数据整合和数据清洗

发现数据问题类型

- 脏数据或数据不正确
 - 比如 '0' 代表真实的0, 还是代表缺失; Age = -2003
- 数据不一致
 - 比如收入单位是万元,利润单位是元,或者一个单位是美元,一个是人民币
- 数据重复
 - 这个问题在前面已经解决
- 缺失值
- 离群值

数据探索识别噪声

- 利用图形可以直观快速地对数据进行初步分析:
 - 直方图、饼图、条形图、折线图、散点图等

5.6 错误值处理

识别错误方法

通过图形进行探索

发现错误值只能通过描述性统 计的方法,逐一核实每个变量 是否有问题,比如'0'代表真实 的0,还是代表缺失?

外呼营销数据

(teleco_camp_orig)的当地人 均收入(AvgIncome),出现了 大量0值,我们有理由怀疑是错 误值。可以使用缺失值替代, 然后再用缺失值填补的方法处 理。

处理错误值

- 修正
 - 补充正确信息
 - 对照其他信息源
 - 视为空值
- 删除
 - 删除记录
 - 删除字段

5.6 缺失值处理

发现缺失值

Class	Age	Gender	HomeOwner	AvgARPU	AvgHomeValue	AvgIncome
4	79	M	Н	49.894904	33400	39460
3	71	M	Н	48.574742	37600	33545
1	79	F	Н	49.272646	100400	42091
1	63	F	Н	47.334953	39900	39313
1	NaN	F	U	47.827404	47500	NaN
2	81	M	U	48.673449	53000	49487
2	NaN	F	U	48.560389	91000	NaN
3	69	F	Н	49.644237	66300	49047

处理原则

首选基于业务的填补方法,其次根据单变量分析进行填补,多重插补进行所有变量统一填补的方法只有在粗略清洗时才会使用。

- 缺失值少于20%
 - 连续变量使用均值或中位数填补。
 - 分类变量不需要填补,单算一类即可,或者用众数填补
- 缺失值在20%-50%
 - 填补方法同上
 - 另外每个有缺失值的变量生成一个指示哑变量,参与后续的建模
- 缺失值在大于50%
 - 每个有缺失值的变量生成一个指示哑变量,参与后续的建模,原始变量不使用。

填补 + 指示变量

Median = 30

处理缺失值例

1	3 3 3 2	郊区 市区 市区	1232 522 _{可填} " 845 ^{并增加} 变	
↓ 45	3		845 并增加 变	
	_	市区	X	口指示 量 1
1	2		7	dia
			- 1321	1
0 15	2	市区	611	0
1 22	0		967	1
1 25	1	郊区	662	0
		市区	19710	11111
0 27		市区	996	1 分类建 聚类是
0 30	73	郊区	422	2 2
	3		776	
	0 30 0 18	0 30 3	0 30 郊区	0 30 郊区 422 0 18 3 776

5.7 异常(离群)值处理

单变量离群值发现

单变量离群值发现

- 极端值
 - 设置标准,如:5倍标准差之外的数据
 - 极值有时意味着错误,应重新理解数据,例如:特殊用户的超大额消费
- 离群值
 - 平均值法:平均值±n倍标准差之外的数据 建议的临界值:
 - |SR| > 2 , 用于观察值较少的数据集
 - |SR| > 3 , 用于观察值较多的数据集
 - 四分位数法:
 - IQR = Q3 Q1
 - Q1 1.5 × IQR ~ Q3 + 1.5 × IQR
- * 更适用于对称分布的数据

盖帽法处理

分箱法

- 分箱方法通过考察数据的"近邻"来光滑有序数据的值。 有序值分布到一些桶或箱中。
- 等深分箱: 每个分箱中的样本量一致;
- 等宽分箱: 每个分箱中的取值范围一致。

比如价格排序后数据: 4,8,15,21,21,24,25,28,34

划分为(等深)箱:

•箱1: 4,8,15

•箱2: 21, 21, 24

• 箱3: 25, 28, 34

划分为(等宽)箱:

•箱1:4,8

•箱2: 15, 21, 21, 24

•箱3: 25, 28, 34