Problem Set 7

You are strongly encouraged to solve the following exercises before next week's tutorial:

- Starting on page 362 (end of Chapter 9): 12 (note that the test is a GLRT and not an LRT as stated in the question), 13 (a-c), 23, 26 (a-e, use "greater than or equal to" instead of "less than or equal to" in (a)) and 28.
- Starting on page 459 (end of Chapter 11): 1 (d-g), 11 and 21 (a, also test the assumption that the variances of the two groups are equal at the 5% level).

Additional Exercise:

Let $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$, and consider the problem of testing

$$\begin{cases} \mathcal{H}_0 : \sigma^2 = \sigma_0^2 \\ \\ \mathcal{H}_1 : \sigma^2 \neq \sigma_0^2 \end{cases}$$

at level α .

- (a) Calculate the generalized likelihood ratio statistic $\Lambda(\underline{X})$.
- (b) Denote $\mathcal{X}^2 = \frac{1}{\sigma_0^2} \sum_{i=1}^n (X_i \overline{X})^2$. Express $\Lambda(\underline{X})$ in terms of \mathcal{X}^2 .
- (c) Show that Λ , as a function of \mathcal{X}^2 , has a single minimum. Conclude that $\Lambda \geqslant c \iff \mathcal{X}^2 \leqslant c_1 \text{ or } \mathcal{X}^2 \geqslant c_2 \text{ for some constants } c_1 \text{ and } c_2.$
- (d) What is the distribution of \mathcal{X}^2 under \mathcal{H}_0 ? Find a test at level α .

Solution:

(a) The likelihood is of course

$$\mathcal{L}(\mu, \sigma^2) = (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2\right\},$$

and under no constrains, the MLEs are $\hat{\mu} = \overline{X}$ and $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$, hence

$$\mathcal{L}(\widehat{\mu},\widehat{\sigma}^2) = (2\pi e \widehat{\sigma}^2)^{-n/2}.$$

Under \mathcal{H}_0 , the MLE for μ remains unchanged, and obviously $\hat{\sigma}_0^2 = \sigma_0^2$, hence

$$\mathcal{L}(\widehat{\mu}_0, \widehat{\sigma}_0^2) = \left(2\pi\sigma_0^2\right)^{-n/2} \exp\left\{-\frac{1}{2\sigma_0^2} \sum_{i=1}^n (X_i - \overline{X})^2\right\}.$$

Finally,

$$\Lambda(\underline{X}) = \frac{\mathcal{L}(\widehat{\mu}, \widehat{\sigma}^2)}{\mathcal{L}(\widehat{\mu}_0, \widehat{\sigma}_0^2)} = \left(\frac{\sigma_0^2}{e\,\widehat{\sigma}^2}\right)^{n/2} \exp\left\{\frac{1}{2\sigma_0^2} \sum_{i=1}^n (X_i - \overline{X})^2\right\}.$$

(b) Since $\hat{\sigma}^2 = \frac{\sigma_0^2 \mathcal{X}^2}{n}$, we can rewrite

$$\Lambda = \left(\frac{n}{\mathcal{X}^2}\right)^{n/2} \exp\left\{\frac{\mathcal{X}^2 - n}{2}\right\}.$$

(c) Write $\Lambda(t) = n^{n/2} t^{-n/2} e^{\frac{t-n}{2}}$, then it is easy to verify that

$$\lim_{t \to 0} \Lambda(t) = \lim_{t \to \infty} \Lambda(t) = \infty \tag{1}$$

why is this: find the shape of distribution of Lambda

and that

$$\Lambda'(t) = \frac{n^{n/2}}{2} t^{-\frac{n+1}{2}} (t-n) e^{\frac{t-n}{2}}.$$

The function then has a single extremum at t = n, and using (1) we know that its shape is as in Figure 1. From the figure it becomes clear that the rejection region of the GLRT

Figure 1: Λ as a function of \mathcal{X}^2 .

is

$$\mathcal{C} = \left\{ \Lambda(\underline{X}) \geqslant c \right\} = \left\{ \mathcal{X}^2 \leqslant c_1 \right\} \bigcup \left\{ \mathcal{X}^2 \geqslant c_2 \right\}.$$

(d) Clearly $\chi^2 \stackrel{\mathcal{H}_0}{\sim} \chi^2_{n-1}$, hence a rejection region of a test at level α would be –

n-1 not n

$$\mathcal{C} = \left\{ \mathcal{X}^2 \leqslant \chi^2_{n-1,\alpha/2} \right\} \bigcup \left\{ \mathcal{X}^2 \geqslant \chi^2_{n-1,1-\alpha/2} \right\}.$$