Criteria Pollutants

Six criteria pollulants 03,00,502, PM 10, NO2, Pb

Since 1970 (Passage of CAA) have seen dramatic reduction in

PM 10 & Pb, some reduction CO,502, increase in Nox

oxygen strived; burn temperature, combustion time (at high temp), chamber turbulence (mixing).

~70% commissions from motor vehicles

lompetes with Do in Glood, high concentrations can kell multi-cellular acrobic organisms. Expressed as % COHB = 0.15% (1-e-0.4024/hr)[0] where [0] = ppm 00 in air. Outdoors looppm is typical max value. Indoors 30 ppm typical max.

Physiological effects: 10%-headache; 30%-confusion; 60% -unconsious/neath

Nox - Thermal Nox from high-T combostion, Fuel Nox from chamical changes in hel.

No - no known effects at typ. conc.

Noz-irritates lungs, increases chance of respiratory infections. Reacts with OH (radical) to make HNOz. lauses reddish-brown color in "smog" Produces photochemical smog,

· Volable Organic Compounds

VOL - produce pholochemical Smag; Some components are toxic

VOL + NOX + hz - Pholochemical Smag

Pholochemical Smag irritates lungs & eyes. Scars lung tissue.

O3 (one component) damages plant of animal tissue

"Smog reachins"

$$(1) N_2 + O_2 \rightarrow 2ND$$

$$(2) 2NO + O_2 \Rightarrow 2NO_2$$

(4)
$$0 + 0_2 + M \rightarrow 0_3 + M$$

(5) O3 + NO -> NO2 + O2

(Mormal Nox)

(NO oxidizes to NO2)

(photolysis to split 0 from NO2)

(M is like a "catalyst" - needed to obserb

excess evergy
from 0+02 hision)

(No, Scannyes O3)

by creature of OH° with

water vapor create Voc

radicals that sow down

reduction of 03 thus Voc

help increase observed 03 values

 $0 + H_2 0 \rightarrow 20H^{\circ} \quad (radical)$ $0H^{\circ} + NO_2 \rightarrow HNO_3 \quad (nifric acid)$ $0H^{\circ} + C0 \rightarrow CO_2 + H^{\circ}$ $RH + 0H^{\circ} \rightarrow R^{\circ} + H_2 0$ $R^{\circ} + O_2 \rightarrow RO_2^{\circ}$ $RO_2^{\circ} + NO \rightarrow RO^{\circ} + NO_2$ $RO^{\circ} + O_2 \rightarrow HO_2^{\circ} + R^{\circ} CHO$ $HO_2^{\circ} + NO \rightarrow NO_2 + OH^{\circ}$

Occupy some of NO that would otherwise scavenge

03 thus increasing 03 values

The RH companies one the VOCs

· Particulate matter

PM-100, PM-10, PM-2.5

Size is based on aerodynamic diameter. Air puriting respirators (typ. NIOSH approved) can remove 99.8% of PM-100 or larger. Smaller sizes are more difficult to remove and are a greator threat

Sizes range from 0.005µm - 100µm (Particulotes)

Wholes Law used to define size

Fr = my Stokes Law Fr = 311
$$\eta$$
 Vd

= $\pi d \dot{p} g$ can solve for velocity as

 $V = \frac{gqd^2}{6}$
 $V = \frac{gqd^2}{18\eta}$

N = Viscovity

"Apradynamic size" is the value of that satisfies the velocity oquanum tur a particular perticulate. Large particles settle faster than small (double of, 4x rate).

Residence time

Useful concept in analysis is to determine residence time of a contuminant in an environmental compartment.

Consider a water drop 2 pm in diameter. Its setting velocity is $V = \frac{(9 g d^2 - (10^6 g / m^3)(9.8 m/s^2)(2-10^{-6} m)^2}{187} = 1.27 - 10^{-4} m/s$

Now consider a 1000m tall section of atmosphere

initially | loop | assume perfices one initially unitarmily distributed |

initially | loop | Arrowshort column.

Nant to know how long until all particles

t=0 | leave box. Using classic settling theory

last puticle, we simply need to know how long a to fall particle moving with speed v needs to how how how long a to fall particle moving with speed v needs to have the distance h?

t=7 | he vt (solve tr t = V - 1.27-10 m/s 7.9.0 % x 90 dog.

In general (small perholes settle slowly. Parholes (smaller than sound on defeat body's natural defenses.

Current regulators track topm particles (PM-10)

but regulation of PM-2.5 will become important, as the smaller particles appear to have significant health offects.

Sulfur oxides SOx result from combustion of fuel, mostly Stationary Sources, [85% from power production]

Fuel + Air -> Heat + Energy + SO2 + NO + --

So₂ + OH° -> HOSO'₂ + O₂ -> SO₃ + HO'₂

SO₃

H₂O NO -> OH° + NO₂

Combines with water V

vapor in atmosphere to

Produce a strong acid (low pH) that precipitates with rainfull

(acid rain). These sultate aerosols (SO₄) can travel large

distances before deposition so that impact may be many

miles from source of pollution.

Lead Pb

orginally tetraethyl lead Pb(CHs), was added to motor fuel to reduce pre-ignition in internal combustion engines. Eliminutum of lead in fuels in late 1980s has practically climinated motor tuel as a source of lead in environment in USA and some other developed nations. Remaining sources are paint, metal smetters, lead-acid battery manufacture.

Lead enters body by inhalation & ingestion. Pb attacks CNS and higher brain functions - nearly impossible to remove from body although some success with EDTA cheleating

Air toxics arsenic, mercury, radionudides, benzene, beryllium, etc.

Cources of pollutants
Motor vehicle emmissions, Stationery sources (factivies, powerplants)

Motor Vonicles

About 1/2 of all commissions. Incomplete combustion $C_7H_{13} + 10.250_2 \rightarrow 7 co_2 + 6.5 H_20$ (in O_2) $C_7H_{3} + 10.250_2 + 38.54N_2 \rightarrow 7 co_2 + 6.5 H_20 + 38.54N_2$ (in Air)

too little air => feel in exhaust > wastes feel + Voc too much air => excess 02 & heat -> increases Nox

Logislation ~ 1969 specified certain emmissions standards
by 1996 nearly 90% necluchian in per vehicle CO + VOC 11

1973 Corporate Average Fuel Economy (CAFE) - high occasiony vehicles tend to emit less possitions

1990's SUV & Irsht trucks represent about 40% of fleet - lower economy & lass strict tellippe stendards.

Economy/efficiency
4-stroke anyine lotto cycle)

2-stroke engine - pass a lot of fuel to exhaut. Run hot and produce a lot of thermal NOX

diesel- produce a lot of thermal Nox & particulates

Controls - recirculation, afterburner, costalytic convertes

- Clean heb: add "oxygen" to hel by modifying cremistry;

retormulated gasoline (RFG)

Alternative tuels - CH30H (method) => formaldehyde in exhast low overgy content; attacks synthetic rubber in conventional fuel systems OLEV, ZEV hybrid; battery-cleckic, Frelcell -ronge, speed, Al Stationary sources About 1/2 of all emmissions, Produce Similar emmisions as motor vehicles. Can be managed better using buse-load concepts (eg. don4 have to start/slap) Controls: pre combishin - hel

combustion - chamber geometry, heat transfer, tel feed post-combustion - oft gasses & exhaust fuel type: solid (coal), liquid (diesel, tuel oil, hydrocurbon slung) gas (nahval, propose etc.)

tuel type (phase) dictates combustion chamber design

Fluidized bed combustion

bassification (steam returning)

"porous medium combushin"

 $\begin{array}{c} C+ H_2O \xrightarrow{\text{Catalyst}} CO + H_2 \\ 1 \end{array}$ to gas turbine

low Nox combustion

1) limit air to reduce feel NOx

2) Strutified change (2-stage) combustion

Off gas treatments - Wet scrubbors particulate control

-hydrocyclone separation

- electrostatic precipitation -tiltration

Caso3 = 2420 + CO2 $\begin{array}{ccc} CaSo_3 & \longleftarrow (So_2) \\ & & \longrightarrow (Co_2) \end{array}$

Fuel cell - direct conversions huel to electricity by redox reachins