МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Президентский физико-математический лицей $N_{\rm e}$ 239

Отчёт по годовому проекту

Ученик: Котова Олеся

Преподаватель: Клюнин Алексей Олегович

Класс: 10-3

Содержание

1	 Постановка задачи Алгоритм решения задачи 					
2						
	2.1 Базовые структуры данных	4				
	2.2 Построение алгоритма	4				

1 Постановка задачи

Вывести аналитически уравнение движение трехзвенного портального (декартового) манипулятора(см. рис. 1) на основе метода Эйлера-Лагранжа.

В решении представить подробный вывод, включая расчет тензоров инерции, кинетической и потенциальной энергии системы, матрицы инерции, векторов центробежных и Кориолисовых сил, а также вектора гравитации.

Рис. 1: Трёхзвенный манипулятор

Таблица 1: Параметры Денавита-Хартенберга заданной системы

1 1				
$\mathcal{N}_{ar{0}}$	a_i	α_i	d_i	θ_i
1	0	$-\frac{\pi}{2}$	d_1	0
2	0	$\frac{\pi}{2}$	d_2	$\frac{\pi}{2}$
3	0	0	d_3	0

2 Алгоритм решения задачи

Добавили эту строку:

- 2.1 Базовые структуры данных
- 2.2 Построение алгоритма