FIG. 1

Brinzolamide 4

FIG. 2

$$R_1$$
 R_2 R_2 R_3 R_4 R_4 R_5 R_5 R_6 R_6 R_7 R_8 R_8 R_9 R_9 R_9 R_9 R_9 R_9

FIG. 3

Intramolecular amidation catalyzed by [Ru^{II}(TPFPP)(CO)] (1)^a

Entry	Substrates	Products	Yield (%)
1	OSO ₂ NH ₂	HN S O	77
	5	11	
2	OSO ₂ NH ₂ CO ₂ Me	O O O CO ₂ Me	76
	6	12 Me	
3	OSO ₂ NH ₂	$ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ N $ $ \stackrel{\circ}{so_2} $	88
	7	(cis)-13	
4	OSO ₂ NH ₂	H N-so ₂	61
	8	(cis)-14	
5	OSO ₂ NH ₂	HN-SO ₂	56
	9	15	
6	OSO ₂ NH ₂	HN.S.O	88
	10	16	

^aReaction conditions: catalyst: substrate: PhI(OAc)₂ = 0.015: 1: 2; CH₂Cl₂, 40°C, 2 h. FIG. 4

High turnover intramolecular amidation catalyzed by $[Ru^{II}(TPFPP)(CO)]$ (1)

Entry	Substrate	Product	Yield (%)	Turnover
1ª	OSO ₂ NH ₂	ON ON O	29	290
2 ^b	OSO ₂ NH ₂	$ \begin{array}{c} 11 \\ \stackrel{\text{Me}}{\longrightarrow} 0 \\ \stackrel{\text{N}}{\longrightarrow} 0 \\ \text{(cis)-13} \end{array} $	38	301

^aReaction conditions: catalyst: substrate: PhI(OAc)₂ = 1: 1000: 2000; CH₂Cl₂, 40°C, 20 h. ^bReaction conditions: catalyst: substrate: PhI(OAc)₂ = 1: 800: 1600; CH₂Cl₂, 40°C, 20 h. FIG. 5

Asymmetric intramolecular amidation catalyzed by $[Ru^{II}(D_4-Por^*)(CO)]^a$

Entry	Substrate	Product	Solvent	Yield (%)	Ee (%) ^b
1	OSO ₂ NH ₂	о ни s о	CH ₂ Cl ₂	77	46
2		11	C_6H_6	63	79
3			C_6H_6	48	84°
4	OSO_2NH_2		CH ₂ Cl ₂	57	71
5		H N-SO ₂	C_6H_6	53	81
6			C_6H_6	39	82°
7			PhMe	39	77 ^d
8	OSO_2NH_2	HN-\$0 ₂	CH ₂ Cl ₂	53	69
9			C_6H_6	43	82
10			C ₆ H ₆	35	87°

^aReaction conditions: catalyst: substrate: PhI(OAc)₂ = 1: 10: 14; 40°C for 2 h. ^bEe was determined by HPLC using chiral OD column. ^cReaction at 4°C and 8 h. ^dReaction at 0°C and 8 h.

FIG. 6

(1S,2R)-**14**

17

18

FIG. 7