Econometrics Assignment 2a

Joost Bouten, SNR: 1265889

Twan Vissers, SNR: 1266283

Fons Strik, SNR: 1257943

Ш

a.

b.

Source	SS	df	MS	Nun	mber of ob	s =	70
				— F(1	, 68)	=	90.69
Model	44.250066	7 1	44.25006	67 Pro	ob > F	=	0.0000
Residual	33.177382	8 68	.4879026	88 R-s	squared	=	0.5715
				— Ad	R-square	ed =	0.5652
Total	77.427449	4 69	1.122136	95 Roc	ot MSE	=	.6985
	ı						
logpgp95	Coef.	Std. Err	. t	P> t	195%	Conf.	Intervall
avexpr	.5158123	.0541628	9.52	0.000	.4077	321	.6238926
cons		.3695264	12.76	0.000	3.976		5.450832
	1.713131	. 5 5 5 5 2 6 1	12.70	0.000	3.370	, , , ,	3.130032

According to the regression, avexpr positively affects logpgp95 with a coefficient value of 0.5158. This suggest that if the average protection against expropriation risk increases by a unit of 1, PPP GDP per capita in 1995 increases by 51.58%.

Countries with a relatively high GPD per capita self-select into the treatment of generally having good institutions. To illustrate: if a country has favorable geographical characteristics it is generally richer and has better institutions. A problem is that we first need to find out whether the direction of causality is indeed from the treatment to the outcome.

d.

e.

Source	SS	df	MS	Number o	of obs =	70
				- F(1, 68)	=	66.27
Model	38.2141393	1	38.2141393	Prob > E	· =	0.0000
Residual	39.2133101	68	.576666325	R-square	ed =	0.4935
				· Adj R-so	quared =	0.4861
Total	77.4274494	69	1.12213695	Root MSE	=	.75939
	•					
logpgp95	Coef.	Std. Err.	t	P> t	95% Conf.	Interval]
logem4	5483295	.0673584			6827411	4139179
_cons	10.63256	.3191752	33.31	0.000	9.99566	11.26947

From these results we can see that the coefficient of the reduced form is negative with a value of - 0.5483. This coefficient is sufficiently strong as it is significant at the 1% level. As we can see a strong effect in the reduced form, it 'looks good'.

Source	ss	df	MS	Numb	er of obs	=	70
				- F(1,	68)	=	29.80
Model	50.6746952	1	50.6746952	2 Prob	> F	=	0.0000
Residual	115.639953	68	1.70058755	5 R-sq	uared	=	0.3047
				- Adj	R-squared	l =	0.2945
Total	166.314648	69	2.41035722	2 Root	MSE	=	1.3041
avexpr	Coef.	Std. Err.	t	P> t	[95% C	Conf.	Interval]
logem4	6314299	.1156722	-5.46	0.000	86225	02	4006096
_cons	9.514584	.5481083	17.36	0.000	8.4208	51	10.60832

We find that the coefficient of the instrument ("logem4") on the independent variable ("avexpr") is negative with a value of -0.6314. The t statistic has a value of -5.46, suggesting that the instrument is sufficiently strong at the 1% level (P > |t| = 0.000). This means that the log of settler mortality is a strong predictor of the average protection against expropriation risk.

g.

Source	SS	df	MS	Number of obs	=	70
				- F(1, 68)	=	66.27
Model	38.2141398	1	38.2141398	Prob > F	=	0.0000
Residual	39.2133096	68	.576666318	R-squared	=	0.4935
				- Adj R-squared	=	0.4861
Total	77.4274494	69	1.12213695	Root MSE	=	.75939
logpgp95	Coef.	Std. Err.	t	P> t [95% C	onf.	Interval]
avexpr_hat	.8683933	.106676	8.14	0.000 .65552	47	1.081262
cons	2.370164	.714766	3.32	0.001 .94387	03	3.796457

We now find that the effect of the average protection against expropriation risk, predicted using the instrumental variable, on the dependent variable (logpgp95) is estimated to be positive at a value of 0.8684. This value again seems to be significant at the 1% level. This coefficient seems to be greater than the coefficient estimated under question (b) (0.8684>0.5158), this indicates that the effect is underestimated when using a simple OLS regression compared to an IV regression.

Source	SS	df	MS		r of obs	=	70
				- F(2, 6	•	=	19.53
Model	61.2431764	2	30.6215882			=	0.0000
Residual	105.071472	67	1.56823093	-		=	0.3682
				- Adj R-	-squared	=	0.3494
Total	166.314648	69	2.41035722	Root N	4SE	=	1.2523
avexpr	Coef.	Std. Err.	t	P> t	[95% Conf		Interval]
logem4	4537058	.1304823	-3.48	0.001	7141496		1932619
lat abst	3.125466	1.203964	2.60	0.012	.7223438		5.528588
_cons	8.094943	.7590112	10.67	0.000	6.57995		9.609936
Source	SS	df	MS	Numbei	r of obs	=	70
				- F(2, 6	67)	=	36.61
Model	40.4326897	2	20.2163448	Prob >	> F	=	0.0000
Residual	36.9947598	67	.552160593	R-squa	ared	=	0.5222
				- Adj R-	-squared	=	0.5079
Total	77.4274494	69	1.12213695	Root N	MSE	=	.74308
	'						
logpgp95	Coef.	Std. Err.	t	P> t	[95% Conf		Interval]
avexpr hat	.739435	.122618	6.03	0.000	.4946884		.9841816
lat_abst	1.432	.7143996	2.00	0.049	.0060527		2.857948
_cons	2.94671	.7562474	3.90	0.000	1.437234		4.456186

The new estimation results show that the effect of the treatment on the outcome variable reduces when including latitude in the regression. This decrease in estimated effect of the treatment variable indicates an overestimation when not including latitude in the regression.

The point of including this covariate is to reduce the omitted variable bias, latitude (through climate and soil conditions) can affect both the outcome variable as well as the treatment variable.

First-stage regressions

Source	SS	df	MS	Numb	er of obs	=	70
				- F(2,	67)	=	19.53
Model	61.2431764	2	30.6215882	2 Prob	> F	=	0.0000
Residual	105.071472	67	1.56823093	R-sq	uared	=	0.3682
				- Adj	R-squared	=	0.3494
Total	166.314648	69	2.41035722	2 Root	MSE	=	1.2523
avexpr	Coef.	Std. Err.	t	P> t	[95% Con	ıf.	Interval]
lat_abst	3.125466	1.203964	2.60	0.012	.7223438	;	5.528588
logem4	4537058	.1304823	-3.48	0.001	7141496)	1932619
_cons	8.094943	.7590112	10.67	0.000	6.57995	,	9.609936
Instrumental v	variables (2SL SS	S) regress	ion MS		er of obs 67)	=	70 18.75
Model	5.18804532	2	2.59402266	6 Prob	> F	=	0.0000
Residual	72.2394041	67	1.07820006	-	uared	=	0.0070
Total	77.4274494	69	1.12213695	_	R-squared MSE	=	0.0392 1.0384
logpgp95	Coef.	Std. Err.	t	P> t	[95% Con	ıf.	Interval]
avexpr	1.029084	.2384636	4.32	0.000	.5531086		1.505059
lat_abst	-1.784366	1.527363	-1.17	0.247	-4.832995	,	1.264263
_cons	1.65175	1.35228	1.22	0.226	-1.047413	3	4.350913
Instrumented:	avexpr						
Instruments:	lat abst log	em4					

j.

The condition of the exclusion restriction that the instrument may only affect the outcome variable through the treatment variable and not via any other mechanism. We think that it is highly likely that the exclusion restriction will hold, as we believe that is highly unlikely that settler mortality still affects current GDP per capita in any other way than through institutions.

Statistics/Data Analysis

Project: Econometrics Assignment 2a

name: <unnamed>

log: C:\Users\u1265889\Desktop\2a.smcl

log type: smcl

opened on: 7 Sep 2017, 17:16:45

- 1 . do "C:\Users\u1265889\AppData\Local\Temp\STD01000000.tmp"
- 2 . * Computer Assignment 2 Econometrics, Sep 2017

3 . *I

- 4 . use C:\Users\u1265889\Downloads\AJR_140915, clear
- 5 . *IIa
- 6 . summ logpgp95 avexpr logem4 lat_abst

Variable	Obs	Mean	Std. Dev.	Min	Max
logpgp95	70	8.141596	1.05931	6.109248	10.21574
avexpr	70	6.646104	1.552533	3.5	10
logem4	70	4.542832	1.357206	.9360933	7.986165
lat_abst	70	.1958971	.1470903	0	.6666667

- 7 . *IIb
- 8 . histogram logpgp95

(bin=8, start=6.1092477, width=.51331156)

9 . histogram avexpr (bin=8, start=3.5, width=.8125)

- 10 . *IIIa
- 11 . graph twoway scatter logpgp95 avexpr
- 12 . graph twoway lfit logpgp95 avexpr
- 13 . graph twoway (scatter logpgp95 avexpr) (lfit logpgp95 avexpr)
- 14 . *IIIb
- 15 . reg logpgp95 avexpr

Source	SS	df	MS	Number of obs	=	70
Model Residual	44.2500667 33.1773828	1 68	44.2500667 .487902688		= = = =	90.69 0.0000 0.5715 0.5652
Total	77.4274494	69	1.12213695		=	. 6985
logpgp95	Coef.	Std. Err.	t	P> t [95% (Conf.	Interval]
avexpr _cons	.5158123 4.713454	.0541628 .3695264		0.000 .40773 0.000 3.9760		.6238926 5.450832

- 16 . *EXPLANATION 17 . *IIIC
- 18 . *EXPLANATION
- 19 . *IIId
- 20 . graph twoway (scatter avexpr logem4) (lfit avexpr logem4)
- 21 . *IIIe

Thursday September 7 17:17:37 2017 Page 2

22 . reg logpgp95 logem4

Source	SS	df	MS		er of ob	s = =	70
Model Residual	38.2141393 39.2133101	1 68	38.2141393 .576666325	Prob R-sq	F(1, 68) Prob > F R-squared Adj R-squared		66.27 0.0000 0.4935 0.4861
Total	77.4274494	69	1.12213695	_	-	d = =	.75939
logpgp95	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
logem4 _cons	5483295 10.63256	.0673584 .3191752	-8.14 33.31	0.000	6827 9.99		4139179 11.26947

- 23 . *EXPLANATION
 24 . *IIIf
 25 . reg avexpr logem4

Source	SS	df	MS		r of ob	s =	70
Model Residual	50.6746952 115.639953	1 68	50.6746952 1.70058755	5 R-squ	> F ared	= =	29.80 0.0000 0.3047 0.2945
Total	166.314648	69	2.41035722	_	-square	d = =	1.3041
avexpr	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
logem4 _cons	6314299 9.514584	.1156722 .5481083	-5.46 17.36	0.000 0.000	8622 8.420		4006096 10.60832

- 26 . *EXPLANATION 27 . *IIIg 28 . predict_avexpr_hat

(option **xb** assumed; fitted values)

29 . reg logpgp95 avexpr_hat

Source	SS	df	MS	Number of	obs =	70
Model Residual	38.2141398 39.2133096	1 68	38.2141398 .576666318		= = = red =	0.0000 0.4935
Total	77.4274494	69	1.12213695		=	
logpgp95	Coef.	Std. Err.	t	P> t [95	% Conf.	Interval]
avexpr_hat _cons	.8683933 2.370164	.106676 .714766			55247 38703	1.081262 3.796457

- 30 . *EXPLANATION
 31 . *IIIh
 32 . reg avexpr logem4 lat_abst

Source	SS	df	MS	Number of obs	=	70
 				F(2, 67)	=	19.53
Model	61.2431764	2	30.6215882	Prob > F	=	0.0000
Residual	105.071472	67	1.56823093	R-squared	=	0.3682
 				Adj R-squared	=	0.3494
Total	166.314648	69	2.41035722	Root MSE	=	1.2523

avexpr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logem4	4537058	.1304823	-3.48	0.001	7141496	1932619
lat_abst	3.125466	1.203964	2.60	0.012	.7223438	5.528588
_cons	8.094943	.7590112	10.67	0.000	6.57995	9.609936

33 . reg logpgp95 avexpr_hat lat_abst

Source	SS	df	MS	Number of obs	=	70
				F(2, 67)	=	36.61
Model	40.4326897	2	20.2163448	Prob > F	=	0.0000
Residual	36.9947598	67	.552160593	R-squared	=	0.5222
				Adj R-squared	=	0.5079
Total	77.4274494	69	1.12213695	Root MSE	=	.74308
'						

logpgp95	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
avexpr_hat	.739435	.122618	6.03	0.000	.4946884	.9841816
lat_abst	1.432	.7143996	2.00	0.049	.0060527	2.857948
_cons	2.94671	.7562474	3.90	0.000	1.437234	4.456186

- 34 . *EXPLANATION
 35 . *IIIi
 36 . ivreg logpgp95 lat_abst (avexpr=logem4), first

First-stage regressions

70	os =	ber of ok	Num	MS	df		SS	Source
19.53 0.0000 0.3682 0.3494	= = = =	, 67) b > F quared R-square	32 Pro 93 R-s	30.62158 1.568230	2 67		61.2431764 105.071472	Model Residual
1.2523	= =	t MSE	_	2.410357	69		166.314648	Total
Interval]	Conf.	[95%	P> t	t	Err.	Std.	Coef.	avexpr
5.528588 1932619 9.609936	L496	.7223 7141 6.53	0.012 0.001 0.000	2.60 -3.48 10.67	3964 4823 0112		3.125466 4537058 8.094943	lat_abst logem4 _cons

Instrumental variables (2SLS) regression

Source	ss	df	MS	Number of	obs =	70
Model Residual	5.18804532 72.2394041	2 67	2.59402266 1.07820006	R-squared	= =	18.75 0.0000 0.0670
Total	77.4274494	69	1.12213695	- Adj R-squa: Root MSE	red = =	0.0392 1.0384
logpgp95	Coef.	Std. Err.	t	P> t [95	% Conf.	Interval]

logpgp95	Coef.	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
avexpr	1.029084	.2384636	4.32	0.000	.5531086	1.505059
lat_abst	-1.784366	1.527363	-1.17	0.247	-4.832995	1.264263
_cons	1.65175	1.35228	1.22	0.226	-1.047413	4.350913

Instrumented: avexpr
Instruments: lat_abst logem4

```
Thursday September 7 17:17:37 2017 Page 4

37 . *IIIj
38 . *EXPLANATION
39 .
end of do-file

40 . log close
    name: <unnamed>
    log: C:\Users\u1265889\Desktop\2a.smcl
    log type: smcl
    closed on: 7 Sep 2017, 17:17:20
```