RECEIVED

OCT 0 4 2002

TC 1700

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

Ken FUKUTA et al.

Group Art Unit: 1732

Serial No.: 10/084,658

Examiner: Unassigned

Filed: February 28, 2002

For: METHOD OF MANUFACTURING CERAMIC BODY

DECLARATION

Ken FUKUTA, Akio ENOMOTO, and Eiji ITO declare that:

- (1) the subject matter of instant claims 1 to 6 was invented before May 12, 2000;
- (2) the enclosed exhibits showing reduction to practice of the invention include the following:

Exhibit A which is the front page of the laboratory notebook of joint inventor Eiji ITO;

Exhibit B which contains a description of an idea of identifying hole positions by an image processing technique;

Exhibit C which contains a description of an idea for piercing holes by a laser;

Serial No. 10/084,658

Exhibit D which contains an experimental report on laser hole piercing;

Exhibit E which shows a portion of an experimental report of actual examples prepared in accordance with that technique; and

Exhibit F which is a copy of Japanese Patent Application 2000-116,654 filed April 18, 2000; and

(3) all statements made herein of our own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Sep 5, 2002

Date

Ken Fukuta

Sep 5. 2002 Date

Akio Enomoto

Sep 6, 2002

Eiji Ito

FATÓ

伊佛

8548

H12.1~6

EXHIBIT A

(大) 40枚 1-201A

KOKUYO

late 1/28 切肝目的じ min 0.001 cc PATP. 10m-2 、七・/ポンプ。 、定量の生装造 (ディスペッサー) 0.0445 cm3 7分1-を出してまから 11分のを31を上げる 1147° 少いなこともでいかっ 液砌 上倒出 ヲ 10±5 ・ 深玉が 垂いないか? 2,54 ・ハペナ行と液玉の国体 垂いてはあずあかなりか 乾燥为佐(下的海水河的水乾燥) 如时太 世生小子 カメラ ライト 画像处理 1到:いかいの本(266,7) 2は1りかき 液以よる. クラッフ。 , O 27-3" サーではのけっちゅう

EXHIBIT B

が DPF 目初じ 方医条 レーザー マスク 扱き

1. ワークセット 10" 5 2 2 3. マスク野村 10" (海滨) 10 4. 移動 2" 2 3 2 52" 52" 52"

EXHIBIT C

DPF目封じマスクの作成(レーザーマーカー方式)

平成12年4月4日

使用装置:スキャニング式 YAG レーザーマーカー ML-4141B (ミヤチテクノス)

使用マスクフィルム:ポリエステルフィルム粘着テープ 631S#25 黒色 (寺岡製作所)

穴の形状

			· · · · · · · · · · · · · · · · · · ·				\int_{a}
No.	形状	周波数	電流	速度	時間	コメント	評価
	スキャン	kHz	Α	mm/sec	秒		
1	〇無	7	15	300	7. 4	糊の層が残る	×
2	1	<u> </u>	↑	100	14. 6	完全に穴が明くがバリ有り	0
3	1	1	1	200	9. 2	穴が明く物と明かない物がある	×
4	1	12	15	1	9. 2	糊の層が残る	×
5	1	4	1	1	9. 2	糊の層が残る	×
6	1	7	18	1	9. 2	1ヶだけ穴の明いてない物有り	Δ
7	1	12	1	1	9. 2	穴が開く物と明かない物がある	·×
8	1	7	1	. 150	11	完全に穴が明くがバリ有り	0
9	口無	1	1	1	11.6	完全に穴が明くがバリ有り	0
10	1 0 . 1	1	15	300	37. 9	完全に穴が明くが溶けすぎ有り	Δ
			·· ···································			バリ無し	
11 .	●0. 2	1.	↑	1	23. 1	完全に穴が明く バリ少・	. 0
12	1	1	↑	600	15. 7	穴は明いているが糊の層が少し残る	Δ
13	1	1	↑	450	19. 5	完全に穴が開く	0

考察

- 1. 周波数を減らすとパルス波形のピークが大きくなるが、結果に影響は無かった。 (Na1, 4, 5)
- 2. 電流は大きい方が穴開け性は良い。本装置は MAX 20A設定まで。
- 3. スキャン無しの場合は18Aで150 mm/sec が最速。速度を上げると糊の層が残る。 (Na7, 8)
- 4. スキャン(塗りつぶし)させると同じ電流値設定でも糊の層まで穴が明くが加工時間 がかかる。しかし、スキャン間隔と電流、速度の最適化で時間短縮の可能性はある。
- 5. ポリエステルフィルム 2 5 μ m の穴明け(切断)は比較的容易だが、糊の層が残る事 が多い。このフィルムメーカーでは糊材質の変更は不可能 (アクリル系接着剤)
- 6. 設計値 (穴ピッチ 5.06mm) に対して、できあがりがずれている (約 4.5mm) -> 倉田 国宜学
- 7. 同じ面積の□と○では○の方が周長さが短い分、加工時間が短い (No.8, 9)

8.

分、加工 レーザーマーカーによる切除り フのAM のべり飼に実続有(ミヤチ) 49:向日 EXHIBIT D

8/ 200

スーンきし 15A スキッシュ 7KH2 15A 200 mm/s 9,2" (4) 对地 12KHz 15A 200"/5 EXHIBIT E

セラミック体の製造方法

発明の背景

(1) 発明の属する技術分野

【0001】本発明は、セラミックハニカム構造体の両端面でセルが交互に 封止された構造のセラミック体を得るためのセラミック体の製造方法に関す るものである。

(2) 従来の技術

【0002】従来から、セラミックハニカム構造体の両端面でセルが交互に封止された構造のセラミック体を得るために、種々の製造方法が知られている。図5(a)~(c)はそのような従来のセラミック体の製造方法の一例を説明するための図である。図5(a)~(c)に従って従来のセラミック体の製造方法の一例を説明すると、まず、図5(a)に示すように、セラミックハニカム成形体(焼成前のセラミックハニカム構造体)51の端面において、目封止したいセル52の部分のみ穴53を明けたゴム製のマスク54を準備し、マスク54を人手でセラミックハニカム成形体51の端面における所定の位置にセットする。

【0003】次に、図5(b)に示すように、マスク54を設けたセラミックハニカム成形体51の端面を、目封止用のスラリー55中に浸漬し、ハニカム成形体を上から加圧する事でマスク54の穴53を介してセル52中にスラリー55を圧入充填する。セラミックハニカム成形体51の他端面についても、同様に所定のセル52にスラリー55を充填する。その際、両端面でセル52が交互に封止された構造を得るために、マスクとして上述したマスク54の穴53の部分が封止され穴53以外の部分が穴となる正反対の穴パターンを有するマスクを使用する。以上の工程で、図5(c)にその断面を示すように、セラミックハニカム成形体51の両端面でセル52が交互に目封止用のスラリー55で封止された構造のセラミックハニカム成形体51を得る。最後に、得られたセラミックハニカム成形体51を焼成することで、目的とするセラミック体を得ることができる。

02029 (2000-116,654)

【0004】しかしながら、上述した従来のセラミック体の製造方法では、所定の位置に穴53を有するマスク54を作製すること、および、マスク54をセラミックハニカム成形体51の端面に正確にセットすることが難しい問題があった。特に、近年要望の高い直径300mm程度の大型のセラミック体では端面のセル52の数が数万セルにも達し、さらに上述した問題を難しくしていた。また、人手でマスク54をセラミックハニカム成形体51の端面にセットしているため、作業者の熟練が必要で、時間がかかるとともに、自動化に対応できない問題があった。さらに、マスク54は再利用するため作業終了後にマスク54の清掃が必要であるが、上述したようにマスク54は膨大なセル数を有しているため、マスク54の清掃が大変となる問題もあった。

発明の概要

【0005】本発明の目的は上述した課題を解消して、簡単に端面におけるセルの目封止ができ、しかも、自動化にも対応しやすいセラミック体の製造方法を提供しようとするものである。

【0006】本発明のセラミック体の製造方法は、セラミックハニカム構造体の両端面でセルが交互に封止された構造のセラミック体を、セラミックハニカム成形体の両端面における所定のセルに封止用スラリーを充填した後焼成して得るセラミック体の製造方法において、セラミックハニカム成形体の端面に貼り付けたシートの所定のセルに対応した位置に穴を明けてハニカム成形体毎に対応したマスクを作成し、マスクを貼り付けた面を封止用スラリーに浸漬し、マスクに明けられた穴から封止用スラリーをセル中に充填することを特徴とするものである。

【0007】本発明では、マスクを使用せず使い捨てのシートを使用して目 對止工程を実施する毎に所定の穴を明けて使用しているため、マスクの作製 及びマスクのセラミックハニカム構造体に対するセットをなくすことができ る。また、セル位置の認識及びシートへの穴明けは、一例として画像処理及 びレーザ加工で実施することができ、自動化にも対応することができる。

【0008】本発明の好ましい態様として、セラミックハニカム成形体の端

面に貼付したシートへの穴明けを、端面のセルを複数の小ブロックに分割し で小ブロック毎に実施する。大型の例えば直径300mmのセラミックハニ カム成形体の端面に対し、代表的な数セルを基準に設計値通りのセルピッチ で穴明けを行うと、乾燥状態や材料ロット、成形条件の変化やバラツキのた め、ハニカム成形体が大きくなるほど歪みや変形によってセルビッチが変形 し、穴明け位置に対してⅠセル以上の誤差が発生する。また、一度にすべて のセルを認識して全てのセル位置に対してセルの中心を狙って毎回位置補正 をしながら穴明けを行うと、画像処理技術とレーザ加工およびデータ処理用 のコンピューターを組み合わせてもデータの転送と毎回の位置補正に時間が かかりすぎて事実用的ではない。小ブロックであればその領域内でのセル形 状やセルピッチの変形が少ないため、小ブロックの基準位置に対して設計値 通りのセルピッチで穴を明けても1セル以内の誤差に収まるし、位置補正回 数も減らせるため時間短縮にも効果がある。また、好ましい態様として、シ ートに明けた穴の径を各セル面積の30~70%とする。本例では、小プロ ック内において多少のセルピッチの変動があってもセルに対して穴径が小さ いので、セル壁や隣のセルにまたがって穴を明ける心配がない。

図面の簡単な説明

[0009]

- 図1は本発明のセラミック体の製造方法の一例の一工程を説明するための図である。
- 図2(a)、(b)はそれぞれ本発明のセラミック体の製造方法の一例の他の工程を説明するための図である。
- 図3 (a)、(b)はそれぞれ本発明のセラミック体の製造方法の一例のさらに他の工程を説明するための図である。
- 図4 (a)~(c)はそれぞれ本発明のセラミック体の製造方法の一例のさらに他の工程を説明するための図である。
- 図5 (a) ~ (c) はそれぞれ従来のセラミック体の製造方法の一例を説明するための図である。

好適な実施例の記載

【0010】図1~図4はそれぞれ本発明のセラミック体の製造方法の一例を工程順に説明するための図である。図1~図4に従って本発明のセラミック体の製造方法を説明すると、まず、セラミックハニカム成形体1(焼成前のセラミックハニカム構造体)を準備する。セラミックハニカム成形体1としては、従来から知られているコージェライトからなるセラミックハニカム成形体を好適に使用できる。セラミックハニカム成形体1は、原料を混合後口金から押し出すことで従来と同様に作製することができる。

【0011】次に、図1に示すように、準備したセラミックハニカム成形体1の一端面をカメラ2で撮像し、撮像した画像を画像処理することで、端面における全セル3の位置を認識する。次に、図2(a)に示すように、セラミックハニカム成形体1の端面とほぼ同じ形状のシート4を準備し、図2(b)に示すように、セル位置を認識した面全体にシート4を貼り付ける。シート4としては市販の粘着シートを使用することができる。

【0012】次に、図3(a)、(b)に示すように、画像処理により認識したセル位置に基づき、ハニカム成形体の外径やセルビッチなどの諸仕様ごとに設定された小ブロックの基準となる位置を計算し、ハニカム成形体を載せたXYZのステージを位置決めし、レーザ加工等の方法でシート4の開口させたいセル位置に穴5を明ける。穴5を明けたシート4がマスクの役目をする。穴5の穴径は、セル3の面積の30~70%が好ましく、50%程度がさらに好ましい。また、穴5の形状は円形であり、セル面積全体をセル3と同形状(四角形)に明ける必要はない。このため、端面において多少のセルビッチの変動があっても、セル3に対して穴径が小さいので、セル壁や降のセルにまたがって穴を明ける心配がない。なお、穴5の穴径は、目封止に使用するスラリーの粘性に応じて、粘性が低いときは小さめに、粘性が高い時は大きめに、適宜選択する。また、上述したシート4に対する穴明け加工は、端面全体に対し一度に行うこともできるが、端面のセル3を複数の小ブロックに分割して小ブロック毎に実施することが好ましい。小ブロック毎に穴明け加工を実施すれば、その領域内でのセル形状やセルビッチの変形が少

ないため、正確に穴明けを行うことができる。

【0013】次に、図4(a)~(c)に示すように、目對止用のスラリー6をシート4に明けた穴5からセル3内に充填する。すなわち、まず、図4(a)に示すように、穴5を明けたシート4を貼付した端面を容器7内のスラリー6中に浸漬する。そして、図4(b)に示すように、押圧手段8を利用してセラミックハニカム成形体1を押すことで、スラリー6をシート4の穴5を介してセル3内に圧入して充填する。その後、図4(c)に示すように、シート4を端面から剥がすことで一端面に対する目對止を終了する。

【0014】その後、同様の目封止を他の端面に対しても実施し、両端面の所定のセル3にスラリー6を充填したセラミックハニカム成形体1を得る。最後に、両端面において所定のセル3にスラリー6を充填したセラミックハニカム構造体の両端面でセルが交互に封止された構造のセラミック体を得ることができる。このようなセラミック体は、主に、ディーゼルエンジンの黒鉛等を除去するために使用されるDPF(ディーゼル・パティキュレート・フィルタ)として利用される。

【0015】なお、上述した実施例では、セラミックハニカム成形体の端面に貼付したシートへの穴明けをレーザを使用して実施したが、1本の針またはセラミックハニカム成形体のセルピッチに合わせた剣山状の針を使用して実施することもできる。また、この際、針を加熱すると、シートへの穴明けが容易になるため好ましい。

【0016】以上の説明から明らかなように、本発明によれば、マスクを使用せず使い捨てのシートを使用して目封止工程を実施する毎に所定の穴を明けて使用しているため、マスクの作製及びマスクのセラミックハニカム構造体に対するセットをなくすことができる。また、セル位置の認識及びシートへの穴明けは、一例として画像処理及びレーザ加工で実施することができ、自動化にも対応することができる。

特許請求の範囲

- 1. セラミックハニカム構造体の両端面でセルが交互に封止された構造のセラミック体を、セラミックハニカム成形体の両端面における所定のセルに封止用スラリーを充填した後焼成して得るセラミック体の製造方法において、セラミックハニカム成形体の端面に貼り付けたシートの所定のセルに対応した位置に穴を明けてハニカム成形体毎に対応したマスクを作成し、マスクを貼り付けた面を封止用スラリーに浸漬し、マスクに明けられた穴から封止用スラリーをセル中に充填することを特徴とするセラミック体の製造方法。
- 2. 前記セラミックハニカム成形体の端面に貼付したシートへの穴明けを 、端面のセルを複数の小ブロックに分割して小ブロック毎に実施する請求項 1記載のセラミック体の製造方法。
- 3. 前記セラミックハニカム成形体の端面に貼付したシートへの穴明けを 、レーザーを使用して実施する請求項1記載のセラミック体の製造方法。
- 4. 前記シートに明けた穴の径が各セル面積の30~70%である請求項1記載のセラミック体の製造方法。
- 5. 前記セル位置の認識を画像処理で行う請求項1記載のセラミック体の 製造方法。
- 6. 前記セラミックハニカム成形体の端面に貼付したシートへの穴明けを、1本の針またはセラミックハニカム成形体のセルピッチに合わせた剣山状の針を使用して実施する請求項1記載のセラミック体の製造方法。

発明の要約

セラミックハニカム構造体の両端面でセルが交互に封止された構造のセラミック体を、セラミックハニカム成形体の両端面における所定のセルに封止用スラリーを充填した後焼成して得るセラミック体の製造方法において、セラミックハニカム成形体の端面に貼り付けたシートの所定のセルに対応した位置に穴を明けてハニカム成形体毎に対応したマスクを作成し、マスクを貼り付けた面を封止用スラリーに浸漬し、マスクに明けられた穴から封止用スラリーをセル中に充填する。

F/G. 1

FIG. 2a

F/G. 2b

FIG. 4a FIG. 4b FIG. 4c

FIG. 5a

F/G. 5b

F/G. 5c

