Concours administrateur externe de l'insee

SESSION 2020

ÉPREUVE DE MATHÉMATIQUES

DURÉE: 4 heures

L'énoncé comporte 6 pages, numérotées de 1 à 6.

Tous documents et appareils électroniques interdits.

Partie 1 : Algèbre-Analyse

Cette partie est constituée de deux exercices indépendants

Exercice 1

On considère \mathbb{R}^n muni de son produit scalaire canonique, noté $\langle \ \rangle$ et de sa base canonique, $\mathcal{B} = (e_1, \dots, e_n)$.

On note $\| \|$ la norme associée au produit scalaire \langle , \rangle .

Si x est un vecteur de \mathbb{R}^n , on note X la matrice colonne de ses coordonnées dans \mathcal{B} .

On note $\mathrm{Sp}(A)$ l'ensemble des valeurs propres d'une matrice A de $\mathcal{M}_n(\mathbb{R})$ et tA sa transposée.

On dit qu'une matrice symétrique A est définie positive si, pour tout vecteur X non nul de \mathbb{R}^n , ${}^tXAX>0$. Dans tout le problème A désigne une matrice de $\mathcal{M}_n(\mathbb{R})$ symétrique définie positive.

- 1. (a) Justifier qu'il existe une base orthonormale de \mathbb{R}^n , notée $\mathcal{B}' = (\varepsilon_1, \dots, \varepsilon_n)$, constituée de vecteurs propres de A associés à des valeurs propres réelles $\lambda_1, \dots, \lambda_n$.
 - (b) Montrer l'équivalence suivante : A est définie positive $\iff \operatorname{Sp}(A) \subset \mathbb{R}_+^*$
- 2. On note $0 < \lambda_1 \leqslant \lambda_2 \leqslant \ldots \leqslant \lambda_n$ les valeurs propres de A; pour tout x non nul de \mathbb{R}^n , on définit la fonction r_A , appelée quotient de Rayleigh, par :

$$orall x \in \mathbb{R}^n \setminus \{0_{\mathbb{R}^n}\}, \quad r_A(x) = rac{\langle Ax, x
angle}{\|x\|^2}$$

Établir, pour tout vecteur x non nul, l'encadrement suivant :

$$\lambda_1\leqslant r_A(x)\leqslant \lambda_n$$

3. On conserve les notations des questions précédentes et on appelle conditionnement de A le réel noté C_A défini par : $C_A = \frac{\lambda_n}{\lambda_1}$.

On se propose dans cette question de démontrer la formule suivante, appelée inégalité de Kantorovitch :

$$\forall x \in \mathbb{R}^n, \quad \|x\|^4 \leqslant \langle Ax, x \rangle \langle A^{-1}x, x \rangle \leqslant \frac{1}{4} \left(\frac{1}{\sqrt{C_A}} + \sqrt{C_A} \right)^2 \|x\|^4 \tag{1}$$

(a) i. Montrer que l'application suivante définit un produit scalaire sur \mathbb{R}^n :

$$orall (x,y) \in (\mathbb{R}^n)^2, \quad (x|y) = \langle Ax,y
angle$$

On note $\| \|_A$ la norme associée.

- ii. Exprimer $\langle A^{-1}x, x \rangle$ et $\langle Ax, x \rangle$ à l'aide de $\| \|_A$.
- iii. En déduire l'inégalité suivante : $\|x\|^4 \leqslant \langle Ax, x \rangle \langle A^{-1}x, x \rangle$
- (b) Montrer que, pour établir la relation (1), il suffit de la vérifier pour un vecteur x vérifiant $||x||^2 = 1$.
- (c) On note donc un vecteur x de \mathbb{R}^n de norme 1 et qui s'écrit $x = \sum_{k=1}^n x_k \varepsilon_k$.

On considère un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ et on définit la variable aléatoire Z par : $Z(\Omega) = \{\lambda_1, \ldots, \lambda_n\}$ et, pour tout i de [1, n], $\mathbb{P}([Z = \lambda_i]) = x_i^2$.

- i. Justifier que la relation précédente définit bien une loi de probabilité.
- ii. Calculer $\mathbb{E}(Z)$ et $\mathbb{E}\left(\frac{1}{Z}\right)$ en fonction de $\langle Ax,x \rangle$ et de $\langle A^{-1}x,x \rangle$.
- iii. Établir l'inégalité suivante : $\frac{1}{Z} \leqslant \frac{\lambda_1 + \lambda_n Z}{\lambda_1 \lambda_n}$
- iv. En déduire que :

$$\mathbb{E}(Z)\mathbb{E}\left(rac{1}{Z}
ight)\leqslant -rac{1}{\lambda_1\lambda_n}\left(\mathbb{E}(Z)-rac{\lambda_1+\lambda_n}{2}
ight)^2+rac{(\lambda_1+\lambda_n)^2}{4\lambda_1\lambda_n}$$

1

v. Déduire de ce qui précède l'inégalité de Kantorovitch.

Exercice 2:

Le préambule et la première partie de ce problème sont indépendantes. La deuxième partie combine des résultats des parties précédentes.

Préambule

Soient α un *irrationnel* > 0 et x un réel > 0. On s'intéresse à la série $\sum \frac{x^n}{\sin(\pi \alpha n)}$.

- 1.
- a) Montrer que les termes de cette série sont bien définis pour tout entier naturel $n \ge 1$.
- b) Montrer que la série diverge pour tout $x \ge 1$.

1ère partie

- 2. On s'intéresse ici à la suite $\{u_n\}$ définie par $u_0 > 0$ et la relation de récurrence $u_{n+1} = u_n^{u_n}$
 - a) Montrer que, si $u_0 < \frac{1}{e}$, alors : $u_1 > \frac{1}{e}$.
 - b) Montrer que la suite est convergente pour $0 < u_0 \le 1$.
 - c) Montrer que la suite tend vers $+\infty$ pour $u_0 > 1$.
- 3. On se place dorénavant dans le cas $u_0 > 1$.
 - a) Montrer que la série $\sum \frac{1}{u_n}$ est convergente.
 - b) Montrer que : $\exists N \in \mathbb{N}, \forall k \in \mathbb{N} : u_{N+k} \ge k+2$.
 - c) Montrer qu'il existe C > 0 tel que : $\forall n \ge N : \sum_{k=n+1}^{+\infty} \frac{1}{u_k} \le \frac{C}{u_{n+1}}$
 - $\text{d)} \quad \text{En d\'eduire que}: \quad \forall \ n \geq N: u_n \sum_{k=n+1}^{+\infty} \frac{1}{u_k} \leq \frac{C}{u_n^{u_n-1}}.$

2^{ème} partie

4. On se restreint maintenant au cas où $u_0 \in \mathbb{N}$, $u_0 \ge 2$. On pose : $\alpha = \sum_{n=0}^{+\infty} \frac{1}{u_n}$. et on admet dans un premier temps que α est *irrationnel*.

2

- a) Montrer que : $\forall n \in \mathbb{N} : u_n \sum_{k=0}^n \frac{1}{u_k} \in \mathbb{N}$.
- b) En déduire que : $\forall n \in \mathbb{N} : \frac{x^{u_n}}{|\sin(u_n \pi \alpha)|} \ge \frac{1}{\pi C} x^{u_n} u_n^{u_n 1}$
- c) En déduire que la série $\sum \frac{x^n}{\sin(\pi \alpha n)}$ diverge pour 0 < x < 1.

- 5. On va démontrer que le α défini à la question 4 est bien irrationnel. On raisonne par l'absurde en supposant que $\alpha = \frac{p}{q}$ avec p et q entiers naturels non nuls.
 - a) Montrer que : $\forall n \in \mathbb{N} : q \ u_n \sum_{k=n+1}^{+\infty} \frac{1}{u_k} \in \mathbb{N}$.
 - b) En déduire une contradiction (on fera tendre n vers $+\infty$).

Partie 2 : Probabilités-Statistiques

Cette partie est constituée de deux exercices indépendants

Exercice 1

Dans tout l'exercice, X est une variable aléatoire définie sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, admettant une densité f nulle sur $]-\infty,0[$. On suppose que la restriction de f à $[0,+\infty[$ est continue et strictement positive.

On note F la fonction de répartition de X.

On considère une suite $(X_n)_{n\geqslant 1}$ de variables aléatoires définies sur $(\Omega, \mathcal{A}, \mathbb{P})$, indépendantes et de même loi que X.

On pose $Z_1=X_1$ et on note Z_2 l'application définie sur Ω par :

$$\forall \omega \in \Omega, \quad Z_2(\omega) = \begin{cases} X_n(\omega) \text{ si } n \text{ est le plus petit des entiers } k \text{ tels que } X_k(\omega) > X_1(\omega) \\ \\ X_1(\omega) \text{ si un tel entier n'existe pas} \end{cases}$$

On admet que Z_2 est une variable aléatoire, définie sur $(\Omega, \mathcal{A}, \mathbb{P})$.

1. (a) Établir, pour tout entier supérieur ou égal à 2 et tout réel t positif, l'égalité suivante :

$$\mathbb{P}\left(igcap_{k=2}^n [X_k\leqslant X_1]
ight)\leqslant ig(F(t)ig)^n+1-F(t)$$

- (b) En déduire que, presque sûrement, $Z_2 > Z_1$.
- 2. On considère dans cette question un couple (x,y) de réels positifs et h un réel srictement positif. On pose :

$$arphi(x,y) = \mathbb{P}([Z_1 \leqslant x] \cap [Z_2 - Z_1 > y])$$

(a) Justifier l'égalité suivante

$$[Z_1 \leqslant x + h] = [Z_1 \leqslant x] \cup [x < Z_1 \leqslant x + h]$$

(b) En déduire que :

$$\varphi(x+h,y) - \varphi(x,y) = \mathbb{P}([x < Z_1 \le x+h] \cap [Z_2 - Z_1 > y])$$

(c) Établir la formule suivante :

$$arphi(x+h,y)-arphi(x,y)=\sum_{j=2}^{+\infty}\mathbb{P}\left([x\leqslant X_1\leqslant x+h]\cap\left[igcap_{i=2}^{j-1}[X_i\leqslant X_1]
ight]\cap[X_j>y+X_1]
ight)$$

(d) En déduire l'encadrement suivant :

$$\frac{F(x+h)-F(x)}{1-F(x)}\big(1-F(x+y+h)\big)\leqslant \varphi(x+h,y)-\varphi(x,y)\leqslant \frac{F(x+h)-F(x)}{1-F(x+h)}\big(1-F(x+y)\big)$$

- (e) Calculer $\lim_{h\to 0^+} \frac{\varphi(x+h,y)-\varphi(x,y)}{h}$.
- (f) En admettant que le résultat précédent soit encore valable quand h tend vers 0 par valeurs inférieures, calculer $\frac{\partial \varphi}{\partial x}(x,y)$ en fonction de f et de F.
- 3. On suppose dans cette question que X suit la loi exponentielle de paramètre λ .
 - (a) Montrer, pour tout couple (x,y) de réels positifs, que $: \varphi(x,y) = (1-e^{-\lambda x})e^{-\lambda y}.$
 - (b) Déterminer la fonction de répartition de $Z_2 Z_1$.
 - (c) Montrer que Z_1 et $Z_2 Z_1$ sont indépendantes.

Exercice 2:

On considère une suite de variables aléatoires indépendantes, $\{Z_i\}$, suivant chacune la loi de BERNOULLI \mathfrak{B} $(1,p_i(\theta))$, où les p_i sont des fonctions de classe C^i et θ un paramètre réel.

On dispose de *n* observations de ces variables.

1.

- a) Donner l'expression de $f_i(q, \theta) = P\{Z_i = q\}$.
- b) En déduire la *vraisemblance* du modèle dont les observations sont les valeurs de $(Z_1, ..., Z_n)$.

On rappelle que la vraisemblance d'un modèle dont les observations Z_i sont discrètes, indépendantes et prennent les valeurs q_i , est la fonction :

$$(q_1, ..., q_n, \theta) \rightarrow L(q_1, ..., q_n, \theta) = \prod_{i=1}^n f_i(q_i, \theta).$$

c) En déduire l'équation du maximum de vraisemblance pour l'estimation du paramètre θ . On ne cherchera pas à résoudre cette équation.

L'estimateur du maximum de vraisemblance de θ , noté $\hat{\theta}_n$, est la quantité (dépendant des q_i) maximisant la vraisemblance (considérée comme dépendant de θ , les q_i étant **fixés**), ou, ce qui est équivalent, son logarithme. Cet estimateur peut être considéré comme une variable aléatoire dont la réalisation est fonction de celles des variables aléatoires Z_i . L'équation de vraisemblance est la condition du 1er ordre que doit vérifier cet estimateur (on ne demande pas de vérifier que cette condition caractérise bien un maximum).

2.

- a) Déterminer les fonctions $p_i(\theta)$ telles que, pour tout $\theta: \frac{p'_i(\theta)}{p_i(\theta)[1-p_i(\theta)]}$ soit une constante x_i .
- b) Que deviennent alors les équations de la question 1?

On suppose maintenant qu'on dispose d'une suite de couples de variables aléatoires indépendantes, $\{(Z_i,X_i)\}$, tels que, pour tout i:

- la loi de X_i est une loi discrète définie par : $P\{X_i=x_k\}=\pi_k$ pour $k=1,\ldots,K$, les x_k (deux à deux distincts) et les π_k étant fixés et connus ;
- Ia loi conditionnelle de Z_i sachant $X_i = x_k$ est une loi de BERNOULLI \mathfrak{B} (1, $p(\theta, k)$), où la fonction $\theta \to p(\theta, k)$ est de classe C^1 .
- 3. Les équations du maximum de vraisemblance pour l'estimation du paramètre θ sont-elles modifiées dans ce cas par rapport à celles de la question 1 (toujours lorsqu'on dispose de n observations des variables (Z_i,X_i))?

5

4. Pour un couple générique (Z,X) correspondant à une valeur quelconque de l'indice i ci-dessus,

on note :
$$Y = \begin{pmatrix} Z & 1_{X=x_1} \\ & & \\ Z & 1_{X=x_K} \end{pmatrix}$$
 .

- a) Calculer la matrice de variance-covariance de Y.
- b) On note, pour tout entier nature n et pour tout entier $k \in \{1, ..., K\}$:

$$\hat{p}_{k,n} = \frac{1}{n} \sum_{i=1}^{n} Z_i \, 1_{X_i = X_k}.$$

Pour n fixé, les $\hat{p}_{k,n}$ sont-ils indépendants ?

- c) On note enfin \hat{p}_n le vecteur de composantes $\hat{p}_{k,n}$. Étudier la convergence en probabilité de \hat{p}_n et sa normalité asymptotique quand $n \to +\infty$.
- 5. On se place ici dans le cas où : $p(\theta, k) = \frac{1}{1 + e^{-\theta x_k}}$.
 - a) Déterminer l'estimateur des moindres carrés ordinaires de θ , soit $\hat{\theta}_n$, dans le modèle linéaire :

$$\ln \frac{\hat{p}_{k,n}/\pi_k}{1 - \hat{p}_{k,n}/\pi_k} = \theta \ x_k + u_k, \ k = 1, ..., K.$$

- b) Pour k fixé, étudier la normalité asymptotique de $\ln \frac{\hat{p}_{k,n}/\pi_k}{1-\hat{p}_{k,n}/\pi_k}$ quand $n \to +\infty$.
- c) Étudier la convergence en probabilité de cet estimateur $\hat{\theta}_n$, quand $n \to +\infty$.
- d) Étudier sa normalité asymptotique.