TEMA 6. **NORMALIZACIÓN**

NOMBRE:	GRUPO:
FECHA DE ENTREGA:	PUNTAJE (MAX 60):

Todos los ejercicios de este documento deberán entregarse de forma individual.

1.1. EJERCICIO 1.

Considere el siguiente modelo relacional empleado para almacenar los cursos que imparte un instituto. Cada curso se imparte en varias clases de una hasta 5 clases a la semana.

El instituto comienza sus operaciones a las 16:00, cada clase independientemente del curso siempre tiene una duración de 2 hrs., por lo que sus cursos se imparten a las 16:00, a las 18:00 y a las 20:00. Para un mismo curso puede darse el caso que sus N clases se impartan en distintos horarios. A pesar de que todas las clases duran 2 horas, el usuario desea que el campo FECHA_FIN se conserve.

La siguiente tabla muestra un extracto de los datos almacenados:

CURSO

CURSO_ID	NOMBRE	FECHA_INICIO	FECHA_FIN
1	COCINA	01/01/2011	01/03/2011
2	CARPINTERIA	01/01/2011	01/03/2011
3	ELECTRONICA	01/01/2011	01/03/2011
4	MUSICA	01/01/2011	01/03/2011

CLASE CURSO

CLASE_CURSO_ID	DIA	HORA_INICIO	HORA_FIN	SALON	CURSO_ID
1	LUNES	18:00	20:00	B-14	1
2	MIERCOLES	18:00	20:00	b-16	1
3	MARTES	16:00	18:00	B-20	2
4	JUEVES	16:00	18:00	B-21	2
5	LUNE	18:00	20:00	B17	3
6	miércoles	18:00	20:00	B-17	3
7	Martes	16:00	18:00	B-25	4
8	JUEVES	16:00	18:00	b-25	4
9	VERNES	20:00	22:00	B-21	4

El DBA ha detectado cierta redundancia y ligeras inconsistencias en la tabla CLASE CURSO, en los campos DIA, HORA INICIO y HORA FIN y SALON, por lo que le ha solicitado al diseñador solucionar este problema. El diagrama resultante debe estar libre de redundancias innecesarias considerando las reglas de negocio antes mencionadas. 2P

Determine en que forma normal se encuentra la tabla.

Aplicando los conceptos de normalización reescribir el modelo relacional anterior que permita la eliminación de redundancias innecesarias.

4P

Reescribir la tabla de datos en las nuevas tablas para confirmar la eliminación de la redundancia e inconsistencias.

ΔP

1.2. EJERCICIO 2:

Material de apoyo. FI-UNAM

Considere el siguiente modelo relacional que muestra el diseño de una base de datos que guarda la información de las solicitudes de VISA para viajar a diversos países.

El DBA ha detectado problemas de desempeño por lo que le ha solicitado al diseñador las siguientes acciones:

- A. Determine el nivel de normalización para cada una de las tablas del diagrama.
- s. Se requiere bajar un nivel de normalización para la tabla SOLICITUD_VISA considerando para ello las tablas STATUS_SOLICITUD, PAIS y OCUPACIÓN.

 Reescribir la tabla SOLICITUD_VISA con los cambios necesarios.
- C. Se requiere que al consultar los datos de una VISA se emplee una sola sentencia SQL sin tener que asociar con las tablas SUBTIPOS. Reescribir la tabla SOLICITUD_VISA con los cambios necesarios.

1.3. EJERCICIO 3:

La siguiente tabla muestra los datos almacenados de un sistema web que ofrece renta de películas a sus clientes por internet (Streaming). Considerar las siguientes reglas de negocio:

- Un cliente cuenta con una sola membresía. Al terminar el periodo, si el cliente decide continuar o renovarla, se modifica la fecha de vigencia.
- La duración de las membresías es variable. Algunos clientes tienen membresías por 2 años, por 1 año, etc.
- La duración de la renta de la película también es variable. Cuando la fecha de entrega expira, ya no se permite realizar el proceso de Streaming.
- Si un cliente decide rentar la misma película varias veces, solo se actualiza la fecha de la renta y la fecha de entrega.

	NOMBRE	APELLIDO	MIEMBRO	MIEMBRO		FECHA DE	TIPO	PRECIO	FECHA DE	DESCRIPCION
MEMBRESIA	CLIENTE	PATERNO	DESDE	HASTA	PELICULA	ENTREGA	PELICULA	RENTA	RENTA	TIPO
										Adolescentes
8902493	Ramiro	Martínez	10/05/2000	10/04/2002	HALLOWEEN 2	14/05/2000	С	56.50	10/05/2000	y adultos
8902493	Ramiro	Martínez	10/05/2000	10/04/2002	BIUTIFUL	13/05/2000	В	100.0	10/05/2000	Familiar
7823493	Mariana	Juárez	20/04/1998	20/05/1998	LAS 2 TORRES	26/04/1998	В	40.5	20/04/1998	Familiar
443490	Magdalena	Alcazar	01/01/2010	01/02/2011	LAS 2 TORRES	11/01/2010	В	40.5	05/01/2010	Familiar
443490	Magdalena	Alcazar	01/01/2010	01/02/2011	TOY STORY 3	07/01/2010	Α	140.0	25/12/2009	Infantil
443490	Magdalena	Alcazar	01/01/2010	01/02/2011	BIUTIFUL	08/01/2010	В	100.0	25/12/2009	Familiar
345345	Pablo	Jimenez	11/05/2000	11/05/2001	FINAL FANTASY	21/05/2000	А	50.0	06/05/2000	Infantil

A. Realice el proceso de normalización hasta su 3ª forma normal empleando diagramas de dependencias.

10P

2P

B. Construir el modelo relacional con base al resultado del proceso de normalización del punto anterior (No forzar el resultado, debe coincidir con el proceso obtenido en el inciso anterior).

1.4. EJERCICIO 4.

Considere las siguientes reglas de negocio de un sistema de mantenimiento de Autos.

Material de apoyo. FI-UNAN

Los dueños de los autos pueden acudir a una agencia para realizar revisiones preventivas y para la aplicación de servicios de mantenimiento al auto.

Revisiones:

Las revisiones tienen como objetivo la prevención de fallas en los autos y se ofrecen de forma gratuita. La agencia cuenta con un catálogo de tipos de revisión a ofrecer. Cada vez que un auto es llevado a revisión se almacena el tipo de revisión realizada, la fecha de revisión y su diagnóstico.

Servicios:

El auto puede recibir varios servicios a lo largo de su vida útil. De forma similar, la agencia tiene un catálogo de tipos de servicio a ofrecer. Cada vez que un auto es llevado a servicio se registra la fecha del servicio, el tipo de servicio y el responsable. Cabe mencionar que cada tipo de servicio cuenta con un solo responsable asignado el cual certifica que el servicio se realizó de forma correcta.

El Diseñador que implementó la BD cometió algunas anomalías. A continuación, se presenta el diseño realizado y una muestra de datos:

Modelo relacional:

Muestra de datos:

TIPO_SERVICIO

Tipo_servicio_id	clave	Descripción
0	Sin valor	Sin valor
1	SB	Servicio Básico
2	SI	Servicio Intermedio
3	SA	Servicio Avanzado

TIPO_REVISION

Tipo_revision_id	Clave	Desripción
0	Sin valor	Sin valor
1	RF	Revisión del sistema de frenos
2	RN	Revisión de neumáticos
3	RFI	Revisión de filtros

RESPONSABLE

Responsable_id	nombre	A_paterno	A_paterno	RFC
0	NA	NA	NA	NA
100	Juan	Lopez	Lara	LOLAJ870304
200	Mary	Martinez	Mora	MAMR89731
300	Hugo	Morales	Ruiz	RUMOHU79233

AUTO SERVICIO

Auto_id	Tipo_servicio_id	Tipo_revision_id	Fecha_servicio	Diagnostico_revision	Fecha_revision	Responsable_id
1	1	0	01/01/2017	null	null	100
1	2	0	01/02/2017	null	null	200
2	1	0	02/01/2017	null	null	100
2	2	0	02/02/2017	null	null	200
3	0	1	null	Sin problemas	30/01/2017	0
3	0	2	null	Con defectos	30/03/2017	0
				encontrados		

A. Genere una lista de las anomalías que presenta este diseño haciendo referencia a los datos de muestra.

10P

Material de apoyo. FI-UNAM

B. ¿Qué forma(s) Normal(es) podrían aplicarse para resolver las anomalías anteriores?

5P

C. Aplicar las formas normales anteriores y rescribir el modelo relacional.

Total: 60P

10P

Serie de Ejercicios tema 06

Ejercicio 1

A. Determine en qué forma normal se encuentra la tabla.

Se encuentra en su 2da forma normal

B. Aplicando los conceptos de normalización reescribir el modelo relacional anterior que permita la eliminación de redundancias innecesarias. APLICANDO 1FN

Identificación de llave primaria

Antes de identificar formalmente la llave primaria, decidí agregar una llave primaria artificial para el DIA, otra para HORA_INICIO,HORA_FIN y finalmente una más para el salón, de tal manera que podamos eliminar su dependencia. Por lo que la tabla quedaría de la siguiente manera.

CLASE _CURS O_ID	Dia_id	DIA	Horari o_id	HORA_ INICIO	HORA_ FIN	SALON _ID	SALON	CURSO _ID
1	1	LUNES	1	18:00	20:00	1	B-14	1
2	3	MIÉRCO LES	1	18:00	20:00	2	b-16	1
3	2	MARTES	2	16:00	18:00	3	B-20	2
4	4	JUEVES	2	16:00	18:00	4	B-21	2
5	1	LUNE	1	18:00	20:00	5	B17	3
6	3	miércole s	1	18:00	20:00	5	B-17	3
7	2	Martes	2	16:00	18:00	6	B-25	4
8	4	JUEVES	2	16:00	18:00	6	b-25	4
9	5	VERNES	3	20:00	22:00	4	B-21	4

APLICANDO LA 3FN

Eliminación de dependencias transitivas

Tabla: SALON salon_id-> salon

Tabla: DIA
dia_id -> dia
Tabla: HORARIO

horario_id -> HORA_INICIO, HORA_FIN

Tabla original:

CLASE_CURSO_ID -> DIA_ID, HORARIO_ID, SALON_ID, CURSO_ID

C. Reescribir la tabla de datos en las nuevas tablas para confirmar la eliminación de la redundancia e inconsistencias.

CURSO

CURSO_ID	NOMBRE	FECHA_INICIO	FECHA_FIN
1	COCINA	01/01/2011	01/01/2011
2	CARPINTERIA	01/01/2011	01/03/2011
3	ELECTRONICA	01/01/2011	01/03/2011
4	MUSICA	01/01/2011	01/03/2011

DIA

DIA_ID	DIA
1	LUNES
2	MIÉRCOLES
3	MARTES
4	JUEVES
5	VIERNES

HORARIO

HORARIO_ID	HORA_INICIO	HORA_FIN
1	18:00	20:00
2	16:00	18:00
3	20:00	22:00

SALON

SALON_ID	SALON
1	B-14
2	B-16
3	B-20

4	B-21
5	B-17
6	B-25

CLASE_CURSO_ID

CLASE_CURSO_ID	DIA_ID	HORARIO_ID	SALON_ID	CURSO_ID
1	1	1	1	1
2	3	1	2	1
3	2	2	3	2
4	4	2	4	2
5	1	1	5	3
6	3	1	5	3
7	2	2	6	4
8	4	2	6	4
9	5	3	4	4

EJERCICIO 2

A. Determine el nivel de normalización para cada una de las tablas del diagrama.

B. Se requiere bajar un nivel de normalización para la tabla SOLICITUD_VISA considerando para ello las tablas STATUS_SOLICITUD, PAIS y OCUPACIÓN. Reescribir la tabla SOLICITUD_VISA con los cambios necesarios.

SOLICITUD_VISA

SOLICITUD_VISA_ID	NUMERIC(10,0)	NOT NULL
	VARCHAR(30)	NOT NULL
→ AP_MATERNO	VARCHAR(30)	NOT NULL
♦ CURP	VARCHAR(18)	NOT NULL
PAIS_NACIMIENTO_CLAVE	VARCHAR(4)	NOT NULL
PAIS_NACIMIENTO_NOMBRE	VARCHAR(30)	NOT NULL
PAIS_VISITA_CLAVE	VARCHAR(4)	NOT NULL
PAIS_VISITA_NOMBRE	VARCHAR(30)	NOT NULL
OCUPACION_NOMBRE	VARCHAR(30)	NOT NULL
♦ STATUS_SOLICITUD_CLAVE	VARCHAR(20)	NOT NULL
STATUS_SOLICITUD_DESCRIPCION	VARCHAR(100)	NOT NULL
◆ FECHA_STATUS	DATE	NOT NULL
◆ ES_VISA_TURISTICA	BIT	NOT NULL
	BIT	NOT NULL

C. Se requiere que al consultar los datos de una VISA se emplee una sola sentencia SQL sin tener que asociar con las tablas SUBTIPOS. Reescribir la tabla SOLICITUD_VISA con los cambios necesarios.

SOLICITUD_VISA

	NUMERIC(10,0)	NOT NULL
→ AP_PATERNO	VARCHAR(30)	NOT NULL
→ AP_MATERNO	VARCHAR(30)	NOT NULL
◆ CURP	VARCHAR(18)	NOT NULL
→ PAIS_NACIMIENTO_CLAVE	VARCHAR(4)	NOT NULL
→ PAIS_NACIMIENTO_NOMBRE	VARCHAR(30)	NOT NULL
→ PAIS_VISITA_CLAVE	VARCHAR(4)	NOT NULL
→ PAIS_VISITA_NOMBRE	VARCHAR(30)	NOT NULL
→ OCUPACION_NOMBRE	VARCHAR(30)	NOT NULL
♦ STATUS_SOLICITUD_CLAVE		
♦ STATUS_SOLICITUD_DESCRIPCIO	N VARCHAR(100)	NOT NULL
◆ FECHA_STATUS	DATE	NOT NULL
♦ ES_VISA_TURISTICA	BIT	NOT NULL
♦ ES_VISA_LABORAL	BIT	NOT NULL
♦ RFC	VARCHAR(13)	NULL
♦ NUM_CEDULA	VARCHAR(10)	
◆ PROFESION	VARCHAR(50)	NULL
♦ FECHA_LLEGADA	DATE	NULL
♦ FECHA_SALIDA	DATE	NULL
→ MOTIVO_VISITA	VARCHAR(30)	NULL
◆ FECHA_VIAJE	VARCHAR(30)	NULL
	NUMERIC(3,0)	NULL

EJERCICIO 3

A. Realice el proceso de normalización hasta su 3a forma normal empleando diagramas de dependencias. PK membresía y película

B. Construir el modelo relacional con base al resultado del proceso de normalización del punto anterior (No forzar el resultado, debe coincidir con el proceso obtenido en el inciso anterior).

Ejercicio 4

A. Genere una lista de las anomalías que presenta este diseño haciendo referencia a los datos de muestra.

Anomalías de inserción

Existen anomalías de inserción ya que se deben insertar datos con valores nulos en la tabla AUTO_SERVICIO cuando se trata de un servicio o revisión, debido a que un registro es exclusivo a uno de los dos.

Así también, el dba se vio obligado a crear un registro con 0 para el tipo servicio, tipo_revision y responsable, que ayude a decir que se trata de un valor nulo. Sin embargo, si no se cuida, un tipo de servicio podría tener más de un responsable e incluso un tipo_revision también podría tener responsable.

Auto_id	Tipo_servicio_id	Tipo revision id	Fecha_servicio	Diagnostico revision	Fecha_revision	Responsable_id
1	1	0	01/01/2017	null	null	100
1	2	0	01/02/2017	null	null	200
2	1	0	02/01/2017	null	null	100
2	2	0	02/02/2017	null	null	200
3	0	1	null	Sin problemas	30/01/2017	0
3	0	2	null	Con defectos encontrados	30/03/2017	0

B. ¿Qué forma(s) Normal(es) podrían aplicarse para resolver las anomalías anteriores?

En este caso es conveniente aplicar la 4FN para la eliminación de dependencias multivalor, y una 3a Forma normal para las dependencias transitivas.

C. Aplicar las formas normales anteriores y reescribir el modelo relacional. Aplicamos Boycecodd y 4aFN

