

North South University

Department of Electrical & Computer Engineering

Course Code: CSE231L.8

Course Title: Digital Logic Design

Faculty Name: Prof. Dr. M. A. Razzak (Azz)

Project Report of

"Design a Combinational and Sequential Circuit to display "DL2-31D230S12" on a 7 Segment Display including"

Section: 08

Group Number: 06

Submitted To: Jannatul Ferdaous

Submitted E	Ву:		Score
S.N.	Student Name	ID	
14	Asrar Al Mohaimen Ahmed	2112324642	
17	Nuzhat Tahsin	2121613642	
23	Tahsinul Haque Wrudra	2131252642	
26	Simon Yeamin	2132131642	
30	Anindita Das Mishi	2211364642	

Introduction:

This project is about displaying "DL2-31D230S12" with the help of a seven-segment display, including combinational and sequential circuits.

Phase 1: Combinational Part

Truth Table:

Displays		Inp	uts					Outputs	;		
	Α	В	С	D	а	b	С	d	е	f	g
D	0	0	0	0	1	1	1	1	1	1	0
L	0	0	0	1	0	0	0	1	1	1	0
2	0	0	1	0	1	1	0	1	1	0	1
-	0	0	1	1	0	0	0	0	0	0	1
3	0	1	0	0	1	1	1	1	0	0	1
1	0	1	0	1	0	1	1	0	0	0	0
D	0	1	1	0	1	1	1	1	1	1	0
2	0	1	1	1	1	1	0	1	1	0	1
3	1	0	0	0	1	1	1	1	0	0	1
0	1	0	0	1	1	1	1	1	1	1	0
S	1	0	1	0	1	0	1	1	0	1	1
1	1	0	1	1	0	1	1	0	0	0	0
2	1	1	0	0	1	1	0	1	1	0	1
	1	1	0	1	Х	Х	Х	Х	Х	Х	Х
	1	1	1	0	Х	Х	Х	Х	Х	Х	Х
	1	1	1	1	Х	Х	Х	Х	Х	Х	Х

Canonical SOP form:

a = A'B'C'D' + A'B'CD' + A'BC'D' + A'BCD' + A'BCD + AB'C'D' + AB'C'D + A'BC'D + ABC'D'

 $\mathbf{b} = A'B'C'D' + A'B'CD' + A'BC'D' + A'BCD' + A'BCD + AB'C'D' + AB'C'D + AB'C'D'$

c = A'B'C'D' + A'BC'D' + A'BC'D + A'BCD' + AB'C'D' + AB'C'D + AB'CD' + AB'CD

 $\mathbf{d} = A'B'C'D' + A'B'C'D + A'B'CD' + A'BC'D' + A'BCD' + A'BCD + AB'C'D' + AB'C'D + AB'CD'$

e = A'B'C'D' +A'B'C'D +A'B'CD' + A'BCD' + A'BCD + AB'C'D + ABC'D'

 $\mathbf{f} = A'B'C'D' + A'B'C'D + A'BCD' + AB'C'D + AB'CD'$

g = A'B'CD' + A'B'CD + A'BC'D' + A'BCD + AB'C'D' + AB'CD' + ABC'D'

Canonical POS form:

a = (A'+B'+C'+D). (A'+B'+C+D). (A'+B+C'+D). (A+B'+C+D)

 $\mathbf{b} = (A'+B'+C'+D). (A'+B'+C+D). (A+B'+C+D')$

c = (A'+B'+C'+D)(A'+B'+C+D')(A'+B'+C+D)(A'+B+C+D). (A+B+C'+D')

 $\mathbf{d} = (A'+B'+C+D)(A'+B+C'+D)(A+B'+C+D)$

e = (A'+B'+C+D)(A'+B+C'+D')(A'+B+C'+D)(A+B'+C'+D')(A+B'+C+D')(A+B'+C+D)

f = (A'+B'+C+D')(A'+B'+C+D)(A'+B+C'+D')(A'+B+C'+D)(A'+B+C+D)(A+B'+C'+D')(A+B'+C+D)(A+B+C'+D')

 $\mathbf{g} = (A'+B'+C'+D')(A'+B'+C'+D)(A'+B+C'+D)(A'+B+C+D')(A+B'+C'+D)(A+B'+C+D)$

Using NAND gates:

0001 Displaying - "L"

Using NOR gates:

0111 Displaying - "2"

Using SOP:

SOP Kmaps

ÁB 1 1 0 1 ÁB 0 0 1 1 AB 1 X X X	AB CD	ēδ	i co l	CD	сб	
AB (1 X X X X)	ÁĞ	1	1	0	1	
	ĀB	0	0.	1	1	
	АВ	(1	X	×	×	
AB 0 1 0 0	AB	0	(1)	0	0	

PB'	OD.	Ć,	101	бÞ	cĎ
	AB AB	(1	1	0	0
	AB	0	0	0	1
	AB	0	×	×	\otimes
	AB	- 0	(1)	0	1
			1		

AB CD	СБ	CD	CD	1CD L
A8	0	0	(1)	1
AB	$\sqrt{1}$	0	1	0
AB	D	×	×	×
AB	1	٥	0	1

W-Map forz "g"
$$g = \overline{B}C\overline{D} + \overline{A}CD + B\overline{C}\overline{D} + A\overline{C}\overline{D}.$$

SOP Simulation

0001 Displaying - "L"

POS Simulation

0001 Displaying - "L"

<u>MUX</u>

16 to 1 mux using 8 to 1 mux

Α	В	С	D	F	а		b		С		d		e		f		g	
0	0	0	0	D	1		1		1		1		1		1		0	
0	0	0	1	L	0	I₀=D'	0	I₀=D'	0	I₀=D'	1	I ₀ =1	1	I ₀ =1	1	I ₀ =1	0	I ₀ =0
0	0	1	0	2	1		1		0		1		1		0		1	
0	0	1	1	-	0	I₁=D'	0	I₁=D'	0	I1=0	0	I₁=D'	0	I ₁ =D'	0	I1=0	1	I ₁ =1
0	1	0	0	3	1		1		1		1		0		0		1	
0	1	0	1	1	0	I ₂ =D'	1	I ₂ =1	1	I ₂ =1	0	I ₂ =D'	0	I ₂ =0	0	I ₂ =0	0	I ₂ =D'
0	1	1	0	D	1		1		1		1		1		1		0	
0	1	1	1	2	1	l₃=1	1	I₃=1	0	I₃=D'	1	I₃=1	1	I₃=1	0	I₃=D'	1	I₃=D
1	0	0	0	3	1		1	-	1		1	-	0	-	0		1	
1	0	0	1	0	1	I ₄ =1	1	I ₄ =1	1	I ₄ =1	1	I ₄ =1	1	I ₄ =D	1	I ₄ =D	0	I ₄ =D'
1	0	1	0	S	1	-	0	-	1	-	1	-	0		1	-	1	-
1	0	1	1	1	0	I₅=D'	1	I₅=D	1	I₅=1	0	I₅=D'	0	I ₅ =0	0	I₅=D'	0	I₅=D'
1	1	0	0	2	1	-	1	-	0	-	1	-	1	-	0	-	1	-
1	1	0	1		0	I ₆ =D'	0	I ₆ =D'	0	I ₆ =0	0	I ₆ =D'	0	I ₆ =D'	0	I ₆ =0	0	I ₆ =D'

MUX Simulation

0111 Displaying - "2"

Decoder Simulation

0111 Displaying - "2"

Budget for the project (Without Flip Flop):

As we are using Multiplexer to display "DL2-31D230S12", we require

1-Cathode 7-Segment Display = 12 Tk 7-IC 74HC151N (8:1 MUX) = 224 Tk 1-IC NOT 7404 (2-input NOT) = 26 TK 2 Breadboard = 260 TK Wires = 90 TK

Total Cost = 612 TK

Phase 02: Sequential part

J-K Flip Flop

Truth Table:

			J-K Ir	nputs				Clk		Out	puts	
JA	KA	JB	КВ	JC	кс	JD	KD		QA*	QB*	QC*	QD*
Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0	0
0	Х	0	Х	0	Х	1	Х	1	0	0	0	1
0	Х	0	Х	1	Х	Х	1	1	0	0	1	0
0	Х	0	Х	Х	0	1	Х	1	0	0	1	1
0	Х	1	Х	Х	1	Х	1	1	0	1	0	0
0	Х	Х	0	0	Х	1	Х	1	0	1	0	1
0	Х	Х	0	1	Х	Х	1	1	0	1	1	0
0	Х	Х	0	Х	0	1	Х	1	0	1	1	1
1	Х	Х	1	Х	1	Х	1	1	1	0	0	0
Х	0	0	Х	0	Х	1	Х	1	1	0	0	1
Х	0	0	Х	1	Х	Х	1	1	1	0	1	0
Х	0	0	Х	Х	0	1	Х	1	1	0	1	1
Х	0	1	Х	Х	1	Х	1	1	1	1	0	0
Х	1	Х	1	0	Х	0	Х	1	0	0	0	0

Characteristic Table:

	Pres	sent			J-K Inputs							Next				
QA	QB	QC	QD	JA	KA	JB	КВ	JC	кс	JD	KD	QA*	QB*	QC*	QD*	
0	0	0	0	0	Х	0	Х	0	Х	1	Х	0	0	0	1	
0	0	0	1	0	X	0	Х	1	Х	X	1	0	0	1	0	
0	0	1	0	0	X	0	Х	Х	0	1	Х	0	0	1	1	
0	0	1	1	0	X	1	Х	Х	1	X	1	0	1	0	0	
0	1	0	0	0	Х	Х	0	0	Х	1	Х	0	1	0	1	
0	1	0	1	0	Х	Х	0	1	Х	Х	1	0	1	1	0	
0	1	1	0	0	Х	Х	0	Х	0	1	Х	0	1	1	1	
0	1	1	1	1	Х	Х	1	Х	1	Х	1	1	0	0	0	
1	0	0	0	Х	0	0	Х	0	Х	1	Х	1	0	0	1	
1	0	0	1	Х	0	0	Х	1	Х	Х	1	1	0	1	0	
1	0	1	0	Х	0	0	Х	Х	0	1	Х	1	0	1	1	
1	0	1	1	Х	0	1	Х	Х	1	Х	1	1	1	0	0	
1	1	0	0	Х	1	Х	1	0	Х	0	Х	0	0	0	0	

Excitation Table:

	Pres	sent			Ne	ext		J-K Inputs							
QA	QB	QC	QD	QA*	QB*	QC*	QD*	JA	KA	JB	КВ	JC	кс	JD	KD
0	0	0	0	0	0	0	1	0	Х	0	Х	0	Х	1	Х
0	0	0	1	0	0	1	0	0	Х	0	Х	1	Х	Х	1
0	0	1	0	0	0	1	1	0	Х	0	Х	Х	0	1	Х
0	0	1	1	0	1	0	0	0	Х	1	Х	Х	1	Х	1
0	1	0	0	0	1	0	1	0	Х	Х	0	0	Х	1	Х
0	1	0	1	0	1	1	0	0	Х	Х	0	1	Х	Х	1
0	1	1	0	0	1	1	1	0	Х	Х	0	Х	0	1	Х
0	1	1	1	1	0	0	0	1	Х	Х	1	Х	1	Х	1
1	0	0	0	1	0	0	1	Х	0	0	Х	0	Х	1	Х
1	0	0	1	1	0	1	0	Х	0	0	Х	1	Х	Х	1
1	0	1	0	1	0	1	1	Х	0	0	Х	Х	0	1	Х
1	0	1	1	1	1	0	0	Х	0	1	Х	Х	1	Х	1
1	1	0	0	0	0	0	0	Х	1	Х	1	0	Х	0	Х

K-Maps for J-K flip flop:

Q0	D			
anos \	ā,ō,	acos	Reap	QcQD
QAQB	_0	0	0	0
QAQB	0	0	1	0
QA OB	Х	×	\times	×
Onog	×	×	×	×

K-M	lap	for	JA	
JA=	O _t	م و ۵	D _D	

Qa Oca I	ā _e ā _p	$\bar{Q}_{c}Q_{d}$	Q _e Q _D	QcQ0
QAQ,	X X	\(\chi_{\alpha}\)	×	×
QAQB		^		$\frac{1}{2}$
QAQB	/ / `	×	× -	~)
QAOO	-	^		<u>~</u>
WAWB	0	0	0	0

K-Map for KA

$$V_A = O_B$$

0.00	>			
ON OB	$\overline{Q}_{c} \overline{Q}_{D}$	Q.Q.	OcOo	Q. Oo
OAOB	0	0	1	0
QAQ12	×	×	×	X
OA OB	Х	×	×	×
$\mathcal{Q}_{\mathbf{p}} \bar{\mathcal{Q}}_{\mathbf{g}}$	Ó	0	1	0

ر00	D			
QAOB	Q.O.	Ocop	QcQn	Oc Oo
QAQ3	×	×	$\langle \times \rangle$	×
QAQB		٥	1	0
Q _A Q _B	1	×	×	×
Qn Qp	X	×	$\langle x \rangle$	×

L. Map	for KB	
KB =	0e0b+	Q _A

راكورا	D			
OBO3	acap	QcO0	Qc QD	acão
Q A QB	0	1	X	×
QAOB	0	1	×	×
OnOB	0	×	×	×
QA QB	0	1	×	×

L-Map for J_c $J_c = Q_D$

رمره	D			
OAOB	Qc QD	QCQD	Oc00	Q. OD
OAOB	×	X	1	0
. QAQB	×	×	1	0
QAQB	У	X	×	×
anão	×	X	1)	٥

K-Map for Ke $K_e = Q_D$

\O_c0	D			
QAOB/	Jaco	0000	Qe QD	QcQp/
QAQ0	XI	Х	×	DY
QAOB	1	*	×	
OAOB	0	×	×	\times
OAOB	1	×	×	7
QeQ0	Į.			\
QAQB	Q. QD	āe@p	Qc QD	Oceo
- ·			1	

L- Map	for	J_{D}
J _D =	āp+	Q _B

QAQB	O. O.	Qc QD	Qc QD	Ocāo
O, OB		1	1	X
QA QB	\×	1	1	×
OAOB	×	×	×	\times
QAQB	X	1	١	x/

 $\frac{K - Map for K_D}{K_D = 1}$

Screenshot 1: State - 0000 Displaying - "D"

Logisim Simulation

Screenshot 2: State - 1100 Displaying - "2"

Note: We can avoid the NOT gates in the flip flop part because it's built-in.

T Flip Flop

Truth Table:

	T In	puts		Clk	Outputs				
TA	ТВ	тс	TD		QA*	QB*	QC*	QD*	
Х	Х	Х	Х	0	0	0	0	0	
0	0	0	0	1	0	0	0	0	
0	0	0	1	1	0	0	0	1	
0	0	1	1	1	0	0	1	0	
0	0	0	1	1	0	0	1	1	
0	1	1	1	1	0	1	0	0	
0	0	0	1	1	0	1	0	1	
0	0	1	1	1	0	1	1	0	
0	0	0	1	1	0	1	1	1	
1	1	1	1	1	1	0	0	0	
0	0	0	1	1	1	0	0	1	
0	0	1	1	1	1	0	1	0	
0	0	0	1	1	1	0	1	1	
0	1	1	1	1	1	1	0	0	
1	1	0	0	1	0	0	0	0	

Characteristic Table:

	Pres	sent			T In	puts		Next			
QA	QB	QC	QD	TA	ТВ	тс	TD	QA*	QB*	QC*	QD*
0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	1	0	0	1	1	0	0	1	0
0	0	1	0	0	0	0	1	0	0	1	1
0	0	1	1	0	1	1	1	0	1	0	0
0	1	0	0	0	0	0	1	0	1	0	1
0	1	0	1	0	0	1	1	0	1	1	0
0	1	1	0	0	0	0	1	0	1	1	1
0	1	1	1	1	1	1	1	1	0	0	0
1	0	0	0	0	0	0	1	1	0	0	1
1	0	0	1	0	0	1	1	1	0	1	0
1	0	1	0	0	0	0	1	1	0	1	1
1	0	1	1	0	1	1	1	1	1	0	0
1	1	0	0	1	1	0	0	0	0	0	0

Excitation Table:

	Pres	sent			Ne	ext		T Inputs			
QA	QB	QC	QD	QA*	QB*	QC*	QD*	TA	ТВ	тс	TD
0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	1	0	0	1	0	0	0	1	1
0	0	1	0	0	0	1	1	0	0	0	1
0	0	1	1	0	1	0	0	0	1	1	1
0	1	0	0	0	1	0	1	0	0	0	1
0	1	0	1	0	1	1	0	0	0	1	1
0	1	1	0	0	1	1	1	0	0	0	1
0	1	1	1	1	0	0	0	1	1	1	1
1	0	0	0	1	0	0	1	0	0	0	1
1	0	0	1	1	0	1	0	0	0	1	1
1	0	1	0	1	0	1	1	0	0	0	1
1	0	1	1	1	1	0	0	0	1	1	1
1	1	0	0	0	0	0	0	1	1	0	0

K-Maps for T flip flop:

	0,00				
6	PAQB	$\bar{Q}_c \bar{Q}_D$	Qc OD	Qc Op	Qc QD
	QAQO	0	0	0	0
		0	0	(1)	0
	QA OB	1	×	×	X
	QAOB	0	0	0	0

QcQ1				
QaQB	Qc QD	$\bar{a_c}a_{D}$	Oc Op	$Q_c \overline{Q}_D$
QAQB	0	0	1	0
QAQB	0	0	1	0
OARB	1	×	×	*
QATOB	0	0	1	0

\Qe0	D			
QAQB	acao	QcQp	Ocap	ae ao
QAOB	0	1	1	0
Œ _₽ Ø ₃	0	1	1	0
Op OB	0	×	×	×
OAGB	O	1	1	0

QAQB 000		<u> </u>	(O a (D	acQo
QAQB	1	1	1	1
OAOB	1	1	1	1
QAQB	0	×	X	×
QAOB	1	1	1	I
	1			

K-	Map	4	٥٦	T_{D}	
T _D =	ŌA	+	\bar{Q}_{B}		

Screenshot 1: State - 0000 Displaying - "D"

Screenshot 2: State - 1100 Displaying - "2"

Note: We can avoid the NOT gates in the flip flop part because it's built-in.

D Flip Flop

Truth Table:

D Inputs				Clk		Ne	ext	
DA	DB	DC	DD		QA*	QB*	QC*	QD*
0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	0	1	1	0	0	0	1
0	0	1	0	0	0	0	0	1
0	0	1	0	1	0	0	1	0
0	0	1	1	0	0	0	1	0
0	0	1	1	1	0	0	1	1
0	1	0	0	0	0	0	1	1
0	1	0	0	1	0	1	0	0
0	1	0	1	0	0	1	0	0
0	1	0	1	1	0	1	0	1
0	1	1	0	0	0	1	0	1
0	1	1	0	1	0	1	1	0
0	1	1	1	0	0	1	1	0
0	1	1	1	1	0	1	1	1
1	0	0	0	0	0	1	1	1
1	0	0	0	1	1	0	0	0
1	0	0	1	0	1	0	0	0
1	0	0	1	1	1	0	0	1
1	0	1	0	0	1	0	0	1

1	0	1	0	1	1	0	1	0
1	0	1	1	0	1	0	1	0
1	0	1	1	1	1	0	1	1
1	1	0	0	0	1	0	1	1
1	1	0	0	1	1	1	0	0
0	0	0	0	0	1	1	0	0
0	0	0	0	1	0	0	0	0

Characteristic Table:

	Pres	sent			D Inputs				Next			
QA	QB	QC	QD	DA	DB	DC	DD	QA*	QB*	QC*	QD*	
0	0	0	0	0	0	0	1	0	0	0	1	
0	0	0	1	0	0	1	0	0	0	1	0	
0	0	1	0	0	0	1	1	0	0	1	1	
0	0	1	1	0	1	0	0	0	1	0	0	
0	1	0	0	0	1	0	1	0	1	0	1	
0	1	0	1	0	1	1	0	0	1	1	0	
0	1	1	0	0	1	1	1	0	1	1	1	
0	1	1	1	1	0	0	0	1	0	0	0	
1	0	0	0	1	0	0	1	1	0	0	1	
1	0	0	1	1	0	1	0	1	0	1	0	
1	0	1	0	1	0	1	1	1	0	1	1	
1	0	1	1	1	1	0	0	1	1	0	0	
1	1	0	0	0	0	0	0	0	0	0	0	

Excitation Table:

	Pres	sent		Next			D Inputs				
QA	QB	QC	QD	QA*	QB*	QC*	QD*	DA	DB	DC	DD
0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	1	0	0	1	0	0	0	1	0
0	0	1	0	0	0	1	1	0	0	1	1
0	0	1	1	0	1	0	0	0	1	0	0
0	1	0	0	0	1	0	1	0	1	0	1
0	1	0	1	0	1	1	0	0	1	1	0
0	1	1	0	0	1	1	1	0	1	1	1
0	1	1	1	1	0	0	0	1	0	0	0
1	0	0	0	1	0	0	1	1	0	0	1
1	0	0	1	1	0	1	0	1	0	1	0
1	0	1	0	1	0	1	1	1	0	1	1
1	0	1	1	1	1	0	0	1	1	0	0
1	1	0	0	0	0	0	0	0	0	0	0

K-Maps for D flip flop:

Oc	Q ₀			
OAOB	āc ap	ā, a,	$a_c a_p$	Ocap
$\bar{Q}_{A}\bar{Q}_{B}$	0	(1)	0	
. QAOS	0	1	0	1
$\mathcal{O}_{A}\mathcal{O}_{g}$	0	×	×	×
OA OB	0		0	

OAO3		Q Qp	Or Qn	Q ₂ Q _D	
OA OB		0	0		_
$\overline{Q}_{A}Q_{B}$		O	0		
QAQB	0	×	×	×	
QAQB	1)	0	0		
	/				

U-Map	fore	DD
-------	------	----

DD= QBQD+QBQD

Screenshot 1: State - 0000 Displaying - "D"

Screenshot 2: State - 1100 Displaying - "2"

Note: We can avoid the NOT gates in the flip flop part because it's built-in.

The optimized flip flop for the project:

The **J-K Flip Flop** is the optimized one because for our project we can see that this flip flop configuration required the least amount of gates and complexity. Whereas D and T Flip Flops require more gates.

Unlike other flip-flop types, JK flip-flops do not have invalid or forbidden states. They can be in any of the four possible states (00, 01, 10, 11), which simplifies state analysis and reduces the risk of unintended behavior. When configured as a toggle flip-flop, a JK flip-flop typically requires fewer gates than other flip-flop types designed for toggling. This can result in a more compact and efficient design.

Thus J-K Flip Flop is the most optimized one for this project.

Budget for the project:

As we are using Multiplexer to display "DL2-31D230S12", we require

1-Cathode 7-Segment Display = 12 Tk
7-IC 74HC151N (8:1 MUX) = 224 Tk
1-IC NOT 7404 (2-input NOT) = 26 Tk
1-IC 7408 (2-input AND) = 31 Tk
1-IC 7432 (2-input OR) = 28 Tk
2-IC 4027 (Dual J-k Flip-Flop) = 70 Tk
1-IC 555 Timer = 18 Tk
5 Breadboards = 650
13 resistors = 20 Tk
1 capacitor = 5 Tk
Jumper cables = 300 Tk

Total Cost = 1384 Tk