Exercício 6: Integração numérica

Deve ser entregue relatório na próxima aula.

- **1. Esfera imersa em água:** considere a seguinte esfera de raio 2 m a ser imergida em água. Sabendo que o volume fora da água é dado por $V=\frac{\pi}{3}h^2(3r-h)$, calcule o trabalho realizado pela impulsão durante o processo de submergir metade da esfera (Dica: coloque as constantes todas fora do integral):
 - a. Usando o método do trapézio, de Simpson e de Romberg. (dica: teste os métodos na aula com o integral de x^3+x^2 , e passe ao exercício 2, fazendo o resto no fim).
 - b. Trace o gráfico do desvio do integral numérico ao valor real (calcule à mão ou use a função Integrate[] do Mathematica) em função do número de divisões na integração numérica para os métodos do trapézio e o de Simpson. Discuta os resultados.

- d. **(opcional)** Calcule o integral da função $1/x^2$, para os 3 métodos, e trace o gráfico do desvio ao valor real em função do tamanho da divisão (os 3 métodos no mesmo gráfico) em escala log-log.
- **2. Arco e flecha:** A força necessária para esticar o fio do arco da figura abaixo em função do x é dado pela seguinte tabela:

	<i>x</i> (m)	0.00	0.05	0.10	0.15	0.20	0.25
ĺ	F (N)	0	37	71	104	134	161
	<i>x</i> (m)	0.30	0.35	0.40	0.45	0.50	
ĺ	F (N)	185	207	225	239	250	

- a. Usando a regra do trapézio calcule a velocidade de saída de uma flecha de 75 g quando o fio é esticado 0.5 m (dica: use a lei do trabalho-energia).
- b. Use no Mathematica a função Interpolation[] para ordem 1 e integre usando a função NIntegrate[], para comparar com o resultado da alínea anterior. Faça o gráfico da função interpolada.
- c. (opcional) Calcule o mesmo integral usado a regra de Simpson.