Proposal Review

Northeastern University

Model

Singel interval SD Periodic SD

Quasi steady state

Northeastern University

Control and Decision Making in Systems Biology

December 13, 2021

Presenter: Mahdiar Sadeghi

Advisor: Prof. Eduardo Sontag

Committee: Dr. Irina Kareva

Prof. Mark Niedre Prof. Carey Rappaport

Prof. Bahram Shafai

Outline

Model

Metronomic

MDOR

Singel interval SD Periodic SD

Quasi steady state

- 1. Background
- 2. Chemotherapy
- 3. Epidemic
- 4. Acknowledgement

Practice and theory

Practice and theory in engineering and scientific research. The focus is to use modeling to make predictions outside previous experimental settings to come of with a better control/decision.

Proposal Review

Northeastern University

Outline

Background

Chemothera

Model

Optimal contr

MDOR

Epidemic Singel interval SD

Periodic SD

Quasi steady state

Quasi steady state

Cyclophosphamide: innate immune cell recruitment and tumor regression

The current standard of care limits the regimens used primarily to daily dose and maximum-tolerated dose (MTD) treatments.

- ▶ Motivation: Metronomic/intermittent experiments¹ in mice. A lower dose with a higher frequency than MTD was shown to recruit the immune system and reduce the tumor volume.
- Objective: Use optimal control techniques in order to have a better treatment outcome among all possible dosing strategies.

Proposal Review

Northeastern University

Outline

Chemotherapy

Chemotherapy

лодеі Лetronomic

Optimal control

Epidemic Singel interval SD

Periodic SD

Quasi steady state

¹ Junjie Wu and David J Waxman. "Metronomic cyclophosphamide schedule-dependence of innate immune cell recruitment and tumor regression in an implanted glioma model". In: *Cancer letters* 353.2 (2014), p

₹ 272–280.4/26

Optimal control techniques for cancer treatment

Early efforts in using optimal control techniques for cancer treatment started in the 1970s for Radiotherapy² and

The goal is to use optimal control techniques to find a

Chemotherapy³ treatments.

have more realistic models of the system.

Proposal Review

Northeastern
University

Outline

Background

Chemotherapy

Model

Optimal contr

pidemic

Singel interval SD Periodic SD

Quasi steady state

Acknowledgment

similar experimental settings.

mathematically derived optimal regimen (MDOR) to be tested in

A new generation of quantitative experiments made it possible to

²K Bahrami and M Kim. "Optimal control of multiplicative control systems arising from cancer therapy". In: *IEEE Transactions on Automatic Control* 20.4 (1975), pp. 537–542.

³Thomas L Swan George W Vincent. "Optimal control analysis in the chemotherapy of IgG multiple myeloma". In: Bulletin of mathematical biology 39.3 (1977), pp. 317–337.

Model

Singel interval SD Periodic SD

Quasi steady state

Model is fitted to the tumor and immune data in mouse experiments.

$$\dot{T}(t) = k_a T(t) - \frac{k_b C(t) T(t)}{k_c C(t) + T(t)} - k_d T(t) I(t), \tag{1a}$$

$$\dot{I}(t) = qX(t) - k_e T(t)I(t) - k_f C(t)I(t) - k_g Y(t)I(t) - k_h I(t),$$
 (1b)

$$\dot{X}(t) = \frac{qC(t)T(t)}{k_iC(t) + T(t)} - k_jX(t) - k_kX(t)Y(t), \tag{1c}$$

$$\dot{Y}(t) = \frac{I(t)}{k_l + I(t)} - k_m Y(t) C(t), \tag{1d}$$

$$\dot{C}(t) = u(t) - \frac{k_1 C(t)}{k_2 + C(t)}.$$
 (1e)

T:tumor volume. Variables I:immune system, X:immunostimulatory, Y:immunossuppressor, and C:drug are phenomenological.

Fit to the experimental data

The measured tumor volume (left), modelled tumor volume (middle), and modelled immune system (right) for two metronomic regimens.

Proposal Review

Northeastern University

Outline

Sackaround

Chemotherapy

Model

ptimal conti

oidemic

Singel interval SD

Periodic SD Quasi steady state

Metronomic Optimal contr

MDOR

Singel interval SD

Periodic SD Quasi steady state

Acknowledgment

The average tumor volume at different time ranges of 20-25 days (left), 30-35 days (middle), and 40-45 days (right) after starting metronomic regimens. The horizontal axis represents the number of days between each dose, y-axis is the total amount of drug given to the animal every 6 days.

Chemotherapy Model

Optimal control

MDOR

Singel interval SD Periodic SD

Quasi steady state

Acknowledgment

Numerical software GPOPS_II is used to solve the following setup of optimal control problem.

$$\min_{u(t)} \quad T(t_f), \tag{2a}$$

$$s.t. \begin{bmatrix} 0\\0\\0\\0\\0\\0 \end{bmatrix} \le \begin{bmatrix} C(t)\\T(t)\\I(t)\\X(t)\\Y(t)\\u(t) \end{bmatrix} \le \begin{bmatrix} C_m\\T_m\\I_m\\X_m\\Y_m\\u_m \end{bmatrix}, \tag{2b}$$

$$\int_{0}^{t_{f}} u(t)dt \le U_{m}. \tag{2c}$$

Numerical result for a low input upper bound

Circles show the final collocation points.

Proposal Review

Northeastern University

Outline

ackground

Chemotherapy Model

Metronomic
Optimal control

MDOR

Singel interval SD
Periodic SD

Quasi steady state

cknowledgment

Numerical result for a high input upper bound

Circles show the final collocation points.

Proposal Review

Northeastern University

Outline

ackground

Chemotherapy Model

Metronomic

Optimal control MDOR

pidemic

Singel interval SD Periodic SD

Quasi steady state

MDOR

Singel interval SD

Periodic SD Quasi steady state

Tumor volume

Drug

Comparing a standard 140 mg/kg Q6D metronomic chemotherapy plan (solid lines) with the obtained optimal control (dashed lines).

The numerical results can be interpreted as two-dose of 200mg/kg and 600mg/kg regimen. However, the maximum tolerated dose is 300mg/kg/day for the chemotherapy drug.

Mathematically derived optimal regimen

Comparing a standard 140 mg/kg Q6D metronomic/intermittent plan (solid lines) and the mathematically derived optimal regimen (dashed lines).

Proposal Review

Northeastern University

Outlin

hemotherapy • • •

Metronomic

MDOR

Epidemic

Singel interval SD Periodic SD Ouasi steady state

A new viable regimen to be tested experimentally

Proposal Review

Northeastern University

Outlin

Background

Chemotherapy

Metronomic

MDOR

Epidemic Singel interval SD

Periodic SD

Ouasi steady state

Quasi steady state

⁴Junjie Wu and David J Waxman. "Metronomic cyclophosphamide schedule-dependence of innate immune cell recruitment and tumor regression in an implanted glioma model". In: Cancer letters 353=2 (2014), pp. 272–280;4/26

other countries.

Model

Metrono

Optimal co MDOR

Epidemic

Singel interval SD Periodic SD

Quasi steady state

Acknowledgment

► Motivation: Shortening the period of time that populations are socially distanced is economically advantageous.

During the COVID-19 epidemic, social distancing as a form of non-pharmaceutical intervention has been enacted in the US and

Objective: To reduce the disease burden (here measured as the peak of the infected population) while simultaneously minimizing the length of time that the population is socially distanced.

Early days and limited data

Proposal Review

Northeastern University

Outlin

Background

Chemotherapy

Model

Metronomic

MDOR

Epidemi

Singel interval SD

Periodic SD

Quasi steady state

$$\beta(t) = \begin{cases} \beta_n & 0 \le t_s \\ \beta_d & t_s \le t < t_s + t_d \\ \beta_n & t_s + t_d \le t \end{cases}$$
 (3)

Normalized infected population in SIR model, with no re-infection.

Proposal Review

Northeastern University

Outlin

Background

Chemotherapy

Model

Optimal cont

Epidemio

Singel interval SD Periodic SD

Quasi steady state

Optimize start time t_s and duration t_d of SD

Infected peak, Max(I), in SIR model under single interval SD policy. The vertical dashed line represents the time of infected peak for a normal population with no distancing. The diagonal dashed line represents an analytically derived slope approximation.

Proposal Review

Northeastern University

Outline

ackground

Chemotherapy Model

Metronomic Optimal contr

Epidemic

Singel interval SD Periodic SD

Quasi steady state

time, for the COVID-19 pandemic.

Chemotherapy

Metronomic

Enidon

Singel interval SD Periodic SD

Quasi steady state

Acknowledgmen

Each model is simulated with parameters in the respective papers and assumed to be appropriate, based on data available at the reinfection assumption.

the infected peak.

Chemotherapy

Model

Metronomi

MDOR

Epidemio

Singel interval SD

Periodic SD

Quasi steady state

.cknowledgment

An early social distancing mandate is effective to delay the infected peak, but not effective in reducing the infected peak (e.g. India).

The V-shape pattern is robust for various epidemic models with no

A too late social distancing mandate is not effective in reducing

Populations should not practice social distancing synchronously.

Periodic relaxation is economically favorable

A policy with regular periods of distancing and relaxation can significantly delay the time of the peak of the epidemic, while still allowing limited economic activity.

Proposal Review

Northeastern University

Outline

Dardinania J

Chamatharan

Model

Metronon

ADOR

Epidemi

Singel interval SD Periodic SD

Quasi steady state

Singel interval SD

Periodic SD Quasi steady state

The peak of infected population depends non-monotonically on both the period T and ratio r of periodic policies.

A periodic social distancing relaxation policy with a large period time T may lead to high transmission rates at the critical time of an epidemic (e.g. at the potential peak of the infected population).

Or it may lead to a well-timed strategy and hence significantly reduce the infected peak.

A similar pattern for a combination of a single interval SD and a periodic relaxation policy

Effect of periodic relaxation policy in combination with a single interval social distancing for *SIR* model. The dashed orange lines represent the infected compartment peak time without the single interval social distancing policy.

Proposal Review

Northeastern University

Outline

ackground

hemotherapy

Model

Metronomic

MDOR

Epidemic Singel interval SD

Periodic SD

Quasi steady state

Modeling a prolonged outbreak

(a) Standard control theoretic framework for an epidemic model. (b) A minimal regulated SIR model, and (b) the reduced regulated SIR model in the case of a large population over short time periods (e.g., less than a year).

Proposal Review

Northeastern University

Outline

Background

Chemothe Model

Metronomic Optimal cont

IDOR

Singel interval SD Periodic SD

Quasi steady state

Fitting to published data

An initial surge followed by a plateau during the summer 2020.

This can be interpreted as a QSS in the proposed model.

Proposal Review

Northeastern University

Outlin

Background

Chemotherany

Model

Metronomic

/IDOR

Epidemic

Singel interval SD Periodic SD

Quasi steady state

This work is a result of teamwork

Advisor: Eduardo Sontag

Lab members: M. Ali Alradhawi, Anh Phong Tran, Zheming An,

William Cho, Shu Wang, Tianchi Chen.

Presented projects

Chemotherapy: Anh Phong Tran, Irina Kareva, M. Ali Alradhawi,

and Waxman Lab.

Epidemics: James Greene, M. Ali Alradhawi.

Other projects

Immunotherapy: Irina Kareva, Kumpal Madrasi, Abed Alnaif, Anup Zutshi, and EMD Serono Inc team.

Parkinson's Disease: AMP-PD research community, and Sanofi team.

Ribosome: M. Ali Alradhawi, Michael Margaliot, Nikolai Slavov,

Edward Emmott.

Open-source community: Julia team, Gleb Pogudin, Esteban Vargas. Bioconductor project.

Proposal Review

Northeastern University

Outline

ackground

Chemotherapy

Model

ptimal cont

DOR

Epidemic Singel interval SD

Periodic SD

Quasi steady state

Acknowledgment