Teoria Automatów i Języków

18 października 2012

Spis treści

1 Relacje			2
	1.1	Własności relacji	2
	1.2	Słowa i alfabety	3
	1.3	Relacje indukowane przez język	3
2	Gra	${f fv}$	5

Ten utwór jest dostępny na licencji Creative Commons Uznanie autorstwa-Na tych samych warunkach 3.0 Polska.

1 Relacje

Definicja 1. Niech X_1, X_2, \ldots, X_n będą zbiorami. Podzbiór iloczynu kartezjańskiego $R \subset X_1 \times X_2 \times \cdots \times X_n$ nazywamy n-argumentową relacją.

Definicja 2. Niech X,Y będą zbiorami. Wtedy relacją dwuargumentową nazywamy $\rho=X\times Y$, a zbiory X,Y odpowiednio dziedziną i przeciwdziedziną.

Definicja 3. Relacją binarną nazywamy taką relację dwu
argumentową, w której dziedzina i przeciw
dziedzina są równe. $\rho = X \times X$

1.1 Własności relacji

	∙zwrotna	$x \rho x$
	$ \bullet \text{przeciw-zwrotna} $	$\neg x \rho x$
	•symetryczna	$x\rho y \Rightarrow y\rho x$
$\forall x,y,z\in X$	$\bullet \text{przeciw-symetryczna}$	$x\rho y \Rightarrow \neg y\rho x$
	$\bullet \text{antysymetryczna}$	$x\rho y \wedge y\rho x \Rightarrow x = z$
	•przechodnia	$x\rho y \wedge y\rho z \Rightarrow x\rho z$
	∙spójna	$x\rho y\vee y\rho x$

Definicja 4. Relację nazywamy relacją równoważności jeśli jest jednocześnie zwrotna, symetryczna i przechodnia

Definicja 5. Niech $\rho \subset X \times X$ będzie relacją binarną, a $\mathcal R$ zbiorem własności relacji. Powiemy że ρ' jest domknięciem relacji ρ ze względu na $\mathcal R$ \Leftrightarrow

- 1. $\rho \subset \rho'$
- 2. ρ' jest domknięta ze względu na własności z ${\mathcal R}$
- 3. ρ' jest najmniejszą relacją spełniającą powyższe warunki

Przykład 1. $\rho \subset \mathbb{N} \times \mathbb{N}$ $m, n \in \mathbb{N}$ $m\rho n \equiv m+1=n$

O oznacza brak relacji, 1 oznacza że dwa elementy są w relacji zwrotnej, przechodniej lub ρ . Cała tabel przedstawia natomiast relację ρ' taką że $\forall m,n\in\mathbb{N}$ $m\rho'n\equiv m\leqslant n$, będącą domknięciem relacji ρ ze względu na $\mathcal{R}=\{zwrotność,\ przechodniość\}$

1.2 Słowa i alfabety

Definicja 6. Dowolny skończony ciąg nad danym alfabetem nazywamy słowem. ε – słowo puste, Σ^{\star} – zbiór wszystkich słów

Definicja 7. Dowolny podzbiór zbioru słów jest językiem $L \subset \Sigma^{\star}$

Przykład 2.

- $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- $\Sigma^* = \{ \varepsilon, 0, 1, \dots, 9, 00, 01, \dots, 09, 10, 11, \dots, 99, 100, \dots \}$
- $L = \{0, 1, 2, \dots, 9, 10, \dots, 19, 20, 21, \dots, 99, 100, \dots\}$
- $L' = \{2, 3, 5, 7, 11, \dots\}$

Definicja 8. Jeżeli nad zbiorem X zdefiniowano relację równoważności \sim to klasą abstrakcji elementu $x \in X$ nazwiemy zbiór wszystkich elementów z X które są w relacji z x: $[x]_{\sim} = \{y \in X : y \sim x\}$

 $\textbf{Przykład 3. } \Sigma = \{0,1,\ldots,9\}, \ \rho \subset \Sigma^{\star} \times \Sigma^{\star} \quad \forall n,m \in \Sigma^{\star} \quad m \rho n \equiv \textit{wartość } m = \textit{wartość } n. \ \textit{Klasy abstrakcji:} \\ \textbf{Volume 1} = \text{Volume 2} \text{Volume 3} \text$

- $A_{\epsilon} = \{\epsilon\}$
- $A_0 = \{0, 00, 000, \dots\}$
- $A_1 = \{1, 01, 001, \dots\}$
- $A_2 = \{2, 02, 002, \dots\}$

Przykład 4. $\rho \subset \mathbb{N} \times \mathbb{N} : m\rho n \equiv |m-n| = 3$ – nie jest zwrotna ani przechodnia ale jest symetryczna. Domknięcie zwrotne: $m\rho n \equiv (m-n)mod3 = 0 \lor m = \epsilon = n$. Klasy tego domknięcia abstrakcji $[\epsilon]$, [0], [1], [2]

Definicja 9. Powiemy że relacja ρ jest prawostronnie niezmienna \Leftrightarrow gdy dla dowolnych dwóch słów będących w relacji, po dopisaniu tego samego słowa nadal pozostaną w niej.

$$\forall u, v \in \Sigma^{\star} \quad u \rho v \Rightarrow \forall z \in \Sigma^{\star} \quad u z \rho v z$$

1.3 Relacje indukowane przez język

Definicja 10. Powiemy żę R_L jest relacją indukowaną przez język $L \Leftrightarrow$

$$\forall u,v \in \Sigma^{\star} \quad uR_Lv \equiv \forall z \in \Sigma^{\star} \quad uz \in L \equiv vz \in L$$

 ${\bf Zadanie\ 1.}\ Udowodnij,\ \dot{z}e\ relacja\ indukowana\ przez\ język\ (R_L)\ jest\ relacją\ równoważności.$

 $\textbf{Przykład 5.} \ \textit{Niech } L \subset \Sigma^{\star} - \textit{język}, \ R_{L} \subset \Sigma^{\star} \times \Sigma^{\star 1} \ \textit{RL jest relacją określoną przez język L w następując sposób}$

$$L \equiv (\forall u, v \in \Sigma^{\star}) \quad uR_L v \equiv [(\forall z \in \Sigma^{\star}) \ uz \in L \equiv vz \in L]$$

Niech alfabet będzie alfabetem binarnym ($\Sigma=(0,1)$, a język L językiem binarnym bez znaczących zer – L = $\{0,1,10,11,100,\dots\}^2$. Wtedy relacja R_L tworzy następujące klasy abstrakcji:

1. $A_{\epsilon} = \{\epsilon\}$ – klasa zawierająca tylko słowo puste (ϵ)

¹relacja jest nad zbiorem wszystkich słów z alfabetu, a nie nad językiem dlatego przy wyznaczaniu klas abstrakcji należy zbadać również elementy nie należące do języka

²słowo puste nie należy do języka

```
2. A_0 = \{0\} - klasa zawierająca tylko 0
```

- 0 jest w relacji z samym sobą
- nie jest w relacji z żadnym innym słowem z poza języka ponieważ:

Dowód. Niech $z=\epsilon$ wówczas
 $0z=0\epsilon=0\in L$ oraz $uz=u\epsilon=u\not\in L.$ Zatem nie może być w relacji z żadnym słowem z poza języka

• nie jest w relacji z żadnym słowem z języka bo:

$$Dowód$$
. Niech $z=1$ wówczas $0z=01 \not\in L$ oraz $uz=u1=1\ldots 1\in L$

- 3. $A_{10} = L \{0\}$ klasa zawierająca wszystkie słowa z języka poza 0
 - Każdy element jest w relacji z elementem z klasy

```
Dowód. Niech u,v\in A_{10}wówczas u=1\ldotsi v=1\ldotsDla z\in \Sigma^\star\quad uz=1\ldotsi vz=1\ldotsstąd uz\in Li vz\in L
```

ullet Każdy element nie jest w relacji z elementem nie należącym do A_{10}

```
\begin{array}{ll} \textit{Dow\'od}. \ \ \text{Niech} \ u \in A_{10} \ \text{i} \ v \not \in A_{10} \ \text{w\'owczas} \ u = 1 \dots \\ - \ \ \text{je\'sli} \ v \not = \epsilon \ \text{to dla} \ z = \epsilon \quad uz \in L \wedge vz \not \in L \\ - \ \ \text{je\'sli} \ v = \epsilon \ \text{to dla} \ z = \epsilon \quad uz \in L \wedge vz \not \in L \end{array}
```

4. $A_{01} = \Sigma^* - (L \cup \epsilon) = \{slowa\ z\ wiodącymi\ nieznaczącymi\ zerami\}$

W przypadku alfabetu złożonego z większej liczby znaków dla tej relacji R_L , klasy abstrakcji byłyby identyczne.

Przykład 6. L=zbiór słów takich że kolejne trójki liczb składają się z identycznych liter = $\{\epsilon,000,111,000111,000000,\dots\}$ $L\subset\{0,1\}^*$

Klasy abstrakcji relacji indukowanej przez język L

- 1. $A_L = \{L\}$ wszystkie słowa z języka
- 2. $A_0 = \{u0: u \in L\}$ słowa z języka z dodatkowym 0 na końcu
- 3. $A_1 = \{u1: u \in L\}$ słowa z języka z dodatkowym 1 na końcu
- 4. $A_{00} = \{u00: u \in L\}$ słowa z języka z dodatkowym 00 na końcu
- 5. $A_{11} = \{u11: u \in L\}$ słowa z języka z dodatkowym 11 na końcu
- 6. A_{\sim} wszystkie pozostałe słowa

Przykład 7. $L=zbi\acute{o}r$ słów które mają tyle samo zer i jedynek = $\{\epsilon,01,10,0011,1010,\dots\}$ $L\subset\{0,1\}^{\star}$

Klasy abstrakcji relacji indukowanej przez język L^4

- 1. $A_0 = L$
- 2. $A_1 = \{0, \dots\}$
- 3. $A_1 = \{1, \dots\}$
- 4. $A_2 = \{11, \dots\}$

Zadanie 2. Podaj klasy abstrakcji dla relacji indukowanej przez język palindromów nad alfabetem binarnym

 $^{^3}$ Można skorzystać z tego że już udowodniliśmy że ϵ jest w innej klasie abstrakcji

⁴indeks dolny przy klasie abstrakcji to różnica pomiędzy liczą zer i jedynek

2 Grafy

Definicja 11. Grafem nazywamy parę G = (V, E) gdzie V to zbiór wierzchołków $E \subset V \times V$ to zbiór krawędzi.

Definicja 12. Drzewo to graf spójny graf acykliczny o następujących własnościach:

- 1. Jednowierzchołkowy graf $G=(\{v\},\emptyset)$ nazywamy korzeniem drzewa
- 2. Jeśli $T_1=(v_1,E_1),\ T_2=(v_2,E_2),\ \ldots,\ T_k=(v_k,E_k)$ są drzewami o korzeniach $v_{01},v_{02},\ldots,v_{0k}$ to

$$T = \underbrace{\left(\{v_0\} \cup \bigcup_{i=1}^k v_k\right.}_{\text{wierzcholki}} \; , \; \underbrace{\bigcup_{i=0}^k \{v_0, v_{0i}\} \cup \bigcup_{i=0}^k E_i}_{\text{krawedzie}} \right)$$

3. Dowolną konstrukcję otrzymaną przez zastosowanie reguł 1 i 2

Definicja 13. Jeśli wysokościami drzew $T_1=(v_1,E_1),\ T_2=(v_2,E_2),\ \dots,\ T_k=(v_k,E_k)$ są h_1,h_2,\dots,h_k to wysokość drzewa T wynosi $h=max\{h_1,h_2,\dots,h_k\}$

Definicja 14. K-drzewo to drzewo którego dowolny wierzchołek ma k następników

 ${f Definicja}$ 15 (Zasada indukcji matematycznej). Niech W będzie pewną własnością liczb naturalnych taką że:

- 1. W(0) własność W zachodzi dla 0
- 2. $\forall k = 0, 1, \dots$ $W(k) \Rightarrow W(k+1)$

Wówczas $\forall n \in \mathbb{N}W(n)$

Lemat 1. Dowolne k-drzewo o wysokości h ma nie więcej niz k^h liści

Dowód. indukcyjny

- 1. dla drzewa jednowierzchołkowego liczba liści wynosi 1, a wysokość 0
- 2. niech T_1, T_2, \ldots, T_l k-drzewa o wysokościach h_1, h_2, \ldots, h_l Niech T drzewo zbudowane z T_1, T_2, \ldots, T_l według reguły z definicji drzewa. Wysokość T jest równa $1 + max\{h_1, h_2, \ldots, h_l\}$. Zakładam, że liczby liści w drzewach T_1, \ldots, T_l są nie większe niż $k^{h_1}, k^{h_2}, \ldots, k^{h_l}$. Liczba liści w drzewie T jest nie wieksza niż

$$k^{h_1} + k^{h_2} + \dots + k^{h_l} \leqslant k \cdot \max\{k^{h_1}, k^{h_2}, \dots, k^{h_l}\} = k \cdot k^{\max\{h_1, h_2, \dots, h_l\}} = k^{1 + \max\{h_1, h_2, \dots, h_l\}} = k^{h_1} + k^{h_2} + \dots + k^{h_l} \leqslant k \cdot \max\{k^{h_1}, k^{h_2}, \dots, k^{h_l}\} = k \cdot k^{\max\{h_1, h_2, \dots, h_l\}} = k^{h_1} + \dots + k^{h_l} \leqslant k \cdot \max\{k^{h_1}, k^{h_2}, \dots, k^{h_l}\} = k \cdot k^{\max\{h_1, h_2, \dots, h_l\}} = k^{h_1} + \dots + k^{h_l} \leqslant k \cdot \max\{k^{h_1}, k^{h_2}, \dots, k^{h_l}\} = k \cdot k^{\max\{h_1, h_2, \dots, h_l\}} = k^{h_1} + \dots + k^{h_l} \leqslant k \cdot \max\{k^{h_1}, k^{h_2}, \dots, k^{h_l}\} = k \cdot k^{\max\{h_1, h_2, \dots, h_l\}} = k^{h_1} + \dots + k^{h_1} \leqslant k \cdot \max\{k^{h_1}, k^{h_2}, \dots, k^{h_l}\} = k \cdot k^{\max\{h_1, h_2, \dots, h_l\}} = k^{h_1} + \dots + k^{h_l} \leqslant k \cdot \max\{k^{h_1}, k^{h_2}, \dots, k^{h_l}\} = k \cdot k^{\max\{h_1, h_2, \dots, h_l\}} = k^{h_1} + \dots + k^{h_1} \leqslant k \cdot \max\{k^{h_1}, k^{h_2}, \dots, k^{h_l}\} = k^{h_1} + \dots + k^{h_1} \leqslant k \cdot \max\{k^{h_1}, k^{h_2}, \dots, k^{h_l}\} = k^{h_1} + \dots + k^{h_1} \leqslant k \cdot \max\{k^{h_1}, k^{h_2}, \dots, k^{h_l}\} = k^{h_1} + \dots + k^{h_1} \leqslant k \cdot \max\{k^{h_1}, k^{h_2}, \dots, k^{h_l}\} = k^{h_1} + \dots + k^{h_1} \leqslant k \cdot \max\{k^{h_1}, k^{h_2}, \dots, k^{h_l}\} = k^{h_1} + \dots + k^{h_1} \leqslant k \cdot \max\{k^{h_1}, k^{h_2}, \dots, k^{h_l}\} = k^{h_1} + \dots + k^{h_1} \leqslant k \cdot \max\{k^{h_1}, k^{h_2}, \dots, k^{h_l}\} = k^{h_1} + \dots + k^{h_2} + \dots + k^{h_2$$

3. Na mocy spełnienia punktu 1 i 3 zasady indukcji matematycznej wnioskujemy iż lemat jest prawdziwy