CSE2209: Digital Electronics and Pulse Techniques

Course Conducted By:

Nowshin Nawar Arony Lecturer, Dept of CSE, AUST

NPN Transistor

NPN Transistor Reverse Active Mode (h_{fe} <1)

$$I_C = h_{fe} * I_B \text{ or } I_B = \frac{I_C}{h_{fe}}$$

 $I_C = h_{fe} * I_B$ or $I_B = \frac{I_C}{h_{fe}}$ Collector becomes emitter and emitter becomes collector

BE	ВС	Transistor State
DE	ВС	Transistor State
$(V_{BE} < 0.7V) F$	$(V_{BC} < 0.7V) R$	Cut off
		$I_C = I_B = I_E = 0$
$(V_{BE} > 0.7V) F$	$(V_{BC} < 0.7V) R$	Active
		$I_C = h_{fe} * I_B$
(V _{BE} < 0.7V) F	$(V_{BC} > 0.7V) F$	Inverse active
		$I_C = h_{fe} * I_B$
$(V_{BE} > 0.7V) F$	$(V_{BC} > 0.7V) F$	Saturation
		$I_C \le h_{fe} * I_B$
		V_{CE} (sat) = 0.2V
		V_{BE} (sat) = 0.8V

TTL NAND Gate

Explanation: 5.11 (Page 146)

TTL NAND Equivalent Circuit

Clamping Diodes

PG - 147

Input Clamping Diodes

These diodes (shown in the shaded block in Fig. 5-21) are often included from each input to ground, with the anode grounded. These diodes are effectively out of the circuit for positive input signals, but they limit negative voltage excursions at the input to a safe value. These negative signals may arise from ringing caused by lead inductance resonating with shunt capacitance.

Passive Pull Up Circuit

Pg: 149

Wired End (Totem Pole)

Pg: 149-150

Resistor-Transistor Logic (RTL) NOR Gate (Positive Logic)

Pg. 152-153 (5.13)

Direct-coupled Transistor Logic (DCTL) NOR Gate (Positive Logic)

Pg. 152-155 (5.13)

DCTL

- Direct coupled transistor logic means inputs are directly coupled to the base of the transistor.
- DCTL circuits have fast switching speed.

Self Study:

Advantages and Disadvantages of DCTL. (Pg. 154-155)