INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

CSN-101 (Introduction to Computer Science and Engineering)

Lecture 14: Binary Number System

Dr. Sudip Roy

Assistant Professor

Department of Computer Science and Engineering

Piazza Class Room: https://piazza.com/iitr.ac.in/fall2019/csn101

[Access Code: csn101@2019]

Moodle Submission Site: https://moodle.iitr.ac.in/course/view.php?id=45

[Enrollment Key: csn101@2019]

Plan for Lecture Classes in CSN-101 (Autumn, 2019-2020)

Week	Lecture 1 (Monday 4-5 PM)	Lecture 2 (Friday 5-6 PM)
1	Evolution of Computer Hardware and Moore's Law, Software and Hardware in a Computer	Computer Structure and Components, Operating Systems
2	Computer Hardware: Block Diagrams, List of Components	Computer Hardware: List of Components, Working Principles in Brief, Organization of a Computer System
3	Linux OS	Linux OS
4	Writing Pseudo-codes for Algorithms to Solve Computational Problems	Writing Pseudo-codes for Algorithms to Solve Computational Problems
5	Sorting Algorithms – Bubble sort, selection sort, and Search Algorithms	Sorting Algorithms – Bubble sort, selection sort, and Search Algorithms
6	C Programming	C Programming
7	Number Systems: Binary, Octal, Hexadecimal, Conversions among them	Number Systems: Binary, Octal, Hexadecimal, Conversions among them
8	Number Systems: Negative number representation,	Boolean Logic: Boolean Logic Basics, De Morgan's Theorem, Logic Gates: AND, OR, NOT, NOR, NAND, XOR, XNOR: Truth-tables
9	Computer Networking and Web Technologies: Basic concepts of networking, bandwidth, throughput	Computer Networking and Web Technologies: Basic concepts of networking, bandwidth, throughput
10	Different layers of networking, Network components, Type of networks	Network topologies, MAC, IP Addresses, DNS, URL
11	Different fields of CSE: Computer Architecture and Chip Design	Different fields of CSE: Data Structures, Algorithms and Programming Languages
12	Different fields of CSE: Database management	Different fields of CSE: Operating systems and System softwares
13	Different fields of CSE: Computer Networking, HPCs, Web technologies	Different Applications of CSE: Image Processing, CV, ML, DL
14	Different Applications of CSE: Data mining, Computational Geometry, Cryptography, Information Security	Different Applications of CSE: Cyber-physical systems and IoTs

CPU processes binary number

• The first microprocessor to make it into a home computer was the Intel 8080, a complete 8-bit computer on one chip, introduced in 1974.

Seven-segment display:

- Seven-segment display:
 - > 7 LEDs (light emitting diodes), each one controlled by an input
 - > 1 means "on", 0 means "off"
 - ➤ Display digit "3"?
 - ➤ Set a, b, c, d, g to 1
 - ➤ Set e, f to 0

7-Segment Display:

7-Segment Display:

What's A 7-Segment Display?

A 7-segment display is a package with 7 bar-shaped LEDs arranged to allow the display of many useful digits and some letters.

Each segment (labeled A-G)
contains an LED which may be
individually controlled. DP is an
eighth LED, the decimal point.

7-Segment Display:

Common cathode means that each segment's cathode is connected to common pins – 3 & 8, allowing the anode of each to be connected to the controller.

Array of 7-Segment Displays:

Seven-Segment LED Digit Control

Specification:

- Input: A 4-bit binary value that is a BCD coded input.
- Outputs: 7 bits, a through g for each of the segments of the display.
- Operation: Decode the input to activate the correct segments.

Formulation:

Construct a truth table

Decima Digit	al		pu CD		Sev De a b	nt outs					
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	1	0	1	1	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1
All	other	iı	ומנ	ıts	0	0	0	0	0	0	0

7-Segment Decoder:

The computer memory and the binary number system

Memory devices

 A memory device is a gadget that helps you record information and recall the information at some later time.

Example:

Memory devices (cont.)

- Requirement of a memory device:
 - A memory device must have more than 1 states

(Otherwise, we can't tell the difference)

Example:

Memory device in state 0

Memory device in state 1

The switch is a *memory device*

The electrical switch is a memory device:

The electrical switch can be in one of these 2 states:

- off (we will call this state 0)
- on (we will call this state 1)

Memory cell used by a computer

- One switch can be in one of 2 states
- A row of *n* switches:

can be in one of 2ⁿ states!

Memory cell used by a computer (cont.)

Example: row of 3 switches

- A row of 3 switches can be in one of 2³ = 8 states.
- The 8 possible states are given in the figure above.

Representing numbers using a row of switches

- We saw how information can be represented by number by using a code (agreement)
- Recall: we can use numbers to represent marital status information:

- 0 = single
- 1 = married
- 2 = divorced
- 3 = widowed

Representing numbers using a row of switches (cont.)

 We can represent each number using a different state of the switches.

Representing numbers using a row of switches (cont.)

- To complete the knowledge on how information is represented inside the computer, we will now study:
 - How to use the different states of the switches to represent different *numbers*
- The representation scheme has a name:
 - the binary number system

The binary number system

- The binary number system uses 2 digits to encode a number:
 - 0 = represents no value
 - 1 = represents a unit value
- That means that you can only use the digits 0 and 1 to write a binary number
 - Example: some binary numbers

• 0

• 1

• 10

• 11

• 1010

and so on.

The binary number system (cont.)

 The value that is encoded (represented) by a binary number is computed as follows:

Binary number

Value encoded by the binary number

$$d_{n-1} d_{n-2} \dots d_1 d_0$$

$$d_{n-1} \times 2^{n-1} + d_{n-2} \times 2^{n-2} + ... + d_1 \times 2^1 + d_0 \times 2^0$$

The binary number system (cont.)

Example:

Binary number	Value encoded by the binary number
0	$0\times2^0=0$
1	$1\times2^0=1$
10	$1 \times 2^{1} + 0 \times 2^{0} = 2$
11	$1 \times 2^{1} + 1 \times 2^{0} = 3$
1010	$1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} = 8 + 2 = 10$

The binary number system (cont.)

 Now you should understand how the different states of these 3 switches represent the numbers 0-7 using the binary number system:

3 switches:	legend: off on
Representing different n	umbers with 3 switches:
\square \square $=$ 0	 = 4
□ □ ■ = 1	$\blacksquare \square \blacksquare = 5$
 = 2	6
= 3	= 7

A cute *binary number* joke

• Try to understand this joke:

(Read: there are binary 10 (= 2) types of people: those who understand binary (numbers) and those who don't)

What does all this have to do with a computer?

Recall what we have learned about the Computer RAM memory:

What does all this have to do with a computer ? (cont.)

 The connection between the computer memory and the binary number system is:

What does all this have to do with a computer ? (cont.)

• *Note*: the address is also expressed as a binary number

A computer can have over 4,000,000,000 bytes (4 Gigabytes) of memory.

So we need a 32 bites to express the address

Computer memory

- A computer is an electronic device
- Structure of a RAM memory:
 - The RAM memory used by a computer consists of a large number of electronic switches
 - The switches are organized in rows
 - For historical reason, the number of switches in one row is 8

Computer memory (cont.)

Details

- In order to store text information in a computer, we need to encode:
 - 26 upper case letters ('A', 'B', and so on)
 - 26 lower case letters ('a', 'b', and so on)
 - 10 digits ('0', '1', and so on)
 - 20 or so special characters ('&', '%', '\$', and so on)

for a total of about 100 different symbols

- The nearest even power 2ⁿ that is larger than 100 is:
 - $2^7 = 128 \ge 100$
- For a reason beyond the scope of this course, an 8th switches is added

Computer memory (cont.)

This is was a portion of the RAM memory looks like:

```
address of memory cell RAM (memory)

000...000 00001101
000...001 00000011
000...010 00000000
000...011 00101101
```

- What information is stored in the RAM memory depends on:
 - The type of data (this is the context information)

Example of types: marital status, gender, age, salary, and so on.

• This determines the encoding scheme used to interpret the number

Computer memory jargon:

- bit = (binary digit) a smallest memory device
 A bit is in fact a switch that can remember 0 or 1
- (The digits 0 and 1 are digits used in the binary number system)
- Byte = 8 bits
 A byte is in fact one row of the RAM memory
- KByte = kilo byte = $1024 (= 2^{10})$ bytes (approximately 1,000 bytes)
- MByte = mega byte = 1048576 (= 2²⁰) bytes (approximately 1,000,000 bytes)
- GByte = giga byte = 1073741824 (= 2³⁰) bytes (approximately 1,000,000,000 bytes)
- TByte = tera byte

Combining adjacent memory cells

A byte has 8 bits and therefore, it can store:

```
• 28 = 256 different patterns

(These 256 patterns are: 00000000, 00000001, 00000010, 000000011, .... 11111111)
```

Each pattern can are encoded exactly one number:

- 00000000 = O
- 00000001 = 1
- 00000010 = 2
- 00000011 = 3
- ...
- 11111111 = 255

Therefore, one byte can store one of 256 possible values (You can store the number 34 into a byte, but you cannot store the number 456, the value is out of range)

• Exploratory stuff:

```
- The following computer program illustrates the effect of the out of range
phenomenon:
  public class test
  public static void main(String args[])
            byte x = (byte) 556;
            System.out.println(x);
```

10001000

Combining adjacent memory cells (cont.)

Compile and run:

>> javac test.java

>> java test

44

 This phenomenon is called overflow (memory does not have enough space to represent the value)

This is the *same* phenomenon when you try to compute 1/0 with a calculator; except that the calculator was programmed (by the manufacturer) to reported the error (and the computer is *not*).

 The computer can combine adjacent bytes (memory cells) and use it as a larger memory cell
 Schematically:

2 bytes:														
one 16-bits memory cell:														

A 16 bits memory cell can store one of $2^{16} = 65536$ different patterns.

Therefore, it can represent (larger) numbers ranging from: 0 – 65535.

Example: how a computer can use 2 consecutive bytes as a 16 bits memory cell:

 The bytes at address 0 and address 1 can be interpreted as a 16 bits memory cell (with address 0)

• When the computer accesses the RAM memory, it specifies:

- The memory location (address)
- The number of bytes it needs

• The computer can also:

• combine 4 consecutive bytes and use them as a 32 bits memory cell

• combine 8 consecutive bytes and use them as a 64 bits memory cell

- Such a memory call can represent numbers ranging from: $0 (2^{32}-1)$ or 0 4294967295
- Such a memory call can represent numbers ranging from: 0 (2⁶⁴-1) or 0 18446744073709551615

- There is no need (today) to combine 16 consecutive bytes and use them as a 128 bits memory cell
- But this may change in the future...

Bridging the Digital Divide

