

- Examen -

1. Se considera un problema de Cauchy

$$\begin{cases} y' = f(t, y), & t \in [0, T], \\ y(0) = y_0, \end{cases}$$
 (1)

donde $f:[0,T]\times\mathbb{R}\mapsto\mathbb{R}$ es continua y de Lispchitz en la variable y.

a) Enuncie la definición de estabilidad para un método unipaso

$$y_{k+1} = y_k + h\Phi(t_k, y_k; h), \quad k = 0, 1...$$

b) Pruebe que, si existen $\Lambda > 0$ y $h^* > 0$ tales que

$$|\Phi(t,y;h) - \Phi(t,z;h)| \le |y-z|, \quad \forall t \in [0,T], \ y,z \in \mathbb{R}, \ h \in (0,h^*],$$

entonces el método es estable.

- c) Pruebe que el método de Heun es estable.
- 2. El método de Simpson se define de la siguiente manera:

$$y_{k+1} = y_{k-1} + \int_{t_{k-1}}^{t_{k+1}} Q_2(s) ds,$$

siendo Q2 el polinomio de grado menor o igual que 2 que interpola los puntos

$$(t_{k+1}, f_{k+1}), (t_k, f_k), (t_{k-1}, f_{k+1}).$$

- a) Deduzca la expresión del método de Simpson.
- b) Estudie su estabilidad y determine su orden.
- 3. Se considera el problema de Cauchy

$$\begin{cases} y' = a + \lambda y, \\ y(0) = y_0, \end{cases}$$
 (2)

siendo $\lambda < 0$ y a, y_0 números reales arbitrarios.

a) Resuelva el problema de Cauchy y pruebe que su solución verifica

$$\lim_{t\to\infty}y(t)=-\frac{a}{\lambda}.$$

- *b*) Aplique el método de Heun al problema de Cauchy y encuentre, razonando por recurrencia, la expresión de y_k en función de y_0 .
- c) Usando la expresión hallada en el apartado anterior, pruebe que se tiene

$$\lim_{k\to\infty}y_k=-\frac{a}{\lambda}$$

si y sólo si $h\lambda$ está en la región de estabilidad del método.

4. Se considera el problema de contorno:

$$\begin{cases}
-u'' = f(x), & x \in [0,1], \\
u(0) - u'(0) = \alpha, \\
u(1) + u'(1) = \beta,
\end{cases}$$
(3)

siendo $f:[0,1] \mapsto \mathbb{R}$ una función continua y α , β dos números reales arbitrarios.

a) Pruebe que las fórmulas de derivación numérica

$$y'(x) \approx \frac{y(x+h) - y(x-h)}{2h}$$
, $y''(x) = \frac{y(x+h) - 2y(x) + y(x-h)}{h^2}$

son de orden 2.

- b) Con ayuda de las fórmulas de derivación del apartado anterior y de la técnica del nodo fantasma, proponga un esquema de diferencias finitas de segundo orden para el problema de contorno (3) usando una partición equidistante del intervalo [0,1] con N+1 puntos $\{x_0,\ldots,x_N\}$.
- c) Si es posible, escriba el sistema lineal a resolver en forma matricial AU = b de manera que A sea una matriz simétrica. ¿Es la matriz A definida positiva?

1.

a) Se dice que un método unipaso es estable si existe una constante M positiva e independiente de h verificando lo siguiente: dados $\{y_k\}_{k=0}^n, \{z_k\}_{k=0}^n, \{\delta_k\}_{k=0}^{n-1}$ tales que

$$y_{k+1} = y_k + h\Phi(t_k, y_k, h),$$
 $z_{k+1} = z_k + h\Phi(t_k, z_k, h) + \delta_k$

para todo k = 0, 1, ..., n - 1, se tiene que

$$\max_{k=0,1,\dots,n} |y_k - z_k| \le M \left(|y_0 - z_0| + \sum_{k=0}^{n-1} |\delta_k| \right)$$

b) Supongamos que existen $\Lambda > 0$ y $h^* > 0$ con

$$|\Phi(t, y, h) - \Phi(t, z, h)| \le \Lambda |y - z|,$$
 $t \in [0, T], y, z \in \mathbb{R}, h \in (0, h^*]$

Veamos que el método es estable. Sean $\{y_k\}_{k=0}^n, \{z_k\}_{k=0}^n, \{\delta_k\}_{k=0}^{n-1}$ tales que

$$y_{k+1} = y_k + h\Phi(t_k, y_k, h),$$
 $z_{k+1} = z_k + \Phi(t_k, z_k, h) + \delta_k$

para todo $k \in \{0, 1, ..., n-1\}$. Si $k \in \{1, 2, ..., n\}$,

$$\begin{split} |y_k - z_k| &= |y_{k-1} + h\Phi(t_k, y_{k-1}, h) - z_{k-1} - h\Phi(t_k, z_{k-1}, h) - \delta_k| \\ &\leq |y_{k-1} - z_{k-1}| + h|\Phi(t_k, y_{k-1}, h) - \Phi(t_k, z_{k-1}, h)| + |\delta_k| \\ &\leq |y_{k-1} - z_{k-1}| + h\Lambda|y_{k-1} - z_{k-1}| + |\delta_k| = (1 + h\Lambda)|y_{k-1} - z_{k-1}| + |\delta_k| \\ &\leq (1 + h\Lambda)^2 |y_{k-2} - z_{k-2}| + (1 + h\Lambda)|\delta_{k-1}| + |\delta_k| \\ &\leq (1 + h\Lambda)^3 |y_{k-3} - z_{k-3}| + (1 + h\Lambda)^2 |\delta_{k-2}| + (1 + h\Lambda)|\delta_{k-1}| + |\delta_k| \\ &\leq \dots \\ &\leq (1 + h\Lambda)^k |y_0 - z_0| + \sum_{i=0}^k (1 + h\Lambda)^i |\delta_{k-i}| \\ &\leq (1 + h\Lambda)^k |y_0 - z_0| + (1 + h\Lambda)^k \sum_{i=0}^k |\delta_{k-i}| = (1 + h\Lambda)^k \left(|y_0 - z_0| + \sum_{i=0}^k |\delta_i| \right) \\ &\leq (1 + h\Lambda)^k \left(|y_0 - z_0| + \sum_{i=0}^{n-1} |\delta_i| \right) \end{split}$$

Usando que $e^x \ge 1 + x$ para todo $x \in \mathbb{R}$, que $k \le n$ y que nh = T, entonces

$$|y_k - z_k| \le e^{kh\Lambda} \left(|y_0 - z_0| + \sum_{i=0}^{n-1} |\delta_i| \right) \le e^{T\Lambda} \left(|y_0 - z_0| + \sum_{i=0}^{n-1} |\delta_i| \right)$$

Para k = 0 esta desigualdad sigue siendo cierta. Por tanto,

$$\max_{k=0,1,\dots,n} |y_k-z_k| \leq e^{T\Lambda} \left(|y_0-z_0| + \sum_{k=0}^{n-1} |\delta_k| \right),$$

donde $e^{T\Lambda}$ es una constante positiva e independiente de h, concluyéndose que el método es estable.

c) El método de Heun es el método RK con tablero de Butcher

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
1 & 1 & 0 \\
\hline
& 1/2 & 1/2
\end{array}$$

En otros términos,

$$\begin{cases} y_k^* = y_k + h f(t_k, y_k) \\ y_{k+1} = y_k + \frac{h}{2} \left(f(t_k, y_k) + f(t_k + h, y_k^*) \right) \end{cases}$$

Por tanto, la función incremento del método de Heun es

$$\Phi(t, y, h) = \frac{1}{2} (f(t, y) + f(t + h, y + hf(t, y))), \qquad t \in [0, T], y \in \mathbb{R}, h \in (0, h^*]$$

Sean $y, z \in \mathbb{R}$. Entonces, usando que f es de Lipschitz en la variable y con constante de Lipschitz L > 0,

$$\begin{split} |\Phi(t,y,h) - \Phi(t,z,h)| &\leq \frac{1}{2} |f(t,y) - f(t,z)| + \frac{1}{2} |f(t+h,y+hf(t,y)) - f(t+h,z+hf(t,z))| \\ &\leq \frac{L}{2} |y-z| + \frac{L}{2} |y+hf(t,y) - z - hf(t,z)| \\ &\leq \frac{L}{2} |y-z| + \frac{L}{2} |y-z| + \frac{hL}{2} |f(t,y) - f(t,z)| \\ &\leq \frac{L}{2} |y-z| + \frac{L}{2} |y-z| + \frac{hL}{2} |y-z| = \left(L + \frac{hL}{2}\right) |y-z| \end{split}$$

Por el apartado anterior, el método es estable.

2. Véase la segunda relación de ejercicios.

3.

a) La solución general de la ecuación homogénea $y' = \lambda y$ es $y_h(t) = ce^{\lambda t}$, $c \in \mathbb{R}$. Para hallar una solución particular de la ecuación $y' = a + \lambda y$, recurrimos al método de variación de los parámetros: se busca una solución de la forma $y_p(t) = c(t)e^{\lambda t}$. Se tiene que

$$y_p(t) = c(t)e^{\lambda t}$$
 es solución de $y' = a + \lambda y \iff c'(t)e^{\lambda t} + \lambda c(t)e^{\lambda t} = a + \lambda c(t)e^{\lambda t}$
 $\iff c'(t) = ae^{-\lambda t}$

Podemos tomar, por ejemplo, $c(t)=-\frac{a}{\lambda}e^{-\lambda t}$, luego $y_p(t)=-\frac{a}{\lambda}$ y por tanto la solución general de $y'=a+\lambda y$ es $y(t)=ce^{\lambda t}-\frac{a}{\lambda}$, $c\in\mathbb{R}$. Imponiendo $y(0)=y_0$ se obtiene $c=y_0+\frac{a}{\lambda}$, luego

$$y(t) = \left(y_0 + \frac{a}{\lambda}\right)e^{\lambda t} - \frac{a}{\lambda}$$

es la única solución del problema dado, que por ser $\lambda < 0$ verifica

$$\lim_{t \to \infty} y(t) = -\frac{a}{\lambda}$$

b) El método de Heun para este problema es

$$\begin{cases} y_k^* = y_k + h(a + \lambda y_k), \\ y_{k+1} = y_k + \frac{h}{2} (a + \lambda y_k + a + \lambda y_k^*), \end{cases}$$

es decir.

$$y_{k+1} = y_k + \frac{h}{2} \left(2a + \lambda y_k + \lambda y_k + \lambda h a + \lambda^2 h y_k \right) = y_k + ah + \lambda y_k h + \frac{a\lambda}{2} h^2 + \frac{\lambda^2 y_k}{2} h^2$$

$$= \left(1 + \lambda h + \frac{\lambda^2 h^2}{2} \right) y_k + ah + \frac{a\lambda}{2} h^2$$

Razonando por recurrencia,

$$\begin{split} y_k &= \left(1 + \lambda h + \frac{\lambda^2 h^2}{2}\right) y_{k-1} + ah + \frac{a\lambda}{2} h^2 \\ &= \left(1 + \lambda h + \frac{\lambda^2 h^2}{2}\right)^2 y_{k-2} + \left(1 + \lambda h + \frac{\lambda^2 h^2}{2}\right) \left(ah + \frac{a\lambda}{2} h^2\right) + \left(ah + \frac{a\lambda}{2} h^2\right) \\ &= \dots \\ &= \left(1 + \lambda h + \frac{\lambda^2 h^2}{2}\right)^k y_0 + \left(ah + \frac{a\lambda}{2} h^2\right) \sum_{i=0}^k \left(1 + \lambda h + \frac{\lambda^2 h^2}{2}\right)^i \end{split}$$

c) Se observa que y_k tiene límite cuando $k \to \infty$ si y solo si

$$\left| 1 + \lambda h + \frac{\lambda^2 h^2}{2} \right| < 1$$

Se comprueba fácilmente que la función de estabilidad absoluta del método de Heun es

$$R(\hat{h}) = 1 + \hat{h} + \frac{\hat{h}^2}{2}$$

Se concluye que y_k tiene límite cuando $k\to\infty$ si y solo si $\lambda h\in\{\hat h\in\mathbb C\colon |R(\hat h)|<1\}=D_A$ y, en ese caso,

$$\begin{split} \lim_{k \to \infty} y_k &= \left(ah + \frac{a\lambda}{2}h^2\right) \sum_{i=0}^{\infty} \left(1 + \lambda h + \frac{\lambda^2 h^2}{2}\right)^i = \left(ah + \frac{a\lambda}{2}h^2\right) \frac{1}{1 - 1 - \lambda h - \frac{\lambda^2 h^2}{2}} \\ &= -\left(ah + \frac{a\lambda}{2}h^2\right) \frac{1}{\lambda h + \frac{\lambda^2 h^2}{2}} = -\frac{a}{\lambda} \left(h + \frac{\lambda}{2}h^2\right) \frac{1}{h + \frac{\lambda h^2}{2}} = -\frac{a}{\lambda} \end{split}$$

4. Ejercicios muy similares a este se han hecho ya unas cuantas veces.