DROITES ET PLANS DE L'ESPACE

I. Positions relatives de droites et de plans

1) Positions relatives de deux droites

<u>Propriété</u>: Deux droites de l'espace sont soit coplanaires (dans un même plan) soit non coplanaires.

ABCDEFGH est un cube.

- Les droites (EG) et (FG) appartiennent au même plan (EFG) et sont sécantes en G.
- Les droites (AD) et (FG) appartiennent au même plan (ADG) et sont parallèles.
- Les droites (AD) et (CG) sont non coplanaires.

2) Positions relatives de deux plans

Propriété : Deux plans de l'espace sont soit sécants soit parallèles.

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

ABCDEFGH est un parallélépipède rectangle.

- Les plans (BCG) et (BCE) sont sécants suivant la droite (BC).
- Les plans (ABC) et (EFG) sont parallèles

3) Positions relatives d'une droite et d'un plan

Propriété : Une droite et un plan de l'espace sont soit sécants soit parallèles.

ABCDEFGH est un cube.

- La droite (GI) et le plan (ABC) sont sécants en I.
- La droite (EG) est incluse dans le plan (EFG).
- La droite (EG) et le plan (ABC) sont parallèles.

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

II. Parallélisme

1) Parallélisme d'une droite avec un plan

2) Parallélisme de deux plans

2) Parallélisme de deux droites

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

Méthode: Tracer l'intersection de deux plans

Vidéo https://youtu.be/4y00KbuCpsc

Construire l'intersection du plan (IMJ) avec le cube ABCDEFGH.

On construit la parallèle à (IJ) passant par M.

En effet, les faces ABFE et DCGH sont parallèles donc le plan (IMJ) sécant à la face ABFE coupe la face DCGH en une droite parallèle à (IJ).

De même, on trace la parallèle à (IM) passant par J.

On obtient les points K et L et ainsi l'intersection cherchée.

Théorème du toit : P_1 et P_2 sont deux plans sécants. Si une droite d_1 de P_1 est parallèle à une droite d_2 de P_2 alors la droite d'intersection Δ de P_1 et P_2 est parallèle à d_1 et d_2 .

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

<u>Méthode</u>: Appliquer le théorème du toit

Vidéo https://youtu.be/TG-bVLDmAX4

ABCD est une pyramide. Le segment [FG] est parallèle à l'arête [BC]. E est un point du plan (ABC). Construire l'intersection du plan (EFG) avec la pyramide.

(BC) est une droite du plan (ABC) et (FG) est une droite du plan (EFG). Les droites (FG) et (BC) étant parallèles, on peut appliquer le théorème du toit pour en déduire que les plans (ABC) et (EFG) se coupent suivant une droite *d* passant par E et parallèle à (FG) et (BC). Cette droite coupe [AC] en H et [AB] en I. Il suffit enfin de tracer le quadrilatère FGHI: intersection du plan (EFG) avec la

pyramide.

III. Orthogonalité

1) Orthogonalité de deux droites

ABCDEFGH est un cube.

- Les droites (EH) et (EF) sont perpendiculaires.
- Les droites (BC) et (EF) sont orthogonales.

Remarques:

- Deux droites perpendiculaires sont coplanaires et sécantes.
- Deux droites perpendiculaires sont orthogonales. La réciproque n'est pas vraie car deux droites orthogonales ne sont pas nécessairement coplanaires et sécantes.

2) Orthogonalité d'une droite et d'un plan

Propriété : Une droite d est orthogonale à un plan P si elle est orthogonale à deux droites sécantes de P.

Propriété : Si une droite d est orthogonale à un plan P alors elle est orthogonale à toutes les droites de P.

<u>Démonstrations (exigible BAC)</u>: Ces deux propriétés seront démontrées avec les outils vectoriels dans le chapitre "Produit scalaire dans l'espace".

Exemple:

ABCDEFGH est un cube.

(AE) est perpendiculaire aux droites

(AD) et (AB).

(AB) et (AD) sont sécantes et définissent le plan (ABC).

Donc (AE) est orthogonal au plan

(ABC).

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

3) Orthogonalité de deux plans

<u>Méthode</u>: Démontrer que des droites sont orthogonales

Vidéo https://youtu.be/qKWghhaQJUs

ABC est un triangle équilatéral. E est le point d'intersection de ses médianes.

La droite *d* passant par E est orthogonale au plan (ABC). La pyramide ABCD est telle que D soit un point de la droite *d*.

Démontrer que les droites (BD) et (AC) sont orthogonales.

La droite *d* est orthogonale au plan (ABC). Comme la droite (AC) appartient au plan (ABC), la droite (AC) est orthogonale à la droite *d*.

Par ailleurs, la droite (AC) est perpendiculaire à la droite (BE) car dans un triangle équilatéral, les médianes et les hauteurs sont confondues.

Ainsi, (AC) est orthogonale à deux droites sécantes du plan (BED) : (BE) et *d*. Donc (AC) est orthogonale au plan (BED).

La droite (BD) appartient au plan (BED) donc la droite (AC) est perpendiculaire à la droite (BD).

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur.

www.maths-et-tiques.fr/index.php/mentions-legales

| Www.maths-et-tiques.fr/index.php/mentions-legales**