ARDUINO BEGINNER COURSE

Week 1: Introduction to Arduino

Lesson 1: Overview of Arduino and Setting Up

- Understanding the components of the Arduino board.
- Installing and setting up the Arduino IDE.
- Introduction to basic coding structure (setup() and loop() functions).

Project: Blink the Built-in LED

• Blink the built-in LED on the Arduino board using the digitalWrite() function to get familiar with the board.

Lesson 2: Understanding the Breadboard and Simple Circuits

- How a breadboard works.
- Wiring LEDs and resistors.
- Push button introduction.
- Writing simple code to control circuits.

Project: Control on LED with a Button

• Make an LED light up when pressing a button using the digitalRead().

Week 2: Basic Coding for Arduino

Lesson 3: Variables and Functions in Arduino

- Understanding variables and data types in Arduino.
- Writing and using functions in the setup() and loop() sections.
- Basic logic with if-else statements.

Project: LED Pattern with Variables

 Create a blinking pattern using multiple LEDs, controlled by variables and functions.

Lesson 4: Loops and Control Structures

- Introduction to control structures (for, while loops).
- How to use loops to repeat tasks.
- Implementing if-else conditions for decision-making.

Project: Counting Button Presses

 Connecting a push button and an LED then use the loops to count the button presses.

Week 3: Serial Communication

Lesson 5: Introduction to Serial Communication

- How to use the Serial Monitor for debugging.
- Sending data from Arduino to a computer.
- Using the Serial.print() function to display sensor data.

Project: Displaying some texton the Serial Monitor

• Use the Serial Monitor to display some text, variables or LED status.

Lesson 6: Sending Commands to Arduino via Serial

- Sending commands from the Serial Monitor to control Arduino components.
- Reading and interpreting Serial input data.
- Controlling LEDs or other components based on Serial input.

Project: Serial-Controlled LED

 Control an LED on/off state by typing commands into the Serial Monitor.

Week 4: Using LEDs and RGB LEDs

Lesson 7: Controlling LEDs with Arduino

- Understanding digital output pins.
- Controlling multiple LEDs using the Arduino.
- Exploring basic delay() functions for timing.

Project: LED Traffic Light Simulation

 Create a simple traffic light system using loops and control structures for multiple LEDs.

Lesson 8: RGB LEDs

How RGB LEDs work.

- Using analogWrite() to control the brightness of LEDs.
- Combining different colors with RGB LEDs.

Project: Color Fader

• Create a simple RGB color fader using analogWrite() to mix different colors over time.

Week 5: Introduction to Sensors

Lesson 9: Overview of Sensors

- What are sensors?
- How they work with Arduino.
- Introduction to different types of sensors (temperature, distance, light).

LM35 Temperature Sensor Introduction

- Understanding how temperature sensors work.
- Connecting the LM35 sensor to Arduino.
- Reading analog values and converting them to temperature.

Project: Temperature Display

 Measure the room temperature and display it using the Serial Monitor.

Lesson 10: Temperature Sensor with RGB LED

- How temperature sensors work.
- Using the LM35 temperature sensor with Arduino.
- Integrating the RGB LED for visual temperature indication.

Project: RGB Temperature Indicator

 Use an LM35 temperature sensor to change the color of an RGB LED based on temperature readings (e.g., red for hot, green for normal, blue for cold).

Week 6: Servo Motors and Motion Control

Lesson 11: Basics of Servo Motors

Understanding how servo motors work.

- Controlling servo position with Arduino.
- Writing code to set servo angles using Servo library.

Project: Servo Sweeper

Make the servo motor sweep back and forth between two angles.

Lesson 12: Advanced Servo Control

- Using potentiometers to control servo motors.
- Reading analog input and mapping values to control motion.

Project: Servo Position Control with Potentiometer

 Use a potentiometer to control the position of a servo motor in realtime

Week 7: Buzzer and Sound Applications

Lesson 13: Introduction to Buzzers and Sound

- Learn how to use a buzzer to create sound based on sensor input.
- Students understand how to control sound output with Arduino.

Project: Program the Arduino to generate a tone using a buzzer when a button is pressed.

Lesson 14: Creating a Simple Alarm System

- Build a simple alarm system using an ultrasonic sensor and buzzer.
- Students build a practical project combining sensors and buzzers.

Project: Create a alarm program that triggers the buzzer when an object is detected within a certain distance.

Week 8: Ultrasonic Sensors

Lesson 15: Ultrasonic Sensors for Distance Measurement

- Introduction to the ultrasonic sensor.
- Reading distance data from the sensor.
- Calculating and converting raw data into meaningful distances.

Project: Distance-Based Light Control

 Use an ultrasonic sensor to turn an LED on/off depending on the proximity of an object.

Lesson 16: Advanced Distance-Based Projects

- Using distance data to control other components.
- Implementing conditions and actions based on distance thresholds.

Project: Parking Assistance System

 Create a parking assistant project using the ultrasonic sensor to measure the distance and provide a warning when the car is too close to an obstacle (using LEDs or buzzers).

Week 9: Components Intergrations and Personal Projects Planning

Lesson 17: Integrating Multiple Components

- How to integrate LEDs, sensors, and buzzers into one project.
- Exploring multi-component system interactions.

Project: LED Alarm System

• Combine sensors, buzzers, and LEDs into a functional alarm system.

Lesson 18: Project Brainstorming and Documentation

- Group brainstorming for personal projects.
- Identifying components and objectives for each project.
- Introduction to creating a project plan.

Activity: Students plan their personal projects and create a basic project documentation, detailing objectives, components, and expected outcomes.

Week 10: Debugging and Refining Projects

Lesson 19: Debugging and Troubleshooting

- Common errors in components, programming and how to fix them.
- Troubleshooting wiring and sensor issues.

Project: Debugging Challenge

 A pre-built project with intentional errors for students to debug and fix.

Lesson 20: Quiz and Q&A Session

- A quiz to review and assess knowledge from the course.
- Q&A session for students to ask questions about programming, components or circuits.

Week 11: Personal Project Development

Lesson 21: Personal Project Development - Part 1

- Hands-on project development.
- Guidance on circuit design, code structure, and troubleshooting.

Lesson 22: Personal Project Development - Part 2

- Continued work on personal projects.
- Teachers provide support and feedback on progress.

Week 12: Final Project Presentations

Lesson 23: Project Presentations - Part 1

- Half the class presents their projects.
- Demonstrations of functionality and explanations of the process.

Lesson 24: Project Presentations - Part 2

- Remaining students present their projects.
- Continued demonstrations and discussions.

Week 13: Reflection and Wrap-Up

Lesson 25: Feedback and Reflection

- Reflection on challenges, successes, and lessons learned.
- Group discussion on what worked and areas for improvement.

Lesson 26: Certification and Course Wrap-Up

- Celebrate achievements and issue course certificates.
 Encourage students to continue exploring Arduino and other technologies.