CS4102 Algorithms

Spring 2021 – Floryan and Horton

Module 3, Day 2

Show DP solution to 0/1 knapsack

(Solution not in textbook)

Show greedy solution to Activity Selection problem (CLRS Section 16.1)

Reminder: 0/1 knapsack

Greedy solution for fractional knapsack doesn't work with the 0/1 version

$$n = 3, C = 4$$

Item	Value	Weight	Ratio
1	3	1	3
2	5	2	2.5
3	6	3	2

- Item 1 first. So x₁ is 1.
 Capacity used is 1 of 4. Profit so far is 3.
- 2. Item 2 next. There's room for it! So x_2 is 1. Capacity used is 3 of 4. Profit so far is 3 + 5 = 8.
- 3. Item 3 would be next, but its weight is 3 and knapsack only has 1 unit left! So x_3 is 0. Total profit is 8. $x_i = (1, 1, 0)$

But picking items 1 and 3 will fit in knapsack, with total value of 9

- Greedy choice left unused room, but we can't take a fraction of an item
- The 0/1 knapsack problem doesn't have the greedy choice property

Reminders about Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Strategy:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Formulate a data structure (array, table) that can look-up solution to any sub-problem in constant time
 - 3. Select a good order for solving subproblems
 - "Bottom Up": Iteratively solve smallest to largest
 - "Top Down": Solve each recursively. (We won't do this for 0/1 knapsack.)

Dynamic programming solution to 0/1

We need to:

 Identify a recursive definition of how a larger solution is built from optimal results for smaller sub-problems.

For 0/1 knapsack, what a <u>sub-problem</u> solution look like? What can be "smaller"?

- Smaller capacity for the knapsack
- Fewer items

Some assumptions and observations

- Given a set S of the objects and a capacity C
 - We assume the optimal solution is O, a subset of S
 - For example, the items in O could be the bolded ones: $S = \{ s_1, s_2, s_3, ..., s_{k-1}, s_k, ..., s_n \}$
 - Note that the last item s_n may or may not be in the solution O
- Let's use subscripts on O_k and S_k when we're talking about the first k items
- BTW, we'll assume C and all w_i are integer values
 - And, most books etc. use "W" for what we're calling C

Recursive Structure

What's a recursive definition of how a solution of size n is built from optimal results for smaller sub-problems? $S = \{ s_1, s_2, s_3, ..., s_{n-1}, s_n \}$

- Let's say $s_n \notin O_n$ (last item is not in optimal solution for S_n):
 - Last item didn't add anything to best solution for smaller subproblem
 - We need optimal solution O_{n-1} for the following smaller subproblem S_{n-1} : n-1 items using <u>same</u> knapsack capacity C
- Let's say $s_n \in O$ (last item is in optimal solution for S_n):
 - Last item contributed w_i to total weight we're carrying
 - We need optimal solution O_{n-1} for the following smaller subproblem S_{n-1} : n-1 items using <u>reduced</u> capacity $C-w_n$

(Note that "getting smaller" decreases number of items and also maybe capacity.)

First Step: Getting Things Started

- For sub-problems, what variables change in size?
 - Maybe C (the capacity) and definitely k (number of items to steal)
- Define what we're calculating: call it Knap(k, w)
 - Note: we'll use "w" for the changing capacity value in Knap(), but keep "C" as the overall total capacity for the entire problem. (Sorry if confusing!)
- Whether we do recursion of work bottom-up, we need to know the smallest cases
- Some small or boundary cases:
 - No knapsack capacity (w=0), can't add an item, so Knap(k, 0) = 0
 - Nothing to steal (k=0), so Knap(0, w) = 0

Three cases to calculate Knap(k, w)

- Three cases for calculating Knap(k, w):
 - 1. There is sufficient capacity to add item s_k to the knapsack, and that creates an optimal solution for k items
 - 2. There is sufficient capacity to add item s_k to the knapsack, and that does **NOT** create an optimal solution for k items
 - 3. There is insufficient capacity to add item s_k to the knapsack
- Case 3 is easy to determine; we'll have to compute whether 1 or 2 is optimal
 - How do we know which is optimal? Compute both, pick larger value!

Case 1: Sufficient capacity and Optimal

- There is sufficient capacity to add item s_k to the knapsack, and that creates an optimal solution for k items
- Thus, our solution for the first k items is when we add item s_k to the optimal solution for the first k-1 items
- But by adding item s_k to the knapsack, we have reduced capacity
 - In particular, we only have \mathbf{w} - $\mathbf{w}_{\mathbf{k}}$ for to steal the first \mathbf{k} - $\mathbf{1}$ items
- So the value for $Knap(k, w) = v_k + Knap(k-1, w-w_k)$

Case 2: Sufficient Capacity but Non-optimal

 There is sufficient capacity to add item s_k to the knapsack, and that does NOT create an optimal solution for k items

- Thus, our solution for the first k items is when we do NOT add item s_k to the solution for the first k-1 items
 - Since we are **not** adding item s_k to the knapsack, the solution is the optimal solution to steal the first k-1 items with the same capacity
 - So Knap(k, w) = Knap(k-1, w)

Case 3: Insufficient Capacity

- There is insufficient capacity to add item s_k to the knapsack
 - This is because $w-w_k < 0$ (i.e. $w < w_k$)

- Then Knap(k, w) = Knap(k-1, w)
 - Since we can't add item s_k to the knapsack, the solution is the same as the first k-1 items with the same capacity
 - Note that this formula is the same as case 2

Putting It All Together

- Recursively define solutions to sub-problems
- Base Case

$$Knap(k,0) = 0$$

Knap(0,w) = 0

Subproblems are smaller!

Recursive Case

Knap(k, w) = max(Knap(k-1, w), Knap(k-1, w-w_k) +
$$v_k$$
)

No room for s_k or not part optimal solution

 s_k is part of optimal solution

Reminders about Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Strategy:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Formulate a data structure (array, table) that can look-up solution to any sub-problem in constant time
 - 3. Select a good order for solving subproblems
 - "Bottom Up": Iteratively solve smallest to largest
 - "Top Down": Solve each recursively. (We won't do this for 0/1 knapsack.)

Lookup Table

 We want a data-structure that allows us to lookup a subproblem value in O(1) time

 Knap(k, w) has two parameters, so two-dimensional array works great.

- Make an array called V[k, w]
 - Store solution to Knap(k, w) at position V[k, w]

Determining the cases

- To determine between cases 1 and 2
 - Simply compute both values, and take the higher

```
if (w-w<sub>k</sub>< 0) // not room for item k
    V[k, w] = V[k-1, w] // best result for k-1 items
else {
    val_with_kth = v<sub>k</sub> + V[k-1, w-w<sub>k</sub>] // Case 1 above
    val_for_k-1 = V[k-1, w] // Case 2 above
    V[k, w] = max( val_with_kth, val_for_k-1 )
}
```

Put Values in Table

- Write a loop that fills in the table one cell at a time
- The table fills in one row at a time, moving rightwards and downwards

V[k,w]	w = 0	w = 1	w = 2	•••	w = C
k = 0	0	0	0	0	0
k = 1	0				
k = 2	0				
•••	0				
k = n	0				

Pseudo-code

```
Knapsack(v, w, C) {
  for (w = 0 \text{ to } C) V[0, w] = 0
  for (k = 0 \text{ to } n) V[k, 0] = 0
  for (k = 1 \text{ to } n) { // loop over all rows
        for (w = 1 \text{ to } C) \{ // \text{loop over all columns} \}
           if (w-w_k < 0) // not room for item k
             V[k, w] = V[k-1, w] // best result for k-1 items
           else {
             val_with_kth = v_k + V[k-1, w-w_k] // Case 1 above
             val_for_k-1 = V[k-1, w] // Case 2 above
             V[k, w] = max(val_with_kth, val_for_k-1)
  return V[n,C]
```

But our solution is only the value!

Value V[n, C] is the optimal value

- To find which items were chosen, we can trace backward through the table starting at V[n, C]
 - If V[k, w] = V[k-1, w], then s_k is not an item in the knapsack (this was from cases 2 and 3). Look at V[k-1, w] next.
 - Otherwise, s_k is an item in the knapsack, and we look at $V[k-1, w-w_k]$ next (this was from case 1)

• More in live session!

Back to Greedy with the Activity Selection Problem

Activity-Selection Problem

- Problem: You and your classmates go on Semester at Sea
 - Many exciting activities each morning
 - Each starting and ending at different times
 - Maximize your "education" by doing as many as possible
 - This problem: they're all equally good!
 - Another problem: they have weights (we need DP for that one)
- Welcome to the activity selection problem
 - Also called interval scheduling

The Activities!

Id	Start	End	Activity
1	9:00	10:45	Fractals, Recursion and Crayolas
2	9:15	10:15	Tropical Drink Engineering with Prof. Bloomfield
3	9:30	12:30	Managing Keyboard Fatigue with Swedish Massage
4	9:45	10:30	Applied ChemE: Suntan Oil or Lotion?
5	9:45	11:15	Optimization, Greedy Algorithms, and the Buffet Line
6	10:15	11:00	Hydrodynamics and Surfing
7	10:15	11:30	Computational Genetics and Infectious Diseases
8	10:30	11:45	Turing Award Speech Karaoke
9	11:00	12:00	Pool Tanning for Engineers
10	11:00	12:15	Mechanics, Dynamics and Shuffleboard Physics
11	12:00	12:45	Discrete Math Applications in Gambling

Generalizing Start, End

Id	Start	End	Len	Activity
1	0	6	7	Fractals, Recursion and Crayolas
2	1	4	4	Tropical Drink Engineering with Prof. Bloomfield
3	2	13	12	Managing Keyboard Fatigue with Swedish Massage
4	3	5	3	Applied ChemE: Suntan Oil or Lotion?
5	3	8	6	Optimization, Greedy Algorithms, and the Buffet Line
6	5	7	3	Hydrodynamics and Surfing
7	5	9	5	Computational Genetics and Infectious Diseases
8	6	10	5	Turing Award Speech Karaoke
9	8	11	4	Pool Tanning for Engineers
10	8	12	5	Mechanics, Dynamics and Shuffleboard Physics
11	12	14	3	Discrete Math Applications in Gambling

Greedy Approach

- 1. Select a first item.
- 2. Eliminate items that are incompatible with that item. (I.e. they overlap, not part of a feasible solution)
- 3. Apply the *greedy choice* (AKA *selection function*) to pick the next item.
- 4. Go to Step 2

What is a good greedy choice for selecting next item?

Some Possibilities

- 1. Maybe pick the next *compatible activity* that starts earliest?
 - "Compatible" here means "doesn't overlap"
- 2. Or, pick the shortest one?
- 3. Or, pick the one that has the least conflicts (i.e. overlaps)?
- 4. Or...?

Activity-Selection

Formally:

Given a set S of n activities

 s_i = start time of activity i

 f_i = finish time of activity i

Find max-size subset A of compatible activities

■ Assume (wlog) that $f_1 \le f_2 \le ... \le f_n$

Activity Selection: A Greedy Algorithm

- So algorithm using the best greedy choice is simple:
 - Sort the activities by <u>finish time</u>
 - Schedule the first activity
 - Then schedule the next activity in sorted list which starts after previous activity finishes
 - Repeat until no more activities
- Or in simpler terms:
 - Always pick the compatible activity that finishes earliest

Optimal Substructure Property

- Remember?
- Detailed discussion on p. 379 (in chapter on Dynamic Programming)
 - If A is an optimal solution to a problem, then the components of A are optimal solutions to subproblems
- Reminder: Example 1, Shortest Path
 - Say P is min-length path from CHO to LA and includes DAL
 - Let P₁ be component of P from CHO to DAL, and P₂ be component of P from DAL to LA
 - P₁ must be shortest path from CHO to DAL, and P₂ must be shortest path from DAL to LA
 - Why is this true? Can you prove it? Yes, by contradiction.
 - Do it! In-class exercise

Activity Selection: Optimal Substructure

- Let k be the minimum activity in the solution A (i.e., the one with the earliest finish time). Then $A \{k\}$ is an optimal solution to $S' = \{i \in S: s_i \ge f_k\}$
 - In words: once activity #1 is selected, the problem reduces to finding an optimal solution for activity-selection over activities in S compatible with activity #1
 - Proof: if we could find optimal solution B' to S' with $|B| > |A \{k\}|$,
 - Then $B \cup \{k\}$ is compatible
 - And $|B \cup \{k\}| > |A|$ -- contradiction! We said A is the overall best.
- Note: book's discussion on p. 416 is essentially this, but doesn't assume we choose the 1st activity

Back to Semester at Sea...

Id	Start	End	Len	Activity
2	1	4	4	Tropical Drink Engineering with Prof. Bloomfield
4	3	5	3	Applied ChemE: Suntan Oil or Lotion?
1	0	6	7	Fractals, Recursion and Crayolas
6	5	7	3	Hydrodynamics and Surfing
5	3	8	6	Optimization, Greedy Algorithms, and the Buffet Line
7	5	9	5	Computational Genetics and Infectious Diseases
8	6	10	5	Turing Award Speech Karaoke
9	8	11	4	Pool Tanning for Engineers
10	8	12	5	Mechanics, Dynamics and Shuffleboard Physics
3	2	13	12	Managing Keyboard Fatigue with Swedish Massage
11	12	14	3	Discrete Math Applications in Gambling

Solution: 2, 6, 9, 11

Visualizing these Activities

ID	Start	End	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	0	6															
2	1	4															
3	2	13															
4	3	5															
5	3	8															
6	5	7															
7	5	9															
8	6	10															
9	8	11															
10	8	12															
11	12	14															

Visualizing these Activities in Solution

ID	Start	End	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	0	6															
2	1	4															
3	2	13															
4	3	5															
5	3	8															
6	5	7															
7	5	9															
8	6	10															
9	8	11															
10	8	12															
11	12	14															

Sorted, Then Showing Selection and Incompatibilities

Book's Recursive Greedy Algorithm

```
RECURSIVE-ACTIVITY-SELECTOR(s, f, k, n)

1 \text{ m} = \text{k} + 1 \text{ // start with the activity after the last added activity}

2 \text{ while m} \leq \text{n and s[m]} < \text{f[k]} \text{ // find the first activity in S}_k \text{ to finish}

3 \text{ m} = \text{m} + 1

4 \text{ if m} \leq \text{n}

5 \text{ return } \{a_m\} \text{ U RECURSIVE-ACTIVITY-SELECTOR}(s, f, m, n)

6 \text{ else return } \emptyset
```

- Add dummy activity a_0 with $f_0 = 0$, so that sub-problem S_0 is entire set of activities S
- Initial call: RECURSIVE-ACTIVITY-SELECTOR(s, f, 0, n)
- Run time is $\theta(n)$, assuming the activities are already sorted by finish times

Non-recursive algorithm

```
greedy-interval (s, f)
 n = s.length
 A = \{a_1\}
 k = 1 # last added
 for m = 2 to n
     if s[m] \ge f[k]
          A = A U \{a_m\}
          k = m
  return A
```

- s is an array of the intervals' start times
- f is an array of the intervals' finish times
- A is the array of the intervals to schedule
- How long does this take?

35

Does Greedy Always Find Optimal Solution?

 Yes, we can prove that the greedy algorithm always "stays ahead"!