Graph fission and cross-validation

James Leiner¹

Aaditya Ramdas^{1,2}

Department of Statistics¹ and Machine Learning²

Carnegie Mellon University

Motivation

• We observe a graph $\mathcal{G} = (V, E, Y)$ with a known vertex (V) and edge (E) set, alongside observations (Y). Let $y_i = \mu_i + \epsilon_i$, where $\mu_i = E[y_i]$ and ϵ_i is a mean 0 random variable.

Graph Fission in P1 Regime

We leverage techniques called Data Fission (Leiner et al., 2023), and Data Thinning (Neufeld et

Generic Formulation (Neufeld et al., 2022)

For $Y \sim F_{\theta}$ convolution-closed, draw $Y^{\mathcal{G}_1}, \ldots, Y^{\mathcal{G}_m} \sim G_{\tau_1 \theta, \ldots, \tau_m \theta}$

Result: $Y^{\mathcal{G}_1}, \dots, Y^{\mathcal{G}_m}$ are then mutually independent, with $Y^{\mathcal{G}_i} \sim F_{\tau_i \theta}$, $\mathbb{E}\left[Y^{\mathcal{G}_i}\right] = \tau_i \mu$

Convolution Closed Definition (Joe, 1996)

convolution-closed, if $X' + X'' \sim F_{\theta_1 + \theta_2}$.

Let $G_{\theta_1,...,\theta_m}$ be the joint distribution of

 $(Y^{\mathscr{G}_1},\ldots,Y^{\mathscr{G}_1}) \mid \sum_{i=1}^{n} Y_{\mathscr{G}_i} = Y_i$

• Let $F_{ heta}$ be a distribution indexed by a parameter heta

• Drawing $X' \sim F_{\theta_1}$ and $X'' \sim F_{\theta_2}$ independently , then F is

Example: Poisson Data

• Draw $y_i^{\mathscr{G}_1}, \dots, y_i^{\mathscr{G}_m}$ from the distribution

 $\text{Multinomial}\left(y_i, \left(\frac{1}{m}, \ldots, \frac{1}{m}\right)\right)$ $\text{Marginally, } y_i^{\mathcal{G}_j} \sim \operatorname{Pois}\left(\frac{\mu_i}{m}\right) \text{, all mutually}$

• Assume $y_i \sim Pois(\mu_i)$

- If an analyst needs to select a model or tune hyper parameters over the graph, it may be useful to divide the data into multiple independent copies. However, because the data sample splitting is not available.
- We use external randomization to create mindependent copies of the graph $\mathcal{G}_1, \ldots, \mathcal{G}_m$ with corresponding observations $Y^{\mathcal{G}_1}, \ldots, Y^{\mathcal{G}_m}$, such that:
- 1. \mathcal{G}_i has the same vertex and edge set as \mathcal{G} .
- 2. Taken together, the individual datasets recover the original data Y in the sense that there exists a known deterministic function h such that $\mathscr{G} = h\left(\mathscr{G}_1, ..., \mathscr{G}_m\right).$
- 3. The information contained in Y is divided across $\mathcal{G}_1, \ldots, \mathcal{G}_m$ in any proportion desired.

al., 2022) to decompose the graph into multiple copies.

Desiderata: Desiderata: $\mathbb{E}[Y^{\mu}] = f(\mu)$ for some known

 $Y^{\mathscr{G}_1},\ldots,Y^{\mathscr{G}_m}$ are all mutually

Choose $\tau_1, \ldots \tau_m$ such that $\sum_{i=1}^{m} \tau_i = 1$

Example: Gaussian Data

• Draw $y_i^{\mathscr{G}_1}, \dots, y_i^{\mathscr{G}_m}$ from the distribution

 $N\left(\begin{bmatrix}y_i\\\vdots\\y_i\end{bmatrix},\sigma^2\begin{bmatrix}(m-1)&-1&\dots&-1\\-1&(m-1)&\dots&\vdots\\\vdots&\ddots&&\\-1&-1&\dots&(m-1)\end{bmatrix}\right)$

• Marginally, $y_i^{\mathscr{G}_j} \sim N(\mu_i, m\sigma^2)$, all mutually

function f

 $\mathbb{E}\left[Y^{\mathscr{G}_i}\right] = \tau_i \mu$

• Assume $y_i \sim N(\mu_i, \sigma^2)$

independent.

independent

Background: Structural Trend Estimation

We consider estimating a structural trend as a running example to consider across two applications: cross-validation and post-selection inference.

$$\hat{\mu} := \operatorname{argmin}_{\beta \in \mathbb{R}^n} \ell(Y, \beta) + \underbrace{D(\beta)}$$

Forming a penalty:

- We consider penalties of the form $D(\beta) := \lambda \| \Delta^{(k+1)}\beta \|_1$ or $D(\beta) := \lambda \| \Delta^{(k+1)}\beta \|_2$.
- $\Delta^{(1)} \in \{-1,0,1\}^{n \times p}$ and consists of one row per edge

$$\Delta_{v}^{(1)} = (0, \dots -1, \dots \underset{i}{1}, \dots 0)$$

Row corresponding to edge (i, j)(orientation of -1 and 1 is arbitrary)

Iterative formula for constructing $\Delta^{(k+1)}$

k = 0 corresponds to a piecewise constant trend, k = 1 corresponds to piecewise linear trend, and k = 2corresponds to piecewise quadratic trends. See left examples when square loss is used

Application: Cross Validation

• Consider choosing λ in the above structural trend estimation problem.

Graph Cross Validation Approach

• Assume $Y \sim F_{\theta}$ is convolution-closed and • Select a subset of nodes $I \subseteq V$. we construct $Y^{\mathcal{G}_1}, \ldots, Y^{\mathcal{G}_m}$ under **P1** Use to train model Use for evaluation

$$Y^{\mathcal{G}_{-j}} := \sum_{j \neq i} Y^{\mathcal{G}_j} \qquad Y^{\mathcal{G}_j} \sim F_{\theta^{\frac{1}{m}}} \sim F_{\theta^{\frac{m-1}{m}}}$$

Ordinary Cross Validation Approach

- Train $\hat{\beta}_{-I}$ by excluding these nodes and running STE
- Denote $\hat{\beta}_I$ as the average of fitted values across adjacent nodes for each $i \in I$. Evaluate $\hat{\beta}_I$ performance using held out
- We vary the size of jumps at breakpoints along with the percentage of active nodes (i.e. number of breakpoints) in the graph, and compare graph crossvalidation against ordinary cross-validation.
- The relative performance of graph cross-validation (dotted) compared to ordinary cross-validation (solid) increases with both the size of jumps and number of breakpoints, indicating that less smooth trends benefit the most from using graph fission to tune λ .

Graph Fission in P2 Regime

The decomposition rules in the P1 Regime are clean, but sometimes require knowledge of a nuisance parameter (e.g. σ^2 in the Gaussian case) which may be inconvenient.

We create two synthetic graphs such that $Y^{\mathcal{G}_1}, Y^{\mathcal{G}_2}$

- The law of $Y^{\mathcal{G}_2} | Y^{\mathcal{G}_1}$ is known and tractable.
- There exists a function *h* such that $\mathcal{G} = h(\mathcal{G}_1, \mathcal{G}_2).$

Example: Gaussian Data

Assume $y_i \sim N(\mu, \sigma^2 I_n)$ and draw $Z \sim N(0, \sigma_0^2 I_n)$ $y_i \sim N(\mu_i, \sigma^2)$

Link to paper (arXiv: 2401.15063)

Application: Inference after Structural Trend Estimation

• We use graph fission to construct **confidence intervals** around a fitted trend $\hat{\mu}$ when a square loss function is used, and $D(\beta) := \lambda \parallel \Delta^{(k+1)}\beta \parallel_{1}$

Use to select a basis **B** and choose Sel inferential target $\eta^T \mu := e_j^T B(B^T B)^{-1} B^T \mu$

Step 1: Basis Selection

Fit $\hat{\mu}$ on \mathcal{G}_{sel} for some choice of k

When *k* is even:

- $C \leftarrow L^{\frac{k}{2}}\hat{\beta}$
- Identify unique values of $C: c_1, \ldots, c_\ell$
- $B \leftarrow (L^{\dagger})^{\frac{\kappa}{2}} \begin{bmatrix} c_1^T & \dots & c_{\ell}^T \end{bmatrix}$
- 4. $B \leftarrow \begin{bmatrix} 1 & B \end{bmatrix}$

When k is odd:

- 1. $C \leftarrow L^{\frac{k+1}{2}} \hat{\beta}$
- 2. Identify $A \subseteq \{1,...n\}$ corresponding to the nonzero rows of C.
- 3. Let B be $(L^{\dagger})^{\frac{\kappa+1}{2}}$ with only the columns corresponding to Aincluded
- 4. $B \leftarrow [1 \ B]$

Step 2: Inference

- In the P1 regime, standard inferential procedures can be used (e.g. least squares), because the selection and inference graphs are independent
- The **P2** regime may be necessary when $G_{\theta_1,\dots,\theta_m}$ is a function of unknown nuisance parameters. Consider the case where $Y \sim N(\mu, \sigma^2 I_n)$ with σ^2 unknown and $Z \sim N(0, \sigma_0^2 I_n)$, with $Y^{\mathcal{G}}$ sel = Y + Z.
- In many cases, consistent estimates of σ^2 are not available, introducing further complication. In these cases, Theorem 1 can be used for inference.

Theorem 1

Assume we have access to $\hat{\sigma}_{high}$ and $\hat{\sigma}_{low}$ such that $\lim_{n\to\infty} \mathbb{P}\left(\sigma^2 \in [\hat{\sigma}_{low}^2, \hat{\sigma}_{high}^2] \mid Y^{\mathcal{G}^{sel}}\right) = 1$.

Also define:
$$\hat{\tau}_{low} = \frac{\sigma_{low}}{\hat{\sigma}_{low}^2 + \sigma_0^2}$$
, $\hat{\tau}_{high} = \frac{\sigma_{high}}{\hat{\sigma}_{high}^2 + \sigma_0^2}$

$$A_{1} = \min\{\frac{\eta^{T}Y - \hat{\tau}_{|OW}\eta^{T}Y^{\mathcal{S}^{Sel}}}{1 - \hat{\tau}_{|OW}}, \frac{\eta^{T}Y - \hat{\tau}_{high}\eta^{T}Y^{\mathcal{S}^{Sel}}}{1 - \hat{\tau}_{high}}\} A_{2} = \max\{\frac{\eta^{T}Y - \hat{\tau}_{|OW}\eta^{T}Y^{\mathcal{S}^{Sel}}}{1 - \hat{\tau}_{|OW}}, \frac{\eta^{T}Y - \hat{\tau}_{high}\eta^{T}Y^{\mathcal{S}^{Sel}}}{1 - \hat{\tau}_{high}}\} A_{2} = \max\{\frac{\eta^{T}Y - \hat{\tau}_{|OW}\eta^{T}Y^{\mathcal{S}^{Sel}}}{1 - \hat{\tau}_{|OW}}, \frac{\eta^{T}Y - \hat{\tau}_{high}\eta^{T}Y^{\mathcal{S}^{Sel}}}{1 - \hat{\tau}_{high}}\}$$

Then, a conservative asymptotic
$$1-\alpha$$
 CI for $\eta^T\mu$ I is given by:
$$C_{1-\alpha} := \left[A_1 - z_{\alpha/2} \frac{\parallel \eta \parallel_2 \hat{\sigma}_{\text{high}}}{\sqrt{1-\hat{\tau}_{\text{high}}}}, A_2 + z_{\alpha/2} \frac{\parallel \eta \parallel_2 \hat{\sigma}_{\text{high}}}{\sqrt{1-\hat{\tau}_{\text{high}}}} \right]$$

Experimental Results

- We compare confidence intervals constructed by Theorem 1 compared to the naive approach that assumes consistent estimates for σ^2 .
- Confidence intervals using naive estimates for σ^2 undercover, but Theorem 1 Cls are conservative.

