Висша алгебра, ТКЗ, Информатика

Кристиян Стоянов

25 май 2019 г.

1

1.1 Теорема за делене на полиноми с остатък

F - поле и $f,g\in F[x],g\neq 0$ Съществува двойка полиноми $q,r\in F[x],$ такива че f=gq+r и degr< degg

1.2 Схема на хорнер

Нека $f=a_0x^n+\ldots+a_n, g=x-\alpha\in F[x]$ Нека f=gq+r, където degr< degg и $r\in F$ и $q=b_0x^{n-1}+\ldots+b_{n-1}$ Тогава

$$b_0 = a_0$$

$$b_1 = a_1 + \alpha b_0$$

$$b_2 = a_2 + \alpha b_1$$

$$\vdots$$

$$\vdots$$

$$b_{n-1} = a_{n-1} + \alpha b_{n-2},$$

$$r = a_n + \alpha b_{n-2}$$

1.3

Ако F е поле, всеки идеал I от пръстена F[x] е главен идеал.

1.4

К област $f \in K[x], degf \leq n$ и $f \neq 0$. f не може да има повече от n различни корена.

1.5 Сравнение на коефициенти на полиноми

Нека K - област и $g_1,g_2\in K[x]$. Нека $degg_1,degg_2\leq n$ и съществуват два по два различни елемента $\alpha_1,...\alpha_n+1$ от K, такива че $g_1(\alpha_i)=g_2(\alpha_i)$ i=1,...,n+1. Тогава $g_1=g_2$

2.1 Делимост на полином

Нека $f,g\in F[x]$ и $g\neq 0$. Ако $\exists q\in F[x]$, такова че f=qg. Тогава g|f.

2.2

Нека $f_1, f_2, g \in F[x]$. Ако $g|f_1f_2$ и $(g, f_1) = 1$ тогава $g|f_2$.

2.3 НОД

Нека $f,g \in F[x]$ и $f \neq 0 \lor g \neq 0$. d е най-голям общ делител на f и g ако: 1. d|f,d|g 2. Ако $d_1|f,d_1|g$ то $d_1|d$. Записва се: (f,g)=d

2.4 Безу

Нека $f,g\in F[x]$ и $f\neq 0 \lor g\neq 0$. Ако (f,g)=d то $\exists u,v\in F[x],$ такова че uf+vg=d.

2.5 HOK

Нека $f,g,k\in F[x]$ k е най-малко общо кратно f и g ако: $1)f|k\wedge g|k$ $2)f|k_1\wedge g|k_1$ то $k|k_1$ Записва се: [f,g]=k

2.6

Нека $f, g \in F[x]$ 1) Идеалът (f) + (g) е породен от (f, g)2) Идеалът $(f) \cap (g)$ е породен от [f, g]

2.7

Нека $f \in F[x]$ и degf > 0. f е неразложим над F ако не може да се представи като произведението на два полинома $g, q \in F[x]$ където degg, degq < degf.

2.8

Ако $f_1, f_2, p \in F[x]$, където p е неразложим и $p|f_1f_2 \wedge p \nmid f_1$ то p|f.

2.9 Теорема за еднозначно разлагане на полиноми

 $\forall f \in F[x], f \neq const$ се разлага на неразложими над F полиноми. Ако $f = p_1...p_k = q_1...q_s$ са две разлагания, то $k = s \land \forall i = 1,...,k: p_i = a_iq_i$

3

3.1

Ако $f \in F[x], degf > 0$ и I = (f) тогава F[x]/I е поле само когато f е неразложим над F.

3.2 Поле на разлагане на полином над поле

Нека $f \in F[x], degf > 0$ L е разширение на F, което съдържа всички корени на f и $L_i \subset L, i \in I$.

Сечението $\cap_i L_i$, където L_i съдържа F и всички корени на f ще наричаме поле на разлагане на f над полето F.

3.3 Формули на Виет

$$\begin{split} &\alpha_1+\alpha_2+\ldots+\alpha_n=-\frac{a_1}{a_0}\\ &\alpha_1\alpha_2+\alpha_1\alpha_3+\ldots+\alpha_{n-1}\alpha_n=\frac{\alpha_2}{\alpha_0}\\ &\alpha_1\alpha_2\alpha_3+\alpha_1\alpha_2\alpha_4+\ldots+\alpha_{n-2}\alpha_{n-1}\alpha_n=\frac{\alpha_2}{\alpha_0}\\ &\cdot\\ &\cdot\\ &\alpha_1\alpha_2...\alpha_n=(-1)^n\frac{\alpha_n}{\alpha_0} \end{split}$$

3.4 К-кратен корен

Нека $f \in F[x]$, K е разширение на F и $\alpha \in K$. α е к-кратен корен на f (k >= 1) ако $f = (x - \alpha)^k g$, $g \in K[x] \land g(\alpha) \neq 0$.

3.5 НДУ за кратен корен на полином

Един полином има кратен корен, когато има общ корен с производната си.

4

4.1 Лема за старши едночлен на полином с много променливи

Нека A - област $\land 0 \neq f, g \in A[x_1, ..., x_n]$. Тогава старшият едночлен на полинома fg е равен на произведението на старшите едночлени на f и g.

4.2 Симетрични полиноми

Нека $f = f(x_1, ..., x_n) \in A[x_1, ..., x_n].$ f е симетричен полином ако $\forall \sigma \in S_n : f(x_1, ..., x_n) = f(x_{\sigma(1)}, ..., x_{\sigma(n)}).$

4.3 Основна теорема за симетрични полиноми

Нека $f = f(x_1, ..., x_n) \in A[x_1, ..., x_n]$. f е симетричен Тогава $\exists ! g \in A[x_1, ..., x_n]$, такова че $f(x_1, ..., x_n) = g(\sigma_1, ..., \sigma_n)$.

4.4

$$\sigma_1(x_1, ..., x_n) = x_1 + x_2 + ... + x_n,$$

$$\sigma_2(x_1, ..., x_n) = x_1 x_2 + x_1 x_2 + ... x_{n-1} x_n,$$

$$.$$

$$.$$

$$.$$

$$\sigma_n(x_1, ..., x_n) = x_1 x_2 ... x_n$$

4.5 Формули на Нютон

$$S_k = x_1^k + x_2^k + \ldots + x_n^k, \ k = 0, 1, 2$$
 S_k - симетричен полином наричан степенна сума $S_k - \sigma_1 S_{k-1} + \sigma_2 S_{k-2} + \ldots + (-1)^{k-1} \sigma_{k-1} S_1 + (-1)^k \sigma_k = 0$

5

5.1 Дискриминанта на полином

Нека $f = a_0 x^n + ... a_n \in F[x], a_0 \neq 0 \land n > 0$. и Нека L е разширение на полето F, което съдържа всички корени на f.

$$D(f) = a_0^{2n-2} \prod_{1 \le i \le j \le n} (\alpha_i - \alpha_j)^2 \text{ (for } n > 1)$$

5.2

$$D(f) = a_0^{n-2}(-1)^{\frac{n(n-1)}{2}} f'(\alpha_1) \dots f'(\alpha_n).$$

5.3 Резултанта

Нека $f=a_0x^n+...+a_n,\ g=b_0x^s+...+b_s\in F[x], a_0\neq 0 \land b_0\neq 0$ и n,s>0. и нека L е разширение на F, което съдържа всички корени $\alpha_1,...,\alpha_n$ на f и всички корени $\beta_1,...,\beta_s$ на g

4

$$R(f,g) = a_0^s b_0^n \prod_{i=1}^n \prod_{j=1}^s (\alpha_i - \beta_i) \in L$$

5.4

$$R(f,g) = a_0^s \prod_{i=1}^n g(\alpha_i).$$

5.5

$$R(f, f') = a_0(-1)^{\frac{n(n-1)}{2}} D(f).$$

6

6.1 Примитивни полиноми

 $f = a_0 x^n + \dots + a_n \in Z[x]$ е примитивен ако $(a_0, \dots, a_n) = 1$.

6.2 Лема(Гаус)

Произведението на два примитивни полинома също е примитивен полином.

6.3

 $f \in Z[x]$ и неразложим над Q тогава и само тогава, когато f не е разложим и над Z.

6.4 Критерий на Айзенщайн

Ако $f = a_0 x^n + ... + a_n \in Z[x] \land \exists$ число p(просто), за което:

- 1) $p \nmid a_0$
- 2) $p \mid a1, ..., a_n$
- 3) $p^2 \nmid a_n$

To f е неразложим над Q.