Université Badji Mokhtar Annaba Département d'informatique

LicenceModule : Sécurité informatiqueSemestre : 06Durée : 1H 00

Nom (en Majuscule svp):	Prénom :	Groupe:
-------------------------	-----------------	----------------

Micro interrogation

Documents non autorisés, Clarté de la copie exigée Important : une ou plusieurs des propositions de réponse sont correctes

Exercice 1: (06 points)

- 1) Quel service de sécurité informatique est chargé de garantir que les utilisateurs sont véritablement qui ils prétendent être avant de leur permettre l'accès aux ressources système ou aux données sensibles ?
 - a. Disponibilité
 - b. Authentification
 - c. Intégrité
 - d. Non-répudiation
- 2) Quel type d'attaque vise à perturber la disponibilité d'un service en submergeant sa capacité à répondre aux demandes légitimes avec un trafic excessif provenant de multiples sources ?
 - a. Attaque par phishing
 - b. Attaque par force brute
 - c. Attaque DDoS
 - d. Injection SQL
- 3) Quel mesure de sécurité informatique est principalement utilisé pour détecter et prévenir les attaques en temps réel sur un réseau ?
 - a. Firewall
 - b. Antivirus
 - c. IDS (Intrusion Detection System)
 - d. VPN (Virtual Private Network)
- 4) Quelle méthode de chiffrement classique consiste à déplacer chaque lettre du texte clair d'un certain nombre de positions dans l'alphabet, comme dans le chiffre de César ?
 - a. Chiffrement par transposition
 - b. Chiffrement à clé publique
 - c. Chiffrement par substitution
 - d. Chiffrement à clé secrète
- 5) Dans la cryptographie asymétrique, le chiffrement se fait avec :
 - a. La clé publique de l'émetteur
 - b. La clé publique de la destination
 - c. La clé privée de l'émetteur
 - d. La clé privée de la destination
- 6) Quel concept de sécurité informatique permet de vérifier l'intégrité et la non-répudiation d'un message ou d'un document électronique ?
 - a. La signature numérique
 - b. Les certificats numériques
 - c. La cryptographie asymétrique
 - d. L'autorité de certification
- 7) La méthode de Hashage génère :
 - a. Une empreinte dont la taille dépend de la donnée en entrée.
 - b. Une clé privée.
 - c. Un condensat (hash) de taille fixe.

- 8) La signature numérique consiste en :
 - a. Condensat (hash) du message chiffré avec la clé privée de la destination.
 - b. Condensat (hash) du message chiffré avec la clé privée de la source.
 - c. Condensat (hash) du message chiffré avec la clé publique de la source.
 - d. Condensat (hash) du message chiffré avec la clé publique de la destination.
- 9) Le certificat numérique contient (plus d'une réponse):
 - a. La clé publique de l'autorité de certification
 - b. La clé publique du propriétaire du certificat
 - c. La clé privée de l'autorité de certification
 - d. La signature du certificat
- 10) Un certificat numérique est signé avec :
 - a. La clé publique du possesseur du certificat
 - b. La clé privée du possesseur du certificat
 - c. La clé publique de l'autorité de certification
 - d. La clé privée de l'autorité de certification
- 11) Pour vérifier la validité d'un certificat électronique on doit vérifier
 - a. Uniquement la date de validité
 - b. Uniquement la signature du certificat
 - c. La date de validité et la signature du certificat
 - d. La clé publique

Exercice 2 (06 points): Déchiffrement par Transposition

Clé de Transposition: "31425"

Déchiffrez le cryptogramme en utilisant la clé de transposition donnée.

M= PAS DE TRICHAGE SVP

Matrice

Exercice 3 (8 points): RSA

Bob choisit comme nombre premier p = 17 et q = 19.

Alice et lui se fixent un protocole RSA dans lequel les messages sont des nombres en base 10 que l'on code par bloc de 2 chiffres.

Alice veut envoyer le message "46 27 39".

- 1. Donnez la clé publique de Bob : (N, e) : (323, 5)
- 2. Donnez la clé secrète d de Bob : (N, d) : (323, 173) « Veuillez regarder la vidéo que j'ai envoyée pour calculer D»
- 3. Ecrivez le message chiffré qu'Alice envoie à Bob.

 $46^{5} \mod 323 = 88$

 $27^{5} \mod 323 = 278$

 $39^{5} \mod 323 = 286$

4. Déchiffrez le message qu'a reçu Bob et vérifiez que c'est bien celui qu'a envoyé Alice.

 $88^{173} \mod 323 = 46$

 $278^{173} \mod 323 = 27$

 $286^{173} \mod 323 = 39$