MODELING THE EVOLUTION OF THE MUTATION RATE

YOAV RAM

HADANY LAB
LIFE SCIENCES FACULTY
TEL-AVIV UNIVERSITY
10 MARCH 2014

VARIABILITY IN MUTATION RATES

Between species

Rates are in average number of measurable mutations per genome per generation

Bacteria: 0.0004 Wielgoss et al. G3 2011

Flies: 0.455 Keightley et al. Gen Res 2009

Humans: 41 Lynch, PNAS 2010

NON-ADAPTIVE HYPOTHESES

EVOLUTION IN A STATIC ENVIRONMENT

EVOLUTION IN A STATIC ENVIRONMENT

- Directional selection without change
- A balance between mutation and natural selection

SINGLE LOCUS MODEL

- One bi-allelic locus: wild-type A and mutant a
- $\omega(A) > \omega(a)$ (ω fitness)
- u probability of mutation from A to a
- The model describes the change in the frequency of A:

$$f'(A) = f(A) \frac{\omega(A)}{\overline{\omega}} (1 - u)$$

In a static environment we can look for an equilibrium:

$$f'(A) = f(A)$$

With some algebraic operations we get:

$$\overline{\omega}^* = \omega(A)(1-u)$$

SINGLE LOCUS MSB

 The population mean fitness at the mutation-selection balance (MSB):

$$\overline{\omega}^* = \omega(A) \cdot (1 - u)$$

In words:

The population mean fitness is equal to the product of the fitness of the wild-type and the probability that the wild-type does not mutate.

 Therefore, the higher the mutation rate the lower the mean fitness:

$$\overline{\omega}^* \sim 1 - u$$

MULTIPLE LOCUS MSB

 f_x - frequency of individuals with x deleterious mutations

 ω_x - fitness of individuals with x deleterious mutations

U - mutation rate: number of deleterious mutations per individual is Poisson distributed with rate $U(P(k=x)=e^{-U}\frac{U^x}{x!})$.

$$f_{x}' = \sum_{k=0}^{x} \frac{\omega_{k}}{\overline{\omega}} f_{k} e^{-U} \frac{U^{x-k}}{(x-k)!}$$

Or in matrix form:

$$\overline{\omega}f' = Mf$$

Where
$$M_{x,k} = \begin{cases} \frac{\omega_k}{\overline{\omega}} f_k e^{-U} \frac{U^{x-k}}{(x-k)!}, & x \ge k \\ 0, & x < k \end{cases}$$
 is a triangular matrix

MULTIPLE LOCUS MSB

The MSB can be found by setting f' = f:

Ferdinand G. Frobenius 1849-1917, Germany

$$\overline{\omega}^* f^* = M f^*$$

M is triangular so by the **Perron-Frobenius** theorem,

 $\overline{\omega}^*$ is the dominant eigenvalue of M and f^* is the only nonnegative right eigenvector of $\overline{\omega}^*$.

The dominant eigenvalue is $M_{0.0} = \omega_0 e^{-U}$.

Oskar Perron 1880-1975, Germany

SIMULATION RESULTS

MUTATION RATE IN STATIC ENVIRONMENTS

$$\overline{\omega} = \omega_0 e^{-U}$$

- High mutation rates reduce adaptedness of populations
- Selection will reduce the mutation rate to it's lowest attainable level
- What sets this level?
- Kimura 1967 physical or physiological
- Dawson 1999 "cost of fidelity"
- Lynch 2010 "Drift barrier hypothesis"

EVOLUTION IN A DYNAMIC ENVIRONMENT

- In changing environments rapid adaptation can be favored by natural selection (adaptability)
- The mutation rate must balance between adaptability and adaptedness

MUTATORS IN OSCILLATING ENVIRONMENTS

- Model: Leigh, Am Nat 1970
- Fitness locus with alleles A and a like before
- The environmental changes every *n* generations
- When it changes, fitness(A) < fitness(a) and vice versa
- The optimal mutation rate is 1/n
- For n=1,000 the mutation rate is 10^{-3}
- Very high the rate of mutation per gene

Egbert Giles Leigh, Jr.
Smithsonian Tropical
Research Institute Panama

MUTATORS IN OSCILLATING ENVIRONMENTS

The optimal mutation rate is now 1/n

- MSB model -> n is large -> slowly changing environments
- Selection for the standing variation generated by mutators
- Local mutators? Same n for all loci? Averaging on all loci?

VARIABILITY IN MUTATION RATES

Within species

Mutation rate in 69 natural populations of *E. coli* – Matic et al. 1997

MUTATORS IN ADAPTIVE EVOLUTION

- Model: Taddei et al., Nature 1997
- Multiple-locus simulations
- Single environmental change
- No standing variation
- Mutation at the mutator locus

RISE AND FALL OF THE MUTATOR ALLELE

VARIABILITY IN MUTATION RATES

Within individuals

DNA polymerase error rate – Lynch 2011

STRESS-INDUCED MUTATION

In E. coli:

- Error prone polymerase induced by stress responses:
 - SOS response
 - DNA damage
 - Starvation
- Mismatch repair system
- Other mechanisms:
 - Galhardo et al. 2007
 - Al Mamun, Science 2012

EVIDENCE

EVOLUTION OF STRESS- INDUCED MUTATION

Null hypothesis

Mutagenesis is the by-product of stress

Alternative non-adaptive hypotheses

Cost of fidelity

Drift barrier hypothesis

Adaptive hypothesis

Second order selection

STATIC ENVIRONMENT

Selection against generation of deleterious mutations

x - number of harmful alleles

 f_{x} - frequency

 ω_x - fitness

 m_x - mutation probability

 δ - deleterious mutation β - beneficial mutation

of harmful alleles

 f_{χ} frequency

 f_{x+1} ω_x fitness m_x mutation probability

 δ deleterious mutation

β beneficial mutation

 $\overline{\omega}$ population mean fitness

$$f_x' = \left(1 - m_x(\delta + \beta)\right) \frac{\omega_x}{\overline{\omega}} f_x + m_{x-1} \delta \frac{\omega_{x-1}}{\overline{\omega}} f_{x-1} + m_{x+1} \beta \frac{\omega_{x+1}}{\overline{\omega}} f_{x+1}$$

$$M = \begin{pmatrix}
(1 - m_0 \delta)\omega_0 & m_1 \beta \omega_1 & 0 & \dots \\
m_0 \delta \omega_0 & (1 - m_1 (\beta + \delta))\omega_1 & m_2 \beta \omega_2 & \ddots \\
0 & m_1 \delta \omega_1 & (1 - m_2 (\beta + \delta))\omega_2 & \ddots \\
\vdots & \ddots & \ddots & \ddots
\end{pmatrix}$$

$$\overline{\omega}f = Mf$$

x # of harmful alleles

 f_x frequency

 ω_{x} fitness

 m_{χ} mutation probability

δ deleterious mutation

β beneficial mutation

 $\overline{\omega}$ population mean fitness

$$\overline{\omega}f = Mf \Rightarrow \frac{\partial \overline{\omega}}{\partial m_{\chi}} = v \frac{\partial M}{\partial m_{\chi}} f$$

 $\overline{\omega}$ is eigenvalue of M

v, f are **left** and **right** eigenvectors of $\overline{\omega}$

STATIC ENVIRONMENT

General solution

$$\frac{\partial \overline{\omega}}{\partial m_x} = \frac{f_x v_x}{m_x} \ (\overline{\omega} - \omega_x)$$

"Increasing the mutation rate of individuals with below average fitness increases the population mean fitness"

STATIC ENVIRONMENT

General solution

$$sign\frac{\partial \overline{\omega}}{\partial m_{x}} = sign\left(\overline{\omega} - \omega_{x}\right)$$

"Increasing the mutation rate of individuals with below average fitness increases the population mean fitness"

Selection doesn't reduce the mutation rate!

STATIC ENVIRONMENTS

STATIC ENVIRONMENTS

RAPIDLY CHANGING ENVIRONMENTS

The Red Queen hypothesis

- van Valen, 1973

"It takes all the running you can do, to keep in the same place."

- Lewis Carrol, Through the Looking Glass

What happens when the environment changes frequently?

CHANGING ENVIRONMENTS

Simulation model

Moran process

Individual-based simulations

100,000 individuals

1,000 loci

Asexual, Haploid

Overlapping generations

No recombination

No segregation

No mutations at mutator locus

Environmental changes

POPULATIONS WITH SIM ARE FITTER

SIM WINS COMPETITIONS

SIM WINS COMPETITIONS

SUMMARY: EVOLUTION OF STRESS-INDUCED MUTATION

- Stress-induced mutators evolve:
 - In finite & infinite populations
 - In constant & changing environments

- Second-order selection can lead to the evolution of stress-induced mutagenesis in asexual populations
- Selection for evolvability

CONSEQUENCES OF STRESS-INDUCED MUTATION RATE

How does SIM affect evolution?

ADAPTIVE PEAK SHIFTS

This problem was introduces by Sewall Wright in 1931:

If a new adaptation requires several, separately deleterious mutations, how can it evolve?

EXAMPLES

Criteria

- Adaptation requires a change in two or more traits
- Change in only one trait causes reduced fitness

Wings and bones

- Flying with heavy bones is costly
- Walking and climbing with light bones is dangerous

New metabolic pathway

- Two new proteins required pump and enzyme
- each is wasteful without the other

Adaptation to high UV (Haldane 1932, p. 175)

- Dark skin increased pigmentation
- Vitamin D storage in the liver

SIM & RUGGED LANDSCAPE

Increasing the mutation rate in individuals below **both** peaks

Probability that a random offspring is a double mutant:

$$q = \mu^2 e^{-\frac{U}{s} - U} + 2\frac{\mu^2}{s} e^{-\frac{U}{s} - U} \approx 2\frac{\mu^2}{s} \left(1 - \frac{U}{s}\right)$$

With stress-induced mutation:

$$q_{SIM} = \mu^2 e^{-\frac{U}{S} - U} + 2 \frac{\tau \mu^2}{S} e^{-\frac{U}{S} - \tau U} \approx q \cdot \tau (1 - \tau U)$$

The probability that a single double mutant avoids extinction:

$$\rho \approx 2sH$$

Probability there are double mutants in the next generation:

$$(1-q)^N \approx Nq$$

Waiting time for a double mutant that will go to fixation:

$$E[T] = \frac{1}{Nq\rho}$$

Adaptation rate:

$$\nu = E[T]^{-1} = Nq\rho$$

 ν – adaptation rate; N – population size; τ – mutation rate increase; H – double mutant advantage; μ – beneficial mutation rate

DETERMINISTIC RESULTS

The rate of adaptation without **normal mutation**:

$$v_{NM} \approx 4NH\mu^2$$

The rate of adaptation without **high mutation**:

$$v_{CM} \approx \tau^2 \cdot v_{NM}$$

The rate of adaptation without **stress-induced mutation**:

$$\nu_{SIM} \approx \tau \cdot \nu_{NM}$$

 ν – adaptation rate; N – population size; τ – mutation rate increase; H – double mutant advantage; μ – beneficial mutation rate

STOCHASTIC MODEL

$$\nu_{CM} \approx \tau^2 \cdot \nu_{NM}$$
 $\nu_{SIM} \approx \tau \cdot \nu_{NM}$

ADAPTATION RATE

MEAN FITNESS IN MSB

COMPETITIONS

SIM BREAKS THE ADAPTABILITY-ADAPTEDNESS TRADE-OFF

CONCLUSION

- Evolution of Stress-induced mutagenesis:
 - SIM can evolve due to second order selection
 - In constant and changing environments
- Effects of stress-induced mutagenesis:
 - SIM increases the adaptation rate without reducing the population mean fitness
 - Breaks the trade-off between adaptability and adaptedness