Review:

1. If
$$i_L$$
 is continuous $V_0 = DV_{DC}$
$$= \frac{DV_{DC}}{\beta}, \ \underline{\beta < 1}$$

- 2. ΔV_0 & Δi_L are max at D = 0.5
- 3. $V_0 \rightarrow \infty$ D $\rightarrow 1$ for ideal Boost. $\rightarrow 0$ for non–ideal Boost.

$$\begin{aligned} \mathbf{D}_{\text{max}} &= 1 - \sqrt{\frac{r}{R}} \\ \mathbf{V}_{0(\text{max})} &= \frac{\mathbf{V}_{\text{dc}}}{2} \sqrt{\frac{R}{r}} \end{aligned}$$

Assumption are not valid for high values of D.

Filtering requirement at the source side.

Ripple in V_0 & I_L :

Nelect 'r' & ΔV_0 to determine ΔI_L

$$L\frac{di_{L}}{dt} = V_{DC} \qquad 0 < t < DT$$

$$\mathbf{i}_{L} = \mathbf{I}_{\min} + \frac{\mathbf{V}_{DC}}{\mathbf{L}}\mathbf{t}$$

$$\therefore I_{\text{max}} = I_{\text{min}} + \frac{V_{\text{DC}}}{L} DT$$

$$L\frac{di_{L}}{dt} = V_{DC} - V_{0} = -\frac{DV_{DC}}{(1-D)} \quad \because \quad V_{0} = \frac{V_{DC}}{(1-D)}$$

$$\therefore V_{DC} - V_0 = -\frac{DV_{DC}}{(1-D)}$$

$$\mathbf{I}_{\min} = \mathbf{I}_{\max} - \frac{\mathbf{V}_{DC}}{\mathbf{L}} \frac{\mathbf{D}}{(1 - \mathbf{D})} (\mathbf{T} - \mathbf{DT})$$

$$\therefore \Delta \mathbf{i}_{\mathsf{L}} = \frac{\mathbf{V}_{\mathsf{DC}}}{\mathsf{L}} \mathsf{DT} \quad \infty \; \mathsf{D}$$

ii) Neglect Δi_{L} while deriving ΔV_{0}

$$0 = C \frac{\text{dV}_0}{\text{dt}} + \frac{\text{V}_0}{\text{R}}$$

$$RC\frac{dV_0}{dt} + V_0 = 0 \qquad \therefore \ V_0 = V_{0(max)}e^{-t/RC}$$

At
$$t = DT$$
, $V_0 = V_{min}$, $V_0 = V_{max}$ at $t = 0$ or T

$$V_{0(min)} = V_{0(max)} e^{-\frac{DT}{RC}}$$

$$I = C \frac{dV_0}{dt} + \frac{V_0}{R} \quad DT < t < T$$

$$RC \frac{dV_0}{dt} + V_0 = RI$$

$$\therefore V_0 = (V_{0(min)} - RI) e^{-\frac{t-DT}{RC}} + RI$$

$$\therefore \Delta V_0 \approx RI(1-D)\frac{DT}{RC}$$

 $V_0 = V_{0(max)}$ at t = T

Discontinuous current:

Av. value of source I = inductor I = $\frac{V_{DC}}{R(1-D)^2}$

The above I is always + ve

if
$$> \frac{\Delta I}{2}$$
 $> \frac{V_{DC}}{2 L} DT$

$$\therefore \mathbf{R}_{\mathsf{CR}} \leq \frac{2\mathsf{L}}{\left(1-\mathsf{D}\right)^2 \mathsf{DT}}$$

If load $R > R_{CR}$ Inductor $I \Rightarrow$ Discontinuous

$$\begin{split} \mathbf{i}_{L} &= \frac{\mathbf{V}_{DC}}{L} \mathbf{t} \quad \text{for } 0 < \mathbf{t} < \mathbf{D} \mathbf{T} \\ \mathbf{L} \frac{d\mathbf{i}_{L}}{dt} &= \mathbf{V}_{DC} - \mathbf{V}_{0} \quad \text{for } \mathbf{D} \mathbf{T} < \mathbf{t} < \beta \mathbf{T} \\ \mathbf{i}_{L} &= \frac{\mathbf{V}_{DC}}{L} \mathbf{D} \mathbf{T} + \frac{\mathbf{V}_{DC} - \mathbf{V}_{0}}{L} (\mathbf{t} - \mathbf{D} \mathbf{T}) \\ \mathbf{i}_{L} &= 0 \quad \mathbf{t} = \beta \mathbf{T} \\ \therefore \frac{\mathbf{V}_{DC}}{L} \mathbf{D} \mathbf{T} + \frac{\mathbf{V}_{DC} - \mathbf{V}_{0}}{L} (\beta - \mathbf{D}) \mathbf{T} = 0 \\ \mathbf{V}_{0} &= \frac{\beta}{\beta - \mathbf{D}} \mathbf{V}_{DC} \\ \beta < 1 \quad \& \quad \mathbf{D} < \beta \\ \therefore \frac{\beta}{\beta - \mathbf{D}} > \frac{1}{1 - \mathbf{D}} \end{split}$$

Use of boost & buck converter in speed control of DC motor

'S₂' is kept open & 'S₁' is controlled

Buck Converter:

$$V_0 = V_{DC} D$$
 for $0 < \omega < \omega_{rated}$ $0 < D < 1$

Regenerative braking

Keep S_1 open & control S_2 :

During Regenerative braking

Source → Load & load → Source

i_a should leave 'A' terminal

Neglect 'r'

During motoring mode

$$V_{DC} > V_0 = E_b + i_a r_a$$

Boost converter with $'E_b'$ as source & V_{DC} as Load $E_b < V_{DC}$

Close 'S':

After a while open 'S'

Stored energy is fed back to the source Braking with constant $T = -K \phi i_a$ $i_a^* \rightarrow reference \ i_a$

Control 'i_a' within the Hysteresis band.

 \Rightarrow No mech. o/p

$$\Rightarrow$$
:. ω & E_b \downarrow

Forcing function (E_b) ↓

 \Rightarrow For same 'i_a', 'S' is closed for a longer time.