050=01000=00000000000000000000000000000
OSSERVAZIONE nº 1: Interpretezione geometree
Per finare le iolee supposeuro m=3, quiroli la sporso ounhierte è IR3, Considues
a inti la assaira qualitante à IR3 Canaldina
Ax=b A3x2, b3x1
rank(A)=2 (=) le due colonne di A 200
ronk(A)=2 (=) le due colonne d' A 2000 lum. indip.
Se A = [a1, a2]
Jm (A) = { e, a, + e, a, e, c, e, P}
sparo que et delle colonne
piano
de a, e az
be Im(A)
0 (x*)
Q _z I _m (A)
vettoe
residuo
h
7
Im(A)
· · · · · · · · · · · · · · · · · · ·

Osserbasione n° 2
Sie Amen, man di zago menono
(nonk(A)=m) e sie poi b \(\bar{R}^m.
Problène: vogliens decempone b= b,+ b,
Problène: voglieno olecempone $b = b_1 + b_2$ Con $b_1 \in Im(A)$ e $b_2 \in Im(A)^{\frac{1}{2}}$ Ker $(A)^{\frac{1}{2}}$
Soppiens delle Horia de
R= Im(A) D Her(AT)
Quindi reppiens de le decompositione enste ed
é unice. Une manière olternative di
procedere et di visolsere il problere de minul
predieti associeto al sisteme Ax=b.
de xt é le solutione, delle dimostrerve
nella slide 6, Jediemo de
b, = A x*
$S_1 = T \times$
e di on represse,
h - h h
p2 = p - p1

A'A =

$$\begin{bmatrix} -1 & 2 - 1 & 2 & 3 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ -2 & 2 & 2 & 1 & 3 \end{bmatrix}$$
 $\begin{bmatrix} -1 & 2 - 1 & 2 & 3 \\ -2 & 2 & 2 & 1 & 3 \end{bmatrix}$
 $\begin{bmatrix} -1 & 2 & -1 & 2 & 3 \\ 3 & 1 & 3 \end{bmatrix}$
 $\begin{bmatrix} -1 & 2 & -1 & 2 & 3 \\ 3 & 1 & 3 \end{bmatrix}$
 $\begin{bmatrix} -1 & 2 & -1 & 2 & 3 \\ 3 & 1 & 3 \end{bmatrix}$
 $\begin{bmatrix} -1 & 2 & -1 & 2 & 3 \\ -2 & 2 & -2 & 1 & 3 \end{bmatrix}$
 $\begin{bmatrix} -1 & 2 & -1 & 2 & 3 \\ 1 & 1 & 2 & 3 \\ -2 & 2 & -2 & 1 & 3 \end{bmatrix}$
 $\begin{bmatrix} -1 & 2 & -1 & 2 & 3 \\ 1 & 1 & 2 & 3 \\ -2 & 2 & -2 & 1 & 3 \end{bmatrix}$
 $\begin{bmatrix} -1 & 2 & -1 & 2 & 3 \\ 1 & 1 & 2 & 3 \\ -2 & 2 & -2 & 1 & 3 \end{bmatrix}$

Proceedience con l'eliminative oli Gaum:

$$\begin{bmatrix} -1 & 2 & -1 & 2 & 3 \\ -2 & 2 & -2 & 1 & 3 \end{bmatrix}$$
 $\begin{bmatrix} -1 & 3 & 7 & 19 & 5 \\ -1 & 3 & 6 & 3 & -\frac{7}{10} \\ -1 & 3 & 6 & 3 & -\frac{7}$

[A3153] = 0 8/19 -1 22/19

[A3153] = 0 8/19 -1 22/19

[O O
$$5/8$$
 - $1/4$]

Risolsiamo il nisteme diapolae superiore:

[A9 X₁ + 7 x₂ + 19 x₃ = 5

8 x₂ - x₃ = 22

19 x₂ - x₃ = - $\frac{1}{4}$

[X3 = - $\frac{2}{5}$]

[X3 = - $\frac{2}{5}$]

[X2 = $\frac{9}{5}$]

[A9 X₁ + 7 x₂ + 19 x₃ = 5

[X1 = 0]

[X1 = 0]

[A9 X₁ + 7 x₂ + 19 x₃ = 5

[A9 X₂ - $\frac{1}{4}$]

[A9 X₁ + 7 x₂ + 19 x₃ = $\frac{1}{4}$]

[A9 X₂ - $\frac{1}{4}$]

[A9 X₁ + 7 x₂ + 19 x₃ = $\frac{1}{4}$]

[A9 X₂ - $\frac{1}{4}$]

[A9 X₁ - $\frac{1}{4}$]

[A9 X₂ - $\frac{1}{4}$]

[A9 X₃ - $\frac{1}{4}$]

[A9 X₄ - $\frac{1}{4}$]

-2/5

(1.c) Dalle teoria seppiomo ele b, - Ax* e di consequente b, = b - b, 1/5 4/5 1/5 Osserviamo ele 05, + 952 - 3553

