Statistical Inference Course Project, Part 1

Eddo W. Hintoso

Contents

Simulate the data	-
Show the sample mean and compare it to the theoretical mean of the distribution	
Show how variable the sample is (via variance) and compare it to the theoretical variance of the distribution	ç
Show that the distribution is approximately normal	9

Simulate the data

The exponential distribution can be simulated in R with rexp(n, lambda) where lambda is the rate parameter. The mean of exponential distribution is 1 / lambda and the standard deviation is also also 1 / lambda. Set lambda = 0.2 for all of the simulations. In this simulation, the distribution of averages of 40 exponentials will be investigated. Note that a thousand or so simulated averages of 40 exponentials are needed.

```
## set seed for reproducability
set.seed(13)

## set lambda to 0.2
lambda <- 0.2

## 40 samples
n <- 40

## 1000 simulations
nsim <- 1000

## simulate
simulateExponentials <- replicate(nsim, rexp(n, lambda))

## calculate mean of exponentials
meansExponentials <- apply(simulatedExponentials, 2, mean)</pre>
```

Show the sample mean and compare it to the theoretical mean of the distribution.

```
## distrribution mean
analyticalMean <- mean(meansExponentials)
## analytical mean</pre>
```

```
theoreticalMean <- 1 / lambda

## display results
c("Analytical Mean" = analyticalMean,
    "Theoretical Mean" = theoreticalMean)

## Analytical Mean Theoretical Mean

## 4.972512 5.000000

## visualization
library(ggplot2)
ggplot(data = NULL, aes(x = meansExponentials)) +
    geom_histogram(aes(fill = ..count..), binwidth = max(meansExponentials) / n) +
    geom_vline(x = c(analyticalMean,theoreticalMean), col = c("red", "yellow"), show_guide = TRUE) +
    labs(x = "Mean", y = "Frequency") +
    ggtitle("Exponential Function Simulations")</pre>
```


The red vertical line represents the analytical mean at **4.9725119**, while the yellow vertical line represents the theoretical mean at **5**. As one can see, the difference between these two means is very small (**0.0274881**).

Show how variable the sample is (via variance) and compare it to the theoretical variance of the distribution.

```
## standard deviation and variance of distribution
sdDist <- sd(meansExponentials)</pre>
varDist <- sdDist ** 2</pre>
## theoretical standard deviation and variation
sdTheoretical <- (1 / lambda) / sqrt(n)</pre>
varTheoretical <- sdTheoretical ** 2</pre>
## display
c("Theoretical Standard Deviation" = sdTheoretical,
  "Simulated Standard Deviation" = sdDist,
  "Theoretical Variance" = varTheoretical,
  "Simulated Variance" = varDist)
## Theoretical Standard Deviation Simulated Standard Deviation
##
                         0.7905694
                                                         0.7894092
##
             Theoretical Variance
                                                Simulated Variance
```

Standard Deviation of the distribution is **0.7894092** with the theoretical SD calculated as **0.7905694**. The theoretical variance is calculated as $(\frac{1}{\lambda\sqrt{n}})^2 = 0.625$. The actual variance of the distribution is **0.6231669**.

Show that the distribution is approximately normal.

0.6250000

##

```
## compare empirical distribution with normal distribution
qplot(meansExponentials, geom = 'blank') +
    geom_histogram(aes(fill = ..count.., y = ..density..), binwidth = max(meansExponentials) / n) +
    scale_fill_gradient("Frequency") +
    geom_line(aes(y = ..density.., color = 'Empirical'), stat = 'density', size = 0.5) +
    stat_function(fun = dnorm, args = list(mean = analyticalMean, sd = sdDist), aes(color = "Normal"),
    scale_colour_manual(name = 'Density', values = c('red', 'orange')) +
    labs(x = "Mean", y = "Frequency") +
    ggtitle("Density of Exponential Means")
```

0.6231669


```
## data for qqplot
q <- qqnorm(meansExponentials, plot = FALSE)

## compare the distribution of averages of 40 exponentials to a normal distribution
ggplot(data = NULL, aes(sample = meansExponentials)) +
    stat_qq(alpha = 0.3, color = "#006699", shape = "circle") +
    geom_smooth(aes(x = q$x, y = q$y), color = "pink", size = 1, method = lm) +
    labs(x = "Theoretical Quantiles", y = "Sample Quantiles") +
    ggtitle("Normal Q-Q Plot of Exponential Means")</pre>
```


Due to the central limit theorem (CLT), the distribution of averages of 40 exponentials is very close to a normal distribution.