Computer Vision HW2 Report

Student ID: R11528025

Name: 劉容綺

Part 1. (10%)

• Plot confusion matrix of two settings. (i.e. Bag of sift and tiny image) (5%) Ans:

• Compare the results/accuracy of both settings and explain the result. (5%)

Ans:

Accuracy		
tiny image	0.2186	
Bag of sift	0.642	

如預期,Tiny Image 的準確性遠低於 Bag of SIFT,因為 Tiny Image 特徵僅捕獲非常基本的圖像特徵,例如顏色分佈和亮度,而 Bag of SIFT 特徵捕獲更詳細和有鑑別力的特徵,例如紋理和局部形狀信息。在產生 test_image_feats.pkl 與 train_image_feats.pkl 的過程非常漫長,可能是我的寫法或電腦性能的問題,也有時出現 RAM 記憶體不足的情況,後來我透過提高 build_vocabulary 的 step sample,調整 vocab size 和 batch size 來提高準確度。

Part 2. (25%)

• Report accuracy of both models on the validation set. (2%)

Ans:

Accuracy		
MyNet	0.85	

ResNet18 0.9184

• Print the network architecture & number of parameters of both models. What is the main difference between ResNet and other CNN architectures? (5%)
Ans:

MyNet:

Layer (type)	Output Shape	Param #
=======================================		
Conv2d-1	[-1, 32, 32, 32]	896
BatchNorm2d-2	[-1, 32, 32, 32]	64
ReLU-3	[-1, 32, 32, 32]	0
Conv2d-4	[-1, 32, 32, 32]	9,248
BatchNorm2d-5	[-1, 32, 32, 32]	64
ReLU-6	[-1, 32, 32, 32]	0
MaxPool2d-7	[-1, 32, 16, 16]	0
Conv2d-8	[-1, 64, 16, 16]	18,496
BatchNorm2d-9	[-1, 64, 16, 16]	128
ReLU-10	[-1, 64, 16, 16]	0
Conv2d-11	[-1, 64, 16, 16]	36,928
BatchNorm2d-12	[-1, 64, 16, 16]	128
ReLU-13	[-1, 64, 16, 16]	0
MaxPool2d-14	[-1, 64, 8, 8]	0
Conv2d-15	[-1, 128, 8, 8]	73,856
BatchNorm2d-16	[-1, 128, 8, 8]	256
ReLU-17	[-1, 128, 8, 8]	0
Conv2d-18	[-1, 128, 8, 8]	147,584
BatchNorm2d-19	[-1, 128, 8, 8]	256
ReLU-20	[-1, 128, 8, 8]	0
MaxPool2d-21	[-1, 128, 4, 4]	0
Linear-22	[-1, 512]	524,800
BatchNorm1d-23	[-1, 512]	1,024
ReLU-24	[-1, 512]	0
Linear-25	[-1, 10]	5,130

Total params: 819,594

Trainable params: 819,594
Non-trainable params: 0

ResNet:

Layer (type:depth-idx)	Output Shape	Param #			
ResNet18					
├Sequential: 1-1	[1, 512, 1, 1]				
Conv2d: 2-1	[1, 64, 32, 32]	1,728			
□BatchNorm2d: 2-2	[1, 64, 32, 32]	128			
	[1, 64, 32, 32]				
	[1, 64, 32, 32]				
Sequential: 2-5	[1, 512, 1, 1]				
	[1, 64, 32, 32]	75,136			
	[1, 64, 32, 32]	73,856			
	[1, 128, 16, 16]	230,144			
	[1, 256, 8, 8]	919,040			
BasicBlock: 3-5	[1, 512, 4, 4]	3,673,088			
AdaptiveAvgPool2d: 2-6	[1, 512, 1, 1]				
└Linear: 2-7	[1, 10]	5,130			
=======================================					
Total params: 4,903,114					
Trainable params: 4,903,114					
Non-trainable params: 0					
Total mult-adds (M): 238.21					

 \bullet Plot four learning curves (loss & accuracy) of the training process (train/validation) for both models. Total 8 plots. (8%)

Ans:

MyNet:

ResNet18:

• Briefly describe what method do you apply on your best model? (e.g. data augmentation, model architecture, loss function, etc) (10%) Ans:

- Batch Normalization 的使用:我在每個 convolutional & fully connected layers 之後都有 Batch Normalization。這可以幫助規範化每一層的輸入,使訓練過程更加穩定並減 overfitting 的可能性。
- ReLU Activation 的使用:我在每個 convolutional & fully connected layer 之後 ReLU 激活函數。這允許模型學習數據中更複雜和非線性的關係,這有助於提高其準確性。
- Max Pooling 的使用:我在每兩個 convolutional layer 後使用 Max Pooling layer,這有助於對特徵圖進行下採樣,降低數據的空間維度,並使模型對輸入數據的變化更加穩健。
- Depth of the Network:該模型有 3 convolutional layers & 2 fully connected layers。這種網絡深度 允許模型學習更複雜和層次化的數據表示,從而提高其準確性。我一開始的 model 並沒有達到 accuracy baseline,主要是靠這個方法達成。