Unsupervised Learning

Supervised Learning (Classification Algorithm)

Unsupervised Learning (Clustering Algorithm)

Machine Learning

UN-SUPERVISED LEARNING

Clustering

클러스터링은 데이터에서 비슷한 객체들을 하나의 그룹으로 묶는 것

그럼 데이터가 비슷한 기준은?

유사도 (거리) 정보 기반

클러스터링 알고리즘

- k-means clustering
- Hierarchical clustering
- Others
- Density-based spatial clustering of applications with noise (DBSCAN)
- Gaussian mixture model
- Self-organizing map (SOM)

k-means clustering

유사도

d(Xi, Xj)

유클리디안 거리 (L2 distance)

두점 P와 Q가 각각 $P=(p_1,p_2,p_3,...,p_n)$ 와 $Q=(q_1,q_2,q_3,...,q_n)$ 의 좌표를 갖을 때 두 점 사이의 거리를 계산하는 유클리디안거리 (Euclidean distance)공식은 다음과 같습니다.

$$\sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \dots + (p_n - q_n)^2} = \sqrt{\sum_{i=1}^n (p_i - q_i)^2}$$

유클리디안 거리 (L2 distance)

#	A	В	C	D
1	3	2	0	2
2	1	2	3	0
3	2	2	2	2

4	1	5	\mathbf{O}	0
•	•			

$$dist(D1,Q) = \sqrt{(3-1)^2 + (2-5)^2 + (0-0)^2 + (2-0)^2} = \sqrt{17}$$

$$dist(D2,Q) = \sqrt{(1-1)^2 + (2-5)^2 + (3-0)^2 + (0-0)^2} = \sqrt{18}$$

$$dist(D3,Q) = \sqrt{(2-1)^2 + (2-5)^2 + (2-0)^2 + (2-0)^2} = \sqrt{18}$$

코사인 유사도?

$$\cos.similarity = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum_{i=1}^{n} A_i \times B_i}{\sqrt{\sum_{i=1}^{n} (A_i)^2} \times \sqrt{\sum_{i=1}^{n} (B_i)^2}}$$

#	Α	В	С	D	Е	F	D	Н
L1	8	8	2	2	0	O	O	O
L2	10	8	3	O	0	O	O	O
L3	O	O	3	2	8	6	6	8
L4	O	O	3	O	8	6	2	8

#	내적	NORM A	NORM B	NORMA * NORM B	Cos.Sim
L1 X L2	8*10 + 8*8 + 2*3 + 2*0 + 0*0 + 0*0 + 0*0 + 0*0	(8*8 + 8*8 + 2*2 + 2*2 + 0*0 + 0*0 + 0*0 + 0*0)^0.5	(10*10 + 8*8 + 3*3 + 0*0 + 0*0 + 0*0 + 0*0)^0.5	11.6619*13.1529	150/153.3878
	150	11.6619	13.1529	153.3878	0.9779
L3 X L4	0*0 + 0*0 + 3*3 + 2*0 + 8*8 + 6*6 + 6*2 + 8*8	(0*0 + 0*0 + 3*3 + 2*2 + 8*8 + 6*6 + 6*6 + 8*8)^0.5	(0*0 + 0*0 + 3*3 + 0*0 + 8*8 + 6*6 + 2*2 + 8*8)^0.5	14.5945*13.3041	185/194.1667
	185	14.5945	13.3041	194.1667	0.9528
L1 X L3	8*0 + 8*0 + 2*3 + 2*2 + 0*8 + 0*6 + 0*6 + 0*8	(8*8 + 8*8 + 2*2 + 2*2 + 0*0 + 0*0 + 0*0 + 0*0)^0.5	(0*0 + 0*0 + 3*3 + 2*2 + 8*8 + 6*6 + 6*6 + 8*8)^0.5	11.6619*14.5945	10/170.1996
	10	11.6619	14.5945	170.1996	0.0588

$\underset{\mathbf{C}}{\operatorname{arg\,min}} \sum_{i=1}^{K} \sum_{\mathbf{x}_j \in C_i} ||\mathbf{x}_j - \mathbf{c}_i||^2$

Algorithm 1 Basic K-means Algorithm.

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

epoch =2

Weak points			
1	Sensitive results from Initial points		
2	Ball-shaped clusters		
3	Sensitive to noise points		

1. Sensitive results from Initial points

1. 해결법

1	n_init
2	init='k-means++'

sklearn.cluster.KMeans

THE

class sklearn.cluster. KMeans (n_clusters=8, init='k-means++', n_init=10, max_iter=300, tol=0.0001, precompute_distances='auto', verbose=0, random_state=None, copy_x=/True, n_jobs=1, algorithm='auto') [source]

2. Ball-shaped clusters

3. sensitive to noise points

3. 해결법

예측 전에 LOF 처리

k-means clustering 장단점

장점	계산이 쉽다. 다른 군집화 알고리즘에 비해 복잡도가 낮다
	구현이 쉽고 다양한 언어와 플랫폼에서 제공되는 알고리즘
단점	노이즈에 매우 민감
	군집 개수를 사전에 지정
	앞의 몇 가지 상황에서는 최적의 군집 구조를 찾기 어려움

Evaluation metrics for clustering

Sadly, there is no good way

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

a(1)

a(1) = a(1)에서 각점들 간의 거리를 평균

b(1)

b(1) = b(1)에서 각점들 간의 거리를 평균

$$s = \frac{b - a}{max(a,b)}$$

$$-1 \leq s \leq 1$$

Silhouette analysis for KMeans clustering on sample data with $n_clusters = 5$

