Univerzita Karlova v Praze Matematicko-fyzikální fakulta

MATEMATIKA

Martin Brajer

Matematická analýza

bakalářské studium v letech 2009 až 2012

Přednášející: doc. Mgr. Petr Kaplický, Ph.D.

Studijní program: Fyzika

Studijní obor: FOF

Praha 2020

Obsah

Ú	vod		1
	0.1	Diferenciální počet	1
	0.2	Integrální počet	1
1	Úvo	od, základní pojmy	3
	1.1	Reálná čísla	4
	1.2	Význačné podmnožiny $\mathbb R$	7

Věty a definice

A	Lemma (Čtverec lichého čísla)	3
A	Věta (Reálná čísla)	4
A1	Vlastnost (Algebraická struktura)	4
1.1	Příklad	5
A2	Vlastnost (Uspořádání)	5
1.2	Příklad	6
1.1	Definice (Absolutní hodnota)	7
1.1	Lemma (Vlastnosti absolutní hodnoty)	7
1.1	Věta (Trojúhelníková nerovnost)	8
1.2	Definice (Maximum)	8
1.2	Lemma (Jednoznačnost max)	8
1.3	Definice (Supremum)	9
1.4	Definice (Infinum)	9

Semestry

٨																					1
Α																					J

$\mathbf{\acute{U}vod}$

Přednášející:

- Petr Kaplický, KMA
- kaplicky@karlin.mff.cuni.cz
- www.karlin.mff.cuni.cz/~kaplicky

Literatura:

- J. Kopáček: Matematická analýza (nejen) pro fyziky I (II) + příklady
- J. Souček: www.karlin.mff.cuni.cz/soucek
- V. Jarník: Diferenciální počet I
- V. Jarník: Integrální počet I
- W. Rudin: Principles of MA
- I. Černý, M. Rokyta: Differential and integral calculus of one real variable

Semestr A

0.1 Diferenciální počet

Mějme funkci f(t) vyjadřující pozici bodu v čase. Základní úloha:

průměrná rychlost:
$$\frac{f(t) - f(t_0)}{t - t_0}$$
 (1)

okamžitá rychlost:
$$\lim_{t \to t_0} \frac{f(t) - f(t_0)}{t - t_0} = f'(t_0)$$
 (2)

0.2 Integrální počet

Plocha pod grafem. Interval [a,b] rozdělme na n částí délky Δ_n v bodech a_n . Označme $a_0 = a, a_n = b$.

přibližně:
$$f(a_0)\Delta_1 + f(a_1)\Delta_2 + \dots + f(a_{n-1})\Delta_n =$$
$$= S(\Delta) = \sum_{j=1}^n f(a_{j-1})\Delta_j$$
(3)

přesně:
$$\lim_{\Delta \to 0} S(\Delta) = \int_a^b f(x) dx$$
 (4)

1. kapitola: Úvod, základní pojmy

Výrok - má pravdivostní hodnotu 0 nebo 1. Mějme A, B výroky:

		$A \wedge B$			$(A \Rightarrow B) \land (A \Leftarrow B)$	
A	B	A&B	$A \lor B$	$A \Rightarrow B$	$A \Leftrightarrow B$	$\neg A$
0	0	0	0	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	0	0
1	1	1	1	1	1	0

Obrázek 1.1: Tabulka pravdivostních hodnot

Důkaz implikace $A \Rightarrow B$:

- 1. přímý: ukážeme, že když A = 1, pak B = 1
- 2. nepřímý: plyne z $\neg B \Rightarrow \neg A$
- 3. sporem: předpokládáme, že $A=1 \wedge B=0$ a odvodíme spor (např.: 1=2)

Lemma A (Čtverec lichého čísla). $(tvrzení) \ \forall n \in \mathbb{N} : n^2 \ liché \Rightarrow n \ liché$

 $D\mathring{u}kaz$ 1. Fixuj $n \in \mathbb{N}$. Prvočíselný rozklad:XXX

$$n = p_1^{\alpha_1} \cdot \dots \cdot p_k^{\alpha_k} \tag{1.1}$$

$$n^2 = p_1^{2\alpha_1} \cdot \dots \cdot p_k^{2\alpha_k} \tag{1.2}$$

$$\forall j \in \{1, \dots, k\} : 2 \neq P_j \tag{1.3}$$

V rozvoji n^2 není 2, tak v rozvoji n také není (liší se pouze mocninou). QED

 $D\mathring{u}kaz$ 2. Chci: $\forall n \in \mathbb{N} : n \text{ sud\'e} \Rightarrow n^2 \text{ sud\'e}$

$$n = 2k, k \in \mathbb{N} \tag{1.4}$$

$$n^2 = 4k^2 = 2(2k^2) (1.5)$$

QED

Důkaz 3. Předpokládejme: n^2 liché a n sudé. Pak:

$$n^2 + n$$
 liché (1.6)

$$n(n+1)$$
 liché a sudé zároveň (spor) (1.7)

QED

O čem budou výroky? O definovaných pojmech:

- množina: soubor prvků (př.: množina mužů, žen)
- $x \in A$ x je prvkem
- $x \notin A \quad \neg(x \in A)$
- $A \subset B$ A je podmnožinou $B: \forall x \in A: x \in B$
- Ø prázdná množina
- množinové operace:

$$\circ A \cup B = \{x; (x \in A) \lor (x \in B)\}\$$

$$\circ \ A \cap B = \{x; (x \in A) \land (x \in B)\}\$$

$$\circ A - B = \{x; (x \in A) \lor (x \notin B)\}\$$

- kvantifikátory:
 - $\circ \ \forall x$ pro všechna x
 - $\circ \exists y$ existuje y
 - o př.: V(x,y) je vlastnost, že y je matka x. M je množina mužů, Z je množina žen.
 - * $\forall x \in M \ \exists y \in Z : V(x,y)$
 - * $\exists y \in Z : \forall x \in M : V(x, y)$

1.1 Reálná čísla

Věta A (Reálná čísla). *Existuje množina* \mathbb{R} *s operacemi* \oplus *a* \otimes *a relací* < *tak, že splňuje vlastnosti A1 až* A_4 .

Vlastnost A1 (Algebraická struktura). Platí:

I Komutativita: $\forall x, y \in \mathbb{R} : x + y = y + x; \ x \cdot y = y \cdot x$

II Asociativita: $\forall x, y, z \in \mathbb{R} : x + (y + z) = (x + y) + z; (x \cdot y) \cdot z = x \cdot (y \cdot z)$

III Nulový prvek \oplus : $\exists \ 0 \in \mathbb{R} : \forall x \in \mathbb{R} : 0 + x = x$ $Jednotka \otimes : \exists \ 1 \in \mathbb{R} : \forall x \in \mathbb{R} : 1 \cdot x = x$

IV Inverzní prvek: $\forall x \in \mathbb{R}, \forall z \in \mathbb{R} \exists ! y : x + y = z \ (právě jedno; ozn. \ y = z - x)$ $\forall x, z \in \mathbb{R}, x \neq 0 \ \exists ! y \in \mathbb{R} : x \cdot y = z \ (ozn. \ y = z/x)$ V Distributivita: $\forall x, y, z \in \mathbb{R} : x(y+z) = xy + xz$

 $VI\ N\'{a}soben\'{i}\ nulou: \forall x \in \mathbb{R}: 0 \cdot x = 0$

$$\forall x, y \in \mathbb{R} : x \cdot y = 0 \Rightarrow ((x = 0) \lor (y = 0))$$

Další vlastnosti lze odvodit:

$$-(-x) = x \tag{1.8}$$

$$-(x \cdot y) = (-x) \cdot y \tag{1.9}$$

Další značení:

$$x^n = x \cdot x \cdot \dots \cdot x \text{ (n-krát)} \tag{1.10}$$

$$-x = 0 - x \tag{1.11}$$

$$\forall x \neq 0 : x^{-1} = \frac{1}{x} \tag{1.12}$$

$$\forall x \neq 0 : x^{-n} = \left(\frac{1}{x}\right)^n \tag{1.13}$$

I. - IV. říká $(\mathbb{R}, +)$ a $(\mathbb{R} - \{0\}, \cdot)$ jsou grupy.

I. - VI. říká $(\mathbb{R}, +, \cdot)$ je těleso.

Ověřte, že Vlastnost A1 platí pro \mathbb{C} (komplexní čísla).

Příklad 1.1. Definujme $\mathbb{C} = \{z = (z_1, z_2); z_1, z_2 \in \mathbb{R}\}$ a operace $\oplus, \otimes. \forall z, u \in \mathbb{C}$:

$$(z_1, z_2) + (u_1, u_2) = (z_1 + u_1, z_2, u_2)$$
(1.14)

$$(z_1, z_2) \cdot (u_1, u_2) = (z_1 u_1 - z_2 u_2, z_1 u_2 + z_2 u_1) \tag{1.15}$$

 $Nulov\acute{y} prvek: (0,0)$

Jednotkový prvek: (1,0)

Lze zapisovat $z \in \mathbb{C}$, $z = (z_1, z_2)$, ozn. $z = z_1 + iz_2$ pro $i^2 = -1$.

Vlastnost A2 (Uspořádání). Platí:

I Relace: $\forall x, y \in \mathbb{R}$ nastane právě jedna z možností:

$$(x < y)$$
 nebo $(x > y)$ nebo $(x = y)$

II Tranzitivita: $(x < y) \land (y < z) \Rightarrow (x < z)$

III Vztah uspořádání a sčítání: $(x < y) \Rightarrow x + z < y + z$

IV Vztah relace k násobení: $(0 < x) \land (0 < y) \Rightarrow 0 < xy$

Značení:

•
$$x > y \Leftrightarrow y < x$$

•
$$(x \le y) \Leftrightarrow (x < y) \lor (x = y)$$

•
$$(x \ge y) \Leftrightarrow (x > y) \lor (x = y)$$

Lze odvodit další pravidla:

$$x < y \Leftrightarrow -x > -y \tag{1.16}$$

Důkaz.

$$x < y$$

$$x - x < y - x \qquad \text{/bod III}$$

$$0 < y - x$$

$$0 - y < y - y - x \qquad \text{/bod III}$$

$$-y < -x$$

$$-x > -y \qquad \text{funguje} \Leftrightarrow$$

QED

DÚ:

$$\forall x \in \mathbb{R} : x > 0 \Rightarrow \frac{1}{x} > 0 \tag{1.17}$$

Důkaz. Sporem:

$$x > 0 \text{ a } \frac{1}{x} < 0$$
$$-\frac{1}{x} > 0$$
$$0 < x \cdot \left(-\frac{1}{x}\right) = -1$$
$$1 < 0$$

Pokud 0 < 1, pak spor! 0 < 1 < 0. Máme $0 < -1 \xrightarrow{IV} 0 < (-1)(-1) = 1$ QED

Příklad 1.2. Komplexní čísla nelze uspořádat podle Vlastnosti A2

Důkaz. Sporem: Předpokládejme, že to lze.

$$i < 0$$

$$(0,1) < (0,0)$$

$$-i > 0 \xrightarrow{A_2IV} 0 < (-i)(-i) = -1$$

Note:
$$i > 0 \xrightarrow{A_2IV} 0 < (i)(i) = -1$$
 QED

1.2 Význačné podmnožiny $\mathbb R$

- $\mathbb{N} = \{1, 2, \dots\}$ přirozená čísla
- $\mathbb{Z} = \{0, -1, -2, \dots\} \cup \mathbb{N}$ celá čísla
- $\mathbb{Q} = \{\frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N}\}$ racionální čísla
- $\bullet \ \mathbb{R} \mathbb{Q} \quad \text{iracionální čísla}$

Poznámka: \mathbb{Q} má obě vlastnosti A1, A2 Intervaly:

- $(a, b) = \{x \in \mathbb{R}; a < x < b\}$ otevřený
- $[a,b] = (a,b) \cup \{a,b\}$ uzavřený
- [a,b),(a,b] polootevřené
- $(a, +\infty) = \{x \in \mathbb{R}; x > a\}$ neomezený otevřený
- $(-\infty, a) = \{x \in \mathbb{R}; x < a\}$ neomezený otevřený
- podobně: $[a, +\infty), (-\infty, a]$ neomezený uzavřený

Definice 1.1 (Absolutní hodnota). Pro $x \in \mathbb{R}$ definuji

$$|x| = \begin{cases} x & pokud \ x \ge 0 \\ -x & pokud \ x < 0 \end{cases}$$

Lemma 1.1 (Vlastnosti absolutní hodnoty). Nechť a > 0, pak |x| < a právě <math>když - a < x < a

Důkaz. Rozdělme důkaz

1. Ať $x \ge 0$ pak |x| = x a máme ukázat, že $x < a \Leftrightarrow -a < x < a$ " \Leftarrow "jasná — " \Rightarrow "víme $-a < 0 \le x < a$

2. Ať x < 0, pak |x| = -x a máme ukázat, že $-x < a \Leftrightarrow -a < x < a$ x > -a pak pokračujeme podobně jako 1.: -a < x < 0 < a

QED

Věta 1.1 (Trojúhelníková nerovnost). Platí:

$$|x+y| \le |x| + |y| \tag{1.18}$$

$$|x - y| \le |x| + |y| \tag{1.19}$$

$$|x+y| \ge ||x| - |y|| \tag{1.20}$$

$$|x - y| \ge ||x| - |y|| \tag{1.21}$$

 $D\mathring{u}kaz$. 1.18 a 1.19 plyne z Lemma 1.1

1.20 a 1.21 plyne z předešlého řádku pomocí triku

$$x = x + y - y \tag{1.22}$$

$$|x| = |x + y - y| \le |x + y| + |y| \tag{1.23}$$

$$|y| \le |x+y| + |x| \tag{1.24}$$

$$|x| - |y| \le |x + y| \tag{1.25}$$

$$|y| - |x| \le |x+y| / \cdot (-1) \tag{1.26}$$

$$|x| - |y| \ge -|x + y|$$
 plyne z 1.26 a 1.16 (1.27)

QED

Definice 1.2 (Maximum). Nechť $M \subset \mathbb{R}$

- $x \in M$ nazveme maximum M, pokud $\forall y \in M : y \leq x$ Ozn. $x = max \ M$ $P\check{r}.: (0,1)$ nemá max
- $K \in \mathbb{R}$ nazveme horní odhad M, pokud $\forall x \in M : x \leq K$ Př.: (0,1) má horní odhad $4, 1, \ldots$

Lemma 1.2 (Jednoznačnost max). Existuje nejvýše 1 max. $M \subset \mathbb{R}$

 $D\mathring{u}kaz$. Ať existují dvě: $x_1, x_2 \in M$ maxima

$$x_1$$
je max; $x_2 \in M \Rightarrow x_1 \ge x_2$ (1.28)

$$x_2$$
je max; $x_1 \in M \Rightarrow x_2 \ge x_1$ (1.29)

$$\Rightarrow x_1 \le x_2 \le x_1 \tag{1.30}$$

(1.31)

Tedy
$$x_1 = x_2$$
 QED

Pozn.: analogicky def. minimum a dolní odhad.

Definice 1.3 (Supremum). Číslo $s \in \mathbb{R}$ nazvu supremem množiny $M \subset \mathbb{R}$, pokud

$$I \ \forall x \in M : x \leq s$$

$$II \ \forall s' < s, s' \in \mathbb{R} : \exists x \in M : s' < x$$

Supremum M značíme $s = \sup M$

Pozn.: I říká, že s je horní odhad, II říká, že s je nejmenší možný horní odhad Pozn.: pokud supremum náleží do intervalu, je to jeho maximum

Definice 1.4 (Infinum). Nechť $M \subset \mathbb{R}$. řekneme, že $s \in \mathbb{R}$ je infimum množiny M (ozn. inf M), pokud

$$I \ \forall x \in M : s \le x$$

$$II \ \forall s' > s, s' \in \mathbb{R} : \exists x < s' : x \in M$$

Supremum M značíme $s = \sup M$

$$P\check{r}$$
.: $M = (0,1)$, $sup M = 1$