12 Lecture 12: Orthogonal projections (20/03/2020)

12.1 Projection on a line

Below will follow an intuitive example of the projection of a vector in \mathbb{R}^2 on a line L. To find the projection of the vector on L we look for the vector which is closest to \vec{y} and on the line L. This is done by using the vector \vec{z} which is a vector perpendicular to the line L.

Figure 1: Projection of the vector \vec{y} on the line L where $L = \operatorname{Span}\{\vec{u}\}, \vec{u} \neq \vec{0}$ and $\operatorname{proj}_L \vec{y} = \hat{y}$

$$\hat{y} \text{ on } L, \ \vec{z} \perp L \Rightarrow \begin{cases} \hat{y} = \alpha \vec{u} \\ \vec{z} \cdot \vec{u} = 0 \end{cases}$$
 (1)

$$\vec{z} = \vec{y} - \hat{y} = \vec{y} - \alpha \vec{u} \tag{2}$$

$$0 = \vec{z} \cdot \vec{u} = (\vec{y} - \alpha \vec{u}) \cdot \alpha \tag{3}$$

$$\vec{y} \cdot \vec{u} = \alpha \vec{u} \cdot \vec{u} \tag{4}$$

Thus:
$$\alpha = \frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{y}}$$
 (5)

This then gives an expression for the vector \vec{y} :

$$\hat{y} = \alpha \vec{u} = \operatorname{proj}_{L}(\vec{y}) = \frac{\vec{y} \cdot \vec{u}}{\vec{v} \cdot \vec{v}} \vec{u}$$
(6)

bra-ket notation:

$$\hat{y} = \frac{\langle \vec{y} | \vec{u} \rangle}{\langle \vec{u} | \vec{u} \rangle} \vec{u} \tag{7}$$

12.2 Orthogonal Projections

An Orthogonal projection is an extension of the idea of a perpendicular vector in \mathbb{R}^2 . Orthogonal vectors can be in any \mathbb{R}^n space. As it turns out, for every vector $\vec{y} \in \mathbb{R}^n$ there is a unique vector $\vec{z} \in W^{\perp}$ which will give the vector $\hat{y} \in W$.

Theorem 1 Let W be a subspace of \mathbb{R}^n . Then each $\vec{y} \in \mathbb{R}^n$ can be written uniquely in the form:

$$\vec{y} = \hat{y} + \vec{z} \tag{8}$$

where $\hat{y} = proj_W(\vec{y}) \in W$ and $\vec{z} \in W^{\perp}$.

The projection of \vec{y} onto W is the closest vector \hat{y} in W that is the closest to \vec{y} . This can be expressed as:

$$(\vec{y} - \hat{y}) \perp W \quad \text{or} \quad (\vec{y} - \hat{y}) \in W^{\perp}$$
 (9)

Theorem 2 let \vec{y} be a vector in \mathbb{R}^n , and W a linear subspace of \mathbb{R}^n . There is a unique vector $\vec{y} \in W$ and a unique vector $\vec{z} \in W^{\perp}$ such that:

$$\vec{y} = \hat{y} + \vec{z} \tag{10}$$

if $\{\vec{u}_1, \dots, \vec{u}_k\}$ is an orthogonal basis of W then:

$$\hat{y} = \sum_{i=1}^{k} \left(\frac{\langle \vec{u}_i | \vec{y} \rangle}{\langle \vec{u}_i | \vec{u}_i \rangle} \right) \tag{11}$$

Note: if $\vec{y} \in W$, then $\vec{y} = \hat{y}$. This means that if a vector \vec{y} is already in the span of the subspace W, then the projection $\hat{y} = proj_W(\vec{y})$ is the vector \vec{y} itself.

12.3 Subspaces with an orthonormal basis

If the basis in theorem 2 is an orthonormal basis the expression reduces to the following:

$$\hat{y} = \sum_{i=1}^{k} \langle \vec{y} | \vec{u}_i \rangle \vec{u}_i \tag{12}$$

Theorem 3 Let $\{\vec{u}_1, \dots, \vec{u}_p\}$ be an orthonormal basis of $W \subset \mathbb{R}^n$, then:

- 1. $proj_W(\vec{y}) = UU^T\vec{y}$, with $U = \begin{bmatrix} \vec{u}_1 & \cdots & \vec{u}_p \end{bmatrix}$
- 2. if $P = UU^T$ is the standard matrix of $proj_W$, then $P^2 = P = P^T$

12.4 Best approximation

Theorem 4 Let W be a subspace of \mathbb{R}^n , \vec{y} a vector in \mathbb{R}^n and \hat{y} an orthogonal projection of \vec{y} onto W. Then:

$$||\vec{y} - \hat{y}|| \le ||\vec{y} - \vec{v}|| \tag{13}$$

for all vectors $\vec{v} \in W$.

Theorem 4 states that the distance between the vector \vec{y} and the vector \hat{y} is always shorter then the distance from \vec{y} to any random vector \vec{v} in the subspace W. The equals symbol is for the case where $\vec{v} = \hat{y}$. The vector \hat{y} is thus referred to as the closest approximation to \vec{y} by elements of W. This gives the following expression:

$$\operatorname{dist}(\vec{y}, W) = \operatorname{dist}(\vec{y}, \hat{y}) = ||\vec{y} - \hat{y}|| \tag{14}$$