Chenyang Li

chenyangli@ece.utoronto.ca sjtulichenyang@126.com

1 Basic static strategy description

Our basic static strategy can be described as follows:

- 1. Here, we set the trading period to be 10 days as an example, but in reality, we have the flexibility to adjust the investment frequency (e.g., daily, half-monthly, monthly, etc.).
- 2. For each stock i, calculate the return for a specific period of 10 days. Then calculate the average return m_i and standard deviation s_i for each stock. It's important to note that we use all available historical data from the first day to the last day to calculate m_i and s_i , and these values will not be updated during transactions. Essentially, we use future information in the previous trading strategy.
- 3. Calculate the optimal leverage based on the Kelly formula, which is given by $f_i = (m_i R_f)/s_i^2$ (where R_f is the risk-free rate of return, set to 0 in this case)
- 4. Allocate the money to stock i based on the percentage $p_i = f_i / \sum f_i$. Besides, during transaction, we will set f_i to 0 under two conditions: 1) if $f_i < 0$, indicating a negative excess return, we should not invest, and 2) if the stock does not exist after 10 days, we will not invest.
- 5. Suppose we have \$1,000,000. We will start investing on the first day and then reallocate the money pool after every 10 days while running the strategies.

2 Results

Invest \$1,000,000 at the first day.

- 1)trading period=10; $f_i = 0$ if $f_i < 0$ or stock delisted after trading period; the final cash amount is 3,698,925.72;
- 2)trading period=10; $f_i = 0$ if $f_i < 1$ or stock delisted after trading period; the final cash amount is 4,090,989.91;
- 3)trading period=5; $f_i = 0$ if $f_i < 0$ or stock delisted after trading period; the final cash amount is 3,703,413.76;
- 4)trading period=5; $f_i = 0$ if $f_i < 1$ or stock delisted after trading period; the final cash amount is 4,072,062.33;

3 Graph

Figure 1: Trading period = 10; $f_i = 0$ if $f_i < 1$