AMENDMENTS TO THE CLAIMS:

Kindly amend claims 13, 15, 18, 19 and 21, as shown below.

This listing of claims will replace all prior versions and listings of claims in the Application:

Claim 1 (original): A method for compensating track offset in an optical disk drive, comprising:

- (a) providing an optical disk with wobbled grooves;
 the wobbled grooves being used for generating a wobbling signal with a wobbling period;
- (b) recording a beat-inducing signal on the disk;

a period of the beat-inducing signal having a specific relationship with the wobbling period in such a way that a beat signal is induced by the beat-inducing signal and the wobbling signal;

(c) generating a tracking-error signal using a push-pull method by optically reading the wobbled grooves of the disk and the beat-inducing signal recorded on the disk;

the tracking-error signal containing a beat signal induced by the beat-inducing signal and the wobbling signal; and

(d) compensating track offset based on the beat signal contained in the tracking-error signal.

Claim 2 (original): The method according to claim 1, wherein the period of the beat-inducing signal is set at a value within a range from 0.85 to 1.25 times as much as the period of the wobbling signal.

HAYES SOLOWAY P.C. 130 W. CUSHING STREET TUCSON, AZ 85701 TEL. 520.882.7623 FAX. 520.882.7643

Claim 3 (original): The method according to claim 1, wherein a level of the beat signal is compared with a first reference level and a second reference level in the step (d) of compensating track offset, where the first reference level is different from the second reference level;

and wherein if the level of the beat signal has a first relationship with the first reference level and a second relationship with the second reference level, the beat signal is determined as good.

Claim 4 (original): The method according to claim 1, wherein a dc component of the beat signal is extracted;

and wherein the track-offset value is set in such a way that the dc component of the beat signal is set at a specific level.

Claim 5 (original): The method according to claim 4, wherein the specific level is approximately zero.

Claim 6 (original): The method according to claim 1, wherein in the step (d) of compensating track offset, whether the beat signal is good or not is judged with respect to a specific value of the track offset;

and wherein if the beat signal is judged as good, the track offset is fixed at the specific value;

and wherein if the beat signal is judged as no-good, the specific value of the track offset is changed to a different value and then, whether the beat signal is good or not is judged again.

Claim 7 (original): A method for compensating track offset in an optical disk drive, comprising:

HAYES SOLOWAY P.C. 130 W. CUSHING STREET TUCSON, AZ 85701 TEL. 520.882.7623 FAX. 520.882.7643

(a) providing an optical disk with wobbled grooves and a beat-inducing signal;
the wobbled grooves being used for generating a wobbling signal with a wobbling period;

a period of the beat-inducing signal having a specific relationship with the wobbling period in such a way that a beat signal is induced by the beat-inducing signal and the wobbling signal;

(b) generating a tracking-error signal using a push-pull method by optically reading the wobbled grooves and the beat-inducing signal recorded of the disk;

the tracking-error signal containing a beat signal induced by the beat-inducing signal and the wobbling signal; and

(c) compensating track offset based on the beat signal contained in the tracking-error signal.

Claim 8 (original): The method according to claim 7, wherein the period of the beat-inducing signal is set at a value within a range from 0.85 to 1.25 times as much as the period of the wobbling signal.

Claim 9 (original): The method according to claim 7, wherein a level of the beat signal is compared with a first reference level and a second reference level in the step (c) of compensating track offset, where the first reference level is different from the second reference level;

and wherein if the level of the beat signal has a first relationship with the first reference level and a second relationship with the second reference level, the beat signal is determined as good.

HAYES SOLOWAY P.C. 130 W. CUSHING STREET TUCSON, AZ 85701 TEL. 520.882.7623 FAX. 520.882.7643

Claim 10 (original): The method according to claim 7, wherein a dc component of the beat signal is extracted;

and wherein the track-offset value is set in such a way that the dc component of the beat signal is set at a specific level.

Claim 11 (original): The method according to claim 10, wherein the specific level is approximately zero.

Claim 12 (original): The method according to claim 7, wherein in the step (c) of compensating track offset, whether the beat signal is good or not is judged with respect to a specific value of the track offset;

and wherein if the beat signal is judged as good, the track offset is fixed at the specific value;

and wherein if the beat signal is judged as no-good, the specific value of the track offset is changed to a different value and then, whether the beat signal is good or not is judged again.

Claim 13 (currently amended): A system for compensating track offset in an optical disk drive, comprising:

(a) [[means]] <u>a signal recorder</u> for recording a beat-inducing signal on an optical disk with wobbled grooves;

the wobbled grooves being used for generating a wobbling signal with a wobbling period;

a period of the beat-inducing signal having a specific relationship with the wobbling period in such a way that a beat signal is induced by the beat-inducing signal and the wobbling signal;

HAYES SOLOWAY P.C. 130 W. CUSHING STREET TUCSON, AZ 85701 TEL. 520.882.7623 FAX. 520.882.7643

(b) [[means]] a signal generator for generating a tracking-error signal using a push-pull method by optically reading the wobbled grooves of the disk and the beat-inducing signal recorded on the disk;

the tracking-error signal containing a beat signal induced by the beat-inducing signal and the wobbling signal; and

(c) [[means]] a controller for compensating track offset based on the beat signal contained in the tracking-error signal.

Claim 14 (original): The system according to claim 13, wherein the period of the beat-inducing signal is set at a value within a range from 0.85 to 1.25 times as much as the period of the wobbling signal.

Claim 15 (currently amended): The system according to claim 13, wherein a level of the beat signal is compared with a first reference level and a second reference level in the [[means]] controller for compensating track offset, where the first reference level is different from the second reference level;

and wherein if the level of the beat signal has a first relationship with the first reference level and a second relationship with the second reference level, the beat signal is determined as good.

Claim 16 (original): The system according to claim 13, further comprising a filter for extracting a dc component of the beat signal;

wherein the track offset value is set in such a way that the dc component of the beat signal is set at a specific level.

HAYES SOLOWAY P.C. 130 W. CUSHING STREET TUCSON, AZ 85701 TEL. 520.882.7623 FAX. 520.882.7643

Claim 17 (original): The system according to claim 16, wherein the specific level is approximately zero.

Claim 18 (currently amended): The system according to claim 13, wherein in the [[means]] controller for compensating track offset, whether the beat signal is good or not is judged with respect to a specific value of the track offset;

and wherein if the beat signal is judged as good, the track offset is fixed at the specific value;

and wherein if the beat signal is judged as no-good, the specific value of the track offset is changed to a different value and then, whether the beat signal is good or not is judged again.

Claim 19 (currently amended): A system for compensating track offset in an optical disk drive, comprising:

(a) [[means]] <u>a signal generator</u> for generating a tracking-error signal using a push-pull method by optically reading wobbled grooves of an optical disk and a beat-inducing signal recorded on the disk;

the wobbled grooves being used for generating a wobbling signal with a wobbling period;

a period of the beat-inducing signal having a specific relationship with the wobbling period in such a way that a beat signal is induced by the beat-inducing signal and the wobbling signal;

the tracking-error signal containing a beat signal induced by the beat-inducing signal and the wobbling signal; and

HAYES SOLOWAY P.C. 130 W. CUSHING STREET TUCSON, AZ 85701 TEL. 520.882.7623 FAX. 520.882.7643

(b) [[means]] a controller for compensating track offset based on the beat signal contained in the tracking-error signal.

Claim 20 (original): The system according to claim 19, wherein the period of the beat-inducing signal is set at a value within a range from 0.85 to 1.25 times as much as the period of the wobbling signal.

Claim 21 (currently amended): The system according to claim 19, wherein a level of the beat signal is compared with a first reference level and a second reference level in the [[means]] controller for compensating track offset, where the first reference level is different from the second reference level;

and wherein if the level of the beat signal has a first relationship with the first reference level and a second relationship with the second reference level, the beat signal is determined as good.

Claim 22 (original): The system according to claim 19, further comprising a filter for extracting a dc component of the beat signal;

wherein the track-offset value is set in such a way that the dc component of the beat signal is set at a specific level.

Claim 23 (original): The system according to claim 22, wherein the specific level is approximately zero.

Claim 24 (previously presented): An optical disk drive comprising the system according to claim 13.

Claim 25 (previously presented): An optical disk drive comprising the system according to claim 19.

HAYES SOLOWAY P.C. 130 W. CUSHING STREET TUCSON, AZ 85701 TEL. 520.882.7623 FAX. 520.882.7643