- [13.10] Let G and H be groups.
 - (a) Verify that G×H is a group where G×H is the set $\{(g, h)\}$ with the operation $(g_1, h_1)(g_2, h_2) = (g_1g_2, h_1h_2)$
 - (b) Show that we can identify H with G×H/G
- (a) (1,1) is the identity since (1,1) (g,h) = (g,h) = (g,h) (1,1) The inverse of (g,h) is (g^{-1},h^{-1}) since $(g,h)(g^{-1},h^{-1}) = (1,1) = (g^{-1},h^{-1})(g,h)$ The associative law holds:

Therefore G×H is a group.

- (b) There are 3 preliminaries to cover.
 - (i) G must be a subgroup of G×H. It isn't, but it can be identified with $\{(g,1):g\in G,1\in H\}$, which *is* a subgroup. We henceforth use the symbol G to represent group G = { g } as well as group G×{1} = { $(g,1):g\in G$ }, and it should always be obvious which is meant.
 - (ii) G×H/G Is a group only if G is normal in G×H. In order to show that G is normal we must show that (g,h)G (g^{-1},h^{-1}) = G $\forall (g,h)$ \in G×H.

Fix
$$(g,h) \in G \times H$$
. For any $g_1 \in G$, $(g,h)(g_1,1)(g^{-1},h^{-1}) = (gg_1g^{-1},1) \in G \Rightarrow (g,h)G(g^{-1},h^{-1}) \subseteq G$.

To show equality, let $g_2 \in G$. We need to find a $g_1 \in G$ such that $(g,h)(g_1,1)(g^{-1},h^{-1})=(g_2,1)$.

Define
$$g_1 = g^{-1}g_2g \in G$$
. Then $(g,h)(g_1,1)(g^{-1},h^{-1}) = (g(g_1)g^{-1},1) = (g(g^{-1}g_2g)g^{-1},1) = (g_2,1)$.

(iii) We require the fact that gG = G for any $g \in G$: Fix g. Clearly $gG \subseteq G$ (since $gg_1 \in G$ for any $g_1 \in G$). To show equality, let $g_1 \in G$. We want to find a g_2 such that $gg_2 = g_1$. Define $g_2 = g^{-1}g_1$. Then indeed $gg_2 = g(g^{-1}g_1) = g_1$. We are now ready to show the identification of H with $G \times H / G$. By definition $G \times H / G = \{ G(g,h) \}$. Since $g \in G = G$, $G(g_1,h) = G(g_2,h)$ for any $g_1, g_2 \in G$. So for each coset G(g,h) we can choose any element of G to be the representative element. Choose g = 1. That is, $G \times H / G = \{ G(1,h) \} : h \in H \}$, and we readily identify $H = \{ h \in H \}$ with $\{ G(1,h) : h \in H \} = G \times H / G$. In fact we have shown that H is group isomorphic to $G \times H / G$.