微分積分学・同演習 A

演習問題 13

- 1 , $I_n:=\int rac{dx}{(1+x^2)^n}\;(n\in\mathbb{N})\;$ とおくとき,以下の問いに答えよ.
 - (1) I_n を部分積分することにより, I_{n+1} を I_n を用いて表せ.
 - (2) (1) を利用して I_2, I_3, I_4 を求めよ.
- 2^* 正の実数 p,q に対して $I_{p,q}:=\int x^p(ax+b)^q\,dx\;(a,b$ は正の実数)とおく.このとき,次の簡約公式が成り立つことを示せ *1 .

$$(p+q+1)I_{p,q} = qbI_{p,q-1} + x^{p+1}(ax+b)^q, \quad a(p+q+1)I_{p,q} = -pbI_{p-1,q} + x^p(ax+b)^{q-1}.$$

3. ベータ関数 $B(s,t)\;(s,t>0)$ に関する次の等式を示せ.

(1)
$$B(s,t) = B(t,s)$$
 (2) $B(s+1,t) = \frac{s}{s+t}B(s,t)$

(3)
$$B(s,t) = \int_0^{\frac{\pi}{2}} (\sin \theta)^{2s-1} (\cos \theta)^{2t-1} d\theta$$

4. 広義積分 $\int_0^{+\infty} e^{-x^2} x^{\alpha} dx$ をガンマ関数を用いて表せ .

$$5.*$$
 $I:=\int_{-\infty}^{+\infty}e^{-x^2}\,dx=\sqrt{\pi}$ を次の誘導に従って示せ $.$ $S_n:=\int_0^{\frac{\pi}{2}}(\sin x)^n\,dx$ とおく $.$

$$(1)$$
 $1<rac{S_{2k}}{S_{2k+1}}<rac{S_{2k-1}}{S_{2k+1}}=rac{2k+1}{2k}$ を確認し,よって $\lim_{k o\infty}rac{S_{2k}}{S_{2k+1}}=1$ を示せ.

$$(2)$$
 $S_{2k}S_{2k+1} = \frac{\pi}{4k+2}$ を示せ.よって (1) より $\lim_{k \to \infty} \sqrt{k}S_{2k+1} = \frac{\sqrt{\pi}}{2}$ である *2 .

$$(3) S_{2k+1} = \int_0^1 (1-x^2)^k dx, S_{2k-2} = \int_0^{+\infty} \frac{dx}{(1+x^2)^k}$$
を示せ*3.

$$(4)$$
 不等式 $1-x^2 < e^{-x^2} < \frac{1}{1+x^2} \; (x \neq 0)$ が成立することを示せ .

(5) 不等式
$$2\sqrt{k} \int_0^1 (1-x^2)^k dx < I < 2\sqrt{k} \int_0^{+\infty} \frac{dx}{(1+x^2)^k}$$
 を示せ*4.

以上より $2\sqrt{k}S_{2k+1}< I< 2\sqrt{k}S_{2k-2}$ であり,はさみうちの定理より所要の結果 $I=\sqrt{\pi}$ を得る.

⁷月25日分(凡例:無印は基本問題, † は特に解いてほしい問題, * は応用問題)

講義用 HP: http://www2.math.kyushu-u.ac.jp/~h-nakashima/lecture/2017C.html

 $^{^{*1}}$ ヒント: $x^p(ax+b)^q=ax^{p+1}(ax+b)^{q-1}+bx^p(ax+b)^{q-1}$ を用いて変形し,部分積分を行う.

 $^{^{*2}}$ この証明は解析概論(高木貞治著)から取った. $\sqrt{S_{2k}S_{2k+1}}=S_{2k+1}\sqrt{rac{S_{2k}}{S_{2k+1}}}$ と見る.

 $^{^{*3}}$ S_n の積分において,前者は $t=\cos x$,後者は $t=\cos x/\sin x$ と変数変換する.

^{**4} 偶関数なので積分区間を $[0,+\infty)$ として考える . $x^2=ky^2$ となるように変数変換し , (4) の不等式を利用する . ここで被積分関数が正ならば , $\int_0^1<\int_0^{+\infty}$ となることに注意 .