

Ensemble methods – Bagging & Boosting

Andreas Gudahl Tufte, Saygin Ileri, Niclas Flehmig

Overview

- Bagging
- Boosting
- R Showdown
- QPros & Cons
- • Outing Example

Motivation

We are better together

It's huge. I guess 300.000.

How many people live in Trondheim?

So, it is 183.333

"weak" estimator = better than random guess

Ensemble learning

Combine predictions of several base / "weak" estimators to increase accuracy (better than a random guess)

Aggregation (Regression) and Voting (Classification)

Statistically

If we average over several good models we find a good approximation of the best

Computationally

- Optimization often gets stucked in local optima, often not solveable
- Starting from different points and getting different local optima may provide a better optimization

Representational

True model cannot be represented by one model but by combining several ones

A figure helps with the explanation

H = space of "good" models

h_i = "good" models that we found

f = best model

Bagging

Bagging

Bagging = Bootstrapping + Aggregating

Work great for **unstable procedures** (=small changes in data largely affect outcome of model)

Run in parallel

Outcomes of model are equally weighted in final prediction

Bagging is **NEVER destructive** either not effective or improves the estimation in terms of variance

Perform **bootstrapping** to create subsets

Run all subsets in **parallel** with models

Aggregate all predictions / vote on final prediction

Congratulations you got a good model!

How does it look like?

Boosting

Take wrong predictions and increase probability to be picked in the next round

Next step model focuses on misclassified points

Sequential / hierarchy structure

Weighted average on final prediction (misclassification rate to determine strength of vote)

Run a model on a dataset

Re-configure the dataset based on the misclassification of the model

Run the model on the **new weighted dataset**

Stop the process after some time (e.g. iterations, error threshold) & aggregate estimates

Congratulations you got a good model!

Show me some example!

Showdown

Boosting uses same dataset, Bagging uses bootstrapping subsets.

Boosting reduces bias of model, Bagging not.

Bagging works in parallel while Boosting is sequential.

Boosting outperforms **Bagging** on accuracy.

Boosting profits from an increasing number of models while Bagging stagnate relatively fast.

Pros&Cons

Pros&Cons

May increase accuracy

Reduce variance / avoid overfitting

Use simple models to create great results

Does not work well on stable model

May exclude data while **Boosting**

© Coding example

References

Look it up

Ensemble Learning:

- https://scikit-learn.org/stable/modules/ensemble.html#b1996
- https://web.engr.oregonstate.edu/~tgd/publications/mcs-ensembles.pdf
- https://machinelearningmastery.com/ensemble-methods-for-deep-learning-neural-networks/

Bagging:

- https://machinelearningmastery.com/bagging-and-random-forest-ensemble-algorithms-for-machine-learning/
- https://link.springer.com/article/10.1023/A:1018054314350#article-info

Boosting:

- https://www.stat.berkeley.edu/~breiman/arcing-the-edge.pdf
- https://cseweb.ucsd.edu/~yfreund/papers/boostingexperiments.pdf

Both:

https://arxiv.org/pdf/1905.12787

