1. Moment Generating Function

 $M_X(t) = E(e^{tx})$

Properties:

(a)
$$M_x(t) = (1 - p + pe^t)^n$$
 for binomial(n,p)

(b)
$$M_x^{(n)}(0) = E(X^n)$$

 $\Rightarrow VAR[x] = E[x^2] - E^2[x] = M_x''(0) - [M_x'(0)]^2$

(c)
$$M_x(t) = M_v(t) \Rightarrow XY$$
 has same distribution

(d)
$$M_x(0) = 1$$

(e)
$$M_{ax+b}(t) = M_x(at)e^{bt}$$

(f)
$$M_{X+Y}(t) = M_X(t)M_Y(t)$$
 (X, Y independent)

2. Gama Function $\Gamma(n) = \int_0^\infty u^{n-1} e^{-u} du = (n-1)!$

3. Basic probability property

(a) Conditional Probability and Bayles Theorem

1.
$$P(A|B) = \frac{P(A \cup B)}{P(B)}$$

2. $P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A')P(A')}$

(b) Expectation

1.
$$E(X) = \sum x P_X(x)$$
 or $\int_{-\infty}^{\infty} x f_X(x)$

2.
$$E(c) = c$$

3.
$$E(aX) = aE(X)$$

4.
$$E(X + Y) = E(X) + E(Y)$$

5.
$$E(X) = M'_X(0)$$

(c) Variance and Standard Deviation

1.
$$VAR(X) = E(X^2) - E^2(X) = \sum [(x - E(X))]P_X(x) = E[(x - \mu)^2] = \sigma^2$$

2. $VAR(x) = 0$

2.
$$VAR(c) = 0$$

3.
$$VAR(aX) = a^2 VAR(x)$$

4.
$$VAR(X \pm Y) = VAR(X) + VAR(Y) \pm 2COV(x, y)$$
, $COV(x, y) = E(XY) - E(X)E(Y)$

(d) z-score

 $Z = \frac{x-\mu}{\sigma}$, measures the distance of x from expected

4. Discrete Distributions

(a) Binomial Distribution

Note as
$$X \sim B(n, p)$$

 $P_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$
 $M_X(t) = (1-p-pe^t)^n$
 $E(X) = np, VAR(X) = np(1-p)$

(b) Hyper Geometric Distribution

Note as $X \sim H(N, n, r)$, N:total size, n:total pick, r:size of special subgroup

$$P_X(x) = \frac{\binom{r}{x}\binom{N-r}{N-x}}{\binom{N}{n}}$$

$$E(X) = n\frac{r}{N}$$

$$VAR(X) = n\frac{r}{N}(1 - \frac{r}{N})(\frac{N-n}{N-1})$$

(c) Poisson Process

$$P_X(x) = \frac{e^{-\lambda} \lambda^x}{x!}$$

 λ : average arrival in given time or space

$$E(X) = \lambda$$
, $VAR(X) = \lambda$

When $\lambda = np < 10$, poisson approximates Binomial.

(d) Geometric Distribution

i. X is the r.v of number of total trials (x includes the first success)

$$P_X(x) = (1-p)^{x-1}p, x = 1, 2, 3...$$

 $E(X) = 1/p, VAR(X) = \frac{1-p}{p^2}$

ii. X is the r.v of number of failed trials (x excludes the first success)

$$\begin{split} P_X(x) &= (1-p)^x p, x = 0, 1, 2, \dots \\ M_X(t) &= \frac{p}{1-e^t(1-p)} \\ E(X) &= \frac{1-p}{p}, VAR(X) = \frac{1-p}{p^2} \end{split}$$

(e) Negative Binomial Distribution

X is the r.v of number of trials need to observe the rth success in a sequence of Bernoulli trails where p is the success probability.

$$P_X(x) = {r-1 \choose r-1} p^r (1-p)^{x-r}, x = r, r+1, r+2...$$

$$M_X(t) = (\frac{p}{1-e^t(1-p)})^r$$

$$E(X) = \frac{r}{p}, VAR(X) = \frac{r(1-p)}{p^2}$$

Alternatively, X is the r.v of failures before the
$$r^{th}$$

$$\begin{split} P_X(x) &= \binom{x+r-1}{r-1} p^r (1-p)^x, x = 0, 1, 2 \dots \\ M_X(t) &= (\frac{1-p}{1-pe^t})^r \\ E(X) &= \frac{r(1-p)}{p}, VAR(X) = \frac{r(1-p)}{p^2} \end{split}$$

5. Chebychev's Theorem

$$P(\mu - k\sigma \le x \le \mu + k\sigma) \ge 1 - \frac{1}{k^2}$$

6. Continuous Distributions

(a) Uniform(rectangle) Distribution

$$f_X(x) = \frac{1}{b-a}, a \le x \le b$$

$$F_X(x) = \frac{x-a}{b-a}, a \le x \le b$$

$$E(X) = \frac{a+b}{2}, VAR(X) = \frac{(b-a)^2}{12}$$

(b) Exponential Distribution

$$f_X(x) = \frac{1}{\theta} e^{-\frac{x}{\theta}}, x \ge 0$$

$$F_X(x) = 1 - e^{-\frac{x}{\theta}}, x \ge 0$$

$$M_X(t) = \frac{1}{1 - \theta t}$$

$$E(X) = \theta, VAR(X) = \theta^2$$
Note as $X \sim exp(\theta)$

(c) Gamma Distribution

$$f_X(x) = \frac{1}{\Gamma(n)\theta^n} x^{n-1} e^{-\frac{x}{\theta}}, x \ge 0$$

$$M_X(t) = \frac{1}{(1-\theta t)^n}$$

$$E(X) = n\theta, VAR(X) = n\theta^2$$
Note as $X \sim \Gamma(n, \theta)$

Exponential dist. is a special case of Gamma dist where n = 1. Gamma Distribution can be viewed as a sum of Exponential dists.

$$X \sim \Gamma(n, \theta) \Leftrightarrow X = \sum_{i=1}^{n} X_i, X_i \sim exp(\theta)$$