K-MEANS CLUSTERING

In [28]:

```
import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline

import warnings
warnings.filterwarnings("ignore")
```

In [29]:

```
1 df=pd.read_csv(r"C:\Users\91949\Downloads\Income.csv")
2 df
```

Out[29]:

	Gender	Age	Income(\$)
0	Male	19	15
1	Male	21	15
2	Female	20	16
3	Female	23	16
4	Female	31	17
195	Female	35	120
196	Female	45	126
197	Male	32	126
198	Male	32	137
199	Male	30	137

200 rows × 3 columns

In [30]:

```
plt.scatter(df['Age'],df["Income($)"])
plt.xlabel("Age")
plt.ylabel("Income($)")
```

Out[30]:

Text(0, 0.5, 'Income(\$)')

In [31]:

1 from sklearn.cluster import KMeans

In [32]:

```
1 km = KMeans()
2 km
```

Out[32]:

```
▼ KMeans
KMeans()
```

In [33]:

```
1 y_predicted = km.fit_predict(df[["Age","Income($)"]])
2 y_predicted
```

Out[33]:

```
array([3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 3, 1, 3, 1, 3, 1, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1,
```

In [34]:

```
1 df['Cluster']=y_predicted
2 df.head()
```

Out[34]:

	Gender	Age	Income(\$)	Cluster
0	Male	19	15	3
1	Male	21	15	3
2	Female	20	16	3
3	Female	23	16	3
4	Female	31	17	3

In [35]:

```
df1=df[df.Cluster==0]
   df2=df[df.Cluster==1]
 2
 3
   df3=df[df.Cluster==2]
   plt.scatter(df1["Age"],df1["Income($)"],color="red")
 5
   plt.scatter(df2["Age"],df2["Income($)"],color="green")
   plt.scatter(df3["Age"],df3["Income($)"],color="blue")
 7
8
9
   plt.xlabel("Age")
   plt.ylabel("Income($)")
10
11
```

Out[35]:

Text(0, 0.5, 'Income(\$)')

In [36]:

1 from sklearn.preprocessing import MinMaxScaler

In [37]:

```
1 scaler=MinMaxScaler()
```

In [39]:

```
scaler.fit(df[["Income($)"]])
df["Income($)"] = scaler.transform(df[["Income($)"]])
df.head()
```

Out[39]:

	Gender	Age	Income(\$)	Cluster
0	Male	19	0.000000	3
1	Male	21	0.000000	3
2	Female	20	0.008197	3
3	Female	23	0.008197	3
4	Female	31	0.016393	3

In [40]:

```
scaler.fit(df[["Age"]])
df["Age"]=scaler.transform(df[["Age"]])
df.head()
```

Out[40]:

	Gender	Age	Income(\$)	Cluster
0	Male	0.019231	0.000000	3
1	Male	0.057692	0.000000	3
2	Female	0.038462	0.008197	3
3	Female	0.096154	0.008197	3
4	Female	0.250000	0.016393	3

In [41]:

```
1 km=KMeans()
```

In [43]:

```
1 y_predicted = km.fit_predict(df[["Age","Income($)"]])
2 y_predicted
```

Out[43]:

In [44]:

```
1 df["New Cluster"]=y_predicted
2 df.head()
```

Out[44]:

	Gender	Age	Income(\$)	Cluster	New Cluster
0	Male	0.019231	0.000000	3	6
1	Male	0.057692	0.000000	3	6
2	Female	0.038462	0.008197	3	6
3	Female	0.096154	0.008197	3	6
4	Female	0.250000	0.016393	3	3

In [45]:

```
df1=df[df["New Cluster"]==0]
   df2=df[df["New Cluster"]==1]
 2
 3
   df3=df[df["New Cluster"]==2]
 4
 5
   plt.scatter(df1["Age"],df1["Income($)"],color="red")
   plt.scatter(df2["Age"],df2["Income($)"],color="green")
 6
   plt.scatter(df3["Age"],df3["Income($)"],color="blue")
 7
8
9
   plt.xlabel("Age")
   plt.ylabel("Income($)")
10
11
```

Out[45]:

Text(0, 0.5, 'Income(\$)')

In [46]:

```
1 km.cluster_centers_
```

Out[46]:

In [47]:

```
df1=df[df["New Cluster"]==0]
   df2=df[df["New Cluster"]==1]
 2
 3
   df3=df[df["New Cluster"]==2]
 4
   plt.scatter(df1["Age"],df1["Income($)"],color="red")
 5
   plt.scatter(df2["Age"],df2["Income($)"],color="green")
 6
   plt.scatter(df3["Age"],df3["Income($)"],color="blue")
 7
8
9
   plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",marker
10
   plt.xlabel("Age")
11
   plt.ylabel("Income($)")
```

Out[47]:

Text(0, 0.5, 'Income(\$)')

In [51]:

Out[51]:

```
[23.583906150363603,

13.028938428018286,

7.492107868586012,

6.055858644812547,

4.713416604872824,

3.8616447037115407,

3.054717436369358,

2.643789119086916,

2.3135720353543285]
```

In [52]:

```
plt.plot(k_rng,sse)
plt.xlabel("k")
plt.ylabel("Sum of Squared Error")
```

Out[52]:

Text(0, 0.5, 'Sum of Squared Error')

