

• (In this concept, we derived an algorithm that keeps a running average of a sequence of numbers.)

MC Control: Policy Evaluation

• (In this concept, we amended the policy evaluation step to update the value function after every episode of interaction.)

MC Control: Policy Improvement

- A policy is **greedy** with respect to an action-value function estimate Q if for every state $s \in \mathcal{S}$, it is guaranteed to select an action $a \in \mathcal{A}(s)$ such that $a = \arg\max_{a \in \mathcal{A}(s)} Q(s,a)$. (It is common to refer to the selected action as the **greedy action**.)
- A policy is ϵ -greedy with respect to an action-value function estimate Q if for every state $s \in \mathcal{S}$,
 - with probability $1-\epsilon$, the agent selects the greedy action, and
 - ullet with probability ϵ , the agent selects an action (uniformly) at random.

Exploration vs. Exploitation

- All reinforcement learning agents face the Exploration-Exploitation Dilemma,
 where they must find a way to balance the drive to behave optimally based on
 their current knowledge (exploitation) and the need to acquire knowledge to
 attain better judgment (exploration).
- In order for MC control to converge to the optimal policy, the **Greedy in the Limit** with Infinite Exploration (GLIE) conditions must be met:
 - ullet every state-action pair s,a (for all $s\in\mathcal{S}$ and $a\in\mathcal{A}(s)$) is visited infinitely many times, and
 - the policy converges to a policy that is greedy with respect to the action-value function estimate Q.