

Segundo Cuatrimestre 2025

Pau Frangi Mahiques, Pablo Pardo Cotos y Diego Rodríguez Cubero $Ciencias\ Matemáticas\ e$ $Ingenería\ Informática$

¹basado en la apuntes de Jesús Jaramillo

Contents

Т	Examenes Resueitos						
	1.1 Test de seguimiento (Marzo-2023). Modelo A	2					
2	Medida de Lebesgue						
	2.1 Medida Exterior de Lebesgue en \mathbb{R}^n	2					
	2.2 Medida de Lebesgue en \mathbb{R}^n	5					
	2.3 Medibilidad de Funciones	12					
	2.4 Relación entre la integral de Lebesgue y la integral de Riemann	28					
3	Funciones integrables en varias variables	33					
4	Teoremas de Fubini y Tonelli	34					
	4.1 Teorema de Tonelli	34					
	4.2 Teorema de Fubini	38					
5	Cambio de variables	41					
6	Funciones definidas por integrales	5 5					
7	Integrales de línea: campos escalares y vectoriales	56					
	7.1 Campos Vectoriales	62					
	7.2 Campos Conservativos	67					
8	Teorema de Green						
9	Superficies paramétricas	72					
10	10 Integrales de superficie						
11	1 Teorema de Stokes. Teorema de la divergencia de Gauss						
12	Apéndice	7 5					

1 Examenes Resueltos

1.1 Test de seguimiento (Marzo-2023). Modelo A

Ejercicio 1. Indicar si las afirmaciones siguientes son verdaderas o falsas:

- 1. Si $E \in \mathbb{R}^n$ es medible, entonces $m(E) = m(\bar{E})$.
- 2. Sea $E \in \mathbb{R}^n$. Si $m(\delta E) = 0$, entonces E es medible.

Solución:

1. Falso.

Tengamos como ejemplo \mathbb{Q} cuya medida es 0 por ser numerable, pero su adherencia $\overline{\mathbb{Q}} = \mathbb{R}$ tiene medida infinita.

2. Verdadero.

Si $m(\delta E) = 0$, se deduce que $m^*(\bar{E}) = m^*(\dot{E})$. Entonces apliquemos la definición de conjunto medible:

Sea $S \subset \mathbb{R}^n$ arbitrario, queremos comprobar que $m^*(S) = m^*(S \cap E) + m^*(S \cap E^c)$.

Como $m^*(\bar{E}) = m^*(\check{E})$, y teniendo en cuenta que $\check{E} \subset E \subset \bar{E}$, se tiene que:

$$m^*(S \cap \check{E}) \le m^*(S \cap E) \le m^*(S \cap \bar{E}).$$

Ademas, se tiene:

$$m^*(S \cap \check{E}^c) \ge m^*(S \cap E^c) \ge m^*(S \cap \bar{E}^c).$$

Entonces tenemos que $m^*(S \cap \mathring{E}) + m^*(S \cap \bar{E}^c) \le m^*(S \cap E) + m^*(S \cap E^c) \le m^*(S \cap \bar{E}) + m^*(S \cap E^c)$.

Teniendo en cuenta que E es abierta y E es cerrado, ambos son medibles.

Finalmente

2 Medida de Lebesgue

2.1 Medida Exterior de Lebesgue en \mathbb{R}^n

Definición 2.1.1 [n-Réctangulo]

Un n-rectángulo en \mathbb{R}^n es un conjunto de la forma:

$$R = \prod_{i=1}^{n} [a_i, b_i] = [a_1, b_1] \times [a_2, b_2] \times \dots \times [a_n, b_n] \ donde \ a_i \le b_i \ \forall i$$
 (1)

Definimos el volúmen de R como:

$$vol(R) = \prod_{i=1}^{n} (b_i - a_i)$$
(2)

Consideramos también los n-rectángulos abiertos denotados por R, que se definen de forma análoga. Si nos se especifica si un rectángulo es abierto o cerrado, se asume que es cerrado.

Observación 2.1.1

Dado R n-rectángulo cerrado tal que $R = \prod_{i=1}^{n} [a_i, b_i]$, podemos considerar para cada $\delta > 0$ el n-rectángulo abierto $R_{\delta} = \prod_{i=1}^{n} (a_i - \delta, b_i + \delta)$. Se tiene que $R \subset R_{\delta}$ y $vol(R_{\delta}) = \prod_{i=1}^{n} (b_i - a_i + 2\delta) =$

 $vol(R) + 2n\delta$. Por tanto:

$$vol(R) = \lim_{\delta \to 0} vol(R_{\delta})$$
(3)

Definición 2.1.2 [Medida Exterior de Lebesgue]

Sea $A \subset \mathbb{R}^n$. Definitions la medida exterior de A como:

$$m^*(A) = \inf \left\{ \sum_{i=1}^{\infty} vol(R_i) \mid A \subset \bigcup_{i=1}^{\infty} R_i \ con \ R_i \ n\text{-rectángulos cerrados} \right\}$$
 (4)

Donde el ínfimo se toma sobre todas las colecciones numerables de n-rectángulos que recubren A. A esta medida exterior la llamamos medida de Lebesgue exterior.

Observación 2.1.2

Sea $A \subset \mathbb{R}^n$ entonces:

- 1. $m^*(A) = +\infty \iff \forall (R_j)_{j \in J} \text{ tal que } A \subset \bigcup_{j \in J} R_j \text{ se tiene que } \sum_{j \in J} vol(R_j) = +\infty$
- 2. $m^*(A) = 0 \iff \forall \epsilon > 0 \ \exists (R_j)_{j \in J} \ tal \ que \ A \subset \bigcup_{j \ inJ} R_j \ y \ \sum_{j \in J} vol(R_j) < \epsilon$
- 3. $m^*(A) = \alpha \in \mathbb{R}^+ \iff \forall \epsilon > 0 \ \exists (R_j)_{j \in J} \ tal \ que \ A \subset \bigcup_{j \in J} R_j \ y \ \sum_{j \ inJ} vol(R_j) < \alpha + \epsilon$

Definición 2.1.3 [Conjunto Nulo]

Se dice que $A \subset \mathbb{R}^n$ es un conjunto nulo si $m^*(A) = 0$.

Ejemplo

- 1. Si R es un n-rectángulo degenerado, es decir, R tiene alguno de los lados de longitud 0, entonces R es un conjunto nulo $(m^*(R) = 0)$.
- 2. En \mathbb{R}^2 , sea el conjunto $A=\{(x,x):0\leq x\leq 1\}$. Dado $\epsilon>0$ tomamos $m\in\mathbb{N}$ tal que $m>\frac{1}{\epsilon}$. Consideramos $A\subset\bigcup_{i=1}^m[\frac{i-1}{m},\frac{i}{m}]\times[\frac{i-1}{m},\frac{i}{m}]$. Se tiene que $m^*(A)\leq\sum_{i=1}^m\mathrm{vol}([\frac{i-1}{m},\frac{i}{m}]\times[\frac{i-1}{m},\frac{i}{m}])=\frac{1}{m^2}\cdot m=\frac{1}{m}<\epsilon$. Por tanto, $m^*(A)=0$.

Denotamos por $\mathcal{P}(\mathbb{R}^n)$ al conjunto de todos los subconjuntos de \mathbb{R}^n .

Teorema 2.1.1

La función $m^* : \mathcal{P}(\mathbb{R}^n) \to [0, +\infty]$ satisface:

- 1. $m^*(\emptyset) = 0$
- 2. $m^*(A) \leq m^*(B)$ si $A \subset B$
- 3. $m^*(\bigcup_{i=1}^{\infty} A_i) \le \sum_{i=1}^{\infty} m^*(A_i)$

Demostración.

1. $\emptyset \subset \bigcup_{i=1}^{\infty} R_i \text{ con } R_j \text{ n-rectángulos degenerados } \implies m^*(\emptyset) \leq \sum_{j=1}^{\infty} \text{vol}(R_j) = 0 \implies m^*(\emptyset) = 0.$

- 2. Sea $A \subset B$ y sea $(R_j)_{j \in J}$ tal que $B \subset \bigcup_{j \in J} R_j$. Entonces $(R_j)_{j \in J}$ es un recubrimiento de A y por tanto $m^*(A) \leq \sum_{j \in J} \operatorname{vol}(R_j) \implies m^*(A) \leq m^*(B)$.
- 3. Si $\sum_{j=1}^{\infty} m^*(A_j) = +\infty$ entonces el resultado es inmediato. Supongamos que $\sum_{j=1}^{\infty} m^*(A_j) < +\infty$. Sea $\epsilon > 0$. Para cada $j \in \mathbb{N}$, $\exists (R_{j,i})_{i=1}^{\infty}$ tal que $A_j \subset \bigcup_{i=1}^{\infty} R_{j,i}$ y $\sum_{i=1}^{\infty} \operatorname{vol}(R_{j,i}) < m^*(A_j) + \frac{\epsilon}{2^j}$. Entonces $\bigcup_{j=1}^{\infty} A_j \subset \bigcup_{j=1}^{\infty} \bigcup_{i=1}^{\infty} R_{j,i}$ y por tanto se tiene que $m^*(\bigcup_{j=1}^{\infty} A_j) \leq \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \operatorname{vol}(R_{j,i}) < \sum_{j=1}^{\infty} (m^*(A_j) + \frac{\epsilon}{2^j}) = \sum_{j=1}^{\infty} m^*(A_j) + \epsilon$. Como ϵ es arbitrario, se tiene que $m^*(\bigcup_{j=1}^{\infty} A_j) \leq \sum_{j=1}^{\infty} m^*(A_j)$.

Corolario 2.1.1

La unión numerable de conjuntos nulos es un conjunto nulo.

Demostración. Sea $(A_j)_{j=1}^{\infty} \subset R^n$ tal que $m^*(A_j) = 0$ $\forall j \in \mathbb{N}$ entonces $m^*(\bigcup_{j=1}^{\infty} A_j) \leq \sum_{j=1}^{\infty} m^*(A_j) = 0$ $\implies m^*(\bigcup_{j=1}^{\infty} A_j) = 0$.

Lema 2.1.1

Sea $A \in \mathbb{R}^n$ entonces $m^*(A) = \inf \{ \sum_{i=1}^{\infty} vol(Q_i) \mid A \subset \bigcup_{i=1}^{\infty} Q_i \text{ con } Q_i \text{ n-rectángulos abiertos} \}$

Demostración. Denotamos por β el ínfimo de la expresión del enunciado del lema. Sea $(Q_j)_{j\in\mathbb{N}}$ una sucesión de rectángulos abiertos tal que $A\subset\bigcup_{j\in\mathbb{N}}Q_j$. Tenemos entonces que $A\subset\bigcup_{j\in\mathbb{N}}Q_j\subset\bigcup_{j\in\mathbb{N}}\overline{Q_j}$ y puesto que $\sum_{j\in\mathbb{N}}\operatorname{vol}(\overline{Q_j})=\sum_{j\in\mathbb{N}}\operatorname{vol}(Q_j)$, se tiene que $m^*(A)\leq\beta$. Veamos ahora la otra desigualdad $\beta\leq m^*(A)$. Si $m^*(A)=+\infty$ entonces $\beta=+\infty$ y no hay nada que demostrar. Supongamos que $m^*(A)<+\infty$. Sea $\epsilon>0$. Por definición de medida exterior, $\exists (R_j)_{j\in\mathbb{N}}$ sucesión de n-rectángulos cerrados tal que $A\subset\bigcup_{j\in\mathbb{N}}R_j$ y $\sum_{j\in\mathbb{N}}\operatorname{vol}(R_j)< m^*(A)+\epsilon$. Para cada $j\in\mathbb{N}$ consideramos $\epsilon_j=\frac{\epsilon}{2^j}$. Escogiendo $\delta_j>0$ lo suficientemente pequeño, se tiene que $\operatorname{vol}(R_j)_{\delta_j}<\operatorname{vol}(R_j)+\epsilon_j$ para todo $j\in\mathbb{N}$. Nótese que aquí $\operatorname{vol}(R_j)_{\delta_j}$ denota el volumen del n-rectángulo abierto R_j con lados aumentados en δ_j . Entonces $A\subset\bigcup_{j\in\mathbb{N}}R_j\subset\bigcup_{j\in\mathbb{N}}(R_j)_{\delta_j}$ y $\sum_{j\in\mathbb{N}}\operatorname{vol}(R_j)_{\delta_j}<\sum_{j\in\mathbb{N}}(\operatorname{vol}(R_j)+\epsilon_j)=\sum_{j\in\mathbb{N}}\operatorname{vol}(R_j)+\epsilon< m^*(A)+2\epsilon$. Por tanto, $\beta\leq m^*(A)$.

Definición 2.1.4 [Partición de un Conjunto]

Una partición del intervalo [a,b] es una colección numerable de puntos $P = \{a = t_0 < t_1 < ... < t_n = b\}$. Dado un n-rectángulo $R \subset \mathbb{R}^n$, una partición $P = \{P_1, P_2, ..., P_n\}$ de R es una colección particiones P_i de $[a_i, b_i]$ para cada i = 1, 2, ..., n siendo $R = \prod_{i=1}^n [a_i, b_i]$.

Los subrectángulos de P son los conjuntos de la forma

$$S_{i_1,i_2,\dots,i_n} = \prod_{j=1}^n [t_{i_j}^j, t_{i_j+1}^j]$$
 (5)

Denotamos $S \in P$ para indicar que S es un subrectángulo de P.

Lema 2.1.2

Sea $R \subset \mathbb{R}^n$ un n-rectángulo y P una partición de R. Entonces:

- 1. $R = \bigcup_{S \in P} S$
- 2. $Si S, S' \in P \ y S \neq S' \ entonces S \cap S' = \emptyset$

3. $vol(R) = \sum_{S \in P} vol(S)$

Proposición 2.1.1

Sea $R \subset \mathbb{R}^n$ un n-rectángulo entonces $m^*(R) = vol(R)$.

Demostración.

• $m^*(R) \leq \text{vol}(R)$ Sea $R \subset \bigcup_{j \in \mathbb{N}} R_j$ con $R_1 = R$ y R_j degenerados para j > 1. Entonces:

$$m^*(R) \le \sum_{j \in \mathbb{N}} \operatorname{vol}(R_j) = \operatorname{vol}(R_1) + \sum_{j=2}^{\infty} \operatorname{vol}(R_j) = \operatorname{vol}(R_1) = \operatorname{vol}(R).$$

• $m^*(R) \ge \operatorname{vol}(R)$ Dado $\epsilon > 0$ existe $(Q_j)_{j \in \mathbb{N}}$ sucesión de n-rectángulos abiertos tal que $R \subset \bigcup_{j \in \mathbb{N}} Q_j$ y $\sum_{j \in \mathbb{N}} \operatorname{vol}(Q_j) < m^*(R) + \epsilon$. Sabemos que R es compacto al ser cerrado y acotado y, por tanto, al ser $\bigcup_{j \in \mathbb{N}} Q_j$ un recubrimiento abierto de R, existe un subrecubrimiento finito $\{Q_1, Q_2, ..., Q_m\}$ de R. Entonces $R \subset \bigcup_{i=1}^m Q_i \subset \bigcup_{i=1}^m \overline{Q}_i$. Consideramos $R_j = R \cap \overline{Q}_j$ para j = 1, 2, ..., m. Tenemos entonces que $R = \bigcup_{j=1}^m \overline{Q}_j$ y además prolongando los lados podemos obtener una partición P de R tal que cada subrectángulo de P está contenido el algún R_j para $1 \le j \le m$. Por tanto, $\operatorname{vol}(R) = \sum_{S \in P} \operatorname{vol}(S) \le \sum_{j=1}^m \operatorname{vol}(R_j) \le \sum_{j=1}^m \operatorname{vol}(Q_j) < m^*(R) + \epsilon$. Por tanto, $m^*(R) \ge \operatorname{vol}(R)$.

2.2 Medida de Lebesgue en \mathbb{R}^n

Notación: Para $A \subset \mathbb{R}^n$ denotamos por A^c al complementario de A en \mathbb{R}^n .

Definición 2.2.1 [Conjunto Medible]

Un conjunto $A \subset \mathbb{R}^n$ es medible en el sentido de Lebesgue si para todo $R \subset \mathbb{R}^n$ n-rectángulo se tiene que:

$$m^*(R) = m^*(R \cap A) + m^*(R \cap A^c)$$
(6)

Proposición 2.2.1

Sea $A \subset \mathbb{R}^n$ entonces son equivalentes:

- 1. A es medible en el sentido de Lebesgue.
- 2. $\forall E \subset \mathbb{R}^n$ conjunto se tiene que $m^*(E) = m^*(E \cap A) + m^*(E \cap A^c)$.
- 3. $\forall E \subset \mathbb{R}^n$ conjunto se tiene que $m^*(E) \geq m^*(E \cap A) + m^*(E \cap A^c)$.

Demostración.

• $(2) \Longrightarrow (3)$ Trivial.

- (3) \Longrightarrow (2) Sabemos que $m^*(E) \le m^*(E \cap A) + m^*(E \cap A^c)$. Veamos que la otra desigualdad se cumple siempre: $m^*(E) = m^*((E \cap A) \cup (E \cap A^c)) \le m^*(E \cap A) + m^*(E \cap A^c)$.
- $(2) \implies (1)$ Inmediato, tomando E = R.
- (1) \Longrightarrow (3) Sea $E \subset \mathbb{R}^n$ conjunto, si $m^*(E) = +\infty$ entonces el resultado es inmediato. Supongamos que $m^*(E) < +\infty$. Sea $\epsilon > 0$. Por definición de medida exterior, $\exists (R_j)_{j \in \mathbb{N}}$ sucesión de n-rectángulos cerrados tal que $E \subset \bigcup_{j \in \mathbb{N}} R_j$ y $\sum_{j \in \mathbb{N}} \operatorname{vol}(R_j) < m^*(E) + \epsilon$. Entonces $E \cap A \subset \bigcup_{j \in \mathbb{N}} R_j \cap A$ y $E \cap A^c \subset \bigcup_{j \in \mathbb{N}} R_j \cap A^c$. Por tanto, $m^*(E \cap A) + m^*(E \cap A^c) \le \sum_{j \in \mathbb{N}} m^*(R_j \cap A) + \sum_{j \in \mathbb{N}} m^*(R_j \cap A^c) = \sum_{j \in \mathbb{N}} \operatorname{vol}(R_j) < m^*(E) + \epsilon$. Por tanto, $m^*(E) \ge m^*(E \cap A) + m^*(E \cap A^c)$.

Definición 2.2.2 $[\sigma$ -Álgebra]

Sea X un conjunto y $A \subset \mathcal{P}(X)$ una colección de subconjuntos de X. Se dice que A es una σ -álgebra si:

- 1. $X \in \mathcal{A}$
- 2. $Si A \in \mathcal{A} \implies A^c \in \mathcal{A}$
- 3. $\forall (A_j)_{j\in\mathbb{N}} \subset \mathcal{A} \text{ se tiene que } \bigcup_{j\in\mathbb{N}} A_j \in \mathcal{A}$

Definición 2.2.3 [Medida]

Sea X un conjunto y $A \subset \mathcal{P}(X)$ una σ -álgebra, entonces una medida en X es una función $\mu : A \to [0, +\infty]$ tal que:

- 1. $\mu(\emptyset) = 0$
- 2. Si $(A_j)_{j\in\mathbb{N}}\subset\mathcal{A}$ es una colección numerable de conjuntos disjuntos dos a dos entonces:

$$\mu(\bigcup_{j\in\mathbb{N}} A_j) = \sum_{j\in\mathbb{N}} \mu(A_j)$$

Teorema 2.2.1 [Medida de Lebesgue en \mathbb{R}^n]

La familia M de todos los conjuntos medibles de \mathbb{R}^n es una σ -álgebra y $m=m^* \upharpoonright_M$ es una medida numerablemente aditiva que llamaremos medida de Lebesgue en \mathbb{R}^n .

Demostraremos este teorema con los siguientes lemas:

Lema 2.2.1

 \mathbb{R}^n es medible en el sentido de Lebesgue.

Demostración. Sea $E \subset \mathbb{R}^n$ conjunto. Entonces $m^*(E) = m^*(E \cap \mathbb{R}^n) + m^*(E \cap (\mathbb{R}^n)^c) = m^*(E) + m^*(\emptyset) = m^*(E) + 0 = m^*(E)$.

Lema 2.2.2

Sea $A \subset \mathbb{R}^n$ medible en el sentido de Lebesgue. Entonces A^c es medible en el sentido de Lebesgue.

Demostración. Sea $E \subset \mathbb{R}^n$ conjunto. Entonces $m^*(E \cap A^c) + m^*(E \cap (A^c)^c) = m^*(E \cap A^c) + m^*(E \cap A) = m^*(E)$

Con los dos lemas anteriores obtenemos como colorario que \emptyset es medible en el sentido de Lebesgue.

Lema 2.2.3

Sean $A, B \subset \mathbb{R}^n$ medibles en el sentido de Lebesgue. Entonces $A \cup B$ y $A \cap B$ son medibles en el sentido de Lebesgue.

Demostración. Observemos primero que

$$A \cup B = (A^c \cap B) \cup (A \cap B) \cup (A \cap B^c)$$

luego entonces tenemos que

$$m^*(A \cup B) \le m^*(A^c \cap B) + m^*(A \cap B) + m^*(A \cap B^c)$$

Sea $E \subset \mathbb{R}^n$ un conjunto, entonces por la medibilidad de A tenemos que

$$m^*(E) = m^*(E \cap A) + m^*(E \cap A^c)$$

Además, sabemos que B es medible, luego para los conjuntos $E \cap A^c$ y $E \cap E$ se verifica

$$m^*(E \cap A^c) = m^*(E \cap A^c \cap B) + m^*(E \cap A^c \cap B^c)$$

$$m^*(E \cap A) = m^*(E \cap A \cap B) + m^*(E \cap A \cap B^c)$$

Por tanto,

$$m^{*}(E) = m^{*}(E \cap A) + m^{*}(E \cap A^{c}) = m^{*}(E \cap A) + m^{*}(E \cap A^{c} \cap B) + m^{*}(E \cap A^{c} \cap B^{c})$$

$$= \underbrace{m^{*}(E \cap A \cap B) + m^{*}(E \cap A \cap B^{c}) + m^{*}(E \cap A^{c} \cap B)}_{\geq m^{*}(E \cap (A \cup B))} + \underbrace{m^{*}(E \cap A^{c} \cap B^{c})}_{m^{*}(E \cap (A \cup B)^{c})}$$

Finalmente, observamos que

$$m^*(E) \ge m^*(E \cap (A \cup B)) + m^*(E \cap (A \cup B)^c)$$

y por tanto $A \cup B$ es medible.

Nótese que la medibilidad de la intersección es inmediata, pues $A \cap B = (A^c \cup B^c)^c$, y ya hemos demostrado que el complementario de un conjunto medible es medible.

Lema 2.2.4

Sea $(A_j)_{j\in\mathbb{N}}\subset\mathbb{R}^n$ una colección numerable de conjuntos medibles en el sentido de Lebesgue. Entonces $\bigcup_{j\in\mathbb{N}}A_j$ es medible en el sentido de Lebesgue y además $m^*(\bigcup_{j\in\mathbb{N}}A_j)=\sum_{j\in\mathbb{N}}m^*(A_j)$.

Demostración. Definimos la sucesión creciente de conjuntos $B_k = A_1 \cup ... \cup A_k$. Entonces B_k es medible en el sentido de Lebesgue por el lema anterior. Sean $B = \bigcup_{k \in \mathbb{N}} B_k = \bigcup_{j \in \mathbb{N}} A_j$ y $E \in \mathbb{R}^n$ tenemos:

$$m^*(E \cap B_k) = m^*(E \cap B_k \cap A_k) + m^*(E \cap B_k \cap A_k^c) = m^*(E \cap A_k) + m^*(E \cap B_{k-1}) = m^*(E \cap A_k) + m^*(E \cap B_{k-1}) = m^*(E \cap B_k) + m^*(E \cap B_k) = m^*(E \cap B_k) = m^*(E \cap B_k) + m^*(E \cap B_k) = m^*(E \cap B_k)$$

Reiterando el proceso obtenemos $m^*(E\cap B_k)=\sum_{j=1}^k m^*(E\cap A_j)$. Por lo tanto, $m^*(E)=m^*(E\cap B_k)+m^*(E\cap B_k^c)=\left(\sum_{j=1}^k m^*(E\cap A_j)\right)+m^*(E\cap B_k^c)\geq \sum_{j=1}^k m^*(E\cap A_j)+m^*(E\cap B^c)$. Se sigue entonces $m^*(E)\geq \sum_{j\in\mathbb{N}} m^*(E\cap A_j)+m^*(E\cap B^c)\geq m^*(\bigcup_{j\in\mathbb{N}} E\cap A_j)+m^*(E\cap B^c)\geq m^*(E\cap B)+m^*(E\cap B^c)$ Luego B es medible.

Tomando E=B en la desigualdad anterior obtenemos $m^*(B) \geq \sum_{j \in \mathbb{N}} m^*(B \cap A_j) + m^*(B \cap B^c) = \sum_{j \in \mathbb{N}} m^*(B \cap A_j)$. Por otro lado, $m^*(B) \leq \sum_{j \in \mathbb{N}} m^*(B \cap A_j)$ por definición de medida exterior. Por tanto, $m^*(B) = \sum_{j \in \mathbb{N}} m^*(A_j) \implies m^*(\bigcup_{j \in \mathbb{N}} A_j) = \sum_{j \in \mathbb{N}} m^*(A_j)$.

Lema 2.2.5

La unión numerable de conjuntos medibles en el sentido de Lebesgue es un conjunto medible en el sentido de Lebesgue.

Demostración. Sea $(B_j)_{j\in\mathbb{N}}$ una colección numerable de conjuntos medibles en el sentido de Lebesgue. Considermos:

$$A_1 = B_1$$

$$A_2 = B_2 \cap B_1^c$$

$$A_3 = B_3 \cap B_2^c \cap B_1^c$$

$$\vdots$$

$$A_j = B_j \cap B_{j-1}^c \cap \ldots \cap B_1^c$$

Observemos que $\bigcup_{j\in\mathbb{N}} A_j = \bigcup_{j\in\mathbb{N}} B_j$ y que para todo $j\in\mathbb{N}, A_j$ es intersección finita de conjuntos medibles, por tanto, A_j es medible. Además, $\forall i,j\in\mathbb{N}$ con $i\neq j, A_i\cap A_j=\emptyset$. Por el lema anterior, $\bigcup_{j\in\mathbb{N}} A_j$ es medible $\Longrightarrow \bigcup_{j\in\mathbb{N}} B_j$ es medible.

Proposición 2.2.2

Todo conjunto nulo es medible en el sentido de Lebesque.

Demostración. Sea $A \subset \mathbb{R}^n$ nulo, entonces $m^*(A) = 0$. $\forall E \in \mathbb{R}^n$ se tiene que $E \cap A \subset A \implies 0 \le m^*(E \cap A) \le m^*(A) = 0 \implies m^*(E \cap A) = 0$. Análogamente, $E \cap A^c \subset E \implies 0 \le m^*(E \cap A^c) \le m^*(E) \implies m^*(E \cap A^c) = 0$. Por tanto, $m^*(E \cap A) + m^*(E \cap A^c) \le m^*(E)$. Para la otra desigualdad, $E = (E \cap A) \cup (E \cap A^c) \implies m^*(E) \le m^*(E \cap A) + m^*(E \cap A^c)$. Y por tanto obtenemos la igualdad $m^*(E) = m^*(E \cap A) + m^*(E \cap A^c)$.

Definición 2.2.4 [Propiedad en casi todo punto]

Se dice que una propiedad se verifica en casi todo punto cuando el conjunto de puntos en los que no se verifica la propiedad es un conjunto nulo.

Proposición 2.2.3

Todo n-rectángulo cerrado $R \in \mathbb{R}^n$ es medible en el sentido de Lebesgue.

Demostración. Dado $R \subset \mathbb{R}^n$ n-rectángulo cerrado, tenemos que ver que $\forall Q \in \mathbb{R}^n$ n-rectángulo cerrado se tiene que $\operatorname{vol}(Q) \geq m^*(Q \cap R) + m^*(Q \cap R^c)$. Consideramos el n-rectángulo $Q_0 = Q \cap R$. Nótese que $Q \cap R^c$ es unión finita de n-rectángulos $\{Q_1, \ldots, Q_m\}$. Entonces $Q = Q_0 \cup Q_1 \cup \ldots \cup Q_m$ forman una partición de Q. Luego $\operatorname{vol}(Q) = \sum_{i=0}^m \operatorname{vol}(Q_i) = m^*(Q \cap R) + \sum_{i=1}^m m^*(Q_i) \geq m^*(Q \cap R) + m^*(Q \cap R^c)$.

Observación 2.2.1

En \mathbb{R}^n los rectángulos abiertos son medibles en el sentido de Lebesgue.

Definición 2.2.5 [n-Cubo]

Un n-cubo cerrado (respectivamente abierto) en \mathbb{R}^n es un conjunto de la forma:

$$R = [a_1, b_1] \times \ldots \times [a_n, b_n] \text{ tal que } \forall i, j \in \{1, 2, ..., n\} \text{ se tiene que } b_i - a_i = b_j - a_j$$
 (7)

Análogamente se pueden definir los cubos n-dimensionales semi-abiertos.

Observación 2.2.2

Denotaremos la norma del supremo en \mathbb{R}^n como:

$$||x||_{\infty} = \sup_{i=1}^{n} \{|x_i|\} \ para \ x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$$
 (8)

Llamaremos bola abierta de centro $x \in \mathbb{R}^n$ y radio r > 0 al conjunto:

$$B_{\infty}(x,r) = \{ y \in \mathbb{R}^n : ||y - x||_{\infty} < r \} \equiv (x_1 - r, x_1 + r) \times \ldots \times (x_n - r, x_n + r)$$
 (9)

Análogamente, llamaremos bola cerrada de centro $x \in \mathbb{R}^n$ y radio r > 0 al conjunto:

$$\overline{B}_{\infty}(x,r) = \{ y \in \mathbb{R}^n : ||y - x||_{\infty} \le r \} \equiv [x_1 - r, x_1 + r] \times \ldots \times [x_n - r, x_n + r]$$
(10)

Teorema 2.2.2

Sea $G \in \mathbb{R}^n$ abierto entonces se tiene:

- 1. G es unión numerable de n-cubos cerrados.
- 2. G es unión numerable de n-cubos abiertos.

Demostración. Consideremos la familia de n-cubos $\mathcal{B} = \{\overline{B}_{\infty}(q,r) : q \in \mathbb{Q}^n, r \in \mathbb{Q}, r > 0, \overline{B}_{\infty}(q,r) \subset G\}$. Veamos que $G = \bigcup_{B \in \mathcal{B}} B$. Dado que $B \in G$ $\forall B \in \mathcal{B}$ entonces es inmediato ver que $\bigcup_{B \in \mathcal{B}} B \subset G$. Por ser G abierto, $\exists \delta > 0$ tal que $B_{\infty}(x,\delta) \subset G$. Sea $r \in \mathbb{Q}$ con $0 < r < \frac{\delta}{2}$, por la densidad de \mathbb{Q}^n en \mathbb{R}^n , sabemos que $\exists q \in \mathbb{Q}^n$ tal que $\|x - q\|_{\infty} < r$. Veamos entonces que $x \in B_{\infty}(q,r) \subset B_{\infty}(x,\delta) \subset G$. Dado $y \in \mathbb{R}^n$ con $\|y - q\|_{\infty} < r$ se sigue:

$$||y-x||_{\infty} < ||y-q||_{\infty} + ||q-x||_{\infty} < r+r = 2r < \delta$$

Por tanto $y \in B_{\infty}(x, \delta) \implies x \in \overline{B}_{\infty}(q, r) \subset G$. Luego $G = \bigcup_{B \in \mathcal{B}} B$.

Nótese que numerabilidad de la familia \mathcal{B} es inmediata por la numerabilidad de \mathbb{Q}^n que, a su vez, es numerable por ser \mathbb{Q} numerable.

La segunda parte del teorema es análoga a la primera.

Corolario 2.2.1

Todos los conjuntos abiertos y cerrados de \mathbb{R}^n son medibles en el sentido de Lebesgue.

Teorema 2.2.3 [Regularidad de la Medida]

Sea $E \in \mathbb{R}^n$, entonces son equivalentes:

- 1. E es medible en el sentido de Lebesque.
- 2. $\forall \epsilon > 0 \quad \exists G \in \mathbb{R}^n \text{ abserto tal que } E \subset G \text{ y } m^*(G \setminus E) < \epsilon.$
- 3. $\forall \epsilon > 0 \quad \exists F \in \mathbb{R}^n \ cerrado \ tal \ que \ F \subset E \ y \ m^*(E \setminus F) < \epsilon$.
- 4. $\forall \epsilon \ existen \ F \ cerrado \ y \ G \ abierto \ tales \ que \ F \subset E \subset G \ y \ m^*(G \setminus F) < \epsilon$.

Demostración.

"1 \implies 2" Distinción de casos:

- 1. Supongamos que $m^*(E) < +\infty$: Sea $\epsilon > 0$. Por definición de medida exterior, $\exists (R_j)_{j \in \mathbb{N}}$ sucesión de n-rectángulos abiertos tales que $E \subset \bigcup_{j=1}^{\infty} (R_j)$ y $\sum_{j \in \mathbb{N}} \operatorname{vol}(R_j) < m^*(E) + \epsilon$. Considerando el abierto $G = \bigcup_{j=1}^{\infty} (R_j)$, se tiene que G es medible por el colorario anterior y $m^*(G) = m^*(E \cap G) + m^*(E \cap G) = m^*(E) + m^*(G \setminus E)$. Por tanto, $m^*(G \setminus E) = m^*(G) m^*(E) < \sum_{j \in \mathbb{N}} \operatorname{vol}(R_j) m^*(E) < \epsilon$.
- 2. Supongamos que $m^*(E) = +\infty$: $\forall k \in \mathbb{N}$ sea $E_k = E \cap [-k, k]^n$, que es medible por ser intersección finita de conjuntos medibles. Además $m^*(E_k) < +\infty$ por ser E_k acotado, y $E = \bigcup_{k=1}^{\infty} E_k$. Dado $\epsilon > 0$, $\forall k \in \mathbb{N}$ existe G_k abierto tal que $E_k \subset G_k$ y $m^*(G_k \setminus E_k) < \frac{\epsilon}{2^k}$. Entonces $G = \bigcup_{k=1}^{\infty} G_k$ abierto y $E = \bigcup_{k=1}^{\infty} E_k \subset \bigcup_{k=1}^{\infty} G_k = G$ por lo que $m^*(G \setminus E) \le m^*(\bigcup_{k=1}^{\infty} (G_k \setminus E_k)) \le \sum_{k=1}^{\infty} m^*(G_k \setminus E_k) < \sum_{k=1}^{\infty} \frac{\epsilon}{2^k} = \epsilon$.

"2 \Longrightarrow 1'

 $\forall j \in \mathbb{N}$ tomando $\epsilon = \frac{1}{j}$ entonces $\exists G_j$ abierto tal que $E \subset G_j$ y $m^*(G_j \setminus E) < \frac{1}{j}$. Entonces considerando $B = \bigcap_{j=1}^{\infty} G_j$ que es medible y abierto se tiene que $E \subset B$. Luego $B \setminus E \subset G_j \setminus E$ para todo $j \in \mathbb{N}$. Por tanto, $m^*(B \setminus E) \leq m^*(G_j \setminus E) < \frac{1}{j}$. En consecuencia $m^*(B \setminus E) = 0 \implies B \setminus E$ es medible.

Por otro lado, $B = E \cup (B \setminus E)$ o que es lo mismo $E = B \setminus (B \setminus E)$. Tanto B como $(B \setminus E)$ son medibles, luego E es medible.

Observación: Además, $E = B \setminus Z$, donde B es intersección numerable de abiertos o Z es un conjunto nulo. "1 \implies 3"

Como E es medible entonces E^c también los es. Por (2), dado $\epsilon > 0$ existe G abierto tal que $E^c \subset G$ y $m^*(G \setminus E^c) < \epsilon$. Entonces $F = G^c$ es cerrado y $F \subset E$. Además, $E \setminus F = E \cap F^c = E \cap G = G \setminus E^c \implies m^*(E \setminus F) = m^*(G \setminus E^c) < \epsilon$.

 $"1 \implies 3"$

Como E es medible entonces tenemos que E^c también es medible, por lo que, dado $\epsilon > 0$ por (2) $\exists G$ -abierto tal que $E^c \subset G$ y $m^*(G \setminus E^c) < \epsilon$. Entonces $F = G^c$ es cerrado y $F \subset E$. Además, $E \setminus F = E \cap F^c = E \cap G = G \setminus E^c \implies m^*(E \setminus F) = m^*(G \setminus E^c) < \epsilon$.

"3 \implies 1"

 $\forall j \in \mathbb{N} \ \exists F_j \ \text{cerrado tal que} \ F_j \subset E, \ m(E \setminus F_j) < 1/j. \ \text{Sea} \ A = \bigcup_{j=1}^{\infty} F_j \ \text{conjunto medible y} \ A \subset E.$ Además, $m(E \setminus A) \leq m(E \setminus F_j) < 1/j \ \forall j \in \mathbb{N}$. Por tanto, $E = A \cup (E \setminus A) = (\bigcup_{j=1}^{\infty} F_j) \cup (E \setminus A)$ Entonces dado que $E \setminus A$ es un conjunto medible por ser nulo y $\bigcup_{j=1}^{\infty} F_j$ es medible por ser unión numerable de conjuntos cerrados, entonces E es medible.

Definición 2.2.6 [σ -Álgebra de Borel]

La σ -álgebra de Borel en \mathbb{R}^n es la menor σ -álgebra que contiene a todos los abiertos de \mathbb{R}^n (o equivalentemente, la menor σ -álgebra que contiene a todos los cerrados de \mathbb{R}^n). Los conjuntos de $\mathcal{B}(\mathbb{R}^n)$ se llaman conjuntos de Borel o conjuntos Borelianos.

Decimos que $A \subset \mathbb{R}^n$ es G_δ si A es intersección numerable de abiertos. Análogamente, decimos que un conjunto $B \subset \mathbb{R}^n$ es F_σ si A es unión numerable de cerrados.

Corolario 2.2.2

Sea $E \subset \mathbb{R}^n$, entonces son equivalentes:

- 1. E es medible en el sentido de Lebesque.
- 2. $E = A \setminus N$ con A siendo G_{δ} y N un conjunto nulo.
- 3. $E = B \cup N$ con B siendo F_{σ} y N un conjunto nulo.

Lema 2.2.6

Sea $(A_j)_{j\in\mathbb{N}}$ familia numerable y creciente de conjuntos medibles en el sentido de Lebesgue. Entonces $\bigcup_{j\in\mathbb{N}} A_j$ es medible en el sentido de Lebesgue y $m(\bigcup_{j\in\mathbb{N}} A_j) = \lim_{j\to\infty} m(A_j)$.

Demostración. Sea $\{B_j\}_{j\in\mathbb{N}}$ una colección numerable de conjuntos medibles en el sentido de Lebesgue. Considermos:

$$A_1 = B_1$$

$$A_2 = B_2 \cap B_1^c$$

$$A_3 = B_3 \cap B_2^c \cap B_1^c$$

$$\vdots$$

$$A_j = B_j \cap B_{j-1}^c \cap \dots \cap B_1^c$$

De esta manera obtenemos que $\bigcup_{j=1}^{\infty} A_j = \bigcup_{j=1}^{\infty} B_j$ y que $(B_j)_{j \in \mathbb{N}}$ es una sucesión disjunta de conjuntos Entonces $m^*(\bigcup_{j=1}^{\infty} A_j) = m^*(\bigcup_{j=1}^{\infty} B_j) = \sum_{j=1}^{\infty} = \lim_{k \to \infty} m(A_k)$ Dado que $m^*(A_j) = m(B_1) + m(B_2) + \dots + m(B_j) \ \forall j \geq 1$

Corolario 2.2.3

Sea $E \subset \mathbb{R}^n$ medible entonces:

- 1. $m(E) = \inf\{m(G) : G \text{ abserto } y E \subset G\}.$
- 2. $m(E) = \sup\{m(K) : K \text{ compacto } y \ K \subset E\}.$

Demostración. $E = \bigcup_{k=1}^{\infty} E_k : E_k = E \cap [-k, k]^n \ \forall k \in \mathbb{N}$ Entonces $(E_k)_k \in \mathbb{N}$ es una sucesión creciente de conjuntos medibles y por el lema anterior tenemos que $m(E) = \lim_{k \to \infty} m(E_k)$ Además, $\forall k \in \mathbb{N} \ \exists F_k \subset E_k$ cerrado tal que $m(E_k \setminus F_k) < \frac{1}{k}$ Entonces como F_k es un conjunto cerrado y acotado, tenemos que el conjunto es compacto. Por tanto $m(E_k) = m(E_k \setminus F_k) + m(F_k) \ge m(F_k) + 1/k$ y por tanto $m(E) = \lim_{k \to \infty} m(F_k)$ y finalmente obtenemos que $m(E) = \sup\{m(F_k) : k \in \mathbb{N}\} = \sup\{m(K) : K \text{ compacto } y \in E\}$

Definición 2.2.7 [Cubo Diádico]

Se dice que un cubo en \mathbb{R}^n es diádico si sus lados miden 2^{-m} para algún $m \in \mathbb{N}$. Es decir, si el rectángulo Q es de la forma:

$$Q = \left\lceil \frac{k_1}{2^m}, \frac{k_1 + 1}{2^m} \right\rceil \times \dots \times \left\lceil \frac{k_n}{2^m}, \frac{k_n + 1}{2^m} \right\rceil,$$

 $con \ m \in \mathbb{Z}(nivel \ de \ escala \ u \ orden) \ y \ k_1, k_2, \dots k_n \in \mathbb{Z}$

Teorema 2.2.4

Todo conjunto abierto U de \mathbb{R}^n es unión numerable y disjunta n-cubos semiabiertos, que son cubos diádicos.

Demostración. Denotemos por \mathcal{F} la familia de todos los cubos cerrados de la forma

$$\left[\frac{k_1}{2^m}, \frac{k_1+1}{2^m}\right] \times \cdots \times \left[\frac{k_n}{2^m}, \frac{k_n+1}{2^m}\right],$$

 $\operatorname{con} k_i \in \mathbb{Z} \text{ y } m \in \mathbb{N}$. Sea \mathcal{Q}_1 la familia de todos los cubos cerrados Q de la forma $[k_1, k_1+1] \times \cdots \times [k_n, k_n+1]$, donde los $k_i \in \mathbb{Z}$, y tales que $Q \subset U$. Supuesto definida \mathcal{Q}_m , sea \mathcal{Q}_{m+1} la familia de todos los cubos Q de la forma

$$\left\lceil \frac{k_1}{2^m}, \frac{k_1+1}{2^m} \right\rceil \times \cdots \times \left\lceil \frac{k_n}{2^m}, \frac{k_n+1}{2^m} \right\rceil,$$

donde $k_i \in \mathbb{Z}$, tales que no están contenidos en ningún cubo $Q' \in \mathcal{Q}_j$ para $j \leq m$, y tales que $Q \subset U$. Por inducción queda definida \mathcal{Q}_m para todo $m \in \mathbb{N}$, y ponemos

$$\mathcal{Q} = \bigcup_{m=1}^{\infty} \mathcal{Q}_m.$$

Es obvio por construcción que si $Q, Q' \in \mathcal{Q}$ y $Q \neq Q'$, entonces Q y Q' tienen interiores disjuntos. También es claro que que $\bigcup_{Q \in \mathcal{Q}} Q \subset U$. Veamos que de hecho

$$U = \bigcup_{Q \in \mathcal{Q}} Q.$$

Dado $x \in U$, usando que U es abierto y que el conjunto $\{k/2^m : k \in \mathbb{Z}, m \in \mathbb{N} \cup \{0\}\}$ es denso en \mathbb{R} , es fácil ver que existe algún cubo $Q_x \in \mathcal{F}$ tal que $x \in Q_x$ y $Q \subset U$. El lado de Q_x mide 2^{-m_x} para algún $m_x \in \mathbb{N} \cup \{0\}$. Si $Q_x \in \mathcal{Q}_{m_x}$ ya hemos terminado. En otro caso, por definición de \mathcal{Q}_{m_x} , existe algún $j < m_x$ tal que Q_x está contenido en algún cubo $Q'_x \in \mathcal{Q}_j$, y por tanto x pertenece a este cubo. En cualquier caso se ve que $x \in \bigcup_{i=1}^{\infty} Q_i$.

2.3 Medibilidad de Funciones

Definición 2.3.1 [Espacio Medible]

Un espacio medible es un par (X, Σ) donde X es un conjunto y Σ es una σ -álgebra de subconjuntos de X.

Vamos a considerar los siguientes espacios medibles:

- $(X, \Sigma) = (E, M|_E)$, donde $E \subset \mathbb{R}^n$ es un conjunto medible y $M|_E$ es la familia de subconjuntos medibles de E.
- $(X, \Sigma) = (A, B|_A)$, donde $A \subset \mathbb{R}^n$ es un conjunto boreliano y $B|_A$ es la familia de subconjuntos borelianos de A.

Definición 2.3.2 [Función Medible]

Sea (X, Σ) un espacio medible. Una función $f: X \to [-\infty, +\infty]$ es medible si para todo $\alpha \in \mathbb{R}$, el conjunto $\{x \in X : f(x) < \alpha\}$ es un conjunto medible.

Proposición 2.3.1

Sea (X,Σ) un espacio medible $y : X \to [-\infty, +\infty]$, entonces son equivalentes

- 1. f es medible.
- 2. Para todo $\alpha \in \mathbb{R}$, el conjunto $\{x \in X : f(x) \ge \alpha\}$ es un conjunto medible.
- 3. Para todo $\alpha \in \mathbb{R}$, el conjunto $\{x \in X : f(x) > \alpha\}$ es un conjunto medible.
- 4. Para todo $\alpha \in \mathbb{R}$, el conjunto $\{x \in X : f(x) \leq \alpha\}$ es un conjunto medible.
- 5. Para todo $\alpha, \beta \in \mathbb{R}$, los conjuntos $\{x \in X : \beta \leq f(x) < \alpha\}$, $\{x \in X : f(x) = +\infty\}$ y $\{x \in X : f(x) = -\infty\}$ son conjuntos medibles.
- 6. Para todo $G \subset \mathbb{R}$ abierto, los conjuntos $f^{-1}(G)$, $\{x \in X : f(x) = +\infty\}$ $y \{x \in X : f(x) = -\infty\}$ son conjuntos medibles.

Demostración. Teniendo en cuenta que $X \setminus \{x \in X : f(x) < \alpha\} = \{x \in X : f(x) \ge \alpha\}$ dado que las σ -álgebras son cerradas bajo complementarios, obtenemos que $(1) \iff (2)$ y $(3) \iff (4)$. Veamos ahora la relación $(1) \iff (4)$:

- (1) \Longrightarrow (4): Podemos tomar el conjunto $\{x \in X : f(x) \le \alpha\} = \bigcap_{k=1}^{\infty} \{x \in X : f(x) < \alpha + \frac{1}{k}\}$ que es una intersección numerable de conjuntos medibles por (1). Por tanto al tomar el limite cuando $k \to \infty$ obtenemos que $\{x \in X : f(x) \le \alpha\}$ es medible.
- (4) \Longrightarrow (1): Equivalentemente al apartado anterior podemos obtener que el conjunto $\{x \in X : f(x) < \alpha\} = \bigcup_{k=1}^{\infty} \{x \in X : f(x) \le \alpha \frac{1}{k}\}$ es medible por (4). Por tanto, también al tomar el límite cuando $k \to \infty$ obtenemos que $\{x \in X : f(x) < \alpha\}$ es medible.

De forma análoga a esta equivalencia podemos obtener que (2) \iff (3). Y también las equivalencias de (5) \iff (6) son inmediatas, pues podemos tomar los conjuntos acotados $x \in X : \alpha \le f(x) < \beta = x \in X : f(x) \ge \alpha \cap x \in X : f(x) < \beta$ los cuales son conjuntos medibles por los apartados anteriores. De forma similar podemos obtener que el conjunto $x \in X : f(x) = +\infty = \bigcap_{k=1}^{\infty} \{x \in X : f(x) > k\}$ es medible por los apartados anteriores. De forma análoga se demuestra el caso de (6). Por último veamos la equivalencia de (6) \iff (7):

1. (7) \Longrightarrow (6): Dado un conjunto abierto $G \subset \mathbb{R}$ podemos tomarlo como $G = (\alpha, \beta)$ para ciertos $\alpha, \beta \in \mathbb{R}$. Por tanto, el conjunto $f^{-1}(G) = \{x \in X : f(x) \in G\} = \{x \in X : \alpha < f(x) < \beta\}$ y asimismo, los conjuntos $\{x \in X : f(x) = +\infty\}$ y $\{x \in X : f(x) = -\infty\}$ son medibles por las equivalencias anteriores.

2. (6) \Longrightarrow (7): Dado un conjunto abierto $G \subset \mathbb{R}$ podemos reescribir G como $G = \bigcup_{j=1}^{\infty} (\alpha_j, \beta_j)$ donde $\alpha_j, \beta_j \in \mathbb{R}$ es un conjunto abierto. Por tanto, el conjunto $f^{-1}(G) = \bigcup_{j=1}^{\infty} f^{-1}(\alpha_j, \beta_j) = \bigcup_{j=1}^{\infty} \{x \in X : \alpha_j < f(x) < \beta_j\}$ es medible por las equivalencias anteriores.

Corolario 2.3.1

Sea $E \subset \mathbb{R}^n$ un conjunto medible $y : E \to \mathbb{R}$ una función continua, entonces f es medible.

Proposición 2.3.2

Sea (X, Σ) un espacio medible y $f_1, f_2, \ldots, f_n : X \to \mathbb{R}$ funciones medibles y $\Phi : \mathbb{R}^n \to \mathbb{R}$ una función continua, entonces la función $\Phi \circ (f_1, f_2, \ldots, f_n) : X \to \mathbb{R}$ es medible.

Demostración. Sean $(f_1, f_2, \ldots f_n): X \to \mathbb{R}y\Phi: \mathbb{R}^n \to \mathbb{R}$ funciones medibles y continua respectivamente. Denotemos por $h = (f_1, f_2, \ldots, f_n) \circ \Phi: X \to \mathbb{R}^m \to \mathbb{R}$ y sea $G \subset \mathbb{R}$ conjunto abierto, entonces, denotemos por $U = \Phi^{-1}(G)$ al conjuto abierto en \mathbb{R}^n . Entonces sea $(R_j)_{j \in \mathbb{N}}$ sucesión de rectángulos n-dimensionales tales que $(R_j) = \prod_{i=1}^{\infty} (\alpha_i^j.\beta_i^j) \forall j \in \mathbb{N} \iff \forall j \in \mathbb{N}f^{-1}(R_j) = \prod_{i=1}^{\infty} (\alpha_i^j.\beta_i^j)$ es medible. Por tanto, la funcion h es medible.

Corolario 2.3.2

Sean (X, Σ) espacio medible y $f, g: X \to \mathbb{R}$ funciones medibles, entonces f + g, $f \circ g$, $max\{f, g\}$, $min\{f, g\}$, $f^+ = max\{f, 0\}$, $f^- = min\{f, 0\}$ son todo funciones medibles.

Observación 2.3.1

 $f = f^+ - f^- y |f| = f^+ + f^-.$

Teorema 2.3.1

Sea (X, Σ) espacio medible $y(f_j)_{j \in \mathbb{N}} : X \to [+\infty, -\infty]$ una sucesión de funciones medibles, entonces:

- 1. $\sup_{i\in\mathbb{N}}\{f_i\}$ es una función medible.
- 2. $\inf_{i \in \mathbb{N}} \{f_i\}$ es una función medible.
- 3. $\limsup_{i\to\infty} \{f_i\}$ es una función medible.
- 4. $\liminf_{j\to\infty} \{f_j\}$ es una función medible.
- 5. $\lim_{j\to\infty} f_j = f$ es una función medible.

Demostración. 1. Denotemos $h(x) = \sup_{j \in \mathbb{N}} f_j$ y dado $\alpha \in \mathbb{R}$ queremos ver que $x \in X : h(x) > \alpha$ es un conjunto medible. Entonces, $\sup_{j \in \mathbb{N}} f_j > \alpha \iff \exists j \in \mathbb{N} : f_j(x) > \alpha \Rightarrow x \in X : h(x) > \alpha = \bigcup_{j \in \mathbb{N}} f_j > \alpha$ que es medible por ser una unión numerable de conjuntos medibles.

2. Denotemos $g(x) = \inf_{j \in \mathbb{N}} f_j$ y dado $\alpha \in \mathbb{R}$ queremos ver que $x \in X : g(x) < \alpha$ es un conjunto medible. Entonces, $\inf_{j \in \mathbb{N}} f_j \geq \alpha \iff \forall j \in \mathbb{N} : f_j(x) \geq \alpha \Rightarrow x \in X : g(x) \geq \alpha = \bigcap_{j \in \mathbb{N}} x \in X : f_j \geq \alpha$ que es medible por ser una unión numerable de conjuntos medibles.

- 3. Recordemos que $\limsup_{j\to\infty} f_j = \lim_{j\to\infty} (\sup_{k\geq j} f_k) = \lim_{j\to\infty} \sup f_j, f_{j+1}, \ldots$ Entonces como el límite de una sucesión decreciente y acotada siempre existe tenemos que $\lim_{j\to\infty} \sup_{k\geq j} f_k = \inf_{j\in\mathbb{N}} (\sup_{k\geq j} f_k)$ que es medible por ser una función continua.
- 4. Recordemos que $\liminf_{j\to\infty} f_j = \lim_{j\to\infty} (\inf_{k\geq j} f_k) = \lim_{j\to\infty} \inf f_j, f_{j+1}, \ldots = \sup_{j\in\mathbb{N}} (\inf_{k\geq j} f_k)$ que es medible por ser una función continua.
- 5. Si $\lim_{j\to\infty} f_j = f$ (puntualmente) entonces $\lim_{j\to\infty} f_j = \lim\sup_{j\to\infty} f_j = \lim\inf_{j\to\infty} f_j = f$. Entones por los apartados anteriores obtenemos que f es una función medible.

Proposición 2.3.3

Sean $f, g : \mathbb{R}^n \to [+\infty, -\infty]$ funciones medibles-Lebesgue tales que f = g en casi todo punto. Entones g es medible-Lebesgue.

Demostración. Dado que f = g en casi todo punto, entonces $Z = \{x \in \mathbb{R}^n : f(x) \neq g(x)\}$ es un conjunto de medida nula. Entonces, dado un $\alpha \in \mathbb{R}$ tenemos que $\{x \in \mathbb{R}^n : g(x) < \alpha\} = \{x \in Z : f(x) < \alpha\} \cup \{x \in Z^c : g(x) < \alpha\}$ es medible dado que $\{x \in Z : f(x) < \alpha\}$ es medible por ser un conjunto de medida nula y $\{x \in Z^c : g(x) < \alpha\}$ es medible por ser g medible. Por tanto, g es medible.

Corolario 2.3.3

Sea $(f_j)_{j\in\mathbb{N}}:\mathbb{R}^n\to [+\infty,-\infty]$ sucesión de funciones medibles tales que $f_j\to f$ en casi todo punto, entonces f es medible.

 $\label{eq:definition} \begin{aligned} & Demostración. \text{ Sea } Z = \{x \in X: f_j(x) \not\rightarrow f(x)\} \text{ el cual tiene medida nula por hipótesis. Entones definimos} \\ & \text{la función } g(x) = \begin{cases} \lim_{j \to \infty} f_j(x) & x \in Z^c \\ 0 & x \in Z \end{cases} \Rightarrow g(x) = f(x) \text{ en casi todo punto. Asimismo podemos definir la} \\ & \text{sucesión de funciones } g_j(x) = \begin{cases} f_j(x) & x \in Z^c \\ 0 & x \in Z \end{cases} \text{ que converge a } g \text{ puntualmente, por tanto, por la proposición} \\ & \text{anterior tenemos que } g \text{ es medible} \Rightarrow f \text{ es medible.} \end{aligned}$

Definición 2.3.3 [Función Característica]

Sea (X, Σ) espacio medible. Definimos la función característica de un conjunto $E \in \Sigma$ como:

$$\chi_E(x) = \begin{cases} 1 & x \in E \\ 0 & x \in E^c \end{cases}$$

Observación 2.3.2

 $\chi_E \ es \ medible \iff E \in \Sigma$

Demostración. Sea $G \subset \mathbb{R}$ abierto, podemos definir el conjunto

$$\chi_E^{-1}(G) = \{ x \in X : \chi_E(x) \in G \} = \begin{cases} X & 0 \in G & 1 \in G \\ E & 0 \notin G & 1 \in G \\ E^c & 0 \in G & 1 \notin G \\ \emptyset & 0 \notin G & 1 \notin G \end{cases}$$

 \Box

por tanto, χ_E es medible $\iff E \in \Sigma$.

Observación 2.3.3

Sean $E \subset \mathbb{R}^n$ y $f: E \to [-\infty, +\infty]$. Entonces son equivalentes:

- 1. $f: E \to [-\infty, +\infty]$ es medible-Lebesgue.
- 2. $f \circ \chi_E : \mathbb{R}^n \to [-\infty, +\infty]$ es medible-Lebesgue.

Demostración.

- $(1 \implies 2): E^c$ es medible y $\{x \in E: f(x) > \alpha\}$ es medible $\implies \{x \in \mathbb{R}^n: f \circ \chi_E(x) > \alpha\}$ es medible.
- $(2 \implies 1): \{x \in \mathbb{R}^n : f \circ \chi_E(x) > \alpha\}$ es medible $\implies \{x \in E: f(x) > \alpha\}$ es medible.

Definición 2.3.4 [Función Simple]

Sea (X, Σ) espacio medible $y \ f : X \to [0, +\infty]$. Se dice que f es una función simple si toma un valor finito de valores. Es decir si: $f(X) = \{\alpha_1, \alpha_2, \dots, \alpha_n\} \subset [0, +\infty]$. Además denotamos a $f^{-1}(\alpha_i) = E_i$ $y \ f = \sum_{i=1}^n \alpha_i \chi_{E_i}$. Asimismo obtenemos que $X = \bigcup_{i=1}^n E_i$ -unión disjunta de conjuntos. De este modo podemos decir que f es una combinación lineal finita de funciones simples.

Observación 2.3.4

 $f \ es \ medible \iff \{E_1, E_2, \dots, E_n\} \ es \ medible.$

Teorema 2.3.2

Sea (X, Σ) espacio medible $y \ f : X \to [0, +\infty]$ una función medible. Entonces existen funciones simples $(f_n)_{n \in \mathbb{N}}$ tales que:

- $0 \le f_1 \le f_2 \le \cdots \le f$.
- $\forall x \in X$ $\lim_{n \to \infty} f_n(x) = f(x)$.
- Si además, f acotada $\implies \lim_{n\to\infty} f_n = f$ en casi todo punto.

Demostración. $\forall n \in \mathbb{N}, 1 \leq i \leq n2^n$ definimos: $E_{n,i} = f^{-1}([\frac{i-1}{2^n}, \frac{i}{2^n}]) = \{x \in X : \frac{i-1}{2^n} \leq f(x) < \frac{i}{2^n}\}$ y $F_n = f^{-1}([n, +\infty]) = \{x \in X : f(x) > n\}$. Los cuales son conjuntos medibles por ser preimágenes de conjuntos medibles. Sea entonces $(f_n)_{n \in \mathbb{N}} = \sum_{i=1}^{n2^n} \frac{i-1}{2^n} X_{E_{n,i}} + nX_{F_n}$, la cual es una sucesión de funcion simples. Analicemos la convergencia (puntual) $\lim_{n \to \infty} f_n(x) = f(x)$:

- Si $f(x) = +\infty \implies f(x) \ge m \quad \forall m \in \mathbb{N} \implies f_n(x) = m \quad \forall m \in \mathbb{N} \implies \lim_{n \to \infty} f_n(x) = f(x) = +\infty.$
- Si $f(x) < +\infty \implies \exists m(x) \in \mathbb{N} : 0 \le f(x) \le m(x) \implies \exists k \in \mathbb{N} : \frac{k-1}{2^m} \le f(x) \le \frac{k}{2^m} \text{ y } f_n = \frac{k-1}{2^m} \quad \forall n \ge m \implies 0 \le |f(x) f_n(x)| \le \frac{1}{2^m} \quad \forall n \ge m \implies \lim_{n \to \infty} f_n(x) = f(x).$ Además, cuando $\exists M \in \mathbb{N} : f(x) \le M \quad \forall x \in X \implies 0 \le f(x) f_n(x) \le \frac{1}{2^m} \quad \forall n \ge m \implies \lim_{n \to \infty} f_n(x) = f(x)$ (uniformemente).

Ahora veamos que $f_n(x)$ es creciente: $f_n(x) = \begin{cases} \frac{i-1}{2^n} & x \in E_{n,i} \\ n & x \in F_n \end{cases} \implies f_{n+1}(x) = \begin{cases} \frac{2i-2}{2^{n+1}} & x \in E_{n,i} \\ n+1 & x \in F_{n+1} \end{cases} \implies f_n(x) \le f_{n+1}(x) \quad \forall n \in \mathbb{N}. \quad \text{Dado que } 1 \le i \le n2^n \implies 1 \le i \le 2^{n+1} \implies f_n(x) \le f_{n+1}(x) \quad \forall n \in \mathbb{N}. \quad \Box$

Definición 2.3.5 [Integral de una función simple]

Consideremos en \mathbb{R}^n la σ -álgbra M de los conjuntos medibles y la medida-Lebesgue m. Sea $s: \mathbb{R}^n \to [0, +\infty]$ una función simple, medible, no negativa y con representación canónica $s = \sum_{i=1}^n \alpha_i \chi_{A_i}$ donde $\mathbb{R}^n = \bigcup_{i=1}^m A_i$ -unión disjunta de conjuntos medibles. Entonces definimos la integral de s como:

$$\int_{\mathbb{R}^n} s \, dx = \sum_{i=1}^n \alpha_i m(A_i)$$

Observación 2.3.5

 $\int_{\mathbb{R}^n} 0 = 0$

Demostración. Dado $E \subset \mathbb{R}^n$ mdible definimos $\int_E s = \int_{\mathbb{R}^n} s \circ X_E = \sum_{i=1}^n \alpha_i m(A_i \cap E)$.

Lema 2.3.1

Sea $\mathbb{R}^n = \bigcup_{k=1}^\infty X_k$ unión disjunta de conjuntos medibles. Sea $s: \mathbb{R}^{\ltimes} \to [0, +\infty]$ una función simple, medible y no negativa. Entonces $\int_{\mathbb{R}}^n s = \sum_{k=1}^\infty \int_{X_k} s$.

Demostración. Supongamos que

$$s = \sum_{i=1}^{m} d_i \cdot \chi_{A_i}$$

(forma canónica), entonces

$$s(\mathbb{R}^n) = \{d_1, \dots, d_m\}.$$

Para todo $k \in \mathbb{N}$, sea $B_k \in \{d_1, \ldots, d_m\}$. Definimos para cada $j = 1, \ldots, m$ el conjunto

$$Y_j = \{k \in \mathbb{N} : \beta_k = d_j\}.$$

Así, $\mathbb{N} = \bigcup_{i=1}^{m} Y_i$ es una unión disjunta. Además,

$$s^{-1}(\alpha_j) = A_j = \bigcup_{k \in Y_j} X_k,$$

una unión disjunta.

Entonces, usando la propiedad de la medida en una unión disjunta, tenemos

$$m(A_j) = m\left(\bigcup_{k \in Y_j} X_k\right) = \sum_{k \in Y_j} m(X_k).$$

Por lo tanto,

$$\int_{\mathbb{R}^n} s = \sum_{j=1}^m \alpha_j \cdot m(A_j) = \sum_{j=1}^m \sum_{k \in Y_j} \alpha_j \cdot m(X_k).$$

Intercambiando el orden de la suma

$$\sum_{j=1}^{m} \sum_{k \in Y_j} \alpha_j \cdot m(X_k) = \sum_{k \in Y_j} \beta_k \cdot m(X_k).$$

Así,

$$\int_{\mathbb{R}^n} s = \sum_{k \in Y_i} \beta_k \cdot m(X_k).$$

Corolario 2.3.4

Sean $s,t:\mathbb{R}^n\to [0,+\infty]$ functiones simples, medibles y no negativas. Entonces: $\int_{\mathbb{R}^n}(s+t)=\int_{\mathbb{R}^n}s+\int_{\mathbb{R}^n}t.$

Demostración. Sea $S = \sum_{i=1}^m \alpha_i \cdot \chi_{A_i}$ y $t = \sum_{j=1}^k \beta_j \cdot \chi_{B_j}$. Dado que $\mathbb{R}^n = \bigcup_{i=1}^m \bigcup_{j=1}^k (A_i \cap B_j)$, donde la unión es disjunta y los conjuntos A_i, B_j son medibles, se tiene que en $A_i \cap B_j$: $s + t = \alpha_i + \beta_j$. Aplicando el lema de integración para funciones simples: $\int_{\mathbb{R}^n} (s+t) = \sum_{i=1}^m \sum_{j=1}^k (\alpha_i + \beta_j) m(A_i \cap B_j) = \sum_{i=1}^m \alpha_i m(A_i \cap B_j) + \sum_{j=1}^k \beta_j m(A_i \cap B_j) = \int_{\mathbb{R}^n} s + \int_{\mathbb{R}^n} t \text{ (por el lema)}.$

Definición 2.3.6 [Integral de Lebesgue]

Sea $f: \mathbb{R}^n \to [0, +\infty)$ una función medible. Definimos la integral de Lebesgue como:

$$\int_{\mathbb{R}^n} f = \sup \left\{ \int_{\mathbb{R}^n} s \mid s \text{ es simple, medible } y \text{ } 0 \leq s \leq f \right\}.$$

Si $E \subset \mathbb{R}^n$ es medible y $f: E \to [0, +\infty)$, definimos:

$$\int_{E} f = \sup \left\{ \int_{\mathbb{R}^{n}} s \cdot \chi_{E} \mid s \text{ es simple, medible } y \text{ } 0 \leq s \leq f \cdot \chi_{E} \right\}.$$

Proposición 2.3.4

Para funciones medibles, no-negativas y conjuntos medibles se tiene que:

- 1. $si\ 0 \le f \le g \ y \ E \subset F \ entonces \int_E f \le \int_F g$.
- 2. $si\ f, g, \ge \Longrightarrow \int_E (f+g) = \int_E f + \int_E g$.
- 3. $si\ c \ge 0, f \ge 0 \implies \int_E cf = c \int_E f$.

4.
$$si\ m(E) = 0 \implies \int_E f = 0$$
. (Incluso $si\ f = +\infty$)

5.
$$\operatorname{si} f|_E = 0 \implies \int_E f = 0$$
. (Incluso $\operatorname{si} m(E) = +\infty$)

6.
$$si\ A \subset Byf \ge 0 \implies \int_A f \le \int_B f$$
.

7. si A, B son conjuntos medibles y disjuntos y $f \ge 0 \implies \int_{A \cup B} f = \int_A f + \int_B f$.

8.
$$si\ f = g\ en\ casi\ todo\ punto\ de\ E \implies \int_E f = \int_E g$$

Demostración. 1. Si $f = c \cdot 0$, entonces es trivial.

Si c > 0, tomamos $s = \sum_{i=1}^{m} \alpha_i \cdot \chi_{A_i}$, con $0 \le s \le f$.

Entonces, $c \cdot s = \sum_{i=1}^{m} c \cdot \alpha_i \cdot \chi_{A_i}$, con $0 \le c \cdot s \le c \cdot f$.

Así,

$$\int_{\mathbb{R}^n} c \cdot s = \sum_{i=1}^m c \cdot \alpha_i \cdot m(A_i) = c \sum_{i=1}^m \alpha_i \cdot m(A_i) = c \int_{\mathbb{R}^n} s.$$

Tomando el supremo, obtenemos

$$\int_{\mathbb{R}^n} c \cdot f = c \sup \left\{ \int_{\mathbb{R}^n} s \mid s \text{ es simple, } 0 \le s \le f \right\} = c \int_{\mathbb{R}^n} f.$$

2. Si m(E) = 0, entonces para toda s simple y medible tal que $0 \le s \le f$, se tiene que

$$s = \sum_{i=1}^{m} \alpha_i \cdot \chi_{A_i}.$$

De donde,

$$\int_{E} s = \sum_{i=1}^{m} \alpha_{i} \cdot m(A_{i} \cap E) = 0.$$

Por lo tanto,

$$\int_E f = \sup\left\{ \int_E s \right\} = 0.$$

3. Para toda s simple con $0 \le s \le f$, se tiene que s(x) = 0 para casi todo $x \in E$. Luego,

$$f \cdot \chi_E = 0 \Rightarrow s = 0 \Rightarrow \int_E s = 0, \quad \forall s.$$

Tomando el supremo,

$$\sup\left\{\int_E s\right\} = 0 = \int_E f.$$

4. Si f es simple y medible con $0 \le s \le f$, se tiene que

si
$$A \subset B$$
, $\chi_A \leq \chi_B \Rightarrow 0 \leq s \cdot \chi_B$.

5. Si A, B son medibles y disjuntos, entonces

$$\chi_{A \cup B} = \chi_A + \chi_B$$
.

Así,

$$\int_{A \cup B} f = \int_{\mathbb{R}^n} f \cdot \chi_{A \cup B} = \int_{\mathbb{R}^n} f(\chi_A + \chi_B).$$

Por linealidad de la integral,

$$\int_{\mathbb{R}^n} f \chi_A + \int_{\mathbb{R}^n} f \chi_B = \int_A f + \int_B f.$$

Por lo tanto,

$$\int_{A\cup B} f = \int_A f + \int_B f.$$

8. Si $E = A \cup Z$, con A y Z disjuntos y tales que $x \in E \Rightarrow f(x) = g(x)$, entonces

$$Z = \{ x \in E \mid f(x) \neq g(x) \}.$$

Si m(Z) = 0, se tiene que

$$\int_E f = \int_A f + \int_Z f = \int_A g + 0 = \int_A g.$$

Teorema 2.3.3 [Convergencia Monótona]

Sea $(f_k)_{k\in\mathbb{N}}:\mathbb{R}^n\to[0,+\infty]$ una sucesión de funciones medibles tales que:

1. $f_1 \leq f_2 \leq \ldots$ (en \mathbb{R}^n)

2. $\lim_{k\to\infty} f_k = f$ (puntualmente en \mathbb{R}^n)

Entonces se cumple que:

$$\lim_{k \to \infty} \int_{\mathbb{R}^n} f_k = \int_{\mathbb{R}^n} f.$$

Demostración. La sucesión $\{f_k\}_{k\in\mathbb{N}}$ es monótona creciente en $[0,+\infty)$. Por lo tanto, existe el límite:

$$l = \lim_{k \to \infty} f_k, \in [0, +\infty].$$

Dado que $f_k(x) \leq f(x) \quad \forall x \in \mathbb{R}^n$, tenemos que:

$$\int_{\mathbb{R}^n} f_k \le \int_{\mathbb{R}^n} f.$$

Queda demostrar la otra desigualdad para probar el teorema.// Sea s una función simple y medible en \mathbb{R}^n con $0 \le s \le f$, y fijemos un $c \in (0,1)$. $\forall k \in \mathbb{N}$, definimos la sucesión de conjuntos $E_k = \{x \in \mathbb{R}^n : f_k(x) \ge c \cdot s(x)\}$. Esta sucesión es medible (debido a que tanto f_k como s son medibles) y es creciente (debido a que $f_k \le f_{k+1}$ y $c \cdot s \le c \cdot f \le f$). Ahora veamos que:

$$\bigcup_{k=1}^{\infty} E_k = \mathbb{R}^n.$$

Sea $x \in \mathbb{R}^n$. Entonces,

$$\begin{cases} \text{Si } f_k(x) = 0, \Rightarrow s(x) = 0 \Rightarrow 0 = f_k(x) \Rightarrow 0 = s(x) \Rightarrow x \in E_k \quad \forall k. \\ \text{Si } f_k(x) > 0, \Rightarrow c \cdot s(x) \leq f_k(x) \Rightarrow \forall k \in \mathbb{N}, \quad c \cdot s(x) \leq f_k(x). \end{cases}$$

Por lo tanto, $x \in \mathbb{R}^n$. Veamos que:

$$\int_{\mathbb{R}^n} s = \lim_{k \to \infty} \int_{E_k} s.$$

Dado que $s = \sum_{j=1}^{m} \alpha_j \cdot \chi_{A_j}$ con $s^-1(\alpha_j) = A_j$ tenemos:

$$m(A_j) = m(\bigcap_{k=1}^{\infty} (E_k \cap A_j)) = \lim_{k \to \infty} m(E_k \cap A_j).$$

Entonces:

$$\int_{\mathbb{R}^n} s = \sum_{j=1}^m \alpha_j \cdot m(A_j) = \sum_{j=1}^m \alpha_j \cdot \lim_{k \to \infty} m(E_k \cap A_j) = \lim_{k \to \infty} \sum_{j=1}^m \alpha_j \cdot m(E_k \cap A_j) = \lim_{k \to \infty} \int_{E_k} s ds$$

Finalmente, obtenemos que:

$$\int_{\mathbb{R}^n} f_k \ge \int_{E_k} f_k \ge \int_{E_k} c \cdot s = c \cdot \int_{E_k} s$$

Tomando límites el límite cuando $k \to \infty$, obtenemos que:

$$l \ge c \cdot \int_{\mathbb{R}^n} s$$

Por último, si tomamos el límite $c \to 1$ obtenemos que:

$$l \ge \int_{\mathbb{R}^n} s$$

Dado que s es una función simple y medible arbitraria, se tiene esta propiedad $\forall s$ función simple, medible y no-negativa (por ser $0 \le s \le f$). Por tanto, obtenemos la ansiada desigualdad: $l \ge \int_{\mathbb{R}^n} f$.

Teorema 2.3.4 [Convergencia Monótona Versión Refinada]

Sea $E \subset \mathbb{R}^n$ medible $y \ f_k : E \to [0, +\infty]$ succesión de funcion medibles $y \ f : E \to [0, +\infty]$ tales que:

- 1. $f_1(x) \le f_2(x) \le \dots$ (en casi todo punto de E)
- 2. $\lim_{k\to\infty} f_k = f$ (en casi todo punto de E)

Entonces se cumple que:

$$\lim_{k \to \infty} \int_E f_k = \int_E f.$$

Demostración. Denotamos el conjunto

$$N = \{x \in E \mid (1) \text{ y } (2) \text{ no se cumplen}\}$$

Sabemos que m(N) = 0. Definimos la sucesión de funciones

$$\hat{f}_k = f_k \cdot \chi_{E \setminus N}, \quad \forall k \in \mathbb{N} \ \text{y} \ \hat{f} = f \cdot \chi_{E \setminus N}$$

Podemos aplicar el Teorema 2.3.3, lo que nos permite concluir que: 1. $\hat{f}_k \to f$ puntualmente. 2. Se cumple la convergencia de integrales. Por lo tanto, tomando límites en la integral:

$$\int_{E} f = \int_{E \setminus N} f = \int_{\mathbb{R}^{n}} \hat{f} = \lim_{k \to \infty} \int_{\mathbb{R}^{n}} \hat{f}_{k} = \lim_{k \to \infty} \int_{E} f_{k}.$$

Corolario 2.3.5

1. Si $f, g : \mathbb{R}^n \to [0, +\infty]$ son medibles, medibles y no-negativas se tiene que:

$$\int_{\mathbb{R}^n} f + g = \int_{\mathbb{R}^n} f + \int_{\mathbb{R}^n} g$$

.

2. $Si(f_k)_{k\in\mathbb{N}}: \mathbb{R} \to [0, +\infty]$ sucesión de funciones mediles $\forall k \in \mathbb{N}$ se tiene que:

$$\int_{E} \sum_{k=1}^{\infty} f_k = \sum_{k=1}^{\infty} \int_{E} f_k$$

.

Demostración.

1. Sabemos que existen sucesiones crecientes $(s_j)_{j\in\mathbb{N}}$ y $(t_j)_{j\in\mathbb{N}}$ de funciones simples medibles no negativas tales que $\lim_{j\to\infty} s_j = f$ y $\lim_{j\to\infty} t_j = g$. Por lo tanto, aplicando el Teorema 2.3.3 obtenemos que:

$$\int_{\mathbb{R}^n} f + g = \lim_{j \to \infty} \int_{\mathbb{R}^n} s_j + t_j = \lim_{j \to \infty} \int_{\mathbb{R}^n} s_j + \lim_{j \to \infty} \int_{\mathbb{R}^n} t_j = \int_{\mathbb{R}^n} f + \int_{\mathbb{R}^n} g.$$

2. Por el apartado anterior obtenemos que: $\sum_{k=1}^m \int_{\mathbb{R}^n} f_k = \int_{\mathbb{R}^n} \sum_{k=1}^m f_k \implies$ podemos aplicar el Teorema de la Convergencia Monótona, dado que la sucesión $\sum_{k=1}^m f_k$ converge de forma creciente a $\sum_{k=1}^{\infty} f_k$. Entonces finalmente obtenemos que:

$$\int_{\mathbb{R}^n} \sum_{k=1}^{\infty} f_k = \sum_{k=1}^{\infty} \int_{\mathbb{R}^n} f_k$$

.

Lema 2.3.2

Sea $(f_k)_{k\in\mathbb{R}^n}$ sucesión de funciones medibles, entonces:

$$\int_{\mathbb{R}^n} \liminf_{k \to \infty} f_k \le \liminf_{k \to \infty} \int_{\mathbb{R}^n} f_k$$

Demostración. Sea

$$f = \liminf_{k \to \infty} f_k = \lim_{k \to \infty} \inf_{j \ge k} f_j = \lim_{k \to \infty} g_k$$

Dado que $g_k \ge 0$, la sucesión (g_k) está compuesta por funciones medibles y no negativas para todo $k \in \mathbb{N}$. Además, es una sucesión creciente en el sentido de que

$$q_k \leq q_{k+1}, \quad \forall k \in \mathbb{N}.$$

Por el Teorema 2.3.3, se tiene que:

$$\lim_{k \to \infty} \int_{\mathbb{R}^n} g_k = \int_{\mathbb{R}^n} \lim_{k \to \infty} g_k.$$

Por definición del liminf, se cumple la desigualdad:

$$\lim_{k \to \infty} \int_{\mathbb{R}^n} g_k \le \liminf_{k \to \infty} \int_{\mathbb{R}^n} g_k.$$

Finalmente, dado que $g_k \leq f$, se concluye que:

$$\int_{\mathbb{R}^n} g_k \le \int_{\mathbb{R}^n} f_k.$$

Observación 2.3.6

El resultado análogo con lim sup no es válido en gneral. Podemos tomar de contraejemplo la función $f_k = k \cdot \chi_{[k,\infty]}$.

Definición 2.3.7 [Función Integrable]

Sean $E \subset \mathbb{R}^n$ conjunto medible $y \ f : E \to [0, +\infty]$ función medible. Se dice que f es integrable (o absolutamente integrable) cuando

$$\int_{E} f < +\infty$$

Es decir cuando

$$\int_{\mathbb{R}^n} f \circ \chi_E < +\infty$$

Observación 2.3.7

f es integrable en $E \iff |f|$ es integrable en $E \iff f^+$ y f^- son integrables en E.

Lema 2.3.3

Sean $E \subset \mathbb{R}^n$ y f = g - h con $g, h : E \to [-\infty, +\infty]$ functiones integrables. Entonces,

$$\int_{E} f = \int_{E} g - \int_{E} h.$$

Demostración. Si $f = g - h \implies |f| = |g - h| \le g + h \implies f$ es integrable. $f = f^+ - f^- = g - h \implies f^+ + h = f^- + g \implies \int_E f^+ + h = \int_E f^- + g \implies \int_E f = \int_E f^+ - \int_E f^- = \int_E g - \int_E h$.

Proposición 2.3.5

Para funciones f y g integrables en E, se cumplen las siguientes propiedades:

1. Si f,g son integrables en E, entonces f+g también es integrable y

$$\int_{E} (f+g) = \int_{E} f + \int_{E} g.$$

23

2. Si f es integrable en E y $c \in \mathbb{R}$, entonces cf es integrable en E y

$$\int_{E} (cf) = c \int_{E} f.$$

3. Si $f \leq g$ en casi todo punto de E, entonces

$$\int_{E} f \le \int_{E} g.$$

4. Si |f| es integrable en E, entonces f también es integrable y

$$\left| \int_{E} f \right| \le \int_{E} |f|.$$

5. Si f = g en casi todo punto de E y f es integrable en E, entonces g también es integrable en E con,

$$\int_{E} f = \int_{E} g.$$

6. $Si\ m(E) = 0\ y\ f$ es medible, entonces es integrable en $E\ y$

$$\int_{E} f = 0$$

- 7. Si f es integrable en E entonces $|f| < \infty$ en casi todo punto de E
- 8. Si $\int_{E} |f| = 0$, entonces f = 0 en casi todo punto de E.

Demostración.

(1) Dado que $f = f^+ - f^-$ y $g = g^+ - g * - \implies f + g = f^+ + g^+ - (f^- + g^-)$, con ambas partes ≥ 0 . Entones, por el lema de la integral de funciones no negativas,

$$\int_{E} (f+g) = \int_{E} f^{+} + \int_{E} g^{+} - \int_{E} f^{-} - \int_{E} g^{-}.$$

Reagrupando términos,

$$\int_{E} (f+g) = \int_{E} f + \int_{E} g.$$

(2) Si c > 0. Como $cf = cf^+ - cf^- \implies$,

$$\int_{E} cf = \int_{E} (cf)^{+} - \int_{E} (cf)^{-} = c \int_{E} f^{+} - c \int_{E} f^{-} = c \int_{E} f.$$

Si c < 0, usando $cf = cf^+ - cf * - = (-c)f^+ - (-c)f^-$. Entones aplicamos el apartado anterior y obtenemos que:

$$\int_{E} cf = c \int_{E} f.$$

(3) Como $g - f \ge 0$ en casi todo punto de E, se cumple que: $(g - f) \cdot \chi_E \ge 0$ en casi todo punto de $\mathbb{R}^n \implies$

$$\int_{E} (g - f) \ge 0.$$

Aplicando la linealidad de la integral,

$$\int_E g - \int_E f \geq 0,$$

lo cual implica que

$$\int_{E} f \le \int_{E} g.$$

(4) Se tiene que $|f| = f^+ + f^-$. Usando la linealidad de la integral,

$$|\int_{E} f| = |\int_{E} f^{+} + \int_{E} f^{-}.|$$

Como $f = f^+ - f^-$, aplicamos la desigualdad triangular:

$$\left| \int_E f \right| = \left| \int_E f^+ - \int_E f^- \right| \le \int_E f^+ + \int_E f^- = \int_E |f|.$$

(5) Como f = g en casi todo punto de $E \implies f^+ = g^+$ $f^- = g^-$ en casi todo punto de E por lo que sólo queda aplicar el apartado anterior.

$$\int_{E} f = \int_{E} g$$

(6) $|f| \cdot \chi_E \ge 0$ en casi todo punto de $\mathbb{R}^n \implies \int_E |f| = \int_{\mathbb{R}^n} |f \cdot \chi_E| = 0 \implies$

$$|\int_E f| \le \int_E |f| = 0$$

(7) No se qué hace la demostracion

(8) Sea

$$A = \{x \in E : |f(x)| > 0\}.$$

Definimos los conjuntos

$$A_k = \{x \in E : |f(x)| > \frac{1}{k}\}, \quad \forall k \in \mathbb{N},$$

por lo que

$$A = \bigcup_{k=1}^{\infty} A_k.$$

Ahora, evaluamos la medida de A_k utilizando la integral:

$$m(A_k) = \int_{A_k} 1 \le \int_{A_k} k \cdot |f| = k \int_{A_k} |f| \le \int_{A_k} |f| \le \int_{E} |f|$$

Tomando el límite cuando $k \to \infty$ (y de la subaditvidad) se concluye que

$$m(A) = \lim_{k \to \infty} m(A_k) = 0.$$

Teorema 2.3.5 [Convergencia Dominada]

Sean $E \subset \mathbb{R}^{\times}$ medible $y \ \forall k \in \mathbb{N}, f_k : E \to [-\infty, +\infty]$ functiones medibles. Supongamos que $\exists g : E \to [-\infty, +\infty]$ integrable en E tal que $|f_k| < g$ en casi todo punto de E $y \ \forall k \in \mathbb{N}$. Si además suponemos que $\lim_{k \to \infty} f_k = f$ en casi todo punto de E, entonces:

1. f_k y f son integrables en E

- 2. $\lim_{k\to\infty} \int_{E} |f_k f| = 0$
- 3. $\lim_{k\to\infty} \int_E f_k = \int_E f$

Demostración.

- 1. Dado que $|f_k| \leq |g| = g \quad \forall k \in \mathbb{N}$, se concluye que f_k es integrable en E. Además, como $|f| \leq g$, se sigue que f también es integrable en E.
- 2. Observamos que $|f_k f| \le |f_k| + |f| \le g + g = 2g \ge 0$, lo que implica que $2g |f_k f| \ge 0$. Además, la sucesión de funciones $\{h_k\}_{k \in \mathbb{N}}$ converge casi en todo punto de E a 2g 0 = 2g. Aplicando el **lema de Fatou** a $\hat{f}_k = h_k \chi_E$, obtenemos que:

$$\int_E \lim_{k \to \infty} h_k = \liminf_{k \to \infty} \int_E h_k$$

A partir de esto, se deduce la siguiente igualdad:

$$\int_E 2g = \liminf_k \left(\int_E 2g - \int_E |f_k - f| \right) = \lim_k \int_E 2g + \liminf_k \left(-\int_E |f_k - f| \right) = \int_E 2g - \limsup_k \int_E |f_k - f|$$

Utilizando el siguiente **lema**: si $a_k \to a$, entonces

$$\liminf_k (a_k + b_k) \ge \liminf_k a_k + \liminf_k b_k$$

se concluye que:

$$\limsup_{k} \int_{E} |f_k - f| \le \int_{E} 2g - \int_{E} 2g = 0 \Rightarrow \lim_{k} \int_{E} |f_k - f| = 0$$

3. Finalmente, aplicamos la propiedad de la integral a la diferencia $f_k - f$:

$$\left| \int_{E} f_{k} - \int_{E} f \right| = \left| \int_{E} (f_{k} - f) \right| \le \int_{E} |f_{k} - f| \xrightarrow{k \to \infty} 0$$

Por lo tanto, se concluye que:

$$\lim_{k \to \infty} \int_E f_k = \int_E f$$

Definición 2.3.8 [Integral Paramétrica]

Sea f función integrable, se define una función por su integral paramétrica como:

$$F(u) = \int_{E} f(x, u) dx$$

Teorema 2.3.6

Sean $E \subset \mathbb{R}^n$ conjunto medible, $U \subset \mathbb{R}^n$ conjunto cualquiera, $f: E \times U \to \mathbb{R}$ y suponemos que:

- 1. $\forall u \in Uf(\cdot, u) : E \to \mathbb{R}$ es medible.
- 2. $\forall x \in Ef(x,\cdot) : U \to \mathbb{R} \text{ es continua.}$
- 3. $\exists g: E \to [0, +\infty]$ integrable en E tal que $|f(x, u)| \leq g(x)$ en casi todo punto de E y $\forall u \in U$.

Entonces podemos decir que:

$$F(u) = \int_{E} f(x, u) dx$$

Demostración. Sea $\{u_k\}_{k\in\mathbb{N}}\subset U$ tal que $u_k\to u_0\in U$. ¿Se sigue que $\{F(u_k)\}_{k\in\mathbb{N}}\xrightarrow{k\to\infty} F(u_0)$? Para cada $k\in\mathbb{N}$, definimos

$$f_k = f(\cdot, u_k) : E \to \mathbb{R}$$

que es una función medible. Por la condición (2), se cumple que $\forall x \in E$,

$$f_k(x) = f(x, u_k) \xrightarrow{k \to \infty} f(x, u_0).$$

Es decir, la sucesión $\{f_k\}$ converge puntualmente en E a

$$f_0(x) = f(x, u_0).$$

Además, se cumple que

$$|f_k(x)| = |f(x, u_k)| \le g(x), \quad \forall k \in \mathbb{N}, \quad \forall x \in E.$$

Aplicando el Teorema 2.3.5 (TCD), se concluye que f_k es integrable para todo $k \in \mathbb{N}$ y

$$\int_E f_k \to \int_E f.$$

Es decir,

$$F(u_0) = \int_E f(x, u_0) dx.$$

Por lo tanto, se deduce que

$$F(u_k) = \int_E f(x, u_k) dx \quad \Rightarrow \quad F(u) = \int_E f(x, u) dx$$

Observación 2.3.8

 $\forall u_0 \in U \lim_{u \to u_0} \int_E f(x, u) dx = F(u) = F(u_0) = \int_E f(x, u_0) dx$

Teorema 2.3.7 [Regla de Leibniz]

Sean $E \subset \mathbb{R}^n$ conjunto medible, $U = (a,b) \subset \mathbb{R}$ conjunto abierto $y \ f : E \times U \to \mathbb{R}$. Y además supongamos que:

- 1. $\forall u \in Uf(\cdot, u) : E \to \mathbb{R}$ es integrable en E.
- 2. $\forall x \in Ef(x,\cdot): U \to \mathbb{R}$ es de clase C^1 en U.
- $3. \ \exists g: E \rightarrow [0,+\infty] \ integrable \ en \ E \ tal \ que \ |\frac{\partial f}{\partial u}(x,u)| \leq g(x) \ en \ casi \ todo \ punto \ de \ E \ y \ \forall u \in U.$

Entonces se cumple que:

$$F(t) = \int_{E} f(x, t) dx$$

es de clase C^1 en U y $\forall t \in U$ se cumple que:

$$F'(t) = \int_E \frac{\partial f}{\partial t}(x, t) dx$$

Demostración. Fijamos $t_0 \in (a,b)$ y definimos la función $h: E \times (a,b) \to \mathbb{R}$ como:

$$h(x,t) = \begin{cases} \frac{f(x,t) - f(x,t_0)}{t - t_0}, & t \neq t_0\\ \frac{\partial}{\partial t} f(x,t_0), & t = t_0 \end{cases}$$

1. Medibilidad de h(x,t)

Queremos ver que h(x,t) es medible para todo $t \in (a,b)$.

- Si $t \neq t_0$, es claro. - Si $t = t_0$, tenemos que:

$$h(x,t_0) = \lim_{k \to \infty} \frac{f(x,t_0 + 1/k) - f(x,t_0)}{1/k}$$

lo cual es medible.

2. Continuidad de $h(x,\cdot)$

Para todo $x \in E$, si $h(x, \cdot)$ es acotada en (a, b), entonces es continua.

- Si $t \neq t_0$, es claro. - Si $t = t_0$, tenemos:

$$h(x,t_0) = \frac{\partial}{\partial t} f(x,t_0) = \lim_{t \to t_0} h(x,t),$$

lo cual prueba la continuidad.

3. Acotación y aplicación de la Regla de Leibniz

$$|h(x,t)| \le g(x)$$

- Si $t=t_0$, es claro. - Si $t\neq t_0$, por el Teorema del Valor Medio, existe $c\in(t,t_0)$ tal que:

$$\left| \frac{f(x,t) - f(x,t_0)}{t - t_0} \right| = \left| \frac{\partial}{\partial t} f(x,s) \right| \le g(x).$$

Por la Regla de Leibniz, obtenemos:

$$F'(t_0) = \lim_{t \to t_0} \frac{F(t) - F(t_0)}{t - t_0} = \lim_{t \to t_0} \int_E \frac{f(x, t) - f(x, t_0)}{t - t_0} dx = \lim_{t \to t_0} \left(\int_E h(x, t) dx \right) = \int_E \left(\lim_{t \to t_0} h(x, t) \right) dx = \int_E \frac{\partial}{\partial t} f(x, t) dx.$$

Finalmente, como F' es continua en (a, b), se concluye que $F \in C^1(a, b)$.

2.4 Relación entre la integral de Lebesgue y la integral de Riemann

Teorema 2.4.1

 $Sea [a, b] \subset \mathbb{R}^n \ y \ f : [a, b] \to \mathbb{R} \ integrable \ Riemann \ en \ [a, b]. \ Entonces \ f \ es \ integrable \ Lebesgue \ en \ [a, b]$

y se cumple que:

$$(L)\int_{a}^{b} f = (R)\int_{a}^{b} f$$

Observación 2.4.1

Denotamos $\int_a^b f = \int_{[a,b]} f$

Demostración. $\forall k \in \mathbb{N}$ sabemos que $\exists P_k = \{a = x_0^k < x_1^k < \dots < x_{n(k)}^k = b\} \subset [a,b]$ tal que: $\bar{S}(f,P_k) - \underline{S}(f,P_k) < \frac{1}{k}$. Suponemos que P_{k+1} es mas fina que P_k y además que

$$diam(P_k) = \sup_{i \in \{1, \dots, n(k)\}} (x_i^k - x_{i-1}^k) < \frac{1}{k}$$

 $\forall k \in \mathbb{N} \text{ denotamos } m_k = \inf\{f(x) : x \in [x_{i-1}^k, x_i^k]\} \text{ y } M_k = \sup\{f(x) : x \in [x_{i-1}^k, x_i^k]\}.$

$$\underline{S}(f, P_k) = \sum_{i=1}^{n(k)} m_k (x_i^k - x_{i-1}^k) = \int_a^b \varphi_k \quad \text{con} \quad \varphi_k = \sum_{i=1}^{n(k)} m_i^k \cdot \chi_{[x_{i-1}^k, x_i^k)}$$

$$\bar{S}(f, P_k) = \sum_{i=1}^{n(k)} M_k(x_i^k - x_{i-1}^k) = \int_a^b \psi_k \quad \text{con} \quad \psi_k = \sum_{i=1}^{n(k)} M_i^k \cdot \chi_{[x_{i-1}^k, x_i^k)}$$

Es claro que $\varphi_k \leq f \leq \psi_k$ en [a,b]. Además, como P_{k+1} es más fino que $P_k \Longrightarrow (\varphi_k) \uparrow y \ (\psi_k) \downarrow$ Denotamos $\varphi = \lim_{k \to \infty} \varphi_k = \sup \varphi_k \ y \ \psi = \lim_{k \to \infty} \psi_k = \inf \psi_k$ que son medibles y cumplen que $\varphi \leq f \leq \psi$. Como f es integrable-Riemann $\Longrightarrow f$ es acotada $\iff \exists M \in \mathbb{N}$ tal que $|f(x)| \leq M, \ \forall x \in [a,b]$. La función g(x) = M es integrable en [a,b] y puesto que $|\psi_k| \leq g$ y $|\varphi_k| \leq g$ entonces por el Teorema de la Convergencia Dominada:

$$\underline{S}(f, P_k) = \int_a^b \varphi_k \to \int_a^b \varphi \qquad \bar{S}(f, P_k) = \int_a^b \psi_k \to \int_a^b \psi$$

Pero a su vez, también se cumple que:

$$\underline{S}(f, P_k) \to (R) \int_a^b f$$
 y $\bar{S}(f, P_k) \to (R) \int_a^b f \implies \int_a^b \varphi = (R) \int_a^b f = \int_a^b \psi$

Y como $\int_a^b \psi - \varphi = 0 \implies \psi - \varphi = 0$ en casi todo punto de [a,b]. Es decir $\varphi = f = \psi$ en casi todo punto de [a,b]. Y finalmente obtenemos que:

$$(L)\int_{a}^{b} f = \int_{a}^{b} \varphi = \int_{a}^{b} \psi = (R)\int_{a}^{b} f$$

Teorema 2.4.2

Sean $[a,b] \subset \mathbb{R}^n$ y $f:[a,b] \to \mathbb{R}$ una función acotada. Entonces f es integrable-Riemann en $[a,b] \iff D_f = \{x \in [a,b] \mid f \text{ no es continua en } x\}$ tiene medida nula.

Ejemplo

La función de Dirichlet

$$f = \chi_{\mathbb{Q} \cap [0,1]} : [0,1] \to \mathbb{R}, \quad f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

no es integrable-Riemann en [0,1]. Pero f=0 en casi todo punto $\implies f$ es integrable-Lebesgue y ésta vale: $\int_{[0,1]} f = \int_{[0,1]} 0 = 0$

Teorema 2.4.3

Sean $-\infty \le \alpha < \beta \le +\infty$ y $f:(\alpha,\beta) \to \mathbb{R}$ una función absolutamente integrable-Riemann impropia en el intervalo (α,β) . Entonces f es integrable-Lebesgue en (α,β) y se cumple que:

$$(L)\int_{\alpha}^{\beta} f = (R)\int_{\alpha}^{\beta} f$$

Demostración. Habría que realizar una distinción de casos según el tipo de intervalo que sea (α, β) , en este caso trataremos el intervalo $[\alpha, \infty)$: Por hipótesis sabemos que:

- 1. $\forall k \in \mathbb{N}, f$ es integrable-Riemann en [a, b]
- 2. $\lim_{b\to\infty} \int_a^b |f| < +\infty$

Tomamos una sucesión $(b_n)_{n\in\mathbb{N}}\uparrow+\infty$ y definimos las sucesiones de funciones: $f_n=f\cdot\chi_{[a,b_n]}$ y $g_n=|f|\cdot\chi_{[a,b_n]}$ medibles. De manera que tenemos que $f_n\uparrow f$ y $g_n\uparrow |f|$. Entonces aplicamos el Teorema de la Convergencia Monóntona:

- 1. $(L) \int_{a}^{+\infty} |f| = \lim_{n \to \infty} (L) \int_{a}^{b_n} |f| = \lim_{n \to \infty} (R) \int_{a}^{b_n} |f| = (R) \int_{a}^{+\infty} |f| < \infty$
- 2. Esto muestra que f es integrable-Lebesgue en $[a, +\infty)$.

Por otra parte, como $|f_n| \leq |f| \ \forall n \in \mathbb{N}$ por el Teorema de la Convergencia Dominada se tiene que:

1.
$$(L) \int_a^{+\infty} f = \lim_{n \to \infty} (L) \int_a^{\infty} f_n = \lim_{n \to \infty} (R) \int_a^{b_n} f = (R) \int_a^{+\infty} f$$

Finalmente obtenemos el resultado de que f es integrable de Riemann-impropia en $[a, +\infty)$. $\forall (b_n)_{n \in \mathbb{N}} : b_n \to \infty$ tenemos que $|\int_{b_n}^{b_m} f| \le \int_{b_n}^{b_m} |f| \le \epsilon$

Ejemplo

(Hoja 3. Ej: 6.a) Calculemos

$$F(t) = \int_0^{+\infty} \frac{\sin(tx)}{x} e^{-x} dx, \quad \forall t \in \mathbb{R}$$

derivando con respecto al parámetro t. Para ello, aplicamos el **Teorema de Leibniz**: Sea $E \subset \mathbb{R}^n$ medible y $(a,b) \subset \mathbb{R}$, con $f: E \times (a,b) \to \mathbb{R}$ tal que:

- 1. $\forall u \in (a,b), f(\cdot,u) : E \to \mathbb{R}$ es integrable en E.
- 2. Para casi todo $x \in E$, la función $f(x,\cdot):(a,b)\to\mathbb{R}$ es de clase C^1 en (a,b).

3. Existe $g: E \to [0, +\infty]$ integrable en E tal que

$$\left| \frac{\partial f}{\partial t}(x,t) \right| \le g(x)$$
 para casi todo $x \in E, \forall u \in (a,b).$

Entonces, F(t) es de clase C^1 en \mathbb{R} y se cumple:

$$F'(t) = \int_0^{+\infty} \frac{\partial f}{\partial t}(x, t) \, dx.$$

Dado que

$$f(x,t) = \frac{\sin(tx)}{x}e^{-x},$$

calculamos la derivada parcial con respecto a t:

$$\frac{\partial f}{\partial t}(x,t) = \cos(tx)e^{-x}.$$

Verifiquemos cada una de las hipótesis del Teorema de Leibniz:

1. $\forall t \in \mathbb{R}, f(x,t)$ es integrable en $[0,+\infty)$:

$$|f(x,t)| \le e^{-x} = g(x).$$

Como $\int_0^{+\infty} e^{-x} dx = 1 < +\infty$, se cumple la integrabilidad.

- 2. $\forall x \in E, \frac{\partial f}{\partial t}(x,t) = \cos(tx)e^{-x}$ es continua en \mathbb{R} , por lo que $f(x,\cdot)$ es de clase C^1 en \mathbb{R} .
- 3. Se cumple que

$$\left| \frac{\partial f}{\partial t}(x,t) \right| = \left| \cos(tx)e^{-x} \right| \le e^{-x} = g(x),$$

que es integrable en $[0, +\infty)$.

Por lo tanto, F es de clase C^1 en \mathbb{R} y

$$F'(t) = \int_0^{+\infty} \cos(tx)e^{-x} dx.$$

Ahora calculemos esta integral:

$$I(t) = \int_0^{+\infty} \cos(tx)e^{-x} dx.$$

Usando integración por partes con

$$\begin{cases} u = \cos(tx), & dv = e^{-x}dx, \\ du = -t\sin(tx)dx, & v = -e^{-x}, \end{cases}$$

obtenemos:

$$I(t) = [\cos(tx)e^{-x}]_0^{+\infty} - t \int_0^{+\infty} \sin(tx)e^{-x} dx.$$

Evaluando los límites y repitiendo el proceso para $\sin(tx)e^{-x}$, obtenemos:

$$I(t)(1+t^2) = 1.$$

Despejando:

$$I(t) = \frac{1}{1+t^2} = F'(t).$$

Finalmente, integramos:

$$F(t) = \int \frac{dt}{1 + t^2} = \arctan(t) + C.$$

Si t = 0, entonces

$$F(0) = \int_0^{+\infty} 0 = 0 \Rightarrow C = 0.$$

Por lo tanto:

$$F(t) = \arctan(t)$$
.

Funciones integrables en varias variables

4 Teoremas de Fubini y Tonelli

4.1 Teorema de Tonelli

Notación:

$$\mathbb{R}^{n+k} = \mathbb{R}^n \times \mathbb{R}^k \qquad (x,y) = (x_1, \dots, x_n, y_1, \dots, y_k) \in \mathbb{R}^{n+k}$$

Sea $f: \mathbb{R}^{n+k} \to [-\infty, +\infty]$, entonces denotamos las funciones:

$$\begin{cases} f_x : \mathbb{R}^k \to [-\infty, +\infty] & \text{con} \quad f_x(y) = f(x, y) \quad \forall y \in \mathbb{R}^k \\ f_y : \mathbb{R}^n \to [-\infty, +\infty] & \text{con} \quad f_y(x) = f(x, y) \quad \forall x \in \mathbb{R}^n \end{cases}$$

Teorema 4.1.1 [Teorema de Tonelli]

Sea $f: \mathbb{R}^{n+k} \to [0, +\infty]$ medible. Entonces:

- 1. Para casi todo $x \in \mathbb{R}^n$, la función $f_x : \mathbb{R}^k \to [0, +\infty]$ es medible en \mathbb{R}^k
- 2. La función $F: \mathbb{R}^n \to [0, +\infty]$ tal que $F(x) = \int_{\mathbb{R}^k} f_x = \int_{\mathbb{R}^k} f(x, y) dy$ definida en casi todo punto de \mathbb{R}^n es medible en \mathbb{R}^n
- 3. $\int_{\mathbb{R}^{n+k}} f = \int_{\mathbb{R}^n} F = \int_{\mathbb{R}^n} (\int_{\mathbb{R}^k} f_x) = \int_{\mathbb{R}^n} (\int_{\mathbb{R}^k} f(x, y) dy) dx = \int_{\mathbb{R}^{n+k}} f(x, y) dx dy$

Además, de forma análoga se tiene que:

- 1. Para casi todo $y \in \mathbb{R}^k$, la función $f_y : \mathbb{R}^n \to [0, +\infty]$ es medible en \mathbb{R}^n .
- 2. La función $G: \mathbb{R}^k \to [0, +\infty]$ tal que $G(y) = \int_{\mathbb{R}^n} f_y = \int_{\mathbb{R}^n} f(x, y) dx$ definida en casi todo punto de \mathbb{R}^k es medible en \mathbb{R}^k .
- 3. $\int_{\mathbb{R}^{n+k}} f = \int_{\mathbb{R}^k} G = \int_{\mathbb{R}^k} (\int_{\mathbb{R}^n} f_y) = \int_{\mathbb{R}^k} (\int_{\mathbb{R}^n} f(x, y) dx) dy = \int_{\mathbb{R}^{n+k}} f(x, y) dy dx$

Observación 4.1.1

Los siguientes lemas son previos y necesarios para la demostracion del Teorema de Tonelli.

Lema 4.1.1

Sean f, g que satisfacen el Teorema de Tonelli y $a, b \ge 0 \implies af + bg$ también satisfacen el Teorema de Tonelli

Demostración.

- 1. $\forall x \in \mathbb{R}^n$, $(af + bg)_x = a(f_x) + b(g_x)$ es medible en \mathbb{R}^k .
- 2. $H(x) = \int_{\mathbb{R}^k} (af + bg)_x = \int_{\mathbb{R}^k} a(f_x) + b(g_x) = \int_{\mathbb{R}^k} a(f_x) + \int_{\mathbb{R}^k} b(g_x)$ es medible en \mathbb{R}^n .
- 3. $\int_{\mathbb{R}^n} (af + bg)_x = a \int_{\mathbb{R}^{n+k}} f_x + b \int_{\mathbb{R}^{n+k}} g_x$

Lema 4.1.2

Sea $(f_j)_{j \in \mathbb{N}}$ sucesion de funciones que satisfacen el Teorema de Tonelli y $f_j \uparrow f$ en \mathbb{R}^{n+k} puntalmente \implies f satisface el Teorema de Tonelli.

Demostración.

- 1. Para casi todo $x \in \mathbb{R}^n$ se tiene que $f_i(x,\cdot) = (f_i)_x \uparrow f(x,\cdot) = f_x$
- 2. $F_j(x) = \int_{\mathbb{R}^k} (f_j)_x \uparrow \int_{\mathbb{R}^k} f_x = F(x)$ luego F es medible por el Teorema de la Convergencia Monótona.
- 3. Nuevamente por el Teorema de la Convergencia aplicado a la sucesión de (2) $F_j(x) \uparrow F(x)$ tenemos que $\int_{\mathbb{R}^{n+k}} f = \lim_{j \to \infty} \int_{\mathbb{R}^{n+k}} f_j = \lim_{j \to \infty} \int_{\mathbb{R}^n} F_j = \int_{\mathbb{R}^n} F = \int_{\mathbb{R}^n} (\int_{\mathbb{R}^k} f(x, y) \, dy) \, dx$

Observación 4.1.2

El siguiente lema es una versión de lema anterior en el que se usa el teorema de la convergencia dominada en lugar del de la convergencia monótona.

Lema 4.1.3

Sea $(f_j)_{j \in \mathbb{N}}$ sucesion de funciones que satisfacen el Teorema de Tonelli. Supongamos que $(f_j) \to f$ puntualmente en \mathbb{R}^{n+k} y $\exists g : \mathbb{R}^{n+k} \to [0, +\infty]$ integrable, que satisface el Teorema de Tonelli y tal que $0 \le f_j \le g \quad \forall j \in \mathbb{N}$. Entonces, f satisface el Teorema de Tonelli.

Demostración.

- 1. $(f_i)_x \to f_x$ medible
- 2. $\int_{\mathbb{R}^{n+k}} g = \int_{\mathbb{R}^n} (\int_{\mathbb{R}^k} g_x) < +\infty$ luego $G(x) = \int_{\mathbb{R}^k} g_x < +\infty$ para casi todo $x \in \mathbb{R}^n$ Además, tenemos que $0 \le (f_j)_x \le g_x$ integrable, por lo que podemos usar el Teorema de la Convergencia Dominada $\Longrightarrow F_j(x) = \int_{\mathbb{R}^k} (f_j)_x \to F(x) = \int_{\mathbb{R}^k} f_x$
- 3. De nuevo por el Teorema de la Convergencia Dominada $\int_{\mathbb{R}^n} F = \lim_{j \to \infty} \int_{\mathbb{R}^n} F_j = \lim_{j \to \infty} \int_{\mathbb{R}^{n+k}} f_j = \int_{\mathbb{R}^{n+k}} f$

Demostración del Teorema de Tonelli:

- 1. Primero veamos el caso en el que f es la función indicatriz/característica de un cubo semiabierto.
 - (a) Supongamos que $f = \chi_Q$ donde Q es un cubo semiabierto en $\mathbb{R}^{n+k} = \mathbb{R}^n \times \mathbb{R}^k$, con $Q = A \times B$ donde $A \subset \mathbb{R}^n$ y $B \subset \mathbb{R}^k$.

Observación 4.1.3

$$(\chi_E)_x = \chi_{E_x} \iff (\chi_E)_x(y) = \chi_E(x,y) = \begin{cases} 1 & (x,y) \in E \\ 0 & (x,y) \notin E \end{cases} = \chi_{E_x}(y)$$

Definiendo:

$$f_x = (\chi_Q)_x(y) = \begin{cases} \chi_B(y), & x \in A \\ 0, & x \notin A \end{cases}$$

Se concluye que f_x es medible.

(b) Definimos la función:

$$F(x) = \int_{\mathbb{R}^k} (\chi_Q)_x \, dy = \begin{cases} \int_{\mathbb{R}^k} \chi_B \, dy, & x \in A \\ 0, & x \notin A \end{cases} = \begin{cases} m_k(B), & x \in A \\ 0, & x \notin A \end{cases}$$

Como resultado, $F(x) = m_k(B) \cdot \chi_A(x)$ es medible.

(c) $\int_{\mathbb{R}^{n+k}} \chi_Q = m_{n+k}(Q) = m_n(A) \cdot m_k(B) = \int_{\mathbb{R}^n} m_k(B) \cdot \chi_A(x) = \int_{\mathbb{R}^n} F(x)$

2. Ahora supongamos que f es la función indicatriz de un conjunto abierto $G \subset \mathbb{R}^{n+k}$.

Dado que G es abierto, se puede escribir como la unión numerable de cubos semiabiertos disjuntos:

$$G = \bigcup_{j \in \mathbb{N}} Q_j$$

Definiendo $G_j = \bigcup_{i=1}^j Q_i$, se tiene que:

$$(G_j) \uparrow G, \quad \chi_{G_j} \uparrow \chi_G$$

Como cada $\chi_{G_j} = \sum_{i=1}^j \chi_{Q_i}$ verifica el Teorema de Tonelli por los Lemas 1.4.2 y 1.4.3, se concluye que χ_G también satisface el Teorema de Tonelli.

3. Supongamos ahora que f es la función indicatriz de un conjunto G_{δ} , es decir, un conjunto resultado de la intersección numerable de conjuntos abiertos, pero bajo mas restricciones: Supongamos que $f = \chi_D$ donde D es un conjunto G_{δ} :

Observación 4.1.4

Considerando $\forall j \in \mathbb{N}D_j = D \cap (j, -j)^{n+k}$ obtenemos que $(D_j) \uparrow D$ y $\chi_{D_j} \uparrow \chi_D$ siendo cada D_j un conjunto G_δ y acotado.

Por tanto, como consecuencia del Lema 1.4.2, podemos reducirnos al caso de conjuntos acotados D es un G_{δ} acotado.

Entonces $D = \bigcap_{j=1}^{\infty} G_j$ donde cada G_j es es un conjunto abierto y acotado. Podemos suponer que $(G_j) \downarrow D$ por tanto $X_{G_j} \downarrow \chi_D$ y además, $0 \le \chi_{G_j} \le \chi_{G_1}$ que es integrable por ser acotada. Ahora si, podemos usar el Lema 1.4.3 para obtener que χ_D satisface el Teorema de Tonelli.

Veamos que el Teorema de Tonelli se verifia cuando $f = \chi_N : N \subset \mathbb{R}^{n+k}$ es un conjunto de medida nula.

Supongamos entonce que $m_{n+k}(N) = 0 \implies \forall j \in \mathbb{N}$ por la regularidad $\exists G_j \subset \mathbb{R}^{n+k}$ -abierto con $N \subset G_j$ y $m_{n+k}(G_j) < \frac{1}{j}$.

Entonces, sea $G = \bigcup_{j \in \mathbb{N}} G_j$ que es un conjunto G_δ y $m_{n+k}(G) \leq m_{n+k}(G_j) < \frac{1}{j} \to 0$.

Luego $N \subset G$ y $m_{(n+k)}(G) = 0 \implies$ por el apartado anterior χ_G satisface el Teorema de Tonelli.

Por último tenemos que $0=m_{(n+k)(G)}=\int_{\mathbb{R}^{n+k}}\chi_G=\int_{\mathbb{R}^n}(\int_{\mathbb{R}^k}\chi_{N_x}dy)dx$. Sabemos que para casi todo $x\in\mathbb{R}^n\widehat{F}(x)$ es medible y $\int_{\mathbb{R}^n}\widehat{F}(x)dx=0\implies\widehat{F}(x)=0$ en casi todo punto de \mathbb{R}^n . Como $N_x=\{y\in\mathbb{R}^k:(x,y)\in N\}\subset G_x$ y $m_k(G_x)=\widehat{R}(x)=0\implies N_x$ es un conjunto nulo (luego medible) para casi todo $x\in\mathbb{R}^n$ es decir χ_{N_x} es medible. Además $0\le F(x)=\int_{\mathbb{R}^n}\chi_{N_x}\le\int_{\mathbb{R}^n}\chi_{G_x}=0\implies F(x)=\int_{\mathbb{R}^n}\chi_{N_x}=0$ en casi todo punto $x\in\mathbb{R}^n$ en particualr F es medible. Finalmente, $0=\int_{\mathbb{R}^k\times 1}\chi_N=\mathbb{R}^kF(x)dx=\int_{\mathbb{R}^n}(\int_{\mathbb{R}^k}\chi_{N_x}dy)dx$

- 4. Veamos que si A es medible $\implies f = \chi_A$ verifica el Teorema de Tonelli: Como $A = D \setminus N$ donde $\begin{cases} D \text{ es un conjunto } G_\delta \\ N \text{ es un conjunto de medida nula} \end{cases}$ Además tenemos que $D = A \cup N$ disjunto $\implies \chi_D = \chi_A + \chi_N \iff \chi_A = \chi_D \chi_N \implies \chi_{A_x} = \chi_{D_x} \chi_{N_x} \text{ y } \chi_{A_x} \text{ es medible.}$ $F(x) = \int_{\mathbb{R}^n} \chi_{A_x} = \int_{\mathbb{R}^n} \chi_{D_x} \text{ es medible para casi todo } x \in \mathbb{R}^n \int_{\mathbb{R}^n} F(x) dx = \int_{\mathbb{R}^n} (\int_{\mathbb{R}^k} \chi_{D_x} dy) dx = \int_{\mathbb{R}^{n+k}} \chi_D = \int_{\mathbb{R}^{n+k}} \chi_A \text{ En este paso hemos aplicado (4).}$
- 5. Si f es una función medible, $f = \sum_{j=1}^{l} \alpha_j \cdot \chi_{A_j}$ con $\begin{cases} \alpha_j \in \mathbb{R} \\ A_j \text{ medible} \end{cases} \quad \forall j \in \mathbb{N} \implies \text{usando (5) y el lema 1.5.1, obtenemos el resultado.}$
- 6. Sea f funcion medible, no negativa en $\mathbb{R}^i n + k$ sabemos que $\exists (S_j)_{j \in \mathbb{N}}$ sucesión de funciones simples, medibles y no-negativas tales que $(S_j) \uparrow f$. Entonces por (6) cada (S_j) verifica el Teorema de Toneli, luego por el Lema 1.5.2, f también satisface el Teorema de Tonelli.

Corolario 4.1.1 [Prinicpio de Cavalieri]

Sea $E \subset \mathbb{R}^{n+k}$ medible entonces:

- 1. Para casi todo $x \in \mathbb{R}^n$ el conjunto $E_x = \{y \in \mathbb{R}^k : (x,y) \in E\}$ es medible en \mathbb{R}^k
- 2. La función $F: \mathbb{R}^n \to [0, +\infty]$ tal que $F(x) = m(E_x)$ definida en casi todo punto es medible en \mathbb{R}^n
- 3. $m_{n+k}(E) = \int_{\mathbb{R}^n} m(E_x) dx$

De forma análoga se tiene que:

- 1. Para casi todo $y \in \mathbb{R}^k$, el conjunto $E_y = \{x \in \mathbb{R}^n : (x,y) \in E\}$ es medible en \mathbb{R}^n
- 2. La función $G: \mathbb{R}^k \to [0, +\infty]$ tal que $G(y) = m(E_y)$ definida en casi todo punto es medible en \mathbb{R}^k
- 3. $m_{n+k}(E) = \int_{\mathbb{R}^k} m(E_y) dy$

Demostración. Aplicando el Teorema de Tonelli, tomando $f = \chi_E$.

Corolario 4.1.2

Sea $E \subset \mathbb{R}^{n+k}$ conjunto (n+k)-nulo. Entonces:

- 1. Para casi todo $x \in \mathbb{R}^n$, E_x tiene medida nula en \mathbb{R}^k
- 2. Para casi todo $y \in \mathbb{R}^k$, E_y tiene medida nula en \mathbb{R}^n

4.2 Teorema de Fubini

Teorema 4.2.1 [Teorema de Fubini]

Sea $f: \mathbb{R}^n \times \mathbb{R}^k \to [-\infty, +\infty]$ integrable en \mathbb{R}^{n+k} . Entonces:

- 1. Para casi todo $x \in \mathbb{R}^n f_x : \mathbb{R}^k \to [-\infty, +\infty]$ es integrable en \mathbb{R}^k
- 2. La función $F: \mathbb{R}^n \to [-\infty, +\infty]$ definida por: $F(x) = \int_{\mathbb{R}^k} f_x$ es integrable en \mathbb{R}^n
- 3. $\int_{\mathbb{R}^{n+k}} f = \int_{\mathbb{R}^n} F = \int_{\mathbb{R}^n} (\int_{\mathbb{R}^k} f_x) = \int_{\mathbb{R}^n} (\int_{\mathbb{R}^k} f(x, y) dy) dx = \int_{\mathbb{R}^k} (\int_{\mathbb{R}^n} f(x, y) dx) dy$

Análogamente se darían los casos tomando \mathbb{R}^k en lugar de \mathbb{R}^n .

Demostración. Recordemos que $\begin{cases} f = f^+ - f^- \\ f_x = f_x^+ - f_x^- \end{cases}$

Ejemplo

1. Sea D el triángulo de vértices (2,0),(2,2) y (0,1).

Intentemos calcular

$$\int_{D} x^{2}y \, dx \, dy = \int_{\mathbb{R}^{2}} x^{2}y \cdot \chi_{D} \, dx \, dy = \int_{x=-\infty}^{x=+\infty} (\int_{D_{x}} x^{2}\chi_{D} dy) dx = \int_{\mathbb{R}^{2}} x^{2}y \, dx \, dy = \int_{\mathbb{R}^{2}}$$

Sabiendo que $D_x = \{y \in \mathbb{R} : (x, y) \in D\}$, si $0 \le x \le 2$ entonces $D_x = \{y : -\frac{1}{2}x + 1 \le y \le \frac{1}{2}x + 1\}$. Por tanto, podemos plantear la integral como:

$$= \int_{x=0}^{x=2} \left(\int_{y=-\frac{1}{2}x+1}^{y=\frac{1}{2}x+1} x^2 y \, dy \right) dx = \int_0^2 x^2 \left(\frac{1}{2}x+1+\frac{1}{2}x-1 \right) dx = \int_0^2 x^3 dx = \frac{16}{4} = 4.$$

También podríamos haberlo planteado así, sabiendo que $D^y = \{x : (x,y) \in D\}$:

$$\int_{y=0}^{y=2} \left(\int_{D^y} x^2 y \, dx \right) dy = \int_{y=0}^{y=1} \left(\int_{x=2(1+y)}^{x=2} x^2 y \, dx \right) dy + \int_{y=1}^{y=2} \left(\int_{x=2(y-1)}^{x=2} x^2 y \, dx \right) dy.$$

Evaluamos:

$$\int_{1}^{2} y \left(\int_{2(y-1)}^{2} x^{2} dx \right) dy = \int_{1}^{2} y \left(\frac{8}{3} y^{3} - 4y^{2} + 4y \right) dy = \frac{1}{3} y^{4} - \frac{4}{3} y^{3} + 2y^{2} \Big|_{1}^{2} = 4.$$

2. Sea $D = \{(x,y) : 0 \le x \le y\}$ y $f(x,y) = xe^{-y^3}$. Calculemos:

$$\int_{D} f(x,y) dx dy.$$

Dado que $f \ge 0$, podemos aplicar el Teorema de Tonelli:

$$\int_D f(x,y)dxdy = \int_{\mathbb{R}^2} f\chi_D = \int_{x=0}^{x=+\infty} \left(\int_{y=x}^{y=+\infty} e^{-y^3} dy \right) dx.$$

No obstante, no conocemos el valor de la integral $\int_{y=x}^{y=+\infty} e^{-y^3} dy$, por lo que continuamos el cálculo en el otro sentido:

$$\int_{y=0}^{y=+\infty} \left(e^{-y^3} \int_{x=0}^{x=y} x dx \right) dy = \int_{y=0}^{y=+\infty} e^{-y^3} \left[\frac{x^2}{2} \right]_{x=0}^{x=y} dy.$$

Evaluamos:

$$\int_{y=0}^{y=+\infty} e^{-y^3} \frac{y^2}{2} dy = \left(-\frac{1}{2}\right) \frac{1}{3} \int_{y=0}^{y=+\infty} e^{-y^3} (-3y^2) dy = -\frac{1}{6} [e^{-y^3}]_{y=0}^{y=+\infty}.$$

- 3. Sea V el sólido limitado por $x=0,\ y=0,\ z=0,\ 3x+2y+z=1.$ Calculemos:
 - (a) Vol(V)
 - (b) $\int_V z^2 dx dy dz$

(a) Aplicamos el Lema de Cavalieri:

$$\operatorname{Vol}(V) = \int_{\mathbb{R}^3} \chi_V(x, y, z) \, dx \, dy \, dz = \int_{z=0}^{z=1} \left(\int_{V_z} 1 dx dy \right) dz,$$

donde $V_z = \{(x, y) : (x, y, z) \in V\} = \{(x, y) : x \ge 0, y \ge 0, 3x + 2y \le 1 - z\}.$

Definimos:

$$\int_{z=0}^{z=1} \operatorname{área}(V_z) dz,$$

donde el área de V_z es:

$$\operatorname{área}(V_z) = \frac{1}{2} \cdot \frac{1-z}{3} \cdot \frac{1-z}{2}.$$

También se podría haber definido como:

$$\int_{z=0}^{z=1} \left(\int_{y=0}^{y=\frac{1-z}{2}} \left(\int_{x=0}^{x=\frac{1-z-2y}{3}} 1 dx \right) dy \right) dz.$$

Otra forma alternativa de orden de integración sería:

$$\int_{y=0}^{y=\frac{1}{2}} \left(\int_{z=0}^{z=1} \left(\int_{x=0}^{x=\frac{1-z-2y}{3}} 1 dx \right) dz \right) dy.$$

39

(b)
$$\int_{V} z^{2} dx dy dz = \int_{z=0}^{z=1} z^{2} \left(\int_{V_{z}} 1 dx dy \right) dz = \int_{z=0}^{z=1} z^{2} \cdot \frac{(1-z)^{2}}{12} dz$$

4. Se
aVel sólido limitado por el parabolo
ide $z=x^2+y^2$ y por el plano z=1. Calculemos
 $\operatorname{vol}(V).$

Donde

$$V = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le z \le 1\} \implies vol(v) = \int_{z=0}^{z=1} area(V_z)dz = \int_0^1 \pi z dz = \frac{\pi}{2}$$

•

Observación 4.2.1

La diferencia entre el Teorema de Tonelli y el de Fubini, es que el primero pide que las funciones sean no-negativas estrictamente y el segundo pide que las funciones sean integrables absolutamente.

5 Cambio de variables

Definición 5.0.1 [Conjunto Verticalmente Proyectable]

Un conjunto $E \subset \mathbb{R}^2$ es verticalmente proyectable si es de la forma:

$$E_1 = \{(x, y) : a \le x \le b, f(x) \le y \le g(x)\}$$

donde $f, g : [a, b] \to \mathbb{R}$ son funciones continuas con $f(x) \le g(x)$. Análogamente se define un conjunto $E \subset \mathbb{R}^2$ es horizontalmente proyectable si es de la forma:

$$E_2 = \{(x, y) : c \le y \le d, \varphi(y) \le x \le \psi(y)\}$$

donde $\varphi, \psi : [c,d] \to \mathbb{R}$ son funciones continuas con $\varphi(y) \le \psi(y)$. En este caso si $f : E \to \mathbb{R}$ que es integrable en E:

$$\int_{E_1} h(x,y) dx dy = \int_{x=a}^{x=b} \left(\int_{f(x)}^{g(x)} h(x,y) dy \right) dx$$

$$\int_{E_2} h(x,y)dxdy = \int_{y=c}^{y=d} \left(\int_{\varphi(y)}^{\psi(y)} h(x,y)dx \right) dy$$

Observación 5.0.1

La diferencia entre ambas definciones es que en la primera se fija x y se mueve y y en la segunda se fija y y se mueve x. Lo que tiene como consecuencia que en la primera se integra dx - dy y en la segunda dy - dx.

Teorema 5.0.1

Sea $T: \mathbb{R}^n \to \mathbb{R}^n$ aplicación lineal. Sea $A \subset \mathbb{R}^n$ medible $\Longrightarrow T(A)$ es medible y además:

$$m(T(A)) = |\det(T)|m(A)$$

Definición 5.0.2 [Difeomorfismo]

Sean $U, V \subset \mathbb{R}^n$ abiertos se dice que $\varphi : U \to V$ es un difeomorfismo de U a V si:

- 1. φ es biyectiva
- 2. φ es de clase C^1 en U
- 3. φ^{-1} es de clase C^1 en V

Observación 5.0.2

Sea $\varphi: U \to \mathbb{R}$ de clase C^1 donde $U \subset \mathbb{R}^n$ es abierto, y supongamos que $\det(D\varphi(u)) \neq 0 \quad \forall u \in U \Longrightarrow V = \varphi(U)$ es abierto. Si φ es inyectiva, tenemos que $\varphi: U \to \varphi(U) = V$ es un difeomorfismo.

Teorema 5.0.2

Sean $U, V \subset \mathbb{R}^n$ abierto $y \varphi : U \to V$ difeomorfismo- C^1 . Si $A \subset U$ es medible, entonces $\varphi(A)$ es medible $y m(\varphi(A)) = \int_A |\det(D\varphi(u))| du$.

Teorema 5.0.3 [Teorema del Cambio de Variable]

Sean $U, V \subset \mathbb{R}^n$ abiertos $y \varphi : U \to V$ difeomorfismo- C^1 . Sea $f : V \to \mathbb{R}$ medible. Entonces:

- 1. Si f es no negativa \implies $(f \circ \varphi)|\det(D\varphi)|$ es medible y no-negativa.
- 2. Si f es integrable \implies $(f \circ \varphi)|\det(D\varphi)|$ es integrable

En ambos casos se cumple que:

$$\int_{V=\varphi(U)} f(x)dx = \int_{U} (f \circ \varphi(u))|\det(D\varphi)|du$$

Observación 5.0.3

 $Si \ A \subset U \ es \ medible \implies \varphi(A) \ es \ medible \ y$

$$\int_{\varphi(A)} f(x)dx = \int_{A} (f \circ \varphi(u))|\det(D\varphi)|du$$

Ejemplo

Sea $\int_E e^{\frac{x-y}{x+y}} dxdy$ donde E = tríangulo de vértices (0,0),(2,0) y (0,2). Si tomamos el cambio de variable:

$$\varphi^{-1} \begin{cases} u = x - y \\ v = x + y \end{cases} \implies \varphi \begin{cases} x = \frac{u + v}{2} \\ y = \frac{v - u}{2} \end{cases} \implies f(x, y) = f(u, v) = e^{\frac{u}{v}}$$

Si tomamos la representación gráfica del cambio de variable obtenemos que:

Si tomamos $y=0 \implies \varphi^{-1} \begin{cases} u=x \\ v=x \end{cases}$ y también tomamos $x=0 \implies \begin{cases} u=-y \\ v=y \end{cases}$

en tenemos que $|det(D\varphi)| = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} = \frac{1}{2}$

$$\int_{E} f(x,y)dxdy = \int_{D} e^{\frac{u}{v}} |det(D\varphi)dudv = \int_{D} \frac{1}{2} e^{\frac{u}{v}} dudv = \frac{1}{2} \int_{v=0}^{v=2} \left(\int_{u=-v}^{u=v} e^{\frac{u}{v}} du \right) dv$$

$$= \frac{1}{2} \int_{v=0}^{v=2} \left[ve^{\frac{u}{v}} \right]_{u=-v}^{u=v} dv = \frac{1}{2} \int_{v=0}^{v=2} v(e - \frac{1}{e}) dv = \frac{1}{2} (e - e^{-1}) \left[\frac{v^{2}}{2} \right]_{v=0}^{v=2} = e - e^{-1}$$

Definición 5.0.3 [Coordenadas polares]

En el plano bidimensional \mathbb{R}^2 , las **coordenadas polares** (r,θ) están definidas en términos de las coordenadas cartesianas (x,y) mediante la transformación:

$$\varphi(r,\theta) = \begin{cases} x = r\cos\theta, \\ y = r\sin\theta. \end{cases}$$

Donde:

- $r \ge 0$ es la distancia radial desde el origen.
- $\theta \in [0, 2\pi)$ es el ángulo medido desde el eje positivo x en sentido antihorario.

El dominio de la transformación es:

$$U = \{(r, \theta) : r > 0, 0 < \theta < 2\pi\}.$$

Y su imagen en coordenadas cartesianas es el plano sin el semieje positivo x:

$$V = \mathbb{R}^2 \setminus \{(x, y) : x \ge 0, y = 0\}.$$

43

La transformación $\varphi: U \to V$ es un **difeomorfismo de clase** C^1 , ya que cumple las siguientes condiciones:

- φ es de clase C^1 , es decir, tiene derivadas continuas en U.
- φ es biyectiva entre U y V.
- El determinante del Jacobiano es no nulo:

$$\det(D_{\varphi})(r,\theta) = \begin{vmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{vmatrix} = r \cos^2 \theta + r \sin^2 \theta = r \neq 0.$$

Esto implica que el elemento diferencial de área en coordenadas polares es:

$$dA = r dr d\theta$$
.

Ejemplo

• Área del círculo $D = \{(x,y) : x^2 + y^2 \le R^2\}$ de centro (0,0) y radio R:

$$\operatorname{\acute{A}rea}(D) = \operatorname{\acute{A}rea}(D \cap V) = \int_{\varphi^{-1}(D \cap V)} f(r\cos\theta, r\sin\theta) \left| \det(D_{\varphi(r,\theta)}) \right| dr d\theta.$$

Evaluando la integral:

$$\int_0^{2\pi} \left(\int_0^R r \, dr \right) d\theta = \pi R^2.$$

• Para la región $A = \{(x, y) : x^2 + y^2 \le 1, y \ge 0\}$ con $f(x, y) = \sqrt{x^2 + y^2}$:

$$\int_{A} f(x,y) dx dy = \int_{\theta=0}^{\theta=\pi} \left(\int_{r=0}^{r=1} r \cdot r dr \right) d\theta.$$

Resolviendo:

$$\pi \cdot \int_{r=0}^{r=1} r^2 \, dr = \frac{\pi}{3}.$$

Ejemplo

Realicemos el cálculo de integrales gaussianas:

- 1. $g(t)=e^{-t^2}$: Es fácil ver que $g(t)\geq 0$ es integrable en \mathbb{R} . Para ver dicha integral, separemos $\mathbb{R}=(-\infty,0)\cup[0,+\infty)$.
 - (a) Para $(0, +\infty)$: Si $t \ge 1 \implies t^2 \ge t \implies e^{-t^2} \le e^{-t}$. Entonces:

$$\int_0^{+\infty} e^{-t^2} dt = \int_0^1 e^{-t^2} dt + \int_1^{+\infty} e^{-t^2} dt \le 1 + \int_1^{+\infty} e^{-t^2} dt \le 1 + e^{-1} < +\infty.$$

(b) Para $(-\infty, 0)$: Consideremos la integral:

$$\int_{-\infty}^{0} e^{-t^2} dt.$$

Tomamos el cambio de variable s = -t, lo que implica ds = -dt. Entonces, la integral se transforma en:

$$\int_{-\infty}^{0} e^{-s^2} (-ds) = \int_{0}^{+\infty} e^{-s^2} ds.$$

Por lo tanto,

$$\int_{-\infty}^{0} e^{-t^2} dt = \int_{0}^{+\infty} e^{-t^2} dt.$$

Luego, la integral total es:

$$I = \int_{-\infty}^{+\infty} e^{-t^2} dt = 2 \int_{0}^{+\infty} e^{-t^2} dt.$$

- 2. Para $f(x,y) = e^{-(x^2+y^2)}$, existen dos maneras de calcular la integral:
 - (a) **Usando coordenadas polares:**

$$\int_{\mathbb{R}^2} e^{-(x^2 + y^2)} dx dy = \int_0^{2\pi} \left(\int_0^{+\infty} e^{-r^2} r dr \right) d\theta.$$

Separando las integrales:

$$\left(\int_0^{2\pi} 1 \, d\theta\right) \left(\int_0^{+\infty} e^{-r^2} r \, dr\right).$$

Evaluando la integral en r:

$$\int_0^{+\infty} e^{-r^2} r \, dr = \left[-\frac{1}{2} e^{-r^2} \right]_0^{+\infty} = \frac{1}{2}.$$

Entonces, el resultado final es:

$$2\pi \cdot \frac{1}{2} = \pi.$$

(b) **Usando el producto de integrales unidimensionales:**

$$\int_{x=-\infty}^{x=+\infty} \left(\int_{y=-\infty}^{y=+\infty} e^{-(x^2+y^2)} dy \right) dx.$$

Como la exponencial es separable, podemos escribir:

$$\int_{-\infty}^{+\infty} e^{-x^2} dx \cdot \int_{-\infty}^{+\infty} e^{-y^2} dy.$$

Definiendo $I = \int_{-\infty}^{+\infty} e^{-x^2} dx$, se tiene que:

$$I^2 = \pi \implies I = \sqrt{\pi}.$$

Así, la integral en \mathbb{R}^2 es:

$$I^2 = \pi$$
.

Ejemplo

Curvas en coordenadas polares

Calculemos el área encerrada por la curva en coordenadas polares

$$r = a(1 + \cos \theta),$$

la cual describe un **cardioide** con a > 0.

Análisis del comportamiento de r: Evaluemos r en algunos valores característicos de θ :

θ	$r = a(1 + \cos \theta)$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
0	2a	$r \operatorname{decrece} \downarrow$
$\frac{\pi}{2}$	a	$r \text{ decrece} \downarrow$
π	0	r aumenta \uparrow
$\frac{3\pi}{2}$	a	r aumenta \uparrow
2π	2a	r aumenta \uparrow

Cálculo del área encerrada: Utilizamos la fórmula del área en coordenadas polares:

$$A = \int_{\theta=0}^{\theta=2\pi} \int_{r=0}^{r=a(1+\cos\theta)} r \, dr \, d\theta.$$

Evaluando la integral interna:

$$\int_0^{a(1+\cos\theta)} r \, dr = \left[\frac{r^2}{2}\right]_0^{a(1+\cos\theta)} = \frac{a^2}{2} (1+\cos\theta)^2.$$

Ahora resolvemos la integral en θ :

$$A = \frac{a^2}{2} \int_0^{2\pi} (1 + 2\cos\theta + \cos^2\theta) \, d\theta.$$

Usando la identidad trigonométrica:

$$\cos^2 \theta = \frac{1 + \cos 2\theta}{2},$$

la integral se reescribe como:

$$A = \frac{a^2}{2} \int_0^{2\pi} \left(1 + 2\cos\theta + \frac{1 + \cos 2\theta}{2} \right) d\theta.$$

Evaluamos término a término: -
$$\int_0^{2\pi} 1 \, d\theta = 2\pi$$
. - $\int_0^{2\pi} \cos \theta \, d\theta = 0$. - $\int_0^{2\pi} \cos 2\theta \, d\theta = 0$. Por lo tanto:

$$A = \frac{a^2}{2} \left(2\pi + \frac{2\pi}{2} \right) = \frac{3\pi}{2} a^2.$$

Conclusión: El área encerrada por el cardioide es:

$$A = \frac{3\pi}{2}a^2.$$

Definición 5.0.4 [Coordenadas cilíndricas]

En el espacio tridimensional, las coordenadas cilíndricas (r, θ, z) están definidas en términos de las coordenadas cartesianas (x, y, z) mediante la transformación:

$$\varphi(r, \theta, z) = \begin{cases} x = r \cos \theta, \\ y = r \sin \theta, \\ z = z. \end{cases}$$

Donde:

- $r \ge 0$ es la distancia radial desde el eje z.
- $\theta \in [0, 2\pi)$ es el ángulo azimutal, medido desde el eje positivo x en el plano xy.
- $z \in \mathbb{R}$ representa la coordenada vertical, la misma que en cartesianas.

El dominio de la transformación es:

$$U = \{(r, \theta, z) : r > 0, \ 0 < \theta \le 2\pi\}.$$

Y su imagen es el espacio tridimensional excepto el semieje positivo x:

$$V = \mathbb{R}^3 \setminus \{(x, y, z) : x \ge 0, y = 0\}.$$

La matriz jacobiana de la transformación es:

$$D\varphi = \begin{bmatrix} \cos\theta & -r\sin\theta & 0\\ \sin\theta & r\cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}.$$

Su determinante, que representa el factor de cambio de volumen, es:

$$|\det(D\varphi)| = r > 0.$$

Esto implica que el elemento diferencial de volumen en coordenadas cilíndricas es:

$$dV = r dr d\theta dz$$
.

Ejemplo

Sea V el sólido limitado por $z=x^2+y^2$ y z=2, y consideremos la función:

$$f(x, y, z) = x^2 + y^2 + z^2.$$

Evaluamos la integral:

$$\int_{V} (x^2 + y^2 + z^2) \, dx \, dy \, dz.$$

Cambiamos a coordenadas cilíndricas, donde $x^2 + y^2 = r^2$, obteniendo:

$$\int_{z=0}^{2} \int_{\theta=0}^{2\pi} \int_{r=0}^{\sqrt{z}} (r^2 + z^2) \cdot r \, dr \, d\theta \, dz.$$

Separando la integral en términos de θ :

$$\left(\int_{\theta=0}^{2\pi} 1 \, d\theta\right) \left(\int_{z=0}^{2} \left(\int_{r=0}^{\sqrt{z}} (r^3 + z^2 r) \, dr\right) dz\right).$$

Resolviendo la integral en θ :

$$2\pi \int_{z=0}^{2} \left[\frac{r^4}{4} + \frac{z^2 r^2}{2} \right]_{r=0}^{r=\sqrt{z}} dz.$$

Sustituyendo $r = \sqrt{z}$:

$$2\pi \int_{z=0}^{2} \left(\frac{z^2}{4} + \frac{z^3}{2}\right) dz.$$

Resolviendo la integral en z:

$$2\pi \left[\frac{z^3}{12} + \frac{z^4}{8} \right]_{z=0}^{z=2}.$$

Evaluando los límites:

$$2\pi \left(\frac{8}{12} + \frac{16}{8}\right) = 2\pi \left(\frac{2}{3} + 2\right) = 2\pi \left(\frac{8}{3}\right) = \frac{16\pi}{3}.$$

Por lo tanto, el resultado final es:

$$\frac{16\pi}{3}$$
.

Definición 5.0.5 [Coordenadas esféricas]

En el espacio tridimensional, las coordenadas esféricas (r, θ, ϕ) se definen en términos de las coordenadas cartesianas (x, y, z) mediante la transformación:

$$\varphi(r, \theta, \phi) = \begin{cases} x = r \cos \theta \sin \phi, \\ y = r \sin \theta \sin \phi, \\ z = r \cos \phi. \end{cases}$$

Donde:

• $r \ge 0$ es la distancia radial desde el origen.

- $\theta \in [0, 2\pi)$ es el ángulo azimutal medido en el plano xy desde el eje positivo x.
- $\phi \in [0, \pi]$ es el ángulo polar o colatitud, medido desde el eje positivo z.

La matriz jacobiana de esta transformación es:

$$D_{\varphi} = \begin{bmatrix} \cos \theta \sin \phi & -r \sin \theta \sin \phi & r \cos \theta \cos \phi \\ \sin \theta \sin \phi & r \cos \theta \sin \phi & r \sin \theta \cos \phi \\ \cos \phi & 0 & -r \sin \phi \end{bmatrix}.$$

Su determinante, que representa el factor de cambio de volumen, es:

$$|\det D_{\varphi}| = r^2 \sin \phi.$$

Esto implica que el elemento diferencial de volumen en coordenadas esféricas es:

$$dV = r^2 \sin \phi \, dr \, d\theta \, d\phi.$$

Ejemplo

$$B_r = \{(x, y, z) : x^2 + y^2 + z^2 \le R^2\} \implies$$

$$vol(B_r) = \int_{B_r} 1 dx dy dz = \int_0^{2\pi} \left(\int_0^{\pi} \left(\int_0^R r^2 \sin(\phi) dr \right) d\phi \right) d\theta = \frac{4}{3} \pi R^3$$

Definición 5.0.6 [Coordenadas elípticas]

En el plano, las coordenadas elípticas (r, θ) se definen en términos de las coordenadas cartesianas (x, y) mediante la transformación:

$$\varphi(r,\theta) = \begin{cases} x = ar\cos\theta, \\ y = br\sin\theta. \end{cases}$$

Donde:

- $r \ge 0$ es la coordenada radial, que describe la escala de la elipse.
- $\theta \in [0, 2\pi)$ es el ángulo que mide la posición en la elipse, similar al ángulo en coordenadas polares.
- a, b > 0 son constantes que determinan los semiejes de las elipses.

La matriz jacobiana de esta transformación es:

$$D_{\varphi} = \begin{bmatrix} a\cos\theta & -ar\sin\theta \\ b\sin\theta & br\cos\theta \end{bmatrix}.$$

Su determinante, que representa el factor de cambio de área, es:

$$|\det D_{\varphi}| = abr.$$

Esto implica que el elemento diferencial de área en coordenadas elípticas es:

$$dA = abr dr d\theta$$
.

Ejemplo

Consideremos la región elíptica definida en coordenadas cartesianas como:

$$E = \left\{ (x, y) \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \right\}.$$

En coordenadas elípticas, esto equivale a:

$$E = \{(r, \theta) \mid 0 < \theta < 2\pi, 0 < r < 1\}.$$

Cálculo del jacobiano: La matriz jacobiana de la transformación es:

$$D\varphi = \begin{bmatrix} a\cos\theta & -ar\sin\theta \\ b\sin\theta & br\cos\theta \end{bmatrix}.$$

Su determinante es:

$$\det(D\varphi) = abr.$$

Cálculo del área de la elipse: La integral de área en coordenadas elípticas se expresa como:

$$\text{Área}(E) = \int_{\theta=0}^{2\pi} \int_{r=0}^{1} abr \, dr \, d\theta.$$

Resolviendo la integral en r:

$$\int_0^1 abr \, dr = ab \left[\frac{r^2}{2} \right]_0^1 = \frac{ab}{2}.$$

Evaluando la integral en θ :

$$\int_0^{2\pi} d\theta = 2\pi.$$

Por lo tanto, el área de la elipse es:

$$\text{Área}(E) = 2\pi \cdot \frac{ab}{2} = \pi ab.$$

Así, hemos obtenido el área de la elipse usando coordenadas elípticas.

Ejemplo

Volumen comprendido entre los paraboloides:

$$2z = 4 + \frac{x^2}{3} + y^2, \quad 2z = \frac{2x^2}{3} + 3y^2$$

Eliminando z:

$$4 + \frac{x^2}{3} + y^2 = \frac{2x^2}{3} + 3y^2 \iff \frac{x^2}{3} + 2y^2 = 4$$

Lo cual es un cilindro elíptico de \mathbb{R}^3 .

Definimos el dominio:

$$E = \left\{ (x, y) \mid \frac{x^2}{3} + 2y^2 \le 4 \right\}$$

Luego, el volumen está dado por:

$$vol = \int_{E} \left(2 + \frac{x^{2}}{6} + \frac{y^{2}}{2} \right) - \left(\frac{x^{2}}{3} + \frac{3y^{2}}{2} \right) dx dy = \int_{E} \left(2 - \frac{x^{2}}{6} - y^{2} \right) dx dy$$

Haciendo el cambio de coordenadas elípticas:

$$a = \sqrt{12} = 2\sqrt{3}, \quad b = \sqrt{2}$$

$$x = 2\sqrt{3}r\cos\theta, \quad y = \sqrt{2}r\sin\theta$$

El jacobiano es:

$$J=2\sqrt{6}$$

Finalmente, el cambio de variable nos ofrece que el volumen del conjunto es:

$$2\sqrt{6}\pi$$
.

Observación 5.0.4

Sean $U, V \subset \mathbb{R}^n$ abiertos $y \varphi : U \to V$ difeomorfismo- C^1 .

$$\varphi = \begin{cases} x_1 = x_1(u_1, \dots, u_n) \\ \vdots \\ x_n = x_n(u_1, \dots, u_n) \end{cases}$$

Entonces:

$$det(D_{\varphi}) = \frac{\partial(x_1, \dots, x_n)}{\partial(u_1, \dots, u_n)} = \begin{vmatrix} \frac{\partial x_1}{\partial u_1} & \dots & \frac{\partial x_1}{\partial u_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial x_n}{\partial u_1} & \dots & \frac{\partial x_n}{\partial u_n} \end{vmatrix}$$

Entonces el Teorema de Cambio de Variable queda como:

$$\int_{D=\varphi(E)} f(x_1, \dots, x_n) dx_1 \cdots dx_n = \int_{E=\varphi^{-1}(D)} f(x_1(u), \dots, x_n(u)) |\det(D_\varphi)| du_1 \cdots du_n =$$

$$= \int_{E=\varphi^{-1}(D)} f(x_1(u), \dots, x_n(u)) |\frac{\partial (x_1, \dots, x_n)}{\partial (u_1, \dots, u_n)}| du_1 \cdots du_n$$

Ejemplo

Ejercicio 4 (Hoja 4) $\begin{cases} x+y=a\\ x+y=b\\ 2x-3y=c\\ 2x-3y=d \end{cases}$ Supongamos que a< b, c< d.

$$\begin{cases} x + y = a \\ x + y = b \\ 2x - 3y = a \\ 2x - 3y = a \end{cases}$$

Para ello tomemos el cambio de variable: $\varphi^{-1} = \psi = \begin{cases} u = x + y \\ v = 2x - 3y \end{cases}$

$$area(D) = \int_{D=\varphi(E)} 1 dx dy = \int_{E} 1 \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv$$

Donde

$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 2 & -3 \end{vmatrix} = -5 \implies \frac{\partial(x,y)}{\partial(u,v)} = \frac{1}{-5}$$

Entonces la integral anterior queda de la forma:

$$\int_{E} \frac{1}{5} du dv = \frac{1}{5} \cdot area(E) = \frac{1}{5} (b - a)(d - c)$$

Ejemplo

Ejercicio 6.b (Hoja 4)

Sea el conjunto

$$D = \{(x, y) \in \mathbb{R}^2 : 1 \le x^2 - y^2 \le 9, 2 \le xy \le 4\}$$

queremos calcular la integral

$$\int_{D} (x^2 + y^2) dx dy$$

Para ello consideremos el cambio de variable ("hiperbólico"):

$$\psi = \begin{cases} u = x^2 - y^2 \\ v = 2xy \end{cases}$$

Si

$$\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \end{cases} \implies \begin{cases} u = r^2(\cos^2(\theta) - \sin^2(\theta)) = r^2\cos(2\theta) \\ v = r^22\sin(\theta)\cos(\theta) = r^2\sin(2\theta) \end{cases}$$

Sean

$$V = \{(x,y) : x > 0, y > 0\}, \quad U = \{(u,v) : v > 0\}$$

Entonces $\psi:V\to U$ es biyectiva y existe $\varphi=\psi^{-1}:U\to V$. Además el conjunto transformado es

Sean

$$D^+ = \{(x,y) \in D : x > 0, y > 0\}, \quad D^- = \{(x,y) \in D : x < 0, y < 0\}$$

Entonces

$$\int_{D^{+}} (x^{2} + y^{2}) dx dy = \int_{D^{-}} (x^{2} + y^{2}) dx dy$$

Sea entonces el cambio de variable

$$\begin{cases} \bar{x} = -x \\ \bar{y} = -y \end{cases}$$

con el jacobiano igual a 1.

Entonces

$$\int_{D^{-}} (x^{2} + y^{2}) dx dy = \int_{D^{+}} (-x)^{2} + (-y)^{2} dx dy = \int_{D^{+}} x^{2} + y^{2} dx dy$$

Entonces,

$$\int_{D} x^{2} + y^{2} dx dy = 2 \int_{D^{+}} x^{2} + y^{2} dx dy = 2 \int_{E} \sqrt{u^{2} + v^{2}} \frac{\partial(x, y)}{\partial(u, v)} du dv = \int_{E} \sqrt{u^{2} + v^{2}} du dv$$

Ya que tenemos que

$$x^2 + y^2 = r^2 = \sqrt{u^2 + v^2}$$

Donde además tenemos que:

$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} 2x & -2y \\ 2y & 2x \end{vmatrix} = 4x^2 + 4y^2 \implies \frac{\partial(x,y)}{\partial(u,v)} = \frac{1}{4x^2 + 4y^2} = \frac{1}{4\sqrt{u^2 + v^2}}$$

Así finalmente la integral da

$$\frac{1}{2}\operatorname{area}(E) = \frac{1}{2} \cdot (9-1) \cdot (8-4) = 16$$

Ejemplo

Calcúlese el volumen comprendido entre z = f(x, y), z = g(xy) sobre D, con D la proyección de las funciones sobre el plano z. Entonces,

$$vol = \int_{D} (f(x,y) - g(x,y)) dx dy = \int_{D} 1 dx dy dz = \int_{D} \left[\int_{z=g(x,y)}^{z=f(x,y)} 1 dz \right] dx dy$$

Ejemplo

Bóveda de Viviani

Calcúlese el volumen comprendido entre la esfera $x^2 + y^2 + z^2 = a^2$ y el cilindro $x^2 + y^2 = ay$ con a > 0.

Donde tomando valores en la esfera podemos obtener:

$$\begin{cases} x^2 + y^2 - ay = 0 \iff x^2 + (y - \frac{a}{2})^2 = \frac{a^2}{4} \\ x^2 + (y - \frac{a}{2})^2 = x^2 + y^2 + \frac{a^2}{4} - ay = \frac{a^2}{4} \end{cases}$$

Si tomamos que $r^2 = x^2 + y^2$ y $ay = ar\sin(\theta)$ entonces, La ecuación de la circunferencia es en coordenadas polares es: $r = a\cos(\theta)$

$$vol = 2 \int_{D} \sqrt{a^{2} - x^{2} - y^{2}} dx dy = 2 \int_{\theta=0}^{\theta=2\pi} \int_{r=0}^{r=a \sin(\theta)} \sqrt{a^{2} - r^{2}} r dr d\theta$$

$$= 2 \int_{\theta=0}^{\theta=\pi} \left[-\frac{1}{3} (a^{2} - r^{2})^{\frac{3}{2}} \right]_{r=0}^{r=a \sin(\theta)} d\theta = \frac{2}{3} \int_{\theta=0}^{\theta=\pi} a^{3} - (a^{2} - a^{2} \sin^{2}(\theta))^{\frac{3}{2}} d\theta$$

$$= \frac{2}{3} \int_{\theta=0}^{\theta=\pi} a^{3} - a^{3} |\cos^{3}(\theta)| d\theta = 4 \frac{a^{3}}{3} \int_{0}^{\theta=\frac{\pi}{2}} 1 - \cos^{3}(\theta) d\theta$$

$$= \frac{4a^{3}}{3} \left[\theta - \left(\sin(\theta) - \frac{\sin^{3}(\theta)}{3} \right) \right]_{\theta=0}^{\theta=\frac{\pi}{2}} = \frac{4a^{3}}{3} \left(\frac{\pi}{2} - \frac{2}{3} \right)$$

Todo esto teniendo en cuenta que $(\cos^3(\theta))^{\frac{3}{2}} = |\cos^3(\theta)|$

6	Funciones definidas por integrales

7 Integrales de línea: campos escalares y vectoriales

Definición 7.0.1 [Camino]

Un camino (o curva paramétrica) en \mathbb{R}^n es una función continua $\gamma:I\to\mathbb{R}^n$ donde $I\subset\mathbb{R}$ es un intervalo.

Si γ es diferenciable en un punto $t \in I$, entonces el vector velocidad de γ en el punto (instante) t es el vector tangente a la curva en ese punto, es decir, el vector:

$$\gamma'(t) = (\gamma_1'(t), \dots, \gamma_n'(t)) \text{ si } \gamma = (\gamma_1, \dots, \gamma_n)$$

Definición 7.0.2 [Longitud de un camino]

Sea $\gamma: [a,b] \to \mathbb{R}^n$ un camino en \mathbb{R}^n . Sea $\sigma = \{a = t_1 < t_2 < \ldots < t_n = b\}$ partición de [a,b]. Definimos

$$\Sigma(\gamma, \sigma) = \sum_{i=1}^{n} ||\gamma(t_i) - \gamma(t_{i-1})||$$

Definimos entones la longitud de γ como:

$$L(\gamma) = \sup\{\Sigma(\gamma, \sigma) \mid \sigma \text{ es una partición de } [a, b]\} \in [0, +\infty]$$

Decimos que γ es **rectificable** si $L(\gamma) < +\infty$.

Observación 7.0.1

Existen caminos continuos que no son rectificables. Por ejemplo, la curva de Peano, el copo de nieve de Koch o la dada por:

$$l(\gamma) \geq \sum_{n=1}^{N} \frac{1}{n} \forall n \in \mathbb{N} \ luego \ l(\gamma) \geq \sum_{n=1}^{\infty} \frac{1}{n} = +\infty$$

Definición 7.0.3 [Camino C^1 a trozos]

Decimos que un camino $\gamma:[a,b]\to\mathbb{R}^n$ es C^1 a trozos si:

$$\exists \mathcal{P} = \{ a = t_0 < t_1 < \dots < t_n = b \}$$

tal que $\gamma|_{[t_{i-1},t_i]}$ es C^1 para todo $i=1,\ldots,n$.

Observación 7.0.2

En cada intervalo $[t_{i-1}, t_i]$ la función γ es C^1 , es decir, en los extremos admite derivadas laterales, aunque puede ocurrir que sean distintas.

Teorema 7.0.1

Sea $\gamma:[a,b]\to\mathbb{R}^n$ un camino C^1 a trozos. Entonces γ es rectificable y su longitud es:

$$l(\gamma) = \int_{a}^{b} ||\gamma'(t)|| dt$$

Observación 7.0.3

Tenemos que $t \to ||\gamma'(t)||$ existe, y es continua, salvo quiza en un número finito de puntos, luego en particular es integrable en sentido Riemann y en sentio Lebesgue.

Además, si $\mathcal{P} = \{t_0 = a < t_1 < \ldots < t_n = b\}$ es partición de [a, b] entonces:

$$\int_{a}^{b} \|\gamma'(t)\| dt = \sum_{i=1}^{n} \int_{t_{i-1}}^{t_i} \|\gamma'(t)\| dt$$

Para la demostración del teorema anterior, veamos un lema previo:

Lema 7.0.1

Sea $\gamma:[a,b]\to\mathbb{R}^n$ camino continuo entonces se cumple que:

$$\left\| \int_{a}^{b} \gamma(t)dt \right\| \le \int_{a}^{b} \left\| \gamma(t) \right\| dt$$

donde:

$$\int_{a}^{b} \gamma(t)dt = \left(\int_{a}^{b} \gamma_{1}(t)dt, \dots, \int_{a}^{b} \gamma_{n}(t)dt\right) \in \mathbb{R}^{n}$$

Demostración. Hagamos una distinción de casos:

- Si $u = \int_a^b \gamma(t)dt = 0$
- Si $u = \int_a^b \gamma(t)dt \neq 0$, sea $u \in \mathbb{R}^n$ con ||u|| = 1

$$||v|| = \langle u, v \rangle = \sum_{i=1}^{u} u_i \int_{a}^{b} \gamma_i(t) dt = \int_{a}^{b} \sum_{i=1}^{n} u_i \gamma_i(t) dt \le \int_{a}^{b} ||\gamma(t)|| dt = ||\int_{a}^{b} \gamma(t) dt||$$

Demostración. Veamos ahora la demostración del teorema: Podemos suponer que $\gamma:[a,b]\to\mathbb{R}^n$ es C^1 en casi todo [a,b].

1. Veamos que $l(\gamma) \le \int_a^b \|\gamma'(t)\| dt$: Sea $\mathcal{P} = \{a = t_0 < t_1 < \ldots < t_n = b\}$ partición de [a,b]. Entonces:

$$\Sigma(\gamma, \mathcal{P}) = \sum_{i=1}^{n} \|\gamma(t_i) - \gamma(t_{i-1})\| = \sum_{i=1}^{n} \|\int_{t_{i-1}}^{t_i} \gamma'(t) dt\| \le \sum_{i=1}^{n} \int_{y_{i-1}}^{t_i} \|\gamma'(t)\| dt = \int_{a}^{b} \|\gamma'(t)\| dt \quad \forall \text{ partición } \mathcal{P}$$

Luego, tomando el supremo de todas las particiones, obtenemos que $l(\gamma) \leq \int_a^b ||\gamma'(t)|| dt$

2. Como $t \to ||\gamma'(t)||$ es continua en casi todo [a, b]-compacto, luego es uniformemente continua en [a, b]. Dado $\epsilon > 0, \exists \delta > 0$ tal que si $t, s \in [a, b]$ y $|t - s| < \delta \implies ||\gamma'(t) - \gamma'(s)|| < \epsilon$

Sea
$$\mathcal{P} = \{a = t_0 < t_1 < \ldots < t_n = b\}$$
 partición de $[a,b]$ con $t_i - t_{i-1} < \delta \quad \forall i = 1,\ldots,n$

$$\int_{t_{i-1}}^{t_{i}} \|\gamma'(t)\| dt \leq \int_{t_{i-1}}^{t_{i}} \|\gamma'(t_{i})\| + \epsilon dt = \|\gamma(t_{i})\| \cdot (t_{i} - t_{i-1}) + \epsilon(t_{1} - t_{i-1})$$

$$= \|\int_{t_{i-1}}^{t_{i}} \gamma'(t) dt\| + \epsilon(t_{i} - t_{i-1}) = \|(\gamma'_{1}(t_{i}), \dots, \gamma'_{n}(t_{i}))\| \cdot (t_{i} - t_{i-1}) + \epsilon(t_{i} - t_{i-1})$$

$$\leq \int_{t_{i-1}}^{t_{i}} (\gamma'(t_{i}) - \gamma'(t) dt) dt + \int_{t_{i-1}}^{t_{i}} \|\gamma'(t)\| dt + \epsilon(t_{i} - t_{i-1})$$

$$\leq \int_{t_{i-1}}^{t_{i}} \|\gamma'(t_{i}) - \gamma'(t)\| dt + \int_{t_{i-1}}^{t_{i}} \|\gamma'(t)\| dt + \epsilon(t_{i} - t_{i-1}) \leq 2\epsilon(t_{i} - t_{i-1}) + \int_{t_{i-1}}^{t_{i}} \|\gamma'(t)\| dt$$

$$= 2\epsilon(t_{i} - t_{i-1}) \cdot \|\gamma(t_{i}) - \gamma(t_{i-1})\|$$

Luego,

$$\int_{a}^{b} \|\gamma'(t)\| dt = \sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}} \|\gamma'(t)\| dt \le \sum_{i=1}^{n} 2\epsilon(t_{i} - t_{i-1}) + \|\gamma(t_{i}) - \gamma(t_{i-1})\| = 2\epsilon(b - a) + \Sigma(\gamma, \mathcal{P}) \le 2\epsilon(b - a) + l(\gamma)$$

Todo esto está sacado del libro de Facenda, Fremiche.

Ejemplo

Sea la curva parametrizada

$$\gamma: [0, 2\pi] \to \mathbb{R}^2, \quad \gamma(t) = (\cos t, \sin t).$$

Además, se cumple que

$$\gamma(0) = (1,0) = p.$$

Derivando, obtenemos

$$\gamma'(t) = (-\sin t, \cos t),$$

y en particular,

$$\gamma'(0) = (0, 1) = \vec{v}.$$

Cambio de parámetro

Consideremos el cambio de variable $t=2\pi s$ con $0 \le s \le 1$. Definiendo la nueva curva

$$\sigma(s) = (\cos(2\pi s), \sin(2\pi s)), \quad 0 \le s \le 1,$$

obtenemos su derivada:

$$\sigma'(s) = (2\pi(-\sin(2\pi s)), 2\pi\cos(2\pi s)).$$

En particular, en s = 0,

$$\sigma'(0) = 2\pi(0,1) = (0,2\pi).$$

Otro cambio de parámetro

Si realizamos el cambio $t=-2\pi s$, obtenemos la curva

$$\alpha(s) = (\cos(2\pi s), -\sin(2\pi s)).$$

Calculamos su derivada:

$$\alpha'(s) = (2\pi(-\sin(2\pi s)), -2\pi\cos(2\pi s)).$$

Definición 7.0.4

Sea $\gamma:[a,b]\to\mathbb{R}^n$ camino C^1 a trozos y sea $f:Im\gamma\to\mathbb{R}$ continua Diremos que f es un campo escalar sobre $Im\gamma$ Definimos:

$$\int_{\gamma} f = \int_{a}^{b} f(\gamma(t)) \cdot ||\gamma'(t)|| dt$$

Notacion: Podemos denotar

$$\int_{\gamma} f = \int_{\gamma} f ds$$

Ademas

$$l(\gamma) = \int_a^b ||\gamma'(t)|| dt = \int_a^b ds$$

Definición 7.0.5

Dos caminos $\gamma:[a,b]\to\mathbb{R}^n\ y\ \sigma:[c,d]\to\mathbb{R}^{\ltimes}\ son\ equivalentes\ si:$

$$\exists h : [c,d] \to [a,b]$$

 $homeomorfismo\ C^1\ que\ cumple\ ademas\ que$

$$h' \neq 0$$

en [c, d] tal que ademas

$$[a,b] \to_{\gamma} \mathbb{R}^n \leftarrow_{\sigma} [c,d] \leftrightarrow_h [a,b]$$

Tenemos ademas que: $\sigma = \gamma \circ h$ con $\sigma(s) = \gamma(h(s)) \ \forall s \in [c, d]$ Ahora, por el teorema de Bolzano tenemos dos posibilidades:

- 1. Si h' > 0 es decir, h es creciente, decimos que h conserva la orientacion (o que γ y σ tienen la misma orientacion)
- 2. Si h' < 0 es decir, h es decreciente, decimos que h invierte la orientación (γ y σ tienen orientación opuesta)

Observación 7.0.4

1. Si $h:[c,d] \to [a,b]$ es biyectiva y C^1 con $h' \neq 0$ entonces aplicando el Teorema de la funcion inversa obtenemos que h admite inversa local al rededor de cada punto. Ademas se cumple que $(h^{-1})'(h(s)) = \frac{1}{h'(s)} \ \forall s \in [c,d]$

Como ademas h es biyectiva la inversa local coincide con la inversa global, luego $h:[c,d] \to [a,b]$ es un difeomorfismo C^1 , es decir, $\exists h^{-1}:[a,b] \to [c,d]$ que es C^1

2. Usando esto obtenemos que la equivalencia de caminos es una relacion de equivalencia.

Observación 7.0.5

Si $K \subset \mathbb{R}^n$ compacto y $h: K \to H \subset \mathbb{R}^{\ltimes}$ es continua y biyectiva, entonces $h: K \to H$ es un homeomorfismo.

Demostración. Tenemos que $h: K \to H$ es biyectiva, luego $\exists h^{-1}: H \to K$, veamos que es biyectiva. Dado $C \subset K$ cerrado $\Longrightarrow C$ es compacto $\Longrightarrow h(C)$ es compacto $\Longrightarrow (h^{-1})^{-1}(C) = h(C)$ que es compacto en H, luego es cerrado en H

Teorema 7.0.2

Sean $\gamma:[a,b]\to\mathbb{R}^n\ y\ \gamma:[c,d]\to\mathbb{R}^n\ caminos\ C^1\ a\ trozos\ equivalentes.$ Sea ademas $f:Im(\gamma)=Im(\sigma)\to\mathbb{R}\ continua,\ entonces:$

$$\int_{\gamma} f = \int_{\sigma} f$$

Observación 7.0.6

 $Si \gamma y \sigma son equivalentes \implies Im(\gamma) = Im(\sigma)$

Demostración. Tenemos $h:[c,d]\to [a,b]$ difeomorfismo C^1 con $\gamma\circ h=\sigma$ con ademas $\sigma(s)=\gamma(h(s))\Longrightarrow \sigma'(s)=\gamma'(h(s))h'(s)=h'(s)\gamma'(h(s))$

1. Caso 1: h es creciente (h' > 0)

$$\int_{\gamma} f = \int_{t=a}^{t=b} f(\gamma(t)) \|\gamma'(t)\| dt = \int_{s=c}^{s=d} f(\gamma(h(s))) \|\gamma'(h(s))\| h'(s) ds$$

Haciendo ahora el cambio t = h(s) y dt = h'(s)ds obtenemos:

$$\int_{s=c}^{s=d} f(\sigma(h(s))) \|\sigma'(s)\| ds = \int_{\sigma} f$$

2. Caso 2: h es decreciente (h' < 0)

Tenemos

$$\int_{\gamma} f = \int_{t=a}^{t=b} f(\gamma(t)) \|(\gamma'(t))\| dt = \int_{s=d}^{s=c} f(\gamma(h(s))) \|\gamma'(h(s))\| h'(s) ds$$

Haciendo ahora el cambio t = h(s) y dt = h'(s)ds obtenemos:

$$\int_{s=c}^{s=d} f(\gamma(h(s))) \|\gamma'(h(s))\| (-h'(s)) ds = \int_{\sigma} f$$

Corolario 7.0.1

 $Si \gamma y \sigma son equivalentes y C^1 a trozos \implies l(\gamma) = l(\sigma)$

Demostración.

$$l(\gamma) = \int_{\gamma} 1 = \int_{a}^{b} ||\gamma'(t)|| dt = \int_{\sigma} 1 = l(\sigma)$$

Definición 7.0.6

Sea $\gamma:[a,b]\to\mathbb{R}^{\ltimes}$ camino C^1 a trozos. Definimos el camino inverso como:

$$(-\gamma):[a,b]\to\mathbb{R}^{\ltimes}$$

como

$$(-\gamma)(s) = \gamma(a+b-s)$$

Observación 7.0.7

De hecho, $(-\gamma)$ es equivalente a γ con $(-\gamma)(s) = \gamma(h(s))$ luego $Im(-\gamma) = Im(\gamma)$

Definición 7.0.7 [Concatenacion de caminos]

Sean $\gamma:[a,b]\to\mathbb{R}^{\ltimes}\ y\ \sigma:[c,d]\to\mathbb{R}^{\ltimes}\ caminos\ C^1\ a\ trozos\ con\ \gamma(b)=\sigma(c)$ Definimos su concatenación como:

$$\gamma + \sigma : [a, b + (d - c)] \to \mathbb{R}^{\ltimes}$$
$$(\gamma + \sigma) = \begin{cases} \gamma(t), & \text{si } a \le t \le b \\ \sigma(t - b + c) & \text{si } b \le t \le b + (d - c) \end{cases}$$

Observación 7.0.8

En este caso, si

$$f: \operatorname{Im}(\gamma_1) \cup \cdots \cup \operatorname{Im}(\gamma_m) \longrightarrow \mathbb{R}$$

es continua en las curvas, entonces se cumple:

$$\int_{\gamma_1 + \dots + \gamma_m} f = \sum_{i=1}^m \int_{\gamma_i} f$$

Ejemplo

Dado el camino γ definido por:

$$\gamma: [0, 2\pi] \to \mathbb{R}^3$$
 $\gamma(t) = (\underbrace{\cos(t)}_{x(t)}, \underbrace{\sin(t)}_{y(t)}, \underbrace{t}_{z(t)})$

Y la funcion $f: \mathbb{R}^3 \to \mathbb{R}$ dada por:

$$f(x, y, z) = x^2 + y^2 + z^2$$

Entonces, calcular la integral de f a lo largo de γ .

$$x^{2}(t) + y^{2}(t) = 1$$
 $\gamma(0) = (1, 0, 0), \quad \gamma(2\pi) = (1, 0, 2\pi)$

$$\gamma'(t) = (-\sin(t), \cos(t), 1), \quad \|\gamma'(t)\| = \sqrt{\sin^2(t) + \cos^2(t) + 1} = \sqrt{2}$$

$$\int_{\gamma} f = \int_{0}^{2\pi} \left(\cos^{2}(t) + \sin^{2}(t) + t^{2}\right) \sqrt{2} dt = \int_{0}^{2\pi} (1 + t^{2}) \sqrt{2} dt = \left[t + \frac{t^{3}}{3}\right]_{0}^{2\pi} \sqrt{2} = \left(2\pi + \frac{8\pi^{3}}{3}\right) \sqrt{2}$$

7.1 Campos Vectoriales

Definición 7.1.1 [Campo Vectorial]

Sea $A \subset \mathbb{R}^n$, un campo vectorial continuo en A es una función continua $\vec{F}: A \to \mathbb{R}^n$ que asigna a cada punto $x \in A$ un vector $\vec{F}(x) \in \mathbb{R}^n$.

Definición 7.1.2 [Integral de un Campo Vectorial a lo largo de un Camino]

Sea $\gamma:[a,b]\to\mathbb{R}^n$ un camino \mathcal{C}^1 a trozos y $\vec{F}:\operatorname{Im}(\gamma)\to\mathbb{R}^n$ un campo vectorial continuo. Se define la integral de \vec{F} a lo largo de γ como:

$$\int_{\gamma} \vec{F} = \int_{a}^{b} \langle \vec{F}(\gamma(t)), \gamma'(t) \rangle dt$$

Observación 7.1.1

El producto escalar $\langle \vec{F}(\gamma(t)), \gamma'(t) \rangle$ representa la proyección ortogonal del vector $\vec{F}(\gamma(t))$ en la dirección de la tangente a γ en $\gamma(t)$.

Notación:

Si

$$\gamma(t) = (x_1(t), \dots, x_n(t))$$
 y $\gamma'(t) = (x_1'(t), \dots, x_n'(t))$

entonces:

$$\int_{\gamma} \vec{F} = \int_{a}^{b} \langle \vec{F}(x_1(t), \dots, x_n(t)), (x'_1(t), \dots, x'_n(t)) \rangle dt$$

$$= \int_{a}^{b} \left[F_1(\gamma(t)) x'_1(t) + \dots + F_n(\gamma(t)) x'_n(t) \right] dt = \int_{\gamma} F_1 dx_1 + \dots + F_n dx_n$$

donde $dx_i = x_i'(t)dt$, para $i = 1, \ldots, n$ y $\vec{F} = (F_1, \ldots, F_n)$.

Teorema 7.1.1

Sean $\gamma:[a,b]\to\mathbb{R}^n\ y\ \sigma:[c,d]\to\mathbb{R}^n\ caminos\ \mathcal{C}^1\ a\ trozos\ y\ equivalentes,\ y\ sea\ \vec{F}:\operatorname{Im}(\gamma)=\operatorname{Im}(\sigma)\to\mathbb{R}^n\ un\ campo\ vectorial\ continuo.$ Entonces:

1.
$$\int_{\gamma} \vec{F} = \int_{\sigma} \vec{F}$$
 si γ y σ tienen la misma orientación.

2.
$$\int_{\gamma} \vec{F} = -\int_{\sigma} \vec{F}$$
 si γ y σ tienen orientación opuesta.

Demostración. Sabemos que existe $h:[c,d]\to [a,b]$, biyección de clase C^1 con $h'\neq 0$, tal que:

Luego

$$\sigma'(s) = \gamma'(h(s))h'(s), \quad \forall s \in [c, d].$$

Distinguimos dos casos según la orientación de los caminos:

• Caso 1: Misma orientación

Si r y σ tienen la misma orientación, entonces h' > 0 (es decir, h es creciente). Se tiene que:

$$\int_{\gamma} \vec{F} = \int_{t=a}^{t=b} \langle \vec{F}(\gamma(t)), \gamma'(t) \rangle dt = \int_{s=c}^{s=d} \langle \vec{F}(\gamma(h(s))), \gamma'(h(s)) \rangle h'(s) ds$$
$$= \int_{s=c}^{s=d} \langle \vec{F}(\sigma(s)), \sigma'(s) \rangle ds = \int_{\sigma} \vec{F}$$

Donde el cambio de variable viende dado por:

$$\begin{cases} t = h(s) \\ dt = h'(s)ds \end{cases}$$

• Caso 2: Orientación opuesta

Si γ y σ tienen orientación opuesta, entonces h' < 0 (es decir, h es decreciente). En este caso:

$$\int_{\gamma} \vec{F} = \int_{t=a}^{t=b} \langle \vec{F}(\gamma(t)), \gamma'(t) \rangle dt = \int_{s=d}^{s=c} \langle \vec{F}(\gamma(h(s))), \gamma'(h(s)) \rangle h'(s) ds$$
$$= -\int_{s=c}^{s=d} \langle \vec{F}(\sigma(s)), \sigma'(s) \rangle ds = -\int_{\sigma} \vec{F}$$

Observación 7.1.2

Dado una camino continuo $\gamma:[a,b]\to\mathbb{R}^n$ cualesquiera y un campo vectorial continuo $\vec{F}:\operatorname{Im}(\gamma)\to\mathbb{R}^n$, se cumple que:

1.
$$\int_{-\gamma} \vec{F} = -\int_{\gamma} \vec{F}.$$

2.
$$\int_{\gamma_1 + \dots + \gamma_2} \vec{F} = \sum_{i=1}^n \int_{\gamma_i} \vec{F}.$$

Ejemplo -

Un camino puede ser diferenciable (ó C^1) y, sin embargo, su imagen puede presentar "picos". Por ejemplo, el camino $\gamma: [-1,1] \to \mathbb{R}^2$ dado por $\gamma(t) = (t^3,|t^3|)$ es C^1 en el intervalo [-1,1], pero su imagen presenta un pico en el origen. En efecto,

$$\gamma'(t) = (\gamma_1'(t), \gamma_2'(t)) \quad \text{con} \quad \gamma_1'(t) = 3t^2 \quad \text{y} \quad \gamma_2'(t) = \begin{cases} 3t^2 & \text{si } t \ge 0 \\ -3t^2 & \text{si } t < 0 \end{cases}$$
$$\gamma_2'(0) = \lim_{t \to 0} \frac{\gamma_2(t) - \gamma_2(0)}{t} = \lim_{t \to 0} \frac{t^2|t| - 0}{t} = \lim_{t \to 0} t|t| = 0$$

Luego $\gamma'(0)$ existe y además $\gamma'(0) = (0,0)$. Sin embargo, la imagen de γ en el origen presenta un pico, lo que implica que la curva no es regular en ese punto.

Definición 7.1.3 [Camino Simple y Regular]

Diremos que una función $\gamma:[a,b]\to\mathbb{R}^n$ es un camino simple y regular si:

- γ es continua.
- γ es inyectiva (simple).
- γ es de clase C^1 en [a,b] y cumple que $\gamma'(t) \neq 0$ para todo $t \in [a,b]$.

Observación 7.1.3

- 1. En este caso, la función $\gamma:[a,b]\to \operatorname{Im}(\gamma)$ es un homeomorfismo sobre su imagen.
- 2. Diremos que $C \subset \mathbb{R}^n$ es una curva simple y regular si $C = \operatorname{Im}(\gamma)$, donde γ es un camino simple y regular. En este caso, γ es una parametrización simple y regular de C.

Ejemplo

Consideremos la curva:

$$C = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1, \quad y > 0\}.$$

Una posible parametrización es:

$$\gamma: [0, \pi] \to \mathbb{R}^2$$
 $\gamma(t) = (\cos(t)\sin(t))$

Su derivada es:

$$\gamma'(t) = (-\sin(t), \cos(t)) \neq (0, 0), \quad \forall t \in (0, \pi).$$

Por lo tanto, $\operatorname{Im}(\gamma) = C$, confirmando que γ es una parametrización simple y regular de C.

Teorema 7.1.2

Sea $C \subset \mathbb{R}^n$ una curva simple y regular y sean γ y σ parametrizaciones simples y regulares de C. Entonces, γ y σ son equivalentes.

Ejemplo

Un segimento en \mathbb{R}^n : DAdos $p \neq q$ en \mathbb{R}^n , el segmento [p,q] se define como:

$$[p,q] = \{(1-t)p + t \mid 0 \le t \le 1\} = C$$
 es una curva simple regular

$$C = Im(\gamma)$$
 donde $\gamma : [0,1] \rightarrow [p,q] \operatorname{con} \gamma(t) = (1-t)p + tq = q + t(p-q)$

Tenemos que γ es biyectiva y $\gamma'(t) = p - q \neq 0 \ \forall t \in [0, 1]$

Ejemplo

Una gráfica en \mathbb{R}^n : Sea $g:[a,b]\to\mathbb{R}$ de clase C^1 . La gráfica $G_g=\{(t,g(t):a\leq t\leq b)\}$ es una curva simple regualr en \mathbb{R}^2 con $G_g=Im(\gamma)$ donde $\gamma:[a,b]\to G_g$ es de clase C^1 y biyectiva con $\gamma(t)=(t,g(t))$ y $\gamma'(t)=(1,g'(t))\neq \vec{0}$ $\forall t\in [a,b]$

Observación 7.1.4

 $Si \ \gamma : [a,b] \to \mathbb{R}^n$ es una curva simple regular, entones γ es un homeomorfismo sobre su imagen, i.e. $\gamma : [a,b] \to C = Im(\gamma)$ es un homeomorfismo.

Falta demostrar que $\gamma^{-1}: C \to [a,b]$ es continua.

Si no fuera así: Sea $x_0 \in C$ tal que γ^{-1} no es continua en x_0 entonces $\exists \epsilon > 0$ tal que $\forall \delta = \frac{1}{k} > 0$, $\exists x_k \in C$ con $||x_k - x_0|| \leq \frac{1}{k}$ pero $||\gamma^{-1}(x_k) - \gamma^{-1}(x_0)|| > \epsilon$

 $\forall k \in \mathbb{N}, \ denotemos \ (t_k)_{k \in \mathbb{N}} = (\gamma^{-1}(x_k)) \subset [a,b]\text{-}compacto \implies \exists (t_{k_j}) \to t_0 \in [a,b] \ y \ como \ \gamma \ es$ $continua \implies \gamma(t_{k_j}) \to \gamma(t_0) \equiv (x_{k_j}) \to x_0$

Luego $x_0 = \gamma(t_0) \iff t_0 = \gamma^{-1}(x_0)$. Pero $t_{k_j} = \gamma^{-1}(x_{k_j})$ satisface que $||t_{k_j} - t_0|| \ge \epsilon \iff ||\gamma^{-1}(x_{k_j}) - \gamma^{-1}(x_0)|| \ge \epsilon$ lo cual es una contradicción.

Demostración. A continuación viene la demostración del teorema anterior:

Sean $\sigma: [c,d] \to Im(\sigma)$ y $\gamma: [a,b] \to Im(\gamma)$ tales que $Im(\sigma) = C = Im(\gamma)$. Dado que σ y γ son homeomorfismos sobre C entonces $\exists h: [c,d] \to [a,b]$ homeomorfismo C^1 tal que $h = \gamma^{-1} \circ \sigma$. Entonces falta demostrar que h es de clase C^1 con $h' \neq 0$ en [c,d] Sea $s_0 \subset [c,d]$ y denotaremos $x_0 = \sigma(s_0)$

• Consideramos primero el caso de que $s_0 \in (c,d)$ y sea $t_0 \in (a,b)$ tal que $\gamma(t_0) = x_0$: Sabemos que $gamma'(t_0) = (\gamma'_1(t_0), \ldots, \gamma'_n(t_0)) \neq \vec{0}$ Supongamos que $\gamma'_1(t_0) \neq 0$ entonces definamos la función $H: (a,b) \times \mathbb{R}^{n-1} \to \mathbb{R}^n \implies H(t,y_2,\ldots,y_n) = (\gamma_1(t),\gamma_2(t)+y_2,\ldots,\gamma_n(t)+y_n)$ y $H(t_0,0,\ldots,0) = (\gamma_1(t),\gamma_2(t)+y_2,\ldots,\gamma_n(t)+y_n)$

$$(\gamma_1(t),\ldots,\gamma_n(t))=\gamma(t)$$

$$DH(t, 0 \dots 0) = \begin{pmatrix} \gamma'_1(t) & 0 & \dots & 0 \\ \gamma'_2(t) & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \gamma'_n(t) & 0 & \dots & 1 \end{pmatrix} \implies det(DH(t, 0 \dots 0)) = \gamma'_1(t) \neq 0$$

Entonces por el Teorema de la Función Inversa $\exists U^{(t_0,0,\dots 0)} \subset (a,b)$ y $\exists V^{x_0}$ tal que $H:U^{(t_0,0,\dots 0)} \to V^{x_0}$ es un difeomorfismo de clase C^1 . Definimos $F:V^{x_0}\to\mathbb{R}$ tal que $F(x)=\pi_1(H^{-1}(x))\in(a,b)$ donde π_1 es la proyección en la primera coordenada.

$$F(\gamma(t)) = \pi_1(H^{-1}(\gamma(t))) = \pi_1(H^{-1} \circ H(t, 0, \dots, 0)) = \pi_1(t, 0, \dots, 0) = t$$

Si t = h(s) entonces $F(\gamma(h(s))) = F(\sigma(s))$ luego h es de clase C^1 alrededeor de s_0 . Además, $\sigma'(s_0) = (\gamma \circ h)'(s_0) = \gamma(t_0) \circ h'(s_0) \implies h'(s_0) \neq 0$

• Para los exteriores de c y d se usa que: $\sigma:[c,d]\to\mathbb{R}^n$ es de clase C^1 entonces $\exists \bar{\sigma}:(c-\epsilon,d+\epsilon)\to\mathbb{R}^n$ extensión de clase C^1 y además $\bar{\sigma}'\neq 0$ en $(c-\epsilon,d+\epsilon)$

Definición 7.1.4

Sea $C \subset \mathbb{R}^n$ curva simple regular entonces;

- 1. Si $f:C\to\mathbb{R}$ es continua, se define $\int_C f=\int_\gamma f$ siendo γ una parametrización simple y regular de C
- 2. Una orientación de C se define como un sentido de recorrido de C, es decir, señalar un origen y un extremo de C. Si C está orientada y F : C → ℝⁿ es un campo vectorial continuo, se define ∫_C F = ∫_γ F siendo γ una parametrización simple y regular de C, que conserva la orientación o que induce en C la orientación elegida.

Observación 7.1.5

Si cambiamos de orientación: $\int_{C^-} \vec{F} = -\int_C \vec{F}$

Definición 7.1.5

Diremos que $C \subset \mathbb{R}^n$ es una curva regular simple a trozos si $C = Im(\gamma)$ siendo γ camino C^1 a trozos con $\gamma = \gamma_1 + \ldots + \gamma_k$ y cada γ_j es simple y regular $\forall j = 1, \ldots, k$ En este caso si $C_j = Im(\gamma_j) \forall j = 1, \ldots, k$ entonces denotaremos $C = C_1 + \ldots + C_k$ y definimos para $f: C \to \mathbb{R}$ continua: $\int_C f = \sum_{j=1}^k \int_{C_j} f$

Observación 7.1.6

Se puede demostrar que el resultado no depende de la partición de C en curvas simples y regulares (descomposición).

Observación 7.1.7

Si $C = C_1 + \ldots + C_k$ tienen orientaciones coherentes (el extremo de C_j coincide con $C_{j+1} \forall j = 1, \ldots, k-1$) diremos que C está orientada y definimos para un campo vectorial $\vec{F}: C \to \mathbb{R}^n$ continua: $\int_C \vec{F} = \sum_{j=1}^k \int_{C_j} \vec{F}$

7.2 Campos Conservativos

Definición 7.2.1

Sea un conjunto $U \subset \mathbb{R}^n$ abierto. Un campo vectorial- C^1 continuo $\vec{F}: U \to \mathbb{R}^n$ se dice que es conservativo (ó campo gradiente) si $\exists \varphi: U \to \mathbb{R}$ de clase C^1 tal que $\vec{F} = \nabla \varphi \iff \vec{F} = (F_1, \dots, F_n)$ donde $F_i = \frac{\partial \varphi}{\partial x_i} \quad \forall i = 1, \dots, n$. Se dice entonces que la función φ es un potencial de \vec{F} .

Observación 7.2.1

Si φ es un potencial de \vec{F} entonces también lo es de $\vec{F} + a \quad \forall a \in \mathbb{R}^n$ constante.

Proposición 7.2.1

Sean $U \subset \mathbb{R}^n$ abierto y $\vec{F}: U \to \mathbb{R}^n$ un campo conservativo y $\gamma: [a,b] \to U$ un camino C^1 a trozos. Entonces:

$$\int_{\gamma} \vec{F} = \varphi(\gamma(b)) - \varphi(\gamma(a))$$

donde φ es un potencial de \vec{F} .

Demostración. Distinguimos dos casos:

1. Caso 1: γ es C^1 en [a,b]Definimos la función $g:[a,b] \to \mathbb{R}$ de forma que $g(t) = \varphi(\gamma(t))$ y aplicamos la regla de la cadena:

En particular tenemos que g es de clase C^1 y además:

$$g'(t) = (\varphi \circ \gamma)'(t) = D\varphi(\gamma(t))(\gamma'(t)) = \langle \nabla \varphi(\gamma(t)), \gamma'(t) \rangle = \langle \vec{F}(\gamma(t)), \gamma'(t) \rangle$$

$$\int_{\gamma} \vec{F} = \int_{a}^{b} \langle \vec{F}(\gamma(t)), \gamma'(t) \rangle dt = \int_{a}^{b} g'(t) dt \stackrel{\text{TFC}}{=} g(b) - g(a) = \varphi(\gamma(b)) - \varphi(\gamma(a))$$

2. Caso 2: γ es C^1 a trozos

Se aplica el caso 1 a cada trozo.

Teorema 7.2.1 [Caracterización de los Campos Conservativos]

Sea el conjunto $U \subset \mathbb{R}^n$ abierto y conexo, y $\vec{F}: U \to \mathbb{R}^n$ un campo vectorial continuo, entonces son equivalentes:

- 1. El campo \vec{F} es conservativo.
- 2. $\int_{\gamma} \vec{F} = 0$ para todo γ camino cerrado C^1 a trozos en U.
- 3. $\int_{\gamma} \vec{F}$ solamente depende de los extremos de γ para todo γ camino C^1 a trozos en U.
- 4. $\int_{\sigma} \vec{F} = 0$ para todo σ poligonal cerrado de lados paralelos a los ejes coordenados en U.
- 5. $\int_{\sigma} \vec{F}$ solamente depende de los extremos de σ para todo σ poligonal cerrado de lados paralelos a los ejes coordenados en U.

Demostración.

• (1) \Longrightarrow (2): Si γ es un camino cerrado, entonces $\gamma(a) = \gamma(b)$ y por la proposición anterior:

$$\int_{\gamma} \vec{F} = \varphi(\gamma(b)) - \varphi(\gamma(a)) = \varphi(\gamma(b)) - \varphi(\gamma(b)) = 0$$

• (2) \Longrightarrow (3): Sean γ_1 y γ_2 caminos C^1 a trozos con los mismos extremos. Consideramos $\gamma = \gamma_1 + (-\gamma_2)$, que es un camino cerrado. Por hipótesis, $\int_{\gamma} \vec{F} = 0$, y por la proposición anterior:

$$0 = \int_{\gamma} \vec{F} = \int_{\gamma_1 + (-\gamma_2)} \vec{F} = \int_{\gamma_1} \vec{F} - \int_{\gamma_2} \vec{F} \implies \int_{\gamma_1} \vec{F} = \int_{\gamma_2} \vec{F}$$

- $(2) \implies (4) \text{ y } (3) \implies (5)$: trivial
- $(4) \implies (5)$: es análogo a $(2) \implies (3)$.
- (5) \Longrightarrow (1): Consideramos un punto $x \in U$ y un vector unitario e_i en la dirección del eje *i*-ésimo. Tomamos un segmento de línea recta γ que va de x a $x + he_i$, donde h es un número real pequeño. La integral de \vec{F} sobre γ es:

$$\int_{\gamma} \vec{F} \cdot d\vec{r} = \varphi(x + he_i) - \varphi(x)$$

Dividiendo ambos lados por h y tomando el límite cuando $h \to 0$, obtenemos:

$$\lim_{h \to 0} \frac{\varphi(x + he_i) - \varphi(x)}{h} = \frac{\partial \varphi}{\partial x_i}(x)$$

Por otro lado, la integral de \vec{F} sobre γ también se puede expresar como:

$$\int_{\gamma} \vec{F} \cdot d\vec{r} = \int_{0}^{h} \vec{F}(x + te_{i}) \cdot e_{i} dt$$

Tomando el límite cuando $h \to 0$, obtenemos:

$$\lim_{h \to 0} \frac{1}{h} \int_0^h \vec{F}(x + te_i) \cdot e_i \, dt = \vec{F}(x) \cdot e_i = F_i(x)$$

Luego

$$\frac{\partial \varphi}{\partial x_i}(x) = F_i(x) \implies \nabla \varphi = \vec{F}$$

Observación 7.2.2

Un poligonal σ de lados paralelos a los ejes es un camino $\sigma = \gamma_1 + \ldots + \gamma_k$ con γ_j segmentos de recta paralelos a los ejes coordenados.

Además en este caso, si fijamos un punto $p \in U$ la función $\varphi : U \to \mathbb{R}$ definida por

$$\varphi(x) = \int_{\gamma_x} \vec{F} = \int_p^x \vec{F}$$
 donde γ_x es un camino de p a x

es un potencial de \vec{F} en U.

Lema 7.2.1

Sea el conjunto $U \subset \mathbb{R}^n$ abierto y conexo. Dados los puntos $p, x \in U$, entonces existe σ poligonal de lados paralelos a los ejes coordenados en U tal que σ une p con x.

Demostración. Sea el conjunto

 $A = \{x \in U \mid \text{existe } \sigma \text{ poligonal de lados paralelos a los ejes coordenados que une } p \text{ con } x\}$

- $p \in A \neq \emptyset$.
- A es abierto. Si $x \in A$ entonces $x \in U$ abierto, luego $\exists \epsilon > 0$ tal que $B(x, \epsilon) \subset U$. Además, $B(x, \epsilon) \subset A$. Si $y \in B(x, \epsilon)$ entonces $\exists \sigma_{xy}$ poligonal que une x con y y también existe σ_x poligonal que une p con x. Por lo tanto, $\sigma_x + \sigma_{xy}$ es un poligonal que une p con y.
- A es cerrado en U. $U \setminus A$ es abierto. Si $x \in U \setminus A$ entonces $\exists \epsilon > 0$ tal que $B(x, \epsilon) \subset U$. Como antes, se tiene que $B(x, \epsilon) \subset U \setminus A$.

Por lo tanto, A es abierto y cerrado en U y como U es conexo, A = U.

Podemos definir $\varphi(x) = \int_{\sigma_x} \vec{F}$ donde σ_x es un poligonal de U de lados paralelos a los ejes coordenados que une p con x.

Veamos que φ es un potencial de \vec{F} en U, es decir, $\nabla \varphi = \vec{F}$, o que es lo mismo:

$$\vec{F} = (F_1, \dots, F_n) = \left(\frac{\partial \varphi}{\partial x_1}, \dots, \frac{\partial \varphi}{\partial x_n}\right)$$

Por tanto nos preguntamos si $\lim_{h\to 0} \frac{\varphi(x+he_i)-\varphi(x)}{h} = F_i(x)$ para $i=1,\ldots,n$.

$$\varphi(x + he_i) - \varphi(x) = \int_p^{x + he_i} \vec{F} - \int_p^x \vec{F} = \int_x^{x + he_i} \vec{F}$$
$$= \int_0^1 \langle \vec{F}(\sigma(t)), \sigma'(t) \rangle dt = \int_0^1 \langle \underbrace{\vec{F}(\sigma(t))}_{(F_1, \dots, F_n)}, he_i \rangle dt = \int_0^1 hF(\sigma(t)) dt$$

donde

$$\begin{cases} \sigma(t) = x + the_i, & t \in [0, 1] \\ \sigma(0) = x, & \sigma(1) = x + he_i \\ \sigma'(t) = he_i \end{cases}$$
$$\frac{\varphi(x + he_i) - \varphi(x)}{h} = \frac{1}{h} \int_0^1 hF_i(x + the_i)dt$$

Expresando $G(t, h) = F_i(x + the_i)$ en términos de t y h, entonces obtenemos que G es continua en h y t, por lo tanto, podemos aplicar el teorema de la convergencia dominada de Lebesgue para intercambiar el límite y la integral.

$$\lim_{h \to 0} \frac{\varphi(x + he_i) - \varphi(x)}{h} = \lim_{h \to 0} \int_0^1 F_i(x + the_i) dt = \int_0^1 \lim_{h \to 0} F_i(x + the_i) dt = \int_0^1 F_i(x) dt = F_i(x)$$

Ejemplo

Sea el campo vectorial $\vec{F}: \mathbb{R}^r \to \mathbb{R}^3$ dado por $\vec{F}(x,y,z) = (y,x+z\cos(yz),y\cos(yz))$, veamos si es conservativo.

Fijamos un punto p = (0,0,0) y definimos $\sigma_{xyz} = \gamma_1 + \gamma_2 + \gamma_3$ donde:

$$\begin{cases} \gamma_1(t) = (t, 0, 0) & t \in [0, x] \text{ ó } t \in [x, 0] \\ \gamma_2(t) = (x, t, 0) & t \in [0, y] \text{ ó } t \in [y, 0] \\ \gamma_3(t) = (x, y, t) & t \in [0, z] \text{ ó } t \in [z, 0] \end{cases}$$

$$\int_{\gamma_1} \vec{F} = \int_0^x \langle (0, t, 0), (1, 0, 0) \rangle dt = 0$$

$$\int_{\gamma_2} \vec{F} = \int_0^y \langle (t, x, t), (0, 1, 0) \rangle dt = \int_0^y x dt = xy$$

$$\int_{\gamma_3} \vec{F} = \int_0^z \langle (y, x + t \cos(yt), y \cos(yt)), (0, 0, 1) \rangle dt = \int_0^z y \cos(yt) dt = [\sin(yt)]_0^z = \sin(yz)$$

Luego $\varphi(x,y,z) = \int_{\gamma_1} \vec{F} + \int_{\gamma_2} \vec{F} + \int_{\gamma_3} \vec{F} = xy + \sin(yz)$.

En efecto, para confirmar que \vec{F} es conservativo, debemos verificar que $\nabla \varphi = \vec{F}$.

$$\nabla \varphi = \left(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z}\right) = (y, x + z\cos(yz), y\cos(yz)) = \vec{F}$$

Por lo tanto, \vec{F} es conservativo.

8 Teorema de Green

9 Superficies paramétricas

10 Integrales de superficie

Teorema de Stokes. Teorema de la divergencia de Gauss

12 Apéndice