Harmonic Analysis

Aakash Jog

2015-16

Contents

1	Lecturer Information	3
2	Required Reading	3
3	Additional Reading	3
Ι	Basic Definitions and Theorems	4
1	Sequences and Series	4
2	Periodic Functions	4
3	Odd and Even Functions	5
II	Introduction to Fourier Series	6
1	Real Fourier Series	6

© (§ (§)

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.

2 Complex Fourier Series																	8		
	2.1	Bessel's Inequality																	G

1 Lecturer Information

Barak Sober

Office: Shenkar Physics 201 E-mail: barakino@gmail.com Telephone: +972 3-640-6024

2 Required Reading

1. Folland, G.B.: Fourier Analysis and its applications, Wadsworth & Brooks/Cole mathematics series, 1992

3 Additional Reading

1. Katznelson, Yitzhak. An introduction to Harmonic analysis. Cambridge University Press, 2004.

Part I

Basic Definitions and Theorems

1 Sequences and Series

Definition 1 (Convergent series). The series $\sum_{n=0}^{\infty} a_n$ is said to converge if the sequence of partial sums $S_N = \sum_{n=0}^{N} a_n$ converges to a finite limit.

Definition 2 (Pointwise convergence of sequence of functions). Let $D \subseteq \mathbb{R}$, and $\{f_n(x): D \to \mathbb{R}\}$ be a sequence of functions. $f_n(x)$ is said to converge pointwise, to a limit function f(x) on D, if $\forall \varepsilon > 0$, $\forall x \in D$, $\exists N \in \mathbb{N}$, such that $\forall n > N$, $|f_n(x) - f(x)| < \varepsilon$.

Definition 3 (Uniform convergence of sequence of functions). Let $D \subseteq \mathbb{R}$, and $\{f_n(x): D \to \mathbb{R}\}$ be a sequence of functions. $f_n(x)$ is said to converge uniformly to f(x) on D_i if $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$, such that, $\forall n > N$, $\forall x \in D$, $|f_n(x) - f(x)| < \varepsilon$.

Theorem 1. If $\{f_n(x)\}_{n=1}^{\infty}$ are continuous functions, and $f_n(x) \xrightarrow{U} f(x)$, then f(x) is also continuous.

Theorem 2. If a sequence of functions converges pointwise as well as uniformly, then the limit function must be the same.

Theorem 3 (Weierstrass M-test). If $|u_k(x)| \leq c_k$ on D for $k \in \{1, 2, 3, ...\}$ and the numerical series $\sum_{k=1}^{\infty} c_k$ converges, then the series of functions $\sum_{k=1}^{\infty} u_k(x)$ converges uniformly on D.

2 Periodic Functions

Definition 4 (Periodic functions). A function $f : \mathbb{R} \to \mathbb{R}$ is said to be periodic if $\exists 0 < L \in \mathbb{R}$, such that $\forall x \in \mathbb{R}$,

$$f(x) = f(x+L)$$

If there exists a minimum L, it is called L^* , the fundamental period.

3 Odd and Even Functions

Definition 5 (Odd functions). A function is said to be odd if f(-x) = -f(x).

Odd functions are symmeteric about the origin.

Definition 6 (Even functions). A function is said to be even if f(-x) = f(x).

Odd functions are symmeteric about the y-axis.

Theorem 4. If h(x) is odd,

$$\int_{-L}^{L} h(x) \, \mathrm{d}x = 0$$

Part II

Introduction to Fourier Series

1 Real Fourier Series

Definition 7. Let $f: [-L, L] \to \mathbb{R}$, where L > 0. If $\forall x \in [-L, L]$, then

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi}{L}x\right) + b_n \sin\left(\frac{n\pi}{L}x\right) \right)$$

Theorem 5. Let L > 0, $m \in \mathbb{W}$, $n \in \mathbb{W}$.

Then

$$\int_{-L}^{L} \cos\left(\frac{m\pi}{L}x\right) \cos\left(\frac{n\pi}{L}x\right) dx = \begin{cases} 0 & ; & m \neq n \\ L & ; & m = n \neq 0 \\ 2L & ; & m = n = 0 \end{cases}$$

Proof.

$$E = \int_{-L}^{L} \cos\left(\frac{m\pi}{L}x\right) \cos\left(\frac{n\pi}{L}x\right) dx$$

$$= \int_{-L}^{L} \frac{1}{2} \left(\cos\left((m+n)\frac{\pi}{L}x\right) + \cos\left((m-n)\frac{\pi}{L}x\right)\right) dx$$

$$\Rightarrow \cos(\alpha - \beta) \frac{1}{L} \cos\left((m+n)\frac{\pi}{L}x\right) + \cos\left((m-n)\frac{\pi}{L}x\right)$$

If $m \neq n$,

$$E = \frac{1}{2} \left(\frac{\sin\left((m+n)\frac{\pi}{L}x\right)}{(m+n)\frac{\pi}{L}} + \frac{\sin\left((m-n)\frac{\pi}{L}x\right)}{(m-n)\frac{\pi}{L}} \right) \Big|_{-L}^{L}$$

$$= 0$$

If $m = n \neq 0$,

$$E = \int_{-L}^{L} \frac{1}{2} \left(\cos \left(2m \frac{\pi}{L} x \right) + 1 \right) dx$$
$$= \frac{1}{2} \int_{-L}^{L} \cos \left(2m \frac{\pi}{L} x \right) dx + \frac{1}{2} x \Big|_{-L}^{L}$$
$$= L$$

If
$$m = n = 0$$
,

$$E = \int_{-L}^{L} \cos(0) \cos(0) dx$$
$$= x|_{-L}^{L}$$
$$= 2L$$

Theorem 6. Let L > 0, $m \in \mathbb{N}$, $n \in \mathbb{N}$.

Then

$$\int_{-L}^{L} \sin\left(\frac{m\pi}{L}x\right) \sin\left(\frac{n\pi}{L}x\right) dx = \begin{cases} 0 & ; & m \neq n \\ L & ; & m = n \end{cases}$$

Theorem 7. Let L > 0, $m \in \mathbb{W}$, $n \in \mathbb{W}$.

Then

$$\int_{-L}^{L} \sin\left(\frac{m\pi}{L}x\right) \cos\left(\frac{n\pi}{L}x\right) dx = 0$$

Assuming f(x) is known, and assuming that it can be integrated term by term,

$$\int_{-L}^{L} f(x) dx = \int_{-L}^{L} \frac{1}{2} a_0 dx + \sum_{n=1}^{\infty} a_n \int_{-L}^{L} \cos\left(n\frac{\pi}{L}x\right) dx + b_n \int_{-L}^{L} \sin\left(n\frac{\pi}{L}x\right) dx$$

$$\therefore \int_{-L}^{L} f(x) dx = \frac{1}{2} \int_{-L}^{L} a_0 dx$$

$$= \frac{1}{2} a_0 \cdot 2L$$

$$\therefore a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx$$

Similarly, multiplying the series with $\cos\left(m\frac{\pi}{L}x\right)$ for $m\neq 0$ and integrating,

$$a_m = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(m\frac{\pi}{L}x\right) dx$$

for $m \in \mathbb{N}$. Similarly, for $m \in \mathbb{N} \setminus \{0\}$,

$$b_m = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(m\frac{\pi}{L}x\right) dx$$

Definition 8. The expansion

$$f(x) \approx \frac{1}{2}a_0 + \sum_{i=1}^{\infty} \left(a_n \cos\left(n\frac{\pi}{L}x\right) + b_n \sin\left(n\frac{\pi}{L}x\right) \right)$$

where, for $m \in \mathbb{N}$,

$$a_m = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(m\frac{\pi}{L}x\right) dx$$

and, for $m \in \mathbb{N} \setminus \{0\}$,

$$b_m = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(m\frac{\pi}{L}x\right) dx$$

is called the Fourier Series of f(x).

2 Complex Fourier Series

By Euler's formula,

$$\cos \theta = \frac{1}{2} \left(e^{i\theta} + e^{-i\theta} \right)$$
$$\sin \theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right)$$

Therefore,

$$\frac{1}{2i} = -\frac{i}{2}$$

Therefore, substituting in the Fourier series,

$$f(x) \approx \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left(a_n \frac{1}{2} \left(e^{\frac{in\pi}{L}x} + e^{-\frac{in\pi}{L}x} \right) - b_n \frac{i}{2} \left(e^{\frac{in\pi}{L}x} - e^{-\frac{in\pi}{L}x} \right) \right)$$

$$\approx \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left(e^{\frac{in\pi}{L}x} \left(\frac{1}{2}a_n - \frac{i}{2}b_n \right) + e^{-\frac{in\pi}{L}x} \left(\frac{1}{2}a_n + \frac{i}{2}b_n \right) \right)$$

$$\approx \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left(e^{\frac{in\pi}{L}x} \left(\frac{1}{2}a_n - \frac{i}{2}b_n \right) \right) + \sum_{n=-\infty}^{1} \left(e^{\frac{in\pi}{L}x} \left(\frac{1}{2}a_n + \frac{i}{2}b_n \right) \right)$$

$$\approx \sum_{n=-\infty}^{\infty} c_n e^{\frac{in\pi}{L}x}$$

2.1 Bessel's Inequality

Definition 9 (Piecewise continuous functions). $f : \mathbb{R} \to \mathbb{R}$ is said to be piecewise continuous if, for every finite interval [a, b] there is a finite number of discontinuity points, and the one-sided limits at each of these points are also finite.

Definition 10 (Piecewise continuously differentiable functions). $f : \mathbb{R} \to \mathbb{R}$ is said to be piecewise continuously differentiable if it is piecewise continuous, and

$$\lim_{h \to 0^+} \frac{f(x+h) - f(x^+)}{h} < \infty$$

and

$$\lim_{h \to 0^-} \frac{f(x+h) - f(x^-)}{h} < \infty$$

Theorem 8 (Bessel's Inequality). Let f(x) be a piecewise continuous function defined on [-L, L]. Then

$$\frac{1}{2}a_0^2 + \sum_{n=1}^{\infty} a_n^2 + b_n^2 \le \frac{1}{L} \int_{-L}^{L} f(x)^2 dx$$