Wave Motion and Sound I
Wave: Mechanical Wave - motion of massive string, water surface - sound wave
Electromagnetic wave — light, microwave
Gravitational wave - variation of spacetime
Mechanical Wave e.g
Transverse up/down vibration S-wave ~3 000 m/s
Mechanical Wave Transverse up/down vibration S-wave ~3 on 0 m/s [3] longitudinal badd/fro vibration p-wave ~5000 m/s
No matters/ particles actually propagate
only the "phase" is propagating.
e, g human wane
Travelling Wave (Sinusoidal Wave, continuens)
Particles more collectively
V Vware.
Snapshot.
Son (phoa)
Each particle exhibits SHM. some phen = some postion (some v.
phase time x
> t 27 7 2

Mathematical Description

Let
$$y = A\cos(kx)$$

to satisfy $x = 0$, $y = A$
 $x = \lambda$, $y = A$
 $\Rightarrow \cos(k\lambda) = 1$

wave number

In fred x

$$\Rightarrow \omega t = 2\pi \Rightarrow \omega = \frac{2\pi}{T} = 2\pi f$$
angular frequency (rad)

How to write down a wavefunction for a Sinusoidal wave?

$$y(x,t) = A \cos(kx + \beta)$$

Shift m

at x=vt y=A => cos (kx+6) = 1 => kx+6=0 frit mex. => \$ = - kx = - kut

Therefore, a wavefunction at any time t is $y(x,t) = A \cos(kx - kvt)$ Since every part of the wave exhibits SI-IM, taking x=0 as example $y(o,t) = A \cos(-kut) = A \cos(\omega t) = A \cos(\omega t)$ $\Rightarrow \omega = kv$ $\Rightarrow 2\pi f = 27 v$ $\Rightarrow V = \int \lambda = \frac{\omega}{k}$ Finally, we write $y(x,t) = A \cos(kx - \omega t + \phi_0)$ for a wave travelly to the $+ \times direction$ with speed $v = \frac{\omega}{K}$. For a wave travelly to the -x-direction V > -v, \$= kut =+ wt y(x,t) = A cos (kx + wt + b.)
relatively

same sign.

$$\Rightarrow \text{ Wave } \overline{69^4}. \qquad \overline{\cancel{\cancel{3}}} = \cancel{\cancel{\cancel{M}}} \frac{\cancel{\cancel{3}}}{\cancel{\cancel{7}}} = \cancel{\cancel{\cancel{M}}} \frac{\cancel{\cancel{3}}}{\cancel{\cancel{7}}}$$

Why is it called wowe egt? Because function behaves as a wave satisfies the egt.

Try
$$y(x,t) = A \cos(kx - \omega t)$$

$$\frac{\partial y}{\partial x} = -kAsm(kx-\omega t), \quad \frac{\partial y}{\partial x^2} = -k^2Acos(kx-\omega t)$$

$$\frac{\partial y}{\partial t} = +\omega A sn(kx\omega t)$$
, $\frac{\partial y}{\partial t^2} = -\omega^2 A cos(kx\omega t)$

LHS =
$$\frac{\partial y}{\partial x^2}$$
 | RHS = $\frac{M}{F} \frac{\partial y}{\partial t^2}$
= $-k^2 A \cos(kx - \omega t)$ | = $\frac{M}{F} (-\omega^2) A \cos(kx - \omega t)$

LHS = RHS iff.
$$k^{2} = \frac{M}{L} \omega^{2} \Rightarrow \frac{F}{M} = \frac{\omega^{2}}{k^{2}} = V^{2}$$

$$\Rightarrow$$
 y(x+) satisfies the wave egh. iff. $V = \frac{\omega}{k}$.

$$\frac{\partial y}{\partial x^2} = \frac{1}{v^2} \frac{\partial y}{\partial t^2} \quad \text{where } v \approx the wave$$
propagation speed.

Average Power

$$P_{ay} = \frac{1}{T} \int_{0}^{T} P(x,t) dt \qquad \text{tme average}.$$

$$= \frac{1}{T} \int_{0}^{T} P_{max} sn^{2}((xx-u,t)) dt$$

$$= \frac{1}{T} P_{max} \int_{0}^{T} \frac{1}{2} [1 - cos(2kx-2wt)] dt$$

$$= \frac{1}{T} P_{max} \int_{0}^{T} \frac{1}{2} [1 - cos(2kx-2wt)] dt$$

$$= \frac{1}{T} P_{max} \int_{0}^{T} \frac{1}{2} [1 - cos(2kx-2wt)] dt$$

$$= \frac{1}{T} P_{max} \int_{0}^{T} \frac{1}{2} [1 - cos(2kx-2wt)] dt$$

$$= \frac{1}{T} P_{max} \int_{0}^{T} \frac{1}{2} [1 - cos(2kx-2wt)] dt$$

Wave Reflection
General properties of wave.
General properties of wave. ① Superposition of wave: if y, y, are solutions of the wave eq1.
then $y = y_1 + y_2$ is also a solution.
2) Obey boundary condition: physical constrains the wave must satisfies.
e.g. String fixed on a wal
The wave must have y=0 at x=0 for all time t.
pole massless.
$\Rightarrow \forall \qquad oose end = 0$
m=o y j
Image method (see note for examples & diagrams) marsus. loose end m=0 > Fy = m2 = 0 x=0 > shape at x=0 must be zero.
Image method (see note for examples & diagrams)
Image method (see note for examples & diagrams) must be zero. The suppose a wave going towards the well/pole is y
3 Imagine there is a wave coming from behind the wall / pole. 692
B we know y, +y, must setrify the boundary condition for wall, y, y, +y, = o at x = o for \t.
for wall, yityz=0 at x-0 for t.
(for pole, slope of (y,ty) = 0 et x20 for 4t.
4 Once a suitable 4, is found we identify 4, as
4 Once a snitoble ye is found, we identify ye as the reflection of yes