L.9: Writing an Empirical Report

Econometrics 1: ver. 2024 Fall Semester

Naoki Awaya

How to Write an Empirical Report

Basic Structure

- A typical structure of an empirical paper is as follows:
- Introduction
- Oata description
- Econometric models
- Estimation results
- Conclusion
- + References, Acknowledgement, Appendix, etc
 - For a full-length article, a literature review section should be in between sections 1 and 2.
 - Sections 3 4 may be integrated in one section.

Section 1. Introduction

Introduction

- The purpose of this section is to present the main research objective of your paper.
 - What questions would you like to answer in this paper?
 - Research background: why are these questions important?
- Typical formats of research questions:
 - What are the major determinants of Y?
 - To what extent X is important as a determinant of Y?
 - How the effects of X on Y differ between A and B?
- What are the expected results?

Section 1. Introduction

- Literature review
 - Any academic literature already written on the same topic?
 - In what ways will your research differ and contribute to the existing literature?
- Preview of the findings
 - Describe your data and empirical strategy, and briefly present your main findings to the reader.
- In the final paragraph of this section, present the roadmap for the rest of the paper.

Section 2. Data description

- Describe the data to be used.
 - Data source (e.g., organization, URL, etc)
 - Is the data publicly available or confidential?
- Briefly describe the variables used and their definitions (may be in a table format).

Table 1: Variables and definitions

Variable	Definition	
Income	Annual income in million JPY	
Education	Education in years	

 Before proceeding to the main econometric analysis, describe some basic statistics of the data.

Summary table for the whole dataset.

```
## data
## N: 500
##
##
             Mean Median Std.Dev Min
                                       Max
##
            45.36 43.24
                          24.24 12.92 127.04
       area
           0.37 0.00 0.48 0.00 1.00
##
        com
##
      floor 7.81 5.00 7.88 1.00 52.00
##
        ind 0.21 0.00 0.40 0.00 1.00
##
      price 32.78 26.00 23.28 3.28 195.88
      renov 0.20 0.00 0.40 0.00 1.00
##
      stdist 0.47 0.43
                          0.27
                               0.03
                                      1.63
##
```

Descriptive Statistics

 Create summary tables for the renovated apartments (renov = 1) and non-renovated ones (renov = 0), separately.

```
> stby(data,
+ INDICES = data$renov,
+ FUN = descr,
+ stats = c("mean", "med", "sd", "min", "max"),
+ transpose = TRUE)
```

The output in the next page.

```
## Descriptive Statistics
## data
## Group: renov = 0
## N: 401
                         Median
                                 Std.Dev
                                             Min
                  Mean
                                                      Max
          area
                 44.68
                          39.38
                                   24.51
                                           12.92
                                                   127.04
                  0.37
                         0.00
                                   0.48
                                            0.00
                                                    1.00
##
           com
                 8.12
                         5.00
                                  8.21
                                            1.00
                                                    52.00
         floor
                0.21
                         0.00
                                  0.41
           ind
                                           0.00
                                                   1.00
         price
                 33.90
                         26.30
                                24.59
                                            3.90
                                                   195.88
##
                  0.00
                        0.00
                                0.00
                                            0.00
                                                   0.00
         renov
        stdist
                  0.48
                          0.46
                                  0.27
                                            0.03
                                                    1.50
## Group: renov = 1
## N: 99
                         Median
                                 Std.Dev
                  Mean
                                                      Max
                 48.12
                          50.66
                                   23.03
                                           14.44
                                                   105.64
          area
##
           com
                  0.35
                         0.00
                                    0.48
                                            0.00
                                                     1.00
                  6.55
                         5.00
                                    6.29
                                            1.00
                                                    45.00
         floor
                  0.20
                          0.00
                                  0.40
                                           0.00
                                                   1.00
           ind
         price
                 28.23
                          25.50
                                   16.27
                                            3.28
                                                    80.50
##
                 1.00
                         1.00
                                  0.00
                                            1.00
                                                    1.00
         renov
##
        stdist
                  0.47
                          0.39
                                    0.31
                                            0.03
                                                     1.63
```

Cross table of (renov, com)

• Histogram of price

```
> library(tidyverse)
> ggplot(data, aes(price)) +
+    geom_histogram(binwidth = 5) +
+    ylab("Apartments")
```


ullet Histogram of price by groups com = 1 and com = 0

• Scatter plot of price vs. area

```
> ggplot(data, aes(area, price)) + geom_point()
```


Add a linear regression line.

```
> ggplot(data, aes(area, price)) + geom_point() +
+ geom_smooth(method = lm)
```


The grayed region is the 95% CI.

Section 3. Econometric models

Present the econometric models to be examined in equation form.

Model 1.
$$\operatorname{price} = \beta_0 + \operatorname{area}\beta_1 + \operatorname{stdist}\beta_2 + \operatorname{renov}\beta_3 + \operatorname{com}\beta_4 + \operatorname{ind}\beta_5 + \epsilon$$

Model 2. $\operatorname{logprice} = \beta_0 + \operatorname{area}\beta_1 + \operatorname{stdist}\beta_2 + \operatorname{renov}\beta_3 + \operatorname{com}\beta_4 + \operatorname{ind}\beta_5 + \epsilon$

- If the model contains many regressors, you can suppress some unimportant ones: e.g., $Y = \beta_0 + X_1\beta_1 + X_2\beta_2 + \cdots + \epsilon$
- It is always better to consider multiple models and compare their results.
- If the models are not complicated, this section and the next may be merged into one section.

Section 4. Estimation results

Report the estimation results in a table.

```
> library(modelsummary)
> data$logprice <- log(data$price)
> m1 <- lm(price ~ area + stdist + renov + com + ind, data)
> m2 <- lm(logprice ~ area + stdist + renov + com + ind, data)
> modelsummary(list(m1,m2),
+    gof_omit = "Log.Lik.|AIC|BIC|F|RMSE",
+    stars = TRUE,
+    notes = "Standard errors in parentheses.",
+    output = "table.docx")
```

Section 4. Estimation results

	(1)	(2)
(Intercept)	7.233***	2.471***
	(2.056)	(0.060)
area	0.746***	0.020***
	(0.028)	(0.001)
stdist	-14.442***	-0.200**
	(2.585)	(0.076)
renov	-8.267***	-0.216***
	(1.685)	(0.049)
com	1.335	0.068
	(1.564)	(0.046)
ind	-1.359	0.002
	(1.806)	(0.053)
Num.Obs.	500	500
R2	0.590	0.556
R2 Adj.	0.586	0.552

Section 4. Estimation results

- Clearly state the key findings from the estimation results.
 - What variables have significant/insignificant effects?
 - Are the signs of the coefficients consistent with your hypothesis?
- Compare the results from different models and draw comprehensive conclusions.
- Are the results consistent with prior studies? If not, any possible explanation?
- Ideally, discuss some policy implications and suggestions based on the obtained results.

Section 5. Conclusion

- Briefly review the main contents of the paper in one or two paragraphs.
- Bringing together the results of your analysis and your interpretations, present your policy suggestions to the reader.
- Finally, you may address the potential limitations of your study and remaining future tasks.

Mid-term Paper Assignment: write a short empirical paper using linear regression analysis with \mathbf{R} .

Requirements:

- The paper must be typed in English, 4-5 pages in body length (not including the title and reference page), 11-12 pt. font, and single-authored.
- The paper must have its Title (in a separate page) and Conclusions. The title page contains the title of your paper, your name, and ID.
- Before presenting the estimation results, clearly write the regression model(s) you estimate in equation form.
- The estimation results should be summarized in a table. Do not include a screenshot or a photocopy of your PC screen.
- The script file used in your analysis must be attached to the paper as Appendix (just copy-and-paste the commands from the script file).

Data

- Data taken from the GSS (General Social Survey) 2018.
- For details of the data, see data description.pdf.
- What variables to be included in the model as dependent or explanatory variables are all up to you. The variables may be transformed according to your research interests.

Evaluation

- The purpose of the assignment is to check your ability
 - \bullet to perform regression analysis and statistical hypothesis testing with R,
 - to correctly interpret the estimation results,
 - and to describe the obtained results in a research-paper style.

- This assignment accounts for 30% of your grade.
- Submission deadline: To be added in a future version. Submit a pdf file of your paper through Waseda Moodle.^a

^aUsing Microsoft Word is not mandatory. You may use Rmarkdown, LaTex, or any text editor you prefer.