Modelling of a Thermally Insulated Solar Hydrogen System: Utilizing the Operational Heat

Atmuri Mahesh Sreshti (18D170009)

Under the guidance of Prof. Prakash Chandra Ghosh June 2023

Department of Energy Science and Engineering Indian Institute of Technology Bombay

Outline

01

02

03

Introduction

System Design

Modelling of System

Motivation Objectives Working Component Selection Component-wise Model Overall Model

04

05

Results & Discussion

Conclusion

Component-wise Results Load Scenarios

Introduction – Motivation

Increasing demand for clean & sustainable energy sources Intermittent Solar PV Electrolyzer Storage Carbon-free fuel Hydrogen Fuel Cell Difficult fuel supply High altitudes Extreme temperatures Low oxygen levels

(Source: internet)

Introduction – Objectives

System Design – Working

(Source of individual images: internet)

Solar PV Selection

Monocrystalline Si | Polycrystalline Si | Monocrystalline Si PERC | Thin Film | Perovskite

Peak Power P _{max} (W)	315	320	325	330	335	340
Max Voltage V _{mpp} (V)	37.5	37.7	37.8	38	38.1	38.2
Max Current Impp (V)	8.4	8.5	8.6	8.7	8.8	8.91
Open Circuit Voltage Voc (V)	45.8	46	46.2	46.3	46.5	46.7
Short Circuit Current Isc (A)	8.92	9.03	9.13	9.24	9.35	9.46
Module Efficiency (%)	16.23	16.49	16.75	17.01	17.26	17.52

Vikram Solar polycrystalline Si PV modules (Source: Vikram Solar datasheet)

Peak Power P _{max} (W)	365	370	375	380	385
Max Voltage V _{mpp} (V)	39.8	40.0	40.1	40.2	40.3
Max Current Impp (V)	9.17	9.26	9.36	9.46	9.56
Open Circuit Voltage Voc (V)	48.3	48.5	48.7	48.8	48.9
Short Circuit Current Isc (A)	9.73	9.84	9.94	10.04	10.14
Module Efficiency (%)	18.81	19.07	19.33	19.58	19.84

Vikram Solar monocrystalline Si PERC modules (Source: Vikram Solar datasheet)

Monocrystalline, polycrystalline, and thin film solar modules (Source: internet)

Monocrystalline Si PERC is selected!

Electrolyzer Selection

Alkaline | Proton Exchange Membrane (PEM) | Solid Oxide

PEM is selected!

Solid Oxide

Fuel Cell Selection

PEM | Alkaline | Solid Polymer | Sulfuric and Phosphoric Acid | Solid Oxide | Molten Carbonate

- Alkaline is intolerant to CO2
 Solid polymer have low electrochemical activity
- Acid FCs have bad performing air electrodes
- o Molten carbonate and Solid oxide FCs operate at very high temperatures (>800°C) PEM is selected!

Passive Solar Tent Design

Indirect gain - time lag between radiation & heating

Solar tent

Cylindrical roof – minimize heat loss through surface Partition – thermal mass, insulating Modular – less than 30 kgs per part

Modelling of System

Solar PV | Electrolyzer | Fuel Cell | Hydrogen Storage | Passive Solar Tent

Solar PV Modelling

$$I = I_{sc} - I_o \left[\exp\left(\frac{V + IRs}{\alpha}\right) - 1 \right]$$

$$T_c = T_{amb} + (NOCT - 20^o C) \frac{\emptyset}{800}$$

$$P = VI$$

$$\frac{dP}{dI} = \alpha \left(\frac{I}{I - I_{sc} - I_o} + \ln\left(\frac{-I + I_{sc} + I_o}{I_o}\right)\right) - 2IR_s = 0$$

Krismadinata, Nasrudin Abd. Rahim, Hew Wooi Ping, and Jeyraj Selvaraj. (2013). Photovoltaic module modeling using simulink matlab. Procedia Environmental Sciences 17, 537-546. Retrieved from https://doi.org/10.1016/j.proenv.2013.02.069

Electrolyzer Modelling

Anode | Cathode | Membrane | Effective Diffusion | Voltage

$$n_{O2} = \frac{N_{O2}^{gn}}{A} = \frac{I}{4FA}$$
 $X_{O2} = \frac{n_{O2}}{n_{O2} + n_{H2O}^{an}}$ $n_{H2O}^{an} = \frac{N_{H2O}^{mem} + N_{H2O}^{cons}}{A}$ $p_{O2} = X_{O2}P_{an}$

Cathode

$$n_{H2} = \frac{N_{H2}^{gn}}{A} = \frac{I}{2FA}$$

$$n_{H2O}^{cat} = \frac{N_{H2O}^{.mem}}{A}$$

$$X_{H2} = \frac{n_{H2}}{n_{H2} + n_{H20}^{cat}}$$

$$p_{H2} = X_{H2} P_{cat}$$

Abdin, D., C.J. Webb, and E.MacA, Gray. (2015). Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell. International Journal of Hydrogen Energy 40(39), 13243-13257. Retrieved from https://doi.org/10.1016/j.ijhydene.2015.07.129

Electrolyzer Modelling

Membrane

$$\begin{split} N_{H2O}^{.mem} &= N_{H2O}^{.diff} + N_{H2O}^{.eod} - N_{H2O}^{.pe} & N_{H2O}^{.eod} &= \frac{n_d I}{F} \\ N_{H2O}^{.diff} &= \frac{AD_w}{\delta_{mem}} \left(C_{H2O,mem}^{cat} - C_{H2O,mem}^{an} \right) & N_{H2O}^{.pe} &= \frac{K_{Darcy} A \rho_{H2O} \Delta P}{\delta_{mem} \mu_{H2O} M_{H2O}} \end{split}$$

Effective Diffusion

$$N_{H2O}^{.eod} = \frac{n_d I}{F}$$

$$N_{H2O}^{.pe} = \frac{K_{Darcy} A \rho_{H2O} \Delta I}{\delta_{mem} \mu_{H2O} M_{H2O}}$$

Voltage

$$V = V_{oc} + V_{act} + V_{ohm} + V_{con}$$

Abdin, D., C.J. Webb, and E.MacA. Gray. (2015). Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell. International Journal of Hydrogen Energy 40(39), 13243-13257. Retrieved from https://doi.org/10.1016/j.ijhydene.2015.07.129

Fuel Cell Modelling

Anode H₂ flow | Cathode O₂ flow | Fuel Cell

$$\frac{dP'_{H2}}{dt} = \frac{RT}{V_a} \left(m'_{H2,in} - m'_{H2,out} - m'_{H2,used} \right)$$

$$m_{H2,used} = \frac{NI}{2F}$$

$$m_{H2,out} = k_a (P_{H2}' - P_{tank})$$

$$rac{dP'_{O2}}{dt} = rac{RT}{V_c} \left(m_{O2,in} - m_{O2,out} - m_{O2,used}
ight)$$
 $m_{O2,used} = rac{NI}{4F}$
 $m_{O2,out} = k_c \left(P'_{O2} - P_{bpr}
ight)$

Khan, M.J. M.T. Is

Khan, M.J., M.T. Iqbal. (2005). Modelling and Analysis of Electro-chemical, Thermal, and Reactant Flow Dynamics for a PEM Fuel Cell System. Fuel Cells 5, 463-475. Retrieved from https://doi.org/10.1002/fuce.200400072

Fuel Cell Modelling

$$\begin{split} V_{cell} &= E_{Nernst} + \eta_{act} + \eta_{ohm} + \eta_{con} \\ E_{Nernst} &= E_o + \frac{RT}{nF} \Big(\ln \Big(p'_{H2} \sqrt{p'_{O2}} \Big) \Big) \\ \eta_{act} &= \xi_1 + \xi_2 T + \xi_3 T (\ln(c'_{O2})) + \xi_4 T (\ln(I)) \\ \eta_{ohm} &= -i R_{int} \\ \eta_{con} &= N * m \exp \Big(\frac{nI}{A} \Big) \end{split}$$

 $Khan, M.J., M.T.\ lqbal.\ (2005).\ Modelling\ and\ Analysis\ of\ Electro-chemical,\ Thermal,\ and\ Reactant\ Flow\ Dynamics\ for\ a\ PEM\ Fuel\ Cell\ System.\ Fuel\ Cell\ S,\ 463-475.\ Retrieved\ from\ https://doi.org/10.1002/fuce.200400072$

Hydrogen Storage Modelling

$$\int N_{H2}^{.in} dt - \int N_{H2}^{.out} dt = N_{H2}^{net}$$

$$Vol_{H2}^{std} = \frac{N_{H2}^{net}RT}{P}$$

Passive Solar Tent Modelling

$$NLC/floor area = 115 kJ/C-day-m^2$$

$$DD = \left(T_{base} - \frac{T_{max} + T_{min}}{2}\right) (No. of \ days) = 2896 \text{ C-days}$$

$$SSF = 1 - \frac{Q_{aux}}{Q_{net}} = 0.75$$

$$Q_{aux} = (1 - SSF) * \left(\frac{NLC}{Floor\ Area}\right) * Floor\ Area * DD$$

Overall Model

Overall system - 2 kW

Solar PV – 5 x 400 W panels in series

Electrolyzer - Upto 5 cells depending on Pinput

Fuel Cell - 1 stack

Function blocks to manage flow of power

Functions for heat and efficiencies

Results & Discussion

Solar Tent | Solar PV Array | Electrolyzer | Fuel Cell | Overall System

Ladakh – 5.5 kWh/m²-day, 300 sunny days → 1 kW solar PV – 1650 kWh/y → 2 kW system – 3300 kWh/y

Results – Solar Tent

Floor area = $9 * 5 = 45 \text{ m}^2$

 Q_{aux} = (1-0.75) * 115 * 45 * 2896 = 3747.7 MJ/year = **1041 kWh/year**

Average daily heating load = 2.85 kWh/day

Hence, Q_{aux} < 3 x generated solar power

Auxiliary heating devices – space heating devices like electric heater, kerosene, firewood

Results - Solar PV Array

 I_{sc} = 10.2 A V_{oc} = 49.28 V I_{mp} = 9.9 A V_{mp} = 40.42 V

Very close to manufacturer's data

 $I_{\rm sc}$ more sensitive to irradiance

 V_{oc} less sensitive to irradiance

 $T_{amb} = 269.25 \text{ K}$

Power linearly increases with irradiance

Results - Electrolyzer

Input Power varied from 10 W to 440 W

Contribution of $V_{oc} > V_{act} > V_{ohm} > V_{con}$

Results – Fuel Cell

Input Power varied from 3 W to 3000 W

Effect of $V_{act} > V_{ohm} > V_{con}$

Results - Overall Model

Input chosen for irradiance and temperature: 21 June, Ladakh

3 load scenarios – variable load, no load, constant load

The input irradiance, temperature, and solar output are same for all scenarios

Total solar energy output = 19.61 kWh

Results - Variable Load

Results - No Load

EOD: 3645 std. litres

Results - Constant Load (400 W)

EOD: 812 std. litres

 η_e = 63.7-80%, η_f = 56-76.6%

 $Q_e = 4.91 \text{ kWh, } Q_f = 2.28 \text{ kWh}$

Results - Comparison

Net volume of hydrogen at EOD reaches zero for ~ 495 W constant load

Efficiency of heat utilization = 60% (considered)

 $\eta_{\text{variable load}}$ = 80.8%, $\eta_{\text{no_load}}$ = 86%, $\eta_{\text{constant_load}}$ = 85.3%

Conclusions

- The integration of solar & hydrogen technologies showcases a promising pathway towards achieving sustainable energy solutions for high-altitude locations, benefiting both the armed forces & local communities.
- This system is versatile, capable of generating electricity for general usage and electrolysis, producing hydrogen and oxygen, and providing thermal comfort within the tent.
- The net volume of hydrogen in all the scenarios is positive indicating that the system is capable of accumulating hydrogen over time, ensuring a continuous energy supply even on non-sunny days.
- Efficiency of the overall system in no load scenario > constant load scenario > variable load scenario.
- Effective load management strategies are required to maximize system efficiency since overall system performance increases when load profile matches the solar output.
- Thermally insulated solar hydrogen systems provide an overall energy utilization of 80-90%, which is much higher compared to a conventional solar hydrogen which have efficiency of 35-50%.
- The overall system efficiency can be further improved with advanced thermal insulation technologies.

Thank You!

Open for questions

Solar Hydrogen System

Hydrogen production – Electrolysis of water H2O \rightarrow H2 + $\frac{1}{2}$ O2 Δ H = +286 kJ/mol

Types of Solar Hydrogen Systems

Photocatalytic | Photobiological | Solar Thermal | Photoelectrochemical (PEC)

Types of PEC Devices

Fully integrated / Wireless

Partially integrated / Wired

Non-integrated / Modular

Fuel Cell

PEM. 0.42 kW

PAFC-PEM.

PEM, 5.6 kW

EM. 3 kW

10-7.5 kW

Solar Hydrogen System – Fyamples

with Pt and IrO x catalysts

Solid Oxide Electrolysis Cell

Ni foams as electrodes

PEM

PEM. 1 kW

Alkaline, 5 kW

Alkaline, 26 kW

Alkaline, 5 kW

bifunctional NiFe catalyst-loaded

Solai Hydrogen System Laampies						
Components/Project Name	Solar Module/Cell	PV efficiency	Electrolyser	STHmax efficiency	Hydrogen Storage	
PEM-EC, Solar cells	bifacial Si heterojunction	18.4% (30% albedo)	DEM	15.50%		
PEIVI-EC, Solai Cells	monofacial Si heterojunction	16.40%	FLIVI	13.70%		
	InGaP/GaAs/GaInNAsSb triple-junction, highest STH		2 PEM	30%		
	GalnP/GaAs/Ge multi-junction		10 cm2 Ni foam electrodes in 1 M NaOH	22.40%		
_	a-Si:H/a- Si:H/ µc-Si:H triple	-	two Ti sheet electrodes loaded	4.000/		

29.8% and 37.2%

for triple-junction &

quadruple-junction

10% (avg)

|a-Si:H/a- Si:H/ µc-Si:H triple liunction

Perovskite solar cells

PV cell, photon-enhanced

FIRST (2000-2004)

PHEOBUS (1993-2003)

SAPHYS (1994-97)

INTA (1989-97)

thermionic emission cell, SOEC

III-V solar cells

8.5 kWp

43 kWp

multi-junction GaAs PV cell

1.4 kWp, monocrystalline Si

5.6 kWp, monocrystalline Si

Metal hydrides, 30 bar, 70 Nm3

Pressurized tank, 120 bar, 3000

Nm3 volume cap, 10638 kWh Pressurized tank, 200 bar, 12 27

Nm3 volume cap. 426 kWh

volume cap, 248 kWh Metal hydrides - pressurized

cap, 85-32 kWh

7.05% tanks, 200 bar, 24-9 Nm3 volume

4.80%

12.30%

29.61%

18%

Solar Hydrogen System – Examples

	, .	٠	/			
Components/Project Name	Solar Module/Cell	PV efficiency	Electrolyser	STHmax efficiency	Hydrogen Storage	Fuel Cell
SAPHYS (1994-97)	5.6 kWp, monocrystalline Si		Alkaline, 5 kW		Pressurized tank, 200 bar, 120 Nm3 volume cap, 426 kWh	PEM, 3 kW
SCHATZ (1989-96)	9.2 kWp, monocrystalline Si		Alkaline, 6 kW	6.2% (avg)	Pressurized tank, 8 bar, 60 Nm3 volume cap, 213 kWh	PEM, 1.5 kW
Solar house (1992-95)	4.2 kWp		PEM 2 kW		Pressurized tank, 28 bar, 400 Nm3 volume cap, 1418 kWh	PEM, 3.5 kW
Solar hydrogen pilot plant (1990-92)	1.3 kWp	13% (avg)	Alkaline 0.8 kW	9.27% (avg)	Pressurized tank, 25 bar, 200 Nm3 volume cap, 709 kWh	PAFC, 0.5 kW
SWB (1989-96)	370 kWp, monocrystalline, polycrystalline and amorphous Si	9-13% (crystalline) & 5% (amorphous)	Alkaline 100 kW		Pressurized tank, 30 bar, 5000 Nm3 volume cap, 17730 kWh	PAFC, 80 kW
CEC (2007-)	5 kWp		Alkaline 3.35 kW		Metal hydrides, 14 bar, 5.4 Nm3 volume cap, 19 kWh	PEM, 2.4 kW
solar cells, electrolyser, hydrogen storage tank, fuel cell			PEM	CHP fuel cell ~ 72%		PEM, 0.5 kW
PVT modules, electrolyser, fuel cell stack, battery, H2 storage	PVT modules	9% (overall electrical energy	PEM	14.5% (max net energy		PEM

Most fuel cells - PEM

tank, H2 compressor

Newer electrolyzers - PEM

efficiency)

Older electrolyzers - Alkaline

efficiency)

Optimistic STH efficiency = 0.2 * 0.7 = 14%

Parameters

Model	PIL 400HM
Maximum Power, P_{max} (W)	400
Open Circuit Voltage, Voc (V)	49.28
Short Circuit Current, I _{sc} (A)	10.2
Voltage at Maximum Power, V _{mp} (V)	40.46
Current at Maximum Power, I _{mp} (A)	9.89
Module Efficiency (%)	20.12
Coefficient of Short Circuit Current, μ_{Isc} (%/°C)	0.05
Nominal Operating Cell Temperature, NOCT (°C)	43

Parameter	Value	Parameter	Value
A (cm ²)	160	ξ	4
δ _{mem} (cm)	0.0254	F (C mol ⁻¹)	96485
δ _{el} (cm)	0.008	R (J mol ⁻¹ K ⁻¹)	8.314
ρ _{el} (Ω cm)	1.06E-05	n _d	7
D _w (cm ² s ⁻¹)	1.28E-06	λ	21
K _{darcy} (cm ²)	1.58E-14	i _{o,an} (A cm ⁻²)	1.00E-07
ρ _{H2O} (g cm ⁻³)		i _{o,cat} (A cm ⁻²)	1.00E-01
μ _{H2O} (g cm ⁻¹ s ⁻¹)	1.10E-02		0.8
ε	0.3	α_{cat}	0.25

Parameter	Value	Parameter	Value
N	35	F (C mol ⁻¹)	96485
A (cm ²)	232	C _{dl} (F)	8.12
I _{mem} (cm)	0.0178	λ	12.5
P _{tank} (atm)	3	V _a (m ³)	0.005
P _{bpr} (atm)	3	k _a (mol s ⁻¹ atm ⁻¹)	0.065
Rated Power (kW)	5	$V_c (m^3)$	0.01
R (J mole ⁻¹ K ⁻¹)	8.314	k _c (mol s ⁻¹ atm ⁻¹)	0.065

Fuel Cell

Solar PV

Electrolyzer

References

- 1. Privitera, S.M.S., M. Muller, W. Zwaygardt, M. Carmo, R.G. Milazzo, P. Zani, M. Leonardi, F. Maita, A. Canino, M. Foti, F. Bizzarri, C. Gerardi, and S.A. Lombardo. 2020. "Highly efficient solar hydrogen production through the use of bifacial photovoltaics and membrane electrolysis." Journal of Power Sources 473:228619.
- 2. Liu, Guanyu, Yuan Sheng, Joel W. Ager, Markus Kraft, and Rong Xu. 2019. "Research advances towards large-scale solar hydrogen production from water." EnergyChem 1(2):100014.
- 3. Joshi, Anand S., Ibrahim Dincer, and Bale V. Reddy. 2011. "Solar hydrogen production: A comparative performance assessment." International Journal of Hydrogen Energy 36(17):11245-11257.
- 4. Wang, Hongsheng, Hui Kong, Zhigang Pu, Yao Li, and Xuejiao Hu. 2020. "Feasibility of high efficient solar hydrogen generation system integrating photovoltaic cell/photon-enhanced thermionic emission and high-temperature electrolysis cell." Energy Conversion and Management 210:112699.
- 5. Jonas, James. 2009. "THE HISTORY OF HYDROGEN." AltEnergyMag, April 1. Retrieved July 20, 2022 (https://www.altenergymag.com/article/2009/04/the-history-of-hydrogen/555/).
- 6. Yilanci, A., I. Dincer, and H.K. Ozturk. 2009. "A review on solar-hydrogen or fuel cell hybrid energy systems for stationary applications." Progress in Energy and Combustion Science 35(3):231-244.
- 7. Shabani, Bahman., John Andrews. 2011. "An experimental investigation of a PEM fuel cell to supply both heat and power in a solar-hydrogen RAPS system." International Journal of Hydrogen Energy 36(9):5442-5452.
- 8. Jafari, Moharrm., Davoud Armaghan, S.M. Seyed Mahmoudi, and Ata Chitsaz. 2019. "Thermoeconomic analysis of a standalone solar hydrogen system with hybrid energy storage." International Journal of Hydrogen Energy 44(36):19614-19627.
- 9. Krismadinata, Nasrudin Abd. Rahim, Hew Wooi Ping, and Jeyraj Selvaraj. 2013. "Photovoltaic module modeling using simulink matlab." Procedia Environmental Sciences 17:537-546.
- 10. Goswami, D. Yogi. 2015. Principles of Solar Engineering. 3rd ed. Boca Raton: CRC Press.

References

- 11. Cockerill, Rob. "Electrolyzer technologies PEM vs Alkaline electrolysis." Nel Hydrogen, Retrieved October 10, 2022 (https://nelhydrogen.com/resources/electrolyzer-technologies-pem-vs-alkaline-electrolysis/).
- 12. University of Cambridge. "Types of Fuel Cells." Retrieved October 11, 2022 (https://www.ceb.cam.ac.uk/research/groups/rg-eme/Edu/fuelcells/types-of-fuel-cells).
- 13. Wangchuk, Sonam. 2021. "The LADAKH Tent | World's 1st Solar Heated Military Tent | Made in India | Sonam Wangchuk." YouTube video, 13:03. (https://www.youtube.com/watch?v=IF-IYkU0gmQ&ab_channel=SonamWangchuk).
- 14. Abdin, D., C.J. Webb, and E.MacA. Gray. 2015. "Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell." International Journal of Hydrogen Energy 40(39):13243-13257.
- 15. Khan, M.J, M.T. Iqbal. 2005. "Modelling and Analysis of Electro-chemical, Thermal, and Reactant Flow Dynamics for a PEM Fuel Cell System." Fuel Cells 5:463-475.
- 16. Weather Spark. "Climate and Average Weather Year Round in Leh India." Retrieved April 7, 2023 (https://weatherspark.com/y/109277/Average-Weather-in-Leh-India-Year-Round#Sections-Temperature).
- 17. NREL. "NSRDB: National Solar Radiation Database." Retrieved May 11, 2023 (https://nsrdb.nrel.gov/data-viewer).
- 18. Kumar, Amit. 2014. "Solar Energy for Passive House Design." International Journal of Engineering Research & Technology 3(1):955-966.
- 19. Bernardi, Dawn M., and Mark W. Verbugge. 1991. "Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte." AIChE Journal 37(8):1151-1163.
- 20. Gou, Bei, Woon Ki Na, and Bill Diong. 2010. Fuel Cells: Modeling, Control, and Applications. Boca Raton: CRC Press.