326 Honewak 1.

1. Let
$$p = 0.301$$
 and $q = 0.699$
A) binam (10, 0.301)
 $p(2) = (10)(0.301)(0.694)^8 = 0.232361$

b)
$$P(1 \ge 20) = 1 - P(1 \le 19)$$

= $1 - \sum_{n=0}^{19} |100|(0.301)^n (0.699)^n$
= $1 - poince (100,19)$
= 0.9843830

Or, using the fact that binan distins can be approximated by Normal distin N(
$$\mu$$
, σ^2)
where $\mu = n\rho = 30.1$, $\sigma = n\rho = 31.04$

$$P(Y \ge 20) \approx P(X \ge 19.5)$$

$$= 1 - P(X = 19.5)$$

$$= 1 - P(2 \le 19.5)$$

$$= 1 - P(2 \le 2.31)$$

$$= 1 - 0.0104 \text{ by Table 4}$$

$$= 0.9896$$

C) generalisation w/
$$p = 0.699$$

 $p(8) = (0.699)^8 = 0.0569925$

d) Have
$$P(Y \leq \partial.t) = \frac{2}{\ln 3}$$
,

max order stats $P(Y_{(4)} \leq \partial.t) = (P(Y \leq \partial.t)^4)$
 $= (\frac{2}{\ln 3})^4 \sim 0.48350...$

3, 1 0.30 warginals X 2 0.35 3 0.35 0.35 0.35 0.35

AR(1)=6.30

b) E(X) = \(\times \ti

a) P(X=1 | Y=d) = p(1,2) = 0.00 = 1 = 0.120 Pyld) = 0.40 = 8 = 0.120

= 10 P(1,2) + 20 P(3,2) + 3 P(3,2) = 2.5 = 10 P(1,2) + 20 P(3,2) + 3 P(3,2) = 2.5

e) $\mu_{x} = 0.05$ by above. $\sigma_{x}^{2} = 0.30 + 4.0.35 + 9.0.35 - (2.0.3)$

 $M_{y} = \sum_{y} y \rho_{y} = 0 + 1.0.35 + 0.0.40 = 1.015$ $M_{y} = 0 + 0.35 + 3.0.46 - (1.15)$

 $f) C_{\alpha}(X_{1}) = E(XY) - M_{\alpha}M_{\gamma}$ $E(X_{1}) = 0 + 0 + 0 + 1 \cdot 1 (0.10) + 3 \cdot 1 (0.00) + 3 \cdot 1 (0.00)$ $+ 1 \cdot 3 (0.00) + 3 \cdot 3 (0.10) + 3 \cdot 2 (0.30)$ = 2.65

Cer(X, y = 2.65 - (2.05) (1.16) = 0.0736

g) E(u) = 3E/x) - 2E(y) = 3(2.85) - 2(1.15) V(u) = 3°V(x) + (-2)°V(y) + 2°3°(-2) Car(xy)

4.
$$N(50,25)$$

a) $P(X \pm 53) = P(2 \pm \frac{53-50}{5}) = P(2 \pm 0.60)$
 $= 1 - P(2 > 0.60) = 0.707$
b) $X \pm 5$ sample were dist in $N(50, \frac{37}{10})$
 $\sqrt{x} = \frac{5}{10} = 1.58$

$$P(X \leq 53-50) = P(2 \leq 1.90)$$

 $1.58 = 1 - P(7 \geq 1.90)$
 $= 0.9713$

C)
$$P(X \le M) = 0.05$$

 $P(X \le M) = 0.05$
 $P(X \le M) = 0.05$