Linux hálózat beállítás

Hálózati kártya

 Minden hardver, így a hálózati kártyák is egy fájlra vannak leképezve a dev könyvtárban. Debian 9 előtt ezek elnevezése eth0, eth1, stb. A Debian 9 megjelenése óta az elnevezési rendszer megváltozott.

• A **net-tools** csomag Debian 9-ben alapértelmezetten már nincs telepítve, így az ifconfig és más parancsok, csak ezen csomag telepítésével használhatók. A net-tools csomagot az iproute2 csomag váltja, amely alapértelmezetten telepítve van.

Ethernet csatolók azonosítása

Az elérhető Ethernet csatolók gyors azonosítására az **ifconfig** parancsot használható, a következő módon:

• # ifconfig -a | grep eth

```
tibi@server:~/test$ ifconfig -a |egrep eth
ether 08:00:<u>2</u>7:40:59:47 txqueuelen 1000 (Ethernet)
```

Az Ispci parancs megjeleníti a kiszolgálón lévő összes PCI busz információit.

A buszra vonatkozó információk mellett a PCI és PCIe buszhoz csatlakoztatott összes hardver eszközről is információkat fog megjeleníteni. Például információkat jelenít meg az Ethernet kártyákról, RAID vezérlőkről, videokártyákról stb.

• Ethernet csatolók keresése: \$ Ispci -D | egrep -i "Network | Ethernet"

```
tibi@server:~/test$ lspci -D|egrep -i "network|eth"
0000:00:03.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet Controll
er (rev 02)
```

Ethernet csatolók azonosítása

A rendszeren elérhető összes hálózati csatoló azonosítására használható az lshw parancs is.

Ishw -class network

```
tibi@server:~/test$ sudo lshw -class network
[sudo] tibi jelszava:
  *-network
       description: Ethernet interface
       product: 82540EM Gigabit Ethernet Controller
       vendor: Intel Corporation
       physical id: 3
       bus info: pci@0000:00:03.0
       logical name: enp0s3
       version: 02
       serial: 08:00:27:40:59:47
       size: 1Gbit/s
       capacity: 1Gbit/s
       width: 32 bits
       clock: 66MHz
       capabilities: pm pcix bus_master cap_list ethernet physical tp 10bt 10bt-fd 10
Obt 100bt-fd 1000bt-fd autonegotiation
       configuration: autonegotiation=on broadcast=yes driver=e1000 driverversion=7.3
.21-k8-NAPI duplex=full ip=192.168.0.108 latency=64 link=yes mingnt=255 multicast=yes
 port=twisted pair speed=1Gbit/s
       resources: irq:19 memory:f8200000-f821ffff ioport:d020(size=8)
```

Net-tools és Iproute2

 A net-tools csomag Debian 9-ben alapértelmezetten már nincs telepítve, így az ifconfig és más parancsok, csak ezen csomag telepítésével használhatók. A net-tools csomagot az iproute2 csomag váltja, amely alapértelmezetten telepítve van.

Alap parancsok

- ifconfig –a
- ip a

Az ifconfig

A hálózati kártyákról az **ifconfig** parancs is ad információt. De használata elavultnak számít, bár igen sokan használják.

• \$ ifconfig

```
tibi@server:~/test$ ifconfig
enp0s3: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
       inet 192.168.0.108 netmask 255.255.255.0 broadcast 192.168.0.255
       inet6 2a01:36d:2800:61e8:a00:27ff:fe40:5947 prefixlen 64 scopeid 0x0<global
       inet6 fe80::a00:27ff:fe40:5947 prefixlen 64 scopeid 0x20<link>
       ether 08:00:27:40:59:47 txqueuelen 1000 (Ethernet)
       RX packets 50119 bytes 65988352 (65.9 MB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 6321 bytes 649555 (649.5 KB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
       inet 127.0.0.1 netmask 255.0.0.0
       inet6 ::1 prefixlen 128 scopeid 0x10<host>
       loop txqueuelen 1000 (Local Loopback)
       RX packets 225 bytes 19736 (19.7 KB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 225 bytes 19736 (19.7 KB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

ifconfig

A kimenetben az alábbi táblázatból láthatunk, esetlegesen kulcsszavakat:		
UP	a hálózati kártya aktiválva van	
BROADCAST	képes broadcast üzeneteket küldeni	
RUNNING	A szükséges erőforrások le vannak foglalva	
ALLMULTICAST	az összes multicast üzenet elfogadása	
PROMISC	az eszköz minden forgalmat elfogad	
MULTICAST	küldhet és fogadhat multicast üzeneteket	
MTU	Az maximálisan átvihető csomagméret	

ifconfig parancs

Az ifconfig parancs segítségével megtudhatjuk a hálózati kártya IP címét is:

• \$ ifconfig eth0

Egy hálózati kártyára több IP címet is felhúzhatunk a következő módon:

• \$ ifconfig eth0:0 192.168.6.1 netmask 255.255.255.0

Az IP cím állandósítása:

• \$ iface eth0:0 inet static

address 192.168.6.1

netmask 255.255.255.0

A net-tools és a iproute2

Az **net-tools** a régi Linux kernelekhez készült hálózati eszköz gyűjtemény. Az újabb kernelek újabb lehetőségeihez az **iproute2** eszközgyűjtemény használandó. Most összevetjük a két csomag utasításait.

Cél	Net-tools	Iproute2
cím és kapcsolat (link) beállítás	ifconfig	ip add, ip link
irányítótábla	route	ip route
szomszédok (neighbors)	arp	ip neigh
vlan	vconfig	ip link
alagút (tunnels)	iptunnel	ip tunnel
multicast	ipmaddr	ip maddr
statisztika	netstat	SS
segítésg	ifconfighelp	ip help
interfészek státusza	ifconfig -s netstat -i	ip -s link

Példák a konfigurálás parancsokhoz

Het-tools balancs	net-tool	s parancs
-------------------	----------	-----------

iproute2 parancs

Minden kapcsolt megjelenítése a hálózati interfészeken:

ifconfig -a

ip link show

Az interfész aktiválása

ifconfig eth0 up

ip link set up eth0

Az interfész deaktiválása:

ifconfig eth0 down

ip link set down eth0

IPv4-es cím interfészhez rendelése:

ifconfig eth0 192.168.8.1/24

ip addr add 192.168.8.1/24 dev eth0

Több IP cím:

ifcofnig eth0:0 192.168.8.2 up

ip addr add 192.168.8.2/24 dev eth0

IPv4-es cím törlése interfészen:

ifconfig eth0 0

ip addr del 192.168.8.2/24 dev eth0

A route parancs és irányítótábla

net-tools parancs

iproute2 parancs

Irányítótábla megjelenítése:

route -n; route -rn

ip route show

Alapértelmezett átjáró hozzáadása:

route add default gw 192.168.10.1 eth0

ip route add default via 192.168.10.1 dev eth0

Alapértelmezett átjáró törlése:

route del default

ip route del default

Az ip parancs itt kivételes, mert cserét is lehetővé tesz:

ip route replace default via 192.168.10.1

Statikusan hálózat hozzáadása:

route add -net 192.168.20.0/24 gw 10.0.0.1 dev eth0

ip route add 192.168.20.0/24 via 10.0.0.1 dev eth0

Statikusan megadott hálózat törlése:

route del -net 192.168.20.0/24

ip route del 192.168.20.0/24

A statisztika

/ \ Jtatisztika					
net-tools parancs	iproute2 parancs				
Foglalat/Sokcet statisztika megtekintése:					
netstat -l	ss -l				
ARP tábla megtekintése:					
arp -an	ip neigh				
Statikus ARP bejegyezés hozzáadása:					
arp -s 192.168.5.100 00:3c:54:29:ac:23	ip neigh add 192.168.5.100 lladdr 00:3c:54:29:ac:23 dev eth0				
Statikus ARP bejegyzés törlése:					
arp -d 192.168.5.100	ip neigh del 192.168.5.100 dev eth0				
IPv6-os cím megtekintése:					

ifconfig eth0

ip -6 addr show dev eth0

Hálózat beállítások tartósan

DEBIAN esetén beállítások következő fájlokban tarolódnak amely szerkeszthető:

• nano etc/network/interfaces Kiíratás után:

allow-hotplug enp1s0

iface enp1s0 inet static

address 192.168.5.6

netmask 255.255.255.0

network 192.168.5.0

broadcast 192.168.5.255

gateway 192.168.5.1

Ezek után a felhúzzuk a hálózati kártyát: \$ ifup enp1s0

A hálózati kártya leállítása: \$ ifdown enp1s0

Hálózat beállítások tartósan

Az Ubuntu Server 18.04 alapértelmezetten netplan-t használja.

A netplan beállítható Debian GNU/Linux rendszeren is:

• apt install netplan.io

Beállítás:

Beállító fájlt generálni kell

\$ sudo generate netplan

• Ellenőrizzök létre jött a beállítást rögzítő fájl

```
$ Is /etc/netplan/*.yaml
50-cloud-init.yaml
```

• Szerkesztés:

\$ sudo nano /etc/netplan/50-cloud-init.yaml

Végül alkalmazzuk a beállításokat:

\$ netplan apply

```
network:
ethernets:
enp0s3:
addresses: []
dhcp: true
version: 2
```

```
network:
ethernets:
enp0s3:
addresses: [ip/maszk]
gateway4: ip
nameservers:
addresses: [8.8.8.8,8.8.4.4]
dhcp4: no
version: 2
```

Hálózat beállítások tartósan

Az Ubuntu Desktop 18.04 alapértelmezetten netplan-t használja.

A netplan beállítható Debian GNU/Linux rendszeren is:

• apt install netplan.io

Beállítás:

Beállító fájlt generálni kell

\$ sudo generate netplan

• Ellenőrizzök létre jött a beállítást rögzítő fájl

\$ ls /etc/netplan/*.yaml

01-network-manager-all.yaml vagy 01-netcfg.yaml

• Szerkesztés:

\$ sudo nano/etc/netplan/01-netcfg.yaml

Végül alkalmazzuk a beállításokat:

\$ netplan apply

```
# This file describes the network interfaces
 For more information, see netplan(5).
network:
  version: 2
  renderer: networkd
  ethernets:
    enp0s3:
      dhcp4: yes
    enp0s8:
      dhcp4: no
      dhcp6: no
      addresses: [192.168.56.110/24, ]
      gateway4: 192.168.56.1
      nameservers:
              addresses: [8.8.8.8, 8.8.4.4]
```

Hosztnév

A hosztnév tulajdonképpen a számítógép neve.

A gépnév lekérdezése: \$ hostnamectl

A gépnév beállítása: \$ hostnamectl set-hostname gepnev

```
tibi@server:/etc/netplan$ hostnamectl
   Static hostname: server
         Icon name: computer-vm
           Chassis: vm
        Machine ID: 323531196e5b4e37b8ed64933da18c9c
           Boot ID: f7bea6395c0d4e239ec6162851a058f5
    Virtualization: oracle
  Operating System: Ubuntu 18.04.4 LTS
            Kernel: Linux 4.15.0-76-generic
      Architecture: x86-64
tibi@server:/etc/netplan$ hostnamectl set-hostname tibi-server
tibi@server:/etc/netplan$ hostnamectl
   Static hostname: tibi-server
         Icon name: computer-vm
           Chassis: vm
        Machine ID: 323531196e5b4e37b8ed64933da18c9c
           Boot ID: f7bea6395c0d4e239ec6162851a058f5
    Virtualization: oracle
  Operating System: Ubuntu 18.04.4 LTS
            Kernel: Linux 4.15.0-76-generic
      Architecture: x86-64
```

Ez a beállítás tartós, az /etc/hostname fájl tartalmát is cseréli.

A traceroute

A traceroute egy számítógép-hálózati diagnosztikai eszköz, az internetprotokoll (IP) hálózaton áthaladó Csomagok útvonalának (path) meghatározására, és az átviteli késleltetés mérésére. Linux esetén telepíteni kell \$ sudo apt insttal traceroute

A traceroute a legtöbb operációs rendszeren elérhető. (A Microsoft Windows operációs rendszereken tracert-nek nevezik.)

```
tibi@server:/etc/netplan$ traceroute -F google.com 100
traceroute to google.com (172.217.19.110), 30 hops max, 100 byte packets
1    _gateway (192.168.0.1) 1.700 ms 1.519 ms 1.371 ms
2    pppoe.peer.digicable.hu (10.0.0.1) 1.957 ms 1.790 ms 1.551 ms
3    * * *
4    et-10.bb01.dunaujvaros.digicable.hu (94.21.3.48) 6.561 ms 6.382 ms 6.190 ms
5    * * *
6    * * *
7    te-0-2-0-4.xr01.budapest.digicable.hu (94.21.3.89) 7.920 ms te-0-3-0-1.xr01.budapest.digicable.hu (78.131.3.113) 7.419 ms 6.930 ms
8    as15169.peering.digicable.hu (94.21.255.2) 13.186 ms 12.547 ms 12.117 ms
9    74.125.242.241 (74.125.242.241) 11.634 ms 7.219 ms 6.160 ms
10    209.85.255.243 (209.85.255.243) 7.362 ms 6.761 ms 6.796 ms
11    bud02s27-in-f14.1e100.net (172.217.19.110) 6.004 ms 6.203 ms 5.957 ms
```

Telnet

- A Telnet lényege, hogy a saját számítógépéről be tud jelentkezni egy másik (mindegy, hogy a világ melyik részén lévő) számítógépre. Az FTP-vel és a Gopher-rel csak az ott lévő adatokat érte el, Telnet esetében programokat is futtathat a távoli (remote) gépen.
- A Telnet protokoll célja egy általánosan elérhető, kétirányú, nyolcbites byte-alapú kommunikációs rendszer biztosítása. Egyaránt használható két terminál közötti (linking), illetve processzek közötti kommunikációra. TCP alapon működik.
- Ma már a telnet-alapú terminálhasználat meglehetősen kevéssé elterjedt, lévén a telnetben nincs semmiféle titkosítás, ezért általában az SSH-t használják helyette. Ugyanakkor szinte az összes Linuxdisztribúció alapból telepíti a telnet-klienst, hiszen rengeteg egyéb protokollt lehet vele kényelmesen debuggolni, illetve "kézzel" irányítani: például HTTP, POP3, SMTP.

SSH

- A Secure Shell (röviden: SSH) egy szabványcsalád, és egyben egy protokoll is, amit egy helyi és egy távoli számítógép közötti biztonságos csatorna kiépítésére fejlesztettek ki. Nyilvános kulcsú titkosítást használ a távoli számítógép hitelesítésére, és opcionálisan a távoli számítógép is hitelesítheti a felhasználót.
- Az SSH-t leggyakrabban arra használják, hogy egy távoli gépre belépjenek vele és parancsokat adjanak ki, de támogatja a tunnelinget, azaz tetszőleges TCP portok és X11 kapcsolatok továbbítását; fájlok biztonságos átvitelére is használható a kapcsolódó SFTP (Secure FTP) és SCP (Secure Copy) protokollok segítségével.
- Az SSH szerverek alapértelmezésben a 22-es TCP portot figyelik.