

H2 Mathematics (9758) Chapter 11 Definite Integrals Extra Practice Solutions

Qn 1	2009/VJC Prelim/1/10
	$\int xe^{2x} dx = \frac{1}{2}xe^{2x} - \int \frac{1}{2}e^{2x} dx$
	$= \frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x} + c$
	$= \frac{e^{2x}}{4}(2x-1) + c \text{ (shown)}$
(a)	Required area = $\int_0^4 \left(\frac{1}{2} e^4 x - e^x \sqrt{x} \right) dx + \int_4^8 \left(e^x \sqrt{x} - \frac{1}{2} e^4 x \right) dx$
	$=7239.2 \text{ units}^2 (1 \text{ dp})$
(b)	Required Volume
	$= \frac{1}{3}\pi (2e^{4})(4) - \int_{0}^{4}\pi (e^{2x}x)dx$
	$= \frac{16\pi e^8}{3} - \pi \left[\frac{e^{2x}}{4} (2x - 1) \right]_0^4$
	$= \frac{16\pi e^8}{3} - \pi \left(\frac{e^8}{4}\right) (7) - \frac{1}{4}\pi$
	$= \pi e^8 \left(\frac{43}{12}\right) - \frac{\pi}{4} units^3$
	$A = \frac{43}{12}$ and $B = \frac{1}{4}$

2011/TJC Prelim/1/10 Qn 2 $(\sqrt{3},2\sqrt{3})$ Area = $\frac{1}{2} \left(\sqrt{2} \right) \left(3\sqrt{2} \right) + \int_{\sqrt{2}}^{\sqrt{3}} \frac{6}{x} dx - \frac{1}{2} \left(\sqrt{3} \right) \left(2\sqrt{3} \right)$ $= \left[6\ln x\right]_{\sqrt{2}}^{\sqrt{3}}$ $=3(\ln 3 - \ln 2)$ units² $x^{2} + y^{2} - 4y + 3 = 0 \Rightarrow x^{2} + (y - 2)^{2} = 1$ Volume = $2\int_0^1 (\pi y_1^2 - \pi y_2^2) dx$ where $y_1 = 2 + \sqrt{1 - x^2}$ and $y_2 = 2 - \sqrt{1 - x^2}$ $=2\pi \int_0^1 \left[\left(2 + \sqrt{1 - x^2}\right)^2 - \left(2 - \sqrt{1 - x^2}\right)^2 \right] dx$ $\approx 39.5 \text{ units}^3 (3 \text{ s.f.})$

Qn3	2013/VJC Prelim/1/10
(i)	$\int_0^{\frac{1}{\sqrt{2}}} \cos^{-1} x dx = \left[x \cos^{-1} x \right]_0^{\frac{1}{\sqrt{2}}} - \int_0^{\frac{1}{\sqrt{2}}} \left(-\frac{x}{\sqrt{1 - x^2}} \right) dx$
	$=\frac{1}{\sqrt{2}}\left(\frac{\pi}{4}\right) - \left[\sqrt{1-x^2}\right]_0^{\frac{1}{\sqrt{2}}}$
	$=\frac{\pi}{4\sqrt{2}} - \left(\sqrt{\frac{1}{2}} - 1\right)$
	$= \frac{\pi}{4\sqrt{2}} + 1 - \frac{1}{\sqrt{2}}$
(ii)	Volume = $\pi \int_0^{\frac{1}{\sqrt{2}}} y^2 dx - \pi \left(\frac{\sqrt{\pi}}{2}\right)^2 \left(\frac{1}{\sqrt{2}}\right)$
	$= \pi \int_0^{\frac{1}{\sqrt{2}}} \cos^{-1} x dx - \frac{\pi^2}{4\sqrt{2}}$
	$= \frac{\pi^2}{4\sqrt{2}} + \pi - \frac{\pi}{\sqrt{2}} - \frac{\pi^2}{4\sqrt{2}}$
	$=\pi-\frac{\pi}{\sqrt{2}}\mathrm{unit}^3$
(iii)	Required Equation: $y = \sqrt{\cos^{-1} x} - \frac{\sqrt{\pi}}{2}$.
	Volume = $\pi \int_0^{\frac{1}{\sqrt{2}}} \left(\sqrt{\cos^{-1} x} - \frac{\sqrt{\pi}}{2} \right)^2 dx$
	≈ 0.116 (3 s.f.)

Qn 4	2013/TJC Prelim/1/9
(i)	$\int e^{2x} \cos 4x dx = \frac{1}{2} e^{2x} \cos 4x - \frac{1}{2} \int e^{2x} (-4 \sin 4x) dx$
	$= \frac{1}{2}e^{2x}\cos 4x + 2\int e^{2x}\sin 4x dx$
	$= \frac{1}{2}e^{2x}\cos 4x + 2\left(\frac{1}{2}e^{2x}\sin 4x - \frac{1}{2}\int e^{2x}(4\cos 4x) dx\right)$
	$= \frac{1}{2}e^{2x}\cos 4x + e^{2x}\sin 4x - 4\int e^{2x}\cos 4x dx$
	$5\int e^{2x} \cos 4x dx = \frac{1}{2} e^{2x} \left(\cos 4x + 2\sin 4x \right) + C$
	$\int e^{2x} \cos 4x dx = \frac{1}{10} e^{2x} (\cos 4x + 2\sin 4x) + C$

(ii) At the point of intersection, $e^x \sin 2x = e^x \implies e^x (\sin 2x - 1) = 0$

either $e^x = 0$ or $\sin 2x = 1$

(reject, as $e^x > 0$) or $2x = \frac{\pi}{2}$ $x = \frac{\pi}{4}$

(iii)

Volume of solid generated =
$$\pi \int_0^{\frac{\pi}{4}} (e^x)^2 dx - \pi \int_0^{\frac{\pi}{4}} (e^x \sin 2x)^2 dx$$

= $\pi \int_0^{\frac{\pi}{4}} e^{2x} dx - \pi \int_0^{\frac{\pi}{4}} e^{2x} \sin^2 2x dx$
= $\pi \int_0^{\frac{\pi}{4}} e^{2x} dx - \pi \int_0^{\frac{\pi}{4}} e^{2x} \left(\frac{1 - \cos 4x}{2} \right) dx$
= $\frac{1}{2} \pi \int_0^{\frac{\pi}{4}} (e^{2x} + e^{2x} \cos 4x) dx$
= $\frac{1}{2} \pi \left[\left[\frac{1}{2} e^{2x} \right]_0^{\frac{\pi}{4}} + \left[\frac{1}{10} e^{2x} (\cos 4x + 2 \sin 4x) \right]_0^{\frac{\pi}{4}} \right]$
= $\frac{1}{2} \pi \left(\frac{1}{2} \left(e^{\frac{\pi}{2}} - 1 \right) + \frac{1}{10} \left(-e^{\frac{\pi}{2}} - e^0 \right) \right)$ using (i) answer
= $\frac{1}{10} \pi \left(2e^{\frac{\pi}{2}} - 3 \right)$ units³

Qn 5	2017/MJC Promo/4a
	$\int_0^3 \left x^3 - 5x^2 + 4x \right dx = \int_0^1 x^3 - 5x^2 + 4x dx - \int_1^3 x^3 - 5x^2 + 4x dx$
	$= \left[\frac{x^4}{4} - \frac{5x^3}{3} + \frac{4x^2}{2}\right]_0^1 - \left[\frac{x^4}{4} - \frac{5x^3}{3} + \frac{4x^2}{2}\right]_1^3$
	$=\frac{7}{12} - \left[-\frac{27}{4} - \frac{7}{12} \right]$
	$=\frac{95}{12}$

(ii)

Qn 8 N2009/P1/11 (i) y = (0.707, 0.429) $y = xe^{-x^2}$ y = 0 (0.707, 0.429)

$$f'(x) = e^{-x^2} + xe^{-x^2}(-2x) = e^{-x^2} - 2x^2e^{-x^2}$$

$$e^{-x^2} - 2x^2e^{-x^2} = 0$$

$$e^{-x^2}(1 - 2x^2) = 0$$

$$e^{-x^2} = 0 \quad \text{or} \quad x^2 = \frac{1}{2} \Rightarrow x = \pm \frac{1}{\sqrt{2}}$$

$$(N.A :: e^{-x^2} > 0)$$
When $x = \frac{1}{\sqrt{2}}$, $y = \frac{1}{\sqrt{2}}e^{-\left(\frac{1}{\sqrt{2}}\right)^2} = \frac{1}{\sqrt{2}e}$
When $x = -\frac{1}{\sqrt{2}}$, $y = -\frac{1}{\sqrt{2}}e^{-\left(-\frac{1}{\sqrt{2}}\right)^2} = -\frac{1}{\sqrt{2}e}$
Coordinates of the turning points are

 $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2e}}\right)$ and $\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2e}}\right)$

(iii)
$$\int_{0}^{n} f(x) dx = \int_{0}^{n} x e^{-x^{2}} dx$$
$$= \int_{0}^{n^{2}} \sqrt{u} e^{-u} \frac{1}{2\sqrt{u}} du$$
$$= \frac{1}{2} \int_{0}^{n^{2}} e^{-u} du$$
$$= \frac{1}{2} \left[-e^{-u} \right]_{0}^{n^{2}}$$
$$= \frac{1}{2} \left(-e^{-n^{2}} + e^{0} \right)$$
$$= \frac{1}{2} (1 - e^{-n^{2}})$$

$$u = x^{2} \Rightarrow x = \sqrt{u} \Rightarrow \frac{dx}{du} = \frac{1}{2\sqrt{u}}$$
When $x = 0 \Rightarrow u = 0$
When $x = n \Rightarrow u = n^{2}$

Area of region between C and the positive x-axis $= \lim_{n \to \infty} \int_{0}^{n} f(x) dx = \frac{1}{2} (1 - 0) = 0.5 \text{ units}^{2}$

(iv)
$$\int_{-2}^{2} |f(x)| dx = 2 \int_{0}^{2} f(x) dx$$
 (by symmetry)
$$= 2 \times \frac{1}{2} (1 - e^{-2^{2}})$$

$$= 1 - e^{-4}$$
(v) Vol of revolution
$$= \pi \int_{0}^{1} (f(x))^{2} dx$$

$$= \pi \int_{0}^{1} (xe^{-x^{2}})^{2} dx$$

$$= 0.11570\pi$$

$$= 0.36349$$

$$\approx 0.363 \text{ units}^{3}$$

$$\begin{array}{ll} \hline {\bf Qn 9} & {\bf 2016/RVHS/Promo/11} \\ \hline {\bf (a)} & \int \frac{x^2}{(x^2+9)^2} \, \mathrm{d}x, & x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ & = \int \frac{9 \tan^2\theta}{(9 \tan^2\theta+9)^2} \, 3 \sec^2\theta \, \mathrm{d}\theta \\ & = \int \frac{9 \tan^2\theta}{8 1 \sec^4\theta} \, 3 \sec^2\theta \, \mathrm{d}\theta \\ & = \frac{1}{3} \int \frac{\tan^2\theta}{\sec^2\theta} \, \mathrm{d}\theta \\ & = \frac{1}{3} \int \sin^2\theta \, \mathrm{d}\theta \\ & = \frac{1}{6} \int (1 - \cos 2\theta) \, \mathrm{d}\theta \\ & = \frac{1}{6} \left[\theta - \frac{\sin 2\theta}{2} \right] + c \\ & = \frac{1}{6} \theta - \frac{\sin 2\theta}{12} + c \\ & = \frac{1}{6} \theta - \frac{2\sin\theta\cos\theta}{12} + c \\ & = \frac{1}{6} \tan^{-1} \frac{x}{3} - \frac{1}{12} (2) \frac{x}{\sqrt{x^2+9}} \frac{3}{\sqrt{x^2+9}} + c \\ & = \frac{1}{6} \tan^{-1} \frac{x}{3} - \frac{x}{2(x^2+9)} + c \end{array} \right] \begin{array}{l} x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3 \sec^2\theta \,, \\ x = 3 \tan\theta \,$$

(b)(i)	When $a = 3$,
	Volume generated
	$= 2 \times \pi \int_0^3 \left(\frac{x}{x^2 + 9} \right)^2 dx$
	$=2\pi \left[\frac{1}{6}\tan^{-1}\frac{x}{3} - \frac{x}{2(x^2+9)}\right]_0^3$
	$=2\pi\bigg[\frac{1}{6}\cdot\frac{\pi}{4}-\frac{3}{36}\bigg]$
	$=\frac{1}{12}\pi^2 - \frac{1}{6}\pi$ units ³

- (ii) In the actual hourglass, the neck connecting the two glass bulbs constitutes to a volume which is not accounted for in the theoretical working.
- (iii) $2 \times \pi \int_0^a \frac{x}{\left(\frac{x}{x^2 + 9}\right)^2} dx$ $= 2 \times \left(\frac{1}{12}\pi^2 \frac{1}{6}\pi\right)$ $\int_0^a \left(\frac{x}{x^2 + 9}\right)^2 dx = \frac{1}{12}\pi \frac{1}{6}$ $\left[\frac{1}{6}\tan^{-1}\frac{x}{3} \frac{x}{2(x^2 + 9)}\right]_o^a = \frac{1}{12}\pi \frac{1}{6}$ $\frac{1}{6}\tan^{-1}\frac{a}{3} \frac{a}{2(a^2 + 9)} \frac{1}{12}\pi + \frac{1}{6} = 0$ Using GC, $a = 4.8600148 \approx 4.86$

Qn 10	
(a)	Using GC, intersection between $(y-2)^2 = x+1$ and $y+2x=6$ occur when
	$x = 3 \text{ or } x = \frac{5}{4}$.
	Also, $(y-2)^2 = x+1 \Rightarrow y = 2 \pm \sqrt{x+1}$
	Volume generated = $\pi \int_{-1}^{\frac{5}{4}} \left(2 + \sqrt{x+1}\right)^2 dx + \pi \int_{\frac{5}{4}}^{3} \left(6 - 2x\right)^2 dx - \pi \int_{-1}^{3} \left(2 - \sqrt{x+1}\right)^2 dx$
	=78.5725 = 78.6 (3 s.f.)
(b)	Points of intersection of curves are $(-5, 9)$ and $(0, 4)$.
	Volume = $\pi \int_{0}^{9} \left(-2 - \sqrt{y}\right)^{2} dy - \pi \int_{0}^{4} \left(-2 + \sqrt{y}\right)^{2} dy - \pi \int_{4}^{9} \left(\frac{16 - y^{2}}{13}\right)^{2} dy$
	=466.52-8.3775-107.66
	=350.48
	=350 (3 s.f)