Corso di Laurea Specialistica in Informatica

Modelli neurali costruttivi di tipo Reservoir Computing per domini strutturati

Candidato: Giulio Visco

Machine Learning e Dati Strutturati

Machine Learning

Metodi ed algoritmi per apprendere da esempi un compito computazionale definito.

Machine Learning e Dati Strutturati

Machine Learning

Metodi ed algoritmi per apprendere da esempi un compito computazionale definito.

Esempi di dati strutturati in svariati settori applicativi:

- ► Elaborazione del Linguaggio Naturale
- ► Ingegneria del Software
- Chimica
- Biologia
- molti altri

Machine Learning e Dati Strutturati

Machine Learning

Metodi ed algoritmi per apprendere da esempi un compito computazionale definito.

Esempi di dati strutturati in svariati settori applicativi:

- Elaborazione del Linguaggio Naturale
- ► Ingegneria del Software
- Chimica
- Biologia
- molti altri

Obiettivo

Estendere le metodologie di Machine Learning per il trattamento di Domini Strutturati

Apprendere trasduzioni strutturali:

Apprendere trasduzioni strutturali:

 $(\mathbb{R}^{N_U})^{(\#)} \qquad (\mathbb{R}^{N_Y})^{(\#)}$ $(\mathbf{u}(v) \in \mathbb{R}^{N_U}) \qquad (\mathbf{y}(v) \in \mathbb{R}^{N_Y})$

Vari approcci possibili:

kernel, ILP, approcci generativi e probabilistici, relational learning...

Apprendere trasduzioni strutturali:

$$(\mathbb{R}^{N_U})^{(\#)} \qquad (\mathbb{R}^{N_Y})^{(\#)}$$

$$\mathcal{T} \qquad \qquad \mathbf{u}(v) \in \mathbb{R}^{N_U}) \qquad (\mathbf{y}(v) \in \mathbb{R}^{N_Y})$$

Vari approcci possibili:

kernel, ILP, approcci generativi e probabilistici, relational learning...

...Reti Neurali Ricorsive: $T = T_{out} \circ T_{enc}$

Apprendere trasduzioni strutturali:

$$(\mathbb{R}^{N_U})^{(\#)} \qquad (\mathbb{R}^{N_Y})^{(\#)}$$

$$\mathcal{T} \qquad \qquad \mathcal{U}(v) \in \mathbb{R}^{N_U}) \qquad (\mathbf{y}(v) \in \mathbb{R}^{N_Y})^{(\#)}$$

Vari approcci possibili:

kernel, ILP, approcci generativi e probabilistici, relational learning...

...Reti Neurali Ricorsive: $T = T_{out} \circ T_{enc}$

$$(\mathbb{R}^{N_U})^{(\#)} \qquad (\mathbb{R}^{N_R})^{(\#)} \qquad (\mathbb{R}^{N_Y})^{(\#)}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad$$

Apprendimento

Tipicamente *tutti* i pesi della rete vengono addestrati.

Nella loro formulazione classica presentano dei limiti:

Nella loro formulazione classica presentano dei limiti:

Input

Per garantire la convergenza del processo di encoding, gli input trattabili devono presentare un ordinamento topologico fra i vertici (i.e. *Grafi Diretti Aciclici*).

Nella loro formulazione classica presentano dei limiti:

Input

Per garantire la convergenza del processo di encoding, gli input trattabili devono presentare un ordinamento topologico fra i vertici (i.e. *Grafi Diretti Aciclici*).

Costo

Costo computazionale elevato dell'apprendimento.

Nella loro formulazione classica presentano dei limiti:

Input

Per garantire la convergenza del processo di encoding, gli input trattabili devono presentare un ordinamento topologico fra i vertici (i.e. *Grafi Diretti Aciclici*).

Costo

Costo computazionale elevato dell'apprendimento.

Reservoir Computing: Idea

Perché allenare l'intera rete e non solo una parte?

$$\begin{array}{c}
\mathcal{T}_{\text{enc}} \\
\end{array}
\qquad
\begin{array}{c}
\mathcal{T}_{\text{out}} \\
\end{array}
\qquad
\begin{array}{c}
\mathcal{T}_{\text{out}}
\end{array}$$

$$\begin{array}{c}
\mathcal{T}_{\text{out}}
\end{array}$$

$$\begin{array}{c}
\mathcal{T}_{\text{out}}
\end{array}$$

$$\begin{array}{c}
\mathcal{T}_{\text{out}}
\end{array}$$

GraphESN (2010)

Modello di Reservoir Computing per l'apprendimento su Domini Strutturati.

GraphESN (2010)

Modello di Reservoir Computing per l'apprendimento su Domini Strutturati

Reservoir:

- Implementa un sistema dinamico complesso.
- Realizza l'encoding, T_{enc}, in maniera dipendente dalla topologia dell'input.
- Convergenza garantita dalla contrattività.

GraphESN (2010)

Modello di Reservoir Computing per l'apprendimento su Domini Strutturati

Reservoir:

- Implementa un sistema dinamico complesso.
- Realizza l'encoding, T_{enc}, in maniera dipendente dalla topologia dell'input.
- Convergenza garantita dalla contrattività.

$\mathbf{x}(\mathbf{g})$ $\mathbf{x}(\mathbf{g})$ $\mathbf{y}(\mathbf{g})$ $\mathbf{y}(\mathbf{g})$ $\mathbf{y}(\mathbf{g})$ $\mathbf{y}(\mathbf{g})$

Readout:

- ► Una funzione lineare che realizza T_{out}.
- ▶ È l'unica parte allenata della rete!

Pro

Le proprietà del reservoir garantiscono la convergenza dell'encoding:

- ► Si possono apprendere trasduzioni definite su grafi.
- ► Si possono usare algoritmi di apprendimento semplici ed efficienti per il solo readout.

Pro

Le proprietà del reservoir garantiscono la convergenza dell'encoding:

- ► Si possono apprendere trasduzioni definite su grafi.
- ► Si possono usare algoritmi di apprendimento semplici ed efficienti per il solo readout.

Contro

I reservoir sono fissati a priori:

- ▶ Difficile determinare le dimensioni corrette per il problema.
- ▶ Realizzano un processo di *encoding non adattivo*.

Estendere GraphESN Strategia Costruttiva

Obiettivo

Sfruttare le caratteristiche delle GraphESN: mantenerne i vantaggi e affrontarne i limiti.

Estendere GraphESN Strategia Costruttiva

Obiettivo

Sfruttare le caratteristiche delle GraphESN: mantenerne i vantaggi e affrontarne i limiti.

Come fare?

Introduzione dell'*approccio costruttivo*: realizzare la rete attraverso un procedimento iterativo, usando più *SOtto-reti*.

(i) Allenamento della prima sotto-rete.

(ii) Collegamento della sotto-rete ad un readout globale.

(iii) Allenamento del readout globale. Si ricava l'errore commesso.

(iv) Si allena la seconda sotto-rete per emulare l'errore commesso.

(v) Si allena il readout globale sfruttando il segnale di correzione.

(vi) Si aggiunge una sotto-rete per correggere il nuovo errore.

(...) Si procede finché l'errore non sia sufficientemente basso.

La dimensione della rete dipende direttamente dal problema.

GraphESN Constructive Flat (GraphESN-CF)

Scomporre un problema in sotto-problemi.

GraphESN Constructive Flat (GraphESN-CF)

- Scomporre un problema in sotto-problemi.
- Utilizzare unità computazionali più semplici.

GraphESN Constructive Flat (GraphESN-CF)

- Scomporre un problema in sotto-problemi.
- Utilizzare unità computazionali più semplici.
- Determinare automaticamente la topologia.

 Connessioni verso i readout delle sotto-reti successive.

- ► Connessioni
 verso i readout delle
 sotto-reti successive.
- Sfruttare informazioni già apprese durante il processo iterativo.

- ► Connessioni
 verso i readout delle
 sotto-reti successive.
- Sfruttare informazioni già apprese durante il processo iterativo.
- Semplificare la risoluzione dei sotto-problemi.

- Connessioni verso i readout delle sotto-reti successive.
- Sfruttare informazioni già apprese durante il processo iterativo.
- Semplificare la risoluzione dei sotto-problemi.
- Multilayer non lineare di tipo Reservoir Computing.

GraphESN Forward Output-Feedback (GraphESN-FOF)

 Connessioni anche verso i reservoir delle sotto-reti successive. (output-feedback)

GraphESN Forward Output-Feedback (GraphESN-FOF)

- Connessioni anche verso i reservoir delle sotto-reti successive. (output-feedback)
- Output-feedback per introdurre informazioni supervisionate nei reservoir.

GraphESN Forward Output-Feedback (GraphESN-FOF)

- Connessioni anche verso i reservoir delle sotto-reti successive. (output-feedback)
- Output-feedback per introdurre informazioni supervisionate nei reservoir.
- Processo di encoding non adattivo ma guidato dal problema nonostante i reservoir fissi.

Vantaggio Computazionale Topologia Automatica

Costo GraphESN-FOF: dim. reservoir N_R , num. sotto-reti NSN, dim. dataset $|\mathcal{G}|$.

$$\begin{split} O(\mathit{NSN}^4 + \mathit{N}_R \ \mathit{NSN}^3 + \mathit{N}_R^2 \ \mathit{NSN}^2 + \mathit{N}_R^3 \ \mathit{NSN} \\ &+ \mathit{NSN}^3 \ |\mathcal{G}| + \mathit{NSN}^2 \ \mathit{N}_R \ |\mathcal{G}| + \mathit{NSN} \ \mathit{N}_R^2 \ |\mathcal{G}|) \end{split}$$

Costo GraphESN (model selection): $N_R' \in \{N_R, 2N_R, \dots, NSN N_R\}$

$$O(N_R^3 \ \mathit{NSN}^4 + N_R^2 \ \mathit{NSN}^3 \ |\mathcal{G}|)$$

Vantaggio Computazionale Scomposizione del Problema

Costo GraphESN equivalente: dimensione reservoir $N_R' = N_R NSN$.

$$O(N_R^3 NSN^3 + N_R^2 NSN^2 |\mathcal{G}|)$$

Vantaggio Computazionale Scomposizione del Problema

Costo GraphESN equivalente: dimensione reservoir $N_R' = N_R NSN$.

$$O(N_R^3 NSN^3 + N_R^2 NSN^2 |\mathcal{G}|)$$

Analisi Sperimentale

Dataset reali nell'ambito della Chemioinformatica. 9 task distinti.

Analisi Sperimentale Dataset

Dataset reali nell'ambito della Chemioinformatica. 9 task distinti.

- ► Predictive Toxicology Challenge (PTC):
 - ▶ Numero molecole: 417. Dimensione delle etichette di input: 24.
 - ► Classificazione dei composti tossici (riferito a 4 tipi di roditori).
- Mutagenesis (Mutag):
 - ▶ Numero molecole: 230. Dimensione etichette di input: 11, 13, 15.
 - Classificazione dei composti mutageni (3 tipi di rappresentazione).
- ► Bursi:
 - ▶ Numero molecole: 4204. Dimensione delle etichette di input: 14.
 - ► Classificazione dei composti mutageni.
- ► Angiotensin Converting Enzyme (ACE):
 - ▶ Numero molecole: 114. Dimensione delle etichette di input: 8.
 - ▶ Predizione dell'attività molecolare (i.e. plC₅₀) su intervallo continuo.

Analisi Sperimentale Dataset

Dataset reali nell'ambito della Chemioinformatica. 9 task distinti.

- ► Predictive Toxicology Challenge (PTC):
 - ▶ Numero molecole: 417. Dimensione delle etichette di input: 24.
 - ► Classificazione dei composti tossici (riferito a 4 tipi di roditori).
- Mutagenesis (Mutag):
 - ▶ Numero molecole: 230. Dimensione etichette di input: 11, 13, 15.
 - Classificazione dei composti mutageni (3 tipi di rappresentazione).
- ► Bursi:
 - ▶ Numero molecole: 4204. Dimensione delle etichette di input: 14.
 - ► Classificazione dei composti mutageni.
- ► Angiotensin Converting Enzyme (ACE):
 - ▶ Numero molecole: 114. Dimensione delle etichette di input: 8.
 - ▶ Predizione dell'attività molecolare (i.e. plC₅₀) su intervallo continuo.

Model selection e validazione con double cross-validation.

Analisi Sperimentale Rappresentazione dei Dati

Analisi Sperimentale Performance: PTC - Mutag

PTC

Model	FR	FM	MR	MM
GraphESN	$67.7 (\pm 0.1)$	$60.7 (\pm 0.4)$	$56.7 (\pm 0.9)$	$67.1 \ (\pm 0.1)$
GraphESN-CF	$67.4 \ (\pm 0.8)$	63.0 (± 0.8)	57.9 (± 0.6)	$65.2 \ (\pm 0.6)$
GraphESN-FW	$67.4 (\pm 1.0)$	63.6 (± 0.6)	58.3 (± 0.7)	$64.3 (\pm 1.5)$
GraphESN-FOF	68.1 (± 1.2)	62 .7 (± 1.4)	57.1 (± 1.3)	$66.6 (\pm 1.7)$

Mutag

Model	AB	AB+C	AB+C+PS
GraphESN	$75.2 (\pm 0.8)$	$76.5 (\pm 0.8)$	$80.3 (\pm 0.8)$
GraphESN-CF	79.6 (± 2.5)	$76.0 \ (\pm 1.5)$	$79.7 (\pm 0.2)$
GraphESN-FW	79.7 (± 2.8)	76.7 (± 2.5)	80.6 (± 1.9)
GraphESN-FOF	76.8 (± 3.7)	77.0 (± 2.4)	$80.0 \ (\pm 2.5)$

Analisi Sperimentale Performance: Bursi - ACE

_		
к		PCI
ப	ш	131

Model	TR	TS
GraphESN	$77.9 (\pm 0.2)$	$76.2 (\pm 0.2)$
GraphESN-CF	78.3 (± 0.4)	76.7 (± 0.7)
GraphESN-FW	78.4 (± 0.8)	77.1 (± 0.7)
GraphESN-FOF	79.8 (± 0.5)	78.0 (± 0.9)

ACE

Model	MSE (TR)	MSE (TS)
GraphESN	$1.83 \ (\pm 0.01)$	$2.13 \ (\pm 0.03)$
GraphESN-CF	$2.03 \ (\pm 0.07)$	$2.37 (\pm 0.15)$
GraphESN-FW	1.71 (± 0.02)	$2.02 (\pm 0.06)$
GraphESN-FOF	$1.60 \ (\pm 0.07)$	$2.03 (\pm 0.06)$

Analisi Sperimentale Curve di Apprendimento

Errore di training (TR) e di test (TS) al crescere della rete.

Analisi Sperimentale Curve di Apprendimento

Errore di training (TR) e di test (TS) al crescere della rete.

Nel corso del processo di costruzione della rete, la Capacità di predizione media aumenta, anche grazie all'applicazione di tecniche di regolarizzazione.

Analisi Sperimentale Principal Component Analysis

Prime due componenti principali dell'*encoding* degli input.

Con output-feedback

Senza output-feedback

Analisi Sperimentale Principal Component Analysis

Prime due componenti principali dell'*encoding* degli input.

Con output-feedback

Senza output-feedback

Analisi Sperimentale Principal Component Analysis

Prime due componenti principali dell'*encoding* degli input.

Con output-feedback

Senza output-feedback

Conclusioni

Approccio costruttivo nell'ambito del Reservoir Computing:

Conclusioni

Approccio costruttivo nell'ambito del Reservoir Computing:

Reservoir Computing

- ► Apprendere trasduzioni strutturali su grafi.
- ► Algoritmi di apprendimento efficienti.

Conclusioni

Approccio costruttivo nell'ambito del Reservoir Computing:

Reservoir Computing

- ► Apprendere trasduzioni strutturali su grafi.
- ► Algoritmi di apprendimento efficienti.

Strategia costruttiva

- ► Determinazione automatica dell'architettura, guidata dal problema.
- ► Vantaggio computazionale senza perdita di accuratezza.
- ► Strategia flessibile.

Approccio costruttivo nell'ambito del Reservoir Computing:

Reservoir Computing

- ► Apprendere trasduzioni strutturali su grafi.
- ► Algoritmi di apprendimento efficienti.

Strategia costruttiva

- ▶ Determinazione automatica dell'architettura, guidata dal problema.
- ► Vantaggio computazionale senza perdita di accuratezza.
- ► Strategia flessibile.

Output-feedback

- ► Informazione supervisionata nel processo di encoding.
- ► Non comporta l'allenamento del reservoir.

Claudio Gallicchio, Alessio Micheli, e Giulio Visco. Constructive reservoir computation with output feedbacks for structured domains. In *Proceedings of the ESANN 2012*, 2012. To appear.

Grazie dell'attenzione