Ve492: Introduction to Artificial Intelligence Reinforcement Learning II

Paul Weng

UM-SJTU Joint Institute

Slides adapted from http://ai.berkeley.edu, AIMA, UM, CMU

Reinforcement Learning

- We still assume an MDP:
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- * Still looking for a policy $\pi(s)$

- * New twist: don't know T or R, so must try out actions
- Big idea: Compute all averages over T using sample outcomes

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, π * Value / policy iteration

Evaluate a fixed policy π Policy evaluation

Unknown MDP: Model-Based

Goal Technique

Compute V*, Q*, π * VI/PI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, π * Q-learning

Evaluate a fixed policy π Value Learning

Model-Free Learning

- Model-free (temporal difference) learning
 - * Experience world through episodes (s, a, r, s', a', r', s'', a'', r'', s'''')
 - * Update estimates each transition (s, a, r, s')
 - Over time, updates will mimic Bellman updates

Q-Learning

We'd like to do Q-value updates to each Q-state:

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

- But can't compute this update without knowing T, R
- Instead, compute average as we go
 - Receive a sample transition (s,a,r,s')
 - This sample suggests

$$Q(s,a) \approx r + \gamma \max_{a'} Q(s',a')$$

- But we want to average over results from (s,a) (Why?)
- So keep a running average

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) \left[r + \gamma \max_{a'} Q(s',a')\right]$$

Example: Flappy Bird RL

State space

- Discretized vertical distance from lower pipe
- Discretized horizontal distance from next pair of pipes
- Life: Dead or Living

* Actions

- Click
- Do nothing

* Rewards

- +1 if Flappy Bird still alive
- -1000 if Flappy Bird is dead
- 6-7 hours of Q-learning

Video of Demo Q-learning – Manual Exploration – Bridge Grid

Approximate Q-Learning

Generalizing Across States

- Basic Q-Learning keeps a table of all qvalues
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory

- Learn about some small number of training states from experience
- Generalize that experience to new, similar situations
- This is a fundamental idea in machine learning, and we'll see it over and over again

Example: Pacman

Let's say we discover through experience that this state is bad:

In naïve q-learning, we know nothing about this state:

Or even this one!

Video of Demo Q-Learning Pacman – Tiny – Watch All

Video of Demo Q-Learning Pacman – Tiny – Silent Train

Video of Demo Q-Learning Pacman – Tricky – Watch All

Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - ❖ Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - * $1 / (dist to dot)^2$
 - * Is Pacman in a tunnel? (0/1)
 - * etc.
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear Value Functions

 Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$
$$Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \dots + w_n f_n(s, a)$$

 Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

Q-learning with linear Q-functions:

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

transition =
$$(s, a, r, s')$$

difference = $\left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a)$
 $Q(s, a) \leftarrow Q(s, a) + \alpha$ [difference] Exact Q's
 $w_i \leftarrow w_i + \alpha$ [difference] $f_i(s, a)$ Approximate Q's

- Intuitive interpretation:
 - * Adjust weights of active features
 - * E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- * Formal justification: online least squares

Example: Q-Pacman

$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$

 $f_{DOT}(s, NORTH) = 0.5$

 $f_{GST}(s, NORTH) = 1.0$

$$Q(s, \text{NORTH}) = +1$$

$$Q(s', \cdot) = 0$$

$$r + \gamma \max_{a'} Q(s', a') = -500 + 0$$

$$difference = -501$$

$$w_{DOT} \leftarrow 4.0 + \alpha [-501] 0.5$$

 $w_{GST} \leftarrow -1.0 + \alpha [-501] 1.0$

$$Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$$

Video of Demo Approximate Q-Learning -- Pacman

Q-Learning and Least Squares

Linear Approximation: Regression*

Prediction:

$$\hat{y} = w_0 + w_1 f_1(x)$$

Prediction:

$$\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$$

Optimization: Least Squares*

total error =
$$\sum_{i} (y_i - \hat{y_i})^2 = \sum_{i} \left(y_i - \sum_{k} w_k f_k(x_i) \right)^2$$

Observation \hat{y}

Prediction \hat{y}

 $f_1(x)$

Minimizing Error*

Imagine we had only one point x, with features f(x), target value y, and weights w:

$$\operatorname{error}(w) = \frac{1}{2} \left(y - \sum_{k} w_{k} f_{k}(x) \right)^{2}$$

$$\frac{\partial \operatorname{error}(w)}{\partial w_{m}} = -\left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

$$w_{m} \leftarrow w_{m} + \alpha \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

Approximate q update explained:

$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)$$
"target" "prediction"

More Powerful Function Approximation

* Linear:

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

* Polynomial:

*
$$Q(s,a) = w_{11}f_1(s,a) + w_{12}f_1^2(s,a) + w_{13}f_1^3(s,a) + \cdots$$

Neural Network:

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

* where f_i 's are also learned

$$* w_m \leftarrow w_m + \alpha(r + \gamma \max_a Q(s', a') - Q(s, a)) \frac{\partial Q}{\partial w_m}(s, a)$$

Overfitting: Why Limiting Capacity Can Help*

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren't the ones that approximate V / Q best
 - ❖ E.g. your value functions from project 2 are probably horrible estimates of future rewards, but they still produced good decisions
 - Q-learning's priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)
- Solution: learn policies that maximize rewards, not the values that predict them
- Policy search: start with an ok solution (e.g. Q-learning) then finetune by hill climbing on feature weights

* Simplest policy search:

- Start with an initial linear value function or Q-function
- * Nudge each feature weight up and down and see if your policy is better than before

Problems:

- * How do we tell the policy got better?
- Need to run many sample episodes!
- If there are a lot of features, this can be impractical
- Better methods exploit lookahead structure, sample wisely, change multiple parameters...

