Assignment 7

Topology (KSM1C03)

Submission Deadline: 24th October, 2025

- 1) A set $A \subset X$ is called a G_{δ} -set if we can write A as the intersection of countably many open sets of X.
 - a) Suppose X is a first countable, T_1 -space. Show that every singleton of X is G_δ .
 - b) Show that the irrationals $\mathbb{R} \setminus \mathbb{Q}$ form a G_{δ} -set in \mathbb{R} .

5 + 5 = 10

2) Suppose (X,d) is a metric space. For any $A\subset X$ and any $\epsilon>0$, define the ϵ -neighborhood of A as

$$\mathcal{N}_{\epsilon}(A) \coloneqq \left\{ x \in X \mid d(a,x) < \epsilon \text{ for some } a \in A \right\}.$$

- a) Show that $\mathcal{N}_{\epsilon}(A)$ is an open set containing A.
- b) Show that any closed subset $C \subset X$ is a G_{δ} -set.

Note: A space X is called a G_{δ} -space if every closed subset $C \subset X$ is a G_{δ} -set. Thus, any metric space is a G_{δ} -space.

5 + 5 = 10

3) Suppose $f: X \to (Y, d)$ is a function (not necessarily continuous). A point $x \in X$ is called a *point of continuity* of f if for any $\epsilon > 0$, there exists an open neighborhood $x \in U \subset X$, such that $f(U) \subset B_d(f(x), \epsilon)$. Show that the set of points of continuity of f is a G_δ -set.

10

4) Suppose X is a Lindelöf, G_{δ} -space. Show that X is hereditarily Lindelöf.

10

5) Suppose X is a hereditarily Lindelöf, T_2 space. Show that every singleton of X is a a G_δ -set.

10

6) Prove that every second countable space is hereditarily Lindelöf.

10

7) Suppose X is a second countable space. Let $\mathcal{K} = \{C_{\alpha}\}$ be a collection of closed subsets of X, such that for any decreasing sequence $C_{\alpha_1} \supset C_{\alpha_2} \supset \ldots$ of elements of \mathcal{K} , we have $\cap C_{\alpha_i} \in \mathcal{K}$. Show that \mathcal{K} has minimal element $A \in \mathcal{K}$, i.e, no proper subset of A belongs to \mathcal{K} .

10