МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО" (Университет ИТМО)

Выпускная квалификационная работа по направлению "Робототехника и Искусственный Интеллект"

по теме: СОЗДАНИЕ ДАТАСЕТА ДЛЯ МУЛЬТИТРЕКИНГА ОДНОРОДНЫХ ДАННЫХ.

Студент: Группа R34353

Д.В. Золотарев

Предподаватель: Доцент факультета СУиР

С.В. Быстров

Содержание

1	Введение	3
2	Single Object Tracking 2.1 Ранние методы (1990-е): Геометрические подходы 2.2 Эра глубокого обучения 2.3 Современные достижения в SOT 2.4 Эксперименты	5
3	Multi Object Tracking	6
4	Multi Object Tracking of homogeneous data	7
5	Заключение	8
6	Литература	9

1. Введение

Here is beginning

2. Single Object Tracking

Single Object Tracking (SOT) развивался на протяжении многих лет, опираясь на достижения в области технологий и появления методов машинного обучения. В этом разделе приведён исторический обзор с классификацией подходов на этапы до использования машинного обучения, методы мелкого обучения и методы глубокого обучения.

2.1. Ранние методы (1990-е): Геометрические подходы

В 1990-х годах основными подходами для SOT являлись **генеративные методы**, использующие сильные геометрические допущения.

- Оптический поток (TLD): Основной метод, основанный на оценке движения пикселей на изображении.
 - TLD
- Фильтр Калмана: Прогнозирует следующее положение объекта, учитывая шум наблюдения и движения.
 - Фильтр Калмана
- Частичный фильтр: Применяется для обработки неопределённости при отслеживании.
- **Ручные признаки (SIFT, SURF)**: Извлечение геометрических признаков вручную.
 - SIFT, SURF

Переход к методам обучения (2000-е)

С 2000-х годов **методы на основе обучения** стали основными, разделившись на мелкое и глубокое обучение.

Методы неглубокого обучения

Подходы мелкого обучения комбинировали методы машинного обучения с ручным извлечением признаков для отслеживания объектов.

- **Метод опорных векторов (SVM)**: Использовался для бинарной классификации, где цель считалась положительным классом, а окружающая среда отрицательным.
 - Метод SVM для отслеживания
- Ансамблевое обучение: Применение нескольких моделей для улучшения точности отслеживания.
 - Ансамблевое обучение в отслеживании
- Разрежённое кодирование и корреляционные фильтры: Применение разрежённых представлений для эффективного отслеживания.
 - Разрежённое кодирование, Корреляционные фильтры

2.2. Эра глубокого обучения

Технологии глубокого обучения радикально изменили SOT, предложив более устойчивые и точные решения.

- Полносверточные сети (FCN) и корреляционные фильтры: Ранние модели комбинировали FCN и корреляционные фильтры для предсказания объектов.
 - FCN для отслеживания, Корреляционные фильтры

- Сиамские сети: Использование парных сетей для сравнения объекта в текущем кадре с будущими кадрами.
 - Сиамские сети, Сиамские сети для видео
- **Рекуррентные нейронные сети (RNN)**: Моделирование временных зависимостей для отслеживания в видеопоследовательностях.
 - RNN для отслеживания

2.3. Современные достижения в SOT

Современные достижения включают интеграцию графовых нейронных сетей (GNN) и трансформеров для улучшения точности отслеживания.

- **STARK**: Применяет модели на основе трансформеров для устойчивого отслеживания.
 - STARK
- **Keeptrack**: Метод, поддерживающий высокую точность отслеживания в сложных условиях.
 - Keeptrack
- **CSWinTT**: Современная модель, использующая механизмы внимания трансформеров для отслеживания объектов.
 - CSWinTT

2.4. Эксперименты

- **Фильтр Калмана с TLD**: Начните с воспроизведения классических методов на основе геометрии, используя оптический поток для отслеживания движения объектов. Интегрируйте фильтр Калмана для сглаживания траектории.
- **SVM** для **мелкого обучения**: Реализуйте SVM-классификаторы на наборах данных с богатыми признаками для понимания подходов мелкого обучения.
- **Полносверточные сети + корреляционные фильтры**: Экспериментируйте с FCN в паре с корреляционными фильтрами для предсказания объектов.
- Сиамские сети для реального времени: Постройте и обучите сиамскую сеть для изучения встраиваний объектов и их отслеживания в последовательных кадрах.
- **Трансформеры** для **отслеживания**: Исследуйте модели на основе трансформеров, такие как STARK, для экспериментов с последними достижениями в SOT.

3.	Multi	Object	Tracking
----	-------	--------	----------

4. Multi Object Tracking of homogeneous data			

5. Заключение

6. Литература