MSE 1022H, Homework #2: Molecular dynamics simulations

Due date: Wednesday, 29 Feb, 2012

A. INTERATOMIC POTENTIAL (15+20+5 = 40 points)

The generalized \Box potential energy function is defined as $V(r) = -\frac{A}{r^n} + \frac{B}{r^m}$, where the first term represents attraction while second term is for repulsion. The expression is equivalent to \Box potential for m=6, n=12, and therefore also known as 6-12 \Box potential.

- a. Derive expressions for force, equilibrium atomic separation, r_0 (or bond-length), maximum binding energy, V_0 (=minimum potential energy at equilibrium separation).
- b. Calculate r_0 and V_0 for the gold \square potential that we used in HW1 (with parameters ϵ =0.458 eV and σ =2.569 Å). Also represent r_0 and V_0 in terms of parameters ϵ and σ for standard 6-12 \square potential function. Draw the graphs of potential and force variation against atomic separation, and mark the above parameters on the graphs. Compare the values of r_0 and V_0 with EAM potential from HW1.
- c. MgO and NaCl charge interactions can be represented by the following interatomic potential: $V(r) = -\frac{A(ze)^2}{r} + \frac{B}{r^9}$, where z = 2 for MgO and z=1 for NaCl. Find the ratio of their equilibrium separations, assuming that A and B remain the same for both materials. How does that compare to experimental data?

B. MODIFYING A SIMPLE MD CODE (MATLAB) (10*6 = 60 points)

Using the MATLAB code for MD (files available on wiki), do the following. Attach only the subroutines/lines that you changed:

- a. Subroutine for initializing velocities and temperature (300K) using random numbers generated according to a Gaussian distribution. Now use this subroutine to initialize velocities rather than the given data file (*.rest) and compare plots (temp, ke, pe, total energy).
- b. Subroutine for implementing Verlet scheme, compare results with Velocity Verlet scheme.
- c. Subroutine for temperature control (300K) using velocity scaling thermostats. Plot curves.
- d. Subroutine for CG minimization. Plot curves.
- e. Fit a Buckingham potential to your LJ potential. Implement Buckingham potential for energy and force calculations and compare plots for two cases.
- f. Finally, you should have a file that includes all of the above subroutines: (a) initialization of velocities and temperature, (b) velocity verlet scheme if run_style==dynamics, CG minimization if run_style==min, (c) temperature control: velocity scaling if temp_style==vel, Nose-Hoover if temp_style==nvt, (d) Buckingham potential if pot_style==buck, LJ if pot_style=lj. Now draw curves time (10000 steps) for following 2 cases:
 - Case 1: Initial temperature = 200K, Velocity thermostat, Buckingham pot., run_style==dynamics Case 2: Initial temperature = 300K, Velocity scaling thermostat, LJ pot., run_style==dynamics.