Высшая математика

Лисид Лаконский

April 2023

Содержание

1	Вы	сшая математика - 10 апреля 2023 г.	2
	1.1	Уравнения касательной плоскости и нормали в заданной точке	2
	1.2	Производные по направлению	2
	1.3	Угол между градиентами функции	2
	1.4	Нахождение функции двух переменных по ее полному дифференциалу	٠
	1.5	Экстремумы функции двух переменных	9

1 Высшая математика - 10 апреля 2023 г.

Уравнения касательной плоскости и нормали в заданной точке

F(x, y, z) = 0

Исходная точка $M(x_0; y_0; z_0) \in F$, если $F(x_0; y_0; z_0) = 0$

Уравнение касательной $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$ Уравнение нормали: $\frac{x-x_0}{A}=\frac{y-y_0}{B}=\frac{z-z_0}{C}$

$$A = \frac{\delta F}{\delta x} \bigg|_{M}, B = \frac{\delta F}{\delta y} \bigg|_{M}, C = \frac{\delta F}{\delta z} \bigg|_{M}$$

 $A=rac{\delta F}{\delta x}igg|_M,\ B=rac{\delta F}{\delta y}igg|_M,\ C=rac{\delta F}{\delta z}igg|_M$ Если A,B,C=0 или A,B,C=1, то мы оставляем такую дробь в уравнении нормали

Пример №1 Написать уравнение касательной и нормали к плоскости $x+y^2+z^2=5,\,M(1;0;2)$

 $F(x,y,z): x+y^2+z^2-5=0$

$$A=rac{\delta F}{\delta x}igg|_{M}=1,\ B=rac{\delta F}{\delta y}igg|_{M}=0,\ C=rac{\delta F}{\delta z}igg|_{M}=-4$$
 Уравнение нормали: $rac{x-1}{1}=rac{y-0}{0}=rac{z+2}{4}$ Уравнение касательной: $1(x-1)+0(y-0)-4(z+2)=0\Longleftrightarrow x-4z-9=0$

Производные по направлению

u = f(x, y, z) по направлению $\vec{l} = \{m, n, p\}$ в точке $M(x_0; y_0; z_0)$

1.
$$\vec{grad}\ u = \frac{\delta u}{\delta x} * \vec{i} + \frac{\delta u}{\delta y} * \vec{j} + \frac{\delta u}{\delta z} * \vec{k} = \{\frac{\delta u}{\delta x}; \frac{\delta u}{\delta y}; \frac{\delta u}{\delta z}\}$$

2.
$$\vec{e_l} = \frac{\vec{l}}{|\vec{l}|} = \left\{ \frac{m}{\sqrt{m^2 + n^2 + p^2}}; \frac{n}{\sqrt{m^2 + n^2 + p^2}}; \frac{p}{\sqrt{m^2 + n^2 + p^2}} \right\} = \left\{ \cos \alpha; \cos \beta; \cos \gamma \right\}$$

3.
$$\frac{\delta u}{\delta l} = \frac{\delta u}{\delta x} \bigg|_{M} * \cos \alpha + \frac{\delta u}{\delta y} \bigg|_{M} * \cos \beta + \frac{\delta u}{\delta z} \bigg|_{M} * \cos \gamma$$

Модуль градиента функции в какой-либо точке это максимально возможное значение производной этой функции в этой точке.

Пример №1 Пусть u = xyz, M = (-1; 0; 1), $\vec{l} = \{-1; 1; -2\}$

1.
$$\vec{\text{grad}}u = \{yz; xz; xy\} = \{0; -1; 0\}$$

2.
$$\vec{e_l} = \{\frac{-1}{\sqrt{6}}; \frac{\sqrt{1}}{\sqrt{6}}; \frac{-2}{\sqrt{6}}\}$$

3. Ответ:
$$\frac{\delta u}{\delta l} = -\frac{1}{\sqrt{6}}$$

Угол между градиентами функции 1.3

Допустим, имеем $\vec{a}=\{a_x;a_y\},\ \vec{b}=\{b_x;b_y\}$ $\cos\phi=\frac{\vec{a}\vec{b}}{|\vec{a}||\vec{b}|}=\frac{a_xb_x+a_yb_y}{\sqrt{a_x^2+a_y^2}*\sqrt{b_x^2+b_y^2}}$

Пример №1 $z = x^2 y$ с градиентом в точках A(1;1), B(2;0)

$$\vec{grad}\ z = \{2xy; x^2\}, \ \vec{grad}\ z \bigg|_{A} = \{2; 1\}, \ \vec{grad}\ z \bigg|_{B} = \{0; 4\}$$

Ответ: $\cos \phi = \frac{4}{\sqrt{5}*\sqrt{16}} = \frac{1}{\sqrt{5}}$

1.4 Нахождение функции двух переменных по ее полному дифференциалу

Полный дифференциал — сумма частных производных функции Допустим, имеем $z(x,y),\ \mathrm{d}z=\frac{\delta z}{\delta x}\ \mathrm{d}x+\frac{\delta z}{\delta y}\ \mathrm{d}y$ Для того, чтобы найти исходную функцию, нам необходимо:

1. $P(x,y) = \frac{\delta z}{\delta x}$, $Q(x,y) = \frac{\delta z}{\delta y}$

- 2. Проверить равенство $\frac{\delta P}{\delta y} = \frac{\delta Q}{\delta x}$. Если равенство соблюдается у дифференциала есть исходная функция, если не соблюдается дальнейшего решения нет
- 3. $z=\int P(x,y)\,\mathrm{d}x+C_1(y)=\Phi_1(x,y)+C_1(y)$, либо $z=\int Q(x,y)\,\mathrm{d}y+C_2(x)=\Phi_2(x,y)+C_2(x)$, где C_1,C_2 функции, которые не рассматривались в рамках интегрирования
- 4. $C_1(y) = \int (Q(x,y) \frac{\delta\Phi_1}{\delta y}) \, \mathrm{d}y$, либо $C_2(x) = \int (P(x,y) \frac{\delta\Phi_2}{\delta x}) \, \mathrm{d}x$

Пример №1 $dz = (y^2 - 1) dx + (2xy + 3y) dy$

1.
$$P = y^2 - 1$$
, $Q = 2xy + 3y$

2.
$$\frac{\delta P}{\delta y} = 2y, \ \frac{\delta Q}{\delta x} = 2y, \ 2y = 2y$$
 — равенство соблюдается, следовательно, исходная функция существует

3.
$$z = \int (y^2 - 1) dx + C_1(y) = y^2 x - x + C_1(y) = \dots,$$

 $C_1(y) = \int (2xy + 3y - 2yx) dy = \frac{3y^2}{2} + C, \dots = y^2 x - x + \frac{3y^2}{2} + C$

$$Q(x,y) = \frac{\delta \Phi_1}{\delta y} + \frac{\mathrm{d}(C_1(y))}{\delta y} \Longrightarrow \frac{\mathrm{d}(C_1(y))}{\mathrm{d}y} = Q - \frac{\delta \Phi_1}{\delta y}$$

1.5 Экстремумы функции двух переменных

$$1. \ \begin{cases} rac{\delta f}{\delta x} = 0 \$$
или не существует $rac{\delta f}{\delta y} = 0 \$ или не существует

2.
$$\Delta = \begin{vmatrix} \frac{\delta^2 f}{\delta x^2} & \frac{\delta^2 f}{\delta x \delta y} \\ \frac{\delta^2 f}{\delta x \delta y} & \frac{\delta^2 f}{\delta y^2} \end{vmatrix} M_0$$

(a) если
$$\Delta>0$$
 и $\left.\frac{\delta f}{\delta x}\right|_{M_0}<0$, то M — точка максимума

(b) если
$$\Delta>0$$
 и $\left.\frac{\delta^2 f}{\delta x}\right|_{M_0}<0$,то M — точка минимума

(c) если
$$\Delta < 0$$
, то в точке M_0 нет экстремума

(d) если
$$\Delta = 0$$
, то неизвестно

Пример №1 $z = \frac{x^3}{2} + xy + \frac{y^2}{2} - x - y + 14$

1.
$$\begin{cases} x^2+y-1=0\\ x+y-1=0 \end{cases} , \text{ решая, находим } x=0,\,y=1;\,x=1,\,y=0$$

2.
$$\begin{aligned} \frac{\delta^2 f}{\delta x^2} &= 2x \Big|_{x=0,y=1} = 0, \ 2x \Big|_{x=1,y=0} = 2\\ \frac{\delta^2 f}{\delta y^2} &= 1, \ \frac{\delta^2 f}{\delta x \delta y} &= 1\\ \Delta &= \begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} = -1, \ \Delta &= \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = 1 \end{aligned}$$

Следовательно, в точке $M_1(0;1)$ нет экстремума , $M_2(1;0)$ — точка минимума