GE diffusion gradient directions (CV11: custom tensor file, tensorXX.dat)

Jaemin Shin (<u>Jaemin.Shin@ge.com</u>)

Updated: May 13, 2021

Multi-shell DTI or DSI: How to prescribe?

With a Max b-value, multi-shell DTI (or any smaller b-values) can be specified using the entries (b-vector, mag<1) of custom tensor filename (CV11).

GE convention for diffusion gradient direction

 GE convention for diffusion gradient direction has <u>always</u> been in

"MR physics" logical coordinate

- X: Freq
- Y: Phase

encoding direction

- Z: Slice
- This is neither "with reference to the scanner bore" (like Siemens or Philips) nor "with reference to the imaging plane" (as expected by FSL tools)

tensor.dat

60
1.000000 0.000000 0.000000
0.361000 0.933000 0.000000
-0.255000 0.565000 0.785000
0.861000 -0.464000 0.210000
-0.307000 -0.766000 0.564000
-0.736000 0.013000 0.677000
0.532000 0.343000 0.774000
0.177000 0.965000 0.195000
0.771000 0.163000 0.615000

X: Freq Y: Phase Z: Slice (0019,10bb) (0019,10bc) (0019,10bd) DICOM private tags

FSL bval/bvec format (with reference to the imaging plane)

space-separated vs tab-separated values in tensorXX.dat

- Software version prior to 29.1,
- PSD: played-out diffusion gradient is applied correctly regardless of "spaces" vs "tab" separator.
- However, information in DICOM tags is lost (wrong) with "tab" separator. (X=Y=Z in DICOM)
- Version 29.1 or later, you can use "tab"

space-separated

<u> </u>
102
0.000000 0.000000 0.000000
0.654875 0.355659 0.666817
0.271924 0.933965 0.231877
-0.781703 0.152743 -0.179657
-0.118810 0.110437 0.986756
-0.552748 0.108005 -0.127037
-0.326879 0.866547 0.377155
0.394817 0.108337 -0.912350
0.155639 0.477851 0.643508
-0.906253 0.349334 -0.238058
0.110053 0.337891 0.455029
-0.566330 0.470917 -0.676393
0.558540 -0.665203 -0.495518
0.002542 0.026310 -0.407392
-0.648904 -0.611989 -0.452098
0.265763 -0.689599 -0.347116
-0.435216 0.497941 0.750095
0.060085 -0.972644 -0.224396
-0.187923 0.487620 0.245448

tensor4321.dat

X: (0019,10BB):	0.654875
Y: (0019,10BC):	0.355659
Z: (0019,10BD):	0.666817

tab-separated

•		
102		
0.000000	0.000000	0.000000
0.654875	0.355659	0.666817
0.271924	0.933965	0.231877
-0.781703	0.152743	-0.179657
-0.118810	0.110437	0.986756
-0.552748	0.108005	-0.127037
-0.326879	0.866547	0.377155
0.394817	0.108337	-0.912350
0.155639	0.477851	0.643508
-0.906253	0.349334	-0.238058
0.110053	0.337891	0.455029
-0.566330	0.470917	-0.676393
0.558540	-0.665203	-0.495518
0.002542	0.026310	-0.407392
-0.648904	-0.611989	-0.452098
0.265763	-0.689599	-0.347116
-0.435216	0.497941	0.750095
0.060085	-0.972644	-0.224396
-0.187923	0.487620	0.245448

tensor4321.dat

X: (0019,10BB):	0.654875
Y: (0019,10BC):	0.654875
7· (0019 10RD)·	0 654875

Wrong

Information in DICOM & Software version

Diffusion b-value:

Public tag (0018, 9087), Private tag (0043, 1039)

Diffusion b-vector:

X: (0019, 10bb), Y: (0019, 10bc), Z: (0019, 10bd)

For software version 26 or older (ex. DV26),

- If you modify PSD to use a custom tensor file (for example, tensor1234.dat), PSD played-out diffusion gradient is correctly from tensor1234.dat.
- However, information in DICOM (0019, 10bb/c/d) is from tensor.dat, not from your custom tensor1234.dat specified in PSD

For software version 27 or later,

Both PSD played-out diffusion gradient and information in DICOM is from the custom filename (CV11)

Multi-shell DTI in clinical mode (version 29.1)

- From software version 29.1, custom tensor (CV11) in clinical mode
- Pre-load most widely used tensor files in product
 - ADNI, HCP, ABCD, UK biobank, ABCD
- Correct b-value in DICOM tags (0018, 9087) (0043, 1039)
 - Round to nearest multiple of 5 (ex. 1999.8 \rightarrow 2000)
 - dcm2niix (v1.0.20201102 or later) reports bval/bvec correctly and consistently for both new/existing datasets

Correct b-value annotation (ABCD)

Appendix: Pre-loaded multi-shell tensor files

tensor8313: HCP (Human Connectome Project)

tensor8313.dat

- Three-shells DTI
- # of directions = 270, Max b-value = 3000
 - 1000 x 90
 - 2000 x 90
 - 3000 x 90
- # of directions = 296, Max b-value = 3000
- WITH interleaved b0 values
 - 0 x 26
 - 1000 x 90
 - 2000 x 90
 - 3000 x 90


```
# Multi-shell tensor8313.dat file
# Date generated: 2018-02-07 14:33:01
# Please use the following configuration on the MR Operator Console:
# - Advanced tab: CV11 - tensor file name: n=8313
  - Diffusion tab: b-value: 3000
  - WITH interleaved b0 values (270 directions + 26 b0 volumes):
    - Diffusion tab: number of directions (TENSOR): 296
  - WITHOUT interleaved b0 values:
    - Diffusion tab: number of directions (TENSOR): 270
#
# This file should be placed in /usr/g/bin
# Multi-shell details:
# - DTI shell 1: b value = 1000; directions = 90
# - DTI shell 2: b value = 2000; directions = 90
# - DTI shell 3: b value = 3000; directions = 90
# Interleaved b0 details:
# - The 296 directions comprise 270 tensor directions and 26 b0 volumes, each one interleaved every 10 directions.
# Identical directions are unique.
```


tensor4321: ABCD (Adolescent Brain Cognitive Development)

tensor4321.dat

- Four-shells DTI
- # of directions = 96, Max b-value = 3000
 - 500 x 6
 - 1000 x 15
 - 2000 x 15
 - 3000 x 60
- # of directions = 102, Max b-value = 3000
- WITH interleaved b0 values
 - 0 x 6
 - 500 x 6
 - 1000 x 15
 - 2000 x 15
 - 3000 x 60


```
# Multi-shell tensor4321.dat file for ABCD (Adolescent Brain Cognitive Development) study
# Diffusion gradient vectors for GE scanners
# Please use the following configuration on the MR Operator Console:
# - Advanced tab: CV11 - tensor file name: n=4321
# - Diffusion tab: b-value: 3000
# - Diffusion tab: number of T2: 1 (with 102, 6 x intreleaved b0 included in diffusion) or 7 (with 96)
  - Diffusion tab: number of directions (TENSOR): 96 or 102
# This file should be placed in /usr/g/bin
# Multi-shell details:
# Diffusion 102 (WITH Interleaved b0 values)
# - Interleaved b0: b value = 0 s/mm2; directions = 6
# - Shell 1: b value = 500 s/mm2; directions = 6
# - Shell 2: b value = 1000 s/mm2; directions = 15
# - Shell 3: b value = 2000 s/mm2; directions = 15
# - DTI shell 4: b value = 3000 s/mm2; directions = 60
# Diffusion 96
# - Shell 1: b value = 500 s/mm2; directions = 6
# - Shell 2: b value = 1000 s/mm2; directions = 15
# - Shell 3: b value = 2000 s/mm2; directions = 15
# - Shell 4: b value = 3000 s/mm2; directions = 60
# [Reference]
# ABCD Summary of Neuroimaging Parameters
# https://abcdstudy.org/images/Protocol_Imaging_Sequences.pdf
```


tensor1127: ADNI-3 Advanced

ADNI (Alzheimer's Disease Neuroimaging Initiative) tensor1127.dat

- Three-shells DTI
- To match ADNI, use 1 b=0 volume
- # of directions = 126, Max b-value = 2000
- The "classic" ADNI-3 Advanced
 - 0 x 12
 - 500 x 6
 - 1000 x 48
 - 2000 x 60
- # of directions = 100, Max b-value = 2000
- The mayo-modified version of ADNI-3 Advanced for wide bore systems
 - -0×9
 - 500 x 6
 - 1000 x 38
 - 2000 x 47


```
# Multi-shell tensor1127.dat file for ADNI-3 Advanced Protocols (Alzheimer's Disease Neuroimaging Initiative)
# Diffusion gradient vectors for GE scanners
# Creator: Jaemin Shin Rob Reid, reid.robert@mayo.edu, 2020-04-09
# Please use the following configuration on the MR Operator Console:
# - Advanced tab: CV11 - tensor file name: n=1127
# - Diffusion tab: b-value: 2000
# - Diffusion tab: number of T2:1
# - Diffusion tab: number of directions (TENSOR): 126 or 100
# This file should be placed in /usr/g/bin
# Multi-shell details:
# Diffusion 126
# The 126 vector version is the "classic" ADNI3 Advanced 3 shell set.
# It is nominally intended for scanners capable of gradient amplitudes > 70 mT/m.
# - Interleaved b0: b value = 0 s/mm2; directions = 12
# - Shell 1: b value = 500 s/mm2; directions = 6
# - Shell 2: b value = 1000 s/mm2; directions = 48
# - Shell 3: b value = 2000 s/mm2; directions = 60
# Diffusion 100
# The 100 vector version is intended to support multishell scanning in a reasonable time
# on scanners with gradient coils with lower maximum strength.
# - Interleaved b0: b value = 0 s/mm2; directions = 9
# - Shell 1: b value = 500 s/mm2; directions = 6
# - Shell 2: b value = 1000 s/mm2; directions = 38
# - Shell 3: b value = 2000 s/mm2; directions = 47
# Both versions have their b values interspersed through the whole scan
# to minimize gradient heating, and the directions are spread over
# entire spheres to aid eddy current correction.
# The directions were optimized using an electrostatic repulsion scheme:
# Caruyer, Emmanuel, Christophe Lenglet, Guillermo Sapiro, and Rachid Deriche.
# "Design of multishell sampling schemes with uniform coverage in diffusion MRI."
# Magnetic Resonance in Medicine 69, no. 6 (2013): 1534-1540.
```

ttp://adni.loni.usc.edu/adni-3/

tensor521: UK Biobank

UK Biobank Brain Imaging tensor521.dat

- Two-shells DTI
- To match UK Biobank, use 1 b=0 volume
- # of directions = 104, Max b-value = 2000
- Primary directions
 - 0 x 4
 - 1000 x 50
 - 2000 x 50
- # of directions = 6, Max b-value = 2000
- Secondary directions to get blip-reversed b=0 scans for distortion correction
 - 0 x 3
 - 2000 x 3


```
# Multi-shell tensor521.dat file for UK Biobank Brain Imaging
# Diffusion gradient vectors for GE scanners
# Creator: Jaemin Shin (Jaemin.Shin@ge.com), 2020-05-04
# Please use the following configuration on the MR Operator Console:
# - Advanced tab: CV11 - tensor file name: n=521
  - Diffusion tab: b-value: 2000
  - Diffusion tab: number of T2: 1 (4 x intreleaved b0 included in diffusion)
 - Diffusion tab: number of directions (TENSOR): 104
# This file should be placed in /usr/g/bin
# Multi-shell details:
# Diffusion 104
# - Interleaved b0: b value = 0 s/mm2; directions = 4
# - Shell 1: b value = 1000 s/mm2; directions = 50
# - Shell 2: b value = 2000 s/mm2; directions = 50
# Diffusion 6 (optional)
# Short acquisition to get blip-reversed b=0 scans for distortion correction.
# - Interleaved b0: b value = 0 s/mm2; directions = 1
# - Shell 1: b value = 2000 s/mm2; directions = 3
# [Reference]
# UK Biobank Brain Imaging - Online Resources
# https://www.fmrib.ox.ac.uk/ukbiobank/protocol/
# Diffusion gradient vectors from Siemens DiffusionVectors:
# Primary directions 104 directions
# https://www.fmrib.ox.ac.uk/ukbiobank/protocol/NewDiffusionVectors230914.txt
# Secondary directions 6 directions
# https://www.fmrib.ox.ac.uk/ukbiobank/protocol/DiffusionVectors3b0.txt
```



```
# Multi-shell tensor1225.dat file for HCP Lifespan
# Diffusion gradient vectors for GE scanners
# from Lifespan HCP-Development and HCP-Aging protocol package
# (Version 2019.01.14)
# 01/25/2022
# Creator: Jaemin Shin(Jaemin.Shin@ge.com), Baolian Yang(Baolian.Yang@ge.com)
# Please use the following configuration on the MR Operator Console:
# - Advanced tab: CV11 - tensor file name: n=1225
# - Diffusion tab: b-value: 3000
# - Diffusion tab: number of directions (TENSOR): 198
# Multi-shell details:
# Diffusion 198 = Diffusion 98 + 1 x b0 + Diffusion 99
# - Interspersed b0: b value = 0 s/mm2; directions = 13
# - Shell 1: b value = 1500 s/mm2; directions = 92
# - Shell 2: b value = 3000 s/mm2; directions = 93
# Diffusion 98
# - Interspersed b0: b value = 0 s/mm2; directions = 6
# - Shell 1: b value = 1500 s/mm2; directions = 46
# - Shell 2: b value = 3000 s/mm2; directions = 46
# Diffusion 99
# - Interspersed b0: b value = 0 s/mm2; directions = 6
# - Shell 1: b value = 1500 s/mm2; directions = 47
# - Shell 2: b value = 3000 s/mm2; directions = 46
```

```
# Harms MP, Somerville LH, Ances BM, Andersson J, Barch DM, Bastiani M,
# Bookheimer SY, Brown TB, Buckner RL, Burgess GC, Coalson TS.
# Extending the Human Connectome Project across ages: Imaging protocols
# for the Lifespan Development and Aging projects.
# Neuroimage. 2018 Dec 1;183:972-84.
# https://doi.org/10.1016/j.neuroimage.2018.09.060
# Emmanuel Caruyer, Christophe Lenglet, Guillermo Sapiro, Rachid Deriche.
# Design of multishell sampling schemes with uniform coverage in diffusion MRI.
# Magnetic Resonance in Medicine, 2013, 69:1534-1540.
# http://dx.doi.org/10.1002/mrm.24736
# Tool available at:
# http://www.emmanuelcaruyer.com/q-space-sampling.php
# Lifespan HCP-Development and HCP-Aging protocol package at:
# https://www.humanconnectome.org/study/hcp-lifespan-development/project-
protocol/imaging-protocols-hcp-development
https://www.humanconnectome.org/storage/app/media/protocols/HCP VE11C Prisma
01.14.zip
```

[Reference]

