A New Category Classifier for arXiv and its Uses

Tom Dietterich, v1 2/28/2024

1 Prediction Tasks and Proposed Workflow

Given an arXiv submission, the classifier should output

- A set of acceptable primary categories. Any of these categories is a plausible primary. If the user chooses any one of them, we will not change that choice.
- A set of required secondary categories. Each of these categories should be added as a secondary. They usually relate to the methods employed in the paper, but there are some other cases as well.
- A set of acceptable secondary categories. Any of these is a plausible secondary. If the user chooses any of them, we will not change that choice.

Proposed workflow:

- 1. User uploads the submission
- 2. Classifier computes the acceptable primary categories
 - a. The user either picks one of them or
 - b. The user picks a different category. We require the user to give a short justification for their choice.
- 3. The classifier adds the remaining acceptable primary categories, the required secondary categories as secondaries, and the acceptable secondary categories and presents them to the user.
 - a. The user has the option to delete secondaries
 - b. If the user wishes to delete a required secondary, we ask the user to give a short justification for the choice.
- 4. When the moderator considers a paper, if they change a category assignment, this is important feedback for updating the classifiers. We might want to offer a check box to the moderator to indicate that this decision was ad hoc and should not be used for classifier training or evaluation.

Examples of why it makes sense to predict multiple primary categories:

- 1. Papers on anomaly detection in computer vision may have either cs.LG or cs.CV as primary with the other as secondary. Papers on speeding up computation for large language models may have either cs.LG, cs.CL, or cs.DC as primary. cs.DC would only make sense if parallel or distributed computing is involved.
- 2. Papers on applying machine learning to learn surrogate models for accelerating the solution of PDEs can have either math.NA or cs.LG as primary with the other as secondary. In this case, papers that specifically look at numerical error should have NA primary, whereas papers focused more on the ML aspect should have cs.LG as primary.

- 3. Many papers that make some statistical claim about machine learning can have either cs.LG or stat.ML as primary with the other as secondary. However, papers that only deal with engineering aspects of machine learning only have cs.LG and not stat.ML as categories.
- 4. Papers on reinforcement learning for control can have cs.LG, math.OC, or eess.SY as primary. They might also have cs.RO as primary or secondary if they involve controlling robots.

Examples for why it makes sense to treat primaries and secondaries separately:

- 1. We get many papers where the primary category is a "content" subject area such as cond-mat.mtrl-sci or q-bio.BM and where machine learning is employed as a method. Hence, cs.LG should be a required secondary, but it would never make sense as a primary on these papers. We would not object if the author also lists stat.ML or cs.AI as secondaries.
- 2. Another typical case is a paper that employs genetic algorithms or evolutionary computation to solve a complex optimization problem in, say, computer architecture. In such cases, cs.AR should be primary with cs.NE secondary.
- 3. Papers describing machine learning methods for discovering causal models should have cs.LG primary but the stat.ME moderators have requested that stat.ME be secondary.

2 User Interface Considerations

It would be nice if we could give an explanation for the recommendations by referring to the submission and the category description. However, I think this requires substantial research. As a practical alternative, we should have tool tips (or pop-up windows) for each recommended category that show the category definition to the user. Controversial suggestion: We might also indicate that if the user selects a non-recommended primary, the paper will be placed on hold and examined by a moderator.

3 Implementation Issues

The categories assigned to existing papers are very noisy. Some papers were released without moderator review. In some cases, the authors insisted on a primary category that is not one the moderators would normally assign, and the moderators did not insist. In some cases, the authors appealed the initial categorization, and the appeal was granted.

3.1 Collecting a high-quality test dataset

To measure the quality of classifiers, we need a high-quality test dataset. It should capture a mix of easy and hard cases. Proposed methodology:

- For each category,
 - o sample 40 papers at random that were classified as primary for that category without any moderator discussion. These will generally be easy cases.
 - sample 40 papers that were classified as primary for that category after moderator discussion. These are more likely to be hard or borderline cases.
 - sample 40 papers at random that were classified as secondary for that category
- For each sampled paper, ask each moderator in that category to select among the following options
 - a. my category would be a good primary
 - b. my category would be an acceptable primary

- c. my category should not be primary
- Similarly, also ask each moderator to select among these three options
 - d. my category should be a good secondary
 - e. my category would be an acceptable secondary
 - f. my category should not be secondary

For categories where we have multiple moderators, we can measure inter-rater agreement. If it is low, we will need to decide how to proceed. We could ask the moderators to reach consensus, which in turn might require rewriting the category description. For now, "good primary" and "acceptable primary" will both be treated as "acceptable primary", but given that we might want to learn to make this distinction, it makes sense to request it in our test data so that we don't need to gather it later.

3.2 Training the primary and secondary classifiers on the existing papers

I suggest first training the primary classifier and then the secondary classifier.

We need to develop a loss function for the primary classifier that takes account of the noise in the data. I suggest using binary cross entropy for each label, but with some smart smoothing of the labels. Some thoughts:

- The primary classifier should assign a high score to the labeled primary.
- The primary classifier should assign a very low score to all categories that are neither primary nor secondary.
- There should be a penalty for assigning high scores to more than 3 categories? Or perhaps the penalty should grow with the number of such categories? This will require some tuning.

Once the primary classifier is trained, we could then train the secondary classifier:

- The secondary classifier should assign a high score to every labeled secondary that was not assigned a sufficiently high score by the primary classifier. We will need to choose a threshold for what counts as "sufficiently high score". I suggest 0.75.
- The secondary classifier should assign a very low score to all categories that were neither primary nor secondary.
- There should be a penalty that increases with the number of predicted secondary categories.

A "high score" could be a predicted probability less than 1.0. I suggest starting with 0.8. In other words, some form of label smoothing is appropriate, both to prevent overfitting and to acknowledge that the categories are noisy. A "very low score" should be close to a probability of 0.0; I suggest starting with 0.05.

I don't think we need to train separate required and acceptable secondary classifiers. Instead, I suggest that we treat all secondaries whose predicted score exceeds some threshold (0.75?) as being required, and secondaries whose predicted score exceeds 0.5 as acceptable secondaries. We might want to use part of our test data for calibrating these probabilities.

3.3 Making Predictions

For both classifiers, we want to predict a set of labels. For the primary classifier, we should predict all categories whose predicted score exceeds 0.75. However, if there are no such categories, we should predict the single category with the highest score. For the secondary classifier, we will predict the set of

required secondary categories as all of those with a score above 0.75 and the acceptable secondary categories as all of those with a score above 0.50.

3.4 Collecting training data after deployment

I think we can follow the same fitting procedure for periodically retraining the classifiers. We might want to explore the possibility of changing the loss functions to take into account the *predicted* acceptable primaries as follows:

- The primary classifier should assign a high score to the labeled primary
- The primary classifier should assign a high score to the predicted acceptable primaries (unless they were deleted by a moderator)
- The primary classifier should assign a very low score to all other categories
- There should be a penalty that increases with the number of predicted primary categories.

For the secondary classifier, we might consider a similar change:

- The secondary classifier should assign a high score to every labeled secondary that was not predicted as acceptable by the primary classifier (and was not deleted during moderation).
- The secondary classifier should assign a very low score to all categories that were neither primary nor secondary.
- There should be a penalty that increases with the number of predicted secondary categories.

Alternatively, we might consider exposing the predicted acceptable primaries, predicted required secondaries, and predicted acceptable secondaries to the moderators and ask them to move categories among those groups as they see fit. (But perhaps this is too much work?)

3.5 Collecting test data after deployment

We should follow the same unbiased query approach as with our initial test data set. Half of the queries could be submissions that were not changed during moderation and half could be submissions that were changed during moderation.

3.6 Obtaining confidence scores to support automated or prioritized moderation

We should try to quantify the predictive uncertainty of the primary classifier. The simplest method is just to use the maximum of the predicted binary cross entropy probabilities of the primary classifier. A stronger approach would be to combine this with an ensemble where we take into account the variance in predictions across the ensemble. The moderation interface could sort submissions by ascending confidence score, and the moderator could decide to skip all submissions whose confidence scores exceeded some threshold (and where the user's category assignments were consistent with the classifier predictions).