

R1154x Series

150 mA Voltage Regulator (Wide Input Voltage Range)

No. EA-100-171024

OUTLINE

The R1154x is a voltage regulator (VR) featuring high output voltage accuracy and ultra-low supply current. A peak current limit circuit, a short current limit circuit, and a thermal shutdown circuit are built in the R1154x. The regulator output voltage is fixed in the R1154xxxxB, while adjustable type is the R1154x001C. The Output voltage accuracy is ±2.0%.

Since the packages for these ICs are DFN1616-6, SOT-23-5, and SOT-89-5, high density mounting of the ICs on boards is possible.

FEATURES

Supply Current	Typ. 5.0 μA
Standby Current	Typ. 0.1 μA
Output Current	Min. 140 mA (V _{IN} = V _{OUT} + 2.0 V, 2.5 V Output type)
	Min. 150 mA (V _{IN} = V _{OUT} + 2.0 V, 3.0 V Output type)
Input Voltage	Max. 24.0 V
Wide Output Voltage Range	2.5 V to 12.0 V (0.1 V step) (xxxB)
	Adjustable in the range of 2.5 V to V _{IN} or 24.0 V (001C)
Output Voltage Accuracy	±2.0%
Packages	DFN1616-6, SOT-23-5, SOT-89-5
Packages	DFN1616-6, SOT-23-5, SOT-89-5

- Built-in Peak Current Limit Circuit
- Built-in Short Current Limit Circuit
- Built-in Thermal Shutdown Circuit

APPLICATIONS

- Power source for home appliances such as refrigerators, rice cookers, Electronic water warmers, etc.
- Power source for car audio equipment, car navigation system, and ETC system.
- Power source for notebook PCs, digital TVs, cordless phones, and LAN system.
- Power source for copiers, printers, facsimiles, and scanners.

R1154x

No. EA-100-171024

SELECTION GUIDE

The output voltage can be selected at the user's request.

Selection Guide

Product Name	Package	Quantity per Reel Pb Free		Halogen Free
R1154Lxxx*-TR	DFN1616-6	5,000 pcs	Yes	Yes
R1154Nxxx*-TR-FE	SOT-23-5	3,000 pcs	Yes	Yes
R1154Hxxx*-T1-FE	SOT-89-5	1,000 pcs	Yes	Yes

: The output voltage can be designated in the range from 2.5 V (025) to 12.0 V (120) in 0.1 V step. If the output voltage includes the 3rd digit, indicate the digit of 0.01 V as follows.

5.25 V: R1154x052x5

The output voltage adjustable type is fixed at 001 (Reference voltage = 2.5 V)

* : (B) Fixed Output Type

(C) Adjustable Output Type

BLOCK DIAGRAMS

PIN DESCRIPTIONS

Top View Bottom View

DFN1616-6 Pin Configuration

SOT-23-5 Pin Configuration

SOT-89-5 Pin Configuration

DFN1616-6 Pin Descriptions

Pin No	Symbol		Description			
1	VDD	Input Pin				
2	NC	No Connection	No Connection			
3	VOUT	Voltage Regulator	Voltage Regulator Output Pin			
4	CE	Chip Enable Pin				
F	NC	R1154LxxxB	No Connection			
5	ADJ	R1154L001C	Reference Voltage of Adjustable Output Pin			
6	GND	Ground Pin				

SOT-23-5 Pin Descriptions

Pin No	Symbol		Description				
1	VOUT	Voltage Regulator	/oltage Regulator Output Pin				
2	GND	Ground Pin	Ground Pin				
3	VDD	Input Pin	Input Pin				
4	NC	R1154NxxxB	No Connection				
4	ADJ	R1154N001C	Reference Voltage of Adjustable Output Pin				
5	CE	Chip Enable Pin					

⁽¹⁾ The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left floating.

R1154x No. EA-100-171024

SOT-89-5 Pin Descriptions

, , , , , , , , , , , , , , , , , , ,	7 0 0 0 1 1 p ti 0 1 1 0						
Pin No	Symbol		Description				
1	VOUT	Voltage Regulator	/oltage Regulator Output Pin				
2	GND	Ground Pin	Ground Pin				
3	CE	Chip Enable Pin					
4	NC	R1154HxxxB	No Connection				
4	ADJ	R1154H001C	Reference Voltage of Adjustable Output Pin				
5	VDD	Input Pin					

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings

Symbol		Item		Rating	Unit
VIN	Input Voltage	Input Voltage			
Vce	Input Voltage (CE Inpu	ut Pin)		-0.3 to V _{IN} + 0.3	V
Vоит	Output Voltage			-0.3 to V _{IN} + 0.3	V
V _{ADJ}	Output Voltage (ADJ F	Output Voltage (ADJ Pin)			
l _{out}	Output Current			250	mA
	P _D Power Dissipation ⁽¹⁾	DFN1616-6	JEDEC STD. 51-7 Test Land Pattern	2400	mW
P_D		SOT-23-5	JEDEC STD. 51-7 Test Land Pattern	660	mW
		SOT-89-5 JEDEC STD. 51-7 Test Land Pattern		2600	mW
Tj	Junction Temperature Range			-40 to 125	°C
Tstg	Storage Temperature	Storage Temperature Range			

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS

Recommended Operating Conditions

Symbol	Item	Rating	Unit
V _{IN}	Input Voltage	Max. 24	V
Та	Operating Temperature Range	-40 to 105	°C

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

⁽¹⁾ Refer to POWER DISSIPATION for detailed information.

R1154x No. EA-100-171024

ELECTRICAL CHARACTERISTICS

R1154xxxxB Electrical Characteristics

(Ta = 25°C)

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
Symbol	item	Conditions	IVIIII.	ιyp.	IVIAX.	Ullit
Vout	Output Voltage	$V_{IN} = V_{SET} + 2.0 \text{ V}, I_{OUT} = 20 \text{ mA}$	x0.98		x1.02	V
I _{OUT}	Output Current	V _{IN} - V _{SET} = 2.0 V			Product-sp naracterist	
Iss	Supply Current	V _{IN} = V _{CE} , V _{IN} - V _{SET} = 2.0 V		5	10	μА
Istandby	Standby Current	V _{IN} = 24 V, V _{CE} = 0 V		0.1	1.0	μА
Δ V ουτ/ Δ I ουτ	Load regulation	V _{IN} - V _{SET} = 2.0 V, 1 mA ≤ I _{OUT} ≤ 40 mA	Refer to the Product-specific Electrical Characteristics			
$\Delta V_{OUT}/\Delta V_{IN}$	Line regulation	$I_{OUT} = 20 \text{ mA}$ $V_{SET} + 1 \text{ V} \le V_{IN} \le 24 \text{ V}$		0.05	0.20	%/V
V _{DIF}	Dropout Voltage	Ι _{ΟUΤ} = 20 mA	Refer to the Product-specific Electrical Characteristics			
Isc	Short Current Limit	V _{OUT} = 0 V		45		mA
V _{CEH}	CE "H" Input Voltage		2.1		V _{IN}	V
VCEL	CE "L" Input Voltage		0		0.3	V
T _{SD}	Thermal Shutdown Temperature	Junction Temperature		150		°C
T _{SR}	Thermal Shutdown Released Temperature	Junction Temperature		125		°C

Product-specific Electrical Characteristics

Product Name		Vout		Іоит	Vout		_	DIF	
Froduct Name	Min.	Тур.	Max.	Min.	Тур.	Max.	Тур.	Max.	
R1154x025x	2.450	2.500	2.550						
R1154x026x	2.548	2.600	2.652						
R1154x027x	2.646	2.700	2.754	140	20	50			
R1154x028x	2.744	2.800	2.856		20	30			
R1154x029x	2.842	2.900	2.958						
R1154x030x	2.940	3.000	3.060						
R1154x031x	3.038	3.100	3.162						
R1154x032x	3.136	3.200	3.264						
R1154x033x	3.234	3.300	3.366						
R1154x034x	3.332	3.400	3.468						
R1154x035x	3.430	3.500	3.570						
R1154x036x	3.528	3.600	3.672						
R1154x037x	3.626	3.700	3.774						
R1154x038x	3.724	3.800	3.876						
R1154x039x	3.822	3.900	3.978						
R1154x040x	3.920	4.000	4.080		00	7-			
R1154x041x	4.018	4.100	4.182		30	75			
R1154x042x	4.116	4.200	4.284						
R1154x043x	4.214	4.300	4.386						
R1154x044x	4.312	4.400	4.488						
R1154x045x	4.410	4.500	4.590						
R1154x046x	4.508	4.600	4.692						
R1154x047x	4.606	4.700	4.794						
R1154x048x	4.704	4.800	4.896				0.20	0.40	
R1154x049x	4.802	4.900	4.998						
R1154x050x	4.900	5.000	5.100						
R1154x051x	4.998	5.100	5.202					†	
R1154x052x	5.096	5.200	5.304						
R1154x052x5	5.145	5.250	5.355	150					
R1154x053x	5.194	5.300	5.406	100					
R1154x054x	5.292	5.400	5.508						
R1154x055x	5.390	5.500	5.610						
R1154x056x	5.488	5.600	5.712						
R1154x057x	5.586	5.700	5.814						
R1154x058x	5.684	5.800	5.916						
R1154x059x	5.782	5.900	6.018						
R1154x060x	5.880	6.000	6.120						
R1154x061x	5.978	6.100	6.222						
R1154x062x	6.076	6.200	6.324						
R1154x063x	6.174	6.300	6.426		40	115			
R1154x064x	6.272	6.400	6.528						
R1154x065x	6.370	6.500	6.630						
R1154x066x	6.468	6.600	6.732						
R1154x067x	6.566	6.700	6.834						
R1154x068x	6.664	6.800	6.936						
R1154x069x	6.762	6.900	7.038						
R1154x070x	6.860 6.958	7.000 7.100	7.140 7.242				-		
R1154x071x R1154x072x	7.056	7.100	7.242						
	7.056	7.200					0.25	0.50	
R1154x073x			7.446				0.25	0.50	
R1154x074x	7.252	7.400	7.548						
R1154x075x	7.350	7.500	7.650		<u>i</u>		1		

R1154x

No. EA-100-171024

Product-specific Electrical Characteristics

Product Name		Vout		Іоит		/Іоит	V _{DIF}			
Product Name	Min.	Тур.	Max.	Min.	Тур.	Max.	Тур.	Max		
R1154x076x	7.448	7.600	7.752							
R1154x077x	7.546	7.700	7.854							
R1154x078x	7.644	7.800	7.956							
R1154x079x	7.742	7.900	8.058							
R1154x080x	7.840	8.000	8.160							
R1154x081x	7.938	8.100	8.262							
R1154x082x	8.036	8.200	8.364							
R1154x083x	8.134	8.300	8.466							
R1154x084x	8.232	8.400	8.568							
R1154x085x	8.330	8.500	8.670							
R1154x086x	8.428	8.600	8.772							
R1154x087x	8.526	8.700	8.874							
R1154x088x	8.624	8.800	8.976				0.25	0.50		
R1154x089x	8.722	8.900	9.078							
R1154x090x	8.820	9.000	9.180							
R1154x091x	8.918	9.100	9.282							
R1154x092x	9.016	9.200	9.384							
R1154x093x	9.114	9.300	9.486							
R1154x094x	9.212	9.400	9.588							
R1154x095x	9.310	9.500	9.690							
R1154x096x	9.408	9.600	9.792							
R1154x097x	9.506	9.700	9.894							
R1154x098x	9.604	9.800	9.996	150	40	115				
R1154x099x	9.702	9.900	10.098							
R1154x100x	9.800	10.000	10.200							
R1154x101x	9.898	10.100	10.302							
R1154x102x	9.996	10.200	10.404							
R1154x103x	10.094	10.300	10.506							
R1154x104x	10.192	10.400	10.608							
R1154x105x	10.290	10.500	10.710							
R1154x106x	10.388	10.600	10.812							
R1154x107x	10.486	10.700	10.914							
R1154x108x	10.584	10.800	11.016							
R1154x109x	10.682	10.900	11.118							
R1154x110x	10.780	11.000	11.220				0.30	0.5		
R1154x111x	10.878	11.100	11.322				0.30	0.50		
R1154x112x	10.976	11.200	11.424							
R1154x113x	11.074	11.300	11.526							
R1154x114x	11.172	11.400	11.628							
R1154x115x	11.270	11.500	11.730							
R1154x116x	11.368	11.600	11.832							
R1154x117x	11.466	11.700	11.934							
R1154x118x	11.564	11.800	12.036							
R1154x119x	11.662	11.900	12.138							
R1154x120x	11.760	12.000	12.240							

R1154x001C Electrical Characteristics

(Ta = 25°C)

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
V _{OUT}	Output Voltage	$V_{IN} = V_{SET} + 2.0 \text{ V}, I_{OUT} = 20 \text{ mA}$	2.45	2.50	2.55	V
l _{out}	Output Current	$V_{IN} = V_{SET} + 2.0 V,$	140			mA
Iss	Supply Current	$V_{IN} = V_{SET} + 2.0 \text{ V}, V_{CE} = V_{IN}$		5	10	μА
Istandby	Standby Current	V _{IN} = 24 V, V _{CE} = 0 V		0.1	1.0	μΑ
ΔV _{OUT} / ΔΙ _{ΟUT}	Load regulation	V _{IN} = V _{SET} + 2.0 V, 1 mA ≤ I _{OUT} ≤ 40 mA		20	50	mV
ΔV _{OUT} / ΔV _{IN}	Line regulation	V_{SET} + 1 V \leq V _{IN} \leq 24 V, I _{OUT} = 20 mA		0.05	0.20	%/V
V _{DIF}	Dropout Voltage	I _{ОUТ} = 20 mA		0.20	0.40	V
Isc	Short Current Limit	V _{OUT} = 0 V		45		mA
V _{CEH}	CE "H" Input Voltage		2.1		Vin	V
V _{CEL}	CE "L" Input Voltage		0		0.3	V
T _{TSD}	Thermal Shutdown Temperature	Junction Temperature		150		°C
T _{TSR}	Thermal Shutdown Released Temperature	Junction Temperature		125		°C

The above specifications measured at the condition of $V_{OUT} = V_{ADJ}$.

THEORY OF OPERATION

Thermal Shutdown

Thermal shutdown function is included in the R1154x, if the junction temperature is equal or more than +150°C (Typ.), the operation of regulator would stop. After that, when the junction temperature is equal or less than +125°C (Typ.), the operation of regulator would restart. Unless the cause of rising temperature would remove, the regulator repeats on and off, and output waveform would be like consecutive pulses.

Notes on Output Voltage Setting of R1154x001C

Figure 1. Adjustable Regulator (R1154x001C)

The Output Voltage of Regulator in R1154xxxxC may be adjustable for any output voltage between its 2.5 V reference and its V_{DD} setting level. An external pair of resistors is required, as shown in Figure 1. The complete equation for the output voltage is described step by step as follows.

	$I1 = I_{IC} + I_2$ (1) $I2 = 2.5/R_2$ (2)
Thus,	I1 = I _{IC} + 2.5/R2(3)
Therefore	, V _{OUT} = 2.5 + R1 x I1(4)
Put Equat	ion (3) into Equation (4), then $V_{OUT} = 2.5 + R1 \times (I_{IC} + 2.5/R2)$ $= 2.5 \times (1 + R1/R2) + R1 \times I_{IC}$ (5)
In 2nd ter In Equatio	m, or R1 x I _{IC} will produce an error in V _{ОUТ} . on (5), I _{IC} = 2.5/R _{IC}
For better	accuracy, choosing R1 (<< R _{IC}) reduces this error.

 R_{IC} of the R1154x001C is approximately Typ. 17 M Ω (Ta = 25°C, guaranteed by design).

R_{IC} could be affected by the temperature, therefore evaluate the circuit taking the actual conditions of use into account when deciding the resistance values for R1 and R2.

APPLICATION INFORMATION

Typical Application

Fixed Output Voltage Type

Adjustable Type

TECHNICAL NOTES

Notes on Selecting Components

Capacitor CIN and COUT

Phase Compensation of the R1154x has been made internally for stable operation even though the load current would vary. Therefore, without the capacitors, C_{IN} and C_{OUT} , the output voltage is regulated, however, for more stable operation, use capacitors as C_{IN} and C_{OUT} . Especially, if the input line is long and impedance is high, C_{IN} is necessary, moreover, if you use C_{OUT} , transient response will be improved. Recommended value is in the range from 0.1 μ F to 2.2 μ F. Wiring should be made as short as possible.

Connect the capacitor, C_{IN} between V_{DD} pin and GND pin and C_{OUT} between V_{OUT} and GND as close as possible.

Chip Enable Input

Do not make voltage level of chip enable pin keep floating level, or in between V_{IH} and V_{IL}. Unless otherwise, Output voltage would be unstable or indefinite, or unexpected current would flow internally.

TYPICAL CHARACTERISTICS

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

1) Output Voltage vs. Output Current

2) Input Voltage vs. Output Voltage (Ta = 25°C)

3) Dropout Voltage vs. Output Current

4) Output Voltage vs. Temperature

5) Supply Current vs. Input Voltage (Ta = 25°C)

6) Supply Current vs. Temperature

7) Input Transient Response (IouT = 20 mA, C_{OUT} = 0.1 μ F, Ta = 25°C)

8) Load Transient Response ($C_{OUT} = 0.1 \mu F$, $Ta = 25^{\circ}C$)

R1154x025B

R1154x030B

R1154x050B

9) Thermal Shutdown Characteristics

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

Item	Measurement Conditions	
Environment	Mounting on Board (Wind Velocity = 0 m/s)	
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)	
Board Dimensions	76.2 mm × 114.3 mm × 0.8 mm	
Copper Ratio	Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square	
Through-holes	φ 0.2 mm × 15 pcs	

Measurement Result

 $(Ta = 25^{\circ}C, Tjmax = 125^{\circ}C)$

Item	Measurement Result
Power Dissipation	2400 mW
Thermal Resistance (θja)	θja = 41°C/W
Thermal Characterization Parameter (ψjt)	ψjt = 11°C/W

θja: Junction-to-Ambient Thermal Resistance

ψjt: Junction-to-Top Thermal Characterization Parameter

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

i

i

DFN1616-6 Package Dimensions (Unit: mm)

^{*} The tab on the bottom of the package shown by blue circle is a substrate potential (GND/ V_{DD}). It is recommended that this tab be connected to the ground plane/VDD pin on the board but it is possible to leave the tab floating.

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

Item	Measurement Conditions	
Environment	Mounting on Board (Wind Velocity = 0 m/s)	
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)	
Board Dimensions	76.2 mm × 114.3 mm × 0.8 mm	
Copper Ratio	Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square	
Through-holes	φ 0.3 mm × 7 pcs	

Measurement Result

(Ta = 25°C, Tjmax = 125°C)

Item	Measurement Result
Power Dissipation	660 mW
Thermal Resistance (θja)	θja = 150°C/W
Thermal Characterization Parameter (ψjt)	ψjt = 51°C/W

 θ ja: Junction-to-Ambient Thermal Resistance

ψjt: Junction-to-Top Thermal Characterization Parameter

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

SOT-23-5 Package Dimensions

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

Item	Measurement Conditions	
Environment	Mounting on Board (Wind Velocity = 0 m/s)	
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)	
Board Dimensions	76.2 mm × 114.3 mm × 0.8 mm	
Copper Ratio	Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square	
Through-holes	φ 0.3 mm × 13 pcs	

Measurement Result

 $(Ta = 25^{\circ}C, Tjmax = 125^{\circ}C)$

Item	Measurement Result
Power Dissipation	2600 mW
Thermal Resistance (θja)	θja = 38°C/W
Thermal Characterization Parameter (ψjt)	ψjt = 13°C/W

θja: Junction-to-Ambient Thermal Resistance

ψjt: Junction-to-Top Thermal Characterization Parameter

76.2

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

i

SOT-89-5 Package Dimensions

- The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of our company.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our company's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or our distributor before attempting to use AOI.
- 11. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information

