set aⁱ=0 for each example i Initial: • $a = [a^1, a^2, a^3, a^4] = [0,0,0,0]$ For t=1..T, i=1..n: t=1, i=1 $- y = sign(\sum a^k K(x^k, x^i))$ • $\Sigma_k a^k K(x^k, x^1) = 0x4 + 0x0 + 0x4 + 0x0 = 0$, sign(0)=-1 - if $y \neq y^i$ k • $a^1 += y^1 \rightarrow a^1 += 1$, new a = [1,0,0,0]• $a^{i} += y^{i}$ t=1,i=2 • $\Sigma_k a^k K(x^k, x^2) = 1x0 + 0x4 + 0x0 + 0x4 = 0$, sign(0)=-1 t=1, i=3• $\Sigma_k a^k K(x^k, x^3) = 1x4 + 0x0 + 0x4 + 0x0 = 4$, sign(4)=1 t=1, i=41 • $\Sigma_k a^k K(x^k, x^4) = 1x0 + 0x4 + 0x0 + 0x4 = 0$, sign(0)=-1 1 -1 t=2, i=1• $\Sigma_k a^k K(x^k, x^1) = 1x4 + 0x0 + 0x4 + 0x0 = 4$, sign(4)=1 -1 -1 -1 -1 X_2 $K(u,v) = (u \cdot v)^2$ Converged!!! e.g., X^1 4 0 • $y=\Sigma_k a^k K(x^k,x)$ 4 $K(x^{1},x^{2})$ $= 1 \times K(x^{1},x) + 0 \times K(x^{2},x) + 0 \times K(x^{3},x) + 0 \times K(x^{4},x)$ x^2 0 0 4 4 = K([1,1],[-1,1]) $= K(x^1,x)$ $=(1x-1+1x1)^2$ x^3 4 0 4 0 = K([1,1],x) (because $x^1=[1,1]$) = 0 x^4 0 = $(x_1+x_2)^2$ (because $K(u,v) = (u \cdot v)^2$) 0 4