Unit 1 Short Answers

Q.No.	Question
1	Define Big oh notation
2	Compute upper bound of running time of a linear function $f(n) = 6n + 3$
3	List the searching and sorting techniques under divide and conquer technique
4	List the time complexity for merge sort for all three cases.

Long Answers

Q.No.	Question
1	Explain in detail about time complexity.
2	Explain in detail about binary search and analyze its time complexity
3	Illustrate quick sort algorithm and discuss its time complexity
4	Explain in detail about asymptotic notations
5	Using Starassan matrix multiplication calculate the following matrices A= 2 3 B= 1 3 4 2 4 2

MCQ

1.	A measure of	amount of memory needed	to execute for an algorithm[Co	O1, K1]	[]
A. Ti	ime efficiency	B.Amorized	C. Space efficiency	D. None		
2.	Time complex	ity O(1) is called as		[CO1, K1]	[]
		B. log linear complexity	C. Constant Complexity	D. None		
3.	A notation wh	ich is used for analyzing avo	erage case of complexity. [CC	01 K1]	[]
A. Time efficiency B.Amorized C. Space efficiency D. None 2. Time complexity O(1) is called as [CO1, K1] [] A. Linear complexity B. log linear complexity C. Constant Complexity D. None 3. A notation which is used for analyzing average case of complexity. [CO1 K1] [] A. Theta B. Big Oh C. Big Omega D. Both B and C 4. Notation which represent the upper bound of the function. [CO1, K2] [] A. Theta B. Big Oh C. Big Omega D. None 5. Which of the following is not related to divide and conquer technique? [CO1, K2] [] A. Merge sort B. Quick sort C. Binary Search D. Linear Search 6. Which of the following is irrelevant to binary search technique? [CO1, K2] [] A. Elements in B. Search sequentially C. Search based on divide and conquer 7. In quick sort elements are sorted with help of an element called as? [CO1, K1] [] A. Random B. Pivot C. Sequential D. None 8. Merge sort will follows which technique from the following for sorting [CO1, K1] [] A. Sequential B. Divide and Conquer C. Ordered D. None 9. Strassan Matrix multiplication follows which technique for solving problem [CO1, K1] [] A. Comparison B. Innlace Comparison C. Divide and Conquer D. None						
4.	Notation whic	h represent the upper bound	of the function.	[CO1, K2]	[]
A. Tł	A. Time efficiency B.Amorized C. Space efficiency D. None C. Time complexity O(1) is called as [CO1, K1] [] A. Linear complexity D. None [CO1, K1] [] A. Linear complexity D. None [CO1, K1] [] A. Theta B. Big Oh C. Big Omega D. Both B and C A. Theta B. Big Oh C. Big Omega D. None [CO1, K2] [] A. Theta B. Big Oh C. Big Omega D. None [CO1, K2] [] A. Theta B. Big Oh C. Big Omega D. None [CO1, K2] [] A. Theta B. Big Oh C. Big Omega D. None [CO1, K2] [] A. Theta B. Big Oh C. Big Omega D. None [CO1, K2] [] A. Theta B. Big Oh C. Big Omega D. None [CO1, K2] [] A. Theta B. Big Oh C. Big Omega D. None [CO1, K2] [] A. Merge sort B. Quick sort C. Binary Search D. Linear Search [] A. Elements in B. Search sequentially C. Search based on divide and conquer [] A. Elements in B. Search sequentially C. Search based on divide and conquer [] A. Random B. Pivot C. Sequential D. None [] A. Random B. Pivot C. Sequential D. None [] A. Sequential B. Divide and Conquer C. Ordered D. None [] A. Sequential B. Divide and Conquer C. Ordered D. None [] A. Sequential B. Divide and Conquer C. Divide and Conquer D. None [] B. Inplace Comparison C. Divide and Conquer D. None [] How many recursive calls that strassan matrix multiplication takes? [[CO1, K1]]					
5.	Which of the f	following is not related to di	vide and conquer technique? [CO1, K2]	[]
A. M	erge sort	B. Quick sort	C. Binary Search	D. Linear	Search	
6.	Which of the f	following is irrelevant to bin	ary search technique?	CO1, K2]	[]
		B. Search sequentially		D. None		
7.	In quick sort e	lements are sorted with help	o of an element called as? [0	CO1, K1]	[]
A. Ra	andom	B. Pivot	C. Sequential	D. None		
8.	Merge sort wil	ll follows which technique f	rom the following for sorting	[CO1, K1]	[]
A. Se	equential	B. Divide and Conquer	C. Ordered	D. None		
9.		x multiplication follows wh	ich technique for solving prob	lem [CO1,	[]
A. Co	1			D. None		
10.	How many rec	cursive calls that strassan ma	atrix multiplication takes?	[CO1, K1]	[]
A.Six	A.Six B. Seven C. Eight D. Five					

1.	Time complexity of an algorithm with three nested loops in big oh notation is	[CO1, K1]
2.	A procedure for solving problem in finite number of steps is called as	[CO1, K2]
3.	Big Oh notation is represented by symbol	[CO1, K1]
4.	Time complexity of log linear is represented by	[CO1, K1]
5.	An explicit stack may overuse the space is drawback of	[CO1, K2]
6.	Time complexity of binary search is	[CO1, K1]
7.	Average case time complexity of quick sort is	[CO1, K1]
8.	Worst case time complexity of merge sort is	[CO1, K1]
9.	Strassan matrix multiplication reduced the time complexity from to	[CO1, K1]
10.	In strassan matrix multiplication the formula for C11 is	[CO1, K1]

Unit 2 Short Answers

Q.No.	Question			
1	Infer pseudocode for find operation.			
2	List the applications of backtracking.			
3	Prove that 2 queen and 3 queens problem are not giving solution			
4	Define chromatic number in graph coloring with some example			

Long Answers

Q.No.	Question				
1	Explain about disjoint set operations with example				
2	Apply backtracking technique for queens problem technique on 8*8 board and find solution.				
3	Construct state space tree and solve the following problem using sum of subset where set S={10, 12, 13, 15, 18} and M=30				
4	Analyze the solution to the m=3 coloring of a graph using backtracking.				
5	Explain in detail about working procedure of backtracking with example.				

MCQ

1.	A set $S1 = \{1,$	3,4,5} from the following w	[CO2, K1]]]	
A. {1	,6}	B. {1,3,5}	C. {1,3,6}	D. None		
2.	Disjoint set is	also called as?		[CO2, K1]]
A. U	nion find	B. Merge find	C. Union Merge	D. Both A	and B	
3.	In array repres	sentation the value -1 indicate	tes?	[CO2, K1]	[]
A. V	ertex is child	D. None				
4.	Technique use	ed in backtracking for solve	the problem.	[CO2, K1]	[]
A. Searc	A. Brute Force B. Comparison based C. Sequential				n	
5.	A node that pr	ovides feasible solution in b	packtracking	[CO2, K1]	[]
A. Li	ve node	B. E node	C. Success node	D. None		
6.	Which of the f	following is not an application	on of backtracking?	[CO2, K1]	[]
A. G	raph Coloring	B. Queens Problem	C. Sum of Subset	D. None		
7.		oblem if the first queen is ple placed in? [CO2, K1]	laced in first row and first colu	imn the	[]
A. Se	econd row first	B. Second row second column	C. Second row third column	D. None	•	
8.	Graph coloring	g is also called as	[CO2, K1]		[]
A. V	ertex Coloring	B. Edge Coloring	C. Weight Coloring	D. None		
9.	Which of the following are the applications for graph coloring? [CO				[]
A. M	ap Coloring	B. Sudoku	C. Scheduling the tasks	D. All the a	above	
10.	Chromatic nur	mber for a graph with one ve	ertices is ? [CO2, K1]]]
A. 0		B. 1	C. 2	D. 3	•	

1.	is called a collection of elements	[CO2, K1]
2.	The set $S1=\{1,2,4\}$ and $S2=\{5,3,6\}$, intersection of this two sets form set	[CO2, K1]
3.	In find operation pseudocode if (parent(node)==node) returns	[CO2, K1]
4.	In backtracking the node which further generated is called as node	[CO2, K1]
5.	A rule that restricts each element to be chosen from the set is constraint in backtracking.	[CO2, K1]
6.	Whether the three queens problem will give solution(Yes/No)	[CO2, K1]
7.	In 4 queens problem if Q1 is in first row second column, Q2 is in second row fourth then Q3 will be in	[CO2, K1] column
8.	The technique that assigning colors to the vertices of graph is called as	[CO2, K1]
9.	In graph coloring whether the adjacent nodes have same color (Yes/No) [C	O2, K1]
10.	Time complexity of graph coloring is [CO2, K1]	

Unit 3: Short answers:

Q.No.	Question				
1	Compare bottom up and top down approach in dynamic programming.				
2	Construct the optimal binary tree for elements {10, 20, 30}				
3	Compare 0/1 and fractional knapsack problem (any two points)				
4	Define reliability design? Why we are copying the devices.				

Long Answers:

Q.No.	Question					
1	Apply dynamic programming technique for optimal binary search tree where the keys are {10,20,30,40} and its frequency is{4,2,6,3} respectively.					
2	Explain about k	Explain about knapsack problem types.				
3	Illustrate the alg	Illustrate the algorithm for floyd warshall.				
4	Construct a state space tree for travelling salesman problem using dynamic programming technique with its relevant formula.					
			each and every t of overall syste	device whose cost and reliability is m is 105\$.		
_	Device	Cost	Reliablity			
5	D1	30	0.9			
	D2	15	0.8			
	D3	20	0.5			

1.	Dynamic Programming follows which technique to solve the problem? [CO3, K1]]
A. Conq	Divide and uer	B. Liner order	C. Sequential	D. None		
2.	2. Top down approach in dynamic programming follows which technique?[CO3, K1]					
A. Ta	abulation	B. Memorization	C. Union Merge	D. None		
3.	The average	20	ns for below optimal binates	ry tree is	[]
A. 2		B. 3	C. 5/3	D. None		
4.	Knapsack prob	olem is an example of	[CO3, K1]		[]
A. G	reedy method	B. Dynamic Prograaming	C. Divide and Conquer	D. Randoi	m	
5.	Method used to	o solve knapsack problem is	s? [CO3, K1]		[]
A. progr	Dynamic ramming	B. Recursion	C. Brute force	D. All the	above	
6.	Floyd Warsha	ill's Algorithm can be applic	ed on [CO3, K1]		[]
A. Grap	Undirected h	B. Directed Graph	C. Acyclic graph	D. None		
7.	What approach	n is being followed in Floyd	Warshall Algorithm? [CO3, K1]		[]
A. Progr	A. Dynamic Programming B. Greedy method C. Linear Programming D. Backtra					
8.	The reliability	of the entire system is calle	d[CO3, K1]		[]
A. Pa	A. Partial reliability B. Closed reliability C. System reliability D. None					
9.	In series configuration of five components, the entire system will fail if [CO3, K1]]

A. O fail	ne component	B. Two component fail	C. All component fail	D. None		
10.	In travelling salesman problem the number of times the vertices visited is?]
A. 0		B. 1	C. 2	D. 3		

1.	[CO3, K1] Tabulation method is also called as
2.	Tabulation method is also called as Bottom up approach in dynamic programming follows technique [CO3, K1]
3.	Binary Search tree is also called as binary tree. [CO3, K1]
4.	Formula for calculating number of trees in optimal binary tree is [CO3, K1]
5.	General formula for calculating the minimum cost in optimal binary search tree is[CO3, K1]
6.	[CO3, K1] In binary search tree all the elements in left sub tree is always than root node
7.	0/1 knapsack problem is solved using greedy method(True/False) [CO3, K1]
8.	[CO3, K1] Floyd Warshall's Algorithm is used for solving
9.	Time complexity of dynamic programming with memoization technique is [CO3, K1]
10.	Which algorithm is used to solve 0/1 knapsack problem optimally is [CO3, K1]

Unit 4: Short Answers

Q.No.	Question
1	Outline the algorithm for greedy method
2	Compare 0/1 and fractional knapsack
3	Infer the time complexity of prims algorithm
4	Illustrate the conditions of dijkstra algorithm

Long answers:

Q.No.	Question							
1	Jobs Deadline						J6 2 100	profit and also identify whether all
2	Construct m	4	5	aning tr	8	g krusl	kal algo	orithm
3	Explain the	merits	and de	emerits	of gree	edy me	thod	

4	Distinguish between kruskal and prims algorithm for finding minimum spanning tree.
5	Implement Dijkstra algorithm.

MCQ

		t Alternative.	FGO 4 1713			
1.	Kruskal algorithm is a [CO4, K1]			[]	
A. conq	A. Divide and B. Dynamic conquer C. Greedy method D. None					
2.	Which of the f	ollowing is true? [CO4, K1]		[]
initia	A. Prim's algorithm initialises with a vertex which have smallest edge C. Prim's algorithm initialises with a vertex which have smallest edge					
3.	What is the tin	ne complexity of Kruskal al	gorithm? [CO4, K1]		[]
A. O	(log V)	B. O(E log V)	C. O(V log E)	D. None		
4.	Which of the f	ollowing algorithm is best s	suited for sparse graph? [CO4,	K1]	[]
A. K	A. Kruskal B. Prims C. Dijkstra D. Nor		D. None			
5.	Prims algorithm	m is also called as	[CO4, K1]		[]
A. Scho	Dijkstra lten	B. Flyod warshall	C. DJP algorithm	D. None		
6.	Which of the f	following edge form MST u	sing prim algorithm starting ve	ertex is 4	[]
A.(4-3)(1-		B. (4-3)(3-5)(5-1)(1-2)	, , , , , , , , , , , , , , , , , , , ,	D. (4-3)(3	-2)(2-1	1)(1-5)
7.	How many pri K1]	ority queue operations are i	nvolved in Dijkstra's Algorithi	n? [CO4,	[]

A.3		B. 2	C. 1	D. None		
8.	How many times the insert and extract min operations are invoked per vertex in Dijkstra algorithm? [CO4, K1]]
A.1		B. 2	C. 3	D. 0		
9.	Dijkstra's Algorithm cannot be applied on [CO4, K1]			[]	
	A. Directed and B. Graphs having weighted graphs negative weight function		C. Unweighted Graph	D. None		
10.	0. Dijkstra's Algorithm is the prime example for [CO4, K1]]	
A.Greedy method		B. Dynamic programming	C. Branch and Bound	D. None		

1.	Kruskal algorithm also run on disconnected graphs(True/False) [CO4, K1]
2.	Kruskal's algorithm is best suited for the dense graphs than the prim's algorithm(True/False) [CO4, K1]
3.	Prims algorithm reassembles algorithm [CO4, K1]
4.	Prims algorithm is implemented using heap [CO4, K1]
5.	Space complexity of dijkstra algorithm is [CO4, K1]
6.	algorithm is simpler than prims algorithm[CO4, K1]
7.	Dijkstra's Algorithm is used to solve problems [CO4, K1]
8.	[CO4, K1] What is the time complexity of Dijikstra's algorithm

9.	What is the space complexity of Dijikstra's algorithm [CO4, K1]
10.	The maximum number of times the decrease key operation performed in Dijkstra's algorithm will be equal to [CO4, K1]

Unit 5: Short answer

Q.No.	Question
1	Define Branch and Bound technique
2	List the possible paths in a graph having vertices{A,B,C,D} where A is the starting place
3	Define NP complete and what its condition?
4	When a problem is said to be NP-hard?

Long questions:

Q.No.	Question
1	Illustrate algorithm for LC Search
2	Explain in detail about FIFO Branch and Bound technique
3	Illustrate algorithm for knapsack using Branch and Bound technique
4	Prove travelling salesman problem is NP Complete
5	Make use of cooks theorem discuss three types of SATs.

1.	Branch and Bo	ound is[CO5,	K1]		[]
	A.Problem Solving technique B. Data Structure C. Sorting technique D. Type of				f tree	
2.	Which data structure is used for implementing a FIFO branch and bound strategy? [CO5, K1]			[]	
A. St	ack	B. Queue	C. Linked List	D. Array		
3.	Branch and Bo	ound technique support whi	ch searching algorithm? [CO5,	K1]]]
A. searc	Depth first h	B. Breadth first search	C. Brute force search	D. None		
4.	How many correducible? [CO		n NP- complete problem is poly	ynomially	[]
A.1		B. 2	C. 4	D. 3		
5.	To which of the K1]	ne following class does a Cl	NF-satisfiability problem belon	g? [CO5,	[]
A. N	P class	B. NP hard	C. NP Complete	D. P Class	S	
6.	How many sta [CO5, K1]	ages of procedure does a no	on-deterministic algorithm cons	ist of	[]
A. 1		B. 2	C. 3	D. 4		
7.	Cooks theorem	m proved that SAT problem	n is? [CO5, K1]]]
A. N	P hard	B. NP Complete	C. NP	D. P class		
8.	A variable tha	at have two values true or fa	alse is called as?[CO5, K1]		[]
A.Bo	olean	B. Literal	C. Clause	D. None		
9.	An expression K1]	with conjunctive normal fo	orm an three literals is called as	? [CO5,	[]
A. 3		B. 3 CNF	C. Both a and b	D. None	1	
10.	SAT is also ca	illed as? [CO5, K1]	,		[]
A. Fo	ormula SAT	B. CNF	C. SAT- CNF	D. None		

1.	[CO5, K1] Branch and Bound technique is similar to as it uses state space tree.
2.	Branch and Bound technique is used for solving and problem [CO5, K1]
3.	Problems that can be solved in polynomial time are known as [CO5, K1]
4.	The worst-case efficiency of solving a problem in polynomial time is [CO5, K1]
5.	Full form of NP is [CO5, K1]
6.	Full form of SAT is [CO5, K1]
7.	In cooks theorem the circuit SAT and are hard as SAT [CO5, K1]
8.	A sequence of variables that are separated by logical OR is called as [CO5, K1]
9.	[CO5, K1] Cooks theorem proved SAT is
10.	[CO5, K1] In Circuit SAT if we have n input for a circuit the possible output is