16 Area- och volymberäkningar, areor av buktiga ytor

16.1 Några areaberäkningar

Exempel 1 (926e) Beräkna arean som begränsas av xy = 1, xy = 2, $y^2 = x$ och $y^2 = 2x$.

Lösning: En möjlighet är att dela ytan enligt den streckade linjen i figuren (ty de båda skärningspunkterna har samma x-koordinat), och integrera varje del i y-led. Då måste alla skärningspunkter beräknas.

Vi väljer dock att beräkna arean med variabelsubstitutionen

$$\left\{ \begin{array}{l} u = xy \\ v = y \end{array} \right.,$$

som är framförallt inspirerad av att gränserna $xy=1,\ xy=2$ blir enkla: $1\le u\le 2$. Valet v=y kan ge lätta kalkyler.

Vi kan invertera denna substitution, ty kan räkna ut x i u och v. Vi får $x=\frac{u}{y}=\frac{u}{v},$ alltså

$$\begin{cases} x = \frac{u}{v} \\ y = v \end{cases}.$$

. Då får vi gränserna $1 \le u \le 2$ och $v^2 = \frac{u}{v}$ samt $v^2 = 2\frac{u}{v}$, dvs $\sqrt[3]{u} \le v \le \sqrt[3]{2u}$. Denna substitution har funktionaldeterminanten

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{1}{v} & -\frac{u}{v^2} \\ 0 & 1 \end{vmatrix} = \frac{1}{v}.$$

Vi får då arean till

$$\begin{split} \iint_D dx dy &= \iint_e \frac{1}{v} du dv = \int_1^2 \int_{\sqrt[3]{u}}^{\sqrt[3]{2u}} \frac{1}{v} dv du \\ \{v\text{-integration}\} &= \int_1^2 [\ln v]_{\sqrt[3]{u}}^{\sqrt[3]{2u}} du = \int_1^2 (\ln \sqrt[3]{2u} - \ln \sqrt[3]{u}) du \\ \{\text{logaritmlagar}\} &= \frac{1}{3} \int_1^2 (\ln 2 + \ln u - \ln u) du \\ &= \frac{1}{3} \int_1^2 \ln 2 du \\ \{u\text{-integration}\} &= \frac{\ln 2}{3}. \end{split}$$

Svar: Arean är $\frac{\ln 2}{3}$. Lösning: Beräkna arean av området som begränsas av $(x^2+y^2)^2=x^2+y^2$.

Ekvationen $(x^2+y^2)^2=x^2+y^2$ kan skrivas $(x^2+y^2)^2-x^2+y^2=0$, dvs $(x^2+y^2)(x^2+y^2-1)=0$. Om $(x,y)\neq 0$ kan vi dividera med x^2+y^2 , så kvar är ekvationen för enhetscirkeln $x^2+y^2-1=0$, vars area är π .

Svar: π .

Några volymberäkningar

Exempel 2 (927h) Beräkna volymen som begränsas av $y = \sqrt{x}$, $y = 2\sqrt{x}$ och $planen \ x + z = 6 \ samt \ z = 0.$

Lösning: Här har vi i xy-planet området $\sqrt{x} \le y \le 2\sqrt{x}$, som även begränsas av skärningen mellan x+z=6 och z=0. Den inträffar i x=6. Vi integrerar först i z-led från z=0 till z=6-x över detta område. Så volymen är

$$\iiint_{D} dx dy dz = \int_{0}^{6} dx \int_{\sqrt{x}}^{2\sqrt{x}} dy \int_{0}^{6-x} dz$$
{z-integration} =
$$\int_{0}^{6} dx \int_{\sqrt{x}}^{2\sqrt{x}} (6-x) dy$$
{y-integration} =
$$\int_{0}^{6} (6-x) \sqrt{x} dx$$
=
$$\int_{0}^{6} (6\sqrt{x} - x^{\frac{3}{2}}) dx$$
{x-integration} =
$$[6 \cdot \frac{2}{3} x^{\frac{3}{2}} - \frac{2}{5} x^{\frac{5}{2}}]_{0}^{6}$$
=
$$24\sqrt{6} - \frac{2}{5} \cdot 36\sqrt{6}$$
=
$$\frac{48}{5} \sqrt{6}.$$

Exempel 3 (928a) Beräkna volymen av ellipsoiden $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

En ellipsoid med a=4,b=2,c=1

Lösning: Vi integrerar från $z=-c\sqrt{1-\frac{x^2}{a^2}-\frac{y^2}{b^2}}$ till $z=c\sqrt{1-\frac{x^2}{a^2}-\frac{y^2}{b^2}}$ över området $\frac{x^2}{a^2}+\frac{y^2}{b^2}\leq 1$, där vi använder elliptiska koordinater:

$$\begin{cases} x = ar\cos\varphi \\ y = br\sin\varphi \end{cases}.$$

Insättning i

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$$

ger då

$$\frac{(ar\cos\theta)^2}{a^2} + \frac{(br\cos\theta)^2}{b^2} \le 1.$$

Nu kan a och b förkortas, och vi får $r \leq 1$. Så att $\frac{x^2}{a^2} - \frac{y^2}{b^2} = r^2$. Denna förenkling är poängen med denna transformation, vilken givetvis fångar in problemets geometri.

Funktionaldeterminanten blir här

$$\frac{\partial(x,y)}{\partial(r,\varphi)} = \begin{vmatrix} a\cos\varphi & -ar\sin\varphi \\ b\sin\varphi & br\cos\varphi \end{vmatrix}$$
$$= abr(\cos^2\varphi + \sin^2\varphi)$$
$$= abr$$

Så volymen blir dubbelintegral från undre gräns $(-c\sqrt{1-\frac{x^2}{a^2}-\frac{y^2}{b^2}}=-cr)$ till övre $(c\sqrt{1-\frac{x^2}{a^2}-\frac{y^2}{b^2}}=cr)$:

$$\begin{split} \iiint\limits_{D} dx dy dz &= \iiint\limits_{E} abr dr d\varphi dz \\ &= ab \int_{0}^{1} \int_{0}^{2\pi} (c\sqrt{1-r^2} - (-c\sqrt{1-r^2})) r dr d\varphi \\ &= 2abc \int_{0}^{2\pi} d\varphi [-\frac{1}{3}(1-r^2)^{\frac{3}{2}}]_{0}^{1} \\ &= \frac{2}{3}abc \cdot 2\pi \cdot 1 = \frac{4\pi}{3}abc. \end{split}$$

Volymen av ellipsoiden är $\frac{4\pi}{3}abc$. Om a=b=c=R har vi en sfär, och får då

 $\frac{4\pi}{3}R^3$. Det är den kända formeln för volymen av en sfär med radie R.

Svar: Ellipsens volym är $\frac{4\pi}{3}abc$.

16.3 Arean av en buktig yta

En yta i ${f R}^3$ är **reguljär** som den kan parametriseras av parametrar (u,v), där $a\leq u\leq b$ och $c\leq v\leq d$:

$$\begin{aligned} x &= x(u,v) \\ \mathbf{r}: & y &= y(u,v) \\ z &= z(u,v) \end{aligned}$$

och där $\mathbf{r}'_u=(x'_u(u,v),y'_u(u,v),z'_u(u,v))$ och $\mathbf{r}'_v=(x'_v(u,v),y'_v(u,v),z'_v(u,v))$ är kontinuerliga och normalen

$$\mathbf{n} = \mathbf{r}'_u \times \mathbf{r}'_v \neq \mathbf{0}$$

överallt.

Vi vet att $|\mathbf{r}'_u|\Delta u$ är approximativt båglängden för ett intervall av längd Δu ($\int_a^b |\mathbf{r}'_u|du$ är kuvans längd), och på motsvarande sätt för \mathbf{r}'_v . Nu vet vi att beloppet av kryssprodukten $|\mathbf{a} \times \mathbf{b}|$ är arean som spänns av vektorerna \mathbf{a} och \mathbf{b} . Det följer att $|\mathbf{r}'_u \times \mathbf{r}'_v|$ arean av det område på ytan som motsvaras av $\{(u, u + \Delta u) \text{ och } (v, v + \Delta v)\}$. Adderas dessa små areor får vi arean av den reguljära ytan:som dubbelintegralen

$$\iint\limits_{D} |\mathbf{r}'_{u} \times \mathbf{r}'_{v}| du dv$$

 $\text{där } D = \{ a \le u \le b, c \le v \le d : \}.$

Exempel 4 Beräkna arean av paraboloiden $z = x^2 + y^2$, $z \le 1$.

Lösning: Med parametrarna x och y har vi parametriseringen $\mathbf{r}=(x,y,x^2+y^2)$. Så $\mathbf{r}'_x=(1,0,2x)$ och $\mathbf{r}'_y=(0,1,2y)$. Då är normalen

$$\mathbf{r}_x' \times \mathbf{r}_y' = (-2x, -2y, 1)$$

i en punkt (x,y). Normalens belopp är

$$|\mathbf{r}'_x \times \mathbf{r}'_y| = |(-2x, -2y, 1)| = \sqrt{1 + 4x^2 + 4y^2}$$

Arean fås genom att beräkna dubbelintegralen med polära koordinater:

$$\iint_{D} |\mathbf{r}'_{x} \times \mathbf{r}'_{y}| dxdy = \iint_{D} \sqrt{1 + 4x^{2} + 4y^{2}} dxdy$$

$$= \iint_{D} \sqrt{1 + 4r^{2}} r dr d\varphi$$

$$= \int_{0}^{1} \int_{0}^{2\pi} \sqrt{1 + 4r^{2}} r dr d\varphi$$

$$= 2\pi \left[\frac{1}{12} (1 + 4r^{2})^{\frac{3}{2}}\right]_{0}^{1}$$

$$= \frac{\pi}{6} (5^{\frac{3}{2}} - 1).$$

Svar: Paraboloidens area är $\frac{\pi}{6}(5^{\frac{3}{2}}-1)$.

Exempel 5 Beräkna arean av ett klot med radie R.

Lösning: Vi har en parametrisering med sfäriska koordinater, där r=R som är fix:

$$\begin{cases} x = R \sin \theta \cos \varphi \\ y = R \sin \theta \sin \varphi \\ z = R \cos \theta \end{cases}.$$

Vi får nu genom att derivera sambanden m.a.p. θ och φ :

$$\mathbf{r}_{\theta}' = (R\cos\theta\cos\varphi, R\cos\theta\sin\varphi, -R\sin\theta)$$

||och

$$\mathbf{r}'_{\varphi} = (-R\sin\theta\sin\varphi, R\sin\theta\cos\varphi, 0).$$

Normalen är kryssprodukten av dessa vektorer:

$$\mathbf{r}'_{\theta} \times \mathbf{r}'_{\varphi} = (R\cos\theta\cos\varphi, R\cos\theta\sin\varphi, -R\sin\theta) \times (-R\sin\theta\sin\varphi, R\sin\theta\cos\varphi, 0) = (R^{2}\sin^{2}\theta\cos\varphi, R^{2}\sin^{2}\theta\sin\varphi, R^{2}\cos\theta\sin\theta\cos^{2}\varphi + R^{2}\cos\theta\sin\theta\sin^{2}\varphi)$$

vars belopp är

$$\begin{split} & \left| (R^2 \sin^2 \theta \cos \varphi, R^2 \sin^2 \theta \sin \varphi, R^2 \cos \theta \sin \theta \cos^2 \varphi + R^2 \cos \theta \sin \theta \sin^2 \varphi) \right| \\ &= R^2 \sqrt{\sin^4 \theta \cos^2 \varphi + \sin^4 \theta \sin^2 \varphi + (\cos \theta \sin \theta \cos^2 \varphi + \cos \theta \sin \theta \sin^2 \varphi)^2} \\ &= R^2 \sqrt{\sin^4 \theta + \cos^2 \theta \sin^2 \theta} = \{ \text{trig. ettan igen} \} \\ &= R^2 \sqrt{\sin^2 \theta} = R^2 \sin \theta. \end{split}$$

Alltså blir klotets area

$$\iint_{D} |\mathbf{r}'_{x} \times \mathbf{r}'_{y}| dxdy = \iint_{D} R^{2} \sin \theta d\theta d\varphi$$
$$= R^{2} [-\cos \theta]_{0}^{\pi} 2\pi$$
$$= 4\pi R^{2}.$$

Svar: Klotets area är $4\pi R^2$.

Klotets area är relaterad till begreppet **rymdvinkel**. Som bekant är vinkelmåttet radian definierad som längden av den båge av enhetscirkeln som svarar mot vinkeln. Maximal vinkel är 2π på grund av att hela enhetscirkelns båglängd (cirkelns omkrets) är 2π – radien är 1. Måttet av en rymdvinkel är på liknande sätt arean av en viss mängd på enhetsklotet (R=1), så maximal rymdvinkel är 4π .

Man kan säga att den vinkel som en mängdMupptar från origo kan fås genom att projicera mängden på enhetscirkeln, varje $(x,y)\in M$ skickas på $\frac{(x,y)}{|(x,y)|}$, som har belopp 1 och alltså ligger på enhetscirkeln, och därefter kan vi mäta längden av kurvan som den projicerade mängen upptar.

På analogt sätt upptar en mängd M i rummet en rymdvinkel som är arean av mängden projicerad på enhetsklotet med avbildningen $(x, y, z) \to \frac{(x, y, z)}{|(x, y, z)|}$.

Exempel 6 Beräkna arean av konen $z = a\sqrt{x^2 + y^2}$, $0 \le z \le b$.

Lösning: Här är alltså konens lutning a (lutningsvinkeln är $\tan a$) och höjden är b. Konen parametriseras enklast med cylindriska koordinater, då $z=a\sqrt{x^2+y^2}$ blir z=ar:

$$x = r\cos\varphi$$
$$y = r\sin\varphi$$
$$z = ar$$

med parameterintervallen $0 \le r \le \frac{b}{a}$ (ty z=b och z=ar ger $r=\frac{b}{a}$) och $0 \le \varphi \le 2\pi$. Vi får

$$\mathbf{r}_r' = (\cos \varphi, \sin \varphi, a)$$

 och

$$\mathbf{r}_{\varphi}' = (-r\sin\varphi, r\cos\varphi, 0),$$

och

$$\begin{aligned} \mathbf{r}_r' \times \mathbf{r}_\varphi' &= (\cos \varphi, \sin \varphi, a) \times (-r \sin \varphi, r \cos \varphi, 0) \\ &= (0 - ar \cos \varphi, 0 - ar \sin \varphi, r \cos^2 \varphi + r \sin^2 \varphi) \\ \{ \text{trig. etta} \} &= r(-a \cos \varphi, -a \sin \varphi, 1). \end{aligned}$$

Beloppet av denna vektor är

$$|\mathbf{r}'_r \times \mathbf{r}'_{\varphi}| = r\sqrt{a^2 \cos^2 \varphi + a^2 \sin^2 \varphi + 1}$$

= $r\sqrt{a^2 + 1}$.

Nu har vi allt vi behöver i integralen $\iint\limits_D |\mathbf{r}_x' \times \mathbf{r}_y'| dx dy$, som är arean. Vi

får konens area:

$$\int_0^{\frac{b}{a}} \int_0^{2\pi} r \sqrt{a^2 + 1} dr d\varphi = \sqrt{a^2 + 1} \left[\frac{r^2}{2} \right]_0^{\frac{b}{a}} 2\pi$$
$$= \pi \sqrt{b^2 + \frac{b^2}{a^2}}.$$

Speciellt, om a = b = 1 är alltså konens area $\sqrt{2}\pi$.

Svar: Konens area är $\pi \sqrt{b^2 + \frac{b^2}{a^2}}.$

Exempel 7 Beräkna arean av spiralytan $(u\cos v, u\sin v, v), 0 \le u \le 1, 0 \le v \le 2\pi$

Spiralytan $(u\cos v, u\sin v, v)$.

Samma yta från annan vinkel.

Lösning: Här har vi redan en parametrisering, $(u\cos v, u\sin v, v)$, så vi kan genast påbörja beräkningen av $|\mathbf{r}'_u\times\mathbf{r}'_v|$

$$\mathbf{r}_u' = (\cos v, \sin v, 0)$$

och

$$\mathbf{r}_{v}' = (-u\sin v, u\cos v, 1),$$

 och

$$\begin{aligned} \mathbf{r}_r' \times \mathbf{r}_v' &= (\cos v, \sin v, 0) \times (-u \sin v, u \cos v 1) \\ &= (\sin v - 0, 0 - \cos v, u \cos^2 v + u \sin^2 v) \\ \{\text{trig. etta}\} &= (\sin v, -\cos v, u). \end{aligned}$$

Beloppet av denna vektor är

$$|\mathbf{r}'_r \times \mathbf{r}'_v| = \sqrt{\sin^2 v + \cos^2 v + u^2}$$
$$= \sqrt{u^2 + 1}.$$

Så arean av spiralytan är

$$\int_0^1 \int_0^{2\pi} \sqrt{u^2 + 1} du dv = 2\pi \int_0^1 \sqrt{u^2 + 1} du$$
 {partialintegration} = $.2\pi [u\sqrt{u^2 + 1}]_0^1 - 2\pi \int_0^1 \frac{u^2}{\sqrt{u^2 + 1}} du$ {division} = $2\pi \sqrt{2} - 2\pi \int_0^1 \frac{u^2 + 1 - 1}{\sqrt{u^2 + 1}} du$ {uppdelning} = $2\pi \sqrt{2} - 2\pi (\int_0^1 \sqrt{u^2 + 1} du - \int_0^1 \frac{1}{\sqrt{u^2 + 1}} du)$ = $2\pi \sqrt{2} - 2\pi (\int_0^1 \sqrt{u^2 + 1} du - \ln(1 + \sqrt{2}).$

I sista steget använde vi standardintegralen $\int \frac{1}{\sqrt{u^2+1}} du = \ln(u+\sqrt{u^2+1}) + C$. Vi fick tillbaka samma integral med ombytt tecken, så om vi flyttar över den till vänster sida har vi

$$2\pi \int_0^1 \sqrt{u^2 + 1} du + 2\pi \int_0^1 \sqrt{u^2 + 1} du = 2\pi \sqrt{2} + 2\pi \ln(1 + \sqrt{2}).$$

Således är arean

$$2\pi \int_0^1 \sqrt{u^2 + 1} du = \pi \sqrt{2} + \pi \ln(1 + \sqrt{2}).$$

Svar: Spiralytans area är $\pi(\sqrt{2} + \ln(1 + \sqrt{2}))$.

16.4 Arean av en funktionsgraf

Grafen till en funktion av två variabler f(x,y) har en naturlig parametrisering:

$$x = u$$

$$y = v$$

$$z = f(u, v).$$

Då får vi

$$\mathbf{r}'_{u} = (1, 0, f'_{u})$$

 och

$$\mathbf{r}'_{v} = (0, 1, f'_{v}),$$

så

$$\mathbf{r}'_{r} \times \mathbf{r}'_{v} = (1, 0, f'_{u}) \times (0, 1, f'_{v})$$
$$= (-f'_{v}, f'_{u}, 1).$$

Således har vi om vi byter tillbaka från u och v till x och y:

Sats 8 Arean av grafen till f(x,y) då $(x,y) \in D \subset \mathbf{R}^2$ är

$$\iint\limits_{D} \sqrt{f_x'^2 + f_y'^2 + 1} dx dy.$$

Formeln kan jämföras med båglängden av en funktion f(x) från x=a till x=b, som är $\int_a^b \sqrt{f_x'^2+1} dx.$

Exempel 9 (932i) Beräkna arean av den hyperboliska paraboloiden z=xy då $D=\{x^2+y^2\leq 1\}.$

Graf till
$$f(x,y) = xy$$
 då $x^2 + y^2 \le 1$.

Lösning: Vi har här

$$z'_x = y \text{ och } f'_y = x,$$

så
$$\iint\limits_{D} \sqrt{f_x'^2 + f_y'^2 + 1} dx dy$$
 blir integralen

$$\iint\limits_{D} \sqrt{x^2 + y^2 + 1} dx dy.$$

Polära koordinater ger

$$\int_0^1 \int_0^{2\pi} \sqrt{r^2 + 1} r dr d\varphi = 2\pi \left[\frac{1}{3} (r^2 + 1)^{\frac{3}{2}}\right]_0^1$$
$$= \frac{2\pi}{3} (2\sqrt{2} - 1).$$

Svar: Arean av z=xy då $D=\{x^2+y^2\leq 1\}$ är $\frac{2\pi}{3}(2\sqrt{2}-1).$