# CS 2340 – Computer Architecture

3 Data Representations Dr. Alice Wang

# **BINARY**

It's as easy as 01,10,11

# Housekeeping

- Released on eLearning are practice questions similar to those that will be on the exam
- After each lecture you can go and try the questions for the specific lecture
- I will be going over these practice questions in the exam review

#### Review

#### Last time

- MIPS Assembly Coding Basics
  - Assembler Directives
  - Registers
  - Instructions: Load / Store / Add / Sub / Add immediate
  - Pseudo-instructions: li, la, move
  - System Calls
- MARS demo

#### Mars demo

- How to startup MARS
  - Look at syllabus if you have a MAC
- How to edit your code
- How to save your code
- The Register Table
- The Data memory

Step-by-step demo in the reference section

- How to Assemble your code
- How to Run your code
- Run I/O vs Mars
   Messages windows
- How to Debug your code using breakpoints
- How to view data in decimal, ASCII & hex

# Number Systems



**Humans: Decimal** 



Computers: Binary, Hexadecimal

**Computers and Humans have different number systems** 

# What is decimal vs binary?

Decimal counts using numbers 0~9: 0,1, 2, 3, 4, 5, ... 9, 10, 11, 12, ...

Binary counts using number 0~1: 0, 1, 10, 11, 100, 101, 110, ...

#### Decimal numbers



• Base 10 (Radix 10)

1's column
10's column
100's column
1000's column

#### noun

- 1. **MATHEMATICS** the base of a system of <u>numeration</u>.
- RARE

   a source or origin of something.
   "Judaism is the radix of Christianity"

$$5374_{10} = 5 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 + 4 \times 10^0$$
five three seven four thousands hundreds tens ones

**Indicates Base 10** 

## Binary numbers

Base 2 (Radix 2)

```
\frac{8^{3} \cdot 1^{3} \cdot 1
```

**Indicates Base 2** 

#### Nomenclature

|         | Prefix      | Examples    | Subscript | Examples               |
|---------|-------------|-------------|-----------|------------------------|
| Binary  | 0b          | 0b0010_1101 | 2         | 0010_1101 <sub>2</sub> |
| Decimal | 0d<br>blank | 0d45<br>45  | 10        | 45 <sub>10</sub>       |

If there is no prefix or subscript, the default is decimal

#### Base 2 or Radix 2

It's useful to know base 2 binary numbers from 0 to 15

- 0 = 0b0000
- 1 = 0b0001
- 2 = 0b0010
- 3 = 0b0011
- 4 = 0b0100
- 5 = 0b0101
- 6 = 0b0110
- 7 = 0b0111

- 8 = 0b1000
- 9 = 0b1001
- 10 = 0b1010
- 11 = 0b1011
- 12 = 0b1100
- 13 = 0b1101
- 14 = 0b1110
- 15 = 0b1111

#### Common base 2 numbers

- It's useful to memorize power of 2 up to 2<sup>15</sup>
  - $2^0 = 1$
  - $2^1 = 2$
  - $2^2 = 4$
  - $2^3 = 8$
  - $2^4 = 16$
  - $2^5 = 32$
  - $2^6 = 64$
  - $2^7 = 128$

- $2^8 = 256$
- $2^9 = 512$
- $2^{10} = 1024$
- $2^{11} = 2048$
- $2^{12} = 4096$
- $2^{13} = 8192$
- $2^{14} = 16384$
- $2^{15} = 32768$

#### Large Powers of Two

#### Larger Powers of Two vs Ten

- $2^{10} = 1 \text{ kilo} \approx 10^3 = 1000 (1024)$
- $2^{20} = 1 \text{ mega} \approx 10^6 = 1 \text{ million } (1,048,576)$
- $2^{30} = 1$  giga  $\approx 10^9 = 1$  billion (1,073,741,824)

#### MSB and LSB

| Most Significant Bit (MSB)  | This bit has the highest value (greatest weight) and is located at the far left of the bit string    |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------------|--|--|
| Least Significant Bit (LSB) | This bit has the lowest value (bit position zero) and is located at the far right of the bit string. |  |  |



#### Bit position

| Most Significant Bit (MSB)  | This bit has the highest value (greatest weight) and is located at the far left of the bit string    |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------------|--|--|
| Least Significant Bit (LSB) | This bit has the lowest value (bit position zero) and is located at the far right of the bit string. |  |  |

Bit Position 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data 1 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1

A: 
$$\{a_{N-I}, a_{N-2}, \dots, a_2, a_I, a_0\}$$
,  $N=16$ 

MSB

A[15] =  $a_{15}$  = 0b1 (MSB)  $\rightarrow$  15th element of Array A

A[0] =  $a_0$  = 0b1 (LSB)  $\rightarrow$  0th element of Array A

A[11] =  $a_{11}$  = \_\_\_\_\_\_

#### Bit position

| Most Significant Bit (MSB)  | This bit has the highest value (greatest weight) and is located at the far left of the bit string    |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------------|--|--|
| Least Significant Bit (LSB) | This bit has the lowest value (bit position zero) and is located at the far right of the bit string. |  |  |

Bit Position 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Data 1 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1 
$$A$$
:  $\{a_{N-I}, a_{N-2}, \dots, a_2, a_I, a_0\}$ ,  $N=16$ 

$$A[15:10] = 0b10\_1101$$

$$A[2:0] = \_\_\_$$

#### Bit width

Bit width

Number of binary digits (bits) used to represent a value in a computer system



## Convert Decimal to Binary - My Turn

Use the Successive Division approach

Convert 6<sub>10</sub> to binary

Ans: \_\_\_\_\_\_\_ or 0b\_\_\_\_\_

Successively divide by radix (2 for binary)

Results are the remainder

## Convert Decimal to Binary - Your Turn

Use the Successive Division approach

Convert 40<sub>10</sub> to binary

Ans: \_\_\_\_\_\_\_ or 0b\_\_\_\_\_

# Simple Binary Addition



# Binary Addition

Decimal

+ 5168 8902

Binary

# Binary Addition Example

# Other than computers where is binary used?

• Binary is used in many multimedia applications







Digital images are stored as binary files where each pixel is represented by a binary value. Audio files are stored as sequences of binary numbers that represent sound waveforms.

Video files are composed of binary data that encodes a sequence of frames (images) together with audio tracks.

# Other than computers where is binary used?

Binary is also used in communications and security







Binary codes are used to encode and decode data for transmission over digital communication channels.

Binary is essential in encryption algorithms, which secure data by converting it into a binary format that can only be decrypted with a key.

Binary is used in networking protocols and data transmission, ensuring accurate communication between devices.

# Binary can get kind of cumbersome...

- Once a number gets > 8 digits it becomes hard to read, write and remember
- This is why we commonly use higher base numbers like Hexadecimal instead of Binary

Examples: 0010\_1010 vs 2A

#### Where is Hexadecimal used?

- Used widely
- HTML Colour Codes



- MAC Addresses
  - Physical address is given as 6 address pairs
     E.g. "A0-1D-48-FE-5E-F5"

# What is decimal vs binary vs hex?

Decimal counts using numbers 0~9: 0, 1, 2, 3, 4, 5, ... 9, 10, 11, 12, ...

Binary counts using numbers 0~1: 0, 1, 10, 11, 100, 101, 110, ...

Hexadecimal counts using numbers 0~9, A~F 0, 1, 2, 3, ..., 8, 9, A, B, ..., F, 10, 11, 12, ..., 19, 1A, 1B, ....

# Hex/Dec/Bin table

| Hex | Dec | Bin  |
|-----|-----|------|
| 0   | 0   | 0000 |
| 1   | 1   | 0001 |
| 2   | 2   | 0010 |
| 3   | 3   | 0011 |
| 4   | 4   | 0100 |
| 5   | 5   | 0101 |
| 6   | 6   | 0110 |
| 7   | 7   | 0111 |

| Hex | Dec | Bin  |
|-----|-----|------|
| 8   | 8   | 1000 |
| 9   | 9   | 1001 |
| A   | 10  | 1010 |
| В   | 11  | 1011 |
| С   | 12  | 1100 |
| D   | 13  | 1101 |
| Е   | 14  | 1110 |
| F   | 15  | 1111 |

- Hex: Base 16
- Common notation "0x" prefix
- Or Subscript<sub>16</sub>

#### Nomenclature

|             | Prefix      | Examples    | Subscript | Examples         |
|-------------|-------------|-------------|-----------|------------------|
| Binary      | 0b          | 0b0010_1101 | 2         | 0010_11012       |
| Decimal     | 0d<br>blank | 0d45<br>45  | 10        | 45 <sub>10</sub> |
| Hexadecimal | 0x          | 0x2D        | 16        | 2D <sub>16</sub> |

If there is no prefix or subscript, the default is decimal

#### Convert Decimal to Hex - My Turn

Use the Successive Division approach

Convert 18<sub>10</sub> to hex

Ans: \_\_\_\_\_ or 0x\_\_\_\_\_

Successively divide by radix (16 for hex)
Results are the remainder

#### Convert Decimal to Hex - Your Turn

Use the Successive Division approach

Convert 40<sub>10</sub> to hex

Ans: \_\_\_\_\_ or 0x\_\_\_\_\_

#### Convert Hex or Bin to Decimal

Given a sequence of bin or hex numbers:  $a_{N-1}$ , ...,  $a_1$ ,  $a_0$  converting to decimal:

Power of 2 
$$2^7$$
  $2^6$   $2^5$   $2^4$   $2^3$   $2^2$   $2^1$   $2^0$ 

Binary Representation 0 1 1 0 0 0 1 1  $= 2^6 + 2^5 + 2^1 + 2^0 = 99$ 

$$\Sigma$$
 a<sub>i</sub>\* r<sup>i</sup> from i = 0 to N-1  
where r = radix 2 (bin) or 16 (hex)

Multiplying the individual numbers by powers of 2 (bin) or 16 (hex) starting with 0 for the right most digit

#### Hex or Bin to Decimal conversion









Multiplying the individual numbers by powers of 2 (bin) or 16 (hex) starting with 0 for the right most digit

## Binary to Hex, Hex to Binary - Example

Convert every 4 bits to hex or each hex number to 4 bits Use Look-up Tables, Convert to Decimal or Memorize!

My Turn: Convert 0b1010\_0011 to hex

\_

**Your Turn:** Convert 4AF<sub>16</sub> to binary

"\_" underscore used for readability

# Important: Bits, Bytes and Words

Bits

Hex digits = Nibbles = 4 bits

Bytes = 8 bits

Words = 32 bits = 4 bytes





#### Review: ASCII

- Most commonly used format for text files
- Each character is represented by 7-bit binary (or 2 hex digits)

| Decimal | Hex | Char                   | Decimal | Hex | Char    | <b> Decimal</b> | Hex | Char | Decimal | Hex | Char  |
|---------|-----|------------------------|---------|-----|---------|-----------------|-----|------|---------|-----|-------|
| 0       | 0   | [NULL]                 | 32      | 20  | [SPACE] | 64              | 40  | @    | 96      | 60  |       |
| 1       | 1   | [START OF HEADING]     | 33      | 21  | 1       | 65              | 41  | A    | 97      | 61  | a     |
| 2       | 2   | [START OF TEXT]        | 34      | 22  | **      | 66              | 42  | В    | 98      | 62  | b     |
| 3       | 3   | [END OF TEXT]          | 35      | 23  | #       | 67              | 43  | C    | 99      | 63  | c     |
| 4       | 4   | [END OF TRANSMISSION]  | 36      | 24  | \$      | 68              | 44  | D    | 100     | 64  | d     |
| 5       | 5   | [ENQUIRY]              | 37      | 25  | %       | 69              | 45  | E    | 101     | 65  | e     |
| 6       | 6   | [ACKNOWLEDGE]          | 38      | 26  | Se.     | 70              | 46  | F    | 102     | 66  | f     |
| 7       | 7   | [BELL]                 | 39      | 27  |         | 71              | 47  | G    | 103     | 67  | q     |
| 8       | 8   | [BACKSPACE]            | 40      | 28  | (       | 72              | 48  | н    | 104     | 68  | h     |
| 9       | 9   | [HORIZONTAL TAB]       | 41      | 29  | )       | 73              | 49  | - 1  | 105     | 69  | 1     |
| 10      | A   | [LINE FEED]            | 42      | 2A  | *       | 74              | 4A  | J    | 106     | 6A  | i     |
| 11      | В   | [VERTICAL TAB]         | 43      | 2B  | +       | 75              | 4B  | K    | 107     | 6B  | k     |
| 12      | C   | [FORM FEED]            | 44      | 2C  | ,       | 76              | 4C  | L    | 108     | 6C  | 1     |
| 13      | D   | [CARRIAGE RETURN]      | 45      | 2D  | -       | 77              | 4D  | M    | 109     | 6D  | m     |
| 14      | E   | [SHIFT OUT]            | 46      | 2E  |         | 78              | 4E  | N    | 110     | 6E  | n     |
| 15      | F   | [SHIFT IN]             | 47      | 2F  | 1       | 79              | 4F  | 0    | 111     | 6F  | 0     |
| 16      | 10  | [DATA LINK ESCAPE]     | 48      | 30  | 0       | 80              | 50  | P    | 112     | 70  | p     |
| 17      | 11  | [DEVICE CONTROL 1]     | 49      | 31  | 1       | 81              | 51  | Q    | 113     | 71  | q     |
| 18      | 12  | [DEVICE CONTROL 2]     | 50      | 32  | 2       | 82              | 52  | R    | 114     | 72  | r     |
| 19      | 13  | [DEVICE CONTROL 3]     | 51      | 33  | 3       | 83              | 53  | S    | 115     | 73  | S     |
| 20      | 14  | [DEVICE CONTROL 4]     | 52      | 34  | 4       | 84              | 54  | Т    | 116     | 74  | t     |
| 21      | 15  | [NEGATIVE ACKNOWLEDGE] | 53      | 35  | 5       | 85              | 55  | U    | 117     | 75  | u     |
| 22      | 16  | [SYNCHRONOUS IDLE]     | 54      | 36  | 6       | 86              | 56  | V    | 118     | 76  | V     |
| 23      | 17  | [END OF TRANS. BLOCK]  | 55      | 37  | 7       | 87              | 57  | W    | 119     | 77  | w     |
| 24      | 18  | [CANCEL]               | 56      | 38  | 8       | 88              | 58  | X    | 120     | 78  | x     |
| 25      | 19  | [END OF MEDIUM]        | 57      | 39  | 9       | 89              | 59  | Y    | 121     | 79  | V     |
| 26      | 1A  | [SUBSTITUTE]           | 58      | 3A  | :       | 90              | 5A  | Z    | 122     | 7A  | z     |
| 27      | 18  | [ESCAPE]               | 59      | 3B  | ;       | 91              | 5B  | 1    | 123     | 7B  | {     |
| 28      | 1C  | [FILE SEPARATOR]       | 60      | 3C  | <       | 92              | 5C  | 1    | 124     | 7C  | T .   |
| 29      | 1D  | [GROUP SEPARATOR]      | 61      | 3D  | -       | 93              | 5D  | 1    | 125     | 7D  | }     |
| 30      | 1E  | [RECORD SEPARATOR]     | 62      | 3E  | >       | 94              | 5E  | ^    | 126     | 7E  | ~     |
| 31      | 1F  | [UNIT SEPARATOR]       | 63      | 3F  | ?       | 95              | 5F  | -    | 127     | 7F  | [DEL] |

# Viewing ASCII in MARS



#### Reference: Conversion Rules

Given a number:  $a_{N-1}$ ,  $a_{N-2}$ , ...,  $a_1$ ,  $a_0$ 

| From        | То          |                                       | Example         |                                                                          |
|-------------|-------------|---------------------------------------|-----------------|--------------------------------------------------------------------------|
| Decimal     | Binary      | Divide by 2, Remainder is binary      | 9               | $9/2 = 4R1$ , $4/2 = 2R0$ , $2/2 = 1R0$ , $1/2 = 0R1 \rightarrow 0b1001$ |
| Decimal     | Hexadecimal | Divide by 16, Remainder is binary     | 93              | 93/16 = 5R <b>13</b> "D", 5/16 = 0R <b>5</b> → 0x5D                      |
| Binary      | Decimal     | $\Sigma a_i^* 2^i$ from i = 0 to N-1  | 0b0110          | $0*2^3 + 1*2^2 + 1*2^1 + 0*2^0 = 6$                                      |
| Hexadecimal | Decimal     | $\Sigma a_i^* 16^i$ from i = 0 to N-1 | 0xB8            | 11* 16 <sup>1</sup> + 8 * 16 <sup>0</sup> = 184                          |
| Binary      | Hexadecimal | Convert every 4 bits to hex           | 0b0011_<br>1110 | 0b0011 → 0x <b>3</b> , 0b1110 → <b>E</b> 0x3E                            |
| Hexadecimal | Binary      | Convert every hex digit to bits       | 0x59            | 5 → 0101, 9 → 1001:<br>0b0101_1001                                       |

Next lecture

# Signed number representation

