### In [ ]:

#Use the car dataset containing information of Mileage, Age, and Sell-Price. Split the dataset into training and test dataset in 80:20 ratio. Train the Linear Regression model on the training dataset and predict the Sell-Price for test dataset. (Multivariate Linear Regression)

#### In [2]:

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn import metrics
df=pd.read_csv('C:/Users/Deep/Desktop/car-dataset.csv')
```

#### In [3]:

df.head()

#### Out[3]:

|   | Mileage | Age | Sell-price |
|---|---------|-----|------------|
| 0 | 69000   | 6   | 18000      |
| 1 | 35000   | 3   | 34000      |
| 2 | 57000   | 5   | 21600      |
| 3 | 22500   | 2   | 40000      |
| 4 | 46000   | 4   | 31500      |

### In [4]:

```
plt.scatter(df['Mileage'],df['Sell-price'])
```

#### Out[4]:

<matplotlib.collections.PathCollection at 0x21e6c86ef48>



# In [5]:

```
plt.scatter(df['Age'],df['Sell-price'])
```

### Out[5]:

<matplotlib.collections.PathCollection at 0x21e6d904648>



### In [6]:

```
x=df[['Mileage','Age']]
y=df['Sell-price']
```

# In [7]:

#### Out[7]:

|    | Mileage | Age |
|----|---------|-----|
| 0  | 69000   | 6   |
| 1  | 35000   | 3   |
| 2  | 57000   | 5   |
| 3  | 22500   | 2   |
| 4  | 46000   | 4   |
| 5  | 59000   | 5   |
| 6  | 52000   | 5   |
| 7  | 72000   | 6   |
| 8  | 91000   | 8   |
| 9  | 67000   | 6   |
| 10 | 83000   | 7   |
| 11 | 79000   | 7   |
| 12 | 59000   | 5   |
| 13 | 58780   | 4   |
| 14 | 82450   | 7   |
| 15 | 25400   | 3   |
| 16 | 28000   | 2   |
| 17 | 69000   | 5   |
| 18 | 87600   | 8   |
| 19 | 52000   | 5   |
|    |         |     |

# In [8]:

У

```
Out[8]:
```

```
0
      18000
1
      34000
2
      21600
3
      40000
      31500
5
      26750
6
      32000
7
      19300
8
      12000
9
      22000
10
      18700
11
      19500
12
      26000
13
      27500
14
      19400
15
      35000
16
      35500
17
      19700
18
      12800
19
      28200
Name: Sell-price, dtype: int64
```

## In [9]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
len(x_train)
```

# Out[9]:

```
In [10]:
x_train
Out[10]:
    Mileage Age
16
     28000
             2
 4
     46000
             4
 18
     87600
             8
     35000
 1
             3
 10
     83000
             7
 2
     57000
             5
     91000
 8
             8
 14
     82450
             7
 17
     69000
             5
 5
     59000
             5
 3
     22500
             2
 9
     67000
             6
 15
     25400
             3
 19
     52000
             5
             7
11
     79000
 7
     72000
             6
In [11]:
from sklearn.linear_model import LinearRegression
#from sklearn.metrics import score
clf=LinearRegression()
clf.fit(x_train,y_train)
Out[11]:
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
In [12]:
y_pred=clf.predict(x_test)
y_pred
Out[12]:
array([25068.0639464 , 21422.03073711, 27317.01327595, 25571.99366383])
In [13]:
y_test
Out[13]:
12
      26000
      18000
0
6
      32000
13
      27500
Name: Sell-price, dtype: int64
In [14]:
print(x test)
len(x_test)
    Mileage
              Age
12
      59000
0
      69000
                6
```

Out[14]:

# In [15]:

r\_sq=clf.score(x,y)
print(r\_sq)

0.9183108649948636