

Deep Learning for Question Detection in Autism Diagnoses

Giancarlo Sirio Boston University 2022

Research Lab

Principal Investigator: Professor David V. Anderson

PhD Mentor: Desmond Caulley

Why Question Detection?

- Autism Spectrum Disorder Developmental disorder which impacts learning, communication, and behavior
- ASD affects 1/59 people in the USA, and can often go undiagnosed in children (CDC)
- Researchers have shown that analyzing, one day's worth of audio recordings of a subject is sufficient to determine if someone is suffering from ASD (Manual Process)
- One of the metrics clinicians care about how often kids respond to questions from their parents.

Challenges in question detection for machines

- Data is collected from device worn by kids can produce noisy data
- Speech to Text systems are not reliable when data is noisy
- Using text translated from audio can also cause problems for questions with inflections at the end

Example

Isn't this great? =>Declarative Question

Table 1: Types of questions

eren eren e	Examples			
Yes-No	Did you attend the meeting?			
wh-words	Where have you been?			
Declarative	You are at the meeting?			

Establishing a baseline with Recurrent Neural Networks

[2]

Surpassing limitations of traditional RNNs

Detecting Interrogative Utteranceswith Recurrent Neural Networks

- Trained on CALLHOME dataset clean/human labeled data
- Implemented models and replicated results

$$c_1(z) = z_T$$

$$c_2(z) = \sum_{t=1}^{T} \alpha_t s_t$$
[5]

[6]

Leveraging Attention with Transformers

- Attention helps solve the issues with traditional RNN networks, on how to add emphasis to certain timesteps (words in this example)
- Transformers are a new architecture whose key benefits over traditional RNNs is faster processing of inputs

Transfer learning on Pretrained Transformer Models

[9]

[8]

Callhome experiments with Text Only,

	GRU	LSTM	GRU, D	LSTM, D	GRU, BN	LSTM, BN
text, c_1	88.8	88.6	89.1	89.1	90.6	90.2
text, c_2	89.5	88.9	88.9	88.7	90.8	90.5

	GRU	LSTM	GRU, D	LSTM, D	GRU, BN	LSTM, BN
c1	.788	.795	.805	.805	.745	.738
c2	.788	.788	.79	.78	.785	.798

.85

[10]

Callhome experiments Audio Only

	LSTM	GRU	LSTM, D	GRU, D	LSTM, BN	GRU, BN
c1	. 678	0.65	0.688	0.67	0.632	.652
c2	.695	0.7	0.695	0.7	.692	0.668

Thank You for Listening!

Citations

- 1,5,6,10. Chung, J., Devlin, J., and Hassan Awadalla, H., "Detecting Interrogative Utterances with Recurrent Neural Networks", *arXiv e-prints*, 2015.
- 2. Lecture 13: Attention, Michigan Online, August 2020, https://www.youtube.com/watch?v=YAgjfMR9R M&t=186s
- 3. Illustrated Guide to Recurrent Neural Networks: Understanding the Intuition, The A.I. Hacker Michael Phi, August 2018, https://www.youtube.com/watch?v=LHXXI4-IEns&t=367s
- 4. Illustrated Guide to LSTM's and GRU's: A step by step explanation, The A.I. Hacker Michael Phi, September 2018, https://www.youtube.com/watch?v=8HyCNIVRbSU&t=1s
- 9. Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K., "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", *arXiv e-prints*, 2018.
- 7. Doshi, Ketan.. "Transformers Explained Visually (Part 1): Overview of Functionality." Towards Data Science., 13 Dec. 2020. Web. 13 July 2021.
- 8. "Classify Text WITH BERT: Text: TensorFlow." TensorFlow, www.tensorflow.org/text/tutorials/classify text with bert#choose a bert model to fine-tune.