Minimum spanning forest

Definition: A sequence of edges $[\{x_1, x_2\}, \{x_2, x_3\}, \{x_3, x_4\}, \dots, \{x_{k-1}, x_k\}]$ is called an x_1 -to- x_k path.

Example "Main Quad"-to-" Gregorian Quad" paths in above graph:

- one goes through "Wriston Quad" ,
- one goes through "Keeney Quad"

Definition: A *x*-to-*x* path is called a *cycle*.

Minimum spanning forest

Definition: A sequence of edges $[\{x_1, x_2\}, \{x_2, x_3\}, \{x_3, x_4\}, \dots, \{x_{k-1}, x_k\}]$ is called an x_1 -to- x_k path.

Example "Main Quad"-to-" Gregorian Quad" paths in above graph:

- one goes through "Wriston Quad" ,
- one goes through "Keeney Quad"

Definition: A *x*-to-*x* path is called a *cycle*.

Minimum spanning forest: spanning

Definition: A set S of edges is *spanning* for a graph G if, for every edge $\{x, y\}$ of G, there is an x-to-y path consisting of edges of S.

Soon we see connection between this use of "spanning" and its use with vectors.

Minimum spanning forest: spanning

Definition: A set S of edges is *spanning* for a graph G if, for every edge $\{x,y\}$ of G, there is an x-to-y path consisting of edges of S.

Soon we see connection between this use of "spanning" and its use with vectors.

Minimum spanning forest: forest

Definition: A set of edges of *G* is a *forest* if the set includes no cycles.

Minimum spanning forest: forest

Definition: A set of edges of *G* is a *forest* if the set includes no cycles.

Minimum spanning forest: forest

Definition: A set of edges of *G* is a *forest* if the set includes no cycles.

Minimum spanning forest

Minimum spanning forest problem:

- ightharpoonup input: a graph G, and an assignment of real-number weights to the edges of G.
- output: a minimum-weight set S of edges that is spanning and a forest.

Application: Design hot-water delivery network for the university campus:

- Network must achieve same connectivity as input graph.
- An edge represents a possible pipe.
- Weight of edge is cost of installing the pipe.
- Goal: minimize total cost.

Minimum spanning forest: Grow algorithm

 $\begin{aligned} &\operatorname{def} \; \operatorname{Grow}(G) \\ &S := \emptyset \\ &\operatorname{consider} \; \operatorname{the} \; \operatorname{edges} \; \operatorname{in} \; \operatorname{increasing} \; \operatorname{order} \\ &\operatorname{for} \; \operatorname{each} \; \operatorname{edge} \; e : \\ &\operatorname{if} \; e' \operatorname{s} \; \operatorname{endpoints} \; \operatorname{are} \; \operatorname{not} \; \operatorname{yet} \; \operatorname{connected} \\ &\operatorname{add} \; e \; \operatorname{to} \; S. \end{aligned}$

Increasing order: 2, 3, 4, 5, 6, 7, 8, 9.

Minimum spanning forest: Shrink algorithm

Decreasing order: 9, 8, 7, 6, 5, 4, 3, 2.

remove e from S.

if every pair of nodes are connected via $S - \{e\}$:

Let $D = \text{set of nodes } \{\text{Pembroke, Athletic, Main, Keeney, Wriston}\}$

Represent a subset of D by a GF(2) vector: subset {Pembroke, Main, Gregorian} is represented by

Pembroke	Athletic	Bio-Med	Main	Keeney	Wriston	Gregorian
1			1			1

Pembroke Campus Bio-Med		Athletic Compl	Keeney Quad	Main Qu	wriston Quad		rian Quad
edge		V	ector				
	Pembroke	Athletic	Bio-Med	Main	Keeney	Wriston	Gregorian
Pembroke, Athletic}	1	1					
Pembroke, Bio-Med}	1		1				
Athletic, Bio-Med}		1	1				
$\{ exttt{Main, Keeney}\}$				1	1		
{Main, Wriston}				1		1	ļ
{Keeney, Wriston}					1	1	
Keeney, Gregorian}					1		1
riston, Gregorian}						1	1

The vector representing {Keeney, Gregorian},

	Pembroke	Athletic	Bio-Med	Main	Keeney	Wriston	Gregorian		
					1		1		
is the sum, for example, of the vectors representing {Keeney, Main }, {Main,									

Wriston}, and {Wriston, Gregorian} :

Pembroke	Athletic	Bio-Med	Main	Keeney	Wriston	Gregorian
			1	1		
			1		1	
					1	1

A vector with 1's in entries x and y is the sum of vectors corresponding to edges that form an x-to-y path in the graph.

A vector with 1's in entries x and y is the sum of vectors corresponding to edges that form an x-to-y path in the graph.

Example: The span of the vectors representing

```
\{ \texttt{Pembroke, Bio-Med} \}, \, \{ \texttt{Main, Wriston} \}, \, \{ \texttt{Keeney, Wriston} \}, \, \{ \texttt{Wriston, Gregorian} \, \, \}
```

- ► contains the vectors corresponding to {Main, Keeney}, {Keeney, Gregorian}, and {Main, Gregorian}
- but not the vectors corresponding to {Athletic, Bio-Med } or {Bio-Med, Main}.

Grow algorithms

```
\begin{aligned} &\text{def $G_{ROW}(G)$}\\ &S := \emptyset\\ &\text{consider the edges in increasing order}\\ &\text{for each edge $e$:}\\ &\text{if $e$'s endpoints are not yet connected}\\ &\text{add $e$ to $S$.} \end{aligned}
```

```
\begin{aligned} \operatorname{def} & \operatorname{Grow}(\mathcal{V}) \\ & S = \emptyset \\ & \operatorname{repeat} & \operatorname{while} & \operatorname{possible:} \\ & \operatorname{find} & \operatorname{a} & \operatorname{vector} & \mathbf{v} & \operatorname{in} & \mathcal{V} & \operatorname{not} & \operatorname{in} & \operatorname{Span} & S, \\ & \operatorname{and} & \operatorname{put} & \operatorname{it} & \operatorname{in} & S. \end{aligned}
```

- ightharpoonup Considering edges e of G corresponds to considering vectors ${f v}$ in ${\cal V}$
- ▶ Testing if e's endpoints are not connected corresponds to testing if \mathbf{v} is not in Span S.

The Grow algorithm for MSF is a specialization of the Grow algorithm for vectors. Same for the Shrink algorithms.