Sept 2, 2020 Math 251: Quiz 2

Name: _____

__ / **2**!

There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. **Show all work for full credit.**

- **1. [11 points]** Let P(1,4) be a point on the graph of $f(x) = \frac{8x}{x+1}$.
 - **a**. Find the slope of the secant line passing through P and the point Q(0, f(0)).
 - **b**. Find the slope of the secant line passing through P and the point Q(3, f(3)).
 - **c.** The table below lists the slope of the secant line passing through the point P and the point Q(x, f(x)) for several values of x.

X	0.9	0.99	0.999	1.001	1.01	1.1
` ′	3.78947					
m_{sec}	2.10526	2.01005	2.00100	1.99900	1.99005	1.90476

Use the information in the table to estimate the slope of the tangent line to f(x) at the point P(1,4).

- **d**. Use the slope from part (c) above to write an equation of the tangent line at point *P*.
- **e**. Below is a sketch of the graph of $f(x) = \frac{8x}{x+1}$. Sketch the tangent line to the graph at the point *P*.

2. [9 points] Use the graph of the function of f(x) to answer the following questions. Give the most complete answer; if the limit is infinite, indicate that with ∞ or $-\infty$. If a value does not exist, write DNE.

a.
$$f(1) =$$

b.
$$f(4) =$$

c.
$$f(6) =$$

d.
$$\lim_{x \to -3^-} f(x) =$$
 e. $\lim_{x \to -3} f(x) =$ **f.** $\lim_{x \to 1} f(x) =$

e.
$$\lim_{x \to -3} f(x) =$$

f.
$$\lim_{x \to 1} f(x) =$$

g.
$$\lim_{x \to 4^+} f(x) =$$
 h. $\lim_{x \to 4} f(x) =$ **i**. $\lim_{x \to 6} f(x) =$

h.
$$\lim_{x \to A} f(x) =$$

i.
$$\lim_{x \to 6} f(x) =$$

3. [5 points] On the axes below, sketch a graph satisfying all of the properties listed below.

$$\lim_{x \to 2^{-}} f(x) = 5, \quad \lim_{x \to 2^{+}} f(x) = 1, \quad \text{f(2)=3,} \quad \lim_{x \to 4} f(x) = 3, \quad f(4) = 0$$

