BMI/CS 576 - Day 7

- Today
 - Pairwise sequence alignments
 - Dot plots
 - Scoring alignments
- Thursday
 - Dynamic programming
 - Global pairwise alignment

Purchase your Vocareum account

- Grace period has expired
- Don't let this interrupt your coursework

Using late (slip) days

- You are allowed 4 late/slip days total across semester for HW (there will be six HWs)
- To use slip days on your HW:

Dot plots

- Dot indicates sequence similarity between two positions
- Diagonal lines formed by nearby dots indicate consecutive pairs of similar positions -> evidence of true homology relationship

How do we handle...

- Insertions and deletions?
 - Will need to consider all possible alignments
 - Can do so efficiently via a dynamic programming algorithm (see Thursday's material)
- Small inversions
 - In this class, we will not consider events that disrupt the order and/or orientation of positions in the sequence
 - Handling such cases requires more specialized approaches
 - Whole-genome alignment (with rearrangement events) covered in BMI/CS 776

Another Greedy Algorithm Example (for fragment assembly)

<u>edge</u> weight Q: $2 \rightarrow 3$ $1 \rightarrow 3$ $5 \rightarrow 2$ 3 $3 \rightarrow 1$ Sorted by edge weights

$ \begin{array}{c} $	weight -5
2 -> 1	-4
5 → 1	-3
4 → 2	-2
1 → 5	-1
•	

Q:	edge 5 → 3	weight -5	5
	2 → 1	-4	
	5 → 1	-3	2
	4 → 2	-2	1
	1 → 5	-1	
	•		
	•		

Q:	$\frac{\text{edge}}{5 \rightarrow 3}$	weight -5
	$2 \rightarrow 1$	-4
	5 → 1	-3
	4 → 2	-2

Q:

<u>edge</u>	<u>weight</u>
$5 \rightarrow 3$	-5

$$2 \rightarrow 1$$
 -4

$$5 \rightarrow 1$$
 -3

$$4 \rightarrow 2$$
 -2

$$1 \rightarrow 5$$
 -1

•

•

Path completed: [4, 2, 1, 5, 3]

For assembly, convert to superstring, given vertex labels