

Plano de Ensino

- Apresentação. Revisão de Funções.
- Expressões Regulares.
- Gramática Regular.
- Autômatos Finitos Determinísticos.
- Conversão entre GR e AFD.
- Minimização de Autômatos.
- Autômatos Finitos Não-Determinísticos.
- Conversão de Autômatos AFD para AFND.
- Autômatos com Pilha.
- Máquinas de Turing.

Livro-Texto

- Bibliografia Básica:
 - » MENEZES, Paulo Fernando Blauth. Linguagens Formais e Autômatos. 5ª ed. Porto Alegre: Bookman, 2008.
- Bibliografia Complementar:
 - » LEWIS, Ricki. Elementos da Teoria da Computação.
 2ª ed. Porto Alegre: Bookman, 2004.
 - » HOPCROFT, John E; ULLMAN, Jeffrey D; MOTWANI, Rajeev, SOUZA. Introdução a Teoria dos Autômatos, Linguagens e Computação. 1ª ed. São Paulo: CAMPUS, 2003.

1. Revisão - Conjuntos

- Definição: um conjunto é uma coleção de zero ou mais objetos distintos, chamados elementos do conjunto, os quais não possuem qualquer ordem associada.
- Representação por extensão:

 $A = \{0, 1, 2, 3, 4, 5\}$

 $B = \{Paulista, \, Corinthians\}$

 $C = \{\} \text{ ou } C = \emptyset$

■ Representação por compreensão:

 $A = \{x \in N \mid x < 6\} = \{0,\, 1,\, 2,\, 3,\, 4,\, 5\}$

1. Revisão - Conjuntos

- Conjunto Universo (U)
- » É um conjunto fixo definido.
- Conjunto dos Números Naturais (N)
 - » $N = \{0, 1, 2, 3, 4, 5, ...\}$
 - » $N^* = \{1, 2, 3, 4, 5, ...\}$
- Conjunto dos Números Inteiros (Z)
 - » $Z = \{..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ...\}$
 - » $Z^* = Z \{0\}$
 - » $Z^+ = N = \{0, \, 1, \, 2, \, 3, \, 4, \, \ldots\}$
 - » Z= {0, -1, -2, -3, -4, ...}

1. Revisão - Conjuntos

- Conjunto dos Números Racionais (Q)
- » Q = {..., -2, $-\frac{5}{4}$, -1, $-\frac{1}{3}$, 0, $\frac{3}{5}$, 1, $\frac{3}{2}$, ... }
 - » $Q = \{x \mid x = , com \ a \in Z, b \in Zeb \neq 0\}$
- Conjunto dos Números Irracionais (Q')
 - » Q' = {..., $-\pi$, $-\sqrt{3}$, $-\sqrt{2}$, ..., $\sqrt{2}$, $\sqrt{3}$, π , ...}
- Conjunto dos números reais (R)
 - » $R = Q \cup Q'$
 - » $Q \cap Q' = \emptyset$

1. Revisão - Operações sobre Conjuntos

- Sendo A = $\{1,2\}$, B = $\{1,3,6\}$ e U = $\{x \mid x \in N \text{ e } x < 9\}$
 - » União $A \cup B = \{x \mid x \in A \text{ ou } x \in B\} = \{1, 2, 3, 6\}$
 - » Intersecção $A \cap B = \{x \mid x \in A \text{ e } x \in B\} = \{1\}$
 - » Diferença A–B = $\{x \mid x \in A \ e \ x \notin B\} = \{2\}$
 - » Complemento A' = $\{x \mid x \in U \text{ e } x \notin A\} = \{0,3,4,5,6,7,8\}$
 - » Cjto. das Partes $2^A = \{S \mid S \subseteq A\} = \{\{\}, \{1\}, \{2\}, \{1,2\}\}$
 - » Produto Cartesiano AxB = $\{(x, y) \mid x \in A \text{ e } y \in B\} = \{(1,1), (1,3), (1,6), (2,1), (2,3), (2,6)\}$
 - o Quando tem-se um produto cartesiano dele próprio AxA, AxAxA, representa-se como um expoente A², A³, etc.

1. Revisão - Propriedades dos Conjuntos

- Idempotência
 - » A ∪ A = A
 - $A \cap A = A$
- Comutatividade
 - $A \cup B = B \cup A$
 - $A \cap B = A \cap A$
- Associatividade » $A \cup (B \cup C) = (A \cup B) \cup C$
 - » $A \cap (B \cap C) = (A \cap B) \cap C$

1. Revisão - Propriedades dos Conjuntos

- Distributividade
 - » $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - » $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- Duplo Complemento
 - » (A')' = A
- Morgan
- » (A ∪ B)' = A' ∩ B'
- » $(A \cap B)' = A' \cup B'$
- Universo e Vazio
 - » A ∪ A' = U
 - » A ∩ A' = Ø

2. Introdução - Formalismo

- Frase em Português: "É nóis".
- Frase em Inglês: "They needs to do this".

■ Placa:

Sintaxe em linguagem C: valor := valor + 1;

2. Expressões Regulares

- Toda linguagem regular pode ser descrita por uma expressão simples, denominada Expressão Regular (ER).
- Trata-se de um formalismo gerador, pois expressa como construir (gerar) as palavras da linguagem.
- Uma ER é definida recursivamente a partir de conjuntos (linguagens) básicas e operação de concatenação e união.

2. Expressões Regulares

- Dado um alfabeto ∑:
 - » Os símbolos do alfabeto são expressões regulares, incluindo-se o vazio ou ε.
 - » Se R_1 e R_2 são ER, então $(R_1 \cup R_2)$ é uma ER. » $(R_1 \mid R_2)$ representa a união de linguagens.
 - » Se R_1 e R_2 são ER, então (R_1R_2) é uma ER. » R₁R₂ representa concatenação de linguagens
 - » Se R₁ é uma ER, então (R₁)* é uma ER;
 - » (R $_1$) representa a linguagem formada pela concatenação de zero ou mais palavras de R $_1$
 - » Se R₁ é uma ER, então (R₁)+ é uma ER;
 - » $(R_1)^+$ representa a linguagem formada pela concatenação de um ou mais palavras de R_1
 - » Obs: R₁+ = R₁R₁*

2. Expressões Regulares

■ Dado um alfabeto ∑ = {a, b}; e as expressões regulares a seguir, teremos a linguagem gerada, conforme tabela:

ER	Linguagem Gerada
а	{a}
ab	{ab}
(a b)	{a, b}
ba*	{b, ba, baa, baaa, baaaa,}
(a)*	{ε, a, aa, aaa,}
(a b)*	{ε, a, b, aa, ab, bb, abaa,}
(a (a b))*	{ε, aa, ab, aaaa, abaa, aaab,}
(a (a b)+)	{aa, ab, aaa, aba, aab,}
((a b)* (a b))*	{ε, a, b, ab, aa, bb, aaa, aba, abb,}

2. Expressão Regular

- Exemplos práticos:
 - A. Representação de todos os números binários com pelo menos 1 dígito.
 - B. Representação de todos os números binários com pelo menos 1 dígito e no máximo 4.
 - C. Representação de todos os números binários com sinal e mantissa, sendo números negativos (iniciando com 1) ou positivos (iniciando com 0).

2. Expressão Regular

- Exemplos práticos:
 - A. Representação de todos os números binários com pelo menos 1 dígito.
 - · (0 | 1)+
 - Representação de todos os números binários com pelo menos 1 dígito e no máximo 4.
 - · (0 | 1) | ((0 | 1)(0 | 1)) | ((0 | 1)(0 | 1)(0 | 1)) | ((0 | 1)(0 | 1)(0 | 1)(0 | 1))
 - C. Representação de todos os números binários com sinal e mantissa, sendo números negativos (iniciando com 1) ou positivos (iniciando com 0).
 - · (0 | 1)(0 | 1)+

