考试科目名称 分布式系统

考试方式	: 闭卷	考试	∃期 <u>2</u>	<u>2016</u> 年	<u>1</u> 月 <u>5</u>	_日 教	:师_ 钱	柱中		
系(专业)			年级				班级			
学号			姓名							
题号	_		三	四	五.	六	七			
分数				, ,		, .				
得分	1,	分布	ī式系统	的定义与	5架构(本题満分	15 分)			

(2) 解释分布式系统中的透明性含义。

(3) 如何理解分布式系统中的机制与策略?

⁽¹⁾ 分别描述网络操作系统与分布式系统的定义。

得分

2、进程与线程(本题满分10分)

(1) 简述进程与线程的异同。

(2) 代码迁移与虚拟机迁移相比较,有什么优势与劣势?

得分

3、通信机制(本题满分15分)

(1) 在远程过程调用(RPC)过程中,如果客户端出现故障,请给出至少 3 种可能的解决方式。

(2) 为什么要采用动态绑定机制来实现服务器的定位?动态绑定有什么缺点?

(3)	分别说明持久性通信和非持久性通信的含义,电子邮件和 QQ 留言分别属于什么样的通信模式?
得分	4、命名与同步(本题满分 20 分)
(1)	请简述"基于本部的方法"(home-based approach)是如何解决移动实体定位的。
(2)	为什么要进行同步?分布式系统的同步与集中式系统有何区别?
(3)	假设有 3 个机器采用 Lamport 算法进行同步,设左边图给出了机器原始时钟下的交互图。
a)	

能判定,则在"不能判定"后面打钩。

b) 判定下面 4 组事件中两个消息发送事件的先后顺序: 在先发生事件后打钩, 如果不

i.	P1 (send, m3)	P3(send, m4)	不能判定
ii.	P2 (send, m4)	P1(send, m5)	不能判定
iii.	P3 (send, m4)	P2(send, m6)	不能判定
iv.	P3 (send, m7)	P2(send, m8)	不能判定

P3

0

0

 m_2

m9

5、一致性与容错(本题满分15分) 得分

(1) 下图所示两组进程读写是否满足因果一致性和顺序一致性?如果不满足,需要说明原因。

P1: W	V(x)a	P1: W(x)a	W(x)c	
P2:	R(x)a $W(x)b$	P2: $R(x)a$	W(x)b	
P3:	R(x)b $R(x)a$	<u>P3:</u>	R(x)c	R(x)b
P4:	R(x)b R(x)a	P4:	R(x)a	R(x)b
	(a)	(b)		

(2) 下面的已编号小竖线表示进程的检查点(check point),箭头表示消息发送,横轴表示时间,设 P2 在图所示处出现故障,3 个进程从检查点进行恢复,请从这些检查点中构建一个最近的一致全局状态,并说明理由。

得分 6、社会网络(本题满分10分)

(1) 比较随机图(Random Graph)、小世界(Small-World)和无标度(Scale-free)三种网络模型。

(2)	请描述社会影响力最大化问题,并	并阐述解决该问题的思路。
得分		分)
	要说明虚拟化技术所解决的问题,	
(a) [V]		G /, 46 + 1 - 1 - 1 - 1 - 1 - 2 - 2
(2) 以	. Openstack 为代表的这一类云计算书	产
	用场景 1: 某校计算中心需要不同资 类型的计算机课程教学;	资源需求的桌面(Linux、Windows 等),应用-
应	用场景 2: 某校物理系多个实验室管	需要三种软件进行模拟实验,这些模拟实验对:
	源消耗极大,但这些实验往往不是 述两个应用场景分别是否适合采用	可时进行。 Openstack 平台来搭建系统,说明理由。