Seminar 4

Let $(K, *, \circ)$ be a field, then we define the operation between a scalar from K and a vector from V such that $\forall k \in K$ and $\forall v \in V$ we have $k \cup v \in V$. Then V is a **vector space** if (V, \bot) is an Abelian group (where \bot is the operation between vectors) and:

a
$$k \cup (v_1 \perp v_2) = k \cup v_1 \perp k \cup v_2$$

b
$$(k_1 * k_2) \cup v = k_1 \cup v \perp k_2 \cup v$$

c
$$(k_1 \circ k_2) \cup v = k_1 \cup (k_2 \cup v)$$

d $e \cup v = v$, where e is the identity element.

But for a vector space, please remember that we talk about the operations on vectors and multiplication with scalars.

S is a **subspace** of V if: S is a stable subset and S is a vector space with respect to the same operation. We may also say that S is a subspace of V if $\forall k_1, k_2 \in K$ and $\forall x, y \in S \Rightarrow S \neq \emptyset$ and $k_1x + k_2y \in S$.

1. a
$$k(f_1 + f_2) = k[a_{10} + a_{20} + (a_{11} + a_{21})X + \dots + (a_{1n} + a_{2n})X^n] = ka_{10} + ka_{11}X + \dots + ka_{1n}X^n + ka_{20} + \dots + ka_{2n}X^n = kf_1 + kf_2$$
b $(k_1 + k_2)f = (k_1 + k_2)a_0 + (k_1 + k_2)a_1X + \dots + (k_1 + k_2)a_nX^n = k_1a_0 + k_1a_1X + \dots + k_1a_nX^n + k_2a_0 + \dots + k_2a_nX^n = k_1f + k_2f$
c $(k_1k_2)f = k_1k_2a_0 + k_1k_2a_1X + \dots + k_1k_2a_nX^n = k_1(k_2a_0 + k_2a_1X + \dots + k_2a_nX^n) = k_1(k_2f)$
d $1 \cdot f = 1 \cdot (a_0 + a_1X + \dots + a_nX^n) = a_0 + a_1X + \dots + a_nX^n = f$

2. a
$$\alpha(A+B) = \alpha A + \alpha B$$

b $(\alpha+\beta)A = (\alpha+\beta) = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} = \alpha A + \beta A$
c $(\alpha\beta)A = \begin{bmatrix} \alpha\beta a_{11} & \dots & \alpha\beta a_{1n} \\ \dots & \dots & \dots \\ \alpha\beta a_{m1} & \dots & \alpha\beta a_{mn} \end{bmatrix} = \alpha \begin{bmatrix} \beta a_{11} & \dots & \beta a_{1n} \\ \dots & \dots & \dots \\ \beta a_{m1} & \dots & \beta mn \end{bmatrix} = \alpha(\beta A)$
d $1 \cdot A = 1 \cdot \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & mn \end{bmatrix} = A$

3. a
$$\forall x \in A : [k(f+g)](x) = k(f(x) + g(x)) = kf(x) + kg(x)$$

b $\forall x \in A : [(k_1 + k_2)f](x) = (k_1 + k_2)f(x) = k_1f(x) + k_2f(x)$
c $[(k_1 \cdot k_2)f](x) = (k_1 \cdot k_2)f(x) = k_1k_2f(x) = [k_1(k_2f)](x)$
d $(1 \cdot f)(x) = 1 \cdot f(x) = f(x)$

So, $\forall A \neq \emptyset$ and $\forall K$ -field $\Rightarrow K^A$ is a vector space. Now, take $A = \mathbb{R} \neq \emptyset$ and \mathbb{R} is a field $\Rightarrow \mathbb{R}^{\mathbb{R}}$ is a vector space.

4. a
$$kT(x \perp y) = kT(xy) = (xy)^k = x^k y^k = (kTx)(kTy) = (kTx) \perp (kTy)$$

b $(k_1 + k_2)Tx = x^{k_1 + k_2} = x^{k_1} \cdot x^{k_2} = (k_1Tx) \perp (k_2Tx)$
c $(k_1 \cdot k_2)Tx = x^{k_1 \cdot k_2} = (x^{k_2})^{k_1} = k_1T(k_2Tx)$
d $1Tx = x^1 = x$
 \Rightarrow is a vector space.

- 5. For this exercise we will use that S is a subspace of V if $S \neq \emptyset$ and $\forall k_1, k_2 \in K$ and $\forall x, y \in S$, we have $k_1x + k_2y \in S$.
 - (i) $\forall \alpha, \beta \in \mathbb{R}, \forall (0, y_1, z_1), (0, y_2, z_2) \in A \Rightarrow \alpha(0, y_1, z_1) + \beta(0, y_2, z_2) = (0, \alpha y_1 + \beta y_2, \alpha z_1 + \beta z_2) \in A \Rightarrow A \text{ is a subspace of } \mathbb{R}^3.$
 - (ii) $\forall \alpha, \beta \in \mathbb{R}, \forall (x_1, y_1, z_1), (x_2, y_2, z_2) \in B.$ If $x_1 = x_2 = 0 \Rightarrow B$ is a subspace of \mathbb{R}^3 . If $z_1 = z_2 = 0 \Rightarrow B$ is a subspace of \mathbb{R}^3 . If $x_1 = z_2 = 0 \Rightarrow \alpha(0, y_1, z_1) + \beta(x_2, y_2, 0) = (\beta x_2, \alpha y_1 + \beta y_2, \alpha z_1) \notin B \Rightarrow B$ is NOT a subspace of \mathbb{R}^3 .
 - (iii) $\forall \alpha, \beta \in \mathbb{R}, \forall (x_1, y_1, z_1), (x_2, y_2, z_2) \in C \Rightarrow \alpha(x_1, y_1, z_1) + \beta(x_2, y_2, z_2) \notin C$, as $x_1, x_2 \in \mathbb{Z}$ and $\alpha, \beta \in \mathbb{R}$, but $\alpha x_1, \beta x_2 \in \mathbb{R}$, when they should be in $\mathbb{Z} \Rightarrow C$ is NOT a subspace of \mathbb{R}^3 . If $\alpha, \beta \in \mathbb{Z} \Rightarrow C$ is a subspace.
 - (iv) $\forall \alpha, \beta \in \mathbb{R}, \forall (x_1, y_1, z_1), (x_2, y_2, z_2) \in D \Rightarrow \alpha(x_1, y_1, z_1) + \beta(x_2, y_2, z_2) = (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha z_1 + \beta z_2) \in D$, as $x_1 + y_1 + z_1 = 0 \Rightarrow \alpha x_1 + \alpha y_2 + \alpha z_1 = 0$ (the same for β) and so $\alpha x_1 + \beta x_2 + \alpha y_1 + \beta y_2 + \alpha z_1 + \beta z_2 = 0$.
 - (v) $\forall \alpha, \beta \in \mathbb{R}, \forall (x_1, y_1, z_1), (x_2, y_2, z_2) \in E \Rightarrow \alpha(x_1, y_1, z_1) + \beta(x_2, y_2, z_2) = (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha z_1 + \beta z_2) \notin E$, as $x_1 + y_1 + z_1 = 1 \Rightarrow \alpha x_1 + \alpha y_1 + \alpha z_1 = \alpha$ (the same goes for β), so $\alpha x_1 + \beta x_2 + \alpha y_1 + \beta y_2 + \alpha z_1 + \beta z_2 = \alpha + \beta \neq 1 \Rightarrow E$ is NOT a subspace.

- (vi) $\forall \alpha, \beta \in \mathbb{R}, \forall (x_1, x_1, x_1), (x_2, x_2, x_2) \in F \Rightarrow \alpha(x_1, x_1, x_1) + \beta(x_2, x_2, x_2) = (\alpha x_1 + \beta x_2, \alpha x_1 + \beta x_2, \alpha x_1 + \beta x_2) \in F \Rightarrow F \text{ is a subspace.}$
- 6. (i) $\forall x, y \in [-1, 1] \Rightarrow -1 \leq x \leq 1$ and $-1 \leq y \leq 1$. Now, multiply those with $\alpha, \beta \in \mathbb{R} \Rightarrow -\alpha \leq \alpha x \leq \alpha$ and $-\beta \leq \beta y \leq \beta \Rightarrow -\alpha -\beta \leq \alpha x + \beta y \leq \alpha + \beta \Rightarrow [-\alpha \beta, \alpha + \beta] \neq [-1, 1]$. So [-1, 1] is NOT a subpace of \mathbb{R} .
 - (ii) Take (1,0), (0,1) in our set. Then (1,0)+(0,1)=(1,1) is not in our set, as $1^2+1^2=2\leq 1$ is not true. $\Rightarrow A$ is NOT a subspace of \mathbb{R}^2 .
 - (iii) $\alpha \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} + \beta \begin{bmatrix} d & e \\ 0 & f \end{bmatrix} = \begin{bmatrix} \alpha a + \beta d & \alpha b + \beta e \\ 0 & \alpha c + \beta f \end{bmatrix}$. If $a, d \in \mathbb{Q}$ and $\alpha, \beta \in \mathbb{Q} \Rightarrow \alpha a + \beta d \in \mathbb{Q}$ (analogues for the others) $\Rightarrow B$ is a subspace of $M_2(\mathbb{Q})$. If $a, d \in \mathbb{Q}$ and $\alpha, \beta \in \mathbb{R} \Rightarrow \alpha a + \beta d \in \mathbb{R}$ (Analogues for the others) $\Rightarrow B$ is NOT a subspace of $M_2(\mathbb{R})$.
 - (iv) $\alpha f_1 + \beta f_2$ is continuous, as f_1, f_2 continuous \Rightarrow our set is a subspace of $\mathbb{R}^{\mathbb{R}}$.
- 7. (i) Take $k, l \leq n$ and $f = a_0 + a_1 X + \dots + a_k X^k$, $g = b_0 + b_1 X + \dots + b_l X^l$. Suppose k < l and take $\alpha, \beta \in K$. Then $\alpha f + \beta g = (\alpha a_0 + \beta b_0) + \dots + (\alpha a_k + \beta b_k) X^k + \dots + \beta b_l X^l \Rightarrow degree(\alpha f + \beta g) = l \leq n$, so our set is a subspace.
 - (ii) Take $\alpha, \beta \in K$ and $f = a_0 + a_1 X + \dots + a_n X^n, g = b_0 + b_1 X + \dots + b_n X^n \Rightarrow \alpha f + \beta g = (\alpha a_0 + \beta b_0) + \dots + (\alpha a_n + \beta b_n) X^n \Rightarrow degree(\alpha f + \beta g) \leq n \Rightarrow \text{our set is NOT a subspace.}$
- 8. $S = \{(x_1, x_2) \mid (x_1, x_2) \text{ system solutions }\} \Rightarrow S \neq \emptyset$, as (0, 0) is a solution for our system. Now, take $(x_1, x_2), (y_1, y_2) \in S$ and $\alpha, \beta \in K \Rightarrow \alpha(x_1, x_2) + \beta(y_1, y_2) = (\alpha x_1 + \beta y_1, \alpha x_2 + \beta y_2)$ should be a solution $\iff a_{11}(\alpha x_1 + \beta y_1) + a_{12}(\alpha x_2 + \beta y_2) = \alpha(a_{11}x_1 + a_{12}x_2) + \beta(a_{11}y_1 + a_{22}y_2) = 0$, as $a_{11}x_1 + a_{12}x_2 = 0$ $((x_1, x_2)$ is a solution). And the same goes for the other equation $\Rightarrow S$ is a subspace for \mathbb{R}^2 .