

Beam dynamics study of the heavy ion bunch rotation with space charge effect in BRing at HIAF

Dayu Yin, Jiancheng Yang, Jie Liu, Lijun Mao, Heng Du, Guodong Shen

HB 2018

19st June, Daejeon

yindy@impcas.ac.cn

Outline

- Introduction
 - >HIRFL HIAF & BRing
 - ➤ Content and motivation
- Calculation and simulation of longitudinal beam dynamics
 - ➤ Beam capture, acceleration &debunch
 - Fast bunch rotation
- Conclusion and future plan

Brief introduction to HIRFL

General description of HIAF

BRing: Booster ring

Circumference: 569 m

Rigidity: 34 Tm

Beam accumulation
Beam acceleration

Beam rotation

HFRS:

The radioactive ion beam line of HIAF

SRing: Spectrometer ring

Circumference:290m

Rigidity: 13Tm

Electron/Stochastic cooling

Two TOF detectors Four operation modes

SECR:

Superconducting Electron-Cyclotron-Resonance ion source

iLinac: Superconducting linac

Length:100 m

Energy: $17\text{MeV/u}(U^{35+})$

Comparison of HIAF and HIRFL

- \triangleright Primary beam intensity increases by \times 1000 \times 10000(BRing)
- \triangleright secondary beam intensity increases by up to \times 10000
- ► Wide beam Energy: heavy-ion energy: $\times 10 \times 15$ (BRing)
- **▶** beam cooling (Electron, Stochastic, laser; high quality, very small spot) (BRing)
- **▶** Beam compression (Ultra-short bunch length: 50-150ns) (BRing)

- Super long period slow extraction (Super long, high energy, quasi-continuous beam)

Versatile operation modes:

- parallel operation, beam splitting (increase of target time, high integrated luminosity)

Layout and Design parameters of BRing

Parameters	Value
Circumference/m	569
Beam Rigidity/Tm	34
Momentum	± 0.005
acceptance	

Main parameters			
Injection beam parameters			
Ion species	Proton to Uranium		
Injection energy (MeV/u)			
Beam current (pmA)	$0.028 (^{238}U^{35+})$, $1.0 (p)$		
Extraction beam parameters			
Energy(GeV/u)	$0.83 (^{238}U^{35+}) 9.3 (p) HAF$		

Two stages acceleration(U35+)

	Stage 1	Stage2		
Beam parameters				
Energy/MeV/u	17-200	200-830		
Revolution frequency/MHz	0.10-0.30	0.30-0.45		
RF parameters				
h	3	1		
frequency/MHz	0.30-0.90	0.30-0.45		
Dipole magnetic rarameter				
Bdot(T/s)	12(fast)	1(normal)		

>accelerated as soon as possible-serious space charge effects at low energy

> minimization of ionization beam loss

>stabilisation of the dynamic residual gas pressure

Content

	Stage 1	Stage2	
	capture		
Contents	acceleration		
	Generation of single bunch	No	
	theoretical calculation		
Method	Tracking simulation		
High beam power with short bunch duration!			

Purpose

- >minimize beam loss during the whole process
- >Get high power beam with short bunch duration

Stage 1_Capture(17MeV/u)

Capture: 40ms+linear

 \mathbf{p} **D**p/p=0. 0067 -0. 00107

>Effciency:96%

Stage 1 (17-200MeV/u-12T/s)

The bunch distribution after the 1st capture and acceleration:

Stage 1 (17-200MeV/u-12T/s)

Different debunching time:

Stage 2 (200-required energy)

Acceleration curve:

- ➤ Very small acceleration voltage (32kV-240kV(1st stage))
- ➤ Provide conditions for bunch rotation (voltage increase from 32kV-240kV)

2nd stage capture end

2nd acceleration

Stage 2 (bunch rotation)

- ➤ Increasing Vinitial to Vcompression very fast
- ➤ the bunch distribution after bunch rotation depend on the the amplitude of Vinitial largely
- ➤ Beam acceleration and bunch rotation are performed with the same RF system, so the choice of Vinitial is important

Stage 2 (bunch rotation)

The bunch distribution dependence of Vinitial:

beam power.

SC at injection of 17MeV/u

Bunch distribution

SC voltage

Momentum spread will increase 50% comprared that without SC

SC at injection of 17MeV/u

Bunch merging(h=2)

Bunch number:2-1

Voltage of RF cavity(h=2, black)
Decrease, at the same time
the voltage of RF
cavity(h=1, red) increase

Bunch merging(h=4)

Bunch number:4-2

Voltage of RF cavity(h=24 black) decrease, at the same time the voltage of RF cavity(h=2, red) increase

Bunch number:2-1

Red decrease, at the same time bule increase

Bunch merging(h=3)

Bunch number:2-1
Voltage of RF cavity(h=3)
iecrease, at the same time
the voltage of RF
cavity(h=1) increase
Debunch is the only way!

Operation mode

Normal:

When synchronous phase is zero, the RF voltage start to decline

Compression:

When the energy arrive the required value, the RF voltage increase rapidly to available value(240kV)

Bunch length and momentum spread manipulation: During the late of beam acceleration, the RF voltage decrease in a certain way

Slow extraction:

In the time of extraction period, keep the RF cavity open, and the bunch length and momentum spread are subjected to amplitude of voltage

Conclusion:

Conclusion:

- >Through calculation and simulation, the low beam loss of less than 5% can be controlled in the whole process
- >Beam parameters such as momentum spread and bunch length at extraction energy are obtained
- >Get the optimized RF voltage and synchronous phase for RF system
- >Use the same RF system perform acceleration, debunch and bunch compression

Outlook:

- >Space charge effect has just started, and needs further understanding and research
- >Interaction of high beam intensity and cavity will lead to beam loading which will be a critical issue to be studied.

Thanks for you attention!