

PUC Minas

DIRETORIA DE EDUCAÇÃO CONTINUADA

Pós Graduação Lato Sensu

Ciência de Dados e Big Data

Técnicas Estatísticas de Predição

Programa

Calendário	Conteúdo	Referencial Teórico	
05/02/2019	Regressão Linear (Simples e Multipla)	An Introduction to Statistical Learning with Applications in R, 2013	
12/02/2019	Regressão Logística (Simples e Multipla)		
19/02/2019	Modelo Multinomial	Categorical Data Analysis, 2013	
26/02/2019	Árvores de decisão e Florestas Aleatórias	An introduction to Statistical Learning with Applications in D. 2012	
12/03/2019	KNN, PCA e K Means Clustering	An Introduction to Statistical Learning with Applications in R, 2013	
19/03/2019	Avaliação	-	

Regressão Logística

Livro texto: An Introduction to StatisticalLearning

Cap. 4 - Classification

4.3 Logistic Regression

Usualmente no contexto de *DS* encaramos a regressão logística como um método de classificação.

Exemplos de problemas que desejamos classificar:

- Filtro de e-mails (Spams ou não);
- Modelos de predição de clientes inadimplentes;
- Diagnóstico de doenças;

A função logística (também conhecida como sigmoide) só retorna valores entre 0 e 1.

- Os valores de saída da função são interpretados como a probabilidade da classe ser 0 ou 1;
- Após treinamento do modelo usando regressão logística testamos o mesmo em um conjunto de dados de teste;
- A principal forma de avalia-lo em DS é por meio da Matriz de Confusão para obtenção das métricas de classificações.

Matriz de Confusão

		Valor Predito		
		Negativo	Positivo	
r Real	Negativo	Verdadeiro Negativo (VN)	Falso Negativo (FN)	
Valor	Positivo	Falso Positivo (FP)	Verdadeiro Positivo (VP)	

Métricas de validação

$$\boldsymbol{Acur} \\ \boldsymbol{\'acur} \\$$

$$Precis$$
ão =
$$\frac{Verdadeiro\ Positivo\ (VP)}{Verdadeiro\ Positivo\ (VP) + Falso\ Positivo\ (FP)}$$

$$Recall\ ou\ Revoca$$
çã $o = rac{Verdadeiro\ Positivo\ (VP)}{Verdadeiro\ Positivo\ (VP) + Falso\ Negativo\ (FP)}$

$$F1 Score = \frac{2 * Precisão * Recall}{Precisão + Recall}$$

Vantagens do modelo Logístico

- Facilidade para lidar com variáveis categóricas (Resposta ou preditoras)
- Forte resultados em termos de probabilidade
- Facilidade de classificação de instâncias (indivíduos) em categorias
- Requer pequeno número de suposições
- Alto grau de confiabilidade

Perguntas e serem respondidas

- O modelo faz sentido?
- O modelo é útil para o objetivo pretendido? Se, por exemplo, o custo da coleta dos dados de uma variável é exorbitante e impossível de ser obtido, isso resultará em um modelo sem utilidade;
- Todos os coeficientes são razoáveis, ou seja, trazem valores que fazem sentido em termo de análise?
- A adequabilidade do modelo é satisfatória? Tem boa Precisão, Recall e F1 Score?

Interpretação dos Coeficientes

PARA CASA: Texto explicativo

Entregar na próxima aula 19/02 Dica: revisar Cap.4, seção 4.3

META

- Participação em uma competição de *Machine Learning* no *Kaggle*
- Aplicar uma das técnicas de predição utilizadas no curso
- Escrever um artigo sobre modelagem preditiva no Linkedin
 - Causalidade
 - Risco
 - Identificação
 - etc

Exercício

Kaggle

Titanic: Machine Learning from Disaster

Exercício

Variável	Definição	Chave
survival	Sobrevivência	0 = não, 1 = sim
pclass	Classe de bilhetes	1 = primeiro, 2 = segundo, 3 = terceiro
sex	Sexo	
Age	Idade em anos	
sibsp	Número de irmãos / cônjuges a bordo do Titanic	
parch	Número de pais / filhos a bordo do Titanic	
ticket	Número do bilhete	
fare	Tarifa de passageiro	
cabin	Número da cabine	
embarked	Porto de embarcação	C = Cherbourg, Q = Queenstown, S = Southampton

Exercício

Jupyter Notebook