1. VC-dimension

Suppose we have an infinite collection of sets \mathcal{F} . Take n many of those sets. They generate a boolean algebra. Count the number of atoms in it. There can be at most 2^n atoms, though depending on the collection there may be much less. For a given n, out of all choices of n sets, record the highest possible number of atoms generated. We define that to be a shatter function.

Definition 1.1.

 $\pi_{\mathcal{F}}(n) = \max \{ \# \text{ of atoms in boolean algebra generated by } S \mid S \subset \mathcal{F} \text{ and } |S| = n \}$

Example 1.2. (1) Let \mathcal{F} be a set of lines on a plane. Then

$$\pi_{\mathcal{F}}(n) = n(n+1)/2 + 1$$

(2) Let \mathcal{F} be a set of disks on a plane. Then

$$\pi_{\mathcal{F}}(n) = n^2 - n + 2$$

(3) Let \mathcal{F} be a set of balls in \mathbb{R}^3 . Then

$$\pi_{\mathcal{F}}(n) = n(n^2 - 3n + 8)/3$$

(4) Let \mathcal{F} be a set of intervals on a line. Then

$$\pi_{\mathcal{F}}(n) = 2n$$

(5) Let \mathcal{F} be a set of half-planes. Then

$$\pi_{\mathcal{F}}(n) = n(n+1)/2 + 1$$

(6) Let \mathcal{F} be a collection of finite subsets of \mathbb{N} . Then

$$\pi_{\mathcal{F}}(n) = 2^n$$

(7) Let \mathcal{F} be a collection of polygons in a plane. Then

$$\pi_{\mathcal{F}}(n) = 2^n$$

Theorem 1.3 (Sauer-Shelah). Shatter function is either 2^n or bounded by a polynomial.

Definition 1.4. Families of sets with polynomially bounded shatter functions are said to have a finite VC-dimension.

Definition 1.5. Suppose \mathcal{F} has a finite VC-dimension. Let k be the smallest real such that

$$\pi_{\mathcal{F}}(n) = O(n^k)$$

We define such k to be the vc-density of \mathcal{F} .

2. Model Theory

Consider a structure with a language

$$(\mathbb{R}, 0, 1, +, \cdot, \leq)$$

We work with subsets of the underlying set definable by first-order formulas. Those are called definable sets.

$$\phi(x) = 5 \le x \le 7.7 \lor x \le 0$$

$$\psi(x) = \exists y \ y \cdot y = x$$

$$\gamma(x) = x \cdot x \cdot x \cdot x = 2$$

 $\phi(x)$ defines the set $[5,7.7] \cup (-\infty,0]$ in the structure above. $\psi(x)$ defines the set $[0, \infty)$ in the structure above.

- (1) in (\mathbb{Q},\cdot) $\gamma(x)$ defines an empty subset
- (2) in (\mathbb{R},\cdot) $\gamma(x)$ defines a subset with two elements
- (3) in (\mathbb{C},\cdot) $\gamma(x)$ defines a subset with four elements
- (4) in (\mathbb{H},\cdot) $\gamma(x)$ defines an infinite subset

$$\theta(x) = \forall y \exists z \ x \le z \le y$$

- (1) in (\mathbb{Q}, \leq) $\theta(x)$ defines an empty subset
- (2) in (\mathbb{N}, \leq) $\theta(x)$ defines an empty subset (3) in $(\mathbb{Q}^{\geq 0}, \leq)$ $\theta(x)$ defines the set $\{0\}$

Definition 2.1. for a formula $\phi(x_1 \dots x_n, y_1, \dots y_n)$ we can plug in elements of our structure as parameters in places of y variables. This gives us a collection of definable sets.

Example 2.2.

$$\phi(x_1, x_2, y_1, y_2, y_3) = (x_1 - y_1) \cdot (x_1 - y_1) + (x_2 - y_2) \cdot (x_2 - y_2) \le y_3 \cdot y_3$$