MA 630 Quiz 1 - Group 3

Authors

Adam Frank, Abigail Odom, Byron Smith, Bailey Koebrick

1.

1	2	3	4	(5)	6
P	Q	R	$P \lor Q$	$\textcircled{4} \rightarrow R$	75
T	T	T	T	T	F
T	T	F	T	F	T
T	F	T	T	T	F
T	F	F	T	F	T
F		T	T	T	F
F	T	F	T	F	T
F	F	T	F	T	F
F	F	F	F	T	F

2.

1	2	3	4	5	6
P	Q	$P \to Q$	$\neg Q$	$1 \wedge 4$	$3 \wedge 4$
T	T	T	F	F	F
T	F	F	T	T	F
F	T	T	F	F	F
\overline{F}	\overline{F}	T	F	F	F

- 3. (a) $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(y^2 = x)$
 - (b) We could simply negate: $\neg[(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(y^2 = x)]$

However that seems too easy, so perhaps we're meant to push the negation in: $(\exists x \in \mathbb{R})(\forall y \in \mathbb{R})(y^2 \neq x)$.

There exists a real number x such that for all real numbers $y, y^2 \neq x$.

- (c) The negation, $\neg P$, is the true sentence. It is witnessed by the value x=-1 for the existential claim. With this assignment, and for every $y \in \mathbb{R}$, we have $y^2 \neq -1$.
- 4. Let a be an even integer and b be an odd integer. Then a=2m and b=2n+1, for some integers m and n. Thus, ab=2m(2n+1)=4mn+2m=2(2mn+m) Therefore, there is an integer t, namely t=2mn+m, such that ab=2t. Thus, by definition, ab is even.

5. Let n be an integer. Prove that n is even if and only if n^3 is even. Suppose n is even, then n=2k for some $k\in\mathbb{Z}$. Then,

$$n^{3} = n^{3}$$

$$= (2k)^{3}$$

$$= 8k^{3}$$

$$= 2(4k^{3})$$

Thus, n^3 is even since $4k^3 \in \mathbb{Z}$.

We then need to prove the contrapositive, that if n^3 is odd then n is odd. Suppose n is odd, then n=2k+1 for some $k\in\mathbb{Z}$. Then,

$$n^{3} = n^{3}$$

$$= (2k+1)^{3}$$

$$= (2k+1)(2k+1)(2k+1)$$

$$= (4k^{2} + 4k + 1)(2k+1)$$

$$= 8k^{3} + 4k^{2} + 8k^{2} + 4k + 2k + 1$$

$$= 8k^{3} + 12k^{2} + 6k + 1$$

$$= 2(4k^{3} + 6k^{2} + 3k) + 1$$

Thus, n^3 is odd since $4k^3 + 6k^2 + 3k \in \mathbb{Z}$.

Because $P \to Q$ and its contrapositive $\neg Q \to \neg P$ are both true, the original proof is true.