2/10/2021 BrownianMotion

Machine Learning

MSE FTP MachLe Christoph Würsch

Brownian Motion

MSE FTP_MachLe HS2020

Christoph Würsch, Institute for Computational Engineering, ICE, OST

In probability theory and related fields, a stochastic or random process is a mathematical object usually defined as a family of random variables. Many stochastic processes can be represented by time series.

A stochastic process (also called random process) is the mathematical description of temporally ordered, random processes. The theory of stochastic processes represents a significant extension of probability theory and forms the basis for stochastic analysis.

Time series and discrete stochastic processes [1]

Let T be a set of equidistant time points $T = \{t_1, t_2, \ldots\}$.

- 1. A **discrete stoachstic process** is a set of random variables $\{X_1, X_2, \ldots\}$. Each single random variable X_i has a univariate distribution function F_i and can be observed at time t_i .
- 2. A **time series** $\{x_1, x_2, \ldots\}$ is a realization of a discrete stochastic process $\{X_1, X_2, \ldots\}$. In other words, the value x_i is a realization of the random variable X_i measured at time t_i .

[1] Time Series Analysis and Its Applications by Robert H. Shumway and David S. Stoffner, Springer 2011.

Example: The **Wiener process** W_t is characterised by the following properties:

- 1. $W_0 = 0$
- 2. W has independent increments: for every t>0, the future increments $W_{t+u}-W_t\geq 0$, are independent of the past values W_s , $s\leq t$
- 3. W has Gaussian increments: $W_{t+u}-W_t$ is normally distributed with mean 0 and variance u, $W_{t+u}-W_t\sim \mathcal{N}(0,u).$
- 4. W has continuous paths: W_t is continuous in t.

```
In [1]: import numpy as np
    import matplotlib.pyplot as plt
    %matplotlib inline
```

We simulate Brownian motions with 5000 time steps:

```
In [2]: n = 5000
```

2/10/2021 BrownianMotion

We simulate two independent one-dimensional Brownian processes to form a single two-dimensional Brownian process. The (discrete) Brownian motion makes independent Gaussian jumps at each time step. Therefore, we merely have to compute the cumulative sum of independent normal random variables (one for each time step):

```
In [3]:    x = np.cumsum(np.random.randn(n))
y = np.cumsum(np.random.randn(n))

In [4]:    with plt.xkcd():
        plt.figure(figsize=(8,6))
        t=np.arange(n)
        plt.plot(t,x)
        plt.grid(True)
        plt.xlabel('samples')
        plt.ylabel('share value ()')
```


Now, to display the Brownian motion, we could just use plot(x, y). However, the result would be monochromatic and a bit boring. We would like to use a gradient of color to illustrate the progression of the motion in time (the hue is a function of time). matplotlib does not support this feature natively, so we rather us scatter(). This function allows us to assign a different color to each point at the expense of dropping out line segments between points. To work around this issue, we linearly interpolate the process to give the illusion of a continuous line:

```
ax.axis('equal')
ax.set_axis_off()
```

2/10/2021


```
In [ ]:

In [ ]:
```