Curso teórico-práctico de estudios de genoma completo en poblaciones mezcladas

Patrón local de desequilibrio de ligamiento

Desequilibrio de ligamiento

Desequilibrio de ligamiento: Asociación no aleatoria de alelos en 2 o más *loci*

Haplotipo: Conjunto de variaciones del ADN que tienden a ser heredadas juntas

Formación y destino de los haplotipos

Medidas del desequilibrio de ligamiento

$$D_{AB} = p_{AB} - p_A p_B$$

Característica: Su signo es arbitrario, depende de qué alelo se considere primero Cuando ambos polimorfismos son bialélicos:

$$D_{AB} = -D_{Ab} = -D_{aB} = D_{ab} = D$$

Desventaja: Su rango de valores posibles está limitado por las frecuencias alélicas

$p_A = 0.22$	$p_{C} = 0.05$
$p_{\rm B}^{\gamma} = 0.25$	$p_{D}^{\circ} = 0.07$
$p_{AB}^{2} = 0.206$	$p_{CD}^{S} = 0.014$

Medidas del desequilibrio de ligamiento

D'

Si queremos normalizar D con respecto a las frecuencias alélicas se puede usar

$$p_A(1-p_B) \circ p_B(1-p_A)$$

Por convención,

Si D
$$\geq$$
0, D'=D/D_{max}, donde D_{max} = min[p_A(1-p_B), p_B(1-p_A)]
Si D<0, D'=D/D_{min}, donde D_{min} = max[p_A(1-p_B), p_B(1-p_A)]

- Si |D'|=1, uno de los 4 posibles haplotipos no se observa
- Alta correlación con fracción de recombinación
- Inflado cuando las frecuencias alélicas son bajas

$$p_A = 0.22 & p_C = 0.05 \\
p_B = 0.25 & p_D = 0.07 \\
p_{AB} = 0.206 & p_{CD} = 0.014$$

$$p_A(1-p_B) = 0.165$$
 $p_C(1-p_D) = 0.0465$
 $p_B(1-p_A) = 0.195$ $p_D(1-p_C) = 0.0665$

Medidas del desequilibrio de ligamiento

 r^2

Si queremos saber qué tanto A predice B, conviene normalizar por

$$p_A(1-p_A)p_B(1-p_B)$$

Y para eliminar el signo arbitrario el numerador es D²

$$r^2 = D^2/p_A(1-p_A)p_B(1-p_B)$$

• Si $r^2 = 1$ A implica B, si $r^2 = 0$ A y B son independientes

$$p_A = 0.22
p_B = 0.25
p_AB = 0.206$$
 $p_C = 0.05
p_D = 0.07
p_CD = 0.014$

$$D^{2} = 0.0228 D^{2} = 0.00011 p_{A}(1-p_{A})p_{B}(1-p_{B}) = 0.0322 p_{C}(1-p_{C})p_{D}(1-p_{D}) = 0.0031$$

$$r^2 = 0.7086$$
 $r^2 = 0.0356$

Factores que afectan el desequilibrio de ligamiento

- Relacionados a la frecuencia de recombinación
 - Localización cromosómica
 - Secuencia
 - Hotspots
- Relacionados a factores evolutivos
 - Selección natural
 - Flujo genético
 - Mutación, conversión génica
 - Deriva génica
 - Antigüedad de la población

Antigüedad poblacional y mestizaje en el desequilibrio de

liaamianta

The 1000 Genomes Project Consortium Nature 2015 Indrani Halder, Mark Shriver Hum Genomics 2003

Antigüedad poblacional y mestizaje en el desequilibrio de ligamiento

$$D_{AB}(t+1) = (1-c) D_{AB}(t)$$

Si
$$c = 0.5$$
, $D_{AB}(t+1) = D_{AB}(t)/2$

Detección de selección positiva

Tatum Simonson High Alt Med Biol 2015 Tatum Simonson, *et al.* Science 2010

Asociación por desequilibrio de ligamiento

B) 1p13 (SORT1, CELRS2, PSRC1)

Daniel Chasman, *et al.*Circ Cardiovasc Genet 2008
Kiran Musunuru, *et al.*Nature 2010

Asociación por desequilibrio de ligamiento

B) 1p13 (SORT1, CELRS2, PSRC1)

Daniel Chasman, et al. Circ Cardiovasc Genet 2008 Kiran Musunuru, et al. Nature 2010

Asociación por desequilibrio de ligamiento

