

总复习

第2章 线性规划与单纯形法

第1节 线性规划问题及其数学模型

第2节 线性规划问题的几何意义

第3节 单纯形法

第4节 单纯形法的计算步骤

第5节 单纯形法的进一步讨论

第6节 应用举例

第2章 线性规划与单纯形法

第1节 线性规划问题及其数学模型

第2节 线性规划问题的几何意义

第3节 单纯形法

第4节 单纯形法的计算步骤

第5节 单纯形法的进一步讨论

第6节 应用举例

单纯形法求解线性规划

- (1) 确定初始基可行解
 - 1)直接观察
 - 2)加松弛变量
 - 3)加非负的人工变量(大M法;两阶段法)
- (2) 最优性检验

(3) 基变换

(4) 迭代运算

(2) 最优性检验

- (i). 最优解的判别定理 对一切 j=m+1,...,n,有 $\sigma_{i}\leq 0$
- (ii).无穷多最优解判别定理 对一切 j = m+1, ..., n,有 $\sigma_{j} \le 0$,又存在 某个非基变量的检验数 $\sigma_{m+k} = 0$
- (iii). 无界解判别定理 有一个 $\sigma_{m+k} > 0$,并且对i=1, 2, ..., m,有 $a_{i,m+k} \leq 0$ 成立。

$$\sigma_j = c_j - \sum_{i=1}^m c_i a_{ij}, \quad j = m+1, m+2, \dots, n$$

(3) 基变换

若初始基可行解 $X^{(0)}$ 不是最优解或不能判别其无解时,需要找一个新的基可行解。

一个非基变量换入成为基变量。一个基变量换出成为非基变量。

(I) 换入变量的确定

(II) 换出变量的确定

$$\theta = \min_{i} \left\{ \frac{b_{i}}{a_{ik}} \mid a_{ik} > 0 \right\} = \frac{b_{i}}{a_{lk}}$$

则基变量x,成为非基变量。

(III) 迭代后的单纯形表

将单纯形表中第 1 行中的 x_i (换出变量)换成 x_k (换入变量),然后利用行初等变换将 P_k 中的第 1 个分量变成 1,而其余的分量变为 0。具体方法是:将单纯形表中的第 1 行除以 a_{ik} ,然后用 $-a_{ik}$ $(a_{ik} \neq 0)$ 乘以第 1 行后+第 i 行,这样就可得到新的单纯形表。

对目标函数求 Max的线性规划 问题,用单纯形 法计算步骤的框 图如右图。

第3章 对偶理论和灵敏度分析

第1节 单纯形法的矩阵描述

第2节 改进单纯形法

第3节 对偶问题的提出

第4节 线性规划的对偶理论

第5节 对偶问题的经济解释——影子价格

第6节 对偶单纯形法

第7节 灵敏度分析

第3章 对偶理论和灵敏度分析

第1节 单纯形法的矩阵描述

第2节 改进单纯形法

第3节 对偶问题的提出

第4节 线性规划的对偶理论

第5节 对偶问题的经济解释——影子价格

第6节 对偶单纯形法

第7节 灵敏度分析

原问题与对偶问题的关系

(1) 标准型原问题与对偶问题的关系(对称形式)

! 原问题(LP): $\max z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \leq \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

$$x_1, x_2, \cdots, x_n \ge 0$$

●对偶问题(DP)

$$\min \omega = y_1 b_1 + y_2 b_2 + \dots + y_m b_m$$

$$(y_{1}, y_{2}, \dots, y_{m}) \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \geq (c_{1}, c_{2}, \dots, c_{n})$$

$$y_1, y_2, \cdots, y_m \ge 0$$

(2) 非标准型原问题与对偶问题的关系(非对称形式)

- (i) 将模型统一为"max, ≤"或"min, ≥"的形式,然后按照标准型原问题与对偶问题的关系求解
- (ii) 按照原问题与对偶问题的对应关系规律求解

原问题	(或对偶问题)		对	偶问题 (或原问题)	
目标函数 max z			目标函数 min w			
n	\geq 0	极大的变量		n	≥	
个	≤0	브	5	个	<u>≤</u>	
变	无约束	极小的	约约束	约	=	
量		一致		束		
m	≥	极大的约束		m	≤0	
个	≤	与		个	≥0	
约	=	极小的变量		变	无约束	
束		相	反	量		
约束项右端			目标函数变量的系数			
目标函数变量的系数			约束项右端			

互补松弛性

若 \hat{x}, \hat{y} 分别为原问题和对偶问题的可行解,那么 \hat{x}, \hat{v} 优解。 和 $y_s \hat{x} = 0$ 当且仅当

$$\hat{y}x_s = 0$$

原问题和对偶问题的标准型是

x。是列向量, 分量个数与y 的分量个数 Ax ≤ b 相同

原问题

max z = Cx

$$Ax + x_s = b$$

$$x, x_s \ge 0$$

对偶问题

 $\min \omega = yb$

$$yA - y_S = C$$
 $yA \ge C$

$$y, y_s \ge 0$$

y。是行向量, 分量个数与x 的分量个数 相同

对偶单纯形法的计算步骤如下:

(1) 根据线性规划问题,列出初始单纯形表。检查b列的数字,若都为非负,检验数都为非正,则已得到最优解。停止计算。若检查b列的数字时,至少还有一个负分量,检验数保持非正,那么进行以下计算。

(2) 确定换出变量

按min $\{(B^{-1}b)_i \mid (B^{-1}b)_i < 0\} = (B^{-1}b)_i$ 对应的基变量 x_i 为换出变量

(3) 确定换入变量

在单纯形表中检查 x_l 所在行的各系数 $\alpha_{lj}(j=m+1, m+2, ..., n)$ 。

若所有 $\alpha_{li} \geq 0$,则无可行解,停止计算.

若存在 $a_{lj} < 0$ (j=m+1,...,n),计算 $\theta = \min_{j} \left(\frac{c_{j}-z_{j}}{a_{lj}} | a_{lj} < 0 \right) = \frac{c_{k}-z_{k}}{a_{lk}}$ 按0规则所对应的列的非基变量 x_{k} 为换入变量,这样才能保持得到的对偶问题解仍为可行解。

$$\begin{split} b_l &= x_l + a_{l,m+1} x_{m+1} + a_{l,m+2} x_{m+2} + \dots + a_{l,n} x_n \\ b_l &< 0, \ \overline{m} a_{l,m+1}, a_{l,m+2}, \dots, a_{l,n} \geq 0, \ \overline{m} \ \overline{n} \ \overline{$$

单纯形法 对偶单纯形法 对应原规划的基本 对应原规划的基本 解的检验数 解是可行的 是 是 得到 所有 $b_i \ge 0$ 所有 $\sigma_i \leq 0$ 最优解 否 否 计算 $\sigma_k = \max(\sigma_i | \sigma_i > 0)$ 计算 $b_e = \min(b_i|b_i < 0)$ 停 没 没 是 是 有 有 所有 $a_{ik} \leq 0$ 所有 $a_{ei} \ge 0$ 最 可 优 行 否 否 解 解 计算 计算 $\langle \frac{\sigma_j}{-} | a_{ej} < 0 \rangle$ $\frac{\partial}{\partial a_{ik}} = \min \left\{ \frac{b_i}{a_{ik}} > 0 \right\}$ $\theta = \min \{$ 以 a_{ek} 为主元素进行迭代

灵敏度分析

- (1) 资源数量变化的分析
- (2) 目标函数中价值系数 c_i 的变化分析
- (3) 技术系数 α_{ij} 的变化

当这些系数有一个或几个发生变化时,为了保持最优基(或最优解),这些数据变化的范围;

当这些数据的变化超出了范围,如何作微小的调整,在原有的最优基(或最优解)的基础上求出新的最优基(或最优解)。

系数发生变化后原问题与对偶问题的变化情况

第4章 运输问题

第1节 运输问题的数学模型 第2节 表上作业法 第3节 产销不平衡的运输问题及其求解方法

第4节 应用举例

第1节 运输问题的数学模型

第2节 表上作业法

第3节 产销不平衡的运输问题及其求解方法

第4节 应用举例

- 表上作业法是单纯形法在求解运输问题时的一种简化方法,其实质是单纯形法。但具体计算和术语有所不同。可归纳为:
- (1) 找出初始基可行解。即在 $(m \times n)$ 产销平衡表上用最小元素法,Vogel法给出 m + n 1个数字,称为数字格。它们就是初始基变量的取值。
- (2) 求各非基变量的检验数,即在表上用闭回路法、位势法计算空格的检验数,判别是否达到最优解。如已是最优解,则停止计算,否则转到下一步。
- (3) 确定换入变量和换出变量,找出新的基可行解。在表上用闭 回路法调整。
- (4) 重复(2), (3)直到得到最优解为止。

第5章 目标规划

第1节 目标规划的数学模型

第2节 解目标规划的图解法

第3节 解目标规划的单纯形法

第4节 灵敏度分析

第5节 应用举例

目标规划的一般数学模型为

目标函数:
$$\min z = \sum_{l=1}^{L} P_l \sum_{k=1}^{K} (\omega_{lk}^- d_k^- + \omega_{lk}^+ d_k^+)$$
 (5-1)

$$\int_{j=1}^{n} c_{kj} x_{j} + d_{k}^{-} - d_{k}^{+} = g_{k}, \quad k = 1, \dots, K \quad (5-2)$$

满足约束条件:
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \leq (=, \geq) b_{i}, & i = 1, \dots, m \\ x_{j} \geq 0, & j = 1, \dots, n \\ d_{k}^{-}, d_{k}^{+} \geq 0, & k = 1, 2, \dots, K \end{cases}$$
 (5-3)

$$x_{j} \ge 0, \quad j = 1, \dots, n \tag{5-4}$$

$$d_k^-, d_k^+ \ge 0, \quad k = 1, 2, \dots, K$$
 (5-5)

 $\omega_{lk}^{-},\omega_{lk}^{+}$ 为权系数。

建立目标规划的数学模型时, 需要确定目标值、优先等级、权系数 等,它都具有一定的主观性和模糊性,可以用专家评定法给以量化。

第6章整数规划

第1节 整数线性规划问题的提出

第2节 分支定界解法

第3节 割平面解法

第4节 0-1型整数线性规划

第5节 指派问题

现把求一个切割方程的步骤归纳如下:

(1) 令 x_i 是相应线性规划最优解中为分数值的一个基变量,由单纯形表的最终表得到

$$x_i + \sum_j a_{ij} x_j = b_i \tag{i}$$

其中i∈ Q(Q指构成基变量号码的集合) j∈ K(K指构成非基变量号码的集合)

- (2) 取某一非整数的 $x_{i,j}$ 将 b_i 和 α_{ij} 都分解成整数部分N与非负真分数f 之和,即
- \mathbf{P}_{i} \mathbf{P}_{i} \mathbf{P}_{i} \mathbf{P}_{i} \mathbf{P}_{i}
- $\mathbf{Q}_{ij} = \mathbf{N}_{ij} + \mathbf{f}_{ij}$, 其中 $0 \le \mathbf{f}_{ij} < 1$
- ? 而N表示不超过b的最大整数。例如: 若b=2.35, 则N=2, f=0.35
- ?代入(i)式得

$$x_i + \sum_k N_{ik} x_k - N_i = f_i - \sum_k f_{ik} x_k$$

(3) 得切割方程 $f_i - \sum_{i} f_{ik} x_k \leq 0$

之后可以用对偶单纯形法继续计算

例1. 将线性规划模型转化为标准型

MinZ=
$$x_1+2x_2-3x_3$$

 $x_1+x_2+x_3 \le 9$
 $-x_1-2x_2+x_3 \ge 2$
 $3x_1+x_2-3x_3=5$
 $x_1 \le 0, x_2 \ge 0,$
 x_3 无约束

$$x_1 = -x_1', x_3 = x_3' - x_3'', Z = -Z'$$

标准型为

$$Max Z'=x_{1}'-2x_{2}+3(x_{3}'-x_{3}'')$$

$$\begin{cases} -x_{1}'+x_{2}+x_{3}'-x_{3}''+x_{4} = 9 \\ x_{1}'-2x_{2}+x_{3}'-x_{3}''-x_{5} = 2 \\ -3x_{1}'+x_{2}-3(x_{3}'-x_{3}'') = 5 \\ x_{1}', x_{2}, x_{3}', x_{3}'', x_{4}, x_{5} \ge 0 \end{cases}$$

- 例2 某厂生产三种产品受到两种原材料的限制。为求最大利润,求得最终单纯形表如下表所示。其中 x_a , x_5 为松驰变量。
 - (1) 利用最终单纯形表求各产品的单位销售价格 c_1 , c_2 , c_3 。
 - (2) c_3 增加到多少,仍能使现行计划保持最优。
 - (3) 计算这两种原料的影子价格,如果能以每单位2元的价格在市场上购入更多的原料 b_2 ,是否合算?又若 b_2 的价格为5元呢?

		c ₁	c ₂	c ₃	0	0	
			x ₁	X ₂	X3	X ₄	Х5
c_1	X ₁	1	1	0	1	3	-1
c ₂	X2	2	0	1	1	-1	2
		8	0	0	-4	-3	-4

解(1)利用最终单纯形表 x_4 , x_5 的检验数,

 $0-3c_1+c_2=-3$ 及 $0+c_1-2c_2=-4$ 解得, $c_1=2$, $c_2=3$ 。

利用最终单纯形表 x_3 的检验数 $\sigma_3 = c_3 - c_1 - c_2 = -4$, $c_3 = 1$ 。

- 例2 某厂生产三种产品受到两种原材料的限制。为求最大利润,求得最终单纯形表如下表所示。其中 x_a , x_5 为松驰变量。
 - (1) 利用最终单纯形表求各产品的单位销售价格 c_1 , c_2 , c_3 。
 - (2) c_3 增加到多少,仍能使现行计划保持最优。
 - (3) 计算这两种原料的影子价格,如果能以每单位2元的价格在市场上购入更多的原料 b_2 ,是否合算?又若 b_2 的价格为5元呢?

		c ₁	c ₂	c ₃	0	0	
			x ₁	X ₂	X3	X4	Х5
c ₁	XI	1	1	0	1	3	-1
c ₂	X ₂	2	0	1	1	-1	2
		8	0	0	-4	-3	-4

 $c_1 = 2, c_2 = 3$

 \mathbf{m} (2) c_3 为非基变量的目标函数系数,则 c_3 的改变只是影响 x_3 的检验数,

 $\sigma_3 = c_3 - c_1 - c_2 = c_3 - 5 \le 0$, $c_3 \le 5$ 仍能使现行计划保持最优。

- 例2 某厂生产三种产品受到两种原材料的限制。为求最大利润,求得最终单纯形表如下表所示。其中 x_a , x_5 为松驰变量。
 - (1) 利用最终单纯形表求各产品的单位销售价格 c_1 , c_2 , c_3 。
 - (2) c_3 增加到多少,仍能使现行计划保持最优。
 - (3) 计算这两种原料的影子价格,如果能以每单位2元的价格在市场上购入更多的原料 b_2 ,是否合算?又若 b_2 的价格为5元呢?

			c ₁	c ₂	c ₃	0	0
			x ₁	X ₂	X3	X ₄	X ₅
c ₁	Xı	1	1	0	1	3	-1
c ₂	X2	2	0	1	1	-1	2
		8	0	0	-4	-3	-4

解(3)两种原料影子价格分别为3和4。 $若b_2$ 的市场价格为2,合算;为5,则不合算。

例3设有线性规划

$$\max z = 2x_1 + 3x_2$$

$$\begin{cases} x_1 + 2x_2 + x_3 &= 8\\ 4x_1 &+ x_4 &= 16\\ 4x_2 &+ x_5 = 12\\ x_j \ge 0, j = 1, ..., 5 \end{cases}$$

先用单纯形法求最优解,然后分析下列条件下最优解的变化?

- ((1))第一个约束条件的右端常数由8变成12;
- ((2))约束条件中 X_1 的系数列向量由 $(1,4,0)^T$ 变成 $(2,5,2)^T$
- (3)目标函数中系数 c_1 由2变成4。

下表是某求极大化线性规划问题计算得到的单纯形表。 表中无人工变量,

 a_1 、 a_2 、 a_3 、d、 c_1 、 c_2 为待定常数。试说明这些常数分别取何值时,以 下结论成立。

(1) 表中解为唯一最优解;

$$d \ge 0$$
, $c_1 < 0$, $c_2 < 0$

(2) 表中解为最优解,但存在无穷多最优解; $d \geq 0, \quad c_1 \leq 0, \quad c_2 \leq 0, \quad c_1c_2 = 0$

$$d \ge 0$$
, $c_1 \le 0$, $c_2 \le 0$, $c_1 c_2 = 0$

(3) 该线性规划问题无最优解; $d \ge 0$, $a_1 \le 0$, $c_2 > 0$

$$d \ge 0, \quad a_1 \le 0, \quad c_2 > 0$$

(4) 表中解非最优,为对解改进,换入变量为 x_1 ,换出变量为 x_6 。

基 b	<i>x</i> ₁	$a_3d \ge$:12,	$a_3 > 0$,	$c_1 > c_1$	c_2, c_1	> 0
x_3 d	4	a_1	1	0	a_2	0	
x ₄ 2	-1	-3	0	1	-1	0	
x ₆ 3	a_3	-5	0	0	-4	1	
	c_1	c_2	0	0	-3	0	

例5 写出线性规划化的对偶问题

$$\max z = 7x_1 - 4x_2 + 3x_3$$

$$\begin{cases} 4x_1 + 2x_2 - 6x_2 \le 24 \\ 3x_1 - 6x_2 - 4x_3 \ge 15 \\ 5x_2 + 3x_3 = 30 \\ x_1 \ge 0, x_3 \le 0, x_2$$
无约束

极大的变量 极小的约束 一致 极大的约束

极小的变量 相反

$$\min w = 24y_1 + 15y_2 + 30y_3$$

$$\begin{cases} 4y_1 + 3y_2 & \geq 7 \\ 2y_1 - 6y_2 + 5y_3 & = -4 \\ -6y_1 - 4y_2 + 3y_3 & \leq 3 \\ y_1 \geq 0, y_2 \leq 0, y_3$$
无约束

例6 已知线性规划的最优解为 $x^*=(0,0,4,4)$ T。试利用互补松

弛定理求对偶问题最优解
$$\hat{y}_{x_s} = 0$$
 1 $y_s \hat{x} = 0$ 当且仅当 \hat{x}_s, \hat{y} 优解。

$$\max \quad z = x_1 + 2x_2 + 3x_3 + 4x_4$$

$$\begin{cases} x_1 + 2x_2 + 2x_3 + 3x_4 \le 20 & (1a) \\ 2x_1 + x_2 + 3x_3 + 2x_4 \le 20 & (1b) \\ x_1 - x_2 + x_3 - x_4 \le 1 & (1c) \\ x_1, x_2, x_3, x_4 \ge 0 & \blacksquare \end{cases}$$

解 对偶问题为

min
$$w = 20y_1 + 20y_2 + y_3$$

$$\int y_1 + 2y_2 + y_3 \ge 1$$
 (2a)

$$2y_1 + y_2 - y_3 \ge 2 \qquad (2b)$$

$$\{2y_1 + 3y_2 + y_3 \ge 3 \quad (2c)$$

$$3y_1 + 2y_2 - y_3 \ge 4 \quad (2d)$$

$$y_1, y_2, y_3 \ge 0$$

故对偶最优解为:

$$Y^*= (6/5, 1/5, 0), z^*=w^*=28$$

由于 $x_3*=x_4*=4>0$,是松约束, 故(2c)与(2d)是紧约束, 即对Y*成立等式:

$$\begin{cases} 2y_1^* + 3y_2^* + y_3^* = 3 \\ 3y_1^* + 2y_2^* - y_3^* = 4 \end{cases}$$

把x*代入原问题三个约束中,可 知(1c)是松的,故 y_3 *=0,然后 解方程组:

$$\begin{cases} 2y_1^* + 3y_2^* = 3 \\ 3y_1^* + 2y_2^* = 4 \end{cases}$$
得到
$$\begin{cases} y_1^* = 3 \\ y_2^* = 3 \end{cases}$$

例7 已知线性规划问题:

Max
$$z = 2x_1 + x_2 + 5x_3 + 6x_4$$
 对偶变量 $2x_1 + x_3 + x_4 \le 8$ y_1 $2x_1 + 2x_2 + x_3 + 2x_4 \le 12$ y_2

其对偶问题的最优解为 $y_1^* = 4$ $y_2^* = 1$ 试应用对偶问题的性质,求原问题的最优解。

 $x_i \ge 0$ $j = 1, \dots, 4$

解 对偶问题为

min
$$w = 8y_1 + 12y_2$$

$$\begin{cases} 2y_1 + 2y_2 \ge 2 \\ 2y_2 \ge 1 \end{cases}$$

$$\begin{cases} y_1 + y_2 \ge 5 \\ y_1 + 2y_2 \ge 6 \end{cases}$$

$$\begin{cases} y_1, y_2 \ge 0 \end{cases}$$

$$x_3^* + x_4^* = 8$$
$$x_3^* + 2x_4^* = 12$$

例8 用对偶单纯形法求解下面线性规划

$$\max Z = -x_1 - x_2$$

$$\begin{cases} -2x_1 - x_2 + x_3 = -2 \\ x_1 + \frac{1}{2}x_2 + x_4 = -1 \\ x_j \ge 0, j = 1, 2, 3, 4 \end{cases}$$

			-1	-1	0	0	
c_B	x_B	$B^{-1}b$	x_1	x_2	x_3	x_4	
0	x_3	-2	(-2)	-1	1	0	
0	x_4	-1	1	1/2	0	1	
	σ		-1	-1	0	0	

$$\theta = \min \left\{ \frac{\sigma_j}{a_{ej}} \middle| a_{ej} < 0 \right\} = \frac{\sigma_k}{a_{ek}} \qquad b_e = \min \left(b_i \middle| b_i < 0 \right)$$

素皆非负,因此,原规划没有可行解。

例9 求解线性规划:

Max
$$z = 2x_1 + 3x_2 - 5x_3$$

 $x_1 + x_2 + x_3 = 7$
 $2x_1 - 5x_2 + x_3 \ge 10$
 $x_1, x_2, x_3 \ge 0$

$$x_3 = 7 - x_1 - x_2$$

Max
$$z = 2x_1 + 3x_2 - 5(7 - x_1 - x_2) = 7x_1 + 8x_2 - 35$$

Max
$$z = 7x_1 + 8x_2$$

$$x_1 + x_2 \le 7$$

$$x_1 - 6x_2 \ge 3$$

$$x_1, x_2 \ge 0$$

例10 求解线性规划:

$$\min z = -3x_1 + x_2 + x_3$$

$$\begin{cases} x_1 - 2x_2 + x_3 \le 11 \\ -4x_1 + x_2 + 2x_3 \ge 3 \end{cases}$$

$$\begin{cases} x_3 = 1 + 2x_1 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

$$x_3 = 1 + 2x_1$$

$$\min z = -x_1 + x_2$$

$$\begin{cases} 3x_1 - 2x_2 \le 10 \\ x_2 \ge 1 \\ x_1, x_2 \ge 0 \end{cases}$$

例11 求解线性规划:

$$\max z = -2x_1 - 3x_2 - 4x_3$$
$$x_1 + 2x_2 + x_3 \ge 3$$
$$2x_1 - x_2 + 3x_3 \ge 4$$
$$x_1, x_2, x_3 \ge 0$$

用对偶单纯形法

例12 试用对偶单纯形法求解下列线性规划问题:

Min
$$z = x_1 + x_2$$

 $2x_1 + x_2 \ge 4$
 $x_1 + 7x_2 \ge 7$
 $x_1, x_2 \ge 0$

$$Max \ \omega = -x_1 - x_2$$

$$-2x_1 - x_2 + x_3 = -4$$

$$-x_1 - 7x_2 + x_4 = -7$$

$$x_1, x_2, x_3, x_4 \ge 0$$

	5	2	2	1		1
销量	5	2	4	6		
A_3	5 4	4	10	10	4	– 1
112	10	10				
A_2	16	10	5	9	9	4
A_1	10	6	7	12	4	1
产地销地	B_1	B_2	B_3	B_4	产量	

伏格尔法

产地销地	B_1	B_2	B_3	B_4	产量	
A_1	1 ₀ 1	6	7	12	4	1
A_2	16	10	5	9	9	4
A_3	5 4	4	10	10	4	
销量	5	2	4	6		
	6	4	2	3		-

产地销地	B_1	B_2	B_3	B_4	产量	
A_1	10 ₁	6 2	⁷ 1	12 ₍₁₁₎	4	0
A_2	¹⁶ (8)	¹⁰ (4)	5 3	9 6	9	-2
A_3	5 4	⁴ (1)	¹⁰ (2)	10 ₍₆₎	4	-5
销量	5	2	4	6		
	10	6	7	11		-

$$\sigma_{ij} = c_{ij} - (u_i + v_j)$$

1月里	10	6	7	11		
销量	5	2	1	6		1
A_3	5 4	4 (3)	$10 {(8) \choose (2)}$	$10\frac{(4)}{(6)}$	4	-5
A_2	16 (8) (8)	10 (6) (4)	5 3	9 6	9	-2
A_1	10 1	6 2	7 1	12(1) (11)	4	0
产地销地	B_1	B_2	B_3	B_4	产量	

$$\sigma_{ij} = c_{ij} - (u_i + v_j)$$

B_1	B_2	B_3	B_4	产量
10 3	6	7	12 1	4
16	10	5 4	9 5	9
5 2	4 2	10	10	4
5	2	4	6	
	10 3 16 5 2	10 3 6 16 10 5 2 4 2	10 3 6 7 16 10 5 4 5 2 4 2 10	10 3 6 7 12 1 16 10 5 4 9 5 5 2 4 2 10 10

最小元素法

	10	9	8	12		_
销量	5	2	4	6		
A_3	5 2	4 2	¹⁰ (3)	10 (7)	4	_5
A_2	16 ₍₇₎	¹⁰ (6)	5 4	9 5	9	-3
A_1	10 3	6 (9)	⁷ (8)	12 1	4	0
产地销地	B_1	B_2	B_3	B_4	产量	

$$\sigma_{ij} = c_{ij} - (u_i + v_j)$$

	10	9	8	12		_
销量	5	2	4	6		
A_3	5 2	4 2	10(3)	10 (3) (7)	4	5
A_2	16 (9) (7)	10 (4) (6)	5 4	9 5	9	-3
A_1	10 3	6 (9)	7 (-1) 7 (8)	12 ¹	4	0
产地销地	B_1	B_2	B_3	B_4	产量	

$$\sigma_{ij} = c_{ij} - (u_i + v_j)$$

例14: 某工厂生产I、II两种产品,数据如下

	I	II	拥有量
原材料(kg)	2	1	11
设备	1	2	10
利润(元/件)	8	10	

决策者在原材料供应严格受限制的情况考虑:首先产品II 的产量不低于产品I的产量;其次充分利用设备有效台时,不加班;再次利润不低于56元。列出模型,并求解。

Min Z=P₁d₁++P₂ (d₂-+d₂+)+ P₃d₃-
约束方程:
$$2X_1+X_2 \le 11$$
 ①
$$X_1 - X_2 + d_1 - d_1 + = 0$$
 ②
$$X_1 + 2X_2 + d_2 - d_2 + = 10$$
 ③
$$8X_1 + 10X_2 + d_3 - d_3 + = 56$$
 ④
$$X_1, X_2, \quad d_i^-, d_i^+ \ge 0$$
 (i=1,2,3)

例15 求解

目标函数 $\max z=x_1+x_2$ ①

约束条件:

$$-x_1 + x_2 \le 1$$

$$3x_1 + x_2 \le 4$$
 3

$$x_1, x_2 \ge 0$$
 4

? 在原问题的前两个不等式中增加非负松弛变量x3、x4,使两式变

$$3x_1 + x_2 + x_4 = 4$$

成等式约束:
$$-x_1+x_2+x_3 = 1$$
 ⑥ $3x_1+x_2 + x_4=4$

不考虑条件⑤,用单纯形表解题,见下表:

		$\mathbf{c}_{\mathtt{j}}$			1	0	0
11 =	LAS CBI CB	<u>X</u> .					
· · · · · · · · · · · · · · · · · · ·	v	113	,何到	-	-	-	Ŭ
初始计算表 \mathbf{X}_1	=3/4,	$\mathbf{x}_{2} = 7$	$[4, 4x_3]$	-x3=0	, 1m	ax ₀ z=5	/2 1
			改粉			₩ 0	0
	1	X_1	3/4		0	- 1/4	1/4
最终计算表	1	\mathbf{X}_2	7/4	0	1	3/4	1/4
	C _j -	\mathbf{Z}_{j}	- 5/2	0	0	- 1/2	- 1/2

利用等式约束

$$x_1 - \frac{1}{4}x_3 + \frac{1}{4}x_4 = \frac{3}{4}, \quad x_1 - x_3 + \frac{3}{4}x_3 + \frac{1}{4}x_4 = \frac{3}{4},$$

构造割平面约束,即

$$-\left(\frac{3}{4}x_3 + \frac{1}{4}x_4\right) \le -\frac{3}{4}$$

!? 也即 -3x₃-x₄≤-3

8

这就得到一个切割方程(或称为切割约束),将它作为增加约束条件

?引入松弛变量x5,得到等式

$$-3x_3-x_4+x_5=-3$$

? 将这新的约束方程加到下表的最终计算表。

		\mathbf{c}_{j}			1	0	0
	Св	$X_{\!\scriptscriptstyle B}$	b	\mathbf{X}_1	\mathbf{X}_2	X_3	\mathbf{X}_4
初始计算表	0	X_3	1	- 1	1	1	0
	0	X_4	4	3	1	0	1
		C _j - Z _j	0	1	1	0	0
	1	\mathbf{X}_1	3/4	1	0	- 1/4	1/4
最终计算表	1	\mathbf{X}_2	7/4	0	1	3/4	1/4
	C _j -	\mathbf{Z}_{j}	- 5/2	0	0	- 1/2	- 1/2

	C _j		1	1	0	0	0
$C_{\!\scriptscriptstyle B}$	$X_{\!\scriptscriptstyle B}$	b	\mathbf{X}_1	\mathbf{X}_2	X_3	X_4	X_5
1	\mathbf{X}_1	3/4	1	0	- 1/4	1/4	0
1	\mathbf{X}_2	7/4	0	1	3/4	1/4	0
0	X_5	- 3	0	0	- 3	- 1	1
C _j -Z _j		- 5/2	0	0	- 1/2	- 1/2	0

选择x₅为换出变量,将x₃做为换入变量,再按对偶单纯形法进行迭代得

	$\mathbf{c}_{\mathtt{j}}$		1	1	0	0	0
$C_{\!\scriptscriptstyle B}$	$X_{\!\scriptscriptstyle B}$	b	\mathbf{X}_1	\mathbf{X}_2	\mathbf{X}_3	\mathbf{X}_4	X_5
1	\mathbf{X}_1	1	1	0	0	1/3	- 1/12
1	\mathbf{X}_2	1	0	1	0	0	1/4
0	X_3	1	0	0	1	1/3	- 1/3
c _j -	$\cdot \mathbf{Z}_{\mathrm{j}}$	- 2	0	0	0	- 1/3	- 1/6