0226DN_Function-graphs [17 marks]

The following diagram shows part of the graph of y=f(x).

The graph has a local maximum at

A, where

x=-2, and a local minimum at

B, where

x = 6.

 $\ensuremath{\text{1a.}}$ On the following axes, sketch the graph of

[4 marks]

$$y = f'(x)$$
.

Examiners report

[N/A]

1b. Write down the following in order from least to greatest:

[2 marks]

$$f(0), f'(6), f''(-2).$$

Examiners report

[N/A]

The following diagram shows the graph of a function f. There is a local minimum point at A, where x>0.

The derivative of f is given by $f'(x) = 3x^2 - 8x - 3$.

 $_{
m 2a.}$ Find the x-coordinate of A.

Examiners report

The majority of candidates approached part (a) correctly, and most recognized that only one solution was possible within the given domain.

2b. The y-intercept of the graph is at (0,6). Find an expression for f(x).

[6 marks]

The graph of a function g is obtained by reflecting the graph of f in the y-axis, followed by a translation of $\binom{m}{n}$.

Find the x-coordinate of the local minimum point on the graph of g.

Examiners report

Nearly all candidates answered part (b) correctly, earning all the available marks for integrating the polynomial and solving for $\it C$.