Contents

1	Frobenius	1
2	Find Pairing Friendly Groups	1
3	How to find G_1 ?	1
4	Efficient Representation of G_2	2
5	Construction	2
6	BLS12-381	2
7	How to represent \mathbb{F}_{a^2} ?	3

1 Frobenius

$$\begin{split} \Phi_{q^k} : \bar{\mathbb{F}}_{q^k} &\to \bar{\mathbb{F}}_{q^k} \\ \Phi(x) &= x^{q^k} \\ \mathrm{Fixed}(\Phi_{q^k}) &= \mathbb{F}_{q^k} \subseteq \bar{\mathbb{F}}_{q^k} \end{split}$$

2 Find Pairing Friendly Groups

Def: Let q be a prime. We say that an EC E/ $_q$ is pairing friendly if

- 1. There exists a prime $r > \sqrt{q}$ such that $r | \#E(\mathbb{F}_q)$
 - 1. Estimation in has se-weil theorem we see $\#E(\mathbb{F}_q) = q+1-t$ where $|t| \leq 2\sqrt{q}$ which is roughly $q \pm 2\sqrt{q}$.
- 2. The embedding degree of E wrt r satisfies $k \leq \log_2(r)/8$.

We want a type II pairing of order r.

$$e:G_1\times G_2\to G_T$$

$$r=|G_1|=|G_2|=|G_T|$$

Last time: For nice r we can write

$$\begin{split} E[r] & \cong H_1 \times H_q \\ & = E(\mathbb{F}_q)[r] \times \mathrm{Eig}_q(\Phi_q) \cap E[r] \end{split}$$

Note: $|H_1| = |H_q| = r$ since $E[r] \cong \mathbb{Z}_r \times \mathbb{Z}_r$.

if
$$|H_1| = r^2$$
 then $E[r] \subseteq E(\mathbb{F}_q)$ so $k = 1$.

Natural choices

$$G_T = \mu_r$$

$$G_1 = E(\mathbb{F}_q)[r]$$

$$G_2 = \ker(\Phi - [q]) \cap E[r] \subseteq E(\mathbb{F}_{q^k})$$

3 How to find G_1 ?

Denote $\#E(\mathbb{F}_q)=hr$, where h is the cofactor. Take any $P\in E(\mathbb{F}_q)$ and check if $hP\neq\infty$. If so hP is a generator of G_1 .

4 Efficient Representation of G_2

Thm: Let E/\mathbb{F}_q where $q=p^n$ is a prime power, so the trace of Frobenius $t\neq 0 \mod p$. Let $d\in\{2,3,4,6\}$ (possible degrees of twists) and r>d a prime with $r|\#E(\mathbb{F}_q)$ and $r^2|E(\mathbb{F}_{q^d})$ with d minimal.

Then there is a unique degree d twist E' of E such that $r|E'(\mathbb{F}_q)$, and the twist

$$\varphi_d: E'(\mathbb{F}_q) \to E(\mathbb{F}_q) \subseteq E(\mathbb{F}_{q^k})$$

is a monomorphism that maps an order r subgroup G'_2 of $E'(\mathbb{F}_q)$ isomorphically to G_2 .

$$G_2 = \ker(\Phi - [q]) \cap E[r] \subseteq E[r] \subseteq E(\mathbb{F}_{a^k})$$

5 Construction

Assume E admits a degree d twist. Let $m = \gcd(k, d)$ and e = k/m. Then there is a unique degree m twist E' of E over \mathbb{F}_{q^e} such that $r | \#E'(\mathbb{F}_{q^e})$ and denoted by

$$\varphi_m:E'(\mathbb{F}_{q^e})\to E(\mathbb{F}_{q^{em}})=E(\mathbb{F}_{q^k})$$

which is a monomorphism that maps $G_2' \subseteq E'(\mathbb{F}_{q^e})$ isomorphically to $G_2 \subseteq E(\mathbb{F}_{p^k})$.

Then we obtain a modified type II pairing

$$\begin{split} \bar{e}:G_1\times G_2'\to G_T\\ \bar{e}(P,Q')&=e(P,\varphi_m(Q')) \end{split}$$

where $\varphi_m(Q') = Q$.

e.g BLS12-381, $k=12, E: y^2=x^3+4$ where j(E)=0. So there exists d=6 twist of $E\Rightarrow m=\gcd(k,d)=6$, e=k/m=2 so there exists d=6 twist E' of E over $\mathbb{F}_{q^e}=\mathbb{F}_{q^2}$ with $G_2'\subseteq E'(\mathbb{F}_{q^2})$.

there exists an explicit formula for the twist

$$\varphi_m:E'(\mathbb{F}_{q^2})\to E(\mathbb{F}_{q^k})$$

6 BLS12-381

This is a parameterized family of pairing-friendly curves.

$$r(X) = X^4 - X^2 + 1$$

$$t(X) = X + 1$$

$$q(X) = \frac{(X - 1)^2}{3}(X^4 - X^2 + 1) + X$$

with $E: y^2 = x^3 + 4$ with the parameter X. Embedding degree is always k = 12.

There is a known value X that gives the largest r(X). Which gives us q=381 bits.

Note:
$$j(E) = 0 \left(= \frac{4A^3}{4A^3 + 27B^2} 1728 \right)$$
 but $A = 0$.

So there is a sextic twist of E.

Thus
$$\mathbb{G}_1 = E(\mathbb{F}_q)[r]$$
 and

$$\mathbb{G}_2 = \ker(\Phi - [q]) \cap E[r]$$

and \mathbb{G}_2 can be represented by $\mathbb{G}_2' \subseteq E(\mathbb{F}_{q^2})$ via an isomorphism

$$\varphi_m:\mathbb{G}_2'\to\mathbb{G}_2$$

$$E(\mathbb{F}_{q^2}) \to E(\mathbb{F}_{q^{12}})$$

Thus there exists a degree 6 twist φ_6 of E over \mathbb{F}_{q^2} .

And hence a more efficient modified pairing:

$$\bar{e}: \mathbb{G}_1 \times \mathbb{G}_2' \to \mathbb{G}_T = \mu_r$$

$$\bar{e}(P,Q') = e(P,\varphi_6Q')$$

7 How to represent \mathbb{F}_{q^2} ?

Lemma: let q be a prime, then the polynomial $g(x)=x^2+1$ is irreducible iff $q\neq 1 \mod 4$. Otherwise let α be a root of g. Then $\alpha^2=-1$, so $\alpha^4=1$ and so $4||\mathbb{F}_q^\times| \Leftrightarrow 4|(q-1) \Leftrightarrow q\equiv 1 \mod 4$. In BLS for the ideal $X, q\equiv \mod 4$.

$$\mathbb{F}_{q^2} = \mathbb{F}_q[x]/\langle x^2+1\rangle$$

with this representation

$$E': y^2 = x^3 + 4(i+1)$$