Package 'GSSE'

October 12, 2022

Type Package				
Title Genotype-Specific Survival Estimation				
Description We propose a fully efficient sieve maximum likelihood method to estimate genotype-specific distribution of time-to-event outcomes under a nonparametric model. We can handle missing genotypes in pedigrees. We estimate the time-dependent hazard ratio between two genetic mutation groups using B-splines, while applying nonparametric maximum likelihood estimation to the reference baseline hazard function. The estimators are calculated via an expectation-maximization algorithm.				
Version 0.1				
Date 2015-10-17				
Author Baosheng Liang, Yuanjia Wang and Donglin Zeng				
Maintainer Baosheng Liang liangbsunc@gmail.com>				
Depends $R(>=3.0.1)$				
Suggests MASS				
Imports Iso (>= 0.0-17), splines, stats, zoo (>= 1.7-12)				
License GPL (>= 2)				
LazyLoad yes				
NeedsCompilation no				
Repository CRAN				
Date/Publication 2015-10-20 08:06:35				
R topics documented:				
GSSE-package				
EM_PAVA_Func				
p0G_data				
p0G_Func				
Sieve_NPMLE_Bootstrap				
Sieve NPMLE Switch				
Simulated_data				

2 GSSE-package

Index 16

GSSE-package

Genotype-Specific Survival Estimation

Description

The package 'GSSE' (Genotype-Specific Survival Estimation) is made to implement a fully efficient sieve maximum likelihood method to estimate genotype-specific distribution of time-to-event outcomes under a nonparametric model. The package can handle missing genotypes in pedigrees. We estimate time-dependent hazard ratio between two genetic mutation groups using B-splines and apply nonparametric maximum likelihood estimation to the reference baseline hazard function. The estimators are calculated via an expectation-maximization algorithm.

Details

Package: GSSE Type: Package Version: 0.1

Date: 2015-10-17 License: GPL (>= 2)

The main function is Sieve_NPMLE_Switch(). See the documentation file with examples.

Author(s)

Baosheng Liang sunc@gmail.com>, Yuanjia Wang <yw2016@cumc.columbia.edu> and Donglin Zeng <dzeng@email.unc.edu>

Maintainer: Baosheng Liang sunc@gmail.com>

References

Wang, Y., Clark, L. N., Louis, E. D., Mejia-Santana, H., Harris, J., Cote, L. J., ... & Marder, K. (2008). Risk of Parkinson disease in carriers of parkin mutations: estimation using the kin-cohort method. *Archives of neurology*, **65**(4), 467-474.

Qin, J., Garcia, T., Ma, Y., Tang, M., Marder, K. & Wang, Y. (2014). Combining isotonic regression and EM algorithm to predict genetic risk under monotonicity constraint. *The Annals of Applied Statistics* **8**(2), 1182-1208.

Wang, Y., Liang, B., Tong, X., Marder, K., Bressman, S., Orr-Urtreger, A., Giladi, N. & Zeng, D. (2015). Efficient estimation of nonparametric genetic risk function with censored data. *Biometrika*, **102**(3), 515-532.

EM_PAVA_Func 3

Description

This function is used to estimate the genotype-specific distribution of time-to-event outcomes using EM-PAVA algorithm (Qin et al. 2014).

Usage

```
EM_PAVA_Func (q, x, delta, timeval, p, ep = 1e-05, maxiter = 400)
```

Arguments

q	matrix of 2 columns, where the first and second columns are the probabilities of belonging to the carrier p0G and non-carrier groups 1 - p0G, respectively.
x	observed event time or censoring time.
delta	indicator of event.
timeval	grid points at which the distribution function values are estimated.
р	number of groups.
ер	convergence criterion. Here, ep = 1e-5 is used as the default value.
maxiter	maximum number of EM iterations.

Details

Technical details can be found in Qin et al. (2014).

Value

Returns a list of prediction values for classes

Fest estimated values at the points of timeval.

Fest.all estimated values of cumulative distribution function on both carrier and non-

carrier groups.

References

Qin, J., Garcia, T., Ma, Y., Tang, M., Marder, K. & Wang, Y. (2014). Combining isotonic regression and EM algorithm to predict genetic risk under monotonicity constraint. *The Annals of Applied Statistics* **8**(2), 1182-1208.

See Also

```
p0G_Func(), Sieve_NPMLE_Switch()
```

p0G_data

```
data("Simulated_data");
OY = Simulated_data[,2];
ind = order(OY);
ODelta = Simulated_data[,3];
Op0G = Simulated_data[,4];
Y = OY[ind];
Delta = ODelta[ind];
p0G = Op0G[ind];
Grid = seq(0.01, 3.65, 0.01);
fix_t1 = c(0.288, 0.693, 1.390);
fix_t2 = c(0.779, 1.860, 3.650);
EMpava_result = EM_PAVA_Func ( q = rbind(p0G, 1-p0G), x = Y, delta = Delta,
                               timeval = Grid, p = 2, ep = 1e-4);
all = sort(c(Grid, Y));
F\_carr\_func = function(x) \{ EMpava\_result Fest.all[1, which.max(all[all <= x]) ] \};
F_{non_{func}} = function(x) \{ EMpava_result$Fest.all[2, which.max(all[all <= x]) ] };
PAVA_F1.hat_fix_t = apply( matrix(fix_t1, ncol=1), 1, F_carr_func );
PAVA_F2.hat_fix_t = apply( matrix(fix_t2, ncol=1), 1, F_non_func );
PAVA_F.hat_fix_t = data.frame( fix_t1 = fix_t1, PAVA_F1.hat = PAVA_F1.hat_fix_t,
                               fix_t2 = fix_t2, PAVA_F2.hat = PAVA_F2.hat_fix_t );
print(PAVA_F.hat_fix_t);
# plot estimated curves
F_carr = apply( matrix(Grid, ncol=1), 1, F_carr_func );
F_non = apply( matrix(Grid, ncol=1), 1, F_non_func );
plot( Grid, F_carr, type = 's', lty = 1,
      xlab = "Y", ylab = "Estimated Cumulative Distribution Function",
      ylim = c(0,1), col = 'blue');
lines(Grid, F_non, type='s', lty=2, col='red');
legend("topleft", legend=c("Carrier group", "Non-Carrier group"),
       lty=c(1,2), col=c("blue", "red") );
```

p0G_Func 5

Description

This is a small data set used for illustration of the 'p0G' calculation. There are 2 columns, 20 rows in this data set.

Usage

```
data("p0G_data")
```

Format

A data frame with 20 observations on the following 2 columns with relative a factor with levels Child, Parent and Sibling, proband_pd a factor with levels No and Yes.

Source

This data set is a tiny subset of the data set of a Parkinson disease research project supported by Michael J. Fox Foundation.

References

Wang, Y., Clark, L. N., Louis, E. D., Mejia-Santana, H., Harris, J., Cote, L. J., ... & Marder, K. (2008). Risk of Parkinson disease in carriers of parkin mutations: estimation using the kin-cohort method. *Archives of neurology*, **65**(4), 467-474.

Wang, Y., Liang, B., Tong, X., Marder, K., Bressman, S., Orr-Urtreger, A., Giladi, N. & Zeng, D. (2015). Efficient estimation of nonparametric genetic risk function with censored data. *Biometrika*, **102**(3), 515-532.

See Also

```
p0G_Func()
```

Examples

```
data("p0G_data")
```

p0G_Func

Probability Calculation of Relative's Mutation Status

Description

This function is used to calculate the probability of a relative being a carrier.

Usage

```
p0G_Func (p, status, relative, model)
```

6 p0G_Func

Arguments

p	population frequency of mutation.
status	proband's carrier status (status = 0 , non-carrier; = 1 , homozygous; = 2 , heterozygous).
relative	relative's relationship to the proband (relative = 1 , parents; = 2 , sibling; = 3 , offspring).
model	assumed genetic model ("dominant" or "recessive").

Details

Technical details can be found in Wang et al. (2008).

Value

The function p0G_Func returns the probability of a relative being a carrier under the given genetic model.

References

Wang, Y., Clark, L. N., Louis, E. D., Mejia-Santana, H., Harris, J., Cote, L. J., ... & Marder, K. (2008). Risk of Parkinson disease in carriers of parkin mutations: estimation using the kin-cohort method. *Archives of neurology*, **65**(4), 467-474.

Wang, Y., Liang, B., Tong, X., Marder, K., Bressman, S., Orr-Urtreger, A., Giladi, N. & Zeng, D. (2015). Efficient estimation of nonparametric genetic risk function with censored data. *Biometrika*, **102**(3), 515-532.

See Also

```
p0G_data, Sieve_NPMLE_Switch(), Sieve_NPMLE_Bootstrap(), EM_PAVA_Func() and Permutation_Test().
```

```
# Example 1 #

data("p0G_data");
  attach(p0G_data);

n = dim(p0G_data)[1];
Status = as.numeric( proband_pd == "Yes" );
Relative = rep(1, n) + 1*(relative == "Sibling") + 2*(relative == "Child");

detach(p0G_data);

p0G = rep(0, n);

for(i in 1:n)
{
```

Permutation_Test 7

```
p0G[i] = p0G_Func(p = 0.02, status = Status[i], relative = Relative[i], model="dominant");
}

data.frame(pd_status = Status, relatives = Relative, prob = p0G);

# Example 2 #

n = 50;
status = sample(x=c(0,1), size = n, replace = TRUE, prob = c(0.6, 0.4) );
relative = sample(x=1:3, size = n, replace = TRUE, prob = c(1/3, 1/3, 1/3) );

p0G = rep(0, n);

for(i in 1:n) {
    p0G[i] = p0G_Func(p = 0.2, status = status[i], relative = relative[i], model="dominant");
}

data.frame(status = status, relative = relative, p0G = p0G);
```

Permutation_Test

Permutation Test

Description

Permutation test for the Sieve-NPMLE switch method with null hypothesis H_0 : F_carr = F_non and alternative hypothesis H_1 : F_carr is not equal to F_non.

Usage

```
Permutation_Test (Grid, F_carr, F_non, OY, ODelta, OpOG, nperm)
```

Arguments

Grid	time points at which the distribution function values are estimated.
F_carr	a vector of distribution function values at given grid points of the carrier group.
F_non	a vector of distribution function values at given grid points of the non-carrier group.
OY	observed event times.
ODelta	observed indicators of right censoring.
Op@G	observed probability values of carrier and non-carrier groups.
nperm	replication number used in permutation.

Details

Technical details can be found in Wang et al. (2015).

8 Permutation_Test

Value

This function returns a list of prediction values for classes,

Test_Stat value of the Kolmogorov-Smirnov statistic with observed data.

Pvalues p-value of the permutation test.

Permutation.value

values of Kolmogorov-Smirnov statistics under all permutations.

References

Wang, Y., Liang, B., Tong, X., Marder, K., Bressman, S., Orr-Urtreger, A., Giladi, N. & Zeng, D. (2015). Efficient estimation of nonparametric genetic risk function with censored data. *Biometrika*, **102**(3), 515-532.

See Also

```
test_stat() and Sieve_NPMLE_Switch().
```

```
data("Simulated_data");
OY = Simulated_data[,2];
ind = order(OY);
ODelta = Simulated_data[,3];
Op0G = Simulated_data[,4];
Y = OY[ind];
Delta = ODelta[ind];
p0G = Op0G[ind];
Grid = seq(0.2, 3.65, 0.05);
fix_t1 = c(0.288, 0.693, 1.390);
fix_t2 = c(0.779, 1.860, 3.650);
px = seq(0.1, 3, 0.1);
SieveNPMLE_result = Sieve_NPMLE_Switch( Y=Y, Delta=Delta, p0G=p0G,
                                        px=px, Grid=Grid, Knot=7,
                                        degree=3 );
Lambda_1.hat = cumsum( SieveNPMLE_result$lamb1.hat );
Lambda_2.hat = cumsum( SieveNPMLE_result$lamb2.hat );
F_{carr_func} = function(x) \{ 1 - exp( max( Lambda_1.hat[Y <= x] ) ) \}
F_non_func = function(x){ 1 - exp( max( Lambda_2.hat[Y <= x] ) ) }
F_carr = apply( matrix(px, ncol=1), 1, F_carr_func );
F_non = apply( matrix(px, ncol=1), 1, F_non_func );
# Permutation test #
```

Sieve_NPMLE_Bootstrap Sieve_NPMLE_Bootstrap function

Description

This function is used for calculating standard error estimates and 95% confidence bands in quantile using the bootstrap method.

Usage

```
Sieve_NPMLE_Bootstrap ( fam_ID, Y0, Delta0, p0G0, fix_t1, fix_t2, Grid, Knot, degree=3, Bn, maxiter=400, ep=1e-05)
```

Arguments

fam_ID	family ID numbers.
Y0	observed event times or censoring times.
Delta0	indicators of event.
p0G0	probabilities of being a carrier.
fix_t1	a vector of fixed points at which the carrier's cumulative distribution function values are estimated.
fix_t2	a vector of fixed points at which the non-carrier's cumulative distribution function values are estimated.
Grid	a vector of grid points used for plotting the estimated distribution functions of carrier and non-carrier groups.
Knot	number of knots of the B-spline base functions.
degree	degree of the B-spline base functions.
Bn	number of bootstrap samples.
maxiter	maximum number of iterations.
ер	convergence criterion, default is ep= 1e-05.

Details

Using bootstrap for standard error estimation and 95% confidence bands calculation. We do the Bootstrap resample according to fam_ID.

Value

This function returns a list

```
Boot.L1 estimated cumulative hazard function for the carrier group.

Boot.L2 estimated cumulative hazard function for the non-carrier group.

SE_F1_fix_t estimated standard errors for the carrier group at given points fix_t1.

SE_F2_fix_t estimated standard errors for the non-carrier group at given points fix_t2.
```

References

Wang, Y., Liang, B., Tong, X., Marder, K., Bressman, S., Orr-Urtreger, A., Giladi, N. & Zeng, D. (2015). Efficient estimation of nonparametric genetic risk function with censored data. *Biometrika*, **102**(3), 515-532.

See Also

```
p0G_Func(), Sieve_NPMLE_Switch().
```

```
data("Simulated_data");
OID = Simulated_data[,1];
OY = Simulated_data[,2];
ind = order(OY);
ODelta = Simulated_data[,3];
Op0G = Simulated_data[,4];
Y = OY[ind];
Delta = ODelta[ind];
p0G = Op0G[ind];
Grid = seq(0.2, 3.65, 0.05);
fix_t1 = c(0.288, 0.693, 1.390);
fix_t2 = c(0.779, 1.860, 3.650);
px = seq(0.1, 3, 0.1);
SieveNPMLE_result = Sieve_NPMLE_Switch( Y=Y, Delta=Delta, p0G=p0G, px=px,
                                        Grid=Grid, Knot=7, degree=3 );
Lambda_1.hat = cumsum( SieveNPMLE_result$lamb1.hat );
Lambda_2.hat = cumsum( SieveNPMLE_result$lamb2.hat );
F_{carr_func} = function(x) \{ 1 - exp( - max( Lambda_1.hat[Y <= x] ) ) \}
F_non_func = function(x){ 1 - exp( - max( Lambda_2.hat[Y <= x] ) ) }
est.f1 = apply(matrix(fix_t1, ncol=1), 1, F_carr_func );
est.f2 = apply(matrix(fix_t2, ncol=1), 1, F_non_func );
# ----- #
```

Sieve_NPMLE_Switch 11

Sieve_NPMLE_Switch

Sieve_NPMLE_Switch function

Description

This function is used to estimate the genotype-specific distribution of time-to-event outcomes with the Sieve-NPMLE switch algorithm.

Usage

```
Sieve_NPMLE_Switch (Y, p0G, Delta, px, Grid, Knot, degree, maxiter=400, ep=1e-05)
```

Arguments

Υ	observed event times or censoring times.
p0G	probabilities of being a carrier.
Delta	indicators of event.
px	grid points at which the distribution function values are estimated.
Grid	grid points used for plots. Grid could be either exactly the same as px or different from px .
Knot	number of knots.
degree	degree of the B-spline base functions.
maxiter	maximum number of iterations.
ер	convergence criterion, default is ep= 1e-05.

Details

This function is used to estimate the distribution of the age-at-onset of Parkinsons disease for carriers' and non-carriers' mutations in the leucine-rich repeat kinase 2, LRRK2, gene. Please refer to Wang et al. (2015) for more details.

Value

This function returns a list of prediction values for classes

lamb1.hat estimated values of hazard function for the carrier group.

lamb2.hat estimated values of hazard function for the non-carrier group.

lamb1 estimated values of cumulative hazard function for the carrier group.

lamb2 estimated values of cumulative hazard function for the non-carrier group.

converge convergence status.

References

Wang, Y., Liang, B., Tong, X., Marder, K., Bressman, S., Orr-Urtreger, A., Giladi, N. & Zeng, D. (2015). Efficient estimation of nonparametric genetic risk function with censored data. *Biometrika*, **102**(3), 515-532.

See Also

```
p0G_Func(), Sieve_NPMLE_Bootstrap() and Permutation_Test().
```

```
data("Simulated_data");
OY = Simulated_data[,2];
ind = order(OY);
ODelta = Simulated_data[,3];
Op0G = Simulated_data[,4];
Y = OY[ind];
Delta = ODelta[ind];
p0G = Op0G[ind];
Grid = seq(0.2, 3.65, 0.05);
fix_t1 = c(0.288, 0.693, 1.390);
fix_t2 = c(0.779, 1.860, 3.650);
px = seq(0.01, 3.65, 0.01);
SieveNPMLE_result = Sieve_NPMLE_Switch( Y=Y, Delta=Delta, p0G=p0G,
                                        px=px, Grid=Grid,
                                        Knot=6, degree=3 );
# 'Sieve_NPMLE_Switch' only returns values of hazard function
# or cumulative hazard function of mutation groups, in practice, we only
# need to do a little bit more as follows for calculating the
# cumulative distribution values of mutation groups.
Lambda_1.hat = cumsum( SieveNPMLE_result$lamb1.hat );
Lambda_2.hat = cumsum( SieveNPMLE_result$lamb2.hat );
```

Simulated_data 13

Simulated_data

Simulated Parkinson's disease data

Description

This is an artificial data set used for the illustration of the current R-package. There are 4 columns, 268 rows in this data set.

Usage

```
data("Simulated_data")
```

Format

A data frame with 268 observations on the following 4 columns with.

```
FamID a factor with levels Child, Parent and Sibling Y a factor with levels No and Yes delta a numeric vector p0G a numeric vector, probability distribution value.
```

Source

This is a simulated data set based on the real data analysis results in Wang et al. (2015).

14 test_stat

References

Wang, Y., Liang, B., Tong, X., Marder, K., Bressman, S., Orr-Urtreger, A., Giladi, N. & Zeng, D. (2015). Efficient estimation of nonparametric genetic risk function with censored data. *Biometrika*, **102**(3), 515-532.

Marder, K., Wang, Y., Alcalay, R. N., Mejia-Santana, H., Tang, M. X., Lee, A., ... & Miravite, J. (2015). Age-specific penetrance of LRRK2 G2019S in the Michael J. Fox Ashkenazi Jewish LRRK2 Consortium. *Neurology*, **85**(1), 89–95.

Qin, J., Garcia, T., Ma, Y., Tang, M., Marder, K. & Wang, Y. (2014). Combining isotonic regression and EM algorithm to predict genetic risk under monotonicity constraint. *The Annals of Applied Statistics* **8**(2), 1182-1208.

See Also

```
Sieve_NPMLE_Switch(), Sieve_NPMLE_Bootstrap(), EM_PAVA_Func().
```

Examples

```
data("Simulated_data")
```

test_stat

Kolmogorov-Smirnov Test Statistic

Description

This function is used to calculate the Kolmogorov-Smirnov statistic: $D(F_1, F_2) = \sup_x |F_1(x) - F_2(x)|$.

Usage

```
test_stat (F1, F2)
```

Arguments

F1 vector of one distribution function value.

F2 vector of the other distribution function value.

Details

It is necessary to point out that F1 and F2 are based on common grids. Other technical details can be found in Wang et al. (2015).

Value

This function returns a list of prediction values for classes,

out value of Kolmogorov-Smirnov statistics.

test_stat 15

References

Wang, Y., Liang, B., Tong, X., Marder, K., Bressman, S., Orr-Urtreger, A., Giladi, N. & Zeng, D. (2015). Efficient estimation of nonparametric genetic risk function with censored data. *Biometrika*, **102**(3), 515-532.

See Also

```
Permutation_Test()
```

```
X = seq(0.01, 1, 0.05);
Func_1 = function(x){ x + runif(length(x), min=0, max=1) };
Func_2 = function(x){ x + 2*runif(length(x), min=0, max=1) };
U1 = Func_1(X);
U2 = Func_2(X);
test_stat (F1 = U1, F2 = U2);
```

Index

```
* datasets
    p0G_data, 4
    Simulated_data, 13

* package
    GSSE-package, 2

EM_PAVA_Func, 3, 6, 14

GSSE (GSSE-package), 2
GSSE-package, 2

p0G_data, 4, 6
p0G_Func, 3, 5, 5, 10, 12
Permutation_Test, 6, 7, 12, 15

Sieve_NPMLE_Bootstrap, 6, 9, 12, 14
Sieve_NPMLE_Switch, 2, 3, 6, 8, 10, 11, 14
Simulated_data, 13

test_stat, 8, 14
```