Math 461 Homework 2

Paul Hacking

September 17, 2018

- (1) Let $\triangle ABC$ be a triangle such that $\angle ABC = \pi/2$. Let D be the midpoint of AC. Prove that $|BD| = \frac{1}{2}|AC|$.
- (2) Let $\triangle ABC$ be a triangle such that |AB| = |AC|. Suppose given points D on AB and E on AC such that |BC| = |CD| = |DE| = |EA|. Determine (with proof) $\angle BAC$.
- (3) Let $\triangle ABC$ be a triangle. Prove that if |AC| > |AB| then $\angle ABC > \angle ACB$.
- (4) Let $\triangle ABC$ be a triangle. Let D be the intersection point of the bisector of the angle $\angle BAC$ and the side BC.
 - (a) Prove that $Area(\Delta ACD)/Area(\Delta ADB) = |CD|/|DB|$.
 - (b) Prove that |CD|/|DB| = |AC|/|AB|.
- (5) Let ABCD be a quadrilateral. Let P, Q, R, S be the midpoints of the sides AB, BC, CD, and DA. Prove that PQRS is a parallelogram.
- (6) Let C be a circle and P a point not lying on C. Let L and L' be two lines passing through P such that L intersects C in two points X and Y and L' intersects C in two points X' and Y'. Prove that $|PX| \cdot |PY| = |PX'| \cdot |PY'|$.
- (7) Suppose the vertices A, B, C, D of a quadrilateral ABCD lie on a circle. Prove that the opposite angles of the quadrilateral sum to π , that is, $\angle ABC + \angle CDA = \angle BCD + \angle DAB = \pi$.

- (8) Let ABCD be a convex quadrilateral such that $\angle ACB$ and $\angle ADB$ are equal. Show that the vertices A, B, C, D of the quadrilateral lie on a circle.
- (9) Given a circle C and a point P outside C give a ruler and compass construction of the two lines through P that are tangent to C.