Contents

1	Sim	ulation	2
	1.1	Launch	2
	1.2	Simulation design	2
	1.3	Gazebo Parameters	Δ

1 Simulation

1.1 Launch

These files are executed one after another:

- 1. bb simulation: ballbot.launch
- 2. bb_description: bb_description.launch
- 3. bb_description -> urdf: bb.xacro
- 4. bb description -> urdf: bb.urdf.xacro
- 5. bb description -> urdf: common properties.xacro
- 6. bb description -> urdf: bb.gazebo.xacro

1.2 Simulation design

Ballbot SDF Reference: Ballbotmodel

We use not the sdf but the xacro description as in this example here.

Gazebo uses different physics engines:

- Open Dynamics Engine (ODE) (Default)
- Bullet
- Dynamic Animation and Robotics Toolkit (DART)
- Simbody

which all have different friction etc. models.

Files:

• bb.urdf.xacro: Link's: Visual description of the Robot and its collision model(STL file). Pose Mass and Inertias. Joint's: Pose, axis, effort and velocity limits, friction.

- \bullet common_properties.xacro: Macros for color definition.
- bb.gazebo.xacro: gazebo references dynamics of the links: friction parameters (mu1,mu2),

Gazebo Parameter's List:

name(xacro)	description	value	sdf group		
mu1	is the Coulomb friction coefficient for the first friction direction	1.0	ode		
mu2	is the friction coefficient for the second friction direction (perpendicular to the first friction direction)	2.0	ode		
kp	spring constant equivalents of a contact as a function of SurfaceParams::cfm and SurfaceParams::erp		ode		
kd	spring damping constant equivalents of a contact as a function of SurfaceParams::cfm and SurfaceParams::erp.		ode		
cfm	Constraint Force Mixing parameter.		ode		
erp	Error Reduction Parameter.		ode		
\min_{depth}	Minimum depth before ERP takes effect.		ode		
$\max_{\rm Vel}$	Maximum interpenetration error correction velocity. If set to 0, two objects interpenetrating each other will not be pushed apart.		ode		
slip1	Artificial contact slip in the primary friction direction		ode		
slip2	Artificial contact slip in the secondary friction direction.		ode		
See: ODESurfaceParams					

1.3 Gazebo Parameters

git@git.sim.informatik.tu-darmstadt.de:TurtleBot/jsonlab.git
git@git.sim.informatik.tu-darmstadt.de:TurtleBot/octave_rosbridge.git