Une fonction mesurable dont la réciproque n'est pas mesurable

Le but de cet exercice est de construire un espace mesurable (X, \mathcal{T}) et une application bijective $f:(X, \mathcal{T}) \to (X, \mathcal{T})$ mesurable, mais dont la réciproque f^{-1} n'est pas mesurable. Pour cela, on pose $X = \mathbb{Z}$ et \mathcal{T} est l'ensemble des parties A de \mathbb{Z} ayant la propriété suivante : pour tout entier $n \geq 1$, $2n \in A$ si et seulement si $2n + 1 \in A$.

- 1. Donner des exemples d'éléments de T.
- 2. Montrer que \mathcal{T} est une tribu.
- 3. Trouver une fonction f bijective mesurable dont f^{-1} n'est pas mesurable.
- 1. Les parties $\{0\}$, \mathbb{Z} et \emptyset conviennent.
- 2. On vérifie les trois propriétés de la définition d'une tribu. L'ensemble vide est bien un élément de \mathcal{T} . L'ensemble \mathcal{T} est stable par réunion dénombrable. En effet soit $(A_n)_{n\in\mathbb{N}}$ une famille d'éléments de \mathcal{T} , on a pour tout $n\geq 1$,

$$2n \in \bigcup_{n \in \mathbb{N}} A_n \iff \exists i \in \mathbb{N}, 2n \in A_i \iff \exists i \in \mathbb{N}, 2n+1 \in A_i \iff 2n+1 \in \bigcup_{n \in \mathbb{N}} A_n$$

D'où la stabilité par réunion dénombrable. Il nous reste à vérifier la stabilité par passage au complémentaire. Soit $A \in \mathcal{T}$, on a pour tout $n \ge 1$,

$$2n \in A^c \iff 2n \notin A \iff 2n+1 \notin A \iff 2n+1 \in A^c$$

D'où la stabilité par passage au complémentaire. En conclusion, \mathcal{T} est une tribu.

3. On considère $f: \mathbb{Z} \to \mathbb{Z}, n \mapsto n+2$. Il est clair que f est une application bijective. Montrons que f est mesurable, en effet soit $B \in \mathcal{T}$, on a pour tout $n \ge 1$,

$$2n \in f^{-1}(B) \iff f(2n) \in B \iff 2n+2 \in B \iff 2(n+1) \in B \iff 2n+3 \in B \iff f(2n+1) \in B$$

Ce qui est équivalent à que $2n+1 \in f^{-1}(B)$. D'où $f^{-1}(B) \in \mathcal{T}$. Donc f est mesurable. Pour montrer que f^{-1} n'est pas mesurable, il suffit de trouver un élément A de \mathcal{T} tel que $f(A) \notin \mathcal{T}$. Prenons par exemple $A = \{0\}$, on a $f(A) = \{2\} \notin \mathcal{T}$.