Contents 1 Basic 2 Flows, Matching 2.4 Global Minimum Cut 2.5 Bipartite Matching 2.6 GeneralMatching 2.7 Kuhn Munkres 2.8 Flow Models 3 3 Data Structure 3.1 <ext/pbds> 3.2 Li Chao Tree 3.3 Treap 3.4 Link-Cut Tree 2-Edge-Connected Components . . . 4.2 2-Vertex-Connected Components . . 3-Edge-Connected Components . . . 4.4 Heavy-Light Decomposition 4.5 Centroid Decomposition $4.6 \ \ {\rm Strongly} \ {\rm Connected} \ {\rm Components} \quad . \ .$ 4.9 Minimum Mean Cycle $4.10\;\mathrm{Directed}$ Minimum Spanning Tree . . 4.11 Maximum Clique 4.12 Dominator Tree $4.13 \; \text{Edge Coloring} \quad \dots \quad \dots \quad \dots \quad \dots$ 5 String 5.1 Prefix Function 5.2 Z Function 5.5 Aho-Corasick Automaton 9 5.8 EER Tree 6.1 Extended GCD 6.2 Chinese Remainder Theorem 6.3 NTT and polynomials 6.4 Any Mod NTT 6.5 Newton's Method 6.6 Fast Walsh-Hadamard Transform . . 6.7 Simplex Algorithm 6.7.1 Construction 11 6.8 Subset Convolution 11 6.9 Berlekamp Massey Algorithm 11 6.10 Fast Linear Recurrence 6.11 Prime check and factorize 6.14 Quadratic Residue 6.15 Characteristic Polynomial 6.18 Floor Sum 6.21 Count of subsets with sum (mod P) $\mathrm{leq}\ T \quad \dots \quad \dots \quad \dots \quad \dots$ 6.22 Theorem Dynamic Programming 7.1 Dynamic Convex Hull 7.2 1D/1D Convex Optimization Conditon 7.3.1 Totally Monotone (Concave/ Convex) 14 7.3.2 Monge Condition (Concave/Convex) 7.3.3 Optimal Split Point 8 Geometry 8.2 Convex Hull and related 8.3 Half Plane Intersection 8.4 Triangle Centers 16

8.7 ConvexHull Operations (yhchang3) .

17

while (isdigit(c)) {

```
9 Miscellaneous
                                           18
   18
   18
       9.4
                                            18
   9.5
                                            19
   19
       SegTree Beats . . . . . . . . . . . . . . . . . .
       unorganized . . . . . . . . . . . . . . . .
      Basic
       \mathbf{vimrc}
 set nu rnu cin ts=4 sw=4 autoread hls
 map<leader>b :w<bar>!g++ -std=c++17 '%' -
      DKEV -fsanitize=undefined -o /tmp/.
run<CR>
 map<leader>r :w<bar>!cat 01.in && echo "
      ---" && /tmp/.run < 01.in<CR>
 map<leader>i :!/tmp/.run<CR>
map<leader>c I//<Esc>
map<leader>y :%y+<CR>
map<leader>l :%d<bar>0r ~/t.cpp<CR>
 1.2 Default code
 #include <bits/stdc++.h>
 using namespace std;
 using i64 = long long;
 using ll = long long;
#define SZ(v) (ll)((v).size())
 #define pb emplace_back
 #define AI(i) begin(i), end(i)
 #define X first
 #define Y second
 template<class T> bool chmin(T &a, T b) {
 return b < a && (a = b, true); }
template<class T> bool chmax(T &a, T b) {
      return a < b && (a = b, true); }</pre>
 #ifdef KEV
#define DE(args...) kout("[ " + string(#
    args) + " ] = ", args)
void kout() { cerr << endl; }</pre>
 template<class T, class ...U> void kout(T
       a, U ...b) { cerr << a << ' ', kout
      (b...); }
 template<class T> void debug(T l, T r) {
      while (l != r) cerr << *l << " \n"[</pre>
      next(l)==r], ++l; }
 #define DE(...) 0
 #define debug(...) 0
 #endif
 int main() {
   cin.tie(nullptr)->sync_with_stdio(false
   return 0;
}
 1.3 Fast Integer Input
 char buf[1 << 16], *p1 = buf, *p2 = buf;</pre>
 char get() {
   if (p1 == p2) {
     p1 = buf;
     p2 = p1 + fread(buf, 1, sizeof(buf),
          stdin);
   if (p1 == p2)
return -1;
   return *p1++;
 char readChar() {
   char c = get();
   while (isspace(c))
   c = get();
return c;
 int readInt() {
   int x = 0;
   char c = get();
   while (!isdigit(c))
     c = get();
```

```
x = 10 * x + c - '0';
    c = get();
  return x;
}
```

1.4 Pragma optimization

```
#pragma GCC optimize("Ofast", "no-stack-
protector", "no-math-errno", "unroll
     -loops")
#pragma GCC target("sse,sse2,sse3,ssse3,
     sse4,sse4.2,popcnt,abm,mmx,avx,tune=
     native, arch=core-avx2, tune=core-avx2
#pragma GCC ivdep
```

Flows, Matching

\mathbf{Flow} 2.1

```
template <typename F>
struct Flow {
  static constexpr F INF = numeric_limits
       <F>::max() / 2;
  struct Edge {
    int to;
    F cap;
    Edge(int to, F cap) : to(to), cap(cap
         ) {}
  int n;
  vector<Edge> e;
  vector<vector<int>> adj;
  vector<int> cur, h;
  Flow(int n) : n(n), adj(n) {}
  bool bfs(int s, int t) {
  h.assign(n, -1);
    queue<int> q;
    h[s] = 0;
    q.push(s);
    while (!q.empty()) {
      int u = q.front();
      q.pop();
      for (int i : adj[u]) {
        auto [v, c] = e[i];
        if (c > 0 \& h[v] == -1) {
          h[v] = h[u] + 1;
          if (v == t) { return true; }
          q.push(v);
        }
      }
    return false;
    dfs(int u, int t, F f) {
    if (u == t) { return f; }
    F r = f;
    for (int &i = cur[u]; i < int(adj[u].</pre>
      size()); i++) {
int j = adj[u][i];
      auto [v, c] = e[j];
      if (c > 0 \& h[v] == h[u] + 1) {
        Fa = dfs(v, t, min(r, c));
        e[j].cap -= a;
        e[j ^ 1].cap += a;
           = a;
        if (r == 0) { return f; }
      }
    return f - r;
  }
  // can be bidirectional
  void addEdge(int u, int v, F cf = INF,
       F cb = 0) {
    adj[u].push_back(e.size()), e.
         emplace_back(v, cf);
    adj[v].push_back(e.size()), e.
         emplace_back(u, cb);
  F maxFlow(int s, int t) {
    F ans = 0;
```

while (bfs(s, t)) {

cur.assign(n, 0); ans += dfs(s, t, INF);

template <class Flow, class Cost>

2.2 MCMF

struct MinCostMaxFlow {

```
public:
 static constexpr Flow flowINF =
      numeric_limits<Flow>::max();
  static constexpr Cost costINF =
      numeric_limits<Cost>::max();
 MinCostMaxFlow() {}
 MinCostMaxFlow(int n) : n(n), g(n) {}
  int addEdge(int u, int v, Flow cap,
       Cost cost) {
    int m = int(pos.size());
    pos.push_back({u, int(g[u].size())});
    g[u].push_back({v, int(g[v].size()),
         cap, cost});
    g[v].push_back({u, int(g[u].size()) -
          1, 0, -cost});
    return m;
 struct edge {
    int u, v;
    Flow cap, flow;
    Cost cost;
 edge getEdge(int i) {
    auto _e = g[pos[i].first][pos[i].
        second];
    auto _re = g[_e.v][_e.rev];
    return {pos[i].first, _e.v, _e.cap +
         _re.cap, _re.cap, _e.cost};
 vector<edge> edges() {
    int m = int(pos.size());
    vector<edge> result(m);
    for (int i = 0; i < m; i++) { result[
         i] = getEdge(i); }
    return result;
 }
 pair<Flow, Cost> maxFlow(int s, int t,
       Flow flow_limit = flowINF) {
                                              1};
       return slope(s, t, flow_limit).
      back(); }
 vector<pair<Flow, Cost>> slope(int s,
       int t, Flow flow_limit = flowINF)
    vector<Cost> dual(n, 0), dis(n);
    vector<int> pv(n), pe(n), vis(n);
auto dualRef = [&]() {
      fill(dis.begin(), dis.end();
           costINF);
      fill(pv.begin(), pv.end(), -1);
      fill(pe.begin(), pe.end(), -1);
fill(vis.begin(), vis.end(), false)
      struct Q {
        Cost key;
        int u;
        bool operator<(Q o) const {</pre>
             return key > o.key; }
      priority_queue<Q> h;
      dis[s] = 0;
      h.push({0, s});
      while (!h.empty()) {
        int u = h.top().u;
        h.pop();
        if (vis[u]) { continue; }
        vis[u] = true;
        if (u == t) { break; }
        for (int i = 0; i < int(g[u].size</pre>
             ()); i++) {
          auto e = g[u][i];
```

```
if (vis[e.v] | l e.cap == 0)
                continue;
          Cost cost = e.cost - dual[e.v]
                + dual[u];
          if (dis[e.v] - dis[u] > cost) {
            dis[e.v] = dis[u] + cost;
            pv[e.v] = u;
            pe[e.v] = i
            h.push({dis[e.v], e.v});
          }
        }
      if (!vis[t]) { return false; }
for (int v = 0; v < n; v++) {</pre>
        if (!vis[v]) continue;
        dual[v] -= dis[t] - dis[v];
      return true:
    Flow flow = 0;
    Cost cost = 0, prevCost = -1;
    vector<pair<Flow, Cost>> result;
    result.push_back({flow, cost});
    while (flow < flow_limit) {</pre>
      if (!dualRef()) break;
      Flow c = flow_limit - flow;
      for (int v = t; v != s; v = pv[v])
        c = min(c, g[pv[v]][pe[v]].cap);
      for (int v = t; v != s; v = pv[v])
        auto& e = g[pv[v]][pe[v]];
        e.cap -= c;
        g[v][e.rev].cap += c;
      Cost d = -dual[s];
      flow += c;
cost += c * d;
      if (prevCost == d) { result.
           pop_back(); }
      result.push_back({flow, cost});
      prevCost = cost;
    return result;
 }
private:
 int n;
  struct _edge {
    int v, rev;
    Flow cap;
    Cost cost;
 vector<pair<int, int>> pos;
 vector<vector<_edge>> g;
```

2.3 GomoryHu Tree

```
auto gomory(int n, vector<array<int, 3>>
      e) {
   Flow<int, int> mf(n);
   for (auto [u, v, c] : e) { mf.addEdge(u
         , v, c, c); }
   vector<array<int, 3>> res;
   vector<int> p(n);
   for (int i = 1; i < n; i++) {
  for (int j = 0; j < int(e.size()); j</pre>
           ++) { mf.e[j << 1].cap = mf.e[j
           << 1 | 1].cap = e[j][2]; }
     int f = mf.maxFlow(i, p[i]);
     auto cut = mf.minCut();
     for (int j = i + 1; j < n; j++) { if
    (cut[i] == cut[j] && p[i] == p[j]</pre>
           ]) { p[j] = i; }}
     res.push_back({f, i, p[i]});
   return res;
}
```

2.4 Global Minimum Cut

```
// O(V ^ 3)
template <typename F>
struct GlobalMinCut {
   static constexpr int INF =
       numeric_limits<F>::max() / 2;
```

```
int n:
   vector<int> vis, wei;
   vector<vector<int>> adj;
   GlobalMinCut(int n) : n(n), vis(n), wei
        (n), adj(n, vector<int>(n)) {}
   void addEdge(int u, int v, int w){
     adj[u][v] += w;
     adj[v][u] += w;
   int solve() {
     int sz = n;
     int res = INF, x = -1, y = -1;
     auto search = [&]() {
       fill(vis.begin(), vis.begin() + sz,
             0);
       fill(wei.begin(), wei.begin() + sz,
       x = y = -1;
       int mx, cur;
       for (int i = 0; i < sz; i++) {
         mx = -1, cur = 0;
         for (int j = 0; j < sz; j++) {
           if (wei[j] > mx) {
             mx = wei[j], cur = j;
           }
         vis[cur] = 1, wei[cur] = -1;
         x = y;
y = cur;
         for (int j = 0; j < sz; j++) {
           if (!vis[j]) {
             wei[j] += adj[cur][j];
         }
       return mx;
     while (sz > 1) {
       res = min(res, search());
       for (int i = 0; i < sz; i++) {
         adj[x][i] += adj[y][i];
         adj[i][x] = adj[x][i];
       for (int i = 0; i < sz; i++) {
  adj[y][i] = adj[sz - 1][i];</pre>
         adj[i][y] = adj[i][sz - 1];
       SZ--;
     return res;
};
```

2.5 Bipartite Matching

```
struct BipartiteMatching {
  int n, m;
  vector<vector<int>> adj;
  vector<int> 1, r, dis, cur;
BipartiteMatching(int n, int m) : n(n),
        m(m), adj(n), l(n, -1), r(m, -1),
        dis(n), cur(n) {}
  void addEdge(int u, int v) { adj[u].
       push_back(v); }
  void bfs() {
    vector<int> q;
    for (int u = 0; u < n; u++) {
      if (l[u] == -1) {
        q.push_back(u), dis[u] = 0;
      } else {
        dis[u] = -1;
      }
    for (int i = 0; i < int(q.size()); i</pre>
         ++) {
      int u = q[i];
      for (auto v : adj[u]) {
        if (r[v] != -1 && dis[r[v]] ==
              -1) {
           dis[r[v]] = dis[u] + 1;
           q.push_back(r[v]);
        }
      }
    }
  bool dfs(int u) {
```

```
for (int &i = cur[u]; i < int(adj[u].
     size()); i++) {</pre>
        int v = adj[u][i];
        if (r[v] == -1 || dis[r[v]] == dis[
             u] + 1 && dfs(r[v])) {
          l[u] = v, r[v] = u;
          return true;
     return false;
   int maxMatching() {
     int match = 0:
     while (true) {
       bfs();
        fill(cur.begin(), cur.end(), 0);
        int cnt = 0;
for (int u = 0; u < n; u++) {
  if (l[u] == -1) {
            cnt += dfs(u);
        if (cnt == 0) {
         break:
        match += cnt;
     return match:
   }
   auto minVertexCover() {
     vector<int> L, R;
     for (int u = 0; u < n; u++) {
        if (dis[u] == -1) {
          L.push_back(u);
        } else if (l[u] != -1) {
          R.push_back(l[u]);
     return pair(L, R);
| };
```

GeneralMatching

```
struct GeneralMatching {
  vector<vector<int>> adj;
  vector<int> match:
  GeneralMatching(int n) : n(n), adj(n),
      match(n, -1) {}
  void addEdge(int u, int v) {
    adj[u].push_back(v);
    adj[v].push_back(u);
  int maxMatching() {
    vector<int> vis(n), link(n), f(n),
        dep(n);
    auto find = [&](int u) {
      while (f[u] != u) \{ u = f[u] = f[f[
          u]]; }
      return u:
    auto lca = [&](int u, int v) {
     u = find(u);
      v = find(v);
      while (u != v) {
        if (dep[u] < dep[v]) \{ swap(u, v) \}
        u = find(link[match[u]]);
      return u:
    queue<int> q;
    auto blossom = [&](int u, int v, int
        p) {
      while (find(u) != p) {
        link[u] = v
        v = match[u];
        if (vis[v] == 0) {
          vis[v] = 1;
          q.push(v);
        f[u] = f[v] = p;
        u = link[v];
    };
    auto augment = [&](int u) {
```

```
while (!q.empty()) { q.pop(); }
iota(f.begin(), f.end(), 0);
fill(vis.begin(), vis.end(), -1);
  q.push(u), vis[u] = 1, dep[u] = 0;
  while (!q.empty()){
    int u = q.front();
     q.pop();
     for (auto v : adj[u]) {
       if (vis[v] == -1) {
         vis[v] = 0;
         link[v] = u;
         dep[v] = dep[u] + 1;
         if (match[v] == -1) {
           for (int x = v, y = u, tmp;
y!= -1; x = tmp, y =
                  x == -1 ? -1 : link[x]
                 1) {
             tmp = match[y], match[x]
                   = y, match[y] = x;
           return true;
         q.push(match[v]), vis[match[v
              ]] = 1, dep[match[v]] =
              dep[u] + 2;
       } else if (vis[v] == 1 && find(
            v) != find(u)) {
         int p = lca(u, v);
         blossom(u, v, p), blossom(v,
              u, p);
    }
  return false;
};
int res = 0;
for (int u = 0; u < n; ++u) { if (
     match[u] == -1) \{ res += augment \}
     (u); } }
return res;
```

2.7 Kuhn Munkres

|};

```
// need perfect matching or not : w
     intialize with -INF / 0
template <typename Cost>
struct KM {
  static constexpr Cost INF =
      numeric_limits<Cost>::max() / 2;
  vector<Cost> hl, hr, slk;
  vector<int> l, r, pre, vl, vr;
  queue<int> q;
  vector<vector<Cost>> w;
  KM(int n) : n(n), hl(n), hr(n), slk(n),
        l(n, -1), r(n, -1), pre(n), vl(n)
        , vr(n),
    w(n, vector<Cost>(n, -INF)) {}
  bool check(int x) {
    vl[x] = true;
    if (l[x] != -1) {
      q.push(l[x]);
      return vr[l[x]] = true;
    while (x != -1) \{ swap(x, r[l[x] =
         pre[x]]); }
    return false;
  void bfs(int s) {
    fill(slk.begin(), slk.end(), INF);
fill(vl.begin(), vl.end(), false);
    fill(vr.begin(), vr.end(), false);
    q = \{\};
    q.push(s);
    vr[s] = true;
    while (true) {
      while (!q.empty()) {
        int y = q.front();
        q.pop();
         for (int x = 0; x < n; ++x) {
           if (!vl[x] \&\& slk[x] >= (d = hl)
                [x] + hr[y] - w[x][y]) {
             pre[x] = y;
             if (d != 0) {
```

```
slk[x] = d;
             } else if (!check(x)) {
               return;
           }
         }
       d = INF;
       for (int x = 0; x < n; ++x) { if (!
            vl[x] \&\& d > slk[x]) \{ d = slk \}
            [x]; }}
        for (int x = 0; x < n; ++x) {
         if (vl[x]) {
           hl[x] += d;
         } else {
           slk[x] -= d;
         if (vr[x]) { hr[x] -= d; }
       for (int x = 0; x < n; ++x) { if (!
            vl[x] && !slk[x] && !check(x))
             { return; }}
     }
   void addEdge(int u, int v, Cost x) { w[
        u][v] = max(w[u][v], x); }
   Cost solve() {
     for (int i = 0; i < n; ++i) { hl[i] =</pre>
           *max_element(w[i].begin(), w[i
          ].end()); }
     for (int i = 0; i < n; ++i) { bfs(i);
     Cost res = 0;
     for (int i = 0; i < n; ++i) { res +=
          w[i][l[i]]; }
|};
```

Flow Models 2.8

- Maximum/Minimum flow with lower bound / Circulation problem
 - 1. Construct super source S and sink T. 2. For each edge (x, y, l, u), connect $x \to y$ with capacity u l.
 - For each vertex v, denote by in(v)the difference between the sum of incoming lower bounds and the sum of
 - outgoing lower bounds. 4. If in(v) > 0, connect $S \to v$ with capacity in(v), otherwise, connect $v \rightarrow$ T with capacity -in(v).
 - To maximize, connect $t \to s$ with capacity ∞ (skip this in circulation problem), and let fbe the maximum flow from S to T. If $f \neq \sum_{v \in V, in(v) > 0} in(v)$, there's no solution. Otherwise, the maximum flow from s to t
 - is the answer. To minimize, let f be the maximum flow from S to T. Connect $t \to s$ with capacity ∞ and let the flow from S to T be f'. If $f + f' \neq \sum_{v \in V, in(v) > 0} in(v)$, there's no solution. Otherwise, f' is the answer.
 - 5. The solution of each edge e is $l_e + f_e$ where f_e corresponds to the flow of edge e on the graph.
- · Construct minimum vertex cover from maximum matching M on bipartite graph
 - Redirect every edge: y → x if (x, y) ∈ M, x → y otherwise.
 DFS from unmatched vertices in X.
 - 3. $x \in X$ is chosen iff x is unvisited. 4. $y \in Y$ is chosen iff y is visited.
- · Minimum cost cyclic flow
 - Consruct super source S and sink T
 - 2. For each edge (x, y, c), connect $x \rightarrow y$ with (cost, cap) = (c, 1) if c > y0, otherwise connect $y \rightarrow x$ with (cost, cap) = (-c, 1)
 - 3. For each edge with c < 0, sum these cost as K, then increase d(y) by 1, decrease d(x) by 1
 - 4. For each vertex v with d(v) > 0, connect $S \to v$ with $(\cos t, cap) =$ (0, d(v))

- 5. For each vertex v with d(v) < 0, connect $v \rightarrow T$ with (cost, cap) =(0, -d(v))
- 6. Flow from S to T, the answer is the cost of the flow C + K
- · Maximum density induced subgraph
 - 1. Binary search on answer, suppose we're checking answer T
 - 2. Construct a max flow model, let Kbe the sum of all weights
 - 3. Connect source $s \to v$, $v \in G$ with capacity K
 - 4. For each edge (u, v, w) in G, connect
 - 4. For each edge (u, v, w) in G, connect u → v and v → u with capacity w
 5. For v ∈ G, connect it with sink v → t with capacity K + 2T (∑_{e∈E(v)} w(e)) 2w(v)
 6. T is a valid answer if the maximum flow f < K|V|
- Minimum weight edge cover
 - 1. For each $v \in V$ create a copy v', and connect $u' \to v'$ with weight w(u,v).
 2. Connect $v \to v'$ with weight $2\mu(v)$,
 - where $\mu(v)$ is the cost of the cheapest edge incident to v.
 - 3. Find the minimum weight perfect matching on G'.
- Project selection problem
 - 1. If $p_v > 0$, create edge (s, v) with capacity p_v ; otherwise, create edge
 - (v,t) with capacity $-p_v$. 2. Create edge (u,v) with capacity w with w being the cost of choosing uwithout choosing v.
 - The mincut is equivalent to the maximum profit of a subset of projects.
- 0/1 quadratic programming

$$\sum_{x} c_{x} x + \sum_{y} c_{y} \bar{y} + \sum_{xy} c_{xy} x \bar{y} + \sum_{xyx'y'} c_{xyx'y'} (x + \sum_{xyx'y'} c_{xyx'y'})$$

can be minimized by the mincut of the following graph:

- 1. Create edge (x,t) with capacity c_x and create edge (s, y) with capacity
- 2. Create edge (x, y) with capacity c_{xy} . 3. Create edge (x, y) and edge (x', y')with capacity $c_{xyx'y'}$.

Data Structure

<ext/pbds> 3.1

```
#include <bits/extc++.h>
#include <ext/rope>
using namespace __gnu_pbds;
using namespace __gnu_cxx;
#include <ext/pb_ds/assoc_container.hpp>
typedef tree<int, null_type, std::less<</pre>
     int>, rb_tree_tag,
      tree_order_statistics_node_update>
     tree_set;
typedef cc_hash_table<int, int> umap;
typedef priority_queue<int> heap;
int main() {
  tree_set s;
  s.insert(71); s.insert(22);
  assert(*s.find_by_order(0) == 22);
       assert(*s.find_by_order(1) == 71);
   assert(s.order\_of\_key(22) == 0); assert
       (s.order_of_key(71) == 1);
  s.erase(22);
  assert(*s.find_by_order(0) == 71);
  assert(s.order_of_key(71) == 0);
// mergable heap
  heap a, b; a.join(b);
   // persistant
   rope<char> r[2];
  r[1] = r[0];
  std::string st = "abc";
  r[1].insert(0, st.c_str());
  r[1].erase(1, 1);
   std::cout << r[1].substr(0, 2) << std::
       endl;
   return 0;
| }
```

3.2 Li Chao Tree

```
constexpr i64 INF = 4e18;
 struct Line {
   i64 a, b;
Line() : a(0), b(INF) {}
   Line(i64 a, i64 b) : a(a), b(b) {}
   i64 \ operator()(i64 \ x) \ \{ \ return \ a \ * \ x \ +
 // [, ) !!!!!!!!!!
struct Lichao {
   int n:
   vector<int> vals;
   vector<Line> lines;
   Lichao() {}
   void init(const vector<int> &v) {
     n = v.size();
     vals = v;
     sort(vals.begin(), vals.end());
     vals.erase(unique(vals.begin(), vals.
           end()), vals.end());
     lines.assign(4 * n, {});
   int get(int x) { return lower_bound(
        vals.begin(), vals.end(), x)
        vals.begin(); }
   void apply(Line p, int id, int l, int r
        } (
     Line &q = lines[id];
     if (p(vals[l]) < q(vals[l])) { swap(p</pre>
           , q); }
     if (l + 1 == r) { return; }
     int m = l + r \gg 1;
     if (p(vals[m]) < q(vals[m])) {</pre>
       swap(p, q);
       apply(p, id << 1, l, m);
     } else {
       apply(p, id \ll 1 | 1, m, r);
     }
   void add(int ql, int qr, Line p) {
     ql = get(ql), qr = get(qr);
     auto go = [&](auto go, int id, int l,
       if (qr <= 1 || r <= ql) { return; }
if (ql <= 1 && r <= qr) {
          apply(p, id, l, r);
       int m = l + r >> 1;
go(go, id << 1, l, m);
go(go, id << 1 | 1, m, r);</pre>
     };
     go(go, 1, 0, n);
   i64 query(int p) {
     p = get(p);
     auto go = [&](auto go, int id, int l,
            int r) -> i64 {
        if (l + 1 == r) { return lines[id](
             vals[p]); }
       int m = l + r >> 1;
       return min(lines[id](vals[p]), p <</pre>
             m ? go(go, id << 1, 1, m) : go
             (go, id << 1 | 1, m, r));
     return go(go, 1, 0, n);
};
        Treap
```

```
struct Treap {
    Treap *lc = nullptr, *rc = nullptr;
     int sz = 1;
    unsigned w = rng();
     i64 m = 0, b = 0, val = 0;
int size(Treap *t) {
     return t == nullptr ? 0 : t->sz;
void apply(Treap *t, i64 m, i64 b) {
     t->b += b;
     t->val += m * size(t->lc) + b;
}
```

```
void pull(Treap *t) {
    t->sz = size(t->lc) + size(t->rc) +
void push(Treap *t) {
    if (t->lc != nullptr) {
        apply(t->lc, t->m, t->b);
    if (t->rc != nullptr) {
        apply(t->rc, t->m, t->b + t->m *
             (size(t->lc) + 1));
    t->m = t->b = 0;
pair<Treap*, Treap*> split(Treap *t, int
    if (t == nullptr) { return {t, t}; }
    push(t);
Treap *a, *b;
    if (s <= size(t->lc)) {
        tie(a, b->lc) = split(t->lc, s);
    } else {
    a = t;
        tie(a->rc, b) = split(t->rc, s -
             size(t->lc) - 1);
    pull(t);
    return {a, b};
Treap* merge(Treap *t1, Treap *t2) {
    if (t1 == nullptr) { return t2; }
    if (t2 == nullptr) { return t1; }
    push(t1), push(t2);
    if (t1->w > t2->w) {
        t1->rc = merge(t1->rc, t2);
        pull(t1);
        return t1;
    } else {
        t2->lc = merge(t1, t2->lc);
        pull(t2);
        return t2;
int rnk(Treap *t, i64 val) {
    int res = 0;
    while (t != nullptr) {
        push(t);
        if (val <= t->val) {
            res += size(t->lc) + 1;
t = t->rc;
        } else {
            t = t->lc:
    return res;
Treap* join(Treap *t1, Treap *t2) {
    if (size(t1) > size(t2)) {
        swap(t1, t2);
    Treap *t = nullptr;
    while (t1 != nullptr) {
        auto [u1, v1] = split(t1, 1);
        t1 = v1;
        int r = rnk(t2, u1->val);
        if (r > 0) {
            auto [u2, v2] = split(t2, r);
            t = merge(t, u2);
            t2 = v2;
        t = merge(t, u1);
    t = merge(t, t2);
    return ť;
```

3.4 Link-Cut Tree

```
struct Splay {
 array<Splay*, 2> ch = {nullptr, nullptr
  Splay* fa = nullptr;
  int sz = 1;
 bool rev = false;
  Splay() {}
  void applyRev(bool x) {
   if (x) {
      swap(ch[0], ch[1]);
rev ^= 1;
   }
  void push() {
    for (auto k: ch) {
      if (k) {
        k->applyRev(rev);
    rev = false;
 void pull() {
    sz = 1:
    for (auto k : ch) {
      if (k) {
   }
 }
 int relation() { return this == fa->ch
  bool isRoot() { return !fa || fa->ch[0]
        != this && fa->ch[1] != this; }
  void rotate() {
   Splay *p = fa;
bool x = !relation();
    p \rightarrow ch[!x] = ch[x];
    if (ch[x]) \{ ch[x] -> fa = p; \}
    fa = p \rightarrow fa:
    if (!p->isRoot()) { p->fa->ch[p->
         relation()] = this; }
    ch[x] = p;
    p->fa=this;
    p->pull();
  void splay() {
    vector<Splay*> s;
    for (Splay *p = this; !p->isRoot(); p
          = p\rightarrow fa) { s.push\_back(p\rightarrow fa);
         }
    while (!s.empty()) {
      s.back()->push();
      s.pop_back();
    push();
    while (!isRoot()) {
      if (!fa->isRoot()) {
        if (relation() == fa->relation())
          fa->rotate();
        } else {
          rotate();
        }
      rotate();
    pull();
 void access() {
    for (Splay *p = this, *q = nullptr; p
         ; q = p, p = p -> fa) {
      p->splay();
      p->ch[1] = q;
      p->pull();
    splay();
  void makeRoot() {
    access();
    applyRev(true);
 Splay* findRoot() {
    access();
    Splay *p = this;
    while (p->ch[0]) { p = p->ch[0]; }
    p->splay();
```

```
return p;
   friend void split(Splay *x, Splay *y) {
    x->makeRoot();
    y->access();
   // link if not connected
   friend void link(Splay *x, Splay *y) {
     x->makeRoot();
     if (y->findRoot() != x) {
      x \rightarrow fa = y;
   // delete edge if doesn't exist
  friend void cut(Splay *x, Splay *y) {
    split(x, y);
    if (x->fa == y \&\& !x->ch[1]) {
      x->fa = y->ch[0] = nullptr;
      x->pull();
    }
  bool connected(Splay *x, Splay *y) {
    return x->findRoot() == y->findRoot()
};
```

4 Graph

4.1 2-Edge-Connected Components

```
struct EBCC {
  int n, cnt = 0, T = 0;
  vector<vector<int>> adj, comps;
  vector<int> stk, dfn, low, id;
  EBCC(int n) : n(n), adj(n), dfn(n, -1),
  low(n), id(n, -1) {}

void addEdge(int u, int v) { adj[u].
 push_back(v), adj[v].push_back(u);
  void build() { for (int i = 0; i < n; i
++) { if (dfn[i] == -1) { dfs(i,</pre>
        -1); }}}
  void dfs(int u, int p) {
     dfn[u] = low[u] = T++;
     stk.push_back(u);
     for (auto v : adj[u]) {
       if (v == p) { continue; }
       if (dfn[v] == -1) {
         dfs(v, u);
         low[u] = min(low[u], low[v]);
       } else if (id[v] == -1) {
         low[u] = min(low[u], dfn[v]);
     if (dfn[u] == low[u]) {
       int x;
       comps.emplace_back();
       do {
         x = stk.back();
         comps.back().push_back(x);
         id[x] = cnt;
         stk.pop_back();
       } while (x != u);
       cnt++;
```

4.2 2-Vertex-Connected Components

```
if (low[v] >= dfn[u]) {
        comps.emplace_back();
        int x;
        do {
          x = stk.back();
          cnt[x]++;
          stk.pop_back();
        } while (x != v);
        comps.back().push_back(u);
        cnt[u]++;
      }
    } else {
      low[u] = min(low[u], dfn[v]);
 }
};
for (int i = 0; i < n; i++) {
  if (!adj[i].empty()) {
    dfs(dfs, i, -1);
  } else {
    comps.push_back({i});
```

4.3 3-Edge-Connected Components

```
// DSU
struct ETCC {
  int n, cnt = 0;
  vector<vector<int>> adj, comps;
  vector<int> in, out, low, up, nx, id;
ETCC(int n) : n(n), adj(n), in(n, -1),
    out(in), low(n), up(n), nx(in), id
       (in) {}
  void addEdge(int u, int v) {
    adj[u].push_back(v);
    adj[v].push_back(u);
  void build() {
    int T = 0;
    DSU d(n);
    auto merge = [&](int u, int v) {
      d.join(u, v);
      up[u] += up[v];
    auto dfs = [&](auto dfs, int u, int p
         ) -> void {
      in[u] = low[u] = T++
       for (auto v : adj[u]) {
         if (v == u) { continue; }
         if (v == p) {
           p = -1;
           continue;
         if (in[v] == -1) {
           dfs(dfs, v, u);
           if (nx[v] == -1 \&\& up[v] <= 1)
             up[u] += up[v];
             low[u] = min(low[u], low[v]);
             continue;
           if (up[v] == 0) \{ v = nx[v]; \}
           if (low[u] > low[v]) { low[u] =
                 low[v], swap(nx[u], v); }
           while (v != -1) { merge(u, v);
                v = nx[v]; }
        } else if (in[v] < in[u]) {</pre>
           low[u] = min(low[u], in[v]);
           up[u]++;
        } else {
           for (int &x = nx[u]; x != -1 &&
                 in[x] \leftarrow in[v] & in[v] <
                 out[x]; x = nx[x]) {
             merge(u, x);
           up[u]--;
        }
      out[u] = T;
    for (int i = 0; i < n; i++) { if (in[</pre>
```

 $i] == -1) \{ dfs(dfs, i, -1); \}$

find(i) == i) { id[i] = cnt++;

for (int i = 0; i < n; i++) { if (d.

4.4 Heavy-Light Decomposi-

```
struct HLD {
  int n, cur = 0;
  vector<int> sz, top, dep, par, tin,
       tout, seq;
 vector<vector<int>> adj;
HLD(int n) : n(n), sz(n, 1), top(n),
       dep(n), par(n), tin(n), tout(n),
 seq(n), adj(n) {}
void addEdge(int u, int v) { adj[u].
       push_back(v), adj[v].push_back(u);
  void build(int root = 0) {
    top[root] = root, dep[root] = 0, par[
         root7 = -1:
    dfs1(root), dfs2(root);
  void dfs1(int u) {
    if (auto it = find(adj[u].begin(),
         adj[u].end(), par[u]); it != adj
          [u].end()) {
      adj[u].erase(it);
    for (auto &v : adj[u]) {
      par[v] = u;
      dep[v] = dep[u] + 1;
      dfs1(v);
      sz[u] += sz[v];
      if (sz[v] > sz[adj[u][0]]) { swap(v
            , adj[u][0]); }
    }
  void dfs2(int u) {
    tinful = cur++:
    seq[tin[u]] = u;
    for (auto v : adj[u]) {
      top[v] = v == adj[u][0] ? top[u] :
      dfs2(v);
    tout[u] = cur - 1;
  int lca(int u, int v) {
    while (top[u] != top[v]) {
  if (dep[top[u]] > dep[top[v]]) {
        u = par[top[u]];
      } else {
        v = par[top[v]];
      }
    }
    return dep[u] < dep[v] ? u : v;</pre>
  int dist(int u, int v) { return dep[u]
       + dep[v] - 2 * dep[lca(u, v)]; }
      jump(int u, int k) {
    if (dep[u] < k) { return -1; }
int d = dep[u] - k;</pre>
    while (dep[top[u]] > d) \{ u = par[top ] \}
         [u]]; }
    return seq[tin[u] - dep[u] + d];
  // u is v's ancestor
  bool isAncestor(int u, int v) { return
       tin[u] <= tin[v] && tin[v] <= tout</pre>
       [u]; }
  // root's parent is itself
  int rootedParent(int r, int u) {
    if (r == u) { return u; }
    if (isAncestor(r, u)) { return par[u
         ]; }
    auto it = upper_bound(adj[u].begin(),
          adj[u].end(), r, [\&](int x, int
      return tin[x] < tin[y];</pre>
    }) - 1;
return *it;
```

```
// rooted at u, v's subtree size
int rootedSize(int r, int u) {
  if (r == u) { return n; }
  if (isAncestor(u, r)) { return sz[u];
    }
  return n - sz[rootedParent(r, u)];
}
int rootedLca(int r, int a, int b) {
  return lca(a, b) ^ lca(a, r) ^ lca
  (b, r); }
};
```

4.5 Centroid Decomposition

```
vector<int> sz(n), vis(n);
auto build = [&](auto build, int u, int p
     ) -> void {
  sz[u] = 1;
  for (auto v : g[u]) {
    if (v != p && !vis[v]) {
      build(build, v, u);
      sz[u] += sz[v];
  }
};
auto find = [&](auto find, int u, int p,
     int tot) -> int {
  for (auto v : g[u]) {
    if (v != p && !vis[v] && 2 * sz[v] >
         tot) {
      return find(find, v, u, tot);
    }
  return u;
};
auto dfs = [&](auto dfs, int cen) -> void
  build(build, cen, -1);
  cen = find(find, cen, -1, sz[cen]);
  vis[cen] = 1;
  build(build, cen, -1);
  for (auto v : g[cen]) {
    if (!vis[v]) {
      dfs(dfs, v);
  }
dfs(dfs, 0);
```

4.6 Strongly Connected Components

```
struct SCC {
 int n, cnt = 0, cur = 0;
  vector<int> id, dfn, low, stk;
 vector<vector<int>> adj, comps;
void addEdge(int u, int v) { adj[u].
       push_back(v); }
  SCC(int n) : n(n), id(n, -1), dfn(n,
       -1), low(n, -1), adj(n) {}
 void build() {
    auto dfs = [&](auto dfs, int u) ->
         void {
      dfn[u] = low[u] = cur++;
      stk.push_back(u);
      for (auto v : adj[u]) {
        if (dfn[v] == -1) {
          dfs(dfs, v);
          low[u] = min(low[u], low[v]);
        } else if (id[v] == -1) {
          low[u] = min(low[u], dfn[v]);
        }
      if (dfn[u] == low[u]) {
        int v;
        comps.emplace_back();
        do {
          v = stk.back();
          comps.back().push_back(v);
          id[v] = cnt;
          stk.pop_back();
        } while (u != v);
        cnt++;
```

```
for (int i = 0; i < n; i++) { if (dfn
        [i] == -1) { dfs(dfs, i); }}
for (int i = 0; i < n; i++) { id[i] =
        cnt - 1 - id[i]; }
reverse(comps.begin(), comps.end());
}
// the comps are in topological sorted
        order
};</pre>
```

4.7 2-SAT

```
struct TwoSat {
   int n, N;
   vector<vector<int>> adj;
   vector<int> ans;
   TwoSat(int n) : n(n), N(n), adj(2 * n)
   // u == x
   void addClause(int u, bool x) { adj[2 *
   u + !x].push_back(2 * u + x); }
// u == x || v == y
   void addClause(int u, bool x, int v,
     bool y) {
adj[2 * u + !x].push_back(2 * v + y);
     adj[2 * v + !y].push_back(2 * u + x);
   // u == x -> v == y
   void addImply(int u, bool x, int v,
        bool y) { addClause(u, !x, v, y);
   void addVar() {
     adj.emplace_back(), adj.emplace_back
          ();
   // at most one in var is true
   // adds prefix or as supplementary
        variables
   void atMostOne(const vector<pair<int,</pre>
        bool>> &vars) {
     int sz = vars.size();
     for (int i = 0; i < sz; i++) {
       addVar();
       auto [u, x] = vars[i];
       addImply(u, x, N - 1, true);
       if (i > 0) {
         addImply(N - 2, true, N - 1, true
          addClause(u, !x, N - 2, false);
    }
   // does not return supplementary
        variables from atMostOne()
   bool satisfiable() {
     // run tarjan scc on 2 * N
     for (int i = 0; i < 2 * N; i++) { if
     (dfn[i] == -1) { dfs(dfs, i); }}

for (int i = 0; i < N; i++) { if (id

[2 * i] == id[2 * i + 1]) {
          return false; }}
     ans.resize(n);
     for (int i = 0; i < n; i++) { ans[i]
= id[2 * i] > id[2 * i + 1]; }
     return true;
  }
|};
```

4.8 count 3-cycles and 4-cycles

```
| sort(ord.begin(), ord.end(), [&](auto i, auto j) { return pair(deg[i], i) > pair(deg[j], j); }); | for (int i = 0; i < n; i++) { rnk[ord[i]] = i; } | if (rnk[u] < rnk[v]) { dag[u].push_back(v ); } | // c3 | for (int x = 0; x < n; x++) { for (auto y : dag[x]) { vis[y] = 1; } | for (auto y : dag[x]) { for (auto z : dag[y]) { ans += vis[z]; } } | for (auto y : dag[x]) { vis[y] = 0; } | for (auto y : dag[x]) { vis[y] = 0; } | for (auto y : dag[x]) { vis[y] = 0; } | for (auto y : dag[x]) { vis[y] = 0; } | for (auto y : dag[x]) { vis[y] = 0; } | for (auto y : dag[x]) { vis[y] = 0; } | for (auto y : dag[x]) { vis[y] = 0; } | for (auto y : dag[x]) { vis[y] = 0; } | for (auto y : dag[x]) | vis[y] = 0; } | for (auto y : dag[x]) | for (auto y : dag[x]) | vis[y] = 0; } | for (auto y : dag[x]) | for (auto y : dag[x]) | vis[y] = 0; } | for (auto y : dag[x]) | for (auto y : dag[x]) | vis[y] = 0; } | for (auto y : dag[x]) | for (auto y : dag[
```

```
| }
// c4
| for (int x = 0; x < n; x++) {
| for (auto y : dag[x]) { for (auto z :
| adj[y]) { if (rnk[z] > rnk[x]) {
| ans += vis[z]++; }}
| for (auto y : dag[x]) { for (auto z :
| adj[y]) { if (rnk[z] > rnk[x]) {
| vis[z]--; }}}
```

4.9 Minimum Mean Cycle

create a new vertex S, connect S to all vertices with arbitrary weight (0). Let $f_i(u)$ be the shortest path from S to u with exactly i edges.

$$ans = \min_{f_{n+1}(i)! = \infty} \max_{j=1}^{n} \frac{f_{n+1}(i) - f_{j}(i)}{n+1-j}$$

4.10 Directed Minimum Spanning Tree

```
// DSU with rollback
template <typename Cost>
struct DMST {
  int n;
 vector<int> s, t, lc, rc, h;
vector<Cost> c, tag;
DMST(int n) : n(n), h(n, -1) {}
  void addEdge(int u, int v, Cost w) {
    int id = s.size();
    s.push_back(u), t.push_back(v), c.
         push_back(w);
    lc.push_back(-1), rc.push_back(-1);
    tag.emplace_back();
    h[v] = merge(h[v], id);
  pair<Cost, vector<int>>> build(int root
       = 0) {
    DSU d(n);
    Cost res{};
    vector<int> vis(n, -1), path(n), q(n)
          , in(n, -1);
    vis[root] = root;
    vector<pair<int, vector<int>>> cycles
    for (auto r = 0; r < n; ++r) {
  auto u = r, b = 0, w = -1;</pre>
      while (!~vis[u]) {
         if (!~h[u]) { return {-1, {}}; }
        push(h[u]);
         int e = h[u];
         res += c[e], tag[h[u]] -= c[e];
        h[u] = pop(h[u]);
        q[b] = e, path[b++] = u, vis[u] =
        u = d.find(s[e]);
         if (vis[u] == r) {
           int cycle = -1, e = b;
             w = path[--b];
             cycle = merge(cycle, h[w]);
          } while (d.join(u, w));
           u = d.find(u);
          h[u] = cycle, vis[u] = -1;
           cycles.emplace_back(u, vector<
                int>(q.begin() + b, q.
                begin() + e);
        }
      for (auto i = 0; i < b; ++i) { in[d
            .find(t[q[i]])] = q[i]; }
    reverse(cycles.begin(), cycles.end())
    for (const auto &[u, comp] : cycles)
      int count = int(comp.size()) - 1;
      d.back(count);
      int ine = in[u];
      for (auto e : comp) { in[d.find(t[e
            ])] = e; }
      in[d.find(t[ine])] = ine;
    vector<int> par;
```

```
par.reserve(n);
     for (auto i : in) { par.push_back(i
   != -1 ? s[i] : -1); }
     return {res, par};
   void push(int u) {
     c[u] += tag[u];
     if (int l = lc[u]; l != -1) { tag[l]
           += tag[u]; }
     if (int r = rc[u]; r != -1) { tag[r]
          += tag[u]; }
     tag[u] = 0;
   int merge(int u, int v) {
     if (u == -1 || v == -1) { return u !=
           -1 ? u : v; }
     push(u);
     push(v);
     if (c[u] > c[v]) { swap(u, v); }
rc[u] = merge(v, rc[u]);
     swap(lc[u], rc[u]);
     return u;
   int pop(int u) {
     push(u);
     return merge(lc[u], rc[u]);
|};
```

4.11 Maximum Clique

```
pair<int, vector<int>> maxClique(int n,
    const vector<bitset<N>> adj) {
  int mx = 0;
  vector<int> ans, cur;
  auto rec = [&](auto rec, bitset<N> s)
       -> void {
    int sz = s.count();
    if (int(cur.size()) > mx) { mx = cur.
         size(), ans = cur; }
    if (int(cur.size()) + sz <= mx) {</pre>
         return; }
    int e1 = -1, e2 = -1;
    vector<int> d(n);
    for (int i = 0; i < n; i++) {
      if (s[i]) {
        d[i] = (adj[i] & s).count();
        if (e1 == -1 || d[i] > d[e1]) {
             e1 = i; }
        if (e2 == -1 || d[i] < d[e2]) {
             e2 = i; }
     }
    if (d[e1] >= sz - 2) {
      cur.push_back(e1);
      auto s1 = adj[e1] & s;
      rec(rec, s1);
      cur.pop_back();
     return;
    cur.push_back(e2);
    auto s2 = adj[e2] & s;
    rec(rec, s2);
    cur.pop_back();
    s.reset(e2);
    rec(rec, s);
  bitset<N> all;
  for (int i = 0; i < n; i++) {
   all.set(i);
  rec(rec, all);
  return pair(mx, ans);
```

4.12 Dominator Tree

```
// res : parent of each vertex in
   dominator tree, -1 is root, -2 if
   not in tree
struct DominatorTree {
   int n, cur = 0;
   vector<int> dfn, rev, fa, sdom, dom,
      val, rp, res;
   vector<vector<int> adj, rdom, r;
```

```
DominatorTree(int n) : n(n), dfn(n, -1)
         res(n, -2), adj(n), rdom(n), r(n)
       ) {
     rev = fa = sdom = dom = val = rp =
         dfn;
  }
  void addEdge(int u, int v) {
    adj[u].push_back(v);
  void dfs(int u) {
    dfn[u] = cur;
     rev[cur] = u;
     fa[cur] = sdom[cur] = val[cur] = cur;
     for (int v : adj[u]) {
       if (dfn[v] == -1) {
         dfs(v)
         rp[dfn[v]] = dfn[u];
       r[dfn[v]].push_back(dfn[u]);
    }
  int find(int u, int c) {
    if (fa[u] == u) { return c != 0 ? -1
         : u; }
     int p = find(fa[u], 1);
    if (p == -1) { return c != 0 ? fa[u]
          : val[u]; }
     if (sdom[val[u]] > sdom[val[fa[u]]])
          { val[u] = val[fa[u]]; }
     fa[u] = p;
    return c != 0 ? p : val[u];
  void build(int s = 0) {
    dfs(s);
     for (int i = cur - 1; i >= 0; i--) {
  for (int u : r[i]) { sdom[i] = min(
            sdom[i], sdom[find(u, 0)]); }
       if (i > 0) { rdom[sdom[i]].
           push_back(i); }
       for (int u : rdom[i]) {
         int p = find(u, 0);
         if (sdom[p] == i) {
           dom[u] = i;
         } else {
           dom[u] = p;
       if (i > 0) { fa[i] = rp[i]; }
     res[s] = -1;
     for (int i = 1; i < cur; i++) { if (
          sdom[i] != dom[i]) { dom[i] =
         dom[dom[i]]; }}
    for (int i = 1; i < cur; i++) { res[</pre>
         rev[i]] = rev[dom[i]]; }
  }
|};
```

4.13 Edge Coloring

```
// bipartite
e[i] = pair(u, v + a), deg[u]++, deg[v +
a]++;
int col = *max_element(deg.begin(), deg.
     end());
vector<int> ans(m, -1);
vector has(a + b, vector<pair<int, int>>(
col, \{-1, -1\}));
for (int i = 0; i < m; i++) {
  auto [u, v] = e[i];
  vector<int> c;
  for (auto x : \{u, v\}) {
    c.push_back(0);
    while (has[x][c.back()].first != -1)
         { c.back()++; }
  if (c[0] != c[1]) {
    auto dfs = [\&](auto dfs, int u, int x
         ) -> void {
      auto [v, i] = has[u][c[x]];
      if (v != -1) {
        if (has[v][c[x ^ 1]].first != -1)
          dfs(dfs, v, x \wedge 1);
        } else {
```

```
has[v][c[x]] = \{-1, -1\};
        has[u][c[x ^ 1]] = \{v, i\}, has[v]
             ][c[x \land 1]] = \{u, i\};
        ans[i] = c[x \wedge 1];
      }
    dfs(dfs, v, 0);
  has[u][c[0]] = {v, i};
  has[v][c[0]] = \{u, i\};
  ans[i] = c[0];
// general
auto vizing(int n, const vector<pair<int,</pre>
      int>> &e) {
 vector<int> deg(n);
for (auto [u, v] : e) {
    deg[u]++, deg[v]++;
  int col = *max_element(deg.begin(), deg
 .end()) + 1;
vector<int> free(n);
  vector ans(n, vector<int>(n, -1));
  vector at(n, vector<int>(col, -1));
  auto update = [&](int u) {
    free[u] = 0;
    while (at[u][free[u]] != -1) {
      free[u]++;
    }
 };
  auto color = [&](int u, int v, int c1)
      {
    int c2 = ans[u][v];
    ans[u][v] = ans[v][u] = c1;
    at[u][c1] = v, at[v][c1] = u;
    if (c2 != -1) {
      at[u][c2] = at[v][c2] = -1;
      free[u] = free[v] = c2;
    } else {
      update(u), update(v);
    return c2;
 };
  auto flip = [&](int u, int c1, int c2)
    int v = at[u][c1];
    swap(at[u][c1], at[u][c2]);
    if (v != -1) {
      ans[u][v] = ans[v][u] = c2;
    if (at[u][c1] == -1) {
      free[u] = c1;
    if (at[u][c2] == -1) {
      free[u] = c2;
    return v;
  for (int i = 0; i < int(e.size()); i++)</pre>
    auto [u, v1] = e[i];
    int v2 = v1, c1 = free[u], c2 = c1, d
    vector<pair<int, int>> fan;
    vector<int> vis(col);
while (ans[u][v1] == -1) {
      fan.emplace_back(v2, d = free[v2]);
      if (at[v2][c2] == -1) {
        for (int j = int(fan.size()) - 1;
              j >= 0; j--) {
          c2 = color(u, fan[j].first, c2)
      } else if (at[u][d] == -1) {
        for (int j = int(fan.size()) - 1;
              j >= 0; j--) {
           color(u, fan[j].first, fan[j].
               second):
      } else if (vis[d] == 1) {
        break;
      } else {
        vis[d] = 1, v2 = at[u][d];
    if (ans[u][v1] == -1) {
```

```
while (v2 != -1) {
      v2= flip(v2, c2, d);
       swap(c2, d);
    if (at[u][c1] != -1) {
      int j = int(fan.size()) - 2;
while (j >= 0 && fan[j].second !=
            c2) {
         j--;
      while (j \ge 0) {
         color(u, fan[j].first, fan[j].
             second);
      }
    } else {
      i--;
    }
  }
return pair(col, ans);
```

5 String

5.1 Prefix Function

```
template <typename T>
vector<int> prefixFunction(const T &s) {
  int n = int(s.size());
  vector<int> p(n);
  for (int i = 1; i < n; i++) {
    int j = p[i - 1];
    while (j > 0 && s[i] != s[j]) { j = p
        [j - 1]; }
    if (s[i] == s[j]) { j++; }
    p[i] = j;
  }
  return p;
}
```

5.2 Z Function

5.3 Suffix Array

```
// need to discretize
struct SuffixArray {
  int n:
vector<int> sa, as, ha;
template <typename T>
  vector<int> sais(const T &s) {
    int n = s.size(), m = *max_element(s.
         begin(), s.end()) + 1;
    vector < int > pos(m + 1), f(n);
    for (auto ch : s) { pos[ch + 1]++; }
    for (int i = 0; i < m; i++) { pos[i +
          1] += pos[i]; }
    for (int i = n - 2; i >= 0; i--) { f[
          i] = s[i] != s[i + 1] ? s[i] < s
          [i + 1]: f[i + 1]; \}
    vector<int> x(m), sa(n);
    auto induce = [&](const vector<int> &
         ls) {
      fill(sa.begin(), sa.end(), -1);
auto L = [&](int i) { if (i >= 0 &&
             !f[i]) { sa[x[s[i]]++] = i;}
            }};
```

```
auto S = [\&](int i) \{ if (i >= 0 \&\&
             f[i]) { sa[--x[s[i]]] = i;}
            }};
       for (int i = 0; i < m; i++) { x[i]
            = pos[i + 1]; }
       for (int i = int(ls.size()) - 1; i
            >= 0; i--) { S(ls[i]); }
       for (int i = 0; i < m; i++) { x[i]
            = pos[i]; }
       L(n - 1);
       for (int i = 0; i < n; i++) { L(sa[</pre>
            i] - 1); }
       for (int i = 0; i < m; i++) { x[i]
            = pos[i + 1]; }
       for (int i = n - 1; i >= 0; i--) {
            S(sa[i] - 1); }
     };
     auto ok = [&](int i) { return i == n
     || !f[i - 1] && f[i]; };
auto same = [&](int i, int j) {
       do { if (s[i++] != s[j++]) { return
             false; }} while (!ok(i) && !
            ok(j));
       return ok(i) && ok(j);
     vector<int> val(n), lms;
     for (int i = 1; i < n; i++) { if (ok(
          i)) { lms.push_back(i); }}
     induce(lms);
     if (!lms.empty()) {
       int p = -1, w = 0;
for (auto v : sa) {
         if (v != 0 && ok(v)) {
           if (p != -1 \&\& same(p, v)) \{ w \}
                --; }
           val[p = v] = w++;
         }
       auto b = lms;
       for (auto &v : b) { v = val[v]; }
       b = sais(b);
       for (auto &v : b) { v = lms[v]; }
       induce(b);
     return sa;
 template <typename T>
   SuffixArray(const T &s) : n(s.size()),
        sa(sais(s)), as(n), ha(n - 1) {
     ]] = i; }
     for (int i = 0, j = 0; i < n; ++i) {
       if (as[i] == 0) {
         j = 0;
       } else {
         for (j -= j > 0; i + j < n && sa[
as[i] - 1] + j < n && s[i +
              j] == s[sa[as[i] - 1] + j];
              ) { ++j; }
         ha[as[i] - 1] = j;
  }
| };
```

5.4 Manacher's Algorithm

```
// returns radius of t, length of s : rad
    (t) - 1, radius of s : rad(t) / 2
vector<int> manacher(string s) {
    string t = "#";
    for (auto c : s) { t += c, t += '#'; }
    int n = t.size();
    vector<int> r(n);
    for (int i = 0, j = 0; i < n; i++) {
        if (2 * j - i >= 0 && j + r[j] > i) {
            r[i] = min(r[2 * j - i], j + r[
            j] - i); }
    while (i - r[i] >= 0 && i + r[i] < n
        && t[i - r[i]] == t[i + r[i]]) {
            r[i]++; }
    if (i + r[i] > j + r[j]) { j = i; }
    return r;
}
```

5.5 Aho-Corasick Automaton

```
constexpr int K = 26;
struct Node {
  array<int, K> nxt;
   int fail = -1;
   // other vars
  Node() { nxt.fill(-1); }
vector<Node> aho(1);
for (int i = 0; i < n; i++) {
  string s;
   cin >> s;
   int u = 0;
  for (auto ch : s) {
    int c = ch - 'a'
     if (aho[u].nxt[c] == -1) {
       aho[u].nxt[c] = aho.size();
       aho.emplace_back();
    u = aho[u].nxt[c];
  }
vector<int> q;
for (auto &i : aho[0].nxt) {
  if (i == -1) {
    i = 0;
  } else {
    q.push_back(i);
    aho[i].fail = 0;
  }
for (int i = 0; i < int(q.size()); i++) {</pre>
  int u = q[i];
  if (u > 0) {
    // maintain
  for (int c = 0; c < K; c++) {
    if (int v = aho[u].nxt[c]; v != -1) {
       aho[v].fail = aho[aho[u].fail].nxt[
           c];
       q.push_back(v);
    } else {
       aho[u].nxt[c] = aho[aho[u].fail].
           nxt[c];
    }
  }
į }
```

5.6 Suffix Automaton

```
struct SAM {
 static constexpr int A = 26;
  struct Node {
    int len = 0, link = -1, cnt = 0;
    array<int, A> nxt;
    Node() { nxt.fill(-1); }
  vector<Node> t;
  SAM() : t(1) {}
  int size() { return t.size(); }
  Node& operator[](int i) { return t[i];
  int newNode() {
    t.emplace_back();
    return t.size() - 1;
  int extend(int p, int c) {
    int cur = newNode();
    t[cur].len = t[p].len + 1;
    t[cur].cnt = 1;
    while (p != -1 && t[p].nxt[c] == -1)
      t[p].nxt[c] = cur;
      p = t[p].link;
    if (p == -1) {
      t[cur].link = 0;
    } else {
      int q = t[p].nxt[c];
      if (t[p].len + 1 == t[q].len) {
        t[cur].link = q;
      } else {
        int clone = newNode():
        t[clone].len = t[p].len + 1;
```

5.7 Lexicographically Smallest Rotation

```
template <typename T>
T minRotation(T s) {
  int n = s.size();
 int i = 0, j = 1;
s.insert(s.end(), s.begin(), s.end());
  while (i < n && j < n) {
    int k = 0;
    while (k < n \&\& s[i + k] == s[j + k])
    if (s[i + k] \le s[j + k]) {
      j += k + 1;
    } else {
      i += k + 1;
    if (i == j) {
      j++;
  int ans = i < n ? i : j;
  return T(s.begin() + ans, s.begin() +
       ans + n;
```

5.8 EER Tree

```
// cnt : occurrences, (dfs fail tree)
// num : number of pal ending here
struct PAM {
  static constexpr int A = 26;
  struct Node {
    int len = 0, link = 0, cnt = 0, num =
          0;
    array<int, A> nxt{};
    Node() {}
  vector<Node> t;
  int suf = 1;
  string s;
  PAM(): t(2) { t[0].len = -1; } int size() { return t.size(); }
  Node& operator[](int i) { return t[i];
  int newNode() {
    t.emplace_back();
    return t.size() - 1;
  bool add(int c, char offset = 'a') {
    int pos = s.size();
    s += c + offset;
    int cur = suf, curlen = 0;
    while (true) {
      curlen = t[cur].len;
      if (pos - 1 - curlen >= 0 \&\& s[pos
            - 1 - curlen] == s[pos]) {
           break; }
      cur = t[cur].link;
    if (t[cur].nxt[c]) {
      suf = t[cur].nxt[c];
      t[suf].cnt++;
      return false;
    suf = newNode();
    t[suf].len = t[cur].len + 2;
    t[suf].cnt = t[suf].num = 1;
    t[cur].nxt[c] = suf;
    if (t[suf].len == 1) {
```

6 Math

6.1 Extended GCD

```
| array<i64, 3> extgcd(i64 a, i64 b) {
| if (b == 0) { return {a, 1, 0}; }
| auto [g, x, y] = extgcd(b, a % b);
| return {g, y, x - a / b * y};
| }
```

6.2 Chinese Remainder Theorem

```
// returns (rem, mod), n = 0 return (0,
     1), no solution return (0, 0)
pair<i64, i64> crt(vector<i64> r, vector<
     i64 > m) {
  int n = r.size();
  for (int i = 0; i < n; i++) {
    r[i] %= m[i];
    if (r[i] < 0) { r[i] += m[i]; }</pre>
  i64 \ r0 = 0, \ m0 = 1;
  for (int i = 0; i < n; i++) {
     i64 r1 = r[i], m1 = m[i];
     if (m0 < m1) { swap(r0, r1), swap(m0,</pre>
          m1); }
    if (m0 \% m1 == 0) {
       if (r0 % m1 != r1) { return {0, 0};
       continue:
    }
    auto [g, a, b] = extgcd(m0, m1);
    i64 u1 = m1 / g;
     if ((r1 - r0) % g != 0) { return {0,
          0}; }
    i64 x = (r1 - r0) / g % u1 * a % u1;
r0 += x * m0;
m0 *= u1;
    if (r0 < 0) { r0 += m0; }</pre>
  }
  return {r0, m0};
```

6.3 NTT and polynomials

```
template <int P>
struct Modint {
  int v;
  // need constexpr, constructor, +-*,
       qpow, inv()
};
template<int P>
constexpr Modint<P> findPrimitiveRoot() {
  Modint<P> i = 2;
  int k = __builtin_ctz(P - 1);
  while (true) {
    if (i.qpow((P - 1) / 2).v != 1) {
         break; }
    i = i + 1:
 }
  return i.qpow(P - 1 >> k);
template <int P>
constexpr Modint<P> primitiveRoot =
     findPrimitiveRoot<P>();
vector<int> rev;
template <int P>
```

```
vector<Modint<P>> roots{0, 1};
template <int P>
void dft(vector<Modint<P>> &a) {
  int n = a.size();
  if (n == 1) { return; }
  if (int(rev.size()) != n) {
    int k = __builtin_ctz(n) - 1;
    rev.resize(n);
     for (int i = 0; i < n; i++) { rev[i]</pre>
          = rev[i >> 1] >> 1 | (i & 1) <<
  for (int i = 0; i < n; i++) { if (rev[i
       ] < i) { swap(a[i], a[rev[i]]); }}
  if (roots<P>.size() < n) {</pre>
    int k = __builtin_ctz(roots<P>.size()
          );
    roots<P>.resize(n);
    while ((1 << k) < n) {
       auto e = Modint<P>(primitiveRoot<P</pre>
           >).qpow(P - 1 >> k + 1);
       for (int i = 1 \ll k - 1; i \ll 1 \ll k
         ; i++) {
roots<P>[2 * i] = roots<P>[i];
         roots<P>[2 * i + 1] = roots<P>[i]
       k++:
    }
  }
  for (int k = 1; k < n; k *= 2) {
  for (int i = 0; i < n; i += 2 * k) {
    for (int j = 0; j < k; j++) {
      Modint<P> u = a[i + j];
      Modint<P> u = a[i + j; k] *
         Modint < P > v = a[i + j + k] *
              roots<P>[k + j];
         // fft : v = a[i + j + k] * roots

[n / (2 * k) * j]

a[i + j] = u + v;
         a[i + j + k] = u - v;
    }
  }
}
template <int P>
void idft(vector<Modint<P>> &a) {
  int n = a.size();
  reverse(a.begin() + 1, a.end());
  dft(a);
  Modint < P > x = (1 - P) / n;
  for (int i = 0; i < n; i++) { a[i] = a[
       i] * x; }
template <int P>
struct Poly : vector<Modint<P>>> {
  using Mint = Modint<P>;
  Poly() {}
  explicit Poly(int n) : vector<Mint>(n)
       {}
  explicit Poly(const vector<Mint> &a) :
  vector<Mint>(a) {}
explicit Poly(const initializer_list
       Mint> &a) : vector<Mint>(a) {}
template<class F>
  explicit Poly(int n, F f) : vector<Mint</pre>
       >(n) { for (int i = 0; i < n; i++) }
         { (*this)[i] = f(i); }}
template<class InputIt>
  explicit constexpr Poly(InputIt first,
       InputIt last) : vector<Mint>(first
        , last) {}
  Poly mulxk(int k) {
    auto b = *this;
    b.insert(b.begin(), k, 0);
    return b;
  Poly modxk(int k) {
    k = min(k, int(this->size()));
    return Poly(this->begin(), this->
          begin() + k);
  Poly divxk(int k) {
     if (this->size() <= k) { return Poly</pre>
          (); }
```

```
return Poly(this->begin() + k, this->
       end());
friend Poly operator+(const Poly &a,
     const Poly &b) {
  Poly res(max(a.size(), b.size()));
  for (int i = 0; i < int(a.size()); i</pre>
       ++) { res[i] = res[i] + a[i]; }
  for (int i = 0; i < int(b.size()); i</pre>
       ++) { res[i] = res[i] + b[i]; }
  return res;
friend Poly operator-(const Poly &a,
     const Poly &b) {
  Poly res(max(a.size(), b.size()));
  for (int i = 0; i < int(a.size()); i</pre>
  ++) { res[i] = res[i] + a[i]; }
for (int i = 0; i < int(b.size()); i
       ++) { res[i] = res[i] - b[i]; }
  return res:
friend Poly operator*(Poly a, Poly b) {
  if (a.empty() || b.empty()) { return
       Poly(); }
  int sz = 1, tot = a.size() + b.size()
       - 1;
  while (sz < tot) { sz *= 2; }
  a.resize(sz);
  b.resize(sz);
  dft(a);
  dft(b);
  for (int i = 0; i < sz; i++) { a[i] =
    a[i] * b[i]; }</pre>
  idft(a);
  a.resize(tot);
  return a;
friend Poly operator*(Poly a, Mint b) {
  for (int i = 0; i < int(a.size()); i
     ++) { a[i] = a[i] * b; }</pre>
  return a;
Poly derivative() {
  if (this->empty()) { return Poly(); }
  Poly res(this->size() - 1);
  for (int i = 0; i < this->size() - 1;
        ++i) { res[i] = (i + 1) * (* }
       this)[i + 1]; }
  return res;
Poly integral() {
  Poly res(this->size() + 1);
  Mint(i + 1).inv(); }
  return res;
Poly inv(int m) {
  // a[0] != 0
  Poly x({(*this)[0].inv()});
  int k = 1;
  while (k < m) {</pre>
    k *= 2;
    x = (x * (Poly({2}) - modxk(k) * x)
         ).modxk(k);
  return x.modxk(m);
Poly log(int m) {
  return (derivative() * inv(m)).
       integral().modxk(m);
Poly exp(int m) {
  Poly x(\{1\});
  int k = 1;
  while (k < m) {
    k *= 2;
    x = (x * (Poly(\{1\}) - x.log(k) +
         modxk(k)).modxk(k);
  return x.modxk(m);
Poly pow(i64 k, int m) {
  if (k == 0) { return Poly(m, [&](int
       i) { return i == 0; }); }
  int i = 0;
```

```
while (i < this->size() && (*this)[i
    ].v == 0) { i++; }
if (i == this->size() || __int128(i)
          * k >= m) { return Poly(m); }
    Mint v = (*this)[i];
auto f = divxk(i) * v.inv();
return (f.log(m - i * k) * k).exp(m -
          i * k).mulxk(i * k) * v.qpow(k)
  Poly sqrt(int m) {
    // a[0] == 1, otherwise quadratic
          residue?
    Poly x(\{1\});
    int k = 1;
    while (k < m) {
   k *= 2;</pre>
       x = (x + (modxk(k) * x.inv(k)).
            modxk(k)) * ((P + 1) / 2);
    return x.modxk(m);
  Poly mulT(Poly b) const {
    if (b.empty()) { return Poly(); }
    int n = b.size();
    reverse(b.begin(), b.end());
    return (*this * b).divxk(n - 1);
  vector<Mint> evaluate(vector<Mint> x) {
    if (this->empty()) { return vector<</pre>
          Mint>(x.size()); }
    int n = max(x.size(), this->size());
    vector<Poly> q(4 * n);
    vector<Mint> ans(x.size());
    x.resize(n);
    auto build = [&](auto build, int id,
          int l, int r) -> void {
       if (r - l == 1) {
         q[id] = Poly(\{1, -x[l].v\});
       } else {
         int m = (l + r) / 2;
         the m = (1 + r) / 2;
build(build, 2 * id, 1, m);
build(build, 2 * id + 1, m, r);
q[id] = q[2 * id] * q[2 * id +
              17:
      }
    build(build, 1, 0, n);
    auto work = [&](auto work, int id,
          int 1, int r, const Poly &num)
          -> void {
       if (r - l == 1) {
         if (l < int(ans.size())) { ans[l]</pre>
                = num[0]; }
       } else {
         }
    work(work, 1, 0, n, mulT(q[1].inv(n))
    return ans;
  }
};
template <int P>
Poly<P> interpolate(vector<Modint<P>> x,
     vector<Modint<P>> y) {
  // f(xi) = yi
  int n = x.size();
  vector<Poly<P>> p(4 * n), q(4 * n);
auto dfs1 = [&](auto dfs1, int id, int
    l, int r) -> void {
if (l == r) {
       p[id] = Poly < P > ({-x[l].v, 1});
    int m = l + r >> 1;
    dfs1(dfs1, id << 1, l, m);
dfs1(dfs1, id << 1 | 1, m + 1, r);
    p[id] = p[id << 1] * p[id << 1 | 1];
```

```
dfs1(dfs1, 1, 0, n - 1);
Poly<P> f = Poly<P>(p[1].derivative().
        evaluate(x));
auto dfs2 = [&](auto dfs2, int id, int
        l, int r) -> void {
    if (l == r) {
        q[id] = Poly<P>({y[l] * f[l].inv()
        });
        return;
    }
    int m = l + r >> 1;
    dfs2(dfs2, id << 1, l, m);
    dfs2(dfs2, id << 1 | 1, m + 1, r);
    q[id] = q[id << 1] * p[id << 1 | 1] +
        q[id << 1 | 1] * p[id << 1];
};
dfs2(dfs2, 1, 0, n - 1);
return q[1];
}</pre>
```

6.4 Any Mod NTT

```
constexpr int P0 = 998244353, P1 =
    1004535809, P2 = 469762049;
constexpr i64 P01 = 1LL * P0 * P1;
constexpr int inv0 = Modint<P1>(P0).inv()
    .v;
constexpr int inv01 = Modint<P2>(P01).inv
    ().v;
for (int i = 0; i < int(c.size()); i++) {
    i64 x = 1LL * (c1[i] - c0[i] + P1) % P1
        * inv0 % P1 * P0 + c0[i];
    c[i] = ((c2[i] - x % P2 + P2) % P2 *
        inv01 % P2 * (P01 % P) % P + x) %
    P;
}</pre>
```

6.5 Newton's Method

$$Q_{k+1} = Q_k - \frac{F(Q_k)}{F'(Q_k)} \pmod{x^{2^{k+1}}}$$

6.6 Fast Walsh-Hadamard Transform

```
1. XOR Convolution
```

- $f(A) = (f(A_0) + f(A_1), f(A_0) f(A_1))$
- $f^{-1}(A) = (f^{-1}(\frac{A_0 + A_1}{2}), f^{-1}(\frac{A_0 A_1}{2})$

2. OR Convolution

- $f(A) = (f(A_0), f(A_0) + f(A_1))$ • $f^{-1}(A) = (f^{-1}(A_0), f^{-1}(A_1) - f^{-1}(A_0))$
- 3. AND Convolution
 - $f(A) = (f(A_0) + f(A_1), f(A_1))$ • $f^{-1}(A) = (f^{-1}(A_0))$ • $f^{-1}(A_1), f^{-1}(A_1))$

J = (211), J = (211)

6.7 Simplex Algorithm Description: maximize $c^T x$ subject to Ax < C

Description: maximize $\mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$ and $\mathbf{x} \geq 0$. Returns $-\infty$ if infeasible and ∞ if unbounded.

```
const double eps = 1e-9;
const double inf = 1e+9;
int n, m;
vector<vector<double>>> d;
vector<int>> p, q;
void pivot(int r, int s) {
    double inv = 1.0 / d[r][s];
    for (int i = 0; i < m + 2; ++i) {
        if (i != r && j != s) d[i][j] -= d[
            r][j] * d[i][s] * inv;
    }
}
for (int i = 0; i < m + 2; ++i) if (i
        != r) d[i][s] *= -inv;
for (int j = 0; j < n + 2; ++j) if (j
        != s) d[r][j] *= +inv;
    d[r][s] = inv;
    swap(p[r], q[s]);
}
bool phase(int z) {</pre>
```

```
int x = m + z:
  while (true) {
    int s = -1;
for (int i = 0; i \le n; ++i) {
      if (!z && q[i] == -1) continue;
      if (s == -1] \mid d[x][i] < d[x][s]) s
    if (d[x][s] > -eps) return true;
    int r = -1;
    for (int i = 0; i < m; ++i) {
      if (d[i][s] < eps) continue;
if (r == -1 || d[i][n + 1] / d[i][s</pre>
            ] < d[r][n + 1] / d[r][s]) r =
    if (r == -1) return false;
    pivot(r, s);
vector<double> solve(const vector<vector<
     double>> &a, const vector<double> &b
      const vector<double> &c) {
  m = b.size(), n = c.size();
  d = vector<vector<double>>(m + 2,
       vector<double>(n + 2));
  for (int i = 0; i < m; ++i) {
  for (int j = 0; j < n; ++j) d[i][j] =
          a[i][j];
  p.resize(m), q.resize(n + 1);
  for (int i = 0; i < m; ++i) p[i] = n +
i, d[i][n] = -1, d[i][n + 1] = b[i
  for (int i = 0; i < n; ++i) q[i] = i, d
       [m][i] = -c[i];
  q[n] = -1, d[m + 1][n] = 1;
  int r = 0;
  for (int i = 1; i < m; ++i) if (d[i][n + 1] < d[r][n + 1]) r = i;
  if (d[r][n + 1] < -eps) {
    pivot(r, n);
    if (!phase(1) || d[m + 1][n + 1] < -
         eps) return vector<double>(n, -
         inf);
    for (int i = 0; i < m; ++i) if (p[i]
         == -1) {
      int s = min_element(d[i].begin(), d
           [i].end() - 1) - d[i].begin();
      pivot(i, s);
  if (!phase(0)) return vector<double>(n,
  vector<double> x(n);
  for (int i = 0; i < m; ++i) if (p[i] <</pre>
       n) x[p[i]] = d[i][n + 1];
  return x;
```

6.7.1 Construction

```
Standard form: maximize \mathbf{c}^T\mathbf{x} subject to A\mathbf{x} \leq \mathbf{b} and \mathbf{x} \geq 0. Dual LP: minimize \mathbf{b}^T\mathbf{y} subject to A^T\mathbf{y} \geq \mathbf{c} and \mathbf{y} \geq 0. \bar{\mathbf{x}} and \bar{\mathbf{y}} are optimal if and only if for all i \in [1, n], either \bar{x}_i = 0 or \sum_{j=1}^m A_{ji}\bar{y}_j = c_i holds and for all i \in [1, m] either \bar{y}_i = 0 or \sum_{j=1}^n A_{ij}\bar{x}_j = b_j holds.
```

- 1. In case of minimization, let $c'_i = -c_i$
- 2. $\sum_{\substack{1 \le i \le n \\ -b_j}} A_{ji} x_i \ge b_j \to \sum_{\substack{1 \le i \le n \\ -b_j}} -A_{ji} x_i \le b_j$
- 3. $\sum_{1 \le i \le n} A_{ji} x_i = b_j$
 - $\begin{array}{ll} \bullet & \sum_{1 \leq i \leq n} A_{ji} x_i \leq b_j \\ \bullet & \sum_{1 \leq i \leq n} A_{ji} x_i \geq b_j \end{array}$
- 4. If x_i has no lower bound, replace x_i with $x_i x_i'$

6.8 Subset Convolution

```
\begin{split} & \text{Description: } h(s) = \sum_{s' \subseteq s} f(s') g(s \setminus s') \\ & | \text{vector} < \text{int> SubsetConv(int n, const} \\ & | \text{vector} < \text{int> &f, const vector} < \text{int> &g} \\ & | & ) & \{ \end{split}
```

```
const int m = 1 \ll n:
vector<vector<int>> a(n + 1, vector<int
     >(m)), b(n + 1, vector<int>(m));
for (int i = 0; i < m; ++i) {
  a[__builtin_popcount(i)][i] = f[i];
  b[__builtin_popcount(i)][i] = g[i];
for (int i = 0; i <= n; ++i) {
  for (int j = 0; j < n; ++j) {</pre>
    for (int s = 0; s < m; ++s) {
      if (s >> j & 1) {
        a[i][s] += a[i][s ^ (1 << j)];
b[i][s] += b[i][s ^ (1 << j)];
    }
  }
}
vector<vector<int>>> c(n + 1, vector<int</pre>
     >(m));
for (int s = 0; s < m; ++s) {
  for (int i = 0; i <= n; ++i) {
  for (int j = 0; j <= i; ++j) c[i][s
    ] += a[j][s] * b[i - j][s];
}
}
vector<int> res(m);
for (int i = 0; i < m; ++i) res[i] = c[
      _builtin_popcount(i)][i];
return res;
```

6.9 Berlekamp Massey Algorithm

```
// find \sum a_(i-j)c_j = 0 for d \le i template <typename T>
vector<T> berlekampMassey(const vector<T>
      &a) {
  vector<T> c(1, 1), oldC(1);
  int oldI = -1;
  T \text{ oldD} = 1;
  for (int i = 0; i < int(a.size()); i++)</pre>
    T d = 0;
    vector<T> nc = c;
    nc.resize(max(int(c.size()), i - oldI
           + int(oldC.size()));
    for (int j = 0; j < int(oldC.size());
    j++) { nc[j + i - oldI] -= oldC</pre>
    [j] * mul; }
if (i - int(c.size()) > oldI - int(
         oldC.size())) {
      oldI = i;
      oldD = d:
      swap(oldC, c);
    swap(c, nc);
  return c;
```

6.10 Fast Linear Recurrence

```
// p : a[0] ~ a[d - 1]
// q : a[i] = \sum a[i - j]q[j]
template <typename T>
T linearRecurrence(vector<T> p, vector<T>
        q, i64 n) {
        int d = q.size() - 1;
        assert(int(p.size()) == d);
        p = p * q;
        p.resize(d);
        while (n > 0) {
            auto nq = q;
            for (int i = 1; i <= d; i += 2) {
                 nq[i] *= -1;
            }
            auto np = p * nq;
            nq = q * nq;
            for (int i = 0; i < d; i++) {
                 p[i] = np[i * 2 + n % 2];
            }
            for (int i = 0; i <= d; i++) {
                  q[i] = nq[i * 2];
            }
            n /= 2;
        }
        return p[0] / q[0];
}</pre>
```

6.11 Prime check and factorize

```
i64 mul(i64 a, i64 b, i64 mod) {}
i64 qpow(i64 x, i64 p, i64 mod) {}
bool isPrime(i64 n) {
  if (n == 1) { return false; }
  int r = __builtin_ctzll(n - 1);
i64 d = n - 1 >> r;
  auto checkComposite = [&](i64 p) {
    i64 x = qpow(p, d, n);
    if (x == 1 \mid \mid x == n - 1) { return
          false; }
    for (int i = 1; i < r; i++) {
       x = mul(x, x, n);
       if (x == n - 1) \{ return false; \}
    return true;
  for (auto p : {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}) {
    if (n == p) {
  return true;
    } else if (checkComposite(p)) {
       return false;
    }
  return true;
vector<i64> pollardRho(i64 n) {
  vector<i64> res;
  auto work = [&](auto work, i64 n) {
    if (n <= 10000) {
       for (int i = 2; i * i <= n; i++) {
         while (n % i == 0) {
           res.push_back(i);
           n /= i;
         }
       if (n > 1) { res.push_back(n); }
       return:
    } else if (isPrime(n)) {
       res.push_back(n);
       return;
    i64 \times 0 = 2;
    auto f = [\&](i64 x) \{ return (mul(x, 
         x, n) + 1) % n; };
    while (true) {
       i64 x = x0, y = x0, d = 1, power = 1, lam = 0, v = 1;
       while (d == 1) {
         y = f(y);
         ++lam;
         v = mul(v, abs(x - y), n);
if (lam % 127 == 0) {
           d = gcd(v, n);
v = 1;
```

```
}
if (power == lam) {
    x = y;
    power *= 2;
    lam = 0;
    d = gcd(v, n);
    v = 1;
    }

if (d != n) {
    work(work, d);
    work(work, n / d);
    return;
    }
++x0;
}

;;
work(work, n);
sort(res.begin(), res.end());
return res;
}
```

6.12 Count Primes leq n

```
i64 primeCount(const i64 n) {
  if (n <= 1) { return 0; }
if (n == 2) { return 1; }</pre>
  const int v = sqrtl(n);
  int s = (v + 1) / 2;
  vector<int> smalls(s), roughs(s), skip(
       \vee + 1);
  vector<i64> larges(s);
  iota(smalls.begin(), smalls.end(), 0);
  for (int i = 0; i < s; i++) {
  roughs[i] = 2 * i + 1;
    larges[i] = (n / roughs[i] - 1) / 2;
  const auto half = [](int n) -> int {
       return (n - 1) >> 1; };
  int pc = 0;
  for (int p = 3; p \leftarrow v; p += 2) {
     if (skip[p]) { continue; }
    int q = p * p;
if (1LL * q * q > n) { break; }
    skip[p] = true;
     for (int i = q; i \ll v; i += 2 * p)
          skip[i] = true;
     int ns = 0;
     for (int k = 0; k < s; k++) {
       int i = roughs[k];
       if (skip[i]) { continue; }
i64 d = 1LL * i * p;
       larges[ns] = larges[k] - (d \ll v)
            larges[smalls[d / 2] - pc] :
            smalls[half(n / d)]) + pc;
      roughs[ns++] = i;
     s = ns:
    for (int i = half(v), j = v / p - 1 |

1; j >= p; j -= 2) {

int c = smalls[j / 2] - pc;

for (int e = j * p / 2; i >= e; i
             --) { smalls[i] -= c; }
    pc++;
  larges[0] += 1LL * (s + 2 * (pc - 1)) *
  (s - 1) / 2;
for (int k = 1; k < s; k++) { larges[0]
         -= larges[k]; }
  for (int l = 1; l < s; l++) {
     i64 q = roughs[l];
     i64 M = n / q;
    int e = smalls[half(M / q)] - pc;
    if (e <= l) { break; }</pre>
    i64 t = 0;
     for (int k = l + 1; k \le e; k++) { t
          += smalls[half(M / roughs[k])];
     larges[0] += t - 1LL * (e - l) * (pc
          + 1 - 1);
  return larges[0] + 1;
```

6.13 Discrete Logarithm

```
| // \text{ return min } x >= 0 \text{ s.t. } a \land x = b \text{ mod m}
       , 0 ^ 0 = 1, -1 if no solution
 // (I think) if you want x > 0 (m != 1),
       remove if (b == k) return add;
 int discreteLog(int a, int b, int m) {
   if (m == 1) {
      return 0;
   a %= m, b %= m;
int k = 1, add = 0, g;
   while ((g = gcd(a, m)) > 1) {
     if (b == k) {
        return add;
      } else if (b % g) {
        return -1;
     b /= g, m /= g, ++add;
k = 1LL * k * a / g % m;
   if (b == k) {
     return add;
   int n = sqrt(m) + 1;
   int an = 1;
   for (int i = 0; i < n; ++i) {
    an = 1LL * an * a % m;
   unordered_map<int, int> vals;
   for (int q = 0, cur = b; q < n; ++q) {
  vals[cur] = q;
  cur = 1LL * a * cur % m;</pre>
   for (int p = 1, cur = k; p <= n; ++p) {
  cur = 1LL * cur * an % m;</pre>
      if (vals.count(cur)) {
        int ans = n * p - vals[cur] + add;
        return ans;
     }
   }
   return -1;
```

6.14 Quadratic Residue

```
// rng
int jacobi(int a, int m) {
  int s = 1;
  while (m > 1) {
    a %= m;
     if (a == 0) { return 0; }
     int r = __builtin_ctz(a);
     if (r \% 2 == 1 \&\& (m + 2 \& 4) != 0) {
           s = -s; 
    a >>= r:
    if ((a \& m \& 2) != 0) \{ s = -s; \}
    swap(a, m);
  return s;
int quadraticResidue(int a, int p) {
  if (p == 2) { return a % 2; }
  int j = jacobi(a, p);
  if (j == 0 | | j == -1) \{ return j; \}
  int b, d;
  while (true) {
    b = rng() % p;
d = (1LL * b * b + p - a) % p;
     if (jacobi(d, p) == -1) { break; }
  int f0 = b, f1 = 1, g0 = 1, g1 = 0, tmp
  for (int e = p + 1 >> 1; e > 0; e >>=
       1) {
     if (e % 2 == 1) {
      tmp = (1LL * g0 * f0 + 1LL * d * g1

% p * f1 % p) % p;

g1 = (1LL * g0 * f1 + 1LL * g1 * f0
            ) % p;
       g0 = tmp;
     tmp = (1LL * f0 * f0 + 1LL * d * f1 %
    p * f1 % p) % p;
f1 = 2LL * f0 * f1 % p;
    f0 = tmp;
  return g0;
```

6.15 Characteristic Polynomial

```
vector<vector<int>> Hessenberg(const
       vector<vector<int>> &A) {
   int N = A.size();
   vector<vector<int>> H = A;
   for (int i = 0; i < N - 2; ++i) {
      if (!H[i + 1][i]) {
        for (int j = i + 2; j < N; ++j) {
           if (H[j][i]) {
             for (int k = i; k < N; ++k)
                    swap(H[i + 1][k], H[j][k])
              for (int k = 0; k < N; ++k)
                    swap(H[k][i + 1], H[k][j])
             break:
          }
        }
      }
      if (!H[i + 1][i]) continue;
     int val = fpow(H[i + 1][i], kP - 2);
for (int j = i + 2; j < N; ++j) {
  int coef = 1LL * val * H[j][i] % kP</pre>
        for (int k = i; k < N; ++k) H[j][k]
= (H[j][k] + 1LL * H[i + 1][k
              ] * (kP - coef)) % kP;
         for (int k = 0; k < N; ++k) H[k][i
               + 1] = (H[k][i + 1] + 1LL * H[
               k][j] * coef) % kP;
     }
   return H;
}
vector<int> CharacteristicPoly(const
      vector<vector<int>> &A) {
   int N = A.size();
   auto H = Hessenberg(A);
for (int i = 0; i < N; ++i) {
  for (int j = 0; j < N; ++j) H[i][j] =</pre>
             kP - H[i][j];
   vector<vector<int>>> P(N + 1, vector<int</pre>
         >(N + 1));
   P[0][0] = 1;
   for (int i = 1; i <= N; ++i) {
      P[i][0] = 0;
      for (int j = 1; j <= i; ++j) P[i][j]
= P[i - 1][j - 1];
      int val = 1;
      for (int j = i - 1; j >= 0; --j) {
  int coef = 1LL * val * H[j][i - 1]
               % kP;
        for (int k = 0; k <= j; ++k) P[i][k]

] = (P[i][k] + 1LL * P[j][k] *
        coef) % kP;
if (j) val = 1LL * val * (kP - H[j
               ][j - 1]) % kP;
     }
   if (N & 1) {
      for (int i = 0; i <= N; ++i) P[N][i]</pre>
            = kP - P[N][i];
   return P[N];
ĺ}
```

6.16 Linear Sieve Related

```
mobius[p * i] = 0;
break;
}
}
```

6.17 De Bruijn Sequence

```
int res[kN], aux[kN], a[kN], sz;
void Rec(int t, int p, int n, int k) {
  if (t > n) {
     if (n \% p == 0)
        for (int i = 1; i <= p; ++i) res[sz
              ++] = aux[i];
  } else {
     aux[t] = aux[t - p];
     Rec(t + 1, p, n, k);
for (aux[t] = aux[t - p] + 1; aux[t]
           < k; ++aux[t]) Rec(t + 1, t, n,
  }
int DeBruijn(int k, int n) {
   // return cyclic string of length k^n
         such that every string of length n
          using k character appears as a
         substring.
  if (k == 1) return res[0] = 0, 1;
fill(aux, aux + k * n, 0);
return sz = 0, Rec(1, 1, n, k), sz;
```

6.18 Floor Sum

6.19 More Floor Sum

```
• m = \lfloor \frac{an+b}{c} \rfloor
```

```
\begin{split} g(a,b,c,n) &= \sum_{i=0}^{n} i \lfloor \frac{ai+b}{c} \rfloor \\ &= \begin{cases} \lfloor \frac{a}{c} \rfloor \cdot \frac{n(n+1)(2n+1)}{6} + \lfloor \frac{b}{c} \rfloor \cdot \frac{n(n+1)}{2} \\ + g(a \bmod c, b \bmod c, c, n), \\ 0, \\ \frac{1}{2} \cdot (n(n+1)m - f(c, c-b-1, a, m-1) \\ - h(c, c-b-1, a, m-1)), \end{cases} \end{split}
```

```
\begin{split} h(a,b,c,n) &= \sum_{i=0}^n \lfloor \frac{ai+b}{c} \rfloor^2 \\ &= \begin{cases} \lfloor \frac{a}{c} \rfloor^2 \cdot \frac{n(n+1)(2n+1)}{6} + \lfloor \frac{b}{c} \rfloor^2 \cdot (n+1) \\ + \lfloor \frac{a}{c} \rfloor \cdot \lfloor \frac{b}{c} \rfloor \cdot n(n+1) \\ + h(a \bmod c, b \bmod c, c, n) \\ + 2 \lfloor \frac{a}{c} \rfloor \cdot g(a \bmod c, b \bmod c, c, n) \\ + 2 \lfloor \frac{b}{c} \rfloor \cdot f(a \bmod c, b \bmod c, c, n), \\ 0, \\ nm(m+1) - 2g(c, c-b-1, a, m-1) \\ - 2f(c, c-b-1, a, m-1) - f(a, b, c, m) \end{cases} \end{split}
```

6.20 Min Mod Linear

```
|// \min i : [0, n) (a * i + b) % m
|// ok in 1e9
|int minModLinear(int n, int m, int a, int
| b, int cnt = 1, int p = 1, int q =
| 1) {
| if (a == 0) { return b; }
| if (cnt % 2 == 1) {
| if (b >= a) {
```

```
int t = (m - b + a - 1) / a;
int c = (t - 1) * p + q;
     if (n <= c) { return b; }</pre>
     n -= c;
b += a * t - m;
  b = a - 1 - b;
} else {
  if (b < m - a) {
     int t = (m - b - 1) / a;
     int c = t * p;
     if (n <= c) { return (n - 1) / p *</pre>
          a + b; 
     n -= c;
b += a * t;
  }
b = m - 1 - b;
cnt++;
int d = m / a;
int c = minModLinear(n, a, m % a, b,
cnt, (d - 1) * p + q, d * p + q;
return cnt % 2 == 1 ? m - 1 - c : a - 1
       - c;
```

6.21 Count of subsets with sum (mod P) leq T

```
| int n, T;
| cin >> n >> T;
| vector<int> cnt(T + 1);
| for (int i = 0; i < n; i++) {
| int a;
| cin >> a;
| cnt[a]++;
| }
| vector<Mint> inv(T + 1);
| for (int i = 1; i <= T; i++) {
| inv[i] = i == 1 ? 1 : -P / i * inv[P %
| i];
| }
| FPS f(T + 1);
| for (int i = 1; i <= T; i++) {
| for (int j = 1; j * i <= T; j++) {
| f[i * j] = f[i * j] + (j % 2 == 1 ? 1 
| cnt[i] * inv[j];
| }
| f = f.exp(T + 1);
```

6.22 Theorem

• Kirchhoff's Theorem

Denote L be a $n \times n$ matrix as the Laplacian matrix of graph G, where $L_{ii} = d(i)$, $L_{ij} = -c$ where c is the number of edge (i,j) in G.

 $\begin{array}{l} a \geq \underline{c} \vee \underline{b} \geq \underline{c} \\ \text{The number of undirected spanning} \\ n < 0 \vee_{\text{iff}} \overline{G} \text{ is } |\text{det}(\tilde{L}_{11})|. \end{array}$

otherwise rooted at r in G is $|\det(\tilde{L}_{rr})|$.

• Tutte's Matrix

Let D be a $n \times n$ matrix, where $d_{ij} = x_{ij}$ $(x_{ij} \text{ is chosen uniformly at random})$ if i < j and $(i,j) \in E$, otherwise $d_{ij} = -d_{ji}$. $\frac{rank(D)}{2}$ is the maximum matching on G.

• aCayley bs \pm ormula

 $n < 0 \lor a = 0$

nm(m+1)-2g(c,c-b-1,a,m-1) — Given a degree sequence -2f(c,c-b-1,a,m-1)-f(a,b,c,n), otherwige, d_2,\ldots,d_n for each labeled vertices, there are

$$\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}$$

spanning trees.

- Let $T_{n,k}$ be the number of labeled forests on n vertices with k components, such that vertex $1, 2, \ldots, k$ belong to different components. Then $T_{n,k} = kn^{n-k-1}$.

• Erdős-Gallai Theorem

A sequence of non-negative integers $d_1 \ge d_2 \ge \ldots \ge d_n$ can be represented as the degree sequence of a finite simple graph on n vertices if and only if $d_1 + d_2 + \ldots + d_n$ is even and

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k)$$

holds for all $1 \leq k \leq n$.

• Burnside's Lemma

Let X be a set and G be a group that acts on X. For $g \in G$, denote by X^g the elements fixed by g:

$$X^g = \{ x \in X \mid gx \in X \}$$

Then

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|.$$

• Gale–Ryser theorem

A pair of sequences of nonnegative integers $a_1 \ge \cdots \ge a_n$ and b_1, \ldots, b_n is bigraphic

if and only if
$$\sum_{i=1}^n a_i = \sum_{i=1}^n b_i$$
 and $\sum_{i=1}^k a_i \leq$

$$\sum_{i=1}^{n} \min(b_i, k) \text{ holds for every } 1 \leq k \leq n.$$

Sequences a and b called bigraphic if there is a labeled simple bipartite graph such that a and b is the degree sequence of this bipartite graph.

• Fulkerson-Chen-Anstee theorem

A sequence $(a_1,b_1),\ldots,(a_n,b_n)$ of non-negative integer pairs with $a_1 \geq \cdots \geq \frac{n}{n}$

$$a_n$$
 is digraphic if and only if $\sum_{i=1} a_i =$

$$\sum_{i=1}^{n} b_{i} \text{ and } \sum_{i=1}^{k} a_{i} \leq \sum_{i=1}^{k} \min(b_{i}, k-1) + \sum_{i=1}^{n} b_{i}$$

$$\sum_{i=k+1}^{n} \min(b_i, k) \text{ holds for every } 1 \leq k \leq n.$$

Sequences a and b called digraphic if there is a labeled simple directed graph such that each vertex v_i has indegree a_i and outdegree b_i .

• Pick's theorem

For simple polygon, when points are all integer, we have $A=\#\{\text{lattice points in the interior}\}$ + $\#\{\text{lattice points on the boundary}\}$ - 1

• Möbius inversion formula

$$\begin{array}{lll} -f(n) &=& \sum_{d\mid n} g(d) & \Leftrightarrow & g(n) &= \\ & \sum_{d\mid n} \mu(d) f(\frac{n}{d}) \\ -f(n) &=& \sum_{n\mid d} g(d) & \Leftrightarrow & g(n) &= \\ & \sum_{n\mid d} \mu(\frac{d}{n}) f(d) \end{array}$$

• Spherical cap

- A portion of a sphere cut off by a plane
- plane. -r: sphere radius, a: radius of the base of the cap, h: height of the cap,
- θ : $\arcsin(a/r)$. - Volume = $\pi h^2 (3r - h)/3 = \pi h (3a^2 + h^2)/6 = \pi r^3 (2 + \cos \theta) (1 - \cos \theta)^2/3$. - Area = $2\pi rh = \pi (a^2 + h^2) = 2\pi r^2 (1 - \cos \theta)$.
- The number of divisors of n is at most around 100 for n < 5e4, 500 for n < 1e7, 2000 for n < 1e10, 200000 for n < 1e19.
- The number of ways of writing n as a sum of positive integers, disregarding the order of the summands. 1, 1, 2, 3, 5, 7, 11, 15, 22, 30 for $n=0\sim 9$, 627 for $n=20, \sim 2e5$ for $n=50, \sim 2e8$ for n=100.
- Total number of partitions of n distinct elements: B(n) = 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 27644437, 190899322,

- Ordinary Generating Function $A(x) = \sum_{i\geq 0} a_i x^i$ $A(rx) \Rightarrow r^n a_n$ $A(x) + B(x) \Rightarrow a_n + b_n$
 - $-A(rx) \Rightarrow r^n a_n$ $-A(x) + B(x) \Rightarrow a_n + b_n$ $-A(x)B(x) \Rightarrow \sum_{i=0}^n a_i l_{n-i}$ $-A(x)^k \Rightarrow \sum_{i_1+i_2+\dots+i_k=n} a_{i_1} a_{i_2} \dots a_{i_k}$ $-xA(x)' \Rightarrow na_n$ $-\frac{A(x)}{1-x} \Rightarrow \sum_{i=0}^n a_i$
- Exponential Generating Function $A(x) = \sum_{i \geq 0} \frac{a_i}{i!} x_i$

```
 - A(x) + B(x) \Rightarrow a_n + b_n 
 - A^{(k)}(x) \Rightarrow a_{n+k_n} 
 - A(x)B(x) \Rightarrow \sum_{i=0}^{n} \binom{n}{i} a_i b_{n-i} 
 - A(x)^k \Rightarrow \sum_{i_1+i_2+\dots+i_k=n}^{n} \binom{n}{i_1,i_2,\dots,i_k} 
 - xA(x) \Rightarrow na_n
```

• Special Generating Function

$$\begin{array}{l} - & (1+x)^n = \sum_{i \geq 0} \binom{n}{i} x^i \\ - & \frac{1}{(1-x)^n} = \sum_{i \geq 0} \binom{n}{n-1} x^i \end{array}$$

• Bernoulli numbers

$$B_0 = 1, B_1^{\pm} = \pm \frac{1}{2}, B_2 = \frac{1}{6}, B_3 = 0$$

$$\sum_{j=0}^{m} {m+1 \choose j} B_j = 0, \text{ EGF is } B(x) = \frac{x}{e^x - 1} = \sum_{n=0}^{\infty} B_n \frac{x^n}{n!}.$$

$$S_m(n) = \sum_{k=1}^{n} k^m = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_k^+ n^{m+1-k}$$

Stirling numbers of the second kind Partitions of n distinct elements into exactly k groups.

$$\begin{array}{lll} S(n,k) &=& S(n-1,k-1) \,+\, kS(n-1,k), S(n,1) = S(n,n) = 1 \\ S(n,k) &=& \frac{1}{k!} \sum_{i=0}^k (-1)^{k-i} {k \choose i} i^n \\ x^n &=& \sum_{i=0}^n S(n,i)(x)_i \end{array}$$

• Pentagonal number theorem

$$\prod_{n=1}^{\infty} (1 - x^n) = 1$$
$$\sum_{k=1}^{\infty} (-1)^k \left(x^{k(3k+1)/2} + x^{k(3k-1)/2} \right)$$

• Eulerian numbers

Number of permutations $\pi \in S_n$ in which exactly k elements are greater than the previous element. k j:s s.t. $\pi(j) > \pi(j+1)$, k+1 j:s s.t. $\pi(j) \geq j$, k j:s s.t. $\pi(j) > j$. E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k)

$$E(n,0) = E(n, n - 1) = 1$$

$$E(n,k) = \sum_{j=0}^{k} (-1)^{j} {\binom{n+1}{j}} (k+1-j)^{n}$$

7 Dynamic Programming

7.1 Dynamic Convex Hull

```
struct Line {
  // kx + b
  mutable i64 k, b, p;
bool operator<(const Line& o) const {</pre>
        return k < o.k; }
  bool operator<(i64 x) const { return p</pre>
        < x; }
struct DynamicConvexHullMax : multiset<</pre>
     Line, less<>>> {
     (for doubles, use INF = 1/.0, div(a,
        b) = a/b)
  static constexpr i64 INF =
       numeric_limits<i64>::max();
  i64 div(i64 a, i64 b) {
    // floor
    return a / b - ((a \land b) < 0 \& a \% b)
  bool isect(iterator x, iterator y) {
    if (y == end()) return x->p = INF, 0;
if (x->k == y->k) x->p = x->b > y->b
   ? INF : -INF;
```

7.2 1D/1D Convex Optimization

```
struct segment {
 int i, l, r;
 segment(int a, int b, int c): i(a), l(b
      ), r(c) {}
inline long long f(int l, int r) { return
     dp[l] + w(l + 1, r); }
void solve() {
 dp[0] = 011;
 deque<segment> deq; deq.push_back(
 segment(0, 1, n));
for (int i = 1; i <= n; ++i) {
 dp[i] = f(deq.front().i, i);
 while (deq.size() && deq.front().r < i</pre>
      + 1) deq.pop_front();
 deq.front().l = i + 1;
 segment seg = segment(i, i + 1, n);
 deq.pop_back();
 if (deq.size()) {
   int d = 1048576, c = deq.back().1;
   while (d \gg 1) if (c + d \ll deq.back)
        ().r) {
   if (f(i, c + d) > f(deq.back().i, c +
         d)) c += d;
   deq.back().r = c; seg.l = c + 1;
 if (seg.l <= n) deq.push_back(seg);</pre>
```

7.3 Condition

7.3.1 Totally Monotone (Concave/Convex)

```
\begin{array}{ll} \forall i < i', j < j', \ B[i][j] \leq B[i'][j] \implies B[i][j'] \leq \\ B[i'][j'] \\ \forall i < i', j < j', \ B[i][j] \geq B[i'][j] \implies B[i][j'] \geq \\ B[i'][j'] \end{array}
```

7.3.2 Monge Condition (Concave/ Convex)

 $\begin{array}{l} \forall i < i', j < j', B[i][j] + B[i'][j'] \geq B[i][j'] + B[i'][j] \\ \forall i < i', j < j', B[i][j] + B[i'][j'] \leq B[i][j'] + B[i'][j] \end{array}$

7.3.3 Optimal Split Point

 $B[i][j] + B[i+1][j+1] \geq B[i][j+1] + B[i+1][j]$ then

$$H_{i,j-1} \le H_{i,j} \le H_{i+1,j}$$

8 Geometry

8.1 Basic

```
using Real = double; // modify these if
     needed
constexpr Real eps = 1e-9;
int sign(T x) { return (x > 0) - (x < 0);
int sign(Real x) \{ return (x > eps) - (x = eps) \}
< -eps); }
int cmp(T a, T b) { return sign(a - b); }</pre>
struct P {
  T x = 0, y = 0;
  P(T x = 0, T y = 0) : x(x), y(y) {}
  -, +*/, ==!=<, - (unary)
};
struct L {
 P<T> a, b;
  L(P < T > a = {}), P < T > b = {}) : a(a), b(b)
       ) {}
T dot(P<T> a, P<T> b) { return a.x * b.x}
     + a.y * b.y; }
T square(P<T> a) { return dot(a, a); }
Real length(P<T> a) { return sqrtl(square)
     (a)); }
Real dist(P<T> a, P<T> b) { return length
     (a - b); }
T cross(P<T> a, P<T> b) { return a.x * b. y - a.y * b.x; }
T cross(P<T> p, P<T> a, P<T> b) { return
     cross(a - p, b - p); }
P<Real> normal(P<T> a) {
  Real len = length(a);
  return P<Real>(a.x / len, a.y / len);
bool up(P<T> a) { return sign(a.y) > 0 ||
      sign(a.y) == 0 \&\& sign(a.x) > 0; }
// 3 colinear? please remember to remove
     (0, 0)
bool polar(P<T> a, P<T> b) {
 bool ua = up(a), ub = up(b);
return ua != ub ? ua : sign(cross(a, b)
       ) == 1;
bool sameDirection(P<T> a, P<T> b) {
     return sign(cross(a, b)) == 0 &&
     sign(dot(a, b)) == 1; 
// 1/0/1 if on a->b's left/ /right
int side(P<T> p, P<T> a, P<T> b) { return
      sign(cross(p, a, b)); }
int side(P<T> p, L<T> l) { return side(p,
      1.a, 1.b); }
P < T > rotate 90(P < T > p) { return {-p.y, p.x}}
     }; }
P<Real> rotate(P<Real> p, Real ang) {
     return {p.x * cos(ang) - p.y * sin(
     ang), p.x * sin(ang) + p.y * cos(ang)
     )}; }
Real angle(P<T> p) { return atan2(p.y, p.
    x); }
P<T> direction(L<T> 1) { return 1.b - 1.a
     ; }
bool sameDirection(L<T> l1, L<T> l2) {
     return sameDirection(direction(l1),
     direction(l2)); }
P<Real> projection(P<Real> p, L<Real> l)
  auto d = direction(l);
  return 1.a + d * (dot(p - 1.a, d) /
       square(d));
P<Real> reflection(P<Real> p, L<Real> l)
{ return projection(p, l) * 2 - p; }
Real pointToLineDist(P<Real> p, L<Real> l
     ) { return dist(p, projection(p, l))
// better use integers if you don't need
     exact coordinate
// l <= r is not explicitly required</pre>
P<Real> lineIntersection(L<T> l1, L<T> l2
     ) { return l1.a - direction(l1) * (
     Real(cross(direction(l2), l1.a - l2.
     a)) / cross(direction(l2), direction
     (11))); }
```

```
bool between(T m, T l, T r) { return cmp(
    l, m) == 0 || cmp(m, r) == 0 || l <
    m != r < m; }</pre>
bool pointOnSeg(P<T> p, L<T> l) { return
      side(p, l) == 0 \&\& between(p.x, l.a.
      x, l.b.x) && between(p.y, l.a.y, l.b
      .y); }
bool pointStrictlyOnSeg(P<T> p, L<T> l) {
       return side(p, 1) == 0 && sign(dot(
      p - l.a, direction(l))) * sign(dot(p
       - l.b, direction(l))) < 0; }
bool overlap(T l1, T r1, T l2, T r2) {
  if (l1 > r1) { swap(l1, r1); }
if (l2 > r2) { swap(l2, r2); }
  return cmp(r1, 12) != -1 \&\& cmp(r2, 11)
bool segIntersect(L<T> l1, L<T> l2) {
  auto [p1, p2] = l1;
  auto [q1, q2] = 12;
   return overlap(p1.x, p2.x, q1.x, q2.x)
        && overlap(p1.y, p2.y, q1.y, q2.y)
       side(p1, l2) * side(p2, l2) <= 0 && side(q1, l1) * side(q2, l1) <= 0;
// parallel intersecting is false
bool segStrictlyIntersect(L<T> l1, L<T>
     12) {
  auto [p1, p2] = l1;
  auto [q1, q2] = 12
   return side(p1, l2) * side(p2, l2) < 0
        side(q1, l1) * side(q2, l1) < 0;
// parallel or intersect at source doesn'
     t count
bool rayIntersect(L<T> l1, L<T> l2) {
  int x = sign(cross(11.b - 11.a, 12.b -
       12.a));
   return x == 0 ? false : side(l1.a, l2)
        == x \& side(12.a, 11) == -x;
Real pointToSegDist(P<T> p, L<T> l) {
   auto d = direction(l);
   if (sign(dot(p - l.a, d)) >= 0 \&\& sign(
     dot(p - l.b, d)) <= 0) {
return 1.0L * cross(p, l.a, l.b) /</pre>
          dist(l.a, l.b);
  } else {
     return min(dist(p, l.a), dist(p, l.b)
          );
  }
Real segDist(L<T> 11, L<T> 12) {
  if (segIntersect(l1, l2)) { return 0; }
  return min({pointToSegDist(l1.a, l2),
       pointToSegDist(l1.b, l2),
       pointToSegDist(l2.a, l1),
            pointToSegDist(l2.b, l1)});
// 2 times area
T area(vector<P<T>> a) {
  T res = 0;
   int n = a.size();
   for (int i = 0; i < n; i++) { res +=
        cross(a[i], a[(i + 1) % n]); }
  return res;
bool pointInPoly(P<T> p, vector<P<T>> a)
  int n = a.size(), res = 0;
   for (int i = 0; i < n; i++) {
     P < T > u = a[i], v = a[(i + 1) % n];
     if (pointOnSeg(p, {u, v})) { return
          1; }
     if (cmp(u.y, v.y) \le 0) \{ swap(u, v);
     if (cmp(p.y, u.y) > 0 || cmp(p.y, v.y
          ) <= 0) { continue; }
     res \leq cross(p, u, v) > 0;
  return res:
| }
```

8.2 Convex Hull and related

```
| vector<P<T>> convexHull(vector<P<T>> a) {
  int n = a.size();
  if (n <= 1) { return a; }</pre>
  sort(a.begin(), a.end());
  a.resize(unique(a.begin(), a.end()), a.
       end());
   vector<P<T>> b(2 * n);
  int j = 0;
   for (int i = 0; i < n; b[j++] = a[i++])
     while (j >= 2 && side(b[j - 2], b[j -
          1], a[i] <= 0) { j--; }
   for (int i = n - 2, k = j; i >= 0; b[j]
       ++] = a[i--]) {
     while (j > k \& side(b[j - 2], b[j -
         1], a[i]) <= 0) { j--; }
  b.resize(j - 1);
  return b;
// nonstrict : change <= 0 to < 0</pre>
// warning : if all point on same line
     will return {1, 2, 3, 2}
```

8.3 Half Plane Intersection

```
vector<P<Real>> halfPlaneIntersection(
     vector<L<Real>> a) {
   sort(a.begin(), a.end(), [&](auto l1,
       auto 12) {
     if (sameDirection(l1, l2)) {
       return side(l1.a, l2) > 0;
    } else {
       return polar(direction(l1),
           direction(12));
  });
  deque<L<Real>> dq;
  auto check = [&](L<Real> l, L<Real> l1,
        L<Real> 12) { return side(
       lineIntersection(l1, l2), l) > 0;
   for (int i = 0; i < int(a.size()); i++)</pre>
    if (i > 0 && sameDirection(a[i], a[i
          - 1])) { continue; }
     while (int(dq.size()) > 1 && !check(a
          [i], dq.end()[-2], dq.back())) {
           dq.pop_back(); }
     while (int(dq.size()) > 1 && !check(a
          [i], dq[1], dq[0])) { dq.
         pop_front(); }
    dq.push_back(a[i]);
  while (int(dq.size()) > 2 && !check(dq
       [0], dq.end()[-2], dq.back())) {
       dq.pop_back(); }
  while (int(dq.size()) > 2 && !check(dq.
       back(), dq[1], dq[0])) { dq.
  pop_front(); }
vector<P<Real>> res;
  dq.push_back(dq[0]);
   for (int i = 0; i + 1 < int(dq.size());</pre>
        i++) { res.push_back(
       lineIntersection(dq[i], dq[i + 1])
  ); }
return res;
| }
```

8.4 Triangle Centers

```
National Taiwan University 1RZck
 return a - P<Real>(ba.y * dc - ca.y *
      db, ca.x * db - ba.x * dc) / d;
P<Real> orthoCenter(P<Real> a, P<Real> b,
     P<Real> c) {
  L<Real> u(c, P<Real>(c.x - a.y + b.y, c
      .y + a.x - b.x);
 L<Real> v(b, P<Real>(b.x - a.y + c.y, b)
      .y + a.x - c.x));
  return lineIntersection(u, v);
8.5 Circle
const Real PI = acos(-1);
struct Circle {
  P<Real> o;
  Real r:
```

```
Circle(P<Real> o = {}, Real r = 0) : o(
       o), r(r) {}
// actually counts number of tangent
     lines
int typeOfCircles(Circle c1, Circle c2) {
  auto [o1, r1] = c1;
  auto [o2, r2] = c2;
  Real d = dist(o1, o2);
  if (cmp(d, r1 + r2) == 1) \{ return 4; \}
  if (cmp(d, r1 + r2) == 0) { return 3; }
  if (cmp(d, abs(r1 - r2)) == 1) \{ return \}
  if (cmp(d, abs(r1 - r2)) == 0) { return
        1; }
  return 0;
}
// aligned l.a -> l.b;
vector<P<Real>> circleLineIntersection(
     Circle c, L<Real> 1) {
  P<Real> p = projection(c.o, 1);
  Real h = c.r * c.r - square(p - c.o);
  if (sign(h) < 0) { return {}; }</pre>
  P<Real> q = normal(direction(l)) *
       sqrtl(c.r * c.r - square(p - c.o))
  return \{p - q, p + q\};
// circles shouldn't be identical
// duplicated if only one intersection,
     aligned c1 counterclockwise
vector<P<Real>> circleIntersection(Circle
      c1, Circle c2) {
  int type = typeOfCircles(c1, c2);
  if (type == 0 || type == 4) { return
        {}; }
  auto [o1, r1] = c1;
  auto [o2, r2] = c2;
  Real d = clamp(dist(o1, o2), abs(r1 -
  r2), r1 + r2);
Real y = (r1 * r1 + d * d - r2 * r2) /
       (2 * d), x = sqrtl(r1 * r1 - y * y)
  P<Real> dir = normal(o2 - o1), q1 = o1
       + dir * y, q2 = rotate90(dir) * x;
  return {q1 - q2, q1 + q2};
// counterclockwise, on circle -> no
     tangent
vector<P<Real>> pointCircleTangent(P<Real
    > p, Circle c) {
  Real x = \text{square}(p - c.o), d = x - c.r *
        c.r;
  if (sign(d) <= 0) { return {}; }
P<Real> q1 = c.o + (p - c.o) * (c.r * c
        .r / x), q2 = rotate90(p - c.o) *
       (c.r * sqrt(d) / x);
  return {q1 - q2, q1 + q2};
// one-point tangent lines are not
     returned
vector<L<Real>> externalTangent(Circle c1
     , Circle c2) {
  auto [o1, r1] = c1;
auto [o2, r2] = c2;
vector<L<Real>> res;
  if (cmp(r1, r2) == 0) {
    P dr = rotate90(normal(o2 - o1)) * r1
```

```
res.emplace_back(o1 + dr, o2 + dr);
res.emplace_back(o1 - dr, o2 - dr);
    } else {
        P p = (o2 * r1 - o1 * r2) / (r1 - r2)
                                                                                               |}
         auto ps = pointCircleTangent(p, c1),
                   qs = pointCircleTangent(p, c2);
         for (int i = 0; i < int(min(ps.size()</pre>
                   , qs.size())); i++) { res.
                   emplace_back(ps[i], qs[i]); }
    return res;
vector<L<Real>> internalTangent(Circle c1
           , Circle c2) {
    auto [o1, r1] = c1;
    auto [o2, r2] = c2;
vector<L<Real>> res;
    P<Real> p = (o1 * r2 + o2 * r1) / (r1 + r2 + r2) / (r1 + r3) / (r2 + r3) / (r3 + r4) / (r4 + r4) / (
                r2);
    auto ps = pointCircleTangent(p, c1), qs
                 = pointCircleTangent(p, c2);
     for (int i = 0; i < int(min(ps.size(),</pre>
               qs.size())); i++) { res.
               emplace_back(ps[i], qs[i]); }
// OAB and circle directed area
Real triangleCircleIntersectionArea(P<
          Real> p1, P<Real> p2, Real r) {
    auto angle = [\&](P<Real> p1, P<Real> p2
               ) { return atan2l(cross(p1, p2),
    dot(p1, p2)); };
vector<P<Real>> v =
               circleLineIntersection(Circle(P<
               Real>(), r), L<Real>(p1, p2));
    if (v.empty()) { return r * r * angle(
              p1, p2) / 2; }
    bool b1 = cmp(square(p1), r * r) == 1,
              b2 = cmp(square(p2), r * r) == 1;
    if (b1 && b2) {
         if (sign(dot(p1 - v[0], p2 - v[0]))
                   <= 0 && sign(dot(p1 - v[0], p2 -
             v[0])) <= 0) {
return r * r * (angle(p1, v[0]) +
                       angle(v[1], p2)) / 2 + cross(v
                        [0], v[1]) / 2;
        } else {
            return r * r * angle(p1, p2) / 2;
    } else if (b1) {
  return (r * r * angle(p1, v[0]) +
                   cross(v[0], p2)) / 2;
    } else if (b2) {
         return (cross(p1, v[1]) + r * r *
                                                                                                  }
                   angle(v[1], p2)) / 2;
    } else {
         return cross(p1, p2) / 2;
   }
Real polyCircleIntersectionArea(const
          vector<P<Real>> &a, Circle c) {
     int n = a.size();
    Real ans = 0;
    for (int i = 0; i < n; i++) {
         ans += triangleCircleIntersectionArea
                   (a[i], a[(i + 1) % n], c.r);
    return ans;
Real circleIntersectionArea(Circle a,
          Circle b) {
    int t = typeOfCircles(a, b);
    if (t >= 3) {
         return 0;
    } else if (t <= 1) {</pre>
        Real r = min(a.r, b.r);
return r * r * PI;
    Real res = 0, d = dist(a.o, b.o);
    (alpha);
```

res += s -

```
swap(a, b);
return res;
```

```
8.6 Delaunay Triangulation
const P<i64> pINF = P<i64>(1e18, 1e18);
using i128 = __int128_t;
struct Quad {
  P<i64> origin;
Quad *rot = nullptr, *onext = nullptr;
  bool used = false;
  Quad* rev() const { return rot->rot; }
  Quad* lnext() const { return rot->rev()
       ->onext->rot; }
  Quad* oprev() const { return rot->onext
       ->rot; }
  P<i64> dest() const { return rev()->
       origin; }
Quad* makeEdge(P<i64> from, P<i64> to) {
Quad *e1 = new Quad, *e2 = new Quad, *
e3 = new Quad, *e4 = new Quad;
  e1->origin = from;
  e2->origin = to;
  e3->origin = e4->origin = pINF;
  e1->rot = e3;
e2->rot = e4;
  e3->rot = e2
  e4->rot = e1;
  e1->onext = e1
  e2->onext = e2
  e3->onext = e4
  e4->onext = e3;
  return e1;
void splice(Quad *a, Quad *b) {
  swap(a->onext->rot->onext, b->onext->
       rot->onext);
  swap(a->onext, b->onext);
void delEdge(Quad *e) {
  splice(e, e->oprev());
  splice(e->rev(), e->rev()->oprev());
  delete e->rev()->rot;
  delete e->rev();
  delete e->rot;
  delete e:
Quad *connect(Quad *a, Quad *b) {
  Quad *e = makeEdge(a->dest(), b->origin
  splice(e, a->lnext());
  splice(e->rev(), b);
  return e;
bool onLeft(P<i64> p, Quad *e) { return
     side(p, e->origin, e->dest()) > 0; }
bool onRight(P<i64> p, Quad *e) { return
     side(p, e->origin, e->dest()) < 0; }</pre>
template <class T>
T det3(T a1, T a2, T a3, T b1, T b2, T b3
  , T c1, T c2, T c3) {
return a1 * (b2 * c3 - c2 * b3) - a2 *
       (b1 * c3 - c1 * b3) + a3 * (b1 * c2 - c1 * b2);
bool inCircle(P<i64> a, P<i64> b, P<i64>
     c, P < i64 > d) {
  auto f = [\&](P<i64> a, P<i64> b, P<i64>
        c) {
    return det3<i128>(a.x, a.y, square(a)
          , b.x, b.y, square(b), c.x, c.y,
          square(c));
  i128 det = f(a, c, d) + f(a, b, c) - f(
       b, c, d) - f(a, b, d);
  return det > 0;
pair<Quad*, Quad*> build(int l, int r,
     vector<P<i64>> &p) {
  if (r - 1 == 2) {
    Quad *res = makeEdge(p[l], p[l + 1]);
  return pair(res, res->rev());
} else if (r - l == 3) {
    Quad *a = makeEdge(p[l], p[l + 1]), *
```

b = makeEdge(p[l + 1], p[l + 2])

```
splice(a->rev(), b);
    int sg = sign(cross(p[l], p[l + 1], p
         [1 + 2]);
    if (sg == 0) { return pair(a, b->rev
         ()); }
    Quad *c = connect(b, a);
    if (sg == 1) {
      return pair(a, b->rev());
    } else {
      return pair(c->rev(), c);
   }
 int m = l + r >> 1;
auto [ldo, ldi] = build(l, m, p);
 auto [rdi, rdo] = build(m, r, p);
 while (true) {
    if (onLeft(rdi->origin, ldi)) {
      ldi = ldi->lnext();
      continue:
    if (onRight(ldi->origin, rdi)) {
      rdi = rdi->rev()->onext;
      continue;
    break;
 Quad *basel = connect(rdi->rev(), ldi);
 auto valid = [&](Quad *e) { return
    onRight(e->dest(), basel); };
  if (ldi->origin == ldo->origin) { ldo =
        basel->rev(); }
  if (rdi->origin == rdo->origin) { rdo =
        basel; }
 while (true) {
  Quad *lcand = basel->rev()->onext;
    if (valid(lcand)) {
      while (inCircle(basel->dest(),
           basel->origin, lcand->dest(),
           lcand->onext->dest())) {
        Quad *t = lcand->onext;
        delEdge(lcand);
        lcand = t;
      }
    Quad *rcand = basel->oprev();
    if (valid(rcand)) {
      while (inCircle(basel->dest())
           basel->origin, rcand->dest(),
           rcand->oprev()->dest())) {
        Quad *t = rcand->oprev();
        delEdge(rcand);
        rcand = t:
      }
    if (!valid(lcand) && !valid(rcand)) {
          break: }
    if (!valid(lcand) || valid(rcand) &&
         inCircle(lcand->dest(), lcand->
         origin, rcand->origin, rcand->
         dest())) {
      basel = connect(rcand, basel->rev()
    } else {
      basel = connect(basel->rev(), lcand
           ->rev());
   }
 return pair(ldo, rdo);
vector<array<P<i64>, 3>> delaunay(vector<
    P<i64>> p) {
 sort(p.begin(), p.end());
auto res = build(0, p.size(), p);
 Quad *e = res.first;
  vector<Quad*> edges = {e};
 while (sign(cross(e->onext->dest(), e->
       dest(), e->origin)) == -1) { e = e
->onext; }
 auto add = [&]() {
  Quad *cur = e;
    do {
      cur->used = true;
      p.push_back(cur->origin);
      edges.push_back(cur->rev());
      cur = cur->lnext();
    } while (cur != e);
 };
```

```
add();
p.clear();
int i = 0;
while (i < int(edges.size())) { if (!(e</pre>
     = edges[i++])->used) { add(); }}
vector<array<P<i64>, 3>> ans(p.size() /
    3);
return ans;
```

ConvexHull Operations 8.7 (yhchang3)

```
给定凸包, log n 内完成各种询问, 具体操作有:
  判定一个点是否在凸包内
2. 询问凸包外的点到凸包的两个切点
3. 询问一个向量关于凸包的切点
   询问一条直线和凸包的交点
INF 为坐标范围,需要定义点类大于号
改成实数只需修改 sign 函数,以及把 long
     long 改为 double 即可
 构造函数时传入凸包要求无重点, 面积非空,
      以及 pair(x,y) 的最小点放在第一个
const int INF = 1e9;
struct Convex {
 int n:
 vector<Point> a, upper, lower;
 {\tt Convex(vector < Point> a_): a(a_) \{}
    n = a_.size();
    int ptr = 0;
   for (int i = 1; i < n; i++) {
      if (a[ptr] < a[i]) ptr = i;</pre>
    for (int i = 0; i <= ptr; i++) {
     lower.push_back(a[i]);
    for (int i = ptr; i < n; i++) {</pre>
     upper.push_back(a[i]);
   upper.push back(a[0]):
 int sign(long long x) { return x < 0 ?
       -1 : x > 0; }
 pair<long long, int> get_tangent(vector
      <Point> &convex, Point vec) {
    int l = 0, r = int(convex.size()) -
        2;
    for (; l + 1 < r;) {
      int mid = (l + r) / 2;
      if (sign((convex[mid + 1] - convex[
          mid]).det(vec)) > 0) r = mid;
     else 1 = mid:
    return max(make_pair(vec.det(convex[r
        ]), r), make_pair(vec.det(convex
        [0]), 0));
 void update_tangent(const Point &p, int
       id, int &i0, int &i1) {
    if ((a[i0] - p).det(a[id] - p) > 0)
        i0 = id;
    if ((a[i1] - p).det(a[id] - p) < 0)</pre>
        i1 = id;
  void binary_search(int l, int r, Point
      p, int &i0, int &i1) {
    if (l == r) { return; }
   update_tangent(p, l % n, i0, i1);
   int sl = sign((a[l % n] - p).det(a[(l
         + 1) % n] - p));
    for (; l + 1 < r;) {
      int mid = (1 + r)^{-1}/2;
      int smid = sign((a[mid % n] - p).
          det(a[(mid + 1) % n] - p));
      if (smid == sl) l = mid;
     else r = mid;
   update_tangent(p, r % n, i0, i1);
  int binary_search(Point u, Point v, int
       1, int r) {
    int sl = sign((v - u).det(a[l % n] -
        u));
```

```
for(; l + 1 < r; ) {
    int mid=(l+r)/2;
    if(smid==sl)l=mid;
    else r = mid;
  return 1 % n:
}
// 判定点是否在凸包内, 在边界返回 true
bool contain(Point p) {
  if (p.x < lower[0].x | | p.x > lower.
      back().x) return false;
  int id = lower_bound(lower.begin(),
      lower.end(), Point(p.x, -INF)) -
        lower.begin();
  if (lower[id].x == p.x) {
    if (lower[id].y > p.y) return false
  } else if ((lower[id - 1] - p).det(
      lower[id] - p) < 0) return false</pre>
  id = lower_bound(upper.begin(), upper
       .end(), Point(p.x, INF), greater
       <Point>()) - upper.begin();
  if (upper[id].x == p.x) {
    if (upper[id].y < p.y) return false</pre>
  } else if ((upper[id - 1] - p).det(
      upper[id] - p) < 0) return false
  return true;
// 求点 p 关于凸包的两个切点,如果在凸包外则有序返回编号,共线的多个切点返回任意一个,否则返回 false
bool get_tangent(Point p, int &i0, int
    &i1) {
  if (contain(p)) return false;
  i0 = i1 = 0;
  int id = lower_bound(lower.begin(),
  lower.end(),p) - lower.begin();
binary_search(0, id, p, i0, i1);
  binary_search(id, (int)lower.size(),
       p, i0, i1);
  id = lower_bound(upper.begin(), upper
       .end(), p, greater<Point>()) -
      upper.begin();
  binary_search((int)lower.size() - 1,
       (int)lower.size() - 1 + id, p,
      i0, i1);
  binary_search((int)lower.size() - 1 +
       id, (int)lower.size() - 1 + (
       int)upper.size(), p, i0, i1);
  return true;
// 求凸包上和向量 vec 叉积最大的点,返回编号,共线的多个切点返回任意一个
int get_tangent(Point vec) {
  pair<long long, int> ret =
      get_tangent(upper, vec);
  ret.second = (ret.second + int(lower.
      size()) - 1) % n;
  ret = max(ret, get_tangent(lower, vec
      ));
  return ret.second;
// 求凸包和直线 U,V 的交点,如果无严格
     相交返回 false. 如果有则是和(i,
    next(i)) 的交点,两个点无序,交在点上不确定返回前后两条线段其中之一
bool get_intersection(Point p, Point v,
     int &i0, int &i1) {
  int p0 = get_tangent(u - v), p1 =
      get_tangent(v - u);
  if (sign((v - u).det(a[p0] - u)) *
      sign((v - u).det(a[p1] - u)) <
      0) {
    if (p0 > p1) swap(p0, p1);
    i0 = binary_search(u, v, p0, p1);
    i1 = binary_search(u, v, p1, p0 + n)
    );
return true;
  } else { return false; }
```

9 Miscellaneous

9.1 Cactus 1

```
auto work = [&](const vector<int> cycle)
  // merge cycle info to u?
  int len = cycle.size(), u = cycle[0];
auto dfs = [&](auto dfs, int u, int p) {
  par[u] = p;
  vis[u] = 1;
  for (auto v : adj[u]) {
    if (v == p) { continue; }
    if (vis[v] == 0) {
      dfs(dfs, v, u);
      if (!cyc[v]) { // merge dp }
    } else if (vis[v] == 1) {
      for (int w = u; w != v; w = par[w])
        cyc[w] = 1;
      }
    } else {
      vector<int> cycle = {u};
      for (int w = v; w != u; w = par[w])
            { cycle.push_back(w); }
      work(cycle);
  vis[u] = 2;
|};
```

9.2 Cactus 2

```
// a component contains no articulation
     point, so P2 is a component
// but not a vertex biconnected component
      by definition
// resulting bct is rooted
struct BlockCutTree {
  int n, square = 0, cur = 0;
  vector<int> low, dfn, stk;
  vector<vector<int>> adj, bct;
  BlockCutTree(int n) : n(n), low(n), dfn
  (n, -1), adj(n), bct(n) {}

void build() { dfs(0); }

void addEdge(int u, int v) { adj[u].
        push_back(v), adj[v].push_back(u);
  void dfs(int u) {
    low[u] = dfn[u] = cur++;
     stk.push_back(u);
     for (auto v : adj[u]) {
       if (dfn[v] == -1) {
         dfs(v);
         low[u] = min(low[u], low[v]);
         if (low[v] == dfn[u]) {
           bct.emplace_back();
           int x;
           do {
             x = stk.back();
             stk.pop_back();
             bct.back().push_back(x);
           } while (x != v);
           bct[u].push_back(n + square);
           square++;
         }
       } else {
         low[u] = min(low[u], dfn[v]);
       }
    }
  }
j};
```

9.3 Dancing Links

```
|#include <bits/stdc++.h>
|using namespace std;
|// tioj 1333
|#define TRAV(i, link, start) for (int i =
| link[start]; i != start; i = link[i
| ])
|const int NN = 40000, RR = 200;
|template<br/>
| template<br/>
| 1s, RR: num of rows
```

```
struct DLX {
  int lt[NN], rg[NN], up[NN], dn[NN], rw[
       NN], cl[NN], bt[NN], s[NN], head,
       sz, ans;
  int rows, columns;
  bool vis[NN];
  bitset<RR> sol, cur; // not sure
  void remove(int c) {
    if (E) lt[rg[c]] = lt[c], rg[lt[c]] =
          rg[c];
    TRAV(i, dn, c) {
      if (E) {
        TRAV(j, rg, i)
up[dn[j]] = up[j], dn[up[j]] =
                dn[j], --s[cl[j]];
        lt[rg[i]] = lt[i], rg[lt[i]] = rg
              Γi];
    }
  void restore(int c) {
    TRAV(i, up, c) {
   if (E) {
        TRAV(j, lt, i)
           ++s[cl[j]], up[dn[j]] = j, dn[
               up[j]] = j;
      } else {
        lt[rg[i]] = rg[lt[i]] = i;
      }
    if (E) lt[rg[c]] = c, rg[lt[c]] = c;
 void init(int c) {
  rows = 0, columns = c;
  for (int i = 0; i < c; ++i) {</pre>
      up[i] = dn[i] = bt[i] = i;
      lt[i] = i == 0 ? c : i - 1;
      rg[i] = i == c - 1 ? c : i + 1;
      s[i] = 0;
    rg[c] = 0, lt[c] = c - 1;
    up[c] = dn[c] = -1;
    head = c, sz = c + 1;
  void insert(const vector<int> &col) {
    if (col.empty()) return;
    int f = sz;
    for (int i = 0; i < (int)col.size();</pre>
         ++i) {
      int c = col[i], v = sz++;
      dn[bt[c]] = v;
      up[v] = bt[c], bt[c] = v;
      rg[v] = (i + 1 == (int)col.size() ?
            f: v + 1);
      rw[v] = rows, cl[v] = c;
      ++s[c];
      if (i > 0) lt[v] = v - 1;
    ++rows, lt[f] = sz - 1;
  int h() {
    int ret = 0;
    fill_n(vis, sz, false);
TRAV(x, rg, head) {
      if (vis[x]) continue;
      vis[x] = true, ++ret;
TRAV(i, dn, x) TRAV(j, rg, i) vis[
           cl[j]] = true;
    return ret;
  }
  void dfs(int dep) {
    if (dep + (E ? 0 : h()) >= ans)
    if (rg[head] == head) return sol =
         cur, ans = dep, void();
    if (dn[rg[head]] == rg[head]) return;
    int w = rg[head];
    TRAV(x, rg, head) if (s[x] < s[w]) w
         = x;
    if (E) remove(w);
    TRAV(i, dn, w) {
      if (!E) remove(i);
      TRAV(j, rg, i) remove(E ? cl[j] : j
```

```
cur.set(rw[i]), dfs(dep + 1), cur.
            reset(rw[i]);
       TRAV(j, lt, i) restore(E ? cl[j] :
       if (!E) restore(i);
    if (E) restore(w);
  }
  int solve() {
    for (int i = 0; i < columns; ++i)</pre>
      dn[bt[i]] = i, up[i] = bt[i];
    ans = 1e9, sol.reset(), dfs(0);
    return ans;
  }
};
int main() {
    int n, m; cin >> n >> m;
DLX<true> solver;
    solver.init(m);
    for (int i = 0; i < n; i++){
         vector<int> add;
         for (int j = 0; j < m; j++){
             int x; cin >> x;
if (x == 1) {
                  add.push_back(j);
         solver.insert(add);
    cout << solver.solve() << '\n';</pre>
    return 0;
```

9.4 Offline Dynamic MST

```
int cnt[maxn], cost[maxn], st[maxn], ed[
     maxn];
pair<int, int> qr[maxn];
// qr[i].first = id of edge to be changed
      , qr[i].second = weight after
     operation
// cnt[i] = number of operation on edge i
// call solve(0, q - 1, v, 0), where v
     contains edges i such that cnt[i] ==
void contract(int 1, int r, vector<int> v
      vector<int> &x, vector<int> &y) {
  sort(v.begin(), v.end(), [&](int i, int
      if (cost[i] == cost[j]) return i <</pre>
           j;
      return cost[i] < cost[j];</pre>
      });
  djs.save();
  for (int i = l; i <= r; ++i) djs.merge(</pre>
       st[qr[i].first], ed[qr[i].first]);
  for (int i = 0; i < (int)v.size(); ++i)</pre>
    if (djs.find(st[v[i]]) != djs.find(ed
         [v[i]])) {
      x.push_back(v[i]);
      djs.merge(st[v[i]], ed[v[i]]);
    }
  }
  djs.undo();
  dis.save();
  for (int i = 0; i < (int)x.size(); ++i)
        djs.merge(st[x[i]], ed[x[i]]);
  for (int i = 0; i < (int)v.size(); ++i)</pre>
    if (djs.find(st[v[i]]) != djs.find(ed
         [v[i]])) {
      y.push_back(v[i]);
      djs.merge(st[v[i]], ed[v[i]]);
    }
  djs.undo();
}
void solve(int l, int r, vector<int> v,
     long long c) {
  if (l == r) {
    cost[qr[l].first] = qr[l].second;
    if (st[qr[l].first] == ed[qr[l].first
```

7) 4

printf("%lld\n", c);

```
return:
     int minv = qr[l].second;
     for (int i = 0; i < (int)v.size(); ++</pre>
          i) minv = min(minv, cost[v[i]]);
     printf("%lld\n", c + minv);
     return:
  int m = (l + r) >> 1;
  vector < int > lv = v, rv = v;
   vector<int> x, y;
   for (int i = m + 1; i \le r; ++i) {
     cnt[qr[i].first]--;
     if (cnt[qr[i].first] == 0) lv.
          push_back(qr[i].first);
  contract(l, m, lv, x, y);
long long lc = c, rc = c;
  djs.save();
  for (int i = 0; i < (int)x.size(); ++i)</pre>
     lc += cost[x[i]];
     djs.merge(st[x[i]], ed[x[i]]);
  solve(l, m, y, lc);
  djs.undo();
   x.clear(), y.clear();
  for (int i = m + 1; i <= r; ++i) cnt[qr</pre>
        [i].first]++;
  for (int i = 1; i <= m; ++i) {</pre>
     cnt[qr[i].first]--;
     if (cnt[qr[i].first] == 0) rv.
          push_back(qr[i].first);
  contract(m + 1, r, rv, x, y);
  djs.save();
   for (int i = 0; i < (int)x.size(); ++i)</pre>
         {
     rc += cost[x[i]];
     djs.merge(st[x[i]], ed[x[i]]);
  solve(m + 1, r, y, rc);
  djs.undo();
  for (int i = 1; i <= m; ++i) cnt[qr[i].</pre>
        first]++;
į }
```

9.5 Matroid Intersection

```
    x → y if S - {x} ∪ {y} ∈ I<sub>1</sub> with cost({y}).
    source → y if S ∪ {y} ∈ I<sub>1</sub> with cost({y}).
    y → x if S - {x} ∪ {y} ∈ I<sub>2</sub> with -cost({y}).
    y → sink if S ∪ {y} ∈ I<sub>2</sub> with -cost({y}).
```

Augmenting path is shortest path from source to sink.

9.6 Euler Tour

```
vector<int> euler, vis(V);
auto dfs = [&](auto dfs, int u) -> void {
  while (!adj[u].empty()) {
    while (!adj[u].empty()) && del[adj[u].
        back()[1]]) {
        adj[u].pop_back();
    }
    if (!adj[u].empty()) {
        auto [v, i] = adj[u].back();
        del[i] = true;
        dfs(dfs, v);
    }
    euler.push_back(u);
};
dfs(dfs, 0);
reverse(euler.begin(), euler.end());
```

9.7 SegTree Beats

```
struct SegmentTree {
  int n;
  struct node {
    i64 mx1, mx2, mxc;
    i64 mn1, mn2, mnc;
    i64 add;
    i64 sum;
  node(i64 v = 0) {
      mx1 = mn1 = sum = v;
}
```

```
mxc = mnc = 1;
    add = 0;
    mx2 = -9e18, mn2 = 9e18;
 }
vector<node> t;
// build
void push(int id, int l, int r) {
  auto& c = t[id];
  int m = l + r \gg 1;
  if (c.add != 0) {
    apply_add(id << 1, 1, m, c.add);</pre>
    apply_add(id \ll 1 | 1, m + 1, r, c.
         add);
    c.add = 0:
  apply_min(id << 1, 1, m, c.mn1);</pre>
  apply_min(id \ll 1 | 1, m + 1, r, c.
       mn1):
  apply_max(id \ll 1, l, m, c.mx1);
  apply_max(id \ll 1 | 1, m + 1, r, c.
void apply_add(int id, int l, int r,
    i64 v) {
  if (v == 0) {
    return;
  auto& c = t[id];
  c.add += v;
  c.sum += v * (r - l + 1);
  c.mx1 += v;
  c.mn1 += v;
  if (c.mx2 != -9e18) {
    c.mx2 += v;
  if (c.mn2 != 9e18) {
    c.mn2 += v;
  }
void apply_min(int id, int l, int r,
     i64 v) {
  auto& c = t[id];
  if (v <= c.mn1) {</pre>
    return;
  c.sum -= c.mn1 * c.mnc;
  c.mn1 = v;
  c.sum += c.mn1 * c.mnc;
  if (l == r || v >= c.mx1) {
    c.mx1 = v;
  } else if (v > c.mx2) {
    c.mx2 = v;
 }
void apply_max(int id, int l, int r,
     i64 v) {
  auto& c = t[id];
  if (v >= c.mx1) {
    return;
  c.sum -= c.mx1 * c.mxc;
  c.mx1 = v;
  c.sum += c.mx1 * c.mxc;
  if (l == r \mid \mid v \Leftarrow c.mn1) {
    c.mn1 = v;
  } else if (v < c.mn2) {
    c.mn2 = v;
 }
void pull(int id) {
  auto &c = t[id], &lc = t[id << 1], &</pre>
       rc = t[id << 1 | 1];
  c.sum = lc.sum + rc.sum;
  if (lc.mn1 == rc.mn1) {
    c.mn1 = lc.mn1;
    c.mn2 = min(lc.mn2, rc.mn2);
    c.mnc = lc.mnc + rc.mnc;
 } else if (lc.mn1 < rc.mn1) {
   c.mn1 = lc.mn1;</pre>
    c.mn2 = min(lc.mn2, rc.mn1);
    c.mnc = lc.mnc;
  } else {
    c.mn1 = rc.mn1;
    c.mn2 = min(lc.mn1, rc.mn2);
    c.mnc = rc.mnc;
  if (lc.mx1 == rc.mx1) {
    c.mx1 = lc.mx1;
```

```
c.mx2 = max(lc.mx2, rc.mx2);
c.mxc = lc.mxc + rc.mxc;
  } else if (lc.mx1 > rc.mx1) {
   c.mx1 = lc.mx1;
    c.mx2 = max(lc.mx2, rc.mx1);
    c.mxc = lc.mxc;
  } else {
    c.mx1 = rc.mx1;
    c.mx2 = max(lc.mx1, rc.mx2);
    c.mxc = rc.mxc:
  }
void range_chmin(int id, int l, int r,
  int ql, int qr, i64 v) {
if (r < ql || l > qr || v >= t[id].
       mx1) {
    return:
  if (ql <= l && r <= qr && v > t[id].
       mx2) {
    apply_max(id, l, r, v);
  push(id, l, r);
  int m = l + r >> 1;
  range_chmin(id << 1, l, m, ql, qr, v)</pre>
  range_chmin(id \ll 1 | 1, m + 1, r, ql
       , qr, v);
  pull(id);
void range_chmin(int ql, int qr, i64 v)
  range_chmin(1, 0, n - 1, ql, qr, v);
}
void range_chmax(int id, int l, int r,
     int ql, int qr, i64 v) {
  if (r < ql \mid | l > qr \mid | v \leftarrow t[id].
       mn1) {
    return;
  if (ql \le l \&\& r \le qr \&\& v < t[id].
       mn2) {
    apply_min(id, l, r, v);
    return;
  push(id, l, r);
  int m = 1 + r >> 1;
  range_chmax(id \ll 1, l, m, ql, qr, v)
  range\_chmax(id << 1 \mid 1, m + 1, r, ql)
         qr, v);
  pull(id);
void range_chmax(int ql, int qr, i64 v)
  range_chmax(1, 0, n - 1, ql, qr, v);
void range_add(int id, int l, int r,
  int ql, int qr, i64 v) {
if (r < ql || l > qr) {
    return:
  if (ql <= l && r <= qr) {
    apply_add(id, l, r, v);
    return;
  push(id, l, r);
int m = l + r >> 1;
  range_add(id << 1, l, m, ql, qr, v);
range_add(id << 1 | 1, m + 1, r, ql,
       qr, v);
  pull(id);
void range_add(int ql, int qr, i64 v) {
  range_add(1, 0, n - 1, ql, qr, v);
i64 range_sum(int id, int l, int r, int
      ql, int qr) {
  if (r < ql || l > qr) {
   return 0;
  if (ql \ll l \& r \ll qr) {
    return t[id].sum;
  push(id, 1, r);
  int m = l + r >> 1;
```

```
return range_sum(id << 1, 1, m, ql,</pre>
          qr) + range_sum(id << 1 | 1, m +
           1, r, ql, qr);
   i64 range_sum(int ql, int qr) {
     return range_sum(1, 0, n - 1, ql, qr)
|};
```

9.8unorganized

```
vector<pll> Minkowski(vector<pll> A,
     vector<pll> B) {
  hull(A), hull(B);
  vector<pll> C(1, A[0] + B[0]), s1, s2;
for (int i = 0; i < SZ(A); ++i)
    s1.pb(A[(i + 1) \% SZ(A)] - A[i]);
  for (int i = 0; i < SZ(B); i++)
s2.pb(B[(i + 1) % SZ(B)] - B[i]);
  for (int i = 0, j = 0; i < SZ(A) || j <
         SZ(B);)
    if (j \ge SZ(B) | | (i < SZ(A) \&\& cross)
       (s1[i], s2[j]) >= 0))
C.pb(B[j % SZ(B)] + A[i++]);
    else
      C.pb(A[i % SZ(A)] + B[j++]);
  return hull(C), C;
bool PointInConvex(const vector<pll> &C,
     pll p, bool strict = true) {
  int a = 1, b = SZ(C) - 1, r = !strict;
  if (SZ(C) == 0) return false;
  if (SZ(C) < 3) return r && btw(C[0], C.
       back(), p);
  if (ori(C[0], C[a], C[b]) > 0) swap(a,
       b):
  if (ori(C[0], C[a], p) >= r || ori(C
       [0], C[b], p) \leftarrow -r
     return false;
  while (abs(a - b) > 1) {
    int c = (a + b) / 2;
    (ori(C[0], C[c], p) > 0 ? b : a) = c;
  return ori(C[a], C[b], p) < r;</pre>
const int N = 1021;
struct CircleCover {
  int C;
  Cir c[N];
  bool g[N][N], overlap[N][N];
  // Area[i] : area covered by at least i
         circles
  double Area[ N ];
  void init(int _C){ C = _C;}
  struct Teve {
    pdd p; double ang; int add;
    Teve() {}
    Teve(pdd _a, double _b, int _c):p(_a)
          , ang(_b), add(_c){}
    bool operator<(const Teve &a)const
    {return ang < a.ang;}
  }eve[N * 2];
  // strict: x = 0, otherwise x = -1
  bool disjuct(Cir &a, Cir &b, int x)
  \{\text{return sign}(abs(a.0 - b.0) - a.R - b.R\}
       ) > x;}
  bool contain(Cir &a, Cir &b, int x)
{return sign(a.R - b.R - abs(a.0 - b.0)
       ) > x;}
  bool contain(int i, int j) {
    /* c[j] is non-strictly in c[i]. */
    return (sign(c[i].R - c[j].R) > 0 ||
(sign(c[i].R - c[j].R) == 0 && i
           < j)) && contain(c[i], c[j],</pre>
  void solve(){
    fill_n(Area, C + 2, 0);
     for(int i = 0; i < C; ++i)</pre>
       for(int j = 0; j < C; ++j)
         overlap[i][j] = contain(i, j);
    for(int i = 0; i < C; ++i)
       for(int j = 0; j < C; ++j)
```

```
g[i][j] = !(overlap[i][j] ||
              overlap[j][i] ||
              disjuct(c[i], c[j], -1));
    for(int i = 0; i < C; ++i){
       int E = 0, cnt = 1;
       for(int j = 0; j < C; ++j)
  if(j != i && overlap[j][i])</pre>
           ++cnt;
       for(int j = 0; j < C; ++j)
         if(i != j && g[i][j]) {
  pdd aa, bb;
           CCinter(c[i], c[j], aa, bb);
           double A = atan2(aa.Y - c[i].0.
                Y, aa.X - c[i].0.X;
           double B = atan2(bb.Y - c[i].0.
                Y, bb.X - c[i].0.X);
           eve[E++] = Teve(bb, B, 1), eve[
                E++] = Teve(aa, A, -1);
           if(B > A) ++cnt;
       if(E == 0) Area[cnt] += pi * c[i].R
             * c[i].R;
       else{
         sort(eve, eve + E);
         eve[E] = eve[0];
         for(int j = 0; j < E; ++j){
           cnt += eve[j].add;
           Area[cnt] += cross(eve[j].p,
                 eve[j + 1].p) * .5;
           double theta = eve[j + 1].ang -
                  eve[j].ang;
           if (theta < 0) theta += 2. * pi
           Area[cnt] += (theta - sin(theta))
                 )) * c[i].R * c[i].R * .5;
         }
      }
    }
};
struct Point {
  double x, y, z;
Point(double _x = 0, double _y = 0,
        double _{z} = 0): x(_{x}), y(_{y}), z(_{z})
  Point(pdd p) { x = p.X, y = p.Y, z =
       abs2(p); }
Point operator-(Point p1, Point p2)
{ return Point(p1.x - p2.x, p1.y - p2.y,
     p1.z - p2.z); }
Point operator+(Point p1, Point p2)
{ return Point(p1.x + p2.x, p1.y + p2.y,
p1.z + p2.z); }
Point operator*(Point p1, double v)
{ return Point(p1.x * v, p1.y * v, p1.z *
Point operator/(Point p1, double v)
{ return Point(p1.x / v, p1.y / v, p1.z /
      v); }
Point cross(Point p1, Point p2)
{ return Point(p1.y * p2.z - p1.z * p2.y, p1.z * p2.x - p1.x * p2.z, p1.x * p2.y - p1.y * p2.x); }
double dot(Point p1, Point p2)
{ return p1.x * p2.x + p1.y * p2.y + p1.z 
 * p2.z; }
double abs(Point a)
{ return sqrt(dot(a, a)); }
Point cross3(Point a, Point b, Point c)
{ return cross(b - a, c - a); }
double area(Point a, Point b, Point c)
{ return abs(cross3(a, b, c)); }
double volume(Point a, Point b, Point c,
     Point d)
{ return dot(cross3(a, b, c), d - a); }
//Azimuthal angle (longitude) to x-axis
     in interval [-pi, pi]
double phi(Point p) { return atan2(p.y, p
     .x); }
//Zenith angle (latitude) to the z-axis
     in interval [0, pi]
double theta(Point p) { return atan2(sqrt
          (p.x * p.x + p.y * p.y), p.z); }
Point masscenter(Point a, Point b, Point
     c, Point d)
```

```
20
\{ return (a + b + c + d) / 4; \}
pdd proj(Point a, Point b, Point c, Point
      u) {
// proj. u to the plane of a, b, and c
  Point e1 = b - a;
  Point e2 = c - a;
  e1 = e1 / abs(e1);
e2 = e2 - e1 * dot(e2, e1);
e2 = e2 / abs(e2);
  Point p = u - a;
  return pdd(dot(p, e1), dot(p, e2));
Point rotate_around(Point p, double angle
      Point axis) {
  double s = sin(angle), c = cos(angle);
  Point u = axis / abs(axis);
  return u * dot(u, p) * (1 - c) + p * c
+ cross(u, p) * s;
struct convex_hull_3D {
struct Face {
  int a, b, c;
Face(int ta, int tb, int tc): a(ta), b(
       tb), c(tc) {}
   // return the faces with pt indexes
vector<Face> res;
vector<Point> P;
convex_hull_3D(const vector<Point> &_P):
     res(), P(_P) {
// all points coplanar case will WA, O(n
     ^2)
  int n = SZ(P);
  if (n <= 2) return; // be careful about</pre>
        edge case
  // ensure first 4 points are not
       coplanar
  swap(P[1], *find_if(ALL(P), [&](auto p)
        { return sign(abs2(P[0] - p)) !=
  0; }));
swap(P[2], *find_if(ALL(P), [&](auto p)
        { return sign(abs2(cross3(p, P
  P[2], p)) != 0; }));
  vector<vector<int>> flag(n, vector<int</pre>
       >(n));
  res.emplace_back(0, 1, 2); res.
   emplace_back(2, 1, 0);
  for (int i = 3; i < n; ++i) {
    vector<Face> next;
    for (auto f : res) {
      int d = sign(volume(P[f.a], P[f.b],
            P[f.c], P[i]));
      if (d <= 0) next.pb(f);
int ff = (d > 0) - (d < 0);
flag[f.a][f.b] = flag[f.b][f.c] =</pre>
           flag[f.c][f.a] = ff;
    for (auto f : res) {
      auto F = [\&](int x, int y) {
         if (flag[x][y] > 0 \& flag[y][x]
             <= 0)
           next.emplace_back(x, y, i);
      F(f.a, f.b); F(f.b, f.c); F(f.c, f.
           a);
    res = next;
  }
bool same(Face s, Face t) {
  if (sign(volume(P[s.a], P[s.b], P[s.c],
        P[t.a])) != 0) return 0;
  if (sign(volume(P[s.a], P[s.b], P[s.c],
        P[t.c])) != 0) return 0;
  return 1;
int polygon_face_num() {
  int ans = 0;
  for (int i = 0; i < SZ(res); ++i)</pre>
    ans += none_of(res.begin(), res.begin
         () + i, [&](Face g) { return
         same(res[i], g); });
```

```
return ans:
double get_volume() {
  double ans = 0;
for (auto f : res)
     ans += volume(Point(0, 0, 0), P[f.a],
            P[f.b], P[f.c]);
  return fabs(ans / 6);
double get_dis(Point p, Face f) {
  Point p1 = P[f.a], p2 = P[f.b], p3 = P[
        f.c];
  double a = (p2.y - p1.y) * (p3.z - p1.z

) - (p2.z - p1.z) * (p3.y - p1.y);

double b = (p2.z - p1.z) * (p3.x - p1.x
        ) - (p2.x - p1.x) * (p3.z - p1.z);
  double c = (p2.x - p1.x) * (p3.y - p1.y)

- (p2.y - p1.y) * (p3.x - p1.x);

double d = 0 - (a * p1.x + b * p1.y + c
          * p1.z);
  return fabs(a * p.x + b * p.y + c * p.z
         + d) / sqrt(a * a + b * b + c * c
// n^2 delaunay: facets with negative z
      normal of
// convexhull of (x, y, x^2 + y^2), use a
       pseudo-point
// (0, 0, inf) to avoid degenerate case
vector<pdd> cut(vector<pdd> poly, pdd s,
     pdd e) {
  vector<pdd> res;
  for (int i = 0; i < SZ(poly); ++i) {
  pdd cur = poly[i], prv = i ? poly[i -</pre>
            1] : poly.back();
     bool side = ori(s, e, cur) < 0;</pre>
     if (side != (ori(s, e, prv) < 0))</pre>
       res.pb(intersect(s, e, cur, prv));
     if (side)
       res.pb(cur);
  return res;
// p, q is convex
double TwoConvexHullMinDist(Point P[],
  Point Q[], int n, int m) {
int YMinP = 0, YMaxQ = 0;
double tmp, ans = 999999999;
for (i = 0; i < n; ++i) if(P[i].y < P[
        YMinP].y) YMinP = i;
  for (i = 0; i < m; ++i) if(Q[i].y > Q[
        YMaxQ].y) YMaxQ = i;
  P[n] = P[0], Q[m] = Q[0];
for (int i = 0; i < n; ++i) {
     while (tmp = Cross(Q[YMaxQ + 1] - P[
           YMinP + 1], P[YMinP] - P[YMinP +
            1]) > Cross(Q[YMaxQ] - P[YMinP
          + 1], P[YMinP] - P[YMinP + 1]))
YMaxQ = (YMaxQ + 1) % m;
     if (tmp < 0) ans = min(ans,</pre>
           PointToSegDist(P[YMinP], P[YMinP
            + 1], Q[YMaxQ]));
     else ans = min(ans, TwoSegMinDist(P[
    YMinP], P[YMinP + 1], Q[YMaxQ],
           Q[YMaxQ + 1]);
     YMinP = (YMinP + 1) \% n;
  return ans;
}
template <typename F, typename C> class
  static constexpr F INF_F =
        numeric_limits<F>::max();
  static constexpr C INF_C =
        numeric_limits<C>::max();
  vector<tuple<int, int, F, C>> es;
  vector<vector<int>> g;
  vector<F> f;
  vector<C> d;
  vector<int> pre, inq;
  void spfa(int s) {
     fill(inq.begin(), inq.end(), 0);
     fill(d.begin(), d.end(), INF_C);
```

```
fill(pre.begin(), pre.end(), -1);
    queue<int> q;
    d[s] = 0;
    q.push(s);
    while (!q.empty()) {
      int u = q.front();
      inq[u] = false;
      q.pop();
      for (int j : g[u]) {
        int to = get<1>(es[j]);
        C w = get<3>(es[j]);
        if (f[j] == 0 \mid | d[to] <= d[u] +
             w)
          continue;
        d[to] = d[u] + w;
        pre[to] = j;
        if (!inq[to]) {
          ing[to] = true;
          q.push(to);
   }
public:
  MCMF(int n) : g(n), pre(n), inq(n) {}
  void add_edge(int s, int t, F c, C w) {
    g[s].push_back(es.size());
    es.emplace_back(s, t, c, w);
    g[t].push_back(es.size());
    es.emplace_back(t, s, 0, -w);
 add_edge(t, s, INF_F, -mx);
    f.resize(es.size()), d.resize(es.size
         ());
    for (FI = INF_F \land (INF_F / 2); I; I
         >>= 1) {
      for (auto &fi : f)
        fi *= 2;
      for (size_t i = 0; i < f.size(); i</pre>
           += 2) {
        auto [u, v, c, w] = es[i];
        if ((c \& I) == 0)
          continue:
        if (f[i]) {
          f[i] += 1;
          continue;
        spfa(v);
        if (d[u] == INF_C \mid | d[u] + w >=
             0) {
          f[i] += 1;
          continue;
        f[i + 1] += 1;
        while (u != v) {
          int x = pre[u];
          f[x] -= 1;
          f[x ^ 1] += 1;
          u = get<0>(es[x]);
        }
      }
    }
C w = 0;
    for (size_t i = 1; i + 2 < f.size();</pre>
         i += 2)
      w -= f[i] * get<3>(es[i]);
    return {f.back(), w};
};
 auto [f, c] = mcmf.solve(s, t, 1e12);
cout << f << ' ' << c << '\n';</pre>
void MoAlgoOnTree() {
  Dfs(0, -1);
  vector<int> euler(tk);
  for (int i = 0; i < n; ++i) {</pre>
    euler[tin[i]] = i;
    euler[tout[i]] = i;
  vector<int> l(q), r(q), qr(q), sp(q)
       -1);
```

for (int i = 0; i < q; ++i) {

pi pre[MX];

```
if (tin[u[i]] > tin[v[i]]) swap(u[i],
    v[i]);
int z = GetLCA(u[i], v[i]);
    sp[i] = z[i];
    if (z == u) l[i] = tin[u[i]], r[i] =
         tin[v[i]];
    else l[i] = tout[u[i]], r[i] = tin[v[
         i]];
    qr[i] = i;
  sort(qr.begin(), qr.end(), [&](int i,
       int j) {
      if (l[i] / kB == l[j] / kB) return
           r[i] < r[j];
      return l[i] / kB < l[j] / kB;</pre>
      });
  vector<bool> used(n);
  // Add(v): add/remove v to/from the
       path based on used[v]
  for (int i = 0, tl = 0, tr = -1; i < q;
        ++i) {
    while (tl < l[qr[i]]) Add(euler[tl</pre>
         ++]);
    while (tl > l[qr[i]]) Add(euler[--tl
         ]);
    while (tr > r[qr[i]]) Add(euler[tr
         --]);
    while (tr < r[qr[i]]) Add(euler[++tr</pre>
         1);
    // add/remove LCA(u, v) if necessary
 }
}
for (int l = 0, r = -1; auto [ql, qr, i]
    : qs) {
if (ql / B == qr / B) {
        for (int j = ql; j <= qr; j++) {
            cntSmall[a[j]]++;
            ans[i] = max(ans[i], 1LL * b[
                  a[j]] * cntSmall[a[j]]);
        for (int j = ql; j <= qr; j++) {
            cntSmall[a[j]]--;
        continue;
    if (int block = ql / B; block != lst)
        int x = min((block + 1) * B, n);
        while (r + 1 < x) \{ add(++r); \}
        while (r >= x) \{ del(r--); \}
        while (l < x) \{ del(l++); \}
        mx = 0;
        lst = block;
    while (r < qr) { add(++r); }</pre>
    i64 \text{ tmpMx} = mx;
    int tmpL = 1:
    while (l > ql) { add(--l); }
    ans[i] = mx;
    mx = \overline{t}mpMx;
    while (l < tmpL) { del(l++); }</pre>
}
typedef pair<ll,int> T;
typedef struct heap* ph;
struct heap { // min heap
  ph l = NULL, r = NULL;
  int s = 0; T v; // s: path to leaf
  heap(T_v):v(v)  {}
ph meld(ph p, ph q) {
  if (!p || !q) return p?:q;
  if (p->v > q->v) swap(p,q);
  ph P = new heap(*p); P -> r = meld(P -> r, q)
  if (!P->l | | P->l->s < P->r->s) swap(P
       ->1,P->r);
  P->s = (P->r?P->r->s:0)+1; return P;
ph ins(ph p, T v) { return meld(p, new
     heap(v)); }
ph pop(ph p) { return meld(p->1,p->r); }
int N,M,src,des,K;
ph cand[MX];
vector<array<int,3>> adj[MX], radj[MX];
```

```
11 dist[MX];
struct state {
  int vert; ph p; ll cost;
  bool operator<(const state& s) const {</pre>
       return cost > s.cost; }
int main() {
  setIO(); re(N,M,src,des,K);
  F0R(i,M) {
    int u,v,w; re(u,v,w);
    adj[u].pb({v,w,i}); radj[v].pb({u,w,i}); // vert, weight, label
  priority_queue<state> ans;
    FOR(i,N) dist[i] = INF, pre[i] =
         \{-1,-1\};
    priority_queue<T,vector<T>,greater<T</pre>
         >> pq;
    auto ad = [&](int a, ll b, pi ind) {
      if (dist[a] <= b) return;</pre>
      pre[a] = ind; pq.push({dist[a] = b,}
           a});
    ad(des,0,{-1,-1});
    vi seq;
    while (sz(pq)) {
      auto a = pq.top(); pq.pop();
if (a.f > dist[a.s]) continue;
      seq.pb(a.s); trav(t,radj[a.s]) ad(t
            [0],a.f+t[1],{t[2],a.s}); //
            edge index, vert
    trav(t,seq) {
      trav(u,adj[t]) if (u[2] != pre[t].f
            && dist[u[0]] != INF) {
         ll cost = dist[u[0]]+u[1]-dist[t
        ];
cand[t] = ins(cand[t],{cost,u
             [0]});
      if (pre[t].f != -1) cand[t] = meld(
            cand[t],cand[pre[t].s]);
      if (t == src) {
        ps(dist[t]); K --;
         if (cand[t]) ans.push(state{t,
             cand[t],dist[t]+cand[t]->v.f
    }
  F0R(i,K) {
    if (!sz(ans)) {
      ps(-1);
      continue;
    auto a = ans.top(); ans.pop();
    int vert = a.vert;
    ps(a.cost);
    if (a.p->l) {
      ans.push(state{vert,a.p->1,a.cost+a
           .p->l->v.f-a.p->v.f});
    if (a.p->r) {
      ans.push(state{vert,a.p->r,a.cost+a
           .p->r->v.f-a.p->v.f});
    int V = a.p->v.s;
    if (cand[V]) ans.push(state{V,cand[V
         ],a.cost+cand[V]->v.f});
}
Pt LinesInter(Line a, Line b) {
    double abc = (a.b - a.a) \wedge (b.a - a.a)
    double abd = (a.b - a.a) \wedge (b.b - a.a)
         );
    if (sign(abc - abd) == 0) return b.b;
         // no inter
    return (b.b * abc - b.a * abd) / (abc
          - abd);
vector <Pt> SegsInter(Line a, Line b) {
    if (btw(a.a, a.b, b.a)) return {b.a};
    if (btw(a.a, a.b, b.b)) return {b.b};
```

```
if (btw(b.a, b.b, a.a)) return {a.a};
if (btw(b.a, b.b, a.b)) return {a.b};
if (ori(a.a, a.b, b.a) * ori(a.a, a.b
          , b.b) == -1 && ori(b.a, b.b, a.
         a) * ori(b.a, b.b, a.b) == -1) {
         return {LinesInter(a, b)};
    return {};
double polyUnion(vector <vector <Pt>>>
     poly) {
    int n = poly.size();
    double ans = 0;
    auto solve = [&](Pt a, Pt b, int cid)
         vector <pair <Pt, int>> event;
         for (int i = 0; i < n; ++i) {
             int st = 0, sz = poly[i].size
                   ();
             while (st < sz && ori(poly[i</pre>
                   ][st], a, b) != 1) st++;
             if (st == sz) continue;
             for (int j = 0; j < sz; ++j)
                  Pt c = poly[i][(j + st) %
                        sz], d = poly[i][(j
                         + st + 1) % sz];
                  if (sign((a - b) \wedge (c - d))
                       )) != 0) {
                       int ok1 = ori(c, a, b)
                            ) == 1:
                       int ok2 = ori(d, a, b)
                            ) == 1:
                       if (ok1 ^ ok2) event.
                            emplace_back(
                            LinesInter({a, b
                            }, {c, d}), ok1 ? 1 : -1);
                  } else if (ori(c, a, b)
                       == 0 \& sign((a - b))
                        * (c - d)) > 0 \& i
                         <= cid) {
                       event.emplace_back(c,
                             -1);
                       event.emplace_back(d,
                             1);
                  }
             }
         sort(all(event), [&](pair <Pt,</pre>
             int> i, pair <Pt, int> j) {
return ((a - i.first) * (a -
                   b)) < ((a - j.first) * (
                   a - b));
         int now = 0;
         Pt lst = a;
         for (auto [x, y] : event) {
             if (btw(a, b, lst) && btw(a,
b, x) && now == 0) ans
+= lst ^ x;
             now += y, lst = x;
        }
         j = 0; j < poly[i].size(); ++j)
{</pre>
    for (int i = 0; i < n; ++i) for (int
         Pt a = poly[i][j], b = poly[i][(j)]
              + 1) % int(poly[i].size())
         solve(a, b, i);
    return ans / 2;
// Minimum Steiner Tree. O(V 3^T + V^2 2^
struct SteinerTree { // 0-base
  static const int T = 10, N = 105, INF =
        1e9;
  int n, dst[N][N], dp[1 << T][N], tdst[N</pre>
       1;
  int vcost[N]; // the cost of vertexs
  void init(int _n) {
    n = _n;
    for (int i = 0; i < n; ++i) {
```

```
for (int j = 0; j < n; ++j) dst[i][</pre>
            j] = INF;
      dst[i][i] = vcost[i] = 0;
  void add_edge(int ui, int vi, int wi) {
    dst[ui][vi] = min(dst[ui][vi], wi);
  void shortest_path() {
    for (int k = 0; k < n; ++k)
      for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
           dst[i][j] =
             min(dst[i][j], dst[i][k] +
                  dst[k][j]);
  int solve(const vector<int> &ter) {
    shortest_path();
    int t = SZ(ter);
    for (int i = 0; i < (1 << t); ++i)
for (int j = 0; j < n; ++j) dp[i][j
           ] = INF;
    for (int i = 0; i < n; ++i) dp[0][i]
          = vcost[i];
    for (int msk = 1; msk < (1 << t); ++
         msk) {
       if (!(msk & (msk - 1))) {
         int who = __lg(msk);
         for (int i = 0; i < n; ++i)
           dp[msk][i] =
             vcost[\bar{ter}[who]] + dst[ter[who
                  ]][i];
      for (int i = 0; i < n; ++i)
         for (int submsk = (msk - 1) & msk
              ; submsk;
              submsk = (submsk - 1) \& msk)
           dp[msk][i] = min(dp[msk][i],
             dp[submsk][i] + dp[msk ^
                  submsk][i] -
               vcost[i]);
       for (int i = 0; i < n; ++i) {
         tdst[i] = INF;
         for (int j = 0; j < n; ++j)
           tdst[i] =
             min(tdst[i], dp[msk][j] + dst
                  [j][i]);
      for (int i = 0; i < n; ++i) dp[msk</pre>
           ][i] = tdst[i];
    int ans = INF;
    for (int i = 0; i < n; ++i)
      ans = min(ans, dp[(1 << t) - 1][i])
    return ans;
 }
};
double rat(pll a, pll b) {
  return sign(b.X) ? (double)a.X / b.X :
     (double)a.Y / b.Y;
} // all poly. should be ccw
double polyUnion(vector<vector<pll>> &
     poly) {
  double res = 0;
  for (auto &p : poly)
    for (int a = 0; a < SZ(p); ++a) {
      pll A = p[a], B = p[(a + 1) % SZ(p)
           ];
      vector<pair<double, int>> segs =
      {{0, 0}, {1, 0}};
for (auto &q : poly) {
         if (&p == &q) continue;
         for (int b = 0; b < SZ(q); ++b) {
           pll C = q[b], D = q[(b + 1) %
                SZ(q);
           int sc = ori(A, B, C), sd = ori
                (A, B, D);
           if (sc != sd && min(sc, sd) <</pre>
                9) {
             double sa = cross(D - C, A -
                  C), sb = cross(D - C, B)
                  - C);
             seas.emplace back(sa / (sa -
                  sb), sign(sc - sd));
```

```
if (!sc && !sd && &q < &p &&
               sign(dot(B - A, D - C)) >
               0) {
            segs.emplace_back(rat(C - A,
                 B - A), 1);
            segs.emplace_back(rat(D - A,
                 B - A), -1);
        }
      }
      sort(ALL(segs));
      for (auto &s : segs) s.X = clamp(s.
           X, 0.0, 1.0);
      double sum = 0;
      int cnt = segs[0].second;
      for (int j = 1; j < SZ(segs); ++j)</pre>
        if (!cnt) sum += segs[j].X - segs
             [j - 1].X;
        cnt += segs[j].Y;
      res += cross(A, B) * sum;
  return res / 2:
llf simp(llf l, llf r) {
llf m = (l + r) / 2;
return (f(1) + f(r) + 4.0 * f(m)) * (r -
    1) / 6.0;
llf F(llf L, llf R, llf v, llf eps) {
llf M = (L + R) / 2, vl = simp(L, M), vr
     = simp(M, R);
if (abs(vl + vr - v) \le 15 * eps)
return vl + vr + (vl + vr - v) / 15.0;
return F(L, M, vl, eps / 2.0) + F(M, R, vr, eps / 2.0);
} // call F(l, r, simp(l, r), 1e-6)
pair<int, int> get_tangent(const vector<P</pre>
    > &v, P p) {
const auto gao = [&, N = int(v.size())](
    int s) {
  const auto lt = [\&](int x, int y) {
return ori(p, v[x % N], v[y % N]) == s;
    };
int l = 0, r = N; bool up = lt(0, 1); while (r - l > 1) {
int m = (l + r) / 2;
if (lt(m, 0) ? up : !lt(m, m+1)) r = m;
else l = m;
return (lt(l, r) ? r : l) % N;
}; // test @ codeforces.com/gym/101201/
    problem/E
return {gao(-1), gao(1)}; // (a,b):ori(p,
    v[a],v[b])<0
} // plz ensure that point strictly out
    of hull
1: Initialize m D M and w D W to free
2: while [] free man m who has a woman w
     to propose to do
3: w \square first woman on m's list to whom m
      has not yet proposed
4: if D some pair (m'
, w) then
5: if w prefers m to m'
then
6: m′□ free
7: (m, w) 🛘 engaged
8: end if 9: else
10: (m, w) □ engaged
11: end if
12: end while
// virtual tree
vector<pair<int, int>> build(vector<int>
    vs, int r) {
  vector<pair<int, int>> res;
  sort(vs.begin(), vs.end(), [](int i,
       int j) {
  return dfn[i] < dfn[j]; });</pre>
  vector < int > s = \{r\};
```

```
for (int v : vs) if (v != r) {
    if (int o = lca(v, s.back()); o != s.
        back()) {
      while (s.size() >= 2) {
        if (dfn[s[s.size() - 2]] < dfn[o</pre>
            1) break;
        res.emplace_back(s[s.size() - 2],
              s.back());
        s.pop_back();
      if (s.back() != o) {
        res.emplace_back(o, s.back());
        s.back() = o;
   s.push_back(v);
  for (size_t i = 1; i < s.size(); ++i)</pre>
    res.emplace_back(s[i - 1], s[i]);
 return res; // (x, y): x->y
#define pb emplace_back
#define rep(i, l, r) for (int i=(l); i<=(</pre>
    r); ++i)
struct WeightGraph { // 1-based
 static const int inf = INT_MAX;
  struct edge { int u, v, w; }; int n, nx
 vector<int> lab; vector<vector<edge>> g
 vector<int> slack, match, st, pa, S,
  vector<vector<int>> flo, flo_from;
      queue<int> q;
  WeightGraph(int n_{-}): n(n_{-}), nx(n * 2),
       lab(nx + 1),
    g(nx + 1, vector < edge > (nx + 1)), slack
        (nx + 1),
    match = st = pa = S = vis = slack;
    rep(u, 1, n) rep(v, 1, n) g[u][v] = {
        u, v, 0};
  int ED(edge e) {
   return lab[e.u] + lab[e.v] - g[e.u][e
    .v].w * 2; }
  void update_slack(int u, int x, int &s)
    if (!s \mid | ED(g[u][x]) < ED(g[s][x]))
        s = u; 
 void set_slack(int x) {
    slack[x] = 0;
    for (int u = 1; u <= n; ++u)
      if (g[u][x].w > 0 \&\& st[u] != x \&\&
          S[st[u]] == 0)
        update_slack(u, x, slack[x]);
  void q_push(int x) {
   if (x \ll n) q.push(x);
   else for (int y : flo[x]) q_push(y);
  void set_st(int x, int b) {
    st[x] = b;
    if (x > n) for (int y : flo[x])
        set_st(y, b);
  vector<int> split_flo(auto &f, int xr)
   auto it = find(all(f), xr);
    if (auto pr = it - f.begin(); pr % 2
        == 1)
      reverse(1 + all(f)), it = f.end() -
           pr;
   auto res = vector(f.begin(), it);
   return f.erase(f.begin(), it), res;
 void set_match(int u, int v) {
   match[u] = g[u][v].v;
    if (u <= n) return;</pre>
    int xr = flo_from[u][g[u][v].u];
   auto &f = flo[u], z = split_flo(f, xr)
    rep(i, 0, int(z.size())-1) set_match(
        z[i], z[i ^ 1]);
```

```
set_match(xr, v); f.insert(f.end(),
       all(z));
}
void augment(int u, int v) {
  for (;;) {
    int xnv = st[match[u]]; set_match(u
          , v);
    if (!xnv) return;
    set_match(xnv, st[pa[xnv]]);
    u = st[pa[xnv]], v = xnv;
 }
}
int lca(int u, int v) {
  static int t = 0; ++t;
  for (++t; u | | v; swap(u, v)) if (u)
    if (vis[u] == t) return u;
    vis[u] = t; u = st[match[u]];
    if (u) u = st[pa[u]];
  return 0;
void add_blossom(int u, int o, int v) {
  int b = int(find(n + 1 + all(st), 0)
       - begin(st));
  lab[b] = 0, S[b] = 0; match[b] =
       match[o];
  vector<int> f = {o};
  for (int x = u, y; x != o; x = st[pa[
       y]])
    f.pb(x), f.pb(y = st[match[x]]),
         q_push(y);
  reverse(1 + all(f));
  for (int x = v, y; x != o; x = st[pa[
       y]])
    f.pb(x), f.pb(y = st[match[x]]),
         q_push(y);
  flo[b] = f; set_st(b, b);
  for (int x = 1; x <= nx; ++x)
    g[b][x].w = g[x][b].w = 0;
  for (int x = 1; x \le n; ++x) flo_from
       \lceil b \rceil \lceil x \rceil = 0;
  for (int xs : flo[b]) {
    for (int x = 1; x <= nx; ++x)
      if (g[b][x].w == 0 \mid \mid ED(g[xs][x
           ]) < ED(g[b][x]))
        g[b][x] = g[xs][x], g[x][b] = g
             [x][xs];
    for (int x = 1; x <= n; ++x)
      if (flo_from[xs][x]) flo_from[b][
           x] = xs;
  set_slack(b);
void expand_blossom(int b) {
  for (int x : flo[b]) set_st(x, x);
  int xr = flo_from[b][g[b][pa[b]].u],
       xs = -1;
  for (int x : split_flo(flo[b], xr)) {
    if (xs == -1) { xs = x; continue; }
    pa[xs] = g[x][xs].u; S[xs] = 1, S[x
    slack[xs] = 0; set_slack(x); q_push
         (x); xs = -1;
  for (int x : flo[b])
    if (x == xr) S[x] = 1, pa[x] = pa[b]
    else S[x] = -1, set_slack(x);
  st[b] = 0;
bool on_found_edge(const edge &e) {
  if (int u = st[e.u], v = st[e.v]; S[v]
       ] == -1) {
    int nu = st[match[v]]; pa[v] = e.u;
          S[v] = 1;
    slack[v] = slack[nu] = 0; S[nu] =
  0; q_push(nu);
} else if (S[v] == 0) {
    if (int o = lca(u, v)) add_blossom(
         u, o, v);
    else return augment(u, v), augment(
         v, u), true;
  return false;
```

```
bool matching() {
  ranges::fill(S, -1); ranges::fill(
         slack, 0);
    q = queue<int>();
    for (int x = 1; x <= nx; ++x)
      if (st[x] == x && !match[x])
  pa[x] = 0, S[x] = 0, q_push(x);
    if (q.empty()) return false;
    for (;;) {
      while (q.size()) {
        int u = q.front(); q.pop();
        if (S[st[u]] == 1) continue;
         for (int v = 1; v \le n; ++v)
           if (g[u][v].w > 0 && st[u] !=
                st[v]) {
             if (ED(g[u][v]) != 0)
               update_slack(u, st[v],
                    slack[st[v]]);
             else if (on_found_edge(g[u][v
                  ])) return true;
          }
      }
      int d = inf;
      for (int b = n + 1; b <= nx; ++b)
if (st[b] == b && S[b] == 1)
d = min(d, lab[b] / 2);
for (int x = 1; x <= nx; ++x)
         if (int s = slack[x]; st[x] == x
             && s && S[x] <= 0)
           d = min(d, ED(g[s][x]) / (S[x]
               + 2));
      for (int u = 1; u <= n; ++u)
         if (S[st[u]] == 1) lab[u] += d;
         else if (S[st[u]] == 0) {
           if (lab[u] <= d) return false;</pre>
           lab[u] -= d;
      rep(b, n + 1, nx) if (st[b] == b \&\&
            S[b] >= 0)
        lab[b] += d * (2 - 4 * S[b]);
      for (int x = 1; x <= nx; ++x)
        if (int s = slack[x]; st[x] == x
             &&
             s \& st[s] != x \& ED(g[s][x]
                  ]) == 0)
           if (on_found_edge(g[s][x]))
                return true;
      for (int b = n + 1; b \le nx; ++b)
         if(st[b] == b \&\& S[b] == 1 \&\&
              lab[b] == 0)
           expand_blossom(b);
    return false;
  pair<lld, int> solve() {
    ranges::fill(match, 0);
    rep(u, 0, n) st[u] = u, flo[u].clear
         ();
    int w_max = 0;
    rep(u, 1, n) rep(v, 1, n) {
      flo_from[u][v] = (u == v ? u : 0);
      w_max = max(w_max, g[u][v].w);
    for (int u = 1; u <= n; ++u) lab[u] =</pre>
          w_max;
    int n_matches = 0; lld tot_weight =
         ō;
    while (matching()) ++n_matches;
    rep(u, 1, n) if (match[u] && match[u]
          < u)
      tot_weight += g[u][match[u]].w;
    return make_pair(tot_weight,
         n_matches);
  void set_edge(int u, int v, int w) {
    g[u][v].w = g[v][u].w = w; }
// 2D range add, range sum in log^2
struct seq {
  int l, r
  ll sum, lz;
  seg *ch[2]{};
  seg(int _l, int _r) : l(_l), r(_r), sum
     (0), lz(0) {}
  void push() {
```

```
if (lz) ch[0]->add(l, r, lz), ch[1]->
                     add(l, r, lz), lz = 0;
    }
     void pull() { sum = ch[0] -> sum + ch
                [1]->sum; }
    void add(int _l, int _r, ll d) {
  if (_l <= l && r <= _r) {</pre>
              sum += d * (r - 1), lz += d;
              return:
          if (!ch[0]) ch[0] = new seg(l, l + r)
                    \rightarrow 1), ch[1] = new seg(l + r \rightarrow
                    1, r);
          push();
          if (_l < l + r >> 1) ch[0]->add(_l,
                     _r, d);
          if (l + r >> 1 < _r) ch[1]->add(_l,
                      _r, d);
         pull();
    ll qsum(int _l, int _r) {
          if (_l <= l && r <= _r) return sum;</pre>
          if (!ch[0]) return lz * (min(r, _r) -
                       max(l, _l));
         push();
          ll res = 0;
          if (_l < l + r >> 1) res += ch[0]->
          qsum(_l, _r);
if (l + r >> 1 < _r) res += ch[1]->
                    qsum(_l, _r);
         return res;
    }
struct seg2 {
    int l, r;
seg v, lz;
    seg2 *ch[2]{};
    seg2(int _l, int _r) : l(_l), r(_r), v
(0, N), lz(0, N) {
          if (l < r - 1) ch[0] = new seg2(l, l)
                    + r >> 1), ch[1] = new seg2(1 +
                    r >> 1, r);
    void add(int _l, int _r, int _l2, int
                 _r2, ll d) {
          v.add(_12, _r2, d * (min(r, _r) - max)
                     (1, _1)));
          if (_l <= l && r <= _r)
              return lz.add(_l2, _r2, d), void(0)
         if (_l < l + r >> 1)
                    ch[0]->add(_l, _r, _l2, _r2, d);
          if (l + r >> 1 < _r)
                   ch[1]->add(_l, _r, _l2, _r2, d);
    ll qsum(int _l, int _r, int _l2, int
          (_12, _r2);
          ll d = min(r, _r) - max(l, _l);
         ll res = lz.qsum(_l2, _r2) * d;
          if (_l < l + r >> 1)
                   res += ch[0] -> qsum(_1, _r, _12,
                              _r2);
          if (l + r >> 1 < _r)
                   res += ch[1] -> qsum(_l, _r, _l2,
                               _r2);
          return res;
};
PPPPPPartition number
ans[0] = tmp[0] = 1;
for (int i = 1; i * i <= n; i++) {
    for (int i = i, i 
         modadd(ans[j], tmp[j - i * i]);
vector<string> Duval(const string& s){//b
             b abb a
       vector<string> fact;int n=s.size();
       for(int i=0;i<n;){</pre>
```

int j=i+1,k=i;