1.4 Optoelektrické vazbové členy

1.4.1 **Úkol**:

- 1. Změřte vstupní charakteristiku optoelektronického vazbového členu
- 2. Změřte výstupní charakteristiku optoelektronického vazbového členu
- 3. Změřte převodní charakteristiku optoelektronického vazbového členu

1.4.2 Teorie:

V elektrických obvodech, kde je požadováno galvanické oddělení řídícího obvodu od spínacího obvodu lze použít optoelektrické vazbové členy, také nazývané optrony.

Optrony jsou součástky složené z řízeného zdroje světla a fotoelektrického přijímače. Funkcí jsou příbuzné reléovým spojům. Jako řízené zdroje světla se používají nejčastěji luminiscenční diody (dlouhá životnost, malý příkon, malé rozměry, relativně vysoká rychlost). Přijímače jsou fotodiody nebo fototranzistory. Nepožaduje-li se lineární převodní charakteristika, užívají se jako přijímače lavinové fotodiody, fotodiody PIN (dioda která má mezi P vrstvou a N vrstvou nedotovanou vrstvičku křemíku (intrinzistní vodivost) a fototyristory. Důležité je, aby použitý zdroj světla a fotoelektrický přijímač měly stejné spektrální charakteristiky. Přijímač i zdroj světla jsou uzavřeny do neprůhledného pouzdra.

Obr. 1 Princip optronu

1.4.3 Zadání:

Poznamenejte si katalogové hodnoty součástek z přiloženého listu.

Např. WK 16413
$$I_{MAX} = 30 \text{mA}, P_{TOT} = 100 \text{mW}, I_{T} = 10 \text{mA}, U_{CE} = 6 \text{V}, P_{C} = \leq 50 \text{mW}$$

Popis použitých přístrojů a součástek:

Z_1, Z_2	stejnosměrný zdroj
A_1,A_2	ampérmetr
V_1,V_2	voltmetr
OPT	optron

Ad1)

Schéma zapojení:

Obr. 2. Zapojení pro měření vstupní charakteristiky optronu

Postup měření:

- a) Zapojíme elektrický obvod podle schématu zapojení.
- b) Na zdroji Z₁ budeme měnit napětí od 0 do 1,5V. Kolem 0,8V dochází k velkým změnám proudů proto zde provedeme větší počet měření.
- c) Z naměřeného napětí U₁ a proudu I₁ se vytvoří graf (vstupní charakteristika).

Obr. 3. Vstupní charakteristika

Schéma zapojení:

Obr. 4. Zapojení pro měření výstupní charakteristiky optronu

Postup měření:

- a) Zapojíme elektrický obvod podle schématu zapojení.
- b) Na stejnosměrném zdroji Z_1 měníme napětí tak abychom naměřili na ampérmetru A_1 proud 5mA.
- c) Na zdroji Z_2 budeme měnit napětí U_{CE} od 0 do 2V.
- d) Měření provedeme pro proud $I_1 = 5mA$, 10mA, 15mA a 20mA.
- e) Naměřené hodnoty napětí U_{CE} a proudu I₂ zapisujeme do tabulky, ze které se vytvoří graf (výstupní charakteristika).

Obr. 5. Výstupní charakteristika

Schéma zapojení:

Obr. 6. Zapojení pro měření převodové charakteristiky optronu

Postup měření:

- a) Zapojíme elektrický obvod podle schématu zapojení.
- b) Na stejnosměrném zdroji Z_2 nastavíme takové napětí, abychom na voltmetru V_2 naměřili napětí U_{CE} = 1V.
- c) Na zdroji Z₁ budeme měnit napětí takovým způsobem, aby ampérmetr A₁ ukazoval proud od 0 do 25mA. Kroky po kterých měníme proud volíme vhodně.
- d) Měření provedeme pro napětí $U_{CE} = 1V$, 2V.
- d) Naměřené hodnoty proudu I₁ a proudu I₂ zapisujeme do tabulky, ze které se vytvoří graf (převodová charakteristika).

Obr. 7. Převodová charakteristika