Analisi Matematica per Informatici – Esercitazione 8 a.a. 2006-2007

Dott. Simone Zuccher

24 Gennaio 2007

Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all'autore (zuccher@sci.univr.it).

1 Proprietà delle funzioni derivabili

Richiami sulle applicazioni delle derivate utili ai fini degli esercizi.

- Se x_0 è un punto di minimo o di massimo per f(x), allora $f'(x_0) = 0$.
- Teorema di Rolle. Sia f(x) continua su [a, b], derivabile su]a, b[e f(a) = f(b). Allora esiste $\xi \in]a, b[$ tale che $f'(\xi) = 0$. Geometricamente il teorema assicura che, se sono verificate le ipotesi, esiste almeno un punto $\xi \in]a, b[$ a tangente orizzontale.
- Teorema di Cauchy. Siano f(x) e g(x) continue su [a, b] e derivabili su]a, b[. Allora esiste $\xi \in]a, b[$ tale che $g'(\xi)[f(b) f(a)] = f'(\xi)[g(b) g(a)].$ Se, inoltre, $g'(x) \neq 0 \ \forall x \in]a, b[$ (il che implica $g(a) \neq g(b)$), allora

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}.$$

- Teorema di Lagrange (o del valor medio). Sia f(x) continua su [a, b] e derivabile su]a, b[. Allora esiste $\xi \in]a, b[$ tale che $f(b) f(a) = f'(\xi)(b a)$. Geometricamente il teorema assicura che, se sono verificate le ipotesi, esiste almeno un punto $\xi \in]a, b[$ in cui la tangente è parallela alla retta passante per i punti estremi (a, f(a)) e (b, f(b)).
- Sia f(x) continua su [a,b] e derivabile su [a,b], allora
 - 1. $f'(x) = 0 \ \forall x \in]a, b[\Rightarrow f(x) \text{ costante su } [a, b].$
 - 2. $f'(x) \ge 0 \ \forall x \in]a, b[\Rightarrow f(x) \text{ crescente su } [a, b] \text{ (strettamente se } f'(x) > 0).$
 - 3. $f'(x) \leq 0 \ \forall x \in]a, b[\Rightarrow f(x)$ decrescente su [a,b] (strettamente se f'(x) < 0).

• Ricerca di massimi/minini. La condizione necessaria $f'(x_0) = 0$ fornisce l'insieme di possibili punti di massimo e/o minimo. L'analisi della monotonia di f(x) nell'intorno di x_0 o l'uso delle derivate successive calcolate in x_0 (si veda più avanti) permette di determinare eventuali massimi o minimi.

1.1 Esercizio

Si determinino gli intervalli in cui le seguenti funzioni sono crescenti.

$$f(x) = x^{2} - 3x + 2$$
 $[x \ge 3/2]$ $f(x) = \log(x^{2} + 1)$ $[x \ge 0]$
$$f(x) = \log(x^{2} - 1)$$
 $[x > 1]$ $f(x) = \sqrt{x + 1} - \sqrt{2x}$ [mai]
$$f(x) = \frac{x^{4}}{4} - 2x^{3} + \frac{11}{2}x^{2} - 6x + 2$$
 $[-1 \le x \le 2 \lor x \ge 3]$ $\frac{2x + 1}{x + 3}$ $[\forall x \in \mathbb{R} \setminus \{-3\}]$

1.1.1 Risoluzione

Si calcoli la derivata e se ne studi la positività.

1.2 Esercizio

Si determinino eventuali massimi e minimi relativi della funzione $f(x) = 4x^3 - 5x^2 + 2x - 3$ in \mathbb{R} .

1.2.1 Risoluzione

Essendo $f'(x) = 2(6x^2 - 5x + 1)$ si ha f'(x) = 0 per $x_1 = 1/3$ e $x_2 = 1/2$. Dallo studio della monotonia di f(x) si deduce che f(x) è crescente per x < 1/3 e x > 1/2 e decrescente altrove. Pertanto, $x_1 = 1/3$ è punto di massimo e $x_2 = 1/2$ è punto di minimo.

1.3 Esercizio

Si determinino eventuali massimi e minimi relativi della funzione $f(x) = x^3 - 6x^2 + 12x + 1$ in \mathbb{R} .

1.3.1 Risoluzione

Essendo $f'(x) = 3(x-2)^2$ si ha f'(x) = 0 per x = 2. Tuttavia, dallo studio della monotonia di f(x) si deduce che f(x) è sempre crescente e quindi x = 0 non è né punto di massimo né punto di minimo ma punto di flesso a tangente orizzontale.

1.4 Esercizio

Si dica se il teorema di Rolle è applicabile nei seguenti casi sugli intervalli riportati e, se lo è, si determini/no il/i punto/i ξ previsto/i da tale teorema.

- 1. $f(x) = -x^2 + 6x$ sull'intervallo [2, 4]
- 2. $f(x) = x^3 3x$ sull'intervallo $[0, \sqrt{3}]$
- 3. $f(x) = \sqrt{3x x^2}$ sull'intervallo [0, 3]

1.4.1 Risoluzione

- 1. $\xi = 3$
- 2. $\xi = 1$. Perché $\xi = -1$ non è accettabile?
- 3. $\xi = 3/2$

1.5 Esercizio

Si dica se il teorema di Lagrange (o del valor medio) è applicabile nei seguenti casi sugli intervalli riportati e, se lo è, si determini/no il/i punto/i ξ previsto/i da tale teorema.

- 1. $f(x) = -x^2 + 4$ sull'intervallo [-2, 1]
- 2. $f(x) = x^3 x^2 + x 1$ sull'intervallo [0, 2]
- 3. $f(x) = \frac{x+3}{2x-5}$ sull'intervallo [0,2]

1.5.1 Risoluzione

- 1. $\xi = -1/2$
- 2. $\xi = (1 + \sqrt{7})/3$. Perché $\xi = (1 \sqrt{7})/3$ non è accettabile?
- 3. $\xi = (5 \sqrt{5})/2$.

1.6 Esercizio

Utilizzando i teoremi sulle derivate, si dimostri che

$$\arctan x = \arcsin \frac{x}{\sqrt{1+x^2}} \qquad \forall x \in \mathbb{R}$$

1.6.1 Risoluzione

Si calcoli la derivata di $f(x) = \arctan x - \arcsin \frac{x}{\sqrt{1+x^2}}$ e si noti che f'(x) è identicamente nulla $\forall x \in \mathbb{R}$. Pertanto $f(x) = \arctan x - \arcsin \frac{x}{\sqrt{1+x^2}}$ è costante e il valore di tale costante può essere facilmente determinato calcolando f(0) = 0. Quindi, $\arctan x - \arcsin \frac{x}{\sqrt{1+x^2}} = 0 \Rightarrow \arctan x = \arcsin \frac{x}{\sqrt{1+x^2}}$ $\forall x \in \mathbb{R}$.

1.7 Esercizio

Utilizzando i teoremi sulle derivate, si dimostri che

$$\arctan x + \arctan \frac{1}{x} = \begin{cases} \pi/2 & x > 0 \\ -\pi/2 & x < 0 \end{cases}$$

1.7.1 Risoluzione

Si ragioni come sopra oppure si veda l'esercizio 8.19 delle dispense del Prof. Squassina.

1.8 Esercizio

Utilizzando i teoremi sulle derivate, si dimostri che per x > -1 si ha

$$x \ge \log(1+x)$$

1.8.1 Risoluzione

Posto $h(x) = x - \log(1+x)$, definita per x > -1, si noti che h(x) ha un minimo assoluto in x = 0 essendo h'(0) = 0, h'(0) > 0 per x > 0 e h'(0) < 0 per x < 0. Essendo inoltre h(0) = 0, si conclude che $h(x) \ge 0$ per x > -1, ovvero $x \ge \log(1+x)$ per x > -1.

1.9 Esercizio

Utilizzando i teoremi sulle derivate, si dimostrino le seguenti disuguaglianze

1.
$$e^x \ge x + 1$$
, $\forall x \in \mathbb{R}$

2.
$$\frac{x^2+1}{8} \ge \frac{x^2}{(x+1)^2}$$
, $x > 0$

3.
$$x \log_a x \ge (x-1) \log_a e$$
, $x > 0, a > 1 \land a \ne 1$

1.9.1 Risoluzione

Si proceda come nell'esercizio precedente.

1.10 Esercizio

Verificare che la funzione $f(x) = \sin(e^x)$ soddisfa l'equazione

$$f''(x) - f'(x) + e^{2x}f(x) = 0.$$

1.10.1 Risoluzione

Essendo $f'(x) = e^x \cos(e^x)$ e $f''(x) = e^x \cos(e^x) - e^{2x} \sin(e^x)$ basta sostituire e verificare l'identità.

2 Calcolo di limiti tramite il teorema di de L'Hôpital

Richiami sull'utilizzo del teorema di de L'Hôpital.

- Teorema di de L'Hôpital. Siano $-\infty \le a < b \le +\infty$ e $f,g:]a,b[\to \mathbb{R}$ due funzioni tali che:
 - 1. $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$ (oppure $\pm \infty$)
 - 2. f, g derivabili su]a, b[e $g'(x) \neq 0 \ \forall x \in]a, b[$
 - 3. esista finito il limite $\lim_{x\to a} \frac{f'(x)}{g'(x)}$

allora anche il rapporto $\frac{f(x)}{g(x)}$ ammette limite e si ha

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

- Il teorema di de L'Hôpital è applicabile anche nel caso di limite destro e/o sinistro e nel caso $x \to \pm \infty$.
- Il teorema di de L'Hôpital è applicabile anche nel caso in cui il limite di f(x) non esista e $\lim_{x\to a} |g(x)| = +\infty$.
- Si noti che se $\lim_{x\to a} f(x) \cdot g(x) = 0 \cdot \infty$ (ossia $f(x)\to 0$ e $g(x)\to \infty$) allora si hanno due possibilità:
 - 1. applicare de L'Hôpital al rapporto $\lim_{x\to a}\frac{f(x)}{h(x)}$, essendo h(x)=1/g(x), ottenendo una forma di indecisione del tipo 0/0
 - 2. applicare de L'Hôpital al rapporto $\lim_{x\to a}\frac{h(x)}{g(x)}$, essendo h(x)=1/f(x), ottenendo una forma di indecisione del tipo ∞/∞

2.1 Esercizio

Utilizzando il teorema di de L'Hôpital si dimostrino le seguenti uguaglianze.

1.
$$\lim_{x \to +\infty} \frac{x^b}{a^x} = 0, \quad \forall a > 1, \forall b > 0$$

2.
$$\lim_{x \to +\infty} \frac{\log_a x}{x^b} = 0, \quad \forall a > 1, \forall b > 0$$

3.
$$\lim_{x \to 0^+} x^b \log_a x = 0, \quad \forall a > 1, \forall b > 0$$

Si noti che vale anche $\lim_{x\to +\infty} \frac{(\log_a x)^{\alpha}}{x^b} = 0, \quad \forall a>1, \forall b>0, \forall \alpha>0$

5

2.1.1 Risoluzione

- 1. Posto $x^b/a^x=(x/a^{\frac{x}{b}})^b=(x/\alpha^x)^b$ essendo $\alpha=a^{\frac{1}{b}}>1$, basta mostrare che il limite di x/α^x è zero. Utilizzando de L'Hôpital si ha $\lim_{x\to+\infty}\frac{1}{\alpha^x\log\alpha}=0$.
- 2. Applicando subito de L'Hôpital si ha $\lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = \frac{\frac{1}{x} \log_a e}{bx^{b-1}} = \frac{\log_a e}{bx^b} = 0.$
- 3. Si noti la forma di indecisione del tipo $0 \cdot \infty$. Riscrivendo $x^b \log_a x = \log_a x/x^{-b}$ ed applicando de L'Hôpital sia arriva subito alla soluzione.

2.2 Esercizio

Utilizzando il teorema di de L'Hôpital si calcolino i seguenti limiti.

$$\lim_{x \to +\infty} \frac{\log x}{x} \qquad [0] \quad \lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} \qquad [\alpha]$$

$$\lim_{x \to +\infty} \frac{e^{\sqrt{x}}}{x} \qquad [+\infty] \quad \lim_{x \to +\infty} \frac{(\log x)^3}{x} \qquad [0]$$

$$\lim_{x \to +\infty} \frac{\log(2x+1)}{\log x} \qquad [1] \quad \lim_{x \to +\infty} \frac{\log(1+\sqrt{x})}{\log x} \qquad [1/2]$$

2.2.1 Risoluzione

Si applichi il teorema una o più volte.

2.3 Esercizio

Utilizzando il teorema di de L'Hôpital si calcolino i seguenti limiti.

1.
$$\lim_{x \to 0^+} x^{10} \cdot e^{\frac{1}{x}}$$
 2. $\lim_{x \to 0^+} x^x$ 3. $\lim_{x \to +\infty} \sqrt[x]{x}$

2.3.1 Risoluzione

1. Forma di indecisione $0 \cdot \infty$. Si noti che riscrivendo come $e^{1/x}/x^{-10}(\infty/\infty)$ oppure $x^{10}/e^{-1/x}(0/0)$ non si risolve la forma di indecisione. Se, invece, si pone t=1/x, il limite diventa $\lim_{t\to +\infty} \frac{e^t}{t^{10}} = +\infty$.

6

- 2. $x^x = e^{x \log x}$, passando al limite si ottine 1.
- 3. $\sqrt[x]{x} = e^{\frac{1}{x} \log x}$, passando al limite si ottine 1.