RE-BALANCING FLIGHT ROUTES INEQUALITIES

Group 42,

Vincent Coriou, Pierre Fouché, Robin Leurent, Alexandre Poussard

Outline:

- I) Data Analysis
- II) Dataset Augmentation
- III) Re-Balanced Flight Distribution
- IV) Conclusion

Initial dataset - GIF plot

1) Airports:

- Unbalanced distribution
- North = 4103 Airports
- South = 3081 Airports
- Mercator Projection

Airports colored by Regions (North=cyan, South=red)

2) Flight Routes:

- Connected Airports:
 - o 1613 in the North
 - o 1566 in the South
- Unbalanced types of routes
- Hubs (degree > 100):
 - o 51 the North
 - o 12 in the South

Repartition of route types

World Flight Routes

Hubs by Regions

3) Airplanes Manufacturers & Airline Companies:

- Airbus > Boeing > Embraer
- Airbus + Boeing = all market
- Embraer = regional flights
- Top companies:
 - North = 24
 - \circ South = 6

Route flights with Embraer Airplanes

4) Diffusion:

Heat Diffusion from Amsterdam

Heat Diffusion from Beijing

Dataset Augmentation:

- 7184 airports / 4005 disconnected
- Predict missing routes \rightarrow re-balanced flight routes inequalities?
- Minimize number of hops to the closest hubs.
- Minimize distance of the route.
- Customized preferential attachment algorithm:
 - Cost function: (delta hyperparameter) $L(j) = \delta d_{ij} + h_j$
 - Find the m nodes minimizing: $k_l = \underset{j \text{ in } V \setminus \{k_p: 0$
 - Connect to these nodes

$$\underset{j \text{ in } V \setminus \{k_p: 0$$

$$L(j) = \delta d_{ij} + h_j$$

 δ : hyperparameter L: value of the cost function

$$L(j) = \delta d_{ij} + h_j$$

 δ : hyperparameter

L: value of the cost function

$$\delta = 0.6$$

$$L(j) = \delta d_{ij} + h_j$$

 δ : hyperparameter

L: value of the cost function

$$\delta = 1.2$$

$$L(j) = \delta d_{ij} + h_j$$

 δ : hyperparameter L: value of the cost function

Distance attachment algorithm :

<u>Re-Balanced</u> <u>Flight Distribution:</u>

- Select the 20 biggest airports in each continent (= new hubs).
- Keep subgraph of hubs disconnect everything else
- Add hubs' routes if distance <
 10'000 km
- Run previous algorithm.

Best hubs for re-balance

Original Predicted network

Re-Balanced Flight Distribution:

Heat Diffusion from Amsterdam

Re-Balanced Flight Distribution:

Heat Diffusion from Beijing

Conclusion:

- Close network properties:

 - Average degree Number of edges
 - Diameter
- But more South and crosshemispheres routes than before.
- Evenly spread flight routes around the world.
- May reveal emerging airports and world regions.

Re-Balanced dataset - GIF plot

Thank you

Questions?

