Álgebra Linear - Aula 07

Mudança de Base

Profa Dra. Karla Lima

Sumário

Mudança de Base

2 Exercícios

Mudança de Base

Pense nas bases $B \in B'$ como dois sistemas de GPS diferentes:

- B: mede em metros
- B': mede em milhas

Uma matriz de transição converte coordenadas de um sistema para outro.

Exemplo 1

Dadas as bases abaixo:

Base B (metros)	Base B' (milhas)
u = (1, 0)	u ' = (1,1)
v = (0,1)	v' = (2, 1)

reescreva os vetores da base B em termos da base B'.

$$[\boldsymbol{u}]_{B} = (1,0) = -1(1,1) + 1(2,1)$$

$$[\mathbf{v}]_B = (0,1) = 2(1,1) - 1(2,1)$$

$$[\mathbf{u}]_B = (1,0) = -1(1,1) + 1(2,1)$$

$$[\mathbf{v}]_B = (0,1) = 2(1,1) - 1(2,1)$$

Vetores coordenadas em B'

$$[\mathbf{u}]_{B'} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \quad [\mathbf{v}]_{B'} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

Cada coluna da matriz de transição mostra como um vetor da base B é escrito em coordenadas da base B'.

Matriz de Transição

$$P_{B\to B'} = \begin{bmatrix} -1 & 2\\ 1 & -1 \end{bmatrix}$$

Usamos a matriz de Transição de $B \rightarrow B'$ para reescrever um vetor de coordenadas na base B em termos da base B':

$$[\mathbf{v}]_{B'} = P_{B \rightarrow B'} [\mathbf{v}]_B$$

Exemplo: Conversão

Exemplo 2

Converter o vetor

$$[\mathbf{v}]_B = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$$

para a base B'.

Exemplo 2

Converter o vetor

$$[\mathbf{v}]_B = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$$

para a base B'.

Demonstração.

$$\begin{aligned} [\mathbf{v}]_{B'} &= P_{B \to B'} \ [\mathbf{v}]_B \\ &= \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 4 \\ -2 \end{bmatrix} \\ &= \begin{bmatrix} -8 \\ 6 \end{bmatrix}. \end{aligned}$$

Exemplo 3

Dadas as bases abaixo:

Base B (metros)	Base B' (milhas)
u = (1,0)	u ' = (1, 1)
v = (0,1)	v' = (2,1)

reescreva os vetores da base B' em termos da base B.

$$[\mathbf{u}']_{B'} = [(1,0)]_{B'} = (1,1) = 1(1,0) + 1(0,1)$$

$$[\boldsymbol{v}']_{B'} = [(0,1)]_{B'} = (2,1) = 2(1,0) + 1(0,1)$$

$$[\mathbf{u}']_{B'} = [(1,0)]_{B'} = (1,1) = 1(1,0) + 1(0,1)$$

$$[\boldsymbol{v}']_{B'} = [(0,1)]_{B'} = (2,1) = 2(1,0) + 1(0,1)$$

Vetores coordenadas em B

$$[\mathbf{u}']_B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad [\mathbf{v}']_B = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Cada coluna da matriz de transição mostra como um vetor da base B' é escrito em coordenadas da base B.

Matriz de Transição

$$P_{B'\to B} = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$$

Usamos a matriz de Transição de $B' \to B$ para reescrever um vetor de coordenadas na base B' em termos da base B:

$$[\mathbf{v}']_B = P_{B' \to B} [\mathbf{v}]_{B'}$$

Exemplo: Coordenadas B' em B

Exemplo 4

Converter o vetor

$$[\mathbf{v}]_{B'} = \begin{bmatrix} -3\\5 \end{bmatrix}$$

para a base B.

Exemplo 4

Converter o vetor

$$[\mathbf{v}]_{B'} = \begin{bmatrix} -3\\5 \end{bmatrix}$$

para a base B.

Demonstração.

$$\begin{aligned} [\mathbf{v}]_B &= P_{B' \to B} [\mathbf{v}]_{B'} \\ &= \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ 5 \end{bmatrix} \\ &= \begin{bmatrix} 7 \\ 2 \end{bmatrix}. \end{aligned}$$

Teorema 1

Se $P_{B' \to B}$ for a matriz de transição de uma base B' para uma base B de um espaço vetorial V de dimensão finita, então $P_{B' \to B}$ é invertível e $P_{B' \to B}^{-1}$ é a matriz de transição de B para B', $P_{B \to B'}$.

Demonstração

Por definição, para todo $\mathbf{v} \in V$:

$$[\mathbf{v}]_B = P_{B' \to B} [\mathbf{v}]_{B'}.$$

Seja $Q := P_{B \to B'}$. Então:

$$[\mathbf{v}]_{B'}=Q[\mathbf{v}]_B.$$

Demonstração

Assim,

$$\begin{split} Q \cdot P_{B' \to B} \cdot [\mathbf{v}]_{B'} &= Q \, [\mathbf{v}]_B = [\mathbf{v}]_{B'} \quad \Rightarrow \quad Q P_{B' \to B} = I, \\ P_{B' \to B} \cdot Q \cdot [\mathbf{v}]_B &= P_{B' \to B} \cdot [\mathbf{v}]_{B'} = [\mathbf{v}]_B \quad \Rightarrow \quad P_{B' \to B} Q = I. \end{split}$$

Assim,

$$\begin{aligned} Q \cdot P_{B' \to B} \cdot [\mathbf{v}]_{B'} &= Q \, [\mathbf{v}]_B = [\mathbf{v}]_{B'} \quad \Rightarrow \quad Q P_{B' \to B} = I, \\ P_{B' \to B} \cdot Q \cdot [\mathbf{v}]_B &= P_{B' \to B} \cdot [\mathbf{v}]_{B'} &= [\mathbf{v}]_B \quad \Rightarrow \quad P_{B' \to B} Q = I. \end{aligned}$$

Portanto, $P_{B'\to B}$ é invertível e sua inversa é Q:

$$P_{B\to B'}=P_{B'\to B}^{-1}.$$

Exercícios

Exercício 1

Considere a base $S = \{\mathbf{u}_1, \mathbf{u}_2\}$ de \mathbb{R}^2 , onde

$$\mathbf{u}_1 = (2, -4), \quad \mathbf{u}_2 = (3, 8).$$

Seja **B** = $\{(1,0),(0,1)\}$ a base canônica de \mathbb{R}^2 .

- a) Encontre a matriz de transição $P_{S \to B}$, que leva vetores escritos na base S para a base canônica B.
- b) Encontre a matriz de transição $P_{B \to S}$, que leva vetores da base canônica B para a base S.
- c) Usando $P_{B\to S}$, calcule o vetor de coordenadas [w]_S, sabendo que w = (1,1) está dado na base canônica B.

Exercício 2

Considere as bases $B = \{\mathbf{u}_1, \mathbf{u}_2\}$ e $B' = \{\mathbf{u}_1', \mathbf{u}_2'\}$ de \mathbb{R}^2 , em que

$$\textbf{u}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \textbf{u}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \textbf{u}_1' = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad \textbf{u}_2' = \begin{bmatrix} -3 \\ 4 \end{bmatrix}.$$

- a) Encontre a matriz de transição de B' para B.
- b) Encontre a matriz de transição de B para B'.
- c) Calcule o vetor de coordenadas $[\mathbf{w}]_{B'}$, em que

$$[\mathbf{w}]_B = \begin{bmatrix} 3 \\ -5 \end{bmatrix}.$$

Exercício 3

Considere as bases $B = \{p_1, p_2\}$ e $B' = \{q_1, q_2\}$ de P_1 , em que

$$p_1 = 6 + 3x$$
, $p_2 = 10 + 2x$, $q_1 = 2$, $q_2 = 3 + 2x$.

1. Encontre a matriz de transição de B' para B.

19

- Ao mudar de base, é necessário expressar os vetores de uma base em termos da outra.
- Cada coluna da matriz de transição corresponde às coordenadas de um vetor da base B, escrito em relação à base B'.
- Assim, a matriz de transição P_{B→B'} é aquela que transforma vetores escritos na base B em vetores escritos na base B'.

[1] Howard Anton and Chris Rorres.

Álgebra Linear com Aplicações.

Bookman, Porto Alegre, 10 edition, 2012.

Tradução técnica: Claus Ivo Doering. Editado também como livro impresso em 2012. Recurso eletrônico.

© Prof^a Dra. Karla Lima