



## PROGRAMAÇÃO DE COMPUTADORES I - BCC701 - 2014-01

#### Vetores e matrizes

#### Exercício 1

Implemente uma função chama MEDIA que retorne a média dos valores armazenados em um vetor de números. Em seguida implemente um programa que solicite que o usuário digite valores positivos para armazena no vetor e utilize a função MEDIA para calcular a media dos valores digitados. A entrada de dados encerra quando o usuário digitar um valor negativo.

#### Entrada

## CALCULO DA MÉDIA

Digite um valor positivo ou um negativo para sair: 5 Digite um valor positivo ou um negativo para sair: 3 Digite um valor positivo ou um negativo para sair: 6 Digite um valor positivo ou um negativo para sair: 1 Digite um valor positivo ou um negativo para sair: 2 Digite um valor positivo ou um negativo para sair: -1

#### Saída

Média dos valores digitados: 3.40

#### Exercício 2

Faça um programa que solicite que o usuário digite 20 valores e coloque os valores pares em um vetor e os impares em outro. Em seguida imprima os dois vetores.

#### **Entrada**

| ALCULO DA MÉDIA    |  |
|--------------------|--|
| igite um número: 1 |  |
| igite um número: 2 |  |
| igite um número: 3 |  |
| igite um número: 4 |  |
| igite um número: 5 |  |
| igite um número: 6 |  |
| igite um número: 7 |  |
| igite um número: 8 |  |





| Digite um número: 9  |   |
|----------------------|---|
| Digite um número: 10 |   |
| Digite um número: 11 |   |
| Digite um número: 12 |   |
| Digite um número: 13 |   |
| Digite um número: 14 |   |
| Digite um número: 15 |   |
| Digite um número: 16 |   |
| Digite um número: 17 |   |
| Digite um número: 18 |   |
| Digite um número: 19 |   |
| Digite um número: 20 |   |
|                      | _ |

## Saída

Vetor com os valores pares: 2 4 6 8 10 12 14 16 18 20

**Vetor com os valores impares:** 

1 3 5 7 9 11 13 15 17 19

## Exercício 3

Escreva um programa que receba a altura de 10 atletas. Esse programa deve imprimir

a altura daqueles atletas que tem altura maior que a média.

## **Entrada**

| Digite uma altura: 1.70 |  |
|-------------------------|--|
| Digite uma altura: 1.50 |  |
| Digite uma altura: 1.60 |  |
| Digite uma altura: 1.75 |  |
| Digite uma altura: 1.80 |  |
| Digite uma altura: 2    |  |
| Digite uma altura: 1.70 |  |
| Digite uma altura: 1.50 |  |
| Digite uma altura: 1.50 |  |
| Digite uma altura: 1.75 |  |
|                         |  |

#### Saída

Altura média 1.68





| Alturas maiores do que a média: |  |
|---------------------------------|--|
| 1.70                            |  |
| 1.75                            |  |
| 1.80                            |  |
| 2.00                            |  |
| 1.70                            |  |
| 1.75                            |  |

## Exercício 4

Escreva um programa que solicite ao usuário um vetor composto por zeros e uns que represente um número em binário. Em seguida o programa deve converter o número da base 2 para a base 10 e exibir o número em decimal.

Para converter um binário em decimal basta utilizar a seguinte fórmula:

Valor em decimal = 
$$\sum_{i=1}^{n} vetor[n-i+1] * 2^{i}$$

Onde o *vetor* é o vetor que representa o número binário e *i* é o índice dos elementos do vetor.

#### **Entrada**

Digite o vetor do número em binário: [1 0 0 1 0 1]

#### Saída

Correspondente em decimal: 35

## Exercício 5

Escreva um programa, que leia um conjunto de 10 fichas correspondente à alunos e armazene-as em vetores, cada uma contendo, a altura e o código do sexo de uma pessoa (código = 1 se for masculino e 2 se for feminino), calcule e imprima:

- A maior e a menor altura da turma:
- As alturas das mulheres com altura acima da média da altura das mulheres;
- As pessoas com altura abaixo da média da turma.

#### **Entrada**

Digite o sexo (1-masculino ou 2-feminino): 1

Digite a altura: 1.70

Digite o sexo (1-masculino ou 2-feminino): 1





Digite a altura: 1.75

Digite o sexo (1-masculino ou 2-feminino): 1

Digite a altura: 1.50

Digite o sexo (1-masculino ou 2-feminino): 2

Digite a altura: 1.50

Digite o sexo (1-masculino ou 2-feminino): 1

Digite a altura: 1.80

Digite o sexo (1-masculino ou 2-feminino): 1

Digite a altura: 1.40

Digite o sexo (1-masculino ou 2-feminino): 2

Digite a altura: 1.55

Digite o sexo (1-masculino ou 2-feminino): 2

Digite a altura: 1.70

Digite o sexo (1-masculino ou 2-feminino): 2

Digite a altura: 1.80

Digite o sexo (1-masculino ou 2-feminino): 1

Digite a altura: 1.90

#### Saída

Maior altura: 1.90 Menor altura: 1.40

Alturas das mulheres com mais de 1.54

1.55 1.70

Alturas das pessoas com menos de 1.49

1.40

## Exercício 6

Está sendo feito um estudo sobre a temperatura da área externa de uma mina de minério de ferro para dar melhores condições de trabalho para os operários. Para este objetivo é necessário sabe os valores máximos e mínimos que a temperatura pode chegar no local da medição. Escreva um algoritmo que leia a temperatura registrada a cada dia





do mês de Dezembro e em seguida retorne os dias em que a temperatura alcançou os valores máximo e mínimo.

#### **Entrada**

Digite a temperatura do 1º dia: 34
Digite a temperatura do 2º dia: 22
Digite a temperatura do 3º dia: 13
Digite a temperatura do 4º dia: 23
Digite a temperatura do 5º dia: 34
Digite a temperatura do 6º dia: 36
Digite a temperatura do 7º dia: 40
Digite a temperatura do 8º dia: 44
Digite a temperatura do 9º dia: 25.

.

Digite a temperatura do 31º dia: 16

#### Saída

A maior temperatura foi no 8º dia e a menor temperatura foi no 3º dia.

## Exercício 7

Em cálculos estatísticos é importante que dados sejam normalizados para a aplicação de alguns métodos, uma forma de normalizar é limitando os dados por um valor máximo e mínimo, para este tipo de normalização, basta aplicar a seguinte formula em cada valor do conjunto:

$$v' = \frac{v - min}{max - min}(novo\_max - novo\_min) + novo\_min$$

Onde min e max são respectivamente os valores máximo e mínimo do vetor e  $novo\_min$  e  $novo\_max$  são os novo valores máximos e mínimos para o vetor.

Escreva um algoritmo que leia 10 valores para um vetor e em seguida crie um novo vetor com os dados lidos normalizando-os com valores de 1 a 100.





## **Entrada**

| Digite o 1º valor: 423  |  |
|-------------------------|--|
| Digite o 2º valor: 123  |  |
| Digite o 3º valor: 536  |  |
| Digite o 4º valor: 423  |  |
| Digite o 5º valor: 123  |  |
| Digite o 6º valor: 111  |  |
| Digite o 7º valor: 987  |  |
| Digite o 8º valor: 644  |  |
| Digite o 9º valor: 863  |  |
| Digite o 10º valor: 327 |  |

## Saída

| Lidos   Normalizados |  |
|----------------------|--|
|                      |  |
| 423   36.260         |  |
| 123   2.356          |  |
| 536   49.031         |  |
| 423   36.260         |  |
| 123   2.356          |  |
| 111   1.000          |  |
| 987   100.000        |  |
| 644   61.236         |  |
| 863   85.986         |  |
| 327   25.411         |  |
|                      |  |

## Exercício 8

Duas cidades próximas possuem temperaturas bem variadas ao longo do ano, a tabela a seguir mostra a média da temperatura mensal das duas cidades.

| Mês      | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 |
|----------|----|----|----|----|----|----|----|----|----|----|----|----|
| Cidade 1 | 30 | 24 | 18 | 12 | 22 | 25 | 22 | 19 | 24 | 26 | 29 | 34 |





| Cidade 2 | 30 | 27 | 20 | 16 | 25 | 25 | 26 | 22 | 24 | 28 | 29 | 38 |
|----------|----|----|----|----|----|----|----|----|----|----|----|----|
|----------|----|----|----|----|----|----|----|----|----|----|----|----|

Escreva um algoritmo que diga quais são os meses em que a média da temperatura é a mesma.

#### Saída

Meses com média de temperatura iguais: 1, 6, 9, 11,

## Exercício 9

Em uma metalúrgica, as chapas de aço são numeradas e empilhadas antes de serem processadas, ou seja, a primeira chapa empilhada será a última a ser processada. Considerando que as chapas foram empilhadas na seguinte ordem:

Escreva um algoritmo que solicite os números das chapas na ordem que foram empilhadas, em seguida o algoritmo deve imprimir as chapas na ordem em que serão processadas. A entrada de dados termina quando o usuário digitar o número 0.

#### Entrada

Insira a chapa: 43255
Insira a chapa: 34235
Insira a chapa: 42353
Insira a chapa: 42523
Insira a chapa: 12445
Insira a chapa: 52523
Insira a chapa: 0

#### Saída

Ordem de processamento das chapas: 52523, 12445, 42523, 42353, 34235, 43255

#### Exercício 10

Uma matriz possui duas diagonais, a diagonal primária e a secundária, a diagonal primária é definida pelos valores presentes nas posições onde o número da coluna é igual ao número da linha.





$$v_{ij} \in d \text{ se } i = j$$

Já a diagonal secundária é definida nos valores onde a soma do número da linha com o número da coluna é igual a n+1, sendo n o número de linhas.

$$v_{i \cap} \in d'$$
 se  $i + j = n + 1$ 

Escreva um algoritmo que leia uma matriz 3x3 e imprima suas diagonais primaria e secundária.

#### **Entrada**

Digite o valor da posição [1, 1]: 1
Digite o valor da posição [1, 2]: 2
Digite o valor da posição [1, 3]: 3
Digite o valor da posição [2, 1]: 4
Digite o valor da posição [2, 2]: 5
Digite o valor da posição [2, 3]: 6
Digite o valor da posição [3, 1]: 7
Digite o valor da posição [3, 2]: 8
Digite o valor da posição [3, 3]: 9

#### Saída

#### Matriz inserida:

1. 2. 3.

4. 5. 6.

7. 8. 9.

Elementos da diagonal primária: 1 5 9 Elementos da diagonal secundária: 3 5 7

## Exercício 11

Uma matriz pode ser considerada triangular superior se todo valor abaixo de sua diagonal principal for igual a 0, triangular inferior se todo valor acima da diagonal principal for igual a 0, diagonal se ela for triangular superior e inferior ao mesmo tempo, ou regular se não for nenhuma delas





| 15 31 0 0 11 15 0 43 0<br>14 41 21 0 0 61 0 0 52 |
|--------------------------------------------------|
| 14 41 21 0 0 61 0 0 52                           |

Escreva um algoritmo que leia uma matriz 3x3 e verifique se ela é triangular superior, triangular inferior, uma matriz diagonal ou nenhuma delas.

#### **Entrada**

| Digite o valor da posição [1, 1]: 1 |  |
|-------------------------------------|--|
| Digite o valor da posição [1, 2]: 0 |  |
| Digite o valor da posição [1, 3]: 0 |  |
| Digite o valor da posição [2, 1]: 1 |  |
| Digite o valor da posição [2, 2]: 1 |  |
| Digite o valor da posição [2, 3]: 0 |  |
| Digite o valor da posição [3, 1]: 1 |  |
| Digite o valor da posição [3, 2]: 1 |  |
| Digite o valor da posição [3, 3]: 1 |  |
| . ,                                 |  |

### Saída

#### Matriz inserida:

- 1. 0. 0.
- 1. 1. 0.
- 1. 1. 1.

Matriz triangular inferior.

## Exercício 11

Um investidor está observando duas industrias de um novo ramo onde há muita demanda e pouca oferta, ou seja, quem produzir mais terá lucros maiores, logo o terá maior preferência em investimento.

Dadas as matrizes de quantidade mensal que cada indústria produz por mês em cada produto:





|           | Industria 1 | Industria 2 |
|-----------|-------------|-------------|
| Produto 1 | 2300        | 5000        |
| Produto 2 | 3400        | 1500        |
| Produto 3 | 1340        | 1600        |

Sabendo que os lucros obtidos nos produtos são dados pela tabela a seguir, escreva um algoritmo que indique ao investidor qual é a melhor indústria a se investir baseado na média de lucro obtida por cada uma.

|           | Lucro     |
|-----------|-----------|
| Produto 1 | R\$ 30,00 |
| Produto 2 | R\$ 15,00 |
| Produto 3 | R\$ 65,00 |

#### Saída

Lucro da Industria 1: 253100 Lucro da Industria 2: 376500

O investimento na Industria 2 é o melhor

#### Exercício 12

Uma empresa possui uma fábrica de pregos, esta empresa está suspeitando que alguns funcionários estão prejudicando o processo de produção e resolveu fazer uma comparação entre os turnos para apontar quais estão sendo menos produtivos.

A tabela a seguir mostra a produção de cada tudo ao longo de uma semana em toneladas:

|         | Dia 1 | Dia 2 | Dia 3 | Dia 4 | Dia 5 | Dia 6 | Dia 7 |
|---------|-------|-------|-------|-------|-------|-------|-------|
| Turno 1 | 1.7   | 1.8   | 2.0   | 2.4   | 2.7   | 2.5   | 2.1   |
| Turno 2 | 2.1   | 2.4   | 2.3   | 2.2   | 2.5   | 2.0   | 1.8   |
| Turno 3 | 2.4   | 2.1   | 2.5   | 2.3   | 2.2   | 2.2   | 2.0   |

Considerando que os dados estão armazenados em uma matriz onde as linhas representam os turnos e as colunas representam os dias de produção. Indique qual os





dias e os turnos estão tendo a produção abaixo da média para que sejam tomadas as devidas medidas para a melhora deste quadro.

#### Saída

| Dias em que a produção ficou abaixo da média (2.2): |
|-----------------------------------------------------|
| Turno 1:                                            |
| 1, 2, 3, 7                                          |
| Turno 2:                                            |
| 1, 6, 7                                             |
| Turno 3:                                            |
| 2, 7                                                |

## Exercício 13

Considerando a matraiz abaixo:

Escreva um programa que calcule e exiba a soma dos elementos de cada linha da matriz.

### Saída

| Soma da linha 1: 19 |  |  |
|---------------------|--|--|
| Soma da linha 2: 23 |  |  |
| Soma da linha 3: 26 |  |  |
| Soma da linha 4: 17 |  |  |
| Soma da linha 5: 26 |  |  |

## Exercício 14

Escreva um programa que leia 9 números inteiros, armazene em uma matriz de 3x3, e imprima uma matriz com os valores rotacionados em 90°.

#### **Entrada**





| Digite um número: 1 |  |
|---------------------|--|
| Digite um número: 2 |  |
| Digite um número: 3 |  |
| Digite um número: 4 |  |
| Digite um número: 5 |  |
| Digite um número: 6 |  |
| Digite um número: 7 |  |
| Digite um número: 8 |  |
| Digite um número: 9 |  |
| _                   |  |

## Saída

# Matriz de entrada

- 1. 2. 3.
- 4. 5. 6.
- 7. 8. 9.

## Matriz rotacionada em 90º

- 7. 4. 1.
- 8. 5. 2.
- 9. 6. 3.