3d Rotation with Quaternions

Jason Miller

Why Calculating Rotation in 3d is Valuable:

- Physics Simulations.
- 3d Animation.
- Navigation.
- And MUCH MORE!

Why Calculating Rotation in 3d is Valuable:

- Physics Simulations.
- 3d Animation.
- Navigation.
- And MUCH MORE!

- Rotation Around Axis.
- Gimbals.

Why They Fail: Rotation Around Axis

Left rotation

Why They Fail: Rotation Around Axis

Left rotation

Right rotation

Why They Fail: Gimbals

Normal Gimbal

Why They Fail: Gimbals

Normal Gimbal

Gimbal Lock

What we would like

Stick in ball

Complex Numbers

Complex Number Angles

Show briefly the angle formula for complex numbers

Complex Numbers

Complex Numbers

$$c_0(1)+c_1i$$

Complex Numbers

$$c_0(1)+c_1i$$

$$c_0(1) + c_1 i + c_2 j + c_3 k$$

Complex Numbers

$$c_0(1) + c_1 i$$

$$i^2 = -1$$

$$c_0(1) + c_1 i + c_2 j + c_3 k$$

Complex Numbers

$$c_0(1) + c_1 i$$

$$i^2 = -1$$

$$c_0(1) + c_1 i + c_2 j + c_3 k$$

$$i^2 = j^2 = k^2 = -1$$

Complex Numbers

$$c_0(1) + c_1 i$$

$$c_0(1) + c_1 i + c_2 j + c_3 k$$

$$i^2 = -1$$

$$i^2 = j^2 = k^2 = -1$$

The product of any 2 different complex parts gives the third and they **anti-commute**

Complex Numbers

$$c_0(1) + c_1 i$$

$$c_0(1) + c_1 i + c_2 j + c_3 k$$

$$i^2 = -1$$

$$i^2 = j^2 = k^2 = -1$$

The product of any 2 different complex parts gives the third and they **anti-commute**

$$i * j = -j * i = k$$

Times Tables

*	1	i	j	k
1	1	i	j	k
i	i	-1	k	-j
j	j	-k	-1	i
k	k	j	-i	-1

But What About Rotation

But What About Rotation

 $\mathbb{H} * i$

The Big Idea

$$i * \mathbb{H} * i$$

Rotation!

 $i * \mathbb{H} * i$

1 i graph

j k graph