CONCURSUL NAȚIONAL DE MATEMATICA "PANAITOPOL"

EDIŢIA a VIII-a, TULCEA, 2 aprilie 2016

Clasa a VII - a

Soluții orientative și bareme

Problema 1.

- **1.** a) Determinați numerele naturale nenule n care au proprietatea că $d^2 + 1$ este număr prim pentru orice divizor d al lui n.
- **b)** Determinați numerele naturale nenule n care au proprietatea că $d^2 + 2$ este număr prim pentru orice divizor d al lui n.

a) Avem $n=2^a\cdot q$ unde $a\in\mathbb{N}$ și impar, Dacă $q>1$, atunci q^2+1 este par și mai mare decât 2. Cum $q\mid n$ ajungem la contradicție. Deducem că $n=2^a$.	2 p
Pentru $a \in \{0,1,2\}$, obținem $n \in \{1,2,4\}$. Pentru $a \ge 3$, numărul 2^a se divide cu 8. Cum $8^2 + 1 = 65$ nu este prim, nu mai avem soluții.	1p
b) Numărul n este impar, deci este de forma $n = 3^b \cdot p$, unde $b \in \mathbb{N}$, iar p este un număr impar nedivizibil cu 3. Dacă $p > 1$, atunci $p^2 + 1 > 3$ și se divide cu 3, fapt care nu convine cerinței. Deducem că $n = 3^b$. Pentru $b \in \{0,1,2\}$, obținem $n \in \{1,3,9\}$	2 p
Pentru $b \ge 3$, numărul 3^b se divide cu 27, iar $27^2 + 2 = 731 = 17 \cdot 43$, deci nu mai avem soluții.	2p

Problema 2.

Demonstrați că dacă $a = \underbrace{\overline{99...9}}_{4n \text{ cifre}}$ și $b = \underbrace{\overline{33...3}}_{2n \text{ cifre}}$, atunci numărul N = a + 6b + 4 este pătrat perfect.

Prof. Tanța Costea

Observăm că $a = 10^{4n} - 1$, iar $3b = 10^{2n} - 1$	3p	
Atunci $N = 10^{4n} - 1 + 2 \cdot 10^{2n} - 2 + 4 = (10^{2n} + 1)^2$	4p	

Problema 3.

Pentru fiecare
$$k \in \mathbb{N}^*$$
 definim numerele $a_k = 2k + (-1)^k \cdot \frac{1 + 2 + 3 + \ldots + 2k}{\sqrt{1 + 3 + 5 + \ldots + (2k - 1)}}$ și

$$S_k = a_1 + a_2 + \ldots + a_{2k}$$

- a) Arătați că $S_1 = 8$;
- **b**) Determinați $k \in \mathbb{N}^*$ pentru care numărul S_k este divizor al lui 2016.

Prof. Tanța Costea

a) Avem $\sqrt{1+3+5++(2k-1)} = \sqrt{k^2} = k$, iar $1+2+3++2k = k(2k+1)$	1p
Obţinem $a_k = \begin{cases} -1, k \text{ impar} \\ 4k+1, k \text{ par} \end{cases}$	1p
$S_1 = a_1 + a_2 = -1 + 9 = 8$	1p
$\mathbf{b)} \ S_k = 4k\left(k+1\right)$	2 p
$4k(k+1)$ 2016 rezultă $k \in \{1, 2, 3, 6, 7, 8\}$	2 p

Problema 4.

Se consideră triunghiul ascuţitunghic ABC și D piciorul ânălţimii din A. Punctul M este situat pe segmentul AD astfel încât $AM = CD \over DM = BD$. Arătaţi că, dacă N este piciorul perpendicularei din D pe BM, atunci $AN \perp NC$.

elevă Ana Maria Radu, 2013

Fie P punctul de intersecție a paralelei prin A la dreapta BC cu dreapta BM .	
Triunghiurile AMP și DMP sunt asemenea, deci $\frac{AM}{MD} = \frac{AP}{BD}$.	3p
$Cum \frac{AM}{DM} = \frac{CD}{BD}, rezultă că AP = CD$	
Deducem că patrulaterul <i>ADCP</i> este dreptunghi.	2p
Fie $\{O\} = AC \cap DP$. Avem $NO = \frac{PD}{2} = \frac{AC}{2}$. Cum $[ND]$ este mediană în	2 p
triunghiul ANC , deducem că $AN \perp NC$.	

CONCURSUL NAȚIONAL DE MATEMATICA "PANAITOPOL"

EDIȚIA a VIII-A, TULCEA, 2aprilie 2016

Soluții orientative și bareme

Clasa a VIII-a

Problema 1.

1. Determinați numerele naturale nenule n care au k divizori naturali, $d_1,d_2,...,d_k$, $k \ge 4$, cu $1=d_1 < d_2 < ... < d_k = n$, știind că $d_i + d_{i+1} + d_{i+2} = d_{i+3}$ pentru oricare $i=\overline{1,k-3}$.

Lucian Petrescu, Mircea Fianu

Fie 1, x , y și z primii cei mai mici divizori ai lui n . Atunci numerele $\frac{n}{z}$, $\frac{n}{y}$, $\frac{n}{x}$ și n	
sunt, în ordine cei mai mari divizori ai lui <i>n</i> .	2p
Prin urmare $\frac{n}{z} + \frac{n}{y} + \frac{n}{x} = n$, echivalent cu $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$.	
Obţinem $x = 2$, $y = 3$, $z = 6$. Deducem că n se divide cu 6 .	3 p
Dacă $n > 6$, atunci numărul $2+3+6=11$ îl divide pe n și cum n se divide cu 2 ,	
înseamnă că $n \ge 22$. Înseamnă că numărul $3+6+11=20$ îl divide pe n .	2p
Ca urmare 4 îl divide pe n . Contradicție, căci $3 < 4 < 6$. Rezultă $n = 6$	

Problema 2.

Arătați că, dacă x, y > 0 și x + y = 1, atunci au loc inegalitățile:

$$\sqrt{3} \le \sqrt{x^2 + y} + \sqrt{x + y^2} < 2$$
.

Lucian Petrescu

Avem	
$\left[E(x,y)\right]^2 = \left(\sqrt{x^2 + y} + \sqrt{x + y^2}\right)^2 = x^2 + y^2 + x + y + 2\sqrt{x^3 + y^3 + xy + x^2y^2},$	2
echivalent cu $[E(x,y)]^2 = 1 + (x+y)^2 - 2xy + 2\sqrt{1 - 2xy + x^2y^2}$ sau	3p
$[E(x,y)]^2 = 2(1-xy)+2(1-xy)=4(1-xy)<4$, deoarece $xy<1$.	
. Pe de altă parte, din inegalitatea mediilor, obținem $xy \le \frac{1}{4}$, deci	4 p
Obţinem $3 \le E(x, y)^2 < 4$, de unde rezultă concluzia.	

Problema 3.

Să se determine numerele naturale nenule a,b, c și d, a < b < c < d, care verifică simultan egalitățile a+b+c=d și $a^3+b^3+c^3=d^2$.

Lucian Petrescu, Mircea Fianu

Avem $a^3 + b^3 + c^3 = (a+b+c)^2 < 3(a^2+b^2+c^2)$	2p
Dacă $a \ge 3$, atunci $a^3 + b^3 + c^3 > 3(a^2 + b^2 + c^2)$, rezultă $a \le 2$.	1p

Pe de altă parte, $d^2 = a^3 + b^3 + c^3 > \frac{(a+b+c)(a^2+b^2+c^2)}{3} = \frac{d}{3} \cdot (a^2+b^2+c^2)$	2p
Deci $3d > a^2 + b^2 + c^2$. Dar $a^2 + b^2 + c^2 > \frac{(a+b+c)^2}{3} = \frac{d^2}{3}$. Obţinem $d < 9$,	2 p
adică $d \leq 8$.	
Dacă $a=2$ și $d \le 8$, atunci $b+c \le 6$, contradicție.	
Dacă $a=1$, obținem $b=2$ și $c=3$.	

Problema 4.

Se consideră o prismă dreaptă $A_1A_2...A_nA_1'A_2'...A_n'$, $n\geq 3$, având baza un poligon regulat. Se știe că $m(A_1A_2', A_2A_3') = m(A_1A_2', A_2'A_3)$. a) Arătați că n = 4;

- **b**) Dacă $m(A_2A_3', A_2'A_3) = 60^\circ$ și $A_1A_2 = a$, exprimați volumul prismei.

Mircea Fianu

a) Fie P simetricul punctului A_3 în raport cu A_2 . Triunghiurile $A_1A_2'A_3$ și $A_1A_2'P$ sunt	
congruente, deci $A_1A_3=A_1P$. Cum $A_2P=A_2A_3$, rezultă că $A_1A_2\perp PA_3$. Deducem	3 p
că paza prismei este pătrat.	
b) Se consider cazurile : $m(A_2OA_3) = 60^\circ$ și $m(A_2OA_3) = 120^\circ$	4 p

CONCURSUL NAȚIONAL DE MATEMATICĂ "LAURENȚIU PANAITOPOL"

TULCEA, 2 APRILIE 2016

SOLUȚII ȘI BAREME ORIENTATIVE DE CORECTARE

Clasa a IX-a

Problema 1. Considerăm mulțimea $A_n = \left\{ x \in \mathbb{R} \mid \frac{|x|}{\{x\}} = n \right\}$, cu n număr natural. a) Determinați A_3 . b) Arătați că A_n este infinită dacă și numai dacă n = 0. Pepino Dincă, Caracal Soluție. a) Dacă $x \in A_3$, atunci $[x] = 3\{x\}$ și, cum $0 \leqslant \{x\} < 1$, rezultă că $[x] \in [0,3), \text{ deci } [x] \in \{0,1,2\}.$ $\text{Cum } \{x\} \neq 0, \text{ se obţine } A_3 = \left\{\frac{4}{3}, \frac{8}{3}\right\}.$ $\text{Dacă } n \neq 0, \text{ se obţine } A_n = \left\{\frac{k(n+1)}{n} \mid k \in \{1,2,\ldots,n-1\}\right\}.$ $\text{Pentru } n = 0, \text{ avem } A_0 = (0,1), \text{ de unde concluzia.}$ 2p**Problema 2.** Fie ABCD un patrulater convex, cu $\{O\} = AC \cap BD$, şi punctele $M \in (AD), \, N \in (BC)$ astfel încât $\frac{MA}{MD} = \frac{NC}{NB}.$ a) Arătați că dacă $O \in MN$, atunci $AD \parallel BC$ (ABCD este trapez sau paralelogram). b) Arătați că dacă O este mijlocul segmentului [MN], atunci ABCD este paralelogram. Adrian Stroe, Caracal $Soluţie. \ \mathbf{a}) \ \text{Notând} \ \frac{MA}{MD} = \frac{NC}{NB} = k > 0, \ \text{rezultă} \ \overrightarrow{OM} = \frac{1}{1+k}\overrightarrow{OA} + \frac{k}{1+k}\overrightarrow{OD} \ \Si \ \overrightarrow{ON} = \frac{1}{1+k}\overrightarrow{OC} + \frac{k}{1+k}\overrightarrow{OD} \ \Si \ \overrightarrow{ON} = \frac{1}{1+k}\overrightarrow{OC} + \frac{k}{1+k}\overrightarrow{OD} \ \Si \ \overrightarrow{OO} \ Sunt coliniari, există \ a \in \mathbb{R} \ \text{astfel încât} \ \overrightarrow{OA} = a \overrightarrow{OC} \Si,$ Atunci $\overrightarrow{OM} = \frac{a}{1+k}\overrightarrow{OC} + \frac{b}{1+k}\overrightarrow{OB}$ şi, din proporţionalitatea coordonatelor vectorilor coliniari \overrightarrow{OM} şi \overrightarrow{ON} descompuşi în funcţie de vectorii \overrightarrow{OC} şi \overrightarrow{OB} , rezultă $a = b \dots \mathbf{1p}$ De aici obţinem $\overrightarrow{AD} = \overrightarrow{OD} - \overrightarrow{OA} = a \overrightarrow{OB} - a \overrightarrow{OC} = a \overrightarrow{CB}$, deci $AD \parallel BC \dots \mathbf{1p}$ **b)** Dacă O este mijlocul lui [MN], atunci $\overrightarrow{OM} = -\overrightarrow{ON}$ și, egalând coordonatele vectorilor \overrightarrow{OM} și $-\overrightarrow{ON}$ (vezi exprimările de mai sus), rezultă a=b=-1......1p Ca urmare, $\overrightarrow{OA} = -\overrightarrow{OC}$ și $\overrightarrow{OD} = -\overrightarrow{OB}$, deci O este mijlocul diagonalelor [AC] și

Problema 3. Dacă a, b sunt numere reale pozitive cu a + b = 1, arătați că

$$7(a^4 + b^4) - 4(a^7 + b^7) \geqslant \frac{13}{16}.$$

Marius Perianu, Slatina

Problema 4. Determinați termenul general al șirului de numere naturale nenule $(a_n)_{n\geqslant 1}$, știind că a_1 este impar și că are loc relația $\frac{a_n^2}{2n+a_n}-\frac{n}{a_n}=\frac{a_{n+1}-4}{3}$, pentru orice număr natural $n\geqslant 1$.

Pepino Dincă, Caracal

Clasa a 10-a

Problema 1. Fie r o rădăcină complexă a ecuației $z^2+z+1=0$ și a,b,c trei numere complexe nenule care au același modul și verifică relația $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=3r$. Demonstrați că $a^{2016}=b^{2016}=c^{2016}$.
Soluție. Avem $ a/b = b/c = c/a =1$ și $ a/b + b/c + c/a =3 r =3$ ${\bf 2p}$ Deoarece suma modulelor unor numere complexe este egală cu modulul sumei lor dacă și numai dacă ele corespund unor vectori cu aceeași direcție și $ a/b = b/c = c/a $, rezultă $a/b=b/c=c/a$
Altă soluție. Luând conjugate obținem $\frac{b}{a} + \frac{c}{b} + \frac{a}{c} = 3\bar{r} = 3r^2$
Problema 2. Rezolvați în \mathbb{R} ecuația $x^{\log_{16} x} = 4 - 8x$.
Soluție. Observăm că ecuația are soluția $\frac{1}{4}$
Problema 3. Fie p, m, n numere naturale nenule, cu $m \leq n$. Determinați numărul p -uplurilor de mulțimi (X_1, X_2, \dots, X_p) care verifică simultan relațiile: i) $X_1 \cup X_2 \cup \dots \cup X_p = \{1, 2, \dots, n\}$; ii) mulțimea $X_1 \cap X_2 \cap \dots \cap X_p$ are m elemente.
Soluție. Cele m elemente comune pot fi alese în C_n^m moduri
Problema 4. Fie $ABCD$ un patrulater convex, \mathcal{P} perimetrul său şi G centrul său de greutate (punctul al cărui afix g verifică relația $4g = a + b + c + d$, unde a, b, c, d sunt afixele vârfurilor A, B, C , respectiv D). a) Arătați că $GA + GB + GC + GD < \mathcal{P}$. b) Arătați că, dacă $ABCD$ este paralelogram, atunci $MA + MB + MC + MD < \mathcal{P}$, pentru orice punct M din interiorul lui $ABCD$.
Soluție. a) $GA = g - a = \frac{1}{4} b + c + d - 3a < \frac{1}{4}(b - a + c - a + d - a) < \frac{1}{4}(2 b - a + c - b + d - a) = \frac{1}{4}(2AB + BC + AD)$; prin adunare cu analoagele obținem concluzia cerută
b) Observăm că, dacă T este un punct al suprafeței triunghiulare $[XYZ]$, diferit de vârfuri şi $\{T'\} = YT \cap XZ$, atunci $TY + TZ \leq T'Y + T'Z < XY + XZ \dots 1\mathbf{p}$ Deoarece M aparține uneia dintre suprafețele triunghiulare $[ABC]$, $[ADC]$ rezultă $MA + MC < AB + BC$, analog $MB + MD < AB + BC$, de unde concluzia $\mathbf{2p}$

CONCURSUL NAȚIONAL DE MATEMATICĂ

"LAURENŢIU PANAITOPOL"

TULCEA, 2 APRILIE 2016

SOLUȚII ȘI BAREME ORIENTATIVE DE CORECTARE

Clasa a XI-a

b) Arătați că dacă
$$J \in \mathcal{M}_n(\mathbb{Q}), J = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ \dots & \dots & \dots \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$
 și există $X \in \mathcal{M}_n(\mathbb{Q}),$

astfel încât $X^2 = J$, atunci n este pătrat perfect.

Soluție. a) Considerăm de exemplu $A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix} \dots 2\mathbf{p}$

Apoi cum tr(J) = n şi $tr(J) = \lambda_1 + \ldots + \lambda_n$, unde $\lambda_1, \ldots, \lambda_n$ sunt valorile proprii ale matricei J, rezultă că $\lambda_1 + \ldots + \lambda_n = n$, care conduce la $\lambda_1 = \ldots = \lambda_{n-1} = 0$ şi $\lambda_n = n \ldots \ldots 2\mathbf{p}$

Problema 2. Fie $A \in \mathcal{M}_2(\mathbb{R})$ cu $A^2 = O_2$. Arătați că pentru orice matrice $B \in \mathcal{M}_2(\mathbb{R})$ au loc inegalitățile $\det(AB - BA) \leq 0 \leq \det(AB + BA)$

Soluție. Folosind faptul că $\det(A + xB) = \det A + (\operatorname{Tr} A \cdot \operatorname{Tr} B - \operatorname{Tr} (AB)) \cdot x + (\det B) \cdot x^2$ obținem $\det(AB + xBA) = \det(AB) + (\operatorname{Tr} (AB) \cdot \operatorname{Tr} (BA) - \operatorname{Tr} (AB \cdot BA)) \cdot x + \det(BA) \cdot x^2 = \det(AB) + [(\operatorname{Tr} (AB))^2 - \operatorname{Tr} (A^2B^2)] \cdot x + \det(BA) \cdot x^2 = \det(AB) + (\operatorname{Tr} (AB))^2 \cdot x + \det(BA) \cdot x^2 \dots 4\mathbf{p}$ $A^2 = O_2 \Rightarrow \det A = 0 \Rightarrow \det(AB) = \det A \cdot \det B = 0 \dots \mathbf{1p}$ $x = -1 \Rightarrow \det(AB - BA) = 2 \det(AB) - (\operatorname{Tr} (AB))^2 = -(\operatorname{Tr} (AB))^2 \leqslant 0 \dots \mathbf{1p}$ $x = 1 \Rightarrow \det(AB + BA) = 2 \det(AB) + (\operatorname{Tr} (AB))^2 = (\operatorname{Tr} (AB))^2 \geqslant 0 \dots \mathbf{1p}$

Problema 3. Fie $(a_n)_{n\geqslant 1}$ un şir convergent de numere reale pozitive. Calculați $\lim_{n\to\infty}\sum_{k=1}^n\frac{k}{n^2+a_k}$

Florian Dumitrel, Slatina

Florian Dumitrel, Slatina

Clasa a 12-a

Problema 1. Determinaţi toate polinoamele de forma $f = X^n + a_1 X^{n-1} + a_2 X^{n-2} + a_1 X^{n-1} + a_2 X^{n-2} + a_1 X^{n-1} + a_2 X^{$
$\ldots + a_n$ (unde $n \in \mathbb{N}^*$), cu $a_k \in \{-1, 1\}, k = 1, 2, \ldots, n$, care au toate rădăcinile reale.
Soluție. Avem $x_1^2 cdots x_n^2 = a_n^2 = 1$ și $x_1^2 + cdots + x_n^2 = a_1^2 - 2a_2 \le 3 cdots cdots 2\mathbf{p}$ Folosind inegalitatea mediilor rezultă $3 \ge x_1^2 + cdots + x_n^2 \ge n \sqrt[n]{x_1^2 cdots x_n^2} = n$, deci $n \le 3 cdots cdot$
$n \le 3$
Problema 2. a) Demonstrați că orice inel cu 6 elemente este izomorf cu $(\mathbb{Z}_6, +, \cdot)$. b) Este adevărat că orice inel cu 4 elemente este izomorf cu $(\mathbb{Z}_4, +, \cdot)$?
Soluție. a) Ordinul lui 1 în grupul aditiv $G=(A,+)$ al inelului este un divizor al lui 6, deci poate fi 2, 3 sau 6
adunarea polinoamelor şi înmulţirea modulo $(X^2 + X + \hat{1})$, care se poate descrie prin $(aX + b) \circ (cX + d) = (bc + ad + ac)X + bd + ac \dots 2p$
$(ax + b) \circ (cx + a) = (bc + aa + ac)x + ba + ac$
Problema 3. Demonstrați că există o funcție unică $f: \mathbb{R} \to \mathbb{R}$ astfel încât $f^3(x) + 2f(x) = x$, oricare ar fi $x \in \mathbb{R}$. Arătați că f este integrabilă și calculați $\int_0^3 f(x) dx$.
Problema 3. Demonstrați că există o funcție unică $f: \mathbb{R} \to \mathbb{R}$ astfel încât $f^3(x)$ +
Problema 3. Demonstrați că există o funcție unică $f: \mathbb{R} \to \mathbb{R}$ astfel încât $f^3(x) + 2f(x) = x$, oricare ar fi $x \in \mathbb{R}$. Arătați că f este integrabilă și calculați $\int_0^3 f(x) dx$. Soluție. Condiția se scrie $g(f(x)) = x$, unde $g: \mathbb{R} \to \mathbb{R}$, $g(t) = t^3 + 2t$. Cum g este bijectivă, f este chiar inversa lui g . De asemenea f este continuă (fiind inversa unei funcții continue), deci integrabilă
Problema 3. Demonstrați că există o funcție unică $f: \mathbb{R} \to \mathbb{R}$ astfel încât $f^3(x) + 2f(x) = x$, oricare ar fi $x \in \mathbb{R}$. Arătați că f este integrabilă și calculați $\int_0^3 f(x) \mathrm{d}x$. Soluție. Condiția se scrie $g(f(x)) = x$, unde $g: \mathbb{R} \to \mathbb{R}$, $g(t) = t^3 + 2t$. Cum g este bijectivă, f este chiar inversa lui g . De asemenea f este continuă (fiind inversa unei funcții continue), deci integrabilă
Problema 3. Demonstraţi că există o funcţie unică $f: \mathbb{R} \to \mathbb{R}$ astfel încât $f^3(x) + 2f(x) = x$, oricare ar fi $x \in \mathbb{R}$. Arătaţi că f este integrabilă şi calculaţi $\int_0^3 f(x) \mathrm{d}x$. Soluţie. Condiţia se scrie $g(f(x)) = x$, unde $g: \mathbb{R} \to \mathbb{R}$, $g(t) = t^3 + 2t$. Cum g este bijectivă, f este chiar inversa lui g . De asemenea f este continuă (fiind inversa unei funcţii continue), deci integrabilă
Problema 3. Demonstrați că există o funcție unică $f: \mathbb{R} \to \mathbb{R}$ astfel încât $f^3(x)+2f(x)=x$, oricare ar fi $x\in \mathbb{R}$. Arătați că f este integrabilă și calculați $\int_0^3 f(x) \mathrm{d}x$. Soluție. Condiția se scrie $g(f(x))=x$, unde $g: \mathbb{R} \to \mathbb{R}$, $g(t)=t^3+2t$. Cum g este bijectivă, f este chiar inversa lui g . De asemenea f este continuă (fiind inversa unei funcții continue), deci integrabilă