Universidade Federal de Minas Gerais Departamento de Engenharia Eletrônica

ELT016 - Técnicas de Modelagem de Sistemas Dinâmicos

Prof. Bruno Otávio Soares Teixeira

Tarefa #2

Matheus Brito Faria

Nº de matrícula: 2017074386 Engenharia de Sistemas

Questão 1

Para essa simulação foi utilizado uma função de transferência da segunda ordem subamortecido.

Usando como premissa que $\sqrt{1-\zeta^2}\approx 1$, analisamos que ζ é 0,6 dividido pelo número de ciclos visíveis, dessa maneira foram contados 36 ciclos visíveis e ζ assumiu o valor de 0,0167.

O valor de Wnfoi calculado observando 2π dividido pelo período, que nesse caso foi observado o valor 0.06, dessa maneira Wn vale 104,72.

O ganho observado foi de um, porém foi feito um ajuste para 0,97 que melhor se adequou aos dados.

Plotando a simulação junto aos dados originais percebe-se que eles possuem uma grande semelhança, principalmente nos instantes iniciais. Nos instantes posteriores, no entanto, ele se mostra um pouco pior pois o sistema possui uma não só uma, mas duas oscilações, porém mesmo assim o valor médio nesses instantes parecem ficar bem sobrepostos.

Questão 2

Os dados utilizados para a construção dos modelos estão no arquivo "torneira3.txt" e para a validação no arquivo "torneira4.txt".

Para realizar as análises, os dados foram avaliados a partir do degrau no sistema. A entrada que nesse caso possui ganho negativo foi invertida e, posteriormente, os dados foram normalizados.

Depois da construção dos modelos foram feitas correções de valor inicial e ganho para reproduzir dados medidos na faixa adequada.

Função de transferência de primeira ordem com atraso puro de tempo

Método da Seção 3.2.1

Para esses dados foram observados um ΔY de 500 e um ΔU de 2000. Considerando que o sistema ficou estável em 60s, obtivemos que τ que possui o valor de 12. Ao avaliar o sistema também foi possível observar um atraso puro de tempo de τ_d igual a 4s.

Método das áreas

Comparando os modelos

Comparando ambos modelos é possível perceber que o modelo utilizando o método da seção 3.2.1 do livro se saiu melhor, visto que ele acompanhou melhor a curva e obteve um valor em estado estacionário melhor que o método das áreas.

Função de transferência de segunda ordem sobreamortecido com atraso puro de tempo

Método de Sundaresan

Realizando o método de Sundaresan, junto da avaliação do parâmetro η com a ajuda do gráfico.

Obtivemos a seguinte curva.

Esse modelo parece simular muito bem o comportamento dos dados, conseguindo simular muito bem o atraso puro de tempo.

Comparando todas as curvas

Avaliando as simulações em um mesmo plot, em azul temos o método da seção 3.2.1 do livro, em laranja temos o método das áreas e em amarelo temos o método de Sundaresan.

Podemos perceber que o método de Sundaresan tem o melhor comportamento entre as anteriores, isso se deve em parte por usarmos uma função de ordem maior para fazer a modelagem.

Validação em outra massa de dados

Usando o arquivo "torneira4.txt" para fazer a validação, usando os mesmos modelos criados usando o arquivo "torneira3.txt" obtivemos as seguintes curvas. Neste caso, observa-se que o método de Sundaresan que foi escrito especificamente para a distribuição anterior perde um pouco de performance, enquanto o método 3.2.1 do livro parece ser o que melhor acompanha a curva, sobretudo em seu estado estacionário.

Questão 3

Aplicando funções de transferência de primeiro e segundo grau

Usando os métodos das seções 3.2.1 e 3.2.2 do livro texto, foram obtidas as seguintes curvas. Nelas é possível observar que a função de transferência de segunda ordem (em vermelho) se comportou de forma melhor que a de primeira ordem (em verde). Isso é esperado pois o sistema observado possui forma de uma função de segunda ordem.

Avaliando em outro ponto de operação

Mudando o ponto de operação do sistema e avaliando as mesmas funções de transferência do modelo anterior é possível observar que as funções são genéricas para outro pontos de operação e a função de segundo grau continua representando melhor o sistema.

