H - 72 - 2015

확산시료채취법과 흡착관·열탈착· 가스크로마토그래피 분석에 의한 유기화합물질 평가방법에 관한 기술지침

2015. 9

한국산업안전보건공단

안전보건기술지침의 개요

ㅇ 작성자 : 한국산업안전보건공단 산업안전보건연구원 박승현

ㅇ 개정자 : 한국산업안전보건공단 산업안전보건연구원 박승현

- O 제·개정 경과
 - 2009년 6월 산업위생분야 기준제정위원회 심의
 - 2009년 8월 총괄제정위원회 심의
 - 2012년 5월 총괄 제정위원회 심의(개정, 법규개정조항 반영)
 - 2015년 4월 산업위생분야 기준제정위원회 심의(개정, 법규개정조항 반영)
- ㅇ 관련규격 및 자료
 - KS : 실내, 주위 및 작업장 공기-흡착관/열탈착/캐필러리 가스크로마토그래피를 이용한 휘 발성유기화합물의 시료채취 및 분석 - 제2부: 확산 시료채취, KS/ISO 16017-2, 2005
 - Indoor, ambient and workplace air Sampling and analysis of volatile organic compounds by sorbent tube/thermal desorption/capillary gas chromatography Part 2: Diffusive sampling, ISO 16017-2, 2003
 - HSE: Volatile organic compounds in air, laboratory method using diffusive solid sorbent tubes, thermal desorption and gas chromatography, MDHS 80, HSE, 1995
- o 관련법규·규칙·고시 등
 - 산업안전보건법 제23조(보건조치)
 - 고용노동부 고시 제2013-39호「작업환경측정 및 지정측정기관 평가 등에 관한 고시」
- 기술지침의 적용 및 문의
 - 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지(www. kosha.or.kr)의 안전보건기술지침 소관분야별 문의처 안내를 참고하시기 바랍니다.
 - 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2015년 9월 3일

제 정 자 : 한국산업안전보건공단 이사장

H - 72 - 2015

확산시료채취법과 흡착관·열탈착· 가스크로마토그래피 분석에 의한 유기화합물질 평가방법에 관한 기술지침

1. 목 적

이 지침은 고용노동부 고시 제2013-39호 「작업환경측정 및 지정측정기관 평가 등에 관한 고시」제23조에 따라 작업환경측정을 하여야 할 유기화합물질에 대한 시료채취 및 분석방법을 제시함을 목적으로 한다.

2. 적용범위

이 지침은 작업환경측정 대상 화학물질 중 확산형 흡착관을 이용한 열탈착 가스크로 마토그라피 방법으로서 각 물질당 약 0.002 ~ 100 mg/m³ (8시간 시료채취 기준)의 휘발성 유기화합물질을 평가하는 경우에 적용한다.

3. 정의

- 3.1 이 지침에서 사용하는 용어의 뜻은 다음과 같다.
 - (1) "흡착관(Sorbent tube)"이란 휘발성 유기화합물질을 흡착할 수 있는 흡착제가 충진 되어 있는 관을 말한다.
 - (2) "열탈착(Thermal desorption)"이란 흡착관에 포집되어 있는 휘발성 유기화합물질을 고온에서 탈착시켜 불활성 기체를 이용하여 가스크로마토그래프로 전달하는 과정을 말한다.
 - (3) "파과부피(Breakthrough volume)"란 평가대상 유기화합물질을 흡착할 수 있는

H - 72 - 2015

흡착관의 최대 부피를 말한다. 다만, 흡착관에 흡착되지 않고 통과되는 부피는 전체의 5%를 초과할 수 없다.

3.2 그 밖에 이 침에서 사용하는 용어의 뜻은 특별한 규정이 있는 경우를 제외하고는 「산업안전보건법」, 같은 법 시행령, 같은 법 시행규칙 및 「산업보건기준에 관한 규칙」에서 정하는 바에 따른다.

4. 원리

확산시료채취용 마개가 부착된 흡착관을 작업환경 공기 중에 노출시키면 유기화합물질의 증기는 확산에 의해 흡착관에 포집되며, 이를 탈착한 후 모세분리관 (Capillary column) 및 불꽃이온화검출기 등의 검출기가 부착된 가스크로마토그래프 (Gas chromatograph)로 분석하면 공기 중 휘발성 유기화합물질의 농도를 정량 (Quantification) 할 수 있다.

5. 시약 및 재료

5.1 시약은 분석용(Analytical reagent grade) 유기화합물질을 사용하여야 한다.

5.2. 희석용매

- (1) 희석용매는 분석 대상물질이 포함되어 있지 않고 분석 대상물질을 잘 분리할 수 있어야 한다.
- (2) 희석용매는 메틸알콜을 사용한다. 다만, 메틸알콜을 사용할 수 없는 경우에는 에 틸아세테이트, 싸이클로헥산 등의 용매를 사용할 수 있다.

5.3 흡착제

(1) 흡착제의 입자 크기는 0.18 ~ 0.25 mm(60~80 mesh)를 사용한다.

H - 72 - 2015

- (2) 흡착제는 흡착관에 충진되기 전에 적어도 최고 권장온도 보다 25 ℃ 낮은 온도에서 24 시간동안 불활성가스를 흘려주면서 가열하여 사전안정화(Pre-conditioning)를 시켜야 한다.
- (3) 흡착제의 오염을 방지하기 위하여 가열한 후 식히거나 저장 또는 흡착관에 충진 시 깨끗한 장소에서 이루어져야 한다.
- (4) 가능한 한 분석 시 탈착온도는 안정화(Conditioning) 온도 미만에서 이루어져야 한다.
- (5) 흡착제의 선정은 별표 1부터 별표 3까지를 참조한다.

6. 표준시료

검량선 작성용 표준시료는 기지농도의 표준공기(Standard atmospheres)에서 흡착관을 이용하여 채취하여 제조하여야 한다.

- 6.1 표준공기를 이용한 흡착관 표준시료의 제조
 - (1) 펌프를 이용하여 정확히 알려진 공기부피를 통과시켜 표준시료를 제조한다.
 - (2) 표준공기 중 시료의 농도는 10 mg/m³이 되도록 한 후 흡착관을 이용하여 100 mℓ, 200 mℓ, 400 mℓ, 1 ℓ, 2 ℓ 또는 4 ℓ를 채취한다.
 - (3) 채취한 공기의 부피는 파과부피를 초과하지 않아야 하며 채취 후 떼어낸 흡착관은 밀봉한다.
 - (4) 표준시료는 매 사용 시 마다 제조하여 사용하여야 한다.
- 6.2 액체주입에 의한 표준용액 제조는 다음의 어느 하나를 사용한다.
- 6.2.1 각 액체성분이 약 10 mg/ml인 표준용액

H - 72 - 2015

100 ml 플라스크에 휘발성이 가장 낮은 물질부터 시작하여 약 1 g씩 각각 해당물질의 질량을 정확히 넣고 희석용매로 100 ml를 채운 후 마개를 닫은 다음 흔들어 준다.

6.2.2 각 액체성분이 약 1 mg/ml인 표준용액

100 ml 플라스크에 50 ml의 희석용매를 넣고 6.2.1의 용액 10 ml를 넣은 다음 희석용 매로 100 ml를 채운 후 마개를 닫고 흔들어 준다.

6.2.3 각 가스성분이 약 1 mg/ml인 표준용액

- (1) 순수가스가 들어있는 가스실린더로부터 작은 플라스틱 백(Bag) 등에 가스를 채워 대기 조건하에서 가스를 얻을 수 있다.
- (2) 1 ml 가스용 시린지(Syringe)를 이용하여 순수가스 1 ml를 채운 후 시린지 밸브를 잠근다.
- (3) 희석용매 2 ml를 2 ml 바이얼(Vial)에 넣고 마개(Septum cap)를 닫는다.
- (4) 바이얼 마개에 시린지 바늘을 꽂은 다음 밸브를 열고 플런져(Plunger)를 이용하여 시린지 안으로 희석용매가 들어오도록 하면 희석용매에 가스가 용해되면서 시린지는 희석용매로 채워진다.
- (5) 시린지 안의 용액을 플라스크에 넣은 다음 시린지를 용액으로 씻는다.
- (6) 표준상태에서 가스법칙을 사용하여 가스의 질량을 산출한다.

6.3 검량선 작성용 혼합용액의 안정성

표준용액은 주 1회로 제조하여야 한다. 다만, 알콜과 케톤이 응축반응(Condensation reactions)을 일으켜 표준용액이 변질되는 경우에는 주 2회 이상 제조하여야 한다.

- 6.4 액체주입방법을 이용한 흡착관 표준시료는 흡착관에 표준용액을 주입하여 다음과 같이 제조한다.
 - (1) 흡착관을 이동가스가 100 ml/min로 흐르는 가스크로마토그래프의 시료 주입부에

H - 72 - 2015

연결한 후 제조된 표준용액(6.2.1, 6.2.2 또는 6.2.3) $1\sim5$ μ 를 시료 주입구에 주입한다.

- (2) 5분 후에 흡착관을 떼어내어 밀봉한다.
- (3) 표준시료는 매 사용시마다 제조하여야 한다.

7. 실험기구

7.1 흡착관

- (1) 흡착관은 스테인레스 강관으로서, 외경 6.3 mm(1/4 inch), 내경 5 mm 및 길이 90 mm를 사용하다.
- (2) 유기화합물질 및 흡착제의 종류별 시료채취속도(Uptake rate)는 별표 4와 같다.
- (3) 흡착관은 테프론 밀봉재(Seals)가 부착된 금속 마개로 밀봉한다.
- 7.2 확산 시료채취에 사용되는 흡착관의 마개는 7.2의 흡착관 마개와 유사하나 금속 거즈를 통해 흡착관 안으로 증기가 유입된다.
- 7.3 시린지는 다음 중 어느 하나를 사용한다.
 - (1) 0.1 μ 까지 읽을 수 있는 10 μ 액체용 시린지
 - (2) 0.1 μ 까지 읽을 수 있는 10 μ 기체용 시린지
 - (3) 0.01 메까지 읽을 수 있는 1 메 기체용 시린지

7.4 가스크로마토그래프

(1) 불꽃이온화검출기, 광이온화검출기, 질량검출기 또는 다른 검출기가 있는 가스크

H - 72 - 2015

로마토그래프를 사용한다.

(2) 0.5 ng의 톨루엔을 주입할 경우에는 신호(Signal)와 노이즈(Noise)의 비가 적어도 5:1로 검출되어야 한다.

7.5 열탈착장치

- (1) 열탈착장치는 2단계로 열탈착된 후 탈착된 증기가 이동가스와 함께 가스크로마 토그래프로 전송되는 장치가 필요하다.
- (2) 열탈착장치는 흡착관에 열을 가하면서 동시에 이동가스가 흐르게 하여 분석물질이 탈착되도록 하는 기능이 필요하다.
- (3) 열탈착장치는 탈착온도, 시간 및 가스유량을 조절할 수 있는 기능이 필요하다.
- (4) 열탈착장치는 흡착관을 자동으로 장착하고 누출시험을 할 수 있어야 하고 탈착된 시료를 농축시킬 수 있는 냉각 트랩이 필요하다.
- (5) 탈착된 시료는 이동 가스와 함께 전송관을 통해 가스크로마토그래프의 분리관으로 전송된다.

7.6 액체주입에 의한 흡착관 표준시료 제조 장치

가스크로마토그래프의 시료 주입부에 흡착관을 연결하여 액체주입에 의해 표준시료를 제조한다.

8. 시료채취 방법

- 8.1 흡착관은 사용하기 전에 다음과 같이 안정화시켜야 한다.
 - (1) 이동가스가 최소한 100 ml/min로 흐르게 하고 별표 3에서 정하는 탈착온도 이상

H - 72 - 2015

의 온도에서 10분간 안정화시켜야 한다.

- (2) 안정화된 흡착관은 해당 분석조건에서 공시료 분석을 행하고 그 결과가 적절한 지 (간섭물질의 가스크로마토그래프 피크 면적이 방해 분석물질의 전형적인 피크면 적의 10 % 미만인지) 확인한다.
- (3) 시료채취를 하지 않거나 안정화된 흡착관은 테플론이 코팅된 금속 마개로 밀봉하여 깨끗한 용기에 보관한다.

8.2 시료채취

- (1) 측정대상 화합물 또는 혼합물의 특성에 적합한 흡착관을 별표 1부터 별표 4까지를 참조하여 선정한다.
- (2) 시료채취 전에 보관용 흡착관 마개를 제거하고 즉시 확산시료채취용 마개로 교 환한다.
- (3) 7.3의 확산 시료채취용 마개를 갖춘 7.1의 흡착관의 경우는 면속도(Face velocity/Air velocity)에 영향을 받지 않으나 면속도에 대한 요구 사항이 있는 경우 해당 면속도를 충족하는 경우에만 시료채취를 한다.
- (4) 시료채취 전후의 시료채취 시간, 온도, 면속도 등을 기록한다.
- (5) 시료채취 후에는 확산시료채취용 마개를 보관용 흡착관 마개로 교체한 후 잘 밀봉하다.
- (6) 흡착관에 측정위치 등을 표시하여야 한다. 다만, 표시하는 경우에는 솔벤트가 함 유된 접착제, 페인트 등을 사용할 수 없다.
- (7) 채취한 시료는 8시간 이내에 분석을 하여야 한다. 다만, 8시간이내에 분석할 수 없는 경우에는 깨끗하고 밀봉이 잘되는 금속 또는 유리용기에 보관한다.
- (8) 공시료는 현장시료와 동일하게 취급 및 분석한다.

9. 분석순서

H - 72 - 2015

9.1 탈착 및 분석

- (1) 흡착관은 열탈착 장치에 장착한다.
- (2) 흡착제나 가스 정지상(Gas chromatographic stationary phase)의 열적 산화로 인한 불순물(Chromatographic artefacts) 발생을 예방하기 위하여 흡착관으로부터 공기를 퍼지(Purge) 한다. 다만, 공기를 퍼지하기 위해 흡착관 부피의 10배($20^{\sim}30$ ml)의 불활성 가스가 필요하며, 이 때에 흡착관이 가열되지 않도록 한다.
- (3) 흡착관의 말단표시(Marked end of the tube) 부분이 가스크로마토그래프의 분리관입구 쪽에 더 가깝도록 장착하고, 이동가스를 가스크로마토그래프에 흐르게 하여가열된 흡착관에서 유기화합물질을 탈착시킨다.
- (4) 흡착관을 통과하는 가스 유량은 30~50 ml/min이 되도록 한다.
- (5) 탈착된 시료의 가스 부피는 수 ml정도의 소량이므로 가스크로마토그래프 분리관 에 전송되기 이전에 사전농축을 하여야 한다.
- (6) 농축방법은 가늘고 냉각된 2차 흡착트랩(Secondary sorbent trap)을 사용하여 저 유량(5 ml/min 미만)으로 빠르게 탈착시켜 피크 폭이 넓어지는 것을 최소화시키는 방법을 사용한다.
- (7) 분석을 위한 탈착 조건은 다음과 같다.

① 탈착 온도 : 250 ~ 325 °C

② 탈착 시간 : 5 ~ 15 min

③ 탈착 유량 : 30 ~ 50 ml/min

④ 냉각트랩 저온조건 : 20 ~ -180 °C(냉각트랩에 따라 다름)

⑤ 냉각트랩 고온조건 : 250 ~ 350 ℃

⑥ 냉각트랩 흡착제 : 40 ~ 100 mg(일반적으로 흡착관의 흡착제와 동일)

⑦ 이동가스 : 헬륨

⑧ 분리비 : 흡착관과 2차트랩 사이 또는 2차트랩과 분리관(분석컬럼)

H - 72 - 2015

사이의 분리비(Split ratio)는 예상되는 공기중 농도에 따라 선택(장비 제조회사의 메뉴얼 참조)

- (8) 탈착온도는 KOSHA-Code, H-15-1999(펌프식시료채취법과 흡착관·열탈착·가스 크로마토그래피 분석에 의한 유기화합물질 평가방법에 관한 기술지침) 별표 4부터 별표 9까지를 참조한다.
- (9) 흡착제에 대한 탈착온도는 별표 2 및 별표 3을 참조한다.
- (10) 일반적으로 분리비는 100:1 ~1000:1를 사용한다.

9.2 검량선 작성

- (1) 표준공기를 이용한 흡착관 표준시료(6.1) 또는 액체주입방법을 이용한 흡착관 표준 시료(6.4)를 열탈착 가스크로마토그래피로 분석한다.
- (2) 각 표준시료에 대하여 표준물질의 질량(μg)을 횡축으로 하고 표준물질의 피크면적을 종축으로 하여 검량선을 작성한다.
- 9.3 시료의 질량 산출은 9.1에서 제시된 방법으로 시료와 공시료를 분석하여 검량선으로부터 분석물질의 질량을 산출한다.

9.4 탈착효율 산출

- (1) 탈착효율은 흡착관 표준시료의 분석결과(Chromatographic response)를 표준용액 또는 표준공기를 직접 가스크로마토그래프에 주입하여 얻어진 분석결과와 비교하여 산정하여야 한다.
- (2) 탈착효율은 흡착관 표준시료의 분석결과를 표준용액 또는 표준공기를 가스크로 마토그래프에 직접 주입한 분석결과로 나눈 값이며, 탈착효율이 95 %미만인 경우에는 탈착조건을 변경하여야 한다.
- (3) 열탈착장치에 직접 액체주입장치가 없는 경우의 탈착효율은 다음과 같이 분석

H - 72 - 2015

대상물질의 검량선과 노말헥산의 검량선을 비교하여야 한다.

- ① 노말핵산의 검량선 기울기에 대한 해당물질의 검량선 기울기의 비율은 해당물질 에 대한 상대반응계수(Relative response factor)와 동일하여야 한다.
- ② 다른 물질에 대한 반응계수는 유효탄소수로부터 근사적으로 산출할 수 있다. 다만, 검량선 기울기의 비율이 상대반응계수와 10 %이내에서 일치하지 않을 경우에는 탈착 조건을 변경하여야 한다.
- 9.5 시료채취속도(Uptake rate)의 산출을 위한 흡착관에 대한 물질별 시료채취속도는 별표 4와 같다.

10. 분석대상물질의 농도 계산

시료채취 공기중 분석대상물질의 농도는 다음 식으로 계산한다.

$$C_m = \frac{M_f - M_b}{qv \cdot t} \times 10^6$$

Cm : 시료채취 공기중 분석대상물질의 농도(mg/m³)

M_f: 시료 중의 분석대상물질의 검출량(mg)

M_b: 공시료 중의 분석대상물질의 검출량(mg)

qv: 시료채취속도(cm/분)

t : 노출시간(분)

11. 방해물질

가스크로마토그래프로 분석하는 동안 분석대상물질의 머무름시간(Retetion time)과 동일 또는 유사한 유기물질은 방해작용을 할 수 있으므로 다음과 같이 조치하여야

H - 72 - 2015

한다.

- (1) 방해작용은 적절한 가스크로마토그래프의 분리관 및 분석조건 그리고 분석전에 흡착관 및 분석시스템의 엄격한 안정화를 통해 최소화하여야 한다.
- (2) 다공성폴리머(Porous polymers) 또는 소수성흡착제(Carbopack/Carbotrap)는 상대습도 95 %에서도 사용이 가능하나 순수 활성탄 또는 카본분자체와 같은 흡착제는 상대습도가 65 %를 초과하는 장소에서 사용할 수 없다. 시료채취 시간단축, 실리콘 멤브레인을 갖춘 확산마개 사용, 드라이 퍼지(Purge) 등이 수분을 줄일수 있는 방법이다.
- (3) 수분이 있는 상태에서 오존과 질소산화물은 Tenax TA 흡착관에 손상을 주며, 벤즈알데히드(Benzaldehvde)와 아세토페논(Acetophenone)등이 생성될 수 있다.
- (4) 오존과 질소산화물은 측정되는 성분과 반응할 수 있으므로 많은 양이 존재하는 경우에는 시료채취의 부피 감소 또는 Carbopack 흡착관을 사용한다.

12. 정도관리

- (1) 불순물의 피이크가 분석대상물질 면적의 10% 이하인 경우에는 공시료로서 사용할 수 있다.
- (2) 시료채취속도는 별표 4와 같다. 다만, 흡착관의 수명 동안 일정하게 유지될 수 있으나 과도한 진동 등으로 인한 흡착제의 손실 또는 손상이 있을 수 있다.
- (3) 흡착관은 육안으로 자주 검사해야 하고, 100회 사용 또는 2년 사용 후에는 다시 충진하여야 한다.

H - 72 - 2015

[별표 1]

흡착제의 종류 및 성분

흡착관의 종류	흡착제의 성분		
흡착관의 종류 Ambersorb XAD-4 Carbotrap B/C Carbopack B/C Carbosieve S-Ill Carboxen 569 Carboxen 1000 Chromosorb 102 Chromosorb 106 Carbograph TD-1 Porapak N Porapak Q Spherocarb	흡착제의 성분 스티렌/디비닐벤젠 중합체 흑연화 탄소 흑연화 탄소 탄소분자체 탄소분자체 탄소분자체 스티렌/디비닐벤젠 폴리스티렌 흑연화 탄소 비닐피롤리돈 에틸비닐벤젠/디비닐벤젠 탄소분자체		
Tenax TA Tenax GR	폴리(2,6-디페닐-p-페닐렌옥사이드) 흑연화 폴리디페닐옥사이드		

Carbotrap, Carbopack, Carbosieve S-lll, Caboxen: 미국 Supelco회사의 고유상표임

Chromosorb: 미국 Manville 회사의 고유상표임

Porapak: 미국 Waters Associates 회사의 고유상표임

Spherocarb: 미국 Analabs 회사의 고유상표임

Tenax: 미국 Enka 연구소의 고유상표임

Ambersorb: 미국 Rohm & Hass 회사의 고유상표임

Carbograph: 미국 Altech 회사의 고유상표임

[별표 2]

흡착제 선정 가이드

흡착제의 종류	분석물질 휘발성범위	최고온도 (℃)	비표면적 (m²/g)
Carbotrap C Carbopack C	탄소수 : C ₈ ~C ₂₀	>400	12
Tenax TA	끓는점: 100 ℃~400 ℃ 탄소수: C ₆ ~C ₂₆	350	35
Tenax GR	끓는점: 100 ℃~450 ℃ 탄소수: C ₇ ~C ₃₀	350	35
Carbotrap B Carbopack B Carbograph TD-1	탄소수 : (C ₄) C ₅ ~C ₁₄	>400	100
Chromosorb 102	끓는점 : 50 ℃~200 ℃	250	350
Chromosorb 106	끓는점 : 50 ℃~200 ℃	250	750
Porapak Q	끓는점: 50 ℃~200 ℃ 탄소수: C ₅ ~C ₁₂	250	550
Porapak N	끓는점: 50 ℃~150 ℃ 탄소수: C ₅ ~C ₈	180	300
Spherocarb	끓는점: -30 ℃~150 ℃ 탄소수 : C ₃ ~C ₈	>400	1200
Carbosieve Slll Carboxen 1000	끓는점 : -60 ℃~80 ℃	400	800
Molecular Sieve	끓는점 : -60 ℃~80 ℃	350	_

[별표 3]

흡착제 사용 가이드

	최고	조건화		탈착	
흡착관의 종류	온도	온도	가스유량	온도	가스유량
	(\mathcal{L})	(℃)	(ml/min)	(℃)	(ml/min)
Carbotrap C Carbopack C	>400	350	100	325	30
Tenax TA	350	330	100	300	30
Tenax GR	350	330	100	300	30
Carbotrap B Carbopack	>400	350	100	325	30
Chromosorb 102	250	250	100	225	30
Chromosorb 106	250	250	100	250	30
Porapak Q	250	250	100	225	30
Porapak N	180	180	100	180	30
Spherocarb	>400	400	100	390	30
Carbon Molecular Sieve (Carbosieve S-III or Carboxen 1000)	400	350	100	325	30
Molecular Sieve	350	330	100	300	30
Tenax / Carbopack B 혼합형	350	330	100	300	30
Carbopack B / Carbon Molecular Sieve 혼합형	400	350	100	325	30
Carboxen 1000 series 혼합형	400	350	100	325	30

[별표 4] 유기화합물질 및 흡착제의 종류별 시료채취속도

화합물질	흡착제	시료채취속도	
<u> </u>	급격제	(cm/min)	
탄화수소			
1,3-Butadiene	Molecular Sieve 13X	0.59	
D	Chromosorb 106	0.50	
n-Pentane	Carbopack B	0.60	
n-Hexane	Chromosorb 106	0.50	
	Tenax TAd	0.41	
D	Porapak Q	0.42	
Benzene	Tenax GR	0.57	
	Chromosorb 106	0.54	
	Chromosorb 106	0.48	
n-Heptane	Tenax TAe	0.43	
	Carbotrap B	0.47	
	Tenax TAe	0.44	
(T) 1	Tenax GR	0.56	
Toluene	Chromosorb 106	0.52	
	Carbopack B	0.55	
	Chromosorb 106	0.46	
n-Octane	Tenax TAe	0.43	
	Tenax TAe	0.42	
Xylene	Chromosorb 106	0.48	
	Tenax GR	0.57	
	Tenax TAe	0.46	
Ethylhongono	Tenax GR	0.56	
Ethylbenzene	Chromosorb 106	0.44	
	Porapak Q	0.55	
Cturono	Tenax TAe	0.47	
Styrene	Chromosorb 106	0.51	
n Namana	Chromosorb 106	0.46	
n-Nonane	Tenax TAe	0.40	
	Chromosorb 106	0.46	
Isopropyl benzene	Tenax TAe	0.46	
	Porapak Q	0.51	
Trimothylhongono	Chromosorb 106	0.48	
Trimethylbenzene	Tenax TAe	0.48	
n-Decane Tenax TA		0.40	

H - 72 - 2015

[별표 4] : 계속

화합물질	흡착제	시료채취속도 (cm/min)			
할로겐화 탄화수소					
Methyl chloride	Spherocarb	0.63			
Vinyl chloride	Spherocarb	0.78			
1,1-Dichloroethene	Spherocarb	0.63			
Trichlorotrifluoroethane	Chromosorb 102	0.46			
Chlorotrifluoromethane	Chromosorb 102	0.42			
Dichloromethane	Chromosorb 106	0.43			
Dictilorometrialie	Chromosorb 102	0.45			
1,2-Dichloroethane	Chromosorb 102	0.47			
Halothane	Tenax TA	0.32			
naiomane	Chromosorb 102	0.45			
Enflurane	Tenax TA	0.33			
Isoflurane	Tenax TA	0.32			
Bromoethane	Chromosorb 106	0.55			
Trichloromethane	Tenax GR	0.45			
(chloroform)	Chromosorb 102	0.48			
Tetrachloromethane	Tenax GR	0.59			
(carbon tetrachloride)	Chromosorb 102	0.48			
Trichloroethene	Chromosorb 106	0.47			
Tricinoroethene	Chromosorb 102	0.43			
	Chromosorb 106	0.42			
1,1,1- Trichloroethane	Chromosorb 102	0.42			
	Tenax GR	0.54			
	Chromosorb 106	0.46			
Tetrachloroethene	Tenax TA	0.41			
	Chromosorb 102	0.38			
Epichlorohydrin	Chromosorb 106	0.65			
Perfluorodimethylcyclobutane	Carbotrap	0.25			
Perfluoromethylcyclopentane	Carbotrap	0.25			
Perfluoromethylcyclohexane	Carbotrap	0.25			

[별표 4] : 계속

화합물질	흡착제	시료채취속도 (cm/min)			
에스테르 및 글리콜 에테르					
Ethyl agotata	Chromosorb 106	0.49			
Ethyl acetate	Tenax TA	0.40			
n-Butylacetate	Tenax TA	0.61			
Methyl methacrylate	Porapak Q	0.49			
Butyl acrylate	Tenax TA	0.51			
2 Mathayyyathanal	Porapak Q	0.48			
2-Methoxyethanol	Chromosorb 106	0.51			
2-Ethoxyethanol	Tenax	0.44			
2-Methoxyethyl acetate	Porapak Q	0.58			
2 Ethoyyothyl agotata	Chromosorb 106	0.39			
2-Ethoxyethyl acetate	Tenax TA	0.36			
9. Dutayyyathanal	Chromosorb 106	0.35			
2-Butoxyethanol	Tenax TA	0.31			
O. M - 41 1	Chromosorb 106	0.45			
2-Methoxypropanol	Tenax TA	0.37			
2-Butoxyethyl acetate	Tenax	0.38			
알데히드 및 케톤					
35.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	Tenax TA	0.42			
Methyl isobutyl ketone	Chromosorb 106	0.49			
Cyclohexanone	Tenax TA	0.57			
Furfural	Tenax TA	0.63			
알콜					
Propan-2-ol (isopropanol)	Spherocarb	0.81			
기타					
Acrylonitrile	Porapak N	0.62			
Λ , ', '1	Porapak N (2h)	0.60			
Acetonitrile	Porapak N (8h)	0.48			
Duanianituila	Porapak N (2h)	0.53			
Propionitrile	Porapak N (8h)	0.49			
Carbon disulfide	Spherocarb	0.83			
Nitrous oxide	Molecular Sieve 5A	0.70			
Ethylene oxide	Spherocarb	0.88			
1,4-Dioxane	Spherocarb	0.84			

[별표 5] 공기중 휘발성유기화합물(VOC) 측정결과와의 비교평가 결과

	VOC 결과 비교 (μg/m³)					
지역	벤젠		톨루엔		크실렌	
	Diffusive	VOC air	Diffusive	VOC air	Diffusive	VOC air
Leeds	2.27 ± 0.07	3.33	5.30 ± 0.01	6.75	3.44 ± 0.07	3.99
Belfast	2.10 ± 0.36	2.94	4.44 ± 0.15	6.82	3.34 ± 0.14	3.55
Bristol	2.90 ± 0.33	6.11	6.45 ± 0.86	2.25	4.70 ± 0.26	2.70
Cardiff	3.70 ± 0.46	9.5	7.90 ± 0.12	8.38	5.67 ± 0.10	5.15
Eltham	2.55 ± 0.35	4.65	5.92 ± 0.69	10.36	3.55 ± 0.30	3.10
Liverpool	2.12 ± 0.16	1.23	4.55 ± 0.19	0.93	3.86 ± 0.19	0.84
Middlesborough	2.35 ± 0.27	2.93	4.23 ± 0.22	4.59	2.66 ± 0.14	No data
Southampton	3.87 ± 0.73	1.90	8.12 ± 0.68	11.14	5.50 ± 0.20	5.49
UCL (London)	4.06 ± 0.14	6.05	9.67 ± 0.16	10.87	6.79 ± 0.27	7.79
Edinburgh	1.29 ± 0.20	1.81	3.29 ± 0.42	3.78	2.00 ± 0.27	1.89
Harwell	0.66 ± 0.03	0.90	1.46 ± 0.31	0.98	0.60 ± 0.04	No data
Birmingham	1.87 ± 0.27	2.54	4.76 ± 0.31	6.75	4.46 ± 0.27	5.59

[별표 6] 일부 국가의 공기중 휘발성 유기화합물 농도 평가사례

국가	농도 (μg/m³ ± 표준편차)			
7/1	벤젠	톨루엔	크실렌	
Sweden	1.95 ± 0.08	5.63 ± 0.77	3.49 ± 0.29	
Denmark	0.99 ± 0.04	1.44 ± 0.03	0.80 ± 0.07	
USA	0.43 ± 0.07	0.76 ± 0.09	0.47 ± 0.09	
Australia	1.94 ± 0.2	5.23 ± 0.69	3.87 ± 0.28	
Hungary	2.65 ± 0.09	4.7 ± 0.19	3.27 ± 0.18	
Germany	1.75 ± 0.15	5.85 ± 0.56	3.74 ± 0.33	
China	12.3 ± 1.08	23.04 ±2.32	11.64 ± 0.51	
Finland	0.84 ± 0.16	2.16 ± 0.6	1.58 ± 0.03	
Netherlands	1.55 ± 0.14	3.51 ± 0.27	2.28 ± 0.14	
Israel	1.42 ± 0.17	3.24 ± 0.1	2.79 ± 0.08	
Mexico	3.05 ± 0.51	23.43 ± 1.28	8.79 ± 0.25	
Italy	1.59 ± 0.15	5.39 ± 0.11	3.36 ± 0.41	
Brazil	0.42 ± 0.33	2.00 ± 0.59	1.81 ± 0.15	
France	1.81 ± 0.25	7.32 ± 0.31	3.87 ± 0.13	
N. Ireland	2.10 ± 0.36	4.44 ± 0.15	3;34 ± 0.14	
England	1.37 ± 0.25	4.24 ± 0.09	3.36 ± 0.11	