SIEMENS

Hall Sensor KSY 44

Preliminary Data

Features

- High sensitivity
- High operating temperature
- Small linearity error
- Low offset voltage
- Low TC of sensitivity
- Specified TC of offset voltage
- Low inductive zero component
- Package thickness 0.7 mm
- Connections from one side of the package

Typical Applications

- Current and power measurement
- Magnetic field measurement
- Control of brushless DC motors Rotation and position sensing
- Measurement of diaphragm
- Movement for pressure sensing

Dimensions in mm

Туре	Marking	Ordering Code
KSY 44	44	Q62705-K265

The KSY 44 is a MOVPE¹⁾ Hall sensor in a mono-crystalline GaAs material, built into an extremely flat plastic package (SOH). It is outstanding for a high magnetic sensitivity and low temperature coefficients. The 0.35×0.35 mm² chip is mounted onto a non-magnetic leadframe.

¹⁾ Metal Organic Vapour Phase Epitaxy

SIEMENS

Maximum Ratings

Parameter	Symbol	Value	Unit
Operating temperature	T_{A}	- 40 + 175	°C
Storage temperature	T_{stg}	− 50 + 180	°C
Supply current	I_1	10	mA
Thermal conductivity soldered, in air	$G_{thA} \ G_{thC}$	≥ 1.5 ≥ 2.2	mW/K mW/K

Characteristics ($T_{\rm A}$ = 25 °C)

Nominal supply current	I_{1N}	7	mA
Open-circuit sensitivity	K_{B0}	150265	V/AT
Open-circuit Hall voltage $I_1 = I_{1N}, B = 0.1 \text{ T}$	V_{20}	105185	mV
Ohmic offset voltage $I_1 = I_{1N}, B = 0 T$	V_{R0}	≤± 15	mV
Linearity of Hall voltage $B = 00.5 \text{ T}$ $B = 01.0 \text{ T}$	F_{L}	≤±0.2 ≤±0.7	% %
Input resistance $B = 0$	O T R_{10}	600900	Ω
Output resistance $B = 0$	O T R_{20}	10001500	Ω
Temperature coefficient of the open-circuit Hall voltage $I_1 = I_{1N}$, $B = 0.1$ T	$TC_{ m V20}$	~ - 0.03	%/K
Temperature coefficient of the resistance, $B = 0$ T	internal $TC_{R10, R20}$	~ + 0.3	%/K
Temperature coefficient of ohm voltage, $I_1 = I_{1N}$, $B = 0$ T	nic offset TC_{VR0}	~ - 0.3	%/K
Inductive zero component, I_{1N} :	$= 0$ $A_2^{(1)}$	0.16	cm ²
Switch-on drift of the ohmic offs voltage $I_1 = I_{1N}$, $B = 0$ T	set $dV_0^{2)} \over \Delta V_0^{3)}$	≤ 0.3 ≤ 0.1	mV mV
Noise figure	F	~ 10	dB

¹⁾ With time varying induction there exists an inductive voltage V_{ind} between the Hall voltage terminals (supply current I_1 = 0): $V_{\text{ind}} = A_2 \times \text{d}B/\text{d}t \times 10^{-4} \text{ with } V(\text{V}), A_2 \text{ (cm}^2), B(\text{T}), t(\text{s})$ 2) $dV_0 = \begin{vmatrix} V_0(t = 1\text{s}) - V_0(t = 0.1\text{ s}) \end{vmatrix}$ 3) $\Delta V_0 = \begin{vmatrix} V_0(t = 3m) - V_0(t = 1\text{ s}) \end{vmatrix}$

Connection of a Hall Sensor with a Power Source

Since the voltage on the component must not exceed 10 V, the connection to the constant current supply should only be done via a short circuit by-pass. The by-pass circuit-breaker shall not be opened before turning on the power source, in order to avoid damage to the Hall sensor due to power peaks.

Polarity of Hall Voltage

