

Early Diagnosis of Parkinson's Disease

Team ParkDiag
Alexander Telepov
Oussama Alyounes
Svetalana Belukhina
Vyacheslav Kovalev

25.11.2022

Parkinson Disease

ICD-10 Version:2019: G20

Incidence & Prevalence

[1] de Lau LM, Breteler MM. Epidemiology of Parkinson's disease. Lancet Neurol. 2006 Jun;5(6):525-35. doi: 10.1016/S1474-4422(06)70471-9. PMID: 16713924.

Early diagnostics

Parkinson disease should be suspected in people presenting with tremor, stiffness, slowness, balance problems or gait disorders

Current therapy is more effective on the early stages of Parkinson

[2] Grimes D, Fitzpatrick M, Gordon J, Miyasaki J, Fon EA, Schlossmacher M, Suchowersky O, Rajput A, Lafontaine AL, Mestre T, Appel-Cresswell S, Kalia SK, Schoffer K, Zurowski M, Postuma RB, Udow S, Fox S, Barbeau P, Hutton B. Canadian guideline for Parkinson disease. CMAJ. 2019 Sep 9;191(36):E989-E1004. doi: 10.1503/cmaj.181504. PMID: 31501181; PMCID: PMC6733687.

Mechanism Of Action (MOA)

78% of early untreated PD subjects indicate vocal impairment.

Fig.1 Composition voice quality in Parkinson's speech

Table.1 Relative characteristics of symptomatic biomarkers

	Sensitivity	Specificity
Rapid eye movement sleep behavior disorder	Low (~50% of PD patients occur RBD in 2 years)	High (76% risk of PD at 10 years)
Olfactory dysfunction	High (>80% of early PD)	Low
Voice	High (65-98.35% according to ~30 papers)	High (67-91.06% according to ~30 papers)

Old Method

Go to a doctor wasting money and time with accuracy 74%

Our Product

Use smartphone to diagnose PD with accuracy 93.84%

[1] J. Rusz, R. Cmejla, H. Ruzickova, E. Ruzicka, Quantitative acoustic measurements for characterization of speech and voice disorders in early untreated Parkinson's disease, J. Acoust. Soc. Am. 129 (1) (2011) 350–367.

[2] Cernak, Milos, et al. "Characterisation of voice quality of Parkinson's disease using differential phonological posterior features." Computer Speech & Language 46 (2017): 196-208.

[3] Noo QC, Motin MA, Pah ND, Drotár P, Kemoster P, Kumar D, Computerized analysis of speech and voice for Parkinson's disease: A systematic review. Comput Methods Programs Biomed. 2022 Nov:226:107133. doi: 10.1016/i.cmpb.2022.107133. Epub 2022 Sep 16. PMID: 36183641

Proof Of Concept (POC)

Experiment Design

- Detecting PD in voice works on both genders accuracy above 93%.
- The voice recordings dataset was collected and used by Sakar et al. (2013)

			PD		Healthy
	Total		113		200
	Male/Fe	m	54% - 46	%	66% - 34%
	Before/After 60 yo		32% - 68	%	57% - 43%
	Early - mid - late PD stage		16% - 24% - 60%		
1	Stage 1st-typ		oe error	2'	nd -type error

ŀ	late i B	Jugo			
	Stage	1 st -type error		2 nd -type error	
11111	Early		0.04		0.02
11111	Mid		0.02		0.01
1111	Late		0.01		0.01

Experiment Results

^[1] Ali, Liaqat, et al. "Early diagnosis of Parkinson's disease from multiple voice recordings by simultaneous sample and feature selection." Expert Systems with Applications 137 (2019): 22-28. [2] Ngo, Quoc Cuong, et al. "Computerized analysis of speech and voice for Parkinson's disease: A systematic review." Computer Methods and Programs in Biomedicine (2022): 107133.

	7	1
	•	4
	π	١
	Ë	ï
- 7	÷	
- (_	1
		7
	•	4
•	ī	į
	5	3
	π	3
- 1	ï	
•	-	1
	_	
	Σ	•
	У	
	'n	ė
	"	J
	а	١
		'
ŀ	-	4
	•	

					Skolkovo Institute of Science and Technology
	Patent	Voice-driven small sample learning method for Parkinson disease multi-symptom characteristic parameters	Synthesizing patient-specific speech models	Apparatus and method of diagnosing health by using voice	Our Method
ieam ParkDiag	Code	CN112820279A China, 2021	W02022003451A2 United States, 2020	US9198613B2 United States, 2015	
	Advantages	Utilizing a bidirectional long-time and short-time memory cyclic neural network, so that the Parkinson disease is rapidly researched and judged.	 Speaker adapted model is more accurate than non adapted ones. The model is build on native language of the user. Mentioned that any audio recording device can be utilized. 	 A health diagnosing apparatus that diagnose user's voice by comparing the extracted voice feature with a reference. Select one feature in voice depending on the selected disease to do the diagnosis. 	 A method depending on the 5 features to diagnose PD. The features are "Harsh, falsetto, tense, crikey and breath". Analyse the frequency of all the features and use Mel frequency. We train a NN to be able to
	Drawbacks	 Only the method is described The model is trained on short sentences not on the natural speech 	Model focuses on distinguishing "stable" from "unstable" speech which is not always the case for Parkinson	 The feature is not determined for each disease. No device is invented but a described method. No accuracy provided. 	 We train a NN to be able to diagnose from the smalles amount of data from the user. We guarantee 93% of accuracy. We integrate our method with a smartphone.

Non Obviousness

Skoltech
Skolkovo Institute of Science and Technology

Our method show unexpectedly good performance for female > 60 y.o

We suppose that this is due to prevalence* of high frequencies in older female voice, which is significant source of parkinson voice features deviations[1]

Sex	Age	1st-type error	2nd-type error
Male	18-40	0.068	0.022
	40-60	0.025	0.017
	>60	0.012	0.011
Female	18-40	0.053	0.022
	40-60	0.021	0.013
	>60	0.005	0.001

frequency [Hz]

Age 18-40 female 10³ PSD [V**2/Hz] 10° 10-1 1000 2000 3000 4000 5000 6000 7000 frequency [Hz] Age 40-60 male 104 103 PSD [V**2/Hz] 10° 1000 2000 3000 4000 5000 6000 7000 8000 *Selective frequency [Hz] feature Age >60 104 male female 10 SD [V**2/Hz] 101 10° 10- 10^{-2} 10^{-3} 1000 2000 3000 4000 5000 6000 7000 8000

- -Have some obstacles doing medical check ups
- -Can't validate the seriousness of the symptoms

-Conscious about the relatives' future

 -Live apart from relatives, can't spot the symptomes/changes

Emotional impact

Feels validated in their struggles

Feels responsible and involved

Quantifiable impact (how much is saved)

Time 3h

Patent Claims

- A software capable to extract the five voice features "Harsh, falsetto, tense, crikey, breath" from the voice sample.
- The software according to claim 1 capable using said features to determine an early diagnosis of Parkinson's disease.
- 3) The software according to claim 1 for diagnosing Parkinson's disease for female older than 60 years old with more than 99% accuracy.

Team Role

Belukhina Svetlana
Life Science MOA+POC

Oussama Alyounes
SES, QC and patent

Kovalev Vyacheslav

Manuf + QC

Telepov Alexander
DS, Preclin+Reg+Clin