Aplicación: Manú Básico en PC

Equipo 3

Abad Dolores Lázaro (Prueba Física y Código de interface)
Rodríguez Hernández Erick Abimael (Código del microcontrolador y simulación)

Introducción

En un sistema embebido suele ser necesaria una interfaz o medio por el cual el usuario pueda establecer una comunicación con el sistema durante la operación, esta interfaz debe ser transparente y precisa. Esta interfaz usualmente suele ser un menú desplegado en una pantalla. Este menú debe dotarnos de la capacidad de navegar fácilmente por una colección de opciones y submenús los cuales puedan ser anidados de manera ordenada. Otra de las formas de que un operador pueda visualizar los comandos o funciones del sistema es a través de un menú para PC pues en ella se pueden realizar interfaces capaces de ayudar al operario a interpretar de mejor manera el proceso o facilitarle la manipulación del sistema.

Descripción del circuito

Este circuito tiene como interface un menú que se puede visualizar y manipular desde una PC, la interface esta programada en C# con ayuda del compilador de Visual Studio, en ella se puede manipular el accionamiento de dos motores:

- 1.- Servomotor: Este servo puede variar su apertura o cierre angular por medio de una barra en la interface de la PC o puede manipularse de la misma forma por medio de un enconder rotativo, visualizándose en la pantalla la posición actualizada del servomotor.
- 2.-Motor a pasos: esta configurado de la forma paso doble, este tipo de configuración es la más usada y la que generalmente recomienda el fabricante. Con esta secuencia el motor avanza un paso por vez y debió a que siempre hay por lo menos dos bobinas activadas, se obtiene un alto torque de paso y retención. Su aplicación es para posicionarse dentro de un plano segmentado en grados y ubicarse en la posición angular el usuario determine por medio de la interfaz.
- 3.-Indicadores LED: Los indicadores del circuito son activados o desactivados por medio de los botones presentes en la interfaz gráfica.

Componentes requeridos

- 1. Arduino (En este caso UNO)
- 2. Motor de pasos (28BYJ-48)
- 3. Modulo (ULN2003)
- 4. Encoder Rotativo
- 5.- 2 LEDs 5mm.
- 6.- Resistencias (330Ω)
- 7.- Servomotor

Diagrama Del Circuito.

El circuito esta formado por un microprocesador (en este caso Arduino uno), un servomotor que estará trabajando a partir de las señales que se produzcan en la interface de Visual o por medio del encodificador rotativo, su rango de aplicación angular es de 0 a 180°. Un motor a pasos en su configuración doble paso que permite posicionarse en cualquier posición angular (de 0 a 360°) y también dar hasta cinco vueltas completas con movimiento suave, un módulo de conexión entre el microprocesador y el motor a pasos (ULN2003). Por último, dos indicadores con leds que se encienden y apagan por medio de unos botones presentes en la interfaz gráfica.

Funcionamiento en físico

Una vez cargado el archivo correspondiente en la placa Arduino UNO, en nuestro caso (Pasos_Motor.ino.standard.hex) los pasos para la comunicación son los siguientes:

- 1.-Seleccionar la terminal COM en la que fue encontrada la placa Arduino UNO y la velocidad de comunicación, Presionar el botón **Conectar.**
- 2.-Modificar la abertura del servomotor desplazando la barra presente en la sección Control Servomotor.
- 3.-El motor a pasoso se controla en la caja de texto subiendo o bajando por medio de los botones o introduciendo la cantidad numérica por medio del teclado.
- 4.- Los Leds se encienden o apagan por medio de los botones de la interfaz.
- 5.-Al pulsar el botón Salir, el programa se cierra.

Conclusión

Es de suma importancia para algunos dispositivos contar con un medio de comunicación directa con el usuario, por tales motivos la implementación de menús para PC es algo necesario y debemos ser capases de desarrollarlos de manera óptima, intuitiva y confiable. Esta practica fue sumamente ilustrativa para comprender como se debe estructurar un menú cumpliendo todos estos requerimientos y nos abre la posibilidad de crear sistemas mas complejos con aplicaciones mas reales en un futuro cercano.