

อินเทอร์เน็ตของสรรพสิ่ง (Internet of Things)

ชนันท์กรณ์ จันแดง และ ทีมวิทยากร สาขาวิชาเทคโนโลยีสารสนเทศ สำนักวิชาสารสนเทศศาสตร์ มหาวิทยาลัยวลัยลักษณ์

https://github.com/cjundang/IoTWorkshop6Hr

สถาปัตยกรรมระบบ

- User Interface (UI) เป็นส่วนติดต่อผู้ใช้ ซึ่งอาจจะพัฒนาด้วย เทคโนโลยีต่างๆ เช่น เว็บ มือถือแอนดรอยด์ ไอโฟน หรือ โปรแกรมใดๆ
- Server เป็นเครื่องแม่ข่าย สำหรับเก็บข้อมูล อาจจะสร้างขึ้นมาเอง โดย ใช้ระบบปฏิบัติการต่างๆ หรือ ใช้ระบบคลาวด์ที่ ให้บริการบน อินเทอร์เน็ต
- IoT Gateway เป็นอุปกรณ์ที่เชื่อมต่ออินเทอร์เน็ตและกระจายอิน เทอร์เน็ตให้แก่อุปกรณ์อื่นๆ ผ่านวายฟาย (WiFi) อาจจะเป็น ADSL Modem
- Sensor Node เป็นอุปกรณ์ฝั่งตัวที่เชื่อมต่อกับเซนเซอร์ ดิจิทัลและ แอนาลอก เพื่อวัดข้อมูลสิ่งแวดล้อมและควบคุม รวมถึงเชื่อมต่อ เครือข่าย

การประยุกต์อินเทอร์เน็ตของสรรพสิ่ง

การประยุกต์อินเทอร์เน็ตของสรรพสิ่ง

ESP8266-NodeMCU

- ESP8266 เป็นโมดูลสำหรับเชื่อมต่อเครือข่ายวายฟาย ซึ่งมีพิน (pin) สำหรับเชื่อมต่อกับโมดูลอื่นๆ
- NodeMCU เป็นโมดูลส่วนขยายที่เชื่อมต่อกับ ESP8266 เพื่ออำ นวยความสะดวกในการพัฒนาระบบ

Pin

- GPIOx เป็นพินที่ ใช้เชื่อมต่อกับอุปกรณ์ทั่วไป ถูกกำหนดหน้าที่ เมื่อเริ่ม ใช้งาน ไม่มีหน้าที่จำเพาะเจาะจง
 - อาจจะเรียกแทนด้วยหมายเลขเดี่ยวๆ ได้ เช่น GPIO9 ตอน โปรแกรมแทนด้วย 9
 - หรือมีชื่อเรียกพิเศษตามบอร์ด เช่น GPIO16 อาจจะเรียกว่า D0
 - เป็นการสื่อสารแบบดิจิทัล
- ยกเว้น A0 เป็นการสื่อสารแบบแอนาล็อก

Pin

- GND เป็นพิน Ground เป็นแรงดันไฟ 0 สำหรับไว้อ้างอิงกันพิ นอื่นๆ
 - 3.3V เป็นแหล่งจ่ายไฟบนบอร์ดขนาด 3 โวลต์
 - Vin เป็นแหล่งจ่ายไฟบนบอร์ดขนาด 5 โวต์

โปรแกรม Arduino IDE

• Download Arduino IDE จาก www.arduino.cc เลือกตามสถา ปัตยกรรมของเครื่อง

- โปรแกรม ที่ flash ในบอร์ด ประกอบด้วย
 - โปรแกรมส่วนที่ผู้พัฒนาเขียนมา ฝึกใน workshop นี้
 - Firmware ของบอร์ดนั้นๆ
 - ตั้งค่า โดย เลือกเมนู File > Preference หลังจากนั่ นพิมพ์ต่อไปนี้ ใน Additional Boards Manager URLs แล้วกด OK

http://arduino.esp8266.com/stable/package_esp8266com_index.json

โปรแกรม Arduino IDE

• เลือกเมนู Tools > Boards > Boards Manager

• แล้วพิมพ์ **ESP8266** เพื่อค้นหา Package จากนั้น กด Install

การ Flash โปรแกรมเข้าบอร์ด

• เลือก File > Examples > 01.Basics > Blink เพื่อสร้าง โปรแกรมตัวอย่าง

ให้ต่อสาย USB กับ NodeMCU และเครื่องคอมพิวเตอร์ หลังจากนั้นตรวจสอบชนิดของพอร์ต ซึ่งอาจจะเป็น COM3, COM4, หรืออื่นๆ

การตรวจสอบชื่อ port ใน MSWindow10

• เลือก File > Examples > 01.Basics > Blink เพื่อสร้าง โปรแกรมตัวอย่าง

 ให้ต่อสาย USB กับ NodeMCU และเครื่องคอมพิวเตอร์ หลังจา กนั้นตรวจสอบชนิดของพอร์ต ซึ่งอาจจะเป็น COM3, COM4, หรือ อื่นๆ

การ Flash โปรแกรมเข้าบอร์ด

• เลือก Microcontroller เป็น NodeMCU 1.0

• คอมไพล์โปรแกรม > เขียนโปรแกรมลง node > คอยจนกว่าจะ เขียนครบ 100%

การเขียนโปรแกรมด้วย BlockCode

• สร้าง Block Code ด้วยเว็บไซต์ http://easycoding.tn/tuniot/demos/code/

- 🛕 ส่วนของ Block Code เป็นการสร้าง code อัตโนมัติ
- เมนูย่อย สำหรับลบ, ดาวน์โหลด Code, ดาวน์โหลด XMLเป็นต้น
- 💿 เปลี่ยน workspace เป็น Block, Code และ XML
- 🕠 ลบ Block บางตัว หรือซูมหน้าจอ

Ex1- Hello World

- โปรแกรมแรกไม่มีการเชื่อมต่อวงจร
- สร้างโปรแกรม Hello World ด้วย Block Code

เมนูหลัก	สัญลักษณ์	หน้าที่
Serial	Print on same line ("Loading "	แสดงข้อความแล้วไม่ขึ้นบรรทัดใหม่
Serial	Print on new line (แสดงข้อความแล้วขึ้นบรรทัดใหม่
Various	Delay Ms (1000)	หน่วงเวลา 1000 ms

• วาง Block ตามดังภาพ

- 💶 ดาวน์โหลดโปรแกรมเพื่อคอมไฟล์ด้วยโปรแกรม Adruino
- ๑าวน์โหลด Block เพื่อเก็บไว้
- 3 โหลด Block ที่บันทึกไว้

Ex1- Hello World

- การคอมไพล์โปรแกรม ทำได้ 2 วิธี
 - ดาวน์โหลดไฟล์โปรแกรม > คอมไพล์ด้วย Adruino IDE
 - เปิดหน้าจอ Code > คัดลอกโปรแกรม > วางในโปรแกรม

• คอมไพล์โปรแกรม

Ex1- Hello World

• ผลการรันโปรแกรม

Serial Port

- Node MCU มีพอร์ตสำหรับการสื่อสารแบบอนุกรม (Serial) จำนวน 3 พอร์ต
 - ผ่าน USB
 - ผ่าน PIN TX/RX
- การใช้งานต้องกำหนดความเร็วในการสื่อสาร
 - 9600bps,....
- อ่านหรือเขียนข้อมูลผ่านพอร์ต
 - Serial.println(), Serial.readlin()

Ex2- Hello Me

- โปรแกรมนี้ ไม่มีการต่อวงจร
- การใช้งาน Block Code

เมนูหลัก	สัญลักษณ์	หน้าที่
String	Declare Str as String Value ■	ประกาศตัวแปร ชื่อ str เพื่อเก็บข้อความ
Text	" 🗀 >>	กำหนดค่า ให้แก่ String
Various	Print on new line (หน่วงเวลา 1000 ms
Logic		การเปรียบเทียบระหว่าง ซ้ายและขวา
Logic	do li	กำหนดเงื่อนไข ถ้าแล้ว
Math	O	กำหนดค่าตัวเลขให้ตัว แปร
String	set STRING str to	กำหนดค่า ให้ตัวแปร str แบบ String
Text	"	กำหนดค่าเริ่มต้นให้แก้ ข้อความ
Serial	Serial Available?	ตรวจสอบสถานะของ Serial Port หากมากกว่า 0 ถือว่าพร้อมอ่านข้อมูล
Serial	Serial Read	อ่านค่าจาก Serial Port ครั้ง 1 ตัวอักษร

Ex2- Hello Me

• วาง Block Code

• คัดลอกโปรแกรม และแก้ไขโปรแกรม

```
String
        str;
void setup()
{
  str = "";
  Serial.begin(9600);
  Serial.println("Loading Completed");
void loop()
{
    if (Serial.available() > 0) {
     // str = Serial.read();
     // str = Serial.readString();
      str = Serial.readStringUntil('\n');
      Serial.print("Hello ");
      Serial.println(str);
    delay(1000);
}
```

• คอมไพล์โปรแกรม และสังเกตผล

LED

• โครงสร้างของ LED

• การเชื่อมต่อ LED ต้องเชื่อมต่อตัวต้านทาน ทางขั้วบวก

LED

• ต่อวงจรดังภาพ

• การใช้งาน Block Code

เมนูหลัก	สัญลักษณ์	หน้าที่
IN/OUT - Digital	DigitalWrite PIN# D0 ▼ STAT LOW ▼	เขียนสถานนะไฟไปยัง พินที่กำหนด
Various	Delay Ms 1000	หน่วงเวลา 1000 ms

Ex3 - LED Blink

• วาง Block Code

• คัดลอกโปรแกรม คอมไพล์โปรแกรม และสังเกตผล

```
void setup()
{
   pinMode(16, OUTPUT);
}

void loop()
{
   digitalWrite(16,HIGH);
   delay(1000);
   digitalWrite(16,LOW);
   delay(1000);
}
```


เซนเซอร์วัดความชื้นและอุณหภูมิ

- DHT11: Digital Temperature and Humidity Sensor
 - โมดูลวัดอุณหภูมิ (Temperature) และความชื้นสัมพัทธ์ (Humidity) โดย ใช้ชิพ DHT11
 - ให้ Output ออกมาเป็นแบบดิจิทัล
 - ใช้ไฟ DC ขนาด 3.5 5.5 โวลต์
 - เหมาะสำหรับวัดอุณหภูมิ (Temperature) ในช่วง 0-60° c (+/- 2%)
 - ความชื้นสัมพัทธ์ (Humidity) ในช่วง 20-90 % RH. (+/-5%)
 - สามารถต่อกับบอร์ด Arduino ใช้งานได้ทันที

เซนเซอร์วัดความชื้นและอุณหภูมิ

• ต้องเพิ่มไลบรารี DHT11 ก่อนพัฒนาโปรแกรม

• พิมพ์ "DHT" เพื่อค้นหน้า หลังจากนั้น ติดตั้งไลบรารี

• ต่อวงจรดังภาพ

Arduino	Module
3.3V	VCC
GND	GND
D5	DATA

fritzing

• การใช้งาน Block Code

เมนูหลัก	สัญลักษณ์	หน้าที่
Variable	Declare iv type long value	ประกาศตัวแปรชื่อ i ชนิด ข้อมูลเป็น long
Math		กำหนดค่าเริ่มต้นจำนวน เต็ม
Variable	set to to	กำหนดค่า ให้แก่ตัวแปร i
Various	DHT temperature sensor PIN# D0 Type: DHT 11 Unit of measure Celsius	อ่านข้อมูลจากเซนเซอร์ DHT11 อ่านค่าอุณหภูมิ ซึ่งต่อพิน D0
Various	DHT humidity sensor PIN# D0 Type: DHT 11 Unit of measure Celsius	อ่านข้อมูลจากเซนเซอร์ DHT11 อ่านค่าความชื้น ซึ่งต่อพิน D0
Serial	Print on same line (")	แสดงผลทางจอ console
Serial	Print Format decimal	แสดงผลทางจอ console แบบทศนิยม

• วาง Block Code

Delay Ms 🥛

1000

• คัดลอกโปรแกรม วางในโปรแกรม Adruino IDE และคอมไพล โปรแกรม

```
#include "DHT.h"
float
     temp;
float
       humd;
DHT dht14(14, DHT11);
void setup()
  temp = 0;
  humd = 0;
  Serial.begin(9600);
}
void loop()
    humd = (dht14.readHumidity());
    temp = (dht14.readTemperature( ));
    Serial.print("Temperature : ");
    Serial.println(temp);
    Serial.print("Humidity : ");
    Serial.println(humd);
    delay(1000);
}
```

• ทดสอบโปรแกรม

```
Humidity: 56.00
Temperature: 28.70
Humidity: 55.00
Temperature: 28.70
Humidity: 55.00
Temperature: 28.70
Humidity: 55.00
Temperature: 28.70
Humidity: 55.00
Temperature: 28.70
Humidity: 54.00
Temperature: 28.70
Humidity: 54.00
Temperature: 28.70
Humidity: 54.00
Humidity: 54.00
```


Light Dependent Resistor - LDR

- LDR คือ ตัวต้านปรับค่าได้ตามแสง ซึ่งความต้านทานที่เปลี่ยน ไปทำให้โวลต์ที่ไหลผ่านตัวต้านทานเปลี่ยนไปด้วย เราสามารถ วัดโวลต์และอ่านค่าเป็นความสว่างของแสงจาก LDR ได้
- สัญญาณที่ได้เป็นแบบ Analog ดังนั้นจึงทำได้โดยผ่านทางขา A0 ของ NodeMCU โดยมีค่าระหว่าง 0 1023

• การต่อวงจร

Arduino	Module
3.3V	VCC
GND	GND
A0	S

Ex5 - LDR Sensor

• การใช้งาน Block Code

เมนูหลัก	สัญลักษณ์	หน้าที่
Variable	Declare (light → type (int → Value →	ประกาศตัวแปรชื่อ light ชนิดข้อมูลเป็น int
Math		กำหนดค่าเริ่มต้นจำนวน เต็ม
Variable	set light ■ to	กำหนดค่า ให้แก่ตัวแปร light
Various	Analog read PIN# A0	อ่านข้อมูลจากเซนเซอร์ แอนาล็อก
Variable	light	ตัวแปรชื่อ light
Serial	Print on same line 6 6 9 99	แสดงผลทางจอ console
Various	Delay Ms 1000	หน่วงเวลา 1000 ms

Ex5 - LDR Sensor

• การเชื่อมต่อ Block Code

```
Setup

Main loop

set light to Analog read PIN# A0

Print on same line ("Value=")

Print on new line (light)

Delay Ms 1000
```

• ส่วนของโปรแกรม

```
int light;
void setup()
{
    light = 0;
    Serial.begin(9600);
}
void loop()
{
    light = analogRead(A0);
    Serial.print("Value =");
    Serial.println(light);
    delay(1000);
}
```


Exercise

- ทดสอบโปรแกรม
 - เมื่อแสงน้อย ค่า สูง หรือ ต่ำ
- ผู้เข้าอบรม ทดลอง
 - หาก แสงน้อย ให้ LED ติด
 - หาก แสดงมาก ให้ LED ดับ

Ex6- Exercise Solution

Block Code


```
float light;
void setup()
  light = 0;
  pinMode(16, OUTPUT);
  Serial.begin(9600);
}
void loop()
    light = analogRead(A0);
    if (light > 512) {
      digitalWrite(16,HIGH);
    } else {
      digitalWrite(16,LOW);
    Serial.print("Value = ");
    Serial.println(light);
    delay(1000);
}
```


สถาปัตยกรรมเครือข่ายสำหรับ IoT

- การใช้งานระบบ IoT เพื่อการเฝ้าระวังและควบคุมการทำงาน ต้อ งการการเชื่อมต่อผ่านเครือข่าย อาจจะเป็น WiFi หรือ Bluetooth
- สถาปัตยกรรมเครือข่าย มีหลายรูปแบบ ได้แก่
 - Node Mobile
 - Node Server Mobile

NodeMCU - Monitoring

• เป็นการออกแบบระบบอย่างง่าย โดยให้ NodeMCU แจกจ่าย IP ผ่าน WiFI ให้แก่ มือถือ หลังจากนั้น การควบคุมการทำงาน ทั้งหมด สามารถสั่งผ่านมือถือได้

- ขั้นตอนการโปรแกรม
 - ให้ node เชื่อมต่อ Access Point
 - อ่านข้อมูลจากเซนเซอร์ ส่งไปเก็บไว้ที่ Cloud
 - ให้มือถือเชื่อมต่อ Access Point และ อ่านข้อมูลจาก Cloud

ลงทะเบียนใช้งาน Thingspeak

• เข้าเว็บไซต์ http://www.thingspeak.com เพื่อลงทะเบียน

• ป้อนข้อมูลเพื่อลงทะเบียน

ลงทะเบียนใช้งาน Thingspeak

• เข้าเว็บไซต์ http://www.thingspeak.com เพื่อลงทะเบียน

• เช็คเมลล์ และ กด Verify your email

ใช้งาน Thingspeak

- หลังจากนั้น Login เข้าระบบ
- สร้าง Channel ใหม่

• สร้าง Channel เพื่อเก็บข้อมูล โดยกำหนดให้เก็บข้อมูล 2 ชนิด คือความชื้น และ อุณหภูมิ

การใช้งาน Thingspeak

• หน้า Dashboard ของ Channel

• ปรับสิทธิ์การเข้าถึงเป็น Public

การใช้งานใช้งาน Thingspeak

• แสดงผลข้อมูล ในรูปแบบกราฟ

การใช้งาน Thingspeak

• ข้อมูลสำหรับการเชื่อมต่อ Channel

• เชื่อมต่อวงจร

การใช้งาน Block Code เพื่อเชื่อมต่อ WiFi

• การใช้งาน Block Code เพื่อเชื่อมต่อ Thingspeak

• ดูผลการทำงานผ่าน Thingspeak

• การแสดงผลผ่านโปรแกรมบนมือถือ ซึ่งโปรแกรม Thingspeak มีโปรแกรมเชื่อม Thingsview ให้ดาวน์โหลดและติดตั้งโปรแกรม

• การแสดงผลผ่านโปรแกรมบนมือถือ ซึ่งโปรแกรม Thingspeak มีโปรแกรมเชื่อม Thingsview ให้ดาวน์โหลดและติดตั้งโปรแกรม

