Разнобой неравенства

1. Беларусь 2011. Положительные числа a, b, c таковы, что $a^2 + b^2 + c^2 = 3$. Докажите, что

$$a+b+c \geqslant ab+bc+ca$$
.

2. Пусть $x\geqslant y\geqslant z\geqslant 0$, а $a\geqslant b\geqslant c$ — вещественные числа. Докажите, что

$$x(a-b)(a-c) + y(b-c)(b-a) + z(c-a)(c-b) \ge 0.$$

Докажите также, что это останется верным, если $0 \le x \le y \le z$.

3. Для вещественных чисел a, b, c докажите неравенство

$$a^4 + b^4 + c^4 + abc(a + b + c) \ge ab(a^2 + b^2) + bc(b^2 + c^2) + ca(c^2 + a^2).$$

4. IMO 2000. Для положительных a, b, c выполнено, что abc = 1. Докажите неравенство:

$$\left(a-1+\frac{1}{b}\right)\left(b-1+\frac{1}{c}\right)\left(c-1+\frac{1}{a}\right)\leqslant 1.$$

5. Беларусь. Пусть m, n- натуральные числа. Докажите неравенство:

$$2\left|\sqrt{2}m - \sqrt{5}n\right| > \frac{5}{2m+3n}.$$

6. Даны положительные числа a, b, c. Докажите неравенство:

$$\sqrt{a + \sqrt[3]{b + \sqrt[4]{c}}} \geqslant \sqrt[32]{abc}.$$

- 7. Разложите выражения $x^3+y^3+z^3-3xyz$ и $(x^2y+y^2z+z^2x)-(xy^2+yz^2+zx^2)$ на множители. Какие условия на числа x,y,z необходимы и достаточны, чтобы эти выражения были положительны?
- **8. Вьетнам.** Про вещественные числа $x,\ y,\ z$ известно, что $x\geqslant y\geqslant z\geqslant 0.$ Докажите неравенство

$$x^{3}y^{2} + y^{3}z^{2} + z^{3}x^{2} \geqslant xyz(x^{2} + y^{2} + z^{2}).$$