Math 4000/6000 - Final Exam Study Guide

Exam time/location: Monday, December 12, 8 AM – 11 AM, usual classroom

The exam is **cumulative**. The following is a "summary of course topics".

Topical outline

Part I: The Integers

- Axioms: \mathbb{Z} is a commutative ring with $1 \neq 0$, ordered, and satisfies the well-ordering principle (see the initial handout)
- Binomial theorem
- Theory of divisibility
 - basic definitions and properties of divisibility
 - definition of the gcd
 - Euclid's algorithm for computing the gcd
 - gcd can be written as a linear combination of starting numbers
- Euclid's lemma
- Unique factorization theorem
- Congruences
 - basic definitions
 - congruence mod m is an equivalence relation
 - Fermat's little theorem
 - inverses and cancelation; solving $ax \equiv b \mod m$
 - simultaneous congruences and the Chinese remainder theorem

Part II: Rings: First examples

- Ring axioms
- Definition of **fields** and **integral domains**
- Detailed discussion of \mathbb{Z}_m
 - $-\bar{a}$ is a unit in $\mathbb{Z}_m \iff \gcd(a,m) = 1$
 - for positive integers m, \mathbb{Z}_m is a field $\iff m$ is prime $\iff \mathbb{Z}_m$ is an integral domain
- Definition of \mathbb{Q} from \mathbb{Z} (ordered pairs up to cross-multiplication equivalence); verification that + and \cdot are well-defined
- Definition of \mathbb{C} from \mathbb{R}

- Basic properties of complex numbers
 - basic concepts: complex conjugation, absolute value, polar form
 - multiplication of complex numbers in polar form
 - de Moivre's theorem
 - -n distinct nth roots of 1 for every n
 - solving linear, quadratic, and cubic equations over \mathbb{C}

Part III: Polynomials over commutative rings

- Definition of the polynomial ring R[x]
- Basic properties
 - if R is a domain, deg(a(x)b(x)) = deg(a(x)) + deg(b(x))
 - if R is a domain, then R[x] is a domain
 - if R is a field, then u is a unit in $R[x] \iff u$ is a nonzero constant in R
- Division algorithm in F[x], F a field
- \bullet gcds in F[x] and their properties
- irreducibles in F[x], Euclid's lemma, unique factorization theorem in F[x]
- root-factor theorem
- The Fundamental Theorem of Algebra (proof non-examinable)
- testing irreducibility of polynomials with integer coefficients
 - rational root test
 - method of undetermined coefficients
 - reduction modulo p
 - Eisenstein's criterion

Part IV: Field extensions, part 1

- definition of a field extension
- definition of $F[\alpha]$, where α belongs to an extension of F
- definition of f(x) splitting completely; definition of a splitting field for $f(x) \in F[x]$ over F
- $F[\alpha]$ is a field if α is algebraic over F

Part V: Ring homomorphisms

- definition of a ring homomorphism
- kernel of a homomorphism; $\ker \phi = \{0\} \iff \phi$ is injective
- definition of an ideal of a commutative ring
- \mathbb{Z} and F[x] are principal ideal domains: all ideals are of the form $\langle a \rangle$ for a single element a
- construction of the quotient ring R/I, for an ideal I of R
- ring isomorphisms (basic properties) and the fundamental homomorphism theorem

Part VI: Field extensions, part 2

- If $f(x) \in F[x]$ is irreducible, then $K = F[x]/\langle f(x) \rangle$ is an extension of F that contains at least one root of f(x) (namely, \bar{x})
- If $f(x) \in F[x]$, there is an extension K of F over which f splits; moreover, there is a splitting field for f(x) over F
- definition of the degree of a field extension
- degree is multiplicative in towers (proof not examinable)
- if $K = F[\alpha]$ and the min. poly of α over F has degree n, then [K : F] = n

Additional practice problems

Please refer to the review sheets for Exams #1–#3 for practice problems on the material covered in Chapters 1–4. The following problems concern (only) the material covered in Chapter 5.

- 1. We showed that if F is a field and $f(x) \in F[x]$ is irreducible of degree n, then $K = F[x]/\langle f(x) \rangle$ is a field extension of F. What is [K:F] in this case?
- 2. Let K/F be an extension of fields with [K:F]=p, where p is prime. Show that if E is any field with $F\subseteq E\subseteq K$, then E=F or E=K.
- 3. What is the degree of
 - (a) $\mathbb{Q}[\sqrt[7]{2}]$ as an extension of \mathbb{Q} ?
 - (b) $\mathbb{Q}[\sqrt[7]{4}]$ as an extension of \mathbb{Q} ? *Hint:* First show that $\mathbb{Q}[\sqrt[7]{4}]$ is a subfield of $\mathbb{Q}[\sqrt[7]{2}]$.
 - (c) $\mathbb{Q}[\sqrt[7]{2}, \sqrt[9]{2}]$ as an extension of \mathbb{Q} ?
 - (d) $\mathbb{Q}[\sqrt[12]{2}, \sqrt[18]{2}]$ as an extension of \mathbb{Q} ?
 - (e) $\mathbb{Q}[\cos(2\pi/5) + i\sin(2\pi/5)]$ as an extension of \mathbb{Q} ?
 - (f) $\mathbb{Q}[\sqrt{3}+i]$ as an extension of $\mathbb{Q}[\sqrt{3}]$.
- 4. Recall the following fact from linear algebra: If V is an n-dimensional vector space, then any n+1 vectors in V are linearly dependent.

- (a) Use the quoted fact to prove that if K/F is a field extension of degree n, then every $\alpha \in K$ is algebraic over F. Hint: Look at the "vectors" $1, \alpha, \ldots, \alpha^n$.
- (b) (continuation) Keep the assumption that K/F is a field extension of degree n. Show that if $\alpha \in K$, then $F[\alpha]$ is a field extension of F, and $[F[\alpha]:F]$ divides n.