

Multiagent decision making and Games in Normal Form

Outline

- Multiagent decision making with Game theory
- Normal-form games
 - Example Prisoner's dilemma
- Strictly dominated action
- Solution Concepts
 - Iterated elimination of strictly dominated actions
 - Nash Equilibrium

Multiagent decision making

- We are now going to study multiagent decision making
 - Group of agents coexist within an environment

- What is game theory?
 - Mathematical study of interactions among independent, self-interested agents
 - It has been **applied in many disciplines**, such as:
 - Economics, political science, biology, psychology, linguistics, and computer science (multiagent decision making)

- What is game theory?
 - Agents are considered self-interested
 - Each agent has a description of states (outcomes) it likes
 - The dominant theory for modeling agent's interests is utility theory

The success of an agent depends on the decisions of <u>all agents</u>

Game theory was originally designed for modelling economical interaction

- Game theory is now an independent field
 - Solid mathematical foundation
 - Many applications

- Game theory is based on two assumptions:
 - Participating agents are rational
 - Agents reason strategically
 - They take into account the other agent's decision in their own decision making process

Outline

- Multiagent decision making with Game theory
- Normal-form games
 - Example Prisoner's dilemma
- Strictly dominated action
- Solution Concepts
 - Iterated elimination of strictly dominated actions
 - Nash Equilibrium

Normal-Form Games

Can be viewed as the multiagent extension of utility-based decision making

Also known as static game or strategic games in some game theory books

Normal-Form Games

- **Definition (Normal-form game):** A (finite, n-person) normal-form game is a **tuple** (N, A, u), where:
 - N is a **finite set of** n **players**, indexed by i;
 - $A = A_1 \times \cdots \times A_n$, where A_i is a finite set of actions available to player/agent i. Each vector $a = (a_1, ..., a_n) \in A$ is called an action profile (or joint action)
 - $u = (u_1, ..., u_n)$, where $u_i : A \mapsto \mathbb{R}$ is a real-valued utility (or payoff) function for player i.

Strategic game

- In summary:
 - Each agent chooses a single action and then receives a payoff that depends on the joint action
 - The joint action is the outcome of the game
 - Although payoffs are common knowledge, an agent does not know the actions of the other agents
 - The best an agent can do is to predict the actions of others
 - A game's solution is a prediction of the outcome using the assumptions that all agents are rational and strategic

Notation in Economics

- The **normal-form representation** of a game specifies:
 - an *n*-player game
 - the strategies available to each player
 - Let $s_i \in S_i$ denote a strategy for player i, where S_i is the strategy space
 - Let $(s_1, ..., s_n)$ denote a combination of strategies
 - the payoff received by each player for each combination of strategies that could be chosen by the players
 - Let $u_i(s_1, ..., s_n)$ denote player i's payoff function
 - Hence, we denote a **game** by $G = \{S_1, \dots, S_n, u_1, \dots, u_n\}$

Outline

- Multiagent decision making with Game theory
- Normal-form games
 - Example Prisoner's dilemma
- Strictly dominated action
- Solution Concepts
 - Iterated elimination of strictly dominated actions
 - Nash Equilibrium

- The prisoner's dilemma is one of the oldest and most studied model in game theory
- Information about the game:
 - Two suspects are arrested and charged for a crime
 - The police lack sufficient evidence to convict the suspects, unless at least one confesses
 - The police hold the suspects in separate cells

- The **policemen explain the consequences** that will follow from the following actions:
 - If neither confesses then both will be convicted of a minor offense and sentenced to one month in jail
 - If both confess then both will be sentenced to jail for six months
 - if one confesses but the other does not, then the confessor will be released immediately but the other will be sentenced to nine months in jail

- Elements of this normal-form game:
 - $N = \{Prisoner 1, Prisoner 2\}$ (i.e., there are 2 agents within the environment)
 - Each agent i can select an action a_i (or strategy) from his own action set A_i
 - $A_1 = A_2 = \{not\ confess, confess\}$
 - And $a = (a_1, a_2)$ is the **joint action** (or action/strategy profile)
 - e.g., $a = (a_1 = confess, a_2 = not confess)$
 - $u = (u_1(a_1, a_2), u_2(a_1, a_2))$, where u_i is the payoff function for each agent (next slide)

- Elements of this normal-form game :
 - In the special case of two agents, the normal-form game can be represented by a payoff matrix

Prisoner 2

		Not confess	Confess
Prisoner 1	Not confess	-1, -1	-9, 0
	Confess	0, -9	-6, -6

- E.g.:
 - $u_1(a_1 = confess, a_2 = not confess) = 0$
 - $u_2(a_1 = confess, a_2 = not confess) = -9$

■ In its most general form, the Prisoner's Dilemma is any normal-form game as follows:

Agent 2

		Cooperate	Defect
Agent 1	Cooperate	a, a	b, c
	Defect	c, b	d, d

In which: c > a > d > b

Outline

- Multiagent decision making with Game theory
- Normal-form games
 - Example Prisoner's dilemma
- Strictly dominated action
- Solution Concepts
 - Iterated elimination of strictly dominated actions
 - Nash Equilibrium

■ In game theory, we assume that a rational agent will never choose a suboptimal action (or play a strictly dominated action/strategy)

Suboptimal action will always result in lower payoffs for the agent than some other action,
 no matter what the other agents do

- We formalize this concept as follows:
 - **Definition**: We will say that an action a_i of agent i is **strictly dominated** by another action a_i of agent i if

$$u_i(a_i', a_{-i}) > u_i(a_i, a_{-i})$$

for all actions a_{-i} of the other agents

- Example in the prisoner's dilemma:
 - for prisoner 1, the *not confess* is a **strictly dominated action** by the action *confess*

$$u_1(a_1' = confess, a_2 = not \ confess) > u_1(a_1 = not \ confess, a_2 = not \ confess)$$

 $u_1(a_1' = confess, a_2 = confess) > u_1(a_1 = not \ confess, a_2 = confess)$

Prisoner 2

- Example in the prisoner's dilemma:
 - similarly, for prisoner 2, the not confess is a strictly dominated action by the action confess

$$u_2(a_2' = confess, a_1 = not \ confess) > u_2(a_2 = not \ confess, a_1 = not \ confess)$$

 $u_2(a_2' = confess, a_1 = confess) > u_2(a_2 = not \ confess, a_1 = confess)$

Prisoner 2

Prisoner 1

Not confess

-1(-1) -9,0

Confess

0(-9) -6(-6)

Outline

- Multiagent decision making with Game theory
- Normal-form games
 - Example Prisoner's dilemma
- Strictly dominated action
- Solution Concepts
 - Iterated elimination of strictly dominated actions
 - Nash Equilibrium

Solution Concepts

■ Now that we have a defined games in normal form:

• How can we reason about these games?

• How can we predict the outcomes of a game?

• How can we predict the actions of a game?

Solution Concepts

The problem of reasoning about games and identifying certain subsets
 of outcomes is called

Solution Concept

Outline

- Multiagent decision making with Game theory
- Normal-form games
 - Example Prisoner's dilemma
- Strictly dominated action
- Solution Concepts
 - Iterated elimination of strictly dominated actions
 - Nash Equilibrium

- The iterated elimination of strictly dominated actions is a first solution concept for games
 - This solution concept is based on the assumption that a rational agent will never choose a suboptimal action (or play a strictly dominated action/strategy)

- The **iterated elimination of strictly dominated actions** is a solution technique that:
 - iteratively eliminates strictly dominated actions from all agents, until no more actions are strictly dominated
- This technique is based on two assumptions:
 - A rational agent would never take a strictly dominated action
 - It is common knowledge that all agents are rational

- Example (**Game 2**):
 - Imagine 2 agents with the following payoff matrix
 - Are there strictly dominated actions?

Agent 2

		Left	Middle	Right
Agent 1	Up	1, 0	1, 2	0, 1
	Down	0, 3	0, 1	2, 0

- Example (Game 2):
 - Let us first check agent 1
 - For agent 1, neither Up nor Down is strictly dominated

Agent 2

		Left	Middle	Right
Agent 1	Up	1, 0	1, 2	0, 1
	Down	0, 3	0, 1	2, 0

- Example (**Game 2**):
 - Let us now check agent 2
 - For agent 2, *Right* is strictly dominated by *Middle*

- Example (Game 2):
 - A rational agent 2 will not choose Right
 - Thus, if agent 1 knows that agent 2 is rational, then agent 1 can eliminate Right from the action set

- Example (Game 2):
 - Hence, if agent 1 knows that agent 2 is rational, then agent 1 can play the game as if it were the following:

Agent 2

Left Middle

Left 1, 0 1, 2

Agent 1

Down 0, 3 0, 1

Are there strictly dominated actions?

- Example (Game 2):
 - Down is now strictly dominated by Up for agent 1.

- Example (**Game 2**):
 - If **agent 1 is rational** (and agent 1 knows that agent 2 is rational, so that the game below applies) then **agent 1 will not choose** *Down*
 - if agent 2 knows that agent 1 is rational, then agent 2 can eliminate Down from agent
 1's action set
 - Note that we assume that agent 2 knows that agent 1 knows that agent 2 is rational (so that agent 2 knows that the game below applies)

Agent 2

- Example (Game 2):
 - Hence, considering the rationality assumption, the agents can play the game as if it were the following:

Are there strictly dominated actions?

- Example (**Game 2**):
 - Left is strictly dominated by Middle for agent 2
 - Thus, the solution (outcome) of this game is (*Up, Middle*)

Can we use this solution concept to find the outcome in the Prisoner's Dilemma?

- Example with the Prisoner's Dilemma:
 - Are there strictly dominated actions? Yes!
 - For prisoner 1, *Not confess* is strictly dominated by *Confess*

- Example with the Prisoner's Dilemma:
 - A rational prisoner 1 will not choose Not confess
 - Thus, if prisoner 2 knows that prisoner 1 is rational, then prisoner 2 can eliminate Not confess from the action set

- Example with the Prisoner's Dilemma:
 - Hence, if prisoner 2 knows that prisoner 1 is rational, then prisoner 2 can play the game as if it were the following:

Prisoner 2

	Not confess	Confess
SS	0, -9	-6, -6

Prisoner 1 Confess

Are there strictly dominated actions?

- Example with the Prisoner's Dilemma:
 - Not confess is strictly dominated by Confess for prisoner 2
 - Thus, the solution (outcome) of this game is (*Confess*, *Confess*)

Prisoner 2

Not confess

Prisoner 1 Confess

0 9 -6 -6

Does the order matter in this algorithm?

• Will we end up with different outcomes if we change the order?

- Example with the Prisoner's Dilemma:
 - Recall that we started with this:
 - For prisoner 1, *Not confess* is strictly dominated by *Confess*

Not confess
Prisoner 1

Not confess

-1, 1

-9, 0

Confess

0, -9

-6, 6

Prisoner 2

- Example with the Prisoner's Dilemma:
 - However, we could have started with this:
 - For prisoner 2, *Not confess* is strictly dominated by *Confess*

Prisoner 2

Prisoner 1

Not confess

-1(-1)

-9,0

Confess

0(-9)

-6(-6)

- Example with the Prisoner's Dilemma:
 - A rational prisoner 2 will not choose Not confess
 - Thus, if prisoner 1 knows that prisoner 2 is rational, then prisoner 1 can eliminate Not confess from the action set

- Example with the Prisoner's Dilemma:
 - Hence, if prisoner 1 knows that prisoner 2 is rational, then prisoner 1 can play the game as if it were the following:

Prisoner 2

Confess

Prisoner 1

Not confess
-9, 0

Confess
-6, -6

- Example with the Prisoner's Dilemma:
 - Not confess is strictly dominated by Confess for prisoner 1
 - Thus, the solution (outcome) of this game is (*Confess*, *Confess*)

Prisoner 2

Confess

Prisoner 1

Confess

Confess

Confess

Confess

Confess

- Appealing idea that rational agents do not play strictly dominated actions
- First drawback:
 - Each step requires a further assumption about what the agents know about each other's rationality
 - We need to assume that it is common knowledge that the agents are rational

Second drawback:

- the process often produces a very imprecise prediction about the play of the game
 - For instance, if no actions are eliminated then anything could happen

Second drawback:

Does the game (i.e., Game 3) below have any strictly dominated actions?

	L	C	R
T	0, 4	4, 0	5, 3
M	4, 0	0, 4	5, 3
В	3, 5	3, 5	6, 6

Second drawback:

	L	C	R		L
T	0,)4	4,0	5,3	 T	0, 4
M	4,)0	0, 4	5, 3	M	(4,)0
В	3, 5	3, 5	6, 6	В	3,5

	L	C	R
T	0,)4	4,0	5,3
M	4, 0	0, 4	5, 3
В	3,5	3,5	6,
		' 	<u> </u>

For agent 1, there are no strictly dominated actions

4, 0

R

Second drawback:

			, .		L	C	Λ
T	0(4)	4,0	5, 3	 T [0, 4	4,0	5(, 3)
M	4,0	0(4)	5, 3	M	4, 0	0(4)	5, 3
В	3(5)	3(, 5)	6, 6	В	3, 5	3(5)	6,6

	L	C	R
T	0,4	4, 0	5,
M	4,0	0, 4	ار ,
В	3, 5	3, 5	6 , 6
•			

For agent 2, there are no strictly dominated actions

Second drawback:

- Hence, Game 3 (below) does not have any strictly dominated actions
 - And the technique does not produce a prediction whatsoever about this game, thus we are unsure about the outcome

	L	C	R
T	0, 4	4, 0	5, 3
M	4, 0	0, 4	5, 3
В	3, 5	3, 5	6, 6

Outline

- Multiagent decision making with Game theory
- Normal-form games
 - Example Prisoner's dilemma
- Strictly dominated action
- Solution Concepts
 - Iterated elimination of strictly dominated actions
 - Nash Equilibrium

■ The Nash equilibrium is a stronger solution concept than the iterated elimination of strictly dominated actions

■ Hence, it produces more accurate predictions in a wider class of games

■ **Defintion**: A **Nash equilibrium** is a joint action a^* with the property that the following holds for every agent i:

$$u_i(a_i^*, a_{-i}^*) \ge u_i(a_i, a_{-i}^*)$$

for all action
$$a_i \in A_i$$

- In other words, a Nash equilibrium is a joint action from where no agent can unilaterally improve his payoff
 - Hence, no agent has any incentive to deviate

- Note that:
 - The **iterated elimination of strictly dominated actions** produces a solution of a game by means of an **algorithm**
 - However, the previous definition of Nash equilibrium describes a solution in terms of the conditions that hold at that solution

- An alternative for the previous definition makes use of the best-response function
- **Definition:** The **best-response function** for agent i is

$$B_i(a_{-i}) = \{a_i \in A_i : u_i(a_i, a_{-i}) \ge u_i(a_i', a_{-i}) \text{ for all } a_i' \in A_i\}$$

• Note that $B_i(a_{-i})$ can be a set containing many actions

- For instance, in the prisoner's dilemma:
 - If prisoner 2 takes the action Not confess
 - The **best response** of **prisoner 1** is the action **Confess**
 - $B_1(a_2 = Not \ confess) = Confess$

■ We can compute the **best-response function for each agent**:

■
$$B_1(a_2 = Not \ confess) = Confess$$

•
$$B_1(a_2 = Confess) = Confess$$

■
$$B_2(a_1 = Not \ confess) = Confess$$

■
$$B_2(a_1 = Confess) = Confess$$

Prisoner 2

		Not confess	Confess
Prisoner 1	Not confess	-1, -1	-9, <u>0</u>
	Confess	<u>0</u> , -9	<u>-6</u> , <u>-6</u>

- Using the definition of best-response function, we can now formulate an equivalent definition (to the first definition):
- **Definition 2**: A **Nash equilibrium** is a joint action a^* with the property that the following holds for every agent i:

$$a_i^* \in B_i(a_{-i}^*)$$

• In other words, in a Nash equilibrium, each agent's actions is an optimal response to the other agents' actions

■ We can compute the **best-response function for each agent**:

■
$$B_1(a_2 = Not \ confess) = Confess$$

- $B_1(a_2 = Confess) = Confess$
- $B_2(a_1 = Not \ confess) = Confess$
- $B_2(a_1 = Confess) = Confess$

Prisoner 2

		Not confess	Confess
Prisoner 1	Not confess	-1, -1	-9,0
Prisoner 1	Confess	<u>0</u> , -9	<u>-6</u> , <u>-6</u>
	·		Nash Equilibrium

■ In the prisoner's dilemma, note that:

- So, we could use a **brute-force algorithm** to finding a game's **Nash equilibria** (NE):
 - Check whether each possible joint action satisfies the condition in the definition

Let us try this approach in Game 2:

Agent 2

		Left	Middle	Right
A = = = 1	Up	1, 0	1, 2	0, 1
Agent 1	Down	0, 3	0, 1	2, 0

- In a two-agent game, this approach has the following steps:
 - for each agent and for each action of that agent, determine the other agent's best
 response to that action

Agent 2

Left Middle Right

Agent 1

Up 1, 0 1, 2 0, 1Agent 1

Down 0, 3 0, 1 2, 0

- In a two-agent game, this approach has the following steps:
 - A pair of actions satisfies condition in the definition of a NE if each agent's action is a best response to the other's
 - Thus, we have NE if both payoffs are underlined in the corresponding cell of the payoff matrix

Let us try this approach in Game 3:

			Agent 2	
	_	L	C	R
	T	0, 4	4, 0	5, 3
Agent 1	M	4, 0	0, 4	5, 3
	B	3, 5	3, 5	6, 6

- In a two-agent game, this approach has the following steps:
 - for each agent and for each action of that agent, determine the other agent's best
 response to that action

		Agent 2					
		L	L C R				
	T	0, <u>4</u>	<u>4</u> , 0	5, 3			
Agent 1	M	<u>4</u> , 0	0, <u>4</u>	5, 3			
	В	3, 5	3, 5	<u>6</u> , <u>6</u>			

- In a two-agent game, this approach has the following steps:
 - A pair of actions satisfies condition in the definition of a NE if each agent's action is a best response to the other's
 - Thus, we have NE if both payoffs are underlined in the corresponding cell of the payoff matrix

Final remarks

• Although the two definitions suggest a brute-force method for finding the Nash equilibrium of a game

• the **cost** of such an algorithm **is exponential in the number of agents**

Final remarks

- Addressing the relation between Nash equilibrium (NE) and iterated elimination of strictly dominated actions (IESDA)
 - Recall the NE joint actions in the Prisoners' Dilemma (Confess, Confess) and Game 2 (Up, Middle)
 - These are the only joint actions that "survived" IESDA
 - In fact, this **result can be generalized**:
 - If IESDA eliminates all but a single joint action a, then this joint action is the unique NE of the game

Final remarks

- Addressing the relation between NE and IESDA:
 - Since IESDA frequently does not eliminate all but a single joint action
 - We say that the Nash equilibrium is a stronger solution concept than iterated elimination of strictly dominated actions
 - For example in Game 3:
 - any outcome is possible with IESDA
 - while NE gives a unique prediction

Thank You

rui.prada@tecnico.ulisboa.pt