Oxford College of Engineering and Management Assignment - II

Mathematical Foundation of Computer Science

BCA Third Year, Fifth Semester

- 1. Using induction prove that, 6.7^{n} - 2.3^{n} is divisible by 4, for all n>=1.
- 2. What is recurrence relation? Someone deposits \$10,990 in a savings account at a bank yielding 10% per year with interest compounded annually. How much money will be in the account after 27 years?
- 3. How can you solve linear homogeneous recurrence relation? Explain. Solve the given recurrence relation for the initial condition $a_0 = 2$, $a_1 = 4$ and $a_2 = 5$.

$$a_n = 7a_{n-1} - 10a_{n-2} + 16a_{n-3}$$
.

- 4. Fibonacci series is given by the recurrence relation $f_n f_{n-1} f_{n-2} = 0$, n > = 3, and initial conditions $f_1 = 1$, $f_2 = 2$. Find the explicit formula for the fibonacci sequence.
- 5. Define grammar and language. Write about different types of grammar.
- 6. Solve the recurrence relation $a_n = a_{n-1} + 2a_{n-2}$ where $a_0 = 2$ and $a_1 = 7$
- 7. State the principles of Mathematical Induction. Prove by Mathematical induction that:

$$1.2 + 2.3 + ... + n.(n+1) = n(n+1)(n+2)/2$$

- 8. If an integer a is such that a-2 is divisible by 3 than a²-1 is divisible by 3. Prove it by using direct proof method.
- 9. Show that the square of an even number is an even number using direct proof.
- 10. Solve the recurrence relation $a_n = 2a_{n-1} a_{n-2}$ for $n \ge 2$ and $a_0 = 3$, $a_1 = 6$.
- 11. Consider the following grammar where $T=\{a,b\}$, $N=\{\sigma,A\}$ with production rules $\{\sigma \rightarrow b\sigma, \sigma \rightarrow aA, A \rightarrow a\sigma, A \rightarrow bA, A \rightarrow a, \sigma \rightarrow b\}$. Determine whether the given grammar is context-sensitive, regular or context-free, or none of these.
- 12. Construct the state table for the finite state machine with the state diagram shown in following figure:

13. Construct the state diagram for the finite state machine with the state table shown in following figure:

	f		g	
State	0	1	0	1
so	s_1	<i>s</i> 3	1	0
s_1	s_1	s_2	1	1
s_2	<i>s</i> 3	84	0	0
<i>s</i> 3	s_1	20	0	0
<i>s</i> ₄	<i>s</i> ₃	<i>s</i> ₄	0	0

Instructions:
Assignment should be submitted before 3rd of Falgun 2075...