Sogic and Let Theory

January 20, 2020

1 Propositional Logic

Let P be a set of **primitive propositions**, i.e. P is a set of symbols with $(,), \bot, \Longrightarrow \notin P$. Unless stated otherwise (i.e. that P is uncountable), we may assume that $P = \{p_1, p_2, \ldots\}$.

The set of **propositions**, denoted by L(P) or simply just L, is defined inductively as follows:

- 1. $P \subset L$
- 2. $\perp \in L$, called False
- 3. if $p, q \in L$, then $(p \implies q) \in L$

Each proposition is a string of symbols from $P \cup \{(,), \bot, \Longrightarrow \}$, for instance we have the propositions $p_1, (p_1 \Longrightarrow p_1), ((p_1 \Longrightarrow p_2) \Longrightarrow (p_2 \Longrightarrow (\bot \Longrightarrow p_3)))$. For readability, we often draw symbols (,) in different ways, for instance as [, (, (.

Sometimes we omit the outside pair of parentheses when writing down propositions, for instance $p_1 \implies p_2$ is shorthand for $(p_1 \implies p_2)$.

Also we use some abbreviations, e.g.:

Not: $\neg p$ to mean $(p \implies \bot)$

OR: $p \lor q$ to mean $(\neg p \implies q)$

AND: $p \wedge q$ to mean $\neg(\neg p \vee \neg q)$

What do we mean by L "defined inductively"? Define $L_0 = P \cup \{\bot\}$. Then, given L_n , we can define $L_{n+1} = L_{n-1} \cup \{(p \implies q) : p, q \in L_{n-1}\}$. Then we set $L = \bigcup_{n=0}^{\infty} L_n$. Note: if $p \in L \setminus (P \cup \{\bot\})$, then it is easy to show that there are **unique** $q, r \in L$ with $p = (q \implies r)$.

1.1 Semantic Entailment

A *valuation* is a function $v: L \to \{0, 1\}$ satisfying:

- 1. $v(\bot) = 0$
- $\text{2. For all } p,q \in L, v(p \implies q) = \begin{cases} 0 & v(p) = 1, v(q) = 0 \\ 1 & \text{otherwise} \end{cases}.$

If $p \in L$ and v(p) = 1 for every valuation, we say that p is a **tautology**, and write $\vDash p$.

Examples:

$$1. \models (p \implies p)$$

$$\begin{array}{c|cc} v(p) & v(p \implies p) \\ \hline 0 & 1 \\ 1 & 1 \end{array}$$

So this is a tautology.

$$2. \models (p \implies (q \implies p))$$

	q	$q \implies p$	$p \implies (q \implies p)$
0	0	1	1
0 0 1	1	0	1
1	0	1	1
1	1	1	1

So this is a tautology.

3. Is
$$\models (p \implies (q \implies r)) \implies ((p \implies q) \implies (p \implies r))$$
?

Suppose not. Then for some p, q, r and valuation v we have:

$$\begin{array}{c} v(p \implies (q \implies r)) = 1 \\ v((p \implies q) \implies (p \implies r)) = 0. \end{array}$$

So $v(p \implies q) = 1, v(p \implies r) = 0$. Hence v(p) = 1, v(r) = 0, v(q) = 1. But then $v(q \implies r) = 0$, and so $v(p \implies (q \implies r)) = 0$.

4. $\vDash ((p \implies \bot) \implies \bot) \implies p$, i.e. $\neg \neg p \implies p$, i.e. $(\neg p \lor p)$. This is the Law of the Excluded Middle, and is also a tautology.

Note that a valuation is entirely determined by its values on the primitive propositions.

Proposition 1.1.

- 1. Let $v, w : L \to \{0,1\}$ be valuations with $v|_P = w|_P$. Then v = w.
- 2. Let $f: P \to \{0,1\}$. Then there is a valuation $v: L \to \{0,1\}$ with $v|_P = f$.

Proof.

- 1. We prove this by induction on n, so that $v|_{L_n} = w|_{L_n}$. For the base case of n = 0, $v|_P = w|_P$, and $v(\bot) = 0 = w(\bot)$. Then for the induction step, $v|_{L_{n-1}} = w|_{L_{n-1}}$. Let $p \in L_n \setminus L_{n-1}$. Then $p = (q \implies r)$ for some $q, r \in L_{n-1}$. We know that v(q) = w(q), v(r) = w(r), and so v(p) = w(p).
- 2. We define v successively on L_0, L_1, L_2, \ldots

 L_0 : Let $v|_P = f$ and let $v(\bot) = 0$

 L_n : If $p \in L_n \setminus L_{n-1}$, then $p = (q \implies r)$, and so set v(p) to be 0 if v(q) = 1, v(r) = 0, and 1 otherwise. Since propositions are built up in a unique way, this is indeed a valuation.

Let $S \subset L$. We say that v is a **model** of S if v is a valuation with v(x) = 1 for all $x \in S$. If $S = \{p\}$, we say that v is a model of p. If every model of $S \subset L$ is a model of $p \in L$, we say that S **semantically entails** p, and write $S \models p$. Note that $\emptyset \models p$ is exactly the same as $\models p$.

For example, $\{p, p \implies q\} \vDash q$.

1.2 Syntactic Entailment (Provability)

Our proof system will have axioms as follows for all $p, q, r \in L$:

A1
$$p \implies (q \implies p)$$

A2
$$(p \implies (q \implies r)) \implies ((p \implies q) \implies (p \implies r))$$

A3
$$((p \Longrightarrow \bot) \Longrightarrow \bot) \Longrightarrow p$$

Our proof system also has a **deduction rule** known as **modus ponens** (MP): for all $p, q \in L$, from p and $(p \implies q)$ we can deduce q.

Note that each axiom is a tautology. For MP, see the last example of §1.1

Let $S \subset L$ and $p \in L$. A **proof** of p from S is a sequence $t_1, t_2, \ldots, t_n \in L$ of finite length with $t_n = p$ such that, for each i, either t_i is an axiom, or $t_i \in S$ (a **hypothesis**), or there exist j, k < i with $t_k = (t_j \implies t_i)$.

If there exists a proof of p from S, we say that S syntactically entails p, or S proves p, and we write $S \vdash p$. If $S = \emptyset$, we say p is a **theorem** and write $\vdash p$.

Example:
$$\vdash (p \implies p)$$

Use A2, with r = p, to get $(p \implies (q \implies p)) \implies ((p \implies q) \implies (p \implies p))$. Now the first bracket is a theorem by A1, and if we take $q = (p \implies p)$ in the second, we can use modus ponens twice with A1 to deduce the final bracket, that $(p \implies p)$. We will write this formally:

Lemma 1.2. For all $p \in L, \vdash (p \implies p)$

Proof.

$$1. \ (p \implies ((p \implies p) \implies p)) \implies ((p \implies (p \implies p)) \implies (p \implies p))$$
 (A2)

$$2. p \implies ((p \implies p) \implies p) \tag{A1}$$

3.
$$(p \implies (p \implies p)) \implies (p \implies p)$$
 (MP on 1, 2)

$$4. p \implies (p \implies p) \tag{A1}$$

$$5. p \implies p$$
 (MP on 3, 4)

Proposition 1.3 (The Deduction Theorem). Let $S \subset L$ and $p, q \in L$. Then $S \vdash (p \implies q)$ if and only if $S \cup \{p\} \vdash q$.

Proof. Suppose t_1, \ldots, t_n is a proof of $p \Longrightarrow q$ from S. Then t_1, \ldots, t_n, p, q is a proof of q from $S \cup \{p\}$. Suppose that t_1, \ldots, t_n instead is a proof of q from $S \cup \{p\}$. We show by induction on i that $S \vdash (p \Longrightarrow t_i)$ for each i, and then we will be done since $t_n = q$.

1. If $t_i \in S$:

•
$$t_i \implies (p \implies t_i)$$
 (A1)

•
$$t_i$$
 (hypothesis)

•
$$(p \implies t_i)$$
 (MP)

- 2. If $t_i = p$, use Lemma 1.2
- 3. If $t_j = (t_j \implies t_i)$ for some j, k < i, then write down proofs of $(p \implies t_j), (p \implies t_k)$ from S. Then append:

•
$$(p \Longrightarrow (t_j \Longrightarrow t_i)) \Longrightarrow ((p \Longrightarrow t_j) \Longrightarrow (p \Longrightarrow t_i))$$
 (A2)

•
$$(p \implies t_j) \implies (p \implies t_i)$$
 (MP)

•
$$p \implies t_i$$
 (MP)