Housekeeping

- Lecture notes will be posted on edstem.
- One assignment due on 2 Nov, will be posted two weeks prior to the due date
- Any questions email rachel.wang@sydnedy.edu.au

From Statistics to Data Science

 Statistics: distilling knowledge from data to solve real-world problems

 $Models \Rightarrow Inference \Rightarrow Prediction$

Arrival of "Big Data"

Paradigm

The real world is complicated...

Why graphical models?

- Bridging two branches of mathematics: probability and graph theory
- Solving real world problems in bioinformatics, speech processing, image processing, artificial intelligence, and many others – modelling multiple random variables and their dependencies
- Connections to causality

Some real world examples

Speech recognition

Some real world examples

Phylogenetic tree

Some real world examples

Image denoising

X_i: noisy pixels Y_i: "true" pixels

Plan of the class

- Some probability theory
- Directed graphs and joint probabilities
 - Representation
 - Conditional independence
- Undirected graphs and joint probabilities
 - Representation
 - Conditional independence
- ► Inference algorithms
 - Sum-product
 - Max-product
- More applications

Definitions

- ▶ A random variable X (discrete, finitely many values) takes values from a set $\{x_1, \ldots, x_r\} \subset \mathbb{R}$ depending on the outcomes of a random experiment. e.g.
 - number on a randomly thrown die
 - number of heads in 10 coin tosses

Definitions

- ▶ A random variable X (discrete, finitely many values) takes values from a set $\{x_1, \ldots, x_r\} \subset \mathbb{R}$ depending on the outcomes of a random experiment. e.g.
 - number on a randomly thrown die
 - number of heads in 10 coin tosses
- ► The distribution of X is characterised by the probability mass function (PMF) p(x) := P(X = x). Note $0 \le p(x) \le 1$, and $\sum_{x} p(x) = 1$.

Definitions

- ▶ A random variable X (discrete, finitely many values) takes values from a set $\{x_1, \ldots, x_r\} \subset \mathbb{R}$ depending on the outcomes of a random experiment. e.g.
 - number on a randomly thrown die
 - number of heads in 10 coin tosses
- ► The distribution of X is characterised by the probability mass function (PMF) p(x) := P(X = x). Note $0 \le p(x) \le 1$, and $\sum_{x} p(x) = 1$.
- ▶ Joint PMF of $(X_1, ..., X_n)$

$$p(x_1,...,x_n) = P(X_1 = x_1,...,X_n = x_n).$$

Independence

► Two random variables X_1 and X_2 are independent, written $X_1 \perp \!\!\! \perp X_2$, iff the joint PMF factorises, that is $P(X_1 = x_1, X_2 = x_2) = P(X_1 = x_1)P(X_2 = x_2)$ for all x_1 and x_2 , or shorthand $p(x_1, x_2) = p(x_1)p(x_2)$. Intuitively, what does independence mean?

Independence

- Two random variables X_1 and X_2 are independent, written $X_1 \perp X_2$, iff the joint PMF factorises, that is $P(X_1 = x_1, X_2 = x_2) = P(X_1 = x_1)P(X_2 = x_2)$ for all x_1 and x_2 , or shorthand $p(x_1, x_2) = p(x_1)p(x_2)$. Intuitively, what does independence mean?
- ► Changing single indices to subsets of indices, e.g. $A = \{2, 4\}$, $B = \{3\}$. $X_A \perp \!\!\! \perp X_B$ iff

$$p(x_A, x_B) = p(x_A)p(x_B)$$

Conditional independence

▶ The conditional PMF of X_1 given $X_2 = x_2$ is

$$p(x_1|x_2) := P(X_1 = x_1|X_2 = x_2)$$

$$= \frac{P(X_1 = x_1, X_2 = x_2)}{P(X_2 = x_2)} = \frac{p(x_1, x_2)}{p(x_2)},$$

for x_2 such that $p(x_2) > 0$.

Note if $X_1 \perp X_2$, $p(x_1|x_2) = p(x_1)$. In other words, the value of X_2 does not influence the value of X_1 .

Conditional independence

- ▶ X_1 and X_2 are conditionally independent given X_3 , written $X_1 \perp X_2 \mid X_3$, iff
 - $p(x_1, x_2|x_3) = p(x_1|x_3)p(x_2|x_3)$, or equivalently
 - $p(x_1|x_2,x_3) = p(x_1|x_3).$

for all x_3 such that $p(x_3) > 0$. Given X_3 , there is no further relationship between X_1 and X_2 .

Conditional independence

- ▶ X_1 and X_2 are conditionally independent given X_3 , written $X_1 \perp X_2 \mid X_3$, iff
 - $p(x_1, x_2|x_3) = p(x_1|x_3)p(x_2|x_3)$, or equivalently
 - $p(x_1|x_2,x_3) = p(x_1|x_3).$

for all x_3 such that $p(x_3) > 0$. Given X_3 , there is no further relationship between X_1 and X_2 .

► Similarly, for sets of random variables, X_A and X_B are conditionally independent given X_C iff

$$p(x_A, x_B|x_C) = p(x_A|x_C)p(x_B|x_C)$$

or

$$p(x_A|x_B,x_C) = p(x_A|x_C)$$

for all x_C such that $p(x_C) > 0$.

Given the joint PMF, we can compute

- marginal PMF (marginalisation)
- conditional PMF (marginalisation and normalisation)

e.g. Given $p(x_1, x_2, x_3, x_4)$ for (X_1, X_2, X_3, X_4) ,

$$p(x_1,x_2) = \sum_{x_3,x_4} p(x_1,x_2,x_3,x_4)$$

$$p(x_1|x_2) = \frac{\sum_{x_3,x_4} p(x_1,x_2,x_3,x_4)}{\sum_{x_1,x_3,x_4} p(x_1,x_2,x_3,x_4)}$$

Goal: Construct models for probability distributions (joint PMF)

A toy example in modelling

X: a student's score in an exam (0,1,2)

Y: difficulty level of the exam (0,1)

Z: the student's effort in general (0,1)

L: quality of the reference letter from the professor who taught the course (0,1)

W: the student's score in another course (0,1)

- ▶ A directed graph G(V, E), where V is a set of nodes and E is a set of oriented edges. For each $i \in V$, there is an associated random variable X_i .
- ► Further assume *G* is acyclic (DAG).
- ▶ For each $i \in V$, let π_i be the set of parent nodes. Then X_{π_i} is the "parents" of X_i .

- ▶ To each node $i \in V$ associate a function $f_i(x_i, x_{\pi_i})$, where f_i is a nonnegative function satisfying $\sum_{x_i} f_i(x_i, x_{\pi_i}) = 1$. (compare $f_i(x_i, x_{\pi_i})$ vs $p(x_i|x_{\pi_i})$?)
- ▶ Define a joint PMF as

$$p(x_1, x_2, \ldots, x_n) := \prod_{i=1}^n f_i(x_i, x_{\pi_i}).$$

Is this a valid PMF?

▶ We can prove $f_i(x_i, x_{\pi_i})$ are in fact conditional probabilities $p(x_i|x_{\pi_i})$. It follows

$$p(x_1, x_2, \ldots, x_n) := \prod_{i=1}^n p(x_i|x_{\pi_i}).$$

$$p(x_1,\ldots,x_6)=p(x_1)p(x_2|x_1)p(x_3|x_1)p(x_4|x_2)p(x_5|x_3)p(x_6|x_2,x_5)$$

Representation economy - Suppose X_i 's are all binary, $p(x_1, \ldots, x_6)$ needs a 6-dimensional table with 2^6 entries.

A toy example in modelling

X: a student's score in an exam (0,1,2)

Y: difficulty level of the exam (0,1)

Z: the student's effort in general (0,1)

 $\it L$: quality of the reference letter from the professor who taught the course (0,1)

W: the student's score in another course (0,1)

A toy example in modelling

X: a student's score in an exam (0,1,2)

Y: difficulty level of the exam (0,1)

Z: the student's effort in general (0,1)

L: quality of the reference letter from the professor who taught the course (0,1)

W: the student's score in another course (0,1)

DAG and conditional independence

Which independence assumptions are we exactly making by using a DAG model with a structure described by *G*? Important because

- we should know exactly what model assumptions we are making;
- this information will be helpful in designing inference algorithms later on.