There are n gold mines along a river, and each mine i produces w_i tons of gold. In order to collect the mined gold, we want to redistribute and consolidate it amongst exactly \boldsymbol{k} mines where it can be picked up by trucks. We do this according to the following rules:

- You can move gold between any pair of mines (i.e., i and j, where $1 \le i < j \le n$).
- All the gold at some pickup mine i must either stay at mine i or be completely moved to some other mine, i.
- Move \boldsymbol{w} tons of gold between the mine at location $\boldsymbol{x_i}$ and the mine at location $\boldsymbol{x_i}$ at a cost of $|x_i-x_j|\times w$

Given n, k, and the amount of gold produced at each mine, find and print the minimum cost of consolidating the gold into k pickup locations according to the above conditions.

Input Format

The first line contains two space-separated integers describing the respective values of n (the number of mines) and k (the number of pickup locations).

Each line i of the n subsequent lines contains two space-separated integers describing the respective values of x_i (the mine's distance from the mouth of the river) and w_i (the amount of gold produced in tons) for mine i.

Note: It is guaranteed that the mines are will be given in order of ascending location.

Constraints

- $1 \le k < n \le 5000$ $1 \le w_i, x_i \le 10^6$

Output Format

Print a single line with the minimum cost of consolidating the mined gold amongst k different pickup sites according to the rules stated above.

Sample Input 0

- 3 1
- 20 1
- 30 1 40 1

Sample Output 0

20

Explanation 0

We need to consolidate the gold from n=3 mines into a single pickup location (because k=1). The mines are all equidistant and they all produce the same amount of gold, so we just move the gold from the mines at locations x=20 and x=40 to the mine at x=30 for a minimal cost of 20.

Sample Input 1

- 11 3
- 12 2 13 1

Sample Input 1

4

Explanation 1

We need to consolidate the gold from n=3 mines into a single pickup location (because k=1). We can achieve a minimum cost of 4 by moving the gold from mines x=12 and x=13 to the mine at x = 11.

Sample Input 2

10 15 12 17 16 18 18 13 30 10	6 2		
16 18 18 13	10	15	
18 13	12	17	
	16	18	
30 10	18	13	
	30	10	
32 1	32	1	

Sample Output 2

182

Explanation 2

We need to consolidate the gold from n=6 mines into k=2 pickup locations. We can minimize the cost of doing this by doing the following:

- 1. Move the gold from the mines at locations x=10, x=16, and x=18 to the mine at x=12. 2. Move the gold from the mine at location x=32 to the mine at x=30.