Лекция 1

Ilya Yaroshevskiy

20 апреля 2021 г.

Содержание

1	Исч	иесление высказываний	1
	1.1	язык	1
	1.2	Мета и предметные	1
	1.3	Сокращение записи	1
	1.4	Теория моделей	2
		Теория доказательств	
	1.6	Правило Modus Ponens и доказательство	2

1 Исчесление высказываний

1.1 Язык

- 1. Пропозициональные переменные A_i' большая буква начала латинского алфавита
- Связки

$$\alpha$$
 , β — высказывания метапеременная

Тогда $(\alpha \to \beta), (\alpha \& \beta), (\alpha \lor \beta), (\neg \alpha)$ — высказывания

1.2 Мета и предметные

- $\alpha, \beta, \gamma, \dots, \varphi, \psi, \dots$ метапеременные для выражений
- ullet X,Y,Z метапеременные для предметные переменные

Метавыражение: $\alpha \to \beta$

Предметное выражение: $A \to (A \to A)$ (заменили α на A, β на $(A \to A)$)

Пример. Черным — предметные выражения, Синим — метавыражения

$$(X \to Y)[X \coloneqq A, Y \coloneqq B] \equiv A \to B$$

$$(\alpha \to (A \to X))[\alpha \coloneqq A, X \coloneqq B] \equiv A \to (A \to B)$$

$$(\alpha \to (A \to X))[\alpha \coloneqq (A \to P), X \coloneqq B] \equiv (A \to P) \to (A \to B)$$

1.3 Сокращение записи

- \lor , &, \neg скобки слева направо(лево-ассоциативная)
- ullet ightarrow правоассоциативная
- Приоритет по возрастанию: \to , \lor , &, \neg

Пример. Расставление скобок

$$(A \to ((B\&C) \to D))$$
$$(A \to (B \to C))$$

1.4 Теория моделей

- ullet $\mathcal{P}-$ множество предметных переменных
- [[·]] : $\mathcal{T} \to V$, где \mathcal{T} множество высказываний, $V = \{ \Pi, \Pi \}$ множество истиностных значений
- 1. $[\![x]\!]: \mathcal{P} \to V$ задается при оценке $[\![\!]]^{A:=v_1,B:=v_2}:$
 - $\mathcal{P} = v_1$
 - $\bullet \mathcal{P} = v_2$
- 2. $\llbracket \alpha \star \beta \rrbracket = \llbracket \alpha \rrbracket$ $\underbrace{\star}_{\substack{\text{определенно} \\ \text{ественным образом}}} \llbracket \beta \rrbracket, \, \text{где} \, \star \in [\&, \lor, \neg, \to]$

 Π ример.

$$\llbracket A \to A \rrbracket^{A:=\mathsf{M},B:=\Pi} = \llbracket A \rrbracket^{A:=\mathsf{M},B:=\Pi} \to \llbracket A \rrbracket^{A:=\mathsf{M},B:=\Pi} = \mathsf{M} \to \mathsf{M} = \mathsf{M}$$

Также можно записать так:

$$[\![A \to A]\!]^{A:=\mathsf{M},B:=\Pi} = f_\to([\![A]\!]^{A:=\mathsf{M},B:=\Pi},[\![A]\!]^{A:=\mathsf{M},B:=\Pi}) = f_\to(\mathsf{M},\mathsf{M}) = \mathsf{M}$$

, где $f_{
ightarrow}$ определена так:

1.5 Теория доказательств

Определение. Схема высказывания — строка соответсвующая определению высказывания, с:

• метапеременными α, β, \dots

Определение. Аксиома — высказывания:

- 1. $\alpha \to (\beta \to \alpha)$
- 2. $(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$
- 3. $\alpha \to \beta \to \alpha \& \beta$
- 4. $\alpha \& \beta \to \alpha$
- 5. $\alpha \& \beta \to \beta$
- 6. $\alpha \to \alpha \lor \beta$
- 7. $\beta \to \alpha \vee \beta$
- 8. $(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$
- 9. $(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$
- 10. $\neg \neg \alpha \rightarrow \alpha$

1.6 Правило Modus Ponens и доказательство

Определение. Доказательство (вывод) — последовательность высказываний $\alpha_1, \dots, \alpha_n$, где α_i :

- аксиома
- существует k, l < i, что $\alpha_k = \alpha_l \to \alpha$

$$\frac{A,\ A\to B}{B}$$

Пример. $\vdash A \to A$

Определение. Доказательством высказывания β — список высказываний α_1,\dots,α_n

- $\alpha_1, \ldots, \alpha_n$ доказательство
- $\alpha_n \equiv \beta$