

3 V to 5 V Single Supply, 600 kSPS 12-Bit Sampling ADCs

Preliminary Technical Data

AD7855

FEATURES
Specified for V_{DD} of 3 V to 5.5 V
Read-Only Operation
System and Self-Calibration

Flexible Parallel Interface 12-Bit Parallel/8-Bit Parallel 28-Pin SOIC and SSOP Packages

APPLICATIONS Instrumentation and Control Systems High Speed Modems

GENERAL DESCRIPTION

The AD7855 is a high speed, low power, 12-bit ADC that operates from a single 3 V or 5 V power supply, the AD7855 being optimized for speed and low power. The ADC powers up with a set of default conditions at which time it can be operated as a read-only ADC. The ADC contains self-calibration and system calibration options to ensure accurate operation over time and temperature and has a number of power-down options for low power applications.

The AD7855 is capable of 600 kHz throughput rate . The input track-and-hold acquires a signal in 500 ns and features a pseudo-differential sampling scheme. The AD7855 input voltage range is 0 to V_{REF} (unipolar) and $-V_{REF}/2$ to $+V_{REF}/2$, centered at $V_{REF}/2$ (bipolar). The coding is straight binary in unipolar mode and twos complement in bipolar mode. Input signal range is to the supply and the part is capable of converting full-power signals to 400 kHz.

CMOS construction ensures low power dissipation . The part is available in 28-pin small outline (SOIC) and 28-lead small shrink outline (SSOP) packages.

FUNCTIONAL BLOCK DIAGRAM AVDD AGND

PRODUCT HIGHLIGHTS

- 1. Operation with either 3 V or 5 V power supplies.
- 2. Flexible power management options including automatic power-down after conversion. By using the power management options a superior power performance at slower throughput rates can be achieved:
- 3. Operates with reference voltages from 1.2 V to AV_{DD}.
- 4. Analog input ranges from 0 V to $AV_{\rm DD}$.
- 5. Self-calibration and system calibration.
- 6. Versatile parallel I/O port.

Prelim A 12/97

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

AD7855

$\begin{array}{l} \textbf{PRELIMINARY TECHNICAL DATA} \\ \textbf{AD7855-SPECIFICATIONS}^{1}, \ \ ^{2}_{(AV_{DD} = DV_{DD} = +3.0 \text{ V to } +5.5 \text{ V, REF}_{IN} = 2.5 \text{ V}} \\ \textbf{External Reference, } f_{\text{CLKIN}} = 12 \text{ MHz} \text{ ; } f_{\text{SAMPLE}} = 600 \text{ kHz} \text{ ; } T_{A} = T_{\text{MIN}} \text{ to } T_{\text{MAX}}, \text{ unless otherwise noted.)} \end{array}$

Parameter	A Version ¹	Units	Test Conditions/Comments
DYNAMIC PERFORMANCE			
Signal to Noise + Distortion Ratio ³	70	dB min	Typically SNR is 72 dB
(SNR)			$V_{IN} = 10$ kHz Sine Wave, $f_{SAMPLE} = 600$ kHz
Total Harmonic Distortion (THD)	_78	dB max	$V_{IN} = 10$ kHz Sine Wave, $f_{SAMPLE} = 600$ kHz
Peak Harmonic or Spurious Noise	-78	dB max	$V_{IN} = 10 \text{ kHz Sine Wave, } f_{SAMPLE} = 600 \text{ kHz}$
Intermodulation Distortion (IMD)			III Junited
Second Order Terms	_78	dB typ	$fa = 9.983 \text{ kHz}, fb = 10.05 \text{ kHz}, f_{SAMPLE} = 600 \text{ kHz}$
Third Order Terms	-78	dB typ	$fa = 9.983 \text{ kHz}, fb = 10.05 \text{ kHz}, f_{SAMPLE} = 600 \text{ kHz}$
DC ACCURACY			
Resolution	12	Bits	
Integral Nonlinearity	±1	LSB max	5 V Reference V _{DD} = 5 V
Differential Nonlinearity	±1	LSB max	Guaranteed No Missed Codes to 12 Bits
Unipolar Offset Error	±3	LSB max	
omponii onoti ziroi	±2	LSB typ	
Unipolar Gain Error	±4	LSB typ	
Ompoiat Gain Litti	±2	LSB max	
Bipolar Positive Full-Scale Error	±4	LSB typ	
Dipolar Positive Pun-Scale Effor	±2		
Nametine E-11 Carla E		LSB typ	
Negative Full-Scale Error	±4	LSB max	
D: 1 7 F	±2	LSB typ	
Bipolar Zero Error	±4	LSB max	
ANALOG INPUT			
Input Voltage Ranges	0 to V _{REF}	Volts	i.e., $AIN(+) - AIN(-) = 0$ to V_{REF} , $AIN(-)$ can be
			biased up but AIN(+) cannot go below AIN(-).
	±V _{REF} /2	Volts	i.e., $AIN(+) - AIN(-) = -V_{REF}/2$ to $+V_{REF}/2$, $AIN(-)$
			should be biased to $+V_{REF}/2$ and AIN(+) can go below
			AIN(-) but cannot go below 0 V.
Leakage Current	±1	μA max	1-2-(() 0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
Input Capacitance	20	pF typ	
		P - 23P	
REFERENCE INPUT			
REF _{IN} Input Voltage Range	$2.3/V_{ m DD}$	V min/max	Functional from 1.2 V
Input Impedance	150	kΩ typ	
LOGIC INPUTS			
Input High Voltage, V _{INH}	3	V min	$AV_{DD} = DV_{DD} = 4.5 \text{ V to } 5.5 \text{ V}$
input ingi (onego) (hui	2.1	V min	$AV_{DD} = DV_{DD} = 3.0 \text{ V to } 3.6 \text{ V}$
Input Low Voltage, V _{INL}	0.4	V max	$AV_{DD} = DV_{DD} = 4.5 \text{ V to } 5.5 \text{ V}$
input Low Voltage, VINL	0.6	V max	$AV_{DD} = DV_{DD} = 3.0 \text{ V}$ to 3.6 V
Input Current, I _{IN}	±10	μA max	Typically 10 nA, $V_{IN} = 0$ V or V_{DD}
Input Capacitance, C _{IN} ⁴	10	pF max	Typicany 10 nA, $v_{\rm IN} = 0$ v or $v_{\rm DD}$
	-	P	
LOGIC OUTPUTS			T 200 4
Output High Voltage, V _{OH}	1.		$I_{SOURCE} = 200 \mu A$
	4	V min	$AV_{DD} = DV_{DD} = 4.5 \text{ V to } 5.5 \text{ V}$
	2.4	V min	$AV_{DD} = DV_{DD} = 3.0 \text{ V to } 3.6 \text{ V}$
Output Low Voltage, Vol.	0.4	V max	$I_{SINK} = 0.8 \text{ mA}$
Floating-State Leakage Current	±10	μA max	
Floating-State Output Capacitance ⁴	10	pF max	
Output Coding	Straight (Natural) Binary		Unipolar Input Range
	Twos Complement		Bipolar Input Range
CONVERSION RATE			t _{CLKIN} x 18
CONVERSION RATE Conversion Time	1.2	μs max	t _{CLKIN} x 18

PRELIMINARY TECHNICAL DATA

AD7855

Parameter	A Version ¹	Units	Test Conditions/Comments
POWER REQUIREMENTS			
AV_{DD} , DV_{DD}	+3.0/+5.5	V min/max	
$I_{ m DD}$			
Normal Mode ⁵	15	mA max	$AV_{DD} = DV_{DD} = 3.0 \text{ V to } 5.5 \text{ V. Typically } 12 \text{ mA}$
Sleep Mode ⁶			
With External Clock On	10	μA typ	Full power-down. Power management bits in control
			register set as PMGT1 = 1, PMGT0 = 0.
	400	μA typ	Partial power-down. Power management bits in
			control register set as PMGT1 = 1, PMGT0 = 1.
With External Clock Off	5	μA max	Typically 1 μA. Full power-down. Power management
			bits in control register set as PMGT1 = 1,
			PMGT0 = 0.
	200	μA typ	Partial power-down. Power management bits in
			control register set as PMGT1 = 1, PMGT0 = 1.
Normal Mode Power Dissipation	75	mW max	$V_{\rm DD}$ = 5.5 V: Typically 55 mW
	45	mW max	$V_{\rm DD}$ = 3.6 V: Typically 30 mW
Sleep Mode Power Dissipation			
With External Clock On With External Clock Off	55	μW typ	$V_{DD} = 5.5 \text{ V}$
	36	μW typ	$V_{DD} = 3.6 \text{ V}$
	27.5	μW max	$V_{DD} = 5.5 \text{ V: Typically } 5.5 \mu\text{W}$
	18	μW max	$V_{\rm DD}$ = 3.6 V: Typically 3.6 μ W
SYSTEM CALIBRATION			
Offset Calibration Span ⁷	$+0.05 \propto V_{REF}/-0.05 \propto V_{REF}$		V max/min Allowable Offset Voltage Span for Calibration
Gain Calibration Span ⁷	$+0.025 \propto V_{REF}/-0.025 \propto V_{REF}$		V max/min Allowable Full-Scale Voltage Span for Calibration

NOTES

Specifications subject to change without notice.

¹Temperature range -40°C to +85°C.

²Specifications apply after calibration.

³Not production tested. Guaranteed by characterization at initial product release.

⁴Sample tested @ +25°C to ensure compliance.

⁵All digital inputs @ DGND except for CONVST @ DV_{DD}. No load on the digital outputs. Analog inputs @ AGND.

⁶CLKIN @ DGND when external clock off. All digital inputs @ DGND except for CONVST @ DV_{DD}. No load on the digital outputs. Analog inputs @ AGND

 $^{^{7}}$ The offset and gain calibration spans are defined as the range of offset and gain errors that the AD7855 can calibrate. Note also that these are voltage spans and are not absolute voltages (i.e., the allowable system offset voltage presented at AIN(+) for the system offset error to be adjusted out will be AIN(−) ±0.05 ∞ V_{REF}, and the allowable system full-scale voltage applied between AIN(+) and AIN(−) for the system full-scale voltage error to be adjusted out will be V_{REF} ± 0.025 ∞ V_{REF} (unipolar mode) and V_{REF}/2 ± 0.025 ∞ V_{REF} (bipolar mode)). This is explained in more detail in the calibration section of the data sheet.