Inhalt Von Matrizen zu linearen Abbildungen, von linearen Abbildungen zu Matrizen, Verhalten von $M_{\mathcal{C}}^{\mathcal{B}}(f)$ bei Basiswechsel

1 Von Matrizen zu linearen Abbildungen

Seien K ein Körper, $m, n \in \mathbb{N}$ und $A \in \mathrm{Mat}_{m,n}(K)$.

Dann ist $l_A: K^n \to K^m$, $v \mapsto Av$ eine lineare Abbildung. Man erhält eine lineare Abbildung $l: \operatorname{Mat}_{m,n}(K) \to \operatorname{Hom}(K^n, K^m)$, $A \mapsto l_A$.

Definition Man setzt Kern $A := \text{Kern}(l_A) = \{v \mid v \in K^n, Av = 0\},$ Bild $A := \text{Bild}(l_A) = \{Av \mid v \in K^n\}.$

2 Von linearen Abbildungen zu Matrizen

Seien V, W endlich-dimensionale K-Vektorräume und $f: V \to W$ eine lineare Abbildung. Es soll f eine Matrix zugeordnet werden, dazu benötigen wir noch Basen in V und W.

Es sei $\mathcal{B} = (v_1, \ldots, v_n)$ eine geordnete Basis von V, d. h. $\mathcal{B} = (v_1, \ldots, v_n)$ ist ein n-Tupel paarweise verschiedener v_1, \ldots, v_n , so dass $\{v_1, \ldots, v_n\}$ eine Basis von V ist. Außerdem sei $\mathcal{C} = (w_1, \ldots, w_m)$ eine geordnete Basis von W.

Für jedes $j \in \{1, ..., n\}$ ist $f(v_j) \in W$ eindeutig als Linearkombination der $w_1, ..., w_m$ darstellbar, also gibt es eindeutig bestimmte $a_{1j}, ..., a_{mj} \in K$ mit

$$f(v_j) = \sum_{i=1}^m a_{ij} w_i$$
 für alle $j \in \{1, \dots, n\}$.

Definition $M_{\mathcal{C}}^{\mathcal{B}}(f) := (a_{ij})_{1 \leq i \leq m, 1 \leq j \leq n} \in \operatorname{Mat}_{m,n}(K)$ heißt $Matrix\ von\ f\ bezüglich\ \mathcal{B}, \mathcal{C}$. Die Koeffizienten a_{ij} aus der Darstellung von $f(v_j)$ liefern also die j-te Spalte von $M_{\mathcal{C}}^{\mathcal{B}}(f)$.

Ist $f:V\to V$ ein Endomorphismus von V und \mathcal{B} eine geordnete Basis von V, so heißt $M_{\mathcal{B}}(f):=M_{\mathcal{B}}^{\mathcal{B}}(f)$ die Matrix von f bezüglich \mathcal{B} .

Damit ist f eine Matrix zugeordnet, die von den geordneten Basen in V, W abhängt.

Beispiel Sei $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}) := \begin{pmatrix} -2a_1 + 6a_2 \\ -2a_1 + 5a_2 \end{pmatrix}$ für alle $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \in \mathbb{R}^2$. Sei $\mathcal{E} = (e_1, e_2)$ mit den Einheitsvektoren $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ die geordnete Standardbasis von \mathbb{R}^2 . Wegen $f(e_1) = \begin{pmatrix} -2 \\ -2 \end{pmatrix} = -2e_1 - 2e_2$, $f(e_2) = \begin{pmatrix} 6 \\ 5 \end{pmatrix} = 6e_1 + 5e_2$ ist $M_{\mathcal{E}}(f) = \begin{pmatrix} -2 & 6 \\ -2 & 5 \end{pmatrix}$. Es seien jetzt $v_1 := \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, $v_2 := \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Dann ist $\mathcal{B} = (v_1, v_2)$ eine geordnete Basis von \mathbb{R}^2 . Es gilt

$$f(v_1) = f(\begin{pmatrix} 3 \\ 2 \end{pmatrix}) = \begin{pmatrix} 6 \\ 4 \end{pmatrix} = 2v_1 + 0v_2, \ f(v_2) = f(\begin{pmatrix} 1 \\ 1 \end{pmatrix}) = \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} = v_1 + v_2.$$

Also folgt $M_{\mathcal{B}}(f) = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$. (Man sieht, dass die Matrix bezüglich einer anderen Basis "einfacher" aussehen kann als bezüglich der Standardbasis.)

Satz 1 Sei $\mathcal{B} = (v_1, \dots, v_n)$ eine geordnete Basis von V, es seien $w'_1, \dots, w'_n \in W$. Dann gibt es genau ein $f \in \text{Hom}(V, W)$ mit $f(v_j) = w'_j$ für alle $j \in \{1, \dots, n\}$.

Satz 2 Die Abbildung $M_{\mathcal{C}}^{\mathcal{B}}$: $\operatorname{Hom}_{K}(V, W) \to \operatorname{Mat}_{m,n}(K)$, $f \mapsto M_{\mathcal{C}}^{\mathcal{B}}(f)$ ist ein Vektorraum-Isomorphismus, also eine bijektive lineare Abbildung.

Zum Beweis der Bijektivität: Zu zeigen ist: Zu jedem $A \in \operatorname{Mat}_{m,n}(K)$ gibt es genau ein $f \in \operatorname{Hom}(V,W)$ mit $M_{\mathcal{C}}^{\mathcal{B}}(f) = A$. Sei $A = (a_{ij}) \in \operatorname{Mat}_{m,n}(K)$. Nach Satz 1 gibt es genau ein $f \in \operatorname{Hom}(V,W)$ mit $f(v_j) = \sum_{i=1}^m a_{ij}w_i$ für alle $j \in \{1,\ldots,n\}$. Diese Bedingung ist äquivalent zu $M_{\mathcal{C}}^{\mathcal{B}}(f) = A$.

Folgerung (aus $\operatorname{Hom}(V, W) \cong \operatorname{Mat}_{m,n}(K)$) $\dim_K \operatorname{Hom}_K(V, W) = \dim_K \operatorname{Mat}_{m,n}(K) = mn$, $\dim_K \operatorname{End}_K(V) = \dim_K \operatorname{Mat}_n(K) = n^2$.

Wir betrachten nun die Matrix der Komposition $f \circ g$ von zwei linearen Abbildungen. Es sei U ein weiterer endlich-dimensionaler K-Vektorraum, $g: U \to V$ eine lineare Abbildung und $\mathcal{A} = (u_1, \ldots, u_p)$ eine geordnete Basis von U.

Satz 3 $M_{\mathcal{C}}^{\mathcal{A}}(f \circ g) = M_{\mathcal{C}}^{\mathcal{B}}(f) \cdot M_{\mathcal{B}}^{\mathcal{A}}(g)$, d. h. die Matrix von $f \circ g$ bzgl. \mathcal{A}, \mathcal{C} ist das Matrizenprodukt der Matrix von f bzgl. \mathcal{B}, \mathcal{C} mit der Matrix von g bzgl. \mathcal{A}, \mathcal{B} .

Korollar $f: V \to W$ Isomorphismus \iff dim $V = \dim W$ und $M_{\mathcal{C}}^{\mathcal{B}}(f)$ invertierbar. In diesem Fall gilt $M_{\mathcal{C}}^{\mathcal{B}}(f)^{-1} = M_{\mathcal{B}}^{\mathcal{C}}(f^{-1})$.

3 Verhalten von $M_{\mathcal{C}}^{\mathcal{B}}(f)$ bei Basiswechsel

Wir untersuchen nun, wie sich $M_{\mathcal{C}}^{\mathcal{B}}(f)$ bei Übergang zu anderen geordneten Basen ändert. Es seien $\mathcal{B}'=(v'_1,\ldots,v'_n)$ eine weitere geordnete Basis von V und $\mathcal{C}'=(w'_1,\ldots,w'_m)$ eine weitere geordnete Basis von W.

Definition Schreibt man $v'_j = \mathrm{id}_V(v'_j) = \sum_{i=1}^n b_{ij} v_i$ für $j = 1, \ldots, n$, so heißt $B := (b_{ij})$ Übergangsmatrix von \mathcal{B} zu \mathcal{B}' . Es ist gerade $B = M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{id}_V)$.

Sei $C := M_{\mathcal{C}}^{\mathcal{C}'}(\mathrm{id}_W)$ die Übergangsmatrix von \mathcal{C} zu \mathcal{C}' . Da $\mathrm{id}_V, \mathrm{id}_W$ Isomorphismen sind, sind B, C nach dem Korollar zu Satz 3 invertierbar.

Satz 4 $M_{\mathcal{C}'}^{\mathcal{B}'}(f) = C^{-1}M_{\mathcal{C}}^{\mathcal{B}}(f)B$.

Beweis: Aus $f = \mathrm{id}_W^{-1} \circ f \circ \mathrm{id}_V$ folgt (nach Satz 3 und dem Korollar)

$$M_{\mathcal{C}'}^{\mathcal{B}'}(f) = M_{\mathcal{C}'}^{\mathcal{B}'}(\mathrm{id}_W^{-1} \circ f \circ \mathrm{id}_V) = M_{\mathcal{C}'}^{\mathcal{C}}(\mathrm{id}_W^{-1})M_{\mathcal{C}}^{\mathcal{B}}(f)M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{id}_V)$$
$$= M_{\mathcal{C}}^{\mathcal{C}'}(\mathrm{id}_W)^{-1}M_{\mathcal{C}}^{\mathcal{B}}(f)B = C^{-1}M_{\mathcal{C}}^{\mathcal{B}}(f)B.$$

Korollar Für $f \in \text{End}_K(V)$ gilt $M_{\mathcal{B}'}(f) = B^{-1}M_{\mathcal{B}}(f)B$.

Zu obigem Beispiel Es war $M_{\mathcal{E}}(f) = \begin{pmatrix} -2 & 6 \\ -2 & 5 \end{pmatrix}$ und $\mathcal{B} = (v_1, v_2)$ mit $v_1 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, $v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Die Übergangsmatrix von \mathcal{E} zu \mathcal{B} ist $\begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix}$, es ist $B^{-1} = \begin{pmatrix} 1 & -1 \\ -2 & 3 \end{pmatrix}$. In der Tat gilt

$$B^{-1}M_{\mathcal{E}}(f)B = \begin{pmatrix} 1 & -1 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} -2 & 6 \\ -2 & 5 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} 6 & 4 \\ 4 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix},$$

dies stimmt mit dem vorher berechneten $M_{\mathcal{B}}(f)$ überein.