Lecture 2 Simple Linear Regression

EE-UY 4563/EL-GY 9123: INTRODUCTION TO MACHINE LEARNING PROF. SUNDEEP RANGAN

Learning Objectives

- ☐ How to load data from a text file
- ☐ How to visualize data via a scatter plot
- Describe a linear model for data
 - Identify the target variable and predictor
- □ Compute optimal parameters for the model using the regression formula
- ☐ Fit parameters for related models by minimizing the residual sum of squares
- \square Compute the R^2 measure of fit
- □ Visually determine goodness of fit and identify different causes for poor fit

Outline

- Motivating Example: Predicting the mpg of a car
 - ☐ Linear Model
 - ☐ Least Squares Fit Problem
 - ☐ Sample Mean and Variance
 - ☐ LS Fit Solution
 - ☐ Assessing Goodness of Fit

Example: What Determines mpg in a Car?

- ■What engine characteristics determine fuel efficiency?
- □Why would a data scientist be hired to answer this question?
- □ Not to help purchasing a specific car.
 - The mpg for a currently available car is already known.
 - (If the car company isn't lying?)
- ☐ To guide building new cars.
 - Understand what is reasonably achievable before full design
- ☐ To find cars that are outside the trend.
 - Example: What cars give great mpg for the cost or size?

Demo in Github

https://github.com/sdrangan/introml/blob/master/unit02 simp lin reg/demo2 auto mpg.ipynb

Simple Linear Regression for Automobile mpg Data

In this demo, you will see how to:

- · Load data from a text file using the pandas package
- · Create a scatter plot of data
- Handle missing data
- · Fit a simple linear model
- · Plot the linear fit with the test data
- . Use a nonlinear transformation for an improved fit

Loading the Data

The python pandas library is a powerful package for data analysis. In this course, we will use a small portion of its features -- just reading and writing data from files. After reading the data, we will convert it to numpy for all numerical processing including running machine learning algorithms.

We begin by loading the packages.

In [86]: import pandas as pd import numpy as np

> The data for this demo comes from a survey of cars to determine the relation of mpg to engine characteristics. The data can be found in the UCI library: https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg

> You can directly read the data in the file, https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg/ada We will load the data into ipython notebook, using the pandas library. Unfortunately, the file header does not include the names of the fields,

Getting Data

□ Data from UCI dataset library: https://archive.ics.uci.edu/ml/datasets.html

Python Packages

- ☐ Python has many powerful packages
- ☐ This demo uses three key packages

□Pandas:

- Used for reading and writing data files
- Loads data into dataframes

□Numpy

- Numerical operations including linear algebra
- Data is stored in ndarray structure
- We convert from dataframes to ndarray

■ Matplotlib:

MATLAB-like plotting and visualization

import pandas as pd
import numpy as np

import matplotlib
import matplotlib.pyplot as plt
%matplotlib inline

Loading the Data in Jupyter Notebook Try 1: The Wrong Way!

- ☐ Python pandas library
 - Read csv command.
 - Read URL or file location.
- ☐ Creates a dataframe object
 - http://pandas.pydata.org/pandasdocs/stable/dsintro.html#dataframe
- □ Problems
- □ Does not parse columns
 - All data in a single column
 - Read csv assumes columns are delimited by commas
- ☐ Mistakes first line as header

Loading the Data in Jupyter Try 2: Fixing the Errors

You can display a first few lines of the dataframe by using head command:

In [126]: df.head(6)

Out[126]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name	
0	18	8	307	130	3504	12.0	70	1	chevrolet chevelle malibu	
1	15	8	350	165	3693	11.5	70	1	buick skylark 320	
2	18	8	318	150	3436	11.0	70	1	plymouth satellite	
3	16	8	304	150	3433	12.0	70	1	amc rebel sst	
4	17	8	302	140	3449	10.5	70	1	ford torino	
5	15	8	429	198	4341	10.0	70	1	ford galaxie 500	

- ☐ Fix the arguments in read_csv
- ☐ Pandas routines have many options
- ☐When you get a problem:
 - Google is your friend!
 - You are not the first to have these problems.
 - Ex: google "pandas.dataframe"
 - Ex. google "pandas.read"

☐ Dataframe has three components

df.columns, df.index, df.values

Visualizing the Data

```
In [150]: xstr = 'displacement'
    x = np.array(df[xstr])
    y = np.array(df['mpg'])

In [146]: import matplotlib
    import matplotlib.pyplot as plt
    %matplotlib inline

In [151]: plt.plot(x,y,'o')
    plt.xlabel(xstr)|
    plt.ylabel('mpg')
    plt.grid(True)
```

- ☐ When possible, look at data before doing anything
- ☐ Python has MATLAB-like plotting
 - Matplotlib module

Exercise: Postulate a Model

- ☐ Break into small groups
- ☐ Try to find a mathematical to predict mpg from displacement, horsepower or acceleration
 - Make a reasonable / eyeball guess. No need for program now.
- □What does your model predict when displacement = 200?
- ☐ Is the prediction reasonable? Can you improve your model?

Outline

- ☐ Motivating Example: Predicting the mpg of a car
- Linear Model
 - ☐ Least Squares Fit Problem
 - ☐ Sample Mean and Variance
 - ■LS Fit Solution
 - ☐ Assessing Goodness of Fit

Data

- $\Box y$ = variable you are trying to predict.
 - Called many names: Dependent variable, response variable, target, regressand, ...
- $\Box x$ = what you are using to predict:
 - Predictor, attribute, covariate, regressor, ...
- □ Data: Set of points, (x_i, y_i) , i = 1, ..., n
 - Each data point is called a sample.
- ☐Scatter plot

x = horsepower

Linear Model

☐ Assume a linear relation

$$y\approx\beta_0+\beta_1x$$

- \circ β_0 = intercept
- $\beta_1 = \text{slope}$
- $\square \beta = (\beta_0, \beta_1)$ are the parameters of the model
- \square What are the units of β_0 , β_1 ?
- ☐When is this model good?

Why Use a Linear Model?

- ☐ Many natural phenomena have linear relationship
- ☐ Predictor has small variation
 - Suppose y = f(x)
 - If variation of x is small around some value x_0 , then

$$y \approx f(x_0) + f'(x_0)(x - x_0) = \beta_0 + \beta_1 x$$

$$\beta_0 = f(x_0) - f'(x_0)x_0, \qquad \beta_1 = f'(x_0)$$

- ☐ Simple to compute
- ☐ Easy to interpret relation
- \square Gaussian random variables: If x and y were Gaussian, optimal estimator of y is linear in x

Outline

- ☐ Motivating Example: Predicting the mpg of a car
- ☐ Linear Model
- Least Squares Fit Problem
 - ■Sample Mean and Variance
 - ■LS Fit Solution
 - ☐ Assessing Goodness of Fit

Linear Model Residual

- \square Knowing x does not exactly predict y
 - \circ Variation in y due to factors other than x
- □Add a residual term

$$y = \beta_0 + \beta_1 x + \epsilon$$

- ☐ Residual = component the model does not explain
 - \circ Predicted value: $\hat{y}_i = \beta_1 x_i + \beta_0$
 - Residual: $\epsilon_i = y_i \hat{y}_i$
- □ Vertical deviation from the regression line

Least Squares Model Fitting

- \square How do we select parameters $\beta = (\beta_0, \beta_1)$?
- $\Box \text{ Define } \hat{y}_i = \beta_1 x_i + \beta_0$
 - \circ Predicted value on sample i for parameters $\beta=(\beta_0,\beta_1)$
- □ Define average residual sum of squares:

RSS
$$(\beta_0, \beta_1) := \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

- \circ Note that \hat{y}_i is implicitly a function of $eta=(eta_0,eta_1)$
- Also called the sum of squared residuals (SSR) and sum of squared errors (SSE)
- □ Least squares solution: Find (β_0, β_1) to minimize RSS.
 - Geometrically, minimizes squared distances of samples to regression line

Finding Parameters via Optimization A general ML recipe

General ML problem

☐ Find a model with parameters

☐Get data

☐ Pick a loss function

- Measures goodness of fit model to data
- Function of the parameters

Simple linear regression

 $\implies \text{ Linear model: } \hat{y} = \beta_0 + \beta_1 x$

 \longrightarrow Data: $(x_i, y_i), i = 1, 2, ..., N$

Loss function:

 $RSS(\beta_0, \beta_1) \coloneqq \sum (y_i - \beta_0 + \beta_1 x_i)^2$

Outline

- ☐ Motivating Example: Predicting the mpg of a car
- ☐Linear Model
- ☐ Least Squares Fit Problem
- Sample Mean and Variance
 - ■LS Fit Solution
 - ☐ Assessing Goodness of Fit

Sample Mean and Standard Deviations

- ☐Given data (x_i, y_i) , i = 1, ..., N
- Sample mean $\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$, $\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$
- Sample variances

$$s_x^2 = \frac{1}{N} \sum_{i=1}^N (x_i - \bar{x})^2$$
, $s_y^2 = \frac{1}{N} \sum_{i=1}^N (y_i - \bar{y})^2$

- \circ Some formulae have a N-1 on denominator
- For technical reasons, above formulae are called the biased variances.
- ■Sample standard deviation
 - \circ S_{χ}, S_{γ}
 - Square root of variances

Visualizing standard deviation https://en.wikipedia.org/wiki/Standard_deviation

Visualizing Mean and SD on Scatter Plot Question

Using the picture only (no calculators), estimate the following (roughly):

- \Box The sample mean mpg and horsepower: \bar{x} , \bar{y}
- \Box The sample std deviations: s_x , s_y

Visualizing Mean and SD on Scatter Plot Approximate answer

- lacktriangle Means: $ar{x}$ and $ar{y}$
 - Weighted center of the points in each axis
- \square Standard deviations: s_x and s_y
 - Represents "variation" in each axis from mean
 - With Gaussian distributions:0.27% of points are 3 SDs from mean

Computing Means and SD in Python

50

■ Exact answer can be computed in python

```
xm = np.mean(x)
ym = np.mean(y)
syy = np.mean((y-ym)**2)
syx = np.mean((y-ym)*(x-xm))
sxx = np.mean((x-xm)**2)
beta1 = syx/sxx
beta0 = ym - beta1*xm
```


Sample Covariance

■ Sample covariance:

$$s_{xy} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})$$

- ☐Will interpret this momentarily
- □ Cauchy-Schartz Law: $|s_{xy}| < s_x s_y$
- ■Sample correlation coefficient

$$r_{xy} = \frac{s_{xy}}{s_x s_y} \in [-1,1]$$

Statistics

- ☐ Often need to compute averages of other functions of data
- **Definition**: The sample mean of a function g(x, y) is:

$$\langle g(x_i, y_i) \rangle \coloneqq \frac{1}{N} \sum_{i=1}^{N} g(x_i, y_i)$$

- Represents the average of g(x, y) on the data
- Function g(x, y) is called a statistic
- ■With this notation:
 - $\bar{x} = \langle x_i \rangle, \ \bar{y} = \langle y_i \rangle$
 - $s_{xx} = \langle (x_i \bar{x})^2 \rangle, \ s_{yy} = \langle (y_i \bar{y})^2 \rangle$

Alternate Equation for Variance

□ Alternate equations for variance and sample co-variance:

- Sample variances $s_{xx} = \langle x_i^2 \rangle \langle x_i \rangle^2$, $s_{yy} = \langle y_i^2 \rangle \langle y_i \rangle^2$
- Sample co-variance $s_{xy} = \langle x_i y_i \rangle \langle x_i \rangle \langle y_i \rangle$

☐Proof:

$$s_{xx} = \frac{1}{N} \sum (x_i - \bar{x})^2 = \frac{1}{N} \sum (x_i^2 - 2x_i \bar{x} + \bar{x}^2) = \langle x_i^2 \rangle - 2\bar{x} \langle x_i \rangle + \bar{x}^2$$

- Recall $\bar{x} = \langle x_i \rangle$
- Therefore, $s_{xx} = \langle x_i^2 \rangle \langle x_i \rangle^2$
- Other relations $s_{yy}=\langle y_i^2\rangle-\langle y_i\rangle^2$ and $s_{xy}=\langle x_iy_i\rangle-\langle x_i\rangle\langle y_i\rangle$ proved similarly

Notation

- ☐ This class will use the following notation
- ☐We will try to be consistent
- Note: Other texts use different notations

Statistic	Notation	Formula	Python
Sample mean	\bar{x}	$\frac{1}{n}\sum_{i=1}^{n} x_i$	xm
Sample variance	$s_{x}^{2}=s_{xx}$	$\frac{1}{n}\sum_{i=1}^n(x_i-\bar{x})^2$	sxx
Sample standard deviation	$S_{x} = \sqrt{S_{xx}}$	$s_x = \sqrt{s_{xx}}$	sx
Sample covariance	$S_{\chi y}$	$\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})$	sxy

Outline

- ☐ Motivating Example: Predicting the mpg of a car
- ☐ Linear Model
- ☐ Least Squares Fit Problem
- ☐ Sample Mean and Variance
- LS Fit Solution
 - ☐ Assessing Goodness of Fit

Minimizing RSS

□ To minimize $RSS(\beta_0, \beta_1)$ take partial derivatives:

$$\frac{\partial RSS}{\partial \beta_0} = 0, \qquad \frac{\partial RSS}{\partial \beta_1} = 0$$

☐ Taking derivatives we get two conditions (proof on board):

$$\sum_{i=1}^{N} \epsilon_i = 0, \qquad \sum_{i=1}^{N} x_i \epsilon_i = 0 \quad \text{where } \epsilon_i = y_i - \beta_0 - \beta_1 x_i$$

- ☐ Regression equation:
 - After some manipulation, (proof on board), solution to optimal slope and intercept:

$$\beta_1 = \frac{s_{xy}}{s_x^2} = \frac{r_{xy}s_y}{s_x}, \qquad \beta_0 = \bar{y} - \beta_1 \bar{x}$$

Simple Example

☐From:

http://stattrek.com/regression/regressio
n-example.aspx?Tutorial=AP

- Very nice simple problems
- ☐ Predict aptitude on one test from an earlier test
- ☐ Draw a scatter plot and regression line

How to Find the Regression Equation

In the table below, the x_i column shows scores on the aptitude test. Similarly, the y_i column shows statistics grades. The last two rows show sums and mean scores that we will use to conduct the regression analysis.

	Student	Xį	y _i	(x ₁ - x)	(y _i - y)	$(x_i - \bar{x})^2$	$(y_1 - y)^2$	$(x_i - x)(y_i - y)$
	1	95	85	17	8	289	64	136
	2	85	95	7	18	49	324	126
	3	80	70	2	-7	4	49	-14
	4	70	65	-8	-12	64	144	96
	5	60	70	-18	-7	324	49	126
Sum		390	385			730	630	470
Mean		78	77					

The regression equation is a linear equation of the form: $\hat{y} = b_0 + b_1 x$. To conduct a regression analysis, we need to solve for b_0 and b_1 . Computations are shown below.

$$b_1 = \sum [(x_i - \overline{x})(y_i - \overline{y})] / \sum [(x_i - \overline{x})^2]$$

$$b_1 = 470/730 = 0.644$$

$$b_0 = \overline{y} - b_1 * \overline{x}$$

$$b_0 = 77 - (0.644)(78) = 26.768$$

Auto Example

☐ Python code


```
xm = np.mean(x)
ym = np.mean(y)
syy = np.mean((y-ym)**2)
syx = np.mean((y-ym)*(x-xm))
sxx = np.mean((x-xm)**2)
beta1 = syx/sxx
beta0 = ym - beta1*xm
```

Regression line:

$$mpg = \beta_0 + \beta_1$$
 horsepower

Outline

- ☐ Motivating Example: Predicting the mpg of a car
- ☐Linear Model
- ☐ Least Squares Fit Problem
- ☐ Sample Mean and Variance
- ■LS Fit Solution

Assessing Goodness of Fit

Minimum RSS

☐ Minimum RSS (Proof on board)

$$\min_{\beta_0,\beta_1} RSS(\beta_0,\beta_1) = N(1 - r_{xy}^2)s_y^2$$

- \square Coefficient of Determination: $R^2 = r_{xy}^2$
 - \circ Explains portion of variance in y explained by x
 - s_y^2 =variance in target y
 - $\circ~(1-R^2)s_{\mathcal{Y}}^2 \text{-residual sum of squares after accounting for } x$

Visually seeing correlation

- $\square R^2 = r_{xy}^2 \approx 1$: Linear model is a very good fit
- $\square R^2 = r_{xy}^2 \approx 0$: Linear model is a poor fit.

$$\Box \beta_1 = \frac{r_{xy}s_y}{s_x} \Rightarrow \operatorname{Sign}(\beta_1) = \operatorname{Sign}(r_{xy})$$

When the Error is Large...

- ☐ Many sources of error for a linear model
- □Always good to visually inspect the scatter plot
 - Look for trends
- ☐ Example to the left
 - All four data sets have same regression line
 - But, errors and their reasons are different
- ☐ How would you describe these errors?

A Better Model for the Auto Example

- $\Box \text{Fit the inverse: } \frac{1}{\text{mpg}} = \beta_0 + \beta_1 \text{horsepower}$
- ☐ Uses a nonlinear transformation
- ■Will cover this idea later

