Лекція 2. Означення ймовірності події. Аксіоматична побудова теорії ймовірностей.

План лекції

1. Класичне означення ймовірності події.	Випадки	рівноймов	вірних наслідків 2
2. Статистичне означення ймовірності	події.	Випадки	нерівноймовірних
наслідків.	•••••		3
3. Геометричні ймовірності	•••••		4
4. Аксіоматична побулова теорії ймовірно			

Питання, що розглядаються:

Ймовірність, сприятливий наслідок випробування, рівноймовірні події, класичне означення ймовірності, відносна частота, статистичне означення ймовірності, рівень значущості, геометричне означення ймовірності.

1. Класичне означення ймовірності події. Випадки рівноймовірних наслідків.

Класичне означення ймовірності повязане з означенням сприятливого наслідку.

Наслідок називається *сприятливим* даній події, якщо з його появи випливає настання цієї події.

Ймовірність події дорівнює відношенню числа всіх рівноможливих елементарних наслідків випробування, сприяючих даній події, до всіх рівноможливих елементарних наслідків:

$$P(A) = \frac{m}{n}$$
,

де m — число сприятливих події A наслідків;

n — загальна кількість можливих наслідків.

Приклади.

1) Яка ймовірність випадіння двійки при киданні кубика?

Розвязання. Всього наслідків випробування 6, число сприятливих наслідків 1, тому $P(A) = \frac{1}{6}$

2) Яка ймовірність того, що в довільному двозначному числі дві цифри однакові.

Розвязання. Всього наслідків випробування $A_{10}^2 = 9 \cdot 10 = 90$, число сприятливих наслідків 9, тому $P(A) = \frac{9}{90}$.

3) З букв слова "диференціал" вибирається одна буква. Яка ймовірність того, що це а) голосна, б) буква "ф".

Розвязання. а) всього наслідків випробування 11, число сприятливих наслідків 5, тому $P(A) = \frac{5}{11}$.

б) всього наслідків випробування 11, число сприятливих наслідків 1, тому $P(A) = \frac{1}{11}.$

3 означення ймовірності події A випливає, що $0 \le m \le n$, тому завжди виконуються нерівності $0 \le P(A) \le 1$, тобто ймовірність будь-якої події є невідємне число, що не перевищує одиницю.

- Якщо P(A) = 0, то подія A неможлива.
- Якщо P(A) = 1, то подія A достовірна.

• Рівноможливі елементарні події є *рівноймовірними*, тобто мають однакову ймовірність.

Теорема. Еквівалентні події мають однакові ймовірності, тобто якщо A = B, то P(A) = P(B).

Доведення. Дійсно, кожний елементарний наслідок події A є таким ж елементарним наслідком для події B і навпаки. В силу формули $P(A) = \frac{m}{n}$ справедлива рівність P(A) = P(B).

Якщо подія B відбувається щоразу після того, як відбулася подія A, то кажуть, що з події A випливає подія B ($A \Rightarrow B$). $Hanpukna\partial$, для будь-яких двох подій A і B справедливо $AB \Rightarrow A$ і $AB \Rightarrow B$.

Теорема. Якщо $A \Rightarrow B$, то $P(A) \le P(B)$.

Доведення. Нехай m і m' — число сприяючих елементарних наслідків відповідно для подій A і B, а n — загальне число елементарних наслідків.

Так як кожний елементарний наслідок для події $A \in \text{також}$ елементарним

наслідком для події
$$B$$
, то $m \le m'$ і, отже, $P(A) = \frac{m}{n} \le \frac{m'}{n} = P(B)$.

Приклад. Випадіння парного числа очок більш ймовірне, ніж випадіння двійки.

Теорема. Ймовірність події \overline{A} , протилежної до події A дорівнює $P(\overline{A}) = 1 - P(A)$.

Доведення. Нехай повна система рівноможливих елементарних наслідків містить n подій, з яких m ($m \le n$) сприяють події A. Тоді n-m наслідків несприятливі події A, тобто сприяють події \overline{A} . Таким чином,

$$P(\overline{A}) = \frac{n-m}{n} = 1 - \frac{m}{n} = 1 - P(A)$$
.

Класичне означення ймовірності припускає що:

- число елементарних наслідків скінченне;
- ці наслідки рівноможливі.

Однак на практиці зустрічаються випробування з нескінченним числом можливих наслідків. Крім того, немає загальних методів, які дозволяють результат випробування, навіть з скінченним числом наслідків, представити у вигляді суми рівноможливих елементарних наслідків. Тому застосування класичного означення ймовірностей обмежене.

Приклад. Кубик зі зміщеним центром ваги.

2. Статистичне означення ймовірності події. Випадки нерівноймовірних наслідків.

Класичне означення ймовірності має обмежене застосування. Так, воно неприйнятне, якщо результати випробування не рівноможливі.

В багатьох випадках більш зручним є *статистичне означення ймовірності*, яке повязане з поняттям відносної частоти появи події A в випробуваннях.

Відносна частома появи події A — це відношення числа m появи події A в серії з n випробувань до числа випробувань:

$$P^*(A) = \frac{m}{n}.$$

Досвід показує, що при проведенні порівняно невеликого числа випробувань відносна частота $P^*(A)$ приймає значення, які можуть дуже відрізнятися одне від одного. При однотипових *масових* випробуваннях в багатьох випадках спостерігається стійкість відносної частоти події, тобто зі збільшенням числа випробувань відносна частота коливається навколо деякого постійного P(A), причому ці відхилення тим менші, чим більше проведено випробувань.

Ймовірністю події A **в статистичному значенні** називається число P(A), відносно якого стабілізується (встановлюється) відносна частота P*(A) при необмеженому збільшенні числа випробувань.

Тому, на практиці за ймовірність події A приймається відносна частота $P^*(A)$ при достатотньо великому числі випробувань.

Властивості ймовірності, що випливають з класичного означення ймовірності, зберігаються і при статистичному означенні ймовірності.

Якщо ймовірність деякої події близька до нуля, то, в відповідності зі сказаним, випливає, що при одиничному випробуванні в більшості випадків така подія не настане. Виникає питання: наскільки малою повинна бути ймовірність, щоб можна було знехтувати ймовірністю настання деякої події в одиничному випробуванні (наприклад, землетрус в Кіровограді)?

Рівнем значущості називають достатньо малу ймовірність, при якій настання події можна вважати практично неможливим.

На практиці рівень значущості зазвичай приймають рівним 0,05 (пятивідсотковий рівень) або 0,01 (одновідсотковий рівень).

3. Геометричні ймовірності

Щоб подолати недолік класичного означення ймовірності, пов'язаний з його незастосовністю до випробувань з нескінченним числом наслідків, вводять поняття *геометричної ймовірності*

Геометричною ймовірністю називають ймовірність попадання точки в деяку область (відрізок, частину площини тощо).

В подібних випадках простір елементарних наслідків може бути представлений областю G, а під подією A можна розуміти наслідки, що входять в деяку область g, яка належить області G.

Нехай на область G навмання кидається "точка". Яка ймовірність того, що ця точка попаде в область g, що ε частиноюобласті G?

1. Нехай відрізок g довжини l_g , складає частину відрізка G, довжина якого l_G . На відрізок G навмання поставлена точка.

Припускається, що

- поставлена точка може опинитися в будь-якій точці відрізка G;
- ймовірність попадання точки на відрізок д пропорційна довжині цього відрізка та не залежить від його розташування відносно відрізка G. Тоді ймовірність попадання точки на візрізок д визначається рівністю

$$P = \frac{l_g}{l_G}.$$

- 2. Нехай плоска фігура g з площею S_g складає частину плоскої фігури G , площа якої S_G . На фігуру G навмання кинута точка. Припускається, що:
- Кинута точка може опинитися в будь-якій точці фігури G;
- ймовірність попадання кинутої точки на фігуру д пропорційна площі цієї фігури і не залежить ні від її розташування відносно фігури G, ні від форми g.

При цих припущеннях ймовірність попадання точки на фігуру gвизначається рівністю

$$P = \frac{S_g}{S_G}.$$

3. Аналогічно вводиться поняття геометричної ймовірності при киданні точки в просторову область G обєму V_G , що містить область g обєму V_g : $P = \frac{V_g}{V_C}$

$$P = \frac{V_g}{V_G}$$

В загальному випадку поняття геометричної ймовірності вводиться наступним чином. Позначимо міру області д (довжину, площу, обєм тощо) через mes(g), а міру області G – через mes(G). Тоді ймовірність попадання в область g точки, кинутої в область G, визначається формулою:

$$P(A) = \frac{mes(g)}{mes(G)}.$$

Приклад: протягом доби до причалу можуть підійти 2 пароходи. Час прибуття обох пароходів незалежний і рівноможливий протягом доби. Визначити ймовірність того, що одному з пароходів доведеться чекати звільнення причалу, якщо час розвантаження одного з них дорівнює 1 годині, а іншого – 2 години.

геометричну ймовірність. Розвязання. Застосуємо Розглянемо прямокутну декартову систему координат xOy, в якій x та y будемо відраховувати в годинах від 0 до 24. Нехай x — час прибуття першого пароходу, у – час прибуття другого пароходу. Тоді всі можливі комбінації прибуття пароходів до причалу зобразяться точками квадрата, для якого

 $0 \le x \le 24$. Очевидно, що положення точок (x, y) в області цього квадрата рівноможливі.

Зясуємо, які точки (x, y) сприяють події A (один з пароходів чекає звільнення причалу). Подія A може відбутися лише в тому випадку, якщо момент y прибуття другого пароходу не більше, ніж на дві години раніше момента x прибуття першого пароходу і не більше, ніж на одну годину пізніше прибуття першого пароходу: $x-2 \le y \le x+1$.

Таким чином, область квадрата, сприяюча події A, складається з точок, координати (x, y) яких задовольняють нерівностям, тобто з точок, що лежать між прямими y=x-2 та y=x+1. Площа квадрата дорівнює $S_G=24^2=576$. Площа меншої області дорівнює $S_g=576-\frac{1}{2}\cdot 23^2-\frac{1}{2}\cdot 22^2=69,5$.

Звідси

$$P A = \frac{69.5}{576} \approx 0.121.$$

4. Аксіоматична побудова теорії ймовірностей

Побудова логічно повноціної теорії ймовірностей основана на аксіоматичному визначенні випадкової події та її ймовірності. В системі аксіом, запропонованій А.Н. Колмогоровим, елементарна подія і ймовірність ϵ поняттями, що не визначаються. Наведемо аксіоми системи Колмогорова

- 1. Кожній події A поставлено у відповідність невідємне дійсне число P(A). Це число називається ймовірністю події A; $0 \le P \blacktriangleleft_i \ge 1$
- 2. Ймовірність достовірної події дорівнює одиниці $P(\Omega) = 1$, де Ω достовірна подія.
- 3. Ймовірність настання хоча б однієї з попарно несумісних подій дорівнює сумі ймовірностей цих подій;

$$P\left(\sum_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i)$$
 (скінченний простір елементарних подій)

$$P\left(\sum_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$
 (нескінченний простір елементарних подій)

Виходячи з цих аксіом, властивості ймовірностей та залежності між ними виводять в якості теорем.

Питання для самоперевірки

- 1. Що таке сприятливий наслідок для даної події?
- 2. Сформулювати означення класичної ймовірності.
- 3. Записати основні властивості ймовірності.
- 4. Що називають рівноймовірними подіями?
- 5. Чому дорівнює ймовірність протилежної події?

- 6. Що таке відносна частота події?
- 7. Сформулювати статистичне означення ймовірності.
- 8. Що таке рівень значущості?
- 9. Коли застосовують геометричну ймовірність?
- 10.Записати загальну формулу для геометричної ймовірності.
- 11.Записати аксіоми Колмогорова.

