Last time:

- · quadratic forms & symmetric matrices
- · Column and null spaces
- · solving systems of linear equations

Today:

- · LU decomposition
- · QR decomposition

Goal of decompositions: write any matrix as a product of other matrices that are easier to work with (e.g. easily invertible)

Problem 1: LU-decomposition

$$\operatorname{Let} A = \begin{bmatrix} 12 & 9 & 3 \\ -4 & 1 & 7 \\ 4 & 3 & 2 \end{bmatrix} \text{ and } L = \begin{bmatrix} 3 & 0 & 0 \\ -1 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix} \text{ and } U = \begin{bmatrix} 4 & 3 & 1 \\ 0 & 2 & 4 \\ 0 & 0 & 1 \end{bmatrix}.$$

(a) Verify that LU = A, so this is an LU-decomposition of A.

$$\begin{bmatrix} 3 & 0 & 0 \\ -1 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 3 & 1 \\ 0 & 2 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$

(b) Let
$$\mathbf{b} = \begin{bmatrix} 6 \\ 2 \\ 1 \end{bmatrix}$$
. Find all solutions to $L\mathbf{y} = \mathbf{b}$. (You should get that $\mathbf{y}_0 = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$ is the only solution.)

(c) Find all solutions to $A\mathbf{x} = \mathbf{b}$ with \mathbf{b} as in (b). (Hint: This means solving $LU\mathbf{x} = \mathbf{b}$, which is the same as $U\mathbf{x} = \mathbf{y}_0$. Why?)

$$U = \begin{bmatrix} 4 & 3 & 1 \\ 0 & 2 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$

Problem 2: QR-decomposition

Let
$$A=egin{bmatrix} 2&0&1\\0&0&5\\1&5&3 \end{bmatrix}$$
 , and define \mathbf{v}_i to be the i th column of A .

(a) Apply the Gram–Schmidt process to $\{v_1, v_2, v_3\}$. The output vectors w_1, w_2, w_3 that you obtain should all be nonzero, and as a check on your work make sure that they are pairwise orthogonal.

(b) Examine your calculations from (a) to express each \mathbf{v}_i as a linear combination of the orthogonal basis of \mathbf{w}_j 's. (This should be found from the work already done in (a); do *not* directly compute the projections of \mathbf{v}_i onto each \mathbf{w}_j , as that would be defeating the point of the work in (a).) Then compute the unit vectors $\mathbf{w}_j' = \mathbf{w}_j / \|\mathbf{w}_j\|$ and express \mathbf{v}_i as a linear combination of the \mathbf{w}_j' 's.

c) Use (b) to find a decomposition $A = QR$ where Q is an orthogonal matrix and R is an upper triangular matrix. Chec your answer is correct by computing the product QR of the Q and R that you find.	ck
your answer is correct by computing the product QR or the Q and R that you find.	

Hint: when computing R^{-1} , you may find it convenient to first extract $\sqrt{5}$ as a factor from every entry of R (i.e., write $R=\sqrt{5}R'$ for an upper triangular matrix R', so $R^{-1}=(1/\sqrt{5}){R'}^{-1}$; it is easier to find ${R'}^{-1}$.)

Problem 1: LU-decomposition

$$\operatorname{Let} A = \begin{bmatrix} 12 & 9 & 3 \\ -4 & 1 & 7 \\ 4 & 3 & 2 \end{bmatrix} \text{ and } L = \begin{bmatrix} 3 & 0 & 0 \\ -1 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix} \text{ and } U = \begin{bmatrix} 4 & 3 & 1 \\ 0 & 2 & 4 \\ 0 & 0 & 1 \end{bmatrix}.$$

(a) Verify that LU = A, so this is an LU-decomposition of A.

(b) Let $\mathbf{b} = \begin{bmatrix} 6 \\ 2 \\ 1 \end{bmatrix}$. Find all solutions to $L\mathbf{y} = \mathbf{b}$. (You should get that $\mathbf{y}_0 = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$ is the only solution.)

(c) Find all solutions to $A\mathbf{x} = \mathbf{b}$ with \mathbf{b} as in (b). (Hint: This means solving $LU\mathbf{x} = \mathbf{b}$, which is the same as $U\mathbf{x} = \mathbf{y}_0$. Why?)

Problem 2: QR-decomposition

Let
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 0 & 5 \\ 1 & 5 & 3 \end{bmatrix}$$
 , and define \mathbf{v}_i to be the i th column of A .

(a) Apply the Gram-Schmidt process to $\{v_1, v_2, v_3\}$. The output vectors $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ that you obtain should all be nonzero, and as a check on your work make sure that they are pairwise orthogonal.

(b) Examine your calculations from (a) to express each \mathbf{v}_i as a linear combination of the orthogonal basis of \mathbf{w}_j 's. (This should be found from the work already done in (a); do *not* directly compute the projections of \mathbf{v}_i onto each \mathbf{w}_j , as that would be defeating the point of the work in (a).) Then compute the unit vectors $\mathbf{w}_j' = \mathbf{w}_j/\|\mathbf{w}_j\|$ and express \mathbf{v}_i as a linear combination of the \mathbf{w}_j' 's.

(c)	Use (b) to find a decomposition $A=QR$ where Q is an orthogonal matrix and R is an upper triangular matrix. Check your answer is correct by computing the product QR of the Q and R that you find.
(d)	Use (c) to find A^{-1} as an explicit 3×3 matrix (with entries that are fractions with denominator that is a factor of 10, no
(u)	$\sqrt{5}$ anywhere), and check that its product against A on the left or the right is equal to I_3 ; it is fine to compute just one of those products.
	Hint: when computing R^{-1} , you may find it convenient to first extract $\sqrt{5}$ as a factor from every entry of R (i.e., write $R = \sqrt{5}R'$ for an upper triangular matrix R' , so $R^{-1} = (1/\sqrt{5}){R'}^{-1}$; it is easier to find R'^{-1} .)