ECONOMETRÍA. GADE

Prácticas

Tema 2

Ejercicios propuestos

- 1. Detalle el orden de las matrices y vectores de un modelo econométrico con 3 variables explicativas más el termino constante y 50 observaciones.
- 2. Ponga un ejemplo de una matriz X con un término constante y tres variables explicativas de manera que el modelo no cumpla la condición del rango completo por columnas.
- 3. Razone que componentes del modelo econométrico tienen carácter estocástico (aleatorio) y cuáles tienen carácter determinista (fijo).
- 4. Ponga un ejemplo de una matriz de varianzas-covarianzas de las perturbaciones de un modelo con heterocedasticidad.
- 5. Ponga un ejemplo de una matriz de varianzas-covarianzas de las perturbaciones de un modelo con autocorrelación.
- 6. Se considera la posibilidad de introducir nuevas variables explicativas en el modelo de la curva de Phillips (EJERCICIO 1 de la relación de ejercicios resueltos) y para ello se recoge información sobre la renta nacional disponible neta a precios de mercado por habitante (X_2) y la renta nacional disponible neta (X_3) .

Años	X_2	X_3
2006	18614	825737
2007	19403	877724
2008	19492	896295
2009	18719	867972
2010	18706	871015
2011	18229	851948
2012	17822	833445
2013	17691	824281
2014	18029	837556
2015	18828	873766

Se pide:

- a) Estimar el modelo incluyendo la variable X_2 . (Sol. $\hat{y} = 165, 78 1, 48X_1 0, 0077X_2$)
- b) Estimar el modelo incluyendo las variables X_2 y X_3 . (Sol. $\hat{y}=120,97-0,77X_1-0,017X_2+0,00025X_3$)

c) Comparar ambos modelos. (Sol. $\bar{R}_1^2=0,7097<\bar{R}_2^2=0,96;\ AIC_1=2,83>AIC_2=0,8920)$

Ejercicio seleccionado de [1].

7. En la siguiente tabla se recogen las ventas de seis empresas informáticas en función del número de comerciales:

$\overline{v_t}$	109	111	132	140	169	180
c_t	12	15	17	18	19	20

Se pide:

- a) Plantear el modelo econométrico y estimar los coeficientes por mínimos cuadrados ordinarios. Interpretación de los coeficientes estimados. (Sol. $\hat{v}_t = -13, 56 + 9, 132c_t$)
- b) Calcular el coeficiente de determinación e interpretarlo. $(R^2=0,8294)\,$
- c) Se estima un modelo alternativo añadiendo como variable explicativa el gasto en publicidad de cada empresa, obteniendo un coeficiente de determinación igual a 0,93363. Concluya de forma razonada si este modelo es mejor que el anterior. (Sol. $\bar{R}_1^2=0,78675<\bar{R}_2^2=0,8893$)

Ejercicio seleccionado de [1].

8. Se tiene la siguiente información correspondiente al curso 2010/2011 sobre el número de becarios en la enseñanza universitaria (Y), el alumnado matriculado en estudios de 1er. y 2^0 ciclo y de grado (X_1) y el importe en miles de euros de las becas (X_2) . Se pide:

CCAA	Y	X_1	X_2
Andalucía	97.105	234.851	266.222,60
Aragón	9.294	31.063	$19.648,\!80$
Asturias	6.882	23.746	16.048,20
Baleares	4.251	13.581	8.224,60
Canarias	19.125	45.146	45.084,30
Cantabria	4.087	10.516	8.013,00
Castilla y León	27.307	78.692	75.124,10
Castilla - La Mancha	14.988	30.431	39.696,80
Cataluña	51.965	179.639	107.077,10
Valencia	49.805	148.671	115.219,30
Extremadura	12.088	22.747	35.506,00
Galicia	24.500	64.262	$66.019,\!40$
Madrid	64.563	239.389	134.341,50
Murcia	15.549	42.573	37.177,90
Navarra	4.669	14.705	$10.372,\!50$
País Vasco	15.322	53.419	26.789,40
Rioja, La	1.761	8.119	$3.345,\!10$
A distancia	20.557	212.021	$16.491,\!60$

- a) Estimar los parámetros. (Sol. $\hat{y} = 528,077 + 0,09X_1 + 0,2936X_2$)
- b) Obtener el coeficiente de determinación. (Sol. $R^2 = 0,994$)
- c) Obtener el coeficiente de determinación corregido. (Sol. $\bar{R}^2 = 0,993$)
- d) Calcular el criterio de Akaike. (Sol. AIC = 328,9392)

Ejercicio seleccionado de [1].

9. En la siguiente tabla, podemos observar la cantidad demandada de un activo financiero F_t por un agente a lo largo de 10 años en función de su rendimiento I_t :

$\overline{F_t}$	130	120	100	100	110	120	110	110	130	130
I_t	8	7	5	6	7	8	7	6	9	10

Se pide:

a) Plantear el modelo econométrico y estimar los coeficientes por mínimos cuadrados ordinarios. Sol.

$$\hat{\beta} = \begin{pmatrix} 64,4278 \\ 7,0646 \end{pmatrix}$$

- b) Calcular el coeficiente de determinación. Sol. $R^2 = 0.8090$.
- 10. Para estimar el modelo $Y_t = \beta_1 + \beta_2 X_{2t} + \beta_3 X_{3t} + u_t$, se ha obtenido una muestra de la cual ha resultado:

$$X'X = \begin{pmatrix} 30 & 0 & 0 \\ 0 & 22 & 0 \\ 0 & 0 & 20 \end{pmatrix}, \quad X'Y = \begin{pmatrix} 17 \\ 22 \\ 21 \end{pmatrix}, \quad Y'Y = 96.$$

Estimar los coeficientes del modelo por MCO. Sol.

$$\hat{\beta} = \begin{pmatrix} 0.5666 \\ 1 \\ 1.05 \end{pmatrix}$$

11. Considerando la siguiente información muestral que contiene el gasto en publicidad de 5 empresas (variable dependiente) y el número de empleados (variable independiente):

3

Estimar el modelo econométrico que explica y_t en función de x_t . Sol.

$$\hat{\beta} = \left(\begin{array}{c} 2,5571\\ -0,0714 \end{array}\right)$$

12. Se quieren estudiar las ventas de una empresa (y_t) en función de los gastos en publicidad (x_{2t}) y del número de empleados de dicha empresa (x_{3t}) con la información disponible para los últimos 10 años. La información muestral se resume a continuación:

$$\sum_{t=1}^{n} y_t = 436, \sum_{t=1}^{n} x_{2t} = 134, \sum_{t=1}^{n} x_{3t} = 101$$

$$\sum_{t=1}^{n} y_t^2 = 20386, \sum_{t=1}^{n} x_{2t}^2 = 2068, \sum_{t=1}^{n} x_{3t}^2 = 1177$$

$$\sum_{t=1}^{n} x_{2t} x_{3t} = 1534, \sum_{t=1}^{n} x_{2t} y_t = 6405, \sum_{t=1}^{n} x_{3t} y_t = 4786$$

- a) Plantear las matrices (X'X) y X'Y, necesarias para la estimación por MCO.
- b) Sabiendo que:

$$(X'X)^{-1} = \begin{pmatrix} 0.798956 & -0.027501 & -0.032717 \\ -0.027501 & 0.015499 & -0.017840 \\ -0.032717 & -0.017840 & 0.026908 \end{pmatrix},$$

calcular los coeficientes del modelo por MCO.

$$\hat{\beta} = \begin{pmatrix} 15,61688 \\ 1,897671 \\ 0,252904 \end{pmatrix}.$$

13. En la siguiente tabla, podemos observar la cantidad demandada de un activo financiero F_t por un agente a lo largo de 6 meses en función de su rendimiento I_t :

$\overline{F_t}$	16	18	16	12	15	16
I_t	4	6	3	3	5	7

Se pide:

- a) Plantear el modelo econométrico y estimar los coeficientes por mínimos cuadrados ordinarios. (Sol. $\hat{F}_t = 12, 35 + 0, 675I_t$)
- b) Calcular el coeficiente de determinación e interpretarlo. (Sol. $\mathbb{R}^2=0,3115$)

14. Para estimar el modelo $Y_t = \beta_1 + \beta_2 X_{2t} + \beta_3 X_{3t} + u_t$, se ha obtenido una muestra de la cual ha resultado:

$$X'X = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 10 \end{pmatrix}, \quad X'Y = \begin{pmatrix} 11 \\ 12 \\ 14 \end{pmatrix}, \quad Y'Y = 100.$$

Se pide:

- a) Estimar los coeficientes del modelo por MCO. (Sol. $\hat{Y}_t = 2, 2 + 4x_{2t} + 1, 4x_{3t}$)
- b) Calcular el coeficiente de determinación. (Sol. $R^2 = 0.8918$)
- c) Calcular los criterios de información. (Sol. AIC = 22,66; BIC = 21,49)
- 15. Considerando la siguiente información muestral:

$$y_t$$
 0 2 1 1 0 4 3 x_t 5 12 10 9 6 15 14

- a) Plantear y estimar el modelo econométrico que explica el número de errores en la contabilidad de una empresa (y_t) en función del número de apuntes contables (x_t) a lo largo de 7 meses. (Sol. $\hat{y}_t = -2,3322 + 0,384x_t$)
- b) Obtener el coeficiente de determinación. (Sol. $\mathbb{R}^2=0,9381$)
- c) Obtener los residuos y comprobar que su suma es igual a 0. (Sol. $e_1=0,408; e_2=-0,286; e_3=-0,516; e_4=-0,132; e_5=0,023; e_6=0,559; e_7=-0,056)$
- 16. En un estudio de los determinantes de la inversión se usaron 20 datos anuales correspondientes a las siguientes variables: inversión anual en millones de euros (Y), tipo de interés en porcentaje (X_1) , y variación anual del PIB en millones de euros (X_2) . Se dispone de la siguiente información.

$$\sum x_{1t} = 100; \sum x_{1t}^2 = 680; \sum x_{1t}x_{2t} = 100$$
$$\sum x_{2t} = 24; \sum x_{2t}^2 = 48, 8; \sum (y_t - \bar{y})^2 = 1200$$
$$\sum y_t = 5; \sum x_{1t}y_t = -255; \sum x_{2t}y_t = 146$$

Se pide:

- a) Las estimacion de los parametros del modelo $y_t = \beta_1 + \beta_2 x_{1t} + \beta_3 x_{2t} + u_t$ mediante el método de mínimos cuadrados ordinarios. Sol. $\hat{\beta}' = \begin{pmatrix} -2,725 & -0,875 & 6,125 \end{pmatrix}$
- b) Estudiar la bondad del ajuste realizado. Sol. $(R^2 = 0.91875)$.

 $Ejercicio\ seleccionado\ de\ [5].$

17. Se quiere estimar por MCO un modelo lineal entre las variables y_t y x_t utilizando 5 observaciones. En la siguiente tabla, se muestra la información de y_t y x_t :

t	1	2	3	4	5
y_t	27	40	54	18	22
x_t	23	24	17	5	10

a) Estimar el modelo por MCO. Sol.

$$\hat{\beta} = \begin{pmatrix} 16,7267 \\ 0,9793 \end{pmatrix}$$

b) Obtener la varianza estimada de los coeficientes estimados. Sol.

$$Var(\hat{\beta}) = \begin{pmatrix} 227,7692 & -11,8458 \\ -11,8458 & 0,7497 \end{pmatrix}$$

- c) Obtener el coeficiente de determinación. Sol. $R^2 = 0.2989$.
- 18. Los trabajadores de cierta empresa consideran que existe discriminación salarial y por ello solicitan que se analice la retribución (Y) en función del genero $(D_1$ toma el valor 1 si el trabajador es hombre y cero si es mujer) y de la edad (X_2) de los 41 trabajadores obteniendo los siguientes datos:

$$\sum_{i=1}^{41} X_{2i} = 1735; \sum_{t=1}^{41} X_{2i}^2 = 77757;$$

$$\sum_{i=1}^{41} D_{1i} = 26; \sum_{i=1}^{41} y_i = 410, 46276; \sum_{i=1}^{41} y_i^2 = 5849, 20$$

$$\sum_{i=1}^{41} x_{2i} y_i = 18447, 75; \sum_{i=1}^{41} D_{1i} y_i = 278, 13; \sum_{i=1}^{41} X_{2i} D_{1i} = 1195$$

Se pide:

- a) Estimar el modelo. (Sol. $\hat{y}_i = -0.7318 0.7686D_{1i} + 0.2653X_{2i}$)
- b) Obtener el coeficiente de determinación. (Sol. $R^2 = 0, 1565$)

Ejercicio seleccionado de [1].

19. La empresa del ejercicio anterior alega que el salario está relacionado con la tarea desempeñada por cada trabajador y presenta la siguiente estimación donde D_2 toma el valor 1 si el trabajador es operario de producción (0 en caso contrario), D_3 toma el valor 1 si el trabajador se ocupa del mantenimiento de la maquinaria de producción (0 en caso contrario), D_4 toma el valor 1 si el trabajador es encargado de línea de producción (0 en caso contario) y se toma como variable de referencia la variable D_5 que toma el valor 1 si los trabajadores realizan tareas de administración (0 en caso contrario). Se pide:

$$\hat{y} = 27,59 + 0,5353D_1 - 0,0014X_2 - 20,61D_2 - 19,85D_3 - 18,06D_4$$

$$R^2 = 0,846$$

- a) Explique por qué no se introducen todas las variables en el modelo e interprete los estimadores de los coeficientes.
- b) ¿Cuál de los dos modelos es mejor según la información disponible? (Sol. $\bar{R}_2^2=0,824>\bar{R}_1^2=0,1121)$

Ejercicio seleccionado de [1].

Referencias

- [1] García, C.B., Sánchez, J.M. y Salmerón, R. (2017) Econometría básica para la economía y la empresa. Ed. Fleming.
- [2] García, J., Jiménez, J.F. y Cerrillo, J.R. Econometría práctica. Edo. Libreria Universitaria de Almería.
- [3] Johnston, J. (1984) Métodos de econometría. Ed. Vicens Vives.
- [4] Pena, B., Estavillo, J., Galindo, E., Leceta, M. y Zamora, M. (1999). Cien ejercicios de econometría. Ed. Pirámide.
- [5] Sánchez, C., López, M.M. y García, T. (2015) Econometría. Ed. Fleming.
- [6] Matilla García, m., Pérez Pascual, Pedro y Sanz Carnero, B. (2013) Econometría y predicción. Mc Graw Hill.