

Национальный исследовательский университет ИТМО (Университет ИТМО)

Факультет систем управления и робототехники

Дисциплина: Теория автоматического управления Отчет по лабораторной работе №1.

«Моделирование линейных динамических систем» ${\hbox{\bf <u>Bapuant 20}}$ </u>

Студент: Евстигнеев Д.М. Группа: R33423 Преподаватель: Парамонов А.В.

Цель.

Ознакомление с основными представлениями и принципами построения линейных стационарных динамических систем, а также приемами моделирования в программной среде MATLAB/Simulink.

Данные.

Рисунок 2. Параметры однок. вх-вых. Рисунок 1. Начальные условия

Nº	$a_{11}(p)$	$a_{12}(p)$	$a_{21}(p)$	$a_{22}(p)$	$b_{11}(p)$	$b_{12}(p)$	$b_{21}(p)$	$b_{22}(p)$
20	p+14	p+6	$_{\mathrm{p+4}}$	p+2	7	4	2	7

Рисунок 3. Параметры многоканальной модели вход-выход

Nº	A	B	C^{\top}
-			
20	0 -7	3	4
	1 -5	O	U

Рисунок 4. Пар-ы однок. входсостояние-выход

Nº2	$x_1(0)$	$x_2(0)$
100		
20	3	0,9

Рисунок 5. Начальные условия

N ₂	A	B	C^{\top}	
20	$\begin{bmatrix} 0 & -7 \\ 1 & -9 \end{bmatrix}$	$\begin{bmatrix} 3 & 7 \\ 1 & 4 \end{bmatrix}$	$\begin{bmatrix} 4 & 6 \\ 7 & 1 \end{bmatrix}$	

Рисунок 6. Параметры многоканальной модели вход-состояние-выход

1.1) Построение схемы моделирования одноканальной линейной динамической системы

Дифф. уравнение, описывающее динамическую одноканальную стационарную систему:

$$\ddot{y} + 3\ddot{y} + 1\dot{y} + 7y$$
$$= 7\ddot{u} + 9\dot{u} + 9u$$

Введём оператор $\label{eq:posterior} \text{дифференцирования } p = d/dt:$

$$yp^3 + 3yp^2 + yp = 7up^2 + 9up + 9u$$

Выразим y при старшей степени p^3 :

$$y = \frac{1}{p}(7u - 3y) + \frac{1}{p^2}(9u - y) + \frac{1}{p^3}(9u - 7y)$$

- 1.2) Осуществим моделирование системы (рис. 8 и 9)
- 1.3) Моделирование свободного движения системы:

$$y(0) = 1; \dot{y}(0) = 0.9; \ddot{y}(0) = 0.9$$

10 - u(t) y(t)

Рисунок 8. График модел. при вх. возд. u(t)=1

$$z1(0) = y(0) = 1$$

$$\dot{z}_1(0) = \dot{y}(0) = 7u(0) + z_2(0) - 3y(0)$$

$$z_2(0) = \dot{y}(0) - 7u(0) + 3y(0)$$

= 0.9 - 7 + 3 = -3.1

$$\dot{z}_2(t) = z_3(t) + 9u(t) - y(t)$$

$$z_3(0) = \ddot{y}(0) - 9u(0) + y(0) = 0.9 - 9 + 1 = -7.1$$

1.4) Моделирование многоканальной линейной динамической системы

$$W(p) = A^{-1}(p)B(p)$$

Nº	$a_{11}(p)$	$a_{12}(p)$	$a_{21}(p)$	$a_{22}(p)$	$b_{11}(p)$	$b_{12}(p)$	$b_{21}(p)$	$b_{22}(p)$
20	p+14	p+6	p+4	p+2	7	4	2	7

$$A = \begin{bmatrix} p + 14 & p + 6 \\ p + 4 & p + 2 \end{bmatrix}$$

$$B = \begin{bmatrix} 7 & 4 \\ 2 & 7 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} \frac{p+2}{6p+4} & \frac{-p-6}{6p+4} \\ \frac{-p-4}{6p+4} & \frac{p+14}{6p+4} \end{bmatrix}$$

$$W = \begin{bmatrix} \frac{p+2}{6p+4} & \frac{-p-6}{6p+4} \\ \frac{-p-4}{6p+4} & \frac{p+14}{6p+4} \end{bmatrix} \begin{bmatrix} 7 & 4 \\ 2 & 7 \end{bmatrix} = \begin{bmatrix} \frac{5p+2}{2(3p+2)} \\ \frac{-5p}{2(3p+2)} \end{bmatrix}$$

Рисунок 10. Схема симуляции

Рисунок 9. График модел. при вх. возд. u(t)=2sin(t)

Рисунок 9.1. График модел. при начальных усл. интеграторов

Рисунок 11. График симуляции при u1=1 u2=sin2t

2.1) Составим схему моделирования одноканальной линейной динамической системы ВСВ

$$A = \begin{pmatrix} 0 & -7 \\ 1 & -9 \end{pmatrix} B = \begin{pmatrix} 3 \\ 8 \end{pmatrix} C = \begin{pmatrix} 4 & 6 \end{pmatrix}$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases}$$

2.2) Осуществим моделирование линейной динамической системы при двух видах входного воздействия (рис. 12-14)

2.3) Осуществим моделирование свободного движения системы

Начальные условия:

$$x_1(0) = 3$$

$$x_2(0) = 0.9$$

Рисунок 13. График симуляции при и1=1

Рисунок 14. График симуляции при u1=2sint

Рисунок 15 График симуляции при свободном движении системы ВСВ

2.4) Осуществим моделирования многоканальной линейной динамической системы ВСВ

$$A = \begin{pmatrix} 0 & -7 \\ 1 & -9 \end{pmatrix} B = \begin{pmatrix} 3 & 7 \\ 1 & 4 \end{pmatrix}$$
$$C = \begin{pmatrix} 4 & 7 \\ 6 & 1 \end{pmatrix}$$

(puc 16-17)

Рисунок 16 Схема симуляции

Рисунок 17. График симуляции многоканальной линейной динамической системы BCB

Выводы: В итоге лабораторной работы были изучены главные принципы построения линейных стационарных динамических систем с помощью моделирования в программной среде MATLAB/Simulink, было выполнено моделирование одноканальной, многоканальной системы вход-выход и входсостояние-выход