verilog 单周期 CPU 设计文档

一、设计与测试说明

- 1. 处理器应支持的指令集为: MIPS-lite2={ addu, subu, ori, lw, sw, beq, lui, j, jal, jr, nop }
- 2. 处理器为流水线设计。

二、数据通路设计

-40	_ A	D			L		G	THE STATE OF THE S		, ,	IN.	L	IVI	IN		Г Г	Ų
1		部件	输入		输入来源		addu	subu	ori	lui	lw	SW	beq	j	jal	jr	nop
2		PC															
3	F级功能部件	PC4		PC												PC	PC
4		IM		PC			PC[11:2]	PC[11:2]			PC[11:2]	PC[11:2]	PC[11:2]	PC[11:2]	PC[11:2]	PC[11:2]	PC[11:2]
5	D级更新PC	PC		ADD4						ADD4						ADD4	ADD4
6				IM			IM	IM	IM	IM	IM					IM	
7	D级流水线RG		PC_D										PC	PC		PC	
8			PC5_D	ADD4											PC4	PC4	
9				IR_D[25:21]						IR_D[25:21]	IR_D[25:21]	IR_D[25:21]	IR_D[25:21]			IR_D[25:21]	
10		KF	RA2	IR_D[20:16]			IR_D[20:16]	IR_D[20:16]					IR_D[20:16]				
11		EXT		IR_D[15:0]					IR_D[15:0]	IR_D[15:0]	IR_D[15:0]	IR_D[15:0]	IR_D[15:0]				
12 13 14	D级功能部件			IR_D									IR_D[15:0]	IR_D[25:0]	IR_D[25:1]		
13	D級列配部計		MFRSD_out	RF.RD1	AO_M	RegWD_W							MFRSD_ou	t		jr_addr	
14		NPC_C	MFRTD_out	RF.RD2	AO_M	RegWD_W							MFRTD_ou	t			
15			EXT_out	EXT_out									EXT_out				
15 16			PC_D	PC_D									PC_D	PC_D	PC_D		
17	E级更新PC	PC	NPC_C	NPC_C									NPC_C	NPC_C	NPC_C	NPC_C	
18		IR_E		IR_D			IR_D	IR_D	IR_D	IR_D	IR_D	IR_D			IR_D		
19	PC E		PC_D			PC_D	PC_D	PC_D	PC_D	PC_D	PC_D			PC_D			
20			PC4_D											PC4_D			
20 21 22 23		DR_RS_E		MFRSD_out			MFRSD_out	MFRSD_out	MFRSD_out	MFRSD_out	MFRSD_out	MFRSD_ou	t				
22		DR_RT_E		MFRTD_out			MFRTD_out					MFRTD_ou					
23		EXT_OUT		EXT_OUTD							EXT_OUTD						
24	E级功能部件	ALU		FWRSE_out			FWRSE_out	FWRSE_out	FWRSE_out	FWRSE_out	FWRSE_out	FWRSE_out	t				
25	E級切能部計	ALU		FWRTE_out	EXT_outE		FWRTE_out	FWRTE_out	EXT_outE	EXT_outE	EXT_outE	EXT_outE					
26		IR_M		IR_E			IR_E	IR_E	IR_E	IR_E	IR_E	IR_E			IR_E		
24 25 26 27		PC_M		PC_W			PC_W	PC_W	PC_W	PC_W	PC_W	PC_W					
28	M级流水线RG	PC4_M		PC4_E											PC4_E		
29		AO_M		ALU			ALU	ALU	ALU	ALU	ALU	ALU					
30		RT_M		FWRTE_out								FWRTE_out	t				
31		MFRTM		FWRTE_out	RegWD_W												
32	M级功能部件			PC_M								PC_M					
33	IVI级列能即IT	DM		AO_M								AO_M					
32 33 34 35 36			WD	RT_M								RT_M					
35		IR_W		IR_M			IR_M	IR_M	IR_M	IR_M	IR_M				IR_M		
36		PC_W		PC_M													
37	W级流水线RG	PC4_W		PC4_M											PC4_M		
38		AO_W		AO_M			AO_M	AO_M	AO_M	AO_M							
39		DR_W		DM							DM						
40	1A 16TZ TH 415 \$17 14	DE	RegWA	IR_W[15:11]	IR_W[20:16]		IR_W[15:11]				IR_W[20:16]				0x1F		
41		RegWD	AO W	DR W	PC/LW/	AO W	AO W	AO W	AO W	DR W				PC/LW/			

三、控制器设计

Controller 模块整体进行设计,输入指令,输出指令相应的信号。mips.v中进行模块实例化和连接时,在每个流水级分别输出该流水级需要的信号。STALL和 FORWARD 单独设计。

1. Controller 模块

CONTROLLER(INSTR, ALU_OP, ALU_Src, EXT_OP, RegDst, RegWrite, MemtoReg, b_pc, j_pc, NPC_sel, MemWrite, cal_r, cal_i, load, sto re, jal, jr);

其中 ALU_OP, RegWrite, MemWrite 等信号控制 ALU, GRF, DM 等功能部件的功能以及多选器对于输入数据和地址的选择。b_pc, j_pc, cal_r 等信号用于识别指令的类型。jal, jr 信号识别具体指令 jal, jr.

Table 1 指令对应信号值

	addu	subu	ori	SW	lw	lui	beq	j	jal	jr
IR[31:26]	000000	000000	001101	101011	100011	001111	000100	000010	000011	000000
IR[5:0]	100001	100011	X	X	X	X	X	X	X	001000
ALU_Src	0	0	1	1	1	1	X	X	X	X
ALU_OP	000	001	010	000	000	000	X	X	X	X
RegDst	01	01	00	X	00	00	X	X	10	XX
MemtoReg	00	00	00	XX	01	00	XX	XX	10	Xx
EXT_op	X	X	00	10	10	01	11	X	X	X
ALU_Src	00	00	01	01	01	01	XX	XX	XX	XX
NPC_sel	X	X	X	X	X	X	0	01	01	10
RegWrite	1	1	1	0	1	1	0	0	1	0
MemWrite	0	0	0	1	0	0	0	0	0	0
b_pc	0	0	0	0	0	0	1	0	0	0
j_pc	0	0	0	0	0	0	0	1	1	1
cal_i	0	0	1	1	1	1	0	0	0	0
cal_r	1	1	0	0	0	0	0	0	0	0
load	0	0	0	0	1	0	0	0	0	0
store	0	0	0	1	0	0	0	0	0	0
jal	0	0	0	0	0	0	0	0	1	0
jr	0	0	0	0	0	0	0	0	0	1

信号	含义	值	选择/功能	对应指令
		0	rt	lui, ori, lw
RegDst	选择写入寄存器的地址	1	rd	addu, subu
		2	\$31	jal
		0	Alllout	lui, ori, addu,
Marrit a Dani	上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上	0	ALU_out	subu
MemtoReg	选择写入寄存器的数据 	1	DM_RD	lw
		2	PC+4(PC+8)	jal
		0	加	addu, lw, sw, lui
ALU_OP	ALU 运算符	1	减	subu
		2	或	ori
ALLI Cue	选择输入 ALU_B 数据	0	RF_RD2	addu, subu
ALU_Src	选件制八 ALU_D 数据 	1	EXT_out	lui, ori, lw, sw
		0	zero_ext	ori
EVT OD	 	1	imm 移至高位	lui
EXT_OP	扩展符号 	2	sign_ext	lw, sw
		3	beq_ext	beq
		0	PC+4+EXT_out	beq
NPC_sel	选择 NPC	1	PC[31:28] IR[25:21] 00	jal, j
		2	RF_RD1	jr

2. STALL 模块

根据 Tnew 和 Tuse 分析需要暂停的情况, 暂停序列有:

- 1.
- 1. beg D(rs/rt)-cal rD(rd)/cal iD(rt)/loadE(rt)/loadM(rt)
- 2. cal_rD(rs/rt)-loadM(rt), cal_iD(rs)-loadE(rt)
- 3. loadD(rs)-loadE(rt)
- 4. storeD(rs)-loadE(rt)
- 5. jr_D(rs)-cal_rD(rd)/cal_iD(rt)/loadE(rt)/loadM(rt)

3. FORWARD 模块

直接根据流水级指令由分布式控制器输出的 RegWrite, RegDst, MemtoReg信号,再设置流水级多选器 RegWA_M 和 RegWA_W,输出流水级写寄存器地址 M_WA

和 W_WA. 根据寄存器写入地址和读地址来判断转发情况,避免转发多选器信号定义过于复杂。

Table 3 转发信号

转发信号	取值	条件	数据
	0	else	RF_RD1
FWRSD	1	RegWriteM && M_WA!=0 && D_rs==M_WA	AO_M
	2	RegWriteW && W_WA!=0 && D_rs==W_WA	RegWD_W
	0	else	RF_RD2
FWRTD	1	RegWriteM && M_WA!=0 && D_rt==M_WA	AO_M
	2	RegWriteW && W_WA!=0 && D_rt==W_WA	RegWD_W
	0	else	RS_E
FWRSE	1	RegWriteM && M_WA!=0 && E_rs==M_WA	AO_M
	2	RegWriteW && W_WA!=0 && E_rs==W_WA	RegWD_W
	0	else	RT_E
FWRTE	1	RegWriteM && M_WA!=0 && E_rt==M_WA	AO_M
	2	RegWriteW && W_WA!=0 && E_rt==W_WA	RegWD_W
EWDTM	0	else	RT_M
FWRTM	1	loadW && W_WA!=0 && M_rt==W_WA	RegWD_W

除了 ID 级需要用到寄存器数据的 beq, jr 指令,对于下一级需要用到寄存器值的指令比如 cal_r 也进行了转发,再将转发的结果传入流水线寄存器作为 RF RD1 和 RF RD2. 此处考虑到以下特殊的几点:

- 1. loadM 且与 D 级指令数据冲突,以 cal_rD 为例,转发到 ID 的数据为 AO_M,并不符合 cal_r 读寄存器的要求,但当 cal_r 到达 E 级时,对于 ALU_A 和 ALU_B 会进行重新选择,发生冲突的寄存器转发信号为 2,实际参加运算的数据为将要写入寄存器的数据。
- 2. 在一些满足暂停条件的情况下也满足转发条件,但因 pc_en 的优先级较高,并不会以错误的转发数据进行运算,不影响最终结果。以 jr_D 和 loadM 且数据冲突为例,转发到 ID 的 RF_RD1 的数据为 AO_M,但此时满足了暂停条件,暂停条件的优先级较高,PC 停止计数,下一时钟周期 jr_D && loadW,转发到 ID 的数据为 RegWD_W.
- 3. FWRTM 写寄存器只考虑 loadW, 因为其他写寄存器的指令都在前一时钟周期 经 ALU 得出了结果, 且转发至 EX 做为 RF_RD2E. 之后在下一时钟周期存入 M 流水级寄存器。

四、测试程序

Table 4 addu 冲突测试

対方性 対方					rable 4 addu /4	· 入///ill/
r-M-rs subu rs addu \$4, \$1, \$2	测试类型		寄存	测试序列	实际结果	初始化
r-M-rs subu rt subu s5, s6, s7 470@0000304c:\$5 <= ffff0000 lui \$3,3				subu \$1, \$2, \$3	430@00003044: \$ 1 <= ffff0000	lui \$1,1
r-M-rs Subu rt addu \$8, \$6, \$5 490@00003050:\$8 <= 00050000 lui \$4,4 r-W-rs Subu rs lui \$12 l 530@00003050:\$12 <= 00010000 lui \$5,5 r-W-rs Subu rs lui \$12 l 530@00003050:\$13 <= 00090000 lui \$7,7 subu \$13, \$9, \$10 550@00003050:\$13 <= 00090000 lui \$7,7 subu \$14, \$15, \$16 570@00003060:\$14 <= ffff0000 lui \$9,9 addu \$17, \$15, \$14 610@0003068:\$17 <= 00010000 lui \$9,9 addu \$17, \$15, \$14 610@0003068:\$17 <= 00010000 lui \$10,10 i-M-rs ori rs ori \$1, \$2, 1 630@0003070:\$4 <= 00040001 lui \$12,12 ori \$5, \$6, 1 670@0003070:\$4 <= 00040001 lui \$13,13 addu \$7, \$6, \$5 690@0003070:\$4 <= 00040001 lui \$13,13 addu \$7, \$6, \$5 690@0003070:\$3 <= 00050001 lui \$14,14 ori \$3, \$8, 1 710@00003070:\$3 <= 00050001 lui \$15,15 lui \$9, 9 730@0003080:\$9 <= 00090000 lui \$17,17 i-W-rs ori rt lui \$9, 10 790@0003088:\$11 <= 00050002 i-W-rs lw rs lw rs lw \$6,0(\$1) 270@0003028:\$6 <= 00040000 lui \$3,3 ld-W-rt lw rt lw \$8,4(\$1) 330@0003020:\$8 <= 00040000 lui \$5,5 lui \$17,77 addu \$9,7,\$8 370@0003030:\$11 <= 00050000 lui \$7,7 addu \$9,7,\$8 370@0003030:\$11 <= 00050000 lui \$7,7 addu \$1,\$17,17 410@0000303:\$11 <= 00050000 sw \$3,0(\$0) addu \$10,\$7,7 addu \$1,\$7,77 addu \$1,\$7,77 addu \$1,\$7,\$7 addu \$1,\$7,\$7	r-M-rs	subu	rs	addu \$4, \$1, \$2	450@00003048: \$ 4 <= 00010000	lui \$2,2
r-W-rs subu rs subu s9, \$10, \$11		. 1.		subu \$5, \$6, \$7	470@0000304c: \$ 5 <= ffff0000	lui \$3,3
Temporary Temp	r-IVI-rs	subu	rt	addu \$8, \$6, \$5	490@00003050: \$ 8 <= 00050000	lui \$4,4
addu \$13, \$9, \$10 550@0000305c:\$13 <= 00090000 lui \$7,7				subu \$9, \$10, \$11	510@00003054: \$ 9 <= ffff0000	lui \$5,5
r-W-rt subu rt subu subu subu subu subu rt subu rt subu rt subu subu rt subu subu rt subu rt subu subu subu subu subu subu subu sub	r-W-rs	subu	rs	lui \$12 1	530@00003058: \$12 <= 00010000	lui \$6,6
r-W-rt subu rt				addu \$13, \$9, \$10	550@0000305c: \$13 <= 00090000	lui \$7 , 7
addu \$17,\$15,\$14 610@0003068:\$17 <= 000e0000				subu \$14, \$15, \$16	570@00003060: \$14 <= ffff0000	lui \$8,8
i-M-rs ori rs	r-W-rt	subu	rt	lui \$17 1	590@00003064: \$17 <= 00010000	lui \$9 , 9
i-M-rs ori rs addu \$4, \$1, \$2 650@00003070: \$4 <= 00040001 lui \$12,12 i-M-rt ori rt				addu \$17,\$15,\$14	610@00003068: \$17 <= 000e0000	lui \$10,10
i-M-rt ori rt ori s5, \$6, 1 670@00003070; \$4 <= 00040001 lui \$12, 12 ori \$5, \$6, 1 670@00003074; \$5 <= 00060001 lui \$13, 13 addu \$7, \$6, \$5 690@00003078; \$7 <= 00000001 lui \$14, 14 ori \$3, \$8, 1 710@0000307c; \$3 <= 00050001 lui \$15, 15 lui \$9, 9 730@00003080; \$9 <= 00090000 lui \$16, 16 addu \$10, \$3, \$8 750@00003084; \$10 <= 000a0001 lui \$17, 17 ori \$11, \$8, 2 770@00003088; \$11 <= 00050002 lui \$9, 10 790@0000308c; \$9 <= 00000000 addu \$10, \$11, \$8 810@0000309c; \$10 <= 000a0002 ld-W-rs lw rs	: 11	o ri		ori \$1, \$2, 1	630@0000306c: \$ 1 <= 00020001	lui \$11,11
Industrian Ind	1-101-15	OH	15	addu \$4, \$1, \$2	650@00003070: \$ 4 <= 00040001	lui \$12,12
i-W-rs ori rs	: \ \ \ \+	ori	rt	ori \$5, \$6, 1	670@00003074: \$ 5 <= 00060001	lui \$13,13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1-1VI-1L	On		addu \$7, \$6, \$5	690@00003078: \$ 7 <= 000c0001	lui \$14,14
addu \$10, \$3, \$8 750@00003084: \$10 <= 000a0001 lui \$17,17 ori \$11, \$8, 2 770@00003088: \$11 <= 00050002 lui \$9, 10 790@00003080: \$9 <= 000a0000 addu \$10, \$11, \$8 810@00003090: \$10 <= 000a0002 lui \$9, 10 270@00003090: \$10 <= 000a0000 addu \$10, \$11, \$8 810@00003090: \$10 <= 000a0000 lui \$2,1 addu \$6,\$6,\$2 310@00003028: \$6 <= 00040000 lui \$3,3 lui \$1,4 addu \$9,\$7,\$8 370@00003020: \$8 <= 00040000 lui \$4,4 addu \$9,\$7,\$8 370@00003030: \$9 <= 000b0000 lui \$5,5 lui \$17,17 410@00003034: \$10 <= 00050000 lui \$7,7 addu \$11,\$10,\$7 430@00003030: \$11 <= 00010000 sw \$3,0(\$0) addu \$11,\$10,\$7 450@00003040: \$12 <= 00030000 sw \$5,8(\$0) lui \$17,18 470@00003044: \$17 <= 00120000 sw \$2,12(\$0)		ori		ori \$3, \$8, 1	710@0000307c: \$ 3 <= 00050001	lui \$15,15
i-W-rs ori rt ori \$11, \$8, 2	i-W-rs		rs	lui \$9, 9	730@00003080: \$ 9 <= 00090000	lui \$16,16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				addu \$10, \$3, \$8	750@00003084: \$10 <= 000a0001	lui \$17,17
				ori \$11, \$8, 2	770@00003088: \$11 <= 00050002	
	i-W-rs	ori	rt	lui \$9, 10	790@0000308c: \$ 9 <= 000a0000	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				addu \$10, \$11, \$8	810@00003090: \$10 <= 000a0002	
	ld M/ ro	l		lw \$6,0(\$1)	270@00003024: \$ 6 <= 00030000	lui \$2,1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10-77-18	IW	15	addu \$6,\$6,\$2	310@00003028: \$ 6 <= 00040000	lui \$3,3
Id-M-rs Iw Iw Iw Iw Iw Iw Iw I	Id M. dt	l	ret.	lw \$8,4(\$1)	330@0000302c: \$ 8 <= 00040000	lui \$4,4
Id-M-rs Iw rs lui \$17,17 410@00003038: \$17 <= 00110000 sw \$3,0(\$0) addu \$11,\$10,\$7 430@0000303c: \$11 <= 000c0000	IG-VV-IL	IW	I IL	addu \$9,\$7,\$8	370@00003030: \$ 9 <= 000b0000	lui \$5,5
addu \$11,\$10,\$7 430@0000303c: \$11 <= 000c0000 sw \$4,4(\$0)				lw \$10,8(\$1)	390@00003034: \$10 <= 00050000	lui \$7,7
Id-M-rt Iw \$12,0(\$1) 450@00003040: \$12 <= 00030000	ld-M-rs	lw	rs	lui \$17,17	410@00003038: \$17 <= 00110000	sw \$3,0(\$0)
ld-M-rt lw				addu \$11,\$10,\$7	430@0000303c: \$11 <= 000c0000	sw \$4,4(\$0)
				lw \$12,0(\$1)	450@00003040: \$12 <= 00030000	sw \$5,8(\$0)
addu \$13,\$7,\$12 490@00003048:\$13 <= 000a0000	ld-M-rt	lw	rt	lui \$17,18	470@00003044: \$17 <= 00120000	sw \$2,12(\$0)
				addu \$13,\$7,\$12	490@00003048: \$13 <= 000a0000	

Table 5 ori 冲突测试

测试类 型	前序指令	冲突 寄存 器	测试序列	实际结果	初始化		
i-M-rs	ori	rs	ori \$2,\$1,1	250@00003020: \$ 2 <= 00010001	lui \$1,1		
1-101-15	OH	13	ori \$3,\$2,1300	270@00003024: \$ 3 <= 00010515	lui \$2,2		
			ori \$4,\$5,100	290@00003028: \$ 4 <= 00050064	lui \$3,3		
i-W-rs	ori	rs	lui \$9,9	310@0000302c: \$ 9 <= 00090000	lui \$4,4		
			ori \$5,\$6,0x1ff	330@00003030: \$ 5 <= 000601ff	lui \$5,5		
r-M-rs	addu	ro	addu \$1,\$6,\$2	350@00003034: \$ 1 <= 00070001	lui \$6,6		
1-101-15	addu	rs	ori \$7,\$1,0xfff	370@00003038: \$ 7 <= 00070fff	lui \$7 , 7		
	subu	rs	subu \$2,\$3,\$1	390@0000303c: \$ 2 <= fffa0514	lui \$8,8		
r-W-rs			rs	rs	lui \$9,10	410@00003040: \$ 9 <= 000a0000	
			ori \$4,\$9,0xfff	430@00003044: \$ 4 <= 000a0fff	lui \$2,1		
ld-M-rs	lw	ro	lw \$6,0(\$1)	270@00003024: \$ 6 <= 00030000	lui \$3,3		
10-101-15	IVV	rs	ori \$6,\$6,0xf	310@00003028: \$ 6 <= 0003000f	lui \$4,4		
			lw \$10,8(\$1)	330@0000302c: \$10 <= 00050000	lui \$5,5		
ld-W-rs	lw	rs	lui \$17,17	350@00003030: \$17 <= 00110000	lui \$7 , 7		
			ori \$11,\$10,0xff	370@00003034: \$11 <= 000500ff	sw \$3,0(\$0)		
					sw \$4,4(\$0)		
					sw \$5,8(\$0)		
					sw \$2,12(\$0)		

Table 6 lw 冲突测试

测试类型	前序 指令	冲突寄 存器	测试序列	实际结果	初始化
i-M-rs	ori	rs	ori \$1,\$0,4	310@0000302c: \$ 1 <= 00000004	lui \$1,1
1-101-15	ori	15	lw \$2,0(\$1)	330@00003030: \$ 2 <= 00020000	lui \$2,2
r M ro	addu	r0	addu \$2,\$0,\$0	350@00003034: \$ 2 <= 00000000	lui \$3,3
r-M-rs	addu	rs	lw \$3,4(\$2)	370@00003038: \$ 3 <= 00020000	lui \$4,4
			ori \$3,\$0,0	390@0000303c: \$ 3 <= 00000000	lui \$5,5
i-W-rs	ori	rs	lui \$8,8	410@00003040: \$ 8 <= 00080000	lui \$6,6
			lw \$7,8(\$3)	430@00003044: \$ 7 <= 00030000	lui \$7 , 7
	subu		subu \$5,\$4,\$4	450@00003048: \$ 5 <= 00000000	sw \$1,0(\$0)
r-W-rs		rs	lui \$9,9	470@0000304c: \$ 9 <= 00090000	sw \$2,4(\$0)
			lw \$9,12(\$5)	490@00003050: \$ 9 <= 00040000	sw \$3,8(\$0)
					sw \$4,12(\$0)
har Maro	hu	r0	lw \$5,12(\$0)	130@00003008: \$ 5 <= 00000000	lui \$5,5
lw-M-rs	lw	rs	sw \$7,0(\$5)	170@0000300c: \$ 6 <= 00000000	lui \$7 , 7
			lw \$6,12(\$0)	190@00003010: \$ 7 <= 00000000	
ld-W-rs	lw	rs	lui \$7,7	210@00003014: \$ 8 <= 00080000	
			sw \$2,0(\$6)	230@00003018: \$ 9 <= 00000000	

Table 7 sw 冲突测试

				Table / SW 冲突》	C) MC
测试类型	前序指令	冲突 寄存 器	测试序列	实际结果	初始化
i-M-rs	ori	rs	ori \$1,\$0,4	90@0003000: \$ 2 <= 00010000	lui \$2,1
1-101-15	OH	15	sw \$2,0(\$1)	110@00003004: \$ 3 <= 00030000	lui \$3,3
r-M-rs	addu	rs	addu \$2,\$0,\$1	130@00003008: \$ 4 <= 00040000	lui \$4,4
1-101-15	audu	15	sw \$3,0(\$2)	150@0000300c: \$ 5 <= 00050000	lui \$5,5
			ori \$3,\$0,0	170@00003010: \$ 7 <= 00070000	lui \$7,7
i-W-rs	ori	rs	lui \$8,8	190@00003014: \$ 1 <= 00000004	
			sw \$7,0(\$3)	190@00003018: *00000004 <= 00010000	
	subu		subu \$5,\$4,\$4	230@0000301c: \$ 2 <= 00000004	
r-W-rs		rs	lui \$9,9	230@00003020: *00000004 <= 00030000	
			sw \$9,4(\$5)	270@00003024: \$ 3 <= 00000000	
i-M-rt	ori addu	r+	ori \$7,\$6,0xff	290@00003028: \$ 8 <= 00080000	
1-101-11		rt	sw \$7,4(\$0)	290@0000302c: *00000000 <= 00070000	
r 11 rt		rt	addu \$5,\$4,\$6	330@00003030: \$ 5 <= 00000000	
r-M-rt			sw \$5,0(\$0)	350@00003034: \$ 9 <= 00090000	
ld-M-rs	haz	ro	lw \$5,12(\$0)	270@00003024: \$ 5 <= 00000004	ori \$1,\$0,1
10-101-15	lw	rs	sw \$7,0(\$5)	290@00003028: *00000004 <= 00070000	ori \$2,\$0,2
			lw \$6,12(\$0)	330@0000302c: \$ 6 <= 00000004	ori \$3,\$0,3
ld-W-rs	lw	rs	lui \$7,7	350@00003030: \$ 7 <= 00070000	ori \$4,\$0,4
			sw \$2,0(\$6)	350@00003034: *00000004 <= 00000002	lui \$7,7
lw-M-rt	haz	rt	lw \$9,8(\$0)	390@00003038: \$ 9 <= 00000003	sw \$1,0(\$0)
100-101-11	lw	rt	sw \$9,12(\$0)	390@0000303c: *0000000c <= 00000003	sw \$2,4(\$0)
			lw \$8,0(\$0)	430@00003040: \$ 8 <= 00000001	sw \$3,8(\$0)
lw-W-rt	lw	rt	lui \$9,9	450@00003044: \$ 9 <= 00090000	sw \$4,12(\$0)
			sw \$8,4(\$0)	450@00003048: *00000004 <= 00000001	

Table 8 beq 冲突测试-1

测试类型	前序指令	冲突 寄存 器	测试序列	实际结果	测试代码	
i-E-rs	ori	rs	ori \$2,\$1,0	跳	label0:	label6:
			beq \$2,\$1,label1	转	lui \$1,1	ori \$7,\$1,0
r-E-rs	addu	rs	addu \$4,\$1,\$0	跳	ori \$2,\$1,0	nop
			beq \$4,\$1,label2	转	beq \$2,\$1,label1	beq \$1,\$7,label7
			ori \$3,\$1,0	跳	nop	nop
i-M-rs	ori	rs	nop	转	label2:	label8:
			beq \$3,\$1,label3		ori \$3,\$1,0	lw \$7,0(\$0)
			subu \$4,\$1,\$3	跳转	nop	beq \$7,\$0,label9
r-M-rs	subu	rs	nop		beq \$3,\$1,label3	nop
			beq \$4,\$0,label4	11	nop	label7:
i-E-rt	ori	i rt	ori \$4,\$1,0	跳转	label1:	addu \$8,\$1,\$0
1 L 10	011		beq \$1,\$4,label5		addu \$4,\$1,\$0	nop
r-E-rt	addu	rt	addu \$5,\$1,\$0	跳	beq \$4,\$1,label2	beq \$1,\$8,label8
1-L-1(addu		beq \$1,\$5,label6	转	nop	nop
	ori	rt	ori \$7,\$1,0	跳转	label3:	label9:
i-M-rt			nop		subu \$4,\$1,\$3	lw \$8,0(\$0)
			beq \$1,\$7,label7	そさ	nop	beq \$0,\$8,label10
			addu \$8,\$1,\$0	跳	beq \$4,\$0,label4	nop
r-M-rt	addu	rt	nop	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	nop	label11:
			beq \$1,\$8,label8	牧	label5:	lw \$4,0(\$0)
l F	1		lw \$7,0(\$0)	跳	addu \$5,\$1,\$0	nop
lw-E-rs	lw	rs	beq \$7,\$0,label9	转	beq \$1,\$5,label6	beq \$0,\$4,label12
	,	-1	lw \$8,0(\$0)	跳	nop	nop
lw-E-rt	lw	rt	beq \$0,\$8,label10	转	label4:	label10:
			lw \$5,0(\$0)		ori \$4,\$1,0	lw \$5,0(\$0)
lw-M-rs	lw	rs	nop	跳	beq \$1,\$4,label5	nop
			beq \$5,\$0,label11	转	nop	beq \$5,\$0,label11
			lw \$4,0(\$0)	DIP.		nop
lw-M-rt	lw	rt	nop	跳		label12:
			beq \$0,\$4,label12	转		lui \$12,12

Table 9 beq 冲突测试-2

				J (1)/13/2-0 _		
测试类型	前序 指令	冲突寄 存器	测试序列	实际结果		
			ori \$2,\$1,0			
		rs	nop			
i-W-rs	ori		nop	跳转正确		
			beq \$2,\$1,label1			
			addu \$3,\$0,\$1			
			nop	ᇝ		
r-W-rs	addu	rs	nop	· 跳转正确		
			beq \$3,\$1,label2			
			lw \$4,0(\$0)			
l \ \ /	1	rs	nop	· 跳转正确 -		
lw-W-rs	lw		nop			
			beq \$4,\$1,label3			
		rt				
: \\/ ==	:		nop	· 跳转正确		
i-W-rs	ori		nop			
			beq \$1,\$5,label4			
			lw \$7,4(\$0)			
r-W-rs	addu	rt	nop	· 跳转正确		
1-00-15	addu	11	nop	政67721119円		
			beq \$1,\$7,end			
			subu \$6,\$1,\$0			
lw-W-rs	lvaz	rt	nop	跳转正确		
100-00-12	lw	rt	nop	一吹牧业明		
			beq \$1,\$6,label5			

测试程序:

lui \$1,1
ori \$2,\$1,0

nop nop

пор

beq \$2,\$1,label1

nop

label2:

sw \$1,0(\$0)

lw \$4,0(\$0)

nop

nop

beq \$4,\$1,label3

nop

label1:

addu \$3,\$0,\$1

nop

nop

beq \$3,\$1,label2

nop

label3:

ori \$5,\$1,0

nop

nop

beq \$1,\$5,label4

nop

label5:

sw \$1,4(\$0)

lw \$7,4(\$0)

nop

nop

beq \$1,\$7,end

nop

label4:

subu \$6,\$1,\$0

nop

nop

beq \$1,\$6,label5

nop

end:

lui \$8,8

Table 10 jr 冲突测试

测试类型	前序指令	冲突寄存器	测试序列	实际结果	
			ori \$4,\$31,0	跳转	
i-E-rs	ori	rs	jr \$4	正确	
			addu \$5,\$31,\$0	跳转	
r-E-rs	addu	rs	jr \$5	正确	
			ori \$6,\$31,0	DJI/ ++	
i-M-rs	ori	rs	nop	跳转	
			jr \$6	正确	
			subu \$12,\$31,\$0	跳转 正确	
r-M-rs	subu	rs	nop		
			jr \$12	止佣	
lw-E-rs	bar	rc	lw \$7,0(\$0)	跳转	
IW-E-IS	lw	rs	jr \$7	正确	
			lw \$8,4(\$0)	跳转	
lw-M-rs	lw	rs	nop	正确	
			jr \$8		
			ori \$9,\$31,0		
i-W-rs	ori	rs	nop	跳转	
1-00-13	OII	13	nop	正确	
			jr \$9		
			subu \$10,\$31,\$0		
r-W-rs	addu	rs	nop	跳转	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	addu	13	nop	正确	
			jr \$10		
			lw \$11,8(\$0)		
lw-W-rs	lw	rs	nop	跳转	
100 00 13	1 7 7		nop	正确	
			jr \$11		

label8:
sw \$31,8(\$0)
lw \$11,8(\$0)
nop
nop
jr \$11
nop
end:
ori \$31,\$0,0

lui \$1,1
lui \$2,2
lui \$3,3
lui \$4,4
jal label1
nop
addu
\$2,\$1,\$0
jal label2
nop
addu
\$3,\$2,\$1
jal label3
nop
ori
\$4,\$0,100
71,70,100
jal label31
nop
ori \$18,1
jal label4
nop
lui \$5,5
jal label5
nop
lui \$6,6
jal label6
nop
lui \$7,7
jal label7
nop
lui \$8,8
jal label8
nop
lui \$9,9
j end
,
label1:
ori

label2: addu \$5,\$31,\$0 jr \$5 nop label3: ori \$6,\$31,0 nop jr \$6 nop label31: subu \$12,\$31,\$0 nop jr \$12 nop label4: sw \$31,0(\$0) lw \$7,0(\$0) jr \$7 nop label5: sw \$31,4(\$0) lw \$8,4(\$0) nop jr \$8 nop label6: ori \$9,\$31,0 nop nop jr \$9 nop label7: subu \$10,\$31,\$0 nop nop jr \$10 nop

五、 思考题

1. 在本实验中你遇到了哪些不同指令组合产生的冲突?你又是如何解决的?相 应的测试样例是什么样的?请有条理的罗列出来。(**非常重要**)