EE359 – Lecture 17 Outline

- Announcements
 - HW due Fri. 5pm, no HW next week, 1 more HW due 12/4
 - Bonus lecture 11/30, 5:15-7:15, 204 Packard
 - Final info (coverage, review, extra OHs, etc) given 11/30
 - Extra credit for Axess online evals
- Review of Last Lecture
- Overlapping subcarriers
- Fading across subcarriers
- OFDM FFT Implementation
- OFDM Challenges
- Introduction to Spread Spectrum

Review of Last Lecture

- MIMO Beamforming
 - Transmit along dominant spatial mode of channel matrix
- Diversity vs. Multiplexing Tradeoffs in MIMO
 - Optimal operating point depends on application
- MIMO system design issues
- Multicarrier modulation mitigates ISI
 - Splits data stream into NB flat fading substreams
 - Flat fading on each subcarrier

Overlapping Substreams

- Can have completely separate subchannels
 - Required passband bandwidth is B.
- OFDM overlaps substreams
 - Substreams (symbol time T_N) separated in RX
 - Minimum substream separation is $B_N/(1+\beta)$.
 - Total required bandwidth is B/2 (for $T_N=1/B_N$)

Fading Across Subcarriers

- Leads to different BERS
- Compensation techniques
 - Frequency equalization (noise enhancement)
 - Precoding
 - Coding across subcarriers
 - Adaptive loading (power and rate)

FFT Implementation of OFDM

- Efficient IFFT structure at transmitter
 - Reverse structure (with FFT) at receiver
 - Cyclic prefix makes linear convolution circular, so there is no interference between input blocks

- Issues
 - Timing/frequency offset impacts subcarrier orthogonality
 - Adding signals creates large signal peaks (large PAPR)
 - Fading across subcarriers impacts performance

Introduction to Spread Spectrum

- Modulation that increases signal BW
 - Mitigates or coherently combines ISI
 - Mitigates narrowband interference/jamming
 - Hides signal below noise (DSSS) or makes it hard to track (FH)
 - Also used as a multiple access technique
- Two types
 - Frequency Hopping:
 - Narrowband signal hopped over wide bandwidth
 - Direction Sequence:
 - Modulated signal multiplied by faster chip sequence

Direct Sequence Spread Spectrum

Bit sequence modulated by chip sequence

- Spreads bandwidth by large factor (K)
- Despread by multiplying by $s_c(t)$ again $(s_c^2(t)=1)$
- Mitigates ISI and narrowband interference

ISI and Interference Rejection

Narrowband Interference Rejection (1/K)

• Multipath Rejection (Autocorrelation $\rho(\tau)$)

Main Points

- Subcarrier fading degrades MCM performance
 - Compensate through coding or adaptation
- OFDM efficiently implemented using FFTs
- OFDM challenges are PAPR, timing/frequency offset, and fading across subcarriers
- Spread spectrum spreads signal over wide bandwidth for ISI/interference rejection
- DSSS rejects interference by spreading gain
- DSSS rejects ISI by code autocorrelation