CS 2209b - Quiz 3 - Solutions

Paul Vrbik

 π day, 2011

Question 1

(a) James blames no one besides himself.

$$\sim (\exists x) ((\sim x = j) \bullet Bjx)$$

 $\forall x (Bjx \supset x = j)$

(b) The smallest one is either red or blue.

$$(\exists x) (y) (Sxy) \supset (Rx \vee Bx)$$

(c) Someone besides Tom and Jack is cruel.

$$(\exists x) \, ((\sim x = t) \, \bullet \, (\sim x = j) \, \bullet \, Cx)$$

(d) Only mike is tall.

$$\forall x (Tx \supset (x = m))$$
$$\sim (\exists x) ((\sim x = m) \bullet Tx)$$

Question 2

Prove or refute the arguments using (extended) S/I rules.

(a) Prove
$$\sim (x) (\sim (\sim Qx \bullet Tx)) \vee Px$$

Proof.

(b) Prove $((\exists x) Sx \bullet \sim (x) \sim (Ex \vee Fx))$

Proof.

1	$\sim (x) (Ex \supset \sim Sx)$	
2		
3	assume: $\sim ((\exists x) Sx \bullet \sim (x) \sim (Ex \vee Fx))$	
4	assume: $\sim (\exists x) Sx$	
5	$\therefore (x) \sim Sx$ $\therefore \sim (Ea \supset \sim Sa)$ $\therefore Sa$ $\therefore \sim Sa$	Reverse: 4
6	$\therefore \sim (Ea \supset \sim Sa)$	Specify: 2
7	∴ Sa	NIF: 6
8	$\therefore \sim Sa$	Specify: 5
9	$\therefore (\exists x) Sx$ $\therefore (x) \sim (Ex \vee Fx)$ $\therefore \sim (Ea \supset Sa)$ $\therefore Ea$ $\therefore \sim (Ea \vee Fa)$ $\therefore \sim Ea$	Contradiction of 4: 7, 8
10	$\therefore (x) \sim (Ex \vee Fx)$	DS: 3, 9
11	$\therefore \sim (Ea \supset Sa)$	Specify: 2
12	\therefore Ea	NIF: 11
13	$\therefore \sim (Ea \vee Fa)$	Specify: 10
14	$\therefore \sim Ea$	NOR: 11
15	$\therefore ((\exists x) Sx \bullet \sim (x) \sim (Ex \vee Fx))$	Contradiction of 3: 12, 14

(c) Prove $(Me \lor \sim (\exists x) Mx)$

Proof.

$$\begin{array}{c|c} 1 & (x) (\sim Ex \supset Us) \\ 2 & \sim (Ut \supset \sim h = t) \\ 3 & \therefore Eh \end{array}$$

Is invalid. Let the domain be $\{h, t\}$ and set $\sim Eh, Et, Ut, Uh$.

Question 3

(a) Someone is a student. Someone is not a student. \therefore There is more than one being. (Use Sx for x is a student).

Proof.

1
$$(\exists x) Sx$$

2 $(\exists x) \sim Sx$
3 $\therefore Sa$ Specify: 1
4 $\therefore \sim Sb$ Specify: 2
5 $assume: \sim (\exists x) (\exists y) \sim x = y$
6 $\therefore \forall x \sim (\exists y) \sim x = y$ Reverse: 5
7 $\therefore (x) (y) x = y$ Reverse: 6
8 $\therefore a = b$ Specify: 7
9 $\therefore Sb$ Sub. Equals: 8
10 $\therefore (\exists x) (\exists y) \sim x = y$ Contradiction of 5: 4, 9

(b) If someone confesses, then someone goes to jail. I confess. I don't go to jail. ∴ someone besides me goes to jail. (Use Cx for x confesses, Jx for x goes to jail, i for I).

Proof.