ИССЛЕДОВАНИЕ ОПЕРАЦИИ. ЛЕКЦИЯ 4.

Крамаренко К.Е. Кафедра ВС

Для решения ЗЛП существует универсальный метод – метод последовательного улучшения плана или симплекс-метод.

Предполагает выполнение следующих требований:

- Все ограничения преобразуются в равенства с неотрицательной правой частью.
- •Все переменные неотрицательны.

Преобразование неравенств в равенства

Неравенства любого типа(≤ или ≥) можно преобразовать в равенства путем добавления в левую часть неравенств дополнительных переменных.

Преобразование неравенств в равенства

Для неравенств типа «≤» в левую часть неравенства вводится неотрицательная переменная (которая показывает остаток):

$$6x_1 + 4x_2 \le 24$$

$$6x_1 + 4x_2 + x_3 = 24, x_3 \ge 0$$

Преобразование неравенств в равенства

Для неравенств типа «≥» в левую часть неравенства вводится неотрицательная переменная(которая показывает избыточность):

$$x_1 + x_2 \ge 50$$

$$x_1 + x_2 - x_3 = 50, x_3 \ge 0$$

$$f(x_1, x_2, ..., x_n) = \sum_{j=1}^{n} c_j x_j \to max$$

$$\sum_{j=1}^{n} a_{ij} x_j = b_i, i = 1, 2, ..., m$$

$$x_j \ge 0, j = 1, 2, ..., n; b_i \ge 0, i = 1, 2, ..., m$$

Пример:

$$f(x_1, x_2) = 2x_1 + 3x_2 \rightarrow max$$

$$x_1 + 3x_2 \le 300$$

$$x_1 + x_2 \le 150$$

$$x_{1,2} \ge 0$$

Пример:

$$f(x_1, x_2, x_3, x_4) = 2x_1 + 3x_2 + 0x_3 + 0x_4 \rightarrow max$$

$$x_1 + 3x_2 + x_3 = 300$$

$$x_1 + x_2 + x_4 = 150$$

$$x_{1,2,3,4} \ge 0$$

Переход от графического решения к алгебраическому

Графическое представление всех ограничений, включая условие неотрицательности

Пространство решений состоит из бесконечного количества *допустимых точек*

Определяются **допустимые угловые точки** пространства решений

Кандидатами на оптимальное решение будут конечное число *угловых точек*

Целевая функция используется для определения *оптимальной угловой точки*

Задание пространства решений посредством системы из **m** линейных уравнений с **n** неотрицательными переменными, **m** > **n**

Задача имеет бесконечное количество допустимых решений

Находятся **допустимые базисные решения** пространства решений

Кандидатами на оптимальное решение будут конечное число **базисных допустимых решений**

Целевая функция используется для определения *оптимального базисного допустимого решения*

Переход от графического решения к алгебраическому

Для полного перехода к алгебраическому методу решения ЗЛП необходимо как-то назвать угловые точки разного типа на «алгебраическом» языке. **n** – **m** переменные, которые полагаются равными 0, называются небазисными переменными.

Если оставшиеся **m** переменные имеют единственное решение, то в этом случае они называются *базисными*, а совокупность значений, которые они получают в результате решения системы уравнений, составляют *базисное решение*.

Если при этом все переменные принимают неотрицательные значения, то такое базисное решение является *допустимым*. Иначе – *недопустимым*.

Переход от графического решения к алгебраическому

Пример:

$$f(x_1, x_2, ..., x_6) = 5x_1 + 4x_2 + 0x_3 + 0x_4 + 0x_5 + 0x_6$$

$$6x_1 + 4x_2 + x_3 = 24$$

$$x_1 + 2x_2 + x_4 = 6$$

$$-x_1 + x_2 + x_5 = 1$$

$$x_2 + x_6 = 2$$

$$x_{1,2,...,6} \ge 0$$

Здесь $x_{3,4,5,6}$ - дополнительные переменные

$$z - 5x_1 - 4x_2 - 0x_3 - 0x_4 - 0x_5 - 0x_6 = 0$$

 ${
m n}=6$ ${
m m}=4$ ${
m n}-{
m m}=2$ — количество небазисных переменных (x_1,x_2) Первая точка $x_1=x_2=0$

$$z - 5x_1 - 4x_2 - 0x_3 - 0x_4 - 0x_5 - 0x_6 = 0$$

$$6x_1 + 4x_2 + x_3 = 24$$

$$x_1 + 2x_2 + x_4 = 6$$

$$-x_1 + x_2 + x_5 = 1$$

$$x_2 + x_6 = 2$$

Баз ис	Z	x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆	Решение
Z	1	-5	-4	0	0	0	0	0
x_3	0	6	4	1	0	0	0	24
x_4	0	1	2	0	1	0	0	6
x_5	0	-1	1	0	0	1	0	1
x_6	0	0	1	0	0	0	1	2

Для определения следующей переменной, которую будем вводить в базис, анализируем строку **z** и выбираем переменную (небазисную) с самым большим коэффициентом (если имеются равные коэффициенты, то выбираем любой). Для задач поиска максимума выбираем наибольший отрицательный коэффициент (для минимума выбираем положительный). Если в строке не осталось больше подходящих коэффициентов, значит нашли оптимальное решение.

Переменная, которая вводиться в базис называется **вводимой** (для нашего примера x_1). После чего определяем переменную, которую будем исключать из базиса(**исключаемая**). Для этого строиться следующая таблица:

Базис	x_1	Решение	Отношение				
x_3	6	24	х ₁ =24/6=4 (минимум)				
x_4	1	6	$x_1 = 6/1 = 6$				
x_5	-1	1	x_1 =1/-1= -1 (не подходит)				
x_6	0	2	x_1 =2/0=∞ (не подходит)				

Выбираем переменную у которой минимальное (положительное) значение в столбце отношений. В нашем примере это переменная x_3 .

Ведущий столбец

	Баз ис	Z	<i>x</i> ₁	x_2	x_3	x_4	x_5	x_6	Решение
	Z	1	-5	-4	0	0	0	0	0
L	x_3	0	6	4	1	0	0	0	24
	x_4	0	1	2	0	1	0	0	6
	x_5	0	-1	1	0	0	1	0	1
	x_6	0	0	1	0	0	0	1	2

Ведущая строка

Ведущий элемент находится на пересечении ведущей строки и ведущего столбца.

Процесс вычисления нового базисного решения:

- 1. Вычисление элементов новой ведущей строки. Новая ведущая строка = текущая ведущая строка / ведущий элемент
- 2. Вычисление элементов остальных строк, включая **z** строку Новая строка = текущий элемент – ее коэффициент в ведущем столбце * новая ведущая строка

Новая ведущая строка = текущая ведущая строка / 6

Новая \mathbf{z} – строка = текущая \mathbf{z} – строка – (-5) * новая ведущая строка

Баз ис	Z	x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆	Решение
Z	1	0	-2/3	5/6	0	0	0	20
x_1	0	1	2/3	1/6	0	0	0	4
x_4	0	0	4/3	-1/6	1	0	0	2
x_5	0	0	5/3	1/6	0	1	0	5
x_6	0	0	1	0	0	0	1	2

Баз ис	Z	x_1	x ₂	x_3	x_4	<i>x</i> ₅	<i>x</i> ₆	Решение
Z	1	0	-2/3	5/6	0	0	0	20
x_1	0	1	2/3	1/6	0	0	0	4
x_4	0	0	4/3	-1/6	1	0	0	2
x_5	0	0	5/3	1/6	0	1	0	5
x_6	0	0	1	0	0	0	1	2

Базис	x_2	Решение	Отношение
x_1	2/3	4	$x_2 = 4/(2/3) = 6$
x_4	4/3	2	x_2 =2/(4/3)=3/2(минимум)
x_5	5/3	5	$x_2 = 5/(5/3) = 3$
x_6	1	2	$x_2 = 2/1 = 2$

Новая ведущая строка = текущая ведущая строка / (4/3)

Новая \mathbf{z} – строка = текущая \mathbf{z} – строка – (-2/3) * новая ведущая строка

Баз ис	Z	x_1	x_2	x_3	x_4	x_5	x_6	Решение
Z	1	0	0	3/4	1/2	0	0	21
x_1	0	1	0	1/4	-1/2	0	0	3
x_2	0	0	1	-1/8	3/4	0	0	3/2
x_5	0	0	0	3/8	-5/4	1	0	5/2
x_6	0	0	0	1/8	-3/4	0	1	1/2

$$x_1 = 3$$
, $x_2 = \frac{3}{2}$, $z = 21$ — оптимальное решение

