機器學習於材料資訊的應用 Machine Learning on Material Informatics

陳南佑(NAN-YOW CHEN)

nanyow@narlabs.org.tw

楊安正(AN-CHENG YANG)

acyang@narlabs.org.tw

使用軟體產 生資料

檔案處理

建立網路

特徵萃取

分群演算法

用測試資料 檢驗演算法

調整萃取特徵 方法

建立網路

- □ Modularity是基於網路分析的方法,所以比起其他分群演算法,需要多一個建立資料點的網路關係。
- □ 網路式建立於資料點的空間,不是原本問題的卡式座標。
- □ 距離的定義有許多種,歐式距離、曼哈頓距離、Dijkstra distances ...
- □ 網路連通的定義也要選擇。

Construct Networks E-ball method

□Steps:

- 1. 算出資料點兩兩距離。
- 2. 將所有距離排序,並依序設為ε-ball的半徑。
- 3. 定義每個點與ε-ball內的點都有連接,以此建立graph。
- 4. 檢查graph是否為連通圖(Connected graph),若為否,則挑選更大的距離作為ε-ball的半徑,重複3,4步驟。
- 5. 得到連通圖後再計算modularity。

```
#載入資料點
file = 'features.csv'
features_space = pd.read_csv(file)
features_space.shape
```



```
natom = features_space.shape[0]
ndim = features_space.shape[1]
#建立連線關係表作為networkx產生圖的輸入
outfile = 'network.csv'
with open(outfile, 'w') as output:
writer = csv.writer(output, delimiter=' ')
```

```
for i in list(range(natom)):
        features_i = features_space.iloc[i, :].values
        for j in list(range(i+1, natom)):
            features_j = features_space.iloc[j, :].values
            dist=0.0
            for k in list(range(1,ndim)):
                dist += (features_i[k] - features_j[k])**2
            print( int(features_i[0]), int(features_j[0]), dist)
            writer.writerow( [int(features_i[0]), int(features_j[0]), dist] )
```

start point

end point

distance

```
import community
import networkx as nx
import matplotlib.pyplot as plt
#讀入先前建立的連線關係表
Edges = pd.read_csv('Edges.csv', sep=' ', header=None )
 = np.array(Edges.iloc[:, 0:3].values)
```

```
#Use pre-defined linkage (Edges.csv) to constructure whole network

G = nx.Graph()

for i in range(0, len(E)):
    e = ( str(int(E[i,0])), str(int(E[i,1])), E[i,2] )
    G.add_weighted_edges_from([(e)])

nx.draw(G, with_labels=True)
```

Calculate Modularity construct_network.ipynb

```
https://python-louvain.readthedocs.io/en/latest/
partition = community.best_partition(G)
 community.best_partition回傳的物件是dict,利用.values取出各群的內容,。
 利用set建立無序的資料集合,再用len取得這個集合的長度,這就是分群後的結果。
size = float(len(set(partition.values())))
print("community:", size)
 community.modularity就直接計算modularity,graph太大的話,就要考慮自己實做平行版本的
modularity
mod = community.modularity(partition,G)
print("modularity:", mod)
```

Calculate Modularity construct_network.ipynb

```
# draw the graph based on the result of modularity
pos = nx.spring_layout(G)
# color the nodes according to their partition
cmap = matplotlib.cm.get_cmap('viridis', max(partition.values()) + 1)
nx.draw_networkx_nodes(G, pos, partition.keys(), node_size=40,
                       cmap=cmap, node_color=list(partition.values()))
nx.draw_networkx_edges(G, pos, alpha=0.5)
plt.show()
```

奈米粒子影像重建

種類與缺陷型態深度辨識機器

案例	三維斷層造影之原子種類與缺陷型態辨識		
客戶 目標	透過深度學習技術,定位原子座標、辨識原子種類、 分析缺陷型態		
問題困 難描述	需要人工判斷原子種類與缺陷邊界,會因人為偏見造 成不一致性的誤判。		
訓練資 料來源	原子級三維斷層造影顯微技術之實驗資料		
機器學 習引擎	Convolutional Neural Network, Ensemble Learning, Active Learning		
結果	成功完成原子座標定位、種類辨識、缺陷邊界型態與 相似度分析。降低人為誤判機會。		
Status	通過實驗組驗證 論文撰寫中(Nature Materials)		

合作計畫

合作團隊

國研院創新計畫

清大工科陳健群實驗室

3D X-ray 影像重 建得到影像資料 (Volume Data) 檔案處理

理 建立3D CNN 模型

用測試資料 檢驗演算法

問題 可 方法

特徵萃取

分類問題

資料說明

	類型	Feature	Label Data
TrainData.mat TestData.mat	實驗資料	原子座標	K-mean 結果(論文發表用)
dAtomIntensity_TrainData_New.mat dAtomIntensity_TestData_New.mat	後處理資料	ROI區域內強度分佈 (7*7*7的格點)	
iAtomType_New.mat			人工挑選可信度高的分類結 果進行標記