ACT-11302: Cálculo Actuarial III

Sesion 17: Primas de riesgo

Juan Carlos Martínez-Ovando

ITAM

Primavera 2019

1. Prima de riesgo

1.1 Prima de riesgo: Antecedentes

Definición

- La prima de riesgo es el monto que un asegurado paga por la cobertura parcial o total contra un riesgo.
- lacktriangle Denotamos por Π_S a la prima que una aseguradora cobra para cubrir el riesgo S.
- El riesgo S es una variable aleatoria, así, Π_S es una función de la v.a. S, i.e.

$$\Pi_S = \phi(S),$$

para alguna función ϕ , la cual define el principio de cálculo de primas.

1.1 Prima de riesgo: Antecedentes

Figura: Principio de cálculo de primas

a) No negatividad

Es deseable que la prima de riesgo no sea menor que la pérdida esperada, i.e.

$$\Pi_S \ge \mathbb{E}(S). \tag{1}$$

Esta propiedad es fundamental para la teoría de ruina.

b) Aditividad

Para dos riesgos independientes, $S_1 \vee S_2$, se desea,

$$\Pi_{S_1 + S_2} = \Pi_{S_1} + \Pi_{S_2}. \tag{2}$$

Esta propiedad es fundamental para la combinación de riesgos.

a) No negatividad

Es deseable que la prima de riesgo no sea menor que la pérdida esperada, i.e.

$$\Pi_S \ge \mathbb{E}(S). \tag{1}$$

Esta propiedad es fundamental para la teoría de ruina.

b) Aditividad

Para dos riesgos independientes, S_1 y S_2 , se desea,

$$\Pi_{S_1+S_2} = \Pi_{S_1} + \Pi_{S_2}. \tag{2}$$

Esta propiedad es fundamental para la combinación de riesgos.

c) Invarianza en escala

Si S es un riesgo y α es un escalar positivo (fijo y conocido), es deseable,

$$\Pi_{\alpha S} \ge \alpha \Pi_S. \tag{3}$$

Esta propiedad es fundamental para manipular primar de riesgo en unidades monetarias.

d) Consistencia

Si S es un riesgo y δ es un escalar positivo (fijo y conocido), se desea,

$$\Pi_{S+\delta} = \Pi_S + \delta. \tag{4}$$

Esta propiedad se refiere a la invarianza ante traslaciones.

c) Invarianza en escala

Si S es un riesgo y α es un escalar positivo (fijo y conocido), es deseable,

$$\Pi_{\alpha S} \ge \alpha \Pi_S.$$
 (3)

Esta propiedad es fundamental para manipular primar de riesgo en unidades monetarias.

d) Consistencia

Si S es un riesgo y δ es un escalar positivo (fijo y conocido), se desea,

$$\Pi_{S+\delta} = \Pi_S + \delta. \tag{4}$$

Esta propiedad se refiere a la invarianza ante traslaciones.

e) No estafa

En caso de existir un monto máximo de reclamo, x^{*} , se desea,

$$\Pi_S \le x^*. \tag{5}$$

En este caso, Π_S se refiere a la prima se riesgo individual. Esta propiedad es fundamental para efectuar el seguro.

I. Prima de riesgo pura

Es la prima de riesgo básica, se define como la pérdida esperada, i.e.

$$\Pi_S = \mathbb{E}(S). \tag{6}$$

- No es atractiva para la aseguradora.
- No tiene margen de ganacia (o negocio).
- Alta exposición a riesgo de ruina.
- A pesar de lo anterior, satisface los 5 principios anteiores.

II. Prima de riesgo basada en el principio del valor esperado

Es la prima de riesgo básica, se define como la pérdida esperada ajustada por un margen de aceptación de riesgo, $\theta>0$, i.e.

$$\Pi_S = (1 + \theta) \mathbb{E}(S). \tag{7}$$

El factor θ se conoce como factor de carga o ajuste. Representa el nivel de aversi $\,$ n al riesgo de la aseguradora.

Satisface los principios deseables salvo el de consistencia, pues

$$\Pi_{S+\delta} > \Pi_S + \delta$$
,

y el de no estafa.

- Es más conservadora que la prima de riesgo básica.
- Asigna la misma prima a todos los riesgos con la "misma" pérdida esperada.
- No toma en cuenta momentos mayores al primero.

III. Prima de riesgo basada en el principio de la varianza

Es la prima de riesgo básica, se define como la pérdida esperada ajustada por un margen de aceptación de riesgo, $\alpha>0$ en función de su varianza, i.e.

$$\Pi_S = \mathbb{E}(S) + \alpha var(S). \tag{8}$$

En este caso, el factor de recarga es un múltiplo del segundo momento del riesgo.

Satisface los principios deseables salvo el de invarianza en escala, pues

$$\Pi_{\gamma S} \neq \gamma \Pi_S$$
,

para $\gamma > 0$, y el de no estafa.

- Es más conservadora que la prima de riesgo básica.
- Asigna primas diferenciadas en función del segundo momento del riesgo.
- No toma en cuenta momentos mayores al segundo momento.

IV. Prima de riesgo basada en el principio de utilidad cero

La aseguradora tiene una preferencia de riesgos dada por la función de utilidad $u(\cdot)$ (con $u'(\cdot)>0$ y $u''(\cdot)<0$). Es deseable así que Π_S sea tal que,

$$u(W) = \mathbb{E}\left(u\left(W + \Pi_S - X\right)\right),\tag{9}$$

donde W es el excedente de la aseguradora.

En este caso, el factor de recarga es un múltiplo del segundo momento del riesgo.

- Es atractiva, pues incorpora información acerca de todos los momentos del riesgo S.
- Está en función del margen de excedente de la aaseguradora.
- Satisface los principios desables, salvo el de invarianza en escala, pues

$$\Pi_{\gamma S} \neq \gamma \Pi_{S}$$
.

V. Prima de riesgo basada en el principio de prima ajustada

Suponiendo que el riesgo S se describe con $F_S(S)$, se define

$$\Pi_S = \int_0^\infty (1 - F_S(S))^{1/\rho} \, \mathrm{d}x,\tag{10}$$

donde $\rho \geq 1$ es el índice de riesgo.

En este caso, se da un mayor peso a los riesgos extremos en S (cola derecha de la distribución ${\cal F}_S$).

Es la prima de riesgo base inducida por la transformación

$$1 - H_S(S) = (1 - F_S(S))^{1/\rho}.$$

Si F_S es absolutamente continua, entonces

$$h_S(S) = \frac{1}{\rho} (1 - F_S(S))^{1/\rho - 1} f_S(S),$$

i.e. la densidad de la modificación es función ponderada de f_S .

Satisface los 5 principios desables, salvo el de aditividad.

VI. Prima de riesgo basada en el principio exponencial

Suponiendo que el riesgo S se describe con $F_S(S)$, se define

$$\Pi_S = \frac{1}{\alpha} \log \left(\mathbb{E}_{F_S}(e^{\alpha S}) \right), \tag{11}$$

donde $\alpha > 0$ es el parámetro de aversión al riesgo.

Esta prima asigna una mayor probabilidad a los riesgos extremos en S (cola derecha de la distribución ${\cal F}_S$).

- La prima se riesgo será grande cuando α lo sea. Cuando α sea cercana a cero se aproximará a la prima se riesgo pura.
- El principio exponencial coincide con el de utilidad cero empleando una función de utilidad exponencial (α mide el índice de aversión al riesgo).
- Satisface los 5 principios desables, salvo el de aditividad.

VII. Prima de riesgo basada en el principio de Esscher

Suponiendo que el riesgo S se describe con $F_S(S)$, se define

$$\Pi_S = \frac{\mathbb{E}_{F_S}(Xe^{\alpha S})}{\mathbb{E}_{F_S}(e^{\alpha S})},\tag{12}$$

donde $\alpha \geq 0$ es el parámetro de aversión al riesgo.

Al igual que la prima anterior, ésta da un mayor peso a los riesgos extremos en S (cola derecha de la distribución F_S).

 Esta distribución se puede definir alternativamente como el valor esperado del riesgo S bajo la distribución modificada

$$G_S(S) = \frac{e^{\alpha x} F_S(S)}{\int e^{\alpha S} F_S(\mathrm{d}x)}.$$

Satisface los 5 principios desables, salvo el de aditividad.

2. Usos de primas de riesgo

2.1 Usos de primas de riesgo: Coaseguro óptimo

Planteamiento

- Coseguro es un acuerdo por el cual varios aseguradores comparten un riesgo.
- ▶ Cada participante asume una parte del mismo, por una parte de las primas.
- Considera K aseguradoras, tal que cada una de ellas fija su prima de riesgo bajo el **principio exponencial** con α_k , k = 1, ..., K.
- ¿Cuál es el coaseguro óptimo?

Solución

 Por la desigualdad de Hölder, asumiendo independencia entre las aseguradoras, se tiene que

$$\mathbb{E}\left(e^{\alpha S}\right) \leq \prod_{k=1}^{K} \mathbb{E}\left(e^{\alpha_k S_k}\right)^{\alpha/\alpha_k}.$$

con $1/\alpha = \sum_{k=1}^{K} 1/\alpha_k$

Así. el coaseguro óptimo se define como

$$S_k^* = \frac{\alpha}{\alpha_k} S.$$

2.1 Usos de primas de riesgo: Coaseguro óptimo

Planteamiento

- Coseguro es un acuerdo por el cual varios aseguradores comparten un riesgo.
- ► Cada participante asume una parte del mismo, por una parte de las primas.
- Considera K aseguradoras, tal que cada una de ellas fija su prima de riesgo bajo el **principio exponencial** con α_k , k = 1, ..., K.
- ¿Cuál es el coaseguro óptimo?

Solución

 Por la desigualdad de Hölder, asumiendo independencia entre las aseguradoras, se tiene que

$$\mathbb{E}\left(e^{\alpha S}\right) \leq \prod_{k=1}^{K} \mathbb{E}\left(e^{\alpha_k S_k}\right)^{\alpha/\alpha_k},$$

con $1/\alpha = \sum_{k=1}^{K} 1/\alpha_k$.

Así, el coaseguro óptimo se define como

$$S_k^* = \frac{\alpha}{\alpha_k} S.$$

1.2 Usos de primas de riesgo: Costo de reaseguro

Planteamiento

- Supongamos que una aseguradora fija su prima de riesgo de acuerdo al principio de varianza
- Una reaseguradora participa definiendo su prima de riesgo bajo el mismo principio
- Se propone contratar el riesgo agregado con prioridad M (i.e. se paga el reclamo total que excede M)
- ¿Cuál es el impacto del costo del reaseguro en el costo del seguro?

Solución

Sin reaseguro, la prima de riesgo de la aseguradora sería

$$\Pi_{S} = \mathbb{E}(X) + \alpha \cdot var(X),$$

- para algún α positivo.
- $lackbox{lack}\Pi_S^r$ denota la prima de riesgo de la reaseguradora; el costo es transferido, con

$$a(S) = \min(S, M) \quad \text{y} \quad r(S) = \max(S - M, 0).$$

1.2 Usos de primas de riesgo: Costo de reaseguro

Planteamiento

- Supongamos que una aseguradora fija su prima de riesgo de acuerdo al principio de varianza
- Una reaseguradora participa definiendo su prima de riesgo bajo el mismo principio
- Se propone contratar el riesgo agregado con prioridad M (i.e. se paga el reclamo total que excede M)
- ¿Cuál es el impacto del costo del reaseguro en el costo del seguro?

Solución

Sin reaseguro, la prima de riesgo de la aseguradora sería

$$\Pi_{S} = \mathbb{E}(X) + \alpha \cdot var(X),$$

para algún α positivo.

 $lackbox{ }\Pi^r_S$ denota la prima de riesgo de la reaseguradora; el costo es transferido, con

$$a(S) = \min(S, M)$$
 y $r(S) = \max(S - M, 0)$.

2.2 Usos de primas de riesgo: Costo de reaseguro

Solución

Se cumple

$$S = a(S) + r(S).$$

Así, la prima de riesgo de la reaseguradora es

$$\begin{split} \Pi_S^r &= \mathbb{E}\left(a(S)\right) + \mathbb{E}\left(r(S)\right) + \alpha \cdot \left(var\left(a(S)\right) + var\left(r(S)\right)\right) \\ &= \mathbb{E}(S) + \alpha \cdot var(S) - \alpha \cdot cov\left(a(S), r(S)\right). \end{split}$$

Además, tenemos,

$$cov\left(a(S),r(S)\right) = \left(M - \mathbb{E}(a(s))\right)\mathbb{E}(r(S)) \geq 0.$$

▶ Como $M \ge \mathbb{E}(\min(S, M))$, se tiene que

$$\Pi_S \geq \Pi_S^r$$
.