University of Makati

College of Computing and Information Sciences

ELEC 5 - Group Activity

GROUP-4-INTELLITECH Members:

Bantilo, Jade Daniele M. Corda, Ryan P. Derige, Paul Angelo Eugenio, Shiloh B.

Scenario: INTELLITECH Vince's Vinyl (A Music Record Shop)

Vince is eager to get going. Just today he had a customer come in and sell him a dozen old albums. One is quite rare and could be worth a lot of money. Vince doesn't want to lose track of it. He is ready to get organized and start entering his transactions in the database. You review your design with him and promise that you will begin building the database immediately. But, you remind him, it is important to test the database before actually starting to use it for the business.

- 1. Review your diagram for the database making sure that the design is complete and normalized.
- 2. Create the database in SQL Server
- 3. Create the tables in the new database, selecting appropriate data types for the columns, setting a primary key for each table, and setting allow nulls as appropriate
- 4. Create a database diagram and create the relationships among tables
- 5. Add some sample data to each table
- 6. **Documentation:** Make a Data Dictionary that lists each table, all the columns for that table, the data types for each column.

Rubrics

For Nos. 1, 4, & 6 (45 points)

Problem Solving				i Rubric
	Excellent 5 pts	Good 4 pts	Average 3 pts	Fair 2 pts
Content	Excellent Appropriate content is used for each problem. Student clearly understands the mathematical concepts.	Good Appropriate content is used for each problem. Student shows some understanding of the mathematical concepts.	Average Appropriate content may be used. Student shows little understanding of the mathematical concepts.	Fair Appropriate content is not observed. Student does not demonstrate an understanding of the mathematical concepts.
Solution/Organization	Excellent The solution is written in clear and coherent way. Solution is presented in a very organized manner.	Good The solution is written in clear and coherent way.	Average The solution is not written in clear and coherent way.	Fair The solution is not written in clear and coherent way, or may not be observed.
Accuracy	Excellent Solution is very clear and accurate.	Good Solution is clear and accurate.	Average Solution is somehow clear and correct.	Fair Solution is not clear and may not be correct.

For Nos. 2, 3, & 5 (15 points)

Criteria	Mastery (2.5 points)	Meeting (1.5 points)	Does Not Meet (0.5 point)
Scientific Accuracy	Use of multiple variables that demonstrate understanding of environmental factors.	Use of some variables that demonstrate understanding of environmental factors.	Use of variables that fail to demonstrate understanding of environmental factors.
Coding Efficiency	Code is easy to follow and direct.	Code is mostly easy to follow and direct.	Code is convoluted and unnecessarily long.
https://forum.code.org/t/share-your-rubric-for-assessing-computer-models/2927/48			

- 1. Review your diagram for the database making sure that the design is complete and normalized.
- 2. Create the database in SQL Server

```
CREATE DATABASE vince_vinyl;
```

3. Create the tables in the new database, selecting appropriate data types for the columns, setting a primary key for each table, and setting allow nulls as appropriate

albums table

```
1 CREATE TABLE albums (
      album id INT AUTO INCREMENT PRIMARY KEY,
      title VARCHAR(255) NOT NULL,
 3
4
     artist VARCHAR(255) NOT NULL,
 5
     genre VARCHAR(100),
 6
      release_year INT,
      `condition` VARCHAR(50),
     price DECIMAL(10, 2),
8
9
     is_rare BOOLEAN DEFAULT FALSE,
10
     created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
      updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
11
12 );
```

customers table

```
CREATE TABLE customers (
    customer_id INT AUTO_INCREMENT PRIMARY KEY,
    name VARCHAR(255) NOT NULL,
    email VARCHAR(255),
    phone VARCHAR(20),
    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
    updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
);
```

transactions table

```
1 CREATE TABLE transactions (
      transaction_id INT AUTO_INCREMENT PRIMARY KEY,
2
3
     album_id INT,
      customer id INT,
5
      transaction_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
6
      transaction_type ENUM('buy', 'sell') NOT NULL,
7
      amount DECIMAL(10, 2) NOT NULL,
8
      FOREIGN KEY (album_id) REFERENCES albums(album_id),
9
      FOREIGN KEY (customer_id) REFERENCES customers(customer_id)
10);
```

4. Create a database diagram and create the relationships among tables

5. Add some sample data to each table

Insert data in transactions table

6. **Documentation:** Make a Data Dictionary that lists each table, all the columns for that table, the data types for each column.

Albums		
Column	Туре	Description
album_id	int(11)	The unique identifier for the
		album.
title	varchar(255)	The title of the album.
artist	varchar(255)	The name of the artist who
		created the album.
genre	varchar(100)	The genre or category of music
		the album falls under.
release_year	Int(11)	The year the album was released.
condition	varchar(50)	The physical condition of the
		album (e.g., New, Used, Mint).
price	decimal(102)	The price of the album.
is_rare	tinyint(1)	A flag indicating whether the
		album is considered rare (1 for
		yes, 0 for no).
created_at	timestamp	The timestamp when the album
		record was created.
updated_at	timestamp	The timestamp when the album
		record was last updated.

Customers		
Column	Туре	Description
customer_id	int(11)	The unique identifier for the
		customer.
name	varchar(255)	The name of the customer.
email	varchar(255)	The email address of the
		customer.
phone	varchar(20)	The phone number of the
		customer.
created_at	timestamp	The timestamp when the
		customer record was created.
updated_at	timestamp	The timestamp when the
		customer record was last
		updated.

Transaction		
Column	Туре	Description
transaction_id	int(11)	The unique identifier for the
		transaction.
album_id	int(11)	The identifier for the album
		involved in the transaction,

		referencing the album_id from the Albums table.
customer_id	int(11)	The identifier for the customer involved in the transaction, referencing the customer_id from the Customers table.
transaction_date	timestamp	The date and time when the transaction occurred.
transaction_type	enum('buy','sell')	The type of transaction, either 'buy' (purchase) or 'sell' (sale).
amount	decimal(102)	The amount of money involved in the transaction.