Projet IAR 2020-2021

Back to Basics

Benchmarking Canonical Evolution Strategies for Playing Atari

auteurs: Patryk Chrabaszcz, Ilya Loshchilov, Frank Hutter

présenté par : Clémence Bourgue, Maël Franceschetti, Coline Lacoux

encadrant : Olivier Sigaud

Contexte de l'article

- Mnih (2013): Deep RL pour les environnements de grandes dimensions
- Salimans (2017): Natural ES peuvent être compétitifs avec RL
- Such (2017): Genetic ES peuvent être compétitifs avec RL
- Back to basics (2018): Canonical ES peut aussi être compétitif avec RL

Configuration des expériences sur Atari

- pipeline de pré-traitement des images
- actions = mouvements du joystick
- pas de connaissance des règles du jeu

Reproduction des expériences sur Qbert avec un budget de calcul plus faible

- configuration "1h" sur 24 Cpu
- réseau de neurone Nature
- utilisation de la table de bruit de Canonical ES (2Go)

Comportements observés

Fitness moyenne sur Qbert avec 2 exécutions par algorithme

Fitness maximale sur Qbert avec 2 exécutions par algorithme

Max fitness CES Max fitness OES 5000 3000 2000 1000 1000 1500 2000

Fitness moyenne sur Qbert

Fitness maximale sur Qbert

	OpenAl ES	Canonical ES	OpenAl ES	Canonical ES	OpenAI ES	Canonical ES	OpenAl ES	Canonical ES
	1 hour	1 hour	1 hour	1 hour	1 hour	1 hour	1 hour	1 hour
	24 cpu	24 cpu	70 cpu	70 cpu	800 cpu	800 cpu	4000 cpu	4000 cpu
Qbert	689.6875 650.3125	2785.0 835.0 448.33	1085	3068.33	8275 1200 1250	8000 6625 5850	12775 5075 4300	263242 16673.3 5136.7

Directions suivies par les algorithmes

Géométrie de la fonction objectif

Canonical ES

Géométrie autour de solutions proposées par Canonical ES (ordre chronologique)

CEM

Géométrie autour de solutions proposées par CEM (ordre chronologique)

OpenAl ES

Géométrie autour de solutions proposées par OpenAl ES (ordre chronologique)

Robustesse des meilleurs solutions

Meilleure solution obtenue avec Canonical ES

Meilleure solution obtenue avec OpenAl ES

Comparaison des meilleurs solutions obtenues avec Canonical ES et OpenAl ES

Réduction de dimensions

TSNE UMAP

Environnement Kangaroo

Fitness moyenne sur Kangaroo avec 2 exécutions par algorithme

Environnement Kangaroo

Fitness maximale sur Kangaroo avec 2 exécutions par algorithme

Environnement Kangaroo

	OpenAI ES	Canonical ES	CEM
	1 hour	1 hour	1 hour
	35 cpu	35 cpu	35 cpu
Kangaroo	811.25 3810.625	866.66 940.0	445.0 545.0

Merci de votre attention

Session des questions réponses ouvertes!