

# Fast Adaptive Test-Time Defense with Robust Features

Anurag Singh<sup>1</sup>, Mahalakshmi Sabanayagam<sup>2</sup> Krikamol Muandet<sup>1</sup>, Debarghya Ghoshdastidar<sup>2</sup>
<sup>1</sup>CISPA Helmholtz Center for Information Security <sup>2</sup> Technical University of Munich

## TL;DR

What is Adaptive test-time defense? Adaptive test-time defenses refer to the class of methods that improve the robustness of any trained model at **test time**.

**Challenges:**  $40 \times -400 \times$  increased inference time compared to underlying model due to additional computation or data processing while not necessarily improving the performance.

Our Contribution we develop a novel adaptive test-time defense strategy with the same inference cost as the underlying model and no additional data or model complexity.



### Robust and Non Robust Features

A trained model  $h: \mathcal{X} \to \mathcal{Y}$  is given by a **Generalized additive model (GAM)** s.t.  $h(\mathbf{x}) = \boldsymbol{\beta}^{\top} \phi(\mathbf{x})$ , where  $\phi: \mathcal{X} \to \mathcal{H}$  is a smooth  $f^n$  that maps the data into a *feature space*  $\mathcal{H}$  and  $\boldsymbol{\beta}$  are learned weights. The above form of h may represent the solution of kernel regression (with  $\mathcal{H}$  being the corresponding reproducing kernel Hilbert space) or h could be the output layer of a neural network.

**Features and their robustness.** To identify the robust component of h, we aim to approximate  $\phi$  as sum of K robust components  $(\phi_i)_{i=1}^K$ , or alternatively,  $h(\mathbf{x}) \approx \sum_{i=1}^K \boldsymbol{\beta}^\top \phi_i(\mathbf{x})$ . We refer to each  $\phi_i : \mathcal{X} \to \mathcal{H}$  as a feature. More generally, we define the set of all features as  $\mathcal{F} = \{f : \mathcal{X} \to \mathcal{H}\}$ .

**Definition 1** ( $\ell_2$ -Robustness of features). Given a distribution  $\mathcal{D}$  on  $\mathcal{X} \times \mathbb{R}^C$  and a trained model  $h(\mathbf{x}) = \beta^\top \phi(\mathbf{x})$ , we define the robustness of a feature  $f \in \mathcal{F}$  as  $s_{\mathcal{D},\beta}(f) = \mathbb{E}_{(\mathbf{x},y)\sim\mathcal{D}}\left[\inf_{||\tilde{\mathbf{x}}-\mathbf{x}||_2 \leq \Delta} y^\top \beta^\top f(\tilde{\mathbf{x}})\right]$ , while we use  $s_{\mathcal{D},\beta,c}(f) = \mathbb{E}_{(\mathbf{x},y)\sim\mathcal{D}}\left[\inf_{||\tilde{\mathbf{x}}-\mathbf{x}||_2 \leq \Delta} y_c \beta_c^\top f(\tilde{\mathbf{x}})\right]$  to specify the robustness of f with respect to the c-th class component of  $g \in \mathbb{R}^C$ , where  $g \in \{1,\dots,C\}$  and  $g \in \mathbb{R}^C$  and  $g \in \mathbb{R}^C$ 

#### Theoretical Justification of robustness score

**Theorem 1** (Lower bound on robustness). Given  $h(\mathbf{x}) = \boldsymbol{\beta}^{\top} \phi(\mathbf{x})$ . Assume that the distribution  $\mathcal{D}$  is such that  $y = h(\mathbf{x}) + \epsilon$ , where  $\epsilon \in \mathbb{R}^C$  has independent coordinates, each satisfying  $\mathbb{E}[\epsilon_c] = 0$ ,  $\mathbb{E}[\epsilon_c^2] \leq \sigma^2$  for all  $c \in \{1, \dots, C\}$ . Further, assume that the map  $\phi$  is L-Lipschitz, that is,  $\|\phi(\mathbf{x}) - \phi(\tilde{\mathbf{x}})\|_{\mathcal{H}} \leq L\|\mathbf{x} - \tilde{\mathbf{x}}\|$ . Then, for any  $f = M\phi$  and every  $c \in \{1, \dots, C\}$ ,

$$s_{\mathcal{D},\boldsymbol{\beta},c}(f) \geq \boldsymbol{\beta}_c^{\top} \boldsymbol{\Sigma} \boldsymbol{M} \boldsymbol{\beta}_c - L \Delta \|\boldsymbol{M}\|_{op} \|\boldsymbol{\beta}_c\|_{\mathcal{H}} \sqrt{\sigma^2 + \boldsymbol{\beta}_c^{\top} \boldsymbol{\Sigma} \boldsymbol{\beta}_c},$$

where  $\Sigma = \mathbb{E}_{\mathbf{x}} \left[ \phi(\mathbf{x}) \phi(\mathbf{x})^{\top} \right]$  and  $\| \mathbf{M} \|_{op}$  denotes the operator norm.

Theorem 1 suggests that if we search only over  $f \in \mathcal{F}$  that are linear transformations  $f = M^{\top} \phi$  such that  $\|M\|_{op} = 1$ , then the most robust feature is the one that maximizes the first term  $\boldsymbol{\beta}_c^{\top} \Sigma M \boldsymbol{\beta}_c$ . In particular, we restrict our search to projections onto K dimensional subspace,  $M = PP^{\top}$ , where P is the orthonormal basis for the subspace. We show that optimising over such features f corresponds to projecting onto top K eigenvectors  $\mathbf{u}$  of  $\Sigma$  sorted according to a specific *robustness score*.

**Corollary 2.** Fix any K and  $(\lambda_i, \mathbf{u}_i)_{i=1,2,...}$  denote the eigenpairs of  $\Sigma = \mathbb{E}_{\mathbf{x}} \left[ \phi(\mathbf{x}) \phi(\mathbf{x})^\top \right]$ . Consider the problem of maximizing the lower bound in Theorem 1 over all features  $f \in \mathcal{F}$  that correspond to projection of  $\phi$  onto K dimensional subspace. Then the solution is given by  $f = \tilde{\mathbf{U}}\tilde{\mathbf{U}}^\top \phi$ , where  $\tilde{\mathbf{U}}$  is the matrix of the K eigenvectors for which the robustness score  $s_c(\mathbf{u}_i) = \lambda_i (\boldsymbol{\beta}_c^\top \mathbf{u}_i)^2$  are largest.

## Experiments

| Training        | Clean  |       | $\ell_{\infty}(\epsilon = \frac{8}{255})$ |       | $\ell_2(\epsilon = 0.5)$ |       |
|-----------------|--------|-------|-------------------------------------------|-------|--------------------------|-------|
|                 | Method | +RFI  | Method                                    | +RFI  | Method                   | +RFI  |
| Standard        | 95.28  | 88.53 | 1.02                                      | 4.35  | 0.39                     | 9.73  |
| PGD             | 83.53  | 83.22 | 42.20                                     | 43.29 | 54.61                    | 55.03 |
| IAT             | 91.86  | 91.26 | 44.76                                     | 46.95 | 62.53                    | 64.31 |
| Robust CIFAR-10 | 78.69  | 78.75 | 1.30                                      | 7.01  | 9.63                     | 11.00 |
| C&W attack      | 85.11  | 84.97 | 40.01                                     | 42.56 | 55.02                    | 56.79 |

Table 1: Robust performance evaluation of RFI.  $\ell_{\infty}$  and  $\ell_{2}$  PGD attack on CIFAR-10 with Resnet-18.  $\ell_{\infty}$  attack with step size  $\epsilon/4$  and 40 iterations.  $\ell_{2}$  attack with size  $\epsilon/5$  and 100 iterations.



Figure 1: Robust Accuracy for different K and the corresponding eigenvalue profile in ascending order of all the methods.



Table 2: Evaluation of RFI for  $\ell_{\infty}$  and  $\ell_2$  PGD attack on CIFAR 10



Figure 2: NTK feature robustness for  $\lambda$  and the corresponding eigenvalue profile in ascending order.