# Energy-Based Learning Primer with a Focus on RBM's and DBN's

CM & BP

Tufts University

170411

## **Energy-Based Models**

#### Definition

An energy-based model (EBM) is a model that associates a scalar energy value between all configurations of the model inputs

This association is by way of an Energy Function,  $E(\cdot)$ 

## Example of an Energy Function

Let  $X \in \mathbb{R}^n$  be some set of observed data and  $Y = \{-1, +1\}$  be the predictand of X, an example energy function could be defined as:

$$E(X,Y)=Y\sum_i X_i$$

# One Important Property of $E(\cdot)$

In general  $E(\cdot)$  can have any form; however, there is at least one behavior  $E(\cdot)$  should have in order to be useful.

Define  $E(\cdot)$  such that high compatibility between variables maps to a small values and vice-versa.

That way, inference can be viewed as finding the  $y \in Y$  that minimizes the energy function, i.e.,

$$y^* = \operatorname*{argmin}_{y \in Y} E(X, y)$$

# **Energy-Based Learning**

Learning an EBM involves finding the best  $E(\cdot)$  that exhibits this behavior.

This learning process makes use of a loss function which measures the quality of energy functions still left in the search.

## From EBM's to Probabilistic Models

Up to this point, we're only interested in the minimizing values of  $E(\cdot)$ ; however, it's possible that the values of  $E(\cdot)$  may need to be combined with results of, or added to, other models (as we'll see later).

Enter Gibb's Distribution (think Softmax function):

$$Pr(Y|X) = \frac{1}{Z}e^{-\beta E(X,Y)}$$

where  $\beta>0$  and  $Z=\sum_{y\in Y}e^{-\beta E(X,y)}$  is called the **Partition** Function

# How About Adding Latent (hidden) Variables?

Oftentimes, adding unobserved variables to a model will increase it's expressive power. One can also measure the energy of this configuration between observed and latent information:

$$Pr(X, H) = \frac{1}{Z}e^{-\beta E(X, H)}, \quad Z = \sum_{x} \sum_{h} e^{-\beta E(x, h)}$$

In this way, unsupervised energy-based learning is also possible.

## Restricted Boltzmann Machines

#### Definition

A Restricted Boltzmann Machine (RBM) is an EBM with the following energy function:

$$E(\mathbf{v}, \mathbf{h}) = -\mathbf{b}^{\mathsf{T}}\mathbf{v} - \mathbf{c}^{\mathsf{T}}\mathbf{h} - \mathbf{v}^{\mathsf{T}}\mathbf{W}\mathbf{h}$$

where  $\mathbf{v} \in \mathbb{R}^n$ ,  $\mathbf{h} \in \{0,1\}^m$ ,  $\mathbf{W} \in \mathbb{R}^{n \times m}$ ,  $\mathbf{b} \in \mathbb{R}^n$ , and  $\mathbf{c} \in \mathbb{R}^m$ .

#### Note

In the paper,  $\mathbf{v} \in \{0,1\}^n$  (except for the first input), and in the upcoming slides, it's assumed  $\mathbf{v}$  is in this sets.

## Restricted Boltzmann Machines



 ${f v}$  is typically called the "Visible Vector/Layer" and  ${f h}$  is the called the "Hidden Vector/Layer"

## Formulation as a Probabilistic Model

Apply Gibb's Distribution to obtain the joint density:

$$p(\mathbf{v},\mathbf{h}) = \frac{\tilde{p}(\mathbf{v},\mathbf{h})}{Z}$$

where

$$\tilde{p}(\mathbf{v}, \mathbf{h}) = e^{-E(\mathbf{v}, \mathbf{h})}$$
 and  $Z = \sum_{\mathbf{v}} \sum_{\mathbf{h}} e^{-E(\mathbf{v}, \mathbf{h})}$ 

#### Note

Despite  $\mathbf{v} \in \{0,1\}^n$  and  $\mathbf{h} \in \{0,1\}^m$ , Z is still an intractable quantity having  $O(2^{n+m})$  quantities in the sum! The marginal distributions are similarly exponential.

# Properties of Binary RBM's

Visible and hidden units are conditionally independent, i.e.,

$$p(\mathbf{h}|\mathbf{v}) = \prod_{i} p(h_{i}|\mathbf{v})$$
 and  $p(\mathbf{v}|\mathbf{h}) = \prod_{i} p(v_{i}|\mathbf{h})$ 

where

$$p(h_j = 1 | \mathbf{v}) = \sigma\left(\sum_i v_i W_{ij} + c_j\right), \quad p(v_i = 1 | \mathbf{h}) = \sigma\left(\sum_j h_j W_{ij} + b_i\right)$$

Convenient gradients:

$$abla_{\mathbf{W}} E(\mathbf{v}, \mathbf{h}) = -\mathbf{v} \mathbf{h}^{\top}, \quad 
abla_{\mathbf{b}} E(\mathbf{v}, \mathbf{h}) = -\mathbf{v}, \quad 
abla_{\mathbf{c}} E(\mathbf{v}, \mathbf{h}) = -\mathbf{h}$$

## What's the Goal?

When using an RBM the goal is to learn a probability distribution over the inputs, i.e., we want to learn:

$$p(\mathbf{v}) = \frac{\sum_{\mathbf{h}} \tilde{p}(\mathbf{v}, \mathbf{h})}{Z}$$

where

$$\tilde{p}(\mathbf{v}, \mathbf{h}) = e^{-E(\mathbf{v}, \mathbf{h})}$$
 and  $Z = \sum_{\mathbf{v}} \sum_{\mathbf{h}} e^{-E(\mathbf{v}, \mathbf{h})}$ 

## Learning with Maximum Likelihood

Let  $\Theta = \{W, b, c\}$  be the parameters of p(v), can we use Maximum Likelihood to update these parameters?

$$p(\mathbf{v}; \Theta) = \frac{\sum_{\mathbf{h}} \tilde{p}(\mathbf{v}, \mathbf{h}; \Theta)}{Z}$$

$$\log p(\mathbf{v}; \Theta) = \log \sum_{\mathbf{h}} \tilde{p}(\mathbf{v}, \mathbf{h}; \Theta) - \log Z$$

$$\nabla_{\Theta} \log p(\mathbf{v}; \Theta) = \nabla_{\Theta} \log \sum_{\mathbf{h}} \tilde{p}(\mathbf{v}, \mathbf{h}; \Theta) - \nabla_{\Theta} \log Z$$

Yes! But we may need to calculate the intractable Z as well as the intractable sum  $\sum_{\mathbf{h}} \tilde{p}(\mathbf{v}, \mathbf{h}; \Theta)$ 

## Taking a Closer Look at the Gradient

Use SGD to update the parameters,  $\Theta$ , of the model:

$$\Theta \leftarrow \Theta - \epsilon \nabla_{\Theta} \log p(\mathbf{v}; \Theta)$$

$$\nabla_{\Theta} \underbrace{\log p(\mathbf{v}; \Theta)}_{\text{Objective}} = \underbrace{\nabla_{\Theta} \log \sum_{\mathbf{h}} \tilde{p}(\mathbf{v}, \mathbf{h}; \Theta)}_{\text{Positive Phase}} - \underbrace{\nabla_{\Theta} \log Z}_{\text{Negative Phase}}$$

#### Intuition

The Positive Phase seeks to increase the probability of training samples - the data that's observed. The Negative Phase seeks to decrease the probability of samples drawn from the model distribution,  $p(\mathbf{v})$ , which it believes in strongly.

## The Positive Phase

#### Definition

The term  $\nabla_{\Theta} \log \sum_{\mathbf{h}} \tilde{p}(\mathbf{v}, \mathbf{h}; \Theta)$  is known as the **Positive Phase** 

$$\begin{split} & \nabla_{\Theta} \log \sum_{\mathbf{h}} \tilde{\rho}(\mathbf{v}, \mathbf{h}; \Theta) = \frac{\sum_{\mathbf{h}} \nabla_{\Theta} \tilde{\rho}(\mathbf{v}, \mathbf{h}; \Theta)}{\sum_{\mathbf{h}} \tilde{\rho}(\mathbf{v}, \mathbf{h}; \Theta)} \\ & = \frac{\sum_{\mathbf{h}} \nabla_{\Theta} e^{\log \tilde{\rho}(\mathbf{v}, \mathbf{h}; \Theta)}}{\sum_{\mathbf{h}} \tilde{\rho}(\mathbf{v}, \mathbf{h}; \Theta)} = \frac{\sum_{\mathbf{h}} \tilde{\rho}(\mathbf{v}, \mathbf{h}; \Theta) \nabla_{\Theta} \log \tilde{\rho}(\mathbf{v}, \mathbf{h}; \Theta)}{\sum_{\mathbf{h}} \tilde{\rho}(\mathbf{v}, \mathbf{h}; \Theta)} \\ & = \sum_{\mathbf{h}} \rho(\mathbf{h} | \mathbf{v}) \nabla_{\Theta} \log \tilde{\rho}(\mathbf{v}, \mathbf{h}; \Theta) = \mathbb{E}_{\mathbf{h} \sim \rho(\mathbf{h} | \mathbf{v})} \left[ \nabla_{\Theta} \log \tilde{\rho}(\mathbf{v}, \mathbf{h}; \Theta) \right] \end{split}$$

## The Positive Phase

Let's examine the tractability of computing:

$$\mathbb{E}_{\mathbf{h} \sim p(\mathbf{h}|\mathbf{v})} \left[ \nabla_{\theta} \log \tilde{p}(\mathbf{v}, \mathbf{h}; \Theta) \right], \quad \forall \theta \in \Theta$$

Using the definition of gradient

$$\nabla f(x_1 \dots x_n) = \frac{\partial f}{\partial x_1} \mathbf{e_1} + \dots + \frac{\partial f}{\partial x_n} \mathbf{e_n}$$

and linearity of expectation, the positive phase can be rewritten

$$\sum_{\theta \in \theta} \mathbb{E}_{\mathbf{h} \sim p(\mathbf{h}|\mathbf{v})} \left[ \frac{\partial \log \tilde{p}(\mathbf{v}, \mathbf{h}; \Theta)}{\partial \theta_i} \right] \mathbf{e_i}$$

# For $\theta_i = W_{ii}$ ; Positive Phase

Recall by assumption,  $h_i \in \{0, 1\}$ .

$$\begin{split} \mathbb{E}_{\mathbf{h} \sim p(\mathbf{h}|\mathbf{v})} \left[ \frac{\partial \log \tilde{p}(\mathbf{v}, \mathbf{h}; \mathbf{W})}{\partial W_{ij}} \right] &= \mathbb{E}_{\mathbf{h} \sim p(\mathbf{h}|\mathbf{v})} \left[ v_i h_j \right] = \sum_{\mathbf{h}} p(\mathbf{h}|\mathbf{v}) v_i h_j \\ &= v_i \sum_{h_j} \sum_{\mathbf{h}_{-\mathbf{j}}} p(h_j, \mathbf{h}_{-\mathbf{j}}|\mathbf{v}) h_j = v_i \sum_{h_j} p(h_j|\mathbf{v}) h_j \sum_{\mathbf{h}_{-\mathbf{j}}} p(\mathbf{h}_{-\mathbf{j}}|\mathbf{v}) \\ &= v_i \sum_{h_j} p(h_j|\mathbf{v}) h_j = v_i p(h_j = 1|\mathbf{v}) \\ &= v_i \sigma \left( \sum_i v_i W_{ij} + c_j \right) \end{split}$$

#### Return to the Gradient

Use SGD to update the parameters,  $\Theta$ , of the model:

For any  $W_{ij} \in \mathbf{W}$ 

$$\frac{\partial \log p(\mathbf{v}; \mathbf{W})}{\partial W_{ij}} = \underbrace{v_i \sigma \left(\sum_i v_i W_{ij} + c_j\right)}_{\text{Positive Phase}} - \underbrace{\nabla_{\Theta} \log Z}_{\text{Negative Phase}}$$

# The Negative Phase

#### Definition

The term  $\nabla_{\Theta} \log Z$  is known as the **Negative Phase** 

$$\begin{split} & \nabla_{\Theta} \log Z = \frac{\sum_{\mathbf{v}} \sum_{\mathbf{h}} \nabla_{\Theta} \tilde{p}(\mathbf{v}, \mathbf{h}; \Theta)}{Z} = \frac{\sum_{\mathbf{v}} \sum_{\mathbf{h}} \tilde{p}(\mathbf{v}, \mathbf{h}; \Theta) \nabla_{\Theta} \log \tilde{p}(\mathbf{v}, \mathbf{h}; \Theta)}{Z} \\ & = \sum_{\mathbf{v}} \sum_{\mathbf{h}} p(\mathbf{v}, \mathbf{h}) \nabla_{\Theta} \log \tilde{p}(\mathbf{v}, \mathbf{h}; \Theta) = \mathbb{E}_{\mathbf{v}, \mathbf{h} \sim p(\mathbf{v}, \mathbf{h})} \left[ \nabla_{\Theta} \log \tilde{p}(\mathbf{v}, \mathbf{h}; \Theta) \right] \end{split}$$

# **Negative Phase**

Let's examine the tractability of computing:

$$\mathbb{E}_{\mathbf{v},\mathbf{h}\sim p(\mathbf{v},\mathbf{h})}\left[\nabla_{\theta}\log\tilde{p}(\mathbf{v},\mathbf{h};\Theta)\right], \quad \forall \theta \in \Theta$$

Using the definition of gradient

$$\nabla f(x_1 \dots x_n) = \frac{\partial f}{\partial x_1} \mathbf{e_1} + \dots + \frac{\partial f}{\partial x_n} \mathbf{e_n}$$

and linearity of expectation, the negative phase can be rewritten

$$\sum_{\boldsymbol{\theta}, \boldsymbol{\in} \boldsymbol{\theta}} \mathbb{E}_{\mathbf{v}, \mathbf{h} \sim p(\mathbf{v}, \mathbf{h})} \left[ \frac{\partial \log \tilde{p}(\mathbf{v}, \mathbf{h}; \boldsymbol{\Theta})}{\partial \theta_i} \right] \mathbf{e_i}$$

For  $\theta_i = W_{ij}$ ; Negative Phase

$$\mathbb{E}_{\mathbf{v},\mathbf{h}\sim p(\mathbf{v},\mathbf{h})} \left[ \frac{\partial \log \tilde{p}(\mathbf{v},\mathbf{h};\mathbf{W})}{\partial W_{ij}} \right] = \mathbb{E}_{\mathbf{v},\mathbf{h}\sim p(\mathbf{v},\mathbf{h})} \left[ v_i h_j \right] = \sum_{\mathbf{v}} \sum_{\mathbf{h}} p(\mathbf{v},\mathbf{h}) v_i h_j$$

$$= \sum_{\mathbf{v}} v_i \sum_{\mathbf{h}} p(\mathbf{v}) p(\mathbf{h}|\mathbf{v}) h_j = \sum_{\mathbf{v}} v_i p(\mathbf{v}) \sum_{h_j} \sum_{\mathbf{h}_{-j}} p(h_j,\mathbf{h}_{-j}|\mathbf{v}) h_j$$

$$= \sum_{\mathbf{v}} v_i p(\mathbf{v}) \sum_{h_j} p(h_j|\mathbf{v}) h_j \sum_{\mathbf{h}_{-j}} p(\mathbf{h}_{-j}|\mathbf{v})$$

$$= \sum_{\mathbf{v}} v_i p(\mathbf{v}) \sum_{h_j} p(h_j|\mathbf{v}) h_j = \sum_{\mathbf{v}} v_i p(\mathbf{v}) p(h_j = 1|\mathbf{v})$$

Unfortunately, the sum over  $\mathbf{v}$  still makes this calculation intractable!

### Return to the Gradient

Use SGD to update the parameters,  $\Theta$ , of the model:

$$\Theta \leftarrow \Theta - \epsilon \nabla_{\Theta} \log p(\mathbf{v}; \Theta)$$

$$\nabla_{\Theta} \underbrace{\log p(\mathbf{v}; \Theta)}_{\text{Objective}} = \underbrace{\nabla_{\Theta} \log \sum_{\mathbf{h}} \tilde{p}(\mathbf{v}, \mathbf{h}; \Theta)}_{\text{Positive Phase}} - \underbrace{\nabla_{\Theta} \log Z}_{\text{Negative Phase}}$$

For any  $W_{ij} \in \mathbf{W}$ 

$$\frac{\partial \log p(\mathbf{v}; \mathbf{W})}{\partial W_{ij}} = \underbrace{v_i \sigma \left( \sum_i v_i W_{ij} + c_j \right)}_{\text{Positive Phase}} - \underbrace{\sum_{\mathbf{v}} v_i p(\mathbf{v}) p(h_j = 1 | \mathbf{v})}_{\text{Negative Phase}}$$

## Dealing with the Intractable Negative Phase

Enter Gibb's Sampling and Contrastive Divergence

- 1. Select a mini-batch of size M,  $\{\mathbf{v}^{(1)} \dots \mathbf{v}^{(M)}\}$
- 2. Generate  $\mathbf{h}^{(i)} = \sigma(\mathbf{v}^{(i)\top}\mathbf{W} + \mathbf{c})$
- 3. Force elements of  $\mathbf{h^{(i)}}$  to be binary by:  $h_j = \mathbb{I}(h_j \geq X \sim \textit{Uniform}([0,1]))$
- 4. Generate  $\tilde{\mathbf{v}}^{(i)} = \sigma(\mathbf{W}\mathbf{h}^{(i)} + \mathbf{b})$
- 5. Goto 2 and repeat k times replacing  $\mathbf{v}^{(i)}$  with  $\tilde{\mathbf{v}}^{(i)}$
- 6. Generate  $\tilde{\mathbf{h}}^{(i)} = \sigma(\mathbf{v}^{(i)\top}\mathbf{W} + \mathbf{c})$  (note that this is not binarized) Replace:

$$\mathbb{E}_{\mathbf{v},\mathbf{h}\sim p(\mathbf{v},\mathbf{h})}\left[v_{i}h_{j}\right]\approx\frac{1}{M}\sum_{m=1}^{M}\tilde{v}_{i}^{(m)}\tilde{h}_{j}^{(m)}$$

# Putting it all Together

For any  $W_{ij} \in \mathbf{W}$ 

$$\frac{\partial \log p(\mathbf{v}; \mathbf{W})}{\partial W_{ij}} \approx \frac{1}{M} \sum_{m=1}^{M} v_i^{(m)} p(h_j^{(m)} = 1 | \mathbf{v}^{(m)}) - \frac{1}{M} \sum_{m=1}^{M} \tilde{v}_i^{(m)} \tilde{h}_j^{(m)}$$

For any  $b_i \in \mathbf{b}$ 

$$\frac{\partial \log p(\mathbf{v}; \mathbf{b})}{\partial b_i} \approx \frac{1}{M} \sum_{m=1}^{M} v_i^{(m)} - \frac{1}{M} \sum_{m=1}^{M} \tilde{v}_i^{(m)}$$

For any  $c_j \in \mathbf{c}$ 

$$\frac{\partial \log p(\mathbf{v}; \mathbf{c})}{\partial c_j} \approx \frac{1}{M} \sum_{m=1}^{M} p(h_j^{(m)} = 1 | \mathbf{v}^{(m)}) - \frac{1}{M} \sum_{m=1}^{M} \tilde{h}_j^{(m)}$$

## Deep Belief Networks

#### Definition

A Deep Belief Network (DBN) is a hybrid graphical model consisting of k RBM's where the hidden layer of the ith RBM becomes the visible layer of the i+1th RBM.

#### Note

It is hybrid in the sense that all edges are directed toward the starting visible layer expect for the edges in the topmost RBM.

# Deep Belief Networks



# Training DBN's

- 1. Train an RBM using the method described above, i.e., maximize  $\log p^{(0)}(V)$ .
- 2. Generate  $H_1 \sim p^{(0)}(H|V)$ .
- 3. Change the edges between layers into directed edges facing the conditioning layer
- 4. Create another hidden layer,  $H_2$ , and connect it to  $H_1$  initializing new parameters. (Note the bias on the previous layer  $(H_1)$  does not get reinitialized)
- 5. Maximize  $\log p^{(1)}(H_1)$
- Repeat 2-5 to desired depth incrementing the layer number each time.

## References

- 1. Carreira-Prepinan, M.A. and Hinton, G.E. (2005). On Contrastive Divergence Learning.
- 2. Goodfellow, I. et al. (2016). Deep Learning.
- 3. Hinton, G.E. (2010). A Practical Guide to Training Restricted Boltzmann Machines.
- 4. Koller, D. and Friedman N. (2009). Probabilistic Graphical Models: Principles and Techniques.
- 5. LeCun, Y. *et al.* (2006). A Tutorial on Energy-Based Learning.
- 6. http://deeplearning.net/tutorial/rbm.html
- http://www.iro.umontreal.ca/lisa/twiki/ bin/view.cgi/Public/DBNEquations

#### Extras

Why does this work?

$$\mathbb{E}_{\mathbf{v},\mathbf{h}\sim p(\mathbf{v},\mathbf{h})}\left[v_ih_j\right] = \mathbb{E}_{\mathbf{v}}\left[v_ip(h_j=1|\mathbf{v})\right] \approx \frac{1}{M}\sum_{m=1}^{M}\tilde{v}_i^{(m)}\tilde{h}_j^{(m)}$$

Since  $p(\mathbf{v}) \approx p_{train}(\mathbf{v})$  is the goal,

- Mhen initializing the RBM with a sample from the training set it's assumed the MC is close to converging on its equilibrium distribution,  $p(\mathbf{v})$
- ▶ Sampling of k iterations worth is like sampling from  $p(\mathbf{v})$
- ▶ It can be shown that  $\frac{1}{M} \sum_{m=1}^{M} \tilde{v}_i^{(m)} \tilde{h}_j^{(m)}$  is an unbiased estimator for  $\mathbb{E}_{\mathbf{v}} [v_i p(h_j = 1 | \mathbf{v})]$ . (Recall  $\tilde{h}_i^{(m)}$  is not binarized).

#### Extras

## Contrastive Divergence

Minimize:  $CN_k = KL(p_{train}(\mathbf{v})||p(\mathbf{v})) - KL(p_k(\mathbf{v})||p(\mathbf{v}))$ 

Minimized when the distribution of  $\mathbf{v}$  ( $p_k(\mathbf{v})$ ) after k Gibb's samples is the same as the distribution of the observed  $\mathbf{v}$  ( $p_{train}(\mathbf{v})$ ).

Extras; 
$$\mathbf{v} \in \mathbb{R}^n$$
?

Rather than the conditional distribution over  $\mathbf{v}$  be Bernoulli, let it be Gaussian as follows:

$$\mathbf{v}|\mathbf{h} \sim \mathcal{N}(\mathbf{v}; \mathbf{W}\mathbf{h}, eta^{-1})$$

where  $\beta^{-1}$  is the inverse covariance matrix and the RBM's energy function is modified to incorporate this term (not shown).