DANMARKS TEKNISKE UNIVERSITET

Skriftlig prøve, den 14. december 2017

Kursus navn: Diskret Matematik

Kursus nummer: 01017

Hjælpemidler: Alle hjælpemidler er tilladt.

Varighed: 2 timer.

Vægtning:

Opgave 1: 10%

Opgave 2: 20%

Opgave 3: 10%

Opgave 4: 10%

Opgave 5: 10%

Opgave 6: 15%

Opgave 7: 15%

Opgave 8: 10%

Alle opgaver besvares ved at udfylde de dertil indrettede tomme pladser på de følgende sider.

Side 1 af 12

Bord	Kursus nr.: 01017	Dato: 14. december 2017	Ark nr.
nr.	Kursusnavn: Diskret Matematik		
	Studienr.:	Fødselsdato:	
	Navn:		

Opgave 1 (Logik og bevissystemer) 10%

Brug herunder tableau-metoden til at afgøre om følgende påstand holder. Hvis den **ikke** holder, skal du angive en konkret sandhedstilskrivning, som gør præmisserne sande og konklusionen falsk.

$$p \to q, \ r \lor (s \land \neg q), \ \neg r \models \neg p$$

Bord nr.	Kursus nr.: 01017 Kursusnavn: Diskret Matematik	Dato: 14. december 2017	Ark nr.
	Studienr.:Navn:		_ _
Opga	ve 2 (Formalisering i præ	${ m dikatlogik})~20\%$	
	en fortolkning \mathcal{F} , hvor domænet er alle mesymboler m og s og to prædikatsymboler	,	ır to
 m^F 	= Mark Hamill		
• $s^{\mathcal{F}}$	= Star Wars		
• M ³	F = er et menneske		
 K^J 	= _ kender _		
	aledes i fortolkningen \mathcal{F} at $M(m)$ udtrykkr at Mark Hamill kender Star Wars.	er at Mark Hamill er et mennesk	e, og $K(m,s)$
	følgende sætninger til formler i prædikatle benyttes "alle" eller "nogen", så refererer	9	
1. <i>All</i>	le som kender Mark Hamill kender Star V	Vars.	
2. No.	gen kender Star Wars uden at kende Mar	k Hamill.	
	is to mennesker kender hinanden, så kend den gør.	ler den ene Star Wars hvis og kun	n hvis den
4. <i>All</i>	le kender nogen som kender Star Wars.		

Bord	Kursus nr.: 01017	Dato: 14. december 2017	•	Ark nr.
nr.	Kursusnavn: Diskret Matematik			
	Studienr.:	Fødselsdato:		
	Navn:			
Besvar ne negativt.	edenstående spørgsmål ved at krydse af i de		lsvar ta	æller
1. Mind	st én af formlerne du skrev på foregående s	ide er opfyldelig?	ja	nej
2. Mind	st én af formlerne du skrev på foregående s	ide er gyldig?		
	an afgøre om formlerne på foregående sid metoden?	e er gyldige ved at bruge		
	n afgøre om formlerne på foregående side e metoden?	er opfyldelige ved at bruge		
	n afgøre om formlerne på foregående side er t. bruge tableau-metoden?	sande under fortolkningen		

Bord	Kursus nr.: 01017	Dato: 14. december 2017	Ark nr.
nr.	Kursusnavn: Diskret Matematik		
	Studienr.:	Fødselsdato:	
	Navn:		

Opgave 3 (Prædikatlogik) 10%

Betragt fortolkningen \mathcal{R} givet ved dom $(\mathcal{R}) = \mathbb{R}$ (de reelle tal) og

- $\cdot^{\mathcal{R}} = \text{sædvanlig multiplikation}$.
- =, <, >, <, > og \neq har de sædvanlige betydninger.
- $\mathbf{0}^{\mathcal{N}} = 0; \, \mathbf{1}^{\mathcal{N}} = 1.$

Afgør hvilke af følgende formler der er sande i fortolkningen \mathcal{R} . Forkerte delsvar tæller negativt.

	sand	falsk
$1. \ \forall x \exists y (x \cdot y = 1)$		
$2. \ \forall x \exists y (x \cdot y = 1 \to y > 0)$		
3. $\forall x \exists y (x \cdot y = 1 \land y > 0)$		
$4. \ \forall x \exists y (x \cdot y = 1 \lor y > 0)$		
5. $\forall x \exists y (x \cdot y = 1 \leftrightarrow y > 0)$		
6. $\forall x (x > 0 \to \exists u (u > 0 \land x \cdot u = 1))$		

Bord	Kursus nr.: 01017	Dato: 14. december 2017	Ark nr.
nr.	Kursusnavn: Diskret Matematik		
	Studienr.:	Fødselsdato:	
	Navn:		

Opgave 4 (Mængder og relationer) 10%

Vis at der for alle mængder $A,\,B$ og C gælder $A\times B\subseteq A\times (B\cup C).$

Bord	Kursus nr.: 01017	Dato: 14. december 2017	Ark nr.
nr.	Kursusnavn: Diskret Matematik		
	Studienr.:	Fødselsdato:	
	Navn:		

Opgave 5 (Kombinatorik) 10%

En almindelig terning har seks sider, der er nummerede fra 1 til 6. Vi betragter slag med to almindelige terninger T_1 og T_2 .

1. Forklar hvorfor der er 36 forskellige slag.

2. Bestem antal udfald af slag med to terninger, hvor mindst en af terningerne er en sekser eller begge terningerne viser det samme. Husk at argumentere for dit svar.

Bord Kursus nr.: 01017 Dato: 14. december 2017 Ark nr.

Kursusnavn: Diskret Matematik

Studienr.: ______ Fødselsdato: ______

Navn: ______

Opgave 6 (Rekursion og induktion) 15%

En funktion f(n) er for $n = 0, 1, 2, \dots$ rekursivt defineret ved

$$f(n) = \begin{cases} 1 & \text{for } n = 0, 1 \\ 1 + f(n/2) & \text{for } n > 0 \text{ og } n \text{ lige} \\ f(n+1) & \text{for } n > 1 \text{ og } n \text{ ulige} \end{cases}.$$

1. Angiv f(5).

2. Før et induktionsbevis for at

$$f(2^n) = n + 1$$
, for $n = 0, 1, 2, ...$

Opgave 7 (Kongruenser) 15%

1. Tegn en streg mellem de par a, b hvor $a \equiv b \pmod{13}$ i følgende skema.

\overline{a}	b
-7	0
1	2
132	6
13^{9}	27

2. Angiv løsningsmængden til

$$9x \equiv 102 \pmod{30}.$$

Husk mellemregninger.

Bord	Kursus nr.: 01017	Dato: 14. december 2017	Ark nr.
nr.	Kursusnavn: Diskret Matematik		
	Studienr.:	Fødselsdato:	
	Navn:		

3. Angiv en værdi af b så kongruensligningen

$$9x \equiv b \pmod{30}$$

ikke har nogen løsninger. Husk at forklare hvorfor der ikke er nogen løsninger for denne værdi af b.

Opgave 8 (Euklids algoritme og polynomier) 10%

Lad der være givet to polynomier

$$N(x) = 2x^5 - 3x^4 + 3x^2 - 2x$$
$$M(x) = x^5 - 2x^4 + x^3 + x^2 - x$$

En kørsel af Euklids algoritme giver følgende

\overline{k}	R_k
0	$2x^5 - 3x^4 + 3x^2 - 2x$
1	$x^5 - 2x^4 + x^3 + x^2 - x$
2	$x^4 - 2x^3 + x^2$
3	$R_3(x)$
4	0

Her er forskriften for polynomiet $R_3(x)$ dog ikke skrevet.

1. Beregn $R_3(x)$.

Bord	Kursus nr.: 01017	Dato: 14. december 2017	Ark nr.
nr.	Kursusnavn: Diskret Matematik		
	Studienr.:	Fødselsdato:	-
	Navn:		

2. Angiv sfd(N(x), M(x)).

3. Om to andre polynomier P(x) og Q(x) vides det at

$$\operatorname{sfd}(P(x), Q(x)) = x^2.$$

Angiv om P(x) og Q(x) har fælles rod/rødder.