Materiais Elétricos e Magnéticos para Engenharia

Professor: Marcus V. Batistuta

Laboratório #6

Diodo Zener

1º Semestre de 2018

FGA - Universidade de Brasília

Simetria em Curvas IxV

Dispositivos de Dois Terminais

Termistor NTC

Lâmpada de Filamento Termistor PTC

Varistor

Type (untaped)	Ordering code	V _{RMS}	V _{DC}	/ _{max} 8/20 μs	W _{max} (2 ms)	P _{max}
SIOV-		٧	V	Α	J	W
S07K75	B72207S0750K101	75	100	1200	5,9	0,25

Varistor Applications

Válvulas Direcionais

Analogia Hidráulica

Existe equivalente elétrico?

Junção PN (Diodo)

Junção PN (Diodo) Estrutura de Bandas

Diodo ZenerEstrutura de Bandas vs. Polarização

$$V = 0$$

Tunelamento e Avalanche

Polarização Reversa (Terceiro Quadrante)

Effect of temperature on avalanche diodes

Effect of temperature on zener diodes

DIODO ZENER Coeficiente de Temperatura para a Tensão Zener Reversa

I_F = Forward current

V_F = Voltage at I_F

I_R = Reverse leakage current

V_R = Voltage at I_R

 I_{ZK} = Test current for voltage V_{BR}

V_{BR} = Voltage at I_{ZK}

 Z_{ZK} = Dynamic impedance at I_{ZK}

 $= \Delta V_Z / \Delta I_{ZK}$

I_{ZT} = Test current for voltage V_Z

Vz = Voltage at current IzT

 Z_{ZT} = Dynamic impedance at I_{ZT}

 $= \Delta V_Z / \Delta I_{ZT}$

 I_{ZM} = Maximum DC steady-state current

V_{ZM} = Voltage at I_{ZM} (typically not defined on the data sheet)

Modelo SPICE

Medidas Elétricas com Voltímetro

Medidas Elétricas com Voltímetro

Traçador de Curvas I vs. V

Traçador de Curvas I vs. V

Fonte de Tensão Regulada com Diodo Zener

Clipper de Tensão

Deslocador de Tensão

Gerador de Ruído de Amplo Espectro

Modelo Elétrico Simplificado do Diodo Zener

$$I_D = I_{SD}(e^{\frac{e(V - V_{RD})}{k_B T}} - 1)$$
 $V_{RD} = I_D R_D$

$$I_{DZ} = I_{SDZ} (e^{\frac{-e(V+V_Z+V_{RZ})}{k_BT}} - 1) \quad V_{RZ} = I_{DZ} R_Z$$

Ajuste do Modelo Elétrico do Diodo Zener

Utilize os pontos experimentais de I x V do Diodo Zener.

1) Ajuste os seguintes parâmetro do modelo pelo método dos mínimos quadrados: $(Utilize\ T=300K)$

$$I_{SD}, R_D, I_{SDZ}, R_Z, V_Z$$

Obs: Utilize sempre unidades SI

- 2) Plote no mesmo gráfico:
- a curva do modelo ajustado com os pontos experimentais do PRIMEIRO quadrante

- a curva do modelo ajustado com os pontos experimentais do TERCEIRO quadrante

Obs: Faça os gráficos no SCILAB, Python, etc.