Question 1:

1-1		-	
210	65	>7	-
65	45	25	þ
155	223	21	5
1		1	

135	135	129	133	130	134	134	137
133	133	132	132	135	127	55	119
132	127	222	200	65	55	96	110
110	104	210	65	55	103	129	160
105	112	65	45	250	201	219	231
167	65	55	223	216	231	240	238
221	(55)	240	223	214	216	218	219
224	217	222	214	215	217	219	220

\wedge	-1	0	1	ı
$L \rightarrow_{X} =$	-1	0	1	l
<i>(</i> `	-1	0	1	

- a) For the (8-by-8) image block given, It is required to do edge detection using Prewitt operators (assume image already smoothed with Gaussian filter). Is the given above the Δ_y or Δ_x operator? <u>Deduce the other one</u>. Which of them estimates horizontal edges and which estimates vertical edges? (1.5)
- b) Apply the x-gradient and y-gradient Prewitt operators to pixel $[f(5,4) = 45] \rightarrow$ Find the values for Δ_y and Δ_x , Hence Calculate the <u>strength and orientation</u> of the gradient at that pixel. <u>Does the orientation</u> angle make sense according to the edge direction you see in the block? (2.5)

Q) Dx -> shows vertical edges (5.75)-

DX = -(216+65+55) + (55+250+216) = +191 DY = (210+65+55) - (55+223+216)

6.75 $|\Delta| = \sqrt{(191)^2 + (164)^2} = 251.7$

 $\begin{array}{c}
1) (0) = tar \left(\frac{-164}{91}\right) \\
= -40.65
\end{array}$

-16U - voim

worker sense os correspondsto edge-direction

** prewitt ((()) (())
c) In the Prewitt edge detection we apply the following processes $\Delta_x = M_x^{prewitt} * \{g(x,y) * f(x,y)\}$ and $\Delta_y = M_y^{prewitt} * \{g(x,y) * f(x,y)\}$. Explain what will be different if you want to use the Canny edge detection (Re-Write the equations in this case). (2)
d) Explain why the Canny approach is better than the Prewitt approach in edge detection? (1)
(c) Convey's we toke advantors of = (f & g) =) f & g = (f & g) =) f & g = g = f & g = f & g = g = f & g = f
so, instead of MX & (g&f) =) f&gx My & (g&f) =) f@gy
better in (i) less convolutions (ii) less convolutions (iii) less convolutions (iii) less convolutions (iii) less convolutions (iii) less convolutions (iii) less convolutions (iii) less convolutions
(0-5(1) No derivative operater opporin. (Mx 9 My)
(Prewitt, Roberts, Sobel)
one replaced by the real
derivative of the gaussian
=> g

Question 2: (a) For the 8-by-8 image above in (Question-1), apply the given normalized Gaussian filter on pixel $f(5,4) = 45$ and find the pixel's new value. Has it been smoothed? Does this smoothing preserves edges? And why? (2)
0.075 0.124 0.075 266
(b) Exploin briefly the main differences between the Median Filter, Gaussian Filter, Bilateral Filter and the
Non-local-means filter for Noise Removal and show which of them preserves the edges and how. (2) The been superfied the first so harmful The been superfied the first so harmful The been superfied the blur occurred The edge information of them preserves the edges and how. (2)
(b) (i) Median -> Non-linean tiltent order-statistics filter we take the median value -> itis very good for solt + pepper Noise when itis moderate
(ii) Gonssian) smoothes according to site and or but couses blun since it combands (autroses) pixels that way be not different side of edges of 200 200 200 200 200 200 200 200 200 20
weight that will pixels similar in value while give is I weight to pixels similar in value while you to pixels with different range of values of Values (PV) (NCM) pixels with average pixel with often proposed with similar characterists (PV) (NCM) Page 4 of 11 (Similar value + Neighbors) Page 4 of 11 (Similar value + Neighbors)

