CSC3631 Cryptography - Digital Signatures I

Thomas Gross

CSC3631 Cryptography - Digital Signatures I

How do we use **RSA Encryption** in practice?

Use appropriate padding (PKCS/OAEP)

- Randomization
- Structure
- Use of full message length

Use Hybrid Encryption

CSC3631 Cryptography - Digital Signatures I

Roadmap

- Digital Signatures
 - Concepts and characteristics
 - Existential Unforgeability
- RSA Signatures
 - Textbook RSA and its Insecurity
 - Hashed RSA

Goal for today:

- What are digital signatures?
- How is the popular RSA Signature Scheme realized?

CSC3631 Cryptography – Digital Signatures I

13

13

Imitating a Hand-written Signature

What properties should a signature scheme have?

CSC3631 Cryptography - Digital Signatures I

1

14

Characteristics

Goal: integrity – Message came from sender & is unmodified

Public verifiability: Everybody with access to pk can verify a signature.

Transferability: One can convince others of the signature's validity.

Non-repudiation: Alice cannot repudiate that she has signed the message.

Key authenticity: Publish pk by distributing it with integrity.

CSC3631 Cryptography – Digital Signatures I

Digital Signatures vs. MACs

Signatures	MACs
No pre-shared secret	Need key exchange
Keys independent of sender	Secret key for each pair of parties
Anyone who wants to verify the signature can do so	Only the dedicated partner can verify.
Only a single private key to keep secret	Large number of keys needed
Non-repudiation	Deniable
	2-3 orders of magnitude faster than signature schemes

CSC3631 Cryptography – Digital Signatures I

17

18

20

Roadmap

- Digital Signatures
 - Concepts and characteristics
 - Existential Unforgeability
- RSA Signatures
 - Textbook RSA and its Insecurity
 - Hashed RSA

Goal for today:

- What are digital signatures?
- How is the popular RSA Signature Scheme realized?

CSC3631 Cryptography - Digital Signatures I

20

Existential Unforgeability I

No adversary should be able to forge any signature.

Setup: Generate keypair (pk, sk)

Inputs to Adversary A: pk, access to $Sign_{sk}()$ A gets signatures on an arbitrary set of

messages *m* in *Q*.

Output by **A**: message-signature pair (m^*, σ)

Success criterion for A: verify_{pk} $(m^*, \sigma) = 1$ m^* not in O.

> CSC3631 Cryptography – Asymmetr Encryption I

21

21

Summary

Goal: Integrity

With **public verifiability**, **transferability** and **non-repudiation**.

Remember: Key distribution must be authentic!

Key security property: Existential Unforgeability

CSC3631 Cryptography - Digital Signatures I

23

Existential Unforgeability II

A signature scheme is **existentially unforgeable under an adaptive chosen-message attack**if all probabilistic and polynomial-time adversaries A only
have negligible success probability.

CSC3631 Cryptography - Digital Signatures I

22

22

Roadmap

- Digital Signatures
 - Concepts and characteristics
 - Existential Unforgeability
- RSA Signatures
 - Textbook RSA and its Insecurity
 - Hashed RSA

Goal for today:

- What are digital signatures?
- How is the popular RSA Signature Scheme realized?

CSC3631 Cryptography - Digital Signatures I

25

RSA Key Generation

Recall: How to create a strong setting for RSA?

 $GenRSA(1^n)$

Input: key length *n*

Generate two large *n*-bit **distinct primes** *p* and *q*

Compute $N = p \cdot q$ and $\varphi(N) = (p-1) \cdot (q-1)$

Choose a random integer e, $gcd(e, \varphi(N)) = 1$

Compute e's inverse d: $d \cdot e = 1 \pmod{\varphi(N)}$

Output: pk = (N, e), sk = (N, d)

CSC3631 Cryptography - Digital Signatures I

The RSA Assumption

Recall: What's the basis of the RSA crypto system?

Setup: $(N, e, d) \leftarrow \text{GenRSA}(1^n)$, where $e \cdot d = 1 \mod \varphi(N)$

Choose y from $(\mathbf{Z}_N)^*$

Input for Adversary **A**: N, e, y

Output of Adversary **A**: $x \text{ in } (\mathbf{Z}_N)^*$

Adversary A success: if $x^e = y \pmod{N}$

The RSA problem is **hard** relative to GenRSA if all probabilistic and polynomial-time adversaries **A** only have negligible success probability.

CSC3631 Cryptography – Asymmetric Encryption I

26

26

Textbook RSA Signatures

KeyGen: $pk=(N, e), sk=(N, d) \leftarrow GenRSA(1^n)$

Sign: Given sk=(N, d) and message m:

 $\sigma = m^d \pmod{N}$

Verify: Given pk=(e, N) and signature σ :

 $m = \sigma^e \pmod{N}$

CSC3631 Cryptography – Digital Signatures I

How Secure are Textbook RSA Signatures?

Textbook RSA signatures are existentially unforgeable against adaptive chosen message attacks.

Textbook RSA signatures are existentially unforgeable against passive against key-only attacks.

Textbook RSA signatures are secure against selective forgeries, yet not existentially unforgeable.

Textbook RSA signatures are not secure at all, even if the RSA assumption holds.

CSC3631 Cryptography – Asymmetric Encryption I

29

29

No-message Attack

Adversary A only has access to pk=(N, e). How can be mount an attack?

CSC3631 Cryptography – Digital Signatures I

31

Roadmap

- Digital Signatures
 - Concepts and characteristics
 - Existential Unforgeability
- RSA Signatures
 - Textbook RSA and its Insecurity
 - Hashed RSA

Goal for today:

- What are digital signatures?
- How is the popular RSA Signature Scheme realized?

CSC3631 Cryptography – Digital Signatures I

30

30

Selected-Message Attack I

Adversary \mathbf{A} has access to pk=(N, e) and can obtain two signatures from the signer. How can \mathbf{A} forge a signature on any chosen message m?

CSC3631 Cryptography – Digital Signatures I

Selected-Message Attack II

Claim: $\sigma = \sigma_1 \cdot \sigma_2 \pmod{N}$ is a valid signature on m

Given: $m_2 = m / m_1$

 $\sigma = \sigma_1 \cdot \sigma_2$ $= m_1^d \cdot m_2^d \qquad | \text{ Def. of RSA sign}$ $= m_1^d \cdot (m/m_1)^d \qquad | \text{ Structure of } m_2$ $= m_1^d \cdot (m^d/m_1^d) \qquad | \text{ Exp. rules}$

CSC3631 Cryptography - Digital Signatures I

 $= m_1^d \cdot m^d m_1^{-d} = m^d$

33

33

Hashed RSA How to get an actual signature scheme out of RSA? Hashed RSA can be proven to be existentially unforgeable under an adaptive chosen-message attack under the RSA assumption and in the random oracle model.

Roadmap

- Digital Signatures
 - Concepts and characteristics
 - Existential Unforgeability
- RSA Signatures
 - Textbook RSA and its Insecurity
 - Hashed RSA

Goal for today:

- What are digital signatures?
- How is the popular RSA Signature Scheme realized?

CSC3631 Cryptography – Digital Signatures I

3

Summary

RSA can form a signature scheme.

Sign: Given sk=(N, d) and m: $\sigma = m^d \pmod{N}$

Verify: Given pk=(e, N) and σ : $m = \sigma^e \pmod{N}$

Textbook RSA is **completely insecure**.

Hash-and-sign is the way forward.

CSC3631 Cryptography – Digital Signatures I