Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Методы анализа и настройки гибридных алгоритмов недоминирующей сортировки

Маркина М. А., Буздалов М. В.

VII Конгресс молодых ученых 18 апреля 2018 г.

Введение

- Точка $A = (a_1, ..., a_M)$ доминирует точку $B = (b_1, ..., b_M)$, когда $\forall \ 1 \leq i \leq M : a_i \leq b_i$ и $\exists j : a_i < b_i$.
- Недоминирующая сортировка множества точек S в M-мерном пространстве это процедура, назначающая всем точкам из S ранг.
- Все точки, которые не доминируются ни одной точкой из S, имеют ранг 0.
- Точка имеет ранг i+1, если максимальный ранг среди доминирующих её точек равен i.

Введение

На рисунке 3 фронта: $\{a,b,c,d\}$ имеет ранг 0, $\{e,f\}$ - ранг 1, $\{g,h,i\}$ - ранг 2.

Актуальность

- Многокритериальные эволюционные алгоритмы.
- Алгоритм востребован в промышленных задачах.

Цель исследования

- Выбрать наиболее подходящие алгоритмы.
- Приспособить их для гибридизации.
- Разработать гибридный алгоритм.
- Настроить параметры гибридизации.

Divide and Conquer + ENS-NDT

- Divide and Conquer. M. Buzdalov, A. Shalyto. A Provably Asymptotically Fast Version of the Generalized Jensen Algorithm for Non-Dominated Sorting. (2014)
- ENS-NDT. P. Gustavsson, A. Syberfeldt. A new algorithm using the non-dominated tree to improve non-dominated sorting. (2017)

Divide and Conquer

- Разделяй и властвуй по N и M:
 - На каждом этапе делим на 3 множества по k_i критерию текущее множество точек.
 - Если все k_i в одном из подмножеств равны между собой, переходим к k_{i-1} .
 - Запускаемся рекурсивно.

ENS-NDT

- Для каждого ранга поддерживается отдельное дерево.
- Перебираем точки в лексикографическом порядке:
 - Определяем ранг по текущему набору деревьев.
 - Добавляем точку в соответствующее рангу дерево.

ENS-NDT-ONE

- Адаптация алгоритма ENS-NDT
 - Структура будет состоять из единственного дерева.
 - В узлах дерева будет содержаться максимальный ранг на поддереве.
 - Оптимизация на этапе определения ранга точки.

Асимптотика

- Divide and Conquer $O(N \log^{M-1} N)$.
- ENS-NDT
 - $O(N^{1.43})$ для случано сгенерированных точек в гиперкубе.
 - В худшем случае $O(MN^2)$.
- ENS-NDT-ONE
 - $O(MN^{1.58})$ для случано сгенерированных точек в гиперкубе.
 - В худшем случае $O(MN^2)$.

Гибридизация

- Запускаем алгоритм Divide and Conquer, согласно некоторыем правилам переключаемся на алгоритм ENS-NDT-ONE.
- Моменты смены алгоритма:
 - HelperA
 - ullet Входные данные: множество точек S с предварительными рангами.
 - Результат выполнения: множество точек S с обновленными рангами.
 - HelperB
 - Входные данные: множество точек L с окончательными рангами и R с предварительными рангами.
 - Результат выполнения: множество точек R с обновленными рангами по множеству L.

Настройка параметров гибридного алгоритма

- Параметры гибридного алгоритма определяют максимальные размеры множеств точек для каждой размерности, при котором алгоритм Divide and Conquer переключается на алгоритм ENS-NDT-ONE.
- Параметры основаны на экспериментальных исследованиях скорости работы и являются константами.

Обоснование эффективности гибридного алгоритма

- Экспериментально получено, что для эффективной работы гибридного алгоритма размер точек в момент переключения на алгоритм ENS-NDT-ONE не должен привышать $10^4 2 \cdot 10^4$.
- Таким образом, худший случай для алгоритма ENS-NDT-ONE с асимптотикой $O(MN^2)$ незначительно влияет на асимптотику гибридного алгоритма.

Результат

Сравнение скоростей

Ν	Μ	D&C		ENS-NDT		ENS-NDT-ONE		Hybrid	
		cube	plane	cube	plane	cube	plane	cube	plane
10 ⁶	3	2.82	1.60	5.25	1.61	4.25	1.65	2.63	1.50
10 ⁶	5	45.2	33.0	26.3	5.22	18.2	5.82	17.2	12.8
10 ⁶	7	191.5	120.2	55.4	19.4	46.1	18.9	26.8	20.1
10 ⁶	10	478.8	228.6	84.8	48.1	104.8	55.0	41.0	33.0
10 ⁶	15	587.9	337.5	135.4	76.3	206.8	85.4	64.5	46.0

Результат

Выводы

- Гибридный алгоритм быстрее обоих родительских алгоритмов.
- Нам неизвестны публикации результатов сортировки множеств точек размером 10⁶ большой размерности с приемлемым временем выполнения.
- Алгоритм адаптирован для многопоточного выполнения, ускорение составляет до 1.8 на двух потоках и до трех раз на восьми потоках.
- По результатом этой работы была подготовлена для публикации статья на конференцию на PPSN 2018, и мы ждем рецензий.

Спасибо за внимание!