劣モジュラ最適化

2023年2月4日

目次

第1章	基礎	2
1.1	劣モジュラ関数の定義と具体例	 2
第2章	劣モジュラ最適化	4

第1章

基礎

1.1 劣モジュラ関数の定義と具体例

定義 1.1.1(劣モジュラ関数 その1) n 個の要素からなる有限集合 $V=\{1,\ldots,n\}$ と、 V を台集合とする集合関数 $f:2^V\to\mathbb{R}$ を考える。V の任意の部分集合 $S,T\subset V$ について次の不等式が成立するとき、 f を劣モジュラ関数と呼ぶ。

$$f(S) + f(T) \ge f(S \cup T) + f(S \cap T) \tag{1.1}$$

定義 1.1.2(劣モジュラ関数 その 2) f と V は先ほどと同じものとする。 $S \subset T$ を満たす V の任意の部分集合 $S,T \subset V$ と T に含まれない任意の要素 $i \in V-T$ について次の不等式が成立するとき、 f を劣モジュラ関数と呼ぶ。

$$f(S \cup \{i\}) - f(S) \ge f(T \cup \{i\}) + f(T)$$
 (1.2)

1.2 を限界効用逓減と言う。

命題 1.1.3(二つの定義の等価性) 劣モジュラ関数の二つの定義 1.1.1 と 1.1.2 は等価である。

(証明) $1.1 \implies 1.2$ について。 $S \subset T, i \in V - T$ とする。

$$f(S \cup \{i\}) + f(T) \ge f((S \cup \{i\}) \cup T) + f((S \cup \{i\}) \cap T)$$

$$\implies f(S \cup \{i\}) + f(T) \ge f(T \cup \{i\}) + f(S)$$

$$\implies f(S \cup \{i\}) - f(S) \ge f(T \cup \{i\}) - f(T)$$

 $1.2 \implies 1.1$ について。S,T を V の任意の部分集合とする。 $S \subset T$ の場合、1.1 は自明である。 $S \not\subset T$ の場合を考える。 $\{i_1,\ldots,i_m\} = S - T$ とする。集合の増加列を考え

る: $S_j, T_j (j = 0, \ldots, m)$ 。

$$S_0 = S \cap T, S_j = S_{j-1} \cup \{i_j\}$$
$$T_0 = T, T_j = T_{j-1} \cup \{i_j\}$$

上の式の j は $j=1,\ldots,m$ とする。 $S_m=S,T_m=S\cup T$ が成立する。 また、 1.2 より、 $f(S_j)-f(S_{j-1})\geq f(T_j)-f(T_{j-1})(j=1,\ldots,m)$ が成立する。 この式を足し合わせる ことで証明できる。

$$f(S_m) - f(S_0) \ge f(T_m) - f(T_0)$$

$$\implies f(S) - f(S \cap T) \ge f(S \cup T) - f(T)$$

$$\implies f(S) + f(T) \ge f(S \cup T) + f(S \cap T)$$

例 1.1.4(カバー関数)

例 1.1.5(グラフのカット関数)

例 1.1.6 (凹関数が生成する関数)

第2章

劣モジュラ最適化