

Objetivo del trabajo

Explicar y pronosticar el número de victorias de un equipo de Grandes Ligas en una temporada a partir de múltiples variables consideradas de forma simultánea.

El modelo tendrá la forma general:

$$W_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \varepsilon_i,$$

Donde X1, X2, X3 representan predictores de desempeño ofensivo y defensivo (RunDiff, ERA, HR).

Los objetivos específicos son:

- (i) cuantificar los efectos marginales de cada predictor sobre W;
- (ii) evaluar su significancia estadística y la bondad de ajuste del modelo; y
- (iii) generar pronósticos con intervalos de predicción para nuevas observaciones.

Justificación

Se adopta una especificación múltiple porque permite estimar el efecto parcial de cada variable sobre W controlando por las demás, reduciendo el sesgo por omisión inherente a modelos univariados.

Diferencia de carreras (RunDiff = R - RA)

ERA (Earned Run Average)

Jonrones (HR)

Refleja la solidez ofensiva y defensiva combinada; se espera una relación positiva con las victorias Mide la calidad del pitcheo, donde un menor valor debería asociarse con más victorias (relación negativa). Indicador clave del poder ofensivo; se espera una relación positiva con las victorias

Fuente

Lahman 1871-2024, Society for American Baseball Research (SABR)

Filtrar

Ligas Americana (AL) y Nacional (NL)periodo 2000-2019

Variables principales

W, L, G, R, RA, ERA, HR y derivada (RunDiff).

Dataset Final

600 observaciones (30 equipos por temporada durante 20 años),

Selección de variables

Dependientes

Independientes

W (victorias por temporada).

RunDiff, ERA, HR

Estadísticas descriptivas

Variable	Count	Mean	Median	Mode	Std	Var	Min	Q1	Q3	IQR	Max
W	600	80.97	81.00	86.00	11.79	138.92	43.00	72.00	90.00	18.00	116.00
RunDiff	600	0.00	2.00	54.00	111.11	12344.79	-337.00	-87.00	81.25	168.25	300.00
ERA	600	4.25	4.21	4.01	0.53	0.29	2.94	3.86	4.60	0.74	5.71
HR	600	173.47	170.00	161.00	36.87	1359.12	91.00	148.00	199.00	51.00	307.00
R	600	740.67	735.00	735.00	83.21	6924.21	513.00	684.00	795.25	111.25	978.00
RA	600	740.67	733.00	715.00	88.93	7909.25	525.00	676.75	804.00	127.25	981.00
G	600	161.96	162.00	162.00	0.31	0.10	161.00	162.00	162.00	0.00	163.00
L	600	80.97	80.50	76.00	11.76	138.34	46.00	72.00	90.00	18.00	119.00

Histogramas

Boxplots& Outliers

Dispersión:
W
vs.
predictores

Correlación de W con variables explicativas

Variable	Pearson r	p (Pearson)	Spearman ρ	p (Spearman)	N
RunDiff	0.9395	0.0000	0.9398	0.0000	600
$^{ m HR}$	0.3920	0.0000	0.3853	0.0000	600
ERA	-0.6554	0.0000	-0.6575	0.0000	600

Modelo de regresión múltiple

 $W_i = \beta_0 + \beta_1 \operatorname{RunDiff}_i + \beta_2 \operatorname{ERA}_i + \beta_3 \operatorname{HR}_i + \varepsilon_i,$

Resultados

Variable	\hat{eta}	p-valor	$\rm IC95\%$ inf	$\rm IC95\%sup$
Constante	86.015950	0.000000	82.550769	89.481130
RunDiff	0.091675	0.000000	0.086527	0.096823
ERA	-1.824850	0.000288	-2.807436	-0.842265
HR	0.015600	0.008514	0.003994	0.027206

Bondad de ajuste y desempeño

Medida	Valor	<i>p</i> -valor	
R^2	0.885314		
R^2 ajustado	0.884737		
Estadístico F	1533.603	0.000000	
AIC	3370.731		
BIC	3388.319		
Observaciones (N)	600		
RMSE	3.988		
MAE	3.177		
Durbin-Watson	1.789		
Omnibus (normalidad)	4.013	0.134	
Jarque-Bera	3.840	0.147	

Rainbow **p=0.334**; RESET **p=0.053**

Breusch-Pagan p=0.26, White p=0.38.

Normalidad residuos

VIF RunDiff≈3.17, ERA≈2.68, HR≈1.78

Shapiro-Wilk p=0.20, Jarque-Bera p=0.15.

Partial regression (added-variable) - W ~ RunDiff + ERA + HR

Pronóstico:

W observado (test)

Pronóstico:

Train **2000–2016 (510)**;

Test 2017–2019 (90)

Mejor modelo: el múltiple

(RunDiff+ERA+HR).

Modelo	Split	MSE	RMSE	MAE	N
Best: W \sim RunDiff + ERA + HR	Train (2000-2016)	15.98	3.998	3.205	510
Best: W \sim RunDiff + ERA + HR	Test (2017–2019)	15.72	3.965	3.027	90
RunDiff (lineal)	Train (2000–2016)	16.42	4.052	3.252	510
RunDiff (lineal)	Test (2017–2019)	15.57	3.946	2.978	90
ERA (lineal)	Train (2000–2016)	78.79	8.877	7.177	510
ERA (lineal)	Test (2017–2019)	83.49	9.137	7.209	90
HR (lineal)	Train $(2000-2016)$	109.49	10.464	8.630	510
HR (lineal)	Test (2017–2019)	165.82	12.877	10.450	90

Pronóstico:

RunDiff	ERA	HR	\hat{W}	IC 95 $\%$ inf	IC 95 $\%$ sup
-150	5.0	140	65.11	64.39	65.83
-50	4.3	170	76.26	75.83	76.70
0	4.0	200	82.02	81.31	82.74
50	3.8	210	87.21	86.41	88.02
150	3.5	230	97.40	96.41	98.39
250	3.2	250	107.58	106.33	108.82

Conclusiones & Recomendaciones

Referencias

<u>Lahman Baseball</u>
<u>Database</u> -Society for
American Baseball
Research. (2025)

<u>Github Repository</u>: Código fuente y salidas correspondientes

