

COURS #4

L2 Data Link, deuxième partie

Introduction aux réseaux 2023 (Bloc 2) Corentin Badot-Bertrand

Dans l'épisode précédent

Nous avons découvert la couche Data Link (OSI L2) avec :

- Adresses MAC
- Broadcast & multicast
- Protocole Ethernet
- Hub, bridge et switch

Objectifs du cours

Découvrir des notions avancées de la couche Data Link (OSI L2) :

- Fonctionnement d'un switch
- Les boucles réseau

PARTIE #1 Rappel & concepts

Quelques rappels de la couche Data Link

Quelles sont les responsabilités de la couche Data Link?

Les responsabilités de Data Link

Effectuer une gestion du trafic réseau local

- Transmettre correctement des trames (frames)
- Entre nœuds adjacents ou dans un réseau local
- Corriger les erreurs de la couche physique
- Eviter les collisions de données au niveau local

J'ai un switch avec 8 ports et adresse(s) MAC. Quel est le nombre ?

8 adresses MAC

Une adresse MAC identifie une interface réseau

- Une carte réseau d'un ordinateur, puce WiFi, etc.
- Gravée dans carte
- Avec préfixe constructeur
- Possible de changer au niveau de l'OS

Adresses de broadcast FF:FF:FF:FF:FF

~ numéro de série d'un véhicule

Quelle est la différence entre un switch et un hub?

Ethernet II

Les 2 bytes sont maintenant dédié au « RtherType » : le protocole encapsulé

		Header Ethernet (14 bytes)				
7 bytes	1 byte	6 bytes	6 bytes	2 bytes	46 - 1500 bytes	4 bytes
Préambule	Délimiteur	MAC destination	MAC source	EtherType	Données	CRC

EtherTypes

Quelques Ethertypes standardisés :

- 0x0800 IPv4
- 0x0806 ARP
- 0X86DD IPv6

PARTIE #2

Le switch en détails

Equipement réseau indispensable, découvrons quelques concepts avancés

Apprentissage d'adresses

Le switch a besoin de connaitre l'adresse MAC connectée sur un port

- Essentiel pour rediriger les trames Ethernet vers le bon port
- Le switch est capable d'effectuer un apprentissage
- Opération automatique, pas de configuration
- Sur base de l'adresse MAC source dans le header Ethernet

Table d'adressage

Le switch maintient une table (*forwarding database*) avec les adresses MAC connectées à ses ports

Port	Adresse MAC connectée	
1	AA:AA:AA:AA	
2	?	
3	?	
4	?	

Comment le switch peut-il connaitre le port de DD: DD: DD: DD: DD ?

Flooding

En cas d'absence de l'adresse MAC dans la table, le switch transfère sur tous les ports – sauf le port d'origine

Port	Adresse MAC connectée	
1	AA:AA:AA:AA	
2	?	
3	?	
4	?	

Et l'apprentissage continue...

Port	Adresse MAC connectée	
1	AA:AA:AA:AA	
2	?	
3	?	
4	DD:DD:DD:DD:DD	

Quelques règles par défaut

Le switch permet une gestion de trafic optimale dans un réseau

- Capable d'apprendre automatiquement
- Si une adresse MAC est dans la table... alors seul l'adresse recevra la trame
- Si un port est occupé, le switch est capable de mettre la trame en attente
- Le switch ne modifie pas par défaut la trame Ethernet

Expiration d'adresses MAC

Si une adresse MAC n'a pas été aperçue en source depuis un port pendant une durée (5 minutes par exemple), l'adresse est purgée

Port	Adresse MAC connectée	
1	AA:AA:AA:AA	
2	?	
3	?	
4	Adresse MAC purgée après 5m	

Exemple: Switch Cisco industriel

Exemple: Switch Cisco industriel

vlan	mac address	type +	port +
9	000c.291e.96f0	dynamic	GigabitEthernet1/1
9	000c.293c.7cac	dynamic	GigabitEthernet1/1
9	000c.2950.e3e9	dynamic	GigabitEthernet1/1
9	000c.29ba.fe28	dynamic	GigabitEthernet1/2
9	842b.2ba6.3a7d	dynamic	GigabitEthernet1/3
9	d067.e50b.1975	dynamic	GigabitEthernet1/5
9	d067.e51e.e35a	dynamic	GigabitEthernet2/1
9	f04d.a2f6.d37b	dynamic	GigabitEthernet2/2

Comment attaquer un switch réseau?

MAC flooding, l'attaque

Un switch possède une capacité mémoire limitée

- C'est également le cas de la forwarding database
- Un attaquant effectue des envois de trames
- ... avec une adresse source différente
- Objectif: remplir la table d'adressage
- ... et remplacer des adresses légitimes ou autre

PARTIE #3

Le protocole STP

Spanning Tree Protocol, l'essentiel pour gérer les boucles dans un réseau

PC salle de classe

PC salle de classe

PC salle de classe

PC salle de classe

GAME

Broadcast storm

Souvent déclenché par une trame broadcast avec une boucle réseau

- Chaque switch diffuse la trame sur tous ses ports
- Pas d'expiration (TTL) sur une trame
- ... et donc le message reste indéfiniment dans le réseau local

Montée en charge jusqu'à arriver à la saturation des équipements (DOS)

Spanning Tree Protocol

Protocole L2 (Data Link) permettant d'éviter les boucles réseau

- Le protocole STP est supporté par tous les switchs modernes
- Uniquement pour switchs, vos équipements ne l'ont pas
- Election d'un root bridge et fermeture de ports sur les autres switchs

Transforme la boucle réseau en arbre réseau optimal

Processus d'élection

PC salle de classe

Processus d'élection

PC salle de classe

Election du « root bridge » PC direction AA:AA:AA:AA:22 Switch direction Non-root PC atelier AA:AA:AA:AA:33 Switch Switch salle atelier de classe PC salle de classe Non-root

Root bridge

La boucle se transforme en arbre

Et les autres protocoles ?

La couche Data Link contient d'autres protocole qui ne seront pas abordés :

- PPP
- MPLS
- Token Ring
- Frame Relay

• ..