MATH 109 - PRACTICE FINAL

Ungraded. To be expanded.

Problem 1

Show that n^2 is odd whenever n is an odd integer.

Problem 2

Show that n^2 is even whenever n is an even integer.

Problem 3

Show that an integer n is odd whenever n^2 is odd.

Problem 4

Prove that $\sqrt[3]{2}$ is irrational.

Problem 5

Prove that $\sqrt{10}$ is irrational.

Problem 6

Prove that $\sqrt{7}$ is irrational.

Problem 7

Show that for all $x, y \in \mathbb{Z}$ we have $x^2 - 4y - 2 \neq 0$.

Problem 8

Show that for all $x, y \in \mathbb{Z}$ we have $x^2 - 4y - 3 \neq 0$.

Problem 9

Find non-negative integers $m, n \in \mathbb{N}_0$ such that 31m + 21n = 1770.

Remark: This problem is from a 1920 mathematics textbook and alledgedly goes back to classes taught by Leonard Euler.

Problem 10

Prove that for all $a, b, m \in \mathbb{N}$ with $a \neq 0$ or $b \neq 0$ we have $\gcd(ma, mb) = m \gcd(a, b)$

Problem 11

Consider three natural numbers $a, b, c \in \mathbb{N}$.

- (1) What does it mean for a number $g \in \mathbb{N}$ to be the greatest common divisor of a, b, and c? Describe in your own words and using formal logic.
- (2) Prove that $g = \mathbf{gcd}(a, \mathbf{gcd}(b, c))$.

Problem 12

Consider the set $X := \mathbb{R}^3 \setminus \{(0,0,0)\}$, the set of three-dimensional vectors without the zero vector (0,0,0).

We define relations R and S as follows:

$$R := \{(v, w) \in X \times X \mid v = -w \lor v = w\},$$

$$S := \{(v, w) \in X \times X \mid \exists \alpha \in \mathbb{R} \setminus \{0\} : v = \alpha w\}.$$

- (1) Try to formulate what these relations mean. What does it mean when two vectors are related via R or S?
- (2) Show that R is an equivalence relation.
- (3) Show that S is an equivalence relation.
- (4) Show that for all $x, y \in X$ we have $x \sim_R y$ implies $x \sim_S y$.

Problem 13

Suppose that X is a set with an equivalence relation $R \subseteq X \times X$. For any $a \in X$ we let $[a]_R$ denote its equivalence class with regards to R. Show the following:

- (1) For all $a \in X$ we have $a \in [a]_R$.
- (2) For all $a, b \in X$ with $b \in [a]_R$ we have $[b]_R = [a]_R$. (3) For all $a, b \in X$ with $b \notin [a]_R$ we have $[a]_R \cap [b]_R = \emptyset$.