Deep Learning Point Clouds and Deep Meshes

Summary

Deep Learning for Point Cloud Data

Main Topics

- Point Cloud Data
 - Raw Sensor (LIDAR, RGB-D) / Simple / Convert to Regular (Voxels, Multiview, Implicit)
- Deep Learning for Point Clouds
 - Analysis (Classification, Part & Scene Segmentation) / Synthesis (From Single Image)
- PointNet
 - Permutation Invariance (Aggregate Symmetric Operator) / Rigid Transformation Invariance
- PointNet++ (PointNet at Local Regions)
 - Hierarchical Feature Learning / Local Translation and Permutation Invariance / Varying Sampling Density
- Point Cloud Synthesis
 - Supervision from "Synthesize for Learning Learning" / Two-Branch Architecture (Deconvolution + Fully Connected)
- Distance Metrics
 - Learn Mean Shape / Earth Moving vs. Chamfer
- New: Point Transformer

Deep Meshes

Main Topics

- Overview
 - Mesh Representation / Pixel2Mesh / Mesh R-CNN / Non-Euclidean / Spectral Domain
- Mesh Representation
 - Non Trivial for Neural Nets (Not Regular) / Mesh = Point Set + Connectivity Graph / How? (Convolution, Pooling)
- Pixel2Mesh (Image of Object -> Mesh)
 - Iterative Refinement / Graph Convolution / Vertex Aligned Features / Chamfer Loss
- Mesh R-CNN (Image of Scene -> Segmentation and Mesh of Objects)
 - Hybrid 3D Shape Representation / Voxel (Topolgy) / Mesh Deformation (Geometry)
 - Box+Mask Branch / Voxel Branch / Mesh Refinement Branch (Align, Graph Conv, Refine)
- Going Non-Euclidean
 - Spectral Convolution / Laplacian Eigenfunctions / Not Shif Invariant (depend on basis)
- Meshes in Spectral Domain (Eigenfunctions from Laplacian-Beltrami Op.)
 - Spectral Convolution / Spectral Kernels / Spatial Acrivation
 - Intrinsic Shape = Invariant to Embedding (rotation, translation, pose)
 - Spherical CNN (special case) / SO(3) Equivariant Representation