HAI713I Logique, calculabilité, complexité Cours et TD de Bruno DURAND Exemple de correction (Ch. Retoré)

TD 3

Exercice 3.1

On considère $A = \{x | \forall y [x | y] \downarrow \}$ — en d'autres termes A est l'ensemble des (codes de) programmes qui convergent pour chaque entrée.

3.1(a) Montrer que A n'est pas récursif.

On utilise le théorème de Rice. La propriété $\forall y[x|y] \downarrow$ est une propriété de la fonction $[x|\cdot]: z \mapsto [x|z]:$ le domaine de $[x|\cdot]$ est N. D'après le théorème de Rice il suffit que A ne soit ni \mathbb{N} ni \emptyset pour A ne soit pas récursif. Comme (le code de) la fonction $Id: x \mapsto x$ appartient à A et que (le code de) la fonction $\bot: x \mapsto \bot$ n'appartient pas à A, le théorème de Rice permet d'affirmer que A n'est pas récursif.

3.1(b) Montrer que
$$K < A \ (K = \{x | [x|x] \downarrow \})$$

Il faut trouver une fonction calculable totale telle que :

 $x \in K$ si et seulement si $f(x) \in A$.

Définition de la fonction de réduction

Considérons le programme *a* :

$$a\langle x,z\rangle$$
: if $[x|x]\downarrow$ then z

La fonction $S_1^1\langle a,x\rangle$ (a est déjà fixé, et de plus on fixe x) définit une fonction :

— soit
$$S_1^1\langle ,ax\rangle = Id: z\mapsto z$$
 quand $[x|x]\downarrow$
— soit $S_1^1\langle a,x\rangle = \underline{\bot}: z\mapsto \bot$ quand $[x|x]\uparrow$

— soit
$$S_1^1\langle a, x \rangle = \underline{\perp} : z \mapsto \bot \text{ quand } [x|x] \uparrow$$

On propose la réduction $f: x \mapsto S_1^1 \langle a, x \rangle - S_1^1 \langle a, x \rangle$ est une fonction!

La réduction est une fonction calculable totale

La fonction $x\mapsto S^1_1\langle a,x\rangle$ est calculable totale qui associe le code d'un programme à savoir $S_1^1\langle a,x\rangle$ — attention! cela ne veut pas dire que $S_1^1\langle a,x\rangle$ soit un programme total!

La réduction envoie K **dans** A Si $x \in K$ alors $S_1^1 \langle a, x \rangle \in A$ car $S_1^1 \langle a, x \rangle = Id$.

Lorsqu'un réduit est dans A, il provient de K

Si $S_1^1\langle a,x\rangle\in A$ alors $S_1^1\langle a,x\rangle=Id$ (on a le choix entre Id et $\underline{\perp}\not\in A$) et c'est donc que $[x|x] \downarrow \text{ c.-à-d. } x \in K$

3.1(c) Montrer que $K < \bar{A} = \{x | \exists y [x|y] \uparrow \}$

On procède un peu comme précédemment, mais cette fois on souhaite que f(x) ne converge pas partout quand $[x|x] \downarrow$.

Définition de la réduction

Soit le programme *b* défini comme suit :

 $b\langle x,z\rangle$: if step(x,x,z)=0 then 0 else \perp .

Alors $S_1^1\langle b, x\rangle$ est le programme suivant :

- soit $[x|x] \downarrow (x \in K)$ et c'est la fonction $z \mapsto z$ tant que z < t (t: nombre de pas pour que $x|x] \downarrow$) puis \bot dès que $z \ge t$ donc $S_1^1 \langle b, x \rangle \not\in A$ quand $x \in K$
- soit $[x|x] \uparrow (x \notin K)$ et c'est la fonction identité $z \mapsto z$ donc $S_1^1 \langle b, x \rangle \in A$ quand $x \notin K$

La réduction est une fonction calculable totale

La fonction $x \mapsto S_1^1 \langle b, x \rangle$ est calculable totale (la fonction de $x \, x \mapsto S_1^1 \langle b, x \rangle$ est bien définie, même si la fonction de $z \mapsto S_1^1 \langle b, x \rangle z$ peut valoir \bot pour certaines valeurs de z).

La réduction envoie K dans \bar{A} et \bar{K} dans $A = \bar{\bar{A}}$

Les deux items ci-dessus montrent que si $x \in K$ alors $S_1^1 \langle b, x \rangle \in \bar{A}$ et si $x \notin K$ alors $S_1^1 \langle b, x \rangle \notin \bar{A}$, on a donc bien $x \in K$ si et seulement si $S_1^1 \langle b, x \rangle \in \bar{A}$.

3.1(d) En déduire que ni A ni \bar{A} n'est énumérable.

On a vu dans les question précédente que K < A et $K < \overline{A}$.

Comme vu en cours, M < N ssi $\bar{M} < \bar{N}$ (ce n'est pas difficile à vérifier avec la définition de <, il suffit de prendre le même f) on a donc aussi $\bar{K} < \bar{A}$ (*) et $\bar{K} < A$ (**).

D'après les propriétés de <, si \bar{A} était énumérable, \bar{K} le serait aussi d'après (*) et si A était énumérable \bar{K} le serait aussi d'après (**).

Comme \bar{K} n'est pas énumérable (sinon K serait récursif) ni \bar{A} ni A ne sont énumérables.