Positivity of Hadamard Powers of Random Matrices

Tiefeng Jiang and Ping Li

Abstract—The paper studies

Keywords: Hadamard matrix function, Hadamard power, non-negative definite matrix, positive definite matrix, random matrix.

MSC(2010): Primary .

I. INTRODUCTION

Random matrices

II. MAIN RESULTS AND DISCUSSIONS

Let f(x) be a real-valued function defined on \mathbb{R} . Let $\mathbf{A} = (a_{ij})$ be an $n \times n$ matrix, where a_{ij} 's are real numbers. Define $f: \mathbf{A} \to f(\mathbf{A}) = (f(a_{ij}))$. We call $f(\mathbf{A})$ a Hadamard functions to distinguish it from the usual notion of matrix functions. In particular, if $\alpha > 0$ and $f(x) = x^{\alpha}$, then we call $\mathbf{A}^{(\alpha)} := f(\mathbf{A})$ the Hadamard power of α . Here we need to pay attention to the domain of the function $f(x) = x^{\alpha}$. If $\alpha > 0$ is an integer, the function is defined for every $x \in \mathbb{R}$. If $\alpha > 0$ is not an integer, the function $f(x) = x^{\alpha}$ is defined only on $[0,\infty)$. By the Schur product theorem, it is known that $\mathbf{A}^{(\alpha)}$ is a positive definite matrix if $\mathbf{A} = (a_{ij})$ is a positive definite matrix and $\alpha = 1, 2, \cdots$; see, for example, Theorem 5.2.1 from Horn and Johnson (1991). In fact, we know more about this conclusion. For positive definite matrices $\mathbf{U} = (u_{ij})_{n \times n}$ and $\mathbf{V} = (v_{ij})_{n \times n}$, set $\mathbf{U} \circ \mathbf{V} = (u_{ij}v_{ij})_{n \times n}$. Then $\lambda_{min}(\mathbf{U}) \cdot \min_{1 \leq i \leq n} v_{ii} \leq \lambda_i(\mathbf{U} \circ \mathbf{V}) \leq$ $\lambda_{max}(\mathbf{U}) \cdot \max_{1 \leq i \leq n} v_{ii}$ for each $1 \leq i \leq n$; see, for example, Schur (1911) or Theorem 5.3.4 from Horn and Johnson (1991). If α is a positive integer, then $\mathbf{A}^{(\alpha)} = \mathbf{A} \circ \cdots \circ \mathbf{A}$ from which there are α many **A** in the product. Thus, $\lambda_{min}(\mathbf{A}) > 0$ by induction if A is positive definite.

A. Some Known Results

Let $a \in (0, \infty]$ and $f(x) : (0, a) \to \mathbb{R}$. We say f(x) is absolutely monotonic on (0, a) if $f^{(k)}(x) \ge 0$ for every $x \in (0, \alpha)$ and $k = 0, 1, 2, \cdots$. The following general conclusion can be seen from, for example, Schoenberg (1942), Vasudeva (1979) and Hiai (2009).

THEOREM 2.1: Assume $a \in (0, \infty]$ and f(x) is a real function defined on (-a, a). Then $f(\mathbf{A})$ is non-negative definite for every non-negative definite matrix \mathbf{A} with entries in (-a, a) if and only if f(x) is analytic and absolutely monotonic on (0, a).

THEOREM 2.2: (Theorem 6.3.7 from Horn and Johnson, 1991) Let $f(\cdot)$ be an (n-1)-times continuously differentiable real valued function on $(0,\infty)$, and suppose that the Hadamard function $f(\mathbf{A}) = (f(a_{ij}))$ is non-negative definite for every nonnegative definite matrix \mathbf{A} that has positive entries. Then $f^{(k)}(t) \geq 0$ for all $t \in (0,\infty)$ and all $k = 0, 1, \dots, n-1$.

COROLLARY 2.1: (Corollary 6.3.8 from Horn and Johnson, 1991) Let $0 < \alpha < n-2$, α not an integer. There is some $n \times n$ non-negative definite matrix **A** with positive entries such that the Hadamard power $\mathbf{A}^{(\alpha)} = (a_{ij}^{\alpha})$ is not non-negative definite.

THEOREM 2.3: (Theorem 6.3.9 from Horn and Johnson, 1991) Let $\mathbf{A}=(a_{ij})$ be a non-negative definite matrix with nonnegative entries. If $\alpha \geq n-2$, then the Hadamard power $\mathbf{A}^{(\alpha)}$ is non-negative definite. Furthermore, the lower bound n=2 is, in general, the best possible.

B. New Results

To make statement of our results clearer, we will use the following notation. For a matrix M, we write M > 0 if M is positive definite; $M \ge 0$ if M is nonnegative definite; $M \not\ge 0$ if M is not nonnegative definite.

EXAMPLE 2.1: Consider 3×3 matrix

$$\mathbf{M} = \begin{pmatrix} 1 & \frac{1}{2} & 0\\ \frac{1}{2} & 1 & \frac{1}{2}\\ 0 & \frac{1}{2} & 1 \end{pmatrix}.$$

Its Hadamard power of α is given by

$$\mathbf{M}^{(\alpha)} = \begin{pmatrix} 1 & \frac{1}{2^{\alpha}} & 0\\ \frac{1}{2^{\alpha}} & 1 & \frac{1}{2^{\alpha}}\\ 0 & \frac{1}{2^{\alpha}} & 1 \end{pmatrix}.$$

Then

$$\det(\mathbf{M}^{(\alpha)}) = 1 - \frac{2}{4^{\alpha}}.$$

Therefore, $\mathbf{M}=\mathbf{M}^{(1)}>0$. However, $\mathbf{M}^{(\alpha)}\not\geqslant 0$ if $\alpha\in(0,\frac{1}{2}).$

For any $n \geq 3$, define $\mathbf{M}_n = \mathbf{M}$ for n = 3 and

$$\mathbf{M}_n = \begin{pmatrix} \mathbf{M} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{n-3} \end{pmatrix}, \quad n \ge 4.$$

Then, the matrix \mathbf{M}_n is positive definite as $n \geq 3$. However, the Hadamard power matrix $\mathbf{M}_n^{(\alpha)} \not\geqslant 0$ as $\alpha \in (0, \frac{1}{2})$.

EXAMPLE 2.2: Consider 4×4 matrix $\mathbf{M} = \mathbf{a}\mathbf{a}' + \mathbf{b}\mathbf{b}' + 10^{-4}\mathbf{I}_4$, where $\mathbf{a}^T = (1,1,1,1)$ and $\mathbf{b}^T = (0,1,2,3)$. The term $10^{-4}\mathbf{I}_4$ purely ensures the positivity of \mathbf{M} . The matrix $\mathbf{a}\mathbf{a}' + \mathbf{b}\mathbf{b}'$ is of rank 2. Obviously, $\mathbf{M} > 0$. It is easy to check that

$$\det(\mathbf{M}^{1.1}) = -0.000118654.$$

Hence, $\mathbf{M}^{1.1} \not\geqslant 0$. Define $\mathbf{M}_n = \mathbf{M}$ for n = 4 and

$$\mathbf{M}_n = egin{pmatrix} \mathbf{M} & \mathbf{0} \ \mathbf{0} & \mathbf{I}_{n-4} \end{pmatrix}$$

for $n \geq 5$. Then, $\mathbf{M}_n > 0$ if $n \geq 4$. However, the Hadamard power matrix $\mathbf{M}_n^{1.1} \not\geq 0$.

THEOREM 2.4: Assume $n \geq 4$. Let $\mathbf{M} = (\xi_{ij})$ be an $n \times n$ symmetric matrix, where $\{\xi_{ij}; 1 \leq i \leq j \leq n\}$ are independent random variables. Suppose all of the supports of ξ_{ij} 's contain a common interval [u,v] for some v>u>0. Then there exists $\alpha\in(1,2)$ for which

$$P(\mathbf{M} \ge 0 \text{ and } \mathbf{M}^{(\alpha)} \not\geqslant 0) > 0.$$

THEOREM 2.5: Assume $n \geq 4$. Let $\mathbf{X} = (x_{ij})$ be an $n \times p$ matrix, where $\{x_{ij}; 1 \leq i \leq n, 1 \leq j \leq p\}$ are independent random variables. Suppose all of the supports of ξ_{ij} 's contain a common interval [u,v] for some v > u > 0. Then there exists $\alpha \in (1,2)$ such that

$$P(\mathbf{X}^T\mathbf{X} > 0 \text{ and } (\mathbf{X}^T\mathbf{X})^{(\alpha)} \not\geqslant 0) > 0.$$

THEOREM 2.6: Let $\mathbf{A}=(a_{ij})$ be an $n\times n$ matrix of which the entries are non-negative. Assume $a_{ii}\geq\sum_{j\neq i}a_{ij}$ for each $1\leq i\leq n$. Then $\mathbf{A}\geq 0$ and $\mathbf{A}^{(\alpha)}\geq 0$ for all $\alpha\geq 1$. The conclusion still holds if all three " \geq " are replaced by ">", respectively.

C. Proofs

LEMMA 2.1: For any $n \geq 4$, there exist $\alpha \in (1,2)$, $\delta > 0$ and $n \times n$ symmetric matrix $\mathbf{M} = (m_{ij})$ with $m_{ij} \geq 0$ for all $1 \leq i, j \leq n$ such that the following holds.

- (i) $\mathbf{M} = (m_{ij}) > 0$ for every $m_{ij} \in [a_{ij}, a_{ij} + \delta]$ and $1 \le i, j \le n$.
- (ii) $\mathbf{M}^{(\alpha)} = (m_{ij}^{\alpha}) \not\geqslant 0$ for any $m_{ij} \in [a_{ij}, a_{ij} + \delta]$ and any $1 \leq i, j \leq n$.

Proof of Lemma 2.1. For any $n \times n$ symmetric matrix $\mathbf{M} = (m_{ij})$, let $\|\mathbf{M}\|$ be the spectral norm of \mathbf{M} . We use $\lambda_1(\mathbf{M}) \geq \lambda_2(\mathbf{M}) \geq \cdots \geq \lambda_n(\mathbf{M})$ to denote the eigenvalues of \mathbf{M} . Evidently, $\|\mathbf{M}\| \leq$

 $(\sum_{1 \leq i,j \leq n} |m_{ij}|^2)^{1/2}$. Let $\mathbf{M}_1 = (m_{ij})$ and $\mathbf{M}_2 = (\tilde{m}_{ij})$ be $n \times n$ symmetric matrices. The Weyl's perturbation theorem [see, e.g., Horn and Johnson (1985)] says that $\max_{1 \leq i \leq n} |\lambda_i(\mathbf{M}_1) - \lambda_i(\mathbf{M}_2)| \leq \|\mathbf{M}_1 - \mathbf{M}_2\|$. Therefore,

$$\max_{1 \le i \le n} |\lambda_i(\mathbf{M}_1) - \lambda_i(\mathbf{M}_2)| \le \left(\sum_{1 \le i, j \le n} |m_{ij} - \tilde{m}_{ij}|^2\right)^{1/2}.(2.1)$$

This concludes that the eigenvalues of a matrix are continuous functions of its entries. This is particularly true for smallest eigenvalues.

According to Example 2.2, there exists $\alpha \in (1,2)$ and an $n \times n$ symmetric matrix $\mathbf{A} = (a_{ij})$ such that $a_{ij} \geq 0$ for all $1 \leq i, j \leq n$, $\mathbf{A} > 0$ and the Hadamard power matrix $\mathbf{A}^{(\alpha)} \not\geq 0$. For any $n \times n$ symmetric matrix $\mathbf{M} = (m_{ij})$, define

$$f(\mathbf{M}) := \min \{ \lambda_n(\mathbf{M}), -\lambda_n(\mathbf{M}^{(\alpha)}) \}.$$

As explained earlier, $f(\mathbf{M})$ is a continuous function in $\{m_{ij}; 1 \leq i \leq j \leq n\}$. Since $f(\mathbf{A}) > 0$, there exist $\{\delta_{ij} > 0; 1 \leq i, j \leq n\}$ with $\delta_{ij} = \delta_{ji}$ for all $1 \leq i, j \leq n$ such that $f(\mathbf{M}) > 0$ for any $m_{ij} \in [a_{ij}, a_{ij} + \delta_{ij}]$ with $1 \leq i, j \leq n$. Set $\delta = \min\{\delta_{ij}; 1 \leq i \leq j \leq n\}$. Then, $\delta > 0$. Also, $\lambda_n(\mathbf{M}) > 0$ and $\lambda_n(\mathbf{M}^{(\alpha)}) < 0$ for every $m_{ij} \in [a_{ij}, a_{ij} + \delta]$ and every $1 \leq i, j \leq n$. That is, $\mathbf{M} > 0$ and $\mathbf{M}^{(\alpha)} \ngeq 0$ for any $m_{ij} \in [a_{ij}, a_{ij} + \delta]$ and any $1 \leq i, j \leq n$.

LEMMA 2.2: Let $\mathbf{X} = (x_{ij})_{n \times p}$ be an $n \times p$ matrix. For any n and p with $n \geq p \geq 4$, there exist $\alpha \in (1,2)$, $\delta > 0$ and $n \times p$ matrix $\mathbf{A} = (a_{ij})$ with $a_{ij} \geq 0$ for all $1 \leq i \leq n$ and $1 \leq j \leq q$ such that the following holds.

- (i) The matrix $\mathbf{X}'\mathbf{X}$ is positive definite for every $x_{ij} \in [a_{ij}, a_{ij} + \delta]$ and $1 \le i \le n$ and $1 \le j \le p$.
- (ii) The Hadamard power $(\mathbf{X}'\mathbf{X})^{(\alpha)} \not\geqslant 0$ for any $x_{ij} \in [a_{ij}, a_{ij} + \delta], 1 \leq i \leq n$ and $1 \leq j \leq p$.

Proof of Lemma 2.2. Let $\mathbf{a}^T = (1, 1, 1, 1)$ and $\mathbf{b}^T = (0, 1, 2, 3)$ be as in Example 2.2. It is checked that the Hadamard power $(\mathbf{a}\mathbf{a}^T + \mathbf{b}\mathbf{b}^T)^{(1.1)}$ has determinant -1.1856×10^{-4} . Set

$$\mathbf{A}(\epsilon) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & \epsilon & 0 \\ 0 & 0 & 0 & \epsilon \end{pmatrix}, \quad \epsilon > 0.$$

It is easy to see $\lim_{\epsilon \to 0^+} [\mathbf{A}(\epsilon)^T \mathbf{A}(\epsilon)]^{(1.1)} = (\mathbf{a}\mathbf{a}^T + \mathbf{b}\mathbf{b}^T)^{1.1}$ with the entrywise convergence. By continuity of determinants, there exists $\epsilon_0 > 0$ such that the determinant of $[\mathbf{A}(\epsilon_0)^T \mathbf{A}(\epsilon_0)]^{(1.1)}$ is negative. That is, $\mathbf{A}(\epsilon_0)^T \mathbf{A}(\epsilon_0) > 0$ but the Hadmard power

 $[\mathbf{A}(\epsilon_0)^T \mathbf{A}(\epsilon_0)]^{(1.1)} \not\geqslant 0$. Now we define an $n \times p$ matrix \mathbf{A} such that

$$\mathbf{A} = egin{pmatrix} \mathbf{A}(\epsilon_0) & \mathbf{0} \ \mathbf{0} & \mathbf{I}_{p-4} \ \mathbf{0} & \mathbf{0} \end{pmatrix}_{n imes p},$$

where the size of each submatrix $\mathbf{0}$ appeared in \mathbf{A} can be seen from those of $\mathbf{A}(\epsilon_0)$ and \mathbf{I}_{p-4} . In particular, the size of the " $\mathbf{0}$ " in the bottom-right of \mathbf{A} is $(n-p)\times(p-4)$. In case n=p, there is no third row of submatrices in \mathbf{A} ; in case p=4, there is no second row of submatrices of \mathbf{A} . Since

$$\mathbf{A}^T \mathbf{A} = \begin{pmatrix} \mathbf{A}(\epsilon_0)^T \mathbf{A}(\epsilon_0) & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{p-4} \end{pmatrix}.$$

Hence, $\mathbf{A}^T \mathbf{A} > 0$ but the Hadamard power $(\mathbf{A}^T \mathbf{A})^{(1.1)} \not\geqslant 0$.

The inequality (2.1) shows that the smallest eigenvalue $\lambda_n(\mathbf{M})$ of $\mathbf{M} = \mathbf{X}\mathbf{X}^T$ is a continuous function of the entries of \mathbf{M} , which in turn are the continuous functions of the entries of \mathbf{X} . Write $\mathbf{X} = (x_{ij})_{n \times p}$. Hence, $\lambda_n(\mathbf{M})$ is a continuous function of x_{ij} 's. Set

$$f(\mathbf{M}) := \min \{ \lambda_n(\mathbf{M}), -\lambda_n(\mathbf{M}^{(\alpha)}) \}.$$

Then $f(\mathbf{M})$ is a continuous function of x_{ij} 's and $f(\mathbf{A}\mathbf{A}^T) > 0$. Write $\mathbf{A} = (a_{ij})_{n \times p}$. Then there exist $\delta_{ij} > 0$ for all $1 \le i \le n$ and $1 \le j \le p$ such that $f(\mathbf{M}) > 0$ for all $x_{ij} \in [a_{ij}, a_{ij} + \delta_{ij}]$ with $1 \le i \le n$ and $1 \le j \le p$. Denote $\delta = \min\{\delta_{ij}; 1 \le i \le n, 1 \le j \le p\}$. Then $\delta > 0$ and $f(\mathbf{X}\mathbf{X}^T) > 0$ for all $x_{ij} \in [a_{ij}, a_{ij} + \delta]$ with $1 \le i \le n$ and $1 \le j \le p$. Hence, under these restrictions of x_{ij} 's, we have $\lambda_n(\mathbf{X}\mathbf{X}^T) > 0$ and $\lambda_n((\mathbf{X}\mathbf{X}^T)^{(\alpha)}) < 0$. This yields (i) and (ii).

Proof of Theorem 2.4. Review Lemma 2.1. Let $\delta > 0$ be as in the lemma. Since $[a_{ij} + \frac{1}{2}\delta, a_{ij} + \delta] \subset [a_{ij}, a_{ij} + \delta]$ for each pair of (i,j) with $1 \le i \le j \le n$. Then Lemma 2.1 still holds if we strengthen the conclusion by requiring that $a_{ij} > 0$ for all $1 \le i \le j \le n$. Therefore,

$$0 (2.2)$$

$$< \alpha := \min\{a_{ij}; 1 < i < j < n\}$$
 (2.3)

$$<\beta := \max\{a_{ij}; 1 \le i \le j \le n\} + \delta.$$
 (2.4)

For a random variable ξ , we use $\operatorname{support}(\xi)$ to denote its $\operatorname{support}$. In particular, $P(a \leq \xi \leq b) > 0$ provided $[a,b] \subset \operatorname{support}(\xi)$. Notice $\operatorname{support}(\lambda \xi_{ij}) = \lambda \cdot \operatorname{support}(\xi_{ij})$ for each i,j. Choose $\lambda > 0$ such that $\lambda[u,v] \supset [\alpha,\beta]$. It follows that

$$\bigcup_{1 \le i \le j \le n} [a_{ij}, a_{ij} + \delta] \subset [\alpha, \beta]$$
 (2.5)

$$\subset \bigcap_{1 \le i \le j \le n} \operatorname{support}(\lambda \xi_{ij}).$$
 (2.6)

Observe

$$\begin{split} &P\big(\mathbf{M}>0 \text{ and } \mathbf{M}^{(\alpha)}\not\geqslant 0\big)\\ &=P\big(\lambda\mathbf{M}>0 \text{ and } (\lambda\mathbf{M})^{(\alpha)}\not\geqslant 0\big). \end{split}$$

By Lemma 2.1 and independence, the last probability above is at least

$$P(\lambda \xi_{ij} \in [a_{ij}, a_{ij} + \delta] \text{ for each } 1 \le i \le j \le n)$$

$$= \prod_{1 \le i \le j \le n} P(\lambda \xi_{ij} \in [a_{ij}, a_{ij} + \delta])$$

$$> 0,$$

where the last inequality comes from (2.5). The proof is complete. \Box

Proof of Theorem 2.5. Recall Lemma 2.2. Let $\delta > 0$ be as in the lemma. By the same argument as in (2.2), without loss of generality, we assume $a_{ij} > 0$ for all $1 \le i \le n$ and $1 \le j \le p$. Therefore,

0
$$< \alpha := \min\{a_{ij}; 1 \le i \le n, 1 \le j \le p\}$$

 $< \beta := \max\{a_{ij}; 1 \le i \le n, 1 \le j \le p\} + \delta.$

By choosing $\lambda > 0$ such that $\lambda[u, v] \supset [\alpha, \beta]$, we then have

$$\bigcup [a_{ij}, a_{ij} + \delta] \subset [\alpha, \beta] \subset \bigcap \operatorname{support}(\lambda x_{ij}), (2.7)$$

where the union and the intersection are taken over $1 \le i \le n$ and $1 \le j \le p$. Let $\mathbf{X} = (x_{ij})$ be an $n \times p$ matrix. By setting $\mathbf{Y} = \lambda \mathbf{X}$, we have

$$P(\mathbf{X}^T\mathbf{X} > 0 \text{ and } (\mathbf{X}^T\mathbf{X})^{(\alpha)} \not\geqslant 0)$$

= $P(\mathbf{Y}^T\mathbf{Y} > 0 \text{ and } (\mathbf{Y}^T\mathbf{Y})^{(\alpha)} \not\geqslant 0).$

From Lemma 2.2, the above is at least

$$P(\lambda x_{ij} \in [a_{ij}, a_{ij} + \delta] \text{ for each } 1 \le i \le n \text{ and } 1 \le j \le p)$$

$$= \prod_{\substack{1 \le i \le n, 1 \le j \le p \\ 0}} P(\lambda x_{ij} \in [a_{ij}, a_{ij} + \delta])$$

where the last step follows from (2.7) and independence. The proof is completed.

Proof of Theorem 2.6. By the Gershgorin disc theorem [see e.g., Horn and Johnson (1985)], all eigenvalues of **A** are in the set

$$\bigcup_{1 \le i \le n} \left(a_{ii} - \sum_{j \ne i} a_{ij}, a_{ii} + \sum_{j \ne i} a_{ij} \right). \tag{2.8}$$

By assumption, all eigenvalues are non-negative, hence $A \ge 0$. On the other hand,

$$a_{ii}^{\alpha} \ge \left(\sum_{j \ne i} a_{ij}\right)^{\alpha} \ge \sum_{j \ne i} a_{ij}^{\alpha}$$

for all $\alpha \geq 1$ by the given condition. By the Gershgorin disc theorem again, all of the eigenvalues of

the Hadamard power matrix $\mathbf{A}^{(\alpha)}$ are non-negative. Therefore, $\mathbf{A}^{(\alpha)} \geq 0$.

Evidently, if $a_{ii} > \sum_{j \neq i} a_{ij}$ for each $1 \leq i \leq n$ then all of the eigenvalues of \mathbf{A} and $\mathbf{A}^{(\alpha)}$ are positive by (2.8) with " a_{ij} " being replaced by a_{ij}^{α} for all i and j. Hence $\mathbf{A} > 0$ and $\mathbf{A}^{(\alpha)} > 0$ for all $\alpha \geq 1$. \square

Acknowledgements. We thank Hongru Zhao very much for very fruitful discussions.

REFERENCES

- [1] Hiai, F. (2009). Monotonicity for entrywise functions of matrices. *Linear Algebra Appl.* 431(8), 1125-1146.
- [2] Horn, R. and Johnson, C. (1991). *Topics in matrix analysis*. Cambridge University Press, Cambridge.
- [3] Horn, R. and Johnson, C. (1985). *Matrix Analysis*. Cambridge Univesity Press, Cambridge.
- [4] Schoenberg, I. J. (1942). Positive definite functions on spheres. *Duke Math. J.* 9, 96-108.
- [5] Schur, J. (1911). Bemerkungen zur theorie der beschränkten bilinearformen mit unendlich vielenveränderlichen. *Journal* für die reine und angewandte Mathematik 140, 1-28.
- [6] Vasudeva, H. (1979). Positive definite matrices and absolutely monotonic functions. *Indian J. Pure Appl. Math.* 10(7), 854-858.