1. Análisis y clasificación del enunciado del problema en sus elementos

Elementos	Valor
	Ingresar valor de a
Captura de Datos	Ingresar valor de b
Capitila de Datos	Ingresar valor de c
	(-b±√(b²-4ac)) /(2a)
Operaciones	Primer corte con x=-(-b+ $\sqrt{((b^2-4*a*c))/2*a}$
Aritméticas	Segundo corte con x=-(-b- $\sqrt{(b^2-4*a*c)}/2*a$
Anuneucas	Eje de simetria=-b/2*a
	Corte con y= $a^*(0)^2+b^*(0)+c$
	si b^2-4*a*c<0 entonces -b/(2*a), "+",(RC(abs(b^2-
	4*a*c)))/2*a, "i"
Droguntos	-b/(2*a), "-",(RC(abs(b^2-4*a*c)))/2*a, "i"
Preguntas	¿Cuáles son los pasos a seguir para resolver una
	ecuación cuadrática? ¿Cuale es la fórmula general para resolver una
	ecuación cuadrática?
	¿Cómo se encuentra los cortes con x?
	¿Cómo se encuentran el corte con y?
	¿Cómo hallar el eje de simetría?
	¿Es cóncava hacia arriba o hacia abajo?
	¿Cómo saber si es cóncava hacia arriba o hacia
	abajo?
	•
Observaciones	Si la raíz resulta ser negativa la respuesta no esta
ODSCI VACIONES	dentro de los números reales y a hay que usar los
	números imaginarios

2. Diagrama Entrada - Proceso - Salida

4. Diseño Interfaz Hombre - Máquina

5. Algoritmos

Paso	Descripción
0.	Inicio
1.	Declarar variables
2.	a, b, c, v_x1, v_x2, v_y, v_verx, v_very, v_ejes
3.	Capturar datos
4.	a, b, c
5.	Procesos
6.	Calcular Primer corte con x=-(-b+ $\sqrt{((b^2-4*a*c))/2*a}$
7.	Calcular Segundo corte con x=-(-b- $\sqrt{((b^2-4*a*c))/2*a}$
8.	Calcular Eje de simetría=-b/2*a
9.	Calcular Corte con y=a*(0)^2+b*(0)+c
10.	si b^2-4*a*c<0 entonces
11.	Calcular primer corte con x -b/(2*a), "+",(RC(abs(b^2-4*a*c)))/2*a, "i"
12.	Calcular Segundo corte con x -b/(2*a), "-", (RC (abs(b^2- $4*a*c))$)/2*a, "i"
13.	Imprimir resultados
14.	Primer corte con x
15.	Segundo corte con x
16.	Corte con y
17.	Fin.

6. Tabla de datos

Identificador	Tipo	Tipo Dató	Valor Inicial	Ámbito			Observaciones	Documentación
				Е	Р	S	Observaciones	Documentación
v_a	Variable	Real	0.0	Ε				Variable de entrada que almacena el valor de a
v_b	Variable	Real	0.0	Ε				Variable de entrada que almacena el valor de b
v_c	Variable	Real	0.0	Ε				Variable de entrada que almacena el valor de c
v_x1	Variable	Real	0.0		Р	S		Variable de proceso y salida que almacena el primer corte con x
v_x2	Variable	Real	0.0		Р	S		Variable de proceso y salida que almacena el segundo corte con x
v_y	Variable	Real	0.0		Р	S		Variable de proceso y salida que almacena el corte con y
v_ejes	Variable	Real	0.0		P	S		Variable de proceso y salida que almacena las coordenadas del eje de simetría
v_very	Variable	Real	0.0		P	S		Variable de proceso y salida que almacena las coordenadas del vértice en y

7. Tabla de Expresiones Aritméticas y Computacionales

Expresiones Aritméticas	Expresiones Computacionales
$(-b+\sqrt{(b^2-4ac)}) / (2a) = 1er corte con x$	$(-(v_b) + \sqrt{(v_b)^2-4^*(v_a)^*(v_c)} / (2^*(v_a)) =$
	v_x1
$(-b-\sqrt{(b^2-4ac)}) / (2a) = 2do corte con x$	$(-(v_b) - \sqrt{((v_b) ^2-4*(v_a) *(v_c)) /(2*(v_a))} =$
	v_x2
$a(0)^2 + b(0) + c = c$	$(v_a) *(0)^2 + (v_b)*(0) + (v_c) = v_y$
-(b)/ (2a)	-(v_b) / (2*(v_a))= v_ejes
Variable vértice en y es igual a (a) multiplicado por el	v_very= a(v_ejes) ² + b(v_ejes) + c
eje de simetría al cuadrado más b por el eje de simetría más c	

8. Diagrama de Flujo de Datos

9. Prueba de Escritorio

Esta en el Excel

10. Pseudocódigo

```
Algoritmo Ecuacion_cuadratica_Ejercicio_3_17
        // Enunciado: Encontrar las coordenadas en el plano carteciano x,y para graficar una
ecuacion cuadratica o de sgundo grado
       // Leer valores de a, b y c
       // Pedir cada valor por teclado
       // DESARROLLADO POR: HERNAN ALBERTO LONDOÑO VELEZ
       // VERSION: 1.0
       // FACHA: 22/02/2023
       // DECLARAR:
        Definir v a Como Real // Variable de entrada que almacena el valor de a
        Definir v_b Como Real // Variable de entrada que almacena el valor de b
        Definir v c Como Real // Variable de entrada que almacena el valor de c
        Definir v_x1 Como Real // Variable de proceso y salida que almacena el primer corte con x
        Definir v_x2 Como Real // Variable de proceso y salida que almacena el segundo corte con
Х
        Definir v y Como Real // Variable de proceso y salida que almacena el corte con y
        Definir v_very Como Real // Variable de proceso y salida que almacena las coordenadas
del vértice en y
        Definir v_ejes Como Real // Variable de proceso y salida que almacena las coordenadas del
eje de simetría
       // VALOR INICAIL:
       v a <- 0.0
       v b <- 0.0
       v c <- 0.0
        v_x1 <- 0.0
```

```
v x2 <- 0.0
```

 $v_y < -0.0$

v_very <- 0.0

v ejes <- 0.0

// ENTRADA DE DATOS:

Escribir 'Ecuacion ax²+ bx + c'

Escribir 'Por favor escribir el valor de a'

Leer v_a

Escribir 'Por favor escribir el valor de b'

Leer v_b

Escribir 'Por favor escribir el valor de c'

Leer v c

// procesos y salidas

Si v_b^2-4*v_a*v_c>0 Entonces // SE DECIDE SEGUN SI EL VALOR B ELEVADO A LA POTENCIA 2-4 MULTIPLICADO POR EL VALOR A Y MULTIPLICADO POR EL VALOR C GENERA UN RESULTADO MAYOR A CERO

Escribir 'el primer corte con x es' // SI LA ANTERIOR ENCUACION ES MAYOR A CERO ENTONCES:

 $v_x1 < -(-v_b+RC(v_b^2-4*v_a*v_c))/2*v_a$ // PARA OBTENER EL PRIMER CORTE X: SE REALIZA LA OPEACION EXPUESTA, SOLO QUE AQUI EL SIGNO ANTES DE LA RAIZ ES POSITIVO

Escribir 'Elsegundo corte con x es'

 $v_x^2 < -(-v_b-RC(v_b^2-4*v_a*v_c))/2*v_a$ // PARA OBTENER EL SEGUNDO CORTE X: SE REALIZA LA OPEACION EXPUESTA, SOLO QUE AQUI EL SIGNOANTES DE LA RAIZ ES NEGATIVO

SiNo

Escribir 'Las raices son imaginarias' // SI LA CONDICION DE LA ECUACION NO ES MAYOR A CERO ENTONCES:

Escribir -v_b/($2*v_a$),'+',(RC(abs($v_b^2-4*v_a*v_c$)))/ $2*v_a$,'i' // SE REALIZA LA OPERACION EXPUESTA, YA QUE LAS RAICES SON IMAGINARIAS

Escribir -v_b/(2*v_a),'-',(RC(abs(v_b^2-4*v_a*v_c)))/2*v_a,'i' // SE REALIZA LA OPERACION EXPUESTA YA QUE LAS RAICES SON IMAGINARIAS

FinSi

// se emplea el condicional si para encontrar los cortes con el eje x pero si el resultado al que hay que sacar raiz cruadrada es negativo el resultado son numeros imaginarios

Escribir 'el corte con y es'

 $v_y <- v_a^*(0)^2 + v_b^*(0) + v_c$ // PARA OBTENER EL CORTE Y: SE REALIZA LA OPERACION EXPUESTA

Escribir '(','0,',v_y,')'

// se halla el corte con y en cordendas x,y por eso 0,y

Escribir 'El eje de simetría es'

v_ejes <- -v_b/2*v_a // PARA OBTENER LAS COORDENADAS DEL EJE DE SIMETRIA: SE DIVIDE EL VALOR B ENTRE 2 Y SE MULTIPLICA POR EL VALOR A

Escribir v_ejes

Escribir 'El vertice en y es'

 $v_very <- v_a*(v_ejes)^2+v_b*(v_ejes)+v_c$ // PARA OBTENER LAS COORDENADAS DEL VERTICE EN Y: SE REALIZA LA OPERACION EXPUESTA

Escribir v_very

Escribir 'Elvertice en coordenadas (x,y) es'

Escribir '(',v_ejes,',',v_very,')'

Si v_a>0 Entonces // SE DECIDE SEGUN SI EL VALOR DE A ES MAYOR A CERO

Escribir 'La funcion es concava hacia arriba' // SI EL VALOR A ES MAYOR A CERO SE INDICA QUE LA FUNCION ES HACIA ARRIVA

SiNo

Escribir 'la funcion es concava hacia abajo' // SI EL VALOR A NO ES MAYOR A CERO SE INDICA QUE LA FUNCION ES HACIA ABAJO

FinSi

// se emplea el condicional si poara saber hacia donde es concava la funcion y poder graficar

FinAlgoritmo