Desafío: Determinación de la Fuerza de Fricción sobre un Carrito Usando una Fotocelda

Objetivos

- lacktriangle Determinar experimentalmente la fuerza de fricción f que actúa sobre un carrito que se mueve sobre un riel horizontal.
- Aplicar la segunda ley de Newton con rigor conceptual, usando la expresión corregida.
- Determinar el coeficiente de fricción cinético.

Conexiones

- Ciencia: Análisis de la fricción y el movimiento rectilíneo uniformemente acelerado.
- Tecnología: Uso de sensores digitales y software de adquisición de datos.
- Ingeniería: Modelado experimental de sistemas mecánicos con fricción.
- Matemáticas: Regresión lineal, tratamiento de errores y deducción de parámetros físicos.

Preparación previa del estudiante

- Estudiar las leyes de Newton, especialmente la segunda ley.
- Comprender la fricción cinética y su expresión $f = \mu N$.
- Entender cómo obtener aceleración con sensores digitales como la fotocelda.
- Revisar conceptos de gráficas lineales y ajuste por regresión.

Materiales

- Carrito con cebra.
- Riel horizontal de baja fricción.
- Juego de masas colgantes.
- Cuerda y polea.
- Fotocelda conectada a una interfaz digital.
- Balanza digital y regla.
- Computador con software de adquisición.

Montaje experimental

- 1. Coloca el carrito sobre el riel y conéctalo mediante una cuerda que pasa por una polea a una masa colgante m_2 .
- 2. Alinea la cebra con la fotocelda y verifica su correcto funcionamiento.
- 3. Mide con precisión la masa del carrito m_1 , incluyendo todos los accesorios.

Procedimiento

- 1. Mide con precisión la masa del carrito m_1 , incluyendo todos los accesorios, y anótala.
- 2. Para distintos valores de masa colgante m_2 , suelta el sistema desde el reposo y registra la aceleración a del carrito usando la fotocelda.
- 3. Para cada ensayo, calcula la cantidad:

$$y = (m_1 + m_2)a$$

Registra en la tabla los tres valores: m_2 , a y y.

4. Considera las ecuaciones de Newton aplicadas al carrito y a la masa colgante:

$$T - f = m_1 a \quad y \quad m_2 g - T = m_2 a$$

Al sumar ambas se obtiene:

$$(m_1+m_2)a=m_2g-f \quad \Rightarrow \quad y=m_2g-f$$

Esta es una ecuación de la forma $y=m_2g-f,$ que representa una recta.

- 5. Grafica y en función de m_2 usando los datos obtenidos en la tabla siguiente.
- 6. Ajusta una recta a la gráfica. La pendiente debe aproximarse a g y la ordenada al origen debe ser -f. Calcula:

$$f = -intersección con el eje y$$

7. Finalmente, determina el coeficiente de fricción cinético:

$$\mu = \frac{f}{m_1 g}$$

Tabla de datos

m_2 (g)	$a (\mathrm{m/s^2})$	$y = (m_1 + m_2)a \text{ (kg·m/s}^2)$

Análisis

- Ajusta una recta a la gráfica y vs. m_2 .
- Verifica si la pendiente se aproxima a g.
- \bullet A partir de la ordenada al origen, deduce f y su incertidumbre.
- ullet Calcula el coeficiente de fricción cinético μ y su error.

Preguntas para el análisis

- ¿Cómo se justifica que la gráfica sea una línea recta?
- ¿Qué representa la pendiente y qué el punto de corte?
- \blacksquare ¿ Qué factores afectan la precisión del cálculo de
 fy $\mu?$

Rúbrica para el informe (2.5 puntos)

Criterio	Máximo	Obtenido
Explicación clara del procedimiento y montaje	0.5	
Gráfica y vs. m_2 y ajuste de la recta	0.5	
Cálculo riguroso de f e incertidumbre	0.5	
Cálculo correcto del coeficiente μ y su interpretación	0.5	
Discusión crítica de resultados y presentación ordenada	0.5	
Total	2.5	

Rúbrica para la sustentación (2.5 puntos)

Criterio	Máximo	Obtenido
Dominio del modelo físico corregido y su justificación	0.5	
Interpretación correcta de la gráfica y parámetros	0.5	
Cálculo y significado de f y μ	0.5	
Participación activa y organizada del grupo	0.5	
Capacidad para responder preguntas técnicas del jurado	0.5	
Total	2.5	

Nota final: Suma de informe (2.5) + sustentación (2.5) = 5.0 puntos