Mediatrix line and mediating plane

Mediatrix line of a line segment in \mathbb{R}^2

Given two points $A, B \in \mathbb{R}^2$, the locus of points that are equidistant from A and B is a line called mediatrix (or the perpendicular bissector) of [AB].

Note: The mediatrix m of [AB] checks the following:

- is orthogonal to [AB];
- contains the midpoint of [AB].

Example: Considere the points A=(-2,1) and B=(-1,0). The set of the points P=(x,y) equidistant from A and B, are such that:

$$\overline{AP} = \overline{BP} \Leftrightarrow \sqrt{(x+2)^2 + (y-1)^2} = \sqrt{(x+1)^2 + (y)^2} \Leftrightarrow 4x + 4 - 2y + 1 = 2x + 1 \Leftrightarrow x - y + 2 = 0.$$

Thus we have the equation of the mediatrix m: x-y+2=0, whose director vector $\vec{v}=(1,1)$ is perpendicular to $\overrightarrow{AB}=B-A=(1,-1)$. De facto, $\overrightarrow{AB}\cdot\vec{v}=0$.

Notice also that
$$M=(\frac{-1-2}{2},\frac{1}{2})\in m$$
, because $-\frac{3}{2}-\frac{1}{2}+2=0$.

Mediating plane of a line segment in \mathbb{R}^3

Given two points $A, B \in \mathbb{R}^3$, the locus of points that are equidistant from A and B is a plane, called mediating plane (or the perpendicular bissector) of [AB].

Note: The mediating plane m of [AB] checks the following:

- is orthogonal to [AB];
- contains the midpoint of [AB].

Example: Considere the points A=(2,3,1) and B=(-1,1,0) of \mathbb{R}^3 . The set of the points P=(x,y,z) equidistant from A and B, are such that $\overline{AP}=\overline{BP}\Leftrightarrow$

$$\sqrt{(x-2)^2 + (y-3)^2 + (z-1)^2} = \sqrt{(x+1)^2 + (y-1)^2 + z^2} \Leftrightarrow -4x + 4 - 6y + 9 - 2z + 1 = 2x + 1 - 2y + 1.$$

Thus, we have the equation of the mediating plane $\pi: -6x - 4y - 2z + 12 = 0$, is orthogonal to the vector $\vec{v} = (-6, -4, -2)$, which is collinear with $\overrightarrow{AB} = B - A = (-3, -2, -1)$.