Gravitational Waves @ Jena University

Jacopo Tissino

2021-04-19

Introduction

The syllabus can be found here.

Interesting things on the Indico server of Jena university.

Monday 2021-4-12, compiled

2021-04-19

In this first lecture, a basic introduction to the theory of gravitational waves: Einstein's first papers, the sticky bead argument by Bondi & Feynman, the quadrupole formula:

$$\overline{h}_{ij}(t,r) = \frac{2G}{c^4 r} \ddot{I}_{ij}(t-r). \tag{0.1}$$

The idea behind the multipole expansion is that we are solving the Poisson equation $\nabla^2\phi=\rho$, so

$$\phi(\vec{r}) = \int \frac{\rho(\vec{x}) \, \mathrm{d}^3 x}{|\vec{r} - \vec{x}|} \,, \tag{0.2}$$

so as long as we are far away from the source we will see

$$\phi(\vec{r}) = -\frac{q}{r} - \frac{p_i n^i}{r^2} - \frac{Q_{ij} n^i n^j}{r^3} + \dots$$
 (0.3)

Quiz: which of these are GW sources?

- 1. spherical star: no, its quadrupole is vanishing;
- 2. rotating star: no, its quadrupole is constant;
- 3. star with a mountain: yes, its quadrupole evolves (potential source of continuous GW);
- 4. supernova explosion: yes, if there is asymmetry (potential source of burst GW);
- 5. binary system: yes, already detected!

Claim 0.1. *Order of magnitude expression:*

$$h \lesssim \frac{GM}{c^2 D} \frac{v^2}{c^2} = \frac{R}{D} \frac{GM}{c^2 R} \left(\frac{v}{c}\right)^2, \tag{0.4}$$

where D is the distance to the object, R is the characteristic scale of the object (so that GM/c^2R is the compactness), while v is the characteristic velocity. The quantity we calculate is $h \sim \delta L/L$, the strain.

Proof. To do.

The Hulse-Taylor pulsar. The two-body problem in GR is difficult. The typical waveform in the PN region looks like:

$$h_{+}(t) \approx \frac{4}{r} \left(\frac{GM_c}{c^2}\right)^{5/3} \left(\frac{\pi f_{\rm gw}(t)}{c}\right)^{2/3} \cos\left(2\pi f_{\rm gw}(t)t\right),\tag{0.5}$$

then we need numerical relativity to simulate the plunge and merger, and finally the ringdown is simulated using BH perturbation methods. The mass scale is

$$h(t) \sim \nu \frac{1}{r/M} (M f_{\rm gw})^{2/3}$$
, (0.6)

while

$$\phi_{\rm gw}(t) \sim 2\phi_{\rm orb}(t) = 2M_c^{-5/8} t^{5/8} = 2\nu^{-3/8} \left(\frac{t}{M}\right)^{5/8},$$
(0.7)

where $\nu = \mu/M$, and $\mu = 1/(1/M_1 + 1/M_2)$.

Multiple detectors are crucial for sky localization, as well as for the measurement of polarization.

At leading order, the two-body problem in GR is scale-invariant: the length of the signal can be estimated simply from the mass of the stars involved.

R-process nucleosynthesis might have something to do with BNS mergers, if the stars are torn apart by the collision.

Weak-field GR 1

Monday compiled 2021-04-19

This is the limit of GR for weak gravitational fields: the metric is assumed to be in the 2021-4-19, form of the Minkowski one plus a perturbation. We are seeking the equations of motion under this assumption.

How do we quantify the term "small"? We assume that there is a global inertial coordinate system such that

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \,, \tag{1.1}$$

where, like in the rest of the course, we will use the letters α , β , γ or μ , ν for the coordinates x^{μ} ; while letters like a, b represent the abstract notation.

The term "small", then, means that each component of $h_{\mu\nu}$ has an absolute value which is much smaller than 1. We are using the metric signature $\eta_{\mu\nu} = \text{diag}(-1, +1, +1, +1)$.

What does this approximation describe?

- 1. Newtonian gravity;
- 2. gravito-electric / magnetic effects (this will be discussed in more detail later, an example is the Lense-Thirring effect);

3. propagation of gravitational waves.

In the case of the gravitational field around the Sun, in terms of orders of magnitude we have 1

$$\left|h_{\mu\nu}\right| \sim \frac{\phi}{c^2} \sim \frac{GM_{\odot}}{c^2R_{\odot}} \sim 10^{-6}$$
. (1.2)

From a field-theoretic point of view:

- 1. η is a background metric;
- 2. *h* is the "main" field;
- 3. the metric does *not* backreact on the matter $(T_{\mu\nu})$.

The metric perturbation h transform like a tensor on flat spacetime under Lorentz transformations: if $\Lambda^{\top} \eta \Lambda = \eta$, then the coordinates change like $x = \Lambda x'$, then the full metric transforms like

$$g_{\mu'\nu'} = \frac{\partial x^{\mu}}{\partial x^{\mu'}} \frac{\partial x^{\nu}}{\partial x^{\nu'}} g_{\mu\nu} \tag{1.3}$$

$$= \Lambda^{\mu}{}_{\mu'} \Lambda^{\nu}{}_{\nu'} \left(\eta_{\mu\nu} + h_{\mu\nu} \right) \tag{1.4}$$

$$= \eta_{\mu'\nu'} + \Lambda^{\mu}{}_{\mu'}\Lambda^{\nu}{}_{\nu'}h_{\mu\nu}, \qquad (1.5)$$

therefore the transformation for *h* is

$$h_{\mu\nu} \to h_{\mu'\nu'} = \Lambda^{\mu}{}_{\mu'}\Lambda^{\nu}{}_{\nu'}h_{\mu\nu}. \tag{1.6}$$

Mind the notation: the meaning of $h_{\mu'\nu'}$ is $h_{\mu\nu}(x')$.

Symmetry of linearized GR

Full GR is diffeomorphism invariant, while linearized GR is *infinitesimal* diffeomorphism invariant. The relevant transformations are

$$x^{\mu} \to x^{\mu'} = x^{\mu} + \xi^{\mu}(x^{\alpha}),$$
 (1.7)

where the vector field ξ is selected so that $\left|\partial_{\mu}\xi^{\alpha}\right|\sim\left|h_{\mu\nu}\right|\ll1.$

The Jacobian of this transformation is

$$\frac{\partial x^{\mu'}}{\partial x^{\mu}} = \delta^{\mu'}{}_{\mu} + \partial_{\mu} \xi^{\mu'}, \qquad (1.8)$$

while the inverse Jacobian is

$$\frac{\partial x^{\mu}}{\partial x^{\mu'}} + \delta^{\mu}{}_{\mu'} - \partial_{\mu'} \xi^{\mu} + \mathcal{O}(|\partial \xi|^2), \qquad (1.9)$$

¹ We make the c explicit here for clarity, but we will use geometric units c = G = 1 for the rest of the course.

since $(\mathbb{1} + \delta)(\mathbb{1} - \delta) = \mathbb{1} + \mathcal{O}(\delta^2)$.

Under this change of coordinates, we have

$$g_{\mu'\nu'} = \frac{\partial x^{\mu}}{\partial x^{\mu'}} \frac{\partial x^{\nu}}{\partial x^{\nu'}} g_{\mu\nu} \tag{1.10}$$

$$\sim (\delta\delta - \partial\delta - \partial\delta + \partial\partial)(\eta + h) = \delta\delta\eta + h - \partial\delta - \partial\delta + \mathcal{O}(\delta^2)$$
 (1.11)

$$= \delta^{\mu}_{u'} \delta^{\nu}_{v'} \eta_{\mu\nu} - \partial_{\mu'} \xi^{\mu} \delta^{\nu}_{v'} \eta_{\mu\nu} - \partial_{\nu'} \xi^{\nu} \delta^{\mu}_{u'} + \delta^{\mu}_{u'} \delta^{\nu}_{v'} h_{\mu\nu}$$
 (1.12)

$$= \eta_{u'v'} + h_{u'v'} - 2\partial_{(u'}\xi_{v')}, \qquad (1.13)$$

therefore we have our transformation law:

$$h_{\mu'\nu'} = h_{\mu\nu} + 2\partial_{(\mu}\xi_{\nu)}. \tag{1.14}$$

This can also be written in terms of the Lie derivative as

$$h_{uv} \to h_{uv} + \mathcal{L}_{\tilde{c}} \eta_{uv}$$
 (1.15)

This is the analogous of a gauge transformation in electromagnetism: $A_{\alpha} \to A_{\alpha} + \partial_{\alpha} \chi$, where A is the vector potential.

Equations of motion

The equations of motion will come through plugging $g = \eta + h$ into the EFE $G_{ab} = 8\pi T_{ab}$ and keeping only the linear order in h.

We will need the following quantities:

$$g^{\mu\nu} = \eta^{\mu\nu} + h^{\mu\nu} + \mathcal{O}(h^2) \tag{1.16}$$

$$\Gamma^{\mu}_{\alpha\beta} = \frac{1}{2} \eta^{\mu\lambda} \left(\partial_{\alpha} h_{\lambda\beta} + \partial_{\beta} h_{\lambda\alpha} - \partial_{\lambda} h_{\alpha\beta} \right) + \mathcal{O}\left(h^2 \right) \tag{1.17}$$

$$R_{\mu\nu} = \partial\Gamma - \partial\Gamma + \mathcal{O}\left(h^2\right),\tag{1.18}$$

where we already simplified the expressions by removing the higher-order terms. The result is

$$R_{\mu\nu} = \partial^{\alpha}\partial_{(\mu}h_{\nu)\alpha} - \frac{1}{2}\partial_{\lambda}\partial^{\lambda}h_{\mu\nu} - \frac{1}{2}\partial_{\mu}\partial_{\nu}h + \mathcal{O}(h^{2}), \qquad (1.19)$$

where $h=h^{\alpha}_{\alpha}=\eta^{\alpha\beta}h_{\alpha\beta}$. Note that we are allowed to use η instead of g to lower indices. The Einstein tensor reads

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} \eta_{\mu\nu} R \tag{1.20}$$

$$= \partial^{\alpha} \partial_{(\mu} h_{\nu)} - \frac{1}{2} \partial_{\lambda} \partial^{\lambda} h_{\mu\nu} \partial_{\mu} \partial_{\nu} h - \frac{1}{2} \eta_{\mu\nu} \partial^{\alpha} \partial^{\beta} h_{\alpha\beta} + \frac{1}{2} \eta_{\mu\nu} \partial_{\lambda} \partial^{\lambda} h, \qquad (1.21)$$

which can be simplified if we consider the trace-reversed metric

$$\overline{h}_{\mu\nu} = h_{\mu\nu} - \frac{1}{2}\eta_{\mu\nu}h$$
, (1.22)

so that $\bar{h}=\eta^{\mu\nu}h_{\mu\nu}-\eta^{\mu\nu}\eta_{\mu\nu}h/2=-h$. See equation 2.13 in the notes for a full explanation, but the idea is to insert $\bar{h}_{\mu\nu}$ and \bar{h} into $G_{\alpha\beta}$ and to make some simplifications. We get

$$G_{\mu\nu} = -\frac{1}{2} \eta_{\alpha\beta} \partial^{\alpha} \partial^{\beta} \overline{h}_{\mu\nu} + \partial^{\alpha} \partial_{(\mu} \overline{h}_{\nu)\alpha} - \frac{1}{2} \eta_{\mu\nu} \partial^{\alpha} \partial^{\beta} \overline{h}_{\alpha\beta}, \qquad (1.23)$$

which is in the form $\Box_{\eta} \bar{h}_{\mu\nu} + \dots \partial^{\alpha} \bar{h}_{\alpha\beta}$. We still have gauge freedom, so we can simplify the equation a great deal by setting $\partial^{\alpha} \bar{h}_{\alpha\beta} = 0$ — the Hilbert, or Lorentz gauge.

With this choice, we have

$$\Box_{\eta}\overline{h}_{\mu\nu} = -\frac{16G}{c^4}T_{\mu\nu}\,,\tag{1.24}$$

a relatively simple tensor wave equation.

Is is always possible to impose the Hilbert gauge? Yes: we can make an infinitesimal coordinate transformation to send a generic $h_{\mu\nu}$ to $h_{\mu\nu} + 2\partial_{(\mu}\xi_{\nu)}$, so that $h \to h + 2\eta^{\alpha\beta}\partial_{(\alpha}\xi_{\beta)}$. Therefore,

$$\overline{h}_{\mu\nu} \to \overline{h}_{\mu\nu} + 2\partial_{(\mu}h_{\nu)} - \eta_{\mu\nu}\partial_{\alpha}\xi^{\alpha}$$
, (1.25)

and we can send

check indices here

$$\partial^{\alpha} \overline{h}_{\mu\alpha} \to \partial^{\alpha} \overline{h}_{\mu\alpha} + \Box \xi_{\mu} + \partial^{\mu} \partial_{\nu} \xi_{\mu} + \partial_{\nu} \partial^{\lambda} \xi_{\lambda} , \qquad (1.26)$$

so if we set $\Box \xi_{\mu} = -\partial^{\alpha} \overline{h}_{\mu\alpha} = v_{\mu}$ we can reduce ourselves to the Hilbert gauge from any starting point. All we need to do is solve the wave equation $\Box \xi_{\mu} = v_{\mu}$.

Now, to linear order $T_{\mu\nu}$ does not depend on h. So, we can find formal solutions using Green's functions, like in electromagnetism.

The Bianchi identities are now given by $\partial_{\nu}G^{\mu\nu}=0$, so $\partial_{\nu}T^{\mu\nu}=0$, which gives us the EOM for matter — note that this is a partial, not a covariant derivative! This means that there is no backreaction on the metric.

The linear EFE correspond to the equations of motion of a massless spin-2 field.

Weak-field solutions

Let us consider a *static source*: suppose that $T_{\mu\nu} = \rho t_{\mu}t_{\nu}$, where $t^{\mu} = (\partial_t)^{\mu}$ is the time vector along the time direction of the global inertial coordinate system while ρ is an energy density.

If
$$t^{\mu} = (1,0,0,0)$$
 then $T_{00} = \rho$ while $T_{0i} = 0 = T_{ij}$.

In this case, then, the stress-energy tensor is time-independent: therefore also on the other side we will have $\partial_t \bar{h}_{\mu\nu} = 0$.

Therefore, the left-hand side of the equation will read $\nabla^2 \bar{h}_{\mu\nu} = -16\pi\rho$ for $\mu = \nu = 0$ and $\nabla^2 h_{\mu\nu} = 0$ for all the other components.

These Poisson equations can be solved as boundary-value problems if we assume that $h_{\mu\nu} \to 0$ for $r \gg R$.

This looks very similar to the Newton equation $\nabla^2 \phi = 4\pi \rho$; therefore $\bar{h}_{00} = -4\phi$, while $\bar{h}_{\mu\nu} = 0$ for all other components.

We can reconstruct the metric using the fact that $\overline{h}=4\phi$, so

$$h_{\mu\nu} = \overline{h}_{\mu\nu} - \frac{1}{2}\eta_{\mu\nu}\overline{h} = -4\phi t_{\mu}t_{\nu} - \frac{1}{2}\eta_{\mu\nu}4\phi$$
, (1.27)

so the metric reads

$$g_{\mu\nu} = \eta_{\mu\nu}(1 - 2\phi) - 4\phi t_{\mu}t_{\nu}, \qquad (1.28)$$

therefore

$$g = -(1+2\phi) dt^2 + (1-2\phi)\delta_{ij} dx^i dx^j.$$
 (1.29)

We know that far away from the source, the Newtonian field decays like $\phi \approx -M/r + \mathcal{O}\left(r^{-2}\right)$.

Therefore, this metric approximation already includes special relativity as well: we have $g \to \eta$ for large r, but also $g = \eta$ for M = 0.

The geodesic equation for this weak field metric reads

$$\frac{\mathrm{d}^2 x^i}{\mathrm{d}t^2} = -\partial^i \phi \,. \tag{1.30}$$

However, these Newtonian equations of motion are *not* consistent with $\partial_{\mu}T^{\mu\nu}=0$. These describe the motion of the source which generates gravity, whereas the Newtonian EOM describe the motion of test particles in the weak-field metric.

The dual meaning of the full EFE — matter deforms the spacetime, the spacetime shapes the trajectories of matter — *cannot* be realized at linear order.