- 1. We have 14 samples in total with 9 Hires (H) and 5 Not Hired (NH). Information for the two classes H and NH is I (H,NH) = I (9,5) = $-\frac{9}{14}\log_2\frac{9}{14} \frac{5}{14}\log_2\frac{5}{14} = 0.94$
 - a. 130 has 5 samples, with 3H, 2 NH:

$$I(3,2) = -\frac{3}{5}\log_2\frac{3}{5} - \frac{2}{5}\log_2\frac{2}{5} = 0.971$$

160 has 5 result samples also with 2H, 3 NH:

$$I(2,3) = -\frac{2}{5}\log_2\frac{2}{5} - \frac{3}{5}\log_2\frac{3}{5} = 0.971$$

190 has 4 samples with 4H, 0NH:

$$I(4,0) = -\frac{4}{4}\log_2\frac{4}{4} = 0$$

Entropy for attribute Test Score (TS) is:

$$E(TS) = \frac{5}{14}I(3,2) + \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) = 2 * 0.357 * 0.971 + 0.286 * 0 = 0.694$$

Gain (TS) =
$$I(9, 5) - E(TS) = 0.94 - 0.694 = 0.246$$

Relevant Skills (RS) is a node of node 130 test score and has 2 classes yes (Y) and no (N) with 5 samples from 130 test scores.

Yes has 3 samples with all 3 Hired while No has 2 with all not hired:

$$I(3,0) = -\frac{3}{3}\log_2\frac{3}{3} = 0$$

$$I(0,2) = -\frac{2}{2}\log_2\frac{2}{2} = 0$$

Entropy for attribute Relevant skills is:

$$E(RS) = \frac{3}{5}I(3,0) + \frac{2}{5}I(0,2) = 0$$

Gain (RS) =
$$I(3, 2) - E(RS) = 0.971$$

- b. 2 Hired and 2 Unidentified.
- 2. Probability of having cancer in the entire population is P (C) = 0.008

Probability of not having cancer in the entire population is P(NC) = 1 - P(C) = 0.992

Probability of positive cancer test result and have cancer (True Positive) is P(P|C) = 0.98

Probability having negative test result of having cancer but (False Negative) is P(N|C) = 0.02

Probability of negative cancer test result and not have cancer (True Negative) is P(N|NC) = 0.97

Probability of having positive test result but not having cancer (False Positive) is P (P|NC) = 0.03

According to Bayes' Rules we have
$$P(H|X) = \frac{P(X|H)P(H)}{P(X)}$$
 with $P(X) = P(x|H=1)P(H=1) + P(x|H=0)P(H=0)$

a. The probability that the patient has cancer is:

$$P(C|P) = \frac{P(P|C)P(C)}{P(C)P(P|C) + P(NC)P(P|NC)} = \frac{0.98 * 0.008}{0.98 * 0.008 + 0.992 * 0.03} = 0.2$$

b. The probability that the patient doesn't have cancer is:

$$P(NC|P) = \frac{P(P|NC)P(NC)}{P(C)P(P|C) + P(NC)P(P|NC)} = \frac{0.03 * 0.992}{0.98 * 0.008 + 0.992 * 0.03} = 0.79$$

c. The diagnosis should be the patient most likely don't have cancer

3.
$$P(Red | Y es) = 3 + 3 * .55 + 3 = .56$$

$$P(Red|No) = 2 + 3 * .5 5 + 3 = .43$$

$$P(SUV | Y es) = 1 + 3 * .5 5 + 3 = .31$$

$$P(SUV | No) = 3 + 3 * .5 5 + 3 = .56$$

$$P(Domestic | Y es) = 2 + 3 * .5 5 + 3 = .43$$

$$P(Domestic | No) = 3 + 3 * .5 5 + 3 = .56$$

$$P(Yes) * P(Red | Yes) * P(SUV | Yes) * P(Domestic | Yes) = .5 * .56 * .31 * .43 = .037$$

Since 0.069 > 0.037, our example gets classified as 'NO'

4. We have sales as y and advertising dollars as x.

	AD(x)	S (y)	x-avg(x)	y-avg(y)	(x-avg(x)) ²	(y-avg(y)) ²	Sum((x - avg(x))*(y- avg(y)))
1	22	64	-22.2	-56.2	492.84		1247.64
2	25	74	-19.2	-46.2	368.64		887.05
3	29	82	-15.2	-38.2	231.04		580.64
4	35	90	-9.2	-30.2	84.64		277.84
5	38	100	-6.2	-20.2	38.44		125.24
6	42	120	-2.2	-0.2	4.84		0.44
7	46	120	1.8	-0.2	3.24		-0.36
8	52	142	7.8	21.8	60.84		170.04

9	65	180	20.8	59.8	432.64	1243.84
10	88	230	43.8	109.8	1918.44	4809.24
Sum	442	1202	0	20.2	3635.6	9341.6
Average	44.2	120.2				

a. The linear regression equation is written as: $y=b_0+b_1x$

$$b_{1=}\Sigma[(x_i-x)(y_i-y)]/\Sigma[(x_i-x)^2] = 9341.6/3635.6=2.5695$$

$$b_0 = y - b_1 * x = 120.2 - 2.5695(44.2) = 6.629$$

Fitting Data on a line

- b. The slope of the line is positive, which means that the sales increases with the increase of ad money.
- c. R^2 = 0.992. Strong correlation and that the linear regression fits our data well. This means that we can use the model to predict the sales with ad money as a predictor.
- d. Y=2.5695x+6.629 with x = 50K so y=135.104K