

Algebraic Simplification

- Place the expression in SOP form by applying DeMorgan's theorems and multiplying terms.
- Check the SOP form for common factors and perform factoring where possible.
- Note that this process may involve some trial and error to obtain the simplest result.

Ce 2019

Designing Combinational Logic Circuits

- To solve any logic design problem:
 - Interpret the problem and set up its truth table.
 - Write the AND (product) term for each case where the output equals 1.
 - Combine the terms in SOP form.
 - Simplify the output expression if possible.
 - Implement the circuit for the final, simplified expression.

Karnaugh Map Method

- A graphical method of simplifying logic equations or truth tables. Also called a K map.
- Theoretically can be used for any number of input variables, but practically limited to 5 or 6 variables.

Karnaugh Map Method

- The truth table values are placed in the K map.
- Adjacent K map square differ in only one variable both horizontally and vertically.
- The pattern from top to bottom and left to right must be in the form \(\overline{AB}\),\(\overline{AB}\),\(\overline{AB}\),\(\overline{AB}\),\(\overline{AB}\),\(\overline{AB}\),\(\overline{AB}\).
- A SOP expression can be obtained by ORing all squares that contain a 1.

Karnaugh Map Method

- Looping adjacent groups of 2, 4, or 8 1s will result in further simplification.
- When the largest possible groups have been looped, only the common terms are placed in the final expression.
- Looping may also be wrapped between top, bottom, and sides.

- Complete K map simplification process:
 - Construct the K map, place 1s as indicated in the truth table.
 - Loop 1s that are not adjacent to any other 1s.
 - Loop 1s that are in pairs
 - Loop 1s in octets even if they have already been looped.
 - Loop quads that have one or more 1s not already looped.
 - Loop any pairs necessary to include 1st not already looped.
 - Form the OR sum of terms generated by each loop.

Terminology: Minterms

- A minterm is a special product of literals, in which each input variable appears exactly once.
- A function with n variables has 2ⁿ minterms (since each variable can appear complemented or not)
- A three-variable function, such as f(x,y,z), has $2^3 = 8$ minterms:

```
x'y'z' x'y'z x'yz' x'yz
xy'z' xy'z xyz' xyz
```

• Each minterm is true for exactly one combination of inputs:

Minterm	Is true when	Shorthan
x'y'z'	x=0, y=0, z=0	m_0
x'y'z	x=0, y=0, z=1	m_1
x'yz'	x=0, y=1, z=0	m_2
x'yz	x=0, y=1, z=1	m_3
xy'z'	x=1, y=0, z=0	m_4
xy'z	x=1, y=0, z=1	m_5
xyz'	x=1, y=1, z=0	m_6
xyz	x=1, y=1, z=1	m ₇

Terminology: Sum of minterms form

- Every function can be written as a sum of minterms, which is a special kind of sum of products form
- The sum of minterms form for any function is unique
- If you have a truth table for a function, you can write a sum of minterms expression just by picking out the rows of the table where the function output is 1.

×	у	Z	f(x,y,z)	f'(x,y,z)
0	0	0	1	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	1
1	0	1	0	1
1	1	0	1	0
1	1	1	0	1

f = x'y'z' + x'y'z + x'yz' + x'yz + xyz' $= m_0 + m_1 + m_2 + m_3 + m_6$ $= \Sigma m(0,1,2,3,6)$

f' = xy'z' + xy'z + xyz= $m_4 + m_5 + m_7$ = $\Sigma m(4,5,7)$

f' contains all the minterms not in f

22

Minterms and Maxterms & Binary representations

А	В	С	Min- terms	Max- terms
0	0	0	Ā.Ē.C	A + B + C
0	0	1	Ā.Ē.C	$A + B + \overline{C}$
0	1	0	Ā.B.C	$A + \overline{B} + C$
0	1	1	Ā.B.C	$A + \overline{B} + \overline{C}$
1	0	0	A.B.C	$\overline{A} + B + C$
1	0	1	A.B.C	$\overline{A} + B + \overline{C}$
1	1	0	A.B.C	$\overline{A} + \overline{B} + C$
1	1	1	A.B.C	$\overline{A} + \overline{B} + \overline{C}$

dce

SOP-POS Conversion

- Minterm values present in SOP expression not present in corresponding POS expression
- Maxterm values present in POS expression not present in corresponding SOP expression
- Relationship between minterm m_i and maxterm M_i:
 - For f(A,B,C), $(m_1)' = (A'B'C)' = A + B + C' = M_1$
 - In general, $(m_i)' = M_i$ $(Mi)' = ((m_i)')' = m_i$

dce 2019

SOP-POS Conversion

• Canonical Sum $\sum_{A,B,C} (0,2,3,5,7)$

$$\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

• Canonical Product $\prod_{A,B,C} (1,4,6)$

$$(A+B+\overline{C})(\overline{A}+B+C)(\overline{A}+\overline{B}+C)$$

• $\Sigma_{A,B,C}(0,2,3,5,7) = \prod_{A,B,C}(1,4,6)$

Boolean Expressions and Truth Tables

- Standard SOP & POS expressions converted to truth table form
- Standard SOP & POS expressions determined from truth table

26

SOP-Truth Table Conversion

$$A\overline{B} + BC$$

$$\Sigma_{A,B,C}(3,4,5,7) = \overline{A}BC + A\overline{B}\overline{C} + A\overline{B}C + ABC$$

Input			Output
Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

POS-Truth Table Conversion

$$(A + \overline{B})(B + \overline{C})$$
 $\Pi_{A,B,C}(1,2,3,5)$

$$= (A + B + \overline{C})(A + \overline{B} + C)(A + \overline{B} + \overline{C})(\overline{A} + B + \overline{C})$$

Input			Output
Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

- Forming of Groups of 0s
- Each group represents sum term

Summary Sop and POS –useful forms of Boolean equations Design of a comb. Logic circuit (1) construct its truth table, (2) convert it to a SOP, (3) simplify using Boolean algebra or K mapping, (4) implement K map: a graphical method for representing a circuit's truth table and generating a simplified expression "Don't cares" entries in K map can take on values of 1 or 0. Therefore can be exploited to help simplification

Basic Characteristics of Digital ICs Power (referred to as V_{CC}) and ground connections are required for chip operation. V_{CC} for TTL devices is normally +5 V. V_{DD} for CMOS devices can be from +3 to +18 V. 5.0 V LOGIC 1 LOGIC 1 35 V Indeterminate Indeterminate 1.5 V 0.8 V LOGIC 0 LOGIC 0 *V_{DD} = + 5 V

Internal Digital IC Faults

- Most common internal failures:
 - Malfunction in the internal circuitry.
 - Inputs or outputs shorted to ground or V_{CC}
 - Inputs or outputs open-circuited
 - Short between two pins (other than ground or $V_{\rm CC}$)

5

Internal Digital IC Faults

- Malfunction in internal circuitry
 - Outputs do not respond properly to inputs. Outputs are unpredictable.
- Input internally shorted to ground or supply
 - The input will be stuck in LOW or HIGH state.
- Output internally shorted to ground or supply
 - Output will be stuck in LOW or HIGH state.
- · Open-circuited input or output
 - Floating input in a TTL device will result in a HIGH output.
 Floating input in a CMOS device will result in erratic or possibly destructive output.
 - An open output will result in a floating indication.
- Short between two pins
 - The signal at those pins will always be identical.

54

External Faults

- Open signal lines signal is prevented from moving between points. Some causes:
 - Broken wire
 - Poor connections (solder or wire-wrap)
 - Cut or crack on PC board trace
 - Bent or broken IC pins.
 - Faulty IC socket
- Detect visually and verify with an ohmmeter.

External Faults

- Shorted signal lines the same signal will appear on two or more pins. V_{CC} or ground may also be shorted. Some causes:
 - Sloppy wiring
 - Solder bridges
 - Incomplete etching
- Detect visually and verify with an ohmmeter.

dce

External Faults

- Faulty power supply ICs will not operate or will operate erratically.
 - May lose regulation due to an internal fault or because circuits are drawing too much current.
 - Always verify that power supplies are providing the specified range of voltages and are properly grounded.
 - Use an oscilloscope to verify that AC signals are not present.

External Faults

- Output loading caused by connecting too many inputs to the output of an IC.
 - Causes output voltage to fall into the indeterminate range.
 - This is called *loading* the output.
 - Usually a result of poor design or bad connection.

