IEEE802.11a

• OFDM

• IEEE802.11a

Review

- IEEE 802.11 Architecture
- Protocol Structure
- PHY Layer
- MAC Layer

Physical Layers in IEEE 802.11a andb

- IEEE 802.11a
 - Makes use of 5-GHz band
 - Provides rates of 6, 9, 12, 18, 24, 36, 48, 54 Mbps
 - Uses orthogonal frequency division multiplexing (OFDM)
 - Subcarrier modulated using BPSK, QPSK, 16-QAM or 64-QAM
- IEEE 802.11b
 - Provides data rates of 5.5 and 11 Mbps
 - Complementary code keying (CCK) modulation scheme based on DSSS.

OFDM(1)

- FDM problems
 - spectrally inefficient.
 - large no. of modulators & demodulators required.
- In OFDM
 - spectral inefficiency overcome? use "orthogonal carriers".
 - Second problem overcome? use IFFT/FFT.
- Orthogonality of carriers
 - satisfy

$$f_k = f_0 + \frac{k}{T_c}, k = 1, 2, ..., N - 1$$

- time domain
 - » integer no. of cycles of each carrier in "Ts".

Normal FDM required 'guard bands' to separate the channels

OFDM uses partially orthogonal carriers, allowing some overlap

OFDM (2)

• Multi-carrier modulation scheme

OFDM (3)

Parallel Data Streams

signal

- Data Encoding is based on multi-level **Modulation**
- Multiple Carriers are combined through the Fourier Series
 - **Computed by Inverse Fast Fourier transform**

4-QAM modulation

OFDM (4)

Prism – IFFT/FFT

OFDM Transmitter

Bits per OFDM symbol = $(IFFT_Size/2) * log_2(M)$

Channel Coding

Figure 114-Convolutional encoder (k = 7)

Interleaving

Modulation Schemes Used

- QPSK (4-QAM)
- 16-QAM
- 64-QAM

ECS702 11

N/2 to N Mapper and IFFT

 $X_{n-k}^* = X_k \text{ where } k : 1,... n/2$

Adding cyclic prefix

$$x(n) * h(n) = X(k)H(k)$$

OFDM Receiver

ECS702 14

Why OFDM?

- Reduces ISI and effects of frequency selective fading, eliminating the need for equalization
 - Time domain: lengthened symbol period is larger than the channel time dispersion.
 - Frequency domain: each subchannel has sufficiently small width and can be considered ideal (i.e. flat).
 - To completely remove ISI and ICI, it's necessary to add a cyclic prefix, which causes negligible rate loss.
- Spectrally efficient
- Less sensitive to sample timing offsets than single carrier systems

Physical Layer Specification (in IEEE 802.11a)

16

PLCP (PHY Convergence) Sublayer

IEEE 802.11a PLCP

Table 77—RXVECTOR parameters

Parameter	Associate primitive	Value
LENGTH	PHY-RXSTART.indicate	1-4095
RSSI	PHY-RXSTART.indicate (RXVECTOR)	0–RSSI maximum
DATARATE	PHY-RXSTART.request (RXVECTOR)	6, 9, 12, 18, 24, 36, 48, and 54
SERVICE	PHY-RXSTART.request (RXVECTOR)	Null

IEEE 802.11a PLCP frame format

PLCP Preamble

1. preamble field contains

- 10 short training sequence
 - » used for AGC convergence, diversity selection, timing acquisition, and coarse frequency acquisition in the receiver
- 2 long training sequence
 - » used for channel estimation and fine frequency acquisition in the receiver
- and a guard interval (GI)

ECS702 20

PLCP Rate/Length

Data Rates (determined from TXVECTOR)

- 1101 : 6Mbps (M)

- 1111 : 9Mbps

- 0101 : 12Mbps (M)

- **0111** : 18Mbps

- 1001 : 24Mbps (M)

- 1011 : 36Mbps

- 0001:48Mbps

- 0011:54Mbps

Rate-dependent Parameters

Table 78—Rate-dependent parameters

Data rate (Mbits/s)	Modulation	Coding rate (R)	Coded bits per subcarrier (N _{BPSC})	Coded bits per OFDM symbol (N _{CBPS})	Data bits per OFDM symbol (N _{DBPS})
6	BPSK	1/2	1	48	24
9	BPSK	3/4	1	48	36
12	QPSK	1/2	2	96	48
18	QPSK	3/4	2	96	72
24	16-QAM	1/2	4	192	96
36	16-QAM	3/4	4	192	144
48	64-QAM	2/3	6	288	192
54	64-QAM	3/4	6	288	216

(for SIGNAL field)

PLCP Tail Subfield

- 6 'zero' bit
- to make the length of SIGNAL field to be 24 bits (for the N_{DBPS}=24 in 6Mbps mode)
- to facilitate a reliable and timely detection of the RATE and LENGTH fields

ECS702 23

PLCP Service

For synchronization

Transmit Order

PLCP PSDU tail

- Append 6 non-scrambled <u>tail bits</u> for PSDU to return the convolutional code to the "zero state"
- Add <u>pad bits</u> (with "zero" and at least 6 bits) such that the length of DATA field is a multiple of N_{DBPS}

ECS702 25

PLCP DATA encoding

- 1. <u>encode</u> data string with convolutional encoder (include punctured coding)
- 2. <u>divide</u> encoded bit string into groups of N_{CBPS} bits
- 3. within each group, perform data interleaving
- 4. For each of the groups, <u>convert</u> bit string group into a complex number according to the modulation tables (see next page)
- 5. divide the complex number string into groups of 48 complex numbers, each such group will be associated with one OFDM symbol
 - map to subcarriers -26~-22, -20~-8, -6~-1, 1~6, 8~20, 22~26
 - 4 sucarriers –21, -7, 7, 21 are used for pilot
 - subcarrier 0 is useless
- 6. convert subcarriers to time domain using inverse Fast Fourier transform (IFFT)
- append OFDM symbols after SINGNAL and un-convert to RF freq.

Modulation Tables

Table 82-BPSK encoding table

Input bit (b ₀)	I-out	Q-out
0	-1	0
1	1	0

Table 83-QPSK encoding table

Input bit (b ₀)	I-out	
0	-1	
1	1	

Input bit (b ₁)	Q-out
0	-1
1	1

Table 84-16-QAM encoding table

Input bits $(b_0 \ b_1)$	I-out
00	-3
01	-1
11	1
10	3

Input bits (b ₂ b ₃)	Q-out
00	-3
01	-1
11	1
10	3

Table 85-64-QAM encoding table

Input bits (b ₀ b ₁ b ₂)	I-out
000	-7
001	-5
011	-3
010	-1
110	1
111	3
101	5
100	7

Input bits (b ₃ b ₄ b ₅)	Q-out
000	-7
001	-5
011	-3
010	-1
110	1
111	3
101	5
100	7

Convolutional Encoder

- use the industry-standard generator polynomials,
 - $g0 = 133_8$ and $g1 = 171_8$, of rate R = 1/2,

Figure 114—Convolutional encoder (k = 7)

Channelization

- 8 independent channels in 5.15GHz-5.35GHz
- 4 independent channels in 5.725-5.825GHz

Lower and Middle U-NII Bands: 8 Carriers in 200 MHz / 20 MHz Spacing

Upper U-NII Bands: 4 Carriers in 100 MHz / 20 MHz Spacing

Class Quiz

- What are the two main features of OFDM?
- How is the channel impairments dealt with in OFDM?
- What data rates can be achieved in IEEE802.11a?