DESIGN AND ANALYSIS OF ALGORITHMS

CS 4120/5120 SHORTEST PATHS ALGORITHM

AGENDA

- The definitions
 - The shortest-path problems
 - The optimal substructure
 - The shortest path
- Relaxation technique
- Dijkstra's Algorithm
- Bellman-Ford Algorithm

THE WEIGHT OF A PATH

- Consider a weighted directed graph G = (V, E) with a weight function $w: E \to \mathbb{R}$.
- The weight w(p) of path $p=\langle v_0,v_1,...,v_k\rangle$ is the sum of the weights of its constituent edges:

$$w(\boldsymbol{p}) = \sum_{i=1}^{k} w(\boldsymbol{v_{i-1}}, \boldsymbol{v_i})$$

- Example
 - Consider the graph on the right. The weight w(p) where p = <3,2,1 > is w(3,2) + w(2,1) = 8 + 14 = 22.

THE DEFINITION OF A SHORTEST-PATHS PROBLEM

• There exist an even shorter path from vertex 3 to 1.

$$- w(p') = w(3,1) = 6 < w(p)$$

• **Formally**, the *single-source shortest-paths problem* is defined as: Given a graph G = (V, E), we want to find a shortest path from a given source vertex $s \in V$ to each vertex $v \in V$.

THE SHORTEST PATH PROBLEMS

- Variants
 - Single-destination shortest-paths problem
 - Find a shortest path to a given **destination** vertex t from each vertex v.
 - Single-pair shortest-paths problem: Find a shortest path from u to v for given vertices u and v.
 - All-pairs shortest-paths problem: Find a shortest path from u to v for every pair of vertices u and v.
- All the variants can be solved by solving the single-source shortest-paths (SP) problem.
 - All-pairs shortest-paths problem have more efficient solution.

THE DEFINITION OF A SHORTEST PATH IN A SP PROBLEM

• We define the **shortest-path** weight $\delta(u, v)$ from u to v by

$$\delta(u, v) = \begin{cases} \min\{w(p): u \stackrel{p}{\sim} v\} & \text{if there is a path from } u \text{ to } v, \\ \infty & \text{otherwise.} \end{cases}$$

- A path from vertex u to v is denoted by $u_{n}^{p}v$.
- A shortest path from vertex u to vertex v is then defined as any path p with weight $w(p) = \delta(u, v)$.

PERFECTING THE DEFINITION OF A SHORTEST PATH #1 NEGATIVE EDGE

• The shortest-path weight $\delta(u, v)$ from u to v by

$$\frac{\delta(u, v)}{\delta(u, v)} = \begin{cases} \min\{w(p): u \overset{p}{\sim} v\} & \text{if there is a path from } u \text{ to } v, \\ \infty & \text{otherwise.} \end{cases}$$

- Works well if there is NO negative weighted edge.
- Example of a graph with negative weighted edges
 - In this case, we can always best the proposed "shortest path" by including a negative-weight cycle in the path.
- If there is a **negative weight cycle** on some path from s to v, we define $\delta(s, v) = -\infty$.

PERFECTING THE DEFINITION OF A SHORTEST PATH #2 NO CYCLE

• The shortest-path weight $\delta(u, v)$ from u to v by

$$\delta(u, v) = \begin{cases} \min\{w(p): u \overset{p}{\sim} v\} & \text{if there is a path from } u \text{ to } v, \\ \infty & \text{otherwise.} \end{cases}$$

- Works well if there is NO cycle in the graph.
- Certainly, a shortest path CANNOT contain a cycle
 - Neither a negative-weight cycle NOR
 - a positive-weight cycle
 - We can always obtain a path with a lower weight by removing the cycle from the proposed "shortest path"

THE DEFINITION OF A SHORTEST PATH FINAL

• We define the **shortest-path weight** $\delta(u, v)$ from u to v by

$$\frac{\delta(u,v)}{\delta(u,v)} = \begin{cases} \min\{w(p): u \stackrel{p}{\sim} v\} & \text{if there is a path from } u \text{ to } v, \\ \infty & \text{otherwise.} \end{cases}$$

, where the path $u_{\infty}^{p}v$ contains NO negative-weighted edge or cycle.

- If If there is a negative weight cycle on some path from s to v, we define $\delta(s, v) = -\infty$.

THE OPTIMAL SUBSTRUCTURE OF SHORTEST PATH LEMMA 24.1

- Given a weighted, directed graph G = (V, E) with weight function $w: E \to \mathbb{R}$.
- Let $p = \langle v_0, v_1, ..., v_k \rangle$ be a **shortest** path from vertex v_0 to vertex v_k , and for any i and j such that $0 \le i \le j \le k$, let $p_{ij} = \langle v_i, v_{i+1}, ..., v_j \rangle$ be the **subpath** of p from vertex v_i to vertex v_j .
- Then, p_{ij} is a shortest path from i to j.
- In other words, the subpaths of shortest paths are shortest paths.

THE OPTIMAL SUBSTRUCTURE OF SHORTEST PATH LEMMA 24.1 PROOF

- Use "cut-and-paste" technique.
- The goal is to prove that $p_{ij} = \langle v_i, v_{i+1}, ..., v_j \rangle$, where $0 \le i \le j \le k$, contained within a shortest path $p = \langle v_0, v_1, ..., v_k \rangle$ is a shortest path from v_i to v_j .
 - i. Assume
 - ii. There exist a shortest path, denoted by p'_{ij} , from _____ to ____, obviously, ____ \leq _____.
 - iii. We can construct a new path, denoted by p^* , by cutting ____ out of ___ then pasting ____.
 - iv. As a result, , _____ \leq ____, contradicting the supposition that ____ is a shortest path from vertex ____ to ___.

REPRESENTING A SHORTEST PATH SHORTEST PATH TREE

- To be precise, let G = (V, E) be a **weighted**, **directed** graph with **weight function** $w: E \to \mathbb{R}$, and assume that G contains no negative-weight cycles reachable from the source vertex $S \in V$, so that shortest paths are well-defined.
- A shortest-paths tree rooted at s is a directed subgraph G' = (V', E'), where $V' \subseteq V$ and $E' \subseteq E$, such that
 - V' is the set of vertices reachable from S in G,
 - G' forms a rooted tree with root s, and
 - for all $v \in V'$, the unique simple path from s to v in G' is a shortest path from s to v in G.

Shaded edges in (b) and (c) compose the sets of edges of a shortest path tree of the graph in (a).

THE TECHNIQUE OF COMPUTING A SHORTEST PATH

- The **relaxation** technique
- The process of **relaxing** an edge (u, v) consists of **testing** whether we can improve the shortest path to v found so far by going through u and, if so, **updating** v. d and v. π .
 - For each vertex $v \in V$, we maintain an attribute v. d, which is **an upper bound** on the weight of a shortest path from a given source vertex s to v.
 - We call v.d a shortest-path estimate.
 - $v.\pi$ is the predecessor of node v.
- The name *relaxation* might be ambiguous as we are not relaxing a path by stretching the path. Instead, we are *relaxing a path* by replacing it with a shorter path.

THE RELAXATION TECHNIQUE SUBROUTINES

- INITIALIZE-SINGLE-SOURCE (G, s)
 - Input
 - Graph G = (V, E), represented by either adjacency list or adjacency matrix.
 - A source vertex *s*.
- RELAX (*u*, *v*, *w*)
 - Input
 - End vertex of v of path $p = \langle s, ..., v \rangle$ to be relaxed.
 - The vertex u that can potentially relax the path $p = \langle s, ..., v \rangle$.

IN	ITIALIZE-SINGLE-SOURCE (G, s)
I	for each vertex $v \in G.V$
2	$v.d = \infty$
3	$v.\pi = NIL$
4	s. d = 0

$RELAX\ (u, v, w)$	
I	if v. d > u. d + w(u, v)
2	v.d = u.d + w(u,v)
3	$v.\pi = u$

THE RELAXATION TECHNIQUE THE VERTEX OBJECT

- For each vertex $v \in V$,
 - v.d an upper bound on the weight of a shortest path from a given source vertex s to v.
 - We call v. d a shortest-path estimate.
 - $v.\pi$ the **predecessor** of vertex v.
 - If v has no predecessor, then $v.\pi = \text{NIL}$.
 - For example, the source vertex $s. \pi = NIL$.

INITIALIZE-SINGLE-SOURCE (G, s)	
ı	for each vertex $v \in G.V$
2	$v.d = \infty$
3	$v.\pi = NIL$
4	s.d = 0

$RELAX\ (u, v, w)$	
I	if v. d > u. d + w(u, v)
2	v.d = u.d + w(u,v)
3	$v.\pi = u$

THE RELAXATION TECHNIQUE THE RELAX SUBROUTINE

- The **RELAX** (u, v, w) subroutine examines vertex u that can potentially relax the path from s to v.
 - Let $p = \langle s, ..., v \rangle$ be the current shortest path from s to v, then w(p) is mapped on to $\underline{v.d}$ in the codes.
 - Let $p' = \langle s, ..., u, v \rangle$ be another path from s to v through vertex u, then w(p') is mapped on to $\underline{u.d + w(u,v)}$ in the codes.
 - Line I is comparing w(p) with w(p').
 - If going through the vertex u can shorten the path from s to v (condition being met), then relax the path in line 2 and 3.

INITIALIZE-SINGLE-SOURCE (G, S)	
I	for each vertex $v \in G.V$
2	$v.d = \infty$
3	$v.\pi = NIL$
4	s.d = 0

```
RELAX (u, v, w)

| I if v.d > u.d + w(u, v)

| 2 | v.d = u.d + w(u, v)

| 3 | v.\pi = u
```

THE RELAXATION TECHNIQUE RUNNING TIME

- INITIALIZE-SINGLE-SOURCE (G, s)
 - The running time $\Theta(|V|)$.
- RELAX (*u*, *v*, *w*)
 - The running time of the relaxation procedure is $\underline{\Theta(1)}$

INITIALIZE-SINGLE-SOURCE (G, s)I for each vertex $v \in G.V$ 2 $v.d = \infty$ 3 $v.\pi = \text{NIL}$ 4s. d = 0

```
RELAX (u, v, w)

| If v.d > u.d + w(u, v)

| 2 | v.d = u.d + w(u, v)

| 3 | v.\pi = u
```

UP NEXT SHORTEST-PATH ALGORITHMS

- Dijkstra's algorithm
- Bellman-ford algorithm
- Both use the relaxation technique.

DIJKSTRA'S SHORTEST PATH ALGORITHM

- Dijkstra's algorithm solves the **single-source shortest paths** problem on a **weighted**, **directed** graph G = (V, E) for the case in which all edge weights are non-negative.
 - Therefore, we assume that $w(u, v) \ge 0$ for each edge $(u, v) \in E$.
- We shall closely examine the algorithm in the following slides.

DIJKSTRA'S ALGORITHM INPUT

- Graph G = (V, E) represented by adjacency **lists**.
- The weight function $\mathbf{w}: E \to \mathbb{R}$
- The source vertex s
- The vertex object
 - -v.d- the shortest-path estimate.
 - $v.\pi$ the **predecessor** of vertex v.

DIJ	$KSTRA\ (G, \mathbf{w}, \mathbf{s})$
I	INITIALIZE-SINGLE-SOURCE (G, s)
2	$S = \emptyset$
3	Q = G.V
4	while $Q \neq \emptyset$
5	$u = EXTRACT-MIN\ (Q)$
6	$S = S \cup \{u\}$
7	for each vertex $v \in G.Adj[u]$
8	$RELAX\;(u,v,w)$

DIJKSTRA'S ALGORITHM DATA STRUCTURE

- Min-priority queue *Q* keyed by the *d* attribute of a vertex.
 - EXTRACT-MIN (Q) dequeues the vertex that has the smallest value for d.

DIJ	KSTRA(G, w, s)
I	INITIALIZE-SINGLE-SOURCE (G, s)
2	$S = \emptyset$
3	Q = G.V
4	while $Q \neq \emptyset$
5	$u = EXTRACT-MIN\ (Q)$
6	$S = S \cup \{u\}$
7	for each vertex $v \in G.Adj[u]$
8	$RELAX\;(u,v,w)$

DIJKSTRA'S ALGORITHM IDEA

- The algorithm repeatedly
 - **selects** the vertex $u \in V S$ with the **minimum** shortest-path estimate
 - adds u to S
 - **relaxes** all edges leaving u

DIJ	$\mathbf{DIJKSTRA}\;(G,w,s)$	
I	$INITIALIZE ext{-SINGLE} ext{-SOURCE}\left(G,s\right)$	
2	$S = \emptyset$	
3	Q = G.V	
4	while $Q \neq \emptyset$	
5	$u = EXTRACT-MIN\ (Q)$	
6	$S = S \cup \{u\}$	
7	for each vertex $v \in G$. $Adj[u]$	
8	$RELAX\;(u,v,w)$	

DIJKSTRA'S ALGORITHM IN ACTION - INITIALIZATION

• Apply the DIJKSTRA algorithm on the graph.

Adjacency lists

$$S \to t \to y$$

$$t \to x \to y$$

$$x \to z$$

$$y \to t \to x \to z$$

$$z \to s \to x$$

DIJKSTRA (G, w, s)

INITIALIZE-SINGLE-SOURCE (G, s)

$$2S = \emptyset$$

$$3Q = G.V$$

4while $Q \neq \emptyset$

$$u = \mathsf{EXTRACT}\mathsf{-MIN}\left(Q\right)$$

$$S = S \cup \{u\}$$

for each vertex
$$v \in G$$
. $Adj[u]$

8 RELAX
$$(u, v, w)$$

INITIALIZE-SINGLE-SOURCE (G, s)

Ifor each vertex $v \in G.V$

$$v.d = \infty$$

$$v.\pi = NIL$$

$$4s. d = 0$$

DIJKSTRA'S ALGORITHM IN ACTION - PRIOR TO WHILE

• Apply the DIJKSTRA algorithm on the graph.

Adjacency lists

$$S \to t \to y$$

$$t \to x \to y$$

$$x \to z$$

$$y \to t \to x \to z$$

$$z \to s \to x$$

DIJKSTRA
$$(G, w, s)$$

I INITIALIZE-SINGLE-SOURCE (G, s)
 $2S = \emptyset$
 $3Q = G.V$

4while $Q \neq \emptyset$
 $u = \text{EXTRACT-MIN }(Q)$

6 $S = S \cup \{u\}$

7 for each vertex $v \in G.Adj[u]$

8 RELAX (u, v, w)

$$S = \emptyset$$

 $Q = \{s, t, x, y, z\}$ // all vertexes but s have infinite shortest-path estimate, order them alphabetically

• Apply the DIJKSTRA algorithm on the graph.

Adjacency lists

$$S \to t \to y$$

$$t \to x \to y$$

$$x \to z$$

$$y \to t \to x \to z$$

$$z \to s \to x$$

DIJKSTRA (G, w, s)I INITIALIZE-SINGLE-SOURCE (G, s) $2S = \emptyset$ 3Q = G.V4while $Q \neq \emptyset$ 5 u = EXTRACT-MIN (Q)6 $S = S \cup \{u\}$ 7 for each vertex $v \in G.Adj[u]$ 8 RELAX (u, v, w)

$$S = \emptyset \cup \{s\}$$

 $Q = \{x, t, x, y, z\}$ // all vertexes but s have infinte shortest-path estimate, order them alphabetically

• Apply the DIJKSTRA algorithm on the graph.

 $S = \{s\}$ $Q = \{t, x, y, z\} \implies Q = \{t, x, y, z\}!!!$

Adjacency lists $s \xrightarrow{} t \xrightarrow{} y$ $t \rightarrow x \rightarrow y$ $x \rightarrow z$ $y \rightarrow t \rightarrow x \rightarrow z$ $z \rightarrow s \rightarrow x$

DIJKSTRA
$$(G, w, s)$$

I INITIALIZE-SINGLE-SOURCE (G, s)
 $2S = \emptyset$
 $3Q = G.V$

4while $Q \neq \emptyset$
 $u = \text{EXTRACT-MIN }(Q)$
 $S = S \cup \{u\}$

for each vertex $v \in G.Adj[u]$
 $S \in S$
 S

RELAX
$$(u, v, w)$$

I if $v. d > u. d + w(u, v) \infty > 0 + 10$
2 $v. d = u. d + w(u, v)$
3 $v. \pi = u$

• Apply the DIJKSTRA algorithm on the graph.

 $Q = \{t, x, y, z\} \implies Q = \{y, t, x, z\}!!!$

Adjacency lists $s \to t \to y$ $t \to x \to y$ $x \to z$ $y \to t \to x \to z$ $z \to s \to x$

• Apply the DIJKSTRA algorithm on the graph.

Adjacency lists

$$S \to t \to y$$

$$t \to x \to y$$

$$x \to z$$

$$y \to t \to x \to z$$

$$z \to s \to x$$

DIJKSTRA (G, w, s)I INITIALIZE-SINGLE-SOURCE (G, s) $2S = \emptyset$ 3Q = G.V4while $Q \neq \emptyset$ 5 u = EXTRACT-MIN (Q)6 $S = S \cup \{u\}$ 7 for each vertex $v \in G.Adj[u]$ 8 RELAX (u, v, w)

$$S = \{s\} \cup \{y\}$$

$$Q = \{y, t, x, z\}$$

• Apply the DIJKSTRA algorithm on the graph.

Adjacency lists

$$S \to t \to y$$

$$t \to x \to y$$

$$x \to z$$

$$y \to t \to x \to z$$

$$z \to s \to x$$

DIJKSTRA (G, w, s)I INITIALIZE-SINGLE-SOURCE (G, s) $2S = \emptyset$ 3Q = G.V

4while $Q \neq \emptyset$

5 u = EXTRACT-MIN(Q)

 $S = S \cup \{u\}$

7 **for** each vertex $v \in G$. Adj[u]

8 RELAX (u, v, w)

RELAX (u, v, w)

lif
$$v.d > u.d + w(u,v)$$
 10 > 5 + 3

v.d = u.d + w(u,v)

$$v.\pi = u$$

 $S = \{s, y\}$ // in the order of them being added to the set

$$Q = \{t, x, z\} \qquad \Longrightarrow Q = \{t, x, z\}!!!$$

Apply the DIJKSTRA algorithm on the graph.

 $S = \{s, y\}$

$$Q = \{t, x, z\} \qquad \Longrightarrow Q = \{t, x, z\}!!!$$

Adjacency lists

$$S \to t \to y$$

$$t \to x \to y$$

$$x \to z$$

$$y \to t \to x \to z$$

$$z \to s \to x$$

DIJKSTRA (G, w, s)

I INITIALIZE-SINGLE-SOURCE (G, s)

$$2S = \emptyset$$

$$3Q = G.V$$

4while
$$Q \neq \emptyset$$

$$u = \mathsf{EXTRACT}\mathsf{-MIN}\left(Q\right)$$

$$S = S \cup \{u\}$$

for each vertex $v \in G$. Adj[u]

RELAX (u, v, w)

RELAX (u, v, w)

I if
$$v. d > u. d + w(u, v) \infty > 5 + 9$$

$$v. d = u. d + w(u, v)$$

$$v.\pi = u$$

• Apply the DIJKSTRA algorithm on the graph.

 $Q = \{t, x, z\} \qquad \Longrightarrow Q = \{z, t, x\}!!!$

Adjacency lists $S \rightarrow t \rightarrow y$ $S \rightarrow t \rightarrow t \rightarrow t$ $S \rightarrow t$

• Apply the DIJKSTRA algorithm on the graph.

 $Q = \{x, t, x\}$

Adjacency lists

$$S \to t \to y$$

$$t \to x \to y$$

$$x \to z$$

$$y \to t \to x \to z$$

$$z \to s \to x$$

I INITIALIZE-SINGLE-SOURCE (G, s) $2S = \emptyset$ 3Q = G.V 4 while $Q \neq \emptyset$ 5 $u = EXTRACT-MIN (Q)6 S = S \cup \{u\}$	DIJ	$KSTRA\ (G, w, s)$
$3Q = G.V$ 4 while $Q \neq \emptyset$ 5 $u = EXTRACT-MIN(Q)$	I	INITIALIZE-SINGLE-SOURCE (G, s)
4while $Q \neq \emptyset$ 5 $u = \text{EXTRACT-MIN } (Q)$	2	$S = \emptyset$
5 $u = \text{EXTRACT-MIN}(Q)$	3	Q = G.V
	4	while $Q \neq \emptyset$
$S = S \cup \{u\}$	5	$u = EXTRACT-MIN\ (Q)$
	6	$S = S \cup \{u\}$
7 for each vertex $v \in G$. $Adj[u]$	7	for each vertex $v \in G$. $Adj[u]$
8 RELAX (u, v, w)	8	$RELAX\;(u,v,w)$

• Apply the DIJKSTRA algorithm on the graph.

Adjacency lists

$$S \to t \to y$$

$$t \to x \to y$$

$$x \to z$$

$$y \to t \to x \to z$$

$$z \to s \to x$$

DIJKSTRA (G, w, s)I INITIALIZE-SINGLE-SOURCE (G, s) $2S = \emptyset$ 3Q = G.V4while $Q \neq \emptyset$

 $S = S \cup \{u\}$

7 **for** each vertex $v \in G$. Adj[u]

8 RELAX (u, v, w)

RELAX (u, v, w)

I if
$$v.d > u.d + w(u,v)$$
 $0 > 7 + 7$

v.d = u.d + w(u,v)

 $v.\pi = u$

 $S = \{s, y, z\}$ // in the order of them being added to the set

$$Q = \{t, x\}$$

• Apply the DIJKSTRA algorithm on the graph.

 $Q = \{t, x\} \implies Q = \{t, x\}!!!$

Adjacency lists

$$S \to t \to y$$

$$t \to x \to y$$

$$x \to z$$

$$y \to t \to x \to z$$

$$z \to s \to x$$

$\mathbf{DIJKSTRA}\;(G,w,s)$

I INITIALIZE-SINGLE-SOURCE (G, s)

$$2S = \emptyset$$

$$3Q = G.V$$

4while
$$Q \neq \emptyset$$

5
$$u = \text{EXTRACT-MIN}(Q)$$

$$S = S \cup \{u\}$$

7 **for** each vertex $v \in G$. Adj[u]

8 RELAX (u, v, w)

RELAX (u, v, w)

if
$$v.d > u.d + w(u,v)$$
 14 > **7** + **6**

$$v. d = u. d + w(u, v)$$

$$v.\pi = u$$

• Apply the DIJKSTRA algorithm on the graph.

Adjacency lists

$$S \to t \to y$$

$$t \to x \to y$$

$$x \to z$$

$$y \to t \to x \to z$$

$$z \to s \to x$$

DI	KSTRA(G, w, s)
I	INITIALIZE-SINGLE-SOURCE (G, s)
2	$S = \emptyset$
3	Q = G.V
4	while $Q \neq \emptyset$
5	$u = EXTRACT-MIN\ (Q)$
6	$S = S \cup \{u\}$
7	for each vertex $v \in G.Adj[u]$
8	$RELAX\;(u,v,w)$

• Apply the DIJKSTRA algorithm on the graph.

 $Q = \{x\} \Longrightarrow Q = \{x\}!!!$

Adjacency lists

$$S \to t \to y$$

$$t \to x \to y$$

$$x \to z$$

$$y \to t \to x \to z$$

$$z \to s \to x$$

DIJKSTRA (G, w, s)

I INITIALIZE-SINGLE-SOURCE (G, s)

$$2S = \emptyset$$

$$3Q = G.V$$

4while $Q \neq \emptyset$

$$u = \mathsf{EXTRACT}\mathsf{-MIN}\,(Q)$$

$$S = S \cup \{u\}$$

7 **for** each vertex $v \in G$. Adj[u]

8 RELAX (u, v, w)

RELAX (u, v, w)

| if
$$v.d > u.d + w(u,v)$$
 | 13 > 8 + 1

$$v. d = u. d + w(u, v)$$

$$v.\pi = u$$

DIJKSTRA'S ALGORITHM IN ACTION — WHILE

Apply the DIJKSTRA algorithm on the graph.

 $S = \{s, y, z, t\}$

$$Q = \{x\}$$

Adjacency lists

$$S \to t \to y$$

$$t \to x \to y$$

$$x \to z$$

$$y \to t \to x \to z$$

$$Z \to S \to X$$

DIJKSTRA (G, w, s)

I INITIALIZE-SINGLE-SOURCE (G, s)

$$2S = \emptyset$$

$$3Q = G.V$$

4while
$$Q \neq \emptyset$$

5
$$u = \text{EXTRACT-MIN}(Q)$$

$$S = S \cup \{u\}$$

for each vertex $v \in G$. Adj[u]

RELAX (u, v, w)

RELAX (u, v, w)

| if
$$v.d > u.d + w(u,v)$$
 | 5 $\gg 8 + 2$

$$v.d = u.d + w(u,v)$$

$$v.\pi = u$$

DIJKSTRA'S ALGORITHM IN ACTION — WHILE

• Apply the DIJKSTRA algorithm on the graph.

Adjacency lists

$$S \to t \to y$$

$$t \to x \to y$$

$$x \to z$$

$$y \to t \to x \to z$$

$$z \to s \to x$$

KSTRA(G, w, s)
INITIALIZE-SINGLE-SOURCE (G, s)
$S = \emptyset$
Q = G.V
while $Q \neq \emptyset$
$u = EXTRACT-MIN\ (Q)$
$S = S \cup \{u\}$
for each vertex $v \in G$. $Adj[u]$
$RELAX\;(u,v,w)$

DIJKSTRA'S ALGORITHM IN ACTION — WHILE

• Apply the DIJKSTRA algorithm on the graph.

Adjacency lists

$$S \to t \to y$$

$$t \to x \to y$$

$$x \to z$$

$$y \to t \to x \to z$$

$$z \to s \to x$$

DIJKSTRA (G, w, s)INITIALIZE-SINGLE-SOURCE (G, s) $2S = \emptyset$

$$3Q = G.V$$

4while
$$Q \neq \emptyset$$

5
$$u = \text{EXTRACT-MIN}(Q)$$

$$S = S \cup \{u\}$$

7 **for** each vertex $v \in G$. Adj[u]

8 RELAX (u, v, w)

RELAX (u, v, w)

| if
$$v.d > u.d + w(u,v)$$
 | 7 \Rightarrow 9 + 4

$$v.d = u.d + w(u,v)$$

$$v.\pi = u$$

 $S = \{s, y, z, t, x\}$ // in the order of them being added to the set

$$Q = \emptyset$$
 Stop!

DIJKSTRA'S ALGORITHM SHORTEST-PATH TREE

• The DIJKSTRA algorithm generates a shortest-path tree of the original graph G.

DIJKSTRA'S ALGORITHM RUNNING TIME

- The **INITIALIZATION** costs $\Theta($ _____).
- Min-priority queue operation
 - Let f be the cost function of building Q
 - Let g be the cost function of **EXTRACT-MIN** algorithm
 - Let s be the cost function of DECREASE-KEY operation.
 - Each vertex is extracted from Q ____ time(s)
- The running time of DIJKSTRA algorithm is

```
T = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \Theta(|V|) \cdot \underline{\hspace{1cm}} + \Theta(|E|) \cdot \underline{\hspace{1cm}} Initialization. Cost of building Q EXTRAC- DECREASE-
```

MIN

```
DIJKSTRA (G, w, s)

I INITIALIZE-SINGLE-SOURCE (G, s)

2S = \emptyset

3Q = G.V

4while Q \neq \emptyset

5 u = \text{EXTRACT-MIN }(Q)

6 S = S \cup \{u\}

7 for each vertex v \in G.Adj[u]

8 RELAX (u, v, w)
```

KEY

DIJKSTRA'S ALGORITHM RUNNING TIME - INIT.

• The **INITIALIZATION** costs $\Theta($ _____).

DIJ	KSTRA(G, w, s)
I	INITIALIZE-SINGLE-SOURCE (G, s)
2	$S = \emptyset$
3	Q = G.V
4	while $Q \neq \emptyset$
5	$u = EXTRACT-MIN\ (Q)$
6	$S = S \cup \{u\}$
7	for each vertex $v \in G$. $Adj[u]$
8	$RELAX\;(u,v,w)$
IN	ITIALIZE-SINGLE-SOURCE (G. s)

Ifor each vertex $v \in G.V$

$$v.d = \infty$$

$$v.\pi = NIL$$

$$4s. d = 0$$

DIJKSTRA'S ALGORITHM RUNNING TIME OF MAINTAINING Q

- Min-priority queue operation
 - Let f be the cost function of building Q
 - Let g be the cost function of **EXTRACT-MIN** algorithm
 - Let s be the cost function of DECREASE-KEY operation.
 - Each vertex is extracted from Q _____ time(s)

```
DIJKSTRA (G, w, s)

INITIALIZE-SINGLE-SOURCE (G, s)

2S = \emptyset

3Q = G.V

4while Q \neq \emptyset

5 u = \text{EXTRACT-MIN }(Q)

6 S = S \cup \{u\}

7 for each vertex v \in G.Adj[u]

8 RELAX (u, v, w)
```

• The running time of DIJKSTRA algorithm is

$$T = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \Theta(|V|) \cdot \underline{\hspace{1cm}} + \Theta(|E|) \cdot \underline{\hspace{1cm}}$$
 Initialization. Cost of building Q EXTRAC- DECREASE-MIN KEY

DIJKSTRA'S ALGORITHM PRACTICE

- Run Dijkstra's algorithm on the graph with source vertex being D. Fill the table as you are "walking through" the algorithm
 - Fill ONLY the *d* attribute *when the value is changed* during that iteration/initialization.
 - Show the elements of S and Q at the beginning of an iteration.

Iteration	Set S	Q	A. d	B.d	C.d	D.d	E.d	F.d
lnit.	Ø	$\{D, A, B, C, E, F\}$	8	8	8	0	8	8

CSTRA(G, w, s)
INITIALIZE-SINGLE-SOURCE (G, s)
$S = \emptyset$
Q = G.V
while $Q \neq \emptyset$
$u = EXTRACT-MIN\ (Q)$
$S = S \cup \{u\}$
for each vertex $v \in G.Adj[u]$
$RELAX\left(u,v,w\right)$

UP NEXT BELLMAN-FORD ALGORITHM

- The Bellman-Ford algorithm solves the single-source shortest paths problem on a weighted, directed graph G = (V, E) with source S and weight function $W: E \to \mathbb{R}$, where W(u, v) may be negative for each edge $(u, v) \in E$.
- Returns a Boolean value indicating whether or not there is a **negative-weight cycle** that is reachable from the source.
 - If there is such a cycle, no solution

BELLMAN-FORD ALGORITHM

- Graph G = (V, E) represented by adjacency **lists**.
- The weight function $\mathbf{w}: E \to \mathbb{R}$
- The source vertex **s**
- The vertex object
 - -v.d- the shortest-path estimate.
 - $v.\pi$ the **predecessor** of vertex v.
- No special data structure is used.

BE	LLMAN-FORD (G, w, s)
I	INITIALIZE-SINGLE-SOURCE (G, s)
2	for $i = 1$ to $ G.V - 1$
3	for each edge $(u, v) \in G.E$
4	$RELAX\;(u,v,w)$
5	for each edge $(u, v) \in G.E$
6	if $v. d > u. d + w(u, v)$
7	return FALSE
8	return $TRUE$

• Apply the BELLMAN-FORD algorithm on the graph.

Adjacency list $s \to t \to y$ $t \to x \to y \to z$ $x \to t$ $y \to x \to z$ $z \to s \to x$

BE	LLMAN-FORD (G, w, s)
I	INITIALIZE-SINGLE-SOURCE (G,s)
2	for $i = 1$ to $ G.V - 1$
3	for each edge $(u, v) \in G.E$
4	$RELAX\;(u,v,w)$
5	for each edge $(u, v) \in G.E$
6	if $v. d > u. d + w(u, v)$
7	return FALSE
8	return $TRUE$

• Apply the BELLMAN-FORD algorithm on the graph.

Adjacency list

$$S \to \mathbf{t} \to y$$

$$t \to x \to y \to z$$

$$x \to t$$

$$y \to x \to z$$

$$z \to s \to x$$

BELLMAN-FORD (G, w, s)

I INITIALIZE-SINGLE-SOURCE (G, s)

2for i = 1 **to** |G.V| - 1

for each edge $(u, v) \in G.E$

4 RELAX (u, v, w)

5for each edge $(u, v) \in G.E$

6 if v.d > u.d + w(u,v)

7 return FALSE

Iteration	RELAX(u,v)	t.d	x.d	y.d	z.d
i = 1	(s,t)	6			

• Apply the BELLMAN-FORD algorithm on the graph.

Adjacency list

$$S \to t \to \mathbf{y}$$

$$t \to x \to y \to z$$

$$x \to t$$

$$y \to x \to z$$

$$Z \to S \to \chi$$

BELLMAN-FORD (G, w, s)

I INITIALIZE-SINGLE-SOURCE (G, s)

2 for
$$i = 1$$
 to $|G.V| - 1$

- for each edge $(u, v) \in G.E$
- 4 RELAX (u, v, w)

5for each edge $(u, v) \in G.E$

- 6 if v.d > u.d + w(u,v)
- 7 return FALSE

Iteration	RELAX(u, v)	t.d	x.d	y.d	z.d
i = 1	(s,t)	6			
	(s, y)			7	

• Apply the BELLMAN-FORD algorithm on the graph.

Adjacency list

$$S \to t \to y$$

$$t \to \mathbf{x} \to y \to z$$

$$x \to t$$

$$y\to x\to z$$

$$Z \to S \to \chi$$

BELLMAN-FORD (G, w, s)

I INITIALIZE-SINGLE-SOURCE (G, s)

2 for
$$i = 1$$
 to $|G.V| - 1$

- for each edge $(u, v) \in G.E$
- 4 RELAX (u, v, w)

5for each edge $(u, v) \in G.E$

- 6 if v.d > u.d + w(u,v)
- 7 return FALSE

Iteration	RELAX(u,v)	t.d	x.d	y.d	z.d
i = 1	(s,t)	6			
	(s,y)			7	
	(t,x)		11		

• Apply the BELLMAN-FORD algorithm on the graph.

Adjacency list

$$s \to t \to y$$

$$t \to x \to \mathbf{y} \to z$$
$$x \to t$$

$$v \rightarrow v \rightarrow$$

$$y \to x \to z$$

$$Z \to S \to \chi$$

BELLMAN-FORD (G, w, s)

I INITIALIZE-SINGLE-SOURCE (G, s)

2for
$$i = 1$$
 to $|G.V| - 1$

- **for** each edge $(u, v) \in G.E$
- RELAX (u, v, w)

5for each edge $(u, v) \in G.E$

- **if** v. d > u. d + w(u, v)
- return FALSE

Iteration	RELAX(u, v)	t.d	x.d	y.d	z.d
i = 1	(s,t)	6			
	(s,y)			7	
	(t,x)		11		
	(t,y)				

• Apply the BELLMAN-FORD algorithm on the graph.

Adjacency list

$$S \to t \to y$$
$$t \to x \to y \to \mathbf{Z}$$

$$x \rightarrow t$$

$$y \to x \to z$$

$$Z \to S \to X$$

BELLMAN-FORD (G, w, s)

I INITIALIZE-SINGLE-SOURCE (G, s)

2 for
$$i = 1$$
 to $|G.V| - 1$

- for each edge $(u, v) \in G.E$
- 4 RELAX (u, v, w)

5for each edge $(u, v) \in G.E$

- 6 if v.d > u.d + w(u,v)
- 7 return FALSE

Iteration	RELAX(u,v)	t.d	x.d	y.d	z.d
i = 1	(s,t)	6			
	(s,y)			7	
	(t,x)		11		
	(t,y)				
	(t,z)			2	

• Apply the BELLMAN-FORD algorithm on the graph.

Adjacency list

$$S \to t \to y$$

$$t \to x \to y \to z$$

$$x \to t$$

$$y \to x \to z$$

$$Z \to S \to \chi$$

BELLMAN-FORD (G, w, s)

I INITIALIZE-SINGLE-SOURCE (G, s)

2for
$$i = 1$$
 to $|G.V| - 1$

- for each edge $(u, v) \in G.E$
- 4 RELAX (u, v, w)

5for each edge $(u, v) \in G.E$

- 6 if v.d > u.d + w(u,v)
- 7 return FALSE

Iteration	RELAX(u, v)	t.d	x.d	y.d	z.d
i = 1	(s,t)	6			
	(s,y)			7	
	(t,x)		11		
	(t,y)				
	(t,z)			2	
	(x,t)				

BELLMAN-FORD ALGORITHM STATE AFTER LINE 2 ~ 4

• Apply the BELLMAN-FORD algorithm on the graph.

Adjacency list

$$S \to t \to y$$

$$t \to x \to y \to z$$

$$x \to t$$

$$y\to x\to z$$

$$z \to s \to x$$

BELLMAN-FORD (G, w, s)

I INITIALIZE-SINGLE-SOURCE (G, s)

2 for
$$i = 1$$
 to $|G.V| - 1$

- for each edge $(u, v) \in G.E$
- 4 RELAX (u, v, w)

5for each edge $(u, v) \in G.E$

- 6 if v.d > u.d + w(u,v)
- 7 return FALSE

				_	
Iteration	RELAX(u,v)	t.d	x.d	y.d	z.d
i = 1	(s,t)	6			
	(s,y)			7	
	(t,x)		11		
	(t,y)				
	(t,z)			2	
	(x,t)				

BELLMAN-FORD ALGORITHM LINE 5 ~ 7

• Apply the BELLMAN-FORD algorithm on the graph.

Adjacency list $s \to t \to y$ $t \to x \to y \to z$ $x \to t$ $y \to x \to z$ $z \to s \to x$

BE	LLMAN-FORD (G, w, s)	
I	INITIALIZE-SINGLE-SOURCE (G, s)	
2	for $i = 1$ to $ G.V - 1$	
3	for each edge $(u, v) \in G.E$	
4	RELAX(u, v, w)	
5	for each edge $(u, v) \in G.E$	
6	if v. d > u. d + w(u, v)	
7	return FALSE	
8return $TRUE$		

BELLMAN-FORD ALGORITHM RUNNING TIME

- Initialization costs $\Theta($ _____).
- Line 2 through 4 can be abstracted as a doubly-nest for-loop. 2 for i = 1 to |G.V| 1
 - Outer **for** of the doubly-nested loop runs in $\Theta($ _____).
 - Inner **for** of the doubly-nested loop runs $\Theta($ _____).
- Line 5 through 7 is a **for** loop that runs $\Theta(\underline{\hspace{1cm}})$.
- Overall running time $T = O(\underline{\hspace{1cm}})$.

```
BELLMAN-FORD (G, w, s)

I INITIALIZE-SINGLE-SOURCE (G, s)

2 for i = 1 to |G.V| - 1

3 for each edge (u, v) \in G.E

4 RELAX (u, v, w)

5 for each edge (u, v) \in G.E

6 if v.d > u.d + w(u, v)

7 return FALSE

8 return TRUE
```

NEXT UP WRAPPING UP

- Touch on MST
- P, NP, NP-complete

REFERENCE

• Screenshots are taken from the textbook.