

Approssimazione Polinomiale Laboratorio di Calcolo Numerico

Federico Piazzon

Email: fpiazzon@math.unipd.it

17 Maggio 2022

Soluzione equazioni normali con QR

Sia $V=(\phi_j(x_i))_{i=1,2,\dots,m+1,j=1,2,\dots,n+1}$ la matrice di Vandermonde rettangolre sui nodi di approssimazione e supponiamo di aver calcolato la fattorizzazione

$$V = QR$$

I coefficienti c sulla base $\phi_1,\ldots_j\phi_{n+1}$ dell'approssimazione ai minimi quadrati della funzione f sono la soluzione delle equazioni normali

$$V^{t}Vc = V^{t}(f(x_{1}), ..., f(x_{n+1}))^{t}.$$

Abbiamo visto come sia più stabile il calcolo della soluzione come soluzione (calcolabile con sost. all'indietro) di

$$R_0c = Q_0^t(f(x_1), \dots, f(x_{n+1}))^t$$

dove $R_0 = R(1:n+1,:)$ e $Q_0 = Q(:,1:n+1)$.

(ロト 4回 ト 4 三 ト 4 三 ト 9 0 0 0

Valutazione polinomio approssimante

Noti i coefficienti del polinomio di approssimazione ai minimi quadrati per la sua valutazione sui punti $x_1^{eval},\ldots,x_M^{eval}$ è sufficiente calcolare la Vandermonde di valutazione

$$V^{eval} := (\phi_j(x_i^{eval}))_{i=1,2,...,M,j=1,2,...,n+1}$$

e calcolare il prodotto matrice vettore

$$egin{pmatrix} p(x_1^{eval}) \ dots \ p(x_m^{eval}) \end{pmatrix} = V^{eval} * c.$$

Function per fittare ai minimi quarati

Esercizio 1

Si crei una function MyPolyfit.m avente la chiamata [peval,c]=MyPolyfit(xfit,xeval,yfit,deg) che calcoli coefficienti dell'approssimante e valutazione della stessa sui nodi xeval seguendo il metodo QR. NB:

- usare come base dei polinomi la base di Chebyshev (presupponiamo che [a,b]:=[-1,1]), usare a tal fine la function chebvand1d.m fornita dal docente,
- usare la sostituzione all'indietro per la soluzione del sisema triangolare, usare a tal fine la function SostituzioneIndietro.m fornita dal docente.

Approssimazione funzione di Runge

Esercizio 2

Si crei uno script rungefit.m che per i gradi $n=2,4,\ldots,150$ calcoli usando MyPolyfit.m l'approssimazione ai minimi quadrati della funzione di Runge $f(x): 1/(25x^2+1)$ costruita su 2000 punti equispaziati in [-1,1] e la valuti su 10000 punti equispaziati.

Si deve calcolare il massimo errore sui punti di valutazione per ogni grado e fare un grafico semilogaritmico dell'errore.

Uso di punti di campionamento di Chebyshev

Esercizio 3

Si modifichi lo script precedente costruendo **anche** l'approssimante relativa a 2000 nodi di Chebyshev-Lobatto $x_i := \cos(i\pi/n)$, i = 0, 1, ..., n e includendo nel grafico anche l'errore di questa successione di approssimanti.

Instabilità base canonica I

Esercizio 4

Si modifichi la function MyPolyfit.m per ottenere MyPolyfit_unstable.m in cui invece che la base di Chebyshev venga usata la base canonica (sugg V=xfit.^(0:deg))e, invece che usare il metodo QR vengano risolte le eq. Normal con il backslash.

Esercizio 5

Si modifichi nuovamente lo script per includere anche il calcolo delle approssimanti, costruite su punti di Chebyshev e su p.ti equispaziati, effettuato con MyPolyfit_unstable.m. Si aggiungano i plot delgli errori alla figura.

Risultati

