EPFL

Sensor Orientation Kalman filter - base

Jan SKALOUD

 École polytechnique fédérale de Lausanne

EPFL, spring semester 2024

Skaloud, ESC

This translates into three rough big areas

1. Fundamentals

- How to characterize sensor noise
- How to transform from the sensed signals to navigation frame?

2. Position, velocity, attitude (navigation)

- How to formulate navigation equation in different frames?
- How to resolve them numerically?

3. Sensor fusion

- How to formulate models for sensor fusion?
- How to implement it in optimization and use it for mapping?

You need the frames

You need the navigation quantities and the noise properties

Cockpit view of SO course's topics

How to reach integrated sensor orientation?

Motivation for sensor fusion in navigation

• Example: 10 s after drone's take-off ...

GPS daily interferences > 10⁻¹³ Watts / m²

- Swiss example
 - Interference monitoring
 Helicopter recordings
 (height [AGL] > 300 m)
 - > 10'000 hours of data
 - > many, some critical!
- ☐ Civilian aviation
 - Backup / autonomy
- Other critical infrastructures
 - Oscillators, power grids
 - Communications networks
 - Financial market, servers,
 - Automated driving ...

M. Scaramuzza at al. 2016

EPFL

Motivation – limits of GPS/GNSS nominal (good) signal reception

- Noise in range (satellite to receiver) observations → noise in position
 - High for e.g, mapping via lidar
 - Limits: frequency, no attitude, ...
- ☐ Static case:
 - Recursive Least-Square
- Kinematic case
 - Kalman filter with predefined motion model – base (Lab 5)
 - Extended Kalman filter with INS as a motion model – generic / expert (Lab 6)

EPFL

Fusion & models

- > 60 years of Kalman Filter
- ❖ ∼ 90 years of kinematic ...

EPFL Rudolf Emil Kalman

- 1930*(Hungary)-2016*
- BSc and MSc from MIT
- PhD from Columbia, 1957
- Filter developed in 1960-1961 (1st time Beatles play)
 - Apollo enabler!
 - Still, more than 60 years later:
- (Navigation) life is different after the introduction of Kalman Filter

. . .

• Yet, more suitable approaches or modifications exist ...

Sensor fusion – agenda

- Kalman filter base (Week 9)
 - Intuitive approach
 - Discrete KF components, steps, implementation (Lab 5)
- Kalman filter extension (Week 10)
 - Linearized Kalman filter
 - Extended Kalman filter
- INS/GPS integration (Week 11)
 - Theory of a differential filter
 - Practice derivation & implementation (Lab 6)
- Sensor orientation (Week 12)

Sensor orientation

Direct & integrated orientation of optical sensors

Intuitive approach to KF (after Welch)

- □ Boat is does not move (no wind, anchor, ...)
 - Jan makes a measurement

Measurement 1 & its variance

$$z_1, \sigma_{z_1}^2$$

Estimated parameter

$$\hat{x}_1 = z_1$$

Estimated parameter variance

$$\hat{\sigma}_1^2 = \sigma_{z_1}^2$$

Conditional density function

☐ Klaus makes a measurement

Measurement 1 & its variance

$$z_2, \sigma_{z_2}^2$$

Estimated parameter

$$\hat{x}_2 = ...?$$

Estimated parameter variance

$$\hat{\sigma}_{2}^{2} = ...?$$

Conditional density function

- ☐ Combine measurements (in Least Square sense)
 - Relative weighting:

Estimated parameter based on both measurements

$$\hat{x}_2 = \left[\frac{\sigma_{z_2}^2}{\sigma_{z_1}^2} / \left(\frac{\sigma_{z_1}^2 + \sigma_{z_2}^2}{\sigma_{z_2}^2} \right) \right] z_1 + \left[\frac{\sigma_{z_1}^2}{\sigma_{z_1}^2} / \left(\frac{\sigma_{z_1}^2 + \sigma_{z_2}^2}{\sigma_{z_2}^2} \right) \right] z_2$$

$$= \hat{x}_1 + K_2 \left[z_2 - \hat{x}_1 \right]$$

where

$$K_2 = \sigma_{z_1}^2 / (\sigma_{z_1}^2 + \sigma_{z_2}^2)$$

Combine variances

Estimated parameter variance (for both observations)

$$1/\sigma_2^2 = (1/\sigma_{z_1}^2) + (1/\sigma_{z_2}^2)$$

Combined estimate

$$\hat{x} = \hat{x}_2$$

$$\hat{\sigma}^2 = \sigma_2^2$$

Conditional density function

- Online weighted average
 - Like recursive least-square (RLS)

- ☐ Suppose the the boat moves!
 - Between observations

- Not all the difference is error
- Some may be motion
- KF can include motion (process) model
 - ☐ While estimating desired parameters (e.g. velocity, position) from either direct or indirect measurements

- Process (e.g. motion) model describes how the state evolves-changes in time
 - Previous process model was 'nothing in position changes'
 - Better model might be:
 - $pos_{n+1} = pos_n + vel_n * time$
 - $vel_{n+1} = vel_n$
- Model dynamic

$$\frac{\partial p/\partial t = v}{\partial v/\partial t = 0 + w}$$

- *p* is the position
- *v* is the nominal velocity
- w is a process noise= (uncertainty of process model)

Propagation of probability density of 1D position (without observations)

EPFL

Discrete Kalman Filter the components

- ☐ The KF maintains (in memory) the first two statistical moments:
 - Process state **x** (mean of parameters) e.g. position, velocity, ...
 - Error covariance **P** (uncertainty of parameters)

Discrete Kalman Filter - components

- The ingredients:
 - A discrete process model
 - Change in state over time (Φ)
 - Linear (or linearized) difference equation $\partial {f \Phi}/\partial t = {f F}{f \Phi}$
 - A discrete measurement model
 - Relationship between state and measurements
 - Linear (or linearized) function (H)
 - Associated stochastic parameters (per model)
 - Process noise characteristics (w)
 - Measurement noise characteristics (R)

Discrete Kalman Filter models

Necessary models

EPFL Discrete Kalman Filter

□ Dynamic (process) model

$$\mathbf{x}_{k+1} = \Phi_k \mathbf{x}_k + "\Gamma \mathbf{w}_k"$$

 X_k — state vector; contains the *n*-states of the process

 Φ — state transition matrix; $(n \times n)$ relates states at time step k to time step k+1

 $\Gamma_{\mathcal{W}}$ — processing noise; expressing uncertainty of the dynamic model – ONLY in covariance propagation!

w- white noise

 Γ — noise transition matrix

" "indicates that the process noise is of a "zero mean" and therefore, included only as a part of stochastic model

EPFL KF - dynamic model

□ Formulated (w. a certain advantage) by a 1st order differential equation

 $\dot{\mathbf{x}} = F\mathbf{x} + \mathbf{G}\mathbf{w}$

 χ — state vector; contains the n-states of the process

F — dynamic matrix; $(n \times n)$ expresses the derivative of states with respect to time

 $G_{\mathcal{W}}-$ time differential equation of the processing noise; expressing uncertainty of the dynamic model

W — white noise (sometimes 'u' if it is <u>unity</u> white noise)

G- noise shaping matrix

" "indicates that the process noise is of a "zero mean" and therefore, included only as a part of stochastic model

Discrete Kalman Filter

■ Measurement model

$$\mathbf{z}_{k} = Hx_{k} + v_{k}$$

 Z_k — measurement vector; size m

 X_k — state vector; size n

H- measurement "design" matrix ($m \times n$)

 v_k — measurement noise

Discrete Kalman Filter

- ☐ **State** estimates
 - A priori state estimate (prediction) symbol 'tilde' or '-' in literature

$$\tilde{x}_{k}$$

■ Note: mean of *system noise* (prediction)

$$E[\Gamma w_k] = 0$$

A posteriori state estimate (after measurement) – symbol 'hat' or '+'

$$\hat{x}_k$$

Note: at update, same *k* has two different states – before and after update!

Discrete Kalman Filter

□ Covariance estimates

A priori estimate of state covariance (prediction)

$$\tilde{P}_{k} = E\left[\left(x_{k} - \tilde{x}_{k}\right)\left(x_{k} - \tilde{x}_{k}\right)^{T}\right]$$

A posteriori state estimate (after measurement)

$$\hat{P}_{k} = E\left[\left(x_{k} - \hat{x}_{k}\right)\left(x_{k} - \hat{x}_{k}\right)^{T}\right]$$

Note: time *k* at update has two different covariances – before and after update!

EPFL Discrete Kalman Filter

□ Covariance matrix of the system noise:

$$Q_{k} = E\left[\left(\Gamma w_{k}\right)\left(\Gamma w_{k}\right)^{T}\right] = \int_{k-1}^{k} \Phi_{k-1}G(\tau)Q(\tau)G^{T}(\tau)\Phi_{k-1}^{T}d\tau$$
noise PSD

□ The covariance matrix of the measurement noise:

$$\mathbf{R}_{k} = E\left[\left(v_{k}\right)\left(v_{k}\right)^{T}\right] \qquad \qquad E\left[v_{k}\right] = 0$$

□ Basic assumption: system and measurement noise are NOT correlated!

$$E\Big[\big(\Gamma w_k\big)\big(v_k\big)^T\Big]=0$$

Estimation in time

There are three types of estimation problems, based on the time (t) and the availability of measurements for which the estimate is required:

- Prediction: When (t) occurs after the last available measurement
- Filtering: When (t) coincides with the last measurements
- Smoothing: When (t) falls within the span of past and future measurements¹

¹ Optimal smoothing is described in Ch 9.8. One form corresponds to first filtering forward, then backward in time, followed by (weighted) averaging of both results.

Kalman Filter operation

☐ The Kalman algorithm is a sequential recursive algorithm for an optimal least-mean square variance estimation of error states

Kalman Filter operation

Linear discrete Kalman filter algorithm

