CSE 40622 Cryptography, Spring 2018 Written Assignment 03 (Lecture 05-07)

Name: Jasmine Walker

1. (10 pts, Page 3) Prove that $x^k = x^{k \mod |\mathbb{G}|}$ for $x \in \mathbb{G}$ for any integer k.

Answer:

From Theorem 1, we know that $x^{|\mathbb{G}|} = e$. k can be described as some remainder r plus some quotient q times $|\mathbb{G}|$. So,

$$x^{k} = x^{r+q|\mathbb{G}|} = x^{r}x^{q|\mathbb{G}|} = x^{r}e^{q} = x^{r}$$

We know that $k \mod |\mathbb{G}|$ will equal r, $x^{k \mod |\mathbb{G}|} = x^r$

$$x^{k \mod |\mathbb{G}|} = x^r$$

$$x^k = x^r = x^{k \mod |\mathbb{G}|}$$

2. (15 pts, Page 4) In the proof of Lagrange's Theorem, I said the set $x\mathbb{H}$ cannot form a group under the same operator as in G. Formally prove it.

Answer:

I will prove that $e \notin x\mathbb{H}$, so $x\mathbb{H}$ cannot be a group under the same operator as \mathbb{G} because the identity value e for the operation does not exist in $x\mathbb{H}$.

Proof by contradiction:

If $e \in x\mathbb{H}$, then some element $h_1 \in \mathbb{H}$ must exist such that $x \cdot h_1 = e$. By definition, h_1 is the inverse of x, and x is the inverse of h_1 . This means that, because all elements in \mathbb{H} also have their inverses in \mathbb{H} , $x \in \mathbb{H}$. This is false because x is defined $x \in \mathbb{G} - \mathbb{H}$, meaning necessarily that $x \notin \mathbb{H}$. Then there cannot exist an x such that $x \cdot h_1 = e$. So, $x \mathbb{H}$ cannot exist such that $e \in x \mathbb{H}$

3. (15 pts, Page 4-5) In the proof of Lagrange's Theorem, I said $\mathbb{H} \cap x\mathbb{H} = \emptyset$. Formally prove it.

Answer:

Proof by contradiction:

If $\mathbb{H} \cap x\mathbb{H} \neq \emptyset$, then there is some element that is shared by $x\mathbb{H}$ and \mathbb{H} . Then there must be some h_2 that exists in both \mathbb{H} and $x\mathbb{H}$ such that, for $\exists h_1 \in \mathbb{H}$, $xh_1 = h_2$. Then $xh_1 = h_2 \Rightarrow x = h_1^{-1}h_2$. Since $h_1, h_2 \in \mathbb{H}$, then $x \in \mathbb{H}$, which is false because x is defined as $x \in \mathbb{G} - \mathbb{H}$. There does not exist any h_2 that exists in both \mathbb{H} and $x\mathbb{H}$, so \mathbb{H} and $x\mathbb{H}$ are disjoint.

4. (15 pts, Page 6) Prove that any $x \in (\mathbb{G} - \{e\})$ generates \mathbb{G} if $|\mathbb{G}|$ is a prime number.

Answer:

From Theorem 1, we know that $x^{|\mathbb{G}|} = e$. From Proposition 3, we know that for some $x \in \mathbb{G}$, if $x^k = e$, then ord(x)|k. Since $x^{|\mathbb{G}|}=e$, we can set $k=|\mathbb{G}|$. Since $|\mathbb{G}|$ is prime, the only element that divides $k = |\mathbb{G}|$ that is also less than or equal to $k = |\mathbb{G}|$ is $|\mathbb{G}|$. So, ord(x) must be $|\mathbb{G}|$ for all $x \in \mathbb{G}$.

- 5. (15 pts, Page 7) Describe an algorithm for finding a generator in \mathbb{Z}_p^* when p is a prime number such that p = 2q + 1 for a prime q.
 - Hint: You may use the following proposition without proving it An element $x \in \mathbb{G}$ is a generator of \mathbb{G} if and only if $\operatorname{ord}(x) = |\mathbb{G}|$

Answer:

We know that the order of \mathbb{Z}_p^* is 2q because the order is equal to p-1=(2q+1)-1=2q. So we must find an element $x \in \mathbb{Z}_p^*$ that has an order of 2q, as stated by the proposition above. From the lecture notes and Lagrange's Theorem, we know that any element in \mathbb{Z}_p^* can only produce sets with an order of 1, 2, q, and 2q. So the algorithm to find x is as follows:

```
Pick a number x in \mathbb{Z}_p^*.
Calculate x^1.
If x^1 \neq 1, calculate x^2.
If x^2 \neq 1, calculate x^q.
If x^q \neq 1, then x is a generator of \mathbb{Z}_p^*.
If x^q \neq 1, then x \neq 1 is a generator of \mathbb{Z}_p^*.
```

6. (5pts, Page 8) Explain why x, r should be non-zero in ElGamal encryption.

Answer

If x = 0, then the attacker automatically knows because the public key h will be equal to $g^0 = 1$. The attacker then can know the cipher c_2 will equal the message m because $c_2 = m * h^r = m * 1 = m$. If r = 0, the attacker will automatically knows because c_1 will equal $g^r = 1$. Then the attacker will know the cipher c_2 will equal the message m because $c_2 = m * h^r = m * 1 = m$.

- 7. (15 pts, Page 11) An algorithm solving DLOG problem can be used to solve CDH problem. Explain how this can be done.
 - Hint: Imagine that you have an algorithm which solves the DLOG problem: It outputs x given g^x . Even though we do not know the mechanism of that algorithm, we can still use that algorithm to as a black box (*i.e.*, only see the output when we give something as input) and solve CDH problem.

Answer:

If the DLOG algorithm works, this is how it can be used to find the result g^{ab} of the CDH problem given g, g^a , and g^b :

First, find \mathbb{G} from g. This can be done because g is a generator of \mathbb{G} .

Then, insert \mathbb{G} , g, and g^a into the DLOG algorithm to get a.

Then, raise g^b to a to get $g^{ba} = g^{ab}$.

8. (10 pts, Page 12) Analyze why the variant of ElGamal encryption is an additive homomorphic encryption. Please explicitly show how decryption can be done after computation is conducted on the ciphertext.

Answer

The encryption of m_1 yields $c_{11} = g^{r_1}$ and $c_{21} = g^{m_1}g^{r_1x}$. The encryption of m_2 yields $c_{12} = g^{r_2}$ and $c_{22} = g^{m_2}g^{r_2x}$. We can get the encryption of $m_1 + m_2$ from the encryption of m_1 and the encryption of m_2 by computing $c_{11} \cdot c_{12}$ and $c_{21} \cdot c_{22}$.

of m_2 by computing $c_{11} \cdot c_{12}$ and $c_{21} \cdot c_{22}$. $c_{11} \cdot c_{12} = g^{r_1} \cdot g^{r_2} = g^{r_1+r_2}$, and $c_{21} \cdot c_{22} = g^{m_1} g^{r_1 x} \cdot g^{m_2} g^{r_2 x} = g^{m_1+m_2} g^{(r_1+r_2)x}$. Then the decryption can be computed by computing $(c_{11}c_{12})^x = g^{(r_1+r_2)x}$, then computing $g^{(-1)(r_1+r_2)(x)}$, then computing $g^{(-1)(r_1+r_2)(x)} = g^{m_1+m_2} g^{(r_1+r_2)x} g^{(-1)(r_1+r_2)(x)} = g^{m_1+m_2}$. Then compute DLOG on $g^{m_1+m_2}$ to get $g^{m_1+m_2}$ to get $g^{m_1+m_2}$.