Понятие бинарного отношения

Бинарным отношением R между двумя непустыми множествами X и Y называется подмножество, определенное на декартовом произведении XxY

$$X \times Y = \{(x, y) \mid x \in X, y \in Y\}$$

с функцией принадлежности

$$\mu_{R}(x,y) = \begin{cases} 1, & (x,y) \in R \\ 0, & (x,y) \notin R \end{cases}$$

Пример. Даны одномерные множества-составляющие X_1 и X_2 . Здесь X_1 — множество граждан:

$$X_1 = \{c_1, c_2, \dots, c_5\},\$$

 X_2 — множество банков:

$$X_2 = \{b_1, b_2, \dots, b_5\}.$$
 R «иметь счет в ...»

R	c_1	c_2	c_3	C4	c_5
b_1	0	0	0	1	0
b_2	1	0	0	0	0
b_3	0	0	0	0	1
b_4	0	0	1	0	0
b_5	0	0	0	0	0

Представление отношения ${f R}$ в виде трехмерной функции принадлежности $\mu(c_i, b_i)$ и в виде матрицы отношения

Понятие нечеткого отношения

Пусть $X, Y \subseteq R$ два множества, тогда

$$R = \{((x,y), \mu_R(x,y)) | (x,y) \in X \times Y\}$$

называется нечетким отношением $X \times Y \subseteq \mathbb{R}$

$$R(x,y) = \left\{ \frac{\mu_R(x,y)}{(x,y)} \mid (x,y) \in X \times Y \right\}$$

Нечеткое отношение может быть представлено в виде двумерной таблицы

$$R = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} \begin{bmatrix} \mu_R(x_1, y_1) & \cdots & \mu_R(x_1, y_n) \\ \vdots & \ddots & \vdots \\ \mu_R(x_m, y_1) & \cdots & \mu_R(x_m, y_n) \end{bmatrix}$$

Пример.

 \succ Даны два нечетких множества $A = \{0.2/x_1 + 0.5/x_2 + 1/x_3\}$ $B = \{0.3/v_1 + 0.9/v_3\}$

Нечеткое отношение находится как декартово произведение

Понятие нечеткого отношения

Другими словами, нечеткое отношение – множество пар

$$R = \{((x, y), R(x, y))\},\$$

где

$$\mu_R: \mathbf{X} \times \mathbf{Y}$$
 [0, 1]

– это функция принадлежности, которая каждой паре (x, y) приписывает ее степень принадлежности $\mu_R(x, y)$, которая интерпретируется как сила связи между элементами $x \in X$ и $y \in Y$. В соответствии с принятым соглашением (п. 3.2) нечеткое отношение можно представить в виде

$$R = \sum_{\mathbf{X} \times \mathbf{Y}} \frac{\mu_R(\mathbf{x}, \mathbf{y})}{(\mathbf{x}, \mathbf{y})}$$

или

$$R = \int_{\mathbf{X} \times \mathbf{Y}} \frac{\mu_R(x, y)}{(x, y)}$$

Непрерывные нечеткие отношения

Понятие нечеткого отношения может быть расширено на случай декартового произведения непрерывных множеств.

$$R = \int_{X \times Y} \mu_R(x, y) / (x, y) = \int_{X \times Y} e^{-(x^2 + y^2)} / (x, y)$$

Упражнение 1.

Имеется два множества : $A = \{3, 4, 5\}$ and $B = \{3, 4, 5, 6, 7\}$

[
$$(y-x)/(y+x+2)$$
 if $y > x$
 $\mu_R(x, y) = \{ 0, \text{ if } y \le x$

Требуется найти нечеткое отношение **R**.

Упражнение 1. Результаты

Основные операции над нечеткими отношениями. Включение.

R и L – нечеткие отношения, R содержится в L, $R \subseteq L$, если $\forall (u, v) \in U \times V$:

$$\mu_R(u,v) \le \mu_L(u,v)$$
.

R	V ₁	V ₂
u ₁	0.3	0.4
u ₂	0.5	0.1

L	V ₁	V ₂
u ₁	0.4	0.6
u ₂	0.5	1.0

Дополнение.

Дополнение нечеткого отношения $\overline{R}: \forall (u,v) \in U \times V: \ \mu_{\overline{R}}(u,v) = 1 - \mu_{R}(u,v).$

Дополнение — отрицание исходного отношения. Для R = (лучше), дополнение $\overline{R} = ($ не лучше).

R	v_1	V ₂
u ₁	0.7	0.2
u ₂	0.9	0.1

\overline{R}	v_{1}	v ₂
u ₁	0.3	0.8
u ₂	0.1	0.9

Объединение

Объединение двух отношений R и $L-R \cup L$:

$$\forall (u, v) \in U \times V : \ \mu_R \bigcup_L (u, v) = \mu_R(u, v) \ \lor \ \mu_L(u, v) = \max \left[\mu_R(u, v), \ \mu_L(u, v)\right].$$

R	v_1	V ₂
u ₁	0.7	0.2
u ₂	0.9	0.1

RUL	V_1	V ₂
u ₁	0.7	0.6
u ₂	0.9	1.0

L	v_1	V ₂
u ₁	0.4	0.6
u ₂	0.5	1.0

Пересечение

Пересечение двух отношений R и $L-R\cap L$:

$$\forall (u, v) \in U \times V : \mu_R \cap L(u, v) = \mu_R(u, v) \wedge \mu_L(u, v) = \min \left[\mu_R(u, v), \ \mu_L(u, v) \right]$$

R	ν_1	v_2
u_1	0.7	0.2
u_2	0.9	0.1

L	ν_1	v_2
\mathbf{u}_1	0.4	0.6
u ₂	0.5	1.0

R∩L	v_1	v_2
u_1	0.4	0.2
u ₂	0.5	0.1

Graphical representation of intersection operation of two relations R and S

Обратное отношение

Обратное к **R** HO R^{-1} :

$$\forall (u,v) \in U \times V : uRv \Leftrightarrow vR^{-1}u$$
, или $\forall (u,v) \in U \times V : \quad \mu_R(u,v) = \mu_{R^{-1}}(v,u)$.

Матрица R^{-1} является транспонированной к матрице R.

R	V ₁	V ₂
u ₁	0.7	0.2
u ₂	0.9	0.1

R ⁻¹	u ₁	u ₂
ν ₁	0.7	0.9
ν ₂	0.2	0.1

Упражнение 2.

Рассмотрим два нечетких отношения

R1 = "х много больше у"
$$R_1 = \begin{bmatrix} 0.0 & 0.0 & 0.1 & 0.8 \\ 0.0 & 0.8 & 0.0 & 0.0 \\ 0.1 & 0.8 & 1.0 & 0.8 \end{bmatrix} \qquad R_2 = \begin{bmatrix} 0.4 & 0.4 & 0.2 & 0.1 \\ 0.5 & 0.0 & 1.0 & 1.0 \\ 0.5 & 0.1 & 0.2 & 0.6 \end{bmatrix}$$

Нужно найти объединение и пересечение двух нечетких отношений

Упражнение 2. Результаты.

$$R_1 \cup R_2 = \begin{bmatrix} 0.4 & 0.4 & 0.2 & 0.8 \\ 0.5 & 0.8 & 1.0 & 1.0 \\ 0.5 & 0.8 & 1.0 & 0.8 \end{bmatrix} \qquad R_1 \cap R_2 = \begin{bmatrix} 0.0 & 0.0 & 0.1 & 0.1 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.1 & 0.1 & 0.2 & 0.6 \end{bmatrix}$$

Упражнение 3.

Let $X = \{x_1, x_2, x_3\}$ and $Y = \{y_1, y_2, y_3, y_4\}$

$\tilde{R} \cup \tilde{Z}$ $\tilde{R} \cap \tilde{Z}$:

Упражнение 3. Результаты

	y_1	y_2	<i>y</i> ₃	<i>y</i> ₄
x_1	.8	1	.9	.7
$\tilde{R} \cup \tilde{Z}: x_2$.9	.8	.5	.7
x_3	.9	1	.8	.8

	y_1	y_2	<i>y</i> ₃	<i>y</i> ₄
x_1	.4	0	.1	.6
$\tilde{R} \cap \tilde{Z}$: x_2	0	.4	0	0
x_3	.3	0	.7	.5

Упражнение 4.

Имеются два нечетких отношения

Необходимо найти

$$\mathscr{R} \oplus \mathscr{L} = (\mathscr{R} \cap \overline{\mathscr{L}}) \cup (\overline{\mathscr{R}} \cap \mathscr{L}).$$

Упражнение 4. Результаты

$$\mathscr{R} \oplus \mathscr{L} = (\mathscr{R} \cap \overline{\mathscr{L}}) \cup (\overline{\mathscr{R}} \cap \mathscr{L}).$$

Композиция нечетких отношений

Операция композиции двух отношений R1 в XxY и R2 в YxZ позволяет определить третье отношение R3 в XxZ

1. Максиминная композиция $R \circ L$ двух нечетких отношений $R \subset U \times V$ и $L \subset V \times W$

$$\mu_{R \circ L}(u, w) = \bigvee_{v} (\mu_{R}(u, v) \wedge \mu_{L}(v, w)) = \max_{v} \{\min[\mu_{R}(u, v), \mu_{L}(v, w)]\}.$$

$$X = \{x_1, x_2\}, \quad Y = \{y_1, y_2\}, \text{ and } \quad Z = \{z_1, z_2, z_3\}$$

Consider the following fuzzy relations:

$$\tilde{R} = \begin{bmatrix} y_1 & y_2 \\ x_1 \begin{bmatrix} 0.7 & 0.5 \\ 0.8 & 0.4 \end{bmatrix}$$
 and $\tilde{S} = \begin{bmatrix} z_1 & z_2 & z_3 \\ y_1 \begin{bmatrix} 0.9 & 0.6 & 0.5 \\ 0.1 & 0.7 & 0.5 \end{bmatrix}$

Using max-min composition,

$$\mu_{\tilde{T}}(x_1, z_1) = \bigvee_{y \in Y} (\mu_{\tilde{R}}(x_1, y) \wedge \mu_{\tilde{S}}(y, z_1))$$

$$= \max[\min(0.7, 0.9), \min(0.5, 0.1)]$$

$$= 0.7$$

$$\tilde{T} = \begin{bmatrix} z_1 & z_2 & z_3 \\ 0.7 & 0.6 & 0.5 \\ 0.8 & 0.6 & 0.4 \end{bmatrix}$$

Упражнение 5.

Даны два нечетких отношения

Необходимо найти max-min композицию

\mathcal{R}_{1}	- 41	42	. <i>4</i> 3	94	<i>4</i> 5	€ 2/	- Z ₁	z ₂	z ₃	Z ₄
x_{j}	0,1	0,2	0	1	0,7	4,	0,9	0	0,3	0,4
x_2	0,3	0,5	0	0,2	1	\mathcal{Y}_2	0,2	1	0,8	0
x_3	0,8	0	7	0,4	0,3	y_3	0,8	0	0,7	1
,	······································	•			***************************************	y_4	0,4	0,2	0,3	0
\mathcal{R}_2	° №2	- Z ₁	z ₂	z ₃	Z ₄	45	0	1	0	0,8
	x_{\prime}^{\prime}	0,4	0,7	0,3	0,7	,				
	x_2	0,3	1	0,5	0,8					
	x_3	0,8	0,3	0,7	1					

$$\mu_{R \circ L}(u, w) = \bigvee_{v} (\mu_{R}(u, v) \wedge \mu_{L}(v, w)) = \max_{v} \{\min[\mu_{R}(u, v), \mu_{L}(v, w)]\}.$$

Композиция нечетких отношений

2. Минимаксная композиция $R \bullet L$ двух нечетких отношений $R \subset U \times V$ и $L \subset V \times W$ $\mu_{R \bullet L}(u, w) = \bigwedge (\mu_{R}(u, v) \vee \mu_{L}(v, w)) = \min \{ \max [\mu_{R}(u, v), \mu_{L}(v, w)] \}.$

3. *Максимультипликативная композиция* R*L двух нечетких отношений $R \subset U \times V$ и $L \subset V \times W$ определяется $\Phi \Pi$ в виде

$$\begin{split} \mu_{R*L}(u,w) &= \bigvee_{\mathbf{V}} (\mu_{R}(u,v) \, \mu_{L}(v,w)) = \max_{\mathbf{V}} (\mu_{R}(u,v) \, \mu_{L}(v,w)). \\ X &= \{x_{1},x_{2}\}, \quad Y = \{y_{1},y_{2}\}, \text{and} \quad Z = \{z_{1},z_{2},z_{3}\} \end{split}$$

Consider the following fuzzy relations:

$$\tilde{R} = \begin{bmatrix} y_1 & y_2 \\ x_1 \begin{bmatrix} 0.7 & 0.5 \\ 0.8 & 0.4 \end{bmatrix} \quad \text{and} \quad \tilde{S} = \begin{bmatrix} z_1 & z_2 & z_3 \\ y_1 \begin{bmatrix} 0.9 & 0.6 & 0.5 \\ 0.1 & 0.7 & 0.5 \end{bmatrix}$$

Jsing max-product composition,

$$\mu_{\tilde{T}}(x_2, z_2) = \bigvee_{y \in Y} (\mu_{\tilde{R}}(x_2, y) \bullet \mu_{\tilde{S}}(y, z_2))$$

$$= \max[(0.8, 0.6), (0.4, 0.7)]$$

$$= 0.48$$

$$\tilde{T} = \begin{bmatrix} x_1 & z_2 & z_3 \\ .63 & .42 & .25 \\ x_2 & .72 & .48 & .20 \end{bmatrix}$$

Упражнение 6.

Даны два нечетких отношения

							z_1	Z ₂	Z3	Z4
	y_1	y_2	y_3	<i>y</i> ₄	<i>y</i> ₅	y_1	.9	0	.3	.4
x_1	.1	.2	0	1	.7	y_2	.2	1	.8	0
\tilde{R}_1 : x_2	.3	.5	0	.2	1	\tilde{R}_2 : y_3	.8	0	.7	1
x_3	.8	0	1	.4	.3	у ₄	.4	.2	.3	0
,						y ₅	0	1	0	.8

Требуется найти max-min и max=prod композиции

Упражнение 6. Результаты

Let
$$x = x_1$$
, $z = z_1$, and $y = y_i$, $i = 1, ..., 5$:

$$\min\{\mu_{\tilde{R}_1}(x_1, y_1), \mu_{\tilde{R}_2}(y_1, z_1)\} = \min\{.1, .9\} = .1$$

$$\min\{\mu_{\tilde{R}_1}(x_1, y_2), \mu_{\tilde{R}_2}(y_2, z_1)\} = \min\{.2, .2\} = .2$$

$$\min\{\mu_{\tilde{R}_1}(x_1, y_3), \mu_{\tilde{R}_2}(y_3, z_1)\} = \min\{0, .8\} = 0$$

$$\min\{\mu_{\tilde{R}_1}(x_1, y_4), \mu_{\tilde{R}_2}(y_4, z_1)\} = \min\{1, .4\} = 4$$

$$\min\{\mu_{\tilde{R}_1}(x_1, y_5), \mu_{\tilde{R}_2}(y_5, z_1)\} = \min\{.7, 0\} = 0$$

$$\tilde{R}_1 \circ \tilde{R}_2(x_1, z_1) = ((x_1, z_1), \mu_{\tilde{R}_1 \circ \tilde{R}_2}(x_1, z_1))$$

$$= ((x_1, z_1), \max\{.1, .2, 0, .4, 0\}) = ((x_1, z_1), .4)$$

In analogy to the above computation we now determine the grades of membership for all pairs (x_i, z_j) , i = 1, ..., 3, j = 1, ..., 4 and arrive at

	z_1	z_2	Z3	Z ₄
x_1	.4	.7	.3	.7
$\tilde{R}_1 \circ \tilde{R}_2$: x_2	.3	1	.5	.8
x_3	.8	.3	.7	1

Упражнение 6. Результаты

For the max-prod, we obtain

$$x = x_1, z = z_1, y = y_i, i = 1, ..., 5:$$

$$\mu_{\tilde{R}_1}(x_1, y_1) \cdot \mu_{\tilde{R}_2}(y_1, z_1) = .1 \cdot .9 = .09$$

$$\mu_{\tilde{R}_1}(x_1, y_2) \cdot \mu_{\tilde{R}_2}(y_2, z_1) = .2 \cdot .2 = .04$$

$$\mu_{\tilde{R}_1}(x_1, y_3) \cdot \mu_{\tilde{R}_2}(y_3, z_1) = 0 \cdot .8 = 0$$

$$\mu_{\tilde{R}_1}(x_1, y_4) \cdot \mu_{\tilde{R}_2}(y_4, z_1) = 1 \cdot .4 = 4$$

$$\mu_{\tilde{R}_1}(x_1, y_5) \cdot \mu_{\tilde{R}_2}(y_5, z_1) = .7 \cdot 0 = 0$$

Hence

$$\tilde{R}_1 \stackrel{\circ}{\cdot} \tilde{R}_2(x_1, z_1) = ((x_1, z_1), (\mu_{\tilde{R}_1 \circ \tilde{R}_2}(x_1, z_1)))$$

= $((x_1, z_1), \max\{.09, .04, 0, .4, 0\})$
= $((x_1, z_1), .4)$

After performing the remaining computations, we obtain

	z_1	z_2	Z_3	Z4
x_1	.4	.7	.3	.56
$\tilde{R}_1 \stackrel{\circ}{\cdot} \tilde{R}_2 : x_2$.27	1	.4	.8
x_3	.8	.3	.7	1

Упражнение 7.

Let the fuzzy relation \tilde{R} be defined as

	x_1	x_2	x_3	x_4
x_1	.2	1	.4	.4
\tilde{R} : x_2	0	.6	.3	0
x_3	0	1	.3	0
x_4	.1	1	1	.1

Требуется найти max-min композицию

Then $\tilde{R} \circ \tilde{R}$ is

	x_1	x_2	x_3	x_4
x_1	.2	.6	.4	.2
x_2	0	.6	.3	0
x_3	0	.6	.3	0
<i>x</i> ₄	.1	1	.3	.1

Упражнение 8.

Требуется найти max-min и max-prod композиции

$$M_{Q} = \begin{bmatrix} 1 & 0.2 & 0.5 \\ 0.2 & 1 & 0.7 \\ 0.1 & 0.4 & 1 \\ 0.1 & 0.3 & 1 \end{bmatrix}$$

$$\max_{\{\mu_{Q} \in T\}} \{\langle x_1, x_2, ..., x_k \rangle\} = \max_{\{\min_{\{\mu_{Q} \in T\}} \{x_1, x_2, ..., x_k \rangle\}} \{\min_{\{\mu_{Q} \in T\}} \{x_1, x_2, ..., x_k \rangle\}.$$

$$M_{T} = \begin{bmatrix} 0,3 & 0,5 & 0,2 & 0,2 \\ 0,6 & 0,5 & 0,7 & 0,1 \\ 0,9 & 0,2 & 0,5 & 0,3 \end{bmatrix}, \qquad M_{(Q \circ T)} = \begin{bmatrix} 0,5 & 0,5 & 0,5 & 0,3 \\ 0,7 & 0,5 & 0,7 & 0,3 \\ 0,9 & 0,4 & 0,5 & 0,3 \\ 0,9 & 0,3 & 0,5 & 0,3 \end{bmatrix}.$$

$$\mu_{(Q \circ T)} = \{ \langle x_1, x_2, \dots x_k \rangle \} = \max \{ \min \{ \mu_Q(\langle x_i, x_j), \mu_T(\langle x_j, x_k) \rangle \}$$

$$M_{(Q \circ T)} = \begin{bmatrix} 0.5 & 0.5 & 0.5 & 0.3 \\ 0.7 & 0.5 & 0.7 & 0.3 \\ 0.9 & 0.4 & 0.5 & 0.3 \\ 0.9 & 0.3 & 0.5 & 0.3 \end{bmatrix}$$

max-prod-композиция:

$$\mu_{(Q \circ T)} = \{ \langle x_1, x_2, \dots x_k \rangle \} = \max_{x \in X} \{ \mu_T(x) \cdot \mu_Q \langle x, y \rangle \},$$

$$M_{(Q \circ T)} = \begin{bmatrix} 0.45 & 0.5 & 0.25 & 0.2 \\ 0.63 & 0.5 & 0.7 & 0.21 \\ 0.9 & 0.2 & 0.5 & 0.3 \\ 0.9 & 0.2 & 0.5 & 0.3 \end{bmatrix}.$$

Проекции нечетких отношений

Определение: Если R — нечеткое отношение с областью определения $X_1 \times X_2$, то **проекцией** этого отношения на область X_1 называется нечеткое множество A^* , имеющее следующий вид:

$$A^*(x_1) = \underset{x_1}{\text{Proj }} \mathbf{R}(x_1, x_2) = \underset{x_2}{\text{MAX}} [\mathbf{R}(x_1, x_2)].$$

Для нечетких отношений вводятся понятия проекций следующим образом. Первая проекция нечеткого бинарного отношения $\mathcal R$ определяется функцией принадлежности

$$\mu_{\mathcal{R}}^{(1)}(x) = \max_{y} \mu_{\mathcal{R}}(x, y).$$

Вторая проекция нечеткого бинарного отношения ${\mathcal R}$ определяется функцией принадлежности

$$\mu_{\mathcal{R}}^{(2)}(y) = \max_{x} \mu_{\mathcal{R}}(x, y).$$

Глобальной проекцией $h(\mathcal{R})$ нечеткого бинарного отношения \mathcal{R} называется вторая проекция первой проекции (или наоборот):

$$h(\mathcal{R}) = \max_{x} \max_{y} \mu_{\mathcal{R}}(x, y) = \max_{y} \max_{x} \mu_{\mathcal{R}}(x, y).$$

Проекции нечетких отношений

$$R = \begin{bmatrix} x/y & y1 & y2 & y3 & y4 \\ x1 & .3 & .8 & .7 & .5 \\ x2 & .7 & .3 & .5 & .4 \\ x3 & .9 & 0 & .2 & .3 \end{bmatrix} \quad \Pi_{x}(x) = \begin{pmatrix} 0.8 \\ 0.7 \\ 0.9 \end{pmatrix}$$

$$\Pi_{Y}(y) = (0.9 \quad 0.8 \quad 0.7 \quad 0.5)$$

Упражнение 9.

Пусть имеется нечеткое отношение $R(x_1, x_2)$:

x_1	3	4	5
6	1	0.5	0
7	0.5	0.5	0
8	0	0	0

Требуется найти проекции R на x_1 и x_2 .

Упражнение 9. Результаты

x_2	3	4	5
6	1	0.5	0
7	0.5	0.5	0
8	0	0	0

Пх2
1
0.5
0

Пх ₁ 1 0.5 0
