# Solution For The School Geometry Problems

Yogesh Choudhary

May 27, 2020

### Question

### Exercise 8.1(Q no.36)

Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of  $\Delta$  PQR.Show that

```
a)\Delta ABM \cong \Delta PQN
```

```
b)\Delta ABC \cong \Delta PQR
```

## Codes and Figures

The python code for the figure is

./code/Traingle.py

The latex- tikz code is

./figs/triangle.tex

The above latex code can be compiled as standalone document

./figs/triangle\_fig.tex







(b) By Latex-tikz

#### Construction method

The tables below are the values used for constructing the triangles in both Python and Latex-Tikz.

| Initial Input Values. |   |
|-----------------------|---|
| a, p                  | 3 |
| b, q                  | 5 |
| c, r                  | 6 |

Table: To construct  $\triangle ACB$  and  $\triangle PQR$ 

The steps for constructing  $\triangle ACB$  are

$$(i)\mathbf{A} = \begin{pmatrix} 3.33 \\ 4.99 \end{pmatrix} (ii)\mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} (iii)\mathbf{C} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$

$$(i)\mathbf{P} = \begin{pmatrix} 8.33 \\ 4.99 \end{pmatrix} (ii)\mathbf{Q} = \begin{pmatrix} 5 \\ 5 \end{pmatrix} (iii)\mathbf{R} = \begin{pmatrix} 8 \\ 0 \end{pmatrix}$$

$$\boldsymbol{\mathsf{M}} = (1/2)(\boldsymbol{\mathsf{B}} + \boldsymbol{\mathsf{C}})$$

$$\mathbf{N} = (1/2)(\mathbf{Q} + \mathbf{R})$$

$$\textbf{M} = \begin{pmatrix} 1.5 \\ 0 \end{pmatrix}, \textbf{N} = \begin{pmatrix} 6.5 \\ 0 \end{pmatrix}$$

| Derived Values for triangleDCB. |            |
|---------------------------------|------------|
| М                               | (1.5)<br>0 |
| N                               | (6.5)      |

Table: To construct madians AN and PN

### Solution

given that 
$$\rightarrow$$

$$\|AB\| = \|PQ\| = c = r$$

$$\|\mathbf{BC}\| = \|\mathbf{QR}\| = a = p$$

$$\|\mathbf{AM}\| = \|\mathbf{PN}\| = m = n$$

#### Therefore $\rightarrow$

 $\boldsymbol{M}$  and  $\boldsymbol{N}$  are the position vector of mid-point of  $\boldsymbol{BC}$  and  $\boldsymbol{QR}$  repectively .

$$\frac{1}{2}\left\|\mathbf{B} - \mathbf{C}\right\| = \frac{1}{2}\left\|\mathbf{Q} - \mathbf{R}\right\|$$

$$\|\mathbf{B} - \mathbf{M}\| = \|\mathbf{Q} - \mathbf{N}\|$$

# Solution a)

from triangles ABM and PQR  $\rightarrow$ 

$$\|\mathbf{AB}\| = \|\mathbf{PQ}\| (given)$$

$$\|\mathbf{AM}\| = \|\mathbf{PN}\| (given)$$

$$\|\mathbf{M} - \mathbf{B}\| = \|\mathbf{N} - \mathbf{Q}\|$$

(Both m and N are the mid points)

 $\Longrightarrow \triangle ABM$  and  $\triangle PQN$  are congruent to each other by SSS congruency. Hence, proved

# Solution b)

given that  $\rightarrow$ 

$$\|AM\| = \|PN\|$$

from triangle ABC and PQN  $\rightarrow$ 

$$\|\mathbf{M} - \mathbf{C}\| = \|\mathbf{N} - \mathbf{R}\|$$

$$:: \Delta ABM \cong \Delta PQN$$

$$180 - \angle AMB = 180 - \angle PNQ$$

$$\angle AMC = \angle PNR$$

from SAS congurancy  $\rightarrow$ 

$$\triangle AMC \cong \triangle PNR$$

Therefore  $\rightarrow$ 

$$\|\mathbf{A} - \mathbf{C}\| = \|\mathbf{P} - \mathbf{R}\|$$

from triangle ABC and PQR  $\rightarrow$ 

$$\|\mathbf{A} - \mathbf{M}\| = \|\mathbf{P} - \mathbf{N}\|$$

$$\|\mathbf{M} - \mathbf{C}\| = \|\mathbf{N} - \mathbf{R}\|$$

$$\angle AMC = \angle PNR$$

from SAS congurancy  $\rightarrow$ 

$$\triangle AMC \cong \triangle PNR$$

Hence proved

7/7