4) Гауссовские случайные процессы. СП $\zeta(t)$ называется гауссовским (нормальным), если совместная плотность распределения вероятности любой конечной совокупности величин $\zeta(t_i)$, i = 1,2,.... нормальная, т.е.

$$w_n(x_1,...,x_n,t_1,...,t_n) = \frac{1}{\sqrt{(2\pi)^n \det B_x}} e^{-\frac{1}{2}(X-\overline{m}_x)^T B_x^{-1}(X-\overline{m}_x)},$$
(6.9)

где $X=(x_1 \cdots x_n)^T, \overline{m}_x=(m_x(t_1) \cdots m_x(t_n))^T$ - вектор средних значений, «Т» - операция транспонирования, B_x - ковариационная матрица с элементами $B_x(t_i,t_j), i=1,2,...n, j=1,2,...n$, det B_x - определитель матрицы B_x , B_x^{-1} - матрица обратная матрице B_x . Для стационарного СП в выражении (6.9) $\overline{m}_x=(m_x \cdots m_x)^T$ элементы ковариационной матрицы определяются значениями $B_x(t_i-t_j), i=1,2,...n$.

Для гауссовского СП из стационарности в широком смысле следует стационарность в узком смысле.

Одномерная плотность распределения стационарного гауссовского процесса имеет вид:

$$w(x) = \frac{1}{\sqrt{2\pi}\sigma_x} e^{-\frac{(x-m_x)^2}{2\sigma_x^2}} . {(6.10)}$$

