Computability and Complexity: Exercise Session 3 (2017-10-18)

Aurélien Ooms*

October 21, 2017

Contents

1	$\mathbf{E}\mathbf{x}\mathbf{\epsilon}$	ercise 4.30)																					1
	1.1	Solution												 					 					1

1 Exercise 4.30^1

Let A be a Turing-recognizable language consisting of descriptions of Turing machines, $\{\langle M_1 \rangle, \langle M_2 \rangle, \ldots\}$, where every M_i is a decider. Prove that some decidable language Q is not decided by any decider M_i whose description appears in A. (Hint: You may find it helpful to consider an enumerator for A.)

1.1 Solution

The solution is in two steps. First we construct a new language Q that is not decided by any of the M_i using the technique of diagonalization. Second we show how to build a decider for Q using the fact that A is Turing-recognizable.

Table 1 shows a diagonalization that is similar to the ones we saw during a previous lecture. We build a new language Q that disagrees with each language decided by a decider M_i , that is, Q disagrees with $L(M_i)$ on w_i . Hence, none of the M_i decides Q.

We assume, without loss of generality, that the order of the w_i is the standard string order², that is, first ordered by length, then lexicographically. For a given finite alphabet Σ , there are finitely many words of finite length, hence there is an algorithm W that enumerates all the words of Σ^* in the standard string order.

Since A is Turing-recognizable, there exists an enumerator for A, as we have shown in a previous lecture. To prove that Q is decidable, we build the following TM:

D =on input w_i :

1. Determine the value of i using the enumerator W, that is, enumerate all words in standard string order while maintaining a count of how many words have been enumerated, and stop when encountering w_i .

^{*}aureooms@ulb.ac.be

¹Exercises from the reference book: Sipser M., Introduction to the Theory of Computation, 3rd edition (2013). In the second edition of the book, this exercise is Exercise 4.28.

²This string order is called shortlex or quasi-lexicographic order but is referred to as "lexicographic order" in the textbook. See https://en.wikipedia.org/wiki/Lexicographical_order and https://en.wikipedia.org/wiki/Shortlex_order.

Table 1: Building the language Q. Entry (M, w) is 1 if $w \in L(M)$ and 0 otherwise. $w_i \in Q$ iff $w_i \notin L(M_i)$.

	$ w_1 $	w_2	w_3	w_4		w_i	
Q	0	1	1	0		0	
M_1	(1)	1	1	1		1	
M_2	0	\bigcirc	0	0		0	
M_3	1	0	\bigcirc	0		0	
M_4	0	1	0	1		0	
:	:	÷	÷	i	٠	÷	٠
M_i	1	0	1	0		\bigcirc	
:	:	:	÷	÷	٠	÷	٠

- **2.** Enumerate the M_k of A using the enumerator for A. Stop once we have enumerated i different deciders, that is, the last decider yielded by the enumerator is M_i .
- **3.** Simulate M_i on w_i . If M_i accepts, reject. If M_i rejects, accept.

D is a decider since:

- 1. Steps 1 and 2 execute a finite number of steps since i is finite.
- 2. Step 3 stops after a finite number of steps since M_i is a decider.

D accepts w_i iff M_i rejects w_i . Since D and M_i are deciders, this is equivalent to say that $w_i \in L(D)$ iff $w_i \notin L(M_i)$, hence L(D) = Q. D is thus a decider for Q and hence Q is decidable.