

Curso Preparatorio Lógica de Programación y Laboratorio

Tecnología en Desarrollo de Software

www.itm.edu.co

Proposición

Es un enunciado o frase a la cual puede asignársele un valor de verdad: verdadero (1) o falso (0).

No puede ser verdadera y falsa al mismo tiempo (Principio de No Contradicción).

Proposición

Toda proposición o es verdadera o es falsa, nunca ocurre un tercer caso (Principio del Tercero Excluido).

El valor lógico de una proposición es indicado por:

- Verdadero: V, 1, true
- Falso: F, O, false

Ejemplos de Proposiciones

- 15 es divisible por 8
- 4 es un número primo
- Tres más cuatro es nueve
- Lima es la capital de Perú
- 2+3=5

NO es una proposición aquella expresión que no es declarativa o que no se puede decir si es falsa o verdadera.

- ¿Qué hora es?
- Lea esto con atención
- x + 1 = 2
- Mañana lloverá

Representación Simbólica

Para denotar las proposiciones se usan letras y se expresan de la siguiente forma:

p: "11 es un número primo"

q: "Sarah es inteligente"

r: "Bogotá es la capital de Colombia"

s: "Lima es la capital de Perú"

t: "2+3=6"

u: "5-1=4"

Clases de Proposiciones

Las proposiciones pueden ser **simples** o **compuestas**. Se pueden relacionar diferentes proposiciones simples para formar una compuesta.

- o Hoy es martes y la temperatura es de 21º C
- Si no llueve hoy entonces voy a la clase de lógica
- No es cierto que Juan perdió el examen
- Colombia perdió contra Argentina y no clasificó a la semifinal
- Javier perdió Lógica O Cálculo

Operadores o Conectores Lógicos

Son usados para formar nuevas proposiciones (compuestas) a partir de otras proposiciones.

- Negación (¬)
- Conjunción (∧)
- Disyunción (∨)
- O-exclusivo (⊕)
- Implicación (→)
- Doble implicación (↔)

Lógica Proposicional Negación -- NOT (~,¬, ')

Para negar una proposición simple se emplea uno de los símbolos, de tal forma que ¬p - p' se lee no p o p negado.

Proposición	Negación
p: "Bogotá es la capital de	−p: "Bogotá no es la
Colombia"	capital de Colombia"
p:"El idioma oficial en	¬p: "El idioma oficial en
Colombia es el inglés"	Colombia no es el inglés"

Negación -- NOT (¬,')

Tabla de Verdad:

p	p'
0	1
1	0

Conjunción -- AND (A, .)

Proposición compuesta cuyo valor lógico es verdadero cuando todas las proposiciones simples son verdaderas.

р	q	p∧q
"Bogotá es la capital de Colombia"	"1+1=2"	"Bogotá es la capital de Colombia" y "1+1=2"
"1+1=2"	"El idioma oficial en Colombia es el inglés"	"1+1=2" y "El idioma oficial en Colombia es el inglés"
"El idioma oficial en Colombia es el inglés"	"1+1=2"	"El idioma oficial en Colombia es el inglés" y "1+1=2"
"El idioma oficial en Colombia es el inglés	"1+1=7"	"El idioma oficial en Colombia es el inglés" y "1+1=7"

Operadores Lógicos Conjunción -- AND (\Lambda, .)

Tabla de Verdad:

p	q	p.q
0	0	0
0	1	0
1	0	0
1	1	1

Conjunción -- AND (A, .)

Hacer la Tabla de Verdad cuando se tienen tres proposiciones.

Conjunción -- AND (A, .)

p	q	r	рлдлг
1	1	1	1
1	1	0	0
1	0	1	0
1	0	0	0
0	1	1	0
0	1	0	0
0	0	1	0
0	0	0	0

Operadores Lógicos Disyunción -- OR (v, +)

Proposición compuesta cuyo valor lógico es verdadero cuando al menos una de las proposiciones es verdadera.

Р	q	p∨q
"Bogotá es la capital de Colombia"	"1+1=2"	"Bogotá es la capital de Colombia" o "1+1=2"
"1+1=2"	"El idioma oficial en Colombia es el inglés"	"1+1=2" o "El idioma oficial en Colombia es el inglés"
"El idioma oficial en Colombia es el inglés"	"1+1=2"	"El idioma oficial en Colombia es el inglés" o "1+1=2"
"El idioma oficial en Colombia es el inglés	"1+1=7"	"El idioma oficial en Colombia es el inglés" o "1+1=7"

Operadores Lógicos Disyunción -- OR (v, +)

Tabla de Verdad:

p	q	p + q
0	0	0
0	1	1
1	0	1
1	1	1

Operadores Lógicos Disyunción Exclusiva -- XOR (

- OHamlet fue escrito o en 1601 o en 1688.
- Sarah quiere o a Oscar o a Juan.
- oEn su plato de entrada puede tomar o sopa o ensalada.

Disyunción Exclusiva -- XOR ()

Es verdadera cuando los operandos son opuestos.

Tabla de Verdad:

p	q	$p \oplus q$
0	0	0
0	1	1
1	0	1
1	1	0

Operadores Lógicos Implicación (->)

- Si el jueves hay paro entonces perderemos clase.
- Si pierdo los parciales entonces perderé Cálculo.
- Si me queda Lógica en 2.9 entonces la profesora no me pasa.

Implicación (→)

En la implicación el primer término se denomina antecedente o hipótesis y el segundo consecuente o tesis. Esta operación no es conmutativa.

Solo es falso cuando el antecedente es verdadero y el consecuente falso.

Tabla de Verdad:

p	q	$p \rightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

Implicación (→)

- Si el antecedente entonces el consecuente
 - El antecedente es *condición suficiente* para la ocurrencia del consecuente
 - El consecuente es *condición necesaria* para la ocurrencia del antecedente
- Ejemplo:
 - Se es Juez entonces es abogado
 - El hecho de ser juez es suficiente para ser abogado
 - Para alguien ser juez es necesario que sea abogado, pero no es suficiente.

Doble Implicación (↔)

- Paso el curso si, y solo si, gano el examen
- Puede tomar el postre si, y solo si, acabas tu comida

Doble Implicación (↔)

Paso el curso si, y solo si, gano el examen

p: "paso el curso"

q: "gano el examen

$$p \to q$$
$$q \to p$$

 $p\leftrightarrow q$, es lo mismo que, $(p\rightarrow q)\land (q\rightarrow p)$

Doble Implicación (↔)

Es verdadera cuando todos los operandos son iguales.

p	q	$p \leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

Conectivo	Significado	Proposición Compuesta	Nombre en lógica
^	У	p \(\q	Conjunción
V	0	p ∨ q	Disyunción
一	No	¬ p	Negación
\rightarrow	si entonces	$p \rightarrow q$	Condicional
\leftrightarrow	si y solo si	$p \leftrightarrow q$	Bicondicional

Hacia una era de **Universidad y** Humania ad

Tablas de verdad

Operadores Lógicos

V (o) Disyunción

р	q	pvq
V	V	
V	F	
F	٧	
F	F	

Λ(y) Conjunción

р	q	p ^ q
V	V	
V	F	
F	V	
F	F	

~(Negación)

р	~p
V	
F	

Referencias

- Material curso Programación en Ingeniería del profesor Germán
 Augusto Osrio. Universidad Nacional de Colombia Sede Manizales
- http://eisc.univalle.edu.co/~oscarbed/MD/01-LogicaProposicional.pdf
- http://www.evirtual.unsl.edu.ar/repositorio/VANE/2014/clase4-bio.pdf

VARIABLES

Tecnología en Desarrollo de Software

www.itm.edu.co

¿Qué es una Variable?

Es un campo de memoria al que se le puede cambiar su contenido cuantas veces sea necesario

Para usar una variable primero se debe definir el tipo de dato

Es un atributo de los datos que indica al programador y al compilador sobre la clase o naturaleza de datos que se va a manejar.

Tipos de Datos

NUMÉRICOS

a) Enteros:

Naturales (-5-,-4,-3, 1,2,4,6) (Positivos y negativos)

b) Flotantes o reales:

Decimales y notación científica

Tipos de Datos

NO NUMÉRICOS

- a) Alfanuméricos: Sirven para representar y manejar datos como nombres, direcciones, etc.
- b) Lógicos: Solo pueden tener dos valores (verdadero o falso), y son el resultado de una comparación.

Tipos de Datos

Se pueden clasificar en dos grupos:

- ✓ Simples
 - ✓ Numéricos
 - Entero
 - Real
 - ✓ Caracter y Cadena (Alfanumérico)
 - √ Lógicos
 - √ Fecha (d/M/a)
 - ✓ Otros más...

- **✓** Estructurados
 - ✓ Arreglos
 - Unidimensionales (Vectores)
 - Bidimensionales (Matrices)
 - Otras dimensiones
 - ✓ Pilas
 - ✓ Colas
 - ✓ Arboles
 - ✓ Archivos
 - ✓ Otros más...

Identificadores

Definición

Es el nombre que se le da a un elemento de un algoritmo (o programa).

Identificadores

> Reglas para nombrar un identificador

Se debe de tener en cuenta que todo identificador debe cumplir unas reglas de sintaxis.

- 1. Consta de uno o más caracteres.
- 2. El **primer carácter debe ser una letra** o el carácter subrayado (_), mientras que, todos los demás pueden ser letras, dígitos o el carácter subrayado (_). Las letras pueden ser minúsculas o mayúsculas del alfabeto.
- 3. **No pueden existir dos identificadores iguales**, es decir, dos elementos de un algoritmo no pueden nombrarse de la misma forma. Lo cual no quiere decir que un identificador no pueda aparecer más de una vez en un algoritmo.
- 4. No se permite espacios en blanco.

Identificadores

Palabras Reservadas

Son identificadores reservados **predefinidos** que tienen un significado especial y no se pueden utilizar como identificadores en sus algoritmos y programas.

Cadena, real, lógico, entero, vacio, clase, método, principal, si, entonces, fin, para, hacer, mientras, caso, variable, constante, const, publico, privado, bit, byte, verdadero, falso, nuevo, ir, retorne... *y otras más*.

Variable y Constante

Son Identificadores que reservan espacios en la memoria.

Como su nombre indica, puede cambiar de contenido/valor a lo largo de la ejecución de un programa.

- Como su nombre indica, no puede cambiar de contenido/valor a lo largo de la ejecución de un programa.
- Se debe declarar e inicializar antes de ser usada.
- Si se intenta cambiar de valor, inmediatamente muestra un mensaje de error.
- Se utiliza la palabra reservada <u>Const</u> antes de su tipo de dato.

Variables

Permite almacenar de forma **temporal** un valor que puede cambiar durante la ejecución del algoritmo. Toda variable tiene un nombre que sirve para identificarla.

Ejemplo: prom, calf1, calf2, calf3.

Variables

a = 7

b = 14

a = a + b

b = a

a = 2

b = 3

Qué valores quedan almacenados en las variables a y b?

Qué valores quedan almacenados en las variables a, b, c y d ?

PseInt

Algoritmo variables

Definir a,b,c,d Como Entero

a<-5

b<-18

c<-15

d<-25

a<-a+10

b<-b+5-c

c<-c+4+b

d<-d+b+a

a<-a+1

b<-b+c

c<-b+c

d<-b+b

Escribir a

Escribir b

Escribir c

Escribir d

FinAlgoritmo

Constantes

Son datos numéricos o alfanuméricos que contienen un valor y que **no cambia** durante la ejecución del algoritmo.

Ejemplo: PI=3,1416

Operadores y Expresiones

www.itm.edu.co

Símbolos que permiten manipular los valores de variables y/o constantes.

Universitaria Reacreditada en Alta Calidad Operadores

Operadores matemáticos

- 1) ^ (Potenciación)
- 2) * / (Multiplicación y División)
- 3) + (Suma y Resta)
- 4) % mod (Residuo)

Los operadores con igual nivel de prioridad se evalúan de izquierda a derecha

Operadores asignación

= ó ←

Sirve para recuperar o guardar los valores obtenidos al realizarse o ejecutarse una expresión.

Operadores lógicos

AND (Y): Se deben cumplir todas las condiciones

OR (O): Se debe cumplir una de las condiciones

NOT (NO): Niega el valor de la condición

- •Son empleados para comparar dos valores (falso y verdadero).
- •Su resultado produce valores como verdadero y falso.
- •Los tres tienen el mismo nivel de prioridad.

Operadores y Expresiones

Clasificación

- ✓ Aritméticos
- ✓ Lógicos
- ✓ Relacionales
- ✓ Asignación
- ✓ Entrada y Salida ➤ Entrada

Operadores

+, -, *, /, (** ó ^), Mod

 $V(o, disy), \Lambda(y, conj), \sim (negación)$

>, <, >=, <=, ≠, ==

=, ←

Lea

Salida Muestre,

Imprima o Escriba

Prioridad entre los Operadores

1) Matemáticos

2) Relacionales

3) Lógicos

4) De asignación

Siempre se ejecutan de izquierda a derecha en caso de haber dos ó más operadores con el mismo nivel de prioridad

Prioridad/Jerarquía de Operadores

- 1. ()
- 2. **
- 3. *, /, Mod, ~
- 4. +, -, ∧
- 5. >, <, >=, <=, \neq , \lor , == (igual que)
- 6. ← (Asignación)

Expresiones

Es un conjunto de constantes, variables, operadores con lo que se realizan las operaciones y permite obtener un resultado.

Ejemplo:

resultado \leftarrow a*(2*b+5)/c

Ejercicio

a=10

b=5

c = 10

a=a+b-5

b=a+b-5

c=a+b-5

a=a+5*b/2

b=a+5*b/2

c=a+5*b/2

¿Qué valores quedan en las variables a,b y c?

Hacia una era de **Universidad y** Jumanio ad

Expresiones Algebraicas a Algorítmicas

Convertir las siguientes expresiones:

$$2x^3 + \frac{5}{3}x - 7y^4 - \frac{\sqrt{3}}{2}$$

$$\frac{a^2 b^3}{c^4} \sqrt[4]{\frac{a^{14} b^{15}}{c^9}}$$

$$\sqrt{\frac{\sqrt[4]{ab^2}\sqrt[3]{b^5}}{c^{-2}b^2}}$$

