UFBA - IME - DMAT —- MATEMÁTICA DISCRETA I(MATA42) - PROFA: ISAMARA LISTA DE EXERCÍCIOS.3 - LÓGICA MATEMÁTICA

1. Prove que

(a) $A \subseteq B$ se e somente se $A - B = \emptyset$.

Tem-se que mostrar:

- (i) Se $(A \subseteq B)$ então $(A B) = \emptyset$ e (ii) Se $(A B) = \emptyset$ então $(A \subseteq B)$
- (i) Supondo $(A \subseteq B)$; tem-se que se $x \in A$ então $x \in B$.

Por definição, a operação $(A - B) = \{x \mid x \in A \land x \notin B\}.$

Portanto, para $(A \subseteq B)$ não existe $x \in A$ e $x \notin B$. Logo, o conjunto $(A - B) = \emptyset$.

(ii) Supondo $(A - B) = \emptyset$, tem-se que não existe $x \in A$ e $x \notin B$.

Ou seja, se $x \in A$ então $x \in B$. Portanto, $A \subseteq B$.

(b) $A \subseteq B$ se e somente se $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

Tem-se que mostrar:

- (i) Se $(A \subseteq B)$ então $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ e (ii) Se $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ então $(A \subseteq B)$.
- (i) Por hipótese, tem-se que $(A\subseteq B)$ então todo elemento x em A é também um elemento em $B\colon x\in A\Rightarrow x\in B.$

Supondo $X \in P(A) \Rightarrow X \subseteq A$. Mas, $X \subseteq A \Rightarrow (x \in X \Rightarrow x \in A)$.

Assim, $X \subseteq A \land A \subseteq B \Rightarrow X \subseteq B$, ou seja, os subconjuntos de A serão também subconjuntos de B.

Como por definição, o conjunto das partes do conjunto B contém todos os subconjuntos de B: $\mathcal{P}(B) = \{Y \mid Y \subseteq B\}$, então $X \in \mathcal{P}(B)$.

Logo, o conjunto das partes de A é um subconjunto do conjunto das partes de B: $\mathcal{P}(B) \supseteq \mathcal{P}(A)$.

(ii) Por definição: $\mathcal{P}(A) = \{X \mid X \subseteq A\}$ e $\mathcal{P}(B) = \{Y \mid Y \subseteq B\}$; onde, X e Y representam conjuntos formados por elementos de A e B, respectivamente: $X \subseteq A \Rightarrow (x \in X \Rightarrow x \in A)$ e $Y \subseteq B \Rightarrow (y \in Y \Rightarrow y \in B)$.

Agora, considerando a hipótese que $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, tem-se que

 $X \in \mathcal{P}(A) \Rightarrow X \in \mathcal{P}(B)$, ou seja, os subconjuntos de A são subconjuntos de B: $X \subseteq B \Rightarrow (x \in X \Rightarrow x \in B)$.

Como os subconjuntos de A são formados por elementos de A e, estes subconjuntos

são também de B deduz-se que os elementos de A são também elementos de B: $x \in A \Rightarrow x \in B$. Portanto, por definição da relação de inclusão entre conjuntos, conclui-se que $(A \subseteq B)$.

2. Classifique as Fórmulas bem formadas em tautologia, contradição, contingência.

(a)
$$P \oplus Q \leftrightarrow (P \vee Q) \land \neg (P \land Q)$$

(Justifique suas respostas utilizando uma TABELA-VERDADE completa.)

	P	Q	$P \oplus Q$	$P \lor Q$	$P \wedge Q$	$\neg (P \land Q)$	$(P \lor Q) \land \neg (P \land Q)$	$P \oplus Q \leftrightarrow (P \vee Q) \land \neg (P \land Q)$
	V	V	F	V	V	F	F	V
Ì	V	F	V	V	F	V	V	V
	F	V	V	V	F	V	V	V
	F	F	F	F	F	V	F	V

A fbf é uma TAUTOLOGIA porque na última coluna da tabela os valores lógicos são todos iguais a V.

(b)
$$P \to Q \lor R \leftrightarrow (P \to Q) \lor (P \to R)$$
.

(Justifique suas respostas indicando as EQUIVALÊNCIAS LÓGICAS utilizadas.) $P \to Q \lor R \Leftrightarrow (\text{ Condicional }) \neg P \lor (Q \lor R) \Leftrightarrow (\text{ Idempotência da Disjunção }) (\neg P \lor \neg P) \lor (Q \lor R) \Leftrightarrow (\text{ Associativa e Comutativa da Disj. }) (\neg P \lor Q) \lor (\neg P \lor R) \Leftrightarrow (\text{ Condicional }) (P \to Q) \lor (P \to R)$.

(c)
$$P \to Q \land R \leftrightarrow (P \to Q) \land (P \to R)$$
.

(Justifique suas respostas identificando as EQUIVALÊNCIAS LÓGICAS utilizadas.) $P \to Q \land R \Leftrightarrow (\text{ Condicional }) \neg P \lor (Q \land R) \Leftrightarrow (\text{ Idempotência da Disjunção }) (\neg P \lor \neg P) \lor (Q \land R) \Leftrightarrow (\text{ Dist. da Disj. em relação união }) (\neg P \lor Q) \land (\neg P \lor R) \Leftrightarrow (\text{ Condicional }) (P \to Q) \land (P \to R).$

Conseguimos deduzir uma fbf a partir de outra fbf utilizando as leis de equival \tilde{A}^a ncias. Conclui-se então que a fbf é uma TAUTOLOGIA.

3. Mostre que:

(Justifique suas respostas indicando as propriedades das operações em conjuntos utilizadas em cada item.)

- (a) $A\Delta B=C_{(A\cup B)}^{(A\cap B)}$. $A\Delta B= (\text{ Def. Diferença Simétrica })(A-B)\cup(B-A)=(\text{ Def. Diferença })(A\cap B')\cup(B\cap A')=(\text{ Prop.Dist. União em rel. a inters. })[(A\cap B')\cup B]\cap[(A\cap B')\cup A']=[(A\cup B)\cap(B'\cup B')]\cap[(A\cup A')\cap(B'\cup A')]=(\text{ Complemento })[(A\cup B)\cap(U)]\cap[(U)\cap(B'\cup A')]=(\text{ Elem. Neutro da Inters. })(A\cup B)\cap(B'\cup A')=(\text{ Leis de De Morgan })(A\cup B)\cap(A\cap B)'=(\text{ Def. Diferença })(A\cup B)-(A\cap B)=(\text{ Def. Complemento Relativo })C_{A\cup B}^{(A\cap B)}.$
- (b) $(A \cap B) \cap (A \Delta B) = \emptyset$. $(A \cap B) \cap (A \Delta B) = ($ Def. Diferença Simétrica $)(A \cap B) \cap ((A - B) \cup (B - A)) = ($ Def. Diferença $)(A \cap B) \cap ((A \cap B') \cup (B \cap A')) = ($ Dist. inters. em relação união $)((A \cap B) \cap (A \cap B')) \cup ((A \cap B) \cap (B \cap A')) = ($ Comutativa e Associativa) $((A \cap A) \cap (B \cap B')) \cup ((B \cap B) \cap (A \cap A')) = ($ Idempotência inters. $)((A \cap (B \cap B')) \cup ((B \cap (A \cap A'))) = ($ Elemento Absorvente $)((A \cap (A \cap A'))) = ($ Idempotência união $)((A \cap (A \cap A'))) = ($ Elemento Absorvente $)((A \cap (A \cap A'))) = ($ Idempotência união $)((A \cap (A \cap A'))) = ($ Elemento Absorvente Absorven
- (c) $A\Delta B = A'\Delta B'$. $(A\Delta B) = ($ Def. Diferença Simétrica $)(A-B)\cup(B-A) = ($ Def. Diferença $)(A\cap B')\cup(B\cap A') = ($ Comutativa int. $)(B'\cap A)\cup(A'\cap B) = ($ Comutativa união $)(A'\cap B)\cup(B'\cap A) = ($ Complementar $)(A'\cap(B')')\cup(B'\cap(A')') = ($ Def. Diferença $)(A'-B')\cup(B'-A') = ($ diferença simétrica) $A'\Delta B'$.

4. Um posto de vacinação recebeu 1000 doses de vacinas para aplicação (considere que cada dose é utilizada para vacinar uma única pessoa). Supondo que a meta deste posto seja vacinar 600 pessoas idosas, 450 pessoas com doenças graves e 400 pessoas profissionais da área de saúde. Sabendo-se que destas pessoas 150 são profissionais idosos da área de saúde, 200 são pessoas idosas com doenças graves, 150 são profissionais da área de saúde e com doenças graves e 100 são profissionais idosos da área de saúde e com doenças graves. Utilizando as operações entre conjuntos, verifique se o posto conseguirá cumprir a meta de vacinação.

 $A = \{x \mid x \text{ \'e uma pessoa idosa}\}; \#A = 600$

 $B = \{x \mid x \text{ \'e uma pessoa com doença grave}\}; \#B = 450$

 $C = \{x \mid x \text{ \'e uma pessoa profissional da \'area de sa\'ude}\}; \#C = 400$

$$\#(A \cap C) = 150; \#(A \cap B) = 200; \#(B \cap C) = 150; \#(A \cap B \cap C) = 100.$$

Pelo Princípio da Inclusão e Exclusão:

$$\#(A \cup B \cup C) = \#A + \#B + \#C - (\#(A \cap C) + \#(A \cap B) + \#(B \cap C)) + \#(A \cap B \cap C)$$
$$\#(A \cup B \cup C) = 600 + 450 + 400 - (150 + 200 + 150) + 100 = 1050.$$

Para o posto cumprir a meta de vacinação seriam necessárias 1050 doses. Todavia, o posto recebeu apenas 1000 doses. Portanto, 50 pessoas não serão vacinadas.