

Temperature calibration report for file: exp116215

```
CRC32 file validation(s) = TRUE (ok.lines=353, not.ok.lines=353)
Consistency between index and number of lines in data file = FALSE
> Notes made during the analysis:
The K6510/2450 ohmmeter was calibrated in exp116697
(see file modifications function).
> End of notes.
```


value	item
Cal-session-20	Session
exp116215	File
DUT signal = HDRL.4035.K6510.102.ohm.neutral (ohm)	Thermistor / temperature gauge signal (DUT)
Reference = Burns.3925.HP3458.ohm (degC)	LFMD reference temperature signal (REF)
Yes	Treat / analyze DUT as a thermistor?
MELab-script-BATH-temperature-019.txt	MELab temperature script
'16-07-2019 - 09:22:36' - '17-07-2019 - 17:03:36'	Measurement time: start - stop
31.68 h	Duration
K2450.setpoint.uA	Variable(s) with thermistor current
HDRL.4035.K6510.102.uW.neutral	Variable(s) with thermistor power
22.70 degC	Lab. temperature
45.8 %RH	Lab. humidity
1011.41 hPa	Lab. pressure

Thermistor tab. 1. Resistance estimates at zero power (R0) data.

Reference = Burns.3925.HP3458.ohm

DUT signal = HDRL.4035.K6510.102.ohm.neutral

DUT unit = ohm

DUT extra info = Thermistor HDRL-4035

BATH.group	fn	Temp.index	N	R 0	u.R0	REF.degC	sd.REF.degC
10	exp116215	1	23	3665.439	0.081	10.004	0.002
20	exp116215	2	23	2440.138	0.104	19.997	0.004
20	exp116215	10	23	2439.189	0.029	19.997	0.001
30	exp116215	3	23	1663.571	0.087	29.993	0.004
30	exp116215	9	23	1663.081	0.037	29.992	0.002
40	exp116215	4	23	1159.356	0.059	39.998	0.005
40	exp116215	8	23	1159.687	0.024	39.991	0.003
5 0	exp116215	5	23	825.531	0.007	49.996	0.001
5 0	exp116215	7	23	825.723	0.013	49.996	0.001
60	exp116215	0	23	600.296	0.023	59.996	0.001
60	exp116215	6	23	599.953	0.012	59.997	0.002

Thermistor tab. 2. Resistance estimates at zero power (R0) data.

Reference = Burns.3925.HP3458.ohm

DUT signal = HDRL.4035.K6510.102.ohm.neutral

DUT unit = ohm

DUT extra info = Thermistor HDRL-4035

Slp.ohm.mW is the slope from a lin. regression of R (ohm) vs. power (mW). u.Slp is the uncertainty.

BATH.group	fn	Temp.index	N	R 0	u.R0	slp.ohm.mW	u.slp.ohm.mW
10	exp116215	1	23	3665.439	0.081	-83.062	0.539
20	exp116215	2	23	2440.138	0.104	-52.871	1.039
20	exp116215	10	23	2439.189	0.029	-74.969	0.293
30	exp116215	3	23	1663.571	0.087	-36.348	1.268
30	exp116215	9	23	1663.081	0.037	-45.118	0.535
40	exp116215	4	23	1159.356	0.059	-25.677	1.243
40	exp116215	8	23	1159.687	0.024	-21.262	0.508
50	exp116215	5	23	825.531	0.007	-12.874	0.196
5 0	exp116215	7	23	825.723	0.013	-15.955	0.396
60	exp116215	0	23	600.296	0.023	-11.084	0.942
60	exp116215	6	23	599.953	0.012	-9.723	0.465

Thermistor Tab. 3. Resistance estimates at zero power (R0).

Reference = Burns.3925.HP3458.ohm

DUT signal = HDRL.4035.K6510.102.ohm.neutral

DUT unit = ohm

DUT extra info = Thermistor HDRL-4035

R.mean, R.sd, R.min, and R.max were computed regardless of test current (power).

BATH.group	fn	Temp.index	N	R 0	R.mean	R.sd	R.min	R.max
10	exp116215	1	23	3665.439	3657.900	10.186	3637.978	3665.616
20	exp116215	2	23	2440.138	2436.936	4.343	2428.217	2440.954
20	exp116215	10	23	2439.189	2434.658	6.120	2422.613	2439.295
30	exp116215	3	23	1663.571	1662.069	2.056	1657.917	1663.952
30	exp116215	9	23	1663.081	1661.218	2.521	1656.090	1663.332
40	exp116215	4	23	1159.356	1158.616	1.025	1156.619	1160.046
40	exp116215	8	23	1159.687	1159.073	0.834	1157.369	1159.784
5 0	exp116215	5	23	825.531	825.267	0.358	824.548	825.560
50	exp116215	7	23	825.723	825.396	0.446	824.525	825.802
60	exp116215	0	23	600.296	600.130	0.240	599.642	600.479
60	exp116215	6	23	599.953	599.808	0.201	599.388	600.002

Thermistor tab. 4. Model 1 fit.

DUT signal = HDRL.4035.K6510.102.ohm.neutral

DUT extra info = Thermistor HDRL-4035

MODEL 1: We fit the thermistor data using the LFMD model (see Nicholas & White Traceabel temperatures p.250):

fm <- $lm(1/T \sim a0 + a1*log(R/Rn) + a2*log(R/Rn)^2 + a3*log(R/Rn)^3))$ where T is the measured reference temperatrature in K and where R is the resistance at zero power (R=R0) normalized by an arbitary constant Rn = 1 ohm. The four coefficients (a0 to a3) are:

fm.I	LFMD.p
9.02912702	70e-04
3.987525208	36e-04
-1.631367700	03e-05
8.232601156	51e-07

Goodness of model fit: std. dev. of residuals = 5.893 mK

R0	REF.degC	FIT.degC	delta.mK
3665.439	10.004	10.003	1.5
2440.138	19.997	19.995	2.3
2439.189	19.997	20.005	-7.7
1663.571	29.993	29.987	6.8
1663.081	29.992	29.995	-2.2
1159.356	39.998	39.996	1.6
1159.687	39.991	39.988	2.6
825.531	49.996	50.004	-7.6
825.723	49.996	49.996	-0.4
600.296	59.996	59.985	10.4
599.953	59.997	60.004	-7.2

Page 6 User: Claus E. Andersen
Analyzed: 2019-11-26 08:45:49

Thermistor tab. 5. Model 1 vs. 2 comparison.

DUT signal = HDRL.4035.K6510.102.ohm.neutral

DUT extra info = Thermistor HDRL-4035

Comparsion between Model 1 (the LFMD model) and Model 2 (the HDRL model). For given temperatures, we use model 1 to compute the resistance, and we then convert that back to a temperature using model 2. The difference (delta) between the original temperature is given in mK. The change in resistance pr. degC is given as ohm.pr.degC for the LFMD model.

degC	R0.ohm.LFMD	ohm.pr.degC.LFMD	degC.HDRL.model	mK.delta
10.000	3665.85	-153.7	10.019	18.8
10.100	3650.50	-153.0	10.118	18.3
15.000	2981.44	-121.4	14.997	-3.0
20.000	2439.65	-96.4	19.987	-12.7
20.100	2430.03	-95.9	20.087	-12.8
25.000	2008.24	-77.0	24.987	-13.5
25.100	2000.56	-76.6	25.087	-13.4
30.000	1662.75	-61.8	29.992	-8.4
30.100	1656.58	-61.6	30.092	-8.3
35.000	1384.51	-49.9	35.000	-0.4
40.000	1159.20	-40.5	40.008	7.7
40.100	1155.15	-40.4	40.108	7.8
45.000	975.76	-33.1	45.013	13.2
50.000	825.63	-27.2	50.014	13.7
50.100	822.92	-27.1	50.114	13.7
55.000	702.13	-22.4	55.007	6.8
59.900	601.88	-18.6	59.891	-9.2
60.000	600.02	-18.6	59.990	-9.7

Page 7 User: Claus E. Andersen
Analyzed: 2019-11-26 08:45:49

Thermistor tab. 6. Model 2 fit.

DUT signal = HDRL.4035.K6510.102.ohm.neutral

DUT extra info = Thermistor HDRL-4035

MODEL 2: We fit the thermistor data using the HDRL model(see HDRL I-004):

 $T \sim B/(log(R) + A)) - Tk$

where T is the measured reference temperatrature in degC and where R is the resistance at zero power (R0).

The coefficients are (A, B, Tk) :

p.HDRL	
4.5709929867e+00	
3.8695713822e+03	
2.9281647864e+02	

Goodness of model fit: std. dev. of residuals = 13.939 mK

R0	REF.degC	FIT.degC	delta.mK
3665.439	10.004	10.021	17.3
2440.138	19.997	19.982	-15.0
2439.189	19.997	19.992	-5.0
1663.571	29.993	29.978	-15.2
1663.081	29.992	29.986	-6.2
1159.356	39.998	40.004	6.0
1159.687	39.991	39.996	5.0
825.531	49.996	50.017	21.3
825.723	49.996	50.010	14.2
600.296	59.996	59.976	-20.0
599.953	59.997	59.994	-2.5

ohm	degC
500.000	65.95549
1000.000	44.29096
1500.000	32.78954
2000.000	25.09386
2500.000	19.37063
3000.000	14.84516
3500.000	11.12005
4000.000	7.96538

Page 8 User: Claus E. Andersen
Analyzed: 2019-11-26 08:45:49

Thermistor tab. 7. Model 2 vs. 1 comparison.

DUT signal = HDRL.4035.K6510.102.ohm.neutral

DUT extra info = Thermistor HDRL-4035

Comparsion between Model 2 (the HDRL model) and Model 1 (the LFMD model). For given temperatures, we use model 2 to compute the resistance, and we then convert that back to a temperature using model 2. The difference (delta) between the original temperature is given in mK. The change in resistance pr. degC is given as ohm.pr.degC for the HDRL model.

degC	R0.ohm.HDRL	ohm.pr.degC.HDRL	degC.LFMD.model	mK.delta
10.000	3668.76	-154.8	9.981	-18.9
10.100	3653.32	-154.0	10.082	-18.4
15.000	2981.08	-121.7	15.003	3.0
20.000	2438.43	-96.4	20.013	12.7
20.100	2428.81	-96.0	20.113	12.8
25.000	2007.20	-76.9	25.013	13.5
25.100	1999.53	-76.5	25.113	13.4
30.000	1662.23	-61.7	30.008	8.4
30.100	1656.07	-61.4	30.108	8.3
35.000	1384.49	-49.8	35.000	0.4
40.000	1159.51	-40.5	39.992	-7.6
40.100	1155.46	-40.3	40.092	-7.8
45.000	976.20	-33.1	44.987	-13.2
50.000	826.00	-27.2	49.986	-13.7
50.100	823.29	-27.1	50.086	-13.7
55.000	702.28	-22.5	54.993	-6.8
59.900	601.71	-18.7	59.909	9.3
60.000	599.84	-18.6	60.010	9.7

Page 9 User: Claus E. Andersen
Analyzed: 2019-11-26 08:45:49

Thermistor tab. 8. Repeats.

DUT signal = HDRL.4035.K6510.102.ohm.neutral

DUT extra info = Thermistor HDRL-4035

Evaluate the thermistor gives the same results for given temp. set points

N is the number a given setpoint was used.

ohm.per.degC.LFMD is the change in resistance pr. degC for the LFMD model.

RO is the resistance (in ohm) at zero power.

RO.sd is the standard dev. of the N results in ohm

R0.sd.mK is the same thing expressed in mK

BATH.group	R0.mean	R0.sd	R0.range	N	ohm.pr.degC.LFMD	R0.sd.mK	R0.range.mK
10	3665.44	NaN	0.000	1	-153.7	NaN	0.0
20	2439.66	0.670	0.948	2	-96.4	7.0	9.8
30	1663.33	0.347	0.491	2	-61.8	5.6	7.9
40	1159.52	0.234	0.331	2	-40.5	5.8	8.2
50	825.63	0.136	0.192	2	-27.2	5.0	7.1
60	600.12	0.242	0.343	2	-18.6	13.1	18.5

Page 10 User: Claus E. Andersen Analyzed: 2019-11-26 08:45:49

Overview tab. 1.

Reference = Burns.3925.HP3458.ohm

DUT signal = HDRL.4035.K6510.102.ohm.neutral

DUT unit = ohm

DUT extra info = Thermistor HDRL-4035

Note that for thermistors this table contains just the raw (pooled) results without estimation of zero-power resistance.

BATH.group	fn	REF.degC.mean	DUT.signal.mean	REF.degC.sd	DUT.signal.sd	date	delta
10	exp116215	10.004	3657.900	0.002	10.186	16-07-2019	3647.8956
20	exp116215	19.997	2435.797	0.003	5.372	16-07-2019	2415.8002
30	exp116215	29.993	1661.644	0.003	2.315	16-07-2019	1631.6506
40	exp116215	39.994	1158.845	0.005	0.952	16-07-2019	1118.8504
50	exp116215	49.996	825.331	0.001	0.405	17-07-2019	775.3351
60	exp116215	59.996	599.969	0.002	0.273	16-07-2019	539.9728

Overview tab. 2.

Fitting Stein-Hart equation to DUT resistance (only relevant if DUT is a Pt-100 sensor).

Reference = Burns.3925.HP3458.ohm

DUT signal = HDRL.4035.K6510.102.ohm.neutral

DUT unit = ohm

Stein-Hart A-coeff = 0.0011910467372275

Stein-Hart B-coeff = 0.000279657565462669

Stein-Hart C-coeff = 8.33570467240254e-08

BATH.group	fn	REF.degC.mean	DUT.signal.mean	REF.degC.sd	DUT.signal.sd	DUT.degC.fit	delta.fit
10	exp116215	10.004	3657.900	0.002	10.186	10.010	0.0055
20	exp116215	19.997	2435.797	0.003	5.372	19.989	-0.0082
30	exp116215	29.993	1661.644	0.003	2.315	29.985	-0.0076
40	exp116215	39.994	1158.845	0.005	0.952	40.000	0.0063
50	exp116215	49.996	825.331	0.001	0.405	50.013	0.0169
60	exp116215	59.996	599.969	0.002	0.273	59.983	-0.0129

DUT vs. REF

DUT signal = HDRL.4035.K6510.102.ohm.neutral (ohm)

DUT vs. time the setpoint has been active DUT signal = HDRL.4035.K6510.102.ohm.neutral 10 • 50 100 150 40 degC 60 degC 50 degC 615 840 Mean = 825.331 ohmMean = 599.969 ohmMean = 1158.845 ohm 1170 610 835 Sd = 0.952 ohmSd = 0.405 ohmSd = 0.273 ohm1165 N = 46N = 46N = 46605 830 -Range = 3.427 ohm Range = 1.277 ohm Range = 1.091 ohm 1160 600 825 1155 595 820 1150 590 815 DUT.signal 1145 585 10 degC 20 degC 30 degC 1675 Mean = 3657.900 ohm 3665 2445 Mean = 2435.797 ohmMean = 1661.644 ohm1670 Sd = 10.186 ohmSd = 2.315 ohm3660 2440 N = 23N = 461665 3655 Range = 27.637 ohm 2435 Range = 18.341 ohm 1660 3650 2430 1655 3645 2425 1650 3640 2420 1645 50 100 150 50 150 100 Set-point duration [min]

DUT vs. thermistor power

DUT signal = HDRL.4035.K6510.102.ohm.neutral (ohm)

DUT vs. thermistor power (grouped by setpoint run no.)
DUT signal = HDRL.4035.K6510.102.ohm.neutral (ohm)

REF vs. thermistor power (grouped by setpoint run no.)
DUT signal = HDRL.4035.K6510.102.ohm.neutral (ohm)

This is the final page of the temperature

report for file: exp116215