Bachelor of Engineering Electronic Engineering (HONS)

Headphone Amplifier Design

Ву

Specter

Student ID: X00097568

Date: February 1, 2015

Electronic Engineering Department

Contents

1	Sim	aple transistor circuit	4
	1.1	Transistor basic property	4
	1.2	Relationship between Base voltage(V_{be}) and Collector current(I_c)	5
	1.3	Limit current gain	5
	1.4	Add voltage divider	7
2	Neg	gative Feedback	8
	2.1	Simple Negative Feedback system	8
		Implement Using Op-amp	
	2.3	Implement Using transistor	10
3	Cur	rent Source	12
	3.1	Single current source circuit	12
	3.2	Use current source to replace output resistor	13

List of Tables

1 1	DC operating	point	analysis	result											ļ
T.T	DO operaning	pomi	anarysis	resure.	•		•		•	•	•	•	•		٠

List of Figures

1.1	Single transistor circuit	4
1.2	V_{be} and I_c curve	5
1.3	Basic transistor circuit with R_c and R_e	6
1.4	Output of the circuit in Figure 1.3	6
1.5	Add voltage divider and capacitors	7
2.1	simple negative feedback system	8
2.2	Implement negative feedback circuit with Op-amp	
2.3	Op-amp feedback simulation result curve	9
2.4	Implement negative feedback circuit with transistor	10
2.5	transistor feedback circuit simulation result	11
3.1	single current source circuit	12
3.2	single current source circuit simulation result	13
3.3	the circuit after adding current source	14

Chapter 1

Simple transistor circuit

1.1 Transistor basic property

Figure 1.1 shows the basic NPN bipolar junction transistor circuit.

Figure 1.1: Single transistor circuit

We can get transistor operating state from simulation result as Table 1.1. It's obvious that I_C and I_E is proximately 200 times greater than I_B which is the main function of transistor.

Equation 1.1 defines β which is the most important parameter of transistor.

$$\beta = \frac{I_C}{I_B} \tag{1.1}$$

I_B	9.09789μ
I_C	2.02293m
I_E	-2.03003m

Table 1.1: DC operating point analysis result

1.2 Relationship between Base voltage (V_{be}) and Collector current (I_c)

Figure 1.2: V_{be} and I_c curve

After running DC sweep command on V4 in circuit of Figure 1.1, We can get the curve of Figure 1.2. This illustrate that when $V_{be} < 0.65V$, I_c is very small and when $V_{be} > 0.65V$, I_c is increase significantly. Therefore, We can simply consider that when $V_{be} > 0.65V$, transistor is on.

1.3 Limit current gain

Generally, we need a method to control the current gain as we want. Figure 1.3 is a simply solution by adding transistor R_C and R_E .

We can derive voltage gain A_V with Equation 1.2. And in circuit in Figure 1.3, A_V is approximate 5 theoretically.

$$A_V \triangleq \frac{V_{out}}{V_{in}} \approx -\frac{R_C}{R_E} \tag{1.2}$$

From simulation result in Figure 1.4, the practical $A_V = \frac{7.6486m}{2m} = 3.8243$ which is close to theoretic value.

Figure 1.3: Basic transistor circuit with R_c and R_e

Figure 1.4: Output of the circuit in Figure 1.3

1.4 Add voltage divider

As we know, we need make sure $V_{be} > 0.65V$ for transistor operating correctly. But in practical application, it's hard to keep input signal always meeting this requirement. So we can add capacitor and voltage divider solve this problem like Figure 1.5. In which, capacitor block the original DC voltage of input signal and voltage divider add the DC voltage which we require to signal. Finally, we use another capacitor for outputting pure AC signal form our circuit.

Figure 1.5: Add voltage divider and capacitors

Chapter 2

Negative Feedback

2.1 Simple Negative Feedback system

Figure 2.1: simple negative feedback system

Figure 2.1 show a simple negative feedback system in which A is ideal amplifier and B is feedback network.

$$\frac{V_{out}}{V_{in}} = B$$

2.2 Implement Using Op-amp

In Figure 2.2, an Op-amp 741 is used to implement the negative feedback circuit in Figure 2.1.

741 is part A while R1 and R2 form feedback network.

$$\frac{V_{out}}{V_{in}} = B = \frac{R1 + R2}{R2} = \frac{10K + 1K}{1K} = 11$$

Figure 2.2: Implement negative feedback circuit with Op-amp

Figure 2.3: Op-amp feedback simulation result curve

From simulation result in Figure 2.3,

$$B = \frac{\Delta V_{out}}{\Delta V_{in}} = \frac{2.1972}{199.8674m} = 10.99328$$

Obviously, the simulation result is very close to our estimation.

2.3 Implement Using transistor

Figure 2.4: Implement negative feedback circuit with transistor

In Figure 2.4 circuit, Op-amp replaced by circuit in Figure 1.5. R12 and R15 make up feedback network which $B = \frac{R15 + R12}{R12} = 11$. As we see in Figure 2.3, the output is reverse to input. Therefore, we add another transistor Q6 to eliminate the phase difference of signal.

Apparently, there's no phase difference between input and output signal. The voltage gain of circuit in Figure 2.4 is $Gain = \frac{\Delta V_{out}}{\Delta V_{in}} = \frac{2.0534}{198.8221m} = 10.3707$. It's also very close to theory result.

x1 11.2431m 11.2431m y1 99.3884m 1.0254 x2 10.7451m 10.7451m y2 -99.4337m -1.0281 dx -498.0000μ -498.0000μ dy -198.8221m -2.0534 dy/dx 399.2412 4.1234k 1/dx -2.0080k -2.0080k

Figure 2.5: transistor feedback circuit simulation result

Chapter 3

Current Source

3.1 Single current source circuit

Figure 3.1: single current source circuit

Generally, we need a constant current source in circuit and the most classic one shows in Figure 3.1.

As we know the forward voltage cross a diode is about 0.65V which is approximately equal to V_{be} of transistor.

$$V_B = 2 \times V_{diode} = V_{be} + V_{R_{33}}$$

Therefore:

$$V_{R_{33}} = V_{diode} = 0.65V$$

$$I_e = \frac{V_{R_{33}}}{R_{33}} = \frac{0.65V}{1150\Omega} = 565.217\mu A$$

DC Operating Point Analysis

	Variable	Operating point value
1	@qq9[ic]	503.27881 u
2	@qq9[ie]	-505.07050 u

Figure 3.2: single current source circuit simulation result

From Figure 3.2, we can see simulation result is close to the value we calculated. This simple circuit are able to supply constant current.

3.2 Use current source to replace output resistor

Now we can use current source to replace the R_{16} in circuit of Figure 2.4. Current source can supply stable current output. Till this step, we have finished the voltage amplifier part circuit but current of output is still enough to drive a headphone.

Figure 3.3: the circuit after adding current source $\,$

Chapter 4
Output Stage