Weekly Meeting

Topic: Algorithm for 3 imes 3 imes 3 and 9 imes 9

Presenter: Heng-Tse Chou @ NTHU STAT

Date: Sept. 11, 2024

Result for finding $3 \times 3 \times 3$

^	idx ‡	num_of_columns 💠	columns ÷	wlp ÷	is_comp ‡
1	390	11	1 2 5 14 22 9 24 31 34 39 3	3 42 111 132	FALSE
2	391	11	1 2 5 14 22 9 24 31 3 25 13	3 48 84 177	FALSE
3	392	11	1 2 5 14 22 9 24 25 7 12 18	3 54 63 195	FALSE
4	792	12	1 2 5 14 22 9 24 31 3 25 13 37	4 72 144 354	FALSE
21	793	12	1 2 5 14 22 9 24 25 7 12 18 38	4 81 108 390	FALSE
11	1599	13	1 2 5 14 22 9 24 31 3 25 13 37 6	7 102 219 690	FALSE
22	1600	13	1 2 5 14 22 9 24 25 7 12 18 38 3	7 105 207 696	FALSE
12	3104	14	1 2 5 14 22 9 24 31 3 25 13 37 6 18	10 140 334 1236	FALSE
23	3105	14	1 2 5 14 22 9 24 25 7 12 18 38 3 31	10 141 330 1236	FALSE
31	3106	14	1 2 5 14 22 9 24 31 3 25 13 37 6 7	10 144 330 1209	FALSE
13	5763	15	1 2 5 14 22 9 24 31 3 25 13 37 6 18 7	13 192 495 2055	FALSE
14	10067	16	1 2 5 14 22 9 24 31 3 25 13 37 6 18 7 35	16 256 720 3288	FALSE
15	16541	17	1 2 5 14 22 9 24 31 3 25 13 37 6 18 7 35 15	24 304 1096 4984	FALSE
16	25387	18	1 2 5 14 22 9 24 31 3 25 13 37 15 23 16 34 6 38	30 369 1602 7443	FALSE
17	36526	19	1 2 5 14 22 9 24 31 3 25 13 37 15 23 16 34 6 38 27	39 435 2313 10521	FALSE
18	49289	20	1 2 5 14 22 9 24 31 3 25 13 37 15 23 16 34 6 38 27 8	51 519 3108 15051	FALSE
19	48963	21	7 11 12 13 17 18 19 20 21 23 26 27 28 30 32 34 35	58 383 2220 10864	TRUE
110	35798	22	7 11 12 13 17 18 19 20 21 23 26 27 28 29 30 32 34	48 300 1647 7449	TRUE
111	24493	23	7 11 12 13 15 16 17 18 23 25 26 27 28 29 30 32 33	40 230 1196 4992	TRUE
112	15060	24	3 6 7 8 10 12 13 16 17 18 19 20 23 27 28 30 32 33	32 174 855 3242	TRUE
24	15053	24	3 4 6 8 12 13 16 17 18 19 20 23 26 27 28 29 30 31	32 168 864 3296	TRUE
113	8874	25	3 4 6 7 11 12 13 16 17 19 20 21 23 25 26 28 30 32	26 126 594 2060	TRUE

Property for finding 9×9

If $D=(d_1,\ldots,d_m)$ is constructed via D=A+B/2+3/2, and D is $\mathrm{SOA}(2+)$, then for all $i\neq j$, the following statements are equivalent:

- ullet (d_i,d_j) achieve stratification over $s^2 imes s^2$ grids.
- (a_i, a_j, b_i, b_j) is OA(n, 4, s, 4).
- a_ib_i , a_jb_j , b_i and b_j are different factors chosen from the saturated design S.

An idea for 9×9

- 1. Fix a_i , find all possible b_i that could form a line with a_i .
- 2. Make many design B without duplicated factors.
- 3. For each B, calculate how many pair (i,j) satisfies (a_ib_i,a_jb_j,b_i,b_j) being different factors.
- 4. Select B with the most pairs satisfying the condition.

But...

corresponding_bi	list [40]	List of length 40
[[1]]	double [39]	2 3 4 5 6 10
[[2]]	double [39]	1 3 4 5 7 11
[[3]]	double [39]	1 2 4 5 8 12
[[4]]	double [39]	1 2 3 5 9 13
[[5]]	double [39]	1 6 10 2 7 11
[[6]]	double [39]	1 5 10 2 8 9
[[7]]	double [39]	1 8 13 2 5 11
[[8]]	double [39]	1 7 13 2 6 9
[[9]]	double [39]	1 12 11 2 6 8
[[10]]	double [39]	1 5 6 2 12 13
[[11]]	double [39]	1 9 12 2 5 7
[[12]]	double [39]	1 9 11 2 10 13
[[13]]	double [39]	1 7 8 2 10 12
[[14]]	double [39]	1 15 28 2 16 29
[[15]]	double [39]	1 14 28 2 17 18
[[16]]	double [39]	1 17 31 2 14 29
[[17]]	double [39]	1 16 31 2 15 18
[[18]]	double [39]	1 30 29 2 15 17
[[19]]	double [39]	1 20 37 2 21 38
[[20]]	double [39]	1 19 37 2 22 23
[[21]]	double [39]	1 22 40 2 19 38
[[22]]	double [39]	1 21 40 2 20 23
[[23]]	double [39]	1 39 38 2 20 22
·	·	· · · · · · · · · · · · · · · · · · ·