msk_top_regs address map

Absolute Address: 0x0Base Offset: 0x0Size: 0x60

MSK Modem Configuration and Status Registers

Offset	Identifier	Name
0x00	Hash_ID_Low	Pluto MSK FPGA Hash ID - Lower 32-bits
0x04	Hash_ID_High	Pluto MSK FPGA Hash ID - Upper 32-bits
0x08	MSK_Init	MSK Modem Initialization Control
0x0C	$MSK_Control$	MSK Modem Control
0x10	MSK_Status	MSK Modem Status 0
0x14	$Fb_FreqWord$	Bitrate NCO Frequency Control Word
0x18	TX_F1_FreqWor	rdIx F1 NCO Frequency Control Word
0x1C	TX_F2_FreqWor	rdIx F2 NCO Frequency Control Word
0x20	RX_F1_FreqWor	rdx F1 NCO Frequency Control Word
0x24	RX_F2_FreqWor	rdx F2 NCO Frequency Control Word
0x28	LPF_Config_0	PI Controller Configuration and Low-pass Filter
		Configuration
0x2C	LPF_Config_1	PI Controller Configuration Configuration Register 1
0x30	Tx_Data_Width	Modem Tx Input Data Width
0x34	Rx_Data_Width	Modem Rx Output Data Width
0x38	PRBS_Control	
0x3C		aPRBS Control 1
0x40	PRBS_Polynomia	aPRBS Control 2
0x44	PRBS_Error_Ma	asRRBS Control 3
0x48		caRdx Sample Discard
0x4C	LPF_Config_2	PI Controller Configuration Configuration Register 2
0x50	Tx_Sync_Ctrl	Transmitter Sync Control
0x54	Tx_Sync_Cnt	Transmitter Sync Duration
0x58	lowpass_ema_alp	olfaxponential Moving Average Alpha
0x5C	lowpass_ema_alp	olæ⊋ponential Moving Average Alpha

$Hash_ID_Low\ register$

• Absolute Address: 0x0

• Base Offset: 0x0

• Size: 0x4

	Bits	Ident	ifier	Access	Reset	t Name	
31:0	hash_	_idlo	r	0xAAAx0	5555	Hash ID I	Lower 32-bits

 ${\bf hash_id_lo~field} \quad {\rm Lower~32-bits~of~Pluto~MSK~FPGA~Hash~ID}$

Hash_ID_High register

• Absolute Address: 0x4

• Base Offset: 0x4

• Size: 0x4

	Bits	Ident	tifier	Access	Reset	Name		
31:0	hash_i	d_hi	r	0x5555AA	AAA	Hash ID	Upper	32-bits

hash_id_hi field Upper 32-bits of Pluto MSK FPGA Hash ID

MSK_Init register

• Absolute Address: 0x8

• Base Offset: 0x8

• Size: 0x4

Synchronous initialization of MSK Modem functions, does not affect configuration registers.

Bits	Identifie	r A	ccess	Reset	Name
0	txrxinit	rw	0x1	Tx/Rx	Init Enable
1	txinit	rw	0x1	Tx Init	Enable
2	rxinit	rw	0x1	Rx Init	Enable

 ${f txrxinit}$ field 0 -> Normal modem operation 1 -> Initialize Tx and Rx

txinit field $0 \rightarrow Normal Tx operation <math>1 \rightarrow Initialize Tx$

rxinit field $0 \rightarrow \text{Normal Rx operation } 1 \rightarrow \text{Initialize Rx}$

MSK_Control register

• Absolute Address: 0xC

• Base Offset: 0xC

• Size: 0x4

MSK Modem Configuration and Control

Bits	Identifier	Acces	s Re	set Name
0	ptt	rw	0x0	Push-to-Talk Enable
1	loopback_ena	rw	0x0	Modem Digital Tx -> Rx Loopback
				Enable
2	rx_invert	rw	0x0	Rx Data Invert Enable

Bits	Identifier	Acces	ss Res	set Name
3 4	clear_counts diff_encoder_l	rw oopb awk		Clear Status Counters Differential Encoder -> Decoder Loopback Enable

ptt field $0 \rightarrow PTT$ Disabled $1 \rightarrow PTT$ Enabled

 $\begin{array}{ll} \textbf{loopback_ena field} & 0 -> \text{Modem loopback disabled 1 -> Modem loopback enabled} \end{array}$

 \mathbf{rx} _invert field 0 -> Rx data normal 1 -> Rx data inverted

diff_encoder_loopback field 0-> Differential Encoder -> Decoder loopback disabled 1-> Differential Encoder -> Decoder loopback enabled

MSK_Status register

• Absolute Address: 0x10

• Base Offset: 0x10

• Size: 0x4

Modem status bits

Bits	Identifier	Access	Reset	Name
0	demod_sync_l	loak	0x0	Demodulator Sync Status
1	tx_enable	r	0x0	AD9363 DAC Interface Tx Enable Input
2	rx_enable	r	0x0	Active AD9363 ADC Interface Rx Enable Input Active
3	tx_axis_valid	r	0x0	Tx S_AXIS_VALID

 ${\bf demod_sync_lock\ field} \quad {\rm Demodulator\ Sync\ Status\ -\ not\ currently\ implemented}$

 \mathbf{tx} _enable field 1 -> Data to DAC Enabled 0 -> Data to DAC Disabled

 \mathbf{rx} _enable field 1-> Data from ADC Enabled 0-> Data from ADC Disabled

 $\label{eq:tx_axis_valid} \textbf{field} \quad 1 -> \\ S_AXIS_VALID \ \\ \textbf{Enabled} \ 0 -> \\ S_AXIS_VALID \ \\ \textbf{Disabled}$

Fb_FreqWord register

• Base Offset: 0x14

• Size: 0x4

Set Modem Data Rate

	Bits	Id	lentifie	r A	Access	Reset	Name	_
31:0	conf	ig_	_data	rw	0x0	Freque	ency Control	Word

config_data field Sets the center frequency of the NCO as FW = Fn * 2^32/Fs, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

$TX_F1_FreqWord\ register$

• Absolute Address: 0x18

• Base Offset: 0x18

• Size: 0x4

Set Modulator F1 Frequency

	Bits	Identifie	r A	ccess	Reset	Name	_
31:0	con	fig_data	rw	0x0	Freque	ency Control	Word

config_data field Sets the center frequency of the NCO as FW = Fn * 2^32 /Fs, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

$TX_F2_FreqWord\ register$

• Absolute Address: 0x1C

• Base Offset: 0x1C

• Size: 0x4

Set Modulator F2 Frequency

	Bits	Id	lentifie	r A	Access	Reset	Name	_
31:0	cont	fig_	_data	rw	0x0	Freque	ency Control	Word

config_data field Sets the center frequency of the NCO as $FW = Fn * 2^32/Fs$, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

$RX_F1_FreqWord$ register

Absolute Address: 0x20Base Offset: 0x20

• Size: 0x4

Set Demodulator F1 Frequency

	Bits	Id	lentifie	r .	Access	Reset	Name	
31:0	conf	ig_	_data	rw	0x0	Frequ	ency Control	Word

<code>config_data field</code> Sets the center frequency of the NCO as FW = Fn * $2^32/Fs$, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

$RX_F2_FreqWord$ register

Absolute Address: 0x24Base Offset: 0x24

• Size: 0x4

Set Demodulator F2 Frequency

	Bits	Identifie	r A	ccess	Reset	Name
31:0	cont	fig_data	rw	0x0	Freque	ency Control Word

config_data field Sets the center frequency of the NCO as $FW = Fn * 2^32/Fs$, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

LPF_Config_0 register

Absolute Address: 0x28Base Offset: 0x28

• Size: 0x4

Configure PI controller and low-pass filter

	Bits I	dentifier	Ac	cess	Reset	Name	-
0	lpf_freeze	rw	0x0	Free	ze the a	ccumulator's	current value
1	lpf_zero	rw	0x0	Holo	d the PI	Accumulator	at zero
7:2	prbs_reserved	rw	0x0	Rese	erved		
31:8	lpf_alpha	rw	0x0	Low	pass IIB	t filter alpha	

 $lpf_freeze field 0 -> Normal operation 1 -> Freeze current value$

 $lpf_zero\ field\ 0 \rightarrow Normal\ operation\ 1 \rightarrow Zero\ and\ hold\ accumulator$

lpf_alpha field Value controls the filter rolloff

LPF_Config_1 register

Absolute Address: 0x2CBase Offset: 0x2C

• Size: 0x4

Configures PI Controller I-gain and divisor

Bits	Identifi	er	Access	Reset	Name	
				0	Gain Value Gain Bit S	

i_gain field Value m of 0-16,777,215 sets the integral multiplier

i_shift field Value n of 0-32 sets the integral divisor as 2^-n

$Tx_Data_Width register$

• Absolute Address: 0x30

• Base Offset: 0x30

• Size: 0x4

Set the parallel data width of the parallel-to-serial converter

	Bits	Ide	ntifier	Acc	cess	Reset	Name		
7:0	data_wi	dth	rw	0x8	Мо	dem inj	out/output	data	width

data_width field Set the data width of the modem input/output

Rx_Data_Width register

• Absolute Address: 0x34

• Base Offset: 0x34

• Size: 0x4

Set the parallel data width of the serial-to-parallel converter

	Bits	Ide	ntifier	Aco	cess	Rese	et N	ame	_	
7:0	data_w	ridth	rw	0x8	Mo	dem i	nput/	output	data	width

data_width field Set the data width of the modem input/output

PRBS_Control register

Absolute Address: 0x38Base Offset: 0x38

• Size: 0x4

Configures operation of the PRBS Generator and Monitor

	Bits Identifier	Acces	s Re	eset Name
0	prbs_sel	rw	0x0	PRBS Data Select
1	$prbs_error_insert$	w	0x0	PRBS Error Insert
2	$prbs_clear$	w	0x0	PRBS Clear Counters
3	$prbs_manual_sync$	w	0x0	PRBS Manual Sync
15:4	$prbs_reserved$	rw	0x0	Reserved
31:16	$prbs_sync_threshold$	rw	0x0	PRBS Auto Sync Three

prbs_sel field 0-> Select Normal Tx Data 1-> Select PRBS Tx Data

prbs_error_insert field $0 \rightarrow 1$: Insert bit error in Tx data (both Normal and PRBS) $1 \rightarrow 0$: Insert bit error in Tx data (both Normal and PRBS)

 $prbs_clear\ field \quad 0 -> 1: Clear\ PRBS\ Counters\ 1 -> 0: Clear\ PRBS\ Counters$

prbs_manual_sync field $0 \rightarrow 1$: Synchronize PRBS monitor $1 \rightarrow 0$: Synchronize PRBS monitor

 ${\bf prbs_sync_threshold}$ field ~0: Auto Sync Disabled N >0: Auto sync after N errors

${\bf PRBS_Initial_State\ register}$

Absolute Address: 0x3CBase Offset: 0x3C

• Size: 0x4

PRBS Initial State

Bits	Identifier	Access	Reset	Name
31:0	config_d	ata rw	0x0	PRBS Seed

config_data field Sets the starting value of the PRBS generator

PRBS_Polynomial register

• Base Offset: 0x40

• Size: 0x4

PRBS Polynomial

Bits	Ident	ifier	Acces	ss R	eset	Name	-
31:0	config_	_data	rw	0x0	PR	BS Polynomi	ial

config_data field Bit positions set to '1' indicate polynomial feedback positions

PRBS_Error_Mask register

• Absolute Address: 0x44

• Base Offset: 0x44

• Size: 0x4

PRBS Error Mask

Bits	Identifier	Acces	ss R	eset	Name	
31:0	config_data	rw	0x0	PR	BS Error	Mask

config_data field Bit positions set to '1' indicate bits that are inverted when a bit error is inserted

$Rx_Sample_Discard$ register

• Absolute Address: 0x48

• Base Offset: 0x48

• Size: 0x4

Configure samples discard operation for demodulator

		Bits	Identifier	Ac	ccess	Reset	Name		
7:0	rx_	$_{ m sample}$	_discard	rw	0x0	Rx Sa	mple Discard	Value	
15:8	$rx_{}$	_nco_dis	scard	rw	0x0	Rx NC	CO Sample D	iscard	Value

rx_sample_discard field Number of Rx samples to discard

rx_nco_discard field Number of NCO samples to discard

LPF_Config_2 register

• Absolute Address: 0x4C

• Base Offset: 0x4C

• Size: 0x4

Configures PI Controller I-gain and divisor

B	its	Ident	ifier	Acce	ss	Reset	Name	
						-	nal Gain nal Gain	Value Bit Shift

p_gain field Value m of 0-16,777,215 sets the proportional multiplier

p_shift field Value n of 0-32 sets the proportional divisor as 2^-n

Tx_Sync_Ctrl register

• Base Offset: 0x50

• Size: 0x4

Provides control bits for generation of transmitter synchronization patterns

	Bits	Identifier	Acce	ess]	Reset	Name
0	tx_	_syncena	rw	0x0	Tx	Sync Enable
1	tx_{-}	_syncforce	rw	0x0	Tx	Sync Force
2	tx_{-}	_syncf1	rw	0x0	Tx	F1 Sync Enable
3	tx_{-}	$_{ m sync}_{ m f2}$	rw	0x0	Tx	F2 Sync Enable

 $\mathbf{tx_sync_ena}$ field 0 -> Disable sync transmission 1 -> Enable sync transmission when PTT is asserted

tx_sync_force field 0 : Normal operation) 1 : Transmit synchronization pattern)

 tx_sync_f1 field Enables/Disables transmission of F1 tone for receiver synchronization 0: F1 tone transmission disabled 1: F1 tone transmission enabled Both F1 and F2 can be enabled at the same time

tx_sync_f2 field Enables/Disables transmission of F2 tone for receiver synchronization 0: F2 tone transmission disabled 1: F2 tone transmission enabled Both F1 and F2 can be enabled at the same time

Tx_Sync_Cnt register

Absolute Address: 0x54Base Offset: 0x54

• Size: 0x4

Sets the duration of the synchronization tones when enabled

Bits	I	dentifi	er	Access	Res	set	Name
23:0	tx_	_sync_	_cnt	rw	0x0	Tx	sync duration

 tx_sync_cnt field Value from $0x00_0000$ to $0xFF_FFFF$. This value represents the number bit-times the synchronization signal should be sent after PTT is asserted.

lowpass_ema_alpha1 register

• Absolute Address: 0x58

• Base Offset: 0x58

• Size: 0x4

Sets the alpha for the EMA

Bits	Ide	ntifier	Acces	ss R	eset	Name
	17:0	alpha	rw	0x0	EM	[A alpha

alpha field Value from 0x0_0000 to 0x3_FFFF represent the EMA alpha

lowpass_ema_alpha2 register

• Absolute Address: 0x5C

• Base Offset: 0x5C

• Size: 0x4

Sets the alpha for the EMA

Bits	Identifier	Access	Reset	Name
17:0	alpha	rw	0x0	EMA alpha

alpha field Value from 0x0_0000 to 0x3_FFFF represent the EMA alpha