

TECHNICAL MEMORANDUM

U.S. NAVAL WEAPONS LABORATORY DAHLGREN, VIRGINIA

ARCHIVE COPY

13

U. S. NAVAL WEAPONS LABORATORY

TECHNICAL MEMORANDUM

December 1961

No. K-34/61

THE USE OF DIFFERENCE METHODS IN MAKING POLYNOMIAL FITS TO DISCRETE DATA

by

Charles H. Frick

Computation and Analysis Laboratory

Approved by:

R. A. Niemann

Director

Computation and Analysis Laboratory

Kalph a. Hernann

This memorandum is not to be construed as expressing the opinion of the U. S. Naval Weapons Laboratory, and while its contents are considered correct, they are subject to modification upon further study.

Copies may be obtained from the Director, Computation and Analysis Laboratory.

CONTENTS

NWL Technical Memorandum No. K-34/61

		Page
ABS'	TRACT	1
FOR	EWORD	1.
INT	RODUCTION	1
EQU.	ALLY SPACED DATA	1
UNE	QUALLY SPACED DATA	7
REF.	ERENCES	9
APP:	ENDICES	
Α.	Table 1 - Multipliers for Equally Spaced Data	
	Table 2 - Weights for Equally Spaced Data	
	Table 3 - Binomial Coefficients	
В.	Application of Smoothing Method to Sine Curve Using Unequally Spaced Data	Ţ.
C	Note on Intermediation with Mahabaahaa Balanamiala	

C. Note on Interpolation with Tchebychev Polynomials

Distribution

Bureau of Naval Weapons Attn: Mr. William K. Baker, RMMO-42 Commander, Naval Ordnance Test Station Inyokern, China Lake, California Attn: Dr. W. R. Haseltine Commander, Naval Ordnance Test Station Pasadena Annex, Pasadena, California Attn: W. E. Hicks, Code P8001 Naval Ordnance Laboratory White Oak, Maryland Attn: Dr. R. C. Roberts

CONTENTS (Continued)

```
Distribution (Continued)

K
K-1
KB
KBX
KBX-1 (20 copies)
KBX-2
KBA (6 copies)
KBB (6 copies)
KBD (6 copies)
KBG (6 copies)
KBG (6 copies)
KCO (3 copies)
KCO (3 copies)
KCO (10 copies)
ACL (7 copies)
```

ABSTRACT

A difference method, which for one choice of weights applied to the differences leads to equally weighted least squares polynomial fits to equally spaced data, is generalized so that the approximation can be obtained in terms of polynomials chosen by the user in the fitting of equally spaced or unequally spaced data.

FOREWORD

Using this method, an investigation was made into the ballistics field with particular emphasis on the preparation of bombing tables. The work was conducted under Task Assignment Number RMMO-42007/2101/F00809001. Credit is due Richard Hageman, Richard Shannon, Gordon Barker, and Mrs. Jane H. Martina for their assistance in the preparation of the tables found in Appendix A and the example in Appendix B.

INTRODUCTION

The technique of using differences in making polynomial fits to discrete data is not new and has been widely discussed in the literature. However, the method described in this report enables the user to apply this method using any form of interpolating polynomial which best suits his purpose. Also, by changing from ordinary differences, which are used in working with equally spaced data, to divided differences, the method can be used for unequally spaced data.

For the convenience of the user Appendix A contains the tabulations of the multipliers, the weights and the summations of weights through the 4th difference for equally spaced data containing from 5 to 30 points. With the modification presented in the text on Page 9 these weights may be adapted for use with unequally spaced data.

EQUALLY SPACED DATA

Exact nth Degree Fit to n + 1 Points

Newton, Gauss, and others have given formulas for obtaining an nth degree fit to n + 1 equally spaced points (see reference (a)). Such formulas have the advantage of being readily available, but the disadvantage of not giving the result in the form desired for many applications. At the expense of additional computation it is possible to get the interpolating polynomial in the desired form for any application.

Suppose this form for the nth degree polynomial through n+1 points is

$$f_n = A_0 P_0 + A_1 P_1 + A_2 P_2 + \dots + A_n P_n . \tag{1}$$

 P_k can be any kth degree polynomial. The argument used in P_k can be the original independent variable, x, or some other argument, say u, which is a linear function of x.

If the n+1 points are substituted in equation (1), n+1 equations in A_0 , A_1 , ... A_n are obtained. Since

$$\Delta^{n}P_{j} = 0 \quad \text{for} \quad j < n \quad ,$$

$$\Delta^{n}f_{n} = A_{n}\Delta^{n}P_{n} \qquad .$$
(2)

However,

$$\Delta^{r} P_{r} = h^{r} P_{r}^{(r)}$$
 (3)

where $P_{r}^{\ \ (r)}$ is the rth derivative of P_{r} with respect to the argument used, and h is the increment in that argument between successive points. Equation (2) can then be solved for A_{n} , with

$$A_{n} = \frac{\Delta^{n} f_{n}}{\Delta^{n} P_{n}} = \frac{\Delta^{n} f_{n}}{h^{n} P_{n}} .$$

Then

$$f_{n-1} = f_n - \frac{\Delta^n f_n}{h^n P_n} P_n$$
 (4)

will be a polynomial of degree n - 1.

If the first n values of f_{n-1} are used it is now possible to find

$$A_{n-1} = \frac{\Delta^{n-1} f_{n-1}}{h^{n-1} p_{n-1} m^{-1}}, \qquad (5)$$

and

$$f_{n-2} = f_{n-1} - \frac{\Delta^{n-1} f_{n-1}^{1}}{h^{n-1} p_{n-1}^{(n-1)}} P_{n-1}$$
 (6)

will be a polynomial of degree n-2. The first n-1 values of Γ_{n-2} can be used to find Λ_{n-2} and so on until all the A's have been evaluated. The Newton formula uses P_k 's chosen in such a way that P_n vanishes for the n-points used in finding Λ_{n-1} , Γ_n and Γ_{n-1} vanish for the n-1 points used in finding Λ_{n-2} , etc., which is ideal provided the form obtained for f_n is convenient for use. For some purposes it is desirable to have $P_k = x^k$. It is obvious in such a case that the derivatives and integrals may be seen at a glance if necessary.

Another purpose might call for the use of the Tchebychev polynomials on the right hand side of equation (1) if truncation to a lower degree appears desirable. Other uses of f_n will demand other forms of P_k .

Smoothed nth Degree Fit to n + 1 + m Points

Let it be assumed that the function defined by the n+1+m values is

$$f = f_n + e \tag{7}$$

where f_n is an nth degree polynomial and e is the error of observative, or noise. If a satisfactory method for computing $(\Delta^k \underline{y})$, the mean kth difference, is available and it can be assumed that $(\Delta^k e)$ will be sufficiently small for all k, then the approximation of f,

$$f_n = A_0 P_0 + A_1 P_1 + A_2 P_2 + ... + A_n P_n$$
,

can be found.

Since c is involved it will be necessary to use n+1+m values in the computation of every mean difference. A_n can be found from

$$(\Delta^{n}f) \approx A_{n}\Delta^{n}F_{n} = A_{n}\left(h^{n}P_{n}^{(n)}\right) . \tag{8}$$

Let

$$\hat{f}_{n} = f = f_{n} + e$$

$$\hat{f}_{n-1} = \hat{f}_{n} = A_{n}P_{n} - f_{n-1} + e$$

$$\hat{f}_{n-2} = \hat{f}_{n-1} - A_{n-1}P_{n-1} = f_{n-2} + e$$
, etc.

Then, for each Ak,

$$A_{k} \simeq \frac{\left(\Delta^{k} \hat{\Gamma}_{k} \right)}{\Delta^{k} P_{k}} - \frac{\left(\Delta^{k} \hat{\Gamma}_{k} \right)}{h^{k} P_{k}^{(k)}} . \tag{9}$$

Finding Mean Differences

The weighted mean of the first difference of a set of equally spaced y's can be written

$$(\vec{\Delta y}) = \frac{1}{\sum_{\mathbf{w}}} \begin{bmatrix} w_1 w_2 \dots w_r \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 & 0 & \dots & \ddots & 0 \\ 0 & -1 & 1 & 0 & \dots & 0 & y_1 \\ 0 & 0 & -1 & 1 & \dots & \ddots & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & -1 & 1 & y_r \end{bmatrix}$$
(10)

If equation (10) is written in the expanded form

$$(\overline{\Delta y}) = \frac{1}{\sum_{y}} (m_{\phi} y_{\phi} + m_{1} y_{1} + m_{2} y_{2} + \dots + m_{r} y_{r}) ,$$
 (11)

and in the form

$$(\Delta \overline{y}) = \frac{1}{\sum_{w}} [o_{w_1} w_2 \dots w_p o] \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ -1 & 1 & 0 & \dots & 0 \\ 0 & -1 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & -1 & 1 \\ 0 & 0 & 0 & \dots & 0 & -1 \end{bmatrix} \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_p \end{bmatrix}, \quad (12)$$

comparison of equations (11) and (12) shows that the m's are minus the first differences of the set $[0w_1w_2w_3,...w_p0]$. Given the w's, the m's can be found and given the m's, the w's can be found. All the weighted mean first differences can be found by these formulas.

There are many ways in which the m's (or w's) can be chosen. One method of making the choice is to minimize the maximum absolute value

of
$$\frac{m_1}{\sum}$$
 (see reference (b)). A choice which is more consistent with

practice is to assume the individual errors to be uncorrelated and to have equal variance. With this in mind let the w's be chosen in such a way as to minimize $M = \sum m^2$, holding $W = \sum w$ constant, which will minimize the variance of $(\overline{\Delta y})$.

Then

$$dM = 2 \left\{ \left[m_0 \frac{\partial m_0}{\partial w_1} + m_1 \frac{\partial m_1}{\partial w_2} + \dots \right] dw_1 + \dots \right\} dw_1 + \dots + \left[m_0 \frac{\partial m_0}{\partial w_2} + m_1 \frac{\partial m_1}{\partial w_2} + m_2 \frac{\partial m_{r-1}}{\partial w_2} + \dots \right] dw_2 + \dots dw_r = 0 .$$

$$dW = dw_1 + dw_2 + \dots + dw_r = 0 .$$

$$(14)$$

The requirement for a constrained minimum is met if the rank of the matrix of the coefficients of the dw's in equations (13) and (14) is one. Therefore, the coefficients of the dw's in equation (13) are all equal. From equations (11) and (12) each of these coefficients is a constant times a first difference of the m's. The m's, in turn, are minus the first differences of the set

$$[o_{\mathbf{v}} \mathbf{w}_{\mathbf{s}} \dots \mathbf{w}_{\mathbf{r}} \mathbf{o}]$$

o that this set has a constant second difference and the w function is a quadratic with two known zeros.

The weighted mean of the second difference can be written

or

$$(\overline{\Delta^2 y}) = \frac{1}{\sum w} (m_0 y_0 + m_1 y_1 + m_2 y_2 + \dots + m_1 y_1)$$
 (15)

The m's are the second differences of the set

$$[00w_1w_2, ...w_{r-1}00]$$

and minimizing $\sum m^2$ with $\sum w$ held constant leads to the requirement that the w function be a fourth degree polynomial with four known zeros.

In finding the mean kth difference, $(\Delta^k y)$, the m's will be $(-1)^k$ times the kth difference of the set

$$\{00,...0w_1w_2...w_{r-k+1}0...00\}$$

having k zeros at each end. The requirement that $\sum m^2$ be a minimum with \sum w held constant leads to a 2kth degree polynomial with 2k known zeros for the w function.

The ith weight in getting the mean kth difference from \mathbf{r} + 1 points can thus be written

$$c w_{i} = \begin{pmatrix} k - 1 + i \\ k \end{pmatrix} \begin{pmatrix} r + 1 - i \\ k \end{pmatrix}, \qquad (16)$$

where ρ is some arbitrary constant. The weights given in Table 2 in Appendix A were obtained by using equation (16). It is seen from the equation that for k=0, ρ $w_i\equiv 1$ for all i.

Since the m's for finding the mean kth difference satisfy a kth degree polynomial and since the (k+j)th difference of a kth degree polynomial is zero for j>0, the m polynomials are orthogonal over an equally spaced set with equal weighting and are identical, except for an arbitrary multiplier, with orthogonal polynomials for equal spacing and equal weighting discussed on pages 287-291 of reference (a) and given on pages 375-381 of reference (c). The use of equation (16) in finding the mean kth difference thus leads to an equally weighted least squares polynomial fit of equally spaced data for all possible choices of the P_k 's in equation (1).

The results obtained using the w polynomials of equation (16) and the resulting m polynomials for the P_k 's in equation (1) are, of course, very familiar. The use of the w's to fit in terms of general P_k 's and the modification of the w's for fitting unequally spaced data are not so familiar. More general methods for choosing the w's and m's may well be a rewarding field for further study.

UNEQUALLY SPACED DATA

Exact nth Degree Fit to n + 1 Points

The method for equally spaced data may be modified for use with unequally spaced data by using divided differences instead of ordinary differences.

Thus, if

$$f_n = A_0 P_0 + A_1 P_1 + A_2 P_2 + \dots + A_n P_n$$
, (1)

$$f[u_0, u_1, \dots u_n] = A_n P_n[u_0, u_1, \dots u_n]$$
 (17)

where

$$f[u_{0}, u_{1}, \dots u_{n}] = \frac{f(u_{0})}{(u_{0} - u_{1}) \dots (u_{0} - u_{n})}$$

$$+ \frac{f(u_{1})}{(u_{1} - u_{0}) \dots (u_{1} - u_{n})}$$

$$+ \dots$$

$$+ \frac{f(u_{n})}{(u_{n} - u_{0}) \dots (u_{n} - u_{n-1})}$$

for any positive integer n, is the nth divided difference defined in reference (a).

Ιf

$$P_n(u) = B_0 + B_1 u + B_2 u^2 + ... + B_n u^n$$
,

the nth divided difference of Pn(u) is

$$P_{n}[u_{0}, u_{1}, u_{2} \dots u_{n}] = B_{n}$$
.

So that, except for the arithmetic required in the computation of $f[u_0, u_1, u_2, \dots u_n]$, A_n is easily found from equation (17). The finding of f_{n-1} , f_{n-2} , ..., and A_{n-1} , A_{n-2} , ... follows a path parallel to that described for equally spaced data.

Smoothed nth Degree Fit to n + 1 + m Points

Let

be the mean kth divided difference of f. Then equation (9) can be rewritten

$$A_{k} = \frac{\left(\frac{1}{\Delta^{k}} \hat{I}_{k} \right)}{\Delta^{k} P_{k}} , \qquad (18)$$

and the problem of fitting is then solved if a satisfactory way can be found for finding the mean kth divided difference.

Finding Mean Divided Differences

The mean kth divided difference can be found from

$$(A^{k}f) = \frac{1}{\sum_{\omega}} \left\{ \omega_{1} f[u_{0}, u_{1}, \dots u_{k}] + \omega_{2} f[u_{1}, u_{2}, \dots u_{k+1}] + \dots \right\}.$$
(19)

The optimum choice of the ω 's is a more difficult problem than was the choice of the w's in the case of equally spaced data. A possible choice is to take

$$\omega_{1} = (u_{k} - u_{0}) w_{1}$$

$$\omega_{2} = (u_{k+1} - u_{1}) w_{2}$$

$$\vdots$$

$$\vdots$$

$$\omega_{i} = (u_{k+i+1} - u_{i+1}) w_{i}$$

$$\vdots$$

the w's being those chosen for finding the mean kth difference for equally spaced data. For finding the differences when k = 0, choose ω_1 = 1.

This will approach the equally spaced fitting as the intervals become more nearly equal and may be expected to give reasonable results in other cases.

It should be mentioned that the interesting difference relation between the w's and m's, and the resulting generation of the m polynomials, for equally spaced data does not hold true for the ω 's and m's used with unequally spaced data involving divided differences.

Given in Appendix B is an example using this divided difference technique in smoothing $y = \sin x$ over a non-constant data interval.

REFERENCES

- (a) Hildebrand, F. B., Introduction to Numerical Analysis, McGraw-Hill. 1956
- (b) NWL Technical Memorandum No. K-12/61, Smoothing and Differentiation of Tracking Data Taken Across Separation Impulse, May 1961
- (c) Milne, W. E., Numerical Calculus, Princeton University Press, 1949

APPENDIX A

TABLE 1

MULTIPLIERS FOR EQUALLY SPACED DATA

					
5 POINTS					
<u>i</u>	m(0)	m(1)	m(2)	m(3)	m(4)
0 1 2 3 4	, 1 1 1 1	-2 -1 0 1 2	2 -1 -2 -1 2	-1 2 0 -2 1	1 -4 6 -4 1
Σw	5	10	7	2	ı
5 (m) ²	5	10	14	10	70
•					
6 POINTS					
<u>i</u> .	m(O)	m(l)	m(2)	m(3)	m(4)
O 1 2 3 4 5	1 1 1 1 1	~5 -3 -1 1 3 5	5 =1 +4 +1 5	-5 7 4 -4 -7 5	1 2 2 2 -3 1
Σw	6	35	28	18	2
$\Sigma(m)^2$	6	7 0	84	180	28

TABLE 1 (Continued)

23	TIA	* 877	\neg
•	141	TN	

i	m (0)	m (1)	m(2)	m(3)	m (4)
0 1 2 3 4 5 6	1 1 1 1 1	-3 -2 -1 0 1 2	5 0 3 -4 -3 0 5	-1 1 0 -1 -1	3 -7 1 6 1 -7 3
$\sum (w)_S$	7	28	4 2 8 4	6 6	11 154

i .	m(0)	m(1)	m(2)	m(3)	m(4)
0 1 2 3 4 5 6 7	1 1 1 1 1 1	-7 -5 -3 -1 1 3 5	7 1 -3 -5 -5 -3 1	-7 5 7 3 -3 -7 -5 7	7 =1.3 -3 9 9 -3 -13
Σ w Σ (m) ²	8 8	84 168	8 4 168	66 26 4	44 616

TABLE 1 (Continued)

POTNTA

1	m (O)	m (1.)	m (2)	m (3)	m (4)
0	1	-4	28	-14	14
1 [1	#3	7	7	-21
2	ı	* 2	≅ ģ	13	-11
3	l	-1	-17	9	9
4	1	0	-20	ŏ.	18
5	1.	ì	-1 7	₩.9	9
6 7	1	2	⇔ 8	+13	-11
8	1	3	7	~ 7	-21
°	1	. 4	28	14	14
Σw	9	60	462	100	2.0
(-	00	405	198	143
$\sum (m)^2$	9	60	2772	990	5005

i	m (O)	m (1)	m (2)	, m(3)	m (4)
0 1 2 3 4 5 6 7 8 9	1 1 1 1 1 1 1 1	-9 -7 -5 -1 1 3 5 7	6 2 -1 -3 -4 -4 -5 -1 2 6	*42 14 35 31 12 *12 *31 *35 *14 42	18 -22 -17 3 18 18 3 -17 -22
Σ (m) ²	10 10	165 330	132 132	858 85 8 0	286 2860

TABLE 1 (Continued)

	תדי	

i	m (O)	m (l)	m (2)	m (3)	m (4)
0 1 2 3 4 5 6 7 8 9	1 1 1 1 1 1 1 1	-5 -4 -3 -2 -1 0 1 2 3 4	15 6 -1 -6 -9 -10 -9 -6 -1 6	-30 6 22 23 14 0 -14 -23 -22 -6 30	6 -6 -1 4 6 4 -1 -6 -6
∑ (m)²	11	110	429 858	858 4 290	143 286
12 POINTS					
1.	m(O)	m(1)	m(2)	m(3)	m(4)
0 1 2 3 4 5 6 7 8 9 10 11	1 1 1 1 1 1 1 1	-11 -9 -7 -5 -3 -1 1 3 5 7 9	55 25 1 -17 -29 -35 -35 -29 -17 1 25 55	-33 3 21 25 19 7 -7 -19 -25 -21 -3 33	33 -27 -33 -13 12 28 28 12 -13 -33 -27 33
∑ (m) ²	12	286 572	2002	1287 5 1 48	1144 8008

TABLE 1 (Continued)

i	m (0)	m(1)	m (S)	m (3)	m(4)
0	1	-6	55	-11	99
1	1	- 5	11	0	-66
2	1	-4	5	6	- 96
3	1	~ 3	-5	8	-54
4	1	-2	~10	7	11
4 5	1	-1	-13	4	64
6	1.	0	-14	0	84
7	1	1	-13	-4	64
8	1	5	-10	- 7	11
9	1.	3	₩5	~ 8	-54
10	ı	4	2	- 6	- 96
7,7	1	5	11	0	-66
12	1	6	55	11	99
•					
Σν	13	195	1001	572	4862
$\sum (a)^2$	1.3	182	5005	572	68,068

TABLE 1 (Continued)

i	m(0)	m(1)	m (2)	• (44)	m (4)
Ç	1	-13	13	⊢ 1.13	143
1	1	-1.1.	7	m11	-77
2 3	1	-9	5	ப்டு	-132
3	1	-7	-2	08	-92
4	1	- 5	- 5	95	-13
5	1	~ 3	-7	G7	63
6	1	-1	-8	24	108
7	1.	1	-8	-24	108
8	1	3	- 7	- G7	63
ð	1	5 7	- 5	- 95	-13
10	1		-2	- 98	-92
11	1	9	5	-66	-132
12	1	11	7	11	<u>~ 77</u>
13	Ţ	13	13	143	143
Σ w	14	455	728	.:724	9724
Σ(:)	14	910	728	9724	136,136

TABLE 1 (Continued)

1	m (O)	m (1)	m (2)	m (3)	ın (4)
0	1	- 7	91	-91	1001
1	ı	-6	52	-13	-429
5	1	- 5	19	35	-869
3	1	-4	~8	58	-704
4	1	#3	~59	61	-249
5	1	~ 2	-44	49	251
6 7	1	~1	~53	27	621
	1	O	-56	0	756
8 9	1	1	- 53	-27	621
	1	2 3	=44	-49	251
10	1		-29	-61	~249
11	1 1 1	4	-8	-58	-704
12	1 1	5	19	- 35	- 869
13	1	6	52	13	-429
14	1	7	91	91	1001
Σw	15	280	6188	7956	92,378
Σ w Σ (m) ²	1.5	:280	37,128	39,780	6,466,460

TABLE 1 (Continued)

1	m (O)	m (1)	m(2)	m (3)	m(4)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		-15 -13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15	35 21 9 -1 -9 -15 -21 -19 -15 -9 -1 35	-455 -91 143 267 301 265 179 63 -63 -179 -265 -301 -267 -143 91 455	1365 -455 -105 -1005 -505 115 645 945 945 645 115 -505 -1005 -1105 -455 1365
$\sum w$	16	680	2856	50,388	167,960
$\sum (m)^2$	1.6	1360	5712	1,007,760	11,757,200

TABLE 1 (Continued)

í	m (0)	m (1)	m(2)	m (3)	m (4)
0	1	-8	40	-28	52
1 2 3	1	- 7	25	- 7	-13
2	1	~ 6	12	7	~ 39
	1	~ 5	. 1	15	-3 9
4 5	1	~4	-8	18	-24
	1	=3	-15	17	- 24
6	1	~ 2	-20	13	17
7 .	1	-1	-23	7	31
8	1	. 0	-24	ó	36
9	1 1 1 1 1 1	1.	-23	- 7	31
10	1	2	-20	-13	17
11	1	2 3	-15	~17	<u>-3</u>
12	1		-8	-18	
13	1	4 5	1	-15	~24
14	1	ě	12	-1 3	≈ 39
15	1	6 7	25	7	- 39
1.6	ī	8	40		-13
•	_	J	***	28	52
ΣΨ	17	408	3876	3 876	8398
Σ(m) ²	17	408	7752	3876	16,796

TABLE 1 (Continued)

78	POTNING

1	m (O)	m (1)	m (2)	m (3)	m (4)
0	1	-17	68	-68	CO.
1	1	-15	44	- 20	68 30
1 2 3		-13	23	13	-12 -47
3	1 1 1	-11	5	33	-51
4 5 6 7	1	-9	-10	42	÷36
5	1	- 7	-22	42	
6	1	~5	-31	3 5	-12 13
	1	-3	~3 7	23	33
8	1	-1	-40	8	
9	1		-4 0	- 8	44
10	1	1 3 5 7	-37	- 23	44
11	1	5	-31	- 25 -3 5	33
12	1	7	- 22	-42	13
13	1	9	-10	-42	-12
14	1	11	5	-33	-3 6
15	1	13	23	-13	~51
16	ī	15	44		-47
17	ī	17	68	50	~12
·			90	68	68
Σω	18	969	7752	11,628	14,212
Σ (m) ²	18	1938	23,256	23,256	28,424

TABLE 1 (Continued)

1	m(0)	m(1)	m(2)	m (3)	m(4)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-9 -7 -6 -5 -4 -3 -2 -1 -1 -2 -3 -4 -5 -6 -7 -8 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	51 34 19 6 -5 -14 -21 -26 -29 -30 -29 -26 -21 -15 6 19 34 51	-204 -68 -28 89 120 126 112 83 44 0 -44 -83 -112 -126 -120 -89 -28 68 204	612 -68 -388 -453 -354 -168 42 227 352 396 352 227 42 -168 -354 -453 -388 -68 612
Σw	19	570	6783	42,636	163,438
\(\text{(m)}^2\)	19	570	13,566	213,180	2,288,132

TABLE 1 (Continued)

20°	POTNIE	

ť	m (O)	m (1)	m (2)	m (3)	m (4)
0	1	-19	57	- 969	1938
	ī	- 17	39	-357	-102
2	ī	-15	23	85	-1122
1 2 3	ī	-13	9	377	-1402
4	1	-21	~3	539	-1187
	1	-9	-13	591	-687
5 6 7	1	-7	-21	553	~7 7
7	1	∽ 5	-27	445	503
8	1	-3	-31	287	948
9		-1	-33	. 99	1188
10	1 1	1	-33	-99	1188
11	1	3	-31	-287	948
12	1 1	5	-27	-445	503
13	1	5 7	-21	-553	- 77
14	1	9	-13	-591	-687
15	1.	11	-3	~539	-1187
16		13	9	-377	-1402
17	1	15	23	-85	-1122
18 .	1	17	39	357	-102
19	1	19	57	969	1238
ΣΨ	20	1330	87 7 8 .	245,157	65 3, 752
L "		1530	0110 .	2400	000,102
[(n) ²	20	2660	17,656	4,903,140	22,881,320

TABLE 1 (Continued)

21	10	OT:	NTT.	nct
~	_		m.	

i	m (O)	m (1)	m(2)	m (3)	m (4)
0	1	-10	190	- 285	969
ì	ī	-9	133	-114	0
2		-8	62	12	-510
2 3	1	~ 7	37	98	-680
4		-6	-2	149	-615
4 5 6 7	1 1	- 5	~3 5	170	-406
6	1	-4	-62	166	-130
7	1	- 3	-83	142	150
8	1	. =2	-98	103	385
8 9	1	-1.	-107	54	540
10	1	0	-110	0	594
11	1 1 1 1 1 1 1 1	1	-107	-54	540
1 2	1	1 2 3	₩98	-103	385
13	l	3	*83	-142	150
14	1	4	-6 2	-166	-130
15	1	4 5	~3 6	-170	-4 06
16	1	6	-2	-149	-615
17	1	7	37	- 98	- 680
18 '	ı	8	82	-12	-510
19	1	9	133	114	0
20	1	10	190	285	969
Σw	21	770	33,649	86,526	408,595
\sum (m) ₅	57	770	201,894	432,630	5,720,330

TABLE 1 (Continued)

i	m (0)	m(1)	m(2)	m(3)	m(4)
0	1	-21	3 5	-133	1197
	ī	-19	25	- 57	57
1 2 3		-17	16	Ō	-570
3	1 1	-15	8	40	-810
4.		-13	ī	65	-775
5	1	-11	- 5	77	- 563
4 5 6 7	1 1 1 1	-9	-10	78	-258
7 .	l	- 7	-J.4	70	70
8	1	- 5	-17	55	365
9	1	~ 3	-19	3 5	585
10	1	-1	-20	12	702
11	1 1 1		-20	-12	702
12	1	1 3 5 7	-19	-35	585
13	1	5	-1 7	-5 5	365
14		7	-14	-70	70
15	1 1 1	9	-10	- 78	-258
16	ī	11	- 5	- 77	-563
17	ī	13	ì	-65	- 775
18	י ר	15	8	-40	-810
19		17	16	0	=57 0
20	î	19	25	57	57
21	1 1	21	35	133	1197
	**	La. 420	40	1.00	4.3.01
Σw	55	1771	7084	48,070	624,910
Σ (m) ²	22	3542	7084	96,140	8,748,740

TABLE 1 (Continued)

i	m(0)	m(1)	m (2)	m (3)	m(4)
0	1	-11.	77	77	2.407
1	1 1	-10	56	- 77 - 35	1463
1 2 3	ī	-9	37	-3	133
3	1	-8	ξÓ	20	-627
4	1 1 1	- 7	5	20 35	-950
4 5 6 7	1	~ 6	~ 8	43	- 955
6	1	~ 5	-19	45	-747
7	1	-4	-58	43 42	-417
8	1	-3	-35	35	- 42 315
9	1	-2	-40	25 25	315
10	1	-1	~43	13	605 793
JJ	1 1 1 1 1 1 1 1	Ō	-44	0	858
າຣ	1	1	÷43	~13	793
13	1	1 2 3	-4 0	- 25	605
14	1	3	-35	- 35	315
15	1		-28	- 42	- 4 2
16	1	4 5 6	-19	-45	-417
17	1	6	-8	-43	- 747
18	1	7	5	≈ 35	- 955
19	1	8	50	-50	- 950
20	1 1	9	37	3	-627
s 1	1	10	56	35	133
55	1	11	77	77	1463
۳.					
Σw	23	1015	17,710	32,890	937,365
∑ (m) ²	23	1015	35,420	32,890	13,123,110

TABLE 1 (Continued)

1	m (0)	m (1)	m (2) m(3)	m (4)
0	1	-23	253	. 3771	C (* *
1	.1	-21	187	- 1771	253
3 2	1	-19	127	-847	33
3	1	-17	73	~133	-97
4	1	-15	25	391	-157
5	1	13	-1 7	745	-165
6 7		-11	≈ 53	949	-137
	1	-9	-83	1023	-87
8	1	- 7	-107	987	-27
9	ī	-5	-125	861	33
10		<u>-3</u>	-137	665	85
11	1 1	- Ĵ.	-143	419	123
15	ī			143	143
13	l	1 3 5 7	-143	-143	143
14	1	, ,	-137	-419	153
15	1	7	-125	-665	85
16	ī	9	-107	~ 861	33
17	ī	11	-83	-987	-27
18 .		13	~ 53	-1023	~ 87
19	1 1 1	15	-17	-949	-1.37
20	1 3	17	25	-74 5	-165
21	ī	19	73	-391	-157
22	ī	21	127	133	- 97
23	ī	23	187	847	33
_,	-	20	253	1771	253
Σw	24	2300	65,780	888,030	197,340
$\sum (m)^2$	24	4600	394,680	17,760,600	394,680

TABLE 1 (Continued)

t	m (O)	m (1)	m (2)	m (3)	m (4)
0	1	-12	85	~ 506	1518
	ī	-11	69	- 253	253
1 2 3	1	-10	48	-55	-517
3	7	 9	59	93	-897
4	1	-8	12	196	≖ მეავ
5	1	-7	≈ 3	259	-857
6	1	- 6	-16	287	- 597
5 6 7 8	1	≈ 5	- 27	285	~ 267
8	1	-4	±3 6	258	78
9	1	-3	43	211	393
10	ı	-5	48	149	643
11	1 1	-1	#61	77	ძ03
12		0	. ∙52	0	858
13	1 1 1 1	3 1	4 51	-77	803
14	1	5	-48	-149	643
15	1		►43	-511	393
16	1	4	⇒36	≥ 258	78
17	1	5	-27	~ 285	► 267
18 .	1 1	6	-16	- 287	- 597
19	1	7	#3	- 259	-857
20	1	8	12	-196	~ 985
21	1	9	29	493	-897
55	1.	10	48	5 5	- 517
23	1	11	69	253	253
24	1	12	92	506	1518
Σw	25	1300	26,910	296,010	1,430,715
∑ (m)²	25	1300	53,820	1,480,050	14,307,150

TABLE 1 (Continued)

i	m (O)	m (1)	m (2)	m (3)	m (4)
0	1	~26	50	-3450	2530
1	ì	-23	38	-1794	506
$\hat{\mathbf{a}}$	l ī	-21	27	<u>483</u>	- 759
3	1	-1.9	17	513	-1419
4	1	-17	8	1224	4 1614
5	1	41 5	0	1680	-147 0
5 6	1	-13	47	1911	-1099
7	1	*11	-13	1947	- 599
8	1	~ 9	=18	1818	-54
9 .	1	- 7	÷52	1554	466
10	1	- 5	- 25	1185	905
12	1	- 3	-27	741	1551
J 🗅	1	- J.	∗ 28	252	1386
43	1	ı	+28	-252	1386
14	1	1 3 5	-27	~741	1551
15	1	5	*25	-1185	905
16	1	7	+55	-1554	466
17	1	9	#18	*1818	-54
18	1.	11	413	-1947	- 599
19	1	13	≖ 7	-1 911	-1099
20	1	15	О	-168 0	-1470
21	1	17	8	<u> </u>	~ 3.63.4
55	1	19	17	≥ 513	→1419
23	1	51	27	483	- 759
24	1	23	3 8	1794	506
25	1	25	50	3450	2530
Σ w	26	2925	16,380	2,341,170	2,861,430
$\sum (m)^2$	26	5850	16,380	70,235,100	40,060,020

TABLE 1 (Continued)

i	m(O)	m(1)	m(2)	ni(3)	m(4)
0	1	+13	325	- 1.30	2990
		-12	250	-70	690
ر ب	i	-11	181	-52	- 782
1 2 3	ī	-10	118	15	-1587
4	1 1 1	- 9	61.	42	-1872
5	ì	-8	10	60	-1770
6	ī	- 7	- 3 5	70	-1400
7	1	⇔ ნ	-74	73	-867
8	1 1	- 5	-1.07	70	-565
9	ı	-4	-134	62	333
10	J	-3	-155	50	870
11	1	- 2	-170	35	:285
12	1	~1	-179	18	1548
13	1	0	-182	0	1638
14	1 1 1 1 1 1 1	Ţ	-179	-18	1548
15	1	5	-1.70	- 35	1285
16	1	3	-155	- 50	870
17	1	4	-134	-62	338
18	1	5	-107	- 70	~ 262
19		6	-74	- 73	-867
20	1 1 1 1	7	- 35	" 70	-1400
21	1	8	10	~ 60	-1770
55	1	9	61	-42	-1872
23	1	1.0	13.8	-15	-1587
24	1	11	181	55	- 762
25	1	12	250	70	690
26	1	13	325	13C	2990
$\sum_{\mathbf{w}}$	27	1638	118,755	101,790	4,032,015
Σw Σw	27	1638	712,530	101,790	56,448,210

TABLE 1 (Continued)

58	***	ציויא
~~~	12111	M. I.

i	m (O)	m (1)	m (2 )	m (3)	m (4 )
0	1	-27	117	-1755	1755
	ī	<b>~</b> 25	91	-975	455
1 2 3	ī	-23	67	-345	<b>-395</b>
3	ī	-21	45	147	-879
4	1	-19	25	513	-1074
	1	-17	7	765	-1050
5 6	1	-15	<b>-</b> 9	915	-870
7	1	-13	-23	975	<b>-59</b> 0
8		+11	<del></del> 35	957	-259
9	1 1	<b>-</b> 9	-45	873	81
10	l	<b>-</b> 7	-53	735	395
11	1 J.	<b>+</b> 5	<b>~</b> 59	555	655
15		-3	~63	345	84C
13	l.	-1	-65	117	936
14	1 1	1	<b>-6</b> 5	-117	936
15	1	3	<b>-</b> 63	- 345	840
16	1 1	5	<b>~</b> 59	~555	655
17	1	7	<b>-</b> 53	- 735	395
18	l.	9	<b>- 4</b> 5	-873	81
19	1	11	<del>-</del> 35	<b>-</b> 957	<b>-2</b> 59
20	1	13	<u>-</u> 23	<b>-</b> 975	-590
21	1	15	<b>-</b> 9	<b>~</b> 915	<b>~870</b>
55	1	17	7	<del></del> 765	-1050
53	1	19	25	-513	-1074
24	] 2	51	45	-147	-879
25	1	53	67	345	<b>- 39</b> 5
26	1	25	91	975	455
27	1	27	117	1755	<b>175</b> 5
∑*W	<b>S</b> 8	3654	47,502	1,577,745	2,804,880
$\sum_{m} (m)_{5}$	58	7308	95,004	18,342,940	19,034,160

TABLE 1 (Continued)

29	T	$^{-}$	311	$\neg$
79	-		IM.	, n

i	m (O)	m <b>(</b> l)	m <b>(</b> 2 )	m <b>(</b> 3)	m (7)
0	1	-14	126	-819	4095
1	1	-13	99	<b>-</b> 468	1 <b>17</b> 0
1 2 3	1	<b>-1</b> 2	74	-182	<b>~</b> 780
3	1	<b>~11</b>	51	44	-1930
4	1	-10	30	215	-2441
5	1	<b>-</b> 9	11	336	<b>-24</b> 60
6	1	-8	-6	412	-2120
7	1	<b>-</b> 7	-21	448	-1540
8	1	-6	<b>-34</b>	<b>44</b> 9	<b>-</b> 825
9	1	<b>-</b> 5	<b>-4</b> 5	420	<b>-</b> 66
10	1	-4	<b>-</b> 54	366	660
11	1	-3	<b>-</b> 61	292	1290
is	1	<b>-</b> 2	<b>-</b> 66	203	17 <b>7</b> 5
<b>i</b> 3	1	-1	<b>-</b> 69	104	2080
14	1	0	<b>-</b> 70	0	2184
15	1	1	<b>-</b> 69	-104	2080
16	1	2	-66	<b>-</b> 203	1775
1.7 .	1	3	-61	<b>-</b> 292	1290
18	.1	4	-54	<b>-</b> 366	660
19	1	5	<b>-4</b> 5	-420	<b>-</b> 66
20	1	6	-34	-449	<b>-</b> 825
51	1	7	-21	-448	<b>-1</b> 54∪
22	1	8	<b>-</b> 6	-412	-2120
23	1	9	11	<b>-</b> 336	<b>-24</b> 60
24	ī	10	30	<b>-</b> 215	-2441
25	1	11	51	-44	-1930
26	1	12	74	182	<b>-</b> 780
27	1	13	99	468	1170
28	1	14	126	819	4095
Σw	29	2030	56,637	841,464	7,713,420
$\sum (m)^2$	29	2030	113,274	4,207,320	1.07, 987, 880

TABLE 1 Continued)

30 POINTS					
<u> </u>	m(O)	m(1.)	m <b>(</b> 2)	m(3)	m(4)
Ö	l	<b>-</b> 29	203	-1827	23751
1	1	-27	161	-1071	7371
2 3	1	<b>-</b> 25	122	<b>-4</b> 50	<b>-3744</b>
	1	<b>-</b> 23	86	46	-10504
4	1	<b>-</b> 2J	53	<b>4</b> 27	<b>-1</b> 3749
5	1	<b>-1</b> 9	23	703	-14249
6	1 1 1	-17	-4	884	<b>-</b> 12704
7	1	-15	<b>-</b> 28	980	-9744
8	1	-13	<b>-4</b> 9	1001	<b>-</b> 5929
9	1	-11	-67	957	-1749
10	1	<b>~</b> 9	-82	858	2376
11	1	<b>-</b> 7	<b>~</b> 94	714	6069
<b>1</b> 2	1	<b>~</b> 5	-103	535	9131
13	1	<b>-</b> 3	-109	331	11271
1.4	ī	-1	-112	112	12376
1.5	ī	ĩ	-112	-112	12376
16	ī	3	-109	-331	11271
17	1 1	5	-103	<b>-535</b>	9131
18		7	-94	-714	6069
19	1 1	9	-82	-858	2376
20	i	ıı̃	<b>-</b> 67	-957	-1749
21	i	13	-49	-1001	<b>-</b> 5929
22	i	15	-28	-980	-9744
23	i	17	<b>-</b> 4	<b>-</b> 884	-12704
24	i	19	23	<del>-</del> 703	-14249
25	i	21	53	<b>-</b> 427	~13749
26 26		23	86	<b>-4</b> 6	
27	<u>1</u> 1	25 25	122	<b>45</b> 0	-10504 -3744
28	i	23 27	161		
	1			1071	7371
29	,	29	203	1827	23751
Σw	30	4495	100,688	2,136,024	52,451,256
$\sum (m)^2$	30	8990	302,064	21,360,240	3,671,587,920

TABLE 2
WEIGHTS FOR EQUALLY SPACED DATA

		5 POI	nts				6 POINTS		
i	k=l ρw ₁	k =2 °™1	k=3 pw ₁	k <b>=4</b> ρ <b>w</b> ₁	k=1 pw ₁	k =2 ρ₩ ₁	k =3 ow _i	k =4 P ^W 1	i
1 2 3 4 5	2 3 2	2 3 2	1	1	5 8 9 8 5	5 9 9 5	5 8 5	1	1 2 3 4 5 6
Σw	10	7	2	1	35	28	18	2	
٠		7 POI	NTS				8 POINTS		
i	k=l pw ₁ .	k=2 pw₁	k=3 pw ₁	k=4 pw ₁	k=l pW ₁	^{OM} ^T K=S	k=3 ₽₩ _i	k=4 pw ₁	i
1 2 3 4 5 6 7	3 5 6 5 3	5 10 12 10 5	1 2 2	3 5 3	7 12 15 16 15 12 7	7 15 20 20 15 7	7 16 20 36 7	7 15 15 7	1 2 3 4 5 6 7 8
Σw	28	42	6	1 <b>1</b>	84	84	66	44	

TABLE 2 (Continued)

	9 POINTS					10 POINTS					
i	k=l nw ₁	k =2 ^{PW} 1	k=3 pw ₁	k =4 PW ₁	k=1. pw ₁	k =2 ^{0₩} 1	k =3 pW ₁	k =4 pw ₁	i		
1 2 3 4 5 6 7 8 9	4 7 9 10 10 9 7 4	28 63 90 100 90 63 28	14 35 50 50 35 14	14 35 45 35 14	9 16 21 24 25 24 21 16 9	6 14 21 25 25 21 14 6	42 112 175 200 175 112 42	18 50 75 75 50 18	1 2 3 4 5 6 7 8 9		
$\sum_{i=1}^{n} w_{i}$	60	462	198	143	165	132	858	286			
i	k=1.	11 POI k=2 pw ₁	k=3	k=4 pw ₁	k=1 pw ₁	k =2	12 POINTS k=3 PW1	k =4 0W ₁	i		
1 2 3 4 5 6 7 8 9 10	k=1· PW ₁ 5 9 12 14 15 15 14 12 9 5			k=4 pwi 6 18 30 35 30 18 6	k=1 pW ₁ 11 20 27 32 35 36 35 32 27 20 11			k =4 PW ₁ 33 105 189 245 245 189 105 33	i 1 2 3 4 5 6 7 8 9 10 11		

TABLE 2 (Continued)

		13 POI	nts		14 POINTS					
i	k≕l ρ₩ ₁	k=2 pw₁	k=3 pW ₁	k=4 pW1	k=l pW ₁	k =2 o₩1	k =3 pw ₁	k =4 pw ₁	i 	
1 2 3 4 5 6 7 8 9 10 11 12 13	6 11 15 18 20 21 21 20 18 15 11 6	22 55 90 120 140 147 140 120 90 55 22	11 33 60 84 98 98 84 60 33 11	99 330 630 882 980 882 630 330 99	13 24 33 40 45 48 49 48 40 33 24 13	13 33 55 75 90 98 98 90 75 55 33 13	143 440 825 1200 1470 1568 1470 1200 825 440 143	143 495 990 1470 1764 1470 990 495 143	1 2 3 4 5 6 7 8 9 10 11 12 13	
$\sum w$	182	1001	572	4862	455	728	9724	9724		
	•									
		15 POI	nts				16 POINTS			
i	k≔l ρ₩,	k=2 ρw ₁	k =3 pw ₁	k =4 pw ₁	k=1. pw ₁	k≕2 pw₁	k =3 P ^W 1	k =4 ow;	i	
	P"1	P"1	P" 1	<i>p</i> 1	P1	P"1	P., 1	р" <u>і</u>		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	7 13 18 22 25 27 28 28 27 25 22 18 13	91. 234 396 550 675 756 784 756 675 550 396 234 91	91 286 550 825 1050 1176 1050 825 550 286 91	1001 3575 7425 11550 14700 15876 14700 11550 7425 3575 1001	15 28 39 48 55 60 63 64 63 60 55 48 39 28 15	35 91 156 220 275 315 336 336 315 275 220 156 91 35	455 1456 2860 4400 5775 6720 7056 6720 5775 4400 2860 1456 455	1365 5005 10725 17325 23100 26460 23100 17325 10725 5005 1365	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	
$\sum w$	280	6188	7956	92,378	680	2856	50,388	167,960		

TABLE 2 (Continued)

				· ·	**				
		17 POI	nis				18 POINTS		
i	bw!	k =2 ('W1	k =3 pw ₁	k =4 pw ₁	k=T	k≓2 pW ₁	k =3 pw ₁	k =4 pw _i	i
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	8 15 21 26 30 33 35 36 36 35 33 30 26 21 15 8	40 105 182 260 330 385 420 432 420 385 330 260 182 105 40	28 91 182 286 385 462 <b>5</b> 04 462 385 286 182 91 28	52 195 429 715 990 1188 1260 1188 990 715 429 195 52	17 32 45 56 65 72 77 80 81 80 77 72 65 56 45 32 17	68 180 315 455 585 693 770 810 810 770 693 585 455 315 180 68	68 224 455 728 1001 1232 1386 1440 1386 1232 1001 728 455 224 68	68 260 585 1001 1430 1782 1980 1980 1782 1430 1001 585 260 68	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Σw	408	3876	3876	8398	969	7752	11,628	14,212	

TABLE 2 (Continued)

		19 P	OINTS		SO DOINIS				
1	k=l ρ₩ ₁	k=2 ρw ₁	k =3 ow₁	% =√		k =2 p₩ ₁	k =3 pw ₁	k =4 pW ₁	i
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	9 17 24 30 35 39 44 45 44 42 35 36 24 17 9	51 136 240 350 455 546 616 660 675 660 616 546 455 350 240 136 51	204 680 1400 2275 3185 4004 4620 4950 4620 4004 3185 2275 1400 680 204	612 2380 5460 9555 14014 18018 20790 21780 20790 18018 14014 9555 5460 2380 612	36 51 64 75 84 91	57 153 272 400 525 637 728 792 825 825 792 728 637 525 400 272 153 57	969 3264 6800 11200 15925 20384 24024 26400 27225 26400 24024 20384 15925 11200 6800 3264 969	1,938 7650 17850 31850 47775 63063 75075 81675 75075 63063 47775 31850 17850 7650 1938	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Σw	570	6783	42,636	163,438	1330	8778	245,157	653,752	

TABLE 2 (Continued)

		21 PO	ints		22 POINTS				
i	k=1 pw ₁	k=2	k=3 pw ₁	bm.	k=1 pw _i	k=2	k=3 pw ₁	κ=4 ^{ρ₩} 1	i
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	10 19 27 34 40 45 49 52 54 55 55 54 49 45 49 45	190 513 918 1360 1800 2205 2548 2808 2970 3025 2970 2808 2548 2205 1800 1360 918	285 969 2040 3400 4900 6370 7644 8580 9075 9075 8580 7644 6370 4900 3400 2040 969	969 3876 9180 16660 25480 34398 42042 47190 49005 47190 42042 34398 25480 16660 9180 3876 969	105 112	35 95 171 255 340 420 490 546 585 605 586 490 420 340 255	133 456 969 1632 2380 3136 3822 4368 4719 4368 3822 3136 2380 1632 969	1197 4845 11628 21420 33320 45864 57330 66066 70785 70785 66066 57330 45864 33320 21420 11628 4845	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18 19 20 21	27 19 10	513 190	285	303	72 57 40 21	171 95 35	456 133	1197	18 19 20 21 22
$\sum w$	770	33,649	86,526	408,595	1771	7084	48,070	624,910	

TABLE 2 (Continued)

		23 P	einic		24 POINTS					
	k=1	k <b>≈</b> 2	k =3	k =4	k=1	k <b>≈</b> 2	k =3	14		
i	PW ₁	PW1	$\rho w_1$	ρw ₁	υw₁	b∧ ^T		k =4	,	
				p 1	12.1	1,41	$\rho w_1$	UN I	i	
1	11	77	25					-		
ر ۳	51 11	77 210	77	1463	23	253	1771	253	ı	
2 3	30	380	266	5985	44	693	6160	1045	2	
4	38		570	14535	63	1260	13300	2565	3	
5	45	570 765	969	27132	80	1900	55800	4845	4	
Ģ	51		1428	42840		2565	33915	7752	5	
6 7	56	952	1904	59976	108	3213	45696	11016	6	
8		1120	2352	76440	119	3808	57120	14280	7	
9	60	1260	2730	90090	128	4320	67200	17160	8	
10	63	1365	3003	99099	135	4725	75075	19305	9	
	65	1430	3146	102245		5005	80080	20449	10	
11	66	1452	3146	99099	143	5148	81796	20449	11	
12	66	1430	3003	90090	144	5148	80080	19305	12	
13	. 65	1365	2730	76440	143	5005	75075	17160	13	
14	63	1260	2352	59976	140	4725	67200	14280	14	
15	60	1750	1904	42840	135	4320	57120	11016	15	
16	56	952	1428	27132	158	3808	45696	7752	16	
17	51	765	969	14535	11.9	3213	33915	4845	17	
18	45·		570	5985	108	2565	55800	2565	19	
19	38	380	566	1463	95	1900	13300	1045	19	
50	30	570	77	]	80	1260	6160	253	20	
21	2).	77		. j	63	693	1771		21	
55	11			1	44	253			55	
23				Į.	23				23	
									24	
$\Sigma w$	1013	17,710	32,890	937,365	2300	65,780	880,030	197,340		

TABLE 2 (Continued)

25 POINTS 26 POINTS k = 1′. ≠2 <u>k</u> =3 k =4 k =1 k≠2 k =3 k =4 i DW, r)W1 PW 1 PW. DM.  $\rho^{W}_{1}$  $\rho_{\mathbf{W_1}}$ 1.428 171.36 1.0 1.60 1.3 1.5 1.428 53,205 3.9 1.05 

 $\sum$  w 1300 26,910 148,005 1,430,716 2925 16,380 1,560,780 2 1,430,715 3

In computing m(3) in Table 1 the weights used where 2 times these weights.

²In computing m(3) in Table 1 the weights used where 1-1/2 times these weights.

³In computing m(4) in Table 1 the weights used where 2 times these weights.

TABLE 2 (Continued)

	•	27 PO	tnts			6	e Points		
	k=l	k=2	k=3	k=4	k=l	k=2	k=3	k#4	
i	pW ₁	pw ₁	ρw ₁	b _M 7	pwi	b _A ⁷	$\rho w_1$	pw _t	1
1.	13	325	130	2990	27	117	585	1755	1
2	25	900	460	1.2650	52	325	5080	7475	5
3	36	1656	1012	31078	75	600	4600	18975	3
4	46	2530	1771	61.985	96	920	8096	37191	4
5	55	3465	2695	102410	115	1265	12397	61985	
6	63	441.0	3724	150822	132	1617	17248	92169	5 ნ
7	70	5320	4788	203490	147	1960	22344	125685	7
8	76	6156	5814	255816	160	5590	27360	159885	8
9	8.1	6885	6732	302940	171	2565	31977	191862	9
10	83	7480	7480	340340	180	2805	35904	218790	10
11	88	7920	8008	364364	187	5995	38896	238538	11
12	90	81,90	8281	372645	192	31.20	40768	248430	12
13.	91	8281	8581	364364	195	3185	41405	248430	13
14	91.	87.90	8008	340340	7.96	31.85	40768	238238	
15	90	7920	7480	302940	195	3150	38896	21879C	15
16	88	7480	6732	255816	192	S3 <b>3</b> 5	35904	191862	16
17	85	6885	5814	203490	187	2805	31977	159£85	17
18	81	6156	4788	120355	180	2565	27360		18
19	76	5320	3724	102410	1.7.1	5560	22344	051'69	
80	70	4410	2695	61985	160	1960	17248	61985	50
51	63	3465	1.771	31,879	147	1.63.7	12397	37191	51
55	55	2530	1015	12650	132	1265	8096	18975	55
23	46	1656	460	5990	115	920	4600	7475	
24	36	900	130	1	96	600	2080	1755	
25	25	325		ł	75 50	325	585		25
26	13				52	117			26
27				į	27				27 28
Σw	1638 1	JB, 755	101,790 4	,032,015	3654	47,502	525,915 ¹	2,804,880	

¹ In computing m(3) in Table 1 the weights used were 3 times these weights.

TABLE 2 (Continued)

		59 Pc	STUTC		30 POINTS					
1	b. 1 γ ⊧1	k =2 pv ₁	k =3	/ ₁ = /1 / Wq	k=l pw ₁	k ≠∂ P ^W 1	k=3 pW ₁	k =4 ^{OW} 1	i	
.1	1.4	126	819	4095	59	203	1827	23751	1	
5	27	351	2925	17550	56	567	6552	102375	2	
3	39	650	6500	44850	81	1053	14652	253250	3	
4	50	1000	11500	88550	104	1.625	26000	523250	4	
5	60	1380	1771e	148764	125	2250	40250	885500	5	
6	69	1771	24794	223146	144	2898	56672	1338876	6	
7	77	2156	32340	307230	1.61	3542	74382	1859550	7	
8	84	2520	39900	395010	176	4158	92400	2413950	8	
9	90	2850	47025	479655	189	4725	109725	2962575	9	
1.0	95	3135	53295	554268	500	5225	125400	3464175	10	
11	99	3366	58344	6126.12	509	5643	138567	3879876	11	
12	102	3536	61880	649740	216	5967	148512	4176900	12	
13	. 104	3640	63700	662480	551	6188	154700	4331600	13	
14	105	3675	63700	649740		6300	156800	4331600	14	
15	105	3640	61880	612612	552	6300	154700	4176900	15	
16	104	3536	58344	554268	554	6188	148512	3879876	16	
17	105	3366	53295	479655	857	5967	1 <b>3</b> 8567	3464175	17	
JB	99.		47025	395010	216	5643	125400	2962575	18	
19	95	2850	39900	307230	508	5552	109725	2413950	19	
50	90	2520	32340	223146	500	4725	92400	1859550	20	
51	84	5126	24794	148764	189	4158	74382	1338876	21	
55	77	1773.	17710	88550	176	3542	56672	885500	22	
23	69	1380	11500	44850	161	2898	40250	523250	23	
24	60	1000	6500	17550	144	2250	26000	263250	24	
25	50	650	2925	4095	125	1625	14652	102375	25	
26	39	351	873		104	1053	6552	23751	26	
27	27	136			81.	567	1027		27	
58	14				<b>5</b> 6	203			28	
59					દુક				29	
₹*	2020	EC 677	042 404	7 717 400	4405	100 600	0 13C 004	<b>60</b> 463 050	<b>3</b> 0	
ΣW	5020	56,637	841,464	1,115,420	4495	.00,688	2,136,024	52,451,256		

TABLE 3

## BINOMIAL COEFF CIENTS ( k

_						
k	0	1	0	7	4	e
r + 1		<b>_</b> _	۷	<b></b>	4	
r + 1  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253	1 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771	1 5 15 35 70 126 210 330 495 715 1001 1365 1820 2380 3060 3876 4845 5985 7315 8855	1 6 21 56 126 252 462 792 1287 2002 3003 4368 6188 8568 11628 15504 20349 26334 33649
25 26 27	1 1 1	24 25 26	276 300 325	202 <b>4</b> 2300 2600 2925	10626 12650 ' 14950	42504 53130 65780
28 29 30 31	1 1 1	27 28 29 <b>3</b> 0	351 378 406 435	3275 3654 4060	17550 20475 23751 27405	80730 98280 118755 142506
32 33 34	1 1 1	31 32 33	465 496 528	4495 4960 5456	31465 35960 40920	169911 201376 237336
35 36 37	1 1 1	34 35 36	561 595 6 <b>3</b> 0	5984 6545 7140	46376 52360 58905	278256 324632 376992
38 39 40	1 1 1	37 38 39	666 703 741	7770 8436 9139	66045 73815 82251	435897 501942 575757

APPENDIX B

## APPLICATION OF SMOOTHING METHOD TO SINE CURVE USING UNEQUALLY SPACED DATA

Given

$$y = \sin x$$
,

with the points unequally spaced over the interval  $0 \le x \le 1$ , use of the divided difference method described in the text yields results tabulated below. First, let

$$y = f_n = A_0P_0 + A_1P_1 + A_2P_2 + ... + A_nP_n$$

where, in this case n+1+m=11, n=4 and  $P_k=x^k$  . In this example u=x .

The weights,  $\omega_1$ , are chosen by the following modification of the weights already calculated for equally spaced data containing ll points (see Table 2, Appendix A):

so that we have

1	1	w	•		1	ω		
<u>i</u>	k=4	k=3	k=2	k=1	k =4	k =3	k=2	k=1
1	6	30	15	5	2.28	9.6	3.15	0.40
2	18	84	36	9	7.56	25.2	8.64	1.17
3	<b>3</b> 0	140	56	12	12.00	40.6	9.52	1.32
4	<b>3</b> 5	175	70	14	12.60	50.75	12.60	0.84
5	<b>3</b> 0	175	75	15	13.20	52.5	17.25	1.80
6	18	140	70	15	7.74	44.8	12.60	1.65
7	- 6	84	56	14	2.34	26.88	11.76	0.98
8		30	36	12		9.6	9.0	1.68
9			15	9	1		2.70	0.99
10	1			5	I			0.35

Then proceeding with the fit we obtain the results:

х	у	F ₃ (y - A ₄ x ⁴ )	$\tilde{P}_2$ $(\tilde{P}_3 - A_3 x^3)$	$\tilde{P}_{2} - A_{2}x^{2}$	$(\tilde{P}_1 - A_1 x)$
		· · · · · · · · · · · · · · · · · · ·		<del></del>	
0.00	0.00000	0.00000	0.00000	0.00000	0.00000
0.08	0.07991	0.07991	0.08000	0.07996	0.00002
0.21	0.20846	€.20842	0.21012	0.20986	0.00001
0.32	0.31457	0.31436	0.32038	0.31977	-0.00001
0.38	0.37092	0.37050	0.38058	0.37972	-0.00001
0.50	0.47943	0.47818	0.50115	0.49966	0.00001
0.61	0.57287	0.57011	0.61182	0.60960	0.00003
0.68	0.62879	0.62452	0.68230	0.67954	0.00002
0.82	0.73115	0.72213	0.82344	0.81943	0.00000
0.93	0.80162	0.78670	0.93450	0.92935	0.00000
1.00	0.84147	0.82152	1.00527	0.99931	0.00001

 $A_4 = 0.01995$ 

 $A_3 = -0.18375$ 

 $A_2 = 0.00596$ 

 $A_1 = 0.99930$ 

 $A_0 = 0.00001$ 

Therefore

$$\sin x \simeq 0.00001 + 0.99930 \ x + 0.00596 \ x^2 - 0.18375 \ x^3$$
 
$$+ 0.01995 \ x^4 \quad , \quad 0 \leq x \leq 1 \quad radian \quad .$$

APPENDIX C

## NOTE ON INTERPOLATION WITH TCHEBYCHEV POLYNOMIALS

When Tchebychev polynomials are used in equation (1) for the purpose of truncating to a lower degree the u should be chosen so as to make the balanced oscillations of T(u) occur within the region of interest. Thus, if accurate results are desired for  $x_{1} \leq x \leq x_{1}$ , u should be chosen so that

$$u = -1$$
 for  $x = x_1$ ,

and

$$u = 1$$
 for  $x = x_j$ .

This is particularly important in the process of inverse interpolation. For example, suppose one is given the following table of values. The problem of finding the solution of f(x) = 0 will obviously involve the investigation of a neighborhood near x = 1.4.

х	.`(x)	
1.0 1.2 1.4 1.6	-4.0000 -2.8224 -0.2464 4.1216 10.7136	

Linear interpolation using the points (1.4, -0.2464) and (1.6, 4.1216) gives x = 1.411 as an approximate solution of f(x) = 0. Assume that the desired solution lies between x = 1.40 and x = 1.42, and choose the linear transformation connecting x and y so that y = -1 for y = 1.40 and y = 1 for y = 1.42.

The following table can then be used for determining the A's in equation (1):

x	u	T ₄ (u )	T ₃ (u)	T ₂ (u)	
1.0 1.2 1.4 1.6	-41 -21 -1 19 39	22,592,641 1,552,321 1 1,039,681 18,495,361	-36,981 -1 27,379 237,159	881 1 721	

Using these values of Tchebychev polynomials, points on successively lower degree curves, approximating f(x), can be obtained

х	f(x)	fg	$f_2 = f_3 - A_3 T_3$	$f_1 = f_2 - A_2 T_2$
1.0 1.2 1.4 1.6	-4.0000 -2.8224 -0.2464 4.1216	-2.8224 -0.2464 4.1216	-2.73919275 -0.24639775 4.05999725	-0.24753125 3.24274375

$$\Delta^4$$
 f = A₄  $\Delta^4$  T₄, 0.0384 = 30,720,000 A₄

$$A_4 = 1.25 \times 10^{-9}$$

Because of the magnitude of  $A_4$  the term  $A_4T_4(u)$  is neglected.

$$\Delta^3$$
  $f_3 = A_3$   $\Delta^3$   $T_3$ , 0.432 = 192,000 $A_3$ 

$$A_3 = 0.00000225$$

$$\Delta^2$$
  $f_2 = A_2$   $\Delta^2$   $T_2$ , 1.8136 = 1600 $A_2$ 

$$A_2 = 0.0011335$$

Linear interpolation with  $f_1$  gives x = 1.414184 as an approximate solution of f(x) = 0. This can be used as a first approximation for inverse quadratic interpolation in  $f_2$ , and the approximation obtained from  $f_2$  can be used for starting inverse cubic interpolation in  $f_3$ .

In this case

$$f(x) = x^4 + 3x^3 - 2x^2 - 6x$$

and

$$f'(x) = 0$$

for

$$x = \sqrt{2} \approx 1.41421$$

so that

The accuracy of the various approximations for f(x) within the interval 1.40 < x < 1.42 for direct interpolation can be seen from the A's:

$$|f - f_3| \le |A_4| = 1.25 \times 10^{-9}$$
  
 $|f - f_2| \le |A_4| + |A_3| = 1.25 \times 10^{-9} + 2.25 \times 10^{-6}$   
 $|f - f_1| \le |A_4| + |A_3| + |A_2| \ge 0.00113575$