APPELLO Ax/202y, E	same di	
COSTRUZIONE DI	01SRZMT	
Prof. D. Botto, Prof. C.	Firrone	
SCRITTO:		
ORALI:		
Nome	Cognome	Matricola UUUUU

Tompo	die	posizione:	2	040
rempo a	uis	posizione.		OTC

IMPORTANTE

Una esposizione chiara si basa su:

- grafici o schizzi dotati di tutte le indicazioni (es. nomi di punti, quote, assi ...) che si ritrovano nelle descrizioni; in casi speciali, come quelli degli ingranaggi, costruzioni accurate eseguite con strumenti adatti sono indispensabili,
- descrizioni sintetiche e chiare in cui l'esaminatore è accompagnato alla comprensione della grafica e trova tutti gli elementi che supportano le conclusioni.

Riportare per esteso e chiaramente i procedimenti che conducono alle risposte è indispensabile per eventuali discussioni con gli esaminatori. In assenza, nessuna discussione sarà, purtroppo, possibile.

Il testo nella pagina che segue è il testo di un esercizio d'esame. Risolvete l'esercizio rispettando i suggerimenti sottoelencati.

- 1. Risolvete l'esercizio solo dopo aver studiato la parte teorica relativa ai dischi.
- 2. Un tempo ragionevole per risolvere questo esercizio è 60 minuti. Non interrompete lo svolgimento dell'esercizio per riprenderlo più tardi ma terminatelo nel tempo auto-assegnato.
- 3. L'esercizio deve essere completo anche nella parte numerica e la sequenza di calcoli che portano alla soluzione deve essere chiara.
- 4. Fate l'esercizio su carta o su un formato elettronico che possa essere condiviso con altri studenti del corso (pdf o simili).
- 5. Scambiate la vostra soluzione con quella fatta da un altro studente (magari dello stesso gruppo di lavoro delle esercitazioni) e fate le valutazioni incrociate dei rispettivi esercizi (date anche un voto da 1 a 10).
- 6. Darò supporto alla soluzione solo alle coppie di studenti che avranno completato l'esercizio e l'auto valutazione.

Non proseguite oltre se non avete intenzione di completare l'esercizio

COSTRUZIONE DI MOTORI PER AEROMOBILI

Prof. D. Botto, Prof. C. Firrone

01SRZMT

Esercizio (12 punti, minimo 7)

Progettate un disco rotante a uniforme resistenza la cui tensione ideale σ sia costante. Lo spessore iniziale al raggio zero è b_0 . In particolare, determinate

- lo spessore b_{rmax} al raggio massimo r_{max},
- la massa equivalente da aggiungere al raggio r_{max} per ottenere un disco di raggio "finito" equivalente al disco ideale di raggio infinito.

L'equazione di equilibrio (con l'usuale notazione per le variabili) è

$$\frac{d}{d_r}(\sigma_r r b) - \sigma_c b = -\rho \omega^2 r^2 b$$

Note

L'integrale $\int e^{-Ax^2}x^2dx$ vale

$$\int e^{-Ax^2} x^2 dx = \frac{\sqrt{\pi} \operatorname{erf}(\sqrt{A} x) - 2\sqrt{A} x e^{-Ax^2}}{4A^{\frac{3}{2}}} + C$$

dove erf(x) è la funzione errore i cui valori sono riportati nella figura

Materiale: $\rho = 7800 \text{ kg/m}^3$; $\sigma = 500 \text{ MPa}$;

Velocità angolare: $\omega = 10000 \text{ rpm};$

Geometria: $r_{\text{max}} = 300 \text{ mm}$; $b_0 = 80 \text{ mm}$.