CS1011: 數位電子導論

Inductance

Outline

- Introduction
- Inductance
- Self-inductance
- Inductors
- Inductors in Series and Parallel
- Voltage and Current
- Energy Storage in an Inductor
- Mutual Inductance
- Transformers
- Circuit Symbols
- The Use of Inductance in Sensors

Introduction

- We know that capacitors store energy by producing an electric field within a piece of dielectric material
- Inductors also store energy, in this case it is stored within a magnetic field

Inductance

- A changing magnetic flux induces an e.m.f. in any conductor within it
- Faraday's law:

The magnitude of the e.m.f. induced in a circuit is proportional to the rate of change of magnetic flux linking the circuit

Lenz's law:

The direction of the e.m.f. is such that it tends to produce a current that opposes the change of flux responsible for inducing the e.m.f.

- Various applications in our daily life
 - Generator
 - RFID
 - Wireless charging
 - Metal detector

Inductance

- When a circuit forms a single loop, the e.m.f. induced is given by the rate of change of the flux
- When a circuit contains many loops, the resulting e.m.f. is the sum of those produced by each loop
- Therefore, if a coil contains N loops, the induced voltage V is given by

$$V = N \frac{d\Phi}{dt}$$

where $d\Phi/dt$ is the rate of change of flux in Wb/s

This property, whereby an e.m.f. is induced as a result of changes in magnetic flux, is known as inductance

Self-inductance

- A changing current in a wire causes a changing magnetic field about it
- A changing magnetic field induces an e.m.f. in conductors within that field
- Therefore, when the current in a coil changes, it induces an e.m.f. in the coil itself
- This process is known as self-inductance

$$V = L \frac{dI}{dt}$$

where L is the inductance of the coil (unit is the Henry)

Equivalent Circuit of an Inductor

- All circuits possess stray inductance (often unwanted)
 - Besides of inductance, all real circuits also possess stray capacitance

Inductors in Series

When several inductors are connected together their effective inductance can be calculated in the same way as for resistors – provided that they are not linked magnetically

Inductors in Parallel

Energizing Inductor

- Inductor is initially un-energized
 - Current through it will be zero
- Switch is closed at t = 0
- I is initially zero
 - Hence, V_R is initially 0
 - Hence, V_L is initially V
- As the inductor is energized...
 - / Increases
 - \bullet V_R increases
 - ♦ Hence, V₁ decreases
- When the inductor is fully energized

$$V_R = V$$

$$V_L = 0$$

Energizing Inductor

Applying Kirchhoff's voltage law

$$iR + v = V$$

Now, in an inductor

$$v = L \frac{di}{dt}$$

Which substituting gives

$$iR + L\frac{di}{dt} = V$$

- Solve the differential equation
 - 1. Guess a general solution
 - 2. Apply the solution
 - 3. Substitute by boundary condition
 - 4. Verify the equation

Energizing Inductor

1. Guess a general solution

$$i(t) = \alpha \cdot e^{\beta t} + \gamma$$

2. Apply the solution

$$iR + L\frac{di}{dt} = V \to R \cdot \alpha \cdot e^{\beta t} + R \cdot \gamma + L \cdot \alpha \beta \cdot e^{\beta t} = V$$

$$\to \begin{cases} R \cdot \alpha \cdot e^{\beta t} + L \cdot \alpha \beta \cdot e^{\beta t} = 0 \to \beta = -\frac{R}{L} \\ R \cdot \gamma = V \to \gamma = \frac{V}{R} \end{cases}$$

$$\therefore i(t) = \alpha \cdot e^{-\frac{R}{L}t} + \frac{V}{R}$$

3. Substitute by boundary condition

When t = 0, i = 0:

$$i(t=0) = \alpha + \frac{V}{R} = 0 \rightarrow \alpha = -\frac{V}{R}$$
$$\therefore i(t) = -\frac{V}{R}e^{-\frac{R}{L}t} + \frac{V}{R} = \frac{V}{R}(1 - e^{-\frac{R}{L}t})$$

De-Energizing Inductor

Applying Kirchhoff's voltage law

$$iR + v = 0$$

Now, in an inductor

$$v = L \frac{di}{dt}$$

Which substituting gives

$$iR + L\frac{di}{dt} = 0$$

- Solve the differential equation
 - 1. Guess a general solution
 - 2. Apply the solution
 - 3. Substitute by boundary condition
 - 4. Verify the equation

De-Energizing Inductor

1. Guess a general solution

$$i(t) = \alpha \cdot e^{\beta t} + \gamma$$

2. Apply the solution

$$iR + L\frac{di}{dt} = 0 \to R \cdot \alpha \cdot e^{\beta t} + R \cdot \gamma + L \cdot \alpha \beta \cdot e^{\beta t} = 0$$

$$\to \begin{cases} R \cdot \alpha \cdot e^{\beta t} + L \cdot \alpha \beta \cdot e^{\beta t} = 0 \to \beta = -\frac{R}{L} \\ R \cdot \gamma = 0 \to \gamma = 0 \end{cases}$$

$$\therefore i(t) = \alpha \cdot e^{-\frac{R}{L}t}$$

3. Substitute by boundary condition

When
$$t = 0, i = \frac{V}{R}$$
:

$$i(t=0) = \alpha = \frac{V}{R}$$

$$\therefore i(t) = \frac{V}{R} e^{-\frac{R}{L}t}$$

Time Constant

Inductor energizing

$$i(t) = \frac{V}{R}(1 - e^{-\frac{R}{L}t}) = \frac{V}{R}(1 - e^{-\frac{t}{T}})$$

Inductor de-energizing

$$i(t) = \frac{V}{R}e^{-\frac{R}{L}t} = \frac{V}{R}e^{-\frac{t}{T}}$$

- In a capacitor-resistor circuit, the time required to charge to a particular voltage is determined by the time constant RC
- In an inductor-resistor circuit, the time taken for the current to rise to a certain value is determined by L/R
- This value is the time constant T (greek tau, τ)

Energizing and De-energizing Summary

Energy Storage in an Inductor

In a small amount of time dt, the energy added to the magnetic field is the product of the instantaneous voltage, the instantaneous current, and the time

Energy added =
$$vi dt = L \frac{di}{dt} i dt = Li di$$

Thus, when the current is increased from zero to I

$$E = L \int_0^I i \, di = \frac{1}{2} L I^2$$

Mutual Inductance

- When two coils are linked magnetically, a changing current in one will produce a changing magnetic field which will induce a voltage in the other – this is mutual inductance
- When a current I_1 in one circuit, induces a voltage V_2 in another circuit, then $V_2 = M \frac{dI_1}{dt}$

where *M* is the mutual inductance between the circuits. The unit of mutual inductance is the Henry (as for self-inductance)

Mutual Inductance

- The coupling between the coils can be increased by wrapping the two coils around a core
 - The fraction of the coupled magnetic field is the coupling coefficient

Coupling Coefficient

- Coupling is particularly important in transformers
 - The following arrangements give a coupling coefficient very close to 1

(c) Coils on a ferrite toroid

Transformers (1/2)

- Most transformers approximate to ideal components
 - That is, they have a coupling coefficient ≈ 1
 - For such a device, when unloaded, their behavior is determined by the turns ratio
 - For alternating voltages

$$\frac{V_2}{V_1} = \frac{N_2}{N_1}$$

(a) An unloaded transformer

Transformers (2/2)

- When used with a resistive load, current flows in the secondary
 - This current itself produces a magnetic flux which opposes that produced by the primary
 - Thus, current in the secondary reduces the output voltage
 - For an ideal transformer

$$V_1 I_1 = V_2 I_2$$

(b) A transformer with a resistive load

Save Our Planet!

More Profit with Less Carbon, Scientific American, September, 2005

Where the Gasoline Energy Goes?

Energy Requirements for Highway Driving - Gasoline Vehicles

Click on blue text for more information.

Some percentages may not add to 100% because of rounding.

In this figure, they are accounted for as part of the engine and parasitic losses.

Energy Requirements for City (Stop and Go) Driving - Gasoline Vehicles Click on blue text for more Information.

Some percentages may not add to 100% because of rounding.

Energy Requirements for Combined City/Highway Driving - Gasoline Vehicles Click on blue text for more Information.

https://fueleconomy.gov/feg/atv.shtml, 2022

Circuit Symbols

The Use of Inductance in Sensors

Inductive proximity sensors

- Basically a coil wrapped around a ferromagnetic rod
- ◆ A ferromagnetic plate coming close to the coil changes its inductance allowing it to be sensed
- Can be used as a linear sensor or as a binary switch

The Use of Inductance in Sensors

Linear variable differential transformers (LVDTs)

- The LVDT consists of three coils around a hollow tube. The central coil forms the primary of the transformer. The two secondary coils are connected in series such that their output voltages are out of phase
- ♦ A movable 'slug' of ferromagnetic material increases mutual inductance

Key Points

- Inductors store energy within a magnetic field
- The induced voltage is proportional to the rate of change of the current
- Inductors can be made by coiling wire in air, but greater inductance is produced if ferromagnetic materials are used
- When an inductor is energized through a resistor, the energizing rate is determined by the time constant L/R
 - Hence, the current through an inductor cannot change instantaneously
- The energy stored in an inductor is equal to ½LI²
- When a transformer is used with alternating signals, the voltage gain is equal to the turns ratio

The Missing Circuit Element

Current and Charge	$dq = i \cdot dt$
Faraday's Law	$d\varphi = v \cdot dt$
Resistor	$dv = R \cdot di$
Capacitor	$dq = C \cdot dv$
Inductor	$d\varphi = L \cdot di$

Memristor (憶阻器)

- 2008年惠普實驗室(HP Labs)的資深院士R. Stanley Williams成功地證實了有關「憶阻器(memristor)」的學說——所謂的憶阻器是指電子電路中除了電阻、電容與電感之外的第四種被動元素,早在1971年就由美國加州柏克萊大學教授Leon Chua所提出,不過當時僅是初步發現,直到日前才由HP正式發表。而此一成果也意味著相關教科書必須重新改寫。
- 憶阻器概念的創始人Chua表示:「我的處境跟1869年發明化學元素週期表的俄羅斯化學家Dmitri Mendeleev很類似; Mendeleev當時假設該週期表上有許多失落的元素,而現在所有的化學元素都已經被發現了。同樣的,來自HP Labs的Stanley Williams發現失落的電路元素——憶阻器。」
- Chua當時是以數學推論電子電路在電阻、電容與電感之外還有第四種元件;他將其命名為憶阻器的緣故,是因為該元素會透過電阻的改變「記憶」電流的變化。而現在HP則宣稱發現了首個憶阻器的實例—它是由一片雙層的二氧化鈦(bi-level titanium dioxide)薄膜所形成,當電流通過時,其電阻值就會改變。

HP TiO₂ Memristor

