Local assortativeness in scale-free networks

Home Search Collections Journals About Contact us My IOPscience

Local assortativeness in scale-free networks

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2010 EPL 89 49901

(http://iopscience.iop.org/0295-5075/89/4/49901)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 124.6.238.2

This content was downloaded on 18/10/2013 at 02:30

Please note that terms and conditions apply.

EPL, 89 (2010) 49901

doi: 10.1209/0295-5075/89/49901

www.epljournal.org

Addendum

Local assortativeness in scale-free networks

M. PIRAVEENAN^{1,2}, M. PROKOPENKO^{1(a)} and A. Y. ZOMAYA²

¹ CSIRO Information and Communications Technology Centre - PO Box 76, Epping, NSW 1710, Australia

² Centre for Distributed and High Performance Computing, School of Information Technologies, The University of Sydney - NSW 2006, Australia

Original article: Europhysics Letters (EPL), 84 (2008) 28002.

PACS 99.10.Qr - Addenda

Copyright © EPLA, 2010

Network assortativity is typically defined as

$$r = \frac{1}{\sigma_q^2} \left[\left(\sum_{jk} jk e_{j,k} \right) - \mu_q^2 \right],\tag{1}$$

where $e_{j,k}$ is the link distribution of the network, μ_q is the expectation of the excess degree distribution q(k) and σ_q is the standard deviation of this distribution.

In the original paper the local assortativity of a given node v was introduced using the following formula:

$$\rho_v = \frac{\alpha_v - \beta_v}{\sigma_q^2} = \frac{(j+1)\left(j\overline{k} - \mu_q^2\right)}{2M\sigma_q^2},\tag{2}$$

where j is the node's excess degree, \overline{k} is the average excess degree of its neighbours, $\sigma_q \neq 0$. The contribution α_v of the node v to the first term in (1), i.e., $\sum_{jk} jke_{j,k}$, and contribution β_v to the second term in (1), i.e., μ_q^2 , are

$$\alpha_v = (j+1) \frac{j\overline{k}}{2M}, \qquad \beta_v = (j+1) \frac{\mu_q^2}{2M}. \tag{3}$$

We subsequently found that this formulation has a bias which favours peripheral nodes over hubs, and provide here a better measure (5) which should replace expression (2) in the original paper. The new derivation is summarised below. While the component α_v captures the precise contribution of each node to the term $\sum_{jk} jke_{j,k}$, the component β_v represents the contribution of each node to the term μ_q^2 with an imprecise scaling. Specifically, the scaling factor (j+1)/2M in (3) is the correct scaling factor for μ_q , rather than μ_q^2 , and hence, β_v has a bias towards peripheral nodes. The unbiased contribution instead is given by:

$$\hat{\beta}_v = (j+1)\frac{j\mu_q}{2M}.\tag{4}$$

Hence, local assortativity is

$$\hat{\rho}_v = \frac{\alpha_v - \hat{\beta}_v}{\sigma_q^2} = \frac{j(j+1)(\overline{k} - \mu_q)}{2M\sigma_q^2}.$$
 (5)

If the neighbours' average k is higher than the global average μ_q , then the node is assortative. Otherwise, the node is disassortative. Hence, the local assortativity is a scaled difference between the average excess degree of the node's neighbours and the global average excess degree.

⁽a) E-mail: mikhail.prokopenko@csiro.au

Fig. 1: (Colour on-line) Internet Autonomous System level, August, 2008. Local assortativity profiles ρ (\uparrow) and $\hat{\rho}$ (\Diamond).

The difference between $\rho(d)$, defined by (2), and $\hat{\rho}(d)$, defined by (5), is illustrated for Internet Autonomous Systems level (August 2008) in fig. 1. Clearly, $\hat{\rho}(d) > \rho(d)$ for nodes with smaller d, and $\hat{\rho}(d) < \rho(d)$ for the hubs.

* * *

The authors thank Prof. G. Q. Zhang from the Chinese National Academy of Sciences for posing the question regarding the contribution to μ_q^2 .