TOSHIBA MOS MEMORY PRODUCTS

2.048 WORD x 8 BIT STATIC RAM

TMM2016AP-90 TMM2016AP-12 TMM2016AP-10 TMM2016AP-15

DESCRIPTION

The TMM2016AP is a 16,384 bits high speed and low power static random access memory organized as 2,048 words by 8 bits and operates from a single Toshiba's high performance device technology provides both high speed and low power features with a maximum access time of 90ns/100ns/ 120ns/150ns and maximum operating current of 80mA/65mA/65mA. When CS is a logical high, the device is placed in a low power standby mode in which maximum standby current is 7mA. Thus the TMM2016AP is most suitable for use in microcomputer peripheral memory where the low power applications are required. The TMM2016AP is fabricated with ion implanted N channel silicon gate MOS technology for high performance and high reliability.

FEATURES

Access Time and Current

Parameter	Access	Operating	Standby
Part Number	Time (Max.)	Current (Max.)	Current (Max.)
TMM2016AP-90	90ns	80mA	7mA
TMM2016AP-10	100ns	65mA	7mA
TMM2016AP-12	120ns	65mA	7mA
TMM2016AP-15	150ns	65mA	7mA

- Single 5V Power Supply
- Fully Static Operation
- Power Down Feature: CS Output Buffer Control: OE
- Three Stage Outputs
- All Inputs and Outputs: Directly TTL Compatible • Inputs protected: All inputs have prtoection against static charge.

PIN CONNECTION

PIN NAMES

SYMBOL	NAME
$A_0 \sim A_3$	Column Address Inputs
$A_4 \sim A_{10}$	Row Address Inputs
CS	Chip Select Input
WE	Write Enable Input
1/01 ~ 1/08	Data Input/Output
ŌĒ	Output Enable Input
Vcc	Power (5V)
GND	Ground

BLOCK DIAGRAM

TOSHIBA

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
V _{CC}	Power Supply Voltage	-0.5 ~ 7.0	V
V _{IN} , V _{OUT}	Input/Output Voltage	-0.5 ~ 7.0	V
T _{opr} .	Operating Temperature	0~70	°C
T _{stg.}	Storage Temperature	−55 ~ 150	°C
T _{solder}	Soldering Temperature • Time	260 · 10	°C • sec
PD	Power Dissipation (Ta = 70°C)	1.0	W

D.C. RECOMMENDED OPERATING CONDITIONS (Ta = 0 $\sim 70^{\circ}$ C)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{IH}	Input High Voltage	2.0	- '	V _{CC} +1.0	V
VIL	Input Low Voltage	-0.5	-	0.8	V
V _{CC}	Supply Voltage	4.5	5.0	5.5	V

D.C. CHARACTERISTICS (Ta = 0 $\sim 70^{\circ}\text{C},\,\text{V}_{\text{CC}}$ = 5.0V \pm 10%)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Ι _Ι Γ	Input Leakage Current	$V_{IN} = 0V \sim 5.5V$	-10	_	10	μΑ
V _{OH}	Output High Voltage	$I_{OUT} = -1.0$ mA	2.4	_	-	V
V _{OL}	Output Low Voltage	I _{OUT} = 2.1mA	-	_	0.4	· V
ILO	Output Leakage Current	$\overline{CS} = V_{IH} \text{ or } \overline{WE} = V_{IL} \text{ or } \overline{OE} = V_{IH}, V_{OUT} = 0V \sim 5.5V$	-10	_	10	μΑ
I _{SBP}	Peak Power-on Current	$\overline{CS} = V_{CC}, I_{OUT} = 0mA$	-	_	30	mΑ
I _{SB}	Standby Current	CS = V _{IH} , I _{OUT} = 0mA	_	_	7	mA.
I _{CC1}	Operating Current TMM2016AP-10/-12/-15	CS = V _{IL} , I _{OUT} = 0mA	_	_	65	mA
I _{CC2}	Operating Current TMM2016AP-90	CS = V _{IL} , I _{OUT} = 0mA	_	_	80	mA

CAPACITANCE* (Ta = 25°C, f = 1.0 MHz)

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
C _{IN}	Input Capacitance	V _{IN} = A.C. Ground	5	pF
C _{OUT}	Output Capacitance	V _{IN} = A.C. Ground	10	pF

^{*} Note: This parameter is periodically sampled and is not 100% tested.

A.C. CHARACTERISTICS (Ta = 0 \sim 70°C, V_{CC} = 5V \pm 10%)

READ CYCLE

SYMBOL PA	PARAMETER	ТММ20	16AP-90	TMM2016AP-10		TMM2016AP-12		TMM2016AP-15		
STWIBUL	FARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT
t _{RC}	Read Cycle Time	90	-	100	-	120	_	150	_	ns
tACC	Address Access Time	_	90	_	100	_	120	_	150	ns
tco	Chip Select Access Time	-	90	_	100		120	-	150	ns
t _{OE}	Output Enable Time	-	35	_	35	_	50	_	55	ns
t _{OH}	Output Data Hold Time from Address Change	10	-	10	-	10	-	10	-	ns
t _{CLZ}	Output in Low-Z from CS	10	_	10	- T	10	_	10	_	ns
tCHZ	Output in High-Z from CS	_	40	_	40	_	40	-	55	ns
tolz	Output in Low-Z from OE	5	_	5	_	5	_	5	_	ns
tonz	Output in High-Z from OE	_	35	_	35	_	35	_	50	ns
t _{PU}	Chip Selection to Power Up Time	0	-	0	-	0	-	0	T -	ns
t _{PD}	Chip Deselection to Power Down Time	-	50	_	50	-	60	-	60	ns

WRITE CYCLE

SYMBOL	PARAMETER	TMM20	TMM2016AP-90		TMM2016AP-10		TMM2016AP-12		TMM2016AP-15	
STWIDUL	FANAMETEN	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT
twc	Write Cycle Time	90	Ī -	100	- T	120	_	150	_	ns
t _{CW}	Chip Selection to End of Write	70	_	80	_	100	_	120	_	ns
t _{AS}	Address Set up Time	20	T -	20	_	20	-	20	_	ns
t _{WP}	Write Pulse Width	60	-	70	-	85	-	100	-	ns
twR	Write Recovery Time	0	-	0	_	0	_	0	-	ns
t _{DS}	Data Set up Time	35	-	40	-	50	-	60	-	ns
t _{DH}	Data Hold Time	0	-	0	-	0	-	0	-	ns
twLZ	Output in Low-Z from WE	5	_	5	_	5	_	5	_	ns
twHZ	Output in High-Z from WE	_	25	-	30	-	35	-	50	ns

A.C. TEST CONDITIONS

Input Pulse Levels	0~3.5V
Input Rise and Fall Time	10 ns
Input and Output Reference Levels	1.5V
Output Load	1 TTL Gate & C _L = 100pF

TOSHIBA

TIMING WAVEFORMS

ADDRESSES TACC TOHZ HIGH IMPEDANCE OUTPUT DATA VALID UNKNOWN

(B) READ CYCLE [2] (1)(2)

(C) WRITE CYCLE [1] (3)

Note: (1) The $\overline{\text{WE}}$ is high for read cycle.

Device is continuously selected, $\overline{CS} = V_{IL}$ in read cycle [1].

- (2) All address are valid perior to or simultaneously with $\overline{\text{CS}}$ transistions.
- (3) A write occurs during the overlap of low CS and low WE.

The town is specified as the time from the chip selection to end of write in write cycle, and the two is specified as the overlap time of low $\overline{\text{CS}}$ and low $\overline{\text{WE}}$.

OE is allowed to be low or high level in write cycle.

If the OE is high, the output buffers remain in a high impedance state in this period.

- (4) If the \overline{CS} low transistion occurs simultaneously with or latter to the \overline{WE} low transition, the output buffers remain in a high impedance state in this period.
- (5) If the CS high transition occurs simultaneously with WE high transition, the output buffers remain in a high impedance state in this period.

These parameters are specified as follows and measured by using the load shown in Fig. 1.

TOSHIBA

OUTLINE DRAWINGS

Unit: mm

Note: Each lead pitch is 2.54mm. All leads are located within 0.25mm of their true longitudinal position with respect to No. 1 and No. 24 leads.

Note: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

[©] Feb., 1983 Toshiba Corporation