Introduction to Machine Learning

Lecture 10 Unsupervised Learning I

Goker Erdogan 26 – 30 November 2018 Pontificia Universidad Javeriana

Types of learning problems

Supervised learning	Unsupervised learning	Reinforcement learning
Learning from supervision (i.e., teacher) Given inputs and outputs, learn a function that maps input → output	Learning with no supervision Given only inputs, extract some pattern from the data.	Learning from rewards and punishments. Inspired by (operant) conditioning in psychology. The agent acts in an environment over some time . It gets reward/punishment from time to time. Needs to learn a <i>policy</i> to maximize reward.
Examples: - Recognizing faces - Predicting the sales for a product - Learning to rank search results	Examples: - Clustering (market segmentation) - Dimensionality reduction (visualization) - Generating celebrity faces	Examples: - Most robotics applications (e.g. learning to move around) - Playing games (e.g., AlphaGo)

Unsupervised learning

- Unsupervised learning is difficult but important
 - No clear objective
 - Hard to assess/validate results
 - Most of our learning is unsupervised

"Pure" Reinforcement Learning (cherry)

- The machine predicts a scalar reward given once in a while.
- A few bits for some samples
- Supervised Learning (icing)
 - The machine predicts a category or a few numbers for each input
 - Predicting human-supplied data
 - ▶ 10→10,000 bits per sample
- Unsupervised/Predictive Learning (cake)
 - The machine predicts any part of its input for any observed part.
 - Predicts future frames in videos
 - Millions of bits per sample
 - (Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)

Dimensionality reduction

- Given a dataset of N samples with D features, X_{NXD}
 - Find a low dimensional M < D representation
 - Capture as much of the information as possible
 - Need to define what we mean by information
- Why should this work?
 - Most data is redundant (e.g., images)
 - Correlated features
 - Intrinsic dimensionality
- Useful for
 - Visualization
 - Compression
 - Supervised learning

Principal components analysis (PCA)

- Popular technique for dimensionality reduction
 - Linear
 - Objective: Find direction(s) that maximize variance

PCA formulation

- Given N samples with D features, X_{NXD}
 - Map each sample to a single number (1D)

$$z_n = \sum_{u} u_i X_{ni}$$
$$z = Xu$$

Find direction (u) that maximizes variance

$$\max_{u} \sum_{n} z_{n}^{2}$$

$$\max_{u} (Xu)^{T} Xu$$

Need to constrain u

$$||u||_2^2 = 1$$

$$u^T u = 1$$

Terminology:

u: loading vector

z: principal component

PCA formulation

$$\max_{u} (Xu)^{T} Xu$$

s.t. $u^{T} u = 1$

s.t.
$$u^T u = 1$$

Solution:

$$X^T X u = \lambda u \qquad \qquad \lambda \in \mathbb{R}$$

- Known as an eigenvector problem
 - Note X^TX is the covariance matrix of \mathbf{X}

$$(X^T X)_{ij} = \mathbb{E}[X_{.i} X_{.j}]$$

- u is an eigenvector of X^TX
- λ is the eigenvalue associated with u
- $\frac{1}{N}\sum X_{ni} = 0, \ \forall i$ Assumption: X is zero mean.

Eigenvectors

Linear transformation A doesn't change direction of v

$$Av = \lambda v$$

• Eigendecomposition (for real symmetric matrices)

$$A = U\Lambda U^T$$

U: orthonormal

 Λ : diagonal

Back to PCA

$$X^T X u = \lambda u$$

Which eigenvector u?

$$Var(z) = (Xu)^T Xu$$
$$= \lambda$$

- Pick u with largest eigenvalue
- How do you pick the next principal components?
 - Find direction that maximizes variance
 - But uncorrelated with u
 - Pick u₂ orthogonal to u₁

u₂ = eigenvector with second largest eigenvalue

– Similarly for u_3 , u_4 , ...

Finding principal components

PCA

- Given input X_{NxD}
- Zero-mean and scale X (standardize)
- Reduce to M < D dimensions (U_{DxM})

$$Z = XU$$

- Find eigenvectors of X^TX
- Pick the eigenvectors with largest M eigenvalues

- More efficient algorithms available
 - No need to calculate the full eigendecomposition
 - Only calculate M
 - If D >> N, calculate using XX^T

An alternative perspective on PCA

- Maximizing variance = Minimizing reconstruction error
 - Find a low dimensional surface that is closest to samples
 - In terms of squared error
 - i.e., for 1D, find the line that minimizes error

FIGURE 10.2. Ninety observations simulated in three dimensions. Left: the first two principal component directions span the plane that best fits the data. It minimizes the sum of squared distances from each point to the plane. Right: the first two principal component score vectors give the coordinates of the projection of the 90 observations onto the plane. The variance in the plane is maximized.

FIGURE 14.22. A sample of 130 handwritten 3's shows a variety of writing styles.

FIGURE 14.23. (Left panel:) the first two principal components of the hand-written threes. The circled points are the closest projected images to the vertices of a grid, defined by the marginal quantiles of the principal components. (Right panel:) The images corresponding to the circled points. These show the nature of the first two principal components.

Figure 12.3 The mean vector $\overline{\mathbf{x}}$ along with the first four PCA eigenvectors $\mathbf{u}_1,\dots,\mathbf{u}_4$ for the off-line digits data set, together with the corresponding eigenvalues.

Figure 12.5 An original example from the off-line digits data set together with its PCA reconstructions obtained by retaining M principal components for various values of M. As M increases the reconstruction becomes more accurate and would become perfect when $M=D=28\times28=784$.

Proportion of variance explained

- What should M be?
- Remember

$$\operatorname{Var}(z_m) = \operatorname{Var}((Xu_m^T)Xu_m) = \lambda_m$$

• Total variance:
$$\sum_{m=1}^{D} \lambda_m$$

• Explained variance:
$$\sum_{m=1}^{M} \lambda_m$$

Proportion of explained variance:

$$\frac{\sum_{m=1}^{M} \lambda_m}{\sum_{m=1}^{D} \lambda_m}$$

Whitening (sphering)

- Standardize inputs
 - Zero-mean, unit variance
 - But features can be correlated
- Whitening removes correlations
 - De-correlates input data

$$\tilde{X} = XU\Lambda^{-1/2}$$

Uncorrelated features

$$\operatorname{Cov}[\tilde{X}] = \mathbf{I}$$

- Feed \tilde{X} instead of X into supervised technique

Beyond PCA

- Many non-linear dimensionality reduction techniques
 - Kernel PCA
 - ISOMAP

3 Dimensional Original Data

- t-SNE
- Locally linear embedding
- Spectral clustering

Summary

- Dimensionality reduction
- Principal components analysis
 - Formulation: maximize variance
 - Minimize reconstruction error
 - Proportion of variance explained
- Beyond PCA
- Exercises
 - Show that the direction that maximizes variance is the eigenvector of covariance matrix with largest eigenvalue
 - Do lab 10.4 in ISLR

References

- [1]James, Witten, Hastie, and Tibshirani. An Introduction to Statistical Learning with Applications in R. Chapter 10.
- [2] Hastie, Tibshirani, and Friedman. The Elements of Statistical Learning. Chapter 14.
- [3] Bishop, C. Pattern Recognition and Machine Learning. Chapter 12
- [4] LeCun, Y.
- [5] http://statweb.stanford.edu/~tibs/sta306bfiles/isomap.pdf
- [6] https://www.researchgate.net/figure/PCA-of-MNIST-FIG-4-PCA-of-not-MNIST_fig2 320517142