1 Peak Finding

1.0.1 新的分治法快了多少?

- compare n and $log_2(n)$.
- Transform

$$log_2(n) = b \Rightarrow n = 2^b$$

we map $log_2(n) \mapsto b, n \mapsto 2^b$, compare 2^b and b

由此可见这是一个巨大的算法提升。(参见mathematica图形)

2 渐进符号

渐进符号一共有5个 $(O, \Omega, \Theta, o, \omega)$, 其中3个 (O, Ω, Θ) 最为重要也最为常用。

 \bullet O(g(n))

$$O(g(n)) = \{f(n) : f(n) \le cg(n)\}, c > 0$$
 is a constant

• $\Theta(g(n))$

$$\Theta(g(n)) = \{f(n) : c_1 g(n) \leq f(n) \leq c_2 g(n)\}, c_1 > 0, c_2 > 0, \text{ are constants}\}$$

在分析算法复杂度的时候我们使用 $f(n) = \Theta(g(n))$, 其实是说 $f(n) \in \Theta(g(n))$

• $\Omega(g(n))$

$$\Omega(g(n)) = \{f(n) : cg(n) \leqslant f(n)\}, c > 0 \text{ is a constant}$$

 \bullet o(g(n))

$$O(g(n)) = \{f(n) : f(n) < cg(n)\}, c > 0 \text{ is a constant, } \lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty$$

• $\omega(g(n))$

$$\omega(g(n)) = \{f(n) : cg(n) < f(n)\}, c > 0 \text{ is a constant } \lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$$

2.1 类比记忆

f(n) = O(g(n))	$f(n) \leqslant g(n)$
$f(n) = \Theta(g(n))$	f(n) = g(n)
$f(n) = \Omega(g(n))$	$f(n) \geqslant g(n)$
f(n) = o(g(n))	f(n) < g(n)
$f(n) = \omega(g(n))$	f(n) > g(n)