

Aug 10, 2020

◆ Total RNA and DNA in microalgae: The extraction and quantification

Yingyu YY Hu¹, Zoe V Finkel¹

¹Dalhousie University

1 Works for me

This protocol is published without a DOI.

Marine Microbial Macroecology Lab Tech. support email: ruby.hu@dal.ca

ABSTRACT

This assay protocol for total RNA and DNA is adapted from Berdalet E. et al. and Liefer J.D. et al.

RNA and DNA are extracted from microalgae samples and then quantified by fluorochrome SYBR Green II.

Berdalet E, Roldán C, Olivar MP, Lysnes K. Quantifying RNA and DNA in planktonic organisms with SYBR Green II and nucleases. Part A. Optimisation of the assay. Scientia Marina. https://doi.org/10.3989/scimar.2005.69n11

Berdalet E, Roldán C, Olivar MP. Quantifying RNA and DNA in planktonic organisms with SYBR Green II and nucleases. Part B. Quantification in natural samples. Scientia Marina. https://doi.org/10.3989/scimar.2005.69n117

Liefer JD, Garg A, Fyfe AH, Irwin AJ, Benner I, Brown CM, Follows MJ, Omta AW and Finkel ZV. The Macromolecular Basis of Phytoplankton C:N:P Under Nitrogen Starvation. Front. Microbiol.. https://doi.org/10.3389/fmicb.2019.00763

PROTOCOL CITATION

Yingyu YY Hu, Zoe V Finkel 2020. Total RNA and DNA in microalgae: The extraction and quantification. **protocols.io**

https://protocols.io/view/total-rna-and-dna-in-microalgae-the-extraction-and-bbnwimfe

KEYWORDS

RNA, DNA, SYBR Green II, DNase, RNase, microalgae, fluorescence

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

•

CREATED

Jan 22, 2020

LAST MODIFIED

Aug 10, 2020

PROTOCOL INTEGER ID

32182

GUIDELINES

The requirement of micralgae sample is of no higher than 50 ug protein (or 100 ug carbon) per sample, considering the optimized linear range of standard curve for DNA is $0\sim100$ ng/mL and RNA is $0\sim300$ ng/mL.

Microalgae samples are collected on polycarbonate filter and kept frozen under -80 °C.

MATERIALS

NAME	CATALOG #	VENDOR
Nuclease decontamination solution	11-05-03-01	IDT
SYBR $^{\text{\tiny{M}}}$ Green II RNA Gel Stain (10000X concentrate in DMSO stored at -20 C)	S7564	Thermofisher
Tris solution (1M pH 8 RNase-free)	AM9851	Thermofisher
EDTA buffer (0.5M DNase/RNase free)	EDT333.100	Bioshop
N-Lauroylsarosine sodium salt solution (20% RNase/DNase free)	L744-50mL	Sigma Aldrich
DEOXYRIBONUCLEASE1 RNase and Protease Free	DRB002.10	Bioshop
Ribonuclease A from bovine pancreas	R6513-50MG	Sigma Aldrich
Deoxyribonucleic acid from calf thymus	D4522-1MG	Sigma Aldrich
E. coli Total RNA	AM7940	Thermofisher
Magnesium chloride solution	63069-100ML	Sigma Aldrich
Calcium chloride solution	21115-100ML	Sigma Aldrich
UltraPure™ DNase/RNase-Free Distilled Water	10977023	Thermofisher

MATERIALS TEXT

- Filter forceps
 blunt end, stainless steel
 Millipore XX6200006P
- LYSING TUBES

 MATRIX D 2 mL/15 mL

 MP BIOMEDICALS 116913500/116933050
- Microcentrifuge Tubes
 1.7 mL/0.6 mL
 Axygen Scientific MCT-175-C/MCT-060-L-C
- Screw-Cap Centrifuge Tube 5 mL VWR 10002-738
- Falcon® Centrifuge Tubes
 Polypropylene, Sterile, 15 mL
 Corning® 352096
- Falcon® Centrifuge Tubes
 Polypropylene, Sterile, 50 mL
 Corning® 352070
- Fastprep-24 5G™ Sample Preparation Instrument
 MP Biomedicals 116005500

VWR ANALOG VORTEX MIXER

VWR 10153-838

With tube insert

SHAKING INCUBATOR
71L
Corning® LSE™ 6753

Finnpipette Stepper Pipette
Thermo Scientific™ 4540000

Finntip™ Stepper Pipette Tips 500 uL Thermo Scientific™ 9404170

96-Well Black Microplates
Polystyrene
Greiner Bio-One 655076

Black Vinyl Films for Fluorescence and Photoprotection

VWR 89087-692

EQUIPMENT

NAME	CATALOG #	VENDOR
BT Barrier Pipet Tips	BT1250, BT100, BT10	VWR international Ltd
Falcon® Centrifuge Tubes	352096	VWR international Ltd
A2 Biosafety Cabinet	302419000	
CENTRIFUGE 5430 R	MP2231000510	
VWR ANALOG VORTEX MIXER	10153-838	VWR international Ltd
Finnpipette Stepper Pipette	4540000	Fisher Scientific
Microcentrifuge Tubes	MCT-175-C/MCT-060-L-C	VWR international Ltd
Screw-Cap Centrifuge Tube	10002-738	VWR international Ltd
Falcon® Centrifuge Tubes	352070	VWR international Ltd
SHAKING INCUBATOR	6753	
Varioskan LUX Multimode Microplate Reader	VL0L00D0	
Filter forceps	XX6200006P	Emdmillipore
LYSING TUBES	116913500/116933050	VWR international Ltd
Fastprep-24 5G™ Sample Preparation Instrument	116005500	VWR international Ltd
FreeZone® 2.5 L Benchtop Freeze Dryers	700202000	VWR international Ltd
Finntip™ Stepper Pipette Tips	9404170	Fisher Scientific
96-Well Black Microplates	655076	
Black Vinyl Films for Fluorescence and Photoprotection	89087-692	

RNA and DNA extraction 2h

1 Freeze dry samples.

Freeze-drying should be as short as possible to reduce sample degradation.

- 2 Expose biosafety cabinet to UV light for **©00:15:00** and clean working surface with decontamination solution.
- 3 Prepare falcon tubes and tube rack in biosafety cabinet

Number	Tube type	Usage
2	5 mL falcon tubes	EDTA20% sarcosine
3	15 mL falcon tubes	1 M Tris, 5 mM Tris, 1% STEB

4 Prepare Tris buffer [M]5 mM pH8.0

4.1 Pour [M] $\mathbf{1}$ \mathbf{M} PH $\mathbf{8.0}$ Tris into an RNase free 15 mL Falcon tube

4.2 Add \blacksquare 2.5 mL [M]1 M PH8.0 Tris into 500 mL RNase free water in the original package. 5 Prepare STEB ([M]1 %) Require 500 uL for each sample and 500 uL for preparing 0.05% STEB in assay. 5.1 Pour sarcosine ([M]20 %) into an RNase free 5 mL falcon tube. $5.2\,$ Pour EDTA ($\mbox{\scriptsize [M]}{0.5}$ M $\,$) into an RNase free 5 mL falcon tube. 5.3 Pour Tris buffer ([M]5 mM , pH8.0) into an RNase free 15 mL falcon tube. Mix $\square 500 \,\mu l$ sarcosine ([M]20 %), $\square 10 \,\mu l$ EDTA ([M]0.5 M) and $\square 9 \,mL + \square 490 \,\mu l$ Tris buffer ([M]5 mM , |PH8.0 |) to obtain STEB ([M]1 %). Prepare ice bath 6 7 Remove samples from -80°C freezer and place § On ice . Add □500 μl Tris buffer ([M]5 mM , pH8.0) and □500 μl STEB ([M]1 %) to the bead tube. Place tubes § On ice . Transfer sample/blank filter to the tube. Forcepts must be cleaned by [M]70 % volume ethanol. Blank filter should be the same type as the one with samples collected. 20s 10 Vortex immediately then put back § On ice . 30s Disrupt samples on the bead mill at 6.5 m/s. 11 1m 30s Keep tubes § On ice. Check the label on each tube, restore the label if it fades.

13	Disrupt samples on the bead mill at 6.5 m/s.	30s
14	Keep tubes & On ice . Check the label on each tube, restore the label if it fades.	1m 30s
15	Disrupt samples on the bead mill at 6.5 m/s	30s
16	Keep tubes & On ice . Check the label on each tube, restore the label if it fades.	1m 30s
17	Disrupt samples on the bead mill at 6.5 m/s.	30s
18	Continuously shake homogenate in a multi-head vortex at the highest reasonable speed for © 01:00:00 & Room temperature	1h
19	In the biosafety cabinet, aliquot 150 uL homogenates into RNase free 600 uL tubes.	
20	Store at 8-80°C.	
Prepare	e standard and nucleases	
21	RNA primary standard ([M]200 ug/ml)	
	21.1 Add 1 mL Tris buffer ([M]5 mM , pH8.0) to the original package and vortex.	
	21.2 Aliquot 30 uL by stepper with sterile tip to 600 uL RNase free microtubes. Keep frozen at	გ -80 °C .
22	DNA primary standard ([M]500 ug/ml)	
	22.1 Add 2 mL Tris buffer ([M] 5 mM , pH 8.0) to the original package and vortex.	

- 22.2 Aliquot 10 uL by stepper with sterile tip to 600 uL RNase free microtubes. Keep frozen at $\, \it \& \, -80 \, ^{\circ} \it C \,$.
- 23 RNase primary stock ([M]10 mg/ml)
 - 23.1 Add **5 mL** Tris buffer ([M] **5 mM**, [pH**8.0**]) to the original package and vortex.
 - 23.2 Aliquot 30 uL by stepper with sterile tip to 600 uL RNase free microtubes. Keep frozen at 8 -20 °C.
- DNase primary stock ([M] 5 mg/ml = 10,000 U/mL)
 - 24.1 Add $\blacksquare 1$ mL Tris buffer ([M]5 mM , pH8.0) to the original package and vortex.
 - 24.2 Aliquot 100 uL by stepper with sterile tip to 600 uL RNase free microtubes. Keep frozen at & -20 °C.

The assay with nucleases

- 25 Prepare ice bath.
- 26 Expose biosafety cabinet to UV light for © 00:15:00 and clean working surface with decontamination solution.
- 27 Prepare falcon tubes, microtubes and tube racks in biosafety cabinet
 - * Maximum number of samples (including blanks) per assay is 20.

Number	Tube type	Usage
6	5 mL falcon tubes	1 M MgCl ₂
		1 M CaCl ₂
		WS-A
		WS-B
		WS-C
		SG-II WS
2	15 mL falcon tubes	5 mM Tris, 0.05% STEB
3	600 uL RNase free tubes	RNase
		900 mM MgCl ₂
		900 mM CaCl ₂
2	1.7 mL RNase free tubes	RNA standard
		DNA standard
33	1.7 mL RNase free tubes	standards reaction
N=Samples + blanks	1.7 mL RNase free tubes	sample dilution
3N	1.7 mL RNase free tubes	diluted sample reaction
5	Microtube racks	Microtubes
1	Tube rack	Falcon tubes

28 Organize and label the tubes as shown below

Set 1: Sample dilution

1	2	3	4	5	6	7	8	9	 Blank

Set 2: Standards

Tubes A	R1A	R2A	R3A	R4A	R5A	R6A	D1A	D2A	D3A	D4A	D5A
Tubes B											
Tubes C	R1C	R2C	R3C	R4C	R5C	R6C	D1C	D2C	D3C	D4C	D5C

Set 3: Sample reaction

Tubes A	1A	2A	3A	4A	5A	6A	7A	8A	9A	 BlankA
Tubes B	1B	2B	3B	4B	5B	6B	7B	8B	9B	 BlankB
Tubes C	1C	2C	3C	4C	5C	6C	7C	8C	9C	 BlankC

29 Label tubes for reagents as following.

Add Tris buffer ([M]5 mM , pH8.0) to the reagent tubes:

Reagent	5 mM Tris (uL)
0.05% STEB	9X1000+500
RNase	190
900 mM MgCl ₂	20
900 mM CaCl ₂	20
WS-A	2X1000+820
WS-B	2X1000+820
WS-C	2X1000+940
RNA	990+495
DNA	998

- 30 Add $\bigcirc 900 \ \mu I$ Tris buffer ([M]5 mM , pH8.0) to each tube in Set 1
- 31 Add Tris buffer (${\tt [M] 5~mM}$, ${\tt pH8.0}$) to the tubes in Set 2. The unit of volume is uL.

Tubes A											
Tubes B											550
Tubes C	600	590	575	550	500	450	590	580	560	530	500

32 Add Tris buffer ([M] 5 MM , [PH 8.0) to tubes in Set 3. The unit of volume is uL.

Tubes A	650	650	650	650	650	650	650	650	650	 650
Tubes B	650	650	650	650	650	650	650	650	650	 650
Tubes C	600	600	600	600	600	600	600	600	600	 600

- 33 Prepare STEB ([M] 0.05 %)
 - 33.1 Add \blacksquare 500 μ l STEB ([M]1 %) to 0.05% STEB tube, and vortex.
- 34 Add **250 μl** STEB ([M]**0.05** %) to Set 2.
- 35 Place RNase, DNase primary stock, RNA primary standard, DNA primary standard and samples 8 On ice.
- Turn on refrigerated centrifuge and set the temperature to 84 °C.

- 37 Turn on shaker/incubator and set temperature to $\ \mbox{\o 37\ ^{\circ}C}$.
- 38 Prepare [M]900 mM MgCl₂
 - 38.1 Pour [M] \mathbf{M} MgCl₂ solution into 5 mL RNase free Falcon tube
 - 38.2 Transfer \blacksquare 180 μ l [M]1 M MgCl₂ solution into 900 mM MgCl₂ tube
- 39 Add **30** μl [M]**900 mM** MgCl₂ to WS-A and WS-B
- 40 Prepare [M]900 mM CaCl₂
 - 40.1 Pour [M] M CaCl₂ solution into 5 mL RNase free Falcon tube
 - 40.2 Transfer \blacksquare 180 μ l [M]1 M CaCl₂ solution into 900 mM CaCl₂ tube
- 41 Add **□60 μl** [M]**900 mM** CaCl₂ to WS-A and WS-B
- Prepare RNase working solution [M]0.5 mg/ml

Add 10 µl RNase primary stock ([M]10 mg/ml) to RNase tube

- 43 Add Δ60 μl [M]0.5 mg/ml RNase to WS-B and WS-C, keep WS-B and WS-C & On ice.
- 44 Add **G0 μl** DNase primary stock ([M] 5 mg/ml) to WS-A, keep WS-A δ On ice.
- 45 Centrifuge extracted samples **310000** x g, 4°C 00:04:00
- 46 Prepare RNA secondary standard [M]2 ug/ml

Add 15 µl RNA primary standard to RNA standard tube and vortex. Keep & On ice.

47 Prepare DNA secondary standard [M]1 ug/ml

Add 22 µl DNA primary standard to DNA standard tube and vortex. Keep § On ice.

- 48 Load $\mathbf{50} \, \mu \mathbf{l}$ WS-A to Tubes A in Set 2 and Set 3.
- 49 Load **50 μl** WS-A to Tubes C in Set 2 and Set 3.
- 50 Load **□50 µI** WS-B to Tubes B in Set 2 and Set 3.
- 51 Load **50 μl** WS-C to Tubes C in Set 2 and Set 3.
- 52 Add **100 μl** centrifuged samples to its corresponding tubes in Set 1. Vortex each tube.
- From Set 1, transfer **250** µl of diluted samples to each corresponding tubes in Set 3.
- $\,$ Add RNA and DNA secondary standards to Set 2 tubes. The unit of volume is uL.

Tubes A	0	10	25	50	100	150	10	20	40	70	100
Tubes B	0	10	25	50	100	150	10	20	40	70	100
Tubes C	0	10	25	50	100	150	10	20	40	70	100

Vortex each tube for **© 00:00:02** and place all tubes into the shaker/incubator at **§ 37 °C**, continuously shaking at 200 RPM for **© 00:20:00**.

Fluorescence reading

- 56 Prepare SYBR Green II working solution (SG-II WS)
 - 56.1 Each 96-well microplate requires 1 mL of SG-II WS.
 - 56.2 Wrap 5 mL tube with foil, add □7 μl SYBR Green II 10,000X concentrate to each one mL Tris buffer (
 [M]5 mM , pH8.0) in biosafety cabinet.

56.3 Load 10 μl SG-II WS to each well in the microplate with 0.5 mL tip of stepper.

Adhere black film on the top of a microplate lid and cover the plate with this lid.

After incubation, stop reaction by vortexing each tube for **©00:00:02** and then place into the fridge.

Allow samples to reach & Room temperature for © 00:02:00 before loading the microplate.

59 Load 190 μl working sample to the microplate.

Standards must be included in each microplate.

	1	2	3	4	5	6	7	8	9	10	11	12
Α	R1A	R2A	R3A	R4A	R5A	R6A	1A	1A	1B	1B	1C	1C
В	R1B	R2B	R3B	R4B	R5B	R6B	2A	2A	2B	2B	2C	2C
С	R1C	R2C	R3C	R4C	R5C	R6C	3A	3A	3B	3B	3C	3C
D	D1A	D2A	D3A	D4A	D5A		4A	4A	4B	4B	4C	4C
Ε	D1B	D2B	D3B	D4B	D5B		5A	5A	5B	5B	5C	5C
F	D1C	D2C	D3C	D4C	D5C		6A	6A	6B	6B	6C	6C
G	9A	9A	9B	9B	9C	9C	7A	7A	7B	7B	7C	7C
Н	Blank A	Blank A	Blank B	Blank B	Blank C	Blank C	8A	8A	8B	8B	8C	8C

60 8 Room temperature Shake black film covered microplate for © 00:10:00

10m

45m

61 Setup microplate reader:

Plate: Greiner F bottom chimney well PP 96 well;

Endpoint reading: Ex 490 nm/Em 520 nm;

Shake: Continuous 5s at 600 rpm

62 Read fluorescence and export data to excel sheet.

Standard curve and calculation

63 RNA standard curve

63.1 Concentrations of RNA standards in the microplate

Standard	2 ug/mL	Tris+WS	0.05% STEB	SG II	Final	
Standard	(uL)	(uL)	(uL)	WS (uL)	(ng/mL)	
R1	0	700	250	50	0	
R2	10	690	250	50	20	
R3	25	675	250	50	50	
R4	50	650	250	50	100	
R5	100	600	250	50	200	
R6	150	550	250	50	300	

- 63.2 Slope of fluorescence in Tube A vs concentration of RNA standard gives $m_{\text{RNA+DNase}}$ Slope of fluorescence in Tube B vs concentration of RNA standard gives $m_{\text{RNA+RNase}}$
- 63.3 Calculate ρ

$$\rho = \frac{m_{RNA+RNase}}{m_{RNA+DNase}}$$

64 Total RNA of the samples

 $ug Total RNA (ml assay)^{-1}$

$$=0.001\times\frac{\left(RFU_{A}-RFU_{A_{Blank}}\right)-\left(RFU_{C}-RFU_{C_{Blank}}\right)}{(1-\rho)}/m_{RNA+DNase}$$

Where.

 RFU_A and RFU_C are the fluorescence in Tube A and Tube C of the same sample.

 $\mathsf{RFU}_{\mathsf{ABlank}}$ and $\mathsf{RFU}_{\mathsf{CBlank}}$ are the fluorescence in Tube A and Tube $_{\mathsf{C}}$ of the blank.

- 65 DNA standard curve
 - 65.1 Concentrations of DNA standards in the microplate

Standard	1 ug/mL	Tris+WS	0.05% STEB	SG II	Final	
Standard	(uL)	(uL)	(uL)	WS (uL)	(ng/mL)	
D1	10	690	250	50	10	
D2	20	680	250	50	20	
D3	40	660	250	50	40	
D4	70	630	250	50	70	
D5	100	580	250	50	100	

- 65.2 Slope of fluorescence in Tube A vs concentration of DNA standard gives $m_{\text{DNA+DNase}}$ Slope of fluorescence in Tube B vs concentration of DNA standard gives $m_{\text{DNA+RNase}}$
- 65.3 Calculate δ

$$\delta = \frac{m_{DNA+DNase}}{m_{DNA+RNase}}$$

66 Total DNA of the samples

 $ug\ Total\ DNA\ (ml\ assay)^{-1}$

$$=0.001\times\frac{\left(RFU_B-RFU_{B_{Blank}}\right)-\left(RFU_C-RFU_{C_{Blank}}\right)}{(1-\delta)}/m_{DNA+RNase}$$

Where.

 RFU_B and RFU_C are the fluorescence in Tube B and Tube C of the same sample

 $\mathsf{RFU}_\mathsf{BBlank}$ and $\mathsf{RFU}_\mathsf{CBlank}$ are the fluorescence in Tube B and Tube $_\mathsf{C}$ of the blank.

67 Dilution factor=40

If.

- Sample is extracted by 1 mL extraction reagent
- In Set 1, sample is diluted to 1/10
- In Set 3, diluted by Tris and all working solutions to 250/950
- In microplate, diluted by SG-II WS to 190/200