1 (a) Clutch size

Clutch size is dependent on multiple variables:

Symbol	description
a	fraction of sons aborted
C	clutch size
E	total energy invested in clutch
$e_daughter$	energy investment to produce one healthy daughter
e_son	energy investment to produce one healthy son
s	primary sex ratio

$$C\left(a\right) = \frac{E}{\left(1 - a\right) \ e_son + e_daughter + a \ e_abort}$$

2 (b) Secondary sex ratio

Secondary sex ratio with no sons aborted:

$$S(a=0) = 0/(0+1)$$

Secondary sex ratio with all aborted:

$$S(a=1) = 1/(1+1)$$

Secondary sex ratio in general:

$$S\left(a\right) = \frac{1-a}{2-a}$$

Plotted:

3 (c) Shaw-Mohler

The fitness of a mutant in a resident population is:

$$W\left(a, a_star\right) = m\left(a\right) v_male\left(a_star\right) + f\left(a\right) v_female\left(a_star\right)$$

To calculate the fitness of a mutant in a resident population, we'll need:

- m(a): number of surviving sons
- f(a): number of surviving daughters
- $v_{-}male(a_{-}star)$: male reproductive value in resident population
- $v_female(a_star)$: female reproductive value in resident population

3.1 (c.1) Surviving sons

General formula of surviving sons:

$$m(a) = (1 - a) C(a) S(a)$$

Plug in C(s, a):

$$m\left(a\right) = \frac{\left(1-a\right)\,S\left(a\right)\,E}{\left(1-a\right)\,e_son + e_daughter + a\,e_abort}$$

Set s = 1/2:

$$m(a) = \frac{(1-a) S(a) E}{(1-a) e_son + e_daughter + a e_abort}$$

Also plug in S(a):

$$m\left(a\right) = \frac{\left(1-a\right)^{2}E}{\left(2-a\right)\left(\left(1-a\right)\ e_son + e_daughter + a\ e_abort\right)}$$

3.2 (c.2) Surviving daughters

General formula of surviving daughters:

$$f(a) = C(a) (1 - S(a))$$

Plug in C(s, a):

$$f\left(a\right) = \frac{\left(1 - S\left(a\right)\right)E}{\left(1 - a\right)e_son + e_daughter + ae_abort}$$

Set s = 1/2:

$$f\left(a\right) = \frac{\left(1 - S\left(a\right)\right)\,E}{\left(1 - a\right)\,e_son + e_daughter + a\,e_abort}$$

Also plug in S(a):

$$f(a) = \frac{\left(1 - \frac{1-a}{2-a}\right)E}{(1-a) e_son + e_daughter + a e_abort}$$

3.3 (c.3) Male reproductive value

General formula for male reproductive value:

$$v_male\left(a_star\right) = \frac{\alpha}{m\left(a_star\right)}$$

Filling in alpha = 1/2:

$$v_male\left(a_star\right) = \frac{0.5}{m\left(a_star\right)}$$

Filling in $m(a_star)$:

$$v_male\left(a_star\right) = \frac{0.5 \; (2 - a_star) \; ((1 - a_star) \; e_son + e_daughter + a_star \; e_abort)}{\left(1 - a_star\right)^2 \; E}$$

3.4 (c.4) Female reproductive value

General formula for female reproductive value:

$$v_female\left(a_star\right) = \frac{\alpha}{f\left(a_star\right)}$$

Filling in alpha = 1/2:

$$v_female\left(a_star\right) = \frac{0.5}{f\left(a_star\right)}$$

Filling in $f(a_star)$:

$$v_female\left(a_star\right) = \frac{0.5 \; \left(\left(1-a_star\right) \; e_son + e_daughter + a_star \; e_abort\right)}{\left(1-\frac{1-a_star}{2-a_star}\right) \; E}$$

3.5 (c.5) Fitness

As a reminder, the fitness formula for a mutant in a resident population is:

$$W\left(a,a_star\right) = m\left(a\right)\ v_male\left(a_star\right) + f\left(a\right)\ v_female\left(a_star\right)$$

Plugging in the four functions above:

$$W\left(a, \, a_star\right) = \frac{0.5\, \left(1-a\right)^2\, \left(2-a_star\right)\, \left(\left(1-a_star\right)\, e_son + e_daughter + a_star\, e_abort\right)}{\left(2-a\right)\, \left(1-a_star\right)^2\, \left(\left(1-a\right)\, e_son + e_daughter + a\, e_abort\right)}$$

The fitness of the resident population is:

$$W\left(a_star, a_star\right) = m\left(a_star\right) \ v_male\left(a_star\right) + f\left(a_star\right) \ v_female\left(a_star\right)$$

Plugging in the four functions (with $a = a_star$) above, this simplifies to:

$$W(a_star, a_star) = 0.5$$

The relative fitness of the mutant on the resident population:

$$dW(a, a_star) = W(a, a_star) - dW(a_star, a_star)$$

Filling in both fitness functions:

$$dW\left(a, a_star\right) = \frac{0.5 \, \left(1 - a\right)^2 \, \left(2 - a_star\right) \, \left(\left(1 - a_star\right) \, e_son + e_daughter + a_star \, e_abort\right)}{\left(2 - a\right) \, \left(1 - a_star\right)^2 \, \left(\left(1 - a\right) \, e_son + e_daughter + a \, e_abort\right)} - 0.5$$

For an ESS, the fitness of a mutant must always be lower in a resident population. To calculate this, we need the partial derivative of the above fitness function to a.

$$-\frac{1.0\;(1-a)\;(2-a_star)\;((1-a_star)\;e_son+e_daughter+a_star\;e_abort)}{(2-a)\;(1-a_star)^2\;((1-a)\;e_son+e_daughter+a\;e_abort)}+\frac{0.5\;(1-a)^2\;(2-a_star)\;((1-a_star)^2\;((1-a_star)^2)^2}{(2-a)^2\;(1-a_star)^2}$$

Which is equal to:

$$\frac{1}{((2\,a^4-12\,a^3+26\,a^2-24\,a+8)\,\,a_star^2+(-4\,a^4+24\,a^3-52\,a^2+48\,a-16)\,\,a_star+2\,a^4-12\,a^3+26\,a^2-12\,a^2+12\,a^3+1$$

Filling in $e_s on = 10$ and $e_d aughter = 10$:

$$-\frac{10 \left(5 \left(a_star \left(8 \ a_star^4-40 \ a_star^3+64 \ a_star^2-32 \ a_star\right)-4 \ a_star^4+a_star^2 \right. \left(-4 \ a_star^4+20 \ a_star^4+20 \ a_star^4+10 \ a_st$$

Which is equal to:

$$-\frac{2 \, a_star - 5}{a_star^3 - 7 \, a_star^2 + 14 \, a_star - 8}$$