Unit 2: Multivariate Calculus Quiz

Question 1

Find the partial derivatives if the following functions:

A)
$$f(x,y) = x^4y + 2x$$

B)
$$f(x,y) = 2y + 3x^2$$

$$\frac{df(x,y)}{dx} =$$

$$\frac{df(x,y)}{dx} =$$

$$\frac{df(x,y)}{dy} =$$

$$\frac{df(x,y)}{dy} =$$

Question 2

The direction of maximum **decrease** for an objective function $f(\mathbf{x})$ is given by the:

- A. Gradient (∇)
- B. Negative Gradient $(-\nabla)$
- C. Jacobian Matrix (J)
- D. Laplacian (∇^2)

Question 3

Fill in the blank: The _____ integral of f(x) is a number and represents the area under the curve from x = a to x = b. The _____ integral of f(x) has no limits and returns a function.

Question 4

The critical point of a convex function is guaranteed to be a _____ minimum.

Question 5

Find the global minimum for the objective function, $f(x) = 2x^2 - 3$.