## 차분 특성 (Differential Characteristic)

김상원

https://youtu.be/jmJkrzVlCME





DES

차분(Difference)

차분 특성(Differential Characteristic)

Q & A

#### DES

1972년에 미국 NBS (National Bureau of Standards, 오늘날의 NIST)는 암호 기술의 필요성을 절감하고 미국 정부 규모의 표준적인 암호 알고리즘을 개발하기로 했다. 이에 1974년 8월 27일, IBM에서 루시퍼 암호알고리즘을 제안했고, 이를 수정하여 1975년 3월 17일에 **DES**를 발표했다.

**DES**(Data Encryption Standard)는 64비트의 평문을 46비트의 암호문으로 만드는 블록암호 시스템으로 64비트의 키를 사용한다. **데이터 암호화 표준**이라고 한다. 64비트의 키(외부 키)중에서 56비트는 실제의 키(내부 키)가 되고 나머지는 거사용 비트로 사용된다.

#### **DES**

• 비선형성(Nonlinearity)

정의 : 출력의 변화가 입력의 변화에 비례하지 않는 성질

블록 암호에서의 "비선형성"은 암호의 강도와 보안성을 높이는 데 중요한 역할을 함 비선형성이 없다면, 암호는 선형적인 방식으로만 동작하게 되어, 암호 해독이 훨씬 쉬워질 수 있음

블록암호 암호문 블록의 각 비트는 키 비트와 평문 블록 비트에 관한 고차 비선형식 으로 표현됨

만약 블록 암호 DES의 모든 연산이 선형이라면?

⇒ 암호의 강도가 현저히 낮아짐

#### 차분 (Difference)

정의: 임의 두 점에서의 함수 값들의 차이

△는 모든 과학 분야에서 특정 변수의 앞에 쓰여 해당 변수의 변화량 (difference)을 뜻하는 기호로 쓰인다.

$$f(x_i + \Delta x) - f(x_i)$$
  
두 값의 **XOR**  
변수 **X**에 대해  
 $\mathbf{X} = \mathbf{x}_1$  인 경우와  $\mathbf{X} = \mathbf{x}_2$  인 경우  
**X**의 차분은  $\Delta \mathbf{X} = \mathbf{x}_1 \oplus \mathbf{x}_2$ 

| $\oplus$ | 0 | 1 |
|----------|---|---|
| 0        | 0 | 1 |
| 1        | 1 | 0 |

## 차분 (선형연산)

$$Y = g(X)$$
: 선형 함수  $X = x_1, X = x_2, \Delta X = x_1 \oplus x_2$  
$$y_1 = g(x_1), y_2 = g(x_2), \Delta Y = y_1 \oplus y_2$$
 
$$\Rightarrow g(\Delta X) = g(x_1 \oplus x_2)$$
 
$$= g(x_1) \oplus g(x_2)$$
 
$$= y_1 \oplus y_2 = \Delta Y$$
 
$$\left(x_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + x_2 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}\right) \times A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$$
 +

• 
$$x_1 = 0x20 \Rightarrow S1(x_1) = 0x4$$
  
 $x_2 = 0x10 \Rightarrow S1(x_2) = 0x3$ 

• 
$$S1(x_1) \oplus S1(x_2) = 0x4 \oplus 0x3 = 0x7$$

• 
$$S1(x_1 \oplus x_2) = S1(0x30) = 0x0F$$

|   | S[0] |    |    |   |    |    |    |    |    |    |    |    |    |    |    |    |
|---|------|----|----|---|----|----|----|----|----|----|----|----|----|----|----|----|
|   | 0    | 1  | 2  | 3 | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
| 0 | 14   | 4  | 13 | 1 | 2  | 15 | 11 | 8  | 3  | 10 | 6  | 12 | 5  | 9  | 0  | 7  |
| 1 | 0    | 15 | 7  | 4 | 14 | 2  | 13 | 1  | 10 | 6  | 12 | 11 | 9  | 5  | 3  | 8  |
| 2 | 4    | 1  | 14 | 8 | 13 | 6  | 2. | 11 | 15 | 12 | 9  | 7  | 3  | 10 | 5  | 0  |
| 3 | 15   | 12 | 8  | 2 | 4  | 9  | 1  | 7  | 5  | 11 | 3  | 14 | 10 | 0  | 6  | 13 |

```
S[0]: (x_0, \underbrace{x_1, x_2, x_3, x_4}_{column}, x_5) \rightarrow (y_0, y_1, y_2, y_3)

(1, 1, 0, 0, 1, 1): row 3, column 9, <math>S[0](1, 1, 0, 0, 1, 1) = 11 = (1, 0, 1, 1)
```

#### 입력 차분이 $\Delta X = 0x30$ 인 경우, S1의 모든 입력 쌍

| No. | (x1, x2)    | No. | (x1, x2)     | No. | (x1, x2)     | No. | (x1, x2)    |
|-----|-------------|-----|--------------|-----|--------------|-----|-------------|
| 0   | (0x0, 0x30) | 16  | (0x10, 0x20) | 32  | (0x20, 0x10) | 48  | (0x30, 0x0) |
| 1   | (0x1, 0x31) | 17  | (0x11, 0x21) | 33  | (0x21, 0x11) | 49  | (0x31, 0x1) |
| 2   | (0x2, 0x32) | 18  | (0x12, 0x22) | 34  | (0x22, 0x12) | 50  | (0x32, 0x2) |
| 3   | (0x3, 0x33) | 19  | (0x13, 0x23) | 35  | (0x23, 0x13) | 51  | (0x33, 0x3) |
| 4   | (0x4, 0x34) | 20  | (0x14, 0x24) | 36  | (0x24, 0x14) | 52  | (0x34, 0x4) |
| 5   | (0x5, 0x35) | 21  | (0x15, 0x25) | 37  | (0x25, 0x15) | 53  | (0x35, 0x5) |
| 6   | (0x6, 0x36) | 22  | (0x16, 0x26) | 38  | (0x26, 0x16) | 54  | (0x36, 0x6) |
| 7   | (0x7, 0x37) | 23  | (0x17, 0x27) | 39  | (0x27, 0x17) | 55  | (0x37, 0x7) |
| 8   | (0x8, 0x38) | 24  | (0x18, 0x28) | 40  | (0x28, 0x18) | 56  | (0x38, 0x8) |
| 9   | (0x9, 0x39) | 25  | (0x19, 0x29) | 41  | (0x29, 0x19) | 57  | (0x39, 0x9) |
| 10  | (0xA, 0x3A) | 26  | (0x1A, 0x2A) | 42  | (0x2A, 0x1A) | 58  | (0x3A, 0xA) |
| 11  | (0xB, 0x3B) | 27  | (0x1B, 0x2B) | 43  | (0x2B, 0x1B) | 59  | (0x3B, 0xB) |
| 12  | (0xC, 0x3C) | 28  | (0x1C, 0x2C) | 44  | (0x2C, 0x1C) | 60  | (0x3C, 0xC) |
| 13  | (0xD, 0x3D) | 29  | (0x1D, 0x2D) | 45  | (0x2D, 0x1D) | 61  | (0x3D, 0xD) |
| 14  | (0xE, 0x3E) | 30  | (0x1E, 0x2E) | 46  | (0x2E, 0x1E) | 62  | (0x3E, 0xE) |
| 15  | (0xF, 0x3F) | 31  | (0x1F, 0x2F) | 47  | (0x2F, 0x1F) | 63  | (0x3F, 0xF) |

입력 차분이  $\Delta X = 0x30$ 인 경우, S1의 모든 입력 쌍 및 출력 차분  $\Delta Y$ 

| No. | (x1, x2) -> ∆Y                | No. | (x1, x2) -> ∆Y                 | No. | (x1, x2) -> ∆Y                  | No. | (x1, x2) -> ∆Y                |
|-----|-------------------------------|-----|--------------------------------|-----|---------------------------------|-----|-------------------------------|
| 0   | $(0x0, 0x30) \rightarrow 0x1$ | 16  | (0x10, 0x20) -> 0x7            | 32  | (0x20, 0x10) -> 0x7             | 48  | $(0x30, 0x0) \rightarrow 0x1$ |
| 1   | $(0x1, 0x31) \rightarrow 0x5$ | 17  | (0x11, 0x21) -> 0x5            | 33  | (0x21, 0x11) -> 0x5             | 49  | (0x31, 0x1) -> 0x5            |
| 2   | $(0x2, 0x32) \rightarrow 0x8$ | 18  | (0x12, 0x22) -> 0xB            | 34  | (0x22, 0x12) -> 0xB             | 50  | (0x32, 0x2) -> 0x8            |
| 3   | $(0x3, 0x33) \rightarrow 0x4$ | 19  | (0x13, 0x23) -> 0xA            | 35  | (0x23, 0x13) -> 0xA             | 51  | (0x33, 0x3) -> 0x4            |
| 4   | (0x4, 0x34-> 0x4              | 20  | (0x14, 0x24-> 0x8              | 36  | $(0x24, 0x14) \rightarrow -0x8$ | 52  | $(0x34, 0x4) \rightarrow 0x4$ |
| 5   | $(0x5, 0x35) \rightarrow 0x4$ | 21  | (0x15, 0x25) -> 0x4            | 37  | (0x25, 0x15) -> 0x4             | 53  | (0x35, 0x5) -> 0x4            |
| 6   | $(0x6, 0x36) \rightarrow 0x6$ | 22  | (0x16, 0x26) -> 0x4            | 38  | (0x26, 0x16) -> 0x4             | 54  | (0x36, 0x6) -> 0x6            |
| 7   | $(0x7, 0x37) \rightarrow 0xA$ | 23  | $(0x17, 0x27) \rightarrow 0x9$ | 39  | (0x27, 0x17) -> 0x9             | 55  | (0x37, 0x7) -> 0xA            |
| 8   | $(0x8, 0x38) \rightarrow 0x1$ | 24  | (0x18, 0x28) -> 0x8            | 40  | (0x28, 0x18) -> 0x8             | 56  | (0x38, 0x8) -> 0x1            |
| 9   | (0x9, 0x39) -> 0x4            | 25  | (0x19, 0x29) -> 0xD            | 41  | (0x29, 0x19) -> 0xD             | 57  | (0x39, 0x9) -> 0x4            |
| 10  | (0xA, 0x3A) -> 0x5            | 26  | (0x1A, 0x2A) -> 0xF            | 42  | (0x2A, 0x1A) -> 0xF             | 58  | (0x3A, 0xA) -> 0x5            |
| 11  | (0xB, 0x3B) -> 0x2            | 27  | (0x1B, 0x2B) -> 0xC            | 43  | (0x2B, 0x1B) -> 0xC             | 59  | (0x3B, 0xB) -> 0x2            |
| 12  | (0xC, 0x3C) -> 0xE            | 28  | (0x1C, 0x2C) -> 0x2            | 44  | (0x2C, 0x1C) -> 0x2             | 60  | (0x3C, 0xC) -> 0xE            |
| 13  | (0xD, 0x3D) -> 0xB            | 29  | (0x1D, 0x2D) -> 0x2            | 45  | (0x2D, 0x1D) -> 0x2             | 61  | (0x3D, 0xD) -> 0xB            |
| 14  | (0xE, 0x3E) -> 0x8            | 30  | (0x1E, 0x2E) -> 0xC            | 46  | (0x2E, 0x1E) -> 0xC             | 62  | (0x3E, 0xE) -> 0x8            |
| 15  | (0xf, 0x3f) -> 0xC            | 31  | (0x1f, 0x2f) -> 0xF            | 47  | (0x2f, 0x1f) -> 0xF             | 63  | (0x3f, 0xf) -> 0xC            |

입력 차분이  $\Delta X = 0x30$ 인 경우, S1의 모든 입력 쌍 및 출력 차분  $\Delta Y$ 

| No. | (x1, x2) -> ∆Y                | No. | (x1, x2) -> ∆Y      | No. | (x1, x2) -> ∆Y                 | No. | (x1, x2) -> ∆Y                 |
|-----|-------------------------------|-----|---------------------|-----|--------------------------------|-----|--------------------------------|
| 0   | $(0x0, 0x30) \rightarrow 0x1$ | 16  | (0x10, 0x20) -> 0x7 | 32  | (0x2, 0x32) -> 0x8             | 48  | $(0x3, 0x33) \rightarrow 0x4$  |
| 1   | $(0x30, 0x0) \rightarrow 0x1$ | 17  | (0x20, 0x10) -> 0x7 | 33  | (0x32, 0x2) -> 0x8             | 49  | (0x33, 0x3) -> 0x4             |
| 2   | $(0x8, 0x38) \rightarrow 0x1$ | 18  | (0x6, 0x36) -> 0x6  | 34  | (0xE, 0x3E) -> 0x8             | 50  | (0x4, 0x34) > 0x4              |
| 3   | $(0x38, 0x8) \rightarrow 0x1$ | 19  | (0x36, 0x6) -> 0x6  | 35  | (0x3E, 0xE) -> 0x8             | 51  | $(0x34, 0x4) \rightarrow 0x4$  |
| 4   | (0xB, 0x3B) -> 0x2            | 20  | (0xF, 0x3F) -> 0xC  | 36  | (0x14, 0x24)-> 0x8             | 52  | (0x5, 0x35) -> 0x4             |
| 5   | (0x3B, 0xB) -> 0x2            | 21  | (0x3F, 0xF) -> 0xC  | 37  | (0x24, 0x14) -> 0x8            | 53  | (0x35, 0x5) -> 0x4             |
| 6   | (0x1C, 0x2C) -> 0x2           | 22  | (0x1B, 0x2B) -> 0xC | 38  | (0x18, 0x28) -> 0x8            | 54  | (0x9, 0x39) -> 0x4             |
| 7   | (0x2C, 0x1C) -> 0x2           | 23  | (0x2B, 0x1B) -> 0xC | 39  | (0x28, 0x18) -> 0x8            | 55  | (0x39, 0x9) -> 0x4             |
| 8   | (0x1D, 0x2D) -> 0x2           | 24  | (0x1E, 0x2E) -> 0xC | 40  | (0x1, 0x31) -> 0x5             | 56  | (0x15, 0x25) -> 0x4            |
| 9   | (0x2D, 0x1D) -> 0x2           | 25  | (0x2E, 0x1E) -> 0xC | 41  | (0x31, 0x1) -> 0x5             | 57  | (0x25, 0x15) -> 0x4            |
| 10  | (0xC, 0x3C) -> 0xE            | 26  | (0x19, 0x29) -> 0xD | 42  | (0xA, 0x3A) -> 0x5             | 58  | $(0x16, 0x26) \rightarrow 0x4$ |
| 11  | (0x3C, 0xC) -> 0xE            | 27  | (0x29, 0x19) -> 0xD | 43  | (0x3A, 0xA) -> 0x5             | 59  | (0x26, 0x16) -> 0x4            |
| 12  | (0xD, 0x3D) -> 0xB            | 28  | (0x1A, 0x2A) -> 0xF | 44  | $(0x11, 0x21) \rightarrow 0x5$ | 60  | $(0x7, 0x37) \rightarrow 0xA$  |
| 13  | (0x3D, 0xD) -> 0xB            | 29  | (0x2A, 0x1A) -> 0xF | 45  | $(0x21, 0x11) \rightarrow 0x5$ | 61  | (0x37, 0x7) -> 0xA             |
| 14  | (0x12, 0x22) -> 0xB           | 30  | (0x1F, 0x2F) -> 0xF | 46  | (0x17, 0x27) -> 0x9            | 62  | (0x13, 0x23) -> 0xA            |
| 15  | (0x22, 0x12) -> 0xB           | 31  | (0x2F, 0x1F) -> 0xF | 47  | $(0x27, 0x17) \rightarrow 0x9$ | 63  | (0x23, 0x13) -> 0xA            |

#### $Pr(S1 : \Delta X \rightarrow \Delta Y)$

입력 차분  $\Delta X$ 에 대해 S1의 출력 차분이  $\Delta Y$ 가 될 확률

```
Pr(S1:0x30 \rightarrow 0x1) = 4/64
Pr(S1:0x30 \rightarrow 0x2) = 6/64
Pr(S1:0x30 \rightarrow 0x4) = 12/64
Pr(S1:0x30 \rightarrow 0x5) = 6/64
Pr(S1:0x30 \rightarrow 0x6) = 2/64
Pr(S1:0x30 \rightarrow 0x7) = 2/64
Pr(S1:0x30 \rightarrow 0x8) = 8/64
Pr(S1:0x30 \rightarrow 0x9) = 2/64
Pr(S1:0x30 \rightarrow 0xA) = 4/64
Pr(S1:0x30 \rightarrow 0xB) = 4/64
Pr(S1:0x30 \rightarrow 0xC) = 6/64
Pr(S1:0x30 \rightarrow 0xD) = 2/64
Pr(S1:0x30 \rightarrow 0xE) = 2/64
Pr(S1:0x30 \rightarrow 0xF) = 4/64
```

# Q&A