What is Claimed:

6.

has a grating with an apex angle of about ninety degrees.

1

2

1	1. An apparatus for the generation of high-energy terahertz
2	radiation comprising:
3	a source effective to produce optical radiation; and
ļ	a semiconductor substrate having a refractive index, n, and a photo-
5	generated dipole generated upon interaction with the optical radiation, the photo-
ó	generated dipole oriented to radiate terahertz radiation having power at least about
7	n² times higher than the power of the terahertz radiation radiated by a photo-
3	generated dipole which is not so oriented.
l	2. The apparatus of claim 1 wherein the source is a laser that
2	produces pulsed optical radiation having a femtosecond duration.
l	3. The apparatus of claim 2 wherein the laser produces pulsed
2	optical radiation having a wavelength of about 800 nm.
l	4. The apparatus of claim 3 wherein the laser is a
2	titanium:sapphire laser.
l	5. The apparatus of claim 1 wherein the photo-generated dipole is
2	oriented substantially perpendicular to the propagating direction of the terahertz
3	radiation.

The apparatus of claim 1 wherein the semiconductor substrate

1		7.	The apparatus of claim 6 wherein the size of the grating is up to		
2	about 5 μm.				
1		8.	The apparatus of claim 6 wherein the semiconductor substrate		
2	is GaAs.				
1		9.	The apparatus of claim 6 wherein the optical radiation of the		
2	laser is incident substantially perpendicular to the grating of the semiconductor				
3	substrate.				
1		10.	The apparatus of claim 1 further comprising a structure of a		
2	polytetrafluoroethylene base with an InAs film forming a grating on the surface of the				
3	semiconducto	or subst	trate.		
		,			
1		11.	The apparatus of claim 10 wherein the grating has an apex		
2	angle of abou	ıt ninet	y degrees.		
1		12.	The apparatus of claim 10 wherein the InAs film has a thickness		
2	greater than	the abs	sorbance length of the optical radiation.		
1		13.	The apparatus of claim 10 wherein the optical radiation is		
2	incident subs	tantiall	y perpendicular to the grating of the semiconductor substrate.		
1		14.	The apparatus of claim 1 wherein the semiconductor substrate		

has a grating formed by a series of structures each having the configuration of a

2

3

right triangle.

1	15. The apparatus of claim 14 wherein the optical radiation is				
2	incident on the surface of the semiconductor substrate at the Brewster's angle to				
3	each individual structure of the grating.				
1	16. A method for the generation of high-energy terahertz radiation				
2	comprising:				
3	providing a semiconductor substrate having a refractive index, n, and				
4	a modified surface;				
-	applying an electric field to the semiconductor substrate; and				
5	applying an electric field to the semiconductor substrate, and				
6	directing optical radiation to the semiconductor substrate, thereby				
7	creating a photo-generated dipole emitting terahertz radiation,				
8	the photo-generated dipole oriented by the modified surface of the				
9	semiconductor substrate to emit terahertz radiation having power at least about n²				
10	times higher than the power of the terahertz radiation radiated by a photo-generated				
11	dipole which is not so oriented.				
1	17. The method of claim 16 wherein the photo-generated dipole is				
2	oriented substantially perpendicular to the propagating direction of the terahertz				

1 18. The method of claim 16 wherein the semiconductor substrate is
2 GaAs, the surface of the semiconductor substrate is modified by a grating with an

radiation.

- 3 apex angle of about ninety degrees, and the optical radiation is incident substantially
- 4 perpendicular to the grating of the semiconductor substrate.
- 19. The method of claim 16 wherein the surface of the
- 2 semiconductor substrate is modified by a polytetrafluoroethylene base with an InAs
- film forming a grating on the surface of the semiconductor substrate, the InAs film
- 4 has a thickness greater than the absorbance length of the optical radiation, and the
- optical radiation is incident substantially perpendicular to the grating of the
- 6 semiconductor substrate.
- 1 20. The method of claim 16 wherein the surface of the
- semiconductor substrate is modified by a grating formed by a series of structures
- each having the configuration of a right triangle and the optical radiation is incident
- 4 on the surface of the semiconductor substrate at the Brewster's angle to each
- 5 individual structure of the grating.