	Utech
<i>Name</i> :	
Roll No.:	The State of State Line and Excellent
Invigilator's Signature :	

CS/B.Tech(EE)/SEM-5/EE-501/2009-10 2009

ELECTRIC MACHINES - II

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) In a double revolving field theory, the slip of the forward motor is S, then the slip of the backward motor is
 - a) 2S

b) S

c) 2–S

- d) S-2.
- ii) In a shaded pole motor, shading coils are used to
 - a) Reduce winding losses
 - b) Reduce friction losses
 - c) Produce rotating magnitic field
 - d) Protect against sparking.
- iii) A universal motor is one which has
 - a) constant speed
 - b) constant output
 - c) capability of operating both on a.c. and d.c. with comparable performance
 - d) maximum efficiency.

55006 Turn over

CS/B.Tech(EE)/SEM-5/EE-501/2009-10

iv)	The maximum possible speed at which an alter can be driven to generate 50 Hz and 4000 V is			(0)	
		· ·		3600 r.p.m.	
	a)	4000 r.p.m.		оооо т.р.ш.	
1	c)	3000 r.p.m.		1500 r.p.m.	
v)	The direction of rotation of single-phase induction motor can be reversed by				
	a)	reversing the leads o	f th	e main winding	
	a) b)	reversing the leads o		0	
	c)	reversing the supply		•	
	d)	either (a) or (b).	ica	us	
vi)					
VI)	supplied from			tor run mudetion motor is	
	a)	single-phase supply	b)	2-phase supply	
	c)	3-phase supply		none of these.	
vii)				ween adjacent slots in a	
4-pole alternation with 36 slots is in electrial degree					
	a)	9°	b)	10°	
	c)	20°	d)	90°.	
viii)	Whi	ch of the following m	oto	rs will give relatively high	
	start	ting torque.			
	a)	capacitor start motor	b)	capacitor run motor	
	c)	split phase motor	d)	shaded pole motor.	
ix)	In si	In single-phase repulsion motor, power factor is			
	a)	always leading	b)	always unit	
	c)	always lagging	d)	none of these.	
x)	Indu	iction generator runs	at		
	a)	supersynchronous s	pee	d	
	b)	sub-synchronous sp	eed		
	c)	synchronous speed			
	d)	none of these.			
xi)		•		otor runs at synchronous	
	_	S		the damper winding is	
	a)	maximum		o) minimum	
	c)	zero	C	none of these.	
55006		2			
		_			

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Explain the double revolving field theory as applied to a single-phase motor.
- 3. Explain why in a universal motor, the performance of the machine is better under d.c. than in a.c. operation.
- 4. What is hunting in an alternator? Explain how hunting can be minimised?
- 5. Explain the operating principle of a stepper motor.
- 6. Why are synchronous motor not self-starting?

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following.

 $3 \times 15 = 45$

- 7. a) Describe the armature reaction of an alternator for zero p.f. lagging, 1 zero p.f leading and unity p.f. load.
 - b) Describe any synchronising method of an alternator with infinite bus. 7 + 8
- 8. a) Draw & explain the phasor diagram of salient pole alternator supplying full-load lagging power current. Show that the power output per phase is given by

$$P = \frac{EV}{X_d} \sin \theta + \frac{V^2}{2} \left[\frac{1}{X_q} - \frac{1}{X_d} \right] \sin 2\theta$$

b) A 150 kVA, 4000 V, 50Hz, 3-phase star-connected alternator has effective armature resistance of 0.3 ohm. The field current of 40 A produces short-circuit current of 200 A and an open circuit e.m.f. of 1080 V (line value). Calculate the full-load regulation at $0.8 \ p.f.$ lagging and $0.8 \ p.f.$ leading. 8 + 7

CS/B.Tech(EE)/SEM-5/EE-501/2009-10

- 9. a) Draw and explain phasor diagram of a single-phase series motor.
 - b) What are uncompensated & compensated single-phase series commutator motors? Develop their performance equation. 7 + 8
- 10. a) Explain why a single-phase single winding induction motor produces no starting torque. 3
 - b) Why is a shaded pole motor recommended over a resistance start for the same applications?
 - c) Why are high speed often desirable in the operation of universal motors? What limits the speed?
 - d) The resistance and total inductance of a single-phase fractional horse power series motor are 30 Ω and 0.5 H respectively. It draws 0.8 A current and runs at 2000 r.p.m. when connected to a 250 V d.c. supply. Calculate the speed and power factor when connected to a 250 V, 50 Hz supply and takes the same load current. How much voltage is required for getting 2000 r.p.m. with a.c. supply? Assume resistance and reactance remains constant.
- 11. Write short notes on any *three* of the following: $3 \times 5 = 15$
 - a) Stepper motor and "microstepping"
 - b) Brushless DC motor
 - c) Servomotor
 - d) Induction regulator
 - e) Resolver.

55006 4