

Update on Ara

22/03/2023

Matteo Perotti
Matheus Cavalcante

Professor Luca Benini Integrated Systems Laboratory ETH Zürich

Writing and Gathering Data...

Energy Efficiency - fmatmul, 128x128x128

- New SLDU
- Macro CLK-Gating

Still not the trend of AraV1, but important EE gains: +12%

Lanes	Efficiency (DP-GFLOPS/W)
2	30.1
4	34.3
8	32.5

fmatmul, 128x128x128

Lanes	Efficiency (DP-GFLOPS/W)
2	34.2
4	38.7
8	35.8

Throughput Ideality vs. Elements per Lane

Elements per Lane (#Elements/#Lane)

	Lanes			
	2L	4L	8L	16L
4	25%	14%	7%	3%
8	55%	35%	19%	9%
16	82%	67%	41%	22%
32	93%	87%	70%	43%
64	96%	96%	89%	72%
128	99%	99%	96%	83%

Same Elements/Lane Ratio - Similar performance

Throughput Ideality vs. Elements per Lane

	Lanes			
	2L	4L	8L	16L
4	25%	14%	7%	3%
8	55%	35%	19%	9%
16	82%	67%	41%	22%
32	93%	87%	70%	43%
64	96%	96%	89%	72%
128	99%	99%	96%	83%

Elements per Lane (#Elements/#Lane)

Inter-Lane Reduction Phase Latency depends on #Lanes!

Throughput Ideality vs. Elements per Lane

	Lanes			
	2L	4L	8L	16L
4	16%	9%	4%	2%
8	29%	15%	8%	4%
16	43%	27%	14%	7%
32	58%	41%	25%	13%
64	70%	56%	39%	24%
128	77%	68%	54%	37%

Elements per Lane (#Elements/#Lane)

Same Elements/Lane Ratio - Similar performance

Throughput Ideality vs. Elements per Lane

	Lanes			
	2L	4L	8L	16L
4	16%	9%	4%	2%
8	29%	15%	8%	4%
16	43%	27%	14%	7%
32	58%	41%	25%	13%
64	70%	56%	39%	24%
128	77%	68%	54%	37%

Elements per Lane (#Elements/#Lane)

fmatmul on square matrices

More Elements - Higher arithmetic intensity!

Correlation between Performance and CVA6's \$-Misses

CVA6 Cache Misses vs. Performance

16-Lane Ara - 128 Elements

ETH Zürich | 8 |

Correlation between Performance and CVA6's \$-Misses

CVA6 Cache Misses vs. Performance

16-Lane Ara - 128 Elements

Jacobi2d - We can optimize it...

Average gain with ideal dispatcher is still small...

No gain when the #Byte/#Lanes ratio is high! (long vector)

Performance is peaking already