Projet Crowd Counting Code Framework

Groupe 7A

Chi Huynh, Tu Duyen Nguyen, Paul-Henri Pinart

C^3 Crowd Counting Code Framework

- Simplification du process dataloading, train, test, loss
- Variété et hétérogénéité de datasets
- Repo GitHub relativement ancien (last commit il y 5a)

Notre TO-DO List:

- Nettoyer un peu le code pour le rendre utilisable avec Colab
- Tester avec quelques datasets
- Implémenter la gaussian/laplacian loss
- Implémenter la bayesian loss

Comment l'a-t-on rendu "compatible" avec Colab?

- Reformatage (plus agréable à lire)
- Refactoring: passer les paramètres depuis un seul point

Premier pas: tester le test()

Compléter les résultats manquants sur WE et UCF-CC-50 (tout en test)

Problème: le train est très (trop) lent

Idée: modèles préentraînés sur GCC

Problème bis: les datasets sont

différents

Interprétation: pas de fine tuning, particularités des datasets

	UCF CC 50	WE s1	WE s2
CSRNet	1271.10 /	8.27 /	34.24 /
	2498704	114.10	1468.99
ResNet50	1230.65 /	10.09 /	44.96 /
	2405578	201.88	2353.03
ResNet101	1042.20 /	5.83 /	25.29 /
	1831821	83.36	1004.66
AlexNet	1097.51 /	5.57 /	16.31 /
	2005878	70.97	406.67

NOTE COOCH CORTVE Black Neutron Sun hole star HEAVIEST OBJECTS IN THE UNIVERSE ingfilp:com

Types of Headaches

Migraine

Hypertension

Stress

Se faire ban par Colab

imaflin com

Aleatoric Loss: Gaussian et Laplacian Loss

But : modéliser l'incertitude épistémique (via le dropout) et aléatoire (via la prédiction de la variance).

$$lloss = \frac{1}{2} \left(log (var) + \frac{|input - target|}{var} \right) \quad gloss = \frac{1}{2} \left(log (var) + \frac{(input - target)^2}{var} \right)$$

Modification du modèle et du trainer pour prédire la variance (en fait la log-variance). Ici : CSRNet.

Problèmes de stabilité numérique : utilisation d'un epsilon, modification du learning rate ?

Aleatoric Loss: Gaussian et Laplacian Loss

But: modéliser l'incertitude épistémique (via le dropout) et aléatoire (via la prédiction de la variance).

$$lloss = \frac{1}{2} \left(log \left(max \left(var, eps \right) \right) + \frac{|input - target|}{max \left(var, eps \right)} \right) \qquad gloss = \frac{1}{2} \left(log \left(max \left(var, eps \right) \right) + \frac{(input - target)^2}{max \left(var, eps \right)} \right)$$

Modification du modèle et du trainer pour prédire la variance (en fait la log-variance). Ici : CSRNet.

Problèmes d'instabilité numérique : utilisation d'un epsilon, modification du learning rate

Aleatoric Loss: résultats

MSE loss : bonnes prédictions, le modèle localise bien les personnes

Ground truth: 164 Prédiction: 158 Image

Mean average error: 18.05; Mean squared error: 28.75

Aleatoric Loss: résultats

Laplacian loss: prédictions sous-évaluées systématiquement et mauvaise localisation

Ground truth: 180 Prédiction: 31 Image

Mean average error: 95.80; Mean squared error: 130.16

Aleatoric Loss: résultats

Gaussian loss: les prédictions sont meilleures

Ground truth: 195 Prédiction: 158 Image

Mean average error: 46.15; Mean squared error: 63.59

Bayesian Loss

Construction de fct de vraisemblance : $p(\mathbf{x} = \mathbf{x}_m | y = y_n) = \mathcal{N}(\mathbf{x}_m; \mathbf{z}_n, \sigma^2 \mathbf{1}_{2 \times 2})$

$$p(y_n|\mathbf{x}_m) = \frac{p(\mathbf{x}_m|y_n)p(y_n)}{p(\mathbf{x}_m)} = \frac{p(\mathbf{x}_m|y_n)p(y_n)}{\sum\limits_{n=1}^{N} p(\mathbf{x}_m|y_n)p(y_n)}$$
$$= \frac{p(\mathbf{x}_m|y_n)}{\sum\limits_{n=1}^{N} p(\mathbf{x}_m|y_n)} = \frac{\mathcal{N}(\mathbf{x}_m;\mathbf{z}_n,\sigma^2\mathbf{1}_{2\times 2})}{\sum\limits_{n=1}^{N} \mathcal{N}(\mathbf{x}_m;\mathbf{z}_n,\sigma^2\mathbf{1}_{2\times 2})}$$

$$E[c_n] = \sum_{m=1}^{M} p(y_n | \mathbf{x}_m) \mathbf{D}^{est}(\mathbf{x}_m) \qquad \qquad \mathcal{L}^{Bayes} = \sum_{n=1}^{N} \mathcal{F}(1 - E[c_n])$$

Bayesian+ Loss

Améliore la précision des prédictions de la densité de foules en prenant en compte le contexte global de l'image.

$$E[c_n] = \sum_{m=1}^{M} p(y_n | \mathbf{x}_m) \mathbf{D}^{est}(\mathbf{x}_m)$$
 $E[c_0] = \sum_{m=1}^{M} p(y_0 | \mathbf{x}_m) \mathbf{D}^{est}(\mathbf{x}_m)$
 $\mathcal{L}^{Bayes+} = \sum_{m=1}^{N} \mathcal{F}(1 - E[c_n]) + \mathcal{F}(0 - E[c_0])$

Résultats

Résultats

Ground truth: 191

Prediction: 179.5740

Prediction: 4627.364 Ground truth: 4535

Conclusion

TODO en suspens: semi-supervised learning pour intégrer FUDAN-UCC

Importance du datacleaning

Limitations matérielles et techniques

Transfer Learning?

Références

Aleatoric loss: Kendall and Gal, 2017

Bayesian loss: Ma, Wei et al., 2019

Utiliser un notebook Colab pour profiter des GPU

Se faire ban par Colab parce que le train est trop gourmand

Créer un 2e compte Google pour contourner le ban

Se faire ban le 2e compte

imaflip.com

UCF50_results_CSRNet MAE: 1271.108480355835 MSE: 2498704.743848537 AVG gt: 1278.48 AVG pred: 7.371519644165039	UCF50_results_VGG MAE: 1223.2695530925753 MSE: 2289639.0810503196 AVG gt: 1278.48 AVG pred: 55.210446907424924	WE_202201_results_Res101 MAE: 25.29493501790364 MSE: 1004.663851186799 AVG gt: 89.1666666666667 AVG pred: 107.17970406087238	WE_202201_results_AlexNet MAE: 16.31345788574219 MSE: 406.67130495879513 AVG gt: 89.1666666666667 AVG pred: 101.27052526855468
UCF50_results_Res101 MAE: 1042.2021305342673 MSE: 1831821.3642919997 AVG gt: 1278.48 AVG pred: 236.27786946573258	UCF50_results_Res101_SFCN MAE: 1259.4200980109572 MSE: 2469608.22421882 AVG gt: 1278.48 AVG pred: 19.05990198904276	WE_104207_results_Res101 MAE: 5.834239532647012 MSE: 83.36656273465799 AVG gt: 15.184873949579831 AVG pred: 9.913246650936221	WE_104207_results_AlexNet MAE: 5.573125330820804 MSE: 70.96603933029373 AVG gt: 15.184873949579831 AVG pred: 10.644829781155625
UCF50_results_Res50 MAE: 1230.651065873289 MSE: 2405578.115194637 AVG gt: 1278.48 AVG pred: 47.828934126710884	WE_104207_results_Res101_SFCN MAE: 6.997081488601299 MSE: 113.2558052833404 AVG gt: 15.184873949579831 AVG pred: 8.661885402262714	WE_104207_results_CSRNet MAE: 8.2723512383469 MSE: 114.10240397901082 AVG gt: 15.184873949579831 AVG pred: 16.12645156988577	WE_202201_results_Res50 MAE: 44.95641501871744 MSE: 2353.0346968716603 AVG gt: 89.1666666666667 AVG pred: 44.21025164794922
UCF50_results_AlexNet MAE: 1097.5111670623778 MSE: 2005878.3401329073 AVG gt: 1278.48 AVG pred: 188.12289387512206	WE_202201_results_Res101_SFCN MAE: 25.77570037841797 MSE: 1074.2931187904117 AVG gt: 89.16666666666667 AVG pred: 86.36351153564452	WE_202201_results_CSRNet MAE: 34.24720908610026 MSE: 1468.9903898972566 AVG gt: 89.1666666666667 AVG pred: 54.9194575805664	WE_104207_results_Res50 MAE: 10.087355123167278 MSE: 201.88310431312829 AVG gt: 15.184873949579831 AVG pred: 5.432457569907694