ИІТМО

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

ДОКЛАД

На теме: Теория химического строения А. М. Бутлерова

Выполнил:

студент группы Р3111

Болорболд Аригуун

Преподаватель:

Доцент Васильев Андрей Владимирович

Санкт-Петербург

2022

СОДЕРЖАНИЕ

Введение	3
1. Кто такой А. М. Бутлеров? Его личность	4
2. Предпосылки к постулатам Бутлерова	4
3. Теория химического строения	5
3.1. Теория химического строения органических веществ	7
4. Следствия и значение теории	8
Заключение	8
Список литературы	9
1 /1	

ВВЕДЕНИЕ

Создание научной теории стало возможно только в XVIII-XIX веках, когда физика и химия стали базироваться на точных экспериментальных данных. Экспериментальное подтверждение атомной гипотезы нашёл английский химик Джон Дальтон. В начале XIX века Дальтон открыл несколько новых эмпирических закономерностей: закон парциальных давлений, закон растворимости газов в наконец, жидкостях И, закон кратных отношений. Объяснить закономерности, не прибегая к предположению о дискретности материи, невозможно. В 1808 году Дальтон изложил свою атомистическую гипотезу в труде «Новая система химической философии». Основные положения теории Дальтона состояли в следующем:

- 1. Всякое вещество не является чем-то сплошным, а состоит из отдельных очень малых частиц все вещества состоят из большого числа атомов (простых или сложных). Различие между веществами обусловлено различием между их частицами.
- 2. Атомы одного вещества полностью тождественны. Простые атомы абсолютно неизменны и неделимы.
- 3. Частицы (атомы) различных веществ различны как по массе, так и по свойствам.
- 4. Атомы различных элементов способны соединяться между собой в определённых соотношениях.
- 5. Важнейшим свойством атомов является атомный вес.

Уже в 1803 году в лабораторном журнале Дальтона появилась первая таблица относительных атомных весов некоторых элементов и соединений (атомный вес водорода был принят равным единице). Дальтон ввёл символы химических элементов в виде окружностей с различными фигурами внутри. Впоследствии Дальтон неоднократно корректировал атомные веса элементов, однако для большинства элементов им приводились неверные значения. В общем, тогда химия была безобразной и безобразной наукой.

Кто такой А. М. Бутлеров? Его личность

Александр Михайлович Бутлеров родился 3 сентября 1828 года в семье помещика, офицера в Чистополе Казанской губернии. Детство его протекало сначала в имении отца Бутлеровка в Алексеевской волости Лаишевского уезда Казанской губернии, затем — в Казани.

Первоначальное образование получил в частном пансионе Топорнина— учителя французского языка 1-й Казанской гимназии, а затем и в самой гимназии.

Бутлеров увлекался химией с детства, причём весьма несуразным образом. Однажды, когда он вызывал сильный взрыв в корпусах пансиона, его наказывали: выводили и ставили в угол на всё время пока другие обедали в течение трёх дней. На шею ему вешали чёрную доску, на которой было написано «Великий химик». Ирония была в том, что эти слова на доске сбылись. В период обучения в университете Бутлеров интересовался преподаванием химии, потом защищал множество диссертаций, будучи главой химии в Казанском университете вместо К. К. Клауса и Н. Н. Зинина. Александр Михайлович присутствовал именно в начальных стадиях развития химии как науки.

Предпосылки к постулатам Бутлерова

Во время заграничной поездки в 1857—1858 сблизился со многими видными химиками, в том числе с Ф. А. Кекуле и Э. Эрленмейером, и провёл около полугода в Париже, деятельно участвуя в заседаниях только что организованного Парижского химического общества. В Париже, в лаборатории Ш. А. Вюрца, Бутлеров начал первый цикл экспериментальных исследований. Он открыл новый способ получения йодистого метилена, потом многочисленные его производные; впервые синтезировал (уротропин) триоксиметилен. гексаметилентетрамин И работе, опубликованной в 1861 году, Бутлеров показал, что триоксиметилен при обработке известковой водой переходит в сахаристое вещество (реакция Бутлерова), которое он назвал метиленитаном. В этой статье Бутлеров отметил, что получение метиленитана – первый полный синтез сахаристого вещества.

Теория химического строения

Однако, важнейшим вкладом Бутлерова в мировую науку было создание теории химического строения, лежащей в основе современных представлений о природе химических соединений. Эта теория раскрыла связь свойств вещества с существованием устойчивой и специфичной для каждого вида веществ упорядоченности химических взаимодействий атомов в молекулах. Этот структурный принцип, утвердившийся в химии, стал заметным шагом в преодолении механицизма, способствовал диалектическому пониманию системности и структурности объектов.

Первое публичное выступление А. М. Бутлерова по теоретическим вопросам органической химии относится к концу 50-х годов: его доклад на заседании Парижского химического общества 1858 г. В нём говорится, что за радикалы следует считать не только органические группы, но и группировки типа ОН, NH2, то есть характерные для различных классов органических веществ сочетания атомов, которые впоследствии получили название функциональных групп. В этом же докладе Бутлеров впервые употребил и сам термин «структура», относя к одному типу молекулярной структуры метан, хлористый метил, хлористый метилен, хлороформ, четырёххлористый углерод, метиловый спирт.

В следующем, 1859 г., А. М. Бутлеров отметил:

«Экспериментальные исследования дадут нам основание для истинной химической теории, которая будет математической теорией молекулярной «силы, называемой нами химическим сродством. Поскольку, однако, сродство есть не только причина превращений, но и причина определённой группировки элементарных атомов в химической молекуле, то оно и должно изучаться не только во время производимого ими движения молекул, но также и в состоянии равновесия материи».

В более развитой форме идея химического строения была изложена А. М. Бутлеровым три года спустя в докладе «О химическом строении вещества», с которым он выступил, прочитанном в химической секции Съезда немецких естествоиспытателей и врачей в Шпейере и опубликованном в том же году на немецком и в следующем — на русском языках. В этом докладе прежде всего говорилось, что теоретическая сторона химии не отвечает фактическому развитию, отмечалась, в частности, некомпетентность теории типов. А. М.

Бутлеров при этом был далёк от прямого отрицания её; он справедливо указывал на то, что теория типов имеет и важные заслуги. Однако типические формулы указывали лишь направление возможных реакций замещения и разложения, но и не могли выразить реакций присоединения (например, образование йодистого этила из этилена и йодистого водорода). Так как вещество может разлагаться по нескольким направлениям, Ш.Жерар и его сторонники допускали возможность употребления нескольких рациональных формул для одного и того же вещества. Бутлеров полемизировал в докладе против утверждения Жерара, что

«нельзя судить о положении атомов внутри частиц ... судить о механическом строении тел».

Критическое рассмотрение Бутлеров закончил словами:

«Наступает время, когда теория Жерара должна будет уступить место понятию об атомности паев» (или же, валентности атомов).

Основы этой теории сформулированы таким образом:

- 1. «Полагая, что каждому химическому атому свойственно лишь определённое и ограниченное количество химической силы (сродства), с которой он принимает участие в образовании тела, я назвал бы химическим строением эту химическую связь, или способ взаимного соединения атомов в сложном теле»
- 2. «... химическая натура сложной частицы определяется натурой элементарных составных частей, количеством их и химическим строением».

С этим постулатом прямо или косвенно связаны и все остальные положения классической теории химического строения.

Далее в докладе говорится о путях, которые могут применяться для изучения химического строения. О последнем можно судить, прежде всего, на основании способов синтеза вещества, причём наиболее надёжные заключения могут быть сделаны при изучении синтезов, «которые совершаются при температуре мало возвышенной, и вообще при условиях, где можно следить за ходом постепенного усложнения химической частицы». Реакции разложения — преимущественно тоже протекающие в мягких условиях — также дают возможность сделать заключения о химическом строении, то есть полагать, что «остатки находились готовыми в разложившейся частице».

Теория химического строения органических веществ. **И**зомерия

Вместе с тем, А. М. Бутлеров предвидел, что не все реакции пригодны для определения строения: существуют среди них такие, при которых «изменяется химическая роль нескольких паев, а значит, и строение». В переводе на наш современный язык это реакции, сопровождающиеся изомеризацией скелета или переносом реакционного центра.

Бутлеров впервые объяснил явление изомерии тем, что изомеры — это соединения, обладающие одинаковым элементарным составом, но различным химическим строением. В свою очередь, зависимость свойств изомеров и вообще органических соединений от их химического строения объясняется существованием в них передающегося вдоль связей «взаимного влияния атомов», в результате которого атомы в зависимости от их структурного окружения приобретают различное «химическое значение».

Большое значение для становления теории химического строения имело её экспериментальное подтверждение в работах как самого Бутлерова, так и его школы. Он предвидел, а затем и доказал существование позиционной и скелетной изомерии. Получив третичный бутиловый спирт, он сумел расшифровать его строение и доказал (совместно с учениками) наличие у него изомеров. В 1844 Бутлеров предсказал существование двух бутанов и трёх пентанов, а позднее и изобутилена.

Самим Бутлеровым и особенно его учениками В. В. Марковниковым и А. Н. Поповым это общее положение было конкретизировано в виде многочисленных «правил». Уже в XX веке эти правила, как и вся концепция взаимного влияния атомов, получили электронную интерпретацию.

Следствия и значение теории

С тех пор как А. М. Бутлеров создал свою теорию химического строения органических соединений прошло больше ста пятидесяти лет. За это время наука вообще и органическая химия в частности сделали колоссальные успехи. Естественно, встаёт вопрос: каково место бутлеровской теории в современной органической химии? Ответ на этот вопрос затрудняется тем, что сам А. М.

Бутлеров не сформулировал теорию химического строения пункт за пунктом: она рассеяна во многих публикациях, пронизывает всё его научное творчество. О многих сторонах теории химического строения у нас уже была речь. Постараемся теперь провести сравнение первозданной теории с её нынешним, усовершенствованным вариантом.

- Атомы в органических соединениях связаны друг с другом в определённом порядке химическими силами.
- Строение можно изучать химическими методами.
- Формулы должны выражать порядок химической связи атомов.
- Каждое вещество имеет одну определённую формулу строения.
- Формула должна отражать строение реально существующей молекулы.

С развитием науки мы будем дополнять имеющийся материал органической химии новыми сведениями, но основные положения бутлеровской теории навсегда сохранят свою силу как часть объективной истины.

ЗАКЛЮЧЕНИЕ

Теория химического строения Бутлерова сыграла важную роль в практической организации промышленного производства веществ с заданными свойствами. Достижения структурной химии способствовали широкому распространению и утверждению идей системного подхода в других науках. Не будет неправильным утверждать, что Бутлеров привёл всю область органической химии в порядок.

Список литературы

- 1. Страница Википедии о А. М. Бутлерове:
 - https://ru.wikipedia.org/wiki/%D0%91%D1%83%D1%82%D0%BB%D0%B5%D1%80%D0%BE%D0%B2, %D0%90%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%BD%D0%B4%D1%80 %D0%9C%D0%B8%D1%85%D0%B0%D0%B9%D0%BB%D0%BE%D0%B2%D0%B8%D1%87;
- 3. http://www.hrono.ru/biograf/bio b/butlerov am.php;
- 4. http://www.imyanauki.ru/rus/scientists/742/index.phtml;
- 5. https://molview.org/ страница, где были созданы модели молекул для презентации;