WO 2004/063219 PCT/GB2004/000101 1/22

Figure 1: BLAST result against NCBI non-redundant database using SEQ ID NO: 6 (the INSP108 polypeptide).

BLASTP 2.2.2 [Jan-08-2002]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402.

Query= INSP108.pp (77 letters)

Database: All non-redundant GenBank CDS translations+PDB+SwissProt+PIR+PRF 1,267,376 sequences; 405,046,914 total letters

Searching......done

	Score	E
Sequences producing significant alignments:	(bits)	Value
ref[NP 697019.1] defensin, beta 123; defensin, beta 23 [Homo sap	. 51	4e-06
ref XP 141520.1 similar to defensin, beta 123; defensin, beta 2	. 46	1e-04
qb[AAM93917.1 defensin beta 124 [Homo sapiens]	39	0.012
emb CAB72350.2 dJ1018D12.3 (a putative novel protein) [Homo sap		0.016
ref NP 473453.1 epididymus specific clone 42; chromosome 20 ope	. 39	0.016
ref NP 660139.1 defensin beta 119; testis-specific beta-defensi	. 39	0.021
sp Q95LI0 D118 MACMU Beta-defensin 118 precursor (Epididymal sec	. 37	0.079
ref NP 631968.1 defensin beta 15 [Mus musculus] >gi 19171622 em	. 37	0.079
ref NP 689464.1 defensin, beta 106; defensin, beta 6 [Homo sapi	. 35	0.18
gb AAN33114.1 beta-defensin 106 [Homo sapiens]	35	0.18

2/22

Figure 2: Alignment between INSP108 polypeptide sequence (SEQ ID NO:6) and defensin beta 123 (*Homo sapiens*).

Figure 3: Sig P cleavage site prediction for INSP108.

>INSP108.pp

>INSP108.pp Prediction: Signal peptide Signal peptide probability: 1.000 Signal anchor probability: 0.000 Max cleavage site probability: 0.906 between pos. 24 and 25

4/22

Figure 4: BLAST result against NCBI non-redundant database using SEQ ID NO: 14 (the INSP109 polypeptide).

Е

7.4

31 4.3

30

30 9.6 9.6 30 9.6

BLASTP 2.2.2 [Jan-08-2002] Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402. Query= INSP109.pp (78 letters) Database: All non-redundant GenBank CDS translations+PDB+SwissProt+PIR+PRF 1,267,376 sequences; 405,046,914 total letters Score Sequences producing significant alignments: (bits) Value 88 3e-17 dbj|BAC37510.1| unnamed protein product [Mus musculus] ref|NP 062702.1| defensin beta 4; beta defensin-4 [Mus musculus]... 33 1.1 emb|CAA08905.1| beta defensin-2 [Capra hircus] ref|NP_348802.1| Uncharacterized protein, homolog HI1244 from Ha... 31 4.3

gb|AAG10514.1|AF288371_1 beta-defensin 4 variant [Mus musculus]

ref[XP_163302.1| hypothetical protein XP_163302 [Mus musculus]

ref|NP_689464.1| defensin, beta 106; defensin, beta 6 [Homo sapi... gb|AAN33114.1| beta-defensin 106 [Homo sapiens]

emb|CAD23115.1| blue cone opsin [Cottus kesslerii]

5/22

Figure 5: Alignment between INSP109 polypeptide sequence (SEQ ID NO:14) and defensin beta 4 (*Mus musculus*).

Figure 6: Sig P cleavage site prediction for INSP109.

>INSP109.pp

>INSP1	09.	pp	leng	gth = 70			
# Measu	ıre	Position	Value	Cutoff	signal	peptide?	
max.		22	0.849		YES	~ -	
max.	Y	22	0.854	0.32	YES		
max.	S	7	0.994	0.82	YES		
mean	S	1-21	0.953	0.47	YES		
# Most	Эi	kely cleava	ne site	hetween	nos 2	1 and 22.	CKC-

>INSP109.pp

Prediction: Signal peptide

Signal peptide probability: 0.999 Signal anchor probability: 0.001

Max cleavage site probability: 0.619 between pos. 21 and 22

WO 2004/063219 PCT/GB2004/000101 7/22

Figure 7: Predicted nucleotide sequence of INSP108 with translation

WO 2004/063219 PCT/GB2004/000101 8/22

Figure 8: Nucleotide sequence with translation of INSP108 PCR product cloned using primers INSP108-CP1 and INSP108-CP2.

Position and sense of PCR primers -----

Figure 9: Map of pCR4-TOPO-INSP108

Molecule	:	pCR4-TO	PO-INSP108,	4202 bps DNA Circular
Type	Start	End	Name	Description
MARKER MARKER GENE MARKER REGION MARKER MARKER GENE GENE GENE MARKER	205 243 295 533 539 539 592 600 1404 2402 3407	295 (M13R T3 CP2 Cds CP1 Insert T7 M13F Kan Amp pUC ori	M13 rev priming site T3 priming site INSP108-CP2 INSP108 cds INSP108-CP1 INSP108-F1R1 PCR product T7 priming site M13 for priming site Kanamycin resistance gene ORF Ampicillin resistance gene ORF pUC origin

Figure 10: Map of pDONR 221

Molecule: pDONR221, 4759 bps DNA Circular

File Name: pDONR221.cm5

Description:

Туре	Start	End	Name	Description
REGION REGION REGION REGION GENE GENE	295 470 536 570 1197 1844	268 C 427 C 553 801 1502 2503	21M13 attP1 ccdB	transcription termination sequence transcription termination sequence M13 Forward primer
REGION REGION GENE REGION	2751 3040 3153 4083	2982 3023 C 3962 4756	Cm r attP2 M13 Rev Kan r pUC ori	Chloramphenicol resistance gene M13 Reverse primer

Figure 11: Map of expression vector pEAK12d

Molecule: pEAK12 d, 8760 bps DNA Circular

File Name: pEAK12DEST.cm5

Description: Mammalian cell expression vector (plasmid ID 11345)

Molecule Features:

Type	Start	End	Name	Description
REGION GENE	2 596	595 1519	Amp	pmb-ori
REGION	1690	2795	EF-1alpha	
REGION REGION	2703 2796	2722 2845		position of pEAK12F primer MCS
MARKER	2855		attR1	
GENE	3256	3915	CmR	
GENE	4257	4562	ccdB	
MARKER	4603	С	attR2	
REGION	4733	4733		MCS
REGION	4734	5162		poly A/splice
REGION	4819	4848 C		position of pEAK12R primer
GENE	5781	5163 C	PUR	PUROMYCIN
REGION	6005	5782 C	tK	tK promoter
REGION	6500	6006 C	Ori P	-
GENE	8552	6500 C	EBNA-1	
REGION	8553	8752	sv40	

Figure 12: Map of expression vector pDEST12.2

Molecule: pDEST 12.2, 7278 bps DNA Circular

File Name: pDEST12-2.cm5

Description: Eukaryoric expression vector

Туре	Start	End	Name	Description
REGION	15	608	CMV	CMV promoter
MARKER	648		M13R	M13R primer
REGION	687	706	SP6	SP6 promoter
REGION	730	854	attR1	
GENE	963	1622	Cm	
GENE	1964	2269	ccdB	
REGION	2310	2434	attR2	
GENE	2484	2464 (с т7	T7 promoter
MARKER	2512	C	C 21M13	21M13 primer
REGION	2784	3050	pΑ	SV40 polyadenylation signal
REGION	3176	3631	f1	fl intergenic region
REGION	3791	4099	P SV40	SV40 ori & early promoter
GENE	4158	4952	Neo	
REGION	5016	5064	pΑ	synthetic poly adenylation signal
GENE	5475	6335	Amp	
REGION	6480	7153	ori	pUC ori

13/22

Figure 13: Map of pDONR221-INSP108-6HIS

Molecule:	pDONR221-	INSP108-6HIS,	2805 bps DNA Circular
Type Start	End 1	Name	Description
REGION 295	268 C :	rrnB T2	transcription termination sequence
REGION 470	427 C :	rrnB T1	transcription termination sequence
REGION 536	553	21M13	21M13 primer
REGION 570	651	attL1	
GENE 677	925	INSP108-6HIS-	-V1 INSP108-6HIS ORF .
REGION 940	1028	attL2	
REGION 1086	1070 C I	M13 R	M13R primer
GENE 1199	2008	Kan r	
GENE 2129	2802 j	pUC ori	

Figure 14: Map of pEAK12d-INSP108-6HIS

Molecule:	pEAK12d-	INSP108,	7198 bps DNA Circular
Type Start	End	Name	Description
REGION 2 GENE 596 REGION 1690 REGION 2796 REGION 2855 GENE 2888 REGION 3144 REGION 3171 REGION 3172 GENE 4219 REGION 4443 REGION 4938 GENE 6990	4220 C 4444 C 4938 C	Ori P EBNA-1	poly A/splice PUROMYCIN tK promoter
REGION 6991	7190	sv40	

Figure 15: Map of pDEST12.2-INSP108-6HIS

Molecule	e:	pDEST12.	2-INSP108-6HI	S, 5884 bps DNA Circular
Туре	Start	End	Name	Description
GENE	15	537	CMV promoter	
REGION	648	665	M13rev	M13R primer
REGION	687	704	SP6	SP6 primer
REGION	730	762	attB1	
GENE	763	1011	INSP108-6HIS	
REGION	1015	1040	attB2	
REGION	1090	1070 C	T 7	T7 promoter
REGION	1119	1101 C	21M13	21M13 primer
GENE	1225	1587	pΑ	SV40 polyadenylation signal
GENE	1781	2237	f1	fl intergenic region
GENE	2301	2719	P SV40	SV40 ori & early promoter
GENE	2764	3558	Neo	
GENE	3622	3670	pΑ	poly adenylation signal
GENE	4081	4941	Amp	
GENE	5090	5729	ori	pUC ori

16/22

Figure 16: Predicted nucleotide sequence of INSP109 with translation

atgaacetet gtetttetge attactette tteetggtga tettaetgee tteaggaaaa m n l c l s a l l f f l v i l l p s g k

61 ggtatgttg ggaatgatgg agteaaagtt egeacetgea etageeagaa ageegtatgt g m f g n d g v k v r t c t s q k a v e

121 ttetteggt gteegeeagg atacaggtgg attgegttet geeacaatat tetgtettge f f g c p p g y r w i a f c h n i l s c

181 tgtaaaaata tgaeacgttt teaaceeceg eaageeaaag ateeatgggt teat c k n m t r f q p p q a k d p w v h

Underlined= signal peptide

PCT/GB2004/000101 WO 2004/063219

17/22

Figure 17: INSP109 coding exon organization in genomic DNA and position of PCR primers

		11	NSP109-exon1F	
Genomic	DNA 44	48 ATGAAC	CTCTGTCTTTCTGCATTACTCTTCTTCCTGGTGATCTTACTGCC	4497
		111111		
INSP109	cdna 1	01 ATGAAC	CTCTGTCTTTCTGCATTACTCTTCTTCCTGGTGATCTTACTGCC	150
			INSP109-exon2F	
			INSP109-exon2F	
Genomic	DNA 44	98 TTCAGg	taagttcagGAAAAGGTATGTTTGGGAATGATGGAGTCA	4958
		>	>>> 426 >>>>	
INSP109	cdna 1	51 TTCAG.	GAAAAGGTATGTTTGGGAATGATGGAGTCA	185
			The second secon	
Genomic	DNA 49	59 AAGTTC	GCACCTGCACTAGCCAGAAAGCCGTATGTTTCTTCGGGTGTCCG	5008
		111111		
INSP109	cdna 1	86 AAGTTC	GCACCTGCACTAGCCAGAAAGCCGTATGTTTCTTCGGGTGTCCG	235
Genomic	DNA 50	09 CCAGGA	TACAGGTGGATTGCGTTCTGCCACAATATTCTGTCTTGCTGTAA	5058
		111111		
INSP109	cdna 2	36 CCAGGA	TACAGGTGGATTGCGTTCTGCCACAATATTCTGTCTTGCTGTAA	285
Genomic	DNA 50	59 AAATAT	GACACGTTTTCAACCCCCGCAAGCCAAAGATCCATGGGTTCATT	5108
		111111		
INSP109	cdna 2	86 AAATAT	GACACGTTTTCAACCCCCGCAAGCCAAAGATCCATGGGTTCATT	335
			INSP109-exon2R	
Genomic	DNA 51	09 AA		
		11		
INSP109	cdna 3	36 AA —		

WO 2004/063219 PCT/GB2004/000101 18/22

Figure 18: Nucleotide sequence and translation of cloned INSP109 ORF

1	atgaa m										ttcc £									
61	ggtat g	gtt m	tg f	gga:	atg n	atgg d	ag g	tca v	aag k	tt v	cgca r	cct t	gca c	cta t	gcc: s	agaa q	ago k	ccg1	v v	gt c
121	ttctt f										attg i									
181	tgtaa			_		_					caag							_	a	

Figure 19: Map of pCR4-TOPO-INSP109

25 Nov 2003 Molecule Features

Molecule: pCR4-TOPO INSP109, 4193 bps DNA Circular

File Name: 13984[1].cm5

Description: Ligation of inverted INSP109 assembled insert into pCR4-

TOPO linear vector*

MARKER 205 M13R M13 rev priming site MARKER 243 T3 T3 priming site	Туре	Start	End	Name	Description
GENE 530 297 C cds INSP109 cds MARKER 583 C T7 T7 priming site MARKER 591 C M13F M13 for priming site GENE 1395 2189 Kan Kanamycin resistance gene C	MARKER REGION GENE MARKER MARKER GENE GENE	243 530 530 583 591 1395 2393	297 C C C 2189	T3 Insert cds T7 M13F Kan Amp	T3 priming site INSP109 assembled insert INSP109 cds T7 priming site M13 for priming site Kanamycin resistance gene ORF Ampicillin resistance gene ORF

Figure 20: Map of pDONR-INSP109-6HIS

Molecule: pl	DONR221-	-INSP109-6HIS	, 2808 bps DNA Circular
Type Start	End	Name	Description
REGION 295	268 C	rrnB T2	transcription termination sequence
REGION 470	427 C	rrnB T1	transcription termination sequence
REGION 536	553	21M13	21M13 primer
REGION 570	651	attL1	
GENE 677	928	INSP109-6HIS	
REGION 943	1031	attL2	
REGION 1089	1073 C	M13 R	M13R primer
GENE 1202	2011	Kan r	
GENE 2132	2805	pUC ori	

21/22

Figure 21: Map of pEAK12d-INSP109-6HIS

Molecule:		pEAK12d-	INSP109-6HIS,	7201 bps DNA Circular
Туре	Start	End	Name	Description
REGION GENE REGION REGION GENE REGION REGION	2 596 1690 2796 2855 2888 3147 3174	595 1519 2795 2845 2874 3142 3168 3174	pmb-ori Amp EF-lalpha MCS'' attB1 INSP109-6HIS attB2 'MCS	
REGION GENE REGION REGION GENE REGION	3175 4222 4446 4941 6993 6994	3603 3604 C 4223 C 4447 C 4941 C 7193	tK	poly A/splice PUROMYCIN tK promoter

Figure 22: Map of pDEST12.2-INSP109-6HIS

Molecule: pDEST12.2-INSP109-6HIS, 5887 bps DNA Circular

Туре	Start	End	Name	Description
GENE	15	537	CMV promoter	
REGION	648	665	M13rev	M13R primer
REGION	687	704	SP6	SP6 primer
REGION	730	762	attB1	
GENE	763	1014	INSP109-6HIS	
REGION	1018	1043	attB2	
REGION	1093	1073 C	T 7	T7 promoter
REGION	1122	1104 C	21M13	21M13 primer
GENE	1228	1590	рA	SV40 polyadenylation signal
GENE	1784	2240	f1	fl intergenic region
GENE	2304	2722	P SV40	SV40 ori & early promoter
GENE	2767	3561	Neo	
GENE	3625	3673	pΑ	poly adenylation signal
GENE	4084	4944	Amp	
GENE	5093	5732	ori	pUC ori

