FACULTAD DE CIENCIAS APLICADAS A LA INDUSTRIA

MECÁNICA RACIONAL

INGENIERÍA MECÁNICA

Trabajo Práctico N° 2

1. Coordenadas Cilíndricas

En ciertos problemas de movimiento, es conveniente definir la posición de la partícula *P* mediante sus coordenadas cilíndricas.

En este caso, las coordenadas que definen la posición son (ρ, θ, z) , siendo ρ la distancia desde un punto fijo O, θ el ángulo que forma la proyección del radio vector sobre un plano fijo con una dirección dada del mismo, y z la altura del punto sobre dicho plano. El triedro de vectores unitarios asociado (o base física) es $(\boldsymbol{u}_{\rho}, \boldsymbol{u}_{\theta}, \boldsymbol{k})$. El versor u_{ρ} queda definido como un vector unitario en la dirección de la proyección de r sobre el plano; k es el versor perpendicular al mismo, y u_{θ} es perpendicular a los dos anteriores. En este triedro tanto u_{ρ} como u_{θ} varían de punto a punto, constituyendo un sistema de coordenadas curvilíneas.

La posición de un punto queda definida mediante

$$r = \rho u_o + zk$$

expresión que engloba también a las coordenadas polares para el movimiento plano cuando $z=0\,$

Las coordenadas cilíndricas se relacionan con las coordenadas cartesianas mediante:

$$x = \rho \cos \theta$$
 $y = \rho \sin \theta$ $z = z$

Mientras que entre los versores de ambos triedros la relación es

$$u_{\rho} = \cos\theta \, i + \sin\theta \, j$$
 $u_{\theta} = -\sin\theta \, i + \cos\theta \, j$ $k = k$

a) Halle las siguientes expresiones, en función de los versores $(u_{\rho}, u_{\theta}, k)$ y las variables (ρ, θ, z) :

 $\dot{r}=$

;=

Ayuda desarrolle primero $oldsymbol{u}_{
m
ho}$, $oldsymbol{u}_{
m heta}$, $oldsymbol{k}$

b) Exprese las componentes radiales y tangenciales de la velocidad y la aceleración para $\rho=cte~$ y z=0

$$\dot{r_{u_{
ho}}}$$
 = $\dot{r_{u_{
ho}}}$ =

$$r_{\mathbf{u}_{o}}^{\cdot \cdot}$$
 = $r_{\mathbf{u}_{o}}^{\cdot \cdot}$ =

¿A qué expresiones conocidas llegó?

¿Puede obtenerse la aceleración radial a partir de derivar la velocidad radial con respecto al tiempo?

2. Coordenadas esféricas.

La posición de un punto queda ahora referida a las dos coordenadas angulares en una esfera de radio ρ : la longitud ϕ y la latitud θ

Las coordenadas esféricas se relacionan con las coordenadas cartesianas mediante:

$$x = \rho \sin\theta \cos\varphi$$
 $y = \rho \sin\theta \sin\varphi$ $z = \rho \cos\theta$

El triedro físico es ahora $(u_{\varphi},u_{\theta},u_{\rho})$. La línea coordenada de longitud φ constante define el meridiano, al cual es tangente el versor u_{θ} . Asimismo la línea de latitud θ constante define un paralelo, al cual es tangente el versor u_{φ} . Por último, el versor u_{ρ} lleva la dirección y sentido del radio vector r. El vector posición es $r=\rho$. u_{ρ} Proyectando sobre las direcciones del triedro cartesiano se obtienen las relaciones con los versores del mismo:

$$u_{\rho} = \cos\theta \cos\varphi \ \mathbf{i} + \cos\theta \sin\varphi \ \mathbf{j} + \sin\theta \ \mathbf{k}$$

$$u_{\theta} = -\sin\theta \cos\varphi \ \mathbf{i} - \sin\theta \sin\varphi \ \mathbf{j} + \cos\theta \ \mathbf{k}$$

$$u_{\varphi} = u_{\theta} \wedge u_{\rho} = -sen\varphi i + \cos\varphi j$$

a) Demuestre que:

$$\dot{\mathbf{r}} = \dot{\rho} \, \mathbf{u}_{\mathbf{p}} + \rho \dot{\theta} \, \mathbf{u}_{\mathbf{\theta}} + \rho \dot{\phi} \cos \theta \, \mathbf{u}_{\mathbf{\phi}}$$

$$\ddot{r} = \begin{cases} (\ddot{\rho} - \rho \dot{\phi}^2 \cos^2 \theta - \rho \dot{\theta}^2) \boldsymbol{u_{\rho}} + \\ (2\dot{\rho}\dot{\theta} + \rho \dot{\phi}^2 sen\theta \cos \theta + \rho \ddot{\theta}) \boldsymbol{u_{\theta}} + \\ (2\dot{\rho}\dot{\phi}\cos \theta - 2\rho \dot{\theta}\dot{\phi} sen\theta + \rho \ddot{\phi} \cos \theta) \boldsymbol{u_{\phi}} \end{cases}$$

Ayuda, desarrolle $\dot{u_{\theta}}$, $\dot{u_{\phi}}$ como en este ejemplo:

$$\dot{\boldsymbol{u}_{\rho}} = \frac{\partial u_{\rho}}{\partial \rho} \dot{\rho} + \frac{\partial u_{\rho}}{\partial \theta} \dot{\theta} + \frac{\partial u_{\rho}}{\partial \phi} \dot{\phi} = \dot{\theta} \boldsymbol{u}_{\theta} + \dot{\phi} \cos \theta \boldsymbol{u}_{\phi}$$

3. El movimiento de una partícula sobre la superficie de un cilindro circular se define por medio de las relaciones R=A , $\theta=2\pi t$, $z=B.\sin(2\pi nt)$, donde A y B son constantes, n es un entero. Determine las magnitudes de la velocidad y la aceleración de la partícula en cualquier tiempo t.

4. El movimiento tridimensional de una partícula se define por medio de las coordenadas cilíndricas R = A/(t+1) , $\theta = B \cdot t$ y z= C · t/(t+1). Demuestre que las magnitudes de la velocidad y de la aceleración son:

A) Para
$$t = 0$$
 \rightarrow $v = \sqrt{A^2 + B^2}$ $a = \sqrt{(1 + 16 \pi^2) \cdot A^2 + B}$
B) Para $t = \infty$ \rightarrow $v = 2\pi A$ $a = 4\pi^2 A$

$$a = \sqrt{(1 + 16 \pi^2) \cdot A^2 + B^2}$$

B) Para
$$t = \infty$$
 \rightarrow $v = 2\pi A$

$$a = 4\pi^2 A$$

- 5. Considere una partícula de masa **m** que se mueve pegada a la superficie de una esfera de radio R, calcule la energía cinética de la partícula en función de m, R, θ , φ , usando coordenadas esféricas.
- 6. Una partícula de masa **m** cae desde una altura **h** comenzando desde el reposo. Encuentre **y(t)**:
 - a) a través de la expresión de $a=rac{dv}{dt}$ b) mediante la expresión $a=vrac{dv}{dy}$

- 7. Considere las poleas del sistema de la figura. Por debajo de cada polea cuelgan m_1 y m_2 respectivamente. Considere que las cuerdas y las poleas tienen masa despreciable.
 - a) ¿Cuáles son las aceleraciones de las masas?
 - b) ¿Cuál es la tensión en la cuerda más larga?

8. Una pelota se deja caer desde el reposo a una altura h. Asuma que la fuerza de arrastre generada por el aire es: $F_a = m\alpha v$.

Encuentre la velocidad y la altura como funciones del tiempo.

9. Muestre que $\theta(t)=\theta_0 \cdot \cos(\sqrt{g/l} \cdot t)$ describe la posición del péndulo de la figura en función del tiempo, si θ es suficientemente pequeño

(cuándo el ángulo es pequeño puede considerar $\sin(\theta) \approx \theta$).

Ayuda: debe plantear una EDO de 2° orden.

¿Podría encontrar una solución para grandes valores de θ ? En caso afirmativo mencione sin resolver qué método usaría.

