NUS-ISSPattern Recognition using Machine Learning System

The rise of machine-learned features

by Dr. Tan Jen Hong

© 2020 National University of Singapore. All Rights Reserved.

The Al time line

A broad overview

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Source: https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/

The AI time line

The starting point ...

Source: https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/

Expert system

Example: Arriving decision to choose a weapon at any time by the expert system

Source: https://wiki.bath.ac.uk/display/BISAI/ Expert+System+in+a+Gaming+Environment

Expert system

Rules to determine ... a yacht?

Source: https://yachtharbour.com/news/venus-spotted-in-mallorca-1887?src=news_view_page_bar

Expert system

The limitations

- Expensive and time consuming!
 Experts are never cheap
- Bad in handling sophisticated sensory inputs (like signals, images)
- Possible to make dumb decision since it just goes through rules; no common sense in the system
- System not easy to be updated

Source: https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/

A new solution to the rescue

- Feature: a number or a vector that describes something about the input
- Classifer figures out (by itself) the underlying pattern between features and output
- This is where the 'learning' happens

Source: https://verhaert.com/difference-machine-learning-deep-learning/

Filtering or feature extraction

Filtering

It's all about convolution

30	3,	22	1	0
02	02	10	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Source: https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1

Filtering

What filtering can do

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

$$\frac{1}{256} \begin{bmatrix}
1 & 4 & 6 & 4 & 1 \\
4 & 16 & 24 & 16 & 4 \\
6 & 24 & 36 & 24 & 6 \\
4 & 16 & 24 & 16 & 4 \\
1 & 4 & 6 & 4 & 1
\end{bmatrix}$$

Source: https://en.wikipedia.org/wiki/Kernel_(image_processing)

Gabor filtering

Source: https://doi.org/10.1016/j.eswa.2010.11.016

Conclusion?

 We need to design features manually, through much trial and error, with luck

 Classifiers used are generic (like SVM)

Source: https://verhaert.com/difference-machine-learning-deep-learning/

Conclusion?

- Progress in recognition accuracy powered by better features
- Plethora hand-crafted features proposed and used, such as HOG, SIFT, LBP and etc...
- But what next? Come out more new features? Better classifiers?

Source: https://www.guru99.com/machine-learning-vs-deep-learning.html

prumls/m2.3/v1.0

Learning the features

Better performance?

- Instead of we deciding the features, get algorithm to learn the most appropriate features by itself?
- Series of feature extractors?
- •All the way from pixels to classifier, layer by layer?
- Train all the layers together?

Source: https://www.guru99.com/machine-learning-vs-deep-learning.html

prumls/m2.3/v1.0

Deep in action

Part 1

Source: http://cs231n.stanford.edu

Deep in action

Part 2

Source: http://cs231n.stanford.edu

prumls/m2.3/v1.0

Learning the features

The idea behind convnet

Source: https://commons.wikimedia.org/wiki/File:Typical_cnn.png

From then on ...

ILSVRC 2012

Rank	Error - 5	Algorithm	Team
1	0.153	Deep convolutional neural network	University of Toronto
2	0.262	Features + Fisher vectors + linear classifiers	ISI
3	0.270	Features + Fisher vectors + SVM	Oxford VGG
4	0.271	Not specified	XRCE/INRIA
5	0.300	Dense SIFT + colour SIFT + Fisher vectors + SVM	University of Amsterdam

Source: http://www.image-net.org/challenges/LSVRC/2012/results.html

prumls/m2.3/v1.0

From then on ...

ILSVRC 2013

Rank	Error - 5	Algorithm	Team
1	0.117	Deep convolutional neural network	Clarifai
2	0.129	Deep convolutional neural network	NUS
3	0.135	Deep convolutional neural network	ZF
4	0.136	Deep convolutional neural network	Andrew Howard
5	0.142	Deep convolutional neural network	NYU

Source: http://www.image-net.org/challenges/LSVRC/2012/

results.html

The progress

So far

Comparison

Machine learning vs deep learning

	Machine learning	Deep learning
Data dependencies	Excellent performances on a small/medium dataset	Excellent performance on a big dataset
Hardware dependencies	Work on a low-end machine	Requires powerful machine
Feature engineering	Need to understand the features that represent the data	No need to understand the learned features
Execution time	From few minutes to hours	Up to weeks
Interpretability	Possible for some (logistic, decision tree); some not possible (SVM, XGBoost)	Difficult to impossible

Source: https://www.guru99.com/machine-learning-vs-deep-learning.html

Components in deep learning

The original

d	Α	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	P	Q
1																	
2			Inp	out					<u>K</u>	ern	<u>el</u>				Out	put	
3																	
4		1	3	2	1				1	2	3						
5		1	3	3	1				0	1	0				23	22	
6		2	1	1	3				2	1	2				31	26	
7		3	2	3	3												
8																	

Source: https://medium.com/apache-mxnet/convolutions-explained-with-ms-excel-465d6649831c

The padded

Source: https://medium.com/apache-mxnet/convolutions-explained-with-ms-excel-465d6649831c

Determine the output size

$$M_c = \left[\frac{W_c + P_c - F_c}{S_c} \right] + 1$$

prumls/m2.3/v1.0

- •M_r, M_c: Output size in rows and columns respectively
- •W_r, W_c: Input size in rows and columns respectively
- •F_r, F_c: Filter size in rows and columns respectively
- P_r, P_c: Amount of zero-padding in rows and columns respectively
- S_r, S_c: Stride in in rows and columns respectively

Example

Calculate the output size

$$M_c = \left[\frac{W_c + P_c - F_c}{S_c} \right] + 1$$

- Assume we have an input of size
 128 x 128 (row x column) going
 into a 2D convolution layer
- •The filter / kernel size for the layer is 7 x 7, and the stride is 2 x 2, no padding is applied, calculate the output size of the 2D convolution

$$M_r = M_c = \left[\frac{128 + 0 - 7}{2}\right] + 1$$
$$= \left[\frac{121}{2}\right] + 1$$
$$= 61$$

Multi-channel

Source: https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1

Multi-channel

Source: https://medium.com/apache-mxnet/convolutions-explained-with-ms-excel-465d6649831c

Max pooling

The original

Single depth slice

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

Source: http://cs231n.github.io/convolutional-networks/

prumls/m2.3/v1.0

Max pooling

With situation

1	4	4	5	6
3	9	2	3	2
8	1	6	0	7
0	3	2	1	1

Source: https://software.intel.com/en-us/daal-programming-guide-2d-max-pooling-forward-layer

Maxpooling

Determine the output size

 $M_c = \left| \frac{W_c - F_c}{S_c} \right| + 1$

- •W_r, W_c: Input size in rows and columns respectively
- •F_r, F_c: Filter size in rows and columns respectively
- S_r, S_c: Stride in rows and columns respectively

column

Maxpooling

Determine the output size

$$M_c = \left\lfloor \frac{W_c - F_c}{S_c} \right\rfloor + 1$$

- Assume we have an input of size
 61 x 61 (row x column) going into a
 2D pooling layer
- •The kernel size for the layer is 4 x 4, and the stride is 2 x 2, calculate the output size of the 2D pooling layer

$$M_r = M_c = \left\lfloor \frac{61 - 4}{2} \right\rfloor + 1$$
$$= \left\lfloor \frac{57}{2} \right\rfloor + 1$$
$$= \lfloor 28.5 \rfloor + 1 = 29$$

Time for exercise!

Convolutional neural network

Overview (output of each layer)

Flatten /

The making of ...

The first convolutional layer (part 1)

 Performs 3 separate 2D convolutions (with padding) to generate 3 intermediate outputs

The making of ...

The first convolutional layer (part 2)

 Add bias to each convolution output, and apply activation function to get the final output for the convolutional layer

The making of

The pooling layer

 Apply 2 x 2 max-pooling (stride 2) on the outputs from the first convolutional layer

The making of ...

The second convolutional layer (part 1)

 Performs 6 separate multi-channel
 2D convolutions (with padding) to generate 6 convolution outputs

prumls/m2.3/v1.0

The making of ...

The second convolutional layer (part 2)

 Performs 6 separate multi-channel
 2D convolutions (with padding) to generate 6 convolution outputs

The making of ...

The first convolutional layer (part 3)

 Add bias to each intermediate output, and apply activation function to get the final output for the convolutional layer

Overview (output of each layer)

Flatten /

Calculating parameters

For the first convolutional layer

Number of parameters:

$$(3 \times 3) \times 3 + 3 = 30$$

Calculating parameters

For the second convolutional layer

Number of parameters:

$$(3 \times 3) \times 3 \times 6 + 6 = 6 \times [(3 \times 3) \times 3 + 1] = 168$$

Calculate the parameters

- •Assume the size of an input to a layer is (I_r , I_c , C_i) and a filter kernel size of (F_r , F_c)
- •Thus to produce **1** feature map involves C_i number of (F_r , F_c) filters. The number of trainable parameters in this case is: $C_i \times (F_r \times F_c) + 1$
- To produce D number of feature maps, it involves $C_i \times D$ number of (F_r, F_c) filters, the number of trainable parameters is

$$p_{tr} = \left[C_i \times \left(F_r \times F_c \right) + 1 \right] \times D$$

Number of parameters:

$$(3 \times 3) \times 3 \times 6 + 6 = 6 \times [(3 \times 3) \times 3 + 1] = 168$$

Number of Parameters involved

Flatten /

Parameters

Determine the number of parameters

the number of channels in input for column in output
$$p_{tr} = \begin{bmatrix} C_i \times (F_r \times F_c) + 1 \end{bmatrix} \times D$$
 filter size for row

prumls/m2.3/v1.0

- Assume we have an input of size 128 x 128 x 3 (row x column x channel) going into a 2D pooling layer
- •The kernel size for the layer is 7 x 7, the stride is 2 x 2, and the number of channels in the output of this layer is 18

$$p_{tr} = [3 \times (7 \times 7) + 1] \times 18$$

= $[147 + 1] \times 18$
= 2664

Another exercise!

Calculate the necessary

•Assume the size of an input to a layer is (32, 32, 3)

No padding for all convolutions

Layer	Туре	Kernel	Stride	No. of feature maps / neurons	Input size	Output size	No. of parameters
1	Conv	(3,3)	(1,1)	16	(32,32,3)		
2	Pool	(2,2)	(2,2)	16			
3	Conv	(5,5)	(1,1)	32			
4	Pool	(2,2)	(2,2)	32			
5	Conv	(3,3)	(1,1)	64			
6	Dense	_	_	128			
7	Dense	_	_	2		2	

Determine the filter size

- You manage to see the details of a net in the below format
- •The number of parameters and the layers' size are given, but not the filter size
- Assume the filter is a square, what is the filter size that produces the feature maps in second layer?

Layer (type)	Output Shape	Param #			
<pre>input_1 (InputLayer)</pre>	(None, 32, 32, 3)	0			
conv2d (Conv2D)	(None, 32, 32, 32)	896			

Backpropagation

Flatten /

55 of 81 prumIs/m2.3/v1.0 © 2020 National University of Singapore. All Rights Reserved.

Backpropagation

For maxpooling

Single depth slice

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

Source: http://cs231n.github.io/convolutional-networks/

prumls/m2.3/v1.0

Time for coding

Before we start ...

Dataset

Source: https://appliedmachinelearning.blog/2018/03/24/

with-keras-convolutional-neural-networks/

 Cifar 10: Cifar stands for Canadian Institute For Advanced Research

60,000 32 x 32 colour images in 10 distinct classes

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Trucks

Each class has 6,000 images

achieving-90-accuracy-in-object-recognition-task-on-cifar-10-dataset-

Before we start ...

Dataset

- Dataset collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton
- Advantages: small image size yet large samples, good for quick idea testing
- One of the most widely used datasets for machine learning research
- Not easy to get good and comparable alternative (dataset)

Source: https://appliedmachinelearning.blog/2018/03/24/ achieving-90-accuracy-in-object-recognition-task-on-cifar-10-datasetwith-keras-convolutional-neural-networks/

prumls/m2.3/v1.0

Keras

Or Tensorflow?

- Tensorflow is powerful, but a pain to learn
- Keras is simpler, but not as powerful/flexible as Tensorflow
- However, since Tensorflow r1.13,
 Keras has become officially the preferred higher level API to build deep learning model
- In Tensorflow 2.0, Keras-way is the default way to build deep learning model in Tensorflow
- Thus in this course, we use Tensorflow but build model in Keras way!

The main layout for the code

- 1.Import libraries
- 2. Matplotlib setup
- 3. Data preparation
- 4. Define model
- 5. Train model
- 6.Test model

1. Import libraries, part 1

- numpy for matrix manipulation
- sklearn for measuring performance
- matplotlib to show image and plot result;

- > import numpy as np
- > import sklearn.metrics as metrics
- > import matplotlib.pyplot as plt

1. Import libraries, part 2

- Import all the Keras functions that we are going to use in this problem
- Most of the key components to build a deep learning model fall under tensorflow keras layers

- > from tensorflow.keras.callbacks import ModelCheckpoint,CSVLogger
- > from tensorflow.keras.models import Sequential
- > from tensorflow.keras.layers import Dense
- > from tensorflow.keras.layers import Dropout
- > from tensorflow.keras.layers import Flatten
- > from tensorflow.keras.layers import Conv2D
- > from tensorflow.keras.layers import MaxPooling2D
- > from tensorflow.keras.utils import to_categorical
- > from tensorflow.keras.datasets import cifar10
- > from tensorflow.keras import optimizers

2. Matplotlib setup

- Use 'ggplot' style to plot our training and testing result
- The setup uses 'ggplot' style for plot
- Also, for y axis, the labels and ticks put on right rather than left

```
> plt.style.use('ggplot')
> plt.rcParams['ytick.right'] = True
> plt.rcParams['ytick.labelright']= True
> plt.rcParams['ytick.left'] = False
> plt.rcParams['ytick.labelleft'] = False
> plt.rcParams['font.family'] = 'Arial'
```

3. Data preparation, part 1

- Use Keras in-built cifar10 module to load data
- •If cifar10.load_data() is never run before, it will download data from the internet

3. Data preparation, part 1

- •The shape of trDat is (50000, 32, 32, 3)
- •The shape of tsDat is (10000, 32, 32, 3)
- For deep learning training and testing, the data must be in the form of (sample, row, clm, channel)

Name A	Type	Size	Value
channel	int	1	3
data	tuple	2	((Numpy array, Numpy array), (Numpy array, Numpy array))
imgclms	int	1	32
imgrows	int	1	32
trDat	float32	(50000, 32, 32, 3)	[[[[0.23137255 0.24313726 0.24705882] [0.16862746 0.18039216 0.1764
trLbl	uint8	(50000, 1)	[[6] [9]
tsDat	float32	(10000, 32, 32, 3)	[[[[0.61960787 0.4392157 0.19215687] [0.62352943 0.43529412 0.1843
tsLbl	int64	(10000, 1)	[[3]

prumls/m2.3/v1.0

3. Data preparation, part 1

- (sample, row, clm, channel) is a 'channel last' channel ordering format
- Some frameworks prefer 'channel first' format, which is (sample, channel, row, clm)
- Why? Also, why put sample in the first dimension?

3. Data preparation, part 2

- One-hot encode the train and test label information;
- to_categorical is imported from tensorflow.keras.utils in the beginning

```
> trLbl = to_categorical(trLbl)
> tsLbl = to_categorical(tsLbl)
> num_classes = tsLbl.shape[1]
```


Source: https://arxiv.org/pdf/1812.01718.pdf

3. Data preparation, part 2

One-hot encoding

Before

0
6
9
9
4
1
1
2
7

After

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	1	0	0	0
1	0	0	0	0	0	0	0	0	0	1
2	0	0	0	0	0	0	0	0	0	1
3	0	0	0	0	1	0	0	0	0	0
4	0	1	0	0	0	0	0	0	0	0
5	0	1	0	0	0	0	0	0	0	0
6	0	0	1	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	1	0	0

4. Define model, part 1

- Set up random seed
- Set up optimizer. Use RMSprop, Ir stands for learning rate
- Give this model a name for later model saving and files saving usage

$$>$$
 seed $=$ 29

- > optmz = optimizers.RMSprop(lr=0.0001)
- > modelname = 'wks2_3a'

$$E_{dw} = 0$$
 Initialization

$$E_{dw} = \beta \cdot E_{dw} + (1 - \beta) \cdot dw^2$$

$$w = w - \alpha \cdot \frac{dw}{\sqrt{E_{dw}} + \epsilon}$$

$$b = b - \alpha \cdot \frac{db}{\sqrt{E_{db}} + \epsilon}$$

Source: https://towardsdatascience.com/understanding-rmsprop-faster-neural-network-learning-62e116fcf29a

4. Define model, part 2

prumls/m2.3/v1.0

4. Define model, part 2

```
input:
                                                                 (None, 4, 4, 64)
                                                       Flatten
> def createModel():
                                                                  (None, 1024)
                                                            output:
               = Sequential()
      model
      model.add(Conv2D(32,(3,3),
                                                                 (None, 1024)
                                                            input:
                                                        Dense
                  input shape=(imgrows,
                                                                  (None, 256)
                                imaclms,
                                channel),
                                                             input:
                                                                  (None, 256)
                                                        Dense
                  padding='same',
                                                                  (None, 10)
                  activation='relu'))
      model.add(MaxPooling2D(pool_size=(2,2)))
      model.add(Conv2D(48,(3,3),padding='same',activation='relu'))
      model.add(MaxPooling2D(pool_size=(2,2)))
      model.add(Conv2D(64,(3,3),padding='same',activation='relu'))
      model.add(MaxPooling2D(pool_size=(2,2)))
      model.add(Flatten())
      model.add(Dense(256,activation='relu'))
      model.add(Dense(num_classes,activation='softmax'))
      model.compile(loss='categorical_crossentropy',
                      optimizer=optmz,
                      metrics=['accuracy'])
       return model
```


4. Define model, part 2

'model' for training; 'modelGo' for final evaluation

> model.summary()

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	32, 32, 32)	896
max_pooling2d (MaxPooling2D)	(None,	16, 16, 32)	0
conv2d_1 (Conv2D)	(None,	16, 16, 48)	13872
max_pooling2d_1 (MaxPooling2	(None,	8, 8, 48)	0
conv2d_2 (Conv2D)	(None,	8, 8, 64)	27712
max_pooling2d_2 (MaxPooling2	(None,	4, 4, 64)	0
flatten (Flatten)	(None,	1024)	0
dense (Dense)	(None,	256)	262400
dense_1 (Dense)	(None,	10)	2570

prumls/m2.3/v1.0

Total params: 307,450
Trainable params: 307,450
Non-trainable params: 0

4. Define model, part 3

- Create checkpoints to save model during training and save training data into csv
- 'monitor' can be 'val_acc' or 'val_loss'
- When set to 'val_acc', 'mode' must be 'max'; when set to 'val_loss', 'mode' must be 'min'

5. Train model

Training is only a single line

prumls/m2.3/v1.0

6. Test model, part 1

 Use a new object to load the weights and re-compile again

6. Test model, part 2

• Test the model, calculate the accuracy and confusion matrix

```
= modelGo.predict(tsDat)
> predicts
              = np.argmax(predicts,axis=1)
> predout
              = np.argmax(tsLbl,axis=1)
> testout
              = ['airplane',
> labelname
                  'automobile',
                  'bird',
                 'cat',
                 'deer',
                 'dog',
                 'frog',
                 'horse',
                  'ship',
                  'truck']
> testScores = metrics.accuracy_score(testout,predout)
              = metrics.confusion_matrix(testout,predout)
> confusion
```

cifar 10

6. Test model, part 3

• Test the model, calculate the accuracy and confusion matrix

```
> print("Best accuracy (on testing dataset): %.2f%%" % (testScores*100))
```

- > print(metrics.classification_report(testout,predout,target_names=labelname,digits=4))
- > print(confusion)

Best accurac	y (on testing	, dataset): 73.16%		[[73	8 1	18 3	5 18	40	4	10	11	52	73]
	precision	recall	f1-score	support	[7 77	71	7 10	1	2	11	2	18	171]
					[6	0	6 59	5 75	108	44	51	35	9	17]
airplane	0.8013	0.7380	0.7683	1000	[1	7 1	1 4	9 610	81	103	53	33	11	32]
automobile	0.8653	0.7710	0.8154	1000	[1	1	2 4	9 43	764	23	37	56	7	8]
bird	0.6959	0.5950	0.6415	1000	[1	3	2 4	5 224	63	562	26	48	4	12]
cat	0.5365	0.6100	0.5709	1000	[7	4 3	2 79	46	24	788	5	3	12]
deer	0.6491	0.7640	0.7019	1000	[7	7 2	2 43	61	31	10	793	2	24]
dog	0.7007	0.5620	0.6238	1000	[4	4 3	34 1	3 24	11	6	8	3	799	58]
frog	0.7888	0.7880	0.7884	1000	[1	7 3	36	5 11	2	3	5	12	12	896]]
horse	0.7946	0.7930	0.7938	1000										
ship	0.8713	0.7990	0.8336	1000										
truck	0.6876	0.8960	0.7781	1000										
avg / total	0.7391	0.7316	0.7316	10000										

6. Test model, part 4

Accuracy -0.8 -0.7 -0.6 -0.5

Plot the result

```
> import pandas as pd
              = pd.read_csv(modelname +'.csv')
> records
> plt.figure()
> plt.subplot(211)
> plt.plot(records['val_loss'])
> plt.yticks([0.00,0.60,0.70,0.80])
> plt.title('Loss value',fontsize=12)
              = plt.gca()
> ax
> ax.set_xticklabels([])
> plt.subplot(212)
> plt.plot(records['val_acc'])
> plt.yticks([0.5,0.6,0.7,0.8])
> plt.title('Accuracy',fontsize=12)
> plt.show()
```