Calories as a Functions of Other Nutrients ("Situación Problema" MA1042.66)

BY:

Celeste Adriana Paz Hernández A01656010 Ana Fernanda Flores Gámez A01662498 Elid Sebastián López Pineda A01654141 Amy Vanesa Díaz García A01656419 Esther Karyme Chávez Flores A01654913

Abstract

In this evidence we will get the next formula for finding a model to predict calories.

Cal = 3.9584C + 4.1011P + 8.8663F

In the formula Cal means the amount of kilocalories of a food, C is the amount of carbohydrates, P the amount of proteins and F the amount of fats. The formula was based on a food binnacle of about 10 weeks of everyday documentation, in which we search about the sods, carbohydrates, proteins, fats and calories of each food through the Nutritionix web site (https://www.nutritionix.com/), all the recopilation to make three models of linear regression. In brief we will argue why we choose a model with hypothesis testing. In this document we use the Excel software, the Python programming language in Google Colab and the statistic system of Minitab.

Contents:

I.	Introduction
2.	Model assumptions
3.	The cleaning of our data
	3.1 Correlation between our variables
4.	From Model 1 to Model 2
5.	From Model 2 to Model 3
6.	Why no other Model?
7.	Consistency of our model with the assumption
8.	Data validation

9.	References	
Арре	ndix 1: Python code	
	ndix 2: Python results	
	ndix: Excel and Minitab results	
Appe	ndix : Cleaning data table	
	ndix: Full data hinnacle link	

1. Introduction

According to the newspaper La Jornada, in Mexico overweight and poor nutrition predominate in 70% of adults. This article mentions that Mexico is in the first place among Latin American countries leading to a high rate of obesity and overweight and in the sale of processed products, like rich in sugars and fats such as fried foods or sugary drinks. The interesting fact is that several scientists have determined that obesity is one of the conditions of greatest vulnerability to Covid-19 (coronavirus), so people who are overweight or obese should be careful, in the case of contracting this virus are more likely to die from vulnerability.

According to the Organisation for Economic Co-operation and Development (OECD), made up of 35 major economies, we can see in the graph below that the US is the most obese country, where 38.2% of the population over the age of 15 is obese. Mexico is second with 32.4% of the population and New Zealand is third with 30.7%.

In Mexico, obesity rates are higher among women than men. The OECD average is 19.5%. The OECD works out the Body Mass Index (BMI). for different countries using estimates of height and weight from surveys and measured data based on estimates of height and weight from health examinations. Long term projections suggest obesity levels are expected to rise in Mexico until 2030, as they are in countries including the US, England, Canada, France and Spain.

2. Model assumptions

Throughout this paper, we will assume the existence of the model

$$Cal = \beta_0 + \beta_1 S + \beta_2 C + \beta_3 P + \beta_4 F + E$$

where C is the amount of kilocalories, S is the amount of sodium, C is the amount of carbohydrates, P is the amount of proteins, F is the amount of fats and E is a random variable with cero of measure constant variance and normal distribution.

We also will assume:

- We have a random sample
- Our data have diversity
- When there are not consume Sods, Prots, Fats, Carbs the calories will we cero
- We will assume the Parsimony principle
- we will take a significance level of $\alpha = 0.01$

3. The cleaning of our data

In our models we clean off the data from the ones that were atypical when we run the models, taking importance on normal graphics and the residuals of the third model

Nutritionix	Food	Sods	Carbs	Prots	Fats	Cals
https://www.n	bbq boneless	3610	89	50	60	1100
https://www.n	breakfast burri	930	27	15	370	370
https://www.n	Fajitas	1816	124	97	55	1401
https://www.n	ma po tofu	2290	57	57	59	920
https://www.n	boiled egg	62	78	6.3	5.3	78
https://www.n	Tortilla Wrap	280	15	5	1.5	50
https://www.n	Rendang	84	9.9	36	27	404
https://www.n	saudi banana b	345	79	8.7	13	438
https://www.n	chips tomato sa	940	74	7	25	570
https://www.n	alfredo sauce p	65	25	1	2.5	25
https://www.n	chicken pesto p	1200	38	35	29	530
https://www.n	smores	370	85	8	31	610

Table 1: Atypical data

3.1 Correlation between our variables

	Sods	Fats	Carbs	Prots	Cals
Sods	1.000000	0.635082	0.385197	0.659620	0.654417
Fats	0.635082	1.000000	0.551058	0.621686	0.916818
Carbs	0.385197	0.551058	1.000000	0.276773	0.806184
Prots	0.659620	0.621686	0.276773	1.000000	0.673417
Cals	0.654417	0.916818	0.806184	0.673417	1.000000

Table 2: Correlation

We make this correlation table in python where we also include a pairplot to indicate the correlation between the variables. We also can notice that there is a correlation between Sods, Fats and Prots, where fats have 0.635 and proteins 0.659, that maybe means that in the foods we choose the dishes were proteins with sods and fat.

4. Training with cleaning data

Previously of cleaning the data we train each model, we obtain the next result of linear regression for each model

MODEL1:With			******	*********	*****	*********
			********	*******	********	**********
			gression Re			
Dep. Variable	ė:	c	als R-squ	uared:		0.999
Model:			OLS Adj.	R-squared:		0.999
Method:		Least Squa	res F-sta	atistic:		3.829e+04
Date:	Fr	i, 03 Jun 2		(F-statistic)	:	6.68e-172
Time:		00:28		Likelihood:		-377.47
No. Observat:	ions:		115 AIC:			764.9
Df Residuals	:		110 BIC:			778.7
Df Model:			4			
Covariance T	ype:	nonrob	ust			
	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.7164	1.117	-0.641	0.523	-2.930	1.497
Sods	-0.0012	0.002	-0.735	0.464	-0.004	0.002
Fats	8.8791	0.066	135.158	0.000	8.749	9.009
Carbs	3.9694	0.027	146.335	0.000	3.916	4.023
Prots	4.1455	0.070	59.627	0.000	4.008	4.283
Omnibus:		6.	201 Durb	in-Watson:		1.657
Prob(Omnibus):	0.	045 Jarqu	ue-Bera (JB):		5.687
Skew:		-0.	516 Prob	(JB):		0.0582
Kurtosis:		3.	347 Cond	. No.		1.59e+03

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [1] Standard Errors assume that the covariance meetra of the condition number is large, 1.59e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Table 3: Results of model 1

This model just sets the model supposed with the data obtained from Nutritionix: This one has an intercept and also all the variables including Sodium. It is important to take into consideration that the condition value is too high.

MODEL2: No	intercept, w	ith sods				 		
*********	******				Results	*****	<i></i>	*
					Resules			
Dep. Variab	le:	C	als F	R-squar	ed (uncent	ered):		1.000
Model:				-		ncentered):		1.000
Method:		Least Squar		-stati		,	1	.081e+05
Date:	Fr	i, 03 Jun 20		rob (F	-statistic):	2	.91e-198
Time:		00:28	20 I	log-Lik	elihood:			-377.69
No. Observa	tions:		115 A	AIC:				763.4
Df Residual	sı	1	111 B	BIC:				774.4
Df Model:			4					
Covariance	Type:	nonrob	ıst					
	coef	std err		t	P> t	[0.025	0.975]	
Sods	-0.0013	0.002	-0.8	360	0.392	-0.004	0.002	
Fats	8.8822	0.065	135.9	951	0.000	8.753	9.012	
Carbs	3.9627	0.025	159.0	146	0.000	3.913	4.012	
Prots	4.1314	0.066	62.7	792	0.000	4.001	4.262	
Omnibus:		4.5	507 D	ourbin-	Watson:		1.674	
Prob(Omnibu	ıs):	0.1	105 J	Jarque-	Bera (JB):		3.988	
Skew:	,-			rob(JB			0.136	
Kurtosis:				Cond. N			110.	
Warnings:								

Varnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Table 4: Results of model 2. This model takes out the intercept and keeps the sodium variable. If our null hypothesis were true, which means if the sodium coefficient were 0 instead of -0.0013, then the probability of getting this data or more extreme is 0.392, which is bigger than alpha (α =0.01). Therefore, we fail to reject the null hypothesis. In other words, this data is consistent with the assumption that the coefficient of sodium is 0.

MODEL3: No intercept, No sods OLS Regression Results Dep. Variable: Cals R-squared (uncentered): Model: OLS. Adj. R-squared (uncentered): 1.000 Least Squares Method: F-statistic: 1.445e+05 Fri, 03 Jun 2022 Date: Prob (F-statistic): 1.02e-200 Time: 00:28:20 Log-Likelihood: -378.07 No. Observations: 115 AIC: 762.1 Df Residuals: 112 BIC: 770.4 Df Model: 3 Covariance Type: nonrobust P> | t | [0.025 0.9751 coef std err 0.063 141.641 0.024 162.184 0.000 8.990 Fats 8.8664 8.742 3.9585 0.000 3.910 Carbs 4.007 4.1012 0.056 73.866 0.000 3.991 4.211 Prots 3.843 Durbin-Watson: 1.678 Omnibus: Prob(Omnibus): 0.146 Jarque-Bera (JB): 3.370 -0.410 Prob(JB): 0.185 Skew: Kurtosis: 3.173 Cond. No. 5.96

Table 5: Results of model 3 In this model there is no intercept and no sods variable.

^{-0.2673274944765053}

5. From Model 1 to Model 2

The reason why we moved from model 1 to model 2, is because one of the assumptions from which our model is based is that by not consuming proteins, carbohydrates, sods or fats, the total calories would be 0 however in the first model apart from those variables also has an intercept.

$$Cal = \beta_0 + \beta_1 S + \beta_2 C + \beta_3 P + \beta_4 F + E$$

$$0 = \beta_0 + \beta_1(0) + \beta_2(0) + \beta_3(0) + \beta_4(0) + E$$

$$0 = \beta_0$$

So our demonstration is that the intercept is equal to 0. This is the reason why we incline for model 2.

From Model 2 to Model 3

In order to explain the reason we moved from model 2 to model 3, we are going to make use of hypothesis testing, and later we will apply ockham's razor.

Let

 H_0 : Sodium coefficient = 0

 H_a : Sodium coefficient $\neq 0$

As mentioned over table 4, if H_0 were true, then the probability of getting this data or more extreme is $0.392 > \alpha = 0.01$. Therefore, we fail to reject the H_0

The meaning of these results is that, within reasonable doubt, our model is also consistent with a model that does not have sodium. Then, comparing R² from model 2=1.000 with R² from model 3=1.000 we notice they both explain our data exactly the same, but model 3 is simpler. Therefore, because of Ockham's razor principle, we incline for model 3.

7 Why no other Model?

To argue the reason we did not choose another model to describe our data, we will make hypothesis testing. Just as in the last step, where we assumed the coefficient of sodium was zero, we might just try the same with any other variable, for instance with Fats.

Let

 H_0 : Fats coefficient = 0

 H_a : Fats coefficient $\neq 0$

Based on the information from model 3, if H_0 were true, then the probability of getting this data or more extreme is 0.000> $\alpha = 0.01$. Therefore, we reject the null hypothesis.

As it is visible on the table of model 3, the p value for the other 2 variables left (carbs and prots) is the same as fats, 0.000. That's why no other model was made.

8 Consistency of our model with our assumptions

• At this part of the document, we are going to check our data with respect to linear regression. Well, our first step is to check if our residuals are closer to cero, which is consistent with the assumption that *E* has a mean of *0*.

-0.2673274944765053

Table 6: Residual results of model 3

 Our second step would be to check our histogram, the shape of our histogram. As we can see, our histogram has a not so irregular bell shape. Thus it is consistent with the assumption that the error distribution is normal.

Figure 1: The histogram of residuals has a bell shape, which is consistent with the assumption that our errors have a normal distribution

• As we can see, in this *probplot* the red line have to be close to the blue dots, is consistent with the assumption and a normal distribution in our data

Figure 2: After separating our outlier data, our residuals data is very close to our theoretical values.

• Now, in the residuals vs order graphic, we have a constant width and we can't see clusters or patterns which defines that our choice of random samples is consistent and the error has a constant variance.

Figure 3: In the residual vs order plot, there are no patterns or clusters, which matches our random sample.

9 Data validation

Finally, we compare the results of our model with the following specified foods: salt, egg whites, oil and sugar. So, our final formula of our model is:

$$Cal=3.958C + 4.101P + 8.866F$$

Food	Sods	Carbs	Prots	Fats	Cals	Modelo 3
Salt	581	0	0	0	0	0
Egg whites	55	0.2	3.6	0.1	17	16.426
Oil	0	0	0	14	124	124.04
Sugar	0	4.2	0	0	16	16.38

Table 7: comparison of our model and Nutritionix data

In the table above, it can be seen that the results are very close to the original data, concluding that our model almost perfectly predicts the calories in our food.

References

Appendix 1: Python Code

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
        import statsmodels.formula.api as smf
import seaborn as sns
d=pd.read_csv('data nutrix.csv' , index_col=2)
       d=pd.read_osv( data nutrix.csv' , index_col=2)
d.drop_duplicates(inplace= True)
d =d.loc[:,['Sods','Fats','Carbs','Prots','Cals']]
d.dropna(inplace=True)
print(d.info())#all data types should be numbers, no objects
f, ax = plt.subplots(3,5, figsize=(8,5))
        for ncol, col in enumerate(['Sods','Fats','Carbs','Prots','Cals']):
          data = d[col]
         order= np.arange(len(data))
ax[0, ncol].hist(data)
         ax[1, ncol].boxplot(data)
ax[0, ncol].set_title(col)
ax[2, ncol].scatter(order, data)
       plt.tight_layout()
   plt.show()
display(d.describe())
print( d[d ['Sods']> 3000].index)
print( d[d ['Fats']> 200].index)
print( d[d ['Prots']> 50].index)
Index(['bbq boneless '], dtype='object', name='Food ')
Index(['breakfast burrito '], dtype='object', name='Food ')
Index(['Fajitas ', 'ma po tofu '], dtype='object', name='Food ')
d.drop(['bbq boneless ','breakfast burrito ','Fajitas ', 'ma po tofu '], inplace =True)
print("MODELL:With intercept, with sods")
print("#0DELL:With intercept, with sods")
print("#"*80)
modell=smf.ols('Cals - Sods + Fats + Carbs +Prots',data=d)
results!=modell.fit()
print(results1.summary())
print("#"*80)
print("MODEL2: No intercept, with sods")
print("#"*80)
results2=model2.fit()
print(results2.summary())
print("#"*80)
print("MODEL3: No intercept, No sods")
print("#"*80)
print("#" *80)
model3=smf.ols('Cals - 0 + Fats + Carbs +Prots',data=d)
results3=model3.fit()
print(results3.summary())
```

```
import scipy.stats as ss
              residuals =results3.resid
              fitted = results3.fittedvalues
              order =np.arange(len(residuals))
              f, ax = plt.subplots(2,2)
              ax[0,0].hist(residuals)
              ax[0,1].scatter(residuals, fitted)
              ss.probplot(residuals, plot=ax[1,0])
              ax[ 1,1].scatter(order, residuals )
              plt.tight_layout()
              plt.show()
residuals[(residuals < -20)| (residuals >20)].index
'chocolate milk shake ', 'bagel & cream cheese',
'eggceptional skillet combo ', 'chicken pesto parm bowl ',
'steakhouse sirloin salad', 'oatmeal apple pie', 'smores '],
dtype='object', name='Food ')
                                                                         + Código — + Texto
] d.drop(['Tortilla Wrap', 'Rendang', 'saudi banana bread mash',
          chips tomato salsa ',
          'alfredo sauce portion for 10 inch small crunchy thin crust pizza ',
          'chicken pesto parm bowl ', 'smores '], inplace=True)
print(d.info())#all data types should be numbers, no objects
   f, ax = plt.subplots(3,5, figsize=(8,5))
   for ncol, col in enumerate(['Sods','Fats','Carbs','Prots','Cals']):
    data = d[col]
    order= np.arange(len(data))
    ax[0, ncol].hist(data)
    ax[1, ncol].boxplot(data)
    ax[0, ncol].set_title(col)
    ax[2, ncol].scatter(order, data)
   plt.tight_layout()
   plt.show()
   display(d.describe())
print("#"*80)
    print("MODEL1:With intercept, with sods")
    print("#"*80)
    model1=smf.ols('Cals ~ Sods + Fats + Carbs +Prots',data=d)
   results1=model1.fit()
   print(results1.summary())
   print("#"*80)
    print("MODEL2: No intercept, with sods")
    print("#"*80)
    model2=smf.ols('Cals ~ 0 + Sods + Fats + Carbs +Prots',data=d)
    results2=model2.fit()
   print(results2.summary())
    print("#"*80)
    print("MODEL3: No intercept, No sods")
    print("#"*80)
    model3=smf.ols('Cals ~ 0 + Fats + Carbs +Prots',data=d)
    results3=model3.fit()
  print(results3.summary())
```

```
import scipy.stats as ss
    residuals =results3.resid
    fitted = results3.fittedvalues
    order =np.arange(len(residuals))
    f, ax = plt.subplots(2,2)
    ax[0,0].hist(residuals)
    ax[0,1].scatter(residuals, fitted)
    ss.probplot(residuals, plot=ax[1,0])
    ax[ 1,1].scatter(order, residuals )
    plt.tight_layout()
    plt.show()
d.drop(['boiled egg'],inplace=True)
print(d.info())#all data types should be numbers, no objects
f, ax = plt.subplots(3,5, figsize=(8,5))
for ncol, col in enumerate(['Sods','Fats','Carbs','Prots','Cals']):
data = d[col]
order= np.arange(len(data))
 ax[0, ncol].hist(data)
ax[1, ncol].boxplot(data)
 ax[0, ncol].set_title(col)
ax[2, ncol].scatter(order, data)
plt.tight_layout()
plt.show()
display(d.describe())
print("#"*80)
print("MODEL1:With intercept, with sods")
print("#"*80)
model1=smf.ols('Cals ~ Sods + Fats + Carbs +Prots',data=d)
results1=model1.fit()
print(results1.summary())
print("#"*80)
print("MODEL2: No intercept, with sods")
print("#"*80)
model2=smf.ols('Cals ~ 0 + Sods + Fats + Carbs +Prots',data=d)
results2=model2.fit()
print(results2.summary())
print("#"*80)
print("MODEL3: No intercept, No sods")
print("#"*80)
model3=smf.ols('Cals ~ 0 + Fats + Carbs +Prots',data=d)
results3=model3.fit()
print(results3.summary())
import scipy.stats as ss
residuals =results3.resid
fitted = results3.fittedvalues
order =np.arange(len(residuals))
```

```
ss.probplot(residuals, plot=ax[1,0])
ax[ 1,1].scatter(order, residuals )
plt.tight_layout()
plt.show()
```

f, ax = plt.subplots(2,2)
ax[0,0].hist(residuals)

print (residuals.mean())

plt.tight_layout()
plt.show()

ax[0,1].scatter(residuals, fitted)
ss.probplot(residuals, plot=ax[1,0])
ax[1,1].scatter(order, residuals)

```
d.corr()
```

```
[ ] sns.pairplot(data=d)
  plt.show()
```

residuals.mean()

Appendix 2: Python Results

25%

50%

267.500000

491.000000

6.050000

12.000000

13.000000

26.000000

5.550000

12.000000

151.500000 270.000000

```
/usr/local/lib/python3.7/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.tes
  import pandas.util.testing as tm
<class 'pandas.core.frame.DataFrame'>
Index: 127 entries, Beef tacos to Hot dog
Data columns (total 5 columns):
    Column Non-Null Count Dtype
              127 non-null
0
     Sods
                                float64
     Fats
              127 non-null
                                float64
     Carbs
              127 non-null
                                float64
             127 non-null
                                float64
     Prots
     Cals
              127 non-null
                                float64
dtypes: float64(5)
memory usage: 6.0+ KB
None
                                     Carbs
                                                    Prots
                                                                   Cals
                                               60
                 100
                                30
                                                              30
                                               40
                                20
                                                              20
                 50
                                10
        2000
                         250
                                        100
                                              100
                               150
 3000
                                                            1000
 2000
                200
                                               50
                                                             500
                                50
 1000
                               150
 3000
                               100
 2000
                 200
              Sods
                         Fats
                                    Carbs
                                                             Cals
                                               Prots
        127.000000 127.000000
                               127.000000 127.000000
                                                        127.000000
count
        700.031496
                     19.203937
                                33.946457
                                            16.640945
                                                        344.071654
mean
        633.896423
                     35.015825
                                29.329339
                                            15.234898
                                                       269.552268
 std
          0.000000
                      0.000000
                                 0.000000
                                             0.300000
                                                          3.900000
 min
```

```
Index(['bbq boneless '], dtype='object', name='Food ')
Index(['breakfast burrito '], dtype='object', name='Food ')
Index(['Fajitas ', 'ma po tofu '], dtype='object', name='Food ')
```

MODEL2: No intercept, with sods

OLS Regression Results

Dep. Variable:	Cals	R-squared (uncentered):	0.995
Model:	OLS	Adj. R-squared (uncentered):	0.995
Method:	Least Squares	F-statistic:	5702.
Date:	Fri, 03 Jun 2022	Prob (F-statistic):	6.86e-135
Time:	00:28:10	Log-Likelihood:	-589.03
No. Observations:	123	AIC:	1186.
Df Residuals:	119	BIC:	1197.
Df Model:	4		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Sods	0.0073	0.007	1.094	0.276	-0.006	0.021
Fats	9.1973	0.288	31.974	0.000	8.628	9.767
Carbs	3.6500	0.103	35.378	0.000	3.446	3.854
Prots	3.9081	0.283	13.822	0.000	3.348	4.468
Omnibus:		214.9	30 Durbin	-Watson:		1.943
Prob(Omnibu	18):	0.0	000 Jarque	-Bera (JB):		24367.763
Skew:		-7.4	<pre>144 Prob(J</pre>	B):		0.00
Kurtosis:		70.3	328 Cond.	No.		109.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

MODEL3: No intercept, No sods

OLS Regression Results

Dep. Variable:	Cals	R-squared (uncentered):	0.995
Model:	OLS	Adj. R-squared (uncentered):	0.995
Method:	Least Squares	F-statistic:	7589.
Date:	Fri, 03 Jun 2022	Prob (F-statistic):	1.31e-136
Time:	00:28:10	Log-Likelihood:	-589.65
No. Observations:	123	AIC:	1185.
Df Residuals:	120	BIC:	1194.
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Fats	9.2845	0.277	33.565	0.000	8.737	9.832
Carbs	3.6721	0.101	36.261	0.000	3.472	3.873
Prots	4.0679	0.242	16.793	0.000	3.588	4.548
Omm i base s		216 (117 Possibile	17-t		1 071

216.917 Durbin-Watson: 1.971 Omnibus:

-0.2673274944765053

2000	• .5	75 -	•	150	• •	40		1000	
0	i	0	ì	0-	i	0 -	i	0 -	i i
000	H	50 - 25 -	Ĭ	50 -	Ĭ l	20 -	ήΙ	500 -	Н
2000 -	9	75 -	8	100	000	40 -	1	1000 -	8
ó	2000	ó	50	0 150 €	100	ó	50	ò	1000
0		0	ا ا	10		10		10	<u>.</u>
10 -	.	20 -		20 -	L	20 -		20 -	L.
20 -		40 -		30 -		30		30 -	
	5ods	F	ats	(Carbs		rots		Cals

dtypes: float64(5) memory usage: 5.4+ KB

count	116.000000	116.000000	116.000000	116.000000	116.000000
mean	663.568966	15.223276	31.795690	15.462931	321.371552
std	564.760739	14.477511	27.796682	12.703745	241.683711
min	0.000000	0.000000	0.000000	0.300000	3.900000
25%	260.250000	6.000000	11.750000	5.475000	146.000000
50%	488.000000	11.000000	25.000000	11.000000	260.000000
75%	942.500000	21.000000	44.500000	23.000000	444.000000
max	2400.000000	90.000000	149.000000	50.000000	1310.000000

MODEL2: No intercept, with sods

OLS Regression Results

Dep. Variable:	Cals	R-squared (uncentered):	0.995				
Model:	OLS	Adj. R-squared (uncentered):	0.995				
Method:	Least Squares	F-statistic:	5738.				
Date:	Fri, 03 Jun 2022	Prob (F-statistic):	1.54e-128				
Time:	00:28:15	Log-Likelihood:	-551.04				
No. Observations:	116	AIC:	1110.				
Df Residuals:	112	BIC:	1121.				
Df Model:	4						
Covariance Type:	nonrobust						

	coef	std err	t	P> t	[0.025	0.975]
Sods	0.0048	0.007	0.715	0.476	-0.009	0.018
Fats	9.1888	0.281	32.650	0.000	8.631	9.746
Carbs	3.6733	0.104	35.251	0.000	3.467	3.880
Prots	4.0148	0.285	14.098	0.000	3.451	4.579
Omnibus:		227.0	14 Durbin	-Watson:		1.946
Prob(Omnibus	3):	0.0	000 Jarque	-Bera (JB):		37584.325
Skew:		-8.8	24 Prob(J	B):		0.00
Kurtosis:		89.3	98 Cond.	No.		109.

Dep. Variable:	Cals	R-squared (uncentered):	0.995			
Model:	OLS	Adj. R-squared (uncentered):	0.995			
Method:	Least Squares	F-statistic:	7684.			
Date:	Fri, 03 Jun 2022	Prob (F-statistic):	2.08e-130			
Time:	00:28:15	Log-Likelihood:	-551.30			
No. Observations:	116	AIC:	1109.			
Df Residuals:	113	BIC:	1117.			
Df Model:	3					
Covariance Type:	nonrobust					

0.975]

	coef	std err	t	P> t	[0.025
mark a	0.0401	0.000	24 462	0 000	0.716

Fats	9.2481	0.268	34.462	0.000	8.716	9.780
Carbs	3.6866	0.102	36.038	0.000	3.484	3.889
Prots	4.1235	0.240	17.163	0.000	3.648	4.599
Omnibus:		228.646	Durbin-Wa	tson:		1.960
Prob(Omnibus):		0.000	Jarque-Be	ra (JB):	38	955.049
Skew:		-8.939	Prob(JB):			0.00
Kurtosis:		90.977	Cond. No.			5.99

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Index(['boiled egg'], dtype='object', name='Food ')

<class 'pandas.core.frame.DataFrame'>
Index: 115 entries, Beef tacos to Hot dog
Data columns (total 5 columns): Column Non-Null Count Dtype 115 non-null float64 0 Sods 115 non-null Fats float64 2 Carbs 115 non-null float64 3 Prots 115 non-null 115 non-null float64 Cals float64 dtypes: float64(5) memory usage: 5.4+ KB None Fats Carbs Prots 30 30 40 20 20 -20 20 -20 10 10 10 2000 40 1000 8 100 50 1000 20 500 50 25 2000 Sods Fats Carbs Prots Cals 115.000000 115.000000 115.000000 115.000000 115.000000 count 15.309565 15.542609 323.487826 31.393913 668.800000 mean 564.402786 14.510879 27.577957 12.730197 241.659505 std 0.000000 0.000000 0.000000 0.300000 3.900000 min 5.450000 151.500000 25% 267.500000 6.050000 11.500000 491.000000 11.000000 25.000000 12.000000 260.000000 50% 75% 23.000000 446.000000 945.000000 21.000000 44.000000 90.000000 149.000000 50.000000 1310.000000 2400.000000 max

	OLS Regression Results									
Dep. Variable	e:	C	als R-sq	uared:		0.999				
Model:			OLS Adj.	R-squared:		0.999				
Method:		Least Squa	res F-st	atistic:		3.829e+04				
Date:	Fr	i, 03 Jun 2	022 Prob	(F-statistic):	1	6.68e-172				
Time:		00:28	:19 Log-	Likelihood:		-377.47				
No. Observat	ions:		115 AIC:			764.9				
Df Residuals	:		110 BIC:			778.7				
Df Model:			4							
Covariance T	ype:	nonrob	ust							
	coef	std err	t	P> t	[0.025	0.975]				
	-0.7164		-0.641	0.523		1.497				
	-0.0012	0.002	-0.735	0.464						
Fats	8.8791		135.158	0.000	8.749					
Carbs	3.9694	0.027	146.335	0.000	3.916	4.023				
Prots	4.1455	0.070	59.627	0.000	4.008	4.283				
Omnibus:		6.	201 Durb	in-Watson:		1.657				
Prob(Omnibus):	0.	045 Jarq	ue-Bera (JB):		5.687				
Skew:		-0.	516 Prob	(JB):		0.0582				
Kurtosis:		3.	347 Cond	. No.		1.59e+03				

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.59e+03. This might indicate that there are strong multicollinearity or other numerical problems.

MODEL2: No intercept, with sods

OLS Regression Results

Dep. Variable:	Cals	R-squared (uncentered):	1.000				
Model:	OLS	Adj. R-squared (uncentered):	1.000				
Method:	Least Squares	F-statistic:	1.081e+05				
Date:	Fri, 03 Jun 2022	Prob (F-statistic):	2.91e-198				
Time:	00:28:20	Log-Likelihood:	-377.69				
No. Observations:	115	AIC:	763.4				
Df Residuals:	111	BIC:	774.4				
Df Model:	4						
Covariance Type:	nonrobust						

	coef	std err	t	P> t	[0.025	0.975]
Sods	-0.0013	0.002	-0.860	0.392	-0.004	0.002
Fats	8.8822	0.065	135.951	0.000	8.753	9.012
Carbs	3.9627	0.025	159.046	0.000	3.913	4.012
Prots	4.1314	0.066	62.792	0.000	4.001	4.262

	Sods	Fats	Carbs	Prots	Cals
Sods	1.000000	0.635082	0.385197	0.659620	0.654417
Fats	0.635082	1.000000	0.551058	0.621686	0.916818
Carbs	0.385197	0.551058	1.000000	0.276773	0.806184
Prots	0.659620	0.621686	0.276773	1.000000	0.673417
Cals	0.654417	0.916818	0.806184	0.673417	1.000000

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

MODEL3: No intercept, No sods OLS Regression Results

Dep. Variable:	Cals	R-squared (uncentered):	1.000				
Model:	OLS	Adj. R-squared (uncentered):	1.000				
Method:	Least Squares	F-statistic:	1.445e+05				
Date:	Fri, 03 Jun 2022	Prob (F-statistic):	1.02e-200				
Time:	00:28:20	Log-Likelihood:	-378.07				
No. Observations:	115	AIC:	762.1				
Df Residuals:	112	BIC:	770.4				
Df Model:	3						

covariance Type		nonicoba				
	coef	std err	t	P> t	[0.025	0.975]
Fats	8.8664	0.063	141.641	0.000	8.742	8.990
Carbs	3.9585	0.024	162.184	0.000	3.910	4.007
Prots	4.1012	0.056	73.866	0.000	3.991	4.211
Omnibus:		3.8	43 Durbin-W	Matson:		1.678
Prob(Omnibus):		0.1	46 Jarque-B	Bera (JB):		3.370
Skew:		-0.43	<pre>10 Prob(JB)</pre>	1		0.185

3.173

Warnings:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Cond. No.

Appendix: Excel and Minitab Results

5.96

OVERALL FIT												
Multiple R	0.999641	1	AIC	438.5	903							
R Square	0.999282		AICc	439.36	-							
Adjusted R S			SBC	452.31								
Standard Err		9										
Observations	11	5										
A NOVA				Alph		0.5						
ANOVA				Alph	d							
	df	SS	MS	F		p-valu		sig				
Regression		4 665274			.142	6.68E	-172	ye	S			
Residual	110			36								
Total	114	4 6657522	.1									
	coeff	std err	t stat	p-valu	ie	lowe	r	ирр	er	vi	f	
Intercept	-0.71643	1.116963	33 -0.6414	17 0.5225	861	-1.472	2318	0.039				
Sods	-0.00116					-0.002			8E-05	2.098	86124	
Carbs	3.969440					3.9510		3.987			86859	
Prots	4.145506				_	4.0984		4.192			7675	
Fats	8.879056					8.8345	5995	8.923			9282	
Regression A	nalysis											
OVERALL FIT												
Multiple R	0.9998717		AIC	437.019615								
R Square	0.99974341		AICc	437.570073								
Adjusted R S			BSC	447.999343	-							
Standard Err												
Observations	115											
ANOVA				Alpha	0	0.05						
	df	SS	MS	F	p-v	value	5	ig				
Regression	4			108123.338	2.91	3E-198	,	/es				
Residual		4795.99979	43.2072053									
Total	115	18691625.1										
	coeff	std err	t stat	p-value	lo	wer	ир	per	v	if		
Sods	-0.0013381	0.00155679	-0.8595528	0.39188818	-0.	004423	0.00	174674	2.098	61237		
Carbs	3.96266051	0.02491523	159.045733	8.321E-133	3.91	328933	4.0	120317	1.468	68592		
Prots	4.13143399	0.0657957	62.7918507	1.4561E-88	4.00	105541	4.26	181257	2.055	76753		
Fats	8.88222487	0.06533384	135.951373	2.787E-125	8.75	276151	9.01	168823	2.384	92823		

Regression A	nalysis							
OVERALL FIT								
Multiple R	0.99987084		AIC	435.782534				
R Square	0.99974171		AICc	436.14617				
Adjusted R S	0.99973479		BSC	444.01733				
Standard Err	6.56555039							
Observations	115							
ANOVA				Alpha	0.05			
	df	SS	MS	F	p-value	sig		
Regression	3	18686797.1	6228932.38	144501.162	1.018E-200	yes		
Residual	112	4827.92261	43.1064519					
Total	115	18691625.1						
	coeff	std err	t stat	p-value	lower	upper	vif	
Carbs		0.02440731	162.184198	1.021E-134	3.91011961	4.00683951	1.45079851	
Prots	4.10117584	0.05552184	73.8659909	7.5325E-97	3.99116643	4.21118526	1.64666763	
Fats	8.86635363	0.06259723	141.641318	3.674E-128	8.74232525	8.99038201	2.1836142	

■ DATA NUTRIX.CSV

Descriptive Statistics: Sods, Carbs, Prots, Fats, Cals

Statistics

Cals

Variable	N	N*	Mean	SE Mean	StDev	Varianc	e Sum	Sum	of
Sods	115	0	668.8	52.6	564.4	318550.	5 76912.0		87
Carbs	115	0	31.39	2.57	27.58	760.5	4 3610.30		2
Prots	115	0	15.54	1.19	12.73	162.0	6 1787.40		
Fats	115	0	15.31	1.35	14.51	210.5	7 1760.60		
Cals	115	0	323.5	22.5	241.7	58399.	3 37201.1		18
Variable	Med	ian	Q3	Maximum	Range	IQR		Mode	N
Sods	49	91.0	950.0	2400.0	2400.0	685.0	226, 295, 36	0, 590	
Carbs	25	5.00	44.00	149.00	149.00	33.00	18, 19,	22, 35	
Prots	12	2.00	23.00	50.00	49.70	17.60		23	
Fats	11	.00	21.00	90.00	90.00	15.00		12	
Cals	26	50.0	450.0	1310.0	1306.1	302.0	155, 168, 17	0, 530	
Variable	Kurt	osis							
Sods		0.75							
Carbs		3.55							
Prots		0.09							
Fats		6.40							

The data contain at least five mode values. Only the smallest four are shown.

2.10

Regression Analysis: Cals versus Sods, Carbs, Prots, Fats

Regression Equation

Cals = -0.72 - 0.00116 Sods + 3.9694 Carbs + 4.1455 Prots + 8.8791 Fats

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	-0.72	1.12	-0.64	0.523	
Sods	-0.00116	0.00158	-0.73	0.464	2.10
Carbs	3.9694	0.0271	146.33	0.000	1.47
Prots	4.1455	0.0695	59.63	0.000	2.06
Fats	8.8791	0.0657	135.16	0.000	2.38

Model Summary

	S	R-sq	R-sq(adj)	R-sq(pred)
Ī	6.59072	99.93%	99.93%	99.92%

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	4	6652744	1663186	38289.14	0.000
Sods	1	23	23	0.54	0.464
Carbs	1	930162	930162	21413.79	0.000
Prots	1	154439	154439	3555.42	0.000
Fats	1	793507	793507	18267.76	0.000
Error	110	4778	43		
Lack-of-Fit	109	4778	44	*	*
Pure Error	1	0	0		
Total	114	6657522			

Fits and Diagnostics for Unusual Observations

Obs	Cals	Fit	Resid	Std Resid	
81	180.00	193.73	-13.73	-2.16 R	
86	760.00	763.28	-3.28	-0.55	Χ
87	790.00	784.90	5.10	0.83	Χ
95	530.00	516.92	13.08	2.01 R	
98	1310.00	1298.45	11.55	2.16 R	Χ
101	690.00	704.28	-14.28	-2.25 R	
102	570.00	588.98	-18.98	-2.96 R	
103	660.00	668.05	-8.05	-1.33	Χ
106	940.00	958.98	-18.98	-3.24 R	Χ

R Large residual

X Unusual X

Appendix: Cleaning data table

Food	Sods	Carbs	Prots	Fats	Cals
Beef tacos	682	24	17	14	293
Guacamole	127	2.6	0.6	4.1	45
French Fries	246	48	4	17	365
French toast	237	23	7.3	11	219

Avocado toast	439	20	3.8	11	189
Tuna salad	824	19	33	19	383
Sandwich	295	28	6.2	1.9	155
Sushi	537	38	7.8	19	349
Ceviche	436	2.6	15	1.3	82
Chicket enchilada	622	30	14	9.9	268
pasta salad	708	35	12	24	407
Margherita pizza	398	18	4.5	9	170
Vegan Burger	711	42	17	7	298
Tuna Wrap	760	52	23	15	438
Meat cake	1056	22	40	30	521
Greek Salad	370	7.4	5.1	15	179
Chicken tacos	1160	41	33	26	530
grilled chicken tacos	601	19	13	6.2	185
sopes	491	35	9	17	326
pancakes	176	11	2.6	3.9	91
chicken salad	226	3.3	19	18	254
Chilaquiles	2400	57	46	61	950
Lomes Saltado	485	53	26	32	604
Chicken teriyaki bowl	1178	46	46	29	616
Tuna Sashimi	13	0	6.9	0.1	31
Nigiri	26	12	15	0.4	117

Spicy tuna roll	463	26	23	19	379
tortilla soup	1700	40	14	4	260
Indian food	950	40	18	11	324
Mole	306	21	5.5	9.6	178
Fish and chips	1403	71	43	26	688
chicken tenders	296	7.1	7	6.2	112
Paella	812	34	25	22	442
Ratatouille	81	16	2.1	7.1	127
arepas	265	36	5.4	5.3	215
Falafel	30	3.7	1.1	7.3	83
Bosrch	329	34	7	6.5	217
kimchi	747	3.6	1.7	0.8	23
scones	582	56	7	16	398
Hot pot	2180	35	46	33	622
tandoori chicken	132	6.1	31	12	263
Bratwurst	719	2.4	12	25	283
Nasi goreng	549	36	12	8.4	274
Dim sum	225	19	5.2	3.7	134
Masala dosa	94	29	3.9	3.7	168
Som tam	629	23	2.6	2.3	111
tofu	3.6	1.1	9.1	4.8	76
lasagne	1576	35	44	32	602
miso soup	1071	3.5	5.8	3	59
spring rolls	270	19	3.7	6.2	148
gazpacho	1599	20	4.1	17	243
tacos	571	21	9.4	9.9	210

fish tacos	326	18	16	12	244
sandwich	295	28	6.2	1.9	155
ham sandwich	1479	48	22	14	409
chinese food	2134	116	41	48	1060
oat pancakes	181	9.4	2.5	3.8	81
keto pancakes	93	3.8	4.3	11	124
potato panckakes	283	10	2.2	5.5	99
pecan pancakes	226	13	3.5	7.4	132
yogurt blueberry	90	32	6.8	2	168
fried egg	95	0.4	6.3	6.8	90
fish cake soup	1211	7.9	9.7	4.5	113
sogogi guk	406	3	5.6	6.6	91
shourbat shufan	769	13	9.5	9.6	170
arabic coffee	5.4	0.3	0.3	0.1	3.9
kleicha date cookies	112	22	2.2	8.5	168
jarish	29	25	10	8	207

jute potherb cooked boiled drained no salt	11	7.3	3.7	0.2	37
mandi	213	44	16	7.3	313
kabsa	416	48	36	25	564
korean ramen	1388	79	10	18	521
korean spicy chicken	940	30	23	12	307
korean braised chiken with vegetables	670	24	24	16	327
korean bbq pork ribs	205	3.8	4.1	6.1	87
chamoy sauce	419	1.7	0.3	0	7.2
frosted sugar cookie	110	26	1.2	8.2	179
barbacoa	530	2	24	7	170
black beans	210	22	8	1.5	130
carnitas	450	0	23	12	210
chiken	310	0	32	7	180
chiken	310	0	32	7	180

chips con queso	790	82	20	41	770
mandarin orange	0	9	1	0	35
big fish sandwich	1180	51	16	28	510
nuggets 10	1010	39	20	27	480
chocolate milk shake	430	131	14	21	760
egg croissan	1780	32	33	59	790
6 inch B.L.T	1130	44	20	13	380
6 INCH APPLEWOO D PULLED PORK	980	62	23	9	420
gluten free toast	440	37	5	6	230
bagel & cream cheese	760	63	12	9	390
shakshuka	1220	53	33	30	620
cinnamon raisin toast	190	30	4	2	140

gluten free pancakes	590	54	8	8	320
eggceptiona I skillet combo	1050	63	22	20	530
Chicken caesar salad	730	14	29	12	280
thai chicken crunch salad	360	18	19	2	160
fettuccine alfredo	1210	95	30	90	1310
teriyaki chicken	630	14	41	13	340
buffalo cicken bowl	1620	22	31	27	450
fish taco bowl	650	47	31	44	690
thai bowl	1780	59	22	30	570
steakhouse sirloin salad	2040	18	29	54	660
chicken kebab	360	2	27	15	250
beef with	2110	46	50	33	670

banana					
spring rolls	480	149	14	35	940
edamame	1960	25	37	17	400
4 veggie spring rolls	1750	75	7	25	540
wonton soup	570	13	9	3	120
carrot cake	740	75	6	33	610
pesto pasta salad	280	20	5	18	260
lentil soup	590	41	15	6	270
churro	380	78	10	21	530
oatmeal apple pie	320	83	10	22	570
Hot dog	409	1.3	5.6	14	155

Appendix: Full data binnacle link

https://docs.google.com/spreadsheets/d/1ks85TEmR69NWRTbxmilvZxmgziuJPbJlQT7Q7Ff2DKI/edit?usp=sharing