Projeto 4 - MS960/MT862

Fernando Ribeiro de Senna — RA 197019 Rodolfo da Silva Santos — RA 228711

08 de janeiro de 2021

A Seção 1 versa sobre a implementação computacional da parte 1 do projeto e a Seção 2 apresenta o que foi feito na parte 2 do projeto.

Foram utilizados funções e objetos das bibliotecas pandas, numpy, scipy e matplotlib.

Toda a fundamentação teórica se baseia em conteúdo oferecido em vídeo-aulas e *sli-des* pelo Professor João Batista Florindo em ocasião de oferecimento da disciplina MS960 no segundo semestre de 2020 pelo Instituto de Matemática, Estatística e Computação Científica (IMECC) da Universidade Estadual de Campinas (UNICAMP).

1 Detecção de Anomalias —Parte I

Essa seção explica a implementação de modelos de detecção de anomalias em servidores computacionais usando o modelo Gaussiano multivariado.

No desenvolvimento do projeto foram utilizados os dados presentes nos arquivos dados 1.mat e dados 2.mat que possuem vetores e matrizes com exemplos de treinamento e validação. O arquivo dados 1.mat possui um conjunto de exemplos de servidores (matriz X) com dois parâmetros: latência (tempo que um pacote específico leva para chegar ao destino) na 1^a coluna e taxa de transferência (quantidade de dados transferidos de um lugar para outro) na 2^a coluna.

O arquivo dados2.mat armazena matrizes com 11 parâmetros relacionados ao funcionamento dos servidores e possuem uma quantidade maior de exemplos de treinamento. Ele será utilizado em testes complementares com o sistema desenvolvido. Estes arquivos também possuem uma matriz Xval com um conjunto de dados de validação e um vetor yval com seus respectivos rótulos.

A implementação descrita na presente seção foi feita em linguagem python em arquivo do tipo notebook e pode ser encontrada no arquivo Anomaly_Proj4_Par1.ipynb. Inicialmente, importou-se as bibliotecas numpy, matplotlib, loadmat/scipy.io e o módulo seaborn do python. Os detalhes da implementação estão descritos nas próximas seções.

1.1 Ajuste da Gaussiana multivariada aos dados

Para realizar a detecção de anomalias foi desenvolvido um modelo de distribuição dos dados. O conjunto de treinamento $x^{(1)}, \ldots, x^{(m)}$, com $x^{(i)} \in R^n$, foi utilizado para gerar uma estimativa da distribuição gaussiana para cada um dos exemplos de treinamento. Para cada um deles (i = 1 ... n), foi encontrada a média μ e a variância σ^2 . As funções que calculam a média e a variância estão abaixo. No código foram implementadas na função estimateGaussian() que recebe uma matriz X com os exemplos de treinamento e retorna a média μ e a variância σ^2 .

$$\mu_j = \frac{1}{m} \sum_{i=1}^{m} x_j^{(i)} \tag{1}$$

$$\sigma_j^2 = \frac{1}{m} \sum_{i=1}^m (x_j^{(i)} - \mu_j)^2$$
 (2)

Ao calcular a média para cada exemplo, calculamos a variância dos exemplos correspondentes.

Uma vez que encontradas a média e a variância precisamos calcular a probabilidade dos exemplos de treinamento para decidir quais exemplos são anômalos. A distribuição gaussiana multivariada foi usada para encontrar a probabilidade de cada exemplo de treinamento e com base em algum valor limite - valor de ε - sinaliza se é uma anomalia ou não. A expressão para calcular as probabilidades com modelo de distribuição Gaussiana multivariada é:

$$p(x) = (x; \mu; \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))$$
 (3)

Em que Σ é a matriz de covariância e $|\Sigma|$ o determinante de Σ . No código está função foi implementada em multivariateGaussian() e recebe como valore de entrada uma matriz X com os exemplos de treinamento e os valores de μ e σ^2 , retornando o vetor p com os valores das probabilidades calculadas para cada exemplo de treinamento.

Temos uma anomalia se $p(x) < \varepsilon$.

1.2 Curvas de contorno da Gaussiana

No ajuste das curvas de contorno da gaussiana foi utilizada a função kdeplot do módulo python seaborn. O kdeplot cria gráficos de estimativa de distribuição de kernel que representa a função de densidade de probabilidade das variáveis de dados contínuas ou não paramétricas, ou seja, pode-se representar graficamente as variáveis univariadas ou múltiplas ao mesmo tempo. O kdeplot utiliza um algoritmo de kernel gaussiano para gerar as curvas de probabilidades.

A função kdeplot recebe a matriz de dados e um parâmetro de suavização das curvas bw. Após o ajuste manual do parâmetro bw foi obtido o seguinte gráfico.

Com essas curvas de contorno da gaussiana podemos identificar facilmente os pontos que fogem do padrão esperado.

Figura 1: Curvas de contorno da Gaussiana obtida

1.3 Valor ideal de ε e F_1 -score

Encontradas as probabilidades para os dados (no código estas probabilidades foram armazenadas na variável pval), em seguida é necessário determinar os valores ótimos do threshold ε e do F_1 -score utilizando dados rotulados. Esses parâmetros são calculados na função selectThreshold() que recebe os vetores pval com as probabilidades de cada exemplo de treinamento e o vetor yval com os rótulos de cada exemplo de treinamento.

Antes de se calcular esses parâmetros o pval foi dividido em subintervalos entre o máximo e o mínimo possível de threshold. Permitindo, assim, a verificação de um determinado número de ε entre o maior e o menor ε presente em pval. No projeto foram utilizados 1000 intervalos. Para cada valor de ε no vetor epi_range se calcula a predição. Ou seja, se os valores presentes no vetor pval forem menores que o ε da interação, a predição retornará 1 (positivo para anomalia), caso contrário receberão 0 (negativo para anomalia). Na função selectThreshold() isso é feito criando-se o vetor predictions que conterá a comparação entre o vetor pval e o ε da interação. Em seguida, se calcula o número de verdadeiro-positivos, falso-positivos e falso-negativos comparando-se os vetores predictions e yval.

O precision e o recall são calculados respectivamente pelas fórmulas tp/(tp+fp) e tp/(tp+fn). Por fim, a cada interação, o F_1 -score é calculado pela fórmula (2*prec*rec)/(prec+rec) e comparado com o F_1 -score da interação anterior. Se o F_1 -score for maior que o da interação anterior, o ε e F_1 -score são atualizados pelos valores recém calculados. No fim do processo os valores de ε e F_1 -score são retornados pela função.

1.4 Localizando e circulando as Anomalias

Em posse do melhor valor para ε podemos encontrar as anomalias/ outliers por meio da probabilidade dos exemplos de treinamento. Os outliers serão aqueles que possuem probabilidades menores que o ε ótimo. outliers = p < ε

Através da comparação do vetor pval com o valor do ε ótimos os índices dos outliers são armazenados no vetor outliers permitindo sua posterior identificação no gráfico. A imagem a seguir mostra o gráfico com as anomalias circuladas em vermelho.

Figura 2: Anomalias circuladas em vermelho

Como pode ser visto no gráfico, 7 anomalias foram detectadas pelo modelo (os pontos 8.73/16.79 e 8.77/16.68 ficaram sobrepostos). Nesse modelo de detecção de anomalias os valores de ε e F_1 -score foram 8.990852779269495e-05 e 0.87500000000000001 respectivamente. E pela análise visual desses pontos se verifica que eles são exatamente os pontos que fogem do padrão esperado.

1.5 Outro exemplo de detecção de Anomalias

Ao executar o sistema desenvolvido com os dados do arquivo dados2.mat obteve-se valores para ε e F_1 -score iguais a 1.3772288907613575e-18 e 0.6153846153846154 respectivamente. Como os exemplos de treinamento possuem muitos parâmetros não é possível uma inspeção visual das anomalias encontradas.

Dezesseis anomalias foram encontradas e seus respectivos índices são: [0, 3, 6, 11, 19, 27, 34, 43, 50, 59, 60, 69, 71, 86, 88, 92].

O F_1 -score combina o precision e o recall de modo a trazer um número único que indique a qualidade geral do modelo. Quanto mais próximo de 1 estiver o F_1 -score mais bem equilibrado o modelo estará e tanto o precision quanto o recall possuíram valores adequados. Logo podemos verificar que o modelo com apenas 2 parâmetros (F_1 -score = 0.875) foi mais eficiente do que o modelo com 11 parâmetros (F_1 -score = 0.615).

2 Sistema de Recomendação — Parte II

Essa Seção explica a implementação realizada para construção de um sistema de recomendação de filmes. A Seção 2.1 apresenta a documentação das funções implementadas no arquivo *functions_recomendacao.py*. Já a Seção 2.2 apresenta a importação dos dados e o treinamento do algoritmo e a Seção 2.3 apresenta os resultados e as notas obtidos, implementados no arquivo *Parte2_Recomendacao.ipynb*.

O problema se baseia em partir de notas atribuídas a filmes por usuários e, com isso, treinar um algoritmo que seja capaz de "prever" as notas que os usuários dariam aos filmes que eles não viram e fazer recomendações.

Os dados iniciais do problema são representados por matrizes $Y, R \in \Re^{m \times n}$. Cada entrada (i,j) da matriz Y corresponde à nota (de 1 a 5) dada pelo usuário j ao filme i, enquanto as entradas (i,j) da matriz R valem 1 se o usuário j atribuiu alguma nota ao filme i e 0 caso contrário. Quando não houve atribuição de nota a um filme por um usuário, a entrada correspondente da matriz Y é nula.

A partir disso, desejamos construir uma matriz X, em que cada linha representa um vetor $x^{(i)}$ de atributos relativos ao filme i, e uma matriz Θ , em que cada linha representa vetor $\theta^{(j)}$ de parâmetros do usuário j. Uma vez em posse dessas matrizes, é possível obter matriz $X\Theta^t$, cuja entrada (i,j) representa a nota prevista para o usuário j dar ao filme i, como em uma regressão linear. A obtenção das matrizes $X \in \Theta$ é feita através de treinamento do algoritmo de recomendação com minimização através de algoritmo de gradiente conjugado.

2.1 Documentação

Essa Seção apresenta as funções utilizadas para criação do sistema de recomendação, implementadas no arquivo *functions_recomendação.py*.

2.1.1 Função cost_fun

Função que calcula o valor da função de custo do problema e seu gradiente com relação às variáveis $x \in \theta$.

Argumentos de entrada:

variables Vetor que corresponde à concatenação das matrizes X e Θ , após serem convertidas em vetores.

Y Matriz em que a entrada (i,j) representa a nota dada pelo usuário j ao filme i.

R Matriz em que a entrada (i,j) vale 1 se o usuário j deu nota ao filme i e 0, caso contrário.

n_pars Dimensão dos vetores de atributos e parâmetros $x^{(i)}$ e $\theta^{(j)}$.

A função retorna:

J Valor da função de custo

grad Vetor que representa o gradiente da função de custo com relação aos atributos e parâmetros $x^{(i)}$ e $\theta^{(j)}$.

Inicialmente, a função reconstrói as matrizes X e Θ a partir do vetor *variables*. Em seguida, calcula o valor da função de custo J através da Equação 4 e as matrizes que representam o gradiente de J com relação a cada entrada de X e de Θ através das Equações 5 e 6. Por fim, essas matrizes são convertidas em vetor em concatenadas para gerar o vetor *grad*.

$$J = \frac{1}{2} \sum_{i,j:R(i,j)=1} \left[\left(\theta^{(j)} \right)^t x^i - y^{(i,j)} \right]^2 \tag{4}$$

$$\nabla_X^{(i,k)} = \sum_{j:R(i,j)=1} \left[\left(\theta^{(j)} \right)^t x^i - y^{(i,j)} \right] \theta^{(j,k)}$$
 (5)

$$\nabla_{\Theta}^{(j,k)} = \sum_{i:R(i,j)=1} \left[\left(\theta^{(j)} \right)^t x^i - y^{(i,j)} \right] x^{(i,k)} \tag{6}$$

2.1.2 Função normalização

Função que realiza normalização de matriz Y de notas fornecidas por usuários. Argumentos de entrada:

Y Matriz em que a entrada (i,j) representa a nota dada pelo usuário j ao filme i.

R Matriz em que a entrada (i,j) vale 1 se o usuário j deu nota ao filme i e 0, caso contrário.

A função retorna:

norm Matriz Y normalizada

media Vetor com as médias das notas dadas para cada filme

Essa função calcula a média de notas dadas para cada um dos filmes (desconsiderando, no cálculo, os usuários que não deram nota para o filme), obtendo vetor de notas médias. Em seguida, realiza-se subtração da média de cada uma das notas dadas, obtendo a matriz de notas normalizadas. Note que as entradas de *norm* correspondentes às entradas nulas de Y continuam nulas.

Em normalizações, é comum fazer a subtração da média e, em seguida, dividir pelo desvio padrão. Contudo, isso não foi feito, pois em alguns casos, há poucos usuários que deram notas ao filme, tornando o desvio padrão pouco representativo.

2.1.3 Função treinamento

Função que realiza treinamento do algoritmo.

Argumentos de entrada:

- Y Matriz em que a entrada (i,j) representa a nota dada pelo usuário j ao filme i.
- **R** Matriz em que a entrada (i,j) vale 1 se o usuário j deu nota ao filme i e 0, caso contrário.
- **n_pars** Dimensão dos vetores de atributos e parâmetros $x^{(i)}$ e $\theta^{(j)}$.
- **n_iter** Número máximo de iterações com o algoritmo de gradiente conjugado que podem ser realizadas.

A função retorna:

- **X** Matriz em que cada linha representa um vetor $x^{(i)}$ de atributos relativos ao filme i.
- Θ Matriz em que cada linha representa vetor $\theta^{(j)}$ de parâmetros do usuário j

res Objeto da biblioteca *scipy.optimize* que apresenta detalhes da otimização realizada.

A função constrói matrizes $X \in \Re^{m \times n_pars}$ e $\Theta \in \Re^{n \times n_pars}$ de entradas aleatoriamente geradas pela função rand da biblioteca numpy.random. Em seguida, ela transforma essas matrizes em vetores e os concatena, passando esses valores como valores iniciais da função minimize da biblioteca scipy.optimize que realiza minimização irrestrita da função de custo J através de algoritmo de gradiente conjugado aplicado sobre a função $cost_fun$. Por fim, a função reconstrói as matrizes X e Θ obtidas após a otimização.

2.2 Importação dos dados e treinamento

A implementação descrita na presente Seção foi feita em linguagem *python* e arquivo tipo *notebook* e pode ser encontrada no arquivo *Parte2_Recomendacao.ipynb*.

Inicialmente, importam-se as bibliotecas *numpy e pandas*, além da função *loadmat* da biblioteca *scipy.io* e das funções do arquivo *functions_recomendacao.ipynb*, descritas na Seção 2.1.

Em seguida, os dados do problema são importados. As matrizes Y e R, conforme descritas anteriormente, são importadas do arquivo *dado3.mat* e a lista de filmes do arquivo *dado4.txt*.

Antes de realizar o treinamento, uma rotina percorre todas as linhas e colunas da matriz R e informa se todos os filmes receberam ao menos uma nota e todos os usuários deram ao menos uma nota. Isso é importante, pois, caso algum filme não receba nenhuma classificação ou algum usuário não forneça nenhuma nota, é necessário alterar a matriz Y, de forma que a esse filme/usuário seja atribuído comportamento médio com relação aos demais, a fim de garantir

que o algoritmo implementado tenha um bom desempenho. Como na base de dados utilizados todos os usuários deram ao menos uma nota e todos os filmes receberam ao menos uma nota, não é necessário fazer nenhuma modificação.

Uma vez feita essa verificação, realiza-se normalização da matriz Y através da função *normalização*. Define-se a variável n_pars como o tamanho dos vetores $x^{(i)}$ e $\theta^{(j)}$ (foi utilizado valor 100) e a variável n_iter que indica o número máximo de iterações permitido ($n_iter=10000$). Por fim, o algoritmo é treinado através da função *treinamento*.

O algoritmo de otimização obteve sucesso após 8943 iterações, sem ser necessário atingir o limite de 10000 iterações previamente definido. O valor da função de custo obtido ao fim da otimização é cerca de $2,55*10^{-7}$.

2.3 Previsão das notas

A implementação descrita na presente Seção foi feita em linguagem *python* e arquivo tipo *notebook* e pode ser encontrada no arquivo *Parte2_Recomendacao.ipynb*. É uma continuação do que foi feito na Seção 2.2.

Uma vez finalizado o treinamento, calculam-se as notas previstas através da multiplicação de matrizes $X\Theta^t$ e elas são comparadas com as notas fornecidas pelos usuários nos exemplos de treinamento. Com precisão $\varepsilon = 10^{-2}$, a diferença entre todas as notas previstas e as notas dadas pelos usuários é nula, assim como o valor da função objetivo.

Com base nos resultados obtidos, combinam-se as notas previamente fornecidas pelos usuários com as notas previstas pelo sistema de recomendação (para os pares de filmes/usuários em que não existe atribuição de nota) e calculam-se as notas médias para os filmes. Os 10 filmes de maior nota média são apresentados na Tabela 1.

Classificação	ID	Filme	Nota média
1	814	Great Day in Harlem, A (1994)	10.15
2	1201	Marlene Dietrich: Shadow and Light (1996)	9.52
3	1536	Aiqing wansui (1994)	9.50
4	1189	Prefontaine (1997)	9.33
5	1398	Anna (1996)	9.24
6	1653	Entertaining Angels: The Dorothy Day Story (1996)	9.17
7	1293	Star Kid (1997)	9.17
8	1467	Saint of Fort Washington, The (1993)	9.12
9	1594	Everest (1998)	9.10
10	1122	They Made Me a Criminal (1939)	9.09

Tabela 1: Filmes de maior nota prevista

É interessante observar que as notas médias obtidas para esses filmes são todas maiores do que 9, o que é uma incoerência com o sistema de notas utilizado, que varia de 1 até 5. Porém, como o objetivo era obter os 10 filmes de notas médias mais altas, esses valores são indiferentes, além de facilitarem a ordenação. Se fosse desejado de fato prever uma nota de 1 a 5 para cada

par filme/usuário, o algoritmo teria que ser modificado ou os dados obtidos como resultados teriam que ser tratados.

Outro ponto importante a ser discutido é o fato de que a função de custo da ordem de 10^{-7} pode ser um indício de *overfitting*. Entretanto, como a proposta do projeto é realizar o treinamento sem regularização e obter os filmes de maior nota, considerando os usuários e filmes da base de dados, não há nenhum problema nesse possível *overfitting*, pois o algoritmo apresenta bom desempenho no escopo a que se presta.

3 Referências

Vídeo-aulas e *slides* pelo Professor João Batista Florindo em ocasião de oferecimento da disciplina MS960 no segundo semestre de 2020 pelo Instituto de Matemática, Estatística e Computação Científica (IMECC) da Universidade Estadual de Campinas (UNICAMP).