

Rappels réseaux

Mines d'Alès Janvier 2024

Structure des réseaux d'information

Structure du réseau

Exemples de structures : les réseaux commutés

Réseau de type « connecté » orienté pour les services de parole

Exemples de structures : les réseaux d'ordinateurs

Réseau INTERNET

Réseau de type « non connecté » orienté pour les services de données

État de l'art

OSI et autres

contemporary OSI model TCP/IP model model application Process presentation **Application Application** session VS. => Host-to-Host transport transport network network Internet Data link Data link Network Access physical physical

Encapsulation

Exemple d'un LAN hiérarchique

Evolution des réseaux : aspects fondamentaux

- Les réseaux migrent vers des architectures de type IP-multimedia;
- · Les réseaux deviennent indépendants des technos d'accès ;
- L'avenir se dirige vers le « tout-IP » (en particulier « mobile »);
- Applications « IP MM » avec des protocoles de signalisation IETF compatibles (SIP,HTTP,etc);
- Des critères de QoS end-2-end imposés sur IP;
- VoIP comme techno dominante pour la téléphonie;
- Terminaux « soft-configurables » ;
- Le concept seamless mobility s'impose (on traverse les réseaux comme si rien ne se passer);
- La sécurité devient un enjeux majeur ;
- Roaming généralisé (protocoles Advanced Administrative Access AAA).

Plan utilisateur

Plan control

Faiblesses du protocole IP

- Hypothèse de liens de comms fiable
 - IP suppose pas de pertes de paquets
 - IP suppose bon ordonnancement
 - IP suppose pas de congestion
 - IP suppose Bw infinie!
- Hypothèse best effort
 - IP ne sais pas gérer des priorités
 - IP ne sait pas gérer le temps réél

Quelques solutions

- Pure end2end (pseudo circuit)
- Explicit notification of losses
- Pure link layer solutions (ARQ-FEC-Hybrid)
- Adaptive link layer

La voix sur IP

IMT Mines Alès École Mines-Télécom

VoIP

VoIP (Voice over Internet Protocol), est une méthode de numériser la parole, encapsuler le numérique en paquets et transmettre les paquets sur un réseau IP.

La majorité des systèmes VoIP utilisent le protocole H.323 (IP vidéo)

L'appel est établi par TCP. Le trafic téléphonique est transporté par RTP (Real Time Protocol) (surcouche de UDP).

Protocoles VoIP

- ✓ H.323 Multimedia Standard
 - □ H.225 RAS Registration, Admission, Status
 - □ Q.931 Signalisation de l'appel (setup & fin)
 - □ H.245 Call Control (Preferences, Flow Control, etc.)
 - □ Toute la famille G.7XX de CODECS pour la parole
- ✓ SIP Session Initialization Protocol

La pile protocolaire VoIP

H.323	Multimedia Protocol
H.225	Call setup & Control – RAS (Q.931)
H.235	Security & Authentication
H.245	Call negotiation, capability exchange
H.450	Other supplemental Services
H.246	Circuit Switched Network Interop.
H.332	Conferencing
H.26X	Video CODECS
H.7XX	Audio CODECS

Comment ils sont utilisés dans ISO

Modèle ISO	Protocoles ou Standards
Presentation	Applications / CODECS
Session	H.323 & SIP
Transport	RTP / UDP / TCP
Réseau	IP – Non QOS
Liaison	ATM, FR, PPP, Ethernet

La pile ISO

Paquet vs. Circuit

	Circuit	Paquet
Call Setup	Database / SS 7 Overlay	H.323 & SIP
Canal	Dedicated	Shared
Adressage	NANP	IPv4 & IPv6

Comparaison des Codecs

✓ Codec	Type	Débit F	Retard(ms)
✓ G.711	A-Law / µ-Law	64	0
✓ G.722	SB-ADPCM	64/56	/48 0
✓ G.723.1	ACELP	6.3/5.3	37.5
√ G.726	ADPCM	16/24/32	/40 0
✓ G.727	Embed-ADPCM	16/24/32	2/40 0
√ <i>G</i> .728	LD-CELP	16	< 2
✓ G.729	CS-ACELP	8	15
√ G.729	ACS-ACELP	8	15
√ G.729	BCS-ACELP*	8	15
√ G.729	ABCS-ACELP*	8	15

