibrium) Mass-Luminosity Relationship	19 19 22 22 22 22 22 22 22 22 22 22 23 23 23
2	2.1	1.12.11 1.12.12 rophys Astron 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 Stars 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 Galaxi	Heisenberg equation of motion Operators ics & Astronomy netry Redshift Apparent magnitude Absolute magnitude Relative magnitudes Flux-magnitude relationship Color Metallicity Stellar Structure Equations Timescales Gravitational potential energy Eddington Limit (hydrostatic equilibrium) Mass-Luminosity Relationship es	19 19 22 22 22 22 22 22 22 22 22 22 23 23 23
2	2.1	1.12.11 1.12.12 rophys Astron 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 Stars . 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 Galaxi 2.3.1	Heisenberg equation of motion Operators ics & Astronomy netry Redshift Apparent magnitude Absolute magnitude Relative magnitudes Flux-magnitude relationship Color Metallicity Stellar Structure Equations Timescales Gravitational potential energy Eddington Limit (hydrostatic equilibrium) Mass-Luminosity Relationship es Hubble Eliptical Galaxy Classification	19 19 22 22 22 22 22 22 22 22 22 22 23 23 23
2	2.1	1.12.11 1.12.12 rophys Astron 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 Stars . 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 Galaxi 2.3.1 2.3.2	Heisenberg equation of motion Operators ics & Astronomy netry Redshift Apparent magnitude Absolute magnitude Relative magnitudes Flux-magnitude relationship Color Metallicity Stellar Structure Equations Timescales Gravitational potential energy Eddington Limit (hydrostatic equilibrium) Mass-Luminosity Relationship es Hubble Eliptical Galaxy Classification Sérsic Profile	19 19 22 22 22 22 22 22 22 22 22 22 23 23 23
2	2.1	1.12.11 1.12.12 rophys Astron 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 Stars . 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 Galaxi 2.3.1 2.3.2 2.3.3	Heisenberg equation of motion Operators ics & Astronomy netry Redshift Apparent magnitude Absolute magnitude Relative magnitudes Flux-magnitude relationship Color Metallicity Stellar Structure Equations Timescales Gravitational potential energy Eddington Limit (hydrostatic equilibrium) Mass-Luminosity Relationship es Hubble Eliptical Galaxy Classification Sérsic Profile Density of stars in the Milky Way Galaxy	19 19 22 22 22 22 22 22 22 22 22 23 23 23 23
2	2.1	1.12.11 1.12.12 rophys Astron 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 Stars 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 Galaxi 2.3.1 2.3.2 2.3.3 Black	Heisenberg equation of motion Operators ics & Astronomy netry Redshift Apparent magnitude Absolute magnitude Relative magnitudes Flux-magnitude relationship Color Metallicity Stellar Structure Equations Timescales Gravitational potential energy Eddington Limit (hydrostatic equilibrium) Mass-Luminosity Relationship es Hubble Eliptical Galaxy Classification Sérsic Profile Density of stars in the Milky Way Galaxy Holes	19 19 22 22 22 22 22 22 22 22 22 22 23 23 23
2	2.2	1.12.11 1.12.12 rophys Astron 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 Stars . 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 Galaxi 2.3.1 2.3.2 2.3.3 Black i 2.4.1	Heisenberg equation of motion Operators ics & Astronomy netry Redshift Apparent magnitude Absolute magnitude Relative magnitudes Flux-magnitude relationship Color Metallicity Stellar Structure Equations Timescales Gravitational potential energy Eddington Limit (hydrostatic equilibrium) Mass-Luminosity Relationship es Hubble Eliptical Galaxy Classification Sérsic Profile Density of stars in the Milky Way Galaxy Holes Schwarszehild Radius	19 19 22 22 22 22 22 22 22 22 22 22 23 23 23
2	2.2	1.12.11 1.12.12 rophys Astron 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 Stars . 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 Galaxi 2.3.1 2.3.2 2.3.3 Black i 2.4.1	Heisenberg equation of motion Operators ics & Astronomy netry Redshift Apparent magnitude Absolute magnitude Relative magnitudes Flux-magnitude relationship Color Metallicity Stellar Structure Equations Timescales Gravitational potential energy Eddington Limit (hydrostatic equilibrium) Mass-Luminosity Relationship es Hubble Eliptical Galaxy Classification Sérsic Profile Density of stars in the Milky Way Galaxy Holes Schwarszchild Radius mentation	19 19 22 22 22 22 22 22 22 22 22 22 22 23 23
2	2.12.22.32.4	1.12.11 1.12.12 rophys Astron 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 Stars 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 Galaxi 2.3.1 2.3.2 2.3.3 Black 1 2.5.1 Instrum 2.5.1	Heisenberg equation of motion Coperators ics & Astronomy netry Redshift Apparent magnitude Absolute magnitude Relative magnitudes Flux-magnitude relationship Color Metallicity Stellar Structure Equations Timescales Gravitational potential energy Eddington Limit (hydrostatic equilibrium) Mass-Luminosity Relationship es Hubble Eliptical Galaxy Classification Sérsic Profile Density of stars in the Milky Way Galaxy Holes Schwarszchild Radius mentation Lensmaker's equation	19 19 22 22 22 22 22 22 22 22 22 22 23 23 23
2	 2.1 2.2 2.3 2.4 	1.12.11 1.12.12 rophys Astron 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 Stars 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 Galaxi 2.3.1 2.3.2 2.3.3 Black 1 2.4.1 Instrui	Heisenberg equation of motion Operators ics & Astronomy metry Redshift Apparent magnitude Absolute magnitude Relative magnitudes Flux-magnitude relationship Color Metallicity Stellar Structure Equations Timescales Gravitational potential energy Eddington Limit (hydrostatic equilibrium) Mass-Luminosity Relationship es Hubble Eliptical Galaxy Classification Sérsic Profile Density of stars in the Milky Way Galaxy Holes Schwarszchild Radius mentation Lensmaker's equation Focal ratio / Focal number	19 19 22 22 22 22 22 22 22 22 22 22 22 23 23
2	 2.1 2.2 2.3 2.4 	1.12.11 1.12.12 rophys Astron 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 Stars 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 Galaxi 2.3.1 2.3.2 2.3.3 Black 1 2.5.1 Instrum 2.5.1	Heisenberg equation of motion Coperators ics & Astronomy netry Redshift Apparent magnitude Absolute magnitude Relative magnitudes Flux-magnitude relationship Color Metallicity Stellar Structure Equations Timescales Gravitational potential energy Eddington Limit (hydrostatic equilibrium) Mass-Luminosity Relationship es Hubble Eliptical Galaxy Classification Sérsic Profile Density of stars in the Milky Way Galaxy Holes Schwarszchild Radius mentation Lensmaker's equation	19 19 22 22 22 22 22 22 22 22 22 22 23 23 23

		2.5.5 2.5.6 2.5.7 2.5.8 2.5.9 2.5.10 2.5.11	Nyquist sampling24Plate scale24Fitting error24Adaptive optics error25Signal-to-noise ratio25Atmospheric Extinction25Rocket science25
3		hemat	
	3.1		on
	3.2		a
		3.2.1	Factorisation
		3.2.2	Absolute Value
		3.2.3	Quadratics
		3.2.4	Logarithms
		3.2.5	Vectors
		3.2.6	Factorials
		3.2.7	Inner product definition
		3.2.8	Complex Numbers
		3.2.9	Power Series
		3.2.10	Matrix Operations
		3.2.11	Matrix Types
		3.2.12	Change of Basis Unitary
			Commutator
		3.2.14	Anticommutator
		3.2.15	Cauchy-Schwarz Inequality
	3.3	Geome	try
		3.3.1	Pythagorean theorem
		3.3.2	Properties of shapes
		3.3.3	Properties of solids
		3.3.4	Circular formulae
		3.3.5	Useful Functions
		3.3.6	Coordinates
		3.3.7	Hyperbolic Functions
	3.4	Trigon	ometry
		3.4.1	Identities
	3.5		us
		3.5.1	Limits
		3.5.2	Properties
		3.5.3	Differentiation
		3.5.4	Partial Differentiation
		3.5.5	The Differential
		3.5.6	Line Element
		3.5.7	Integration
		3.5.8	Vector Calculus
		3.5.9	Dirac Delta Function
		3.5.10	Approximations
	~		
4		tistics	45
	4.1		ce
	4.2	Standa	ard Deviation
A	Valı	ies	46
		Physic	
			Physical Constants
		A.1.2	Useful Quantities
	A.2		omy
	-		Useful Quantities
	A.3		matics

В	Uni	ts of Measurement	49
	B.1	Natural Units	49
	B.2	SI System	49
		B.2.1 Base Units	49
		B.2.2 Derived Units	50
	B.3	CGS (centimetres-grams-seconds)	51
	B.4	Astronomy units	52
		B.4.1 Astronomical system	52
		B.4.2 Equatorial Coordinate System	53
	B.5	United States customary units (aka Imperial Units)	53
		B.5.1 Length	53
	B.6	Degrees of Angle	53
	B.7	Miscellaneous Units	53
		B.7.1 Pressure	53
	B.8	Prefixes	54
\mathbf{C}	Mat	chematical Stuff	55
O		Trigonometric Values	55
	0.1	C.1.1 Pythagorean Triples	55
		C.1.1 Tythagorean Tripics	55
D	Bor	ing stuff	56
		Version History	56
		Licensing	56
	D.3		56
	D.4	Credits	56

Chapter 1

Physics

1.1 Motion

1.1.1 Velocity

$$\bullet \qquad \vec{v} = \frac{\Delta \vec{x}}{\Delta t} = \frac{d\vec{x}}{dt} = \vec{x}$$

1.1.2 Acceleration

$$\vec{a} = \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt} = \frac{d^2 \vec{x}}{dt^2} = \vec{x}$$

1.1.3 Newton's Laws

Newton's First Law

• When viewed in an inertial reference frame, an object either remains at rest or continues to move at a constant velocity, unless acted upon by a net force.

Newton's Second Law

•
$$\vec{F}_{net} = m\vec{a} = \frac{\mathrm{d}\vec{p}}{\mathrm{d}t}$$

Newton's Third Law

$$\bullet \qquad \vec{F}_A = -\vec{F}_B$$

• When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body.

1.1.4 Momentum

•
$$\vec{p} = \gamma m \vec{v} \approx m \vec{v}$$

$$\vec{F} = \frac{\Delta \vec{p}}{\Delta t} = \frac{d\vec{p}}{dt}$$

1.1.5 Centripetal Force

$$\bullet \qquad F_c = \frac{mv^2}{r}$$

1.1.6 Kinetic Energy

$$\bullet \qquad K = \frac{1}{2}mv^2$$

1.1.7 Projectile Motion

- $\bullet \qquad v_y^2 = u_y^2 + 2a_y \Delta y$
- $\bullet \qquad \qquad x = u_x t$

1.1.8 Rotation

Angular Velocity

- $\bullet \qquad \qquad \omega = \frac{\mathrm{d}\theta}{\mathrm{d}t} = \dot{\theta}$
- $\omega = \frac{v}{r}$
- $\vec{v} = \vec{r} \times \vec{\omega}$

Angular Acceleration

•
$$\alpha = \frac{\mathrm{d}\omega}{\mathrm{d}t} = \frac{\mathrm{d}^2\theta}{\mathrm{d}t^2} = \dot{\omega} = \ddot{\theta}$$

Moment of Inertia

Point Mass

•
$$I = mr^2$$

Several Point Masses

$$\bullet \qquad \qquad I = \sum mr^2$$

 $Continuous\ mass$

•
$$I = \int r^2 dm$$

Parallel axis theorem

$$\bullet \qquad I = I_{com} + md^2$$

Thin disc rotating about centre

$$\bullet \qquad I = \frac{MR^2}{2}$$

Thin hoop rotating about centre

•
$$I = MR^2$$

Thin rod rotating about centre

$$\bullet \qquad I = \frac{ML^2}{12}$$

Thin rod rotating about end

$$\bullet \qquad I = \frac{ML^2}{3}$$

Rotational Kinetic Energy

$$\bullet K_{rot} = \frac{1}{2}I\omega^2$$

Total Kinetic Energy

•
$$K_{tot} = K_{trans} + K_{rot} = \frac{1}{2}(mr_{com}^2 + I_{com})\omega^2$$

6

Angular Momentum

$$\bullet \qquad \qquad \vec{L} = I\vec{\omega} = \vec{r} \times \vec{p}$$

Torque

$$\bullet \ \vec{\tau} = I\vec{\alpha} = \frac{\mathrm{d}L}{\mathrm{d}t} = \vec{r} \times \vec{F}$$

1.1.9 Euler-Lagrange and the Hamiltonian

Lagrangian

•
$$\ell = T - V = \sum_{lm} a(q)\dot{q}_l\dot{q}_m$$

$$\bullet \qquad = K(\dot{q}_l) - U(q_l)$$

 $Generalised\ coordinates\ {\it \& momenta}$

Euler-Lagrange Equation

Action

•
$$S[x(t)] = \int_{t_A}^{t_B} \ell(\dot{x}(t), x(t)) dt$$

Hamiltonian

$$\bullet \qquad \mathcal{H} = \sum_{l} p_{l} \dot{q} - L$$

$$\dot{P} = -\frac{\partial H}{\partial Q}$$

$$\bullet \qquad \quad \dot{Q} = \frac{\partial H}{\partial P}$$

$$\bullet \qquad \dot{P} = -\omega^2 Q$$

•
$$\dot{Q} = P$$

1.2 Oscillations

1.2.1 Springs

Force of a Spring

$$\vec{F} = -k_s \vec{x}$$

Potential Energy of a Spring

$$U_s = \frac{1}{2}k_s x^2$$

Angular Frequency of a Spring

•
$$\omega = \sqrt{\frac{k_s}{m}}$$

- 1.3 Materials
- 1.3.1 Density
- 1.4 Energy
- 1.4.1 Work
 - $W = \int_{a}^{b} \vec{F} \cdot d\vec{l} \approx \vec{F} \cdot \vec{s}$
- 1.5 Forces
- 1.5.1 Buoyancy (Archimedes' Principle)
 - $F_{buoy} = m_{displaced}g = \rho_d V_d g$
- 1.5.2 Friction
 - $F_K \approx \mu_K F_\perp$
 - $F_S \leq \mu_S F_\perp$
- 1.6 Waves
 - $a\sin(\omega t kx + \phi)$
 - $k = \frac{2\pi}{\lambda}$
- 1.6.1 Wavelength
 - $v = f\lambda$
- 1.6.2 Angular Frequency
 - $\bullet \qquad \qquad \omega = \frac{2\pi}{T} = 2\pi f$
- 1.7 Newtonian Gravity
- 1.7.1 Force of Gravity
 - $\vec{F}_G = \frac{GmM}{r^2}\hat{r} = -m\vec{\nabla}\Phi(\vec{r}) \approx -mg\hat{y} = m\vec{g}$
- 1.7.2 Gravitational Potential (potential energy per unit mass)
 - $\Phi(\vec{r}) = -\sum_{i} \frac{GM(\vec{r_i})}{|\vec{r} \vec{r_i}|} = -\int \frac{G\mu(\vec{r'})}{|\vec{r} \vec{r'}|} d^3\vec{r'}$
- 1.7.3 Gravitational field
 - $\bullet \qquad \qquad \vec{g}(\vec{r}) = \frac{GM}{r^2} = -\nabla \Phi(\vec{r})$
- 1.7.4 Gravitational Potential Energy
 - $\bullet \qquad \qquad U_G = -\frac{GmM}{r} \approx mgh$

1.7.5 Kepler's Third Law

1.8 Electromagnetism

1.8.1 Notation

$$\bullet \qquad \vec{i} = \vec{r} - \vec{r'}$$

1.8.2 Maxwell's Equations

	Integral form	Differential form
Gauss's Law	$\iint_{S} \vec{E} \cdot d\vec{a} = \frac{1}{\varepsilon_0} \iiint_{V} \rho \ dV$	$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$
	$=\frac{\sum Q_{enc}}{\varepsilon_0}$	
Gauss's Law for Magnetism	$\displaystyle igoplus_S ec{B} \cdot \mathrm{d} ec{a} = 0$	$\vec{\nabla} \cdot \vec{B} = 0$
Maxwell-Faraday equation	$\oint_b \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \iint_S \vec{B} \cdot d\vec{a}$	$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$
Ampére's circuital law	$\oint_{b} \vec{B} \cdot d\vec{l} = \mu_{0} \iint_{S} \vec{J} \cdot d\vec{a} + \mu_{0} \varepsilon_{0} \frac{d}{dt} \iint_{S} \vec{E} \cdot d\vec{a}$	$\vec{\nabla} \times \vec{B} = \mu_0 (\vec{J} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t})$
	$= \mu_0 (I_{enc} + \varepsilon_0 \frac{\mathrm{d}}{\mathrm{d}t} \int_S \vec{E} \cdot \mathrm{d}\vec{a})$	

9

1.8.3 Lorentz Force

On a point charge

$$\bullet \qquad \vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

On a current

•
$$d\vec{F} = I \int d\vec{l} \times \vec{B}$$

$$\bullet \qquad \vec{F} = \vec{I}L \times \vec{B}$$

1.8.4 Electric Field

•
$$\vec{E} = \int_{V} \frac{\rho(\vec{r'})}{i^2} \hat{\imath} d\tau$$

From a single point charge

$$\bullet \qquad \qquad \vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \hat{r}$$

From a dipole

$$\bullet \qquad \qquad |\vec{E}_axis| \approx \frac{2p}{4\pi\varepsilon_0 r^3}$$

$$ullet$$
 $|ec{E}_{\perp}|pprox rac{p}{4\piarepsilon_0 r^3}$

1.8.5 Dipole moment

•
$$\vec{p} = q\vec{d}$$

1.8.6 Electric potential

$$\bullet \qquad V = \frac{1}{4\pi\varepsilon_0} \frac{Q}{\imath}$$

$$\bullet \qquad \nabla^2 V = \frac{-\rho}{\varepsilon_0}$$

In a single-point charge field

1.8.7 Electric potential difference

In a single-point charge field

$$\qquad \qquad \Delta(\vec{r}) = \frac{1}{4\pi\varepsilon_0} Q(\frac{1}{b} - \frac{1}{a})$$

1.8.8 Electric potential energy

•
$$U_E = q\Delta V = \frac{1}{4\pi\varepsilon_0} \frac{qQ}{\imath}$$

Energy stored in an electrostatic field distribution

•
$$U_E = \frac{1}{2} = \epsilon_0 E^2 \times volume$$

1.8.9 Charge densities

Surface

•
$$\sigma = \frac{\mathrm{d}q}{\mathrm{d}a} = \frac{Q}{A}$$

Line

•
$$\lambda = \frac{\mathrm{d}q}{\mathrm{d}l} = \frac{Q}{L}$$

1.8.10 Current densities

Volume

•
$$\vec{J} = \frac{d\vec{I}}{d\vec{a}_{\perp}} = \frac{I}{A_{\perp}} = \sigma(\vec{E} + \vec{v} \times B) = |q|nu(\vec{E} + \vec{v} \times B)$$

$$\bullet \qquad \vec{\nabla} \cdot \vec{J} = 0$$

Surface

$$\bullet \qquad \qquad \vec{K} = \frac{\,\mathrm{d}\vec{I}}{\,\mathrm{d}\vec{l}_\perp} = \frac{I}{l} = \sigma\vec{v}$$

1.8.11 Circuits

Electron drift velocity

•
$$\bar{v} = u\vec{E}_{net}$$

Current per unit charge

•
$$i = nA_{cs}\bar{v} = nA_{cs}uE_{net}$$

Current

•
$$I = ei = enA_{cs}uE_{net} = \frac{\mathrm{d}q}{\mathrm{d}t}$$

Electrical Power

$$\bullet \qquad P = IV = I^2R$$

Voltage (Electric potential difference)

•
$$V = \Delta V = IR = -\varepsilon$$

Electromotive Force (EMF) from a Non-Coulomb force

$$\bullet \qquad \quad \epsilon = \frac{F_{NC}d}{e}$$

Resistance

•
$$R = \frac{L\rho}{A} = \frac{L}{\sigma A}$$

$$\bullet \qquad \qquad R_{series} = R_1 + R_2 + \dots + R_n$$

$$\bullet \qquad \qquad \frac{1}{R_{parallel}} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_n}$$

1.8.12 Capacitors

Capacitance

$$\bullet \qquad C = \frac{Q}{V} = \frac{\varepsilon A}{d} = \frac{k\varepsilon_0 A}{d}$$

Energy stored in a capacitor

$$\bullet \qquad \qquad W = \frac{CV^2}{2}$$

Electric field in a capacitor

•
$$E = \frac{Q}{\varepsilon_0 A}$$

Potential difference across a capacitor

11

1.8.13 Magnetic fields

$$\bullet \qquad \vec{B}(\vec{z}) = \frac{\mu_0}{4\pi} \int \frac{\vec{I} \times \hat{z}}{z^2} \, dl$$

$$\bullet \qquad d\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \hat{\imath}}{\imath^2} = \frac{\mu_0}{4\pi} \frac{I \ d\vec{l} \times \hat{\imath}}{\imath^2}$$

Magnetic field due to a wire

$$\bullet \qquad \vec{B} = \frac{\mu_0}{4\pi} \frac{2I}{r} \hat{\phi}$$

Magnetic vector potential

•
$$\vec{A}(\vec{\imath}) = \frac{\mu_0}{4\pi} \int \frac{\vec{J}(\vec{r'})}{\imath} d\tau$$

$$\bullet \qquad \vec{\nabla} \times \vec{A} = \vec{B}$$

$$\bullet \qquad \vec{\nabla} \times (\vec{\nabla} \times \vec{A}) = -\mu_0 \vec{J}$$

$$\bullet \qquad \vec{\nabla} \cdot \vec{A} = 0$$

1.8.14 Inductors

•
$$\varepsilon = -LI$$

Energy stored in an inductor

$$\bullet W = \frac{LI^2}{2}$$

1.8.15 Materials

Macroscopic Maxwell's Equations (Materials)

	Integral form	Differential form
Gauss's Laws	$\iint\limits_{S} \vec{P} \cdot d\vec{a} = -\sum Q_{B}$	$\vec{\nabla} \cdot \vec{P} = -\rho_B$
	$\iint\limits_{S} \vec{D} \cdot \mathrm{d}\vec{a} = \sum Q_f$	$\vec{\nabla} \cdot \vec{P} = -\rho_B$ $\vec{\nabla} \cdot \vec{D} = \rho_f$
Gauss's Law for Magnetism	$\iint\limits_{S} \vec{B} \cdot \mathrm{d}\vec{a} = 0$	$\vec{\nabla} \cdot \vec{B} = 0$
Maxwell-Faraday equation	$\oint_b \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \iint_S \vec{B} \cdot d\vec{a}$	$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$
Ampére's circuital law	$\oint_b \vec{H} \cdot d\vec{l} = I_{f,enc} + \frac{\partial}{\partial t} \iint_S \vec{D} \cdot d\vec{a}$	$\vec{\nabla} \times \vec{H} = \vec{J_f} + \frac{\partial \vec{D}}{\partial t}$

Dielectric constant

$$\bullet \qquad \qquad k = \frac{\varepsilon}{\varepsilon_0} = \varepsilon_r$$

$$\bullet \qquad \varepsilon = k\varepsilon_0 = \varepsilon_r \varepsilon$$

Susceptibility

•
$$\chi_e = 1 - \varepsilon_r$$

Polarisability

$$\vec{P} = \varepsilon_0 \chi_e \vec{E} = n\vec{p}$$

Bound Charge

Surface

$$\bullet \qquad \qquad \sigma_B = \vec{p} \cdot \hat{n}$$

Volume

$$\bullet \qquad \qquad \rho_B = -\vec{\nabla} \cdot \vec{P}$$

Total

$$\bullet \qquad Q_B = \sigma_B + \rho_B = \vec{p} \cdot \hat{n} - \vec{\nabla} \cdot \vec{P}$$

Electric displacement

•
$$\vec{D} = \varepsilon \vec{E} = k\varepsilon_0 \vec{E} = \varepsilon_0 \vec{E} + \vec{P}$$

Magnetic field

$$\bullet \qquad \qquad \vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M}$$

Magnetic dipole

$$\bullet \qquad \quad \vec{m} = I\vec{a}$$

Bound current

•
$$\vec{J}_B = \vec{\nabla} \times \vec{M}$$

$$\bullet \qquad \vec{K}_B = \vec{M} \times \hat{n}$$

1.9 Special Relativity

1.9.1 Interval

$$ds^2 = -c^2 dt^2 + dx^2 + dy^2 + dz^2$$

• $\Delta s^2 < 0$ is a timelike interval. Events separated by this interval can be causally related.

• $\Delta s^2 = 0$ is a lightlike interval. Events separated by this interval can be causally related, but only by a lightspeed signal.

• $\Delta s^2 > 0$ is a spacelike interval. Events separated by this interval CANNOT be causally related.

Gamma Factor

$$\bullet \qquad \qquad \gamma = \frac{dt}{d\tau}$$

Mass-energy

•
$$E_{rest} = mc^2$$

$$\bullet \qquad E = \gamma mc^2 = \frac{1}{\sqrt{1 - (\frac{v}{c})^2}} mc^2$$

Relativistic kinetic energy

$$\bullet \qquad K = \gamma mc^2 - mc^2$$

Length contraction

$$\bullet \qquad l_v = \frac{l_0}{\gamma} = l_0 \sqrt{1 - (\frac{v}{c})^2}$$

Time dilation

$$\bullet \qquad t_v = \gamma t_0 = \frac{t_0}{\sqrt{1 - (\frac{v}{c})^2}}$$

Mass dilation

$$\bullet \qquad m_v = \gamma m_0 = \frac{m_0}{\sqrt{1 - (\frac{v}{c})^2}}$$

Relative Velocity

$$u_x' = \frac{\Delta x'}{\Delta t} = \frac{u_x - v_x}{1 - \frac{v_x u_x}{c^2}}$$

Relativistic Momentum

$$\bullet \qquad \qquad \vec{p} = \gamma \vec{v} = \frac{m\vec{v}}{\sqrt{1 - (v/c)^2}}$$

1.9.2 Four-vectors

Four-space

•
$$\mathbf{s} = \mathbf{x} = \begin{bmatrix} ct \\ x \\ y \\ z \end{bmatrix}$$

Four-velocity

$$\mathbf{u} = \frac{d\mathbf{s}}{d\tau} = \gamma \begin{bmatrix} c \\ v_x \\ v_y \\ v_z \end{bmatrix}$$

Four-momentum

$$\bullet \qquad \mathbf{p} = \begin{bmatrix} E/c \\ p_x \\ p_y \\ p_z \end{bmatrix} = \gamma m \begin{bmatrix} c \\ v_x \\ v_y \\ v_z \end{bmatrix} = m\mathbf{u}$$

14

1.9.3 Frames of Reference

Condition for an inertial frame

$$\bullet \qquad \qquad \frac{d^2x}{dt^2} = \frac{d^2y}{dt^2} = \frac{d^2z}{dt^2} = 0$$

Galilean Transformations

•
$$x' = x + vt$$

•
$$y' = y$$

•
$$z' = z$$

• All assuming
$$x$$
 is along the axis of motion and $x = x'$ when $t = 0$.

Lorentz Boosts

$$\bullet \qquad t' = \gamma (t - \frac{vx}{c^2})$$

•
$$x' = \gamma(x - vt)$$

•
$$y' = y$$

•
$$z' = z$$

•
$$(x \text{ is along the axis of motion})$$

$$\bullet \qquad \begin{bmatrix} ct' \\ x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \gamma & -v\gamma & 0 & 0 \\ -v\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} ct \\ x \\ y \\ z \end{bmatrix}$$

General Lorentz transformation

$$\bullet \qquad \begin{bmatrix} b'^0 \\ b'^1 \\ b'^2 \\ b'^3 \end{bmatrix} = \begin{bmatrix} \gamma & -v\gamma & 0 & 0 \\ -v\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} b^0 \\ b^1 \\ b^2 \\ b^3 \end{bmatrix}$$

Proper Time

•
$$\tau = \int_{t_A}^{t_B} \frac{1}{\gamma} dt = \int_{t_A}^{t_B} \sqrt{1 - \frac{v^2(t)}{c^2}} dt$$

1.9.4 Proper Velocity

•
$$\mathbf{u} = \frac{\mathrm{d}\mathbf{s}}{\mathrm{d}\tau}$$

1.10 General Relativity

1.10.1 Metrics

Minkowski

$$ds^2 = -c^2 dt^2 + dx^2 + dy^2 + dz^2$$

 ${\bf Schwarzschild}$

$$\bullet \qquad g = \begin{bmatrix} -(1 - \frac{2GM}{c^2 r}) & 0 & 0 & 0 \\ 0 & (1 - \frac{2GM}{c^2 r})^{-1} & 0 & 0 \\ 0 & 0 & r^2 & 0 \\ 0 & 0 & 0 & r^2 \sin^2 \theta \end{bmatrix}$$

•
$$ds^2 = -(1 - \frac{2GM}{c^2r})c^2 dt^2 + (1 - \frac{2GM}{c^2r})^{-1} dr^2 + r^2 d\theta^2 + r^2 \sin^2\theta d\phi^2)$$

1.10.2 Rindler coordinates

Line element

•
$$ds^2 = -(1 + \frac{gx'}{c^2})^2 (c dt')^2 + dx'$$

1.10.3 Einstein notation

• Contravariant: e^{α}

• Covariant: e_{α}

$$\bullet t_{\alpha\beta} = g_{\beta\gamma} t_{\alpha}{}^{\gamma}$$

$$\bullet \qquad t_{\alpha}{}^{\beta} = g^{\beta\gamma}t_{\alpha\gamma}$$

$$\bullet \qquad \qquad t'^{\alpha}{}_{\beta} = \frac{\partial x'^{\alpha}}{\partial x^{\gamma}} \frac{\partial x^{\delta}}{\partial x'^{\beta}} t^{\gamma}{}_{\delta}$$

•
$$t'_{\alpha}{}^{\beta} = \frac{\partial x^{\gamma}}{\partial x'^{\alpha}} \frac{\partial x'^{\beta}}{\partial x^{\delta}} t_{\gamma}{}^{\delta}$$

Metrics

$$ds^2 = g_{\alpha\beta} dx^{\alpha} dx^{\beta}$$

$$\bullet \qquad \delta^{\alpha}_{\beta} = \begin{cases} 1 & \alpha = \beta \\ 1 & \alpha \neq \beta \end{cases}$$

$$\bullet \qquad \delta^{\alpha}_{\gamma} a^{\gamma} = a^{\alpha}$$

$$\bullet \qquad \qquad g^{\alpha\gamma}g_{\gamma\beta} = \delta^{\alpha}_{\beta}$$

Four-vector product

$$\mathbf{a} \cdot \mathbf{b} = g_{\alpha\beta} a^{\alpha} b^{\beta} = a_{\beta} b^{\alpha}$$

1.10.4 Christoffel symbols

$$\bullet \qquad \Gamma^{\alpha}{}_{\beta\gamma} = \frac{1}{2}g^{\alpha\delta} \left(\frac{\partial g_{\delta\beta}}{\partial x^{\gamma}} + \frac{\partial g_{\delta\gamma}}{\partial x^{\beta}} - \frac{\partial g_{\beta\gamma}}{\partial x^{\delta}} \right)$$

$$\bullet \qquad \qquad \Gamma_{\alpha\beta\gamma} = \frac{1}{2} \left(\frac{\partial g_{\delta\beta}}{\partial x^{\gamma}} + \frac{\partial g_{\delta\gamma}}{\partial x^{\beta}} - \frac{\partial g_{\beta\gamma}}{\partial x^{\delta}} \right)$$

$$\bullet \qquad \qquad \frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\tau} + \Gamma^{\mu}{}_{\alpha\beta} \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}\tau} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}\tau} = 0$$

1.10.5 Covariant derivatives

$$\bullet \qquad \qquad \nabla_{\gamma}t^{\alpha}{}_{\beta} = \frac{\partial t^{\alpha}{}_{\beta}}{\partial x^{\gamma}} + \Gamma^{\alpha}{}_{\gamma\delta}t^{\delta}{}_{\beta} - \Gamma^{\delta}{}_{\gamma\beta}t^{\alpha}{}_{\delta}$$

$$\bullet \qquad \qquad \nabla_{\gamma}t^{\alpha\beta} = \frac{\partial t^{\alpha\beta}}{\partial x^{\gamma}} + \Gamma^{\alpha}{}_{\gamma\delta}t^{\delta\beta} + \Gamma^{\beta}{}_{\gamma\delta}t^{\alpha\delta}$$

$$\bullet \qquad \qquad \nabla_{\gamma} t_{\alpha}{}^{\beta} = \frac{\partial t_{\alpha}{}^{\beta}}{\partial x^{\gamma}} - \Gamma^{\delta}{}_{\gamma\alpha} t_{\delta}{}^{\beta} + \Gamma^{\beta}{}_{\gamma\delta} t_{\alpha}{}^{\delta}$$

1.10.6 Riemann curvature tensor

$$\bullet \qquad \qquad R^{\alpha}{}_{\beta\gamma\delta} = \frac{\partial\Gamma^{\alpha}{}_{\beta\delta}}{\partial x^{\gamma}} - \frac{\partial\Gamma^{\alpha}{}_{\beta\gamma}}{\partial x^{\delta}} + \Gamma^{\alpha}{}_{\gamma\epsilon}\Gamma^{\epsilon}{}_{\beta\delta} - \Gamma^{\alpha}{}_{\delta\epsilon}\Gamma^{\epsilon}{}_{\beta\gamma}$$

$$\bullet \qquad \qquad R_{\alpha\beta\gamma\delta} = \frac{1}{2} \left(\frac{\partial^2 g_{\alpha\delta}}{\partial x^\beta \partial x^\gamma} - \frac{\partial^2 g_{\alpha\gamma}}{\partial x^\beta \partial x^\delta} - \frac{\partial^2 g_{\beta\delta}}{\partial x^\alpha \partial x^\gamma} \right) + \frac{\partial^2 g_{\beta\gamma}}{\partial x^\alpha \partial x^\delta}$$

$$\bullet \qquad \qquad R_{\alpha\beta\gamma\delta} = -R_{\beta\alpha\gamma\delta}$$

$$\bullet \qquad R_{\alpha\beta\gamma\delta} = -R_{\beta\alpha\delta\gamma}$$

$$\bullet \qquad R_{\alpha\beta\gamma\delta} = R_{\delta\gamma\alpha\beta}$$

$$\bullet \qquad R_{\alpha\beta\gamma\delta} + R_{\alpha\delta\beta\gamma} + R_{\alpha\gamma\delta\beta=0}$$

1.10.7 Ricci curvature tensor

$$\bullet \qquad \qquad R_{\alpha\beta} = R^{\gamma}{}_{\alpha\gamma\beta}$$

•
$$R = R^{\alpha}{}_{\alpha}$$

1.10.8 Einstein's equations

$$\bullet \qquad \qquad R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$$

1.11 Thermodynamics

1.11.1 Ideal Gases

Ideal Gas Law

•
$$pV = Nk_BT$$

Heat / Thermal Energy

•
$$Q = mc\Delta T$$

Heat Capacity

$$C = \frac{\mathrm{d}Q}{\mathrm{d}T}$$

Specific Heat Capacity

•
$$c = \frac{C}{m}$$

1.11.2 Microstates

$$\bullet \qquad \qquad \Omega = \frac{(q+N-1)}{q!(N-1)}$$

1.11.3 Entropy

•
$$S = k_B \ln \Omega$$

1.11.4 Black bodies

Energy of a photon

$$\bullet$$
 $E = hf$

Wien's Displacement Law

•
$$\lambda_{max} = \frac{b}{T} = (2.8977729 \times 10^{-3}) \frac{1}{T}$$

Stefan-Boltzmann Law

•
$$I = \sigma T^4$$

Spectrum

•
$$B_{\lambda}(T) = \frac{2hc^2}{\lambda^5} \frac{1}{\exp(\frac{hc}{\lambda k_B T} - 1)}$$

$$\bullet \qquad B_{\nu}(T) = \frac{2h\nu}{c^2} \frac{1}{\exp(\frac{h\nu}{k_B T}) - 1}$$

1.12 Quantum Mechanics

1.12.1 The Uncertainty Principle

•
$$\Delta x \Delta p \ge \frac{\hbar}{2}$$

•
$$\Delta E \Delta t \geq \frac{\hbar}{2}$$

1.12.2 Bras and Kets

$$\bullet \qquad |\psi\rangle = \langle\psi|^{\dagger}$$

1.12.3 Rules for an Inner Product

•
$$\langle \psi | \phi \rangle \equiv (|\psi\rangle, |\phi\rangle)$$

$$\bullet \;$$
 Symmetric:

$$\langle \psi | \phi \rangle = \langle \phi | \psi \rangle^*$$

- Linear in second component
- Anti-linear in first component

1.12.4 The Born Rule

•
$$P = |\langle \psi | \psi \rangle|^2$$

1.12.5 Expectation

•
$$\langle A \rangle = \int A |\Psi(x,t)|^2 dx$$

$$\bullet \qquad \langle A \rangle = \langle \psi | A | \psi \rangle$$

1.12.6 Variance

•
$$\operatorname{var}(A) = \langle \psi | A^2 | \psi \rangle - \langle \psi | A | \psi \rangle^2$$

1.12.7 Standard Deviation

•
$$\delta A = \sqrt{\operatorname{var}(A)} = \sqrt{\langle \psi | A^2 | \psi \rangle - \langle \psi | A | \psi \rangle^2}$$

1.12.8 Trace

•
$$\operatorname{Tr}(A) = \sum_{j} \langle x_j | A | x_j \rangle$$

1.12.9 Partial Trace

- $Tr_B(|a\rangle\langle a|\otimes|b\rangle\langle b|) \equiv |a\rangle\langle a|Tr(|b\rangle\langle b|)$
- $\operatorname{Tr}(k_{AB}) = Tr_A(Tr_B(k_{AB})) = Tr_B(Tr_A(k_{AB}))$
- $\bullet \qquad \qquad \rho_B = Tr_A(\rho_{AB})$
- The partial trace is linear

1.12.10 The Schrödinger Equation

- $i\hbar \frac{\partial}{\partial t} \Psi(r,t) = \hat{H} \Psi(r,t)$
- $\bullet \qquad \qquad -\frac{\hbar^2}{2m}\frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x)\Psi(x,t) = i\hbar \frac{\partial \Psi(x,t)}{\partial t}$
- $-\frac{\hbar^2}{2m}\frac{\partial^2 \psi(x)}{\partial x^2} + V(x)\psi(x,t) = E\psi(x)$
- $\bullet \qquad \qquad \hat{H}|\Psi(t)\rangle = i\hbar \frac{\partial}{\partial t}|\Psi(t)\rangle$

1.12.11 Heisenberg equation of motion

•
$$\frac{d}{dt}\hat{A}(t) = \frac{i}{\hbar}[\hat{H}, \hat{A}(t)]$$

1.12.12 Operators

•
$$a_{jk} = \langle j|A|k\rangle$$

Diagonalizable Operator

•
$$A = \sum_{j} \lambda_{j} |\lambda_{j}\rangle \langle \lambda_{j}|$$

Normal Operator

•
$$A = \sum_{j} |\lambda_j\rangle\langle\lambda_j|$$

Eigenstate Operators

•
$$(|\lambda_k\rangle\langle\lambda_k|)^n = |\lambda_k\rangle\langle\lambda_k|$$

Identity

•
$$I = \sum_{j} |x_j\rangle \langle x_j|$$

Projector

•
$$P = |\psi\rangle\langle\psi|$$

Density operator

$$\bullet \qquad \qquad \rho \equiv \sum_j P_j |\psi_j\rangle \langle \psi_j|$$

• Hermitian:
$$\rho^{\dagger} = \rho$$

• Normalised:
$$Tr(\rho) = 1$$

• Positive Semi-Definite:
$$\langle \psi | \rho | \psi \rangle \ge 0, \ \forall \ | \psi \rangle \in \mathbf{H}$$

•
$$purity = Tr(\rho^2)$$

$$- \frac{1}{d} \le \operatorname{Tr}(\rho^2) \le 1$$

- Pure:
$$Tr(\rho^2) = 1$$

- Maximally mixed:
$$Tr(\rho^2) = \frac{1}{d}$$

$$\bullet \qquad \rho_A = Tr_B(\rho_{AB})$$

•
$$\langle A \rangle = \text{Tr}(\rho A)$$

Pauli Operators

•
$$\sigma_x = X = |0\rangle\langle 1| + |1\rangle\langle 0| \doteq \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\bullet \qquad \qquad \sigma_y = Y = i|1\rangle\langle 0| - i|0\rangle\langle 1| \doteq \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

•
$$\sigma_z = Z = |0\rangle\langle 0| - |1\rangle\langle 1| \doteq \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

•
$$I = |0\rangle\langle 0| + |1\rangle\langle 1| \doteq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 (Sometimes included)

•
$$Trx = Tr(Y) = Tr(Z) = 0$$

$$||X|| = ||Y|| = ||Z|| = ||I|| = \sqrt{2}$$

Properties

•
$$\lambda = \pm 1$$

Photon Annihilation and Creation Operators

$$\bullet \qquad \hat{a}|n\rangle = \sqrt{n}|n-1\rangle$$

•
$$\hat{a}^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$$

$$\bullet \qquad \hat{a}|\alpha\rangle = \alpha|\alpha\rangle$$

$$\bullet \qquad \langle \alpha | \hat{a}^{\dagger} = \alpha^* \langle \alpha |$$

Atomic Energy Level Operators (for a two-level approximation)

$$\hat{\sigma}_{+} = |e\rangle\langle g|$$

$$\hat{\sigma}_{-} = |g\rangle\langle e|$$

$$\hat{\sigma}_z = |e\rangle\langle e| - |g\rangle\langle g|$$

•
$$\hat{\sigma}_+|g\rangle = |e\rangle$$

$$\bullet \qquad \hat{\sigma}_{-}|e\rangle = |g\rangle$$

$$\bullet \qquad \qquad \hat{\sigma}_+|e\rangle = 0$$

$$\hat{\sigma}_{-}|g\rangle = 0$$

Chapter 2

Astrophysics & Astronomy

2.1 Astrometry

2.1.1 Redshift

- $\bullet \qquad \frac{\lambda_{obs} \lambda_{emit}}{\lambda_{emit}} \approx \frac{v}{c}$
- $1 + z = \frac{\lambda_{obs}}{\lambda_{emit}}$

2.1.2 Apparent magnitude

$$\bullet \qquad m - m_0 = -2.5 \log_{10}(\frac{F}{F_0})$$

2.1.3 Absolute magnitude

$$\bullet \qquad M = m - 5\log_{10}(\frac{d}{10})$$

2.1.4 Relative magnitudes

$$\frac{I_a}{I_b} = 100 \frac{(m_b - m_a)}{5}$$

2.1.5 Flux-magnitude relationship

•
$$F = F_0 \times 10^{-0.4m}$$

2.1.6 Color

$$-2.5\log(\frac{F_{f1}}{F_{f2}})$$

2.1.7 Metallicity

•
$$Z = \log_{10}(\frac{(Fe/H)_*}{(Fe/H)_{\odot}}) = \log_{10}(Fe/H)_* - \log_{10}(Fe/H)_{\odot}$$

2.2 Stars

2.2.1 Stellar Structure Equations

Hydrostatic Equilibrium

$$\bullet \qquad \frac{\mathrm{d}P}{\mathrm{d}r} = \frac{-GM_r\rho(r)}{r^2}$$

Mass Conservation

$$\bullet \qquad \frac{M_r}{r} = 4\pi r^2 \rho$$

Energy Equation

Radiative Transport

$$\bullet \qquad \frac{\mathrm{d}T}{\mathrm{d}r}|_{rad} = \frac{3}{4ac} \frac{\bar{\kappa \rho}}{T^3} \frac{L_r}{4\pi r^2}$$

2.2.2 Timescales

Thermal / Kelvin-Helmholtz Timescale

• $\tau_{KH\odot} \approx 50 million years$

Nuclear Timescale / Main Sequence Lifespan

$$\bullet \qquad \quad \tau_N \approx \tau_\odot M^{-3} \approx 10^9 (\frac{M}{M_\odot})^{-3}$$

2.2.3 Gravitational potential energy

•
$$U_* \approx \frac{-GM^2}{R}$$

2.2.4 Eddington Limit (hydrostatic equilibrium)

•
$$L_{edd} = \frac{4\pi GM m_p c}{\sigma T} \approx 3.2 \times 10^4 (\frac{M}{M_{\odot}}) [L_{\odot}]$$

•
$$M_{edd} = 3.1 * 10^{-5} \left(\frac{L}{L_{\odot}}\right) [M_{\odot}]$$

Eddington Rate (mass loss)

•
$$\dot{M}_{edd} = \frac{L_{edd}}{\eta c^2} \approx 2.4 \times 10^{-8} \left(\frac{M}{M_{\odot}}\right) \left[M_{\odot}/yr\right]$$

2.2.5 Mass-Luminosity Relationship

$$\bullet \ \, \frac{L}{L_{\odot}} \approx b (\frac{M}{M_{\odot}})^a \; ; \qquad a,b = \begin{cases} 2.3, \ 0.23 & M < 0.43 M_{\odot} \\ 4, \ 1 & 0.43 M_{\odot} < M < 2 M_{\odot} \\ 3.5, \ 1.5 & 2 M_{\odot} < M < 20 M_{\odot} \\ 1, \ 32000 & M > 55 M_{\odot} \end{cases}$$

2.3 Galaxies

2.3.1 Hubble Eliptical Galaxy Classification

•
$$10 \times (\frac{a-b}{a})$$

2.3.2 Sérsic Profile

•
$$I(R) = I_0 \exp\{-b[(\frac{R}{R_e})^{\frac{1}{n}} - 1]\}$$

2.3.3 Density of stars in the Milky Way Galaxy

•
$$\rho(R,z) = \rho_0 e^{-z/z_0} e^{-R/h}$$

2.4 Black Holes

2.4.1 Schwarszchild Radius

$$\bullet \qquad r_S = \frac{2GM}{c^2}$$

2.5 Instrumentation

2.5.1 Lensmaker's equation

$$\begin{array}{ll} \bullet & & \frac{1}{f} & = (n-1)[\frac{1}{R_1} - \frac{1}{R_2} + \frac{(n-1)d}{nR_1R_2}] \\ & \approx (n-1)[\frac{1}{R_1} - \frac{1}{R_2}] & & \text{(Thin lens approximation)} \end{array}$$

2.5.2 Focal ratio / Focal number

$$\bullet \qquad N = \frac{f}{D}$$

2.5.3 Field of view

$$\bullet \qquad FOV = \frac{w_D}{D_T N} = \frac{w_D}{f_{sys}}$$

2.5.4 Resolution Limits

Diffraction limit (Rayleigh criterion)

•
$$\varepsilon_d = 1.22 \frac{\lambda}{D}$$

Seeing limit (Rayleigh criterion)

$$\bullet \qquad \qquad \varepsilon_s = 0.98 \frac{\lambda}{r_0}$$

Total Resolution limit

$$\bullet \qquad \qquad \varepsilon \sqrt{\varepsilon_d^2 + \varepsilon_s^2}$$

2.5.5 Nyquist sampling

•
$$\frac{2p}{f_{sys}} = \frac{\lambda}{D_T}$$
 (When diffraction limited)

$$\bullet \qquad \qquad N = \frac{2p}{\lambda}$$

2.5.6 Plate scale

$$\bullet \qquad \quad \frac{1}{f}[rad/m] = \frac{206265}{f}[arcsec/m]$$

2.5.7 Fitting error

•
$$\sigma_{fit}^2 = a_f (\frac{d_{sub}}{r_0})^{\frac{5}{3}} = 0.26 (\frac{d_{sub}}{r_0})^{\frac{5}{3}}$$

2.5.8 Adaptive optics error

•
$$\sigma_t otal^2 = 0.3 \left(\frac{d_{sub}}{r_0}\right)^{\frac{5}{3}} + \left(\frac{\theta}{\theta_0}\right)^{\frac{5}{3}} + 28.4 \left(\frac{\tau}{\tau_0}\right)^{\frac{5}{3}} + C_{WFS} \left(\frac{\lambda}{F\tau d_{sub}}\right)^2$$

2.5.9 Signal-to-noise ratio

•
$$SNR = \frac{Ft}{\sqrt{Ft + (B_s n_p t) + (Dn_p t) + (R^2 n_p)}}$$

2.5.10 Atmospheric Extinction

•
$$m_{\lambda} = m_{\lambda,z} - a_{\lambda}(\sec z)$$

2.5.11 Rocket science

Tsiolkovsky rockey equation

Chapter 3

Mathematics

3.1 Notation

$$\bullet \qquad [f(x)]_b^a = f(a) - f(b)$$

3.2 Algebra

3.2.1 Factorisation

$$\bullet \qquad (a+b)^2 = a^2 + b^2 + 2ab^2$$

$$\bullet \qquad (a-b)^2 = a^2 + b^2 - 2ab^2$$

•
$$a^2 - b^2 = (a+b)(a-b)$$

•
$$(a+b)(a+c) = a^2 + (b+c)a + bc$$

$$\bullet \qquad (a+b)^3 = a^3 + 3ab^2 + 3a^2b + b^3$$

•
$$(a-b)^3 = a^3 + 3ab^2 - 3a^2b - b^3$$

•
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

•
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

•
$$a^{2n} - b^{2n} = (a^n - b^n)(a^n + b^n)$$

3.2.2 Absolute Value

$$\bullet \qquad |ab| = |a||b|$$

$$\bullet \qquad |\frac{a}{b}| = \frac{|a|}{|b|}$$

$$\bullet \qquad |a+b| \le |a| + |b|$$

3.2.3 Quadratics

Quadratic Formula

For $ax^2 + bx + c = 0$, $a \neq 0$:

$$\bullet \qquad \qquad \mathbf{x} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- $b^2 4ac > 0$ two real unequal solutions.
- $b^2 4ac = 0$ repeated real solution.
- $b^2 4ac < 0$ two complex solutions.

3.2.4 Logarithms

•
$$y = \log_b(x); \ x = b^y$$

•
$$\log_b(xy) = \log_b x + \log_b(y)$$

•
$$\log_b(\frac{x}{y}) = \log_b x - \log_b(y)$$

$$\bullet \qquad \log_b(x^p) = p\log_b x$$

•
$$\log_b(b^x) = x$$

$$\bullet \qquad \log_b(a) = \frac{\log_d(a)}{\log_d(b)}$$

•
$$\log_b(\sqrt[p]{x}) = \log$$

$$\bullet \qquad p\log_b x + q\log_b(y) = \log(x^p y^q)$$

$$\bullet \qquad \qquad b^{\log_b x} = x$$

•
$$\log_b(b) = 1$$

•
$$\log_b(1) = 0$$

3.2.5 Vectors

Dot Product

•
$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 + \ldots + a_n b_n = ab \cos \theta$$

Cross Product

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = (a_2b_3 - a_3b_2)\hat{i} + (a_3b_1 - a_1b_3)\hat{j} + (a_1b_2 - a_2b_1)\hat{k} = ab\sin\theta\hat{n}$$

$$\bullet \qquad \vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

•
$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

$$\bullet \qquad \vec{a} \times \vec{b} = 0$$

3.2.6 Factorials

•
$$n! = n(n-1)(n-2)...(2)(1)$$

•
$$(n+1)! = (n+1)n!$$

Stirling's approximation

•
$$n! \approx n \ln(n) - n + O(\ln(n))$$

The Factorial Integral

$$\bullet \qquad \int\limits_{0}^{\infty} x^{n} e^{-x} \, \mathrm{d}x$$

3.2.7 Inner product definition

1. Linear in first variable:

$$(\alpha a + \beta b, c) = \alpha(a, c) + \beta(b, c)$$

2. Positive-definite:

$$(a,a) \ge 0, (a,a) = 0 \iff a = 0$$

3. Conjugate symmetrical:

$$(a,b) = (b,a)^*$$

 $(a,b) = (b,a), b, a \in \mathbf{R}$

3.2.8 Complex Numbers

• $z = a + ib = \Re(z) + \Im(z)i$

Euler's Formula

• $e^{i\theta} = \cos\theta + i\sin\theta$

•
$$re^{i\theta} = |z|e^{i\theta} = r(\cos\theta + i\sin\theta)$$

De Moivre's Formula

• $(\cos x + i\sin x)^n = \cos(nx) + i\sin(nx)$

Complex Modulus

•
$$r = |z| = |a + ib| = \sqrt{a^2 + b^2} = \sqrt{\Re^2(z) + \Im^2(z)}$$

Complex Conjugate

• $\bar{z} = (a + ib) = a - ib$

$$\bullet \qquad (a+ib)(a+ib) = |a+ib|^2$$

Complex Argument

•
$$\theta = \arg(z) = \arctan(\frac{a}{b}) = \arctan(\frac{\Im(z)}{\Re(z)})$$

3.2.9 Power Series

$$f(x) = \sum_{n=0}^{\infty} f_n x^n$$

Notable Series

•
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120} + \dots$$

•
$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

•
$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$$

3.2.10 Matrix Operations

Determinant

Transpose

$$\bullet \qquad \quad a_{jk}^T = a_{kj}$$

$$\bullet \qquad (AB)^T = B^T A^T$$

• Linear:
$$(A+B)^T = A^T + B^T$$

$$\bullet \qquad (rA)^T = rA^T$$

Hermitian Adjoint

$$\bullet \qquad A^{\dagger} \equiv (A^*)^T = (A^T)^*$$

$$\bullet \qquad (AB)^{\dagger} = B^{\dagger}A^{\dagger}$$

$$\bullet \qquad (A+B)^{\dagger} = A^{\dagger} + B^{\dagger}$$

Trace

•
$$\operatorname{Tr}(A) = \sum_{j=1}^{n} a_{jj}$$

• Cyclic:
$$Tr(AB) = Tr(AB)$$

• Linear:
$$Tr(A + B) = Tr(A) + Tr(B)$$

 $Tr(aB) = aTr(B), a \in \mathbf{C}$

•
$$\operatorname{Tr}(SAS^{-1}) = \operatorname{Tr}(A)$$

Hilbert-Schmidt Inner Product

•
$$(A,B) \equiv \operatorname{Tr}(A^{\dagger}B)$$

Rank-Nullity Theorem

•
$$\operatorname{rk}(A) = \dim(\ker(A)) + \dim(\operatorname{im}(A))$$

3.2.11 Matrix Types

Real Matrix

•
$$a_{jk} \in \mathbf{R}$$

Square Matrix

•
$$m=n$$

Symmetric Matrix

$$\bullet \qquad A = A^T$$

$$\bullet \qquad a_{jk} = a_{kj}$$

Normal Matrix

$$\bullet \qquad \qquad A^\dagger A = A A^\dagger$$

Diagonal Matrix

•
$$a_{jk} = 0, j \neq k$$

$$\bullet \qquad \qquad \lambda_j = a_{jj}$$

$$\bullet \qquad \qquad e^D = \begin{bmatrix} e^{d_{11}} & 0 & \cdots & 0 \\ 0 & e^{d_{11}} & \cdots & 0 \end{bmatrix}$$

Diagonalisable Matrix

$$\bullet \qquad A = PDP^{-1}$$

Identity Matrix

•
$$IA = A$$

•
$$i_{jj} = 1$$

•
$$i_{jk} = 0, j \neq k$$

Hermitian Matrix

$$\bullet \qquad \qquad H = H^\dagger$$

$$\bullet \qquad \qquad h_{jk} = h_{kj}^*$$

•
$$h_{jj} \in \mathbf{R}$$

•
$$\lambda \in \mathbf{R}$$

Anti-Hermitian Matrix

$$\bullet \qquad \qquad H = -H^\dagger$$

$$\bullet H_{jk} = -H_{kj}^*$$

Orthogonal Matrix

$$\bullet \qquad A^T = A^{-1}$$

$$\bullet \qquad AA^T = I$$

$$\bullet \qquad (AA^T)_{jk} = \delta_{jk}$$

Positive Semidefinite

$$\bullet \qquad A \ge 0$$

$$\bullet \qquad \qquad \hat{A}^\dagger = \hat{A}, \hat{A} \geq 0$$

•
$$B = \hat{A}^{\dagger} \hat{A}$$
 is positive semidefinite for any linear operator \hat{A}

• Positive semidefinite matrices are Hermitian

Projector

$$\hat{P}^2 = \hat{P}$$

•
$$\lambda = 1 \text{ or } 0$$

$$\bullet \qquad P_1P_2 \mapsto \mathbf{H}_1 \cap \mathbf{H}_2$$

• Projectors are Hermitian

Real Matrix

$$\bullet \qquad A = A^*$$

$$\bullet \qquad A_{jk} = A_{jk}^*$$

Imaginary Matrix

$$\bullet \qquad A = -A^*$$

$$\bullet \qquad A_{jk} = -A_{jk}^*$$

Symmetric Matrix

$$\bullet \qquad A = A^T$$

$$\bullet \qquad A_{jk} = A_{kj}$$

Antisymmetric Matrix

$$\bullet \qquad \qquad A = -A^T$$

$$\bullet \qquad a_{jk} = a_{kj}$$

$$\bullet \qquad \qquad a_{jj} = 0$$

Unitary Matrix

$$\bullet \qquad \qquad U^{\dagger}U = UU^{\dagger} = I$$

$$\bullet \qquad \qquad U^{\dagger} = U^{-1}$$

$$\bullet \qquad (U^{\dagger}U)_{jk} = \delta_{jk}$$

3.2.12 Change of Basis Unitary

- Basis a is (?)
- $\bullet \qquad (V)_b = [U^{\dagger}]_a (V)_a$
- $[U]_a = [(b_0)_a(b_1)_a...(b_n)_a]$

3.2.13 Commutator

- $\bullet \qquad [A,B] = AB BA$
- $\bullet \qquad [A,A] = 0$
- [A + B, C] = [A, C] + [B, C]
- $\bullet \qquad [A, BC] = [A, B]C + B[A, C]$

3.2.14 Anticommutator

 $\bullet \qquad \{A,B\} = AB + BA$

3.2.15 Cauchy-Schwarz Inequality

• $|\langle \vec{u}, \vec{v} \rangle|^2 \le \langle \vec{u}, \vec{u} \rangle \cdot \langle \vec{v}, \vec{v} \rangle$

3.3 Geometry

3.3.1 Pythagorean theorem

- $\bullet \qquad \qquad a^2 + b^2 = c^2$
- $\bullet \qquad a = \sqrt{b^2 + c^2}$

Higher dimensions

- $r = \sqrt{x^2 + y^2 + z^2}$
- $r = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{\vec{r} \cdot \vec{r}}$

Distance between two points

In two dimensions

•
$$d_{12} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

In higher dimensions

•
$$d_{ab} = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2 + \dots + (b_n - a_n)^2}$$

3.3.2 Properties of shapes

	Area	Circumference
Circle	πR^2	$2\pi R$
Square	L^2	4L

3.3.3 Properties of solids

	Surface Area	Volume
Sphere	$4\pi R^2$	$\frac{4}{3}\pi R^3$

3.3.4 Circular formulae

Arc length

•
$$l = R\theta$$

Area of a sector

$$\bullet \qquad A = \frac{R^2 \theta}{2}$$

Area of a segment

3.3.5 Useful Functions

Parabola

$$f(x) = a(x-h)^2 + k$$

- Vertex at (h, k)
- Up-concave if a > 0; down-concave if a < 0

$$f(x) = ax^2 + bx + c$$

• Vertex at
$$(-\frac{b}{2a}, f(-\frac{b}{2a}))$$

• Up-concave if a > 0; down-concave if a < 0

Hyperbola

•
$$(\frac{x-h}{a})^2 - (\frac{y-k}{b})^2 = 1$$

• Centre at
$$(h, k)$$

• Asymptotes through centre, slope $\pm \frac{b}{a}$

Circle

•
$$(x-h)^2 + (y-k)^2 = R^2$$

• Centre at (h, k)

Ellipse

$$\bullet \qquad 1 = (\frac{x-h}{a})^2 + (\frac{y-k}{b})^2$$

• Centre at
$$(h, k)$$

• Vertices a units right/left from the centre and vertices b units up/down from the center.

Sphere

•
$$R^2 = (x-h)^2 + (y-k)^2 + (z-l)^2$$

• Centre at
$$(h, k, l)$$
:

Ball

- $R^2 < (x-h)^2 + (y-k)^2 + (z-l)^2$
- Centre at (h, k, l):

3.3.6 Coordinates

Transformations to Cartesian coordinates

Cartesian	x = x	y = y	z = z	$dV = dx \ dy \ dz$
Polar (2D)	$x = r\cos\phi$	$y = r\sin\phi$	N/A	$dA = r \ dr d\phi$
Cylindrical	$x = r\cos\phi$	$y = r\sin\phi$	z = z	$dV = r \ dr \ d\theta \ dz$
Spherical	$x = r\sin\theta\cos\phi$	$y = r\sin\theta\sin\phi$	$z = r\cos\theta$	$dV = r^2 \sin\theta \ dr \ d\theta \ d\phi$

Transformations from Cartesian coordinates

Cartesian	x = x	y = y		z = z
Polar (2D)	$r = \sqrt{x^2 + y^2}$	$\phi' = \arctan \frac{y}{x} $	$(\phi \text{ depends on quadrant})$	N/A
Cylindrical	$r = \sqrt{x^2 + y^2}$	$\phi' = \arctan \frac{y}{x} $	$(\phi \text{ depends on quadrant})$	z = z
Spherical	$r = \sqrt{x^2 + y^2 + z^2}$	$\phi' = \arctan \frac{y}{x} $	$(\phi \text{ depends on quadrant})$	$\theta = \arccos(\frac{z}{\sqrt{x^2 + y^2 + z^2}})$

3.3.7 Hyperbolic Functions

Hyberbolic Sine

- $\sinh x = \frac{e^x e^{-x}}{2} = \frac{e^{2x} 1}{2e^x} = \frac{1 e^{-2x}}{2e^{-x}}$
- $\sinh x = -i\sin(ix)$

Hyperbolic Cosine

- $\cosh x = \frac{e^x + e^{-x}}{2} = \frac{e^{2x} + 1}{2e^x} = \frac{1 + e^{-2x}}{2e^{-x}}$
- $\cosh x = \cos(ix)$

Hyperbolic Tangent

- $\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} 1}{e^{2x} + 1} = \frac{1 e^{-2x}}{1 + e^{-2x}}$
- $\tanh x = -i \tan(ix)$

Hyperbolic Cotangent

- $\coth x = \frac{1}{\tanh x} = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x e^{-x}} = \frac{e^{2x} + 1}{e^{2x} 1} = \frac{1 + e^{-2x}}{1 e^{-2x}}$
- $\coth x = i \cot(ix)$

Hyperbolic Secant

•
$$\operatorname{sech} x = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}} = \frac{2e^x}{e^{2x} + 1} = \frac{2e^{-x}}{1 + e^{-2x}}$$

•
$$\operatorname{sech} x = \operatorname{sec}(ix)$$

Hyperbolic Cosecant

•
$$\operatorname{csch} x = \frac{1}{\sinh x} = \frac{2}{e^x - e^{-x}} = \frac{2e^x}{e^{2x} - 1} = \frac{2e^{-x}}{1 - e^{-2x}}$$

•
$$\operatorname{csch} x = i \operatorname{csc}(ix)$$

Identities

$$\bullet \qquad \cosh^2 x - \sinh^2 x = 1$$

•
$$\sin\theta\cos\theta = \frac{1}{2}\sin(2\theta)$$

3.4 Trigonometry

Definitions

•
$$\sin \theta = \frac{opposite}{hypotenuse}$$

•
$$\cos \theta = \frac{adjacent}{hypotenuse}$$

•
$$\tan \theta = \frac{opposite}{adjacent} = \frac{\sin \theta}{\cos \theta}$$

•
$$\cot \theta = \frac{adjacent}{opposite} = \frac{\cos \theta}{\sin \theta}$$

•
$$\sec \theta = \frac{hypotenuse}{adjacent}$$

•
$$\csc \theta = \frac{hypotenuse}{opposite}$$

3.4.1 Identities

Pythagorean Identities

•
$$\cos^2 \theta + \sin^2 \theta = 1$$

•
$$\tan^2 \theta + 1 \sec^2 \theta$$

$$\bullet \qquad 1 + \cot^2 \theta = \csc^2 \theta$$

Reciprocals

$$\bullet \qquad \sin \theta = \frac{1}{\csc \theta}$$

$$\bullet \qquad \qquad \cos \theta = \frac{1}{\sec \theta}$$

•
$$\tan \theta = \frac{1}{\cot \theta}$$

$$\bullet \qquad \cot \theta = \frac{1}{\tan \theta}$$

•
$$\sec \theta = \frac{1}{\cos \theta}$$

•
$$\csc \theta = \frac{1}{\sin \theta}$$

As complex exponentials

$$\bullet \qquad \sin \theta = \frac{e^{ix} - e^{-ix}}{2i}$$

$$\bullet \qquad \cos \theta = \frac{e^{ix} + e^{-ix}}{2}$$

•
$$\tan \theta = \frac{e^{ix} - e^{-ix}}{i(e^{ix} + e^{-ix})}$$

$$\bullet \qquad \cot \theta = \frac{i(e^{ix} + e^{-ix})}{e^{ix} - e^{-ix}}$$

$$\bullet \qquad \sec \theta = \frac{2}{e^{ix} + e^{-ix}}$$

•
$$\csc \theta = \frac{2i}{e^{ix} - e^{-ix}}$$

Symmetries

•
$$\sin(-\theta) = -\sin\theta$$

•
$$\cos(-\theta) = \cos\theta$$

•
$$\tan(-\theta) = -\tan\theta$$

•
$$\csc(-\theta) = -\csc\theta$$

•
$$\sec(-\theta) = \sec \theta$$

$$\bullet \qquad \cot(-\theta) = -\cot\theta$$

$$\bullet \qquad \sin(\frac{\pi}{2} - \theta) = \cos\theta$$

$$\bullet \qquad \cos(\frac{\pi}{2} - \theta) = \sin\theta$$

$$\bullet \qquad \tan(\frac{\pi}{2} - \theta) = \cot \theta$$

•
$$\csc(\frac{\pi}{2} - \theta) = \sec \theta$$

•
$$\sec(\frac{\pi}{2} - \theta) = \csc \theta$$

$$\bullet \qquad \cot(\frac{\pi}{2} - \theta) = \tan\theta$$

•
$$\sin(\pi - \theta) = \sin \theta$$

$$\bullet \qquad \cos(\pi - \theta) = -\cos\theta$$

•
$$\tan(\pi - \theta) = -\tan\theta$$

•
$$\csc(\pi - \theta) = \csc \theta$$

•
$$\sec(\pi - \theta) = -\sec\theta$$

•
$$\cot(\pi - \theta) = -\cot\theta$$

Angle sum and difference formulae

•
$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

•
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

•
$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

Half-angle formulae

$$\bullet \qquad \sin^2(\frac{\theta}{2}) = \frac{1 - \cos \theta}{2}$$

$$\bullet \qquad \cos^2(\frac{\theta}{2}) = \frac{1 + \cos\theta}{2}$$

•
$$\tan^2(\frac{\theta}{2}) = \frac{1 - \cos \theta}{1 + \cos \theta}$$

•
$$\tan(\frac{\theta}{2}) = \frac{\tan \theta}{1 + \sec \theta} = \frac{\sin \theta}{1 + \cos \theta} = \frac{1 - \cos \theta}{\sin \theta} = \csc \theta - \cot \theta$$

Double-angle formulae

•
$$\cos(2\theta) = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta = \cos^2\theta - \sin^2\theta$$

•
$$\sin(2\theta) = 2\sin\theta\cos\theta$$

•
$$\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$$

Sum to Product

•
$$\sin \alpha + \sin \beta = 2\sin(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2})$$

•
$$\sin \alpha - \sin \beta = 2\cos(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2})$$

$$\bullet \qquad \qquad \cos\alpha + \cos\beta = 2\cos(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2})$$

•
$$\cos \alpha - \cos \beta = -2\sin(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2})$$

Product to Sum

•
$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$

•
$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)]$$

•
$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \cos(\alpha - \beta)]$$

•
$$\cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)]$$

Law of Sines

$$\bullet \qquad \frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$$

Law of Cosines

$$\bullet \qquad a^2 = b^2 + c^2 - 2bc\cos\alpha$$

$$b^2 = a^2 + c^2 - 2ac\cos\beta$$

•
$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

Law of Tangents

$$\bullet \qquad \frac{a-b}{a+b} = \frac{\tan(\frac{1}{2}[\alpha-\beta])}{\tan(\frac{1}{2}[\alpha+\beta])}$$

$$\bullet \qquad \frac{b-c}{b+c} = \frac{\tan(\frac{1}{2}[\beta-\gamma])}{\tan(\frac{1}{2}[\beta+\gamma])}$$

•
$$\frac{a-c}{a+c} = \frac{\tan(\frac{1}{2}[\alpha-\gamma])}{\tan(\frac{1}{2}[\alpha+\gamma])}$$

Mollweide's Formula

$$\bullet \qquad \frac{a+b}{c} = \frac{\cos(\frac{1}{2}[\alpha - \beta])}{\sin(\frac{1}{2}\gamma)}$$

Small-angle approximations

- $\sin \theta \approx \theta$
- $\bullet \qquad \qquad \cos\theta \approx 1 \frac{\theta^2}{2}$
- $\tan \theta \approx \theta$

Other identities

- $\bullet \qquad \sin\theta\cos\theta = \frac{1}{2}\sin(2\theta)$
- $\bullet \qquad \cos^2 \theta = \frac{1}{2}(\cos(2\theta) + 1)$

Averages

$$\bullet \qquad \bar{\sin x} = \bar{\cos x} = 0$$

$$\bullet \qquad \qquad \sin^2 x = \cos^2 x = \frac{1}{2}$$

Table of Identities

In terms of	$\sin \theta$	$\cos \theta$	$\tan heta$	$\sec \theta$	$\cot \theta$	$\csc \theta$
$\sin \theta =$	$\sin \theta$	$\pm\sqrt{1-\cos^2\theta}$	$\pm \frac{\tan \theta}{\sqrt{1 + \tan^2 \theta}}$	$\pm \frac{\sqrt{\sec^2 \theta - 1}}{\sec \theta}$	$\pm \frac{1}{\sqrt{1+\cot^2\theta}}$	$\frac{1}{\csc}$
$\cos \theta =$	$\pm\sqrt{1-\sin^2\theta}$	$\cos \theta$	$\pm \frac{1}{\sqrt{1+\tan^2\theta}}$	$\frac{1}{\sec \theta}$	$\pm \frac{\cot \theta}{\sqrt{1 + \cot^2 \theta}}$	$\pm \frac{\sqrt{\csc^2 - 1}}{\csc \theta}$
$\tan \theta =$	$\pm \frac{\sin \theta}{\sqrt{1 - \sin^2 \theta}}$	$\pm \frac{\sqrt{1 - \cos^2 \theta}}{\cos \theta}$	$\tan \theta$	$\pm\sqrt{\sec^2\theta-1}$	$\frac{1}{\cot \theta}$	$\pm \frac{1}{\sqrt{\csc^2 \theta - 1}}$
$\sec \theta =$	$\pm \frac{1}{\sqrt{1-\sin^2\theta}}$	$\frac{1}{\cos \theta}$	$\pm \sqrt{1 + \tan^2 \theta}$	$\sec \theta$	$\pm \frac{\sqrt{1 + \cot^2 \theta}}{\cot \theta}$	$\pm \frac{\csc \theta}{\sqrt{\csc^2 - 1}}$
$\cot \theta =$	$\pm \frac{\sqrt{1-\sin^2\theta}}{\sin\theta}$	$\pm \frac{\cos \theta}{\pm \sqrt{1 - \cos^2 \theta}}$	$\frac{1}{\tan \theta}$	$\pm \frac{1}{\sqrt{\sec^2 \theta - 1}}$	$\cot \theta$	$\pm \sqrt{\csc^2 \theta - 1}$
$\csc \theta =$	$\frac{1}{\sin \theta}$	$\pm \frac{1}{\sqrt{1-\cos^2\theta}}$	$\pm \frac{\sqrt{1 + \tan^2 \theta}}{\tan \theta}$	$\pm \frac{\sec \theta}{\sqrt{\sec^2 \theta - 1}}$	$\pm\sqrt{1+\cot^2\theta}$	CSC

3.5 Calculus

3.5.1 Limits

3.5.2 Properties

- $\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$
- $\bullet \qquad \lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$
- $\bullet \qquad \lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$
- $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \quad \lim_{x \to a} g(x) \neq 0$
- $\bullet \qquad \lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n$

Useful Limits

- $\oint \lim_{x \to \infty} e^x = \infty$
- $\oint \lim_{x \to -\infty} e^x = 0$
- $\lim_{x \to \infty} \ln(x) = \infty$
- $\lim_{x \to 0^{-}} \ln(x) = -\infty$
- $\lim_{x \to 0} x \log x = 0$

L'Hôpital's rule

•
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Squeeze principle

• For
$$g(x) \le f(x) \le h(x)$$
 and $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L$:
$$\lim_{x \to a} f(x) = L$$

3.5.3 Differentiation

First Principles

•
$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Nature of derivatives

Derivative	Function		
f'x > 0	Increasing		
f'x = 0	Stationary		
f'x < 0	Decreasing		

Second Derivative Function		Stationary Points $[f'x = 0]$		
f''x > 0	Concave up	Local Minimum		
f'x = 0 No information		Inflection Point		
f''x < 0	Concave down	Local Maximum		

Product Rule

$$\bullet \qquad (uv)' = uv' + vu'$$

•
$$\frac{\mathrm{d}}{\mathrm{d}x}f(x)gx = f(x)g'(x) + f'(x)g(x)$$

Quotient Rule

$$\bullet \qquad \qquad (\frac{u}{v})' = \frac{vu' - uv'}{v^2}$$

•
$$\frac{\mathrm{d}}{\mathrm{d}x} \frac{f(x)}{g(x)} = \frac{g(x)f'(x) - f(x)g'(x)}{g(x)^2}$$

Chain Rule

$$\bullet \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \frac{\mathrm{d}u}{\mathrm{d}x}$$

•
$$\frac{\mathrm{d}}{\mathrm{d}x}f(g(x)) = f'(g(x))g'(x)$$

Useful Derivatives

$$\bullet \qquad \frac{\mathrm{d}}{\mathrm{d}x}x^n = nx^{n-1}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}a^x = a^x \ln(a)$$

$$\bullet \qquad \frac{\mathrm{d}}{\mathrm{d}x}e^x = e^x$$

$$\bullet \qquad \frac{\mathrm{d}}{\mathrm{d}x} \ln x = \frac{1}{x}, \ x > 0$$

•
$$\frac{\mathrm{d}}{\mathrm{d}x} \ln|x| = \frac{1}{x}, \ x \neq 0$$

•
$$\frac{\mathrm{d}}{\mathrm{d}x}\ln(f(x)) = \frac{f'x}{f(x)}$$

•
$$\frac{\mathrm{d}}{\mathrm{d}x}\log_b x = \frac{1}{x\ln(b)}, \ x > 0$$

$$\bullet \qquad \frac{\mathrm{d}}{\mathrm{d}x}\sin x = \cos x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\cos x = -\sin x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\sec x = \sec x \tan x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\csc x = -\csc x \cot x$$

$$\bullet \qquad \frac{\mathrm{d}}{\mathrm{d}x}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}$$

$$\bullet \qquad \frac{\mathrm{d}}{\mathrm{d}x}\cos^{-1}x = \frac{1}{-\sqrt{1-x^2}}$$

$$\bullet \qquad \frac{\mathrm{d}}{\mathrm{d}x} \tan^{-1} x = \frac{1}{-\sqrt{1+x^2}}$$

3.5.4 Partial Differentiation

First Principles

•
$$\frac{\partial}{\partial x} f(x, y) = \lim_{h \to 0} \frac{f(x + h, y) - f(x, y)}{h}$$

Jacobian Matrix

$$D\vec{f}(\vec{a}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\vec{a}) & \frac{\partial f_1}{\partial x_2}(\vec{a}) & \cdots & \frac{\partial f_1}{\partial x_n}(\vec{a}) \\ \frac{\partial f_2}{\partial x_1}(\vec{a}) & \frac{\partial f_2}{\partial x_2}(\vec{a}) & \cdots & \frac{\partial f_2}{\partial x_n}(\vec{a}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\vec{a}) & \frac{\partial f_m}{\partial x_2}(\vec{a}) & \cdots & \frac{\partial f_m}{\partial x_n}(\vec{a}) \end{bmatrix}$$

Definition of differentiability of a multivariable function

$$\lim_{\vec{x} \to \vec{a}} = \frac{||f(\vec{x}) - f(\vec{a}) - Df(\vec{a}) \cdot (\vec{x} - \vec{a})||}{||\vec{x} - \vec{a}||} = 0$$

3.5.5 The Differential

•
$$dF = \frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial y} dy + \frac{\partial F}{\partial z} dz$$

3.5.6 Line Element

$$\bullet \qquad dS^2 = dx^2 + dy^2 + dz^2$$

3.5.7 Integration

Properties

•
$$\int f(x) \pm g(x) \, dx = (\int f(x) \, dx \int \pm g(x) \, dx$$

$$\oint_a^a f(x) \, \mathrm{d}x = 0$$

•
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

•
$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} \left| f(x) \right| \, dx$$

• If
$$f(x) \ge g(x)$$
 over $[a,b]$, $\int_a^b f(x) dx \ge \int_b^a g(x) dx$

• If
$$f(x) \ge 0$$
 over $[a, b]$, $\int_a^b f(x) dx > 0$

• If
$$m \le f(x) \le M$$
 over $[a, b]$, $m(b - a) \le \int_a^b f(x) dx \le M(b - a)$

41

Integration by Parts

•
$$\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx$$

Integration by Substitution

•
$$u = g(x); dx = g'(x) dx; \int_{a}^{b} f(g(x))g'(x) dx = \int_{g(a)}^{g(b)} f(x) dx$$

Approximations

Trapezoid rule

•
$$\int_{a}^{b} f(x) dx \approx \frac{\Delta x}{2} [f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n)]$$

Simpson's rule

•
$$\int_{a}^{b} f(x) dx \approx \frac{\Delta x}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)]$$

Useful Indefinite Integrals

$$\oint k \, \mathrm{d}x = kx + C$$

$$\int \log_b x \, \mathrm{d}x = x(\log_b x - \log_b(e)) + C = x(\log_b x - \frac{1}{\ln b}) + C$$

$$\oint \ln x \, dx = x(\ln x - 1) + C$$

•
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \ n \neq -1$$

$$\oint \frac{1}{x} \, \mathrm{d}x = \ln|x| + C$$

$$\int \frac{1}{ax+b} \, \mathrm{d}x = \frac{1}{a} \ln|ax+b| + C$$

$$\oint \sin x \, dx = -\cos x + C$$

•
$$\int \tan x \, dx = \ln|\sec x| + C$$

$$\oint \sec x \, dx = \ln|\sec x + \tan x| + C$$

•
$$\int \sec^2 x \, dx = \tan x + C$$

$$\oint \csc^2 x \, dx = -\cot x + C$$

$$\oint \sec x \tan x \, dx = \sec x + C$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1}(\frac{x}{a}) + C$$

$$\int \frac{1}{\sqrt{a^2 + x^2}} \, \mathrm{d}x = \sin^{-1}(\frac{x}{a}) + C$$

Useful Definite Integrals

$$\bullet \qquad \qquad \int\limits_0^\infty \frac{x^3}{e^x - 1} \, \mathrm{d}x = \frac{\pi^4}{15}$$

$$\bullet \qquad \int\limits_0^\infty x^n e^{-ax} \ \mathrm{d}x = \frac{n!}{a^{n+1}}$$

3.5.8 Vector Calculus

Vector derivative

•
$$\operatorname{grad}(f) = \vec{\nabla} f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{bmatrix} = \frac{\partial f}{\partial x} \hat{x} + \frac{\partial f}{\partial y} \hat{y} + \frac{\partial f}{\partial z} \hat{z}$$

•
$$\int_{a}^{b} (\vec{\nabla}f) \cdot d\vec{l} = f(a) - f(b)$$

The Laplacian

•
$$\delta f = \nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

Divergence

In Cartesian Coordinates

•
$$\operatorname{div}(f) = \vec{\nabla} \cdot \vec{f} = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} + \frac{\partial f_z}{\partial z}$$

In Cylindrical Coordinates

$$\bullet \qquad \qquad \vec{\nabla} \cdot \vec{f} = \frac{1}{r} \frac{\partial}{\partial r} (r f_r) + \frac{1}{r} \frac{\partial f_{\phi}}{\partial \phi} + \frac{\partial f_z}{\partial z}$$

In Spherical Coordinates

•
$$\vec{\nabla} \cdot \vec{f} = \frac{1}{r} \frac{\partial}{\partial r} (r^2 f_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (f_{\theta} \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial f_{\phi}}{\partial \phi}$$

Curl

In Cartesian Coordinates

•
$$\operatorname{curl}(f) = \vec{\nabla} \times \vec{f} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_x & f_y & f_z \end{vmatrix} = \left(\frac{\partial f_z}{\partial y} - \frac{\partial f_y}{\partial z}\right) \hat{x} + \left(\frac{\partial f_x}{\partial z} - \frac{\partial f_z}{\partial z}\right) \hat{y} + \left(\frac{\partial f_y}{\partial x} - \frac{\partial f_y}{\partial y}\right) \hat{z}$$

In Cylindrical Coordinates

$$\bullet \qquad \vec{\nabla} \times \vec{f} = (\frac{1}{r} \frac{\partial f_z}{\partial \phi} - \frac{\partial f_\phi}{\partial z})\hat{r} + (\frac{\partial f_r}{\partial z} - \frac{\partial f_z}{\partial r})\hat{\phi} + \frac{1}{r} (\frac{\partial}{\partial r} (rf_\phi) - \frac{\partial f_r}{\partial \phi})\hat{z}$$

In Spherical Coordinates

$$\bullet \qquad \vec{\nabla} \times \vec{f} = \frac{1}{r \sin \theta} \left(\frac{\partial}{\partial \theta} (f_{\phi} \sin \theta) - \frac{\partial f_{\theta}}{\partial \phi} \right) \hat{r} + \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial f_{r}}{\partial \phi} - \frac{\partial}{\partial r} (r f_{\phi}) \right) + \frac{1}{r} \left(\frac{\partial}{\partial r} (r f_{\theta}) - \frac{\partial f_{r}}{\partial \theta} \right) \hat{r} + \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial f_{r}}{\partial \phi} - \frac{\partial}{\partial r} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial r} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{r} \left(\frac{\partial}{\partial \theta} (r f_{\phi}) - \frac{\partial}{\partial \theta} (r f_{\phi}) \right) \hat{r} + \frac{1}{$$

43

Vector Second Derivatives

$$\bullet \qquad \vec{\nabla} \cdot (\vec{\nabla} \times \vec{v}) = 0$$

•
$$\vec{\nabla}(\vec{\nabla}(\vec{\nabla}\cdot\vec{f}))$$

 $Vector\ Laplacian$

$$\bullet \qquad \vec{\nabla}^2 \vec{f} = \vec{\nabla} (\vec{\nabla} \cdot \vec{f}) - \vec{\nabla} \times (\vec{\nabla} \times \vec{f})$$

Stokes' Theorem

$$\bullet \qquad \qquad \iint\limits_{S} (\vec{\nabla} \times \vec{f}) \cdot d\vec{a} = \oint\limits_{B} \vec{v} \cdot \ d\vec{l}$$

Divergence Theorem

$$\bullet \qquad \qquad \iiint\limits_V (\vec{\nabla} \cdot \vec{f}) dV = \oint\limits_S \vec{v} \cdot \ \mathrm{d}\vec{a}$$

3.5.9 Dirac Delta Function

$$\delta(x) = \begin{cases} 0 & x \neq 0 \\ \infty & x = 0 \end{cases}$$

•
$$\delta(x-a) = \begin{cases} 0 & x \neq a \\ \infty & x = a \end{cases}$$

$$\bullet \qquad \int\limits_{-\infty}^{\infty} \delta(x) \, \mathrm{d}x = 1$$

•
$$f(x)\delta(x) = f(0)\delta(x)$$

3.5.10 Approximations

•
$$f(x + \Delta x) \approx f(x) + \Delta x f'(x)$$

Chapter 4

Statistics

- 4.1 Variance
 - $var(x) = \langle (x \langle x \rangle)^2 \rangle = \langle x^2 \rangle \langle x \rangle^2$
- 4.2 Standard Deviation
 - $\sigma x = \sqrt{\text{var}(\mathbf{x})} = \sqrt{\langle x^2 \rangle \langle x \rangle^2}$

Appendix A

Values

A.1 Physics

A.1.1 Physical Constants

c: Speed of light

•
$$=\frac{1}{\sqrt{\varepsilon_0\mu_0}}$$
 = 299 792 458 $m \cdot s^{-1}$ $\approx 3 \times 10^8 \ m \cdot s^{-1}$

G: Universal gravitational constant

$$\bullet \quad = 6.67408(31) \times 10^{-11} \ m^3 \cdot kg^{-1} \cdot s^{-2} \qquad \approx 6.67 \times 10^{-11} \ m^3 \cdot kg^{-1} \cdot s^{-2}$$

g: Average acceleration due to gravity at sea level on Earth

• =
$$9.80665 \ m \cdot s^{-2}$$
 $\approx 9.8 \ m \cdot s^{-2}$

h: Planck constant

• =
$$6.626\ 070\ 040 \times 10^{-34} J \cdot s$$
 $\approx 6.626 \times 10^{-34} J \cdot s$

 \hbar : Reduced Planck constant

•
$$=\frac{h}{2\pi} = 1.054\ 571\ 726 \times 10^{-34} J \cdot s \approx 1.055 \times 10^{-34} J \cdot s$$

 k_B : Boltzmann constant

$$\bullet \quad = 1.3\ 806\ 488 \times 10^{-23}\ J \cdot K^{-1} \qquad \approx 1.38 \times 10^{-23}\ J \cdot K^{-1}$$

 k_e : Coulomb's constant

$$\bullet \quad = \frac{1}{4\pi\varepsilon_0} \qquad = 8.987\ 551\ 787\times 10^9\ N\cdot m\cdot C^{-2} \qquad \approx 9\times 10^9\ N\cdot m\cdot C^{-2}$$

 N_A : Avogadro constant

$$\bullet \quad = 6.022 \ 140 \ 857(74) \times 10^{23} \ mol^{-1} \qquad \approx 6.022 \times 10^{23} \ mol^{-1}$$

 ε_0 : Vacuum permittivity

$$\bullet \quad = \frac{1}{\mu_0 c^2} \quad = 8.854 \ 187 \ 817 \times 10^{-12} \ F \cdot m^{-1} \quad \approx 8.85 \times 10^{-6} \ F \cdot m^{-1}$$

 μ_0 : Vacuum permeability

$$\bullet \quad = 4\pi \times 10^{-7} \ N \cdot A^{-2} \qquad = \frac{1}{\varepsilon_0 c^2} \qquad \approx 1.257 \times 10^{-6} \ N \cdot A^{-2}$$

A.1.2 Useful Quantities

Density of air (ρ_A) : 1.2922 $kg \cdot m^{-3}$ Density of water (ρ_w) : $10^3 kg \cdot m^{-3}$

Mass of an electron (m_e) : 9.10 938 291 × 10⁻³¹ kg $\approx 9 \times 10^{-31} kg$ Mass of a neutron (m_n) : 1.674 927 351 × 10⁻²⁷ kg $\approx 1.675 \times 10^{-27} kg$ Mass of a proton (m_p) : 1.672 621 777 × 10⁻²⁷ kg $\approx 1.672 \times 10^{-27} kg$

Speed of sound in air: $343.2 \ m \cdot s^{-1}$

Specific heat capacity of water: $4.186 \times \! 10^3~J \cdot kg^{-1} \cdot K^{-1}$

A.2 Astronomy

A.2.1 Useful Quantities

Surface Temperature of the Sun: (T_{\odot}) : = 5778 $K = 5505 \, {}^{\circ}C$

Planetary Properties

\mathbf{Body}	Mass	Average Radius	Semi-major axis	Eccentricity	Orbital period
Mercury ♥	$3.3011 \times 10^{23} \ kg$	$2.4397 \times 10^6 \ m$	$5.790905 \times 10^{10} \ m$	0.205630	0.240856 yr
	$0.055~M_{\oplus}$	$0.3829 R_{\oplus}$	0.387098~AU		
	$1.66 \times 10^{-7} \ M_{\odot}$				
	$1.74 \times 10^{-4} M_{2}$				
Venus ♀	$4.8675 \times 10^{24} \ kg$	$6.0518 \times 10^6 \ m$	$1.08208000 \times 10^{11} \ m$	0.006772	0.615198 yr
	$0.815~M_{\oplus}$	$0.9499 R_{\oplus}$	$0.723332 \; AU$		
	$2.447 \times 10^{-6} \ M_{\odot}$				
	$2.56 \times 10^{-3} M_{2}$				
Earth \oplus	$5.97237 \times 10^{24} \ kg$	$6.3710 \times 10^6 \ m$	$1.49598023 \times 10^{11} \ m$	0.0167086	1.000017 yr
	$\mid 1 M_{\oplus} \mid$	$\mid 1 R_{\oplus}$	$1.000001 \; AU$		
	$3.003 \times 10^{-6} \ M_{\odot}$				
	$2.67 \times 10^{-3} M_{2}$				
Mars ♂	$6.4171 \times 10^{23} \ kg$	$3.3895 \times 10^6 \ m$	$2.27939200 \times 10^{11} \ m$	0.0934	1.88082 yr
	$0.107~M_{\oplus}$	$0.53~R_{\oplus}$	$1.523679 \ AU$		
	$3.226 \times 10^{-7} \ M_{\odot}$				
	$3.38 \times 10^{-4} M_{\gamma}$				
Jupiter 4	$1.8982 \times 10^{27} \ kg$	$6.9911 \times 10^7 \ m$	$7.4052 \times 10^{11} \text{ m}$	0.0489	11.862 yr
	$317.8 \ M_{\oplus}$	$10.97~R_{\oplus}$	$5.2044 \; AU$		
	$9.55 \times 10^{-4} \ M_{\odot}$				
	1 M ₄				
Saturn η	$5.6834 \times 10^{26} \ kg$	$5.8232 \times 10^7 \ m$	$1.43353 \times 10^{12} \ m$	0.0565	29.4571 yr
	$95.159 M_{\oplus}$	$9.14~R_{\oplus}$	$9.5826 \; AU$		
	$2.86 \times 10^{-4} \ M_{\odot}$				
	$0.299~M_{7+}$				
Uranus 3	$8.68 \times 10^{25} \ kg$	$2.5362 \times 10^7 \ m$	$2.87504 \times 10^{12} \ m$	0.046381	84.0205 yr
	$14.536 \ M_{\oplus}$	$3.98~R_{\oplus}$	$19.2184 \; AU$		
	$4.36 \times 10^{-5} \ M_{\odot}$				
	$0.046~M_{7+}$				
Neptune \mathbb{Y}	$1.0243 \times 10^{26} \ kg$	$2.4622 \times 10^7 \ m$	$4.5 \times 10^{12} \ m$	0.009456	164.8 yr
	$17.147 M_{\oplus}$	$3.86~R_{\oplus}$	30.11~AU		
	$5.15 \times 10^{-5} \ M_{\odot}$				
	$0.054 M_{7+}$				

A.3 Mathematics

Euler's number (e):
$$\sum_{n=0}^{n} \frac{1}{n!} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \cdots$$
$$= 2.71828182845904523536028747135266249775724709369995 \dots$$
$$\approx 2.7182 \quad \approx 2.718$$
 Pi (π):
$$\frac{C}{d} = \frac{C}{2r}$$
$$= 3.14159265358979323846264338327950288419716939937510 \dots$$
$$\approx 3.14159 \quad \approx 3.142$$

Appendix B

Units of Measurement

B.1 Natural Units

Handy when you're dealing with small things.

Charge: elementary charge (e)

- The electric charge of a proton.
- = $1.602\ 176\ 565 \times 10^{-19}\ C$ $\approx 1.6 \times 10^{-19}\ C$

Energy: electron volt (eV)

- The work done to move an electron across one volt of potential.
- $= e \cdot V = 1.602 \ 176 \ 565 \times 10^{-19} \ J$ $\approx 1.6 \times 10^{-19} \ J$

B.2 SI System

Universally acknowledged as the best system of units.

B.2.1 Base Units

Amount of Substance: mole (mol)

- The amount of substance of a system which contains as many elementary entities as there are atoms in $0.012 \ kg$ of carbon-12.
- \bullet = 6.022 140 857 × 10²³

Electric Current: ampere (A)

- The constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 m apart in vacuum, would produce between these conductors a force equal to $210^{-7}N \cdot m^{-1}$ of length.
- $\bullet \quad = C \cdot s^{-1}$

Force: newton (N)

• $= 0.224809 \ lbf$

Length: metre (m)

- \bullet The distance traveled by light in vacuum in $\frac{1}{299~792~458}~s$
- $= 3.2808 \ ft$

Luminous intensity: candela (cd)

• The luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 5.4×10^{14} Hz and that has a radiant intensity in that direction of $\frac{1}{683}$ watt per steradian.

Mass: kilogram (kg)

• = 2.205lb

Thermodynamic Temperature: kelvin (K)

- \bullet $\frac{1}{273.16}$ of the thermodynamic temperature of the triple point of water.
- $=T[{}^{\circ}C] + 273.15$

Time: second (s)

• The duration of 9 192 631 770 periods of rotation corresponding to the two hyperfine levels of the ground-state of the caesium-133 atom.

B.2.2 Derived Units

Angle: radian (rad)

- A full circle divided by 2π .
- $= m \cdot m^{-1}$ $= \frac{180}{\pi}$ $\approx 57.3^{\circ}$ $= 206265 \ arcsecs$

Electric Charge: coulomb (C)

• $= A \cdot s = 6.242 \times 10^{18} e$

Electrical capacitance: farad (F)

 $\bullet \quad = m^{-2} \cdot kg^{-1} \cdot s^4 \cdot A^2$

Electrical conductance: siemens (S)

 $\bullet = A \cdot V^{-1} = kq^{-1} \cdot m^{-2} \cdot s^3 \cdot A^2$

Electrical inductance: henry (H)

 $\bullet \quad = Wb \cdot A^{-1} \qquad = kg \cdot m^2 \cdot s^{-2} \cdot A^{-2}$

Electrical potential difference / Voltage: volt(V)

 $\bullet = W \cdot A - 1 = kq \cdot m^2 \cdot s^{-3} \cdot A^{-1}$

Electrical resistance: ohm (Ω)

$$\bullet \ V \cdot A^{-1} = kg \cdot m^2 \cdot s^{-3} \cdot A^{-2}$$

Energy: joule (J)

$$\bullet \quad = N \cdot m \qquad = kg \cdot m^2 \cdot s^{-2}$$

Force: newton (N)

$$\bullet \quad = kq \cdot m \cdot s^{-2}$$

Frequency: hertz (Hz)

•
$$= s^{-1}$$

Illuminance: lux(lx)

$$\bullet \quad = lm \cdot m^2 \qquad = m^{-2} \cdot cd$$

Luminous flux: lumen (lm)

$$\bullet \quad = cd \cdot sr \qquad = cd$$

Magnetic flux: weber (Wb)

$$\bullet \quad = V \cdot s \qquad = kq \cdot m^2 \cdot s^{-2} \cdot A^{-1}$$

Magnetic flux density: tesla(T)

$$\bullet \quad = kg \cdot s^{-2} \cdot A^{-1}$$

Power: watt (W)

$$\bullet \quad = J \cdot s \qquad = kq \cdot m^2 \cdot s^{-3}$$

Pressure: pascal (Pa)

$$\bullet \quad = N \cdot m^{-2} \qquad = kg \cdot m^{-1} \cdot s^{-2}$$

Radioactivity: becquerel (Ω)

- Decays per second
- $\bullet \quad = s^{-1}$

Solid angle: steradian (sr)

$$\bullet = m^2 \cdot m^{-2}$$

Temperature: degree Celcius (${}^{\circ}C$)

•
$$T[C] = T[K] - 273.15$$

B.3 CGS (centimetres-grams-seconds)

Commonly used in astronomy, to everyone's disappointment.

Acceleration: gal (Gal)

$$\bullet$$
 = $cm \cdot s^{-2}$ = $10^{-2} m \cdot s^{-2}$

Energy: erg(erg)

$$\bullet = q \cdot cm^2 \cdot s^{-2} = 10^{-7} J$$

Force: dyne (dyn)

$$\bullet \quad = g \cdot cm \cdot s^{-2} \qquad = 10^{-5} \ N$$

Length: centimetre (cm)

$$\bullet \quad = 0.01 \ m$$

Mass: gram (g)

•
$$= 10^{-3} kq$$

Power: erg per second (erg/s)

$$\bullet = g \cdot cm^2 \cdot s^{-2} = 10^{-7} W$$

Pressure: barye (Ba)

$$\bullet = g \cdot cm^{-1} \cdot s^{-2} = 10^{-1} Pa$$

Time: second (s)

Velocity: centimetre per second (cm/s)

$$\bullet = 10^{-2} m \cdot s^{-1}$$

Viscosity (dynamic): poise (P)

$$\bullet = g \cdot cm^{-1} \ s^{-1} = 10^{-1} \ Pa \cdot s$$

Viscosity (kinematic): stokes (St)

$$\bullet = q \cdot cm^2 \ s^{-1} = 10^{-4} \ m^2 \cdot s^{-1}$$

Wavenumber: kayser (K)

$$\bullet$$
 = cm^{-1} = 100 m^{-1}

B.4 Astronomy units

B.4.1 Astronomical system

Distance: astronomical unit (AU)

- Roughly the distance from the Earth to the Sun.
- $\bullet \quad = 1.4960 \times 10^{11} \ m \qquad = 4.8481 \times 10^{-6} \ pc \qquad = 1.5813 \times 10^{-5} \ ly$

Mass: solar mass (M_{\odot})

•
$$= 1.98855 \times 10^{30} \ kg \approx 2 \times 10^{30} \ kg = 1048 \ M_{\text{H}} = 332 \ 950 \ M_{\odot}$$

Time: Day

$$\bullet$$
 = 86 400s

Complimentary units

Distance: Solar radius (R_{\odot})

•
$$= 6.957 \times 10^8 \ m = 695 \ 700 \ km \approx 7 \times 10^8 \ m$$

Distance: parsec (pc)

- The distance at which the parallax of an object over the course of the Earth's orbit is one arcsec.
- $= 3.0857 \times 10^{16} \ m = 2.0626 \times 10^5 \ AU = 3.26156 \ ly$

Distance: light year (ly)

- The distance travelled by light in a vacuum in a year.
- \bullet = 9.4607 × 10¹⁵ m = 6.3241 × 10⁴ AU = 0.3066 pc

Mass: Earth mass (M_{\odot})

•
$$= 5.9722 \times 10^{24} kg$$
 $\approx 6 \times 10^{27} kg$

Mass: Jupiter mass (M_{2})

•
$$= 1.898 \times 10^{27} kg$$
 $\approx 1.9 \times 10^{27} kg$

Specific Flux: Jansky (Jy)

$$\bullet = 10^{-26} \ W \cdot m^{-2} \cdot Hz^{-1}$$

B.4.2 Equatorial Coordinate System

Right Ascension (α)

Hour (h):
$$\frac{1}{24}$$
 circle = 15°

Minute (**):
$$\frac{1}{60}^h = \frac{1}{1440} \ circle = 15'$$

Second (*):
$$\frac{1}{60}^m = \frac{1}{3600}^h = \frac{1}{86400} \ circle = 15$$
"

Declination (δ)

Declination is measured using normal degrees (see Degrees of Angle) from the equator.

B.5 United States customary units (aka Imperial Units)

B.5.1 Length

Point (p):
$$=\frac{127}{360} \ mm$$

Pica
$$(P/)$$
: = 12 p = $\frac{127}{30}$ mm

Inch (in or "): =
$$6 P/ = 25.4 mm$$

Foot (ft or '): =
$$12 in = 0.3048 m$$

Yard
$$(yd)$$
: = 3 ft = 0.9144 m

Mile (Mi):
$$= 5280 \ ft = 1760 \ yd = 1.609344 \ km$$

B.6 Degrees of Angle

Degree (°):
$$\frac{1}{360}$$
 circle $=\frac{\pi}{180}$ rad $\approx 0.0174532925199433$ rad

Minute of arc (arcmin or '):
$$\frac{1}{60}^{\circ} = \frac{1}{21600}$$
 circle $= \frac{\pi}{10800}$ rad

Second of arc(arcsec or "):
$$\frac{1}{60}$$
 arcmin $=\frac{1}{3600}$ $=\frac{1}{206265}$ circle $=\frac{\pi}{648000}$ rad

B.7 Miscellaneous Units

B.7.1 Pressure

Bar (bar): =
$$10^5 \ Pa \approx 0.9869 \ atm$$

Atmosphere (
$$atm$$
): = 101325 Pa = 1.01325 bar

Torr (torr):
$$=\frac{1}{760} atm = \frac{101325}{760} Pa \approx 133.3224 Pa$$

B.8 Prefixes

atto (a) =
$$\times 10^{-18}$$

femto
$$(f) = \times 10^{-15}$$

pico
$$(p) = \times 10^{-12}$$

nano
$$(n) = \times 10^{-9}$$

micro
$$(\mu) = \times 10^{-6}$$

milli
$$(m) = \times 10^{-3}$$

centi
$$(c) = \times 10^{-2}$$

$$deca (da) = \times 10^1$$

hecto (h) =
$$\times 10^2$$

kilo
$$(k) = \times 10^3$$

mega
$$(M) = \times 10^6$$

giga
$$(G) = \times 10^9$$

tera
$$(T) = \times 10^{12}$$

peta
$$(P) = \times 10^{15}$$

exa
$$(E) = \times 10^{18}$$

Appendix C

Mathematical Stuff

C.1 Trigonometric Values

rad	0	\sin	cos	tan	
0	0	0	1	0	
$\pi/6$	30	1/2	$\sqrt{3}/2$	$1/\sqrt{3}$	
$\pi/4$	45	$1/\sqrt{2}$	$1/\sqrt{2}$	1	
$\pi/3$	60	$\sqrt{3}/2$	1/2	$\sqrt{3}$	
$\pi/2$	90	1	0	$\pm \infty$	
$2\pi/3$	120	$\sqrt{3}/2$	-1/2	$-\sqrt{3}$	
$3\pi/4$	135	$1/\sqrt{2}$	$-1/\sqrt{2}$	-1	
$5\pi/6$	150	1/2	$-\sqrt{3}/2$	$-1/\sqrt{3}$	
π	180	0	-1	0	
$7\pi/6$	210	-1/2	$\sqrt{3}/2$	$1/\sqrt{3}$	
$5\pi/4$	225	$-1/\sqrt{2}$	$-1/\sqrt{2}$	1	
$4\pi/3$	240	$-\sqrt{3}/2$	-1/2	$\sqrt{3}$	
$3\pi/2$	270	-1	0	$\pm \infty$	
$5\pi/3$	300	$-\sqrt{3}/2$	1/2	$-\sqrt{3}$	
$7\pi/4$	315	$-1/\sqrt{2}$	$1/\sqrt{2}$	-1	
$11\pi/6$	330	-1/2	$\sqrt{3}/2$	$-1/\sqrt{3}$	
2π	360	0	1	0	

C.1.1 Pythagorean Triples

Appendix D

Boring stuff

D.1 Version History

- v 0.1 2016: This project is begun in a trio of physical exercise books as The Little Book of Physics Formulae, The Little Book of Mathematics Formulae, and The Little Book of Astronomy Formulae
- ${\bf v}$ **0.6 2016:** The process of transferring the formulae from paper to Latex is initiated, but abandoned (or drifted away from).
- v 0.7 2018-03-20: The project is resurrected (probably because the author started MRes), uploaded to Overleaf, and cleaned up.
- ${\bf v}$ **0.8 2018-07-12:** All remaining formulae imported from the original books.
- v 0.9 2018-07-26: Formulae imported from undergrad formula sheets.
- v 1.0 2018-07-27: First public release, with some additions from 0.9.

D.2 Licensing

This work is licensed under a Creative Commons "Attribution-ShareAlike 4.0 International" license.

(Basically, as long as you credit me and share under a similar license, feel free to use this however you want)

D.3 Contact

Visit www.webofworlds.net for science fiction, science fact, geeky opinions, and maybe some Python code.

Suggestions or corrections are welcome at webofworlds@gmail.com

D.4 Credits

Unit Circle: By Jim.belk [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], from Wikimedia Commons (https://commons.wikimedia.org/wiki/File:Unit_circle_angles_color.svg)

Periodic Table: By Dmarcus100 [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons (https://commons.wikimedia.org/wiki/File: Periodic_Table_Of_Elements_Atomic_Mass_Black_And_White.jpg)

* A	<u>_*</u>		11	II .			
**Actinide series	anthani	87 Francium [223]	55 CS Cesium 132.905	37 Rb Rubidium 85.468	19 K Potassium 39.098	11 Na Sodium 22.990	Hydrogen 1.008
series	*Lanthanide series	88 Radium [226]	56 Ba Barium 137.327	38 St Strontium 87.62	20 Ca Calcium 40.078	Magnesium 24.305	4 Beryllium 9.012
Actinium [227]	57 La Lanthanum 138.905	* * * * *	*				
90 Th Thorium 232.038	58 Ce Cerium 140.116	103 Lawrencium [262]	71 Lutetium 174.967	39 Yttrium 88.906	21 Sc Scandium 44.956		
91 Pa Protactinium 231.036	59 Pr Praseodymium 140.908	104 Rutherfordium [267]	72 Haf Hafnium 178.49	40 Zr Zirconium 91.224	22 Ti Titanium 47.867		
92 Uranium 238.029	Neodymium 144.242	105 Db Dubnium [270]	73 Ta Tantalum 180.948		23 V Vanadium 50.942		
Neptunium [237]	Pm Promethium [145]	Seaborgium [269]	74 W Tungsten 183.84	Mo Molybdenum 95.95	24 Cr Chromium 51.996		
Plutonium [244]	62 Samarium 150.36	107 Bh Bohrium [270]	75 Re Rhenium 186.207	43 TC Technetium [97]	Mn Manganese 54,938		
95 Am Americium [243]	63 Europium 151.964	108 HS Hassium [270]	76 OS Osmium 190.23	44 Ru Ruthenium 101.07	26 Fe Iron 55.845		
96 Cm Curium [247]	64 Gd Gadolinium 157.25	109 Mt Meitnerium [278]	78 Iridium 192.217	45 Rh Rhodium 102.906	27 Co Cobalt 58.933		
	65 Tb Terbium 158.925	110 DS Darmstadtium [281]	79 Platinum 195.084	46 Pd Palladium 106.42	28 Nickel 58.693		
98 Californium [251]	66 Dy Dysprosium 162.500	Roentgenium [281]	80 AU Gold 196.997	47 Ag Silver 107.868	29 Cu Copper 63.546		
99 Einsteinium [252]	67 Hol 164.930	112 Cn Copernicium [285]	81 Hg Mercury 200.592	48 Cd Cadmium 112.414	30 Zn Zinc 65.38		
100 Fermium [257]	68 Erbium 167.259	113 Ni Nihonium [286]	81 Thallium 204.38	49 In Indium 114.818	31 Ga Gallium 69.723	13 Al Aluminum 26.982	Boron 10.81
Mendelevium [258]	69 Tm Thulium 168.934	114 T Flerovium [289]	82 P6 Lead 207.2	50 Sn Tin 118.710	32 Ge Germanium 72.630	14 Si Silicon 28.085	6 Carbon 12.011
	70 Yb Ytterbium 173.045	115 MC Moscovium [289]	83 Bismuth 208.980	51 Sb Antimony 121.760	33 AS Arsenic 74.922	15 Phosphorus 30.974	7 Nitrogen 14,007
		116 LV Livermorium [293]	Polonium [209]	53 Te Tellurium 127.60	34 Se Selenium 78.97	16 Sulfur 32.06	8 0 0 0 0 0 0 0 15,999
		117 TS Tennessine [293]	85 Astatine [210]	53 lodine 126.904	35 Bromine 79.904	17 Ω Chlorine 35.45	9 Fluorine 18.998
		118 Og Oganesson [294]	86 Radon [222]	54 Xe Xenon 131.293	36 Krypton 83.798	18 Argon 39.948	10 Helium 4,003 10 Neon 20,180