

#### Course Syllabus

#### ภาคปลาย ปีการศึกษา 2559

| 1. คณะวิทยาศาสตร์      |     |                             | ภาควิชา        | กลุ่มวิช  | าวิทยาศาส   | สตร์พื้นฐานแผ | เะพลศึกษา |
|------------------------|-----|-----------------------------|----------------|-----------|-------------|---------------|-----------|
| 2. รหัสวิชา 01420111   |     |                             | ชื่อวิชา       | (ไทย)     | ฟิสิกส์ทั่ว | าไป 2         |           |
| จำนวนหน่วยกิต 1(0-3-0) |     | (อังกฤษ) General Physics II |                |           |             |               |           |
| วิชาพื้นฐาน            | 800 | วันจันทร์                   | เวลา 13.00-16. | 00 น.     | ห้อง 17     | 401           |           |
|                        | 801 | วันพฤหัสบดี                 | เวลา 16.30-19. | 30 น.     | ห้อง 17     | 404           |           |
|                        | 802 | วันอังคาร                   | เวลา 1         | 13.30-16. | 30 น.       | ห้อง 17404    |           |
|                        | 803 | วันจันทร์                   | เวลา 13.00-16. | 00 น.     | ห้อง 10     | 306           |           |
|                        | 820 | วันพถหัสบดี                 | เวลา 13.00-16. | 00 น.     | ห้อง 17     | 202           |           |

## 3. ผู้สอน / คณะผู้สอน

1. อาจารย์ชัยฤกษ์ ตั้งเฮงเจริญ ห้องพัก 1204 2. ดร.ภ.พึ่งบุญ ปานศิลา ห้องพัก 2201/2 3. ดร.ธณิศร์ ตั้งเจริญ ห้องพัก 2201/2 4. ดร. สุทัศนา ณ พัทลุง ห้องพัก 2201/2

## 4. วัตถุประสงค์รายวิชา (The objective of the course)

- 4.1 เพื่อให้นิสิตมีความเข้าใจในทฤษฎีฟิสิกส์ในระดับพื้นฐานตามหัวข้อเรื่องต่างๆ ที่ระบุในเนื้อหารายวิชาทั้งหมด
- 4.2 เพื่อให้นิสิตนำความรู้ไปใช้อธิบายและแก้ปัญหาทางฟิสิกส์ที่เกิดในชีวิตประจำวัน
- 4.3 เพื่อให้นิสิตนำความรู้ที่ได้ไปเป็นพื้นฐานในวิชาฟิสิกส์ระดับสูง วิชาฟิสิกส์ประยุกต์หรือนำไปประกอบในวิชาอื่น ๆ ที่เกี่ยวข้องกับฟิสิกส์
- **4.4** เพื่อให้นิสิตสามารถนำหลักเกณฑ์การแก้ปัญหาต่างๆ ทางฟิสิกส์ ซึ่งต้องอาศัยเหตุและผลไปใช้แก้ปัญหาอื่นๆ ใน ชีวิต ทำให้สามารถดำเนินชีวิตร่วมกับผู้อื่นในสังคมได้อย่างมีความสุขและมีคุณภาพ

#### 5. คำอธิบายรายวิชา

สนามไฟฟ้าสถิตและสนามแม่เหล็กสถิต กฎของเกาส์ การใช้กฎของเกาส์ กฎของแอมแปร์ สนามแม่เหล็กไฟฟ้าที่ขึ้นกับเวลา กฎของฟาราเดย์ หลักการเหนี่ยวนำ ไฟฟ้ากระแสตรงและไฟฟ้ากระแสสลับ คลื่นแม่เหล็กไฟฟ้า ทัศนศาสตร์เรขาคณิตและทัศนศาสตร์กายภาพ ทฤษฎีควอนตัมเบื้องต้น โครงสร้างอะตอม นิวเคลียสและปฏิกิริยานิวเคลียร์

### 6. เค้าโครงรายวิชา

| สัปดาห์ที่ | วันเดือนปี      | เนื้อหา                                                                                                                                                                                                                                                                                                                                                                              | หมายเหตุ |
|------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1          | 16-20<br>ม.ค.60 | บทที่ 1 ไฟฟ้าสถิต<br>1.1 ประจุ<br>1.2 การให้ประจุ<br>1.3 กฎของคูลอมบ์<br>1.4 สนามไฟฟ้า                                                                                                                                                                                                                                                                                               |          |
| 2          | 23-27<br>ม.ค.60 | <ul> <li>1.5 การเคลื่อนที่ของอนุภาคมีประจุในสนามไฟฟ้าคงที่สม่ำเสมอ</li> <li>1.6 ฟลักซ์ของสนามไฟฟ้า</li> <li>1.7 กฎของเกาส์</li> <li>1.8 การประยุกต์กฎของเกาส์</li> <li>บทที่ 2 ศักย์ไฟฟ้า</li> <li>2.1 พลังงานศักย์ของประจุในสนามไฟฟ้าคงที่สม่ำเสมอ</li> <li>2.2 พลังงานศักย์ของประจุในสนามไฟฟ้าจากประจุเดี่ยว</li> <li>2.3 พลังงานศักย์ของประจุในสนามไฟฟ้าจากประจุเดี่ยว</li> </ul> |          |

|   |             | 2.4 พลังงานศักย์ไฟฟ้าภายในระบบ                                                                                                  |  |
|---|-------------|---------------------------------------------------------------------------------------------------------------------------------|--|
|   | 30 ม.ค.60 - | 2.5 ศักย์ไฟฟ้า<br>2.6 ศักย์ไฟฟ้าเนื่องจากประจุจุด                                                                               |  |
| 3 |             | 2.7 ศักย์ไฟฟ้าเนื่องจากการกระจายของประจุอย่างต่อเนื่อง 2.8 การทดลองหยดน้ำมันของมิลลิแกน 2.9 เครื่องกำเนิดไฟฟ้าสถิตของวานเดอกราฟ |  |

|                         | T          |                                                                |   |  |
|-------------------------|------------|----------------------------------------------------------------|---|--|
|                         |            | บทที่ 3 ความจุไฟฟ้า                                            |   |  |
|                         |            | 3.1 ตัวเก็บประจุไฟฟ้า                                          |   |  |
| 4                       | 6-10       | 3.2 ความจุไฟฟ้าของตัวเก็บประจุชนิดต่างๆ                        |   |  |
|                         | ก.พ.60     | 3.3 การต่อตัวเก็บประจุ                                         |   |  |
|                         |            | 3.4 พลังงานที่เก็บในตัวเก็บประจุเมื่อได้รับประจุ               |   |  |
|                         |            | 3.5 ไดโพลไฟฟ้า                                                 |   |  |
|                         |            | 3.6 โพลาไรเซซันของไดอิเล็กทริก                                 |   |  |
|                         |            | 3.7 ตัวเก็บประจุที่มีใดอิเล็กทริกระหว่างแผ่น                   |   |  |
| 5                       | 13-17      | บทที่ 5 สนามแม่เหล็กไฟฟ้าสถิต                                  |   |  |
|                         | ก.พ.60     | 5.1 อันตรกิริยาทางแม่เหล็ก                                     |   |  |
|                         |            | 5.2 การเคลื่อนที่ของประจุไฟฟ้าในสนามแม่เหล็กสม่ำเสมอ           |   |  |
|                         |            | 5.3 ปรากฏการณ์ของฮอลล์                                         |   |  |
|                         |            | 5.4 แรงแม่เหล็กบนขดลวดตัวนำที่มีกระแสไฟฟ้าผ่าน                 |   |  |
|                         | 20-24      | 5.5 ทอร์กแม่เหล็กบนขดลวดตัวนำที่มีกระแสไฟฟ้า                   |   |  |
| 6                       | ก.พ.60     | 5.6 กฎของบิโอต์และซาวาร์ต                                      |   |  |
|                         | 11.74.00   | 5.7 สนามแม่เหล็กที่เกิดจากกระแสไฟฟ้าในลวดตัวนำเส้นตรง          |   |  |
|                         |            | 5.8 สนามแม่เหล็กที่เกิดจากกระแสไฟฟ้าในขดลวดตัวนำวงกลม          |   |  |
|                         |            | 5.9 สนามแม่เหล็กที่เกิดจากกระแสไฟฟ้าในขดลวดโซเลนอยด์           |   |  |
|                         |            | 5.10 แรงกระทำบนเส้นลวดคู่ขนานที่มีกระแสไฟฟ้า                   |   |  |
|                         | 27ก.พ.60 – | 5.11 กฎของแอมแปร์                                              |   |  |
| 7                       | 3 มี.ค.60  | 5.12 สมบัติการเป็นแม่เหล็กของวัสดุ                             |   |  |
| ,                       |            | 5.13 การทำสารให้เกิดอำนาจแม่เหล็ก                              |   |  |
|                         |            | บทที่ 6 สนามแม่เหล็กไฟฟ้าที่ขึ้นกับเวลา                        |   |  |
|                         |            | 6.1 กฎของฟาราเดย์                                              |   |  |
|                         |            | 6.2 แรงเคลื่อนไฟฟ้าเหนี่ยวนำเนื่องจากการเปลี่ยนพื้นที่ของขดลวด |   |  |
|                         |            | 6.3 เครื่องบีตาตรอน                                            |   |  |
|                         |            | 6.4 การเหนี่ยวนำตนเอง                                          |   |  |
|                         |            | 6.5 พลังงานแความหนาแน่นพลังงานสนามแม่เหล็กในขดลวด              |   |  |
|                         | 6-10       | เหนี่ยวนำ                                                      |   |  |
| 8                       | มี.ค.60    | 6.6 การเหนี่ยวนำร่วม                                           |   |  |
|                         | 8.11.00    | 6.8 ตัวต้านทานและขดลวดเหนี่ยวนำในวงจรกระแสตรง                  |   |  |
|                         |            | 6.9 การแกว่งกวัดทางไฟฟ้าเมื่อตัวเก็บประจุต่อกับขดลวดเหนี่ยวนำ  |   |  |
|                         |            | 6.10 การแกว่งกวัดทางไฟฟ้าเมื่อตัวเก็บประจุ ขดลวแหนี่ยวนำ และ   |   |  |
|                         |            | ตัวต้านทานต่ออนุกรมกัน                                         |   |  |
| 11-19 มีนาคม สอบกลางภาค |            |                                                                |   |  |
|                         |            | บทที่ 7 ไฟฟ้ากระแสตรง                                          |   |  |
|                         |            | 7.1กระแสไฟฟ้า                                                  |   |  |
|                         |            | 7.2 ความต้านทานและกฎของโอห์ม                                   |   |  |
|                         | 20-24      | 7.3 สัมประสิทธิ์อุณหภูมิของสภาพต้านทาน                         |   |  |
| 9                       | มี.ค.60    | 7.4 การต่อตัวต้านทาน                                           |   |  |
|                         |            | 7.5 แรงเคลื่อนไฟฟ้า                                            |   |  |
|                         |            | 7.6 พลังงานและกำลังในวงจร                                      |   |  |
|                         |            | 7.7 กฎของเคิร์ชฮอฟฟ์                                           |   |  |
|                         |            | 7.8 ตัวต้านทานและตัวเก็บประจุในวงจรกระแสตรง                    |   |  |
|                         |            | บทที่ 8 วงจรไฟฟ้ากระแสสลับ                                     | · |  |
|                         |            | 8.1 กระแสและความต่างศักย์ในวงจรไฟฟ้ากระแสสลับ                  |   |  |
|                         |            | 8 2 ค่าเฉลี่ยรากกำลังสองเฉลี่ย และกำลังไฟฟ้ากระแสสลับ          |   |  |

| 11  |             | บทที่ 9 คลื่นแม่เหล็กไฟฟ้า                             |
|-----|-------------|--------------------------------------------------------|
|     |             | 9.1 สมการของแมกเวลล์                                   |
|     |             | 9.2 สมการของคลื่นแม่เหล็กไฟฟ้า                         |
|     | 3-7 เม.ย.60 | 9.3 พลังงานและโมเมนตัมของคลื่นแม่เหล็กไฟฟ้า            |
|     | 3-7 เม.ย.60 | 9.4 การก่อกำเนิดคลื่นแม่เหล็กไฟฟ้า                     |
|     |             | 9.5 การเคลื่อนที่ของคลื่นแม่เหล็กไฟฟ้าในตัวกลาง        |
|     |             | 9.6 ปรากฏการณ์ดอปเพลอร์ของคลื่นแม่เหล็กไฟฟ้า           |
|     |             | 9.7 สเปกตรัมของคลื่นแม่เหล็กไฟฟ้า                      |
|     | 10-14 เมษา  | ยน 2560 งดการเรียนการสอน (สัปดาห์วันสงกรานต์)          |
|     |             | บทที่ 10 ทัศนศาสตร์เรขาคณิต                            |
|     |             | 10.1 หน้าคลื่นและรังสี                                 |
|     |             | 10.2 หลักของฮอยเกนส์                                   |
|     |             | 10.3 การสะท้อนของแสงที่ผิวราบ                          |
|     | 47.04       | 10.4 การสะท้อนที่ผิวโค้ง                               |
|     | 17-21       | 10.5 การหักเหของคลื่นแสงที่ผิวระนาบ                    |
|     | เม.ย.60     | 10.6 การสะท้อนภายในกลับหมด                             |
|     |             | 10.7 การหักเหของแสงที่ผิวโค้งทรงกลม                    |
| 12  |             | 10.8 การหักเหของแสงผ่านเลนส์หนา                        |
|     |             | 10.9 การหักเหของแสงผ่านเลนส์บาง                        |
|     |             | 10.10 ปริซึมและการกระจายแสง                            |
|     |             | 10.11 ตาและความผิดปกติของตาในการรับภาพ                 |
|     |             | บทที่ 11 ทัศนศาสตร์กายภาพ                              |
|     |             | 11.1 บทนำ                                              |
|     |             | 11.2 การแทรกสอด                                        |
|     |             | 11.3 การเปลี่ยนเฟสเนื่องจากการสะท้อนของแสง             |
|     | 24.00       | 11.4 การแทรกสอดในฟิล์มบาง                              |
| 4.0 | 24-28       | 11.5 การเลี้ยวเบน                                      |
| 13  | เม.ย.60     | 11.6 กำลังแยกของกล้องจุลทรรศน์และกล้องโทรทรรศน์        |
|     | İ           | 11.7 เกรตติงเลี้ยวเบนและกำลังแยกของเกรตติงเลี้ยวเบน    |
|     |             | 11.8โพลาไรเซซัน                                        |
|     |             | 11.9 การทำแสงโพลาไรส์                                  |
|     |             | 11.10โพลาไรเซซันแบบวงกลมและวงรี                        |
|     |             | 11.11 การนำแสงโพลาไรส์ไปใช้ประโยชน์                    |
|     |             | บทที่ 12 ทฤษฎีควอนตัมเบื้องต้น                         |
|     |             | 12.1 บทนำ                                              |
|     |             | 12.2 การแผ่รังสีของวัตถุดำ                             |
|     | 1-5 พ.ค.60  | 12.3 ปรากฏการณ์โฟโตอิเล็กทริกและทฤษฎีโฟตอนของไอน์สไตน์ |
|     |             | 12.4 ปรากฏการณ์คอมป์ตัน                                |
| 14  |             | 12.5 โฟตอนและการผลิตคู่                                |
|     |             | 12.6 ทวิภาพของคลื่นและอนุภาค                           |
|     |             | 12.7 รังสีเอกซ์และการเลี้ยวเบนของรังสีเอกซ์            |
|     |             | 12.8 การเลี้ยวเบนของอนุภาค                             |
|     |             | 12.9 กล้องจุลทรรศน์อิเล็กตรอน                          |
|     |             | บทที่ 13 โครงสร้างอะตอม                                |
|     |             |                                                        |

|                               |           | 13.1 อะตอม                               |
|-------------------------------|-----------|------------------------------------------|
|                               |           | 13.2 อะตอมเชิงซ้อน                       |
|                               |           | บทที่ 13 นิวเคลียสและปฏิกิริยานิวเคลียร์ |
|                               |           | 13.1 อันตรกิริยานิวเคลียร์               |
|                               |           | 13.2 พลังงานยึดเหนี่ยวของนิวเคลียส       |
|                               |           | 13.3 แรงนิวเคลียร์                       |
|                               |           | 13.4 ขนาดของนิวเคลียส                    |
|                               |           | 13.5 แบบจำลองของนิวเคลียส                |
| 45                            | 8-12 พ.ค. | 13.6 การสลายตัวของสารกัมมันตรังสี        |
| 15                            | 60        | 13.7 กัมมันตภาพ                          |
|                               |           | 13.8 อนุกรมกัมมันตรังสี                  |
|                               |           | 13.9 สมดุลกัมมันตรังสี                   |
|                               |           | 13.10 ปฏิกิริยานิวเคลียร์                |
|                               |           | 13.11 การใช้ประโยชน์จากพลังงานนิวเคลียร์ |
| 15-26 พฤษภาคม 2560 สอบปลายภาค |           |                                          |

หมายเหตุ: า. เนื้อหาบางหัวข้อ และเวลาในการสอนอาจจะมีการปรับเปลี่ยนเพื่อความเหมาะสม

- 2. นิสิตที่มีข้อจำกัดทางด้านการเรียนรู้ เช่น สายตาผิดปกติ (สั้น หรือ ยาว หรืออื่น ๆ) การได้ ยินผิดปกติ (หู)ให้แจ้งอาจารย์ผู้สอนโดนด่วนที่สุด
  - 3. หากตรงกับวันหยุดราชการ จะนัดสอนชดเชยในภายหลัง

#### 7. เอกสารอ่านประกอบ

- 1. ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ ฟิสิกส์ II ตอนที่ 1 และ 2
- 2. ฟิสิกส์ เล่ม 2 ทบวงมหาวิทยาลัย ฉบับปรับปรุง 2543 สมาคมวิทยาศาสตร์แห่งประเทศไทยในพระ บรมราชูปถัมภ์ ชวนพิมพ์ กรุงเทพมหานครฯ
- 3. ฟิสิกส์ 2 ภาควิชาฟิสิกส์ จุฬาลงกรณ์มหาวิทยาลัย ฉบับพิมพ์ 3 สำนักพิมพ์จุฬาลงกรณ์มหาวิทยาลัย 2535
- 4. Young, H.D., University Physics, 8th ed., Addison-Wesley Publishing Company., 1992
- 5. Serway, R.A., Physics, 3th ed., Saunder College Publishing, 1992 (Updated version)
- 6. Benson, H., University Physics, John Wiley & Sons, Inc.
- 7. Halliday, D. R., Walker, J., Fundamentals of Physics of Physics, 4 th ed., John Wiley &Sons,Inc.,1993.
- 8. Cutnell, J.D., Johnson, K.W., Physics, 3th ed., John Wiley & sons, Inc., 1995.
- Bueche, F., Wallacch, D.L., Technical Physics, 4th ed., John Wiley & sons, Inc.,
- 10. Alonso, M., Finn, E.J., Physics, AddisoWesley Publishing Company, 1992
- 11. Gettys, W.E., Keller, F.J., Skove, M.J., Physics, International edition, MCGraw-Hill Co, 1989.
- 12. Arfken, G.B., Griffing, D.F., Kelly, D.C., Priest, J., University Physics, 2nd ed, HBJ, 1989

# 8. การวัดผลสัมฤทธิ์ในการเรียน

| รวมทั้งหมด                                             | 100% |      |
|--------------------------------------------------------|------|------|
| การบ้าน/รายงาน/งานกลุ่มผลงาน และการนำเสนอหน้าชั้นเรียน | 20 % |      |
| การเข้าชั้นเรียน (ทุกสัปดาห์)                          |      | 10 % |
| การสอบปลายภาค                                          |      | 35 % |
| การสอบกลางภาค                                          |      | 35 % |

# 9. การประเมินผลการเรียน

ตัดเกรดร่วมกันทุกหมู่เรียน ทั้งอิงเกณฑ์และอิงกลุ่ม