Making Kerr quasinormal mode frequency computation more robust

Sashwat Tanay, Leo Stein (Univ. of MS)

APS April meeting 2023, Minneapolis

• **Physical system:** A spinning (Kerr) BH in the ringdown stage (result of a BBH merger).

- **Physical system:** A spinning (Kerr) BH in the ringdown stage (result of a BBH merger).
- Final Kerr BH oscillates at the quasinormal mode (QNM) frequencies.

- **Physical system:** A spinning (Kerr) BH in the ringdown stage (result of a BBH merger).
- Final Kerr BH oscillates at the quasinormal mode (QNM) frequencies.
- Determining QNM frequencies is essential for GW data analysis.

- **Physical system:** A spinning (Kerr) BH in the ringdown stage (result of a BBH merger).
- Final Kerr BH oscillates at the quasinormal mode (QNM) frequencies.
- Determining QNM frequencies is essential for GW data analysis.
- **Objective:** work towards improving the spectral variants of Leaver's method of arXiv: 1410.7698 (Cook & Zalutskiy) and arXiv: 1908.10377 (Leo Stein).

• QNM frequencies are complex.

- QNM frequencies are complex.
- $\omega_0 = \omega_0(a)$ with 0 < a < 1.

- QNM frequencies are complex.
- $\omega_0 = \omega_0(a)$ with 0 < a < 1.
- Won't show actual QNM curves; will use fake curves for simplicity.

QNM frequency ω_0 as roots of an equation

QNM frequency ω_0 as roots of an equation

• ω_0 's are solutions of $\mathscr{C}(\omega; a) = 0$ (via Newton-Raphson root finding)

Overall picture

Finding QNM frequencies is a parameterized root-finding problem

QNM frequency ω_0 as roots of an equation

- ω_0 's are solutions of $\mathscr{C}(\omega; a) = 0$. (via Newton-Raphson root finding)
- Finding ω_0 's \sim parameterized (by a) numerical root-finding problem.

QNM frequency ω_0 as roots of an equation

- ω_0 's are solutions of $\mathscr{C}(\omega; a) = 0$. (via Newton-Raphson root finding)
- Finding ω_0 's \sim parameterized (by a) numerical root-finding problem.
- VVI: Distinguish b/w $\mathscr{C}(\omega; a)$ (bottom) and ω_0 (up).

• Previously found $\omega_0(a)$ is used as a guess to find $\omega_0(a+da)$.

- Previously found $\omega_0(a)$ is used as a guess to find $\omega_0(a+da)$.
- Root can't be found if the guess is too far \implies take small steps ($da \sim 0.02$) in BH spin a.

- Previously found $\omega_0(a)$ is used as a guess to find $\omega_0(a+da)$.
- Root can't be found if the guess is too far \Longrightarrow take small steps ($da \sim 0.02$) in BH spin a.
- We can take large steps $(da \sim 0.25)$ in a if we have $d\omega_0/da$.

- Previously found $\omega_0(a)$ is used as a guess to find $\omega_0(a+da)$.
- Root can't be found if the guess is too far \Longrightarrow take small steps ($da \sim 0.02$) in BH spin a.
- We can take large steps ($da \sim 0.25$) in a if we have $d\omega_0/da$.

Results

- Previously found $\omega_0(a)$ is used as a guess to find $\omega_0(a+da)$.
- Root can't be found if the guess is too far \Longrightarrow take small steps ($da \sim 0.02$) in BH spin a.
- We can take large steps ($da \sim 0.25$) in a if we have $d\omega_0/da$.
- We provide $d\omega_0/da$ analytically.

QNM frequency ω_0 as roots of an equation

- ω_0 's are solutions of $\mathscr{C}(\omega; a) = 0$. (via Newton-Raphson root finding)
- Finding ω_0 's ~ parameterized (by a) numerical root-finding problem; 0 < a < 1.
- VVI: Distinguish b/w $\mathscr{C}(\omega; a)$ (bottom) and ω_0 (up).

Results

- Previously found $\omega_0(a)$ is used as a guess to find $\omega_0(a+da)$.
- Root can't be found if the guess is too far \implies take small steps ($da \sim 0.02$) in BH spin a.
- We can take large steps ($da \sim 0.25$) in a if we have $d\omega_0/da$.
- We provide $d\omega_0/da$ analytically.
- We provide $d\mathcal{C}/d\omega$ for Newton-Raphson analytically.

Results

- Previously found $\omega_0(a)$ is used as a guess to find $\omega_0(a+da)$.
- Root can't be found if the guess is too far \implies take small steps ($da \sim 0.02$) in BH spin a.
- We can take large steps ($da \sim 0.25$) in a if we have $d\omega_0/da$.
- We provide $d\omega_0/da$ analytically.
- We provide $d\mathcal{C}/d\omega$ for Newton-Raphson analytically.
- Why analytical derivatives? "Applied uncritically, the above procedure is almost guaranteed to produce inaccurate results": *Numerical Recipes in C; Sec. 5.7*

• Integration could be hard; isn't differentiation trivial?

- Integration could be hard; isn't differentiation trivial?
- Computing $d\mathcal{C}/d\omega$ naively is expensive and inefficient.

- Integration could be hard; isn't differentiation trivial?
- Computing $d\mathcal{C}/d\omega$ naively is expensive and inefficient.

$$\mathscr{C} = b_0 + \frac{a_1}{b_1 + \frac{a_2}{b_2 + \frac{a_3}{b_3 + \frac{a_4}{b_4 + \frac{a_5}{b_5 + \cdots}}}}}$$

- Integration could be hard; isn't differentiation trivial?
- Computing $d\mathcal{C}/d\omega$ naively is expensive and inefficient.

$$\mathscr{C} = b_0 + \frac{a_1}{b_1 + \frac{a_2}{b_2 + \frac{a_3}{b_3 + \frac{a_4}{b_4 + \frac{a_5}{b_5 + \cdots}}}}}$$

• Problem: We don't know a priori how many fractions to keep.

- Integration could be hard; isn't differentiation trivial?
- Computing $d\mathcal{C}/d\omega$ naively is expensive and inefficient.

$$\mathscr{C} = b_0 + \frac{a_1}{b_1 + \frac{a_2}{b_2 + \frac{a_3}{b_3 + \frac{a_4}{b_4 + \frac{a_5}{b_5 + \cdots}}}}}$$

- Problem: We don't know a priori how many fractions to keep.
- Incorporated in qnm (Python package by Leo Stein arXiv: 1908.10377).

Summary

- Provided derivative information $(d\omega_0/da \& d\mathcal{C}/d\omega)$ to make QNM frequency computation more efficient.
- $d\omega_0/da$: lets us take larger step sizes $da \sim 0.02 \rightarrow 0.25$.
- Future work: Calculate and incorporate $d^2\omega_0/da^2$; can let us take $da \sim 0.65$.
- Future work: Apply this method beyond Kerr QNMs (within GR) and beyond GR.
- Preprint: arXiv: 1908.10377.

