Plan du cours

I.	Sor	omme des angles d'un triangle					
II.	Tria	angles particuliers	1				
	1.	Triangles rectangles	1				
	2.	Triangles isocèles	2				
		Triangles éguilatéraux					

I. Somme des angles d'un triangle

Propriété

La somme des mesures des trois angles d'un triangle est toujours égale à 180°.

Visualisation:

Exemple:

->	٠ (_(n	۱b)IE	en	r	'n	es	SL	ır	е	ı	ĉ	n	19	Ιle	9	Α	١Ł	3(_	!									
	٠.		٠.				•	٠.																						 		

exos 53 et 54

II. Triangles particuliers

1. Triangles rectangles

Propriété

Si un triangle est rectangle, alors la somme des mesures de ses angles aigus est égale à 90°.

Réciproquement, si la somme des mesures de deux angles d'un triangle est égale à 90° , alors ce triangle est rectangle.

Exemple:

Calculer la mesure de l'angle \widehat{MPN} sachant que l'angle \widehat{MNP} mesure 38°.

2. Triangles isocèles

Propriété

Si un triangle est isocèle, alors ses deux angles à la base ont la même mesure.

Réciproquement, si deux angles d'un triangle ont la même mesure, alors ce triangle est isocèle.

Exemple : 1. Soit ABC un triangle isocèle en A tel que $\widehat{ABC} = 62^{\circ}$. Quel est la mesure de l'angle \widehat{ACB} ?
2. Le triangle ABC est isocèle en A et $\widehat{BAC} = 100^{\circ}$. Calculer l'angle \widehat{ABC} .

3. Triangles équilatéraux

Propriété

Si un triangle est équilatéral, alors tous ses angles mesurent 60° .

Réciproquement, si les trois angles mesurent 60° , alors ce triangle est équilatéral.

