Oppgaver for kapittel 0

0.2.1

Solve the equation.

a)
$$x + 8 = 18$$
 b) $x - 3 = 2$ c) $x - 8 = 1$

b)
$$x - 3 = 2$$

c)
$$x - 8 = 1$$

d)
$$x + 12 = 14$$
 e) $x - 1 = 2$ f) $x - 3 = 1$

e)
$$x - 1 = 2$$

f)
$$x - 3 = 1$$

g)
$$21 = x + 11$$
 h) $24 = x + 16$ i) $4 = x - 6$

h)
$$24 = x + 16$$

i)
$$4 = x - 6$$

0.2.2

Solve the equation.

a)
$$16x - 20 = 15x + 17$$
 b) $18x - 11 = 17x + 18$

b)
$$18x - 11 = 17x + 18$$

c)
$$17x - 15 = 16x + 8$$
 d) $4x - 9 = 6 + 3x$
e) $12x - 6 = 11x + 2$ f) $2x + 10 = 3x - 1$
g) $5 + 8x = 9x - 18$ h) $15 + 2x = 3x - 4$

d)
$$4x - 9 = 6 + 3x$$

e)
$$12x - 6 = 11x + 2$$

f)
$$2x + 10 = 3x - 1$$

g)
$$5 + 8x = 9x - 18$$
 h) $15 + 2x = 3x - 4$

h)
$$15 + 2x = 3x - 4$$

i)
$$9x + 8 = 10x - 2$$

i)
$$9x + 8 = 10x - 2$$
 j) $17x + 9 = 18x - 19$

0.2.3

Solve the equation.

a)
$$3x = 12$$

b)
$$10x = 50$$
 c) $7x = 63$ d) $2x = 30$

c)
$$7x = 63$$

d)
$$2x = 30$$

0.2.4

Solve the equation.

a)
$$\frac{x}{4} = 2$$

b)
$$\frac{x}{9} = 8$$

c)
$$\frac{x}{7} = 7$$

a)
$$\frac{x}{4} = 2$$
 b) $\frac{x}{9} = 8$ c) $\frac{x}{7} = 7$ d) $\frac{x}{15} = 10$

0.2.5

Solve the equation.

a)
$$18x - 27 = 9x + 36$$
 b) $7x - 27 = 4x + 3$

b)
$$7x - 27 = 4x + 3$$

a)
$$18x - 27 = 9x + 36$$

b) $7x - 27 = 4x + 3$
c) $15x - 16 = 7x + 32$
d) $13x - 42 = 7x + 12$
e) $4 + 9x = 13x - 32$
f) $7x + 8 = 11x - 24$

d)
$$13x - 42 = 7x + 12$$

e)
$$4 + 9x = 13x - 32$$
 f) $7x + 8 = 11x - 24$

f)
$$7x + 8 = 11x - 24$$

g)
$$5x + 4 = 8x - 11$$

g)
$$5x + 4 = 8x - 11$$
 h) $7 + 10x = 14x - 9$

1

0.2.6

Given $\triangle ABC$ with $\angle C = 90^{\circ}$. Prove that

$$\angle A = 90^{\circ} - \angle B$$

0.2.7 (E22)

Solve the equation

$$3 \cdot 24 \cdot 9 = 4 \cdot 9 \cdot x$$

0.5.1 (1TV21D1)

Solve the equation set.

$$2x - y = 4$$

$$x - 2y = 5$$

Gruble 1

a) Prove that

$$0,2626... = \frac{26}{99}$$

Given

$$a = b \left(\frac{1}{10^c} + \frac{1}{10^{2c}} + \frac{1}{10^{3c}} + \dots \right)$$

where b is a number with c digits.

- b) Prove that if b=26, then a=0,2626... .
- c) Prove that

$$a = \frac{b}{10^c - 1}$$