

NCERT solutions for class 9 Maths Triangles Ex 7.4

Q1. Show that in a right angles triangle, the hypotenuse is the longest side.

Ans. Given: Let ABC be a right angled triangle, right angled at B.

To prove: Hypotenuse AC is the longest side.

Proof: In right angled triangle ABC,

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\Rightarrow \angle A + 90^{\circ} + \angle C = 180^{\circ} [\because \angle B = 90^{\circ}]$$

$$\Rightarrow \angle A + \angle C = 180^{\circ} - 90^{\circ}$$

And
$$\angle B = 90^{\circ}$$

$$\Rightarrow \angle B > \angle C$$
 and $\angle B > \angle A$

Since the greater angle has a longer side opposite to it.

$$\Rightarrow$$
 AC > AB and AC > AB

Therefore \angle B being the greatest angle has the longest opposite side AC, i.e. hypotenuse.

Q2. In figure, sides AB and AC of \triangle ABC are extended to points P and Q respectively. Also \angle PBC < \angle QCB. Show that AC > AB.

Ans. Given: In \triangle ABC, \angle PBC < \angle QCB

To prove: AC > AB

Proof: In \triangle ABC,

 $\angle 4 > \angle 2$ [Given]

Now $\angle 1 + \angle 2 = \angle 3 + \angle 4 = 180^{\circ}$ [Linear pair]

$$\therefore \angle_{1} > \angle_{3} [\because \angle_{4} > \angle_{2}]$$

⇒ AC > AB [Side opposite to greater angle is longer]

Q3. In figure, \angle B < \angle A and \angle C < \angle D. Show that AD < BC.

Ans. In \triangle AOB,

$$\angle$$
 B < \angle A [Given]

 \Rightarrow OA < OB(i) [Side opposite to greater angle is longer]

In \triangle COD, \angle C < \angle D [Given] \Rightarrow OD < OC(ii) [Side opposite to greater angle is longer] Adding eq. (i) and (ii), OA + OD < OB + OC

Q4. AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD (See figure). Show that $\angle A > \angle C$ and $\angle B > \angle D$.

 \Rightarrow AD < BC

Ans. Given: ABCD is a quadrilateral with AB as smallest and CD as longest side.

To prove: (i) $\angle A > \angle C$ (ii) $\angle B > \angle D$

Construction: Join AC and BD.

Proof: (i) In \triangle ABC, AB is the smallest side.

[Angle opposite to smaller side is smaller]

In \triangle ADC, DC is the longest side.

[Angle opposite to longer side is longer]

Adding eq. (i) and (ii),

$$\angle 4 + \angle 3 < \angle 1 + \angle 2 \Rightarrow \angle C < \angle A$$

(ii) In \triangle ABD, AB is the smallest side.

[Angle opposite to smaller side is smaller]

In \triangle BDC, DC is the longest side.

[Angle opposite to longer side is longer]

Adding eq. (iii) and (iv),

$$45+46<47+48$$

$$\Rightarrow \angle D < \angle B$$

Q5. In figure, PR > PQ and PS bisects \angle QPR. Prove that \angle PSR > \angle PSQ.

Ans. In \triangle PQR, PR > PQ [Given]

∴ ∠ PQR > ∠ PRQ(i) [Angle opposite to longer side is greater]

Again $\angle 1 = \angle 2$ (ii) [: PS is the bisector of $\angle P$]

$$\therefore \angle PQR + \angle 1 > \angle PRQ + \angle 2 \dots (iii)$$

But \angle PQS + \angle 1 + \angle PSQ = \angle PRS + \angle 2 + \angle

 $PSR = 180^{\circ}$ [Angle sum property]

$$\Rightarrow \angle PQR + \angle 1 + \angle PSQ = \angle PRQ + \angle 2 + \angle PSR \dots (iv)$$

$$[\angle PRS = \angle PRQ \text{ and } \angle PQS = \angle PQR]$$

From eq. (iii) and (iv),

$$\angle$$
 PSQ < \angle PSR

Or
$$\angle$$
 PSR > \angle PSQ

Q6. Show that all the line segments drawn from a given point not on it, the perpendicular line segment is the shortest.

Ans. Given: l is a line and P is point not lying on l. PM $\perp l$

N is any point on l other than M.

To prove: PM < PN

Proof: In \triangle PMN \angle M is the right angle.

- $\dot{\cdot}\cdot$ N is an acute angle. (Angle sum property of Δ)
- $\therefore \angle M > \angle N$
- PN > PM [Side opposite greater angle]
- $\Rightarrow PM < PN$

Hence of all line segments drawn from a given point not on it, the perpendicular is the shortest. ******* END ********