Modeling the cumulative incidence function of clustered competing risk data

Henrique Ap. Laureano

Wagner H. Bonat

http://leg.ufpr.br/~henrique|http://leg.ufpr.br/~wagner

Clustered competing risk data

- » Clusters: a dependence structure
- » Causes competing by something

Something?

- » Failure of an industrial or electronic component
- » Occurence or cure of a disease
- » Progress of a patient clinic state

A typical data set consists of

Cluster	ID	Cause 1	Cause 2	Censorship	Time
1	1	Yes	No	No	10
1	2	No	No	Yes	8
2	1	No	No	Yes	7
2	2	No	Yes	No	5

What we do?

We model the probability of each competing cause along the time and taking into account the possible within-cluster dependence

... all this in terms of a

Main focus application: cancer incidence in twins

Clustered competing risks data
Ly Clusters? Families
Ly Family studies
Ly Twins data

- » The within-family dependence may reflect
 - » disease heritability
 - » the impact of shared environmental effects

Challenges

- We have little information to track that dependence since each family consists of only a pair of twins
- » The data is very simple, we just know if the event occured (yes or no)
- With this, we have to be able to construct the cumulative incidence curves
- And we have to accommodate the within-family dependence, that can happen in different manners

Thank you

http://leg.ufpr.br/~henrique

@hap_laureano

