Тригонометрическая запись комплексного числа

Определение. Каждое комплексное число можно однозначно представить в виде $r(\cos\varphi+i\sin\varphi)$, причем r определяется единственным образом, а φ — с точностью до кратного 2π (если число не равно нулю). Число r называется modynem (и обозначается |z|), φ — apsymenmom комплексного числа, а сама форма называется mpusonomempuveckoù записью комплексного числа.

Упр. Представьте в тригонометрической форме числа $2, 1+i, 1-\sqrt{3}i$.

- **1.** (а) Докажите, что $|zt| = |z| \cdot |t|$ для любых $z, t \in \mathbb{C}$.
 - (b) Докажите, что если два натуральных числа представляются в виде суммы двух квадратов, то их произведение также представляется в виде суммы двух квадратов.
- **2.** (а) Докажите, что при умножении (делении) комплексных чисел их модули умножаются (делятся) друг на друга, а аргументы складываются (вычитаются).
 - (b) (Формула Муавра) Докажите, что

$$(r(\cos\varphi + i\sin\varphi))^n = r^n(\cos n\varphi + i\sin n\varphi).$$

- 3. Пользуясь формулой Муавра, выразите $\sin 7\varphi$ через $\sin \varphi$ и $\cos \varphi$.
- 4. Вычислите

(a)
$$\sqrt{1+i}$$
; (b) $(1+\sqrt{3}i)^{2018}$; (c) $1+(1+i)+(1+i)^2+\cdots+(1+i)^{146}$.

- **5.** Комплексные корни уравнения $x^n 1 = 0$ называются корнями n-ой степени из единицы.
 - (а) Представьте их в тригонометрической форме.
 - (b) Найдите сумму этих чисел.
 - (с) Найдите их произведение.
 - (d) Найдите их сумму квадратов.
- 6. (а) Найдите все вещественные корни уравнения

$$(x+i)^{2018} + (x-i)^{2018} = 0.$$

- (b) Найдите все его комплексные корни.
- 7. Упростите выражение:

$$\cos \alpha + \cos 2\alpha + \cdots + \cos n\alpha$$
.