

DORIS在蔚来的应用

唐怀东 数据团队负责人

目录 CONTENT

①1 OLAP在蔚来的发展

03 Doris在运营平台上的实践

02 Doris作为统一OLAP数仓

04 经验总结

01 OLAP在蔚来的发展

OLAP在蔚来的发展

为什么选择Doris

OLAP	优点 Hugadong TANG 6833	缺点	技术使用成本	协议	性能 Hualdong T	运维成本
Druid	实时+离线数据摄入列存储高并发	使用门槛高基本上不支持Joinunique操作效率低	• 高	非标准协议	分场景	• 高
TIDB aldon9 ANG 683	HTAP(OLTP + OLAP)支持更新支持明细和聚合	列式存储需要单独 占存储和计算资源OLAP能力不足	• 低	• SQL标准	● 分场景	• 低 Huaidor
Doris	高并发和高吞吐 实时+离线数据摄入 支持明细和聚合 支持一定程度更新 物化视图 多表JOIN schema在线变更		• 低 ng TANG 6833	• 兼容 MySQL协 议	• 满足 Hualdong T	• 低 _{AN} G 683 ³
	Schema任线变更向量化引擎					
ClickHouse	列存储单机性能强向量化引擎	多表JOIN支持差并发度低实时更新支持一般	• 高	非标准协 议	• 满足	• 高
	• 保留明细					

02 Doris作为统一OLAP 数仓

统一OLAP数仓

Doris在运营平台上的实践

架构图

CDP存储选型的考量点

离线实时统一

场景	需求	Doris功能点
实时标签	数据的实时更新	Routine load
离线标签	高效的大批量导入	Broker load
流批统一	实时离线数据存储统一	Routine load和broker load更新同一张表的不同列

高效圈选

场景	需求	Doris功能点
复杂条件圈选	高效的支持多条件圈选	SIMD优化

高效聚合

场景	需求	Doris功能点
标签值的分布	每天都需要更新所有标签的分布值,需要快速高效 统计	数据分片(Partition),减少数据传输和计算存算统一,每个节点先聚
群体的分布	同上	合 • SIMD提速
效果分析的统计 值	同上	

多表关联

场景	需求	Doris功能点
群体的特征分布	统计群体在某个特征下的 分布	多表关联
单体的标签	展示不同单体的标签	

联邦查询

场景	需求	Doris功能点
效果分析关联任 务执行明细	Doris数据关联Tidb数据	关联外表进行查询
人群标签关联行 为聚合数据	Doris数据关联Elasticsearch 数据	

 04

 经验总结

经验总结

Bitmap聚合(计算UV场景)

- Roaring bitmap
- Id全集小于1000万, bitmap聚合和直接使用join, 存储和查询效率差别不大
- Id全集大于5000万,可以考虑bitmap聚合

ES外表

● 适合单表查询,支持下推

● 不适合聚合查询,会把ES明细全读到doris,然后聚合

● 不合适多表关联,读取大量数据,会引发ES频繁GC

分批更新列

● 聚合模型单独更新某些列,需要使用REPLACE_IF_NOT_NULL

如果需要用null替换原来的非null值,则做不到

● 可以将所有null值替换成有意义的默认值,比如unknown

在线服务

● 同一份数据,同时服务在线离线场景,容易互相影响

● 尽量用另外单独的技术方案提供在线服务

非常感谢您的观看

