§4.1 Extreme Values of Functions on Closed Intervals (Continued)

Definition. An interior point of the domain of a function f where f' is zero or undefined is a **critical point** of f.

Ex. Find all critical points of $f(x) = x^3 - 3x^2 + 2$.

Solution. $f'(x) = 3x^2 - 6x$. To find the critical point(s), we solve $3x^2 - 6x = 0 \Rightarrow x = 0$ and x = 2. Therefore, x = 0, 2 are the critical points of the function y = f(x) on $\mathbb{R} = (-\infty, \infty)$.

Exercise 52. Determine all critical points for $g(x) = \sqrt{2x - x^2}$.

Solution. $g'(x) = \frac{1}{2}(2x-x^2)^{-1/2}(2-2x)$. Solve $\frac{1}{2}(2x-x^2)^{-1/2}(2-2x) = 0$ to obtain 2-2x = 0, that is, x = 1, which is the critical point in the interior of the domain [0, 2].

Example 3. Find the absolute maximum and minimum values of $f(x) = 10x(2 - \ln x)$ on the interval $[1, e^2]$.

Example 4. Find the absolute maximum and minimum values of $f(x) = x^{2/3}$ on the interval [-2,3].

[Answer: x = 0 where the derivative d.n.e.]

Ex. MML Determine the critical point(s) of $y = x^2 + \frac{54}{x}$.

[Answer: x = 3]

Theorem 3 (Rolle's Theorem). Suppose that y = f(x) is continuous over the closed interval [a, b] and differentiable at every point of its interior (a, b). If f(a) = f(b), then there is at least one number c in (a, b) at which f'(c) = 0.

Theorem 4 (The Mean Value Theorem). Suppose y = f(x) is continuous over a closed interval [a, b] and differentiable on the interval's interior (a, b). Then there is at least one point c in (a, b) at which $\frac{f(b) - f(a)}{b - a} = f'(c)$.

Corollary 1. If f'(x) = 0 at each point x of an open interval (a, b), then f(x) = C for all x in (a, b), where C is a constant.

Corollary 2. If f'(x) = g'(x) at each point x in an open interval (a, b), then there exists a constant C such that f(x) = g(x) + C for all x in (a, b). That is, f - g is a constant function on (a, b).

§4.3 Monotonic Functions and the First Derivative Test

Definition. Let f be a function defined on an interval I and let x_1 and x_2 be two distinct points in I.

- 1. If $f(x_2) > f(x_1)$ whenever $x_1 < x_2$, then f is said to be **increasing** on I.
- 2. If $f(x_2) < f(x_1)$ whenever $x_1 < x_2$, then f is said to be **decreasing** on I.

Ex. (a)
$$y = x^3, x \in \mathbb{R}$$

(b) $y = \sqrt{x}, x \ge 0$

Corollary 3. Suppose that f is continuous on [a, b] and differentiable on (a, b). If f'(x) > 0 at each point x in (a, b), then f is increasing on [a, b]. If f'(x) < 0 at each point x in (a, b), then f is decreasing on [a, b].

Example 1. Find the critical points of $f(x) = x^3 - 12x - 5$ and identify the open intervals on which f is increasing and on which f is decreasing.

Solution. $f'(x) = 3x^2 - 12 = 3(x+2)(x-2)$. Solve $3(x+2)(x-2) = 0 \Rightarrow x = -2$ and x = 2 critical points. Making a table and using testing point method show that f' > 0 on $(-\infty, -2)$, increasing; f' < 0 on (-2, 2), decreasing; f' > 0 on $(2, \infty)$, increasing.

Example 2. Find the critical points of $f(x) = x^{1/3}(x-4)$. Identify the open intervals on which f is increasing and decreasing. Find the function's local and absolute extreme values.

Example 3. Find the critical points of $f(x) = (x^2 - 3)e^x$. Identify the open intervals on which f is increasing and decreasing. Find the function's local and absolute extreme values.

Ex. (a)
$$y = x + \sin x$$
 (b) $y = \frac{\sin x}{x}$ (c) $y = e^{-x} \cos x$

§4.4 Concavity and Curve Sketching

Definition. The graph of a differentiable function y = f(x) is

- (a) **concave up** on an open interval I if f' is increasing on I;
- (b) **concave down** on an open interval I if f' is decreasing on I.

The Second Derivative Test for Concavity. Let y = f(x) be twice-differentiable on an interval I. If f'' > 0 on I, the graph of f over I is concave up. If f'' < 0 on I, the graph of f over I is concave down.

Example 1. (a) The curve $y = x^3$ is concave down on $(-\infty, 0)$ and concave up on $(0, \infty)$. (b) The curve $y = x^2$ is concave up on $(-\infty, \infty)$.

Example 2. Determine the concavity of $y = 3 + \sin x$ on $[0, 2\pi]$.

Definition. A point (c, f(c)) where the graph of a function has a tangent line and where the concavity changes is a **point of inflection**.

Example 3. Determine the concavity and find the inflection points of the function $f(x) = x^3 - 3x^2 + 2$. See also Ex. in §4.1.

Example 4. Determine the concavity and find the inflection points of $f(x) = x^{5/3}$.

Theorem 5 (Second Derivative Test for Local Extrema). Suppose f'' is continuous on an open interval that contains x = c.

- 1. If f'(c) = 0 and f''(c) < 0, then f has a local maximum at x = c.
- 2. If f'(c) = 0 and f''(c) > 0, then f has a local minimum at x = c.
- 3. If f'(c) = 0 and f''(c) = 0, then the test fails. The function f may have a local maximum, local minimum, or neither.

Example 8. Sketch a graph of the function $f(x) = x^4 - 4x^3 + 10$.