සියලු ම හිමිකම් ඇවරිණි / අගුල්ට පණිර්පුණිකෙරුකෙ යනු | All Rights Reserved |

ே இடை 55% ரோல்களில் இழும்பில் இருக்களில் இண்டிகளில் இருக்களில் இருக்களில் இருக்களில் இருக்களில் இருக்களில் இண்ணக்களில் இலங்கைப் பரிப்பைத் இணைக்களில் இண்ணக்களில் படுக்களைக்களில் இருக்களில் இருக்களில் இருக்களில் இருக்களில் படுக்களில் படுக்களில் இருக்களில் இருக்களில

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2022(2023) සහ්ඛාධ பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2022(2023) General Certificate of Education (Adv. Level) Examination, 2022(2023)

සංයුක්ත ගණිතය

இணைந்த கணிதம்

Combined Mathematics

B කොටස

- * පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.
- 11.(a) 0<|p|<1 යැයි ගනිමු. $p^2x^2-2x+1=0$ සමීකරණයට තාත්ත්වික පුහින්න මූල ඇති බව පෙන්වන්න. මෙම මූල α හා β (> α) යැයි ගනිමු. α හා β යන දෙකම ධන වන බව පෙන්වන්න.

p ඇපුරෙන් $(\alpha-1)(\beta-1)$ සොයා, $\alpha<1$ හා $\beta>1$ බව **අපෝගනය** කරන්න.

$$\sqrt{\beta} - \sqrt{\alpha} = \frac{1}{|p|} \sqrt{2(1-|p|)}$$
 බව පෙන්වන්න.

$$\sqrt{eta} + \sqrt{lpha} = rac{1}{|p|} \sqrt{2 \left(1 + |p|
ight)}$$
 බව දී ඇත. $\left| \sqrt{lpha} - 1
ight|$ හා $\left| \sqrt{eta} - 1
ight|$ මූල ලෙස ඇති වර්ගජ සමීකරණය

$$|p|x^2 - \sqrt{2(1-|p|)}x + \sqrt{2(1+|p|)} - |p|-1 = 0$$
 බව පෙන්වන්න.

- (b) $p(x) = 2x^3 + ax^2 + bx 4$ යැ<mark>යි ගනිම</mark>ු; මෙහි $a, b \in \mathbb{R}$ වේ. (x + 2) යන්න p(x) හා p'(x) යන දෙකෙහිම සාධකයක් බව දී ඇත; මෙහි p'(x) යනු x විෂයයෙන් p(x) හි වසුත්පන්නය වේ. a හා b හි මෙම අගයන් සඳහා p(x) 3p'(x) සම්පූර්ණයෙන් සාධකවලට වෙන් කරන්න.
- 12.(a) අවම වශයෙන් එක් සිසුවෙකුට එක් පලතුරක්වත් ලැබෙන පරිදි, අඹ ගෙඩි හයක් හා දොඩම් ගෙඩි හතරක් සිසුන් අට දෙනෙකු අතරේ බෙදා දිය යුතුව ඇත.
 - සිසුන් හය දෙනෙකුට එක් පලතුරක් බැගින් හා ඉතිරි දෙදෙනාගෙන් එක් අයෙකුට අඹ ගෙඩි දෙකක් හා අනිත් කෙනාට දොඩම් ගෙඩි දෙකක්,
 - (ii) සිසුන් හත් දෙනෙකුට එක් පලතුර බැගින් හා අනිත් සිසුවාට **අඹ ගෙඩ තුනක්**,
 - (iii) සිසුන් හත් දෙනෙකුට එක් පලතුර බැගින් හා අනිත් සිසුවාට පලතුරු තුනක්, ලැබෙන පරිදි වූ වෙනස් ආකාර ගණන සොයන්න.
 - (b) $r\in\mathbb{Z}^+$ සඳහා $U_r=rac{4(2r+7)}{(2r+1)(2r+3)(2r+5)}$ යැයි ගනිමු. තවද, $r\in\mathbb{Z}^+$ සඳහා $f(r)=rac{A}{(2r+1)}+rac{B}{(2r+3)}$ යැයි ගනිමු; මෙහි A හා B යනු තාත්ත්වික නියන වේ. $r\in\mathbb{Z}^+$ සඳහා $U_r=f(r)-f(r+1)$ වන පරිදි A හා B හි අගයන් නිර්ණය කරන්න.

ඒ නයින් හෝ අන් අයුරකින් හෝ, $n\in\mathbb{Z}^+$ සඳහා $\sum_{r=1}^n U_r=rac{4}{5}-rac{3}{2n+3}+rac{1}{2n+5}$ බව පෙන්වන්න.

 $\sum_{r=1}^\infty U_r$ අපරිමිත ශ්‍රේණිය අභිසාරී බව **අපෝගනය** කර එහි ඓකාය සොයන්න.

ඒ නයින්, $\sum_{r=1}^{\infty} \left(U_r + k U_{r+1} \right) = 1$ වන පරිදි k තාත්ත්වික නියනයෙහි අගය සොයන්න.

$$\mathbf{13.}(a) \ \mathbf{A} = \left(egin{array}{ccc} a & -2 \ 1 & a+2 \end{array}
ight)$$
 යැයි ගනිමු. සියලු $a \in \mathbb{R}$ සඳහා \mathbf{A}^{-1} පවතින බව පෙන්වන්න.

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -2 \end{pmatrix}$$
. $\mathbf{Q} = \begin{pmatrix} 2 & 3 & 2 \\ -1 & 7 & 4 \end{pmatrix}$ හා $\mathbf{R} = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$ නාහය $\mathbf{A} = \mathbf{P}\mathbf{Q}^\mathsf{T} + \mathbf{R}$ වන පරිදි වේ. $a = 1$

$$a$$
 හි මෙම අගය සඳහා, \mathbf{A}^{-1} ලියා දක්වා, ඒ **නයින්**, $\mathbf{A} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -5 \\ 10 \end{pmatrix}$ වන පරිදි x හා y හි අගයන් සොයන්න.

- $(b)\ z,\, w\in \mathbb{C}\ \omega_1$ යි ගනිමු. $z\overline{z}=\left|z\right|^2$ බව පෙන්වා **ඒ හයින්**, $\left|z+w\right|^2=\left|z\right|^2+2\operatorname{Re}(z\overline{w})+\left|w\right|^2$ බව පෙන්වන්න. $\left|z+w\right|^2+\left|z-w\right|^2=2\left(\left|z\right|^2+\left|w\right|^2\right)$ බව **අපෝගනය** කර, අංගන්ඩ සටහනේ, z,w හා 0 නිරූපණය කරන ලක්ෂා ඒක රේඛීය නොවන විට, ඒ සඳහා ජනාමිනික අර්ථ නිරූපණයක් දෙන්න.
- (c) $z=-1+\sqrt{3}i$ යැයි ගනිමු. z යන්න $r(\cos\theta+i\sin\theta)$ ආකාරයෙන් පුකාශ කරන්න; මෙහි r>0 හා $\frac{\pi}{2}<\theta<\pi$ වේ. $n\in\mathbb{Z}^+$ සඳහා $z^n=a_n+ib_n$ යැයි ගනිමු; මෙහි $a_n,b_n\in\mathbb{R}$ වේ. $m,n\in\mathbb{Z}^+$ සඳහා $\mathrm{Re}\left(z^m\cdot z^n\right)$ යන්න a_m,a_n,b_m හා b_n ඇසුරෙන් ලියා දක්වන්න. z^{m+n} සලකමින් හා ද මුවාවර් පුමේයය භාවිතයෙන් $m,n\in\mathbb{Z}^+$ සඳහා $a_ma_n-b_mb_n=2^{m+n}\cos(m+n)\frac{2\pi}{3}$ බව පෙන්වන්න.

14.(a)
$$x \neq -2$$
 සඳහා $f(x) = \frac{2x+3}{(x+2)^2}$ යැයි ගනිමු.

f(x) හි වසුත්පන්නය, f'(x) යන්න $x \neq -2$ සඳහා $f'(x) = \frac{-2(x+1)}{(x+2)^3}$ මගින් දෙනු ලබන බව පෙන්වන්න.

ඒ තයින්, f(x) වැඩි වන පුාන්තරය හා f(x) අඩු වන පුාන්තර සොයන්න.

f(x) හි හැරුම් ලක්ෂායේ ඛණ්ඩාංක ද සොයන්න.

 $x \neq -2$ සඳහා $f''(x) = \frac{2(2x+1)}{(x+2)^4}$ බව දී ඇත. y = f(x) හි පුස්තාරයේ නතිවර්තන ලක්ෂායේ ඛණ්ඩාංක සොයන්න.

ස්පර්ශෝන්මුඛ, හැරුම් ලක්ෂාය හා නතිවර්තන ලක්ෂාය දක්වමින් y=f(x) හි පුස්තාරයේ දළ සටහනක් අදින්න.

 $[k,\infty)$ මත f(x) එකට-එක වන k හි කුඩාතම අගය පුකාශ කරන්න.

(b) රූපයේ පෙන්වා ඇති අඳුරු කළ පෙදෙසෙහි වර්ගඵලය 45 m^2 වේ. එය ලබාගෙන ඇත්තේ දිග 3x m හා පළල 2y m වූ සාජුකෝණාසුයකින්, දිග x m හා පළල y m වූ සාජුකෝණාසුයක් ඉවත් කිරීමෙනි. අඳුරු කළ පෙදෙසෙහි පරිමිතිය L m යන්න 2y m x > 0 සඳහා $L = 6x + \frac{54}{x}$ මගින් දෙනු ලබන බව පෙන්වන්න. L අවම වන x හි අගය සොයන්න.

15.(a) සියලු $x \in \mathbb{R}$ සඳහා $x^2 + x + 2 = A(x^2 + x + 1) + (Bx + C)(x + 1)$ වන පරිදි A, B හා C නියතවල අගයන් සොයන්න.

ඒ නයින්,
$$\frac{x^2+x+2}{(x^2+x+1)(x+1)}$$
 යන්න හින්න භාගවලින් ලියා දක්වා, $\int \frac{x^2+x+2}{(x^2+x+1)(x+1)} \, \mathrm{d}x$ සොයන්න.

- $(b) \ 1 + \sin 2x = 2\cos^2\left(\frac{\pi}{4} x\right)$ බව පෙන්වා, ඒ නයින්, $\int\limits_0^{\frac{\pi}{2}} \frac{1}{1 + \sin 2x} \mathrm{d}x = 1$ බව පෙන්වන්න.
- (c) $I=\int\limits_0^{rac{\pi}{2}} rac{x^2\cos 2x}{(1+\sin 2x)^2}\,\mathrm{d}x$ යැයි ගනිමු. කොටස් වශයෙන් අනුකලනය භාවිතයෙන්, $I=-rac{\pi^2}{8}+J$ බව පෙන්වන්න; මෙහි $J=\int\limits_0^{rac{\pi}{2}} rac{x}{1+\sin 2x}\,\mathrm{d}x$.

 $\int\limits_0^a f(x)\mathrm{d}x = \int\limits_0^a f(a-x)\mathrm{d}x$ යන සම්බන්ධය හා (b) හි පුතිඑලය භාවිතයෙන් J හි අගය ගණනය කර $I = \frac{\pi}{8}(2-\pi)$ බව පෙන්වන්<mark>න.</code></mark>

Maths 2

16. $P \equiv (x_0, y_0)$ හා l යනු ax + by + c = 0 මගින් දෙනු ලබන සරල රේඛාව යැයි ගනිමු. P සිට lට ඇති ලම්බ දුර $\frac{\left|ax_0 + by_0 + c\right|}{\sqrt{a^2 + b^2}}$ බව පෙන්වන්න .

 l_1 හා l_2 යනු පිළිවෙළින්, 4x-3y+8=0 හා 3x-4y+13=0 මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. l_1 හා l_2 , $A\equiv (1,4)$ හිදී ඡේදනය වන බව පෙන්වන්න.

 l_1 හා l_2 අතර සුළු කෝණයේ සමච්ඡේදකයේ පරාමිතික සමීකරණ x=t හා y=t+3 ලෙස ලිවිය හැකි බව ද පෙන්වන්න; මෙහි $t\in\mathbb{R}$.

ඒ නයින්, l_1 හා l_2 සරල රේඛා දෙකම ස්පර්ශ කරන, l_1 හා l_2 අතර සුළු කෝණය අඩංගු වන පෙදෙසෙහි පවතින ඕනෑම වෘත්තයක සමීකරණය $(x-t)^2+(y-t-3)^2=\frac{1}{25}(t-1)^2$ මගින් දෙනු ලබන බව පෙන්වන්න; මෙහි $t\in\mathbb{R}$ හා $t\neq 1$.

ඉහත වෘත්ත අතුරින්, කේන්දුය A වන හා අරය I වන වෘත්තය පුලම්බව ඡේදනය කරන වෘත්තවල සමීකරණ සොයන්න. 17. (a) $\cos A$, $\cos B$, $\sin A$ හා $\sin B$ ඇසුරෙන් $\cos (A+B)$ ලියා දක්වා, $\sin (A-B)$ සඳහා එවැනිම පුකාශනයක් ලබාගන්න.

 $k\in\mathbb{R}$ හා $k\neq 1$ යැයි ගනිමු. k>1 හා k<1 අවස්ථා වෙන වෙනම සලකමින්, $2k\cos\left(\theta+\frac{\pi}{3}\right)+2\sin\left(\theta-\frac{\pi}{6}\right)$ යන්න $R\cos(\theta+\alpha)$ ආකාරයෙන් පුකාශ කරන්න; මෙහි R(>0) k ඇසුරෙන් ද $\alpha\left(0<\alpha<2\pi\right)$ ද නිර්ණය කළ යුතු තාත්ත්වික නියන වේ.

ඒ නයින්, $2k\cos\left(\theta + \frac{\pi}{3}\right) + 2\sin\left(\theta - \frac{\pi}{6}\right) = |k - 1|$ විසඳන්න.

(b) රූපයේ පෙන්වා ඇති ABCD චතුරසුයෙහි AB=2p, CD=4p, D, $A\hat{C}B=\frac{\pi}{6}$ හා $A\hat{B}C=A\hat{C}D=\alpha$ වේ. $AD^2=16\,p^2(\sin^2\alpha-\sin2\alpha+1)$ බව පෙන්වන්න.

ඒ නයින්, AD=4p නම් $lpha= an^{-1}(2)$ බව පෙන්වන්න.

(c) x > 1 සඳහා $\tan^{-1}(\ln x^{\frac{2}{3}}) + \tan^{-1}(\ln x) + \tan^{-1}(\ln x^2) = \frac{\pi}{2}$ විසඳන්න.

