DataBall

Predicting NBA Winners with Data

Kevin Lane

July 15, 2017

 Kevin Lane
 DataBall
 July 15, 2017
 1 / 17

Outline

- Introduction
 - Background
 - Process
- 2 Data
 - Data Wrangling
 - Data Exploration
- Model Selection
 - Feature Selection
 - Parameter Tuning
- Results
 - Model Performance
 - Comparison to Published Results
- Future Work
- 6 References

Background

- Sports analytics began in professional baseball, most notably with the work of Bill James¹
 - James coined the term sabermetrics as "the search for objective knowledge about baseball"
 - James selected the name to honor the Society for American Baseball Research (SABR)
- Gained widespread adoption after Billy Beane implemented James' ideas and led the Oakland Athletics to a record winning streak²
- Analytics has since spread to other sports and its impact is evidenced by several examples:
 - MLB's increased attention to on-base percentage beginning in the Moneyball era of the early 2000s
 - The rise of the three-point shot and subsequent fall of the midrange jumper in the NBA
 - Increased use of short, high percentage passes in the NFL

◆ロト ◆母 ト ◆ 豊 ト ◆ 豊 ト り Q C

¹James 1985.

²Lewis 2003.

Background

What makes sports an attractive testbed for machine learning?

According to Nate Silver, "sports nerds have it easy." 3

- "Sports has awesome data."
- "In sports, we know the rules."
- Sports offers fast feedback and clear marks of success."

Why the NBA?

- Easily the most deterministic of the major American sports
- The NBA provides a wealth of advanced stats and player tracking data on their website
- The season is long enough at 82 games that sample size is not as much of a concern as in the NFL, who claim to have parity, but also only play 16 regular season games

Kevin Lane DataBall

4 / 17

Process

- I used several algorithms from the popular Python machine learning library scikit-learn⁴ to predict NBA game winners
 - Logistic Regression
 - Support Vector Machine
 - Random Forest
 - Multilayer Perceptron
 - Naïve Bayes
- I used box score data from the 1990-91 season through 2015-16
- The games are split into training and test sets randomly, so games from future seasons are used to predict past games
 - This does not provide a realistic scenario for making predictions in real time, such as in betting
 - Provides a easy way to compare several algorithms and feature combinations, which will help inform future work
- All models are trained with season-averaged team stats

Kevin Lane DataBall July 15, 2017 5 / 17

Data Wrangling

- I collected stats from the NBA's stats website stats.nba.com
 - The site exposes a wealth of information in JSON format through various web API endpoints
 - I utilized the GitHub project nba_py to format the URLs and collect stats into Pandas DataFrames
- I stored all collected stats to a SQLite database using Python's built-in SQLite support
- I used the basic box score stats to calculate more advanced stats
 - Offensive/defensive ratings (points scored/allowed per 100 possessions), which requires an estimate for the number of possessions
 - Simple Rating System (SRS), which is a team's average margin of victory adjusted for its strength of schedule
 - Oliver's four factors⁵, which include effective FG%, TOV%, OREB%, and free throw rate
 - Weighted four factors, which is just sum of the four factors weighted according to Oliver's assigned weights

July 15, 2017

Data Exploration

- The top figure shows that the home team winning percentage is remarkably consistent
 - Simply predicting the home team wins will yield about 60% accuracy
 - This provides a good baseline; any predictive model worth implementing should beat this
- The bottom figure shows that team performance (according to SRS) very closely resembles a normal distribution
 - An SRS of zero indicates an average team

Data Exploration

- The plots below show kernel density estimations (KDE) of SRS split between home team wins and losses
- The dark region to the bottom right of the origin for home team wins shows above-average home teams tend to beat below-average visitors
- The opposite appears in the KDE of home team losses

Feature Selection

- The plots below show cross-validation ROC and precision/recall curves using home and away SRS
- The folds show little spread, so we are confident the cross-validation results in a good estimate of model performance

Figure 1: Cross-Validated ROC and Precision/Recall Curves (SRS)

Feature Selection

- The plots below show cross-validation ROC and precision/recall curves for various metrics
- All point-related metrics (SRS, Plus/Minus, etc.) are nearly identical
- The point-related metrics outperform the four factors metrics

Figure 2: ROC and Precision/Recall Curve Feature Comparison

Parameter Tuning

 Parameter tuning did not yield models that performed noticeably better than the default models

Figure 3: Logistic Regression Parameter Tuning

 Kevin Lane
 DataBall
 July 15, 2017
 11 / 17

Model Performance

- Logistic regression does a great job at predicting home wins (81.5% accuracy), but struggles with home losses (about 50% accuracy)
- These general numbers hold true for all the models tested except the random forest model, which performed about 10% worse predicting home wins
- Additional effort should be focused on improving home loss predictions to improve overall model performance
 - One option is to down sample home wins to achieve a 50/50 split of the two classes

Figure 4: Logistic Regression CM

Figure 5: Random Forest CM

 (evin Lane
 DataBall
 July 15, 2017
 12 / 17

Model Performance

- All models performed about the same with the exception of the random forest model
- The random forest performed about the same with home losses, but had degraded performance predicting home wins

Figure 6: Model Performance Comparison

Comparison to Published Results

- The roughly 70% prediction accuracy is in line with published results
- Zimmermann⁶ used algorithms in Weka⁷ to predict NBA and NCAA game winners
 - He trained the models using data from previous games, making it a more realistic scenario
 - He correctly predicted about 57-68% of NBA games correctly, though most seasons were below 64% accuracy
 - He was much more successful in the NCAA, where the range in skill level is much larger than the NBA
- Loeffelholz et al.⁸ used the MATLAB neural network toolbox to predict NBA game winners
 - They performed a cross-validation similar to what was shown here
 - They only examined part of one season (only 30 games used for testing)
 - They predicted approximately 74% of games correctly, but it is unclear if this generalizes well

⁶Zimmermann 2016.

⁷Witten, Frank, and Hall 2011.

⁸Loeffelholz, Bednar, and Bauer 2009.

Future Work

- Train models with prior games to permit "real time" predictions and update the models as each season progresses
- Incorporate player stats to adjust predictions as rosters fluctuate
- Predict winners against Vegas spreads
 - Track return on investment (ROI) if a prospective bettor were to bet on the model's predicted winners
 - Incorporate a confidence threshold to investigate how ROI changes when bets are only made on games in which the model's confidence exceeds the threshold

 Kevin Lane
 DataBall
 July 15, 2017
 15 / 17

References I

- [1] James, Bill. *The Bill James Historical Baseball Abstract*. Villard, 1985.
- [2] Lewis, Michael. Moneyball: The Art of Winning an Unfair Game. W. W. Norton & Company, 2003.
- [3] Silver, Nate. *Rich Data, Poor Data*. Feb. 2015. URL: https://fivethirtyeight.com/features/rich-data-poor-data/.
- [4] Pedregosa, F. et al. "Scikit-learn: Machine Learning in Python". In: Journal of Machine Learning Research 12 (2011), pp. 2825–2830.
- [5] Oliver, Dean. Basketball on Paper: Rules and Tools for Performance Analysis. Potomac Books, 2004.
- [6] Zimmermann, Albrecht. "Basketball predictions in the NCAAB and NBA: Similarities and differences". In: Statistical Analysis and Data Mining: The ASA Data Science Journal 9 (2016), pp. 350–364.

evin Lane DataBall July 15, 2017 16 / 17

References II

- [7] Witten, Ian H., Frank, Eibe, and Hall, Mark A. Data Mining: Practical Machine Learning Tools and Techniques. 3rd ed. Morgan Kaufmann, 2011.
- [8] Loeffelholz, Bernard, Bednar, Earl, and Bauer, Kenneth W. "Predicting NBA Games Using Neural Networks". In: Journal of Quantitative Analysis in Sports 5.1 (2009), pp. 1–17.

 Kevin Lane
 DataBall
 July 15, 2017
 17 / 17