

Polar[™] HiPerFET[™] Power MOSFET

IXFL60N80P

(Electrically Isolated Tab)

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Rectifier

$V_{\scriptscriptstyle \sf DSS}$	=	800V
I _{D25}	=	40A
R _{DS(on)}	≤	150m Ω
t _{rr}	≤	250ns

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_{_{\rm J}}$ = 25°C to 150°C	800	V	
V _{DGR}	$T_J = 25$ °C to 150°C, $R_{GS} = 1M\Omega$	800	V	
V _{GSS}	Continuous	±30	V	
V _{GSM}	Transient	±40	V	
I _{D25}	T _C = 25°C	40	A	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	150	Α	
I _A E _{AS}	T _c = 25°C T _c = 25°C	30 5	A J	
dv/dt	$I_{_{\mathrm{S}}} \leq I_{_{\mathrm{DM}}}, V_{_{\mathrm{DD}}} \leq V_{_{\mathrm{DSS}}}, T_{_{\mathrm{J}}} \leq 150^{\circ}\mathrm{C}$	20	V/ns	
$\overline{\mathbf{P}_{\scriptscriptstyle \mathrm{D}}}$	T _C = 25°C	625	W	
T _J T _{JM} T _{stg}		-55 +150 150 -55 +150	°C °C °C	
T _L T _{SOLD}	Maximum Lead Temperature for Soldering Plastic Body for 10s	300 260	°C °C	
F _c	Mounting Force	40120 / 927	N/lb.	
V _{ISOL}	50/60 Hz, RMS $t = 1 \text{ min}$ $I_{ISOL} \le 1 \text{ mA}$ $t = 1 \text{ s}$	2500 3000	V~ V~	
Weight		8	g	

$$G = Gate$$
 $D = Drain$
 $S = Source$

Features

- Silicon Chip on Direct-Copper-Bond Substrate
- High Power Dissipation
- Isolated Mounting Surface
- 2500V~ Electrical Isolation
- Avalanche Rated
- Low Package Inductance
- Fast Intrinsic Rectifier
- Low $R_{\rm DS(on)}$ and $Q_{\rm G}$

Advantages

- Easy to Mount
- Space Savings

AApplications

- DC-DC Converters
- Battery Chargers
- Switch-Mode and Resonant-Mode Power Supplies
- AC Motor Control
- High Speed Power Switching Application

Symbol Test Conditions (T _J = 25°C Unless Otherwise Specified)		Chara Min.	Characteristic Values Min. Typ. Max.		
BV _{DSS}	$V_{GS} = 0V, I_D = 3mA$	800			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 8mA$	3.0		5.0	V
I _{GSS}	$V_{GS} = \pm 30V$, $V_{DS} = 0V$			±200	nA
I _{DSS}	$V_{DS} = V_{DSS}$, $V_{GS} = 0V$ $T_{J} = 12$	25°C		25 3	•
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 30A, Note 1$			150	mΩ

Symbol		Test Conditions	Characteristic Values		
$(T_{J} = 25^{\circ})$	CU	nless Otherwise Specified)	Min.	Тур.	Max.
g _{fs}		$V_{DS} = 20V, I_{D} = 30A, Note 1$	35	67	S
C _{iss})			18	nF
C _{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		1200	pF
C _{rss}	J			44	pF
t _{d(on)})	Resistive Switching Times		36	ns
t _r		•		29	ns
t _{d(off)}	1	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 30A$ $R_{G} = 1\Omega$ (External)		110	ns
t _f	<u>J</u>			26	ns
$\mathbf{Q}_{g(on)}$)			250	nC
\mathbf{Q}_{gs}	$ V_{GS} = 10V, V_{DS} = 0.5 \bullet V_{DSS}, I_{D} = 3 $	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 30A$		90	nC
\mathbf{Q}_{gd}				78	nC
R _{thJC}					0.20 °C/W
R _{thCS}				0.15	°C/W

ISOPLUS264 (IXFL) OUTLINE = Gate 2,4 = Drain 3 = Source MILLMETERS INCHES SYM MAX MIN MAX Δ .190 .205 4.83 5.21 A1 3.00 .102 .118 2.59 .046 1.40 .055 .045 .055 1.14 1.40 Ь b1 .087 .102 2.21 2.59 b2 .111 .126 2.82 3.20 .020 .029 0.51 0.74 C 1.020 25.91 26.42 D 1.040 .799 19.56 20.29 .770 .215 BSC .820 19.81 20.83 .780 L1 .080 .102 2.03 2.59 Q .210 .235 5.33 5.97 .513 12.45 13.03 Q1 .4903.81 4.57 R .150 .180 2.54 3.30 .100 .130 R1 .668 .690 16.97 17.53 s .801 .821 20.34 20.85 U .065 .080 1.65 2.03

Source-Drain Diode

Symbol Test Conditions Character			cteristic \	eristic Values		
$(T_J = 25^{\circ}C U)$	nless Otherwise Specified)	Min.	Тур.	Max.		
I _s	$V_{GS} = 0V$			60	Α	
SM	Repetitive, Pulse Width Limited by $\rm T_{_{\rm JM}}$			150	Α	
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.5	V	
$\left\{egin{array}{l} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array} ight\}$	$I_F = 25A$, -di/dt = 100A/ μ s $V_R = 100V$, $V_{GS} = 0V$		0.6 6.0	250	ns μC Α	

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 125°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 30A Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 30A Value vs. Drain Current

Fig. 6. Maximum Drain Current vs. Case Temperature

IXFL60N80P

IXYS Reserves the Right to Change Limits, Test Conditions, $\mbox{ and }\mbox{ Dimensions}.$

