Scaling Words on an Ideological Space

Words as Data

Scaling Words

Ideal Poin Models

Scaling Words on an Ideological Space

March 7, 2013

Words as Data

Scaling Words

Ideal Point Models

Words as Data

- Explosion of interest in studying text data
 - ullet The Internet search problem o multibillion dollar industry
 - Massive investment in machine learning technology to classify and predict words and documents
 - Recent collection and digitization of text
- The social and political world is filled with an immensity of text that capture meaning
 - E.g., Legislative debates, party platforms, advertisements, legal decisions, statutes, newspapers, magazines, academic journals, historical records...
- More data, bigger haystacks
 - Impossible to study all this data in human time
 - Give up nuance and subtlety, and model language instrumentally

Words as Data

Scaling Words

Ideal Poin Models

Words as Data

- Classification, scaling, uncovering sentiment, and much more
 - Words themselves are not interesting
 - Model words to uncover latent distributions of things we care about
- Focus on two types of analysis
 - Uncovering a spatial dimension by scoring words
 - Naive Classifier (e.g., Wordscores, Bayescores)
 - Bayesian IRT (e.g., Wordfish)
 - Discovering topics within sets of documents
 - Latent Dirichlet Allocation (LDA)
- Set aside computational and sparsity issues

Uncovering ideology

- Goal is to observe whether parties offer liberal, conservative, or moderate policies to voters
 - Ideology is unobserved, but is expected to influence the patterns of words used in the platform documents
 - Specifically, liberals (L) and conservatives (C) are expected to use different subsets of words
 - And moderates (M) are expected to use a mixture of both
- Use a naive classification approach liberal or conservative?
 - Score words based on their frequency used by liberals or conservatives in a training set
 - Compute probabilities used to score documents in the left out testing set
 - Classification probabilities interpreted as ideological scores

• Define $p(L|w_i)$ to be the probability that a text offers a liberal position given the word w_i . Using Bayes rule:

$$p(L|w_i) = \frac{p(w_i|L)p(L)}{p(w_i)}$$

$$= \frac{p(w_i|L)p(L)}{p(w_i|L)p(L) + p(w_i|C)p(C)}$$

- Define W^{L} or W^{C} to be the total number of words in a document L or C
- Define W_i^{L} or W_i^{C} to be the count of the *i*th word appearing in document L or C

Words as Dat

Scaling Words

Ideal Poin Models • Assuming diffuse priors on words:

$$p(w_i|L) = \frac{W_i^{\{L\}}}{W^{\{L\}}},$$
 and $p(L) = \frac{W^{\{L\}}}{W^{\{L\}} + W^{\{C\}}}$

Note that p(L) is a measure of the prior probability that any document is liberal, summing over all the words

• Putting this together we have

$$p(L|w_i) = \frac{W_i^{\{L\}}}{W_i^{\{L\}} + W_i^{\{C\}}}$$

ldeal Point Models

- In practice, we define L documents and C documents and compute $p(L|w_i)$ and $p(C|w_i)$ for all $w_i \in \{L, C\}$
- Define S_i to be a word scoring on a scale from -1 to 1:

$$S_i = -1 \times p(L|w_i) + 1 \times p(C|w_i)$$

Each testing document V is scored accordingly:

$$S_V = \sum_{i=1}^{N_v} \frac{W_i^{\{V\}}}{W^{\{V\}}} \times S_i$$

 Word frequencies are influential on the scoring – rare words do not contribute probabilities proportional to their informativeness Ideal Point Models

Bayes Scores Correction

A Bayesian approach would be to consider the posterior p(L|V), or the density of liberal documents L given some document V (Beauchamp 2012).

$$p(L|V) = \frac{p(V|L)p(L)}{p(V)},$$
 and $p(C|V) = \frac{p(V|C)p(C)}{p(V)}$

- Define $p(w_i|L)$ to be the probability of encountering word w_i given we're looking at document L
 - A simplifying (and potentially strong) assumption is that words appear conditionally independent in document V
 - This gives: $p(V|L) = \prod_{i=1}^{N_V} p(w_i|L)$

Bayes Scores Correction

Under this independence assumption

$$p(L|V) = \frac{p(L)}{p(V)} \prod_{i=1}^{N_V} p(w_i|L)$$
$$p(C|V) = \frac{p(C)}{p(V)} \prod_{i=1}^{N_V} p(w_i|C)$$

Let's take the log of the ratio of these two likelihoods:

$$\log \frac{p(L|V)}{p(C|V)} = \log \frac{p(L)}{p(C)} + \sum_{i=1}^{N_V} \log \frac{p(w_i|L)}{p(w_i|C)}$$

$$BayesScore_V = \sum_{i=1}^{N_V} \log \frac{p(w_i|L)}{p(w_i|C)}$$

• Since p(L)/p(C) does not depend on w_i

Ideal Poin Models

Shortcomings of Scoring Methods

- Useful information may be excluded
 - Word frequencies are not diffusely distributed
 - Influence of words is heterogeneous
- Lose statistical properties of uncertainty, asymptotics
- No model to fit, so model and prediction validation may be a challenge

- Wordfish model of word counts (Slapin and Proksch 2008)
 - Word counts are assumed to be Poisson distributed
- Item count test (ICT) Rasch model cousin of IRT
 - Count the number of 'right' answers on *k* tests, where each word is a test
 - More correct answers suggest greater ability (α_i) on any test
 - Some tests are more discriminating (β_k) than others
 - Test-taker (γ_i) and word (δ_k) fixed effects shifts thresholds for number of correct answers i gets on k

• Define a parameter $\lambda_{ik} = \exp \{ \gamma_i + \delta_k + \beta_k \times \alpha_i \}$. Under the model

$$y_{ik} \sim Poisson(\lambda_{ik})$$

 $\alpha_i \sim N(\mu_{\alpha}, \sigma_{\alpha}^2)$
 $\gamma_i \sim N(\mu_{\gamma}, \sigma_{\gamma}^2)$
 $\beta_k \sim N(\mu_{\beta}, \sigma_{\beta}^2)$
 $\delta_k \sim N(\mu_{\delta}, \sigma_{\delta}^2)$

• Fix all $\mu = 0$, and $\sigma = 1$

- Estimation can be done fully Bayesian or using a variant of Expectation Maximization (EM)
- For EM:
 - Stage 1: Estimate i terms, α_i and γ_i , fixing all the kth terms
 - Stage 2: Estimate k terms, β_k and δ_k , fixing all the ith terms
 - Repeat until convergence
- To incorporate prior information, define log likelihood $\log \mathcal{L}(y_{ik}|\alpha_i, \gamma_i, \beta_k, \delta_k)$. Maximize:

$$\mathcal{L}(y_{ik}|\theta) - \sum_{\theta} \rho_{\theta} \left(\frac{\mu_{\theta} - \theta}{\sigma_{\theta}}\right)^{2}$$

For each $\theta \in \{\alpha, \gamma, \beta, \delta\}$, and a penalty term ρ_{θ}

- Unlike scoring methods, the model approach can allow for additional complexity
 - Multidimensionality: $\tilde{\alpha} = \{\alpha_1, \alpha_2, ..., \alpha_g\}$, and so on
 - Complex word processes: model common v. non-common words, underlying constraint or correlation amongst words, hierarchical clustering of words in phrases, etc
- Pull out predictions about future documents or words
- Estimate measures of statistical uncertainty of our scores
- In practice, estimates are very often statistically indistinguishable
 - Favorite example here is to use OLS to score documents