CIS 6930 Topics in Computing for Data Science Week 8: Transformers (1)

10/19/2021 Yoshihiko (Yoshi) Suhara

2pm-3:20pm

Week 8: Transformers

- Week 8: Transformers
- Week 9: Pre-trained Language Models
- Week 10: More Machine Learning Techniques
- Week 11: More Deep Learning Techniques for NLP (Text generation, Text summarization, Information Extraction etc.)
- Week 12: Advanced Techniques and Challenges
- Week 13: Final project presentations

Attention!

 Today's content is extremely important for understanding modern Deep Learning techniques

The content might be technically difficult and complicated

Don't worry. The concept is relatively simple

- Please make sure that you follow the explanation of each step
 - Don't hesitate to interrupt and ask questions if you don't

This Week's Goal: Understanding the Transformer Architecture

Model Architecture

What is Transformer and Why So Important?

Yet another Neural Network architecture that replaces CNN or RNN

What is Transformer and Why So Important?

Yet another Neural Network architecture that replaces CNN or RNN

What is Transformer and Why So Important?

Yet another Neural Network architecture that replaces CNN or RNN

Quick Recap + Attention Mechanism (Important Background)

Encoder-Decoder Model aka Sequence-to-sequence (seq2seq) Model

- Input: Variable length sequence
- Output: Variable length sequence

Encoder Model + Decoder Model

Two different RNN models

Example 1: Response Generation

Example 1: Response Generation

Example 1: Response Generation

Example 2: Machine Translation

Check: Input & Output

- Token ID → One-hot vector → Dense vector → RNN
- RNN → Output layer + softmax → Token ID

Key Concept

Encoder-Decoder Model

What's the issue with Encoder-Decoder Models?

- Not a very good design for long input/output sequence even with LSTM/GRU
 - o e.g., dependency b/w the beginning of input & the end of output

Attention Mechanism [Bahdanau, Cho, and Bengio ICLR 2016]

 Additional input to the decoder based on the alignments b/w encoder and decoder steps

Attention Mechanism: Intuition

"Direct" connections between any steps in the encoder/decoder model

Attention Mechanism: Attention Layer

Previous hidden state + context vector

$$c_i = \sum_{j=1}^{T_x} \underline{\alpha_{ij} h_j}$$
 alignment score

Attention Layer in Depth

Attention Weight Analysis

Alignment Score Options

	Name	Alignment score function	Citation
Original → ransformer →	Content-base attention	$score(s_t, \mathbf{h}_i) = cosine[s_t, \mathbf{h}_i]$	Graves2014
	Additive(*)	$score(\mathbf{s}_t, \mathbf{h}_i) = \mathbf{v}_a^{\top} \tanh(\mathbf{W}_a[\mathbf{s}_t; \mathbf{h}_i])$	Bahdanau2015
	Location-Base	$\alpha_{t,i} = \operatorname{softmax}(\mathbf{W}_a \mathbf{s}_t)$ Note: This simplifies the softmax alignment to only depend on the target position.	Luong2015
	General	$score(s_t, h_i) = s_t^{T} \mathbf{W}_a h_i$ where \mathbf{W}_a is a trainable weight matrix in the attention layer.	Luong2015
	Dot-Product	$score(\boldsymbol{s}_t, \boldsymbol{h}_i) = \boldsymbol{s}_t^{\top} \boldsymbol{h}_i$	Luong2015
	Scaled Dot- Product(^)	$score(s_t, h_i) = \frac{s_t^T h_i}{\sqrt{n}}$ Note: very similar to the dot-product attention except for a scaling factor; where n is the dimension of the source hidden state.	Vaswani2017

Self-Attention Mechanism for Text Classification

Terminology: Attention Mechanism

- Encoder-decoder attention (aka cross-attention)
- Self-attention
- Attention vector

Encoder-decoder attention

Attention vector

Self-attention

Questions?

The Rise of the Transformer

Cool! What makes it so strong?

Cool! What makes it so strong?

The attention helps the RNN model incorporate direct connections between any steps

Cool! What makes it so strong?

The attention helps the RNN model incorporate direct connections between any steps

That makes sense! Then, is the RNN cell still necessary?

Hey, the attention mechanism is so strong! RNN models with attentions establish new state-of-the-art performance on many many tasks!

Cool! What makes it so strong?

The attention helps the RNN model incorporate direct connections between any steps

That makes sense! Then, is the RNN cell still necessary?

Attention Is All You Need [Vaswani et al. 2017]

Attention Is All You Need

Ashish Vaswani*
Google Brain
avaswani@google.com

Llion Jones*
Google Research
llion@google.com

Noam Shazeer*
Google Brain
noam@google.com

Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Aidan N. Gomez* † I University of Toronto aidan@cs.toronto.edu lukaszl

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Transformer established new state-of-the-art performance on Machine Translation without RNN

Why is This Title?

- 2014: RNN [Sutskever+ NIPS '14] # the original seq2seq paper
- 2015: RNN + Attention [Bahdanau ICLR '15]
- ...
- 2017: Attention ← The Transformer!

The claim is "recurrent architecture (RNN)" is **Unnecessary**

The Transformer: Basic Concepts

The figures and explanations are from the following excellent blog article (highly recommended)

The Illustrated Transformer – Jay Alammar – Visualizing machine learning one concept at a time.

The Transformer

Model Architecture

What is the Transformer?

- Transformer is an Encoder-Decoder model!
 - Can be used for any sequence-to-sequence generation tasks
- Transformer = Transformer Encoder + Transformer Decoder

Transformer

Transformer

Encoder/Decoder

= Stack of Encoder/Decoder Blocks

Encoder/Decoder

300%

= Stack of Encoder/Decoder Blocks

Encoder Block

500%

= Self-Attention + Feed Forward NN

Step 1: Input Tokens → **Token Embeddings**

Step 2: Token Embeddings → **Attention Vectors**

Step 3: Attention Vectors → **Output Vectors**

Thinking

Machines

Self-Attention in Detail

Recap: Self-Attention for RNNs

Self-Attention: Key Idea

- Self-Attention looks at all tokens in the input sequence to calculate the target token embedding based on the context
- Example: "The animal didn't cross the street because it was too tired."

Self-Attention: Key, Query, Value Vectors

 The Self-Attention Layer encodes token embeddings by averaging Value vectors of input tokens <u>based on the similarities</u> between Key vectors of input tokens and <u>Query vector</u> of the target token

Token Embeddings → **Query, Key, Value Vectors**

 Self-attention layer has transformation matrices for Query, Key, and Value vectors

Calculating z₁ from Input Token Embeddings x₁₋₃

Example: Calculating Attention Vector for "Thinking" Step 1: Query-Key Similarity Calculation

The inner product of q₁ and k₂

Example: Calculating Attention Vector for "Thinking" Step 2: Scaling and normalization

Side Topic: Why scaling?

- To make the softmax results reasonable
 - Why scaling? Basically, inner-product values are proportional to the dimension size
 - Why sqrt(d_k)? Scaling by d_K is too much

```
# Original
>>> torch.softmax(torch.Tensor([112, 96]), dim=0)
tensor([1.0000e+00, 1.1254e-07]) # Too skewed!
# Scaling by sqrt(dk)
>>> torch.softmax(torch.Tensor([14, 12]), dim=0)
tensor([0.8808, 0.1192]) # Looks good!
# Scaling by dk
>>> torch.softmax(torch.Tensor([112/64, 96/64]), dim=0)
tensor([0.5622, 0.4378]) # Too flat!
```

Example: Calculating Attention Vector for "Thinking" Step 3: Weighted Average of Value Vectors

Example: Calculating Attention Vector for "Thinking"

Step 3: Weighted Average of Value Vectors

Understanding Self-Attention in Matrix Calculation

Key Takeaway

- Model Architecture
 - The Transformer is an Encoder-Decoder model
 - Transformer Encoder + Transformer Decoder (not explained yet)
 - Transformer Encoder = Stack of Transformer Encoder Blocks
 - Transformer Encoder Block = Self-Attention Layer + Feed Forward NN

Self-Attention Layer

- Token Embeddings → Query, Key, Value Vectors → Attention Vectors
- Multi-head Attention
- Additional techniques
 - Positional Encoding
 - Residual Connection + Layer Normalization

Questions?