## ECSE-1010 Spring 2019

**Laboratory 16**: Matlab and Data Analysis (Edit this document as needed)

Partner 1: \_\_\_\_\_Saaif Ahmed\_\_\_\_\_

Partner 2: \_\_\_\_\_John Gonzalez\_\_\_\_\_

Partner 3: \_\_\_\_\_\_ (if needed)

## Part A

Brief description of the Matlab diode plotting experiment:

To delve deeper into Matlab's capabilities of plotting and to determine the difference between a standard diode and an ideal diode and the same for an LED.

Plot of the diode current (I<sub>D</sub>) vs. the diode voltage (V<sub>D</sub>) for a standard diode. (Matlab)



Plot of the experimental  $I_D$ - $V_D$  and the calculated ID using  $I_D = I_S \left[ \exp^{\left(\frac{V_D}{nV_T}\right)} - 1 \right]$  for a standard diode. (Matlab)

Revised: 3/21/2019

Troy, New York, USA

**ECSE-1010** 



Value of  $I_S$  and n in your fitted curve.

| $I_{S}$ | 1e-8[A] |
|---------|---------|
| n       | 2       |

Plot of the diode current  $(I_D)$  vs. the diode voltage  $(V_D)$  for a LED. (Matlab)



Plot of the experimental I<sub>D</sub>-V<sub>D</sub> and the calculated ID using  $I_D = I_S \left[ \exp^{\left(\frac{V_D}{nV_T}\right)} - 1 \right]$  for a LED. Matlab)



Value of I<sub>S</sub> and n in your fitted curve.

| $I_{\mathrm{S}}$ | 1e-7[A] |
|------------------|---------|
| n                | 2       |

## **Introduction to ECSE**

| ECSE-1010                                                         | Spring 2019 |
|-------------------------------------------------------------------|-------------|
|                                                                   |             |
| Experimental and analytical plots verification by TA/InstructorHC |             |

Revised: 3/21/2019

Troy, New York, USA

ECSE-1010 Spring 2019

## Part B

Brief description of the Load Line experiment:

To reference the load of a circuit in the form of I=AV+B and to be able to analyze graphically the operational points of circuit components(diodes).

Mathematical expression for the current through the resistor in terms of the source voltage  $(V_S)$  and the resistance, R.

$$I = (-1/R)V + (V_s/R)$$

Plot of load line on the following experimental curve.



Load line plot verification by TA/Instructor. \_\_\_\_\_HC\_\_\_\_

Approximate diode (resistor) current and diode voltage using the load line analysis on the above plot.

| $I_D$            | 0.048[A] |
|------------------|----------|
| $V_{\mathrm{D}}$ | 2.7[V]   |

Spring 2019

Revised: 3/21/2019

Troy, New York, USA

**ECSE-1010** 

Plot with load line for standard diode using experimental data from part A.



Approximate diode (resistor) current and diode voltage using the load line analysis on the above plot.

| $I_D$ | 0.005[A] |
|-------|----------|
| $V_D$ | 0.67[V]  |

Plot with load line for LED using experimental data from part A.

Spring 2019

Revised: 3/21/2019

Troy, New York, USA

**ECSE-1010** 



Approximate diode (resistor) current and diode voltage using the load line analysis on the above plot.

| $I_D$ | 0.004[A] |
|-------|----------|
| $V_D$ | 0.8[V]   |