RETO 2 – SEMANA 4 – FUNDAMENTOS DE PROGRAMACIÓN – Misión TIC 2022 UdeA

Variante 3:

Dada una matriz A de números enteros con tamaño $n \times n$, sean $0 \le i \le n-1$ la i-ésima fila de la matriz A y $0 \le j \le n-1$ la j-ésima columna de la matriz A.

Tareas: Determine

- La suma de los elementos que se encuentran en la diagonal principal de la matriz A, es decir $s = \sum_{i=0}^{n-1} a_{ii}$
- El producto de los elementos que se encuentran en la diagonal secundaria de la matriz A, es decir $p=\prod_{i=0}^{n-1}a_{ij}$ donde j=n-1-i
- El módulo entre p y s, es decir p%s

Formato de entrada:

• Matriz de numpy A de tamaño $n \times n$

Restricciones:

- A es una matriz de números enteros
- $n \in \mathbb{N}$ (Es un número natural)

Formato de salida:

La función solucion(A) debe hacer los siguientes retornos en ese mismo orden:

- 1. Suma de los elementos de la diagonal principal (Número entero o flotante).
- 2. Producto de los elementos de la diagonal secundaria (Número entero o flotante).
- 3. Módulo entre p y s (Número entero o flotante).

Ejemplo de entrada:

Ejemplo de salida:

199

758160

169

Explicación:

Los elementos de la diagonal principal son: 89, 11, 88 y 11, al sumarlos obtenemos como resultado: 199

Los elementos de la diagonal principal son los que se encuentran en las casillas rojas:

	0	1	2	3
0	89	13	23	72
1	29	11	81	62
2	27	26	88	33
3	5	78	11	11

Los elementos de la diagonal secundaria son: 72, 81, 26 y 5, al multiplicarlos obtenemos como resultado: 758160

Los elementos de la diagonal secundaria son los que se encuentran en las casillas verdes:

	0	1	2	3
0	89	13	23	72
1	29	11	81	62
2	27	26	88	33
3	5	78	11	11

Al hacer 758160%199 obtenemos 169