HCS12/9S12 Instruction Set Reference

	HCS12/9S12 HISH UC	Hon Set K	eiei eiice
ABA	$(A)+(B) \Rightarrow A$, Add accumulator A and B		
ABX	$(B)+(X) \Rightarrow X$, Translates to LEAX B,X		
ABY		EMIII	(V) (D) . V D 1(1 1(D'(M 1/11 (' ' 1)
	(B)+(Y) \Rightarrow Y, Translates to LEAY B,Y	EMUL	$(Y)\times(D) \Rightarrow Y:D$, 16 by 16 Bit Multiply (unsigned)
ADCA	$(A)+(M)+C \Rightarrow A$, Add with Carry to A	EMULS	$(Y)\times(D) \Rightarrow Y:D$, 16 by 16 Bit Multiply (signed)
ADCB	$(B)+(M)+C \Rightarrow B$, Add with Carry to B	EORA	$(A) \oplus (M) \Rightarrow A$, Exclusive OR A with Memory
ADDA	$(A)+(M) \Rightarrow A$, Add without Carry to A	EORB	$(B) \oplus (M) \Rightarrow B$, Exclusive OR B with Memory
ADDB	$(B)+(M) \Rightarrow B$, Add without Carry to B		
ADDD	$(A:B)+(M:M+1) \Rightarrow A:B$, add 16-bit to D	EXG	Exchange Register to Register
ANDA	$(A) \bullet (M) \Rightarrow A$, Logical AND A with memory	FDIV	(D) ÷ $(X) \Rightarrow X$, Remainder \Rightarrow D, Fractional Divide
ANDB	$(B) \bullet (M) \Rightarrow B$, Logical AND B with memory	IBEQ	Increment Counter and Branch if = 0
ANDCC	$(CCR) \bullet (M) \Rightarrow CCR$, Logical AND CCR with Memory	IBNE	Increment Counter and Branch if $\neq 0$
ASL	Arithmetic Shift Left	IDIV	(D) ÷ (X) \Rightarrow X , Remainder \Rightarrow D, Integer Divide, (unsigned)
ASLA	Arithmetic Shift Left Accumulator A	IDIVS	(D) ÷ (X) \Rightarrow X , Remainder \Rightarrow D, Integer Divide, (signed)
ASLB	Arithmetic Shift Left Accumulator B	INC	$(M)+1 \Rightarrow M$, Increment Memory Location
ASLD	Arithmetic Shift Left Accumulator D	INCA	$(A)+1 \Rightarrow A$, Increment Accumulator A
ASR	Arithmetic Shift Right	INCB	$(B)+1 \Rightarrow B$, Increment Accumulator B
	e		
ASRA	Arithmetic Shift Right Accumulator A	INS	$(SP)+1 \Rightarrow B$, equivalent to LEAS 1, SP
ASRB	Arithmetic Shift Right Accumulator B	INX	$(X)+1 \Rightarrow X$, Increment Index Register X
BCC	Branch if Carry Clear (if $C = 0$)	INY	` / /
		11N 1	$(Y)+1 \Rightarrow Y$, Increment Index Register Y
BCLR	$(M) \bullet [\overline{mm}] \Rightarrow M$, Clears Bit(s) in Memory		
BCS	Branch if Carry Set (if $C = 1$)	JSR	Jump to Subroutine
	Branch if Equal (if $Z = 1$)		
BEQ	1 (LBCC	Long Branch if Carry Clear (if $C = 0$)
BGE	Branch if Greater Than or Equal (if $N \oplus V = 0$)(signed)	LBCS	Long Branch if Carry Set (if $C = 1$)
BGND	Place CPU in Background Mode	LBEQ	Long Branch if Equal (if $Z = 1$)
BGT	Branch if Greater Than (if $Z+(N \oplus V) = 0$)(signed)	LBGE	Long Branch if Greater or Equal, (if $N \oplus V = 0$), (signed)
BHI	Branch if Higher	LBGT	Long Branch if Greater Than (if $Z+(N \oplus V) = 0$), (signed)
BHS	Branch if Higher or Same, (if $C = 0$)(unsigned)	LBHI	Long Branch if Higher (if $C+Z=0$), (unsigned)
BITA	(A)•(M) Logical AND A with memory, sets CCR	LBHS	Long Branch if Higher or Same, (if $C = 0$), (unsigned)
BITB	(B)•(M), Logical AND B with memory, sets CCR	LBLE	Long Branch if \leq , (if $Z+(N\oplus V)=1$), (signed)
BLE	Branch if Less Than or Equal, (if $Z+(N \oplus V) = 1$)(signed)	LBLO	Long Branch if Lower, if (C=1), (unsigned)
BLO	Branch if Lower, if (C=1)(unsigned), equivalent to BCS	LBLS	Long Branch if Lower or Same, if (C+Z=1), (unsigned)
BLS	Branch if Lower or Same, (if $C+Z = 1$)(unsigned)	LBLT	Long Branch if Less Than, if $(N \oplus V = 1)$, (signed)
BLT	Branch if Less Than, (if $N \oplus V = 1$)(signed)	LBMI	Long Branch if Minus (if $N = 1$)
BMI	Branch if Minus, (if $N = 1$)	LBNE	Long Branch if Not Equal (if $Z = 0$)
BNE	Branch if Not Equal, (if $Z = 0$)	LBPL	Long Branch if Plus (if $N = 0$)
	1 / /		
BPL	Branch if Plus, (if $N = 0$)	LBRA	Long Branch Always (if $1 = 1$)
BRA	Branch Always, $A(if 1 = 1)$	LBRN	Long Branch Never (if $1 = 0$)
BRCLR	Branch if $[M] \bullet [mm] = 0$, (if all selected Bit(s) Clear)	LBVC	Long Branch if Overflow Bit Clear (if $V = 0$)
BRN	Branch Never,(if $1 = 0$)	LBVS	Long Branch if Overflow Bit Set (if $V = 1$)
BRSET	Branch if $(\overline{M}) \bullet (mm) = 0$, (if all selected Bit(s) Set)	LDAA	$(M) \Rightarrow A$, Load Accumulator A
BSET	$(M)+(mm) \Rightarrow M$, Set Bit(s) in memory	LDAB	$(M) \Rightarrow B$, Load Accumulator B
BSR	Branch to Subroutine	LDD	$(M:M+1) \Rightarrow A:B$, Load Double Accumulator D
BVC	Branch if Overflow Bit Clear (if $V = 0$)	LDS	$(M:M+1) \Rightarrow SP$, Load Stack Pointer
BVS	. ,		
BVS	Branch if Overflow Bit Set (if $V = 1$)	LDX	$(M:M+1) \Rightarrow X$, Load Index Register X
		LDY	$(M:M+1) \Rightarrow Y$, Load Index Register Y
CBA	(A)–(B), Compare 8-bit Accumulators	LEAS	Effective Address ⇒ SP, Load Effective Address into SP
			,
CLC	$0 \Rightarrow C$, Clear Carry Bit	LEAX	Effective Address \Rightarrow X, Load Effective Address into X
CLI	$0 \Rightarrow I$, Enable Interrupts	LEAY	Effective Address ⇒ Y, Load Effective Address into Y
CLR	$0 \Rightarrow M$, Clear Memory Location	LSL	Logical Shift Left (same function as ASL)
			` ,
CLRA	$0 \Rightarrow A$, Clear Accumulator A	LSLA	Logical Shift Accumulator A to Left
CLRB	$0 \Rightarrow B$, Clear Accumulator B	LSLB	Logical Shift Accumulator B to Left
			e
CLV	$0 \Rightarrow V$, Clear Overflow Bit	LSLD	Logical Shift Left D Accumulator (equiv. to ASLD)
CMPA	(A)–(M), Compare Accumulator A with Memory	LSR	Logical Shift Right
CMPB	(B)–(M), Compare Accumulator B with Memory	LSRA	Logical Shift Accumulator A to Right
	<u> </u>		
COM	$(\overline{M}) \Rightarrow M$, One's Complement Memory Location	LSRB	Logical Shift Accumulator B to Right
			<u>.</u>
COMA	$(\overline{A}) \Rightarrow A$, One's Complement Accumulator A	LSRD	Logical Shift Right D Accumulator
	-		
COMB	$(\overline{B}) \Rightarrow B$, One's Complement Accumulator B		
	-		
CPD	(A:B)–(M:M+1), Compare D to Memory (16-Bit)		
CPS	(SP)–(M:M+1), Compare SP to Memory (16-Bit)		
CPX	(X)–(M:M+1), Compare X to Memory (16-Bit)		
CPY	(Y)–(M:M+1), Compare Y to Memory (16-Bit)		
	(, (MOVE	(M) = M Mamory to Mamory Dyt- Mass (0 Dit)
		MOVB	$(M_1) \Rightarrow M_2$, Memory to Memory Byte-Move (8 Bit)
DBEQ	Decrement Counter and Branch if Equal to 0	MOVW	$(M:M+1_1) \Rightarrow M:M+1_2$, Memory to Memory Word-Move
DBNE	Decrement Counter and Branch if Not Equal to 0	MUL	$(A)\times(B) \Rightarrow A:B, 8 \text{ by } 8 \text{ Unsigned Multiply}$
	•		
DEC	Decrement Memory Location	NEG	0 –(M) \Rightarrow M, Two's Complement Negate
DES	Decrement Stack Pointer	NEGA	$0-(A) \Rightarrow A$, Negate Accumulator A
DEX	Decrement Index Register X	NEGB	· / /
			$0-(B) \Rightarrow B$, Negate Accumulator B
DEY	Decrement Index Register Y	NOP	No Operation
EDIV	$(Y:D) \div (X) \Rightarrow Y$, Remainder $\Rightarrow D$, (unsigned)	ORAA	$(A)+(M) \Rightarrow A$, Logical OR A with Memory
EDIVS	$(Y:D) \div (X) \Rightarrow Y$, Remainder $\Rightarrow D$, (signed)	ORAB	$(B)+(M) \Rightarrow B$, Logical OR B with Memory
ĺ		ORCC	$(CCR)+M \Rightarrow CCR$, Logical OR CCR with Memory
1		PSHA	$(SP)-1 \Rightarrow SP, (A) \Rightarrow M_{(SP)}, Push A onto Stack$
	· (E 3/E · 3/ · · · / (- · · · · · · · · · · · · · · · · · ·	PSHB	$(SP)-1 \Rightarrow SP$, $(B) \Rightarrow M_{(SP)}$, Push B onto Stack
		_	

HCS12/9S12 Instruction Set Reference

HCS12/9S12 Instruction Set Reference					
PSHC	$(SP)-1 \Rightarrow SP, (CCR) \Rightarrow M_{(SP)}, Push CCR onto Stack$				
PSHD	$(SP)-2 \Rightarrow SP, (A:B) \Rightarrow M_{(SP)}:M_{(SP+1)}, Push D onto Stack$	STAA	$(A) \Rightarrow M$, Store A to Memory		
PSHX	$(SP)-2 \Rightarrow SP, (X_H:X_L) \Rightarrow M_{(SP)}:M_{(SP+1)}, Push X onto Stack$	STAB	$(B) \Rightarrow M$, Store B to Memory		
PSHY	$(SP)-2 \Rightarrow SP, (Y_H:Y_L) \Rightarrow M_{(SP)}:M_{(SP+1)}, Push Y onto Stack$	STD	$(A) \Rightarrow M, (B) \Rightarrow M+1$ Store D to Memory		
PULA	$(M_{(SP)}) \Rightarrow A, (SP)+1 \Rightarrow SP, Pull A from Stack$				
PULB	$(M_{(SP)}) \Rightarrow B, (SP)+1 \Rightarrow SP, Pull B from Stack$	STS	$(SP_H:SP_L) \Rightarrow M:M+1$ Store Stack Pointer		
PULC	$(M_{(SP)}) \Rightarrow CCR, (SP)+1 \Rightarrow SP, Pull CCR from Stack$	STX	$(X_H:X_L) \Rightarrow M:M+1$ Store Index Register X		
PULD	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow A:B, (SP)+2 \Rightarrow SP, Pull D from Stack$	STY	$(Y_H:Y_L) \Rightarrow M:M+1$ Store Index Register Y		
PULX	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow X_H:X_L, (SP)+2 \Rightarrow SP, Pull X from Stack$	SUBA	(A) – $(M) \Rightarrow A$, Subtract Memory from A		
PULY	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow Y_H:Y_L, (SP)+2 \Rightarrow SP, Pull Y from Stack$	SUBB	(B) – $(M) \Rightarrow B$, Subtract Memory from B		
		SUBD	(B)–(M:M+1) \Rightarrow D, Subtract Memory from D		
		SWI	Software Interrupt		
ROL	Rotate Memory Left through Carry				
ROLA	Rotate A Left through Carry				
ROLB	Rotate B Left through Carry				
ROR	Rotate Memory Right through Carry	TBEQ	Test Counter and Branch if Zero		
RORA	Rotate A Right through Carry	TDME	T (C) ID 1:0V (7		
RORB	Rotate B Right through Carry	TBNE TFR	Test Counter and Branch if Not Zero		
RTI	Return from Interrupt	IFK	Transfer Register to Register		
RTS	Return from Subroutine				
SBA	Subtract B from A	TST	Test Memory for Zero or Minus		
SBCA	Subtract with Borrow from A	151	rest memory for zero of minus		
SBCB	Subtract with Borrow from B				
SEC	1 ⇒ C. Translates to ORCC #\$01				
SEI	1 ⇒ I, Translates to ORCC #\$10				
SEV	$1 \Rightarrow V$, Translates to ORCC #\$02				
	,				
		l			

