Hypothesis Testing STAT3023

Rachel Wang

School of Mathematics and Statistics, USyd

14 Sep, 2022

General setup and definitions

- Examples of statistical hypothesis testing problems:
 - decide based on clinical trial data (control vs. treatment)
 whether a new drug lowers blood pressure
 - decide if the life-time of a mechanical component in a car follows an exponential distribution or another distribution
- Treat observed data as values taken by random variables (often assumed to be iid)
- ► Statistical hypothesis: an assertion or conjecture about the underlying distribution of the random variables
- Null hypothesis H_0 and alternative hypothesis H_1 : a distribution (or a family of distributions) to be compared

General setup and definitions

- ▶ Test statistic: a real-valued function $T(\mathbf{X})$ of the data $\mathbf{X} = (X_1, \dots, X_n)$, capturing certain features of the distribution.
- ightharpoonup P-value: assuming H_0 true,

 $P(\text{at least as much evidence against } H_0 \text{ as was observed}),$

(or $\sup_{P \in \mathcal{H}_0} P(...)$). The smaller the p-value, the stronger the evidence against \mathcal{H}_0 .

General setup and definitions

- Goal: compare different tests
- A test procedure partitions possible values of $\mathbf{X} = (X_1, \dots, X_n)$ into two subsets: an acceptance region and a **rejection region (or critical region)**, denoted C, assuming H_0 :

Reject Ho if $X \in C$ Accept Ho if $X \in C$

Two types of errors

Type I and Type II errors

,	He is true	He is false
Accept Ho	no error	Type II = PH, (accept He)
Pejet Ho	Type I	no ever
	= PHO (reject Ho)	

- power = 1-Type II error = P_{H_1} (reject H_0)
- Tradeoff between Type I and Type II errors

Optimality of tests

ightharpoonup A level- α test is any test such that

The mathematical framework developed by Neyman and Pearson allows us to identify **optimal** level- α tests in certain scenarios, meaning that the power of the test is as high as possible.

Simple and composite hypothesis

- ▶ Usually the hypothesis H_0 is a subset of a larger statistical model \mathcal{M} .
- ▶ The complement of H_0 within \mathcal{M} is called the alternative hypothesis. i.e., $\mathcal{M} = H_0 \cup H_1$, and $H_0 \cap H_1 = \emptyset$.
- ► A hypothesis containing only one distribution is called simple; if it contains more than one distribution it is called composite.
- ► We will consider 3 cases:

Simple vs Simple: the NP Lemma

Likelihood ratio statistic and critical region:
$$\chi = (\chi_1, \dots, \chi_n)$$
 $f_0 (\cdot), f_1 (\cdot)$ are post (or purf for discrete distributions)

 $\chi = \frac{f_1(\chi)}{f_0(\chi)}$ larger this ratio,

more likely f_1 is the underlying distribution.

Critical region has the form:

 $C = \{\chi : \frac{f_1(\chi)}{f_0(\chi)} \ge y\}$ y some value

y some value

Simple vs Simple: the NP Lemma

The Neyman-Pearson (NP) Lemma: Let H_0 and H_1 be simple hypotheses (in which the distributions are either both discrete or both continuous). Fix a level $0 < \alpha < 1$, and suppose there exists y_{α} such that

$$P_{f_0}(Y \geq y_\alpha) = \alpha.$$

Then for any other test of H_0 with significance level at most α , its power against H_1 is at most the power of this likelihood ratio test.

$$C = \{x : Y = \frac{f_{\ell}(x)}{f_{\ell}(x)} \} \mathcal{Y}_{\infty}\}$$

$$P_{f_{\ell}}(C) = P_{f_{\ell}}(X \in C) = P_{f_{\ell}}(Y \neq \mathcal{Y}_{\infty})$$
Let D be any other set s.t. $P_{f_{\ell}}(D) \leq \infty$

Simple vs Simple: the NP Lemma

Want to prove Power of
$$C = P_{f_i}(C) > power of D$$

= $P_{f_i}(D)$

Pf of NP lenna (artinus case, discrete case similar)

$$\alpha = P_{b}(C) = \int \cdots \int_{b} f_{b}(x) dx \qquad x = (x_{1}, \dots, x_{n})$$

$$x \in C$$

$$= \int \int_{b} f_{b}(x) dx + \int \cdots \int_{b} f_{b}(x) dx \qquad 0$$

$$C \cap D \qquad C \cap D^{c}$$

$$A \ge P_{b}(D) = \int \cdots \int_{b} f_{b}(x) dx + \int \cdots \int_{b} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx + \int \cdots \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx + \int \int_{c} \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int \int_{c} \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int_{c} f_{b}(x) dx - \int_{c} f_{b}(x) dx \qquad 0$$

$$= \int \int_{c} f_{b}(x) dx - \int_{c} f_{b}$$

Using B again y non negative since likelihood ratio non negative.	
y non negative since	
likelihood ratio nonnegative.	

Example 1

 X_1,\ldots,X_n iid RVs. $H_0:X_i\sim N(0,1)$. $H_1:X_i\sim N(\mu_0,1)$ for some fixed μ_0 .

$$f_{0}(X) = \prod_{i=1}^{n} \phi(X_{i}) \qquad \phi(x_{i}) = \frac{1}{\sqrt{k_{i}}} e^{\frac{1}{2}X^{2}}$$

$$f_{1}(X) = \prod_{i=1}^{n} \phi(X_{i} - h_{0})$$

$$Y = \frac{f_{1}(X)}{f_{0}(X)} = \frac{\eta}{\sqrt{k_{i}}} \frac{\phi(X_{i} - h_{0})}{\phi(X_{i})}$$

$$= \frac{e^{-\frac{1}{2}\sum_{i=1}^{n}(X_{i} - h_{0})^{2}}}{e^{-\frac{1}{2}\sum_{i=1}^{n}(X_{i} - h_{0})^{2}}}$$

$$= \exp\left(\frac{h_{0}\sum_{i=1}^{n}X_{i}}{e^{-\frac{1}{2}\sum_{i=1}^{n}(X_{i} - h_{0})^{2}}}\right)$$

Peject Ho if
$$Y \geq y_{\alpha}$$

with $P_{o}(Y \geq y_{\alpha}) = \alpha$, $P_{o}(\cdot) = P_{o}(\cdot)$
 $P_{o}(\exp(\mu_{o} \sum_{i=1}^{n} x_{i} - \frac{nh_{o}^{2}}{2}) \geq y_{\alpha})$
 $= P_{o}(\mu_{o} \sum_{i=1}^{n} x_{i} \geq (gy_{\alpha} + \frac{nh_{o}^{2}}{2})$ (*)

Case I ho > 0 let $T = \sum_{i=1}^{n} x_{i}$

(x) $= P_{o}(T \geq \frac{(gy_{\alpha} + \frac{nh_{o}^{2}}{2})}{4\sigma})$
 $= P_{o}(Z \geq \frac{t_{\alpha}^{2}}{4\sigma}) = \alpha$, under Ho

The interpolation of the period on the value of ho, only its sign.

Note that the rejection region obes not depend on the value of ho, only its sign.