Exam: End_Sem_Dec-2021_CS3BS03 Discrete Mathematics

Student Name: Suresh

Student Roll No:

Subject Name: Discrete Mathematics (T) Correct Answer: 0 Total Question: 30			
Question No: 1	Not Attempted		
A cyclic group can be generated by a/an element. A cyclic group can be generated by a/an element. A cyclic group can be generated by a/an element. B. Singular B. Non-singular C. Inverse D. Multiplicative			
Question No: 2 Not Attempte			
if A = $\{1,2,3,4\}$ and $\pi 1$ is the partition of A, $\pi 1 = \{\{1,2,3\},4\}$. The number of ordered pairs of the equivalence relations induced A. 10 B. 5 C. 15 D. 14	ced by		
Question No: 3	Not Attempted		
A complete n-node graph Kn is planar if and only if A. $n \ge 6$ B. $n2 = n + 1$ \bigcirc C. $N \le 4$ D. $n + 3$			
Question No: 4	Not Attempted		
What must be the ideal size of array if the height of tree is 'l'? A. 2I-1 B. I-1 C. I D. None			
Question No: 5	Not Attempted		
A monoid is called a group if			
A. $(a^*a)=a=(a+c)$ B. $(a^*c)=(a+c)$ C. $(a+c)=a$ \bigcirc D. $(a^*c)=(c^*a)=e$			
Question No: 6	Not Attempted		
Every recursive algorithm must have the problem of A. overhead of repeated function calls B. collision of different function calls C. searching for all duplicate elements D. make only two recursive calls			
Question No: 7	Not Attempted		
Let A be $\{a,b,c\}$. Let the relation R on A & let $R=\{(b,a),(b,c),(c,a),(c,b)\}$. Which of the following statements about R is true?			

R is not reflexive, is not symmetric & is not transitive.

R is reflexive, is not symmetric and is not transitive.

R is not reflexive, is symmetric & is transitive.

B.

C.

D.	R is reflexive, is not symmetric & is transitive.	
Question	n No: 8	Not Attempted
The	of a graph G consists of all vertices and edges of G.	
A.	edge graph	
В.	line graph	
C. ⊘ D.	path complement graph None of these	
8 D.	None of these	
Question	n No: 9	Not Attempted
	imum degree of any vertex in a simple graph with n vertices is	
A.	n (- 4)	
B. C.	(n+1) n(n-1)	
⊘ D.	None of these	
Question	n No: 10	Not Attempted
	nany ways a project team of 5 members can be selected from 6 men and 5 women consisting of 3 men and 2women	∍n
A.	100	
❷ B.C.	200 300	
D.	none	
<u> </u>		
Question	n No: 11	Not Attempted
	oh given below is an example of	
⊘ A.	non-lattice poset	
B. C.	semilattice partial lattice	
D.	bounded lattice	
Question	n No: 12	Not Attempted
Which o	ne of the following in NOT necessarily a property of a Group?	
⊘ A.	Commutativity	
B.	Associativity	
C.	Existence of inverse for every element	
D.	Existence of identity	
<u> </u>	Existence of identity	
Question	n No: 13	Not Attempted
	ent $a \in A$ is called a element of A if there is no element in c in A such that $a \le c$.	
⊘ A.	Maximal	
B.	Minimal	
C. D.	Comparable None of the above	
Question		Not Attempted
		Not Attempted
	agram is drawn for	
⊘ A.	partial ordered set Lattice	
В.		
IC.	Boolean algebra	
C. D.	Boolean algebra None of the above	
D.	None of the above	Not Attempted
D. Question	None of the above n No: 15	Not Attempted
D. Question Let G be	None of the above n No: 15 the graph defined as the Hasse diagram for the ⊆ relation on the set A{1, 2,3,4}. How many edges are there in G	-
Question Let G be A.	None of the above n No: 15 the graph defined as the Hasse diagram for the ⊆ relation on the set A{1, 2,3,4}. How many edges are there in G 12	-
D. Question Let G be	None of the above n No: 15 the graph defined as the Hasse diagram for the ⊆ relation on the set A{1, 2,3,4}. How many edges are there in G	-

D.	64	
Question	n No: 16	Not Attempted
	ny relation on A={1,2,3,4,5} contains (5,5) & are antisymmetric?	
A. ⊘ B.	((2^5)-1)*3^10 (2^4)*(3^10)	
С .	((2^4)-1)*3^10	
D.	(2^5)*(3^5)	
Question	n No: 17	Not Attempted
	the following degree sequence is valid?	
Α.	{3,3,1,3}	
B. C.	{6,6,6,6,2,2,3,3} {3,0,2,0,1}	
⊘ D.	{7,6,6,4,4,3,2,2}	
Question	n No: 18	Not Attempted
	a planar graph with v=10, E=9 & three are components then number of possible regions R are?	
Α.	6	
B. C.	5 4	
⊘ D.	3	
Question	n No: 19	Not Attempted
Which of	the following is contained in a recursive grammar?	
A.	semantic rules	
⊘ B.	production rules	
C. D.	recursive language recursive function	
Question	n No: 20	Not Attempted
	e the solution for the recurrence relation bn=8bn-1-12bn-2 with b0=3 and b1=4.	
⊘ A.	7/2*2n–1/2*6n	
B. C.	2/3*7n-5*4n 4!*6n	
D.	2/8n	
Question	n No: 21	Not Attempted
	ment of each recursive call is the content of a field of the original output. This definite characteristic belongs to w function?	nich of the
⊘ A.	Structurally recursive function	
B.	Generativity recursive function	
C.	Indirect recursive function	
D.	General function	
Question	n No: 22	Not Attempted
If a * b =	a such that $a * (b * c) = a * b = a$ and $(a * b) * c = a * b = a$ then	
⊘ A.	* is associative	
B.	* is commutative	
C.	* is closure	
D.	* is abelian3	
Question	n No: 23	Not Attempted
A cyclic o	group is always	
Ø A.	abelian group	
l		

B.	monoid	
C.	semigroup	
D.	subgroup	
Questic	n No: 24	Not Attempted
If A is ar	ny statement, then which of the following is a tautology?	
A.	ΑΛF	
B.	AvF	
⊘ C.	A v ¬A	
D.	ΑΛΤ	
Question No: 25		
	the solution to the recurrence relation an=5an-1+6an-2?	
A.	2n2	
Ø B.C.	6n (2/2)n	
D.	(3/2)n n!*3	
D.	11: 0	
Questic	n No: 26	Not Attempted
The sym	abolization for a conjunction is	
Α.	p->q	
⊘ B.	p^q	
C.	pvq	
D.	~p	
Questic	n No: 27	Not Attempted
if A= set	of all +ve odd integer , then A is Closed under	
⊘ A.	Multiplication	
B.	Addition	
C.	Both addition & Multiplication	
D.	None of the above	
Questic	Question No: 28 Not Attempte	
Which o	f the following expressions is in the sum-of-products form?	
A.	(A + B)(C + D)	
В.	(A * B)(C * D)	
C.	A* B *(CD)	
⊘ D.	A * B + C * D	
Questio	n No: 29	Not Attempted
Accordir	ng to the absorption law of Boolean algebra, which of the following is correct?	
A.	X + XY = X	
B.	(X+Y)=XY	
⊘ C.	XY + Y = X	
D.	X+Y=Y	
Questic	n No: 30	Not Attempted
If every	two elements of a poset are comparable then the poset is called	
A.	sub-ordered poset	
Ø B.	totally ordered poset	
C.	sub lattice	
D.	semigroup	
	- ·	