a)
$$f(x) = (a^{T}x - d)^{2}$$
 where $a = (-13)^{T}$, $d = 2.5$

$$f(x) = (-\chi_1 + 3\chi_2 - 2.5)^2$$

$$\frac{\partial f(x)}{\partial x_1} = 2(x_1 - 3x_2 + 2.5)$$

$$\frac{\partial f}{\partial x_2} = 6(-x_1 + 3x_2 - 2.5)$$

$$\nabla \frac{1}{2(x)} = \frac{2(x_1 - 3x_2 + 2.5)}{2(x_1 - 3x_2 + 2.5)}$$

$$\nabla^2 f(x) = \begin{bmatrix} 2 & -6 \\ -6 & 8 \end{bmatrix}$$

b)
$$f(x) = (x_1 - 2)^2 + x_1 x_2^2 - 2$$

$$\frac{\partial f(x)}{\partial x_1} = 2x_1 + x_2^2 - 4$$

$$\frac{\partial f(x)}{\partial X_2} = 2X_1 X_2$$

$$\nabla f(x) = \begin{bmatrix} 2\chi_1 + \chi_2^2 - 4 \\ 2\chi_1 \chi_2 \end{bmatrix} \qquad \nabla f(x) = \begin{bmatrix} 2 & 2\chi_2 \\ 2\chi_1 \chi_2 \end{bmatrix}$$

d)
$$f(x) = \partial x_1^2 - 2x_1 + \beta x_2^2$$

$$\frac{\partial f(x)}{\partial x_1} = 2 \partial x_1 - 2 \qquad \frac{\partial f(x)}{\partial x_2} = 2 \beta x_2$$

$$\nabla f(x) = \begin{bmatrix} 2 \partial x_1 - 2 \end{bmatrix} \qquad \nabla^2 f(x) = \begin{bmatrix} 2 \partial x_2 - 2 \end{bmatrix}$$

$$2 \partial x_2 = \begin{bmatrix} 2 \partial x_1 - 2 \end{bmatrix} \qquad \nabla^2 f(x) = \begin{bmatrix} 2 \partial x_2 - 2 \partial x_2$$

c)
$$\nabla f(x) = 0$$

(a) $\int_{2x_{1}}^{4} (x) + 4x_{1} + x_{1}^{2} = 0$
(b) $\int_{2x_{2}}^{2} (x) + 2x_{1}x_{2} = 0$
(c) $\int_{2x_{2}}^{2} (x) + 2x_{1}x_{2} = 0$
(d) $\int_{2x_{2}}^{2} (x) + 2x_{1}x_{2} = 0$
(e) $\int_{2x_{2}}^{2} (x) + 2x_{1}x_{2} = 0$
(f) $\int_{2x_{2}}^{2} (x) + 2x_{1} = 0$
(g) $\int_{2x_{2}}^{2} (x) + 4x_{1} = 0$
(g) $\int_{2x_{2}}^{2} (x) + 4x_{1}^{2} = 0$
(g) $\int_{2x_{2}}^{2} (x) + 2x_{2}^{2} = 0$
(g) $\int_{$

(a)
$$\sqrt{f(x)} = \begin{bmatrix} 2 & -6 \\ -6 & 8 \end{bmatrix}$$

By the property of eigen values, we know that:

$$\lambda_1 + \lambda_2 = 10$$

$$\lambda_1 \lambda_2 = -20$$

Therefore $\lambda, >0$, $\lambda_2 < 0$, $\nabla^2 f(x)$ is indefinite for any x, then the stationary points are saddle points.

b)
$$\sqrt{f(x)} = \begin{bmatrix} 2 & 2x_1 \\ 2x_2 & 2x_1 \end{bmatrix}$$
 station only points: $\begin{pmatrix} 0 \\ 2 \end{pmatrix} \begin{pmatrix} 0 \\ -2 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix}$

$$0 \quad \chi^* = \begin{pmatrix} 0 \\ 2 \end{pmatrix} \quad \nabla^2 f(\chi^*) = \begin{bmatrix} 2 & 4 \\ 4 & 0 \end{bmatrix}$$

$$\lambda_1 + \lambda_2 = 2$$
 , $\lambda_1 \lambda_2 = -16$

Therefore $\Lambda_1 > 0$, $\Lambda_2 < 0$, $T^2 + (X^2)$ is indefinite. The stationary point $\binom{0}{2}$ is a saddle point.

 $\nabla f(x^*) > 0$, $\begin{pmatrix} 0 \\ -2 \end{pmatrix}$ is a Strict local minimum point.

6. For d) denote the intervals for a and \$ for which maxima/minima and saddle points are attained

$$\nabla^{2}f(x) = 2\begin{bmatrix} \partial & 0 \\ 0 & \beta \end{bmatrix} \qquad x^{*} = \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} (\partial \neq 0)$$

2 and 13 are eigen values 7.1

$$0 \quad \lambda \in (0, +\infty), \quad \beta \in [0, +\infty) \implies \forall \beta(x) \geq 0$$

X* is a global minimum point.

②
$$\lambda \in (-\infty, 0)$$
, $\beta \in (-\infty, 0] \Rightarrow \nabla^2 f(x) \leq 0$

$$(3)$$
 $\lambda \in (0, +\infty)$, $\beta \in (-\infty, 0)$

or
$$\lambda \in (-\infty, 0)$$
, $\beta \in (0, +\infty)$

$$\begin{array}{lll}
2^{\circ} & \text{Matr}_{i} \times & \text{Calculus} \\
1. & \text{Compute the gradient of } f(x) \\
a) & f(x) = \frac{1}{4} \left[\left[\frac{2}{2} (x_{i} - b_{i})^{2} \right]^{2} \right] \\
& \Rightarrow f(x) = \frac{1}{4} \left[\left[\frac{2}{2} (x_{i} - b_{i})^{2} \right]^{2} \\
& \Rightarrow \frac{1}{2} \left[\left[\frac{2}{2} (x_{i} - b_{i})^{2} \right] (x_{i} - b_{i})^{2} \right] \\
& = \frac{1}{4} \cdot 2 \left[\left[\frac{2}{2} (x_{i} - b_{i})^{2} \right] (x_{i} - b_{i}) \right] \\
& = \left[\left[\frac{2}{2} (x_{i} - b_{i})^{2} \right] (x_{i} - b_{i}) \right] \\
& \Rightarrow \frac{1}{2} \left[\left[\frac{2}{2} (x_{i} - b_{i})^{2} \right] (x_{i} - b_{i}) \right] \\
& \Rightarrow \frac{1}{2} \left[\left[\frac{1}{2} (x_{i} - b_{i})^{2} \right] (x_{i} - b_{i}) \right] \\
& \Rightarrow \frac{1}{2} \left[\left[\frac{1}{2} (x_{i} - b_{i})^{2} \right] (x_{i} - b_{i}) \right] \\
& \Rightarrow \frac{1}{2} \left[\left[\frac{1}{2} (x_{i} - b_{i})^{2} \right] (x_{i} - b_{i}) \right] \\
& \Rightarrow \frac{1}{2} \left[\left[\frac{1}{2} (x_{i} - b_{i})^{2} \right] (x_{i} - b_{i}) \right] \\
& \Rightarrow \frac{1}{2} \left[\left[\frac{1}{2} (x_{i} - b_{i})^{2} \right] (x_{i} - b_{i}) \right] \\
& \Rightarrow \frac{1}{2} \left[\left[\frac{1}{2} (x_{i} - b_{i})^{2} \right] (x_{i} - b_{i}) \right] \\
& \Rightarrow \frac{1}{2} \left[\left[\frac{1}{2} (x_{i} - b_{i})^{2} \right] (x_{i} - b_{i}) \right] \\
& = \frac{1}{2} \left[\left[\frac{1}{2} (x_{i} - b_{i})^{2} \right] (x_{i} - b_{i}) \right] \\
& = \frac{1}{2} \left[\left[\frac{1}{2} (x_{i} - b_{i})^{2} \right] (x_{i} - b_{i}) \right] \\
& = \frac{1}{2} \left[\left[\frac{1}{2} (x_{i} - b_{i})^{2} \right] (x_{i} - b_{i}) \right] \\
& = \frac{1}{2} \left[\left[\frac{1}{2} (x_{i} - b_{i})^{2} \right] (x_{i} - b_{i}) \right] \\
& = \frac{1}{2} \left[\left[\frac{1}{2} (x_{i} - b_{i})^{2} \right] (x_{i} - b_{i}) \right] \\
& = \frac{1}{2} \left[\left[\frac{1}{2} (x_{i} - b_{i})^{2} \right] (x_{i} - b_{i}) \right] \\
& = \frac{1}{2} \left[\left[\frac{1}{2} (x_{i} - b_{i})^{2} \right] (x_{i} - b_{i}) \right] \\
& = \frac{1}{2} \left[\left[\frac{1}{2} (x_{i} - b_{i})^{2} \right] (x_{i} - b_{i}) \right] \\
& = \frac{1}{2} \left[\left[\frac{1}{2} (x_{i} - b_{i})^{2} \right] (x_{i} - b_{i}) \right] \\
& = \frac{1}{2} \left[\left[\frac{1}{2} (x_{i} - b_{i})^{2} \right] (x_{i} - b_{i}) \right] \\
& = \frac{1}{2} \left[\left[\frac{1}{2} (x_{i} - b_{i})^{2} \right] (x_{i} - b_{i}) \right] \\
& = \frac{1}{2} \left[\left[\frac{1}{2} (x_{i} - b_{i})^{2} \right] (x_{i} - b_{i}) \right] \\
& = \frac{1}{2} \left[\left[\frac{1}{2} (x_{i} - b_{i})^{2} \right] (x_{i} - b_{i}) \right] \\
& = \frac{1}{2} \left[\left[\frac{1}{2} (x_{i} - b_{i})^{2} \right] (x_{i} - b_{i}) \right] \\
& = \frac{1}{2} \left[\left[\frac{1}{2} (x_{i} - b_{i})^{2} \right] (x_{i} - b_{i}) \\
& = \frac{1}{2} \left$$

$$\frac{\partial f(x)}{\partial x_{k}} = \frac{1}{2} \frac{\partial}{\partial x_{k}} \sum_{i=1}^{2} \left(\sum_{j=1}^{2} a_{ij} x_{j} \right)^{2} + \frac{\partial}{\partial x_{k}} \sum_{i=1}^{2} \sum_{j=1}^{2} a_{ij} x_{j}$$

$$= \frac{1}{2} \sum_{i=1}^{2} \sum_{j=1}^{2} 2(a_{ij} x_{j}) a_{ik} + \sum_{i=1}^{2} a_{ik}$$

$$= \sum_{i=1}^{2} a_{ik} \left(\sum_{j=1}^{2} a_{ij} x_{j} \right) + \sum_{i=1}^{2} a_{ik}$$

$$= \sum_{i=1}^{2} a_{ik} \left(\sum_{j=1}^{2} a_{ij} x_{j} \right) + \sum_{i=1}^{2} a_{ik}$$

$$= \sum_{i=1}^{2} a_{ik} \left(\sum_{j=1}^{2} a_{ij} x_{j} \right) + \sum_{i=1}^{2} a_{ik} x_{i} d_{ij} x_{j} d_{ik}$$

$$= \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{1}{b_{i}} x_{i} d_{ij} x_{j} d_{ij} d_{ij} d_{ij} d_{ij} d_{ij} d_{ik} d_{ik} d_{ij} d_{ik} d_{ij} d_{ik} d_{ij} d_{ik} d_{ik} d_{ij} d_{ik} d_{ik}$$

0)
$$\frac{\partial f(x)}{\partial x_k} = \left[\sum_{i=1}^{b} (x_i - b_i)^2\right] (x_k - b_k)$$

$$\frac{\partial f(x)}{\partial x_k^i} = \sum_{i=1}^n (x_i - b_i)^2 + 2(x_k - b_k)^2$$

$$\frac{\partial f(x)}{\partial x_k \partial x_l} = 2(x_k - b_k)(x_l - b_l)$$

$$\nabla^{2} + (x) = \begin{bmatrix} \frac{\pi}{2} (x_{i} - b_{i})^{2} + 2(x_{i} - b_{i})^{2} & \cdots & 2(x_{i} - b_{i})(x_{n} - b_{n}) \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}$$

$$\sum_{i=1}^{n} (\chi_i - l_{2i})^2 + 2(\chi_n - b_n)$$

b)
$$\frac{\partial f(x)}{\partial x_k} = \sum_{i=1}^{n} a_{ik} \left(\sum_{j=1}^{n} a_{ij} x_j \right) + \sum_{i=1}^{n} a_{ik}$$

$$\frac{\partial^2 f(x)}{\partial x_k^2} = \sum_{i=1}^n \alpha_{ik} \frac{\partial}{\partial x_k} \left(\sum_{j=1}^n \alpha_{ij} x_j \right) + 0$$

$$= \sum_{i=1}^{n} \alpha_{ik}^{2}$$

$$\frac{\partial^2 f(x)}{\partial x_k \partial x_l} = \sum_{i=1}^n \alpha_{ik} \frac{\partial}{\partial x_l} \left(\sum_{j=1}^n \alpha_{ij} x_j \right) + ($$

$$= \sum_{i=1}^{n} Q_{ik} Q_{il}$$

$$\nabla^{2}f(x) = \begin{bmatrix} \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i} & \sum_{i=1}^{n} \alpha_{i,i} & \sum_{i=1}^{n} \alpha_{i,i} \\ \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} \\ \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} \\ \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} \\ \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} \\ \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} \\ \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} \\ \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} \\ \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} \\ \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} \\ \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} \\ \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} \\ \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} \\ \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} \\ \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} \\ \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} \\ \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} \\ \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} \\ \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} \\ \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} \\ \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} \\ \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} \\ \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} \\ \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} \\ \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} \\ \sum_{i=1}^{n} \alpha_{i,i}^{2} & \sum_{i=1}^{n} \alpha_{i,i}^{2} \\ \sum_{i=1}^{n} \alpha_$$

Scheduling Otimization Problem a) The objective function is formulated as min CX Where $X = [X_0, X_1, \cdots, X_{15}]^T$ Xo, X1, ... Xx are the number of instructions for processor 0, 1, -.. , 7 on CPUs X8, X9, .. X15 are the number of instructions for processor 0, 1, ..., 7 on GPUs. C = 0.11 0.13 009 0.12 0.15 0.14 0.11 0.12 0.10 0.13 0.08 0.13 0.14 0.14 0.09 0.13 7 b) Constraints are formulated as Jollows 1 Equality constraints 8 >8 \iff Aeq = I_8 I_8 Deg = [1200 1500 1400 400 1000 800 760 1300] Aeg x = beg2) Inequality constraints 8 $Aub = \begin{bmatrix} 11 & \cdots & 0 & 0 & \cdots & 0 \\ 00 & \cdots & 0 & 1 & \cdots & 1 \end{bmatrix}$ $bub = \begin{bmatrix} 4500 & \cdots & 0 \\ 4500 & \cdots & 0 \end{bmatrix}$ Aus & & bub

3 constraints for X XZL L= [480 600 560 00 ... 00]T c) => see the code d) 480 720 960 540 13.1 400 0 M = 11000 0 800 0 760 1300

e) The solution fullfils the constraint

f) The total energy consumption $C^{T}x = 961.8 \text{ [MWh]}$

9) $x_0 + x_1 + x_2 + x_7 = 1200 + 1500 + 1400 + 1300$ = 5400 + 74500The constraint is not satisfied,
The linear programming problem is not salvable,
This is varified by the code as well.

Task 1 - Contour plots of functions

Task 3 - Barplots numerical vs analytical

Index der Kommentare

1.1	it's 18 not 8
4.1	not a lot have this!
5.1	eigenvalues are 0 and 20 your hessian is wrong
5.2	saddle point
6.1	missing calculation steps
7.1	the eigenvalues are 2\alpha and 2\beta
7.2	missing strict/non-strict for \beta = 0
10.1	missing the term for the diagonale, also missing multivariate notatio
11.1	missing multivariate notation
11.2	missing
13.1	missing a row code is correct