

Prof. Dr. Sebastian Wild

Outline

5 Parameterized Hardness

- 5.1 Parameterized Reductions
- 5.2 Nondeterministic FPT: Para-NP
- 5.3 Bounded Nondeterminism: W[P]
- 5.4 Tail-nondeterministic NRAM

How to prove **∉ FPT**?

- ▶ For some problems, no algorithm seems to achieve fpt running time
- ► example: *p*-Clique
- \rightarrow maybe no fpt algorithm can exist for *p*-CLIQUE!
- ► **Problem:** Certainly exists in case P = NP
- \rightsquigarrow strongest lower bound we can hope for will have to be conditional on P \neq NP
- Typical complexity-theory results: No algorithm has a certain property unless some widely believed complexity hypothesis fails.

5.1 Parameterized Reductions

FPT Reductions

Definition 5.1 (Parameterized Reduction)

Let (L_1, κ_1) and (L_2, κ_2) be two parameterized problems (over alphabets Σ_1 resp. Σ_2). An *fpt-reduction* (*fpt many-one reduction*) from (L_1, κ_1) to (L_2, κ_2) is a mapping $A : \Sigma_1^* \to \Sigma_2^*$ so that for all $x \in \Sigma_1^*$

- **1.** (equivalence) $x \in L_1 \iff A(x) \in L_2$,
- **2.** (fpt) *A* is computable by an fpt-algorithm (w.r.t. to κ_1), and
- **3.** (parameter-preserving) $\kappa_2(A(x)) \leq g(\kappa_1(x))$ for a computable function $g : \mathbb{N} \to \mathbb{N}$.

We then write $(L_1, \kappa_1) \leq_{fpt} (L_2, \kappa_2)$.

Not all reductions are fpt

Many reductions from classical complexity theory are not parameter preserving.

Recall:

VERTEX-COVER

Given: graph G = (V, E) and $k \in \mathbb{N}$

INDEPENDENT SET

Given: graph G = (V, E) and $k \in \mathbb{N}$

Question: $\exists V' \subset V : |V'| \le k \land \forall \{u,v\} \in E : (u \in V' \lor v \in V')$ Question: $\exists V' \subset V : |V'| \ge k \land \forall u,v \in V' : \{u,v\} \notin E$

5.2 Nondeterministic FPT: Para-NP

Parameterized NP: Non-deterministic NP

P corresponds to FPT . . . but what is the analogue for NP?

Definition 5.2 (para-NP)

The class para-NP consists of all parameterized decision problems that are solved by a *non-deterministic* fpt-algorithm.

Some nice properties:

- 1. para-NP is closed under fpt-reductions.
- 2. $FPT = para-NP \iff P = NP$
- 3. an analogue for *kernalization* in FPT holds for para-NP

Can define para-NP-hard and para-NP-complete similarly as for NP:

Definition 5.3 (para-NP-hard)

 (L, κ) is para-NP-hard if $(L', \kappa') \leq_{fpt} (L, \kappa)$ for all $(L', \kappa') \in \text{para-NP}$.

4

⋖

Coloring is para-NP-complete

As an example for a para-NP-complete problem, we consider graph coloring.

Theorem 5.4

p-GraphColoring is para-NP-complete.

Hello hardness, my old friend

Theorem 5.5 (para-NP-complete → NP-complete for finite parameter)

Let (L, κ) be a nontrivial ($\emptyset \neq L \neq \Sigma^*$) parameterized problem that is para-NP-complete. Then $L_{\leq d} = \{x \in L : \kappa(x) \leq d\}$ is NP-hard.

The converse is essentially also true (see our proof for p-GraphColoring).

Proof:

para-NP-complete is too strict

Above Theorem means that many problems cannot be para-NP-complete!

For each of the following

- ▶ *p*-Clique,
- ▶ *p*-IndependentSet
- ▶ p-DominatingSet

bounding *k* by a **constant** *d* makes *polytime* algorithm possible.

- $\rightsquigarrow L_{\leq d}$ cannot be NP-complete for each of these
- but we rather expect them ∉ FPT
- → para-NP theory does not settle complexity status

5.3 Bounded Nondeterminism: W[P]

Bye TM

para-NP is too large a class to have interesting complete problems \rightsquigarrow We must weaken the class. Unfortunately, TM inconvenient here.

Nondeterministic RAM

Definition 5.6 (NRAM, κ -restricted)

An NRAM M is a word-RAM with $w = O(\log n)$ with the additional operation to nondeterministically guess a number between 0 and a current register content. An NRAM M that decides a parameterized problem (L, κ) is κ -restricted if on input $x \in \Sigma^*$ with n = |x| and $k = \kappa(x)$

- **1.** it performs at most $f(k) \cdot p(n)$ steps,
- **2.** at most g(k) of them nondeterministic,
- **3.** uses at most $f(k) \cdot p(n)$ registers, and
- **4.** those never contain numbers larger than $f(k) \cdot p(n)$.

for computable functions *f* and *g*.

Definition 5.7 (W[P])

The class W[P] is the set of all parameterized problems (L, κ) decidable by a κ -restricted NRAM.

A first W[P]-complete problem?

Define hardness and completeness for W[P] using \leq_{fpt} .

What could be the mother of all W[P]-complete problems?

Some parameterized version of SAT? Parameter #variables does not work. (Why?)

Weighted SAT

Definition 5.8 (Weighted Satisfiability)

Given: Boolean formula φ and integer $k \in \mathbb{N}$

Parameter: *k*

Question: \exists satisfying assignment with weight = k?

Theorem 5.9 (p-WSAT(CIRC) is W[P]-complete)

The weighted satisfiability problem for boolean circuits parameterized by the weight is W[P]-complete.

5.4 Tail-nondeterministic NRAM

Tail-nondeterminism

Circuit satisfiability still too strong to show hardness of many interesting problems.

→ We must weaken the class *further*.

Definition 5.10 (tail-nondeterministic NRAM)

A κ -restricted NRAM M for a problem (L, κ) is called *tail-nondeterministic* if all nondeterministic steps occur only among the last $h(\kappa(x))$ steps.

Definition 5.11 (W[1])

The class W[1] consists of all parameterized decision problems (L, κ) that are decided by a tail-nondeterministic κ -restricted NRAM.

As before, define hardness and completeness for W[1] w.r.t. \leq_{fpt} .

Stop

Definition 5.12 (k-step Halting Problem)

Given: A nondeterministic (single-tape) Turing machine M, an input x and $k \in \mathbb{N}$ be given.

Parameter: *k*

Question: Does *M* accepts *x* after at most *k* computation steps?

Remark 5.13

- ▶ *M* is part of input, so state space and tape alphabet are not fixed!
- \rightarrow up to *n* different non-deterministic choices in *each* step. (*n* is size of encoding of *M*)
- \rightarrow Trivial algorithm has to simulate up to n^{k+1} steps of M.
- ▶ Equivalent here to halting problem for $x = \varepsilon$, since we can hard-wire the given input into the states of a TM M' constructed from M.

W[1]-completeness

Theorem 5.14 (k-step halting problem W[1]-complete)

The k-step Halting Problem (for single-tape TM) parameterized by k is W[1]-complete.

More natural problems?

Definition 5.15 (p-WSAT(2CNF))

Given: Boolean formula φ in 2-CNF and integer $k \in \mathbb{N}$

Parameter: *k*

Question: \exists satisfying assignment with weight = k?

Theorem 5.16

p-WSAT(2CNF) is W[1]-complete.

Theorem 5.17

p-WSAT(2CNF $^-$) is W[1]-complete.

p-WSAT(2CNF⁻) means: *all* literals *negated*.

p-Independent-Set is W[1]-complete

Theorem 5.18

p-IndependentSet is W[1]-complete.

Proof:

Partial Vertex Cover