6 표본분포

Topics:

- 6.1 서론
- 6.2 랜덤추출법
- 6.3 표본분포
- 6.4 표본분포의 모양과 중심극한정리

6.1 서론

Topics:

- 전수조사와 표본조사
- 확률표본추출와 확률표본

전수조사(census)와 표본조사(sample survey)

전수조사: 의 모든 구성원을 대상으로 조사하여 모집단의 특성을 하는 방법 표본조사: 을 추출하여 얻은 을 가지고 모집단의 특성을 하는 방법

- 예: 통계청에서 5년마다 인구주택총조사와 경제활동인구조사
- 예: 대선의 출구조사
- 표집분포(sampling distribution)란?
- 표집오차(sampling error)와 비표집오차(nonsampling error):

확률표본추출(probability sampling)과 확률표본:

모집단의 각 원소가 뽑힐 확률을 _____하고, 그 값들이 모두 ____보다 크게 되는 표본추출법

- 비확률표본추출이란?
- 예: 방송국 앞을 지나는 사람들을 표본으로 한 방송국의 여론조사는?
- 확률표본추출의 장점은?

6.2 랜덤추출법

Topics:

- 랜덤표본
- 난수표 사용
- 기타 표본추출방법

랜덤추출법(sampling)과 랜덤표본(random sample):

랜덤추출법: 모집단의 모든 원소가 표본으로 뽑힐 확률이 _____ 표본을 추출하는 방법 랜덤표본: 랜덤추출법에 의해 추출된 표본

- 가능한 표본의 수와 특정 표본이 뽑힐 확률은?
- 예: 선거의 유권자 모집단에서 전화번호부를 사용해서 표본을 뽑으면?
- 예: 모집단 $\{a,b,c\}$ 에서 크기가 2인 표본을 뽑을 때 가능한 표본의 종류와 그 표본이 실제 표본으로 뽑힐 확률은?

	А	В	С	D	E	F	G	Н	1	J	K
1	비복원추출										
2	가능한 표본										a, b, c가 실제 표본이 될 확률
3	표본으로 뽑힐 확률										
4											
5	복원추출										
6	가능한 표본										a, b, c가 한 번만 실제 표본이 될 확률
7	표본으로 뽑힐 확률										

난수표(random number table) 사용:

0~9까지의 숫자들이 의 상대도수를 가지면서 랜덤하게 나열되어 있는 난수들의 모임

• [표1] 난수표 참고

• 임의추출 방법의 예?

• 예: 균등분포를 따르는 모집단에서 표본크기가 2인 표본을 10번 추출하면?

	А	В	С	D	E	F	G	Н		J	K
1	난수 생성	0.05626694	0.67840175	0.898234	0.61880529	0.26051723	0.51310663	0.78309056	0.40297367	0.77853041	0.76067783
2		0.71220616	0.04893196	0.39945238	0.59615218	0.52976225	0.71419309	0.44333739	0.17152055	0.74587407	0.90551761
3											
4											
5	평균	0.38423655	0.36366686	0.64884319	0.60747874	0.39513974	0.61364986	0.61321397	0.28724711	0.76220224	0.83309772

• 이때 계산되는 통계량은 확률 구조를 가지는 확률변수가 되는가?

기타 표본추출방법:

단순랜덤추출(simple random sampling): 위의 무작위 추출 충화추출(stratified sampling): 모집단을 여러 개의 중복되지 않는 _____를 한 다음 각 층에서 _____ 표본을 산출하는 방법 집락추출(cluster sampling): 조사단위 대신 _____을 추출단위로 하는 추출방법 계통추출(systematic sampling): 추출간격(sampling interval) k를 정해서 때 k번째가 되는 단위들을 표본으로 선정하는 방법

6.3 표본분포

Topics:

- 표집분포
- 평균의 표집분포
- 표본평균의 기댓값
- 표본평균의 분산

표집분포(sampling distrib	ution):
-----------------------	-------	----

한 모집단에서 같은 크기로 뽑은 모든 표본에서 통계량을 계산할 때, 이 통계량이 이루는 _____

 \bullet Recall.

평균의 표집분포:

관심 모수가 모집단의 평균이라면, 이를 _____으로 추정할 수 있다.

• 예: 1,2,3,4라고 쓰여진 카드에서 2장을 뽑아서 그 평균을 확인하는 방법을 고려하자.

	A	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р	Q	R
1																		
2	비복원추출																	
3	가능한 표본																	1, 2, 3, 4가 실제 표본이 될 확률
4	표본으로 뽑힐 확률																	
5	표본평균																	
6																		
7																		
8	복원추출																	
9	가능한 표본																	1, 2, 3, 4가 한 번만 실제 표본이 될 확률
10	표본으로 뽑힐 확률																	
11	표본평균																	
12																		

Υ	Z	AA	AB
1. 모집단의	확률분포(N=4	l)	
х	f(x)	xf(x)	x^2f(x)
1			
2			
3			
4			
합계			
평균			
분산			

Т	U	V	W
표본평균의 :	표집분포(비톡	(원추출)	
\bar{x}	$f(\bar{x})$	$\bar{x}f(\bar{x})$	$\bar{x}^2 f(\bar{x})$
1.5			
2			
2.5			
3			
3.5			
합계			
평균			
분산			
표본평균의 :	표집분포(복원		
\bar{x}	$f(\bar{x})$	$\bar{x}f(\bar{x})$	$\bar{x}^2 f(\bar{x})$
1			
1.5			
2			
2.5			
3			
3.5			
4			
합계			
평균			
분산			

표본평균의 기댓값:

표본평균의 기댓값: $E(\overline{X}) =$

- 모평균과 표본평균 사이의 관계: 모평균이 μ 인 임의의 모집단에서 크기 n인 랜덤표본을 뽑을 때, 표본평균 \overline{X} 에 대하여 다음이 항상 성립한다.
- 예: 어느 대학교 남학생의 평균신장은 170cm로 알려져 있다. 이들 중에서 50명의 학생을 랜덤표본으로 뽑을 때, 표본평균은?
- 대수의 법칙(law of large number):

표본평균의 분산:

 $Var(\overline{X}) =$

• 모분산과 표본평균의 분산과의 관계: 모분산이 σ^2 이고, 크기가 N인 모집단에서 크기 n인 랜덤표본을 뽑을 때 표본평균 \overline{X} 에 대하여 다음이 성립한다.

비복원추출의 경우: $Var(\overline{X}) =$ 복원추출의 경우: $Var(\overline{X}) =$

• 예: 앞의 예제에 적용하면?

• 예: 어느 대학교 남학생 전체 5,000명의 평균신장은 170cm이고, 분산은 9cm으로 알려져 있다. 이들 중에서 50명의 학생을 랜덤표본으로 뽑을 때, 표본평균의 분산은?

• 표본오차(standard error):