Wireless Sensor Networks

Dr. E.SURESH BABU

Assistant Professor

Computer Science and Engineering Department

National Institute of Technology, Warangal. Warangal, TS, India.

Session Outline

- Overview of Wireless Sensor Networks
- 2 Challenges in Designing a Sensor Network
- Routing Protocols in Wireless Sensor Networks
- Routing Protocols in WSNs: A Taxonomy
- SPIN: Sensor Protocols for Information via Negotiation
- 6 Wireless Sensor Network (WSN) in IoT

Overview of Wireless Sensor Networks

Wireless Sensor Networks

- ❖ Wireless Sensor Networks are a special category of ad hoc networks
 - ✓ Used to provide a wireless communication infrastructure among the sensors
 - ✓ Deployed in a **specific application domain**.
- A sensor network is a collection of a large number of sensor nodes that are deployed in a particular region.

Wireless Sensor Networks

- The sensor network nodes broadcast their status to the surroundings and receive status from other nodes to detect each other.
- ❖ The sensor network nodes are organized into a connected network according to a certain topology (linear, star, tree, mesh, etc.).
- Suitable paths are computed on the constructed network for transmitting the sensing data.

Distinct Properties of Wireless Sensor Networks:

- * Mobility of nodes are not needed in all cases
- The size of the network is much larger than that in a typical ad hoc wireless network.
- The density of nodes in a sensor network varies with the domain of application.
- The power constraints in sensor networks are much more stringent than those in ad hoc wireless networks.

Hopping

- Sensor nodes monitor the collected data to transmit along to other sensor nodes by hopping.
- During the process of transmission
 - ✓ Monitored data may be handled by multiple nodes to get to **gateway**node after multi-hop routing
 - ✓ finally reach the **management node** through the **internet or satellite**.

Topology

Star topology

- ✓ Every sensor communicates directly (single-hop) with the base station
- ✓ May require large transmit powers and may be infeasible in large geographic areas

Mesh topology

- ✓ Sensors serve as relays (forwarders) for other sensor nodes (multi-hop)
- ✓ May reduce power consumption and allows for larger coverage
- ✓ Introduces the problem of routing

Routing Protocols in Wireless Sensor Networks

Challenges of WSN

- No Global Addressing
 - ✓ Classical IP-based protocols cannot be applied to sensor networks
- * Redundant Data Traffic
 - ✓ Multiple sensors may generate same data within the vicinity of a phenomenon
 - ✓ Such redundancy needs to be exploited by the routing protocols to **improve energy and**bandwidth utilization
- * Multiple-Source Single-Destination Network
 - Almost all applications of sensor networks require the flow of sensed data from multiple regions (sources) to a particular sink

Challenges of WSN

- Careful Resource Management
 - ✓ Sensor nodes are tightly constrained in terms of:
 - Transmission power
 - · On-board energy
 - · Processing capacity
 - Storage
- ❖ WSNs are generally **stationary** after deployment

Location Specific

- Sensor Networks Are Application Specific
- Position awareness of sensor nodes is important since data collection is normally based on the location.
- Data collected by many sensors in WSNs is typically based on common phenomena. Hence some redundancy of data does exist.

Routing Challenges in WSN

- The task of **finding and maintaining routes** in WSNs is nontrivial
 - ✓ Energy restrictions and sudden changes in node status
 - ✓ Cause frequent failure and
 - ✓ Unpredictable topological changes.

Routing in WSN

- The design of routing protocols in WSNs is influenced by many challenging factors. These factors must be overcome before efficient communication can be achieved in WSNs.
 - √ Node deployment
 - √ Energy considerations
 - ✓ Data delivery model
 - √ Node/link heterogeneity
 - √ Fault tolerance
 - √ Scalability

- √ Network dynamics
- √ Transmission media
- √ Connectivity
- √ Coverage
- ✓ Data aggregation/converge cast
- √ Quality of service

Routing in WSN

- To Minimize Energy Consumption, routing techniques proposed for WSNs employ some well-known routing strategies,
 - ✓ Data Aggregation And
 - √ In-network Processing,
 - √ Clustering,
 - √ Different Node Role Assignment,
 - √ Data-centric Methods

Routing Protocols in WSNs: A Taxonomy

Routing Protocols in WSNs: Classification

❖ Data Centric:

✓ Data-centric protocols are query-based

* Hierarchical:

✓ Aim at clustering the nodes so that cluster heads can do some aggregation and reduction of data in order to save energy

❖ Location-based:

✓ Utilize the position information to relay the data to the desired regions rather than the whole network.

Data-Centric Protocols

Data-Centric Protocols

- ❖ In many applications of sensor networks, it is not feasible to
 - assign global identifiers to each node
- **Data-centric protocols** are query-based
- Sink sends queries to certain regions and waits data from sensors located in that region
- * Attribute-based naming is necessary to specify properties of data

Data-Centric Routing

- Flooding
- Gossiping
- Sensor Protocols for Information via Negotiation (SPIN)
- Directed Diffusion
- Energy-aware Routing
- Rumor Routing
- Gradient-Based Routing (GBR)
- Constrained Anisotropic Diffusion Routing (CADR)
- * ACtive QUery forwarding In sensoR nEtworks (ACQUIRE)

SPIN

Sensor Protocols for Information via Negotiation

SPIN -Motivation

- Sensor Protocols for Information via Negotiation, SPIN
- ❖ A Negotiation-Based Protocols for Disseminating Information in Wireless Sensor Networks.
- Dissemination is the process of distributing individual sensor observations to the whole network, treating all sensors as sink nodes
 - ✓ Replicate complete view of the environment
 - ✓ Enhance fault tolerance
 - ✓ Broadcast critical piece of information

SPIN (cont.)- SPIN family

- * Protocols of the SPIN family
 - 1. SPIN-PP
 - ✓ It is designed for a point to point communication, i.e., hop-by-hop routing
 - 2. SPIN-EC
 - ✓ It works similar to SPIN-PP, but, with an energy heuristic added to it
 - SPIN-RC
 - ✓ It is designed for broadcast channels
 - 4. SPIN-RI
 - ✓ When a channel is lossy, a protocol called SPIN-RL is used

SPIN (cont.)- SPIN-PP

- SPIN-PP: A three-stage handshake protocol for point-to-point media
 - 1. ADV data advertisement
 - ✓ Node that has data to share can advertise this by transmitting an ADV with meta-data attached
 - 2. REQ request for data
 - ✓ Node sends a request when it wishes to receive some actual data
 - 3. DATA data message
 - ✓ Contain actual sensor data with a meta-data header
 - ✓ Usually much bigger than ADV or REQ messages

SPIN (cont.)- Conclusion

SPIN protocols hold the promise of achieving high performance at a low cost in terms of complexity, energy, computation, and communication

Pros

- ✓ Each node only needs to know its one-hop neighbors
- ✓ Significantly reduce energy consumption compared to flooding

Cons

- Data advertisement cannot guarantee the delivery of data
- . If the node interested in the data are far from the source, data will not be delivered
- Not good for applications requiring reliable data delivery, e.g., intrusion detection

Thank U

Hierarchical Routing Protocols

Hierarchical Routing Protocols

- Scalability is one of the major design attributes of sensor networks
- ❖ A single-tier network can cause the **gateway to overload** with the increase in sensors density
 - ✓ Such overload might cause latency in communication and inadequate tracking of events
- The single-gateway architecture is not scalable for a larger set of sensors covering a wider area of interest

LEACH

Low-Energy Adaptive Clustering Hierarchy

LEACH Routing Protocols

- LEACH (Low-Energy Adaptive Clustering Hierarchy), a clusteringbased protocol that minimizes energy dissipation in sensor networks.
- ❖ LEACH outperforms classical clustering algorithms by using adaptive clusters and rotating cluster-heads, allowing the energy requirements of the system to be distributed among all the sensors.
- ❖ LEACH is able to perform local computation in each cluster to reduce the amount of data that must be transmitted to the base station.

LEACH: Adaptive Clustering

- Periodic independent self-election
 - ✓ Probabilistic
- ❖ CSMA MAC used to advertise
- ❖ Nodes select advertisement with strongest signal strength
- Dynamic TDMA cycles

All nodes marked with a given symbol belong to the same cluster, and the cluster head nodes are marked with a ..

Wireless Sensor Network (WSN) and Internet

Integrating WSNs into IoT

- Wireless Sensors are used to measure and keep track of energy consumption and production in order to optimize energy usage.
- Internet things communicate by producing and consuming information and execute smart algorithms to interact intelligently with other things in the Internet.

Low cost IP Interconnection Technology

- The design of early sensor networks commonly used internal addresses to manage the sensor network nodes.
 - √ The address length was relatively short
 - ✓ Suitable for implementing in low-power sensor network nodes.

Low cost IP Interconnection Technology

- The internal address Method of Sensor is not compatible with the IP method of the internet.
- Wireless Sensor Networks (WSNs) are connecting things to the Internet through a gateway that interfaces the WSN to the Internet.

Challenge

- **❖ Various Devices** in WSN
 - ✓ Uses different protocols to connect to the network using Wi-Fi, Bluetooth, Ethernet, MQTT, ZigBee and others.
 - ✓ May connect to different control environments and
 - ✓ Different models for management and security
 - ✓ Some Sensors Devices and controllers use very low energy and don't support energy-intensive protocols like Wi-Fi or Bluetooth, and therefore can't connect directly to the Internet.

Challenge

- ❖ The Success for WSNs and IoT applications, Low energy consumption is
 - \checkmark To support the long flow of independent battery-powered devices and
 - ✓ To reduce maintenance cost.

Integration to Connect WSN and Internet

- The integration to connect to both WSN and the Internet infrastructures
- **Classification:**
 - 1. Stack based
 - 2. Topology based

Stack based Classification

- In Stack Based Classification
 - ✓ Integration level depends on similarities between network stacks of WSN and Internet
 - ✓ Classification: Front End, Gateway or TCP/IP

Stack-based Classification

- ❖ A WSN can be completely independent from the Internet (Front-End)
- * A WSN can Exchange information with Internet hosts (Gateway), or
- ❖ A WSN can share a compatible network layer protocol (TCP/IP).

Stack-based Classification

- ❖ Front-end Solution: WSN independent from the Internet
 - ✓ Implements its own protocols
 - ✓ All interaction managed by a centralized base station
- **Gateway solution:** WSN can exchange information with Internet hosts
 - ✓ Internet hosts and sensor nodes can address each other indirectly through a gateway
 - ✓ Base station acts as application layer gateway; translating lower layer protocols and routing information
- * TCP/IP solution: WSN shares a compatible network layer protocol
 - ✓ Sensor nodes implement TCP/IP (or 6LoWPAN) to become a part of the Internet
 - ✓ Sensor nodes may not be able to use specific WSN protocols

Stack-based Classification: (1) Front End Solution

- The external Internet hosts and the sensor nodes never communicate directly with each other.
- ❖ The WSN is **completely independent** from the Internet,
- All interactions between the outside world and the sensor network will be managed by a centralized device, such as a base station.
 - ✓ This base station can store all the data streams coming from the WSN
 - ✓ it also provide the data streams to **external** entities **Web Server**
 - ✓ Any queries coming from Internet hosts(**Web Server**) will always traverse the base station.

Stack-based Classification: (2) Gateway solution

- Existence of a device (e.g. base station) that acts as an application layer gateway,
 - ✓ In charge of translating the **lower layer protocols** from different networks

 (WSN and Web Server)
 - ✓ Routes the **information** from **one point to another.**
 - ✓ Internet hosts and sensor nodes will be able to exchange information without establishing a truly direct connection.

SBC-Gateway solution: Observation

WSN is still independent from the Internet, and all queries still need to traverse a gateway device.

Stack-based Classification: (3) TCP/IP solution

- Sensor nodes implement the TCP/IP stack (or a compatible set of protocols such as 6LoWPAN in 802.15.4 networks)
 - ✓ Any Internet host can open a direct connection with them.
 - ✓ This solution fully integrates the WSN with the IoT.
 - ✓ Sensor nodes are **no longer able** to use specific **WSN protocols**.

* Hybrid Solution * Access Point Solution

Topology-based Classification: Hybrid Solution

- Set of nodes within the WSN, usually located at the edge of the network
- ❖ These edge nodes are able to access the Internet in a direct way.
- These nodes can be easily mapped to base stations,
- Every sensor/Edge Node within the WSN needs to traverse them in order to connect the central system (base stations).

Topology-based Classification: Access Point solution

- ❖ WSNs become unbalanced trees with multiple roots,
 - ✓ Where leaves are normal sensor nodes and all other elements of the tree are
 Internet-enabled nodes.
 - ✓ All sensor nodes can be able to access the Internet in just one hop.
- One of the main features of this approach is the possibility to increase the capabilities of nodes that belong to the backbone network.
- For example, backbone nodes can have more resources than normal nodes, and can implement faster network standards (e.g. 802.11 vs 802.15.4).

Observation

The only task of the nodes that connect the Internet with the local network will be to behave as translators (e.g. between 6LoWPAN and IPv6).

Integrating WSNs into IoT

- ❖ To enable the integration of WSN in the IoT
 - ✓ The IPv6 over Low power Wireless Personal Area Networks
 (6LoWPAN) protocol should be implemented and deployed in
 Wireless Sensor Networks (WSNs);
 - ✓ Internet Protocol Version 6 (IPv6) is used to uniquely identify the things in the Internet.

Protocol Description

- The WSN uses Zigbee/6LowPAN as the communication medium and uses
 IPv6 in the network layer.
- The communication between the gateway and the Mobile client is based on IPv4 over Wi-Fi.

Protocol Description

- This architecture enables
 - ✓ Any device within the network will communicate with any other device independently
 - ✓ Using communication medium (e.g., Zigbee/6LowPAN or Wi-Fi)
 - ✓ Using network protocol (e.g., IPv4 or IPv6).
- The connection between the sink and the gateway is based on Universal Serial Bus (USB) connection.

