Practice Problems Set -2

ME-231A

- **P1.**A velocity field is by $\vec{V} = axi btyj$ where $a = 1 \text{ s}^{-1}$ and $b = 1 \text{ s}^{-2}$. Find the equation of the streamlines at anytime t.
- **P2**. The velocity for a steady, incompressible flow in the x-y plane is given by $\vec{V} = i\frac{A}{x} + j\frac{Ay}{x^2}$ where A = 2 m²/s, and the coordinates are measured in meters. Obtain an equation for the streamline that passes through the point (x, y) = (1, 3). Calculate the time required for a fluid particle to move from x = 1 m to x = 2 m in this flow field.
- **P3**.A flow field is given by $\vec{V} = Axi + 2Ayj$ where $A = 2 \text{ s}^{-1}$. Verify that the parametric equations for particle motion are given by $x_p = c_1 e^{At}$ and $y_p = c_1 e^{2At}$. Obtain the equation for the path line of the particle located at the point (x, y) = (2, 2) at the instant t = 0. Compare this path line with the streamline through the same point.
- **P4**. Consider the flow described by the velocity field, $\vec{V} = A(1+Bt)i + Ctyj$ with A = 1 m/s, B = 1 s⁻¹, and C = 1 s⁻². Coordinates are measured in meters. Plot the path line traced out by the particle that passes through the point (1, 1) at time t = 0. Compare with the streamlines plotted through the same point at the instants t = 0, 1, and 2 s.
- **P5**. Streak lines are traced out by neutrally buoyant marker fluid injected into a flow field from a fixed point in space. A particle of the marker fluid that is at point (x, y) at time t must have passed through the injection point (x_0, y_0) at some earlier instant $t = \tau$. The time history of a marker particle may be found by solving the path line equations for the initial conditions that $x=x_0$, $y=y_0$ when $t=\tau$. The present locations of particles on the streak line are obtained by setting τ equal to values in the range $0 \le \tau \le t$. Consider the flow field $\vec{V} = ax(1+bt)i + cyj$ where a = c = 1 s and b = 0.2 s⁻¹. Coordinates are measured in meters. Plot the streakline that passes through the initial point $(x_0, y_0) = (1, 1)$, during the interval from t = 0 to t = 3 s. Compare with the streamline plotted through the same point at the instants t = 0, 1, and 2 s.
- **P6.**Consider the flow field $\vec{V} = i \ axt + j \ b$, where $a = 1/4 \ s^2$ and $b = 1/3 \ m/s$. Coordinates are measured in meters. For the particle that passes through the point (x, y) = (1, 2) at the instant t = 0, plot the path line during the time interval from t = 0 to 3 s. Compare this pathline with the streakline through the same point at the instant $t = 3 \ s$.
- **P7**. Consider a flow with velocity components $u = z (3x^2 z^2)$, v = 0, and $w = x(x^2 3z^2)$.

(a) Is this a one-, two-, or three-dimensional flow?

P8.Consider the velocity field $\vec{V} = A(x^4 - 6x^2y^2 + y^4)i + A(4xy^3 - 4x^3y)j$ in the xy plane, where $A = 0.25 \text{ m}^{-3}.\text{s}^{-1}$, and the coordinates are measured in meters. Calculate the acceleration of a fluid particle at point (x, y) = (2, 1).

P9. Consider the velocity field
$$\vec{V} = \frac{Ax}{\left(x^2 + y^2\right)}i + \frac{Ay}{\left(x^2 + y^2\right)}j$$
 in the x-y plane, where $A = 10 \text{ m}^2/\text{s}$,

and x and y are measured in meters. Is this an incompressible flow field? Derive an expression for the fluid acceleration. Evaluate the acceleration along the x axis, the y axis, and along a line defined by y = x. What can you conclude about this flow field?

P10.Consider the two-dimensional flow field in which u = Axy and $v = By^2$, where $A = 1m^{-1}.s^{-1}$; $B = -1/2m^{-1}.s^{-1}$; and the coordinates are measured in meters. Show that the velocity field represents a possible incompressible flow. Determine the rotation at point (x, y) = (1, 1).

P11. Consider a velocity field for motion parallel to the x axis with constant shear. The shear rate is du/dy = A, where $A = 0.1 \text{ s}^{-1}$. Obtain an expression for the velocity field, \vec{V} . Calculate the rate of rotation.

P12. Consider a flow field represented by the stream function
$$\vec{V} = -i\frac{Ay}{\left(x^2 + y^2\right)^2} + j\frac{Ax}{\left(x^2 + y^2\right)^2}$$

where A = constant. Is the flow irrotational?

P13. Consider the pressure-driven flow between stationary parallel plates separated by distance 2b. Coordinate y is measured from the channel centerline. The velocity field is given by $u = u_{max}[1 - (y/b)^2]$. Evaluate the rates of linear and angular deformation. Obtain an expression for the vorticity vector, $\vec{\xi}$: Find the location where the vorticity is a maximum.

P14. The velocity profile for fully developed flow in a circular tube is $V_z = V_{max}[1 - (r/R)^2]$. Evaluate the rates of linear and angular deformation for this flow. Obtain an expression for the vorticity vector.

P15. Consider a plane Couette flow of a viscous fluid confined between two flat plates at a distance b apart (see Figure P15). At steady state the velocity distribution is

$$u = Uy/b$$
 and $v = 0$

where the upper plate at y = b is moving parallel to itself at speed U, and the lower plate is held stationary. Find the rate of linear strain, the rate of shear strain, and vorticity.

Fig.P15

P16. Consider the two-dimensional flow from a line source given in cylindrical coordinates by $V_r = Q/2\pi r$, $V_z = V_\theta = 0$, where Q is constant. Compute the components of the strain rate tensor for this flow.

P17. A three-dimensional velocity field is given by

$$u(x, y, z) = cx + 2w_o y + u_o$$

$$v(x, y, z) = cy + v_o$$

$$w(x, y, z) = -2cz + w_o$$

Where $c, w_{o,} u_{o}$ and v_{o} are constants. Find the components of (i) rotational velocity, (ii) vorticity and (iii) the strain rates for the above flow field.

P18. The position of a fluid particle in a Lagrangian system is described as:

 $x = x_0 e^{kt}$, $y = y_0 e^{kt}$; where x_0, y_0 and k are constants. State with proof about the temporal state (steady or unsteady) of the flow field.