COMP 352 Data Structures and Algorithms

MERGE & QUICK SORT

Chapter 12

Divide-and-Conquer

Divide-and-conquer is a general algorithm design paradigm:

- Divide: divide the input data S in two disjoint subsets S₁ and S₂
- Conquer: solve the sub-problems associated with S_1 and S_2
- Combine: take the solutions for S_1 and S_2 and combine into a solution for S_2

The base case for the recursion are subproblems of size 0 or 1

Merge-Sort

Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm.

- Like heap-sort
 - It has O(n log n) running time
- Unlike heap-sort
 - It does not use an auxiliary priority queue
 - It accesses data in a sequential manner (suitable to sort data on a disk)

Merge-Sort

Merge-sort on an input sequence *S* with *n* elements consists of three steps:

- Divide: partition S into two sequences S_1 and S_2 of about n/2 elements each
- Recur: recursively sort S_1 and S_2
- Conquer: merge S₁ and S₂ into a unique sorted sequence

```
Algorithm mergeSort(S)
   Input sequence S with n
       elements
   Output sequence S sorted
       according to C
   if S.size() > 1
       (S_1, S_2) \leftarrow partition(S, n/2)
       mergeSort(S_1)
       mergeSort(S_2)
       S \leftarrow merge(S_1, S_2)
```

Merging Two Sorted Sequences

- □ The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B
- Merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes O(n) time

```
Algorithm merge(A, B)
   Input sequences A and B with
        n/2 elements each
   Output sorted sequence of A \cup B
   S \leftarrow empty sequence
   while \neg A.isEmpty() \land \neg B.isEmpty()
       if A.first().element() < B.first().element()
           S.addLast(A.remove(A.first()))
       else
           S.addLast(B.remove(B.first()))
   while \neg A.isEmpty()
       S.addLast(A.remove(A.first()))
   while \neg B.isEmpty()
       S.addLast(B.remove(B.first()))
   return S
```

Merge-Sort Tree

An execution of merge-sort is depicted by a binary tree

- each node represents a recursive call of merge-sort and stores
 - unsorted sequence before the execution and its partition
 - sorted sequence at the end of the execution
- the root is the initial call
- the leaves are calls on subsequences of size 0 or 1


```
\begin{aligned} &\text{if S.size}() > 1 \\ &(S_1, S_2) \leftarrow partition(S, n/2) \\ &mergeSort(S_1) \\ &mergeSort(S_2) \\ &S \leftarrow merge(S_1, S_2) \end{aligned}
```

Partition


```
if S.size() > 1

(S_1, S_2) \leftarrow partition(S, n/2)

mergeSort(S_1)

mergeSort(S_2)

S \leftarrow merge(S_1, S_2)
```

Recursive call, partition


```
if S.size() > 1

(S_1, S_2) \leftarrow partition(S, n/2)

mergeSort(S_1)

mergeSort(S_2)

S \leftarrow merge(S_1, S_2)
```

Recursive call, partition


```
if S.size() > 1

(S_1, S_2) \leftarrow partition(S, n/2)

mergeSort(S_1)

mergeSort(S_2)

S \leftarrow merge(S_1, S_2)
```

Recursive call, base case


```
\begin{aligned} &\text{if } \textit{S.size}() > 1 \\ &(\textit{S}_1, \textit{S}_2) \leftarrow \textit{partition}(\textit{S}, \textit{n}/2) \\ &\textit{mergeSort}(\textit{S}_1) \\ &\textit{mergeSort}(\textit{S}_2) \\ &\textit{S} \leftarrow \textit{merge}(\textit{S}_1, \textit{S}_2) \end{aligned}
```

Recursive call, base case


```
if S.size() > 1

(S_1, S_2) \leftarrow partition(S, n/2)

mergeSort(S_1)

mergeSort(S_2)

S \leftarrow merge(S_1, S_2)
```

Merge


```
\begin{aligned} &\text{if S.size()} > 1 \\ &(S_1, S_2) \leftarrow partition(S, n/2) \\ &mergeSort(S_1) \\ &mergeSort(S_2) \\ &S \leftarrow merge(S_1, S_2) \end{aligned}
```

Recursive call, ..., base case, merge

if S.size() > 1 $(S_1, S_2) \leftarrow partition(S, n/2)$ $mergeSort(S_1)$ $mergeSort(S_2)$ $S \leftarrow merge(S_1, S_2)$

Merge


```
\begin{aligned} &\text{if S.size()} > 1 \\ &(S_1, S_2) \leftarrow partition(S, n/2) \\ &mergeSort(S_1) \\ &mergeSort(S_2) \\ \hline &S \leftarrow merge(S_1, S_2) \end{aligned}
```

Recursive call, ..., merge, merge

You try

Trace the steps that a merge sort takes when sorting the following array into ascending order: 9 6 2 4 8 7 5 3

Analysis of Merge-Sort

The height h of the merge-sort tree is $O(\log n)$

at each recursive call we divide in half the sequence,

The overall amount or work done at the nodes of depth i is O(n)

- we partition and merge 2ⁱ sequences of size n/2ⁱ
- we make 2ⁱ⁺¹ recursive calls

Thus, the total running time of merge-sort is $O(n \log n)$

depth	#seqs	size	
0	1	n	
1	2	n/2	
i	2^{i}	$n/2^i$	

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort		slowin-placefor small data sets (< 1K)
insertion-sort		slowin-placefor small data sets (< 1K)
heap-sort		 fast in-place for large data sets (1K — 1M)
merge-sort	<i>O</i> (<i>n</i> log <i>n</i>)	 fast sequential data access for huge data sets (> 1M)

Quick-Sort

Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:

- Divide: pick a random element x (called pivot) and partition S into
 - L elements less than x
 - **E** elements equal **x**
 - G elements greater than x
- Conquer: recursively sort L
 and G
- Combine: join L, E and G

Partition

- We partition an input sequence as follows:
 - We remove, in turn, each element y from S and
 - We insert y into L, E or G, depending on the result of the comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes O(1) time
- \square Thus, the partition step of quick-sort takes O(n) time

Partition

```
Algorithm partition(S, p)
  Input sequence S, position p of pivot
   Output subsequences L, E, G of the elements of S less than,
           equal to, or greater than the pivot, resp.
  L, E, G \leftarrow empty sequences
  x \leftarrow S.remove(p)
   while \neg S.isEmpty()
     y \leftarrow S.remove(S.first())
     if y < x L.addLast(y)
     else if y = x E.addLast(y)
     else \{y > x\} G.addLast(y)
   return L. E. G
```

Quick-Sort Tree

An execution of quick-sort is depicted by a binary tree

- Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
- The root is the initial call
- The leaves are calls on subsequences of size 0 or 1

Pivot selection

Partition, recursive call, pivot selection

Partition, recursive call, base case

Recursive call, ..., base case, join

Recursive call, pivot selection

Partition, ..., recursive call, base case

Join, join

You try

Trace the steps that a quick sort takes when sorting the following array into ascending order: 9 6 2 4 8 7 5 3

Worst-case Running Time

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element
- \square One of L and G has size n-1 and the other has size 0
- ☐ The running time is proportional to the sum n + (n-1) + ... + 2 + 1
- ☐ Thus, the worst-case running time of quick-sort is $O(n^2)$ depth time

Expected Running Time

Consider a recursive call of quick-sort on a sequence of size s

- Good call: the sizes of L and G are each less than 3s/4
- Bad call: one of L and G has size greater than 3s/4

Expected Running Time ...

A call is good with probability 1/2

1/2 of the possible pivots cause good calls:

In-Place Quick-Sort

Quick-sort can be implemented to run in-place

In the partition step, we use replace operations to rearrange the elements of the input sequence such that

- the elements less than the pivot have rank less than h
- the elements equal to the pivot have rank between h and k
- the elements greater than the pivot have rank greater than k

The recursive calls consider

- elements with rank less than h
- \circ elements with rank greater than k

```
Algorithm inPlaceQuickSort(S, l, r)
   Input sequence S, ranks l and r
    Output sequence S with the
        elements of rank between l and r
       rearranged in increasing order
    if l > r
        return
   i \leftarrow a random integer between l and r
   x \leftarrow S.elemAtRank(i)
   (h, k) \leftarrow inPlacePartition(x)
   inPlaceQuickSort(S, l, h - 1)
   inPlaceQuickSort(S, k + 1, r)
```

In-Place Partitioning

Perform the partition using two indices to split S into L and, E and G. (< and =>)

Repeat until h and k cross:

- Scan h to the right until finding an element $\geq x$.
- Scan k to the left until finding an element < x.
- Swap elements at indices h and k

You try

Trace the steps that a quick sort with in place partitioning takes when sorting the following array into ascending order: 9 6 2 4 8 7 5 3

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	$O(n^2)$	in-placeslow (good for small inputs)
insertion-sort	$O(n^2)$	in-placeslow (good for small inputs)
quick-sort	O(n log n) expected	in-place, randomizedfastest (good for large inputs)
heap-sort	$O(n \log n)$	in-placefast (good for large inputs)
merge-sort	$O(n \log n)$	sequential data accessfast (good for huge inputs)

References

These slides has been extracted, modified and updated from original slides of :

- Data Structures and Algorithms in Java, 6th edition. John Wiley& Sons,
- 2. Introduction to Algorithms, 3rd Edition. Thomas H. Cormen and Charles E. Leiserson

Copyright © Wiley, Michael T. Goodrich, Roberto TamassiaCopyright © 2014

Copyright © Thomas H. Cormen , 20109

Copyright © 2015 Nancy Acemian

Copyright © 2015 Nora Houari

All rights reserved