RESUM D'EQUACIONS EN DERIVADES PARCIALS

ApuntsFME

DAVID BATET BARCELONA, JUNY 2020

Última modificació: 21 de juny de 2020.

L'equació del transport lineal

Obs. Podem pensar que $u = u(x,t) \in \mathbb{R}$ és la quantitat d'aigua per unitat de longitud que passa per cada punt $x \in \mathbb{R}$ d'un tub en un instant de temps t, on l'aigua es mou a una velocitat c. Obs. Amb la consideració anterior arribem a

$$\frac{d}{dt} \int_{a}^{b} u(x,t) dx = cu(a,t) - cu(b,t), \quad \forall (a,b) \subseteq \mathbb{R}, \forall t \in \mathbb{R}$$

Def. Anomenem equació del transport lineal a $u_t + cu_x = 0$. Def. Considerem una equació del transport entesa en un sentit més general, és a dir, $a(x,t)u_x + b(x,t)u_t + d(x,t)u = f(x,t)$. El mètode de les característiques consisteix a restringir u sobre una família de corbes $\gamma(\lambda)$ tals que la funció $w(\lambda) = u(\gamma(\lambda))$ satisfà $w'(\lambda) = a(\gamma(\lambda))u_x(\gamma(\lambda)) + b(\gamma(\lambda))u_t(\gamma(\lambda))$ i reconstruir u a partir de les restriccions a cadascuna de les corbes. Les corbes $\gamma(\lambda)$ reben el nom de corbes característiques.

Obs. Per trobar $\gamma(\lambda) = (x(\lambda), t(\lambda))$ ens caldrà resoldre l'EDO

$$\begin{cases} x'(\lambda) = a(x(\lambda), t(\lambda)), & t'(\lambda) = b(x(\lambda), t(\lambda)) \\ x(0) = x_0, & t(0) = t_0 \end{cases}$$

Després resoldrem $w' = f(\gamma(\lambda)) - d(\gamma(\lambda))w$ amb condicions inicials adients per trobar u a cadascuna de les restriccions. Obs. Per exemple, donat

$$(PC) \begin{cases} u_t + cu_x = 0, & x \in \mathbb{R}, t > 0 \\ u(x,0) = g(x), & x \in \mathbb{R} \end{cases}$$

podem considerar $\{\gamma(\lambda) = (x_0 + c\lambda, \lambda), \lambda \ge 0 \mid x_0 \in \mathbb{R}\}.$ **Def.** Diem que u és una solució clàssica de (PC) si satisfà (PC) puntualment i $u \in \mathcal{C}^1(\mathbb{R} \times (0, +\infty)) \cap \mathcal{C}^0(\mathbb{R} \times [0, +\infty)).$ Habitualment direm només que u és una solució de (PC).

Prop. Donada $g \in \mathcal{C}^1(\mathbb{R})$, existeix una única solució de (PC) i ve donada per u(x,t)=g(x-ct). De fet, resol l'EDP $\forall t \in \mathbb{R}$. Obs. Aquesta proposició es pot generalitzar a $x \in \mathbb{R}^n$ prenent l'equació $u_t + \vec{c} \cdot \vec{\nabla} u = 0$ i la condició inicial u(x,0) = g(x).

Obs. Si la velocitat de l'aigua c = c(x, t) varia obtenim

$$\frac{d}{dt} \int_{a}^{b} u(x,t)dx = c(a,t)u(a,t) - c(b,t)u(b,t)$$

i amb això

$$(PC - CV) = \begin{cases} u_t + (cu)_x = 0, & x \in \mathbb{R}, t > 0 \\ u(x, 0) = g(x), & x \in \mathbb{R} \end{cases}$$

Obs. Si c és globalment Lipschitz, aleshores (PC - CV) té una única solució a tot el pla (x, t).

Prop. Sigui $u \in \mathcal{C}^1(\mathbb{R} \times \mathbb{R})$ solució de (PC - CV) on $g \geq 0$ té suport compacte. Aleshores $\int_{\mathbb{R}} u(x,t)dx$ és constant en $t \in \mathbb{R}$.

Obs. La proposició anterior ens diu que la massa es conserva. **Def.** Definim $||w||_{\mathcal{C}^1(\mathbb{R})} := \sup_{x \in \mathbb{R}} |w(x)| + \sup_{x \in \mathbb{R}} |w'(x)|$.

Def. Donat un problema amb solució única u, anomenem semigrup a temps t i denotem per T_t l'aplicació que envia la condició inicial g a $u(\cdot,t)$.

Prop. Donat (PC) amb $q \in \mathcal{C}_h^1(\mathbb{R}), T_t : \mathcal{C}_h^1(\mathbb{R}) \to \mathcal{C}_h^1(\mathbb{R})$ satisfà $T_t \circ T_s = T_{t+s}$, per a tot $t, s \ge 0$.

Obs. El resultat també serveix per EDOs en espais de Banach. Def. Diem que una funció és localment integrable si ho és en tot compacte.

Def. Diem que u és una solució generalitzada del (PC) si $\forall t > 0$ i gairebé per a tot $(a, b) \subseteq \mathbb{R}$ tenim que $u(\cdot, t)$ és localment integrable en x, $\int_a^b u(x,t)dx$ és derivable quasi per a tot t i

$$\frac{d}{dt} \int_{a}^{b} u(x,t)dx = cu(a,t) - cu(b,t)$$

Def. Anomenem equació de transport no homogènia a

$$(PCNH)\begin{cases} u_t + \vec{c} \cdot \vec{\nabla} u = f(x, t), & x \in \mathbb{R}^n, t \in \mathbb{R} \\ u(x, 0) = g(x), & x \in \mathbb{R}^n \end{cases}$$

Def. Anomenem fórmula de Duhamel a

$$u(x,t) = (T_t g)(x) + \int_0^t (T_{t-s} f(\cdot, s))(x) ds$$

Prop. Si $q \in \mathcal{C}^1(\mathbb{R}^n)$ i $f \in \mathcal{C}^0(\mathbb{R}^n \times \mathbb{R})$, $\exists ! u \in \mathcal{C}^1(\mathbb{R}^n \times \mathbb{R})$ solució del (PCNH), donada per la fórmula de Duhamel. Si a més g i f són fitades, aleshores $||u(\cdot,T)||_{\infty} \leq ||g||_{\infty} + |T|||f||_{\infty}$, $\forall T \in \mathbb{R}.$

Def. Un problema d'EDPs de valors inicials és well-posed si

- 1. Existeixen solucions.
- 2. Les solucions són úniques.
- 3. Existeixen certes fites d'estabilitat.

EDOs en espais de Banach

Def. Un espai de Banach és un espai normat i complet. **Def.** Un espai de Hilbert és un espai euclidià $(E, \langle \cdot, \cdot \rangle)$ tal que $(E, ||\cdot||)$ és complet, on $||\cdot||$ és la norma induïda.

Obs. $\mathcal{L}^p(\Omega)$ amb $\Omega \subseteq \mathbb{R}^n$ obert i $1 \le p \le +\infty$ és un espai de Banach amb $||\cdot||_p$. L'únic amb producte escalar és $\mathcal{L}^2(\Omega)$.

Obs. Sigui E espai vectorial. Totes les normes són equivalents $\iff \dim E < +\infty.$

Prop. Sigui $A: E \to F$ una aplicació lineal entre espais de Banach. A és contínua $\iff \exists C \geq 0 \text{ tal que } ||Au||_F \leq C||u||_E$ per a tot $u \in E$.

Cor. A lineal contínua \implies A globalment Lipschitz.

Def. Donat $(E, ||\cdot||)$ espai de Banach i $A: E \to E$ aplicació lineal, definim el següent problema per $u = u(t) \in E$

$$(EDO) \begin{cases} u_t = Au, & t \in I \\ u(0) = g \in E \end{cases}$$

Prop. Si l'aplicació lineal A és contínua, $\exists ! u = u(t) \in E$ que és solució de (EDO), donada per $u(t) = e^{tA}q$.

Def. Donat $(E, ||\cdot||)$ espai de Banach i $H: E \to E$ aplicació qualsevol, definim el següent problema per $u = u(t) \in E$

$$(EDONL) \begin{cases} u_t = H(u), & t \in J \\ u(0) = g \in E \end{cases}$$

Th. (de Picard). Sigui H localment Lipschitz. Existeix un petit interval $0 \in I \subseteq \mathbb{R}$ on (EDONL) admet una única solució. **Obs.** Si $E = \mathcal{C}_h^0([0,1])$ o $E = \mathcal{L}^2(0,1)$, l'operador $P: E \to E$ definit $w \mapsto (Pw)(x) = \int_0^x w(y)dy, \forall x \in [0,1]$, és lineal i continu.

Obs. En $\mathcal{C}_h^0(\overline{I})$ i $\mathcal{L}^p(I)$ l'aplicació $w \mapsto w'$ no és endomorfisme. A més, si fos un endomorfisme no seria contínua.

Obs. Considerem ara el problema general

$$(\overline{EDO}) \begin{cases} u_t = Au + N(u), & t \in J \\ u(0) = g \in E \end{cases}$$

on A és aplicació lineal i N és no lineal. Per resoldre (EDO): 1. Si A és contínua...

- (a) i $N \equiv 0$: tenim una única solució $u(t) = e^{tA}g$.
- (b) i N és constant: tenim una solució única fent variació de
- les constants, que ens dona la fórmula de Duhamel. (c) i $N \not\equiv 0$ és localment Lipschitz: com que A és globalment Lipschitz podem aplicar el teorema de Picard.
- 2. Si A no és contínua...
- (a) i $N \equiv 0$: no tenim un teorema d'existència i unicitat general, ens el podem intentar fabricar inspirant-nos en Picard.

(b) i N és constant: si aconseguim un teorema d'existència i unicitat per $N\equiv 0$, podem obtenir la solució amb la fórmula de Duhamel.

(c) i $N \not\equiv 0$ localment Lipschitz: si aconseguim un teorema d'existència i unicitat per $N \equiv 0$, podem muntar un problema de punt fix pensant N(u) com a font i utilitzant la fórmula de Duhamel. Ens convindrà que el semigrup T_t sigui continu.

Obs. En general, quan ens trobem en el cas 2c farem

- i. Escollir l'espai de Banach E (que contigui la condició inicial).
- ii. Estudiar el semigrup lineal T_t associat a $u_t = Au$, que voldrem que sigui continu.
- iii. Equació del punt fix $\phi : \overline{B}_R(h) \subseteq F \to \overline{B}_R(h) \subseteq F$, on $F = \mathcal{C}(I, E)$. Generalment prendrem h = 0 o h = q.
- iv. Escollir R > 0 que faci que $\phi(u) \in \overline{B}_R(h), \forall u \in \overline{B}_R(h)$.
- v. Escollir $I \subseteq \mathbb{R}$ que garanteixi que ϕ és una contracció.
- **Obs.** Si N és globalment Lipschitz es pot utilitzar $\phi: F \to F$.

Equació d'ones

Equació d'ones en una dimensió

Obs. Podem pensar que $u=u(x,t)\in\mathbb{R}$ és l'alçada en el punt $x\in\mathbb{R}$ i l'instant $t\in\mathbb{R}$ d'una corda flexible i elàstica de densitat ρ_0 i tensió τ_0 que fa petites vibracions. Amb això obtenim

$$\int_a^b \rho_0(x)u_{tt}(x,t)dx = \int_a^b \tau_0 u_{xx}(x,t)dx + \int_a^b \tilde{f}(x,t)dx$$

on \tilde{f} són les forces externes. Si suposem que ρ_0 és constant i definim $c = \frac{\tau_0}{\rho_0}$, arribem a l'equació d'ones.

Def. Anomenem equació d'ones a $u_{tt} - c^2 u_{xx} = f(x,t)$.

$Corda\ infinita$

Def. Definim el problema

$$(PC) \begin{cases} u_{tt} - c^2 u_{xx} = 0, & x \in \mathbb{R}, t \in \mathbb{R} \\ u(x,0) = g(x), & x \in \mathbb{R} \\ u_t(x,0) = h(x), & x \in \mathbb{R} \end{cases}$$

Obs. No podem resoldre aquest problema utilitzant un espai de Banach adequat, ens cal ser creatius.

Def. Anomenem <u>fórmula de d'Alembert</u> a l'expressió

$$u(x,t) = \frac{1}{2}(g(x-ct) + g(x+ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} h(y)dy$$

Prop. Donades $g \in \mathcal{C}^2(\mathbb{R})$ i $h \in \mathcal{C}^1(\mathbb{R})$, $\exists ! u \in \mathcal{C}^2(\mathbb{R} \times \mathbb{R})$ solució del (PC), que ve donada per la fórmula de d'Alembert. Si a més g i h són fitades, $||u(\cdot,T)||_{\infty} \leq ||g||_{\infty} + |T|||h||_{\infty}$, $\forall T \in \mathbb{R}$. Si també ho és g', $||u_t(\cdot,T)||_{\infty} \leq c||g'||_{\infty} + ||h||_{\infty}$, $\forall T \in \mathbb{R}$. **Obs.** El semigrup solució és un endomorfisme continu

$$T_t \colon \mathcal{C}_b^2(\mathbb{R}) \times \mathcal{C}_b^1(\mathbb{R}) \to \mathcal{C}_b^2(\mathbb{R}) \times \mathcal{C}_b^1(\mathbb{R})$$

 $(g,h) \mapsto (u(\cdot,t), u_t(\cdot,t))$

Obs. Totes les solucions $C^2(\mathbb{R} \times \mathbb{R})$ de $u_{tt} - c^2 u_{xx} = 0$ són de la forma u(x,t) = F(x-ct) + G(x+ct). A més, amb $F, G \in C^2(\mathbb{R})$ qualssevulla, u(x,t) = F(x-ct) + G(x+ct) és solució.

Obs. Del que acabem de veure podem interpretar que u es pot expressar com la superposició de dues ones viatgeres F i G que es desplacen a una velocitat c en direccions oposades.

Obs. Per a tota u(x,t) = F(x-ct) + G(x+ct) solució de $u_{tt} - c^2 u_{xx} = 0$ tenim u(A) + u(D) = u(B) + u(C).

Def. Anomenem <u>domini de dependència</u> de (x,t) del punt x respecte el temps t a l'interval [x-ct,x+ct].

Def. Anomenem rang d'influència a temps t del punt x_0 al sector $x_0-ct \le x \le x_0+ct$.

Def. Definim el problema

$$(PCNH) \begin{cases} u_{tt} - c^2 u_{xx} = f(x, t), & x \in \mathbb{R}, t \in \mathbb{R} \\ u(x, 0) = g(x), & x \in \mathbb{R} \\ u_t(x, 0) = h(x), & x \in \mathbb{R} \end{cases}$$

Def. Anomenem <u>fórmula de d'Alembert-Duhamel</u> a

$$u(x,t) = \frac{1}{2}(g(x-ct) + g(x+ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} h(y)dy + \frac{1}{2c} \iint_{T(x,t)} f(x,t) dx$$

on $T(x,t) = \{(y,s) \mid 0 < s < t, x - c(t-s) < y < x + c(t-s)\}$ **Prop.** Si $g \in \mathcal{C}^2(\mathbb{R})$, $h \in \mathcal{C}^1(\mathbb{R})$ i $f \in \mathcal{C}^1(\mathbb{R} \times \mathbb{R})$, aleshores $\exists ! u \in \mathcal{C}^2(\mathbb{R} \times \mathbb{R})$ solució del (PCNH), donada per la fórmula de d'Alembert-Duhamel. Obs. Sigui w una solució particular de $u_{tt} - c^2 u_{xx} = f(x,t)$, és a dir, que no necessàriament satisfà les condicions inicials de (PCNH). Aleshores la solució de (PCNH) es pot expressar com u = v + w, on v és la solució de

$$\begin{cases} v_{tt} - c^2 v_{xx} = 0, & x \in \mathbb{R}, t \in \mathbb{R} \\ v(x, 0) = g(x) - w(x, 0), & x \in \mathbb{R} \\ v_t(x, 0) = h(x) - w_t(x, 0), & x \in \mathbb{R} \end{cases}$$

$Corda\ semi-infinita$

Def. Anomenem condicions de Dirichlet a les condicions que fixen la posició de la corda $u(0,t) = d(t), \forall t \in \mathbb{R}$.

Def. Anomenem <u>condicions de Neumann</u> a les condicions que fixen l'angle de la vora de la corda $u_x(0,t) = n(t), \forall t \in \mathbb{R}$.

Def. Direm que les condicions de Dirichlet són <u>homogènies</u> si $d \equiv 0$ i anàlogament, direm que les condicions de Neumann són <u>homogènies</u> si $n \equiv 0$.

Obs. Sigui u solució única d'un (PCNH). Si g,h i $f(\cdot,t)$ són funcions parelles, senars o L-periòdiques en $x \in \mathbb{R}$, aleshores $u(\cdot,t)$ també serà parella, senar o L-periòdica, respectivament. Def. Definim el problema de Dirichlet homogeni en la corda semi-infinita com

$$(DSI) \begin{cases} u_{tt} - c^2 u_{xx} = f(x, t), & x \ge 0, t \in \mathbb{R} \\ u(0, t) = 0, & t \in \mathbb{R} \\ u(x, 0) = g(x), & x \ge 0 \\ u_t(x, 0) = h(x), & x \ge 0 \end{cases}$$

Obs. Considerem les reflexions senars de g, h i $f(\cdot,t)$, que denotarem g_s , h_s i $f_s(\cdot,t)$, respectivament.

Prop. Si $g \in \mathcal{C}^2([0,\infty))$, $h \in \mathcal{C}^1([0,\infty))$ i $f \in \mathcal{C}^1([0,\infty) \times \mathbb{R})$, i definim \overline{u} prenent les extensions senars de g, h i $f(\cdot,t)$ a la fórmula de d'Alembert-Duhamel i $u = \overline{u}_{|[0,\infty) \times \mathbb{R}}$, aleshores

1. $g(0) = g''(0) = h(0) = f(0,\cdot) = 0$ són condicions suficients

- perquè $\overline{u} \in C^2(\mathbb{R} \times \mathbb{R})$ i u sigui solució de (DSI) i única. **2.** g(0) = h(0) = 0 i $f(0,0) + c^2 g''(0) = 0$ són condicions necessàries perquè u sigui solució de (DSI). Les condicions
- necessàries perquè u sigui solució de (DSI). Les condicions s'anomenen condicions de compatibilitat.

Obs. Al segon punt en realitat l'única hipòtesi sobre les funcions que ens cal és que g sigui dues vegades derivable en 0.

Corda finita

Def. Definim el <u>problema de Dirichlet homogeni en la corda</u> finita com

$$(DF) \begin{cases} u_{tt} - c^2 u_{xx} = f(x, t), & x \in [0, L], t \in \mathbb{R} \\ u(0, t) = u(L, t) = 0, & t \in \mathbb{R} \\ u(x, 0) = g(x), & x \in [0, L] \\ u_t(x, 0) = h(x), & x \in [0, L] \end{cases}$$

Obs. Considerem les extensions de g, h i $f(\cdot,t)$ obtingudes fent en primer lloc l'extensió senar a [-L,L] i a posteriori l'extensió 2L-periòdica a \mathbb{R} , que denotem per g_{ext} , h_{ext} i $f_{ext}(\cdot,t)$.

Prop. Si $g \in C^2([0,L])$, $h \in C^1([0,L])$ i $f \in C^1([0,L] \times \mathbb{R})$, i definim \tilde{u} prenent les extensions esmentades de g, h i $f(\cdot,t)$ a la fórmula de d'Alembert-Duhamel i $u = \tilde{u}_{|[0,L] \times \mathbb{R}}$, aleshores **1.** $g(0) = g''(0) = h(0) = f(0,\cdot) = 0$ i per altra banda a més $g(L) = g''(L) = h(L) = f(L,\cdot) = 0$ són condicions suficients perquè $\tilde{u} \in C^2(\mathbb{R} \times \mathbb{R})$ i u sigui solució de (DF) i única. **2.** g(0) = h(0) = 0 i $f(0,0) + c^2 g''(0) = 0$ i per altra banda a més g(L) = h(L) = 0 i $f(L,0) + c^2 g''(L) = 0$ són condicions necessàries perquè u sigui solució de (DF). Les condicions s'anomenen condicions de compatibilitat.

Obs. Al segon punt en realitat l'única hipòtesi per les funcions que ens cal és que g sigui dues vegades derivable en 0 i L. Prop. Si $f \equiv 0$, $h \in C^0([0,L])$ i u ve donada per la fórmula de d'Alembert-Duhamel amb les corresponents extensions g_{ext} i h_{ext} , aleshores u és $\frac{2L}{c}$ -periòdica en $t \in \mathbb{R}$.

Def. Definim el problema

$$(DFNH) \begin{cases} u_{tt} - c^2 u_{xx} = f(x,t), & x \in [0,L], t \in \mathbb{R} \\ u(0,t) = d_0(t), & t \in \mathbb{R} \\ u(L,t) = d_L(t), & t \in \mathbb{R} \\ u(x,0) = g(x), & x \in [0,L] \\ u_t(x,0) = h(x), & x \in [0,L] \end{cases}$$

Obs. Una forma de resoldre (DFNH) és definir una w que faci que v = u - w satisfaci les condicions de vora homogènies, és a dir, v(0,t) = v(L,t) = 0, $\forall t \in \mathbb{R}$. Per exemple, podem prendre $w(x,t) = d_0(t) + (d_L(t) - d_0(t)) \frac{x}{L}$, les rectes que uneixen $d_0(t)$ i $d_L(t)$, $\forall t \in \mathbb{R}$.

Def. Definim el problema de Neumann en la corda finita amb condicions de vora no homogènies com

$$(NFNH) \begin{cases} u_{tt} - c^2 u_{xx} = f(x,t), & x \in [0,L], t \in \mathbb{R} \\ u_x(0,t) = n_0(t), & t \in \mathbb{R} \\ u_x(L,t) = n_L(t), & t \in \mathbb{R} \\ u(x,0) = g(x), & x \in [0,L] \\ u_t(x,0) = h(x), & x \in [0,L] \end{cases}$$

i denotem per (NF) el cas amb condicions de vora homogènies. Obs. Anàlogament, una forma de resoldre (NFNH) és definir una w que faci que v=u-w satisfaci les condicions de vora homogènies, en aquest cas, $v_x(0,t)=v_x(L,t)=0, \ \forall t\in \mathbb{R}.$ Per exemple prenem $w(x,t)=n_0(t)x+\frac{n_L(t)-n_0(t)}{L}\frac{x^2}{2},$ de manera que $w_x(x,t)$ són les rectes que uneixen $n_0(t)$ i $n_L(t), \ \forall t\in \mathbb{R}.$ Obs. Es poden demostrar resultats anàlegs als dels problemes de Dirichlet (DSI) i (DF) per als problemes de Neumann (NSI) i (NF) tot considerant les reflexions en aquest cas parelles de g,h i $f(\cdot,t)$.

Prop. Per l'equació d'ones homogènia en la corda finita amb condicions de Dirichlet o de Neumann nul·les, l'energia total

$$E(t) = \int_0^L \left(\frac{1}{2} u_t^2(x, t) + \frac{1}{2} c^2 u_x^2(x, t) \right) dx$$

és constant en el temps, independentment de les condicions inicials, si $u \in \mathcal{C}^2([0,L] \times \mathbb{R})$.

Cor. Si sabem que $\exists u \in \mathcal{C}^2([0,L] \times \mathbb{R})$ solució de l'equació d'ones en la corda finita (potser no homogènia) amb condicions de Dirichlet o de Neumann qualssevol, aleshores és única.

Equació d'ones en dimensions superiors

Def. Un conjunt $\Omega \subseteq \mathbb{R}^n$ és un domini si és un obert connex. Def. Diem que un domini $\Omega \subseteq \mathbb{R}^n$ és <u>Lipschitz</u> si $\partial \Omega$ és localment la gràfica d'una funció Lipschitz.

Th. (de Rademacher). Tota funció Lipschitz $f: U \to \mathbb{R}^m$ amb $U \subseteq \mathbb{R}^n$ obert és diferenciable gairebé arreu.

Th. (de la divergència). Sigui $T \in C^1(\overline{\Omega}, \mathbb{R}^n)$ un camp vectorial amb $\Omega \subseteq \mathbb{R}^n$ domini Lipschitz fitat. Aleshores

$$\int_{\Omega} \operatorname{div} T = \int_{\partial \Omega} (T \cdot \vec{\nu})$$

on $\vec{\nu}$ és la normal exterior a Ω , que està definida sobre $\partial\Omega$. Cor. (integració per parts a \mathbb{R}^n). Siguin $u, v : \overline{\Omega} \subseteq \mathbb{R}^n \to \mathbb{R}$ funcions $C^1(\overline{\Omega})$ amb Ω domini Lipschitz fitat. Aleshores

$$\int_{\Omega} u \frac{\partial v}{\partial x_i} = \int_{\partial \Omega} (uv) \nu^i - \int_{\Omega} \frac{\partial u}{\partial x_i} v$$

on $\vec{\nu} = (\nu^1, \dots, \nu^n)$ és la normal exterior a Ω .

Def. Considerem el problema d'ones en n dimensions

$$\begin{cases} u_{tt} - c^2 \Delta u = f(x, t), & x \in \Omega \subseteq \mathbb{R}^n, t \in I \\ u(x, 0) = g(x), & x \in \Omega \\ u_t(x, 0) = h(x), & x \in \Omega \end{cases}$$

les condicions de vora poden ser

1. de Dirichlet: $u = 0, \forall x \in \partial \Omega \text{ i } \forall t \in I.$

2. de Neumann: $\frac{\partial u}{\partial \vec{v}} := \vec{\nabla} u \cdot \vec{v} = 0, \forall x \in \partial \Omega \text{ i } \forall t \in I.$

Prop. Si $u \in C^2(\overline{\Omega} \times I)$ és una solució de l'equació d'ones n dimensions homogènia amb condicions de vora de Dirichlet o de Neumann homogènies, aleshores l'energia

$$E(t) = \int_{\Omega} \left(\frac{1}{2} u_t^2 + \frac{1}{2} c^2 ||\vec{\nabla} u||^2 \right)$$

és constant en el temps.

Cor. Si existeix una solució $u \in \mathcal{C}^2(\overline{\Omega} \times I)$ de l'equació d'ones en n dimensions (potser no homogènia) amb condicions de vora de Dirichlet o de Neumann qualssevol, aleshores és única.

Equació de la calor

Equació de la calor en una dimensió

Obs. Podem pensar que $u = u(x,t) \in \mathbb{R}$ és la temperatura d'una vareta al punt $x \in [0,L]$ i instant t > 0.

Obs. Amb la consideració anterior arribem a

$$\frac{d}{dt} \int_{a}^{b} u(x,t)dx = D(u_x(b,t) - u_x(a,t)), \quad \forall (a,b) \subseteq \mathbb{R}, \forall t \in \mathbb{R}$$

Def. Anomenem equació de la calor homogènia o equació de difusió homogènia a $u_t - Du_{xx} = 0$, $x \in (0, L)$, t > 0. La constant D > 0 rep el nom de coeficient de difusió.

Obs. Reescalant les variables podem suposar D=1.

Obs. $u(x,t) = e^{-k^2 t} \sin(kx)$ és una solució de $u_t - u_{xx} = 0$

Obs. Considerem l'operador $A = \partial_{xx}$.

- 1. $\sin(kx)$ és una funció pròpia de valor propi $-k^2$ de A.
- 2. A és simètric per totes les funcions $v \in \mathcal{L}^2(0, L)$ tals que v(0) = v(L) = 0 i també per les que $v_x(0) = v_x(L) = 0$.

Prop. Donat $(E, \langle \cdot, \cdot \rangle)$ espai euclidià de dimensió finita, tot endomorfisme simètric $f: E \to E$ diagonalitza en una base ortonormal.

L'equació de la calor homogènia

Def. El <u>mètode de separació de variables</u> consisteix a buscar una solució de l'equació de la forma u(x,t) = X(x)T(t).

Prop. Donat L > 0, són una base ortonormal de $\mathcal{L}^2(0,L)$

1.
$$\left\{ \frac{1}{\sqrt{L}}, \sqrt{\frac{2}{L}} \cos\left(\frac{2\pi k}{L}x\right), \sqrt{\frac{2}{L}} \sin\left(\frac{2\pi k}{L}x\right) \mid k \ge 1 \right\}$$

$$2. \left\{ \sqrt{\frac{2}{L}} \sin\left(\frac{\pi k}{L}x\right) \mid k \ge 1 \right\}.$$

3.
$$\left\{ \frac{1}{\sqrt{L}}, \sqrt{\frac{2}{L}} \cos\left(\frac{\pi k}{L}x\right) \mid k \ge 1 \right\}$$
.

Def. Són possibles condicions de vora les condicions

- 1. de Dirichlet homogènies: $u(0,t) = u(L,t) = 0, \forall t > 0.$
- **2.** de Neumann homogènies: $u_x(0,t) = u_x(L,t) = 0, \forall t > 0.$
- 3. periòdiques: u(0,t) = u(L,t) i $u_x(0,t) = u_x(L,t), \forall t > 0$.
- 4. mixtes homogènies: u(0,t) = 0 i $u_x(0,t) = 0$, $\forall t > 0$.
- **5.** de Robin (o de radiació): donats $\alpha, \beta > 0$,

$$\begin{cases} u_x(0,t) + \alpha u(0,t) = 0 \\ u_x(L,t) + \beta u(L,t) = 0 \end{cases} \forall t > 0$$

Obs. En l'equació de la calor homogènia amb condicions de vora periòdiques o de Neumann homogènies, l'energia calòrica total $\int_0^L u(x,t)dx$ es conserva.

Th. Siguin $g \in \mathcal{L}^2(0,\pi)$ i (b_k) els seus coeficients de Fourier en base de sinus. Aleshores

1. La funció $u(x,t) = \sum_{k\geq 1} b_k e^{-k^2 t} \sin(kx)$ és l'única funció $u \in \mathcal{C}^2([0,\pi] \times (0,\infty))$ que satisfà

$$(CHD) \begin{cases} u_t - u_{xx} = 0, & x \in (0, \pi), t > 0 \\ u(0, t) = u(\pi, t) = 0, & t > 0 \\ u(\cdot, t) \xrightarrow{\mathcal{L}^2} g \end{cases}$$

De fet, $u \in \mathcal{C}^{\infty}([0,\pi] \times (0,\infty))$.

- **2.** Si a més $g \in C^1([0,\pi])$ i $g(0) = g(\pi) = 0$, aleshores tenim $u \in C^0([0,\pi] \times [0,\infty))$ i $u(x,0) = g(x), \forall x \in [0,\pi]$.
- **3.** Podem fitar la seva norma per $||u(\cdot,t)||_2 \le e^{-t}||g||_2$, $\forall t > 0$. Obs. Si per la vareta en [0,L] tenim un coeficient de difusió D > 0, la solució de (CHD) ve donada per

$$u(x,t) = \sum_{k>1} b_k e^{-k^2 \left(\frac{\pi}{L}\right)^2 Dt} \sin\left(\frac{\pi k}{L}x\right)$$

on b_k són els coeficients de Fourier de g.

Obs. El mètode de separació de variables també ens pot ser útil per solucionar l'equació d'ones homogènia $u_{tt} - c^2 u_{xx} = 0$.

La vareta no homogènia

Obs. Si considerem la conductivitat tèrmica de la vareta p = p(x) i r = r(x) la seva densitat de massa, aleshores obtenim l'equació

$$r(x)u_t - (p(x)u_x)_x = 0$$

Def. Definim el producte escalar

$$\langle v, w \rangle_r = \int_0^L v(x)w(x)r(x)dx$$

Obs. L'operador $A = \frac{1}{r(x)} \partial_x (p(x) \partial_x)$ és simètric respecte el producte escalar $\langle \cdot, \cdot \rangle_r$ si suposem condicions de Dirichlet o de Neumann homogènies, però no ho és respecte a $\langle \cdot, \cdot \rangle_2$.

Obs. $\mathcal{L}^2(0, L)$ amb $\langle \cdot, \cdot \rangle_r$ és un espai de Hilbert amb la mateixa topologia que amb el producte escalar $\langle \cdot, \cdot \rangle_2$.

Th. Existeix una base de $\mathcal{L}^2(0, L)$ ortonormal respecte el

Th. Existeix una base de $\mathscr{L}^2(0,L)$ ortonormal respecte el producte escalar $\langle \cdot, \cdot \rangle_r$ formada per funcions pròpies de A. De fet $\exists \varphi_1, \varphi_2, \ldots \in \mathscr{L}^2(0,L)$ ortonormals i $0 < \lambda_1 < \lambda_2 < \cdots$ tals que $\forall k \geq 1$.

$$\begin{cases} A\varphi_k = -\lambda_k \varphi_k \\ \varphi_k(0) = \varphi_k(L) = 0 \end{cases}$$

Cor. Si $g(x) = \sum_{k \ge 1} b_k \varphi_k(x)$, la solució de l'equació d'ones homogènia amb condicions de Dirichlet homogènies és

$$u(x,t) = \sum_{k \ge 1} b_k e^{-\lambda_k t} \varphi_k(x)$$

L'equació de la calor no homogènia

Def. Considerem ara el problema

$$(CD) \begin{cases} u_t - u_{xx} = f(x,t), & x \in (0,\pi), \ t > 0 \\ u(0,t) = u(\pi,t) = 0, & t > 0 \\ u(x,0) = g(x), & x \in (0,\pi) \end{cases}$$

amb semigrup lineal i continu

$$T_t: \mathcal{L}^2(0,\pi) \to \mathcal{L}^2(0,\pi)$$
$$g \mapsto (T_t g)(x) = \sum_{k>1} b_k e^{-k^2 t} \sin(kx)$$

Obs. T_t és una contracció:

$$||T_t g||_2 \le e^{-t}||g||_2, \quad \forall t > 0, \, \forall g \in \mathcal{L}^2(0, \pi)$$

Obs. Per trobar la solució del problema (CD) podem

1. utilitzar la fórmula de Duhamel

$$u(x,t) = T_t g(x) + \int_0^t T_{t-s} f(\cdot,s)(x) ds$$

2. buscar una solució de la forma $u(x,t)=\sum_{k\geq 1}c_k(t)\sin(kx)$, de manera que si $f(x,t)=\sum_{k\geq 1}d_k(t)\sin(kx)$, aleshores ens caldrà resoldre

$$\begin{cases} c'_k(t) + k^2 c_k(t) = d_k(t) \\ c_k(0) = b_k \end{cases}$$

Obs. Si tenim condicions de vora no homogènies, aleshores podem resoldre el problema restant a u una funció w(x,t) que satisfaci les condicions de vora.

Obs. En el cas en què f = f(x), si u és solució de (CD), $v(x) = \lim_{t \to \infty} u(x, t)$ satisfà l'equació

$$\begin{cases} v_{xx} + f(x) = 0, & x \in (0, \pi) \\ v(0) = v(\pi) = 0 \end{cases}$$

que anomenem problema estacionari.

Unicitat de la solució de l'equació de la calor a \mathbb{R}^n Prop. (identitat de Green) Si $\Omega \subseteq \mathbb{R}^n$ és un domini fitat i Lipschitz, i $u, v : \overline{\Omega} \to \mathbb{R}$ funcions de classe $C^2(\overline{\Omega})$, aleshores

$$\int_{\Omega} (\Delta u) v = \int_{\partial \Omega} \frac{\partial u}{\partial \vec{\nu}} v - \int_{\Omega} (\vec{\nabla} u \cdot \vec{\nabla} v)$$

on hem definit $\frac{\partial u}{\partial \vec{v}} := \vec{\nabla} u \cdot \vec{v}$.

Prop. Sigui $\Omega\subseteq\mathbb{R}^n$ un domini Lipschitz fitat. Si l'equació de difusió (potser no homogènia) amb condicions de Dirichlet o de Neumann qualssevol a Ω

$$\begin{cases} u_t - \Delta u = f(x,t), & x \in \Omega, \ t > 0 \\ u(x,t) = h(x) & (o \frac{\partial u}{\partial \vec{\nu}}(x,t) = h(x)), & x \in \partial\Omega, \ t > 0 \\ u(x,0) = g(x), & x \in \Omega \end{cases}$$

té una solució $u \in \mathcal{C}^2(\overline{\Omega} \times [0, \infty))$, aleshores és única.

El laplacià. Funcions harmòniques

Def. L'equació de Poisson és $-\Delta v = f(x)$, $x \in \Omega \subseteq \mathbb{R}^n$. Si $f \equiv 0$, aleshores s'anomena equació de Laplace.

Def. Sigui $\Omega \subseteq \mathbb{R}^n$ obert, $u \in \mathcal{C}^2(\Omega)$. Diem que u és

- 1. harmònica a Ω si $-\Delta u = 0$.
- **2.** subharmònica a Ω si $-\Delta u \leq 0$.
- 3. superharmònica a Ω si $-\Delta u > 0$.

Def. Un conjunt $\Omega \subseteq \mathbb{R}^n$ és <u>convex</u> si $\lambda x + (1 - \lambda)y \in \Omega$, $\forall x, y \in \Omega$ i $\forall \lambda \in [0, 1]$.

Def. Donada una funció $f: \Omega \to \mathbb{R}$ amb $\Omega \subseteq \mathbb{R}^n$ convex, diem que f és convexa si $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$, $\forall x, y \in \Omega$ i $\forall \lambda \in [0, 1]$.

Obs. Si $u \in \mathcal{C}^2(\Omega)$ i $\Omega \subseteq \mathbb{R}^n$ és convex, són equivalents

- 1. u és convexa.
- 2. A cada punt de la gràfica de u, l'hiperplà tangent pel punt queda per sota de la gràfica.
- ${\bf 3.}\ u$ restringida a qualsevol segment és una funció convexa d'una variable.
- **4.** $u(\frac{x+y}{2}) \le \frac{1}{2}(u(x) + u(y)), \forall x, y \in \Omega.$
- 5. $\nabla^2 u(x) \succeq 0, \forall x \in \Omega$.

Obs. Sigui $\Omega \subseteq \mathbb{R}^n$ convex. Si $u \in C^2(\Omega)$ és convexa, aleshores $\Delta u = \operatorname{tr} \nabla^2 u > 0$, és a dir, u és subharmònica.

Prop. Si $\varphi = u + iv : U \subseteq \mathbb{C} \to \mathbb{C}$ és una funció holomorfa, aleshores satisfà $u_x = v_y$ i $u_y = -v_x$, que anomenem <u>equacions</u> de Cauchy-Riemann.

Prop. Per a tota $\varphi = u + iv : U \subseteq \mathbb{C} \to \mathbb{C}$ funció holomorfa, u i v són funcions \mathcal{C}^{∞} i harmòniques.

Def. Diem que $\Omega \subseteq \mathbb{C}$ és simplement connex si és arc-connex i tota corba tancada és contràctil.

Prop. Si $u:\Omega\to\mathbb{R}$ és una funció harmònica en $\Omega\subseteq\mathbb{C}$ obert

simplement connex, aleshores $\exists v: \Omega \to \mathbb{R}$ també harmònica, que anomenem <u>harmònica conjugada</u>, i $\varphi = u + iv$ és holomorfa. Obs. z^k és holomorfa i per tant $r^k \cos(k\theta)$ i $r^k \sin(k\theta)$ són harmòniques, perquè $z^k = r^k e^{ik\theta} = (r^k \cos(k\theta)) + i(r^k \sin(k\theta))$. Prop. En coordenades polars $(x, y) = (r \cos \theta, r \sin \theta)$ l'expressió del laplacià esdevé

$$\Delta u = u_{rr} + \frac{u_r}{r} + \frac{u_{\theta\theta}}{r^2} = \frac{1}{r}(ru_r)_r + \frac{u_{\theta\theta}}{r^2}$$

Obs. Si $\varphi = u + iv$ és holomorfa en el disc $D_1(0)$, aleshores es pot escriure en la forma $\varphi(z) = \sum_{k \geq 0} a_k r^k (\cos(k\theta) + i\sin(k\theta))$ on $a_k = b_k + ic_k \in \mathbb{C}$. Així, u es pot expressar com a sèrie de Fourier

$$u(z) = \sum_{k>0} (b_k r^k \cos(k\theta) - c_k r^k \sin(k\theta))$$

Obs. Són funcions harmòniques

- 1. $e^x \cos(y)$ i $e^x \sin(y)$.
- 2. $\log \sqrt{x^2 + y^2}$ i $\arctan(\frac{y}{x})$, en tot domini simplement connex que no contingui el 0.

Existència i unicitat de solucions de l'equació de Poisson Prop. Siguin $f,g:\Omega\to\mathbb{R}$ amb $\Omega\subseteq\mathbb{R}^n$ obert Lipschitz fitat. Considerem els problemes

$$(PD) \begin{cases} -\Delta u = f, & \text{a } \Omega \\ u = g, & \text{a } \partial \Omega \end{cases}, \quad (PN) \begin{cases} -\Delta u = f, & \text{a } \Omega \\ \frac{\partial u}{\partial \overrightarrow{\nu}} = g, & \text{a } \partial \Omega \end{cases}$$

- 1. Si $u \in \mathcal{C}^2(\overline{\Omega})$ és una solució de (PD), aleshores és l'única.
- **2.** Si $u \in C^2(\overline{\Omega})$ és una solució de (PN), aleshores és l'única llevat de constant en cada component connex de Ω .

Prop. Donat $\Omega \subseteq \mathbb{R}^2$ obert, tota funció harmònica $u \in \mathcal{C}^2(\Omega)$ és $\mathcal{C}^{\infty}(\Omega)$ i analítica.

Def. Considerem l'EDP $Au_{xx} + 2Bu_{xy} + Cu_{yy} = 0$ i la matriu $M = \begin{pmatrix} A & B \\ B & C \end{pmatrix}$. Siguin λ_1 i λ_2 els vaps de la matriu.

- 1. Si $\lambda_1 \lambda_2 > 0$, diem que l'equació és <u>el·líptica</u>.
- **2.** Si $\lambda_1 \lambda_2 < 0$, diem que l'equació és <u>hiperbòlica</u>.

Def. Diem que una EDP és <u>parabòlica</u> si és de la forma $u_t - u_{xx} = 0$ llevat de reescalat de variables.

Prop. Sigui $B_R=B_R(0)\subseteq\mathbb{R}^2$ amb R>0. Donada una funció $g:\partial B_R\to\mathbb{R}$ contínua, el problema

$$(LD) \begin{cases} -\Delta u = 0, & \text{a } B_R \\ u = g, & \text{a } \partial B_R \end{cases}$$

admet una solució $u\in\mathcal{C}^2(B_R)\cap\mathcal{C}^0(\overline{B}_R)$ i ve donada per

$$u(x) = \int_{\partial B_R} P_R(x, y) g(y) dy = \frac{R^2 - ||x||^2}{2\pi R} \int_{\partial B_R} \frac{g(y)}{||x - y||^2} dy$$

Def. Anomenem <u>nucli de Poisson</u> pel disc $B_R \subseteq \mathbb{R}^2$ a la funció

$$P_R(x,y) = \frac{R^2 - ||x||^2}{2\pi R} \frac{1}{||x-y||^2}$$

Cor. Si la solució $u(x) = \int_{\partial B_R} P_R(x,y) g(y) dy$ de (LD) és de classe \mathcal{C}^2 fins a la vora, és a dir $u \in \mathcal{C}^2(\overline{B}_R)$, aleshores és l'única i és \mathcal{C}^{∞} en $x \in B_R$.

Obs. L'existència i unicitat de solucions de (LD) es pot traslladar a tot $\Omega \subseteq \mathbb{R}^2$ obert simplement connex, ja que

- 1. $\forall \Omega \subseteq \mathbb{R}^2$ obert simplement connex no buit, $\exists \varphi : \Omega \to D_1(0)$ biholomorfa (teorema de l'aplicació conforme de Riemann).
- **2.** Si $u: \Omega \to \mathbb{R}$ és harmònica, aleshores $u \circ \varphi^{-1}$ també.

Probabilitats i el laplacià

La probabilitat d'escapar de $\Omega \subseteq \mathbb{R}^2$ a la primera

Obs. Suposem que tenim una regió fitada $\Omega \subseteq \mathbb{R}^2$ i la partició de la vora $\partial \Omega = \Gamma_O \sqcup \Gamma_T$ en la part "oberta" i la part "tancada". Considerem ara una partícula en $x = (x_1, x_2) \in \Omega$ que camina aleatòriament dins de Ω , de manera que

- 1. no privilegia cap direcció i
- 2. no té memòria.

Aquest és un procés de difusió o moviment Brownià.

Obs. Volem calcular la funció que dona la probabilitat que el primer cop que toqui la vora $\partial\Omega$ ho faci en la part oberta Γ_O , en funció del punt de partida $x \in \Omega$. Denotem aquesta funció per $u(x), x \in \Omega$.

Obs. u satisfà $-\Delta u = 0$, és a dir, és una funció harmònica.

La probabilitat d'estar en $x \in \mathbb{R}$ en un instant t > 0

Obs. Suposem que tenim una partícula en x=0 a temps t=0. A mesura que passa el temps, la partícula es va movent aleatòriament en \mathbb{R} .

Obs. Volem calcular la funció que dona la probabilitat que en t > 0 es trobi en un cert punt $x \in \mathbb{R}$. Denotem aquesta funció per $u(x,t), x \in \mathbb{R}, t > 0$.

Def. Cometent un clar abús de notació, podem definir la delta de Dirac $\delta(x)$, com una funció que $\forall f:\mathbb{R}\to\mathbb{R}$ satisfà

$$\int_{\mathbb{R}} \delta(x)dx = 1, \quad \int_{\mathbb{R}} f(x)\delta(x)dx = f(0)$$

Obs. u satisfà

$$\begin{cases} u_t - Du_{xx} = 0, & x \in \mathbb{R}, t > 0 \\ u(x,0) = \delta(x), & x \in \mathbb{R} \end{cases}$$

on D > 0.

Prop. Si busquem una solució del problema de la forma $u(x,t) = \frac{1}{\sqrt{t}}\phi(\frac{x}{\sqrt{t}})$ amb D=1, obtenim la solució

$$u(x,t) = \frac{1}{2\sqrt{\pi}}e^{-\frac{x^2}{4t}}, \ x \in \mathbb{R}, t > 0$$

Obs. Si considerem una funció g(x) en lloc de $\delta(x)$ com a condició inicial, aleshores obtenim una solució

$$u(x,t) = \int_{\mathbb{R}} g(y) \frac{1}{\sqrt{4\pi t}} e^{-\frac{(x-y)^2}{4t}} dy = g * \left(\frac{1}{\sqrt{4\pi t}} e^{-\frac{x^2}{4t}}\right)$$

on * denota la convolució.

Lema. $\partial_{x_i} r = \partial_r x_i = \frac{x_i}{r}$.

Prop. Si u(x), $x \in \Omega \subseteq \mathbb{R}^n$, és radialment simètrica, és a dir, només depèn del radi, aleshores l'expressió del laplacià en coordenades polars esdevé

$$\Delta u = r^{1-n} (r^{n-1} u_r)_r = u_{rr} + \frac{n-1}{r} u_r$$

Obs. Pel mateix problema en \mathbb{R}^n es pot assajar una solució de la forma $\Gamma(x,t)=\frac{1}{(Dt)^{n/2}}\phi\Big(\frac{||x||}{(Dt)^{1/2}}\Big).$

- 1. Si $u(x,0) = \delta(x)$, aleshores s'obté $\Gamma(x,t) = \frac{1}{(4\pi Dt)^{n/2}} e^{-\frac{||x||^2}{4Dt}}$.
- **2.** Si $u(\cdot,0)=g$, aleshores s'obté $u(\cdot,t)=\Gamma(\cdot,t)*g$.

Propietat de la mitjana. Principi del màxim i el mínim Obs. La notació f vol dir integrar i dividir per la mesura del conjunt en el qual s'integra.

Th. (de Fubini esfèric) Donats $\Omega \subseteq \mathbb{R}^n$ obert i $u \in \mathcal{L}^1(\Omega)$,

$$\int_{\Omega} u = \int_{0}^{+\infty} \left(\int_{\partial B_{r} \cap \Omega} u d\sigma \right) dr$$

on $B_r = B_r(x_0)$ per a un $x_0 \in \mathbb{R}^n$ donat.

Prop. (propietat de la mitjana) Sigui $\Omega \subseteq \mathbb{R}^n$ un obert i $u \in \mathcal{C}^2(\Omega)$ una funció harmònica en Ω . Aleshores $\forall x_0 \in \Omega$ i $\forall \overline{B}_r(x_0) \subseteq \Omega$,

$$u(x_0) = \int_{\partial B_r(x_0)} u(y)dy = \int_{B_r(x_0)} u(y)dy$$

Obs. El recíproc també és cert, és a dir, si $u \in \mathcal{C}^0(\Omega)$ satisfà la propietat de la mitjana aleshores $u \in \mathcal{C}^2(\Omega)$ i $-\Delta u = 0$.

Lema. Si $u \in \mathcal{C}^2$, aleshores $\operatorname{tr} \nabla^2 u = \Delta u$.

Principi del màxim i el mínim per l'equació de Poisson

Prop. (principi del màxim i el mínim per l'equació de Poisson). Sigui $\Omega \subseteq \mathbb{R}^n$ un obert fitat i sigui $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}^0(\overline{\Omega})$.

- 1. Si u és subharmònica $(-\Delta u \le 0)$ a Ω , aleshores u assoleix el seu màxim a $\overline{\Omega}$ en almenys un punt de $\partial\Omega$.
- **2.** Si u és superharmònica $(-\Delta u \ge 0)$ a Ω , aleshores u assoleix el seu mínim a $\overline{\Omega}$ en almenys un punt de $\partial\Omega$.
- 3. Si u és harmònica $(-\Delta u = 0)$ a Ω , aleshores u satisfà les dues propietats anteriors.

Obs. No podem prescindir de la hipòtesi de Ω fitat.

Cor. Sigui $\Omega \subseteq \mathbb{R}^n$ un obert fitat. Si el problema

$$(PD) \begin{cases} -\Delta u = f, & \text{a } \Omega \\ u = g, & \text{a } \partial \Omega \end{cases}$$

té una solució $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}^0(\overline{\Omega})$, aleshores és l'única.

Principi del màxim i el mínim per l'equació de difusió Def. Sigui $Q_T = \Omega \times (0,T)$, on $\Omega \subseteq \mathbb{R}^n$ és un obert fitat i T > 0. Anomenem frontera parabòlica de Q_T a

$$\partial_P Q_T = (\Omega \times \{0\}) \cup (\partial \Omega \times [0, T])$$

Def. Sigui $u \in \mathcal{C}^2(Q_T)$. Diem que u és

- 1. <u>calòrica</u> a Q_T si $u_t \Delta u = 0$.
- **2.** subcalòrica a Q_T si $u_t \Delta u \leq 0$.
- 3. supercalòrica a Q_T si $u_t \Delta u \ge 0$.

Prop. (principi del màxim i el mínim per l'equació de difusió). Sigui $u \in C^2(Q_T) \cap C^0(\overline{Q_T})$.

- 1. Si u és subcalòrica $(u_t \Delta u \le 0)$ a Q_T , aleshores u assoleix el seu màxim a $\overline{Q_T}$ en almenys un punt de $\partial_P Q_T$.
- **2.** Si u és supercalòrica $(u_t \Delta u \ge 0)$ a Q_T , aleshores u assoleix el seu mínim a $\overline{Q_T}$ en almenys un punt de $\partial_P Q_T$.
- 3. Si u és calòrica $(u_t \Delta u = 0)$ a Q_T , aleshores u satisfà les dues propietats anteriors.

Cor. Considerem l'equació de la calor amb condicions de Dirichlet

$$\begin{cases} u_t - \Delta u = f(x,t), & (x,t) \in Q_T \\ u(x,t) = d(x,t), & (x,t) \in \partial\Omega \times [0,T] \\ u(x,0) = g(x), & (x,t) \in \Omega \times \{0\} \end{cases}$$

1. Si $f \leq 0$, aleshores el màxim de u serà el màxim entre els màxims de g i d.

2. Si $f \ge 0$, aleshores el mínim de u serà el mínim entre els mínims de q i d.

Obs. Una versió més general del principi del màxim i el mínim s'obté considerant $Lu(x) := \operatorname{tr}(A(x)\nabla^2 u(x)) + b(x) \cdot \vec{\nabla} u(x)$ amb A(x) matriu simètrica definida positiva $\forall x \in \Omega$.

Principi de comparació

Def. Considerem novament el problema

$$(PD) \begin{cases} -\Delta u = f, & \text{a } \Omega \\ u = g, & \text{a } \partial \Omega \end{cases}$$

on $\Omega \subseteq \mathbb{R}^n$ és un obert fitat. Diem que $v, w \in \mathcal{C}^2(\Omega) \cap \mathcal{C}^0(\overline{\Omega})$ són subsolució i supersolució del problema, respectivament, si

$$\begin{cases} -\Delta v \leq f, & \text{a } \Omega \\ v \leq g, & \text{a } \partial \Omega \end{cases}, \qquad \begin{cases} -\Delta w \geq f, & \text{a } \Omega \\ w \geq g, & \text{a } \partial \Omega \end{cases}$$

Prop. (principi de comparació per l'equació de Poisson). Si v i w són subsolució i supersolució de (PD), respectivament, aleshores $v \leq w$ a $\overline{\Omega}$. Per altra banda, si a més u és solució, aleshores $v \leq u < w$ a $\overline{\Omega}$.

Cor. Sigui $\Omega \subseteq \mathbb{R}^n$ un obert fitat. Considerem el problema

$$\begin{cases} u_t - \Delta u = 0, & \text{a } \Omega \times (0, +\infty) \\ u = 0, & \text{a } \partial \Omega \times (0, +\infty) \\ u(\cdot, 0) = g, & \text{a } \overline{\Omega} \end{cases}$$

Si $g \in \mathcal{C}^0(\overline{\Omega})$, aleshores $\exists C > 0$ tal que

$$u(x,t) \le \frac{C}{t^{n/2}}||g||_{\infty}$$

Resultats de problemes i altres resultats Equació del transport lineal

Def. Més en general, diem que u és una solució generalitzada de $u_t + (cu)_x = f(x,t)$ si l'equació

$$\frac{d}{dt} \int_a^b u(x,t) dx = c(a,t) u(a,t) - c(b,t) u(b,t) + \int_a^b f(x,t) dx$$

té sentit i u la satisfà $\forall (a, b)$ i $\forall t > 0$.

Obs. Donada una g coneguda considerem l'EDP següent, on $\partial\Omega$ està parametritzada per $\gamma(s)=(\alpha(s),\beta(s))$.

$$\begin{cases} a(x,y,u)u_x + b(x,y,u)u_y = c(x,y,u), & (x,y) \in \Omega \\ u(x,y) = g(x,y), & (x,y) \in \partial \Omega \end{cases}$$

Per resoldre aquesta EDP considerem

$$X(x, y, z) = (a(x, y, z), b(x, y, z), c(x, y, z))$$

i $\forall \gamma(s) \in \partial \Omega$ l'EDO

$$\begin{cases} \frac{d}{dt}\psi_s = X(\psi_s) \\ \psi_s(0) = (\alpha(s), \beta(s), g(\alpha(s), \beta(s))) \end{cases}$$

D'aquesta manera, si notem $\psi(s,t) = \psi_s(t) = (\psi^1, \psi^2, \psi^3)(s,t)$ i $\psi^{1,2}$ és invertible, $u(x,y) = \psi^3((\psi^{1,2})^{-1}(x,y))$ és una solució de l'EDP.

Prop. Considerem I = [a, b] i els espais $\mathcal{L}^1(I)$, $\mathcal{L}^2(I)$, $\mathcal{C}^0(I)$ i $\mathcal{C}^1(I)$ amb les normes habituals. Tenim $\mathcal{C}^1 \subseteq \mathcal{C}^0 \subseteq \mathcal{L}^2 \subseteq \mathcal{L}^1$ i

- 1. $||\cdot||_{\mathscr{L}^1} \leq \sqrt{b-a}||\cdot||_{\mathscr{L}^2}$
- $2. ||\cdot||_{\mathcal{L}^2} \leq \sqrt{b-a}||\cdot||_{\mathcal{C}^0}$
- 3. $||\cdot||_{\mathcal{C}^0} \leq ||\cdot||_{\mathcal{C}^1}$

Obs. Considerem el cas particular de l'equació de Burgers $u_t + uu_x = 0$ amb condició inicial $u(x, 0) = g(x), g \in C^1(\mathbb{R})$.

- 1. Si g' està fitada $\exists u$ solució en un interval petit $[0, t_0]$.
- **2.** Si g és creixent $\exists u$ solució $\forall t \geq 0$.

Equació d'ones en una dimensió

Prop. Sigui $u \in \mathcal{C}^2(\mathbb{R} \times [0, \infty))$ una solució del problema

$$\begin{cases} \rho u_{tt} - \tau u_{xx} = 0, & x \in \mathbb{R}, t \ge 0 \\ u(x,0) = g(x), & x \in \mathbb{R} \\ u_t(x,0) = h(x), & x \in \mathbb{R} \end{cases}$$

on g i h són prou regulars i tenen suport compacte en un interval [a,b]. Si definim

$$K(t) = \frac{1}{2} \int_{\mathbb{R}} \rho u_t^2(x, t) dx, \quad P(t) = \frac{1}{2} \int_{\mathbb{R}} \tau u_x^2(x, t) dx$$

1. K(t) + P(t) és constant en $t \ge 0$.

2. K(t) = P(t) quan $t > \frac{b-a}{2c}$, amb $c = \sqrt{\frac{\tau}{\rho}}$.

Obs. u = u(x,t) és solució de $u_{tt} - u_{xx} = 0$ si, i només si, $w(x,t) = u(\frac{x}{x},t)$ és solució de $w_{tt} - c^2 w_{xx} = 0$.

Def. Donat el problema

$$\begin{cases} u_{tt} - c^2 u_{xx} = f(x, t), & x \in \mathbb{R}, t \ge 0 \\ u(x, 0) = g(x), & x \in \mathbb{R} \\ u_t(x, 0) = h(x), & x \in \mathbb{R} \end{cases}$$

diem que u n'és una solució en el sentit integral si és de la forma

$$u(x,t) = \frac{1}{2}(g(x-ct) + g(x+ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} h(y) dy + \frac{1}{2c} \iint_{T(x,t)} f(x,t) dx dt$$

Obs. Aquesta expressió per u ens pot ajudar si volem plantejar un problema de punt fix per demostrar l'existència i unicitat de u amb certes condicions.

Equació de la calor en una dimensió

Prop. (designaltat de Wirtinger). Signi $v: \mathbb{R} \to \mathbb{R}$ funció \mathcal{C}^1

1. Si v és 2π -periòdica, aleshores

$$\int_0^{2\pi} (v(x) - c_v)^2 dx \le \int_0^{2\pi} (v'(x))^2 dx$$

on $c_v = \frac{1}{2\pi} \int_0^{2\pi} v(x) dx$ i s'assoleix la igualtat si, i només si, $v(x) = c_v + a_1 \cos(x) + b_1 \sin(x)$, on

$$a_1 = \frac{1}{\pi} \int_0^{2\pi} v(x) \cos(x) dx$$
 $b_1 = \frac{1}{\pi} \int_0^{2\pi} v(x) \sin(x) dx$

2. si v és (b-a)-periòdica, aleshores

$$\int_{a}^{b} (v(x) - c_v)^2 dx \le \left(\frac{b - a}{2\pi}\right)^2 \int_{a}^{b} (v'(x))^2 dx$$

on $c_v = \frac{1}{b-a} \int_a^b v(x) dx$.

Prop. (desigualtat isoperimètrica) Sigui $\Omega \subseteq \mathbb{R}^2$ un domini regular i fitat. Aleshores $4\pi |\Omega| \leq |\partial \Omega|^2$ i la igualtat s'assoleix $\iff \Omega$ és un cercle.

Obs. Si $\partial\Omega$ té longitud L i està parametritzada per l'arc amb $\gamma(t)=(x(t),y(t)),$ aleshores $|\partial\Omega|=\int_0^L (x^2(t)+y^2(t))dt.$

Th. Sigui $g \in \mathcal{L}^2(0,\pi)$ i (a_k) els seus coeficients de Fourier en base de cosinus. Aleshores

1. La funció $u(x,t)=\sum_{k\geq 1}a_ke^{-k^2t}\cos(kx)$ és l'única funció $\mathcal{C}^2([0,\pi]\times(0,\infty))$ que satisfà

$$\begin{cases} u_t - u_{xx} = 0, & x \in (0, \pi), t > 0 \\ u_x(0, t) = u_x(\pi, t), & t > 0 \\ u(\cdot, t) \xrightarrow{\mathcal{L}^2} g \end{cases}$$

De fet, $u \in \mathcal{C}^{\infty}([0, \pi] \times (0, \infty))$.

- **2.** Si $g \in \mathcal{C}^1([0,\pi])$, aleshores $u \in \mathcal{C}^0([0,\pi] \times [0,\infty))$.
- 3. $u(\cdot,t) \xrightarrow[t \to \infty]{\text{unif.}} m = \frac{1}{\pi} \int_0^{\pi} g(y) dy$.
- **4.** Si $g \in C^2([0,\pi])$ i a més també $g'(0) = g'(\pi) = 0$, aleshores $u_x(\cdot,t) \xrightarrow[t \to 0^+]{\text{unif.}} g'$.

El laplacià. Funcions harmòniques

Prop. (invariància del laplacià per rotacions). Sigui $\Omega_1 \subseteq \mathbb{R}^n$ obert i $u \in \mathcal{C}^2(\Omega_1)$. Donada O matriu ortogonal, definim v(y) = u(Oy) per a tot $y \in \Omega_2 = \{y \in \mathbb{R}^n \mid Oy \in \Omega_1\}$. Aleshores se satisfà $\Delta v(y) = \Delta u(Oy)$ per a tot $y \in \Omega_2$. **Cor.** Sigui $\Omega \subseteq \mathbb{R}^n$ un obert fitat i $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}^0(\overline{\Omega})$ una solució del problema

$$(PD) \begin{cases} -\Delta u = f, & \text{a } \Omega \\ u = g, & \text{a } \partial \Omega \end{cases}$$

que serà, per tant, única.

- **1.** Si Ω , f i g són invariants per una matriu ortogonal O, aleshores u(x) = u(Ox), $\forall x \in \Omega$.
- 2. Si Ω , f i g són invariants per qualsevol matriu ortogonal, aleshores u és radialment simètrica, és a dir, només depèn de ||x|| i es pot expressar com $u(x) = U(||x||) = U(r), \forall x \in \Omega$. **Prop.** Si u és harmònica en $V \subseteq \mathbb{R}^2$ i $\varphi : U \subseteq \mathbb{C} \to V$ és holomorfa en U, aleshores $u \circ \varphi$ és harmònica en U. Def. Donat h > 0, considerem el conjunt de punts

$$\mathcal{P} = \{(x_i, y_j) = (ih, jh) \mid i = 1, \dots, n_x, j = 1, \dots, n_y\} \subseteq \mathbb{R}^2$$

- 1. Diem que $u: \mathcal{P} \subseteq \mathbb{R}^2 \to [0, 255] \subseteq \mathbb{R}$ és una <u>imatge discreta</u>.
- 2. Diem que $(x_i, y_j) \in \mathcal{P}$ és un <u>punt interior</u> de \mathcal{P} si $i \neq 1, n_x$ i $j \neq 1, n_y$. Altrament, diem que és un <u>punt de la vora de</u> \mathcal{P} .
- 3. u imatge discreta és una imatge ideal si $\forall (x_i, y_j) \in \text{Int } \mathcal{P},$ $u(x_i, y_j) = \frac{1}{4}(u(x_{i+1}, y_j) + u(x_{i-1}, y_j) + u(x_i, y_{j+1}) + u(x_i, y_{j-1})).$
- 4. Donada una imatge discreta u, anomenem <u>laplacià discret</u> de u en el punt interior $(x_i, y_i) \in \mathcal{P}$ a

$$\Delta_h u(x_i, y_j) = \frac{1}{h^2} \left[\left(u(x_{i+1}, y_j) + u(x_{i-1}, y_j) - 2u(x_i, y_j) \right) + \left(u(x_i, y_{j+1}) + u(x_i, y_{j-1}) - 2u(x_i, y_j) \right) \right]$$

Obs. Una imatge discreta u és ideal $\iff \Delta_h u(x_i, y_j) = 0$, $\forall (x_i, y_j) \in \mathcal{P}$ punt interior.

Prop. (principi fort del màxim i el mínim discret). Si v és una | **Prop.** Siguin f_n contínues i $\sum_{n\geq 0} f_n$ unif. conv. Aleshores imatge ideal, aleshores

1. o bé el màxim i el mínim només s'assoleixen a la vora

2. o bé v és constant.

Th. Siguin D>0 i $g\in\mathcal{C}_{b}^{0}(\mathbb{R}^{n})$. Aleshores existeix una única solució fitada $u \in \mathcal{C}^2(\mathbb{R}^n \times (0,\infty)) \cap \mathcal{C}_h^0(\mathbb{R}^n \times [0,\infty))$ de l'equació de difusió

$$(\overline{CD}) \begin{cases} u_t - D\Delta u = 0, & \text{a } \mathbb{R}^n \times (0, \infty) \\ u(\cdot, 0) = g, & \text{a } \mathbb{R}^n \end{cases}$$

A més, la solució ve donada per la convolució de la condició inicial amb el nucli de la calor

$$\Gamma_D(x,t) = \frac{1}{(4\pi Dt)^{n/2}} e^{-\frac{||x||^2}{4Dt}},$$

és a dir, $u(x,t) = \int_{\mathbb{R}} \Gamma_D(x-y,t)g(y)dy, \forall x \in \mathbb{R}^n \ i \ \forall t > 0.$ Cor. Si u és la solució de (\overline{CD}) amb $g \geq 0$, aleshores $u \geq 0$. Si a més q>0 en un obert de \mathbb{R}^n , aleshores u>0.

Prop. (principi de comparació per l'equació de difusió en $\Omega = \mathbb{R}^n$). Si v i w són dues funcions fitades que satisfan $v_t - D\Delta v \le w_t - D\Delta w$ en $\mathbb{R}^n \times (0, \infty)$ i $v(\cdot, 0) \le w(\cdot, 0)$ en \mathbb{R}^n , aleshores $v \leq w$ en $\mathbb{R}^n \times [0, \infty)$. Si $v_t - D\Delta v < w_t - D\Delta w$ en $\mathbb{R}^n \times (0, \infty)$ també, aleshores v < w en $\mathbb{R}^n \times (0, \infty)$.

Convergència uniforme

Obs. En aquest apartat suposem $f_n, f: E \subseteq \mathbb{R} \to \mathbb{R}$ **Prop.** Si (f_n) és una successió de funcions contínues i $f_n \xrightarrow[n \to \infty]{\text{unif.}} f$, aleshores f és contínua.

Prop. E = [a, b]. Si (f_n) és una successió de funcions integrables Riemann i $f_n \xrightarrow[n \to \infty]{\text{unif.}} f$, aleshores f és integrable Riemann i $\lim_{n\to\infty} \int_a^b f_n = \int_a^b f$.

Cor. E = [a, b]. Si (f_n) és una successió de funcions integrables Riemann i $\sum_{n>0} f_n$ és unif. conv., aleshores

$$\int_{a}^{b} \left(\sum_{n>0} f_n \right) = \sum_{n>0} \left(\int_{a}^{b} f_n \right)$$

Prop. E = [a, b]. Si (f_n) és una successió de funcions derivables amb $f'_n \xrightarrow[n \to \infty]{\text{unif.}} g$ i, a més, $\exists x_0 \in [a, b]$ tal que $(f_n(x_0))$ convergeix, aleshores $\exists f$ derivable tal que $f_n \xrightarrow{\text{unif.}} f$ i f' = g. **Th.** (criteri M de Weierstrass) Sigui (f_n) una successió de funcions. Si $\forall n \in \mathbb{N}, \exists M_n > 0$ tal que $||f_n||_{\infty} < M_n$ i a més $\sum_{n\geq 0} M_n < \infty,$ ale shores $\sum_{n\geq 0} f_n$ és unif. conv.

$$\lim_{x \to x_0} \sum_{n \ge 0} f_n(x) = \sum_{n \ge 0} f_n(x_0)$$

Integral de Lebesgue

Teoria general

Obs. En aguest apartat prenem (X, \mathcal{X}, μ) espai de mesura i $\mathcal{M} = \{ f : X \to \mathbb{R}^* \mid f \ \mathcal{X}\text{-mesurable} \}, \text{ on } \mathbb{R}^* = \mathbb{R} \cup \{-\infty, +\infty\},$ i també $\mathcal{L} = \{ f \in \mathcal{M} \mid f \text{ integrable} \}.$

Prop. Sigui $(g_n) \subseteq \mathcal{M}$ successió amb $g_n \geq 0$. Aleshores

$$\int_{X} \left(\sum_{n>0} g_n \right) d\mu = \sum_{n>0} \left(\int_{X} g_n d\mu \right)$$

Th. (de la convergència dominada). Sigui $(f_n) \subseteq \mathcal{M}$ successió amb $f_n \xrightarrow[n \to \infty]{\text{punt.}} f$ μ -ga i tal que $\exists g \in \mathcal{L} \text{ amb } |f_n(x)| \leq g(x)$, $\forall n \in \mathbb{N}$. Aleshores $f \in \mathcal{L}$ i

$$\int_X f d\mu = \lim_{n \to \infty} \int_X f_n d\mu.$$

Cor. Sigui $(f_n) \subseteq \mathcal{M}$ amb $\sum_{n\geq 0} f_n$ convergent μ -ga. Si es dona qualsevol de les dues propietats

1. $\sum_{n>0} \left(\int_X |f_n| d\mu \right) < \infty$, o bé

2. $\exists (g_n) \subseteq \mathcal{M}$ amb $\sum_{n\geq 0} g_n$ convergent μ -ga, $|f_n(x)| \leq g_n(x)$ i $\sum_{n>0} \left(\int_X g_n d\mu \right) < \infty,$

aleshores

$$\int_{X} \left(\sum_{n \ge 0} f_n \right) d\mu = \sum_{n \ge 0} \left(\int_{X} f_n d\mu \right)$$

Th. Sigui f integrable Riemann en [a, b]. Aleshores tenim $f1_{[a,b]} \in \mathcal{L}(\mathbb{R},\mathcal{B},\lambda)$ i $\int_a^b f(x)dx = \int_{\mathbb{R}} f1_{[a,b]}d\lambda$.

Th. Sigui una funció

$$f \colon X \times [a, b] \longrightarrow \mathbb{R}$$

 $(x, t) \longmapsto f(x, t)$

tal que f és \mathcal{X} -mesurable $\forall t \in [a,b]$ i $F(t) = \int_{\mathcal{X}} f(x,t) d\mu(x)$. Suposem que f és integrable fixat un $t_0 \in [a, b]$ i derivable respecte t. Si $\exists g \in \mathcal{L}$ tal que $\forall t \in [a, b]$ es té $\left|\frac{\partial f}{\partial t}(x, t)\right| \leq |g(x)|$ μ -ga, aleshores F és derivable i $F'(t) = \int_{Y} \frac{\partial f}{\partial t}(x,t) d\mu(x)$.

Def. Anomenem espai de Lebesgue \mathcal{L}^p al conjunt següent: $\mathscr{L}^p(X,\mathcal{X},\mu) = \{ [f] \mid f \ \mathcal{X}\text{-mesurable i } \int_X |f|^p d\mu < \infty \}, \text{ on }$

 $1 \le p < \infty$ i [f] denota la classe d'equivalència de funcions per la relació $f \sim_{\mu} g \iff f = g \mu$ -ga.

Obs. Es fa un abús de notació i s'identifica [f] amb f.

Def. Donada $f \in \mathcal{L}^p$ es defineix la norma $||f||_p$ com

$$||f||_p = \left(\int_X |f|^p d\mu\right)^{1/p}$$

Prop. (designaltat de Hölder). Signin $f \in \mathcal{L}^p$ i $g \in \mathcal{L}^q$, on $\frac{1}{p} + \frac{1}{q} = 1$. Aleshores tenim $||fg||_1 \le ||f||_p ||g||_q$. A més, s'assoleix la igualtat $\iff \exists \lambda \in \mathbb{R}$ tal que $|f|^p = \lambda |q|^p$ μ -ga.

Cor. Siguin $f, g \in \mathcal{L}^2$. Aleshores $||fg||_1 \leq ||f||_2 |||g||_2$. A més s'assoleix la igualtat $\iff \exists \lambda \in \mathbb{R} \text{ tal que } f^2 = \lambda g^2.$

Prop. (designaltat de Cauchy-Schwarz) Signin $f, q \in \mathcal{L}^2$. Aleshores

$$\left| \int_X (fg) d\mu \right| \le ||f||_2 ||g||_2$$

A més, s'assoleix la igualtat $\iff \exists \lambda \in \mathbb{R}$ tal que $f = \lambda g$.

Obs. Donat $\Omega \subseteq \mathbb{R}^n$ obert notem $\mathcal{L}^p(\Omega) \equiv \mathcal{L}^p(\Omega, \mathcal{B}_{|\Omega}, \lambda_{|\Omega})$.

Cor. Donat $f \in \mathcal{L}^p(a,b)$ i $\frac{1}{n} + \frac{1}{n} = 1$,

1. $\int_a^b |f| d\lambda \le (b-a)^{1/q} (\int_a^b |f|^p d\lambda)^{1/p}$.

2. Si p=2, aleshores $(\int_a^b |f| d\lambda)^2 \leq (b-a) \int_a^b f^2 d\lambda$.

Th. $(\mathcal{L}^p, ||\cdot||_p)$ és un espai de Banach.

Def. Anomenem espai de Lebesgue \mathcal{L}^{∞} al conjunt següent: $\mathscr{L}^{\infty}(X,\mathcal{X},\mu) = \{ [f] \mid f \text{ \mathcal{X}-mesurable i fitada μ-ga} \}, \text{ on } [f]$ denota la classe d'equivalencia de funcions per la relació $f \sim_{\mu} g \iff f = g \ \mu$ -ga.

Def. Donada $f \in \mathcal{L}^{\infty}$ es defineix la norma $||f||_{\infty}$ com

$$||f||_{\infty} = \inf \left\{ \sup_{x \in X \setminus N} |f(x)| \mid \mu(N) = 0 \right\}$$

Th. $(\mathscr{L}^{\infty}, ||\cdot||_{\infty})$ és un espai de Banach.

Sèries de Fourier

Teoria general

Obs. En aquest apartat prendrem I = (a, b) per simplicitat. Obs. $(\mathcal{L}^2(I), \langle \cdot, \cdot \rangle_2)$ és un espai de Hilbert, on el producte escalar està definit per

$$\langle f, g \rangle_2 = \int_a^b (fg) d\lambda$$

Def. Donat un espai euclidià diem que $S = \{\varphi_k\}_k$ és un

- 1. sistema ortogonal si $\langle \varphi_i, \varphi_i \rangle_2 = 0, \forall i \neq j$.
- **2.** sistema ortonormal si $\langle \varphi_i, \varphi_j \rangle_2 = \delta_{ij}, \forall i, j$.

Def. Donada $f\in \mathscr{L}^2(I)$ i $S=\{\varphi_k\}_k$ sistema ortonormal a $\mathscr{L}^2(I)$ definim la sèrie de Fourier de f respecte S com

$$(SFS)(f) = \sum_{k>0} \langle f, \varphi_k \rangle_2 \varphi_k$$

Prop. Siguin $f, g \in \mathcal{L}^2(I)$, $\lambda, \mu \in \mathbb{R}$ i $S = \{\varphi_k\}_k$ un sistema ortonormal a $\mathcal{L}^2(I)$. Aleshores

$$(SFS)(\lambda f + \mu g) = \lambda(SFS)(f) + \mu(SFS)(g)$$

Prop. Sigui S un sistema ortonormal a $\mathscr{L}^2(I)$ i $f \in \mathscr{L}^2(I)$ amb $(SFS)(f) = \sum_{k \geq 0} c_k \varphi_k$. Aleshores $\sum_{k \geq 0} c_k^2 < \infty$ i

- 1. (designaltat de Bessel). $\sum_{k>0} c_k^2 \leq ||f||_2^2$.
- **2.** (id. de Parseval). $\sum_{k\geq 0} c_k^2 = ||f||_2^2 \iff (\operatorname{SF}S)_n(f) \xrightarrow[n\to\infty]{\mathscr{L}^2} f$ **Cor.** Si S és un sistema ortonormal a $\mathscr{L}^2(I)$, $f \in \mathscr{L}^2(I)$ i

 $c_k = \langle f, \varphi_k \rangle_2$, aleshores $\lim_{k \to \infty} c_k = 0$.

Def. Un sistema ortonormal S a $\mathcal{L}^2(I)$ és <u>complet</u> si tenim que $\forall f \in \mathcal{L}^2(I), \langle f, \varphi_k \rangle_2 = 0, \forall k \geq 0, \implies f = 0.$

Th. Donat S sistema ortonormal a $\mathcal{L}^2(I)$ són equivalents.

- 1. S és complet.
- **2.** $(SFS)_n(f) \xrightarrow[n \to \infty]{\mathscr{L}^2} f, \forall f \in \mathscr{L}^2(I).$
- **3.** La identitat de Parseval és certa $\forall f \in \mathcal{L}^2(I)$.

Def. Diem que $S = \{\varphi_k\}_k$ és una base ortonormal de $\mathcal{L}^2(I)$ si és un sistema ortonormal complet.

Sèries habituals

Prop. Són exemples de bases ortonormals

1. A $\mathcal{L}^2(0,L)$ o a $\mathcal{L}^2\left(-\frac{L}{2},\frac{L}{2}\right)$ el sistema trigonomètric

$$\mathcal{T} = \left\{ \frac{1}{\sqrt{L}}, \sqrt{\frac{2}{L}} \cos\left(\frac{2\pi k}{L}x\right), \sqrt{\frac{2}{L}} \sin\left(\frac{2\pi k}{L}x\right) \mid k \ge 1 \right\}$$

2. A $\mathcal{L}^2(0,L)$ el sistema de sinus i el sistema de cosinus

$$S = \left\{ \sqrt{\frac{2}{L}} \sin\left(\frac{\pi k}{L}x\right) \mid k \ge 1 \right\}, \ C = \left\{ \frac{1}{\sqrt{L}}, \sqrt{\frac{2}{L}} \cos\left(\frac{\pi k}{L}x\right) \mid k \ge 1 \right\}$$

Cor. Són exemples de bases ortonormals

1. A $\mathcal{L}^2(0,2\pi)$ o a $\mathcal{L}^2(-\pi,\pi)$ el sistema trigonomètric

$$\mathcal{T}^* = \left\{ \frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}}\cos(kx), \frac{1}{\sqrt{\pi}}\sin(kx) \mid k \ge 1 \right\}$$

2. A $\mathcal{L}^2(0,\pi)$ el sistema de sinus i el sistema de cosinus

$$\mathcal{S}^* = \left\{ \sqrt{\frac{2}{\pi}} \sin(kx) \mid k \ge 1 \right\}, \ \mathcal{C}^* = \left\{ \frac{1}{\sqrt{\pi}}, \sqrt{\frac{2}{\pi}} \cos(kx) \mid k \ge 1 \right\}$$

Obs. Les sèries de Fourier en els sistemes trigonomètrics, de sinus i de cosinus són

$$(SFT)(f) = \frac{a_0}{2} + \sum_{k>1} a_k \cos\left(\frac{2\pi k}{L}x\right) + b_k \sin\left(\frac{2\pi k}{L}x\right)$$

$$(SFS)(f) = \sum_{k>1} \overline{b_k} \sin\left(\frac{\pi k}{L}x\right), \ (SFC)(f) = \frac{\overline{a_0}}{2} + \sum_{k>1} \overline{a_k} \cos\left(\frac{\pi k}{L}x\right)$$

amb els coeficients

$$a_k = \frac{2}{L} \int_0^L f(x) \cos\left(\frac{2\pi k}{L}x\right) dx, \ b_k = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{2\pi k}{L}x\right) dx$$

$$\overline{a_k} = \frac{2}{L} \int_0^L f(x) \cos\left(\frac{\pi k}{L}x\right) dx, \ \overline{b_k} = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{\pi k}{L}x\right) dx$$

i en particular

$$(SF\mathcal{T}^*)(f) = \frac{a_0^*}{2} + \sum_{k>1} a_k^* \cos(kx) + b_k^* \sin(kx)$$

$$(SFS^*)(f) = \sum_{k>1} \overline{b_k^*} \sin(kx), \ (SFC^*)(f) = \frac{\overline{a_0^*}}{2} + \sum_{k>1} \overline{a_k^*} \cos(kx)$$

amb els coeficients

$$a_k^* = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(kx) dx, \ b_k^* = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(kx) dx$$

$$\overline{a_k^*} = \frac{2}{\pi} \int_0^{\pi} f(x) \cos(kx) dx, \ \overline{b_k^*} = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(kx) dx$$

Obs. Si $f \in \mathcal{L}^2(0,L)$ o $f \in \mathcal{L}^2\left(-\frac{L}{2},\frac{L}{2}\right)$, aleshores

$$||f||_2^2 = \frac{L}{4}a_0^2 + \frac{L}{2}\sum_{k>1}(a_k^2 + b_k^2)$$

Th. (de Dirichlet) Sigui f L-periòdica contínua a trossos amb derivada contínua a trossos. Aleshores

$$(SFT)_n(f)(x) \xrightarrow[n\to\infty]{} \frac{f(x^-) + f(x^+)}{2}, \quad x \in \mathbb{R}$$

on $f(x^{\pm}) = \lim_{h \to 0^{\pm}} f(x+h)$.

Prop. Sigui f L-periòdica contínua amb derivada contínua a trossos. Aleshores $a_k' = \frac{2\pi}{L} k b_k$, $b_k' = -\frac{2\pi}{L} k a_k$, on a_k' i b_k' denoten els coeficients de Fourier de f'.

Cor. Si f L-periòdica contínua amb derivada contínua a trossos. Aleshores

$$||f'||_2^2 = \frac{L}{2} \left(\frac{2\pi}{L}\right)^2 \sum_{k>1} k^2 (a_k^2 + b_k^2)$$

Th. Sigui f L-periòdica contínua amb derivada contínua a trossos. Aleshores $(SF\mathcal{T})_n(f) \xrightarrow[n \to \infty]{unif.} f$.

Resultats d'anàlisi complexa

Def. Donat $U \subseteq \mathbb{C}$ obert, diem que $\varphi : U \to \mathbb{C}$ és <u>derivable</u> en $z_0 \in U$ si existeix el límit $f'(z_0) := \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$.

Def. Donat $U \subseteq \mathbb{C}$ obert, diem que $\varphi : U \to \mathbb{C}$ és <u>holomorfa</u> si és derivable en tot $z_0 \in U$.

Prop. Donat $U\subseteq\mathbb{C}$ obert, si $\varphi=u+iv:U\to\mathbb{C}$ és una funció holomorfa, aleshores satisfà $u_x=v_y$ i $u_y=-v_x$, que anomenem equacions de Cauchy-Riemann.

Def. Donat $z \in \mathbb{C}^*$, anomenem <u>argument</u> de z i denotem $\arg(z)$ als $\theta \in \mathbb{R}$ tals que $z = |z|e^{i\theta}$, és a dir,

$$\arg(z) = \{ \alpha + 2\pi k \mid k \in \mathbb{Z} \}$$

on $\alpha \in (-\pi, \pi]$ és l'únic valor de l'interval tal que $z = |z|e^{i\alpha}$. Def. Donat $z \in \mathbb{C}^*$, anomenem <u>logaritme complex</u> de z i denotem $\log(z)$ als $w \in \mathbb{C}$ tals que $e^w = z$, és a dir,

$$\log(z) = \log|z| + i\arg(z) = \left\{ \log|z| + i(\alpha + 2\pi k) \mid k \in \mathbb{Z} \right\}$$

Def. Donat $\Omega \subseteq \mathbb{C}^*$, una <u>determinació</u> del logaritme complex és Log: $\Omega \to \mathbb{C}$ tal que $\text{Log}(z) \in \log(z)$, $\forall z \in \Omega$.

Def. Donat $\Omega \subseteq \mathbb{C}^*$, una <u>determinació</u> de l'argument és $\operatorname{Arg}: \Omega \to \mathbb{C}$ tal que $\operatorname{Arg}(z) \in \operatorname{arg}(z), \forall z \in \Omega$.

Obs. Escollir una determinació del logaritme complex és

equivalent a escollir una determinació de l'argument. **Prop.** Si $\Omega \subseteq \mathbb{C}^*$ és un obert simplement connex, aleshores existeixen determinacions del logaritme complex holomorfes a

 Ω amb derivada $\frac{1}{z}$. **Th.** Donada $\varphi: U \to \mathbb{C}$ amb $U \subseteq \mathbb{C}$ obert, són equivalents **1.** φ és holomorfa.

2. φ és infinitament derivable en tots els punts de U.

3. φ és analítica, és a dir, $\forall z_0 \in U$ existeix un entorn de z_0 on φ es pot expressar com una sèrie de potències centrada en z_0 . Def. Siguin $U, V \subseteq \mathbb{C}$ oberts i $\varphi : U \to V$. Diem que φ és biholomorfa si és bijectiva i tant φ com φ^{-1} són holomorfes.

Th. (de l'aplicació conforme de Riemann) $\forall \Omega \subseteq \mathbb{R}^2$ obert simplement connex no buit, $\exists \varphi : \Omega \to D_1(0)$ biholomorfa.

Convergència de sèries

Prop. (criteri del quocient de d'Alembert) Sigui $\sum_{n\geq 0} a_n$ una sèrie per la qual $\exists n_0 \in \mathbb{N}$ tal que tenim $a_n \neq 0$, $\forall n \geq n_0$. Sigui

$$L = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$$

- 1. Si L < 1 la sèrie convergeix.
- **2.** Si L > 1 la sèrie divergeix.

Prop. (criteri de l'arrel de Cauchy) Sigui $\sum_{n\geq 0} a_n$ una sèrie. Definim

$$L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$$

- 1. Si L < 1 la sèrie convergeix.
- **2.** Si L > 1 la sèrie divergeix.

Prop. Siguin $\sum_{n\geq 0} a_n$ i $\sum_{n\geq 0} b_n$ dues sèries per les quals $\exists n_0 \in \mathbb{N}$ tal que $a_n, b_n > 0$, $\forall n \geq n_0$. Definim

$$L = \lim_{n \to \infty} \frac{a_n}{b_n}$$

- 1. Si $L < \infty$ i $\sum_{n>0} b_n$ convergeix, aleshores $\sum_{n>0} a_n$ també.
- **2.** Si L > 0 i $\sum_{n \ge 0} a_n$ convergeix, aleshores $\sum_{n \ge 0} b_n$ també.
- **3.** Si $0 < L < \infty$, aleshores $\sum_{n \ge 0} a_n$ convergeix $\iff \sum_{n \ge 0} b_n$ convergeix.

Resultats de càlcul diferencial

Th. (del valor mig). Sigui $f: U \to \mathbb{R}^m$ una funció de classe \mathcal{C}^1 amb $U \subseteq \mathbb{R}^n$ obert. Per a tot $x, y \in U$, $\exists z \in \overline{xy}$ tal que $||f(x) - f(y)|| \le ||Df(z)(x - y)||$.

Prop. (condició suficient per Lipschitz). Sigui $f: \Omega \to \mathbb{R}^m$ de classe \mathcal{C}^1 amb $\Omega \subseteq \mathbb{R}^n$ obert convex. Si Df està fitada, aleshores f és Lipschitz (globalment).

Prop. Si $f: U \to \mathbb{R}^m$ és localment Lipschitz amb $U \subseteq \mathbb{R}^n$ obert, aleshores $\forall K \subseteq U$ compacte, la restricció $f|_K$ és globalment Lipschitz.

Prop. (condicions necessàries de mínim). Sigui $U \subseteq \mathbb{R}^n$ un obert i $f: U \to \mathbb{R}$ una funció de classe \mathcal{C}^2 . Si f assoleix un mínim local en $x_0 \in U$, aleshores $\nabla f(x_0) = 0$ i $\nabla^2 f(x_0) \succeq 0$. **Prop.** (condicions suficients de mínim). Sigui $U \subseteq \mathbb{R}^n$ un obert i $f: U \to \mathbb{R}$ una funció de classe \mathcal{C}^2 . Si $\nabla f(x_0) = 0$ i $\nabla^2 f(x_0) \succ 0$ en $x_0 \in U$, aleshores f assoleix un mínim en x_0 . **Th.** (funció inv.). Sigui $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^n$ funció \mathcal{C}^k $(k \ge 1)$. Aleshores $\det Df(x_0) \ne 0$ en $x_0 \in U \iff f$ restringida a un determinat entorn de $x_0 \in U$ és un difeomorfisme \mathcal{C}^k . **Th.** (funció imp.). Sigui $F: W \subseteq \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ una funció \mathcal{C}^k $(k \ge 1)$ i $(x_0, y_0) \in W$ un punt tal que $F(x_0, y_0) = 0$ i $\det D_2 F(x_0, y_0) \ne 0$. Aleshores $\exists f: V_{x_0} \to V_{y_0}$ funció \mathcal{C}^k tal que

Resultats d'EDOs

 $f(x_0) = y_0 i F(x, f(x)) = 0, \forall x \in V_{x_0}$

Prop. Considerem l'EDO amb coeficients constants $y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_1y' + a_0y = 0$, que té polinomi característic $p(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_1\lambda + a_0$. Si tenim $p(\lambda) = (\lambda - \alpha_1)^{m_1} \dots (\lambda - \alpha_k)^{m_k}$, $\alpha_i \neq \alpha_j$, $i \neq j$, aleshores $\left\{e^{\alpha_1 x}, \dots, x^{m_1 - 1}e^{\alpha_1 x}, \dots, e^{\alpha_k x}, \dots, x^{m_k - 1}e^{\alpha_k x}\right\}$ és una base de l'espai de solucions de l'EDO.

Prop. Suposem ara que té terme independent $f(x) = x^j e^{\alpha x}$, on α és arrel de multiplicitat $k \geq 0$ de p. Podem trobar una solució de la forma $y_p(x) = x^k (a_0 + a_1 x + \dots + a_j x^j) e^{\alpha x}$. **Prop.** (equació d'Euler) $ax^2 \frac{d^2y}{dx} + bx \frac{dy}{dx} + cy = 0$ es converteix en l'EDO amb coeficients constants $a\frac{d^2z}{dt} + (b-a)\frac{dz}{dt} + cz = 0$ en fer el canvi $z(t) = y(e^t)$. Així, té sentit buscar solucions de la forma $y(x) = x^{\alpha}$.

Miscel·lània

Prop. (fórmula de Leibniz). Sigui $f: I \times J \to \mathbb{R}$ definida per $(x,t) \mapsto f(x,t)$ una funció contínua tal que $\exists \frac{\partial f}{\partial x}(x,t)$ també contínua. Siguin $a,b:I\to J$ funcions \mathcal{C}^1 . Aleshores

$$\frac{d}{dx}\left(\int_{a(x)}^{b(x)}f(x,t)dt\right) = f(x,b(x))b'(x) - f(x,a(x))a'(x) + \int_{a(x)}^{b(x)}\frac{\partial f}{\partial x}(x,t)dt$$

Cor. (derivació sota el signe integral). Sigui $f: I \times J \to \mathbb{R}$ definida per $(x,t) \mapsto f(x,t)$ funció contínua tal que $\exists \frac{\partial f}{\partial x}(x,t)$ també contínua. Aleshores donats $a,b \in J$ qualssevol,

$$\frac{d}{dx}\left(\int_{a}^{b} f(x,t)dt\right) = \int_{a}^{b} \frac{\partial f}{\partial x}(x,t)dt$$

Th. (de la convergència dominada d'Arzelà) Considerem les funcions $f_n, f: [a,b] \to \mathbb{R}$ integrables Riemann, on (f_n) és una successió tal que $f_n \xrightarrow[n \to \infty]{\text{punt.}} f$. Si $\exists M > 0$ tal que $|f_n(x)| \leq M$, $\forall n \in \mathbb{N}$ i $\forall x \in [a,b]$, aleshores

$$\lim_{n \to \infty} \int_{a}^{b} f_{n}(x) dx = \int_{a}^{b} f(x) dx$$

Prop. Si E és un espai de Banach i $C \subseteq E$ és un conjunt tancat de l'espai, aleshores C és un espai de Banach amb la norma heretada de E.

Prop. Si X és un espai mètric, aleshores $C\subseteq X$ és tancat $\iff \forall (v_n)\subseteq C$ successió convergent, $v=\lim_{n\to\infty}v_n\in C$. **Obs.** Les dues proposicions anteriors ens permeten demostrar que $E=\left\{v\in\mathcal{C}^0([0,1])\mid v(0)=0\right\}$ és un espai de Banach. **Th.** (del punt fix de Banach). Sigui E espai de Banach i $\phi:E\to E$ contracció. Existeix un únic $v\in E$ tal que $\phi(v)=v$.

Nom:			
Jyom:			