Lecture 4: Clustering

Clustering

- Unsupervised learning
- Generating "classes"
- Distance/similarity measures
- Agglomerative methods
- Divisive methods

Unsupervised Learning

- No labels/responses. Finding structure in data.
- Dimensionality Reduction.

 $T \colon \mathbb{R}^d \to \{1,2,\dots,k\}$

Clustering

Subspace Learning $T: \mathbb{R}^d \to \mathbb{R}^m$

Manifold Learning

Uses of Unsupervised Learning

Data compression

Uses of Unsupervised Learning

- Improve classification/regression (semi-supervised learning)
- 1. From *unlabeled data*, learn a good features $T: \mathbb{R}^d \to \mathbb{R}^m$.
- 2. To *labeled data*, apply transformation $T: \mathbb{R}^d \to \mathbb{R}^m$.

$$(T(x^{(1)}), y^{(1)}), \dots, (T(x^{(n)}), y^{(n)})$$

3. Perform classification/regression on transformed data.

What is Clustering?

- Form of unsupervised learning no information from teacher
- The process of partitioning a set of data into a set of meaningful (hopefully) sub-classes, called clusters
- Cluster:
 - collection of data points that are "similar" to one another and collectively should be treated as group
 - as a collection, are sufficiently different from other groups

What is Clustering

Clustering Problem.

Input. Training data $S_n = \{x^{(1)}, x^{(2)}, ..., x^{(n)}\}$, each $x^{(i)} \in \mathbb{R}^d$. Integer k

Output. Clusters $C_1, C_2, ..., C_k \subset \{1, 2, ..., n\}$ such that every data point is in one and only one cluster.

Some clusters could be empty!

Clusters

How to Specify a Cluster

By listing all its elements

$$C_1 = \{1,3,4,7,8,11\}$$

$$C_2 = \{2,5,6,9,10\}$$

How to Specify a Cluster

- Using a representative
 - a. A point in center of cluster (centroid)
 - b. A point in the training data (exemplar)

Each point $x^{(i)}$ will be assigned the closest representative.

exemplar

Characterizing Cluster Methods

- Class label applied by clustering algorithm
 - hard versus fuzzy:
 - hard either is or is not a member of cluster
 - fuzzy member of cluster with probability
- Distance (similarity) measure value indicating how similar data points are
- Deterministic versus stochastic
 - deterministic same clusters produced every time
 - stochastic different clusters may result
- Hierarchical points connected into clusters using a hierarchical structure

Voronoi Diagram

We can partition all the points in the space into regions, according to their closest representative.

dist(A,B)

B

cosθ

X

(sometimes called *loss functions*)

A measure of how close two data points are. Nearby points (i.e. distance is *small*) are more likely they belong to the same cluster.

• Euclidean Distance $dist(x, y) = ||x - y||^2$

(sometimes called kernels, correlation)

A measure of how alike two data points are. Similar points (i.e. similarity is *large*) are more likely they belong to the same cluster.

• Cosine Similarity
$$cos(x, y) = \frac{x^T y}{\|x\| \|y\|}$$

- Key to grouping points
 distance = inverse of similarity
- Often based on representation of objects as feature vectors

An Employee DB

ID	Gender	Gender Age	
1	F	27	19,000
2	М	51	64,000
3	М	52	100,000
4	F	33	55,000
5	М	45	45,000

Term Frequencies for Documents

	T1	T2	T3	T4	T5	T6
Doc1	0	4	0	0	0	2
Doc2	3	1	4	3	1	2
Doc3	3	0	0	0	3	0
Doc4	0	1	0	3	0	0
Doc5	2	2	2	3	1	4

Which objects are more similar?

Properties of measures:

```
based on feature values x_{instance\#, feature\#}
for all objects x_i, x_i, dist(x_i, x_i) \ge 0, dist(x_i, x_i)=dist(x_i, x_i)
for any object x_i, dist(x_i, x_i) = 0
\operatorname{dist}(x_i, x_i) \leq \operatorname{dist}(x_i, x_k) + \operatorname{dist}(x_k, x_i)
```

Manhattan distance: $\sum_{f=1}^{\infty} |x_{i,f} - x_{j,f}|$

$$\sum_{f=1}^{|features|} \mid x_{i,f} - x_{j,f} \mid$$

Euclidean distance:
$$\sqrt{\sum_{f=1}^{|features|} (x_{i,f} - x_{j,f})^2}$$

Minkowski distance (p):
$$\sqrt{\sum_{f=1}^{|features|} (x_{i,f} - x_{j,f})^p}$$

Mahalanobis distance: $(x_i - x_j)\nabla^{-1}(x_i - x_j)^T$ where ∇^{-1} is covariance matrix of the data

More complex measures:

Mutual Neighbor Distance (MND) - based on a count of number of neighbors

Distance (Similarity) Matrix

- Similarity (Distance) Matrix
 - based on the distance or similarity measure we can construct a symmetric matrix of distance (or similarity values)
 - (i, j) entry in the matrix is the distance (similarity) between items i and j

Note that $d_{ij} = d_{ji}$ (i.e., the matrix is symmetric). So, we only need the lower triangle part of the matrix.

The diagonal is all 1's (similarity) or all 0's (distance)

 d_{ij} = similarity (or distance) of D_i to D_j

Example: Term Similarities in Documents

	T1	T2	T3	T4	T5	T6	T7	T8
Doc1	0	4	0	0	0	2	1	3
Doc2	3	1	4	3	1	2	O	1
Doc3	3	0	0	0	3	0	3	0
Doc4	0	1	Ο	3	Ο	0	2	0
Doc5	2	2	2	3	1	4	0	2

$$sim(T_i, T_j) = \sum_{k=1}^{N} (w_{ik} \cdot w_{jk})$$

Similarity (Distance) Thresholds

 A similarity (distance) threshold may be used to mark pairs that are "sufficiently" similar

Graph Representation

- The similarity matrix can be visualized as an undirected graph
 - each item is represented by a node, and edges represent the fact that two items are similar (a 1 in the similarity threshold matrix)

	T1	T2	T3	T4	T5	T6	T7
T2	0						
T3	1	0					
T4	1	1	1				
T5	1	0	0	0			
T6	1	1	1	1	0		
T7	0	0	0	0	0	0	
T8	0	1	0	0	0	1	0

If no threshold is used, then matrix can be represented as a weighted graph

Sum of squared distances to closest representative.

 $loss \approx 11 \times (1)^2 = 11$

assume length of each edge is about 1

Sum of squared distances to closest representative (cluster center).

 $loss \approx 9 \times (0.1)^2 = 0.09$

assume length of each edge is about 0.1

Optimizing over representatives (cluster centers).

How do I use a similarity function instead?

$$\mathcal{L}_{n,k}(z^{(1)},...,z^{(k)};\mathcal{S}_n) = \sum_{i=1}^n \min_{1 \le i \le k} \|x^{(i)} - z^{(j)}\|^2.$$

Optimizing over clusters.

$$\mathcal{L}_{n,k}(\mathcal{C}_1,\ldots,\mathcal{C}_n;\mathcal{S}_n) = \sum_{j=1}^n \sum_{i\in\mathcal{C}_j} \left\| x^{(i)} - \frac{1}{|\mathcal{C}_j|} \sum_{i'\in\mathcal{C}_j} x^{(i')} \right\|^2.$$

Instead of the distance metric, you can use the *negative* similarity function.

Optimizing both clusters and representatives.

$$\mathcal{L}_{n,k}(\mathcal{C}_1, \dots, \mathcal{C}_k, z^{(1)}, \dots, z^{(k)}; \mathcal{S}_n) = \sum_{j=1}^k \sum_{i \in \mathcal{C}_j} \|x^{(i)} - z^{(j)}\|^2$$

Basic Clustering Methodology

Two approaches:

Agglomerative: pairs of items/clusters are successively linked to produce larger clusters

Divisive (partitioning): items are initially placed in one cluster and successively divided into separate groups

Cluster Validity

- One difficult question: how *good* are the clusters produced by a particular algorithm?
- Difficult to develop an objective measure
- Some approaches:
 - external assessment: compare clustering to *a priori* clustering
 - internal assessment: determine if clustering intrinsically appropriate for data
 - relative assessment: compare one clustering methods results to another methods

Basic Questions

- Data preparation getting/setting up data for clustering
 - extraction
 - normalization
- Similarity/Distance measure how is the distance between points defined
- Use of domain knowledge (prior knowledge)
 - can influence preparation, Similarity/Distance measure
- Efficiency how to construct clusters in a reasonable amount of time

Agglomerative Single-Link

- Single-link: connect all points together that are within a threshold distance
- Algorithm:
 - 1. place all points in a cluster
 - 2. pick a point to start a cluster
 - 3. for each point in current cluster add all points within threshold not already in cluster repeat until no more items added to cluster
 - 4. remove points in current cluster from graph
 - 5. Repeat step 2 until no more points in graph

Example

	T1	T2	Т3	T 4	T5	T6	T7
T2	7						
T 3	16	8					
T4	15	12	18				
T5	14	3	6	6			
T6	14	18	16	18	6		
T7	9	6	0	6	9	2	
T8	7	8 12 3 18 6 17	8	9	3	16	3

All points except T7 end up in one cluster

Agglomerative Complete-Link (Clique)

- Complete-link (clique): all of the points in a cluster must be within the threshold distance
- In the threshold distance matrix, a clique is a complete graph
- Algorithms based on finding maximal cliques (once a point is chosen, pick the largest clique it is part of)
 - not an easy problem

Example

	T1	T2	Т3	T4	T5	T6	T7
T2	7						
T 3	16	8					
T4	15	12	18				
T5	14	3	6	6			
T6	14	18	16	18	6		
T7	9	6	0	6	9	2	
T8	7	8 12 3 18 6 17	8	9	3	16	3

Different clusters possible based on where cliques start

Hierarchical Methods

- Based on some methods of representing hierarchy of data points
- One idea: hierarchical dendogram (connects points based on similarity)

	T1	T2	Т3	T4	T5	T6	T7
T2	7						
T3	16	8					
T4	15	12	18				
T5	14	3	6	6			
T6	14	18	16	18	6		
T7	9	6	0	6	9	2	
T8	7	17	8	9	3	16	3

Hierarchical Agglomerative

- Compute distance matrix
- Put each data point in its own cluster
- Find most similar pair of clusters
 - merge pairs of clusters (show merger in dendogram)
 - update proximity matrix
 - repeat until all patterns in one cluster

K-Means

Optimization Algorithm

Goal. Minimize $\mathcal{L}(x, y)$.

Coordinate Descent (Optimization).

Repeat until convergence:

- 1. Find optimal x while holding y constant.
- 2. Find optimal y while holding x constant.

Optimization Algorithm

Coordinate Descent (Optimization)

Repeat until convergence:

- Find best clusters given centroids
- Find best centroid given clusters

$$\mathcal{L}_{n,k}(\mathcal{C}_{1},...,\mathcal{C}_{k},z^{(1)},...,z^{(k)};\mathcal{S}_{n}) = \sum_{j=1}^{k} \sum_{i \in \mathcal{C}_{j}} \|x^{(i)} - z^{(j)}\|^{2}$$

Optimization Algorithm

- 1. Initialize centroids $z^{(1)}, \dots, z^{(k)}$ from the data.
- 2. Repeat until no further change in training loss:
 - a. For each $j \in \{1, ..., k\}$, $\mathcal{C}_j = \{ i \text{ such that } x^{(i)} \text{ is closest to } z^{(j)} \}.$
 - b. For each $j \in \{1, ..., k\}$, $z^{(j)} = \frac{1}{|\mathcal{C}_j|} \sum_{i \in \mathcal{C}_j} x^{(i)} \text{ (cluster mean)}$

Convergence

- Training loss always decreases in each step (coordinate descent).
- Converges to local minimum, not necessarily global minimum.

Repeat algorithm over many initial points, and pick the configuration with the smallest training loss.

An example – kmeans clustering

- Suppose we have 4 boxes of different sizes and we want to divide them into 2 classes
- Each box represents one point with two attributes (X,Y):

- Initial centers: suppose we choose points A and B as the initial centers, so c1 = (10, 10) and c2 = (20, 10)
- Object centre distance: calculate the Euclidean distance between cluster centres and the objects. For example, the distance of object C from the first center is:

$$\sqrt{(40-10)^2 + (30-10)^2} = 36.06$$

We obtain the following distance matrix:

Centre 1	0	10	36.06	50
Centre 2	10	0	28.28	43.43

 Object clustering: We assign each object to one of the clusters based on the minimum distance from the centre:

Centre 1
Centre 2

1	0	0	0
0	1	1	1

 Determine centres: Based on the group membership, we compute the new centers

•
$$c_1 = (10, 10), c_2 = \left(\frac{20 + 40 + 50}{3}, \frac{10 + 30 + 40}{3}\right) = (36.7, 26.7)$$

 Recompute the object-centre distances: We compute the distances of each data point from the new centres:

Centre 1	0	10	36.06	50
Centre 2	31.4	23.6	4.7	18.9

 Object clustering: We reassign the objects to the clusters based on the minimum distance from the centre:

Centre 1	1	1	0	0
Centre 2	0	0	1	1

Determine the new centres:

$$c_1 = \left(\frac{10 + 20}{2}, \frac{10 + 10}{2}\right) = (15, 10)$$

$$c_2 = \left(\frac{40 + 50}{2}, \frac{30 + 40}{2}\right) = (45, 35)$$

Recompute the object-centres distances:

Centre 1
Centre 2

5	5	32	46.1
43	35.4	7.1	7.1

Object clustering:

Centre 1
Centre 2

1	1	0	0
0	0	1	1

 The cluster membership did not change from one iteration to another and so the k-means computation terminates.

Discussion

Initialization

- Empty clusters
 - Pick data points to initialize clusters
- Bad local minima
 - Initialize many times and pick solution with smallest training loss
 - Pick good starting positions

Initialization

Final position of centroids

Problem. How to choose good starting positions? **Solution.** Place them far apart with high probability.

Number of Clusters

Number of Clusters

How do we choose k, the optimal number of clusters?

- Elbow method
 - Training Loss
 - Validation Loss
- Semi-supervised learning
 - Accuracy in supervised task

Elbow Method

Semi-Supervised Learning

Supervised task with small *labeled* data \mathcal{S}'

- For each number of clusters k,
 - Perform k-means on unlabeled data.
 - \circ Transform \mathcal{S}' using learned clusters e.g. compute distance to each centroid.
 - o compute prediction error.

Number of clusters k

Pick k with smallest prediction error.

K-MeDroids

Use exemplars instead of centroids.

e.g. Google News.

Repeat until convergence

- Find best clusters given exemplars
- Find best exemplars given clusters

People Are Drilling Headphone Jacks Into the iPhone 7

Fortune - 1 hour ago

He then takes the bit to the iPhone 7 and drills a hole into the device. ... Instead. Apple shipped iPhone 7 units with an adapter that lets users ...

iPhone 7 review: Not Apple's best

Expert Reviews - 2 hours ago

Please don't drill a headphone jack into your iPhone 7

BGR - 2 hours ago

Apple iPhone 7 Users: Please DO NOT Drill a 3.5mm Hole on it to ...

News18 - 7 hours ago

Video claiming drilling into iPhone 7 will reveal hidden headphone ...

Highly Cited - The Guardian - 1 hour ago

Clueless iPhone 7 owners tricked into DRILLING hole in their ...

Highly Cited - The Sun - 24 Sep 2016

The Guardian

International ...

View all

Pegatron CEO slams analysts, 'cautiously optimistic' about Apple ...

AppleInsider (press release) (blog) - 3 hours ago

The CEO of Apple's manufacturing partner Pegatron notes that the iPhone 7 is exceeding estimates on the strength of the phone alone, and ...

Google Nexus 2016' Specs: Solution to Apple iPhone 7 ...

University Herald - 3 hours ago

Apple Supplier Pegatron Hints of Higher iPhone 7 Demand while ...

Patently Apple - 2 hours ago

iPhone 7 vs Samsung Galaxy S7: Which is the best smartphone to ...

Alphr - 5 hours ago

Samsung Galaxy Note 7 Explosions Boost iPhone 7 Sales, Top ...

Softpedia News - 8 hours ago

View all

Summary

- Clustering
 - Distance Metric
 - Similarity Function
 - Training Loss
- Representatives
 - Centroids
 - Exemplars
 - Voronoi Diagrams
- k-Means Algorithm

- Optimization
 - Coordinate Descent
 - Initialization
 - Software
- Generalization
 - Number of Clusters
- Applications
 - Dimensionality Reduction
 - Data Compression
 - Semi-Supervised Learning

Intended Learning Outcomes

Clustering

- Describe the differences between distance metrics and similarity functions. List examples of each of them.
- Write down the training loss using the Euclidean distance.
- Describe two ways of picking representatives for clusters.
 Explain how Voronoi diagrams are derived from the representatives.
- List two important applications of clustering, and how they are related to dimensionality reduction.

Intended Learning Outcomes

K-Means Algorithm

- Describe the k-means algorithm, and point out how it is based on coordinate descent.
- Explain why it is important to run the k-means algorithm several times at various starting points.
- Describe a procedure for estimating k, the number of clusters.