UNrolled Generalized EM for Transductive Few-Shot Learning

Application to Bowel Obstruction diagnosis.

Abdelbaki GUIR, Kaiyuan XU

M2 ATSI Paris-Saclay University

Supervisors: Pr.Emilie Chouzenoux, Dr.Quentin VANDERBECQ.

Table of Contents

- Introduction
- 2 Preliminary
- Methodology
 - Data generation
 - Task Preparation
- Result & Conclusion

Table of Contents

- Introduction
- 2 Preliminary
- Methodology
 - Data generation
 - Task Preparation
- Result & Conclusion

Introduction

- Deep learning has revolutionized medical imaging classification, enabling automated diagnosis with high accuracy.
- What if we have a limited labeled medical images,

Figure: Small Bowel Obstruction ¹

¹Lienemann, A., Kirchhoff, S. (2010). MRI of Adhesions and Small Bowel Obstruction.

Table of Contents

- Introduction
- 2 Preliminary
- Methodology
 - Data generation
 - Task Preparation
- 4 Result & Conclusion

2.1 Few-shot learning (FSL)

Few-shot learning (FSL) focuses on training models to generalize to new tasks with very **few labeled** examples.

- **Support set:** Few labeled examples for training. ($\mathbb{S} \subset \{1, \dots, N\}$)
- Query set: Unlabeled examples to classify. $(\mathbb{Q} \subset \{1, ..., N\} \setminus \mathbb{S})$
- **Inductive FSL:** Predicts each query sample independently of others.
- Transductive FSL: Uses the statistics of all unlabeled query samples collectively for improved accuracy.

2.2 Hyperparameters for Regularization in Transductive FSL

Class Balance λ : Shannon entropy of class distribution (Class Balance) $\Psi(u)$

Temperature Scaling T: Entropic barrier (Prediction entropy) $\Phi(u)$

2.3 Unrolling

Manually tuning these hyperparameters is computationally expensive and dataset-specific. \rightarrow learning to optimize

- Parameters of the algorithm become trainable variables in the network.
- Maps each iteration of an algorithm to a neural network layer.

3.4 Maximum likelihood - Expectation Maximization (EM) Algorithm

E-step

Expectation
$$Q(\theta|\theta^{(p)}) = \mathbb{E}\left[L(\theta,n)\middle|m,\theta^{(p)}\right]$$
, with $L(\theta,n) := \log p(n|\theta)$

M-step

$$\text{Maximization } \theta^{(p+1)} = \arg\max_{\theta \in \Theta} Q(\theta|\theta^{(p)})$$

- 《ロ》《御》《意》《意》 (章) のQで

2.5 Generalized

Gaussian distribution: image (vision)

$$p(\boldsymbol{z}_n \mid \boldsymbol{\theta}_k) \propto \exp\left(-\frac{1}{2}\|\boldsymbol{z}_n - \boldsymbol{\theta}_k\|^2\right).$$

Dirichlet distribution: image + text (vision-language)

$$p(\boldsymbol{z}_n \mid \boldsymbol{\theta}_k) = \frac{1}{\mathcal{B}(\boldsymbol{\theta}_k)} \prod_{i=1}^K z_{n,i}^{\theta_{k,i}-1} \mathbb{I}_{\boldsymbol{z}_n \in \Delta_K},$$

with the normalization factor $\mathcal{B}(\theta_k)$

$$\mathcal{B}(\boldsymbol{\theta}_k) = \frac{\prod_{i=1}^K \Gamma(\boldsymbol{\theta}_{k,i})}{\Gamma\left(\sum_{i=1}^K \boldsymbol{\theta}_{k,i}\right)}.$$

40 14 4 4 5 1 4 5 1 5 00 0

5 Mar. 2025 8 / 23

Notations

 $\mathbb{S} \subset \{1,\dots,\mathit{N}\}$: Indices of samples within Support (labeled)

 $\mathbb{Q} \subset \{1,\dots,\textit{N}\} \setminus \mathbb{S}$: Indices of samples within Query (unlabeled)

 y_n : One-hot-encoding of the label

 z_n : Feature vectors

 $u_{n,k}$: Soft-Assignment vectors (Probability that the n-th sample belongs to k-th class)

 $p(z_n \mid \theta_k)$: Pdf of z_n given that it belongs to class k, with θ_k the Feature distribution parameter

i

Problem formulation

$$\label{eq:local_equation} \begin{split} & \underset{\mathbf{u},\theta}{\text{minimize}} \quad \mathcal{L}(\mathbf{u},\theta) + \lambda \Psi(\mathbf{u}) + \mathcal{T}\Phi(\mathbf{u}), \\ & \text{subject to} \quad \mathbf{u}_n \in \Delta_K \quad \forall n \in \mathcal{Q}, \\ & u_{n,k} = y_{n,k} \quad \forall n \in \mathcal{S}, \forall k \in \{1,\dots,K\}. \end{split}$$

Terms:

Negative Log-Likelihood ($L(u, \theta)$): Fits query data (z_n) to class distributions (θ_k):

$$L(u,\theta) = -\sum_{n=1}^{N} \sum_{k=1}^{K} u_{n,k} \ln p(z_n | \theta_k)$$

Olimitaria Class Balance Regularization ($\Psi(u)$): Promotes balanced clustering:

$$\Psi(u) = -\sum_{k=1}^{K} \pi_k \ln \pi_k, \quad \pi_k = \frac{1}{|Q|} \sum_{n \in Q} u_{n,k}$$

Solution Entropy Regularization ($\Phi(u)$): Encourages soft, non-confident assignments:

$$\Phi(u) = \sum_{n=1}^{N} \sum_{k=1}^{K} u_{n,k} \ln u_{n,k}$$

Remarks

- **1** T = 1 and $p(z_n \mid \theta_k) \sim \text{Dirichlet distribution}$: Transductive FSL
- ② T=1 and $\lambda=\frac{1}{|\mathbb{D}|}$: EM algorithm

Algorithm 1 GEM based few-shot classification algorithm

Input: Compute z_n for the dataset samples, initialize $u_n^{(0)}$ and $\theta_k^{(0)}$, and fix the number of iterations L,

for
$$\ell = 0, 1, ..., L - 1$$
 do

// Update Distribution parameters for each class using a given an estimation algorithm (denoted here by "DP_est")

$$\boldsymbol{\theta}_{k}^{(\ell^{-1})} = \mathrm{DP}_{-\mathrm{est}}(\boldsymbol{u}_{\cdot,k}^{(\ell)}, \boldsymbol{\theta}_{k}^{(\ell)}), \quad \forall k \in \{1, \dots, K\},$$

// Update class proportions

$$\underline{\boldsymbol{\pi}_{k}^{(\ell+1)}} = \frac{1}{|\mathbb{Q}|} \sum_{n \in \mathbb{Q}} u_{n,k}^{(\ell)}, \quad \forall k \in \{1, \dots, K\},$$

// Update assignment vectors for all query samples

$$\mathbf{z}_n^{(\ell+1)}) = \operatorname{softmax} \left(\frac{1}{T} \left(\ln \operatorname{p} \left(\mathbf{z}_n \mid \boldsymbol{\theta}_k^{(\ell+1)} \right) + \frac{\lambda}{|\mathbb{Q}|} \ln(\pi_k^{(\ell+1)}) \right)_k \right), \quad \forall n \in \mathbb{Q}.$$

end for

Figure: GEM based few-shot classification algorithm. cf. p.5 (https://arxiv.org/abs/2412.16739v1)

Figure: An overview of the unrolled GEM algorithm for a given iteration. cf. p.5 (https://arxiv.org/abs/2412.16739v1)

Each EM iteration becomes a neural network layer :

Figure: Overall architecture of the designed UNEM. cf. p.6 (https://arxiv.org/abs/2412.16739v1)

 $a^{(\ell)}$: a learnable parameter for the unrolled architecture

$$\lambda^{(\ell)} = \mathsf{Softplus}(a^{(\ell)}) = \mathsf{log}(1 + \mathsf{exp}(a^{(\ell)}))$$

 $b^{(\ell)}$: a parameter that needs to be learned during the training of the unrolled model

$$T^{(\ell)} = 1 + \mathsf{Softplus}(b^{(\ell)}) = 1 + \mathsf{log}(1 + \mathsf{exp}(b^{(\ell)}))$$
 . It is a simple of the second seco

5 Mar. 2025 13 / 23

Table of Contents

- Introduction
- 2 Preliminary
- Methodology
 - Data generation
 - Task Preparation
- 4 Result & Conclusion

Dataset creation

 The provided dataset was a result of passing Resnet feature extractor bunch of abdominal CT scans, to get a tabular dataset for the classification,

Dataset creation

 The provided dataset was a result of passing Resnet feature extractor bunch of abdominal CT scans, to get a tabular dataset for the classification,

Figure: Dataset creation diagram.

For our tasks we will be creating 3 differents tasks :

• Support Set: A small number of labeled examples for each class (5, 10, 20 shots).

For our tasks we will be creating 3 differents tasks:

- Support Set: A small number of labeled examples for each class (5, 10, 20 shots).
- Query Set: Unlabeled examples that will be fixed at 2 exampels.

Figure: Tasks generations from the dataset.

Figure: Tasksfor each shot.

Below is training parameters for the UNEM model :

• $n_shots = [5,10,20] \rightarrow number of shots in the support sets,$

- n_shots = $[5,10,20] \rightarrow$ number of shots in the support sets,
- $k_{-}eff = 2 \rightarrow number of classes exisiting in the query set,$

- $n_shots = [5,10,20] \rightarrow number of shots in the support sets,$
- $k_{-}eff = 2 \rightarrow number of classes exisiting in the query set,$
- $k_{\text{-}}$ ways = 2 \rightarrow number of classes exisiting in the support set,

- n_shots = $[5,10,20] \rightarrow$ number of shots in the support sets,
- $k_{-}eff = 2 \rightarrow number of classes exisiting in the query set,$
- ullet k_ways =2
 ightarrow number of classes exisiting in the support set,
- queries $= [2] \rightarrow$ number of query samples in query sets.

- n_shots = $[5,10,20] \rightarrow$ number of shots in the support sets,
- $k_{eff} = 2 \rightarrow number of classes exisiting in the query set,$
- \bullet k_ways = 2 \to number of classes exisiting in the support set,
- queries = [2] \rightarrow number of query samples in query sets.
- device = 'cuda'

- n_shots = $[5,10,20] \rightarrow$ number of shots in the support sets,
- $k_{-}eff = 2 \rightarrow number of classes exisiting in the query set,$
- $k_{\text{-}}$ ways = 2 \rightarrow number of classes exisiting in the support set,
- queries = [2] \rightarrow number of query samples in query sets.
- device = 'cuda'
- ullet sampling = 'balanced' o Balanced classes in the query and support sets.

Table of Contents

- Introduction
- 2 Preliminary
- Methodology
 - Data generation
 - Task Preparation
- Result & Conclusion

• The model was trained in 17.44 seconds

Shots	Accuracy Score	Confusion Matrix	AUC
5	0.42	[25 37]	0.42
		[50 38]	
10	0.466	[34 39]	0.466
		41 36	
20	0.86	[59 5]	0.868
		16 70	

Table: Performance Metrics for Different tasks on the testing set.

Discussion

Thanks for your attention.