Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: syedsaleem

Timestamp: [year=2010; month=11; day=23; hr=13; min=20; sec=59; ms=735;

Validated By CRFValidator v 1.0.3

Application No:

10574124

Version No:

2.0

Input Set:

Output Set:

Started: 2010-11-15 18:34:53.875

Finished: 2010-11-15 18:34:54.379

Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 504 ms

Total Warnings: 1

Total Errors: 0

No. of SeqIDs Defined: 13

Actual SeqID Count: 13

Error code Error Description

W 213 Artificial or Unknown found in <213> in SEQ ID (3)

SEQUENCE LISTING

<110>	Klee	versity of E e, Harry J. man, Denise	Florida Rese	earch Founda	ation, Inc.		
	1 T C11	dan, Denise					
<120>		erials and Natile in Pla	Methods for ants	Synthesis o	of a Flavor	and Aroma	
<130>	UF.3	386CXC1					
<140>	1057	7 / 1 7 /					
<141>							
\T 4 T \	2010	, 11 10					
<150>	PCT/	us2004/0325	599				
<151>	2004	1-10-01					
<150>	60/5	558,504					
<151>	2004	1-03-31					
<150>	60/5	508,568					
<151>	2003	3-10-03					
<160>	13						
<170>	Pate	entIn versio	on 3.5				
<210>	1						
<211>	1367	7					
<212>	DNA						
<213>	Lyco	persicon es	sculentum				
<400>	1						
gccctto	ctaa	tacgactcac	tatagggcaa	gcagtggtaa	caacgcagag	tacgcggggg	60
aaggata	aatc	tctcaaatta	ctttctttt	ttttcctatc	aattctttat	accaaaataa	120
tattatt	gtt	tttttctcct	ctgtttctgc	ttcgtatttt	tgctgagaga	aatgagtgtg	180
acagcga	aaaa	cagtgtgtgt	aacaggagct	tcaggttaca	tagcttcatg	gctagtcaaa	240
ttcttgc	ctac	atagtggtta	caatgtgaag	gcttctgttc	gtgatccaaa	tgatcccaag	300
aaaacgo	cagc	acttgctttc	tcttggtggg	gccaaggaga	ggcttcactt	gttcaaagca	360
aacctat	tag	aagaaggttc	atttgatgct	gtagttgatg	gatgtgaagg	tgtattccat	420
acagcgt	ctc	ctttttacta	ctctgttaca	gacccacagg	ctgaattact	tgatcctgct	480
gttaago	ggaa	cactcaatct	tctcgggtca	tgtgccaaag	caccatcagt	aaaacgagtt	540
gttttaa	acgt	cttccatagc	tgcagttgct	tacagtggtc	agcctcggac	acctgaggtt	600
gtggtto	gatg	agagctggtg	gaccagtcca	gactactgca	aagaaaaaca	gctctggtat	660

gtcctctcaa agacattggc tgaggatgct gcgtggaagt ttgtgaagga gaaaggcatt

720

gatatggttg	tagtaaaccc	tgctatggtt	attggtcctc	tgttacagcc	tacacttaat	780
accagttctg	ctgcagtctt	gagcttggta	aatggtgctg	agacataccc	aaattcctct	840
tttgggtggg	ttaacgtgaa	agatgttgca	aatgcacata	ttcttgcatt	tgagaaccct	900
tcagctaatg	ggagatactt	aatggttgag	agggttgcac	actattctga	tatattgaag	960
atattgcgtg	acctttatcc	tactatgcaa	cttccagaaa	agtgtgctga	tgacaaccca	1020
ttgatgcaaa	attatcaagt	atcaaaggag	aaggcaaaaa	gcttgggtat	tgagtttact	1080
acccttgaag	aaagcatcaa	agaaactgtt	gaaagtttga	aggaaaagaa	gttttttgga	1140
ggttcatctt	ctatgtaaaa	ggcttctcaa	agcttttatg	gttttgttga	acaatactac	1200
ccaccccacc	ctaccctaca	cactttttt	ttttacttct	tttagctaat	tatagaatca	1260
agaagtcgaa	tggtatatcc	gttaataaat	ttcgatcaga	tgaggttgaa	atttgttcta	1320
tatctagaga	tttttacaga	ctggtttgat	agaaaaaaaa	aaaaaaa		1367

<210> 2

<211> 328

<212> PRT

<213> Lycopersicon esculentum

<400> 2

Met Ser Val Thr Ala Lys Thr Val Cys Val Thr Gly Ala Ser Gly Tyr 1 5 10 15

Ile Ala Ser Trp Leu Val Lys Phe Leu Leu His Ser Gly Tyr Asn Val 20 25 30

Lys Ala Ser Val Arg Asp Pro Asn Asp Pro Lys Lys Thr Gln His Leu 35 40 45

Leu Ser Leu Gly Gly Ala Lys Glu Arg Leu His Leu Phe Lys Ala Asn 50 55 60

Leu Leu Glu Glu Gly Ser Phe Asp Ala Val Val Asp Gly Cys Glu Gly 65 70 75 80

Val Phe His Thr Ala Ser Pro Phe Tyr Tyr Ser Val Thr Asp Pro Gln 85 90 95

Ala Glu Leu Leu Asp Pro Ala Val Lys Gly Thr Leu Asn Leu Leu Gly 100 105 110

Ser Cys Ala Lys Ala Pro Ser Val Lys Arg Val Val Leu Thr Ser Ser Ile Ala Ala Val Ala Tyr Ser Gly Gln Pro Arg Thr Pro Glu Val Val Val Asp Glu Ser Trp Trp Thr Ser Pro Asp Tyr Cys Lys Glu Lys Gln Leu Trp Tyr Val Leu Ser Lys Thr Leu Ala Glu Asp Ala Ala Trp Lys Phe Val Lys Glu Lys Gly Ile Asp Met Val Val Asn Pro Ala Met Val Ile Gly Pro Leu Leu Gln Pro Thr Leu Asn Thr Ser Ser Ala Ala Val Leu Ser Leu Val Asn Gly Ala Glu Thr Tyr Pro Asn Ser Ser Phe Gly Trp Val Asn Val Lys Asp Val Ala Asn Ala His Ile Leu Ala Phe Glu Asn Pro Ser Ala Asn Gly Arg Tyr Leu Met Val Glu Arg Val Ala His Tyr Ser Asp Ile Leu Lys Ile Leu Arg Asp Leu Tyr Pro Thr Met Gln Leu Pro Glu Lys Cys Ala Asp Asp Asn Pro Leu Met Gln Asn Tyr Gln Val Ser Lys Glu Lys Ala Lys Ser Leu Gly Ile Glu Phe Thr Thr Leu Glu Glu Ser Ile Lys Glu Thr Val Glu Ser Leu Lys Glu Lys Lys

```
<210> 3
<211> 35
<212> DNA
<213> Artificial sequence
<220>
<223> PCR primer
<400> 3
                                                                         35
tccttggccc caccaagaga aagcaagtgc tgcgt
<210> 4
<211> 1398
<212> DNA
<213> Lycopersicon esculentum
<400> 4
atgggaagtt tatcatttga gaaggatttt gagccatcag caattactcc aagaggatta
                                                                         60
                                                                       120
gcaccacctg gattaattgt aaatggtgat tttggtgaaa tgatgagact taaggtgtca
tcaacaccaa caacaccaag aaaaaacttg aatctttcag tgacggagcc aggaaaaaat
                                                                       180
                                                                        240
gatggaccta gtttggattg tacattgatg aattatattg atacactcac ccaacgtatc
aactatcata tcggttatcc agttaacata tgttatgagc actatgctaa tttagcccca
                                                                        300
                                                                        360
cttttacaat ttcatttaaa taattgtggt gatccatttc ttcaaaatac tgtggatttt
cattcaaagg attttgaagt ggctgtttta aattggtttg ctgatttatg ggaaattgaa
                                                                        420
agagatcaat attggggcta tgtaacaaat ggtggtactg aaggaaattt acatggcatt
                                                                       480
ttggttggga gagaattgtt tccagatgga attttatatg catcaaaaga ctctcattac
                                                                       540
                                                                       600
tcagtggcta aggcagcaat gatgtataga atggattttg aaaatattaa cgcatcaata
aatggagaaa tcgattattc tgatttgaaa gttaaattac ttcaaaacaa gggaaaacca
                                                                       660
gcgataatta atgttacaat tggcactact tttaaaggag ctgttgatga tcttgatgtt
                                                                       720
attcttcaaa tacttgaaga gtgtggttac acacgagatc aattttatat tcattgtgat
                                                                       780
                                                                       840
gcagcactaa atggacttat tattcctttt attaaaaata tgattacttt caagaagcca
attggaagtg tgacaatttc tggtcacaag tttttgggat gtccaatgcc ttgtggagtt
                                                                       900
caaataacaa ggaaaagtta cattaataac ctttcgagaa gagtcgaata tattgcttct
                                                                       960
                                                                      1020
gtggatgcta caatttctgg aagtcgaaat ggtttgactc cgatcttctt atggtacagt
                                                                      1080
ataagtgcta aaggtcaaat tggttttcag aaagacgtta agagatgttt tgacaatgct
                                                                      1140
aagtacttga aagaccgtct tcagcaagca ggaatcagcg tcatgctgaa tgagcttagc
```

atcatagttg ⁻	tcctcgagag g	gcctcgtgac	catgaattcg	ttcgtcgttg (gcaattatct								
tgtgtgagag (atatggcaca t	gttattgtt	atgccaggca	taactagaga a	aactcttgat								
ggttttatta atgatttgct tcaacaaagg aaaaaatggt atcaagatgg aagaattagc													
cctccttgtg ttgcaaatga tattggtgct caaaattgtg cttgctctta tcataaaatt													
gattacatta ttgcttag													
<210> 5 <211> 465 <212> PRT <213> Lycopersicon esculentum													
<400> 5													
Met Gly Ser 1	Leu Ser Phe	e Glu Lys A	sp Phe Glu 10	Pro Ser Ala	Ile Thr 15								
Pro Arg Gly	Leu Ala Pro 20	_ (eu Ile Val	Asn Gly Asp 30	Phe Gly								
Glu Met Met 35	Arg Leu Ly:	s Val Ser S 40	er Thr Pro	Thr Thr Pro 45	Arg Lys								
Asn Leu Asn 50	Leu Ser Val	Thr Glu P 55	ro Gly Lys	Asn Asp Gly 60	Pro Ser								
Leu Asp Cys 65	Thr Leu Met	. Asn Tyr I	le Asp Thr 75	Leu Thr Gln	Arg Ile 80								
Asn Tyr His	Ile Gly Tyn 85	r Pro Val A	sn Ile Cys 90	Tyr Glu His	Tyr Ala 95								
Asn Leu Ala	Pro Leu Leu 100		is Leu Asn 05	Asn Cys Gly 110	Asp Pro								
Phe Leu Gln 115		Asp Phe H 120	is Ser Lys	Asp Phe Glu 125	Val Ala								
Val Leu Asn 130	Trp Phe Ala	a Asp Leu T 135	rp Glu Ile	Glu Arg Asp 140	Gln Tyr								

Trp Gly Tyr Val Thr Asn Gly Gly Thr Glu Gly Asn Leu His Gly Ile

Leu	Val	Gly	Arg	Glu 165	Leu	Phe	Pro	Asp	Gly 170	Ile	Leu	Tyr	Ala	Ser 175	Lys
Asp	Ser	His	Tyr 180	Ser	Val	Ala	Lys	Ala 185	Ala	Met	Met	Tyr	Arg 190	Met	Asp
Phe	Glu	Asn 195	Ile	Asn	Ala	Ser	Ile 200	Asn	Gly	Glu	Ile	Asp 205	Tyr	Ser	Asp
Leu	Lys 210	Val	Lys	Leu	Leu	Gln 215	Asn	Lys	Gly	Lys	Pro 220	Ala	Ile	Ile	Asn
Val 225	Thr	Ile	Gly	Thr	Thr 230	Phe	Lys	Gly	Ala	Val 235	Asp	Asp	Leu	Asp	Val 240
Ile	Leu	Gln	Ile	Leu 245	Glu	Glu	Cys	Gly	Tyr 250	Thr	Arg	Asp	Gln	Phe 255	Tyr
Ile	His	Cys	Asp 260	Ala	Ala	Leu	Asn	Gly 265	Leu	Ile	Ile	Pro	Phe 270	Ile	Lys
Asn	Met	Ile 275	Thr	Phe	Lys	Lys	Pro 280	Ile	Gly	Ser	Val	Thr 285	Ile	Ser	Gly
His	Lys 290	Phe	Leu	Gly	Суз	Pro 295	Met	Pro	Cys	Gly	Val 300	Gln	Ile	Thr	Arg
Lys 305	Ser	Tyr	Ile	Asn	Asn 310	Leu	Ser	Arg	Arg	Val 315	Glu	Tyr	Ile	Ala	Ser 320
Val	Asp	Ala	Thr	Ile 325	Ser	Gly	Ser	Arg	Asn 330	Gly	Leu	Thr	Pro	Ile 335	Phe
Leu	Trp	Tyr	Ser 340	Ile	Ser	Ala	Lys	Gly 345	Gln	Ile	Gly	Phe	Gln 350	Lys	Asp
Val	Lys	Arg 355	Cys	Phe	Asp	Asn	Ala 360	Lys	Tyr	Leu	Lys	Asp 365	Arg	Leu	Gln
Gln	Ala 370	Gly	Ile	Ser	Val	Met 375	Leu	Asn	Glu	Leu	Ser 380	Ile	Ile	Val	Val

Leu Glu Arg Pro Arg Asp His Glu Phe Val Arg Arg Trp Gln Leu Ser 385 390 400

Cys Val Arg Asp Met Ala His Val Ile Val Met Pro Gly Ile Thr Arg
405 410 415

Glu Thr Leu Asp Gly Phe Ile Asn Asp Leu Leu Gln Gln Arg Lys Lys
420 425 430

Trp Tyr Gln Asp Gly Arg Ile Ser Pro Pro Cys Val Ala Asn Asp Ile 435 440 445

Gly Ala Gln Asn Cys Ala Cys Ser Tyr His Lys Ile Asp Tyr Ile Ile 450 455 460

Ala 465

<210> 6

<211> 1416

<212> DNA

<213> Lycopersicon esculentum

<400> 6

atgggtagtc tctcacttga aatggatttt gagccatcac ccatgacacc cagaagttta 60 gcagcgatga cacctagaag tttagcgcga cgacgattgt ttccgaacgt ggacaacaag aaacaqaaaa tqqcacaacc aqqtqcaqqa ccaaqqaaqa acttqqaact tqaqqtcatq 180 240 gagcctgcat tgaagaatga tggtccttct ttggacacta tcttggttaa ttatttggac acacttacac aacgagtcaa ttatcattta ggttatccag tcaacatatg ttatgatcac 300 tatgcaacgc tagcaccact tttgcagttt cacctaaaca attgtggtga tcctttccta 360 caaaatactg tcgatttcca ttctaaagac tttgaagtgg ctgttttgaa ttggtttgca 420 aaactttggg aaattgaaaa ggatcaatat tggggatatg ttaccaatgg tggcaccgaa 480 ggcaatctcc atggtatttt gttagggaga gagctacttc ctgaaggaat attatatgca 540 tcaaaagact ctcattactc agtattcaaa gctgcaagaa tgtatagaat ggattcagaa 600 acaatcaaca catcagtaaa tggagagatg gattattcag atttaagagc aaagttactt 660 caaaataagg ataaaccagc tattataaat gtcacaattg gaactacatt caaaggagca 720 atcgatgacc tggatgttat tcttgaaata ctcaaagaat gtggctattc acaagatcga 780 ttttacattc actgtgatgc agcactatgt ggtcttatga ccccttttat aaacaatatg 840

attagtttca	agaagccaat	tggaagtgtc	acaatttctg	gacacaagtt	tttgggatgt	900
ccaatgcctt	gtggtgtcca	aataacaaga	aaaagctaca	tcaataatct	ctcaacaaat	960
gtggaataca	ttgcttctgt	ggatgccact	atttctggta	gccgtaacgg	tttaactcca	1020
attttcttat	ggtatagctt	gagcgcaaaa	ggtcaagttg	gacttcaaaa	ggatgttaaa	1080
agatgtctcg	acaatgccaa	atatttgaaa	gatcgtcttc	aacaagcagg	gataagtgtc	1140
atgctgaatg	agctaagcat	catagttgta	cttgaaaggc	ctcgtgacca	tgaatttgtg	1200
cgtcgttggc	aactctcatg	cgtcaaggat	atggcacatg	ttattgtgat	gccaggaatc	1260
acacgagaaa	tgcttgacaa	cttcatgagt	gaattagtgc	aacaaagaaa	agtatggtat	1320
caaaatggaa	agactgatcc	tccttgtgtt	ggagaggata	ttggtgctca	aaattgtgca	1380
tgctcttatc	ataagattga	ctacatctgt	ccttag			1416

<210> 7

<211> 471

<212> PRT

<213> Lycopersicon esculentum

<400> 7

Met Gly Ser Leu Ser Leu Glu Met Asp Phe Glu Pro Ser Pro Met Thr 1 5 10 15

Pro Arg Ser Leu Ala Ala Met Thr Pro Arg Ser Leu Ala Arg Arg Arg 25 30

Leu Phe Pro Asn Val Asp Asn Lys Lys Gln Lys Met Ala Gln Pro Gly 35 40 45

Ala Gly Pro Arg Lys Asn Leu Glu Leu Glu Val Met Glu Pro Ala Leu 50 55 60

Lys Asn Asp Gly Pro Ser Leu Asp Thr Ile Leu Val Asn Tyr Leu Asp 65 70 75 80

Thr Leu Thr Gln Arg Val Asn Tyr His Leu Gly Tyr Pro Val Asn Ile 85 90 95

Cys Tyr Asp His Tyr Ala Thr Leu Ala Pro Leu Leu Gln Phe His Leu 100 105 110

Asn	Asn	Cys 115	Gly	Asp	Pro	Phe	Leu 120	Gln	Asn	Thr	Val	Asp 125	Phe	His	Ser
Lys	Asp 130	Phe	Glu	Val	Ala	Val 135	Leu	Asn	Trp	Phe	Ala 140	Lys	Leu	Trp	Glu
Ile 145	Glu	Lys	Asp	Gln	Tyr 150	Trp	Gly	Tyr	Val	Thr 155	Asn	Gly	Gly	Thr	Glu 160
Gly	Asn	Leu	His	Gly 165	Ile	Leu	Leu	Gly	Arg 170	Glu	Leu	Leu	Pro	Glu 175	Gly
Ile		_			_	_			_		Val		_		Ala
Arg	Met	Tyr 195	Arg	Met	Asp	Ser	Glu 200	Thr	Ile	Asn	Thr	Ser 205	Val	Asn	Gly
Glu	Met 210	Asp	Tyr	Ser	Asp	Leu 215	Arg	Ala	Lys	Leu	Leu 220	Gln	Asn	Lys	Asp
Lys 225	Pro	Ala	Ile	Ile	Asn 230	Val	Thr	Ile	Gly	Thr 235	Thr	Phe	Lys	Gly	Ala 240
Ile	Asp	Asp	Leu	Asp 245	Val	Ile	Leu	Glu	Ile 250	Leu	Lys	Glu	Суз	Gly 255	Tyr
Ser	Gln	Asp	Arg 260	Phe	Tyr	Ile	His	Cys 265	Asp	Ala	Ala	Leu	Cys 270	Gly	Leu
Met	Thr	Pro 275	Phe	Ile	Asn	Asn	Met 280	Ile	Ser	Phe	Lys	Lys 285	Pro	Ile	Gly
Ser	Val 290	Thr	Ile	Ser	Gly	His 295	Lys	Phe	Leu	Gly	Cys 300	Pro	Met	Pro	Cys
Gly 305	Val	Gln	Ile	Thr	Arg 310	Lys	Ser	Tyr	Ile	Asn 315	Asn	Leu	Ser	Thr	Asn 320
Val	Glu	Tyr	Ile	Ala 325	Ser	Val	Asp	Ala	Thr 330	Ile	Ser	Gly	Ser	Arg 335	Asn

Gly Leu Thr Pro Ile Phe Leu Trp Tyr Ser Leu Ser Ala Lys Gly Gln

340 345 350

Val Gly Leu Gln Lys Asp Val Lys Arg Cys Leu Asp Asn Ala Lys Tyr 355 360 365 Leu Lys Asp Arg Leu Gln Gln Ala Gly Ile Ser Val Met Leu Asn Glu 370 375 380 Leu Ser Ile Ile Val Val Leu Glu Arg Pro Arg Asp His Glu Phe Val 385 390 395 400 Arg Arg Trp Gln Leu Ser Cys Val Lys Asp Met Ala His Val Ile Val 405 410 415 Met Pro Gly Ile Thr Arg Glu Met Leu Asp Asn Phe Met Ser Glu Leu 420 425 430 Val Gln Gln Arg Lys Val Trp Tyr Gln Asn Gly Lys Thr Asp Pro Pro 435 440 445 Cys Val Gly Glu Asp Ile Gly Ala Gln Asn Cys Ala Cys Ser Tyr His 450 455 460 Lys Ile Asp Tyr Ile Cys Pro <210> 8 <211> 1416 <212> DNA <213> Lycopersicon pennellii <400> 8 atgggtagtc tctcacttga aatggatttt gagccatcac ctatgacacc cagaagttta 60 gcagcgatga cacctagaag tttagcgcgg cgaagattgt ttcccaatgt ggacaacaaa 120 aaacaaaagg tgcaacaatc aggtgcaggg ccaaggaaga acttacaact tgaagtcatg 180 gaacctgcat tgaacaatgc tggtccctct ttggacacta tattggtcaa ttatttagac 240 acacttacac aacgagtcaa ttatcattta ggttatccag tcaacatttg t