UROPS Project 16124 Full report Financial Mathematics with Python

Wang Zexin March 29, 2017

Contents

1	Der	ivation of Black Scholes PDE	3					
	1.1	Basics	3					
	1.2	Delta-hedging Argument	4					
	1.3	Replicating portfolio	5					
2	Fini	Finite Difference Model for Numerical PDE						
	2.1	One factor model	6					
	2.2	Feynman–Kac formula	7					
	2.3	Crank–Nicolson method	8					
3	Var	iance Reduction Techniques for Monte Carlo Simulation	9					
	3.1	Control Variate	9					
	3.2	Stratified Sampling	10					
	3.3	Importance Sampling	11					
4	Eur	ropean call	12					
	4.1	Closed-form formula	12					
	4.2	Numerical PDE	13					
	4.3	Monte Carlo Simulation	14					
5	European put							
	5.1	Closed-form formula	15					
	5.2	Numerical PDE						
	5.3	Monte Carlo Simulation	17					
6	Am		18					
	6.1	Closed-form formula						
	6.2	Numerical PDE						
	6.3	Monte Carlo Simulation	20					
7	American put							
	7.1	Closed-form formula						
	7.2	Numerical PDE	22					
	7.3	Monte Carlo Simulation	23					
8	Barrier option 24							
	8.1	Closed-form formula						
	8.2	Numerical PDE	25					
	8.3	Monte Carlo Simulation	26					

1 Derivation of Black Scholes PDE

1.1 Basics

We assume that the following two SDE hold:

$$dM_t = rM_t dt$$

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

We assume that the following $\mathrm{It} \hat{o}'\mathrm{s}$ Lemma hold:

As
$$dS_t = \mu S_t dt + \sigma S_t dW_t$$
,

$$dV_t = \left(\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial V}{\partial S}\right) dt + \frac{\partial V}{\partial S} dS_t$$

1.2 Delta-hedging Argument

Our first aim is to find
$$\phi_t$$
 for $\Pi_t = V_t - \phi_t S_t$ such that
$$d\Pi_t = dV_t - \phi_t dS_t \text{(Self-financing)}$$

From the equations, we can obtain that

 $d\Pi_t = r\Pi_t dt (\text{risk free})$

$$r\Pi_t dt = dV_t - \phi_t dS_t$$

$$r(V_t - \phi_t S_t) dt = dV_t - \phi_t dS_t$$

$$dV_t = r(V_t - \phi_t S_t) dt + \phi_t dS_t$$
By Itô's Lemma,

$$dV_t = \left(\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial V}{\partial S}\right) dt + \frac{\partial V}{\partial S} dS_t$$

Hence we obtain two equations:

$$\phi_t = \frac{\partial V}{\partial S}$$

$$r(V_t - \phi_t S_t) = \frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S_t^2 \frac{\partial V}{\partial S}$$

$$r(V_t - \frac{\partial V}{\partial S}S_t) = \frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial V}{\partial S}$$

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial V}{\partial S} + r \frac{\partial V}{\partial S} S_t - r V_t = 0$$

At time t, we have

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial V}{\partial S} + r \frac{\partial V}{\partial S} S - rV = 0$$

1.3 Replicating portfolio

Our aim is to find a_t and b_t such that $\Pi_t = a_t S_t + b_t M_t \text{ can entirely replicate } V_t$ And also, the self-financing condition holds:

$$d\Pi_t = a_t dS_t + b_t dM_t$$

As
$$dS_t = \mu S_t dt + \sigma S_t dW_t$$
 and $dM_t = rM_t dt$,

$$d\Pi_t = a_t (\mu S_t dt + \sigma S_t dW_t) + b_t (rM_t dt)$$

$$= (a_t \mu S_t + rb_t M_t) dt + (\sigma a_t S_t) dW_t$$

By Itô's Lemma,

$$\begin{split} dV_t &= (\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial V}{\partial S}) dt + \frac{\partial V}{\partial S} dS_t \\ &= (\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial V}{\partial S}) dt + \frac{\partial V}{\partial S} (\mu S_t dt + \sigma S_t dW_t) \\ &= (\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial V}{\partial S} + \frac{\partial V}{\partial S} \mu S_t) dt + (\sigma S_t \frac{\partial V}{\partial S}) dW_t \end{split}$$

As Π_t fully replicates V_t ,

$$d\Pi_t = (a_t \mu S_t + rb_t M_t)dt + (\sigma a_t S_t)dW_t = dV_t$$

Also by Itô's Lemma,

$$dV_t = \left(\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial V}{\partial S} + \frac{\partial V}{\partial S} \mu S_t\right) dt + \left(\sigma S_t \frac{\partial V}{\partial S}\right) dW_t$$

Hence we obtain that,

$$a_t = \frac{\partial V}{\partial S}$$

$$a_t \mu S_t + r b_t M_t = \frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S_t^2 \frac{\partial V}{\partial S} + \frac{\partial V}{\partial S} \mu S_t$$

$$\begin{split} \frac{\partial V}{\partial S} \mu S_t + r b_t M_t &= \frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S_t^2 \frac{\partial V}{\partial S} + \frac{\partial V}{\partial S} \mu S_t \\ r b_t M_t &= \frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S_t^2 \frac{\partial V}{\partial S} \\ r a_t S_t + r b_t M_t &= \frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S_t^2 \frac{\partial V}{\partial S} + r a_t S_t \\ r V_t &= \frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S_t^2 \frac{\partial V}{\partial S} + r \frac{\partial V}{\partial S} S_t \\ \frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S_t^2 \frac{\partial V}{\partial S} + r \frac{\partial V}{\partial S} S_t - r V_t &= 0 \\ \text{Hence,} \end{split}$$

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial V}{\partial S} + r \frac{\partial V}{\partial S} S - r V = 0$$

- 2 Finite Difference Model for Numerical PDE
- 2.1 One factor model

2.2 Feynman–Kac formula

2.3 Crank-Nicolson method

- 3 Variance Reduction Techniques for Monte Carlo Simulation
- 3.1 Control Variate

3.2 Stratified Sampling

3.3 Importance Sampling

- 4 European call
- 4.1 Closed-form formula

- 5 European put
- 5.1 Closed-form formula

- 6 Amercian call
- 6.1 Closed-form formula

7 American put

7.1 Closed-form formula

_	•	78 AF /	\sim 1	a •	1 , •
7	.7	Monte	('arla	Simil	lation
	.)	vionice	Carro		iauion

- 8 Barrier option
- 8.1 Closed-form formula