

Amendment to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

1. (Original) A method comprising:

etching a source region and a drain region in a silicon substrate wherein the etching has an undercut profile;
depositing a silicon germanium alloy in the source region and in the drain region;
depositing nickel on the silicon germanium alloy;
forming a nickel silicon germanium silicide layer wherein the nickel silicon germanium silicide layer is self-aligned.

2. (Original) The method of claim 1 wherein the source region and the drain region extend laterally beneath an insulating layer.

3. (Original) The method of claim 2 wherein the source region and the drain region extend laterally beneath a gate region.

4. (Currently Amended) The method of claim 3 wherein the source region and the drain region extend laterally beneath the gate region between 25 angstroms and 200 angstroms.

5. (Currently Amended) The method of claim 1 wherein the source region and the drain region have a vertical depth between 100 angstroms and 1500 angstroms beneath the surface of the silicon substrate.

6. (Original) The method of claim 1 wherein the etching is dry SF₆-based.

7. (Original) The method of claim 1 wherein the silicon germanium alloy has a germanium composition between 5% and 50%.

8. (Original) The method of claim 7 wherein the silicon germanium alloy has a germanium composition between 10% and 40%.

9. (Original) The method of claim 8 wherein the silicon germanium alloy has a germanium composition between 15% and 30%.

10. (Original) The method of claim 1 wherein the deposition of the silicon germanium alloy is vapor phase epitaxy.

11. (Original) The method of claim 1 wherein the deposition of the silicon germanium alloy is reduced pressure chemical vapor deposition.

12. (Original) The method of claim 1 wherein the deposition of the silicon germanium alloy is atmospheric chemical vapor deposition.

13. (Original) The method of claim 1 wherein the deposition of the silicon germanium alloy is ultra high vacuum chemical vapor deposition.

14. (Original) The method of claim 1, depositing the silicon germanium alloy further comprising doping the alloy.

15. (Original) The method of claim 14 wherein the doping is in situ during depositing the silicon germanium alloy.

16. (Original) The method of claim 15 wherein a dopant is boron.

17. (Original) The method of claim 16 wherein a source of the dopant is B₂H₆.

18. (Original) The method of claim 16 wherein the boron has a doping concentration level between 1*10¹⁸ /cm³ and 3*10²¹ /cm³.

19. (Currently Amended) The method of claim 18 wherein the doping concentration level is [[1*10²¹ /cm³]] 1*10²⁰ /cm³.

20. (Original) The method of claim 1 wherein the nickel has a thickness between 50 and 200 angstroms.

21. (Original) The method of claim 1, forming the nickel silicon germanium silicide layer further comprising:

annealing the substrate at a temperature between 325°C and 450°C for less than or equal to 60 seconds;

removing excess nickel with a wet etch chemistry of hot H₂O₂ and H₂SO₄; and

annealing the substrate at a temperature between 400°C and 550°

22. (Withdrawn) An transistor comprising:

a gate region;

an insulator region beneath the gate region;

a source region adjacent to the insulator region;

a drain region adjacent to the insulator region;

wherein the source region and the drain region include a silicon germanium alloy and

a nickel silicon germanium silicide layer.

23. (Withdrawn) The method of claim 22 wherein the source region and the drain region extend laterally beneath the insulating layer.

24. (Withdrawn) The method of claim 23 wherein the source region and the drain region extend laterally beneath the gate region.

25. (Withdrawn) The method of claim 24 wherein the source region and the drain region extend laterally beneath the gate region between 25 and 200 angstroms.

26. (Withdrawn) The method of claim 22 wherein the source region and the drain region have a vertical depth between 100 and 1500 angstroms beneath the surface of a silicon substrate.

27. (Withdrawn) The transistor of claim 22 wherein the silicon germanium alloy has a germanium composition between 5% and 50%.

28. (Withdrawn) The transistor of claim 27 wherein the silicon germanium alloy has a germanium composition between 10% and 40%.

29. (Withdrawn) The transistor of claim 28 wherein the silicon germanium alloy has a germanium composition between 15% and 30%.

30. (Withdrawn) The transistor of claim 22 wherein the silicon germanium alloy is doped.

31. (Withdrawn) The transistor of claim 30 wherein the silicon germanium is doped in situ during a deposition of the silicon germanium alloy.

32. (Withdrawn) The transistor of claim 31 wherein a dopant is boron.

33. (Withdrawn) The transistor of claim 32 wherein a source of the dopant is B_2H_6 .

34. (Withdrawn) The method of claim 32 wherein the boron has a doping concentration level between $1*10^{18} /cm^3$ and $3*10^{21} /cm^3$.

35. (Withdrawn) The method of claim 34 wherein the doping concentration level is $1*10^{21} /cm^3$.

36. (Withdrawn) The transistor of claim 22 wherein the nickel silicon germanium silicide layer is self-aligned.

37. (Currently Amended) A method comprising:

etching a source region and a drain region in a silicon substrate wherein the etching has an undercut profile;

depositing a silicon germanium alloy in the source region and in the drain region wherein the silicon germanium alloy has a germanium composition between 15% and 30%;

doping the silicon germanium alloy in situ with boron wherein the boron has a doping concentration level of $[1*10^{21} /cm^3]$ approximately $1*10^{20} /cm^3$;

depositing nickel on the silicon germanium alloy;

annealing the substrate at a temperature between 325°C and 450°C for less than or equal to 60 seconds;

removing excess nickel with a wet etch chemistry of hot H₂O₂ and H₂SO₄; and

annealing the substrate at a temperature between 400°C and 550°.

38. (Original) The method of claim 37 wherein the source region and the drain region extend laterally beneath an insulating layer.

39. (Original) The method of claim 38 wherein the source region and the drain region extend laterally beneath a gate region.

40. (Currently Amended) The method of claim 39 wherein the source region and the drain region extend laterally beneath the gate region between 25 angstroms and 200 angstroms.

41. (Currently Amended) The method of claim 37 wherein the source region and the drain region have a vertical depth between 100 angstroms and 1500 angstroms beneath the surface of the silicon substrate.

42. (Original) The method of claim 37 wherein the etching is dry SF₆-based.

43. (Original) The method of claim 37 wherein the deposition of the silicon germanium alloy is vapor phase epitaxy.

44. (Original) The method of claim 37 wherein the deposition of the silicon germanium alloy is reduced pressure chemical vapor deposition.

45. (Original) The method of claim 37 wherein the deposition of the silicon germanium alloy is atmospheric chemical vapor deposition.

46. (Original) The method of claim 37 wherein the deposition of the silicon germanium alloy is ultra high vacuum chemical vapor deposition.

47. (New) A method comprising:

etching a source region and a drain region in a substrate wherein the source region and the drain region extend laterally beneath a gate;

forming silicon germanium in the source region and in the drain region; and

forming a nickel silicon germanium silicide on the silicon germanium.

48. (New) The method of claim 47, forming the nickel silicon germanium silicide further comprising:

forming nickel on the silicon germanium; and

annealing the nickel and the silicon germanium.

49. (New) The method of claim 47 wherein the nickel silicon germanium silicide is self-aligned.

50. (New) The method of claim 47 wherein the source region and the drain region each extend laterally beneath the gate by between 25 angstroms and 200 angstroms.