Aufgabe 1. Es sei $t \in \mathbb{R}$ und

$$A_t = \begin{pmatrix} 1 & -2 \\ t & 1-t \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}).$$

- (i) Man berechne die Determinante von A_t .
- (ii) Man bestimme eine Basis von $im(A_t)$.
- (iii) Man finde die inverse Matrix von A_t , wenn sie existiert.

Aufgabe 2. Es sei $t \in \mathbb{R}$ und

$$B_t = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & t \\ t & 1 & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

- (i) Man berechne die Determinante von B_t .
- (ii) Man bestimme eine Basis von $im(B_t)$.
- (iii) Man finde die inverse Matrix von B_t , wenn sie existiert.

Aufgabe 3. Es sei $s, t \in \mathbb{R}$ und

$$D_{s,t} = \begin{pmatrix} 1 & 1 & 1 \\ s & s^2 & s^3 \\ t & t^2 & t^3 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

- (i) Man zeige: $\det(D_{s,t}) = st(t-1)(s-1)(t-s)$.
- (ii) Man finde eine Basis von $im(D_{s,t})$.

Aufgabe 4. Es sei k ein Körper, $a, b \in k$ und

$$C_{n} = \begin{pmatrix} a & & & & b \\ & \ddots & & & \ddots \\ & & a & b & \\ & & b & a & \\ & \ddots & & & \ddots \\ b & & & & a \end{pmatrix} \in \mathcal{M}_{2n}(k), \quad \text{i.e. } (C_{n})_{ij} = \begin{cases} a & \text{falls } i = j, \\ b & \text{falls } i + j = 2n + 1, \\ 0 & \text{sonst.} \end{cases}$$

- (i) Man zeige, dass $\det(C_n) = (a^2 b^2) \cdot \det(C_{n-1})$ für $n \ge 2$.
- (ii) Man berechene $det(C_n)$ für $n \ge 1$.