Fondamenti di Calcolo Numerico

Progetto 3: scadenza per la consegna 10 Giugno 2023 - Voto massimo : 3/30

Nota 1: salvare le risposte alle domande evidenziate in grassetto all'interno di un file pdf denominato:

Soluzione_Progetto_3_Cognome_Codice_6cifre.pdf

dove Codice_6cifre è il vostro numero identificativo personale composto da 6 cifre.

Nota 2: per risolvere numericamente gli esercizi proposti nel seguito, si suggerisce di creare uno script all'interno di una cartella nel vostro file system personale, e di salvarlo con il nome

Progetto_3.m

Figure 1: Circuito non lineare. I pallini colorati in rosso rappresentano interruttori che si aprono (o chiudono) al tempo t = 0.

1 Analisi circuitale in regime statico: metodo grafico (valutazione massima: 1/30)

Si consideri il circuito non lineare illustrato in Figura 1 dove per $t \in [-\infty, 0)$ gli interruttori a e c sono aperti mentre l'interruttore b è chiuso, in modo tale che il circuito sia costituito dal generatore di tensione costante E collegato in serie, attraverso la resistenza R_1 al parallelo formato dalla resistenza 2 e dal diodo a giunzione p-n. Si ponga: E = 1.5V e $R_1 = R_2 = 100\Omega$. Siano inoltre: $K_B = 1.3806488 \cdot 10^{-23} \text{JK}^{-1}$ (costante di Boltzmann); $q = 1.6021892 \cdot 10^{-19} \text{C}$ (carica elementare dell'elettrone) e T = 300K (temperatura). Sia infine $i_0 = 10^{-3}$ A la corrente di saturazione inversa del diodo.

1. voto: 0.6/30

Dopo avere verificato che l'equazione non lineare per l'incognita v assume la forma:

$$g_1(v) - g_2(v) = 0, (1a)$$

essendo:

$$g_1(v) = A - Bv, (1b)$$

$$g_2(v) = M \exp\left(\frac{v}{V_{th}}\right),$$
 (1c)

e avendo posto $V_{th} := K_B T/q$, scrivere le espressioni delle costanti A, B e M nella sezione intitolata "1. Analisi grafica" del file

Soluzione_Progetto_3_Cognome_Codice_6cifre.pdf.

2. voto: **0.4/30**

Sia v^* l'unico punto di intersezione tra le due curve $g_1(v)$ e $g_2(v)$. Utilizzando il comando plot di Matlab nell'intervallo $\mathcal{J} = [v_1, v_2]$, con $v_1 = -0.1$ V e $v_2 = +0.1$ V, e con il vettore di servizio $v_2 = v_1 = v_2 = v_1 = v_2$, si generi la figura con le due curve sovrapposte e si utilizzi la modalità zoom dal menù grafico di Matlab per individuare il valore di v^* . Scrivere il valore di v^* così ottenuto nella sezione intitolata "1. Analisi grafica" del file

Soluzione_Progetto_3_Cognome_Codice_6cifre.pdf.

2 Analisi circuitale in regime statico: metodo numerico (valutazione massima: 1/30)

Per risolvere numericamente l'equazione (1a), si consideri l'iterazione di punto fisso

$$v^{(k+1)} = T(v^{(k)}) k \ge 0, (2a)$$

dove $x^{(0)}$ è un dato iniziale in \mathcal{J} e la funzione di iterazione T è una delle due seguenti scelte:

$$T_1(v) = \frac{E + Ri_0}{2} - \frac{Ri_0}{2} \exp\left(\frac{v}{V_{th}}\right),\tag{2b}$$

$$T_2(v) = V_{th} \log \left(\frac{E + Ri_0 - 2v}{Ri_0} \right). \tag{2c}$$

Prima di rispondere ai quesiti successivi si esegua il comando format long e.

1. voto: 0.1/30

Si utilizzi la funzione fzero di Matlab con intervallo di ricerca \mathcal{J} per calcolare v^* . Scrivere il valore di v^* così ottenuto nella sezione intitolata "2. Analisi numerica" del file

Soluzione_Progetto_3_Cognome_Codice_6cifre.pdf.

2. voto: 0.15/30

Si calcoli $T_1'(v)$ e se ne riporti l'espressione nella sezione intitolata "2. Analisi numerica" del file

Soluzione_Progetto_3_Cognome_Codice_6cifre.pdf.

3. voto: 0.15/30

Si calcoli $y_1 = |T_1'(v^*)|$. Scrivere nella sezione intitolata "2. Analisi numerica" del file

Soluzione_Progetto_3_Cognome_Codice_6cifre.pdf

il valore di y_1 e dire se il metodo (2a) con $T = T_1$ risulta convergente.

4. voto: 0.15/30

Si calcoli $T_2'(v)$ e se ne riporti l'espressione nella sezione intitolata "2. Analisi numerica" del file

Soluzione_Progetto_3_Cognome_Codice_6cifre.pdf.

5. voto: 0.15/30

Si calcoli $y_2 = |T_2'(v^*)|$. Scrivere nella sezione intitolata "2. Analisi numerica" del file

Soluzione_Progetto_3_Cognome_Codice_6cifre.pdf

il valore di y_2 e dire se il metodo (2a) con $T = T_2$ risulta convergente.

6. voto: 0.3/30

Si esegua il comando [vfix, niter, err] = fixedpoint (v0, T2, toll, itmax); con v0 = -0.1, itmax = 1000 e toll = 1e-10, e dove T2 è la handle function che rappresenta T_2 . Si indichi con $vstar_i$ l'approssimazione di v^* calcolata dalla function $vstar_i$ si calcoli l'errore stimato

$$EST_ERR = err(end)$$

e l'errore effettivamente commesso

TRUE ERR
$$=v^*$$
-vstar fix.

Scrivere nella sezione intitolata "2. Analisi numerica" del file

Soluzione_Progetto_3_Cognome_Codice_6cifre.pdf

il numero di iterazioni eseguite dalla function, e i valori di vstar_fix, EST_ERR e TRUE_ERR.

Analisi circuitale in regime dinamico (valutazione massima: 1/30)

Si consideri il circuito non lineare illustrato in Figura 1 nel quale al tempo t=0 gli interruttori a e c vengono chiusi e l'interruttore b viene aperto. Si ponga $C=10^{-3}\mathrm{F}$ e si definisca l'intervallo $I_T=(t_0,\,T_{final})$ con $t_0=0$ s e $T_{final}=0.6$ s. Sia:

$$i_S(t) = \begin{cases} 0 & t \in (t_0, t_1], \\ -\frac{i_{max}}{3} & t \in (t_1, t_2], \\ +i_{max} & t \in (t_2, t_3], \\ 0 & t \in (t_3, T_{final}], \end{cases}$$

dove $i_{max}=10^{-2}\mathrm{A}$ e $t_1=0.1\mathrm{s},\,t_2=0.3\mathrm{s}$ e $t_3=0.5\mathrm{s}.$ Indichiamo con:

$$v'(t) = f(t, v(t)) \qquad t \in I_T, \tag{3a}$$

$$v(t_0) = v^*, (3b)$$

il problema di Cauchy che rappresenta il modello matematico del circuito in regime dinamico.

1. voto: 0.5/30

Scrivere l'espressione di f(t, v(t)) nella sezione intitolata "1. Analisi dinamica" del file

Soluzione_Progetto_3_Cognome_Codice_6cifre.pdf.

2. voto: 0.5/30

Per l'approssimazione numerica di (3), si utilizzi il comando

$$[t, V] = theta_method(theta, t0, Tfinal, v0, NT, f, dfdv);$$

con theta=0.5, v0= v^* e NT=2000, e dove f e dfdv sono le handle functions che rappresentano f(t,v) e $\partial f/\partial v$, rispettivamente. Riportare nella sezione intitolata "1. Analisi dinamica" del file

Soluzione_Progetto_3_Cognome_Codice_6cifre.pdf

la figura con la soluzione V in funzione del tempo t (in colore magenta) sovrapposta all'asse y=0 (in colore blu) e il valore

$$\Delta V = \max_{t \in \mathbf{t}} \mathbf{V}(t) - \min_{t \in \mathbf{t}} \mathbf{V}(t).$$