VIETNAM NATIONAL UNIVERSITY – HO CHI MINH CITY INTERNATIONAL UNIVERSITY

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

REPORT

HOSPITAL DATA MANAGEMENT

Course: Principle of Database Management Lecturer: Assoc. Prof. Nguyen Thi Thuy Loan

Group: 07

Topic: Hospital Data Management

TABLE OF CONTENTS

I.	GROU	P'S INFORMATION	4
II.	GENE	RAL INFORMATION OF PROJECT	4
1.	Top	ic	4
2.	Abs	tract	4
3.	Tecl	nnologies used	5
4.	Cor	e Data Classes	5
5.	Rela	ntionship Rules	6
III.	TIME	FRAME	6
1.	Con	tribution	6
2.	Resp	ponsibilities	6
IV.	PROJE	ECT ANALYSIS	7
1.	Data	abase System	7
	1.1.	Entity Relationship Diagram	7
	1.2.	Database Diagram	8
	1.3.	Database Design and Data Building in MySQL	8
	1.4.	Normal Form Evaluation	.13
2.	Data	abase Queries	.13
	2.1.	Query 1	.13
	2.2.	Query 2	.13
	2.3.	Query 3	.13
	2.4.	Query 4	14
3.	Usei	r Interface Development	.14
	3.1.	General Information	.14
	3.2.	Feature 1 – Register and Login	.14
	3.3.	Feature 2 – Schedule and View Appointment	.18
V.	CONC	LUSION	.20
1.	Ach	ieved Goals	.20
2.	Futi	ıre Works	.21
VI	BEEFI	PENCES	21

LIST OF FIGURES

Figures 1. Entity-Relationship Diagram	
Figures 2. Database Diagram	8
Figures 3. Doctor Registration	15
Figures 4. Patient Registration	16
Figures 5. Doctor Login	
Figures 6. Patient Login	17
Figures 7. Successful Patient Login	
Figures 8. Successful Doctor Login	
Figures 9. Patient Book Appointment	
Figures 10. Patient View Scheduled Appointment	

I. GROUP'S INFORMATION

Group 07 is modified by 05 members with their assigned responsibilities. Here is the group member list:

No.	Full name	ID	Responsibility
1.	PHẠM LÊ THANH NHÀN	ITDSIU20073	Team leader
2.	NGUYỄN TRẦN QUỐC THỊNH	ITITIU20312	Team member
3.	HUỲNH NGUYỄN QUỐC HƯNG	ITCSIU21183	Team member
4.	NGUYỄN QUỐC HƯNG	ITITIU21211	Team member
5.	BÀNH VĨNH THUẬN	ITITIU21323	Team member

II. GENERAL INFORMATION OF PROJECT

1. Topic

Topic 05: Hospital Data Management

Hospitals have unique data requirements. Not only do they have to maintain the medical records of their patients, but they also must manage their staff and its multiple departments. You can solve the data-related problems of hospitals by creating a DBMS solution.

First, you should assign unique IDs to the patients and store the relevant information under the same. You'll have to add the patient's name, personal details, contact number, disease name, and the treatment for the 9 patients are going through. You'll also have to mention under which hospital department the patient is (such as cardiac, gastro, etc.).

After that, you should add information about the hospital's doctors. A doctor can treat multiple patients, and he/she would have a unique ID as well. Doctors would also be classified into different departments. Patients would get admitted into rooms, so you'll need to add that information to your database too. Apart from that, there would be distinct rooms (ICUs and Operation Theaters) in the hospital.

Then, you'd have to add the information of ward boys and nurses working in the hospital and assigned to different rooms. You can start with a small hospital and expand it as you move on. Make sure that the data is easily understandable and accessible.

2. Abstract

The project is expected to help each member of our group understand the main goal of the Principle of Database Management course. In this project, a database system and a basic app are developed to manage data for patients and doctors within a hospital and allow them to access and communicate together.

The database system must store information clearly about patients, doctors (users), and facilities. Besides, the app is built with a simple interface in which users have their own accounts and are able to log in and interact. Through the app, while patients can book appointments and view their medical records, doctors can also receive requests, arrange them, and review their patient's medical records.

Hence, this project may try to help communication between patients and doctors based on the database system and the app.

3. Technologies used

Frontend: React.js

Backend: Node.js, Express

Database: MySQL

4. Core Data Classes

No.	Class	Attributes
1	Danautusaut	dep_id INT PRIMARY KEY,
1.	Department	dep_name VARCHAR(100);
		userid BIGINT PRIMARY KEY,
2.	Account	username VARCHAR(100) UNIQUE,
2.	Account	password VARCHAR(250),
		usertype VARCHAR(50);
		doc_id INT PRIMARY KEY,
		doc_lastname VARCHAR(100),
		doc_firstname VARCHAR(100),
3.	Doctor	doc_phone VARCHAR(10),
		doc_email VARCHAR(200),
		dep_id INT,
		userid BIGINT;
		n_id INT PRIMARY KEY,
		n_lastname VARCHAR(100),
		n_firstname VARCHAR(100),
4.	Nurse	n_phone VARCHAR(10),
		n_email VARCHAR(100),
		dep_id INT,
		userid BIGINT;
		p_id INT PRIMARY KEY,
	Patient	p_lastname VARCHAR(100),
		p_firstname VARCHAR(100)
_		p_phone VARCHAR(10),
5.		p_email VARCHAR(100),
		p_province VARCHAR(250),
		p_dob DATE,
		p_biogender VARCHAR(1),
		userid BIGINT; a id INT PRIMARY KEY,
		a date DATE,
6.	Appointment	a_time TIME,
0.	Appointment	p_id INT,
		doc id INT;
		mr id INT PRIMARY KEY,
		mr date DATE,
		symptom VARCHAR(50),
7.	MedicalRecord	disease VARCHAR(50),
'`	MedicarRecord	treatment VARCHAR(50),
		p id INT,
		doc id INT;
	n .: -	room no VARCHAR(10) PRIMARY KEY,
8.	PatientRoom	_ ` /
٥.	rancilkoom	bed_num INT,

		r_type VARCHAR(1);
		id BIGINT PRIMARY KEY,
0	Dationt Doom A man gament	room_no VARCHAR(10),
9.	PatientRoomArrangement	n_id INT,
		p_id INT;

5. Relationship Rules

No.	Rule
1.	A department has many doctors and nurses. Every doctor or nurse works in only a
	department.
2.	A patient can book many appointments. Each appointment corresponds to a patient only.
3.	A doctor treats many patients. Each patient is treated by a doctor only.
4.	A nurse serves many patient rooms. Each patient room is served by a nurse only.
5.	There can be many patients in a room based on its number of beds. A patient is
٥.	only in a room.
6.	A patient has only a medical record. Doctors are able to update or view all their
0.	patients' medical records.
7	Every doctor or nurse or patient has only an app account. An account corresponds
7.	to a user only.

III. TIMEFRAME

1. Contribution

No.	Full name	Responsibilities	Contribution
1	PHAM LÊ THANH NHÀN	Building database	100%
1	PHÁM LE THANH NHAN	Developing user interface	10070
2	NGUYỄN TRẦN QUỐC THỊNH	Building database	100%
2		Developing user interface	100%
3	HUỲNH NGUYỄN QUỐC HƯNG	Developing user interface	100%
4	NGUYỄN QUỐC HƯNG	Developing user interface	100%
5	BÀNH VĨNH THUẬN	Building database	100%

2. Responsibilities

Stage	Task	Responsible member	Deadline	
	Define the main goal of this course			
Planning	Choose topic All		02/10	
& Proposal	Topic detail understanding			
	Write & submit the proposal	Thanh Nhan	06/10	
Processing	Design & explain Entity Relationship Diagram (ERD)	Quoc Thinh Thanh Nhan	15/10	
& Midterm Report	Design & explain Database Relationship Diagram	Quoc Thinh Vinh Thuan	22/10	

	Complete & submit the midterm report	Vinh Thuan	26/10
	Build & explain app	H.N.Q.Hung N.Q.Hung Quoc Thinh	02/12
	Complete & submit the final report	Thanh Nhan Vinh Thuan	09/12
Final	PowerPoints	H.N.Q.Hung N.Q.Hung	16/12
	Presentation	All	

IV. PROJECT ANALYSIS

1. Database System

Figures 1. Entity-Relationship Diagram

1.2.Database Diagram

Figures 2. Database Diagram

1.3. Database Design and Data Building in MySQL

a. Department Table:

```
CREATE TABLE Department (
    dep_id INT NOT NULL AUTO_INCREMENT,
    dep_name VARCHAR(100) NOT NULL,
    PRIMARY KEY (dep_id));
```

```
INSERT INTO Department (dep_name)
VALUES

    ('Accident and emergency'),
     ('Breast Screening'),
     ('Chaplaincy'),
     ('Diagnostic Imaging'),
     ('General Surgery'),
     ('Microbiology');
```

b. Account Table:

```
CREATE TABLE Account (
    userid INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
    username VARCHAR(100) NOT NULL UNIQUE,
    passwo VARCHAR(250) NOT NULL,
    usertype VARCHAR(50));
```

Each doctor and patient have an account as user to log into the app. Each user has their own user identity. They register to the app by creating their user's name and password. They also must choose their roles as doctor or patient. The 'username' attribute is unique in that no couple of users has the same username (we use "email" for username).

```
INSERT INTO Account (username, passwo, usertype)
VALUES

    ('lhanh123@gmail.com', 'lhanh123', 'Doctor'),
     ('hqbao123@gmail.com', 'hqbao123', 'Doctor'),
     ('tqduc123@gmail.com', 'tqduc123', 'Doctor'),
     ('nhgiang123@gmail.com', 'nhgiang123', 'Nurse'),
     ('hthuyen123@gmail.com', 'hthuyen123', 'Nurse'),
     ('htngan123@gmail.com', 'htngan', 'Nurse'),
     ('tmlong123@gmail.com', 'tmlong123', 'Patient'),
```

```
('lnminh123@gmail.com', 'lnminh123', 'Patient'),
  ('pbngoc123@gmail.com', 'pbngoc123', 'Patient');
```

c. Doctor Table:

```
CREATE TABLE Doctor (
    doc_id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
    doc_name VARCHAR(50) NOT NULL,
    doc_phone VARCHAR(10),
    doc_email VARCHAR(200) UNIQUE);
```

```
INSERT INTO Doctor (doc_name, doc_phone, doc_email)
VALUES

('Le Hien Anh', '0123456789', 'lhanh123@gmail.com'),
        ('Hoang Quoc Bao', '0123456788', 'hqbao123@gmail.com'),
        ('Tran Quoc Duc', '0123456777', 'tqduc123@gmail.com');
```

d. DoctorInDepartment Table:

```
CREATE TABLE DoctorInDepartment (
    doc_id INT,
    dep_id INT,
    FOREIGN KEY (dep_id) REFERENCES Department(dep_id),
    FOREIGN KEY (doc_id) REFERENCES Doctor(doc_id));
```

e. DoctorAccount Table:

```
CREATE TABLE DoctorAccount (
    doc_id INT,
    userid INT,
    FOREIGN KEY (userid) REFERENCES Account(userid),
    FOREIGN KEY (doc_id) REFERENCES Doctor(doc_id));
```

f. Nurse Table:

```
CREATE TABLE Nurse (
    n_id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
    n_name VARCHAR(50) NOT NULL,
    n_phone VARCHAR(10),
    n_email VARCHAR(100));
```

```
INSERT INTO Nurse (n_name, n_phone, n_email)
```

```
VALUES

('Nguyen Hoang Giang', '0123456001', 'nhgiang123@gmail.com'),
('Ha Thanh Huyen', '0123456033', 'hthuyen123@gmail.com'),
('Huynh Tuyet Ngan', '0123456023', 'htngan123@gmail.com'),
('Do Minh Anh', '056123784', 'dmanh123@gmail.com'),
('Le Linh Khanh', '056784512', 'llkhanh123@gmail.com'),
('Hoang Minh Ngan', '05647812', 'hmngan123@gmail.com'),
('Luu Nhat Linh', '023145678', 'lnlinh123@gmail.com'),
('Vu Anh Ngoc', '014567823', 'vangoc123@gmail.com');
```

g. NurseInDepartment Table:

h. Patient Table:

```
CREATE TABLE Patient (
    p_id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
    p_name VARCHAR(100) NOT NULL,
    p_phone VARCHAR(10),
    p_email VARCHAR(100),
    p_province VARCHAR(250),
    p_dob DATE,
    p_biogender VARCHAR(15));
```

i. PatientAccount Table:

```
CREATE TABLE PatientAccount (
    p_id INT,
    userid INT,
    FOREIGN KEY (userid) REFERENCES Account(userid),
    FOREIGN KEY (p_id) REFERENCES Patient(p_id));
```

```
(2,8),
(3,9);
```

j. Appointment Table:

k. PatientBookAppointment Table:

```
CREATE TABLE PatientBookAppointment (
    p_id INT,
    a_id INT,
    symptoms varchar(50),
    FOREIGN KEY (p_id) REFERENCES Patient(p_id),
    FOREIGN KEY (a_id) REFERENCES Appointment(a_id));
```

```
INSERT INTO PatientBookAppointment (p_id, a_id, symptoms)
VALUES (1,1,'fever');
```

1. DoctorViewAppointment Table:

```
CREATE TABLE DoctorViewAppointment (
    doc_id INT,
    a_id INT,
    FOREIGN KEY (doc_id) REFERENCES Doctor(doc_id),
    FOREIGN KEY (a_id) REFERENCES Appointment(a_id));
```

m. MedicalRecord Table:

```
CREATE TABLE MedicalRecord (
    mr_id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
    mr_date DATE,
    symptom VARCHAR(50),
    disease VARCHAR(50),
    treatment VARCHAR(50));
```

n. PatientViewMedicalRecord Table:

```
CREATE TABLE PatientViewMedicalRecord (
    p_id INT,
    mr_id INT,
    FOREIGN KEY (p_id) REFERENCES Patient(p_id),
    FOREIGN KEY (mr_id) REFERENCES MedicalRecord(mr_id));
```

o. DoctorViewMedicalRecord Table:

```
CREATE TABLE DoctorViewMedicalRecord (
    doc_id INT,
    mr_id INT,
    FOREIGN KEY (doc_id) REFERENCES Doctor(doc_id),
    FOREIGN KEY (mr_id) REFERENCES MedicalRecord(mr_id));
```

p. PatientRoom Table:

```
CREATE TABLE PatientRoom (
    room_no VARCHAR(10) NOT NULL PRIMARY KEY,
    r_type VARCHAR(1));
```

q. NurseAssignToPatientRoom Table:

```
CREATE TABLE NurseAssignToPatientRoom (
    n_id INT,
    room_no VARCHAR(10),
    FOREIGN KEY (n_id) REFERENCES Nurse(n_id),
    FOREIGN KEY (room_no) REFERENCES PatientRoom(room_no))
```

r. PatientRoomAssignment Table:

```
CREATE TABLE PatientRoomAssignment (
    p_id INT,
    room_no VARCHAR(10),
    FOREIGN KEY (p_id) REFERENCES Patient(p_id),
    FOREIGN KEY (room_no) REFERENCES PatientRoom(room_no));
```

1.4. Normal Form Evaluation

This database is in the Second Normal Form, explained by the following table:

Normal Form	Description				
1NF	1NF There is no composite or multi-valued attribute.				
2NF	All non-primary-key attribute is fully functionally dependent on the primary key.				
3NF	There is no transitive dependence in all tables.				

2. Database Queries

2.1. Query 1

All departments with their doctors, ordering by names of departments.

SELECT dep.dep_name as department,		department	doctor
d.doc_name as doctor FROM Department dep	•	Accident and emergency	Le Hien Anh
LEFT JOIN DoctorInDepartment did		Accident and emergency	Hoang Quoc Bao
ON dep.dep_id = did.dep_id		Accident and emergency	Tran Quoc Duc
LEFT JOIN Doctor d		Breast Screening	Karyn Ramirez
ON did.doc_id = d.doc_id		Chaplaincy	nhan pham
ORDER BY dep.dep_name ASC;		Diagnostic Imaging	Nguyen Quoc Hung Huynh
		Diagnostic Imaging	Tran Quoc Thinh Nguyen
		General Surgery	Vinh Thuan Banh
		Microbiology	Le Thanh Nhan Pham
		Microbiology	Quoc Hung Nguyen

2.2. Query 2

All departments with their nurses, ordering by names of departments.

```
SELECT dep.dep name as department,
                                                 department
                                                                       nurse
n.n_name as nurse
                                                Accident and emergency Huynh Tuyet Ngan
FROM Department dep
                                                Breast Screening
                                                                      Hoang Minh Ngan
LEFT JOIN NurseInDepartment nid
ON dep.dep id = nid.dep id
                                                Chaplaincy
                                                                      Ha Thanh Huyen
LEFT JOIN Nurse n
                                                Diagnostic Imaging
                                                                      Nguyen Hoang Giang
ON nid.n_id = n.n_id
                                                                      Do Minh Anh
                                                Diagnostic Imaging
ORDER BY dep.dep_name ASC;
                                                General Surgery
                                                                      Luu Nhat Linh
                                                General Surgery
                                                                      Vu Anh Ngoc
                                                Microbiology
                                                                      Le Linh Khanh
```

2.3. Query 3

All patients who are between 20 and 30 years old with their name, gender, date of birth and age calculated from date of birth.

14 | GROUP 07 – Hospital Data Management

SELECT p_name AS Patient, p_biogender AS Gender, p_dob AS 'Date of Birth', TIMESTAMPDIFF(YEAR, p_dob, CURDATE()) AS Age FROM Patient WHERE p_dob BETWEEN DATE_SUB(CURDATE(), INTERVAL 30 YEAR) AND DATE_SUB(CURDATE(), INTERVAL 20 YEAR);		Patient	Gender	Date of Birth	Age
	b	Tran Minh Long	Male	1999-02-03	24
		Luong Nhat Minh	Male	2002-03-07	21
		Pham Bao Ngoc	Female	1997-04-08	26
		Kareem Trevino	Male	2002-02-03	21
		Carly Valentine	Female	1998-12-08	25
		Jordan Poole	Male	1995-02-03	28
		Denton Langley	Female	2000-04-02	23
		Christopher Riddle	Male	1999-11-11	24
		Serena Dejesus	Female	1997-03-08	26

2.4. Query 4

All rooms that has patient with room no, patient name and nurse name

SELECT pr.room_no as Room,		Room	Patient	Nurse
p.p_name as Patient, n.n name as Nurse	•	R001	Tran Minh Long	Nguyen Hoang Giang
FROM PatientRoom pr RIGHT JOIN PatientRoomAssignment pra		R001	Luong Nhat Minh	Nguyen Hoang Giang
		R002	Brenda Summers	Ha Thanh Huyen
ON pr.room_no = pra.room_no		R002	Kareem Trevino	Ha Thanh Huyen
INNER JOIN Patient p		R003	Carly Valentine	Huynh Tuyet Ngan
ON pra.p_id = p.p_id LEFT JOIN NurseAssignToPatientRoom npr		R003	Pham Bao Ngoc	Huynh Tuyet Ngan
		R004	Clio Galloway	Huynh Tuyet Ngan
ON pr.room_no = npr.room_no		R005	Denton Langley	Do Minh Anh
<pre>INNER JOIN Nurse n ON npr.n_id = n.n_id;</pre>		R005	Serena Dejesus	Do Minh Anh
		R007	Jordan Poole	Hoang Minh Ngan
		R008	Christopher Riddle	Luu Nhat Linh

3. User Interface Development

3.1. General Information

Our group tries to develop an application that connects to the database for not only get data from the database to display on the application, but also interacting with user interface, then insert the result of interactions (data) into the database.

The application provides two roles of users: Doctor and Patient, and two features for users to interact with.

3.2. Feature 1 – Register and Login

Both doctors and patients are allowed to sign up and sign in the application.

a. Doctor registration:

Figures 3. Doctor Registration

Step 1: After clicking on 'Sign Up' button, the system will check whether the email that is used for registration has exist or not by querying the database. If not, the next step will be implemented.

```
//Checks whether the email that is used for registration has exist or not
app.get('/checkIfDocExists', (req, res) => {
  let params = req.query;
  let email = params.email;
  let statement = `SELECT * FROM Doctor WHERE doc_email = "${email}"`;
  console.log(statement);
  con.query(statement, function (error, results, fields) {
    if (error) throw error;
    else {
       return res.json({
         data: results
        })
     };
  });
});
});
```

Step 2: The system will take the information that doctor has filled in the application to insert into the database. Email, phone number and full name of doctor will be inserted into the 'Doctor' table. Email, password and usertype (doctor) will be inserted into the 'Account' table (email will be the username of the account).

```
VALUES ` + `("${email}", "${password}", "Doctor")`;

console.log(sql_statement);
con.query(sql_statement, function(error){
    if (error) throw error;
})
    email_in_use = email;
    password_in_use = password;
    who = 'doc';
    return res.json({
        data: results
    })
    };
});
});
```

b. Patient registration:

Figures 4. Patient Registration

Step 1: Similarly to the Doctor registration, system will check for existed email.

Step 2: Data insertion

The filled information will be inserted into 'Account' and 'Patient' table

```
//Creates Patient Account
app.get('/makeAccount', (req, res) => {
 let query = req.query;
 let name = query.name + " " + query.lastname;
 let dob = query.dob;
 let email = query.email;
 let phone = query.phone;
 let password = query.password;
 let province = query.province;
 let gender = query.gender;
 let sql_statement1 = `INSERT INTO Account (username, passwo, usertype)
                       VALUES ` + `("${email}", "${password}", "Patient")`;
 console.log(sql statement1);
  con.query(sql_statement1, function (error, results, fields) {
    if (error) throw error;
    else {
```

```
let sql statement1 = `INSERT INTO Patient (p_email, p_dob, p_name,
p_province, p_biogender, p_phone)
                            VALUES ` + `("${email}", "${dob}", "${name}",
"${province}", "${gender}", "${phone}")`;
        console.log(sql_statement1);
        con.query(sql_statement1, function (error, results, fields) {
            if (error) throw error;
        })
        email_in_use = email;
        password_in_use = password;
        who="pat";
        return res.json({
            data: results
      })};
 });
});
```

c. Doctor and Patient login:

Figures 5. Doctor Login

Figures 6. Patient Login

Login functions for doctors and patients are similar that requires to fill in the blanks of username (email) and password. If users are doctors, they must click on the box of 'I'm a doctor'.

Figures 7. Successful Patient Login

Figures 8. Successful Doctor Login

3.3. Feature 2 – Schedule and View Appointment

a. Patient Book Appointment:

Figures 9. Patient Book Appointment

Patients can choose a doctor, date, time for appointment and list some symptoms of their health conditions.

Whenever clicking on 'Apptempt To Schedule' button, the system will generate an ID number for the new appointment by firstly querying ID of the latest appointment in the database:

```
//Generates ID for appointment
app.get('/genApptUID', (req, res) => {
  let statement = 'SELECT a_id as id FROM Appointment ORDER BY id DESC LIMIT 1;'
  con.query(statement, function (error, results, fields) {
    if (error) throw error;
    else {
       let generated_id = results[0].id + 1;
       return res.json({ id: `${generated_id}` });
    };
  });
});
```

Then, inserting new appointment's information into 'Appointment' table

```
app.get('/schedule', (req, res) => {
 let params = req.query;
 let time = params.time;
 let date = params.date;
 let id = params.id;
 let endtime = params.endTime;
 let ndate = new Date(date).toLocaleDateString().substring(0, 10)
 let sql_date = `STR_TO_DATE('${ndate}', '%m/%d/%Y')`;
 //sql to turn string to sql time obj
 let sql_start = `CONVERT('${time}', TIME)`;
 //sql to turn string to sql time obj
 let sql end = `CONVERT('${endtime}', TIME)`;
 let doctor = params.doc;
 let symptom = params.symptoms;
 let sql_try = `INSERT INTO Appointment (a_id, a_date, starttime, endtime,
status)
                 VALUES (${id}, ${sql_date}, ${sql_start}, ${sql_end},
"NotDone")`;
 console.log(sql_try);
 con.query(sql_try, function (error, result, fields) {
    if (error) throw error;
    else {
      return res.json({
```

```
data: result
})}});
```

After that, do insertion into 'PatientBookAppointment', 'DoctorViewAppointment', and 'MedicalRecord' table.

b. Patient View their Scheduled Appointments

GROUP 07 - Hospital Data Management										
Date of Appointment	Start Time	End Time	Symptoms	Status						
12/1/2023	10:00	11:00		Done	See Diagnosis	Delete				
12/14/2023	09:00	10:00	t	NotDone	See Diagnosis	Cancel				
12/14/2023	09:00	10:00	t	NotDone	See Diagnosis	Cancel				
12/18/2023	15:00	16:00	rr	NotDone	See Diagnosis	Cancel				
12/19/2023	09:00	10:00	nn	NotDone	See Diagnosis	Cancel				
12/26/2023	08:00	09:00	mm	NotDone	See Diagnosis	Cancel				
12/21/2023	08:00	09:00	XX	NotDone	See Diagnosis	Cancel				
12/21/2023	08:00	09:00	XX	NotDone	See Diagnosis	Cancel				
12/26/2023	10:00	11:00	ZZ	NotDone	See Diagnosis	Cancel				

Figures 10. Patient View Scheduled Appointment

Query data from the database to display on the application.

V. CONCLUSION

1. Achieved Goals

In this project, we successfully achieved several significant goals aimed at enhancing the efficiency and functionality of the hospital data management system. Firstly, we successfully

designed and built a robust relational database that adheres to the Third Normal Form (3NF) standards. This accomplishment ensures a structured and efficient organization of data, promoting data integrity and minimizing redundancy within the system.

In tandem with the database development, we created a user-friendly application to serve as the interface for accessing and interacting with the database. This application not only provides a seamless display of the database content but also incorporates two interactive features. These features facilitate a two-way communication between the user and the database, enhancing the overall user experience and enabling efficient data manipulation.

2. Future Works

Looking ahead, our future work encompasses the development of an additional feature within the application. This feature aims to empower patients to access and view their medical records, providing them with a secure and convenient means to monitor their health information. Simultaneously, doctors will gain access to an integrated system where they can view both patient appointments and medical records, streamlining their workflow and improving patient care.

Furthermore, as part of our future initiatives, we plan to re-engineer the database structure to achieve an even higher level of normalization. This strategic move is intended to further optimize data organization, reduce redundancies, and enhance the overall efficiency and performance of the system. By continuously refining and expanding the capabilities of the database and application, our project is poised to contribute significantly to the seamless management of hospital data and the delivery of enhanced healthcare services.

VI. REFERENCES

GeeksforGeeks. (2023, September 20). Retrieved from Introduction of ER Model: https://www.geeksforgeeks.org/introduction-of-er-model/