Department of Mathematics, Computer Science and Physics

BACHELOR THESIS IN Computer Science

Numerical bifurcation analysis of delay equations: a user-friendly extension of MatCont's interface

CANDIDATE SUPERVISOR

Enrico Santi Prof. Rossana Vermiglio

Co-Supervisor

Dr. Davide Liessi

Contents

1	Inti	roduction	2				
2	Bas	Basics on dynamical systems					
	2.1	Dynamical systems	3				
	2.2	Ordinary differential equations	3				
	2.3	Delay differential equations	6				
	2.4	Stability and bifurcations	7				
	2.5	From DDEs to ODEs	8				
3	A b	orief introduction to MatCont	9				
	3.1	Overview of the current MatCont GUI	9				
		3.1.1 MatCont Main Window	9				
		3.1.2 Inserting a new system	10				
		3.1.3 Editing an existing system	12				
	3.2	The existing documentation	12				
4	Ext	ending the user interface of MatCont	13				
	4.1	MatCont's extended capabilities	13				
	4.2	Overview of the extended MatCont GUI	14				
		4.2.1 The DDE syntax	14				
		4.2.2 Inserting a new ODE or DDE system	15				
		4.2.3 Editing an ODE or DDE system	16				
	4.3	The complete legacy support	17				
	4.4	A deeper view of the parsing process	20				
	4.5	A brief look at the development process	22				
5	Cor	nclusions	24				
	5.1	Future extensions	24				

Introduction

This thesis mainly concerns the work carried out during the internship at the CDLab at the Department of Mathematics, Computer Science and Physics of the University of Udine. The internship has been focused on the development of an extension of the graphical user interface (GUI) of MatCont, a MATLAB software for continuation and bifurcation analysis of ordinary differential equations (ODEs). The aim is to provide a user-friendly GUI to study dynamical systems described by delay differential equations (DDEs), which arise in many application fields, e.g. control theory, ecology and epidemiology. The thesis is organized as follows.

In Chapter 2, after a brief introduction on dynamical systems and differential equations, we introduce the pseudospectral discretization approach, which allows to approximate DDEs by a system of ODEs and is the theoretical basis of the MatCont extension.

In Chapter 3 we describe the fundamental aspects of the current version of MatCont's GUI and how it works. In Chapter 4 we focus on the new capabilities of the extended version of MatCont and how the development has been carried out. Finally in Chapter 5 we conclude with some remarks on the future additional tools to implement to analyze the dynamics of state dependent DDEs too.

The work done and described in Chapter 4 will be presented at the 17th IFAC Workshop on Time Delay Systems (TDS), September 2022 in Montreal, Canada.

Basics on dynamical systems

2.1 Dynamical systems

A dynamical system describes the evolution in time of a phenomenon and it finds application in several fields, from engineering to biology ([1, 2]). Mathematically the phenomenon is represented by a state variable, and the dynamical system is defined as a triple $\{T, X, \phi^t\}$ where T is the time set, X is the state space¹, and $\{\phi^t\}_{t\in T}$ is the family of evolution operators $\phi^t: X \to X$ satisfying:

- $\phi^0 = id$, where id is the identity on X and $0 \in T$,
- $\phi^{t+s} = \phi^t \circ \phi^s$, where $t, s, t+s \in T$.

A first major distinction is related to the time set T:

- when $T \subset \mathbb{N}$ the triple describes a discrete dynamical system,
- when T is a more general subset of IR, such as an interval, the triple describes a continuous dynamical system.

As described in [3] the relationship between discrete and continuous dynamical systems recalls the relationship between $\Delta x/\Delta t$ and dx/dt. In this thesis we treat only continuous dynamical systems which are described by ordinary differential equations (ODEs) and delay differential equations (DDEs). Hereafter we refer to them simply as dynamical systems.

2.2 Ordinary differential equations

We consider autonomous ODEs of the form:

$$y'(t) = F(y(t)), \quad t \ge 0$$
 (2.1)

where t is the independent variable, y is the \mathbb{R}^d -valued unknown function with $d \geq 1$, and $F: A \subseteq \mathbb{R}^d \to \mathbb{R}^d$. Solving a differential equation (when it is possible) means finding a set of functions satisfying the relationship (2.1)

¹All the values describing the state the considered dynamical system can assume as the time progresses.

on a suitable interval. To obtain a unique solution additional conditions are needed. We consider the following initial value problem (IVP):

$$\begin{cases} y'(t) = F(y(t)), & t \ge 0 \\ y(t_0) = y_0 \end{cases}$$
 (2.2)

which, under suitable regularity assumptions on the right hand side F, has a unique solution $y(t) = \phi^t(y_0)$, for $t \in [0, t_f]$. Moreover it can be proven that the solution of (2.2) continuously depends on the initial value y_0 [4]. The equation (2.1) defines a dynamical system where where $T = [0, t_f]$, $y(t) \in \mathbb{R}^d$ is the state at time $t \in T$ and $X = \mathbb{R}^d$ is the state space. Since the dimension of the state space is d, the equation (2.1) defines a finite-dimensional dynamical system.

A trajectory of a solution of (2.2) consists of following set:

$$\{(t, y(t)) : t \in T\}.$$
 (2.3)

Related to this concept, one of the first geometric visualizations for ODEs is the trajectory diagram. Given a solution of (2.1) with d=1 the trajectory diagram presents the graph of some solutions and at each point (t,y(t)) the related vector field F(y) (i.e. an assignment of a vector to each point in a given space), see for instance Figures 2.1 and 2.2. When d>1 the trajectory diagram contains the diagrams of each component. These geometric visualizations allow a qualitative study of (2.1), giving insights on the problem [4]. We remark that in general a numerical approximation of the solution of 2.2 is needed to construct the trajectory diagrams.

Example 1. The (continuous)² Malthus equation is defined as follows:

$$y'(t) = ry(t), \quad t > 0 \tag{2.4}$$

It is a linear autonomous first order ODE, in which r represents a parameter, that can be solved analytically by separation of variables³.

The general solution of the equation is $\phi^t(y_0) = e^{rt}y_0$ for $t \ge 0$ where y_0 is the initial value $(y(0) = y_0)$.

The unique equilibrium, i.e. a constant solution, of (2.4) is $E_0 = 0$. The trajectory diagram in Figure 2.1, which is numerically obtained, shows two solutions of two IVPs of (2.4) with initial conditions $y(t_0 = 0) = 1$ and $y(t_0 = 0) = 0$. This last initial condition is associated with the equilibrium shown in blue (E_0) .

Example 2. The logistic model is described by the logistic equation:

$$y'(t) = ry(t)(1 - \frac{y(t)}{K}), \quad t \ge 0$$
 (2.5)

²Its discrete counterpart is described by the recursive equation y(t+1) = y(t) + ry(t).

³A procedure for solving ODEs that can be rewritten as y'(t) = a(t)b(y).

This model describes the evolution of a population of individuals where the parameter r > 0 is the growth rate (i.e. the rate at which the individuals can reproduce), and K represents the maximum number of individuals the environment can sustain (the capacity) \square . The general solution of the equation 2.5 with the initial condition $y(0) = y_0$ can be obtained by separation of variables and it is given by:

$$\phi^{t}(y_0) = \frac{K}{1 + (\frac{K}{y_0} - 1)e^{-r(t)}}, \quad t \ge 0$$
(2.6)

The equation presents two equilibria: $E_0 = 0$ and $E_1 = K$. Figure 2.2 presents the trajectory diagram of (2.4) with two solutions of two IVPs, with initial conditions $y(t_0 = 0) = 1$ and $y(t_0 = 0) = 3$. By looking at the figure it can be seen that all the solutions approach E_1 as t goes to infinity (asymptotically stable) while they move away from the trivial equilibrium (unstable).

Figure 2.1: The trajectory diagram of the Malthus equation, with r=4, showing two solutions.

Two other fundamental concepts are the orbit and the phase portrait. Given a solution y of an ODE an orbit is defined as the set $\{y(t): t \in T\}$ \blacksquare . On the other hand the phase portrait is a partitioning of the state space into orbits \blacksquare . For what concerns IVPs defined as \blacksquare with d=2 or d=3 also the phase or orbit plane/space is usually presented, it present on its axes (two or three, according to d) the components of the system and shows the orbit of the dynamical system. Since d may be greater than three, more phase planes/spaces can be presented for a system (depending on the components of the orbit taken into account). This plane/space doesn't present the independent variable axis (e.g. the time axis), allowing to study the dynamics of a system independently from the time perspective (i.e. study the orbits).

In the phase plane/space (with proper initial conditions) we can observe orbits with interesting properties, for example closed curves and single points

Figure 2.2: The trajectory diagram of the logistic equation, with K=3 and r=2 showing two solutions.

which respectively describe *periodic orbit* and a *steady state* or an *equilibrium*. In Section $\boxed{2.4}$ the related concepts of stability and bifurcation are briefly discussed. The phase diagram can also be plotted for an IVPs with d=1, but this will result in a one dimensional line.

2.3 Delay differential equations

$$y_t(\theta) = y(t+\theta), \quad \theta \in [-\tau, 0]$$
 (2.7)

where $\tau > 0$ is the bounded delay and $[-\tau, 0]$ is the delay interval. A DDE is defined as:

$$y'(t) = F(y_t), \quad t \ge 0 \tag{2.8}$$

where $F: C([-\tau, 0]; \mathbb{R}^d) \to \mathbb{R}^d$ is a nonlinear map \square .

A first classification, that will helpful in Chapter 4 is distinguishing between discrete and distributed delays. In the first case we have

$$F(y_t) = f(y_t(\tau_1), y_t(\tau_2), \dots,)$$
(2.9)

with $0 \le \tau_1 < \tau_2 < \ldots \le \tau$, while an example of distributed delay is $F(y_t) = \int_{-\tau}^0 f(y(t+\theta))d\theta$.

In order to define an IVP for (2.8) it's not sufficient to specify an initial vector, but it is necessary to give an initial function ψ . So an IVP reads as:

$$\begin{cases} y'(t) = F(y_t), & t \ge 0 \\ y(\theta) = \psi(\theta), & \theta \in [-\tau, 0] \end{cases}$$
 (2.10)

Under suitable assumption on F, it can be proved that (2.10) has a unique continuous solution in $[-\tau, t_f]$ [6]. A DDE defines an infinite-dimensional dynamical system where the state at time $t \geq 0$ is the history function y_t and the state space is $X = C([-\tau, 0]; \mathbb{R}^d)$.

2.4 Stability and bifurcations

In terms of differential equations, stability concerns the analysis of the effect of small perturbations on a given solution [4]. Intuitively a solution is said to be stable if any other solutions of the differential equation close to it remains close to it as the system evolves. If a solution doesn't have this property it is called unstable. Moreover a stable solution is asymptotically stable if distance between the given solution and the solutions close to it approaches zero as time goes to infinity. From the point of view of dynamical systems, the study of stability properties of equilibria and periodic solutions are important tasks.

When taking into account differential equations depending on one or more parameters (such as the parameter r in (2.4)), it is interesting to study when a small change of the value of one parameter causes a "qualitative" change in the behavior of the system. Such values of the parameters are known as "bifurcation" points. Depending on which aspect of the system's solution changes, they can be classified into different classes as described in [2]. For instance a Hopf bifurcation is a critical value of the parameter where an equilibrium loses its stability and a stable periodic orbit arises.

A parametrized ODE is defined as:

$$y'(t) = F(y(t), p), \quad t \ge 0$$
 (2.11)

where $p \in \mathbb{R}^m$ represents the vector of the m parameters.

As reported in the introduction, MatCont is a collection of MATLAB routines for the stability and bifurcation analysis of parametrized ODEs. For bifurcation analysys of parametrized DDEs defined as:

$$y'(t) = F(y_t, p), \quad t > 0$$
 (2.12)

with $p \in \mathbb{R}^m$ being the vector of the m parameters, other softwares such as DDEBiftool exist. DDEBiftool specifically can treat state dependent DDEs and DDEs with discrete delays. This software though, is less complete than its ODE counterpart.

The method presented (from [7]) in section 2.5 allows also to deal with distributed delays making possible for the user to study different kinds of systems.

One of the main reasons behind the discretization of a dynamical system described by DDEs to an ODE system is indeed that softwares for the study of ODE systems are generally more complete and the used methods better known. A second reason is that we are only able to study with the help of a computer finite dimensional objects and it wouldn't be possible to deal with the original problem since a DDE describes an infinite-dimensional dynamical system.

2.5 From DDEs to ODEs

As the first step to derive a system of ODEs from a system of DDEs, we rewrite the DDE as an abstract differential equation on the state space X, i.e.:

$$v'(t) = A_F(v(t)), \quad t \ge 0$$
 (2.13)

where $A_F: dom(A_F) \subset X \to X$ is the infinite-dimensional operator called generator [7] given by:

$$A_F(\psi) = \psi', \quad dom(A_F) = \{ \psi \in X : \ \psi' \in X, \ \psi'(0) = F(\psi) \}$$
 (2.14)

The idea is to approximate the state v(t) with its interpolating polynomial at selected nodes in the delay interval, and to apply the operator A_F to it. Note that the interpolating polynomial is described by the values of v(t) at the interpolating nodes. Given the discretization parameter $M \in \mathbb{N} \setminus \{0\}$, we select now the M+1 Chebyshev extrema on the interval $[-\tau,0]$: $\theta_M = -\tau < ... < \theta_0 = 0$.

By defining the restriction operator:

$$R_M(\psi) = (\psi(\theta_1); ...; \psi(\theta_M)) \in \mathbb{R}^{d(M)}, \ \psi \in X$$
 (2.15)

and the prolongation operator:

$$P_M(\Psi_M)(\theta) = \sum_{i=0}^{M} \ell_{M,i}(\theta) \ \Psi_{M,i}, \quad \theta \in [-\tau, 0], \ \Psi_M \in \mathbb{R}^{d(M+1)}$$
 (2.16)

we can construct the finite dimensional operator on $\mathbb{R}^{d(M+1)}$ given by:

$$A_{F,M}(\Psi_M) = (F(P_M(\Psi_M)); R_M(P_M(\Psi_M)'))$$
(2.17)

Finally the abstract differential equation (2.13) is turned into the following ODE:

$$\frac{d}{dt}(v_M(t)) = A_{F,M}(v_M(t)), \quad t \ge 0$$
(2.18)

whose dynamics mimics the dynamics of the original system.

A brief introduction to MatCont

MatCont is a software, based upon MATLAB, that provides routines and a GUI to study the behavior of continuous dynamical systems defined by ODEs, particularly for what concerns the bifurcation analysis[8].

The GUI and routines provided are independent, since the functionalities of MatCont can also be used from MATLAB's command line.

In the following paragraphs the main aspects of MatCont's GUI and how the user could interact with it will be discussed, they should be kept in consideration when the extension part will be described in the next chapter. There will not be an exhaustive description of the parsing done by MatCont on the data inserted by the user since during the extension process new parsing routines were introducted without interfering with the pre-existing ones.

3.1 Overview of the current MatCont GUI

3.1.1 MatCont Main Window

MatCont presents to the user a minimalist but rather intuitive interface. The main window shown to the user is divided into three sections: Class, Current System and Current Curve. Class shows the user what type of system is currently loaded (only ODE in the official version), while Current System shows the user some basic information about the system itself, such as the name and how the derivatives will be computed (i.e. N for numerically, S for symbolically, and R for from window). Current Curve shows the name of the loaded curve and what is going to be computed, to give the user some recall of what the state of the software is. In this section, information such as the properties of the chosen initial point (i.e. "initial point type") and the method that is going to be executed when computing the curve (i.e. "initializer") are displayed. Above these three sections a toolbar menu is presented, from here the user can create a new system, load, edit or delete an already existing one. The type of the specified initial point can also be selected from this menu (e.g. a point without special properties, an equilibrium etc...) and the same is true for the curve to compute (e.g. an orbit, an equilibrium etc...). The user from this toolbar menu can also open an output window, both numerical and graphical (i.e. a Euclidean plane with two or three axes). The graphical output window will plot the graph (along the specified axes) of what is being computed, at the same time the

numerical output window will show the values of the specified parameters, coordinates and other quantities of interest at every step of the computation.

Figure 3.1: MatCont's main window

3.1.2 Inserting a new system

By pressing on Select, System, New in the toolbar menu the user can have access to a new window called *System* from which MatCont allows the user to insert a new system.

This window presents the user several input fields to be filled in:

- Name: Allows the user to specify the name of the system.
- Coordinates: Must contain every coordinate of the system.
- Parameters: Must contain all the parameters used in the system.
- Time: Must contain the name of the independent variable on which the equations in the system depend.

The name of the system must not contain spaces, while the coordinates and the parameters have to be separated by commas.

There is then a table with radio buttons that specify for each order of derivative how it should be computed, *Numerically* the value of the derivative will be numerically approximated, *From window* will allow the user to insert the derivative for each equation in the system (this can be done to save time during the computation) and *Symbolically* which will specify to compute the derivative symbolically (only if the Symbolic toolbox is installed in MAT-LAB). At the bottom of this window a larger text entry window is shown

to allow the user to type the system in. The syntax a system must satisfy requires writing every equation such that the left hand side presents just the first derivative of the coordinate considered. The time dependence is omitted and every operator must be explicitly written.

What happens next? Let for example the name of the new system inserted be "NewTypedSystem", when the user has correctly inserted all the required data and pressed the *Ok* button MatCont will parse the data entered and create two files under the folder *System* named "NewTypedSystem.m" and "NewTypedSystem.mat" [8]. These files are respectively a MATLAB script file, and a binary file. The latter will contain a struct with 36 fields describing the system, such as the list of coordinates, the list of parameters, the equations in the system, the dimension of the system (i.e. the number of different coordinates) etc...

This binary file contains the struct that will be loaded in order to initialize the fields of the current struct representing the system when "Edit" or "Load" is pressed. The .mat file, on the other hand, contains routines such as fun_eval and init that will be called by MatCont when performing different computations on the system.

Figure 3.2: The state diagram regarding the insertion of a new system

3.1.3 Editing an existing system

By pressing on Select, System, Load/Edit/Delete System the user will be presented a new window in which the list of existing systems and a list of buttons including Load, Delete or Edit are shown.

When the desired system is selected and "Edit" is pressed the same window used to input the new system is shown, this time though, the .m file related to the system will be loaded and all the fields will be already filled with the system details. The user can then modify what needed and press the Ok button to confirm the changes made, now both the .m and .mat file will be overwritten with the new information and the system will be reloaded from them. Observe that all the previously computed and saved curves will be deleted by this process.

3.2 The existing documentation

On the page from which MatCont can be downloaded it is possible to find some guides and tutorials that introduce MatCont to a new user¹ by presenting a series of examples that can be repeated step by step. A manual also exists that provides more knowledge on how this software works and how it is structured².

On the other hand the code would considerably benefit from the insertion of comments or method contracts, especially in some regions of the code, which may be quite difficult to read and subsequently modify.

 $^{^{1}} https://sourceforge.net/projects/matcont/files/Documentation/MatContODE/Tutorials7px/projects/matcont/files/Documentation/MatContODE/Tutorials7px/projects/matcont/files/Documentation/MatContODE/Tutorials7px/projects/matcont/files/Documentation/MatContODE/Tutorials7px/projects/matcont/files/Documentation/MatContODE/Tutorials7px/projects/matcont/files/Documentation/MatContODE/Tutorials7px/projects/matcont/files/Documentation/MatContODE/Tutorials7px/projects/matcont/files/Documentation/MatContODE/Tutorials7px/projects/matcont/files/Documentation/MatContODE/Tutorials7px/projects/matcont/files/Documentation/MatContODE/Tutorials7px/projects/matcont/files/Documentation/MatContODE/Tutorials7px/projects/matcont/files/Documentation/MatContODE/Tutorials7px/projects/matcont/files/Documentation/MatContODE/Tutorials7px/projects/matcont/files/Documentation/MatContODE/Tutorials7px/projects/matcont/files/Documentation/MatContODE/Tutorials7px/projects/matcont/files/projects/matcont/fi$

²https://sourceforge.net/projects/matcont/files/Documentation/MatContODE/ManualAug2019.pdf

Extending the user interface of MatCont

This chapter presents how the interface of MatCont has been extended, how this task has been achieved, some difficulties faced and what are now the software capabilities.

4.1 MatCont's extended capabilities

The capabilities of the extended MatCont version (i.e. what systems of differential equations can recognise) have been gradually increased since an iterative development process was used, see section 4.5. The systems that can be studied with MatCont now include all the previous ODE systems (referred in later paragraphs as standard ODE systems) as well as DDE systems with one or more discrete delays, such as the Mackey-Glass equation, $y'(t) = \beta \cdot y(t-\tau)/(1+y(t-\tau)^n) - \gamma \cdot y(t)$, and systems with (finite) distributed delays as for example $y'(t) = \int_{-1}^{0} k \cdot y(t+z)dz$. Both the integration extremes in distributed delays must fall within one of the following classes:

- A constant (e.g. $\int_{-3}^{0} y[t+z]dz$).
- A parameter of the system (e.g. $\int_{-parameter}^{0} y[t+z]dz$).
- An expression beginning with the time variable followed by another expression that can contain both constants, parameters and the time variable. Still, the coordinates in the integral must present a delay written as Coordinate[timeVariable expression].

During the development process some choices were made to allow the extended system to further be easily expanded in order to accept other families of delay equations, such as state dependent DDEs and renewal equations (REs).

REs were indeed supported in later development stages, allowing the system inserted to contain zero or more DDEs and ODEs alongside zero or more REs. All the REs must be specified after the DDEs or ODEs, since the evaluation of the right hand side of each equation is subdivided into two macro blocks containing DDEs/ODEs alongside REs. These later development stages regarding the introduction of REs in the software won't be treated in this thesis.

4.2 Overview of the extended MatCont GUI

From the end user perspective the differences with the original version of MatCont GUI can be found when inserting or editing a system. These differences were intended to be both as localized as possible and consistent with MatCont's GUI style. The latter point has been achieved, the first one (i.e. keeping the differences localized in few specific areas) has been satisfied only from the point of view of the end user.

In fact, while the graphical differences in the interface can be circumscribed in two main windows, the logic and behavior of MatCont was modified in several different places (i.e. more than a few files present now different behavior accordingly to the type of system considered). This has been proven necessary to be able to fully support the usage of existing MatCont's components and functionalities with the new extension. This idea is expressed by Figure 4.1.

Figure 4.1: Comparison between the initial idea and the implementation.

4.2.1 The DDE syntax

How the user can insert a DDE equation by typing it with natural syntax (i.e. a syntax similar to how the user would write the system with pen and paper) was a major issue during the extension process, since the main goal was to create a user-friendly interface to study DDE systems and if the syntax would have resulted complex and unnatural, the goal wouldn't have been fully achieved.

Creating a method that was able to recognise the syntax was a process carried out during the first phase of the development and extended later on. It largely involved the usage of regular grammars¹.

An equation like $y'(t) = r \cdot y(t) (1 - y(t - \tau))$ could be written in the appropriate window (see section 3.1.2) by typing y'=r*y*(1-y[t-TAU]) where TAU

 $^{^1}$ Formal grammars whose expressive power corresponds to the expressive power of finite automatons.

is a parameter representing τ (since only ASCII characters are allowed). In later development stages distributed delay differential equations were added to the equations supported by the software.

An equation like $y'(t) = r \cdot \int_{-\tau}^{0} -y(t - DELAY) dDELAY$ can be inserted by typing $y'=r * \int_{-\tau}^{0} -y(t - DELAY) dDELAY$. The syntax used to insert integrals is very similar to the syntax used in LATEX. The int string marks the beginning of the integral, then the the first pair of curly braces preceded by the underscore character contains the inferior integration extreme, the second pair of braces preceded by "~" contain the superior integration extreme, the remaining two pairs of braces then delimit respectively the function to integrate and the integration variable.

As it can be seen from the examples above the dependencies of the coordinates on specific points in time must be specified with square brackets and contain as the first term of the expression the time variable, e.g. y[t-1] or y[t-TAU] (where in this latter case TAU is a parameter) followed by an expression describing the delay.

4.2.2 Inserting a new ODE or DDE system

By proceeding with the insertion of a new system in the extended version of MatCont the user will be presented the window in Figure 4.2. From this figure we can observe that the interface did maintain its overall structure, indeed it would have been counterintuitive to create a new interface from scratch, mainly for two reasons, the interface resulted to be already well structured and it would have been harder for users that had already used MatCont for years to adapt to a different interface.

Figure 4.2: MatCont's window to insert a DDE

From the end user perspective only a few lines of the layout have changed, in the first line, a dropdown menu lets the user select the type of system to be inserted. If the option "ODE" is chosen then nothing except this first line will be changed, on the other end if "Delay equation" is chosen a subwindow asking the user to input two additional parameters (the degree of the collocation polynomial, and the degree used for the polynomial used for the approximation of integrals) will appear. All the parameters will still be typed in the parameters entry whether they are used to calculate a delay or not. This latter functionality has been modified in later development stages since originally the parameters showing up in the delays (e.g. τ in 4.2.1) had to be specified in an additional entry in the subwindow, alongside the two degrees.

The second change the user can observe is that when inserting a system presenting delay equations there is no other option to compute the derivatives other than numerically. Indeed if the user inserted n equations in the appropriate window the system would have n equations from the end user perspective but, internally it will be represented by $n \cdot (M+1)$ equations, where M is the degree of the collocation polynomial. If derivatives could be specified manually, the user would need to write $n \cdot (M+1)$ equations and not just n, breaking the abstraction of the discretization process implemented.

What the user can not see, at least from the graphical interface, is that the binary file associated to a system contains now three additional fields, one describing the type of the system and the other containing, if the system contains delay differential equations, the degree of the collocation polynomial and the degree related to the Clenshaw-Curtis quadrature. The script file containing the routines used by MatCont when studying the system, if it's related to a "Delay equation" system, is also substantially different when comparing it to the same file associated with an ODE system. The key idea used was based on the same principle adopted when refactoring a method: the methods in the script were semantically modified while keeping the same signature as their ODE counterparts. By doing so it hasn't been proven necessary to modify every part of MatCont invoking those methods.

4.2.3 Editing an ODE or DDE system

The view the user is presented when a system to edit is selected it is still the same of when a new system is inserted, with the exception that now, the dropdown menu that would allow the user to select the system type is locked on the type of the system that is being modified.

When the system considered is a standard ODE system, meaning a system previously inserted with the original version of MatCont, or an ODE system inserted with the extended version of MatCont, the user will be presented the same system details as in the original MatCont that could be modified

Figure 4.3: The comparison between MatCont's window to edit an "ODE" and "Delay equation" system.

(i.e. the name, the coordinates, the parameters, the time, and the equations themselves).

On the other hand, if the system considered contained delay equations, the interface will display (as when the insertion of a new "Delay equation" system is performed) the subpanel containing the two entries with the degree both the collocation polynomial and quadrature formula chosen. These values can be modified alongside all the details discussed above for the "ODE" systems.

4.3 The complete legacy support

As written in 4.2.2 the binary file (.mat) associated to a system contains now some additional fields, this could make someone question whether the extended version of MatCont will still work with systems (and thus files) created with the regular version of MatCont (standard ODE system).

One of the main goals was indeed to achieve full compatibility with these systems, and this is mainly done when a system is loaded. When MatCont now loads a file checks whether the field denoting the system type in the binary file exists or not. if not, then the value of the loaded field is set to "ODE", since in regular MatCont only these types of systems are allowed (the struct in which the data is loaded contains indeed all the fields, regardless of what structure is saved on the file). From this point on, in the code everything will work the same as for ODE systems inserted with the

extended version of the software.

This compatibility with previously created systems can easily be understood from Figure 4.4 which describes the states the extended MatCont can go through when inserting the new system. Comparing it with Figure 3.2 the new states are represented by a green rectangle, and it can be observed that the overall structure remains similar while special states for managing the new cases are added. This modus operandi lead also the extension for the other few MatCont's components involved.

Figure 4.4: The state diagram regarding the insertion of a new system in the extended MatCont. The new states are marked by the green border.

4.4 A deeper view of the parsing process

The additional parsing process on the equations of the system, as can be observed from Figure 4.4, takes place only in the case of "Delay equation" systems, since otherwise the system won't contain neither discrete nor distributed delays.

This parsing phase is responsible for translating the equations in the system written by the user to the format the system will present in its discretized form in the *fun_eval* routine in the relative .m file. The *fun_eval* routine returns a vector containing the evaluation of the system with the specified value of the parameters and at the specified state.

The parsing process consist of two main phases, a first routine where each equation of the system is checked for delayed terms (since some equations in a "Delay equation" system may not contain delays) with a regular expression like the one presented below:

coordinateVar \int[timeVar \W (\[timeVar \W [^\]]*\]|[^\]])*\W]

The meaning of the regular expression above applied on an equation of the system can be interpreted as: "Find in the right hand side of the equation the substrings starting with the specific coordinate, followed by a open square bracket and the time variable, followed by a non alphabetic nor numeric symbol 2 (expecting the user to insert a + or -) followed either by another open square bracket, another non alphabetic nor numeric symbol and a string not containing the close square bracket, or followed by just the latter string. Then repeat this pattern for zero or more times (Kleene star operator) and lastly the substring must end with a close square bracket". By doing this it is then possible to extrapolate each delay and replace the substring with another properly built string that contains a function call to a static method defined inside another script file that is responsible for computing the interpolation.

This process is repeated for each equation with all the different coordinates (since every equation might contain arbitrary delayed terms). The structure of the regular expression above would already allow the recognition of state dependent equations up to one nested level.

The second routine of the parsing phase, also mainly based on the usage of regular expressions, is responsible for recognising and properly substituting integrals that may appear in the right hand side of an equation. It follows the same principle as the first routine, for each equation, with a properly built regular expression, find all the integrals, recognise and substitute the integration variable and eventually substitute the integral in the right hand side with the correct string representing the approximated integral that will

²A character not in the [a-zA-Z₋0-9] set.

be evaluated in computing fun_eval. These two phases are carried out sequentially, so the string representing the right hand side of each equation in the discretized system produced in output by the first routine is then taken as an input in the second parser routine.

Figure 4.5: A more detailed state diagram of the "parsing the equations" state of Figure 4.4

There are also other secondary less complex routines that write in the .m file other sections of both the fun_-eval , init and other routines.

One of the routines mentioned is responsible for writing in the file some MATLAB functions each returning a pre-computed matrix. For example one MATLAB function returns the M+1 Chebyshev nodes in the interval [-1,0].

Another one of the secondary routines is responsible for writing in fun_eval an array identified by the name "delayFunctions" containing all the delays found in the system. The process used to find the delays is analogous to the one used during the first parsing phase. The array written in fun_eval will be used in every evaluation of the system to determine the maximum delay and subsequently scale the Chebyshev nodes (used to interpolate the behavior of the solution in the interval $[-\tau_{max}, 0]$) from the interval [-1, 0] to $[-\tau_{max}, 0]$.

4.5 A brief look at the development process

The extension process followed some of the development principles presented in the Agile Manifesto [9]. Focus was especially put on the delivery of working software frequently and on the iterative development process. Overviewing the iteration process the evolution of the software went through these major intermediate phases:

- Development of the GUI extension (without any behavior attached).
- Integration of the structure used by MatCont to memorize systems in files and integration of the behavior of the extended interface.
- Adjustment of the preprocessing done on the data inserted by the user before passing it to the numerical algorithms (at this point the numerical part of MatCont, such as integration or the continuation of an equilibrium, was working correctly with DDEs with discrete delays).
- Integration of MatConts' scripts related to the memorization of the computed data (now the part of Matcont related to plotting the computed curve worked correctly with DDE systems).
- Extension of the preprocessing and parsing phase done on the input to recognise distributed delays (i.e. parsing integrals).
- Extension of the preprocessing and parsing phase done on the input to recognise renewal equations.

Each intermediate version was followed by a small testing phase, consisting primary of unit testing, a related debugging phase and a code documentation phase. Towards the ending phases of the development some system testing (e.g. higher level testing aiming to check the quality of the whole system [10]) took place. These last tests were carried out with ad-hoc dynamical systems and by creating, studying and comparing the results of some examples of dynamical systems studied with DDE-BifTool that can be found on its reference webpage³.

During the development two main challenges were faced:

 Working on a software (MatCont) related to a previously unknown domain to me. This situation can be quite common when dealing with softwares used in different fields. How this challenge was faced and overcame was by conducting an introductory study on the main aspects of the field and also by interacting and working with a domain expert.

³http://ddebiftool.sourceforge.net/demos/index.html

• Understanding and extending sections of code with little or none code documentation (i.e. comments or method contracts) as mentioned in section 3.2. This challenge was mostly faced when adapting the code responsible for handling the curve data. Overall, this challenge has been faced with the help of some of the tools provided by MATLAB for the debugging process such as breakpoints and step-by-step execution.

Figure 4.6: A qualitative comparison between a Hopf bifurcation continuation curve of DDE-Biftool and Matcont's.

Conclusions

The opportunity of this internship and the work done helped me in gaining a better perspective of how much the job of a computer scientist can vary, while also giving a first glimpse on a scientific field previously unknown to me. Understanding that there is always room for improvement, the software could be further extended in the future, in the next paragraph some of these modifications are presented.

5.1 Future extensions

The system has been extended keeping in mind that other possible extensions may take place. For example nested integrals or state dependent delay equations (up to some level of nesting) aren't supported yet, but in future these features could be supported and properly managed by a more general extension of MatCont. The most intuitive way to extend the syntax presented in 4.2.1 to allow the insertion of state dependent delay equations would be to let the user write them in a form like the following: y'=y[y[t-TAU]] where this string represents the equation $y(t)'=y(y(t-\tau))$, so by expressing nested delay dependencies also with square brackets.

Another possible future integration more related to the GUI and the user experience itself, may be the automatic recognition of the system type once inserted, by doing so, the user wouldn't need to select whether the system inserted is described by ODEs only, or by delay equations. This would bring the GUI closer to the standard MatCont's GUI.

Bibliography

- [1] D. K. Arrowsmith, C. M. Place, C. Place, et al., An introduction to dynamical systems. Cambridge university press, 1990.
- [2] Y. A. Kuznetsov, *Elements of Applied Bifurcation Theory*. Springer, 1998.
- [3] M. M. Meerschaert, "Chapter 4 introduction to dynamic models," in *Mathematical Modeling (Fourth Edition)* (M. M. Meerschaert, ed.), pp. 115–137, Boston: Academic Press, fourth edition ed., 2013.
- [4] C. Chicone, Ordinary Differential Equations with Applications. Texts in Applied Mathematics, Springer New York, 2008.
- [5] E. W. Weisstein, "Logistic equation," https://mathworld. wolfram. com/, 2003.
- [6] O. Diekmann, S. A. Van Gils, S. M. Lunel, and H.-O. Walther, Delay equations: functional-, complex-, and nonlinear analysis, vol. 110. Springer Science & Business Media, 2012.
- [7] D. Breda, O. Diekmann, M. Gyllenberg, F. Scarabel, and R. Vermiglio, "Pseudospectral discretization of nonlinear delay equations: New prospects for numerical bifurcation analysis," SIAM Journal on Applied Dynamical Systems, vol. 15, no. 1, pp. 1–23, 2016.
- [8] W. Govaerts, Y. A. Kuznetsov, H. Meijer, B. Al-Hdaibat, V. De Witte, A. Dhooge, W. Mestrom, N. Neirynck, A. Riet, and B. Sautois, "Matcont: Continuation toolbox for odes in matlab," *U. Gent*, 2018.
- [9] M. Fowler, J. Highsmith, et al., "The agile manifesto," Software development, vol. 9, no. 8, pp. 28–35, 2001.
- [10] L. Luo, "Software testing techniques," Institute for software research international Carnegie mellon university Pittsburgh, PA, vol. 15232, no. 1-19, p. 19, 2001.