```
In [1]:
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         from sklearn.cluster import KMeans
         import warnings
         warnings.filterwarnings('ignore')
         df = pd.read_csv("Mall_Customers.csv")
In [6]:
         df.head()
In [7]:
            CustomerID Gender Age Annual Income (k$)
                                                       Spending Score (1-100)
Out[7]:
         0
                     1
                          Male
                                 19
                                                    15
                                                                          39
         1
                     2
                          Male
                                 21
                                                    15
                                                                          81
                                                    16
                                                                           6
         2
                     3
                        Female
                                 20
         3
                        Female
                                 23
                                                    16
                                                                          77
         4
                     5
                        Female
                                 31
                                                    17
                                                                          40
         df.describe()
In [8]:
                CustomerID
                                       Annual Income (k$) Spending Score (1-100)
Out[8]:
                                  Age
         count 200.000000
                           200.000000
                                              200.000000
                                                                     200.000000
         mean
                100.500000
                             38.850000
                                                60.560000
                                                                      50.200000
                  57.879185
                             13.969007
                                                26.264721
                                                                      25.823522
           std
           min
                  1.000000
                             18.000000
                                                15.000000
                                                                       1.000000
          25%
                 50.750000
                                                41.500000
                                                                      34.750000
                             28.750000
          50%
                100.500000
                             36.000000
                                                61.500000
                                                                      50.000000
          75%
                150.250000
                                                78.000000
                                                                      73.000000
                             49.000000
                200.000000
                             70.000000
                                               137.000000
                                                                      99.000000
          max
         sns.distplot(df['Annual Income (k$)']);
In [9]:
```


In [12]: sns.kdeplot(df['Annual Income (k\$)'], shade=True, hue=df['Gender']);

In [13]: columns = ['Age', 'Annual Income (k\$)','Spending Score (1-100)']
for i in columns:

plt.figure()
sns.kdeplot(df[i],shade=True,hue=df['Gender'])

In [15]: df['Gender'].value_counts(normalize=True)

Out[15]: Female 0.56 Male 0.44

Name: Gender, dtype: float64

```
In [16]: sns.scatterplot(data=df, x='Annual Income (k$)',y='Spending Score (1-100)')
Out[16]: <AxesSubplot:xlabel='Annual Income (k$)', ylabel='Spending Score (1-100)'>
```



```
In [17]: #df=df.drop('CustomerID',axis=1)
sns.pairplot(df,hue='Gender')
```

Out[17]: <seaborn.axisgrid.PairGrid at 0x7fdd5a50aa00>

Out [18]: Age Annual Income (k\$) Spending Score (1-100)

Gender			
Female	38.098214	59.250000	51.526786
Male	39.806818	62.227273	48.511364

In [19]:	df.corr()				
----------	-----------	--	--	--	--

Out[19]:		CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
	CustomerID	1.000000	-0.026763	0.977548	0.013835
	Age	-0.026763	1.000000	-0.012398	-0.327227
	Annual Income (k\$)	0.977548	-0.012398	1.000000	0.009903
	Spending Score (1-100)	0.013835	-0.327227	0.009903	1.000000

In [20]: sns.heatmap(df.corr(),annot=True,cmap='coolwarm')

Out[20]: <AxesSubplot:>


```
clustering1 = KMeans(n_clusters=3)
In [21]:
  clustering1.fit(df[['Annual Income (k$)']])
In [22]:
  KMeans(n_clusters=3)
Out[22]:
In [24]:
  clustering1.labels_
  Out[24]:
    2, 2], dtype=int32)
In [25]: df['Income Cluster'] = clustering1.labels_
  df.head()
```

```
CustomerID Gender Age Annual Income (k$) Spending Score (1-100) Income Cluster
Out[25]:
                                                                                       1
          0
                      1
                           Male
                                 19
                                                   15
                                                                        39
          1
                           Male
                                 21
                                                   15
                                                                        81
                                                                                       1
          2
                        Female
                                 20
                                                   16
                                                                         6
                                                                                       1
                      3
          3
                        Female
                                 23
                                                   16
                                                                        77
                                                                                        1
          4
                                                   17
                                                                        40
                                                                                       1
                        Female
                                 31
          df['Income Cluster'].value_counts()
               90
Out[26]:
               74
               36
          Name: Income Cluster, dtype: int64
In [27]:
          clustering1.inertia_
          23517.330930930933
Out[27]:
In [28]:
          intertia_scores=[]
          for i in range(1,11):
              kmeans=KMeans(n clusters=i)
              kmeans.fit(df[['Annual Income (k$)']])
              intertia_scores.append(kmeans.inertia_)
In [29]:
          intertia_scores
          [137277.28000000003,
Out[29]:
           48660.88888888889,
           23517.330930930933,
           13278.112713472485,
           8481.496190476191,
           5050.9047619047615,
           3972.3214285714284,
           2857.441697191697,
           2335.8397186147185,
           1743.4772727272725]
          plt.plot(range(1,11),intertia_scores)
In [30]:
          [<matplotlib.lines.Line2D at 0x7fdd6ae23820>]
Out[30]:
```


Out[32]:

Age Annual Income (k\$) Spending Score (1-100)

Income Cluster

0	38.722222	67.088889	50.000000
1	39.500000	33.486486	50.229730
2	37.833333	99.888889	50.638889

```
In [33]: clustering2 = KMeans(n_clusters=5)
   clustering2.fit(df[['Annual Income (k$)','Spending Score (1-100)']])
   df['Spending and Income Cluster'] =clustering2.labels_
   df.head()
```

Out[33]:		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Income Cluster	Spending and Income Cluster
	0	1	Male	19	15	39	1	0
	1	2	Male	21	15	81	1	4
	2	3	Female	20	16	6	1	0
	3	4	Female	23	16	77	1	4
	4	5	Female	31	17	40	1	0

```
intertia_scores2=[]
for i in range(1,11):
    kmeans2=KMeans(n_clusters=i)
    kmeans2.fit(df[['Annual Income (k$)','Spending Score (1-100)']])
    intertia_scores2.append(kmeans2.inertia_)
plt.plot(range(1,11),intertia_scores2)
```

Out[34]: [<matplotlib.lines.Line2D at 0x7fdd5a5b8e20>]


```
In [35]: centers =pd.DataFrame(clustering2.cluster_centers_)
    centers.columns = ['x','y']
```

```
In [36]: plt.figure(figsize=(10,8))
    plt.scatter(x=centers['x'],y=centers['y'],s=100,c='black',marker='*')
    sns.scatterplot(data=df, x ='Annual Income (k$)',y='Spending Score (1-100)',huc
    plt.savefig('clustering_bivaraiate.png')
```


In [37]:	pd.crosstab(df['Spending and Income Clust						
Out[37]:	Gender	Female	Male				
	Spending and Income Cluster						
	0	0.608696	0.391304				
	1	0.592593	0.407407				
	2	0.457143	0.542857				
	3	0.538462	0.461538				
	4	0 590909	0 409091				

Out[38]:

Age Annual Income (k\$) Spending Score (1-100)

Spending and Income Cluster

0	45.217391	26.304348	20.913043
1	42.716049	55.296296	49.518519
2	41.114286	88.200000	17.114286
3	32.692308	86.538462	82.128205
4	25.272727	25.727273	79.363636

In [39]: #mulivariate clustering

from sklearn.preprocessing import StandardScaler

In [40]: | scale = StandardScaler()

In [41]: df.head()

Out[41]:

:		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Income Cluster	Spending and Income Cluster
	0	1	Male	19	15	39	1	0
	1	2	Male	21	15	81	1	4
	2	3	Female	20	16	6	1	0
	3	4	Female	23	16	77	1	4
	4	5	Female	31	17	40	1	0

In [42]: dff = pd.get_dummies(df,drop_first=True)
 dff.head()

Out[42]:

:	CustomerID	Αg	ge	Annual Income (k\$)	Spending Score (1-100)	Income Cluster	Spending and Income Cluster	Gender_Male
	0 1	,	19	15	39	1	0	1
	1 2	: :	21	15	81	1	4	1
	2 3	2	20	16	6	1	0	0
	3 4	. 2	23	16	77	1	4	0
	4 5		31	17	40	1	0	0

In [43]: dff.columns

Out[43]: Index(['CustomerID', 'Age', 'Annual Income (k\$)', 'Spending Score (1-100)', 'Income Cluster', 'Spending and Income Cluster', 'Gender_Male'], dtype='object')

In [44]: dff = dff[['Age', 'Annual Income (k\$)', 'Spending Score (1-100)','Gender_Male'
 dff.head()

```
Out[44]:
             Age Annual Income (k$) Spending Score (1-100) Gender_Male
          0
                                                                    1
              19
                                15
                                                      39
          1
              21
                                 15
                                                      81
                                                                    1
          2
              20
                                                       6
                                                                    0
                                16
          3
              23
                                 16
                                                      77
                                                                    0
                                                                    0
          4
                                 17
                                                      40
              31
In [45]:
          dff = scale.fit_transform(dff)
          dff = pd.DataFrame(scale.fit_transform(dff))
In [46]:
          dff.head()
Out[46]:
                    0
                              1
                                         2
                                                   3
            -1.424569 -1.738999
                                 -0.434801
                                             1.128152
          1 -1.281035 -1.738999
                                  1.195704
                                             1.128152
          2 -1.352802 -1.700830
                                  -1.715913 -0.886405
          3 -1.137502 -1.700830
                                  1.040418 -0.886405
          4 -0.563369 -1.662660 -0.395980 -0.886405
In [47]:
          intertia scores3=[]
          for i in range(1,11):
               kmeans3=KMeans(n_clusters=i)
               kmeans3.fit(dff)
               intertia_scores3.append(kmeans3.inertia_)
          plt.plot(range(1,11),intertia_scores3)
          [<matplotlib.lines.Line2D at 0x7fdd78b0aca0>]
```


In [48]: df

Out[48]:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Income Cluster	Spending and Income Cluster
0	1	Male	19	15	39	1	0
1	2	Male	21	15	81	1	4
2	3	Female	20	16	6	1	0
3	4	Female	23	16	77	1	4
4	5	Female	31	17	40	1	0
•••		•••					
195	196	Female	35	120	79	2	3
196	197	Female	45	126	28	2	2
197	198	Male	32	126	74	2	3
198	199	Male	32	137	18	2	2
199	200	Male	30	137	83	2	3

200 rows × 7 columns

In [49]: df.to_csv('Clustering.csv')

In []: