Two-Stage Clustering of Human Preferences for Action Prediction in Assembly Tasks

Heramb Nemlekar, Jignesh Modi, Satyandra K. Gupta, and Stefanos Nikolaidis ICAROS lab, Computer Science Department, University of Southern California

Motivation

Complex assemblies:

- Some actions can only be performed by human workers
- Robots can only assist in secondary actions like fetching parts

Worker preferences:

- Assembly tasks require different workers to execute the same task
- Different workers may perform the task in different ways

Need to assist workers based on their individual preference

Problem

Preferences in sequencing actions:

- Prior work considers goal-based preferences
- We consider preferences in sequence of actions

Preferences at different levels:

- High level: Preferred sequence of sub-tasks
- Low level: Preferred sequence of actions for each sub-task

Learn dominant high- and low-level preferences of workers

Objective

- Learn dominant preferences of workers in assembly task
- Infer preferences of new worker
- Predict worker's actions based on inferred preferences
- Provide proactive assistance for the next action of worker

Two-stage clustering approach

Types of actions:

- Primary actions: Must be performed by human e.g. replace bearing
- Secondary actions: Can be performed by robot e.g. fetch new bearing

High-level preference: sequence of events (sub-tasks)
Low-level preference: sequence of secondary actions for an event

Learn high and low-level preferences in the by clustering users based on their sequence of events and sequence of secondary actions, respectively.

Online execution phase: Infer the high-level preference of a new user based on their actions. Then infer the low-level preference to determine the next secondary action to execute.

Assembly user study

Observations:

- Event: users preferred to perform similar actions consecutively
- Similar actions required similar parts to be fetched i.e. secondary actions

Preferences:

- Different users performed events in different sequences.
- For some events, users had different preferences about the order of the required secondary actions.

Assistance

Impact

Industry: Will lead to improvements over current practices in human-robot hybrid workcells.

- Secondary tasks performed by humans leads to low human productivity
- Some tasks are ergonomically challenging and may pose risk to human health

Education:

- Participation of graduate and undergraduate students in this research
- Teaching modules for developed technology

Outreach:

 Introduce ~1000 K-12 students to robotics technologies through Robotics Open House.

