MAT4400: Notes on Linear analysis

Morten Tryti Berg and Isak Cecil Onsager Rukan.

February 21, 2024

3 σ -Algebras

Definition 3.1 (σ -Algebra). A family \mathscr{A} of subsets of X with:

- (i) $X \in \mathcal{A}$,
- (ii) $A \in \mathscr{A} \Rightarrow A^c \in \mathscr{A}$,
- (iii) $(A_n)_{n\in\mathbb{N}}\in\mathscr{A}\Rightarrow\bigcup_{n\in\mathbb{N}}$

Theorem 3.2 (and Definition).

- (i) The intersection of arbitrarily many σ -algebras in X is againg a σ -algebra in X.
- (ii) For every system of sets $p \subset \mathcal{P}(X)$ there exists a smallest σ -algebra containing.

 This is the σ -algebra generated by p, denoted $\sigma(p)$, and $\sigma(p)$ is called its generator.

Definition 3.3 (Borel). The σ -algebra $\sigma(\mathcal{O})$ generated by the open sets $\mathcal{O} = \mathcal{O}_{\mathbb{R}^n}$ of \mathbb{R}^n is called **Borel** σ -algebra, and its members are called **Borel sets** or **Borel measurable sets**.

5 Uniqueness of Measures

Lemma 5.1. A Dynkin system D is a σ -algebra iff it is stable under finite intersections, i.e. $A, B \in D \Rightarrow A \cap B \in D$.

Theorem 5.2 (Dynkin). Assume X is a set, S is a collection of subsets of X closed under finite intersections, that is, if $A, B \in S \Rightarrow A \cap B \in S$. Then $D(S) = \sigma(S)$.

Theorem 5.3 (uniqueness of measures). Let (X, B) be a measurable space, and $S \subset P(X)$ be the generator of B, i.e. $B = \sigma(S)$. If S satisfies the following conditions:

1. S is stable under finite intersections (\cap -stable), i.e. $A, C \in S \Rightarrow A \cap C \in S$.

- 2. There exists an exhausting sequence $(G_n)_{N\in\mathbb{N}}\subset with\ G_N\uparrow X$. Assume also that there are two measures μ,ν satisfying:
- 3. $\mu(A) = \nu(A), \ \forall A \in S$.
- 4. $\mu(G_n) = \nu(G_n) < \infty$.

Then $\mu = \nu$.

6 Existence of Measures

Theorem 6.1 (Carathéodory). Let $S \subset P(X)$ be a semi-ring and $\mu : S \to [0, \infty)$ a pre-measure. Then μ has an extension to a measure μ^* on $\sigma(S)$, i.e. that $\mu(s) = \mu^*(s)$, $\forall s \in \sigma(S)$.

Also, if S contains an exhausting sequence, $S_n \uparrow X$, s.t. $\mu(S_n) < \infty$, then the extension is unique.

7 Measurable Mappings

We consider maps $T: X \to X'$ between two measurable spaces (X, \mathcal{A}) and (X', \mathcal{A}') which respects the measurable structurs, the σ -algbras on X and X'. These maps are useful as we can transport a measure μ , defined on (X, \mathcal{A}) , to (X', \mathcal{A}') .

Definition 7.1. Let (X, \mathcal{A}) , (X', \mathcal{A}') b measurable spaces. A map $T: X \to X'$ is called \mathcal{A}/\mathcal{A}' -measurable if the pre-imag of every measurable set is a measurable set:

$$T^{-1}(A') \in \mathcal{A}, \quad \forall A' \in \mathcal{A}'.$$
 (1)

- A $\mathcal{B}(\mathbb{R}^n)/\mathcal{B}(\mathbb{R}^m)$ measurable map is often called a Borel map.
- The notation $T:(X,\mathcal{A})\to (X',\mathcal{A}')$ is often used to indicate measurability of the map T.

Lemma 7.2. Let (X, \mathcal{A}) , (x', \mathcal{A}') be measurable spaces and let $\mathcal{A}' = \sigma(\mathcal{G}')$. Then $T: X \to X'$ is \mathcal{A}/\mathcal{A}' -measurable iff $T^{-1}(\mathcal{G}') \subset \mathcal{A}$, i.e. if

$$T^{-1}(G') \in \mathcal{A}, \ \forall G' \in \mathcal{G}'.$$
 (2)

Theorem 7.3. Let (X_i, A_i) , i = 1, 2, 3, be measurable spaces and $T : X_1 \to X_2$, $S : X_2 \to X_3$ be A_1/A_2 and A_2/A_3 -measurable maps respectively. Then $S \circ T : X_1 \to X_3$ is A_1/A_3 -measurable.

Corollary 7.4. Every continuous map between metric spaces is a Borel map.

Definition 7.5. (and lemma) Let $(T_i)_{i \in I}$, $T_I : X \to X_i$, be arbitrarily many mappings from the same space X into measurable spaces (X_i, A_i) . The smallest σ -algebra on X that makes all T_i simultaneously measurable is

$$\sigma(T_i: i \in I) := \sigma\left(\bigcup_{i \in I} T_i^{-1}(\mathcal{A}_i)\right)$$
(3)

Corollary 7.6. A function $f:(X,\mathcal{B})\to\mathbb{R}$ is measurable if $f((a,+\infty))\in\mathcal{B}$, $\forall a\in\mathbb{R}$.

Corollary 7.7. Assume (X, \mathcal{B}) is a measurable space, (Y, d) is a metric space, $(f_n : (X, \mathcal{B}) \to Y)_{n=1}^{\infty}$ is a sequence of measurable maps. Assume this sequence of images $(f_n(x))_{n=1}^{\infty}$ is convergent in $Y \ \forall x \in X$. Define

$$f: X \to Y, \quad by \ f(x) = \lim_{n \to \infty} f_n(x).$$
 (4)

Then f is measurable.

Theorem 7.8. Let (X, A), (X', A') be measurable spaces and $T: X \to X'$ be an A/A'-measurable map. For every measurable μ on (X, A),

$$\mu'(A') := \mu(T^{-1}(A')), \quad A' \in \mathcal{A}',$$
 (5)

defines a measure on (X', A').

Definition 7.9. The measure $\mu'(\cdot)$ in the above theorem is called the push forward or image measure of μ under T and it is denoted as $T(\mu)(\cdot)$, $T_{*\mu}(\cdot)$ or $\mu \circ T^{-1}(\cdot)$.

Theorem 7.10. If $T \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, then $\lambda^n = T(\lambda^n)$.

Theorem 7.11. Let $S \in \mathbb{R}^{n \times n}$ be an invertible matrix. Then

$$S(\lambda^n) = |\det s^{-1}|\lambda^n = |\det S|^{-1}\lambda^n. \tag{6}$$

Corollary 7.12. Lebesgue measure is invariant under motions: $\lambda^n = M(\lambda^n)$ for all motions M in \mathbb{R}^n . In particular, congruent sets have the same measure. Two sets of points are called congruent if, and only if, one can be transformed into the other by an isometry

8 Measurable Functions

A measurable function is a measurable map $u: X \to \mathbb{R}$ from some measurable space (X, \mathscr{A}) to $(\mathbb{R}, \mathscr{B}(\mathbb{R}^1))$. They play central roles in the theory of integration.

We recall that $u: X \to \mathbb{R}$ is $\mathscr{A}/\mathscr{B}(\mathbb{R}^1)$ -measurable if

$$u^{-1}(B) \in \mathscr{A}, \ \forall B \in \mathscr{B}(\mathbb{R}^1).$$
 (7)

Moreover from a lemma from chapter 7, we actually only need to show that

$$u^{-1}(G) \in \mathscr{A}, \ \forall G \in \mathcal{G} \text{ where } \mathcal{G} \text{ generates } \mathscr{B}(\mathbb{R}^1).$$
 (8)

Proposition 8.1.

- 1 If $f,g:(X,\mathscr{B})\to\mathbb{C}$ are measurable, then the function $f+g,\,f\cdot g,\,cf,\,\,(c\in\mathbb{C})$ are measurable.
- 2 If $b: \mathbb{C} \to \mathbb{C}$ is Borel and $b: (\mathbb{C}, \mathscr{B}) \to \mathbb{C}$ is measurable, then $b \circ f$ is measurable
- 3 If $f(x) = \lim_{n \to \infty} f_n(x)$, $x \in X$ and f_n are measurable, then f is measurable.
- 4 If $X = \bigcup_{n=1}^{\infty} A_n$, $(A_n \in \mathcal{B})$, $f|_{A_n} : (A_n, \mathcal{B}_{A_n}) \to \mathbb{C}$ is measurable $\forall n$, then f is measurable.

Definition 8.2. Given a measurable space (X, \mathcal{B}) , a measurable function $f: (X, \mathcal{B}) \to \mathbb{C}$ is called simple if

$$f(x) = \sum_{k=1}^{N} c_k \mathbb{1}_{A_k}(x), \tag{9}$$

for some $c_k \in \mathbb{C}$, $A_k \in \mathcal{B}$, where $\mathbb{1}$ is the characteristic function,

$$\mathbb{1}_{A}(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A. \end{cases}$$
 (10)

The representation of simple function is ${f not}$ unique. We denote the standard representation of f by

$$f(x) = \sum_{n=0}^{N} z_n \mathbb{1}_{B_n}(x), \quad N \in \mathbb{N}, \ z_n \in \mathbb{R}, \ B_n \in \mathcal{A}, \ X = \bigcup_{n=1}^{N} B_n, \text{ for } B_n \cap B_m = \emptyset, \ n \neq m.$$
(11)

The set of simple functions is denoted $\mathcal{E}(\mathscr{A})$ of \mathcal{E} .

Definition 8.3. Assume μ is a measure on (X, \mathcal{B}) . Given a *positive* simple function

$$f = \sum_{k=1}^{N} c_k \mathbb{1}_{A_k}, \quad (c_k \ge 0).$$
 (12)

We define

$$\int_{X} f d\mu = \sum_{k=1}^{n} c_{k} \mu(A_{k}) \in [0, +\infty].$$
(13)

We also denote this by $I_{\mu}(f)$.

Lemma 8.4. This is well defined, that is, $\int_x f d\mu$ does not depend on the presentation of the simple function f.

Properties 8.5. For every positive simple function

$$1 \int_{\mathcal{X}} cf d\mu = c \int_{\mathcal{X}} f d\mu$$
, for only $c \ge 0$

$$2 \int_X (f+g)d\mu = \int_X f d\mu + \int_X g d\mu.$$

Corollary 8.6. If $f \geq g \geq 0$ are simple functions, then

$$\int_{Y} f d\mu \ge \int_{Y} g d\mu. \tag{14}$$

Definition 8.7. If $f: X \to [0, +\infty)$ is measurable, then we define

$$\int_{X} f d\mu = \sup \left\{ \int_{X} g d\mu : f \ge g \ge 0, \ g \text{ is simple} \right\}$$
 (15)

Remark. This means that any measurable function can be approximated by simple functions.

Properties 8.8. Measurable functions like this have the following properties

$$1 \int_X cf d\mu = c \int_X f d\mu, \quad \forall c \ge 0.$$

2 If $f \geq g \geq 0$, then $\int_X f d\mu \geq \int_X g d\mu$ for any measurable g, f.

3 If $f \ge 0$ is simple, then $\int_X f d\mu$ is the same value as obtained before.

To advance in measure theory we consider measurable functions

$$f: X \to [0, +\infty].$$

Measurability is understood w.r.t the σ -algebra $\mathscr{B}([0,+\infty])$ generated by $\mathscr{B}([0,+\infty))$ and $\{+\infty\}$. In other words, $A \subset [0,+\infty] \in B([0,+\infty])$ iff $A \cap [0,+\infty) \in \mathscr{B}([0,+\infty)$.

Remark. Hence $f: X \to [0, +\infty]$ is measurable iff $f^{-1}(A)$ is measurable $\forall A \in \mathscr{B}([0, +\infty))$.

Definition 8.9. For measurable functions $f_X \to [0, +\infty]$, we define

$$\int_X f d\mu = \sup \left\{ \int_x g d\mu : f \ge g \ge 0 : g \text{ is simple} \right\} \in [0, +\infty].$$
 (16)

Theorem 8.10. Monotone convergence theorem Assume (X, \mathcal{B}, μ) is a measure space, $(f)_{n=1}^{\infty}$ is an increasing sequence of measurable positive functions $f_n: X \to [0, +\infty]$. Define $f(x) = \lim_{n \to \infty} f_n(x)$. Then f is measurable and

$$\int_{X} f d\mu = \lim_{n \to \infty} \int_{X} f_n d\mu. \tag{17}$$

Theorem 8.11. Assume (X, \mathcal{B}) is a measurable space and $f: X \to [0, +\infty]$ is measurable. Then there are simple functions g_n , s.t.

$$0 \le g_1 \le g_2 \le \dots$$
, $g_n(x) \to f(x)$, $\forall x \in X$.

Moreover, if f is bounded, we can choose g_n s.t. the convergence is uniform, that is,

$$\lim_{n \to \infty} \sup_{x \in X} |g_n(x) - f(x)| = 0.$$
 (18)

10 Integrals of Measurable Functions

We have defined our integral for positive measurable functions, i.e. functions in $\mathcal{M}^+(\mathscr{A})$. To extend our integral to not only functions in $\mathcal{M}^+(\mathscr{A})$ we first notice that

$$u \in \mathcal{M}_{\overline{\mathbb{R}}}(\mathscr{A}) \Leftrightarrow u = u^+ - u^-, \ u^+, u^- \in \mathcal{M}_{\overline{\mathbb{R}}}^+,$$
 (19)

i.e. that every measurable function can be written as a sum of **positive** measurable functions.

Definition 10.1 (μ -integrable). A function $u: X \to \overline{\mathbb{R}}$ on (X, \mathscr{A}, μ) is μ -integrable, if it is $\mathscr{A}/\mathscr{B}(\overline{\mathbb{R}})$ -measurable and if $\int u^+ d\mu$, $\int u^- d\mu < \infty$ (recall the definition for the integral of positive measurable functions). Then

$$\int ud\mu := \int u^+ d\mu - \int u^- d\mu \in (-\infty, \infty)$$
 (20)

is the $(\mu$ -)integral of u. We write $\mathcal{L}^1(\mu)$ for the set of all real-valued μ -integrable functions ¹.

Theorem 10.2. Let $u \in \mathcal{M}_{\overline{\mathbb{R}}}(\mathscr{A})$, then the following conditions are equivalent:

- (i) $u \in \mathcal{L}^{\frac{1}{\mathbb{R}}}(\mu)$.
- (ii) $u^+, u^- \in \mathcal{L}^1_{\overline{\mathbb{R}}}(\mu)$.
- (iii) $|u| \in \mathcal{L}^{1}_{\overline{\mathbb{R}}}(\mu)$.
- (iv) $\exists w \in \mathcal{L}^1_{\mathbb{R}}(\mu) \text{ with } w \geq 0 \text{ s.t. } |u| \leq w.$

Theorem 10.3 (Properties of the μ -integral). The μ -integral is: **homogeneous**, additive, and:

(i)
$$\min\{u, v\}, \max\{u, v\} \in \mathcal{L}^1_{\mathbb{R}}(\mu)$$
 (lattice property)

¹In words, we extend our integral to positive measurable functions by noticing that we can write every measurable function as a sum of positive measurable functions, something that we do know how to integrate. We don't want to run into the problem of $\infty - \infty$, thus we require the integral of the positive and negative parts to both (separately) be less than infinity.

(ii)
$$u \le v \Rightarrow \int u d\mu \le \int v d\mu$$
 (monotone)

(iii)
$$\left| \int u d\mu \right| \le \int |u| d\mu$$
 (triangle inequality)

Remark. If $u(x) \pm v(x)$ is defined in $\overline{\mathbb{R}}$ for all $x \in X$ then we can exclude $\infty - \infty$ and the theorem above just says that the integral is linear:

$$\int (au + bv)d\mu = a \int ud\mu + b \int vd\mu.$$
 (21)

This is always true for real-valued $u, v \in \mathcal{L}^1(\mu) = \mathcal{L}^1_{\mathbb{R}}(\mu)$, making $\mathcal{L}^1(\mu)$ a vector space with addition and scalar multiplication defined by

$$(u+v)(x) := u(x) + v(x), \ (a \cdot u)(x) := a \cdot u(x), \tag{22}$$

and

$$\int ...d\mu : \mathcal{L}^1(\mu) \to \mathbb{R}, \ u \mapsto \int u d\mu, \tag{23}$$

is a positive linear functional.

11 Null sets and the "Almost Everywhere"

Definition 11.1. A $(\mu$ -)null set $N \in \mathcal{N}_{\mu}$ is a measurable set $N \in \mathcal{A}$ satisfying

$$N \in \mu \Leftrightarrow N \in \mathscr{A} \text{ and } \mu(N) = 0.$$
 (24)

This can be used generally about a 'statement' or 'property', but we will be interested in questions like 'when is u(x) equal to v(x)', and we answer this by saying

$$u = v \text{ a.e.} \Leftrightarrow \{x : u(x) \neq v(x)\} \text{ is (contained in) a } \mu\text{-null set.,}$$
 (25)

i.e.

$$u = v \quad \mu$$
-a.e. $\Leftrightarrow \mu\left(\left\{x : u(x) \neq v(x)\right\}\right) = 0$. (26)

The last phrasing should of course include that the set $\{x: u(x) \neq v(x)\}$ is in \mathscr{A} .

Theorem 11.2. Let $u \in \mathcal{M}_{\overline{\mathbb{R}}}(\mathscr{A})$, then:

(i)
$$\int |u|d\mu = 0 \Leftrightarrow |u| = 0 \text{ a.e. } \Leftrightarrow \mu \{u \neq 0\} = 0,$$

(ii)
$$\mathbb{1}_N u \in \mathcal{L}^{\underline{1}}_{\overline{\mathbb{R}}}(\mu) \ \forall \ N \in \mathcal{N}_{\mu},$$

(iii)
$$\int_N u d\mu = 0.$$

Corollary 11.3. Let $u = v \mu$ -a.e. Then

- (i) $u, v \ge 0 \Rightarrow \int u d\mu = \int v d\mu$,
- (ii) $u \in \mathcal{L}^{1}_{\mathbb{R}}(\mu) \Rightarrow v \in \mathcal{L}^{1}_{\mathbb{R}}(\mu) \text{ and } \int u d\mu = \int v d\mu.$

Corollary 11.4. If $u \in \mathcal{M}_{\overline{\mathbb{R}}}(\mathscr{A})$, $v \in \mathcal{L}^{\underline{1}}_{\overline{\mathbb{R}}}(\mu)$ and $v \geq 0$ then

$$|u| \le v \ a.e. \ \Rightarrow u \in \mathcal{L}^{1}_{\overline{\mathbb{R}}}(\mu).$$
 (27)

Proposition 11.5 (Markow inequality). For all $u \in \mathcal{L}^1_{\overline{\mathbb{R}}}(\mu)$, $A \in \mathscr{A}$ and c > 0

$$u\left(\{|u| \ge c\} \cap A\right) \le \frac{1}{c} \int_{A} |u| d\mu,\tag{28}$$

if A = X, then (obviosly)

$$u\{|u| \ge c\} \le \frac{1}{c} \int |u| d\mu. \tag{29}$$

Corollary 11.6. If $u \in \mathcal{L}^1_{\overline{R}}(\mu)$, then μ is a.e. \mathbb{R} -vaued. In particular, we can find a version $\tilde{u} \in \mathcal{L}^1(\mu)$ s.t. $\tilde{u} = u$ a.e. and $\int \tilde{u} d\mu = \int u d\mu$

Completions of measure spaces (from lecture notes)

Definition 11.7. A measure space is called **complete** if whenever $A \in \mathcal{B}$ and $\mu(A) = 0$, we have $B \in \mathcal{B} \ \forall B \subset A$.

Remark. Any measure space can be completed as follows: Let $\bar{\mathscr{B}}$ be the σ -algebra generated by \mathscr{B} and all sets $B \subset X$ s.t. there exists $A \in \mathscr{B}$ with $B \subset A$ and $\mu(A) = 0$.

Proposition 11.8. The σ -algebra $\bar{\mathscr{B}}$ can also be described as follows:

$$\bar{\mathcal{B}} := \{ B \subset X : A_1 \subset B \subset A_2 \text{ for some } A_1, A_2 \in \mathcal{B} \text{ with } \mu(A_2 \backslash A_1) = 0 \},$$
(30)

with B, A_1, A_2 as above, we define

$$\bar{\mu} := \mu(A_1) = \mu(A_2)$$
 (31)

Then $(X, \mathcal{B}, \bar{\mu})$ is a complete measure space.

Definition 11.9. If μ is a Borel measure on a **metric** space (X, d), then the completion $\bar{\mathcal{B}}(X)$ of the Borel σ -algebra with respect to μ is called the σ -algebra of μ -measurable sets.

Remark. For $\mu = \lambda_n$ on \mathbb{R}^n we talk about the σ -algebra of **Lebesgue measurable sets**. Instead of $\bar{\lambda}_n$ we still write λ_n and call it the **Lebesgue measure**. A function $f : \mathbb{R}^n \to \mathbb{C}$, measurable w.r.t. the σ -algebra of Lebesgue measurable sets is called the **Lebesgue measurable**.

The following result shows that any Lebesgue measurable function coincides with a Borel function a.e.

Proposition 11.10. Assume (X, \mathcal{B}, μ) is a measure space and consider its completion $(X, \bar{\mathcal{B}}, \bar{\mu})$. Assume $f: X \to \mathbb{C}$ is $\bar{\mathcal{B}}$ -measurable. Then there is a \mathcal{B} -measurable function $g: X \to \mathbb{C}$ s.t. $f = g \bar{\mu}$ -a.e.

12 Convergence Theorems and Their Applications

- To interchange limits and integrals in **Riemann integrals** one typically has to assume uniform convergence. ¡- The set of Riemann integrable functions is somewhat limited, see theorem 12.7

Theorem 12.1 (Generalization of Beppo Levi, monotone convergence).

(i) Let $(u_n)_{n\in\mathbb{N}}\subset\mathcal{L}^1(\mu)$ be s.t. $u_1\leq u_2\leq\dots$ with limit $u:=\sup_{n\in\mathbb{N}}u_n=\lim_{n\to\infty}u_n$. Then $u\in\mathcal{L}^1(\mu)$ iff

$$\sup_{n\in\mathbb{N}}\int u_n d\mu < +\infty,$$

in which case

$$\sup_{n\in\mathbb{N}}\int u_n d\mu = \int \sup_{n\in\mathbb{N}} u_n d\mu.$$

(ii) Same thing only with a decreasing sequence ... $> -\infty$ in which case

$$\inf_{n\in\mathbb{N}}\int u_n d\mu = \int \inf_{n\in\mathbb{N}} u_n d\mu.$$

Theorem 12.2 (Lebesgue; dominated convergence). Let $(u_n)_{n\in\mathbb{N}}\subset\mathcal{L}^1(\mu)$ s.t.

- (a) $|u_n|(x) \le w(x), w \in \mathcal{L}^1(\mu),$
- (b) $u(x) = \lim_{n \to \infty} exists in \overline{\mathbb{R}},$

then $u \in \mathcal{L}^1(\mu)$ and we have

- (i) $\lim_{n\to\infty} \int |u_n u| d\mu = 0;$
- (ii) $\lim_{n\to\infty} \int u_n d\mu = \int \lim_{n\to\infty} u_n d\mu = \int u d\mu$;

Application 1: Parameter-Dependent Integrals

- We are interested in questions of the sort, when is

$$U(t) := \int u(t,x)\mu(dx), \ t \in (a,b),$$

again a smooth function of t? The answer involves interchange of limits and integration. Also, it turns out to better understand Riemann integrability, we need the Lebesgue integral.

Theorem 12.3 (continuity lemma). Let $\emptyset \neq (a,b) \subset \mathbb{R}$ be a non-degenerate open interval and $u:(a,b)\times X\to \mathbb{R}$ satisfy

- (a) $x \mapsto u(t,x)$ is in $\mathcal{L}^1(\mu)$ for every fixed $t \in (a,b)$;
- (b) $t \mapsto u(t, x)$ is continuous for every fixed $x \in X$;
- (c) $|u(t,x)| \le w(x)$ for all $(t,x) \in (a,b) \times X$ and some $w \in \mathcal{L}^1(\mu)$.

Then the function $U:(a,b)\to\mathbb{R}$ given by

$$t \mapsto U(t) := \int u(t, x) \mu(dx) \tag{32}$$

is continuous.

Theorem 12.4 (differentiability lemma). Let $\emptyset \leq (a,b) \subset \mathbb{R}$ be a non-degenerate open interval and $u:(a,b)\times X\to \mathbb{R}$ satisfy

- (a) Same
- (b) Same
- (c) $|\partial_t u(t,x)| \leq w(x)$ for all $(t,x) \in (a,b) \times X$ and some $w \in \mathcal{L}^1(\mu)$.

Then the function in 32 is differentiable and its derivative is

$$\frac{d}{dt}U(t) = \frac{d}{dt}\int u(t,x)\mu(dx) = \int \frac{\partial}{\partial t}u(t,x)\mu(dx). \tag{33}$$

Application 2: Riemann vs Lebesgue Integration

Consider only $(X, \mathcal{A}, \mu) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$.

Definition 12.5 (The Riemann Inegral). Consider on the finite interval $[a, b] \subset \mathbb{R}$ the partition

$$\Pi := \{ a = t_0 < t_1 < \dots < t_k < b \}, k = k(\Pi), \tag{34}$$

and introduce

$$S_{\Pi}[u] := \sum_{i=1}^{k(\Pi)} m_i(t_i - t_{i-1}), \qquad m_i := \inf_{x \in [t_{i-1}, t_i]} u(x),$$
 (35)

$$S^{\Pi}[u] := \sum_{i=1}^{k(\Pi)} M_i(t_i - t_{i-1}), \qquad M_i := \sup_{x \in [t_{i-1}, t_i]} u(x).$$
(36)

A bounded function $u:[a,b]\to\mathbb{R}$ is said to be **Riemann integrable** if the values

$$\int u := \sup_{\Pi} S_{\Pi}[u] = \inf_{\Pi} S^{\Pi}[u] =: \bar{\int} u$$
(38)

coincide and are finite. Their common value is called the **Riemann integral** of u and denoted by $(R) \int_a^b u(x) dx$ or $\int_a^b u(x) dx$.

Theorem 12.6. Let $u : [a, b] \to \mathbb{R}$ be a **measurable** and **Riemann integrable** function. Then

$$u \in \mathcal{L}^1(\lambda) \ and \int_{[a,b]} u d\lambda = \int_a^b u(x) dx.$$
 (39)

Theorem 12.7. Let $u:[a,b] \to \mathbb{R}$ be a bounded function, it is Riemann integrable **iff** the points in (a,b) where u is discontinuous are a (subset of) Borel measurable null set.

Improper Riemann Integrals

- The Lebesgue integral extends the (proper) Riemann integral. However, there is a further extension of the Riemann integral which cannot be captured by Lebesgue's theory. u is Lebesgue integrable iff |u| ha finite Lebesgue integral. i-The Lebesgue integral does not respect sign-changes and cancellations. However, the following $improper\ Riemann\ integral\ does$:

$$(R)\int_{0}^{\infty}u(x)dx := \lim_{n\to\infty}(R)\int_{0}^{a}u(x)dx. \tag{40}$$

Corollary 12.8. Let $u:[0,\infty)\to\mathbb{R}$ be a measurable, Riemann integrable function for every interval $[0,N],\ N\in\mathbb{N}$. Then $u\in\mathcal{L}^1[0,\infty)$ iff

$$\lim_{N \to \infty} (R) \int_{0}^{N} |u(x)| dx < \infty. \tag{41}$$

In this case, $(R) \int_0^\infty u(x) dx = \int_{[0,\infty)} u d\lambda$

Example of a function which is *improperly Riemann integrable* but **not** *Lebesgue integrable*:

$$f(x) = \frac{\sin(x)}{x}. (42)$$

Proposition 12.9 (appearing as example 12.13 in Schilling). Let $f_{\alpha}(x) := x^{\alpha}, x > 0$ and $\alpha \in \mathbb{R}$. Then

- (i) $f(\alpha) \in \mathcal{L}^1(0,1) \Leftrightarrow \alpha > -1$.
- (ii) $f(\alpha) \in \mathcal{L}^1[1,\infty) \Leftrightarrow \alpha < -1$.

13 The Function Spaces \mathcal{L}^p

Assume V is a vector space over $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$.

Definition 13.1. A seminorn on V is a map $p: V \to [0, +\infty)$ s.t.

- (1) $p(cx) = |c|p(x) \ \forall x \in V, \forall c \in \mathbb{K}.$
- (2) $p(x+y) \le p(x) + p(y) \ \forall x, y \in V$. triangle inequality.

A seminorm is called a norm if we also have

$$p(x) = 0 \iff x = 0.$$

A norm is commonly denoted ||x||, and a vector space equipped with a norm is called a **normed space**.

Definition 13.2. Assume (X, d) is a measure space. Fix $1 \le p \le \infty$. For every measurable function $f: X \to \mathbb{C}$ we define the following

$$||f||_p = \left(\int_X |f|^p d\mu\right)^{1/p} \in [0, +\infty].$$
 (43)

We can see that $||cf||_p = |c|||f||_p \ \forall c \in \mathbb{C}$.

Lemma 13.3.

$$||f + g||_{p} \le ||f||_{p} + ||g||_{p}. \tag{44}$$

Definition 13.4. We define

$$\mathcal{L}^p(X, d\mu) = \{ f : X \to \mathbb{C} \mid f \text{ is measurable and } ||f||_p < \infty \}. \tag{45}$$

This is a vector space with seminorm $f \mapsto ||f||_p$. And in general this is not a normed space, since $||f||_p = 0 \iff f = 0$ a.e. Generally, if p is a seminorm on a vectorspace V, then

$$V_0 = \{ x \in V \mid p(x) = 0 \} \tag{46}$$

which is a subspace of V. Then we consider the quotient/factor space V/V_0 .

Definition 13.5. For $x, y \in V$, define

$$x \sim y \iff x - y \in V_0.$$
 (47)

This is an equivalence relation on V. The representation class of V is defined by [x] or $x + V_0$.

Then V/V_0 is equals the set of equivalence classes. We can show that it is a normed space.

$$[x] + [y] = [x + y]$$
, $c[x] = [cx]$, $||[x]|| = p(x)$.

Applying this to $\mathcal{L}^p(X, d\mu)$ we get the normed space

$$L^{p}(X, d\mu) = \mathcal{L}^{p}(X, d\mu)/\mathcal{N}. \tag{48}$$

Where \mathcal{N} is the space of measurable functions f s.t. f = 0 a.e. We will further continue to denote the norm by $||\cdot||_p$, and we will normally **not** distinguish between $f \in \mathcal{L}^p(X, d\mu)$ and the vector in $L^p(X, d\mu)$ that f defines.

Definition 13.6. A normed space $(X, ||\cdot||)$ is called a Banach space if V is complete w.r.t the metric d(x, y) = ||x - y||.

Theorem 13.7. If (X, \mathcal{B}, μ) is a measure space, $1 \leq p \leq \infty$, then $L^p(X, d\mu)$ is a Banach space.

Definition 13.8. A measurable function $f: X \to \mathbb{C}$ is called **essentially bounded** if there is $c \geq 0$ s.t.

$$\mu(\{x : |f(x)| > c\}) = 0. \tag{49}$$

That is $|f| \leq c$ a.e. The smallest such c is called the essential supremum of f and is denoted by $||f||_{\infty}$.

Definition 13.9.

$$\mathcal{L}^{\infty}(X,d\mu) = \left\{ f: X \to \mathbb{C} \ \mid \ f \text{ is measurable and } ||f||_{\infty} < \infty \right\}.$$

$$L^{\infty}(X, d\mu) = \mathcal{L}^{\infty}(X, d\mu)/\mathcal{N}.$$

Where by the previous definiton these spaces become the spaces of all essentially bounded functions.

Theorem 13.10. If (X, \mathcal{B}, μ) is a σ -finite measure space, then $L^{\infty}(X, d\mu)$ is a Banach space.

Appendix

H Regularity of measures

We let (X, d) be a metric space and denote by \mathcal{O} the open, by \mathcal{C} the closed and $\mathscr{B}(X) = \sigma(\mathcal{O})$ the Borel set of X.

Definition H.1. A measure μ on $(X, d, \mathcal{B}(X))$ is called outer regular, if

$$\mu(B) = \inf \{ \mu(U) \mid B \subset U, U \text{ open} \}$$
 (50)

and inner regular, if $\mu(K) < \infty$ for all compact sets $K \subset X$ and

$$\mu(U) = \sup \{ \mu(K) \mid K \subset U, K \text{ compact} \}.$$
 (51)

A measure which is both inner and outer regular is called **regular**. We write $\mathfrak{m}_r^+(X)$ for the family of regular measures on $(X, \mathcal{B}(X))$.

Remark. The space X is called σ -compact if there is a sequence of compact sets $K_n \uparrow X$. A typical example of such a space is a locally compact, separable metric space.

Theorem H.2. Let (X, d) be a metric space. Every finite measure μ on $(X, \mathcal{B}(X))$ is outer regular. If X is σ -compact, then μ is also inner regular, hence regular.

Theorem H.3. Let (X, d) be a metric space and μ be a measure on (X, B(X)) such that $\mu(K) < \infty$ for all compact sets $K \subset X$.

- 1 If X is σ -compact, then μ is inner regular.
- 2 If there exists a sequence $G_n \in \mathcal{O}$, $G_n \uparrow X$ such that $\mu(G_n) < \infty$, then μ is outer regular.