Universidade Federal da Fronteira Sul Curso de Ciência da Computação Organização de Computadores

Trabalho de Programação Assembly - RISC-V

Grupo: 2 alunos (não pode repetir dupla anterior)

Data de entrega: 30/10

Instruções da entrega: Através de Projeto no GitHub (preencher dados no link

acima). Convidar o professor para o projeto (meu usuário: Icaimi) até o dia 10/10.

Apresentação: Cada dupla apresenta o trabalho em conjunto. A nota da apresentação

é individual. Data limite para apresentação: 08/11

Critérios da Nota:

1) Funcional com recursividade:

a) 32 bits: 40%b) 64 bits: 60%

- 2) Modularidade, clareza e indentação do código (10%)
- 3) Comentários do código (5%)
- 4) Apresentação: explicações e entendimento (25%)

Descrição:

Desenvolver uma função recursiva utilizando o Assembly da arquitetura RISC-V (extensões RV32I, RVM) que implementa o cálculo do triângulo de números de Stirling de segundo tipo (Triangle of Stirling numbers of the second kind). A implementação deve suportar valores sem sinal de 64 bits.

A função recebe dois valores, tal que:

$$ST_2(n,k) = k*ST_2(n-1, k) + ST_2(n-1, k-1); n>1$$

 $ST_2(1,k) = 0; K > 1$
 $ST_2(1,1) = 1$
Onde: $n \ge 1$ (1)
 $1 \le k \le n$ (2)

Além da função recursiva descrita acima, o programa deve solicitar ao usuário o valor de "k" e o valor de "n" e então chamar a função ST_2(n, k) imprimindo no console

todos os valores calculados entre "k" e 1. Verifique as condições (1) e (2) acima para os valores fornecidos pelo usuário.

A tabela abaixo ilustra os valores esperados para diferentes valores de n e k

n k	0	1	2	3	4	5	6	7	8	9	10
0	1										
1	0	1									
2	0	1	1								
3	0	1	3	1							
4	0	1	7	6	1						
5	0	1	15	25	10	1					
6	0	1	31	90	65	15	1				
7	0	1	63	301	350	140	21	1			
8	0	1	127	966	1701	1050	266	28	1		
9	0	1	255	3025	7770	6951	2646	462	36	1	
10	0	1	511	9330	34105	42525	22827	5880	750	45	1