k-Nearest Neighbors Algorithmus

Prof. Dr. Jörg Frochte

Maschinelles Lernen

$$||x|| = 0 \Rightarrow x = 0$$

$$||\alpha \cdot x|| = |\alpha| \cdot ||x||$$

$$||x + y|| \le ||x|| + ||y||$$

$$y_p(x) = \sum_{i=1}^k \omega_i y_i$$

$$\omega_i = \frac{(d_i + \frac{smear}{k})^{-1}}{\hat{d}}$$

$$\hat{d} = \sum_{i=1}^k \left(d_i + \frac{smear}{k}\right)^{-1}$$

Es geht darum, Abbildungen zwischen Vektorräumen zu lernen

- Wie schon erwähnt, geht es beim überwachten Lernen darum, eine Abbildung $f: X \to Y$ vom m-dimensionalen Merkmalsraum X in einen n-dimensionalen Out-Raum Y zu lernen.
- Nach einem Konvertierungsprozess stellen sich beide für den Computer als Teilmengen des \mathbb{R}^n bzw. \mathbb{R}^m dar.
- Natürlich stammen einige Merkmale ggf. aus Skalenniveaus mit weniger Struktur, und wir müssen vorsichtig sein.
- ullet Nehmen wir einmal an, alle Merkmale entstammen einer rationalen Skala, und wir können die gleichen Operationen auf jedem Merkmal durchführen wie auf \mathbb{R} .
- In diesem Fall

$$f: \mathbb{R}^m \supset X \to Y \subset \mathbb{R}^n$$

ergibt sich vieles direkt aus den Eigenschaften von Vektorräumen, wie sie in der linearen Algebra besprochen werden.

• **Achtung**: Es geht nur um die Räume! f ist im Allgemeinen nichtlinear.

Wiederholung: Normen und Metriken

ullet Etwas verallgemeinert kann man sagen, dass Metriken dazu da sind, Abstände zwischen zwei Elementen a,b in einer Menge M zu bestimmen:

$$d(a,b) \to \mathbb{R}$$

• Auf einem normierten Vektorraum X haben wir zusätzlich noch das Konzept der Norm. Eine Norm $\|.\|$ weist einem Vektor v seine Länge zu:

$$||v|| \to \mathbb{R}$$

• Beide Konzepte hängen zusammen: Norm induziert Metrik.

$$d(a,b) = ||a-b||$$

• Zur Erinnerung: Das bedeutet, wenn man eine Norm hat, kann man darüber eine Metrik konstruieren. Es gibt aber Metriken, denen keine Normen zugrunde liegen.

p-Normen

- Wir nutzen Metriken und Normen, um die Ähnlichkeit zwischen zwei Objekten zu quantifizieren.
- Eine wichtige Klasse sind die *p*-Normen:

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

 Rechts sehen Sie jeweils das Gebiet in rot illustriert, das in der jeweiligen p-Norm einen Abstand kleiner 1 vom Ursprung hat.

Auszug aus einer Datenbank

		0	1	2	3	4	5	
Nr.	Bezeichnung	Preis €	kW	Hubraum	kg	I/100 km	Türen	Klasse
2	Bugatti Chiron	2856000	1103	7993	2070	22.5	2	6
338	Ford GT	500000	475	3497	1385	14.9	2	6
361	Lamborghini Urus	204000	478	3996	2200	12.7	5	6
389	Porsche 911	152416	368	3996	1488	12.9	2	6
126	BMW M3	77500	317	2979	1595	8.8	4	4
145	Alfa Romeo 4C	63500	177	1742	970	6.8	2	4
308	Porsche 718	52694	220	1988	1410	7.4	2	5
325	Mercedes E 200	43019	135	1991	1575	6.1	4	5
:	:	:	:	:	:	:	:	:
						_ :		
40	Opel Corsa OPC	24930	152	1598	1293	7.5	3	2
251	Toyota Avensis	24740	97	1598	1430	6.1	4	4
512	BMW 116i	24700	80	1499	1375	5.3	3	3
41	Peugeot 208	23990	153	1598	1235	5.4	3	2
9	VW up! GTI	16975	85	999	1070	4.8	3	1
591	Toyota Auris 1.33	16490	73	1329	1225	5.5	5	3

Ähnlichkeit über eine Metrik

Wichtiger Hinweis

Es ist fast nie eine gute Idee, z. B. eine p-Metrik direkt auf einen Datensatz anzuwenden. Man muss sich erst die unterschiedlichen Größenordnungen der Merkmale klar machen.

	Marke	Modell	Preis	Leist.	Hubr.	Gewicht	Verbrauch	Türen
29	Citroen	C1 VTi 68	9090	51	998	915	4.1	3
540	Toyota	Corolla 1.6	21220	97	1598	1270	6.0	4

$$\begin{vmatrix} \begin{pmatrix} 9090 \\ 51 \\ 998 \\ 915 \\ 4.1 \\ 3 \end{vmatrix} - \begin{pmatrix} 21220 \\ 97 \\ 1598 \\ 1270 \\ 6.0 \\ 4 \end{vmatrix} = 12130 + 46 + 600 + 355 + 1.9 + 1 = 13133.9 \text{ (Anteil Preis: } 92.4\%)$$

• Unskaliert kommen Merkmale mit geringer absoluter Streuung kaum zur Geltung.

Relative und absolute Streuungsmaße

- Mittels Streuungsmaßen versucht man, die Streubreite von Werten in einer Datenmenge zu beschreiben.
- Dies geschieht immer relativ zu einem geeigneten Referenzpunkt. Bei der Gaußverteilung ist das der Mittelwert $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- Das Streumaß ist hier entsprechend die Standardabweichung $s = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^2}$.
- Es gibt auch Alternativen, wie z. B. die mittlere absolute Abweichung

$$e = \frac{1}{n} \sum_{i=1}^{n} |x_i - \overline{x}|$$

- Nutzen wir nur die absoluten Werte, so handelt es sich um absolute Streuungsmaße.
- Normieren wir die Daten vorher, so sind es relative Streuungsmaße.

Median und Perzentile

• Der Mittelwert stellt bei inhomogenen Gruppen die Menge oft ungenügend dar.

```
1.793 Euro 1.979 Euro 2.029 Euro 2.157 Euro 2.567 Euro 5.400 Euro 6.500 Euro Haushaltshilfe Empfangskraft Koch/Köchin Arzthelfer/-in Maler/-in Informatiker/-in Wirtschaftsprüfer/-in
```

- Bei der oben angeben Gruppe beträgt der Mittelwert np.mean(X) = 3203.57... Euro, der Median hingegen np.median(X) = 2157 Euro = np.percentile(X,50).
- Der Hilfe von np.percentile können auch entsprechenden Zwischengrößen angefragt werden np.percentile(X,25) = 2004.0 Euro.
- Im Allgemeinen ist der Median robuster gegenüber Ausreißern als der Mittelwert.

Skalierung

Um den Merkmalen einen ähnlichen Einfluss auf den Abstand zu gewähren, können wir die Daten spaltenweise

- normieren: $\hat{x} = \frac{x \min(x)}{\max(x) \min(x)}$
- standardisieren: $\check{x} = \frac{x \bar{x}}{x}$ mit

$$ar{x} = rac{1}{n} \sum x_i \text{ und}$$
 $\sigma_x = \sqrt{rac{1}{n} \sum (x_i - ar{x})^2}$

 $\sigma_x = \sqrt{\frac{1}{n} \sum (x_i - \bar{x})^2}$ • robust skalieren: $\breve{x} = \frac{x - x_{p_{50}}}{x_{p_{75}} - x_{p_{25}}}$

```
Xmin = X.min(axis=0)
Xmax = X.max(axis=0)
X = (X - Xmin) / (Xmax - Xmin)
```

Unskaliert (i.W. Rohdaten)

	Marke	Modell	Preis	Leist.	Hubr.	Gewicht	Verbrauch	Türen
29	Citroen	C1 VTi 68	9090	51	998	915	4.1	3
200	Mercedes	SLC 180	35349	115	1595	1435	5.6	2
540	Toyota	Corolla 1.6	21220	97	1598	1270	6.0	4

- Auto 29 zu Auto 200: 27442.5 (Anteil Preis: 95.7%)
- Auto 29 zu Auto 540:
 13133.9 (Anteil Preis: 92.4%)
- Auto 200 zu Auto 540: 14317.4 (Anteil Preis: 98.7%)

Normiert

	Marke	Modell	Preis	Leist.	Hubr.	Gewicht	Verbrauch	Türen
29 200 540		C1 VTi 68 SLC 180 Corolla 1.6	0.0100	0.0670	0.0982	0.0946 0.3181	0.0000 0.0815 0.1033	0.0000

- Auto 29 zu Auto 200:
 0.7922 (Anteil Preis: 1.1%)
- Auto 29 zu Auto 540:
 0.7215 (Anteil Preis: 0.6%)
- Auto 200 zu Auto 540:
 0.7817 (Anteil Preis: 0.6%)

Standardisiert

	Marke	Modell	Preis	Leist.	Hubr.	Gewicht	Verbrauch	Türen
29 200 540	Citroen Mercedes Toyota	C1 VTi 68 SLC 180 Corolla 1.6	-0.2092	-0.5520	-0.5543	-0.2871	-1.2661 -0.7186 -0.5726	0.1000

- Auto 29 zu Auto 200:
 3.7906 (Anteil Preis: 3.6%)
- Auto 29 zu Auto 540:
 3.2869 (Anteil Preis: 1.9%)
- Auto 200 zu Auto 540:
 2.4315 (Anteil Preis: 3%)

Robust Skaliert

	Marke	Modell	Preis	Leist.	Hubr.	Gewicht	Verbrauch	Türen
29 200 540	Citroen Mercedes Toyota	C1 VTi 68 SLC 180 Corolla 1.6	0.0084	-0.1237	-0.2390	-0.1390	-0.8060 -0.3582 -0.2388	-1.0 -1.5 -0.5

- Auto 29 zu Auto 200:
 3.2462 (Anteil Preis: 14.6%)
- Auto 29 zu Auto 540:
 2.662 (Anteil Preis: 8.2%)
- Auto 200 zu Auto 540:
 1.8266 (Anteil Preis: 14%)

Fazit zum Preprocessing

- Die Normierung kann stark von Ausreißern beeinflusst werden. Die Standardisierung und die robuste Skalierung sind weniger anfällig. Generell sollte das bewusste und dokumentierte Entfernen von Ausreißern erwogen werden.
- Die Normierung hat den Vorteil, dass der Wertebereich wie z. B. [0,1] auch eingehalten wird, was manchmal nützlich ist.
- Anstatt Standardisierung müsste der Ansatz eigentlich Studentisierung heißen, weil er auf der empirischen Standardabweichung basiert, aber es ist üblich, den Ansatz unpräzise als Standardisierung zu bezeichnen.
- Nach einer Standardisierung beträgt der Mittelwert 0 und die Standardabweichung (und damit auch die Varianz) 1.
- Merkmale lassen sich auch bewusst skalieren, um ihnen einen größeren Anteil beim Abstand zukommen zu lassen.
- Viele Verfahren basieren auf Abständen. Ohne Skalierung funktionieren sie oft nicht.
- Neuronale Netze können ohne **Preprocessing** der Daten Konvergenzprobleme haben.

Eager Learning vs. Lazy Learning

- Die meisten Algorithmen im Bereich des maschinellen Lernens basieren auf einem Ansatz, den man **Eager Learning** nennt.
- Hierbei wird der Hauptteil der Arbeit während des Trainings investiert. Ein typisches Beispiel für ein solches Verfahren sind neuronale Netze.
- Der k-Nearest Neighbors (k-NN) Algorithmus ist hingegen ein Lazy Learner.
- Bei dieser Klasse von Verfahren findet die Hauptarbeit nicht beim Training statt, sondern erst zur Zeit der Anfrage.

Grundidee des k-NN

- ullet Die Grundidee beim k-NN ist es, eine Regression oder Klassenzuordnung für einen Abfragepunkt x auf der Basis seiner k nächsten Nachbarn durchzuführen.
- Nehmen wir als Beispiel die Klassifikation. Hierbei bestehen die Arbeitsschritte aus:
 - lacksquare Bestimme die Distanz in der Metrik d von x zu allen Samples.
 - $oldsymbol{0}$ Finde die k Samples, deren Distanz am gerinsten ist (nächste Nachbarn). $oldsymbol{0}$
 - 3 Liefere die häufigste Klasse als Ergebnis der Klassifikation zurück.

- Statt einfach nur abzuzählen, was die häufigste Klasse ist, kann man auch jeden Nachbarn noch gewichten, z. B. auf der Basis der jeweiligen Distanz.
- Ein Vorteil des k-NN für manche Anwendungen ist, dass er mit einem lokalen Ansatz arbeitet und nicht auf ein globales Modell angewiesen ist.

Einfluss der Norm am Beispiel des Two Moons Set

- Rechts sehen Sie die Klassifikation mit k-NN für unterschiedliche Normen.
- Neben k hier 5 und der Gewichtung der Nachbarn ist die verwendete Norm der wichtigste Hyperparameter.
- Hyperparameter sind
 Parameter, die fest gewählt
 werden und beim Training
 von den Daten nicht
 beeinflusst werden.

Gewichtung bei der Regression

- Bei der Regression geht man analog vor, hier ist jedoch die Gewichtung noch wesentlicher. Auch müssen hier zwingend alle Gewichte addiert 1 ergeben.
- Klassisch sähe eine reine Gewichtung über die Abstände $d_i = d(x_i, x)$ so aus:

$$y_p(x) = \frac{1}{\sum_{i=1}^k \hat{\omega}_i} \sum_{i=1}^k \hat{\omega}_i y_i \quad \text{mit} \quad \hat{\omega}_i = \frac{1}{d_i}$$

- Das berücksichtigt weder den Fall einer Division durch Null noch fehlerhafter Werte.
- Liegt ein Nachbar wesentlich näher am Abfragepunkt als die anderen, dominiert er den Wert. Das ist gut, wenn die Werte in der Datenbank fehlerfrei sind; jedoch schlecht, wenn wir davon ausgehen, Fehler herausmitteln zu müssen.
- Man greift hier oft dazu die Gewichte etwas zu "verschmieren":

$$y_p(x) = \frac{1}{\sum_{i=1}^k \omega_i} \sum_{i=1}^k \omega_i y_i \quad \text{mit} \quad \omega_i = \frac{1}{d_i + \varepsilon}$$

k-NN mit Suchbaum Unterstützung

- Eine Schwäche des Verfahrens ist der Aufwand, der pro Abfrage entsteht.
- Der Aufwand für die Berechnung der Abstände wächst linear mit der Anzahl der Elemente im Trainingsset.
- Der Aufwand für die Sortierung wächst für die meisten Algorithmen mit $O(n \cdot \log(n))$.
- Das Problem ist, dass dieser Aufwand pro Anfrage anfällt.
- Der Ausweg ist eine Art Mischansatz, in dem man etwas Arbeit zur Trainingsphase investiert, um die Trainingsdaten so zu organisieren.
- Auf diesen organisierten Daten ist es dann möglich, die Suche nach Nachbarn nur noch auf einer Teilmenge durchzuführen.
- Eine der in der Praxis gut bewährten Methoden ist der Einsatz eines *k*-dimensionalen Suchbaums, kurz **kd-Baum** bzw. **kd-tree**.
- Die Effizienz dieses kd-trees hängt von der Anzahl der Dimensionen bzw. Merkmale ab. Weniger ist besser.