T.D. VII - Réduction des matrices carrées

I - Valeurs propres / Vecteurs propres

Exercice 1. Soit
$$A = \begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix}$$
, $X_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

Montrer que X_1 est un vecteur propre de \hat{A} et préciser la valeur propre associée.

Exercice 2. Soit
$$A = \begin{pmatrix} -2 & -1 \\ 1 & 0 \end{pmatrix}$$
, $X_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

Montrer que X_1 est un vecteur propre de A et préciser la valeur propre associée.

Exercice 3. Soit
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$$
, $X_1 = \begin{pmatrix} \sqrt{2} \\ \sqrt{3} \end{pmatrix}$ et $X_2 = \begin{pmatrix} -\sqrt{2} \\ \sqrt{3} \end{pmatrix}$.

Montrer que X_1 et X_2 sont des vecteurs propres de A et préciser les valeurs propres associées.

Exercice 4. Soit
$$A = \begin{pmatrix} -2 & -1 \\ -1 & 0 \end{pmatrix}$$
, $X_1 = \begin{pmatrix} 1 + \sqrt{2} \\ 1 \end{pmatrix}$ et $X_2 = \begin{pmatrix} 1 - \sqrt{2} \\ 1 \end{pmatrix}$.

Montrer que X_1 et X_2 sont des vecteurs propres de A et préciser les valeurs propres associées.

Exercice 5. Soit
$$A = \frac{1}{2} \begin{pmatrix} -3 & -5 & 6 \\ -5 & -3 & 6 \\ -6 & -6 & 10 \end{pmatrix}$$
, $X_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ et $X_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ et

$$X_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Montrer que X_1 , X_2 et X_3 sont des vecteurs propres de A et préciser les valeurs propres associées.

Exercice 6. Soit
$$A = \frac{1}{4} \begin{pmatrix} 9 & -7 & 6 \\ -7 & 9 & 6 \\ 3 & 3 & 2 \end{pmatrix}$$
, $X_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ et $X_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ et

$$X_3 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
.

Montrer que X_1 , X_2 et X_3 sont des vecteurs propres de A et préciser les valeurs propres associées.

II - Polynômes annulateurs

Exercice 7. Soit
$$A = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$$
.

1. Exprimer A^2 en fonction de A. En déduire un polynôme annulateur de A.

2. En déduire les valeurs propres possibles de A.

On pose
$$P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
.

3. Montrer que P est inversible et déterminer P^{-1} .

4. Calculer $P^{-1}AP$ et en déduire que A est diagonalisable.

Exercice 8. Soit
$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
.

1. Exprimer A^2 en fonction de A. En déduire un polynôme annulateur de A.

2. En déduire déduire les valeurs propres possibles de A.

On pose
$$P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
.

3. Montrer que P est inversible et déterminer P^{-1} .

4. Calculer $P^{-1}AP$ et en déduire que A est diagonalisable.

Exercice 9. Soit
$$A = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$
 et $R(X) = X^3 + X^2 - 4X - 4$.

1. Montrer que R est un polynôme annulateur de A.

2. En déduire que A est inversible et déterminer A^{-1} .

3. Déterminer R(2) et en déduire qu'il existe un polynôme Q, dont on précisera le degré, tel que R(X) = (X-2)Q(X).

4. Effectuer la division euclidienne de R(X) par (X-2) et en déduire la valeur de Q(X).

5. En déduire les valeurs propres possibles de la matrice A.

On pose
$$X_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
, $X_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ et $X_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.

6. Vérifier que X_1 , X_2 et X_3 sont des vecteurs propres de A et préciser les valeurs propres associées.

On pose
$$P = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
 et $D = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

7. Vérifier que AP = PD et en déduire que A est diagonalisable.

Exercice 10. Soit
$$A = \begin{pmatrix} -3 & 0 & -1 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$
 et $R(X) = X^3 + 3X^2 - 4X - 12$.

1. Montrer que R est un polynôme annulateur de A.

2. En déduire que A est inversible et déterminer A^{-1} .

3. Déterminer R(2) et en déduire qu'il existe un polynôme Q, dont on précisera le degré, tel que R(X) = (X-2)Q(X).

4. Effectuer la division euclidienne de R(X) par (X-2) et en déduire la valeur de Q(X).

5. En déduire les valeurs propres possibles de la matrice A.

On pose
$$X_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
, $X_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ et $X_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.

6. Vérifier que X_1 , X_2 et X_3 sont des vecteurs propres de A et préciser les valeurs propres associées.

On pose
$$P = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
 et $D = \begin{pmatrix} -3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

7. Vérifier que AP = PD et en déduire que A est diagonalisable.

III - Calculs de puissances

Exercice 11. Soit (u_n) , (v_n) et (w_n) trois suites définies par $u_0 = 1$, $v_0 = -1$, $w_0 = 2$ et

$$\forall n \in \mathbb{N}, \begin{cases} u_{n+1} &= -3u_n + 4v_n - w_n \\ v_{n+1} &= 2v_n \\ w_{n+1} &= -4v_n + 2w_n \end{cases}.$$

1. Déterminer les valeurs de u_1 , v_1 et w_1 .

2. Pour tout n entier naturel, exprimer v_n en fonction de n.

On pose
$$A = \begin{pmatrix} -3 & 4 & -1 \\ 0 & 2 & 0 \\ 0 & -4 & -2 \end{pmatrix}$$
, $P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ et $D = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$.

3. Vérifier que PA = DP et en déduire que A est diagonalisable. Soit $n \in \mathbb{N}$.

4. En déduire par récurrence que, une expression de A^n en fonction de D^n , P^{-1} et P.

5. Déterminer D^n et en déduire les 9 coefficients de A^n .

Pour tout n entier naturel, on pose $U_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$.

6. Montrer que, pour tout n entier naturel, $U_{n+1} = AU_n$.

7. Montrer par récurrence que, pour tout n entier naturel, $U_n = A^n U_0$.

8. En déduire les expressions de u_n , v_n et w_n .

Exercice 12. Soit (u_n) , (v_n) et (w_n) trois suites définies par $u_0 = 1$, $v_0 = -1$, $w_0 = 2$ et

$$\forall n \in \mathbb{N}, \begin{cases} u_{n+1} & = -u_n + w_n \\ v_{n+1} & = 2v_n - 4w_n \\ w_{n+1} & = -2w_n \end{cases}$$

1. Déterminer les valeurs de u_1 , v_1 et w_1 .

2. Pour tout n entier naturel, exprimer w_n en fonction de n.

On pose
$$A = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 2 & -4 \\ 0 & 0 & -2 \end{pmatrix}$$
, $P = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ et $D = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

- **3.** Vérifier que PA = DP et en déduire que A est diagonalisable. Soit $n \in \mathbb{N}$.
- **4.** En déduire par récurrence que, une expression de A^n en fonction de $D^n,\,P^{-1}$ et P.
- 5. Déterminer D^n et en déduire les 9 coefficients de A^n .

Pour tout n entier naturel, on pose $U_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$.

- **6.** Montrer que, pour tout n entier naturel, $U_{n+1} = AU_n$.
- 7. Montrer par récurrence que, pour tout n entier naturel, $U_n = A^n U_0$.
- **8.** En déduire les expressions de u_n , v_n et w_n .