Base Model

For the Base Model, since the room has no window directly facing outside, there is almost no direct sunlight during the year. The main goal is to bring daylight into the bedroom.

9AM, DEC 21 12PM, DEC 21 15PM, DEC 21

1ST Modified Model

Strategy: Enlarge the size of Window.

Result:

The indoor daylight quality if partly improved, but still most area has no sufficient illuminance.

2nd Modified Model

Strategy:

- 1. Using the window at northeastern side.
- 2. Creating window and use glass door at right side to bring the sunlight from northeastern side of the room.
- 3. Make room for window at westside wall.

Result:

The indoor daylight quality has been improved much in March and June but no enough illuminance in December.

Glare Analysis

Based on the simulation resulut of 2nd modified model, the DGP is below 0.35, which means the glare is imperceptible.

DGP:0.255318

DGP:0.265565

DGP:0.265898

9AM, JUN 21

DGP:0.264113 DGP:0.270374

DGP:0.273679

DGP:0.237209

DGP:0.257631

DGP:0.245545

9AM, DEC 21

12PM, DEC 21

15PM, DEC 21

Use the UDLI_100_2000 to evaluate the annual daylight.

Result:

The result shows that the UDI of interior room is mostly close to 100%, which means good daylight performance.