

Sydney Girls High School 2015

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading Time 5 minutes
- Working time 3 hours
- Write using black or blue pen Black pen is preferred.
- Board-approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- In Questions 11 16, show relevant mathematical reasoning and/or calculations.
- All answers should be given in simplest exact form unless otherwise specified.

Total marks - 100

Section I

Pages 3 – 7

10 Marks

- Attempt Questions 1 10
- Answer on the Multiple Choice answer sheet provided
- Allow about 15 minutes for this section

Section II

Pages 8 - 17

90 Marks

- Attempt Questions 11 16.
- Answer on the blank paper provided.
- Begin a new page for each question.
- Allow about 2 hours and 45 minutes for this section.

Name:
Teacher:

THIS IS A TRIAL PAPER ONLY

It does not necessarily reflect the format or the content of the 2015 HSC Examination Paper in this subject.

Section I

10 marks

Attempt Questions 1–10

Use the multiple-choice answer sheet for Questions 1–10.

- (1) An object rotates at 40 rpm and is moving at 30 m/s. The radius of the motion is
 - (A) 1.33 m
 - (B) 6.37 m
 - (C) 7.16 m
 - (D) 20 m
- (2) Let z = 3 i. What is the value of \overline{iz} ?
 - (A) -1-3i
 - (B) -1+3i
 - (C) 1-3i
 - (D) 1+3i

- (3) Which of the following is an expression for $\int \frac{dx}{\sqrt{7-6x-x^2}}$?
 - $(A) \frac{1}{4} \sin^{-1} \left(\frac{x-3}{4} \right) + c$
 - (B) $\frac{1}{4}\sin^{-1}\left(\frac{x+3}{4}\right) + c$
 - (C) $\sin^{-1}\left(\frac{x-3}{4}\right) + c$
 - (D) $\sin^{-1}\left(\frac{x+3}{4}\right) + c$
- (4) How many ways can 5 boys and 3 girls be arranged around a circular table such that no two girls sit next to each other?
 - (A) 144
 - (B) 432
 - (C) 720
 - (D) 1440
- (5) What is the solution to the equation $\tan^{-1}(4x) \tan^{-1}(3x) = \tan^{-1}(\frac{1}{7})$?
 - (A) $x = \frac{1}{7}$ or $x = \frac{2}{7}$
 - (B) $x = \frac{1}{3}$ or $x = \frac{2}{3}$
 - (C) $x = \frac{1}{3}$ or $x = \frac{1}{4}$
 - (D) x = 3 or x = 4

(6) The diagram below shows the graph of the function y = f(x).

Which diagram represents the graph of $y^2 = f(x)$?

(A)

(B)

(C)

(D)

- (7) Use the substitution $t = \tan \frac{x}{2}$ to find $\int -\sec x \ dx$.
 - (A) $\ln|(t-1)(t+1)| + c$
 - (B) $\ln|(1-t)(t+1)| + c$
 - (C) $\ln \left| \frac{1+t}{t-1} \right| + c$
 - (D) $\ln \left| \frac{t-1}{t+1} \right| + c$
- (8) What is the eccentricity of the hyperbola $4x^2 25y^2 = 9$?
 - $(A) \quad \frac{\sqrt{21}}{5}$
 - (B) $\frac{\sqrt{29}}{5}$
 - $(C) \quad \frac{\sqrt{21}}{2}$
 - (D) $\frac{\sqrt{29}}{2}$

(9) Part of the graph of y = f(x) is shown below

y = f(x) could be

(A)
$$y = -\tan\left(2x - \frac{\pi}{6}\right)$$

(B)
$$y = -\tan\left(2x - \frac{\pi}{3}\right)$$

(C)
$$y = \cot\left(2x - \frac{\pi}{12}\right)$$

(D)
$$y = \cot\left(2x - \frac{\pi}{6}\right)$$

(10) The polynomial equation $x^3 - 3x^2 - x + 2 = 0$ has roots α , β and γ . Which one of the following polynomial equations has roots $2\alpha + \beta + \gamma$, $\alpha + 2\beta + \gamma$ and $\alpha + \beta + 2\gamma$?

(A)
$$x^3 - 6x^2 + 44x - 49 = 0$$

(B)
$$x^3 - 12x^2 + 44x - 49 = 0$$

(C)
$$x^3 + 3x^2 + 36x + 5 = 0$$

(D)
$$x^3 + 6x^2 + 36x + 5 = 0$$

Section II

90 marks

Attempt Questions 11–16

Start each question on a NEW sheet of paper.

Question 11 (15 marks)

Use a NEW sheet of paper.

(a) If
$$z = (1 - i)^{-1}$$

(i) Express \bar{z} in modulus-argument form.

(ii) If $(\bar{z})^{13} = a + ib$ where a and b are real numbers, find the values of a and b.

find the values of a and b.

(b) Find
(i) $\int x^3 e^{x^4+7} dx$ [1]

(ii)
$$\int \sec^3 x \tan x \ dx$$
 [2]

- (c) Find the Cartesian equation of the locus of a point P which represents the complex number z where |z 2i| = |z| [2]
- (d) Sketch the region in the complex plane where Re[(2-3i)z] < 12 [2]

[2]

(i) Express
$$\frac{x^2+x+2}{(x^2+1)(x+1)}$$
 in the form $\frac{Ax+B}{x^2+1} + \frac{C}{x+1}$, where A, B and C are constants. [2]

(ii) Hence find
$$\int \frac{x^2 + x + 2}{(x^2 + 1)(x + 1)} dx$$
 [2]

Question 12 (15 marks)

Use a NEW sheet of paper.

(a)

Using four separate graphs sketch:

(i)
$$y = f'(x)$$
 [2]

(ii)
$$|y| = f(x)$$
 [2]

(iii)
$$y = \frac{1}{f(x)}$$
 [2]

(iv)
$$y = 3^{f(x)}$$
 [2]

(b) Evaluate
$$\int_4^7 \frac{dx}{x^2 - 8x + 19}$$
 [3]

(c) Let
$$f(x) = \frac{x^3 + 1}{x}$$
.

(i) Show that
$$\lim_{x \to \pm \infty} [f(x) - x^2] = 0$$

(ii) Part (i) shows that the graph of
$$y = f(x)$$
 is asymptotic to the parabola $y = x^2$. Use this fact to help sketch the graph $y = f(x)$. [3]

Question 13 (15 marks)

Use a NEW sheet of paper.

- (a) If ω is the root of $z^5 1 = 0$ with the smallest positive argument, find the real quadratic equation with roots $\omega + \omega^4$ and $\omega^2 + \omega^3$. [3]
- (b) Given the polynomial $P(x) = x^3 + x^2 + mx + n$ where m and n are real numbers:
 - (i) If (1-2i) is a zero of P(x) factorise P(x) into complex linear factors. [2]
 - (ii) Find the values of m and n. [2]
- (c)
 (i) An ellipse has major and minor axes of lengths 12 and 8 respectively. Write a possible equation of this ellipse. [1]
 - (ii) A solid has the elliptical base from part (i). Sections of the solid, perpendicular to its base and parallel to the minor axis, are semi-circles. Find the volume of the solid.[3]
- (d)
 (i) Let P(x) be a degree 4 polynomial with a zero of multiplicity 3.
 Show that P'(x) has a zero of multiplicity 2. [2]
 - (ii) Hence find all the zeros of $P(x) = 8x^4 25x^3 + 27x^2 11x + 1$, given that it has a zero of multiplicity 3. [2]

Question 14 (15 marks)

Use a NEW sheet of paper.

(a)

(i) Given that $\int_0^a f(x) dx = \int_0^a f(a-x) dx$, show that $\int_0^\pi x \cos 2x dx = 0$. [2]

(ii)

The area bounded by the curve $y = \sin^2 x$ and the x-axis between x = 0 and $x = \pi$ is rotated through one revolution about the y-axis. By taking the limiting sum of the volumes of cylindrical shells find the volume of this solid.

[2]

(b) $P\left(t, \frac{1}{t}\right)$ is a variable point on the rectangular hyperbola xy = 1. M is the foot of the perpendicular from the origin to the tangent to the hyperbola at P.

Show that the tangent to the hyperbola at *P* has equation (i) $x + t^2 y = 2t.$

(ii) Find the equation of *OM*. [1]

Show that the equation of the locus of M as P varies is (iii) $x^4 + 2x^2y^2 - 4xy + y^4 = 0$ and indicate any restrictions on the values of x and y.

[3]

(c) PT is a common tangent to the circles which touch at T. PA is a tangent to the smaller circle at Q.

- (i) Prove that $\triangle BTP$ is similar to $\triangle TAP$. [2]
- (ii) Hence show that $PT^2 = PA \times PB$. [1]
- (iii) If PT = t, QA = a and QB = b prove that $t = \frac{ab}{a-b}$. [2]

Question 15 (15 marks)

Use a NEW sheet of paper.

(a) Evaluate [3]

$$\int_{1}^{e} x^{7} \log_{e} x \, dx$$

- (b)
- (i) On the same diagram sketch the graphs of the ellipses $E_1: \frac{x^2}{4} + \frac{y^2}{3} = 1$ and $E_2: \frac{x^2}{16} + \frac{y^2}{12} = 1$, showing clearly the intercepts on the axes. Find the coordinates of the foci and the equations of the directrices of the ellipse E_1 . [2]
- (ii) $P(2\cos p, \sqrt{3}\sin p)$, where $0 , is a point on the ellipse <math>E_1$. Use differentiation to show that the tangent to the ellipse E_1 at P has equation $\frac{x\cos p}{2} + \frac{y\sin p}{\sqrt{3}} = 1$. [2]
- (iii) The tangent to the ellipse E_1 at P meets the ellipse E_2 at the points $Q(4\cos q, 2\sqrt{3}\sin q)$ and $R(4\cos r, 2\sqrt{3}\sin r)$, where $-\pi < q < \pi$ and $-\pi < r < \pi$. Show that q and r differ by $\frac{2\pi}{3}$. [2]

(c) The diagram shows an isosceles triangle PAB. PM is the bisector of $\angle APB$, where $\angle APB = \beta$. PM bisects AB. A and B represent the complex numbers z_1 and z_2 respectively.

(i) Find the complex number represented by

$$(\alpha) \overrightarrow{AM}$$
 [1]

$$(\beta) \overrightarrow{MP}$$
 [2]

(ii) Hence show that P represents the complex number

$$\frac{1}{2}\left(1-i\cot\frac{\beta}{2}\right)z_1 + \frac{1}{2}\left(1+i\cot\frac{\beta}{2}\right)z_2$$
 [3]

Question 16 (15 marks)

Use a NEW sheet of paper.

(a) A bowl is formed by rotating the hyperbola $y^2 - x^2 = 1$ for $1 \le y \le 5$ through 180° about the y-axis. Sometime later, a particle P of mass m moves around the inner surface of the bowl in a horizontal circle with constant angular velocity ω .

- (i) Show that if the radius of the circle in which P moves is r, then the normal to the surface at P makes an angle α with the horizontal as shown in the diagram where $\tan \alpha = \frac{\sqrt{1+r^2}}{r}$. [2]
- (ii) Draw a diagram showing the forces on P. [1]
- (iii) Find the expressions for the radius r of the circle of motion and the magnitude of the reaction force between the surface and the particle in terms of m, g and ω . [3]
- (iv) Find the values of ω for which the described motion of P is possible. [1]

(b) Let

$$I_n = \int_1^e (1 - \ln x)^n dx$$
 where $n = 0,1,2,...$

(i) Show
$$I_n = -1 + nI_{n-1} \text{ where } n = 1, 2, 3, \dots$$
 [2]

(ii) Hence evaluate

$$\int_{1}^{e} (1 - \ln x)^3 dx \tag{2}$$

(iii) Show that

$$\frac{I_n}{n!} = e - \sum_{r=0}^{n} \frac{1}{r!}$$
 where $n = 1,2,3,...$

(iv) Show that
$$0 \le I_n \le e - 1$$
. [1]

$$\lim_{n \to \infty} \sum_{r=0}^{n} \frac{1}{r!} = e$$

End of Question 16

End of Exam

LABOR NINCET

Sydney Girls High School

Mathematics Faculty

Multiple Choice Answer Sheet 2015 Trial HSC Mathematics Extension 2

Select the alternative A,	B, C	or D	that	best	answers	the	question.	Fill	in	the response	oval
completely.											

Sample 2+4=?

(A) 2 (B) 6 (C) 8 (D) 9

 $A \bigcirc B \bullet C \bigcirc D \bigcirc$

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

 $A \bullet B \nearrow C D \bigcirc$

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word *correct* and drawing an arrow as follows:

	1.	
Student Number:	HASWERUS	

Completely fill the response oval representing the most correct answer.

1.	A	\bigcirc	$B\bigcirc$	C	$D\bigcirc$

f(x) = 700ycfw Common for student to have booth piece inside the parabola. 0.0 Some students ignore completely when graph

$$d+\beta = \omega + \omega^{4} + \omega^{2} + \omega^{3}$$

$$= -1$$

$$d\beta = \omega^{3} + \omega^{4} + \omega^{6} + \omega^{7}$$

$$= \omega^{3} + \omega^{4} + \omega + \omega^{4}$$

$$= -1$$
Les success.

$$-1 x^{2} - -1x + -1 = 0$$

$$x^{2} + x - 1 = 0$$

$$(h)$$
 (h) (h)

-.
$$P(x) = (x-1+2i)(x-1-2i)(x+3)$$

$$\frac{2(-3)^3 + (-3)^2 + 111 + 1$$

((7(i))
$$\frac{\chi^2}{6^2} + \frac{5^2}{4^2} = 1$$
 Many students
 $\frac{\chi^2}{7c} + \frac{5^2}{16} = 1$ 12 and 8.

$$V_{solid} = \frac{\pi}{2} \int_{0}^{6} y^{2} dx$$

$$= \frac{\pi}{2} \int_{0}^{6} 16 \left(1 - \frac{\chi^{2}}{3c}\right) dx$$

$$= 16 \pi \int_{0}^{6} \left(1 - \frac{\chi^{2}}{3c}\right) dx$$

$$= 16 \pi \left[\chi - \frac{\chi^{3}}{10}\right]_{0}^{6} = 16 \pi \left(6 - \frac{\zeta^{3}}{10}\right) = 64 \pi u^{3}$$

(d) (i)
$$P(x) = (x-a)^3 G(x)$$

$$P'(x) = (x-a)^3 G'(x) + G(x),$$

$$3(x-a)^2$$

$$= (x-a)^2 \{(x-a) G'(x) + 3G(x),$$

$$G. E. D.$$

(iv)
$$p'(x) = 3276^3 - 75x^2 + 54x - 1$$

 $p''(x) = 96x^2 - 156x + 54$
 $= 6(16x^2 - 25x + 9)$
 $= 6(16x - 9)(x - 1)$

13 ×
$$d = \frac{1}{3}$$
 $d = \frac{1}{3}$

$$(4 (a) (i)) \int_{0}^{\pi} \lambda \cos 2\pi dx \qquad (iii)$$

$$= \int_{0}^{\pi} (\pi - x) \cos (2\pi - 2x) dx$$

$$= \int_{0}^{\pi} (\pi - x) \cos 2\pi dx \qquad \int_{0}^{\pi} \cos 2\pi dx$$

$$= \int_{0}^{\pi} (\pi \cos 2\pi dx - \int_{0}^{\pi} \cos 2\pi dx)$$

$$= \prod_{i=0}^{\pi} (a - a)$$

$$= \prod_{i=0}^{\pi} (a - a)$$

$$= \prod_{i=0}^{\pi} (a + ix)^{2} - \lambda^{2} \int_{0}^{\pi} x \sin^{2}x dx$$

$$= 2\pi \int_{0}^{\pi} \lambda \sin^{2}x dx$$

$$= 2\pi \int_{0}^{\pi} \lambda \sin^{2}x dx dx$$

$$= 2\pi \int_{0}^{\pi} \lambda (\frac{1 - \cos 2\pi}{2}) dx$$

$$= \pi \int_{0}^{\pi} (\pi - \pi \cos 2\pi) dx$$

$$= \pi \int_{0}^{\pi} (\pi - \pi \cos 2\pi) dx$$

$$= \pi \int_{0}^{\pi} (\pi - \pi \cos 2\pi) dx$$

$$= \pi \int_{0}^{\pi} (\pi - \pi \cos 2\pi) dx$$

$$= \pi \int_{0}^{\pi} (\pi - \pi \cos 2\pi) dx$$

$$= \pi \int_{0}^{\pi} (\pi - \pi \cos 2\pi) dx$$

(h) (i)
$$\frac{ds}{dx} = \frac{ds}{dt} \times \frac{dt}{dx}$$

$$= -\frac{1}{t^2} \times 1$$

$$= -\frac{1}{t^2} \times 1$$

$$= -\frac{1}{t^2} \times 1$$

$$5 - \frac{1}{t^2} - \frac{1}{t^2} (x - t)$$

$$t^2 y - t = -x + t$$

$$\therefore x + t^2 y = 2t$$

z π₃

(ii) y=t2x mom is preferration to the tonget of P

(iii)
$$t^{2} = \frac{1}{2}$$
 $t = \frac{1}{2}$
 $t = \frac{1}{2}$

The faint M cannot lie on the hyperbola

(c) (i) In DRTP and DTAP

Pis common

PTR = TAP (Commentered

resmall)

-'. DRTP III DTAP (equiangular)

anothing the theorem is not showing.

(iii)
$$t^2 = (t+a)(t-b)$$

$$= t^2 - bt + at - at$$

$$= dt - bt$$

$$= t(a-b)$$

$$= \frac{ab}{a-b}$$

t= PG (tangents from an external ft.)

(b) (ii)
$$P(2\cos\rho, \sqrt{3}\sin\rho)$$
 $E(\frac{2}{3}\frac{1}{4}+\frac{1}{3}=1)$
 $\frac{2}{3}\frac{1}{3}\frac{2}{3}\frac{1}{3}\frac{1}{3}$
 $Cdy = -\frac{1}{2}\times\frac{3}{2}y$
 $dy = -\frac{1}{2}\frac{3}{2}y$
 $dy = -\frac{1}{4}y$

At P ,

 $\frac{3}{4}\exp$
 $-\frac{1}{2}\exp$
 $-\frac{1}{2}\exp$

have parametires 9=13+p, Some arguments for this were poor and 0. 19-1= 211 bootamark. (C)(i) AB represents (32-3,) in AM represents = 1 (32-3.). (ii) ten B = [AM] IPM = AM cot 2 = 1 the right direction then multiply by the required modulus 2(3,-3.) So PM is represented × lam coth = $\frac{1}{2}(3_2-3_1)$ cot $\frac{\beta}{2}$. Prepresents $3_1+AM+PM$ = 3, + 2(3,-3,) + 2(3,-3,) cots Most add 3 = = = 3, + = 32 + = 32 coll= = = 3 coll get P. Sone student only adel AM and PM P. Sone = \frac{1}{2}(1-icot\frac{1}{2})3+\frac{1}{2}(1+icot\frac{1}{2})31.


```
On 16 (b) (iii) Continued
                 - ( 1! + 1 + ... + 1 + 1 ) + re 1 dx
                 -\sum_{r}^{n} + \sum_{r}^{n} + \sum_{i}^{e}
            = -\left(\sum_{n=1}^{n} \frac{1}{r!} + \frac{1}{0!}\right) + e
       i.e. \frac{L_n}{n!} = e - \sum_{r=1}^{n} \frac{L_r}{r!}
            Consider graph of y=1-lnx between x=1 and x=e.
                           Note that the y-values for this domain are 05 ys1.
                               The y-values for y= (1-lnx)" will
                             also be in the range 0 ≤ y ≤ 1 where n=0,1,2...
                               Consider the area under the une
                               y= (1-lnx)" for 15x5e where the area will
                            always be smaller than the rectangle shown
A variety of approaches
could be taken. However,
                              and always above the x-axis.
the question required
explanation for the zero 0 $
                                      (1-\ln x)^n dx \leq (e-1) \times 1
part of the inequality
and not just (e-1).
                                 0 ≤ In ≤ e-1
                               \frac{O}{n!} \leq \frac{T_n}{n!} \leq \frac{e^{-1}}{n!}
         n \rightarrow \infty, \frac{e-1}{n!} \rightarrow 0 : 0 \leq \lim_{n \to \infty} \frac{I_n}{n!} \leq 0
      i.e. \lim_{n\to\infty} \frac{I_n}{I_n} = 0 i.e. \lim_{n\to\infty} \left(e - \frac{n}{2} \frac{1}{r!}\right) = 0
   Many students picked up the
                                     e - \lim_{n \to \infty} \frac{1}{r} = 0
   marks for this question but
   could have provided a solution
   with greater clarity.
```