Active Inference in continuous time notes

Federico Maggiore

September 25, 2020

Summary notation

- $\mathbf{x} = \{x_i\}_{i=1}^D$ environmental variables of the *D*-dimensional space constituting latent or hidden states:
- $\mathbf{s} = \{s_i\}_{i=1}^S$ body sensors input;
- $P(\mathbf{s}, \mathbf{x})$ G-density;
- $P(\mathbf{x}|\mathbf{s})$ Posterior;
- $P(\mathbf{s}|\mathbf{x})$ Likelihood;
- $P(\mathbf{x})$ Prior;
- $P(\mathbf{s}) = \int P(\mathbf{s}|\mathbf{x})P(\mathbf{x})d\mathbf{x}$ marginal likelihood
- $Q(\mathbf{x})$ R-density
- $F \equiv \int Q(\mathbf{x}) \ln \frac{Q(\mathbf{x})}{P(\mathbf{x},\mathbf{s})} d\mathbf{x}$ Variational Free Energy

Free Energy Principle (FEP)

The goal of an agent is to determine the probability of the hidden states given some sensory inputs:

$$P(\mathbf{x}|\mathbf{s}) = \frac{P(\mathbf{s}, \mathbf{x})}{P(\mathbf{s})} = \frac{P(\mathbf{s}|\mathbf{x})P(\mathbf{x})}{P(\mathbf{s})}$$
(1)

with

- $P(\mathbf{s}, \mathbf{x})$ G-density, beliefs about the states assumed to be encoded by the agent;
- $P(\mathbf{x}|\mathbf{s})$ Posterior, i.e. probability of hidden causes x given observed sensory data;
- $P(\mathbf{s}|\mathbf{x})$ Likelihood, i.e. organism's assumptions about sensory input \mathbf{s} given the hidden causes \mathbf{x} ;
- $P(\mathbf{x})$ Prior, i.e. agent's beliefs about hidden causes **before** that **s** are received;

• $P(\mathbf{s}) = \int P(\mathbf{s}|\mathbf{x})P(\mathbf{x})d\mathbf{x}$ marginal likelihood, i.e. normalization factor.

For the agent it's not necessary to compute the complete posterior distribution, it has only to find the hidden state -or at least a good approximation- that maximize the posterior, i.e. $\arg\max_{\mathbf{x}} P(\mathbf{x}|\mathbf{s})$. The problem with the exact Bayesian scheme, is that $P(\mathbf{s})$ is often impossible to calculate, and moreover $P(\mathbf{x}|\mathbf{s})$ may not take a standard shape and could not have a summary statistics.

A biologically plausible technique consist in using an auxiliary distribution $Q(\mathbf{x})$ called *recognition* density (R-density) that has to be optimized to became a good approximation of the posterior.

In order to do this the Kullback-Leibler divergence is minimized:

$$D_{KL}(Q(\mathbf{x}) || P(\mathbf{x}|\mathbf{s})) = \int Q(\mathbf{x}) \ln \frac{Q(\mathbf{x})}{P(\mathbf{x}|\mathbf{s})} d\mathbf{x}$$

$$= \int Q(\mathbf{x}) \ln \frac{Q(\mathbf{x})P(\mathbf{s})}{P(\mathbf{x},\mathbf{s})} d\mathbf{x}$$

$$= \int Q(\mathbf{x}) \ln \frac{Q(\mathbf{x})}{P(\mathbf{x},\mathbf{s})} d\mathbf{x} + \ln P(\mathbf{s}) \int Q(\mathbf{x}) d\mathbf{x}$$

$$= F + \ln P(\mathbf{s})$$
(2)

where

- $F \equiv \int Q(\mathbf{x}) \ln \frac{Q(\mathbf{x})}{P(\mathbf{x},\mathbf{s})} d\mathbf{x} = -\int Q(\mathbf{x}) \ln P(\mathbf{x},\mathbf{s}) d\mathbf{x} + \int Q(\mathbf{x}) \ln Q(\mathbf{x}) d\mathbf{x}$ is the Variational Free Energy, a quantity that depends on the R-density and the knowledge about the environment i.e. the G-density $P(\mathbf{s},\mathbf{x}) = P(\mathbf{s}|\mathbf{x})P(\mathbf{x})$ that we are assuming the agent has.
- $\ln P(\mathbf{s})$ is a term independent of the recognition density $Q(\mathbf{x})$ (\Rightarrow minimizing F with respect to $Q(\mathbf{x})$ will minimize the D_{KL})

Laplace approximation

Often optimizing F for arbitrary Q(x) is particularly complex. Moreover, assumed that neural activity parametrise sufficient statistic, a common approximation is to assume that

Given a probability density Q(x) with a peak at point μ , the Taylor-expansion of the logarithm around his peak is

$$\ln Q(x) \simeq \ln Q(\mu) - \frac{1}{2} \frac{(x-\mu)^2}{\Sigma}$$
(3)

with

$$\frac{1}{\Sigma} = -\frac{\partial^2}{\partial x^2} \ln P(x) \Big|_{x=\mu} \tag{4}$$

Now it is possible to approximate the probability distribution Q(x) with the distribution

$$\mathcal{N}(x;\mu,\Sigma) = \frac{1}{\sqrt{2\pi\Sigma}} e^{\frac{(x-\mu)^2}{2\Sigma}}$$
 (5)

a Gaussian distribution that has been normalized using the factor

$$Z_{\mathcal{N}} = Q(\mu)\sqrt{2\pi\Sigma} \tag{6}$$

Generalizing for a density $Q(\mathbf{x})$ over a K-dimensional space \mathbf{x} with peak at $\boldsymbol{\mu}$

$$\ln Q(\mathbf{x}) \simeq \ln Q(\boldsymbol{\mu}) - \frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})$$
 (7)

with

$$\left[\mathbf{\Sigma}^{-1}\right]_{i,j} = -\frac{\partial^2}{\partial x_i \partial x_j} \ln P(\mathbf{x}) \bigg|_{\mathbf{x} = \boldsymbol{\mu}}$$
(8)

is possible to approximate $Q(\mathbf{x})$ with the multivariate Gaussian distribution

$$\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^K \det \boldsymbol{\Sigma}}} e^{\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})}$$
(9)

This approximation is particularly useful to approximate integrals.