SevCT Praktikum II

SEVANJE ČRNEGA TELESA

Uvod

Gostota energije elektromagnetnega valovanja z neko frekvenco ν v votlini pri konstantni temperaturi T je podana s Planckovo formulo

$$w(\nu, T) = \frac{8\pi h \nu^3}{c^3} \frac{1}{\exp(h\nu/kT) - 1},$$
(1)

ker je ν frekvenca valovanja, h Planckova konstanta in c hitrost svetlobe v vakuumu. Iz take votline izhaja skozi majhno luknjo najboljši približek sevanja črnega telesa. Gostota energijskega toka skozi luknjico z neko frekvenco je

$$j(\nu, T) = \frac{1}{4}cw(\nu; T). \tag{2}$$

Iz luknjice svetloba seva v prostor po Lambertovem cosinusnem zakonu [1]. Tudi volframska nitka v žarnici je dober približek. Za primerjavo, sončna radiacija je približno črno telo pri približno 5800 K. S to vajo bomo merili sevanje volframske nitke v halogeni žarnici, ki ji lahko spreminjamo temperaturo v zelo širokem obsegu. Z absolutnim merilnikom sevanja bomo določili celoten energijski tok, ki ga seva žarnica in ga primerjali z močjo, ki jo troši.

Naloga

- 1. Izmeri odvisnost svetlobnega toka halogene žarnice v razponu od rahlega žarenja do maksimalne moči. Pri tem meri tudi moč, ki se troši na žarnici, tako da meriš tok in napetost.
- 2. Nariši graf celotne izsevane moči kot funkcijo električne moči.
- 3. Določi električno upornost žarnice kot funkcijo temperature.
- 4. Nariši graf razmerja med skozi Si okno prepuščenim in nemotenim svetlobnim tokom kot funkcijo temperature žarilne nitke.

Potrebščine

- univerzalni električni merilnik z nastavkom za meritev električne moči
- halogena žarnica nazivne moči 30 W z nazivno barvno temperaturo 2700 K
- nastavljivi transformator variac
- merilnik sevanja
- plošča iz kristalnega silicija

SevCT Praktikum II

Navodilo za meritev

Merilnik sevanja, ki ga uparabljamo tu, je tako imenovani bolometer in je osnovan na merjenju spremembe temperature majhne ploščice, na katero pada sevanje. Taki detektorji so – v nasprotju s kvantnimi (fotonskimi) – enako občutljivi v širokem spektralnem območju.

Z univerzalnim merilnikom – ohmmetrom – izmeri upornost žarilne nitke v žarnici pri sobni temperaturi. Halogeno žarnico (230 V, 30 W) priključi na variac preko merilnika moči, podobno kot pri vaji TopPre. Z variacom spreminjamo moč žarnice. Postavite variac na 230 V in preverite, v kateri razdalji je primeren položaj za merilnik sevanja, da nanj ne bo padal prevelik svetlobni tok. Spreminjaj moč žarnice v korakih po 5 % in si zapisuj v tabelo naslednje podatke: električno moč, tok in napetost na žarnici ter moč svetlobnega toka. Prve tri podatke odčitaš z merilnika moči (univerzalnega instrumenta), ki poleg moči v spodnjem delu okenca kaže tudi tok, napetost in fazni zamik med obema. Izmeri moč sevanja, ki doseže detektor skozi okno iz kristalnega silicija, v odvisnosti od moči žarnice v istem intervalu kot zgoraj in ga primerjaj s teoretično napovedjo navedeno v tabeli 1.

POZOR: Pri merjenju upornosti žarnico izklopi z napajanja.

Navodilo za obdelavo meritev

Iz znane površine detektorja, ki je 1 cm², in izmerjene razdalje od žarnice do detektorja izračunaj celotni izsevani svetlobni tok. Nariši graf celotne izsevane moči kot funkcijo električne moči.

Predpostavimo, da seva žarnica kot črno telo. Tako lahko iz izsevanega svetlobnega toka določimo temperaturo žarnice, če poznamo površino žarilne nitke S. Slednje ne poznamo, zato privzamemo, da je temperatura žarilne nitke pri polni moči 2700 K in s to točko kalibriramo Stefanov zakon

$$\frac{P}{S} = \int_0^\infty j(\nu, T) d\nu = \sigma T^4 , \qquad (3)$$

kjer je $\sigma = 5.6703 \cdot 10^{-8} \; \mathrm{Jm^{-2} s^{-1} K^{-4}}$. Tako določimo temperaturo nitke pri vseh merskih točkah. Iz meritev napetosti in toka skozi nitko pa določimo električno upornost volframove nitke. Narišemo graf upornosti od temperature in ne pozabimo na meritev pri sobni temperaturi. Ali je odvisnost linearna?

Za primerjavo s teorijo predpostavimo, da je prepustnost Si stopničasta funkcija s stopnico pri 1.1 eV (valovna dolžina približno 1100 nm). Planckov zakon lahko integriramo numerično od 0 do mejne frekvence ν_0 , ko nam Si okno ne prepušča več svetlobe. To naredimo tako, da vpeljemo novo spremenljivko $y = h\nu/kT$ in dobimo prepuščeno moč kot integral v obliki

$$P(T) = P \int_0^{h\nu_0/kT} \frac{y^3}{\exp(y) - 1} dy$$
 (4)

Delež prepušenega toka od celotnega P(T)/P je kot funkcija temperature je prikazana na sliki 1a in za določene temperature v Tabeli 1. Za temperature $T<3000~{\rm K}$ je delež

SevCT Praktikum II

prepuščenega toka opisan z aproksimacijo

$$\frac{P(T)}{P} = 1 - \frac{15}{\pi^4} \left[-y^3 \log \left(1 - e^{-y} \right) + (6 + 6y + 3y^2) e^{-y} \right] + O\left(e^{-y} \right) , \quad y = \frac{1.1 \text{ eV}}{kT} ,$$

na vsaj 3 decimalna mesta natačno. Opazimo, da prepustnost upada z večanjem temperature, saj se glavnina Planckove porazdelitve premika izven frekvenčnega okna prepustnosti Si. Seveda pa manjka še en pomemben popravek in sicer je to upoštevanje odbojev

- (a) Delež celotnega prepuščenega toka skozi Si okno.
- (b) Kompleksni lomni količnik $n^* = n i\kappa$ Si.

svetlobe na obeh površinah. Lomni količnik Si pri valovni dolžini $\lambda=1100$ nm je n=3.54 in počasi pada proti daljšim valovnim dolžinam. Bolj natančno je lomni količnik Si, kot za masikatere druge snovi, funkcija valovne dolžine vpadne svetlobe. Za primer Si je lomni količnik $n^*=n-\mathrm{i}\kappa$ v odvisnosti od energije fotonov $E=h\nu=hc/\lambda$ prikazan na sliki 1b. Intenziteta svetlobnega toka se pri prehodu meje zraka in Si zmanjša za faktor $T=4n/(n+1)^2$, ki ga imenujemo intenzitetna prepustnost. Ker ni izgub velja zveza T+R=1 med T in intenzitetno odbojnostjo R. Zaporedni prehod skozi dve površini Si ploščice je potrebno obravnavati z upoštevanjem vmesnih odbojev. Uporabljen svetlobni izvir oddaja valovanje z majhno koherentno dolžino in jo zanemarimo. Zadovoljimo se s popolnoma nekoherentnim seštevanjem intenzitet in dobimo prepustnost skozi ploščico enako

$$T_{\text{plošča}} = \frac{2n}{1+n^2} \,. \tag{5}$$

S tem rezultatom popravimo razmerje med prepuščeno in celotno intenziteto svetlobnega toka P(T)/P in rezultat prikažemo v Tabeli 1.

Tabela 1: Delež celotnega svetlobnega toka skozi Si okno kot funkcija temperature črnega telesa. V zadnji vrstici je upoštevan tudi popravek zaradi odbojev na površini okna.

temperatura (K)									
delež prepuščene moči	0.98	0.95	0.92	0.88	0.84	0.79	0.74	0.69	0.64
z upoštevanjem odbojev	0.51	0.50	0.48	0.46	0.44	0.41	0.39	0.36	0.33

Literatura

[1] Strnad, Janez Fizika: drugi del, elektrika/optika (DMFA, 1995)