САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт прикладной математики и механики

Высшая школа прикладной математики и вычислительной физики

Отчет по лабораторной работе по дисциплине

«Вычислительные комплексы» Тема: Внешнее оценивание множеств решений в IA

> Выполнил студент: Смирнова Дарья группа: 5030102/80201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2021 г.

Оглавление

			Страница		
0.1	Поста	новка задачи			3
0.2	Теория				4
	0.2.1	Внешнее множество решений			4
	0.2.2	Сходимость итерационного процесса			4
	0.2.3	Метод Кравчика			4
	0.2.4				5
0.3	Реализ	- зация			5
0.4	Результаты				5
	0.4.1	Спектральный радиус матрицы $ I-\Lambda A $			5
	0.4.2	Оценка начального бруса решения			6
	0.4.3	Результаты применения метода Кравчик	а для	R	
		линейного случая			6
	0.4.4	Результаты применения метода кравчик			
		нелинейного случая			10
0.5	Обсуж	кдение			13

Список иллюстраций

	Страни	Страница		
1	Множество Ξ_{uni}	7		
2	Линейная: Последовательность величин радиусов по			
	второй координате	7		
3	Линейная: Последовательность величин радиусов по			
	первой координате	8		
4	Линейная: Расстояние между центрами брусов на со-			
	седних итерациях	9		
5	Линейная: Положение брусов	9		
6	Нелинейная: Последовательность величин радиусов по			
	второй координате	10		
7	Нелинейная: Последовательность величин радиусов по			
	первой координате	11		
8	Нелинейная: Расстояние между центрами брусов на			
	соседних итерациях	12		
9	Нелинейная: Положение брусов	12		

0.1 Постановка задачи

1. Для ИСЛАУ

$$\begin{cases} x_1 + x_2 = [1, 4] \\ x_1 - [2, 3] \cdot x_2 = 0 \end{cases}$$

Выполнить

- Оценить внешнее множество решений с помощью метода Кравчика
- Определить спектральный радиус матрицы
- Провести оценку начального бруса решения
- Проиллюстрировать положение брусов при итерациях
- Проиллюстрировать радиусы брусов при итерациях
- Проиллюстрировать расстояние центров брусов при итерациях до центра последнего бруса
- 2. Для нелинейной ИСЛАУ:

$$\begin{cases} x_1 + x_2 = [1, 4] \\ \frac{x_1}{x_2} = [2, 3] \end{cases}$$

Выполнить

- Оценить внешнее множество решений с помощью метода Кравчика
- Проиллюстрировать положение брусов при итерациях
- Проиллюстрировать радиусы брусов при итерациях
- Проиллюстрировать расстояние центров брусов при итерациях до центра последнего бруса

0.2 Теория

0.2.1 Внешнее множество решений

Объединенное множество решений, образованное решениями всех точечных систем F(a,x)=b

$$\Xi_{\text{uni}} = \{ x \in \mathbb{R}^n | \exists a \in a, \ \exists b \in b : \ F(a, x) = b \}$$

0.2.2 Сходимость итерационного процесса

Итерационный метод $x^{(k+1)} = C(x^{(k)}) + d$ сходится, когда $\rho(|C|) \le 1$, то есть спектральный радиус матрицы |C|, составленной их модулей элементов C меньше или равен 1.

0.2.3 Метод Кравчика

Метод Кравчика - это одношаговый стационарный итерационный метод уточнения двусторонней границы решений системы п уравнений с п неизвестными $F(x) = 0, x \in X \subset IR^n$, определенной на некотором брусе X. Данный метод позволяет не только произвести оценку, но и убедиться, что решений не существует.

В случае ИСЛАУ в методе Кравчика выбирают интервальный вектор начального приближения $x^{(0)}$ и затем итерируют:

$$x^{(k)} = (\Lambda \mathbf{b} + (I - \Lambda \mathbf{A})x^{(k-1)}) \cap x^{(k-1)}$$

с некоторой фиксированной матрицей $\Lambda \in \mathbf{R}^n$, которая фактически является предобуславливающей матрицей для исходной ИСЛАУ. В методе Кравчика обычно берут

$$\Lambda = (mid(\mathbf{A}))^{-1}$$

В общем случае, когда система нелинейна, мы будем пользоваться оператором Кравчика: $\mathcal{K}(X, \overline{x}) = \overline{x} - \Lambda \cdot F(\overline{x}) - (I - \Lambda \cdot L) \cdot (X - \overline{x})$

При этом положим

$$\Lambda = (mid(\mathbf{J}))^{-1}, \ L = J,$$

где J(x) - якобиан F(x)

0.2.4 Выбор начального приближения

Для систем общего вида выбор начального бруса - отдельная задача, которая не поддается обобщению. В случае ИСЛАУ справедливо:

$$\eta = ||I - \Lambda \cdot A||_{\infty} < 1 \Rightarrow \Xi_{\text{uni}} \subset \begin{pmatrix} [-\theta, \ \theta] \\ \cdots \\ [-\theta, \ \theta] \end{pmatrix}, \ \theta = \frac{||\Lambda \cdot b||_{\infty}}{1 - \eta}$$

0.3 Реализация

Лабораторная работа выполнена в среде MATLAB2021b.

0.4 Результаты

0.4.1 Спектральный радиус матрицы $|I-\Lambda A|$

Чтобы итерационный процесс сходился, необходимо, чтобы выполнилось $|I - \Lambda A| \le 1$.

Имеем:

$$\Lambda = \begin{pmatrix} 0.71 & 0.29 \\ 0.29 & -0.29 \end{pmatrix}$$

$$\Lambda \mathbf{A} = \begin{pmatrix} 1 & [-0, 16, 0.13] \\ 0 & [0.87, 1.16] \end{pmatrix}$$

$$|I - \Lambda A| = \begin{pmatrix} 0 & 0.16 \\ 0 & 0.16 \end{pmatrix}$$

$$\rho(|I - \Lambda A|) = 0.16 < 1$$

Итерационный процесс сходящийся, можно пользоваться методом Кравчика.

0.4.2 Оценка начального бруса решения

 $||I - \Lambda \cdot A||_{\infty} = 0.16 < 1$. Следовательно, можно воспользоваться описанным выше способом выбора начального приближения $x^{(0)}$.

$$\Lambda \mathbf{b} = \begin{pmatrix} [0.71, 2.84] \\ [0.29, 1.16] \end{pmatrix}$$

$$\theta = \frac{||\Lambda \cdot b||_{\infty}}{1 - \eta} \approx 3.38 \Rightarrow x^{(0)} = \begin{pmatrix} [-3.38, 3.38] \\ [-3.38, 3.38] \end{pmatrix}$$

0.4.3 Результаты применения метода Кравчика для линейного случая

Если построить 4 прямые и найти область, образованную их пересечением, то получим $\Xi_{\rm uni}$ для рассматриваемой задачи.

Рис. 1: Множество $\Xi_{\rm uni}$

Рис. 2: Линейная: Последовательность величин радиусов по второй координате

Рис. 3: Линейная: Последовательность величин радиусов по первой координате

Рис. 4: Линейная: Расстояние между центрами брусов на соседних итерациях

Рис. 5: Линейная: Положение брусов

0.4.4 Результаты применения метода кравчика для нелинейного случая

Для нелинейного случая имеем тот же $\Xi_{\rm uni}$.

Рис. 6: Нелинейная: Последовательность величин радиусов по второй координате

Рис. 7: Нелинейная: Последовательность величин радиусов по первой координате

Рис. 8: Нелинейная: Расстояние между центрами брусов на соседних итерациях

Рис. 9: Нелинейная: Положение брусов

0.5 Обсуждение

В случае линейной системы наблюдается быстрая сходимость к внешней оценке множества допустимых значений, которая достаточно точно описывает настоящее множество Ξ_{uni} . В случае, когда система нелинейна, видим малое изменение брусов, соответствущих внешней оценке по первой координате и небольшое изменение по второй координате, что подтверждается графиками, относящимися к радиусу брусов. При этом множество Ξ_{uni} оценивается очень грубо.

Примечание

С кодом работы можно ознакомиться по ссылке: https://github.com/DariaWelt/IntAnalysis