Lesson 10

Digital Logic

Junying Chen

- 2.1
 - Recall SOP canonical form (Page 59).
 - Sum the minterms of all the rows (in the truth table) with outputs as 1's.

(a)
$$Y = \overline{AB} + A\overline{B} + AB = \sum (m_1, m_2, m_3) = \sum (1,2,3)$$

(b)
$$Y = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

= $\sum (m_1, m_2, m_3, m_4, m_6) = \sum (1,2,3,4,6)$

- Some students simplified the equation.
- Incorrect, because the question asks for canonical form.

- 2.2(a)
 - You can choose to use Boolean theorems or K-maps.
 - For 2-variable equations, using Boolean algebra to simplify the equations is easy. For 3- and 4-variable equations, using K-maps is more convenient. K-maps are usually used for equations with up to 4 variables.

$$Y = \overline{AB} + A\overline{B} + AB = \overline{AB} + A\overline{B} + (AB + AB)$$

$$= (\overline{AB} + AB) + (A\overline{B} + AB) = (\overline{A} + A)B + (\overline{B} + B)A$$

$$= B + A = A + B$$

- Some students used Boolean algebra to simplify the equation but got the result as AB+A or AB+B.
- This is not the minimized form.

- 2.2(a) (continued)
 Use K-map:
 - Variable coding method: Gray code (The adjacent codes have only one bit changed.)

$$Y = A + B$$

• 2.2(b)

Solution 1:

$$Y = \overline{AC} + B\overline{C} + A\overline{C}$$

Solution 2:

$$Y = \overline{AC} + \overline{AB} + \overline{AC}$$

• 2.3(a)

$$Y = A + B$$

$$\frac{A}{B}$$

• 2.3(b)

Solution 1:
$$Y = \overline{AC} + \overline{BC} + \overline{AC}$$

Solution 2:
$$Y = AC + AB + AC$$

- 2.4
 - Need not minimize the equation.

$$Y = \overline{AD} + \overline{ACD} + \overline{ABC} + \overline{ABCD}$$

$$Z = BD + ACD$$

- 2.5
 - Minimal Boolean equation (several solutions)

Solution 1:

Υ					
•	AE CD	300	01	11	10
	00	Χ	0	1	1
	01	Χ	X	1	0
	11	0	Х	1	1
	10	Χ	0	X	X

Solution 2:

Y	, A D						
	At	³ 00	01	11	10		
(00	Χ	0	1	1		
()1	Χ	Χ	1	0		
1	11	0	Χ	1	1		
	LO	Χ	0	X	X		

$$Y = BD + AD + AC$$

$$Y = BD + AD + AC$$
 $Y = AB + AD + AC$

• 2.5 (continued)

Solution 3:

$$Y = AB + AC + \overline{BD}$$

• 2.6

Аз	A2	A 1	A ₀	Р	D
0	0	0	0	0	1
0	0	0	1	0	0
0	0	1	0	1	0
0	0	1	1	1	1
0	1	0	0	0	0
0	1	0	1	1	0
0	1	1	0	0	1
0	1	1	1	1	0
1	0	0	0	0	0
1	0	0	1	0	1
1	0	1	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	0	1	1	0
1	1	1	0	0	0
1 esigr	1 and	1	1	0 er Ai	1

P A 1	A3A	A ₂	01	11	10
Αı	00	0	0	0	0
	01	0	1	1	0
	11	1	1	0	1
	10	1	0	0	0

Solution 1:

$$\begin{split} \mathbf{P} &= \mathbf{A}_{2} \overline{\mathbf{A}_{1}} \mathbf{A}_{0} + \overline{\mathbf{A}_{3}} \mathbf{A}_{2} \mathbf{A}_{0} \\ &+ \overline{\mathbf{A}_{2}} \mathbf{A}_{1} \mathbf{A}_{0} + \overline{\mathbf{A}_{3}} \overline{\mathbf{A}_{2}} \mathbf{A}_{1} \end{split}$$

Solution 2:

$$\begin{aligned} \mathsf{P} &= \mathsf{A}_{2} \overline{\mathsf{A}_{1}} \mathsf{A}_{0} + \overline{\mathsf{A}_{3}} \mathsf{A}_{1} \mathsf{A}_{0} \\ &+ \overline{\mathsf{A}_{2}} \mathsf{A}_{1} \mathsf{A}_{0} + \overline{\mathsf{A}_{3}} \overline{\mathsf{A}_{2}} \mathsf{A}_{1} \end{aligned}$$

2.6 (continued)

Аз	A2	A 1	A0	Р	D
0	0	0	0	0	1
0	0	0	1	0	0
0	0	1	0	1	0
0	0	1	1	1	1
0	1	0	0	0	0
0	1	0	1	1	0
0	1	1	0	0	1
0	1	1	1	1	0
1	0	0	0	0	0
1	0	0	1	0	1
1	0	1	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	0	1	1	0
1	1	1	0	0	0
1 esigr	1	1	1 nput	0 er Ai	1 chite

D	\ A3 <i>A</i>	\ 2			
A 1	A0\	00	01	11	10
	00	1	0	1	0
	01	0	0	0	1
	11		0	(1)	0
	10	0	1	0	0

$$D = A_3 A_2 \overline{A_1} A_0 + A_3 \overline{A_2} \overline{A_1} A_0$$

$$+ \overline{A_3} \overline{A_2} A_1 A_0 + A_3 A_2 A_1 A_0$$

$$+ \overline{A_3} A_2 A_1 \overline{A_0} + \overline{A_3} \overline{A_2} \overline{A_1} \overline{A_0}$$

$$+ \overline{A_3} A_2 A_1 \overline{A_0} + \overline{A_3} \overline{A_2} \overline{A_1} \overline{A_0}$$

- Basically, you have to write out every bit value of the input variables in the truth table.
- But you can also write the truth table with input don't cares.

COMBINATIONAL LOGIC DESIGN

In-class Test 2 Answers

2.7

Α	В	С	D	Υ
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

$$Y = \overline{AB} + \overline{ACD} + \overline{BCD}$$

• 2.8(a)

Α	В	С	Υ
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

• 2.8(b)

• 2.8(c)

• 2.8(c) (continued)

Solution 3:

 From truth table, we learn that when A, B and C are of the same value, Y outputs 1.

• 2.8(c) (continued)

Solution 4:

 From truth table, we learn that when A, B and C are of the same value, Y outputs 1.

2.9

- Longest path: from A/B/C/D to Y
- Shortest path: from E to Y

$$t_{pd} = t_{pd_AY} = 3t_{pd_NAND2} = 3 \times 20 = 60ps$$

$$t_{cd} = t_{cd}$$
 $EY = t_{cd}$ $NAND2 = 15ps$

