Санкт-Петербургский политехнический университет Петра Великого Кафедра компьютерных систем и программных технологий

Отчёт по лабораторной работе

Дисциплина: Низкоуровневое программирование

Тема: Машина Тьюринга-Поста

Вариант 11

Выполнил студент гр. 3530901/00001		Пеутина В.И.
	(подпись)	_ •
Преподаватель		_ Коренев Д.А.
	(подпись)	
	« »	2020 г

Санкт-Петербург

Задача

Вариант №11: Построить машину Тьюринга-Поста, преобразующую число в двоичном коде в число в унитарном коде. Выполнить моделирование ее работы в одном из свободно доступных симуляторов.

Алфавит

Алфавит данной машины Тьюринга-Поста состоит из 3 символов: 1, 2, пробел.

Положение головки и формат данных на ленте

Головка изначально должна располагаться на второй ячейке после окончания первого числа.

Машина получает на вход число в двоичном коде.

Описание управляющего автомата

В состоянии Q1, при первом запуске мы ставим 1 в начало нашего результата. Далее мы используем это состояние для того чтобы найти очередную 1 в данном числе и заменить ее на 0.

Состояние Q3 ставит 1 во все разряды данного числа по которым проходил для обеспечения корректного вычитания.

Состояние Q4 используется для добавления 0 в конец числа – результата.

Состояние Q5 используется для перемещения ползунка на первую цифру заданного числа.

- Q6 при нахождении пробела переключает на след ячейку справа.
- Q8 ищет первую справа единицу в первом числе
- Q7 и Q9 используются для затирания цифр начального числа, над которым производились вычисления

	Q ₁	Q ₂	Q ₃	Q ₄	Q ₅	Q ₆	Q ₇	Q ₈	Qg
0	0 ← Q ₁	1 → Q ₃	1 → Q ₆	0 → Q4	0 ← Q ₅	1 → Q ₃	_ → Q ₉	0 ← Q ₈	_ → Qg
1	o → Q ₆	0 → Q ₃	1 → Q ₃	1 → Q4	1 ← Q ₅	0 → Q ₃		0 → Q ₃	_ → Qg
	1 ← Q ₂	_ ← Q8	_ → Q4	0 ← Q ₅	_ ← Q ₁	_ → Q4	_ → Q9	_ → Q7	_ + 🗢

Рис. 1 Таблица переходов управляющего автомата

Описание работы машины

Алгоритм вычислений использует вычитание. По сути, мы вычитаем из двоичного числа по единице, пока это возможно, и при каждом вычитании добавляем ноль в конец итогового числа.

Пример работы машины

Рис. 2 Окно симулятора перед началом работы

Рис. 3 Окно симулятора по окончании работы