LECTURE 4

SERIES OF GENERAL REAL NUMBERS. POWER SERIES

1. Series of real numbers - the general case

In this section we will analyse series with terms which are not necessarely positive. Before giving some criteria of convergence, let us study a simple example.

Example. The series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ is called the *alternate harmonic series*. It is a convergent series. Indeed, by noting

 $x_n := (-1)^{n+1} \frac{1}{n}, n \in \mathbb{N}^*$, we have for $n, p \in \mathbb{N}^*$

$$\left| x_{n+1} + \dots + x_{n+p} \right| = \left| \left(-1 \right)^{n+2} \frac{1}{n+1} + \left(-1 \right)^{n+3} \frac{1}{n+2} + \dots + \left(-1 \right)^{n+p+1} \frac{1}{n+p} \right|$$
$$= \frac{1}{n+1} - \frac{1}{n+2} + \dots + \left(-1 \right)^{p-1} \frac{1}{n+p} \le \frac{1}{n+1}.$$

Since $\lim_{n\to\infty}\frac{1}{n+1}=0$, for every $\varepsilon>0$, we can find n_{ε} (for instance $n_{\varepsilon}:=\left\lfloor\frac{1}{\varepsilon}\right\rfloor$) such that $\frac{1}{n+1}<\varepsilon$, for every $n\geq n_{\varepsilon}$. Therefore, $\left|x_{n+1}+\cdots+x_{n+p}\right|<\varepsilon$ for every $n\geq n_{\varepsilon}$ and $p\in\mathbb{N}^*$. This implies that the series satisfies the Cauchy test of convergence, so it is convergent.

Moreover, one can prove (exercice!) that its sum is ln 2.

A series $\sum_{n=1}^{\infty} x_n$ such that $x_n \cdot x_{n+1} \le 0$, $\forall n \in \mathbb{N}^*$ is called an *alternate series*. The name "alternate harmonic series" for the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ is therefore consistent with this nomenclature.

1.1. Convergence criteria.

Theorem 1.1 (Dirichlet criterion). Let $(x_n)_{n\geq 1}$ and $(y_n)_{n\geq 1}$ be sequences of real numbers. Let $S_n:=x_1+\cdots+x_n, n\in\mathbb{N}^*$. If

- (i) the sequence $(S_n)_{n\geq 1}$ is bounded;
- (ii) the sequence $(y_n)_{n\geq 1}$ is monotone and $\lim_{n\to\infty} y_n = 0$,

then the series $\sum_{n=1}^{\infty} x_n y_n$ is convergent.

PROOF. Let $m := \inf_{n \in \mathbb{N}} S_n$ şi $M := \sup_{n \in \mathbb{N}} S_n$. Since the sequence (S_n) is bounded, we have that $m, M \in \mathbb{R}$. We can suppose, without loss of generality, that (y_n) is decreasing.

We will apply Cauchy's convergence test to $\sum_{n=1}^{\infty} x_n y_n$. Let $\varepsilon > 0$. There exists $n_{\varepsilon} \in \mathbb{N}^*$ such that $0 < y_n < \frac{\varepsilon}{M-m}$, $\forall n \ge n_{\varepsilon}$. For each $n \ge n_{\varepsilon}$ and $p \in \mathbb{N}^*$ we have

$$\sum_{k=n+1}^{n+p} x_k y_k = \sum_{k=n+1}^{n+p} (S_k - S_{k-1}) y_k = \sum_{k=n+1}^{n+p} S_k y_k - \sum_{k=n}^{n+p-1} S_k y_{k+1} = \sum_{k=n+1}^{n+p-1} S_k (y_k - y_{k+1}) + S_{n+p} y_{n+p} - S_n y_{n+1}.$$

Therefore, since $\sum_{k=n+1}^{n+p-1} (y_k - y_{k+1}) = y_{n+1} - y_{n+p}$,

$$m(y_{n+1} - y_{n+p}) + my_{n+p} - My_{n+1} \le \sum_{k=n+1}^{n+p} x_k y_k \le M(y_{n+1} - y_{n+p}) + My_{n+p} - my_{n+1}.$$

Hence

$$\left|\sum_{k=n+1}^{n+p} x_k y_k\right| < (M-m) \frac{\varepsilon}{M-m} = \varepsilon.$$

Since ε arbitrarely choosen, the series $\sum_{n=0}^{\infty} x_n y_n$ is convergent.

Example. Let us consider the series $\sum_{n=1}^{\infty} \frac{\cos n}{\sqrt{n}}$. In order to apply Dirichlet criterion, it is enough to study the sequence of

partial sums of the series $\sum_{n=1}^{\infty} \cos n$. Let

$$S_n := \cos 1 + \cos 2 + \cdots + \cos n.$$

One can explicitly calculate S_n , by multiplying it with $2 \sin \frac{1}{2}$:

$$2\sin\frac{1}{2} \cdot S_n = 2\cos 1 \cdot \sin\frac{1}{2} + 2\cos 2 \cdot \sin\frac{1}{2} + \dots + 2\cos n \cdot \sin\frac{1}{2}$$

$$= \left[\sin\left(1 + \frac{1}{2}\right) - \sin\left(1 - \frac{1}{2}\right)\right] + \left[\sin\left(2 + \frac{1}{2}\right) - \sin\left(2 - \frac{1}{2}\right)\right] + \dots + \left[\sin\left(n + \frac{1}{2}\right) - \sin\left(n - \frac{1}{2}\right)\right]$$

$$= \sin\left(n + \frac{1}{2}\right) - \sin\left(\frac{1}{2}\right) = 2\sin\frac{n}{2} \cdot \cos\frac{n+1}{2}.$$

We have then

$$|S_n| = \left| \frac{\sin \frac{n}{2} \cdot \cos \frac{n+1}{2}}{\sin \frac{1}{2}} \right| \le \frac{1}{\left| \sin \frac{1}{2} \right|}, \ \forall n \in \mathbb{N}^*,$$

so the sequence $(S_n)_{n\geq 1}$ is bounded. The sequence $\left(\frac{1}{\sqrt{n}}\right)_{n\geq 1}$ is decreasing and convergent to 0; by Dirichlet criterion it follows that the series $\sum_{n=1}^{\infty} \frac{\cos n}{\sqrt{n}}$ is convergent.

Corollary (Leibniz criterion). Let $(x_n)_{n\geq 1}\subseteq \mathbb{R}$ be a monotone sequence with $\lim_{n\to\infty}x_n=0$. Then the alternate series $\sum_{n=1}^{\infty}(-1)^nx_n$ is convergent.

PROOF. In order to apply Dirichlet criterion for the series $\sum_{n=1}^{\infty} (-1)^n x_n$, it is enough to see that the sequence of the partial sums of Grandi series, $\sum_{n=1}^{\infty} (-1)^n$, is bounded.

It is easy now to see, by applying Leibniz criterion, that the alternate harmonic series is convergent.

Theorem 1.2 (Abel criterion). Let $(x_n)_{n\geq 1}$ and $(y_n)_{n\geq 1}$ be sequences of real numbers. If

- (i) the series $\sum_{n=1}^{\infty} x_n$ is convergent;
- (ii) the sequence $(y_n)_{n\geq 1}$ is monotone and bounded,

then the series $\sum_{n=1}^{\infty} x_n y_n$ is convergent.

PROOF. Since $(y_n)_{n\geq 1}$ is monotone and bounded, it is convergent. Let $y\in\mathbb{R}$ be its limit and $\tilde{y}_n:=y_n-y$. Then the sequence $(\tilde{y}_n)_{n\geq 1}$ is monotone with $\lim_{n\to\infty}\tilde{y}_n=0$.

By Dirichlet criterion, the series $\sum_{n=1}^{\infty} x_n \tilde{y}_n$ is convergent $(\sum_{n=1}^{\infty} x_n (C))$ implies, of course, that the sequence of its partial sums is bounded). On the other hand, the series $\sum_{n=1}^{\infty} x_n y$ is also convergent (because $\sum_{n=1}^{\infty} x_n$ is convergent). Summing the two convergent series, we obtain that the series $\sum_{n=1}^{\infty} x_n (\tilde{y}_n + y)$ is convergent, i.e. $\sum_{n=1}^{\infty} x_n y_n (C)$.

1.2. Absolute convergent series.

DEFINITION. We say that a series of real numbers $\sum_{n=1}^{\infty} x_n$ is:

- *a)* absolute convergent, if $\sum_{n=1}^{\infty} |x_n|$ is convergent;
- b) semiconvergent, if $\sum_{n=1}^{\infty} x_n$ is convergent, but $\sum_{n=1}^{\infty} |x_n|$ is divergent.

We sometimes express that $\sum_{n=1}^{\infty} x_n$ is absolute convergent by $\sum_{n=1}^{\infty} x_n$ (AC) and that $\sum_{n=1}^{\infty} x_n$ is semiconvergent by $\sum_{n=1}^{\infty} x_n$ (SC). **Remarks**. For series with positive terms, absolute convergence is equivalent with convergence.

The alternate harmonic series is semiconvergent, because it is convergent and $\sum_{n=1}^{\infty} \left| (-1)^{n+1} \frac{1}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$ is divergent (it is the harmonic series).

Proposition 1.3. If a series of real numbers is absolute convergent, then it is convergent.

PROOF. We will simply apply Cauchy's convergence test. Let $\sum_{n=1}^{\infty} x_n$ be an absolute convergent series. Let $\varepsilon > 0$; since $\sum_{n=1}^{\infty} |x_n|$ (C), we can find $n_{\varepsilon} \in \mathbb{N}^*$ such that

$$|x_{n+1}| + \cdots + |x_{n+p}| < \varepsilon, \ \forall n \ge n_{\varepsilon}, \ \forall p \in \mathbb{N}^*.$$

But $|x_{n+1} + \dots + x_{n+p}| \le |x_{n+1}| + \dots + |x_{n+p}|$, so

$$|x_{n+1} + \cdots + x_{n+p}| < \varepsilon, \ \forall n \ge n_{\varepsilon}, \ \forall p \in \mathbb{N}^*.$$

Applying again Cauchy's test, we deduce that $\sum_{n=1}^{\infty} x_n$ is convergent.

We can now say something about another operation with series, called the *Cauchy product*.

DEFINITION. Let $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ be two series of real numbers. The series $\sum_{n=1}^{\infty} c_n$, where

$$c_n := x_1 y_n + x_2 y_{n-1} + \cdots + x_n y_1,$$

is called the *Cauchy product* of the series $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$.

Of course, this operation between series is commutative. We give, without proof, a criterion of convergence for the Cauchy product of two series.

Theorem 1.4 (Mertens). Let $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ be two series of real numbers. If $\sum_{n=1}^{\infty} x_n$ (AC) and $\sum_{n=1}^{\infty} y_n$ (C), then the Cauchy product of $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ is convergent. Moreover, its sum is equal to the product of the sums of the two series.

This result has a simple consequence, regarding the Cauchy product of two absolute convergent series.

Corollary (Cauchy Theorem). The Cauchy product of two absolute convergent series is absolute convergent.

Remark. The Cauchy product of two convergent series is not necessarely convergent. Let, for $n \in \mathbb{N}$, $x_n := (-1)^n \frac{1}{\sqrt{n+1}}$ and $y_n := x_n$.

By Leibniz criterion, the alternate series $\sum_{n=0}^{\infty} x_n$ and $\sum_{n=0}^{\infty} y_n$ are convergent. We define, for $n \in \mathbb{N}$,

$$c_n := \sum_{k=0}^n x_k y_{n-k} = \sum_{k=0}^n (-1)^n \frac{1}{\sqrt{(k+1)(n-k+1)}} = (-1)^n \sum_{k=0}^n \frac{1}{\sqrt{(k+1)(n-k+1)}}.$$

Since, by mean inequality,

$$\sqrt{(k+1)(n-k+1)} \le \frac{1}{2}[(k+1)+(n-k+1)] = \frac{n+2}{2}, \ \forall k=0,1\ldots,n,$$

we have

$$|c_n| = \sum_{k=0}^n \frac{1}{\sqrt{(k+1)(n-k+1)}} \ge \sum_{k=0}^n \frac{2}{n+2} = \frac{2(n+1)}{n+2}.$$

Therefore $c_n \not \to 0$, hence $\sum_{n=0}^{\infty} c_n$ is clearly not convergent.

1.3. Unconditionally convergent series.

We will now see, still without proofs, under which conditions the nature of a series does not change when we permute its terms.

Theorem 1.5 (Riemann). Let $\sum_{n=1}^{\infty} x_n$ be semiconvergent series. Then, for any $S \in \overline{\mathbb{R}}$ there exists a bijective function (a permutation) $\varphi : \mathbb{N}^* \to \mathbb{N}^*$ such that $\sum_{n=1}^{\infty} x_{\varphi(n)} = S$.

An immediate consequence of the above result, by letting $S = +\infty$ or $S = -\infty$, is that we can permute the terms of a semiconvergent series in order to obtain a divergent one.

DEFINITION. We say that a series of real numbers $\sum_{n=1}^{\infty} x_n$ is unconditionally convergent if for any bijective function $\varphi: \mathbb{N}^* \to \mathbb{N}^*$, the series $\sum_{n=1}^{\infty} x_{\varphi(n)}$ is convergent.

Obviously, by taking $\varphi := \mathbf{1}_{\mathbb{N}^*}$, an unconditionally convergent series is convergent. One can say more, by applying Riemann theorem:

Theorem 1.6. A series $\sum_{n=1}^{\infty} x_n$ is unconditionally convergent if and only if it is absolute convergent. In this case, for every bijective function $\varphi: \mathbb{N}^* \to \mathbb{N}^*$ we have

$$\sum_{n=1}^{\infty} x_{\varphi(n)} = \sum_{n=1}^{\infty} x_n.$$

1.4. p-adic representation of real numbers.

Proposition 1.7. Let $p \in \mathbb{N}^* \setminus \{1\}$ and a sequence $(a_n)_{n \geq 1}$ of natural numbers such that $a_n \leq p-1$, $\forall n \in \mathbb{N}^*$. Then the series

$$\sum_{n=1}^{\infty} \frac{a_n}{p^n}$$

is convergent and its sum is a real number between 0 and 1.

The converse also holds and the result is known as the *p-adic representation of real numbers*.

Theorem 1.8. Let $a \in (0,1]$ and $p \in \mathbb{N}^* \setminus \{1\}$. Then there exists a unique sequence $(a_n)_{n\geq 1}$ of natural numbers satisfying $a_n \leq p-1$, $\forall n \in \mathbb{N}^*$ and $\{n \in \mathbb{N}^* \mid a_n \neq 0\}$ is infinite such that

$$\sum_{n=1}^{\infty} \frac{a_n}{p^n} = a.$$

1.5. Approximation of convergent series.

For an alternate series with its general term converging to 0, we have the following estimate of its sum:

Theorem 1.9. Let $(x_n)_{n\geq 1}\subseteq \mathbb{R}$ be a monotone sequence with $\lim_{n\to\infty}x_n=0$. If we denote by S the sum of the alternate series $\sum_{n=1}^{\infty}(-1)^nx_n$ and by $S_n:=x_1+\cdots+x_n$, $n\in\mathbb{N}^*$, its partial sums, then we have

$$|S_n - S| \leq |x_{n+1}|, \ \forall n \in \mathbb{N}^*.$$

We can also estimate the rate of convergence for a series whose general term decrease exponentially:

Theorem 1.10. Let $\sum_{n=1}^{\infty} x_n$ be a series of real numbers. Let $S_n := x_1 + \cdots + x_n$, $n \in \mathbb{N}^*$.

i) If there exists $n_0 \in \mathbb{N}^*$ and $\lambda < 1$ such that $\sqrt[n]{|x_n|} < \lambda$, $\forall n \ge n_0$, then the series is absolute convergent and, if we denote $S := \sum_{n=1}^{\infty} x_n$,

$$|S_n - S| \le \frac{\lambda^{n+1}}{1-\lambda}, \ \forall n \in \mathbb{N}^*.$$

ii) If there exists $n_0 \in \mathbb{N}^*$ and $\lambda < 1$ such that $\frac{|x_{n+1}|}{|x_n|} < \lambda$, $\forall n \geq n_0$, then the series is absolute convergent and, if we denote $S := \sum_{n=1}^{\infty} x_n$,

$$|S_n - S| \le \frac{|x_{n+1}|}{1 - \lambda}, \ \forall n \in \mathbb{N}^*.$$

2. Power series

2.1. Uniform convergence.

Let us introduce first, by analogy with sequences of functions, the notion of uniform convergence for series of functions. If $(f_n)_{n\geq 1}$ is a sequence of functions from a set E to \mathbb{R} , by the series of functions $\sum_{n=1}^{\infty} f_n$ we understand the sequence of functions $(S_n)_{n\geq 1}$, where the functions $S_n: E \to \mathbb{R}$, $n \in \mathbb{N}^*$ are the partial sums of the series $\sum_{n=1}^{\infty} f_n$, defined by

$$S_n(x) := f_1(x) + \cdots + f_n(x), x \in E.$$

DEFINITION. Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of functions from a set E to \mathbb{R} and $D\subseteq E$. Let $(S_n)_{n\geq 1}$ be the sequence of the partial sums of $\sum_{n=1}^{\infty} f_n$.

a) We say that $\sum_{n=1}^{\infty} f_n$ converges pointwise on D if $\sum_{n=1}^{\infty} f_n(x)$ is convergent for every $x \in D$, i.e. there exists a function $S: D \to \mathbb{R}$ such that $S_n \xrightarrow{p} S$. In this case we will write

$$\sum_{n=1}^{\infty} f_n = S \text{ on } D.$$

b) We say that $\sum_{n=1}^{\infty} f_n$ converges uniformly on D if there exists a function $S: D \to \mathbb{R}$ such that $S_n \xrightarrow{u} S$, i.e.

$$\forall \varepsilon > 0, \ \exists n_{\varepsilon} \in \mathbb{N}^*, \ \forall n \geq n_{\varepsilon}, \ \forall x \in D : \left| \sum_{k=1}^n f_k(x) - S(x) \right| < \varepsilon.$$

In the case we will write

$$\sum_{n=1}^{\infty} f_n(x) = S(x) \text{ (UC)}, \ x \in D.$$

As in the case of numeric series, we have a Cauchy test for uniform convergence:

Theorem 2.1 (Cauchy test of uniform convergence). Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of functions from a set E to \mathbb{R} and $D\subseteq E$. Then $\sum_{n=1}^{\infty} f_n$ converges uniformly on D if and only if

$$\forall \varepsilon > 0, \ \exists n_{\varepsilon} \in \mathbb{N}, \ \forall n \geq n_{\varepsilon}, \ \forall p \in \mathbb{N}^*, \ \forall x \in D : \left| f_{n+1}(x) + \cdots + f_{n+p}(x) \right| < \varepsilon.$$

2.2. Power series.

DEFINITION. Let $(a_n) \subseteq \mathbb{R}$ be a sequence and $x_0 \in \mathbb{R}$. The series $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ with parameter $x \in \mathbb{R}$ is called the *power series* centered in x_0 , with coefficients a_n , $n \in \mathbb{N}$. The set of those $x \in \mathbb{R}$ for which the series $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ is convergent (absolute convergent) is called the *domain of convergence* (*domain of absolute convergence*) of the power series.

It is clear that the power series $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ can be seen as a series of functions $\sum_{n=0}^{\infty} f_n$, where the functions $f_n: \mathbb{R} \to \mathbb{R}$, $n \in \mathbb{N}$ are defined by

$$f_n(x) := a_n(x - x_0)^n, x \in \mathbb{R}.$$

We will sometimes denote D_c and D_{ac} the domain of convergence, respectively the domain of absolute convergence of the power series $\sum_{n=0}^{\infty} a_n (x-x_0)^n$.

For the sequel, we will suppose that $x_0 = 0$. This is not a restriction of the generality, since any power series $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ can be brought to the form $\sum_{n=0}^{\infty} \tilde{a}_n x^n$, with different coefficients \tilde{a}_n , $n \in \mathbb{N}$.

Theorem 2.2. Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series. Then there exists a unique $r \in [0, +\infty]$, called radius of convergence of

$$\sum_{n=0}^{\infty} a_n x^n$$
, such that

$$(-r,r) \subseteq D_{ac} \subseteq D_c \subseteq [-r,+r] \tag{*}$$

Moreover, we have:
i)
$$r = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}$$
;

- ii) the series $\sum_{n=0}^{\infty} a_n x^n$ is uniformly convergent with respect to $x \in [a,b]$, for any $a,b \in D_{ac}$ with $a \le b$;
- iii) the function $S: D_c \to \mathbb{R}$, defined as

$$S(x) := \sum_{n=0}^{\infty} a_n x^n, \ x \in D_c$$

is continuous.

The last part of this result is also called *Abel theorem*.

Let us discuss some aspects concerning this theorem. Relation (*) tells us that the series $\sum_{n=0}^{\infty} a_n x^n$ is absolutely convergent for any $x \in (-r, r)$ and it is divergent for any $x \in \mathbb{R} \setminus [-r, r]$. When r = 0, the only point of (absolute) convergence for $\sum_{n=0}^{\infty} a_n x^n$ is x=0 (in this case, $D_c=\{0\}$). If $r=+\infty$, the series is absolutely convergent (and, therefore, convergent)

Also, the sets D_{ac} and D_{c} are intervals in \mathbb{R} , with D_{ac} being symmetric ($x \in D_{ac} \Rightarrow -x \in D_{ac}$).

When the limit $l := \lim_{n \to +\infty} \sqrt[n]{|a_n|}$ exists, the radius of convergence is precisely $r := \frac{1}{l}$. In particular, if $a_n \neq 0$,

 $\forall n \in \mathbb{N}$, the existence of $\lambda \coloneqq \lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|}$ implies that $\lim_{n \to +\infty} \sqrt[n]{|a_n|} = \lambda$ and, consequently, $r \coloneqq \frac{1}{\lambda}$.

The continuity on (-r,r) of the function S defined in iii) can be easily retrived from ii), by the transfer of the continuity carried by the uniform convergence. Abel theorem insures that S is also continuous in the extremities of the interval [-r, r] (of course, in the case $r < +\infty$) for which the power series might converge.

Examples. In the following we present some examples of power series of the form $\sum_{n=0}^{\infty} a_n x^n$.

- 1. The *null series*: $a_n := 0$, $n \in \mathbb{N}$. We have $r = +\infty$, $D_{ac} = D_c = \mathbb{R}$. 2. The *geometric series*, $\sum_{n=0}^{\infty} x^n$. We have r = 1, $D_{ac} = D_c = (-1, 1)$.
- 3. The series $\sum_{n=0}^{\infty} n! x^n$: r = 0, $D_{ac} = D_c = \{0\}$.
- 4. The series $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} x^n$, with $\alpha \in \mathbb{R}$. We have r = 1 and

 - $D_{ac} = \begin{cases} (-1,1), & \alpha \leq 1; \\ [-1,1], & \alpha > 1; \end{cases}$ $D_{c} = \begin{cases} (-1,1), & \alpha \leq 0; \\ [-1,1), & \alpha \in (0,1]; \\ [-1,1], & \alpha > 1. \end{cases}$
- 5. The exponential series, $\sum_{n=0}^{\infty} \frac{x^n}{n!}$. We have $r=+\infty$, $D_{ac}=D_c=\mathbb{R}$. Also,

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x, \ \forall x \in \mathbb{R}.$$

6. The trigonometric series, $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$ and $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$. Again we have $r=+\infty$, $D_{ac}=D_c=\mathbb{R}$. Also,

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = \sin x, \ \forall x \in \mathbb{R};$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = \cos x, \ \forall x \in \mathbb{R}.$$

7. The *binomial series*. For $n \in \mathbb{N}$ and $\alpha \in \mathbb{R} \setminus \{n + p \mid p \in \mathbb{N}\}$, we define

$$C_{\alpha}^{n} := \left\{ \begin{array}{ll} \frac{\alpha \cdot \cdots \cdot (\alpha - n + 1)}{n!}, & n > 0; \\ 1, & n = 0 \end{array} \right.$$

(therefore, C_{α}^{n} is now defined for any $n \in \mathbb{N}$ and $\alpha \in \mathbb{R}$). The series $\sum_{n=0}^{\infty} C_{\alpha}^{n} x^{n}$, where $\alpha \in \mathbb{R}$, is called the *binomial series* (*of parameter* α). We have:

- if $\alpha \in \mathbb{N}$: $r = +\infty$, $D_{ac} = D_c = \mathbb{R}$;
- if $\alpha \le -1$: r = 1, $D_{ac} = D_c = (-1, 1)$;
- if $\alpha \in (-1,0)$: r = 1, $D_{ac} = (-1,1)$, $D_c = (-1,1]$; if $\alpha \in \mathbb{R} \setminus \mathbb{N}$, $\alpha > 0$, then r = 1, $D_{ac} = D_c = [-1,1]$.

Moreover, for any $\alpha \in \mathbb{R}$,

$$\sum_{n=0}^{\infty} C_{\alpha}^{n} x^{n} = (1+x)^{\alpha}, \ \forall x \in D_{c}.$$

This generalizes the binomial formula, already know for $\alpha \in \mathbb{N}$, hence the name.

SELECTIVE BIBLIOGRAPHY

- [1] D. Bușneag, D. Piciu, Lecții de algebră, Ed. Universitaria, Craiova, 2002.
- [2] C. G. Denlinger, Elements of Real Analysis, International Series in Mathematics, Jones and Bartlett Publishers International, London, 2012.
- [3] M. O. Drâmbe, Inegalități. Idei și metode., Ed. GIL, Zalău, 2003.
- [4] R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iași, 2005.
- [5] G. Păltineanu, Analiză matematică. Calcul diferențial, Editura AGIR, București, 2002.
- [6] M. Postolache, Analiză matematică (teorie și aplicații), Ed. Fair Partners, București, 2011.
- [7] A. Precupanu, Bazele analizei matematice, Editura Polirom, Iaşi, 1998.