জেনারেল মেকানিক্স-১

এসএসসি ও দাখিল (ভোকেশনাল)

জাতীয় শিক্ষাক্রম ও পাঠ্যপুত্তক বোর্ড কর্তৃক প্রকাশিত বাংলাদেশ কারিগরি শিক্ষা বোর্ড কর্তৃক প্রণীত

জেনারেল মেকানিক্স-১ GENERAL MECHANICS-1

প্রথম ও দ্বিতীয় পত্র নবম-দশম শ্রেণি

লেখক ড. ইঞ্জি. মোঃ সিরাজুল ইসলাম এম এসসি ইঞ্জিনিরিয়ারিং (বুয়েট), পিএইচডি

> সম্পাদক মোঃ বোরহান উদ্দিন সিনিয়র ক্রাফট ইস্ট্রাকটর

জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড

৬৯–৭০, মতিঝিল বাণিজ্যিক এলাকা, ঢাকা–১০০০ কর্তৃক প্রকাশিত।

[প্রকাশক কর্তৃক সর্বস্বত্ব সংরক্ষিত]

পরীক্ষামূলক সংস্করণ

প্রথম প্রকাশ : নভেম্বর, ২০১৬ পুনর্মুদ্রণ : আগস্ট, ২০১৭

ডিজাইন জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড

গণপ্রজাতন্ত্রী বাংলাদেশ সরকার কর্তৃক বিনামূল্যে বিতরণের জন্য

প্ৰসঙ্গ-কথা

শিক্ষা জাতীয় জীবনের সর্বতোমুখী উন্নয়নের পূর্বশর্ত। দ্রুত পরিবর্তনশীল বিশ্বের চ্যালেঞ্জ মোকাবেলা করে বাংলাদেশকে উন্নয়ন ও সমৃদ্ধির দিকে নিয়ে যাওয়ার জন্য প্রয়োজন সৃশিক্ষিত-দক্ষ মানব সম্পদ। কারিগারি ও বৃত্তিমূলক শিক্ষা দক্ষ মানব সম্পদ উন্নয়ন, দারিদ্র্য বিমোচন, কর্মসংস্থান এবং আত্মনির্ভরশীল হয়ে বেকার সমস্যা সমাধানে গুরুত্বপূর্ণ অবদান রাখছে। বাংলাদেশের মতো উন্নয়নশীল দেশে কারিগরি ও বৃত্তিমূলক শিক্ষার ব্যাপক প্রসারের কোনো বিকল্প নেই। তাই ক্রমপরিবর্তনশীল অর্থনীতির সঙ্গে দেশে ও বিদেশে কারিগরি শিক্ষার শিক্ষিত দক্ষ জনশক্তির চাহিদা দিন দিন বৃদ্ধি পাচেছ। এ কারণে বাংলাদেশ কারিগরি শিক্ষা বোর্ড কর্তৃক এসএসসি (ভোকেশনাল) ও দাখিল (ভোকেশনাল) স্তরের শিক্ষাক্রম ইতোমধ্যে পরিমার্জন করে যুগোপযোগী করা হয়েছে।

শিক্ষাক্রম উন্নয়ন একটি ধারাবাহিক প্রক্রিয়া। পরিমার্জিত শিক্ষাক্রমের আলোকে প্রণীত পাঠ্যপুস্তকসমূহ পরিবর্তনশীল চাহিদার পরিপ্রেক্ষিতে এসএসি (ভোকেশনাল) ও দাখিল (ভোকেশনাল) পর্যায়ে অধ্যয়নরত শিক্ষার্থীদের যথাযথভাবে কারিগরি শিক্ষায় দক্ষ করে গড়ে তুলতে সক্ষম হবে। অভ্যন্তরীণ ও বহির্বিশ্বে কর্মসংস্থানের সুযোগ সৃষ্টি এবং আত্মকর্মসংস্থানে উদ্যোগী হওয়াসহ উচ্চশিক্ষার পথ সুগম হবে। ফলে রূপকল্প-২০২১ অনুযায়ী জাতিকে বিজ্ঞানমনস্ক ও প্রশিক্ষিত করে ডিজিটাল বাংলাদেশ নির্মাণে আমরা উজ্জীবিত।

গণপ্রজাতন্ত্রী বাংলাদেশ সরকার ২০০৯ শিক্ষাবর্ষ হতে সকলস্তরের পাঠ্যপুস্তক বিনামূল্যে শিক্ষার্থীদের মধ্যে বিতরণ করার যুগান্তকারী সিদ্ধান্ত গ্রহণ করেছে। কোমলমতি শিক্ষার্থীদের আরও আগ্রহী, কৌতৃহলী ও মনোযোগী করার জন্য মাননীয় প্রধানমন্ত্রী শেখ হাসিনার নেতৃত্বে আওয়ামী লীগ সরকার প্রাক-প্রাথমিক, প্রাথমিক, মাধ্যমিকস্তর থেকে তরু করে ইবতেদায়ি, দাখিল, দাখিল ভোকেশনাল ও এসএসসি ভোকেশনালস্তরের পাঠ্যপুস্তকসমূহ চার রঙে উন্নীত করে আকর্ষণীয়, টেকসই ও বিনামূল্যে বিতরণ করার মহৎ উদ্যোগ গ্রহণ করেছে; যা একটি ব্যতিক্রমী প্রয়াস। বাংলাদেশ কারিগরি শিক্ষা বোর্ড কর্তৃক রচিত ভোকেশনালস্তরের ট্রেড পাঠ্যপুস্তকসমূহ সরকারি সিদ্ধান্তের প্রেক্ষিতে জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড ২০১৭ শিক্ষাবর্ষ থেকে সংশোধন ও পরিমার্জন করে মুদ্রণের দায়িত্ব গ্রহণ করে। এ বছর উন্নতমানের কাগজ ও চার রঙের প্রচ্ছদ ব্যবহার করে অতি অল্প সময়ে পাঠ্যপুস্তকটি মুদ্রণ করে প্রকাশ করা হলো।

বানানের ক্ষেত্রে সমতা বিধানের জন্য অনুসৃত হয়েছে বাংলা একাডেমি কর্তৃক প্রণীত বানান রীতি। পাঠ্যপুস্তকটির আরও উন্নয়নের জন্য যে কোনো গঠনমূলক ও যুক্তিসংগত পরামর্শ গুরুত্বের সাথে বিবেচিত হবে। শিক্ষার্থীদের হাতে সময়মত বই পৌছে দেওয়ার জন্য মুদ্রণের কাজ দ্রুত করতে গিয়ে কিছু ক্রটিবিচ্যুতি থেকে যেতে পারে। পরবর্তী সংস্করণে বইটি আরও সুন্দর, প্রাঞ্জল ও ক্রটিমুক্ত করার চেষ্টা করা হবে। যাঁরা বইটি রচনা, সম্পাদনা, প্রকাশনার কাজে আন্তরিকভাবে মেধা ও শ্রম দিয়ে সহযোগিতা করেছেন তাঁদের জানাই আন্তরিক ধন্যবাদ। পাঠ্যপুস্তকটি শিক্ষার্থীরা আনন্দের সঙ্গে পাঠ করবে এবং তাদের মেধা ও দক্ষতা বৃদ্ধি পাবে বলে আশা করি।

প্রফেসর নারায়ণ চন্দ্র সাহা

চেয়ারম্যান জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড, বাংলাদেশ

সূচিপত্ৰ বিষয়বস্তু: (তাত্নিক প্ৰথমপত্ৰ)

অখ্যায়	বিষয়বন্ত		অধ্যায়	বিষয়বস্তু বিষয়বস্তু: (তাত্ত্বিক প্রথমপত্র)	
প্রথম	জেনারেল মেকানিক্স ট্রেড	03	প্রথম	ক্রস ফাইলিং পদ্ধতিতে ধাতুর ইপর সমতল ফাইলিং করার দক্ষতা অর্জন	285
				করবে ৷	
দ্বিতীয়	ওয়ার্কশপে সতর্কতামূলক ব্যবস্থা	90	দিতীয়	স্ট্রেইট ফাইলিং পদ্ধতিতে ধাতুর উপর সমতল ফাইলিং করার দক্ষতা	296
				অর্জন করবে।	
ভৃতীয়	যন্তপাতি	24	তৃতীয়	ধাতৃতে খনিজ ফাইলিং করার দক্ষতা অর্জন করবে।	799
চতুৰ্থ	ধাতুর সম্পর্কে জ্ঞাত হবে।	88	চতুৰ	দ্র-ফাইলিং করার দক্ষতা অর্জন করবে।	203
शक्षम	ভাইস সম্পর্কে জ্ঞাত হবে।	98	পধ্যয	হ্যাকস হারা ধুতৃ কর্তন করার দক্ষতা অর্জন করবে।	203
वर्ष	লে আউট ও মার্কিং সম্পর্কে জ্ঞাত হবে।	4.7	षष्ठ	কোন্ড চিজেল হারা ধাতব করার দক্ষতা অর্জন করবে।	208
সপ্তম	ফাইল সম্পর্কে জ্ঞাত হবে।	pp	সন্তম	কোন্ড চিজেল ধাতুতে খাঁজ (কি ওয়ে) করার দক্ষতা অর্জন করবে।	206
অষ্টম	ফাইলিং প্রক্রিয়া সম্পর্কে জ্ঞাত হবে।	9p	জাষ্ট্ৰম	ধাতুতে দ্রিল মেশিন দ্বারা দ্রিল করার দক্ষতা অর্জন করবে।	206
লবম	হ্যাকসয়িং প্রক্রিয়া সম্পর্কে জ্ঞাত হবে।	305	নবম	হ্যান্ড ট্যাপ দ্বারা ধাতুর ভিতরের প্যাচ কাটার দক্ষতা অর্জন করবে।	233
দৃশ্য	পাওয়ার হ্যাকসয়িং প্রক্রিয়া সম্পর্কে জ্ঞাত হবে।	309	দশ্য	হ্যান্ড ট্যাপ দ্বারা ধাতুর বাইরে প্যাচ কাটার দক্ষতা অর্জন করবে।	250
একাদশ	হাতৃড়ী সম্পর্কে জ্ঞাত হবে।	330	একাদশ	দ্রিল হোল কাউন্টার সিংকিং করার দক্ষতা অর্জন করবে।	236
দ্বাদ্ধা	ক্স ভ্রাইভার সম্পর্কে জ্ঞাত হবে।	224	ছাদশ	পাওয়ার হ্যাকস মেশিনে ধাতু কটার দক্ষতা অর্জন করবে।	258
ত্রয়োদশ	বিদ্যুৎ সম্পর্কে জ্ঞাত হবে।	320		100 Sept. 201 Se	
চতুৰ্দশ	ড্রিলিং প্রক্রিয়া সম্পর্কে জ্ঞাত হবে।	358			
পথ্যসূপ	দ্রিশ বিট এর পরিচিতি সম্পর্কে জ্ঞাত হবে।	208			
যোড়শদশ	কাউন্টার সিঙ্কিং প্রক্রিয়া সম্পর্কে জ্ঞাত হবে।	282			
সঙদশ	প্রেড (প্যাচ) সম্পর্কে জ্ঞাত হবে।	380			
অটাদশ	ট্যাপ সম্পর্কে জ্ঞাত হবে।	208			
উনবিংশ	ডাই সম্পর্কে জ্ঞাত হবে।	300			
বিংশতম	স্পানার সম্পর্কে জ্ঞাত হবে।	368			
একবিংশ	চিপিং প্রক্রিয়া সম্পর্কে জ্ঞাত হবে।	292			
দ্বাবিংশ	নাট সম্পর্কে ভ্রাভ হবে।	39%			
ত্রয়োবিংশ	বোল্ট সম্পর্কে জ্ঞাত হবে ৷	2000			
চতুবিংশ	ওয়াশার সম্পর্কে জাত হবে।	79-9-			

বিষয়বস্তু: (তাত্ত্বিক দ্বিতীয়পত্ৰ)

অধ্যায়	বিষয়বস্ত		অধ্যায়	বিষয়বস্তু বিষয়বস্তু: (তান্ত্ৰিক দ্বিতীয়পত্ৰ)	
প্রথম	ওয়ার্কশপের সতর্কতামূলক পরিবেশ ব্যক্ত করতে	228	প্রথম	ওয়ার্কশলে সতর্কতা অনুসরণ করার দক্ষতা অর্জন করতে পারবে।	028
	পারবে।				
ছিতীয়	ওয়ার্কশপের রক্ষনাবেক্ষণ সম্পর্কে জ্ঞাত হবে।	২৩০	দ্বিতীয়	জেনারেল মেকানিক্স শপে ব্যবহৃত যন্ত্রপাতির রক্ষনাবেক্ষনে দক্ষতা অর্জন করতে পারবে।	७३७
তৃতীয়	লুব্রিক্যান্ট এর মৌলিক ধারণা সম্পর্কে জ্ঞাত হবে।	208	ভূতীয়	বিয়ারিং রক্ষনাবেক্ষণ করার দক্ষতা অর্জন করতে পারবে।	026
চতুর্থ	কুল্যান্ট সম্পর্কে জ্ঞাত হবে।	२७१	চতুৰ্থ	হ্যান্ড ড্রিলে ছিন্র করার দক্ষতা অর্জন করতে পারবে।	000
পর্বস	সংকর ধাতৃ সম্পর্কে জ্ঞাত হবে।	282	পদ্ধম	ভী-ব্রক ব্যবহার কণ্ডে ড্রিলিং করার দক্ষতা অর্জন করতে পারবে।	000
ষষ্ঠ	হার্ডেনিং প্রক্রিয়া সম্পর্কে জ্ঞাত হবে।	286	ষষ্ঠ	এ্যাংগেল প্রেট ব্যবহার কণ্ডে ড্রিলিং করার দক্ষতা অর্জন করতে পারবে।	900
সম্ভয	কার্বোরাইজিং প্রক্রিয়া সম্পর্কে দ্ঞাত হবে।	202	সপ্তম	দ্রিল মেশিনে কাউন্টার বোরিং করার দক্ষতা অর্জন করতে পারবে।	085
অন্তম	টেম্পারিং সম্পর্কে জ্ঞাত হবে।	208	অষ্টম	হ্যান্ড রিমার দ্বারা রিমিং দক্ষতা অর্জন করতে পারবে।	080
লব্য	এ্যানেশিং প্রক্রিয়া সম্পর্কে জাত হবে।	209	নবম	দ্রিল মেশিনে কাউন্টার বোরিং করার দক্ষতা অর্জন করতে পারবে।	08
দশ্ম	নরমালইজিং সম্পর্কে জাত হবে।	260	দশ্য	পাইপ ফিটিং করার দক্ষতা অর্জন করতে পারবে।	00
একাদশ	গেন্ধ এর মৌলিক ধারণা সম্পর্কে জ্ঞাত হবে।	২৬৩	একাদশ	একপ্রান্ত বন্ধ ছিদ্রে ট্যাপ দ্বারা প্রেড কাটার দক্ষতা অর্জন করতে পারবে।	000
ছাদশ	কী বা চাবি সম্পর্কে জ্ঞাত হবে।	290	হাদশ	চাবির ঘাট কাটার দক্ষতা অর্জন করতে পারবে।	001
অয়োদশ	পিন সম্পর্কে জ্ঞাত হবে।	296	অয়োদশ	চাবি তৈরি করার দক্ষতা অর্জন করতে পারবে।	06
চতুৰ্দশ	রিভেট সম্পর্কে জ্ঞাত হবে।	298	চতুৰ্দশ	প্যাডেস্টাল গ্রাইন্ডাওে গ্রাইন্ডিং করার দক্ষতা অর্জন করতে পারবে।	090
পথাদশ	ক্কু সম্পর্কে জ্ঞাত হবে।	268	পৃথ্যদশ	গ্রাইভিং হইল ড্রেসিং বরার দক্ষতা অর্জন করতে পারবে।	09
যোড়শদশ	পুলার সম্পর্কে জ্ঞাত হবে।	280			
সন্তদশ	বিয়ারিং সম্পর্কে জ্ঞাত হবে।	282			
অষ্ট্রাদশ	পাইপ ফিটিং কৌশল সম্পর্কে জ্ঞাত হবে।	286			
উনবিংশ	জিলা এবং ফিকচার সম্পর্কে জ্ঞাত হবে।	909			
বিংশতম	কাউন্টার বোরিং সম্পর্কে জ্ঞাত হবে।	030			
একবিংশ	রিমিং প্রক্রিয়া সম্পর্কে জ্ঞাত হবে।	932			
षाविर्ग	প্যাডেস্টাল গ্রাইন্ডার সম্পর্কে জ্ঞাত হবে।	929			

প্রথম অধ্যায়

জেনারেল মেকানিক্স ট্রেড

[General Mechanics Trade]

১.০ সূচনা (Introduction)

সাধারণ অর্থে মেকানিক্স (Mechanics) বলতে এমন এক বিষয়কে বুঝায় যেখানে এক বা একাধিক ট্রেড ভিত্তিক তাত্ত্বিক এবং বান্তব ব্যবহারিক প্রয়োগ কৌশল নিয়ে আলোচনা করে। আর যে ব্যক্তি বিশেষ এরপ মেকানিক্স (Mechanics) বিষয়ক তাত্ত্বিক এবং বান্তব ভিত্তিক ব্যবহারিক প্রয়োগ কৌশল আত্মন্থকরণপূর্বক একে পেশা হিসেবে বেছে নিয়েছেন, তাকে 'মেকানিক' সংক্ষেপে 'মেকার' বা 'কারিগর' বলে। উদাহরণত ফিটার, টার্নার, ওয়েল্ডার, মেশিন অপারেটর প্রত্যেকে এক একজন মেকানিক বা কারিগর নামে অভিহিত। একজন মেকারের এক বা একাধিক বিষয়ের তাত্ত্বিক ও ব্যবহারিক জ্ঞান থাকা স্বাভাবিক।

অতএব যে ট্রেডে একাধিক ট্রেডভিন্তিক তান্ত্বিক এবং বাস্তব কর্মমুখী প্রশিক্ষণ প্রদান করা হয় তাকে জেনারেল মেকানিক্স ট্রেড বলা হয়।

তবে এ ট্রেডের প্রধান কাজ বিভিন্ন প্রকার হ্যান্ড টুলস্ ব্যবহার করে নানাবিধ যন্ত্রাংশ তৈরি ও সংযোজন করা। তাছাড়া কোনো যন্ত্রাংশ তৈরি করার সময়ে চূড়ান্ত পর্যায়ের ফিনিশিং কাজ, বিভিন্ন যন্ত্রাংশ ফিটিং করা, ফেব্রিকেশনের কাজ ইত্যাদি এই ট্রেড থেকে উত্তীর্ণ মেকানিকগণ অতীব সফলতার সাথে সম্পন্ন করে থাকেন। এ ট্রেডের প্রধান বৈশিষ্ট্য হলো এই যে, জরুরি প্রয়োজনে বিভিন্ন প্রকার সৃষ্দ্র যন্ত্রাংশ তৈরি করা যা সাধারণত মেশিন কাটার এবং ওয়ার্ক হোল্ডিং ডিভাইসের অভাবে প্রস্তুত করা সম্ভব হয় না। এ ট্রেডে সাধারণত বেঞ্চ ওয়ার্ক, ফিটিং ওয়ার্ক, লেদ ওয়ার্ক, সাধারণ ওয়েল্ডিং, অফ হ্যান্ড গ্রাইন্ডিং, সেপিং, মিলিং, শীট মেটাল ওয়ার্ক, দ্রিলিং, সয়িং, ফোর্জিং ইত্যাদি কাজ সাথে সাথে সম্পন্ন করা হয়ে থাকে।

১.১ জেনারেল মেকানিক্স (General Mechanics) :

জেনারেল মেকানিক্স হলো এমন একটি সাধারণ কারিগরি বিষয় যা এক বা একাধিক ট্রেড ভিত্তিক তাত্ত্বিক এবং বাস্তব প্রয়োগ ভিত্তিক ব্যবহারিক কৌশল নিয়ে আলোচনা করে।

অতএব যে ট্রেডে জেনারেল মেকানিক্স ট্রেড সংক্রোম্ভ তাত্ত্বিক ও বাস্তব প্রশিক্ষণ প্রদান করা হয়, তাকে জেনারেল মেকানিক্স ট্রেড বলা হয়। এরপ ট্রেডে যিনি জেনারেল মেকানিক্স বিষয়ের তাত্ত্বিক ও বাস্তব প্রয়োগ ভিত্তিক ব্যবহারিক প্রশিক্ষণ গ্রহণ করে থাকেন তাকে জেনারেল মেকানিক (General Mechanics) বা সংক্ষেপে মেকার ও বলা হয়।

জেনারেল মেকানিক্স প্রধান আলোচ্য বিষয় হলো সচরাচর ব্যবহৃত বিভিন্ন প্রকার হ্যান্ড টুলস ও সহায়ক যন্ত্রপাতি ব্যবহার করে বিভিন্ন প্রকার যন্ত্রাংশ তৈরিকরণ কৌশল। তাছাড়া কোনো যন্ত্রাংশ তৈরি করার সময়ে বিভিন্ন প্রকার অপারেশন চূড়ান্ত পর্যায়ের ফিনিশিং কৌশল, বিভিন্ন যন্ত্রাংশ ফিটিংকরণ, ফেব্রিকেশন প্রভৃতি জেনারেল মেকানিক্স ট্রেডের মূল আলোচিত বিষয়বস্তু।

জেনারেল মেকানিক্স ট্রেডের বিশেষ গুরুত্ব হলো জরুরি প্রয়োজনে বিভিন্ন যন্ত্রাংশ তৈরি করা যা সচরাচর ব্যবহৃত মেশিন কাটার এবং ওয়ার্ক হোল্ডিং ডিভাইসের অভাবে প্রস্তুত করা সম্ভব হয় না। এ ট্রেডে সাধারণত মেটাল ওয়ার্ক, বেঞ্চ ওয়ার্ক, ফিটিং ওয়ার্ক, সাধারণ লেদ ওয়ার্ক, সাধারণ ওয়েন্ডিং, ড্রিলিং, গ্রাইভিং, সেশিং প্রভৃতি অপারেশনের মাধ্যমে খুচরা যন্ত্রাংশ তৈরি, রিপেয়ারিং ও সংযোজন-বিয়োজন-এর কাজ সুচারুরূপে সম্পাদন করা হয়ে থাকে।

১.২ জেনারেল মেকানিক্স-এর তান্থিক ও ব্যবহারিক জ্ঞান (Theoretical and Practical Knowledge of General Mechanics):

একজন জেনারেল মেকানিক-এর জেনারেল মেকানিক্স বিষয় সংক্রান্ত নিমুরূপ তাত্ত্বিক ও ব্যবহারিক জ্ঞান থাকা অত্যাবশ্যক:

তাত্ত্বিক জ্ঞান (Theoretical Knowledge) :

- ১। ওয়ার্কশপের কাজে প্রয়োজনীয় হিসাব কার্য (Calculation)
- ২। হ্যান্ড টুলস পরিচিতি (Name of Hands Tools)
- ৩। লে-আউট ও মার্কিং (Lay out & Marking)
- 8। পরিমাপ ও পরীক্ষাকরণ (Measurement and Testing)
- ৫। ওয়ার্কশপের মৌলিক নিরাপত্তা বিধি (Fundamental Safety Rules)
- ৬। মেকানিক্যাল দ্রইং-এর নীতি, পাঠ ও অংকন (Mechanical Drawing & Drafting)
- ৭। যন্ত্রপাতি রক্ষণাবেক্ষণ (Maintenance of Tools & Equipments)
- ৮। দুর্ঘটনা সংঘটিত হওয়ার কারণ (Causes of Hazards)
- ৯। দুর্ঘটনা প্রতিরোধ (Remedy of Hazards)
- ১০। প্রাথমিক চিকিৎসা (First Aid)
- ১১। ধাতুর গুণাবলি (Characteristics of Metal)
- ১২। তাপ প্রক্রিয়াকরণ (Heat treatment)
- ১৩। কাটিং ফুইডের ব্যবহার (Uses of Cutting Fluid)
- ১৪। যন্ত্রাংশ সংযুক্তকরণ ও বিমুক্তকরণ (Assembling & Disassembling)
- ১৫। সয়িং (Sawing)
- ১৬। ফাইলিং (Filling)
- ১৭। চিপিং (Chipping)
- ১৮। দ্রিলিং (Drilling)
- ১৯। কাটিং (Cutting)
- ২০। পরিমাপকরণ Measuring)
- ২১। রিমিং (Reaming)
- ২২। ট্যাপিং (Teping)
- ২৩। ডায়িং (Dying)
- ২৪। সোল্ডারিং (Soldering)

২৫। ব্ৰেজিং (Brazing)

২৬। ওয়েন্ডিং (Welding)

- i) বৈদ্যুতিক আর্ক ওয়েন্ডিং (Electric Arc Welding)
- ii) গ্যাস ওয়েন্ডিং (Gas Welding)
- iii) বৈদ্যুতিক রেজিস্ট্যান্স ওয়েন্ডিং (Electric Resistance Welding)

২৭। পাইপ ফিটিং (Pipe Fitting)

২৮। পাইপ ফিটিং যন্ত্রপাতি (Pipe Fitting Tools)

ব্যবহারিক জ্ঞান (Practical Knowledge):

যে জ্ঞান (Knowledge) একজন জেনারেল মেকানিককে জেনারেল মেকানিক্স বিষয় সংক্রান্ত কোনো যন্ত্রাংশ তৈরি বা সংযোজন-বিয়োজনে বাস্তবভিত্তিক ব্যবহারিক কৌশল সম্পাদনে সাহায্য করে, তাকে ব্যবহারিক জ্ঞান (Practical Knowledge) বলে ৷ একজন জেনারেল মেকানিক-এর জেনারেল মেকানিক্স সংক্রান্ত নিমুর্বপ ব্যবহারিক জ্ঞান থাকা আবশ্যক:

- ১। মাপা ও পরীক্ষাকরণ কৌশল (Technique of measurement and Testing)
- ২। লে আউট ও মার্কিং করা (Layout and Marking)
- ৩। কাটিং টুলস নির্বাচন (Cutting Tools Selection)
- 8। কাটিং টুলসের ব্যবহার Uses of Cutting Tools)
- ৫। মেজারিং টুলস নির্বাচন (Selection of Measuring Tools)
- ৬। মেজারিং টুলস-এর ব্যবহার (Uses of Measuring Tools)
- ৭। নিরাপত্তা বিধি পালন (Maintain Safety Rules)
- ৮। রক্ষণাবেক্ষণ কাজকরণ (Maintain Maintenance Works)
- ৯। মেকানিক্যাল দ্রইং (Mechanical Drawing)
- ১০। যদ্রাংশ সংযুক্তকরণ ও বিযুক্তকরণ (Assemble and Disassemble of Machine Parts)
- ১১। ইলেকট্রিক আর্ক ওয়েন্ডিং (Electric are Welding)
- ১২। গ্যাস ওয়েন্ডিং (Gas Welding)
- ১৩। কাটিং ফুইডের প্রয়োগ (Application of Cutting Fluid)
- ১৪। সয়িং (Sawing)
- ১৫। ফাইলিং (Filling)
- ১৬। চিপিং (Chipping)
- ১৭। রিমিং (Reaming)
- ১৮। ট্যাপিং (Teping)
- ১৯। ডায়িং (Dieing)
- ২০। অফ হ্যান্ড গ্রাইন্ডিং (Off Hand Grinding)
- ২১। সোল্ডারিং (Soldering)
- ২২। ব্ৰেজিং (Brazing)

- ২৩। পাইপ ফিটিং (Pipe Fitting)
- ২৪। ধাতুর বৈশিষ্ট্য (Characteristics of Metals)
- ২৫। প্যাটার্ন মেকিং (Pattern Making)
- ২৬। লেদ ওয়ার্কিং (Lathe Working)
- ২৭। সেপিং (Shapping)
- ২৮। জিলিং (Drilling)
- ২৯। গ্রাইন্ডিং (Grinding)

১.৩ জেনারেন্স মেকানিক্স-এর শুরুত্ব (Importance of General Mechanics) :

জেনারেল মেকানিক্স-এর গুরুত্ব অনস্বীকার্য। একজন দক্ষ জনশক্তি কখনও দেশ ও দশের বোঝা হতে পারে না। বর্তমান একবিংশ শতাব্দীর সবচেয়ে বড় চ্যালেঞ্জ হলো অধিক জনসংখ্যা বৃদ্ধি। এ জনসংখ্যাকে যদি সাধারণ শিক্ষার পাশাপাশি কারিগরি শিক্ষায় শিক্ষিত করা না যায় তবে তা দেশের জন্য বিরাট বোঝা হয়ে দাঁড়ায়। এরূপ বোঝায় দেশের মেরুদণ্ড ভেঙে পড়ার উপক্রম হয়। কিছু যদি জনসংখ্যাকে কারিগরি শিক্ষায় শিক্ষিত দক্ষ প্রশিক্ষিত জনবলে পরিণত করা যায়, তবে প্রত্যেকটি দক্ষ জনবল দেশের ও দশের বোঝা না হয়ে অর্থনৈতিক প্রবৃদ্ধি অর্জনে অবশ্যই মুখ্য ভূমিকা পালন করবে। একজন জেনারেল মেকার জেনারেল মেকানিক্স বিষয়ে প্রশিক্ষিত হয়ে যখন দেশের বিভিন্ন ওয়ার্কশপে শ্রমের বিনিময় ঘটান, তখন তিনি আর বেকার থাকেন না বরং তার আয়ে পরিবারের মুখে অনু জোটে। অন্যদিকে মেকানিক্স সংক্রান্ত কৌশল প্রয়োগের ফলে একটি বাস্তব ভিত্তিক যন্ত্রাংশ তৈরি হয় যা দেশজ পণ্যের তালিকাকে সমৃদ্ধ করে। ফলে দেশের কষ্টার্জিত বৈদেশিক মুদ্রা সাশ্রয় হয়।

তাছাড়া জেনারেল মেকানিস্ত্র বিষয়টির বদৌলতে যেকোনো যন্ত্রাংশ জরুরি প্রয়োজনে তৈরি করা যায় যা মেশিন বা কাটার এবং ওয়ার্ক হোল্ডিং ডিভাইসের অভাবে প্রস্তুত করা সম্ভব হয় না।

অতএব বলা যায় জেনারেল মেকানিক্স-এর গুরুত্ব অপরিসীম।

১.৪ শিল্পক্ষেত্রে জেনারেল মেকানিক্স-এর প্রয়োজনীয়তা (Necessity of General Mechanics in the Industrial field):

শিল্পক্ষেত্রে জেনারেল মেকানিক্স-এর প্রয়োজনীয়তা ব্যাপক। যদিও একজন জেনারেল মেকানিক জেনারেল মেকানিক্স বিষয়ে তাত্ত্বিক ও ব্যবহারিক জ্ঞান অর্জনের ফলে বিভিন্ন প্রকার সরকারী, বেসরকারী, স্বায়ন্ত্রশাসিত বা ব্যক্তি মালিকানাধীন শিল্প প্রতিষ্ঠানে কর্মসংস্থানের সুযোগ পেয়ে থাকেন, তাদের মধ্যে সবচেয়ে অধিক হারে নিয়োজিত হয়ে থাকেন শিল্প প্রতিষ্ঠানে। এসব শিল্প প্রতিষ্ঠানে জেনারেল মেকানিক্স বিষয়ে অভিজ্ঞ কারিগর যে সমস্ত পদে কর্মরত হয়ে থাকেন তা হলো–

- ১। বেঞ্চ ফিটার (Bench Fitter)
- ২। পাইপ ফিটার (Pipe Fitter)
- ৩। ফেব্রিকেশন ওয়ার্কার (Febrication Worker)
- 8। সাধারণ কারিগর General Technician)
- ৫। সাধারণ ওয়েন্ডার (General Welder)
- ৬। দ্রিলিং মেশিন অপারেটর (Drilling Machine Operator
- ৭। টার্নার বা লেদম্যান (Turner or Latheman)

- ৮। শেপার অপারেটর (Shapper Operator)
- ৯। অফ হ্যান্ড গ্রাইন্ডার (Off hand Grinder)

তাছাড়া কারিগরি শিক্ষা অধিদপ্তর ও জনশক্তি প্রশিক্ষণ ব্যুরোর অধীনে জেনারেল মেকানিকগণ নিম্নোক্ত পদে কাজ করার সুযোগ পেয়ে থাকেন তা হলো–

- ১। টুল রুম অ্যাটেনডেন্ট (Toll Room Attendent)
- ২। ক্র্যাফট ইন্ট্রাক্টর (Craft Instructor)
- ৩। সিনিয়র ক্র্যাফট ইন্ট্রাক্টর (Senior Craft Instructor)
- 8। সহকারী সুপারিনটেনডেন্ট (Assistant Superentendent) প্রভৃতি।

উপরোক্ত কর্মক্ষেত্রে জেনারেল মেকানিক্স জ্ঞানসম্পন্ন দক্ষ কর্মীর চাহিদা দিন দিন ব্যাপক থেকে ব্যাপকতর হচ্ছে। তাছাড়া বিদেশে ও একজন দক্ষ মেকানিক-এর প্রচুর চাহিদা পরিলক্ষিত হচ্ছে যার তুলনায় দক্ষ কারিগরের সংখ্যা অপ্রতুল।

শিল্পক্ষেত্রে যেমন শিল্প উৎপাদনের প্রধান উপাদান কাঁচামাল প্রয়োজন, প্রয়োজন মেশিন টুলস ইক্যুইপমেন্ট অনুরূপভাবে জেনারেল মেকানিক্স হলো শিল্পের জীবনীশক্তি, যা একজন মেকানিক নামক দেহের মধ্যে ভর করে শিল্পোৎপাদন ঘটান। শিল্পের কাঁচামালের সঠিক প্রক্রিয়াকরণ, যন্ত্রের সচল অবস্থা, সর্বেপিরি উৎপাদনের গতিশীলতা নির্ভর করে জেনারেল মেকানিক্স-এর উপর।

অতএব বলা যায় শিল্পক্ষেত্রে জেনারেল মেকানিক্স-এর প্রয়োজনীয়তা রয়েছে।

প্রশ্নমালা -১

অতি সংক্ষিপ্ত প্রশ্ন :

- ১। মেকানিক্স অর্থ কী?
- ২। মেকানিক কাকে বলে?
- ৩। মেকার কাকে বলে?
- ৪। জেনারেল মেকানিক্স ট্রেড কাকে বলে?
- ে। জেনারেল মেকানিক্স ট্রেডের প্রধান কাজ কী?
- ৬। জেনারেল মেকানিক ট্রেডের বিশেষ গুরুত্ব কী?
- ৭। জেনারেল মেকানিক্স ট্রেডের যেকোনো একটি তাত্ত্বিক জ্ঞানের নাম কর।
- ৮। জেনারেল মেকানিক্স ট্রেডের যেকোনো একটি ব্যবহারিক জ্ঞানের নাম কর।
- ৯। জেনারেল মেকানিক-এর যেকোনো একটি কর্মক্ষেত্রের নাম কর।
- ১০। কারিগরি অধিদপ্তরাধীন যেকোনো একটি পদের নাম কর যেখানে একজন মেকানিক কাজ করার সুযোগ পেয়ে থাকেন।

সংক্রিপ্ত প্রশ্ন :

- ১১। মেকানিক্স বলতে কী বুঝায়?
- ১২। মেকানিক বলতে কী বুঝায়?
- ১৩। মেকার বলতে কী বুঝায়?
- ১৪। জেনারেল মেকানিক্স ট্রেড বলতে কী বুঝায়?
- ১৫। জেনারেল মেকানিক্স ট্রেডে কাজগুলো কী কী?
- ১৬। জেনারেল মেকানিক্সের গুরুত্ব কী?
- ১৭। জেনারেল মেকানিক্সের প্রয়োজনীয়তা কী?
- ১৮। জেনারেল মেকানিক্স ট্রেডের ৩টি ব্যবহারিক জ্ঞান উল্লেখ কর।
- ১৯। জেনারেল মেকানিক্স ট্রেডে ৩টি তাত্ত্বিক জ্ঞান উল্লেখ কর।

রচনামূলক :

- ২১। জেনারেল মেকানিক্স সম্পর্কে সংক্ষেপে বিবৃত কর।
- ২২। একজন জেনারেল মেকানিক্সের কী কী বিষয়ে তাত্ত্বিক জ্ঞান থাকা প্রয়োজন?
- ২৩। একজন মেকানিকের কী কী বিষয়ে ব্যবহারিক জ্ঞান থাকা প্রয়োজন?
- ২৪। মেকানিকের সম্ভাব্য কর্মক্ষেত্র উল্লেখ কর।
- ২৫। জেনারেল মেকানিস্কের গুরুত্ব আলোচনা কর।
- ২৬। জেনারেল মেকানিস্কের প্রয়োজনীয়তা আলোচনা কর।

দ্বিতীয় অধ্যায়

ওয়ার্কশপে সতর্কতামূলক ব্যবস্থা

(Preventive Measure in Workshop)

২.০ সূচনা (Introductiong) ঃ

ইংরেজিতে একটি প্রবাদ আছে "Precaution is better than cure" অর্থাৎ "আরোগ্য বিধানের চেয়ে পূর্ব সতর্কতা অধিকতর শ্রেয়"। এ প্রবাদ বলে দেয়- "কোনো অসতর্ক মুহূর্তের দুর্ঘটনার চিকিৎসা সেবার চেয়ে পূর্ব সতর্কতা অবলম্বন জরুরি"। এতে করে একদিকে যেমন সম্পদের ক্ষয়ক্ষতি হওয়ার আশঙ্কা ব্রাস পায়, তেমনি যে কোনো অংঙ্গহানি বা শারীরিক ক্ষয়ক্ষতির আশঙ্কা কমে।

জেনারেল মেকানিক্স ট্রেডে সাধারণত হ্যান্ড টুলস বেশি ব্যবহৃত হয়। এসব হ্যান্ড টুলস দিয়ে কাজ করার সময় অসতর্ক হলে হ্যামারের আঘাতে হাতের আঙ্গুল থেঁতলে যেতে পারে, সয়িং মেশিনে নিজের আঙ্গুল দ্বিখণ্ডিত কিংবা অপরের মাথা বা শরীর ফেটেও যেতে পারে। এছাড়া শপের মেঝেয় কোনো পিচ্ছিলকারক পদার্থ পড়ে থাকলে সেখানে পা ফসকে গিয়ে যেকোনো বড় দুর্ঘটনা ঘটতে পারে।

এ ট্রেডে ফেব্রিকেশন টুলসগুলো আরোও বিপজ্জনক। কারণ এক্ষেত্রে ব্যবহৃত হয় গ্যাসীয় সিলিভার যা অসতর্কভাবে ব্যবহার করলে জান ও মালের ব্যাপক ক্ষতির আশঙ্কা থাকে। এছাড়া ওয়েল্ডিংকৃত বস্তুর স্পর্শে হাত পুড়ে যেতে পারে। ওয়েল্ডিংকৃত রশ্মি চোখে যেকোনো বেদনার সৃষ্টি করতে পারে।

ওয়ার্কশপে এসবের হাত থেকে নিজকে এবং সেই সাথে সম্পদকে রক্ষার জন্য পূর্বেই সতর্কতা অবলম্বন খুবই জরুরি। শপ ও শরীর পরিষ্কার-পরিচ্ছন্ন ও মনোযোগী হতে হবে। সর্বোপরি জেনারেল মেকানিক্স ওয়ার্কশপের নিরাপত্তা বিধি যথাযথ অনুসরণ, অনুকরণ ও সতর্কতামূলক ব্যবস্থাদি গ্রহণ করা অত্যাবশ্যক।

২.১ সতর্কতা বিধি পালনের প্রয়োজনীয়তা (Necessity the Obey of Precaution Rules) :

ওয়ার্কশপে কাজ করার সময় প্রত্যেক কারিগরকে বিভিন্ন প্রকার যন্ত্রপাতি নিয়ে কাজ করতে হয় এবং বিভিন্ন প্রকার মেশিন চালনা করতে হয়। সেফটি বিশেষজ্ঞগণের মতে "শিক্ষা প্রতিষ্ঠানে লব্দ সতর্কতা ও নিরাপপ্তামূলক মনোভাব এবং আচরণ কর্মজীবনে সরাসরি প্রতিফলিত হয়। এজন্য শিক্ষা প্রতিষ্ঠানে সতর্কতা বিধিসমূহ অনুশীলন করা উচিত। সতর্কতা দুর্ঘটনার হার কমায়। এক সমীক্ষায় দেখা যায় হ্যান্ড টুলস ব্যবহারে দুর্ঘটনার হার ৮০%। দুর্ঘটনা ক্ষতি ছাড়া মঙ্গল বয়ে আনে না। দুর্ঘটনা মূল্যবান জীবন ও সম্পদের ক্ষতি ঘটায় এবং অনেক সময় এ ক্ষতি ব্যক্তি পর্যায় থেকে পরিবার, সমাজ ও রাষ্ট্রীয় পর্যায় পর্যন্ত বর্তায়। এজন্য দুর্ঘটনা রোধকন্তে সতর্কতা বিধি পালনের প্রয়োজনীয়তা রয়েছে।

নিম্নে ওয়ার্কশপে সতর্কতা বিধি পালনের প্রয়োজনীয়তা উল্লেখ করা হলো।

- ১। নিজ জীবনের নিরাপত্তার জন্য।
- ২। নিজ শরীরের অঙ্গ-প্রত্যঙ্গের নিরাপত্তার জন্য।
- ৩। টুলস-এর নিরাপত্তার জন্য।
- ৪। কাঁচামাল ও আনুষাঙ্গিক সরঞ্জামের সঠিক ব্যবহার ও নষ্ট হবার হাত থেকে রক্ষা করার জন্য।

- ৫। উৎপাদিত পণ্যের সঠিক গুণগত মান বজায় রাখার জন্য।
- ৬। সুষ্ঠভাবে কার্য পরিচালনার জন্য।
- ৭। সময়ের সূষ্ঠ ব্যবহার নিশ্চিত করা জন্য।
- ৮। উত্তম কর্ম পরিবেশ এবং স্থিতিশীলতা বজায় রাখার জন্য।
- ৯। উৎপাদনের গতিশীলতা বজায় রাখার জন্য।
- ১০। সর্বোপরি ব্যক্তি ও প্রাতিষ্ঠানিক স্বার্থ বজায় রাখার জন্য।

২.২ সতৰ্কতা বিধি সমূহ (Precuation Rule):

সর্বাধুনিক শিল্প বিজ্ঞান ও প্রযুক্তি বিদ্যার উনুয়ন ও উৎকর্ষের সাথে সাথে দুর্ঘটনার রূপ ও কারণ প্রতিনিয়ত পরিবর্তিত হচ্ছে। আবার সেই সঙ্গে উক্ত দুর্ঘটনা প্রতিরোধের কলাকৌশলেরও আধুনিকায়ন উনুয়ন ঘটে চলছে। তবে সবচেয়ে উত্তম এবং কার্যকরি কৌশল হলো সতর্কতা ও সজাগতা। যদিও দুর্ঘটনা বলে আসে না তথাপি সতর্ক এবং সজাগ কর্মীই হলো সবচেয়ে বেশি নিরাপদ।

ওয়ার্কশপে কর্মরত অবস্থায় বিভিন্ন প্রকার যন্ত্র বা মেশিন থেকে অনেক প্রকার দুর্ঘটনা ও বিপদের আশঙ্কা থাকে। বিভিন্ন প্রকার সতর্কতা বিধি পালনপূর্বক এ সমস্ত বিপদ বা দুর্ঘটনা হতে মুক্ত থাকা সম্ভব।

নিম্নে ওয়ার্কশপে পালনীয় সতর্কতামূলক বিধিসমূহ উল্লেখ করা হলো :

- ১। শারীরিক ও মানসিক প্রস্তুতিবিহীন যন্ত্র বা মেশিন ব্যবহার করা অনুচিত।
- ২। যেকোনো কাজে কার্যোপযোগী সঠিক ও নিরাপদ টুলস ব্যবহার করতে হবে।
- ৩। টিলা জামা কাপড়, পায়জামা, চাদ০র, টাই, মাফলার, পাঞ্জাবি ইত্যাদি পরিধান করে কাজ করা যাবে না।
- ৪। কাজ করার সময় আংটি, ঘড়ি, বালা ইত্যাদি হাতে রাখা অনুচিত।
- ৫। খালি পায়ে বা স্যাভেল পড়ে ওয়ার্কশপে প্রবেশ নিষেধ।
- ৬। মেশিনের ব্যবহার প্রণালি ভালোভাবে জানা না থাকলে ঐ মেশিন চালানো অপরাধ হিসেবে গণ্য হবে।
- ৭। মনোযোগ না থাকলে অথবা অসুস্থ অবস্থায় মেশিন চালানো বা বেঞ্চ ওয়ার্কের কোনো কাজ করা উচিত নয়।
- ৮। বিপদজ্জনক, যন্ত্রপাতি ব্যবহার করা ঠিক নয়। যেমন: হাতল ছাড়া ফাইল, ওয়েজ ছাড়া হ্যামার ইত্যাদি।
- ৯। অন্ধকারে বা কম আলোতে বা অতিরিক্ত আলোতে কাজ করা উচিত নয়।
- ১০। চোখ ঝলসানো আলোতে চোখে গগলস ব্যবহার না করে কাজ করা অনুচিত।
- ১১। ধারালো যন্ত্রপাতি, কর্তিত ধাতুখণ্ড ও তেল জাতীয় পদার্থ মেঝেতে ফেলা উচিত নয়। কার্যস্থল ও আশপাশ সর্বদা পরিষ্কার-পরিচ্ছনু রাখতে হবে।
- ১২। মেশিন চালু অবস্থায় পরিষ্কার, সমন্বয়, মেরামত বা তৈলাক্তকরণ করা যাবে না।
- ১৩। যদি বিদ্যুৎ সরবরাহ বন্ধ হয়ে যায় তবে মেশিনের সুইচ অফ না করে মেশিন ত্যাগ করা যাবে না।
- ১৪। গরম, বিষাক্ত, ধারালো বা তড়িতায়িত জিনিসপত্র এমনভাবে রাখতে হবে যেন বেখেয়াল বা অজ্ঞতা বশত কেউ ধরতে না পারে।
- ১৫। মালামাল বা যন্ত্রপাতি এমনভাবে রাখতে হবে যেন পড়ে গিয়ে দুর্ঘটনা না ঘটায়।
- ১৬। মেশিন চালনার পূর্বে নিশ্চিত হতে হবে যে, মেশিনে গার্ড যথাস্থানে যথাযথভাবে লাগানো আছে।

- ১৭। বৃহদাকার বা ভারী জিনিস উঠাতে ভার উত্তোলক যন্ত্র বা অপরের সাহায্য নিতে হবে।
- ১৮। ইলেকট্রিক লাইন ক্রটিমুক্ত রাখতে হবে।
- ১৯। ওয়ার্কশপে আলো, বায়ুপ্রবাহের এবং যথাযথ তাপমাত্রার (কর্মীর জন্য সহনীয় এবং স্বাস্থ্যের জন্য বুঁকিপূর্ণ নয়) ব্যবস্থা রাখতে হবে।
- ২০। কাজের শেষে যন্ত্রপাতি নির্ধারিত স্থানে সংরক্ষণ করতে হবে।
- ২১। ওয়ার্কশপে দৌড়াদৌড়ি করা যাবে না।
- ২২। মেইনটেইনেন্স সিডিউল মেনে ওয়ার্কশপে কাজ করতে হবে।
- ২৩। আঘাতপ্রাপ্ত হলে অনতিবিলম্বে প্রাথমিক চিকিৎসা (ফার্স্টএইড) গ্রহণ করতে হবে।
- ২৪। অগ্নি প্রতিরোধী ব্যবস্থা চালনা কৌশল ও সচেতনতা থাকতে হবে।
- ২৫। কোনো ক্ষয়ক্ষতি হলে অনতি বিলম্বে প্রশিক্ষককে অবহিত করতে হবে।
- ২৬। প্রশিক্ষকের অনুমতি নিয়ে তাঁর তত্ত্বাবধানে ওয়ার্কশপে কাজ করতে হবে।

২.৩ ওয়ার্কশপের বিপজ্জনক ও বিপদমুক্ত কার্যাভ্যাস (Dangerous and Safe Working Habits in Worshop):

বিপজ্জনক অবস্থা (Dangerous Conditions) :

ওয়ার্কশপে বা কারখানায় কার্য সম্পাদন করার সময় বিভিন্ন প্রকার মেশিন ও যন্ত্রপাতি নিয়ে কাজ করতে হয়।
এসব মেশিন ও যন্ত্রপাতি নিয়ে কাজ করার সময় ক্ষয়ক্ষতি এবং আরো নানা কারণে বিভিন্ন প্রকার দুর্ঘটনা
ঘটায় বা ক্ষতির আশঙ্কা থাকে। এ দুর্ঘটনা ঘটার বা ক্ষতির আশঙ্কামুক্ত অবস্থাকে বিপদজ্জনক অবস্থা বলা হয়।
এসব দুর্ঘটনা কখনও কখনও এমন মারাত্মক রকমের হয়ে থাকে যা থেকে কারিগরের অঙ্গহানি বা মৃত্যু পর্যন্ত
ঘটে যেতে পারে।

নিম্নে ওয়ার্কশপের বিপদজ্জনক অবস্থার একটি তালিকা উল্লেখ করা হলো:

- ১। অপর্যাপ্ত স্থান-মানুষ, জিনিসপত্র, যন্ত্রপাতি ও মেশিন ইত্যাদির জন্য বিধিসমতে জায়গার অভাব দুর্ঘটনা ঘটার অন্যতম কারণ।
- ২। অপর্যাপ্ত আলো, কম আলো এবং 'বেশি বা ঝলকানো আলো দুটিই কাজের জন্য ক্ষতিকর এবং দুর্ঘটনার কারণ হতে পারে।
- ৩। অপর্যাপ্ত বিশুদ্ধ বায়ু চলাচলের পথ।
- ৪। বৈদ্যুতিক ক্রটি।
- ৫। সেফটি গার্ডবিহীন মেশিনপত্র এবং কর্মস্থল।
- ৬। যন্ত্রাদির ঢিলে বা ভাঙ্গা অংশ।
- ৭। যন্ত্রাদির ধারালো কাটিং এজ।
- ৮। यञ्जानित धात्रात्ना काथाश्राश्र ।
- ৯। ওয়ার্কশপের মেঝেতে পড়ে থাকা তেল, গ্রীজ বা অন্যান্য তরল পদার্থ।
- ১০। ক্স্যাপ মেটাল।
- ১১। ধাতব চিপস্।
- ১২। ক্রটিপূর্ণ যন্ত্রপাতি এবং মেশিনপত্র।

- ১৩। ভুল কার্যাভ্যাস।
- ১৪। অনুপযুক্ত পোশাক-পরিচ্ছদ।
- ১৫। শারীরিক অক্ষমতা।
- ১৬। কারিগরের অমনোযোগিতা।

বিপদমুক্ত কার্যাভ্যাস (Safe Working Habits) :

শিল্পকারখানায় নিরাপদে উৎপাদন, মেরামত ও রক্ষণাবেক্ষণ কার্য সুচারুব্ধপে করতে হলে কারখানায় যাতে কোনো দুর্ঘটনা না ঘটতে পারে সেদিকে বিশেষভাবে সতর্কতা অবলম্বন করতে হবে। যে যে কারণে কারখানায় দুর্ঘটনা ঘটে থাকে প্রথমে সে কারণগুলো জেনে নিতে হবে এবং পরবর্তীতে কাজে হাত দেয়ার পূর্বেই যথাযথ নিরাপত্তামূলক সতর্কতা অবলম্বন করতে হবে। পরিকল্পিত উৎপাদনের লক্ষ্যে বিভিন্ন কার্যকলাপ, পরিচালনা, নির্দেশনা, প্রণোদনা, প্রেষণা ও নিয়ন্ত্রণের পাশাপাশি দুর্ঘটনা, কমিয়ে আনার জন্য নিরাপদ কার্যাভ্যাস গড়ে তোলার দায়িত্ব ব্যবস্থাপনার। আর এজন্য বিভিন্ন শিল্পকারখানায় আলাদা নিরাপত্তা বিভাগও থাকে। এ নিরাপত্তা বিভাগ ব্যবস্থাপনার সহযোগিতায় শিল্প কারখানায় নিয়োজিত শ্রমিক-কর্মীদের মধ্যে নিরাপত্তা ও সতর্কতামূলক বিষয়াদি অবগত ও প্রশিক্ষণের ব্যবস্থা করে থাকে। নিরাপদ বা বিপদমুক্ত কার্যাভ্যাস গড়ে তোলার লক্ষ্যে শিল্পকারখানায় বিভিন্ন কলাকৌশল ও পদ্ধতি অবলম্বন করা হয়ে থাকে।

এক কথায় বলতে গেলে শিল্পকারখানায় নিয়োজিত শ্রমিক কর্মীদের মধ্যে প্রেষণা, অনুশীলন ও সচেতনতা সৃষ্টির মাধ্যমে নিরাপদ বা বিপদমুক্ত কার্যাভ্যাস সহজেই গঠন করা যায়। বিপদমুক্ত বা নিরাপদ কার্যাভ্যাস গঠনের বিভিন্ন কলাকৌশল ও পদ্ধতির কয়েকটি নিম্নে উল্লেখ করা হলো।

- ১। পূর্বাহ্নেই সংশ্লিষ্ট কারখানা বা ওয়ার্কশপের নিরাপত্তা কৌশল সম্পর্কে অবগত হওয়া।
- ২। ঢিলে পোশাক না পরে প্রয়োজনীয় নিরাপদ পোশাক, জুতা, হ্যান্ড গ্রোবস, সেফটি গ্রাস ইত্যাদি ব্যবহার করা।
- ৩। ওয়ার্কশপে সর্বদা শক্ত তলযুক্ত জুতা ব্যবহার করা।
- ৪। ওয়ার্কশপে কাজ করার সময় হাতা কাটা বা কনুইয়ের উপর পর্যন্ত ভাঁজ করা জামা পরিধান করা।
- ৫। কাজ করার সময় চেইন, আংটি, হাতঘড়ি, বালা এবং অন্যান্য অলঙ্কার ব্যবহার না করা।
- ৬। কাজ করার সময় নেক টাই, মাফলার এবং চাদর পরিধান না করা।
- १। लसा ठूल ७ लमा नथ ना दाथा।
- ৮। অ্যাপ্রোন পরিধান করে ওয়ার্কশপে কাজ করা।
- ৯। ওয়েন্ডিং করার পূর্বে কত সহজে তা বন্ধ করা যায় জেনে নেয়া।
- ১০। অন্যমনস্ক বা অসুস্থ অবস্থায় ওয়ার্কশপে কাজ না করা।
- ১১। মেশিন চালু অবস্থায় রেখে অন্যত্র চলে না যাওয়া।
- ১২। মেশিন, যন্ত্রপাতি বা টুলসের ক্ষমতা উপেক্ষা করে বেশি বা ভারী কাজ না করা।
- ১৩। যথায়থ মেশিন ও যন্ত্রপাতি ব্যবহার করা।
- ১৪। কর্মসূচি অনুযায়ী ধারাবাহিক কাজ করা।
- ১৫। মেশিন বা যন্ত্রপাতির কোনো অংশ খারাপ থাকলে তা সংশোধন করে তারপর ব্যবহার করা।
- ১৬। গ্রাইন্ডিং এবং ওয়েন্ডিং করার পূর্বে অবশ্যই নিরাপদ চশমা ব্যবহার করা।

- ১৭। নির্দিষ্ট টুলসকে সঠিক কাজে ব্যবহার করা।
- ১৮। ঝুঁকিপূর্ণ কাজে মেশিনের গার্ড যথাযথ স্থানে আছে কিনা সে ব্যাপারে নিশ্চিত হওয়া।
- ১৯। কাজের সময় অপারেটরের মনোযোগ নষ্ট না করা।
- ২০। নিয়মিতভাবে নিরাপত্তা বিষয়ক সভা করা।
- ২১। মাঝে মাঝে নিরাপত্তা বিষয়ক কর্মশালার ব্যবস্থা করা।
- ২২। পোস্টার, লিফলেট, নিরাপত্তা সংবাদ এবং চলচ্চিত্র প্রদর্শনের মাধ্যমে নিরাপদ বা বিপদমুক্ত কার্যকৌশল সম্পর্কে অবগত হওয়া।
- ২৩। আহত বা অসুস্থ ব্যক্তিকে সুস্থ না হওয়া পর্যন্ত কাজ থেকে বিরত রাখা।
- ২৪। দুর্ঘটনা ঘটলে সঙ্গে সঙ্গে উর্ধ্বতন কর্মকর্তাকে অবহিত করা।
- ২৫। শিল্পকারখানায় নিয়োজিত কর্মীদের জন্য প্রাথমিক চিকিৎসার ব্যবস্থা করা।
- ২৬। যথাযথ কার্যপদ্ধতি অনুসরণ করা।
- ২৭। যথাযথ কর্তৃপক্ষের অনুমতি নিয়ে কাজ শুরু করা।
- ২.৪ ওয়ার্কশপে নিরাপদ পোশাক ও সরঞ্জাম ব্যবহারের প্রয়োজনীয়তা (Necessity of Uses of the Safe Dress and Equipment in Workshop) :

ওয়ার্কশপে নিরাপদ পোশাক ও সরঞ্জাম ব্যবহারের প্রয়োজনীয়তা অপরিসীম। কারণ এগুলি ওয়ার্কারকে দুর্ঘটনার হাত থেকে রক্ষা করে এবং নিরাপদে কাজ করতে সাহায্য করে। যার ফলে ওয়ার্কার নিরাপত্তার অভাব বোধ করে না এবং আন্তরিকতার সাথে কাজ করতে পারে।

ওয়ার্কশপে যেসব নিরাপদ পোশাক ও সরঞ্জাম ব্যবহার করা হয় তা হলো-

- (ক) পোশাক (Dress):
- ১। আপ্রোন (Aprone)
- ২। টাইটফিট পোশাক (Tight Fit Dress)
- ৩। শক্ত সোল বিশিষ্ট চামড়ার জুতা (Lather shoe with hard sole)
- ৪। চিপস, ক্র্যাপ ও কাঁচামাল হ্যান্ডলিং করার জন্য হ্যান্ড গ্লোন্ডস (Hand Gloves)
- (খ) সরঞ্জাম (Equipments)
- ১। সেফটি গগলস (Safety Gagules)
- ২। ফার্স্টএইড বক্স (Firstaid Box)
- ৩। মেশিন গার্ড (Machine guard)

এসব নিরাপদ পোশাক ও সরঞ্জাম ব্যবহারে কর্মীর মনে নিরাপত্তা বোধ জাগ্রত হয়। ঝুঁকিপূর্ণ অবস্থায় কাজ করলে কাজের প্রতি আন্তরিকতা আসে না। সব সময় ভয় ভয় ভাব থাকে। ফলে উৎপাদনের গতি এবং মান দুটিই ক্ষতিগ্রস্ত হবার আশঙ্কা থাকে।

সর্বোপরি দুর্ঘটনার আশঙ্কা কম থাকার কারণে ওয়ার্কারগণ বেশি প্রণোদিত থাকে এবং উৎপাদন ব্যবস্থাপনা ও ওয়ার্কশপের সুন্দর স্থিতিশীল থাকতে সাহায্য করে।

ওয়ার্কশপে কাজ করার সময় নিরাপদ পোশাক ও সরঞ্জাম ব্যবহারের প্রয়োজনীয়তা নিম্নে উল্লেখ করা হলো-

- ১। মেশিনে কাজ করার সময় এবং চিপিং করতে সেফটি গগলস পরিধান করলে তা ছিটকে যাওয়া চিপস থেকে চোখকে রক্ষা করে।
- ২। মেশিনে কাজ করার সময় সর্বদা টাইট পোশাক এবং হাতা কাটা বা কনুইয়ের উপর পর্যন্ত ভাঁজ করা জামা পরিধান করা উচিত। ঢিলা পোশাক বা লম্বা হাতা জামা চলন্ত যন্ত্রাংশে আটকে যেতে পারে।
- ৩। ওয়ার্কশপে সর্বদা শক্ত তলযুক্ত জুতা পরিধান করতে হবে কারণ চিপস জুতার তল কেটে পায়ের নিচে আঘাত করতে পারে।
- 8। ওয়ার্কশপে কাজ করার সময় আংটি, হাতঘড়ি এবং কজিতে অলঙ্কার পরিধান করা উচিত নয়। কারণ এগুলি আঘাতের কারণ হতে পারে।
- ৫। লঘা চুল আবশাই বেঁধে রাখতে হবে অন্যথায় চলমান যন্ত্রাংশে জড়িয়ে দুর্ঘটনার কারণ হতে পারে।
- ৬। মেশিনের কাজ করার সময় নেক টাই, মাফলার এবং চাদর পরিধান করা যাবে না। কারণ এগুলি চলমান যন্ত্রাংশে দুর্ঘটনার কারণ হতে পারে।
- ৭। ওয়েন্ডিং করার সময় গগলস বা হ্যান্ড শীল্ড ব্যবহার করতে হবে। অন্যথায় চোখ নষ্ট হয়ে যেতে পারে।
- ৮। ওয়ার্কশপে স্যান্ডেল পরিধান করে কাজ করা উচিত নয়, কেননা ভারী জিনিস পায়ের উপর পড়ে মারাত্মক আঘাতের কারণ হতে পারে।
- ৯। গরম যন্ত্রাংশ, স্ক্র্যাপ বা চিপে হাত লাগাতে হলে চামড়ার তৈরি দস্তানা পরিধান করতে হবে। কারণ এটা ব্যবহার না করলে হাতের ক্ষতি হবার আশঙ্কা থাকে।

উপরোক্ত আলোচনা থেকে এটাই প্রতীয়মান হয় যে, ওয়ার্কশপে নিরাপদ পোশাক ও সরঞ্জাম ব্যবহারের প্রয়োজন অনস্বীকার্য।

২.৫ ওয়ার্কশণে যম্ভপাতি সংরক্ষণ (Tools Keeping Properly in Workshop) :

ওয়ার্কশপে কাজের ধরন ও অবস্থানভেদে যন্ত্রপাতি সংরক্ষণ প্রক্রিয়া বিভিন্ন রকম হয়। নিম্নে যন্ত্রপাতি সংরক্ষণজনিত উল্লেখযোগ্য কয়েকটি প্রক্রিয়া উল্লেখ করা হলো-

(ক) বেঞ্চ ওয়ার্কের সময়:

- ১। মেজারিং টুলসকে ভাইসের সামনে রাখতে হবে। এর মধ্যে যে টুলস বেশি ব্যবহারের দরকার হবে তাকে ভাইসের নিকটে এবং পর্যায়ক্রমে ব্যবহারের প্রয়োজন অনুসারে দূর রাখতে হবে।
- ২। অন্যান্য টুলসের মধ্যে যেগুলো বাম হাত দ্বারা ব্যবহৃত হয় সেগুলি ভাইসের বাম দিকে এবং যেগুলো ডান হাত দ্বারা ব্যবহৃত হয় মাত্রানুসারে সাজিয়ে রাখতে হবে।
- ৩। কোনো টুলসকে অন্য কোনো টুলসের উপর রাখা যাবে না।

(খ) মেশিনে কাজ করার সময়:

মেশিনে কাজ করার সময় নিমুলিখিতভাবে যন্ত্রপাতি সংরক্ষণ বা সুবিন্যাস করতে হবে-

১। মেশিনে কাজ করার সময় মেজারিং টুলসকে নিরাপদ স্থানে রাখার ব্যবস্থা করতে হবে। যেমন- মেশিনের আশপাশে টেবিলের ব্যবস্থা করে অথবা ট্রে-তে বা প্রয়োজনে অ্যাপ্রোনে বিশেষ পকেটের ব্যবস্থা করে রাখতে হবে।

- ২। অন্যান্য টুলসকে এমনভাবে রাখতে হবে যাতে পড়ে গিয়ে কোনো প্রকার দুর্ঘটনা বা যন্ত্রপাতি নষ্ট হবার ভয় না থাকে।
- ৩। যত কম সংখ্যক টুলস মেশিনের কাছে আনা যাবে সেগুলোর বিন্যাস করাও তত সহজ হবে। বিন্যাস করার সময় এক টুলকে অন্য টুল থেকে আলাদা রাখতে হবে।
- 8। মেশিন টেবিল, মেশিন সংলগ্ন ট্রে, লেদ মেশিনের ক্ষেত্রে হেড স্টক ইত্যাদি জায়গায় টুলসকে বিন্যাস করে রাখা যেতে পারে।

(গ) টুল রুমে সংরক্ষণ :

যন্ত্রপাতি নিম্নে লিখিতভাবে টুল রুমে সংরক্ষণ করা প্রয়োজন:

- ১। প্রত্যেক টুলকে ঐ টুলের জন্য সংরক্ষিত নির্দিষ্ট জায়গায় শৃঙ্খলার সাথে সাজিয়ে রাখতে হবে।
- ২। কাটিং টুলস এবং মেজারিং টুলসকে অন্য টুলস-এর সাথে রাখা যাবে না। মেজারিং টুলসকে এর জন্য নির্দিষ্ট আধারে এবং কাটিং টুলসকে পৃথক আধারে সংরক্ষণ ব্যবস্থা করতে হবে।
- ৩। কাটিং এইজ যেন কোনো অবস্থাতেই যেন নষ্ট না হয় সেদিকে খেয়াল রাখতে হবে।
- ৪। কাজে শেষে যন্ত্রপাতি সুন্দরভাবে পরিষ্কার করে প্রয়োজনে তেল বা গ্রীজ যথাস্থানে সুন্দরভাবে সাজিয়ে রাখতে হবে।
- ৫। দীর্ঘ সময় পর্যন্ত সংরক্ষণের প্রয়োজন হলে মাঝে মাঝে পরিষ্কার করে তেল বা গ্রীজ দিয়ে রাখতে হবে।

২.৬ ওয়ার্কশপে যন্ত্রপাতির রক্ষণাবেক্ষণ (Maintenance of Tools in Workshop) :

রক্ষণাবেক্ষণ হলো এমন এক ধরনের কাজ (Function) যা কোনো ওয়ার্কশপ বা কারখানাকে কার্যকরভাবে সচল রাখতে সমর্থ হয়। যে কোনো যন্ত্রপাতি সংগ্রহ করে কেহই বলতে পারে না সে এটা কখনও ভাঙবে না বা নষ্ট হবে না। কালের বিবর্তন, পরিবেশগত অবস্থা ও ব্যবহারের কারণে মেশিন কিংবা যন্ত্রপাতি প্রকৃতই দিন দিন নষ্ট হয়ে যায়। যন্ত্রপাতি বা মেশিনের এই ক্ষয়িষ্কৃতা যথাযথ কর্তৃপক্ষের ব্যবহারিক বিধি (Operating Manual) অনুসরণ করে নিয়ন্ত্রণে আনা যায়।

অতএব মেশিন বা যন্ত্রপাতির নষ্ট বা ক্ষয় হয়ে যাবার প্রবণতা কমানো ও সীমিত করার জন্য এবং সম্পদের যথাযথ ব্যবহার নিশ্চিত করার জন্য কর্তৃপক্ষীয় নির্দেশনা অনুযায়ী যে ব্যবস্থা নেয়া হয়, তাকে যন্ত্রপাতি রক্ষণাবেক্ষণ (Maintenance of Tools) বলে। কার্যকর যন্ত্রপাতি রক্ষণাবেক্ষণ যে কোনো ওয়ার্কশপ বা কারখানার দক্ষতা পূর্ণ অপারেশন ও অবিরাম উৎপাদনের পূর্বশর্ত।

যন্ত্রপাতি রক্ষণাবেক্ষণের প্রকারভেদ :

একটি প্রতিষ্ঠানকে সুন্দর ও সুচারুরূপে পরিচালনার সুবিধার্থে রক্ষণাবেক্ষণ প্রক্রিয়াকে চার ভাগে ভাগ করা যায়। যথা-

- ১। অনুসূচিকৃত রক্ষণাবেক্ষণ (Scheduled Maintenance)
- ২। পরিকল্পিত রক্ষণাবেক্ষণ (Planned Maintenance)
- ৩। ব্রেক ডাউন রক্ষণাবেক্ষণ (Brakedown Maintenance)
- 8। মূলধন পরিবর্তন রক্ষণাবেক্ষণ (Capital Replacement Maintenance)

১। অনুসূচীকৃত রক্ষণাবেক্ষণ (Scheduled Maintenance) ঃ

কোনো পূর্ব নির্ধারিত তারিখ বা সময় অনুযায়ী কলকারখানা বা ওয়ার্কশপ পরিদর্শন (Inspection), ওভার হেড লুব্রিকেশন (Overhead Lubrication) বা কোনো বিশেষ যন্ত্র বা মেশিনকে সার্ভিসিং করার পদ্ধতিকে অনুসূচিকৃত রক্ষণাবেক্ষণ (Scheduled Maintenance) বলে।

মেশিনপত্র ওভার হলিং, ফুয়েল কিংবা পানির ট্যাঙ্ক পরিষ্কারকরণ প্রভৃতি কার্য অনুসূচিকৃত রক্ষণাবেক্ষণের অন্তর্গত।

২। পরিকল্পিত রক্ষণাবেক্ষণ (Planned Maintenance) :

ওয়ার্কশপ বা কারখানার মধ্যে ব্যবহৃত বিভিন্ন যন্ত্রপাতি হঠাৎ ভেঙে যাওয়া বা ক্রটি মেরামতের জন্য জরুরিভাবে বন্ধ করে দেয়া থেকে নিষ্কৃতি লাভের জন্য পরিকল্পিত রক্ষণাবেক্ষণ একটি সংগঠিত প্রয়াস। এটা দুই উপায়ে সম্পন্ন হয়ে থাকে। যেমন–

- (ক) প্রতিরোধী রক্ষণাবেক্ষণ (Preventive Maintenance)
- (খ) দীঘমেয়াদি রক্ষণাবেক্ষণ (Long Term Maintenance)

(ক) প্রতিরোধী রক্ষণাবেক্ষণ (Preventive Maintenance) :

ইংরেজিতে একটা প্রবাদ আছে "Prevention is better then cuse" অর্থাৎ "আরোগ্য লাভের চেয়ে প্রতিরোধক অনেক ভালো"। প্রতিরোধী রক্ষণাবেক্ষণ প্রক্রিয়া সাধারণত পূর্ব প্রস্তুতমূলক রক্ষণাবেক্ষণ প্রক্রিয়া। এ প্রক্রিয়া প্রধানত সম্পদের অকেজো হওয়া, উৎপাদন ব্যাহত হওয়া অথবা অযাচিত সম্পদের ক্ষয়ক্ষতি হওয়ার পূর্ব সতর্কতামূলক ব্যবস্থা। পর্যায়ক্রমে পরিষ্কার করা, সার্ভিসিং করা, পরীক্ষা করা, ক্ষয়প্রাপ্ত ও ভাঙা যন্ত্রাংশসমূহের মেরামত বা পরিবর্তন ইত্যাদি এই রক্ষণাবেক্ষণের আওতাভুক্ত।

(খ) দীর্ঘমেয়াদি রক্ষণাবেক্ষণ (Long Term Maintenance) :

দীর্ঘদিন ব্যবহারের পর মেশিন বা যন্ত্রাংশের অকেজো হওয়া অংশ পরিবর্তন, পরিবর্ধনজনিত মেরামতি কার্যকে দীর্ঘমেয়াদি রক্ষণাবেক্ষণ বলে। প্রতিটি নির্মাণকারী প্রতিষ্ঠান তাদের উৎপাদিত যন্ত্রপাতি রক্ষণাবেক্ষণের ব্যাপারে নির্দেশিকা (Manuel) সরবরাহ করে থাকে। এসব নির্দেশিকায় কোন যন্ত্রাংশ কতদিন পর পরিবর্তন প্রয়োজন বা মেরামত প্রয়োজন তার উল্লেখ থাকে। এই নির্দেশিকা অনুযায়ী দীর্ঘদিন পর কোন যন্ত্রাংশের স্কল্পতম মেরামতজ্জনিত কাজই দীর্ঘমেয়াদি রক্ষণাবেক্ষণ।

৩। ব্রেক ডাউন রক্ষণাবেক্ষণ (Brakedown Maintenance) :

কোন বিশেষ সার্ভিসিং কাজে উৎপাদন সম্পূর্ণ বন্ধ রেখে রক্ষণাবেক্ষণ বা মেরামত কার্যকে ব্রেক ডাউন রক্ষণাবেক্ষণ বলে। এতে ওভারটাইমজনিত ব্যয় এবং কারখানা ব্যয় বৃদ্ধি পায়। সুতরাং কোনো যন্ত্রপাতি হঠাৎ নষ্ট হলে তাকে মেরামত করে কার্যোপযোগী করাই হলো ব্রেক ডাউন রক্ষণাবেক্ষণ।

8। মূলধন পরিবর্তন, রক্ষণাবেক্ষণ (Capital Replacement Maintenance):

যখন কোনো মেশিন বা যন্ত্রপাতি মেরামত বা রক্ষণাবেক্ষণজনিত ব্যয় এমন পর্যায়ে হয় যে, উক্ত মেশিন বা যন্ত্রপাতি মেরামতজনিত ব্যয় তা ক্রয় করার সমপর্যায়ে এসে দাঁড়ায় অথবা উক্ত মেশিনের এই ব্যয়বহুল ব্যবহারের পরেও সন্তোষজনক কর্মদক্ষতা পাওয়া না যায়, তখন উক্ত মেশিন বা যন্ত্রকে পরিবর্তন করাই উক্তম। এরূপ ক্ষেত্রে নষ্ট বা ক্ষতিগ্রস্ত মেশিন বা যন্ত্রপাতি মেরামত না করে ক্রয় করে প্রতিস্থাপনকরণকেই মূল পরিবর্তন রক্ষণাবেক্ষণ বলে। রক্ষণাবেক্ষণ বা মেরামত খরচ যদি নতুন ইউনিট বসানোর খরচের কাছাকাছি বা

বেশি হয় এবং যখন সংশ্লিষ্ট মেশিন দ্বারা আকাঙ্খিত গুণাগুণসমৃদ্ধ দ্রব্য উৎপাদন করা যায় না তখন অবশ্যই এগুলো পরিবর্তন করে নতুন ইউনিট স্থাপন করা উচিত।

অতএব বিনষ্ট যন্ত্রপাতি মেরামত করলেও যদি আর্থিক দিক দিয়ে লাভজনক কিংবা কাম্য লক্ষ্য অর্জিত না হয়, সেক্ষেত্রে নতুন যন্ত্রপাতি বসানোর জন্য মূলধনের যে বিনিয়োগ কার্য তাকে মূলধন পরিবর্তন (Capital Replacement) বলে।

উপরোক্ত আলোচনা থেকে এ কথা প্রতীয়মান হয় যে, পরিকল্পিত প্রতিরোধমূলক রক্ষণাবেক্ষণ ওয়ার্কশপের কাম্য, যা লক্ষ্য অর্জনের জন্য তুলনামূলকভাবে উত্তম।

প্রশ্নমালা-২

অতিসংক্ষিপ্ত প্রশ্ন :

- ১। দুর্ঘটনার হার কমায় কে?
- ২। হ্যান্ড টুলস ব্যবহারে দুর্ঘটনার হার কত?
- ৩। সতর্কতা ও নিরাপত্তা সম্পর্কে সেফটি বিশেষজ্ঞগণের মতামত কী?
- ৪। দুর্ঘটনার রূপ ও কারণ কার সাথে পরিবর্তিত হয়?
- ৫। দুর্ঘটনা প্রতিরোধের সবচেয়ে উত্তম এবং কার্যকর কৌশল কী?
- ৬। কোন কর্মী সবচেয়ে বেশি নিরাপদ?
- ৭। বেঞ্চ ওয়ার্কের সময় মেজারিং টুলসকে ভাইসের কোথায় রাখতে হয়?
- ৮। বাম হাত দ্বারা ব্যবহৃত টুলস ভাইসের কোন দিকে রাখতে হয়?
- ৯। ডান হাত দ্বারা ব্যবহৃত টুলস ভাইসের কোন দিকে রাখতে হয়?
- ১০। যন্ত্রপাতির রক্ষণাবেক্ষণকে কয়ভাগে ভাগ করা যায়?

সংক্ৰিপ্ত প্ৰশ্ন :

- ১১। সতর্কতা বিধি সম্পর্কিত বিশেষজ্ঞদের মতামত কী?
- ১২। সতর্কতা কীভাবে দুর্ঘটনা হার কমায়?
- ১৩। সতর্কতা বিধি পালনের যেকোনো ৩টি প্রয়োজনীয়তা লেখ।
- ১৪। ৫টি সতর্কতা বিধি উল্লেখ কর।
- ১৫। ওয়ার্কশপের বিপজ্জনক অবস্থা বলতে কী বুঝায়?
- ১৬। ওয়ার্কশপের কার্যাভ্যাস বলতে কী বুঝায়?
- ১৭। বিপদমুক্ত কার্যাভ্যাস বলতে কী বুঝায়?
- ১৮। বিপদমুক্ত ৫টি কার্যাভ্যাসের নাম লেখ।
- ১৯। ওয়ার্কশপে ব্যবহৃত ৫টি নিরাপদ পোশাক ও সরঞ্জামের নাম লেখ।
- ২০। যন্ত্রপাতির রক্ষণাবেক্ষণ বলতে কী বুঝায়?

রচনামূলক প্রশ্ন :

- ২১। ওয়ার্কশপে সতর্কতা বিধি পালনের প্রয়োজনীয়তা উল্লেখ কর।
- ২২। ওয়ার্কশপে পালনীয় সতর্কতা বিধিসমূহ কী কী?
- ২৩। ওয়ার্কশপের বিপজ্জনক অবস্থাদির বিবরণ দাও।
- ২৪। ওয়ার্কশপের বিপদমুক্ত কার্যাভ্যাস নিয়ে আলোচনা কর।
- ২৫। ওয়ার্কশপে নিরাপদ পোশাক ও সরঞ্জাম ব্যবহারের গুরুত্ব আলোকপাত কর
- ২৬ ! যন্ত্রপাতির যথাযথ সংরক্ষণের গুরুত্ব বর্ণনা কর।
- ২৭। যন্ত্রপাতি রক্ষণাবেক্ষণের উপায় নিয়ে আলোচনা কর।

তৃতীয় অধ্যায়

যন্ত্ৰপাতি (Tools)

৩.০ সূচনা (Introduction) :

শিল্পকারখানায় ধাতুকে বিভিন্ন আকার-আকৃতি প্রদানের লক্ষ্যে যেসব ডিভাইস ব্যবহৃত হয় তাদের মধ্যে হ্যামার, চিজেল, ড্রিল মেশিন, গ্রাইডিং মেশিন, স্টিল রুল, ট্রাইস্কয়ার, এনভিল, সারফেজ প্লেট, এঙ্গেল প্লেট, জী-ব্লক, ক্যালিপার্স, ডিভাইডার, সি-ক্ল্যাম্প, হ্যাক'স, ড্রিল বিট, ট্যাপ, ডাই, রিমার ইত্যাদি ডিভাইসগুলো টুলস বা যন্ত্রপাতি (Tools) নামে পরিচিত। এসব যন্ত্রের মধ্যে কোনোটিকে হ্যান্ড টুলস আবার কোনো কোনোটিকে মেজারিং টুলস, মেশিন টুলস ইত্যাদি নামে অভিহিত করা হয়।

পণ্য উৎপাদনের ক্ষেত্রে টুলসের গুরুত্ব অপরিসীম। আধুনিক সভ্যতার প্রায় সব কাজই সম্ভব হচ্ছে যন্ত্র বা টুলসের বদৌলতে। সেজন্য টেকনিশিয়ানকে অবশ্যই ক্ষিল বা দক্ষ হতে হবে। এক্ষেত্রে কেবল যন্ত্রাদি ব্যবহারেই পারদর্শী হলে চলবে না, টুলসের সঠিক ব্যবহার, জবের নিরাপদ স্থানাম্ভর এবং সময়ের অপচয় হ্রাসের ক্ষেত্রেও সমান উদ্যমী হতে হবে। তবেই টুলসের সঠিক ব্যবহার এবং কর্মীর হাতের সযত্ন কৌশলে একটি কাঞ্ছিত প্রোডাক্ট তৈরি হবে।

৩.১ টুলস বা যন্ত্রপাতি (Tools) :

শিল্প কারখানায় ধাতব শীট বা খণ্ডকে বিভিন্ন আকার-আকৃতি প্রদানের লক্ষ্যে যেসব ডিভাইস ব্যবহৃত হয় তাদেরকে টুলস বা যন্ত্র (Tools) বলে। প্রকৃতপক্ষে, টুলস একপ্রকার যন্ত্র বা যন্ত্রাংশের সমষ্টি যা কোনো ধাতৃ বা ওয়ার্কপিস থেকে অতিরিক্ত অপ্রয়োজনীয় ধাতৃ কেটে বা ক্ষয় করে অপসারণপূর্বক নির্দিষ্ট আকার-আকৃতি এবং পরিমাপে আনয়নের কাজে ব্যবহৃত হয়। অন্যভাবে বলা যায়, টুলস একপ্রকার হাতিয়ার বা এমন ডিভাইস যার ব্যবহারে দুঃসাধ্য কাজ সহজ এবং সম্ভবপর হয় এবং হাতের কর্মক্ষমতা এবং কৌশলগত ব্যবহার বহুগুণে বেড়ে যায়।

বস্তুত টুলস হলো তৃতীয় পক্ষ যা মানুষ এবং কার্যবস্তু বা কাজের মাঝে অবস্থান করে কাজকে সুন্দর এবং সঠিকভাবে সম্পাদনে সহায়তা করে। উৎপাদনের ক্ষেত্রে টুলসের গুরত্ব অপরিসীম। আধুনিক সভ্যতায় টুলস এর বদৌলতে প্রায় সব কাজই করা সম্ভবপর হচ্ছে। মানুষ নিজেদের প্রয়োজনে আবিষ্কার করছে নানা রকম নতুন টুলস। পাশাপাশি প্রচলিত টুলসের গঠন ও গুণগত মানের পরিবর্তন এনে এগুলির কার্য পরিধিও বাড়িয়ে নিচ্ছে বহুগুনে। ফলে টুলসের জগৎ হচ্ছে ব্যাপকতর বিস্তৃত। আর তাই কোন কাজের জন্য কোন টুলস অধিকতর উপযুক্ত তা জানা এবং সঠিক পদ্ধতিতে টুলস ব্যবহার করা উচিত।

৩.২ প্রচলিত বিষয়ভিত্তিক টুলস (Common Useable Tools) :

জেনারেল মেকানিক্স কাজে বহুল ব্যবহৃত টুলসগুলো নিম্নে উল্লেখিত হলো:

- ১। হাতুড়ি (Hammer)
- ২। ফাইল (File)
- ৩। হ্যাক'স (Hack-saw)

- 8। চিজেল (Chisel)
- ৫। স্কু-ড্রাইভার (Scrcw-driver)
- ৬। প্রায়ার্স (Pliers)
- ৭। ভাইস (Vise)
- ৮। ট্রাইস্কয়ার (Try-squre)
- ১। স্টিল রুল (Steel Rule)
- ১০। ইনসাইড ক্যালিপার্স (Inside Calipers)
- ১১। আউট সাইড ক্যালিপার্স (Outside Calipers)
- ১২। ভার্নিয়ার ক্যালিপার্স (Vernier calipers)
- ১৩। মাইক্রো মিটার (Micrometer)
- ১৪। রেঞ্জ বা স্প্যানার (Wrench)
- ১৫। বিভেল প্রট্রেক্টর (Bevel protrector)
- ১৬। কমিনেশন ক্ষয়ার (Combination square)
- ১৭। পাঞ্চ (Punch)
- ১৮। ক্রাইবার (Scriber)
- ১৯। ভী-ব্লক (V- Block)
- ২০। দ্ৰিল গেজ (Drill Gauge)
- ২১। ট্যাপ অ্যান্ড ডাই (Tap and Die)
- ২২। জ্বিল বিট (Drill Bit)
- ২৩। সারফেস প্লেট (Surface Plate)
- ২৪। অ্যাংগেল প্লেট (Angle Plate)
- ২৫। মার্কিং ব্লক (Marking Block)
- ২৬। সারফেস গেজ (Surface Gauge)
- ২৭। রীমার (Reamer)
- ২৮। জ্রিলিং মেশিন (Drilling Machine)
- ২৯। ক্রেপার (Scraper)
- ৩০। গ্রাইন্ডিং মেশিন (Grinding Machine)
- ৩১। সেন্টার পাঞ্চ (Centre Punch)
- ৩২। স্নিপস (Snips)
- ৩৩। শীয়ার্স (Shears)
- ৩৪। স্টেইট এজ (Straight Edge)
- ৩৫। হাইট গেজ (Height Gauge)
- ৩৬। উইং কম্পাস (Wing compus)
- ৩৭। সি- ক্ল্যাম্প (C-clamp) প্রভৃতি।

৩.৩ টুলস-এর শ্রেণীবিভাগ (Classification of Tools) :

জেনারেল মেকানিক্স ট্রেডে ধাতব পদার্থের নানার্প আকার-আকৃতি দানের জন্য যে সকল টুলস বা যন্ত্রপাতি ব্যবহৃত হয় সেগুলোকে প্রধানত সাত শ্রেণীতে বিভক্ত করা হয়। যথা:

- ১। লে-আউট বা মার্কিং অফ টুলস (Layout or Marking of Tools)
- ২। ফর্মিং টুলস (Forming Tools) বা সাধারণ হ্যান্ড টুলস (General Hand Tools)
- ৩। কাটিং টুলস (Cutting Tools)
- 8। পরিমাপক যন্ত্রপাতি (Measuring Tools)
- ৫। টেস্টিং টুলস (Testing tools)
- ৬। গেজ (Gauge)
- ৭। মেশিন টুলস (Machine Tools)

১। লে-আউট বা মার্কিং অব টুলস (Layout or Marking off Tools):

মেটাল কার্যে ধাতব পদার্থের উপর নকশা অনুযায়ী মাপমতো মার্কিং করে, সাধারণ টুলস-এর সাহায্যে দাগ দিয়ে, কাটিং টুলস-এর সাহায্যে কেটে, ফর্মিং টুলস দিয়ে ঈন্সিত আকৃতি প্রদান করা হয়। বিভিন্ন মেশিন পার্টস তৈরিতে, যানবাহনের কাঠামো নির্মাণ কাজে এবং মেরামত কাজে ধাতব প্লেট, বার (Bar) বা শীট মেটালের ব্যবহার অপরিহার্য। আজকের আধুনিক প্রযুক্তির যুগে যানবাহন আচ্ছাদনের কাজে ধাতব শীটের বিকল্প চিন্তাই করা যায় না। কারন ধাতব শীট যেমন দামে সম্ভা, ওজনে পাতলা, দীর্ঘস্থায়ী এবং সহজে আকৃতি প্রদান করা সম্ভব, তদ্রুপ গীয়ার তৈরিতে ধাতব বার (Bar), মেশিন পার্টস তৈরিতে রড (Rod), প্লেট (Plate) ইত্যাদি ক্ষেত্রে ধাতব পদার্থের উল্লেখযোগ্য ব্যবহার লক্ষণীয়। তাই ধাতব শীট, প্লেট, বার বা রড দিয়ে কোনো আকৃতি প্রদান করতে হলে তাদের কাটার পূর্বে যে যন্ত্রগুলো দিয়ে দাগ বা রেখা টানা হয় সেগুলোকে লে আউট (Layout) বা মার্কিং অফ টুলস (Marking off Tools) বলা হয়। যেমন—

- (১) ক্রাইবার (Scriber)
- (২) ডিভাইডার (Divider)
- (৩) ট্রামেল (Trammel)
- (8) মার্কিং গেজ (Marking Gauge)
- (৫) ট্রাই স্করার (Try-Squre)
- (৬) পাঞ্চ (Punch) ইত্যাদি।

নিম্নে উপরোক্ত যন্ত্রপাতির সংক্ষিপ্ত পরিচয় দেওয়া হলো-

(১) ক্লাইবার (Scriber) :

ক্রাইবারকে চলতি বাংলায় আঁচড়া বলে। আবার অন্যভাবে এর নাম স্ট্রেচ আউল (Stretch Awl) বলা হয়। পেঙ্গিল দিয়ে কাগজের উপর যেভাবে দাগ টানা হয় ঠিক সেইভাবে কোনো ধাতুখণ্ড বা শীটের উপর মার্কিং করার জন্য ক্রাইবার দিয়ে দাগ টানা হয়। ক্রাইবার টুল স্টিলের তৈরি এবং তাপ ক্রিয়ায় শক্ত করা হয় বলে এর অগ্রভাগ তীক্ষ্ণ ও সূচ্যগ্র হয়-যা ধাতু খণ্ডে দাগ টানার পর ভোঁতা হয় না। এর শীর্ষ বিন্দু বা পয়েন্ট (point) সব সময় অত্যন্ত তীক্ষ্ণ হতে হয়। তবে কাজের ফাঁকে মাঝে মধ্যে পয়েন্টসমূহ অয়েল স্টোনে (oil stine) বা শান পাথরে ঘমে নিতে হয়। কোনো অবস্থাতেই গ্রাইডিং করা উচিত নয়। যেহেতু ক্রাইবারের পয়েন্ট খুব তীক্ষ্ণ

ও পাতলা তাই কোন অবস্থাতেই এতে প্রয়োজনের অতিরিক্ত চাপ দিতে নেই। নচেত তীক্ষ্ণ মুখ সহজেই ভেলে গিয়ে যন্ত্রটা অকেজো হয়ে পড়তে পারে।

শীট মেটালের কাজে সাধারণত চার প্রকার ক্রাইবার বা আঁচড়া ব্যবহার করা হয়।

- (ক) একমুখী জাইবার (Single Point Scriber)
- (খ) বি-মুখী ক্লাইবার (Double Ended Scriber)
- (গ) পকেট ক্রাইবার (Pocket Scriber)
- (খ) সমন্বিভ ক্লাইবার (Adjustable Scriber)
- (ক) একমুখী **ক্রাইবার (Single Point Scriber) :** দেখতে অনেকটা পেলিলের মতো। মুখটা (point) সোজা ও সূচ্যা এবং ধরার অংশটা নার্লিং করা থাকে।

সাধারণত এটা দাগ টানার কাজে সহজ বলে বহুল ব্যবহৃত হয়ে থাকে। শান দেওয়া সহজ বলে বেশির ভাগ কারিগর এই ক্রাইবার ব্যবহার করে।

(ৰ) বিমুখী ক্লাইবাৰ (Double Ended Scriber) :

দুই মুখ বিশিষ্ট এই আঁচড়া সোজা (Plain) এবং একটা মুখ এক সমকোণে বাঁকানো (Bended) উভয় প্রকার হয়ে থাকে। দু'টি মুখ (Point) থাকায় এটা সহজেই অনুমেয় যে, এর দুই মুখ দিয়েই দুহুততার সাথে কাজ করা যায়। ছিদ্র বা গর্ভের জিতর জাইবার কাটার জন্য বাঁকা জংশ ব্যবহার করা হয়।

(গ) পকেট স্কাইবার (Pocket Scriber) :

দেখতে একমুখী ক্রাইবার-এর মতো তবে লম্বার অপেক্ষাপকৃত খাটো ও মোটা। মুখটা (point) সোজা ও স্চ্যয়। মাথার কলমের মতো একটা ক্লিপ খাকার সহজেই পকেটে বহন করা যায়।

(ম) পরিবর্তনশীল ফ্রাইবার (Adjustable Scriber) :

একাধিক ক্রাইবার-এর সমন্বয়ে একটা সেট (set) এই ক্রাইবার ব্যবহার করা হয়। সাধারণত একটা হাতলের মধ্যে সোজা অথবা বাঁকানো মুখ বিশিষ্ট ক্রাইবার আটকিয়ে কাজ করা হয়। সাধারণত একটা ছোট খাপওয়ালা হাতলের মধ্যে পরিবর্তনশীল ক্রাইবার রাখা হয়।

চিত্র ঃ ৩.২ দিমূখী ক্রাইবার

চিত্র ঃ ৩.৪ পরিবর্তনশীল ক্রাইবার

(২) ডিভাইডার (Divider) :

ডিভাইডারকে আভিধানিক অর্থে দিভাজক বলা যায়। ডিভাইডার দুই পা বিশিষ্ট একটা লে-আউট টুলস। ডিভাইডার দিয়ে বৃস্তচাপ, বৃত্তের দাগ দেওয়া হয়। এছাড়াও কেনো দমা মাপকে দুই ভাগ করতে চাইলে ডিভাইডার ব্যবহৃত হয়। ডিভাইডার ক্ষেত্রবিশেষে কোনো স্থানের এক নির্দিষ্ট মাপ গ্রহণ করে অন্য স্থানে উপস্থাপনা করতে পারে । তাই ডিভাইডারকে ট্রান্সফার (Transfer) টুন্সও বলা হয়।

ডিভাইডার প্রায় সকলের পূর্ব পরিচিত একটা যন্ত্রবিশেষ। এর দুটি সূচালো পয়েন্ট বিশিষ্ট মাথার দিকে ক্রমশ চওড়া কাঠামো থাকে। মাথায় রিভেট, স্কু, নাট অথবা স্প্রিং দিয়ে এমন নমনীয়ভাবে সংযোগ করা থাকে থেন সহজেই পা দুইটির উভয় প্রান্তের দূরত্ব কম-বেশি করা যায়। ডিভাইডারের পয়েন্ট ক্রাইবারের মতো তীক্ষ্ণ হয়। টুল স্টিল-এর তৈরি ডিভাইডার অধিক দীর্ঘস্থায়ী ও জনপ্রিয়।

ডিভাইডারের কাজ সাধারণত-

- (ক) স্টিল রুল থেকে মাপ তোলা
- (খ) বৃত্ত আঁকা(Circle)
- (গ) দুইটি বিন্দু বা রেখার দূরত্ব নির্ণয় করা
- (ঘ) রেখাকে সমভাবে বিভক্ত করা।

ডিভাইডারের মাপ বলতে বোঝায়, পা (leg) দুইটির সংযোগের কেন্দ্র থেকে নিচে পয়েন্ট পর্যন্ত লম্ব দূরত্বকে। এই মাপ সাধারণত ৬২ মি.মি. থেকে ২৫০ মি.মি. পর্যন্ত হয়ে থাকে।

সাধারণত শীট মেটালের কাজে তিন ধরনের ডিভাইডারের ব্যবহার প্রচলিত আছে। যেমন-

- (ক) ফার্ম জয়েন্ট ডিভাইডার (Frim Joint Divider)
- (খ) স্প্রীং জয়েন্ট ডিভাইডার (Spring Joint Divider)
- (গ) এক্সটেনশন ডিভাইডার (Extension Divider)

(ক) ফার্ম জয়েন্ট ডিভাইডার (Firm Joint Divider) :

ফার্ম জয়েন্ট ডিভাইডার অতি সরলভাবে (Ordinary) তৈরি। এর পা দুটি রিভেটের সাহায্যে স্থায়ীভাবে অথবা সামান্য শিথিলভাবে সংযোগ করা থাকে। কোনো কোনো ডিভাইডারে সংযোগ নাট-বোল্ট দিয়ে করা থাকে। সাধারণ কাজে ফার্ম জয়েন্ট ডিভাইডারই বেশি উপযোগী। ফার্ম জয়েন্ট ডিভাইডারের পা দুইটির সংযোগ (joint) বেশি শিথিল বা বেশি দৃঢ় হলে ব্যবহারের অযোগ্য হয়। তাই কাজের ফাঁকে সংযোগকে শিথিল করার জন্য সংযোগস্থলে মসৃণ কারক বা ঘর্ষণরোধী তেল প্রয়োগ করতে হয়।

(খ) স্প্রীং জয়েন্ট ডিভাইডার (Spring Joint Divider) :

স্প্রীং জয়েন্ট ডিভাইডারের দুইটি স্টেম (stem) বা পা (leg) স্প্রীং-এর সাহায্যে সব সময় পৃথক হয়ে যেতে চায়। কিন্তু একটা নাট ও ব্লু দিয়ে স্টেম দুইটির ফাঁক ইচ্ছামতো বাড়ানো বা কমানো যায়। লম্বায় এই ডিভাইডার ১০০ মি.মি. থেকে ৩৫০ মি.মি. দৈর্ঘ্যের হয়ে থাকে। কাজের সুবিধার্থে ও সঠিক মাপ পরিদর্শনের জন্য এই ডিভাইডার সুবিধাজনক। এর দ্বারা সৃষ্ণ্ণ ও সঠিকভাবে অর্ধবৃত্ত, বৃত্তচাপ অংকন, স্কেল থেকে মাপ নেওয়া ও মাপ বিনিময় করা যায়।

স্প্রীং জয়েন্ট ডিভাইডার দুইটি শ্রেণীর হয়-

- (i) মাপকে অপরিবর্তিভাবে ধরে রাখার ব্যবস্থা বিশিষ্ট (Look joint)
- (ii) ডিভাইডারের পা দুইটি পরিবর্তিত করে লম্বা পা লাগানোর ব্যবস্থাসম্পন্ন (Long leg adition)।

(গ) এক্সটেনশন ডিভাইডার (Extension Divider) :

এই ডিভাইডার মূলতঃ স্প্রীং জয়েন্ট ডিভাইডারের পর্যায়ভুক্ত।
পা দুইটিকে স্প্রীং⊸থর মাধ্যমে কমানো–বাড়ানো করা হলেও পা
(leg) দুটির নিচের অংশ মূল অংশ থেকে খুলে ফেলা যায় ও
প্রয়োজনে দীর্ঘ মাপের সূচ্যথ পা সংযোগ করা যায়। ফলে
ডিভাইডারেকে ইচ্ছেমতো ছোট বড় মাপের করা যায়।
ডিভাইডারের পা (leg) দুইটির মুখ বা পয়েন্ট সব সময় সূচ্যথ
এবং প্রায় ২৫ ডিগ্রী কোণ বিশিষ্ট থাকা প্রয়োজন। মুখের এই
কোপের মান ২৫ ডিগ্রী এর বেশি হলে পা দুইটির মুখছরকে
কোনো বিন্দুর ঠিক উপরে রাখা সম্ভব হয় না।

এক্রাটেনশন কার্ম জয়েন্ট স্প্রীং জয়েন্ট

আর যদি কম হয় তবে ব্যবহারের সময় মুখটা দ্রুত ক্ষয় হয়ে যার আর

চিত্র : ৩.৫ ডিভাইডার

বার বার শান দিতে হয়। তেল শান পাথর (oil stone)-এর উপর হাত দিয়ে ঘষে মুখকে সূচ্য্য করে নিতে হয়।

সাবধানতা :

- (১) মাপ নিয়ন্ত্ৰণ করার সময় ডিভাইডারের মুখে ও সংযোগস্থলে কোনো প্রকার আঘাত দিতে নেই। দিলে মুখ (point)-এর ক্ষতি হবে এবং সংযোগ (Joint) ঢিলে হয়ে যাবে।
- (২) বৃত্ত আঁকার সময় ডিভাইডারের উপর বেশি চাপ দিতে নেই। এতে ধাতৃ পৃষ্ঠে চিহ্ন/দাগ গভীরভাবে পড়বে এবং মুখ ক্ষডিগ্রন্থ হবে।
- (৩) ডিভাইডারের মুখকে গ্রাইভিং করতে নেই। তেল শান পাধর (Oil Stone) দিয়ে ঘষা যুক্তিযুক্ত।

(৩) ট্রামেল (Trammels) :

সাধারণত ট্রামলকে বীম কম্পাস বলা হয়। এটাও এক ধরনের ডিভাইডার। এর দারা বৃহৎ মাপের বৃত্ত, বৃত্তচাপ, সমান্তরাল রেখা সঠিক ও সহজভাবে আঁকা যায় এবং

দাগ দেওয়া যায়।

ভিভাইভার আকারে ২৫০ মি.মি. এর চেরে বড় হলে ব্যবহার করতে অসুবিধা হয়। তাই বড় ব্যাস অথবা ব্যাসার্থ তৈরিতে ট্রামেল ব্যবহার করা হয়, আর এটাই সুবিধাজনক। দুইটি পা (leg) ও একটা লঘা বীম সহযোগে ট্রামেল কাঠামো তৈরি। ভিভাইভারের মতো এর পা দুটি এক ছালে সংযুক্ত থাকে না। বীমের দুই পালে দুটি পা (leg) সেট ক্স্ (set screw) দিয়ে আটকানো যায় এবং প্রয়োজনমতো সরিয়ে নির্দিষ্ট ব্যাসার্থ নেওয়া যায়।

সাধারণত ট্রামেলের পা দূটির মুখ (point) ভিভাইডারের মতো থাকে কিন্তু কোন কোন ট্রামেল ক্যালিপার্স (calipers)-এর মতো মুখ সংযোগের ব্যবস্থা থাকে। যার ধারা বৃহৎ মাপের আউট সাইড ও ইন সাইড মাপ প্রত্যক্ষ করা যায়।

৪। মার্কিং গেজ (Marking gauge) :

সাধারণত শীট মেটালের কাচ্ছে বেলনাকৃতি পার্শ্বরেধার সমদ্রত্ত্বে কোনো রেখা টানা অথবা দাস দেওরার জন্য এই টুলসটি ব্যবহার করা হয়। বস্তুত কোনো মোটা টুকরা শীটের এক প্রান্তকে অর্থ জী (Bevel) আকৃতিতে কেটে এই টুলস তৈরি করা হয়।

৫। ট্রাইজয়ার (Try Square) :

চিত্র : ৩.৮ ট্রাইস্কয়ার

বে ট্রুস বারা কোনো কাজ বা যন্ত্রাংশের পরস্পর সন্নিহিত পৃষ্ঠগুলো এক সমকোণে এবং পৃষ্ঠের সমত্রপতা সমভাবে আছে কিনা পরীক্ষা করা হর তাকেই ট্রাইস্কয়ার বলে। চলতি ভাষার একে মাটাল বলে। কার্যবস্তর পৃষ্ঠতপের সমত্রপতা পরীক্ষা করা ছাড়াও সরল রেখা টানার কাজে ব্যবহার করা হয়। ট্রাইস্কয়ারের প্রত্যেক পার্শ্ব নির্মূতভাবে সমত্রল ও মসৃণ থাকা দরকার। এর দৃটি অংশ, স্টক (Stock) ও ব্লেড (Blade)। স্টক অংশটা শক্ত ইস্পাত, ঢালাই লোহা, ঢালাই অ্যালুমিনিয়াম সংকর দিয়ে তৈরি। বিশেষ কাজে কিছু ট্রাইস্কোয়ার ব্যবহার করা হয়ে থাকে যার স্টক ও ব্লেডয়্র একটা অ্যাডজাস্টিং ক্লুর সাথে সংযুক্ত থেকে যে কোনো কোণ উৎপত্র করে লে-আউট কাজে সাহায্যে করে।

ট্রাইন্ফোয়ারের ব্লেড অংশটা সাধারণ স্টিল রুলের মতো। এর মাপ বলতে ব্লেড-এর দৈর্ঘ্য মাপকে বুঝার। সাধারণত ২৫ মি.মি. বর্ধিত হারে ৫০ মি.মি. থেকে ১৫০ মি.মি. এবং ৫০ মি.মি. ক্রমে ২০০ মি.মি থেকে ৪০০ মি.মি. পর্যন্ত হয়ে থাকে। ক্ষুদ্র বস্তুর জন্য ছোট ট্রাইন্ফরার

ব্যবহার করাই শ্রের।

ট্রাইক্ষোয়ারকে দুটি শ্রেণীতে বিডক্ত করা বায়।

- (১) সশিড ট্রাইস্করার (Solid Try Square)
- (২) আডজাস্টেবল ট্রাইস্কয়ার (Adjustable Try Square)

সলিড ট্রাইস্কয়ারে স্টক ও রেড রিভেট দিয়ে স্থায়ীভাবে

ট্রাইস্ক রারের দোষাক্রটি:

ট্রাইক্ষয়ারের সাধারণত তিন প্রকার ত্রুটি লক্ষ্য করা যার-

- ক) ব্লেড এর ধার অসমতল থাকা।
- খ) ব্লেড এবং স্টক অংশের বাহির এবং ভিডরের কোণ ঠিক এক সমকোণ বা ৯০ ডিগ্রী পরিমাণ না ধাকা।
- গ) ব্ৰেড-এর ধার দুটি সমান্তরাল (parallel) না থাকা।

ট্রাইস্কয়ারের দোষাক্রটি পরীক্ষা :

ট্রাইস্কয়ারের ব্লেড ও স্টক অংশের বাহির ও ভিতরের কোণের মান ঠিক ৯০ ডিগ্রী অর্থাৎ সমকোণ না থাকলে বস্তুর মাপ ও সমতলতার পরীক্ষা ভূল হবে। এই কারণে কিছু দিন পর পর নিম্নের নিয়মে সঠিকতা পরীক্ষা করা প্রয়োজন।

- ১) মাস্টার স্করার (Master Square) নামে অন্য একটা নির্ভুল ট্রাইস্করারের সাথে মিলিয়ে পরীক্ষা করা।
- ২) সারফেস প্লেটের সাহায্যে জানা ব্লেডের সমতলতা নষ্ট হলে এবং ব্লেডের ধার দুটি পরস্পর সমান্তরাল না থাকলে ক্ষেত্র অনুযায়ী এই ক্রটি ফাইল দিয়ে ঘষে গ্রাইন্ডিং মেশিনের সাহায্যে ক্ষয় করে সংশোধন করা প্রয়োজন।

ট্রাইস্কয়ারের যত্ন:

এটি একটি সৃদ্ধ যন্ত্রবিশেষ। প্রধানত মার্কিং ও পরিদর্শন কাজে ব্যবহার হয় বলে কাজের সময় এবং সংরক্ষণকালে ব্রেড এবং স্টক-এর উপর যেন কোনো প্রকার চাপ বা আঘাত না লাগে সেদিক লক্ষ্য রাখা প্রয়োজন। ট্রাইক্ষয়ার দিয়ে কোনো বন্ধর উপর আঘাত করা কোনো অবস্থাতেই যুক্তিযুক্ত নয়। ব্রেডের ধার কোন কারণে রুক্ষ হয়ে গেলে ফাইল দিয়ে তখন ঘষা উচিত নয়। এতে ব্রেডের ধারের সমতলতা নষ্ট হয়ে যায় ও ব্যবহারের অনুপযোগী হয়ে যায়। সলিড ট্রাইক্ষয়ারের ব্রেড ও স্টক যে রিভেট দিয়ে আটকানো থাকে তার দৃঢ়তা মাঝে মধ্যে পরীক্ষা করা প্রয়োজন যাতে কাজের চাপে ঢিলে না হয়ে যায়। সর্বোপরি ব্যবহারের পর ট্রাইক্ষয়ারের ধূলা/ময়লামুক্ত করে গ্রীজ অথবা তেল এর আন্তর দিয়ে মরিচামুক্ত রাখতে হয়।

৬। পাঞ্চ (Punches) :

এটি একটি ছোট্ট টুলস, যা কার্যবস্তুতে সূক্ষ্ম অথচ সুস্পষ্ট চিহ্ন দিতে ব্যবহার করা হয়। তাপক্রিয়ায় শক্ত টুলস স্টিল তৈরি। এই পাঞ্চ একটা অতি দরকারী শীট মেটাল কাজের জন্য হ্যান্ত টুলস। হাত দিয়ে ধরার সুবিধার্থে এর বডিতে দাগ কাটা (Knurling) থাকে।

কাজের ধরন অনুসারে পাঞ্চ নিমুরূপ শ্রেণীর হয়:

- (ক) সেন্টার পাঞ্চ (Centre punch)
- (খ) প্রিক বা ডট পাঞ্চ (Prick or dot punch)
- (গ) পিন পাঞ্চ (Pin Punch)
- (ঘ) ড্রিফট পাঞ্চ (Drift punch)
- (ঙ) হলো পাঞ্চ (Hollow punch)

চিত্ৰ ঃ ৩.৯ পাঞ্চ

মার্কিং অফ (Marking off) বা দাগ দেওয়ার কাজে সেন্টার, প্রিক, পিন পাঞ্চ বেশি ব্যবহৃত হয়। দ্রিফট পাঞ্চ কোনো ছিদ্র তৈরি বা ছিদ্র থেকে বস্তু বের করার কাজে এই পাঞ্চ উপযোগী।

হলো পাঞ্চ মূলত শিয়ারিং কাজে ব্যবহৃত হয়। অর্থাৎ কোনো শীট বা পাতলা চাদর জাতীয় পদার্থে নির্ধারিত ব্যাসের ছিদ্র তৈরিতে এই পাঞ্চ ব্যবহৃত হয়।

(ক) সেন্টার পাঞ্চ (Centre punch) : মূলত কোনো ধাতব বা অধাতব খণ্ড ও পাতলা শীটের উপর দাগ কাটার জন্য বিন্দু আকৃতির মার্কিং কৌশল সেন্টার পাঞ্চের সাহায্যে সহজেই নির্ভুলভাবে করা যায়। এর মাথা ক্রমশ সরু ও শেষ পাস্তে ৬০ ডিগ্রী অথবা ৯০ ডিগ্রী কোণে গ্রাইন্ডিং করা এবং মুখটি (point) সূচ্যুর্য ও যথেষ্ট শক্ত। এই সূচ্যগ্র মুখ দিয়ে অনায়াসে ধাতব খণ্ডের উপর বিন্দুর মতো দাগ দেওয়া যায়। ড্রিল করার আগে, ড্রিল বিটকে সঠিক বিন্দুতে স্থাপন করার জন্য সেন্টার পাঞ্চের সাহায্যে মার্ক করে নিতে হয়। শীট মেটালের কাটাকাটি আরম্ভ করার আগে কাটিং লাইন বরাবর সারিবদ্ধভাবে অনেকগুলো বিন্দু চিহ্নিত করার জন্যও সেন্টার পাঞ্চ ব্যবহার করা হয়।

(খ) প্রিক পাঞ্চ (Prick Punch): সাধারণত শীট মেটালের কাজে বিন্দু আকৃতির কোনো দাগ দেওয়ার জন্য প্রিক পাঞ্চ ব্যবহার করা হয়। হার্ডেন্ড টুল স্টিলের তৈরি প্রিক পাঞ্চ এর কাঠামো অনেকটা প্রেইন ক্রাইবারের মতো। এর গোলাকার মূল কাঠামো নার্লিং করা থাকে এবং বাকি অংশ ক্রমশ সরু গোলাকার আকৃতিতে মুখের (point) অংশের অন্তর্গত কোণ ৩০ ডিগ্রী থেকে ৬০ ডিগ্রীতে সৃক্ষ করা থাকে। মেটালের উপর হালকাভাবে দাগ দিতে অথবা দুটি লেআউট লাইনের সংযোগ বিন্দু মার্ক করতে, ছিদ্রের কেন্দ্র চিহ্নিত করতে এই পাঞ্চ ব্যবহার করা হয়। এর অন্য নাম ডট পাঞ্চ (Dot punch)।

কার্যবস্তুর উপর পাঞ্চের দেয়া চিহ্নগুলি বেশি গভীর অথবা কাছাকাছি হওয়া উচিত নয়। এ ছাড়াও একাধিক চিহ্ন যেন লাইন বরাবর হয় সেদিকে লক্ষ্য রাখতে হবে। যে ধরনের পাঞ্চ যে কাজের জন্য প্রযোজ্য, তাকে কেবলমাত্র সেই কাজেই ব্যবহার করা উচিত। অন্যথায় পাঞ্চ বা কার্যবস্তুও একটা বা উভয়ই ক্ষতিগ্রস্ত হয়। কাজের ফাঁকে মুখ (point) তীক্ষ্ণ ও ধারালো রাখার জন্য তেল শান পাথরে ঘষে নিতে হয়। হাতুড়ি দিয়ে পাঞ্চের মাথায় আঘাত করার সময় পাঞ্চের মাথায় দিকে না তাকিয়ে যেখানে পাঞ্চ মার্ক দিতে হবে সে স্থানে তাকানো প্রয়োজন। তা না হলে দুর্ঘটনা হতে পারে। পাঞ্চের মাথায় তেল, গ্রীজ থাকলে ব্যবহারের পূর্বে মুছে ফেলতে হবে,অন্যথায় দুর্ঘটনা হতে পারে।

২। ফর্মিং টুলস (Forming tools) :

যে সকল টুলস বা যন্ত্রপাতির সাহায্যে ধাতব শীটকে প্রয়োজনীয় আকার-আকৃতি প্রদান করা যায়, তাকেই ফর্মিং ((Forming) টুলস বলে।

বর্তমান যান্ত্রিক যুগে যন্ত্রচালিত যানবাহনের ব্যবহার সর্বত্র এত ব্যাপক ও বহুল যা বলার অপেক্ষা রাখে না। বিভিন্ন প্রকার যানবাহন যেমন- রেলগাড়ি, উড়োজাহাজ, জলযান, মোটরগাড়ি, মোটরসাইকেলের কাঠামো আচ্ছাদন বা বড়ি ধাতব শীটের। ব্যবহারের ফলে বা দুর্ঘটনার কারণে অথবা অন্য কোনো কারণে আচ্ছাদন চাপ লেগে দুমড়ে বা টপ খেয়ে যায়। এর ফলে যানবাহন ব্যবহার অনুপযোগী হয়, সৌন্দর্য নষ্ট হয়। আবার ক্ষেত্র বিশেষে যানবাহনের অংশবিশেষ বিনষ্ট হয়ে যায়। তাছাড়া যানবাহনের আচ্ছাদন তৈরির জন্য ধাতব শীটকে বিভিন্ন প্রকার আকার-আকৃতি প্রদানের জন্য কারখানার অন্যান্য টুলস-এর পাশাপাশি বিভিন্ন প্রকার ফর্মিং টুলস ব্যবহার করা হয়। শীট মেটালের কাজে সর্বাধিক ব্যবহৃত কয়েকটা ফর্মিং টুলস-এর বর্ণনা দেওয়া হলো।

(क) স্টেক (Stake) : কামারশালায় ব্যবহৃত এমন একটি এনভিল (Anvil) এর মতোই শীট মেটাল শপ ব্যবহার হয়, এর নাম স্টেক (Stake)। এই স্টেক-এর উপর ধাতব শীট রেখে আঘাতের সাহায্যে অথবা চাপ প্রয়োগ করে ঈন্ধিত আকার প্রদান করা হয়। অর্থাৎ প্রয়োজনমতো ভাঁজ করা, বাঁকানো ইত্যাদি আকৃতি দেওয়া হয়। স্টেক-এর নিচের অংশ (Shank) চতুক্ষোণ হওয়াতে একটা ধাতব বেঞ্চ প্লেটের (Bench plate) চতুক্ষোণ ছিদ্রের মধ্যে বসিয়ে ব্যবহার করতে হয়। বেঞ্চ প্লেট না থাকলে স্টেক এর শ্যাংককে ভাইসে বেঁধে কাজ করতে হয়।

প্রধানত স্টেকের তিনটি অংশ, যেমন- শ্যাংক (Shank), হেড (Head), হর্ন (Horn)। সাধারণত স্টেকের পা বা শ্যাংক নির্দিষ্ট মাপের ও হেড এবং হর্ন বিভিন্ন মাপের হয়।

কাজের রকম ফের অনুযায়ী স্টেক নানা প্রকার গঠনের হয়ে থাকে। যেমন-

- (১) ক্ষোয়ার স্টেক (Square stake)
- (২) ক্রীজিং স্টেক (Creasing stake)
- (৩) বীক হর্ন স্টেক (Beak horn stake)
- (8) হাচেট স্টেক (Hatchet stake)
- (৫) হলো মেনড্ৰেল স্টেক (Hollow mandrel stake)
- (৬) ডবল সিমিং স্টেক (Double seaming stake)
- (৭) কনডাকটর স্টেক (Condutor stake)
- (৮) ব্লো হর্ন স্টেক (Blow horn stake)

স্টেকের বর্ণনা ও ব্যবহার (Description and use of stakes) :

স্টেক শীট মেটালের কাজে ব্যবহার করা হয় এনভিলের মতো। ধাতব শীট অথবা কাজটা স্টেকের উপর রেখে মেলেট বা হাতুড়ির আঘাতে চাপ প্রয়োগের মাধ্যমে ধাতব শীটের আকৃতি প্রদান করা হয়। ভিনু ভিনু আকার দেওয়ার জন্য ভিনু ভিনু স্টেক ব্যবহার করা হয়। নিম্নে স্টেক সমূহের বর্ণনা দেওয়া হলো।

- ক্ষোয়ার স্টেক (Square stake) : ক্ষোয়ার স্টেক বর্গাকৃতি লম্বা শ্যাংকের আকৃতি বিশিষ্ট। সাধারণ কাজে
 ধাতব শীটকে আকৃতি প্রদানে এই স্টেক বিশেষ উপযোগী।
- ২. ক্রীজিং স্টেক (Creasing stake) : দুটি ভিন্ন প্যাটার্নে এই স্টেক পাওয়া যায়। একটার দু'পার্শ্বেও খাঁজ কাটা আয়তাকৃতি হর্ন থাকে। খাঁজগুলো ধাতু ভাঁজ (creasin) দেওয়া ও তার (wire) বাঁকা করার জন্য ব্যবহার করা হয়। অপরটা এক পার্শ্বে টেপার আকৃতির গোলাকার হর্ন, আর অপর পার্শ্বে আয়তকার হর্নে খাঁজ কাটা থাকে। টেপার আকৃতির ছোট দ্রব্য তৈরি করতে, ফর্মিং, রিভেটিং ও সিমিং (seaming) ইত্যাদি কাজে এই স্টেক ব্যবহার করা হয়।
- ৩. বীক-হর্ন স্টেক (Beak horn stake) : টেপার আকৃতির হর্ন বা শিং পার্শ্বে আয়তকার হর্ন (horn) বিশিষ্ট স্টেক ফরমিং, সিমিং, বিভেটিং ইত্যাদি শীট মেটালের আকৃতি প্রদানের কাজে ব্যবহৃত হয়।
- 8. হাচেট স্টেক (Hachet stake) : এই স্টেকের পার্শ্বতল ধারাল (sharp), সোজা প্রান্তটা (straight edge), ঢালু (beveled) করা, আর ধারালো বাঁক (sharp bend) বিশিষ্ট এবং যার প্রান্তটা বাঁকানো (bending edge)। বাক্স (box) বা পাত্র তৈরি করতে এই স্টেক ব্যবহার করা হয়।
- ৫. হলো মেনদ্রেশ স্টেক (Hollow mandrel stake) : এই স্টেকের প্রান্ত বরাবর একটা খাঁজ (solt) কাটা থাকে। ঐ স্থাটে একটা বোল্ট লাগানো থাকে যে বোল্টটা স্টেককে টেবিলের সাথে যেকোনো দৈর্ঘ্যে বা কোণে (angle) আটকানো যায়। এই স্টেকের কোনো শ্যাংক থাকে না। স্টেকের গোলাকার প্রান্ত দিয়ে পাইপের রিভেটিং, সিমিং কাজ আর আয়তকার প্রান্ত ফরমিং, লেপিং, রিভেটিং, ডবল সিমিং কাজ করা যায়।

৬. ডবল সিমিং স্টেক (Double seaming stake) :

দুটো উপবৃত্তকার (slliptical) আকৃতির হর্ন এর দুই প্রান্তে দুটি নব (Knob) থাকে। ছোট বেলনাকার দ্রব্যে ডবল সিমিং করার জন্য এই স্টেক বিশেষ উপযোগী।

৭. কন্ডাক্টর স্টেক (Condutor stake) :

এই স্টেকের দু'দিকের ভিন্ন ব্যাদের দুটি বেলনাকৃতি হর্ন থাকে। ছোট আকৃতির ও মাপের পাইপ বা নল ভৈরি করতে, রিভেটিং, ফরমিং, সিমিং ইত্যাদি কাছ করার ছন্য এই স্টেক উপযোগী।

৮. ব্লো-হর্ন স্টেক (Blow horn stake) : এই স্টেকের এক পাশ খটি ও ক্রমশ সক্ষ ও অন্য পাশে লম্বাটে সক্র হর্ন আছে। ধাতব শীটকে চুকি (Funnel), পিচ-কভার (Pitch Cover), রিভেটি ও সিমিং ইত্যাদি আকৃতি প্রদান করতে এই স্টেক বিশেষ উপযোগী।

(प) शामांब (Hammer) :

জেনারেল মেকানিক্স কাজে বিশেষ করে ফরর্মিং কাজে আঘাত দেওয়ার জন্য যে টুলস বা যন্ত্রপাতি ব্যবহার করা হয় হ্যামার তার মধ্যে জন্যতম। যদিও সাধারণ কাজে হ্যামার বা হাতুড়ির ব্যবহার জ্ঞাপণ্য, তথাপি (i) বলপিন হ্যামার (Ball peen hammer), (ii) স্টেইট পিন হ্যামার (Straight peen hammer) (iii) ক্রস পিন হ্যামার (Cross peen hammer) ছাড়াও ধাতব শীটকে ফর্মিং কাজের জন্য নিম্নে বর্ণিত বিশেষ হ্যামারগুলো ব্যবহার করা হয়।

- (১) সেটিং হ্যামার (Setting hammer)
- (২) বিভেটিং হ্যামার (Reveting hammer)
- (৩) রেইজিং হ্যামার (Raishing hammer)
- (৪) ম্যালেট (Mallet) বা সফট হ্যামার (Soft hammer)

(১) সেটিং হ্যামার (Setting

hammer) : ধাতব শীট-এর কর্মিও কাজের জন্য এই হাতুড়ি খুবই জনপ্রিয়। এর একটা প্রান্ত (face) চতুকোণ ও আয়তকার। অপর প্রান্তটা (Head) একদিক ঢালু (Bevelled) করা। সমতল প্রান্ত দিয়ে জোড় স্থানে আযাত দিয়ে সমতল করা এবং ঢাল প্রান্ত দিয়ে শীর্টের প্রান্তকে ভাঁজ করে বা মুড়ে দেওরা বায়।

- (২) বিভেটিং স্থামার (Reveting hammer) : ধাতব পাত বা শীটে রিভোট জোড়া দেওরার জন্য ও রিভেটের মাধা তৈরি করার কাজে রিভেটিং হাতুড়ি ব্যবহার করা হয়। এর এক প্রান্ত গোলাকারপ্রায় ও মুখ (face) কিছুটা উত্তল (convex) আর অন্য পাত্ত ভোঁতা ছেনির মতো ঢাল (bevelled) হাতলের সাথে সমকোণে অবস্থান করে।
- (৩) রেইজিং হ্যামার (Raishing hammer) : এই হাতৃড়ির দুই প্রান্তই গোলাকার। এর সাহাব্যে অবতল (concave) পৃষ্ঠকে সমতল করা বা সমতল পৃষ্ঠকে অবতল আকৃতি প্রদান করা হয়।

- (8) স্যালেট (Mallet) : বাংলায় ম্যালেটকে কাঠের হাতুড়ি বা মুগুর বলে। ম্যালেট কাঠ ও প্লান্টিকের তৈরি। লোহার তৈরি হাড়ড়ি দিয়ে শীটে আঘাত করলে দাগ হয়ে যায়, ছাপ পড়ে, বিকৃত হয় বা ক্ষতিগ্রন্ত হয় বলে লোহার হাতৃড়ির পরিবর্তে ম্যালেট ব্যবহার করা হয়। ম্যালেট দুই প্রকার। যথা-
 - (i) র-হ্যাইড ম্যালেট (Raw hide mallet)
 - (ii) টিনার্স ম্যালেট (Tinners mallet) ।
- (গ) হাভ কভার (Hand groover) হ্যান্ড প্রান্তার এর মূল প্রান্তে প্রাণত সংশো আয়তকার নালী (groove) কাটা থাকে। এই নালী বিভিন্ন মাপের হয়ে থাকে। ফলে পাতলা-মোটা ধাতব শীটের উপর কাজ করে সীম জোডা দেওয়া হয়। ভাজ করা সীম জোডার উপর হ্যান্ড ঞ্রভারের নালী স্থাপন করে তার উপর হাতুড়ি বা ম্যালেট দিয়ে আঘাত করলে ভাঁজ ও জোড শভ र्म ।

চিত্র ৪৩.১১ হ্যান্ড প্রশ্বার

(খ) ঞ্ভিং রেইণ (Grooving Rail) :

দেখতে অবিকল বেল লাইনের স্টিল রেইলের মতো। তবে উপরিতলে দৈর্ঘ্য দূরত্ব বরাবর আয়তকার নালী (Channel) করা থাকে। নিচের তলের অনুরূপ নালী কাটা থাকে তবে মাপ ভিন্ন। ধাতব শীটের ভিতরের জোড়কে (Inside seam) দৃঢ় ও সুসম্পন্ন করার জন্য জাড় স্থানকে এই নালীর মধ্যে রেখে ম্যালেট দিয়ে আঘাত করা হয়।

- (%) ভাল (Dolly) : যখন কোনো ধাতব শীটের কাঠামো আঘাতের ফলে দুমড়ে যায় অথবা কোনো শীটকে উত্তল (Convex) বা অবতল (Concave) আকার দেওয়ার প্রয়োজন হয়। তখন যে যন্ত্র ব্যবহার করা হয় তার নাম ডলি ব্লক (Dolly block)। এটা একটা হ্যান্ড টুলস যার অপর নাম হ্যান্ড এনন্ডিল (Hand Anvil)। ডলি ব্লক নিমু প্রকারের হয়ে থাকে।
- (১) হীল (Heel) (২) লো-ক্রাউন (Low crown)

চিত্র: ৩,১২ গুডিং রেইল

- (৩) টো (Toe) (৪) জেনারেল পারপাস (General pupose)
- (৫) হেডী ডিউটি (Heavy duty) (৬) ইফটিলিটি (Utility)

মেটাল কাজের উপর নির্তর করে প্রতিটা ডলি ব্লক দিয়ে ক্ষতিগ্রস্ত থাতব শীটকে সমতল বা মেরামত করা হর। এই ব্লক ক্ষতিগ্রস্ত বা দুমড়ে যাওয়া শীটের নিচে ধরে উপরে আঘাত করা হয়। শীটের প্রাস্তের ভাঁজ (flange) করার জন্য এবং রিভেট করার কাজেও ডলি ব্লক ব্যবহার করা হয়।

ছোট ব্যাসের রিভেটের মাখা (Head) তৈরি করার জন্য ডলি বার (Dolly bar) ব্যবহার করা হয়। ডলি বার নিমু প্রকারের হয়ে থাকে।

(১) মেট্রইট (straight) (২) অগ সেট (Offset) (৩) শ্প্রিং (spring)

চিত্ৰ: ৩.১৩ ডপি

৩। কাটিং টুলস (Cutting Tools) :

ধাতব শীটকে যে সকল হস্তচালিত যন্ত্রের সাহায্যে কেটে খণ্ডিত করা সহ বিভিন্ন আকৃতিতে কাটা হয়, তাকে কাটিং টুলস (Cutting tools) বা কর্তন যন্ত্র বলে।

ধান্তব শীট কাটার কাজে প্রধানত ৬ প্রকার কাটিং টুলস ব্যবহৃত হয়।

- (১) স্নিপ্স (Snips)
- (8) পাগ্ড (Punch)
- (২) শীয়ার্স (Shears)
- (৫) ফাইলস (Files)
- (৩) চিজেল (Chisel)
- (৬) হ্যাক-স (Hack Saw)

(১) গ্নিপন (Snips) :

স্থিপসকে বাংলায় কাতানী বলা হয়। দেখতে কাঁচির মতো তবে অপেক্ষাকৃত পুরু ও ভারী। এটা হ্যান্ড শীরার (Hand shear), টিন স্থিপস (Tin snips), টিনার্স স্থিপ (Tinners snip) নামেও পরিচিত। পাতলা নরম শীট কাটার জন্য ব্যবহৃত হয়। ২০ গজ-এর অধিক পাতলা শীট এই কাতানী দিয়ে কাটা সুবিধাজনক।

ন্নিপস মূলত চালাই ইস্পাতের তৈরি। ব্লেডের কাটিং এজ (Cutting edge) বা কর্তনের ধার তাপক্রিরায় অধিক শক্ত করা হয় বেন সহজে ধার নট না হয়ে বার। ব্লেডের কাটিং আ্যাঙ্গেল প্রায় ৮৫ ডিগ্রী-৮৭ ডিগ্রী পরিমাণ পাকে। কোনো কোনো স্থিপসের লেগ বা হাতলের সাথে স্প্রীং (spring) সংযুক্ত থাকে যাতে ধাতুপাত কাটার উদ্দেশ্যে হাতলে চাপ দেওয়ার পর ছেড়ে দিলে স্প্রীং-এর চাপে ব্লেডয়য়ের মূপ পুনরায় ফাঁকা হয়ে যায় ও কাটার সুবিধা করে দেয়। সাধারণত ধাতব শীট কাটার কাজে তিন প্রকারের স্লিপ ব্যবহার করা হয়।

(ক) স্টেইট কটি স্নিপস (Straight cut snips) : সাধারণত যে স্নিপস-এর ব্রেড্ছর সোজা থাকে এবং ধাতবলীটকে সোজা বা সরলরেখা বরাবর কাটতে সহায়তা করে তাকে স্টেইট কাট স্নিপস বলে।

(খ) বেন্ট (Bent) ব্লিপস :

সাধারণত বক্ররেখা সূত্রে ধাতব পীট কাটতে এই স্লিপ ব্যবহার করা হয়। কার্ভড (curved)

স্থিপস নামেও এটা পরিচিত। এর বাঁকানো ব্লেড দৃটি ডান হাতি বা বাঁহাতি হয়ে থাকে। (গ) হক বিশ স্থিপস (Hawk-Bill snips):

এই স্নিপের ব্রেড পাখির ঠোঁটের

মতো বিশেষ আকৃতির। কোনো শীটের মধ্য স্থানে গোলাকার বা বক্রাকার অংশ কাটতে এই স্থিপস ব্যবহার করা হয়।

(३) नीवार्ज (Shears)

সাধারণত অনেক পুরু ও মোটা ধাতব শীটকে এবং কম পুরুত্বের প্লেট (plate) কে স্লিপস দিয়ে কাটা সম্ভব হয় না। এই ক্ষেত্রে শীয়ার্স (shears) ব্যবহার করা হয়। এটা এক ধরনের শীট কাটার মেশিন বিশেষ। একটা

দৃঢ় ঢালাই ইস্পাতের কাঠামো বিশেষ। এটা হন্তচালিত ও যন্তচালিত উভয় হয়ে থাকে। সাধারণত শিয়ার্স নিমু শ্রেণীর হয়ে থাকে।

(১) বেক শিয়ার্স (Bench Shears) :

বেঞ্চ শীরার্স দেখতে স্লিপের মতো হলেও আকারে অনেক বড়। এর দুই পারের শেষ প্রান্ত ৩-৪ সেমি. সমকোণে বাঁকানো থাকে। লমায় ৬০ সে.মি.-১২০ সে.মি. হয়ে থাকে। পায়ের একটা অংশ বেঞ্চ প্রেটের মধ্যে প্রবেশ করিয়ে অথবা বেঞ্চ ভাইসে আবদ্ধ করে হাতের চাপে কর্তন কাজ সমাধা করা হয়।

(২) ছবল কাটিং শিয়ার (Dounle Cutting Shear):

চিত্র: ৩.১৭ বেঞ্চ শিয়াস

ভবল কাটিং শিয়ারও দেখতে অনেকটা স্নিপের মতো। তবে এতে তিনটা ব্লেড থাকে। স্থিপের মতো হাতে চেপে কাটতে হয়। এর এক পাটিতে দৃই পাশে দৃটি ব্লেড এবং অপর পাটিতে একটা ব্লেড থাকে। অপেক্ষাকৃত মোটা শীট, চুন্ত্রির পাইপ, স্টোভ, চোঙ্গাকৃতি পাত্রের ধার বা কিনারা কাটার জন্য এই শিয়ার অভ্যন্ত উপযোগী।

(৩) হ্যান্ত শিন্তার শিরার (Hand Lever Shears) :

হ্যান্ড লিভার শিয়ার হলো এক ধরনের হস্কচালিত মেশিন।
এতে দৃটি ব্লেড থাকে। একটা ব্লেড স্থির ও ভারী, মূল
কাঠামোর সাথে নাট-বোল্ট দিয়ে দৃঢ়ভাবে অটকানো। অপর
ব্লেডটি চলমান, একটা হস্কচালিত হাতল লিভারের সাথে
সংযোগ করা। দৃটি ব্লেড-এর শেষ প্রান্ত একটা পিভট পিন
(pivot pin) দিয়ে এমনভাবে সংযুক্ত-চলমান হাতলটা
নিচের দিকে চাপ দিলে উপরের ব্লেডটা নিচের ব্লেডের
বরাবরে নেমে এসে কাঁচির ন্যায় শীট/প্লেটকে কেটে ফেলে।
এর সাহাব্যে পুরু শীটকে সরলব্রেখা বরাবর কাটা যায় এবং
সময় কম লাগে। এই শিয়ার এর ব্লেডের দৈর্ঘ্য সাধারণত
২৫ সে.মি.-৩০ সে.মি. এবং ১০ গেজ পর্যন্ত শীট কাটা
সম্ভব।

সাধারণত থাতব শীট কাটার কাজে নিমুবর্ণিত শিয়ার মেশিনসমূহের নাম উল্লেখযোগ্য।

চিজ্র: ৩.১৮ হান্ড লিভার শিয়ার

- (ক) হ্যান্ড লিভার শ্রেটিলেস শিয়ার্স (Hand lever throatless shears)
- (খ) হ্যান্ড নিভার শিয়ার্স ফর করগেটের শীটস (Hand lever shears for corrugated sheet)
- (গ) ইউনিভার্সাল শিয়ারিং মেশিন (Universal shearing machine)
- ্থ) পাওয়ার ফ্লাট-ব্লেড প্রোটলেস শিয়ার্স (Power flat blade throatless shears) উপরোক্ত মেশিনসমূহ ছাড়াও শীট মেটাল শপে নিমুবর্ণিত বিভিন্ন শিয়ার মেশিনগুলো ব্যবহৃত হয়।
 - (১) কোয়ার শিয়ার মেশিন (Square shear machine)
 - (২) সার্কুলার শিয়ার মেশিন (Circular shear machine)
 - (৩) মেটাল শ্লিটিং মেশিন (Metal slitting machine)
 - (৪) জিলোটিন শিয়ার মেশিন (Guillotine shear machine)

জিলেটিন শিয়ার মেশিনকে আবার নিমুলিখিতভাবে শ্রেণীবিন্যাস করা হয়।

(ক হ্যান্ড লিভার জিলোটিন (Hand lever Guillotines)

- (খ) পাওয়ার জিলোটিন (Power Guillotines)
- (গ) ট্রেডেল অপারেটেড জিলোটিন (Treadle operated Guillotines)
- (ঘ) এয়ার-অপারেটেড জিলোটিন (Air operated Guillotines)
- (ঙ) মেকানিক্যাল জিলোটিন (Mechanical Guillotines)
- (চ) ইলেকট্রো-মেকানিক্যাল জিলোটিন (Electro Mechanical Guillotines)
- (ছ) হাইড্রোলিক জিলোটিন (Hydraulic Guillotines)

(১) ক্ষোমার শিয়ার মেশিন (Square shear machine) :

সাধারণত পাতলা অথবা অপেক্ষাকৃত বড় আকৃতির ধাতবলীট সরলরেখা বরাবর কাটার জন্য এই মেশিন অত্যন্ত উপযোগী। ফুট ট্রেডেল (Foot treadle), দৃটি কাটিং ব্লেড, ফ্রন্ট গেজ, বেক গেজ, দৃটি সাইড গেজসহ একটা ইস্পাতের কাঠামো নিয়ে এই মেশিন তৈরি। একসাথে প্রায় ১ মিটার চওড়া পাতলা শীট (অনুর্ধ্ব ২০ গেজ) সরল রৈথিকভাবে কাটা যায় বলে এই মেশিনকে স্কোয়ার শিয়ার মেশিন বলে। মেশিনের বেডের সামনে পরিমাপ ক্ষেল দিয়ে শীট কাটার পরিমাপ নির্দিয় করা যায়। অধিক লখা শীট কাটতে মেশিনের সামনে এক্সটেনশন আর্ম (Extension) সংযোগ করা হয়। মেলিনের বেডের সংগে মূল কঠিমো বরাবর একটা শিয়ার ব্লেড (প্রায় ১ মিটার লঘা) স্থায়ীভাবে নাট বোল্ট দিয়ে লাগানো থাকে। ব্লেডের সামনের দ্বিতীয় অংশটা ক্রসহেড (Cross head) এর সাথে যুক্ত থাকে যা ফুট ট্রেডেলের মাধ্যমে ওঠানামা করে।

ক্ষোৱার শিয়ার মেশিনে শীট কাটার নিয়ম:

স্কোরার শিয়ার মেশিনে শীট কাটার জন্য প্রথমেই পাতলা শীট যার চওড়া কোনো মতেই ১ মিটারের উর্ধ্বে নয়, মেশিনের বেডে বিছিয়ে দির ফ্রন্ট গেজ, সাইড গেজ দিয়ে সঠিকভাবে স্থাপন করতে হবে এবং ঈশিত মাপ ব্রেডের মুখ বরাবর শীটকে স্থাপন করে ক্লাপিং দিভার (clamping lever) চেপে শীটকে দৃঢ়ভাবে বেডের সাথে আটকাতে হবে। এরপর ফুট ট্রেডেলে পা দিয়ে চাপ দিলে ক্রসহেড নিচের দিকে নেমে আসবে এবং চলমান ব্রেডটি দিয়ে কাঁচির ন্যায় শীটটা কেটে বাবে।

मठकंठा :

- (১) শীট কটার সময় মেশিন ব্যবহার একজন অপারেটরকেই করা উচিত।
- (২) তাড়াহড়া করে মেশিনের বেডে শীট ছাপন ও টানা হেঁচড়া করা উচিত নয়। এতে দুর্ঘটনার ঘটার আশহা থাকে।
- কূট প্যাডেলে চাপ দেওয়ার পূর্বে নিশ্চিত হতে হবে যে হাতের আব্দুল শিয়ার ব্লেড থেকে দূরে আছে।

২। সার্কুলার শিয়ার মেশিন (Circular shear machine) :

সার্কুলার শিয়ার একটা হস্তচালিত শিয়ার মেশিন । এর অপর নাম রিং অ্যান্ড সার্কুলার শিয়ার (Ring and circular shear)। শীট মেটাল কাটার কাজে অত্যম্ভ গুরুত্পূর্ণ যন্ত্র। এই যন্তের সাহায্যে সার্কুলার ডিক্ষ (Circular disc), সার্কুলার হোল (Circular hole), (Square), আয়তাকার (Rectangular). বক্রাকার (Curved) এবং যে কোনো অসম আকৃতির হাংক (Blank) কাটা

চিত্র: ৩.১৯ সার্কুলার শিয়ার মেশিন

সম্ভব। ক্রাংক স্কু (Crank screw), ক্ল্যাম্পিং ডিস্ক (Clamping disc), ক্ল্যাম্পিং দিভার (Clamping lever), সার্কুলার আর্ম (Circular arm) এবং দুটি খুর্ণায়মান কাটার (Rotary cutter) নিয়ে এই মেশিন গঠিত।

সার্কুলার শিয়ার মেশিনের সাহায্যে কর্তনের কাজ করার প্রাক্কালে টার্নিং ক্রাংক স্কু এর সাহায্যে রোটারী কাটারকে ওঠানামা করা যায় এবং হাত দিয়ে হ্যাণ্ডেলকে ঘোরানো যায়। দুটি ক্লাম্পিং ডিস্ক নিয়ে সার্কেল আর্ম গঠিত। নিচের আর্মটিতে চলমান (Movable) সেন্টারিং পাঞ্চ থাকে, যা কার্যবস্তুর পূর্বে নির্ণয়কৃত কেন্দ্রকে ঐ পয়েন্টে (point) স্থাপন করে। উপরের ডিস্কটা একটা লিভারের মাধ্যমে চালানো হয়। এই যন্ত্রের সাহায্যে অতি অল্প সময়ে এবং কম পরিশ্রমে কর্তনের কাজ সঠিক বৃত্তকারে খণ্ডিত হয়ে যায়।

(৩) জিলোটিন শিয়ার মেশিন (Guillotine shear machine) :

জিলোটিন শিয়ার মেশিন মেটাল শিয়রিং মেশিন (Metal shear machine) নামেও পরিচিত। এই মেশিন দেখতে অনেকটা স্কোয়ার শিয়ার মেশিনের ন্যায় এবং কাজও করে প্রায় একই রকম। পার্থক্য এই যে, এই মেশিন অপেক্ষাকৃত ভারী ও বেশি পুরুত্বের ধাতব শীট প্লেট অতি সহজে, সঠিকভাবে এবং অল্পচাপে কেটে ফেলা যায়। লিভার ব্যবস্থা সম্পন্ন এই মেশিনে দুটি ব্লেড আছে। একটা সচল, অন্যটা স্থির। প্যাডেস্টেলে পায়ের চাপে সচল ব্লেড, টেবিলের সাথে দৃঢ়ভাবে সংযোগ করা স্থির ব্লেডের ধার ঘেঁষে কাঁচির ন্যায় কার্যবস্তুকে কেটে ফেলতে সাহায্য করে। এই মেশিনের ব্লেড প্রায় ১ মিটার লম্বা হয়ে থাকে এবং ১৬ গেজ থেকে ১০ গেজ পর্যন্ত পুরুত্বের শীট ও প্লেট কাটে।

(8) মেটাল স্লিটিং মেশিন (Metal slitting machine) :

এই মেশিন সরলরেখা বরাবর, বৃত্ত আকৃতি অথবা অসম বক্র আকৃতির শিট কাটতে ব্যবহার করা হয়। ক্ষোয়ার শিয়ার ও জিলেটিন শিয়ার মেশিনের ন্যায় এই মেশিনও লিভার চালিত। দুটি ব্লেড সম্পন্ন এই মেশিনের শিট কাটার নীতিও কাঁচির ন্যায়। অল্প সময়ে সঠিকভাবে প্রায় ১০ গেজ পর্যন্ত পুরু প্লেট এই মেশিনের সাহায্যে কাটা যায়।

স্নিপস ও শিয়ার্সের যত্ন ও ব্যবহারের সর্তকতা :

স্নিপস ও শিয়ার্স ধাতব টুলস। ঢালাই ইস্পাতের তৈরি এই যন্ত্র ব্যবহারের সময় যথেষ্ট সর্তকতা অবলম্বন করা প্রয়োজন ও ব্যবহারের আগে ও পরে সঠিকভাবে সংরক্ষণ করা প্রয়োজন। স্নিপস ও শিয়ার ব্যবহারকালে নিচে প্রদত্ত নিদেশাবলি মেনে চলা শ্রেয়।

- (১) কোন শীট বা প্লেট কাটার পূর্বেই প্রদেয় মাপ সম্পর্কে নিশ্চিত হতে হবে এবং মাপ অনুযায়ী দাগ টানা হয়েছে কি না তা দেখে নিয়ে স্লিপস বা শিয়ার দিয়ে কাটতে হবে। নচেৎ ভুল মাপে মেটালটি কাটলে শুধু শ্রমই অপচয় ও পণ্ড হবে না, মূলবান কাঁচামাল নষ্ট হয়ে যাবে এবং ক্ষতির সম্মুখীন হতে হবে।
- (২) কাজ শুরু করার আগেই স্নিপস ও শিয়ারের ব্লেডের ধার পরীক্ষা করে নিতে হবে। কারণ টুলস-এর ধার কম থাকলে কাটা মসৃণ হবে না, তা ছাড়া কাটিং চাপও (cutting pressure) বেশি লাগবে।
- (৩) স্নিপস ও শিয়ারের কর্তন ক্ষমতার অধিক পুরুত্বের শিট ও প্লেট কাটার চেষ্টা করা উচিত নয়। এতে কাটিং ক্ষমতা নষ্ট হয়ে যায়। অনেক সময় অত্যাধিক চাপ প্রয়োগের ফলে ব্লেড ভেঙ্গে গিয়ে বিপদ ঘটতে পারে।
- (৪) শীট বা প্লেট কাটার সময় কর্তন চাপ (cutting pressure) সমসত্ব (uniform) হওয়া উচিৎ। এতে স্থিপস বা শিয়ারের ধার অটুট ও দীর্ঘস্থায়ী হয়।

৩। চিজেল (Chisel):

চিজেল ধাতু বা অধাতু কাটার একটা সাধারণ যন্ত্রবিশেষ। অর্থাৎ যে হস্তচালিত (Hand tools) যন্ত্রের সাহায্যে আকস্মিক আঘাত (Impact load) প্রয়োগ করে কোনো ধাতু বা অধাতুকে কেটে দ্বিখণ্ডিত করা বা কোনো

অসমতল ক্ষেত্রকে সমতল করা হয় সেই কাটিং টুলসকে চিচ্ছেল বলে। চিচ্ছেল প্রধানত কিটিং কাল্ক ও ধাতব শীট কাটার কাল্কে ব্যবহৃত হয়। কিটিং কাল্কে মেটাল চিপিং করে অপসারণ করাসহ বিভিন্ন আকৃতি প্রদান করে। হাতুড়ির আবাতে চিচ্ছেলের সাহায্যে কটাকে বলে চিপিং (Chipping)।

শক্ত ইস্পাত (Tool steel) এর তৈরি ধারালো মুখ বিশিষ্ট এই বস্তুটার মাখার হাড়ড়ির আঘাত দিরে কাটার কাজ করা হয়। এই যদ্ভের মুখ (Point) এর কাটিং এজ এর উপরে বে অংশ তাকে শ্যাংক (Shank) বলা হর। শ্যাংক সাধারণত গোলাকার, ষড়ভুজ বা

চিত্ৰ ঃ ৩.২০ চিজেল

অইন্থজ আকৃতির হয়ে থাকে বাতে কাজ করার সময় হাতের মৃষ্টি দিয়ে শক্তভাবে ধরা (Grip) যার এবং হাতৃড়ির আঘাত করার সময় মৃষ্টি থেকে পিছলে না যায়। শ্যাংক (Shank) এর উপরিভাগ মাথায় অংশকে কেস বা হেড (Face or head) বলে।

চিজেদের কাটবার ধার বা মুখকে ভাপত্রিন্মার মাধ্যমে টেম্পার দিয়ে নিতে হয়, যেন অধিক চাপে মুখ থুবড়ে না যার অথবা অভিরিক্ত শক্ত হওরার কারণে মুখ তেকে না যার। আর মাথার অংশ অপেকাকৃত নরম রাখা হয়, যেন হাতৃড়ির আঘাতে মাথার অংশ তেকে টুকরো টুকরো না হয়ে যায়। চিজেল প্রধানত দুই প্রকারের হয়ে থাকে

- (১) ঠাড়া চিজেল (Cold Chisel)
- (২) গরম চিজেল (Hot Chisel)

কোন্ড চিজেল সাধারণ ফিটিং কাজে ও ধাতব শীট কাটার কাজে বছল ব্যবহার হয়ে আসছে। কাজের ভিন্নতা ও ভিনু রকম খাতু কর্তনের জন্য কোন্ড চিজেলকে নিয়ুরূপে বিভিন্ন শ্রেণীতে বিভিন্ত করা হয়েছে। যেমন—

- (১) চ্যাপটা বা ফ্রাট চিজেল (Flat chisel)
- (২) আড়াআড়ি বা ক্রসকাট চিজেল (Cross-cut chisel)
- (৩) চোখা মুখ বা ডায়মন্ড পরেন্ট চিজেন (Diamond point chisel)
- (৪) গোল মুখ বা রাউন্ড নোজ চিজেল (Round-nose chisel)
- (৫) পার্শ্ব বা সাইড চিচ্ছেল (Side chisel)

চিজেলের কাটিং এজ ভেকে যাবার কারণ :

অনেক সময় দেখা বায় অল্প ব্যবহারেও চিজেলের কাটিং এজ বা মুখ ভেঙ্গে বাচেছ। নানা কারণে চিজেলের মুখ ভাঙতে পারে। বেমন-

- ১। চিজেল টেম্পারিং করাতে অত্যন্ত শব্দ ও ভংকুর হয়। এটা টেম্পারিং-এর দোষ। ভদুরতা কয়ানোর জন্য সঠিকভাবে তাপক্রিয়া প্রয়োজন। আবার টেম্পার কয় হলেও চিজেলের মুখ বসে যাবে অথবা ভৌতা (Blant) হয়ে যাবে।
- ২। কাটিং অ্যাঙ্গেল যদি খাড় অনুযায়ী ঠিক না থাকে। কাটিং এঙ্গেল কম, এরূপ চিজেল দিয়ে শব্দ খাড় কাটলে চিজেলের মুখ ডাঙবেই।
- ৩। ক্লিয়ারেন্স অ্যান্সেন্স যদি ধাতু অনুযারী ঠিক না থাকে তাহলেও চিচ্ছেলের মুখ ডেঙে যেতে পারে।

- 8। একেবারে বেশি পরিমাণ ধাতু ক্ষয় বা অপসারণ করতে গেলে।
- ৫। সঠিকভাবে হাতুড়ির আঘাত না করলে।

8 । शांक (Punch) :

ধাতৃ, রাবার, চামড়া, কাগজ ইত্যাদি বস্তুতে ছিদ্র করার কাজে ব্যবহার করা হয়। ধাতুর দাগ বসানো, পিন অথবা রিভেট বের করার কাজে, ছিদ্রের মধ্যে আটকে পড়া পিন বের করতে পাঞ্চ অতি প্রয়োজনীয় একটি টুলস।

বিশেষ ধরনের পাঞ্চ দ্বারা প্র্মেট (Gromets)-এর স্নেপ ফেসনার (Snap fasteners) লাগানো কাজে পাঞ্চ মেশিন ব্যবহার করা হয়। ধাতৃ পাতের মধ্যে এক বা একাধিক (এক সঙ্গে ১২টা) ছিদ্র করার জন্য বেঞ্চ পাঞ্চ (Bench punch) মেশিন জনপ্রিয়।

কাজের ধরন অনুযায়ী পাঞ্চকে প্রধানত তিন ভাগে ভাগ করা যায়।

- (১) সলিড বা নিরেট (Solid) পাঞ্চ।
- (২) হলো বা ফাঁপা (Hollow) পাঞ্চ।
- (৩) হাান্ড বা হাত (Hand) পাঞ্চ।

(১) সলিড পাঞ্চ (Solid punch) :

এই ধরনের পাঞ্চ দেখতে নিরেট বা সলিড। সাধারণ কাজে প্রায়শই ব্যবহার করা হয়। প্রয়োজন অনুযায়ী নিরেট পাঞ্চকে ৪ প্রকারে ভাগ করা যায়।

- (ক) সেন্টার পাঞ্চ (Centre punch)
- (খ) প্রিক পাঞ্চ (Prick punch)
- (গ) ড্রিফট পাঞ্চ (Drift punch)
- (ঘ) ড্ৰাইড পিন পাঞ্চ (Drive pin punch)

চিত্র ঃ ৩.২১ সেন্টার পাঞ্চ

(ক) সেন্টার পাঞ্চ (Centre punch) :

সেন্টার পাঞ্চ শব্দ টুল স্টিলের তৈরি। সেন্টার পাঞ্চ-এর মুখ (point) ৯০ ডিগ্রী কোণে ধারাল করা থাকে। এটা দেখতে সংকু জাতীয় অর্থাৎ এর ব্যাস ক্রমাম্বয়ে সরু অপর দিক মোটা বিশিষ্ট হয়। এর দেহ (Body) গোলাকার, চতুর্ভুজ, ষড়ভুজ, নার্লিং করা থাকে। সেন্টার পাঞ্চ টুল স্টিলের তৈরি হলেও এর মুখ (point)

হার্ডেন ও টেম্পার করা থাকে। তবে মাথা যাতে হাতৃড়ির আঘাত সহ্য করতে পারে তার জন্য অপেক্ষাকৃত নরম করা হয়। দ্রিল করার আগে সেন্টার পাঞ্চ দিয়ে পয়েন্ট তুলে দিতে হয়। ৭৫ মি.মি. থেকে ১৫০ মি.মি. লম্বা এবং মাথার দিকের ব্যাস ২

চিত্র : ৩.২২ প্রিক পাঞ্চ

মি.মি. থেকে ১৫ মি.মি. ব্যাস বিশিষ্ট সেন্টার পাঞ্চ বছল ব্যবহৃত। হাতৃড়ির আঘাত ব্যতিরেক পাঞ্চ মার্ক করার জন্য বিশেষ ধরনের সেন্টার পাঞ্চ গ্রাভিটি পাঞ্চ নামে পরিচিত।

(খ) থিক পাঞ্চ (Prick punch) :

প্রিক পাঞ্চ এর অপর নাম ডট (Dot) পাঞ্চ। সেন্টার পাঞ্চের ন্যায় আকৃতি বিশিষ্ট ও একই ধাতুর তৈরি প্রিক পাঞ্চের পরেন্ট (point) ৩০ ডিগ্রী থেকে ৬০ ডিগ্রী কোণে স্চালো থাকে। অপেক্ষাকৃত নরম ধাতু (অ্যানুমিলিয়াম, পিতল) পৃষ্ঠে গভীর দাগ বা মার্ক দিতে প্রিক পাঞ্চ বিশেষ উপযোগী।

(গ) দ্বিকট পাঞ্চ (Drift punch) :

সাধারণত দ্রিফট পাঞ্চ ১৫০ মি.মি. থেকে ৩৫০ মি.মি. পর্যন্ত লম্বা ও ২ মি.মি. থেকে ১২ মি.মি. ব্যাসের হয়ে থাকে। একে অ্যালাইনিং (alining) পাঞ্চণ্ড বলা হয়। এর মুখ (point) সমতল এবং দেহ যেন ছিদ্রের মধ্যে আবদ্ধ

না হয়ে যায় এর জন্য মুখের উপর অংশে ক্রমশ কম ব্যাসের হয়ে থাকে। চিব্র ঃ ৩.২৩ দ্রিফট পাঞ্চ

এর সাহায্যে সোজা পিন, টেপার পিন, রিভেট ইত্যাদি ছোট যন্ত্রাংশ বের করার কাজে ব্যবহার করা হয়।

(ম) দ্রাইভ পিন পাঞ্চ (Drive pin punch) :

ড্রাইড পিন পাঞ্চের মুখ ভোঁতা ও চেন্টা সমতলতা বিশিষ্ট থাকে। বিভিন্ন আকারের কতকগুলি ড্রাইভ পিন পাঞ্চ দিয়ে একটা সেট গঠিত হয়। (সাধারণত ৯-১২টি) কাঠের বাজে রক্ষিত সেট আকারে বাজারে পাওয়া যায়।

এই পাঞ্চ দিয়ে কোনো মেশিন, ইঞ্জিন, যন্ত্রাংশের পিন ও বিভিন্ন প্রাকারের ছোট ব্যাসে আটকে পড়া যন্ত্রাংশ হাতৃড়ির আঘাতে বের করা হয়। মেশিন শপ, মোটর গ্যারেজ ও বিভিন্ন তদারকিতে (maintenance) ওয়ার্কশপে এই পাঞ্চ ব্যবহার করা হয়। ৭৫ মি.মি. থেকে ১৫০ মি.মি. লঘা ও প্রায় ১২ মি.মি. ব্যাসবিশিষ্ট ও ড্রিফট পাঞ্চের ন্যায় আকৃতি বিশিষ্ট এই পাঞ্চ কাস্ট অথবা টুল স্টিলের তৈরি হয়।

ennemaria e en amenera,

চিত্র: ৩.২৪ ড্রাইভ পিন পাঞ্চ

চিত্র : ৩.২৫ হলো বা ফাঁপা পাঞ্চ

(২) হলো বা ফাঁপা পাঞ্চ (Hollow punch) :

কাঁপা পাঞ্চ ধাতব শীট, চামড়া, রাবার, কাগজ ইত্যাদি বস্তুতে বড় ব্যাসের ছিদ্র করতে ব্যবহার করা হয়। টিন ওয়াসার তৈরি হয় ফাঁপা পাত্র দিয়ে। এর মুখ গোলাকার ফাঁপা ও কাটিং এজ বিশিষ্ট। এর পূর্ণ নাম হলো মেটাল কাটিং পাঞ্চ (Metal cutting punch) মুখের ব্যাস ৬ মি.মি. থেকে ২৫ মি.মি. পর্যন্ত হয়। বিভিন্ন ব্যাসের করেকটা পাঞ্চ নিয়ে হলো পাঞ্চ সেট বাজারে পাওয়া যায়।

(৩) হ্যান্ড বা হাত (Hand) পাঞ্চ :

একে হ্যান্ড লিভার পাঞ্চ (Hand lever punch)ও বলা হয়। প্রকৃতপক্ষে লিভার ব্যবস্থায় ক্রিয়াশীল হাত দিয়ে চালনা করা পাঞ্চ ও ডাই যুক্ত একটা যন্ত্র এই হ্যান্ড পাঞ্চ। এর দ্বারা পাতলা শীটের সীমানা বরাবর ক্ষুদ্র ক্ষুদ্র

চিত্র : ৩.২৬ হ্যান্ড বা হাত পাঞ্চ

ছিদ্র করতে সুবিধা হয়। একে ব্যবহার করতে কোন হাতুড়ির আঘাতের প্রয়াজন হয় না। এক হাতে পাঞ্চকে ধরে রেখে অপর হাত দিয়ে হাতল (Handle) এর উপর চাপ দিলেই শিটে ছিদ্র হয়ে যায়।

৫। ফাইল (Files) :

ফাইলকে বাংলায় উখা বা রেতি বলা হয়।
এটা এক প্রকার কাটিং টুলস। ধাতুর পৃষ্ঠ
চিজেল দিয়ে কর্তনের পর অমসৃণ তলকে
মসৃণ করার জন্য ফাইল বিশেষ উপযোগী।
হার্ডেন্ড টুল ইস্পাত (Hardend Tool
Steel) দিয়ে ফাইল তৈরি হয়।

চিত্ৰ: ৩.২৭ ফাইল

এর সমান তলসমূহে অসংখ্য কাটিং এজ বা দাঁত থাকার দক্ষন ফাইল মালটিপল (Multiple) কাটিং টুল-এর পর্যায়ে পড়ে। প্রশস্ত তলসমূহের এই দাঁতগুলো প্রান্তের (edge) সাথে কোণ বরাবর (Diagonal) কাটা থাকে। ফাইলের এক প্রান্ত স্চালো। একটা প্লাস্টিক বা কাঠের হাতল এই স্চালো অংশ বরারব প্রবেশ করিয়ে কাজ করা হয়। এটা একটি বিশেষ প্রয়োজনীয় হ্যাল্ড টুলস। জেনারেল মেকানিক্স ওয়ার্কশপ, কাটিং করাখানায় অথবা যে কোনো কারিগরি কাজে ফাইলের ব্যবহার অন্যতম প্রধান।

ফাইলের প্রধান দুটো অংশ। একটার নাম ব্লেড বা বডি আর অন্যটার নাম টং। এই টং অংশটাই হাতলের মধ্যে ঢোকানো থাকে। ফাইলের সামনের দিককে পয়েন্ট (Point), চ্যাপটা দিককে ফেস (Face) এবং পাশের দিককে এব্জ (Edge) বলে। টং-এর কাছাকাছি অংশকে বলে হীল (Heel)।

ফাইলের আকৃতি :

বিভিন্ন আকৃতির ফাইল জেনারেল মেকানিক্স কর্মশালায় ব্যবহার করা হয় না। যেমন-

- (ক) ফ্লাট ফাইল (Flat file)
- (খ) স্কোয়ার ফাইল (Square file)
- (গ) রাউভ ফাইল (Round file)
- (ঘ) হাক-রাউভ ফাইল (Half round file)
- (ঙ) ট্রাংগুলার ফাইল (Triangular file) ইত্যাদি।

চিত্র : ৩,২৮ হ্যাক'স এর বিভিন্ন অংশ

৬। হাকি'স (Hack Saw) :

যে কোনো ধাতব বস্তু যেমন- রড, বার, পাইপ, শীট ইত্যাদি কাটার জন্য যে বিশেষ ধরনের করাত ব্যবহার করা হয় হ্যাকস (Hack Saw) তাদের মধ্যে অন্যতম। চলতি অর্থে এই যন্ত্রকে লোহা কাটার করাত বলা হয়। বাস্তবে লৌহজ ও অলৌহজ ধাতু ছাড়াও নানা জাতের প্লাস্টিক, কাঠ জাতীয় দ্রব্যকেও এই করাতের দ্বারা কর্তন করা হয়। এটি একটি অতি প্রয়োজনীয় কাটিং টুলস তথা হ্যান্ড টুলসও বটে। হ্যাকস-এর প্রধান দুটি অংশ

(ক) কাঠামো বা ফ্রেম (Frame) (খ) ব্লেড বা করাত (Blade)

হ্যাক'সকে গঠনের দিক দিয়ে দু'ভাগে ভাগ করা যায়-

(ক) এডজাস্টবল (Adjustable) হ্যাক'স (খ) নিরেট (Solid) হ্যাক'স ।

৪। পরিমাপক টুলস (Measuring Tools):

যেসব ডিভাইস কোনো বস্তু বা যন্ত্রাংশের মাপ গ্রহণ বা মাপ পাঠ করার কাজে ব্যবহৃত হয় তাদেরকে পরিমাপক যন্ত্রপাতি বা মেজারিং টুলস বা ইন্ট্র্মেন্ট বলে। যেমন : স্টিল রুল, ক্যালিপার্স, কম্বিনেশন সেট, মাইক্রোমিটার ইত্যাদি।

কোনো বস্তুর দৈর্ঘ্য পরিমাপ করার জন্য যে সকল পরিমাপ যন্ত্র ব্যবহার করা হয় তাদেরকে রৈখিক পরিমাপক যন্ত্র (Linear Measuring Instrument) এবং কোনো বস্তুর কৌণিক পরিমাপ গ্রহণ করতে যেসব যন্ত্রপাতি ব্যবহৃত হয় তাদেরকে কৌণিক পরিমাপক যন্ত্র (Angular Measuring Instrument) বলে। রৈখিক ও কৌণিক ও উত্তয় প্রকার মাপের যন্ত্রপাতিগুলোকে সৃক্ষতার উপর তিত্তি করে দু'ভাগে ভাগ করা যায়। যেমন:

- (১) অসৃন্দ্র পরিমাপক যন্ত্রপাতি (Non-Precision Measuring Instrument)
- (২) সৃক্ষ পরিমাপক যন্ত্রপাতি (Precision Measuring Instrument)

১. অসুন্ম পরিমাপক যন্ত্রপাতি :

যেসব পরিমাপক যন্ত্রপাতির সাহায্যে সর্বনিম্ন রৈখিক মাপ ০.৫ মি.মি. এবং সবনিম্ন কৌণিক মাপ ১ ডিগ্রী সৃক্ষতায় গ্রহন করা বা নিরূপণ করা যায় তাাদেরকে অসৃক্ষ পরিমাপক যন্ত্রপাতি বা নন-প্রিসিশন মেজারিং ইনস্ট্রুমেন্ট বলে। যেমন: স্টিল রুল, ক্যালিপার, ডিভাইডার, কম্বিনেশন সেট, ট্রাই স্কোয়ার ইত্যাদি।

২. সৃক্ষ পরিমাপক যন্ত্রপাতি :

যেসব পরিমাপক যন্ত্রপাতির সাহায্যে রৈখিক মাপ ০.০১ মি.মি. বা কম এবং কৌণিক মাপ ৫ মিনিট বা তদপেক্ষা অধিক সৃক্ষতা মাপ গ্রহণ করা সম্ভব হয়, তাদেরকে সৃক্ষ পরিমাপক যন্ত্রপাতি বা প্রিসিশন মেজারিং ইনস্ট্রমেন্ট বলে। যেমন: মাইক্রোমিটার, ভার্নিয়ার ক্যালিপার্স, ভার্নিয়ার হাইট গেজ, সাইনবার, ভার্নিয়ার বিভেল প্রট্রেক্টর ইত্যাদি।

মেজারিং টুলস এবং ইনস্ট্রমেন্ট এর মধ্যকার তুলনা (Difference between Measuring Tools and Instruments):

মেজারিং টুলস	মেজারিং ইনস্ট্রমেন্ট ১। প্রিসিশন মেজারিং ডিভাইসগুলোকে প্রধানত মেজারিং ইনস্ট্রমেন্ট (Measuring Instruments) বলে।			
 ১। নন প্রিসিশন মেজারিং ডিভাইসগুলোকে সাধারণত মেজারিং টুলস (Measuring Tools) বলে। 				
২। মেজারিং টুলসের মধ্যে স্টিল রুল, ট্রামেল , কম্বিনেশন সেট, সারফেস গেজ ইত্যাদি প্রধান।	২। মেজারিং ইনস্ট্রমেন্ট এর মধ্যে মাইক্রোমিটার, ভার্নিয়ার ক্যালিপার্স, হাইট গেজ, ভার্নিয়ার বিভেল প্রোট্রেক্টর ইত্যদি প্রধান।			
৩। সাধারণ মাপের পরিদর্শন কাব্জে ব্যবহৃত হয় ।	৩। অধিকতর সৃক্ষ পরিমাপের ক্ষেত্রে ব্যবহৃত হয়।			
৪। বহুল উৎপাদনে পরিদর্শন কাজে ব্যবহৃত হয়না।	৪। বহুল উৎপাদনে পরিদর্শন কাজে ব্যবহৃত হয়।			

ে। অধিকাংশগুলোর উৎপাদন খুবই সহজ।	 ৫। অধিকাংশগুলোর উৎপাদন খুবই জটিল। ৬। মেজারিং ইনস্ট্র্মেন্ট এর ব্যবহার তুলনামূলক কঠিন। 		
৬। মেজারিং টুলস-এর ব্যবহার সহজ।			
৭। সাধারণ শ্রমিকই এ টুলস থেকে পাঠ নিতে সক্ষম।	৭। পাঠ নেয়ার জন্য দক্ষ এবং অভিজ্ঞ কারিগর প্রয়োজন।		

প্রিসিশন ও ননপ্রিসিশন ইনস্ট্রমেন্টের মধ্যেকার তুলনা (Difference between the precision and non-precision Instruments):

ননপ্রিসিশিন ইনস্ট্রুমেন্ট	প্রিসিশন ইনস্ট্রমেন্ট ১। এই ইনস্ট্রমেন্ট এর সাহায্যে রৈখিক মাপ 0.01 মি.মি. বা 0.001 ইঞ্জি এবং কৌণিক মাপ 5 মিনিট বা তার চেয়ে সৃক্ষতায় মাপা যায়। ২। এ ইনস্ট্রমেন্ট এর গঠন প্রণালি জটিল হওয়ায় উৎপাদন ব্যয় তুলামূলক বেশি। ফলে দামও বেশি। ৩। ইন্সপেকশন বা মাস্টার গেজ হিসেবে ব্যবহৃত হয়।		
১। এই ইনস্ট্রমেন্ট এর সাহায্যে সর্বনিম্ন রৈখিক মাপ ০.৫ মি.মি. বা 64/1 ইঞ্চি এবং কৌণিক মাপ ১ ডিগ্রী পর্যন্ত সৃক্ষতায় মাপা যায়।			
২। এই ইনস্ট্রমেন্ট এর গঠন প্রণালি সহজ হওয়ায় উৎপাদন ব্যয় কম। ফলে দামে সম্ভা।			
৩। ওয়ার্কিং টুলস হিসেবে ব্যবহৃত হয়।			
৪। রাফ কাজে ব্যবহার করা হয়।	৪। ফিনিশ কাজে ব্যবহার করা হয়।		
৫। নন-প্রিসিশিন ইনস্ট্রমেন্ট মোটামুটি শিক্ষিত ব্যক্তি মাত্রই ব্যবহার এবং মাপ গ্রহণ করতে পারে।	 ৫। প্রিসিশন ইনস্ট্র্মেন্ট ব্যবহারে অধিক শিক্ষিত এবং দক্ষ কারিগরই কেবল ব্যবহার এবং মাপ গ্রহণ করতে পারে। 		
৬। ইনস্টুমেন্ট এর ব্যবহার বহুল উৎপাদনের পরিমাপের ক্ষেত্রে ব্যবহৃত হয় না।	৬। এই ইনস্টুমেন্ট প্রধানত বহুল উৎপাদনের পরিমাপের ক্ষেত্রে ব্যবহৃত হয়।		

পিসিশিন ও-নন প্রিসিশন ইনস্ট্রমেন্ট এর মধ্যে মূল প্রার্থক্য (The difference between precision and non Precision Instrument):

নন-প্রিসিশন ইনস্ট্রমেন্ট এর সাহায্যে সর্বনিমু 0.5 মি.মি. বা 64/1ইঞ্চি এবং কৌণিক মাপ 1 ডিগ্রী পর্যন্ত সুক্ষতায় মাপ গ্রহণ করা যায়।

অন্যদিকে প্রিসিশন মেজারিং ইনস্ট্রুমেন্ট এর সাহায্যে রৈখিক মাপ 0.01 মি.মি. বা 0.001 ইঞ্চি এবং কৌণিক মাপ 5 মিনিটি বা তার চেয়ে অধিক সুক্ষতায় মাপ গ্রহণ করা সম্ভব হয়।

৫। টেস্টিং টুলস (Testing tools) : যে সকল টুলস বা যন্ত্র সাধারণ রকম পরীক্ষা করার কাজে ব্যবহৃত হয় তাদেরকে টেস্টিং টুলস বলে। নিম্নে কয়েকটি টেস্টিং টুলসের নাম প্রদন্ত হলো :

১। ট্রাই ক্ষয়ার (Tri Square)

- ২। স্টেইট এজ (Straight edge)
- ৩। বিভেল প্রটাক্টর (Bevel Protechtor)
- 8। স্পিরিট লেভেল (Sprit Level)
- ৫। স্টিল রুল (Steel Rule) প্রভৃতি।

৬। গেজ (Gauge) : তৈরি করা বস্তু কাজের উপযোগী কিনা এবং এর মাপ গ্রহণযোগ্য সীমার মধ্যে আছে কিনা ইত্যাদি পরীক্ষা করার জন্য যে সকল যন্ত্রপাতি ব্যবহৃত হয়, তাদেরকে গেজ বলে। নিম্নে কয়েকটি গেজ এর নাম উল্লেখ করা হলো :

- ১। প্লাগ গেজ (Plug Gauge)
- ২। রিং গেজ (Ring Gauge)
- ৩। ফিলার গেজ (Filler Gauge)
 - 8। রেডিয়াস গেজ (Radius Gauge)
 - ৫। স্কু পিস গেজ (Screw pice Gauge)
 - ৬। হাইট গেজ (Height Gauge)

৭। মেশিন টুলস (Machine Tools) :

একটি মেশিন যা টুলসের সহায্যে ধাতু থেকে অতিরিক্ত অংশ কর্তনপূর্বক কার্যবন্তুর কাঞ্চ্চিত আকার-আকৃতি প্রদান করে থাকে, তাকে মেশিন টুলস বলে। মেশিন টুলস ব্যবহারের উদ্দেশ্য হলো সময় বাঁচান, উৎপাদন খরচ ব্রাস এবং উনুততর উৎপাদন পাওয়া যা হ্যান্ড টুলসের সাহায্যে পাওয়া সম্ভব হয় না।

সচরাচর জেনারেল মেকানিক্স ও ওয়ার্কশপে যে সকল মেশিন টুলস ব্যবহৃত হয়ে থাকে, তার মধ্যে লেদ, সেপার, মিলিং, ড্রিলিং, প্লোনার, গ্রাইন্ডিং মেশিন উল্লেখযোগ্য।

৩.৪ টুলসের প্রয়োগ, সংরক্ষণ ও রক্ষণাবেক্ষণ

(Application, Preservation and Maintenance of Tools):

টুলসের প্রয়োগ (Application of Tools):

- ১। কাজের ধরন অনুযায়ী যেখান যে টুলস ব্যবহার করা প্রয়োজন সেখানে সে টুলস ব্যবহার করতে হবে। অন্য টুলস প্রয়োগ করা যাবে না।
- ২। কাটিং-এর জন্য কাটিং টুলস, মার্কিং-এর মার্কিং টুলস, মাপ নেওয়ার জন্য মেজারিং টুলস এবং টেস্টিং-এর জন্য টেস্টিং টুলস ব্যবহার করতে হবে।
- ৩। মাপ পরীক্ষা করার জন্য কিংবা তৈরি বস্তু কাজের উপযোগী কিনা তা পর্যবেক্ষণে গেজ ব্যবহার করতে হবে।
- 8। লে আউট করার জন্য কখনও রেখা টানতে ক্রাইবার-এর পরিবর্তে স্টিল রুল, ট্রাই-স্কয়ার প্রভৃতি ব্যবহার করা যাবে না।
- ৫। হাতুড়ি (Hammer)-এর পরিবর্তে অন্য কোনো যন্ত্রপাতি আঘাতের কাজে ব্যবহার না করে হাতুড়িই ব্যবহার করতে হবে।
- ৬। সেন্টারিং-এর জন্য সেন্টার পাঞ্চ ব্যবহার করতে হবে।

অতএব যে সকল কাজে হ্যান্ড টুলস প্রয়োজন, উক্ত কাজে হ্যান্ত টুলস, যেখানে মেজারিং টুলস প্রয়োজন সেখানে মেজারিং টুলস, কাটিং-এর স্থলে কাটিং টুলস, টেস্টিং এর স্থলে টেস্টিং টুলস প্রভৃতি ব্যবহার হবে।

টুলসের সংরক্ষণ (Store keeping of Tools) :

- ১। কাজ করার সময় স্টোর হতে যে সমস্ত টুলস বের করে আনা হয় ঐ সমস্ত টুলসকে কাজের শেষে পরিষ্কার করে সাজিয়ে রাখা একান্ত প্রয়োজন। যে স্থানে ধাতু নির্মিত বেড়া থাকে ঐ স্থানে টুলসকে সাজিয়ে রাখতে হয়।
- ২। প্রয়োজন বোধে টুলসকে তেল বা গ্রীজ দিয়ে বাব্ধে আলাদাভাবে রাখতে হবে। কাটিং টুলস, মার্কিং টুলস এবং টেস্টিং টুলসগুলো পৃথকভাবে সাজিয়ে রাখতে হবে।
- ৩। ফাইলে তেল মেখে সংরক্ষণ করা যাবে না।
- ৪। প্রতিটি টুলস আলাদাভাবে জলীয় কণা প্রতিরোধক কাগজ দিয়ে মুড়িয়ে তাকের উপর অথবা বাব্দে সাজিয়ে রাখতে হবে।
- ৫। ফাইলগুলোকে এমনভাবে রাখতে হবে যেন ফাইলের দাঁত ও প্রান্তগুলোর একটি সঙ্গে অন্যটির ধাকা না লাগে।
- ৬। টুলসকে সর্বদা শুষ্ক ও ঠাগু স্থানে সংরক্ষণ করতে হবে।

টুলসের যত্ন ও কার্যোপযোগী (maintance of Tools) :

টুলসকে কার্যোপযোগী রাখার জন্য রক্ষাণাবেক্ষণের প্রয়োজনীয়তা অনস্বীকার্য।

নিমে টুলসের যত্ন ও রক্ষণাবেক্ষণ তুলে ধরা হলো :-

- কজের সময় য়য়পাতি ওয়ার্কিং টেবিলের উপর এবং সংরক্ষণের সময় বায়ের ভেতর শৃত্থলার সাথে সাজিয়ে রাখতে হয়।
- ২। টুলস জড়ো করে এক সাথে রাখা যাবে না। এক সাথে রাখার প্রয়োজন হলে, একটির পাশে অপরটিকে এমনভাবে সংরক্ষণ করতে হবে যাতে একটি টুলের দ্বারা অন্য টুল ক্ষতিগ্রস্ত না হয়। কিংবা একটিকে নিতে গিয়ে অন্যটি পড়ে নষ্ট না হয়।
- ৩। সৃক্ষ ও মূল্যবান টুলসকে যেমন- ভার্নিয়ার ক্যালিপার্স, মাইক্রোমিটার, ডায়াল ইন্ডিকেটর, বিভেল প্রোট্রাক্টর ইত্যাদি টুলস থেকে পৃথক করে নির্দিষ্ট আধারে সংরক্ষণ করে রাখতে হবে।
- ৪। কাটিং টুলসের সাথে অন্যান্য টুলস রাখা অনুচিত। কাটিং টুলসকে সংরক্ষণের সময় খেয়াল রাখতে হবে যাতে এদের কাটিং এজ নষ্ট না হয়।
- ৫। যন্ত্রপাতি স্টোরে রাখার সময় প্রত্যেকটি টুলসের জন্য আলাদা আলাদা স্থান বরাদ্দ এবং প্রত্যেকটি টুলস বা যন্ত্রের স্থানের উপর উক্ত যন্ত্রের নাম লিখে রাখতে হবে।
- ৬। গরম বা বিষাক্ত ধারাল বা তড়িতায়িত টুলস বা যন্ত্রপাতিকে এমনভাবে রাখতে হবে যাতে বেখায়েল বা অজ্ঞতাবশত কেহ ধরতে না পারে।
- ৭। সংরক্ষণের পূর্বে অর্থাৎ ব্যবহারের পর টুলসকে পরিষ্কার করে প্রয়োজনে মবিল বা গ্রীজ অথবা মরিচারোধী তেলের প্রলেপ দিয়ে রাখতে হবে।

- ৮। সংরক্ষিত টুলস বা যন্ত্রপাতিকে মাঝে মাঝে পরীক্ষা করে দেখতে হবে এবং মরিচা দেখা দিলে কেরোসিনের সাহায্যে অথবা স্মুথ এমারি ক্লথ দিয়ে ঘষে মরিচামুক্ত করে মরিচা রোধক তেলের প্রলেপ দিয়ে রাখতে হবে।
- ৯। টুলসে কোনো ক্রটি দেখা দিলে সাথে সাথে সংশোধনের ব্যবস্থা নিতে হবে এবং ক্রটিযুক্ত টুলসকে অন্যান্য ভালো টুলস থেকে পৃথক রাখতে হবে।
- ১০। টুলসকে সংরক্ষণের জন্য শুষ্ক এবং আর্দ্রতামুক্ত ঠাণ্ডা স্থান বেছে নিতে হবে।

প্রশ্নমালা-৩

অতিসংক্ষিপ্ত প্রশ্ন :

- ১। টুলস কী?
- ২। টুলস প্রধানত কত প্রকার?
- ৩। লেয়িং আউট টুলস কী?
- ৪। কাটিং টুলস কাকে বলে?
- ৫। হ্যান্ড টুলস কাকে বলে?
- ৬। গেজ কী?
- ৭। হাইট গেজ কী কাজে ব্যবহৃত হয়?
- ৮। ক্রেপারের কাজ কী?
- ৯। মানুষ ও কার্যবস্তুর মাঝে তৃতীয় পক্ষ কে?
- ১০। আধুনিক সভ্যতায় প্রায় সব কাজই সম্ভব হচ্ছে কার বদৌলতে?

সংক্ষিপ্ত প্রশ্নোন্তর :

- ১১। টুলস বলতে কী বোঝায়?
- ১২। টুলস প্রধানত কী কী ভাগে ভাগ করা যায়?
- ১৩। জেনারেল মেকানিক্স শপে সচরাচর ব্যবহৃত তিনটি টুলসের নাম লেখ।
- ১৪। লেয়িং আউট টুলস বলতে কীবোঝায়?
- ১৫। মেজারিং টুলস বলতে কী বোঝায়?
- ১৬। কাটিং টুলস বলতে কী বোঝায়?
- ১৭। টুলস ব্যবহারের প্রয়োজনীয়তা উল্লেখ কর।
- ১৮। টুলসের প্রয়োগ সম্পর্কে সংক্ষেপে উল্লেখ কর।
- ১৯। গেজ বলতে কী বোঝায়?
- ২০। হ্যান্ড টুলস সম্পর্কে যা জানো লেখ।

রচনামূলক প্রশ্লোত্তর :

- ২১। টুলস বা যন্ত্র বলতে কী বোঝায়? টুলসের প্রকারভেদ দেখাও।
- ২২। জেনারেল মেকানিক্স শপে ব্যবহৃত বহুল প্রচলিত দশটি টুলসের নাম লেখ।
- ২৩। লেয়িং আউট টুলস বলতে কী বোঝায়? ৫টি লেয়িং আউট টুলসের নাম কর।
- ২৪। কাটিং টুলস বলতে কী বোঝায়? ৫টি কাটিং টুলসের নাম লেখ।
- ২৬। গেজ বলতে কী বুঝায়? ৫টি গেজ এর নাম লেখ।
- ২৭। টুলস-এর যত্ন ও রক্ষণাবেক্ষণ সম্পর্কে যা জানো লেখ।

চতুর্থ অধ্যায়

ধাতু (Metals)

8.০ সূচনা (Introduction) :

পদার্থ বলতে বুঝায়, যার ওজন আছে, কিছু স্থানজুড়ে অবস্থান করে, তাপ প্রয়োগে সম্প্রসারিত হয় আবার তাপ কমিয়ে নিলে সংকৃচিত হয়, বল প্রয়োগে বাধার সৃষ্টি করে ইত্যাদি। এই সকল পদার্থকে তিনটি ভাগে ভাগ করা যায়। যথা—

- ১। কঠিন পদার্থ (Solid Substance)
- ২। তরল পদার্থ (Liquid Substance)
- ত। বায়বীয় পদার্থ (Airy Substance)

মূলত ধাতু এক ধরনের কঠিন পদার্থ। প্রতিদিন বিভিন্ন ধাতুর তৈরি জিনিস নানা ব্যবহারিক উপকরণ হিসেবে ব্যবহৃত হয়ে থাকে। এ সকল ধাতুর উৎপত্তিস্থল কোথায় কী উপায়ে পাওয়া যায় সে সম্পর্কে একটা ভালো ধারণা অনেকেরই থাকে না। আসলে ধাতু বলতে খাটি ধাতু (Pure Metal) ও সংকর ধাতু (Alloy Metal) কে বুঝায়। আবার প্রতিটি ধাতুই আকরিক থেকে পাওয়া যায়। আকরিকসমূহ খনিতে, ভূপৃষ্ঠে অথবা ভূগর্ভে মাটির সাথে মিশে থাকে। বিভিন্ন ভৌত ও রাসায়নিক প্রক্রিয়ায় আকরিক থেকে মূল ধাতু (Aluminum), তামা (Copper), দস্তা (Zine), সীসা (Lead), স্বর্ণ (Gold), রৌপ্য (Silver), প্লাটিনাম (Platinum) ইত্যাদি খাঁটি অবস্থায় অপেক্ষাকৃত নরম (Soft) অবস্থায় থাকে।

কখনওবা এই সকল মূল ধাতু কার্যক্ষেত্রে খাঁটি অবস্থায় গুণগত মান বর্ধন করতে সক্ষম হয় না। এ ক্ষেত্রে ধাতুর যান্ত্রিক শক্তি বৃদ্ধির জন্য মূল ধাতুর সাথে অন্য কোনো ধাতু অথবা অধাতু মিশ্রিত করা হয়। যেমন- খাঁটি লোহার সাথে কার্বন ও নিকেল, ক্রোমিয়াম ইত্যাদি ধাতু মিশ্রিত করে সংকর ইস্পাত তৈরি করা হয়। ধাতুর সাথে অধাতুর একত্রীকরণকে সংকরায়ন (Alloying) বলা হয়। সমভাবে তামার সাথে দন্তা মিশ্রিত করলে তৃতীয় যে ধাতুটি পাওয়া যায় সেটা একটি অলৌহজ সংকর ধাতু- যা কিনা পিতল (Brass) নামে বহুল পরিচিত।

অতএব, এ কথা বলা যায় যে, দুই বা ততোধিক ধাতু মিশ্রিত করে সংকর ধাতু উৎপাদন করা হয়। সেই সংকর ধাতু শক্ত (Strong) দীর্ঘস্থায়ী ও বিশেষ গুণসম্পন্ন হয়। বাণিজ্যিক ভিত্তিতে এ সকল ইস্পাতের নামকরণ করা হয় স্টেইনলেস ইস্পাত (Stainless Steel), হাইস্পিড ইস্পাত (High Speed Steel), পিতল (Brass), গানমেটাল (Gun Metal), ব্রোঞ্জ (Bronze) ইত্যাদি। সংকর ধাতুসমূহ উচ্চ যান্ত্রিক ধর্ম সম্পন্ন, উচ্চ ক্ষয়রোধী ও দীর্ঘস্থায়ী হয়ে থাকে।

8.১ ধাতু (Metals) :

ধাতু হলো এক ধরনের কঠিন পদার্থ যাকে প্লেট (Plate), বার (Bar), শীট(Sheet) আকৃতি প্রদান করা যায় এবং আঘাতে ঝন্ঝন্ শব্দ সৃষ্টি করে বাজে তাকে ধাতু (Metal) বলে। ধাতুর উৎপত্তিস্থল খনি, ভূপৃষ্ঠ অথবা ভূগর্ভ যেখানে ধাতুসমূহ আকরিক হিসাবে মাটির সাথে মিশে থাকে। বিভিন্ন ভৌত ও রাসায়নিক প্রক্রিয়ায় আকরিক থেকে মূল ধাতু পাওয়া যায়।

ধাতব পদার্থের বৈশিষ্ট্য (Characteristies of metals) :

- (ক) ধাতু ওজনে ভারী এবং বর্ণও উজ্জ্বলতা বিশিষ্ট।
- (খ) আঘাতে ধাতব আওয়াজ বা শব্দ উৎপন্ন করে।
- (গ) তাপ প্রয়োগে সম্প্রসারিত ও তাপ অপসারণ করলে সংকৃচিত হয়।
- (घ) তাপবিদ্যুৎ পরিবাহিতা গুণ থাকে।
- (%) একাধিক মৌলিক ধাতুর মিশ্রণে তৃতীয় মিশ্র ধাতু উৎপন্ন হয়।

ধাতুর ধর্ম (Properties of metals) :

ধাতুর ধর্মকে তিনটি শ্রেণীতে ভাগ করা যায়। যথা-

- (ক) প্রাকৃতিক ধর্ম (Natural Properties) : বর্ণ, ওজন, অভ্যন্তরীণ গঠন ইত্যাদি।
- (খ) যান্ত্রিক ধর্ম (Mechanical Properties) : পীড়ন, বিকৃতি, স্থিতিস্থাপকতা, ঘাতসহতা ইত্যাদি।
- (গ) গলনীয়তা (Fusibility): প্রযুক্ত তাপ, প্রয়োগে ভিন্ন ধাতু ভিন্ন মাত্রায় গলে যাওয়া।
- (ঘ) চুম্বকত্ব (Magnetism) : যে ধর্মে ধাতু চুম্বকে আকৃষ্ট হয়, যেমন- লৌহজ ধাতু।
- (ঙ) বিদ্যুৎ ও তাপ পরিবাহী (Electrical and beat conductivity) ঃ বৈদ্যুতিক চার্জ পরিবহন যোগ্যতা।

ধাতু ব্যবহারে জেনারেল মেকানিক্স ওয়ার্কসের গুরুত্ব:

আমাদের দৈনন্দিন জীবনে প্রায় প্রতিটি ক্ষেত্রে ধাতব বস্তুর ব্যবহার চলছে ব্যাপকহারে। আদিম যুগের মানুষেরাও গৃহস্থালী কাজে, পশু শিকারে ও আত্মরক্ষার কাজে ধাতব পাতের তৈরি বিভিন্ন হাতিয়ার তৈরি করতো তার প্রমাণ রয়েছে। পরবর্তীকালে কৃষি কাজেও ধাতুর ব্যবহার করত তারা। আর বর্তমানের যান্ত্রিক যুগে ধাতব পদার্থের ব্যবহার এত ব্যাপক যা বলার অপেক্ষা রাখে না। বিজ্ঞানের অপ্রগতির সাথে সাথে ধাতব পদার্থের গুণগত মান বৃদ্ধিসহ বিভিন্ন ধরনের ধাতব পদার্থ আবিশ্কৃত হয়েছে যা কিনা মানব কল্যাণে সর্বত্র ব্যবহৃত হছেে। যেমন- গৃহস্থালি কাজের বাসন-কোসন, হাঁড়ি কড়াই, আসবাবপত্র, যানবাহন, বিমান, স্টিমার, যুদ্ধের সরঞ্জাম যেমন- বোমারু বিমান, ট্যাংক, বন্দুক, বাইসাইকেল, রিকশা ইত্যাদি কাঁচামাল শিল্প প্রতিষ্ঠানের বিভিন্ন ধরনের যন্ত্রপাতি, মেশিনারিজ, ঘরবাড়ি, ইমারত তৈরির সামগ্রী ও সরঞ্জাম ইত্যাদি ঘর সাজানো জিনিসপত্র, রেফ্রিজারেটর, কম্পিউটার ইত্যাদি সকল সামগ্রীই কোনো না কোনো ধাতব পদার্থের তৈরি। তাই বর্তমান সভ্যতায় ধাতব পদার্থের ব্যবহার বৃদ্ধি পাওয়ায় জেনারেল মেকানিক্স ওয়ার্কসের গুরুত্ব ও প্রয়োজনীয়তা ব্যাপকতর হচ্ছে।

8.২ ধাতুর মৌলিক শ্রেণিবিভাগ (Fundamental Classification of Metals) :

ধাতুসমূহকে প্রধানত দুই ভাগে ভাগ করা যায়। যথা-

- ১। লৌহজ ধাতু (Ferrous Metal)
 - (ক) পিগ লোহা (Pig Iron)
 - (খ) ঢালাই লোহা (Cast Iron)
 - (গ) পেটা লোহা (Wrought Iron)
 - (ঘ) ইস্পাত (Steel)
- ২। অলৌহজ ধাতু (Non-Ferrous Metal)
 - (ক) তামা (Copper)

- (খ) অ্যালুমিনিয়াম (Aluminum)
- (গ) জিংক (Zinc)
- (ঘ) টিন (Tin)
- (ঙ) লীড (Lead)
- (চ) নিকেল Nickel)
- (ছ) টাংস্টেন (Tungsten)
- (জ) ক্রোমিয়াম (Chromium)
- (ঝ) ভ্যানাডিয়াম (Vanadium)
- (ঞ) কোবাল্ট (Cobalt)
- (ট) মলিবডিনাম (Molybdenum)

এছাড়াও অলৌহজ ধাতু সংকর হিসাবে পাওয়া যায়-

- (ক) ব্রাস (Brass)
- (খ) ব্ৰাঞ্জ (Bronze)
- (গ) গান মেটাল (Gun Metal)
- (ঘ) ফসফর ব্রোঞ্জ (Phosphor Bronze)
- (ঙ) ম্যাঙ্গানিজ ব্ৰোঞ্জ (Manganese Bronze)
- (চ) সিলিকন ব্ৰোঞ্জ (Silicon Bronze)
- (ছ) অ্যালুমিনিয়াম ব্ৰোঞ্জ (Aluminum Bronze)
- (জ) মনেল মেটাল Monel Metal)
- (ঝ) ডেল্টা মেটাল (Delta Metal)
- (ঞ) ডাউ মেটাল (Dow Metal)
- (ট) ওয়াই সংকর (Y-Alloy)
- (ঠ) অ্যালুমিনিয়াম সংকর (Aluminum Alloy)

লৌহজ ধাতু (Ferrous Metals) :

লৌহজ ধাতু বা লোহার ইংরেজি নাম আয়রন (Iron)। এর বর্ণ সাদা এবং উজ্জ্বল, জলীয় বায়ুর সংস্পর্শে এলে মরিচা পড়ে বলে মলিন দেখায়। লোহা সরাসরি খনি থেকে পাওয়া যায় না, তবে প্রাকৃতিক ও অবিশুদ্ধ অবস্থায় মাটি, বালির সাথে লোহার আকরিক হিসাবে (ore) পাওয়া যায়। এই আকরিক থেকে বিভিন্ন প্রক্রিয়া প্রয়োগ করে পিগ আয়রন উৎপাদন করা হয়। আর এই পিগ আয়রনের সাহাযেয় বিভিন্ন উপায়ে পেটা লোহা (wrought iron), ঢালাই লোহা (cast iron), নরম ইস্পাত (Mild steel), সংকর ইস্পাত (alloy steel) ইত্যাদি উৎপাদন করা হয়। সবচেয়ে বেশি লৌহজ ধাতুর ব্যবহার হয়ে থাকে নিত্যদিন। বাংলাদেশে কোন লোহার খনি এ যাবত আবিশ্বত হয়নি। তবে ভারত, ব্রিটেন, সুইডেন, মার্কিন যুক্তরাষ্ট্র ইত্যাদি অনেক দেশে লোহার খনিতে লোহাকে আকরিক হিসেবে পাওয়া যায়।

(ক) পিগ লোহা (Pig iron): প্রাথমিকভাবে লোহার আকরিক সমূহকে গলন করে পিগ লোহা উৎপাদন করা হয়। প্রাথমিক স্তর বলে এই লোহা দিয়ে সরাসরি কোন কাঠামোগত কাজ করা যায় না। এই লোহাকে অবিশুদ্ধ

লোহা বলে। ঢালাই লোহা (cast iron), ইস্পাত (steel) উৎপাদনে এই লোহা কাঁচামাল হিসাবে ব্যবহার করা হয়।

পিগ আয়রত প্রধানত দুই প্রকার যথা-

- ১। হোয়াইট পিগ আয়রন White pig iron)
- ২। গ্রে পিগ আয়রন (Gray pig iron)
- (খ) ঢালাই লোহা (Cast iron) : লৌহ উৎপাদনের দ্বিতীয় স্তর হলো ঢালাই লোহা। পিগ লোহাকে কিউপোলা (Cupola) নামক চুল্লিতে পুনরায় গলন করে ছাঁচে ঠেলে ঢালাই লোহা উৎপাদিত হয়। এতে কার্বনের পরিমাণ থাকে সবচেয়ে বেশি। সব ধরনের ঢালাই কাজে ব্যবহার করা হয়।

এই লোহার দোষগুণ নিমুরূপ:

- (ক) অতিরিক্ত শক্ত ও ভঙ্গুর।
- (খ) বেঁকে যায় না।
- (গ) আকস্মিক কম্পন সহ্য করতে পারে না।
- (ঘ) চাপ শক্তি সহ্য করতে সক্ষম।
- (%) অপেক্ষাকৃত কম তাপ মাত্রায় গলে যায়। (১১৫০-১২৬০° সেঃ)
- (চ) এর উপর সহজে মরিচা পড়ে না।
- (ছ) হাতুড়ির আঘাতে ভেঙ্গে টুকরা টুকরা হয়ে যায়।

ঢালাই লোহার ভিতরটা ভাঙলে ক্ষটিকের মতো দানাদার দেখায়। এর মধ্যে কার্বনের পরিমাণ সবচেয়ে বেশি, অর্থাৎ ৩-৫%। এছাড়া সিলিকন ০.৯৪-২.৮%, ম্যাঙ্গানিজ ০.৫%-১%, ফসফরাস ০.৩৫-১.২% এবং সালফার থাকে ০.১%। সিলিকন কার্বন লোহাকে শক্ত করে, এই কার্বনকে গ্রাফাইটে পরিণত করে, ফলে ঢালাই লোহা নরম ও গলিত অবস্থায় বেশি তরল হয়। সিলিকন সংকোচন শক্তিকেও কমায়। সালফার কার্বনকে লোহার সাথে রাসায়নিকভাবে যুক্ত করায় এবং ঢালাই লোহাকে শক্ত ও ভঙ্গুর করায়। সংকোচন শক্তিকে বৃদ্ধি ও ধাতুকে শীঘ ঠাণ্ডা হতে সাহায্য করে। তবে সাধারণত এর পরিমণ ১% এর কম হওয়া ভালো। ম্যাঙ্গানিজ-এর পরিমাণ ০.৪% এর কম থাকলে ঢালাই লোহা নির্দোষ হয়। ফসফরাস ঢালাই লোহাকে নরম ও তরল করে।

কাস্ট আয়রন বা ঢালাই লোহাকে নিমুরূপে শ্রেণি বিভাগ করা যায়। যথা-

- ১। হোয়াইট কাস্ট আয়রন (White cast iron)
- ২। গ্রে-কাস্ট আয়রন (Gray cast iron)
- ৩। মটল্ড কাস্ট আয়রন Mottled cast iron)
- 8। চিল্ড কাস্ট আয়রন (Chilled cast iron)
- ৫। মেলিয়েবল কাস্ট আয়রন (Malleable cast iron)
- ১। হোয়াইট কাস্ট আয়রন White cast iron) : কার্বন এতে যুক্ত অবস্থায় থাকে বলে শক্ত বেশি হয় ও মেশিনিং সমস্যা হয়। সাধারণত এই শ্রেণির ঢালাই লোহা পেটা লোহা (Wrought iron), ইম্পাত (Steel) তৈরিতে ব্যবহার করা হয়।

- ২। প্রো-কাস্ট আয়রন (Gray cast iron): কার্বন এতে যুক্ত অবস্থায় প্রাফাইটরূপে অবস্থান করে। ঢালাই কাজে এই লোহা অতীব উপযোগী। সহজেই মেশিনিং করা চলে। এই লোহা দামে সস্তা ও যেকোনো জটিল আকৃতির ঢালাই করা চলে। মেশিনের বেড, বিড, খুচরা যন্ত্রাংশ, ইঞ্জিনের সিলিভার, পিস্টন (Piston), পিস্টন রিং (Piston ring), ফ্লাই হুইল (Fly Wheel), পানির পাইপ ইত্যাদি তৈরি করতে এই লোহা খুবই উপযোগী।
- ৩। মটশৃড কাস্ট আয়রন Malleable cast iron) : হোয়াইট ও গ্রে-কাষ্ট আয়রনের মধ্যবর্তী আর এক শ্রেণির ঢালাই লোহাকে মটলড্ কাস্ট আয়রন বলে। এই লোহা মেশিনিং যোগ্য ও অপেক্ষাকৃত নরম। ছোট ঢালাই করা যন্ত্রাংশ এই লোহার তৈরি।
- 8। চিন্ত কাস্ট আয়রন (Chilled cast iron): কোন বিশেষ কাজে ব্যবহারের জন্য ঢালাই এর সময় ছাঁচের মধ্যে ইচ্ছা করেই ঢালাইকে দ্রুত ঠাগু করলে চিন্ত কাস্ট আয়রন হয়ে যায়। এর বৈশিষ্ট্য হলো দ্রুত ঠাগু হওয়াতে ঢালাই এর উপরিভাগ (Surface) শক্ত হয়ে যায়। ঢালাই লোহার তৈরি রেলগাড়ির চাকা, আখ মাড়াই মেশিন এই পদ্ধতিতে তৈরি।
- ৫। মেলিয়েবল কাস্ট আয়রন (Matteable cast iron): কম পরিমাণ সিলিকন এবং অধিক পরিমাণ কার্বন বিশিষ্ট হোয়াই কাস্ট আয়রনকে উত্তপ্ত অবস্থায় ক্রমাগত কয়েকদিন রাখার পর ধীরে ধীরে ঠাণ্ডা করে এই লোহা তৈরি করা হয়।

কাস্ট আয়রন সনাক্তকরণ :

- (i) গ্রে-কাস্ট আয়রন শনাক্তকরণের প্রধান উপায় রং দেখে। এর রং ধূসর কালো বর্ণের এবং সহজেই মেশিনিং করা যায়।
- (ii) হোয়াইট কাস্ট আয়রন ও রং দেখে শনাক্ত করা যায়। এর রং রূপালী সাদা। এটি মেশিনিং করা কষ্টসাধ্য।
- (iii) গ্রাইন্ডিং মেশিনে গ্রাইন্ডিং ক্ষুলিঙ্গের ধরন দেখেও এটা শনাক্ত করা যায়।

(গ) পেটা লোহা (Wrought iron) :

পেটা বা কাঁচা লোহাকে লোহার প্রায় বিশুদ্ধ অবস্থা বলা যেতে পারে, কেননা এতে খাদ খুবই সামান্য থাকে। এই লোহাতে শতকরা ০.১৫ ভাগ কার্বন ও অন্যান্য উপাদান থাকে ও ১-৩ ভাগ ধাতুমল থাকে। এতে অন্যান্য উপাদানসমূহ সিলিকন, ম্যাঙ্গানিজ, সালফার ও ফসফরাস ইত্যাদি থাকে। পিগ আয়রনকে পাডলিং চুল্লিতে গলিয়ে প্রক্রিয়ার মাধ্যমে পেটালোহা তৈরি করা হয়। এই প্রক্রিয়া সময় ও ব্যয় সাপেক্ষ বিধায় পেটা লোহার মূল্য অনেক বেশি হয়।

খুব সামান্যই পেটা লোহাকে ওয়েন্ডিং করা যায়। সোন্ডারিং ও ব্রেজিংও করা যায়। এই ধাতু নরম ও নমনীয় বিধায় পাতলা পাত, তার ইত্যাদি তৈরি করা সম্ভব হয়। পেটা লোহায় সহজে মরিচা ধরে না। জাহাজের নোঙ্গর, চেইন, হুক, পাইপ, পাইপ ফিটিংস, শীট, রিভেট, পেরেক, তার ও ইস্পাত তৈরির মূল ধাতু (Base metal) হিসেবে পেটা লোহার ব্যবহার অনেক বেশি।

(ম) ইস্পাত (Steel): ঢালাই লোহা সব কাজের উপযোগী নয়। আবার পেটা লোহা ভঙ্গুর না হলেও খুব শক্ত লোহা নয়। পেটা লোহা ও ঢালাই লোহার মাঝামাঝি লোহা হলো ইস্পাত এবং এটা সর্বাপেক্ষা কার্যোপযোগী ও মজবুত। সাধারণত ঢালাই লোহার অপবস্তু দূর করে ইস্পাত তৈরি করা হয়। যে লোহাতে কার্বনের পরিমাণ শতকরা ০.১৫ হতে ১.৫ ভাগের মধ্যে থাকে তাকে ইস্পাত বলে। এতে কার্বাইড (Fe₃C) রূপে কার্বন উপস্থিত থাকে। অন্যান্য উপাদানের মধ্যে কমবেশি সিলিকন, সালফার, ফসফরাস ও ম্যাঙ্গানিজ থাকে।

প্রধানত নিমুলিখিত পদ্ধতিতে ইস্পাত তৈরি করা হয়:

- (১) সিমেন্টশন পদ্ধতি
- ৫। ওপেন হার্থ পদ্ধতি
- (২) স্ক্রুসিবল পদ্ধতি
- ৬। বেসিমার পদ্ধতি
- (৩) ডপ্লেক্স পদ্ধতি
- ৭। এলডি পদ্ধতি
- (৪) বৈদ্যুতিক পদ্ধতি

ইস্পাতের শ্রেণি বিভাগ (Classification of steel) :

ইস্পাত প্রধানত দুই প্রকার : যথা-

- (ক) প্লেইন কাৰ্বন ইস্পাত (Plain carbon steel)
- (খ) সংকর ইস্পাত (Alloy steel)

কার্বন ইস্পাত (Carbon steel) :

কেবলমাত্র কার্বন ও লোহার মিশ্রণে কার্বন ইস্পাত তৈরি হয়। কার্বন ইস্পাতে সাধারণত ০.০৫-১.৫% কার্বন থাকে। কার্বন ইস্পাত তিন প্রকার। যথা-

- (১) মাইল্ড স্টিল বা লো কার্বন ইস্পাত (কার্বনের পরিমাণ ০.০৫-০.৩৫%)।
- (২) মিডিয়াম কার্বন ইস্পাত (কার্বনের পরিমাণ ০.৩৫-০.৫%)।
- (৩) হাই কার্বন ইস্পাত (কার্বনের পরিমাণ o.e-১.e%)।
- (৪) টুল ইস্পাত (কার্বনের পরিমান- ১.৫%)

লো-কার্বন ইস্পাত : ০.০৫-০.১৫% কার্বন মিশ্রিত ইস্পাতকে ডেড-মাইল্ড ইস্পাত বলে। লো-কার্বন ইস্পাতকে মাইল্ড স্টিলও বলে। সাধারণত রিভেট, স্কু, প্রেস সিট, পাইপ, পেরেক, চেইন, প্লেট বা থালা এবং অটোমোবাইল বডির সিট, অটোফ্রেম, আই বীম ইত্যাদি তৈরি করতে লো-কার্বন ইস্পাত ব্যবহৃত হয়।

মাইল্ড স্টিলকে বা লো কার্বন ইস্পাতকে আবার তিন ভাগে ভাগ করা যায়। যথা -

- (i) ডেড মাইল্ড স্টিল (Dead mild steel) : 0.১% ভাগ পর্যন্ত কার্বন।
- (ii) মাইল্ড স্টিল (Mild steel) : ০.২৫% ভাগ পর্যন্ত কার্বন।
- (iii) স্ট্রাকচারাল স্টিল (Structural steel) : ০.৩৫% পর্যন্ত কার্বন।

মিডিয়াম কার্বন ইস্পাত: প্রধানত মিডিয়াম কার্বন ইস্পাত শ্যাফ্ট, এক্সেল, বোল্ট, কানেক্টিং রড, চাবি, গিয়ার, হালকা স্প্রিং, সিলিভার, ক্যাম, নাট-বোল্ট, কাপলিং, ক্র্যাংক শ্যাফ্ট, পিনিয়ন, ইঞ্জিনের ভাল্ভ, স্প্রীং, টারবাইন, বাকেট হুইল, স্টিয়ারিং আর্ম প্রভৃতি তৈরির জন্য ব্যবহৃত হয়।

হাই কার্বন ইস্পাত: অনেক কাজে হাই কার্বন ইস্পাত ব্যবহৃত হয়। ক্র্যাংক শ্যাফ্ট, ব্লেড, অটোমোবাইল স্প্রীং, এনভিল, ব্যাভ-স, চিজেল, পাঞ্চ, শেয়ার ব্লেড, ট্যাপ, ডাই, মিলিং কাটার, লেদের কাটিং টুল, রিমার, ফাইল, কোদাল, রেইল, পিয়ানোর তার, রেঞ্চ, রেজর প্রভৃতি নানা জিনিস তৈরি হয়।

টুল স্টিল (Tool steel): সচরাচর এটি খুবই শক্ত এবং ঘর্ষণ ও ক্ষয় প্রতিরোধী হয় বিধায় বিশেষত টুলস তৈরিতে ব্যবহৃত হয়। যেমন কাটিং টুল, টুল বিট, মিলিং কাটার ইত্যাদি তৈরি করার কাজে ব্যবহৃত হয়।

- এ্যালয় স্টিল (Alloy steel): কার্বন স্টিলের সাথে এক বা একাধিক ধাতু মিশ্রিত করে তৈরি স্টিলকে এ্যালয় 'স্টিল' বলে। কার্বন স্টিলের চেয়েও অধিক গুণসম্পন্ন স্টিলের প্রয়োজনের ক্ষেত্রে অ্যালয় স্টিল তৈরি করা হয়। এক্ষেত্রে যে ধাতু মিশ্রিত করে অ্যালয় স্টিল তৈরি করা হয় তার নামানুসারে অ্যালয় স্টিল নামকরণ করা হয়। যেমন যখন কার্বন স্টিলের সাথে নিকেল মিশ্রিত করে অ্যালয় স্টিল উৎপাদন করা হয়, তখন উক্ত স্টিলকে নিকেল স্টিল বলে। এছাড়া যদি অতিরিক্ত দু'টি ধাতু যেমন নিকেল ও ক্রোমিয়াম মিশ্রত করে যে অ্যালয় স্টিল পাওয়া যায় তাকে নাইক্রোম স্টিল বা নিকেল ক্রোমিয়াম স্টিল বলে। নিম্নে ক'টি উল্লেখযোগ্য অ্যালয় স্টিলের নাম ও তার সংক্ষিপ্ত বর্ণনা উল্লেখিত হলো।
- (ক) স্টেইনলেস স্টিল (Stainless Steel) : কার্বন স্টিলের সাথে ৪% হতে ২২% ক্রোমিয়াম এবং অল্প পরিমাণ নিকেল মিশ্রণে যে স্টিল পাওয়া যায় তাকে স্টেনলেস স্টিল (Stainless Steel) বলে। এই স্টিলের ক্ষয়রোধ শক্তি এবং মরিচা প্রতিরোধ ক্ষমতা এতই বেশি যে, দীর্ঘদিন ব্যবহারের পরেও এতে মরিচা কিংবা ক্ষয় হওয়ার কোনো চিহ্ন দেখা যায় না। এজন্য এর ব্যবহারও খুব বেশি। গৃহস্থলির বাসনপত্র, চামচ, ছুরি, ঘড়ির কেস, ডাজারি সরঞ্জাম, রাসায়নিক সরঞ্জাম ইত্যাদি এই স্টিল দ্বারা তৈরি হয়।
- (খ) টাংস্টেন স্টিল (Tumgsten steel) : এই স্টিল খুবই শক্ত এবং সহজে স্থায়ী চুম্বকে রূপান্তর লাভ করে। এছাড়া একে তারে (Wire) ও পরিণত করা যায়। টাংস্টেন স্টিল দ্বারা ইলেকট্রিক বাতির ভিতরকার ফিলামেন্ট, চুম্বক, মেশিনের কাটিং টুল ইত্যাদি তৈরি করা যায়।
- (গ) নিকেল স্টিল (Nickel Steel) : নিকেল স্টিল খুবই শক্তিসম্পন্ন এবং আঘাত সহিষ্ণুতা স্টিল। এতে সাধারণত শতকরা ৫ ভাগ নিকেল এবং ০.১ ভাগ হতে ০.৪ ভাগ কার্বন বিদ্যমান থাকে। এর দ্বারা থার্মাল প্রেট, জাহাজের শ্যাফট, পিস্টন রড, কানেটিং রড, সাইকেলের ফ্রেম এবং স্পোক, ওয়্যার রোপ ইত্যাদি তৈরি করা হয়।
- (ঘ) ক্রোমিয়াম স্টিল (Chromium steel) : এটি নিকেল স্টিল থেকে অধিকতর শক্তিসম্পন্ন এবং ক্ষয় প্রতিরোধী। ক্রোমিয়াম স্টিলের ঘর্ষণজনিত ক্ষয় রোধের ক্ষমতা বৃদ্ধিতে সাহায্য করে। ক্রোমিয়াম স্টিলের দ্বারা বলপেনের নিব, বল বিয়ারিং, ব্লেড, রোলার ইত্যাদি তৈরি করা হয়।
- (৩) নিকেল-ক্রোমিয়াম স্টিল (Nickel-chromium steel) : একে নাইক্রোম (Nichrom) স্টিলও বলা হয়ে থাকে। এর শক্তি ও সামর্থ্য ক্রোমিয়াম স্টিল থেকে অধিকতর। বিশেষ করে অতি উচ্চ তাপ কিংবা চাপে এর গুণাগুণ অক্ষুণ্ন থাকে বিধায় উচ্চ তাপ কিংবা চাপযুক্ত ক্ষেত্রে এর ব্যবহার দেখা যায়। মোটরগাড়ি এবং অ্যারোপ্লেনের এক্সেল (axell), কানেকটিং রড (Connecting Rod), ক্র্যাংক শ্যাফ্ট, উচ্চ শ্রেণির গীয়ার ইত্যাদি তৈরিতে যথেষ্ট ব্যবহৃত হয়। এছাড়া নিকেল ক্রোমিয়াম স্টিল এর তৈরি তার (Wire) হিটারের কয়েল রূপেও ব্যবহৃত হতে দেখা যায়।
- (চ) ম্যাঙ্গানিজ স্টিল (Manganese Steel) : ম্যাঙ্গানিজ স্টিল খুবই শক্ত এবং দীর্ঘস্থায়ী। এই স্টিলে শতকরা ১৫ ভাগ হতে ২২ ভাগ পর্যন্ত ম্যাঙ্গানিজ ব্যবহার করা হয়। একে চুম্বকে পরিণত করা যায় না। এর দ্বারা সাধারণত স্পিন্ডেল শ্যাফ্ট, কানেকটিং রড, সিন্দুক, পিস্টন রিং, পুশ রড ইত্যাদি তৈরি করা হয়। বিশেষ করে অধিক দুশ্চেদ্রতা গুণসম্পন্ন বিধায় কয়লা, ইট ও পাথর, ভাঙ্গার ক্রাণারের 'জ্যা' এবং রোলার তৈরিতে এর ব্যাপক ব্যবহার লক্ষ্য করা যায়।
- (ছ) হাইম্পিড স্টিল (High speed steel) : হাইম্পিড স্টিল খুবই শক্ত এবং উচ্চ ক্ষমতাসম্পন্ন টুল স্টিল। এতে শতকরা ১৪ ভাগ থেকে ২২ ভাগ পর্যন্ত টাংস্টেন থাকে। সাধারণ মানের হাইম্পিড স্টিলে শতকরা ১৮

ভাগ টাংস্টেন, ৪ ভাগ ক্রোমিয়াম, ১ ভাগ ভেনাডিয়াম, কার্বন এবং অবশিষ্ট ভাগ লোহা থাকে। একে ১৮-৪-১ স্টিলও বলা হয়।

ধাতু কাটার জন্য যে বাটালি বা কাটিং টুল ব্যবহার করে থাকি তা হাইস্পিড স্টিল-এর হলে খুব দ্রুত এবং সহজ উপায়ে ধাতু কাটা যায়। অন্যথায় কাটিং বিট এর মাথা ঘর্ষণজনিত তাপে সহজেই গরম হয়ে নষ্ট হয়ে যায়। কিন্তু হাইস্পিড স্টিলের কাটিং টুল গরমে লাল হলেও কাটার ক্ষমতা নষ্ট হয় না।

হাইস্পিড স্টিল-এর দ্বারা ডাক্তারি যন্ত্রপাতি, লেদ, শেপিং, মিলিং মেশিনের কাটিং টুল, ড্রিল বিট, ট্যাপ, ডাই (die) ইত্যাদি তৈরি হয়।

- (জ) সিলিকন স্টিল (Silicon steel) : সিলিকন স্টিল জেনারেটর ও ট্রান্সফরমার তৈরিতে ব্যবহৃত হয়।
- (ঝ) মঙ্গিবডেনাম স্টিঙ্গ (Molebdenum steel) : এই স্টিলের টানা শক্তি প্রবল। সাধারণত অটোমোবাইল পার্টস এবং বিমানের কাঠামো তৈরিতে ব্যবহৃত হয়।

স্টিল শনাক্তকরণ :

- মাইল্ড স্টিল : এটির আবরণ মসৃণ এবং মরিচাহীন অবস্থায় নীলাভ দেখায়। মরিচা পড়লে একে লালচে বাদামি দেখায়।
- মিডিয়াম কার্বন স্টিল ঃ এটির আবরণ মসৃণ এবং মরিচাহীন অবস্থায় নীলাভ কৃষ্ণবর্ণ দেখায়, মরিচা পড়লে এটিকে লালচে বাদামি দেখায়।
- হাইকার্বন স্টিল : এটির আবরণ মসৃণ এবং মরিচাহীন অবস্থায় গাড়-নীলাভ-কৃষ্ণবর্ণ দেখায়। মরিচা পড়লে এটিকে লালচে বাদামি দেখায়।

ক্ষুণিঙ্গ দৃশ্য (Spark picture): ক্ষুণিঙ্গ দৃশ্য দ্বারা লৌহ ও বিভিন্ন ইস্পাতের ধাতুর খণ্ডকে গ্রাইভিং হুইলের উপর নির্গত ক্ষুণিঙ্গ দৃশ্যের যে রূপ হয় তাতে কোনো ধরনের লৌহ ও ইস্পাত বুঝা যায়। গ্রাইভিং চাকাতে শান বা ঘর্ষণ করার সময় ধাতুর কণাগুলো অত্যন্ত উত্তপ্ত অবস্থায় বিক্ষিপ্ত হতে থাকে। অধিক কার্বন বিশিষ্ট স্টিলের বেলায় রশ্মির সংখ্যা বেশি হয় এবং ক্ষুণিঙ্গগুলি উজ্জ্বল শ্বেতবর্ণের আলোক বিস্তার কারে কার্বন যত কম হবে আলোর রশ্মি ও ক্ষুণিঙ্গ, বর্ণ তত কম হবে। রশ্মির সংখ্যা অতি কম প্রায় তিন-চারটে হয়।

অলৌহজ ধাতু (Non-Ferrous metal) :

তামা (Copper) : লোহার পরেই তামার স্থান। তামা নরম, ডাক্টাইল, নমনীয় এবং খুবই ঘাতসহ (Tough), এর তাপ ও বিদ্যুৎ পরিবাহিতা গুণ খুব বেশি। খনি থেকে প্রাকৃতিক অবস্থায় অক্সাইড (Oxide), সালফাইড (Sulphide) কার্বনেট (Corbonet) ইত্যাদি আকরিক রূপে পাওয়া যায়। শুদ্ধ অবস্থায় তামা নরম থাকে। ঠাগ্রা অথবা উত্তপ্ত অবস্থায় ফের্জিং, রোলিং (Rolling) প্রণালিতে আকার পরিবর্তন করা, রোলিং (Rolling) প্রণালিতে শীট বা পাত তৈরি করতে এবং দ্রুয়িং (Drawing) প্রণালিতে টেনে তারে পরিণত করা যায়। তারে ঠাগ্র অবস্থায় কাজ করতে গেলে তামার ভঙ্গুরতা বেড়ে যায়। এ সময় তামাকে এনিলিং করে নরম করতে হয়। তাছাড়া তামাকে উত্তপ্ত করে সাথে সাথে ঠাগ্র পানিতে নিমজ্জিত করলেও নরম হয়ে যায়। তামাকে ঢালাই করা চলে ও উপরিভাগ উত্তমরূপে পলিশ করা যায়। তামা প্রায় ১০৮° সেঃ তাপমাত্রায় গলে। প্রতি ঘনসেন্টিমিটার আয়তনের ওজন ৮.৮২ গ্রাম। তামা সংকর তামা অপেক্ষা অধিক গুণসম্পন্ন ও বেশি প্রয়োজনীয়। সংকরগুলো পিতল, ব্রোঞ্জ, কাঁসা, তামা ও নিকেল সংকর ইত্যাদি। বৈদ্যুতিক তার, বয়লারের ফায়ার টিউব, স্টে (Stay)

স্টিম ও পানির পাইপ, শীট, রেডিয়েটর, রেফ্রিজারেটর, কনডেনসর ইত্যাদিতে এবং টিন, জিংক ইত্যাদি মিশ্রিত করে তামা সংকর তৈরি করা হয়।

আলুমিনিয়াম (Aluminum) : সাধারণ সকল মৌলিক ধাতুর মধ্যে অ্যালুমিনিয়াম সবচেয়ে হাল্কা ধাতু এবং রং উজ্জল সাদা, বক্সাইট নামক আকরিক থেকে এই ধাতু পাওয়া যায়। স্বাভাবিক তাপমাত্রায় এই ধাতু ও নরম ও স্থিতিস্থাপক গুণসম্পনু হয়। শুদ্ধ অবস্থায় অ্যালুমিনিয়াম খুব নরম থাকে। তবে বাজারে যে অ্যালুমিনিয়ামের জিনিসপত্র পাওয়া যায় তাতে শতকরা ৩.২৫ ভাগ লোহা ও ০.৫০ ভাগ সিলিকন মিশানো থাকে বলে অপেক্ষাকৃত শক্ত দেখায়। এই ধাতুকে উত্তমন্ধপে পলিশ করা যায়। এর উপরিভাগ অবহাওয়া দ্বারা আক্রান্ত হয় না বলে মলিন হয় না বা ক্ষয়প্রাপ্ত হয় না। সাধারণ তাপে নাইট্রিক এসিডের উপর কোনো ক্রিয়া করে না। কিন্তু হাইড্রকোরিক এসিডে শীঘ্র গলে যায়। সালফিউরিক এসিডেও গলে তবে ধীরে ধীরে। অ্যালুমিনিয়াম উত্তম তাপ ও বিদ্যুত পরিবাহী গুণ সম্পন্ন। ৬৫০° তাপমাত্রায় গলে যায় ও সহজে ঢালাই করা যায়। উত্তম প্রসারতা গুণ থাকায় ক্রমাগত আঘাতে কাগজের ন্যায় পাতলা পাতে পরিণত করা যায়। এই পাতকে কয়েল (Coil) বলে। চা, সিগারেট, ঔষধসহ বিশেষ ধরনের মোড়ক তৈরিতে এই কয়েল ব্যবহৃত হয়। এছাড়া রোলিং ফোর্জিং প্রণালিতে আকার পরিবর্তন করে তারে পরিণত করা যায়। বৈদ্যুতিক লাইনের তার উৎপাদন করা হয় এ ধাতু मिरा । आनुमिनियास दिकिः ७ সোল্ডারিং করা যায় না তবে বিশেষ ব্যবস্থাপনায় ওয়েল্ডিং করা চলে। এ্যালুমিনিয়াম পাউডার রঙে এর উপাদান হিসাবে ব্যবহার করা হয়। এর প্রতি ঘন সেন্টিমিটার আয়তন ২.৬ গ্রাম। অন্যান্য ধাতুর সাথে মিশ্রিত করে অ্যালুমিনিয়াম সংকর হিসেবে ব্যাপক ব্যবহৃত হয়। পাত (Sheet) গহস্থলির বাসনপত্র, ইলেট্রিক তার, মোটর গাড়ির ইঞ্জিনের অংশবিশেষ ও বিভিন্ন ধরনের অ্যালুমিনিয়াম সংকর উৎপাদনে এই ধাতু ব্যাপক ব্যবহৃত হয়।

জিংক (Zinc) : বাংলা নাম দস্তা। দেখতে নীলাভ সাদা রং। জিগ্ধ ব্লেড, ক্যালামাইন ইত্যাদি দস্তার আকরিক। বাজারে যে শ্রেণির দস্তা পাওয়া যায় তাকে স্পেল্টার (Spelter) বলে। ১০০-১২০০ সেন্টিপ্রেড তাপমাত্রায় দস্তা ভঙ্গুর হয় আর তখন এই দস্তাকে সহজেই চূর্ন করা যায়। সামুদ্রিক লবণ পানি, আবহাওয়ার আক্রমণ থেকে লোহাকে রক্ষা করার জন্য লৌহ সামগ্রীর উপর দস্তার প্রলেপ দেয়া হয়। এই ব্যবস্থাকে গ্যালভানাইজিং বলে। সংক্ষেপে বলা হয় জিআই। জিআই শীটে সহজে মরিচা পড়ে না। দস্তা হাইড্রোক্রোরিক এসিডে গলে যায়। ৪১৫° সেঃ তাপমাত্রায় দস্তা গলে যায় ও প্রতি ঘনসেন্টিমিটার আয়তনের ওজন ৭.২ গ্রাম। শীট, ঘরের ছাদের জন্য ঢেউটিনে, গ্যালভানাইজিং ম্যাটেরিয়াল হিসাবে, ব্যাটারির প্রাইমারি সেল গঠনে, রং তৈরিরে উপাদান হিসাবে, সোভার তৈরিতে, তামা সংকর তৈরিতে ব্যপকভাবে ব্যবহৃত হয়।

টিন (Tin): বাংলা নাম রাং। আকরিকের নাম টিন স্টোন (Tin Stone)। উজ্জ্বল এবং হরিদ্রা আভাযুক্ত সাদা রং। টিন, রৌপ্য অপেক্ষা নরম। কিন্তু সীসা (Lead) অপেক্ষা শক্ত। ক্রমাগত আঘাতে টিন ফয়েল তৈরি করা যায়। এ ফয়েল চা, সিগারেট, ঔষধ ইত্যাদির প্যাকেট অথবা আবরণ হিসেবে ব্যবহার হয়। সাধারণ অবস্থায় টিন বায়ৣর অক্সিজেন দ্বারা আক্রান্ত হয় না এবং খাদ্যদ্রব্যে যে এসিড থাকে তা টিনের উপর ক্রিয়া করে না। এ কারণে খাদ্যদ্রব্যে পাত্রের ভিতরে টিনের প্রলেপ দেয়া হয়। টিন মাত্র ২৩২০ সেঃ তাপমাত্রায় গলে এবং এর প্রতি ঘন সেন্টিমিটার আয়তনের ওজন ৭.৪ গ্রাম। রট আয়রনের উপর প্রলেপ দিয়ে টিন শীট (Sheet tin) টিন প্রেট (Tin Plate), এবং প্যাকিং-এর কাজে ব্যবহার্য টিন ফয়েল তৈরিতে টিন যথেষ্ট পরিমাণ ব্যবহৃত হয়ে থাকে। এছাড়া সক্ট সোন্ডার (Solder), ব্রোঞ্জ, বেবিট মেটাল ইত্যাদি ধাতু সংকর তৈরিতে ব্যবহৃত হয়।

লিড (Lead) : বাংলা নাম সীসা। এর প্রলেপ আকরিকের নাম গ্যালেনা (Galena) অর্থাৎ লীড সাফাইড। এর রং নীলা আভাযুক্ত ধৃসর বর্ণ এবং উজ্জ্বল। কিন্তু জলীয় বাস্পের প্রভাবে খানিকটা মলিন দেখায়। এই ধাতৃ নরম ও ভারী। শুদ্ধ সীসা সাধারণ অবস্থায় সালফিউরিক এসিড ও হাইড্রক্লোরিক এসিড দ্বারা আক্রান্ত হয় না, কিন্তু নাইট্রিক এসিডে সহজে গলে যায়। টানা শক্তি খুব কম বলে তারে পরিণত করা যায় না। এর গলন তাপমাত্রা প্রায় ৩২৫° সেঃ। প্রতি ঘনসেন্টিমিটার আয়তনের ওজন প্রায় ১১.৪২ গ্রাম। সীসাকে ঢালাই করা যায়। সমুদ্রের লবণাক্ততা দ্বারা আক্রান্ত হয় না। সফ্ট সোল্ডার, ব্রোঞ্জ, বিয়ারিং মেটাল ইত্যাদি সংকর ধাতু তৈরিতে সীসা প্রচুর পরিমাণে ব্যবহার করা হয়। সালফিউরিক এসিডের আধার, সিসটার্ন, পাইপ,ব্যাটারির প্রেট, হোয়াইট লীড, বন্দুকের গুলি, ছাপাখানার অক্ষর পিউটার, বৈদ্যুতিক তারের আবরণী, বয়্বলারের সেফ্টিপ্রাগ, বৈদ্যুতিক কেবলের ইনসুলেটর ইত্যাদি তৈরির উপাদান হিসেবে সীসা ব্যবহার করা হয়।

নিকেল (Nickel) : পিরোটাইট, নিকোলাইন ইত্যাদি আকরিক থেকে নিকেটন পাওয়া যায়। নিকেলের বর্ণ অতি উজ্জ্বল তথা রৌপ্যের মতো সাদা। বাতাসের অক্সিজেন দ্বারা আক্রান্ত হয় না বিধায় অনেক ধাতু দ্রব্যের উপরে নিকেলের অতি সৃক্ষ্ম আবরণ অর্থাৎ প্লেটিং (Plating) দেয়া হয়ে থাকে। নিকেলকে পলিশ করা যায়। এটা বিদ্যুৎ পরিবাহী প্রায় ১৪৫০° সেঃ তাপমাত্রায় গলে ও প্রতি ঘনসেন্টিমিটার আয়তনের ওজন প্রায় ৮.৯ গ্রাম। স্টিলের সাথে মিশ্রিত করে নিকেল স্টিল ও কপার এবং জিংক-এর সাথে মিশিয়ে জার্মান সিলভার (German Silver) ইত্যাদি মিশ্র ধাতু তৈরি হয়ে থাকে।

টাংস্টেন (Tungsten) : উলফ্রামাইট, সিলাইট ইত্যাদি আকরিক থেকে টাংস্টেন ধাতু পাওয়া যায়। এই ধাতুর নিষ্কাষণ বেশ জটিল ও ব্যয়সাপেক্ষ। এটা একটা দুস্প্রাপ্য ধাতু সংকর। উচ্চ গলনাঙ্ক সম্পন্ন এই ধাতু ইস্পাতের সাথে বিশেষ প্রক্রিয়ায় মিশ্রিত হয়ে ভিন্ন নামের সংকর ইস্পাত তৈরি করে। বিশুদ্ধ টাংস্টেন প্রায় ৩৬০০° সেঃ তাপমাত্রায় গলে, আর এর প্রতি ঘন সে.মি. আয়তনের ওজন ১৯.১ গ্রাম প্রায়। উচ্চ গলনাঙ্ক শুণের জন্য বৈদ্যুতিক বাতির ফিলামেন্ট তৈরি করা হয়। এ ছাড়া টাংস্টেন ধাতুসংকর রূপে ব্যবহৃত হয়।

ক্রোমিয়াম (Chromium) : ক্রোমিয়াম ধাতু সাধারণ ক্রোমাইট নামক আকরিক থেকে বিভিন্ন নিদ্ধাষণ প্রক্রিয়া প্রয়োগে পাওয়া যায়। এটা উজ্জ্বল শক্ত ধাতু। পলিশ করলে ক্রোমিয়াম অত্যন্ত উজ্জ্বল দেখায়। এটা ক্ষয়রোধী ও ঘাতসহ ধাতু। জলীয় বায়ৣর প্রভাবে ক্ষয়প্রাপ্ত হয় না বরং মরিচা ও ক্ষয়রোধক উপাদান হিসেবে ইলেকট্রোপ্রেটিং প্রনালিতে ক্রোমিয়ামের প্রলেপ দেয়া হয়। এর গলন তাপমাত্রা ৭.১ গ্রাম। ক্রোমিয়াম স্টিল, স্টেইনলেস স্টিল, রং ইত্যাদি উৎপাদন করতে ক্রোমিয়াম ব্যবহৃত হয়।

ভ্যানাভিয়াম (Vanadium) : প্রকৃতিতে মৌল অবস্থায় ভ্যানাভিয়াম পাওয়া যায় না। প্যাট্রোনাইট, ভ্যানাভিনাইট ইত্যাদি সীসা সহযোগে এই ধাতুর আকরিক প্রকৃতিতে অবস্থান করে। আর এই জাতীয় আকরিক থেকে ভ্যানাভিয়াম পাওয়া যায়। নিদ্ধাষণ প্রক্রিয়া অত্যন্ত জটিল হওয়ায় এর মূল্যমান অনেক বেশি। গলনাব্ধ প্রায় ১৯৫৯ নেঃ ও প্রতি ঘনসেন্টিমিটার আয়তনের ওজন প্রায় ৫.৮ গ্রাম। ভ্যানাভিয়াম তাপরোধ করার এবং শক্ত ও কাঠিন্যতা জোগায়। টাফনেস ও হার্ডনেস একত্রে বজায় থাকার ফলে ভ্যানাভিয়াম ও টুলস ও বাটালি তৈরির স্টিলের একটা উল্লেখযোগ্য উপাদান। আর ঐ একই কারণে এবং ফ্যাটিগ রোধ ক্ষমতা থাকায় স্প্রীং তৈরির ইস্পাতেও ভ্যানাভিয়াম ব্যবহার করা হয়। মোটরগাড়ির বহু পার্টস, স্প্রীং, ক্রাংক শ্যাফ্ট, অ্যাক্সল, বিভিন্ন ধরনের স্প্যানার, কাটিং টুলস ইত্যাদি ভ্যানাভিয়াম স্টিল দিয়ে তৈরি। প্রধানত ক্রোম-ভ্যানাভিয়াম, স্টিল, ম্যাঙ্গানিজ-ভ্যানাভিয়াম স্টিল, হাইস্পিড স্টিল ইত্যাদি সংকর ইস্পাত তৈরি করতে উপাদান হিসেবে এই ধাতু ব্যবহৃত হয়।

কোবাল্ট (Cobalt) ঃ এই ধাতুর বর্ণ নীলাভ সাদা। প্রায় ১৫৫০° সেঃ তাপমাত্রায় গলে। প্রতি ঘনসেন্টিমিটার আয়তনের ওজন প্রায় ৮.৭৬ গ্রাম। কোবাল্টের সবচেয়ে উল্লেখযোগ্য ধর্ম রেড হার্ডনেস বাড়ানো এবং ঘর্ষণজনিত ক্ষয়রোধের শক্তি জোগানো। ইস্পাতে কোবাল্ট মিশালে শক্তি ও হার্ডনেস বাড়ে কিন্তু টাফনেস কমে যায়। উন্নত জাতের হাইম্প্রিড স্টিলে শতকরা ২ থেকে ১০ ভাগ কোবাল্ট থাকে। কোবাল্টযুক্ত হাইম্পিড স্টিলকে সুপার হাইম্পিড স্টিল বলে।

মলিবডেনাম (Molybdenum) : দেখতে গ্রাফাইটের মতো। মলিবডেনাম ডাই সালফাইড (MoS) রূপে প্রকৃতিতে পাওয়া যায়। এই ধাতু ভঙ্গুর ও উচ্চতাপে গলে যায়। এর জন্য বৈদ্যুতিক বাতির ফিলামেন্টের ও রেডিওর ভাল্ভের (Electro tube) ধাতব তার হিসেবে এই ধাতু ব্যবহৃত হয়। মলিবডেনাম ইস্পাতের কাঠিন্যতা ও শক্তি বাড়ায়। এর বিশেষ ধর্ম ক্রীপ, ফেটিগ, ও শক্ রোধ করার ক্ষমতা। সেই সাথে টাফনেস শুণ সম্পন্ন। আর এ জন্য টুল স্টিল ও হাইস্পিড স্টিলে মলিবডেনাম উল্লেখযোগ্য ভূমিকা পালন করে।

অলৌহজ ধাতু সংকর (Non-ferrous Alloys) :

ব্রাস (Brass): বাংলা নাম পিতল। প্রায় শতকরা ৬৭ ভাগ তামা ও ৩৩ ভাগ দস্তার মিশ্রণে পিতল উৎপাদিত হয়। এই মিশ্রণ তাম সংকর (Copper Alloy) এর পর্যায়ভুক্ত। দেখতে উজ্জ্বল ও হরিদ্রাবর্ণ। পিতলের মেশিনিং গুণ বৃদ্ধিও জন্য সামান্য পরিমাণের সীসা মিশাতে হয়। আর এই মিশ্রণের পরিমাণ মতো টিন মিশ্রিত করলেও পিতল উৎপন্ন হয় তা খোদাইর (Engraving) কাজে বিশেষ উপযোগী। তামা ও দস্তার আনুপাতিক হারের উপর নির্ভর করে পিতলের গলনান্ধ ৯৩০° থেকে ১১০০° সেঃ পর্যন্ত হয়, আর প্রতি ঘনসেন্টিমিটার আয়তনের ওজন প্রায় ৮.১ গ্রাম। দস্তার পরিমাণ বেশি থাকলে পিতল শক্ত হয়। ৭০/৩০ পিতলের কার্টিজ ব্রাস বলে। এ দিয়ে বন্দুকের কার্তুজ তৈরি হয়। পিতলকে উত্তমরূপে ঢালাই করা হয় বলে পিতলের উপরিভাগ আক্রান্ত হয় না বা মরিচা পড়ে না। গৃহস্থালি, বাসনপত্র, বয়লারের টিউব, রেফ্রিজারেটরের টিউব, তার, শীট, মেশিনের বুস, বিয়ারিং এবং ছোটখাটো নানা আকৃতির ঢালাই কাজ পিতল দিয়ে হয়।

ব্রোঞ্জ (Bronze) : তামার সাথে টিন ধাতুর ৯০/১০ অনুপাতে মিশালে ব্রোঞ্জ মিশ্র ধাতু তৈরি হয়। টিন খুব মূল্যবান বলে ব্রোজ্জের দামও খুব বেশি। ব্রোজ্জের মধ্যে দস্তা ও সীসা মিশালে তাকে গান মেটাল (Gun metal) বলে। গান মেটালে শতকরা ১৫-২০ ভাগ টিন মিশ্রিত থাকে। আর টিনের পরিমাণ ২০ ভাগ থাকলে তাকে বেল মেটাল (Bell metal) বলে। বেল মেটালকে কাঁসা বলা হয়। এই ধাতু দিয়ে ঘণ্টা তৈরি হয়। যে কাঁসাতে শতকরা ৩০ ভাগ টিন থাকে, তাকে হোয়াইট মেটাল (Whit metal) বলে। ব্রোজ্জের মধ্যে ১ ভাগ ফসফরাস থাকলে তাকে ফসফরাস ব্রোজ্জ বলে। এই ধাতু কঠিন ও ক্ষয়রোধী। ব্রোজ্জে মরিচা পড়ে না। তাই ব্রোজ্জের মূর্তি, ট্রফি, ইত্যাদি তৈরি করা হয়। প্রায় ১১৫০° সেঃ তাপমাত্রায় ব্রোজ্জ গলে এবং প্রতি ঘনসেন্টিমিটার আয়তনের ওজন প্রায় ৮.৬ গ্রাম। মুদ্রা, পাম্পের লাইনিং, বাসনপত্র, বুশ শীট, তার রড (Rod) ইত্যাদি ব্রোজ্জ ধাতু দিয়ে তৈরি করা হয়। তামার সাথে অ্যালুমিনিয়াম মিশিয়ে অ্যালুমিনিয়াম ব্রোজ্ঞ তৈরি হয়।

গান মেটাল (Gun metal): শতকরা ৮৮ ভাগ তামা, ১০ ভাগ দন্তা মিশিয়ে গান মেটাল তৈরি হয়। বাংলা নাম ভরন। মেশিনের বিয়ারিং তৈরিতে যে গান মেটাল ব্যবহার করা হয় তাতে অল্প পরিমাণ সীসা মিশ্রিত থাকে। এই ধাতু শক্ত ও দীর্ঘস্থায়ী। লবণ পানিতে আক্রান্ত হয় না বলে জাহাজের প্রপেলারসহ অন্যান্য যন্ত্রাংশ তৈরিতে ব্যবহার হয়। প্রায় ৬২০০ সেঃ তাপমাত্রায় গান মেটাল গলে ও প্রতি ঘন সেন্টিমিটার আয়তনের ওজন ৮.৭৩ গ্রাম। কামান, বন্দুক, বন্দুকের কার্তুজ, বয়লারের উপরিস্থ সরঞ্জাম, বিয়ারিং-এর ভাল্ব, ভাল্ব সীট, গ্রান্ড, পাইপ ফিটিংস, পাইপ, টিউব ইত্যাদি তৈরিতে গান মেটাল ব্যবহৃত হয়।

ফসফরাস ব্রেঞ্চ (Phosphor Bronze): শতকরা ৭৯ ভাগ তামা, ১০ ভাগ টিন, ১ ভাগ ফসফরাস ও ১০ ভাগ সীসা মিশ্রিত করে ফসফরাস ব্রোঞ্জ উৎপন্ন হয়। ফসফরাস থাকায় গলনাঙ্ক বৃদ্ধি পায় ও উৎকৃষ্ট ঢালাই সহজতর হয়। সমুদ্রের লবণাক্ততা দ্বারা আক্রান্ত হয় না। এই ধাতু দিয়ে তার, রড, শীট তৈরি করা হয়। স্বাভাবিক তাপমাত্রায় এই ধাতুকে রোলিং অথবা দ্রুয়িং করলে অধিকতর শক্ত হয় ও স্থিতিস্থাপকতা লাভ করে। আর তখন স্প্রীং তৈরি করা হয়। আকস্মিক কম্পনরোধ ক্ষমতা থাকায় ব্রোঞ্জ দিয়ে রোলিং মিলের বিয়ারিং, রেলগাড়ির এক্সেল, মোটরযানের ক্র্যাংক শ্যাফ্ট, জাহাজের প্রপেলার ব্লেড, পাম্প রড ইত্যাদি তৈরিতে ব্যবহার করা হয়।

ম্যাঙ্গানিজ ব্রোঞ্জ (Manganese Bronze) : পিতলের সাথে ফেরোম্যাঞ্গানিজ (Manganese) যোগ করে এই ব্রোঞ্জ তৈরি করা হয়। নামে ব্রোঞ্জ হলেও এই ধাতুতে টিন মোটেই থাকে না। তাই কার্যত এটা পিতলই। শতকরা প্রায় ৬২ ভাগ তামা, ৩৬ ভাগ দস্তা, ১ ভাগ লোহা ও ০.৫ ভাগ ম্যাঞ্গানিজ এবং অল্প পরিমাণ কার্বন ও অ্যালুমিনিয়াম মিশিয়ে যে ম্যাঙ্গানিজ ব্রোঞ্জ তৈরি করা হয় তা প্রপেলার তৈরিতে উপযোগী। সামুদ্রিক লবণাক্ততা দ্বারা আক্রান্ত হয় না বলে জাহাজের প্রপেলার ব্লেড তৈরি হয় ও বড় বড় বিয়ারিং তৈরিতে এই ধাতু সংকর ব্যবহার হয়।

সিলিকন ব্রোঞ্জ (Silicon Bronze): তামা, সিলিকন ও দস্তা বা ম্যাঙ্গানিজ ধাতুর মিশ্রণে সিলিকন ব্রোঞ্জ ধাতু উৎপন্ন হয়। ফসফর ব্রোঞ্জের ন্যায় অধিক শক্তিশালী ও বিদ্যুৎ পরিবাহী। সহজে মরিচা পড়ে না। এ কারণে টেলিযোগাযোগের তার এই ধাতু দিয়ে প্রচুর পরিমাণে তৈরি হয়।

আালুমিনিয়াম ব্রোঞ্চ (Aluminum Bronze) : তামার সাথে ৬-১০ ভাগ অ্যালুমিনিয়াম মিশিয়ে এই ব্রোঞ্জ সংকর তৈরি করা হয়। এর বর্ণ স্বর্ণের মতো উজ্জ্বল ও চকচকে। এ কারণে নকল স্বর্ণের অলঙ্কার এই ধাতু দিয়ে তৈরি হয়। লবণ পানিতে আক্রান্ত হয় না। এর স্থিতিস্থাপকতা বেশি ও ঘর্ষণরোধী। আর এজন্য বিয়ারিং ভালৃভ, প্রপেলার ইত্যাদি এই ধাতু দিয়ে তৈরি হয়।

মনেল মেটাল (Monel metal): শতকরা ৬৮ ভাগ নিকেল, ৩০ ভাগ তামা এবং ২ ভাগ অ্যালুমিনিয়াম সিলিকন, ম্যাঙ্গানিজ ইত্যাদি মিশিয়ে এই ধাতু তৈরি হয়, আর মূলত এটা নিকেল ব্রোঞ্চ (Bronze)। এই ধাতু ক্ষয়রোধকারী ও ইস্পাতের ন্যায় শক্তিশালী। রাসায়নিক দ্রব্য, স্টীম টারবাইনের ব্লেড, মুদ্রা (Coin) পাম্পের প্রপোলার ইত্যাদি তৈরিতে এই ধাতু ব্যবহৃত হয়।

ডেন্টা মেটাল (Delta metal): শতকরা প্রায় ৬৬ ভাগ তামা, ৩২ ভাগ দস্তার সাথে ২ ভাগ লোহা, নিকেল, ম্যাঙ্গানিজ মিশিয়ে ডেন্টা মেটাল তৈরি হয়। উত্তমরূপে রোলিং, ড্রইং ও ঢালাই করা যায়। এই ধাতু ক্ষয়রোধক, লবণ পানিতে আক্রান্ত হয় না। পানি জাহাজের বয়লার মাউন্টিং, ভাল্ভ স্পিডল ও শীট (Sheet) সুপারহিটেড স্টীম ও পানির পাইপ ইত্যাদির তৈরি হয় এই ধাতু দিয়ে।

ভাউ মেটাল (Dow metal) : শতকরা ৯০ ভাগ ম্যাগনেসিয়ামের সাথে প্রায় ১০ ভাগ অ্যালুমিনিয়াম, ম্যাঙ্গানিজ, ক্যাডমিয়াম, তামা ইত্যাদি মিশিয়ে এই ধাতু উৎপন্ন হয়। অ্যালুমিনিয়াম অপেক্ষা হালকা এবং ধাতুর প্রতি ঘনসেন্টিমিটার আয়তনের ওজন ১.৮ গ্রাম। ডাউ মেটাল নরম, তাগুব (Ductile) ও শক্তি সম্পন্ন। ঢালাই, ফোর্জিং, রোলিং ও দ্রইং করা চলে। উড়োজাহাজ, মোটর গাড়ির ইঞ্জিনের বিভিন্ন অংশ তৈরি করতে প্রচুর পরিমাণে এই ধাতু ব্যবহৃত হয়।

ওয়াই সংকর (Y-Alloy) : শতকরা ৯২ ভাগ অ্যালুমিনিয়াম, ২ ভাগ ম্যাঙ্গানিজ, ৪ ভাগ তামা ও ২ ভাগ নিকেল মিশিয়ে এই ধাতু তৈরি হয়। ইঞ্জিনের পিস্টন, কানেক্টিং রড ইত্যাদি গঠনে এই ধাতু ব্যবহৃত হয়। আৰুষিনিয়াম সংকর (Aluminum Alloy) : খাদবিহীন আৰুষিনিয়ামের চেরে আৰুমিনিয়াম সংকর-এর ব্যবহার বেশি ও বৈশিষ্ট পূর্ব। এতে তামা, নিকেল, দল্লা, ম্যাঙ্গানিজ্ঞ, সিলিকন ও ম্যাগনেসিয়াম প্রভৃতি উপাদান বিভিন্ন অনুপাতে মিপ্রিত করে নানাবিধ আৰুমিনিয়াম সংকর প্রস্তুত করা হয়। প্রহাড়াও ওপলত মান উন্নয়নের জন্য ক্রোমিয়াম, টাইটেনিয়াম, টিন, নিকেল ইত্যাদি মিপ্রিত করে সংকর তৈরি করা হয়। তৈজসপর, ইজিনের ক্র্যাংকেল পিস্টন, মোভিং পার্টল, উড়োজাহাজের যন্ত্রাংশ, দরজা-জানাবার কাঠামো ইত্যাদি আৰুমিনিয়াম সংকর দিয়ে তৈরি হয়।

জেনারেল মেকানির কার্বে ব্যবহৃত থাজুনমূহের জাকার (Sizes of metals used in general Mechanics works) :

ইঞ্জিনিরারিং কর্মকাতে নানা প্রকার খাতু ও অধাতু স্যাটেরিরাল নানাভাবে ব্যবহৃত হর। টেকনিশিয়ান, মেশিনিস্ট, ফিটার, ওয়েন্ডার, ইলেকট্রিশিয়ান অর্থাৎ ইঞ্জিনিয়ারিং কাজে জড়িত সংশ্লিউদের খাতু অধাতুর আকার, ভণগত মান, ধর্ম ইজ্যাদি সম্পর্কে জানা ধাকতে হয়। এ অধ্যারে আমরা খাতব পদার্থের আকার—আকৃতি সম্পর্কে আলোকপাত করবো যা মেটাল ওয়ার্কে সহায়তা করে থাকে।

মাইল্ড স্টিল এবং রট আয়রন দিয়ে তৈরি বিভিন্ন আকৃতি ও আকারের যে সকল কাঠামো সাধারণত মেটাল ওয়ার্ক তথা প্রকৌশল কাজে ব্যবহার হয়, নিম্নে ডাদের করেকটি চিত্রসহ দেয়া হলোঃ

২।ফ্ল্যাট বার (Flat bar) ৯। রেইল (Rail)
৩। প্লেট (Plate) ১০। শীট (Sheet)
৪। স্কোয়ার বার (Square bar) ১১। হেক্সাগোনাল বার (Hexagonal bar)
৫। হুপ আয়রন (Hoop iron) ১২। টিন প্লেট (Tin Plate)
৬। এক্সেল বার (Angle bar) ১৩। এক্সপ্যানভেড মেটাল (Expanded Metal)

৭। জেড বার (zed bar) ১৪। জিঙ্ক শীট (zinc Sheet)

- ১. রাউন্ত বার (Round bar) : গোলাকার প্রস্থচ্ছেদ বিশিষ্ট অনির্ধারিত দৈর্ঘের নিরেট (Solid) ধাতব পদার্থকে রাউন্ত বার বলে। এই কাঠামোর মাপ ব্যাস (Diametel) ও লম্বা (Length) এ প্রকাশ করা হয়। অর্থাৎ ১২ মিলিমিটার ব্যাস, ৫০ মিলিমিটার ব্যাস বা ১/২ ইঞ্চি ব্যাস, ২ ইঞ্চি ব্যাস ও দৈর্ঘ্যে সে মতে প্রকাশ করা হয়। অপেক্ষাকৃত সরু ব্যাসের রাউন্ত বারকে তার (Wire) বলে আর এই মাপ গেজে প্রকাশ (SWG) করা হয় অথবা সাধারণ ব্যাসে প্রকাশ করা হয়। যেমন- ১২ গেজ বা ৩ মিলিমিটার ব্যাস। আর অপেক্ষাকৃত বেশি ব্যাস যেমন ৫০ মিলিমিটার, ৭৫ মিলিমিটার ব্যাসের রাউন্ত বারকে শ্যাফ্ট (Shaft) ও ১৫ মিলিমিটার এর কম বারকে রড (Rod) বলা হয়। উভয় প্রকার বারই মেটাল ওয়ার্কে সরাসরি ব্যবহৃত হয়।
- ২. ফ্লাট বার (Flat bar) : ইহা একটি চেপ্টা আকৃতির নিরেট ধাতব খন্ত। এর চওড়া (Width) , উচ্চতা (Height) বা বেধ (Thickness)-ই হলো মূল আকার বা মাপ গ্রহণের ক্ষেত্র। অর্থাৎ ৫ মিলিমিটার ২৫ মিলিমিটার ২.৫ মিলিমিটার ফ্লাটবার বলতে বুঝায় ফ্লাট বারের দৈর্ঘ্য ৫ মিটার, প্রস্থ ২৫ মিলিমিটার ও বেধ ৫ মিলিমিটার। মেটাল ওয়ার্কে ফ্লাট বার সমূহে বেশির ভাগ মাইল্ড স্টিলের তৈরি হয়ে থাকে।
- ৩. প্লেট (Plate) : এর অর্থ ধাতব পাত। অর্থাৎ ৩ মিলিমিটার এর অধিক পুরু ও বেশি প্রস্থ বিশিষ্ট সমতল ধাতৃখণ্ডকে প্লেট বলা হয়। প্রস্থ মাপ অনুযায়ী ২ মিটার থেকে ১২.৫ মিটার পর্যন্ত দীর্ঘ ও ৯০ সেটিমিটার থেকে ১.৮ মিটার পর্যন্ত প্রস্থ এবং ৬ মিলিমিটার থেকে ২০ মিলিমিটার পর্যন্ত পুরু প্লেট সমূহে মেটাল ওয়ার্কে বিভিন্ন কাজে ব্যবহৃত হয়। যেমন- জাহাজের কাঠামো নির্মাণে, মোটরযানের পাটাতন নির্মাণে, বেইলি ব্রিজে, এবং নানা প্রকার ছোটখাটো প্রকৌশল কাজে মাইন্ড স্টিল (M.S) বা রট আয়রনের প্লেট ব্যবহৃত হয়।
- 8. ক্ষোয়ার বার (Square bar) : বর্গক্ষেত্র আকৃতির প্রস্থচ্ছেদ বিশিষ্ট লৌহজাত নিরেট ধাতব খণ্ডকে ক্ষোয়ার বার বলে। সঙ্গত কারণেই উচ্চতা ও প্রস্থ সমান বলে এর যে কোন একটা মাপ উল্লেখ করলেই চলে। যেমন ৫০ মিলিমিটার। আর দৈর্ঘ্য প্রয়োজন অনুযায়ী। বেশির ভাগ মাইল্ড স্টিলের তৈরি ছোট-বড় মাপের এর এই বার মেটাল ওয়ার্কের নানা কাজে ব্যবহৃত হয়।
- ৫. **হেক্সাগোনাল বার (Hexagonal bar)** : হেক্স (Hex) অর্থাৎ ৬ বাহু। অর্থাৎ সুষম ষড়ভুজাকার খণ্ড বিশেষ। এর প্রত্যেকটা বাহুর মাপ সমান। ষড়ভুজের যে কোনো একটি বাহুর প্রস্থ মাপকে উল্লেখ করলেই চলে। যেমন- ১২ মিলিমিটার হেক্সাগোনাল বার, ২০ মিলিমিটার হেক্সাগোনাল বার ইত্যাদি। নাট-বোল্টের মাথার আকৃতি ষড়ভুজ বা হেক্সাগোনাল।
- ৬. একেল ও টি বার (Angle & Tee bar): একেল ও টি মেটাল ওয়ার্কে অতি প্রয়োজনীয় আকৃতির বার বিশেষ। এদের মাপ প্রকাশ করতে হলে উচ্চতা (A), প্রস্থ (B) ও বেদ (t) এই তিনটি মাপ উল্লেখ করতে হয়। চিত্রে মাপ দেখানো হয়েছে A B t । সাধারণত ১২ মিলিমিটার থেকে ১৫০ সেন্টিমিটার চওড়া ও ২ মিলিমিটার বেধ বা পুরুত্ত্বের বার ব্যবহৃত হয়। একেল ও টি বার ইকোয়াল ও আল-ইকোয়াল আকৃতির হয়ে থাকে। সমান মাপে দুটি ফ্লাট বারকে এক সমকোণ জোড় দিলেই এ্যান্সেল বার তৈরি হয়ে যায়।

৭। জেড বার (Z-bar): এটা দেখতে অনেকটা অ্যাঙ্গেল বারের ন্যায়, তবে আকৃতি ইংরেজি Z (জেড) অক্ষরের ন্যায়। অর্থাৎ একটি এঙ্গেল বারের মুখে বিপরীতমুখী একটি সমান মাপের ফ্লাট বার জোড়া দিলে জেড বার তৈরি হয়ে যায়। সাধারণত কোনো প্যানেলযুক্ত কাঠামো তৈরি যেমন- স্টিলের জানালা তৈরিতে এই বার বিশেষ উপযোগী হয়।

৮। চ্যানেল ও জয়েস্ট (Channel Joist): জয়েস্টকে বাংলায় কড়ি বলা হয়। চ্যানেল ও জয়েস্টেও মাপ প্রকাশ করতে হয়। এদের চওড়া (Width) উচ্চতা (Height) এবং প্রতি মিটারের ওজন (কিলোমিটার) এর উপর। চ্যানেল ও জয়েস্টের মাপ লিখতে হয় ১৫০ ৭৫ মিলিমিটার। চ্যানেল প্রতি মিটারের ওজন ১৫.৬ কিলোমিটার। ১৫০ ৭৫ মিলিমিটার জায়েস্ট, প্রতি মিটারের ওজন ১৮.৮ কিলোগ্রাম ইত্যাদি। চ্যানেল মূলত ব্যবহৃত দরজার কলাপসিবল গেট তৈরিতে। তাছাড়া বিভিন্ন ধরনের কাঠামো নির্মাণে চ্যানেল বিশেষ উপযোগী।

জয়েস্ট বা কড়িকে অনেক সময় আই-বীম (I-beam) বলা হয়। এর ভূমির সমান্তরাল অংশকে ফ্লেঞ্চ (Flange) ও লম্ব অংশকে ওয়েব (Web) বলা হয়। বাড়ির ছাদের বরগা, ব্রিজের কাঠামো, গিয়ার ইত্যাদি তৈরিতে উপযোগী।

- **৯। রেইল (Rail)** : এটা দেখতে অনেকটা জয়েস্ট আকৃতির। তবে পুরুত্ব বেশি ও দৃঢ়। সাধারণত হাই কার্বন ইস্পাত দিয়ে রেইল তৈরি করা হয়। এটা সাধারণত নিমুবর্ণিত প্রকারের হয়ে থাকে।
- ক) ট্রাম রেইল (Tram Rail)
- খ) ব্রিজ রেইল (Bridge Rail)
- গ) ফ্লাট বটম রেইল Flat Headed Rail)
- ঘ) ডবল হেডেড রেইল (Double Headed Rail)

এই সমস্ত রেইলসমূহ রেলগাড়ি, ট্রামগাড়ি, ওভারহেড ক্রেন, ট্রলি চলাচলের জন্য ব্যবহৃত হয়।

১০। এক্সপানডেড মেটাল (Expanded Metal): সংক্ষেপে বলা XMP । প্রকৃতপক্ষে এটা বিষমকোণী সম-চতুর্ভুজাকার ছিদ্রবিশিষ্ট একটি লোহার জাল (Net) বিশেষ। মাইল্ড স্টিলের বা শীট বা প্লেটকে শিয়ারিং অপারেশন করে এর জাল তৈরি করা হয়।

ছিদ্রের মাপ ও শীটের বেধ অনুসারে এই জাল বিভিন্ন মাপের হয়ে থাকে। বাড়ির কোনো অংশে বেড়া দিতে, ঘরের জানালায়, মেশিনের অংশবিশেষকে আচ্ছাদন দেয়ার কাজে এবং কংক্রিটের গাঁথুনিকে জোরদার করতে ব্যবহৃত হয়।

১১। শীট (Sheet): শীট অর্থ চাঁদর। ৩ মিলিমিটার অপেক্ষা পাতলা পুরুত্বের হয়ে থাকে। শীটের পুরুত্ব বার্মিংহাম গেজ দ্বারা প্রকাশ করা হয়। শীট দুই প্রকারের হয়ে থাকে। যথা- ক) য়ৢয়াক (Black) বা প্রলেপবিহীন (খ) গ্যালভানাইজড (Galvanized) (G.I) বা দম্ভার প্রলেপ দেয়া। এগুলি রট আয়রন বা মাইল্ড স্টিলের তৈরি হয়। ব্লাক শীটে সহজে মরিচা পড়ে আর জি আই শীটের উপর মরিচা পড়ে না। ফলে এটা দীর্ঘস্থায়ী হয়। এই শীট ১ মিটার চওড়া ও ২ মিটার লম্বা হয়ে থাকে। তা ছাড়া বিভিন্ন উৎপাদনকারী প্রতিষ্ঠান তাদের প্রয়োজন মতো কম-বেশি মাপে তৈরি করে থাকে।

অলৌহজ ধাতু যেমন- তামা, পিতল অ্যালুমিনিয়াম, সীসা প্লাটিনাম ধাতুর শীটসমূহ বিভিন্ন কাজে ব্যবহৃত হয়। তামার পাতলা শীট ইঞ্জিনের হেড, গ্যাসক্যাট তৈরিতে রেডিয়েটর কাঠামো, ইলেকট্রিক সরঞ্জাম, বয়লারের টিউব, রেফ্রিজারেটরের টিউব, কনডেনসার তৈরিতে ব্যাপকভাবে ব্যবহৃত হয়। তাছাড়া তামা ও পিতলের

শীটসমূহ অ্যালুমিনিয়াম ধাতু দিয়ে তৈরি। অ্যালুমিনিয়াম ব্রোঞ্জ, অ্যারোপ্লেন, বাস ও মোটরগাড়ির বিড, রিকশার বিডতে ও বাসন-কোসন তৈরিতে অ্যালুমিনিয়াম শীট ব্যবহৃত হয়।

ধাতব পদার্থসমূহ যেসব আকৃতিতে বাজারে পাওয়া যায়, তা নিম্নে উল্লেখ করা হলো-

- ১। ধাতব বার (Metal Bar) : ধাতব বার সমূহ নিরেট (Solid) ও বিভিন্ন আকৃতির হয়, যেমন- গোলাকার (Cylindrical), ত্রিকোণাকার (Angle bar), সমতল (Flat bar), বর্গাকার ((Square bar), চ্যানেল (Channel), বীম (Beam) আকৃতি বিশিষ্ট হয়। এ সমস্ভ আকৃতির ধাতব বারসমূহ মোটরযান, জলযান, রেলগাড়ি, ইমারত নির্মাণে আসবাবপত্র ইত্যাদির কাঠামো নির্মাণে ব্যবহৃত হয়। ধাতব বারসমূহ লৌহ, ইস্পাত, তামা, পিতল, অ্যালুমিনিয়াম ইত্যাদি ধাতুর তৈরি হয়ে থাকে।
- ২। **ধাতব পাত (Sheet Metal)** : কোনো কাঠামোর আচ্ছাদন হিসেবে ধাতব শীট বা পাতসমূহ ব্যাপক ব্যবহৃত হয়ে থাকে। বিভিন্ন ধাতুর তৈরি পাতসমূহ ভিন্ন ভিন্ন কাজে প্রয়োগ করা হয়ে থাকে। যেমন–
- (ক) এমএস পাত (M.S. Sheet) : নরম ইস্পাতের তৈরি—এই পাতসমূহ পাতলা পুরুত্বের (১০ গেজ থেকে ৩০ গেজ পর্যন্ত) হয়ে থাকে। এই শীটসমূহ সাধারণত ৩ ফুট ৬ ফুট, ৪ ফুট ৮ ফুট আকারের খণ্ড খণ্ড পাতে অথবা কয়েল আকৃতিতে বাজারে পাওয়া যায়। এই পাতে কোনো প্রকার মরিচারোধী প্রলেপ থাকে না বলে সহজেই মরিচা ধরে যায়। তবে এই শীটে উনুত মানের ও দীর্ঘস্তায়ী পেইন্ট করে মরিচা রোধ করা যায়। এই শীটের সাহায়েয় যানবাহনের আচ্ছাদন, স্টিল আলমারি, আসবাবপত্র ইত্যাদি তৈরি করা হয়।
- খ) ব্লাক আয়রন পাত (B.I Sheet) : এম এস পাতের মতোই পুরুত্বের ও ক্ষেত্রের এই পাতসমূহের গায়ে কালো রঙের একটা পাতলা রাসায়নিক প্রলেপ দেয়া থাকে যাতে এই পাতে সহজে মরিচা ধরে ক্ষয়প্রাপ্ত হতে পারে বিধায় ক্ষয়রোধী প্রলেপ দেয়া হয়। স্টোভের পাইপ, পানি ও তরল পদার্থের আধার (Container) যানবাহনের প্রয়োজনীয় আচ্ছাদন ও পাটাতন প্রস্তুতিতে বিশেষ ভূমিকা রাখে।
- গ) গ্যালভানাইজড আয়রন পাত (G.I. Sheet) : চেন্টা লোহা (Wrought Iron) ও নরম ইস্পাতের (Mild Sheet) পাতকে রাসায়নিক উপায়ে দস্তার প্রলেপ দিয়ে পাতের মরিচা রোধ করা হয়। এই পদ্ধতিকে গ্যালভানাইজিং ও পাতকে গ্যাভাইজড আয়রন পাত (Galvanized Iron Sheet) সংক্ষেপে জিআই শীট (G.I. Sheet) বলা হয়। দস্তার প্রলেপ থাকায় এই পাত সাদাটে উজ্জ্বল দেখায়। ঢেউটিন এই পাত দিয়ে তৈরি হয়। তাছাড়াও বালতি, পানির ট্যাঙ্কি, চুল্লি আসবাবপত্র, যানবাহনের আচ্ছাদন ও পাটাতন, ঘরের বেড়া, নৌকা ইত্যাদি জিআই শীট দিয়ে তৈরি হয়। বিভিন্ন পুরুত্বের জিআই শীট পাওয়া যায়। তবে সাধারণত ১৮ গেজ থেকে ৩০ গেজ পর্যন্ত জিআই শীট ব্যাপক ব্যবহৃত হয়। এসএম শীটের ন্যায় বিভিন্ন আকৃতি বিশিষ্ট খণ্ডে বা কয়েলে পাওয়া যায়।
- ষ) তামার পাত (Copper Sheet): নিরেট তামাকে ঘাতসহতা (Malleability) প্রক্রিয়ায় চাপা বল ও হাতুড়ি আঘাতে পাতলা পাতে পরিণত করা হয়। তামার পাতসমূহ আকৃতি ও পুরুত্বে ইস্পাত অপেক্ষা অনেক ছোট ও পাতলা হয়। তামার পাতে মরিচা ধরে না। তবে রাসায়নিক বিক্রিয়া হয়। তেলের আধার (Oil Cane) দ্রাম, ফানেল, মগ, বলতি, সাইলেঙ্গার বক্স (Cylinder box) চিকন পাইপ, জালি ইত্যাদি তৈরি হয় ও প্রকৌশল কাজে ব্যবহৃত হয়।
- ঙ) **অ্যালুমিনিয়াম পাত (**Aluminum Sheet) : অ্যালুমিনিয়াম ধাতুর তৈরি পাত দিয়ে গৃহস্থলি, তৈজসপত্র, যানবাহনের অংশবিশেষ, উড়োজাহাজ ইত্যাদি তৈরি হয়।

চ) স্টেইনলেস ইস্পাতের পাত (Stainless Steel Sheet) : সংকর ইস্পাতের মধ্যে স্টেইনলেস ইস্পাত দিয়েই বেশির ভাগ ক্ষেত্রে পাত তৈরি কাজে ব্যবহার করা হয়। বৃহৎ পরিমাণের ক্রোমিয়াম থাকায় এই ইস্পাতে মরিচা পড়ে না ও সহজে ক্ষয়প্রাপ্ত হয় না। এর অবয়ব সব সময় উজ্জ্বল দেখায়। মূল্যবান তৈজসপত্র, ডাক্ডারি যন্ত্রপাতি, সৃক্ষ পরিমাপক যন্ত্র ইত্যাদি স্টেইনলেস ইস্পাতের তৈরি হয়ে থাকে। এটা যেহেতু মরিচা রোধক, তাই টিন বা টিন জাতীয় দ্রব্যাদি তৈরির পরিপূরক হিসেবে ব্যবহৃত হয়। ছুরি (Knife) কাটলারি (Cutlery) প্রেট, গ্লাস, ঘড়ি মোটরয়ানের যন্ত্রাংশ প্রস্তুত করতে এই ইস্পাত ব্যবহৃত হয়।

৪.৩ ঢালাই লৌহ তৈরিকরণ পদ্ধতি (Production Method of cost Iron) :

ঢালাই লৌহ তৈরি করার জন্য বিভিন্ন চুল্লি ব্যবাহর করা হয়। ধাতুর সুষম গলনের জন্য ফাউন্দ্রিতে যে সকল চুল্লি ব্যবহার করা হয় তাদেরকে গলন চুল্লি বা মেন্টিং ফার্নেস (Melting Furnace) বলে। ফাউদ্রিতে বিভিন্ন ধাতু ঢালাইয়ের জন্য ব্যবহারক ক্ষেত্রে বিভিন্ন প্রকার গলন চুল্লি বা মেন্টিং ফার্নেস ব্যবহার করা হয়। যেমন:

- (১) কিউপোলা চুল্লি (Cupola Furnace)
- (২) অপেন-হার্থ চুল্লি (Open Hearth Furnace)
- (৩) বৈদ্যুতিক চুল্লি (Electric Furnace)
- (৪) ক্রুসিবল- চুল্লি (Crucible Furnace)

এ ছাড়া রোটারী চুল্লি, রকিং চুল্লি এয়ার ফার্নেস ইত্যাদিও ফাউদ্রিতে ব্যবহৃত হয়।

কিউপোলা, ওপেন হার্থ ও বৈদ্যুতিক চুল্লি অধিকাংশ ক্ষেত্রে লৌহজাত ধাতুর গলানোর কাজে এবং ক্রসিবল চুল্লি অলৌহজাত ধাতু ও ধাতু সংকর গলানোর কজে ব্যবহৃত হয়। তবে ক্রসিবল পদ্ধতিতে ইস্পাত ও উৎপাদন করা যায়। ঢালাই লোহার জন্য কিউপোলা, এয়ার ফার্নেস, রোটারী ফার্নেস ও বৈদ্যুতিক আর্ক ফার্নেস ব্যবহৃত হয়। ইস্পাত উৎপাদনের জন্য ওপেনহার্থ বৈদ্যুতিক ফার্নেস ও কনভার্টার ব্যবহৃত হয়। একটি চুল্লি থেকে প্রাপ্ত ধাতুকে প্রয়োজনে অন্য কোনো চুল্লিতে পুনরায় গলাইলে শেষোক্ত চুল্লিকে পুর্নগলন চুল্লি (Remelting Furnace) বলে। যেমন ঃ ব্লাষ্ট ফার্নেস থেকে প্রাপ্ত পিগ-লোহা হতে ঢালাই লোহা পাওয়ার জন্য এরকে কিউপোলা চুলি- তে গলানো হয়। এই জন্য কিউপোলা চুল্লিকে রিমেল্টিং চুল্লি বা পুনর্গলন চুল্লি বলা হয়। উপরে উল্লিখিত ওপেন-হার্থ এবং ক্রসিবল চুল্লিকেও পুনর্গলনের কাজে ব্যবহার করা যায়।

বিভিন্ন টেকনিক্যাল, পলিটেকনিক্যাল ইনস্টিটিউটসমূহে পুনর্গলন চুল্লি হিসেবে ক্রসিবল ও কিউপোলা চুল্লি ব্যবহৃত হয় কারণ এই চুল্লিতে অল্প সময়ে এবং কম খরচে অলৌহজাত ধাতু ও ঢালাই লোহা সহজেই তৈরী ও গলানো যায়।

ঢালাই লৌহ তৈরিতে চুল্লি নির্বাচনে বিবেচ্য বিষয়সমূহ:

- (১) ফার্নেসের প্রারম্ভিক খরচ
- (২) জ্বালানি খরচ
- (৩) ধাতু বা সংকরের প্রকার
- (৪) ধাতুর গলন ও ঢালাই তাপমাত্রা
- (৫) ঢালাই ধাতুর পরিমাণ
- (৬) ঈন্সিত ধাতুর পরিমাণ
- (৭) ফার্নেসের মেরামত ও রক্ষণাবেক্ষণ খরচ
- (৮) ব্যবহৃত ফার্নেসের নমনীয়তা

- (৯) ঢালাই-এর মান
- (১০) ফার্নেসের সহজ্বভাতা

কিউপোলা চুলি-র বর্ণনা :

- (क) বর্ণনা (Description) : রাস্ট ফার্নেস থেকে প্রাপ্ত পিগ লোহাকে লৌহ ক্রাপের সংস্কে মিশিরে পুনরার যে চুল্লিতে গলিয়ে সম্ভার ঢালাই লোহা উৎপাদন করা হয়, তাকে কিউপোলা চুল্লি বলে। এটা প্রকৃত পক্ষে রাষ্ট ফার্নেসের একটি ক্ষুদ্র পরিবর্তিত রূপ। এক চুল্লি হতে প্রাপ্ত লোহাকে পুনর্বার এই চুল্লিতে গলানো হয়। বলে একে রিমেন্টিং চুল্লি বলে।
- (খ) গঠন (Construction) : তাপ প্রতিরোধক পদার্থ ফায়ার ব্রিকের লাইনিং করা একটি খাড়া ইস্পাতের পাইপ-সদৃশ খোলক দ্বারা কিউপোলা চুল্লির বন্ডি গঠিত। ১.৫ হতে ২ মিটার ব্যাসের ৯ হতে ১২ মিটার উচ্চ সাইক্লের কিউপোলা চুল্লি নির্মাণ করা হয়। ফার্নেসের ভিতরে কোক বেডে বাতাস প্রবেশ করনোর জন্য এর তলদেশের একটু উপরে ছিদ্র থাকে। ফার্নেসেটি স্বিধাজনক ফাঁকে স্থাপিত স্বস্তের উপর অবলঘন করা একটি বৃত্তকার প্লেটের উপর অমনভাবে বসানো থাকে যাতে কজাকৃত তলার দরজগুলি মুক্তভাবে ঘুরতে পারে।

কাজের সময় এই দরজান্তলিকে অনুভূমিকভাবে ঘুরিয়ে একটি খাড়া দণ্ডের সাহাব্যে যথান্থলে ধরে রাখা হয়। এছাড়া ফার্নেসের ভিতরে কাঁচামালসহ অন্যান্য প্রয়োজনীয় পদার্থ সরবরাহের জ্বন্য দরজা থাকে। একে চার্জিং দরজা (Charging Door) বলে। তলদেশের ৪.৫ হতে ৭.৬ মিটার উপরে চার্জিং পদার্থ প্রবেশ করানো হয়।

গলিত থাতৃকে যথাসময়ে ফার্নেস থেকে বের করার জন্য নিচের দিকে পালে দরজা কাটা থাকে। একে ট্যাপ-হোল (Tap hole) বলে। গলিত থাতৃর অপদ্রব এবং অন্যান্য পদার্থ হতে অপদ্রব মিশিয়ে বে হালকা ওজনের থাতৃমল উৎপন্ন হয় তা বের করার জন্য ট্যাপ-হোলের উপরে অপর পালে স্থাপ-হোল থাকে। ফার্নেসের মাথার উপরে ছিন্রযুক্ত একটি কভার থাকে একে স্পার্ক এরস্টার বলে। এই চুন্নির খোলক সাধারণত ৬.৩ মি.মি. পুরু বয়লার প্রেট দিয়ে তৈরি হয়।

গ) কার্য প্রণালি : প্রথমে ফার্নেসের তলায় অবস্থিত র্যামিং করা বালির উপর কোকের বেড চার্জ রাখা হয়। বেড় চার্জের উপর নির্নিষ্ট অনুপাতে লোহা ও কোক রাখা হয়। বিভিন্ন গলন-অনুপাতের কিউপোলা থাকে। যেমন -১০ঃ১ কিংবা ৮ঃ১ ভাগ লোহার সঙ্গে এক ভাগ কোক মিশাতে হবে।

िष 8.3 : किউপোলা চুन्नि

এছাড়া উৎপন্ন থাতু মলের প্রবাহিতা বাড়ানো এবং লোহার অক্সিজেন সংযোগ বন্ধ করার জন্য ফ্লান্থ হিসাবে চুনাপাথর (Lime stone) ফ্লোর স্পার (Fluorspar) বা সোডা-আশ (Soda-ash) যোগ করা হয়। প্রতিটন লোহার জন্য ৩৪ কেজি চুনাপাথর দরকার। প্রতিটন লোহা গলান্তে সরবরাহকৃত বাডাসের পরিমাণ কোন এবং

কোন-লোহার অনুপাতের নির্ভর করে। তাত্ত্বিকভাবে এত কিলোগ্রাম কার্বন পোড়াতে ৬০০ ফাঃ তাপমাত্রায় ১ কেজি/বর্গ সেঃ মিটার চাপে প্রায় ৭ ঘন মিটার বাতাস প্রয়োজন। তবে সাধারণ হিসাবে এক কেজি কোক পোড়াতেই ৯.২৬ ঘন মিটার বাতাস প্রয়োজন।

বেড চার্জ জ্বালানোর পরে পর্যায়ক্রমে অন্যান্য চার্জ দেয়া হয়। এর প্রায় দেড় ঘণ্টা পরে, সরবরাহকৃত বাতাসের তাপমাত্রা বৃদ্ধি পেয়ে দশ মিনিটের মধ্যে ট্যাপ-হোলে গলিতে ধাতু জড়ো হতে থাকে। এরপর ট্যাপ-হোল খুলে ল্যাডেলে গলিতে ধাতু সংগ্রহ করে প্রয়োজনীয় স্থানে ঢালাই করা হয়। একটি কিউপোলা চুল্লির সকল কাজকে নিমুলিখিত ধাপে বিভিক্ত করা যায়:-

- (১) কিউপোলার ব্যবহার প্রস্তুতি
- (২) কোক বেড আগুন জালানো
- (৩) কিউপোলাতে চার্জ সরবরাহ
- (৪) ট্যাপিং

বি. দ্র. স্যান্ড বেডের উপর নরম শুকনা কাঠ রেখে এর উপর টায়ার পর্যন্ত উচ্চতায় কোক রাখা হয়। তারপর ইলেকট্রিক স্পার্ক ইগানইটার অথবা গ্যাস টর্সের সাহায্যে আগুন ধারানো হয়। কোক বেডের উচ্চতা মোটামুটি ৭৬ সে.মি.। চার্জিং দরজা হতে একটি চেইন বা রডের সাহায্যে কোক বেডের উচ্চতা মাপা যায়। কিউপোলাতে ধাতুর রিফাইনিং বা বিশোধন খুব সামান্য পরিমাণে হয়। গলনের সময় মোটমুটি ১০% সিলিকন, এবং ১৫-২০% ম্যাঙ্গানিজ জারণ ক্রিয়ার ফলে অপচয় হয় এবং ৩-৪% সালফার যুক্ত হয়।

কয়েকটি প্রয়োজনীয় টীকা:

- (ক) টাইয়ার্স (Tuyeres) : কিউপোলা চুল্লির কোক বেডে বাতাস সরবরাহের জন্য এর দেয়ালের চারদিকে যে ছিদ্র রাখা হয়, তাকে টাইয়ার্স বলে।
- (খ) ট্যাপ-হোল (Tap Hole): কিউপোলা হতে গলিত ধাতু ল্যাডেলে ঢালাই করার জন্য চুল্লিতে যে ছিদ্র পথ রাখা হয়, তাকে ট্যাপ-হোল বলে। এর বিপরীত দিকে সামান্য উপরে এবং টাইয়ার্স-এর একটু নিচে আর একটি ছিদ্র থাকে যা ধাতুমল বের করার জন্য ব্যবহৃত হয়। একে স্লাগ-হোল বলে।
- (গ) কিউপোলা জোন (Cupola zone) : একটি কিউপোলা চুল্লিকে মাথা হতে গোড়া পর্যন্ত একে কার্য প্রণালি মোতাবেক কয়েকটি ভাগে ভাগ করে প্রতি অংশকে বিভিন্ন নামে নামকরণ করা হয়। এই বিভিন্ন অংশকে এক একটি বলয় বা জোন (এলাকা) বলে। কিউপোলা জোনগুলি নিমুর্নপ :
- (১) ওয়েল বা ক্রুসিবল জোন (Well or Crucible zone)
- (২) প্ৰজ্বলন জোন (Combustine zone)
- (৩) বিগলন জোন (Mclting zone)
- (8) পর্ব-তাপ জোন (Preheating zone)
- (৫) রিডিউসিং জোন (Reducing zone)
- (৬) স্ট্যাক জোন (Stack zone)
- (১) ওয়েল বা জুসিবল জোন (Well or Crucible zone) : চুল্লিতে ধাতু গলিয়ে যাওয়ার পর নিচের দিকে চলে আসে এবং বেডের উপর জড়ো হতে থাকে। এখান হতে ট্যাপ-হোল বেয়ে ল্যাডেলে ধাতু ঢালাই করা হয়। স্যাভ বেড এবং টাইয়ার্স-এর মধ্যবর্তী স্থানকে ওয়েব বলে। একে জুসিবল জোনও বলা হয়।

- (২) প্রজ্বলন জোন (Combustine zone) : চুল্লির যে অংশে এয়ার চার্জ পুরাপুরিভাবে প্রজ্বলিত হয় ঐ অংশকে প্রজ্বলন জোন বলে। এই স্থানে চার্জের কার্বন, সিলিকন ও মাগানিজের অক্সিজেন সংযোগ (Oxidation) ঘটে। তাই একে অক্সিডাইজিং জোনও বলে। এই জোনে ১৫৫০°-১৮৭৫° সেঃ তাপমাত্রায় সৃষ্টি হয়।
- (৩) রিডিউসিং জোন (Reducing zone) প্রজ্বলন জোনে সৃষ্ট কার্বন ডাই-অক্সাইড উপরের দিকে উঠে কার্বন মনোঅক্সাইড-এ পরিবর্তিত হয়। তাই প্রজ্বলন জোনের উপরের অংশকে রিডিউসিং জোন বলে। এই জোনকে সংরক্ষিত জোনও বলে (Protective zone)। কারণ বাতাস না যেতে পারলে চার্জে অক্সিজেন-সংযোগ হতে পারে না। এই জোনের তাপমাত্রা মোটামুটি ৩০০০° ফাঃ।
- (8) বিগলন জোন (Melting zone) : চুল্লির যে অংশে চার্জের পুনর্গলন ক্রিয়া সম্পন্ন হয় তাকে মেল্টিং জোন বলে। এর নিচেই থাকে সুপারহিটিং জোন এবং উপরে থাকে প্রিহিটিং জোন। মোল্টিং জোনের তাপমাত্রা প্রায় ৩১০০° ফাঃ।
- (৫) প্রি**হিটিং জোন (Preheating zone)** : চুল্লির মেল্টিং জোন এবং স্ট্যাকের মধ্যবর্তী অংশকে প্রিহিটিং জোন বলে। এই জোনের চার্জের উপর গরম বাতাস সরবারাহ করে ধীরে ধীরে তাপ প্রদান শুরু হয়। এই জোনে ধাতু গলে না। এই জোনের ভিতরেই চার্জিং দরজা থাকে। প্রিহিটিং জোনের তাপমাত্রা ২০০০° ফাঃ।
- (৬) স্ট্যাক জোন (Stack zone) : চুল্লির মাথার উপর ঢাকনা বাদ দিয়ে নিচের প্রিহিটিং জোন পর্যন্ত অংশকে স্ট্যাক জোন বলে।
- (ঘ) স্পার্ক এরস্টার (Spark Arrester) :

চুল্লির ভিতরে গলনের সময় অগ্নিক্ষুলিংগসহ বিভিন্ন কণা যাতে চুলি-র উপর দিয়ে বের হতে না পারে, সে জন্য মাথার উপরে চুলি-র ব্রাসের চাইতে আকারে সামান্য বড় করে একটি সচ্ছিদ্র ঢাকনা ব্যবহৃত হয়। এতে অগ্নিক্ষুলিঙ্গ গুলি বাধাপ্রাপ্ত হয় বলে একে স্পার্ক এরেস্টার বলে।

(৩) কিউপোলা রেশিও (Cupola Ratio) : একটি কিউপোলা চুল্লিতে চার্জ হিসেবে ব্যবহৃত লোহা ও কোকের অনুপাতকে কিউপোলা রেশিও, ফুয়েল রেশিও বা মেল্টিং বলে। মেল্টিং রেশিও ১০ঃ১ বলতে বুঝায় দশ ভাগ লোহার সহিত একভাগ কোক মিশানো হয়েছে। একে অনেক সময় কোক লোহা অনুপাতও বলা হয়। ১০ঃ১ এর স্থলে একে ১ঃ১০ এভাবেও লেখা হয়। কম অংশই কোক বুঝতে হবে। এ লোহা-কার্বন অনুপাত নামেও পরিচিত। প্রাপ্ত জ্বালানির মান অনুসারে ৪ঃ১ হতে ১২ঃ১ অনুপাতে কিউপোলা রেশিও প্রচলিত।

কিউপোলা চুল্লির দক্ষতা (Efficiency of cupola Furnace) :

কিউপোলা চুল্লি বলতে এর তাপীয় দক্ষতা বা থার্মাল এফিসিয়েঙ্গি বুঝায়। একে আবার মেল্টিং দক্ষতাও বলে। কোকের তাপীয় পরিমাণ, অব্লিডেশনের তাপ এবং বাতাসের ইন্দ্রিয় গ্রাহ্য (Senslibie) তাপ এর সমষ্টির সহিত ধাতু গলানোর কাজে ব্যবহৃত তাপের অনুপাতের শতকরা হিসাবকে চুল্লির মেল্টিং দক্ষতা বলে।

Melting efficiency = (Heat Utilised in Melting) x 100

Cloric Value of coke + Heat from oxidation + Sensible Heat from air blast. একটি কিউপোলার গলন দক্ষতা ৩০-৫০% হয়ে থাকে। বি. দ্র. মেল্টিং সামর্থ্য, ব্যাস, পেটের গুরুত্ব, মোট উচ্চতা, টাইরার্স-এর সংখ্যা এবং ব্লোরারের অশ্ব ক্ষমতা দারা একটি কিউপোলা চুন্নির স্পোসিফিকেশন বুঝানো হর।

কিউপোলা চুল্লির সুবিধা ও অসুবিধা : সুবিধা :

- ১। এর গঠন ও ডিছাইন খুব সরল।
- ২। অর্থনৈতিক দিক থেকে এর কার্য প্রণালি সন্তা।
- ৩। কম রক্ষণাবেক্ষণসহ অবিরাম কাজ করতে সক্ষম।

षजुविशा :

- ছালানির সংস্পর্লে ধাতৃ
 গলানো হয় বলে কিছু অংশ নই
 হয়। সর্বলেষ বিশ্লেষণের এই
 অপচয় ধরা পড়ে।
- ২। কিউপোশার ভিতরে বিশেষ শ্রেণির শোহা ও সংকর ধাতৃর নিয়ন্ত্রণ কটকর।
- ৩। সৃন্ধ তাপমাত্রা নিয়ন্ত্রণ

চিত্ৰ: ৪.২: অপেন হাৰ্থ চন্ত্ৰি

ক্টকর।

৪। কম কার্বনের ঢালাই লোহা উৎপাদন কটকর।

অপেন হাৰ্থ চুন্ধিৰ বৰ্ণনা (Description of open hearth furnace) ঃ

যে চুন্নিতে গলিত ধাতৃ ধরনের স্থান উন্মৃক্ত বা প্রশন্ত থাকে তকে ওপেন হার্থ চুন্নি বলে। অন্য কথায়, ধাতব চার্জ ধারণের উপযোগী অগভীর এবং উপবৃত্তের হার্থ বা ক্ষেত্র বিশিষ্ট ইট নির্মিত আয়তাকার কাঠামোকে ওপেন হার্থ চুন্নি বলে। এতে চার্জের উপর গরম গ্যাস সরবরাহের ব্যবস্থা থাকে। এটি মূলত একটি বিশোধন চুন্নি যা প্রধানত ইস্পাত উৎপাদনের জন্য ব্যবহৃত হয়। প্রায় ৮৫ শতাংশ ইস্পাত এই চুন্নিতে উৎপাদিত হয়।

প্রতি ব্যাচে ১০ হতে ৬০০ টন ধারণ ক্ষমতার গুপেন হার্থ চুলি-র ব্যবহার দেখা যায়। জ্বালানি হিসেবে গ্যাস, তেল এবং অনেক সময় ওঁড়া কয়লা ব্যবহৃত হইয়া থাকে। ভিতরের লাইনিং অনুসারে গুপেন হার্য চুল্লিকে দুই শ্রেণিতে ভাগ করা যায়। যথা:

- ১। এসিড ওপেন হার্ষ (Acid open hearts)
- ২। বেসিক ওপেন হার্থ (Basic open hearts)

যে ওপেন হার্থ চুল্লির ভিতরের লাইনিং সিলিকা ইটের তৈরি তাকে এসিড অপেন হার্থ বলে। পক্ষান্তরে বেসিক অপেন হার্থ চুল্লির লাইনিং ম্যাগনেসিয়াম ইটের তৈরি।

বাস্তবে ব্যবহৃত ৯০ শতাংশ ওপেন হার্থ চুল্লীই বেসিক ধরনের। এসিড ওপেন হার্থ অপেক্ষা বেসিক ওপেন হার্থ চুল্লি সুবিধাজনক। কারণ এতে ফসফরাস, সালফার, সিলিকন, ম্যাঙ্গানিজ এবং কার্বন দূর করা সম্ভব হয়।

এসিড শ্রেণীর ওপেন হার্থ দ্বারা শুধুমাত্র সিলিকন, ম্যাঙ্গানিজ ও কার্বন দূরীকরণ সম্ভব। গলিত পিগ লোহা ইস্পাতের স্ক্র্যাপ নিয়ে এই চুল্লির চার্জ তৈরি হতে পারে। তবে অধিকাংশ ক্ষেত্রে ইস্পাত স্ক্র্যাপ (৩৫-৬০%) ঠাগু পিগ-লোহা এবং ল্যাডেল হতে প্রাপ্ত গলিত পিগের মিশ্রণকে চার্জ হিসেবে ব্যবহার করা হয়। চুল্লির ভিতরে ক্র্যাপ গলার পর দুই-তিন ঘণ্টা পরে গলিত পিগ লোহা দেয়া এবং পরবর্তী ছয় থেকে সাত ঘণ্টা ধরে চার্জকে সিদ্ধ করার পর ফ্লাক্স মিশানো হয়। প্রাথমিক চার্জের দশ ঘণ্টা পর ট্যাম্পিং করা হয়।

চুনাপাথর ও ডলোমাইট ফ্লাক্স হিসেবে ব্যবহৃত হয়। চুনাপাথর ধাতু মলের প্রবাহ বাড়ায়। আজকাল এই ধরনের চুল্লিতে এর ছাদের ভিতর দিয়ে অক্সিজেন ল্যাঞ্চ সরবরাহ করে মোটামৃটি ২৫% সময় বাঁচানো হয়।

ফলে জ্বালানি খরচ ও মোটামুটি ৩০% কমানো যায়। এর জন্য প্রতিটন লোহা হিসেবে ৫০০ ঘন ফুট বা প্রায় ১৫ ঘন মিটার অক্সিজেন দরকার হয় অক্সিজেন সরবরাহের ফলে কার্বনের পরিহার ও বেশি হয়। চুল্লির উৎপাদনের ক্ষমতা বৃদ্ধি পায়। একটি ওপেন হার্থ চুল্লি ও উৎপাদনের কম্পিজশন নিমুরূপ: কার্বন সিলিকন ম্যাঙ্গনিজ সালফার ফসফরাস .০৮-১.৩% ০.৩৫%

বৈদ্যুতিক চুল্লি (Electric Furnace):

যে চুল্লিতে ধাতু গলানোর জন্য তাপের উৎস হিসেবে বিদ্যুৎ শক্তি ব্যবহৃত হয়, তাকে বৈদ্যুতিক চুল্লি বলে। ইকেট্রোভের মাধ্যমে সৃষ্ট স্পার্ক থেকে তাপ পাওয়া যায়। এই ধরনের চুল্লিতে বাছাইকৃত (Selected) ইস্পাত ক্র্যাপকে চার্জ

চিত্র: ৪.৩ : বৈদ্যুতিক চুল্লি

হিসেবে ব্যবহার করা হয় এবং সর্বশেষ উৎপাদন হিসেবে স্টেইনলেস ইস্পাতের ঢালাই ও ইনগট তাপ প্রতিরোধক ইস্পাত, টুল ইস্পাত এবং অনেক সাধারণ সংকর ইস্পাত ও কার্বন ইস্পাত পাওয়া যায়।

বৈদ্যুতিক চুল্লিকে নিমুলিখিত তিন শ্রেণীতে ভাগ করা যায়। যথা :

- ১। প্রত্যক্ষ আর্ক বৈদ্যুতিক চুল্লি (Direct Arc Electric Furnace)
- ২। পরোক্ষ আর্ক বৈদ্যুতিক চুল্লি (Indrirect Arc Electric Furnace)
- ৩। আবেশ-বৈদ্যুতিক চুল্লি (Induction Arc Electric Furnace)

সকল প্রকার চুপ্তিই মোটামূটি ৪০ ভোপ্টে ১২০০০ আম্পিরার বিদ্যুৎ সরবরাহে কান্ত করে। বৃত্তকার ইস্পাত খোলক দারা বৈদ্যুতিক চুপ্তি গঠিত এবং চিং-কাত করার জন্য এতে কিছু যান্ত্রিক ব্যবস্থা থাকে। প্রপেন হার্থ এর মতো এই চুপ্তি ও সামনের দিকে ট্যাগ হোল এবং শশ্চাৎ দিকে চার্জিং দরজা থাকে। চুপ্তিকে পিছনের দিকে কাত করে সহজেই থাতুমল নিকাশনের জন্য চার্জিং দরজার সরাসরি নিচের স্থাণ-হোল রাখা হয়।

ইলেকট্রোড হিসেবে ব্যবহৃত অনুষ্ষ ৭৬ সেঃ মিটার ব্যাসের ২৪-২৫ মিটার লখা কার্বন অথবা প্রাকাইট রডকে চুল্লির ছাদের ছিদ্রপথে প্রবেশ করানো থাকে। বাতে এরর মাখা খাতু মলের ২,৫৬ সেঃ মিটার ব্যবধানে অবস্থান করে। এই ফাঁকা ছালে লাফিয়ে বিদ্যুৎ ইলেকট্রোড হতে স্লাগে চলিয়া আসে এবং এরপর গলিত খাতু হয়ে আবার খাতুমলে ফেরত আসার পর ইলেকট্রোড প্রবাহিত হয়। রড ও স্লাগের মধ্যবর্তী ফাঁকা ছানে আর্ক সৃষ্টি হয় যা খাতু গলালোর জন্য প্রয়োজনীয় তাপ সরবারাহ করে থাকে। ইলেকট্রোডকে প্ররোজনে উপরে-নিচে ওঠানামা করানোর ছারা তাপমাত্রাকে সহজে নিয়ন্ত্রপ করা হয়।

উচ্চ মেন্টিং রেইট, ডাপমাত্রার সহস্ক নিয়ন্ত্রণ এবং উন্নতমানের ইস্পাত উৎপাদন প্রভৃতি সুবিধা এবং অসুবিধার মধ্যে উচ্চ বিদ্যুৎ খরচই প্রধান।

কমপজিশন অব প্রভাষ্ট :

কাৰ্বন	সিলিকন	ফসকরাস	ম্যাৎগানি জ	সংক্র ধাতু
20.0-960.	0.0-0.6	0.02-0.00	0.6-07	0.0-0.0

ক্ৰসিবল চুক্তি (Crucible Furnace) :

গ্রাফাইট 1 অথবা কারবাইডের জৈরি ক্রনবিল একটি পাত্ৰবিশেষ। ভাপ প্রতিরোধক পদার্থের তৈরি উক্ত ক্রসিবল নিৰ্মিত চুক্তিকে ক্রসিবল চুক্তি বলে। অলৌহজাত থাড় যেমন-অ্যালুমিনিয়াম. ম্যাপনেশিয়াম. পিডল. দক্ষা প্রস্তৃতি গলানোর জন্য ক্রসবিল মাইভ ইস্পাতের তৈরি হতে পারে। কয়লা, ভেল বা গ্যাস ইভ্যাদি জ্বালানি হিসেবে ব্যবহৃত रुग ।

চিত্ৰ: ৪: ক্ৰসিবল চুক্তি

ক্রসিবল চুক্লি তিন প্রকার। যথা :

- ১। পিচ-টাইপ ক্রসিবল চুল্লি (Pit type)
- ২। স্টেশনারী টাইপ ক্রসিবল চুক্তি (Stationary type)

ত। টিলটিং টাইগ ক্রসিবল চুল্লি (Tilting type)

পিট-টাইপ চুক্সিতে কয়লার সাহায্যে তাপ প্রদান করা হয়। একে ফাউন্ত্রির মেঝের এক পাশে একটি অগভীর গর্তের মধ্যে স্থাপন করে এর চারিপাশে কয়লার টুকরা প্যাকিং করে দেয়া হয় এবং ব্লোয়ারের মাধ্যমে বাভাস সরবরাহ করে জ্বলম্ভ কয়লার তাপ প্রদান অব্যাহত রাখা হয়।

ক্ষুসিবলে রক্ষিত ইনগট গলে গেলে পাত্রটিকে একটি বৃশ-শ্যাডেল বা হ্যান্ড শ্যাডেলের সাহায্যে দুই দিকে হাতে ধরে গলিত ধাতৃকে মোন্ডে ঢালাই করা হয়। অধিকাশে পলিটেকনিক ইনস্টিটিউটে প্রশিক্ষণের জন্য এই পিট-টাইপ ক্রসিবল চুল্লি ব্যবস্কৃত হয় এবং অ্যালুমিনিয়াম ও জিংক এবং কোন কোন সময় পিতল ঢালাই করা হয়।

স্টেশনারি টাইপ ক্রনিবল চুলি- সাধারণত জ্যালুমিনিয়াম, ম্যাগনেসিয়াম, জিংক, সীসা এবং এই জাতীয় কম গলনাংকের সংকর থাতু গলানোর কাজে ব্যবহৃত হয়। ক্রসিবল সাধারণত মাইন্ড ইস্পাতের তৈরি হয় এবং একে তেল বা গ্যাসের সাহায্যে জ্বালানো হয়। টিলটিং-টাইপ চুল্লিকে মেঝের একটু উপরে দুইটি স্ট্যান্ডের উপর বসানো থাকে এবং একটি গিয়ার সংযোজিত হাঙ ছইল ঘুরিয়ে চুল্লিকে ঘ্রানোর (টিলটিং) ব্যবহা থাকে। স্টেশনারি চুল্লির মতো এতে জ্বালানি হিসেবে তেল বা গ্যাস ব্যবহৃত হয় এবং একটি পাধার সাহায়্যে বাতাস সরবরাহ করা হয়।

वि. मृ.- क्रिनियम रूब्रि व्यक्ष्ण्भरक पूरे व्यकात । यथा :

- (১) স্টেশনারি টাইপ এবং
- (২) টেলটিং টাইপ।

স্টেশনারি টাইপ ক্রসিবদকে যখন ফাউন্ত্রি মেঝের গর্ভে স্থাপন করা হয়, তখন একে পিট-টাইপ ক্রসিবদ বলে। রোটারী বা আবর্ডন চুলি- (Rotary Furnace) :

কম কার্বনের ম্যালিএবল ঢালাই লোহা উৎপাদনকারী বারু-চুক্টির (এরার ফার্নেস) পরিচালনা কইকর এবং জ্বালানি ধর বেশি হওয়ায় এর স্থানে আবর্তন চুব্লি (রোটারী ফার্নেস) ডিজাইন করা হয়েছে। এই ধরনের চুলি-র ভিতরে একটি ব্যালনাকৃতি (সিলিম্রিক্যাল) ব্যারেল নির্দিষ্ট (মিনিটে এক পাক) আবর্তন হয় বলে একে রোটারী বা আবর্তন চুন্থি বলে।

ঢালাই মালা সংমিশ্রণ (Additions to Casting) :

চুলি- থেকে গলিত ধাতু মোন্ডে ঢালাইয়ের প্রস্তুতির এতে যে সকল প্রয়োজনীয় উপাদান মিশানো হয় তার অতিরিক্ত সংযুক্ত বা সংমিশ্রণ বলে। ঢালাই বস্তুর উপাদান ও গুণাগুণ নিয়ন্ত্রণের জন্য এই সংমিশ্রণ প্রয়োজন। এদের মোট চার শ্রেণিতে বিভক্ত করা যায়। যথা:

- ১। অক্সিডাইজিং একেন্ট (Oxydizing Agent)
- ২। त्रिकारेनिर अरबन्टे (Refining Agent)

- ৩। অত্যাবশ্যক বা জরুরি উপাদান (Essential Additiion)
- 8। ডি-অক্সিডাইজিং এজেন্ট (Deoxidizing Agent)
- (১) অক্সিডাইজিং এজেন্ট (Oxydizing Agent) : যে সকল পদার্থের উপস্থিতিতে অক্সিজেন এবং অন্যান্য ইলেকট্রোনেগেটিভ মৌল (যেমন : ক্লোরিন, ফ্লারিন, নাইট্রোজেন ইত্যাদি) সংযুক্ত হয় এবং হাইড্রোজেন বিদূরিত হয় তাদেরকে অক্সিডাইজিং এজেন্ট বলে। যেমন- 'বিশুদ্ধ তামার ভিতর' কিউপ্রাস অক্সাইড নিকেলের ভিতর 'ম্যাংগানিজ অক্সাইড' এবং ইস্পাতের ভিতর লৌহ আকরিকের উপস্থিত। গলিত ঢালাই লোহাতে লৌহ অক্সাইডের উপস্থিতি সিলিকন, ম্যাঙ্গনিজ এবং এসিড লাইনিং-এর কার্বনসহ বেসিক লাইনিং এর ফসফরাস ও দ্রীভূত হয়।

তবে ম্যাগনেসিয়াম-অ্যালুমিনিয়াম গলনে অথবা অ্যালুনিয়ামের সংকর গলনে অক্সিডাইজিং এজেন্ট যোগ করা হয় না। এর হাইড্রোজেন কমানোর জন্য ক্লোরাইড মিশানো হয় যার ক্লোরিন হাইড্রোজেন কমাতে সাহায্য করে।

- (২) রিফাইনিং এজেন্ট (Refining Agent): যে সকল পদার্থের উপস্থিতিতে বিভিন্ন উপদানের সুষম বন্টন হেতু ঢালাই বন্ধর দানার আকার অথবা গঠন নিয়ন্ত্রিত হয় তাদেরকে রিফাইনিং এজেন্ট বলে। যেমন, উন্নত ভৌত ধর্ম ও সিলিকনের সুষম বন্টনের জন্য সিলিকন অ্যালুমিনিয়াম ধাতু সংকরে 'সোডিয়াম' উপস্থিতি, মিহিদানা পাওয়ার জন ইস্পাতের ভিতরে নিয়ন্ত্রিত পমাণে অ্যালুমিনিয়াম এর উপস্থিতি মোটাদানা যাতে গঠিত না হয় তার জন্য অ্যালুমিনিয়াম ব্রোঞ্জের সাথে সামান্য পরিমাণে 'লোহা ও নিকেল' যোগ করা হয়।
- (৩) অত্যাবশ্যক বা জরুরি উপাদান (Essential Addition) : যে সকল পদার্থে কোনো ঢালাই-এর কমপজিশন এবং সংকর বা এলয় উপাদান হিসেবে সরবরাহ করা হয় তাদেরকে অত্যাবাশ্যক বা জরুরি উপাদান বলে। যেমন :
- (ক) পিতল উৎপাদনের জন্য তামার ভিতর জিংক মিশানো হয়।
- (খ) ব্রোঞ্জ তৈরির জন্য গলিত তামার ভিতর টিন মিশানো হয়।
- (গ) অ্যালুমিনিয়ামের ভৌত ধর্ম উনুয়নের জন্য তামার ভিতর অ্যালুমিনিয়াম মিশানো হয়।
- (ঘ) ম্যাগনসিয়াম ধাতু সংকর পাওয়ার জন্য অ্যালুমিনিয়ামে, জিংক এবং ম্যাঙ্গানিজ যোগ করা হয়।
- (৩) অ্যালুমিনিয়ামের ভৌত ধর্ম উনুয়নের জন্য এর সাথে সামান্য পরিমাণে তামা বিদূরিত সিলিকা, ম্যাগনেসিয়াম, ম্যাঙ্গানিজ ও টাইটানিয়াম মিশানো হয়।
- (চ) ইস্পাত তৈরির জন্য বিশুদ্ধ লোহার সাথে কার্বন, সিলিকন এবং ম্যাঙ্গানিজ মিশানো হয়। সংকর ইস্পাত উৎপাদনের জন্য নিকেল, ক্রোমিয়াম, মলিবডেনাম প্রভৃতি যোগ করা হয়।
- (৪) ডি-অক্সিডাইজিং এজেন্ট (Deoxidizing Agent) : অক্সিডেশনের বিপরীত ক্রিয়া হলো ডিঅক্সিডেশন। য সকল পদার্থের উপস্থিতিতে অক্সিজেন বিদূরিত হয় এবং ইলেকট্রপজেটিত মৌল ও হাইড্রোজেন
 আনয়ন করে তাদেরকে ডি-অক্সিডাইজিং এজেন্ট (বা বিজারণ কর্তা) বলে। এই প্রক্রিয়ায় অক্সিজেনভুক্ত সংকর
 উপাদানও বিদূরিত হয়। পিতল উৎপাদনের তামার সংক্ষে জিংক মিশালে এবং ব্রোঞ্জ (কাঁসা) উৎপাদনে তামার
 সংক্ষে টিন মিশালে এরা ডি-অক্সিডাইজিং এজেন্ট হিসাবে কাজ করে।

ঢালাই-এ ব্যবহৃত আনুষঙ্গিক সরঞ্জাম (Accessories used in Pouring) :

চুল্লিতে ধাতু গলানোর কাজ শেষ হলে মোল্ডে ঢালাই করার জন্য বিভিন্ন পাত্র বা সরংজ্ঞামের সাহায্যে গলিত ধাতু বহন করে নেয়া হয়। এগুলিকে এক কথায় ল্যাডেল (Laddle) বলে। সূতরাং চুল্লি থেকে গলিত ধাতু মোল্ডিং বাক্স পর্যন্ত বহন করে নিয়ে যাওয়ার জন্য বালতি আকৃতির যে পাত্র ব্যবহার করা হয় তাকে ল্যাডেল বলে। কার্যক্ষেত্রে সাধারণত নিমুলিখিত ল্যাডেলসমূহ ব্যবহৃত হয়।

- ১। হ্যান্ড ল্যাডেল বা শ্যাংক ল্যাডেল (Hand or Shank Laddle)
- ২। বুল-ল্যাডেল (Bull Laddle)
- ৩। ক্রিইন বা মনোরেইল ল্যাডেল (Crane or Monorail Laddle)
- 8। লিপ-পাওয়ারিং ল্যাডেল (Lip Pouring Laddle)
- ৫। টি-পট ল্যাডেল (Tea Pot Laddle)
- ৬। বটম-স্টপার্ড ল্যাডেল (Bottom stoppered Laddle)

ব্যবহারের পূর্বে ল্যাডেলকে তাপ প্রদানে গরম করা হয়। কারণ-

- ১। ঠাণ্ডা ল্যাডেল ঢালাই মাল তাড়াতাড়ি ঠাণ্ডা করে দেয় বলে মোল্ডে ঢালাই-এর কিছু শক্ত নরম ধাতুর মিশ্রণে মিসরান (misrun) জাতীয় ক্রটি হতে পারে।
- ২। ঠাগু ল্যাডেলের ঠাগু অবস্থা গরম ধাতুর সংস্পর্শে গ্যাস হোল তৈরি করে এবং ঢালাই-এ তা স্থানান্তরিত হতে পারে। গরম ল্যাডলে ভিতরকার বাতাস বাইরে আসার সুযোগ পায়।

8.8 ঢালাই লৌহের উৎপাদিত দ্রব্য (Products of Cast Irion) :

গ্রে- কাস্ট আয়রন :

- कुप এবং বৃহৎ ঢালাই কার্যে ব্যবহৃত হয়,
- মোটর ইঞ্জিনে ব্লক তৈরিতে।
- -লেদ/শেপার/ওয়াটার পাইপ তৈরিতে।
- -সাধারণ প্রকৌশলী শিল্পে ব্যবহৃত বিভিন্ন দ্রব্য তৈরিতে।
- ঘূর্ণায়মান যন্ত্রাংশ তৈরিতে।
- -সেলাই মেশিনের পার্টস তৈরি করতে।
- বিভিন্ন সৃষ্ণ্ম যন্ত্র এবং অলঙ্কার (অর্নামেন্ট) ঢালাই কাজে বেশি ব্যবহৃত হয়।
- হোয়াইট কাস্ট আয়রন
- অত্যধিক শক্ত বলে ঢালাই কাজে এর ব্যবহার সীমিত।
- -রোলিং মিলের রোল (Roll)
- রক ক্রাসার (Rock Crushers)
- -রক ক্রসার লাইনার (Rock Crushers Liner)
- -বলমিলের বল (Ball of Ball mill)
- -লাইনার (Liners)
- -মেলিয়েবল কাস্ট আয়রন রট আয়রন ও স্টিল তৈরিতে ব্যবহৃত হয়।

ইস্পাতের উৎপাদিত দ্রব্যের তালিকা:

কার্বনের শতকরা হার	যে সমস্ত দ্রব্য উৎপাদিত হয়।	
0.2%-0.6%	বয়লার ড্রাম, কৃষি যন্ত্রপাতি ইত্যাদি	
0.2%/0.8%	তার তৈরি	
0.0%-0.8%	শ্যাফট, উচ্চ টানা টিউব, অয়্যার, ফিসপ্লেট	
0.8%-0.6%	টার্বে, ইলেকট্রিক ডিসক, শ্যাফট রোটার ডাইব্লক, গিয়ার ইত্যাদি	
0.6%-0.46%	রেলওয়েরেল, ভারী ফোজিং ডাই, লেমিনেটেড স্পিং অয়্যাররোল ভ্ইলস্পোক, হ্যামার প্রভৃতি।	
0,46%-0.96%	'স' মানড্রেল, ড্রিল, ফমিণ্ট্রল ভিজেল ইঞ্জিন লাইনার হ্যামার, চিজেল, চাবি ইত্যাদি।	
0.96%-0.66%	লেমিনেটেড স্প্রিং কার বাম্পার, কোল্ড চিজেল, ক্ষুদ্র ফোজিং ডাই, কোল্ড প্রেস, শিয়ার ব্লেড ইত্যাদি।	
0.80%-0.80%	ক্ষুদ্রকোল্ড চিজেল, পাঞ্চসমূহ, শিয়ার ব্লেড ইত্যাদি।	
0.86%-3.5%	কাটিং ডাই, এক্সল, টুলবিট, মিলিং কাটার ইত্যাদি।	
۵.۵%-۵.8%	রেজার, ব্রোচসমূহ ড্রিল, উডওয়ার্কিং টুল টানিং ও প্লেনিং টুল প্রভৃতি।	

এটি ছাড়া :

০.০৭% - ০.১৫% কার্বন :- নেইল, রিভেট, ফেসিং কেবল আমরিং

(রিমিং স্টিল) আর্মরিং কংক্রিটবার এবং ম্যাট্রেস অয়্যার।

০.০৭%-০.১৫% কার্বন :- ফেজিং প্রেসিং টিউব ড্রায়িং

(ডেডমাইল্ড স্টিল)

০.১% - ০.২৫% কার্বন :- দ্রপফ্রোর্জিং ফ্যাম্পিং, কেস

(মাইল্ড স্টিল) হার্ডেনি ফ্রিকাটিং চ্যানেল, অ্যাংগেল, জাহাজ ও বয়ালের প্লেট তৈরি।

8.৫ বিভিন্ন প্রকার ধাতুর পার্থক্য (Dishingushion among Different types of Metals) : সাধারণ ধাতু ও সঙ্কর ধাতুর মধ্যে পার্থক্য :

সাধারণ ধাতৃ	সংকর ধাতু	
১। যে মৌলিক পদার্থ প্রাকৃতিক এবং অবিশুদ্ধ অবস্থায় অক্সিজেন, মাটি পাথর ইত্যাদির সাথে মিশে কনি গর্ভে বা ভূ-পৃষ্ঠে অবস্থান করে, তাকে সাধারণ ধাতু বলে।		
২। এ ধাতুকে বিভিন্ন প্রণালির মাধ্যমে নিষ্কাশন করে ব্যবহারের উপযোগী দ্রব্য প্রস্তুত করা হয়।	২। এ ধাতু দিয়ে ব্যবহারের উপযোগী দ্রব্য প্রস্তুত করা যায়।	

নিচে লৌহজাত ও অলৌহজাত ধাতুর মধ্যে পার্থক্য দেয়া হলো :

লৌহজাত ধাতু	অলৌহজাত ধাতু	
 যে সকল ধাতুতে লৌহ বিদ্যমান থাকে তাকে লৌহজাত ধাতু বলে। 	১। যে সকল ধাতুতে লৌহ বিদ্যমান নেই, তাকে অলৌহজাত ধাতু বলে।	
২। লৌহজাত ধাতুর বিভিন্ন যান্ত্রিক গুণাবলি থাকে।	২। অলৌহজাত ধাতুর সাধাণত এসব গুণবলি থাকে না।	
৩। লৌহজাত ধাতু মরিচাধারক।	৩। অলৌহজাত ধাতু মরিচারোধক।	
৪। লৌহজাত ধাতু সাধারণত চৌম্বকত্ব লাভ করে।	৪। এতে কোনো প্রকার চৌম্বকত্ব গুণ থাকে না।	
৫। এ ধাতু অপেক্ষাকৃত ভারী।	৫। এটা অপেক্ষাকৃত হালকা।	
৬। এ ধাতৃতে শক্তি ও ওজনের আদর্শ অনুপাত বজায় থাকে।	৬। এতে এ ধরনের কোনো অনুপাত বজায় থাকে না।	

* গ্রামে ধাতুর প্রতি ঘন সেন্টিমিটার আয়তনের ওজন-

১। অ্যালুমিনিয়াম ২.৬ গ্রাম ২। জিংক ৭.২ গ্রাম

৩।ব্রাস ৮.১ গ্রাম ৪। ব্রোঞ্জ ৮.৬ গ্রাম

৫। টিন ৭.৪ গ্রাম
 ৬। ম্যাঙ্গানিজ ৮.৫০ গ্রাম

৭। নিকেল ৮.৯ গ্রাম ৮। স্টিল ৭.৮৫ গ্রাম

১। কাস্ট আয়রন ৭.২২ গ্রাম ১০। রট আয়রন ৭.৭ গ্রাম।

১১। হোয়াইট মেটাল ৭.৩ গ্রাম ১২। কপার ৮.৮২ গ্রাম

১৩। সিলভার ১০.৬ গ্রাম ১৪। টাংস্টেন ১৯.১ গ্রাম

১৫। লিড ১১.৪২ গ্রাম।

প্রশ্নমালা-8

অতি সংক্ষিপ্ত প্রশ্ন :

- ১। ধাতু কী?
- ২। ধাতুর ভঙ্গুরতা কিসের উপর নির্ভর করে?
- ৩। কোন প্রকার ধাতু বেশ শক্ত?
- ৪। কোন প্রকার ধাতু খুবই নরম?
- ৫। মেকানিক্স শপের প্রধান কাঁচামাল কী?
- ৬। লৌহজাত ধাতু কী?
- ৭। অলৌহজাত ধাতু কাকে বলে?
- ৮। ধাতুকে মূলত কয়ভাগে ভাগ করা যায়?
- ৯। লৌহজাত ধাতু প্রধানত কত প্রকার?

- ১০। স্টিলকে প্রধানত কয় ভাগে ভাগ করা যায়?
- ১১। অলৌহজাত ধাতু কাকে বলে?
- ১২। কাস্ট আয়রন তৈরিতে কাঁচামাল নাম কী?
- ১৩। কাস্ট আয়রন তৈরিতে যে কোনো একটি চুল্লির নাম লেখ।
- ১৪। সবচেয়ে ভালো ঢালাই হয় কোন ধাতু?
- ১৫। স্টিলের কার্বনে শতকরা হার কত?
- ১৬। মাইল্ড স্টিল কার্বনের শতকরা হার কত?
- ১৭। হাই কার্বন স্টিল কার্বনের শতকরা হার কত?
- ১৮ | অ্যালয় স্টিল কাকে বলে?
- ১৯। নাইক্রোম স্টিল কাকে বলে?
- ২০। 'জ্য' এবং রোলার তৈরিতে কোন স্টিল অধিক উপযোগী?
- ২১। হাই কার্বন স্টিল শনাক্ত করার প্রধান উপায় কোনটি?
- ২২। লোহার বিশুদ্ধ অবস্থার নাম কী?
- ২৩। রট আয়রন তৈরির কাঁচামাল কী?
- ২৪। রট আয়রন তৈরিতে কোন চুল্লি ব্যবহৃত হয় ?
- ২৫। কপারকে বাংলায় কী নামে ডাকা হয়?
- ২৬। সেলাই মেশিনের পার্টস তৈরিতে কোন আয়রন বেশি উপযোগী?
- ২৭। রেজার তৈরিতে ইস্পাত কার্বনের হার কত?

সংক্ষিপ্ত প্রশ্ন :

- ২৮। ধাতু বলতে কী বোঝায়?
- ২৯। ধাতু প্রধানত কত প্রকার ও কী কী?
- ৩০। লৌহজাত ধাতু বলতে কি বোঝায়?
- ৩১। তিনটি লৌহজাত ধাতুর নাম কর।
- ৩২। অলৌহজাত ধাতু বলতে কী বোঝায়?
- ৩৩। কাস্ট আয়রন বলতে কী বোঝায়?
- ৩৪। কাস্ট আয়রন কত প্রকার ও কী কী?
- ৩৫। ইস্পাত বলতে কী বোঝায়?
- ৩৬। কার্বনের হার অনুযায়ী ইস্পাতের শ্রেণিবিন্যাস দেখাও।
- ৩৭। কাটিং টুল তৈরি করতে কেন মাইল্ড স্টিল ব্যবহৃত হয় না?
- ৩৮। স্টিল সংমিশ্রণ করার উদ্দেশ্য কী?
- ৩৯। ৫টি নন ফেরাস মেটালের নাম লেখ?
- ৪০। কার্বন ও লৌহ মিশ্রিত ধাতুর নাম কী?

রচনামূলক প্রশ্ন :

- ৪১। ধাতু কাকে বলে ? ধাতুর শ্রেণিবিন্যাস সম্পর্কে যা জান লেখ।
- ৪২। ধাতুর মৌলিক শ্রেণিবিন্যাস দেখাও।
- ৪৩। কাস্ট আয়রন তৈরিকরণ পদ্ধতি বর্ণনা কর।
- 88। স্টিল তৈরিকরণ পদ্ধতি বিবৃতি কর।
- ৪৫। কাস্ট আয়রন দ্বারা তৈরিকৃত দ্রব্যের তালিকা দেখাও।
- ৪৬। স্টিলের তৈরিকৃত তালিকা উল্লেখ কর।
- ৪৭। ধাতৃ ও অধাতুর মধ্যকার পার্থক্য দেখাও।

পথ্যম অধ্যায়

ভাইস (Vice)

৫.১ সূচনা (Introduction) : মেটাল ওয়ার্কের সময় কোনো বস্তু বা যন্ত্রাংশ দৃঢ়ভাবে আবদ্ধ করে, এর প্রয়োজনীয় আকার-আকৃতি তৈরি করার জন্য দুইটি ভারী চোয়াল বা 'জ' বিশিষ্ট ধাতুর তৈরি যে যন্ত্র ব্যবহার করা হয় তাকে ভাইস বলে। বেঞ্চ ওয়ার্কের প্রায় সমস্ত কাজই ভাইস না হলে চলে না। চিপিং, শিয়ারিং, দ্রিলিং, মেশিনিং ইত্যাদি বিভিন্ন প্রকার কাজ করার পূর্বে বস্তুটিকে দৃঢ়ভাবে ধারণ করে রাখতে ভাইস ব্যবহার করা হয়। ভাইসের কাজ জবকে ভাইসের সহিত শক্ত ও দৃঢ় করে আটকানো। ভাইসের আকার চোয়ালের দৈর্ঘ্য মাপ অনুযায়ী নির্ধারণ করা হয়।

৫.২ ভাইনের বিভিন্ন অংশ (Different parts of Vice) :

সাধারণ মেটাল ওয়ার্ক কাজে ভাইসের ব্যবহার অনস্বীকার্য। প্রত্যেক কারিগরই কোনো না কোনো ভাইসের সাহায্যে বেশির ভাগ কাজ করে থাকে। নিম্নে ভাইসের বিভিন্ন অংশ চিত্রসহ বর্ণনা প্রদন্ত হলো।

বিভি (মূল কাঠামো) : বিভি বা মূল কাঠামো ঢালাই লোহা এবং ঢালাই ইস্পাতের তৈরি একটি শক্ত কাঠামো। ভাইসের অন্যান্য অংশ এই কাঠামোর সাথে সংযুক্ত করা হয়। এর

চিত্র ঃ ৫.১ ভাইসের বিভিন্ন অংশ

তলদেশের অংশটা টেবিল বা বেঞ্চের উপর নাট-বোল্ট ও ওয়াসের সাহাব্যে আবদ্ধ করা হয়।

স্লাইড (Slide): স্লাইড ভাইসের আর একটি প্রধান অংশ যার নাম, যাকে বডি এর মধ্য দিয়ে প্রবেশ করিয়ে সচল করানো হয়। এর এক প্রান্তে 'জ' বর্তমান থাকে যাকে বলা হয় স্লাইডিং 'জ' বা চলমান চোয়াল এবং স্পিডল যুড়ালেই এই অংশ চলাচল করে। স্লাইড সাধারণত ঢালাই লোহার তৈরি।

'জ' (Jaw) : 'জ' (Jaw) কে বাংলায় চোয়াল বলে। এই 'জ' প্রত্যেক্ষভাবে কার্যবন্ধর গায়ে চাপ দিয়ে ধরে রাখে। ভাইসে দৃটি চোয়াল বা 'জ' থাকে। চোয়াল দৃটিই কাউন্টার স্যাংক স্কুর সাহায্যে একটাকে বডির সাথে আর অন্যটাকে স্লাইডের সাথে যুক্ত করা থাকে। দৃটি 'জ'- ই সমান্তরালভাবে যুক্ত থাকে। ভাইসের বডি স্থির থাকে বলে এই 'জ' টি সর্বদা স্থির থাকে। শ্লাইডে সংযুক্ত 'জ'টি চলাচল করে। প্রত্যেক 'জ'-এর সঙ্গে একটি করে 'জ' প্লেট আটকানো থাকে। 'জ' ঢালাই ইস্পাতের তৈরি কিন্তু 'জ' প্লেট ভালো ইস্পাতের তৈরি এবং এগুলো হার্ড করা থাকে। অনেক সময় ভালোভাবে আটকানোর জন 'জ' প্লেট ফাইলের মত দাগ কাটা থাকে। জ-প্লেটের এই দাগগুলি যেমন জবকে আরও দৃঢ়ভাবে বাঁধতে সাহায্য করে, অন্যদিকে তেমনি নরম কার্য হলে

কার্য বস্তুর উপর বসে দাগ হয়। কোনো ফিনিশ বা পশিশ করা জবে এই রকম দাগ দেয়া ঠিক নয়। এই ক্ষেত্রে অনেক সময় 'জ' এর মধ্যকার ছলে প্লেটের ব্যবহার করা হয়, যাতে কার্য বস্তুর উপর দাপ না পড়ে।

শিশুল (Spindle): শিশুল ভাইসের স্লাইডকে কার্যকর করার জন্য ব্যবহার করা হর। এটি কাস্ট স্টিল বা নরম ইশ্পাতের তৈরি। সাধারণত শিশুল কোরার প্রেড বিশিষ্ট হয়। তবে দ্রুত করার করার জন্য বাটট্রেস প্রেড বিশিষ্ট শিশুল ববহার করা হয়।

ৰাজ্প (handle): স্পিডলকে হাডলের সাহাব্যে ঘোৱানো হয়। ফলে ল্লাইড চলাচণ করে। হাতল স্পিডলের শেষ প্রান্তে ছিদ্রের মধ্যে ছাপিত থাকে। সাধারণত নরম ইস্পাত ও কাঠের তৈরি হাতল ভাইসে ব্যবহৃত হর। বন্ধ নাট (Box-nut): বন্ধনাট ভাইসের বঙ্জির সাথে যুক্ত থাকে অভ্যন্তরীপ প্যাচ বিশিষ্ট । এর মধ্যের স্পিডলের ন্যায় প্যাচ কটা থাকে। ফলে স্পিতল মুরালে ল্লাইড অংশটি সরতে থাকে।

বেল (Base) : বেল দাধারণত ঢালাই লোহার তৈরি হয়। এর দুই দিকে ছিন্ত্র থাকে টেবিলের লাখে আবদ্ধ করার জন্য এবং অনেক ভাইলে ভূমির উপর বৃত্তকারটি সুট কটাি থাকে যাতে সৃইভেলের কাজ করা যায়।

৫.৩ : ভাইনের শ্রেপিনিভাগ (Classification of Vice) :

ভাইসকে প্রধানত হর শ্রেণিতে বিশুক্ত করা যায়। মথা-

- (ক) বেঞ্চ ভাইস (Bench vice)
- (খ) মেশিন ডাইস (Machine vice)
- (গ) ইউনিভার্সাল ভাইল (Universal vice)
- (খ) হ্যাভ ভাইস (Hand vice)
- (ঙ) পীন ভাইস (Pin vice)
- (চ) টুল মেকার্স ভাইল (Tool maker's vice)।

a.8 विक्यि श्रकांव छाँदैरमब विवत्रणं (Different type of Vice) :

(ক) বেঞ্চ ভাইস (Bench vice) : বেঞ্চ ভাইসকে নাট ও বোল্টের সাহায্যে টেবিলের উপর আবদ্ধ করে ববহার করা হয় বলে, বেঞ্চ ভাইস নাম করা হয়েছে। একে সাধারণভাবে সমান্তরাল 'ল্ক' বিশিষ্ট প্রভিটি কারখানার ভাইসের ব্যবহার হয়ে থাকে।

সাধারণত বেঞ্চ ভাইসকে পাঁচ ভাগে ভাগ করা যায়। যখা :

- (১) ফিটার্স বেঞ্চ ভাইস
- (২) কার্পেন্টারস ভাইস বা সূভারের ভাইস
- (৩) লেগ ভাইন
- (৪) সুইতেল ভাইস
- (৫) পাইপ ভাইস

চিত্র : ৫.২ ফিটার্স বেঞ্চ ভাইস

বিটার্গ বেঞ্চ ভাইস :

কিটাৰ্স কেঞ্চ ভাইস কিটিং সাসের ব্যক্ষরি কাজের জন্য ব্যবহৃত হয়। বিভিন্ন ব্যৱস্থানর কাইলিং, টিলিং, হ্যামারিং, সারিং ইত্যাদি কাজের জন্য অগরিহার্ব মাউন্টিং ভিতাইস হতেই কিটার্স বেঞ্চ ভাইস।

কাপেটার অহিল (Carpenter's vice): কাঠের কাজ এই অহিল ব্যবহার করা হয়। লোহা অপেকা কাঠ অনেক নরম বলে কাঠের কাকের জন্য কিটার্স বেঞ্চ উপবোলী নর। এর জন্য দাঁতবিহীন এবং প্রশৃত্ত ভা বিশিষ্ট কাপেটার ভাইল ব্যবহার করা হয়। এই ভাইল ভ্যার্কিং বেঞ্চের এক প্রান্তে ছাপন করা হয়।

লেগ ভাইল (Leg vice) : একে কামারশালার ব্যবহৃত হর বলে কেট কেট রাকিমির্থ ভাইলও বলে থাকে। এর অপর নাম 'স্টেপল ভাইল' (Staple vice)। এর নিচের নিকে প্রেছর ন্যার বে দীর্ঘ অপটি থাকে ভাকে লেগ (Leg) বা পা বলা হয়। একে যরের মেকে বা মাটিব মব্যে বলানো কাঠের উদ্ধির উপর রাখা হরে থাকে।

বে 'জ' টি চলাচল করে ভা একটি পাত
শ্বীং-এর সাবে সংযুক্ত করা। এ ভাইনের
অসুবিধা এই যে, এর 'জ' দুটি কেবল
একটি অবস্থানে সমাজ্বাল থাকে এবং
তথনই এটা বস্তকে দুচ্ভাবে ধারণ করতে
সমর্থ হয়।

কুইজেল জাইল (Smivel vice) । এই ভাইল লেখতে বিটার বেঞা ভাইলের যত তবে বজিকে আলাদা ভূমি বা বেল (base)-এর উপর দৃটি বোন্টের সাহাল্যে আবদ্ধ রাখা হয়। প্রোজনে বজিকে মুরিয়ে

চিত্ৰ : ৫.৩ কাৰ্পেটার ভাইস

চিত্র : ৫,৪ লেগ ভাইস

চিত্ৰ। ৫.৬ সুইছেলিং বেঞ্চ ভাইস

যে কোনো কোশে ৰাধা যায়। ভূমির উপর পোলাকার টি-আকৃতির খাঁজা বা টি-স্লট (t-slot) করা থাকে, যার মধ্যে বোল্টের মাথা অবস্থান করে ।

পাইপ ভাইস (Pipe vice) : বেঞ্চের উপর এই ভাইসকে রেখে বিভিন্ন আকৃতি ও মাপের বড় ও ছোঁট পাইপকে অটিকিয়ে কাজ করা হর। এই ভাইসের 'ড'-এর আকৃতি ইংরেজি বর্ণমালার 'ডি'-এর মত এবং সিঁড়ির ধাপের দাঁজ বিশিষ্ট, যাতে কাজ করার সমর কার্বকন্তটি না ঘোরে। এর চলাচল 'ড' টি একটি দীড জু দিয়ে পরিচালিত হয়ে নিচের দিকে অপ্রসর হয়ে কার্বকন্তকে আটকার। ভাইসের আকার বলতে 'ড'-এর দৈর্ঘ্যকে বুঝার। আর 'ড'-এর মাপ অনুযারী আনুপাতিক হারে অন্যান্য অংশের মাপ পাওরা বার। সাধারণত ৫০,৬০,১০০ ও ১৫০ মি.মি. মাপের ভাইস পাওয়া যার।

মেশিল ছাইস (Machine vice) : প্রধানত যে ভাইস মেশিনের বেডে/টেবিলের নটি-বোল্ট দিরে আটকিয়ে কার্যবস্তুকে দৃঢ়ভাবে ধরে রাখে, তাকে মেশিন ভাইস বলে। এই ভাইস নানা আকৃতির হয়ে থাকে। একটি প্রেইন মেশিন ভাইস অন্যটি সুইডেল মেশিন ভাইস।

ইউনিজার্সাল ভাইল (Universal vice) : এই প্রকার ভাইলকে কাজের টেবিলে বা মেলিনের উপর সহজে আবদ্ধ করে কার্য বস্তুটিকে যে কোনো কোণে ধারণ করার উদ্দেশ্যে প্রয়োজনীয় কোপে অবস্থান করানো যায়।

এর কলে উপরিভাগের সমান্তরাল ও অনুভূমিক ডলের সাথে যে কোনো কোণে বস্তুটিকে পরীক্ষা করতে সুবিধা হয়। অধিক সংখ্যক বস্তু উৎপাদন কেত্রে সমরের অপচয় কমাবার জন্য এটি বিশেষ উপযোগী হয়ে থাকে।

ফান্ড ভাইস (Hand vice) : ক্ষুদ্র ক্ষুদ্র বর্ত্তাংশ এই ভাইসে হাতে ধারণ করে আবদ্ধ করে কান্ড করা হয়। এর মধ্যে জবকে রেখে ধাম নাটযুক্ত বোল্টকে

চিত্ৰ: ৫.৭ পাইপ ভাইস

চিত্ৰ: ৫.৮ মেশিন ভাইস

চিত্ৰ: ৫.৯ ইউনিভাৰ্সাল

কমলে জব দৃঢ়ভাবে আবদ্ধ হয়। এর দৈর্ঘ্য সাধারণত ১২৫ মি.মি. থেকে ১৫০ মি.মি. পর্যন্ত হয়। সাধারণত ছোট-থাটো কাজ যেমন- তালার চাবি তৈরি ভাইস সুবিধাজনক। ছবিতে ২ ধরনের ভাইস দেখান হলো।

১। কাঠের হাতল বিশিষ্ট হ্যান্ড ভাইস

২। সাধারণ হ্যান্ড ভাইস

পিন ভাইস (Pin vice) : এই ভাইসে ক্ষুদ্র ব্যাসের পিন জাতীয় জনকে আবদ্ধ করা হয়। ক্ষুদ্র আকারের ফাইল, ক্রাইবার, ইত্যাদির টং অংশকে পিন ভাইসের চোয়ালে আবদ্ধ করে ফাইলিং, ক্রাইবিং-এর কাজ করা হয়।

ভাইসের মূল অংশটি স্থুরালে 'জ'-এর মুখ সংকৃচিত হয়, যার ফলে বস্তুকে দৃঢ়ভাবে ধারণ করতে সাহায্য করে। ডাই-পাঞ্চ তৈরিতে এই ভাইস ব্যবহার করা হয়।

টুল মেকার্স ভাইস (Tool maker's vice): এই ভাইসের অপর নাম টুল মেকার্স ক্ল্যাম্প বা প্যারালাল ক্ল্যাম্প। এই ভাইস সাধারণত যন্ত্রনির্মাতা, ডাই-পাঞ্চ নির্মাতা ব্যবহার করে থাকে।

কোনো ক্ষুদ্র-মসৃণ যদ্রাংশকে এর
মধ্যে আবদ্ধ করে দে-আউট এর
কাজ করা হয়। কোনো কার্যবন্তর
তলকে সার্কেস গ্রাইডিং করার সময়
জবকে এই ভাইসে আটকিরে
মেশিনের ম্যাগনেটিক চাকে ব্যবহার
করা যায়। এই ভাইসকে যত্নের
সাথে ব্যবহার ও রক্ষাণাবেক্ষণ

চিত্র : ৫.১১ পিন ভাইস

চিত্র : ৫.১২ টুল মেকার্স ভাইস

করতে হয়। এই প্রকার ভাইস দুটি সমান্তরাল 'জ' বা ক্লাম্প ও দুটি ক্ক্-এর সমন্বয়ে গঠিত। ক্ক্ দুটি ঘুরালে 'জ' দুটি অগ্রসর হয়ে কার্যবন্তকে আকড়ে ধরে। এই প্রকার ভাইস ব্যবহার সম্পর্কে শ্বরণ রাখা প্রয়োজন যে, কোনো বন্তকে দৃঢ়ভাবে ধারণ করতে হলে ভাইসের 'জ' দুইটি সমান্তরাল থাকা একান্ত প্রয়োজন।

৫.৪ ডাইসের যত্ন ও রক্ষণাবেক্ষণ (Care and Maintenace of vice) :

ভাইসের যতুশীল ব্যবহার ও রক্ষাণাবেক্ষণের জন্য নিমুরূপ বিষয়গুলো মনে রাখা প্রয়োজন :

১। ভাইসকে সর্বদা ব্রাস ব্যবহারের মাধ্যমে পরিষ্কার,ধুলো মুক্ত এবং চিপস মুক্ত রাখতে হবে।

- ২। ভাইসের থ্রেড এবং নাটগুলো সময়মতো তৈলাক্ত করতে হবে।
- ৩। ভাইসকে কখনও এনভিল রূপে ব্যবহার করা যাবে না।
- ৪। ফিনিশড ওয়ার্কের সময় ভাইসের 'জ' গুলো নরম ধাতব পদার্থ দিয়ে ঢেকে রাখতে হবে।
- ৫। টিউব আটকাতে ক্ষণস্থায়ী কাঠের ভী ব্লক ব্যবহার করা উচিত।

প্রশ্নমালা-৫

অতি সংক্ষিপ্ত প্রশ্ন :

- ১। ভাইস (Vice) কী?
- ২। ভাইসের আকার কিসের আলোকে নির্ধারণ করা হয়?
- ৩। ভাইসকে প্রধানত কয় ভাগে ভাগ করা যায়?
- ৪। বেঞ্চ ওয়ার্কের প্রায় সমস্তকাজ কোন টুলসটি না হলে চলে না?
- ৫। বেঞ্চ ভাইসকে কী নামে ডাকা হয়?
- ৬। কী কী দিয়ে বেঞ্চ ভাইস গঠিত?
- ৭। বেঞ্চ ভাইসকে প্রধানত কয় ভাগে ভাগ করা যায়?
- ৮। স্লাইড সাধরণত কোন ধাতুর তৈরি হয়?
- ৯। ভাইসে কয়টি 'জ' থাকে?
- ১০। ভাইসে কাজের সময় জবে যাতে দাগ না পড়ে সেজন্য কী ব্যবহার করা হয়?
- ১১। কাঠের কাজে কোন ধরনের ভাইস ব্যবহার করা হয়?
- ১২। কোন ভাইসে দাঁতবিহীন 'জ' ব্যবহার করা হয়?
- ১৩। কামারশালায় কোন ভাইস ব্যবহৃত হয়?
- ১৪। লেগ ভাইসের প্রধান অসুবিধা কী?
- ১৬। ভাইসের আকার বলতে কী বোঝায়?
- ১৭। মেশিন ভাইস কী কী ধরনের হয়?
- ১৮। অধিক বস্তু উৎপাদনে ও সময়ের অপচয় রোধে কোন ভাইস ব্যবহার করা হয়?
- ১৯। হ্যাভ ভাইসের সাধারণ দৈর্ঘ্য কত?

সংক্রিপ্ত প্রশ্ন 8

- ২০। ভাইস বলতে কী বোঝায়?
- ২১। ভাইসকে কেন ব্যবহার করা হয়?
- ২২। ভাইস প্রধানত কী কী ভাগে ভাগ করা হয়?
- ২৩। বেঞ্চ ভাইস বলতে কী বোঝায়?

- ২৪। বেঞ্চ ভাইস কত প্রকার ও কী কী?
- ২৫। ফিটার্স বেঞ্চ ভাইস কাকে বলে?
- ২৬। ভাইসের বিভিন্ন অংশের নাম লেখ?
- ২৭। কার্পেন্টার ভাইস কাকে বলে?
- ২৮। কাঠের কাজে কার্পেন্টার ভাইস কেন ব্যবহার করা হয়?
- ২৯। লেগ ভাইসের অপর নাম কী ও কেন?
- ৩০। ভাইসের লেগ বা 'পা' বলতে কী বোঝ?
- ৩১। পাইপ ভাইসের বৈশিষ্ট কী?
- ৩২। পাইপ ভাইসের সাধারণ মাপগুলি কী কী?
- ৩৩। ভাইসের আকার বলতে কী বোঝায়?
- ৩৪। মেশিন ভাইস কাকে বলে?
- ৩৫। মেশিন ভাইস কত প্রকার ও কী কী?
 - ৩৬। ইউনিভার্সেল ভাইসের সুবিধা কী কী?
 - ৩৭। হ্যান্ড ভাইস কোন কোন ধরনের কাজের জন্য সুবিধা জনক?
 - ৩৮। টুল মেকার্স ভাইস সাধারণত কোথায় কী কাজে ব্যবহৃত হয়?

রচনামূলক প্রশ্ন :

- ৩৯। ভাইস বলতে কী বোঝায় ? ভাইসের প্রকারভেদ দেখাও।
- ৪০। বেঞ্চ ভাইস সম্পর্কে যা জান লেখ।
- ৪১। একটি ভাইসের ছবি এঁকে বিভিন্ন অংশ চিহ্নিত কর।
- ৪২। কার্পেন্টার ভাইস সম্পর্কে যা জান লেখ।
- ৪৩। লেগ ভাইসের সুবিধা ও অসুবিধাগুলি লেখ।
- 88। সুইভেল ভাইস সম্পর্কে বর্ণনা দাও।
- ৪৫। ইউনিভার্সেল ভাইসের বৈশিষ্ট্যগুলি লেখ।
- ৪৬। পাইপ ভাইসের সুবিধাগুলি কী কী?
- ৪৭। মেশিন ভাইস কাকে বলে? মেশিন ভাইসের প্রকারভেদ দেখাও।
- ৪৮। হ্যান্ড ভাইসের সম্পর্কে যা জান লেখ।
 - ৪৯। পিন ভাইস কোথায় কোন ধরনের কাজে ব্যবহৃত হয়?
 - ৫০। টুল মেকার্স ভাইস-এর অপর নাম কী? এটি কোথায় কী কাজে ব্যবহৃত হয়।
 - ৫১। ভাইসের যত্ন ও রক্ষণাবেক্ষণ সম্পর্কে যা জান লেখ।

ষষ্ঠ অধ্যায়

লে-আউট ও মার্কিং

(Layout and Marking)

৬.১ লে-আউট ও মার্কিং (Layout and Marking) :

কার্যবস্তুকে কোনো ধাতু খণ্ড বা শীট মেটাল থেকে তৈরি করতে হলে অথবা একাধিক শীটকে জোড়া দিতে হলে কাজ শুরু করার পূর্বে ধাতু খণ্ড বা শীট মেটালের উপরিভাগে নকশা (Drawing) অনুসারে কতকগুলো রেখা টেনে ও চিহ্ন দিয়ে নিতে হয়। এ রেখা টানা বা চিহ্ন দেয়ার প্রণালিকে লেয়িং আউট (Laying out) বা লে-আউট (Lay-out) বলে। সাধারণত ধাতু খণ্ডকে নির্দিষ্ট মাপ এবং আকারে পরিণত করার জন্য এর কোনো স্থানকে কতটুকু ক্ষয় করতে হবে, ছিদ্র বা নালী করতে হলে তা কোনো স্থানে কত গভীর এবং কী আকারের করতে হবে, ছিদ্রের মধ্যে স্কু-প্রেড করতে হবে কিনা ইত্যাদি বিষয় কাজ আরম্ভ করার পূর্বেই স্থির করে নেয়া প্রয়োজন হয়। এটা না করে প্রথমেই যদি কাজে অগ্রসর হওয়া যায়, তাহলে, ধাতুখণ্ড অর্থাৎ বস্তুটি কখনও যথাযথ আকার বা মাপের হতে পারে না। এজন্য, কাজ আরম্ভ করার আগে প্রত্যেক বস্তুর বা ধাতু খণ্ডের উপরিভাগে নকশা (Drawing) অনুসারে কতগুলি রেখা টেনে এবং চিহ্ন দেওয়ার প্রণালিকে 'মার্কিং অফ' (Marking off) বা লেয়িং আউট (Laying out) বলে। একেই সংক্ষেপে চলিতভাবে কেবল 'মার্কিং' করা বলা হয়ে থাকে।

৬.২ ঙ্গে-আউট বা মার্কিং যন্ত্রপাতি (Layout and Marking Tools) :

১। স্টিল রুল (Steel Rule),

২। হ্যামার (Hammer),

৩। ভট পাঞ্চ (Dot Punch),

8। প্রিক-পাঞ্চ (Prick Punch),

৫। ডিভাইডার (Divider),

৬। বিভেল গেজ (Bevel Gauge),

৭। আঙ্গেল প্লেট (Angle Plate),

৮। সারফেস গেজ (Surface Gauge)

- ৯। ক্রাইবার (Scriber),
- ১০। ক্যালিপার (Calliper),

১১। ট্রাইজোয়ার (Trysquare),

১২। কমিনেশন কোয়ার (Combination Square),

১৩। হাইট গেজ (Height Gauge),

১৪। ভী-ব্লক (Vee-Block),

১৫। ক্ল্যাম্প (Clamp) ইত্যাদি।

এ সকল টুলস বা যন্ত্রপাতির বেশিরভাগই মৌলিক হাতযন্ত্র বা পরিমাপক যন্ত্র হিসেবেও ব্যবহার করা হয়ে থাকে বিধায় মৌলিক হাত যন্ত্র (Hand Tools) বা পরিমাপক যন্ত্র (Measuring Tools) হিসেবেও চিহ্নিত করা যায়।

ধ. লে-আউট বা মার্কিং যন্ত্রাদির ব্যবহার (Uses of Layout and Marking Tools) :

ডিভাইডার (Divider) :

মূলত ডিভাইডার একজোড়া সরু ইস্পাতের পা (Leg) বিশিষ্ট একটি অতি প্রয়োজনীয় পরিমপক যন্ত্র। পা দুটির এক প্রান্ত রিভেট, স্কু, নাট বা স্প্রীং দ্বারা এমনভাবে সংযুক্ত করা হয় যাতে সহজেই পা দুটির দূরত্বকে কম-বেশি করা যায়। পা দুটির মুখ বেশ তীক্ষ্ণ প্রায় ২৫° কোণে সূচালো থাকে।

ডিভাইডারের ব্যবহার :

- ১. স্টিল রুল থেকে মাপ তোলা বা স্থানান্তরের কাজে।
- ২. দুটি বিন্দুর দূরত্ব পরিমাপ করার কাজে।
- বৃত্ত, ব্যাসার্থ বা বৃত্তচাপ অংকনের কাজে।
- রেখা ও বৃত্তকে সম দ্বিখণ্ডিত বা সমভাবে বিভক্ত করার কাজে।

ডিভাইডারে শ্রেণি বিভাগ : ডিভাইডার প্রধানত তিন প্রকার-

- ১. ফার্ম জয়েন্ট ডিভাইডার (Firm joint Divider)
- ২. স্প্রীং ডিভাইডার (Spring Divider)
- ত, এক্সটেনশন ডিভইাডার (Extension Divider)

চিত্র : ৬.২ বিভিন্ন ধরনের ডিভাইডার

নিচের চিত্রে তিন প্রকার ডিভাইডার দেখানো হলো :

- (ক) কার্ম জরেন্ট ডিভাইডার : ফার্ম জরেন্ট ডিভাইডার খ্ব সাধারণভাবে প্রস্তুত। ডিভাইডারের পা দৃটির এক প্রান্তে রিভেট বা স্কু নাটের সাহায্যে শিথিলভাবে সংযুক্ত করে এটা তৈরি। মোটমুটি পরিমাপের ক্ষেত্রে এবং ভাড়াভাড়ি পরিমাপ প্রহণের ক্ষেত্রে এটা ব্যবহৃত হয়। খ্ব সৃক্ষ ও সঠিকভাবে এর দ্বারা মাপ নেরা সম্ভব নর। লেগের মুখ প্রসারিত বা সংকুচিত করলে মাঝখানে মুদ্চাপ বা আঘাতের প্রয়োজন হয়।
- (খ) শ্বিহং ডিভাইডার : এ ধরনের ডিভাইডার শ্বিহং ক্তু এবং এডকাস্টেবল নাচের সমন্বয় তৈরি। লেগের মুখ প্রসারিত বা সংকৃচিত করতে আঘাতের প্রয়োজন হয় না। পার্শ্বন্থিত ফ্রুকে নাটের সাহায্যে নিয়ন্ত্রণ করে বললেই চলে। এক্ষেত্রে সুস্ক ভাবে মাপ নিয়ন্ত্রণ করা সহজ্ঞ।
- (গ) এক্সটেশন ডিভাইডার : এর পা দূটির দৈর্ঘ্যকে ইচ্ছামতো বাড়ানো বা কমানো যায়। ফার্ময়েন্ট বা স্প্রীং ডিভাইডারে এ ব্যবস্থা নেই।
- (ষ) ডিভাইডারের দৈর্ঘ্য বলতে লেগ দুটির সংযোগস্থলের কেন্দ্র থেকে লেগ এবং মুখ অর্থাৎ পয়েন্ট পর্যক্ত দুরত্বকে বুঝায়। সাধারণত ডিভাইডার ৬.২ মি.মি. থেকে ২৫০ মি.মি. পর্যক্ত দীর্ঘ হয়।

ভিভাইভার দিয়ে বৃষ্ণ আকার পদ্ধতি : যে বিন্দুকে কেন্দ্র করে বৃষ্ণ আকতে হবে সেই বিন্দুতে প্রিক পাঞ্চ দিয়ে একটি কেন্দ্র বিন্দু তৈরি করতে হবে। এবার বৃত্তের ব্যাসার্ধ অনুযায়ী স্টিল রুল থেকে মাপ দিতে হবে। ডিভাইডারের একটি লেগ তৈরিকৃত কেন্দ্রবিন্দুতে স্থাপন করে ডিভাইডারের

চিত্র: ৬.৪ ডিভাইডার দ্বারা স্টিল রুল হতে মাপ নেয়ার পদ্ধতি

মাধাটিকে একটু হেলালো অবস্থায় এলে অপর লেগটিকে ডান দিকে যুরালে বৃত্ত জাঁকা হবে। ভিতাইডার ব্যবহারের সতর্কতা:

- ১. স্টিল রুল থেকে মাপ নেয়ার সময় বাম হাতে ডিভাইডারের লেগ এবং ডান হাতে নাট চালিয়ে ডিভাইডার স্থাপন করা উচিত।
- ২. ফার্ম জয়েন্ট ডিভাইডারে সংযোগস্থলে প্রয়োজনীয় পুত্রিকেন্ট থাকা প্রয়োজন যাতে জয়েন্ট খুব টাইট বা ঢিলা না হয়ে বার।
- ডিভাইডারের মুখে

 এবং সংযোগস্থলে কোনো

 জাঘাত দেয়া উচিত নর।
- লেগছয়ের অগ্রভাগ ভীক্ষ করার জন্য পাথরে মসৃণ তেল (Fine oil) ব্যবহার করা উচিত। লেগছয়কে তার কেন্দ্র

বিন্দু হতে ২৫ ডিগ্রী কোণে তৈরি করতে হবে।

চিত্র : ৬.৫ বৃহত্তর মাপের বৃত্ত আকার জন্য ট্রামেলের ব্যবহার

নিচে ডিভাইডারের কয়েকটি ব্যবহার দেখানো হল ঃ

ট্রামেল (Trammel) :

ট্রামেল একধরনের ডিভাইডার যা বৃহৎ ব্যাসের বৃত্ত আঁকতে ও মাপ নেয়ার কাজে ব্যবহৃত হয়। ট্রামেলকে বীম কম্পাস (Beam Compass)ও বলে। ট্রামেল একটি ইম্পাত বারও দৃটি পা (Leg) এর সমন্বয়ে তৈরি। প্রতিটি পা এ সূচান্ন বিশিষ্ট ইম্পাতের মুখ (Points) লাগানো থাকে। এ পাগুলো বিশেষভাবে তৈরি দৃটি ট্রাম (Tram) নামক ক্ল্যাম্প দিয়ে ইম্পাতের বারের সঙ্গে আবদ্ধ রাখা হয়। পা (Leg) দৃটির মুখ সোজা বা ঈষৎ বাঁকা হতে পারে। সোজা পা-কে ভিভাইডার পরেন্ট (Divider point) আর ঈষৎ বাঁকা পা-কে ক্যালিগার্স পরেন্ট (Callipers Point) বলা হয়। সেট ক্ক্ কে ঘুরিয়ে পা-কে প্রয়োজনমতো যে কোনো স্থানে সরিয়ে এনে আবদ্ধ করা যায়।

নিচে ট্রামেলের করেকটি ব্যবহার দেখানো হলো:

কমিনেশন সেট (Combination set) :

এটা একটি অসূত্ম পরিমাপক যন্ত্র। কারখানা ও ওয়ার্কশপে লে-আউট ও পরিদর্শন কাজে এটা বহুল ব্যবহৃত হয়। কমিনেশন সেট (ক) ব্রেড (স্টিল রুল), (খ) ক্ষরার হেড, (গ) সেন্টার হেড এবং (ঘ) প্রটেইর এই চারটি অংশের সমন্বয়ে গঠিত। এ অংশ চারটির একটিকে অপরটি থেকে পৃথক করা যায়। ব্রেডর উপর যে কোন স্থানই অন্য তিনটি অংশকে সরানো যায় এবং প্রয়োজন মতো যে কোনো স্থানে সেট ক্কু এর সাহায্যে আবদ্ধ করা যায়।

ক) ব্লেড (Blade) : একে স্টিল রুলও বলা যেতে পারে। এর দৈর্ঘ্য বরাবর সেন্টিমিটার বা ইঞ্চিতে দাগাঙ্কিত করা থাকে। কমিনেশন সেটের অন্য তিনটি অংশকে এ ব্লেডের উপর দিয়ে সরানো যায়। প্রয়োজনে যে কোনো

স্থানে আবদ্ধ করা যায়। সাধারণ স্টিল রুলের কাজ ছাড়াও স্কয়ার হেডের সাহায্যে এক গভীরতা পরিমাপের জন্য ডেপ গেজ হিসেবেও ব্যবহার করা যায়।

- খ) স্করার হেড (Square Head) : ক্ষয়ার হেড দারা ট্রাই ক্ষয়ারের কাজ করা যায়। ক্ষয়ার হেড একপাশে ৪৫°-তে ঢালু থাকায় এর সাহায্যে ৪৫° কোণ পরিমাপ করতে বা ঐ ৪৫° কোণে রেখা টানতে সুবিধা হয়। হেডটির সাথে একটি ছোট স্পিরিট লেভেল (Spirit Level) যুক্ত থাকায় বস্তুর উপরিভাগে সকল স্থান সম-উচ্চতায় আছে কিনা তা জানা যায়।
- গ) সেন্টার হেড (Centre Head) : যে কোনো সিলিভিক্যাল বস্তুর কেন্দ্র নির্ণয় করতে সেন্টার হেড ব্যবহৃত হয়। কেন্দ্র নির্ণয় করার ক্ষেত্রে বস্তুটিকে সেন্টার হেডের মাঝখানে স্কেলের নিচে স্থাপন করা হয়। জবটিকে ঘুরিয়ে তিনটি রেখা টানা হয় যেগুলো একটি বিন্দুতে পরম্পর ছেদ করে, অংকিত এ ছেদ ঐ বস্তুর কেন্দ্র।
- ষ) প্রটেষ্টর (Protractor): একটি অর্ধবৃত্তকার চাকতি প্রটেষ্টরে থাকে যার কেন্দ্রবিন্দুর প্রতি পাশে ০° ডিগ্রী হতে ৯০° ডিগ্রী পর্যন্ত দাগান্ধিত থাকে। প্রটেষ্টরের সাহায্যে জবকে সঠিক কোণে স্থাপন করা যায়। তলের সমতলতা বা ঢালু তল পরীক্ষা করার জন্য এর সাথে একটি স্প্রিরট লেভেলও থাকে।

কমিনেশন সেটের যত্ন : ব্যবহার শেষে পরিষ্কার-পরিছন্ন করে হালকাভাবে মরিচা প্রতিরোধক তেল লাগিয়ে একে কাঠের বাজ্যে সংরক্ষণ করতে হবে। কমিনেশন সেটের অংশগুলোকে তাদের নির্দিষ্ট কাজ ব্যতীত অন্য কোনো কাজে ব্যবহার করা যাবে না। এতে অংশগুলোর সৃষ্মতা বজায় থাকবে।

ট্রাই ক্ষরার (Try Square) :

কারখানার কাজে ব্যবহৃত অতি প্রয়োজনীয় হাত যন্ত্রগুলোর মধ্যে ট্রাই স্কয়ার অন্যতম। দুটি সমতল পৃষ্ঠ পরস্পর ৯০ ডিগ্রী কোণে আছে কিনা তা পরীক্ষা করতে ট্রাই স্কয়ার ব্যবহৃত হয়। কোণ পৃষ্ঠের সমতলতা এ ট্রাই স্কয়ার দিয়ে পরীক্ষা করা যায়। ট্রাই স্কয়ার দুই রকমের হয় ঃ

- (ক) নিরেট ট্রাই স্কয়ার (Solid Try Square)
- (খ) নিয়ন্ত্রণযোগ্য ট্রাই ক্ষয়ার (Adjustable Try Squre)

উভয় প্রকার ট্রাই স্কয়ারই একটি ব্লেড (Blade) ও একটি স্টক (Stock)-এর সমন্বয়ে গঠিত। ব্লেড মি.মি. বা ইঞ্চিতে দাগান্ধিত করা থাকে।

- ক) নিরেট ট্রাই ক্ষয়ার : যার স্টক ও ব্লেড পরম্পর রিভেটের সাহায্যে স্থায়ীভাবে আবদ্ধ থাকে। এতে ব্লেডের দৈর্ঘ্য সব সময়ই একই থাকে।
- খ) নিয়ন্ত্রণযোগ্য ট্রাই ক্ষরার : এতে স্টক ও ব্লেড অস্থায়ীভাবে যুক্ত থাকে। ক্ষুটিকে ঢিলা করে স্টকটিকে সরিয়ে ব্লেডের কার্যকর অংশের দৈর্ঘ্যকে প্রয়োজনমতো বাড়ানো বা কমানো যায়। এ ধরনের ট্রাই ক্ষয়ার ব্যবহার করলে ক্ষুদ্র ও বৃহৎ উভয় প্রকার বস্তব্র জন্য আর বিভিন্ন মাপের ব্লেড বিশিষ্ট একাধিক ট্রাই ক্ষয়ার ব্যবহারের প্রয়োজন হয় না।

ট্রাই স্কয়ার দিয়ে ধাতুখণ্ডের কোণ ৯০° হয়েছে কিনা পরীক্ষা করা :

এই পরীক্ষার জন্য প্রথমে ধাতু খণ্ডটির এক পার্শ্বের সঙ্গে ট্রাই স্করারের স্টক সংলগ্ন করতে হবে। ব্লেডটি একই সঙ্গে অপর পার্শ্বকে স্পর্শ করবে। যদি ধাতু খণ্ডের কোণ ৯০° হয়, তাহলে ব্লেড দিতীয় পার্শ্বের সঙ্গে মিলে যাবে। যদি কোথাও ফাঁক দেখা যায়, তবে বোঝা যাবে ৯০° হয়নি। বেশি বা কম হয়েছে। তখন

Bevel protractor

ধাতৃখণ্ডের পৃষ্ঠত্বয়কে ফাইল দিয়ে প্রয়োজনমতো ক্ষয় করে পুনরায় ট্রাই স্কয়ার দিয়ে একইভাবে পরীক্ষা করতে হবে। এভাবে কার্যবস্তুকে ৯০°-তে আনতে হবে।

ট্রাই স্ক্যারের ভিতরের কোণটিকে অল্প খাঁজকাটা থাকে। একে বলে 'বার স্লট' (Burr Slot) এতে যে ধাতৃখণ্ডের কোণ মাপতে হবে তার কোনায় বাড়তি ধাতু থাকলেও সমকোণ মাপতে কোনো অসুবিধা হয় না। বস্তুর পৃষ্ঠদেশ বা উপরিভাগের সমতলতা (Flatness) পরীক্ষা করা :

কার্যবস্তুর পৃষ্ঠ সমতল আছে কিনা তা জানতে হলে ট্রাই স্কয়ারের ব্লেডের কোনো একটি দিক পৃষ্টটির উপর স্থাপন করে লক্ষ্য করতে হবে যে, তলার মধ্যে দিয়ে আলো আসছে কিনা। যদি আসে তবে বোঝা যাবে যে

পৃষ্ঠ সৃক্ষভাবে সমতল रयनि । পরে প্রয়োজনীয় স্থানে ফাইল দিয়ে ঘষে ক্ষয় করে ধাতুখন্ডের পৃষ্ঠ সক্ষভাবে সমান করতে হবে। এবং পুনরায় একইভাবে ট্রাই ক্ষোয়ার দিয়ে পরীক্ষা করে নিশ্চিত হতে হবে।

Blade (Rule) Center square head Spirit level Protractor head Square head

চিত্র : ৬.১০ ট্রাই ক্ষয়ারের সাহায্যে বম্ভর পৃষ্ঠতলের সমতলতা পরীক্ষা

চিত্রে ট্রাই স্কয়ার ধাতৃখজের দিয়ে

পৃষ্ঠের সমতলতা পরীক্ষা দেখানো হলো:

ট্রাই স্কর্মারের দোষ পরীক্ষা : ট্রাই স্কর্মারের ব্লেড এবং স্টক অংশের বাহিরের ও ভিতরের কোণের মান ৯০° ঠিক আছে কিনা তা কিছুদিন পর পর পরীক্ষা করিয়ে নেয়া একাম্ভ প্রয়োজন। দুই প্রণালিতে এ পরীক্ষা করা यांग्र :

- ১। মাস্টার স্কয়ার (Master Square) নামে অন্য ট্রাই স্কয়ার-এর সাথে মিলিয়ে পরীক্ষা করা যায়।
- ২। 'সারফেস প্লেট'-এর সাহায্যে নিম্নলিখিত দুইভাবে পরীক্ষা করা যায়।
- ক) প্রথমে সরাফেস প্লেটের উপর রং লাগিয়ে যে ট্রাই স্কয়ারটির দোষ পরীক্ষা করতে হবে তার স্টকটিকে সারফেস প্লেটের পার্শ্বভাগে চেপে ধরে ব্লেডের কিনার বরাবর ক্রাইবার দিয়ে একটি রেখা টানতে হবে। পরে ঐ ট্রাই স্কয়ারটিকে ঘুরিয়ে পূর্বের ন্যায় স্টকটিকে চেপে ধরে পূর্বের রেখার সহিত মিলিয়ে আরেকটি রেখা টানতে হবে। যদি উভয়রেখা মিলে যায় তাহলে বুঝতে হবে ট্রাই স্কয়ারের কোণের মান ঠিক ৯০° ডিগ্রী (এক সমকোণ) আছে।
- খ) দ্বিতীয় প্রণালিতে ট্রাই স্কোয়ারটিকে পরীক্ষার জন্য একটি সারফেস প্রেটের কিনার নিচের চিত্রানুযায়ী ট্রাই স্কুয়ারটিকে মিলিয়ে ধরি। যদি কোন ফাঁক না থাকে, তবে ভিতরের কোণ ঠিক আছে বলে ধরে নেয়া যায়।

ট্রাই ক্ষরারের যত্ন: ট্রাই ক্ষরার একটি সৃক্ষ যন্ত্র। ব্যবহারকালে এবং যন্ত্রের বাক্সে রাখার সময় যেন এর ব্রেড বা স্টকে কোন প্রকার আঘাত বা চাপ না লাগে সেদিকে লক্ষ রাখা উচিত।ট্রাই স্কয়ার দিয়ে কোন কিছুর উপর আঘাত দেয়া বাঞ্ছনীয় নয়। নিরেট ট্রাই স্কয়ার ক্ষেত্রে ব্লেড ও স্টকের সংযুক্তি যাতে কোনো ক্রমেই ঢিলা না হয়ে যায় সেদিকে লক্ষ্য রাখা উচিত।

৬.৪ লে-আউট ও মার্কিং যজাদির রক্ষণাবেক্ষন (Maintenance of Layout and Marking Tools) :

- ১. মার্কিং টেবিল এবং সারফেস প্লেটের উপর কোনো ধূলা, বালিকণা ইত্যাদি জমে থাকা উচিত নয়। সারফেস প্লেটের বেলায় যে প্রকার যতু নেয়া নিয়ম এর বেলায় ও প্রায় ঐ প্রকার যতু নেয়া প্রয়োজন।
- ২. ভী-ব্লক এর উপরিস্থান এবং তলদেশ সম্পূর্ণ পরিষ্কার থাকা প্রয়োজন। এছাড়া যে বস্তুটিকে ভী-ব্লকের উপর রাখা হবে তার উপরিভাগ এবং তলদেশও পরিষ্কার থাকা উচিত।
- ৩. 'সারফেস গেজ' অথবা 'ক্রাইবিং ব্লক' এর ক্রাইবার অংশটি দ্বারা স্টিল-রুল থেকে মাপ নেয়ার সময় একে ঠিক লমভাবে ধরা উচিত। স্টিল রুলকে উপরের চিত্রের মতো একটি 'এঙ্গেল প্লেট'-এর সাথে মিলিয়ে ধরলে এই বিষয়ে সহয়তা হয়।
- ৪. 'সারফেস গেজ', ক্রাইবার হাইট গেজ ইত্যাদি যন্ত্র দ্বারা কোনো লম্ব উপরিভাগের উপর রেখা টানতে হলে, এটা যাতে ঠিক লম্বভাবে থাকে এবং সরে না যায় এজন্য একটি 'একেল প্রেট'-এর সাথে চেপে ধরে এই রেখা টানা উচিত।
- ৫. কোনো রেখা বা বিন্দুকে ৬ট, পাঞ্চ দিয়ে গভীর করার পূর্বে রেখা বা বিন্দু ঠিক নকশা অনুযায়ী যথাস্থানে আছে কিনা এই বিষয়ে নিশ্চিত হয়ে নেয়া আবশ্যক।
- ৬. 'মার্কিং করার কাজ শেষ হয়ে গেলে, একে শেষবারের মতো নকশার সাথে মিলিয়ে নেয়ার পরে এই বস্তু বা ধাতু খণ্ডের উপর 'ফাইলিং', 'ড্রিলিং', 'চিপিং', ইত্যাদি কাজ আরম্ভ করা উচিত।

প্রশ্নমালা-৬

অতি সংক্ষিপ্ত প্রশ্ন :

- ১। ক্রাইবারের কাজ কী?
- ২। মসৃণ নয় এরূপ শীট মেটালের উপর মার্কিং করতে হলে প্রথমে কী কাজ করতে হয়?
- ৩। ডিভাইডার কী কী কাজে ব্যবহৃত হয়?
- ৪। ট্রামেল এর অপর নাম কী?
- ে। কম্বিনেশন সেট কী কী যন্ত নিয়ে গঠিত?

সংক্ষিপ্ত প্রশ্ন :

- ৬। লে-আউট বলতে কী বোঝায়?
- ৭। জব লে-আউট করার জন্য চক বা রং কেন ব্যবহার করা হয়?
- ৮। লে-আউট করার পাঁচটি টুলসের নাম লেখ।
- ৯। লে-আউট করার জন্য সাধারণত কী কী মেজারিং টুলস ব্যবহৃত হয়?
- ১০। ট্রামেল কী কাজে ব্যবহার করা হয়?
- ১১। হারমোফ্রোডাইট ক্যালিপার্স কী কাজে ব্যবহার করা হয়?

- ১২। জ্রাইবারের ব্যবহার পদ্ধতি বর্ণনা কর।
- ১৩। লে-আউট ব্যবহৃত বিভিন্ন প্রকার পাঞ্চের সংক্ষিপ্ত বর্ণনা দাও।
- ১৪। কী কী কাজে ট্রাই স্কোয়ার ব্যবহার করা হয়?
- ১৫। কমিনেশন সেটের বিভিন্ন অংশগুলির নাম লেখ।

রচনামূলক প্রশ্ন :

- ১৬। শিট মেটালের উপর লে-আউট প্রক্রিয়া কীভাবে করা যায় বর্ণনা কর।
- ১৭। লে-আউটের আবশ্যক টুলস-এর সরঞ্জামের নাম উল্লেখ কর।
- ১৮। লে-আউট তৈরিকরণ স্টেপস চিত্রসহ বর্ণনা কর।
- ১৯। চিত্রসহ ট্রামেলের ব্যবহার উল্লেখ কর।
- ২০। চিত্রসহ বিভিন্ন ডিভাইডারের ব্যবহার ও গুরুত্ব আলোচনা কর।
- ২১। চিত্রসহ ট্রাই জ্রোয়ারের ব্যবহার উল্লেখ কর।
- ২২। চিত্রসহ কম্বিনেশন সেটের বিভিন্ন অংশের ব্যবহার উল্লেখ কর।
- ২৩। লে-আউট ও মার্কিং যন্ত্রাদির রক্ষণাবেক্ষণ উল্লেখ কর।

সপ্তম অধ্যায়

ফাইল (File)

৭.০ সূচনা (Introduction) :

ফাইলকে বাংলায় চলিত ভাষায় 'উখা' বা 'রেতি' বলে। ফাইল একপ্রকার হ্যান্ড কাটিং টুল যা কোনো যন্ত্র বা যন্ত্রাংশের তলের উপরিভাগের অতিরিক্ত ধাতু গুঁড়া আকারে ক্ষয় করে নির্দিষ্ট আকার এবং আকৃতিতে আনার কাজে ব্যবহৃত হয়। হাতের কাজের মধ্যে সবচেয়ে দরকারি এবং গুরুত্বপূর্ণ কাজ হলো ফাইলের কাজ। যে কোনো মেকানিক এবং ফিটারকে কর্মজীবনের প্রথমেই ফাইলিং শিখতে হয়। ফাইলের কাজে দক্ষতা অর্জন করতে হলে ধৈর্য ও অধ্যবসায়ের সাহায্যে অনেক দিন অনুশীলন করতে হয়। হাই কার্বন স্টিল বা টুল স্টিল দিয়ে ফাইল তৈরি হয়। ফাইলের উপরিভাগে দাঁত কাটা থাকে এবং এই দাঁতের সাহায্যে ফাইল কোনো ধাতুকে ক্ষয় করে বা ঘষে ঘষে কাটে। ফাইলের দাঁতগুলি উপযুক্তভাবে হার্ডেনিং এবং টেম্পারিং করা থাকে। ফলে দাঁতগুলির ধার সহজে নষ্ট হয় না।

৭.১ ফাইল (File) :

ফাইলকে বাংলায় উখা বা রেতি বলা হয়। ফাইল একপ্রকার কাটিং টুলস। ছেনি দিয়ে ধাতু পৃষ্ঠ কর্তনের পর অমসৃণ তলকে মসৃণ করার জন্য ফাইল বিশেষ উপযোগী। হার্ডেড টুল ইস্পাত (Hardend Tool Steel) দিয়ে ফাইল তৈরি হয়। এর সমান তলসমূহে অসংখ্য কাটিং এজ বা দাঁত থাকার দরুন ফাইল মালটিপল (Multiple) কাটিং টুল এর পর্যায়ে পড়ে। প্রশস্ত তলসমূহের এই দাঁতগুলো প্রান্তের (Edge) সাথে কোণ বরাবর (Diagonal) কাটা থাকে। ফাইলের এক প্রান্ত স্চালো। একটা প্রান্টিক বা কাঠের হাতল এই স্চালো অংশ বরাবর প্রবেশ করিয়ে কাজ করা হয়। এটা একটি বিশেষ প্রয়োজনীয় হ্যান্ড টুলস। ওয়ার্কশপ এবং কারখানার অথবা যে কোনো কারিগরি কাজে এর ব্যবহার অন্যতম।

ফাইলের প্রধান দুটি অংশ। একটার নাম ব্লেড বা বডি আর অন্যটার নাম টং। এই টং অংশটাই হাতলের মধ্যে ঢুকানো থাকে। ফাইলের সামনের পয়েন্ট (point) চ্যাপটা দিককে কেইস (Face) এবং পাশের দিককে এজ (Edge) বলে। টং-এর কাছাকাছি অংশকে বলে হীল (Heel)।

প্রধানত ফাইলের দাঁতগুলো ডায়াগোনাল করে কাটা। তবে একটা অন্যটার সমান্তরাল। এক সারি দাঁত পাশাপাশি কাটা থাকলে সিঙ্গেল কাট আর দু'সারি আড়াআড়ি করে কাটা থাকলে ডবল কাট। ডবল কাট ফাইল দিয়ে বেশি পরিমাণের ম্যাটেরিয়ালকে অপসারণ করা যায়। সিঙ্গেল কাট দাঁতের সারি এজের (Edge) সাথে ৬৫-৮৫ ডিগ্রী কোণ কাটা থাকে। আর ডবল কাটে থাকে একসারি ৭০-৮০ ডিগ্রী, অন্য সারি ৪০-৪৫ ডিগ্রী কোণ। এ ছাড়াও র্যাপস কাট (Rasp cut) পৃথক পৃথক দাঁত বিশিষ্ট এক প্রকার ফাইল। এ দাঁতগুলো সিংগেল পরেন্টেড, পাঞ্চ করে তৈরি, দাঁতগুলো ধারাবহিক, তির্যক ও পাশাপাশি সারিবদ্ধভাবে অবস্থান করে। ফাইলের দাঁত রাফ (Rough), কোর্স (Course), বাস্টার্ড (Bastard), মিডিয়াম কোর্স (Medium course), সেকেন্ড কাট (Second cut), স্মুথ কাট (Smooth cut) এবং ডেড স্মুথ কাট (Dead smooth cut) ইত্যাদি গ্রেডের হতে পারে। যে ফাইলের প্রতি সেন্টিমিটার বা প্রতি ইঞ্চিতে দাঁতের সংখ্যা কম ঐ ফাইল এর দাঁত মোটা (Course) হয়, আর দাঁতের সংখ্যা বেশি হলে মিহি (Fine) হয়। মোট দাঁত মিহি দাঁত অপেক্ষা বেশি শক্তিসম্পন্ন হয় বলে যেখানে বেশি পরিমাণের ধাতু ক্ষয় করার প্রয়োজন থাকে সেখানে মোটা দাঁতের

(Course teeth) ফাইল ব্যবহার করা হয়। দ্রুত অপ্রয়োজনীয় ধাতু অপসারণের জন্য রাফ, বাস্টার্ড দাঁতযুক্ত ফাইলের ব্যবহার করা হয়। মসৃণ ও চূড়ান্ত কাজের জন্য সেকেন্ড কাট, স্মুখ কাট, ডেড স্মুখ দাঁতযুক্ত ফাইল ব্যবহার করা হয়।

সিলেল কাট কাইল দিয়ে যদিও ডবল কাট ফাইল এর মত দ্রুত ধাতু অপসারণ করা যায় না, তবু সিলেল কাট ফাইল দিয়েই মসুণ বা মিহিভাবে ক্ষয় করা যায়।

৭.২ ফাইলের বিভিন্ন অংশ (Different parts of File) :

আগেই বলা হয়েছে ফাইলের প্রধান ২টি অংশ। ব্লেড বা বডি আর টংস। বডি অংশটা কয়েকটা নামে বিভক্ত। ষেমন-

- (ক) গোড়ালি বা হীল (Heel)
- (খ) মুখ বা ফেস (Face)
- (গ) কিনারা বা এজ (Edge)

(ঘ) শীর্ষ পয়েন্ট বা টিপ (Point or tip)

এছাড়াও হাতল (Hand) ও ফাইলের একটা অংশ। কারণ হাতল ছাড়া ফাইল ব্যবহার করা অসুবিধাজনক। প্রাথমিক স্করে এ ফাইলের গঠন অনুযায়ী দু'ভাগে ভাগ করা যায়।

৭.৩ **কাইলের শ্রেণিবিন্যাস** (Classification of File) : বিভিন্ন বিষয়ের উপর ভিত্তি করে ফাইলকে শ্রেণিবিন্যাস করা হয়ে থাকে।

নিয়ে বিভিন্ন বিষয় উল্লেখ করা হলো-

(ক) ফাইলের আকৃতি (Shapes of Files) :

ফাইলের আকৃতি বলতে এর প্রস্থচ্ছেদ বা ছেদ ক্ষেত্র (Cross Section) কে বুঝার। ফাইলের আকৃতি সাধারণত নিমুলিখিত কয়েক প্রকার হয়ে থাকে।

(১) মিল (Mill) ফাইল (২) ফ্ল্যাট (Flat) ফাইল (৩) হ্যান্ড (Hand) ফাইল (৪) পিলার (Pillar) ফাইল (৫) ক্ষ্মার (Square) ফাইল (৬) রাউন্ড (Round) ফাইল (৭) থ্রি ক্ষ্মার (Three Square) বা ট্রাঙ্গুলার (Triangular) ফাইল (৮) হাফ রাউন্ড (Half Round) ফাইল (৯) ক্রোটেট (Crochet) বা কাটার (Cotter) ফাইল (১০) ক্রসিং (Crossing) ফাইল (১১) গুয়ার্ডিং (Warding) ফাইল (১২) ব্যাররেট (Barrette) ফাইল ও (১৩) নাইফ (Knife) ফাইল।

(খ) ফাইলের স্বর (Grades of Files) :

উপরিভাগে প্রতি সেন্টিমিটার বা প্রতি ইঞ্চি দৈর্ঘ্যে যে পরিমাণ দাঁত (Cutting Points) থাকে, এর সংখ্যা দারা ফাইলের স্তর (Grade) নির্ণীত হয়। এই স্তর সাধারণত পাঁচ প্রকার হয় যা ক্রমানুসারে (১) রাফ (Rough) (২) বাস্টার্ড (Bastard) (৩) সেকেন্ড কাট (Second Cut) (৪) স্মৃথ (Smooth) ও (৫) ডেড স্মৃথ (Dead Smooth)।

কাইলে প্রতি সেন্টিমিটার বা প্রতি ইঞ্চিতে দাঁতের সংখ্যা কম থাকে উহার দাঁতগুলি মোটা বা স্থুল (Coarse) হয় এবং যে ফাইলে এই সংখ্যা বেশি থাকে এতে দাঁত সৃদ্ধ বা মিহি (Fine) হয়। মোটা দাঁত মিহি দাঁত অপেক্ষা বেশি শক্তি সম্পন্ন হয়। যে স্থলে কাইল চালনা করে বেশি থাতু ক্ষয় করার প্রয়োজন থাকে সে ক্ষেত্রে মোটা দাঁতের (Coarse) ফাইলে ব্যবহৃত হয়। নিচে ফাইলের বিভিন্ন স্কর অনুযায়ী দাঁতের সংখ্যা এবং ব্যবহার উল্লেখ করা হলো:-

গ্রেড (ক্রম অনুসারে)	প্রতি সে.মি. তে দাঁতের সংখ্যা	ব্যবহার
রাফ (Rough)	ъ	সর্বাপেক্ষা বেশি পরিমাণ ধাতু ক্ষয় করার জন্য।
বাস্টার্ড (Bastard)	r-30	অপেকাকৃত কম ধাতু ক্ষয় করার জন্য।
সেকেন্ড কটি (Second Cut)	32-3G	সাধারণ রকম ক্ষয়ের জন্য।
স্থ (Smooth)	২০-২৪	সর্বাপেক্ষা কম ক্ষয় করে উপরিভাগকে মসৃণ করার জন্য।
ডেড সুখ (Dead Smooth)	২৬-৪০	অধিকতর মসৃণ করার জন্য।

উপরোক্ত দাঁতের সংখ্যা ফাইলের দৈর্ঘ্যের সাথে সমন্বয় করে কম বা বেশি করা হয়।

বে খাঁজ বা শ্রুন্তের মাধ্যমে ফাইলের দাঁত তৈরি করা হয় তাকে ফাইলের কাট বলে। কাট প্রধানত দুই প্রকার হয়-সিকেল কাট এবং ডবল কাট।

কাইলের দাঁতগুলো সাধারণত প্যারালাল করে কাটা থাকে কিন্তু বডি ও এজের সঙ্গে কোণাকুণিভাবে থাকে।

(১) সিলেগ কাঁট কাইল (Single Cut File) :

যে ফাইলের উপরিভাগে একদিক থেকে কেটে দাঁত উৎপন্ন করা হয় তাকে সিঙ্গেল কাট ফাইল বলে। এর দাঁতগুলি দেখতে চিজেলের কাটিং এজের মতো হয়। সিঙ্গেল কাট ফাইলের দাঁতের সারি এজের মতো হয়। সিঙ্গেল কাট ফাইলের দাঁতের সারি এজের সঙ্গে ৬৫° ডিগ্রী থেকে ৮৫° ডিগ্রী কোণ করে কাটা থাকে। কম ধাতু

চিত্র: ৭.৩ : ফাইলের কটি

কেটে মসৃগ তল তৈরি করার জন্য খুবই উপযোগী। তবে নরম ধাতুতে মসৃগ তল তৈরিতেও এর ব্যবহার খুবই সমাদৃত।

(২) ডবল কটি ফাইল (Double Cut File) :

যে ফাইলের উপরিভাগে দুই দিক থেকে কেটে দাঁত উৎপন্ন করা হয় তাকে ডবল কাট ফাইল বলে। ডবল কাটের দাঁত একদিকে ৭০ ডিগ্রী থেকে ৮০ ডিগ্রী কোণে এবং অপর দিকে ৪০ ডিগ্রী থেকে ৪৫ ডিগ্রী কোণে কেটে উৎপন্ন করা হয়। এই দুই দিক থেকে কাটার গভীরতা সমান থাকে না। বাম দিকের উপর থেকে ডান দিকে নিচে ৭০-৮০ ডিগ্রী কোণে ঢালু করে যে এজ কাটা হয় তাকে নিমু কাটিং এজ বলে। অপর কাটিং এজটি ডান দিকের উপর থেকে বাম দিকের নিচে ৪০-৪৫ ডিগ্রী কোণে ঢালু করে নিমু কাটিং এজ অপেক্ষা কম গভীরতায় কাটা হয়। এটাকে উচ্চ কাটিং এজ বলে। এ প্রকার কাট বিশিষ্ট কাইলের সাহায্যে সিলেল কাট কাইল অপেক্ষা দ্রুত ধাতুকে ক্ষয় করা যায়। কিন্তু উপরিভাগের মসুণতা অপেক্ষাকৃত কম হয়।

- (ম) প্রস্কু (Breath) : প্রস্কু ভেদে ফাইলকে দুই ভাগে ভাগ করা যার। বেমন-
- (১) ব্লন্ট (Blunt) ফাইল, যে ফাইলের প্রস্থ মাপ সমান অর্থাৎ ফাইলের এজ দুইটি সমান্তরাল তাকে ব্লান্ট ফাইল বলে।
- (২) টেপার (Taper) কাইল: যে ফাইলের অগ্রভাগের প্রস্থ দুইটি ক্রমশ সরু অর্থাৎ মাথার দিকে প্রস্থ ক্রমশ ক্ষ হয় তাকে টেপার ফাইল বলে। উভয় শ্রেণিতেই ফাইলের অগ্রভাগে দৈর্ঘ্যের প্রায় এক-ভৃতীয়াংশ স্থান ক্রমশ সামান্য পাতলা থাকে।

(ঙ) সেক এজ (Safe Edge) :

যে ফাইলে এক পাশ দাঁত শূন্য থাকে তাকে সেফ এজ ফাইল বলে। ফ্ল্যাট এবং ক্ষোয়ার ফাইল সাধারণত সেফ এজ রকমের হয়। ফ্ল্যাট ফাইলকে স্বতন্ত্রভাবে হ্যাভ ফাইল (Hand File) বলা হয়। এক সমকোণ বা ৯০ ডিগ্রী কোণ বিশিষ্ট স্থানে একটি তলকে অক্ষয় রেখে অন্য তলটিকে ক্ষয় করার প্রয়োজন হলে এই রকমের ফাইল ব্যবহৃত হয়। যে পাশ্বটিকে অক্ষত রাখতে হবে উহার সাথে দাঁতবিহীন পার্শ্বকে (সেফ এজ) রেখে ফাইল চালালে পাশ্বটি অক্ষত থাকে।

(চ) দৈর্ঘ্য (Length) ঃ কাইলের সম্পূর্ণ দৈর্ঘ্য থেকে ট্যাংএর দৈর্ঘ্য বাদ দিলে অবশিষ্ট যে মাপ পাওয়া যায় তাকে ফাইলের দৈর্ঘ্য বলে। এই দৈর্ঘ্য বারা হীলসহ হীল থেকে পরেন্টের দ্রত্বকে ব্ঝায়। এই দৈর্ঘ্য ৫০ মি.মি. ক্রমে বর্ধিত হয়ে ১০০ মি.মি. থেকে ৪৫০ মি.মি. পর্যন্ত হয়। ফাইলের গ্রেড, প্রস্থ এবং উচ্চতা এর দৈর্ঘ্যের সাথে সম্পর্কয়ুক্ত। দৈর্ঘ্য বাড়লে উহা বাড়ে এবং দৈর্ঘ্য কমলে এটা কমে।

বিভিন্ন আকৃতির ফাইল কর্মশালায় ব্যবহার করা হয়। যেমন:-

- (১) ফ্লাট ফাইল (Flat file)
- (২) হ্যাভ ফাইল (Hand file)
- (৩) কোয়ার ফাইল (Square file)
- (৪) রাউড ফাইল (Round file)
- (৫) হাফ রাউভ ফাইল (Half round file)
- (৬) ট্রাইসুলার ফাইল (Triangular file)

চিত্র: ৭.৭: বিভিন্ন গঠন বা আকৃতির ফাইল

- (৭) মিল ফাইল (Mill file)
- (৮) পিলার ফাইল (Pillar file)
- (৯) নাইফ ফাইল (Knife file)
- (১০) ওয়ার্ডিং ফাইল (Wording file)
- (১১) নীডল ফাইল (Niddle file)
- (১২) ভেড-নট ফাইল (Dead-naught file)
- (১৩) রেম্প ফাইল (Rasp file)

ফ্লাট ফাইল (Flat file) : এই ফাইলের প্রস্থচ্ছেদ আয়তকার। তবে পয়েন্টের দিকটা ক্রমশ সরু (taper) উভয় তলে ডবল কাট বিশিষ্ট দাঁত এবং পার্শ্ব (edge) সিঙ্গেল কাট বিশিষ্ট দাঁত থাকে। দৈঘ্যে ৫ সে.মি. পর্যন্ত হয়। ফ্লাট ফাইল রাফ, বাস্টার্ড, সেকেন্ড কাট, স্মুথ, ডেড স্মুথ ইত্যাদি সকল প্রকার গ্রেডের হয়ে থাকে। কারখানায় সর্বাধিক ব্যবহারযোগ্য ফাইল এটি।

হ্যান্ড ফাইল (Hand file) : দেখতে ফ্লাট ফাইলের মতো। তবে প্রান্তদর (edge) দাঁতশূন্য ও ব্লান্ট (Blunt) আকৃতির আয়তকার প্রস্থচ্ছেদ। ডবল কাট দাঁতযুক্ত এই ফাইল ওয়ার্কশপে ব্যাপক ব্যবহার হয়।

কোরার ফাইল (Square file) : এই ফাইলের প্রস্তুচ্ছেদ বর্গাকৃতির এবং চার পাশেই দাঁত কাটা থাকে। কোরার ফাইল ট্যাপার বা ব্লাস্ট উভয় প্রকার হয়ে থাকে এবং বাস্টার্ড ও সেকেন্ড কাট গ্রেডের দাঁত কাটা থাকে। ১০ সে.মি. থেকে ৫০ সে.মি. পর্যন্ত লম্বা হয়ে থাকে। বর্গাকার বা আয়তকার ছিদ্রে ফাইলিং করতে, সংকীর্ণ তলদেশ, সরু খাদ বা এরূপ আকৃতির কোন কাজে কোয়ার ফাইল ব্যবহার করা হয়।

রাউন্ত ফাইল (Round file) : গোলাকার প্রস্থচ্ছেদ বিশিষ্ট এই ফাইল শীর্ষ (tip) বরাবর ক্রমশ সরু (Fine)। কম দৈর্ঘ্যের রাউন্ত ফাইলকে রেট টেইল (Rat tail) বলা হয়। বাস্টার্ড, ডবল কাট ১৫ সে.মি. ও সেকেন্ড কাট, স্মুথ রাউন্ত ফাইল ৩০ সেমি. লম্বা হয়ে থাকে। গোলাকার ছিদ্র বড় করতে, ওয়েল্ডিং করার পূর্বে পরিষ্কার করতে, অসম ছিদ্রকে গোলাকার করতে এই ফাইল উপযোগী। সাধারণ রাউন্ত ফাইল ১০ সে.মি. থেকে ৪০ সে.মি. লম্ব হয়ে থাকে।

হাক রাউভ কাইল (Half round file) : অর্ধগোলাকার এই ফাইলের একপাশ সমতল (flat), অপর পাশ উত্তল (Convex) অর্ধ গোলাকার। রাউভ ফাইলের ন্যায় টেপার আকৃতি বিশিষ্ট। দাঁত ফ্লাট ফাইলের অনুরূপ। ১৫ সে.মি. লম্বা এই ফাইল সিঙ্গেল কাট বিশিষ্ট হয়ে থাকে। গোলাকার কোণ অথবা সমতল পৃষ্ঠ ফাইলিং করতে ব্যবহার করা হয়।

ট্র্যাঙ্গুলার ফাইল (Triangular file) : এই ফাইলকে খ্রি-ক্ষোয়ার (Three square) ফাইলও বলা হয়। বিভূজাকৃতি প্রস্থচ্ছেদ বিশিষ্ট টেপার আকৃতির এই ফাইল সাধারণত সিঙ্গেল কাট হয়ে থাকে। ছোট আকৃতির ফাইল করতের দাঁত ধার করতে এবং বর্গাকৃতি অভ্যন্তরীণ কোণা (Angle) পরিষ্কার করতে। টেপ (tape), কাটার (Cotter) ইত্যাদি ধারালো করতে ট্র্যাঙ্গুলার ফাইল বিশেষ উপযোগী। এর মাপ ১০-৪০ সে.মি. দৈর্ঘ্যের হয়।

মিল ফাইল (Mill file) : আয়তকার প্রস্থচ্ছেদ বিশিষ্ট ফ্লাট ফাইলের ন্যায় দেখতে এই ফাইলের দাঁতগুলো সিঙ্গেল কাট হয়ে থাকে। টেপার এবং ব্লান্ট উভয় গঠনের হয়। রাফ ও বাস্টার্ড কাট অধিকাংশ ক্ষেত্রে ব্যবহার হয়। বেশি পরিমাণের ধাতু ক্ষয় করার জন্য এবং ড্র-ফাইশিং (Draw-filing)-এর কাজে উপযোগী। এটা ১৫ সে.মি. থেকে ৩০ সে.মি. পর্যন্ত লখা হয়।

পিলার কাইল (Pillar file) : দেখতে হ্যান্ড ফাইলের মতো। পার্থক্য এই যে, এর প্রশন্ততা অপেকাকৃত কম ও বেধ অপেক্ষাকৃত বেশি। তাছাড়া এই পার্শ্বরয় দাঁতবিহীন (Safe edge)। ২০ সে.মি. থেকে ৩০ সে.মি. দৈর্ঘ্য বিশিষ্ট এই ফাইল কি-ওয়ে বা চাবির ঘাট কাটতে বিশেষ উপযোগী।

নাইক ফাইল (Knife file): ডবল কাট এবং ছুরির মতো গঠন বিশিষ্ট নাইফ ফাইলের এক প্রান্ত মোটা এবং ক্রমণ সরু হয়ে অপর প্রান্তে মিশেছে। এই ফাইলের ফলা ১০ ডিগ্রী কোণ বিশিষ্ট হয়ে থাকে। গিয়ারের দাঁত পরিষ্কার, বিভিন্ন ধরনের খাঁজ ও চাবির ঘাট, স্লট ইত্যাদির তীক্ষ্ণ কোণ ফিনিশিং দিতে অথবা অভ্যন্তরীণ সরু কোণ ক্ষয় করতে নাইক ফাইল বিশেষ উপযোগী। লম্বায় ১৫ সে.মি. থেকে ৩০ সে.মি. হয়ে থাকে।

ওরার্ডিং কাইল (Wording file) : অভিশয় পাতলা ও ডবল কাট বিশিষ্ট ওরর্ডিং কাইলের অগ্রভাগ ক্রমশ সরু। চাবির ঘাট কাটার জন্য এই ফাইল ব্যবহার করাহয়।

নীড়ল ফাইল (Niddle file) : এই ফাইল আকার ছোট এবং নাজুক। এর টং মোটা এবং নালিং করা। হালকা সৃষ্ম যন্ত্রপাতি মেরামত, সংযোজনের সময় এই ফাইল ব্যবহার হয়ে থাকে। স্বর্গকারদের কাজে এই ফাইল অত্যন্ত উপযোগী। বিভিন্ন আকৃতির ৮টি অথবা ১২টি ফাইল এর সেট প্লাস্টিক অথবা কাঠের বাব্লে পাওয়া বায়। ৭.৫ সে.মি. থেকে ১৫ সে.মি. লখা হয়।

ডেড-নট ফাইল (Dead-naught file) : এই ফাইল ভিক্সেন (Vixen) নামে পরিচিত। গঠন সাধারণত

হাাভ ফাইলের মতো।
তবে দাঁতগুলো
গোলাকৃতি করে কাটা ও
সিলেল কাট বিশিষ্ট। এর
সূবিধা এই যে,

চিত্র: ৭.৮ ডেড নাট ফাইল

ব্যবহারের সময় ধাতুর ওঁড়া দাঁতের ফাঁকে অটিকে পড়ে না।

লেড (Lead) বেবিট মেটাল (Babbit metal), আালুমিনিয়াম (Aluminum) ইত্যাদি নরম ধাতু ক্ষয় করতে ব্যবহার করা হয়।

রেম্প কাইল (Rasp file) :
এর অন্য নাম ক্যাবিনেট
কাইল (Cabivet file) এর
দাঁতগুলো মোট, উন্নত ও
পরম্পর পৃথক। দাঁতগুলো

চিত্র: ৭.৯ : রেম্প ফাইল

পিরামিডের ন্যার উচু হয়ে থাকে, আর শীর্ষভাগ জীক্ষ্ণ থাকায় কাঠ, নরম ধাতুকে ক্ষয় করার জন্য বিশেষ উপযোগী।

৭.৪ ফাইলের ব্যবহার (Uses of Files) :

করাখানার ফাইল সঠিকভাবে ব্যবহার করা প্রয়োজন। ফাইলের ব্যববার সঠিক ও নিয়ম অনুযায়ী না করতে পারলে ফাইলিং কাজ অবশ্যই সঠিক ও নির্ভূল হবে না। এতে কাজে ক্ষতি হবে এবং লোকসান হবে। নিয়ে বর্ণিত পদক্ষেপ নেয়া প্রয়োজন। যমন-

- (১) ফাইল নির্বাচন (Selecting proper filies)
- (২) ফাইলিং পদ্ধতি (Methods of filling)
- (৩) ড্ৰ-ফাইলিং (Draw filling)

ফ্লাট ফাইল (Flat File) : সাধারণ ওয়ার্কপিসের তল থেকে দ্রুত ধাতু অপসারণ করতে এবং রাফ ফাইলিং এর কাজে ফ্ল্যাট ফাইল ব্যবহৃত হয়। ওয়ার্কপিসের তল সমতল করতেও ফ্ল্যাট ফাইল ব্যবহৃত হয়।

হ্যান্ড ফাইল (Hand File) : সমকোণ অবস্থিত সন্নিহিত তলের একটিকে অক্ষত রেখে অন্যটিকে মসৃণ করতে হ্যান্ড ফাইল ব্যবহৃত হয়। ফীড মার্ক দ্রীভূত করতে এবং গুয়ার্কপিসের তলকে সমতল করতে বা মসৃণ করতে এই ফাইল ব্যবহৃত হয়।

মিল ফাইল (Mil File) : লেদ ওয়ার্কেও তল মসৃণ করতে, ড্র ফাইলিং করতে এবং ব্রাস ও ব্রোঞ্জের উপর ফাইলিং করতে এই ফাইল ব্যবহৃত হয়। তাছাড়া করাতের দাঁত ধার দিতে এ ফাইল ব্যবহৃত হয়।

পিলার ফাইল (Piler File) : কম প্রশস্ত তল, চাবির ঘাট, গ্রুভ, স্লুট ইত্যাদি ফাইলিং করতে পিলার ফাইল ব্যবহৃত হয়।

কাটার ফাইল (Cutter File) : করাতের দাঁত ধার দেওয়া, ফাইলিং করা, কোন ছিদ্রের ভেতর গোলাকার করা, ভেতরের কোণ ফাইলিং করা ইত্যাদি কাজে বেশি ব্যবহৃত হয়।

হাফ রাউন্ড ফাইল (Half round file) : গোলাকার তল ফাইলিং করতে, প্রুভের কর্নার তীক্ষ্ণ করতে এবং সমতল ফাইলিং করতে ব্যবহৃত হয়।

রাউন্ড ফাইল (Round file) : গোলাকার তল ফাইলিং করতে এবং গোলাকার গর্ত বড় করতে ব্যবহৃত হয়। ভাছাড়া ছোট রাউন্ড দারা বেয়ারিং-এর তৈল নালী তৈরি করা যায়।

স্করার ফাইল (Square file) : বর্গাকার এবং আয়তকার ছিদ্রের কোণা এবং তল মসৃণ করতে, বর্গাকার ও আয়তকার ছিদ্র বড় করতে, যে সকল স্থলে হ্যান্ড ফাইলকে প্রবেশ করানোর উপযুক্ত স্থান পাওয়া যায় না ঐ স্থলে ফাইলিং করতে স্কয়ার ফাইল ব্যবহৃত হয়।

ট্রাঙ্গুলার ফাইল (Triangular file) : ৯০ ডিগ্রী থেকে কম এবং ৬০ ডিগ্রী থেকে বেশি এই প্রকার কোণ বিশিষ্ট স্থানকে সমতল করতে এই প্রকার ফাইল বেশি উপযোগী। ট্যাপ, করাতের দাঁত, ভি থ্রেড, স্লট এবং চাবির ঘাট ফাইলিং করতে এই ফাইল ব্যবস্থত হয়।

৭.৫ ফাইলের যত্ন ও রক্ষণাবেক্ষণ (Care and Maintenance of File) :

- (১) নতুন ফাইলের দাঁতগুলি খুব তীক্ষ্ণ থাকে। এই তীক্ষ্ণ দাঁত বিশিষ্ট ফাইল দ্বারা কাস্ট আয়রন বা শক্ত স্টিলকে ক্ষয় করতে গেলে দাঁতগুলি ভেঙ্গে যায়। ফলে ঐ ফাইল শীঘ্রই কাজের অযোগ্য হয়ে পড়ে। এ কারণে নতুন ফাইলকে প্রথমে পিতল, তামা, কাঁসা ইত্যাদি নরম ধাতুর উপর কিছুদিন ব্যবহার করার পর এর দাঁতের তীক্ষ্ণতা যখন কিছু কমে যায়, তখন কাস্ট আয়রন বা শক্ত স্টিলের উপর ব্যবহার করা উচিত।
- (২) ফাইল খুব শক্ত ধাতুর তৈরি হলেও এর আঘাত করার ক্ষমতা খুব কম। এজন্য হঠাৎ হাত থেকে পড়ে গেলে বা অন্য কোনো উপায়ে আঘাত লাগলে ফাইল ভেঙ্গে যেতে পারে। এজন্য ফাইল দিয়ে কখনও কিছু আঘাত করা, ঠোকা বা চাড় দেওয়া উচিত নয়।

- (৩) ব্যবহারের সময় এবং পরে ফাইলকে এমন যত্নে রাখতে হবে যাতে এর উপরিভাগে তেল, গ্রীজ ইত্যাদি না লাগে। তৈলাক্ত হলে ফাইলিং-এর সময় ফাইল পিছলে যাবে এবং ঠিকমতো কাটবে না।
- (৪) ব্যবহারের সময় এবং পরে ফাইলকে কখনও পাশাপাশি, ঠেকাঠেকি বা একটির উপর আরেকটি রাখা যাবে না। কারণ এতে দাঁত নষ্ট হয়ে যায়। যদি রাখতে হয় তাহলে ফাইলের মাঝে মাঝে কাগজ দিয়ে একটি থেকে অন্যটিকে পৃথক করে রাখতে হবে।
- (৫) ব্যবহারের পর ফাইলের দাঁতের মধ্য থেকে ধাতুর গুঁড়া ফাইল কার্ড বা তারের ব্রাশ দিয়ে বের করে নিতে হবে। কারণ দাঁতগুলো ক্ষয় হয়ে যায় বলে কাজ করার ক্ষমতা অনেক কমে যায়। তাছাড়া দীর্ঘদিন অপরিষ্কার থাকলে ফাইল মরিচা এসে যায় এবং ফাইলের কর্মক্ষমতা হ্রাস পায়।
- (৬) ফাইল সংরক্ষণ করতে হলে একটি ফ্রেম বা ব্রাক্স তৈরি করে এতে ফাইলকে ঝুলিয়ে রাখা উচিত।
- (৭) প্রয়োজনীয় কাজের জন্য উপযুক্ত বা সঠিক ফাইল নির্বাচন করা উচিত। রাফ কাজের জন্য স্মুথ ফাইল বা স্মুথ কাজের জন্য রাফ ফাইল ব্যবহার করা কখনও উচিত নয়।
- (৮) ফাইল সামনে চলার সময় কাটে। সূতরাং কাটার সময় পরিমাণ মতো চাপ দিয়ে ফাইল চালিয়ে ধাতৃ কাটতে হবে এবং পিছনে টানার সময় অত্যন্ত হালকাভাবে টানতে হবে। চাপ দিয়ে পিছনে টানলে ফাইলের দাঁতের তীক্ষ্ণতা শীঘ্রই নষ্ট হয়ে যায়।

৭.৬ ফাইলের বিবরণ (Sppecification of file) :

ফাইলের বিবরণ উল্লেখ করতে হলে যথাক্রমে এর আকৃতি, দৈর্ঘ্য, স্তর, কাট, প্রস্থ এবং সেফ এজ বিশিষ্ট হবে কি না লিখতে হবে। যেমন: ফ্র্যাট, দুইশ'ত মি.মি. রাফ, ব্ল্যাট, সিঙ্গেল কাট ফাইল (Flat, 200mm, Rough, Blunt, Single Cut File) বা স্কোয়ার, সেফ এজ, একশ'ত পঞ্চাশ মি.মি. সেকেভ কাট, টেপার, ডবল কাট ফাইল (Square, Safe Edge, 150m.m., Second Cut, Taper. Double Cut File) ইত্যাদি।

সচরাচর ব্যবহৃত ফাইল

জেনারেল মেকানিক্স বা ফিটিং বিভাগে যে কয় প্রকারের ফাইল সাধারণত ব্যবহৃত হয় তা হলো :-

- (১) ফ্ল্যাট ফাইল (Flat File)
- (২) হ্যাভ ফাইল (Hand File)
- (৩) মিল ফাইল (Mill File)
- (8) পিলার ফাইল (Pillar File)
- (৫) কাটার ফাইল (Cotter File)
- (৬) হাফ রাউভ ফাইল (Half round file)
- (৭) রাউভ ফাইল (Round file)
- (৮) স্কোয়ার ফাইল (Square file)
- (৯) ট্রাইঙ্গুলার ফাইল (Triangular file)

প্রশ্নালা - ৭

অতি সংক্ষিপ্ত প্রশ্ন :

- ১। বাংলায় ফাইলকে কী বলা হয়?
- ২। ফাইল কী ধরনের পদার্থের তৈরী?
- ৩। ফাইলের দাঁতগুলো কীরূপ কাটা থাকে?
- ৪। ফাইলের দাঁতগুলো সহজে নষ্ট হয় না কেন?
- ৫। ফাইলের প্রধানত কয়টি অংশ নিয়ে গঠিত?
- ৬। ফাইলের দৈর্ঘ্য কাকে বলে?
- ৭। ফাইলকে আকৃতির আলোকে কয়ভাগে ভাগ করা যায়?
- ৮। ফাইলের গ্রেড কী?
- ৯। বেশি মাত্রায় ধাতু ক্ষয় করার জন্য কোন দাঁতের ফাইল ব্যবহার করা হয়?
- ১০। রাফ ফাইলের প্রতি সেন্টিমিটার দৈর্ঘ্যে দাঁতের সংখ্যা কত?
- ১১। সিঙ্গেল কাট ফাইল কাকে বলে?
- ১২। ডাবল কাট ফাইল কাকে বলে?
- ১৩। নাইফ ফাইল দেখতে কেমন?
- ১৪। থ্রি স্কোয়ার ফাইল কাকে বলে?
- ১৫। ফ্লাট ফাইল কোথায় ব্যবহৃত হয়?
- ১৬। পিলার ফাইল কোথায় ব্যবহৃত হয়?
- ১৭। চাবির ঘাট কাটার জন্য কোন ফাইল ব্যবহার করা হয়?
- ১৮। রেস্প ফাইলের অপর নাম কী?
- ১৯। ড্রেড নাট ফাইলের অপর নাম কী?

मश्किख थन :

- ২০। ফাইল বলতে কী বোঝায়?
- ২১। ফাইলের প্রধান অংশগুলো কী কী?
- ২২। ফাইলের দাঁতগুলো কীরূপে তৈরি থাকে?

জেনারেল মেকানিক্স-১

- ২৩। স্মৃথ ফাইলের ব্যবহার দেখাও।
- ২৪। ফাইলের বিভিন্ন অংশের নাম লেখ।
- ২৫। ফাইলের শ্রেণিবিভাগ কর।
- ২৬। ফাইলের স্তর বলতে কী বোঝায়?
- ২৭। ফাইলের কাঁট বলতে কীবোঝায়?
- ২৮ ৷ ফাইলের সেফ এজ বলতে কী বোঝায়?
- ২৯। কর্মশালায় ব্যবহৃত পাঁচ আকৃতির ফাইলের নাম লেখ।
- ৩০। রাউন্ড ফাইলকে কী নামে এবং কেন ডাকে?
- ৩১। মিল ফাইলের কাজ কী?
- ৩২। চাবির ঘাট তৈরিতে কোন ফাইল ব্যবহার হয়?
- ৩৩। স্বর্ণকারদের কাজে কোন ধরনের ফাইল ব্যবহার করা হয়।
- ৩৪। ফ্রাট ফাইলের ব্যবহার লেখ।
- ৩৫। স্কয়ার ফাইলের ব্যবহার লেখ।
- ৩৬। ফাইলের ২টি যতু ও রক্ষাণাবেক্ষণ উল্লেখ কর।
- ৩৭। কীরূপে ফাইলের বিবরণ লেখা হয়?
- ৩৮। সচরাচর ব্যবহৃত ৫টি ফাইলের নাম লেখ।

রচনামূলক প্রশ্ন :

- ৩৯। একটি ফ্র্যাট ফাইলের চিত্র অঙ্কন করে এর বিভিন্ন অংশের নাম লেখ।
- ৪০। ফাইল সাধারণ কোন কোন আকৃতির হয়? প্রত্যেকটির সংক্ষিপ্ত বিবরণ দাও।
- ৪১। বিভিন্ন বিষয়ের ভিত্তিতে ফাইলের শ্রেণিবিভাগ লিপিবদ্ধ কর।
- ৪২। ফাইলের কাট কয় প্রকার হয়? প্রত্যেক প্রকারের জন্য নির্দিষ্ট কোণের পরিমাপ উল্লেখ কর।
- ৪৩। ফাইলের বিভিন্ন স্তরকে ক্রমানুসারে লেখ এবং এদের ব্যবহার উল্লেখ কর।
- 88। সেপ এজ ফাইল কাকে বলে? এই ফাইল ব্যবহারে সুবিধা উল্লেখ কর।
- ৪৫। ফাইলিং কাকে বলে? ফাইলিং কয় প্রকার ও কী কী?
- ৪৬। 'ড্র' ফাইলিং এবং স্টেইট ফাইলিং-এর মধ্যে পার্থক্য লেখ।
- ৪৭। ফাইলের ক্ষতি এড়ানোর জন্য কীভাবে এর যত্ন নেয়া উচিত।
- ৪৮। ফাইল ব্যবহার করার সময় সাধারণত কী কী ভাবে দুর্ঘটনা ঘটে?

অষ্ট্রম অখ্যার

ফাইলিং প্রক্রিয়া (Filing Process)

৮.১ কাইলিং (Filing) : ফাইল ঘারা কোনো বস্তুর উপরিভাগকে ক্ষয়্ন করার প্রণালিকে ফাইলিং বলা হয়। ফাইল সম্মুখ দিকে যাবার সময় কটে। ফাইল অগ্রসর হবার সময় ফাইলের সময়ুখ সারির দাঁতগুলি ধাতৃর মধ্যে প্রবেশ করে ক্ষুদ্র ক্ষুদ্র নালী তৈরি করে চলে এবং ঠিক পশ্চাতের দাঁতগুলি (কোনোভাবে কাটা থাকায়) অবলিট্ট উচ্চ লিরগুলিকে আড়ভাবে ক্ষয়্ম করে। ফলে স্থানটি সমতল হয়ে যায়। ফাইল করা বাহির থেকে সহজ বলেই মনে হয় কিয়্র কেবলমারে অভিজ্ঞ ব্যক্তিই সঠিকভাবে ফাইলিং করতে সক্ষম হয়। ফাইলিং করতে অপারেটরকে উভয়্ম পা ফাঁক করে সামনের দিকে সামান্য ঝুঁকে দৃঢ়ভাবে দাঁড়াতে হয়। ফাইল চালনা করার জন্য শরীরকে বেক্ষের সাথে প্রায় ৪৫ ডিগ্রী কোণে রেখে এবং বাম পা থেকে ডান পা প্রায় অর্থমিটার (বা দেড় ফুট) অগ্রসর করে দাঁড়াতে হয়।

পরে হাতলকে এক হাতে এবং অন্য হাতে মাথাকে ধরে ফাইলটিকে বস্তুর উপর রাখতে হয়। এরপর এক হাত ধারা চাপ এবং অন্য হাতে ফাইলকে ঠেলে সামনের দিকে ফাইলকে চালাতে হবে। ফাইলকে সামনে চালনা করার সময় অতিরিক্ত চাপ দিয়ে চালনা করা যাবে না। পিছনে ফেরত আসার সময় ফাইল কাটে না। তাই পশ্চাৎ দিকে টেনে আনার সময় চাপ দেয়া যাবে না। ফাইলিং করার জন্য ভাইসের 'জ' (Jaw) অপারেটরের কন্ই বরাবর উচুর হওয়া উচিত। ওয়ার্কপিসকে ভাইসের মধ্যে দৃঢ়ভাবে বাধতে হবে। ফাইলিং করার তলটি ভাইসের 'জ' (Jaw) এর যথাসম্ভব নিকটবর্তী হওয়া উচিত। অন্যথায় ওয়ার্কপিস কেঁপে শব্দ সৃষ্টি করবে।

চিত্র: ৮.২ : ফাইশিং এর সময় দাঁড়নোর নিরম

এবং তলের মসৃণতা ভালো হবে না। ফিনিশড ওয়ার্কপিসের উপর ফাইলিং করার জন্য ভাইসের 'জ' এর সাথে নরম 'জ' (Vice Clamp) ব্যবহার করে ওয়ার্কপিসকে বাধতে হবে। ফাইলিং এর জন্য কাটা হ্যাভলযুক্ত ফাইল কখনও ব্যবহার করা যাবে না। ফাইলিং-এর সময় মাঝে মাঝে ফাইল কার্ড ছারা ফাইল পরিছার করে নিতে হবে। কার্যরুক্ত অবস্থার ফাইলিং তাপ হাতে স্পর্শ করা যাবে না। কারণ এতে ফাইল ঠিকমতো কাটবে

৮.২ ফাইলিং পদ্ধতি (Filing Process) :

ফাইলিং পদ্ধতি নিমুলিখিত পাঁচ প্রকার হয়ে থাকে:

- (১) স্টেইট ফাইলিং (Straight Filing)
- (২) ভায়াগোনাল কাইলিং (Diagonal Filing)
- (৩) ক্রস ফাইলিং (Cross Filing)
- (৪) ড্ৰ কাইলিং (Draw Filing)
- (৫) রাউভ ফাইলিং (Round Filing)

৮.৩ ফাইলিং পদ্ধতির বর্ণনা (Description of Filing process) :

নিমে বিভিন্ন কাইলিং পদ্ধতির বর্ণনা প্রদন্ত হলো – ব্যেইট ফাইলিং (Straight Filing) : এই পদ্ধতিতে ফাইলকে সরলভাবে চালনা করতে হয়। কোনো ফিনিলিং তল বৃহৎ হলে বেলি দক্ষতা না থাকলে একে সহজে সমতল করা যার না। চাবির খাজ, সুট, প্রন্ত, গিয়ারের দাঁত, ছোট যত্রাংশ তৈরিতে ক্টেইট ফাইলিং পদ্ধতি সফলতার সাতে ব্যবস্তুত হয়।

ভারাগোনাল ফাইলিং (Diagonal Filing): চিত্র : ৮.৩ নে ফাইলকে ভাইনের সাথে কোণাকুণিভাবে চালনা করাকে ভায়ালোগনাল ফাইলিং বলে।

চিত্ৰ: ৮.৩ স্টেইট ফাইলিং

ফাইলের কাটিং এজ এবং ফাইল চালনার দিক সমকোণ হবার ফলে তুলনামূলকভাবে ভালো কাটে। বৃহৎ তল ফিনিশিং-এর ক্ষেত্রে খুবই উপযোগী।

ক্রেস ফাইলিং (Cross Filing): প্রথমে এক কোণ থেকে ভায়গোনাল ফাইলিং করে পরে পুনরায় অন্য কোণ থেকে ভায়গোনাল ফাইলিং করলে উহাকে ক্রেস ফাইলিং বলে। অর্থাৎ বার বার দিক পরিবর্তন করে ভায়গোনাল ফাইলিং করাকে ক্রন ফাইলিং বলে। ওয়ার্কপিসের নোংরা তল পরিষ্কার করতে, ধাতুকে শীঘ্র ক্ষয় করতে এবং তলকে সমতল করতে ক্রস ফাইলিং ব্যবহৃত হয়।

দ্র ফাইলিং (Draw Filing) : ফাইলকে প্রস্থের দিকে ধরে দৈর্য্য বরাবর ঠেলে এবং টেনে ফাইলিং করাকে দ্র ফাইলিং বলে। সাধারণ নিয়মে ফাইলিং করলে ধাতুখণ্ডের উপরিভাগে যে আঁচড়ের দাগ পড়ে একে একমুখী করে স্থানটিকে মসুণ করতে এই

চিত্ৰ: ৮.৫ ক্ৰস ফাইলিং

পদ্ধতি বিশেষ উপযোগী। কম প্রস্থ বিশিষ্ট উপরিভাগকে শীঘ্র ক্ষয় করতে এ প্রকার ফাইলিং করা হয়। সিঙ্গেল কাট স্মুথ ফাইল ড্র ফাইলিং করতে বেশি ব্যবহৃত হয়।

৮.৪ ফাইলিং পদ্ধতির প্রয়োগ ক্ষেত্র (Fields of Application of Filing process) :

স্ট্রেইট ফাইলিং চাবির খাঁজ, স্লুট, গ্রুভ, গিয়ারের দাঁত ছোট যন্ত্রাংশ তৈরিতে সফলতার সাথে ব্যবহৃত হয়। বৃহৎ তল ফিনিশিং এর ক্ষেত্রে ডায়াগোনাল ফাইলিং খুবই উপযোগী। কোনো ওয়ার্কপিসের নোংরা তল পরিষ্কার করতে, ধাতুকে শীঘ্র ক্ষয় করতে এবং তলকে সমতল করতে ক্রস ফাইলিং ব্যবহৃত হয়।

সাধারণ নিয়মে ফাইলিং করলে ধাতু খণ্ডের উপরিভাগে যে আঁচড়ের দাগ পড়ে একে একমুখী করে স্থানটিকে মসৃণ করতে ড্র ফাইলিং পদ্ধতি বিশেষ উপযোগী। কম প্রস্থ বিশিষ্ট উপরিভাগকে শীঘ্র ক্ষয় করতে এ প্রকার ফাইলিং করা হয়। সিঙ্গেল কাট স্মুথ ফাইল ড্র ফাইলিং করতে বেশি ব্যবহৃত হয়। ওয়ার্কপিসের বাহ্যিক কোণকে ফাইলিং করে গোলাকার করাই হলো রাউভ ফাইলিং এর কাজ।

৮.৫ ফাইলিং-এ সর্তকতা (Carefulness of Filing) :

- (১) হাতলবিহীন ফাইল বা হাতল যথাযথভাবে আটকানো না থাকলে ঐ ফাইল ব্যবহার করা অনুচিত। কারণ এতে ফাইলের ট্যাং অংশ ফাইলিং-এর সময় হাতে প্রবেশ করে হাতকে জখম করতে পারে।
- (২) ফাইলের দাঁতগুলির মধ্যে ধাতুচুর্ণ বদ্ধ হয়ে যাওয়া মাত্র একে বের করে ফেলতে হবে। নচেত ফাইল পিছলে গিয়ে হাতকে জখম করতে পারে। আবার এ কারণে জবের মসুণতা নষ্ট হয়।
- (৩) ফাইল দ্বারা কখনও কোনো আঘাত দিতে নেই। কারণ এতে ফাইল ভেঙ্গে গিয়ে দুর্ঘটনা ঘটাতে পারে।
- (৪) নতুন ফাইলকে কাস্ট আয়রন বা শক্ত স্টিলের ধাতুখণ্ড ঘষতে ব্যবহার করা যাবে না।
- (৫) ফাইলিং করার সময় ধাতুচ্র্লকে কখনও ফুঁ দেওয়া যাবে না। কারণ উড়ন্ত ধাতুচ্র্ল নিজের বা অন্যের চোখে পড়লে চোখের ক্ষতি হবে।
- (৬) তেল বা গ্রীজযুক্ত ফাইল ব্যবহার করা নিষেধ।
- (৭) ফাইলিং করার সময় সতর্ক থাকতে হবে যেন ফাইল ধাতুখণ্ডের পরিবর্তে ভাইসের 'জ'-কে ঘর্ষণ না করে।
- (৮) প্রয়োজনীয় কাজের জন্য সতর্কতার সাথে সঠিক ফাইল নির্বাচন করতে হবে। ভুল ফাইল নির্বাচনে ফাইল এবং ওয়ার্কপিসের তল উভয়ই ক্ষতিগ্রস্ত হয়।

প্রশ্নমালা-৮

অতি সংক্ষিপ্ত প্রশ্ন :

- ১। ফাইলিং की?
- ২। ফাইল কী কাজে নির্বাচন করা হয়?
- ৩। ফাইল নির্বাচনে বিবেচ্য বিষয় কী?
- ৪। ফাইল কোন দিকে যাবার সময় কাটে?

- ৫। ফাইলিং করতে অপারেটরকে কীভাবে দাঁড়াতে হয়?
- ৬। ফাইল করার সময় শরীরকে বেঞ্চের সাথে কত ডিগ্রী কোণে রেখে দাঁড়াতে হয়?
- ৭। ফাইল পরিষ্কার করতে কী টুলস ব্যবহৃত হয়?
- ৮। ফাইলিং পদ্ধতি কত প্রকার?
- ৯। ফাইলকে সরলভাবে চালনা করতে কোন পদ্ধতির ফাইলিং করা উচিত বলে মনে কর।
- ১০। ডায়াগোনাল ফাইলিং কী?

সংক্ষিপ্ত প্রশ্न :

- ১১। ফাইলিং প্রক্রিয়া বলতে কী বোঝায়?
- ১২। কীরূপ তল মসুণ করার জন্য ফাইল ব্যবহার করা হয়?
- ১৩। কীরূপ তল মসূণ করার জন্য মেশিন ব্যবহার করা উচিত?
- ১৪। ফাইল কীভাবে কর্তন করে?
- ১৫। ফাইলিং এর জন্য সঠিক দাঁড়ানো পদ্ধতি কী?
- ১৬। কোন ব্যক্তি সঠিক ফাইলিং করতে সক্ষম?
- ১৭। ফিনিশিড ওয়ার্কপিসের জন্য ওয়ার্কপিসকে কীভাবে বাধতে হয়?
- ১৮। ফাইলিং পদ্ধতি কী কী ভাগে ভাগ করা যায়?

রচনামূলক প্রশ্ন :

- ১৯। ফাইলিং বলতে কী বুঝায়? ফাইলিং এর প্রকারভেদ দেখাও।
- ২০। স্ট্রেইট ফাইলিং পদ্ধতির বর্ণনা দাও।
- ২১। ডায়গোনার ফাইলিং পদ্ধতির বর্ণনা দাও।
- ২২। ক্রস ফাইলিং পদ্ধতির বর্ণনা দাও।
- ২৩। জ্র-ফাইলিং পদ্ধতির বর্ণনা দাও।
- ২৪। ফাইলিং-এর প্রয়োগ ক্ষেত্র দেখাও।
- ২৫। ফাইলিং-এ কী কী সর্তকতা নেয়া হয় উল্লেখ কর।

নবম অধ্যায়

হ্যাক সয়িং প্রক্রিয়া

(Hack Sawing Processes)

হ্যাক সিয়ং (Hack Sawing) হলো এক ধরনের কাটিং প্রক্রিয়া যার মাধ্যমে কোনো ধাতব খণ্ডকে কর্তন বা বিদীর্ণ অথবা দিখণ্ডিত করা যায়। এক্ষেত্রে যে কাটিং টুল ব্যবহার করা হয় তা হ্যাকস (Hack Saw) নামে পরিচিত। অতএব হ্যাক'স ব্যবহার করে কোনো ধাতব পর্দাথকে কাটা বা দিখণ্ডিত করার প্রক্রিয়াকে হ্যাক সিয়ং (Hack Sawing) বলে। ধাতুর তৈরি কোন বস্তু যেমন পাইপ, রড, টিউব, প্রেট, বার (Bar) প্রভৃতি কাটার সহজ্ব ও সচরাচর ব্যবহৃত প্রক্রিয়ার নাম হ্যাক সিয়ং (Hack Sawing)

১.১ বিভিন্ন প্রকার ত্যাক'ল ক্রেম (Different types of Hack saw frame):

ধাতৃর তৈরি কোন বস্তু যেমন পাইপ, রড, টিউব ইত্যাদি কাটার সচরাচর বহুল ব্যবহৃত টুলস-এর নাম হ্যাক'স। মূলত এর দুটি প্রধান অংশ-

- ১) ক্রেম (framc)
- ২) ব্লেড (blade)

ক্রেমের সাথে ব্লেডকে সংযোগ করার প্রয়োজনীয় ব্যবস্থা থাকে । যখন ফ্রেমের সাথে ব্লেড সংযোগ ব্যবস্থা থকে, তখন একে হ্যাক'স বলা হয়।

হ্যাক 'স' ফ্রেমকে দুই শ্রেণিতে ভাগ করা যায়। যথা:

- (ক) আডজান্টেবৰ ফ্ৰেম (Adjustable frame)
- (খ) নিরেট বা সলিড ক্রেম (solid frame)

(ক) আডজাস্টেবল ক্রেম (Adjustable frame) : এ ধরনের হ্যাক'স ফ্রেমের দৈর্ঘ্য প্রয়োজন অনুসারে কম

বা বেশি করা যায়। এবং বিভিন্ন দৈর্ঘ্যের ব্লেড ব্যবহার করা যায়। দ্রেমের সাথে ব্লেড আটকানোর জন্য দুই প্রান্তের দুটো ক্লিপ আছে। এক প্রান্তের ক্লিপের সাথে উইং নাট থাকে যা ঘারা ব্লেডকে টাইট ও ঢিলা করা যায়। এ ধরনের ক্রেমে ৮ থেকে ১৬ বিশিষ্ট ব্লেড সংযোগ করা যায়।

(খ) নিরেট বা সলিড ক্রেম (Solid frame) : এ ধরনের হ্যাক'স ফ্রেমের দৈর্ঘ্য স্থির। অর্থাৎ পরিবর্তন করা যায় না। স্ভরাং কেবল যে কোনো একটি দৈর্ঘ্যের ব্লেড এতে সেট করা যায়। এই ধরনের কাঠামোর হ্যাক'স ক্রেম কদাচিৎ ব্যবহার করা হয়।

চিত্র: ৯.১ অ্যাডজাস্টেবল ফ্রেম

চিত্র: ৯.২ নিরেট বা সলিড ফ্রেম

৯.২ বিভিন্ন প্রকার হ্যাক'স ব্লেডের ব্যবহার (Uses of different types of Hack saw blade) :

হ্যাক'স ব্লেড সাধারণত: টুল স্টিল দ্বারা তৈরি হয়। তবে দ্রুত গতিতে কাজ করার জন্য হাই স্পিড স্টিল বা ট্যাংস্টেন স্টিল দ্বারা তৈরি হয়। অন্যান্য কাটিং টুলসের মতো একে হার্ড ও টেস্পার করা হয়ে থাকে। যেসব ব্লেডের সম্পূর্ণটায় হার্ড করা থাকে তাদের অল হার্ড (All Hard) ব্লেড, আর যে সব ব্লেড শুধুমাত্র দাঁতগুলো হার্ড থাকে সেগুলোকে ফ্রেক্সিবল ব্লেড বলা হয়। অলহার্ড ব্লেড দ্বারা স্টিল, ঢালাই লোহা, পিতল, ইত্যাদি শক্ত ধাতু কাটার জন্য এবং ফ্রেক্সিবল ব্লেড দ্বারা নরম ধাতু যেমন-তামা, রাং, অ্যালুমিনিয়াম ও হালকা ধাতব পাত ইত্যাদি কাটার জন্য ব্যবহার করা হয়।

ব্রেডের বিবরণ দিতে হলে নিমুলিখিত স্পেসিফিকেশনগুলো উল্লেখ করা একাম্ব প্রয়োজন :

দৈর্ঘ্য : ব্লেডকে ফ্রেমের সহিত আটকানোর জন্য ব্লেডের দই প্রাপ্তের দুটি ছিদ্র থাকে। ছিদ্র দুটির দূরত্ব দারা ব্লেডের দৈর্ঘ্য নির্দেশ করা হয়। সাধারণত ২০ সে.মি থেকে ৩৬ সে.মি দৈর্ঘ্য বিশিষ্ট হয়ে থাকে।

প্রস্থ ঃ এর প্রস্থ সাধারণত ১২ মি.মি. হয়ে থাকে।

পুরুত্ব (Thichkness) : ০.৬ মি.মি.ও ০.৮ মি.মি.পুরুত্ব বিশিষ্ট হয়ে থাকে।

দাঁতের পিচ (Pitch) : এক দাঁতের চূড়া থেকে অপর দাঁতের চূড়া পর্যন্ত মাপকে পিচ বলে।

i) হ্যাক'স ব্লেডের দাঁতের পিচ ১.৮ মি.মি বা ১.৪ মি.মি. বা ১.০০ মি.মি হয়।

হ্যাক'স ব্লেডের দাঁত গুলো পর্যায় ক্রমে ডানে ও বামে বাঁকানো থাকে। বাঁকানোর এ প্রক্রিয়াকে সেট বলা হয়। দাতগুলো যখন পর্যাক্রমে একটির পর একটি ডানে ও বামে বাঁকানো থাকে তখন রেগুলার অন্টারনেট (Regular alternate) সেট বলে। আবার দুটি করে দাঁত পর্যায়ক্রমে ডানে ও

চিত্র : ৯.২ হ্যাকস ব্লেডের দাঁতের পিচ ও দাঁতের সেট

বামে বাঁকানো থাকে তখন তাকে ভাবল অল্টারনেট (Double alternate) সেট বলে। দাঁতগুলো এভাবে সেট করার কারণেই কাটা

অংশের প্রস্থ ব্লেডের পুরুত্তের চেয়ে বেশি হয়। ফলে কাটা অংশের মধ্যে ব্লেড সহজেই চলাফেরা করতে পারে।

ii) ব্লেড নির্বাচন : সকল প্রকার কাজের জন্য সঠিক টুল নির্বাচন করা দক্ষতার পরিচায়ক। সুতরাং কাজের ধরণ, আকার, আকৃতি ও ধাতুর গুণাগুণ বিবেচনা করে ব্লেড নির্বাচন করা হয়। সাধারণত নরম ধাতু কোর্স ব্লেড

এবং শব্দ ধাতু হলে ফাইন ব্লেড ব্যবহার করার জন্য ফাইন টিথ (Teeth) স্থূল বা হেভি (Heavy), কাজের জন্য কোর্স (Course) ব্লেড ব্যবহার করা হয়। ধাতুর শ্রেণি বা বস্তুর আকারের উপর ভিত্তি

করে ব্লেড নির্বাচনের একটি তালিকা দেয়া হলো :

হ্যাক'স ব্লেডকে দাঁতের পিচ অনুযায়ী তিন ভাগে ভাগ করা যায়। যথা :

- ১) কোর্স টিখ ব্লেড (Coarse teeth blade) : যে ব্লেডে প্রতি মি.মি. বা প্রতি ইঞ্চিতে ১৪টি দাঁত থাকে তাকে কোর্স টিখ ব্লেড বলে।
- ২) মিডিয়াম টিথ ব্লেড (Mediun teeth blade) : যে ব্লেডে প্রতি ইঞ্চিতে ২৫ মিলিমিটারে ১৮টি দাঁত থাকে তাকে মিডিয়াম টিথ ব্লেড বলে।

ধাতুর শ্রেণি	দাঁতের পিচ (মি.মি.)	দাঁতের সংখ্যা (প্রতি ইঞ্চি)
মাইন্ড স্টিল, কাস্ট আয়রন ইত্যাদি	3.6	১৪ কোর্স টিথ ব্লেড
টুল স্টিল, হাই কার্বন স্টিল, হাই স্পিড স্টিল, ইত্যাদি	3.8	১৮ মিডিয়াম টিথ ব্লেড
অ্যাঙ্গেল আয়রন ব্রাস কপার, রট আয়রন পাইপ ইত্যাদি	5.0	২৪ টিথ ব্লেড
চিকন মাইন্ড স্টিল, অলৌহজাত ধাতু, পাতলা পাইপ পাতলা শীট ইত্যাদি।	۵.۵	৩২ ফাইন টিপ ব্লেড

৩) ফাইন টিথ ব্লেড (Fine teeth blade) ঃ যে ব্লেডে প্রতি ইঞ্চিতে বা প্রতি ২৫ মিলিমিটারে ৩২টি, দাঁত থাকে তাকে ফাইন টিথ ব্লেড বলে।

ধাতৃর প্রকার ও আকার অনুযায়ী যে রূপ দাঁতের ব্লেড ব্যবহার করতে হয় তা নিম্নে দেয়া হলো :

৯.৩ হ্যাক'স চালনার নিয়মাবলি (Prucedure of Hacksawing):

যে বস্তুটিকে দ্বিশণ্ডিত করতে হবে বা প্রয়োজনীয় পরিামণে কাটতে হবে, তাকে দৃঢ়ভাবে আবদ্ধ করতে হবে। প্রয়োজন হলে নিচে প্যাকিং দিয়ে বস্তুটি আবদ্ধ করতে হবে। পরে বাম পায় সোজা এবং ডান পায় ৪৫ ডিমি

কোণে রেখে এমন ভাবে দাঁড়াতে হবে ,
যাতে দেহের ওজন যেন পা দুটির উপর
সমানভাবে পড়ে। ফ্রেমটি লম্বভাবে এবং
বস্তুটির উপরি ভাগের সাথে তাকে প্রায় ৩০
ডিগ্রি কোণে সম্মুখদিকে নত করে হ্যাক সকে দু- চার বার চালনা করতে হবে। এ
প্রকার চালনা করতে করতে দাঁডগুলো যখন
ক্ষয় করে নিজ পথ অভিক্রম করে, তখন
হ্যাক'স-কে ভূমির সমাল্রাল অবস্থায় ধরে
স্বাভাবিক বেগে এবং চাপে চালনা করতে
হবে। ডান হাতে ঠেলা দিয়ে এবং বাম হাতে
ফ্রেমটিকে লম্বভাবে ধরে রাখতে হবে।

হ্যাক সন্নিং প্রক্রিয়া

ফাইলের ন্যায় হ্যাক স ব্লেড ও কেবল সম্মুখে দিকে চলার সময় ধাতু কাটে। সূতরাং সম্মুখ দিকে চলার সময় চাপ দিতে হয় । পিছনের দিকে আসার সময় চাপ দিতে হয় না। খণ্ড করা যখন শেষ হয়ে আসবে, তখন চাপ এবং চালনার হার কমাতে হবে।

৯.৪ হ্যাক'স চালানার সতর্কতা

সাধারণত দুটি অসতর্কতাজনিত কারণে হ্যাক'স ব্লেড ভেঙে যায়-

- ১। ক্রটিপূর্ণ ব্লেডের নির্বাচন এবং
- ২। হ্যাক'স ত্রুটি পূর্ণভাবে চালনা।

ক্রটিপূর্ণ ব্লেডের কারণে :

- ১। অধিক হার্ডনেসযুক্ত ব্লেড ভঙ্গুর হয় এবং এ ব্লেড ব্যবহারের সময় সামান্য বাঁকা হলে ভেঙ্গে যায়।
- ২। ব্লেডের দু'দিকে অবস্থিত সঠিকভাবে চ্যানেলিং করা না থাকেলে ব্লেড ভেঙ্গে যেতে পারে।
- ৩। সেটিংস সঠিক না হলে বা কম হলে ব্লেড চালার সময় ব্লেড আটকে গিয়ে ভেঙ্গে যেতে পারে। হ্যাক'স ক্রটিপূর্ণভাবে চালনা ও ব্যবহারের কারণ:
 - ১। ফ্রেমের সাথে ব্লেড ঢিলা বা টাইটভাবে বাধা হলে।
 - ২। সয়িং-এর সময় পরিমিত চাপের অধিক চাপ দিলে।
 - ৩। পাতলা ধাতুর ক্ষেত্রে অধিক পিচ বিশিষ্ট দাঁত ব্যবহার করলে।
 - ৪। যে বস্তুকে দ্বিখণ্ডিত করতে হবে তাকে ভাইসের সঙ্গে না আটকালে বস্তু স্থানচ্যুত হয়ে ব্লেড ভেঙ্গে যেতে পারে।
 - ৫। প্রথমে সোজাভাবে কেটে পরে বাঁকা করে কাটার চেষ্টা করলে।
 - ৬। পুরনো ব্লেড-এর দ্বারা অসম্পূর্ণ কাটা স্থানে নতুন ব্লেড দ্বারা কাটার চেষ্টা করলে।
 - ৭। কাটার শেষ পর্যায়ে হাতের চাপ না কমালে।

হ্যাক'স ব্যবহারের সময় যে সব দুর্ঘটনা ঘটে তাদের মধ্যে ব্লেড ভেঙ্গে কারিগরের হাত জখম হওয়া প্রধান । সূতরাং ব্লেড ভাঙ্গা থেকে সব সময় সাবধান থাকতে হবে। হ্যাক'স ব্লেড অধিক চাপ ও তাপে যাতে সহজেই ভোঁতা বা ভেঙ্গে না হয়ে যায় এর জন্য কাটার সময় পরিমাণমত পানি বা Cutting compound প্রয়োগ করা উচিত। হ্যাক'স চালনা করার সময় কখনো পিচ্ছিল কারক পদার্থ ব্যবহার করা উচিত নয়। প্রয়শই ফ্রেম অংশে মরিচা পড়তে দেখা যায়। সূতরাং ফ্রেম অংশে মরিচা রোধক পর্দাথ দিয়ে যথাস্থানে দেয়ালে ঝুলিয়ে রাখা উচিত। স'-এর দাঁতে বা বভিতে যাতে মরিচা না ধরে সেজন্য কাজের পর তেল বা গ্রীজ দিয়ে রাখা উচিত কিন্তু ব্যবহারের সময় এগুলো মুছে নিতে হবে।

প্রশ্নমালা-৯

অতি সংশিশু প্রশ্ন :

- ১। হ্যাকসয়িং কী?
- ২। হ্যাক্স কাকে বলে?
- ৩। হ্যাকস-এর বিচরণ কোথায়?
- ৪। হ্যাকস-এর প্রধান অংশ কয়টি?
- ৫। হ্যাকস ফ্রেম কত প্রকার?
- ৬। কোন হ্যাকস ফ্রেমের দৈর্ঘ্য স্থির?
- ৭। হ্যাকস ব্লেড সচরাচর কোন ধাতু দিয়ে তৈরি?
- ৮। সেট কাকে বলে?

সংক্ষিপ্ত প্রশ্ন :

- ১০। হ্যাক'সয়িং বলতে কী বোঝায়?
- ১১। ত্যাক'স এর তিনটি প্রয়োগ দেখাও।
- ১২। হ্যাক'স এর দুটি প্রধান অংশের নাম কী?
- ১৩। হ্যাক'স বলতে কী বুঝায়?
- ১৪। হ্যাক'স ফ্রেম প্রধানত কত প্রকার ও কী কী?
- ১৫। অ্যাডজাস্টেবল হ্যাক'স ফ্রেম ব্যবহারের সুবিধা কী?
- ১৬। অ্যাডজাস্টেবল হ্যাক'স ফ্রেম ও সলিড হ্যাক'স ফ্রেমের মধ্যে পার্থক্য কী?
- ১৭। হ্যাক'স ব্লেডের বিবরণ দিতে কী কী জিনিস উল্লেখ করা হয়?
- ১৮। দাঁতের পিচ অনুযায়ী হ্যাক'স ব্লেড কত প্রকার ও কী কী?
- ১৯। অ্যাডজ্যাস্টেবল হ্যাক'স ফ্রেম সম্পর্কে সংক্ষেপে বিবৃত কর।
- ২০। হ্যাক'স চালনার সাবধানতা সম্পর্কে সংক্ষেপে লেখ।

রচনামূলক প্রশ্ন :

- २১। शाक'मग्निः প্रक्रिय़ा वलरा की वूबाय व्याधा कत।
- ২২। হ্যাক সয়িং-এর প্রয়োগ ক্ষেত্রের বর্ণনা দাও।
- ২৩। হ্যাক'স ফ্রেম কত প্রকার ও কী কী? বর্ণনা দাও।
- ২৪। একটি হ্যাক'স ব্লেডের বিবরণ দিতে হলে কী কী বিষয়ের উল্লেখ করতে হয়-ব্যাখ্যা কর।
- ২৫। হ্যাক'স ব্লেড কত প্রকার ও কী কী? বর্ণনা দাও।
- ২৬। হ্যাক'স-এর ব্যবহার পদ্ধতির সংক্ষিপ্ত বিবরণ দাও।
- ২৭। হ্যাক'স চালনার নিয়মবলি উল্লেখ কর।
- ২৮। বিভিন্ন প্রকার হ্যাক'স-এর বিবরণ দাও।
- ২৯। সলিড হ্যাক'স ও অ্যাডজাস্টেবল হ্যাক'স মধ্যে তুলনামূলক বিবরণ দাও।
- ৩০। হ্যাক'স ব্লেড ভাঙ্গার কারণ বিবৃত কর।
- ৩১। কয়েকটি বিশেষ ধরনের হ্যাক'স-এর বর্ণনা দাও।

দশম অধ্যায়

পাওয়ার হ্যাক সয়িং

(Power Hack Sawing)

১০.১ হ্যাক'স মেশিনের প্রধান অংশ, কড্রোল ও সেটিং (Main parts, controls and setting of power Hack saw):

পাওয়ার হ্যাক'স মেশিনের প্রধান অংশসমূহ হলো –

- ১) র্যাশ (Ram)
- ২) স্ক্রেম (Frame)
- ৩) মোটর (Motor)
- 8) ভাইস (Vise)
- ৫) বেল্ট গার্ড (Belt guard)
- ৬) ব্লেছ (Blade)
- ৭) ক্র্যাক ডিক নেকানিজম (Crask disk Mechanism)
- ৮) কুল্যান্ট সিস্টেম (Coolant system)

চিত্র: ১০.১ পাওয়ার হ্যাক'লের বিভিন্ন অংশ

উক্ত প্রধান অংশসমূহের ব্যবহার নিম্নে সংক্ষেপে আলোচনা করা হলো :

মোটর (Motor) : এটি মেশিনের একমাত্র শক্তি উৎপাদনকারী ও সরবরাহকারী অংশ। মোটরের সাহায্যে বৈদ্যুতিক শক্তি যাত্রিক শক্তিতে রূপান্তরিত হয়। সুইচ অন করলে মোটর ঘোরে এবং এটা বেপ্টের মাধ্যমে ক্র্যাক ডিক্ত মেকানিজমকে চালার, যার ঘারা মোটরের ঘূর্ণন গতি ফ্রেমের নরল গতিতে পরিণত হয়। মোট
সংযুক্ত বোল্টের মাধ্যমে কুল্যান্ট পাম্পকেও চালায়।

র্যাম (Ram) : র্যাম ফ্রেমকে ধরে রাখে এবং সরলপথে চলাচলের জন্য সাহায্য করে।

ক্রেম (Frame) : ক্রেম বেডকে ধারণ করে থাকে এবং বেডকে ধাতু কাটার গতি দেয়।

ভাইস (Vise): বস্তু ও ওয়ার্কপিসকে কাটার জন্য ভাইস দৃঢ় ভাবে ধরে রাখে।

বেল্ট গার্ছ (Belt guard) : বেল্ট গার্ড বেডকে ঢেকে রেখে এবং অপারেটরকে বিগদ থেকে রক্ষা করে।

ব্রেড (Blade) : ব্রেড পরিবর্তনশীল এবং পাওয়ার হ্যাক'সরের একমাত্র অংশ যা দারা কোনো বস্তু বা ওয়ার্কপিসকে কাটা হয়।

Norrie

Valva

Tank

Coctant

Delivery tube

চিত্র: ১০.২ কুল্যান্ট সিস্টেম

Pump

ক্রান্থ ডিস্ক মেকানিজম (Crask disk Mechanisn) :

এটা ডিস্ক এবং ক্র্যান্কের সমন্বরে গঠিত। ক্র্যান্ক ফ্রেম এবং ডিক্কের মধ্যে সংযোগ করে। এ মেকানিজমের মাধ্যমে মোটরের ঘূর্ণন গতি ফ্রেমের অর্থ-পশ্চাৎ পরিণত করে।

কুল্যান্ট সিস্টেম (Coolant system) : এটা কুল্যান্ট, ট্যাঙ্ক, ভাৰ, ডেলিভারি টিউব এবং নজেলের সমন্বয়ে গঠিত। বেড এবং কার্যবস্তুর সংযোগস্থলের উপর কুল্যান্ট সরবরাহ করতে এই সিস্টমে ব্যবহৃত হয়। এটা বেড এবং কার্যবস্তুকে ঠাজা রাখে এবং চিপ দ্রীভূত করে। পাওয়ার হ্যাক'স মেশিনের কন্ট্রোলসমূহের নাম নিম্নে লিপিবদ্ধ করা হলো।

- ১) মেশিন সুইচ (Machine Switch)
- ২) ব্লেড টেনশনিং নাট (Blade tensioning nut)
- ৩) প্রেসার কন্ট্রোল লিভার (Pressure control lever)
- 8) ম্যানুভারিং লিভার (Manoeuvring lever)
- ৫) লিমিট সুইচ (limit Switch)
- ৬) ফীড কন্ট্রোল লিভার (Feed control lever)

উল্লিখিত কন্ট্রোলসমূহের ব্যবহার নিম্নে সংক্ষেপে আলোচনা করা হলো।

মেশিন সুইচ (Machine Switch) : মেশিন সুইচ পাওয়ার হ্যাক'সতে বিদ্যুৎশক্তি সরবরাহ নিয়ন্ত্রণ করতে ব্যবহৃত হয়। এই সুইচের সাহায্যে মেশিনকে চালানো বা থামানো হয়।

ব্রেছ টেনশনিং নাট (Blade tensioning nut):
পাওয়ার হ্যাক'স ব্রেডকে প্রথমে পিন এবং ক্কুর
সাহায্যে ক্রেমের সাথে আটকিয়ে নিতে হয়। এতে
ব্রেডটি টিলা থাকে। কিন্তু ধাতু কাটার জন্য বেডকে
একটি নির্দিষ্ট টেনশনে আবদ্ধ করতে হয়। ব্রেডের
এই টেনশন নিয়ন্ত্রণ করতে ব্লেড টেনশনিং নাট
ব্যবহৃত হয়।

চিত্র: ১০.৩ ক্রাঙ্ক ডিক্ষ মেকানিজম

প্রেসার কন্ট্রোল লিন্ডার (Pressure control lever) : ধাতু খন্তকে কাটতে একটি নির্দিষ্ট চাপে ব্লেডকে সামনের দিকে চালাতে হয়। র্যাম স্থ্রেমের সাহায্যে ব্লেডের উপর এই চাপ প্রয়োগ করে। র্যামের উপর হাইড্রেলিক চাপ নিয়ন্ত্রণ করতে প্রেসার কন্ট্রোল লিভার ব্যবহৃত হয়।

ম্যানুভারিং শিভার (Manoveuring lever) : এই শিভারটির সাহাব্যে র্যামের উর্ধ্ব গতি এবং নিমুগতি নিয়ন্ত্রণ করা হয়। র্যামকে উপরে উঠাবার জন্য শিভারটিকে উপরের অবস্থানের সেট করতে হয় এবং নিচের দিকে নামাবার জন্য নিচের অবস্থানে সেট করতে হয়।

লিমিট সূইচ (limit Switch) : নির্দিষ্ট উচ্চতা পর্যন্ত র্যামের উর্ধ্ব গতি নিয়ন্ত্রণ করতে লিমিট সূইচ ব্যবহৃত হয়। সুইচের উর্ধ্বগতির সীমা পরিবর্তন করতে হলে সুইচ সমেত কলারটির অবস্থান পরিবর্তন করতে হয়।

ক্ষীড কট্রোল লিভার (Feed control lever) : একাধিক স্পীড বিশিষ্ট পাওয়ার হ্যাক'সগুলিতে ফীড কট্রোল লিভার থাকে। এই লিভারটি ফীড পরিবর্তন করতে বা প্রতি মিনিটে কাটিং স্টোকের সংখ্যা পরিবর্তন করতে ব্যবহৃত হয়।

পাওয়ার হ্যাক'স-এর সেটিংগুলির নাম নিমে উলে-খ করা হলো।

- ১) ব্লেড সেটিং (Blade setting)
- ২) ম্যাটিরিয়াল স্ট্যান্ড সেটিং (Material Stand setting)
- ৩) আ্যাডজাস্টেবল স্টপ সেটিং (Adjustable Stop Setting)
- 8) কুল্যান্ট সিস্টেম সেটিং (Coolant system setting)

উল্লেখিত ব্লেড সেটিংসমূহ সম্পর্কে নিম্নে সংক্ষেপে আলোচনা করা হলো।

ব্লেড সেটিং (Blade setting) :

কাজ অনুযায়ী নির্দিষ্ট সংখ্যক দাঁতের ব্লেড নির্বাচন করতে হয়। ফ্রেমে বাঁধার জন্য ব্লেডের প্রান্তের ছিদ্র থাকে। কাটার দিক বরাবর ব্লেডের দাঁতের দিক স্থির করে প্রথমে ব্লেডকে ক্র্ এবং পিনের সাহায্যে ফ্রেমে সেট করে নিতে হয়। অতঃপর ব্লেড টোনশনিং নাটের সাহায্যে ব্লেডকে টাইট দিতে হয়। ব্লেড অতিরিক্ত টাইট বা ঢিলা থাকা কোনোটাই বাঞ্চনীয় নয়।

ম্যাটিরিয়াল স্ট্যান্ড সেটিং (Material Stand Setting) :

পাওয়ার হ্যাক'স মেশিনের ভাইরাসের দৈর্ঘ্য বিভিন্ন মাপের হয়। ভাইরাসের দৈর্ঘ্যের তুলনায় ওয়ার্ক পিসের দৈর্ঘ্য বেশি হলে এর মুক্ত প্রান্ত ঝুলে থাকে। ঝুলন্ত অংশের দৈর্ঘ্য যত বেশি হয় ভাইরাসের উপর কার্যবন্তর চাপ তত বাড়ে। এই অতিরিক্ত চাপ থেকে ভাইরাসকে মুক্ত রাখতে হলে কার্যবন্তর খোলা প্রান্তে সাপোর্ট দিতে হয়। ম্যাটিরিয়াল স্ট্যান্ত এই সাপোর্টের কাজ করে অর্থাৎ কার্যবন্তর মুক্ত বা ঝুলন্ত প্রান্তকে ম্যাটিরিয়াল স্ট্যান্ত এর মাধ্যমে সাপোর্ট দেওয়া হয়। ম্যাটিরিয়াল স্ট্যান্তকে এমন উচ্চতায় সেট করতে হয়। যাতে ওয়ার্কপিস ভাইসের বেজ সারফেসের সাথে সমান্তরাল থাকে।

আ্যাডজাস্টেবল স্টপ সেটিং (Adjustable Stop Setting) :

সম দৈর্ঘ্য বিশিষ্ট অনেকসংখ্যক ওয়ার্ক পিস কাটতে অ্যাডজাস্টেবল স্টপ ব্যবহৃত হয়। যে নির্দিষ্ট দৈর্ঘ্য ওয়ার্ক পিস কাটতে হবে, তার সাথে সম্পর্ক রেখে অ্যাডজাস্টেবল স্টপকে সেট করতে হয়। ফলে ওয়ার্ক পিস কাটতে বার বার পরীক্ষা করার প্রয়োজন হয় না।

কুল্যান্ট সিস্টেম সেটিং (Coolant system setting): পাওয়ার হ্যাক'স মেশিনে কুল্যান্ট সিস্টেম সংযুক্ত থাকে ধাতু কাটার সর্বচ্চ অনুকূল পরিবেশ পাবার জন্য ধাতু কাটার স্থানে ব্রেডের উপর যথেষ্ট পরিমাণে কুল্যান্ট দিতে হয়। কুল্যান্টের পরিমাণ ও অবস্থান সেট করে নিতে হয়। কুল্যান্ট তাপ কমায়, ওয়ার্ক পিস ও ব্লেডকে ঠাণ্ডা রাখে এবং চিপ দূরীভূত করে।

১০.২ পাওয়ার হ্যাক'স ব্লেডের ব্যবহার (Use of Power Hacksaw blade) :

সাধারণত পাওয়ার হ্যাক'স ব্লেডগুলি টুল স্টিল, লো-অ্যালয় স্টিল বা হাই স্পিড স্টিলের তৈরি হয়। সঠিক বে-ড নির্বাচনের উপর কাজের শুণগত মান অনেকাংশে নির্ভর করে। ব্লেড নির্বাচনের ক্ষেত্রে ব্লেডের দৈর্ঘ্য (২) পুরুত্ব (৩) প্রস্থ (৪) দাঁতের পিচ ও (৫) কি ধাতুর তৈরি বিবেচনা করতে হয়। বেডের দৈর্ঘ্য ১২ ইঞ্চি থেকে ৪০ ইঞ্চি বা ৩০০ মি.মি. থেকে ১০০ মি.মি. পর্যন্ত প্রস্থ ৩২ মি.মি. থেকে ১২৬ মি.মি. পর্যন্ত এবং পুরুত্ব ১.৬

মি.মি. থেকে ৩.৫ মি.মি. পর্যন্ত হয়। প্রতি ইঞ্চিতে দাঁতের সংখ্যা ৪ থেকে ১৪ পর্যন্ত বা পিচ ১.৮ মি.মি. থেকে ৬.৩ মি.মি. পর্যন্ত হয়। বড় মাপের ব্লেডে কম সংখ্যক এবং ছোট মাপের ব্লেডে বেশি সংখ্যক দাঁত থাকে। আর এক প্রকারের ব্লেড আছে য়ার দাঁতের হাই স্পিড স্টিলের তৈরি এবং কাম দামের স্টিলের সাথে ওয়েভিং করে জোড়া দেওয়া থাকে। এ ধরনের ব্লেড ব্যবহারের সুবিধা হলো এই ব্লেড সহজে ভাঙ্গে না। এবং দ্রুতগতিতে ধাতু কাটা য়য়। সাধারণ নিয়মে শক্ত ধাতু পাতলা য়ল্রাংশ/ শীট কাটতে কম পিচ বিশিষ্ট হ্যাক'স ব্লেড এবং নরম ধাতু কাটতে বেশি পিচ বিশিষ্ট ব্লেড ব্যবহৃত হয়। নিয়ে ব্লেড নির্বাচনের একটি তালিকা দেওয়া হলো।

<i>রে</i> ডের টি. পি. আই	কটিবার জন্য ধাতৃ	
৪-৬ টি. পি. আই	হেভি এবং নমনীয় (অ্যালুমিনিয়াম, তামা, নরম. স্টিল ইত্যাদি)	
৮-১০ টি.পি.আই	শক্ত ও ভঙ্গুর (টুল,স্টিল, কাস্ট আয়রন ইত্যাদি)	
১৪ টি.পি.আই	পাতলা দল বিশিষ্ট (পাইপ, টিউব ইত্যাদি)	

১০.৫ কর্তনের গতি এবং কর্তনের চাপ (Cutting Speed and feeding pressure) :

প্রধানত পাওয়ার হ্যাক'স দুই প্রকার পদ্ধতি বিশিষ্ট হয়, শুদ্ধ কাটিং (Dry Cutting) ও ভেজা কাটিং (Wet cutting) শুদ্ধ পদ্ধতিতে কাজের স্পিড ও ফিড ভেজা পদ্ধতির তুলনায় কম দিতে হয়। ভেজা পদ্ধতিতে কাটিং ফুইড বা কুল্যান্ট ব্যবহৃত হয়। ফলে অধিক দ্রুততর গতিতে ধাতৃ খণ্ডকে কাটা য়ায়। এবং ব্লেডও দীর্ঘ স্থায়ী হয়। এই মেশিনের প্রতি মিনিটে স্ট্রোক সংখ্যা ৩৫ থেকে ১৫০ পর্যন্ত হয়ে থাকে। স্ট্রোক দৈর্ঘ্য বলতে বুঝায় ফ্রেম বা ব্লেড যে দূরত্বের মধ্যে আসা-যাওয়া করে। অর্থাৎ ফ্রেমের উপর একটি বিন্দু চিহ্নিত করে দিলে মেশিন চালু অবস্থায় ঐ বিন্দু সর্বাধিক যে দূরত্বে আসা যাওয়া করে তাহলো স্ট্রোকের দৈর্ঘ্য। এর মধ্যে যখন ধাতৃ কাটে, তাকে বলে কাটিং স্ট্রোক এবং যখন ফিরে আসে তখন তাকে বলা হয় রিটার্ন স্ট্রোক। কাটিং স্ট্রোক ও রিটার্ন স্ট্রোক মিলে হয় একটি সম্পূর্ণ স্ট্রোক। সম্পূর্ণ স্ট্রোক সংখ্যা দ্বারা প্রতি মিনিট স্ট্রোক সংখ্যা হিসেব করা হয়। নিম্নে বিভিন্ন ধাতুর জন্য শুদ্ধ এবং ভেজা কাটিং-এ স্ট্রোক সংখ্যক প্রতি মিনিট হিসেবে দেখানো হলো।

ধাতৃর নাম	স্ট্রোক সংখ্যা/মিনিট (শুক্ক কাটিং)	স্ট্রোক সংখ্যা/মিনিট (ভেজা কাটিং)
লো-কার্বন স্টিল	৬০-৯০	80-250
মিডিয়াম-কার্বন স্টিল	40	80-750
হা্ই-কার্বন স্টিল	40	80
হাইস্পিড স্টিল, অ্যালয় স্টিল	40	80
কাস্ট আয়রন	⊌ 0− % 0	গুৰু কাটা হয়।
ব্রাস	ಾಂ	80-250
ব্ৰোঞ্জ ৬০	৬০	30
অ্যালুমিনিয়াম	bo	250

ফিড বলতে বুঝায় একবার কাটিং স্ট্রোকে ব্লেড ধাতুর মধ্যে কতটুকু প্রবেশ করে অর্থাৎ দুটি কাটিং স্ট্রোক ধাতৃ কাটার গভীরতার পার্থক্যকে ফীড বলা হয়। এই ফীড পাওয়ার জন্য ব্লেডের উপর চাপ প্রয়োগের জন্য প্রয়োজন হয়। এটাকে ফীডিং প্রেসার (Feeding Pressure) বা কর্তনের চাপ বলা হয়। এজন্য বড় বস্তুর ক্ষেত্রে বেশি ফীডিং প্রেসার দিতে হয়। পুরাতন ব্লেডের ক্ষেত্রের নতুর ব্লেডের তুলনায় বেশি প্রেসার লাগে। ফিড কন্ট্রোল লিভারের সাহায্যে এই ফিডিং প্রেসার নিয়ন্ত্রণ করা হয়।

১০.৪ পাওয়ার হ্যাক সয়িং-এর সতর্কতা (Carefulness of Power Hack sawing) :

- মেশিন চালনার পূর্বে কার্যবস্তু থেকে ব্লেডের দুরত্ব এবং অন্যান্য লিভারের অবস্থান নিরাপদ স্থানে আছে।
 এ ব্যপারে নিশ্চিত হয়ে মেশিনের সুইচ অন করতে হবে।
- ২) অপারেশন শুরু করার পূর্বে মেশিনের সকল কন্ট্রোল এবং সেটিং পরীক্ষা করে দেখতে হবে সঠিকভাবে আছে কি না।
- ৩) প্রেসার কন্ট্রোল লিভারের নিয়ন্ত্রণ সঠিকভাবে করতে হবে। অত্যাধিক চাপ প্রয়োগে ব্লেড ভাঙার সম্ভাবনা থাকে।
- ৪) সতর্কতার সাথে প্রয়োজনীয় কাজের জন্য সঠিক ব্লেড নির্বাচন করতে হবে। সব সময় একটি ব্লেড দিয়ে সব ধরনের সব আকারের সব ধাতু কাটা অনুচিত।
- ৫) ব্লেডের দিক সঠিকভাবে নির্বাচন করে ব্লেড সেট করতে হবে। নির্মাতা কর্তৃক নিদের্শিত দিক অথবা মেশিনের কাটিং স্ট্রোক কোন দিকে হয় তা দেখে ব্লেডের দিক নির্ণয় করতে হবে।
- ৬) কাটা শুরু করার সময় ব্লেড যেন হঠাৎ গিয়ে অধিক চাপে কার্যবস্তুর উপর না পরে সে ব্যাপারে সর্তক থাকতে হবে।
- কার্যবস্তুকে কাটার পর বস্তুর খণ্ডাংশ যেন পড়ে গিয়ে দুর্ঘটনা ঘটাতে না পারে সে ব্যপারে সর্তক থাকতে হবে।
- কাজ শেষ হয়ে গেলে র্যামকে সর্বনিমু অবস্থানে রেখে মোটর বন্ধ করে দিতে হবে এবং মেশিন পরিষ্কার করে রাখতে হবে।

প্রশ্নমালা-১০

অতি সংক্ষিপ্ত প্রশ্ন :

- ১। পাওয়ার হ্যাক'সয়িং কাকে বলে?
- ২। পাওয়ার হ্যাক'স মেশিনের র্যাম বা ফ্রেম কিসের মাধ্যমে চালিত হয়?
- ৩। পাওয়ার হ্যাক'স দ্বারা সর্বোচ্চ কত সে.মি. ব্যাসবিশিষ্ট রাউন্ড বার কাটা যায়?
- ৪। পাওয়ার হ্যাক'স মেশিন শক্তি উৎপাদন ও সরবরাহকারী প্রধান অংশের নাম কি?
- ৫। বৈদ্যুতিক শক্তি কার সাহায্যে যান্ত্রিক শক্তিকে রূপান্তরিত হয়?

- ৬। ব্যাম কোন পার্টসকে ধরে রাখে?
- ৭। ফ্রেম কী ধারণ করে?
- ৮। কাটার বস্তু বা ওয়ার্কপিসকে কে ধরে রাখে?
- ৯। কোন মেকানিজমের মাধ্যমে মোটরের ঘূর্ণন গতি ফ্রেমের অগ্রপন্টাৎ গতিতে পরিণত হয়?
- ১০। ব্রেডের টেনশন কোন নাটের সাহায্যে নিয়ন্ত্রণ করা হয়?

गशक्तिक श्रम :

- ১১। পাওয়ার হ্যাক'সয়িং বলতে কী
- ১২। পাওয়ার হ্যাক'সয়িং এর ২টি প্রয়োগ ক্ষেত্রের নাম কর।
- ১৩। পাওয়ার হ্যাক'স মেশিনের ৩টি প্রধান অংশের নাম লেখ।
- ১৪। ক্র্যান্ক ডিস্ক মেকানিজমের প্রয়োজনীয়তা কী?
- ১৫। পাওয়ার হ্যাক'স মেশিনের ৩টি কন্ট্রোল সমূহের নাম লেখ।
- ১৬। ব্লেড টেনশনিং নাটের কাজ কী?
- ১৭। প্রেসার কন্ট্রোল লিভারের ব্যবহার লেখ।
- ১৮। ম্যানুভারিং লিভার-এর ব্যবহার দেখাও।
- ১৯। পাওয়ার হাাক'স ব্লেডগুলোর কোন ধাতুর তৈরি?

রচনামূলক প্রশ্ন :

- ২০। পাওয়ার হ্যাক'সয়িং বলতে কী বুঝায়? পাওয়ার হ্যাকসয়িং সুবিধা কী?
- ২১। পাওয়ার ত্যাক'স মেশিনের প্রয়োগক্ষেত্র উল্লেখ কর।
- ২২। পাওয়ার হ্যাক'স মেশিনের প্রধান অংশসমূহের নাম লেখ এবং যে কোনো দুইটি অংশের ব্যবহার উল্লেখ কর।
- ২৩। পাওয়ার হ্যাক'স মেশিনের কন্ট্রোল ও সেটিংসমূহের নাম লেখ।
- ২৪। পাওয়ার হ্যাক'স মেশিনের ৪ (চার) টি কন্ট্রোলের ব্যবহার লেখ।
- ২৫। ব্লেড নির্বাচনের জন্য ব্লেডের কী কী বিষয় বিবেচনা করতে হয় লেখ।
- ২৬। নাম্বার অফ স্ট্রোক বলতে কী বুঝায় উল্লেখ কর।
- ২৭। ফীড বলতে কী বুঝায় এবং ফীড কী কী বিষয়ের উপর নির্ভরশীল?
- ২৮। পাওয়ার হ্যাক সয়িং-এর ক্ষেত্রে প্রযোজ্য ৪ (চার)টি সতর্কতার বিষয় উল্লেখ কর।
- ২৯। ব্রেড ভাঙ্গার জন্য ৪ (চার)টি সম্ভাব্য কারণ উল্লেখ কর।

একাদশ অধ্যায়

হাতুড়ি (Hammer)

১১.১ হাতুড়ি (Hammer) :

হাতুড়ি অন্যতম প্রাচীন স্টাইকিং টুল। সভ্যতার উষালগ্ন থেকেই হাতুড়ির ব্যবহার চলে আসছে এবং ক্রমোনুতি হয়ে আজও হাতুড়ির বহুবিধ ব্যবহার হচ্ছে ব্যাপকভাবে। মূলত যে টুলের সাহয্যে আঘাত করে রকমারি কাজ সম্পূর্ণ হয় তাই হাতুড়ি বা হ্যামার নামে পরিচিত। এমন কোনো ওয়ার্কশপ কিংবা শিল্পকারখানা নেই যেখানে হাতুড়ির উপস্থিতি নেই।

১১.২ হাতুড়ির বিভিন্ন অংশ (Different parts of a Hammer) :

একটি হাতুড়ি যে যে অংশ নিয়ে গঠিত তা হলো -

- ১) হ্যাভেল (Handle)
- ২) বলপীন (Ballpeen)
- ৩) ওয়েজ (Wedyes)
- 8) (P) (Neck)
- ৫) পোল (Poll)
- ৬) চীক ফেস (Cheek face)

চিত্র : ১১.১ : হাতুড়ির বিভিন্ন অংশ

১১.৩ হাতুড়ির শ্রেণিবিভাগ (Classification of Hammer) :

কাজের ধরনের উপর ভিত্তি করে হাতুড়িকে নিমুলিখিত কয়েকটি শ্রেণিতে ভাগ করা যায় :-

- ক) প্রকৌশলী হাতৃড়ি (Engineers Hammer)
- খ) নরম হাতুড়ি (Soft Hammer)
- গ) রিভেটিং হাতৃড়ি (Riveting Hammer)
- ঘ) গ্লেজ হাতুড়ি (Sledge Hammer)

প্রকৌশলী হাতৃড়ি (Engineers Hammer): শিল্পকারখানার বেশিরভাগ কাজে এই প্রকার হাতৃড়িই ব্যবহৃত হয়ে থাকে। ৬% কার্বন বিশিষ্ট স্টিল থেকে ফেজিং পদ্ধতিতে এটা তৈরি করা হয়ে থাকে। সাধারণ কাজে ০.৭ কেজি ওজনের হাতৃড়ি ব্যবহার করা হয়। এধরনের হাতৃড়ি সর্বোচ্চ ১.২৫ কেজি ওজনের হয়ে থাকে। হাতৃড়ির মাথায় (Head) মাঝামাঝি একটি ছিদ্র থাকে। একে আই (Eye) বলে। এতে হাতৃড়ির হাতল (Shaft) পরানো হয়। হাতলটি সাধারণত দীর্ঘ ও ঋজুর আঁশযুক্ত শক্ত কাঠ দিয়ে তৈরি করা হয়। হাতলের মাথা এমনভাবে তৈরী করা হয়। যেন সেটি দৃঢ়ভাবে হাতৃড়ির ছিদ্রে প্রবেশ করতে পারে। মাথার (Head) আকার অনুযায়ী এ জাতীয় হাতৃড়িকে আবার চার শ্রেণিতে ভাগ করা যায়। যেমন:

ক) বলপীন হাতুরি (Ball peen Hammer)

- ৰ) স্টেইট পিন হাতুড়ি (Straight peen Hammer)
- গ) ক্রস পিন হাতুড়ি (Cross peen Hammer)
- ঘ) ক্লো হাতুড়ি (Claw Hammer)
- (ক) বলপিন হাতৃড়ি (Ball peen Hammer) : এটা বহুল ব্যবহৃত কাব্দে হাতৃড়ি। এর মাথা গোল এটা 'চিপিং' এবং অন্য সাধারণ কাজে ব্যবহৃত হয়ে থাকে। এর ওজন সাধারণত ১.১০ থেকে ০.৯০ কিলোগ্রাম পর্যন্ত হয়ে থাকে।
- (খ) ব্রেইট পিন হাড়ড়ি (Straight peen Hammer) : এর মাথা হাতলের সাথে সমান্তরাল ভাবে থাকে। ধাতুকে প্রসারিত করতে এটা বিশেষ উপযোগী। এর ওজন গোল মাধা হাতুডির ন্যায়।
- (গ) ক্রুস পিন হাতুড়ি (Cross peen Hammer) : হাতবের সাথে এর মাথা এক সমকোণ এ অবস্থান করে। এর মাথার সাহায্যে রিভেটের উপর আঘাত দেয়া হয়ে থাকে বলে। একে রিভেটিং হাভুড়ি (Riveting Hammer) বলা হয়। এর ওজন সাধারণত ০.২২ থেকে ০.৯১ কিলোগাম হয়।

চিত্র: ১১.২ বিভিন্ন প্রকারের হাভূড়ি

(ঘ) থাবা হাতুড়ি বা মুখচেরা হাতুড়ি (Claw Hammer) : এই হাতুড়ির ফেসের বিপরীত প্রান্তের মুখচেরা থাকে এবং সামান্য বাঁকা থাকে। কাঠের কাজে এই হাভুড়ি সুবিধাজনক। কাঠের মধ্যে স্থাপিত কটা ভোলার জন্য এই হাতুড়ি ব্যবহার করা হয়।

২। নরম হাতুড়ি (Soft Hammer) : কোনো মেশিনের অংশ (part) বিচ্ছিন্ন করতে আঘাতের প্রয়োজন হলে ধাতুখন্তের উপর মেশিনিং, ফাইলিং ক্রোপিং ইত্যাদি কার্য সম্পাদনের পর কোনো কারণে উক্ত ধাতু খণ্ডের

উপর পুনরায় আঘাত দেয়ার প্রয়োজন হলে, ঐ আঘাত সাধারণ হাতুড়ি দিয়ে দিলে, ধাতৃখণ্ডের বা মেশিন পার্টসের উপরিভাগে গভীর চিহ্ন পড়ে যায় বা পড়ার সম্ভবনা থাকে। এই আঘাতের ফলে যাতে ধাতু খণ্ডের উপর কোনো দাগ না পড়ে এ জন্য নরম হাতুড়ি ব্যবহার করা হয়। এ ধরনের হাড়ডির মাথার নরম একটি আবরণ থাকার দরুন আঘাতে ধাড় খণ্ডের উপর কোনো দাগ পড়ে না। নরম হাতুড়ির মাথা সীসা ও হাতল স্টিলের পাইপ দিয়ে এক সাথে সংযুক্ত অবস্থায় চালনা করা হয়। বর্তমানে নরম হাতুড়ির মাথার মূল অংশ স্টিলের ও সমতল প্রান্তহরের হাইড সংযুক্ত থাকে এবং হাতশটি কাঠের হয়ে থাকে। সীসা ঘারা তৈরি নরম হাতুড়ির মাখা একটি স্টিল পাইপের সহিত সংযুক্ত অবস্থায় ঢালাই করা থাকে। এ ধরনের কাজে কাঠের তৈরি হাতুড়ি ও ব্যবহার হয়ে থাকে। এগুলোকে 'ম্যালেট' বলে।

৪। ক্লেজ বাতুড়ি (Sledge Hammer) : এ জাতীয় হাতুড়ি কামারশালায় (Blacksmith) ব্যবহৃত হয়। এর ওজন ৩ কেজি

চিত্র : ১১.৩ নরম হাতুড়ি

চিত্র: ১১.৪ রিভেটিং হাতুড়ি

থেকে ৭ কেজি পর্যন্ত হয়ে থাকে। এটা অধিক ভারী বিধায় একে দুই হাতে ব্যবহার করতে হয়। এর মাধার (Head) দুইদিকে একই রকম। হাতদের দৈর্ঘ্য সাধারণত ৬০ সেন্টিমিটার থেকে ৮০ সেন্টিমিটার পর্যন্ত হয়ে থাকে।

চিত্ৰ: ১১.৫ শ্লেম্ব হাডুড়ি

১১.৪ বিভিন্ন থকার হাতৃড়ির ব্যবহার (Uses of different types of Hammer) :

ব্যবহার প্রণানি:- যে স্থানের উপর আঘাত দিতে হবে সেটা কোন ধাতু ঘারা তৈরি, উপরিভাগের সম্পূর্ণতা কী প্রকার, কী মাপের আঘাত দেরা প্রয়োজন এ সকল বিষয় বিবেচনা করে কোন শ্রেণির এবং কত ওজন হ্যামার কোথার ব্যবহার করতে হবে তা স্থির করতে হবে। কাজের রকম অনুযায়ী এটা যথাসম্ভব ভারী হওয়াই সঙ্গত। কারণ হালকা হ্যামার দিয়ে আঘাত করলে আঘাতের মাত্রা প্রয়োজনের তুলনায় কমতো হয়ই, উপরক্ত হ্যামার

ঠেকে এসে হ্যামার চালককে জ্বম করার আলঙ্কা থাকে। সূতরাং চালনা করতে আলজা থাকে। সূতরাং চালনা করতে কট হবে ভারী হ্যামার পরিবঁতে হান্ধা হ্যামার ব্যবহারের দিকে আগ্রহ রাখা মোটেই উচিত নর হাতলের দৈর্ঘ্য প্রয়োজনে কম হলে হ্যামার চালনা কট অধিক হয় এবং আঘাত ও নিয়মিতভাবে পড়ে না এছাড়া ভিন্ন হ্যামার চালনা করার সময়। হাতলটিকে এর কোন অংশে ধরতে হবে এ বিষয়ের ভক্তত্ব আছে। এটা হ্যামারের মাখা থেকে যত দ্র হয় ততই ভালো। এতে আঘাতের পরিমাণ সবচেয়ে বেশি হয় এবং হ্যানটি ও অযথা কোনো ক্ষতি হয় না। পূর্ব পৃষ্ঠায় চিত্রতে বিধিসম্মত এবং নিষিদ্ধ প্রণালি দেখানো হয়েছে।

হ্যামারকে মাধার নিকটবর্তী অংশে ধরে চালনা করলে আঘাত কখনো জোরে পড়ে না এবং হ্যামারের মুখ উপরিভাগের উপর সমান্তরালভাবে (Paralled) না পড়ে নতভাবে (Inclined) পড়ে। উপরোক্ত, এতে

চিত্র : ১১.৫ হ্যামার ধরার নিয়ম

দুর্ঘটনার ও আশঙ্কা থাকে। সুতরাং হাতলকে যথা সম্ভব এর নিচের দিকে ধরে এবং হ্যামারের মুখ (Face) যাতে উপরিভাগের উপর নতভাবে না পড়ে সবসময় সমান্তরালভাবে পড়ে এই ভাবে হ্যামার চালনা করতে

হবে। এছাড়া হাতলকে কখনো বেশি দৃঢ়ভাবে ধরা যাবে না। অল্প ঢিলাভাবে ধরলে হাতের মাংসপেশি অযথা আড়ন্ট হয়। যে হ্যামার এক হাতে ব্যবহার করার জন্য নির্দিষ্ট একে এক হাতে ধরে চালনা করতে হবে। কখনও দৃই হাতে চালনা করা যাবে না। দৃই হাতে চালনা করা যাবে না। দৃই হাতে চালনা করা বাবে না। দৃই হাতে চালনা করা বাবে না। দৃই হাতে চালনা করলে, আঘাত বেশি জ্যোরে পড়ে বিপদ ঘটাতে পারে। হ্যামারকে হাতলের সাথে আবদ্ধ করে রাখার জন্য যে খিলটি হাতলের মাথায় প্রবেশ করানো হয় হ্যামার চালনা করতে করতে কিছু দিন পর তা প্রারই টিলা হয়ে বের হয়ে আলে। বের হয়ে এলে

নিষিদ্ধ

বিধিসম্মত

চিত্র : ১১.৬ হ্যামারের ব্যবহার

আবার একে আঘাত দিয়ে প্রয়োজন মতে ঐ স্থানে পুরানো খিলের পরিবর্তে নতুন খিল পরাতে হবে। এছাড়া কিছুদিন ব্যবহারের পর হ্যামারের মুখ যখন ব্যাণ্ডের হাতার মতো আকার ধারণ করে অথবা মাধায় ফাটল দেখা দেয় তখন কামারশালায় এটাকে মেরামত না করা পর্যন্ত ঐ হ্যামার কখনও ব্যবহার করা উচিত নয়। কারণ,

এতে বিপদ ঘটতে পারে। হ্যামারকে হাতদের সাথে আবদ্ধ করে রাখার যে মিলটি হাতদের মাধার প্রবেশ করানো হয় হ্যামার চালনা করতে করতে কিছুদিন পর তা টিলা হয়ে বের হয়ে আসে। বের হয়ে এলে, আবার একে আঘাত দিয়ে ভেতরে প্রবেশ করে দিতে হবে এবং প্রয়োজন হলে ঐ স্থানে পুরানো মিলের পরির্বতে নতুন পরাতে হবে। এ ছাড়া কিছুদিন ব্যবহার করার পর হ্যামারের মুখ যখন ব্যান্ডের ছাতার মতো আকার ধারণ করে অথবা মাথায় ফাটল দেখা দেয় তখন কামারশালায় এটকে মেরামত না করা পর্যন্ত ঐ হ্যামার কখনো ব্যবহার করা উচিত নয়। কারণ এতে বিপদ ঘটতে পারে।

হ্যামারের চেয়ে বেশি শক্ত কোন বস্তুর উপর অথবা দুটি হ্যামারকে পরস্পরের মুখে কখনও আঘাত দেয়া যাবে না। কারণ এটা হ্যামার পক্ষে খুই ক্ষতিকর। বরং এতে সাংঘাতিক দুর্ঘটনার আশঙ্কা থাকে। এছাড়া কোনো ভারী বস্তুকে চাড় দিয়ে ভুলতে কাস্ট আয়রনের উপরিভাগের বালিযুক্ত শক্ত আবরণকে ঘষে দূর করতে অথবা কোনো বস্তুকে জোরপূর্বক ছিদ্রের মধ্যে প্রবেশ করাতে হ্যামারের হাতল কখনো ব্যবহার করা যাবে না। এতে হাতল ভেঙে, ফেটে বা বিকৃত হয়ে যেতে পারে। যেখানে 'সফট হ্যামার' পাওয়া সম্ভব হয় না, সেখানে কাঠ বা এই জাতীয় কোনো নরম বস্তুকে আঘাত স্থানে রেখে নিয়ে এর উপরে আঘাত দিতে হবে। নচেৎ আঘাতের স্থান ক্ষতিগ্রস্ত হবে।

চিত্র : ১১.৮ হ্যামারের নিরম বিরুদ্ধ ব্যবহার

চিত্র : ১১.৯ সফট হ্যামার কাঠের ব্যবস্থা

১১.৫ হাতৃড়ি ব্যবহারে সভর্কতা (care fulnes of uses of Hammer) :

সভর্কতা :- (১) হাতে তেল কিংবা গ্রীজ (grease) মাঝখানে থাকলে ঐ হাত কখনও হ্যামার ধরা উচিত নয় বা একে চালনা করা উচিত নয়। হাত ভালোভাবে মুছে নিয়ে পরে হ্যামার ধরা উচিত এবং চালনা করা উচিত। এছাড়া চালনা করতে করতে হাত যখন ঘেমে যাবে তখনও ঘাম না মুছে হ্যামারকে চালনা করা উচিত নয়।

- (২) হাতল, হ্যামারের মুখ অথবা যে স্থানটির উপর আঘাত দিতে হবে তা যদি তৈলাক বা গ্রীজ মাখানো থাকে তা হলে হ্যামার ব্যবহার করা উচিত এবং ঐ স্থানে আঘাত দেয়া উচিত।
- (৩) হ্যামারের মুখ বিকৃত হলে, ফাটল কিংবা আংশিক ভেঙে গেলে তা কখনো ব্যবহার করা উচিত নয়। কারণ ঐ অবস্থায় আঘাত দিতে হ্যামার থেকে ধাতৃ খণ্ড ছিটকে এসে আঘাতদাতাকে জ্বখম, এমনকি তার চোখ নষ্ট করে দিতে পারে।
- (৪) হাতল হ্যামারের মধ্যে টিলাভাবে থাকলে অথবা এঁটে না থাকলে, ঐ হ্যামার কঝনো ব্যবহার করা উচিত নয়। কারণ, এই অবস্থায় আঘাত দিলে হ্যামার ঘুরে গিয়ে বিপদ ঘটতে পারে। উপরোক্ত, যে স্থানে আঘাত পড়বে ঐ স্থানকে বিকৃত করতে পারে।
- (৫) কাঠের খিলটি হাতলের মাথায় টিলাভাবে থাকলে অথবা এঁটে না থাকলে, ঐ হ্যামার কখনো ব্যবহার করা উচিত নয়। কারণ ঐ অবস্থায় হ্যামারকে চালনা করলে এটা হাতল থেকে বের হয়ে নিকটস্থ ব্যক্তিকে এমনকি হ্যামার চালককেও জখম করতে পারে।
- (৬) হ্যামারের হাতল দিয়ে কোনো বস্তুকে চাড় দিয়ে তোলা যাবে না। এতে হাতল তেঙ্গে বিপদ ঘটতে পারে।

প্রশ্নমালা - ১১

অতিসংক্ষিপ্ত প্রশ্ন :

- ১। হাতুড়ি কাকে বলে?
- ২। একটি প্রচীনতম স্ট্রাইকিং টুলের নাম লেখ।
- ৩। হাতুড়ির দুইটি প্রধান অংশের নাম লেখ।
- ৪। কাজের ধরনের উপর ভিত্তি করে হাতুড়িকে কয় ভাগে ভাগ করা যায়?
- ৫। ইঞ্জিনিয়ার্স হাতুড়ি কী?
- ৬। ইঞ্জিনিয়ার্স হাতুড়িকে কয় ভাগে ভাগ করা যায়?
- ৭। স্ট্রেইট হাতুড়ি কী কাজে বিশেষ উপযোগী?
- ৮। ক্রস পিন হাতুড়িকে অন্য কী নামে ডাকা যায়?
- ৯। ম্যালেট কী?
- ১০। রিভেটিং হ্যামার কোন কাজে ব্যবহৃত হয়?

সংক্রিপ্ত প্রশ্ন ३

- ১১। হাতুড়ি বলতে কীবোঝায়?
- ১২। হাতুড়ির বিভিন্ন অংশের নাম লেখ?
- ১৩। হাতুড়ির শ্রেণিবিভাগ দেখাও?
- ১৪। ইঞ্জিনিয়ার্স হ্যামারের শ্রেণিবিভাগ দেখাও?
- ১৫। স্টেইট পিন ও ক্রস পিন হ্যামারের মধ্যে পার্থক্য দেখাও?
- ১৬। স্লেজ হ্যামারের ওজন সাধারণত কত কেজি পর্যন্ত হয়?
- ১৭। নরম হাতুড়ি সম্পর্কে সংক্ষিপ্ত বর্ণনা দাও।
- ১৮। মাথার অবময় অনুযায়ী হাতুড়ি কত প্রকার ও কী কী?
- ১৯। ক্লো হাতুড়ি কী কাজে ব্যবহৃত হয়?
- ২০। বল পীন হাতুড়ি কী কাজে ব্যবহৃত হয়?

রচনামূলক প্রশ্ন :

- ২১। একটা প্রাচীনতম স্ট্রাইকিং টুলের নাম ও তার ব্যবহার লেখ।
- ২২। লৌহ সংক্রান্ত কাজে ব্যবহৃত হ্যামারের শ্রেণিবিন্যাস কর।
- ২৩। স্ট্রেইট পীন এবং ক্রস পীন হ্যামারের পার্থক্য চিত্রসহ উল্লেখ কর।
- ২৪। স্লেজ হ্যামারের ওজন সাধারণত কত কেজি পর্যন্ত হয় উল্লেখ কর।
- ২৫। হ্যামার চালনার কৌশল বিবৃতি কর।
- ২৬। হ্যামারের যত্ন উল্লেখ কর।
- ২৭। খিল (Wedge) এর কাজ কী?

দ্বাদশ অধ্যায়

ক্লু-ড্রাইভার (Screw Driver)

১২.১ ক্ল-ফ্রাইভার (Screw driver) :

স্কু দ্রাইভার একধরনের হ্যান্ড টুলস যার সাহায়ে স্কুকে ঘুরিয়ে খোলা অথবা লাগানো যায়। স্কু দ্রাইভারে তিনটি প্রধান অংশ— হ্যান্ডেল বা হাতল, শ্যাংক, ব্লেড নিয়ে গঠিত। হাতল কাঠ অথবা প্লাস্টিকের এবং বাকি অংশ হাই-কার্বন স্টিলের তৈরি। ব্লেডের টিপ বা মুখ হার্ড করা ও টেম্পার করা থাকে। স্কু দ্রাইভার বিভিন্ন আকারের হয়ে থাকে।

Ferrule

১২.২ ক্ষু-ফ্রাইভারের শ্রেপিবিভাগ (Classification of screw driver) :

মুখের গঠন অনুযায়ী স্কু ড্রাইভার দূই রকমের-

- ১) ফ্ল্যাট স্কু-ড্রাইভার
- ২) ফিলিপস ক্ল্—ড্রাইভার

ব্যবহার অনুযায়ী-

- ১) স্ট্যান্ডার্ড স্ক্-ড্রাইভার
- ২) অফসেট ক্র্—ড্রাইভার
- ৩) র্যাচেট স্কু–দ্রাইভার

এ ছাড়া বিভিন্ন কাজের জন্য বিভিন্ন রকম ক্লু ড্রাইভার

ব্যবহৃত হয়। যেমন, জুয়েলার্স ক্লু ড্রাইভার, ষ্টাবি ক্লু ড্রাইভার ইত্যাদি।

বিভিন্ন স্কু ফ্রাইভার চিহ্নিভকরণ (Indemnification of Different screw driver) :

স্কু-ছাইভারের ব্যবহার (Uses of screw driver) :

ক্ল্যাট ক্ল্—ড্রাইভার: লখা খাঁজ কাটা হেড বিশিষ্ট ক্ল্-এর খাঁজে ক্ল্—ড্রাইভারের টিপকে বসিয়ে ঘুরিয়ে ক্ল্ টাইট বা চিলা দেয়া হয়। ক্ল্—ড্রাইভারের মুখের দৈর্ঘ্য খাঁজের ক্ল্র সমান হওয়া উচিত।

চিত্র: ১২,১ বিভিন্ন ধরনের স্ক্র-ড্রাইভার

Blade

Blade

Flat tip-

চিত্র: ১২.২ ফিলিপস স্কু দ্রাইভার

ফিলিপস স্কৃ-দ্রাইভার : স্কু হেডে পরস্পর ছেদিত একাধিক খাঁজ বিশিষ্ট স্কুকে ঘোরাবার জন্য ফিলিপস স্কৃ-দ্রাইভার ব্যবহৃত হয়।

র্যাচেট ক্ল্—ফ্রাইভার : র্যাচেট ক্ল্ ফ্রাইভার তাড়াতাড়িভাবে ক্র্
খুলতে ও লাগাতে ব্যবহৃত হয়। কেননা ব্লেডের টিগকে ক্লুর
সূট থেকে তুলতে হয় না অথবা হাতলের মাথা থেকে হাতলও
সরাতে হয় না।

চিত্র: ১২.৩ অফসেট ব্রু দ্রাইভার

অফসেট ক্ল্—জ্রাইভার : যেখানে সাধারণ ক্ল্—জ্রাইভার ব্যবহার করার অসুবিধা আছে, সেখানে অফসেট ক্ল্—জ্রাইভার দিয়ে কাজ করা সুবিধাজনক।

১২.৩ স্কু–দ্রাইভার ব্যবহারের সতর্কতা (Carefulness of use of screw driver) :

স্কু—ড্রাইভারের টিপ আগে পরীক্ষা করে তারপর কাজে হাত দেয়া উচিত। ব্যবহার করতে করতে ফ্ল্যাট টিপ গোল হয়ে গেলে স্কুর মাথা স্থিপ করার সম্ভাবনা থাকে। এ অবস্থায় টিপকে গ্রাইভিং করে ফ্ল্যাট করে নিতে হবে। স্কুর মাথার স্লটের ভিতর টিপটা ভালোভাবে ফিট হওয়া দরকার, তা না হলে স্কুর মাথা নষ্ট ও স্কু—ড্রাইভার পিছলে যেতে পারে। কোনো স্কু বেশি এঁটে গেলে অনেক সময় খোলা কষ্ট হয়। এক্ষেত্রে বড় সাইজের ক্ল্ ড্রাইভার ব্যবহার করলে স্কুকে খোলা সম্ভব হয়। স্কু—ড্রাইভার দিয়ে কোনো কিছু চাড় বা ছেনির বিকল্প হিসেবে কাজ করা উচিত না। ব্যবহারের আগে ক্লু—ড্রাইভারের হাতল থেকে মুখ পর্যন্ত মৃছে নিতে হবে যাতে কোনো তেল বা গ্রীজ না থাকে।

প্রশ্নমালা-১২

অতি সংক্ষিপ্ত প্রশ্ন :

- ১। ক্স-ড্রাইভার কী?
- ২। ক্স-দ্রাইভার প্রধানত কয়টি অংশ নিয়ে গঠিত?
- ৩। স্কু-দ্রাইভারকে প্রধানত কতটি শ্রেণিতে বিভক্ত করা যায়?
- ৪। ফ্র্যাট জ্ব–ড্রাইভার কী কাজে ব্যবহৃত হয়?
- ৫। ফিলিপস স্ক্র-ড্রাইভার কী ধরনের স্কুর ক্ষেত্রে ব্যবহৃত হয়?

मश्किख:

- ৬। স্ক্র-ড্রাইভার বলতে কী বোঝায়?
- ৭। স্ক্র-ড্রাইভার কী কী অংশ নিয়ে গঠিত?
- ৮। স্কু-ড্রাইভারের শ্রেণিবিভাগ কর ?
- ৯। স্কু-দ্রাইভারের ব্যবহার দেখাও?
- ১০। জু–ড্রাইভারের ব্যবহারে দুটি সতর্কতা উল্লেখ কর?

রচনামূলক প্রশ্ন :

- ১১। সাধারণ ক্র-ড্রাইভারের বিভিন্ন অংশের নাম লেখ ও গঠন বর্ণনা কর।
- ১২। বিভিন্ন প্রকার স্ক্রু-ড্রাইভারের ব্যবহার উল্লেখ কর।
- ১৩। ক্স-ড্রাইভার ব্যবহারকালে পালনীয় সতর্কতাগুলি উল্লেখ কর।
- ১৪। র্যাচেট ক্স-ভ্রাইভার ব্যবহারের সুবিধা উল্লেখ কর।
- ১৫। অফসেট স্কু-ড্রাইভার কেন ব্যবহার করা হয়?

ত্রয়োদশ অধ্যায়

বেসিক ইলেকট্রিসিটি

১৩.১ কারেন্ট, ভোল্টেজ, রেজিস্টান সম্পর্কে বর্ণনা

কারেন্ট: ইলেকট্রন বা চার্জ প্রবাহের হারকেই কারেন্ট বলে। অর্থাৎ একক সময়ে কোনো একটি পরিবাহীর প্রস্তুচ্ছেদের মধ্য দিয়ে যে পরিমাণ ইলেকট্রন বা চার্জ প্রবাহিত হয়, তাকে কারেন্ট বলে।

যদি কোনো পরিবাহীর যে কোনো প্রস্থচ্ছেদ দিয়ে ক সময়ে খ পরিমাণ চার্জ প্রবাহিত হয়, তাহলে কারেন্ট অ্যাম্পিয়ার দ্বারা প্রকাশ করা হয় এবং এর একক অ্যাম্পিয়ার। কারেন্ট প্রবাহের দিক ইলেকট্রন বা চার্জ প্রবাহের বিপরীত দিকে ধরা হয়।

কারেন্টের প্রকারভেদঃ প্রবাহ অনুসারে কারেন্টকে দই ভাগে ভাগ করা যায়। যথা-

- ক) ডাইরেক্ট কারেন্ট
- খ) অল্টারনেটিং কারেন্ট

ভোল্টেজ: কোনো পরিবাহীর মধ্য দিয়ে কারেন্ট প্রবাহের জন্য যে বৈদ্যুতিক চাপ প্রয়োগ করা হয়, তাকে ভোল্টেজ বলে। অন্যভাবে বলা যায়, অসীম দ্রত্বে অবস্থিত কোনো বিন্দু থেকে বৈদ্যুতিক বলের বিরুদ্ধে যে কোনো বিন্দুতে একক ধনাত্মক চার্জকে আনতে যে পরিমাণ কাজ করতে হয়, তাকে বৈদ্যুতিক চাপ বা ভোল্টেজ বলা হয়।

যদি Q কুলম্ম চার্জ স্থানান্তরের জন্য W জুল কার্যসম্পাদন করতে হয় তাহলে বৈদ্যুতিক চাপ, $V = \frac{W}{\rho}$ ভোল্ট।

বৈদ্যুতিক চাপকে V দ্বারা প্রকাশ করা হয়। এর ব্যবহারিক একক ভোল্ট। বৈদ্যুতিক বিশুব বলা হয়ে থাকে। রে**জিস্ট্যাল** পরিবাহীর মধ্য দিয়ে কারেন্ট প্রবাহের সময় পরিবাহী পদার্থের যে ধর্ম বা বৈশিষ্ট্যের কারণে তা বাধাপ্রাপ্ত হয়, তাকে রেজিস্ট্যাল বা রোধ বলে।

আবার কারেন্ট প্রবাহে বাধা দেয়ার উদ্দেশ্যে, যে ডিভাইস তৈরি করা হয়, তাকে বলা হয় রেজিস্টার। যদি কোনো পরিবাহীর মধ্য দিয়ে V ভোল্ট বৈদ্যুতিক চাপে অ্যাম্পিয়ার কারেন্ট প্রবাহিত হয়, তাহলে রেজিস্ট্যান্স $R=rac{V}{r}$ ওহম।

রেজিস্ট্যান্সকে R দ্বারা প্রকাশ করা হয়। এর একক ওহম।

১৩.২ অ্যাভোমিটারের সাহাব্যে কারেন্ট, ভোল্টেজ, রেজিস্টান পরিমাপ:

কোথাও কাজ করতে একজন বৈদ্যুতিক কারিগরের জন্য অ্যামিটার, ভোল্টমিটার, ওহম মিটার–এই তিনটি মিটারের প্রয়োজন পড়ে। কিন্তু একটি লোকের আনুষাঙ্গিক যন্ত্রপাতিসহ এই তিনটি মিটার বহন করে কাজ করা বাস্তবিকই অসুবিধাজনক। যে মিটার তিনটি ইউনিটের কাজ পর্যায়ক্রমে করতে পারে তাকে অ্যাভোমিটার বলে। অর্থাৎ যে মিটারের সাহায্যে কারেন্ট বা অ্যাম্পিয়ার, পটেনশিয়াল ডিফারেল বা ভোল্টেজ ও রেজিস্ট্যাল বা তথ্য মাপা যায় তাকে অ্যাভোমিটার বলে।

অ্যাভোমিটার নামকরণ হয়েছে উল্লিখিত তিনটি বৈদ্যুতিক ইউনিটের নামের প্রথম অক্ষর নিয়ে। যেমন অ=আ্যাম্পিয়ার, ই ভোল্ট, ভ=ওহম। একটিমাত্র মিটার দিয়ে একাধিক বৈদ্যুতিক ইউনিট মাপা যায়। এজন্য একে মাল্টিমিটারও বলে।

চিত্রে একটি মাল্টিমিটারের ছবি দেয়া হলো। এ মিটারের পরেন্টারের চতুর্দিকে ভিন্ন ভিন্ন ভাগে যথাক্রমে বাম দিকে এসি ভোল্টেজ রেঞ্জ 10,100,500 ও 1000 ও দেয়া আছে। উপরের ভাগে রেঞ্জিস্ট্যাল মাপের জন্য যথাক্রমে $R \times I$, $R \times 10$ ও $R \times 100$ দেওয়া আছে। ডানদিকের ভাগে ডিসি ভোল্টেজের রেঞ্জ যথাক্রমে 10,100,500,1000 ভোল্ট দেয়া আছে। নিচের দিকে ডিসি কারেন্ট মাপার জন্য যথাক্রমে 500 মাইক্রোজ্যাম্পিয়ার, 10 মিলিআ্যাম্পিয়ার ও 20 মিলিআ্যাম্পিয়ার দেয়া আছে।

চিত্র :২২.২ অ্যাভোমিটারে পাঠ নির্ণয়

উপরের ভায়ালে দৃটি লাইনে যথাক্রমে উপরের লাইনে ওহমের এবং নিচের লাইনে ভোল্ট অথবা কারেন্টের ক্ষেল দেয়া আছে। ওহম মিটারের কাঁটা অ্যাভজাস্ট করার জন্য ভানদিকে একটি চিহ্নিত নব আছে, বা ঘূরিয়ে কাঁটা পরেন্টে মিলাতে হয়। পৃথকভাবে ভোল্টমিটার, অ্যামমিটার ও ওহমমিটার যেভাবে ব্যবহার করার নিয়ম বর্ণনা করা হয়েছে, সেভাবেই এ মিটার ব্যবহার ও চালনা করতে হবে। অর্থাৎ রেজিন্ট্যাল মাপার সময় পয়েন্টার ভান দিকে, এসি ভোল্টেজ মাপার সময় পয়েন্টার উপর দিকে, ডিসি কারেন্ট মাপার সময় ভানে নিচের দিকে ও ডিসি ভোল্টেজ মাপার সময় পয়েন্টার বামদিকে নিচে থাকবে।

ডিজিটাল অ্যাভোমিটারের গঠন ও কার্যপ্রণালি বর্ণনা :
এটি এমন এক ধরনের মিটার বা সরাসরি সংখ্যাসূচক
অক্ষরে সমাধান দিতে পারে। এর ইনপুট ইস্পিড্যাল খুব
বেশি। এই মিটার ব্যবহারকারী শুধুমাত্র ফাংশন সূইচ
সিলেক্ট করে পাঠ নিয়ে থাকেন। এটি সাধারণত অটো
রেঞ্জিং, অটো-পোলারিটি এবং অটোজিরো ব্যবহার
সংবলিত হয়ে থাকে। ডিজিট বা ইউনিট ব্যবহার করে
যে মিটার রিডিং নেয় তাকে ডিজিটাল মিটার বলে।
বৈদ্যুতিক মিটার যা ইলেকট্রনিক পরিমাপক যন্ত্র
অ্যানালগ মিটারের সিগন্যালকে ডিজিটাল রূপান্তরের
জন্য ডিজিটাল মিটারের প্রগণ বলে।

চিত্র ২২.৩: ডিজিটাল অ্যাভোমিটার

প্রথমে ইনপুট অ্যানালগ সিগনাল সমতুল্য ডিজিটালে রূপান্তরিত করে এবং তারপর এটি দৃশ্যমান করে। বিভিন্ন মিটারে এই কনভারটার বিভিন্ন নীতিতে কাজ করে। তবে সব চেয়ে বেশি ব্যবহৃত এবং জনপ্রিয় পদ্ধতি হল ডুয়েল স্রোপ টেকনিক। এর সাহায্যে খুব দ্রুত রিডিং নেয়া যায়। এটি সঠিক পাঠ প্রদর্শন করে এবং সাধারণত অটো-জিরো সংবশিত হয়ে থাকে।

১৩.৩ কারেন্ট, ভোন্টেজ, রেজিস্টাল-এর মধ্যে সম্পর্ক ওহমের সূত্র মতে

- ১. কোনো নির্দিষ্ট তাপমাত্রায় যদি কোনো বৈদ্যুতিক পরিবাহীর মধ্য দিয়ে কারেন্ট প্রবাহিত হয় তবে ঐ কারেন্ট পরিবাহী দুইপ্রান্থের বিভব পার্থক্যের সমানুপাতিক এবং পরিবাহীর রোধের ব্যক্তানুপাতিক । অর্থাং $I = \frac{V}{L}$ ্বিখন তাপমাত্রা ছির থাকে
- ২. কোনো বৈদ্যুতিক পরিবাহী দৃইপ্রান্তের মধ্যবর্তী বিভব পার্থক্য ও পরিবাহীতে প্রবাহিত কারেন্টের অনুপাত উক্ত পরিবাহীর রোধ নির্দেশ করে।

অর্থাৎ $R=rac{v}{l}$ ধ্রক [মখন তাপমাত্রা স্থির থাকে]

ধরা যাক AB পরিবাহীর দুইপ্রান্তের বিভব যথাক্রমে VA ও VB । যদি VA I VB হয় তবে বিভব পার্থক্য হবে VA-VB । পরিবাহীর মধ্য দিয়ে প্রবাহিত কারেন্ট যদি হয় তবে-

I (VA-VB)

বা, (VA-VB)

বা, VA-VB

বা, VA-VB=IR

বা, VA-VB

R

যদি, VA-VB=V ধরা হয় তাহলে

I=V/R

এখানে, R একটি ধ্রবক। একে পরিবাহীর রোধ বলা হয়।

চিত্র:২২.১ দুইপ্রান্তের বিভব পার্থক্যসহ একটি রোধ বা লোড

১৩.৪ বিদ্যুৎ ব্যবহারে সতর্কতা :

- ১. সর্বদা পায়ে সেকটি সু পরে কাজ করতে হবে।
- ২. ইনসুলেশন যুক্ত টুলস যেমন টেস্টার, প্লায়ার, জু-দ্রইভার ইত্যাদি ব্যবহার করতে হবে।
- ৩. হাতে রাবারের হ্যান্ড গ্লোন্ডস পরে কান্ধ করতে হবে।

- ৪. লাইনে বিদ্যুৎ আছে কি না তা টেস্টার অথবা মিটার দিয়ে চেক করে দেখতে হবে।
- ৫. সর্বদা 'প্রথমে নিরাপত্তা তৎপর কাজ' কথাটি শতভাগ মাথায় রেখে কাজ করতে হবে।
- ৬. হাতে টেস্ট করে বিদ্যুৎ আছে কি নেই তা করা সম্পূর্ণ নিষিদ্ধ

প্রশুমালা-২২

অতি সংক্ষিপ্ত প্রশ্ন :

- ১. কারেন্ট কী?
- ২. ভোল্টেজ কী?
- ৩. রেজিস্ট্যান্স কী?
- ৪. ওহমের সূত্রটি লেখ।

সংক্ৰিপ্ত প্ৰশ্ন :

- ১. কারেন্ট, ভোক্টেজ ও রেজিস্ট্যান সম্পর্কে অথবা ওহমের সূত্রটি বর্ণনা কর।
- ২. কারেন্ট, ভোল্টেজ, রেজিস্ট্যান্স সংজ্ঞাসহ একক লেখ।

রচনামূলক প্রশ্ন:

- ১. ম্যানুয়াল বা অ্যানালগ এবং ডিজিটাল অ্যাভোমিটারের কার্যপ্রণালি বর্ণনা কর।
- কারেন্ট, ভোল্টেজ, রেজিস্ট্যান্স সম্পর্কে যা জান লেখ।

চতুর্দশ অধ্যায়

ড্রিলিং প্রক্রিয়া

(Drilling Process)

১৪.১ দ্রিলিং (Drilling) :

দ্রিলিং অর্থ হোল বা গর্ত করা বুঝায়। দ্রিলিং বলতে দ্রিল বিটের সাহায্যে কোনো বস্তুকে গোল ছিদ্র বা দ্রিল করার প্রণালিকে বুঝায়। দ্রিল স্পিভলের ছিদ্রে স্থাপন করে স্পিভল ঘূর্ণিত অবস্থায় উপর হতে চাপ দিয়ে দ্রিল এগিয়ে জবকে ছিদ্র করা হয়। দ্রিল করতে যে মেশিন ব্যবহৃত হয় তাকে দ্রিলিং মেশিন বা দ্রিল মেশিন অথবা দ্রিল প্রেস বলা হয়। দ্রিলিং করার সময় বিভিন্ন বস্তুর উপর বিভিন্ন ঘূর্ণন হার (আর.পি.এম) প্রয়োগ করতে হয় এবং দ্রিলিং কার্য সম্পন্ন করতে ফীড ভ্ইলকে আস্তে আস্তে নিচের দিকে নামাতে হয়। ফলে অল্প অল্প করে ধাতৃ কেটে দ্রিল বিট দ্রিলিং কার্য সম্পন্ন করে। দ্রিলিং প্রক্রিয়ায় ধাতৃর মধ্যে গর্ত বা ছিদ্র তৈরি হয়। দ্রিলিং—এর সময় দ্রিলকে ঠাণ্ডা রাখতে কুল্যান্ট ব্যবহারের প্রয়োজন হয়।

দ্রিলিং-এর প্রয়োগক্ষেত্র (Field of Appliction of Drilling) :

ইঞ্জিনিয়ারিং ক্ষেত্রে প্রায় সকল শাখাতেই ড্রিলিং-এর প্রয়োজন হয়। বর্তমানে বিভিন্ন স্থানে ছোট-বড় প্রায় প্রত্যেক ওয়ার্কশপে ড্রিলিং মেশিন ব্যবহৃত হয়। ড্রিলিং মেশিন দেখতে অতি সাধারণ হলেও এর গুরুত্ব অত্যাধিক। কারণ ধাতুতে সঠিক, স্থানে সঠিক মাপের উন্নত মানের ড্রিলিং করার জন্য ড্রিলিং মেশিনের বিকল্প হিসেবে অন্য মেশিন খুব কম ব্যবহৃত হয়। ড্রিলিং প্রক্রিয়ায় ধাতুর মধ্যে ছিদ্রগুলি বরাবর বা এপার-ওপার এবং কিছুদূর পর্যন্ত হতে পারে। ড্রিলিং এর প্রয়োগক্ষেত্র নিমুরূপ-

- ১। কোনো বস্তুর মধ্যে, বোল্ট রিভেট এবং পিন ঢুকানোর জন্য দ্রিলের সাহায্যে গর্ত করার প্রয়োজন হয়।
- ২। ট্যাপের সাহায্যে কোনো বস্তুর অভ্যন্তরে পাঁচ কাটার পূর্বে ড্রিলিং করতে হয়।
- ৩। আবদ্ধ স্ত্রট তৈরিতে ড্রিলের সাহায্যে ছিদ্র বা গর্ত করতে হয়।
- 8। খোলা সুট তৈরিতে ডিলিং-এর প্রয়োজন হয়।
- ৫। কোনো ধাতুখণ্ডের মধ্যখান থেকে কিছু অংশ অপসারণের জন্য দ্রিলের সাহায্যে গর্ত বা ছিদ্র করা হয়।
- ৬। ভাঙ্গা স্ক্রু বের করতে দ্রিলের সাহায্যে গর্ত করা হয়।
- ৭। গিয়ার ব্ল্যাঙ্ক তৈরিতে ড্রিলিং করতে হয়।

১৪.২ দ্রিল মেশিনের প্রকারভেদ (Classification of Drill Machine) :

জিলিং মেশিন বা যন্ত্র অনেক রকম হয়, কতকগুলোকে হাতে চালানো হয় আর কতকগুলো চলে পাওয়ারের সাহায্যে। হাতে যে সমস্ত জিল মেশিন চালানো হয় সেগুলো আকার ছোট, ওজনে হালকা এবং বহনযোগ্য। কেবলমাত্র ছোট মাপের ছিদ্র এসব মেশিন করা যায়। এছাড়া জিলিং মেশিন কমপ্রেসড এয়ার দ্বারা, বেল্ট দ্বারা এবং নিজস্ব বৈদ্যুতিক মোটর দ্বারা চালিত হয়ে থাকে। এসব মেশিন সাধারণভাবে সহজে বহনযোগ্য হয় না এবং মূল্য হস্তচালিত জিলিং মেশিনের তুলনায় বেশি হয়। এসব মেশিনের উৎপাদন ক্ষমতা বেশী অর্থাৎ অতিসহজেই কম পরিশ্রমে নিখুঁতভাবে অল্পসময়ে বেশি ছিদ্র বা গর্ত করা সম্ভব হয়। বিভিন্ন বিষয় বিবেচনা করে অনেক প্রকারের ড্রিলিং মেশিন তৈরি করা হয়ে থাকে। ড্রিলিং মেশিনের প্রকারভেদ নিম্নরূপ :-

- (১) হ্যান্ড ড্রিলিং মেশিন (Hand drilling machine)
- (২) ব্রেস্ট দ্রিলিং মেশিন (Breast drilling machine)
- (৩) ব্যাচেট ব্রেস দ্বিলিং মেশিন (Rachet brace drilling machine)
- (8) পোর্টেবল ড্রিলিং মেশিন (Prortable drilling machine)
- (৫) সেনসেটিভ ড্রিলিং মেশিন (Sensative drilling machine)
- (৬) আপরাইট ড্রিলিং মেশিন (Upright drilling machine)
- (৭) রেডিয়াল ড্রিলিং মেশিন (Radial drilling machine)
- (৮) গ্যাং দ্রিলিং মেশিন (Gang drilling machine)
- (৯) মাল্টি স্পিডল ড্রিলিং মেশিন (Multi Spindle Drilling machine)
- (১০) ডিপ হোল দ্বিলিং মেশিন (Deep hole drilling machine)

উল্পেখিত দ্বিলিং মেশিনসমূহের মধ্যে ১ থেকে ৩ ক্রমিক নম্বরের মেশিনগুলোতে মানুষের শারীরিক শক্তির সাহায্যে দ্রিল বীটকে ঘুরাতে হয় এবং অবশিষ্ট মেশিনগুলি বাহ্যিক শক্তি দ্বারা চালিত হয়।

(১) হ্যান্ড দ্রিলিং মেশিন (Hand drilling machine) :

এগুলো সাধারণ রিপেয়ার বা মেরামতের কাজে বেশি ব্যবহৃত হয়। শীট জাতীয় পাতলা বস্তুর মধ্যে ছিদ্র করতে এটি বিশেষ উপযোগী। এই মেশিনে সাধারণত ৬ মি.মি. ব্যাস পর্যন্ত মাপের দ্বিল বীট ব্যবহৃত হয়ে থাকে। এই দ্রিলিং মেশিন হাতে ঘুরানো হয় এবং স্থানান্তরে নিয়ে গিয়ে ব্যবহার করা চলে। এর উপরের দিকে কাঠের হাতল থাকে। হাতলকে এক হাতে ধরে অন্য হাতে 'বিভেল গিয়ার' কে ঘুরালে পিনিয়নটি ঘোরে। পিনিয়ন সংযুক্ত স্পিভলটি ঘুরায়।

চিত্র ঃ ১৩.২ ব্রেস্ট ড্রিলিং মেশিন

চিত্র ঃ ১৩.৩ ব্যাচেট ব্রেস ড্রিলিং

স্পিতলটির নিচে দিকে 'দ্রিল চাক' যুক্ত থাকে। এর মধ্যে 'স্টেইট শ্যাঙ্ক' বিশিষ্ট দ্রিল বিট আটকে ছিদ্র করা হয়ে থাকে।

- (২) ব্রেস্ট দ্রিলিং মেশিন (Breast drilling machine) : এটাকেও হাতে মুরানো এবং যে কোনো স্থানে নিয়ে গিয়ে ব্যবহার করা চলে। এর গঠন এবং চালন ব্যবস্থা মূলত 'হ্যান্ড দ্রিল-এর ন্যায়। মাত্র প্রভেদ এই যে, এর উপরের দিকে কাঠের হাতলের পরিবর্তে একটা প্লেট আছে, যাকে বলে ব্রেস্ট প্লেট। দ্রিল করার সময় ব্রেস্ট প্লেট এর উপর বুক দিয়ে চাপ দিতে হয় এবং বিভেল গিয়াবেটিকে ঘোরালে দ্রিল ঘোরে এবং ছিদ্র বা গর্ত হয়। হ্যান্ড দ্রিলিং মেশিনের তুলনায় ব্রেস্ট দ্রিলিং মেশিন অপেক্ষাকৃত ভারী এবং বড় হয়। এটাও হালকা জাতীয় কাজে অর্থাৎ শীট জাতীয় পাতলা ধাতু বা নরম ধাতু ছিদ্র করতে ব্যবহৃত হয়। তবে তুলামূলকভাবে এর ছারা বড় ছিদ্র করা সম্ভব হয়।
- (৩) ব্যাচেট ব্ৰেস দ্বিলিং মেশিল (Rachet brace drilling machine) :

এটাকে সহজে এক স্থান থেকে অন্যস্থানে নেওয়া যায় এবং স্থ্যানোর জন্য বাহ্যিক শক্তির প্রয়োজন হয় না। নাট, বোল্ট, ক্ল্যাম্প ইত্যাদির সাহায্যে এই মেশিনকে সহজেই যে কোনো স্থানে অস্থায়ীভাবে আবদ্ধ করে যে কোনো অবস্থাতে এর বারা ছিদ্র করা সম্ভব হয়। তবে প্রধান অসুবিধা এই যে, এই মেশিনে ছিলকে বেশি বেপে মুরানো যায় না বলে ছিদ্র করতে সময় বেশি লাগে। ছিদ্র করার জন্য র্য়াচেট ব্রেসকে এমনভাবে আটকাতে হয় যাতে 'কীড স্কু'-এর শীর্ষ 'প্রেসার আর্ম'-এর তলদেশে অবস্থিত গোলকার ছিদ্রের মধ্যে এবং দ্রিল বীটের মুখ করণীয় ছিদ্রের কেন্দ্রের ঠিক উপরে থাকে। 'প্রেসার আর্ম'-কে প্রয়োজনীয় উচ্চতার 'সেট স্কু'র সাহায্যে আটকানো যায়। ব্যাচটের সঙ্গে লাগানো হাতলটা ক্রমাগত মেশিন সামনে ও পিছনে দ্রিলটা আন্তে আন্তে যোরে

এবং মাল কাটে। দ্রিলে কীড দিতে হলে কীড ক্লু-কে আন্তে আন্তে যোরাতে হয়।

- (৪) পোর্টেবল দ্রিলিং মেলিন (Prortable drilling machine) : পোর্টেবল বলতে হাত দারা বহন বোগ্য বুঝায়। যে দ্রিলিং মেলিন হাত দিয়ে এক স্থান থেকে অন্যন্থানে বহন করা যায় এবং বৈদ্যুতিক শক্তি দার চালিত হয় তাকে পোর্টেবল দ্রিলিং মেলিন বলে। এই মেলিন সর্বোচ্চ, ১৩ মি.মি. ব্যাস মাপের দ্রিল বিট ধারণ করতে পারে। যে সমস্ত কাজ সুবিধাজনকভাবে স্ট্যান্ডার্ড দ্রিলিং মেলিনে দ্রিল করা যায় না তা দ্রিল করতে পোর্টেবল দ্রিলিং মেলিন ব্যবহৃত হয়। ইলেকট্রিলিয়ান কার্পেনটার, পাঁট মেটাল ওয়ার্কার ও জেনারেল মেকানিকরা পোর্টেবল দ্রিলিং মেলিন ব্যবহৃত্ব করে থাকে।
- (৫) সেনসেটিভ দ্রিলিং মেশিন (Sensative drilling machine) : যে দ্রিলিং মেশিনে ঘুরম্ভ দ্রিলকে হাতে ফীড দিয়ে দ্রিল বা ছিদ্র করতে হয় তাকে সেনসেটিভ দ্রিলিং মেশিন বলে। মেশিনগুলো এরকম নামকরণের কারণ অপারেটর যখন ঘুরম্ভ দ্রিলের ফীড দারা নিয়ন্ত্রণ করে তখন সে দ্রিল পয়েন্টের ধাতুকাটা হাতে অনুভব করে থাকে। সেনসেটিভ দ্রিলিং মেশিনকে দুই ভাগে বিভক্ত করা হয়। যেমন :-
- (ক) বেঞ্চ টাইপ ড্রিলিং মেলিন ও
- (খ) ফ্রোর টাইপ দ্রিলিং মেশিন।

চিত্র: ১৩.৪ পোর্টেবল দ্রিলিং মেশিন

চিত্র: ১৩.৫ সেনিসেটিভ দ্রিলিং মেশিন

বেঞ্চ টাইপ ড্রিলিং মেশিন ওয়ার্ক বেঞ্চ বা স্ট্যান্ডের উপর স্থাপন করা হয় এবং ফ্লোর টাইপ ড্রিলিং মেশিনকে ওয়ার্কশপের মেঝেতে স্থাপন করা হয়। সেনসেটিভ ড্রিলিং মেশিন ছোট কাজের জন্য উপযোগী। প্রায় সব ধরনের ওয়ার্কশপে এ ড্রিলিং মেশিন ব্যবহৃত হয়। ড্রিল চাকের সাহায্যে এ মেশিন সাধারণত ১৩ মি.মি. ব্যাস বিশিষ্ট ড্রিল বিট সেট করে ড্রিল করা যায় এবং ড্রিল স্লীভের সাহায্যে বড় ড্রিল ও এ মেশিন সেট করে কাজ করা যায়।

(৬) আপরাইট দ্বিলিং মেশিন (Upright drilling machine) :

আপরাইট বা ভার্টিক্যাল ড্রিলিং মেশিনের সেনসেটিভ ড্রিলিং মেশিনের অনুরূপ। সেনসেটিভ ড্রিলিং মেশিনের তুলনায় এর গঠন অধিকতর মজবুত

ও সৃক্ষ এবং এতে ম্যানুয়াল ও পাওয়ার ফীড মেকানিজমের ব্যবস্থা আছে।

এই মেশিনের টেবিল বর্গাকার, আয়তকার, গোলকার হয়ে থাকে। আপরাইট দ্রিলিং মেশিনের সর্বোচ্চ দ্রিল বিট ধারণ ক্ষমতা হলো ৩২ মি.মি. ব্যাস পর্যন্ত। এই মেশিন দ্রিলিং, রীমিং, কাউন্টার সিংকিং, কাউন্টার বোরিং ট্যাপিং ও ল্যাপিং অপারেশন সম্পন্ন করা যায়।

(৭) রেডিয়াল দ্রিলিং মেশিন (Radial drilling machine) : বড় এবং ভারী কাজে বিভিন্ন জায়গায় অনেকগুলো দ্রিল করার জন্য রেডিয়াল দ্রিলিং মেশিন আদর্শ স্থানীয়। এ মেশিনে কাজ করা সহজ এবং কাজও তাড়াতাড়ি হয়। রেডিয়াল দ্রিলিং মেশিনের গঠন খুব মজবুত ও সৃক্ষ হয়। এ মেশিনের আর্মকে কলামের চারদিকে ঘুরানো যায় এবং য়ে কোনো স্থানে দৃঢ়ভাবে আটকানো যায়। রেডিয়াল দ্রিলিং মেশিনে দ্রিল বীটকে হাতে বা স্বয়ংক্রিয়ভাবে ফীড দেয়া যায়।

চিত্র : ১৩.৬ আপরাইট ড্রিলিং

চিত্র: ১৩.৭ রেডিয়াল ড্রিলিং মেশিন

মেশিনের দ্রিলিং হেডকে আর্ম-এর যে কোনো জায়গায় প্রয়োজনীয় স্থানে আটকানো যায়। ফলে ওয়ার্কপিসের উপর যে কোনো স্থানে দ্রিল বিটকে তাড়াতাড়ি বসানো সহজ হয়। আর্মটাকে স্পিডল হেড সমেত কলামের উপর স্লাইড করে উপরে উঠানো এবং নিচে যে কোনো জায়গায় নামানো যায়। এই মেশিনের বেস বৃহদাকার, তারী ও মজবুত। এ কারণে এ মেশিনের বেসের উপর বৃহদকার ও তারী ওয়ার্কপিসকে স্থাপন করে দ্রিল করা যায়। বড় মাপের দ্রিলিং ও ট্যাপিংসহ রেডিয়াল দ্রিলিং মেশিন সৃক্ষ উৎপাদন কাজে ব্যবহৃত হয়। এ মেশিনে সর্বোচ্চ দ্রিল বিট ধারণক্ষমতা হলো ৫০ মি.মি. ব্যাস পর্যন্ত। আর্মের লম্বা মাপ এবং সর্বোচ্চ কত মাপের দ্রিল করা যাবে এই দুটো উল্লেখ করে রেডিয়াল দ্রিলিং মেশিনের সাইজ বোঝাতে হয়।

(৮) গ্যাং ড্রিলিং মেশিন (Gang drilling machine) :

যে দ্রিলিং মেশিনে কতিপয় স্পিভল এই স্ট্যান্ডের উপর বাঁধা থাকে তাকে গ্যাং দ্রিলিং মেশিন বলে। একে মাল্টিস্পিভেল দ্রিলিং মেশিনও বলা হয়। এই মেশিনে সকল স্পিভলের জন্য একটি টেবিল, যা বেসের উপর সাপোর্ট যুক্ত অবস্থায় থাকে। গ্যাং দ্রিলিং মেশিনের প্রক্যেকটি স্পিভল পৃথক পৃথক মোটর দ্বারা চালিত হয় এবং স্পিভলগুলোতে বিভিন্ন প্রকার

ও সাইজের দ্রিল, রীমার ও ট্যাপ সেট করে কাজ করা যায়। ফলে একই সময়ে একই ওয়ার্কপিসের বিভিন্ন স্থানে দ্রিলিং রীমিং ও ট্যাপিং সম্পন্ন করা যায়। গ্যাং দ্রিলিং মেশিন ব্যাপক উৎপাদন কাজে ব্যবহৃত হয়।

(৯) মান্টি স্পিড্ল দ্ধিলিং মেশিন (Multi Spindle Drilling machine):

মাল্টি স্পিভল বা মাল্টিপল দ্রিলিং মেশিনে কতিপয় স্পিভল থাকে এবং স্পিভলগুলা একটি মেইন স্পিভল ঘারা চালিত হয়। স্পিভলগুলোকে একটি সীমা বা রেঞ্জের মধ্যে বিভিন্ন দ্রত্বে অ্যাডজাস্ট করা যায়। স্পিভল গুলোতে বিভিন্ন সাইজের দ্রিল বিট, রীমার ও ট্যাপ সেট করে একটি সীমার মধ্যে স্থানে বিভিন্ন অপারেশনের করা সম্ভব হয়। এই মেশিন ব্যাপক উৎপাদন কজে ব্যবহৃত হয়।

চিত্র: ১৩.৯ মাল্টি স্পিন্ডল ড্রিলিং

(১০) ডিপ হোল দ্বিলিং মেশিন (Deep hole drilling machine) :

যে ছিদ্র বা হোলের দৈর্ঘ্য ব্যাসের তিনগুনের বেশি তাকে ডিপ হোল বলে। ডিপ হোল দ্রিলিং করতে যে দ্রিলিং মেশিন ব্যবহৃত হয় তাকে ডিপ হোল দ্রিলিং মেশিন বলে। এটি একটি বিশেষ ধরনের দ্রিলিং মেশিন। রাইফেলের ব্যারেল, স্পিভল এবং কানেকটিং রড দ্রিলিং করার জন্য সাধারণত ডিপ হোল দ্রিলিং মেশিন ব্যবহৃত হয়।

১৪.৩ কাটিং স্পিড ও কিড (Cutting spead and feed) :

কাটিং স্পিড (cutting spead) :

ড্রিলিং—এর জন্য কাটিং স্পিড বলতে ড্রিলের পরিধির সরল গতিকে বুঝায় যা ম্যাটেরিয়াল সারফেস অতিক্রম করে। অর্থাৎ যুরস্ক ড্রিলের পরিধির উপর একটি বিন্দু সরলরেখায় যে দূরত্ব অতিক্রম করে তাকে ড্রিলের কাটিং স্পিড বলা হয়। ড্রিল কি ধাতুর তৈরি এবং যে ধাতুকে ছিদ্র করতে হবে, তা কী প্রকার শক্ত এবং গুণ বিশিষ্ট এ সব বিষয় বিবেচনা করে আন্তর্জাতিক সংস্থা বা রাষ্ট্রীয়ভাবে স্বীকৃত সংস্থা কর্তৃক কাটিং স্পিড নির্বারণ করা হয়ে থাকে। অপারেটর নিজের খেয়াল খুশিমতো কাটিং স্পিড নির্বাচনপূর্বক মেশিন সেট করে ড্রিলিং কার্য সম্পন্ন করতে হয়। ড্রিলিং—এর কাটিং স্পিড মেট্রিক প্রণালিতে মিটার প্রতি মিনিট এবং ব্রিটিশ ফুট প্রতি মিনিট—এ প্রকাশিত হয়।

किए (Fead) :

জিলিং-এর সময় প্রতি পাকের জন্য জিল বিটকে যে পরিমাণ দূরত্ব অগ্রসর করানো হয় তাকে জিলিং কিড বলা হয়। জিলিং-এর সময় কী পরিমাণ ফিড দেয়া হবে তা কয়েকটি বিষয়ের উপর নির্ভর করে। যেমন-

- (১) ড্রিলের শক্তি অর্থাৎ ড্রিল বিট কি ধাতুর তৈরি;
- (২) ড্রিল বিটের ধার;
- (৩) ওয়ার্কপিস ম্যাটিরিয়ালের শক্ততা অর্থাৎ কী ধাতুর তৈরি;
- (৪) কুল্যান্টের প্রয়োগ;
- (৫) ছিদ্রটি কী ধরনের এবং কত গভীর;
- (৬) ওয়ার্কপিস আটকানোর ধরন।

১৪.৪ কাটিং স্পিড ও কিড নির্ধারণ (Determination of cutting Spead and Fead) :

নিচের সূত্র ব্যবহার করে ড্রিলিং-এর জন্য কাটিং স্পিড নির্ণয় করা যায়।

যেমন- Cs = dN/১০০০ মিটার/মিনিট

যখন, Cs = কাটিং স্পিড মিটার/মিনিট

d = ড্রিলের ব্যাস মি.মি.

N = প্রতি মিনিটে দ্রিলের ঘূর্ণন সংখ্যা।

আবার ব্রিটিশ প্রণালিতে

যেমন Cs= dN/১২) ফুট/মিনিট

যখন, Cs = কাটিং স্পিড মিটার/মিনিট

$$\blacktriangleleft N = \frac{Cs}{D}$$

d = ড্রিলের ব্যাস মি.মি

N = প্রতি মিনিটে দ্রিলের ঘূর্ণন সংখ্যা

নিয়োক্ত টেবিল থেকে দ্রিলিং-এর জন্য কাটিং স্পিড নির্বাচন করা যেতে পারে।

ওয়ার্কপিস ম্যাটিরিয়াল	কাটিং স্পিড মিটার / মিনিট	
	হাই স্পিড স্টীল	সিনটারড কার্বাইড
লো কার্বন স্টিল	₹৫-80	
মিডিয়াম কার্বন স্টিল	২০-৩০	
হাই কাৰ্বন স্টিল	26-56	২০-৩০
কাস্ট আয়রন নরম	₹6-80	60-200
কাস্ট আয়রন শক্ত	২০-৩০	80-50
কাস্ট স্টিল	২০-৩০	90-80
ব্ৰাস, শজ	©0-@0	200-260
ব্রাস (নরম) ব্রোজ	90-260	GO-90
কপার, অ্যালুমিনিয়াম	90-500	

হাই কার্বন স্টিলের তৈরি ড্রিল বিটের ক্ষেত্রে হাই স্পিড স্টিলের অর্ধেক কাটিং স্পিড বিবেচনা করতে হয়। ড্রিলের ঘূর্বন হার:

জিলিং—এর সময় জ্রিল বিটকে একটি নির্দিষ্ট হারে ঘোরাতে হয়। জ্রিল বিটের ব্যাস, কোন ধাতু দারা জ্রিল বিট তৈরি যে ধাতুকে জ্রিল বিট দারা ছিন্র করতে হবে তা কী রকম শক্ত এবং গুণ বিশিষ্ট, ছিদ্র কতটুকু গভীর করার প্রয়োজন হবে ইত্যাদি বিষয় বিবেচনা করে জ্রিলের এই ঘূর্ণন হার নির্ধারণ করতে হয়। জ্রিলের ঘূর্ণন করা নির্বাচিত কাটিং স্পিড থেকে হিসাব করে বা চার্ট দেখে নির্ণয় করতে হয়।

প্রতি মিনিটে ষ্র্ণন = প্রতি মিনিটে কাটিং স্পিড (মিটারে) ১০০০ (বা ৩.১৪ বা ২২/৭ ড্রিলের মাপ (মিলিমিটারে))

অথবা

প্রতি মিনিটে ঘূর্ণন = প্রতি মিনিটে কাটিং স্পিড (মিটারে) ১২ (বা ৩.১৪ বা ২২/৭ জিলের মাপ (ইঞ্চি))

প্রতি মিনিটে যুর্ণন সংখ্যাকে সংক্ষেপে আর.পি.এম (R.P.M) লিখে প্রকাশ করা হয়।

উদাহারণ

কাস্ট আররনের কাটিং স্পিড ৬০ ফুট প্রতি মিনিট হলে এতে ১ (এক) ইঞ্চি ব্যাসের ড্রিল করতে প্রতি মিনিটে ঘূর্ণন সংখ্যা নির্ণয় কর।

সমাধান

প্ৰতি মিনিটে ভূৰ্ণন সংখ্যা বা R.P.M বা N= $\frac{C_S}{D}$

অথবা, আর, পি, এম = $\frac{60 \cdot 12}{3.14 \cdot 1}$ = 229.299 বা 229

সূতরাং, আর.পি.এম হলো 229।

নিম্নোক্ত টেবিল থেকেও মেট্রিক পদ্ধতিতে দ্রিলিং-এর আর. পি.এম নির্ণয় করা যায়।

দ্রিলের কাটিং স্পিড অনুযায়ী প্রতি মিনিটে ঘূর্ণন হার-

১৪.৫ বেঞ্চ দ্রিলের বিভিন্ন অংশ (Bench Drill machine) :

যে দ্রিলিং মেশিন ওয়ার্কবেঞ্চ বা স্ট্যান্ডের উপর সেট করা হয়ে থাকে তাকে বেঞ্চ দ্রিলিং মেশিন বলা হয়। এটা পুলি বা গিয়ার চালিত হয়ে থাকে। এটা সহজ্ঞলত্য এবং হালকা কাজের জন্য খুবই উপযোগী। বোল্ট এবং পুলি

টাইপ বেঞ্চ দ্রিলিং মেশিন বিভিন্ন স্টেপে বেন্ট সেট করে প্রয়োজনীয় আরপিএম—এ কাজ করতে হয়। বেন্ট ও পুলিটাইপ মেশিন সাধরণত চারটি আর পিএম পাওয়া যায়। অপরদিকে পিয়ার টাইপ মেশিন লিভারের সাহায্যে গিয়ারের অবস্থান পরিবর্তন করে প্রয়োজনীয় আরপিএম সেট করতে হয়। পিয়ার টাইপ মেশিনে বেন্ট ও পুলি টাইপ মেশিনের তুলনায় অধিক সংখ্যক আরপিএম পাওয়া যায়। মোটরের সাহয্যে বেন্ট ও পুলি বা গিয়ারের মাধ্যমে স্পিভলকে স্থরানো হয় এবং স্পিডল সংযুক্ত দ্রিল বিটকে খোরায়। লখা হাতল বিশিষ্ট ফাড হুইলের সাহায্যে হাতে ফীড দিতে হয়। তবে প্রয়োজনীয় গভীরভায় দ্রিল বিটকে থামানোর জন্য এ মেশিন ডেপথ স্টপ আছে। ওয়ার্কিং টেবিলকে প্রয়োজনীয় উচ্চভায় আটকানোর ব্যবস্থা আছে। কিয়্ক সব ধরনের বেঞ্চ দ্রিলিং মেশিনে ওয়ার্কিং টেবিলকে প্রাক্রে

ক্ষেত্রে বেস গুয়ার্কিং টেবিল হিসেবে কাজ করে এবং গুয়ার্কীপসকে চিত্র: ১৩.১০ বেঞ্চ ড্রিলিং যেশিন হেড

বেস এর সাথে আটকানো যায়। বেঞ্চ ড্রিলিং মেশিনের বিভিন্ন অংশসমূহ সাধারণত নিমুরূপ হয়।

- ১। বেস (Base)
- ২। কলাম (Column)
- ত। ওয়ার্কিং (Working table)
- 8। স্পিওল (Spindle)
- ৫। মোটর (Motor)
- ৬। ফিড ভ্ইল/লিভার (Feed whel/Lever)
- ৭। জ্রিল হেড (Drill head)
- ৮। গিয়ার বক্স বা পুলি ও বেল্ট (Gear box or pulley and belt)
- ৯। ডেপথ স্টপ (Depth stop)
- ১০। দ্রিল চাক (Drill chuck)
- ১১। সুইচ (Switch)
- ১২। গার্ডসমূহ (Safeyt guards)

১৪.৬ দ্রিলিং এ সতর্কতা (Carefulness of Drilling) :

- ১। দ্রিলিং-এর জন্য ধাত্র প্রকৃতি অনুযায়ী দ্রিল বিট নির্বাচন করা হয়, অন্যথায় ধাত্ কাটার সময় দ্রিল বীট ভেক্তে যেতে পারে।
- ২। ড্রিল করার স্থানে সঠিক মাপে লে-আউট অংকন করা হয় এবং ড্রিলিং-এর কেন্দ্রে সেন্টার পাঞ্চ দ্বারা স্পষ্টভাবে চিহ্নিত করা হয়, যাতে ড্রিলিং-এর শুরুতে ড্রিল বিট কেন্দ্র থেকে ফসকে না যায়।
- ৩। ধাতব খণ্ডটিকে ভাইসে শক্ত করে ধরে বাঁধ হয়। অন্যথায় দ্রিলিং-এর সময় তা খুলে গিয়ে দুর্ঘটনা ঘটাতে পারে।
- ৪। বড় ব্যাসের দ্রিলিং করতে হলে প্রথমে পাইলট হোল এবং পরে সঠিক ব্যাসের দ্রিল দিয়ে বড় হোল বা ছিদ্র করা হয়। প্রথমেই বড় দ্রিল দিয়ে ছিদ্র করতে থাকলে ঘর্ষণ বেশি হবে এবং এতে দ্রিল বিট ভেঙ্গেও য়েতে পারে।
- ৫। দ্রিলিং-এর সময় অবশ্যই কাটিং ফুইড ব্যবহার করা হয়, অন্যথায় দ্রিল বিট ও চিপস উত্তপ্ত হয়ে দুর্ঘটনা ঘটতে পারে।
- ৬। দ্রিলিং-এর পূর্বে দ্রিল বিটের ধার পরীক্ষা করা হয়। খারাপ ধার বিশিষ্ট দ্রিল বিট দ্বারা দ্রিলিং করলে এর প্রকৃতি খারাপ হয়ে যেতে পারে, যা দ্রিলিং-এর ব্যাস অমসুণ করে।
- ৭। দ্রিল মেশিনে কাজ করার সময় চিপ্স (Chips) নির্দিষ্ট সময়ান্তরে সরিয়ে ফেলা হয়। অন্যথায় তা পেঁচিয়ে গিয়ে কাজে বিঘ্ন ঘটাতে পারে।
- ৮। দ্রিলিং কাজের সময় গায়ে অ্যাপ্রোন, পায়ে জুতা ও চোখে গগলস ব্যবহার করা উচিত। অন্যথায়, যে কোনো দুর্ঘটনার শিকার হতে হয়।
- ৯। দ্রিলিং-এর শেষে ধাতব খণ্ডে একটু গ্রিজ মেখে রাখা হয়, যাতে আর্দ্র আবহাওয়ায় তাতে মরিচা না ধরে।

- ১০। কাজের শেষে মেশিন, টুলস, দ্রিল বিট প্রভৃতি পরিষ্কার করে রাখা হয়, যা রক্ষণাবেক্ষণ কাজের আওতাভুক্ত। তা পরবর্তীতে আনন্দদায়ক কাজের পরিবেশ সৃষ্টি করতে সহায়ক হয়।
- ১১। দ্রিলিং কাজের পূর্বে, সময় এবং পরে পরিমাপ যন্ত্র দ্বারা মাপ দিয়ে দেখা যায় যে, দ্রিলিং-এর ব্যাস ঠিকমতো বা সোজা আছে কিনা। অন্যথায়, পুনরায় একই কাজের অবতারণা করতে হয়। এটা সময়ের অপচয় রোধ করতে সহায়তা করে।

প্রশ্নমালা-১৩

অতি সংক্ষিপ্ত প্রশ্ন :

- ১। ড্রিলিং অর্থ কী?
- ২। দ্রিলিং বলতে কী বোঝায়?
- ৩। ড্রিলিং মেশিন কাকে বলে?
- ৪। শারীরিক শক্তি চালিত একটি ড্রিলিং মেশিনের নাম লেখ?
- ৫। বেস্ট প্লেট কাকে বলে?
- ৬। প্রেসার আর্মকে কী দিয়ে আটকানো হয়?
- ৭। সচরাচর একজন জেনারেল মেকানিক্স যে দ্রিল মেশিন ব্যবহার করে থাকে তার নাম কী?
- ৮। সেনসেটিভ দ্রিলিং মেশিন কী কাজে উপযোগী?
- ৯। ভারী ও বড় কাজে অনেকগুলো দ্রিল করার জন্য কী ধরনের দ্রিল মেশিন ব্যবহার করা হয়?
- ১০। গ্যাং ড্রিল মেশিনে স্পিডগুলো কীভাবে বাধা থাকে?

সংক্রিপ্ত প্রশ্ন :

- ১১। ডিলিং বলতে কী বোঝায়?
- ১২। দ্রিলিং মেশিনের সংজ্ঞা দাও।
- ১৩। দ্রিলিং মেশিনের দুটি প্রয়োগক্ষেত্র উল্লেখ কর।
- ১৪। দ্রিল মেশিন প্রধানত কত প্রকার ও কী কী?
- ১৫। তিনটি হ্যান্ড ড্রিল মেশিনের নাম লেখ।
- ১৬। সেনসেটিভ ডিলিং মেশিন কত প্রকার ও কী কী?
- ১৭। কাটিং স্পিড বলতে কীবোঝায়?
- ১৮ | ফিড বলতে কী বোঝায়?
- ১৯। দ্রিলের ঘুর্ণন নির্ণয়ের সূত্রটি বিবৃত কর।
- ২০। বেঞ্চ ড্রিলিং মেশিনের প্রধান অংশসমূহের নাম লেখ।

রচনামূলক প্রশ্ন :

- ২১। দ্রিলিং বলতে কী বোঝায়? দ্রিল মেশিনের সংজ্ঞা দাও।
- ২২। দ্রিলিং-এর প্রয়োগক্ষেত্র উল্লেখ কর।
- ২৩। দ্রিলিং মেশিন কয় প্রকার ও কী কী?
- ২৪। হ্যান্ড ড্রিলিং মেশিনের গঠন সংক্ষিপ্তভাবে বর্ণনা দাও।
- ২৫। রেডিয়াল ড্রিলিং মেশিন ব্যবহারের সুবিধাগুলি লেখ।
- ২৬। কাটিং স্পিড বলতে কী বোঝায়? কাটিং স্পিড কী কী বিষয়ের উপর নির্ভরশীল?
- ২৭। ড্রিলের ঘুর্ণন হার (আরপিএম) নির্ণয় করার সূত্র লেখ।
- ২৮। দ্রিলিং-এর ক্ষেত্রে ফিড বলতে কী বোঝায়? ফিড কী কী বিষয়ের উপর নির্ভর করে?
- ২৯। বেঞ্চ ড্রিলিং মেশিনের বিভিন্ন অংশসমূহের নাম লেখ।
- ৩০। ড্রিল বিটের বিভিন্ন অংশের নাম লেখ।
- ৩১। বিভিন্ন প্রকার টুইস্ট ড্রিল বিটের নাম লেখ।
- ৩২। দ্রিল বিটকে মাপ প্রকাশের ভিত্তিতে কয় ভাগে ভাগ করা যায় এবং কী কী?
- ৩৩। বিভিন্ন ধাতুর জন্য দ্রিল বিটের কাটিং অ্যাঙ্গেল উল্লেখ কর।

পঞ্চদশ অধ্যায়

ড্রিল বিট (Drill Bit)

১৫.১ দ্বিল বিট (Drill Bit): দ্বিল বিটকে বাংলায় চলিতভাবে 'শ্রমর' বলে। এটা একপ্রকার কাটিং টুল যাকে দ্বিল মেশিনের সাহায্যে ঘুরিয়ে কোনো বস্তুকে ছিদ্র করতে কিংবা ছিদ্রকৃত বস্তুর ছিদ্রের ব্যাস বড় করতে ব্যবহৃত হয়। এটা হাই স্পীড স্টিল বা হাই কার্বন স্টিল ধারা তৈরি করা হয়।

১৫.২ দ্রিল বিটের বিভিন্ন অংশ (Different parts of Drill Bit) :

দ্রিল বিটের বিভিন্ন অংশের নাম নিয়ে দেয়া হলো :

- ১। শ্যান্থ (Shank)
- २। जार (Tang)
- ত। ফুট (Flute)
- 8। মার্জিন (Margin)
- ৫। কাটিং এজ (Cutting Edge)
- ৬। ডেড সেন্টার বা দ্বিল পয়েন্ট (Dead Centre
- or drill point)
- ৭। ওয়েব (Web)
- ৮। বডি ক্লিয়ারেন্স (Body clearance)

চিত্র: ১৪.১ দ্রিলের বিভিন্ন অংশের নাম

দ্রিল বিটের বিভিন্ন অংশের বর্ণনা :

শাংক (Shank) :

দ্রিল চাক বা মেশিন স্পিভলে আটকানোর জন্য ব্যবহৃত অংশকে শ্যাংক বলা হয়। দ্রিল বিটের শ্যাংক সাধারণত দুই প্রকারের হয়। যেমন-

- (ক) স্ট্রেইট বা প্যরালাল শ্যাংক-অর্থাৎ যার শ্যাংক সমান মাপের গোল থাকে। সাধারণত ছোট আকারের ডিল বিট সাধারণ (১২ মি. মি. পর্যন্ত) স্ট্রেইট শ্যাংক বিশিষ্ট হয়।
- (খ) টেপার শ্যাংক-অর্থাৎ যার মাধার অংশ গোলাকার এবং ক্রমশ সরু। ৩ মি.মি. থেকে বেশি ব্যাস বিশিষ্ট দ্রিল বিট সাধারণত টেপার শ্যাংক বিশিষ্ট হয়।

हिर्गर (Tang) :

টেপার শ্যাংক দ্রিল বিট টেপারের শেষে খনিকটা জায়গা চ্যান্টা করে কাটা থাকে। এই ফ্ল্যাট বা চ্যান্টা অংশের নাম ট্যাং দ্রিল বিটের ট্যাং অংশটা সকেটের মধ্যে অথবা স্পিডলের মধ্যে যেখানে স্লট কাটা থাকে সেখানে ফিট করা হয়। টেপারে আটকালেও দ্রিল বিট স্বুরে গিয়ে বা স্লিগ করে যাতে খুলে না যায় তার জন্য এই অংশ কাজ করে। এই অংশ ক্ষতি ব্যতিরেকে সকেট বা স্পিডেল থেকে দ্রিফট-এর সাহায্যে দ্রিল বিটকে বের করতে সাহায্য করে।

क्षे (Flute) :

দ্রিল বিটের বিউত্তে যে পুন্ত কাটা থাকে তাকে ফুট বলে। এটা টুইস্ট দ্রিল বিটে মোচড়ানো থাকে। সাধারণত দ্রিল বিটে দুইটি ফুট থাকে। কোনো কোনো বিশেব শ্রেণির দ্রিল বিটে তিনটি এমনকি চারটিও ফুট থাকে। ফুট এর গভীরতা সকল স্থানে সমান থাকে না। ফুট কাটিং এজ থেকে শ্যাংক—এর দিকে যতই অগ্নসর হতে থাকে ততই এর গভীরতা কমতে থাকে এবং প্রশস্ততা বাড়তে থাকে। ফলে ফুটের মধ্যদিয়ে চিপস সহজেই বের হয়ে আসে এবং কুল্যান্ট বা কাটিং কম্পাউন্ড কাটিং এজ এ সন্নিহিত স্থান পর্যন্ত সহজেই পৌছাতে পারে। ফুট কাটিং এজ গঠনে সহায়তা করে।

भार्किन (Margin) :

ফুটের পার্শ্ব বরাবর সরু এবং উঁচু অংশকে মার্জিন বলে।
মার্জিনসমূহ ধারা সৃষ্ট ব্যাসই ড্রিল বিটের পূর্ন ব্যাস। মার্জিন
ড্রিল বিটের সমগ্র উপরিভাগকে ঘর্ষণের হাত থেকে রক্ষা
করবে। তাছাড়া মার্জিন ড্রিল বিটকে গাইড করে এবং ড্রিল
করা হালের বা ছিদ্রের সঠিক মাপ রাখতে সাহায্য করে।

কাটিং এজ (Cutting Edge) :

ছিদ্র করার সময় দ্রিল বিট যে তীক্ষ্ণ অংশ দ্বারা ধাতুকে কাটে তাকে দ্বিল বিটের কাটিং এজ বলে। এটাকে লিপ (Cutting lip) ও বলা হয়। প্রত্যেকটি ফুট দ্বারা এক একটি কাটিং এজ পঠিত হয়। কাটিং এজসমূহের দৈর্ঘ্য সব সময় সমান হতে হয়। অন্যথার ছিদ্র ওভারসাইজ হরে যার।

চিত্র: ১৪.২ দ্রিল বিটের সমুখ অংশ

ডেড সেকার (Dead Center) বা ফ্রিল পরেক (Drill Point) :

চলিত ভাষায় এটাকে ড্রিলের মুখ বলা হয়। ট্যাং-এর বিপরীতে সর্বশেষে প্রান্তে ড্রিল অক্ষ বরাবর তীক্ষ্ণ এজকে ডেড সেন্টার বলা হয়। নামে এটা পয়েন্ট বা সেন্টার হলেও প্রকৃতভাবে এটা একটি বিন্দৃতে থাকে না, এটার একটি নির্দিষ্ট দৈর্ঘ্য থাকে।

ধরেত (Web) :

ড্রিল বিট ফুট কেটে নেবার পর মাঝখানে যে খাতৃ বা ম্যাটরিরাল বাকী খাকে তার নাম ওয়েব। অর্থাৎ সমস্ক বিভ দৈর্য্য ব্যাপী উভয় ফুটের মধ্যবর্তী স্থানকে ওয়েব বলা হয়। ওয়েব হলো ড্রিলের মেটাল কলাম যা ড্রিল বিটকে শক্তিপালী করে। পরেন্টের দিক থেকে ওয়েব শ্যাংকের দিকে ক্রমশঃ মোটা হয়।

विक क्रियादान (Body Clearance) :

ড্রিল বিটের মার্জিনের ব্যাস থেকে বডির ব্যাস কিছুটা কম রাখা হয়। উত্তয় প্রকার মাপের পার্থক্যকেই বডি ক্লিরারেল বলে। বডি ক্লিয়ারেল থাকতে ড্রিল বিটের সমন্ত সারফেসের সাথে ছিদ্রের সারফেসের ঘর্ষণ লাগে না। ফলে ড্রিল বিট এবং ওয়ার্কশিস কম গরম হয়।

১৫.৩ ছিল বিটের প্রেপিবিভাগ (Classification of Drill Bit) :

দ্রিল বিটকে বঙ্কির গঠন অনুযায়ী প্রধানত দুইটি শ্রেণিতে বিভক্ত করা যায়। বেমন :

- ১। ফ্লাট দ্রিল বিট: এই প্রকার দ্রিল বিটের মুখের সন্নিহিত স্থান সমতল হয়। সাধারণত কামারশালায় পিটিয়ে এটা তৈরি করা হয়ে থাকে। এটা অতি সহজে, অল্প সময়ে ও কম খরচে তৈরি করা যায়।
- (২) টুইস্ট ছ্রিল বিট: এই প্রকার ড্রিল বিটের উপরিভাগে মোচড়ানো বা পেঁচানো রক্ষের নালী বা ফুট কাটা থাকে। এটা সাধারণ আধুনিক মেশিনপত্র দ্বারা তৈরি করা হর। টুইস্ট ড্রিল বিটকে প্রধানত দুই ভাগে বিভক্ত করা হর। যেমন:

(ল) স্ট্যাভার্ড টুইস্ট ড্রিল বিট :

- ১। স্টেইট শ্যাংক দ্রিল বিট (Straight shank drill bit)
- ২। টেপার শ্যাংক দ্রিল বিট (Taper shank drill bit)

(খ) বিশেষ ধরনের টুইন্ট ড্রিল বিট :

- ১। প্রি ও ফোর ফুটেড দ্বিল বিট (Three and four fluted drill bit)
- ২। কুইক হেলিক্স দ্রিল বিট (Quick helix drill bit)
- ও। স্লো হেলিক্স দ্রিল বিট (Slow helix drill bit)
- ৪। ডিপ হোল দ্বিল বিট (Deep hole drill bit)
- ৫। ক্র্যাংক শ্যাফট দ্বিল বিট (Crank shaft drill bit)
- ७। असम रहोन फ्रिन निष्टे (Oil hole drill bit)
- ৭। স্টাৰ দ্বিল বিট (Stub drill bit)
- ৮। স্টেপ দ্ধিল বিট (Step drill bit)

দ্রিল বিটকে মাপের প্রকাশ অনুসারে চারভাগে ভাগ করা যায়। যেমন :-

১। মিলিমিটার সাইজ ড্রিল বিট–ড্রিল বিটসমূহের স্ট্যান্ডার্ড আকার মেট্রিক পদ্ধতিতে কিলিমিটারে প্রকাশ করা হয়। কিলিমিটার ড্রিল বিট সাধারণত ০.২৫ থেকে ৮০ মি.মি. পর্যন্ত বিশিষ্ট হয়ে থাকে। এদের প্রচলিত ধামসমূহ নিমুদ্ধপ:-

০.২৫ থেকে ১০ মি. মি. ০.০৫ মি.মি. ধাপ ১০ মি মি. এর উর্ধ্বে-০.৫ মি.মি. ধাপ

- ২। পেটার সাইজ দ্রিল বিট- ইংরেজি A থেকে Z অক্ষর দ্বারা প্রকাশ করা হয়। A থেকে সর্বনিয়ু আকার হুরু এবং এর মান ০.২৩৪ ইঞ্জি বা ৫.৯৪ মি.মি. আর Z হলো সর্বোচ্চ আকার এবং এর মান ০.৪১ ইঞ্জি বা ১০.৪৯ মি.মি.
- ৩। নদর সাইজ দ্রিল বিট্ -১ থেকে ৮০ পর্যন্ত সংখ্যা বা নদর দারা ম্যাপ প্রকাশ করা হয়। ৮০ নদর থেকে সর্বনিমু আকার তরু হয় এবং এর মান ০.১৩৫ ইঞ্চি বা ০.৩৪৫ মি.মি. আর ১ হলো সর্বোচ্চ আকার এবং এর মান ০.২২৮ ইঞ্চি বা ৫.৭৯ মি.মি.।
- 🛾 ৪। ইঞ্চির ফ্যাকশন সাইজ ড্রিল বিট্- ইঞ্চি ক্রমের ভগ্নাংশ এবং ভগ্নাংশসহ পূর্ণ সংখ্যা দ্বারা মাপ ড্রিল বিটের মাপ।

চিত্র: ১৪.৩ ড্রিল বিটের সম্মুখ অংশ

ড্রিলের বিবরণ

কোনো দ্রিল বিটের বিবরণ দিতে হলে, এটার ব্যাসের মাপ, শ্যাংকের রকম (অর্থাৎ টেপার কিংবো স্ট্রেইট), টুইস্ট কিংবা ফ্ল্যাট শ্রেণির দ্রিল বিট এবং কি ধাতু দ্বারা এটা তৈরি ইত্যাদি বিষয় উল্লেখ করার প্রয়োজন হয়। যেমন- ১২ মি.মি. স্ট্রেইট শ্যাংক, হাই স্পীড টুইস্ট দ্রিল বিট্।

১৫.৪ বিভিন্ন প্রকার ড্রিন্স বিটের ব্যবহার (Uses of Different types of Drill Bit) :

(১) ফ্লাট ড্রিল বিট

ঘড়ি এবং ইনস্টুমেন্ট তৈরির মতো সৃষ্ম কাজে ফ্ল্যাট দ্রিল ব্যবহৃত হয়। তাছাড়া অ্যালমুনিয়াম, ম্যাগনেসিয়াম এবং এদের অ্যালয়—এর উপর ছিদ্র করতে এই দ্রিল খবই উপযোগী।

(২) স্ট্রেইট শ্যাংক ও টেপার শ্যাংক ড্রিল বিট

প্রায় সকল প্রকারের দ্বিল বিটই এ দুই প্রকারের হয়ে থাকে। বডির গঠনেরই উপরই কাজের প্রকার এবং ব্যবহার নির্ভরশীল। উভয় প্রকার দ্বিল বিটই সাধারণ ছিদ্র বা দ্রিল করতে ব্যবহৃত হয়।

(৩) থ্রি ও ফোর ফুটেড ড্রিল বিট

এ প্রকার দ্রিলকে কোর (Core) দ্রিল বলা হয়। বিদ্যমান ছিদ্রের ব্যাস বৃদ্ধি করার জন্যই কোর দ্রিল ব্যবহৃত হয়।

(৪) কুইক হেলিক্স ড্রিল বিট

অ্যালুমিনিয়াম, ম্যাগনেশিয়াম, তামা ও অন্যান্য নরম ধাতু দ্রিল করার জন্য কুইক হেলিক্স দ্রিল ব্যবহৃত হয়।

(৫) হেলিক্স ড্রিল বিট

পিতল, ব্ৰোঞ্জ গ্যানমেটালএবং বেকেলাইট, এবোনাইট ইত্যাদি থার্মোসেটিং প্লাস্টিক দ্রিল করতে এ দ্রিল বিট্ ব্যবহৃত হয়।

(৬) ডিপ হোল ড্রিল বিট্

গভীর ছিদ্র দ্রিলিং করার জন্য ব্যবহৃত হয়।

(৭) ক্র্যাংক শ্যাফট ড্রিল বিট

ক্ষুদ্র ব্যাস বিশিষ্ট গভীর ছিদ্র ড্রিলিং করার জন্য এই ড্রিল বিট ব্যবহৃত হয়।

(৮) অয়েল হোল দ্রিল বিট

অসুবিধাজনক স্থানে গভীর ছিদ্র ড্রিলিং করতে অয়েল হোল ড্রিল, বিট ব্যবহৃত হয়।

(৯) স্টাব দ্রিল বিট

পোর্টেবল ড্রিলিং মেশিন, টারেট লেদ ও আটা লেদে ড্রিলিং করার জন্য ব্যবহৃত হয়।

(১০) স্টেপ ড্রিল বিট

একসাথে ড্রিলিং ও কাউন্টার সিংকিং, ড্রিলিং ও কাউন্টার বোরিং বা একাধিক ব্যাস বিশিষ্ট ড্রিলিং করার জন্য স্টেপ ড্রিল বিট ব্যবহৃত হয়।

১৫.৫ কাটিং অ্যাংগেল ও ক্লিয়ারেল অ্যাংগেল (Cutting Angle and Clearance Angle) :

এর অপর নাম লিপ অ্যাংগেল। ড্রিল বিটের কাটিং এজ—এর অক্ষের সাথে যে কোণ উৎপন্ন করে তাকে কাটিং অ্যাংগেল বলা হয়। সাধারণ কাজে এই কোণ উৎপন্ন করে তাকে কাটিং অ্যাংগল বলা হয়। সাধারণ কাজে এই কোণ ৫৯০ রাখা নিয়ম। ফলে দুইটি কাটিং কাজ—এর অন্তর্বতী কোণ ১১৮০ (৫৯° এর দ্বিশুণ) হয়। বিভিন্ন বস্তু ভেদে কাজ করার জন্য কাটিং অ্যাংগেল পরিমাণ বিভিন্ন হয়। নিয়ে এটি উল্লেখ করা হলো।

ওয়ার্কপিস ম্যাটেরিয়ালস	কাটিং (পয়েন্ট) অ্যাংগল
স্টীল, ক্যাপ্ট আয়রন, অ্যালয়েড ও	200°
ননঅ্যালয়েড ক্যান্টিংস	
ব্রাস, ব্রোঞ্জ, নিকেন্স, জিঙ্ক অ্যালয়,	22F ₀
হোয়াইট মেটাল	
হিটট্রিটেড স্টীল, অ্যালয় স্টীল	20°
স্ট্রেইনলেস স্টীল	\$80°
হোয়াইট কাস্ট আয়রন	\$00°
কপার, অ্যালুমিনিয়াম, প্লাস্টিক, শক্ত রাবার, মার্বেল, স্ে-ট কার্বন	ρο°
কাঠ	⊌o°

ক্লিয়ারেন্স অ্যাংগেল

পয়েন্ট কাটিং এজের ঠিক পিছনের অংশে যা গ্রাইন্ডিং করে কমানো হয় অর্থাৎ কাটিং এজের পশ্চাৎদিক যে কোণে ঢালু করা থাকে তাকে ক্লিয়ারেন্স অ্যাংগেল বলা হয়। ধাতু ভেদে এ কোণের পরিমাণ বিভিন্ন রকম হয়। নিম্নে এটি উল্লেখ করা হলো।

ধাতু	ক্লিয়ারেন্স অ্যাংগল	
নরম এবং সাধারণ স্টিল	১২° হইতে ১৫°	
শক্ত স্টিল	৯° হইতে ১২°	
ব্রাস, ব্রোঞ্জ, কপার, সাধারণ কাস্ট আয়রন	24°	
প্লাস্টিক, শব্জ রাবার	২৫° হইতে ৩০°	

১৫.৬ কার্যোপযোগী ড্রিল বিট নির্বাচন কৌশল (Workable Drill Bit Selection Technic):

নিমুলিখিত লক্ষণগুলো যে ড্রিল বিটে থাকে, তাকেই সাধারণত ব্যবহার উপযোগী বা কার্যোপযোগী ড্রিল নিমুলিখিত লক্ষণগুলি যে বিট বলে পণ্য করা হয়—

(১) যে দ্রিল বিটের শ্যাংক, ট্যাং এবং বডি অংশ সম্পূর্ণ সোজা থাকে এবং উপরিভাগে কোনো আঘাত চিহ্ন বা অতিরিক্ত ধাতু থাকে না।

- (২) যার ফুটে কোনো ফাটল (Crack) থাকে না।
- (৩) যে ড্রিল বিটের কাটিং এজের দৈর্ঘ্য পরস্পর সমান আছে এবং তা ড্রিলের অক্ষের সাথে প্রত্যেক দিকে সমান কোণে গঠিত।
- (8) যার ক্লিয়ারেন্স অ্যাংগেল উভয় দিকে সমান এবং ধাতু অনুসারে সঠিক আছে।
- (৫) যার কাটিং এজ ধারালো এবং কোথায় ভাঙ্গেনি।
- (৬) যে ড্রিল বিটের ডেড সেন্টার বা পয়েন্ট অক্ষের ঠিক উপরে বর্তমান।
- (৭) যে ড্রিল বিটের মার্জিন অংশ সমান এবং সম্পূর্ণ আঘাতচিহ্ন মুক্ত।
- (৮) ধাতৃ অনুসারে কাটিং অ্যাংগেল সঠিক পরিমাণের থাকলে।

প্রশ্নমালা-১৫

অতি সংক্ষিপ্ত প্রশ্ন

- ১। দ্রিল বিটকে চলিতভাবে কী নামে ডাকা হয়?
- ২। জিল বিট কী?
- ৩। ড্রিল বিট কোন্ কোন্ ধাতু দ্বারা গঠিত হয়?
- ৪। শ্যাংক কাকে বলে?
- ৫। ট্যাংক কাকে বলে?
- ৬। মার্জিন কাকে বলে?
- ৭। ডেড সেন্টার কী?
- ৮। বডির গঠন অনুযায়ী দ্রিল বিট কত প্রকার ও কী কী?
- ৯। কাটিং অ্যাংগেল কাকে বলে?
- ১০। ক্রিয়ারেন্স অ্যাংগেল কাকে বলে?

मशक्किल थन :

- ১১। দ্রিল বিট বলতে কী বোঝায়?
- ১২। দ্রিল বিট কী কী অংশ নিয়ে গঠিত?
- ১৩। ড্রিল বিটের শ্রেণিবিভাগ কর।
- ১৪। ফ্ল্যাট ড্রিল বিটের ব্যবহার দেখাও।
- ১৫। কাটিং অ্যাংগেল বলতে কী বোঝায়?

- ১৬। ক্লিয়ারেন্স অ্যাংগেল বলতে কী বোঝায়?
- ১৭। কার্যোপযোগী ড্রিল বিটের ২টি শর্ত উল্লেখ কর।
- ১৮। একটি ড্রিলের বিবরণ দেখাও।
- ১৯। মিলি মিটার সাজই দ্রিল বিটের প্রচলিত ধাপসমূহ কী কী?
- ২০। তিনটি বিশেষ ধরনের টুইস্ট ড্রিল বিটের নাম লেখ।

রচনামূলক প্রশ্ন :

- ২১। দ্রিল বিটের বিভিন্ন অংশের নাম লেখ।
- ২২। দ্রিল বিটের শ্রেণিবিভাগ দেখাও।
- ২৩। দ্রিল বিটের বিবরণ কীভাবে প্রকাশ করা হয়?
- ২৪। বিভিন্ন প্রকার দ্বিল বিটের ব্যবহার দেখাও।
- ২৫। ৫টি বিশেষ ধরনের ড্রিল বিটের নাম লেখ।
- ২৬। ৩টি ড্রিল বিটের প্রধান অংশের বর্ণনা দাও।
- ২৭। একটি দ্রিল বিটের ছবি এঁকে বিভিন্ন অংশ চিহ্নিত কর।

ষড়দশ অধ্যায়

কাউন্টার সিংকিং প্রক্রিয়া

(Counter Sinking Process)

১৬.১ কাউন্টার শিংকিং (Counter sinking) ঃ

কোনো ছিদ্রের মুখকে ট্যাপার করে বড় করে দেয়াকে সিংকিং বলে। সাধারণত ক্তু ও রিভেটের মাথা ছিদ্রের ভিতর বসানোর জন্য কাউন্টার সিংকিং করা হয়। সাধারণত কাউন্টার সিংকিং টুল দিয়ে ৮২° কোণে এ গর্ত করা হয়েছে। চিত্রে কাউন্টার সিংকিং দেখানো হয়েছে।

কাউন্টার সিংকিং টুলস (Counter sinking tools):

বিভিন্ন কাজ ও ধাতৃর বিভিন্নতার জন্য ভিন্ন ভিন্ন ধরনের কাউন্টার সিংকিং টুল ব্যবহৃত হয়। সাধারণত তিন প্রকারের কাউন্টার সিংকিং টুল ব্যবহার হয়ে থাকে।

- ক) ড্রিল পয়েন্টকে প্রয়োজনীয় কোণে গ্রাইভিং করা টুল
- খ) সেলফ সেন্টারিং কাউন্টার সিংকিং টুল
- গ) পাইলট কাউন্টার সিংকিং টুল

১৬.২ কাউন্টার সিংকিং প্রয়োজনীয়তা :

চিত্র : ১৫.১ কাউন্টার সিংকিং

চিত্র : ১৫.২ কাউন্টার সিংকিং টুলস

সাধারণত ক্লুও রিভেটের মাখা ছিদ্রের ভিতরে বসানোর জন্য কাউন্টার সিংকিং করা হয়। কাউন্টার সিংক টুল দিয়ে ৮২° কোণে এই গর্ত করা হয়। বিশেষ কাজে কখনও কখনও ৭২°, ৯০° ও ১২০° কোণের কাউন্টার সিংক ব্যবহৃত হয়। ৬০° কোণ বিশিষ্ট কাউন্টার সিংক টুলকে সেন্টার রিমারও বলা হয় কারণ এর প্রাথমিক উদ্দেশ্য হলো সেন্টার হোল তৈরি করা।

১৬.৩ কাউটার সিংকিং টুলের ব্যবহার (Uses of counter sinking Tools) :

কু ও রিভেটের মাথা ছিদ্রের মধ্যে বসাবার জন্য প্রথমে নির্দিষ্টমাপের করে ৬০° অথবা ৯০° ডিম্মি কোণে কাউন্টার সিংকিং করা হয়। কাউন্টার সিংকিং—এর গভীরতা কু বা রিভেটের হেডের উপর নির্ভরশীল। ড্রিলের স্পীডের তুলনায় কাউন্টার সিংকিং—এর স্পীড তুলনামূলক কম হবে। ফ্ল্যাট হেড ক্কু বা গেজ দিয়ে কাউন্টার সিংকিং—এর গভীরতা কম হলে ক্কু হেড উপরে আসবে আর গভীরতা বেশি হলে ক্কু হেড নিচে নেমে যাবে। ড্রিল মেশিনে প্রথমে ছিন্ন করার পর কাউন্টার সিংক টুল ব্যবহার করা হয়। নরম ধাতুর জন্যও বিভিন্ন ধরনের টুল ব্যবহৃত হয়।

প্রশ্নমালা-১৫

অতি সংক্ষিপ্ত প্রশ্ন :

- ১। কাউন্টার সিংকিং কাকে বলে?
- ২। কাউন্টার সিংকিং কেন করা হয়?
- ৩। সাধারণত কত ডিগ্রি কোণে কাউন্টার সিংক করা হয়।
- 8। সেন্টার রিমার কাকে বলে?
- ৫। কাউন্টার সিংকিং টুল কত প্রকার?

সংক্রিপ্ত প্রশ্ন :

- ৬। কাউন্টার সিংকিং বলতে কী বোঝায়?
- ৭। কাউন্টার সিংকিং-এর উদ্দেশ্য কী?
- ৮। বিশেষ কাজে কত ডিগ্রি কোণে কাউন্টার সিংক করা হয়?
- ৯। কাউন্টার সিংকিং টুলস কত প্রকার ও কী কী?
- ১০। কাউন্টার সিংকিং টুলসের ২টি ব্যবহার দেখাও?

রচনামূলক প্রশ্ন :

- ১১। কাউন্টার সিংকিং বলতে কী বোঝায়? চিত্র উল্লেখ কর।
- ১২। কাউন্টার সিংকিং-এর প্রয়োজনীয়তা উল্লেখ কর?
- ১৩। বিভিন্ন প্রকার কাউন্টার সিংকিং টুলের নাম লেখ?
- ১৪ | কাউন্টার সিংকিং প্রণালি বর্ণনা কর?
- ১৫। বিভিন্ন প্রকার কাউন্টার সিংকিং টুলের কোণের পরিমাণ উল্লেখ কর।

সপ্তদশ অধ্যায়

প্যাঁচ বা প্ৰেড (Thread)

১৭.১ পাঁচ (Tread) :

আক্ষ থেকে সমান দ্রত্বে কোন সোজা নলাকৃতি তলের উপর সমানভাবে প্যাচানো মাথা উঠানো আকৃতিকে প্যাচ প্রেড বলে। বাংলা ভাষায় চলিতভাবে একে প্যাচ, গুনা বা চুড়ি বলে। প্রেড ভিতর অথবা বাইরের তলে হতে পারে। বোল্টের বাইরে এবং নাটের ভিতরে প্যাচ করা থাকে। প্রেডের প্যাচানো উঁচু মাথার আকৃতি সমস্ত দৈর্ঘ্য একই রকম হয়। ট্যাপ ও ডাই—এর সাহায্যে হাতে এবং মেশিনের সাহায্যেও প্যাচ কটা যায়। বড় সাইজের স্কুকে বোল্ট বলে। সাধারণত ১/৪ ইঞ্জির কম ডায়ামিটার হলে ক্কু এবং বেশি হলে বোল্ট বলা হয়।

প্রতি ইঞ্চিতে প্রেডের সংখ্যা বা টিপিআই:

ইংরেজিতে বলা হয় TPI(Number of threads per inch) অর্থাৎ এক ইঞ্চি লম্বায় কতকগুলো প্রেড আছে। কেল দিয়ে সাধারণত প্রেডের টিপিআই বের করা যায়। সবচেয়ে সহজ উপায় হলো প্রেড পিচ গেজ দ্বারা। স্টান্ডার্ড থ্রেডের কোনো ডায়ামিটারে কত টিপিআই হবে তা আগে থেকেই ঠিক করা থাকে। প্রেডের সংখ্যা বেশি হলে ফাইন পিচ প্রেড বলে। আর প্রেডের সংখ্যা কম হলে কোর্স পিচ প্রেড বলে। সচরাচর সমস্ত কাজে কোর্স প্রেড এবং মোটরগাড়ি এরোপেন ও সুক্ষভাবে অ্যাডজাস্টের কাজে ফাইন থ্রেড ব্যবহার করা হয়।

১৭.২ পাঁচ-এর বিভিন্ন স্টাভার্ড (Different standard of Thread):

একটা বোল্ট বা নাটের জায়গায় যেন অন্য একটা নাট বা বোল্ট ব্যবহার করা যায় এই উদ্দেশ্যে প্রত্যেক শ্রেণির প্রেডের অন্তর্বতী কোণ, গভীরতা ইত্যাদি নির্দিষ্ট মানে তৈরি হয়ে থাকে। এই নির্দিষ্ট মান বিশিষ্ট প্রেডকে স্টান্ডার্ড প্রেড বলে। ভী প্রেড এই কয় প্রকার স্টান্ডার্ড প্রচলিত।

- ১। ব্রিটিশ স্টান্ডার্ড (British standard)
- ২। আমেরিকান স্টান্ডার্ড (American standard)
- ৩। ইন্টারন্যাশনাল স্টান্ডার্ড (International standard)

১। ব্রিটিশ স্টান্ডার্ড :

ব্রিটিশ স্টাভার্ড থ্রেড আবার বিভিন্ন ধরনের হয়। সেগুলো হলো-

ক) ব্রিটিশ স্টান্তার্ড প্রেড হুইটওয়ার্থ (B.S.W) প্রেড- সচরাচর সমস্ত কাজেই বিএস ডাবলু থ্রেড ব্যবহার করা হয়। এর শীর্ষ অল্প গোল করা থাকে। এর কোণ (Angle)=৫৫ গভীরতা (Depth) = ০.৬৪০৩ x পিচ = ০.৬৪ x পিচ (স্থুলভাবে)

বি এস ডাবলু বি এস এফ প্রেডের মাপ

বোল্টের ডায়মেটার	বি এস আই	বি এস এফ
ইম্বি	(B.S.W)	(B.S.F)
3/6)	80	
@/o2	৩২	
৩/১৬)	28	७२
9/02	28	২৮
2/8	२०	২৬
@/S&	24	22
0/6	36	20

খ) ব্রিটিশ স্টান্ডার্ড ফাইন (B.S.F) থ্রেড্

এই থ্রেডের শীর্ষ, গভীরতা এবং কোণের মান ই.ঝ.ড থ্রেডের মতন। কিন্তু প্রতি ইঞ্চিতে প্রেডের সংখ্যা বেশি। এই থ্রেড বিশিষ্ট স্কুকে সৃক্ষভাবে নিয়ন্ত্রণ করা যায়। এর কোন (Angle)=৫৫°

গ) ব্রিটিশ স্টাভার্ড পাইপ (B,S,P) থ্রেড

এই প্রেডকে গ্যাস প্রেড ও বলে। এর শীর্ষ, গভীরতা ও কোণের মাণ ই.ঝ.ড প্রেডেরই মতো। কিন্তু প্রতি ইঞ্চিতে দাঁতের সংখ্যা ই.ঝ,ড প্রেডের চেয়ে অনেক বেশি। এর কোণ (Angle)=৫৫°

ব্রিটিশ স্টান্ডার্ড পাইপ প্রেডের মাপ

(বি এস পি)

পাইপের ভায়মেটার (ভেতরের মাপ)ইঞ্চি	টিপিআই	পাইপের ডায়মেটার (ভেতরের মাপ) ইঞ্চি	টিপিআই
	২৮		22
	29	8	22
	29	æ	22
	78	৬	77
	78	9	30
	22	b	30
	22	8	30
	22	20	30
	22	22	ъ
	22	22	6
		22	

খ) ব্রিটিশ অ্যাসোসিয়েশন স্টান্ডার্ড প্রেড (B.A)
এই প্রেডের শীর্ষ গোল কিন্তু গভীরতা ও কোণ B.S.W প্রেডের চেয়ে পৃথক।
কোণ (Angle) = 8৭.৫°
গভীরতা (Depth)=০.৬৪০৩ x পিচ
এই প্রেডের মাপকে ০-২৫ পর্যন্ত সংখ্যা দিয়ে প্রকাশ করা হয়।
ক) আমেরিকান ন্যাশনাল ও কোর্স (A.N.C) প্রেড

একে সংক্ষেপে N.C. থ্রেড বলে। B. S. W থেডের বিকল্প হিসেবে এই থ্রেড ব্যবহার করা যায়। এর কোণ (Angle)=৬০°

বিএ থ্রেডের মাপ

সংখ্যা	মিলিমিটার	ইঞ্চি	টি পি আই
0	6.0	.২৩৬	₹€.8
2	c.9	.208	26.2
2	8.9	.560	99.8
9	8.3	.362	ರ8.৮
8	ల.৬	.>86.	Ob.b
œ	9.2	.526	80.0
9	2.5	.320	89.8
9	2.0	.086	
7	2.2	.069	
9	5.8	.090	
00	3.9	.069	
22	3.0	.০৬৯	
25	2.0	.003	
७०	5.2	.089	
84	3.0	.৩৯	
36	6,0	.000	

২) আমেরিকান ন্যাশনাল স্ট্যান্ডার্ড ভী প্রেড এই প্রেড আগে সেলার্স নামে পরিচিত ছিল। এই প্রেডের শীর্ষ সমতল। কোণ= ৬০° গভীরতা= ০.৬৫৯ পিচ। আমেরিকান ন্যাশনাল স্ট্যান্ডার্ড ভী প্রেডের এই থ্রেডের এই দুইপ্রকার প্রেডই বেশি প্রচলিত। আমেরিকান ন্যাশনাল প্রেডের চার্ট (ইউ. এন. ও ইউ. এন এফ)

ভা য়মেটো র	টি পি আই	
ইঞ্চি	কোর্স থ্রেড সিরিজ (course thread series) U.N.C	ফা্ইন থ্রেড সিরিজ (Fine thread series)
\$/8	২০	२৮
c/56	24	28
9/6	36	28
9/১৬	28	२०
5/2	20	20
৯/১৬	25	२४
æ/v	22	24
0/8	30	56
9/6	8	28
2	b	75
2 2	٩	25
2 8	9	75
> %	4	25
۶ ۵	y	25

খ) আমেরিকান ন্যাশনাল ফাইল (A. N. F.) থ্রেড

এই প্রেডের সংক্ষেপে N. F. প্রেড বলে। BSF প্রেডের পরিপূরক হিসেবে এই প্রেড ব্যবহার করা যায়।

(ক) ইউনিফায়েড প্রেড-

বর্তমান সময়ে যখন পৃথিবীর সমস্ত দেশের মধ্যে ব্যবসা–বাণিজ্য চলছে, তখন ভিন্ন ভিন্ন দেশের ভিন্ন ভিন্ন স্ট্যান্ডার্ড থাকলে প্রচুর অসুবিধা সৃষ্টি হয়। এই অসুবিধা দূর করার জন্য সমস্ত পৃথিবীতে এটাই স্ট্যান্ডার্ড প্রেড ব্যবহারের বিষয় স্থির হয়েছে।

৩) ইন্টারন্যাশনাল স্ট্যান্ডার্ড থ্রেড

টি. পি. আই.

এই প্রেডকেই ইউনিফায়েড প্রেড বলা হয়। এই থেদ্রের কোণ ৬০°। এই প্রেড দুই রকমের হয়। (১) ইউনিফায়েড কোর্স প্রেড (UNC) এবং (২) ইউনিফায়েড ফাইন প্রেড (U.N.F)

ইউনিফায়েড প্রেডের চার্ট (কোর্স সিরিজ)

U.N.C. Thread

কোর ডায়মেটার

ভায়মেটোর

हें बिक		ইম্বি
(14)		4140
7	29	.288
8	29	.446
	26	
4	110	.୭৫୦
১৬	38	.80%
<u>~</u>	20	
b		.8%0
	25	.৫১৩
9	77	
26		. ৭৩৯
<u>\$</u>	৬২৭	
8	8	.889
4	b	.500
9 20		
20	9	\$90,6
7 7	٩	5.590
20	I III is a	
	৬	5.25@
2 2	6	3.000
	1 1 7	
2 80	œ	5.929
T.H.	8 -	২.৬৯৩
2	3	
9		৩.৬৯৩
8	8	
	8	

ইউনিফায়েড প্রেডের চার্ট (কোর্স সিরিজ)

U.NC.thread

ডায়মেটোর	টি, পি, আই,	
ইঞ্বি	কোর্স থ্রেড সিরিজ	কোর ভায়মেটার (Fine tread series)
	(course thread series) U.N.C	
۵/8	26	.২০৬
@/56	₹8	
0/6	₹8	.265
9/56		
5/2	20	.৩২৪
৯/১৬		_৩৭৬
a/v	২০	
9/8		.৪৩৯
9/6	26-	
2		.888
3-	76	
<u>»</u>		.009
	১৬	
7 2 8		.৬৭৩
	28	15.57
2 <u>~</u>	33	. එක්ම
. 5	25	3.020
2 2 2	32	3.38₺
	25	3.290
	32	১.৩৯৩

খ) মেট্রিক প্রেড

এই থ্রেড অনেকটা আমেরিকান প্রেডের মতো। কোণ ৬০° গভীরতা=০,৭০৩৫ x পিচ ৬০°। রুট গোল করা এবং ক্রেস্ট সমতল। মেট্রিক প্রেডকে মিলিমিটারে প্রকাশ করা হয়।

ইন্টারন্যাশনাল মেট্রিক প্রেডের চার্ট

(আই এস ও)

পিচ মিলিমিটার

মেজর ডায়মেটার	কোর্স থেড সিরিজ	ফা্ইন প্রেড	
মিলিমিটার	সচরাচর ব্যবহৃত		
3		0.20	
2		0.20	
•		0.00	
8		0.00	
œ		0.00	
৬	2	0.90	
9	3	0.90	
ъ	3.20	2	
ঠ	5.20	3	
30	5.00	2	
25	3.9€	3.0	
28	2	3.0	
১৬	2	3.0	
24	2.0	3.0	
20	2.0	3.0	
२२	2.0	3.0	
28	9	2	
29	9	2	
90	9.0	2	
ಅ	9.0	2	
৩৬	8	9	
ত ক	8	٥	
82	8.0	•	
80	8.0	9	
86	œ	٥	
৫ २	œ	9	
৫৬	¢.¢	8	
৬০	¢.¢	8	

১৭,৩ ছু শ্রেডের বিভিন্ন অংশ (Different parts of screw Thread)

পিচ: পিচ বলতে একটা প্রেডের মাধা অথবা মূলের সেন্টার থেকে ঠিক তার পারের প্রেডের মাধা বা মূলের সেন্টার পর্যন্ত দূরত্ব বোঝানো হয়। কোন বোল্টকে যদি নাটের মধ্যে এক পাক ঘোরান যায় তাহলে বোল্টটা নাটের মধ্যে ঠিক এক পিচের সমান ঢেকে। অর্থাৎ পিচ ১/৮ ইঞ্চি হলে এক পাক ঘোরালে বোল্ট ১/৮ ইঞ্চি ভিতরে চুকবে।

ডেপথ: যে কোনো প্রেডের মাথা থেকে মূল পর্যন্ত মাপই হলো ডেপথ বা গন্তীরতা।

চিত্ৰ: ১৭.১ ফু খ্ৰেড

আউট সাইভ ভারামিটার : পরস্পর বিপরীত দিকের দুটো প্রেডের মাধার দূরত্বের মাপ নিলে আউটসাইড ডায়ামিটারের মাপ পাওয়া যায়। এর অন্য নাম মেজর ডায়ামিটার।

কোর ভারামিটার : মেজর ভারামিটার থেকে দুইদিকের গভীরতার বিশুণ মাপ বাদ দিলে কোর ভারামিটার বা রুট ভারামিটার পাওরা বায়। কোর ভারামিটারের অন্য নাম মাইনর ভারামিটার। মাইনর ভারামিটার = মেজর ভারা-২ x ভেপথ।

পিচ ভারামিটার : প্রেডের আউট সাইড ভারামিটার থেকে প্রেডের গভীরতা বাদ দিলে পাওয়া যায় পিচ ভারামিটার।

প্রেড জ্যাংগেল : প্যাঁচের দূ-পাশের বা ক্ল্যাংক-এর মধ্যবর্তী কোণকে প্রেড জ্যাংগেল বলে। বিভিন্ন স্ট্যাভার্ড প্রেডের জ্যাংগেল ও বিভিন্ন রকম হয়। সচরাচর ৫৫° অথবা ৬০° কোণের প্রচলন বেশি।

ক্রেস্ট : ক্রেস্ট মানে পাঁচের শীর্ষ বা চূড়া। শ্রেভের দুইদিকের ঢাল বা ফ্ল্যাংক বেখানে মিলিত হয় সেখানকার নাম ক্রেস্ট।

ক্ষট : ক্লট শব্দটির মানে মূল। থ্রেডের দুইদিকের ঢাল বা ফ্ল্যাংক সর্বনিমু যেখানে মিলিভ হয় তাকে রুট বলে। ফ্ল্যাংক : প্যাঁচের ঢালকে ফ্ল্যাংক বলে।

১৭.৪ প্রেড কাটার প্রণাশি

বিভিন্ন প্রকার প্রেড

প্রেড ছাড়াও বিশেষ বিশেষ কাজের উপযোগী করে বিভিন্ন আকৃতির প্রেড ব্যবহৃত হয়। এগুলো হলো ক্ষরার, অ্যাকমি, বাট্রেস নাকল প্রেড ইত্যাদি।

ব্দরার শ্রেড

এই প্রেডের দূটো পাশ পরস্পরের সাথে সমান্তরাল থাকে। এগুলোর প্রত্যেকটা কোণ ৯০° থাকে। উপরের ক্ল্যাট

অংশ নিচের ফ্যাট অংশের সমান। প্রেডের গভীরতা পিচের অর্ধেক। গভীরতা = ০.৫ পিচ।

চিত্র: ১৭.২ স্কয়ার প্রেড

অ্যাক্মি প্রেড

দেখতে অনেকটা স্পয়ার শ্রেছের সমতন। এই শ্রেছের দুইপাশ অল্প চালু করা থাকে। কোপ =২৯°। ছেক্থ=০.৫ পিচ+০.০১ কর্যাট অংশের মাপ

চিত্ৰ ঃ ১৭.৩ আকমি শ্ৰেড

ৰাট্ৰেস শ্ৰেড

এর আকৃতি করাতে দাঁতের মতো একদিকে শোয়ানো। এর কোণ সাধারণত ৪৫°। গভীরতা=৬৯ পিচ।

চিত্ৰ ঃ ১৭.৪ বাট্ৰেস খ্ৰেড

নাকল প্ৰেড বৃত্ত

দুটো অর্ধবত জ্বড়লে নাকল আকৃতি পাওয়া যায়। এর কোণ সাধারণত ১৮০°

প্যাচ-এর ব্যবহার ক্ষেত্র (Field of uses of Thread):

থেডের নাম	ব্যবহার ক্ষেত্র	
ব্রিটিশ স্ট্যান্ডর্ড হুইটওয়ার্থ (B.S.W)	সচরাচর সমস্ত কাজে এই থ্রেডের ব্যবহার হয়।	
ব্রিটিশ স্ট্যান্ডর্ড ফাইন (B.S.F)	যখন ধারা ও কম্পন সহ্যকার দরকার হয় এমন জায়গায় ব্যবহৃত হয়। মোটর গাড়ি ও অ্যারোপ্লেনের বিভিন্ন অংশে এর ব্যবহার বেশি।	
ব্রিটিশ অ্যাসোসিয়েশন থ্রেড(B.A)	কম ডায়ামিটারের ফুতে এই প্রেড ব্যবহৃত হয়। সৃক্ষ যন্ত্রপাতি ফিটিং–এর কাজে এর ব্যবহার বেশি।	
ব্রিটিশ স্ট্যান্তর্ড পাইপ প্রেড (B.S.P)	পানির পাইপ, স্টিম পাইপে এই প্রেডের ব্যবহার করা হয়।	
আমেরিকান ন্যাশনাল ফার্ম(A.N.F)	আমেরিকান ইঞ্জিনিয়ার সচরাচর এই প্রেড ব্যবহার করেন।	
ইউনিফায়েড প্রেড (U.N.F)	পাতলা চাদরের টিউব, নাট এবং কপলিং-এর ক্ষেত্রে এ প্রেড ব্যবহার করা হয়।	
স্কয়ার থ্রেড মেকানিক্যাল শক্তিকে সরবরাহ করতে ভাইস ফ্ল্যান্ড জ্যাকে এই থ্রেড ব্যবহার করা হয়।		
এমকি শ্রেড	লেদ মেশিনের লীড ব্রু বা প্যাঁচরডে একমি খ্রেড থাকে	
নাকল প্রেড	রেলইঞ্জিনের দুটি বগি জোড়া দেবার জন্য কাপলিং স্কু থাকে কাপলিং স্কুতে নাকল থ্রেড ব্যবহৃত হয়।	

প্রশ্নমালা-১৭

অতিসংক্ষিপ্ত প্রশ্ন:

- ১) জু খ্রেড কাকে বলে?
- ২) স্কু থ্ৰেডকে বাংলা ভাষায় চলিত ভাবে কী বলা হয়?
- ৩) টিপিআই বলতে কী বোঝায়?
- ৪) ফাইন পিচ কাকে বলে?
- ৫) কোর্স পিচ কাকে বলে?
- ৬) স্ট্যান্ডার্ড থ্রেড কী?
- ৭) বিএসডাব্লিউ থ্রেডের গভীরতা কত?
- ৮) আমেরিকান ন্যাশনাল স্ট্যান্ডার্ড ভী খ্রেডের কোন কত ডিগ্রি?
- ৯) পিচ কাকে বলে?
- ১০) থ্রিডের যেকোনো একটির ব্যবহারিক ক্ষেত্রের নাম লেখ?

সংক্ষিপ্ত প্রশ্ন:

- ১১) পাঁচ বলতে কী বোঝ?
- ১২) স্ট্যান্ডার্ড থ্রেড বলতে কী বোঝায়?
- ১৩) ভী প্রেডকে সচরাচর কয়ভাগে ভাগ করা যায় ও কী কী?
- ১৪) ব্রিটিশ স্ট্যান্ডার্ড থ্রেডের কোনো ও গভীরতা কত?
- ১৫) আমেরিকান ন্যাশনাল স্ট্যান্ডার্ড থ্রেডের কোণ ও গভীরতা কত?
- ১৬) ইন্টারন্যাশনাল স্ট্যাভার্ড প্রেডের কোণ ও গভীরতা কত?
- ১৭) থ্রেডের প্রধান ৩টি, অংশের নাম লেখ?
- ১৮) কোর ডায়ামিটার বলতে কী বোঝায়?
- ১৯) প্যাচের ৩টি, ব্যবহারিক ক্ষেত্রের নাম লেখ?

রচনামূলক প্রশ্ন:

- ২০) ভী থ্রেড সম্পকিত নিচের শব্দগুলির ব্যাখ্যা কর− পিচ, মেজর ডায়া, নমিন্যাল ডায়া, কোর ডায়া, ক্রেস্ট।
- ২১) টিপিআই বলতে কী বুঝায়? ব্যাখ্যা কর।
- ২২) একটি ভী থ্রেডের চিত্র অংকন করে এর বিভিন্ন অংশ চিহ্নিত কর।
- ২৩) নিচের দেয়া প্রেডগুলির ব্যবহারিক ক্ষেত্র উল্লেখ কর-
 - ক) বি এস পি
 - খ) বি এস এফ
 - গ) ইউ এন এফ
 - ঘ) নাকল প্রেড
- ২৫) স্ট্যান্ডার্ড ভী প্রেড কয় প্রকার ও কী কী?
- ২৬) বিএসডবিউ (BSW) থ্রেডের গভীরতা সূত্র উল্লেখ কর।
- ২৭) নিচের দেয়া থ্রেডগুলির কোণের পরিমাণ উল্লেখ কর-
 - ক) বিএসডবিড (BSW) প্রেড
 - খ) ব্রিটিশ অ্যাসোসিয়েশন থ্রেড
 - গ) আমেরিকান ন্যাশনাল স্ট্যান্ডার্ড ভী থ্রেড
 - ঘ) ইউনিফায়েড থ্রেড
 - ঙ) মেট্রিক প্রেড

অষ্ট্রাদশ অধ্যায়

ট্যাপ (Tap)

১৮.১ ট্যাপ (Tap) :

ট্যাপ এক ধরনের মেটাল কাটিং টুল, যা গোল ছিদ্রের ভেতর অভ্যন্তরীণ স্কু-প্রেড বা গাঁচ উৎপন্ন করতে ব্যবহৃত হয়। এটা হাই কার্বন স্টিল বা হাই স্পীড স্টিল ছারা তৈরি হয় এবং এর যে অংশে কু-প্রেড থাকে, সেটি টেস্পার দেয়া থাকে। ট্যাপের প্রধান অংশ হচ্ছে দুটি, শ্যাঙ্ক এবং বিভ। শ্যাঙ্ক অংশ সমান মাপের গোল হয়। রেঞ্চ ছারা অটিকানোর জন্য এর মাধা বর্গাকার করা থাকে। বিড অংশ প্রেড কাটার উপযোগী করে তৈরি করা হয়। প্রেডগুলোর আড়াআড়িতে সাধারণত চারটি ফুট লম্বালম্বিভাবে কাটা থাকে, যা কাটিং এজ তৈরি করে।

১৮.২ বিভিন্ন স্ট্যান্ডার্ড-এর হস্তচালিড ট্যান (Different standard's Hand Tap) :

হস্তচালিত ট্যাপ বিভিন্ন স্ট্যান্ডার্ড এর হয়। যেমন: অংশ

চিত্র: ১৮.১ ট্যাপের বিভিন্ন অংশ

- (১) আমেরিকান ন্যাশনাল কোর্স (American National Coarse)-A N C
- (২) আমেরিকান ন্যাশনাল ফাইন (American National Fine)-A N F
- (৩) ইউনিফায়েড ন্যাশনাল ফাইন (Unified National Coarse))-UNC
- (8) ইউনিফায়েড ন্যাশনাল ফাইন (Unified National Fine)-U N F
- (৫) ব্রিটিশ স্ট্যান্ডার্ড ফাইন (British Standard Whitworth)-B S W
- (৬) ব্রিটিশ স্ট্যান্ডার্ড ফাইন (British Standard Fine)-B S W
- (৭) ব্রিটিশ অ্যানোসিয়েশন (British Stand Fine) B S F
- (৮) মেট্রিক (Metric)-M

১৮.৩ টাপ লেট (Tap set) :

তিনটি ট্যাপের সমস্বয়ে হ্যান্ড সেট গঠিত হয়। এদের বলা হয়-

- (ক) প্রথম বা ফাস্ট বা টেপার ট্যাপ
- (খ) দিতীয় বা সেকেন্ড বা ইন্টারমিডিয়েট বা প্লাগ ট্যাপ
- (গ) তৃতীয় বা থার্ড বা বটমিং ট্যাপ

টেপার ট্যাপের (Taper Tap) প্রান্ত থেকে পশ্চাতের দিকে তিনটি অথবা চারটি প্রেড টেপার করা থাকে।

চিত্র: ১৮.২ ট্যাপ সেট

প্লাগ ট্যাপের (Plug Tap) প্রাম্ভ থেকে পশ্চাতের দিকে তিনটি অথবা চারটি থ্রেড টেপার করা থাকে

বটমিং ট্যাপের (Bottoming Tap) প্রান্তে মাত্র একটি প্রেড টেপার করা থাকে। ট্যাপ সেটের সকল ট্যাপই একই পরিমাপের হয়। কোনো কোনো ট্যাপ সেটে ট্যাপ বুঝানোর জন্য একটি দাগ, প্রাগ ট্যাপ বুঝানোর জন্য দুইটি দাগ এবং বটমিং ট্যাপ বুঝানোর জন্য তিনটি দাগ কাটা থাকে বা বটমিং ট্যাপের ক্ষেত্রে দাগবিহীন থাকে।

ট্যাপ রেঞ্জ (Tap Wrench) : ট্যাপের মাথায় যে চতুদ্ধোণ অংশ আছে এর উপর রেঞ্জকে সেট করে এই রেঞ্জের সাহায্যে ট্যাপকে ঘুরানো হয়ে থাকে। হ্যান্ড ট্যাপিং ছাড়াও লেদ মেশিন ট্যাপ চালারার জন্য ও ট্যাপ রেঞ্জ ব্যবহৃত হয়। ট্যাপ রেঞ্জ বিভিন্ন প্রকার হয়। এর মধ্যে দুইটির চিত্র নিচে দেয়া হলো।

- (ক) সাধারণ মাপের জন্য
- (খ) ক্ষুদ্রতর ট্যাপের জন্য

উভয় প্রকার রেঞ্জই নিয়ন্ত্রশীল বা অ্যাডজাস্টেবল (Adjustable) রকমের। অর্থাৎ এটার মধ্যস্থিত ছিদের ব্যাসকে প্রয়োজন মতো ছোট বড় করে নিয়ে এদের সাহায্যে বিভিন্ন মাপের ট্যাপকে আটকিয়ে কাজ করা যায়। ছোট ট্যাপ ধরতে ছোট রেঞ্চ এবং বড় ট্যাপ ধরতে বড়

চিত্র :১৮.৩ ট্যাপ রেঞ্চ

ট্যাপ রেঞ্চ ব্যবহার করা উচিত। ছোট ট্যাপ ধরতে বড় ট্যাপ রেঞ্চ ব্যবহার করলে অধিক মোচড় শক্তি প্রয়োগের কারণে ট্যাপ ভেঙে যেতে পারে।

ট্যাপিং (Tapping)

ট্যাপ ব্যবহার করে ধাতুখন্ডের মধ্যে স্কু- প্রেড উৎপন্ন প্রণালীকে ট্যাপিং বলা হয়। ট্যাপিং-এর জন্য হ্যান্ড ট্যাপ ট্যাপ বেঞ্চ, কার্যবস্তু, অয়েল ক্যান (প্রয়োজনীয় ক্ষেত্রে) এবং ট্রাই ক্ষোয়ার প্রয়োজন হয়। ট্যাপিং-এর প্রয়োগক্ষেত্র হলো-

- ক) মেরামত ও রক্ষণাবেক্ষণের কাজ
- খ) নিৰ্মাণ কাজ
- গ) ইনস্ট্যালেশন ওয়ার্ক
- ঘ) অস্থায়ী জোড়ার কাজ
- ঙ) সাধারণ ফিটিং এর কাজ
- চ) প্লামিং-এর কাজ
- ছ) নাট তৈরিতে

১৮.৪ ট্যাপ ড্রিল সাইজ (Tap Drill Size)

ট্যাপিং অপারেশনের পূর্বে থ্রেডের জন্য প্রয়োজনীয় ধাতু রেখে ধাতুর মধ্যে ড্রিলার সাহায্য হোল বা গর্ত করতে হয়। এই গর্ত বা ছিদ্রুকে ট্যাপ সাইজ হোল বা ট্যাপ সাইজ ড্রিল বলে। ট্যাপ সাইজ হোল বা ট্যাপ সাই ড্রিল করর জন্য যে সাইজের ড্রিল বিট গভীরতা ব্যবহার করতে হবে সেই সাইজকে ট্যাপ ড্রিল সইজ বলা হয়। উল্লেখ্য, ট্যাপ দ্বারা থ্রেডের পূর্ণ গভীরতার ৭৫%-৮৮% পর্যন্ত কাটা যায়। কাজেই ট্যাপ ড্রিল সাইজ থ্রেডের মাইনর বা কোর ডায়মেটার থেকে বড় হয়। ট্যাপ ড্রিল সাইজ নির্বাচন অত্যন্ত গুরুত্বপূর্ণ কাজ এবং সতর্কতার সাথে করতে হয়। কারণ ট্যাপ ড্রিল সাইজ ছোট হলে ছিদ্রেও মধ্যে টাইপ আটকে যাবে এবং অতিরিক্ত চাপ প্রয়োগ ভেঙ্গে যাবে। আবার ট্যাপ ড্রিল সাইজ বড় হলে থ্রেডের গভীরতা কম হবে। ফলে প্রেড সংযোগ টিলা

থাকে এবং দীর্ঘস্থায়ী হয় না। ট্যাপের বাহিওে মাপ থেকে প্রেডের উভয় দিকের গভীরতার মাপ বিয়োগ করলে থ্রেডের কোর ডায়ামেটার পাওয়া যায় এবং এই মাপে ধাতুখণ্ডের মধ্যে ছিদ্র করতে হয়। ট্যাপ দ্রিল সাইজ নির্ণয় করতে নিচের সূত্রাবলি ব্যবহৃত হয়।

T. D. S = D-P (আমেরিকান ন্যাশনাল)

T.D.S = D-P (মেট্রিক)

T.D.S = D-1.13p (বিটিশ)

T.D.S = ট্যাপি ড্রিল সাইজ

D= থ্রেব বা ট্যাপের সাইজ

P= থেডের পিচ

N (প্রতি ইঞ্চিতে প্রেডের সংখ্যা)

মেট্রিক প্রণালিতে সকল পরিমাপ মিলিমিটার এবং আমেরিকান ন্যাশনাল ও ব্রিটিশ প্রণালিতে সকল পমিামাপ ইঞ্চিতে হয়।

উদাহারণ ১

১/২ ইঞ্চি বি এস ডব্লিউ (B. S. W) থ্রেডের জন্য ট্যাপ ড্রিল সাইজ নির্ণয় কর।

সমাধান:

সাধারণ কাজের জন্য -

ট্যাপ দ্রিল সাইজ = আউট সাইড ডায়ামেটার ১.১৩/টি. পি. আই

= ১/২ ইঞ্চি-১.১৩/১২ [যেহেতু ১/২ B. S. W থ্রেড ১২ টি. পি. আই থাকে]

= .৫০০ ইঞ্চি-.০৯৪২

=0.8০৫৮ ইঞ্চি =১৩/৩২ ইঞ্চি

উত্তর : সাধারণ কাজের জন্য প্রয়োজনীয় ট্যাপ দ্রিল সাইজ হবে ১৩/১২ ইঞ্চি।

উদাহারণ-২

১২ মি.মি. ডায়ামেটার ইন্টারন্যাশনাল মেট্রিক খ্রেডার নাটের জন্য ট্যাপ ড্রিল সাইজ নির্ণয় কর।

সমাধান :

আমরা জানি ইন্টারন্যাশনাল মেট্রিক থ্রেডের গভীরতা =০.৬৪৯৫ x পিচ

এবং ১২ মিলিমিটার ডায়ামেটার শ্রেডের পিচ হবে ১.৭৫ মিলিমিটার।

অতএব প্রেডের গভীরতা হবে = ০.৬৪৯৫ x ১.৭৫ মিলিমিটার

= ১.১৩৩৬৬২৫ মিলিমিটার

প্রেডের বাহিরের ডায়ামেটার থেকে দুই দিকের গভীরতা বিয়োগ করলে সম্পূর্ণ গভীরতায় কোর ডায়ামেটার পাওয়া যাবে। অর্থাৎ কোর ডায়মেটার = ১২ মি.মি. ১.১৩৬৬৫ x মি.মি.

= ৯.৭২৬২৫ মি.মি. =৯.৭৩ মি.মি.

প্রেডের সম্পূর্ণ গভীরতা ৭৫%-৮৮% গভীরতায় ট্যাপের সাহায্যে প্রেড উৎপন্ন করা হয়। অর্থাৎ ট্যাপ ড্রিল সাজই ৭৫%-৮৮% পর্যন্ত গভীরতায় প্রেড উৎপন্ন করে।

যদি ৭৫% গভীরতা হিসাব করা হয়,

ট্যাপ ড্রিল সাইজ=বাহিরের ব্যাস {(৭৫ x থ্রেডের গভীরতা x ২)}

= (.9@ x 0.68%@ x 3.9@ x 2)

= ১২-১.২৭০৫ = ১০.২৯৫ মি. মি.

যদি ৮৮% গভীরতা হিসাব করা হয়,

ট্যাপ ড্রিল সাইজ = বাহিরের ব্যাস ০.৮৮ থ্রেডের গভীরতা x ২

= ১২ মি.মি. (৮৮ x o.৬৪৯৫ x ১.৭৫ মি.মি. x ২)

= ১২ মি.মি. ২.০০০০৪৬ মি.মি. ১০ মি.মি.

পূর্বে উল্লেখিত সূত্র ব্যবহার করে পাই

ট্যাপ ড্রিল সাইজ=বাহিরের ব্যাস-থ্রেভের পিচ

= ১২ মি.মি.-১.৭৫ মি.মি.= ১০.২৫ মি.মি.

যা ৭৫%-৮৮% গভীরতায় মধ্যে আছে এবং হিসাব করলে দেখা যায় এই সূত্রে ব্যবহার করে ৭৭% গভীরতা পাওয়া আছে। চূড়ান্তভাবে এই সিদ্ধান্তে আসা যায় যে, ট্যাপ ড্রিল সাইজ বাহিরের ব্যাস-প্রেডের পিচ এই সূত্রে গ্রহণযোগ্য এবং দেখা যায় প্রায় ক্ষেত্রেই চার্টের সাথে মিলে যায় এবং বাস্তব কাজে কোন সমস্যা আসে না।

১৮.৫ ট্যাপ ড্রিল সাইজ নির্ণয় তালিকা (Chart of determination of Tapdrill sige) :

বিভিন্ন মাপের ব্রিটিশ স্ট্যান্ডার্ড হুইটওয়ার্থ, ব্রিটিশ স্ট্যান্ডার্ড ফাইন, ব্রিটিশ অ্যাসোসিয়েশন স্ট্যান্ডার্ড ইউনিফায়েড থেড এবং মেট্রিক শ্রেণির ক্র প্রেডের জন্য বিভিন্ন মাপের দ্রিল ব্যবহার করা প্রয়োজন হয়

১৮.৬ ট্যাপি চালনায় সতর্কতা এর স্কু-প্রেড করা স্থান বেশি হারে ক্রমশ সর থাকায় অগ্রভাগে প্রকৃতপক্ষে কোনো প্রেডই থাকে না। অগ্রভাগ প্রেড শূন্য থাকায় এবং লম্বভাবে রাখতে খুব সুবিধা হয়। কারণ ক্র্-প্রেড উৎপন্ন করার জন্য প্রথমে যে ছিদ্র করা হয় তার ব্যাস (Diameter) প্রেডের কোর 'ডায়মেটার' – এর সমান বা তার থেকে বড় থাকে। সূতরাং ট্যাপিং শুরু করতে টেপার ট্যাপ ব্যবহৃত হয়। বরাবর ছিদ্র (Through)-র মধ্যে প্রেড কাটতে শুধুমাত্র টেপার ট্যাপ ব্যবহার করলেই নির্দিষ্ট মাপের প্রেড উৎপন্ন হয়।

গ্লাগ ট্যাপ (Plug Tap) :

টেপার শ্রেণির ট্যাপ সেট' এ দ্বিতীয় যে ট্যাপটি ব্যবহার করা হয় এটির নাম 'সেক্রেন্ড ট্যাপ বা প্লাগ ট্যাপ। যে ছিদ্রের একটি প্রান্ত বন্ধ অর্থাৎ ব্লাইড হোল (Blind hole)—এর জন্য নিয়ম হলো প্রথম টেপার ট্যাপ ব্যবহার করা, তারপর প্ল্যাগ ট্যাপ এবং প্রেডের তলা পর্যন্ত স্কু প্রেড তৈরি করার জন্য বটমিং ট্যপ ব্যবহার করতে হয়। ট্যাপ ব্যবহারের ধারাবাহিকতা বজায় না রাখলে শেষ প্রান্তে প্রেড উৎপন্ন করতে বটমিং ট্যাপ ব্যবহার করা ঝুঁকিপূর্ণ হয়ে দাঁড়ায়। ব্যবহারের এই ধারাবাহিকতা বজায় রাখতে এবং টেপার ট্যাপ ব্যবহারের পর যে কোনো প্রেড সম্পূর্ণ পরিষ্কার করতে প্লাগ ট্যাপ ব্যবহৃত হয়।

বটমিং ট্যাপ (Bottoming Tap) :

ব্লাইড হোলের তলদেশ পর্যন্ত স্ক্রু থ্রেড সম্পূর্ণ পরিষ্কার করতে বটমিং ট্যাপ ব্যবহৃত হয়।

১৮.৭ তৈলাক্ত করণ (Lubricatoin) :

ট্যাপিং এর সময় ছিদ্রের মধ্যে বিভিন্ন ধাতৃ অনুসারে তৈল প্রয়োগ করতে হয়। এই তৈল প্রয়োগ করাকে তৈলাক্তকরণ বা লুব্রিকেশন বলা হয়। ট্যাপিং এর সময় তৈল প্রয়োগ নিমুলিখিত সুবিধা পাওয়া যায়। যেমনঃ

- ক। কার্যবস্তুর প্রেডের তল এবং কাটিং টুলের মধ্যে ঘর্ষণ কমিয়ে দেয়।
- খ। ট্যাপ ও ডাই থ্রেড কাটবার ক্ষমতা দীর্ঘস্থায়ী করে।
- গ। থ্রেড মসূণ করে।
- ঘ। থ্ৰেড কাটা সহজ হয়।
- ঙ। চিপ বের হয়ে আসতে সাহায্য করে।

ট্যাপিং-এর সময় ছিদ্রের মধ্যে বিভিন্ন ধাতু অনুসারে যে যে মসৃণকারক তেল প্রয়োগ করার প্রয়োজন হয়, নিম্নে এর একটি তালিকা দেয়া হলোঃ

ধাতু	মস্ণকরণ তেল	
কাস্ট আয়রন (সাধারণ)	আবশ্যক হয় না	
কাস্ট আয়রন (খুব শক্ত)	তারপিন তেল (Terpentine)	
মাইল্ড	কাটিং অয়েল	
শক্ত স্টিল	কাটিং অয়েল	
ব্রাস কিংবা ব্রোঞ্জ	আবশ্যক হয় না	
অ্যালুমিনিয়াম	কেরোসিন কিংবা তারপিন তেল	

প্রশ্নমালা-১৭

অতি সংক্ষিপ্ত প্রশ্ন :

- ১। ট্যাপ কী?
- ২। ট্যাপ কোন ধাতু তৈরি?
- ৩। ট্যাপের প্রধান অংশ কয়টি ?
- ৪। ছোট ব্যাসের ট্যাপ কভটি ফুট কাটা থাকে?
- ৫। ট্যাপকে শনাক্ত করা হয় কীভাবে?
- ৬। কীভাবে হ্যাভ ট্যাপ সেট গঠিত হয়?
- ৭। ট্যাপ রেঞ্জ কী?
- ৮। ট্যাপ দ্রিল সাইজ কী?
- ৯। ট্যাপিং-এর সময় তেল প্রয়োপের ১টি সুবিধা লেখ।
- ১০। ট্যাপ চালনায় যে কোনো একটি সতর্কতা লেখ।

সংক্ষিপ্ত প্রশ্ন :

- ১১। ট্যাপ বলতে কী বোঝায়?
- ১২। ট্যাপ সেট বলতে কী বোঝায়?
- ১৩। ট্যাপ সেট ব্যবহারের প্রয়োজনীয়তা কী?
- ১৪। ট্যাপিংয়ের পাঁচটি প্রয়োগক্ষেত্রের নাম লেখ?
- ১৫। ট্যাপিং-এর সময় তৈলাক্তকরণের সুবিধাগুলো লেখ।
- ১৬। ট্যাপ ড্রিল সাইজ শনাক্তকরণের সুবিধাগুলো লেখ।
- ১৭। ট্যাপ কোন কোন খ্রেডের পাওয়া যায়?
- ১৮। ট্যাপিং বলতে কী বোঝায়?
- ১৯। থার্ড অথবা প্লাগ ট্যাপকে কেন বটমিং ট্যাপ বলা হয়?
- ২০। ট্যাপ চালনায় সতর্কতার বিষয়গুলো উল্লেখ কর।

রচনামূলক প্রশ্ন :

- ২১। ট্যাপ বলতে কী বুঝয় উল্লেখ কর। ট্যাপের প্রধান অংশগুলো কী কী?
- ২২। ট্যাপ সেট বলতে কী বুঝায়? ট্যাপ সেট ব্যবহারের প্রয়োজনীয়তা উল্লেখ কর।
- ২৩। বটমিং ট্যাপ কেন ব্যবহার করা হয়? ট্যাপ রেঞ্জ কী ?
- ২৪। ট্যাপিংয়ের প্রয়োগক্ষেত্র উল্লেখ কর।
- ২৫। ট্যাপিংয়ের সময় প্রয়োগের সুবিধাসমূহ লিখ।
- ২৬। ট্যাপ ড্রিল সাইজ বলতে কী বোঝায়?
- ২৭। ট্যাপ ড্রিল সাইজ নির্ণয়ের সূত্রগুলি লেখ।
- ২৮। ট্যাপ ভেঙ্গে যাবার সম্ভাব্য পাঁচটি কারণ উল্লেখ কর।
- ২৯। ট্যাপ কোন কোন স্টান্ডার্ড প্রেডের পাওয়া যায়?
- ৩০। ১/২ ইঞ্চি বি. এস. এফ (B. S. F) থ্রেডের জন্য ট্যাপ ড্রিল সাইজ নির্ণয় কর।
- ৩১। ১৬ মি. মি. ভায়ামেটার মেট্রিক থ্রেডের নাটের জন্য ট্যাপ ড্রিল সাইজ নির্ণয় কর।

উনিশতম অধ্যায়

ডাই (Die)

১৯.১ ডাই (Die) :

ভাই একপ্রকার মেটাল কাটিং টুল যা গোলাকার রডের বাইরের উপরিভাগে ক্ক্-থ্রেড বা প্যাঁচ (Thread) উৎপন্ন করতে ব্যবহৃত হয়। এটা হাই কার্বন স্টিল বা হাই স্পীড দ্বারা তৈরি হয়। এর প্রেড অংশ শক্ত এবং টেম্পার করা থাকে। ডাই দ্বারা প্রেড কাটার পর একে সমান মাপের ট্যাপিং করা প্রেড বিশিষ্ট ছিদ্রের মধ্যে প্রবেশ করানো হয়। অবশ্য বোল্টকে নাটের মধ্যে ঢোকাতে গেলে, নাট অথবা বোল্ট যে কোনো একটাকে ক্রমাগত ঘোরাতে হবে। ডাই চ্যান্টা হয় এবং এর মধ্যে থ্রেডের সংখ্যা কম থাকে।

ট্যাপের ন্যায় ডাই-এর ভেতরেও প্রেড কাটা থাকে। প্রেড কাটা শুরু করার জন্য ডাই-এর এক পাশ চ্যামফার (Chamfer) করা থাকে এবং এই পাশেই বিবরণ দেওয়া তাকে, যার সাহায্যে প্রেড স্ট্যান্ডার্ড, বাইরের মাপ ও প্রেডের পিচ (Pitch) জানা যায়। ডাইকে 'ডাই স্টক' (Die-stock)-এর মধ্যে শক্তভাবে আটকিয়ে ওয়ার্কপিসের উপর ঘুরিয়ে প্রেড উৎপন্ন করতে হয়।

ডাইয়ের প্রকারভেদ (Classification of Die) :

গঠন এবং ব্যবহারের ভিত্তিতে ডাই নিমুলিখিত কয়েক প্রকার হয়:

১৯,২ ডাইরের ব্যবহার (Uses of Die) :

১। সলিড বা স্থির ডাই (Solid Die) :

এ প্রকার ডাই-এর মাপকে নিয়ন্ত্রণ করা যাবে না। যে কোনো একটি মাত্র মাপে এটি তৈরি হয়। এই প্রকারের ডাই সাধারণত ছোট মাপের ব্লু তৈরিতে বেশি ব্যবহৃত হয়। এসব ডাই দ্বারা প্রেডের আকৃতি বা ফর্ম একসাথে পাওয়া যায়। ১২ মিটারের অধিক মাপের সলিড ডাই ব্যবহার করা অসুবিধাজনক। সলিড ডাই তিন প্রকারের হয়। যেমন-

ক) কোয়ার ডাই (Square Die)

এ প্রকার ডাই-এ থ্রেড কাটার দাঁত বিশিষ্ট চেজার (Chasers)-গুলি দৃঢ় বা সলিডভাবে বর্ণাকৃতি কঠিন ইস্পাতের চ্যান্টা স্টকে তৈরি করা হয়। এটাকে

চিত্র: ১৯.১ ক্ষরার ডাই

চিত্র : ১৯.২ ডাই নাট

বর্গাকার নির্দিষ্ট আকারের ডাই স্টকে আবদ্ধ করে ব্যবহার করতে হয়। পুরাতন এবং ক্ষরপ্রাপ্ত প্রেডকে নতুনের ন্যায় করতে এটা উপযোগী হয়।

খ) ডাই নাট (Die nut) :

এটা দেখতে নাটের মতো। পুরানো এবং নষ্ট হয়ে যাওয়া প্রেডকে পরিষ্কার করে নতুনের মতো করতে ব্যবহৃত হয়।

গ) ছ খেট (Scerw Plate) :

প্রকৃত পক্ষে এটা এমন একটি স্টিলের পাওলা ২৬, যাতে কতকগুলি বিভিন্ন মাপের ছিদ্রেও মধ্যে স্ট্যান্ডার্ড রকমের ছু প্রেড করা থাকে। এটার মাপ লঘার প্রায় ৩০০ মি.মি. এবং চরড়ায় ১০০ মি.মি. থেকে ১২৫ মি.মি. হয় এবং একদিকে দৃঢ়ভাবে হাতল বানানো থাকে। যে সকল বস্তু ব্রুব সক্র অর্থাৎ বাদের ভারমেটার খুব কম সে ক্ষেত্রে জু-প্রেড তৈরিতে এটা খুব উপযোগী হয়। ছ্ল্-প্রেট ধারা শ্রেড তৈরি করার সময় এটা কীভাবে ধরতে হবে তা চিত্রে দেখানো হলো।

২ আভন্ধান্টেবল বা নিয়ন্ত্ৰণশীল ভাই (Adjustable Die):

এ প্রকার ডাই-এর মাপকে কমান বা বাড়ানো যার। এই ডাইগুলি বড় ব্যাসের ওরার্কপিসের উপর শ্রেড কাটতে ব্যবহৃত হয়। এই শ্রেণির ডাই দুই প্রকার হয়ে থাকে।

ক) রাউড স্পিলিট ডাই (Round Split Die) :

এটা আকারে গোল এবং একটি পাশ খণ্ডিত করা থাকে। ডাইকে স্টক বা হাতলের মধ্যে রেখে এর গায়ের উপর স্কুকে টাইট দিলে এটা সংকৃচিত হয়ে মাপে ছোট হয়। এই অবস্থায় পুরানো ক্লু প্রেড পরিকার করতে খুব সুবিধা হয়।

আবার খাঁজের উপর ক্রকে রেখে টাইট দিলে এটা মাপে বাড়ে এবং এই অবস্থায় প্রথম কাট দিতে খুব সুবিধা হয়। এই খাঁজের আকার ১.৫ মি.মি. থেকে ৫ মি.মি. পর্যন্ত হয়। ডাই স্টকের ক্লুকে প্রয়োজন অনুসারে সমন্বয় করে চালনা করলে সহজে এবং ভালোভাবে ক্লু তৈরি করা যায়।

খ) স্টক ডাই (Stock Die) :

এই ডাই দৃটি অংশে বিভক্ত থাকে অর্থাৎ জ্ব-প্রেড কাটার

চিত্র : ১৯.৪ রাউভ স্প্রিট ডাই

চিত্ৰ: ১৯.৬ ডাই ও ডাই স্টক

চেজারগুলি দুই ভাগে খণ্ডিত থাকে। এটার গঠন আয়তকার হয় যাতে ডাই স্টকে সহজে বসে এবং চালানোর সময় না ঘোরে। চেজারের গঠন অনুপাতে খাঁজ কাটা থাকে এবং ডাই স্টকের মধ্যে চেজারগুলিকে রেখে স্কুর মাপ হিসেবে দুই দিকে দেওয়া স্কুদ্বয়ে সাহায্যে চেজারগুলিকে প্রয়োজনীয় অবস্থানে এনে তারপর ব্যবহার করা হয়। এই প্রকার ডাই দারা সহজে বড় মাপের বোল্টের উপর অল্প অল্প গভীরতা নিয়ে পূর্ণ থ্রেডের গঠন বা ফর্ম উৎপন্ন করা যায়।

ডাই স্টক (Die stock) :

গলিড এবং অ্যাডজাস্টেবল এই দুই রকম ডাইকেই খোরানোর জন্য লাগে ডাই স্টক। ডাই স্টকের মাঝখানে ডাই ফিট করা হয় এবং দুই ধারের হ্যান্ডেল দুই হাতে ধরে ঘোরাতে হয়। ডাই-এর শ্রেণি অনুসারে এটা বিভিন্ন প্রকার হয়।

তেল প্রদানের প্রয়োজনীয়তা (Need of Lubrication) :

নিমুলিখিত কারণে ডাই দারা পাঁাচ কাটার সময় তেল প্রদানের প্রয়োজনীয়তা রয়েছে।

- ১। ওয়ার্কপিসের থ্রেডের তল এবং কাটিং টুলের মধ্যে ঘর্ষণ কমানোর জন্য।
- ২। এটা কাজকে সহজ এবং সুন্দর করতে সাহায্য করে।
- ৩। চিপ বের হয়ে আসতে সাহায্য করার জন্য।
- 8 । ডাই-এর থেড কাটার ক্ষমতা দীর্ঘস্তায়ী করার জন্য ।
- ৫। ডাই দ্বারা থ্রেড কাটার সময় উৎপন্ন তাপকে নিয়ন্ত্রণ করার জন্য যেন ডাই-এর দাঁতের টেম্পার ঠিক থাকে।

১৯.৩ ডাই চালনায় সতৰ্কতা (Carefulness) :

- ১। ডাই দ্বারা প্রেড কাটার জন্য গোলাকার রডের ব্যাস কোনো অবস্থায় ডাই-এর মাপের বেশি রাখা যাবে না।
- ২। প্রয়োজনীয় গঠন এবং আকৃতির হয়ে থ্রেড কাটা শুরু করতে হবে।
- ৩। থ্রেড কাটার সময় প্রয়োজনীয় স্থলে অবশাই লুব্রিকেন্ট ব্যবহার করতে হবে।
- 8। থ্রেড কাটার সময় কিছুক্ষণ পর পর ডাইকে বামদিকে ঘুরাতে হবে যাতে চিপ বের হয়ে আসে এবং টুকরা হয়ে যায়।
- ৫। ডাই-এর কাটিং এজ নষ্ট হয়ে গেলে এটা ব্যবহার করা অনুচিত।
- ৬। ডাইকে ঘোরাবার সময় ডাই স্টকে ভূমির সমান্তরালভাবে রাখতে হবে অথবা কার্যবস্তুর অক্ষের সাথে সমকোণে রেখে ঘুরাতে হবে। বাম বা ডান দিকে নত থাকলে ডাই ভেঙ্গে যাবার সম্ভবনা থাকে।
- ৭। ডাই স্টককে উভয় হাত ধরে সমরূপ শক্তি দিয়ে ঘুরাতে হবে, একহাতে ঘোরানো অনুচিত।

প্রশ্নমালা-১৯

অতি সংক্ষিপ্ত প্রশ্ন :

- ১। ডাই কী?
- ২। ডাই কোন মেটাল দিয়ে তৈরি হয়?
- ৩। ডাইকে কাজের সময় কোথায় আটকানো হয়?
- ৪। ডাইকে কত ভাগে ভাগ করা যায়?
- ৫। স্কয়ার ডাই কাকে বলে?
- ৬। ডাই নাট কী কাজে ব্যবহৃত হয়?
- ৭। ডাই স্টক কী?
- ৮। ডাই স্টককে কীভাবে ঘোরাতে হয়?
- ৯। ডাই দ্বারা প্রেড কাটার সময় তেল প্রদানের যেকোনো একটি প্রয়োজনীয়তা লেখ।
- ১০। ডাই ব্যবহারে সাবধানতাগুলোর অন্তত একটি লেখ।

সংক্ষিপ্ত প্রশ্ন :

- ১১। ডাই স্টক বলতে কী বোঝায়?
- ১২। ডাই-এর প্রকারভেদ দেখাও?
- ১৩। অ্যাডজাস্টেবল ডাই কত প্রকার ও কী কী?
- ১৪। ডাই-এর গঠন বলতে কী বোঝায়?
- ১৫। আজস্টেবল ডাই ব্যবহারে সুবিধা লেখ?
- ১৬। ডাই কী কী ধাতু দ্বারা তৈরি।
- ১৭। ডাই ও ট্যাপের মধ্যে পার্থক্য কী?
- ১৮। ডাই ভেঙ্গে যাবার কারণ কী?
- ১৯। ডাই চালনার ক্ষেত্রে ২টি সর্তকর্তা উল্লেখ কর।
- ২০। ডাই চালনার সময় তেল প্রদানের প্রয়োজনীয়তা কী?

রচনামূলক প্রশ্ন :

- ২১। ডাই বলতে কী বোঝায় উল্লেখ কর। ডাই কী ধাতু দিয়ে তৈরি?
- ২২। ডাই-এর প্রকারভেদ উল্লেখ কর।
- ২৩। বিভিন্ন প্রকার ডাই-এর ব্যবহার লেখ।
- ২৪। ডাই দারা থ্রেড কাটার সময় তেল প্রদানের প্রয়োজনীয়তা বর্ণনা কর।
- ২৫। ডাই চালনার ক্ষেত্রে পাঁচটি সতর্কতার বিষয় উল্লেখ কর।
- ২৬। ডাই ভেঙ্গে যাবার সাধারণ কারণসমূহ লেখ।
- ২৭। ডাই এবং ট্যাপের মধ্যে পার্থক্য কী?
- ২৮। ডাই কী ধাতুর তৈরি হয়?
- ২৯। ডাই-এর গঠন সংক্ষিপ্তভাবে বর্ণনা কর।
- ৩০। অ্যাডজাস্টেবল ডাই ব্যবহারের সুবিধা উল্লেখ কর।

বিংশতম অধ্যায়

স্প্যানার (Spanner)

२०.১ ज्लानांत्र (Spanner) :

নাট ও বোল্ট ইত্যাদির স্কু অংশকে আটকানো-খোলার জন্য যন্ত্রকে রেঞ্চ বলে। স্প্যানার ও রেঞ্চ নামের ক্ষেত্রে কোনো পার্থক্য থাকে না। বেশির ভাগ বোল্টের মাথা এবং নাট ছয় কোণ এবং ছয় তল বিশিষ্ট হয়। স্প্যানার যাতে নাটকে ও বোল্টের মাথাকে ভালোভাবে ধরতে পারে সেরকমভাবে স্প্যানারের 'জ' গুলো তৈরি হয়। স্প্যানারের প্রধান দুটি অংশ-হ্যান্ডেল এবং 'জ'। স্প্যানার তৈরি হয় হাইকার্বন স্টীলকে ফোর্জিং করে বা কামারশালায় পিটিয়ে। স্প্যানার হাতল যত লম্বা হবে, ব্যবহার করতে তত কম শক্তি লাগবে। বিভিন্ন জায়গায় ব্যবহারের জন্য এর মাপ ও গঠন বিভিন্ন প্রকারের হয়।

২০.২ স্প্রানার-এর প্রকারভেদ (Types of Spanner):

কাজ অনুযায়ী এবং আকৃতি অনুযায়ী স্প্যানার-এর শ্রেণি বিভাগ করা হয়েছে। স্প্যানারকে প্রধানত দুইভাগে ভাগ করা হয়েছে। যথা-

- ক) সলিড স্প্যানার (Slid Spanner)
- খ) অ্যাডজাস্টেবল স্প্যানার (Adjustable Spanner)

ক) সলিড স্প্যানার (Slid Spanner)

যেসব স্প্যানার–এর 'জ' দুটোর ব্যবধান ফিক্সড অর্থাৎ বাড়ানো বা কমানো যায় না। এতে কেবল এক মাপের বোল্ট বা নাটকে ধরতে পারা যায়।

খ) আডজাস্টেবল স্পানার (Adjustable Spanner)

অ্যাডজাস্টেবল স্প্যানার-এর 'জ'কে নড়ানো যায় এবং 'জ' দুটোর ব্যবধান বাড়িয়ে কমিয়ে বিভিন্ন মাপের নাম ও বোল্টের মাথাকে ধরা যায়।

স্প্যানারের 'জ' দুটোর মুখ খোলা হলে ওপেন এন্ডেড এবং বদ্ধ হলে ক্লোজ এন্ডেড। সলিড এবং অ্যাডজাস্টেবল দুই রকম স্প্যানারই ওপেন এন্ডেড হতে পারে কিন্তু সলিড রেঞ্চই ক্লোজ টাইপের হয়। সলিড স্প্যানারের মাপ বলতে যে মাপের বোল্ট ও নাট ধরা যায় তার মাপ বুঝায়। এ্যাডজাস্টেবল স্প্যানারের মাপ বলতে রেঞ্চের 'জ' দুটোর মধ্যখানের সবচেয়ে বেশি ফাঁক বা দূরত্বের মাপ বুঝায়।

২০.৩ স্প্যানারের ব্যবহার (Use of Spanner) :

সলিড রেঞ্চ :

ক) সিঙ্গল এডেড স্প্যানার :

এই রেঞ্চ দিয়ে কেবল মাত্র এক মাপের বোল্ট ও নাটকে ধরা যায়। এগুলো দামে দস্তা। এর কেবল একদিকের মুখ থাকে বলে বড সাইজের নাট ও বোল্ট লাগানো ও খোলা

চিত্র : ২০.১ সিঙ্গেল এন্ডেড স্প্যানার

সহজ। সাধারণ জোর দিয়ে নাট বা বোল্ট খোলা না গেলে হাতলের সাথে পাইপ লাগিয়ে কম শক্তিতে এই কাজ করা যায়। সিঙ্গেল এভেড স্প্যানার ১/৪ ইঞ্চি থেকে ৩ ইঞ্চি পর্যস্ত হয়। ব্যবহারের সুবিধার জন্য এই স্প্রানারের মুখ ১৫ ডিগ্রি কোলে বাঁকানো থাকে।

খ) ভাবল এতেড স্প্রানার :

এই স্প্যানারের দূইদিকে আশাদা মাপের মুখ থাকে। এতে করে দূইরকমের নাট ও বোল্ট ধরা যায়। কোন মুখ কোন মাপের প্রায় মুখের কাছে ভা লেখা থাকে। এই স্প্যানারের সাইজ ১/৪ ইঞ্চি থেকে দেড় ইঞ্চি পর্যন্ত হয়। এর মুখ ১৫ ডিগ্রি বাঁকানো থাকে।

চিত্র : ২০.২ ডাবল এন্ডেড স্পাানার

গ) রিং স্প্যানার :

যেখানে স্প্যানারে যুরানোর মতো জায়গা থাকে না সেখানে এর ব্যবহার হয়। এ ধরনের স্প্যানারের মুখ বক্স এবং এর ভিতরে ছয় কোণ বিশিষ্ট খাঁজ থাকে।

চিত্র: ২০.৩ বিং স্প্যানার

ষ) টুয়েলভ পরেন্ট বন্ধ রেঞ্চ :

এই রেঞ্চের হোলের ভিতর ১২টি কোণ আছে। যেখানে রেঞ্চ ঘোরানোর জন্য অক্স জারগা থাকে সেখানে এর ব্যবহার হয়। এই রেঞ্চ উপর থেকে পরাতে হয় এবং এটা কখনো স্থিপ করে না। মোটর গাড়ির কাজে এর ব্যবহার বেশি।

চিত্র: ২০.৪ টুয়েলভ পয়েন্ট বস্ত্র রেঞ

%) অপসেট সকেট রেঞ্চ :

বেশি টর্ক দেবার জন্য টি সকেট বেঞ্চের হাতপকে সমকোণে বাঁকিয়ে এই রেঞ্চ তৈরি হয়। মোটর গাড়ির চাকা খুলতে এই রেঞ্চ ব্যবহার হয়।

চিত্র: ২০.৫ অফসেট সকেট রেঞ্চ

চ) টি সকেট রেঞ্চ :

যেখানে সাধারণ রেঞ্চ জায়গায় অভাবে ব্যবহার করা যায় না সেখানকার কাজে এটা অনেক সুবিধাজনক। বেশি শক্তি দরকার হলে হাতলের পিন খুলে মাথায় রেঞ্চ ব্যবহার করা যায়।

চিত্র : ২০.৬টি সকেট রেঞ্চ

ছ) টুল পোস্ট রেখঃ

লেদের টুল আটবার বা খোলার জন্য এই রেঞ্চ ব্যবহার করা হয়। এই রেঞ্চের একদিকে ওপেন ও অন্য দিকে ক্রোজ থাকে।

চিত্র: ২০.৭ টুল পোস্ট রেঞ

জ) জ্যালেন রেঞ্চ :

ছয় কোনা রডকে সমকোণে বাঁকিয়ে এই রেঞ্চ তৈরি করা হয়। অ্যান্সেন ব্লু বা হলো সেট ব্লুর মাধায় ছয় কোনা যুক্ত যে হোল থাকে তার মধ্যে অ্যান্সেন রেঞ্চ তুকিয়ে মোচড় দিতে হয়। এর উভয় মাধা ব্যবহার করা যায়।

চিত্র: ২০.৮ অ্যালেন রেঞ্চ

বা) গীন স্থক স্প্রানার :

নাটের গায়ে ছিদ্র করা থাকলে এই স্প্যানারের মুখের পিন ছিদ্রের ভিতরে ঢুকে যায় এবং চাড় দিয়ে খোলা যায়। মেশিন পার্টস খোলা ও লাগানোর জন্য এর ব্যবহার বেশি।

চিত্র: ২০.৯ পীন হুক স্প্যানার

ঞ) ফেস স্প্যানার :

অনেক নাটের সামনের দিকে ফেসে ছিদ্র করা থাকে। এরকম দুটো ছিদ্রে স্প্যানারের পিন ঢুকিয়ে নাট টাইট বা ঢিলা করতে হয়।

চিত্র: ২০.১০ ফেস স্প্যানার

ট) সকেট রেঞ্চ :

একটি সকেট সেট বিভিন্ন মাপের সকেট ও বিভিন্ন প্রকার হাতল নিয়ে গঠিত। হেক্সাগোনাল নাট ও বোল্ট খোলার জন্য সকেটের এক মাথায় ছয় অথবা ১২ পয়েন্ট বিশিষ্ট খাঁজ থাকে। অন্য মাথার চতুষ্কোণ ছিদ্রে বিভিন্ন ধরনের হাতল ঢুকিয়ে সকেট চালনো হয়। অটোমোবাইল ওয়ার্কশপে এর ব্যবহার ব্যাপক।

চিত্র: ২০.১১ সকেট স্প্যানার

र्ठ) कथिरनलन (त्रक :

এই রেঞ্চের উভর মাধার একই মাপের দুই রকমের মুখ থাকে। এক মাথা খোলা এবং অন্য মাথা বক্স যেখানে রেঞ্চ যুরানোর জায়গা কম সেখানে এটা ব্যবহার করা যায় এবং একমাথার কাজ না হলে অন্য মাথা ব্যবহার করা যায়।

চিত্র: ২০.১২ কবিলেশন রেঞ

व्याषकारम्प्यम दाक्षाः

ক) স্রাইড রেঞ্চ :

যে কোনো ওয়ার্কশপে এর ব্যবহার বেশি কারণ একটা রেঞ্চ দিয়েই বিভিন্ন সাইজের নাট ও বোল্টকে খোলা ও লাগানো যায়।

চিত্র : ২০.১৩ সাইড রেঞ

थं) याहिक त्रकः

যেখানে নাটকে ঘুরাতে কম শক্তির দরকার হয় সেধানেই এই রেঞ্চের ব্যবহার হয়।

हिन्दा: २०.५८ याएकि त्रक्ष

গ) ট্রাপ রেঞ্চ :

কোনো সিলিডিক্যাল পাটর্সের উপরিভাগে দাগমুক্ত রেখে ঘোরানো অথবা খোলার জন্য ট্র্যাপ রেঞ্চ ব্যবহার করা হয়।

চিত্র: ২০.১৫ ট্র্যাপ রেঞ্চ

ष) क्टून हैर :

মোটা পাইপ ধরার জন্য চেইন টং ব্যবহার করা হয়।

চিত্ৰ: ২০.১৬ চেইন টং

ছ) পাইপ রেঞ :

এই রেঞ্চের 'জ' অ্যাডজাস্ট করে বিভিন্ন সাইজের পাইপ ও সিলিভিক্যাল অংশকে শক্ত করে ধরার জন্য ব্যবহার হয়।

চিত্র: ২০,১৭ পাইপ রেঞ্চ

क) च्यांककारम्बरम ताकः :

ভিন্ন ভিন্ন ম্যাপের ট্যাপকে ঘোরানোর জন্য অ্যাডজাস্টেবল ট্যাপ রেঞ্চ ব্যবহার করা হয়।

চিত্র: ২০.১৮ অ্যাডজাস্টেবল রেঞ্চ

জ) আডজাস্টেবল ছক স্প্যানার :

পিনের অবস্থান ইচ্ছেমতো বদলে বিভিন্ন মাপের স্লুটযুক্ত গোল নাট খোলা ও লাগানো যায়।

চিত্র: ২০.১৯ অ্যাডজাস্টেবল হুক স্প্যানার

ঝ) অ্যাডজাস্টেবল পীন ফেস রেঞ্চ :

দেখতে অনেকটা ডিভাইডারের মতো, শুধুমাত্র পিন দুটোর দূরত্ব অ্যাডজাস্ট করে কাজ করা যায়।

চিত্র: ২০.২০ অ্যাডজাস্টেবল পীন ফেস রেঞ্চ

প্রশ্নমালা-২০

অতিসংক্ষিপ্ত প্রশ্ন :

- ১) স্থ্যানার কাকে বলে?
- ২) স্প্যানার কত প্রকার?
- ৩) স্প্যানার কী মেটাল দিয়ে তৈরি হয়?
- ৪) সলিড স্প্যানার কাকে বলে?
- ৫) অ্যাডজাস্টেবল স্প্যানার কাকে বলে?
- সকেট রেঞ্জের একটি ব্যবহার উল্লেখ কর ।
- ৭) রিং স্প্যানার বা বক্স রেঞ্চ কী কাজে ব্যবহার করা হয়?
- ৮) সিঙ্গেল এন্ডেড স্প্যানার কী কাজে ব্যবহৃত হয়?
- ৯) স্প্যানার কী কী অংশ নিয়ে গঠিত?
- ১০) ফেস স্প্রানারের ব্যবহার উল্লেখ কর?

সংক্ষিপ্ত প্রশ্ন :

- ১১) স্প্যানার বলতে কী বোঝায়?
- ১২) স্প্যানারকে প্রধানত কয় ভাগে ভাগ করা য়ায়?
- ১৩) সলিড স্প্যানার বলতে কী বোঝায়?
- ১৪) অ্যাডজাস্টেবল স্প্যানার বলতে কী বোঝায়?
- ১৫) ভাবল এন্ডেড স্প্যানারের ব্যবহার উল্লেখ কর ?
- ১৬) টুয়েলভ পয়েন্ট বক্স রেঞ্চের ব্যবহার দেখাও?
- ১৭) টি সকেট রেঞ্চের ব্যবহার উল্লেখ কর?
- ১৮) পীন হুক স্প্যানার ব্যবহারের সুবিধা কী?
- ১৯) অ্যাডজাস্টেবল ট্র্যাপ রেঞ্চ ব্যবহারের সুবিধা কী?
- ২০) অ্যাডজাস্টেবল হুক স্প্যানারের ব্যবহার দেখাও।

রচনামূলক প্রশ্ন :

- ২১। স্প্যানারের শ্রেণি বিভাগ করে এগুলোর প্রভেদ উল্লেখ কর।
- ২২। নিমুলিখিত স্প্যানারগুলি কী কী কাজে ব্যবহার করা হয় ?
 - ক) সকেট রেঞ্চ
 - খ) রিং স্প্যানার
 - গ) অ্যাডজাস্টেবল স্প্যানার
 - ঘ) সিঞ্চেল এন্ডেড স্প্যানার
- २०। लम त्रिमिनश्रमित्व वावशास्त्र जना श्रामानीय त्रक्षश्रमित नाम लग ।
- ২৪। অ্যাডজাস্টেবল স্প্যানার সম্পর্কে যা জান লেখ।
- ২৫। স্প্যানারের ব্যবহার দেখাও ।

একবিংশ অধ্যায়

চিপিং প্রক্রিয়া

Chipping Process

২১.১ চিপিং (Chipping) :

বস্তুত চিপিং বলতে বুঝার ধাতুকে চিপিং অর্থাৎ ধাতুকে কৃচি কৃচি করে কাটা। চিজেল হাতুড়ি সংযোগে ধাতব মালামালের পৃষ্ঠদেশ থেকে ধাতুর উপরি স্তর কেটে ফেলার একটি পদ্ধতি । ছেনির ঠোঁটের কোণ (lip angle) বিভিন্ন ধাতু চিপিং করার জন্য বিভিন্ন হয় যেমন:-কাস্ট আয়রন ও ব্রোজ্ঞের জন্য ৭০ ডিগ্রি, মিডিয়াম স্টিল ও মাইল্ড স্টিলের জন্য ৬০ ডিগ্রি পিতল ও তামার জন্য ৪৫ ডিগ্রি এবং দস্তা ও অ্যালুমিনিয়ামের জন্য ৩৫ ডিগ্রি।

২১.২ চিপিং-এর প্রয়োগক্ষেত্র (Field of Application of chipping) :

- ১। বস্তুর কোনো অংশে প্রয়োজনের অতিরিক্ত ধাতু থাকলে তা শীঘ্র দূর করতে।
- ২। কোনো স্থান অসমতল থাকলে তা শীঘ্র ক্ষয় করে মোটামুটি রকমের সমতল করতে।
- ৩। বস্তুকে দ্বিখণ্ড করতে ।
- ৪। উপরিভাগে নালী কাটতে ।
- ৫। কোণকে তীক্ষ্ণ করতে ।
- ৬। দ্রিলিং (Driling)করার সময় কেন্দ্র সরে গেলে তা যথাস্থানে আনতে ।
- ৭। রিভেটকে ক্ষয় করতে।

২১.৩ চিপিং গার্ড (chipping guard) :

চিপিং করার সময় বিক্ষিপ্ত ধাতব কণা বা খণ্ডগুলোর অনাকাজ্মিত আঘাত বা দুর্ঘটনা থেকে নিজের শরীর এবং অন্য কারিগরকে রক্ষার নিমিত্তে যে ধাতু নির্মিত বেড়া বা গার্ড ব্যবহার করা হয় তাকে চিপিং গার্ড বলা হয়। চিপিং সর্বদা–

- ১। চিপিং কার্য সম্মুখে করা উচিত।
- ২। ধাতু চিপিংকালে ধাতব খণ্ডণ্ডলো বিক্ষিপ্ত হয়ে বিপরীত দিকে যাতে না যেতে পারে, সেদিকে লক্ষ্য রেখে গার্ড ব্যবহার করা উচিত।
- ৩। বিপরীত দিকের কার্যরত অন্য কারিগরকে আঘাত করতে পারে এবং আঘাতের ফলে দুর্ঘটনা ঘটতে পারে।
- 8। এমনকি অন্য কারিগরের চক্ষুকেও নষ্ট করে দিতে পারে। চিপিং গার্ড ব্যবহার করলে উক্ত দুর্ঘটনা থেকে বাঁচা যায়।

চিজেলের মৌলিক শ্রেণি বিভাগ (Basic types of chisel):

চিজেল মূলতঃ দুই শ্রেণিতে বিভক্ত। যথা-

১। কোল্ড চিজেল (cold chisel) ও

২। হট চিজেল (Hot chisel)

চিজেলের মুখের গঠন অনুযায়ী কোন্ড চিজেল আবার ৫ প্রকার। যথা-

- ১। ফ্ল্যাট চিজেল (Flat chisel)
- ২। ক্রস চিজেল (Cross chisel)
- ত। রাউড নোজ চিজেল (Round nose chisel)
- ৪। ডায়মন্ড পয়েন্ট চিজেল (Diamond point chisel)
- ৫। সাইড চিজেল (Side chisel)

২১.৪ বিভিন্ন প্রকার চিজেন্সের ব্যবহার বর্ণনা (Description of different types of chisel):

ফ্লাট চিজেল (Flat chisel): ফ্ল্যাট চিজেল, ফিটারের একটি সাধারণ ব্যবহার্য যন্ত্র যা শীট বা প্লেট কটিতে এবং ধাতব বস্তুর স্তর সমান (Surfacing) করার জন্য ব্যবহৃত হয়।

চিত্র: ২১.১ বিভিন্ন প্রকার চিজেল

কেপ বা ক্রসকাট চিজেল (Cape or cross cut chisel)

এটি চিকন কাজের জন্য যেমনঃ সরু খাঁজ কাটা, চাবিপথ (Key way) কাটা, রিভেট কাটা ইত্যাদি উদ্দেশ্যে ব্যবস্থত হয়।

রাউন্ড চিজেল (Round Chisel) :

এটি অর্ধগোলাকার আকৃতি এবং গ্রুভ, যেমন বিয়ারিং। অয়েল গ্রুভ ইত্যাদি খাঁজ কাটার জন্য ব্যবহৃত হয়।

ভারমন্ড চিজেল (Diamond Chisel) :

এটি প্রায়শ প্লেট কুটো করার জন্য এবং কোনো পয়েন্টে ড্রিল করার সময় ড্রিল লাইন বা স্থানচ্যুত হয়ে গেলে ড্রিলকে পুনরায় সঠিক স্থলে ড্রিল করতে সহায়তা করে।

চিজেল ধরার নিয়ন:

চিজেন দিয়ে কাটার সময় চিত্রের ন্যায় চিজেনকে শক্ত ও সহজভাবে ধরতে হয়।

চিত্র: ২১.২ চিজেল দিয়ে কান্স করা

চিচ্ছেলের ব্যবহার (Uses of Chisel) :

১।ক্রস কাট চিজেল দিয়ে খাঁজ বা চাবির পথ কাটার প্রণালি চিত্রে দেখানো হলো।

চিত্ৰ: ২১.৪ ক্রুস কটি চিজেল দিয়ে খাঁজ কটা

২। ভায়মন্ড চিজেল দিয়ে কোনা কটা ও পরিষ্কার করা চিত্রে দেখানো হলো।

চিত্র: ২১.৫ ডায়মন্ড চিজেল দিয়ে কাজ করা

৩। ফ্ল্যাট চিচ্ছেন্স দিয়ে পাতন্সা ধাতু পাত কাটার পদ্ধতি চিত্রে দেখানো হলো।

চিত্র: ২১.৬ ফ্র্যাট চিজেল দিয়ে কাজ করা

৪। গোল মাথা বিশিষ্ট চিজেল দিয়ে বিয়ারিং ভেল
 পথ কাটার চিত্র দেখানো হলো।

 ৫। চিজেল দিয়ে কাটার সময় চিজেলকে বিভিন্ন ধাতুর পরিপ্রেক্ষিতে কত ডিগ্রি কোণে ধরতে হবে তা চিত্রে

চিত্র: ২১.৭ গোল মাখা বিশিষ্ট চিজেল দিয়ে কাজ করা

দেখানো হয়েছে।

কাস্ট আয়রনের জন্য ক্লিয়ারেন্স এন্সেল পিতল ও তামার জন্য ক্লিয়ারেন্স এন্সেল মাইন্ড স্টিলের জন্য ক্লিয়ারেন্স এন্সেল শক্ত ইস্পাতের জন্য ক্লিয়ারেন্স এন্সেল

ঃ ৭ ডিগ্রি

ঃ ৬ ডিখ্ৰি

ঃ ৫ ডিগ্রি

३৩ ডিমি

চিত্র: ২১.৮ চিজেলের অবস্থান

সমতল পৃষ্ঠদেশকে চিপিং করা:

প্রথম খাপে, চিপিং করার জন্য ছেনিকে প্রয়োজনীয় কোণে ধরতে হবে এবং একটি ক্রস কাট ছেনি অথবা কেপ ছেনি দিয়ে চিত্রের ন্যায় পর পর করেকটি খাঁজ কাটতে হবে।

চিত্র: ২১.৯ ক্রসকাট চিজেলে খাঁজ কাটা

চিত্ৰ: ২১.১০ ক্লাট চিজেলে খাজ কটা

২য় খাপে একটি ফ্লাট ছেনিকে প্রয়োজনীয় কোপে ধরতে হবে ও পৃষ্ঠদেশ থেকে ধাতু চিপিং করতে হবে, যেমন চিত্রে দেখানো হয়েছে।

২১.৫ চিপিং-এর সভর্কভার বিষয়াদি (Carefulness Aspects of chipping) :

- (১) হাতে চিজেলের মাথায়, হ্যামারের হাতলে (Shaft) অথবা এর মুখে তেল বা গ্রীজ (Grease) থাকলে চিজেল অথবা হ্যামার পিছলে গিরে বিপদ ঘটতে পারে।
- (২) 'চিপিং' করার সময় চিত্রের ন্যায় একটি ধাতু নির্মিত বেড়া, শীন্ত বা গার্ড সর্বদা সমুখে রাখা উচিত। নচেত ধাতৃর খণ্ডলো বিক্ষিপ্ত হরে বিপরীত দিকে কার্যরত অন্য কারিগরকে আঘাত,এমনকি তার চক্ষুকেও নষ্ট করে দিতে পারে।
- (৩) চিপিং করার সময় চিচ্ছেলের 'কাটিং এজ'-এর দিকে দৃষ্টি রাখা উচিত। তা না করে এর মাথার দিকে দৃষ্টি দিলে, দুর্ঘটনার আশকা থাকে।
- (৪) একবারে বেশি করে ধাতুকে ক্ষয় করতে চেষ্টা করা উচিত নয়। অরু অরু করে এবং পুনঃ পুনঃ 'চিপিং' করে ধাতুকে ক্ষয় করা উচিত।

ठिख ४ २১.১১ हिनिश गार्फ

(৫) যে বস্তুকে চিপিং করতে হবে তা ভাইসের মধ্যে খুব দৃঢ়ভাবে অবদ্ধ করতে হবে এবং বস্তুটি ভারী হলে এর নিচে কাঠ বা অন্য কোন ধাড়ু খন্ধকে 'প্যাকিং' রূপে রেখে নিয়ে পরে এটাকে আবদ্ধ করতে হবে। নচেত ঐ বস্তুটি পায়ের উপর পড়ে সাংঘাতিকভাবে জখম করতে পারে।

(৬) চজেলের 'কাটিং এজ' বা মুখ যখন ভেকে যায় অথবা কিছুদিন ব্যবহার করার পর চিজেলের ব্যাপ্তের ছাতার মতো (Mush roomed) আকার ধারণ করে তখন এটাকে 'ফোর্জিং' (Forging) এবং 'গাইভিং' (Grinding) না করা পর্যন্ত কখনও ব্যবহার করা উচিত নয়। ভাঙ্গা মুখ এবং ব্যাপ্তের ছাতার ন্যায় মাথা বিশিষ্ট চিজেল ব্যবহার করলে 'চিপিং' কাজ অগ্রসর হয়ই না উপরম্ভ হাত জখম হওয়ার আশঙ্কা থাকে। খণ্ড ছিটকে এসে চক্ষুকেও নষ্ট করে দিতে পারে।

চিত্র: ২১.১২ কাটিং এজ'

প্রশ্নমালা-২১

অতি সংক্ৰিপ্ত প্ৰশ্ন:

- ১। চিপিং কী?
- ২। কাস্ট আয়রন ও ব্রোঞ্জের জন্য চিজেলের ঠোটের কোণ কত ডিগ্রি?
- ৩। চিপিং-এর যেকোনো একটি প্রয়োগক্ষেত্র উল্লেখ কর?
- ৪। দ্রিলিং করার সময় কেন্দ্র সরে গেলে কী করা হয়?
- ৫। চিপিং গার্ড কী?
- ৬। চিপিং গার্ড কোথায় রাখা উচিত?
- ৭। চিজেল মূলত কত প্রকার?
- ৮। কোন্ড চিজেলকে কয় ভাগে ভাগ করা যায়?
- ৯। ডায়মন্ড চিজেল কী?
- ১০। ক্রস কাট চিজেল দিয়ে কী কাটা হয়?

সংক্রিপ্ত প্রশ্ন :

- ১১। চিপিং বলতে কী বোঝায়?
- ১২। চিপিং-এর তিনটি প্রয়োগক্ষেত্র উল্লেখ কর?
- ১৩। চিপিং গার্ড বলতে কি বোঝায়?
- ১৪। চিপিং গার্ড ব্যবহারের প্রয়োজনীয়তা উল্লেখ কর?
- ১৫। চিজেলের মৌলিক শ্রেণি বিভাগ কর?
- ১৬ : কোল্ড চিজেলকে কী কী ভাগে ভাগ করা যায় ও কী কী?
- ১৭। ফ্র্যাট চিজেলের বর্ণনা দাও?
- ১৮। গোল মাথা বিশিষ্ট চিজেল দিয়ে কী কাজ করা হয়?
- ১৯। চিজেল ধরার নিয়ম কী?
- ২০। চিপিং-এর সময় ২টি সতর্কতা উল্লেখ কর?

রচনামূলক প্রশ্ন :

- ২১। চিপিং বলতে কী বুঝায় বিবৃত কর। চিজেল কোন ধাতু দিয়ে তৈরি হয়?
- ২২। চিজেলের শ্রেণি বিন্যাস কর।
- ২৩। কী-ওয়ে কাটার জন্য কোন ধরনের ছেনি ব্যবহৃত হয়?
- ২৪। ডায়মন্ড পয়েন্ট ছেনির প্রয়োগক্ষেত্র উল্লেখ কর।
- ২৫। শক্ত ইস্পাত কাটার জন্য ছেনির ক্লিয়ারেন্স এঙ্গেলের পরিমাণ উল্লেখ কর।
- ২৬। চিপিং গার্ড ব্যবহারের সুবিধা বর্ণনা কর।
- ২৭। ব্যাঙের ছাতার ন্যায় মাথা বিশিষ্ট ছেনি ব্যবহারের অসুবিধা উল্লেখ কর।

দাবিংশ অধ্যায় নাট (Nut)

২২.০ সূচনা (Introduction) :

বোল্টের সাথে নাট ব্যবহার করা হয়। সাধারণত নাট মাইল্ড স্টিল দ্বারা তৈরি হয়ে থাকে। বোল্টে যে মাপের স্ক্- থ্রেড থাকে নাচের ছিদ্রের মধ্যেও ঐ একই মাপের স্কু-প্রেড করা হয়। যে ডায়মিটারের একটি বোল্টের নাথে যে নাটের মিল হয়, নাটের মাপ বলতে তাকেই বুঝায়। যেমনঃ ১২ মি.মি. ডায়মিটারের একটি বোল্টের সাথে যে নাটের মিল হয় তাকে ১২ মি.মি. নাট বলে।

২২.১ নাট (Nut)

কল কারখানায় বোল্ট দিয়ে দূই বা ততোধিক অংশগুলিকে আবদ্ধ করার সময় বোল্টের সাহয্যে যে সরঞ্জাম ব্যবহার হয়ে থাকে তাকে নাট (Nut) বলে। অর্থাং দূই বা ততোধিক অংশকে একসঙ্গে আবদ্ধ করে নিতে বোল্টের ব্যবহারকালে বোল্টের সাথে যে ডিভাইস ব্যবহার করা হয়, তা-ই নাট (Nut)।

- ১১.২ নাটের প্রকারভেদ (Types of Nut) :
- ১। হেক্সাগোনাল নাট (Hexagonal Nut)
- ২। স্কন্নার নাট (Square Nut)
- ত। রাউন্ড নাট (Round Nut)
- ৪। ফ্লেজড নাট (Flanged Nut)
- ৫। খাৰ নাট বা উইং নাট (Thumb nut or Wing nut)
- ৬। স্লটেড নাট (Slotted Nut)
- ৭। লক নাট (Lock Nut)
- ৮। ফ্লেছড ক্যাপ নাট (Flanged Cap Nut)

বিভিন্ন প্রকার নাট এর শনাক্তরকণ:

চিত্র : ১১.১ বিভিন্ন প্রকার নাট

২২.৩ নাটের পরিমান (Measurement of Nut)

নাটের প্রেড মাপ দারা যে ভারমিটারের বোল্টের সাথে মিল হর ঐ বোল্টের মাপই এই নাটের মাপ বুঝার। যেমন ১২ মিঃ মিঃ ভারমিটারের একটি বোল্টের সাথে যে নাটের মিল হয় ওই নাটের মাপ ১২ মিঃ মিঃ। নাটের ছিদ্রের ভারমিটার মাপ হতেও এটা নির্ণয় করা যায়।

বোল্টের ন্যায় নাট ও কছকগুলি নির্দিষ্ট স্ট্যান্ডর্ড অনুযায়ী তৈরি হয়ে থাকে। এদেরকে স্ট্যান্ডার্ড নাট (Standard Nut)। এ নাটের ছিদ্রের সমগ্র ছানেই ফু প্রেড করা থাকে। কোন নাটের সম্পূর্ণ বিবরণ দিতে হলে এর আকার, যে ভায়মিটারের বোল্টের সাথে এটা মিল হবে ঐ মাপ, বাহিরের গঠন ভিতরের প্রেড কোন স্ট্যান্ডার্ড অনুযায়ী তৈরি ইত্যাদি উল্লেখ করতে হয়।

যেমন-মাইন্ড স্টিলের বড়ভুজকার এবং মেট্রিক মাপ সংক্রান্ত ২০ মিঃ মিঃ মাপের একটি নাটের পরিচয় M.S. Hex Nut M20।

ষড়ভুজকার (Hexagonal) নাটের আনুপাতিক মাপঃ D= বোল্টের ব্যাস

নাটের উচ্চতা= মেট্রিক মাপ স্থলে এটা ০.8D।

সমান্তরাল দু'টি বাছর ব্যবধান (Widith accross tow flat sides) 1 34 D

মেট্রক মাপ স্থলে এটা 1.5D হতে 1.5D+3 মিঃ মিঃ।

২২.৪ নাট-এর ব্যবহার (use of Nut):

১। হেব্রগোনাল নাট (Hexagonal Nut) : এটা ষড়ভূজ আকারের ও প্রধানত হেব্রাগোনাল হেডেড বোল্টে মেশিনের বিভিন্ন অংশে এই নাট সর্বাপেক্ষা বেশি ব্যবস্তৃত হয়।

চিত্র: ১১.২ নাট

২। স্কারার নাট (Square Nut) কোনো কোনো ক্ষেত্রে স্করার নাটও ব্যবহৃত হরে থাকে। এটা স্করার হেডেড বোল্টে ও ক্যারেজ বোল্টে এই নাট ব্যবহার হর।

- ৩। হেক্সাগোনাল ফ্লেঞ্কড নাট (Hexagonal Flanged Nut): এটা সাধারণত হেক্সাগোনাল নাট-এর ন্যায় দেখতে কিন্তু এর নিচের অংশ ওয়াশারের গঠনের অনুরূপ বলে একে হেক্সাগোনাল ফ্লেঞ্কড নাট বলে। এটা ব্যবহার করলে আর নাটের নিচে সাধারণভাবে পৃথকভাবে কোনো ওয়াশার ব্যবহার করার প্রয়োজন হয় না।
- 8। হেক্সাগোনাল ফ্রেক্সড ক্যাপ নাট (Hexagonal Flanged Cap Nut): এটার উপরের অংশ টুপির ন্যায় ঢাকা থাকে। এটা ব্যবহার করলে থ্রেডের উপর কোন ধুলা বালি ইত্যাদি জমতে পারে না। এটা ভিন্ন তরল পদার্থ এবং গ্যাস থ্রেডের পাশ দিয়ে বের হয়ে আসার (Leak) পথ পায় না।
- ৫। ক্যাসল নাট (Castle Nut): ইঞ্জিন এবং মেশিন ইত্যাদির কম্পানের ফলে এতে ব্যবহৃত নাট প্রায়ই বিপরীত দিকে ঘুরে ঢিলা হয়ে যায়। এই ঢিলা হওয়াকে প্রতিরোধক করার জন্য ইঞ্জিন এবং মেশিনের চলনশীল বিভিন্ন অংশে সাধারণ নাটের পরিবর্তে ক্যাসল নাট ব্যবহার করা হয়। স্প্রিট পিন দিয়ে নাটকে বোল্ট এর সাথে আটকানো থাকে বলে ঢিলা হয়ে কম্পানের ফলে বের হয়ে আসে না।
- ৬। স্লটেড নাট (Slotted Nut): স্লটেড নাট ও ক্যাসল নাটের পরিবর্তে ব্যবহার করা হয়ে থাকে। এটা ক্যাসল নাটের মতো ব্যবহার হয়। ভাইব্রেশনে এ নাট খুলে বা ঢিলা হয় না। স্প্লিট পিন (Spilt Pin) অর্থাৎ চেরা পিনের সাহায্যে বোল্টের সাথে ব্যবহার করতে হয়। স্লডেট নাট গাড়িতে এবং অ্যারোপ্লেন ব্যবহৃত হয়।
- ৭। লক নাট (Lock Nut): এর অপর নাম জাম্বড নাট (Jammed Nut) বা চেক নাট (Cheek Nut) নাটের ঢিলা হওয়াকে বন্ধ করার জন্য মেশিন, ইঞ্জিন ইত্যাদির যে সকল অংশ চলনশীল এতে সাধারণ নাটের উচ্চতায় মেট্রিক মাপস্থলে ডায়মিটারের ২/৩ অংশ থাকে।
- ৮। থাম্ব নাট (Thumb Nut) : এর অপর নাম ফ্লাই নাট (Flay Nut) অঙ্গুলি দ্বারা একে বার বার ঘোরানো হয়ে থাকে। খুব হালকা বস্তুর পক্ষে এটা উপযোগী হয়। হ্যাক'স ফ্রেমের সাথে হ্যাক'স ব্লেড আটকানোর কাজে এটা ব্যবহার হয়ে থাকে।
- ৯। রাউন্ড নাট (Round Nut) : একে রিং নাটপ্ত বলে।
- এটার ছিদ্র গোল অথবা চতুকোণ হয়। পিন স্প্যানার (Pin Spanner) টমি বার (Tommy Bar) ইত্যাদি দ্বারা একে ঘুরানো হয়ে থাকে।
- ১০। কাপলার নাট (Coupler Nut) : এই প্রকারের নাট লম্বা আকারের হয় এবং এর এক প্রান্ত রাইট হ্যান্ড (Right Hand) রকমের ও অন্য প্রান্তে লেফট হ্যান্ড (Left hand) রকমের প্রেড করা থাকে। টেলিফোন (Telephone), ইলেকট্রিক পোস্ট (Electric Post) ইত্যাদিকে তারের দড়ি (Wire Rope) এর সাহায্যে লম্ব ভাবে দাঁড় করে রাখতে এটা উপযোগী হয়।

প্রশ্নমালা-২২

অতি সংক্ষিপ্ত প্রশ্ন:

- ১ | নাট কী?
- ২। নাটের মাপ বলতে কী বোঝ?
- ৩। নাটের ছিদ্রের কডটুকু প্রেড করা থাকে।
- ৪। নাট কোন ধরনের ধাতু দিয়ে তৈরি হয়ে থাকে?
- ৫। দুই ধরনের নাটের নাম লেখ।
- ৬। ২০ মিঃ মিঃ মাপের একটি নাটের পরিচয় লেখ।
- ৭। রাউন্ড নাট কী ভাবে খোলা বা লাগানো হয়।
- ৮। থাম নাটের অপর নাম কী?
- ৯। রিং নাটের অপর নাম কী?
- ১০। কাপলার নাট কীরূপ হয়?

मशक्ख खन्नः

- ১১। নাট বলতে কী বোঝায়?
- ১২। যে কোনো পাঁচ প্রকার নাটের নাম লিখ।
- ১৩। নাটের পরিমাপ কীরূপে লেখা হয়?
- ১৪। হেক্সাগোনাল নাটের ব্যবহার দেখাও।
- ১৫। ক্ষয়ার নাটের ব্যবহার দেখাও?
- ১৬। ক্যাসল নাটের ব্যবহার দেখাও?
- ১৭। প্লটেড নাটের ব্যবহার করা হয়?
- ১৮। লক নাট কেন ব্যবহার করা হয়?
- ১৯। কাপলার নাট কোন কোন কাজে ব্যবহৃত হয়?
- ২০। থাম নাটের ব্যবহার দেখাও।

রচনামূলক প্রশ্ন:

- ২১। নাট সম্পর্কে যা জান লেখ।
- ২২। নাটের প্রকারভেদ দেখাও।
- ২৩। নাটকে কীরূপ পরিমাপ করা হয়?
- ২৪। ফাঞ্জনাট কেন ব্যবহার করা হয়?
- ২৫। লক নাটের প্রয়োগ দেখাও।
- ২৬। কাপলার নাট কী কাজে ব্যবহৃত হয় উল্লেখ কর।
- ২৭। রাউন্ড নাটের প্রয়োগ দেখাও।

ज्राविर्गं ज्याय

বোল্ট (Blot)

২৩.০ সূচনা (Introduction) :

দৃটি অংশকে অন্থায়ীভাবে যুক্ত করে রাখতে বোল্ট এবং নাট ব্যবহার হয়। এর সুবিধা এটা যখন প্রয়োজন তথনই অংশ দুইটি সহজে পৃথক বা যুক্ত করা যায় এবং একই বোল্ট নাটকে পুনঃ পুনঃ ব্যবহার করা চলে। অস্থায়ী জ্যোড়া দেবার জন্য এটা ব্যাপকভাবে ব্যবহার করা হয়।

২৩.১১ বোল্ট (Bolt) :

পাশাপাশি অবস্থিত দুটি মৌটালিক অংশকে পরস্পারের সাথে নাট (Nut)-এর সহযোগ অস্থায়ীভাবে যুক্ত করার উদ্দেশ্যে যে বস্তু ব্যবহৃত হয়, তাকে বোল্ট (Bolt) বলে।

বোল্ট সাধারণত মাইন্ড ন্টিলের রড দারা তৈরি করা হয়। এর দৈর্ঘ্য যুক্ত অংশের একদিকে মাথা ও অপর দিকে কিছু পরিমাণ স্থান বিভিন্ন মান-এর প্রেড বিশিষ্ট হয়ে থাকে। এর মাথা বা প্রেড ও দৈর্ঘ্য নির্দিষ্ট মাপ অনুযায়ী তৈরি করা হয় এবং প্রয়োজনে ক্ষেত্র অনুযায়ী বিভিন্ন আকারের তৈরি হয়।

চিত্র ঃ ২৩.১ বোল্ট

২৩.১১ বোল্টের পরিমাপ (Measurement of Bolt) :

প্রকৃত পক্ষে বোল্টের দৈর্ঘ্য বলেতে এর মাথায় উচ্চতা বাদে অবশিষ্ট অংশের দৈর্ঘ্য বুঝায়। একটি বোল্টের পূর্ণাঙ্গ বিবরণ দিতে হলে এটা কোন ধাতু দারা তৈরি মাথায় আকৃতি কেমন, দৈর্ঘ্য কত, কতটুকু স্থানে প্রেড বর্তমান এবং প্রেড কোন স্ট্যান্ডডের ইত্যাদি বিষয় উল্লেখ করা আবশ্যক। নাটের ন্যায় বোল্টের মাথা এবং প্রেড ও সাধারণ কয়েকটি নির্দিষ্ট আনুপাতিক মাপে তৈরি হয়ে থাকে। এ প্রকার বোল্টকে স্ট্যান্ডার্ড বোল্ট (Standard Bolt) বলে।

উদাহরণত, মেট্রিক মালস্থলে নাটসহ 70 মিঃ মিঃ দীর্ঘ ষড়কোণাকার 18 মিঃ মিঃ মালের একটি বোল্টের পরিচয়– Hex Bolt M 18x 70 N রূপে লেয়া হয়ে থাকে।

চিত্ৰ ৪ ২৩.২ ৰোল্টের দৈৰ্ঘ্য

ষড়কোপ মাথা বিশিষ্ট (Hexgonal) বোল্টের ভারমিটার যদি D হর, তাহলে এর মাথার আনুপাতিক মাপ হবে মাথার উচ্চতা H=7/8 [মেট্রিক মাপ স্থলে ০.৬৬D এবং প্রেডকৃত স্থানের দৈর্ঘ্য=1/12 হতে 2D]

২৩.৩ বোল্টের প্রকারতেন (Types of Bolt)

বোল্টের বিভিন্ন প্রকার হয়ে থাকে। যেমনঃ

- ১। হেক্সাশোনাল হেডেড বোল্ট (Hexagonal Headed Bolt)
- ২। স্বয়ার হেডেড বোল্ট (Square Headed Bolt)
- ৩। টী হেডেড বোল্ট (Tee Headed Bolt)
- ৪। কাপ হেডেড বোল্ট (Cup Headed Bolt)
- ৫। চীচ্ছ স্কয়ার হেডেড বোল্ট (Cheese Headed Bolt)
- ৬। হ্ব হেজেড বোল্ট (Hook Headed Bolt)
- ৭। কনিক্যাল হেডেড বোল্ট (Conical Headed Bolt)
- ৮। স্টার্ড বোল্ট (Study Bolt)
- ১। আই বোল্ট (Eye Bolt)
- ১০। ট্যাপ বোল্ট (Tap Bolt)

এছাড়া বিভিন্ন ধরনের কাজের উপর ভিত্তি করে বোল্টের নিয়ুগিখিভভাবে বিভিক্ত করা যায়। যখা:

- (ক) ভ্ৰু বোল্ট (Hook Bolt)
- (খ) ক্লফিং বোল্ট (Roofing Bolt)
- (গ) শীট বোল্ট (Sheet Bolt)
- (ঘ) স্বাউডেশন বোল্ট (Foundation Bolt)

জ্ব চিত্র: ২৩,৩ করার হেড বোল্ট

২৩.৪ বোল্টের ব্যবহার (Uses of Bolt) :

বিভিন্ন বোশ্টের ব্যবহার নিমে উল্লেখ করা হলো:

- ১। স্বরার হেডেড বোল্ট (Square Headed Bolt) :
- এ বোল্টের মাথায় আকার করার আকারের বিশেষ মেশিনের কোনো অংশ ছাড়া প্রায়াই সকল সাধারণ কাজে এটা ব্যবহার উপযোগী হয়।
- ২। হেলাগোনাল হেডেড বেল্টি (Hexagonal Headed Bolt):
- এ বোল্টের মাখায় আকার হড়ভুজ (Hexagona) বিশিষ্ট। সাধারণত সকল কাজে এটা ব্যবহার হয়ে থাকে।

চিত্র: ২৩.৪ হেক্সাগোনাল হেডেড বোল্ট

- ৩। কাপ হেডেড বোল্ট (Cup Headed Bolf): এ বোল্টের মাথা কাপের মতো গোলাকার। স্প্যানার (Spanner) দারা একে ধরতে পারা যার না বলে ব্যবহারের সমর দাতে দ্বরে না যার এই কারণে মাথার নিচের সন্নিহিত স্থানে একটু অংশ বর্ধিত করা থাকে। এসে স্নাগ (Snug)– বলে। গাড়ির বডি (Body)– তৈরি করতে এটা ব্যবহার করা হয়।
- 8। চীব্দ হেডেড বোল্ট (Cheese Headed Bolt): এ বোল্টের মাধার আকার অনেকটা গোল স্বস্তাকর (Cylindrical)— এটা ব্যবহারে সমর যাতে স্থারে না যার তার লক্ষ্যে মাধার নিচের সন্নিহিত স্থানে একটি পিন (Pin)— ক্র্যু প্রেডের সাহায্যে যুক্ত করা থাকে। ক্রস হেড, (Cross Head) কানেটিং রড (Connecting Rod)—ইত্যাদি এটা ব্যবহার করা হয়ে থাকে।
- ৫। টী হেডেড বোল্ট (Tee Headed Bolt): এ বোল্টর মাথায় ইংরেজি অক্ষর T-এর ন্যায় বিধায় কোন T আকারের নালীতে এর মাথাকে প্রবেশ করিয়ে নাটের সাহায্যে বস্তকে আবদ্ধ করতে ব্যবহার হয়ে থাকে। দ্রিলিং, শেপিং, প্রটিং ইত্যাদি মেশিনের টেবিল T আকারের নালীযুক্ত অংশে এর মাথাকে প্রবেশ করিয়ে কোনো বস্তকে নাটের সাহায্যে টেবিলের সাথে আবদ্ধ করতে ব্যবহার হয়। মেশিন বেড, ইঞ্জিন বেড এ টি প্রটে এটা ব্যবহার করা হয়।
- ও। ছক হেডেভ বেল্টি (Hook Headed Bolt) : এ বোল্টের মাধা ছক যুক্ত হওরার কোনো একটি অংশ যদি ছিদ্র করার ছান না পাওরা যার অথবা ছিদ্র করলে অংশটি দুর্বল হতে পারে ঐ ছলে এটা ব্যবহার করা হয়। জরেস্ট (Joist) বা গার্জার (Girder) এর ক্লেঞ্জের সাথে কোন অংশকে আবদ্ধ করতে এটা উপযোগী হয়।
- ৭। কনিক্যাল হেডেড বোল্ট (Conical Headed Bolt): এ বোল্টের মাথা উপরের দিকে ক্রমশ মোটা। দুরে যাওয়াকে প্রতিরোধ কল্পে মাথার নিচের সন্নিহিত স্থানে একটি পিন লাগানো থাকে। যে স্থলে মাথা বাইরে থাকলে অসুবিধা হতে পারে, সেস্থলে এই প্রকার বোল্ট ব্যবহার করলে মাথা বাইরে থাকে না বিধায় সুবিধা হয়।
- ৮। জাই বোল্ট (Eye Bolt): এটার মাথা গোল ছিদ্র যুক্ত হওয়ায় একে আই বোল্ট বলে। যে কোনো বড় মেশিন, মোটর ইত্যাদিকে দড়ি (Rope) বা শিকলের (Chain) - সাহায্যে উঠাতে বা নামাতে এবং কোনো

ভারী বস্তুকে ঘূর্ণশীল অবস্থায় ঝুলিয়ে রাখতে এটা ব্যবহার হয় হালকা বস্তুকে ব্যবহার হয়। এটাকে নাট লাগে না। কারনপার্টস—এর মধ্যে থ্রেড কাটা থাকে। হালকা কাজে বোল্ট হিসাবে ভ্রবহার করা হয়।

৮। ক্লফিং বোল্ট (Roofing Bolt): চালা ঘরের ছাউনি (Roof) দেয়ার উদ্দেশ্য কাঠ (Wood), একেল (Angle), টি (Tee) আয়রন (Iron) প্রভতি দ্বারা তৈরি কাঠামোর সাথে সমতল অথবা ঢেউ তোলা লৌহার ঢেড টিন (Corragates Iron Sheet), এজবেস (Asbestos) প্রভৃতি প্রধানত যুক্ত করতে রুফিং বোল্ট ব্যবহার করা হয়। আর্দ্র আবহাওয়ায় যাতে মরিচা নষ্ট হয়ে না যায় ঐ কারণে এর উপর জিল্ক (Zinc)-এর প্রলেপ (Glavanised) দেয়া থাকে।

৯। ট্যাপ বোল্ট (Tap Bolt): এ বোল্টের ছিদ্রের মধ্যে দিয়ে স্কু থ্রেড বিশিষ্ট একটি পিন প্রবিশট করা থাকে এটার সাহায্যে ভারী কোনো বস্তুকে ঘূর্ণনশীল অবস্থায় ঝুলিয়ে রাখতে সুবিধা হয়। এ প্রকার বোল্ট প্রায়ই অনেক দীর্ঘ হয়ে থাকে।

১০। স্টার্ড বোল্ট (Study Bolt): এ প্রকার বোল্টের কোনো মাথা থাকে না। মাঝের কিছু অংশকে বাদ দিয়ে উভয় পাশের একদিকে বাম দিকে ঘুরিয়ে (Right Hand) এবং অন্যদিকে ডান দিকে ঘুরিয়ে থ্রেড করা থাকে ইঞ্জিন (Right Hand) দুটি ফ্রেঞ্জ বিশিষ্ট বস্তুকে যুক্ত করতে এই প্রকার বোল্ট উপযোগী।

ফাউন্ডেশন বোল্ট (Foundation Bolt) : ইঞ্জিন, মেশিন প্রভৃতিকে মেঝের সাথে কংক্রিটের সাথে দৃঢ়ভাবে আবদ্ধ করে রাখতে ফাউভেশন বোল্ট ব্যবহার হয়ে থাকে।

- (a) র্যাগ বোল্ট (Rag Bolt) : এ বোল্টের নিচের অংশ আয়তকার এবং খাঁজ বিশিষ্ট হয়ে নিচের দিকে ক্রমশ মোটা বা এ জাতীয় কোনো ভারী বস্তুকে মেঝের সাথে আবদ্ধ করে রাখতে ব্যবহার করা হয়।
- (b) পিউইস বোল্ট (Lewis Bolt): ইঞ্জিন মেশিন প্রভৃতি মেঝের সাথে অস্থায়ীভাবে যুক্ত করে রাখতে এটা ব্যবহার করা হয়। এই প্রকার বোল্টের এক পাশে নিচের দিকে ক্রমশ ঢালু করা ও অপর পাশ লম্বভাবে সমতল করে থাকে। ঢালু করা পাশটা কংক্রিটের তৈরি ঢালু করা ছিদ্রের পাশে থাকে ও লম্ব পাশটিতে একটি জীব হেড কী (Jib Head Key) ব্যবহার করে মেশিনে প্রবৃতিকে আবদ্ধ করা হয়। এছাড়া প্রয়োজনে কী টিকে তুলে নিয়ে বোল্টটিকে বের করতে পারা যায়।
- (c) কটার বোল্ট (Cotter Bolt) : এটা সাধারণ বোল্টের মতো দেখতে হলেও এর মাথায় আড়দিকে একটি ছিদ্র করা থাকে। এ ছিদ্রের মধ্যে এটার কটার (Cotter) প্রবেশ করিয়ে ও একটি ওয়াশার (Washer) ব্যবহার করে কংক্রিট দ্বারা মেঝের সাথে মেশিনকে আবদ্ধ করা হয়।
- (d) বাইফারকেটেড বোল্ট (Bifurcated Bolt) : এই প্রকার ফাউন্ডেশন বোল্টের নিচ প্রান্ত মাঝামাঝি দ্বিখণ্ডিত করে দুইদিকে বাইরে দিকে বাঁকিয়ে রাখা হয়। এ বাঁকা ধাতু খণ্ড ওয়াশারের ন্যায় ব্যবহার করে কংক্রিট দ্বারা মেঝের সাতে আবদ্ধ করা হয়ে থাকে।
- (e) নকড আউট বোল্ট (Knocked out Bolt): সাধারণ রকম বোল্টকে কামার শালায় উত্তপ্ত করে নিচের অংশটিকে ডান অথবা বাম দিকে বাঁকিয়ে এটা তৈরি করা হয়ে থাকে। বাঁকানো অংশটিকে মেঝের সাথে কংক্রিটের সাহয়্যে আবদ্ধ করা হয়।
- (f) কোচ বোল্ট (Coach Bolt): হান্ধা মেশিনকে কাঠের সাথে আবদ্ধ করার অন্য এ বোল্ট ব্যবহার করা হয়। এর এক প্রান্ত উড স্কু (Wood Screw)—এর প্রেড বিশিষ্ট অথবা শুধুমাত্র প্রেড বিশিষ্ট হয়ে থাকে।

প্রশ্নমালা-২৩

অতি সংক্ষিপ্ত প্রশ্ন:

- ১। বোল্ট কাকে বলে?
- ২। বোল্ট সাধারণ কী দিয়ে তৈরি করা হয়?
- ৪। বোল্টের দৈর্ঘ্য বলতে কী বোঝায়?
- ৪। স্ট্যান্ডর্ড বোল্ট কাকে বলে?
- ৬। 70 মিঃ মিঃ দীর্ঘ ষড়কোনাকার 78 মিঃ মিঃ মাপের বোল্টের পরিচয় কীভাবে দেয়া হয়?
- ৭। সাধারণত সকল কাজে কোন ধরনের বোল্ট ব্যবহার করা হয়।
- ৮। কনিক্যাল হেডেড বোল্টের ঘুরে যাওয়া রোধে কী ব্যবহার করা হয়?
- ৯। রুফিং বোল্ট কত প্রকার?

সংক্রিপ্ত প্রশ্ন:

- ১০। বোল্ট বলতে কী বোঝায়?
- ১১। বোল্টের পূর্ণাঙ্গ বিবরণ দিতে হলে কী কী বিষয় উল্লেখিত করতে হয়?
- ১২। কীভাবে একটি বোল্টের পরিচয় উল্লেখ করা হয়।
- ১৩। একটি ষড়কোণ মাথা বিশিষ্ট বোল্টের ডায়মিটার যদি D হয় তাহলে এর মাথার উচ্চতা কত?
- ১৪। প্রয়োগ ক্ষেত্র অনুযায়ী বোল্ট ব্যবহার দেখাও।
- ১৫। ক্ষকার হেডেড বোস্টের ব্যবহার দেখাও।
- ১৬। হেক্সাগোনাল হেডেড বোল্টের ব্যবহার দেখাও।
- ১৭। রুফিং বোল্ট-এর ব্যবহার দেখাও। এটা কেন গ্যালভাইনজিং করা হয়।

রচনামূলক প্রশ্ন:

- ১৮। বোল্ট বলতে কী বোঝায়? এর ব্যবহার সমেন্ধ লেখ।
- ১৯। বোল্টের পরিমাপ দেখাও।
- ১৯। বোল্টের প্রকারভেদ দেখাও।
- ২০। বিভিন্ন প্রকার বোল্টের সংক্ষিপ্ত ব্যবহার দেখাও যা ইঞ্জিন, মেশিনের ফাইন্ডেশনের ফাউন্ডেশনের কাজে লাগে
- ২২। রুফি বোল্ট কী কী কাজের জন্য ব্যবহার করা হয়?

চতুৰ্বিংশ অধ্যায়

ওয়াশার (Washer)

২৪.০ সূচনা (Introduction) :

বোল্টের সিটিং ফেস ও নাটের মধ্যবর্তী স্থানে বোল্টের বাঁধন দৃঢ় করার জন্য এবং কম্পনের ফলে নাট ও চিলা রোধকল্পে যে যন্ত্রাংশ ব্যবহৃত হয় এটাই ওয়াশার নামে পরিচিত।

২৪.১ ওয়াশার (Washer) :

বোল্টের সিটিং ফেস ও নাটের মধ্যবর্তী স্থানে বোল্টের বাঁধন দৃঢ় করার জন্য এবং কম্পনের ফলে নাট ও বোল্ট টিলারোধ কল্পে যে যন্ত্রাংশ ব্যবহৃত হয় এটাই ওয়াশার নামে পরিচিত। এটা মাইল্ড স্টিল দ্বারা এবং বিশেষ স্থানে ব্যবহারের জন্য অন্যন্য ধাতু পিতল (Brass) এবং তামা (Copper) দ্বারা তৈরি হয়।

২৪.২ স্থয়াশার পরিমাপ (Measurement of Washer)

ওয়াশার দেখতে অনেকটা ছিদ্রবিশিষ্ট গোল চাকতি বা সমতল একটি আংটির ন্যায়। বোল্টের ডায়মিটারের সাথে যে ওয়াশারের ছিদ্রের মিল হয় ওয়াশারের মাপ বলতে এটাই বুঝায়। নাটের বসার স্থান সর্বদা সম্পূর্ণ সমতল থাকার প্রয়োজন হয়। সমতল না থাকলে নাটের তলদেশে বসার সমগ্র স্থান অধিকার করতে পারে না। ফলে যে স্থানটুকু সাথে এটা সংস্পর্শ ঘটে তার উপর অতিরক্তি চাপ পড়ে তা দূরীকরণে ওয়াশার নির্বাচন করা হয় এবং তা বোল্টের ব্যাসের অধিক ক্ষেত্রের মধ্যে বিতরণ করে।

২৪.৩ ওয়াশার-এর প্রকারভেদ (Types of Washer) :

- ১। লক ওয়াশার (Lock washer)
- ২। স্প্রীং ওয়াশার (Spring washer)
- ত। রিং ওয়াশার (Ring washer)
- ৪। ট্যাব ওয়াশার (Rab washer)
- ৫। ডায়মন্ড ও লিম্পেট ওয়াশার (Diamond and Limpet washer)

২৪.৪ বিভিন্ন প্রকার ভ্রাশারের ব্যবহার (Uses of Different Types of Washer)

লক ওয়াশারের মধ্যভাগে নাটের আকারে একটি ছিদ্র করা থাকে। নাটকে দৃঢ় আবদ্ধ করতে এবং যাতে বিপরীতে দিকে ঘুরে না যায় সেই উদ্দেশ্যে এর ছিদ্রের মধ্যে নাটটিকে স্থাপন করে মেশিন বংশের সাথে দ্বারা দু'পাশে আবদ্ধ করে দিতে হয়।

২। স্প্রীং ওয়াশার (Spring washer): স্প্রীং ওয়াশার ও দেখতে গোল চাকতির ন্যায় তবে একটি পার্শ্ব খণ্ড খোলা ও মুখ দুটি মুখোমুখি না থেকে একটু উপরে বা নিচে থাকে। এটা স্প্রীং স্টিল দ্বারা তৈরি হয় এবং টেম্পার দেয়া থাকে। সাধারণত এটা কোনো কম্পনশীল অংশে জোড়ার ক্ষেত্রে ব্যবহৃত হয়। নাটকে যখন নির্দিষ্ট স্থানে বসানো হয় তখন চাপের ফলে ওয়াশরের মুখ দুটি মুখোমুখি হয়। ফলে নাট আর বিপরীত দিকে ঘুরে ঢিলা হতে পারেনা।

- ৩। বিং ওয়াশার (Ring washer): এটা দেখতে গোল চাকতির ন্যায় এবং মধ্যভাগে বোল্টের মাপ অনুযায়ী ছিদ্র করা থাকে। সাধারণ সকল ক্ষেত্রে এটা প্রায়ই ব্যবহার করা হয়। পাটর্স এর ছিদ্র বোল্ট হেডের চেয়ে বড় হলে ওয়াশার দিয়ে কাজে লাগানো যায়। আবার বোল্টের থ্রেড না পেলে ডিসটেন্স পিচ হিসেবে ব্যবহার করা হয়।
- 8। ট্যাব ওয়াশার (Tab washer): এটা একটি পাতলা প্লেটের উপর বোল্টের ডায়মিটার মাপ অনুযায়ী ছিদ্র বর্তমান থাকে। নাটকে দৃড়ভাবে আবদ্ধ করার পর এটা যাতে না ঘুরতে পারে সেই জন্য ওয়াশারের বর্ধিত এক প্রান্তকে নাটের সমতল পাশেও সাথে ও অন্য বর্ধিত প্রান্তকে বস্তুও বার্শ্বের সাথে বাঁকিয়ে দেয়া হয়।
- ৫। ডায়মন্ড ও লিম্পেট ওয়াশার (Dimond and Limpet washer): চালাঘরের ঢেউ তোলা শীটের (C.I Sheet) ছাউনিতে পানিকে ভিতরে প্রবেশ করতে বাঁধা দেয়ার উদ্দেশ্যে রুফিং বোল্টে—এর সাথে এই প্রকার ওয়াশার ব্যবহার হয়ে থাকে। এটাতে যাতে মরিচা না পড়তে পারে এই জন্য উপরিভাগে দন্তার (Zine) পাতলা প্রলেপ (Galavnised) দেয়া থাকে।

২৪.৫ ওয়াশার ব্যবহারের উদ্দেশ্য:

ওয়াশার সাধারণত নিম্নলিখিত উদ্দেশ্য ব্যবহার হয়ে থাকে।

- ১। অসমতল উপরিভাগে নাটের তলদেশকে বসার স্থান করে দেয়।
- ২। কম্পনশীল অংশে অবস্থিত নাটকে বিপরীত দিকে ঘুরে যাওয়াকে বাধা দেয়।
- ৩। নাট দ্বারা সৃষ্ট চাপকে অধিক পরিমাণ স্থানে বন্টন, করে দিতে সাহায্যে করে লেখ প্রতিরোধক করে।
- ৪। নাটকে ঘোরানোর সময় বস্তু উপরিবাগকে আঁচড়ের হাত হাত রক্ষা করে।
- ৫। ওয়াশার অনেক সময় থ্রেড পাওয়ার জন্য ব্যবহার করা হয়।

প্রশ্নমালা-২৪

অতি সংক্ষিপ্ত প্রশ্ন:

- ১। ওয়াশার কী?
- ২। ওয়াশারের যে কোনো একটি কাজ লেখ।
- ৩। কম্পনের ফলে নাট ও বোল্টের ঢিলা হওয়ার রোধকল্পে কী ব্যবহার করা হয়।
- 8। ওয়াশার কী ধাতু দিয়ে তৈরি হয়ে থাকে?
- ৫। ওয়াশার প্রধানত কত প্রকার?

সংক্ষিপ্ত প্রশ্ন:

- ৬। ওয়াশার কাস্ট আয়রন দিয়ে কেন তৈরি হয় না?
- ৭। ওয়াশার বলতে কী বোঝ?
- ৮। ওয়াশারের পরিমাণ কী?

- ৯। ওয়াশার প্রধানত কত প্রকার ও কী কী?
- ১০। লক ওয়াশার সম্পর্কে যা জান লেখ?
- ১১। স্প্রীং ওয়াশার বলতে কী বোঝ?
- ১২। রিং ওয়াশার বলতে কী বোঝায়?
- ১৩। ট্যাব গুয়াশার দুইটি ব্যবহারর দেখাও।
- ১৪। ডায়মন্ড ও লিম্পেট ওয়াশারের কাজ কী।

রচনামূলক প্রশ্ন:

- ১৫। ওয়াশার সম্পর্কে সংক্ষেপে যা জান লেখ।
- ১৬। ওয়াশার প্রধানত কত প্রকার ও কী কী?
- ১৭। ওয়াশারের পরিমাণ নিয়ে আলোচনা কর
- ১৮। স্প্রীং ওয়াশারের বর্ণনা দাও।
- ১৯। রিং ওয়াশারের বর্ণনা দাও।
- ২০। ট্যাব ওয়াশার সম্পর্কে যা জান লেখ।
- ২১। তায়মন্ড ও লিম্পেট ওয়াশারের কাজ কী?
- ২২। ওয়াশারের ব্যবহার সম্পর্কে যা জান লেখ।

জেনারেল মেকানিক্স-১

প্রথম পত্র, নবম শ্রেণি

(ব্যবহারিক)

প্রথম অধ্যায়

ক্রস ফাইলিং পদ্ধতিতে ধাতুর উপর সমতল ফাইলিং

উদ্দেশ্য : ক্রস ফাইলিং পদ্ধতিতে ধাতুর উপর সমতল ফালিং করার দক্ষতা অর্জন।

১.১ কার্যবস্তু লে-আউট এবং মার্কিং :

কাজের সুবিধার্থে কার্যবস্তু লে-অউট এবং মার্কিং করার জন্য প্রয়োজন সঠিক মাপের টুলস নির্বাচন করা। নির্বাচিত কার্যবস্তু প্রয়োজনীয় দৈর্ঘ্য ও প্রস্তু মোতাবেক লে-আউট এবং মার্কিং করা।

চিত্র: ১.১ লে-আউট এবং মার্কিং

১.২ সঠিক ফাইল নির্বাচন করা :

ফাইলের কাটার শ্রেণি, এর দাঁতের আকার বা সাইজ, সংখ্যা এবং বিন্যাসের উপর নির্ভর করে ফাইল নির্বাচন করা হয়।

১.৩ যন্ত্ৰপাতি নিৰ্বাচন :

ক্রেস ফাইলিং করার জন্য ভাবলকাট ফাইলের প্রয়োজন। কার্যবস্তু আটকানোর জন্য সঠিক ভাইস, ফাইলের ময়লা পরিষ্কারের জন্য ফাইল কার্ড ও কার্যবস্তুর মসূর্ণতা পরিমাপের জন্য ট্রাইস্কয়ার নির্বাচন করতে হয়।

১.৪ কার্যবন্ত বেঞ্চ ভাইস সঠিকভাবে বাঁধা :

ফাইলিং করতে ভাইসে 'জ' অপরেটরের কনুর বরাবর হওয়া উচিত, এতে ফাইলিং কার্য সহজ্ঞতর হয়। কার্যবস্তুকে ভাইসের মধ্যে দৃঢ়ভাবে বাঁধা। ফাইলিং করার তলটি ভাইসের 'জ'-এর যথাসম্ভব নিকটবর্তী হওয়া উচিত, নচেত কার্যবস্তু কেঁপে শব্দের কারণ হয়।

ফিনিশিং কার্যবস্তুর উপর ফাইলিং করার জন্য ভাইসের 'জ' এর সাথে নরম 'জ' ব্যবহার করে কার্যবস্তু বাঁধতে হয় এতে কার্যবস্তুর তলের মসুণতা নষ্ট হয় না।

চিত্র: ১.২ নিয়মবিরুদ্ধ কার্যবস্তু আটকানো দেখানো হলো

১৩৫ সঠিকভাবে ফাইল ধরা :

বড় ফাইল এবং ছোট ফাইল ধরার নিয়ম আলাদা। বড় ফাইলের হ্যান্ডেল ডান হাতে এবং তার পয়েন্ট প্রান্ত বাম হাতে ধরে ফাইলিং আরম্ভ করতে হয়। ছোট ফাইলের ক্ষেত্রে ফাইলের হ্যান্ডেল ডান হাতে এবং তার পয়েন্ট প্রান্ত বাম হাতের ভর্জনী ও বৃদ্ধাঙ্গুল দিয়ে ধরে কাজ আরম্ভ করতে হয়। ফাইলিং করতে অপারটেরকে উভয় পা ফাঁক করে সামনের দিকে ঝুঁকে দৃঢ়ভাবে দাাঁড়াতে হয়। এতে ফাইলিং সুবিধাজনক ও মাপের সঠিকতা বজায় থাকে।

বড় ফাইল ধরা

ছোট ফাইল ধরা

छिव : ১.७

১.৬ সঠিক স্ট্রোক এবং গতিতে ফাইলিং :

ফাইলিং করার সময় ফাইলের উপর সমভাবে চাপ প্রয়োগ করা উচিত। সম এবং সামান্য চাপ সহকারে ফাইলকে সমানের দিকে ঠেলতে হয় এবং বিনাচাপে পিছনে টানতে হয়। ফাইলের বিভিন্ন অবস্থানে তার উপর চাপের তারতম্য ঘটাতে হয়।

প্রথমে এককোণ থেকে 'ডায়গোনাল' ফাইলিং করে পুনরায় অন্য কোণ থেকে ডায়গোনাল ফাইলিং করলে তাকে ক্রস ফাইলিং (Cross filing) বলে। ক্রস ফাইলিং একটি সাধারণ ফাইলিং পদ্ধতি। এ পদ্ধতিতে দিক পরিবর্তন করে ডায়গোনাল ফাইলিং করা হয়। কার্যবস্তুর নোংরা তল পরিষ্কার করতে তল থেকে দ্রুত ধাতু অপসারিত করতে এবং তল সমতল করতে ক্রস ফাইলিং ব্যবহৃত হয়।

চিত্র: ১.৪ ফাইল ধরা

১.৭ ফাইলিং-এর সময় মাঝে মাঝে সমতলতা পরীক্ষা:

ট্রাইস্কোয়ার-এর সাহায্যে কোনো ওয়ার্কপিস-এর কিনারার এক সমকোণ পরীক্ষা করা যায়। ওয়ার্কপিসের সমতলে চিত্রানুযায়ী স্টক অংশটিকে চেপে ধরে ব্লেডকে সন্নিহিত অপর তলে রাখতে হবে। ব্লেডের তল দিয়ে আলো প্রবেশ না করে, তবে সঠিক সমতলে ওয়ার্কপিস আছে।

চিত্র: ১.৫ সমতলতা পরীক্ষায় ট্রাইস্কোয়ার ব্যবহার দেখান হলো।

কম্বিনেশন স্কয়ার- এর সাহায্যে ১০° এর ৪৫° কোণ পরীক্ষা করা যায়।

১.৮ ফাইল কার্ড দারা ফাইল পরিষ্কার :

ফাইলিং করার ফলে অপ্রয়োজনীয় ধাতৃখন্ড ফাইলের দাঁতের ফাঁকে লেগে থাকে, পরবর্তীতে ধাতৃ কর্তনে অসুবিধার সৃষ্টি হয় বিধায় ফাইলিং 'টিথ' অব্যশই পরিষ্কার রাখতে হবে। তাই মাাঝে মাঝে ফাইল কার্ড ব্যবহার করে ফাইলের 'টিথ' পরিষ্কার করতে হবে।

চিত্র: ১.৬ ফাইল কার্ড দ্বারা ফাইল পরিষ্কারকরণ

দ্বিতীয় অধ্যায়

স্ট্রেইট ফাইলিং পদ্ধতিতে সমতল ফাইলিং

উদ্দেশ্য : স্ট্রেইট ফাইলিং পদ্ধতিতে ধাতুর উপর সমতল ফাইলিং করার দক্ষতা অর্জন।

২.১ কাৰ্যবন্ধ লে-আউট এবং মাৰ্কিং ঃ

কাজের সুবিধার্থে কার্যবস্তু লে-আউট এবং মার্কিং করার জন্য প্রয়োজন সঠিক মাপের টুলস নির্বাচন করা। নির্বাচিত কার্যবস্তু প্রয়োজনীয় দৈর্ঘ্য ও প্রস্থু মোতাবেক লে-আউট এবং মার্কিং করা।

চিত্র: ২.১ লে-আউট এবং মার্কিং

২.২ সঠিক ফাইল নির্বাচন করা :

ফাইলের কাটার শ্রেণি, এর দাঁতের আকার বা সাইজ, সংখ্যা এবং বিন্যাসের উপর নির্ভর করে ফাইল নির্বাচন করা হয়।

২.৩ যন্ত্রপাতি নির্বাচন :

ক্রস ফাইলিং করার জন্য ডাবলকাট ফাইলের প্রয়োজন। কার্যবস্তু আটকানোর জন্য সঠিক ভাইস, ফাইলের ময়লা পরিষ্কারের জন্য ফাইল কার্ড ও কার্যবস্তুর মসুণতা পরিমাপের জন্য ট্রাইস্কয়ার নির্বাচন করতে হয়।

২.৪ কার্যবস্তু বেঞ্চ ভাইস সঠিকভাবে বাঁধা:

ফাইলিং করতে ভাইসে 'জ' অপরেটরের কনুর বরাবর হওয়া উচিত, এতে ফাইলিং কার্য সহজতর হয়। কার্যবস্তুকে ভাইসের মধ্যে দৃঢ়ভাবে বাঁধা। ফাইলিং করার তলটি ভাইসের 'জ'-এর যথাসম্ভব নিকটবর্তী হওয়া উচিত, নচেত কার্যবস্তু কেঁপে শব্দের কারণ হয়।

ফিনিশিং কার্যবস্তুর উপর ফাইলিং করার জন্য ভাইসের 'জ'-এর সাথে নরম 'জ' ব্যবহার করে কার্যবস্তু বাঁধতে হয়। এতে কার্যবস্তুর তলের মসুণতা নষ্ট হয় না।

চিত্র : ২.২ নিয়মবিক্লন্ধ কার্যবন্ধ আটকানো দেখানো হলো

২.৫ সঠিকভাবে কাইল ধরা :

বড় ফাইল এবং ছোট ফাইল ধরার নিয়ম আলাদা। বড় ফাইলের হ্যান্ডেল ডান হাতে এবং তার পয়েন্ট প্রান্ত বাম হাতে ধরে ফাইলিং আরম্ভ করতে হয়। ছোট ফাইলের ক্ষেত্রে ফাইলের হ্যান্ডেল ডান হাতে এবং তার পয়েন্ট প্রান্ত বাম হাতের তর্জনী ও বৃদ্ধাঙ্গুলি দিয়ে ধরে কাজ আরম্ভ করতে হয়। ফাইলিং করতে অপারেটরকে উভয় পা ফাঁক করে সামনের দিকে ঝুঁকে দৃঢ়ভাবে দাঁড়াতে হয়। এতে ফাইলিং সুবিধাজনক ও মাপের সঠিকতা বজায় থাকে।

চিত্র: ২.৩ ফাইল ধরা

ছোট ফাইল খরা

২.৬ সঠিক ফ্রোক এবং গভিতে কাইলিং :

ফাইলিং করার সময় ফাইলের উপর সমভাবে চাপ প্রয়োগ করা উচিত। সম এবং সামান্য চাপ সহকারে ফাইলেক সমানের দিকে ঠেলতে হয় এবং বিনাচাপে পিছনে টানতে হয়। ফাইলের বিভিন্ন অবস্থানে তার উপর চাপের তারতম্য ঘটাতে হয়। প্রথমে এককোণ থেকে 'ডায়গোনাল' ফাইলিং করে পুনরায় অন্য কোণ থেকে ডায়গোনাল ফাইলিং করেল তাকে ক্রস ফাইলিং (Cross filing) বলে। ক্রস ফাইলিং একটি সাধারণ ফাইলিং পদ্ধতি। এ পদ্ধতিতে দিক পরিবর্তন করে ডায়গোনাল ফাইলিং করা হয়। কার্যবস্তুর নোংরা তল পরিকার করতে, তল থেকে দ্রুত ধাতু অপসারিত করতে এবং তল সমতল করতে ক্রস ফাইলিং ব্যবহৃত হয়।

চিত্র: ২.৪ সঠিক স্টোক এবং গতিতে ফাইলিং

২.৭ ফাইলিং-এর সময় মাঝে মাঝে সমতলতা পরীকা:

ট্রাইস্কোয়ার-এর সাহায্যে কোনো ওয়ার্কপিসের কিনারার এক সমকোণ পরীক্ষা করা যায়। ওয়ার্কপিসের সমতলে চিত্রানুযায়ী স্টক অংশটিকে চেপে ধরে ব্লেডকে সন্নিহিত অপর তলে রাখতে হবে। ব্লেডের তল দিয়ে আলো প্রবেশ না করে, তবে সঠিক সমতলে ওয়ার্কপিস আছে।

চিত্র: ২.৪ সমতলতা পরীক্ষায় ট্রাইস্কোয়ার ব্যবহার দেখান হলো।

কম্বিনেশন স্কয়ার-এর সাহায্যে ৯০° এর ৪৫° কোণ পরীক্ষা করা যায়।

২.৮ ফাইল কার্ড দারা ফাইল পরিছার :

ফাইলিং করার ফলে অপ্রয়োজনীয় ধাতুখণ্ড ফাইলের দাঁতের ফাঁকে লেগে থাকে, পরবর্তীতে ধাতু কর্তনে অসুবিধার সৃষ্টি হয় বিধায় ফাইলিং 'টিথ' অব্যশই পরিষ্কার রাখতে হবে। তাই মাাঝে মাঝে ফাইল কার্ড ব্যবহার করে ফাইলের 'টিথ' পরিষ্কার করতে হবে।

চিত্র: ২.৫ ফাইল কার্ড দ্বারা ফাইল পরিষ্কার

ভৃতীয় অধ্যায় ধাতুতে খাঁজ ফাইলিংকরণ

উদ্দেশ্য: থাতুতে খাঁজ ফাইলিং করার দক্ষতা অর্জন।

কার্যবস্তু লে-আউট এবং মার্কিং: কাজের সুবিধার্থে কার্যবস্তু লে-আউট এবং মার্কিং করার জন্য প্রয়োজনে সঠিক মাপের কার্যবস্তু নির্বাচন করা। নির্বাচিত কার্যবস্তু প্রয়োজনীয় দৈর্ঘ্য ও প্রস্তু মোভাবেক লে-আউট এবং মার্কিং করা।

৩.১ কাৰ্যবস্তু ভাইসে সঠিকভাবে বাঁধা :

ফাইলিং করতে ভাইসের 'জ' অপারেটরের কনুই বরাবর হওয়া উচিত, এতে ফাইলিং কার্য সহজতর হয়। কার্যবস্তুকে ভাইসের মধ্যে দৃঢ়ভাবে বাঁধা হয়। ফাইলিং করার তলটিকে ভাইসের 'জ'-এর যথাসম্ভব নিকটবর্তী হওয়া উচিত, নচেত কার্যবস্তু কোঁপে শব্দের কারণ হয়।

ফিনিশিং কার্যবস্তুর উপর ফাইলিং করার জন্য ভাইসের 'জ'-এর সাথে নরম 'জ' ব্যবহার করে কার্যবস্তু বাঁধতে হয় এবং কার্যবস্তুর তলের মসুণতা নট হয় না।

চিত্র: ৩.১ নিয়মবিরুদ্ধ কার্যবস্তু আটকানো দেখানো হলো

সঠিকভাবে ফাইল ধরা :

বড় ফাইল এবং ছোট ফাইল ধরার নিয়ম আলাদা। বড় ফাইলের হ্যান্ডেল ডান হাতে এবং তার পরেন্ট প্রাপ্ত বাম হাতে ধরে ফাইলিং আরম্ভ করতে হয়। ছোট ফাইলের ক্ষেত্রে ফাইলের হ্যান্ডেল ডান হাতে এবং তার পয়েন্ট প্রাপ্ত বাম হাতের তর্জনী ও বৃদ্ধাঙ্গুলি দিয়ে ধরে কাজ আরম্ভ করতে হয়। ফাইলিং করতে অপারেটরকে উভয় পা ফাঁক করে সামনের দিকে বুঁকে দৃঢ়ভাবে দাঁড়াতে হয়। এতে ফাইলিং সুবিধান্ত্যনক ও মাপের সঠিকতা বজায় থাকে।

চিত্ৰ-৩.২

৩.২ সঠিক ফ্রোক এবং গতিতে ফাইল:

ফাইলিং করার সময় ফাইলের উপর সমভাবে চাপ প্রয়োগ করা উচিত। সম এবং সামান্য চাপ সহকারে ফাইলকে সামনের দিকে ঠেলতে হয় এবং বিনাচাপে ছিনে টানতে হয়। ফাইলের বিভিন্ন অবস্থানে তার উপর চাপের তারতম্য ঘটাতে হয়।

প্রথমে এককোণ থেকে 'ডায়গোনাল' ফাইলিং করে পুনরায় অন্য কোণ থেকে ডায়াগোনাল ফাইলিং করলে তাকে ক্রেস ফাইলিং (Cross filing) বলে। ক্রেস ফাইলিং একটি সাধারণ ফাইলিং পদ্ধতি। এ পদ্ধতিতে দিকে পরিবর্তন করে ডায়াগোনাল ফাইলিং করা হয়। কার্যবস্তুর নোংরা তল পরিষ্কার করতে, তল হতে দুত ধাতু অপসরিত করতে এবং তল সমতল করতে ক্রুস ফাইলিং ব্যবহৃত হয়।

চিত্র: ৩.৩ ক্রস ফাইলিং

৩.৩ সঠিক ফাইল নির্বাচন করা :

ফাইলের কাটার শ্রেণি, এর দাঁতের আকার বা সাইজ, সংখ্যা এবং বিন্যাসের উপর নির্ভর করে ফাইল নির্বাচন করা হয় ।

যন্ত্রপাতি নির্বাচন :

ক্রেস কাইলিং করার জন্য ডাবল কাট কাইলের প্রয়োজন। কার্যবস্তু আটকানোর জন্য সঠিক ভাইস, কাইলের ময়লা পরিচারের জন্য ফাইল কার্য ও কার্যবস্তুর মসূর্ণতা পরিমাপের জন্য ট্রাইস্কয়ার নির্বাচন করতে হয়।

৩.৪ ফাইলিং-এর সময় মাঝে মাঝে সমতলতা পরীক্ষা:

ট্রাইন্ধয়ারের সাহায্যে কোনো ওয়ার্কপিসের কিনারায় এক সমকোণ পরীক্ষা করা যায়। ওয়ার্কপিসের সমতলে চিত্রানুযায়ী স্টক অংশটি চেপে ধরে ব্লেডকে সন্নিহিত অপর তলে রাখতে হবে। যদি স্টক ও ব্লেডের তল দিয়ে আলো প্রবেশ না করে তবে সঠিক সমতলে ওয়ার্কপিস আছে।

চিত্ৰ: ৩.৪

কম্পিনেশন ক্ষয়ার এর সাহায্যে ৯০° এবং ৪৫° কোণ পরীক্ষা করা যায়। কোন বন্ধুর উপরি ভাগের সকল স্থান সমান উচ্চে আছে কিনা, তাও পরীক্ষা করা যায়।

কাইল কার্ড ছারা কাইল পরিস্কার :

ফাইলিং করার ফলে অপ্রয়োজনীয় ধাতুখণ্ড ফাইলের দাঁতের ফাঁকে লেগে থাকে। পরবর্তীতে ধাতু কর্তনে অসুবিধার সৃষ্টি হয় বিধায় ফাইলের 'টিথ' অবশ্যই পরিষ্কার রাখতে হবে। তাই মাঝে মাঝে ফাইল কার্ড ব্যবহার করে ফাইলের 'টিথ' পরিষ্কার করতে হবে।

চিত্ৰ: ৩.৫

চতুর্থ অধ্যায়

দ্র-ফাইলিং করার দক্ষতা অর্জন

৪.১ ফাইল ও যদ্রপাতি নির্বাচন :

- * কাজের ধরনের উপর ফাইল নির্বাচন করতে হয়।
- * ফাইল পরিফারের জন্য ফাইল কার্ড।
- কার্যবন্ত সঠিকভাবে আটকানোর জন্য তাইস।
- * তলের মসূণতা পরিমাপের জন্য ট্রাই ক্ষয়ার প্রয়োজন হয়।

৪.২ কাৰ্যবন্ত ভাইলে বাঁধা :

কার্যবস্তুকে ভাইসের মধ্যে দৃঢ়ভাবে বাঁধতে হয়। ফিনিশড কার্যবস্তুর উপর ফাইলিং করার জন্য ভাইসের 'ছ' এর সাথে নরম 'জ' ব্যবহার করে কার্যবস্তু বাঁধতে হয়।

৪.৩ সাঠিকভাবে ফাইল খরে ফাইলিং করা :

ফাইলকে প্রস্তের দিকে ধরে ক্রমাগত সম্মুখ দিকে টানাই ড্র-ফাইলিং। ড্র-ফাইলিংয়ের জন্য সঠিকভাবে ফাইল ধরা বিশেষভাবে উল্লেখযোগ্য।

हिंदा : 8.3

কার্ষবস্তুর তলে ফাইলকে ধরে দৈর্ঘ্য বরাবর ঠেলে এবং টেনে ফাইলিং করতে হয়। কার্যবস্তুর তল নিখুতভাবে মসুণ করতে চাইলে এরপে চালনা করতে হবে।

ফাইলিং-এর সময় মাঝে মাঝে ফাইল কার্ড দারা ফাইল পরিষ্কার করা উত্তম।

৪.৪ সমতল পরীক্ষা এবং কাইল কার্ডের ব্যবহার :

জ্র-ফাইলিংয়ের মূল লক্ষ্য কার্যবস্তুর উপরের তলের মসৃণতা আনয়ন। ফাইলিং করার সময় এবং পরে তলের মসৃণতা পরীক্ষা করতে হয়।

ট্রাইস্কয়ার ব্যবহার করে তলের মসৃণতা পরীক্ষা করা যায়।

কার্যবস্তু ফিনিশিং করার পর কার্যবস্তুর উপর হাত না দেয়া উচিত, এতে তলের মসূণতা নট হয়।

পধ্চম অধ্যায়

হ্যাক'স দিয়ে ধাতু কর্তন করার দক্ষতা অর্জন

উদ্দেশ্যে: হ্যাক'স দিয়ে ধাতু কর্তনের সম্পর্কে অভিজ্ঞতা অর্জন।

৫.১ যন্ত্রপাতি নির্বাচন :

কর্তনকৃত ধাতুর উপর ভিত্তি করে হ্যাক'স ব্লেডসহ ফ্রেম নির্বাচন করতে হবে।

চিত্র: ৫.১ হ্যাক'স ফ্রেম ও ব্লেড

লে-আউট কাজের জন্য ওয়ার্ক সারফেস হিসেবে ব্যবহারের জন্য সারফেস প্রেট ও ওয়ার্কপিসের তলে প্রলেপের জন্য রঙ তুলি নাও। ওয়ার্ক লে-আউট করার জন্য ট্রাইন্করার, ক্রাইবার, স্টিল রুল, পাঞ্চ ও হাতুড়ি নাও।

- -ওয়ার্কপিস অটিকানোর জন্য ভাইসসহ টেবিল নাও।
- -তৈলাক করার জন্য অয়েল ক্যান নাও।
- -পরিষ্কার করার জন্য ব্রাশ ও কাপড়ের টুকরা নাও।
- -চোখ সুরক্ষার জন্য গগলস নাও।

৫.২ গুৱাকশিসে লে-আউট ও মার্কিং করা:

- -সারফেস প্লেট, যন্ত্রপাতি ও ওয়ার্কপিস পরিষ্কার করা।
- -মার্কিং রঙ্ক দিয়ে ওয়ার্কপিসের তলে রন্তের প্রলেপ দাও।
- -স্টিলরুল ও ক্রাইবার দিয়ে ওয়ার্কশিদের তলে প্রয়োজনীয় দাগ দাও। প্রয়োজনে বেভেল প্রটেষ্টর ব্যবহার কর।
- -পাঞ্চিং করার আগে পাঞ্চের পয়েন্টকে রেখার উপরে স্থাপন কর।
- -পাঞ্চকে খাড়া করে ধরো ও মার্কিং রেখাকে স্থায়ী করার জন্য রেখার উপর পাশাপাশি ছোট ছোট গর্ত করার জন্য হাতুড়ি দিয়ে পাঞ্চের মাধায় আঘাত কর।

৫.৩ ওয়াকীপদকে ভাইসে অটিকানো :

-ভাইসের क् তৈলাক্ত কর এবং 'জ'-এর হাতল ঘুরিয়ে প্রয়োজনমতো ফাঁক কর।

- -ভাইসের 'জ'–এর চাপে ওয়ার্কপিস–এর গায়ে যেন দাগ না পড়ে, সেজন্য দুটি নরম ধাতবপাত 'জ'ওলোর ভিতরের দিকে আটকাও।
- -ওয়ার্কপিস যেন নিচের দিকে নেমে না যায়, সেজন্য ওয়ার্কপিসের নিচে একটা কাঠের ব্লক বসাও।
- -ভাইসের মধ্যে ওয়ার্কপিসকে আনুমানিকভাবে বসাও ও হাতল দিয়ে 'ভ্র' –কে পূর্ণ টাইট দাও।

৫.৪ সঠিকভাবে ক্রেমে ব্লেড আটকানো :

হ্যাক'স ফ্রেমের উইং নাট ঢিলে করো। কাজের উপযোগী ব্লেড ফ্রেমের নির্দিষ্ট স্থানে বসাও। ব্লেড বসানোর সময় ব্লেডের সামনের দিক ঠিক করে বসাও।

উইং নাট ঘড়ির কাঁটার দিকে ঘোরাও ও ব্লেডটিকে শক্তভাবে আটকাও। কার্যভেদে ব্লেডটিকে সমকোশে আটকানো যায়।

ওয়ার্কপিসের গুরুত্ব বিবেচনা করে ব্লেড এমভাবে বাছাই করতে হবে যেন ব্লেডের কমপক্ষে ওটি দাঁত ওয়ার্কপিসের কাটার তল স্পর্শ করে।

৫.৫ সঠিকভাবে খাতু কাটা :

গগলস পর। গুরার্ক টেবিলের সামনে দুই পা ফাঁক করে দাঁড়াগু। এক হাত দিয়ে হ্যাক'স ফ্রেমের হাতল গু অন্য হাত দিয়ে ফ্রেমের সামনের অংশ শক্ত করে ধরো।

- -ওয়ার্কপিসের মার্ক করা জায়গায় হ্যাক'স বসাও। একহাতে ওয়ার্কপিস ধরে বৃড়ো আঙ্গুলের সাহায্যে হ্যাক'স ব্লেডের বসানো নিচিত কর। ১০°-৩০° কোণে সামনের দিকে নত করে অন্য হাত দিয়ে হ্যাক'সকে সামনের দিকে ঠেল।
- -হ্যাক'স নিচের দিকে অল্প চাপ প্রয়োগ করে সামনে-পিছনে চলাচল করাও।

চিত্র : ৫.৭ সবিং শুরু করা

- -খাতু ক্ষয় করার পর পথ ভৈরি হলে ব্লেড অনুভূমিকভাবে স্থাপন করে হ্যাক'স চালাও। নরম ধাতু কাটার সময় প্রতি মিনিটে ৫০-৬০ বার এবং শক্ত ধাতু কাটার সময় প্রতি মিনিটে ৩০-৪০ বার হ্যাক'স চালাও।
- -কিছুক্ষণ পর পর হ্যাক'স ব্লেডে কাটিং অয়েল প্রয়োগ কর।

৫.৬ হ্যাক'স চালানোর সময় পরীক্ষা করা :

- -হ্যাক'স চালানোর সময় ধাতু কাটা হচ্ছে কিনা।
- -ওয়ার্কপিস মার্কিং অনুযায়ী কাটা হচ্ছে কিনা।
- ্হাতল চালানোর সময় বাধাগ্রস্ত হলে ব্লেডে অন্ধ পরিমাণ তেল প্রয়োগ কর। এর ফলে ব্লেডের ধার নষ্ট হবে না।

वर्ष व्यथाय

কোল্ড চিজেল দিয়ে ধাতব পাত কর্তন করার দক্ষতা অর্জন

উদ্দেশ্য: কোল্ড চিজেলের দিয়ে ধাতব পাত কর্তন সম্পর্কে অভিজ্ঞতা অর্জন।

৬.১ প্রয়োজনীয় যন্ত্রপাতি বাছাই করা :

- শীট মেটাল কাটার জন্য একটি ফ্র্যাট চিজেল
- আঘাত দেয়ার জন্য মাঝারি ওজনের একটি হাতুড়ি।
- ওয়ার্কপিসে প্রলেপের জন্য রং ও তুলি।
- মার্কিং-এর জন্য ট্রাইস্কয়ার, স্ক্রাইবার ও স্টিল রুল।
- ওয়ার্কপিসকে আটকানোর জন্য প্রোটেকটিভ প্যাভসহ ভাইস।
- ওয়ার্কপিসকে অ্যানভিলে কাটার জন্য স্পেসারসহ অ্যানভিল।
- তৈলাক্ত করার জন্য অয়েল ক্যান।
- চিপিংকালে চিপ ঠেকানোর জন্য চিপিং গার্ড।

৬.২ ওয়ার্কপিস লে আউট এবং মার্কিং করা :

নির্দিষ্ট মাপ অনুযায়ী এক খণ্ড ধাতুর টুকরা সংগ্রহ করা।

- ক্রাইভার ও ট্রাইস্কয়ারের সহায্যে ওয়ার্কপিসে মাপ অনুযায়ী মার্কিং কর।
- মার্কিং দৃশ্যমান করার জন্য মার্কিং-এর উপর সেন্টার পাঞ্চ ও হাতুড়ি দিয়ে ৬ট চিহ্নিত কর।।

ওয়ার্কপিস ভাইসে স্থাপন করা :

- ভাইসের ব্রু তৈলাক্ত কর এবং ভাইসের 'জ' প্রয়োজন মতো ঢিলা দাও।
- ভাইসে 'জ' এর চাপে ওয়ার্কপিসের গায়ে যেন দাগ না পড়ে, সেজন্য 'জ'গুলোর ভিতরের দিকে দুটি নরম প্যাড দাও।
- ভাইসের মধ্যে ওয়ার্কপিসকে অনুভূমিক অবস্থায় রেখে 'জ'-এর ভিতর মজবৃতভাবে আটকাও যেন কাটিং লাইন ভাইসের উপরে এজ বরাবর থাকে।

৬.৩ সঠিকভাবে চিজেল ধরা:

- বড় ধরনের কাটা ও জোরালো হাতুড়ির আঘাতের জন্য চিজেলকে মুষ্টিবদ্ধ কর এবং অল্প কাটা ও হান্ধা হাতুড়ির আঘাতের জন্য আঙ্গুল দিয়ে চিজেল ধর।
- লক্ষ্যভ্রম্ভ হাতুড়ির আঘাত থেকে হাতকে রক্ষা করার জন্য চিজেলকে ইমপ্যাক্ট প্যাডের নিচে ধর।
- পাইলট গ্রুভ কাটার জন্য চিজেলকে একটু কাত করে ধর, যা শেষ কর্তনের ক্ষেত্রে চিজেলকে নিয়ন্ত্রণ করবে। ৬.৪ সঠিকভাবে হাতুড়ি ধরা:
- হাতুড়ির হাতলের যতটুকু সম্ভব নিচের অংশ ধর। এতে আঘাত জোরে হয়।

- হাতুড়ি ধরার সময় লক্ষ করবে হাতুড়ির হাতল টাইট আছে কিনা।

চিত্র : ৬.৬ সঠিকভাবে হাতুড়ি ধরা দেখানো হলো

৬.৫ ধাতৰ পাত কাটা :

- গগলস পরিধান কর।
- -চিপিং গার্ড নির্দিষ্ট জায়গায় সেট কর।
- লে-আউট করা ওয়ার্কপিসকে চিজেলের সাহায্যে কাট ও পৃথক কর।
- হাতুড়িকে যতটুকু সম্ভব চিজেলের সেন্টার লাইন বরাবর পরিচালনা কর।
- ভাইসের আটকানো শীট কাটার জন্য চিজেলকে ৪৫° কোণে ধরে কর্তন কর। সঠিকভাবে ধরা চিজেল দিয়ে কাটার সময় কাটা অংশটি গোলাকার বের হবে।
- পাইলট গ্রুভ করা ওয়ার্কপিসকে স্পেনসারের মাধ্যমে অ্যানভিলের উপরে রাখ ও গ্রুভ বরাবর কাট। কাটার সময় ও পরে পরীক্ষা করা:
- কাটার জন্য নির্ধারিত ধাতুর উপর ভিত্তি করে গেজের সাহায্যে চিজেলের কাটিং অ্যাঙ্গেল পরীক্ষা কর। এর
 ব্যতিক্রম হলে গ্রাইন্ডিং করে ঠিক কর।
- চিজেলের মাধা নিরীক্ষণ কর। এর মধ্যে ব্যান্ডের ছাতার মতো হলে ব্যবহারের আগে গ্রাউভিং করে ঠিক কর।
- ট্রাইস্কয়ারের সাহায্যে ওয়ার্কপিসের কাটিং এজ-গুলোর ৯০° কোণ–এর সঠিককতা পরীক্ষা কর।
- ট্রাইক্ষয়ারের সাহায্যে ওয়ার্কপিসের সমতলতা নিরীক্ষা কর।

সপ্তম অধ্যায়

কোল্ড চিজেল দিয়ে ধাতুর খাঁজ কর্তন

৭.১ যন্ত্রপাতি বাছাই করা :

- -ওয়ার্ক বেঞ্চ পরিষ্কারের জন্য ব্রাস, যন্ত্রপাতি পরিষ্কারের জন্য কাপড়ের টুকরা ও ভাইসের স্কু তৈলাক্ত করার জন্য অয়েল ক্যান।
- -লে-আউট করার জন্য সারফেস প্লেট। ওয়ার্কপিসের তলে রংয়ের প্রলেপ দিতে মার্কিং কালার ও তুলি।
- -ওয়ার্কপিসের অনুভূমিকভাবে দাগ দিতে জ্রাইবিং ব্লক।
- -ওয়ার্কপিসের তলে কিনারার সাথে সমতলে দাগ দিতে ট্রাইস্কয়ার।
- -মার্কিং কাজের জন্য ক্রাইবার ও মার্কিং স্থায়ী করার জন্য সেন্টার পাঞ্চ ও হাতুড়ি।
- -ওয়ার্কপিসকে শক্ত করে আটকানোর জন্য ভাইস-সহ টেবিল।
- -চোখের সুরক্ষার জন্য গগলস।
- -খাঁজ চিপিং-এর জন্য ক্রসকাট চিজেল ও বল পিন হ্যামার।
- -চিপিং-এর সময় চিপ ঠেকানোর জন্য চিপিং গার্ড ও মেশিন অয়েলে ভেজানো কিছু ওয়েস্ট কটন।

৭.২ ওয়ার্কপিসে লে-আউট ও মার্কিং করা :

- -ওয়ার্কপিস, সারফেস প্লেট ও যন্ত্রপাতি পরিষ্কার কর।
- -মার্কিং কালার দিয়ে ওয়ার্কপিসের তলে প্রলেপ দাও।
- -ট্রাইস্কয়ার ও ক্রাইবারের সাহায্যে ওয়ার্কপিসের তলে কিনারার সাথে সমকোণে প্রয়োজনীয় দাগ দাও। স্টিলকলের সাহায্যে প্রয়োজনীয় উচ্চতায় স্ক্রাইবার পয়েন্ট সেট করা।
- -সারফেস প্রেটের উপর ওয়ার্কপিস স্থাপন কর। ক্রাইবারের পয়েন্ট ওয়ার্কপিসের তলে লাগিয়ে সামান্য চাপ দিয়ে ক্রাইবিং ব্লক অগ্রসর করাও।
- লে-আউট দাগগুলো দৃশ্যমান করার জন্য মার্কিং

 এর উপর সেন্টার পাঞ্চ দিয়ে ৬ট চিহ্নিত কর।

৭.৩ ওয়ার্কপিস ভাইসে আটকানো :

- -ভাইসের স্কু তৈলাক্ত কর ও ভাইসের 'জ' গুলো প্রয়োজনীয় ঢিলা কর।
- -ভাইসের 'জ'–এর চাপে ওয়ার্কপিসে যেন দাগ না পড়ে সেজন্য 'জ'গুলোর ভিতর দিকে নরম ধাতুর দুটি পাত বসাও।
- -ভাইসের ভিতর ওয়ার্কপিসকে অনুভূমিক অবস্থায় সেট কর যেন 'জ'-এর মুখের সাথে ৯০° কোণে থাকে।
- -কাজের সময় ওয়ার্কপিস নেমে যাওয়া বন্ধ করার জন্য ওয়ার্কপিসের নিচে একটা কাঠের ব্লক স্থাপন কর।

৭.৪ চিজেল ও হাতুড়ি ব্যবহার করা:

-ধাতু অনুযায়ী কোণে চিজেল ধর।

- -ক্লিয়ারেন্স অ্যাঙ্গেল বেশি হলে চিজ্ঞেল ধাতুর মধ্যে বেশি গভীরে চুকে যাবে, আর ক্লিয়ারেন্স অ্যাঙ্গেল কম হলে চিজ্ঞেল পিছলে যেতে পারে। কেবলমাত্র চিজ্ঞেলের সঠিক অবস্থানের জন্য ধাতুকে ভালোভাবে কাটা যায়।
- -হাতৃড়ি ধরার সময় লক্ষ্য কর যে হাতৃড়ির হ্যান্ডেল টাইট আছে।
- -হেড থেকে হাতুড়ির হাতলের ২/৩ অংশ দূরে ধর।

৭.৫ খাঁজ চিপিং সম্পন্ন করা :

- -চিপিং এর সময় চিপ ঠেকানোর জন্য চিপিং গার্ড ব্যবহার কর এবং মেশিনে ভেজানো কিছু ওয়েস্ট কটন নাও।
- -গগলস পরো।
- -হাতুড়ির মাথার দিকে তাকিও না বরং কাটিং এক্সের দিকে তাকাও।
- -চিপিং কাজ শুরু কর এবং মাঝে মাঝে চিজেলের কাটিং এজ তেলে ভেজানো ওয়েস্ট কটনে ভেজাও।
- -চিপিং-এর শেষ প্রান্তের কাছে এলে চিপিং বন্ধ কর নতুবা প্রান্ত ঢালু হবে। এজন্য বিপরীত দিক থেকে চিপিং শেষ কর।

हिता: ४.5

৭.৬ চিপিং-এর সময় ও পরে পরীক্ষা করা :

- -চিপিং-এর সময় চিজেলের কাটিং এজ-এর ধার পরীক্ষা কর। ধার নষ্ট হলে গ্রাইভিং করে আবার ধারযুক্ত কর।
- -ট্রাইস্কয়ার দিয়ে কাটা খাঁজের ক্ষয়ারনেস ঠিক আছে কিনা পরীক্ষা কর।

৭.৭ চিপিং করার সময় সাবধানতা:

- -চিপিং করার সময় হাতে বা চিপিং হ্যামারে তেল থাকা উচিত নয়।
- -কার্যবস্তুকে ভাইসে দৃঢ়ভাবে আটকানো উচিত।

অষ্ট্রম অধ্যায়

ধাতুকে ড্রিল মেশিন দারা ড্রিল করণ

উদ্দেশ : ধাতুকে দ্রিল মেশিন দ্বারা দ্রিলকরণ সম্পর্কে অভিজ্ঞতা অর্জন।

৮.১ যন্ত্রপাতি বাছাই :

ড্ৰিলিং মেশিন (বেঞ্চ ড্ৰিল) (Driling Machine)

ওয়ার্কপিস ক্ল্যাম্পিং ভাইস (Vise)

ড্ৰিল বিট (টুইস্ট ড্ৰিল) Drill Bit)

জ্বিল চাক (Drill Chuck)

চাক কী (Chuck Key)

স্থিভ (Sleeve)

জ্বিল জ্বিফ্ট (Drill drift)

অয়েলক্যান (Oil can)

সেন্টার পাঞ্চ (Center punch)

হ্যামার (Hammer)

জাইবার (Scriber)

ট্রাইস্কয়ার (Trysquare)

৮.২ কার্যকন্ত লে-আউট ও মার্ক করা :

- * লে-আউট করার জন্য ওয়ার্ক সারফেস হিসেবে ব্যবহার করতে সারফেস প্লেট প্রয়োজন। কার্যবস্তু সারফেস প্লেটের উপর বসাতে হয়।
- * কার্যবস্তুর তলে সোজা কিনারার সাথে সমকোণে মার্কিং লাইন টানতে তার তল সমতল ও পার্শ্ব বর্গাকার কিনা, তা পরীক্ষা করতে ট্রাইস্কয়ারের প্রয়োজন।
- * স্ক্রাইবারের সাহায্যে লেইং আউট বা মার্কিং কাজের জন্য লাইন খোদাই করতে হয়।
- * লে-আউট বা মার্কিং করা লাইনের উপর যে স্থানে ড্রিল করতে হবে, উক্ত স্থানে পাঞ্চের সাহায্যে ক্ষুদ্র গর্ত করতে হয়।

৮.৩ ওয়ার্কপিস মেশিন ভাইসে ক্ল্যাম্পিং:

- * ক্ল্যাম্পিং ব্যতিরেকে ড্রিলিং করলে দুর্ঘটনা ঘটতে পারে। ওয়ার্কপিস ও ড্রিল নষ্ট হতে পারে।
- * সিলিন্দ্রিক্যাল ওয়ার্কপিস ড্রিলিং-এর জন্য ওয়ার্কপিস ক্ল্যান্সিং করতে ক্ল্যাম্পসহ ভী-ব্লক ব্যবহার করা হয়। ড্রিলিং-এর সময় ভাইসের মধ্যে ওয়ার্কপিস নিচের দিকে দেবে যায়। এরূপ দেবে যাওয়া রোধ করতে ওয়ার্ক পিচের নিচে কাঠের প্যাকিং দিয়ে ওয়ার্কপিস ক্ল্যাম্পিং করা হয়।

ट.ह करी

৮.৪ ছিল বিট ছিল চাকে বাঁধা:

- ১। ড্রিল চাকের 'জ' ও শ্যাক্ক এবং মেশিন স্পিভেল বোর চিপমুক্ত করা হয়।
- ২। ছোট সাইজের স্টেইট শ্যাক্ক ড্রিল বিটকে সরাসরি ড্রিল চাকে সেট করা হয়।
- ৩। ছোট সাইজের টেপার শ্যাঙ্ক দ্বিল হলে একাধিক স্লীভ ব্যবহার করা হয়।
- ৪। বড সাইজের টেপার শ্যান্ধ ড্রিল হলে সরাসরি মেশিন স্পিভেনর সেট করা হয়।
- ৫। দ্রিল বিট অপসারশের জন্য দ্রিল দ্রিফট ব্যবহার করা হয়।

চিত্র: ৯.২ চাক, চাক কী ও ড্রিল বিট

৮.৫ দ্রিলের ব্যাস অনুযায়ী ঘূর্ণন গতি নির্ধারণ :

* বিভিন্ন সাইজের ড্রিল বিটের জন্য বিভিন্ন স্পিন্ডল স্পীড ব্যবহার অত্যাবশ্যক। স্পিন্ডল স্পীড নির্বাচন করতে ওয়ার্কপিস মেটিরিয়াল ও ড্রিলের ব্যাস বিবেচনা করা হয়। অতঃপর সূত্রের সাহায্যে মেশিন স্পিন্ডল স্পীড নির্ণয় করা হয়। স্পিন্ডল স্পীড নির্বাচন করতে ওয়ার্কপপে সংরক্ষিত চার্ট ব্যবহার করা হয়।

দ্বিলিং-এর জন্য কাটিং স্পীড :

ওয়ার্কপিস ম্যাটিরিয়াল	কাটিং স্পীড মিটার/মিনিট	
	হাই স্পীড স্টীল	নিমেন্টাইড কাৰ্বাইড
লো কার্বন স্টিল	₹4-80	
মিডিয়াম কার্বন স্টিল	২০-৩০	
হাই কার্বন স্টিন	\$0-20	২০-৩০

কাস্ট আয়রন, নরম	२৫-80	60-700	
কাস্ট আয়রন, শক্ত	২০-৩০	80-60	
কাস্ট স্টীল	20-90	90-50	
ব্রাস (শক্ত)	90-520	200-260	
ব্রাস (নরম), ব্রোঞ্জ ৩০-৫০		@o-bo	
কপার, অ্যালুমিনিয়াম	90-500		

বিভিন্ন আকারের ড্রিল বিটের জন্য নির্বাচিত ফীড:

দ্রিল বিটের ব্যাস	ফীড/ড্রিল বিটের প্রতি ঘূর্ণনে
৩ মি.মি.র নিচে	০.০২৫ থেকে ০.০৫ মি.মি.
৩ থেকে ৫ মি.মি.	০.০৫ থেকে ০.১০ মি.মি.
৬ থেকে ১২ মি.মি.	০.১০ থেকে ০.১৮ মি.মি.
১২ থেকে ২৫ মি.মি.	০,১৮ থেকে ০,৩৮ মি.মি.
২৫ মি.মি. হতে উধের্ব	০.৩৮ থেকে ০.৬৩ মি.মি.

৮.৬ ড্রিলকরণ সম্পন্ন করা:

১। দ্রিলিং-এর সময় নিরাপত্তার প্রতি বিশেষ নজর দিতে হয়।

২। মেশিন সেটিংআপ সম্পন্ন কর।

৩। মেশিন চালু কর।

৪। হাতে ফিড দাও।

৫। কুল্যান্ট পদ্ধতি চালু কর।

৬। মাঝে মাঝে ড্রিল উঠিয়ে চিপ অপসারণ কর।

৭। ড্রিলিং সম্পন্ন কর।

৮। ড্রিলিং পরীক্ষা কর।

৮.৭ দ্রিলিং-এর সময় কুল্যান্ট ব্যবহার:

* ড্রিলিং করতে ফ্রিকশনের ফলে বিট গরম হয়ে যায়। ফলে ক্লিয়ারেঙ্গ অ্যাঙ্গেল ও কাটিং অ্যাঙ্গেল নষ্ট ও বিট ভেঙ্গে যেতে পারে। তাপ উৎপাদনের ফলে কার্যবস্তুর গুণের পরিবর্তন হয়ে যায়। ড্রিল বিট এবং কার্যবস্তু ঠাণ্ডা রাখতে কুল্যান্ট একান্ত প্রয়োজন। এ কারণে ড্রিলিং মেশিনে কুল্যান্ট পদ্ধতি সেট করে নেওয়া হয়।

৮.৮ ড্রিলিং-এর সময় ও পরে পরীক্ষা:

* ড্রিলিং-এর সময় সঠিকভাবে ড্রিলিং হচ্ছে কিনা পরীক্ষা করা দরকার। ফ্রিকশনের কারণে বিটের কাটিং এজ পুড়ে যায়। এতে ড্রিলের আকার পরিবর্তন হয়ে যায়। তাই ড্রিলিং করার সময় এবং পরে ড্রিল বিটের কাটিং এজ এবং ড্রিলের সাইজ পরীক্ষা করে দেখতে হবে।

নবম অধ্যায়

হ্যান্ডট্যাপ দ্বারা ধাতুর ভিতরে প্যাঁচ কাটা

১.১ যন্ত্রপাতি বাছাই করা :

- * পাঁাচ কাটার প্রয়োজনে নির্ধারিত পরিমাপের দ্রিশ করা ওয়ার্কপিসের প্রয়োজন।
- * ওয়ার্কপিসে দ্রিল করা ছিদ্রের সাথে সঙ্গতিপূর্ণ ট্যাপসেট। টেপার, প্লাগ ও বটমিং সংগ্রহ করতে হয়।
- * ট্যাপ রেঞ্চ, ভাইস সহ ওয়ার্ক টেবিল, কাটিং অয়েলপূর্ণ অয়েলক্যান, গগলস সংগ্রহ করতে হয়।

৯.২ ধ্যাকিপিস আটকালো :

- * ভাইসের 'জ'—এর চাপে ওয়ার্কপিসের গায়ে যাতে দাগ না পড়ে, সেজন্য 'জ' গুলোর ভিতর দিকে নরম দুটি ধাতুর পাত বসাতে হয়।
- * ভাইসের মধ্যে ওয়ার্কপিসকে অনুভূমিক অবস্থায় ধরতে হয় এবং হাতল খুরিয়ে 'জ' পূর্ণভাবে টাইট দিতে হবে।
- * কার্যকালে ওয়ার্কপিস যাতে নিচে নেমে না যায়, সেজন্য ওয়ার্কপিসের নিচে একটি কাঠের ব্লক স্থাপন করা যেতে পারে।

৯.৩ ট্যাপ রেক্ষে সঠিক মাপের ট্যাপ আটকানো :

- ট্যাপ রেঞ্চের ভানদিকের হাতল ঘড়ির কাঁটার উল্টাদিকে ঘরিয়ে তার 'জ' টিলা করতে হয়।
- * নির্ধারিত পরিমাপের ট্যাপটি (টেপার ১ নং) রেঞ্চের 'জ'সমূহের ভিতর স্থাপন করতে হয়।
- * ট্যাপ রেঞ্চের হাতল যড়ির কাঁটার দিকে মুরিরে ট্যাপটি মজবৃতভাবে 'জ' সমূহের ভিতর আটকাতে হবে। ট্যাপ আটকানোর সময় খেয়াল রাখতে হবে ট্যাপের অ্যালাইনমেন্ট যেন ঠিক থাকে।

১.৪ ট্যাপ সঠিকভাবে চালনা করা:

- * হ্যান্ড ট্যাপিং-এর জন্য ট্যাপ ধরতে এবং সুরাতে ট্যাপ রেঞ্চ ব্যবহৃত হয়। ট্যাপ রেঞ্চের দুই হাতলে মন্তবৃতভাবে ধরতে হয়। ট্যাপের অগ্রভাগ নিমুমুখী রাখতে হয়।
- * ছোট ট্যাপ ধরতে ছোট ট্যাপ রেঞ্চ এবং বড় ট্যাপ ধরতে বড় ট্যাপ রেঞ্চ ব্যবহার করা উচিত। ছোট ট্যাপ ধরতে বড় ট্যাপ রেঞ্চ ব্যবহৃত হলে অধিক মোচড়ের জন্য ট্যাপ ভেকে যায়।
- * প্যাঁচ কাটা আরম্ভ করার সময় ট্যাপের অক্ষকে সম্পূর্ণ উল্লম্ব অবস্থানে রাখতে হবে। প্যাঁচ কাটা আরম্ভ করার সময় অয়েল ক্যান দারা ছিদ্রপথে কাটিং অয়েল দিতে হয়।

Ba : 30.8

৯.৫ ট্যাপ চালনার সময় তৈল ব্যবহার :

* হস্তচালিত যদ্রাদি দারা ভিতরে প্যাঁচ কাটার সময় তেল ব্যবহার করতে হয়। তেল ব্যবহারের ফলে প্রেডের তল এবং কাটিং টুলের মধ্যে ঘর্ষণ কমিয়ে দেয় ট্যাপ এবং ডাই-এর প্যাঁচ কাটার ক্ষমতা দীর্ঘস্থায়ী করে, প্যাঁচ মসৃণ করে এবং প্যাঁচ সহজ হয়।

৯.৬ নিরম অনুযারী ট্যাপিং কাজ সমাধা করা :

* কিঞ্চিৎ চাপ প্রয়োগ করে ধীরে ধীরে ঘড়ির কাঁটার দিকে হাতলসহ ট্যাপ রেঞ্চটি ঘুরাতে হবে। আনুমানিক একটি পূর্ণ আবর্তনের পর চাপমুক্ত অবস্থায় তাকে আনুমানিক অর্ধেক আবর্তন পরিমাণ উল্টাদিকে ঘুরাতে হবে। একই পদ্ধতিতে ট্যাপটি ঘুরিয়ে সম্পূর্ণ দৈর্ঘ্য ছিদ্রপথে প্রবেশ করাতে হয়।

किंव : ১०.৫

* টেপার ট্যাপটি চালনা করা সম্পন্ন হলে তা খুলে পর্যায়ক্রমে প্লাগ ও বটমিং ট্যাপ দৃটি রেঞ্চে লাগিয়ে প্যাঁচ কাটা সম্পন্ন করা হয়।

ট্যাপিং-এর সময় ও পরে পরীক্ষা করা:

* অভ্যন্তরীণ প্যাঁচ কাটার সময় প্যাঁচ ঠিকমতো কাটা হচ্ছে কিনা দেখা উচিত। অভ্যন্তরীণ প্যাঁচ সঠিকভাবে সম্পন্ন হয়েছে কিনা তা পরিমাপের জন্য উক্ত পরিমাপের একটি বোল্ট (Bolt) আভ্যন্তরীণ প্যাঁচের ভিতর চালনা করে পরীক্ষা করা যেতে পারে। এছাড়া থ্রেড প্রাগ গেজ ও বটমিং প্রাগ গেজ আভ্যন্তরীণ প্যাঁচের ভিতর সহজভাবে যাওয়া-আসা করে কিনা, তাও পরীক্ষা করা যেতে পারে। থ্রেড গেজ ব্যবহার করেও পরীক্ষা করা যেতে পারে।

দশম অধ্যায়

হ্যান্ড ডাই দ্বারা বাহিরের প্যাঁচ কাটার কর্তন

১০.১ যম্ভপাতি নির্বাচন করতে পারা :

- * হস্তচালিত ডাই দ্বারা বাহিরের প্যাঁচ কাটার জন্য নির্ধারিত পরিমাপের ওয়ার্কপিস নিতে হবে। উপযুক্ত ডাই সংগ্রহ করতে হবে। ডাই রিজিড, স্প্রিং এবং সমন্বয়যোগ্য এই তিন ধরনের হয়ে থাকে। পূর্ণ গভীরতায় প্যাঁচ কাটার জন্য অ্যাডজাস্টেবল ডাই, নাট ধরনের সলিড ডাই প্রেড বা প্যাঁচ পরিষ্কার করতে ব্যবহৃত হয়।
- * ডাই অ্যাডজাস্ট করার জন্য ডাইস্টক সংগ্রহ করতে হবে।
- * ডাইসহ ওয়ার্ক টেবিল, কাটিং অয়েলপূর্ণ অয়েল ক্যান ও গগলস প্রয়োজন।

চিত্র : ১১.১ ডাই ও ডাই স্টক

১০.২ ডাই স্টকে ডাই সেট করতে পারা :

- * এটি একজোড়া হাতাসহ, ভিতরে ডাইকে রক্ষা করার চালনা ও অ্যাডজাস্ট করার একটি বিশেষ সরঞ্জাম। বাহিরের প্যাঁচ কাটার জন্য ডাই ধরতে এবং ঘুরাতে ডাই স্টক ব্যবহৃত হয়।
- * ডাই স্টকের অ্যাডজাস্টিং স্কু ঢিলা করতে হবে, যাতে ডাই স্থাপন করা যায়।
- * ডাইটি স্টকে স্থাপন করে এবং অ্যাডজাস্টিং স্কুর সাহায্যে মজবুতভাবে তার কেন্দ্রে আটকাতে হয়।

১০.৩ ওয়ার্কপিস ভাইসে বাঁধতে পারা :

* গোলাকার ওয়ার্কপিস যাতে ভাইসে স্থির থাকে, সেজন্য ভাইসের 'জ'-এর অভ্যন্তরে নরম ধাতুর দুটি 'V' ব্লক ধরনের জোগান স্থাপন করতে হবে। কোন কোন ভাইসে গোলাকার ওয়ার্কপিস উল্লম্বভাবে আটকানোর জন্য বিশেষ ব্যবস্থা থাকে।

১০.৪ ডাই স্টক দারা সঠিকভাবে প্যাঁচ কটিতে পারা :

- * ভাই ধারা প্যাঁচ কাটাতে হলে রডের ব্যাস হতে হবে ডাই প্রেড অপেক্ষা ০.৩-০.৪ মি.মি. ছোট আর রডটিকে ভাইসে এমনভাবে ফিট করতে হবে যেন প্যাঁচের অংশ ছাড়াও ২০-৫০ মি.মি. দৈর্ঘ্য ভাইস 'জ' এর উপর বর্ধিত থাকে। রডের প্রান্তকে কিঞ্চিৎ চালু (Chamfered) করে দিতে হবে, যেন ডাই তার উপর চড়তে ও কাটতে আরম্ভ করতে পারে।
- * ডাই স্টকের হাতল দুই হাতে দৃঢ়ভাবে ধরতে হবে যেন ডাই-এর ছিদ্রের বড় ব্যাস নিচের দিকে থাকে।

১০.৫ ডাইসেটে প্রয়োজনীয় তেল ব্যবহার :

- * হস্তচালিত যদ্রাদি দ্বারা প্যাঁচ কাটতে তেল ব্যবহার করতে হয়।
- * প্যাঁচের তল এবং কাটিং টুলের মধ্যে ঘর্ষণ কমিয়ে দেয়।
- * ট্যাপ, ডাই-এর কাটার ক্ষমতা বৃদ্ধি, দীর্ঘস্থায়ী, প্যাঁচ মসৃণ ও প্যাঁচ কাটা সহজতর করার জন্য প্যাঁচ কাটার সময় অয়েল ক্যান দ্বারা প্রয়োজনীয় তেল ব্যবহার করতে হয়।

১০.৬ প্যাঁচ কাটা সম্পন্ন করা :

- * সাবধানতার সাথে ডাই স্টকটিকে ওয়ার্কপিসের উপর স্থাপন করতে হয়। ডাইস্টকের হাতল সম্পূর্ণ অনুভূমিক অবস্থায় থাকবে। কাটিং অয়েল ব্যবহার করতে হয়।
- * প্রাথমিক কিঞ্চিৎ প্রয়োগ করে হাতলটিকে ঘড়ির কাঁটার দিকে ধীরে ধীরে ঘ্রাতে হয়। একটি সম্পূর্ণ আবর্তনের পর তাকে অর্ধেক আবর্তনের পরিমাণ ঘড়ির কাঁটার উল্টাদিকে ঘুরাতে হবে। কাটা আরম্ভ হয়ে গেলে নিমুমুখী চাপের প্রয়োজন নেই।

চিত্র : ১১.২ প্যাঁচ কাটা সম্পন্ন করা

- * ডাই দারা প্যাঁচ কাটা শেষ হলে ডাই নাটের সাহায্যে প্যাঁচ মস্ণ করতে হয়। প্যাঁচ কাটা :
- পাইপের যে অংশে প্যাঁচ কাটতে হবে, সে অংশ কাটিং তেলে ভিজাও।
- পাইপের মেরু রেখার সাথে হ্যান্ডেলকে লম্ব রেখে ডাই স্টককে সামনের দিকে চাপ দিয়ে ঘড়ির কাঁটার অনুক্লে ঘুরাও। যখন ডাই পাইপকে আটকে ধরেছে বলে মনে হবে, তখন হাতলকে ঘুরাতে হবে।
- পরিমাণমতো দৈর্ঘ্যে প্যাঁচ কাটা হলে ঘড়ির কাঁটার বিপরীত দিকে ঘুরিয়ে সাবধানে বের করে আনো।

हिन : ১১.৬

সতৰ্কতা:

- -প্যাচ কাটার সময় কাটিং তেল ব্যবহার করা।
- -পাইপ শক্তভাবে ভাইসে আটকানো।
- -পাইপের সেলফ-সেন্টারিং গাইডকে পাইপের সাইজ অনুযায়ী অ্যাডজাস্ট করা।
- -ওভারসাইজ ডায়ার পাইপ হলে কাটার সময় প্রথমে ওভারসাইজ পরে সঠিক সাইজের ডাই অ্যাডজাস্ট কর। এবং সর্বশেষে প্রয়োজনে আভারসাইজে প্যাঁচ কাটা।

১০.৭ প্যাঁচ কটার সময় ও পরে পরীক্ষা করা :

- * ডাই দ্বারা প্যাঁচ কাটার সময় ও পরে ঠিকমতো কাটছে কিনা দেখতে হবে।
- * অয়েল ক্যান দ্বারা তেল ব্যবহার করা প্রয়োজন।
- * প্যাঁচের মসুণতা পরীক্ষা করার জন্য ডাই নাট ব্যবহার করা যেতে পারে।
- * থ্রেড কাটা সম্পন্ন হলে স্কু পিস গেজের সাহায্যে সঠিকতা পরীক্ষা করে দেখতে হবে।

একাদশ অধ্যায়

ড্রিল হোল কাউন্টার সিংকিং করা

উদ্দেশ্য: ড্রিল হোল কাউন্টার সিংকিং করার দক্ষতা অর্জন।

১১.১ প্রয়োজনীয় যন্ত্রপাতি নির্বাচন :

* কাউন্টার সিঙ্কিং, প্রশস্ত সৃষ্টি করার একটি পদ্ধতি, যার ভিতর রিভেট বা স্কু ইত্যাদি বসতে পারে। কাউন্টার সিঙ্কের কোণের মাপ ৬০°, ৭০°, ৯০°, ও ১২০° হরে থাকে।

* অপারেশন স্পেসিফিকেশন বা অন্য কোনো নির্দেশনা অনুযায়ী কাউন্টার সিঙ্ক নির্বাচন করতে হয়।

छिदा : ১১.১

কাউন্টার সিব্ধ ও কাউন্টার সিঙ্কের আয়তন ও কোণ দ্রুয়িং অনুযায়ী আছে কিনা দেখে নিতে হয়। কাউন্টার সিঙ্কের আয়তন ও শ্যাঙ্ক অনুযায়ী হোন্ডার নির্বাচন করতে হয়। এছাড়া–

ডিল মেশিন

ওয়ার্ক হোন্ডিং ডিভাইস

ওয়্যার ব্রাশ

কাটিং ফুইড ইত্যাদি নির্বাচন করতে হয়।

১১.২ কাউন্টার সিঙ্কিং ড্রিল নির্বাচন :

- * কাউন্টার সিল্ক দ্রিলিং─এর পরে ছিদ্রের প্রান্তকে চ্যাম্পারিং করার জন্য এবং ব্রোচিং/রিমিং─এর পূর্বে ব্যবহৃত
 হয়। প্রয়োজন অনুযায়ী নিয়ের যে কোন দ্রিল নির্বাচন করতে হয়।
- এ টুলের কয়েকটি কাটিং—এজ আছে। এর কাটিং অ্যাঙ্গেল সাধারণত ৬০°, ৮২° ও ৯০° হয়ে থাকে এবং
 শ্যাক্ষ ট্যাপার বা স্ট্রেইট হতে পারে।
- * কাউন্টার শ্যাক্ষ ক্র্/বোল্টের জন্য শুধুমাত্র একটি কাটিং এজ বিশিষ্ট কাউন্টার সিঙ্ক ব্যবহৃত হয়। বিভিন্ন আয়তনের ক্কুর জন্য প্রয়োজন অনুযায়ী নির্বাচন করা যাবে।
- * শ্প্রিং লোডেড সেন্টার বিশিষ্ট কাউন্টার সিঙ্ক সঠিক সেন্টারিং প্রদান করে। এ কাউন্টার সিঙ্কের ৬০°, ৭৫°, ৮২°, ৯০° ও ১২০° কোণের জন্য বিনিময়ে পাইলট থাকে।
- কাউন্টার সিল্কের আয়তন, স্পেসিফিকেশন, নির্দেশনা কোন দ্রায়িং অনুযায়ী আছে কিনা দেখে কাউন্টার সিল্ক নির্বাচন করতে হয়।

চিত্র: ১১.২

১১.৩ কাউন্টার সিঙ্ক ড্রিন, ড্রিন মেশিনের চাকে বাঁধা :

- কাউন্টার সিঙ্কের আয়তন ও শ্যান্ক অনুযায়ী কাউন্টার সিঙ্ক হোল্ডার নির্বাচন করতে হয়।
- * কাউন্টার সিল্ক সেট আপ করার সময় লক্ষ্য রাখতে হয় পরিকার-পরিচছর আছে কিনা।
- * কাউন্টার সিঙ্ক সেট আপ করার পর ভালোভাবে পরীক্ষা করে দেখতে হবে কাউন্টার সিঙ্কটি নড়ে কিনা।

১১.৪ ওয়ার্কপিস মেশিন ভাইলে বাঁধা:

- কাউন্টার সিঙ্কিং করার সময় যে কোনো প্রকার দুর্ঘটনা এড়ানোর জন্য ওয়ার্কপিসকে সঠিকভাবে ক্ল্যাম্পিং
 করা হয়। ওয়ার্কপিসের গঠন ও আকার এমন থাকা জরুরি যাতে দৃঢ় আঁটুনি সম্ভব হয়।
- ওয়ার্কপিস কাউন্টার সিঙ্কের নিচে স্থাপন করতে হয়।
 - পূর্বে দ্রিলিং করা ছিদ্র অভিমুখে কাউন্টার সিঙ্ক নামাতে হয়।
 - ওয়ার্কপিস সমন্বয় করতে হবে, যাতে কাউন্টার সিঙ্কের ছিদ্রের মধ্যে ঢুকানো যায়।
- কাউন্টার সিল্কে নিমুমুখী ফিড দিয়ে ওয়ার্কপিসের অবস্থান পরীক্ষা করতে হয়।
- স্পিভালকে মুরিয়ে দেখতে হবে ছিদ্রের প্রান্তের চতুর্পার্শ্বের চ্যামপার সমান আছে কিনা।
- প্রয়োজন হলে ওয়ার্কপিসকে নাড়াতে হয় এবং সেন্টারের পর পূর্ণ টাইট দিতে হয়।

छिव : ১১.७

১১.৫ সতর্কতার সাথে ড্রিল কাউন্টার সিঙ্কিং সমাপ্ত করা :

- * মেশিন চালু করতে হবে।
- * সঠিক গভীরতায় কাউন্টার সিঙ্কিং করতে হবে।
- কাটিং ফুইড ব্যবহার করতে হবে।
- হাতে ফিড দিয়ে নিশ্চিত হতে হবে যে কাউন্টার সিঙ্কটি কাটছে।
- টুল ছিদ্রের বাহিরে উঠিয়ে বার বার চিপ পরিষ্কার করতে হবে।
- কাউন্টার সিঙ্ক যখন নির্ধারিত গভীরতায় পৌছে, তখন সতর্কভাবে খেয়াল রাখতে হবে।
- ছিদ্র হতে কাউন্টার সিঙ্ক অপসারণ করতে হবে।
- * মেশিন বন্ধ করতে হবে।
- * মেশিন পরিষ্কার করতে হবে।

কাউন্টার সিঙ্কিং এর সময় ও পরে পরীক্ষা করা :

কাউন্টার সিঙ্কিং-এর সময় ও পরে কাউন্টার সিঙ্কিং পরীক্ষা করে দেখতে হবে।

ফ্লাট হেড ক্কুর ক্ষেত্রে কাউন্টার সিঙ্ক গভীরতা এমন হওয়া প্রয়োজন, যাতে হেডটি পৃষ্ঠের সঙ্গে সমতলে থাকে। একটি ফ্লাট হেড ক্কু বসিয়ে পরীক্ষা করা যেতে পারে।

ওভাল-হেড স্কুর ক্ষেত্রে কাউন্টার সিঙ্কিং গভীরতা এমন হওয়া প্রয়োজন, যাতে শুধু ডিম্বাকার উপরিভাগটুকু পৃষ্ঠের উপরে থাকে, ওভাল-হেড স্কু বসিয়ে পরীক্ষা করা যায়।

কাউন্টার সিঙ্ক গভীরতা সরাসরি স্কু বসিয়ে পরীক্ষা করা যেতে পারে অথবা গেজ প্লাগ দ্বারা এ পরীক্ষা করা যায়।

দ্বাদশ অধ্যায় পাওয়ার হ্যাক'স মেশিনে ধাতু কর্তন

উদ্দেশ্য : পাওরার হ্যাক'স মেশিনের ধাতু কটার দক্ষতা অর্জন।

১২.১ যন্ত্রপাতি নির্বাচন :

व्यि : ১२.১

- পাওয়ার হ্যাক'স
- মেশিন ব্রাশ ও কাপড়ের টুকরা
- অয়েল ক্যান গু গুয়েল গান

विवा : ১২.২

- ম্যাটরিয়াল স্ট্যান্ড
- আডজাস্টেবল স্টপ
- স্টিল টেপ বা স্টিল রুল
- সার্ভিস রেঞ্চ সেট
- প্রয়োজনীয় পাওয়ার হ্যাকস ব্লেড
- বেশি প্রস্তুছেদবিশিষ্ট নমনীয় ধাতুর (নরম স্টীল/তামা) জন্য ৪-৬ টিপিআই ব্লেড
- শক্ত এবং ভঙ্গুর ধাতুর (টুল স্টিল) জন্য ৮-১০টিপিআই ব্লেড
- পাতলা প্রস্তুছেদবিশিষ্ট ধাতুর (পাইপ/টিউব) জন্য ১৪টি পি,আই, ব্লেড

১২.২ ব্লেড সেটিং:

সাধারণত পাওয়ার হ্যাক'স—এর টানা স্ট্রোকই হলো কাটিং স্ট্রোক। ফ্রেমের গায়ে ব্লেড পরাবার দিকনির্দেশনা থাকতে পারে। উক্ত নির্দেশনা পরীক্ষা করতে হবে।

ব্লেড সেটিং এর জন্য :

- ব্রেড ক্ল্যাম্পিং ক্লুদয় (২) খুলতে হবে।
- সঠিক সাইজের রেঞ্চ ব্যবহার করতে হবে ।
- ব্লেড টেনশনিং নাট (১) ঢিলা দিতে হবে ।
- দাঁতের সঠিক দিক বিবেচনা করে ক্রু (২) দয়ের সাহায়্যে ব্লেড সেট করতে হবে।
- স্কুদ্বয় (২) পূর্ণভাবে টাইট দিতে হবে।
- ব্লেড টেনশনিং নাট (১) পূর্ণভাবে টাইট দিতে হবে।
- সঠিক সাইজের রেঞ্চ ব্যবহার করতে হবে।

১২.৩ ওরার্কপিস মার্কিং:

- অসৃক্ষ্ম মাপের জন্য চক দ্বারা কাটার স্থান চিহ্নিত করতে হবে।
- সৃন্ধ মাপের জন্য হ্যান্ড স্ক্রাইবার, হ্যাক'স দ্বারা কাটার স্থান চিহ্নিত করতে হবে।

১২,৪ ভাইসের মধ্যে ওয়ার্কপিস স্থাপন :

- ওয়ার্কপিস এবং ব্লেডের মধ্যে ফাঁক রেখে ব্লেড নিচু করতে হবে।
- ওয়ার্কপিসের মাপ পরীক্ষা করতে হবে।
- ওয়ার্কপিসকে দৃঢ়ভাবে বাঁধতে হবে।
- পাওয়ার হ্যাক'স চালু করে ব্লেডের সাহায্যে ওয়ার্কপিসের কাটার স্থান মার্ক করতে হবে।

১২.৫ ওয়ার্কপিস কর্তন সম্পন্ন :

- পাওয়ার হ্যাক'স চালু করতে হবে।
- (১) প্রয়োজনীয় উচ্চতায় ব্লেড উঁচু করতে হবে।
- (২) ভাইসের মধ্যে ওয়ার্কপিস স্থাপন করতে হবে।

(৩) হ্যান্ডেলের সাহায্যে ভাইস পূর্ণভাবে টাইট দিতে হবে।

- একাধিক ওয়ার্কপিস কাটার জন্য অ্যাডজাস্টেবল স্টপ সেট করতে হবে।
- লম্ব মেটালের মৃক্ত প্রান্তে সাপোর্ট দেয়ার জন্য ম্যাটেরিয়াল স্ট্যান্ড স্থাপন করতে হবে। প্রয়োজনে
 একাধিক ম্যাটেরিয়াল স্ট্যান্ড ব্যবহার করতে হবে।
- যখন খাট ওয়ার্কপিসের দৈর্ঘ্য ভাইস অতিক্রম করে না, তখন ভাইসের মধ্যে ওয়ার্কপিসের অপর
 প্রান্তে একটি প্যাকিং স্থাপন করতে হবে।

১২.৬ ধাতু কাটা সম্পন্নকরণ :

- পাওয়ার হ্যাক'স চালু করতে হবে।
- ওয়ার্কপিসকে স্পর্শ করানোর জন্য ব্লেডকে ধীরে ধীরে নিচে নামাতে হবে।
- প্রতি মিনিটে স্ট্রোকের সংখ্যা সেট করতে হবে।
- প্রেসার কন্ট্রোল লিভারের সাহায্যে ব্লেডের উপর চাপ নিয়ন্ত্রণ করে কর্তন সম্পন্ন করতে হবে।

नित्रीकन :

- ওয়ার্কপিস ক্ল্যাম্পিংয়ে বিশেষ সতর্কতার প্রয়োজন, যাতে ওয়ার্কপিস সমউচ্চতায় অবস্থান করতে পারে।
- ঢিলা (Loose) ক্ল্যাম্পিং হলে ব্লেড ভেঙ্গে যেতে পারে।
- ব্রেড সেটিং সঠিক হতে হবে । এ ক্ষেত্রেও টিলা সেটিং ব্রেড ভাঙার কারণ হতে পারে ।
- কাটিং স্ট্রোকের সঠিকতা নিরীক্ষণ করতে হবে। কাটিং শুরু ও শেষ হবার সময় সতর্ক দৃষ্টি রাখতে হবে।

জব তালিকা

- ১। স্কোয়ার বার তৈরিকরণ।
- ২। হেক্সাগোনাল বার তৈরিকরণ।
- ৩। ক্ল্যাম্প তৈরিকরণ।
- ৪। স্কয়ার মেইল ফিমেইল তৈরিকরণ।
- ৫। চিরুনির আকৃতিতে সয়িং জব তৈরিকরণ।
- ৬। ড্রিল ডিফট তৈরিকরণ।
- ৭। ড্রিল গেজ তৈরিকরণ।
- ৮। নাট তৈরিকরণ।
- ৯। স্টাড বোল্ট তৈরিকরণ।
- ১০। প্লেইন কী-ওয়ে তৈরিকরণ।
- ১১। ড্রিল মেশিনের সাহায্যে কাউন্টার সিংকিংকরণ।
- ১২। পাওয়ার হ্যাক'সতে নির্দিষ্ট মাপে ধাতু কর্তন।
- ১৩। সলিড ওপেন এন্ডেড রেঞ্চ তৈরিকরণ।
- ১৪। ট্রাই-স্কয়ার তৈরিকরণ।
- ১৫। বোল্ট তৈরি

জেনারেল মেকানিক্স-১

General Machanics-1

তান্ত্বিক ও ব্যবহারিক (দ্বিতীয়পত্র)

প্রথম অধ্যায়

ওয়ার্কশপের সতর্কতামূলক পরিবেশ Safe Environment in Workshop

১.১ বিপজ্জনক অবস্থা :

যেসব অবস্থার পরিপ্রেক্ষিতে অথবা কারণে ওয়ার্কশপে দুর্ঘটনা ঘটে বা ঘটার সম্ভাবনা থাকে সে সব অবস্থাকেই বিপজ্জনক অবস্থা বলা হয়ে থাকে।

বিপজ্জনক অবস্থার উদাহরণ নিচে দেয়া হলো:

- অপর্যাপ্ত আলো
- অপর্যাপ্ত স্থান
- অপর্যাপ্ত বিশুদ্ধ বায়ু চলাচলের পথ
- বৈদ্যতিক ব্যবস্থার ক্রটি
- গার্ডবিহীন মেশিন
- যন্ত্রাদির ধারালো কাটিং এজ-এর অসাবধান ব্যবহার
- যন্ত্রাদির চোখা (Pointed) প্রান্তের অসাবধান ব্যবহার
- যন্ত্রপাতির ঢিলা বা ভাঙ্গা অংশ থাকা
- মেঝেতে পড়ে থাকা তেল, গ্রীজ ও অন্যান্য তরল পদার্থ
- ধাতব চিপস্
- বিক্ষিপ্ত স্ক্র্যাপ মেটাল
- ভুল কার্যাভ্যাস

১.২ দুর্ঘটনা :

যে অনাকান্ত্রিত ঘটনা সংঘটনের ফলে মুহূর্তেই জান, মাল বা সম্পদের প্রভূত ক্ষয়ক্ষতি ঘটে বা ঘটার উপক্রম হয় তাকে দুর্ঘটনা বলে। যেমন- একজন শ্রমিক মেশিনে কার্যরত অবস্থায় হঠাৎ তার কোনো অঙ্গহানি হলো কিংবা আঘাতপ্রাপ্ত হলো—এটাই দুর্ঘটনা। দুর্ঘটনা এক মুহূর্তেই থামিয়ে দিতে পারে কারো জীবনে চলার গতি। তাই সদা সতর্ক হয়ে কাজ করা উচিত।

শিল্পের উনুয়ন তিনটি মৌলিক উপাদান-ম্যান (Man), মেশিন (Machine) এবং ম্যাটেরিয়েল (Material) নিয়ে গঠিত (3M) সমন্বয়ের মাধ্যমেই শিল্পোৎপাদন ঘটে, পণ্যের উপযোগিতা বৃদ্ধি বা সেবার মান বাড়ায়। শিল্পের এতদ উনুয়ন বা সেবাকে মুহুর্তেই থামিয়ে দিতে পারে যে অনাকাংখিত ঘটনা তাই হলো দুর্ঘটনা। শিল্পের সংঘটিত এই দুর্ঘটনাকে আমরা সম্পূর্ণ নিয়ন্ত্রণ করতে না পারলেও যথাযথ সতর্কতা বা নিরাপত্তামূলক ব্যবস্থা গ্রহণ করলে অনেকাংশে কমিয়ে আনতে পারি। তাই ইংরেজিতে বলা হয়ে থাকে, 'Safety first, then work'অর্থাৎ 'আগে নিরাপাত্তা পরে কাজ'। অথবা 'Prevntion is better than cure' অর্থাৎ

নিরাময়ের চেয়ে নীরোগ থাকা অধিকতর ভালো'। শিল্পে প্রতিষ্ঠানও আমাদের সমাজেরই একটি উৎপাদনশীল অন্ধ। এখানে নিয়োজিত কর্মীবৃন্দের ও উৎপাদনের স্বার্থে যথাযথ নিরাপতা প্রয়োজন। কারণ যেকোনো উৎপাদন ব্যবস্থার মূল উদ্দেশ্যই হলো মুনাফা অর্জন। আর মুনাফা তখনই সম্ভব হয়, যখন তুলনামূলক কম ব্যয়ে অধিকতর গুণগত মানসম্পন্ন পণ্য সামগ্রী উৎপাদন সম্ভব। শিল্প প্রতিষ্ঠানে পণ্য সামগ্রীর উৎপাদন ব্যয়ের মধ্যে কাঁচামাল এবং প্রক্রিয়াজাতকরণ ব্যয়কে মুখ্য বয়য় হিসেবে গণ্য করা হয়। তবে কোনো শিল্প প্রতিষ্ঠানে যদি কোনো প্রকার দুর্ঘটনা ঘটে, তাহলে দুর্ঘটনাজনিত যাবতীয় বয়য়ও পণ্যের উৎপাদন বয়য়র সঙ্গে হয় ফলে উৎপাদিত পণ্যের উৎপাদন বয়য় বহুলাংশে বৃদ্ধি পায়, সর্বশেষ পণ্যের বিক্রয় মূল্য বেড়ে যায়। এতে করে ক্রেতা সাধারণের মধ্যে বিরূপ প্রভাব পড়ে।

১.৩ দুর্ঘটনার কারণ

নিচে দুর্ঘটনার কারণ উল্লেখ করা হলো:-

- ১। অপর্যাপ্ত আলো-কম বা বেশি আলো দুটোই কাজের জন্য ক্ষতিকর এবং দুর্ঘটনার কারণ হতে পারে।
- ২। অপর্যাপ্ত স্থান-মানুষ, পণ্য ও টুলসের জন্য প্রয়োজনীয় স্থানের অভাব দুর্ঘটনা ঘটিয়ে থাকে।
- ৩। অপর্যাপ্ত বিশুদ্ধ বায়ু চলাচল।
- ৪। বৈদ্যুতিক ব্যবস্থার ক্রটি।
- ৫। সেফটি গার্ডবিহীন মেশিনপত্র এবং কর্মস্থল।
- ৬। যন্ত্রাদির চোখা ধারালো কাটিং এজ-এর অসাবধান ব্যবহার
- ৭। যন্ত্রাদির চোখা (Pointed)প্রান্তের অসাবধান ব্যবহার।
- ৮। যন্ত্রপাতির ঢিলা বা ভাঙ্গা অংশ থাকা।
- ৯। মেঝেতে পড়ে থাকা, গ্রীজ, তরল ও অন্যান্য পিচ্ছিল পাদার্থ।
- ১০। ধাতব চিপস ঠিকমতো অপসারণ না করা।
- ১২। নিরাপদ কার্যাভ্যাস না থাকা।
- ১৩। ত্রুটিপূর্ণ যন্ত্রপাতি হ্যান্ড টুলস এবং মেশিনপত্র প্রভৃতি ব্যবহার করা।
- ১৪। সঠিক কুলেন্ট ও লুব্রিক্যান্ট ব্যবহার না করা।
- ১৫। ফ্রোর ভাঙ্গা বা উঁচু নিচু থাকা।
- ১৬। গগলস না পড়ে ওয়েল্ডিং বা গ্রাইন্ডিং করা।

এছাড়াও অনিরাপদ কার্যাভ্যাস দুর্ঘটনা কারণ হয়ে দেখা দিতে পারে। যেমন-

- (১) ঢিলেঢালা পোশাক পরিধান করা।
- (২) ওয়ার্কশপে সর্বদা নরম তলযুক্ত জুতা পরিধান করা।
- (৩) ওয়ার্কশপে কাজ করার সময় লম্বা হাতাওয়ালা জামা পরিধান করা।
- (৪) ওয়ার্কশপে কাজ করার সময় আংটি, হাতঘড়ি এবং অলঙ্কার ব্যবহার না করা।
- (৫) কাজ করার সময় নেকটাই, মাফলার এবং চাদর পরিধান করা।
- (৬) লম্বা চুল ও নখ রাখা।
- (৭) সঠিক ম্যাটোরিয়েলের অ্যাপ্রোণ পরিধান না করে ওয়ার্কশপে কাজ করা।

১.৪ নিরাপত্তামূলক পোশাক ও সরঞ্জাম নির্বাচন :

- যে কোনো মেশিন্টুলে কাজ করার সময় সেফটি গগ্লস্ পরিধান করা উচিত। কারণ এটা ছিটকে আসা চিপস/কণা থেকে চোখকে রক্ষা করে।
- ওয়ার্কশপে সর্বদা শক্ত ও অপিচ্ছিল তলযুক্ত জুতা পরিধান করা উচিত। কারণ চিপ জুতার তল কেটে
 গায়ের নিচে আঘাত করতে পারে। তা ছাড়া পড়স্ত বস্তুর হাত থেকে পা-কে রক্ষা করে।
- স্যান্ডেল পরিধান করে ওয়ার্কশপে কাজ করা উচিত নয়। কারণ য়েকোনো সময় ভারী জিনিস পায়ের উপর পড়তে পায়ে, যা মারাত্রক আঘাতের কারণ হয়।
- মেশিনে কাজ করার সময় সর্বদা আঁটসাঁট পোশাক পরিধান করা উচিত। কারণ ঢিলা এবং ছেঁড়া পোশাক চলমান যন্ত্রাংশে আটকে যেতে পারে।
- মেশিনে কাজ করার সময় হাতাকাটা বা কনুইয়ের উপর পর্যন্ত ভাঁজ করা জামা ব্যবহার করা উচিত।
 কারণ লম্বা হাতে চলমান যন্ত্রাংশে আটকে যেতে পারে।
- ওয়ার্কশপে কাজ করার সময় আংটি, হাতঘড়ি এবং কজির অলঙ্কার পরিধান করা উচিত নয়। কারণ এগুলো আঘাতের কারণ হতে পারে।
- মেশিনে কাজ করার সময় নেক টাই, মাফলার এবং চাদর পরিধান করা উচিত নয়। কারণ এগুলো
 চলমান যন্ত্রাংশে জড়িয়ে যেতে পারে এবং মারাত্মক দুর্ঘটনার কারণ হতে পারে।
- লম্বা চুল অবশ্যই বেঁধে রাখতে হবে। কারণ লম্বা চুল চলমান যন্ত্রাংশে জড়িয়ে যেতে পারে এবং
 মারাত্মক দুর্ঘটনার কারণ হতে পারে।
- মেশিনে কাজ করার সময় দস্তানা ব্যবহার করা উচিত নয়। কারণ এটা আঘাতের কারণ হতে পারে।
- কাঁচামাল, স্ক্র্যাপ ও চিপে হাত লাগাতে চামড়ার তৈরি দস্তানা পরিধান করা উচিত।
- বৈদ্যুতিক কাজ করার সময় রাবারের দক্তানা ব্যবহার করা উচিত।
- অ্যাপ্রোন পরিধান করা ছাড়া কাজ গুরু করা উচিত নয়।

১.৫ দুর্ঘটনার প্রতিকার :

কোন স্থানে দুর্ঘটনা ঘটলে সঙ্গে সঙ্গে উক্ত স্থলে গিয়ে দুর্ঘটনাকবলিত জানমাল উদ্ধারের প্রচেষ্টা চালাতে হবে। তা ছাড়া ফায়ার সার্ভিস, উপযুক্ত কর্তৃপক্ষ এবং সংশ্লিষ্ট সকলকে এ সম্পর্কে অবহিত করতে হবে। এছাড়া নিম্নলিখিত বিষয়াদি সম্বলিত দুর্ঘটনা সম্পর্কে একটি প্রতিবেদন প্রস্তুত করতে হবে। উক্ত প্রতিবেদনে উল্লেখ থাকবে।

- দুর্ঘটনার স্থান
- দুর্ঘটনার সময়
- দুর্ঘটনার কারণ
- দুর্ঘটনার জন্য কে দায়ী
- জানমালসহ ক্ষয়ক্ষতির পরিমাণ ও আনুমানিক ব্য়য়
- দুর্ঘটনার কারণে পরিপার্শ্বিক প্রতিক্রিয়া ইত্যাদি
- দুর্ঘটনা যাতে ভবিষ্যতে না ঘটে তজ্জন্য প্রতিরোধ ব্যবস্থা গ্রহণের সুপারিশ ইত্যাদি।

উপরোক্ত প্রতিবেদনের সুপারিশের আলোকে প্রয়োজনীয় প্রতিরোধ ব্যবস্থা প্রহণ করার মাধ্যমে দুর্ঘটনার প্রতিকার করা যায়।

নিচে দুর্ঘটনা প্রতিকারের একটি তালিকা উল্লেখ করা হলো:-

- ১। পर्याश्च जाला-वावञ्चा कता।
- ২। পর্যাপ্ত স্থান-মানুষ, পণ্য ও টুলসের জন্য প্রয়োজনীয় স্থানের ব্যবস্থা করা ।
- ৩। পর্যাপ্ত বিশুদ্ধ বায়ু চলাচল।
- ৪। বৈদ্যুতিক ব্যবস্থার ক্রটি নির্মূল রাখা।
- ৫। সেফটি গার্ডবিহীন মেশিনপত্র ব্যবহার না করা ।
- ৬। যন্ত্রাদির চোখা ধারালো কাটিং এজ-এর সাবধানতার সাথে ব্যবহার করা।
- ৭। যন্ত্রাদির চোখা (Pointed) প্রান্তের সাবধানতার সাথে ব্যবহার করা।
- ৮। যন্ত্রপাতির টিলা বা ভাঙ্গা অংশ না থাকা।
- ৯। তৈল, গ্রীজ, তরল ও অন্যান্য পিচ্ছিল পদার্থ মেঝেতে পড়ে না থাকা।
- ১০। ধাতব চিপস ঠিকমতো অপসারণ করা।
- ১২। নিরাপদ কার্যাভ্যাস নিশ্চিত করা।
- ১৩। ক্রটিপূর্ণ যন্ত্রপাতি হ্যান্ড টুলস এবং মেশিনপত্র প্রভৃতি ব্যবহার না করা।
- ১৪। সঠিক কুলেন্ট ও লুব্রিক্যান্ট ব্যবহার করা।
- ১৫। ফ্রোর ভাঙ্গা বা উচু-নিচু না থাকা।
- ১৬। গগলস পরে ওয়েন্ডিং বা গ্রাইন্ডিং করা।

এ ছাড়াও নিরাপদ কার্যান্ড্যাস দুর্ঘটনা প্রতিকারের একটি অন্যতম কারণ

ওয়ার্কশপে নিরাপদ কার্যাভ্যাস বলতে সাধারণত নিম্নে উল্লেখিত অভ্যাসগুলিকে বুঝায়:

- ১। ঢিলেঢালা পোশাক পরিহারপূর্বক আঁটসাঁট পোশাক পরিধান করা।
- ২। ওয়ার্কশপে সর্বদা শক্ত তলাযুক্ত জুতা পরিধান করা।
- ৩। ওয়ার্কশপে কাজ করার সময় হাত কাটা বা কনুইয়ের উপর পর্যন্ত ভাঁজ করা জামা পরিধান করা।
- ৪। ওয়ার্কশপে কাজ করার সময় আংটি, হাতঘড়ি এবং অলঙ্কার ব্যবহার না করা।
- ৫। কাজ করার সময় নেকটাই, মাফলার এবং চাদর পরিধান না করা।
- ৬। লম্বা চুল ঢেকে রাখা ও লম্বা নখ না রাখা।
- ৭। সঠিক ম্যাটোরিয়েলের অ্যাপ্রোণ পরিধান করে ওয়ার্কশপে কাজ করা।

১.৬ দুর্ঘটনার ক্ষতির বিবরণ (Description of Losses of Accidents) :

কোনো স্থানে দুর্ঘটনা ঘটলে সঙ্গে সঙ্গে উক্তস্থলে গিয়ে দুর্ঘটনাকবলিত জানমাল উদ্ধারের প্রচেষ্টা চালাতে হবে। তাছাড়া ফায়ার সার্ভিস, উপযুক্ত কর্তৃপক্ষ এবং সংশ্লিষ্ট সকলকে এ সম্পর্কে অবহিত করতে হবে। এছাড়া নিমুলিখিত বিষয়াদি সংবলিত দুর্ঘটনা সম্পর্কে একটি প্রতিবেদন প্রস্তুত করতে হবে।

- দুর্ঘটনার স্থান, সময় ও সম্ভ্যাব্য কারণ
- দুর্ঘটনার জন্য কে দায়ী

- জানমালসহ ক্ষয়ক্ষতির আনুমানিক পরিমাণ
- দুর্ঘটনার কারণে পরিপার্শ্বিক প্রতিক্রিয়া ইত্যাদি
- দুর্ঘটনা যাতে ভবিষ্যতে না ঘটে তজ্জন্য প্রতিরোধ ব্যবস্থা গ্রহণের সুপারিশ ইত্যাদি।

ওয়ার্কশপে দুর্ঘটনা ঘটলে তিন ধরনের ক্ষতির আশঙ্কা থাকে। যথা:

- ১। বাক্তিগত ক্ষতি-কর্মী
- ২। মেশিন, যন্ত্রপাতির বা মালামালের ক্ষতি
- ৩। ওয়ার্কশপের ক্ষতি

সর্বোপরি প্রতিষ্ঠানের ক্ষতি, দেশের ক্ষতি।

নিম্নে দুর্ঘটনাজনিত উপরোক্ত ক্ষতির বিবরণাদি উল্লেখ করা হলো-

ব্যক্তিগত ক্ষতি :

- ১। অ্যাপ্রোণ ব্যবহার না করে কাজ করার ফলে শার্ট তথা শরীরের ক্ষতি।
- ২। গগলস ব্যবহার না করার ফলে চিপস/ওয়েল্ডের বা গ্রাইন্ডারের ফুলকিজনিত চোখের ক্ষতি।
- ৩। চামড়ার জুতা ব্যবহার না করার ফলে পায়ের ক্ষতি।
- 8। গরম ওয়ার্কপিচ ধরার ক্ষেত্রে হ্যান্ড গ্নোভস ব্যবহার না করার জন্য হাতের ক্ষতি।
- ৫। ধারালো যন্ত্রপাতি, কর্তিত ধাতৃখণ্ড, তেল জাতীয় পদার্থ মেঝের উপর ফেলে রাখলে এতে পা পিছলে
 দুর্ঘটনা ঘটাজনিত অঙ্গপ্রত্যক্ষের ক্ষতি।

মেশিন বা যন্ত্রপাতির ক্ষতি

ওয়ার্কশপে বিভিন্ন মেশিন ও যন্ত্রপাতি দিয়ে কাজ করতে হয়। এ সমস্ত মেশিন বা যন্ত্রপাতি দিয়ে কাজ করার সময় কারিগরের অন্যমনস্কতা ও নিরাপন্তাজনিত কারণগুলো সঠিকভাবে পালন না করার কারণে বিভিন্ন ভাবে মেশিন বা যন্ত্রপাতির ক্ষতি হয়ে থাকে। যেমন–

- ১। বৈদ্যুতিক সার্কিটের গোলযোগের কারণে মোটর ও ইলেট্রিক্যাল এক্সেসরিজ পুড়ে যেতে পারে।
- ২। অনিয়মমাফিক যেমন কাটিং টুল ঠিকমতো ব্যবহার না করার ফলে মেশিনের কাটিং টুল ও জবের ক্ষতি।
- ৩। মেজারিং ইনষ্ট্রমেন্টস বা টুলস সঠিক পদ্ধতিতে ব্যবহার না করা জনিত ক্ষতি।
- ৪। অমনোযোগী, অসাবধানতাবত যন্ত্রপাতি ব্যবহার করার ফলে ভেঙ্গে যাওয়া যন্ত্রপাতির ক্ষতি।

ওয়ার্কশপের ক্ষতি:

সাবধানতার সাথে কাজ না করার ফলে ওয়ার্কশপের বিভিন্ন প্রকার ক্ষতির আশঙ্কা থাকে। যেমন:

- ১। দাহ্য পদার্থসমূহ উপযুক্ত স্থানে সংরক্ষণের ক্রটিজনিত ক্ষতি।
- ২। অনাবৃত বা খোলা আগুন দাহ্য পদার্থের সংস্পর্শে আসার ফলে ক্ষতি।
- ৩। বৈদ্যুতিক শর্টসার্কিটজনিত আগুন লাগলে ফিটিংস পুড়ে গিয়ে ক্ষতি।
- ৪। দরজা-জানালাসহ মালামালের ক্ষতি।

প্রশ্নমালা-১

অতি সংক্ষিপ্ত প্রশ্ন :

- ১। একটি শিল্প প্রতিষ্ঠানের মৌলিক উপাদান কয়টি?
- ২। অনিরাপদ অবস্থা কাকে বলে?
- ৩। অপর্যাপ্ত আলো অনিরাপদ অবস্থা কেন?
- ৪। অপর্যাপ্ত স্থান অনিরাপদ অবস্থা কেন?
- ৫। দুইটি অনিরাপদ অবস্থার নাম লেখ?
- ৬। দুইটি নিরাপদ কার্যজ্যাস এর নাম লেখ।
- ৭। ওয়ার্কশপের দুইটি নিরাপদ সরঞ্জামের নাম লেখ।
- ৮। ওয়ার্কশপের দুইটি নিরাপদ সরঞ্জামের নাম লেখ।
- ৯। দুইটি অনিরাপদ বৈদ্যুতিক অবস্থার নাম লেখ।
- ১০। দুর্ঘটনা ক্ষতির বিবরণে উল্লেখিত একটি বিষয়ের নাম লেখ।

সংক্ষিপ্ত প্রশ্ন :

- ১১। একটি শিল্প প্রতিষ্ঠানে মৌলিক উপাদান কয়টি ও কী কী?
- ১২। অনিরাপদ অবস্থা বলতে কী বোঝায়?
- ১৩। ওয়ার্কশপে তিনটি অনিরাপদ অবস্থা উল্লেখ কর।
- ১৪। ওয়ার্কশপে অপর্যাপ্ত বা অধিক আলো কীরূপে অনিরাপদ অবস্থা হয় উল্লেখ কর।
- ১৫। তিনটি নিরাপদ কার্য্যাভ্যাস উল্লেখ কর।
- ১৬। ওয়ার্কশপে নিরাপদ পোশাক ও সরঞ্জাম ব্যবহার মূল কারণ লেখ।
- ১৭। ওয়ার্কশপে ব্যবহৃত তিনটি নিরাপদ পোশাকের নাম লেখ।
- ১৮। ওয়ার্কশপে ব্যবহৃত তিনটি নিরাপদ সরঞ্জামের নাম লেখ।
- ১৯। ওয়ার্কশপের অনিরাপদ বৈদ্যুতিক অবস্থার তিনটি কারণ উল্লেখ কর।
- ২০। দুর্ঘটনার ক্ষতির তিনটি বিষয়ের নাম লেখ।
- ২১। ওয়ার্কশপে আগুন লাগলে কী করা উচিত?

রচনামূলক প্রশ্ন:

- ২১। ওয়ার্কশপের অনিরাপদ অবস্থার পাঁচটি নাম লেখ।
- ২২। মেশিন টুলে কাজ করার সময় কোন গগলস পরিধান করা উচিত?
- ২৩। ওয়ার্কার অসাবধান হলে ওয়ার্কশপে কী কী দুর্ঘটনা ঘটতে পারে?
- ২৪। ওয়ার্কশপে কাজের সময় লম্বা চুল কী ধরনের ক্ষতি করতে পারে?
- ২৫। ওয়ার্কশপে কী কী কাজ করতে চামড়ার দন্তানা পরা উচিত?

দ্বিতীয় অধ্যায়

ওয়ার্কশপের রক্ষণাবেক্ষণ

Maintenance of Workshop

২.০ সূচনা (Introduction):

কোনো যন্ত্র বা মেশিনকে যদি নিয়মতান্ত্রিকভাবে পরিষ্কার-পরিচ্ছন্ন করে প্রয়োজনীয় অংশে তেল, গ্রীজ ইত্যাদি প্রয়োগ করে রাখা যায় তবে এটা তার পূর্ব নির্ধারিত কাজের ধারাকে সঠিক ও যথার্থভাবে দীর্ঘদিন পর্যন্ত ধরে রাখতে সমর্থ হয়। একে ওয়ার্কশপের মেশিন বা টুলস—এর রক্ষণাবেক্ষণ (Maintenance) বলে। উপযুক্ত রক্ষণাবেক্ষণের ফলে যন্ত্রপাতিসমূহ নির্ভূলতা (Accuracy) সম্পন্ন হয়ে দক্ষতার সাথে কার্যসম্পাদন করতে সক্ষম হয়, এদের আয়ুক্কাল বৃদ্ধি পায় এবং অপারেটর স্বাচ্ছন্দ্যের সাথে কাব্ধ করতে সক্ষম হয়, তথা উৎপাদন বৃদ্ধিতে গুরুত্বপূর্ণ ভূমিকা পালন করে।

২.১ রক্ষণাবেক্ষণ (Maintenance):

শিল্প কারখানায় মেশিনপত্র, টুলস, সরঞ্জাম ও মালামাল প্রস্তুতকারকের নির্দেশ মোতাবেক পরিষ্কার, পরিচ্ছন্ন, তেল প্রয়োগসহ সার্বিক যত্ন নেয়ার প্রক্রিয়াই হচ্ছে রক্ষণাবেক্ষণ। উপযুক্ত রক্ষণাবেক্ষণের ফলে যন্ত্রপাতিসমূহ নির্ভুলতা (Accuracy) সম্পন্ন হয়ে দক্ষতার সাথে কার্যসম্পাদন করতে সক্ষম হয়, আয়ুষ্কাল বৃদ্ধি পায় এবং অপারেটর স্বাচ্ছন্দ্যে দক্ষতার সাথে কাজ করতে সক্ষম হয়, তথা উৎপাদন বৃদ্ধিতে গুরুত্বপূর্ণ ভূমিকা পালন করে।

২.২ রক্ষণাবেক্ষণ প্রকারভেদ (Types of Maintenance)

রক্ষণাবেক্ষণকে মূলত সময়ের উপর ভিত্তি করে দুইভাগে ভাগ করা যায়। যথা-

- ক. দৈনন্দিন রক্ষণাবেক্ষণ (Daily Maintenance)
- খ. নিয়মিত বিরতিতে রক্ষণাবেক্ষণ (Periodical Maintenance)

রক্ষণাবেক্ষণকে মূলত কাজের উপর ভিত্তি করে দুইভাগে ভাগ করা যায়। যথা-

- i. ব্রেক ডাউন রক্ষণাবেক্ষণ (Break down Maintenance)
- ii. প্রতিরোধী রক্ষণাবেক্ষণ (Preventive Maintenance)
- ক. দৈনন্দিন রক্ষণাবেক্ষণ:
- ১। সচল ও অচল মেশিন চিহ্নিত করা।
- ২। রক্ষণাবেক্ষণ ম্যানুয়েল (Manual) পর্যালোচনা করে দৈনন্দিন রক্ষণাবেক্ষণ কাজ সম্পাদন করা।
- ৩। চলমান যন্ত্রাংশের ক্ষয়ের ক্ষেত্রগুলো নাটবোল্ট চেক করা।
- ৪। ওয়ার্কশপ মেঝে রক্ষণাবেক্ষণ।
- ৫। সংশ্লিষ্ট সাহায্যকারী সাজসরঞ্জাম রক্ষণাবেক্ষণ।
- ৬। কুলেন্ট, লুব্রিক্যান্ট-এর লেভেল চেক করা।

- ৭। খুচরা যন্ত্রাংশ/যন্ত্রাংশ ফরমায়েশের তালিকা ও প্রতিবেদন প্রস্তুত করা।
- ৮। মেশিন সংশ্লিষ্ট টুলস নির্ধারিত স্থানে রাখা ও এগুলোর ব্যবহার নিশ্চিত করা।

খ, নিয়মিত বিরতিতে রক্ষণাবেক্ষণ :

- ১। ক্ষয়সাধিত টুলস ও ইক্যুইপমেন্ট শনাক্ত করা ও কার্যোপযোগী করা বা বদল করা। নষ্ট বোল্ট চেক করা ও প্রয়োজনে পরিবর্তন করা।
- ২। কাজের শেষে মেজারিং টুলস রক্ষণাবেক্ষণ ও চেক করা। ওভার লোড, সেফটি সুইচ চেক করা।
- ৩। কাজের শেষে কাটিং টুলস রক্ষণাবেক্ষণ ও চেক করা।
- ৪। কাজের শেষে প্রতিবার টুলস ও মরিচা প্রতিরোধী আবরণ দেয়া।
- ে। বছরে একবার স্টোর ভেরিফিকেশন করা।
- ৬। হারানো ও ক্ষয়ক্ষতির প্রতিবেদন (Inventory) প্রস্তুত করা এবং তা প্রতিস্থাপন করা।
- ৭। পুনঃফরমায়েশ লোড নির্ধারণ করা (Re-Order level)

i. ব্রেক ডাউন রক্ষণাবেক্ষণ (Breakdown Maintenance):

কোনো যন্ত্রপাতি হঠাৎ নম্ভ হলে তাকে মেরামত করে কার্যোপযোগী করাই হলো ব্রেক ডাউন রক্ষণাবেক্ষণ। যখন যে যন্ত্র বা যন্ত্রাংশ ভাঙ্গে বা কাজ করে না সেটা পরিবর্তন করা বা ঠিক করা বা মেরামত করাকে ব্রেক ডাউন রক্ষণাবেক্ষণ বলে। আমাদের দেশে এটাই সাধারণত হয়, কিন্তু এটা ঠিক না। প্রতিরোধী রক্ষণাবেক্ষণ হওয়া ভালো। উৎপাদন ব্যাহত হয় না বা কম হয় না।

ii. প্রতিরোধী রক্ষণাবেক্ষণ (Preventive Maintenance) :

পূর্বেই উল্লেখ করা হয়েছে ইংরেজিতে একটা প্রবাদ আছে 'Prevention is better than cure' অর্থাৎ 'আরোগ্য লাভের চেয়ে প্রতিরোধক অনেক ভালো'। প্রতিরোধী রক্ষণাবেক্ষণ প্রক্রিয়া সাধারণত পূর্ব প্রস্তুতিমূলক রক্ষণাবেক্ষণ প্রক্রিয়া। এ প্রক্রিয়া প্রধানত সম্পদের অকেজো হওয়া, উৎপাদন ব্যাহত হওয়া অথবা অযাচিত সম্পদের ক্ষয়ক্ষতি হওয়ার পূর্বসতর্কতামূলক ব্যবস্থা। পর্যায়ক্রমে (Planned) ম্যানুয়েল মতো পরিষ্কার করা, সার্ভিসিং করা, পরীক্ষা করা, ক্ষয়প্রাপ্ত যন্ত্রাংশসমূহের মেরামত বা পরিবর্তন ইত্যাদি এই রক্ষণাবেক্ষণ এর আওতাভুক্ত। আমাদের দেশে সাধারণত প্রতিরোধী রক্ষণাবেক্ষণ বিভিন্ন কারনে হয় না যেমন: মালিক পক্ষ মনে করে যেহেতু মেশিন বা যন্ত্রটি চালু আছে সূতরাং মেশিন লাইফ শেষ হওয়া সত্ত্বেও বদলানো প্রয়োজন মনে করে না। এছাড়া অনেক সময় মূলধনের অভাব ও কাজের অপ্রাধিকার নির্ধারণে ভুল সিদ্ধান্ত একটি বড় কারণ।

২.৩ রক্ষণাবেক্ষণ পদ্ধতি (Procedure of Maintenance):

ওয়ার্কশপে সাধারণ রক্ষণাবেক্ষণ পদ্ধতি নিয়ে উল্লেখিত হলো-

- ১। মেশিন টুলসসমূহ চিপসমুক্ত রাখা।
- ২। মেশিন কোথাও ক্ষয় বা জং দেখা দিলে সাথে সাথে সেগুলো মুক্ত করে ক্ষয় বা জং (Corrosion) যাতে না হয় তার যথোপযুক্ত ব্যবস্থা নেয়া।
- ৩। মেশিন ও যন্ত্রপাতির মসৃণ ও চকচকে তলসমূহের কাপড়ের টুকরো দিয়ে নিয়মিত পরিষ্কার করতে হবে।
- ৪। মেশিনের পরিষ্কার ও চকচকে তলসমূহে মেশিন অয়েলের প্রলেপ দেয়া উচিত।
- ৫। বিভিন্ন চলম্ভ অংশে ক্ষয়রোধ করার জন্য নিপলের মাধ্যমে নিয়মিত তেল দেয়া উচিত।

- ৬। মেশিনের বেল্টসমূহ, বেল্টের খাদসমূহ পরিষ্কার রাখা উচিত।
- ৭। প্রয়োজনে বিনষ্ট (Deffective) সুইচ ও বৈদ্যুতিক তার পরিবর্তন করা আবশ্যক।
- ৮। ভাঙা ও ক্ষয়প্রাপ্ত যন্ত্রাংশ বদল করা বা রিপেয়ার করার মাধ্যমে কার্যোপযোগী করা উচিত।
- ৯। শপের মেঝে পরিষ্কার সম্পর্কে নিশ্চিত হতে হবে।
- ১০। প্রয়োজনে কুল্যান্ট ট্যান্ক খালিকরণ, ট্যান্ক পরিষ্কার এবং পরিষ্কার কুল্যান্ট দিয়ে ভর্তি করা।

রক্ষণাবেক্ষণ সম্পর্কিত প্রয়োজনীয় দ্রব্যের নাম:

রক্ষণাবেক্ষণ সম্পর্কিত সচরাচর ব্যবহৃত প্রয়োজনীয় দ্রব্যের নাম নিম্নে উল্লেখ করা হলো-

১। গ্রীজ গান (Grease Gun)

২। অয়েল ক্যান (Oil can)

২। কেরোসিন তৈল (Kerosine Oil)

৪। ক্লিনিং ব্রাশ (Cleaning Brush)

ত। ইমারি ক্লথ (Emery Cloth)

৬। ডাস্টার (Duster)

২.৪ রক্ষণাবেক্ষণের প্রয়োজনীয়তা (Need of Maintenance):

- ১। যন্ত্রপাতির অবচিত মূল্য (Depreciation cost) কমার।
- ২। উপযুক্ত রক্ষণাবেক্ষণ যন্ত্রপাতির আয়ুষ্কাল বৃদ্ধিতে সহায়তা করে।
- ৩। ওয়ার্কশপে স্বাস্থ্যসম্মত পরিবেশ বজায় রাখা সম্ভব হয়।
- ৪। রক্ষণাবেক্ষণকৃত যন্ত্রাংশ দিয়ে কাজ করে উৎপাদিত বস্তুর গুণগত মান উনুয়ন করা সম্ভব এতে বাতিল কম হয়।
- ৫। দ্রুত কাজ সম্পাদন করা যায়।
- ৬। উৎপাদন লাভজনক হয়। দুর্ঘটনার হার কমায়।

প্রশ্নমালা-২

অতি সংক্ষিপ্ত প্রশ্ন:

- ১। রক্ষণাবেক্ষণ কী?
- ২। রক্ষণাবেক্ষণের ফলে সর্বোপরি কী বৃদ্ধি পায়?
- ৩। রক্ষণাবেক্ষণ মূলত কত প্রকার?
- ৪। দৈনন্দিন রক্ষণাবেক্ষণের একটি বিষয়ের নাম লেখ।
- ৫। ওয়ার্কশপে মেঝে রক্ষণাবেক্ষণ কোন ধরনের রক্ষণাবেক্ষণ?
- ৬। কাজের শেষে কাটিং টুলস রক্ষণাবেক্ষণ কোন ধরনের রক্ষণাবেক্ষণ?
- ৭। ওয়ার্কশপের সাধারণ রক্ষণাবেক্ষণ একটি পদ্ধতির নাম লেখ।
- ৮। লুব্রিকেশন যন্ত্রপাতির রক্ষণাবেক্ষণে যে সকল ভূমিকা রাখে তার যে কোনো একটি বিবৃত কর।
- ৯। লুব্রিকেশন ও কুলেন্ট দুর্ঘটনা বা যন্ত্রপাতির ক্ষয় প্রতিরোধে কী ভূমিকা রাখে?

সংক্ষিপ্ত প্রশ্ন :

- ১০। রক্ষণাবেক্ষণ বলতে কী বোঝায়?
- ১১। রক্ষণাবেক্ষণ মূল উদ্দেশ্য কী?
- ১২ । রক্ষণাবেক্ষণ প্রকারভেদ উল্লেখ কর।
- ১৩। দৈনন্দিন রক্ষণাবেক্ষণ পদ্ধতির তিনটি দিক উল্লেখ কর।
- ১৪। নিয়মিত বিরতিতে রক্ষণাবেক্ষণ পদ্ধতির তিনটি দিক উল্লেখ কর।
- ১৫। ওয়ার্কশপের সাধারণ রক্ষণাবেক্ষণ পদ্ধতির সংক্ষিপ্ত বিবরণ দাও।
- ১৬। রক্ষণাবেক্ষণের জন্য কী করা উচিত?
- ১৭। রক্ষণাবেক্ষণ-এ শুব্রিকেশনের ভূমিকা দেখাও।
- ১৮। রক্ষণাবেক্ষণ সম্পর্কিত তিনটি টুলসের নাম লেখ।
- ১৯। রক্ষণাবেক্ষণের তিনটি প্রয়োজনীয়তা উল্লেখ কর।
- ২০। প্রতিরোধী রক্ষণাবেক্ষণ কীভাবে করা হয়?
- ২১। প্রতিরোধী রক্ষণাবেক্ষণ কী? আমাদের দেশে কেন ব্রেক ডাউন রক্ষণাবেক্ষণ বেশি হয়?

রচনামূলক প্রশ্ন :

- ১। ওয়ার্কশপের রক্ষণাবেক্ষণের তিনটি দিক উল্লেখ কর।
- ২। দৈনন্দিন রক্ষণাবেক্ষণের পাঁচটি ক্ষেত্র উল্লেখ কর।
- ৩। নিয়মিত বিরতিতে রক্ষণাবেক্ষণের তিনটি দিক লেখ।
- ৪। যন্ত্রপাতির ক্ষয় দেখা দিলে কী ব্যবস্থা নেয়া উচিত?
- ৫। যন্ত্রপাতির রক্ষণাবেক্ষণের ক্ষেত্রে লুব্রিকেশনের ভূমিকা উল্লেখ কর।
- ৬। যন্ত্রপাতি রক্ষণাবেক্ষণের প্রয়োজনীয়তা উল্লেখ কর।

তৃতীয় অধ্যায়

লুবিক্যান্ট (Lubricant)

৩.০ সূচনা (Introduction)

সাধারণত লুব্রিক্যাণ্ট একপ্রকার পিচ্ছিলকারক পদার্থ যা প্রধানত মেশিনের জীবনী শক্তিরূপে মেশিন ও এর বিভিন্ন অংশকে বিভিন্ন প্রকার ক্ষয়ক্ষতি থেকে যথাযথভাবে রক্ষা করে এদের কার্যক্ষমতাকে অক্ষুণ্ন রাখতে ও দুটি অংশের মধ্যে ঘর্ষণজনিত বাঁধা (Frictional Resistance) এবং উৎপন্ন তাপকে কমিয়ে মসৃণ ও সহজভাবে চালনা করতে ব্যবহৃত হয়ে থাকে। যেমন: তেল, গ্রীজ ইত্যাদি।

৩.১ পুরিক্যান্ট (Lubricant):

যেসব তেল জাতীয় পিচ্ছিলকারক পদার্থ যা প্রধানত মেশিনের জীবনীশক্তিরূপে মেশিন ও এর বিভিন্ন অংশকে বিভিন্ন প্রকার ক্ষয়ক্ষতি থেকে যথাযথভাবে রক্ষা করে এদের কার্য ক্ষমতাকে অক্ষুণ্ন রাখতে এ দুটি অংশের মধ্যে ঘর্ষণজনিত বাধা (Frictional Resistance) হ্রাস, ধাতুকণা বা ময়লা বহন করে এবং উৎপন্ন তাপকে শোষণ করে মসুন ও সহজভাবে চালনা করতে সাহায্য করে থাকে তাকে লুব্রিক্যাণ্ট বলে।

৩.২ বিভিন্ন প্রকার শুব্রিক্যান্ট (Different Types of Lubricants)

ব্যবহারিক ধরন অনুযায়ী লুব্রিক্যান্ট প্রধানত ৬ প্রকার। যথা-

- ক. স্পিডল অয়েল (Spindle Oil)
- খ. গিয়ার অয়েল (Gear Oil)
- গ. স্লাইডওয়ে অয়েল (Slideway Oil)
- ঘ. গ্রিজ অয়েল (Grease Oil)
- ঙ. এয়ার (Air) বা Gas.
- চ. গ্রাফাইট (Graphite)

ব্যবহারিক উদ্দেশ্য অনুযায়ী লুব্রিক্যান্ট প্রধানত দুই প্রকার। যথা-

- i) স্টেইট মিনারেল অয়েল (Straight Mineral Oil)
- ii) হাইড্রোলিক অয়েল (Hydraulic Oil)

বিভিন্ন প্রকার লুব্রিক্যান্টের বর্ণনাঃ

- ক. স্পিন্তল অয়েল: এটা একপ্রকার অল্প আঠালো লুব্রিক্যান্ট। এতে আবহাওয়াজনিত কারণে ক্ষয়রোধী গুণ আছে। সকল প্রকার স্পিন্ডল বা শ্যাফট এবং বিয়ারিং তৈলাক্ত করতে স্পিন্ডল অয়েল ব্যবহৃত হয়।
- খ. গিয়ার অয়েল: গিয়ার অয়েল উত্তমরূপে বিশুদ্ধকৃত একপ্রকার লুব্রিক্যাটিং অয়েল। এটার সাথে মরিচা এবং ক্ষয়রোধকারী কেমিক্যাল মিশ্রিত থাকে। অধিক ভার বহনক্ষম কার্যরত গিয়ারকে প্রেসার বা বাথ (Bath) লুব্রিকেশন পদ্ধতিতে তৈলাক্ত করতে এ গিয়ার অয়েল ব্যবহৃত হয়।

- গ. স্লাইডওয়ে অয়েল: এটা উত্তমরূপে বিশুদ্ধকৃত একপ্রকার খনিজ তেল। এটা যন্ত্রাংশের গায়ে উত্তমরূপে মেখে গিয়ে পিচ্ছিল করা এবং ঘর্ষণজনিত কারণে ক্ষয়রোধী গুণসম্পন্ন হয়।
- ছ, এয়ার: বাতাসও এক ধরনের লুব্রিক্যান্ট যা খেলনা, ছোট যন্ত্রপাতিতে প্রয়োজন হয়।
- i) স্ট্রেইট মিনারেল অয়েল: স্ট্রেইট মিনারেল অয়েল একপ্রকার খনিজ তেল। এতে মরিচা ও ক্ষয়রোধকারী কেমিক্যাল মিশ্রিত থাকে। বেয়ারিং, গিয়ারিং, স্লাইডওয়ে এবং লীড স্কু যা অল্পচাপে কার্যরত থাকে তা তৈলাক্ত করতে স্টেইট মিনারেল অয়েল ব্যবহৃত হয়।
- ii) হাইজ্রোলিক অয়েল : হাইজ্রোলিক অয়েল উত্তমরূপে বিশুদ্ধকৃত একপ্রকার খনিজ তেল। এ অয়েলে আবহাওয়াজনিত কারণে ক্ষয়রোধী শুণ আছে। হাইজ্রোলিক অয়েল প্রধানত হাইজ্রোলিক পদ্ধতির জন্য ব্যবহৃত হয়। তবে এতে স্পিউল, স্লাইডওয়ে এবং গিয়ার তৈলাজ করতেও ব্যবহার করা যেতে পারে।

এছাড়াও কার্যক্ষেত্রে মাঝে মাঝে ব্যবহৃত বিভিন্ন প্রকার পুব্রিকেন্টের নাম নিম্নে লিপিবদ্ধ করা হলো:

- ১। প্রাণিজ চর্বিজাত তেল (Animal fat oil)
- ২। বীজজাত তেল (Seed Oil) ৩। উদ্ভিদজাত তেল (Vegetable Oil)
- ৩.৩ পুবিক্যান্টের প্রয়োগ ক্ষেত্র (Lubricant's Application Fields):

লুব্রিক্যান্ট মেশিন পার্টসের মধ্যকার ঘর্ষণ রোধসহ মেশিন পার্টসের চলাচলে অযাচিত বাধা অপসারণে ব্যবহৃত হয়। সাধারণত বিয়ারিং, গিয়ার, স্লাইডওয়ে, লীড স্কু, গীয়ার বন্ধ, চলাচলকারী শ্যাফটসহ বিভিন্ন ঘর্ষণতলে লুব্রিক্যান্ট ব্যবহৃত হয়।

৩.৪ পুব্রিক্যান্ট ব্যবহারের প্রয়োজনীয়তা (Necesity of Use of Lubricant):

লুব্রিক্যান্ট সাধারণতঃ নিমুলিখিত প্রয়োজনীয় কার্যসমূহের জন্য ব্যবহৃত হয়ে থাকে।

যেকোনো প্রকার মেশিন বা ইঞ্জিনে অবস্থিত বেয়ারিং—এর মধ্যে ঘর্ষণজনিত বাঁধা দ্বারা সৃষ্ট শক্তির অপচয়কে কমানোর জন্য এবং ঘূর্ণন ও সরল গতি যাতে সহজ ও সাবলীল হয় এ উদ্দেশ্যে তেল বা গ্রীজকে ঐ স্থানে বিভিন্ন প্রকার সরঞ্জাম দ্বারা নিমুলিখিত উদ্দেশ্যে প্রয়োগ করা হয়ে থাকে।

- ১। এদের দৃটি চালিত অংশের মধ্যে ঘর্ষণের ফলে উৎপনু তাপকে প্রতিরোধ করতে সক্ষম হয়।
- ২। এদের একটি অংশকে অপর একটি অংশের উপর মসুণভাবে ঘুরতে বা চলাচল করতে সাহায্য করে।
- ৩। কোনো মেশিন বা যন্ত্রাংশে (Ring, Piston, Cylinder)–এর মিলিত অংশ দুটির মধ্যস্থিত ফাঁকা অংশে অবস্থান করে লিক প্রুফ ও ঘর্ষণজনিত বাধাকে কমাতে সাহায্য করে।
- ৪। এদের মিলিত অংশ দুটির মধ্যে ঘর্ষণের জন্য যে ক্ষয়ক্ষতি হয় একে বাধা দেয়।
- ৫। মেশিন বা এগুলোর জংশকে মরিচা (Rust) পড়তে বা ক্ষয় (Corrosion) থেকে রক্ষা করতে সহায়তা করে।
- ৬। একটি অংশকে অপর একটি অংশের উপর চালনা করতে কম শক্তির প্রয়োজন হয়।

উপরোক্ত কারণগুলো পর্যালোচনা করলে মেশিন বা বিভিন্ন প্রকার যন্ত্রাংশে লুব্রিক্যান্টের বিশেষ প্রয়োজন হয়। অন্যথায় বিভিন্ন প্রকার মেশির টুলস, ইঞ্জিন বা শ্যাফট ও বিয়ারিং সম্পর্কিত যন্ত্রাংশ এটা ব্যতীত অচল অথবা বিশেষ ক্ষতির সম্মুখীন হয়ে পড়ে। তাই মেশিন ও এগুলোর বিভিন্ন প্রকার যন্ত্রের জন্য লুব্রিক্যান্টের প্রয়োজনীয়তা অপরিহার্য।

প্রশ্নমালা-৩

অতি সংক্ষিপ্ত প্রশ্ন:

- ১। नुविकाान की?
- ২। মেশিনের জীবনীশক্তি কাকে বলে?
- ৩। পুব্রিক্যান্ট কত প্রকার?
- ৪। স্ট্রেইট মিনারেল অয়েল কাকে বলে?
- ৫। স্পিনডল অয়েল কী কাজে ব্যবহৃত হয়?
- ৬। হাইড্রোলিক অয়েল কী কাজে ব্যবহৃত হয়?
- ৭। তিনটি লুব্রিক্যান্টের নাম লেখ?
- ৮। পুব্রিক্যান্টের ২টি প্রয়োগক্ষেত্র দেখাও
- ৯। লুব্রিক্যাশন প্রণালি কত প্রকার?
- ১০। লুব্রিক্যাশন তিনটি ব্যবহার লেখ।

সংক্ষিপ্ত প্রশ্ন :

- ১১। লুব্রিক্যান্ট বলতে কী বোঝায়?
- ১২। লুব্রিক্যান্ট কত প্রকার ও কী কী?
- ১৩। হাইড্রলিক লুব্রিক্যান্ট বলতে কী বোঝায়?
- ১৪। স্লাইড লুব্রিক্যান্ট বলতে কী বোঝায়?
- ১৫। পাঁচটি লুব্রিক্যান্টের নাম লেখ।
- ১৬। লুব্রিক্যান্টের প্রয়োগক্ষেত্র দেখাও।
- ১৭। লুব্রিকশেন প্রণালি কত প্রকার ও কী কী?
- ১৮ । গ্র্যাভিটি ফিড লুব্রিক্যান্টের ব্যবহার উল্লেখ কর।
- ১৯। তিনটি লুব্রিক্যান্টের ব্যবহার উল্লেখ কর।
- ২০। ভালো লুব্রিক্যান্টের তিনটি গুণ উল্লেখ কর।

রচনামূলক প্রশ্ন:

- ২১। লুব্রিক্যান্ট বলতে কী বোঝায় উল্লেখ কর।
- ২২। বিভিন্ন প্রকার লুব্রিক্যান্টের নাম লেখ।
- ২৩। স্ট্রেইট মিনারেল অয়েলের ব্যবহারিক ক্ষেত্র উল্লেখ কর।
- 28 । शियात उराम এর গুণাবলী উল্লেখ কর।
- ২৫। স্থাইডওয়ে ওয়েল এর বৈশিষ্ট্যগুলো লেখ।
- ২৬। লুব্রিক্যান্ট ব্যবহারের প্রয়োজনীয়তা উল্লেখ কর।
- ২৭। লুবিক্যান্টের গুণাগুণ উল্লেখ কর।

চতুর্থ অধ্যায়

কুল্যান্ট (Coolant)

৪.০ সূচনা (Introduction):

কার্যবস্তুর উপর কাটিং টুলস (Cutting tool) দারা কাজ করার সময় এগুলো দারা উৎপন্ন তাপকে কমিয়ে কাটিং টুলস ও ওয়ার্ক পিসকে ঠাগু করার উদ্দেশ্যে যে তরল পদার্থ ব্যবহার করা হয়ে থাকে, তাকে কুল্যান্ট বলে। ওয়ার্কপিস ও চিপের মধ্যে ঘর্ষণের ফলে উৎপন্ন তাপকে কমাতে কুল্যান্ট সাহায্য করে। এটা ঘর্ষণ রোধ করে।

8.১ কুল্যান্ট (Coolant)

ধাতু কর্তনে কুল্যান্ট গুরুত্বপূর্ণ ভূমিকা পালন করে। এটা ধাতু কর্তনজনিত তাপ শোষণ করে, টুল লাইফ বাড়ায়, সহজে চিপসগুলো আলাদা করে সরিয়ে দেয়। সর্বোপরি কাজের গুণগত মান এবং উৎপাদন খরচ কমাতে সাহায্য করে। কুল্যান্ট তরল, কঠিন, গ্যাসীয়, কেমিক্যাল, তেল এবং অ্যাডিটিভস আকারে পাওয়া যায়।

কুল্যান্টের বৈশিষ্ট্য নিমুরূপ:

- ১। উত্তম তৈলাক্তকরণ বৈশিষ্ট্য সম্পন্ন হতে হবে।
- ২। অধিক পরিমাণে তাপ শোষণ ক্ষমতা সম্পন্ন হতে হবে।
- ৩। এন্টি ওয়েন্ডিং অ্যাকশন সম্পন্ন হতে হবে।
- ৪। কুল্যান্টের প্রজ্বলন তাপমাত্রা অতি উচ্চ হতে হবে, যাতে ধাতু কাটার তাপমাত্রায় পুড়ে না যায়।
- ৫। কুল্যান্ট ওয়ার্কপিস ও মেশিনের জন্য মরিচা, ক্ষয়সাধন ও বিকৃতির কারণ হবে না।
- ৬। কুল্যান্ট দুর্গগ্ধবিহীন হতে হবে।
- ৭। কুল্যান্ট স্বচ্ছ হতে হবে। যাতে টুলের কাটিং অ্যাকশন দেখা যায়।
- ৮। অপারেটরের চামড়ার জন্য অক্ষতিকারক হতে হবে।
- ৯। কুল্যান্টের ভিসকোসিটি কম হতে হবে। যাতে মুক্তভাবে প্রবাহের ফলে চিপস অপসারণ করতে পারে।

৪.২ কুল্যান্টের প্রকারভেদ (Types of Coolant):

কুল্যান্টকে কাটিং ফুইড বা কাটিং লুব্রিক্যান্ট বলা হয়। কুল্যান্টের প্রকারভেদ নিমু প্রদন্ত হলো:

- ১) সলিড কুল্যান্ট
- ক) গ্রাফাইট (Graphite)
- খ) অভ্ৰক (Talc)
- গ) অভ্ৰ (Mica)
- ২) তরল কুল্যান্ট
- ক) ফিক্সড মিনারেল অয়েল (Fixed Mineral Oils)

- খ) স্টেইট মিনারেল অয়েল (Straight Mineral Oils)
- গ) কাটিং অয়েল (Cutting Oils)
- ঘ) ওয়াটার সলুবল অয়েল/সলুবল অয়েল (Water Soluble Oil/Soluble Oil)
- ৩) গ্যাসীয় কুল্যান্ট
- ক) জলীয় বাষ্প (Water Vapor)
- খ) পানির প্রবাহ (Stream of Water)
- গ) কার্বন ডাই-অক্সাইড গ্যাস (Carbon di-oxide Gas)
- ঘ) চাপিত বায়ু (Compressed Air)
- 8) কেমিক্যাল কুল্যান্ট

পানিতে দ্রবীভূত কেমিক্যাল কম্পাউন্ডের মিশ্রণ।

ক) ফিক্সড মিনারেল অয়েল:

প্রাণী, মৎস্য ও উদ্ভিদ থেকে প্রাপ্ত অয়েলসমূহ হলো ফিক্সড অয়েলের শ্রেণিভুক্ত। যেমন:

- ক) লার্ড (Lard) (চর্বি জাতীয়) অয়েল (শৃকরের গলানোর চর্বি থেকে তৈরি)
- খ) স্পার্ম তিমি অয়েল (তিমি মাছের চর্বি থেকে তৈরি)
- গ) অলিভ, কটন ও লিনসিড অয়েল (জলপায় ফল, তুলা বীজ ও তিসি থেকে তৈরি)
- ঘ) টারপেনটাইন (উদ্ভিদ থেকে পাতন করা তৈরি তেল)
- খ) স্ট্রেইট মিনারেল অয়েল ৪

কুড পেট্রোলিয়াম অয়েল শোধনকালে একপর্যায়ে স্ট্রেইট মিনারেল অয়েল তৈরি হয়। এতে অন্য কোনো দ্রব্য মিশানো হয় না। স্ট্রেইট মিনারেল অয়েল কুল্যান্ট হিসেবে ব্যবহৃত হয়। প্যারাফিন হলো মিনারেল অয়েলের শ্রেণিভূক্ত। ফিক্সড অয়েলের তৈলাক্ততা (Oiliness) উত্তম কিন্তু মিনারেল অয়েলের তুলনায় স্থায়ী নয় এবং আঠালো হয়ে যেতে চায় ও উত্তাপে এর উপাদানগুলো পৃথক হয়ে যায়। এ কারণে মিনারেল অয়েলের স্থায়িত্ব ও ফিক্সড অয়েলের উত্তম তৈলাক্তের সুবিধা সংযোগ করার উদ্দেশ্যে উত্তয় প্রকার অয়েল একত্রে মিশ্রিত করে ব্যবহার করা যায়।

গ) কাটিং অয়েল :

কাটিং অয়েল সর্বদা ঘন অস্থায় অর্থাৎ পানি না মিশিয়ে ব্যবহৃত হয়। কাটিং অয়েল উপাদানগুলো হলো :

- ক) মিনারেল অয়েল।
- খ) ফ্যাটি (চর্বি জাতীয়) অয়েল
- গ) ফ্যাটি (চর্বি জাতীয়) এসিড
- ঘ) সালফার (Sulpher)
- ঙ) ক্লোরিন বা ফসফরাস (Chlorine or Phosphorous) এবং
- চ) অন্যান্য রাসায়নিক দ্রব্য।

আডিটিভ:

অ্যাডিটিভ হলো বিশেষ উদ্দেশ্যে মিশ্রিত কোনো বস্তু। কাটিং অয়েলের সাথে অ্যাডিটিভ হিসেবে সালফার ক্লোরিন ও ফসফরাস মিশ্রিত করা হয়। কাটিং অয়েলের সাথে সালফার মিশ্রিত করা হলে কাটিং অয়েলের প্রয়েটিং (Wetting) বা ধাতুর গায়ে প্রশোকারে লেগে থাকার গুণাবলি বৃদ্ধি পায়। কাটিং অয়েলের সাথে মাত্র ০.৫% থেকে ০.৮% সালফার মিশ্রিত করা হয়। কাটিং অয়েলের সাথে সালফার মিশ্রিত করা হলে তাকে সালফিউরাইজড (Sulphurized) মিনালেল অয়েল বলা হয়।

ঘ) ওয়াটার সলুবল অয়েল:

এটা সন্মুবল অয়েল নামে বেশি পরিচিত। সন্মুবল অয়েল পানিতে দ্রবণীয় এবং পানিতে মিশালে দুধের ন্যায় সাদা সলুশন তৈরি হয়। সলুবল অয়েলের উপাদান হলো মিনারেল অয়েল এবং সোপ সলুশন (Soap Solution)। সাধারণ টার্নিং, মিলিং, গ্রাইডিং ও পাওয়ার সয়িং-এর জন্য যে কুল্যান্ট ব্যবহৃত হয় তাতে সর্বোচ্চ ৮০ ভাগ পানির সাথে ১ ভাগ সলুবল অয়েল মিশানো যেতে পারে।

৪.৩ ধাতু ও অপারেশন ভেদে কুল্যান্ট নির্বাচন (Selection of Coolant According to the Metal and Operation):

কুল্যান্ট নির্বাচন

ধাতু

কুল্যান্ট

স্টিল	ওয়াটার সল্বল অয়েল, সালফিউরাইজড অয়েল
কাস্ট আয়রন	শুক্ষ চাপিত বায়ু, সলুবল অয়েল
অ্যালুমিনিয়াম	কেরোসিন, সোডা ওয়াটার, সলুবল অয়েল
ব্রাস	শুদ্ধ প্যারাফিন, লার্ড অয়েল কম্পাউন্ড
ব্ৰেঞ্চ	শুক
কপার	লার্ড অয়েল, ওয়াটার সলুবল অয়েল
রট আয়রন	লার্ড অয়েল, গুয়াটার সলুবল অয়েল

৪.৪ কুল্যান্টের প্রয়োগ ক্ষেত্র (Field of Application of Coolant):

- ১। কাটিং টুলস দারা ওয়ার্কপিসের উপরে কাজ করার সময় উৎপন্ন তাপ থেকে ওয়ার্কপিসের আকারকে বেড়ে যেতে বাধা দেওয়ার ক্ষেত্রে প্রয়োগ করা হয়।
- ২। কাটিং টুলসের হ্যার্ডেনিং (Hardening) বা টেম্পারিং (Tempering) নষ্ট হতে পারে না। ফলে কাটার মুখ (Cutting Edge)—এর ধারকে অব্যাহত রাখতে সাহায্য করার ক্ষেত্রে এটা প্রয়োগ করা হয়।
- ৩। এটা ধাতু তৈলাক্ততা করার জন্য ব্যবহৃত হয়। এই তৈলাক্ততার দক্তন কম তাপ উৎপন্ন হওয়ার কাটিং টুল অপেক্ষাকৃত কম তাপে ধাতু কাটে এবং এর ফলে কাটিং টুলস দীর্ঘস্থায়ী হয়।
- ৪। কাটিং টুলস দ্বারা কর্তিত ধাতু খণ্ডগুলি (Cutting chips) কাটিং এজ থেকে দূরে সরে আসতে এর দ্বারা সক্ষম হয়, তাই এই ক্ষেত্রে প্রয়োগ করা হয়।

৫। কাটিং টুলস এবং কার্যবস্তুর মধ্যে ঘর্ষণজনিত বাধা কম হওয়ার জন্য বেশি ঘূর্ণন হার পেতে এটা ব্যবহৃত হয়।

কুল্যান্ট ও লুব্রিক্যান্টের মধ্যে পার্থক্য :

কুল্যান্ট ও লুব্রিক্যান্টের মধ্যে সাধারণ পার্থক্য গুলো হলো:

কুল্যান্ট	नुदिकाान
১। এটা শুধুমাত্র কাটিং টুলের জীবনীশক্তিকে অব্যাহত রাখে।	 এটা মেশিন ও এর অংশগুলির জীবনীশক্তিকে অব্যাহত রাখতে সহায়তা করে।
২। এটা কাটিং টুল এবং কার্যবস্তুর মধ্যে ঘর্ষনের ফলে উৎপন্ন তাপকে কমাতে সাহায্য করে।	২। এটা দুটি অংশের মধ্যে ঘর্ষণজনিত তাপকে কমাতে উপযোগী হয়।
৩। কাটিং টুল দ্বারা কাটার গতিকে সহজ করে থাকে।	 । দুটি অংশের মধ্যে ঘূর্ণন বা সরল গতি সহজতর হয়।
8। এটা কাটিং টুল বা কার্যবস্তুকে মরিচা পড়তে বাধা দেয়।	 ৪। মেশিন বা এর অংশসমূহকে মরিচা বা ক্ষয় থেকে রক্ষা করে।

৪.৫ কুল্যান্ট ব্যবহারের প্রয়োজনীয়তা (Needs of Using Coolant):

নিম্নে কুল্যান্ট বা কাটিং ফুইডের প্রয়োজনীয়তা উল্লেখ করা হলো-

ওয়ার্কপিস ও চিপসের মধ্যে ঘর্ষণের ফলে উৎপন্ন তাপকে কমাতে এটা সাহায্য করে। এটা ঘর্ষণ রোধ করে। কাটিং টুলের ক্ষয় কমিয়ে জীবনীশক্তিকে দীর্ঘস্থায়ী বা বৃদ্ধি করে। কুল্যান্টের প্রবাহের দ্বারা চিপ অপসারিত করে এবং কাটিং টুল ওয়ার্ক পিস ও চিপসের তাপ শোষণ ও পরিবহন করে এদেরকে ঠাণ্ডা করতে এটা বিশেষভাবে সহায়তা করে থাকে। কুল্যান্ট কাটিং টুল ওয়ার্ক পিস ও চিপসকে তৈলাক্ত করে। এদের মধ্যে ঘর্ষণ সর্বনিম্ন করতে সাহায্য করে। এটা কাটিং টুল বা ওয়ার্ক পিস ও চিপসকে তৈলাক্ত করে। এদের মধ্যে ঘর্ষণ সর্বনিম্ন করতে সাহায্য করে। এটা কাটিং টুল বা ওয়ার্ক পিসকে ক্ষারজনিত ক্ষয়কে এবং মরিচা পড়তে বাধা দেয়। কুল্যান্ট কাটিং টুল দ্বারা ধাতু কাটার গতিকে সহজ করে থাকে। এটা কাটিং টুল দ্বারা ধাতু খণ্ডের উপরিভাগে সমতল ও মস্ন করতে সহায়তা করে থাকে। এ কুল্যান্ট কাটিং টুলস ও ওয়ার্কপিসের মধ্যে ঘর্ষণজনিত বাধা কম হওয়ার জন্য বেশি ঘূর্ণন হার পেতে সাহায্য করে। কুল্যান্ট প্রয়োগে ঘর্ষণ কম হয় বলে কম শক্তিতে মেশিন চালানো সহজ হয়।

উপরোক্ত বিভিন্ন দিক দিয়ে বিবেচনা করলে প্রয়োজনীয় স্থানে যান্ত্রিক কার্যে কুল্যান্ট ব্যবহারের গুরুত্ব ও প্রয়োজনীয়তা অপরিসীম।

প্রশ্নমালা-৪

অতি সংক্ষিপ্ত প্রশ্ন :

- ১। कून्गान्य की?
- ২। কুল্যান্টের একটি বৈশিষ্ট্য লেখ।
- ৩। সলিড কুল্যান্ট কত প্রকার?
- ৪। তরল কুল্যান্ট কত প্রকার?
- ৫। গ্যাসীয় কুল্যান্ট কত প্রকার?
- ৬। কাটিং অয়েল কী?
- ৭। অ্যাডিটিভ কী?
- ৮। স্টিল অপারেশনে কী জাতীয় কুল্যান্ট ব্যবহার করা হয়?

সংক্ষিপ্ত প্রশ্ন:

- ৯। কুল্যান্ট বলতে কী বোঝায়?
- ১০। কুল্যান্টের তিনটি বৈশিষ্ট্য লেখ?
- ১১। কুল্যান্ট কত প্রকার ও কী কী?
- ১২। তরল কুল্যান্টকে কী কী ভাগে ভাগ করা যায়?
- ১৩। ফিব্লড অয়েলকে কী কী ভাগে ভাগ করা যায়?
- ১৪। অ্যাডিটিভ বলতে কী বোঝায়?
- ১৫। তিনটি যে কোনো ধাতুর ব্যবহারের ক্ষেত্রে ব্যবহৃত কুল্যান্টের নাম লেখ?
- ১৬। কুল্যান্টের তিনটি প্রয়োগ ক্ষেত্রের নাম লেখ?
- ১৭। কুল্যান্ট ও লুব্রিক্যান্টের মধ্যকার পার্থক্য লেখ?

রচনামূলক প্রশ্ন:

- ১৮। কুল্যান্টের কাজ সম্পর্কে আলোচনা কর।
- ১৯। কুল্যান্টের প্রকারভেদ দেখাও।
- ২০। কুল্যান্টের বৈশিষ্ট্যগুলো বিবৃত কর।
- ২১। তিনটি তরল কুল্যান্ট সম্পর্কে বর্ণনা দাও।
- ২৩। কুল্যান্ট ব্যবহারের প্রয়োজনীয়তা আলোচনা কর।

পঞ্চম অধ্যায়

সংকর ধাতু (Alloy Metal)

৫.০ সূচনা: (Introduction):

সাধারণ কথায় অ্যালয় (Alloy) বলতে দুই বা ততোধিক ধাতুর সংমিশ্রণকে বুঝায়। কারিগরি ক্ষেত্রে সাধারণত যে সকল মৌলিক ধাতু ব্যবহার করা হয়ে থাকে সেগুলির গুণ বা শক্তি, সাধারণ সকল কাজের ক্ষেত্রে যথেষ্ট নয় বলে বিশেষ গুণ বা শক্তি পাওয়ার উদ্দেশ্যে এক বা একাধিক লৌহজাত বা অলৌহজাত ধাতুকে মূল ধাতুর সাথে রাসায়নিকভাবে মিশ্রতি করে এক নতুন ধাতু উৎপন্ন করা হয়। একে সংকর ধাতু (Alloy Metal) বলে। প্রধানত ক্ষয় রোধ গুণ ও হার্ডেনিং গুণ বৃদ্ধি, প্রেইন সাইজ নিয়ন্ত্রণ, উচ্চ শক্তি, মেশিনিং করার ক্ষমতা বৃদ্ধি প্রভৃতি উদ্দেশ্য সাধনের জন্য বিভিন্ন ধাতুর মধ্যে সংকরায়ণ করা হয়।

৫.১ সংকর ধাতু (Alloy Metal) :

ধাত্র মূল উপাদানের সাথে অ্যালয়িং এলিমেন্ট যোগ করে অধিকতর উন্নত গুণসম্পন্ন যেসব নতুন ধাতু উৎপাদন করা হয় তাই সংকর ধাতু নামে পরিচিত। সংকর ধাতুকে প্রধানত দুই ভাগে ভাগ করা যায়। যথা-

- ১। ফেরাস অ্যালয় বা লৌহজাত সংকর ধাতু এবং
- ২। অলৌহজাত সংকর ধাতু।

৫.২ সংকর ধাতুর প্রয়োজনীয়তা (Needs of Alloy Metal) :

ধাতুর যে সমস্ত গুণাগুণ বৃদ্ধির জন্য অ্যালয় করা হয়। তা নিমে দেওয়া হলো :

- ক) হার্ডেনেবিলিট বৃদ্ধির জন্য।
- খ) সাধারণ তাপমাত্রায় শক্তি বৃদ্ধির জন্য।
- গ) উচ্চ অথবা নিমু তাপমাত্রায় যান্ত্রিক গুণাগুণ বৃদ্ধির জন্য।
- ঘ) ক্ষয়রোধক শক্তি বৃদ্ধির জন্য।
- ঙ) মরিচারোধক শক্তি বৃদ্ধির জন্য।
- চ) চুম্বকীয় শক্তি বৃদ্ধির জন্য।
- জ) ইম্প্যান্ত লোড, শক্ লোড বহন ক্ষমতা বৃদ্ধির জন্য।

৫.৩ সচরাচর ব্যবহৃত সংকর ধাতুসমূহ (General Useable Alloy Metals)

নিম্নে সচরাচর ব্যবহৃত সংকর ধাতুসমূহের নাম লিপিবদ্ধ করা হলো-

১) হাইম্পিড স্টিল (High Speed Steel): সাধারণত এটা খুব শব্দ ধাতু। এতে মিশ্রণের হার টাংস্টেন (Tungsten) শতকরা ১৮ ভাগ, ক্রোমিয়াম (Cromium) শতকরা ৬ ভাগ, সিলিকন শতকরা ০.৫ ভাগ, ভ্যানাডিয়াম (Vanadium) শতকরা ০.৩ ভাগ, ম্যাঙ্গানিজ (Manganese) শতকরা ০.১ ভাগ ও কার্বন শতকরা, ০.৭ ভাগ। কামারশালায় একে ফোর্জিং এবং শব্দ করা ও টেম্পার দেওয়া যায়। কিন্তু ওয়েভিং করা যায় না। হাইম্পিড স্টিল দারা তৈরি যন্ত্র এর তীক্ষ্ণতাকে অব্যাহত রেখে অন্য ধাতুকে কাটতে সক্ষম হয়।

- ২) স্টেইনলেস স্টিল (Stainless Steel): এ প্রকার মিশ্র ধাতুর ক্ষয়রোধী শক্তি খুবই বেশি এবং উপরিভাগে কখনো মরিচা পড়ে না। এর মধ্যে ক্রোমিয়াম শতকরা ১২ ভাগ হতে ২০ ভাগ, নিকেল শতকরা ৪ ভাগ থেকে ১২ ভাগ, ম্যাঙ্গানিজ শতকরা ১ ভাগ, কার্বন শতকরা ০.২ ভাগ মিশ্রিত থাকে। এটা এসিড (Acid) দ্বারা আক্রান্ত হয় না বা চুম্বক দ্বারাও আকৃষ্ট হয় না। এটা তাগের কুপরিবাহী।
- ৩) টাংস্টেন স্টিল (Tungsten Steel): এটা মরিচারোধী, খুব শক্ত ও সহজে স্থায়ী চুম্বকে পরিণত করা যায়। এতে শতকরা ২ ভাগ হতে ১৮ ভাগ পর্যন্ত টাংস্টেন ও শতকরা ০.২ ভাগ থেকে ১.৫ ভাগ পর্যন্ত কার্বন স্টিলের সাথে মিশ্রিত করে এটা তৈরি হয়ে থাকে।
- 8) নিকেল স্টিল (Nickel Steel): এটা খুব শক্তিসম্পন্ন, দুচ্ছেদ্য, আকস্মিক আঘাত সহনশীল ও স্থিতিস্থাপকতা গুণবিশিষ্ট হয়ে থাকে। এতে মরিচা পড়ে না বা ক্ষার দ্রব্য দ্বারা এটা আক্রান্ত হয় না। এর ভেতর শতকরা ৫ ভাগ নিকেল ও শতকরা ০.২ ভাগ হতে ০.৪ পর্যন্ত কার্বন থাকে।
- ৫) ম্যাঙ্গানিজ স্টিল (Manganese Steel): এটা এক প্রকার মিশ্র স্টিল। নিকেল স্টিল হতে এটা অধিকতর শক্ত এবং শক্তিসম্পন্ন।
- ৬) ক্রোমিরাম স্টিল (Cromium Steel): এটার অপর নাম ক্রোস স্টিল। নিকেল স্টিল থেকে এটা অধিকতর শক্ত এবং শক্তিসম্পন্ন।
- ৭) ক্রোম নিকেল স্টিল (Chrome Nickel Steel): একে নাইক্রোম স্টিল বা নিকেল ক্রোমিয়াম স্টিল বলে। এর শক্তি ক্রোমিয়াম স্টিল হতে ও অধিক।
- ৮) জ্যানাডিয়াম স্টিল (Vanadium Steel): এটা বেশ শক্তিসম্পন্ন ও শক্ত ধাতু।
- ৯) ক্রোম জ্যানায়ািম স্টিঙ্গ (Chrom Vanadium Steel): এটা উচ্চ শ্রেণীর স্প্রীং স্টিল শ্রেণিভুক্ত। এটা তাপক্রিয়ার সময় সমভাবে শক্ত হয়। এবং ভিতরে কোনো চাপ সৃষ্টি করে না। এটা স্থিতিস্থাপকতা (Elastisity) গুণ অনেক বেশি।
- ১০) মিলবডেনাম স্টিল (Molybdenum Steel) : এটা টাংস্টেন স্টিল এর ন্যায় শক্ত। কিন্তু অপেক্ষাকৃত কম ভঙ্গুর। এর আকস্মিক আঘাত সহ্য করার ক্ষমতা অত্যন্ত বেশি।
- ১১) স্প্রীং স্টিল (Spring Steel): একপ্রকার মিশ্র স্টিল। ক্রোমভ্যালাডিয়াম স্টিল সিলিকা ম্যাগনিজ স্টিল, ক্রোম স্টিল, ইত্যাদি স্প্রীং স্টিলের উদাহরণ।
- ১২) কোর্জড স্টিল (Forged Steel): কোনো বিশেষ ক্ষেত্রে ব্যবহার করার উদ্দেশ্যে সাধারণ কোর্জিং (Forging) প্রণালিতে ভিতরের দানাগুলিকে সুসংবদ্ধ করিয়ে একে অধিকতর শক্তিসম্পন্ন করা হয়ে থাকে। এই প্রণালিতে তৈরি করা স্টিলকেই সাধারণত ফোর্জড স্টিল বলে।
- ১৩) রোল্ড স্টিল (Rolled Steel): রোলিং (Rolling) প্রণালিতে এটা তৈরি করা হয়।
- ১৪) ম্যাগনেট স্টিল (Magnet Steel): এটা অধিক পরিমাণ কোবাল্ট (Cobalt) ধাতু মিশ্রিত এবং চুম্বক ক্ষেত্রে ব্যবহারের উপযোগী এক বিশেষ শ্রেণির স্টিল।

৫.৪ সংকর ধাতুসমূহের ব্যবহার (Use of Alloy Metals)

১) স্টেইনলেস স্টিল (Stainless Steel): ছুরি,কাঁচি, গৃহস্থালির বাসনপত্র (Domestic Utensiles), ঘড়ির কেস (Watch Case), রাসায়নিক সরঞ্জাম (Chemical Equipments), অন্ত্র, বয়লারের সুপার হিটার, তেল শোধনাগারের টারটাইন রেইলিং, গৃহস্থালি আসবাবপত্র প্রভৃতি এটা দ্বারা তৈরি করা হয়ে থাকে।

- ২) টাংস্টেন স্টিল (Tungsten Steel): দ্রইং (Drawing) প্রণালিতে একে সরুতারে পরিণত করা যায় বলে ইলেক্সিক বাতির ফিলামেন্ট (Filament), মেশিনের কাটার যন্ত্র (Cutting Tools) ইত্যাদি তৈরি করতে এটা ব্যবহার হয়ে থাকে।
- ৩) হাইস্পীড স্টিল (High Speed Steel): ডাজ্ঞারি যন্ত্রপাতি (Surgical instruments), ক্ষুর (Ragor), টুইস্ট ড্রিল বিট (Twist drill bit), ট্যাপ (Tap), ডাই (Die), মিলিং মেশিনের কাটার, লেদ প্লেনিং ও শেপিং মেশিনের কাটার যন্ত্র বা কাটিং টুল প্রভৃতি যন্ত্র তৈরি করতে এটা প্রচুর ব্যবহৃত হয়ে থাকে।
- 8) নিকেল স্টিল (Nickel Steel): এটা দ্বারা ওয়্যার রোপ (Wire Rope), আর্মার প্লেট (Armour Plate) পিস্টন রড (Piston Rod), ইত্যাদি তৈরি হয়ে থাকে। এর ভিতর ২২ ভাগ নিকেল মিশ্রিত থাকলে এটা দ্বারা বৈদ্যুতিক রেজিস্ট্যান্স তার (Electric Registance Wire), হিটারের তার (Heater Element) স্পার্ক প্লাগ (Spark Plug), সাইকেলের ফ্রেমের টিউব (Pipe) ও স্পোক (Spoke) ইত্যাদি তৈরি হয়।
- ৫) ম্যাঙ্গানিজ স্টিল (Managanese Steel): সাধারণত শতকরা ১.৫ ভাগ ম্যাঙ্গানিজ যুক্ত মিশ্র স্টিলে শ্যাফট (Shaft), স্পিডল (Spindle), কানেকটিং রড (Connecting Rod) ইত্যাদি তৈরি হয়ে থাকে। কিন্তু শতকরা ১৬ ভাগ ম্যাঙ্গানিজ মিশ্রিত স্টিল রোলার (Roller), গুলিরোধক শিরন্ত্রাণ (Bullet Proof Helmets) ক্র্যাশার 'জ' (Crusher Jaw), ইত্যাদি তৈরি করতে প্রয়োজন হয়।
- ৬) ক্রোমিয়াম স্টিল (Chromium Steel): এটা দ্বারা বল বিয়ারিং-এর বল এবং রোলার (Balls and Rollers in Ball Bearing), আর্মার প্লেট (Armour plate), শেল (Shell), সিদ্ধুক (Safe) ইত্যাদি তৈরি হয়ে থাকে।
- ৭) ক্রোম নিকেল স্টিল (Chrome Nickle Steel): ক্রাংক শ্যাফট, (Crank Shaft), মোটরগাড়ির এবং অ্যারোপ্লেনের এক্সেল (Axel), কানেকটিং রড (Connecting Rod) ইত্যাদি এবং উচ্চ শ্রেণির গীয়ার হুইল (Gear Wheel) তৈরি করতে এটা ব্যবহৃত হয়ে থাকে।
- ৮) ভ্যানাডিয়াম স্টিল (Vanadium Steel): ক্র্যাংক শ্যাকট (Crank Shaft) এক্সেল (Axel) মোটরগাড়ির গীয়ার হুইল (Gear Wheels) এবং গীয়ার বক্স (Gear Box) ইত্যাদি গঠনে এটা ব্যবস্থৃত হয়।
- ৯) ক্রোম জ্যানাডিয়াম স্টিল (Chrome Vanadium Steel): এটা দ্বারা অধিকাংশ গাড়ির স্প্রীং তৈরি করা হয়ে থাকে। এই প্রকার স্টিলকে মেশিনে সহজে ক্ষয় করা যায় এবং মেশিনিং ক্রিয়ার সময় যন্ত্রের উপরে বিশেষ দাগ (Tool marks) পড়ে না বলে উপরিভাগ মসূণ হয়।
- ১০) মলিবডেনাম স্টিল (Molybdenum Steel): বন্দুকের ব্যারেল (Barrel), প্রপেলার শ্যাফট (Prpeller Shaft) ইত্যাদি গঠনে এটা ব্যবহৃত হয়।
- ১১) স্প্রীং স্টিল (Spring Steel): এটা কোনো বিশেষ শ্রেণির স্টিল নয়। যে সকল মিশ্র স্টিল দ্বারা স্প্রীং তৈরি হয় এদেরকেই সাধারণভাবে এই নামে অভিহিত করা হয়ে থাকে। এ প্রকার মিশ্র স্টিলগুলির নাম -ক্রোম ভ্যানাডিয়াম স্টিল, সিলিকো-ম্যাঙ্গানিজ ক্রোম স্টিল ইত্যাদি।
- ১২) ফোর্জড স্টিল (Forged Steel): স্লাইড রেঞ্চ (Slide Wrench) স্প্র্যানার (Spanner) ফু দ্রাইভার (Screw Driver) ইত্যাদি স্টিল দ্বারা তৈরি হয়।
- ১৩) রোক্ত প্টিল (Rolled Steel): একেল, জায়েস্ট, টী, চ্যানেল, রড, প্লেট এবং শীট ইত্যাদি এর দারা তৈরি হয়ে থাকে।

১৪) ম্যাগনেট স্টিল (Magnet Steel): ম্যাগনেট (Magneto), লাউড স্পীকার (Loud Speaker) এবং অনেক বৈদ্যুতিক মেশিন ও যন্ত্রাদিতে যে সকল স্থায়ী চুম্বক ব্যবহৃত হয় এটা প্রধানত এই শ্রেণির স্টিল দ্বারা তৈরি করা হয়ে থাকে।

৫.৫ সংকর ধাতুসমূহের খণগত মান (Characteristics of Alloy Metals)

স্টিলকে বিশেষ গুণধর্মী করতে বিভিন্ন প্রকার মিশ্র ধাতু বিভিন্নভাবে প্রভাবিত করে থাকে। যেমন:

- ১। ম্য্যাঙ্গানিজ মিশ্রিত করলে স্টিল শক্ত ও দীর্ঘস্থায়ী হয়।
- ২। স্টিলের মধ্যে নিকেল মিশ্রিত করলে এটা খুব শক্তিসম্পন্ন, মরিচারোধী, কাঠিন্যতা (Toughness) স্থিতিস্থাপকতা (Elasticity) গুণবিশিষ্ট হয়ে থাকে।
- ৩। ক্রোমিয়াম মিশ্রিত করলে স্টিলের কাঠিণ্যতা (Hardness) বৃদ্ধি পায় এ স্টিলকে উচ্চ শক্তিসম্পন্ন ও ক্ষয়রোধী করতে সাহায্য করে।
- 8। টাংস্টেন মিশ্রিত করলে স্টিল খুবই শক্ত ও স্থায়ী চুম্বকত্ব (Permanent magnet) লাভ করে। এছাড়া অধিক তাপে কাঠিন্যতা (Hardness)–কে ধরে রাখতে সমর্থ হয়।

সচরাচর ব্যবহৃত অলৌহ সংকর ধাতুসমূহ (Commonly used non Ferrous alloy metals):

সচরাচর ব্যবহৃত অলৌহজ সংকর ধাতুসমূহ সম্পর্কে নিম্নে উল্লেখিত হলো-

ব্রাস (Brass): ব্রাসকে বাংলায় পিতল বলে। এটি কপার (তাম্র) এবং জিঙ্ক (দস্তা)-এর মিশ্রণ ধাতু। যে শ্রেণির ব্রাস সাধারণত ব্যবহৃত হয় তার মধ্যে শতকরা প্রায় ৬৭ ভাগ কপার এবং ৩৩ ভাগ জিঙ্ক ও সামান্য পরিমাণ টিন মিশ্রিত থাকে। এটি দেখতে উজ্জ্বল হরিদ্রা বর্ণ। মেশিনিং করার সময় সাধারণত ব্রাস কাটার যন্ত্রের (Cutter Tools) সাথে আঠালোভাবে লেগে থাকতে চায়। কিন্তু এটার সাথে অল্প পরিমাণ লেড (lead) অর্থাৎ সীসা মিশানো থাকলে আর এ ক্রটি হয় না।

মাঞ্জ মেটাল (Muntz Metal): এটা এক বিশেষ শ্রেণির ব্রাস। শতকরা প্রায় ৬০ ভাগ কপার এবং ৪০ ভাগ জিল্ক মিশিয়ে এটা তৈরি হয়। কোনো কোনো সময় অল্প পরিমাণে লিড মিশানো হয়ে থাকে। এটা সাধারণ ব্রাস অপেক্ষা অধিক শক্ত ও শক্তিসম্পন্ন এবং সহনীয়। সমুদ্রের লবণাক্ত পানি দ্বারা এটা আক্রান্ত হয় না।

ম্যাঙ্গানিজ ব্রোঞ্জ (Manganese Bronze): ব্রাস (Brass)—এর সাথে ফেরোম্যাঙ্গানিজ যোগ করে এটা তৈরি করা হয়। নামে এটা ব্রোঞ্জ হলেও এর মধ্যে প্রায়ই টিন থাকে না। সুতরাং কার্যত এটা ব্রাসই। শতকরা প্রায় ৬২ ভাগ কপার, ৩৬ ভাগ জিঙ্ক ১ ভাগ আয়রন ০.৫ ভাগ ম্যাঙ্গানিজ এবং অল্প পরিমাণ কার্বন ও অ্যালুমিনিয়াম মিশিয়ে যে ম্যাঙ্গানিজ ব্রোঞ্জ তৈরি করা হয়, তা প্রপেলার (Propeller) তৈরিতে উপযোগী হয় এটাকে ফোর্জিং এবং ঢালাই উভয়ই করা যায়।

জ্যালুমিনিয়াম ব্রোজ্ব (Aluminium Bronze): এটা সাধারণত কপারের সাথে শতকরা ৯ থেকে ১০ ভাগ অ্যালুমিনিয়াম মিশিয়ে তৈরি করা হয়ে থাকে। এর বর্ণ স্বর্গের ন্যায় সুন্দর ও উজ্জ্বল। এ কারণে নকল স্বর্গের অলংক্কারাদি তৈরি করতে এটা প্রায়ই ব্যবহৃত হয়। সমুদ্রের লবণাক্ত পানি দ্বারা এটা আক্রান্ত হয় না। অ্যালুমিনিয়াম ব্রোজ্বের স্থিতিস্থাপকতা এবং ক্ষয়রোধী শক্তি বেশি। এজন্য এটা দ্বারা বিয়ারিং, ভাল্ভ, প্রপেলার ইত্যাদি তৈরি হয়।

মনেল মেটাল (Monel Metal): শতকরা ৬৮ ভাগ নিকেল, ৩০ ভাগ তামা এবং ২ ভাগ অ্যালুমিনিয়াম সিলিকন, ম্যাঙ্গানিজ ইত্যাদি মিশিয়ে এই ধাতু সংকর তৈরি হয়, আর মূলত এটা নিকেল ব্রোঞ্জ (Bronze) এই

ধাতু সংকর ক্ষয়রোধকারী ও ইস্পাতের ন্যায় শক্তিশালী। মরিচা পড়ে না বিধায় জাহাজের প্রপেলার শ্যাফট তৈরিতে ব্যবহাত হয়।

হোয়াইট মেটাল (White Metal): বিয়ারিংথএর ঘর্ষণ রোধকারী এটা একপ্রকার মিশ্র ধাতু। এটার বর্ণ হরিদা আভাযুক্ত সাদা। সাধারণত লীড কিংবা টিন ধাতুকে মূল উপাদানরূপে রেখে টিন, অ্যান্টিমনি ও কপার অথবা লীড, অ্যান্টিমনি ও কপার মিশিয়ে এটা তৈরি করা হয়। যে হোয়াইট মেটালের মধ্যে টিন মূল ধাতু উপাদানরূপে থাকে, তা অধিকতর কার্যকর হয়। এ প্রকার মিশ্র ধাতুকে সাধারণত ভুরালমিন বলে। ভুরালমিন সচরাচর প্রায় শতকরা ৮০ ভাগ টিন, ১০ ভাগ অ্যান্টিমনি এবং ১০ ভাগ কপার থাকে। এটা নরম ধাতু এবং অনেক কম তাপমাত্রায় (প্রায় ১০০০ সেন্টিপ্রেড বা সেলসিয়াসে) গলে।

ভুরালমিনাম (Duraluminum) : শতকরা ৮৫ ভাগ অ্যালুমিনিয়ামের সাথে প্রায় ১৫ ভাগ টিন, লেড, ক্যাডমিয়াম, ম্যাঙ্গানিজ ইত্যাদি মিশিয়ে এই ধাতু সংকর উৎপন্ন হয়। এটা খুবই শক্ত অ্যালুমিনিয়াম সংকর যা বিমানের বডি তৈরিতে ব্যবহৃত হয়। এছাড়া ডাব্ডারি ছুরি, কাঁচি প্রভৃতি তৈরিতেও এটা ব্যবহৃত হয়ে থাকে।

৫.৬ সংকর ধাতুসমূহের মূল উপাদান (Basic elements of alloy metals)

নিম্নে সচরাচর ব্যবহৃত সংকর ধাতুসমূহের মূল উপাদানের নাম লিপিবদ্ধ করা হলো-

সাধারণ রকমের স্টিল যেরকম কার্বনের প্রাধান্য বজায় রাখা হয়, মিশ্র স্টীলে কিন্তু মিশ্রিত ধাতুসমূহের প্রাধান্যকে বাড়িয়ে কার্বনের প্রাধান্যকে হ্রাস করা হয়ে থাকে। সাধারণ মিশ্র ধাতুসমূহের মূল উপাদানগুলি নিমুরূপ:

১) ক্রোমিয়াম (Chromium)

৬) নিকেল (Nickel)

২) টাংস্টেন (Tungsten)

৭) ম্যাগানিজ (Manganese)

৩) ভ্যানাডিয়াম (Venadium)

৮) কোবাল্ট (Cobalt)

8) তামা (Copper)

৯) মলিবডেনাম (Molybdenum)

৫) টিন (Tin)

১০) দন্তা (Zine)

ইত্যাদি ধাতুর মিশ্রণ স্টিল তৈরি করতে ব্যবহার করা হয়ে থাকে।

প্রশ্নমালা-৫

অতিসংক্ষিপ্ত প্রশ্ন:

- ১। সাধারণ কথায় অ্যালয় কাকে বলে?
- ২। প্রধানত কী গুণের জন্য সংকরায়ণ হয়?
- ৩। অ্যালয় স্টিল কাকে বলে?
- ৪। কার্বন স্টিল কাকে বলে?
- ৫। কার্বন স্টিলের অপদ্রব্য কাকে বলে?
- ৬। হাইস্পীড স্টিল কী?
- ৭। স্টেইনলেস স্টিলের ব্যবহার কোথায়?
- ৮। অলৌহজ সংকর ধাতুসমূহের অন্তত ২টির নাম লেখ।

সংক্রিপ্ত প্রশ্ন:

- ৯। অ্যালয় বলতে কী বোঝায়?
- ১০। সংকর ধাতু বলতে কী বোঝায়?
- ১১। সংকর ধাতু তিনটি প্রয়োজনীয়তা উল্লেখ কর।
- ১২। অ্যালয় স্টিল ও কার্বন স্টিলের মধ্যে ২টির পার্থক্য লেখ?
- ১৩। সচরাচর ব্যবহৃত ৫টি লৌহজ সংকর ধাতুর নাম লেখ?
- ১৪। সংকর ধাতুসমূহের মধ্যে ২টির গুণগত মান উল্লেখ কর।
- ১৬। সচরাচর ব্যবহৃত অলৌহজ সংকর ধাতুর মধ্যে যে কোনো ৫টির নাম লেখ।
- ১৭। সংকর ধাতুসমূহের ৫টির মূল উপাদানের নাম লেখ?

রচনামূলক প্রশ্ন:

- ১৮। সংকর ধাতু বলতে কী বোঝায় উদাহরণসহ লেখ।
- ১৯। সংকর ধাতুর শ্রেণি বিন্যাস দেখাও।
- ২০। সংকর ইস্পাতের গুণাবলি অতি সংক্ষেপে উল্লেখ কর।
- ২১। ৫টি অ্যালয়িং এ্যালিমেন্টের নাম লেখ।
- ২২। নিকেল স্টিলে নিকেল এবং কার্বনের শতকরা হার উল্লেখ কর।
- ২৩। গুলিরোধক শিরস্ত্রাণ কোন ধাতুর তৈরি লেখ।
- ২৪। ইলেকট্রিক বাল্বের ভেতরের তার কোন ধাতুর তৈরি উল্লেখ কর।
- २৫। ব্রাসের অ্যালয়িং এ্যালিমেন্টগুলির নাম লেখ।
- ২৬। বেল মেটাল বলতে কী বুঝায়, বুঝিয়ে লেখ।
- ২৭। হোয়াইট মেটালের বিশেষত্ব উল্লেখ কর।
- ২৮। তিনটি ফেরাস ও তিনটি নন ফেরাস অ্যালয়ের ব্যবহার লেখ।
- ২৯। বিমানের বডি সাধারণত কোন ধাতু দিয়ে তৈরি হয়।

ষষ্ঠ অধ্যায়

হার্ডেনিং প্রক্রিয়া

Hardening Process

৬.০ সূচনা (Introduction):

হার্ডেনিং প্রক্রিয়া হলো একধরনের হিট ট্রিটমেন্ট প্রক্রিয়া। প্রধানত লৌহজাত বা লৌহাজাত অ্যালয়তে এটা করা হয়। হার্ডেনিং-এর ফলে লৌহজাত বা লৌহজাত অ্যালয়তে গাঠনিক পরিবর্তন হয় এবং এটার স্থিতিশীলতা, কার্বনের হার, তাপমাত্রা, শীতল করার সময় ও মাধ্যম প্রভৃতির উপর নির্ভরশীল যেমনঃ ০.৩% এর অধিক কার্বন বিশিষ্ট স্টিলকে হার্ডেনিং করলে এতে মর্টেনসাইটের সৃষ্টি হয়। ০.৯% কার্বন বিশিষ্ট হাইকার্বন স্টিলকে উর্ধ্ব ক্রিটিক্যাল তাপমাত্রার ৪০° থেকে সেঃ ৫০° সেঃ উপরের তাপমাত্রায় উত্তপ্ত করে কুয়েঞ্চিং করলে খুব শক্ত, ভঙ্গুর ও অল্প আঘাত প্রতিরোধক্ষম মর্টেনসাইটের সৃষ্টি হয়।

মাইল্ড স্টিলে কার্বন উপস্থিতির শতকরা হার কম থাকে বলে হার্ডেনিং—এর সাধারণ নিয়মে শক্ত করা যায় না। অনধিক কার্বন বিশিষ্ট স্টিল খণ্ডটির উপরিভগে কার্বনের উপস্থিতি বৃদ্ধি করে উপরিভল কাঠিন্য করাকেই কেস হার্ডেনিং বলে। এর ফলে স্টিল খণ্ডের উপরিভল শক্ততা বৃদ্ধি হওয়ায় সহজে ক্ষয়প্রাপ্ত হয় না। কোনো য়ঞ্জাংশের অভ্যন্তর ভাগ নরম ও দুচ্ছেদ্যতা রেখে উপরিভাগ কাঠিন্য করাই কেস হার্ডেনিং—এর মূলনীতি। ০.২০%-০.৩৫% কার্বন বিশিষ্ট স্টিলকে কেস হার্ডেনিং করলে উপরিভল কাঠিন্য ও ক্ষয়রোধী এবং আভ্যন্তরীণ কোর নরম ও শক্ত হয়। কোনো জবের উপরিভলে কার্বনের হার বৃদ্ধি করাকে কার্বুরাইজিং বলে।

৬.১ হার্ডেনিং প্রক্রিয়া (Hardening Process):

স্টিলকে নির্দিষ্ট তাপমাত্রায় আনলে লৌহ ও কার্বনের মধ্যে গাঠনিক পরিবর্তন হয় এবং নিমু ক্রিটিক্যাল তাপমাত্রা পর্যম্ভ এ পরিবর্তন চলে। হার্ডেনিং—এর মূলনীতি হলো গাঠনিক পরিবর্তন ঘটানো এবং প্রয়োজন মতো উক্ত পরিবর্তনকৈ স্থিতিশীল রেখে কাঠিন্য বৃদ্ধি করা। এজন্য ক্রিটিক্যাল তাপমাত্রা পর্যম্ভ উত্তপ্ত করে দ্রুত ঠাণ্ডাকরণের মাধ্যমে গুণাগুণ পরিবর্তন করা হয়, একে হার্ডেনিং প্রক্রিয়া বা হর্ডেনিং বলে।

৬.২ হার্ডেনিং উদ্দেশ্য (Objectives of Hardening)

নিম্নে হার্ডেনিং-এর উদ্দেশ্যগুলো সংক্ষেপে বিবৃত হলো:

- ১। ধাতব পদার্থ বা স্টিলের শক্তি বৃদ্ধি করা।
- ২। ধাতব পদার্থ বা স্টিলকে শক্ত করা।
- ৩। কাটিং টুলস্ তৈরির জন্য এটা ব্যবহার উপযোগী করা।
- ৪। মেশিনের স্ট্রেসমুক্ত পার্টস নির্মাণের উপযুক্ত করা।
- ৫। স্টিলের ক্ষয় প্রতিরোধ করা।
- ৬। এটা ধাতুর ভঙ্গুরতা, বৈদ্যুতিক প্রতিরোধ ক্ষমতা ও আপেক্ষিক আয়তন ইত্যাদি বৃদ্ধি করা।
- ৭। প্রতিরোধ শক্তি বৃদ্ধি ও অন্য ধাতুকে কাটার উপযোগী করে তোলা।
- ৮। ধাতুর গাঠনিক পরিবর্তন ঘটান।
- ৯। প্রয়োজন মতো গাঠনিক পরিবর্তনকে স্থিতিশীল রেখে কাঠিন্য বৃদ্ধি করা।

৬.৩ হার্ডেনিং প্রক্রিয়া বর্ণনা (Description of Hardening Process):

স্টিলকে সাধারণত নিমুলিখিত পদ্ধতিতে হার্ডেনিং করা হয়-

- ১। কেস হার্ডেনিং (Case hardening)
- ২। কার্বুরাইজিং (Carburizing)
- ক) প্যাক বা বন্ধ কাৰ্বুৱাইজিং (Pack or box carburizing)
- ৰ) গ্যাস কাৰ্বুৱাইজিং (Gas Carburizing)
- গ) লিকুইড কার্ব্রাইজিং (Liquid carburizing)
- ত। সায়ানাইডিং (Cyaniding)
- ৪। নাইট্রাইডিং (Nitriding)
- ১। কেস হার্ডেনিং (Case hardening):

এটা স্টিলের বাইরের উপরিভাগকে অধিকতর শক্ত করা বুঝায়। যে সকল স্টিল বা রট আয়রনের মধ্যে কার্বনের হার খুব কম থাকে, ঐ সকল ধাতুর উপরিভাগকে অধিক কার্বন বিশিষ্ট বাহিরের বস্তু হতে কার্বনকে রাসায়নিকভাবে যুক্ত করে কার্বন স্টিলের ন্যায় শক্ত আবরণ সৃষ্টি করার পদ্ধতিকে কেস হার্ডেনিং বলা হয়। এ আবরণের গভীরতা সাধারণভাবে নির্ভর করে কত সময়ব্যাশী ও কত বেশি পরিমাণ তাপের পরিমাপের উপর। অক্সিএসিটিলিন শেখার সাহায্যে কোনো ইস্পাতের তৈরি সম্পূর্ণ যন্ত্রাংশকে বা অংশবিশেষকে ক্রিটিক্যাল তাপমাত্রার সামান্য উপরের তাপমাত্রায় উত্তপ্ত করে শীতল পানি ছারা হঠাৎ ঠাণ্ডা করার প্রক্রিয়াকে ফ্রেম হার্ডেনিং বলে। সাধারণত ০.৪% হতে ০.৭% কার্বন যুক্ত ইস্পাতকে এ প্রক্রিয়ায় হার্ডেনিং করা সম্ভব। এ পদ্ধতিতে হার্ডেনিং গভীরতা প্রায় ১.৬ মি.মি. পর্যন্ত হয়ে থাকে। এক্ষেত্রে একটি শিখা বা একাধিক শিখা ব্যবহার করা যায়।

কেস হার্ডেনিং যন্ত্রপাতি অত্যন্ত্র এবং হালকা বিধায় তা বহনযোগ্য এবং যে কোনো আকৃতির যন্ত্রাংশে ব্যবহার বোগ্য। কুয়েঞ্চিং—এর পর যন্ত্রাংশকে ১৭৫° সেঃ তাপ মাত্রায় উত্তপ্ত করে বাতাসে ঠাপ্তা করা হয়। অর্থাৎ টেম্পারিং প্রক্রিয়া সম্পন্ন করে পীড়নমুক্ত করা হয়। এ প্রক্রিয়ার অসুবিধা হলো এতে যন্ত্রাংশ অতিরিক্ত উত্তপ্ত হলে কুয়েঞ্চিং—এর ফলে নষ্ট হতে পারে, কার্বনের সংযুক্তি বেশি হলে চির দেখা যেতে পারে, যন্ত্রাংশ পাতলা হলে বেঁকে যেতে পারে। এ প্রক্রিয়ায় ছোট—বড় সকল যন্ত্রাংশ হার্ডেনিং করা যায়। উপরের চিত্রে একটি গিয়ারের দাঁতের কেস হার্ডেনিং করা দেখানো হলো। বৃহদাকার শ্যাক্ট এবং গিয়ার সাধারণত ঘুরিয়ে ঘুরিয়ে উত্তপ্ত করা হয়।

২। कार्वत्रादेखिर (Carburizing):

ক) পাক ৰ বন্ধ কাৰ্বুরাইজিং (Pack or Box Carburizing)

কোনো স্টিল খণ্ডের উপরিভলে বায়ু শূন্য অবস্থায় বন্ধ বাব্দের ভেতরে রেখে কার্বনের পরিমাণ বৃদ্ধি করাকে কার্বুরাইজিং বলে। এই প্রক্রিয়ায় ঢাকনাযুক্ত একটি কাস্ট আয়রন অথবা রট আয়রনের বাব্দের ভেতরে অগ্নিরোধী ইট (Fire Brick) ঘারা আবেষ্টন করে নেওয়ার পর পোড়া ঢামড়া (Charred Leather) হাড়ের শুড়ো (Bone Dust), কাঠ কয়লা (Charcoal) ইত্যাদি বেশি কার্বনযুক্ত পদার্থের সঙ্গে বেরিয়াম (Barium) সোডিয়াম (Sodium)—এর কার্বনেট (Carbonate) মিশিয়ে ভর্তি করতে হয়।

- খ) গ্যাস কার্বুরাইজিং (Gas Carburizing): এই প্রণালিতে ও লো-কার্বন স্টিলের উপরিভাগকে হাই কার্বন স্টিলের ন্যায় শক্ত করা সম্ভব হয়। মাফল ফার্নেস (Muffle furnace) এর মধ্যে মিথেন (Methene) গ্যাসের কার্বন ও হাইজ্রোজ্ঞেনের সংশ্লিষ্ট আবহাওয়ার মধ্যে ধাতু খণ্ডটিকে ৯০০-৯৪০০ সেন্টিপ্রেড তাপমাত্রায় উত্তপ্ত করে কিছু সময় ঐ একই তাপমাত্রায় রাখার পর বাইরে এনে মুক্ত বায়ুতে ধীরে ধীরে ঠাণ্ডা করা হয়।
- গ) শিকুইড কার্বুরাইজিং (Liquid Caburizing) : এ গদ্ধতিতে একটি পাত্রে তরল লবণ (৭৫%-৮০%) সোডিয়াম কার্বোনেট (১০%-১৫%), সোডিয়াম ক্লোরাইড ৬%-১০%, সিলিকন কার্বাইড রাখা হয়। উক্ত পাত্রে স্টিল খণ্ড ডুবিয়ে রেখে ৮৫০% সেঃ এ উভঙ করা হয়। ফলে রাসায়নিক বিক্রিয়া ঘটে এবং কার্বন মনোজ্রাইড স্টিল খণ্ডটিকে কার্বোরাইজড করে।
- ৩) সাম্নানাইডিং (Cyaniding) এই প্রণালিতে প্রথমে একটি পাত্রের মধ্যে পরিমাণে সোডিয়াম ক্লোরাইড (Sodium Chloride), সোডিয়াম কার্বনেট (Sodium Carbonate) এবং সোডিয়াম কার্বনেট (Sodium Carbonate) এবং সোডিয়াম সামানাইড (Sodium Cyanide) গলিয়ে রাখা হয়। পরে কম কার্বনযুক্ত সিটল খণ্ডটিকে ৭০০০ সেন্টিপ্রেড ভাপমাত্রায় উত্তপ্ত করে এই মিশ্রিত বাথের মধ্যে ১০ থেকে ১৫ মিনিট কাল রেখে উপরিভাগকে শক্ত করা হয়।

(8) नांदेशिरेडिश (Nitriding):

নাইট্রাইডিং প্রক্রিয়ায় রট আয়রন বা স্টিলের তৈরি একটি বাব্দ্রের মধ্যে স্টিল খণ্ডটিকে রেখে ইলেকট্রিক ফার্নেস (Electric Furnace)—এর মধ্যে ৪৮০০–৬৫০০ সেন্টিপ্রেড ভাপমাত্রায় উত্তপ্ত করার পর অ্যামোনিয়া গ্যাস (Ammoniam Gas) এই বাব্দ্রের মধ্যে প্রবাহিত করা হয়। ফলে স্টিল খণ্ডটির উপরিভাগে নাইট্রোজেন (Nitrogen) মৃক্ত হয়ে য়ায়। পরে বাক্সটিকে বাইরে এনে মৃক্ত বায়ুতে ধীরে ধীরে ঠাগ্রা করা হয়। নাইট্রাইডিং করার পর আর একে হার্ডেনিং প্রক্রিয়ায় করার শক্ত করার প্রয়োজন হয় না।

৬.৪ হাডেনিং–এর প্রয়োগন্দের (Field of Application of Hardening):

নিম্নে হার্ডেনিং-এর প্রয়োগ ক্ষেত্র উল্লেখ করা হলো-

শিল্প ব্যাপক উৎপাদনে ক্ষেত্রে হার্ডেনিং করা স্টিল প্রচুর ব্যবহার হয়ে থাকে। ট্যাপ, ডাই, মিলিং, কাটার, রেঞ্চ চিজেল, স্লেজ হ্যামার, হ্যাক্স বেন্ড, ফাইল প্রভৃতি কার্বন স্টিল দ্বারা তৈরি করে হার্ডেনিং মাধ্যমে এদের প্রয়োজনীয় গুণাগুণের পরিবর্তন এনে শিল্পক্ষেত্রে ব্যবহার করা হয়।

প্রশ্নমালা ৬

অতি সংক্ষিপ্ত প্রশ্ন:

- ১। হার্ডেনিং-এর মূলনীতি কী?
- ২। হার্ডেনিং কী?
- ৩। হার্ডেনিং-এর দুইটি উদ্দেশ্য লেখ?
- 8। হার্ডেনিং প্রক্রিয়াকে প্রধানত কয় ভাগে ভাগ করা যায়?
- ৫। কার্বুরাইজিং প্রক্রিয়া কত প্রকার?
- ৬। কেস হার্ডেনিং কী?
- ৭। কাবুরাইজিং প্রক্রিয়ার ২টি সুবিধা লেখ?
- ৮। ফ্রেম হার্ডেনিং কী?

সংক্ষিপ্ত প্রশ্ন

- ৯। হার্ডেনিং বলতে কী বোঝায়?
- ১০। হার্ডেনিং কত প্রকার ও কী কী?
- ১১। হার্ডেনিং প্রক্রিয়ার ৩টি উদ্দেশ্য লিপিবদ্ধ কর।
- ১২। সায়ানাইডিং প্রক্রিয়া বলতে কী বোঝায়?
- ১৩। নাইট্রাইডিং প্রক্রিয়া বলতে কী বোঝায়?
- ১৪। হার্ডেনিং-এর প্রয়োগ ক্ষেত্র দেখাও।
- ১৫ । लिकुरेफ कार्वुतारेिकः-এর উপাদানগুলো लেখ?
- ১৬। প্যাক কার্বুরাইজিং বলতে কী বোঝায়?

- ১৭। হার্ডেনিং প্রক্রিয়া বলতে কী বোঝায়? হার্ডেনিং প্রক্রিয়ার শ্রেণিবিভাগ কর।
- ১৮। হার্ডেনিং-এর উদ্দেশ্যগুলো লিপিবদ্ধ কর।
- ১৯। কেস হার্ডেনিং প্রক্রিয়ার সংক্ষিপ্ত বিবরণ দাও।
- ২০। গ্যাস কার্বুরাইজিং প্রক্রিয়া সম্পর্কে যা জান লেখ।
- ২১। সায়ানাইডিং প্রক্রিয়ার বিবরণ দাও।
- ২২। নাইট্রাইডিং প্রক্রিয়ার সংক্ষিপ্ত বর্ণনা দাও।
- ২৩। হার্ডেনিং-এর প্রয়োগ ক্ষেত্র উল্লেখ কর।

সপ্তম অধ্যায়

কার্বুরাইজিং প্রক্রিয়া

৭.১ কার্বুরাইজিং

০.২০%-০.৩৫% কার্বন বিশিষ্ট স্টিলকে কেস হার্ডেনিং করলে উপরিতল কাঠিন্য ও ক্ষয়রোধী এবং আভ্যন্তরীণ কোর নরম ও শব্দু হয়। এরূপ কোনো ধাতুর উপরিতলে কার্বনের হার বৃদ্ধি করাকে কার্বুরাইজিং বলে।

৭.২ কার্বুরাইজিং-এর উদ্দেশ্য

কোনো ধাতুর উপরিতলে কার্বনের হার বৃদ্ধি করার মাধ্যমে কার্বন বিশিষ্ট স্টিলকে কেস হার্ডেনিং করা। ফলে ধাতুর উপরিতল কাঠিন্য ও ক্ষররোধী হয় এবং আভ্যন্তরীণ কোর নরম ও শক্ত হয়।

৭.৩ কার্ব্রাইজিং (Carburizing) প্রক্রিয়া

কার্বুরাইজিং (Carburizing) প্রক্রিয়া মূলত তিন প্রকার :

- ক) প্যাক ও বন্ধ কাৰ্ব্রাইজিং (Pack or Box Carburizing)
- খ) গ্যাস কার্ব্রাইজিং (Gas Carburizing)
- গ) পিকুইড কার্বুরাইজিং (Liquid Caburizing)

ক) প্যাক ও বন্ধ কাৰ্বুৱাইজিং (Pack or Box Carburizing)

কোন স্টিল খণ্ডের উপরিতলে বায়ুশূন্য অবস্থায় বন্ধ বাব্দ্রের ভেতরে রেখে কার্বনের পরিমাণ বৃদ্ধি করাকে কার্বুরাইজিং বলে। এই প্রক্রিয়ায় ঢাকনাযুক্ত একটি কাস্ট আয়রন অথবা রট আয়রনের বাব্দ্রের ভেতরে অগ্নিরোধী ইট (Fire brick) দ্বারা আবেষ্টন করে নেওয়ার পর পোড়া চামড়া (Charred Leather) হাড়ের গুঁড়ো (Bone Dust), কাঠ কয়লা (Charcoal) ইত্যাদি বেশি কার্বনযুক্ত পদার্থের সঙ্গে বেরিয়াম (barium) সোডিয়াম (Sodium)-এর কার্বনেট (Carbonate) মিশিয়ে ভর্তি করতে হয়।

খ) গ্যাস কার্ব্রাইন্ডিং (Gas Carburizing): এই প্রণালীতে ও লো-কার্বন স্টিলের উপরিভাগকে হাই কার্বন স্টিলের ন্যায় শব্দ করা সম্ভব হয়। মাফল ফার্নেস (Muffle furnace) এর মধ্যে মিথেন (Methene) গ্যাসের কার্বন ও হাইড্রোজেনের সংশ্লিষ্ট আবহাওয়ার মধ্যে ধাতু খণ্ডটিকে ৯০০-৯৪০০ সেন্টিগ্রেড তাপমাত্রায় উত্তপ্ত করে কিছু সময় ঐ একই তাপমাত্রায় রাখার পর বাইরে এনে মুক্ত বায়ুতে ধীরে ধীরে ঠাণ্ডা করা হয়।

গ) লিকুইড কার্বুরাইজিং (Liquid caburizing) ঃ এ পদ্ধতিতে একটি পাত্রে তরল লবণ (৭৫%-৮০%) সোডিয়াম কার্বোনেট (১০%-১৫%), সোডিয়াম ক্লোরাইড ৬%-১০%, সিলিকন কার্বাইড রাখা হয়। উক্ত পাত্রে স্টিল খণ্ড ডুবিয়ে রেখে ৮৫০ সেঃ এ উত্তপ্ত করা হয়। ফলে রাসায়নিক বিক্রিয়া ঘটে এবং কার্বন মনোঅক্সাইড স্টিল খণ্ডটিকে কার্বুরাইজড করে।

৭.৪ কার্বুরাইজিং-এর প্রয়োগক্ষেত্র ঃ

নিম্নে কার্বুরাইজিং-এর প্রয়োগ ক্ষেত্র উল্লেখ করা হলো-

শিল্পে ব্যাপক উৎপাদনের ক্ষেত্রে কার্বুরাইজিং করা স্টিল প্রচুর ব্যবহার হয়ে থাকে। রোলার, বিয়ারিং, ছইল, প্রভৃতি স্টিল দ্বারা তৈরি করে কার্বুরাইজিং প্রক্রিয়ার মাধ্যমে এদের প্রয়োজনীয় গুণাগুণে পরিবর্তন এনে শিল্পক্ষেত্রে ব্যবহার করা হয়।

প্রশ্নমালা-৭

অতি সংক্ষিপ্ত প্রশ্ন:

- ১। কার্বুরাইজিং-এর মূলনীতি কী?
- ২। কার্বরাইজিং কী?
- । কার্ব্রাইজিং-এর দুইটি উদ্দেশ্য লেখ?
- ৪। কার্বুরাইজিং প্রক্রিয়াকে প্রধানত কয় ভাগে ভাগ করা যায়?
- ৫। কার্বুরাইজিং প্রক্রিয়া কত প্রকার?
- ৬। কাবুরাইজিং প্রক্রিয়ার ২টি সুবিধা লেখ?

সংক্ষিপ্ত প্রশ্ন

- ১। কাবুরাইজিং বলতে কী বোঝায়?
- ২। কাবুরাইজিং কত প্রকার ও কী কী?
- ৩। কাবুরাইজিং প্রক্রিয়ার ৩টি উদ্দেশ্য লিপিবদ্ধ কর।
- 8। কাবুরাইজিং-এর প্রয়োগ ক্ষেত্র দেখাও।
- ৫। লিকুইড কার্বুরাইজিং-এর উপাদানগুলো লেখ?
- ৬। প্যাক কার্বুরাইজিং বলতে কী বোঝায়?

- ১। কার্বুরাইজিং প্রক্রিয়া বলতে কী বোঝায়? কার্বুরাইজিং প্রক্রিয়ার শ্রেণি বিভাগ কর।
- ২। কার্ব্রাইজিং-এর উদ্দেশ্যগুলো লিপিবদ্ধ কর।
- ৩। প্যাক কার্বুরাইজিং প্রক্রিয়ার সংক্ষিপ্ত বিবরণ দাও।
- ৪। গ্যাস কার্বরাইজিং প্রক্রিয়া সম্পর্কে যা জান লেখ।
- ৫। লিকুইড কার্বুরাইজিং প্রক্রিয়ার বিবরণ দাও।
- ৬। কাবুরাইজিং এর প্রয়োগ ক্ষেত্র বিবৃত কর।

অষ্টম অধ্যায়

টেম্পারিং প্রক্রিয়া

Tempering Process

৮.০ সূচনা (Introduction)

ধাতৃকে হার্ডেনিং করার ফলে ভঙ্গুরতা বৃদ্ধি পায়। সকল অংশ সমানভাবে শক্ত হয় না। এ অসুবিধা দূর করার জন্য সাধারণ ইস্পাতকে (কার্বনের হার অনুযায়ী) ২২০° থেকে ৫০০° সেঃ তাপমাত্রায় পূর্ণ উত্তপ্ত করে লবণাক্ত পানি বা তেলের মধ্যে ডুবিয়ে শীতল করা হয়। এ পদ্ধতিকে টেস্পারিং বলে।

৮.১ টেম্পারিং (Tempering Processes):

হার্ডেনিং পদ্ধতিতে স্টিল শক্ত হওয়ার সঙ্গে এটা ভঙ্গুর হযে পড়ে। সাধারণ স্টিল যত বেশি শক্ত হয় এটার ভঙ্গুরতা দোষ তত বেড়ে যায়। স্টিলের এই ভঙ্গুরতা দোষ কমিয়ে এর দুচ্ছেদ্যতা বা টাফনেস (Toughnees) গুণকে বাড়িয়ে যয়ের বিভিন্ন অংশ যে স্থানে যে প্রকার শক্ত করার প্রয়োজন, ঐ প্রকার শক্ত করার প্রগালিকে টেম্পারিং (Tempering) বলে। অর্থাৎ হার্ডেনিং করার পর স্টিলে টাফনেস বাড়ানোর প্রক্রিয়া হলো টেম্পারিং। অথবা হার্ডেনিং করা স্টিলকে পুনরায় উত্তপ্ত করে বিশেষ প্রক্রিয়ার মাধ্যমে শীতলকরণ করাকে টেম্পারিং বলে। ধাতৃকে উচ্চ তাপ মাত্রায় তাপ দিয়ে দ্রুতে ঠাঞ্জা যথা কুয়েঞ্চিং করে শক্ত হলে একে অবার উত্তপ্ত করে ঠাঞ্জা করাকে টেম্পারিং বলে।

৮.২ টেম্পারিং পদ্ধতি (Tempering Processes)

কোনো স্টিল খণ্ডকে টেম্পার দিতে হলে প্রথমে একে হার্ডেনিং প্রণালিতে শক্ত করে নিয়ে পরে টেম্পার দিতে হয়। টেম্পার সাধারণত দুটি প্রণালিতে দেয়া হয়ে থাকে। যেমন-

- ১। পৃথক তাপে টেম্পার দেয়া
- ২। একই তাপে টেম্পার দেয়া
- ১। পৃথক তাপে টেম্পার দেয়া : প্রথমে একবার তাপ প্রয়োগ করে শক্ত করে নিয়ে পরে উক্ত তাপের চেয়ে অধিক তাপ প্রয়োগ করে টেম্পার দেয়াকে পৃথক তাপে টেম্পার দেয়া বুঝায়। উচ্চ শ্রেণির স্টিল দ্বারা তৈরি অথবা ক্ষুদ্র এবং জটিল গঠন বিশিষ্ট বস্তুকে এই প্রণালিতে টেম্পার দেয়া হয়ে থাকে।
- ২। একই তাপে টেম্পার দেয়া: প্রথমে যে তাপ প্রয়োগ করে শক্ত করা হয় পরে একই তাপ দ্বারা টেম্পার দেয়াকে একই তাপে শক্ত বা টেম্পার দেয়া বুঝায়। কুয়েঞ্জিং করার ফলে স্টিলের গাঠনিক পরিবর্তন হয়, ভঙ্গুরতা বৃদ্ধি পায়। এরূপ অসুবিধা দূর করার জন্য টেম্পার দেয়া হয়।

সকল অংশ সমানভাবে শক্ত হয় না বলে উল্লেখিত অসুবিধাগুলি দূর করার জন্য সাধারণ ইস্পাতকে (কার্বন এর হার অনুযায়ী) ২২০০ হতে ৫০০০ সেঃ তাপমাত্রায় পুনঃ একই তাপে উত্তপ্ত করে লবণাক্ত পানি অথবা তেলের মধ্যে ডুবিয়ে শীতল করার পদ্ধতিকে একই তাপে শক্ত করা বা টেম্পার দেয়া বলে। সাধারণত যন্ত্রাদির বেলায় এই প্রণালি অনুসরণ করা হয়ে থাকে।

৮.৩ টেস্পারিং–এর প্রয়োজনীয়তা (Needs of Tempering)

টেম্পারিং করার ফলে স্টিলের টাফনেস বাড়ে এবং ভঙ্গুরতা কমে। টেম্পারিং শব্দটার প্রায়ই অপ্যবহার হয়। অনেক সময় হার্ডেনিং—এর অর্থে টেম্পারিং কথাটা ব্যবহৃত হয়। কিন্তু আসলে এটা ঠিক নয়। টেম্পারিং প্রক্রিয়ায় ফলে ওয়ার্কপিসের কোনো বিশেষ অংশকেও টাফ করা যায়। হার্ডেনিং করার পর স্টিলে স্টাফনেস বাড়ানোর জন্যই টেম্পারিং—এর প্রয়োজন।

৮.৪ টেস্পারিং–এর প্রয়োগ ক্ষেত্র (Application Field of Tempering):

ধাতৃকাটার বাটালি (চিজেল)-এর কাটিং এজ, হাতৃড়ির ফেস, কাটিং টুল, পাঞ্চের সেন্টার, শেয়ার মেশিনের ব্লেড, হ্যাক'স ব্লেডের দাঁত অর্থাৎ ধাতৃ কর্তনের টুল মেকিং-এ টেম্পারিং ব্যাপকভাবে ব্যবহৃত হয়। তাছাড়া ঘর্ষণ হলে মেশিন টুলসহ রকমারি যন্ত্রাংশে টেম্পারিং করা হয়।

প্রশ্নমালা-৮

অতি সংক্ষিপ্ত প্রশ্ন :

- ১। কোনো ধাতু উত্তপ্ত করে লবণাক্ত বা তেলের মধ্যে ডুবিয়ে শীতল করার পদ্ধতিকে কী বলে?
- ২। টেম্পারিং কাকে বলে?
- ৩। কোন পদ্ধতিতে স্টিল শব্জ হওয়ার পাশাপাশি ভঙ্গুর হয়ে পড়ে?
- 8। টেম্পারিং-এ প্রধানত ধাতুর কোন গুণটি বৃদ্ধি পায়?
- ৫। পৃথক তাপে ধাতুকে শব্দ এবং টেম্পারিং করার পদ্ধতিকে কী বলে?
- ৬। কোন যন্ত্রাদিকে কত ডিগ্রি সীমার মধ্যে ধাতুকে উত্তপ্ত করা হয়?
- ৭। টেম্পারিং-এ ধাতুকে কীভাবে ঠাণ্ডা করা যায়?
- ৮। টেম্পারিং করার ফলে স্টিলের কী গুণ বাড়ে?
- ৯। হার্ডেনিং-এর পর স্টিলের কী গুণ বাড়ানোর জন্য টেম্পারিং করা হয়?
- ১০। টেম্পারিং-এর দৃটি প্রয়োগ ক্ষেত্র দেখাও।

गर्किछ थन् :

- ১১। টেম্পারিং বলতে কী বোঝায়?
- ১২। টেম্পারিং-এর ফলে স্টিলের কী কী গুণের পরিবর্তন ঘটে?
- ১৩। টেম্পারিং-এ উত্তপ্ত ধাতৃ শীতলকরণ প্রক্রিয়ার বর্ণনা দাও।
- ১৪। সাধারনত ধাতুকে কত ডিগ্রি রেঞ্জে উত্তপ্ত করে টেম্পারিং করা হয়?
- ১৫। শক্ত করা এবং টেস্পার দেয়া একই তাপে প্রক্রিয়াটি বিশ্লেষণ কর।
- ১৬। টেম্পারিং শব্দের অপব্যবহার কী?
- ১৭। ওয়ার্ক পিসের কোনো বিশেষ অংশকে টাফ করার জন্য কোন পদ্ধতি অবলম্বন করা হয়?
- ১৮। টেম্পারিং-এর তিনটি প্রয়োগ ক্ষেত্রের নাম লেখ।

- ১৯। টেম্পারিং বলতে কী বুঝায়? ব্যাখ্যা কর।
- ২০। পৃথক তাপে টেম্পারিং করার পদ্ধতি ব্যাখ্যা কর।
- ২১। একই তাপে টেস্পারিং পদ্ধতি বুঝিয়ে লেখ।
- ২২। টেম্পারিং পদ্ধতি সম্পর্কে সংক্ষেপে যা জান লেখ।
- ২৩। টেস্পারিং-এর প্রয়োজনীয়তা লেখ।
- ২৪। টেম্পারিং-এর প্রয়োগ ক্ষেত্র সম্পর্কে যা জান লেখ।

নবম অধ্যায়

অ্যানেলিং প্রক্রিয়া

Annealing Process

৯.০ সূচনা (Introduction) :

ধাতুকে ৫০০ সে. তাপমাত্রার উর্ধ্বে উত্তপ্ত করে ধীরে ধীরে ঠাণ্ডা করাকে অ্যানেলিং বলে। এ পদ্ধতিতে ধাতুকে সকল স্থানে সমান তাপ প্রয়োগ করতে হয় এবং একই তাপমাত্রায় নির্দিষ্ট সময় পর্যন্ত ধীরে ধীরে ঠাণ্ডা করতে হয়। ধাতুকে মেশিন, ফাইল, হ্যাক'স ইত্যাদি দিয়ে কাটার জন্য অ্যানেলিং করতে হয়।

১.১ অ্যানেলিং প্রক্রিয়া (Annealing process) ঃ

ধাতুর অভ্যন্তরীণ পীড়ন দ্রীভৃত করে ধাতুকে নরম করার প্রক্রিয়াকে অ্যানেলিং বলে। ধাতুর গাঠনিক পরিবর্তন উর্ধ্ব ক্রিটিক্যাল তাপমাত্রার (৫০° সে:) উর্ধ্ব পর্যন্ত উত্তপ্ত করে অতীব ধীরে ঠাণ্ডা করা বা চুলি-র ভেতরে রেখে ধীরে ধীরে ঠাণ্ডা করাকে অ্যানেলিং (Annealing) বলে। ঠাণ্ডা অবস্থায় রোল করা, কাটা, পেটা বা অন্য কোনো অপারেশনের ফলে ধাতু কিছুটা শক্ত হতে পারে। ধাতুর এ হার্ডনেস বা কাঠিন্যতা দূর করতে অ্যানেলিং করতে হয়। এ পদ্ধতিতে ধাতুর সকল স্থানে সমান তাপ প্রয়োগ করতে হয় এবং একই তাপমাত্রায় নির্দিষ্ট সময় পর্যন্ত রেখে ধীরে ধীরে ঠাণ্ডা করতে হয়।

একই তাপমাত্রায় ধাতুকে কিছুক্ষণ রাখাকে সোকিং (Soaking) বলে।

৯.২ আনেলিং–এর প্রয়োগ ক্ষেত্র (Application Fields of Annealing) :

অ্যানেলিং-এর প্রয়োগ ক্ষেত্র নিমে উল্লেখ করা হলো-

ঠাণ্ডা অবস্থায় রোল করা, কাটা, পেটান বা অন্য কোনো অপারেশনের ফলে ধাতু কিছুটা শক্ত হতে পারে।
অ্যানেলিং প্রক্রিয়া প্রয়োগ করার ফলে পুনঃকেলাশন হয় এবং সমস্ত যান্ত্রিক গুণাগুণ পুনরুদ্ধার হয়। স্টিলকে
এক নির্দিষ্ট তাপমাত্রা ক্রিটিক্যাল পয়েন্ট পর্যন্ত উত্তপ্ত করার পর দীর্ঘ সময় ধরে ঠাণ্ডা করানো হয়। এটা ধাতুকে
কার্যোপযোগী করে তোলে। অ্যানেলিং ধাতুর ভেতরে অপ্রয়োজনীয় স্ট্রেস দূর করে। এভাবে অ্যানেলিং
প্রয়োজন মতো বিভিন্ন ক্ষেত্রে প্রয়োগ করা হয়ে থাকে।

৯.৩ অ্যানেশিং পদ্ধতির বর্ণনা (Description of annealing process) :

এ্যানেলিং পদ্ধতি সাধারনত তিন প্রকার। যথা:

- ১। প্রসেস অ্যানেলিং (Process annealing)
- ২। ফুল অ্যানেলিং (Full annealing)
- ত। পেটেনটিং আনেলিং (Patenting annealing)

১) श्रात्मन ज्यातिनश्र

এ পদ্ধতিতে স্টিলের কাঠিন্যতা (Hardness) কমে এবং ডাকটিলিটি (Ducitility) বৃদ্ধি পায়। এটা সাধারনত ফ্লাট (Flat) ও শীট (Sheet) এর ক্ষেত্রে ব্যবহার করা হয়। স্টীলকে ৭০০° সেঃ তাপমাত্রায় উত্তও করে কিছুক্ষণ তাপমাত্রায় রেখে যাতে জব এর সব স্থানে একই তাপমাত্রা হয় সেজন্য ধীরে ঠাণ্ডা করা হয়।

২) ফুল আনেলিং (Full annealing) :

এটা সাধারণ অ্যানেলিং মতো। তবে এ পদ্ধতিতে স্টীলকে উর্ধ্ব ক্রিটিক্যাল তাপমাত্রায় পর্যন্ত দীর্ঘ সময় রেখে চুল্লির অভ্যন্তরে অতি ধীরে ধীরে ঠাপ্তা করা হয়।

আবার পদ্ধতিগতভাবে অ্যানেলিংকে দুই ভাগে ভাগ করা হয়। যথা:

- ক) আবদ্ধ অ্যানেলিং (Closed annealing)
- খ) মুক্ত অ্যানেলিং (Open annealing)

ক) আবদ্ধ আনেশিং (Closed annealing) :

সর্বোত্তম অ্যানেলিং করতে হলে আবদ্ধ অ্যানেলিং পদ্ধতি বিশেষ উপযোগী। অধিকাংশ ক্ষেত্রে এ পদ্ধতি অনুসরণ করা হয়ে থাকে। এ পদ্ধতিতে একটি কাস্ট আয়রন—এর বাক্সের অভ্যন্তরে অগ্নিরোধী ইটের (Fine brick) আন্তরণ দেয়া থাকে। যে স্টিল খণ্ডটি অ্যানেলিং করতে হবে সেটা উক্ত বাক্সে রেখে বালি দ্বারা বাক্সটি পূর্ণ করতে হয়। বায়ুশূন্য অবস্থায় বাক্সটির ঢাকনায় আটকিয়ে এটার চারদিকে অগ্নিরোধক খাঁটি ফায়ার ক্লে (Fire clay) দ্বারা প্রলেপ দিতে হয়। পরে বাক্সটি বন্ধ চুলিতে রেখে ৭০০০ থেকে ৮১৫০ তাপমাত্রায় উত্তপ্ত করে উক্ত তাপমাত্রায় এক ঘণ্টা সময় রাখা হয়। পরে উত্তাপ প্রদান বন্ধ করে দিলে বাক্সটি চুল্লির অভ্যন্তরে আন্তে আন্তে শীতল হতে থাকে এবং সম্পূর্ণ ঠাপ্তা হলে চুল্লি থেকে বাক্সটি বাইরে এনে এটার মধ্য হতে স্টিল খণ্ডটি বের করে নেয়া হয়।

খ) মুক্ত অ্যানেশিং (Open annealing) :

এ পদ্ধতিতে স্টিল খণ্ডটিকে নির্দিষ্ট তাপমাত্রায় কামারশালায় ফোর্জ (Forge)—এর মধ্যে উত্তপ্ত করে ঐ ফোর্জ এর মধ্যেই ধীরে ধীরে ঠাণ্ডা করতে হয় বা বাইরে এনে গরম ছাই (Ash), বালি (Sand) অথবা চুন (Lime) এর মধ্যে চুকিয়ে ধীরে ধীরে ঠাণ্ডা করা হয়। উত্তপ্ত স্টিল বায়ুর অক্সিজেনের সাথে যুক্ত হয়ে উপরে অক্সিডাইজ আয়রনের আবরণ পড়ে। এতে স্টিল নরম হতে বাধা দেয়। তাছাড়া কপার, ব্রাস প্রভৃতিকে নরম করতে হলে একে মুক্ত বায়ু বা পানিতে ভূবিয়ে ঠাণ্ডা করার নিয়ম। স্টিলকে পানিতে ভূবালে যেমন স্টিল শক্ত হয় কিন্তু কপার বা ব্রাসকে পানিতে ভূবালে এটা শক্ত হওয়ার পরিবর্তে আরও নরম হয়।

৩। পেটেনটিং অ্যানেলিং (Patenting annealing) :

এ পদ্ধতিতে স্টিলের কাঠিন্যতা (Hardness) কমে এং ডাকটিলিটি (Ductility) বৃদ্ধি পায়। তবে এ পদ্ধতিতে স্টীলকে উর্ধ্ব ক্রিটিক্যাল তাপমাত্রায় পর্যন্ত দীর্ঘ সময় রেখে চুল্লির অভ্যন্তরে ধীরে ধীরে ঠাণ্ডা করা হয়।

৯.৪ অ্যানেলিং-এর প্রয়োজনীয়তা (Need of Annealing) :

- ১। ধাতুর ডাকটাইল গুণ বৃদ্ধির মাধ্যমে মেশিনিং কাজের উপযোগী নরম করা।
- ২। ধাতুর অভ্যন্তরীণ পীড়ন অপসারণ করা।

অ্যানেলিং প্রক্রিয়া

- ৩। তাণ্ডবতা, ভঙ্গুরতা, বৈদ্যুতিক, চৌমকীয় ও যান্ত্রিক গুণাগুণের পরিবর্তন করা।
- ৪। অভ্যন্তরীণ গঠনে দানার সৃক্ষতা বৃদ্ধি করা।
- ৫। স্টিলকে বেভিং, ফরমিং প্রভৃতি কাজের উপযোগী করে প্রস্তুত করা।

প্রশালা-৯

অতি সংক্ষিপ্ত প্রশ্ন :

- ১। অ্যানেলিং কী?
- ২। ধাতুকে উর্ধ্ব ক্রিটিক্যাল তাপমাত্রার উর্ধ্বে উত্তপ্ত করে ধীরে ধীরে ঠাণ্ডা করার প্রক্রিয়াকে কী বলে?
- ৩। অ্যানেলিং-এ ধাতু ঠাণ্ডা করতে হলে কোথায় রাখা হয়?
- ৪। ওয়ার্ক হার্ডেনিং কাকে বলে?
- ৫। সোকিং (Soaking) কাকে বলে?
- ৬। অ্যানেলিং প্রক্রিয়া প্রয়োগ করার ফলে ধাতুর কী পরিবর্তন হয়।
- ৭। অ্যানেলিং পদ্ধতি কত প্রকার?
- ৮। ফুল অ্যানেলিং পদ্ধতি বলতে কী বোঝ?
- ৯। পদ্ধতিগত ভাবে অ্যানেলিং কত প্রকার?

সংক্ষিপ্ত প্রশ্ন :

- ১০। অ্যানালিং বলতে কীবোঝায়?
- ১১। ওয়ার্ক হার্ডেনিং বলতে কী বোঝায়?
- ১২। অ্যানেলিং-এর তিনটি প্রয়োগ ক্ষেত্র দেখাও।
- ১৩। অ্যানেলিং পদ্ধতি কত প্রকার ও কী কী?
- ১৪। ফুল অ্যানেলিং বলতে কী বোঝায়?
- ১৫। মুক্ত অ্যানেলিং বলতে কী বোঝায়?
- ১৬। অ্যানেলিং-এর প্রয়োজনীয়তা আলোচনা কর।

- ১৮। অ্যানেলিং সম্পর্কে যা জান লেখ?
- ১৯। অ্যানেলিং-এর প্রয়োগক্ষেত্র দেখাও?
- ২২। অ্যানেলিং পদ্ধতিগুলো কী কী? যে কোনো একটি পদ্ধতি বর্ণনা দাও।
- ২৩। আবদ্ধ অ্যানেলিং সম্পর্কে যা জান লেখ।
- २८। मुक ज्यातिनश अम्भर्क अश्यक्ष या जान लिए।
- २৫। প্রসেস অ্যানেলিং ও ফুল অ্যানেলিং-এর মধ্যে পার্থক্য কী?
- २७। प्रातिनश्- এর প্রয়োজনীয়তা আলোচনা কর।

দশম অধ্যায়

নরমালাইজিং প্রক্রিয়া

Normalizing Process

সূচনা (Introduction) :

ধাতুকে উর্ধ্ব ক্রিটিক্যাল তাপমাত্রায় উপরে ৫০° থেকে ১০০° সেঃ তাপমাত্রায় উত্তপ্ত করে কিছু সময় চুলির বাহিরে রেখে মুক্তবায়ুতে শীতল করে ফলে মিডিয়াম কার্বন স্টিলের শক্তি বৃদ্ধি পায়, সুষম হয় ও প্রাকৃতিক বৈষম্য রহিত হয় এবং ভঙ্গুরতা হ্রাস পায়।

১০.১ নরমালাইলজিং প্রক্রিরা (Normalizing process) :

শ্টিলকে উর্দ্ধ ক্রিটিক্যাল তাপমাত্রার উপরে ৫০°C তাপমাত্রায় কিছু সময় রেখে চুল্লির বাইরে মুক্ত বায়ুতে শীতল করাকে নরমাইলাজিং বলে। কামারশালায় ফোর্জিং করার সময় ধাতুখন্ডের অভ্যন্তরীণ প্রকৃতির বৈষম্য ঘটে ফলে ধাতু খন্ডটি ভঙ্গুর হয়ে পড়ে। এ পদ্ধতিতে ধাতু খন্ডের এই বৈষম্যকে দূর করে একে সুষম ও এক প্রকৃতিক (Homogenous) করা সম্ভব হয়ে থাকে। এ পদ্ধতিকেই নরমালাইজিং বলে।

১০.২ নরমালইজিংএর প্রয়োগ ক্ষেত্রে (Application Field of Normalizaing) :

১) রোলিং (Rolling), ফোজিং (Forging) স্ট্যামপিং (Stamping) প্রভৃতি কার্যের জন্য স্টীলে যে মোটা গ্রেনের সৃষ্টি হয়, নরমালাইজিং করলে মিডিয়াম কার্বন স্টিলের শক্তি বৃদ্ধি পায়। লো কার্বন স্টিলে মেশিনেবিলিটি, ওয়েল্ড–এর গাঠনিক পরিবর্তন হয়। অভ্যন্তরীণ পীড়ন (Internal Stress) হ্রাস পায়।

২। যে সমস্ত যন্ত্রাংশ উচ্চ পীড়নে (Stress) ব্যবহৃত হয় সে সমস্ত স্টিলের যন্ত্রাংশে চূড়ান্ত তাপক্রিয়া হিসেবে নরমালাইজিং করা হয়।

১০.৩ নরামালাইজিং পদ্ধতি বর্ণনা (Description of Normalizing Process) :

স্টিলকে হার্ডেনিং-এর আগে নরমালাইজিং করে নিতে হয়। নরমালাইজিং-এর তাপমাত্রা স্টিলের মধ্যে কার্বনের পরিমাণের উপর নির্ভর করে।

১০.৪ নরমালাইজিং-এর প্রয়োজনীয়তা (Needs of Normalizing) :

নরমালাইজিং-এর প্রয়োজনীয়তা নিমে দেওয়া হলো:

- ১। এই পদ্ধতি ধাতুকে সাধারণ ও সুষম অবস্থায় আনয়ন করে।
- ২। মুক্ত বায়ুতে শীতল করায় ধাতুর গাঠনিক গুণাগুণের পরিবর্তন করে।
- ৩। স্টিলের আভ্যন্তরীণ স্ট্রেস দূর করে এবং ক্ষুদ্র দানার সৃষ্টি করে।
- ৪। স্টিলের সৃষ্ট মোটা দানা দূর করে এবং মেশিনেবলিটি বৃদ্ধি করে।
- ৫। যান্ত্রিক গুণাগুণ বৃদ্ধি করে উত্তমরূপে মেশিনিং-এর জন্য উপযোগী করে।
- ৬। স্টিলকে হার্ডেনিং করার পূর্বে এই পদ্ধতির প্রয়োজন হয়।
- ৭। ধাতু রোলিং, কাস্টিং, ফোর্জিং-এ ওয়েলডিং করার সময় ভেতরকার স্ট্রেস দূর করে।
- ৮। ধাতুর অভ্যন্তরীণ বৈষম্যকে স্বাভাবিক করে।

অ্যানেলিং এবং নরমালাইজিং-এর মধ্যে পার্থক্য :

অ্যানেলিং	নরমালাইজিং
১। চুলির মধ্যে ধীরে ধীরে ঠাণ্ডা করা হয়।	১। বায়ুতে ঠাণ্ডা করা হয়।
২। স্টিলকে কম শক্তি দেয়	২। স্টিলকে বেশি শক্তি দেয়।
৩। স্টিলকে বেশি % ইলংগেশন দেয়।	৩। স্টিলকে কম % ইলংগেশন দেয়।
৪। নরমালাইজিং-এর চেয়ে খরচ বেশি ।	৪। অ্যানেলিং-এর চেয়ে খরচ কম।
৬। নরমালাইজিং-এর চেয়ে জ্যানেলিড স্টিল বেশি নরম এবং ম্যালিয়েবল।	৫। জ্যানেলিং-এর চেয়ে নরমালাইজভ স্টিল বেশি শক্ত।

প্রশ্নমালা-১০

অতি সংক্ষিপ্ত প্রশ্ন:

- ১। নরমালাইজিং এ ধাতুকে উত্তপ্ত করার তাপমাত্রার সীমা কত?
- ২। নরমালাইজিং এ ধাতু কোথায় ঠাণ্ডা করা হয়?
- ৩। নরমালাইজিং কী?
- ৪। নরমালাইজিং-এর ফলে মিডিয়াম কার্বন স্টিলের কী গুণ বৃদ্ধি পায়।
- ৫। নরমালাইজিং ও অ্যানেলিং প্রক্রিয়ার মূল পার্থক্য কী?
- ৬। স্টীলকে হার্ডেনিং-এর আগে কোন কার্য সম্পাদন করতে হয়?
- ৭। নরমালাইজিং-এর মূল উদ্দেশ্য কী?
- ৮। নরমালাইজিং-এর ফলে লো কার্বন স্টিলের কোন গুণাগুণটি বাড়ায়?

সংক্রিপ্ত প্রশ্ন:

- ৯। নরমালাইজিং বলতে কী বোঝায়?
- ১০। নরমালাইজিং প্রক্রিয়ায় তাপমাত্রার সীমা ক্রিটিক্যাল তাপমাত্রার বেশি না কম? এর সীমা দেখাও।
- ১১। ফোর্জিং-এ ধাতুর উপর কী কী প্রভাব পরিলক্ষিত হয়?
- ১২। নরমালাইজিংকেন করা হয়?
- ১৩। নরমালাইজিংও অ্যানিলিং-এর মধ্যে পার্থক্য দেখাও।
- ১৪। নরমালাইজিং-এর একটি প্রয়োগক্ষেত্র দেখাও।
- ১৫। নরমালাইজিং-এর ফলে স্টিলের গুনাগুণের কী কী পরিবর্তন হয়।
- ১৬। নরমালাইজিং-এর তাপমাত্রা কিসের উপর নির্ভর করে?
- ১৭। নরমালাইজিং-এর পূর্বে স্টিলের গঠনের দানার আকৃতি কী রূপ থাকে?
- ১৮। নরমালাইজিং-এর দুইটি প্রয়োজনীয়তা দেখা।

- ১৯। নরমালাইজিং সম্পর্কে যা জান লেখ।
- ২০। নরমালাইজিং প্রক্রিয়া কেন করা হয়? ব্যাখ্যা কর।
- ২১। নরমালাইজিং-এর প্রয়োগ ক্ষেত্র দেখাও।
- ২২। নরমালাইজিং-এর প্রয়োজনীয়তা আলোচনা কর।

একাদশ অধ্যায়

গেজ (Gauge)

১১.০ সূচনা (Inroduction):

উৎপন্ন দ্রব্য বা যন্ত্রাংশের সঠিক আকৃতির মাপ জানার জন্য পরিমাপের প্রয়োজন। আর পরিমাপ গ্রহণের জন্য চাই পরিমাপক যন্ত্র। একই ধরনের অধিক সংখ্যক যন্ত্রাংশ বা উৎপাদিত দ্রব্যের পরিমাপ গ্রহণ করা ব্যয় সাপেক্ষও। খরচ ও সময় বাঁচানোর জন্য মাপ পরিদর্শন (Inspection) করা হয়। মাপ পরিদর্শনের জন্য যে পরিমাপক যন্ত্র ব্যবহার করা হয় তাকেই গেজ (Gauge) বলে।

১১.১ গেজ (Gauge):

গেজ হচ্ছে একটি মাপ তুলনাকরণ ডিভাইস বা যন্ত্র। কম সময়ে স্বল্প উপাদন ব্যয়ে একই সঙ্গে অধিক সংখ্যক যন্ত্রাংশের বারংবার মাপ গ্রহণের কাজ অতি সহজতর করার জন্য যে যন্ত্র বা ডিভাইস ব্যবহার করা হয়, তাকে গেজ (Gauge) বলে। গেজের সাহায্যে বস্তুর আকার, আকৃতি, মাপ, ওজন এবং বিভিন্ন মেশিনের অংশ অথবা সংযোজিত অংশের পারস্পরিক অবস্থা, সঠিকতা ইত্যাদি পরীক্ষা করা হয়।

বিভিন্ন ধরনের মাপ গ্রহণ করার জন্য নানা প্রকার স্ট্যান্ডার্ড গেজ (Standard Gauge) ব্যবহার করা হয়।

১১.২ গেজের শ্রেণিবিভাগ (Types of Gauges)

সচরাচর ব্যবহৃত বিভিন্ন প্রকার গেজের নাম:

51	ফিলার গেজ (Feller gauge)	
21	রেডিয়াস গেজ বা ফিলেট গেজ (Radius gauge)	
91	থ্ৰেড পিচ গেজ (Thread gauge)	
8	ডায়াল ইভিকেটর গেজ (Dial indicator gauge)	
œ١	ক্রাংক শ্যাফট ডিসটরশন ডায়াল (Crank shaft distortion gauge)	
91	ডেপথ গেজ (Depth gauge)	
91	টেলিস্কোপিক গেজ (Telescoping gauge)	
51	ওয়্যার গেজ (Wire gauge)	
a 1	হাইট গেজ (Height Gauge)	
106	লিমিট বা সীমা গেজ (Limit gauge or go and no go gauge)	
221	একমি প্রেড গেজ (Acme thread gauge)	
156	শীট মেটাল গেজ (Sheet metal gauge)	

উপরোক্ত প্রধান প্রধান গেজ-সমূহের বর্ণনা নিম্নে প্রদন্ত হলো-

রেডিয়াস বা ফিলেট সেজ (Radius or Fillet Gauge):

কোনো কার্যবস্তুর ব্যাসার্থ বা ফিলেটের মাপ পরিদর্শনের জন্য এই গেজ ব্যবহার করা হয়। সাধারণত ০.৫ মি.মি. পুরু টুল ইস্পাতের তৈরি কতকগুলো ব্লেছের সমষ্টি নিয়ে এই গেজ সেট তৈরি। এই গেজের দুই দিকেই ব্লেড থাকে।

চিত্র :১১,১ রেডিয়াস বা ফিলেট গেছ

তর্যার পেজ (Wire Gauge):

ভারের ব্যাস (Diameter) পরিমাপ করার জন্য ইস্পাতের তৈরি আদর্শ (Standard) মাপের খাঁজ বিশিষ্ট যে পোলাকৃতি থাতুখণ্ড ব্যবহার হয় তার নাম ওয়্যার গেজ। থাতব ভারের ব্যাস পরিমাপ ও পরিদর্শনের জন্য ওয়ার গেজ অতি জনপ্রিয়। এক মিলি মিটারের ১০০ ভাগের ১ ভাগ অথবা ১ ইঞ্চির ১ হাজার ভাগের ১ ভাগ মাপ এই গেজের সাহায্যে পাওয়া যায়। যদিও এই মাপ মাইক্রোমিটার কিংবা ভার্নিয়ার ক্যালিপার্স দিয়ে নির্ণয় করা যায়।

চিত্র: ১১.২ ওয়্যার গেজ

শীট মেটাল গেজ (Sheet Metal Gauge):

'শীট মেটাল গেজ' বিভিন্ন স্ট্যাভার্ড মাপের শীটের ভৈরি একটি ধাতব প্লেট বিশেষ। বিভিন্ন আকৃতির 'শীট মাপতে মেটাল গেজ' ব্যবহৃত হয়।

চিত্ৰঃ ১১.৩ শীট মেটাল গেজ

প্রাপ পেজ (Plug Gauge):

প্লাগ গেল্স সাধারণত সৃক্ষ হোল চেক করার কাজে ব্যবহৃত হয়। এছাড়া গোলাকার, চতুক্ষোণ, ষড়কোণ ইত্যাদি বিভিন্ন আকারের ছিদ্রের উপযোগী মাপ পর্যবেক্ষণ করতেও প্লাগ গেজের ব্যবহার সর্বাধিক।

এটা দেখতে অনেকটা শ্যাফটের মতো কিন্তু খুব ভালো করে গ্রাইভ ও ল্যাপ করা থাকে।

চিত্র:১১.৪ প্রাগ গেজ

(a) Progressive limit plug gauge (b) Double ended limit plug gauge.

রিং গেজ (Ring Gauge): শ্যাফটের মাপ চেক করার জন্য রিং গেজ ব্যবহার করা হয়। এই গেজ দেখতে রিং এর মতো গোলাকার এবং ভেতরের অংশ সর্বত্ত একই মাপের গোল এবং ক্রমশ গোল ছিদ্র বর্তমান থাকে। এর ভেতরের দিকটা ভালোভাবে ফিনিশ করা থাকে।

চিত্র: ১১.৫ রিং গেজ

ক্সাপ পেজ (Snap Gauge): স্ন্যাপ পেজ শ্যাফট জাতীয় কোন গোল বস্তুর উপরিভাগে চালনা করার উপযোগী নির্দিষ্ট ব্যবধান অর্থাৎ ফাঁক (Gap) বিশিষ্ট হয়ে থাকে। মুখ বা অংশ দৃটি দ্বারা এ ব্যবধান সূচিত করা হয়। এ গেজ গোলাকার এবং সমতল উভয় প্রকারই হয়ে থাকে।

চিত্র: ১১.৬ স্থ্যাপ গেজ

ক্যালিপার পেন্ধ (Calliper Gauge): ক্যালিপার গেজ অনেকটা স্ন্যাপ গেজের ন্যায় এক প্রান্ত বিশিষ্ট। এটা দিয়ে কার্যবস্তু ও বাইরের মাপ সহজেই নেয়া যায়। সাধারণত বৃহত্তর মাপ নেয়ার ক্ষেত্রে এটা ব্যবহৃত হয়ে থাকে।

চিত্র: ১১.৭ ক্যালিপার গেজ

টেপার প্রাগ গেজ (Taper Plug Gauge):

টেপার প্লাগ গেজ ক্রমশ সরু। কোনো চিত্র আবশ্যকীয় হারে সরু করা আচে কিনা তা পরীক্ষা করার জন্য এ গেজ ব্যবহার করা হয়। টেগার প্লাগ গেজকে টেপার সিলিভার গেজও বলা হয়।

চিত্র: ১১.৮ টেপার প্লাগ গেজ

টেপার রিং গেজ (Taper Ring Gauge) : টেপার রিং গেজ ক্রমশ সরু। গোল বস্তুর বাইরের মাপ পরীক্ষা করার জন্য এটা ব্যবহৃত হয়।

চিত্র: ১১.৯ টেপার রিং গেজ

প্রেড প্লাগ গেজ (Thread Plug Gauge): থ্রেড প্লাগ গেজকে অনেক সময় ক্লু প্লাগ গেজ (Screw Plug Gauge) বলা হয়। কোনো কোনো প্রেড প্লাগ গেজ–এর সাহায্যে প্রেডের কোর ডারামিটার–এর মাপ পরীক্ষা করার জন্য একটি প্রান্ত ক্লু থ্রেডবিহীন এবং অন্য প্রান্ত প্রেডের কোণ ও গভীরতার মাপ পরীক্ষা করার জন্য অনুরূপ ক্লু থ্রেড বিশিষ্ট থাকে।

চিত্র: ১১.১০ প্রেড প্লাগ গেজ

১১.৩ ফিলার গেজ (Feeler Gauge):

ছোট প্রঅস ফাকের চওড়া মাপ, দুটো জ্বোড়ার মাঝখানের ফাঁকের মাপ ইত্যাদি এই গেজের সাহায্যে বের করা যায়। সারফেস প্রেটের ওপর কার্যবন্ধর রেখে তার প্রাটনেস পরীক্ষা করা যায়। মোটরগাড়ির ইঞ্জিনের তাল্ব সেট করতে ও ফিলার—এর প্রয়োজন হয়। এই গেজের আর এক নাম থিকনেস গেজ। প্রকৃতপক্ষে কিলারফরারের গেজ কতকণ্ডলো বিভিন্ন মাপের স্টিলের লীট বা পাত দিয়ে তৈরি, তাদের ব্লেড বলা হয়। ব্লেডের পুরুত্ব মেট্রিক পদ্ধতিতে ০.০৪ মিমি থেকে ০.৩০ মি.মি. পর্যন্ত ৯টা ব্লেডে যথাক্রমে ০.০৪, ০.০৫, ০.০৬, ০.০৭, ০.০৮, ০.১০, ০.১৫, ০.২০ ও ০.৩০ মাপে চিহ্নিত থাকে।

চিত্র: ১১.১১ ফিলার গেজ

১১.৪ কিলার গেজের ব্যবহার (Uses of feeler gauge)

- ১। ফিলার গেজ, ক্ষুদ্র দূরত্ব এবং দুটি মিলনযোগ্য তলের মধ্যকার (Gap) মাপার ক্ষেত্রে ব্যবহার করা হয়।
- ২। মোটরগাড়ির ভাল্ব ট্যাপেট (Valve Tappet) নিয়ন্ত্রণ করতে এটা প্রায়ই ব্যবহার করা হয়।
- ৩। সারকেস প্রেটের সহায়তা নিয়ে এর সাহায়ে উপরিভাগের সমতলতা পরীক্ষা করা যায়।
- 8। ব্লেডের অর্থভাগ কোনো শ্রেণির গেজ ও সমান্তরাল (Parallel) এবং কোন শ্রেণির গেজ-এ এটা ক্রমশ সঙ্গু (Taper) থাকে। যে ব্লেডের অর্থভাগ ক্রমশ সঙ্গু, এটাকে ফাঁকের মধ্যে প্রবেশ করাতে সুবিধা হয়।
- ৫। ব্রেডগুলোকে স্বতন্ত্রভাবে অথবা প্রয়োজনমতো দুই তিনটিকে একযোগে ব্যবহার করা যেতে পারে। এক্ষেত্রে ব্রেডগুলোর মাপকে একত্রে যোগ করে নিতে হয়।
- ৬। ফিলার গেজের সাহায্যে বিয়ারিং-এর ক্লিম্বারেন, পিস্টন রিং ক্লিয়ারেন মাপা যায়।

প্রশ্নমালা ১১

অতি সংক্ষিপ্ত প্রশ্ন:

- ১। গেজ কাকে বলে?
- ২। গেজিং কী?
- ৩। গেজ ব্যবহারের একটি সুবিধা লেখ।
- ৪। গেজ ব্যবহারের একটি অসুবিধা লেখ।
- ৫। সচরাচর ব্যবহৃত তিনটি গেজের নাম কর।
- ৬। ফিলার গেজ কী?
- ৭। ফিলেট গেজ কী?
- ৮। ওয়্যার গেজ কী?
- ৯। প্র্যাগ গেজ কী?

সংক্রিপ্ত প্রশ্ন:

- ১০। গেজ বলতে কী বোঝায়?
- ১১। গেজিং বলতে কী বোঝায়?
- ১২। গেজ ব্যবহারের তিনটি সুবিধা লেখ।
- ১৩। গেজ ব্যবহারের তিনটি অসুবিধা লেখ।
- ১৪। সচরাচর ব্যবহৃত পাঁচটি গেজের নাম কর
- ১৫। রিং গেজের কাজ কী?
- ১৬। স্ন্যাপ গেজ বলতে কী বোঝায়?
- ১৭। ফিলার গেজের তিনটি ব্যবহার লেখ।

- ১৮। গেজ বলতে কী বুঝায়? গেজ ব্যবহারের সুবিধা ও অসুবিধাগুলো লেখ।
- ১৯। ফিলার গেজ কী? ফিলার গেজের চিত্র অংকন কর।
- ২০। ফিলার গেজের ব্যবহার সম্পর্কে যা জান লেখ।
- ২১। রেডিয়াস গেজ সম্পর্কে যা জান লেখ।
- ২২। ওয়্যার গেজ ব্যবহার প্রণালি উল্লেখ কর।
- ২৩। গ্রাগ গেজ সম্পর্কে যা জান লেখ।
- ২৪। রিং গেজ এবং ব্যবহার উল্লেখ কর।
- ২৫। স্থ্যাপ গেজ সম্পর্কে যা জান লেখ।
- ২৬। ফিলার গেজের ব্যবহার উল্লেখ কর

ৰাদশ অখ্যায়

কী বা চাবি (Key)

১২.০ সুলা (Introduction) :

কী-কে বাংলা ভাষর চলতি চাবি বলে। রট আরবন অথবা সাইক প্রিল থারা এটা তৈরি হর। শ্যাকট (Shaft)—ধন উপরিস্থ পুলি (Pulley), সিয়ার (Gear), এনাক (Crank) ইত্যাদি বাতে শ্যাকটের সঙ্গে সঙ্গে একই গাতিতে এবং একই দিকে বারে, এ উদ্দেশ্য একলোকে শ্যাকটের সাথে দৃচ্ভাবে আবদ্ধ করে রাখতে শ্যাকটের অক্ষেত্ত সমান্তরাগভাবে তৈরি নির্দিষ্ট নালী বা কী-গুয়ে (Key-Way) এর মধ্যে কী প্রবেশ করানো হয়। কী এর কুশ সেকশন—এর অর্থাণে পুরো দৈর্ঘ শ্যাকটের মধ্যে এবং অবশিষ্ট অর্থাণে পুলি পিয়ার ইত্যাদির বাব (Hab) অংশের মধ্যে থাকে । কী এর দৃটি পাশ সমাভ্যাদ থাকে । এটা মাথাবিহীন এবং মাধাসহ উত্তর প্রকারই হয়। যে হলে কী-গুয়ের উত্তর দিক থেকে কী এর উপর আবাত দেরার পর্যন্তি হান থেকে, ঐ হলে মাধাবিহীন কী এবং বে হলে পলি, পিয়ার ইত্যাদিকে শ্যাকটের একটি প্রাক্তে আবদ্ধ করতে হয়। ঐ হলে মাধাবিহীন কী এবং বে হলে পলি, পিয়ার ইত্যাদিকে শ্যাকটের একটি প্রাক্তে আবদ্ধ করতে হয়। ঐ হলে মাধাবিহীন কী এবং করা হরে থাকে।

১২.১ की वा हांबी (Key) :

গীৱার (Gear) পূলি (Pulley), জনান্ধ (Crank) ইত্যাদি শ্যাকটের সাবে একই দিকে একং একই গতিতে বোরানোর উদ্দেশ্য এদের উপরিভাগে অব্দ সমান্তরাল নালী বা কী ওরে (Key-Way) এর মধ্যে মহিন্ত নিল নারা তৈরি যে দীর্ঘ থাকে প্রবেশ করে দৃঢ়ভাবে আবদ্ধ করা হরে থাকে, তাকে কী (Key) বা চাবি বলে। এ চাবির দৃটি লার্থ সমান্তরাল এবং মাধা মৃক্ত ও মাধাবিহীন উভয় প্রকারেই হরে থাকে।

हिन: ১২,3 की (Key) वा ठावि

১২.২ চাৰি ব্যবহারের উদেশ্য (Objectives of Using Key)

চাৰি ব্যবহারের উদ্দেশ্য নিমুদ্ধশঃ

চাবি বারা অটকাসো সংযোগ অহারী হর।

চাবি শ্যাকটের উপর গীরার বা সংযোজিত অপর কোনো যন্তাংশের পারত্পরিক কুণীরন প্রবর্গতাকে রোধ করে রাখে। পুলি, নিরার, অনাক ইজ্যাসিকে শ্যাকটের সাথে একই নিকে এবং একই পভিজে সোরালোর উল্লেখ্য সাধারণত চাবি ব্যবহৃত হয়ে থাকে।

১২,৩ সবি বা কী (Key) এর প্রকারকের (Types of Key) আকার অনুসারে চাকিকে নিয়ুলিবিভয়ার আগ করা বার। করা:-

- ১। वर्गान्सव हानि (Square Key)
- ২। जावच्चात अवि (Rectangular Key)
- ও। জীব হেছ চাবি বা ট্যাপাব চাবি (Gibe- Head or Taper Key)
- ह । केंद्र बाक प्रति (Wood ruff Key)
- ६। महासम हानि (Saddle Koy)
- 🛊। बाँध्व शनि (Round Key)
- १। बाब हाबि (Beth Key)
- ৮। কেলাৰ সৰি (Feather Key)
- ১। शास्त्राण अनि (Parello Koy) और कदात क चादककात केवन श्रवाहरे दव।

চিত্ৰ। ১২.২ চাৰি বা কী (Key) এৰ প্ৰকাৰজ্ঞ

24.8 विक्रिय अकात प्रोक्ति गामबात

চাৰি বা কী বাৰা সাধাৰণত শ্যাকট এর সাবে পূলি, গীয়াৰ, কাউটার চাকা ইত্যালি সহযোজন কৰা ব্যঃ শিল্পে সচয়ালর ব্যবহৃত বিভিন্ন প্রকার কী-এর ক্যবহার উল্লেখ করা হসো।

১। টোপার খী (Taper Key) : এটা আরতকার এবং বর্ণকার উর্থাদেশ ক্রমণ চালু করা হালে বনিয়ে শক্তি সংগ্রালনের জন্য ব্যবহার করা হয়।

हिन्दः ५५.७ क्षेत्रात हानि वा की

২। প্যারাদাল কী (Paralle Key) : শ্যাকটের মধ্যস্থলে পূলিকে সংবদ্ধ করতে এই শ্রেণির কী (Key) উপযোগী হয়ে থাকে।

চিত্র: ১২.৪ প্যারালাল কী

ও। কেলার কী (Feather Key) : পুলিকে শ্যাকটের মধ্যস্থলে আবদ্ধ করতে এই প্রকার কী খুবই উপধোসী।

চিত্র: ১২.৫ কেদার কী

8। জীৰ হেড কী (Gib Head Key) : ভারী ওজনের ফ্লাই হুইল (Fly Wheel) পুলি প্রভৃতিতে এই কী ব্যবহার হয়ে থাকে।

ठियाः ১२.७ छीव दर्छ की

৫। উভ স্নাক কী (Wood ruff Key) :

একণ কী (Key) ব্যবহারে প্রধান সুবিধা এই বে, পুলি, দীয়ার ইত্যাদির হাব-এ (Hub) একে মানিয়ে নিতে কোনো অসুবিধা হয় না।

290

চিত্ৰ: ১২.৬ উড বাফ কী

৬। স্যাড্স सी (Saddle Key)

এ প্রকার কী একমাত্র বর্ষজনিত বাঁধা (Frictional Resistance) বর্ষাহ্বানে ধারণ করে রাখে বলে কোন হান্ধা অংশ ছাড়া ভারী অংশের সাথে ইহা ব্যবহার করতে পারা বার না।

চিত্ৰঃ ১২,৬ স্যাড়ল কী

(本) 新市 本 (Flat Saddle Key):

এটি ব্যবহার করার সময় শ্যাকটের উপরিভাগকৈ-এর ভলদেশ অনুযায়ী করে নিতে হয় ফলে ঘর্ষধন্দনিত বাধা বাড়ায়।

(খ) হলো স্যাভন কী (Hollow Saddle Key) :

এটা একমাত্র বর্ষণজ্ঞনতি বাঁথাই (Resistance) কী কে বর্ষাছানে ধারণ করে রাখে। একে এজন্য কোন ভারী বছর সাথে ব্যবহার করা সম্ভব হয় না।

৮। बांदेक की (Round Key) :

এই প্রকার শ্যাকটের অক্ষেও সমান্তরাল অর্থাংশে ও অবশিষ্ট অর্থাংশের সংলগ্ন অংশে হিন্ত করে বসানো হয়। শ্যাকটের প্রান্তে এটা খুব হালকা বস্তুকে ভাবদ্ধ করকে ব্যবহার হয়ে থাকে।

চিত্র: ১২.৬ রাউন্ড কী

১২.৫ বিভিন্ন প্রকার চাবির বর্ণনা (Description of Different Types of Key) :

নিম্নে সচরাচার ব্যবহৃত বিভিন্ন প্রকার চাবির বর্ণনা উলেখ করা হলো:

- ১। সাঙ্ক কী (Sunk Key) : এই সকল কী-এর অর্ধাংশ শ্যাফটের মধ্যে এবং বাকি অর্ধাংশ পুলি, গীয়ার ইত্যাদির হাব (Hub) অংশে অবস্থিত থাকে। সাঙ্ক কী-এর প্রস্থচ্ছেদ বর্গাকার, আয়তকার ও গোলাকার হতে পারে।
- ২। টেপার চাবি: এ চাবিতে ঢালুর পরিমাণ সাধরণত প্রতি মিটারে প্রায় ১০ মিঃ মিঃ (বা প্রতি ফুট ১/৫ ইঞ্চি) থাকে মাথাসহ টেপার কী-কে জীব হেড কী ও বলা হয়।
- ৩। প্যারলাল কী (Parallel Key) : এটা প্রধানত আয়তকার বা বর্গাকার হয়, কিন্তু তলদেশ ও উর্ধ্বদেশ সমান্তরাল হয়।
- 8। ফেদার কী (Faeather Key): এটা দেখতে অনেকটা প্যারালাল কী—এর ন্যায় কিন্তু দুই প্রান্ত গোল করা থাকে। পুলিকে শ্যাফটের মধ্যস্থলে আবদ্ধ করতে এই প্রকার কী উপযোগী হয়।
- ৫। জীব হেড কী (Gib Head Key) : যে সকল প্যারালাল–এর মাথা বর্তমান থাকে, এদেরকে জীব হেড কী বলে। এই কী–এর মাথা শ্যাফটের বাইরে থাকে বলে সহজে শ্যাফট থেকে খোলা সম্ভব হয়।
- ৬। উড রাফ কী (Wood Ruff Key): একটি গোল চাকতির অর্ধেক পরিমাণ কেটে নিলে যেরূপ দেখতে হয় এটা সেরূপ দেখতে। অর্থাৎ এর উর্ধ্বাদেশ সমতল ও তলদেশ গোল করা থাকে। গোল করা তলদেশকে শ্যাফটের গোলাকার কী ওয়ের মধ্যে বসানো হয়।
- ৭। স্যান্তল কী (Saddle Key) : যে সকল কী ব্যবহারের সময় শ্যাফটে কোন কী ওয়ে না করে কেবল মাত্র সংলগ্ন অংশটিতে নালী করা হয়, এদেরকে স্যান্তল কী বলা হয়।
- (ক) ফ্লাট স্যাডল কী (Flat Saddle Key) : এর উর্ধ্বাদেশ ও তলদেশ উভয়ই প্যারলার কী-এর ভূমি সমান্তরাল। ব্যবহার: ব্যবহার করার সময় শ্যাফটের উপরিভাগকে এর তলদেশ অনুযায়ী সমতল করে নিতে হয়।
- খ) হলো স্যাডল কী (Hollow Saddle Key) : এর উর্ধ্বাদেশ সমতল কিন্তু তলদেশ শ্যাফটের ডায়ামিটার অনুযায়ী গোল অবতল (Cancave) বিশিষ্ট হয়ে থাকে।
- (গ) রাউভ কী (Round Key) : প্রকৃতপক্ষে এটা একটি গোলাকার ও ক্রমশ সরু করা দীর্ঘ একখণ্ড ধাতুমাত্র।

প্রশ্নমালা-১২

অতি সংক্ষিপ্ত প্রশ্ন:

- ১। Key-কে চলতি বাংলায় কী বলে?
- ২। Key মূলত কী কী প্রকারের হয়?
- ৩। মাথাবিহীন Key কে কী যন্ত্র দারা বের করা হয়?
- ৪। মাথা বিহীন Key কোন ক্ষেত্রে ব্যবহার করা হয়?
- ৫। স্যাডল Key কত প্রকার?
- ৬। সাঞ্চ Key কোথায় ব্যবহার করা হয়?
- ৭। Key মূলত কি ধাতু দারা তৈরি হয়?
- ৮। প্যারালাল Key কী ধরনের হয়?
- ৯। হলো স্যাডল Key-এর তলদেশ দেখতে কেমন হয়?

সংক্ষিপ্ত প্রশ্ন:

- ১১। Key বলতে কী বোঝায়?
- ১২। Key ব্যবহারের মূল উদ্দেশ্য কী?
- ১৩। কীভাবে শ্যাফট ও পুলীর মধ্যে অবস্থান করে?
- ১৪। আকার অনুসারে চাবি কত প্রকার ও কী কী?
- ১৫। শ্যাফট দৈর্ঘ্যের মাঝে কী প্রকার চাবি ব্যবহার হয়?
- ১৬। স্যাডল Key কত প্রকার ও কী কী?
- ১৭। ফেদার Key এর ব্যবহার দেখাও?
- ১৮। টেপার Key এর সংক্ষিপ্ত বিবরণ দাও?
- ১৯। উড রাফ Key এর সংক্ষিপ্ত পরিচয় দাও?

- ২০। Key বা চাবি বলতে কী বোঝায়?
- ২১। Key বা চাবির ব্যবহার লেখ।
- ২২। চাবির ধাতু শ্যাফট-এর ধাতুর চেয়ে শক্ত না নরম হওয়া দরকার বুঝিয়ে লেখ?
- ২৩। বিভিন্ন প্রকার চাবির সংক্ষিপ্ত পরিচয় দাও।
- ২৪। श्रातानान की ७ माह्र कीत विवत्र लाय।
- ২৫। স্যাডল কী সম্পর্কে যা জান লেখ?

ত্রয়োদশ অধ্যায়

পিন (Pin)

১৩.০ সূচনা (Introduction) :

শ্যাফট অথবা টিউবের উপর যন্ত্রাংশকে যথাস্থানে সঠিকভাবে আটকে রাখার জন্য যেটা ব্যবহৃত হয় ওটাই পিন নাম পরিচিত। কাজের ধরন এবং গুরুতানুসারে ফিটিং শপে রকমারি পিন ব্যবহৃত হয়।

১৩.১ পিন (Pin) :

পিন সাধারণত টিউবের সাথে যন্ত্রাংশকে যথাস্থানে সঠিকভাবে আটকে রাখার কাজে ব্যবহার করা হয়।

১৩.২ পিন ব্যবহারের উদ্দেশ্য (Objectives of Using Pin) :

- (১) পিন ছিদ্রযুক্ত নাটের ক্ষেত্রে ব্যবহার করা হয়। এক্ষেত্রে পিনকে বিপরীতে পাশে দু'দিকে বাঁকিয়ে দিতে হয়।
- (২) মেশিনিংকৃত যন্ত্রাংশ সমূহকে স্ব-স্ব স্থানে স্থির রাখার জন্য ব্যবহার করা হয়।
- ত) অপেক্ষাকৃত কম বল প্রয়োগের উপযোগী যন্ত্রাংশের স্প্রীং হিসেবে ব্যবহৃত হয়।
- (৪) বিয়ারিং ছোট ছোট গীয়ার শ্যাফট যাতে স্থানচ্যুত হতে না পারে সে উদ্দেশ্যেই ব্যবহার করা হয়।

১৩.৩ পিনের প্রকারভেদ (Types of Pin) :

পিন মূলত ৫ (পাঁচ) প্রকার। যথা:-

- ১। প্লেইন ও ট্যাপার পিন (Plain and Taper Pins)
- ২। চেরা পিন (Spilt Pins)
- ত। ডাওয়েলস পিন (Dowles Pins)
- 8। স্প্রিং পিন (Spring Pins)
- ৫। কাটার পিন (Cotters Pins)

১৩.৪ বিভিন্ন প্রকার পিনের ব্যবহার (Uses of Different Types of Pin) :

সাধারণত ছিদ্রযুক্ত নাটের ক্ষেত্রে চেরা (Split) পিন ব্যবহার করা হয়। ডাওয়েল পিন মূলত মেশিনিং করা যন্ত্রাংশ সমূহের স্ব-স্থ স্থানে স্থির রাখার জন্য ডাওয়েল পিন ব্যবহার করা হয়। স্প্রিং পিন (Circlip) অপেক্ষাকৃত কম বল প্রয়োগের উপযোগী যন্ত্রাংশে ব্যবহৃত হয়। কানেকটিং রডের এভ ও পিস্টনকে পিস্টন পিন দিয়ে আটকানোর পর পিস্টনের দুই প্রান্তে গ্রুভ করা স্থানে সারক্লিপ ফিট করে যাতে পিস্টন পিন না বের হয়ে আসে। বিভিন্ন প্রকার বিয়ারিং এবং ছোট ছোট গীয়ার শ্যাফট হতে স্থানচ্যুত হয়ে যেতে না পারে সে, কারণে শ্যাফটের মধ্যে যে গ্রুভ করা থাকে এর মধ্যে সারক্লিপ ব্যবহার করা হয়ে থাকে।

কাটার পিন একটি সমতল ওয়েজ (Wedge) বা সারক্লিপ খিলবিশেষ যা বার বা রড ইত্যাদিকে আটকানোর জন্য ব্যবহৃত করা হয়।

১৩.৫ বিভিন্ন প্রকার পিনের বিবরণ (Description of Different Types of Pin) :

১। স্প্লীট পিন (Split Pin) :

এটা দুটি খণ্ডে বিদীর্ণ করা বিশেষ ধরেনের পিন। এর অপর নাম কটার পিন। এটাকে বাংলায় চলতিভাবে চেরা পিন এবং ইংরেজিতে পিন বলে। সাধারণতঃ এটা ১.৫ মি. মি. থেকে ৪.৫ মি. মি. পর্যন্ত ডায়মিটারের এবং ২৫ মি. মি. হতে ৭৫ মি. মি. পর্যন্ত দীর্ঘ হয়।

- ২। সারক্লিপ পিন: এটা দেখতে গোলাকার রিং-এর মতো কিন্তু এর একটি পাশ কাটা থাকে। এর কাটা অংশের উভয় পাশ সামান্য বর্ধিত ও ছিদ্র করা থাকে। ঐ রিংকে সারক্লিপ বলে। সাধারণত সারক্লিপ স্প্রীং স্টিলের তৈরি হয়।
- ৩। প্রেইন বা ট্যাপার: প্রেইন বা সমান্তরাল এবং ট্যাপার উভয় প্রকার পিনই শ্যাফট অথবা টিউবের সাথে যদ্রাংশের দৃঢ়ভাবে ও নির্দিষ্ট স্থানে আটকানোর জন্য এবং অনেক ক্ষেত্রে ড্রাইভ বা শক্তি চালনাকারী হিসেবে ব্যবহৃত হয়। ট্যাপার পিনকে রিভিটের ন্যায় দাবিয়ে অথবা একটি নাট দিয়ে লক করে দেয়া হয়।
- 8। ডাওয়েল: ডাওয়েল পিন প্লেইন অর্থাৎ সমান্তরাল হতে পারে আবার ট্যাপার হতে পারে এবং মাথা বিশিষ্ট হতে পারে, অথবা মাথাবিহীন হতে পারে। ট্যাপার পিনের একদিকে খানিকটা সমান্তরাল অংশে প্রেডের উপর একটি নাট ফিট করে দেয়া যেতে পারে, যা পিনটাকে পরে খুলতে সাহায্য করবে। মেশিনিং করা যন্ত্রাংশ সমূহকে স্ব-স্ব স্থানে স্থির রাখা বা একই রেখা করার জন্য ডাওয়েল ব্যবহার হয়।
- ৫। স্প্রিং পিনঃ এটা নলাকার থাকা লম্বা দিকে স্লুট কাটা থাকে। স্লুট থাকার ফলে পিনে স্প্রিংক্রিয়াসহ যন্ত্রাংশ স্থাপন করা হয় স্প্রিং পিন স্থাপনের ছিদ্র পিনের ব্যাস অপেক্ষা প্রায় ০.২ মি. মি. কম হয়।
- ৬। কটার: কটার একটি সমতল ওয়েজ (Wedge) বা খিলবিশেষ, যা রড ইত্যাদিকে আটকানোর জন্য ব্যবহৃত হয়। কটার কনেটিং রড বা হাবের সাথে এক সমকোণ ফিট করা হয়। যার ফলে হাবের অংশ, অক্ষের সাথে টেনশন (Tensile Stress) থাকে, এবং কটারের কমপ্রেশন (Comperssion) থাকে।

প্রশ্নমালা-১৩

অতি সংক্ষিপ্ত প্রশ্ন:

- ১। পিন কী?
- ২। পিন মূলত কী উদ্দেশ্যে ব্যবহার করা হয়?
- ৩। পিন মূলত কত প্রকার?
- ৪। বিয়ারিং ও ছোট গীয়ার শ্যাফট যাতে স্থানচ্যুত হতে না পারে তার জন্য কী ব্যবহার করা হয়?
- ৫। স্প্রিট পিন কী কাজে ব্যবহৃত হয়।
- ৬। কটার কী?
- ৭। স্প্রিট পিনকে চলতি বাংলায় কী বলা হয়?
- ৮। সারক্লিপ পিন দেখতে কীরূপ হয়?
- ৯। ট্যাপার পিনকে কী উপায়ে লক করা হয়?

সংক্ৰিপ্ত প্ৰশ্ন:

- ১০। পিন বলতে কী বোঝায়?
- ১১। পিন ব্যবহারের দুইটি উদ্দেশ্য লেখ?
- ১২। পিন কত প্রকার ও কী কী?
- ১৩। ডাওয়েল পিনের ব্যবহার উল্লেখ কর।
- ১৪। স্প্রীট পিন কোথায় ব্যবহৃত করা হয়?
- ১৫। স্প্রীট পিনের সংক্ষিপ্ত বিবরণ দাও।
- ১৬। কটার কোথায় ব্যবহার করা হয়?
- ১৭। সারক্রিপ পিন সম্পর্কে যা জান লেখ?
- ১৮। স্প্রীং পিন সম্পর্কে যা জান লেখ?

- ২০। পিন সম্পর্কে যা জান লেখ।
- ২১। পিনের ব্যবহার উল্লেখ কর।
- ২২। পিনের প্রকারভেদ দেখাও।
- ২৩। বিভিন্ন প্রকার পিনের বিবরণ দাও।
- ২৪। ডাওয়েল পিন সম্পর্কে বিস্তারিত বর্ণনা দাও।
- ২৫। কটার ব্যবহার উদ্দেশ্য কী?
- ২৬। স্প্রীং পিন সম্পর্কে যা জান লেখ।
- ২৭। প্লেইন বা টেপার পিন সম্পর্কে যা জান লেখ।
- ২৮। স্প্লীট পিন (Spilt Pin) সম্পর্কে যা জান লেখ।

চতুর্দশ অধ্যায় রিভেট (Rivet)

১৪.০ সূচনা (Introduction) :

দুটি ধাতব খণ্ডকে অস্থায়ীভাবে যুক্ত করার জন্য যে সকল প্রাণালি আছে রিভেট ব্যবহার সেগুলিকে মধ্যে একটি অন্যতম প্রণালি। রিভেট সাধারণত রট আয়রন বা মাইন্ড স্টিল দ্বারা তৈরি হয়ে থাকে। অন্য ধাতুর রিভেটও ব্যবহার হয়। ঠাণ্ডা ও উত্তপ্ত অবস্থায় হাতুড়ির আঘাতে দ্বিতীয় মাথা তৈরির মাধ্যমে এটা ব্যবহার করতে হয়। ছিদ্রমধ্যে যথাস্থানে থেকে রিভেট যখন ঠাণ্ডা হয়, তথন তা সংকুচিত হয়ে যায় এবং অংশ দুটিকে টেনে দৃঢ়ভাবে সংযুক্ত করে ফেলে। বয়লার (Boiler), জাহাজ (Ship), স্টিলের কাঠামো যেমন Steel Bridge of Pylon (Steel Frame) ইত্যাদি তৈরি করতে মাইন্ড স্টিল বা রট আয়রন দ্বারা তৈরি রিভেট প্রচুর পরিমাণে ব্যবহৃত হয়ে থাকে। আজকাল রিভেট জ্যোড়ের পরিবর্তে গুয়েন্ডেড জ্যোড়ের ব্যবহার দিন দিন বৃদ্ধি পাচেছ। কেননা এ জ্যোড় রিভেট জ্যোড়ের তুলনায় মজবুত এবং স্বল্প ব্যয়ে, স্বল্প সময়ে সম্পন্ন করা সম্ভব।

১৪.১ রিভেট (Rivet) দুই বা ততোধিক ধাতব শীটকে একসঙ্গে স্থায়ীভাবে যুক্ত করে রাখতে বিভিন্ন আকারের মাথাযুক্ত যে গোলাকার প্রস্থুচ্ছেদ বিশিষ্ট দীর্ঘ ধাতু খণ্ড ব্যবহার করা হয়ে তাকে রিভেট (Rivet) বলে। রিভেট সাধরণতঃ রট আয়রন (Wrought Iron), মাইল্ড স্টিল (Mild Steel), কপার (Copper) ব্রাস, (Brass), অ্যালুমিনিয়াম (Aluminium) ধাতু ছারা তৈরি করা হয়ে থাকে।

রিভেট তিনটি বিভিন্ন অংশ নিয়ে গঠিত।

- ১। বডি (Body) বা শ্যাঙ্ক (Shank)
- ২। হেড (Head)
- ৩। টেইল (Tail) যা দিয়ে Rivet Fix করা বা Head বানানো হয়।

১৪.২ রিভেটের প্রকারভেদ (Types of Rivet) :

রিভেটের প্রকারভেদ মূলত এর মাথা গঠন অনুসারে হয়ে থাকে। বিভিন্ন ক্ষেত্রে প্রয়োগের উপযোগী করতে রিভেটের মাথা বিভিন্ন প্রকারের করে তৈরি হয়ে থাকে এবং এদের আকার অনুযায়ী বিভিন্ন নামে অভিহিত করা হয়।

রিভেট সাধারণত চার প্রকারের হয় যথা:

- ১। কাপ হেড বা স্নাপ হেড রিভেট (Cup head or snap head rivet)
- ২। প্যান হেড রিভেট (Pan head rivet)
- ৩। কনিক্যাল হেড রিভেট (Conical head rivet)
- ৪। কাউন্টার শাঙ্ক হেড রিভেট (Counter Sunk head rivet)

১৪.৩ রিভেট ব্যবহারের প্রয়োজনীয়তা (Needs of Using Rivet)

রিভেট ব্যবহারের প্রয়োজনীতা দুই বা ততোধিক মেটাল শীটকে একসঙ্গে স্থায়ীভাবে যুক্ত করতে রিভেটের প্রয়োজন হয়। এটা বিভিন্ন ধাতুর তৈরি হয় বিধায় বিভিন্ন প্রকার ধাতুর তৈরি যন্ত্র বা যন্ত্রাংশের ব্যবহার করতে অনেক সুবিধা হয়। এটা অন্যান্য যন্ত্রাংশের চেয়ে কম খরচ ও সহজে তৈরি করা যায়।

১৪.৪ রিভেটিং-এর জন্য রিভেট নির্বাচনকরণ:

রিভেটিং করার উদ্দেশ্যে রিভেট নির্বাচন করতে হলে নিমুলিখিত বিষয় বিবেচনা করতে হবে:

- (ক) রিভেটের ডায়মিটার মাপ কীরূপ হবে?
- (খ) লম্বা মাপ কতখানি হওয়া উচিত?
- (গ) প্লেটের পুরু মাপ (Thickness) সংযোগ কী প্রকারের হবে?
- (ঘ) রিভেটের পিচ কত প্রকার?

রিভেট দ্বারা সংযোগ সম্পর্কে যে বিষয়াদি লক্ষনীয়:

- (ক) পিচ (Pitch): এক সারি রিভেটের যে কোনো একটি কেন্দ্র পর্যাপ্ত যে দূরত্ব হয়। তাকে রিভেটের পিচ (Pitch) বলে।
- (খ) ডায়াগোনাল পিচ (Diagonal Pitch): জিগ জ্যাগ (Zig zag) রকমের রিভেট সারির রিভেটের কেন্দ্র থেকে পার্শ্ববর্তী অপর সারির রিভেটের কেন্দ্র পর্যন্ত কোণাকুণি দূরত্ব মাপকে ডায়গোনাল পিচ বালা হয়।
- (গ) সারির পিচ (Pitch of Rows) (Pitch): সন্নিহিত দুই সারি রিভেটের মধ্যে যে দূরত্ব মাপ থাকে তাকে সারির পিচ বলে। একে ব্যাক পিচ বলে (Back Pitch) বলা হয়।
- (ঘ) মার্জিন (Margin) : প্রেটের প্রান্ত হতে রিভেটের জন্য ছিদ্রের নিকটতম প্রান্ত পর্যন্ত যে দূরত্ব হয় তাকে মার্জিন বলে । এটা সাধারণত রিভেটের ডায়ামিটরের মাপের ১.৫ D গুণ রাখার নিয়ম।
- (%) ল্যাপ (Lap) : দুটি প্লেট যখন পরস্পর একটি প্লেটের প্রান্ত অপর প্লেটের প্রান্তের যে পরিমাণ স্থান উপরে চাপানো থাকে এর দৈর্ঘ্য মাপকে ল্যাপ বলা হয়।

১৪.৫ রিডেটের পরিমাপসমূহ (Mesurment of Rivet):

রিভেটের ডায়ামিটার সাধারণত কাজের জন্য প্রেটের পুরুমাপ অনুযায়ী রিভেটের ডায়ামিটার হয়। রিভোটের ডায়ামিটার= ১.২ (প্রেটের পুরুমাপ)

অথবা সাধারণভাবে রিভেটের ভায়ামিটার = প্লেটের পুরুমাপ+ ৪ কি. মি. রিভেটের দৈর্ঘ্য মাপ জানতে হলে প্লেটের পুরুত্ব এর মাপ জানতে হবে। টেইলের মাপ স্ম্যাপ হেড কনিক্যাল হেড ও প্যান হেড রিভেটের বেলায়

রিভেটের ভায়মিটার মাপের ১ $\frac{1}{2}$ গুণ ।

রিভেটের দৈর্ঘ্য মাপ: রিভেটের দৈর্ঘ্য দ্বারা এর মাথার উচ্চতা বাদ দিয়ে অবশিষ্ট বাদ দিয়ে অবশিষ্ট অংশের দৈর্ঘ্য মাপ বুঝায়। রিভেটের দ্বারা সাধারণ সংযোগগুলি প্রধানত রিভেট দ্বারা দুই প্রকার সংযোগ করা হয়ে থাকে। যেমন:

- ১। ল্যাপ জয়েন্ট (Lap Joint)
- ২। বটি জয়েন্ট (Butt Joint)
- ১। ল্যাপ জয়েন্ট (Lap Joint) : রিভেট দ্বারা একটি প্লেটের প্রান্ত অপর একটি প্লেটের প্রান্তের উপর চাপানো অবস্থায় সংযোগ করা হলে একে ল্যাপ জয়েন্ট বলে। এই ক্ষেত্রে প্লেট দুটি রিভেটের কেন্দ্র থেকে প্লেটের প্রান্ত

পর্যন্ত রিভেট ডায়মিটারের ১ $\frac{1}{2}$ গুণ রাখা হয়ে থাকে।

২। বাট জয়েন্ট (Butt Joint): বাট জয়েন্ট প্লেট দুইটির প্রান্থ মুখোমুখি রাখতে হয়। একটি বা দুইটি কভার প্লেট প্রান্থিক জোড়কে ঢেকে রিভেট দ্বারা কভার প্লেট লাগনোসহ জোড়া লাগানো হয়। একটি মাত্র প্লেট যখন ব্যবহার হয় তখন এর বেধ (Thickness) মূল প্লেটের বেধ মাপের সমান হয়। আর সংযোজন অধিকতর মজবুত করার জন্য যখন দুটি প্লেট ব্যবহার করা হয়, তখন প্লেট অপেক্ষা ৫/৪ ভাগ কম মাপের হয়।

রিভেটগুলি উক্ত দুই প্রকারের সংযোগের ক্ষেত্রে এক সারিতে বর্তমান থাকে।

- ১। চেইন রিভেটিং (Chain Reveting): একটির পর একটি অবস্থিত হয়ে শিকলের মতো এক সারি রিভেটের পাশে আর এক সারি থাকলে একে চেইন রিভেটিং বলা হয়। এতে একটি সারির কেন্দ্র থেকে অপর একটি সারির কেন্দ্র পর্যন্ত মাপ রিভেটের ডায়মিটার মাপের দ্বিশুণ হয়।
- ২। জিগ জ্যাগ রিভেটিং (Zig Zag Riveting) : এক সারি রিভেট অপর এক সারি রিভেটের ঠিক মধ্যস্থলে অর্থ্যাৎ আঁকাবাঁকাভাবে সংঘবন্ধ থাকলে তখন একে চেইন রিভেটিং বলে।

এতে এক সরি রিভেটের কেন্দ্র থেকে অপর সারির কেন্দ্র পর্যন্ত রিভেট ডায়ামিটারের দ্বিগুণ হয়। রিভেট ব্যবহারের কয়েকটি উদাহরণ নিয়ে শনাক্তকরণ করা হলো।

১৪.৬ বিভিন্ন প্রকার রিভেটের ব্যবহার (Use of Diffrerent Types of Rivet):

- ১। কাপ হেড বা স্ন্যাপ হেড রিভেট (Cup Head or Snap Head Rivet) : এই প্রকার রিভেটের মাথার উপরিভাগ গোল করা এবং সকল সাধারণ কাজে এই প্রকার রিভেট প্রায়ই ব্যবহার করা হয়।
- ২। প্যান হেড রিভেট (Pan head Rivet) : ক্রমশ এর মাথা উপরের দিকে সরু ও উপরিভাগ কোণ যুক্ত হয় ও ছোট অংশের উপযোগী হয়।
- ৩। কনিক্যাল হেড (Conical head) : এই প্রকার রিভেটের মাথার উপরিভাগ কোণ যুক্ত হয় ও ছোট অংশকে আবদ্ধ করতে ব্যবহার হয়ে থাকে।
- ৪। কাউন্টার শাঙ্ক হেড (Counter Sunk Head) : এর মাথার উপরের দিকে ক্রমশ মোটা ও ৪৫০ কোণ বিশিষ্ট। যে স্থলে অন্যান্য রিভেটের মাথা বাইরে থাকলে অসুবিধা হয় ঐ সকল ক্ষেত্রে এটার মাথা সংযোগ করা অংশটি ছিদ্রের মধ্যে প্রবেশ করানো যায়।

নাট–বোল্ট ও রিভেটের সংযোগের পার্থকা:

নাট বোল্ট	রিভেট
 । নাট-বোল্টের সাহায্যে অস্থায়ীভাবে সংযোগ করা হয় বা আবদ্ধ করা হয়। 	১। রিভেটের সাহায্যে স্থায়ীভাবে সংযোগ দেওয়া হয় বা জোড়া দেয়া হয়।
২। নাট–বোল্টের সাধারণ ব্ধু থ্রেড করা থাকে, যার মাধ্যমে নাট ও বোল্ট আটকানো হয়।	২। রিভেটে কোনো থ্রেড করা থাকে না এর মুখ নরম বিধায় হাতুড়ি দ্বারা পিটিয়ে চ্যাপ্টা করে আবদ্ধ করা হয়।
 । নাট–বোল্ট দ্বারা জোড়া দিতে বা সংযোগ করতে বা সংযোগ বিচ্ছিন্ন করতে বিভিন্ন প্রকার বেঞ্চের ব্যবহার করা হয়। 	৩। কিন্তু রিভেট দ্বারা আটিকেয়ে হাতুড়ির আঘাত দ্বারা সম্পন্ন করতে হয় এবং এর সংযোগ বিচ্ছিন্ন করতে বা খুলতে চিজেল দ্বারা রিভেটের মুখকে কাটতে হয়।
 ৪। বোল্টের দৈর্ঘ্য প্রয়োজনের চেয়ে বড় হলে বন্দোবস্ত করা যায়। 	 ৪। রিভেট-এর দৈর্ঘ্য প্রয়োজনের চেয়ে বড় হলে অসুবিধা হয়।

রিভেটিং (Riveting) :

রিভেট দ্বারা থাতব অংশগুলিকে আবদ্ধ করার উদ্দেশ্যে এগুলির ছিদ্রের মধ্যে রিভেটকে প্রবেশ করালে রিভেটের মাধা একটি অংশের উপর চাপ দেয় ও অন্য অংশের উপর টেইলকে হাতুড়ির আঘাত দ্বারা বিস্তৃত করে অংশগুলিকে দৃঢ়ভাবে আবদ্ধ করা হয়ে থাকে। রিভেট দ্বারা এরপ আবদ্ধ করার প্রাণালিকে রিভেটিং (Riveting) বলা হয়। রিভেটিং করার চিত্র দেখান হলো:

চিত্র: ১৪.১ রিভেটিং

প্রশ্নালা-১৪

অতি সংক্ষিপ্ত প্রশ্র:

- ১। রিভেট কী?
- ২। রিভেট কয়টি প্রধান অংশ নিয়ে গঠিত?
- ৩। রিভেটের প্রয়োজন কেন?
- ৪। রিভেটিং কাকে বলে?
- ৬। বিভেটের পিচ কাকে বলে?
- ৭। রিভেট ভায়মিটারের সূত্রটি লেখ?
- ৮। মার্জিন কী?
- ৯। রিভেট দারা কয় প্রকার সংযোগ করা হয়ে থাকে?
- ১০। রিভেটের দৈর্ঘ্য মাপ বলতে কী বোঝ?

সংক্ষিপ্ত প্রশ্ন:

- ১১। রিভেট বলতে কী বোঝায়?
- ১২। রিভেটের প্রকারভেদ দেখাও।
- ১৩। রিভেট ব্যবহারের প্রয়োজনীয়তা সংক্ষেপে লেখ
- ১৪। রিভেটিং-এর জন্য রিভেট নির্বাচন কীভাবে করা হয়?
- ১৫। রিভেট দ্বারা কী কী সংযোগ করা হয়?
- ১৬। ল্যাপ জয়েন্ট বলতে কীবোঝায়?
- ১৭। চেইন রিভেটিং বলতে কী বোঝায়?
- ১৮। জিগ জাগ রিভেটিং বলতে কী বোঝায়?
- ১৯। কাপ হেডেড রিভেটের ব্যবহার দেখাও।
- ২০। রিভেটিং বলতে কী বোঝায়?

- ২১। রিভেট বলতে কী বোঝায়? রিভেটের বিভিন্ন অংশের নাম লেখ?
- ২২। রিভেটের প্রকারভেদ দেখাও।
- ২৩। রিভেট ব্যবহারের প্রয়োজনীয়তা লেখ।
- ২৪। বিভিন্ন প্রকার রিভেট শনাক্তকরণের উপায় বিবৃত কর।
- ২৫। বড় কাজের জন্য রিভেটিং না করে সম্ভব হলে ওয়েন্ডিং কেন করা হয়?
- ২৬। রিভেট সংযোগে কী কী বিষয় লক্ষণীয় হয়ে থাকে?
- ২৭। রিভেটের পরিমাপ বিবৃত কর।
- ২৮। ল্যাপ জয়েন্ট সম্পর্কে বর্ণনা দাও।
- ২৯। বাট জয়েন্ট সম্পর্কে বর্ণনা দাও।
- ৩০। বিভিন্ন প্রকার রিভেটের ব্যবহার দেখাও।
- ৩১। রিভেটিং সম্পর্কে যা জান লেখ।
- ৩২। নাট-বোল্ট জয়েন্ট ও রিভেট জয়েন্ট ও রিভেট জয়েন্টের মধ্যে প্রভেদ দেখাও।

পঞ্চদশ অধ্যায়

麥 (Screw)

সূচনা (Introducation) :

ক্কু বোল্টের মতো একটি ভিভাইস যা নাট ছাড়াই কাজে লাগে। এটা বোল্টের চেয়ে ছোট ব্যাসের ও সাধারণত কম দৈর্ঘ্যর হয়ে থাকে। এটা বোল্টের মতোই কাজ করে। কাঠের ক্কুতে টেপার করা থাকে। ক্কুতে প্রেড বিশেষ আকারে থাকে। সামনের দিকে এগিয়ে নিতে হলে ডানহাতি ক্কুকে ঘড়িচক্রের দিকে আর বাঁহাতি ক্কুকে ঘড়িচক্রের বিপরীতে ঘোরাতে হবে।

১৫.১ 戛 (Screw) :

স্ট্যান্ডার্ড রকমের বিশিষ্ট সরু ডায়ামিটরের রড দ্বারা (Rod) প্রস্তুত বোল্ট নাট ব্যতিরকে কোন অংশকে অপর একটি অংশের সাথে যুক্ত করতে কোনো অংশ সরে বা ঘুরে যাওয়াকে বাধা দিতে দুটি অংশের মধ্যে দূরত্বকে নিয়মিত করতে যে ডিভাইস ব্যবহার করা হয় তাকে স্কু (Screw) বলে।

১৫.২ স্কু-এর প্রকারভেদ (Types of Screw) :

ক্রু সাধারণত দুই প্রকার। যথা:

- (ক) মেশিন কু (Machine Screw)
- (খ) সেট **কু** (Set Screw)
- (ক) মেশিন জু পাঁচ প্রকারের হয়ে থাকে, যথা :
- ১। ফিলিনস্টার হেডেড স্কু (Fillister headed Screw)
- ২। ক্যাপ হেডেড স্থ্ (Cup headed Screw)
- ৩। চীজ হেডেড স্কু (Cheese headed Screw)
- 8। ইনস্ট্রমেন্ট স্কু (Instrument Screw)
- ৫। কাউন্টার শাঙ্ক হেডেড স্কু (Counter Sunk headed Screw)
- (খ) সেট স্কুর প্রকারভেদ : স্কুর দৈর্ঘ্য অনুযায়ী পাঁচ প্রকারের সেট স্কু ব্যবহার হয়ে থাকে। যথা:
- ১। থাৰ জু (Thumb Screw)
- ২। হেক্সাগোনাল হেডেড সেট স্কু (Hexagonal Headed Screw)
- ত। স্বয়ার হেডেড সেট স্কু (Square Headed Screw)
- ৪। অ্যালেন জু (Allen Screw)
- ৫। গাব স্কু (Grub Screw)

১৫.৩ বিভিন্ন প্রকার ক্ষুর বিবরণ (Description of Different Types of Screw) নিম্নে বিভিন্ন প্রকার ক্ষুর বর্ণনা দেরা হলোঃ

মেশিন ক্ক্ (Machine Screw) : প্রধানত মেশিন ক্ক্, আকারে ক্ষুদ্র হয় এবং বোল্টের মতো এর মাধার বিপরীত দিকে অক্স স্থানে ক্রু প্রেড করা থাকে। সাধারণত এর মুখ গোলাকার এবং মাথা বিভিন্ন স্থানে ব্যবহারের

উপযোগী বিভিন্ন রকম আকারের হয়ে থাকে। বোল্টর মতো এর দৈর্ঘার কিছু অংশ বিভিন্ন স্ট্যান্ডার্ড মাপের স্ক্র্ প্রেড বর্তমান থাকে। বিভিন্ন ক্লেরে প্রয়োগের উপযোগী করতে এদের মাথা বিভিন্ন আকারের করা হয় এবং ক্র্ ড্রাইভার (Screw driver): দ্বারা যুরানোর উদ্দেশ্যে মাথায় একটি খোঁজ করা থাকে। যে কোনো বস্তর অংশ দ্টিকে যুক্ত করতে হলে এর একটি অংশে কেবল মাত্র ছিদ্র করা থাকে এবং অপর অংশটির ছিদ্রের মধ্যে স্ট্যান্ডার্ড মাপের ক্রু থ্রেড (Screw Thread) থাকে।

(ক) ক্যাপ হেডেড ক্ক্: একে রাউন্ত (Round) বা বটিন (Button) হেডেড ক্ক্ বলে। এর মাথা কাপ হেডেড বোল্টের ন্যায়। যখন এর মাথায় ৯০° তে দুইটি খাঁজ কাটা থাকে, তখন একে ফিলিপস ক্লু ড্রাইভার বলে এবং একে ফিলিপস ক্লু ড্রাইভার দ্বারা খোলা ও লাগানো হয়।

विवाः ১৫.७ काभि दरफिछ हर

(খ) চীজ হেডেড জু: এ জুর মাথা পার্শ্বভাগ গোল করা ও মাথার উপর অংশ সমতল বিশিষ্ট হয়।

চিত্ৰ: চীজ হেডেড কু

(গ) ফিলিস্টার হেছেড ছু: এটার মাধার পার্শ্বভাগ গোল ও উপর অংশ সামান্য খাঁজ করা থাকে।

চিত্র: কিলিস্টার হেডেড ক্লু

(ম) কাউন্টার শ্যাংক (Sunk) হেডেড ক্ক্: এটার মাধার পার্শ্বভাগের দিকে ৪৫°−তে ঢালু করা ও মাধার উপরিভাগ সমতল ধাকে।

চিত্র: কাউন্টার শ্যাংক হেভেড কু

(৩) ইনব্রুমেন্ট ক্র্: এ প্রকার ক্র্ কোনো অংশকে ঘুরে বা সরে যাওয়াকে বাধা দিতে এবং দৃটি অংশের মধ্যে দূরত্বকে নিরমিত করতে ব্যবহার করা হয়ে থাকে। এটার দৈর্ঘ্যের সমস্ত অংশে খ্রেড বর্তমান থাকে এবং বিভিন্ন স্থানে প্রয়োগ উদ্দেশ্যের মাধা ও মুখ বিভিন্ন প্রকারের করে তৈরি করা হয়।

চিত্র: ইনস্ট্রমেন্ট স্কু

এদের মধ্যে গোল, সমতল ও ১২০ বা ৯০ কোণ বিশিষ্ট করে তৈরিকৃত মুখ বেশি ব্যবহার হয়ে থাকে সেট স্ক্ (Set Screw) : সেট স্কুর মুখ অংশটির যে স্থানে চাপ দেয়, অংশটির ঐ স্থানে স্কুর মুখ অনুযায়ী সমতল করা থাকে।

১। হেক্সাগোনাল হেডেড সেট ক্ল্: এর মাধাও বোল্টের ন্যায় ষড়ভুজ আকারের কিন্ত মুখ ৯০° কোনযুক্ত অথবা সমতল করা থাকে।

চিত্র: হেক্সগোনাল হেডেড সেট ক্

২। ক্ষরার হেডেড সেট ক্ষু: এটির মাথা সমান চারকোণ করা ও মুখ সামান্য গোলাকার রকমের হয়ে থাকে।

চিত্র: ক্ষয়ার হেডেড সেট জু

৩। থাম 🚁: এর মাথা চেল্টা ও মুখ কোণযুক্ত হয়ে থাকে।

চিত্ৰ: থাম জু

8। আব ফ্র্রু এ প্রকার ফ্রুর কোনো মাথা থাকে না। কিন্তু উপরিভাগে ফ্রু ড্রাইভার দারা যুরানোর জন্য নালী কাটা থাকে। যে সকল স্থানে ফ্রুর মাথা বাইরে থাকলে অসুবিধা হতে পারে ঐ স্থলে এর সকল অংশ শ্রেড যুক্ত ছিদ্রের মধ্যে প্রবেশ করানো হয়।

চিত্ৰ: গ্ৰাব স্কু

৫। জ্যালেন স্কু: এটাও একপ্রকার মাথাবিহীন কু। একটি রেঞ্চ (যাকে অ্যালেন রেঞ্চ বলে যা পূর্বে বলা হয়েছে) ছারা এর উপরিভাগের ষড়ভুজ (Hexagonal) বিশিষ্ট মাথা ঘুরানোর উদ্দেশ্যে ষড়ভুজ আকারের ছিদ্র বর্তমান থাকে ও মুখ অংশ ফ্লাট বা কোণ যুক্ত হয়।

চিত্ৰ: গ্ৰালেন স্কু

১৫.৪ বিভিন্ন প্রকার স্কু শনাক্তকরণের উপায় (Identification of Different Types of Screw) : এদের মাথার আকার ও ব্যবহার অনুযায়ী বিভিন্ন নামে অভিহিত করা হয় নিম্নে এদের চিত্র ও নামসহ শনাক্ত করা হলো:-

ক্যাপ হেডেড স্কু চীজ হেডেড স্কু ফিলিস্টার হেডেড স্কু কাউন্টার শ্যাংক হেডেড স্কু ইনস্ট্রমেন্ট স্কু
চিত্র : ১৫.১১

১৫.৫ বিভিন্ন প্রকার ক্কুর ব্যবহার (Uses of Different Types of Screw) : বিভিন্ন প্রকার ক্কুর ব্যবহার নিম্নে উল্লেখ করা হলো।

(ক) মেশিন ক্কু (Machine Screw) : এটা মেশিনের বিভিন্ন অংশে ব্যবহার করা হয়।

- ১। চীজ হেড স্কু: এটার পাশ গোল থাকায় বৃত্তকার স্রুটযুক্ত স্থলে এটা ব্যবহৃত হয়ে থাকে।
- ২। ক্যাপ হেডেড স্কু: এটা প্রায়ই সকল ধরনের সাধারণ কাজে ব্যবহার হয়ে থাকে।
- ৩। ইনস্ট্রমেন্ট স্ক্র: এই স্ক্রু বিভিন্ন ধরনের যন্ত্রপাতিতে ব্যবহার হয়ে থাকে।
- ৪। কাউন্টার শ্যাঙ্ক (Shank) হেডেড স্কু: এটার মাথার পার্শ্বভাগের দিক ৪৫° ঢালু থাকায় এ রকম কাউন্টার শ্যাঙ্ক ছিদ্রের স্থলে এটা ব্যবহৃত হয়।
- ৫। ফিলিস্টার হেডেড স্কু: এটা মেশিনের বিভিন্ন সংশে এবং রেডিও, টিভি, ক্যাসেট ইত্যাদি বিভিন্ন ক্ষেত্রে ব্যবহার করা হয়।
- (খ) সেট স্ক্র:
- ১। ক্ষয়ার হেডেড ক্রু: এটা বিভিন্ন মেশিন বা যন্ত্রাংশের ক্ষয়ার ছিদ্র ব্যবহার করা হয়।
- ২। হেক্সাগোনাল হেডেড স্কু: বিভিন্ন যন্ত্রাংশে হেক্সাগোনাল হেডবিশিষ্ট ছিদ্রে এটা ব্যবহৃত হয়।

প্রশ্নমালা-১৫

অতি সংক্ষিপ্ত প্রশ্ন:

- ১। इ की?
- ২। সাধারণত যে কোনো একটি স্কুর ব্যবহার দেখাও।
- ৩। স্ক্রু সাধারণত কত প্রকার?
- ৪। মেশিন স্কু কত প্রকার?
- ৫। সেট স্কু কত প্রকার?
- ৬। পিচ বলতে কী বোঝায়?
- ৭। থ্রেডের লীড বলতে কী বোঝায়?
- ৮। সিঙ্গেল প্রেডের লীড বলতে কী বোঝায়?
- ৯। ক্লু সাধারণত কী ধাতু দিয়ে তৈরি হয়?
- ১০। গ্যালভানাইজড স্কু বলতে কী বোঝায়?
- ১১। টেপারিং থ্রেড স্কু বলতে কী বোঝায়?

সংক্ষিপ্ত প্রশ্ন:

- ১২। ক্লু বলতে কী বুঝায়?
- ১৩। কী কী প্রয়োজনে স্কু ব্যবহৃত হয়?
- ১৪। স্কুকে সাধারণত কয় খভাগে ভাগ করা যায় ও কী কী?
- ১৫। মেশিন স্কু কত প্রকার ও কী কী?
- ১৬। সেট স্কু কত প্রকার ও কী কী?
- ১৭। মেশিন ক্সু সম্পর্কে সংক্ষেপে যা জান লেখ?
- ১৮। ইনস্টুমেন্ট স্কু বলতে কী বুঝায়?
- ১৯। চিজ হেডেড স্কু বলতে কী বুঝায়?
- ২০। থাম স্কু বলতে কী বুঝায়
- ২১। মেশিন স্কুর ব্যবহার দেখাও।

রচনামূললক প্রশ্ন:

- ২২। স্কুর প্রয়োজনীয়তা কী?
- ২৩। মেশিন ক্লুর সম্পর্কে যা জান লেখ।
- ২৪। সেট স্কু সম্পর্কে যা জান লেখ।
- ২৫। কাউন্টার শ্যাংক ব্রু অ্যালেন ব্রুর মধ্যে পার্থক্য দেখাও।
- ২৬। বিভিন্ন প্রকার স্কুর ব্যবহার দেখাও।
- ২৭। ক্লু হেড-এর ঘাট সম্বন্ধে বর্ণনা দাও।
- ২৮। অ্যালেন স্কু কোথায় ব্যবহার করা হয়।

ষড়দশ অধ্যায়

পুলার (Puller)

১৬.০ সূচনা (Introduction) :

ছোট পুলি, গিয়ার, বিয়ারিং ইত্যাদি শ্যাফটের সাথে দৃঢ়ভাবে যুক্ত হয়ে গেলে তাদেরকে শ্যাফট থেকে টেনে বের করতে এটা ব্যবহার করা হয়। এটার মধ্যভাগে সরু মুখ বিশিষ্ট একটি স্পিডল থাকে। এ স্পিডলের কিছু অংশ স্কু থ্রেড করা থাকে। ব্যবহার করার সময় এটার মধ্যভাগের সরু মুখটিকে শ্যাফটের কেন্দ্রস্থলে স্থাপন করতে হয়। পরে পুলারটির পার্শ্বস্থিত দুই বা ততোধিক বাহুকে পুলি, গিয়ার ইত্যাদির পশ্চতে সংলগ্ন রেখে স্পিডলটিকে হাতলের সাহায্যে ঘরাতে হয়। এতে যে টান পড়ে, তার ফলে পুলি, গিয়ার ইত্যাদি শ্যাফট থেকে মুক্ত হয়ে আসে। যখন সাধারণভাবে গিয়ার বা পুলি খোলা যায় তখন এটা ব্যবাহার করা হয়।

১৬.১ পুলার (Puller) :

গিয়ার, পুলি, বিয়ারিং ইত্যাদি শ্যাফটের সাথে দৃঢ়বদ্ধভাবে আটকিয়ে গেলে এদেরকে শ্যাফট থেকে টেনে বের করতে যে ডিভাইস ব্যবহার করা হয় তাকে পুলার (Puller) বলে। পুলারের মধ্য ভাগে সরু মুখ বিশিষ্ট একটি স্পিডল বর্তমান থাকে। এই স্পিডিলটির কিছু অংশ স্কু প্রেড বিশিষ্ট করা থাকে।

১৬.২ পুলার-এর প্রকারভেদ (Types of Puller) :

পুলার সাধারণত: দুই প্রকার। যথা:

- ১। ইনসাইড পুলার (Inside Puller)
- ২। আউট সাইড পুলার (Out Side Puller)

আউট সাইড পুলারকে আবার দুই ভাগে ভাগ করা যায়। যথা:

- ক) পুলি পুলার (Pulley Puller)
- খ) হুইল পুলার (Wheel Puller)

১৬.৩ পুলার শনাক্তকরণ (Identification of Puller) :

- ১। ইন সাইড বিয়ারিং পুলার : এ বিয়ারিং-এর দুই পাশে দু'টি ক্ল্যাম্পের মতো থাকে এবং মধ্যভাগে একটি ছিদ্র থাকে। ঐ ছিদ্র দিয়ে একটি স্পিভল ঢুকানো হয়।
- ২। আউট সাইড বিয়ারিং পুলার: এ পুলারের দুই পাশে দুটি ক্ল্যাম্পের মতো থাকে এবং এর মধ্যভাগে সরু মুখ বিশিষ্ট একটি স্পিডল থাকে। স্পিডলটিকে ব্ধু থ্রেড করা থাকে। ব্যবহার করার সময় দুটি ক্ল্যাম্প বিয়ারিং—এর দুই পাশে স্থাপন করে স্পিডলটিকে হাতলের সাহায্যে ঘুরাতে হয়। এতে যে টান পড়ে, এর ফলে শ্যাফট হতে বিয়ারিং খুলে আসে।
- ত। পুলি পুলার: কোনো মেশিন অথবা ইঞ্জিনের বিয়ারিং ও পুলি খোলার জন্য পুলার ব্যবহার হয়ে থাকে।
- 8। **ছইল পুলার:** ছোট পুলি গীয়ার ইত্যাদি শ্যাফটের সাথে দৃঢ়ভাবে আবদ্ধ হয়ে গেলে শ্যাফট থেকে এদের টেনে বের করতে এটা ব্যবহার করা হয়। এর মধ্যভাগে সরু মুখ বিশিষ্ট একটি স্পিতল থাকে।

- ১। ইনসাইড পুলার (Inside Puller)
- ২। আউট সাইড পুলার (Out Side Puller)
- ক) পুলি পুলার (Pulley Puller)
- খ) হুইল পুলার (Wheel Puller)

একটি পুলারের প্রধান প্রধান অংশের নাম নিমুরূপ:

季) 要 (Screw)

- খ) ভ্ক (Hook)
- গ) ইয়োক (Yoke)
- ঘ) বোল্ট ও নাট (Bolt and Nut)

১৬.৪ বিভিন্ন প্রকার পুলার ব্যবহার (Uses of Different Types of Puller) :

এই পুলার শ্রিংক ফিট পার্টস আলাদা করতে, রোলার অ্যান্ড বল বিয়ারিং, গিয়ার, পুলি ইত্যাদি শ্যাফট বা কানেকটিং পার্টস থেকে আলাদা করার জন্য ব্যবহার করা হয়।

প্রশ্নমালা-১৬

অতি সংক্ষিপ্ত প্রশ্ন:

- ১। পুলার কী?
- ২। পুলার ব্যবহার কেন করা হয়?
- ৩। পুলারের মধ্যভাগে কী থাকে?
- ৪। পুলারকে প্রধানত কয়ভাগে ভাগ করা যায়?
- ৫। বিশেষ ক্ষেত্রে ব্যবহৃত দুইটি পুলারের নাম কর।
- ৬। পুলি খেলার জন্য কোন পুলার ব্যবহার করা হয়?

সংক্রিপ্ত প্রশ্ন:

- ৭। পুলারের প্রধান অংশগুলোর নাম কী?
- ৮। ইনসাইড বিয়রিং পুলারের কোন কাজে ব্যবহৃত হয়?
- ৯। আউটসাইড বিয়ারিং পুলারের ব্যবহার দেখাও।
- ১০। হুইল পুলার কোন কোন কাজে ব্যবহৃত হয়?

রচনামূলক প্রশ্ন:

- ১১। পুলার সম্পর্কে যা জান লেখ।
- ১২। পুলার কত প্রকার ও কী কী ব্যাখ্যা কর দাও।
- ১৩। পুলারের বর্ণনা দাও।
- ১৪। ইনসাইড বিয়ারিং পুলারের কাজ লেখ।
- ১৫। আউটসাইড পুলারের ব্যবহার দেখাও।
- ১৬। ভূইল পুলার কী কী কাজে ব্যবহৃত হয়? ব্যাখ্যা কর।

সপ্তদশ অধ্যায়

वियातिश (Bearing)

১৭.০ সূচনা (Introduction) :

শ্যাফট যার উপর প্রত্যক্ষভাবে ভর করে ঘোরে তাকে বিয়ারিং বলে। শ্যাফট ক্রমাগত ঘর্ষণের ফলে ক্ষয় হতে পারে। শ্যাফট ক্ষয় হয়ে গেলে তাকে বাতিল করে ঐ স্থলে নতুন শ্যাফট ব্যবহার করার ব্যবস্থা অত্যন্ত ব্যয়সাধ্য এবং অসুবিধাজনক।

১৭.১ विश्रांत्रिश् (Bearing) :

বিয়ারিং মেশিনের এমন একটি অংশ যা প্রধানত শ্যাফটকে অক্ষীয়ভাবে একটি অবস্থায় ধারণ করে ও সহজভাবে ঘুরতে সাহায্য করে, একে বিয়ারিং বলে। ঘূর্ণন বা অক্ষীয়ভাবে চলাচল করার মাধ্যমে শ্যাফটের প্রয়োগিক ভার বহন করার অপরিহার্য অংশকে বিয়ারিং বলে।

১৭.২ বিয়ারিং এর প্রকারভেদ (Types of Bearing) :

বিয়ারিং মূলত দুই প্রকার। যথা:

- ক) ঘর্ষণজনিত (Frictional) বিয়ারিং বা ফ্রিকশন বিয়ারিং।
- খ) অঘর্ষণ (Antifrictional) বা আবর্তন জনিত (Rolling) বিয়ারিং।

উভয় প্রকার বিয়ারিংকে আবার তিন ভাগে ভাগ করা যায়। যথা-

(ক) ঘর্ষণজনিত বিয়ারিং

- ১। জর্নাল বিয়ারিং (Journal Bearing)
- ২। ফুট স্টেপ বা পিভোট বিয়ারিং (Foot Step of Pivot Bearing)
- ৩। প্রাস্ট বা কলার বিয়ারিং (Thurst or Collar Bearing)
- খ) অঘর্ষণ জনিতে বিয়ারিং বলতে সাধারণত নিম্নের ছয় ধরনের বিয়ারিংকে বুঝানো হয়ে থাকে। যথা:
- ১ । বুশ विश्वातिश (Bush Bearing)
- ২। নিডল বিয়ারিং (Needle Bearing)
- ত। বল বিয়ারিং (Ball Bearing)
- 8। প্রাস্ট বিয়ারিং (Thrust Bearing)
- ৫। রোলার বিয়ারিং (Roller Bearing)
- ৬। টেপার রোলার বিয়ারিং (Tapper Roller Bearing)

১৭.৪ বিভিন্ন বিয়ারিং-এর বিবরণ (Description of Different Types of Bearing) ঘর্ষণজনিত বিয়ারিং-এর বর্ণনাঃ

১। জর্নাল বিয়ারিং (Journal Bearing) : এ প্রকার বিয়ারিং-এর ক্ষেত্রে শ্যাফট ভূমির সাথে সমান্তারাল (Horizontally) থেকে ঘুরে থাকে এবং জর্নাল-এর অর্থাৎ এর উপর শ্যাফটের যে অংশ ভর করে ঐ চাপ

শ্যাফটের অক্ষের সাথে ৯০ বা এক সমকোণ পড়ে। এটা সাধারণত ব্রোঞ্জ, ব্রাস, প্রান মেটাল ইত্যাদি মিশ্র ধাতু দ্বারা তৈরি হয়ে থাকে এবং দুই খণ্ডে (Split) রকমের হয়। যে অংশের মধ্যে এটা বসানো হয়, থাকে হাউজিং (Housing) বলা হয়। এটাও দু'খণ্ডে বিভক্ত। বিয়ারিংটির একটি খণ্ড উপর অংশের মধ্যে এটা বসানো হয়ে থাকে। হাউজিং নিচের অংশের সাথে যুক্ত করে নাট ও বোল্ট-এর দ্বারা অংশটি ভালোভাবে আবদ্ধ করা হয়ে থাকে। বিয়ারিংটি যাতে কোনো কারণে হাউজিং-এর মধ্যে ঘুরে না যায় বা দৈর্ঘ্যের দিকে সরে না যায় এর কারণে বিয়ারিংটির বর্হিভাগে বিভিন্ন আকারে খাঁজ ও উভয় প্রান্তে কলার করা থাকে। এতে ঘষণজনিত বাধাকে কমানোর উদ্দেশ্য তেল প্রয়োগ করতে একটি অয়েল হোল (Oil Hole) বর্তমানে থাকে ও ভিতরের সমগ্র উপরিভাগে তেল সম্বলিত হতে কোণাকুণিভাবে তেল নালী (Oil Groove) করা থাকে।

- ২। **ফুট স্টেপ বা পিভোট বিশ্বারিং (Foot Step or Pivot Bearing)** : এ প্রকার বিশ্বারিং—এ শ্যাফটের প্রান্তভূমির সাথে লমভাবে (Vertically) ভর করে ঘুরতে থাকে এবং বিয়ারিং—এর চাপ, শ্যাফটের অক্ষের সমান্তরালভাবে পড়ে।
- ৩। প্রাস্ট বা কলার বিয়ারিং (Thrust or Collar bearing) : এ সকল বিয়ারিং-এ শ্যাফট ঘুরানোর সময় প্রান্তের দিকে চাপ অক্ষের সমান্তরালভাবে পড়ে ও কলার চাপকে প্রতিরোধ করে থাকে।
- 8। বুশ বিয়ারিং (Bush Bearring) : সাধারণত বুশ বিয়ারিং ব্রাস (Brass) ফসফরাস ব্রোপ্ত (Phosphoras bronze), : গান মেটাল (Gum metal) প্রভৃতি মিশ্র ধাতু দ্বারা তৈরি করা হয়ে থাকে। এটা ঘর্ষণ সম্পর্কিত (Friction) অখণ্ড (Solid) রকমের এবং মধ্যস্থিত ছিদ্রটির মধ্যে যাতে শ্যাফট সহজভাবে ঘুরাতে পারে, এ জন্য ছিদ্রটি শ্যাফটের উপযোগী করতে রানিং ফিট নিয়মে সম্পন্ন করা থাকে।
- হাউজিং (Housing)—এর মধ্যে বাইরের গোলাকার উপরিভাগে অর্থাৎ যে অংশের মধ্যে বিয়ারিংটি বসানো হবে এটা তাতে দ্রাইভিং নিয়মে আবদ্ধ করা থাকে। বুশ বিয়ারিংকে শ্যাফটের প্রান্তের দিক থেকে প্রবেশ করানো এক্ষেত্রে উপযোগী হয়।
- (খ) অর্ঘষণজনিত বা আবর্তিত বিয়ারিং-এর বর্ণনা:
- ১। বল বিয়ারিং (Ball Bearing) : এই প্রকার বিয়ারিং বল দুটি রিং (Ring)—এর মধ্যে নির্দিষ্ট নালীতে অবস্থান করে আবর্তিত হয়। হাউজিং অংশের মধ্যে এটার বাইরের রিংটি যা নির্দিষ্ট জায়গায় দৃঢ়ভাবে আবদ্ধ থাকে তাকে আউটার রেস (Outer Race) এবং ভিতরের রিংটি যা শ্যাফটের সাথে দৃঢ়ভাবে আবদ্ধ থাকে তাকে ইনার রেস (Inner Race) বলে। বলের পয়েন্ট কন্ট্রাকের মাধ্যমে লোড ট্রাঙ্গফার হয়। রোলিং রেজিস্ট্যান্স হয়।
- ২। রোলার বিয়ারিং (Roller Bearing) : দুটি রেসের অন্তর্বতী অংশে রোলারগুলি পৃথককারী খাঁচা (Seperating cage)—এর মধ্যে থেকে সংযোগ রক্ষা করে। রোলগুলি রেসের সাথে সরল রেখা সূত্রে মিলিত হয়। ফলে বল বিয়ারিং অপেক্ষা রোলার বিয়ারিং বেশি ভার বহনে সমর্থ হয়। রোলার বিয়ারিং এ কোনো ঘর্ষণ যেন না হয় তার জন্য রোলিং রেজিস্ট্যান্স থাকে।
- ৩। নিডল বিয়ারিং (Needle Bearing) : এটা অনেকটা রোলার বিয়ারিং-এর মতো। এর রোলার ব্যাস কম কিন্তু সংখ্যা অনেক বেশি। সাধারণত ছোট শ্যাফটের ক্ষেত্রে এটা ব্যবহার করা হয়।
- 8। প্রাস্ট রোলার বিয়ারিং (Thrust Roller Bearing) : একে অনেক সময় টেপার রোলার বিয়ারিং ও বলে। এই বিয়ারিং একই সাথে অনুভূমিক এবং উল্লম্ব লোড বহন করতে পারে।

১৭.৫ विम्रातिং-এর প্রয়োজনীয়তা (Needs of Bearing) :

নিমুলিখিত কারণসমূহের জন্য বিয়ারিং-এর প্রয়োজনীয়তা অপরিহার্য।

- ১। এটা ঘর্ষণজনিত বাধা (Frictional Registance) কে কমাতে উপযোগী হয়।
- ২। এটা শ্যাফটকে একই অবস্থায় নিয়ন্ত্রণ করে একে ঘুরতে সাহায্য করে।
- ৩। এটা মেশিনের হাউজিং অংশে সহজেই আবদ্ধ করা যায়।
- ৪। এটা শ্যাফটকে ধারণ করে থাকে।
- ৫। এটা যে কোনো প্রকার ভার ও ঘর্ষণের ক্ষেত্রে উপযোগী হয়।
- ৬। এটা ব্যবহার করলে শ্যাফটের কোনোরূপ ক্ষতির আশংকা থাকে না।

উপরোক্ত কারণগুলি বিবেচনা করলে দেখা যায় বিয়ারিং-এর গুরুত্ব ও প্রয়োজনীয়তা অত্যাধিক। কারণ বিয়ারিং ছাড়া শ্যাফট যুরতে পারবে না ও পাওয়ার ট্রান্সমিট করতে পারবো না।

১৭.৬ বিয়ারিং-এ ব্যবহৃত পুত্রিকেন্টসমূহ (Bearing's Lubricants) :

বিয়ারিং-এ ব্যবহৃত লুব্রিকেন্ট ব্যক্ত করা হলো:

- ১ ৷ তেল (Oil)
- ২। গ্রীজ (Grase)
- ৩। এয়ার (Air)/গ্যাস (Gass)

১৭.৭ বিয়ারিয়ং-এর যত্ন ও রক্ষণাবেক্ষণ (Care and Maintence of Bearing)

- ১। কাজ শেষে এটাতে প্রয়োজন মতো তেল জাতীয় পদার্থ দিয়ে রাখতে হয় যাতে মরিচা না পড়ে।
- ২। বিয়ারিং−এর উপর বেশি চাপ না পড়ে সে দিকে লক্ষ্য রাখতে হবে। হাউজিং−এ বিয়ারিং ক্যাপ শক্তভাবে ফিট থাকতে হবে।
- ৩। যে সকল মেশিনে বিভিন্ন প্রকার বিয়ারিং ফিট করা থাকে, মেশিন চালনা করার পূর্বে ঐ বিয়ারিংগুলোতে গ্রীজ, বা তেল জাতীয় দ্রব্য দিয়ে কাজ করতে হয়।
- ৪। মেশিন কাজ করার সময় লক্ষ্য রাখতে হবে যাতে ঘর্ষণে বিয়ারিংগুলির তাপমাত্রা ৬০ সেন্টিগ্রেড থেকে ৭০ সেন্টিগ্রেডের বেশি না হয়।
- ৫। বিয়ারিং ক্লিয়ারেন্স চেক করে দেখতে হবে।
- ৬। লুব অয়েলের প্রকৃত ভিসকোসটি থাকতে হবে। পরিষ্কার এবং পরিমাণমতো থাকতে হবে।

প্রশ্নমালা-১৭

অতি সংক্ষিপ্ত প্রশ্ন:

- ১। বিয়ারিং কী?
- ২। বিয়ারিং-এর প্রধান কাজ কী?
- । বিয়ারিংকে প্রধানত কয় ভাগে ভাগ করা যায়?
- ৪। প্রাস্ট বিয়ারিং এর কাজ কী?
- ৫। দুইটি বুশ তৈরির ম্যাটেরিয়ালের নাম লেখ?
- ৬। জার্নাল বিয়ারিং-এর শ্যাফট ভূমির সাথে কী রূপে থাকে।

मशकिख थाः

- ৭ ৷ বিয়ারিং বলতে কী বোঝায়?
- ৮। বিয়ারিং প্রধানত কত প্রকার ও কী কী?
- ৯। নিডল বিয়ারিং ও রোলার বিয়ারিং-এর মধ্যে প্রার্থক্য দেখাও?
- ১০। অর্ঘষণজনিত বিয়ারিং কত প্রকার ও কী কী।
- ১১। টেপার রোলার বিয়ারিং সম্পর্কে যা জান লেখ।
- ১২। সলিড এবং স্পিলিট বিব্লায়িং-এর মধ্যে পার্থক্য লেখ।
- ১৩। বল এবং রোলার বিয়ারিং-এর সুবিধাগুলো উল্লেখ কর।

রচনামূলক প্রশ্ন:

- ১৫। विग्नातिः वलटा की वाबाग्रः विग्नातिः এর প্রকারভেদ দেখাও।
- ১৬। অঘর্ষণজনিত বিয়ারিং সম্পর্কে সংক্ষেপে বিবৃত কর।
- ১৭। জার্নাল বিয়ারিং সম্পর্কে যা জান লেখ।
- ১৮। বিয়ারিং-এর প্রয়োজনীয়তা আলোচনা কর।
- ১৯। বিয়ারিং-এ ব্যবহৃত পুরিক্যান্ট সমূহের নাম লেখ।
- २०। विद्यादिश- अद यञ्ज अ दक्षणातक्षण সম्পর্কে या জান লেখ।
- ২১। জার্নাল-এর পজিশন শ্যাফট চলার সময় বিয়ারিং কী রকম থাকে চিত্রের সাহায্যে বর্ণনা কর।

অষ্টদশ অধ্যায়

পাইপ ফিটিং কৌশল

Technique of Pipe Fitting

১৮.০ সূচনা (Introducion) :

দীর্ঘ আকৃতির যে ফাঁপা গোলাকার বেলনাকৃত (Cylindrical) নলের ভিতর দিয়ে প্রবাহী বা ফুইডকে (Fluid) ধারাবাহিকভাবে প্রবাহিত করা হয়, তাকে পাইপ বলে। পানি, বাষ্প, গ্যাস, তেল ইত্যাদিকে পাইপের মাধ্যমে চাপের সাহয্যে বা মাধ্যাকর্ষণ (Gravitional Force) বলের সাহয্যে এক স্থান থেকে অন্য স্থানে পরিচালিত করা হয়। এছাড়া নালা, পয়ঃলাইন ইত্যাদিতে মোটা পাইপ ব্যবহৃত হয়। টিউব (Tube) এক প্রকার ক্ষুদ্রকার পাইপ। তবে ব্যবহারিক ক্ষেত্রে ও মাপের হেরফেরে এগুলোর মধ্যে কিছু পার্থক্য দেখা যায়।

- পাইপকে পরিমাপ করা হয় এর ভিতরে বা্যাসের মাপ অনুষায়ী আর টিউবের মাপ নেওয়া হয় বাইরের ব্যাসের মাপ দিয়ে।
- ২. পাইপ বাজারজাত হয় লম্বা দৈর্ঘ্য অনুযায়ী আর টিউবকে পাওয়া যায় কুণ্ডলী (Coil) আকৃতিতে বা ওজনে।
- ৩. পাইপসমূহ ঢালাই লোহা, পেটা লোহা (Wrought Iron) স্টিল রড, গ্যালভানাইজড আয়রন, প্রাস্টিক, সিমেন্ট কংক্রিট, এ্যাসবেটস ইত্যাদি দিয়ে তৈরি। অন্যদিকে টিউব সমূহ বেশির ভাগই অলৌহজাত ধাতু অর্থাৎ তামা, পিতল, অ্যালুমিনিয়াম ইত্যাদি ধাতুর তৈরি হয়। রড থেকে এক্ক্টেশন এর মাধ্যমে সীমলেস (ওয়েলিং জোড়া ছাড়া) পাইপ, বয়লার টিউব বানানো হয়।
- ৪. পাইপ সাধারণত পানি সরবারহ লাইন, নালা পয়য়লাইন গ্যাস ও বাষ্প সরবারাহ লাইন ইত্যাদি কাজে ব্যবহৃত হয়। অন্যদিকে টিউব দিয়ে এয়ার কভিশনের মেনিফোল্ড/ইঞ্জিনের প্রয়োজনীয় চিকন নল, বয়লার টিউব তৈরি হয়।

১৮.১ পাইপ ফিটিং (Pipe Fitting) :

পাইপ লাইনে, পাইপের সঙ্গে পাইপের পরস্পর সংযোজন, পাইপ লাইনের দিক পরিবর্তন, প্রধান পাইপ লাইন থেকে শাখা লাইন বের করা, বিভিন্ন দিকে লাইন বের করা বড় আকারের পাইপের সঙ্গে ছোট আকারের পাইপ লাইন থেকে শাখা বিভিন্ন লাইন বের করা, বড় আকারের পাইপের সঙ্গে ছোট আকারের পাইপ সংযোগ করা ইত্যাদি কাজে প্রামিং ফিকচার (FixTure) লাগাতে বিভিন্ন প্রকার উপকরণ ও সাজ সরপ্তাম ও বিশেষ পাইপ খণ্ডের প্রয়োজন হয়। এ বিশেষ পাইপ খণ্ড ও বিভিন্ন সাইজ ইত্যাদি।

- ১৮.২ বিভিন্ন প্রকার পাইপ ফিটিংসসমূহের নামসমূহ (Name of Different Types of pipe Fittings): বিভিন্ন প্রকার পাইপ ফিটিংসের নাম নিম্নে লিপিবদ্ধ করা হলো:
- ১। ফ্রেঞ্ছ পাইপ ফিটিংস (Flange pipe Fittings) : নিম্নে কাস্ট আয়রন বা অন্যান্য ধাতুর দ্বারা তৈরি ফ্রেঞ্জযুক্ত পাইপের কয়েকটি ফিটিংসের নাম দেওয়া হলো।
 - (১) বেন্ড (Bend)
 - (2) (Tee)

- (৩) এলবো (Elbow)
- (8) ক্রস (Cross)
- (৫) বিভিন্ন রকমের ভাল্ব (Valve) ইত্যাদি।

২। ফ্রেঞ্জবিহীন পাইপ ফিটিংস:

- (5) to (Tee)
- (২) এলবো (Elbow)
- (৩) রিডিউসার (Reducer)
- (8) ওয়াই (Y)
- (৫) ক্রস (Cross)
- (৬) ইউনিয়ন (Union) ইত্যাদি

৩। রট আয়রন বা স্টিল পাইপের ফিটিংস:

- (১) ওয়াই (Y)
- (২) টি (Tee)
- (৩) ক্রন্স (Cross)
- (8) নিপল (Nipple)
- (৫) রিডিউসিং (Redcucing)
- (৬) এলবো (130⁰ Elbow)
- (৭) সকেট (Socket)
- (৮) রিডিউসিং সকেট (Redcucing Socket)
- (৯) ক্যাপ (Cap)
- (১০) প্লাগ (Plug)
- (১১) রানিং নিপল (Running Nipple)
- (১২) বুশ (Bush)
- (১৩) রিডিউসিং এলবো (Reducing Elbow)
- 8। ইউনিয়ন সকেট (Union Socket)-এ এক্সপানশন বন্ধ ও এক্সপানশন জয়েন্ট (Expansion bond and Expansion joint)
- ১৮.৩ বিভিন্ন প্রকার পাইপ ফিটিংস শনাক্তকরণ (Identification of Different Types of Pipes) : বিভিন্ন প্রকার পাইপ ফিটিংসগুলি প্রয়োজন অনুযায়ী বিভিন্ন আকার হয়ে থাকে এবং সে অনুযায়ী এদের নামকরণ করা হয়। যেমন:

বিভিন্ন প্রকার পাইপ ফিটিংস-এর ব্যবহার (Use of Diferent Types of Pipe Fittings) :

একাধিক পাইপকে বিভিন্ন কোণে যুক্ত করার জন্য বিশেষ পাইপ খণ্ড প্রয়োজন হয়। এই খন্ড শুলি কাস্ট আয়রন বা রট আয়রন দ্বারা তৈরি হয়ে থাকে এবং ফ্রেঞ্জসহ ও ফ্রেঞ্জবিহীন উভয় প্রকার হতে পারে।

কাস্ট আয়রন দারা তৈরি ফ্রেঞ্চসহ পাইপের সংযোগ খন্ড নিমে দেখানো হলো:

(ক) এলবো : (Elbow) : দৃটি পাইপকে এক সমকোণ অর্থাৎ ৯০° কোণে যুক্ত করতে এটা ব্যবহার করা হয়।

- (খ) বেন্ড (Bend) : দুটি পাইপকে এক সমকোণ বা তার চেয়ে বেশি কোণে যুক্ত করতে এটা ব্যবহৃত হয়।
- (গ) টী (Tee): কোন পাইপ থেকে এক সমকোণে শাখা বের করতে এটা ব্যবহৃত হয়।
- (ঘ) ক্রস (Cross): কোন পাইপ থেকে উভয় দিকে এক সমকোণ শাখা বের করতে এটা উপযোগী হয়।
 কাস্ট আয়রনের ফ্লেক্সবিহীন পাইপকে স্পিগট ও সকেট (Spigot and Socket) রট আয়রন অথবা স্টিল
 দ্বারা তৈরি পাইপের খণ্ডগুলি সাধারণত ক্র্ থ্রেড বিশিষ্ট থাকে। ফ্লেক্স বিশিষ্ট পাইপের সংযোগ দৃঢ় হয়। কিন্তু
 এটার অসুবিধা এই যে, এই জাতীয় বড় ডায়ামিটার পাইপকে ভূমি তলের নিচে বসালে এটা ভূমির চাপ এবং
 অসমতলতার সাথে সামঞ্জস্য রক্ষা করে থাকতে পারে না।

ম্পিগট এবং সকেট বিশিষ্ট পাইপ: একটি পাইপের ম্পিগট যুক্ত প্রাম্ভকে অপর একটি পাইপের সকেট যুক্ত প্রাম্ভের মধ্যে প্রবেশ করিয়ে সংযোগের ফাক (gap) কে পাট (Jut), সীসা (Lead) ইত্যাদি প্যাকিং বস্তু দ্বারা পূর্ণ করা হয়। পরে সীসা দ্বারা উত্তররূপে ককিং (Caulking) করা হয়ে থাকে। স্পিগট এবং সকেট শ্রেণির পাইপের সংযোগস্থলে ব্যবহার্য কয়েকটি বিশেষ খণ্ডের উদাহরণ দেয়া হলো:

- (ক) রিডিউসার (Reducer) : দুটি বিভিন্ন ডায়ামিটারের পাইপকে যুক্ত করার জন্য এটা ব্যবহৃত হয়।
- (খ) এলবো (Elbow) : দু'টি সমান ডায়ামিটারের পাইপকে এক সমকোণ যুক্ত করার জন্য এটা ব্যবহার করা হয়।
- (গ) টী (Tee) : কোনো পাইপ থেকে একদিকে এক সমকোণ শাখা বের করার জন্য এটা ব্যবহৃত হয়।
- ক্রস (Cross) : একটি পাইপ থেকে উভয় দিকে এক সমকোণ শাখা বের করার জন্য এটা ব্যবহার করা হয়।
- (৩) ওয়াই (Y) : একটি পাইপ থেকে এক সমকোণ অপেক্ষা বেশি বা কম কোণে শাখা বের করার জন্য এটা ব্যবহৃত হয় । উপরের চিত্রে পাইপগুলো একই ডায়ামিটারের দেখানো হয়েছে । এখানে স্মরণ রাখা প্রয়োজন–এটা বিভিন্ন ডায়ামিটারেরও হতে পারে । রট আয়রন বা স্টিল দ্বারা তৈরি পাইপের বিশেষ খণ্ড সরু পাইপ সাধারণত রট আয়রন বা স্টিল দ্বারা তৈরি এবং ক্রু প্রেড বিশিষ্ট হয় ।
- (ক) এলবো (Elbow) : সমান ডায়ামিটারের পাইপকে এক সমকোণে যুক্ত করার জন্য এটা ব্যবহার হয়।
- (খ) টী (Tee) : কোনো পাইপ থেকে একাধিক এক সমকোণ সমান ডায়ামিটারের শাখা বের করার জন্য এটা ব্যবহার করা হয়।
- (গ) ক্রস (Cross) : কোনো পাইপ থেকে উভয় দিকে সমান ডায়ামিটারের শাখা বের করার জন্য এটা ব্যবহৃত হয়।
- (ঘ) রিডিউসিং এলবো (Reducing Elbow) : বিভিন্ন ডায়ামিটারের দুটি পাইপ এক সমকোণে যুক্ত করার জন্য এটা ব্যবহার করা হয়।
- (ঙ) রিডিউসিং টী (Reducing Tee) : কোনো পাইপ থেকে এক দিকে এক সমকোণ অপেক্ষাকৃত কম ডায়ামিটারের শাখা বের করার জন্য এটা ব্যবহৃত হয়।
- (চ) ১৩৫⁰ এলবো (135⁰ Elbow) : দুটি সমান ভায়ামিটারের পাইপকে এক সমকোণ অপেক্ষা অধিক অর্থাৎ ১৩৫⁰ কোণে যুক্ত করার জন্য এটা ব্যবহৃত হয়।

- (ছ) ওয়াই (Y) : তিনটি সমান ডায়মিটারের পাইপকে পরস্পরের সাথে ১২০⁰ কোণে যুক্ত করার জন্য এটা ব্যবহৃত হয়।
- (জ) সকেট (Socket) : দৃটি সমান ডারামিটারের পাইপকে সরলভাবে (অর্থাৎ একই অক্ষরেখা সূত্রে) যুক্ত করার জন্য এটা ব্যবহার করা হয়।
- (ঝ) রিডিসিং সকেট (Reducing Socket) : দ্টি বিভিন্ন ডায়ামিটার পাইপকে সরলভাবে (অর্থাৎ একই অক্ষ রেখা সূত্রে) যুক্ত করার জন্য এটা ব্যবহৃত হয়।
- (এ) কাপ (Cup) : এটার একটি প্রান্ত বন্ধ। পাইপের প্রান্তকে বন্ধ করতে পাইপের বাইরের দিকে স্কু প্রেড করে এটা ব্যবহার করা হয়।
- (ট) প্লাগ (Plug) : এটার উপরিভাগ স্কু খ্রেড বিশিষ্ট্ পাইপের প্রান্তকে বন্ধ করতে পাইপের মধ্যে এটাকে প্রবেশ করিয়ে ব্যবহার করা হয়।
- (ঠ) রানিং নিপল (Running Nipple) : এটার উপরিভাগে ক্স্ প্রেড বর্তমান। ভিতরে ক্স্ প্রেড করা আছে এই প্রকার দৃটি পাইপকে সরলভাবে (অর্থাৎ) একই রেখা সূত্রে যুক্ত করাতে পাইপ দৃটির প্রান্তে এটাকে প্রবেশ করিয়ে ব্যবহার করা হয়।

চিত্র: ১৮.১ রানিং নিপল

(৬) বৃশ (Bush) : এটার ভিতরে ও বাইরে ক্লু থ্রেড করা। ক্লু থ্রেড বিশিষ্ট কোনো পাইপের প্রান্তের ডায়ামিটারকে কমানোর জন্য এটার ভিতরে ওটাকে প্রবেশ করিয়ে ব্যবহার করা হয়।

চিত্ৰ: ১৮.২ বুশ

(চ) নিশল (Nipple): এটা স্ট্যান্ড প্রেডের ন্যায়। মধ্যখানে নাটের ন্যায় এবং দু'প্রান্তে ক্কু প্রেড করা থাকে। ভিতরে ক্কু প্রেড করা আছে এই প্রকার দু'টি পাইপকে সরলভাবে (অর্থাৎ এই রেখাসূত্রে) যুক্ত করতে পাইপ দুটির প্রান্তে প্রবেশ করিয়ে এটা ব্যবহার করা হয়।

চিত্র: ১৮.৩ নিপল

(প) ইউনিয়ন (Union): বিশেষ স্থলে পাইপকে ইউনিয়নের সাহায্যে যুক্ত করা হয়ে থাকে। এটার উদাহরণ পাশে দেয়া হলো। ইউনিয়নকে সহজে যুক্ত করা এবং খোলা যায় এবং এটার সাহায্যে গ্যাস, স্টিম ইত্যাদি বের হয়ে আসার পথ উত্তমরূপে রুদ্ধ হয়।

চিত্র: ১৮.৪ ইউনিয়ন

(ভ) এক্সাপানশন বেন্ড (Expansion Bend) : লক্ষ্য করা যায় যে, প্রায় 150° সেন্টিপ্রেড বা সেলসিয়াস তাপমাত্রা পরিবর্তন ঘটলে, প্রতি 12 মিটার দীর্ঘ কাস্ট আয়রন পাইপ দৈর্ঘ্য প্রায় 25 মি.মি. এবং ২৭০° সেন্টিপ্রেড বা সেলসিয়াস তাপমাত্রা পরিবর্তন ঘটলে প্রতি 12 মিটার দৈর্ঘ্য স্টিল পাইপে দৈর্ঘ্য প্রায় 65 মিঃ মিঃ বর্ধিত হয়। এই কারণে পাইপের মধস্থিত তরল পদার্থ দ্বারা অথবা অন্য কোনো ক্রিয়ার ফলে যে স্থলে পাইপের তাপমাত্রা এই প্রকার অধিক হয়, ঐ স্থলে উপরের চিত্রে দেখানো এক্সপানসন বেন্ড ও এক্সপানশন জয়েন্ট ব্যবহার করা প্রয়োজন হয়ে থাকে। এক্সপানশন জয়েন্টের বেলায় এটার শ্রীব অংশটি সকেট অংশের মধ্য দিয়ে সরে। স্টাঞ্চিং বক্স—এর মধ্যস্থিত এসবেসটস প্যাকিং দ্বারা পাইপের মধ্য থেকে তরল পদার্থের বাইরে আসার পথ সর্বদা রুদ্ধ থাকে।

চিত্র: (ক) এক্সপানশন বেড (খ) এক্সপানশন জয়েন্ট

১৮.৪ পাইপ ফিটিংস পদ্ধতিসমূহ (Procedure of Pipe Fitting)

(ক) ফ্লেঞ্চ পাইপ কিটিংস (Flange Pipe Fittings)

পাইপের ফ্রেঞ্চ স্থাপন করে ফ্রেঞ্চ বোল্ট দ্বারা বাঁধা পদ্ধতিকে ফ্রেঞ্চ ফিটিংস বলে। এটি যখন পাইপের বড় ব্যাস থাকে, পাইপের অভ্যন্তরীণ চাপ বেশি থাকে এবং মাঝে মাঝে যখন অপসারণ করা প্রয়োজন হয়, তখন এটা ব্যবহার করা হয়। ঢালাই লোহার পাইপ নির্মাণের সময় ফ্রেঞ্চযুক্ত অথবা ফ্রেঞ্চহীন দুইভাবেই তৈরি করা হয়। মূল পাইপ অপেক্ষা এর ফ্রেঞ্চ একটু বেশি পুরু হয়ে থাকে। ফ্রেঞ্চ যুক্ত দুটি পাইপকে মুখোমুখি নরম ধাতৃর গ্যাসকেট বসিয়ে নাট-বোল্ট দ্বারা পরস্পের সংযুক্ত করা হয়। ফ্রেঞ্চসহ পাইপ সাধারণত স্টিম, পানি, পরিশোধন ও সরবরাহ কাজে ব্যবহার করা হয়। এ পাইপের সংযোগ সর্বদা দৃঢ় করা হয়।

- (খ) গ্যাস পাইপ কিটিসে (Gas Pipe Fittings) : এটি পাইপের উভয় প্রান্তে প্রেড কটা সম্পন্ন জয়েন্ট। ঢালাই লোহা, পিতল, ব্রোপ্ত ইত্যাদি ঘারা উৎপন্ন করে, পানি, তেল, বাম্প, বাজাস, গ্যাস ইত্যাদি সাধারণ জয়েন্ট, বুশ জয়েন্ট, বেন্ড জয়েন্ট ইত্যাদি অনেক প্রকারে ব্যবহৃত হয়।
- (গ) ফ্রেঞ্জবিহীন পাইপ ফিটিংস: ফ্রেঞ্জবিহীন ঢালাই লোহার পাইপকে স্পিগট ও সকেট বিশিষ্ট পাইপ বলে। ফ্রেঞ্জ বিশিষ্ট পাইপের সংযোগ দৃঢ় হলেও এর অসুবিধা এই যে, এই জাতীয় বড় ব্যাসের বড় পাইপকে, মাটির মধ্যে স্থাপন করলে ভূমির চাপ ও অসমতলতার সাথে সামঞ্জস্য রক্ষা করে অবস্থান করতে পারে না। ফলে কিছুদিন পর পর ঐ সংযোগস্থলের কাছে পাইপ ফেটে অথবা ভেকে যায়। স্পিগট ও সকেট বিশিষ্ট পাইপ ব্যবহার করলে এ অসুবিধা আর থাকে না।

পাইপ ফিটিং কৌশল

(ছ) ইউনিয়ন সকেট ফিটিংস (Union Socket Fittings): এটাকে শুধু ইউনিয়নও বলা হয়। সহজে পাইপ লাইন ফিটিং অবমুক্ত করার জন্য পাইপ লাইনে ইউনিয়ন সকেট ব্যবহার করা হয়। এটা পাইপ লাইন মেরামতের সময় লাইন খুলতে সহজ হয়। ইউনিয়নকে সহজে খোলা ও যুক্ত করা যায়। এটার সাহায্যে গ্যাস, স্টিম ইত্যাদি নিশ্বাশন বন্ধ করা যায়। এটা প্রকৃতপক্ষে দুটি সমান ব্যাসের পাইপকে যুক্ত করে।

- (৬) রট আয়রন বা স্টিল পাইপের ফিটিংস: রট আয়রন বা স্টিলের তৈরি পাইপগুলো সাধারণত সরু হয়ে থাকে এবং এদের প্রান্ত কু থ্রেড যুক্ত হয়। এ শ্রেণির পাইপে যে সকল ফিটিংস ব্যবহার করা হয় তাদের কয়েকটির নাম দেয়া হলো। এলবো, টী, ক্রস, রিডিউসিং এলবো, রিডিউসিং টী, ১৩৫° এলবো, ওয়াই, সকেট, ক্যাপ, প্রাগ, রানিং নিপল, বুশ, নিপল ইত্যাদি।
- ১. গ্লোব ভাল্ড (Globe Valve) ও আ্যানেল ভাল্ড (Angle Valve) :

গ্লোব ভাল্ভ: ভাল্ভের মধ্যে এ ভাল্ভ সবচাইতে বেশি ব্যবহার করা হয়। হ্যাভল ঘুরিয়ে ভাল্ভ উপর-নিচে যাতায়াত করে বন্ধ ও খোলা হয়। এটার বৈশিষ্ট্য হলো–

ভাল্ভের ভেতরে তরল ও বায়বীয় পদার্থের প্রবাহের দিক পরিবর্তন হওয়ার কারণে রোধ বেশি ঘটে, সে কারণে বন্ধ বা নিয়ন্ত্রণের কাজ সঠিকভাবে হয়। ফ্লো এনুলার শেপস দিয়ে হয়।

অ্যাঙ্গল ভালভ : তরল পদার্থের গমন পথ যদি সমকোণ হয় তবে স্টপ ভাল্ভ হিসেবে এ ভাল্ভ ব্যবহৃত হয়।

২. গেট ভাগ্ড (Gate Valve):

এটাকে সুইচ ভাল্ভও বলা হয়। প্রধানত প্রবল চাপ ও উচ্চ গতিতে প্রবাহের পরিমাণ বেশি থাকার সময় ব্যবহৃত হয়। এটার বৈশিষ্ট্য হলো:

- ক) সম্পূর্ণ খোলা থাকায় তরল ও বায়বীয় রোধ করা হয়।
- খ) ভাল্ভের ভেতরে চাপঞাস হয় না।
- গ) ভাল্ভ অর্ধেক খুললে ভাল্ভের ভেতরে ঘূর্ণস্রোত সৃষ্টি হয়ে ভাল্ভ কম্পন ঘটে।
- ঘ) প্রবাহের দিক চেঞ্জ হয় না।

৩. ফ্ল্যাপ ভালভ (Flap Valve):

চাকতির ঘূর্ণন দ্বারা নলের খোলা অবস্থা নিয়ন্ত্রণ করার জন্য ব্যবহৃত হয়। এটাকে প্রটল ভাল্ভ ও বলা হয়। এর বৈশিষ্ট্য হলোঃ

- ক) গেট ভাল্ভের তুলনায় ওজনে হালকা হয়।
- খ) বন্ধ খোলা সহজ ভাবে করা যায়।
- গ) বায়ুরোধী রাখা যায়।
- ৪. কক: একে স্টপ ককও বলা হয়। ভাল্ভ ঘুরানোর ফলে নল বন্ধ-খোলাকে কক বলে। ভাল্ভের ট্যাপারের আনুমানিক মান প্রায় ১/৫ অর্থাৎ ট্যাপারের বড় ব্যাস ৫ এবং ছোট ব্যাস ১ অনুপাত সম্পন্ন হয়। ফলে এ ছিদ্রের আকৃতি বৃত্তকার, উপবৃত্তকার, আয়তক্ষেত্র ইত্যাদি থাকে। প্রধানত লঘ্চাপ ও ছোট ব্যাসের পাইপে ব্যবহৃত হয়। এর বৈশিষ্ট্য হলো-
- ক) ভাল্ভ-এর চার ভাগের এক ভাগ ঘুরালে সম্পূর্ণভাবে খোলা যায় ও বন্ধ করা যায়। ফলে এর সময় বেশি প্রয়োজন হয় না।

- খ) গঠন সরল হয়।
- গ) তাপ প্রসারণ বা তরল ও বায়বীয় পদার্থের মধ্যে মিশ্রিত ময়লার জন্য গতিশীল তরল আটকে যাবার সম্ভাবনা থাকে।

৫. চেক ভালভ (Check Valve):

চেক ভাল্বকে ননরিটার্ন ভাল্ব বলা হয়। তরল ও বায়বীয় পদার্থ শুধুমাত্র একদিকে প্রবাহ করে বিপরীত দিকে প্রবাহ হতে রক্ষা করার জন্য এটা ব্যবহৃত হয়। এটা উপর নিচে চলার ভাল্ভ, চাপ পেলে উপরে ওঠে, হ্রাস হলে ভাল্ভ নেমে নল বন্ধ করে তরল পদার্থ বিপরীত দিকে প্রবাহ প্রতিরোধ করে। ভাল্ভ কজা দ্বারা শুধু এক দিকে চলার ন্যায় স্থাপন করা থাকে। এটা অনুভূমিক ও উল্লম্ব উভয়ভাবে স্থাপন করা যায়।

৬. রিডিউসিং ভাল্ভ (Reducing Valve):

এটা অনেকটা থ্রোটল ভালবের মতো। তরল ও বায়বীয় পদার্থের চাপ স্বয়ংক্রিয়ভাবে প্রয়োজনীয় চাপ পর্যন্ত হ্রাস করে,হ্রাসকৃত চাপ নির্দিষ্ট মাত্রায় রাখার জন্য ব্যবহৃত হয়।

৭, সেফটি ভাল্ভ (Safety Vavle) :

এটা স্প্রীং লোডেড বা ডেড ওয়েট বা ম্যাগনেটিক পদ্ধতিতে কাজ করে। তরল ও বায়বীয় পদার্থের চাপ বেশি হয়ে স্বয়ংক্রিয়ভাবে ভাল্ভ খুলে অতিরিক্ত তরল অথবা বায়বীয় পদার্থ বাইরে নিষ্কাষণ করে চাপের বৃদ্ধি প্রতিরোধ করার জন্য এটা ব্যবহৃত হয়।

১৮.৫ পাইপ ফিটিংসে সতর্কতার বিষয়াদি (Precuation in Pipe Fitting):

পাইপ ফিটিংসে সতর্কতার বিষয়টি বিশেষভাবে গুরুত্বপূর্ণ। কেননা:

ফিটিংস সঠিক পদ্ধতিতে এবং নিখুঁতভাবে ফিট না করলে তরল পদার্থ, গ্যাস, বাল্প ও পানিবাহী পাইপলাইনে লিকেজ দেখা দেবে যা সিস্টেমলসসহ মারাত্মক দুর্ঘটনার কারণ হতে পারে ও পরিবেশবান্ধব হয় না। এজন্য পাইপ ও ফিটিংস–এর থ্রেড দেখে নিতে হয় যাতে ফুল ডেপথ থ্রেড থাকে। এতে জয়েন্ট ভালো ও লিক প্রুফ হয়।

পাইপ ফিটিংস অবশ্যই লিকপ্রুফ হতে হবে।

পাইপ লাইনের সমঅক্ষতা অবশ্যই সঠিক হতে হবে, অন্যথায় সঠিক ফিটিং হবে না।

সিলিং দ্রব্যাদির নির্বাচন এবং পরিমাণ সঠিক হতে হবে। টেপ, গ্রাফাইট প্রভৃতিতে প্রেড লাগানোর সময়ও গ্যাসকেট ফিট করার সময় নিখুঁতভাবে কাজ করতে হয়।

পাইপ জোড়া (Pipe Joint):

নির্দিষ্ট মাপের লম্বা পাইপ বাজারে পাওয়া যায়। কিন্তু কার্যক্ষেত্রে অনেক বেশি লম্বা পাইপের দরকার হয়। সূতরাং পাইপকে জোড়া দিয়ে কার্য সম্পাদন করা হয়। পাইপকে জোড়া দেওয়ার অনেক পদ্ধতি আছে। তবে অতি সাধারণ জোড়াগুলো নিয়ে আলোচনা করা হলো।

১) সকেট জোড়া: এ জোড়া পাইপকে জোড়া দেয়ার অতিসাধারণ পদ্ধতি। সকেট হল এক খন্ত পাইপের টুকরা যার ভেতরে থ্রেড কাটা থাকে। একটা পাইপের উপর থ্রেড কাটা অংশ সকেটের অর্ধেক পরিমাণ অংশে অপর পাইপের উপর প্রেড কাটা অংশ সকেটের বাকি অংশে স্কুয়িং করে আবদ্ধ করা

হয়। অতি অল্প চাপে তরল পদার্থ বহনকারী পাইপকে জোড়া দেয়ার জন্য এ পদ্ধতি ব্যবহার করা হয়।

- নিপল জোড়া: নিপল হলো পাইপের ক্ষুদ্র টুকরা যার বাইরের সারফেস প্রেড কাটা। এর সবচেয়ে বড়
 অসুবিধা হলো পাইপপের ব্যাস কম দেয়।
- ইউনিয়ন জোড়া: সকেট দিয়ে জোড়াকৃত পাইপ খোলার প্রয়োজন হলে এক প্রান্ত থেকে পাইপকে
 খুলে আনতে হয়। এ অসুবিধা দ্র করার লক্ষ্যে ইউনিয়ন জোড়া ব্যবহার করা হয়। এ ক্ষেত্রে পাইপ
 বিচ্ছয় করতে হলে শুধু কাপলারনাটকে খুলে নিতে হয়।
- ৪) স্পিগট এবং সকেট জোড়া: যে সকল পাইপ লাইন মাটির নিচে অবস্থান করে সেসব পাইপ সংযোজনের জন্য এ জোড়া ব্যবহার করা হয়। একটি পাইপের সকেটের মধ্যে অপর পাইপের স্পিগট অংশ প্রবেশ করিয়ে ফাঁকা স্থান পাট ও সীসা দিয়ে প্যাকিং করে সংযোগ সম্পন্ন করা হয়।
- ৫) এক্সপানশন জোড়া: যে সকল পাইপের মধ্য দিয়ে উচ্চ চাপ ও তাপে বাষ্প প্রবাহিত হয় সেসব পাইপ তাপের পরিবর্তনের জন্য সংকক্চিত ও প্রসারিত হয়। এ সংকোচন ও প্রসারণের ফলে পাইপ যাতে বিৃকত না হয় বা ফেটে না যায় এর জন্য এক্সপানশন ব্যান্ত বা এক্সপানশন জোড়া ব্যবহার করা হয়ে থাকে। এক্সপনশন জোড়ার ক্ষেত্রে এর প্রিভ অংশটি সকেট অংশের মধ্য দিয়ে সরে যায়।
- ৬) ফ্রাঞ্জ জোড়া: একাধিক নাট-বোল্ট দিয়ে দুটি পাইপ সংযোগ করার জন্য পাইপের উভয় প্রান্তে পাইপের অক্ষের এক সমকোণ বৃত্তকার যে বর্ধিত অংশ থাকে তাকে ফ্র্যাঞ্জ বলে। এ ফ্র্যাঞ্জ পাইপের অঙ্গে একত্রে কাস্টিং করে তৈরি করা হয়। আবার কতকগুলো স্বতন্ত্রভাবে তৈরি করে পাইপের সঙ্গে ওয়েল্ড করে বা জুয়িং করে সংযুক্ত করা হয়। জোড়াকে লিক প্রুক্ষ করার জন্য নরম ধাতু বা নরম সিনথেটিক ম্যাটেরিয়াল (কর্ক) বা রবার মোটা কাপড়ের গ্যাসকেট জোড় স্থানে স্থাপন করা হয়।

পাইপ রেজ (PipeWrench):

পাইপকে সংযোজন করা বা খোলার সময় এ রেঞ্জগুলো ব্যবহার করা হয় বলে এদেরকে পাইপ রেঞ্জ বলে। নিম্নে কয়েকটি পাইপ রেঞ্জের বর্ণনা দেয়া হলো—

- ১) স্টিলসন প্যাটার্ন পাইপ রেঞ্জ: স্লাইড রেঞ্জ নীতিতে তৈরি। এর দুটি জ-তেই দাঁত কাটা থাকে। এ দাঁত থাকার জন্য সিলিদ্রিক্যাল কোনো বস্তুকে দৃঢ়ভাবে ধরে রাখতে পারে। পাইপের উপরিস্থ ইউনিয়ন, সকেট খোলার জন্য এ রেঞ্জ খুব উপযোগী। পাইপ থেকে সকেট বা ইউনিয়ন খোলার জন্য দুটি রেঞ্জ একসঙ্গে ব্যবহার করতে হয়।
- ২) জ্যাডজাস্টেবল পাইপ রেঞ্জ: এটিও স্লাইড রেঞ্জের নীতিতে তৈরি। তবে একে স্লাইড করার জন্য কোনো প্রকার নাট ব্যবহার করা হয় না। জ দুটি একটি পিন দিয়ে সংযুক্ত করা থাকে। একটি জ—এর মাঝ অংশে স্লট কাটা থাকে। এ স্লটের মধ্য দিয়ে সংযুক্তকারী পিন সহজেই যাতায়াত করতে পারে এবং জ দুটিকে যে কোনো দূরত্বে জ্যাডজাস্ট করা যায়।

৩) চেইন পাইপ রেঞ্জ: বড় ব্যাসের পাইপকে দৃঢ়ভাবে ধারণ করার জন্য এ রেঞ্ছ ব্যবহার করা হয়। নিম্নে একটি চেইন পাইপ রেঞ্জকে দেখানো হলো।

A= হাত্ৰ

B= জ এটি আকৃতির বিশিষ্ট এবং উপরিভাগে দাঁত কাটা থাকে।

C= শিকল ধারণ করার জন্য ফাঁকা অংশ

D= শিকল-এর একটি প্রান্ত পিন দিয়ে জ-এর সঙ্গে সংযুক্ত থাকে।

ব্যবহার পছাতি: প্রথমে জ কে পাইপের উপর স্থাপন করে শিকল দিয়ে পাইপকে জড়িয়ে শিকলের খোলাপ্রাপ্ত C অংশের মধ্যে আবদ্ধ করে নিতে হয়। শেষে জ—এর দাঁত যাতে পাইপের উপরিভাগকে কামড়িয়ে ধরতে পারে, এর জন্য হ্যান্ডেলকে একটু উপরে উদ্ভোলন করে ভারপর হাতলের উপর চাপ দিয়ে পাইপকে ঘুরানো হয়।

চিত্র: ১৮.৭ চেইন পাইপ রেঞ্চ

প্ৰেড সিশিং দ্ৰব্যাদি (Thread Sealing Materials):

পাইপকে সংযোজন করার জন্য বিভিন্ন প্রকার জ্বোড়া ব্যবহার করা হয়। এসব জ্বোড়া দিয়ে যাতে প্রবাহিত লিক না করতে পারে, এ জন্য জ্বোড়া ছানে প্যাকিং দেয়ার ব্যবছা রাখা হয়। সেসব দ্রব্য দিয়ে এ প্যাকিং দেয়া হয় তাদেরকে সিলিং দ্রব্য বলে। বিভিন্ন জ্বোড়ার জন্য বিভিন্ন প্রকার সিলিংদ্রব্য ব্যবহার করা হয়ে থাকে। যেসব ক্ষেত্রে পাইপসমূহকে জু প্রেড দিয়ে সংযুক্ত করা হয়, সব ক্ষেত্রে সূতা বা পাট বা সিলিং টেপ ইত্যাদি জড়িয়ে সিলিং কার্য সম্পাদন করা হয়ে থাকে।

প্রশ্নমালা-১৮

অতি সংক্ষিপ্ত প্রশ্ন:

- ১। পাইপ কাকে বলে?
- ২। কপার টিউব কোথায় ব্যবহার করা হয়?
- ৩। পদার্থের উপর ভিত্তি করে পাইপকে কয় ভাগে ভাগ করা যায়?
- ৪। টিউব বলতে কী বোঝায়?
- ৫। নিপল কী কাজে ব্যবহার করা হয়?
- ৬। বেভ কোথায় ব্যবহার করা হয়?
- ৭। ১ এম এস পাইপ বলতে কী বোঝায়?
- ৮। পাইপ জোড়া কত প্রকার? যে কোনো দুইটি জোড়ার নাম লেখ।
- ৯। থ্রেড সিলিং পদার্থ বলতে কী বোঝায়?

সংক্ষিপ্ত প্রশ্ন:

- ১০। অনমনীয় ও নমনীয় পাইপ বলতে কী বোঝায়?
- ১১। রিডিউসিং ভাল্ভ ও সেফটি ভাল্ভ-এর মধ্যে পার্থক্য লেখ।
- ১২। ছয়টি স্ক্র-থ্রেডেড পাইপ ফিটিংসের নাম লেখ।
- ১৩। রানিং নিপল ও ক্যাপ-এর কাজ কী?
- ১৪। পাইপ কাটার কেন ব্যবহার হয়?
- ১৫। পাইপের উপর প্রেড কাটার জন্য প্রয়োজনীয় পাঁচটি টুলসের নাম লেখ।
- ১৬। ডাই নির্বাচনে কী কী বিষয় বিবেচনা করা হয়?
- ১৭। ইউনিয়ন কোথায় এবং কেন ব্যবহার করা হয়?
- ১৮। প্রেড সিলিং হিসেবে কী কী পদার্থ ব্যবহার করা হয়?
- ১৯। ফ্রেঞ্জড কানেকশনে কেন গ্যাসকেট ব্যবহার হয়?

রচনামূলক প্রশ্ন:

- ২০। পাইপ ডাই সম্বন্ধে আলোচনা কর।
- ২১। এক্সপানশন জোড়া ও ফ্ল্যাঞ্জ জোড়া কোথায় কেন এবং কীভাবে দেয়া হয়?
- ২২। থ্রেড কাটার সময় তৈলাক্তকরণের প্রয়োজনীয়তাসহ কোন ধাতুর ক্ষেত্রে কোন তৈলাক্তকরণ দ্রব্য ব্যবহার করা হয় তা লেখ।

উনবিংশ অধ্যায়

জিগ এবং ফিক্সচার

Jig and Fixture

১৯.০ সূচনা

জিগ ধাতু নির্মিত একপ্রকার বিশেষ ধরনের ইকুইপমেন্ট যা দ্রিলিং, রিমিং এবং ট্যাপিং অপারেশনের সময় ব্যবহার করা জিগ ধাতু নির্মিত হয়। জিগ উৎপাদন ক্ষেত্রে কার্যবস্তুকে সঠিক অবস্থানে ক্ল্যাম্পিং নিশ্চিত করে এবং কাটিং টুলকে নিয়ন্ত্রণ করে। বৃহদায়তন উৎপাদনে জিগের ব্যবহার অত্যন্ত শুরুত্বপূর্ণ। এতে কার্যবস্তু প্রতিবার লে—আউট করতে হয় না এবং অধিক সৃক্ষতা বজায় রাখা সম্ভব এবং অপারেশনজনিত সৃদক্ষ অপারেটরের খরচ বাঁচানো যায়। অথচ ফিক্সচার শুধু ব ধারা জন্য ব্যবহৃত হয়।

১৯.১ জিগ: রিমিং, ড্রিলিং, ট্যাপিং ইত্যাদি কাজ মেশিনের দ্বারা সম্পাদন করার উদ্দেশ্যে যে সরঞ্জাম জবকে যথাস্থানে আবদ্ধ করে রাখতে অথবা বস্তুর উপরে অবস্থিত থেকে কাটিং টুলকে গাইড করে কার্য সম্পাদনে সাহায্য করে থাকে, তাকে জিগ বলে। প্রকৃতপক্ষে অধিক উৎপাদন ক্ষেত্রে একই রকমের অনেকগুলি বস্তু তৈরি করতে জিগ ব্যবহার করা হয়ে থাকে।

চিত্র: ১৯.১ জিগ

১৯.২ জিগ-এর ব্যবহার (Uses of Jig):

জিগ-এর ব্যবহার নিমুরূপ:

- সঠিক স্থানে কাটিং টুল ব্যবহার করা যায়।
- ২) বস্তুর উপরিভাগে মার্কিং বা লে-আউট করার প্রয়োজন হয় না বলে কাজের সময় কম লাগে।
- নর্ভুলভাবে কাজ করতে সহজ হয়। কারণ প্রথমেই সব সেট করা থাকে।
- অধা-দক্ষ কারিগর দ্বারা কাজ করা সম্ভব হয়।

- শরীরের ক্লান্তি হাস করা যায়।
- একই সঙ্গে অধিক সংখ্যায় তৈরি হওয়ার কারণে মূল্যমান হ্রাস পায়।
- ৭) কম সময়ে অধিক সংখ্যক উৎপাদন করা যায়।
- b) শ্রমিকের কায়িক শ্রম কম লাগে।

যেখানে একই জব অধিক সংখ্যায় বানাতে হয় সেখানে যদি ড্রিলিং, রিমিং, টেলিং প্রভৃতি অপারেশন অথবা অন্য কাছ যা মেশিনকে পরিচালিত করে, সেখানে জিগ ব্যবহার করা হয়। এছাড়া জিগের ড্রিল হোলে বৃশ থাকে। কিছু ক্ষতি হলে তথু এই বুশেরই হয় এবং জিগ ঠিক রেখে এই বৃশ পরিবর্তন করলেই হয়।

চিত্র: ১৯.২ জিগ-এর ব্যবহার

১৯.৩ বিজ্ঞচার: কার্য বস্তুকে মেশিনে কাঞ্চ করার সময় মেশিনের সাথে দৃছভাবে আবদ্ধ করে নিতে যে সরপ্তাম দারা একটাকে আবদ্ধ করা যায় তাকে ফিল্পচার বলে। বস্তুতপক্ষে, এটা কোনোকাটিং টুলকে নির্দেশ করতে সাহায্য করে না বটে, কিন্তু এটা দ্বারা যে কোনো কার্যবস্তুকে ভালোভাবে আবদ্ধ করে না নিলে কাটিং টুলের সাহায্যে কোনো সময়ই কোনো কান্ধ নিখুঁতভাবে সম্পন্ন করা সম্ভব হয় না। এই ফিল্পচারকে ওরার্ক টেবিলে শক্ত করে কিট করা হয়।

চিত্র: ১৯.৩ ফিক্সচার

১৯.৪ বিকাচারের ব্যবহার (Uses of Fixture):

চিত্র:১৯.৪ ফিব্রচারের ব্যবহার

- টার্নিং, মিলিং, শেপিং, গ্রাইন্ডিং, ইত্যাদি মেশিনিং অপারেশন সূষ্ঠ্ভাবে সম্পাদন করতে ফিব্রাচার বিশেষ সহায়ক।
- এটা কার্য বস্তু সঠিকস্থানে সুদৃঢ়ভাবে ধরে রাখার জন্য নির্ভরযোগ্য ডিভাইস।
- ৩) এটা দ্বারা যে কোনো মাপের বা আকারের কার্যবস্তুকে আটকানো সুবিধান্ধনক।
- ৪) ফিব্রচারকে ভাইসরূপেও ব্যবহার করা যায়।
- প্রোডাকশন লাইনে আঙ্গল হোল বা সারফেস বা প্রান্ত তৈরি করতে ফিব্রুচার ব্যবহার হয়।

১৯.৫ জিল ও কিন্সাচারের মধ্যকার মৌলিক পার্থক্য:

জিগ	ফি ন্স চার
জিগ কার্যবস্তুর লোকেশন ঠিক করে দৃঢ়ভাবে ধরে রাখে এবং কাটিং টুলকেসঠিক পথে পরিচালিত করে।	ফিক্সচার কার্যবস্তুর লোকেশন নির্দেশ করে এবং সুদৃঢ়ভাবে ধরে রাখে কিন্তু কাটিং টুলকে পরিচালনা করার তেমন কোন ব্যবস্থা নেই। টুলকে সেট করতে হয়।
জ্বিগ ড্রিলিং, রিমিং ও ট্যাপিং–এর কাজে ব্যবহৃত	ফিব্রচার প্রায় সকল প্রকার মেশিনিং-এর কাজে
হয়।	ব্যবহৃত হয়।
জিগ ব্যবহারর সময় দক্ষ শ্রমিকের প্রয়োজন হয়	ফিক্সচার ব্যবহারের সময় দক্ষ শ্রমিকের প্রয়োজন হয়
না।	না।
জ্ঞিগ কাটিং টুলের গতিপথকে নিয়ন্ত্রণ করে এবং	ফিক্সচার কাটিং টুলের গতিপথ নিয়ন্ত্রণ করে না বা
নির্দিষ্ট সীমার মধ্যে আবদ্ধ রাখে।	নির্দিষ্ট সীমার মধ্যে আবদ্ধ রাখতে পারে না।
কাজ করার সময় জিগ টেবিলের উপর সাধারণ অবস্থায় থাকে। তবে এক্ষেত্রে কয়েকটি ছিদ্র বা ট্যাপিং করতে হলে টেবিলে ফিক্সচারের মতো ফিক্স করতে হবে।	কাজ করবার সময় ফিক্সচার মেশিনের টেবিশের সাথে শক্তভাবে অটিকানো থাকে।

প্রশ্নমালা-১৯

অতি সংক্ষিপ্ত প্রশ্ন:

- ১। জিগ কাকে বলে?
- ২। জিগ কী কী অপারশনের জন্য ব্যবহৃত হয়?
- ৩। ফিক্সচার কী?

সংক্ষিপ্ত প্রশ্ন:

- 8। জিগ বলতে কী বোঝায়?
- ৫। ফিব্রচার বলতে কী বোঝায়?
- ৬। জিগ ব্যবহারের তিনটি সুবিধা লেখ।

রচনামূলক প্রশ্ন:

- ৭। জিগ বলতে কী বুঝায়? জিগ ব্যবহারের প্রধান সুবিধাগুলি লেখ।
- ৮। ফিক্সচার বলতে কী বুঝায়? ফিক্সচার ব্যবহারের প্রধান সুবিধাগুলো লেখ।
- ৯। সাধারণভাবে ব্যবহৃত জিগ ও ফিব্রচারের পার্থক্য লেখ।

বিংশ অধ্যায় কাউন্টার বোরিং Counter Boring

২০.০ সূচনা (Introduction)

কাউন্টার বোরিং হচ্ছে বোল্ট হেড বা নাট ইত্যাদি ঠিকমতো বসার জন্য সমান তল বিশিষ্ট প্রশন্ত ছিদ্র করার পদ্ধতি যা পূর্বের দ্রিল হোল পরিমাপ মতো প্রশন্ত করে এতে বোল্ট বা স্টে স্কুর ধাতব তলের নিচে অবস্থান করে এবং তার উপর দিয়ে প্লাইডিং সারফেস তৈরি করে। কাউন্টার বোরিং এবং ছিদ্রের চতুর্পার্শ্বে ফেসিংসহ বোরিং এর জন্য কাউন্টার বোরিং প্রয়োজন হয়।

২০.১ কাউন্টার বোরিং (Counter Boring) :

কার্যবস্তুর এক প্রান্ত থেকে অপর প্রান্ত পর্যন্ত ছিদ্রের মধ্যে বোল্ট—ক্স্ ইত্যাদির মাধাকে ভিতরে স্থান করে দিতে ছিদ্রের একটি প্রান্তের ডায়ামিটারকে বাড়িয়ে এর তলদেশকে সমতল করতে যে কাটার ব্যবহার করা হয়, তাকে কাউন্টার বোরিং টুল বলে। এবং ঐ প্রকার বোরিংকে কাউন্টার বোরিং বলা হয়ে থাকে।

কাউন্টার বেরিং টুলন (Counter Boring Tools)

নিম্নে কাউন্টার বোরিং টুল শনাক্ত করা হলো:

চিত্র: ২০.১ বিভিন্ন প্রকার কাউন্টার বোরিং টুল

২০.২ কাউন্টার বোরকরণ পদ্ধতি (Procedure of Counter Boring) :

সাধারণ শ্রেণির একটি টুইস্ট ড্রিল দ্বারা প্রথমে কম ডায়ামিটারের একটি মূল ছিদ্র করে পরে ঐ স্থানে এই কাটারকে বা বোরিং টুলসকে আবশ্যক গভীরতা পর্যন্ত প্রবেশ করানো হয় বা বোরিং টুল দিয়ে কেটে ছিদ্রের ব্যাস বড় করা হয়। বড় হোলের শেষে সমতল থাকে।

কাউন্টার বোরিং

২০.৩ কাউন্টার বোরিং–এর সতর্কতার বিষয়াদি (Precaution in Counter Boring):

কাউন্টার বোরিং করার সময় সতর্কতার বিষয় নিম্নে উল্লেখ করা হলো:

- ক) কাউন্টার বোরিং করার সময় দ্রিলের তুলনায় R.P.M (REVOLUTION PER MINUTE) কম দিতে হবে।
- খ) কাউন্টার বোরিং করার সময় জবটি শক্তভাবে মেশিন ভাইস অথবা টেবিলের সাথে। আবদ্ধ করে কাজ করতে হবে।

কাজ করার সময় গভীরতার নির্দিষ্ট মাপ অনুযায়ী বার বার মাপ পরীক্ষা করতে হবে। এটা ডেপথ গেজের সাহায্যে পরীক্ষা করতে হবে।

- ঘ) কাউন্টার বোরিং টুলস এবং জবের দ্রিলের সেন্টার অবশ্যই এক হতে হবে।
- ঙ) কাউন্টার বোরিং এক ফীড ড্রিলিং-এর তুলনায় কম দিতে হবে।
- চ) ড্রিল বিট ও কাউন্টার বোরিং টুল যেন কাজের সময় না কাপে।

প্রশ্নমালা-২০

অতি সংক্ষিপ্ত প্রশ্ন:

- ১। কাউন্টার বোর কী?
- ২। কাউন্টার বোরিং? কোথার ব্যবহৃত হয়?
- ৩। কাউন্টার বোরিং কাটার কাকে বলে?
- ৪। কাউন্টার বোর করার সময় ড্রিলের তুলনায় টুলের আরপিএম কীরূপ থাকে?
- ৫। কাউন্টার বোর করার সময় দ্রিলের তুলনায় ফীড কীরূপ হয়?

সংক্ষিপ্ত প্রশ্ন:

- ৬। কাউন্টার বোরিং বলতে কী বোঝায়?
- ৭। কাউন্টার বোরের ব্যবহার লেখ।
- ৮। কাউন্টার বোরকরণ পদ্ধতি সংক্ষেপে লেখ।
- ৯। কাউন্টার বোরিং-এ তিনটি সতর্কতা লেখ।

রচনামূলক প্রশ্ন:

- ১০। কাউন্টার বোরিং টুলস সম্পর্কে যা জান লেখ।
- ১১। কাউন্টার বোরকরণ পদ্ধতি বিবৃতি কর।
- ১২। কাউন্টার বোরিং–এ সতর্কতার বিষয়গুলো বিবৃতি কর।

একবিংশ অধ্যায়

রিমিং প্রক্রিয়া

Reaming Process

২১.০ সূচনা (Introduction):

সঠিকভাবে কর্তিত ছিদ্র বা বোরকে সৃক্ষ মাপে ফিনিশড করার জন্য রিমার ব্যবহার করা হয়। রিমার ড্রিলের ন্যায় নতুন ছিদ্র সৃষ্টি করতে পারে না, কেবল মাত্র ছিদ্রের মসৃণতা, সাদৃশ্য, গোলাকৃতি এবং মাপের সঠিকতা আনরন করতে সাহায্য করে। ছিদ্রের ব্যাসকে অতি সামান্য বাড়াতে হলেও রিমার ব্যবহার করা হয়। রিমার ব্যবহারের প্রক্রিয়াকেই রিমিং বলে। রিমার মূলত কার্বন স্টিল বা হাইস্পীড স্টিল দ্বারা তৈরি হয়ে থাকে। হ্যান্ড রিমারের শ্যান্ধ রিমারের ব্যাসের সমান মাপের গোল হয় এবং রেঞ্জ দ্বারা ধারণ করার জন্য মাথাটি চতুক্ষোণ করা থাকে। কিন্তু মেশিন রিমারের শ্যান্ধ সাধারণত মোর্স টেপার নিয়মে ক্রমশ সরু এবং এটার মাথা অর্থাৎ ট্যাং অংশ ড্রিলের ন্যায় চ্যান্টা করা থাকে।

২১.১ त्रिभिश (Reaming)

রিমার দ্বারা ধাতুখণ্ডের উপরে কোনো ছিদ্রকে এর অসম্পূর্ণতাকে দূর করে ভিতরের গোলাকার উপরিভাগকে মসৃণ ও ডায়ামিটার মাপকে সৃদ্ধ করার জন্য যে পদ্ধতি ব্যবহার করা হয়, তাকে রিমিং করা বলে। অর্থাৎ রিমারের সাহায্যে কোনো ধাতু খণ্ডের উপরে পূর্ব নির্মিত ছিদ্রের আভ্যন্তরীণ তল সুষম করে ছিদ্রে ব্যাস সৃদ্ধভাবে ফিনিশিং করার প্রণালিকে রিমিং বলে।

২১.২ রিমারের প্রকারভেদ (Types of Reamer)

নিম্নে রিমার-এর প্রকারভেদ উল্লেখ করা হলো:

২১.৩ বিভিন্ন প্রকার রিমারের ব্যবহার:

নিম্নে রিমারের ব্যবহার উল্লেখ করা হলো:

- ১) হ্যাভ রিমার: হাতের সাহায্যে যে সকল রিমারকে রেঞ্জ দ্বারা দ্বিয়ে ব্যবহার করা হয়, এটাই হ্যাভরিমার। শ্যাক্ষ অংশটি সমান মাপের গোল রকমের হয় এবং রেঞ্জ দ্বারা ধরার জন্য মাধা চতুক্ষোণ করা থাকে।
- ২) মেশিন রিমার: মেশিনে আবদ্ধ করে যে সকল রিমারকে ঘুরিয়ে কাজ সম্পন্ন করা হয়, একে মেশিন রিমার বলে। এই প্রকার রিমারের শ্যান্ক অংশটি দ্বিলের ন্যায় মর্স টেপার নিয়ম অনুযায়ী ক্রমশ: সরু করা থাকে ও ট্যাং অংশটি চ্যাপ্টা আকারের হয়।
- i) স্ট্রেইট বা প্যারালাল রিমার : এটা সমান মাপের গোল ছিদ্রের মধ্যে ব্যবহার করতে উপযোগী হয়। ছিদ্রের মধ্যে প্রবেশ করতে স্বিধা হয় বলে অগ্রভাগ সামান্য সরু ওফুটগুলি সোজা অথবা মোচড়ানো উভয় প্রকারেই হয়। এটা 1mm ক্রমবর্ধিত হয়ে সাধারণত ৬ মি.মি. হতে ৫০ মি.মি. পর্যন্ত মাপের হয়।

চিত্র: ২১.১ প্যারালাল রিমার

ii) ট্যাপার রিমার : এটা ক্রমশ সরু করা গোল ছিদ্রের মধ্যে ব্যবহার করতে উপযোগী হয়। টেপারের হার সাধারণতঃ ১:৪৮ অথবা ১:৫০ । ফুটগুলি সর্বদা স্ফ্রেইট অর্থাৎ সোজা রকমের হয়ে থাকে। এটা মূলত টেপার পীন ব্যবহার করার উপযোগী ছিদ্রের জন্য ব্যবহৃত হয়। এই উভয় প্রকার রিমার আবার দুই প্রকার হয় যথা:

চিত্রঃ ২১.২ ট্যাপার রিমার

- ক) লিড রিমার : সাধারণত যার ডায়ামিটার একই মাপের থাকে কমানো বা বর্ধিত করা যায় না, তাকে সলিড রিমার বলে।
- খ) জ্যাডজান্টেবল রিমার: প্রয়োজন মতো এর ডায়ামিটার মাপকে বাড়িয়ে বা কমিয়ে একটি সীমাবদ্ধ মাপের মধ্যে নিয়ন্ত্রণ করতে পারা যায়। এই প্রকার রিমারের গোলাকার উপরিভাগে অক্ষ সমান্তরাল পাঁচটি অথবা ছয়টি কাটিং ব্লেডকে ধারণ করতে টেপার রকমের নালি করা থাকে ও ব্লেডগুলি নালির মধ্যে মাপের প্রয়োজন হয়, ভার্নিয়ার ক্যালিপার অথবা আউটসাইড মাইক্রোমিটার দ্বারা মাপ ঠিক করে নিয়ে এটা ব্যবহার করতে হয়।

চিত্র: ২১.৩ এ্যাডজাষ্টেবল রিমার

iii) সেল রিমার : এটাও প্যারালাল রিমারের ন্যায় সমান মাপের গোল ছিদ্রের পক্ষে বেশ উপযোগী হয়। প্রকৃতপক্ষে এটা কভকগুলি বিভিন্ন ভায়ামিটার মাপের গোলাকার খণ্ড যা টেপার শ্যাক্ষর্ক্ত একটি আরবার—এর সাহায্যে আবদ্ধ করে ছিদ্রের মধ্যে ব্যবহার হয়ে থাকে। খণ্ডগুলির উপরিভাগে সোজা অথবা মোচড়ানো রকমের ফুট বর্তমান থাকে ও ঠিক মাঝখানে একটি ছিদ্র থাকায় যে কোনো মাপের একটি সেলকে প্রয়োজন অনুসারে আরবার এর সাথে যুক্ত করা যায়। বড় ভায়ামিটার মাপের রিমারকে তৈরি করতে থাতু বেশি প্রয়োজন হয় বলে এটা কেবলমাত্র বড় মাপের ছিদ্রের জন্য ব্যবহার হয়ে থাকে।

চিত্র: ২১.৪ সেল রিমার

এক্সপানশন রিমার : সাধারণত এটা নিয়ন্ত্রণশীল। এর সাহায্যে ছিদ্রের মাপকে সামান্য বর্ধিত করা যায়। এটা ফাপা অর্থাৎ ভিতর অংশ ছিদ্র বিশিষ্ট এবং এর ফুটের মধ্যে খাঁজ কাটা থাকে। কেন্দ্রন্থলে স্কুটি বর্তমান থাকে একে অথবা এর প্রান্তে অবস্থিত নাটটিকে ছুরালে রিমার ওঠে এবং এর ভায়ামিটার বর্ধিত হয়। এই বৃদ্ধি সাধারণত ০.০১ মি.মি. হতে ০.২৫ মিঃ মিঃ বা ০.০০০৫ ইঞ্চি হতে ০.০১০ ইঞ্চির মধ্যে হয়ে থাকে।

২১.৪ রিমিং পদতি (Reaming Procedure):

নিম্নে রিমার ব্যবহার পদ্ধতি দেওয়া হলোঃ

- রিমার অনুযায়ী ছিদ্রের মাপ ষেরূপ হওয়া প্রয়োজন ঐ মাপের একটি দ্রিল নিয়ে ছিদ্রটি করে নেয়া
 প্রয়োজন।
- কাজের বস্তুটিকে অর্থাৎ যে বস্তুটির ছিদ্রের মধ্যে রিমার চালনা করতে হবে একে বাইরের সাথে
 দৃঢ়ভাবে আবদ্ধ করা আবশ্যক।
- ৩) ছিদ্রটির অসম্পূর্ণতাকে দূর করতে রিমার চালনা করার পূর্বে ছিদ্রের সাথে রিমার লম্বভাবে আছে কিনা পরীক্ষা করা বিশেষভাবে দরকার।
- ৪) রিমারকে ছিদ্রের মধ্যে প্রবেশ করিয়ে কেবলমাত্র ডানদিকে খুরানো নিয়ম। কারণ এর দাঁতগুলি এমনভাবে তৈরি যে একমাত্র ডানদিকে খুরানোর সময়ই এটা ধাতুকে ক্ষয় করে বামদিকে খুরালে ধাতু ক্ষয়তো করেই না অধিকম্ভ কাটিং এজগুলির তীক্ষতা নষ্ট হয়ে থাকে।
- ৬) রিমার চালনা করার সময় কিছুক্ষণ অন্তত অন্তর রিমারকে বাইরে এনে কর্তিত ধাতুগুলিকে পরিষ্কার করা উচিত। ছিদ্রের মধ্য থেকে বাইরে আনার সময় একে ডান দিকে ঘুরানো প্রয়োজন।
- ৭) চালনাকালে ধাতু অনুযায়ী কাটিং কম্পাউন্ত ব্যবহার করা উচিত। ব্রাস, ব্রোঞ্জ ও সাধারণ কাস্ট আয়রনকে রিমিং করতে কোনো কিছু ব্যবহার করার প্রয়োজন হয় না কিন্তু শস্ক্ত স্টিশকে রিমিং করতে কাটিং অয়েল এবং শক্ত কাস্ট আয়রনের বেলায়, কেরোসিন বা তার্পিন ব্যবহার করার নিয়য়।

সঠিক মান বিশিষ্ট নয় এরূপ ছিদ্রকে রিমিং করতে হলে অ্যাডজাস্টেবল রিমার ব্যবহার করতে হয়।

২১.৫ রিমিং-এর প্রয়োগ ক্ষেত্র:

যে কোনো ছিদ্রের ভিতরের গোলাকার উপরিভাগের অসম্পূর্ণতাকে দূর করে মসৃণ করতে ও এর ডায়ামিটার মাপকে নির্ভুল করতে রিমিং প্রক্রিয়া প্রয়োগ করা হয়।

২১.৬ রিমার ব্যবহারের সময় সতর্কতার বিষয়:

রিমার ব্যবহারে সময় যে সতর্কতা অবলম্বন করা উচিত তা নিমুরপ:

- রিমার ব্যবহারের পূর্বে উপযুক্ত মাপের ছিদ্র করা প্রয়োজন।
- ২) রিমার ব্যবহার করার পূর্বে, রিমারের কাটিং এজগুলির তীক্ষ্ণতা পরীক্ষা করে নেয়া দরকার।
- রমারকে সর্বদা ভাক দিকে ঘুরানোর নিয়য়। একে বামদিকে ঘুরালে কাটিং এজগুলির তীয়্পতা নষ্ট
 হয়।
- অ্যাডজাস্টেবল রিমার ব্যবহারের আগে ক্ষেলডগুলির দুইপার্শ্বে অবস্থিত নাটগুলির সাহায্যে ব্লেডগুলি ভালোভাবে আবদ্ধ করা প্রয়োজন।
- ৫) ছিদ্রের মধ্যে টেপার রিমারকে চালনা করার সময় খুব বেশি চাপ দেয়া ঠিক নয়। বেশি চাপ প্রয়োগ করলে এটা ছিদ্রের মধ্যে বদ্ধ হয়ে ভেঙ্গে যাওয়র আশল্কা থাকে।
- ৬) মাঝে মাঝে চালনা করার সময় রিমারকে বাইরে এনে ধাতু চূর্ণগুলিকে পরিষ্কার করে নেয়া উচিত।
 এতে রিমার সহজে ভেঙ্গে যায় না বা ছিদ্রের গায় মসৃণ হয়।
- ৭) ছিদ্র থেকে রিমারকে বাইরে আনার সময় ভান দিকে ঘুরানো প্রয়োজন। এটা না করলে মসৃণ করা উপরিভাগ পুনরায় অমসৃণ হয়ে থেতে পারে।
- b) রিমার চালনা করার সময় শক্ত স্টিলের জন্য কাটিং অয়েল ও কাস্ট আয়রনের ক্ষেত্রে কেরোসিন বা তারপিন তেল ব্যবহার করতে হয়।

প্রশ্নমালা-২১

অতিসংক্ষিপ্ত প্রশ্ন:

- ১। রিমিং কাকে বলে?
- ২। রিমার কী?
- ৩। রিমার কী ম্যাটেরিয়াল দ্বারা তৈরি?
- ৪। হ্যান্ড রিমার শ্যাঙ্ক কীরূপে তৈরি হয়?
- ৫। মেশিন রিমার কাকে বলে?
- ৬। টেপার রিমার কত প্রকার ও কী কী?
- ৭। প্যারালাল রিমার কত প্রকার ও কী কী?
- ৮। সলিড রিমার কী?
- ৯। রিমার ব্যবহার করার পূর্বে কী করা উচিত?
- ১০। রিমারকে সর্বদা কোন দিকে খুরানো হয়?

সংক্ষিপ্ত প্রশ্ন:

- ১১। রিমার বলতে কী বোঝায়?
- ১২। রিমিং বলতে কী বোঝায়?
- ১৩। রিমার প্রধানত কত প্রকার ও কী কী?
- ১৪। হ্যান্ড রিমারের ব্যবহার দেখাও?
- ১৫। মেশিন রিমারের ব্যবহার দেখাও?
- ১৬। টেপার পীনে ব্যবহার উপযোগী রিমারের নাম কী?
- ১৭। এক্সপানশন রিমারের বৃদ্ধি কতটুকু হয়ে থাকে?
- ১৮। রিমার দিয়ে নতুন ছিদ্র করা হয় না কেন?

রচনামূলক প্রশ্ন:

- ১৯। রিমার বলতে কী বোঝায়? রিমার কী ধাতু দিয়ে তৈরি হয়?
- ২০। রিমিং বলতে কী বোঝায়? ব্যাখ্যা কর।
- ২১। রিমারের প্রকারভেদ দেখাও?
- ২২। হ্যান্ড রিমারের ব্যবহার দেখাও?
- ২৩। মেশিন রিমারের ব্যবহার দেখাও?
- ২৪। রিমিং পদ্ধতি সংক্ষেপে বিবৃত কর।
- ২৫। রিমিং-এর প্রয়োগ ক্ষেত্র উল্লেখ কর।
- ২৬। রিমার ব্যবহারে সতর্কতার বিষয়াদি উল্লেখ কর।
- ২৭। রিমিং-এর উদ্দেশ্য কী?

দাবিংশ অধ্যায়

প্যাডেস্টাল গ্রাইন্ডার

Pedestal Grinder

২২.০ সূচনা (Introduction:

এক সময় সিংগেল পয়েন্ট কাটিং টুলসকে ধাতু কাটার জন্য সুবিধাজনক কাটিং টুল হিসেবে বিবেচনা করা হতো কিন্তু তাতে বেলি পরিমাণে ধাতু অপসারণ করা যেত না। প্রযুক্তি বিদ্যার উনুয়নের সাথে সাথে ওয়ার্কীপসথেকে নিয়ন্ত্রিত উপায়ে ধাতু অপসারণ ও একই সাথে উনুত মানের সারক্ষেস ফিনিল পাবার জন্য গ্রাইন্ডিং মেলিনের উনুয়ন ঘটে। এতে যে কাটিং টুল ব্যবহৃত হয় তা মাল্টি পয়েন্ট কাটিং টুল বিশিষ্ট গ্রাইন্ডিং ভ্ইল। প্যাডেস্টাল প্রাইন্ডার পোর্টেবল হয়।

২২.১ প্যাডেন্টাল প্রাইন্ডার (Pedestal Grinder) :

প্যাডেস্টাল গ্রাইভার হলো বৈদ্যুতিক শক্তিচালিত একপ্রকার গ্রাইভার, যা বিভিন্ন ওয়ার্কশপে একটা স্বস্তু বা ওয়ার্কবেঞ্চের উপর স্থাপন করা থাকে। প্যাডেস্টল গ্রাইভার হলো নন-প্রিসিশন গ্রাইভিং মেশিন এবং সিঙ্গেল পরেন্ট কাটিং টুল ড্রিলবিট, চিজেল, নাইফ ইত্যালি গ্রাইভ ছাড়াও বিভিন্ন প্রকার অফ হ্যাভ গ্রাইভিং করতে ব্যবহৃত হয়। এটা ফ্রোর বা টেবিল মাউন্টেড অথবা ক্যাস্ট্রর হুইলসহ প্যাডেস্টাল ফ্যানের মতো একটি বেইজ এ মাউনটেড করা থাকে। ক্যাস্ট্রের সাহায্যে এক স্থান হতে অন্য স্থানে নেওয়া যায়।

২২.২ বিভিন্ন প্রকার প্যাডেস্টাল গ্রাইভার (Differenet Types of Pedestal Grinder):

জেনারেল মেকানিক্স কার্যে যে সকল প্যাডেস্টাল গ্রাইন্ডার ব্যবহৃত হয় সেগুলোর নাম ও পরিচয় নিম্নে প্রদন্ত হলো-

- ১। পোর্টেবল গ্রাইন্ডার
- ২। বেঞ্চ গ্রাইন্ডার

চিত্ৰঃ ২২.১ প্যান্টোল গ্ৰাইন্ডিং মেশিন

এছাড়াও বড় বড় ওয়ার্কশপ বা কারখানায় নিমুলিখিত গ্রাইডিং মেশিনও ব্যবহৃত হতে দেখা যায়-

সারক্ষেস গ্রাইন্ডার: সারক্ষেস গ্রাইন্ডিং মেশিন উচ্চ গতিতে ঘোরার ফলে গ্রাইন্ডিং স্থইল ঘারা উপরিতল গ্রাইন্ডিং মেশিন, মিলিং মেশিন, শেপিং মেশিন ও প্লেনার ঘারা সমতল ফিনিশিং করা অপেক্ষা সহজভাবে ও উচ্চ নির্ভূলতায় সমতল উৎপন্ন করা যায়। এ কারণে মিলিং মেশিন, শেপিং ও প্লেনার ঘারা রাফ কাট সম্পন্ন তল সারক্ষেস গ্রাইন্ডিং মেশিন ঘারা ফিনিশিং করা হয়। সারক্ষেস গ্রাইন্ডারের গঠন মিলিং মেশিনের ন্যায় থাকায় মিলিং কাটারের পরিবর্তে গ্রাইন্ডিং স্থইল ব্যবহার করা হয়।

চিত্র: ২২.২ সিলিন্ড্রিক্যাল গ্রাইভার

ইউনির্ভাসাল গ্রাইভার:

চিত্র: ২২.৩ ইউনিভার্সাল গ্রাইভার

প্রেড গ্রাইন্ডার:

চিত্র: ২২.৪ গিয়ার গ্রাইভার

২২.৩ প্যাডেস্টাল গ্রাইভারের বিভিন্ন অংশ:

প্যাডেস্টাল গ্রাইভারের বিভিন্ন অংশের নামসমূহ

- (ক) ফ্রোরমাউনটেড বেসসহ প্যাডেস্টাল স্তম্ভ
- খ) মোটর
- গ) হুইল স্পিডল
- ঘ) গ্রাইডিং হুইল
- ঙ) ব্লটিং পেপার (গ্যাসকেট)
- চ) সেফটি ফ্লেঞ্জ
- ছ) লকিং নাট
- জ) টুল রেস্ট

এগুলোর বর্ণনাঃ

- ক) প্যাডেস্টাল স্বস্তঃ প্যাডেস্টাল গ্রাইন্ডারের বেসকে উচ্চ স্বস্তের উপসংযুক্ত করা হয়। একে প্যাডেস্টাল বা স্বস্ত বলে।
- খ) মোটর : প্যাডেস্টাল গ্রাইন্ডারের বেসে মোটর বাঁধা থাকে। এটা গ্রাইন্ডিং হুইলকে চালনা করে।
- গ) ভূইল স্পিডল : রোটর শ্যাফটের উভয় প্রান্তকে ভূইল স্পিডল বলে। ভূইল স্পিডলে গ্রাইডিং ভূইল বাঁধা হয়।
- ঘ) গ্রাইন্ডিং শুইল: গ্রাইন্ডিং শুইল হল প্যাডেস্টাল গ্রাইন্ডারের কাটিং টুল। এর দ্বারা টুল ধার দেয়া হয়। সারফেস ফিনিশ করা হয়। চিজেল ধার দেওয়া ইত্যাদি খুচরা কাজ করা হয়।
- ঙ) গ্যাসকেট: সেফটি ফ্রেঞ্জ এবং শুইলের মাঝে ব্লটিং পেপার স্থাপন করা হয়। নাট টাইট দেয়া হলে এটা শুইলের চারদিকে সমভাবে চাপ বিতরণ করে।
- চ) সেফটি ফ্রেঞ্জ: নাট টাইট দেয়া হলে সেফটি ফ্রেঞ্জ কেবলমাত্র হুইলের বাইরের কিনারায় চাপ প্রয়োগ করে।
- ছ) লকিং নাট: গ্রাইভিংগুলিকে দৃঢ়ভাবে হুইল স্পিভল ধরে থাকে।
- জ) টুল রেস্ট: গ্রাইন্ডিং-এর সময় টুল বা অন্য কোনো বস্তুকে টুল রেস্টের উপর সাপোর্ট দেয়া হয়। প্যাডেস্টাল গ্রাইন্ডার-এর সেফটি ডিভাইস শনাক্তকরণ। প্যাডেস্টাল গ্রাইন্ডারের সেফটি ডিভাইস হলো–
- ক) অ্যাডজাস্টেবল আই শিল্ড
- খ) হুইল গার্ড
- ক) অ্যাডজাস্টেবল আই শিল্ড: আই শিল্ড অপারেটরের চক্ষুকে ক্ষুদ্র ক্ষুদ্র অ্যাবেরেসিভ কণা থেকে রক্ষা করে।
- খ) হুইল গার্ড: কোনো বস্তুকে ঘুরম্ভ হুইলের সংস্পর্শে আসতে হুইল গার্ড বাধা দেয় এবং হুইলকে আঘাত থেকে রক্ষা করে। নিম্নে সেফটি ডিভাইসের চিত্র শনাক্ত করা হলো। মোটর অপারেটড পোর্টেবল হ্যাভগ্রাইভার ব্যবহার হয় (যেমন: পোর্টেবল ইলেকট্রিক গ্রাইভার)

চিত্ৰঃ ২২.৫ আইশিল্ড ও হুইল গাৰ্ড

২২.৪ গ্রাইভিং হুইলের ড্রেসিং করার প্রয়োজনীয়তা:

গ্রাইন্ডিং হুইলের উপরিভাগের ঘষর্ণকারী কণাগুলির তীক্ষ্ণতা ক্রমাগত ব্যবহারের ফলে বিলুপ্ত হয়ে ভোঁতা হয়ে যায়। তখন এর দ্বারা ধাতুকে আর ক্ষয় করা সম্ভব হয় না। সেই কারণে হুইলের অনুপযোগী করতে যে পদ্ধতি অনুসরণ করা হয় তাকে ড্রেসিং করা বলে।

প্রাইন্ডিং হুইল দ্রেসিং করার প্রণালি: গ্রাইন্ডিং হুইল-এর উপরিভাগকে পুনরায় কাজ করার উপযোগী করতে হুইল দ্রেসার নামক একটি যন্ত্র দ্বারা হুইলের উপরিভাগের তীক্ষ্ণতা নাশ হওয়া কণাগুলিকে পুনঃতীক্ষ্ণ করে কাজের উপযোগী করা হয়।

এটা ছাড়া খুব শক্ত গ্রাইন্ডিং হুইলকে পুনরায় কাজের উপযোগী করতে ডায়মন্ড ড্রেসার নামক একটি যন্ত্র ব্যবহার করা হয়ে থাকে।

এই প্রকার হুইল ড্রেসার ব্যবহার করার সময় হুইলটিকে একটি ম্যানড্রেল এর সাথে আবদ্ধ করে লেদ মেশিনের সাহায্যে একে খুব কম হারে ঘুরানো হয়ে থাকে ও ড্রেসারটিকে এর পরিধির উপর স্থাপন করে অনুপযোগী হুইলের উপরিভাগের ভোঁতা কণাগুলিকে দূর করে পুনরায় কাজের উপযোগী করা হয়ে থাকে।

২২.৫ গ্রাইভিং-এ সাবধানতার বিষয়াদি:

গ্রাইন্ডিং করার সময় সাধারণত নিমুলিখিত বিষয়াদি সম্বন্ধে সতর্কতা অবলম্বন দরকার।

- টুল রেস্ট অর্থাৎ যার উপরভর রেখে গ্রাইন্ডিং করা হয়ে থাকে এটা হইলের খুব কাছে থাকা বাঞ্ছনীয়।
 এটা সর্বদা হুইল থেকে প্রায় ২ মি.মি. দুরে থাকা আবশ্যক।
- গ্রাইন্ডিং মেশিন চালনা করার পূর্বে মেশিন ভ্ইল উত্তম অবস্থায় আছে কিনা পরীক্ষা করে নেয়া বিশেষ প্রয়োজন।
- ৪) হইলের গার্ড যথাযথভাবে আছে কিনা দেখে নেয়া উচিত। না থাকলে এটা দিয়ে কাজ করা সমীচীন
 নয়।
- ৫) শান দেয়ার সময় ভইলের পরিধির উপরিভাগ ছাড়া কখনই এর পার্শ্বভাগে শান দেয়া উচিত নয়, দিলে
 ছইলটি ক্রমশ পাতলা ও দুর্বল হয়ে খণ্ডিত হয়ে য়েতে পারে।
- গ্রাইভিং করার সময় ওয়ার্কপিসটি মাঝে মাঝে পানিতে জুবিয়ে নেয়া দরকার। এটা না করলে উত্তপ্ত কণাগুলি শরীরের যেকোনো অংশে পড়ে দুর্ঘটনা ঘটতে পারে। ওয়ার্কপিস–এর হাই টেম্পারেচারের জন্য ক্ষতি হতে পারে।
- ৭) হুইলের যদি সমতা না থাকে বা পুরনো হয়ে যায় একে ড্রেসিং না করে কাজ করা উচিত নয়।

- ৮) গ্রাইভিং করার সময় হুইলের উপর অতিরিক্ত চাপ দেয়া একেবারেই নিষিদ্ধ। হুইল সামান্য ফেটে গেলে বা ভেক্তে গেলে এটা পরিবর্তন না করে ব্যবহার করা ঠিক নয়। গ্রাইভিং-এর জন্য হুইলের সাইড ব্যবহার করা উচিত নয়।
- ৯) গ্রাইন্ডিং ডাস্ট চোখের জন্য ভীষণভাবে ক্ষতিকর। গ্রাইন্ডিং ডাস্ট যাতে চোখে প্রবেশ করতে না পারে তজ্জন্য গ্রাইন্ডিং—এর সময় সেফটি গগলস পরিধান করা উচিত।
- ১০) ঘূর্ণায়মান গ্রাইভিং যাতে শরীরের কোনো অংশে স্পর্শ না লাগে তজ্জন্য সচেষ্ট থাকা উচিত।
- ১১) ঘূর্ণায়মান গ্রাইন্ডিং হুইল বা মেশিনের অন্যান্য গতিশীল অংশে যে পোশাক জড়িয়ে যায় এরপ পোশাকে না কাজ করা উচিত।
- ১২) নতুন গ্রাইন্ডিং শুইলকে ওয়ার্কিপিস স্পর্শ করানোর পূর্বে মুক্তভাবে অনুর্ধ্ব এক মিনিট চালিয়ে দেখা উচিত।
- ১৩) মেশিনের চারপাশ পরিষ্কার ও শুষ্ক রাখা উচিত।
- ১৪) যথেষ্ট পরিমাণে কুল্যান্টের ব্যবস্থা রাখা উচিত।
- ১৫) মেশিনের চারপাশ বাধামুক্ত রাখা উচিত।
- ১৬) ওয়ার্কপিসের নতুন তল গ্রাইন্ডিং করতে গ্রাইন্ডিং করতে গ্রাইন্ডিং হুইলকে ড্রেসিং এবং অ্যাডজাস্ট করে নিতে হয়। অতঃপর এতে ফীড দেয়া উচিত।
- ১৭) গ্রাইভিং-এর প্রাক্কালে ওয়ার্কপিস দৃঢ়ভাবে আটকানো হয়েছে কিনা সে ব্যাপারে নিশ্চিত হওয়া উচিত।
- ১৮) কোনো প্রকার সন্দেহ দেখা দিলে শিক্ষককে জিজ্ঞাসা করা উচিত।
- ১৯) গ্রাইন্ডারকে চালু করার পরে জ এর সাথে ভূইল লাগাতে হবে। জকে ভূইলের সাথে লাগিয়ে মোটর চালু করা উচিত নয়।
- ২০) প্রকৃত গ্রেড ও আকৃতির গ্রাইভিং হুইলে ফিট করে দেখে নেওয়া উচিত।
- ২১) চিজেল বা লেদের কাটিং টুল বা ড্রিল হাত দিয়ে ধরলে সাবধান হতে হয় যাতে টুল কাজের সময় গ্রাইন্ডিং গার্ডে না ঢুকে যায়। এতে মানুষের বা গ্রাইন্ডিং হুইলের বা মোটরের বিপদের আশঙ্কা হতে পারে।
- ২২) অ্যাপ্রোন পরে কাজ করা দরকার। স্পার্ক ক্ষুলিঙ্গ এসে ক্ষতি করতে পারে। ফিড পরিমাণমতো দিতে হয়। ঠিক কোণে জব ধরতে হয়।

গ্রাইন্ডিং ছইলের শনাক্তকরণ:

অ্যাব্রেসিভ গ্রেইন সংযোগকারী বস্তু ও বাইন্ডার সংযোগ উপযুক্তভাবে পরিবর্তন করলে গুণাগুণের ভিত্তিতে গ্রাইন্ডিং হুইল অনেক প্রকারের হয়। জবের পদার্থ ও গ্রাইন্ডিং-এর শর্ত অনুযায়ী উপযুক্ত গ্রাইন্ডিং হুইল নির্বাচন করা প্রয়োজন।

গ্রাইভিং হুইল নিমুলিখিত অপরিহার্য অংশ দিয়ে প্রকাশ করা হয়।

- i. গ্রেড
- ii. অ্যাব্রেসিভ গ্রেইনের প্রকার
- iii. গঠন প্রণালে
- iv. আকৃতি ও পরিমাপ
- v. গ্ৰেইন সাইজ
- vi. সংযোগকারী।

প্রশ্নমালা ২৪

অতি সংক্ষিপ্ত প্রশ্ন:

- ১। গ্রাইন্ডিং হুইল ও ফাইল দুটোই মাল্টিপল পয়েন্ট কাটিং টুল হলে ফাইল দিয়ে গ্রাইন্ডিং-এর কাজ কেন হয় না?
- ২। ফাইল দিয়ে গ্রাইভিং-এর কাজ করা হলে অসুবিধা কী?
- ৩। গ্রাইন্ডিং-এ কোন ধরনের কাটিং টুল ব্যবহার করা হয়?
- ৪। গ্রাইভার কাকে বলে?
- ৫। প্যাডেস্টাল গ্রাইন্ডার কী?
- ৬। প্যাডেস্টাল গ্রাইন্ডিংয়ে কয় ধরনের সেফটি ডিভাইস ব্যবহার করা হয়?
- ৭। হুইল ড্রেসিং কাকে বলে?
- ৮। গ্রাইন্ডিং করার সময় ওয়ার্কপিস মাঝে মাঝে পানিতে ডুবাতে হয় কেন?

সংক্ৰিপ্ত প্ৰশ্ন:

- ৯। প্যাডেস্টাল গ্রাইন্ডারে কী কী কাজ করা হয়?
- ১০। একটি প্যাডেস্টাল গ্রাইন্ডারে যে কোনো তিনটি অংশের নাম লেখ।
- ১১। প্যাডেস্টাল গ্রাইন্ডারের সেফটি ডিভাইসগুলোর নাম লেখ।
- ১২। গ্রাইভিং হুইল ড্রেসিং-এর প্রয়োজনীয়তা সংক্ষিপ্তভাবে লেখ।
- ১৩। গ্রাইন্ডিং-এর সময় তিনটি সতর্কতার বিষয় লেখ।
- ১৪। গ্রাইন্ডিং হুইল শনাক্তকরনের তিনটি সতর্কতার বিষয় লেখ।
- ১৫। ফ্রোর মাউন্টেড ও ক্যাস্টর হুইল মাউন্টেড গ্রাইভারে কাজের পার্থক্য দেখাও?

রচনামূলক প্রশ্ন:

- ১৬। গ্রাইভার বলতে কী বুঝায়? প্যাডেস্টাল গ্রাইভারের বিবরণ দাও।
- ১৭। গ্রাইন্ডিং ছইল ড্রেসিং করার প্রয়োজনীয়তা কী?
- ১৮। গ্রাইভারের স্পেসিফিকেশন বলতে হলে কী কী বলতে হবে?

ব্যবহারিক

প্রথম অধ্যায়

ওয়ার্কশপে সতর্কতার বিষয় অনুসরণ

- ১। ওয়ার্কশপে সতর্কতার ব্যবস্থাদি শনাক্তকরণ : ওয়ার্কশপে সতর্কতার ব্যবস্থাদি মোটামুটি তিন ভাগে ভাগ করা যায়। যথা:
 - ব্যক্তিগত সতর্কতা
 - যন্ত্রপাতির সতর্কতা
 - পরিবেশের সতর্কতা

জেনারেল মেকানিক্স ওয়ার্কশপে কাজ কারা সময় যথেষ্ট সতর্কতা অবলম্বন করতে হয়। এ শপে বিদ্যুৎ, আগুন, জ্বালানি, গ্যাস, গলিত বা অর্থগলিত ধাতু, ক্ষতিকারক, আলোকরশ্মির বিকিরণ ইত্যাদি মানব দেহের জন্য অত্যন্ত ক্ষতিকর। কাজেই নিজেকে, যন্ত্রপাতিকে এবং সর্বোপরি পরিবেশকে দুর্ঘটনার হাত থেকে রক্ষার জন্য সদা প্রস্তুত থাকতে হবে এবং নিরাপত্তার নিয়মগুলো পুরোপুরিভাবে অনুসরণ করতে হবে।

- ২। ব্যক্তিগত নিরাপত্তার জন্য সাজ সরঞ্জাম:
- ক) ওভারঅল অথবা বয়লার স্যুট : এটা অগ্নি প্রতিরোধক দ্রব্যাদি দ্বারা তৈরি। মানব দেহকে আর্ক রশ্মি, স্প্রিটার, উত্তপ্ত চিপস ইত্যাদি থেকে থেকে রক্ষা করাই এর কাজ।
- খ) সেফটি সুজ: পড়ন্ত বস্তু যাতেপায়ের ক্ষতি করতে না পারে এবং বৈদ্যুতিক শক এড়ানোর জন্য এটা ব্যবহার করা হয়।
- গ) অ্যাপ্রোন: এটা চামড়ার তৈরি। শরীরের সম্মুখ অংশকে ওয়েডিং, চিপিং এবং ধাতু কাটিং—এর সময় সম্ভাব্য বিপদ যথা উত্তপ্ত গরম গ্যাস, স্প্রিটার, চিপস, উড়ম্ভ ধাতব কণা, আর্ক রশ্মি ও আর্কের উত্তাপ থেকে রক্ষা করে।
- ঘ) হ্যান্ড গ্লোভস : এটা চামড়ার তৈরি। ম্যাটেরিয়াল হ্যান্ডলিং, চিপিং, আর্ক রশ্মি ও আর্কের উত্তাপ থেকে হাতের তালু ও আবুলগুলোকে রক্ষা করে।
- ইয়ার প্রোটেকটর বা ইয়ার মাফলার : এটা বিকট শব্দ থেকে কানকে রক্ষা করে।
- চ) হ্যান্ড শীল্ড: ওয়ল্ডিং-এর সময় চোখ, মুখমগুলকে ক্ষুলিঙ্গ আর্ক রশ্মি ও আর্কের উত্তাপ থেকে রক্ষা করে।
- ছ) হেড শভী: পজিশনাল ওয়েন্ডিং-এর ব্যবহার অপরিহার্য।
- জ) প্রটেকটিভ গগলস : এটা চিপিং, গ্রাইভিং, লেদ ও শেপার ওয়ার্ক করার সময় বিক্ষিপ্ত ধাতুকণা থেকে চোখকে রক্ষা করে।
- ঝ) গগলস: গ্যাস ওয়েন্ডিং ও কাটিং-এর সময় চোখকে রক্ষার জন্য ব্যবহার করা হয়।
- ঞ) ওয়েন্ডিং গ্লাস : আর্কের আন্ট্রাভায়োলেট ও ইনফ্রারেড রশ্মি থেকে চোখকে রক্ষা করে।

৩। যদ্রপাতির নিরাপত্তা:

সেপার, আর্ক ওয়েন্ডিং, লেদ ও গ্যাস ওয়েন্ডিং, হ্যান্ড টুলস, মেজারিং টুলস ইত্যাদি যন্ত্রপাতি ঠিকমতো কার্যোপযোগী আছে কিনা সে সম্পর্কে নিশ্চিত হওয়া। সময়মতো পরিষ্কার ও লুব্রিকেট করা, কুলেন্ট দেখা, মেশিন সেটিং ঠিকমতো করা।

অপারেটরের দায়িত্ব:

মেশিনের স্টার্টার সুইচ, ইনপুট কেবলস এবং অন্যান্য সংযোগ অথবা ইনসুলেটর ঠিক রাখা।

- ১। মেশিন বা মেশিনের অন্য কোনো অংশ অত্যাধিক গরম না হওয়ার ব্যবস্থা করা।
 - অত্যাধিক কম্পন না হওয়ার ব্যবস্থা করা।
 - অম্বাভাবিক শব্দ না হওয়ার ব্যবস্থা করা।
 - মেশিন থেকে ধোঁয়া বের হলে, কিংবা পোড়া গন্ধ পেলে সত্তর ব্যবস্থা নেয়া
 - মেশিন গদি ঠিক রাখতে হবে। ঢিলা যেন না হয়।

৪। পরিবেশের সর্তকতা:

- ১) চলাফেরার রাস্তা অপ্রয়োজনীয় জিনিসপত্র থেকে মুক্ত রাখতে হবে যাতে কেউ হোঁচট খেয়ে না পড়ে।
- ২) ওয়ার্কশপের মেঝে তেল, গ্রিজ বা তৈলাক্ত পদার্থমুক্ত রাখতে হবে। পিচ্ছিল ফ্লোর অত্যন্ত বিপজ্জনক।
- থাতুর লম্বা টুকরার প্রতি দৃষ্টি রাখতে হবে সেগুলো অনেক সময় ভাইস, মেশিন বা য়্যাক থেকে যেন বের হয়ে না থাকে।
- ৪) টুলস ও অন্যান্য যন্ত্রপাতি কাজের শেষে যথাস্থানে সাজিয়ে রাখতেহবে।
 ফার্স্টএইড বক্স ঠিক রাখা। ফায়ার ফাইটিং ইক্যুইপমেন্ট ঠিক রাখা।

দ্বিতীয় অধ্যায়

জেনারেল মেকানিক্স শপে ব্যবহৃত যন্ত্রপাতি রক্ষণাবেক্ষণ

১। প্রয়োজনীয় যন্ত্রপাতি:

- ১) পরিষ্কার কাপড়ের টুকরা
- ২) ব্লোয়ার
- ৩) রাস্ট রিমুভার (মরিচা দূরীকরণ তেল)
- 8) ওয়ার ব্রাশ/এমারি ক্লথ
- ৫) অয়েল ক্যান/অয়েল গান
- ৬) মেশিন ব্রাশ/ফ্রোর ব্রাশ
- ৭) পুত্রিকেশন (মেশিন অয়েল)
- প্রয়োজনীয় স্পেয়ার পার্টস ইত্যাদি।

২। রক্ষণাবেক্ষণ পদ্ধতি:

- ১) ওয়ার্কশপের মেঝে এবং অন্যান্য স্থান ও মেশিন/যন্ত্রপাতির উপরে পতিত ধুলা-বালি পরিষ্কার-পরিচছন রাখতে হবে।
- ওয়ার্কশপে চলার পথ যন্ত্রপাতি ও মালামালমুক্ত রাখতে হবে।
- ৩) ওয়ার্কশপে দুর্ঘটনা এড়াবার লক্ষ্যে নির্ধারিত স্থানে অগ্নিনির্বাপক যন্ত্র স্থাপন করতে হবে।
- ষন্ত্রপাতির সন্নিকটে সুবিধাজনক স্থানে সতর্কতামূলক পোস্টার লাগাতে হবে।
- ৫) ওয়ার্কশপে পর্যাপ্ত আলো-বাতাস নিশ্চিতকরণের লক্ষ্যে দরজা-জানালা অপারেট করতে হবে।
- ৬) ধোঁয়া নির্গমনের ব্যবস্থা সচল রাখতে হবে।
- ৭) মেশিনে কোথাও মরিচা পড়লে রাস্ট রিমুভার দ্বারা নরম করা এবং ওয়্যার ব্রাশ দ্বারা মরিচা অপসারণ করতে হবে।
- ৮) মেশিনের মসৃণ ও চকচকে তলসমূহে মেশিন অয়েলের লেপন দিতে হবে।
 - বিভিন্ন বিয়ারিং-এ নিপলের মাধ্যমে তেল প্রদান করতে হবে।
- চাকের স্রটসমূহ চিপমুক্ত ও তৈলাক্ত করতে হবে।
- মেশিনের চেগ্রগিয়ারসমূহ পরিষ্কার ও তৈলাক্ত করতে হবে।
- ১২) মেশিন টুলের সেফটি ডিভাইসসমূহ যথাস্থানে লাগাতে হবে।
- ১৩) প্রয়োজনে বিনষ্ট সুইচ ও বৈদ্যুতিক তার পরিবর্তন করতে হবে।
- ১৪) ভাঙ্গা ও ক্ষয়প্রাপ্ত যন্ত্রাংশ পুনঃ কার্যোপযোগী করতে হবে।

৩। রক্ষণাবেক্ষণ কাজে নিম্লুলিখিত সতর্কতা অবলমন করা উচিত

- রক্ষণাবেক্ষণের সময় বৈদ্যুতিক সংযোগ বন্ধ রাখতে হবে ।
- স্লাইডিং যন্ত্রাংশসমূহে পরিমিত তেল প্রয়োগ করতে হবে।
- সঠিক রক্ষণাবেক্ষণের জন্য দক্ষ ও অভিজ্ঞ ওয়ার্কশপ স্টাফ প্রয়োজন।
- ৪) মেশিন ম্যানুয়্যাল-এর নির্দেশ মোতাবেক রক্ষণাবেক্ষণ কার্য সম্পন্ন করতে হবে।

ভূতীর অধ্যার বিরারিং রক্ষপাবেক্ষপ

) । श्रास्त्राचनीत यक्षभाषि च महस्रामानिः

- **3) भेगात**
- ২) অরেল ইনজেটর
- ०) तक लहे
- ৪) হাইড্রোলিক একটাইর
- ৫) বাৰ্ণস বা কাৰ্ণড়
- **७) रेलन**
- १) बीब

शृंशांत निर्वाहरन विद्यातिर्-धत श्वन विरवहनां क्तरफ ट्रव।

সাধারণ নিয়ম এই বে, যেসব বিয়ারিং ঠিকমতো কাজ করছে, সেডলি ধরা বা খোলা উচিত নয়। বিয়ারিং খোলার অনেক পদাতি রয়েছে এবং কোনটি অবসম্বন করা হবে তা নির্ভন করে খোলা কন্ত জটিল বা কঠিন বিয়ারিটে পুনরায় ব্যবহার করা হবে কিলা ভার উপর।

বিয়ারিং খোলার জন্য উপরোক্ত পুলারকলোর মধ্যে কাজের সুবিধার জন্য যে কোনো একটি পুলার বেছে নিতে ববে।

छ। विद्यातिर खोलाः

সঠিক মাপের এক্সট্রাইর (Extractor) লাগানো ও নিরারিং—এর নিপরীতে চাপ নিতে হবে। এক্সট্রইর চাপ অভিনু রেখে বিয়ারিং শীটের তলায় ডেল ইনজেই করতে হবে। তেলের পাতলা কর (Oil Film) সম্পন্ন হয়ে গেলে বিয়ারিং খেলার জন্য এক্সট্রাইর চালানো সহজ হবে। কলে বিয়ারিং সহজে খোলা বার।

हिन्दाः ७.५

व । विश्वविद श्रीका

মেশিন খাতাবিকভাবে চলার সময় দক্ষ অপারেটর বিয়ারিটে নই কিনা তা শব্দ তনলেই ধরতে পারে। মেশিনের ফ্রটিপূর্ণ চলা সন্দেহজনক কোনো বিয়ারিং—এর কারণে হচ্ছে কিনা অনুসর্বান করে দেখা বায়। পরীকা করে দেখার জন্য বিয়ারিটে খুলে দেরার প্রয়োজন হতে পারে। মেশিন থেকে খুলে দেরা বিয়ারিটের পরীকা করার জন্য নতুন অনুরূপ বিয়ারিং—এর সাথে তুলনা করা বার। পুনরার শুবহার করার উপযুক্ততা সম্বন্ধে সামান্যতম সন্দেহ হলেও তার বদলে নতুন বিয়ারিং ব্যবহার করা উচিত। বিয়ারিটেনে প্যাকট বা হাউজ থেকে খোলার পর মুরানো (Spinning) উচিত নয়, কেননা খোলার সময় ধূলি–বালি বা আবর্জনা এর ভেতর চুকে খাকতে পারে।

বিরারিং-এর কেনে অথবা পালে দৃশ্যত খুঁত ররেছে কিনা, দেখতে হবে। সুব্রিক্যান্ট, তেল বা গ্রীজ ইল্পাত বা পিতলের কণা ফাইলিং ডাস্ট রয়েছে কিনা দেখতে হবে। সুব্রিক্যান্টের ধরন আসুলে অনুতব করতে হবে।

क्ति : ७.६

বিরারিং পরীকার জন্য প্রস্তুক্তরকের নিকট পাঠাতে হলে পরিভার করা উচিত নয় বরং খোলার সাথে সাথে প্যাকিং করে দেরা উচিত।

Ba : 0.0

e। বিরারিং পরিছার করণ ও গ্রীবিং :

- বিয়ারিং বদি দৃটি সাইত প্রেট অথবা সীলসহ কিট করা হয়ে থাকে তবে ৩৬ বাইরের অংশ পরিকার করতে হবে।
- বিয়ারিংকে পরিকার মাধ্যমে রাখার পূর্বে পুরানো পুরিক্যান্ট ফ্থাসম্ভব পরিকার করে নিতে হবে।

Bu 1 9.8

- গরিকারক মাধ্যমে বিরারিংকে তৃতিরে প্রয়োজন হলে কিছুক্রণ রাখতে হতে বেন লেগে থাকা শক্ত প্রক্রিকাণ্ট নরম হর।
- ৪) তিক্সে নরম বরে বাবার পর বিবারিংকে তরল মাধ্যমের তেতর রেখে ও পুরিয়ে পুরিয়ে ব্রাস দিয়ে পরিয়ার করতে হবে। লক্ষ্য রাখতে হবে, ব্রাশ থেকে কোলো আঁশ থেন বিয়ারিং—এর পারে আঁটকে না থাকে।
- ৫) বিয়ারিকে আঁশবিহীন পরিভার কাপড় দিয়ে পরিভার করতে হবে। পরিভার করা বিয়ারিকে ধরার জন্য পরিভার সূতির দন্তানা পরে নিজে হবে। বিয়ারিক্তি অভিয়ে যাবার পর অন্তিবিদমে তেল বা গ্রীজ মেশে নিজে হবে।

७। विदाबिर माभारतः

শ্যাকট ও হাউজিং এর প্রস্তুত কাজটি বলি প্রকৃত কর্মছলেই সম্পন্ন করতে হর, তবে আশ্বাদের বছগাতি সরিয়ে জারগাটি খোলাসেলা করে নিতে হবে। শ্যাকট ও হাউজিং প্রস্তুতির জন্য নিমুলিখিত কাজখলো করতে হবে।

- ১) বিয়ায়িং পাঁট থেকে, সাদা শিপরিট অথবা থিনার, বেটি প্রয়োজন, ব্যবহার করে মরিচারোধী পেইন্ট পরিকার করতে হবে। বিয়ায়িং পাঁটে বিদ মরিচা পছে থাকে তবে কোন প্রাবক (Solvent) দিয়ে বৌত করে মিহিলানার ইমায়িদ ক্লব দিয়ে ববে তলের মরিচা পরিকার করতে হবে। ইমায়ি ক্লব দিয়ে পরিকার করার পর পাঁটকে বতু সহকারে খোঁত করতে হবে ও কোনো মহলা বা খাতুকণা অবলিট নেই তা নিশ্চিত হবে।
- ২) অভিনিক্ত বীজকে একটি আঁশবিধীন পরিকার কাপত্ব দিয়ে মৃহে পরিকার করতে হবে। শ্যাকট শোভারের বেখানে বিয়ারিং কাবে লেখানে কোনো ময়লা নেই এবং হাউজিং—এ কোনো ময়লা বা বাবরি ইত্যাদি দেই—এ বিষয়টি বিয়ারিং কট কয়ার আগেই নিশ্চিত হতে হবে।

- শ্যাফট অথবা হাউজিং—এর প্যাঁচ (Thread) এ কোনো ময়লা থাকলে ব্রাশ দিয়ে তা পরিষ্কার করতে হবে।
- ৪) বিয়ারিং পরাবার জন্য চাপ যেখানে খুব বেশি প্রয়োজন হয় না, সেখানে টোকা দিয়ে মৃদু আঘাত করে লাগানো যায়। এতদুদ্দেশে একটি টিউব দ্রিফট (চাপ প্রয়োগের জন্য টিউব খণ্ড) ব্যবহার করতে হবে যাতে বিয়ারিংটি শ্যাফটের সাথে সমভাবে থাকে।
- ক) বৃহদাকার বিয়ারিং পরানো বা খোলার জন্য ব্যবহৃত হাইড্রোলিক যন্তের হাইড্রোলিক পাম্পটির র্যাম
 (Ram) থেকে আলাদা, যাতে করে বিভিন্ন সাইজের র্যাম ব্যবহার করা যায়। তাছাড়া শ্যাফটের
 উপর চাপ ও (Load) কম পড়ে।
- ৬) পরানোর সময় বিয়ারিংটি যাতে কাত হয়ে না পড়ে সেজন্য এ যদ্রের সাথে একটি কলার (collar)
 বিয়ারিং—এর পরিধিতে সার্বক্ষণিক চাপ দিতে থাকে। কলারটি খণ্ডিত (Split) যার কারণে সংযোজন
 সহজ হয়।

৭। কাজের সময় ও পরে পরীক্ষণঃ

- বিয়ারিং ঘ্রিয়ে এর আওয়াজ ওনতে হবে ও নতুনটির আওয়াজের সাথে তুলনা করতে হবে। রোলিং
 তলে ক্ষত থাকলে আওয়াজ ওনলেই বুঝা যায়।
- ২) বিয়ারিং কে চাক্ষুষ পরিদর্শন করতে হবে ও মরিচা, রং বিকৃতি, ফাটা, অস্বাভাবিক ক্ষয় এবং অসাবধান সংযোজনের কারণে দেবে যাওয়া বা অনুরূপ ক্ষতের চিহ্ন আছে কিনা দেখতে হবে। নিমুবর্ণিত অবস্থায় মরিচা পড়া ছাড়া উল্লিখিত যে কোনো প্রকার দোষ থাকলে বিয়ারিং অবশ্যই বদলাতে হবে।
- ৩) দুই বিপরীত প্রান্তে আঁশ বা কণার সৃষ্টি যা ডিমাকৃতি (Oval) হাউজিং–এ রিং–এর শব্দ চাপের কারণ হয় । এমতাবস্থায় হাউজিংকে মেরামত করে নতুন বিয়ারিং লাগানো উচিত।
- ৪) ট্রাকে চিড় বা ফাটল রিংটি যথাযথ রক্ষিত না থাকায় কারণে হতে পারে । নতুন বিয়ারিং পরানোর আগে হাউজিং শীট ভালো করে দেখে নেওয়া উচিত।

চতুর্থ অধ্যায় হ্যান্ড ড্রিলে ছিদ্রকরণ

১। ওয়াকীপস গুরুতকরণ :

চিত্র: ৪.১ ওয়ার্কপিস প্রস্তুতকরণ

- ১) ওয়ার্কপিস লে-আউট করার সাজ-সরঞ্জাম ক্রাইবার, সেন্টার পাঞ্চ, স্টিলরুল ও হাতুড়ি নিতে হবে।
- হ) লে-আউট করতে প্রথমে স্টিল রুলের দ্বারা মাপ নিয়ে ক্রাইবারের দাগ দিতে হবে।
- অভঃপর দ্রইং মোভাবেক সেন্টার পাঞ্চের দারা সঠিকভাবে পাঞ্চিং করতে হবে।

২। ফ্রিল বিট নির্বাচন:

- ১) দ্বিল বিটের আকার সাধারণত এর শ্যাক্ষে চিহ্নিত থাকে। তবে অতি ছোট ব্যাদের দ্বিল বিটের আকার চিহ্নিত থাকে না।
- ২) অতি ছোট ব্যাসের ড্রিল বিটের আকার চিহ্নিত থাকে না বলে এর আকার মেপে বের করতে হয়।
- ছিল বিটের আকার মাপার জন্য প্রধানত ছিল গেজ ব্যবহৃত হয়।

৩। ওয়াৰ্কপিস স্থাপন:

হ্যান্ড দ্রিলিং-এর জন্য সুবিধাজ্বনক মাউন্টিং ডিভাইস নির্বাচন করে ওয়ার্কলিস স্থাপন করতে হবে। সাধারণত বহুনযোগ্য মাউন্টিং ডিভাইস যেমনঃ সি-ক্ল্যাম্প, হ্যান্ড ভাইস অথবা অন্যকোনো নির্ভরযোগ্য উপারে দৃঢ়ভাবে ওয়ার্কপিস অবশ্যই আবদ্ধ করতে হবে।

८। श्विनिर् गण्नानुकर्यः

- হ্যান্ড দ্রিল আকারে ছোট ও ওজনে হালকা।
- ২) রেস্ট-এর উপর বা হাত দিয়ে চাপ দিতে হবে।
- ভান হাত দিয়ে হ্যান্ডেল ঘুরাতে হবে।
- ৪) আছে আছে চাপ দিতে হবে।
- ৫) থেমে থেমে কাজ শেব করতে হবে।

विवाः 8.२

৬) হ্যান্ড দ্রিলিং পাড়াভাবে এবং অনুভূমিক অবস্থায় করা যায়।

हिन: 8.७

৭) বে সমক্ত কাজে সুবিধাজনকভাবে স্টাভার্ড দ্রিলিং মেলিনে দ্রিল করা বার না তা দ্রিল করতে পোর্টেবল দ্রিলিং মেলিন ব্যবহৃত হয়। এ মেলিনে ১২.৭ মি.মি. গর্বস্ক দ্রিল বিট ধারণ করতে সক্ষম। হ্যাভ ক্ষীভিং এবং সমত্ত্বতা বজায় রেখে দ্রিলিং সম্পন্ন করতে হবে।

৫। দ্রিলিং-এ প্রয়োজনীয় সতর্কতা ও নিরীক্ষণ :

- দ্রিলিং শুরু করার পূর্বে এর কেন্দ্র অবশ্যই পাঞ্চ দ্বারা মার্ক করে নিতে হবে। মার্কটি দ্রিল বিটের কোরের চাইতে চওড়া হওয়া উচিত।
- ২) সাধারণত ক্রটিপূর্ণভাবে গ্রাইডিং করা সরু ড্রিলগুলি কেন্দ্রের বাইরে চলে যায় কাজেই ড্রিলবিট সঠিকভাবে গ্রাইডিং করে নিতে হবে।
- ড্রাল বিট সঠিকভাবে গ্রাইন্ডিং করতে ড্রাল শার্পেনিং ডিভাইস ব্যবহার করা উচিত । ড্রাল বিট ধার
 দিতে এবং দুর্ঘটনা এড়াতে একে অবশ্যই ক্ল্যাম্পিং করে নিতে হবে।

ক্রটিপূর্ণভাবে গ্রাইভিং-এর কারণে -

- -পয়েন্ট অ্যাঙ্গল অসমান হবে।
- -একটি লিপ অপরটি অপেক্ষা বৃহত্তম হবে।
- -ড্রিল করা গর্তের ব্যাস বড় হবে।
- পয়েন্ট অ্যাঙ্গল অবশ্যই পয়েন্ট অ্যাঙ্গেল গেজ দারা পরীক্ষা করতে হবে।
- ২) যদি গর্ত কেন্দ্র থেকে সরে যায় তবে প্রথমেই একে সংশোধন করে নিতে হয়। এতে গর্তটিকে যেদিকে সরতে হবে। সেদিকে একটি গ্রুভ কেটে নেয়া হয়।
- -বড় দ্রিল গর্ত করার পূর্বে ছোট দ্রিল করে নিতে হয়।
- ৩) লম্বা চুল এবং ঢিলা পোশাক সম্পর্কে অপারেটরকে অবশ্যই সতর্ক থাকতে হবে। কারণ এটা বিপজ্জনক।
- 8) দ্রিল বিটটি যাতে নষ্ট না হয় সেজন্য সঠিক ছিদ্র সম্পন্ন কাঠের ব্লকে রাখা উচিত ।

পথ্তম অখ্যায়

ভী-ব্লক ব্যবহার করে ড্রিলিং

১। ওরার্কপিল শুদ্রতকরণ ।

সাধারণত সিলিছ্রিক্যাল গুয়ার্কশিস ক্ল্যাম্পিং করার জন্য ভী-ব্লক ব্যবহৃত হয়।

विवाद.3

২) দ্রিলিং তরু করার পূর্বে দ্রিল করার হান অবশাই সেন্টার পাঞ্চ দারা মার্ক (Mark) করা উচিত।

विव:६.३

২। ওয়ার্কশিস স্থাপন ড্রিলিং-এর সময় ওয়ার্কশিস দৃঢ়ভাবে বাঁধা মা হলে সুরম্ভ ড্রিল থেকে নিক্ষিপ্ত ওয়ার্কশিস দুর্বটনার কারণ হতে পারে। সিলিদ্রিক্যাল ওয়ার্কলিসে পাশ বা ল্যাটারাল (Lateral) ছিদ্র করতে ওয়ার্কলিস ছুরে যাওয়া রোধ
করতে ওয়ার্কলিসকে জী-রকে সেট করতে হবে।

But: 0.0

২) দ্রিলিং চালের দরুন ওরাবীশস নিচের দিকে শিছলে থেকে গারে। ওরাবীশসের নিচের দিকে শিছলে যাওয়া রোধ করতে ওরাবীশিসের নিচে একটি কার্টের গ্যাকিং ব্যবহার করতে হবে।

Ba:0.8

৩। কাটিং স্পীত :

দ্রিলিং—এর কাটিং স্পীত মেট্রিক প্রণালিতে মিটার/মিনিট এবং ব্রিটিশ প্রণালিতে কুট/মিনিট—এ প্রকাশিত হয়। নিম্নে সূত্র ব্যবহার করে দ্রিলিং—এর জন্য কাটিং স্পীত নির্মিয় করা হয়। বেমন—

উদাহরণ:

মাইন্ড স্টিলের কাটিং স্পীত ৪০ মিটার/মিনিট হলে এতে ৩ মি.মি. ব্যালের ছিদ্র করতে খ্রিলের আরশিএম নির্বাচন কর।

দ্রিলের আরপিএম হলে ৪২৪৪ রেভালুশন/মিনিট

ওয়ার্কপিস ম্যাটেরিয়াল	কাটিং স্পীড মিটার/মিনিট	
	হাইস্পীড স্টিল	সিনটারড কার্বাইড
	₹₡-80	*******
	২০-৩০	

হাই কার্বন স্টিল কাস্ট আয়রন, নরম কাস্ট আয়রন,শক্ত কাস্ট স্টিল ব্রাশ, শক্ত ব্রাশ (নরম) ব্রোঞ্চ কপার, অ্যালুমিনিয়াম ১৫-২৫-২০-৩০	२৫-8०	60-700
	২০-৩০	80-50
	20-00	20-80
	90-320	200-260
	90-60	GO-AO
	90-500	*************

। छिन छिनि :

- ১) মেশিন চালু করতে হবে।
- ২) কাটিং ডাটা নির্ধারণ করতে হবে।
- ছদুটি ড্রিলিং আরম্ভ করতে হবে।
 - -কুল্যান্ট ব্যবহার করতে হবে।
 - -হাতে ফীড দিতে হবে এবং নিশ্চিত হতে হবে যে, ছিদ্রটি কাটছে।
 - -ছিদ্রের গভীরতা ড্রিলের ব্যাসের চেয়ে বেশি ছিদ্র থেকে ড্রিলকে বারবার উঠিয়ে চিপ পরিষ্কার করতে হবে।
 - -ওয়ার্কপিস পূর্ণ গভীরতার দ্বিলিং করতে হবে।
 - -ঢালু তলের ক্ষেত্রে বিশেষভাবে সতর্ক থাকতে হবে।
 - -লক্ষ্য রাখতে হবে যে, দ্বিল দ্বারা যেন টেবিল বা ওয়ার্ক হোন্ডিং ডিভাইস কাটা না যায়
- 8) ছিদ্র থেকে ড্রিল অপসারণ করতে হবে।
- মেশিন বন্ধ করতে হবে।
- ৬) ছিদ্রের ব্যাস পরীক্ষা করতে হবে।
- ৭) ওয়ার্কপিস ক্ল্যাম্পিং মুক্ত করতে হবে।
- b) ওয়ার্কপিস পরিষ্কার করতে হবে।
- ছিদ্রের প্রান্তদ্বয় বাবরিমুক্ত করতে হবে।

- ১০) ড্রিল বিট খুলে নিতে হবে।
- ১১) নিশ্চিত হতে হবে, যাতে ড্রিলটি ওয়ার্ক হোল্ডিং ডিভাইস বা ড্রিলিং মেশিন টেবিলের উপরে না পড়ে।
- ১২) ড্রিল ও মেশিন পরিষ্কার করতে হবে।

৫ । ড্রিলিং-এর সতকর্তা ও নিরীক্ষণ :

- ওয়ার্কপিস দৃঢ়ভাবে ক্ল্যাম্পিং করতে হবে।
- ২) নড়বড়ে ক্ল্যাম্পিং দুর্ঘটনা ঘটায়।
- সঠিক সেন্টারিং সকল দ্রিলিং-এর জন্য অতীব জরুরি।
- ৪) সর্বদাই হ্যান্ড ফীড দিতে হবে।
- ৫) গভীর ছিদ্রের দ্রিলিং-এ মাঝে মাঝে চিপ পরিষ্কার করে নিতে হবে।

वर्ष व्यथाव

অ্যাঙ্গল প্লেট ব্যবহার করে ড্রিলিং

১। অ্যাঙ্গল প্রেট দৃঢ়করণ :

- ১) অ্যাহল প্লেট ও ড্রিলিং মেশিন টেবিলের সংস্পর্শ তল এবং টী-স্লুট পরিষ্কার করতে হবে।
- ২) টী-ম্লটের একই আকৃতির ক্র্যাপার ব্যবহার করতে হবে।
- অ্যাক্ষল প্রেটকে দ্রিলিং মেশিন টেবিলের উপর স্থাপন করতে হবে।
- ৪) অ্যাঙ্গল প্লেটকে টী-বোল্ট ও নাটের সাহায্যে আটকাতে হবে।
- ক) নাটকে নিমুমুখে জুয়িং করে হালকা টাইট দিতে হবে।

िखः ७.১

২। গুরাকীপস ক্ল্যাম্পিকেরণ :

हिवा :७.२

- অ্যাক্ল প্লেটের সংস্পর্শ তলকে পরিছার করতে হবে।
- ২) ওয়ার্কপিস বাবরিমৃক্ত ও পরিষ্কার করতে হবে।
- ৩) ওয়ার্কপিস আক্রল প্রেটে স্থাপন করতে হবে।
 - -স্কেল, প্যারালাল ব্লক বা স্কোয়ারের সাহায্যে সঠিক অবস্থানে ওয়ার্কপিস স্থাপন করতে হবে।
 - -ক্ল্যম্পিং বোল্টকে সাপোর্টিং ব্রকের তুলনায় ওয়ার্কপিসের নিকটতম স্থানে স্থাপন করতে হবে।

৪) তরাকশিল ক্ল্যাম্পকে লেটিং করতে হবে।
 তরাকশিল ক্ল্যাম্পকে লেটিং করতে হবে।
 নাটের নিচে ওরাপার ব্যবহার করতে হবে।

हिस : कर

প্রাকশিস ক্ল্যান্সিং এ দৃহতাবে ইবিট করতে হবে।
 সঠিক আকারের স্প্যানার ব্যবহার করতে হবে।

৬। ভয়ার্কনিদ নেকারিকেলা :

পাঞ্চ মার্ক টিক ছিল পরেন্টের নিচে আনার চেটা করতে হবে।
 ছিল পাঞ্চ মার্ক বা পূর্বে ছিলিং করা গর্ভ বরাবর নাবাতে হবে।

্ৰনে বাথতে হবে বে, টেবিশকে ভার শিভট ও কলামের চভূর্নিকে ঘূরিরে সেউরিং সহজে করতে পারা বার ।

विदाः ७.८

- স্যাঙ্গল প্লেটকে টেবিলের উপর স্কুয়িং করে টাইট করতে হবে।
 সঠিক আকারের স্প্যানার ব্যবহার করতে হবে।
 দৃঢ়ভাবে টাইট করতে হবে।
- পরীক্ষা করতে হবে।
- 8) দ্রিলিং অপারেশন সম্পাদন করতে হবে।

৪। ওয়ার্কপিস ও অ্যাঙ্গল প্লেট অপসারণকরণ :

- ক) নাটকে ঢিলা করে ওয়ার্কপিস অপসারণ করতে হবে।
 -ওয়ার্কপিস যত্নসহকারে সরাতে হবে।
- টেবিলে অ্যাঙ্গল প্লেটকে আবদ্ধকারী নাটকে টিলা করতে হবে
- ব) টী বোল্ট অপসারণ করতে হবে।
- ৮) অ্যাঙ্গল প্লেট অপসারণ করতে হবে।
- ৯) সরঞ্জাম পরিষ্কার করতে হবে।

৫। সতৰ্কতা ও নিরীক্ষণ :

- ১০) সঠিক পাঞ্জিং নিশ্চিত করতে হবে।
- ১১) সঠিক সেন্টারিং নিশ্চিত করতে হবে।
- ১২)ক্ল্যাম্পিং দৃঢ় হতে হবে।
- ১৩) সঠিক স্পীড এবং ফীড নিশ্চিত করতে হবে।
- ১৪) দ্রিল বিটের কাটিং অ্যাঙ্গল-এর সঠিকতা বজায় রাখতে হবে।

সপ্তম অখ্যার

দ্রিল মেশিনের কাউন্টার বোরিংকরণ

১। কাউন্টার বোর নির্বাচনঃ

স্পেসিঞ্চিকেশন বা অন্য কোনো নিৰ্দেশনা অনুযায়ী কাউন্টার বোরিং টুল নির্বাচন করতে হবে।

- কাউন্টার বোরিং টুল ও পাইলটের আয়তন পরীক্ষা করতে হবে।
- ২) ধার পরীক্ষা করতে হবে।

हिंग: १.5

২। ধরাকীপস ক্র্যাম্পিং:

- শ্রেসিফিকেশন বা অন্য কোনো নির্দেশ অনুযায়ী কাউন্টার বোরিং টুল উপয়োগী ক্ল্যাম্পিং ডিভাইস নির্বাচন করতে হবে।
- ক্ল্যাম্পিং

 এর সময় পরিচছনুতা বজায় রাখতে হবে।
- ওয়ার্কপিসটি মোটামুটি অবস্থানে স্থাপন করতে হবে।
- হালকা টাইট দিতে হবে।

৩। কাউন্টার বোরিং টুল সেটআপ :

- কাউন্টার বোরের আয়তন ও শ্যাংক অন্যায়ী হোভিং ডিতাইস নির্বাচন করতে হবে।
- সেটিং আপ-এর সময় পরিকার পরিচ্ছনুতা বজায় রাখতে হবে ।
- পরীক্ষা করে দেখতে হবে যেন কাউন্টার বোরিং টুলটি না পড়ে।

৪। কাউন্টার বোরিং স্পীড সেটআপ :

- অগারেশন স্পেসিফিকেশন বা অন্য কোনো নির্দেশ খেকে কাউন্টার বোরিং টুল স্পীড নির্বাচন করতে হবে।
- ড্রিলিং মেশিনের সিলেক্টরের সাহায্যে স্পীড পাঠ করতে হবে।
- মেশিন ডাটা প্লেটে সম্ভাব্য স্পিভল স্পীড পাঠ করতে হবে।
- নিকটতম স্পীড ব্যবহার করতে হবে।

ছেপিং মেশিন টেবিলকে সঠিক উচ্চতার সেটিং :

দ্রিলিং মেলিন টেবিলকে উল্লম্ভাবে সমন্বয় করতে হবে।

- শিক্তিক করতে হবে বে, কাউন্টারবোরটি গুরার্কসিলের উপর অবাবে দুরতে পারে।
- দেখে নিতে হবে যে, কাউ-টার বোরিং টুলকে প্রয়োজনীয় গভীরতায় প্রবেশ করানো বায় ।

क्यि ३ १.३

৬। গুরাকশিল লেউারিং:

- তয়াকশিস পাইলটের নিচে স্থান করতে হবে।
- পূর্বে দ্রিলিং করা ছিল্ল অভিমুখে কাউন্টারবোরকে নামাতে হবে।
- গুরাকশিল সমনর করতে হবে বাতে হিদ্রের মধ্যে পাইলটকে ঢোকাদো হর।
- ভয়ার্কশিস পূর্ণ টাইটে ক্ল্যাম্পিং করতে হবে।
- পাইলটকে নিমুমুখে কীভ দিয়ে ওয়াকিশিসের অবস্থান পরীকা করতে হবে।
- প্রয়োজন হলে ওয়ার্কীপস নাড়াতে হবে।
- শেলারিং—এর পরে গুরার্কশিসকে পূর্ণ টাইট দিতে হবে।

৭। কাউন্টার বোরিং টুল-এর পভীরতা সেটভাপ:

- কাউন্টার বোরিং টুলকে গুরার্কশিলের তলে না ধাষা পর্যন্ত পাইলটকে নিপ্রয়ুখে হিন্দের যথ্যে ক্রীভ দিতে হবে।
- দ্বিলিং মেশিনের স্কেলের দাগাঙ্কের সাহায্যে কাউন্টার বোরিং গভীরতা সমন্বর করতে হবে।
- সেটিং আগ–এর সময় পাইলটকে ভয়ার্কশিদের নিমুক্তলের দিকে কীভ দিতে হবে।

৮। জ্বি কভিন্টার বোরিং:

- মেশিন চালু করতে হবে।
- পরীক্ষামূলক কাঁট দিতে হবে ।

- কাউন্টার বোরকে সতর্কতার সাথে এ পরিমাণ গভীরতায় ফীড দিতে হবে যা ব্যাস পরিমাপ করার জন্য যথেষ্ট হয়।
- মেশিন বন্ধ করতে হবে ।
- আবার মেশিন চালু করতে হবে।
- প্রয়োজনীয় গভীরতায় কাউন্টার বোরিং করতে হবে ।
- কাটিং ফ্রইড ব্যবহার করতে হবে ।
- হাতে ফীড দিতে হবে এবং নিশ্চিত হতে হবে যে, কাউন্টার বারটি কাটছে ।
- ছিদ্র, থেকে কাউন্টার বোরকে বার বার বাইরে উঠিয়ে টিপ পরিষ্কার করতে হবে।
- স্টপাটি স্টপ বোল্টে পৌছা পর্যন্ত ফীড দিতে হবে।
- কাউন্টার বোর যখন সঠিক গভীরতায় পৌছে তখন সতর্কভাবে খেয়াল রাখতে হবে।
- ছিদ্র থেকে কাউন্টার বোর অপসারণ করতে হবে ।
- মেশিন বন্ধ করতে হবে।
- কাউন্টার বোরিংকৃত ছিদ্রের গভীরতা ও ব্যাস পরীক্ষা করতে হবে।

৯। কাউন্টার বোরিং সম্পন্নকরণ :

সকল ছিদ্রকে কাউন্টার বোরিং করতে হবে। অতঃপর ওয়ার্কপিস অপসারণ করতে হবে। ভার্নিয়ার ক্যালিপার্সের সাহায্যে কাউন্টার বোরিং-এর মাপ পরীক্ষা করতে হবে। কাউন্টার বোর ও মেশিনকে পরিষ্কার করতে হবে।

১০। সতর্কতা ও নিরীক্ষাণ :

- কাউন্টার বোরিং টুল নির্বাচনে সতর্কতা অবলম্বন করতে হবে।
- ওয়ার্কপিস ক্র্যাম্পিং সঠিক হতে হবে ।
- ওয়ার্কপিস সেন্টারিং–এ বিশেষ সতর্কতা প্রয়োজন।
- কাউন্টার বোরকে যথাযথভাবে পরিষ্কার করতে হবে।
- কাউন্টার বোর স্টপ বোল্টে পৌছাবার সময় বিশেষ সতর্কতার প্রয়োজন।

অটব অখ্যার

হ্যান্ড রিমার হারা রিমিকেরণ

विवाद निर्वाहरम निरवहा निवदानिः

- ক্ষমালিত বিনিং—এর অন্য বিদার কুরাতে করার্থ আকৃতির ক্ষেক নিজে হয়।
- ক্রিল বীট এবং বিষাক্রের সাইক্ষ পরীক্ষা করতে ভার্মিরার ক্যালিপার্ল বা ষাইক্রেনিটার নিতে হবে।
- রিখিং করা হিছের পরিমাণ পরীকা করতে প্লাগ পেজ, টেলিকোলিক পেজ এবং মহিত্রোমিটার নিতে
 ব্বে।
- ভরাকশিলের এককেন্দ্রিকভা পরীকা করতে স্ট্যান্তসহ ভারল ইন্ডিকেটের দেয়া প্ররোজন।

३। ज्यानिक निर्वाहन :

রিমিং জ্যালাউলের পরিমাণ রিমিং ব্যাস ও কার্যবন্ধর উপর নির্ভন করে নির্বাচন করা হয়।

छ। तिमिर शालन ७ शतीक्यः

থাখনে বিশিং জ্ঞালাউল বেশে দ্বিলের সাধায়ে ছিন্ন করতে হবে। অভঃপর একটি ব্রেইট পাারালাল বিষার নিতে ববে। রিমারটিকে ছিদ্রের মধ্যে সম্বভাবে প্রবেশ করাতে হবে এবং ট্রাই জোরারের সাথায়ে গরীকা করতে হবে।

8 । विवास विद्यान्तर्थ स्रोतंत्र :

Ban 1.2

বিমারের মাধার উপর ট্যাপ রেঞ্চ (Tap Wrench) এর ন্যায় একটি রেঞ্চ অনুভূষিক ভাবে রেখে একে অর চাপে আম দিকে একং বডকশ পর্যন্ত এটা হিন্দের সকর পারের সংস্পর্ণে মা আসে ডডকশ ধীরে দীরে সুরাজে করে।

৫ । विथिर जन्मन्नकवर्गः

চিত্ৰ: ৮.৩

দ্রিল মেলিনের স্পিডলের মধ্যে লেলের ডেড সেন্টারকে প্রবেশ করিয়ে এ সেন্টারটিকে রিমারের মাধায় অবছিত ক্ষু ছিদ্রের উপর রাখলে এবং এ অবস্থায় রেঞ্জ-এর সাহায্যে রিমারটিকে পাশের চিক্রের ন্যায় স্থরালে রিমার ছিদ্রের মধ্যে লবভাবে প্রবেশ করবে। এটা যোরাবার সময় কিছুক্ষণ স্থিয়ে রিমারটিকে বের করে এনে উপরের ধাতৃ চুর্শতলোকে পরিকার করে ফেলতে হয়। ছিদ্রের মধ্য থেকে বের করে আনার সময় এটাকে ডান দিকে যোরানো প্রয়োজন, কর্ষনঙ বাম দিকে যোরানো সক্ষত নয়। রিমিং শ্বের ব্যাস তার্নিয়ার ক্যালিপার্সের সাহায্যে পরীক্ষা করা প্রয়োজন।

৬। রিমারকে চালনা করার সময় স্টিলের জন্য কাটিং অয়েল (Cuiting Oil) ব্যবহার করা উচিত। ব্রাস, ব্রোঞ্জ এবং সাধারণ কাস্ট আয়রন ইত্যাদিছে কোনো কিছু ব্যবহার করার প্রয়োজন হয় না। খুব শক্ত কাস্ট আয়রনের বেলার কেরোসিন কিংবা তারসিন তেল ব্যবহার করার নিরম।

৭। সাৰ্খানভা :

বিমারকে সর্বদা ডান দিকে ঘোরানো উচিত । কখনও এর বিপরীত অর্থাৎ বামদিকে ঘোরানো উচিত নর।

- বিমার ব্যবহার করার পূর্বে সর্বদা উপবৃক্ত মাপের ছিদ্র করে নিতে হবে।
- হ্যান্ড রিমারকে কখনও মেশিন রিমাররপে অথবা মেশিন রিমারকে হ্যান্ড রিমাররপে ব্যবহার করা উচিত নর।
- ট্যাপার রিমারকে ছিদ্রের মধ্যে চালনা করার সময় খুব বেশি চাপ দেয়া উচিত নয়। অধিক চাপে
 রিমারটি তেতরে বন্ধ হয়ে তেকে বেতে পারে।
- রিমারকে চালনা করার সময় কিছুক্ষণ অন্তর ওটাকে বের করে এনে বাতৃত্পিতলাকে (বিশেষত স্টিলের বেলায়) উত্তমরূপে পরিস্থার করে নেয়া উচিত। এতে রিমার সহজে ভাঙ্গে না এবং ছিদ্রের গাত্র ও মসৃধ হবে।

নবম অধ্যায়

দ্রিল মেশিনের কাউন্টার বোরিং

১। কাউন্টার বোরিং টুল নির্বাচনঃ

- ১) স্পেসিফিকেশন বা অন্য কোনো নির্দেশনা অনুযায়ী কাউন্টার বোরিং টুন্স নির্বাচন করতে হবে।
- কাউন্টার বোরিং-এর আয়তন ও কোণ দ্রইং অনুযায়ী আছে কিনা তা নিশ্চিত হতে হবে।
- ৩) ধার (Sharpness) পরীক্ষা করতে হবে।

दि.ह : इच्ची

২। ওয়ার্কশিস ক্ল্যান্শিং:

- শেপসিফিকেশন বা অন্য কোনো নির্দেশনা থেকে কাউন্টার বোরিং টুল উপযোগী ক্ল্যাম্পিং ডিভাইস নির্বাচন করতে হবে।
- ক্ল্যাম্পিং-এর সমর পরিচ্ছনুতা বজায় রাখতে হবে।
- ও) ওয়ার্কপিসটি সঠিক স্থানে অবস্থান করাতে হবে।
- ৪) হালকা টাইট দিতে হৰে।

কাউন্টার বোরিং সেটআপকরণ :

- কাউন্টার বোরিং—এর আয়তন ও শ্যান্ধ অনুযায়ী হোন্ডার নির্বাচন করতে হবে।
- সেটিং আপের সময় পরিচ্ছনুতা বঙ্গায় রাখতে হবে।
- কাউন্টার বোরিং টুলটি নড়ে কিনা তা পরীক্ষা করে দেখতে হবে।

কাউন্টার বোরিং স্পীড সেটকরণ :

- ক্রেসিফিকেশন বা অন্য কোনো নির্দেশনা হতে কাউন্টার বোরিং টুল–এর স্পীড নির্বাচন করতে হবে।
- ড্রিলিং মেশিনের সিলেক্টরের সাহায্যে স্পীড সেট করতে হবে।
- ৩) মেশিন ডাটা প্লেটের সম্ভাব্য স্পিডল স্পীড পাঠ করতে হবে।
- ৪) নিকটভম স্পীড ব্যবহার করতে হবে।

দ্রিল যেশিন টেবিল বধাবধ উচ্চতার সেটআপকরণ :

- প্রিলিং মেশিন টেবিলকে উল্লয়ন্ডাবে সমন্বর করতে হবে।
- ও) নিশ্চিত করতে হবে বে, কাউন্টার বোরিং টুলটি গুরাবলিকের উপর অবাধে বুরতে পারে।
- ৭) দেখে নিতে হবে যে কাউটার বোরিং টুকটি প্ররোজনীয় গভীরতায় প্রবেশ করানো যায়। ওয়ার্কসিসকে সেটারিং করণ :

हियाः ७.२

- গ্রাকিশিন কাউন্টার বোরিং টুল-এর নিচে ছাপন করতে ববে।
- পূর্বে দ্রিলিং করা ছিদ্র অভিমুখে কাউন্টার বোরিং টুলটি নামাতে হবে।
- अव्यक्तिन नमवत क्वाफ इत्य वांटक हित्स्य प्रत्या प्रकारमा यांत्र ।
- ৪) বরাকশিস পূর্ব টাইটে ক্ল্যাম্পিং করতে হবে।
- কাউন্টার বোরিং টুল নিতুমুবে ফীড নিয়ে গুরাপিলের অবছান পরীকা করতে হবে।

क्षि: 5,0

- শৈক্তৰ হাতে ঘোরাতে হবে প্রবং দেখে নিতে হবে বে ছিদ্রের প্রাক্তের চারদিকের চ্যামকার সমান
 আছে।
- वाराञ्चन स्टम ध्याकिनेन न्यादक स्टन ।

৮) সেন্টারিং-এর পরে ওয়ার্কপিসকে পূর্ণ টাইট দিতে হবে।

৩। ছিদ্রটি কাউন্টার বোরিকেরণ :

- ১) মেশিন চালু করতে হবে।
- ২) সঠিক গভীরতাম কাউন্টার বোরিং করতে হবে।
- প্রয়োজনমতো কাটিং ফুইড ব্যবহার করতে হবে।
- ৪) হাতে ফীড দিতে হবে এবং নিশ্চিত হতে হবে যে, কাউন্টার বোরিং টুলটি কাটছে।
- ক) বারবার ফীডিং বন্ধ করে এবং কাউন্টার বোরিং টুল ছিদ্রের বাইরে উঠিয়ে চিপ পরিষ্কার করতে হবে।
- ৬) কাউন্টার বোরিং টুল য়খন নির্ধারিত গভীরতায় পৌছে তখন সতর্কভাবে খেয়াল রাখতে হবে।
- ৭) ছিদ্র থেকে কাউন্টার বোরিং টুল অপসারণকরণ :
- ৮) মেশিন বন্ধ করতে হবে।
- ৯) কাউন্টার বোরিং-এর গভীরতা ও শীট পরীক্ষা করতে হবে।

একাধিক ছিদ্র কাউন্টার সিংক–এর ক্ষেত্রে কাউন্টার বোরিং ভেপথ সেটিংকরণ :

विवाः के.द

- ১০)স্পিডল স্থির রেখে কাউন্টার বোরিং টুলটি ছিদ্রে না থামা পর্যন্ত নিমুমুখে কীড দিতে হবে।
- ১১) ফিক্সড মেশিন স্টপ সেটিং করতে হবে।
- ১২) কাউন্টার বোরিং টুলটি কাউন্টার বোরিং করা পৃষ্ঠে চেপে ধরে রাখতে হবে।

সকল ছিদ্রকে কাউন্টার বোরিংকরণ:

- ওয়ার্কপিসকে পূর্বের নিয়মে সেন্টারিং করতে হবে ও কাউন্টার বোরিং করতে হবে। ওয়ার্কপিসকে অপসারণকরণ:
- ওয়ার্কপিস ক্ল্যাম্পিংমুক্ত করতে হবে।
- ৩) ওয়ার্কপিস পরিষ্কার করতে হবে।

কাউন্টার বোরিং অপসারণকরণ:

- 8) কাউন্টার বোরিং টুলটি খুলে নিতে হবে।
- ক) নিশ্চিত হতে হবে যেন কাউন্টার বোরিং টুলটি হোলিং ডিভাইস বা দ্রিলিং মেশিন টেবিলের উপর না পড়ে।
- ৬) কাউন্টার বোরিং টুলটি ও মেশিন পরিষ্কার করতে হবে

৪। সতর্কতা ও নিরীক্ষাণ :

কাউন্টার বোরিং টুল নির্বাচনে সতর্কতা অবলম্বন করতে হবে।
ওয়ার্কপিস ক্ল্যাম্পিং সঠিক হতে হবে।
ওয়ার্কপিস সেন্টারিং–এ বিশেষ সতর্কতা প্রয়োজন।
কাউন্টার বোরকে যথাযথভাবে পরিষ্কার করতে হবে।
কাউন্টার বোর স্টপ বোল্টে পৌছাবার প্রাক্কালে বিশেষ সতর্কতার প্রয়োজন

দশম অখ্যার

একপ্ৰান্ত বন্ধ ছিদ্ৰে ট্যাপ বারা প্রেড কাটা

১। ট্যাল বাছাইকরণ :

- ১) এক থাৰ বন্ধ ছিল্ল (Blind hole)—এ প্ৰেড কাৰ্টার জন্য সেইটে বা লোকা ট্যাপ ব্যবহৃত হয়, বার দুটিতে একটি সেট হয়।
- অথবা ট্যাপার ট্যাপ ব্যবহৃত হর বা তিনটি মিলে লেট হর।

(to C : Pag

২। ট্যাপ রেকে ট্যাপ অটকলো:

১) ট্যাপ রেঞ্চের ডান দিকের হাতল মড়ির কাঁটার উন্টা দিকে বৃরিরে এর 'অ' টিলা করতে হবে।

विवा: 30.2

নির্ধারিত পরিমালের ট্যাপটি (ট্যাপ নং-১) রেঞ্জের 'জ' সমূহের ভেজর স্থাপন করতে হবে।

हिना: 30.0

৩) ট্যাপ রেঞ্জের হাজ্য বড়ির কটিার দিকে বুরিরে ট্যাপটি মজবুজভাবে 'জ' সমূহের ভেডর অটিকাজে रदा।

ও। গুৱাৰ্কীপস আটকালো :

বেঞ্চ ভাইসের 'জ' ওয়ার্কশিসের সমান্তরাল এবং ছিদ্রটি ১০° উন্থা অবস্থার রেখে দৃঢ়ভাবে বাঁধতে হবে।

৪। ট্যাপ জ্ঞিলথে স্থাপন :

কিন্দিত চাপ প্রয়োগ করে ধীরে ধীরে ঘড়ির কাঁটার দিকে হাজলসহ ট্যাপ রেকটি মুরাতে হবে। আনুসানিক একটি পূর্ণ আবর্তনের পর চাগমুক্ত অবছায় প্রটাকে আনুমানিক অর্থেক আবর্তন পরিমাণ উক্টো দিকে ফুরাতে হৰে। একই পদ্ধতিতে ট্যাপটি সম্পূৰ্ণ দৈৰ্ঘ্য ছিদ্ৰপথে প্ৰবেশ কৰাতে হবে। প্ৰয়োজন বোধে কাটিং অয়েল ৰ্যবহার করতে হবে।

Be : 30.0

৫। खंख काँगे जन्नसुकत्रनं :

ট্যাপার ট্যাপটি চালনা করা সম্পন্ন হলে গুটা খুলে পর্বায়ক্তমে প্লাগ ও বটমিং ট্যাপ দুটি ট্যাপ রেক্ষে লাগিয়ে প্যাঁচকাটা সম্পন্ন করতে হবে।

क्रिकः ३०.७

৬। তেল ব্যবহার নিষ্ঠিত করতে হবে।

- ১) মাঝে মাঝে ৯০° উল্লয় অবস্থানে ট্যাপটি আছে কিনা তা ট্রাই কোয়ার—এর সাহায্যে পরীক্ষা করতে হবে।
- ২) ট্যাপটি সামনের দিকে এক পাক ঘূরিয়ে পিছনে ফিরিয়ে আনতে হবে। যাতে ট্যাপ চিপের চাপে না পড়ে।

हिंच : 30.9

মাঝে মাঝে তেল প্ররোগ করতে হবে। এভাবে কর্ডন সম্পন্ন করতে হবে।

Bu : 30,6

একাদশ অধ্যায়

পাইপ ফিটিং

১। বন্ধপাতি ও মালামাল:

- ১) পাইপ ভাইস
- ২) এক টুকরা পাইপ
- ৩) হ্যাক'স
- ৪) পাইপ খ্রেড কাটিং ডাই
- ৫) গুয়ার ব্রাশ
- ৬) পেইন্টিং ব্রাশ
- ৭) সিলিং কম্পাউড
- b) পাইপ ফিটিং যেমন সকেট, ব্যান্ড, এলবো ইভ্যাদি।

২। গাইগ আটকানো :

टिखः ১১.১

ভাইলের স্পিন্তল ভান মোচভে ঘ্রিয়ে পাইপকে মৃদু চাপে আটকাতে হবে বা অনভ করতে হবে।
 প্রাথমিক কাট:

व्यिः ১১.२

৩০° মতো কোলে সম্মুখ দিকে ঢালু করে পাইপের চিহ্নিত অংশের উপর হ্যাক 'স' স্থাপন করতে
হবে। এ অবস্থার শুধুমাত্র সামনের দিকে জ বার চালনা করতে হবে।

৩। পাইপ কটা সম্পন্নকরণ :

এবার হ্যাক'সকে অনুভূমিক অবস্থায় রেখে প্রতি মিনিটে ৪০-৫০ বার এবং পরিমিত চাপে চাপনা করতে হবে।

छिव : ১১.७

ভান হাতকে হ্যাক'স চালনার জন্য ব্যবহার করতে হবে এবং বাঁ হাতের সাহাব্যে হ্যাক'স ক্রেমকে লম্বভাবে ধরে রাখতে হবে যেন কর্তন কোনো দিকে বাঁকা কিংবা মোচড় খেতে না পারে।

৪। গাইপের প্রেড কাটিং সেটআগ:

- জ্যাডজাস্টমেন্ট লিভার সাহায্যে ঘ্রিয়ে ওটার উপরের চিহ্নিত পরিমাপক সংখ্যাসমূহের প্রয়োজনীয় সংখ্যাটিকে প্রেটের চিহ্নিত দাগের সাথে মিলাতে হবে।
- ২) ওভার সাইজ প্যাঁচ কাটতে হলে প্রয়োজনীয় মাপের সংখ্যাটিকে সামান্য আপে রেখে, আভার সাইজের ক্ষেত্রে মার্কের পরে রেখে সেট করতে হবে।

৫। পাইপের প্যাঁচ কাটা:

- ভাইসের স্পিডল হ্যান্ডেল ঘুরিয়ে পাইপকে আটকে রাখতে হবে।
- त्रमक-त्रन्गितिः शाहेश-এর 'ङ' সমূহকে काँक করতে হবে।
- ৩) এক হাতে ভাইস্ট্যাকের হ্যান্ডেল ধরতে হবে। অন্য হাতের সাহায্যে ঠেলে ভাইকে সঠিকভাবে পাইপের প্রান্তে লাগাতে হবে।
- ৪) অ্যাডজাস্টিং লিভারের সাহায্যে সেলফ সেন্টারিং পাইপ অ্যাডজাস্ট করতে হবে। যেন স্ট্যাক সঠিকভাবে প্রাইড করতে পারে।

ও। গ্যাঁচ কর্তন সম্পল্লকরণ :

- পাইপের যে অংশের প্টাঁচ কাটতে হবে সেই অংশকে কাটিং তেলে সিক্ত করতে হবে।
- ২) পাইপের মেরুরেখার সাথে হ্যান্ডেল্বয়ের লম্বিক অবস্থান সঠিক রেখে এবং ডাইস্টককে ঠেলে রাখার জন্য ঘড়ির কাঁটার অনুকূলে হ্যান্ডেল ঘোরাতে হবে।
- যখন ডাইয়ের প্যাঁচ পাইপকে পুরোপুরি ধরেছে বলে মনে হবে তখন পাইপ বন্ধ করতে হবে।
- ৪) পরিমিত দৈঘ্য পর্যন্ত পর্যাচ কাটা হলে ঘড়ির কাঁটার আবর্তনে উল্টা দিকে ঘ্রিয়ে ডাইস্টক সতর্কতার সঙ্গে অপসারণ করতে হবে।
- ৫) ভাইস্টক অপসারণের পর শক্ত ওয়্যার ব্রাশের সাহায্যে প্যাচসমূহ পরিয়ার করতে হবে।

हिन्दः ১১.७

विज्ञः ১১.९

৭। পাইপের প্যাঁচ সংযোজনের উপযোগীকরণ :

১) শক্ত ওয়্যার ব্রাশের সাহায়্যে প্যাচের মরিচা অথবা যে কোনো প্রকার অটকানো মরলা দ্র করতে হবে।

किवाः ১১.৮

২) পাঁট কৰাৰা সূতা অকালোৱ পৰ উপৰেৰ চিত্ৰে প্ৰদৰ্শিত ধরণ অনুসাৰে সিলিং ক'পাঁউজেৰ প্ৰলেগ দিতে হৰে।

বিচ্চিলে সংযোগে পাইপ সংযোজন :

৩) পাইপ প্ৰাচ্ছে কিটিলেকে সঠিকভাবে নসাকে হবে এবং ব্যক্তের সাহাবের বছনুর সন্তব এটে নিকে হবে।

But 35.2

- চ) সক্রেটর সাবে দিশল অথবা পাইশ বঙ একইভাবে বৃক্ত করতে হবে।
- e) গাইলে ইউনিয়ন সংযোগ করতে হবে।

क्याः 35.50

৬) দুটি পাইপ রেমের একটির সাহাব্যে ইউনিয়সের প্রেড এতকে বরতে হবে এবং অফটির সাহাব্যে ইউনিয়ম বিং ধরে চিত্রে প্রমর্শিত কারদায় টাইটি দিতে হবে।

চিত্র: ১১.১১

৮। কাজের সময় ও পরে পরীক্ষাকরণ:

- ১) ফিটিং সংযোজনের আগে পরীক্ষা করে দেখতে হবে ওটা সংশ্লিষ্ট প্যাঁচে সহজ্ঞভাবে ধরে কিনা, হাতের শক্তিতেই প্রথমে কয়েক প্যাঁচ সহজ্ঞেই ঘোরা উচিত।
- প্যাঁচের দৈর্ঘ্য এবং অবস্থা পরিদর্শন করতে হবে। প্যাঁচের দৈর্ঘ্য এমন হওয়া উচিত যেন সকেট-এর
 অর্ধেক অংশে এবং অন্যান্য সকল ফিটিং-এর বেলায় অভ্যন্তরীণ প্যাঁচযুক্ত সম্পূর্ণ অংশের জন্য যথেষ্ট
 হয়।
- অতিরিক্ত টাইট হওয়াতে ফিটিং-এর ক্ষয়ক্ষতি পরীক্ষা করতে হবে।
- 8) লিক পরীক্ষা করতে হবে।

ছাদশ অখ্যায়

চাবির ঘাট কর্তন

১। প্ররোজনীয় যন্ত্রপাতি :

কী-শীট রুল, ক্লাইবার, ডট, পাঞ্চ, সেন্টার পাঞ্চ, হ্যামার, ডিভাইডার, টুইস্ট ড্রিল, ক্রস-কাট চিজেল সাইড, চিজেল ভায়মন্ড পয়েন্ট চিজেল, সেফ-এজ শ্রেণির ফাইল, ট্র্যাঙ্গুলার ফাইল, ইনসাইড ক্যালিপার্স, ট্রাই-ফোয়ার ডেপখ-গেজ, স্টীল-রুল, বেঞ্চ ভাইস, ক্ল্যাম্প ড্রিল অথবা ফ্ল্যাট এন্ড রিমার, মিলিং কাটার এবং ড্রিলিং মেশিন

চিত্র: ১২.১ লেআউটকরণ

২। গুয়াকপিস প্রস্তুত প্রণালি :

প্রথমে শ্যাফটের যে প্রান্তে এবং এর যে অংশে কী-গুরে তৈরি করতে হবে, একে রং করে নিয়ে কী-শীট রুপের সাহায্যে মার্কিং করতে হবে। পরে, কী-গুরেকে যত দীর্ঘ করা প্রয়োজন শ্যাফটের সমতল প্রান্ত হতে ঐ দূরত্বে কী-গুরে কেন্দ্র রেখার উপর বিন্দু-চিহ্ন দিতে হবে। পরে ডিছাইডার ঘারা এ বিন্দু-চিহ্নকে কেন্দ্র এবং কী গুরেব প্রশন্ত মাপের অর্থকের ব্যাসার্থ নিয়ে একটি বৃত্ত আঁকতে হবে এবং এর কেন্দ্রকে সেন্টার পাঞ্চ ঘারা গভীর করতে হবে। এবার এ বৃত্তটি যে ডায়ামিটার মাপের সেই মাপের একটি দ্রিল নিয়ে এর কেন্দ্রে এমনভাবে ছিন্ন করতে হবে যাতে এর গভীরতা কী-গ্রের গভীরতার প্রায় সমান হয়, অধিক না হয়।

চিত্র: ১২.২ ওয়ার্কপিস প্রস্তুতকরণ

চিত্র: ১২.৩ মার্কিংকরন

৩। প্রয়ার্কপিস আটকানো:

গোলাকার ধ্যার্কশিস আটকানোর অ্যাটাচমেন্ট বিশিষ্ট ভাইসে শ্যাঞ্চটটি দৃঢ়ভাবে আটকাতে হবে।

চিত্র: ১২.৪ ওয়ার্কপিস আটকানো

৪। কাটিং সম্পন্নকরণ:

একটি ক্রস-কাট চিজেন বারা প্রান্তের দিক থেকে ড্রিন করা ছিদ্রের অভিমুখে প্রতিবার অনুমান ২ মি.মি. পরিমাণ কেটে নালি তৈরি করেত ত্বে। নালিটির প্রস্থ এমন হওয়া প্রয়োজন যাকে ডট পাঞ্চ চিহ্নের একটি অর্থ কর হয়ে অবশিষ্ট অর্থ শ্যাফটের উপর থাকে।

চিত্র: ১২.৫ কাটিং সম্পন্নকরণ

ব্যবহারিক ৩৬১

এখন কী ওয়েব প্রস্থকে যে মাপের করতে হবে ঐ মাপ স্টিল রুল থেকে একটি ইনসাইড ক্যালিপার্স তুলে নিয়ে এ দ্বারা কী-ওয়ের প্রস্থ মাপ নালির ঠিক হয়েছে কিনা তা পরীক্ষা করতে হবে। এবার একটি সাইড চিজেল দ্বারা এ পাশে দৃটিকে কেটে মসৃণ করতে হবে। একটি সেফ এজ শ্রেণির ফাইলের সাহায্যে নালির তলদেশকে সমতল করতে হবে এবং ট্রাই-স্কোয়ার দ্বারা এ সমতলতা পরীক্ষা করতে হবে কী-ওয়েকে যে মাপের গভীর করা প্রয়োজন ঐ মাপ একটি ডেপথ গেজ এ তুলে নিয়ে ওটা দ্বারা গভীরতা মাপ ঠিক হয়েছে কিনা। শেষে ট্রাঙ্গুলার ফাইল এবং ডায়মভ পায়েন্ট চিজেল দ্বারা নিচের দিকের কোণ দৃটিকে তীক্ষ্ণ করে সমকোণী করতে হবে।

৫। नित्रीक्वन :

চাবির ঘাটে বার ঢুকিয়ে পরীক্ষা করে দেখতে হবে কতটুকু সঠিক হয়েছে।

এয়োদশ অধ্যায়

চাবি তৈরিকরণ

১। যন্ত্রপাতি ও সাজসরঞ্জম:

- ১) হ্যাক'স
- ২) ভার্নিয়ার ক্যালিপাস
- ৩) মার্কিং কালার
- ৪) ফাইল
- ৫) বেঞ্চ ভাইস
- ৬) সেন্টার পাঞ্চ
- ৭) ট্রাই কোয়ার
- ৮) হাতুড়ি
- ৯) কাপড়ের টুকরা
- ১০) অয়েল ক্যান
- ১১) মাইল্ড স্টিল প্লেট

২। ধাতু নির্বাচন :

চাবির ধাতু খুব বেশি শক্ত হলে শ্যাফট কিংবা পুলি ক্ষতিগ্রস্ত হতে পারে। এজন্য চাবির ধাতু হিসেবে মাইল্ড স্টিলকে নিরূপণ করা হয়ে থাকে।

৩। লে-আউট ও মার্কিং:

- ১) মার্কিং কালার (রং) দ্বারা ওয়ার্কপিসের তলে প্রলেপ দিতে হবে।
- ২) ট্রাই-স্কোয়ার ও ক্রাইবারের সাহায্যে ওয়ার্কপিসের তলে সোজা কিনারার সাথে সমকোণ প্রয়োজনীয় দাগ দিতে হবে।
- পাঞ্চ খাড়া করে ধরতে হবে এবং হাতুড়ি দ্বারা মাথায় আঘাত করতে হবে।
 চাবি তৈরি :

চিত্র: ১৩.১ সে আউট ও মার্কিং

৪। গুয়াকিপিস ক্ল্যাম্পিং :

১) ভাইসের ব্লু তৈলাক্ত করতে হবে। ভাইসের 'জ' খলি প্রয়োজনানুযায়ী ঢিলা করতে হবে।

চিত্র: ১৩.২ ওয়ার্কপিস ক্র্যাম্পিং

২) ভাইসের 'ছ'-এর চাপে ওয়ার্কপিসের গায়ে যাতে দাগ না পড়ে সেজন্য 'ছ' গুলোর ভেতর দিকে নরম দুটি ধাতুর পাত বসাতে হবে।

চিত্রঃ ১৩.৩ নরম দুটি ধাতুর পাত বসানো

৫। চাবির ঘাট কর্তন সম্পন্নকরণ :

- ১) মার্কিং অনুযায়ী হ্যাক'স দিয়ে কর্তন আরম্ভ করতে হবে
- ২) কিছুক্রণ পর পর কাটিং ডেল প্রয়োগ করতে হবে। এরূপে কর্তন সম্পন্ন করতে হবে।
- ত) পুনরায় ভাইসের মধ্যে ওয়াকঁপিসকে অনুভূমিক অবস্থার ধরতে হবে এবং হাতল যুরিয়ে 'জ' পূর্ণভাবে টাইট দিতে হবে।

চিত্র: ১৩.৪ চাবির ঘাট কর্তন

চিত্র: ১৩.৫ 'জ' পূর্বভাবে টাইটকরণ

চাবির তল সমূহ সঠিকভাবে করতে হবে। যাতে চাবির আকৃতি সর্বত্ত সমরূপ হয়।
চাবির উর্ধ্বাংশে পার্শ্বেদশকে থাপে থাপে ফাইলিং করতে হবে। যেন চাবির ঘাটে কিট হয়, তৎসহ মার্কিং পদার্থ
ব্যবহার করে উচু বিন্দুসমূহ (High Spots) দেখে নিতে হবে।
৬। সতর্কতা:

- চাবির ধাতু নিরূপণ সঠিক হতে হবে।
- ২) চাবির আকৃতি সমন্ত্রপ করতে হবে।
- श्वीग्रक्तम कार्टेलिश करत्र कार्टेनांन यिनिनिश निर्ण द्व ।

চতুর্দশ অধ্যার প্যাডেস্টাল গ্রাইন্ডারে গ্রাইন্ডিংকরণ

চিত্র: ১৪.১ বেঞ্চ/প্যাডেস্টাল গ্রাইভার

- ক) বেঋ/প্যাডেস্টাল গ্রাইভারে টুল গ্রাইভিং, চিজেল গ্রাইভিং ও সারফেস গ্রাইভিং (সমতল করার জন্য) নিমুলিখিত যন্ত্রপাতি ও সাজসরঞ্জাম প্রয়োজন :
- ১। প্যাডেস্টাল গ্রাইভার
- ২। সেকটি গগলস
- ৩। বিভেল প্রটেকটর
- ৪। হ্যান্ড প্রোভস
- ৫। ওতার অল
- ৬। ট্রাইক্যার
- ৭। গেৰ
- ৮। কুলেন্ট প্রবৃত্তি

খ) কর্মধারা :

টুল গ্রাইন্ডিং করতে অবশ্য করণীয় :

- নিরাপত্তামৃশক ব্যবস্থাদি গৃহীত হয়েছে কিনা।
- ২) মেশিনের সেকটি ডিভাইসভলো, বেমন— ছইল গার্ড, আইশিন্ড ইত্যাদি সঠিকভাবে লাগানো আছে কিনা তা নিশ্চিত হতে হবে।
- ৩) ব্যক্তিগত নিরাপন্তার ক্ষেত্রে সেকটি গগলস, ওন্তারঅল ইত্যাদি পরা হয়েছে কিনা তা নিশ্চিত হতে হবে।
- 8) ওয়ার্ক রেস্ট ও হুইল ফেসের মধ্যবর্তী ফাঁক প্রায় ৩ মি.মি. রাখতে হবে।
- গ) টুল গ্রাইন্ডিং :
- ১) লেদ টুল বিটের বিভিন্ন অ্যান্দল এবং সেগুলোর মান অবহিত হওয়া নিভান্ত প্রয়োজন । নিম্নে অ্যান্দল দেখানো হলো।

ওয়ার্কপিস ম্যাটেরিয়া ল	ফ্রন্ট ক্লিয়ারেন্স অ্যান্সল ডিমী	ফ্রন্ট এজ কাটিং অ্যাঙ্গল ডিগ্রী	সাইড ক্লিয়ারেন্স অ্যান্সল ডিগ্রী	সাইড কাটিং এজ অ্যাঙ্গল ডিগ্ৰী	সাইড রেক অ্যাঙ্গল ডিগ্রী	টপ/ব্যাক রেক অ্যাঙ্গল ডিগ্রী
স্টিল, নরম, স্টিল শক্ত কাস্ট আয়রন, নরম কাস্ট আয়রন, শক্ত ব্রাশ, ব্রোঞ্জ কপার অ্যালুমিনিয়াম	b-24	SG-90	6-20	20-50	৬-১৫	20-24
	p-7G	30-90	6-20	20-20	&-> @	20-50
	P-7G	>@-9c	6-20	20-20	৬-১৫	0-6
	b-76	Se-90	&- \$0	٥٥-٥٥	७- ১৫	0-9-
	p-76	\$6-90	%-30	30-20	৬-১৫	0-50
	b-3@	26-26	6-20	٥٥-২٥	৬-১৫	20-76
	b-30	\$6-00	6-30	30-20	७- ১৫	30-00

- ৩) অতঃপর গ্রাইভার চালু করতে হবে।
- 8) পরীক্ষা করতে হবে হুইল চিত্র অনুযায়ী নিচের দিকে ঘুরছে কিনা।
- ক্রণ্ট ক্লিয়ারেন্স অ্যাঙ্গল গ্রাইন্ডিং করা জন্য টুল বিটকে দৃঢ়ভাবে চিত্রে প্রদর্শিত কৌশলে হুইলে ধরতে হবে।
- ৬) স্থইল ফেস যাতে সমভাবে ক্ষয়প্রাপ্ত হয় সেজন্য পূর্ণ ফেস বরাবর টুলবিটকে চলাচল করাতে হবে।
- ৭) টুলবিটকে মাঝে মাঝে ও ধীরে ধীরে পানিতে ভুবিয়ে ঠাগু করতে হবে। অধিক পরিমাণে উত্তপ্ত টুলবিটকে দ্রুত পানিতে ভুবালে টুল প্রান্তে সৃক্ষ ফাটলের সৃষ্টি হয়। এ ধরনের ফাটল টুলের জন্য ক্ষতিকর।
- ৮) অতঃপর ফ্রন্ট কাটিং এজ অ্যাঙ্গল গ্রাইন্ডিং করতে হবে।
- ৯) তারপর সাইড ক্লিয়ারেক অ্যাক্ল গ্রাইভিং করতে হবে।
- ১০) তারপর সাইড রেক অ্যাঙ্গল গ্রাইভিং করতে হবে।
- ১১) শেষে সাইড রেক অ্যাঙ্গল গ্রাইন্ডিং করতে হবে।
- ১২) অতঃপর বিভেল প্রটেকটর দ্বারা টুলের কোণগুলো পরীক্ষা করে দেখতে হবে।
- ১৩) কাজশেষে মেশিনের সুইচ অবশ্যই বন্ধ করতে হবে।

ঘ) চিজেল গ্রাইন্ডিং:

উপরোক্ত কর্মধারা অনুসরণপূর্বক অতঃপর চিজেলের অ্যাঙ্গেল অনুযায়ী গ্রাইন্ডিং করতে হবে। তবে লক্ষ্য রাখতে হবে যেন কাটিং এজ চিজেলের মাঝখানে থাকে। এতে কাটিং এজের দৈর্ঘ্য সর্ববৃহৎ হবে।

- ৰাটালি বা ছেনিকে প্ৰাইজিং করার অর্থ হচ্ছে কাটিং প্রজ (Cutting Edge) নির্দিষ্ট কোনে প্রস্তুত করা।
- এইভিং-এর সমর ছেনি অবশাই টুল রেস্ট/ওরার্ক রেস্টের উপর ভর নিরে চিত্র অমুবারী দুই বাতে
 দ্যাতাবে ধরতে হবে।
- প্রাইন্ডিং করার সময় সঠিক কাটিং প্রজ/আছল সঠিক হলো কিনা তা পেজের দারা পরীকা করতে
 হবে।
- কালশেরে নেশিলের সুইচ অবশাই বন্ধ করতে হবে।

চিত্ৰ: ১৪.০৩ প্যাক্তেন্টাল প্ৰাইভাৱে চিজেল গ্ৰাইভিংকরণ

%) সারকেন এইডিং (সমডলকরণ) :

উপরোক্ত কর্মধারা অনুসরণপূর্বক অভ্যাপর প্রথমে বেশি উঁচু ছানসমূহ প্রতিতিং করে পরে সম্পূর্ণ সারক্ষেস ক্রিনিশন্ত করতে হবে। অভ্যাপর ট্রাইক্যার দিয়ে সমতল পরীক্ষা করতে হবে।

গঞ্চদশ অধ্যায়

গ্রাইভিং হুইল দ্রেসিংকরণ

- ক) যন্ত্রপাতি ও সাভসরজম:
- ১। যম্রপাতি ও সাজগ্রাইভার
- ২। হুইল ড্রেসার
- ৩। ট্রাইক্সার
- ৪। সেফটি গগলস
- ে। হাভ গ্লোভস
- ৬ ৷ওভার অল
- ৭। কুলেন্ট প্রভৃতি।
- খ) বেঞ্চ/ প্যাডেস্টাল গ্রাইন্ডারে ভ্ইল দ্রেসিং করতে নিশ্চিত হতে হবে যে-
 - ১) নিরাপপ্তামূলক ব্যবস্থাদি গৃহীত হয়েছে কিনা।
 - ২) মেশিনের সেফটি ডিভাইসগুলো, যেমন-হুইল গার্ড, আই শিন্ত ইত্যাদি সঠিকভাবে লাগানো আছে কিনা তা নিশ্চিত হতে হবে।
 - ৩) ব্যক্তিগত নিরাপন্তার ক্ষেত্রে সেফটি গগল, গুভারঅল ইত্যাদি পরা হয়েছে কিনা তা নিশ্চিত হতে হবে।
 - ছেসারের ভূইলগুলো চিত্র অনুযায়ী নিচের দিকে ঘুরছে কিনা।

গ) কর্মধারা :

- প্যাডেস্টাল গ্রাইন্ডার করতে হবে।
- ড্রেসারের ছইলগুলো চিত্র অনুযায়ী নিচের দিকে সুরা নিশ্চিত করতে হবে।
- ৩) ওয়ার্করেস্টকে অবলম্বন করে ছইল দ্রেসারকে দৃঢ়ভাবে ছইল ক্ষেসে ধরতে হবে।

চিত্র: ১৫.১ প্যাডেস্টাল গ্রাইন্ডারে হুইল ড্রেসিংকরণ

- 8) ছইল-এর পূর্ণ ফেন বরাবর ড্রেসার চালনা করতে হবে।
- প্রয়োজনে মেশিন থামিয়ে হইলের সমতা পরীক্ষা করতে হবে।
- ৬) সমভাবে ড্রেসিং সম্পন্ন করতে হবে।

চিত্র: ১৫.২ সমভাবে দ্রেসিংকরণ

 ৭) হইলের সমতা পরীক্ষার জন্য একটি লোহার বার প্রাইণ্ডিং করে দেখতে হবে যে, প্রটা সমভাবে প্রাইণ্ডিং হয়েছে কিনা।

জব তালিকা

- ১। সাইন বার তৈরিকরণ।
- ২। সি-ক্ল্যাম্প তৈরিকরণ।
- ৩। হ্যান্ড ড্রিলের সাহয্যে ছিদ্রকরণ অনুশীলন।
- ৪। ওয়্যার গেজ তৈরিকরণ।
- এমএস বার দ্বারা জীব হেড চাবি তৈরিকরণ।
- ৬। বুশ ও বিয়ারিং সার্ভিসিংকরণ।
- ৭। চাবির ঘাট তৈরিকরণ।
- ৮। পাইপ ফিটিং অনুশীলনকরণ।
- ৯। প্রদত্ত দ্রয়িং অনুযায়ী বিভিন্ন জয়েন্ট ব্যবহার করে পাইপ ফিটিং সম্পন্নকরণ।
- ১০। গ্রাইন্ডিং হুইল ড্রেসিংকরণ।
- ১১। প্রদত্ত নমুনা মোতাবেক টুল বিট গ্রাইভিংকরণ।
- ১২। ড্রিল মেশিনে কাউন্টার বোরিংকরণ।
- ১৩। হ্যান্ড রিমিং অনুশীলনকরণ।
- ১৪। এক প্রান্ত বদ্ধ ছিদ্রে ট্যাপ দ্বারা প্রেড কাটা।
- ১৫। ভী-ব্লক ব্যবহার করে এমএস রড ছিলিং করা।
- ১৬। আঙ্গেল প্লেট ব্যবহার করে ফ্র্যাট বার ড্রিলিং করা।
- ১৭। রেডিয়াল ড্রিল মেশিনের সাহায্যে প্রদন্ত ড্রইং অনুযায়ী প্লেটের বিভিন্ন স্থানে ড্রিলকরণ।

২০১৮ শিক্ষাবর্ষ জেনারেল মেকানিক্স-১

শিক্ষা নিয়ে গড়ব দেশ শেখ হাসিনার বাংলাদেশ

কারিগরি শিক্ষা আত্মনির্ভরশীলতার চাবিকাঠি

নারী ও শিশু নির্যাতনের ঘটনা ঘটলে প্রতিকার ও প্রতিরোধের জন্য ন্যাশনাল হেল্পলাইন সেন্টারে ১০৯ নম্বর-এ (টোল ফ্রি, ২৪ ঘন্টা সার্ভিস) ফোন করুন

২০১০ শিক্ষাবর্ষ থেকে গণপ্রজাতন্ত্রী বাংলাদেশ সরকার কর্তৃক বিনামূল্যে বিতরণের জন্য