

Attention Diversification for Domain Generalization

Rang Meng, Xianfeng Li, Weijie Chen, Shicai Yang, Jie Song, Xinchao Wang, Lei Zhang, Mingli Song, Di Xie, and Shiliang Pu

Motivation

Background

Deep models trained on seen domains perform poorly on unseen domains for the seen/unseen domain shifts.

◆ Our Finding of Domain Attention Bias

We find that models trained on different domains have different attention bias

Our Revisiting of DG from Maximum Entropy Principle

Maximum Entropy Principle: when estimating the probability distribution, we should select that distribution with the largest uncertainty under given constraints.

Our Insight: when testing the unseen domains, each task-related attention is equally-useful (the maximum entropy)

Methodology

Workflow of Our Attention Diversification Framework

Training Scheme of Our Attention Diversification Framework

Intra-ADR forces different channels to concern on different regions and activates all the regions.

Inter-ADR uses a paradigm of "simulate, divide and assemble".

- 1) <u>Domain-specific Models Training</u> → Warmup step equipped with Intra-ADR and for "simulate" part in Inter-ADR.
- (2) <u>Domain-aggregated Model Training</u> \rightarrow Main step equipped with Intraand Inter-ADR for coarse-to-fine Attention Diversification.

Experiments

♦ Results

Methods	References	Art	Cartoor	n Photo	Sketch	$ \mathbf{Avg.} $	Art	Cartoon	Photo	Sketch	$ \mathbf{Avg.}$
Wiethous			I	ResNet-1	8		F	$ResNet ext{-}5$	0		
Baseline	-	79.0	74.3	94.9	71.4	79.9	86.2	78.7	97.6	70.6	83.2
MetaReg [1]	NeurIPS'18	83.7	77.2	95.5	70.3	81.7	87.2	79.2	97.6	70.3	83.6
MASF [12]	NeurIPS'19	80.2	77.1	94.9	71.6	81.0	82.8	80.4	95.0	72.2	82.6
${ m Epi ext{-}FCR}$ $[26]$	ICCV'19	82.1	77.0	93.9	73.0	81.5	-	-	-	-	_
JiGen [4]	CVPR'19	79.4	75.2	96.0	71.3	80.5	-	-	-	-	_
DMG_{5}	ECCV'20	76.9	80.4	93.4	75.2	81.5	82.6	78.1	94.5	78.3	83.4
RSC [21]	ECCV'20	84.4	80.3	95.9	80.8	85.1	87.8	82.1	97.9	83.3	87.9
MixStyle [78]	ICLR'21	84.1	78.8	96.1	75.9	83.7	-	-	-	-	_
SelfReg [24]	ICCV'21	82.3	78.4	$\overline{96.2}$	77.5	83.6	87.9	79.4	96.8	78.3	85.6
DAML [50]	CVPR'21	83.0	74.1	95.6	78.1	82.7	-	-	-	-	_
SagNet[42]	CVPR'21	83.6	77.7	95.5	76.3	83.3	81.1	75.4	95.7	77.2	82.3
FACT [65]	CVPR'21	85.4	78.4	95.2	79.2	$\mid 84.5 \mid$	89.6	81.7	96.8	84.4	88.1
Intra-ADR	Ours	82.4	79.4	95.3	82.3	84.9	87.7	81.2	97.1	83.8	87.5
I^2 -ADR	Ours	82.9	80.8	95.0	83.5	85.6	88.5	83.2	95.2	85.8	88.2
MixStyle + Intra-ADR	Ours	86.0	$\overline{80.3}$	96.0	84.4	86.7	88.6	$\overline{83.2}$	98.0	85.2	88.7
$MixStyle + I^2-ADR$	Ours	85.3	81.2	95.4	$\overline{86.1}$	$\overline{87.0}$	$\overline{87.7}$	$\overline{84.5}$	$\overline{98.2}$	85.6	89.2

Office Home											
Methods	Ar C	Cl Pr	$\mathbf{Rw} \mid A$	$\overline{\mathbf{Avg.}}$	Methods	Ar	Cl	\mathbf{Pr}	$ \mathbf{R}\mathbf{w} $	$\overline{\mathbf{A}\mathbf{v}}$	
	ResNet-18					ResNet-5	50				
Baseline	57.8 52	$2.7 \ 73.5$	74.8	64.7	Baseline	61.3	52.4	75.8	76.6	66	
RSC [21]	58.4 47	7.9 71.6	6 74.5 6	63.1	MLDG [28]	61.5	53.2	75.0	77.5	66	
MixStyle [78]	58.7 53	$3.4 \ 74.2$	2.75.9 6	65.5	RSC [21]	50.7	51.4	74.8	75.1	65	
$\operatorname{SagNet}[42]$	60.2 45	5.4 70.4	$ \overline{73.4} $ (62.3	SelfReg [24]	63.6	53.1	76.9	78.1	67	
FACT [65]	$ 60.3 \ 54$	$1.9 \ 74.5$	76.6	66.6	$\operatorname{SagNet} [42]$	63.4	54.8	75.8	78.3	68	

 RSC [21]
 58.4 47.9 71.6 74.5 63.1 MLDG [28]
 61.5 53.2 75.0 77.5 66.8 MLDG [28]

 MixStyle [78]
 58.7 53.4 74.2 75.9 65.5 60.2 45.4 70.4 73.4 62.3 FACT [65]
 60.2 45.4 70.4 73.4 62.3 60.3 54.9 74.5 76.6 66.6 GA
 RSC [21]
 50.7 51.4 74.8 75.1 65.5 SelfReg [24]

 Intra-ADR
 64.5 54.0 73.9 74.7 66.8 I²-ADR
 SagNet [42]
 67.3 54.1 78.8 78.8 69.8 GA

 MixStyle + Intra-ADR
 66.4 53.3 74.9 75.3 67.5 GA
 Intra-ADR
 70.3 55.1 80.7 79.2 71.4 GA

 MixStyle + I²-ADR
 66.8 56.8 75.3 75.7 68.7 MixStyle + I²-ADR
 MixStyle + I²-ADR
 71.1 56.9 81.8 80.5 72.5

DomainNet

Methods	References	Clipart	Infograph	Painting	Quickdraw	Real	Sketch	$ \mathbf{Avg} $	
			ResNet-1	8					
Baseline	_	57.1	17.6	43.2	13.8	54.9	39.4	37.6	
${ m MetaReg} \; [1]$	NeurIPS'18	53.7	21.1	45.3	$\overline{10.6}$	$\overline{58.5}$	42.3	38.6	
DMG[5]	ECCV'20	60.1	$\underline{18.8}$	44.5	14.2	54.7	41.7	39.0	
Intra-ADR	Ours	57.3±0.1	14.9 ± 0.3	$42.8 {\pm} 0.2$	12.2 ± 0.4	52.9 ± 0.5	46.0 ± 0.2	37.7	
I^2 -ADR	Ours	57.3 ± 0.3	$15.2 {\pm} 0.3$	$44.1 {\pm} 0.1$	$12.1 {\pm} 0.4$	53.9 ± 0.6	$46.7 {\pm} 0.2$	38.2	
MixStyle + Intra-ADR	Ours	57.4 ± 0.2	$15.3 {\pm} 0.1$	$43.3 {\pm} 0.2$	$12.3 {\pm} 0.4$	53.5 ± 0.3	46.5 ± 0.2	38.1	
$MixStyle + I^2-ADR$	Ours	$\overline{57.4 \pm 0.4}$	$15.7 {\pm} 0.2$	44.7 ± 0.1	$12.3 {\pm} 0.4$	54.4 ± 0.2	$\textbf{47.4} {\pm} \textbf{0.1}$	38.7	
			$ResNet ext{-}5$	70					
- 1 .	1	1 00 0	100	12.2	100		4.4.4	1 40 -	

	Ouis	01.12.0.2	10.010.1	10.0 ± 0.2	12.020.1	00.020.0	10.0 - 0	00.
$MixStyle + I^2-ADR$	Ours	57.4 ± 0.4	$15.7 {\pm} 0.2$	44.7 ± 0.1	$12.3 {\pm} 0.4$	$54.4 {\pm} 0.2$	47.4 ± 0.1	38.
			ResNet-5	50				
Baseline	-	62.2	19.9	45.5	13.8	57.5	44.4	40.
MetaReg [1]	NeurIPS'18	59.8	25.6	50.2	11.5	64.6	50.1	43.
MLDG [28]	AAAI'18	59.1 ± 0.2	19.1 ± 0.3	$45.8 {\pm} 0.7$	$13.4 {\pm} 0.3$	$59.6 {\pm} 0.2$	$50.2 {\pm} 0.4$	41.
C-DANN [31]	ECCV'18	54.6 ± 0.4	17.3 ± 0.1	$43.7 {\pm} 0.9$	$12.1 {\pm} 0.7$	$56.2 {\pm} 0.4$	$45.9 {\pm} 0.5$	38.
RSC [21]	ECCV'20	55.0 ± 1.2	$18.3 {\pm} 0.5$	$44.4 {\pm} 0.6$	$12.2 {\pm} 0.2$	55.7 ± 0.7	47.8 ± 0.9	38.
DMG [5]	ECCV'20	65.2	22.2	50.0	15.7	59.6	49.0	43.
SagNet [42]	CVPR'21	57.7 ± 0.3	19.0 ± 0.2	45.3 ± 0.3	$12.7 {\pm} 0.5$	$58.1 {\pm} 0.5$	$48.8 {\pm} 0.2$	$\mid 40.$
SelfReg [24]	ICCV'21	60.7 ± 0.1	$21.6 {\pm} 0.1$	$49.4 {\pm} 0.2$	$12.7 {\pm} 0.1$	60.7 ± 0.1	51.7 ± 0.1	$\mid 42.$
Intra-ADR	Ours	63.6 ± 0.1	20.0 ± 0.1	49.4 ± 0.1	14.8 ± 0.3	60.0 ± 0.4	$54.4 {\pm} 0.1$	43.
I^2 -ADR	Ours	64.4 ± 0.2	$20.2 {\pm} 0.6$	$49.2 {\pm} 0.5$	$15.0 {\pm} 0.2$	61.6 ± 0.4	53.3 ± 0.1	44.
MixStyle + Intra-ADR	Ours	$\overline{63.9 \pm 0.1}$	$20.1 {\pm} 0.5$	$49.4 {\pm} 0.2$	$15.0 {\pm} 0.4$	$\overline{60.4 \pm 0.3}$	$54.4 {\pm} 0.1$	$\overline{43}$.
$MixStyle + I^2-ADR$	Ours	64.1 ± 0.1	$20.4 {\pm} 0.2$	$49.2 {\pm} 0.4$	$15.1 {\pm} 0.2$	$61.3 {\pm} 0.4$	$54.3 {\pm} 0.4$	44.

Ablation Study

Method	\mathcal{L}_{intra}	$ \mathcal{L}_{dir} $	\mathcal{L}_{dvr}	Art	Cartoon	Photo	Sketch	$ \mathbf{Avg.} $	Method	$ E_s $	$ E_c $	$ \mathbf{Art} $	Carto
	\checkmark	-	-	82.4	79.4	95.3	82.3	84.9		-	-	81.3	77.3
I^2 -ADR	-	✓	\checkmark	82.3	80.0	95.1	82.6	85.0	Intra-ADR	_ ا	./	80.0	77.2
1 -ADR	-	82.7	80.5	$\overline{95.0}$	83.2	85.4	$\operatorname{Intra-ADR}$	_	•	21.0	70.2		
	\checkmark	-	\checkmark	$\overline{82.5}$	$\overline{80.2}$	95.1	$\overline{82.9}$	$\overline{85.2}$		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-	01.9	79.3
	\checkmark	✓	\checkmark	82.9	80.8	$\overline{95.0}$	83.5	85.6		✓	✓	82.4	79.4

♦ Attention Visualization

