Course Notes for

CS 1501 Algorithm Implementation

By
John C. Ramirez
Department of Computer Science
University of Pittsburgh

- These notes are intended for use by students in CS1501 at the University of Pittsburgh and no one else
- These notes are provided free of charge and may not be sold in any shape or form
- These notes are NOT a substitute for material covered during course lectures. If you miss a lecture, you should definitely obtain both these notes and notes written by a student who attended the lecture.
- Material from these notes is obtained from various sources, including, but not limited to, the following:
 - Algorithms in C++ by Robert Sedgewick
 - Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne
 - Introduction to Algorithms, by Cormen, Leiserson and Rivest
 - Various Java and C++ textbooks
 - Various online resources (see notes for specifics)

- CS 1501 Summer 2020 will be delivered online
 - ▶ Please <u>review all course policies</u> in the following location:
 - https://people.cs.pitt.edu/~ramirez/cs1501/
 - Click on the Course Info link
 - ▶ These policies will be discussed during the first synchronous lecture:
 - Monday, May 11, 2020, 10:20AM-11:15AM
 - After reading these policies, if you have any questions / concerns / problems / or need any accommodation, please contact me ASAP

Course Policies

Office Hours:

- Office hours will be held over Zoom
 - My office hours for the Summer Term will be:
 - Monday, 2:30PM-3:30PM
 - Tuesday, 10:00AM-12:00PM
 - Wednesday, 2:30PM-3:30PM
 - and by appointment
 - A virtual waiting room will be utilized and students will be seen one at a time
 - See email for Zoom link information
- Your TA will also have office hours
 - See email for Zoom link information

Course Policies

Text:

- Algorithms Fourth Edition by Sedgewick and Wayne [Pearson]
 - See:
 http://www.pearsonhighered.com/educator/product/Algorithms/97803215
 73513.page
 - An e-copy should be available via inclusive access from Pitt on Canvas
 - You will automatically be billed for this e-copy
 - If you would prefer to get it on your own, you can opt out of this and will not have to pay.
 - This is done via Canvas in the e-book environment or by emailing the University Store: theuniversitystore@pitt.edu

Goals of Course

Definitions:

Offline Problem:

- We provide the computer with some input and after some time receive some acceptable output
- No hard deadline for when the problem should be solved (as opposed to a real-time problem)

Algorithm

 A step-by-step procedure for solving a problem or accomplishing some end

Program

- an algorithm expressed in a language the computer can understand
- An algorithm solves a problem if it produces an acceptable output on EVERY input

Goals of Course

Goals of this course:

- 1) To learn how to convert (nontrivial) algorithms into programs
 - Often what seems like a fairly simple algorithm is not so simple when converted into a program
 - Other algorithms are complex to begin with, and the conversion must be carefully considered
 - Many issues must be dealt with during the implementation process
 - We will get a few ideas in our interactive lecture

Goals of Course

- 2) To see and understand differences in algorithms and how they affect the run-times of the associated programs
 - Many problems can be solved in more than one way
 - Different solutions can be compared using many factors
 - One important factor is program run-time
 - Sometimes a better run-time makes one algorithm more desirable than another
 - Sometimes a better run-time makes a problem solution feasible where it was not feasible before
 - However, there are **other factors** for comparing algorithms
 - > We will discuss some in the interactive lecture

Asymptotic Analysis

- First we should determine what we want to analyze
 - Usually it is time (as in run-time) but not always
 - What other resource may we want to keep track of when a program is run?
- ▶ For time we determine a key instruction (or instructions) which drives the overall run-time
- Determine a function that models the overall run-time behavior of the algorithm
 - Ex: $F(N) = 2N^2 + 6N + 100$

$$F(N) = N^2$$

- But we will ignore / remove
 - lower order terms
 - multiplicative constants
 - Why?
 - Discuss and see notes below this slide
- Use some standard measure for categorization
 - Do we know any measures?
 - Big O
 - You should be familiar with this from CS 0445
 - However, there are other ways to categorize asymptotic run-times

- Big O gives us an upper bound on the asymptotic performance
 - Think: $F(N) \le 2N^2 + 6N + 100 = < O(N^2)$
- Big Omega
 - Gives us a lower bound on the asymptotic performance
 - Think: $F(N) >= 2N^2 + 6N + 100 => \Omega(N^2)$
- Theta
 - Upper and lower bound on the asymptotic performance exact bound
 - Think: $F(N) == 2N^2 + 6N + 100 => \Theta(N^2)$
- Why three different measures?
 - When analyzing algorithms we cannot always be precise
 - Sometimes we must make assumptions / simplifications

- These make it difficult to determine an exact (Theta) bound
- We also may have different goals
 - Big Omega tells us "we cannot do better than this"
 - Big O tells us "we can definitely do this well or better"
 - Theta tells us "we can do exactly this well"
 - > All of these are expressed within a constant factor

Ex: Comparison based sorting

- It has been proven that any comparison based sorting algorithm is $\Omega(NlgN) \rightarrow (n log(n))$
 - This tells us that any new algorithm that we develop to sort which compares values will require at least this much time

- Some sorting algorithms achieve this lower bound (ex: MergeSort always, QuickSort in average case)
 - We can say MergeSort is Theta(NlgN)
- Others do not
- Generally speaking
 - Big-O tends to be easier to determine than Big-Omega
 - And also Theta since Theta requires both lower and upper bounds
 - This is why Big-O is commonly used
 - However, if we can be precise enough to give a Theta bound it is better

- Tilde approximations and order of growth
 - Text introduces an alternative notation
 - Read text Section 1.4 for rationale for it
 - Practically speaking, tilde is like Theta but without dropping the multiplicative constants
 - \triangleright Ex: $f(N) = 6N^2 + 18N 50$
 - Theta(N²) (or order of growth N²)
 - $\sim 6N^2$
 - ▶ The constants can be useful for real analysis, but are somewhat implementation dependent
 - As discussed in previous slides

- So is algorithm analysis really important?
 - Yes! Different algorithms can have considerably different run-times
 - Sometimes the differences are subtle but sometimes they are extreme
 - Let's look at a table of growth rates on the next slide
 - Note how drastic some of the differences are for large problem sizes
 - Note especially the last two columns
 - Solutions with exponential and hyper-exponential run-times are not practical for even relatively small values of N

lg ₂ N	N	NIgN	N ²	2 ^N	N!
2	4	8	16	16	24
3	8	24	64	256	40320
4	16	64	256	64K	> 20T
5	32	160	1024	4G	> 10 ³⁵
10	1024	10240	1M	2 ¹⁰²⁴	PUNT
20	1M	20M	1T	2 ^{1M}	PUNT
30	1G	30G	> 1018	21G	PUNT

- Consider 2 choices for a programmer
 - 1) Implement an algorithm, then run it to find out how long it takes
 - 2) Determine the asymptotic run-time of the algorithm, then, based on the result, decide whether or not it is worthwhile to implement the algorithm
 - Which choice would you prefer?
 - Discuss
 - The previous few slides should be (mostly) review of CS 0445 material

Example:

- ThreeSum example from text
 - Given a set of arbitrary integers (could be negative)
 - Find out how many distinct triples sum to exactly zero
 - Ex: A = 10 40 -20 25 -10 -15 30 5 -35
 - One answer is 25, -10, -15, another is -20, -10, 30
 - Simple solution:
 - Triple for loops (keeping track of indices)
 - > For each i from 0 to N-1 in the list
 - > For each j from i+1 to N-1 in the list
 - > For each k from j+1 to N-1 in the list Count solution if A[i]+A[j]+A[k] = 0
 - > See ThreeSum.java
 - Works but clearly is Theta(N³)

- Better solution:
 - Sort the numbers first (using a fast sort)
 - > How long?
 - > Theta(NlgN)
 - Now we add two numbers in our initial two loops and
 - > If we can find in the array a number with the opposite value of that sum, we will have a solution
 - > We can do this using binary search
 - > For each i from 0 to N-1
 - > For each j from i+1 to N-1
 - > Let sum = A[i] + A[j]
 - > Let k = binarySearch(A, -sum)
 - > if (k > j) answer is i, j, k
 - Ex: A[i] = -20 A[j] = -10
 - > We can do a binary search for the value 30. If we find it, we have a solution, otherwise we do not

- We are still using two nested for loops to get A[i] and A[j], but we eliminate the third loop and replace it with a binary search
 - > Improve the run-time from Theta(N³) to Theta(N²lgN)
 - > BUT we must add the time to sort, which we did not have to do before
 - > We must be careful not to ignore extra computation that we may introduce
 - > But we know a fast sort takes NIgN so it does not add to our asymptotic run-time
 - > This gives us Theta(NlgN + N^2 lgN) => Theta(N^2 lgN)
- See ThreeSumFast.java in text
 - Note: Both versions assume no duplicates. How would duplicates complicate the solution?
 - > See comment below in notes

