Color

- Result of interaction between physical light in the environment and our visual system
- Psychological property of our visual experiences when we look at objects and lights, not a physical property of those objects or lights
- Checker Shadow Illusion

- Possible Explanations
 - Simultaneous contrast
 - Reflectance edges **VS** Illumination edges
- There is no simple functional description for the perceived color of all lights under all viewing conditions
 - Helpful Constraint: Consider only physical spectra with normal distributions

- The Physics of Light
 - Example of the reflectance spectra of surfaces

Some examples of the reflectance spectra of surfaces

The Eye

- Ratio of L to M to S cones: Approx. 10:5:1
- Almost no S cones in the center of the fovea

Linear Color Spaces

- How to compute the weights of the primaries to match any spectral signal?
 - Given: A choice of three primaries and a target color signal
 - Find: Weights of the primaries needed to match the color signal

- Also need to specify **matching functions**
 - o The amount of each primary needed to match a monochromatic(단색의) light source at each wavelength

RGB primaries $p_1 = 645.2 \text{ nm}$ $p_2 = 525.3 \text{ nm}$ $p_3 = 444.4 \text{ nm}$

- RGB 모델
 - ㅇ 길이가 1인 정육면체로 색을 표현

- ㅇ 영상 표현
 - = f_r , f_{qr} f_b 의 세 채널로 표현

- HSI 모델
 - ㅇ 이중 콘으로 색을 표현

그림 2-45 HSI 컬러 모델

Nonlinear Color Spaces : HSV

- Perceptually meaningful dimensions : **H**ue, **S**aturation, **V**alue(Intensity)
- RGB cube on its vertex(꼭지점)

컬러 영상 처리

• 가장 단순한 방법 : 세 채널을 독립적으로 처리

그림 2-46 RGB 영상에 가우시만 스무딩(σ=2.0)을 적용한 결과

Uses of Color in CV

• Color histograms for **image matching**

Multicolr

• Image Segmentation

• Skin Detection

• Robot Soccer

•

