

How to improve PCA based methods of genome scan using ecological data: detecting selection using RDA.

Eric Bazin,*,1 Keurcien Luu,2 Michael G. B. Blum,2

¹LECA, Université de Grenoble

²TIMC, Université de Grenoble

*Corresponding author: E-mail: eric.bazin@univ-grenoble-alpes.fr

Associate Editor:

Abstract

Ordination is a common tool in Ecology that aims at representing complex biological information on a reduced space. For instance, it is frequently used to study geographic distribution pattern of species diversity and to study the link between ecological variable such as temperature, drought, etc, on the species turnover. Recently, these methodologies are becoming quite popular in Landscape Genomic where one wants to study the link between environmental variable and the distribution pattern of genome wide diversity. However, it remains unclear what are the expected outcome of such approaches since genetic diversity has presumably a very different dynamic from species diversity. Simulations studies could help to shed light on this problem but they are still lacking whereas it tends to be broadly accepted as a pertinent approach. Furthermore, recent development have proposed to use ordination methods such as PCA to detect genes under selection. Simulations tend to support this idea has it seems to be quite robust to the underlying population structure and dynamic. Some authors have proposed to use other ordination approaches such as RDA, taking advantage of using environmental data. However no clear statistical framework have been developed to efficiently implement this idea in a robust and efficient test and once again, we don't know what is expected from the outcome of such approaches: which genes will be detected under which selective pressures? This paper aims at proposing a new test based on RDA approaches to search for genes under selection and to compare it to a classical PCA method. Thanks to individual based simulation, we compare both performance and robustness. Additionally, we test the efficiency of constrained ordination method such as RDA to detect relevant selective gradient since this was lacking in the Landscape Genomic literature. Finally, to illustrate the pertinence of such method in concrete example, we apply it to a real dataset.

Key words:

- 1 Introduction
- Performing genome scan in order to detect
- 3 genomic region of interest is a common task
- $_{4}$ in population genomic area (Foll and Gaggiotti,
- ⁵ 2008; Frichot et al., 2013; Luu et al., 2016; Vatsiou
- $et\ al., 2015$). Some methods aim at detecting genes
- that has suffered from a loss of genetic diversity

© The Author 2013. Published by Oxford University Press on behalf of the science and in the second of the second o

MBE

the appearance of a beneficial allele and its spread 41 are not clearly structured in different populations by the mean of selective sweep. Others aim at 42 but more or less show a pattern of isolation picking up alleles with strong correlation with 43 by distance without clear geographical barrier some environnemantal variable (e.g. Temperature, 44 to gene flow. One solution would be to use drought) with the idea that these alleles may 45 more complex model that better reflect reality confer a selective advantage to the individuals 46 but these are difficult to implement in Bayesian (Coop et al., 2010; Frichot et al., 2013). Finally, 47 framework. Additionally, these latter methods are other methods aim at detecting genomic region 48 very time consuming and the increase of both involved in local adaptation process. These region 49 model complexity and the amount of data to should have an increased differentiation between 50 analyze in terms of the number of individuals and population because different alleles tend to be 51 loci makes them more and more difficult to use. beneficial in each environment. Differentiation 52 A new path has opened recently with the use between population is excepted under the 53 of multivariate methods. The idea is to capture hypothesis of geographical isolation. Therefore, 54 the whole genome geographic structure using an this region can be detected by quantifying the 55 ordination method such as ACP. Following this level of differentiation using some statistics and 56 analysis, outliers loci are detected if they have detecting the regions with unexpectedly high 57 extremely high correlation with one or more values. A common statistic and very easily 58 ordination axis (Duforet-Frebourg et al., 2014; comprehensible in population genetic is Fst. Many 59 Luu et al., 2016). These are very efficient methods methods use this parameter as a basis in many 60 and simulations have shown that while they different implementation of genome scans (Bazin 61 are very fast, they show similar efficiency than et al., 2010; de Villemereuil and Gaggiotti, 2015; 62 classical Bayesian method and sometimes perform Foll and Gaggiotti, 2008). These are model based 63 better when the simulated demographic model method where parameters such as Fst are usually 64 drift from the model implemented in bayesian inferred using likelihood or Bayesian methods. 65 method, usually the island model. For instance This mean that users must have some a priori 66 Luu et al. (2016) have shown their method on their parameter value and the best model 67 to be better when population are structured that fits their data in order to expect the best 68 in hierarchical set or in isolation by distance from their analysis. However, it is often difficult 69 pattern. Nevertheless, one conundrum of such to get a satisfactory a priori picture of the 70 approaches is the difficulty to interpret ordination demographic and population structure of the 71 axis in term of ecological meanings. These are

species one is interested in. Indeed many species 72 usually tight to geographical axis (latitudinal or

MBE

longitudinal) but they are not necessary linked to 105 because of their long-term use in ecology and an environmental variable such as Temperature, 106 their efficiency on complex and large datasets. drought, diet habit, etc. Therefore, when this 107 information exists, it has to be a posteriori used 108 as a mean of interpretation but are not involved 109 in the inference process. It should be recalled 110 that natural selection is the result of a complex 111 set of environmental pressures and that it most 112 often acts on several characters simultaneously 113 and that these characters are encoded by several 114 genes which generally have weak effects. In 115 more and more popular and are often coined order to extract the maximum of all available 116 information, it seems therefore necessary to use 117 approaches that are able to compile all kind of 118 variable (e.g. alleles, phenotypic measurement, 119 biotic and abiotic variables). One natural way 120 paper aims at filling this gap. First, we show to overcome this limitation would be to use 121 more sophisticated ordination method than ACP $_{122}$ like methods. Constrained ordination methods 123 (i.e. Redundancy Analysis, RDA, Canonical 124 Correspondence Analyis, CCA) are well-known 125 set of approaches in Ecology for instance to 126 explain the species distribution pattern by 127 the mean of environmental data. They have 128 specifically been designed in order to deal with 129 biological complexity. In the population genomic 130 era, it seems that data amount, complexity 131 squared scores along the first RDA axis (i.e. those and heterogeneity is often a limitation to the 132 in the 0.5 % tail). We build on this idea to use of inference methods based on classical 133 population genetic models. Although they are 134 test that allows to search for outliers on an more difficult to interpret, such approaches would 135 arbitrary number of RDA axis simultaneously and

These method have sometimes been used in population genomic studies, not as a genome scan but in order to quantify multilocus adaptation to an environmental gradient (De Kort et al., 2014; Hecht et al., 2015; Lasky et al., 2012; Steane et al., 2014). These studies whereby relationships between environmental data and large multilocus data is explored are becoming as Ecological Genomics or Landscape Genomics studies. However the concept of using constrained ordination methods to analyse genomic data has never been tested on simulated datasets. This how one can make use of a constrained ordination method namely Redundancy Analysis (RDA) as an efficient and robust genome scan method. We discarded the other constraint ordination methods such as CCA since they are very similar in their principles. RDA has already been used for instance by Lasky et al. (2012) to perform genome scan in order to detect loci involved in the adaptation to climate in Arabidopsis thaliana. Outliers were identified as SNPs with the greatest develop a comprehensive and robust statistical be complementary to the model based method 136 allows to control precisely for the false discovery

MBE

rate. Using simulations, we show that it has better 169 results than PCA-based method. Second, thanks 170 compute the test statistic by regressing each of the to these simulations, we show that RDA can 171 p SNPs by the K ordination axis $X_1,...,X_K$. indeed help to identify important environmental 172 gradient that better explain the adaptive variation 173 in the data. It is therefore a proof of concept of 174 corresponding to the j-th SNP regressed by the idea of using constrained ordination method 175 as an environmental genomic tool to identify 176 relevent selective gradient in the environmental 177 data. Finally, to give a concrete illustration of 178 RDA approach in population genomics, we apply 179 this method to the detection of outliers on a real 180 data set.

Material and method

Genome scan

Redundancy analysis (RDA) was first introduced 184 by (Rao, 1964) and is clearly described in 185 (Legendre and Legendre, 2012) section 11.1. It 186 is the direct extension of multiple regression 187 to the modeling of multivariate response data. 188 Typically the data to be analysed are separated 189 in two sets, a response matrix Y of variable to 190 be explained (e.g. species abundance in a set of 191 sites; m sites and n species) and an explanatory 192 matrix X (e.g. a set of environmental variable 193 within each site; m sites and p environment). In 194 the following analysis, species are replaced by loci 195 and sites by individuals. In other word, we wish 196 to project on a reduced space the proportion of 197 variance in genetic difference between individuals 198 which is better explained by environmental data. 199 After this ordination, we follow the Luu et al. 200

(2016) methodology to compute pvalues. First we

$$G_{j} = \sum_{k=1}^{K} \beta_{jk} X_{k} + \epsilon_{j}, j = 1, ..., p$$

where β_{jk} is the regression coefficient the k-th ordination axis, and ϵ_i is the residuals vector. To summarize the result of the regression analysis for the j-th SNP, we return a vector of z-scores $z_j = (z_{j1},...,z_{jK})$ where z_{jk} corresponds to the z-score obtained when regressing the j-th SNP by the k-th ordination axis. The test statistic is a robust Mahalanobis distance D computed using covRob function of the robustR package. We retain K=5 axis to compute Mahalanobis distances as it seems to explain most of the variance. D should be Khi2 distributed after a correction with inflation factor (Luu et al., 2016). Pvalues are computed using K degree of freedom. We use the FDR approach to control for false positives. Qvalue are computed with qvalueR package and a loci is considered as an outlier if its gvalue is less than 10%. For the analysis of simulated dataset (see below), we retain the first four ordination axis to compute Mahalanobis distances as they seem to explain most of the variance in the data. To peform the ordination, we use the 10th environmental variables as input in the explanatory matrix. In the following example, we don't use phenotypic informations since these informations are often laking in environmental genomics. Neither we use

RDA for environmental genomics $\,\cdot\,$ doi:10.1093/molbev/mst

MBE

geographical coordinates (i,j) which is sometimes 231
added to control for the geographical covariation 232
in the differentiation pattern (Frichot et al., 233
2013). 234
To emphasize the utility of RDA, we compared 235
to peadapt from which the idea of using 236
multivariate method for genome scan is based. On 237
the simulated dataset, we retain for both methods 238 K=5 axis to compute Mahalanobis distances as 239
it seems to explain the main amount of variance 240
in the data using scatter plots. To control for false 241
positive, we used the same qvalue threshold (i.e. 242

Environmental genomic

j = 10%).

Once outliers have been identified, we isolate them ²⁴⁷ in a separate matrix A defining an "adaptively 248 enriched genetic space" as coined by Steane et al. 249 (2014). Following their methodology, we perform ²⁵⁰ a second constrained ordination (RDA) on matrix ²⁵¹ A against environmental data. The rational of 252 this analysis is to remove neutral variation before ²⁵³ performing ordination in order to have a better 254 picture of which environmental gradients have the 255 strongest association with the adaptive genetic 256 space. On the simulated dataset, we report the 257 R^2 statistics between env1, env2 and env3 and 258 the first three ordination axis to have an idea 259 of which they are better associated with and if 260 the ordination space succeed in seperating the 261 environmental effect on different axis.

Simulations

To test for the efficiency of RDA in population genomic, we performed simulations using simuPop python library (Peng and Kimmel, 2005). We compared our approach to PCAdapt method to perform genome scans. Both approach are equivalent except their ordination method. Finally we use these simulations to evaluate RDA approach as a mean to detect selective environmental gradient. Α lattice populations is simulated (i.e. 64 populations in total). Each population is initialized with 200 diploid individual with random genotypes. Migration is set to 0.1 so that population structure must be very smooth and genetic differentiation must show an isolation by distance pattern over the 64 populations. This is where pcadapt is best designed for. Loci are biallelic (0 or 1) like SNPs. Allele frequency of the whole population is initialized at 0.5. 1000 loci are defined. They are separated in 200 chuncks of 5 SNPs in physical linkage with recombination rate between adjacent loci fixed at 0.1. 3 different Traits are coded by a group of 10 different loci. The first trait is coded by loci 1, 11, 21, ..., 91. The trait value is simply the sum of genotype value and therefore can take value between 0 an 20. For the sake of realism, we add to each trait a random noise (non heritable variation) drawn from a normal distribution N(0,2). The second trait is coded by loci 101, 111, ..., 191 and the third is coded by loci 201, 211, ..., 291. Each trait

MBE

is therefore coded by free recombining SNP loci. 295 In other words, there are 30 coding SNPs among 296 distribution. For a graphical representation of 1000. Selection can have an effect on linked loci, 297 for instance, loci 2, 3, 4 and 5 can be impacted 298 by selection on locus 1. However, recombination 299 is high enough (0.1) to expect a limited linkage 300 effect. We have defined 10 different environmental 301 variables. The first one determines the selective 302 pressure on trait 1, the second one on trait 2 and 303the third one on trait 3. The first environment 304 variable is a quadratic gradient coded by function 305 $env1 = -(\cos(\theta)*(i-3.5))^2 - (\sin(\theta)*(j-3.5))^2 +$ 306 $18, \theta = \pi/2$, i and j being the population 307 indicator on the 8x8 lattice. The second one 308 is a linear plan gradient coded by function 309 $env2 = h * cos(\theta) * (i-1) + h * sin(\theta) * (j-1) + k$ with h=2, $\theta=\pi/4$ and k=3. The third 311 environment variable simulates \mathbf{a} coarse 312 with value env3=2 for all 313 populations except population (i,j) = (2,2), 314 (2,3), (3,2), (3,3), (6,2), (6,3), (7,2), (7,3), (2,6), 315 (2,7), (3,6), (3,7), (6,6), (6,7), (7,6), (7,7) for $_{316}$ which env3=18. Env4, env5 and env6 have $_{317}$ exactly the same equation than env1, env2 and $_{\tiny 318}$ env3 respectively. The remaining 4 environment $_{319}$ 25 drainages (i.e., topographic units separated variable are similar to env2 but with different 320 by watershed barriers) (?). Genotyping of each value of h and θ . Env7 has h=2, $\theta=0$ and $_{321}$ k=3. Env8 has h=2, $\theta=\pi/4$ and k=0. Env9 $_{_{322}}$ using a 34K Populus SNP array targeting 34,131 has $h=1,\;\theta=\pi/4$ and k=4. Env10 has $h=0.5,\;_{_{323}}$ SNPs mostly within (plus 2kb upstream and $\theta = \pi/4$ and k = 8. Graphical representation of ₃₂₄ mean environmental value for environment 1, 2 $_{325}$ selection can be found in (?). 21 climatic variables

6 have respectively the same mean value spatial environment 7 to 10, see supplementary material. Environmental equation gives a mean value of the environment variable. To avoid colinearity between environments variable, we added noise by drawing an environment value within a normal distribution $N(\mu = env, \sigma = 1)$. Fitness for each trait is set to be $-e^{((x-env)^2/(2*\omega^2))}$, x being the quantitative trait value, env the environmental value and ω is defining selection strength and has been set to 20 which in our experience seems sufficient for loci to be often detected. To get the overall fitness for a given individual, fitness associated to each trait are multiplied. Fitness are relative and selection arises on parents and determine their number of offsprings. Simulations are made across 500 generations. At the end of simulation, we sample 10 individuals per population. Therefore, we have a sample of 640 individuals with 1000 SNP-like loci.

Real dataset

The Populus trichocarpa dataset is a sample of 424 individuals genotyped on 33,070 SNPs from accession was performed as described in (?) downstream) 3543 genes. Details of SNP and gene and 3 is given in Fig. ??. Environment 4, 5 and 326 are available on each sampling site (details in supp

MBE

RDA for environmental genomics · doi:10.1093/molbev/mst

FIG. 1. Graphical representation of mean environmental value for environment 1, 2 and 3

mat XXX). For the RDA and pcadapt analysis, we retained respectively K=6 and K=10 axis as they seem to explain the majority of variance in the data. From the 33,079 SNPs, we removed the SNPs with missing values, leaving us 19,336 SNPs.

Results

Genome scan

When looking at the analysis on one simulation, the pcadapt method seems successful at detecting QTL2 SNPs (Fig. 2) but fails at detecting QTL1 and QTL3 SNPs. On the other hand, RDA succeeds at detecting QTL2 SNPs and also some of the QTL1 and QTL2 SNPs (Fig. 3). The ordination seems to correctly detect environmental variable 1 and 3 as drivers of genetical variance in the data. Over the 100simulations, we have measured the average FDR and power for both pcadapt and RDA (Fig 4).

Environmental genomics

We then performed a second RDA on the 350

FIG. 2. Manhattan plot of the result of pcadapt on a

FIG. 3. Manhattan plot of the result of genome scan using RDA on a simulated data set.

by Steane et al. (2014) on the same simulated dataset as in Fig. 2 and 3 and display its results on Fig. 5. We did the same analyis and measured the "adaptively enriched genetic space" as performed $_{351}$ mean R^2 between env1, env2 and env3 and each of

MBE

FIG. 4. Performance results of rda and pcadapt methods. Each performance value is averaged over 100 simulated dataset (error bars are displayed but hardly visible since they are very scarce). Power is given seperately for loci coding for quantitative trait 1, 2 and 3.

the first three ordination axis. This is summarized $_{367}$

Populus trichocarpa

in Fig. 6.

Analysis of P. trichocarpa with fdr of 0.1 leads $_{372}$ to a list of 105 outliers for RDA and 122 $_{373}$ for pcadapt. Interstingly, both methods have 52 374 outliers in common so that 53 and 70 SNPs $_{375}$ are outliers specific to respectively RDA and $_{376}$ pcadapt. When we compared RDA genome scan 377 no chance to detect any outliers on the QTL results with the outliers found by ? based on 378 influenced by this environmental variable. Fig 3 Fdist, bayescan and bayenv methods, we found 379 shows that RDA has a much better behavior that substential overlap between them. However, 380 than pcadapt by taking advantage of using RDA based genome scan found 35 SNPs that no 381 informations of environmental local conditions. It other methods (including pcadapt) had detected 382 can be attributed to a better alignment between as outlier (see Table SXX).

Discussion

when the environmental gradient and the selective pressures are correlated to the geographical pattern of isolation by distance. Whereas when the environment is a coarse environment (QTL3) it fails dramaticaly. Indeed, we can hypothesize that the PCA ordination in this case is not able to orientiate the genetic space differentiation into the direction of environment 3 therefore leaving

Fig 2 shows that pcadapt approach works well

FIG. 5. RDA on the adaptively enriched genetic space. We discarded the individual points for readability. Dots represents outliers SNPs. R^2 of envir1 with the first, second and third axis is (0.172%, 77.6%, 17.6%), envir2 is (94.5%, 0.560%, 0.236%) and envir3 is (0.189%, 5.34%, 90.6%)

RDA for environmental genomics · doi:10.1093/molbev/mst

FIG. 6. R^2 between envir1, envir2 and envir3 and each of the first three ordination axis. Values are averaged across the 100 simulated datasets.

the genetic space and the environmental variable improving the power to detect true positives.

Both methods have a good control of false discovery rate although slightly better for RDA (12.0×10^{-2} for peadapt and 10.6×10^{-2} for RDA). Results summarized on Fig 4 is confirming that overall RDA shows better performance at detecting true outliers since it succeeds to

detect quite often QTL1 and QTL3 SNPs. It seems however less efficient at detecting QTL3 outliers but this might be due to the fact that local adaptation on a coarse environment is more difficult that adaptation on a smooth environmental gradient as environment 1 and 2. These simulations plead in favor of using constrained ordination method instead of PCA when non genetic data such as environmental variable are available in order to orientate the axis in the direction of informative gradients.

When performing an RDA on the "adaptively enriched genetic space", Fig. ?? and ?? show that the method succeed at detecting the relevant selective gradient and separating them on different axis at least on our simulations. This therefore

MBE

(2014)'s approach to represent multilocus selective 440 axis. One can identify an outlier to a selective gradient and the possibility to use the ordination 441 gradient which was used in the inference process axis it to devise a metric that provides a holistic 442 measure of genomic adaptation. Indeed, in RDA1 443 is strongly associated with envir2, RDA2 with 444 envir1 and RDA3 with envir3 whereas poorly 445 associated with the other axis. As expected, 446 the correlated environment are also strongly 447 associated with this respective axis. This is 448 reflecting the fact that in reality it is difficult 449 on an environmental gradient to distinguish 450 among the covariable which one has a causal 451 effect on the individual fitness. However, it is 452 often sufficient for biologists when performing an 453 exploratory analysis to identify combination of 454 environment variable having a strong association 455 with adaptive variation without knowing precisely 456 the underlying mechanical process.

From the analysis of Chinook Salmon, we picked 458 up some genes that can be interpreted regarding 459 to the environmental variable. For instance, a 460 heat shock protein which are known to be 461 involved in adaptation to temperature or lipolysis- 462 stimulated lipoprotein receptor which are involved 463 in regulation of lipid metabolic process. This latter 464 process can reasonably thought to be involved in 465 crucial when performing landscape genomics to adaptation to food abundance and the need for 466 clearly characterize the environmental condition salmon to migrate on a short or long distance. 467 by measuring important variable that are Outliers picked up by RDA based method are 468 suspected to put selective pressures on the species more easily interpretable as this is illustrated by 469 of interest. This can be done through RDA

serves as a proof of concept of Steane et al. 439 the ordination is constrained by environmental whereas outliers picked up by PCA based method have to be interpreted a posteriori and this can be more difficult to justify. It is however noticeable that a substantial proportion of outliers are shared between PCA and RDA based methods which highlight the fact that both approach are very similar. The lack of interpretability of PCA method is compensated by the fact that it is a blind method in regard to environmental data so it can pick up genes that we will miss using RDA because we miss some crucial environmental data. In conclusion, this paper shows that both methods are complementary and should be used simultaneously on the same dataset. RDA will be more easily interpretable in terms of mechanism and should pick up more genes when some important selective gradient are identified but PCA might be able to pick up outliers where no environmental data are available. However this latter method will miss outliers when selective gradient are poorly correlated to the population structure (i.e. geographical distance between populations and individuals). It is therefore Fig SXXX. This was of course expected since 470 as it has been validated in our simulations

518

519

520

521

RDA for environmental genomics · doi:10.1093/molbev/mst

MBE

and in the real dataset on Chinook Salmon. 507 A myriad of constrained ordination method 508 exist that could be used and allows to control for confounding variable (i.e. partial RDA) for instance altitude, latitude and longitude or allow 512 to perform none linear regression between genetic 513 and environmental data (i.e. LVM - Latent Variable Model). This is still to be tested and explored using both simulation and real data set validation.

Supplementary Material

Acknowledgments

References

Bazin, E., Dawson, K. J., and Beaumont, M. A. 2010. 523 Likelihood-Free Inference of Population Structure and 524 Local Adaptation in a Bayesian Hierarchical Model. 525 Genetics, 185(2): 587-602. Coop, G., Witonsky, D., Di Rienzo, A., and Pritchard, J. K. 527 2010. Using environmental correlations to identify loci 528 underlying local adaptation. Genetics, 185(4): 1411–23. 529 De Kort, H., Vandepitte, K., Bruun, H. H., Closset-Kopp, 530 D., Honnay, O., and Mergeay, J. 2014. Landscape 531 genomics and a common garden trial reveal adaptive 532 differentiation to temperature across Europe in the 533 tree species Alnus glutinosa. Molecular ecology, pages 534 4709-4721. Villemereuil, P. and Gaggiotti, O. E. 2015. A new 536

FST-based method to uncover local adaptation using 537 environmental variables. Methods in Ecology and 538 Evolution, 6(11): 1248-1258. Duforet-Frebourg, N., Bazin, E., and Blum, M. G. B. 540 2014. Genome scans for detecting footprints of local 541 adaptation using a Bayesian factor model. Molecular 542 biology and evolution, 31(9): 1-13.

Eckert, A. J., Bower, A. D., GonzÁlez-MartÍnez, S. C., 544 Wegrzyn, J. L., Coop, G., and Neale, D. B. 2010. Back 545

to nature: Ecological genomics of loblolly pine (Pinus taeda, Pinaceae). Molecular Ecology, 19(17): 3789–3805.

Foll, M. and Gaggiotti, O. 2008. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics, 180(2): 977-993.

Frichot, E., Schoville, S. D., Bouchard, G., and François, O. 2013. Testing for Associations between Loci and Environmental Gradients Using Latent Factor Mixed Models. Molecular biology and evolution, 30(7): 1687-99.

Hecht, B. C., Matala, A. P., Hess, J. E., and Narum, S. R. 2015. Environmental adaptation in Chinook salmon (Oncorhynchus tshawytscha) throughout their North American range. Molecular Ecology, 24(22): 5573-5595.

Lachenbruch, P. A. 2011. Variable selection when missing values are present: a case study. Statistical Methods in Medical Research, 20(4): 429-444.

Lasky, J. R., Des Marais, D. L., McKay, J. K., Richards, J. H., Juenger, T. E., and Keitt, T. H. 2012. Characterizing genomic variation of Arabidopsis thaliana: The roles of geography and climate. Molecular Ecology, 21(22): 5512-5529.

Legendre, P. and Legendre, L. 2012. Numerical ecology.

Luu, K., Bazin, E., Blum, M. G., Bazin, É., and Blum, M. G. 2016. pcadapt: an R package to perform genome scans for selection based on principal component analysis. bioRxiv, 33: 056135.

Peng, B. and Kimmel, M. 2005. simuPOP: A forwardtime population genetics simulation environment. Bioinformatics, 21(18): 3686–3687.

Rao, C. R. 1964. The Use and Interpretation of Principal Component Analysis in Applied Research. Sankhy: The Indian Journal of Statistics, Series A, 26: 329–358.

Steane, D. a., Potts, B. M., McLean, E., Prober, S. M., Stock, W. D., Vaillancourt, R. E., and Byrne, M. 2014. Genome-wide scans detect adaptation to aridity in a widespread forest tree species. Molecular ecology,

"article genome scan" — 2017/3/13 — 12:40 — page 12 — #12

Bazin et al. \cdot doi:10.1093/molbev/mst

MBE

23(10): 2500-13.

Vatsiou, A. I., Bazin, E., and Gaggiotti, O. 2015. A

 $_{548}$ $\,$ comparison of recent methods for the detection of

selective sweeps. *Mol Ecol*, Accepted.

