Recall if X is a Banach space

$$(2) (\chi_n) \leq \chi, \qquad \chi_n \rightarrow \chi \quad \text{weakly}$$

$$i + \forall \varphi \in \chi^*, \quad |\varphi(\chi_n) - \varphi(\chi)| \rightarrow 0 \quad \text{of } n \rightarrow +\infty$$

Hilbert space de

①
$$(X_n) \in \mathcal{A}$$
 $X_n \to X$ strongly/uniformly / in norm topology

if $|(X_n - X_1)| \to 0$ or $n \to \infty$
 $|(X_n - X_n - X_n - X_n)| \to 0$

(2)
$$(X_n) \subseteq \text{ fe} \qquad X_n \longrightarrow X \quad \text{weakly}$$

if $\forall y \in \text{ fe} \quad |(X_n, y) - (X_n, y)| \rightarrow 0 \quad \text{ or } n \rightarrow \infty$

$$|(X_n - X_n, y)| \rightarrow 0 \quad \text{ or } n \rightarrow \infty$$

[Uniform Boundledness]
$$\{Y_n\} \in X^*$$
, X Banach if $\forall x \in X$, $|Y_n(x)| \leq M_X$ then $||Y_n|| \leq M$

[Radon-Risez Thm] if Un - u in H then (normed space Radon-Risez Thm)

Un - u if |im|| un|| = ||u||

Defn: If He is a Hilbert space, (Xn) EH is weakly Canchy if $\forall y \in H$, (<Xn, y>) $\in C$ is Cauchy.

Prop. Every weakly Carchy sequence of elements in H weakly converges to some element of H.

Proof: Since ((X,, y)) is (anchy and C is complete.

Then define $\mathcal{G}(y) = \lim_{n \to \infty} \mathcal{G}_n(y) := \lim_{n \to \infty} (X_n, y)$

(Yn) = te*, apply uniform boundedness than

I is bounded. \(\int \) te*

By Risez-Representation thm. $\exists x \in \mathcal{H}$, s.t. $\mathcal{G}(y) = \langle x, y \rangle \text{ s.t. } \langle x, y \rangle \longrightarrow \langle x, y \rangle$ i.e. $x_n \longrightarrow x$.

Prop H, $A \in B(H)$ compact operator with closed range. $(X_n) \in H$ converges weakly to $x \in H$

(a) (Axn) converges weakly

(b) (AXn) Converges strongly.

 $Pf(a) \forall y$, $\langle Ax_n - Ax, y \rangle = \langle A(x_n-x), y \rangle = \langle x_n-x, A^*y \rangle \rightarrow 0 \ \square$

(b) $X_n \rightarrow X \Rightarrow (X_n)$ is bounded (Every weakly convergence sequence in By definition of compart operator Banch space is bounded)

=> (AXn) is precomport. + classed range

 \forall convergent subsequence $(AX_{n_i}) \subseteq (AX_n)$ $AX_{n_{ic}} \rightarrow y$

 $\forall z \in \mathcal{H}$, $\langle \lambda, z \rangle = \lim_{k \to \infty} \langle \lambda \chi_{n_k}, z \rangle = \lim_{k \to \infty} (\chi_{n_k}, A^* \Xi)$

 $= (X, A^*z) = (Ax, z)$

=> y = Ax

All conveyent subsequences of (AXn) converges to AX.

Recall: (X_n) is a sequence in a compact subset of a metric space X with the property that every convergent subsequence has the same limit $x \in X$. Prove that $X_n \to X$ as $n \to +\infty$

Proof: Suppose $(X_n) \rightarrow X$: $\exists \ \varepsilon_0 > 0, \ \text{it} \ \forall N \in M, \ \exists \ n > N \ \text{i.t} \ d(X_n \times) \geqslant \varepsilon_0$ Contract $\{X_{n_k}\}$ inducquence

Due to compartness, extract a indicequence of $(X_{n_{1c}})$ i.t $X_{n_{1c_j}} \rightarrow X$ contribution!

Prop: Prelim $(A_n) \subseteq B(H) \qquad A_n \to A \qquad (\forall x,y \in H, |\langle A_n x, y \rangle - \langle A_x y \rangle| \to 0)$ $\forall x \in H, \quad ||A_n x|| \to ||A_x||$ $\text{then } A_n \to A \quad \text{strangly in } B(H, \mathbb{R}) \quad (\text{or } A_n \xrightarrow{*} A \text{ in } H^*)$ $\text{Proof:} \quad \forall x \in H \quad \text{fixed.} \quad \text{WTS} \quad ||A_n x - A_x|| \to 0$ $||A_n x - A_x||^2 = \langle A_n x - A_x, A_n x - A_x \rangle$ $= ||A_n x||^2 - \langle A_n x, A_x \rangle - \langle A_x, A_n x \rangle + ||A_x||^2$ $= ||A_n x||^2 - \langle (A_n - A)x, A_x \rangle - \langle A_x, (A_n - A)x \rangle - ||A_x||^2$ $= (||A_n x||^2 - ||A_x||^2) - \langle (A_n - A)x, A_x \rangle - \langle A_x, (A_n - A)x \rangle$

> D