F(s) = Jo f(t) e st dt prelopore (6) - 6) יונית וקיים UNU.O L(c,f,+c,f,) = c,d(f,) + c,d(f,) الله في السيطان ورقعلى L[f(n)] . s'z(ft)) - s'-f(-) - s'f(-) --f(-) $\mathcal{L}\left[\int_{-1}^{t} f(t')dt'\right] = \frac{1}{5} \mathcal{L}(f(t))$ into Kide to Sal (N=1, Y, ...) L(thf(t))=(-1) F(n) Sinat Cosat $F(s) = \frac{\lambda (f(t))}{1 - e^{-Ts}}$ Sta) + Br (Sta) + Br Eat cosst eat sinst ae cosst + b-ad e sinst (Sta) + Br YIKIE at cos (Bt+ &K) به سی اللای شروند مان تا به علی است 1 (htt)= H(5) V(t) = Jt hit- = je(T) 17 V(t) = k(t) * e(t) (V(s) = h(s) x e(s)

$$\sum_{k} \hat{V}_{k} = \sum_{k} \hat{V}_{k} = \sum_{k$$

comigés : E / Velha o

$$\begin{bmatrix} V_{1} \\ V_{\Gamma} \end{bmatrix}^{2} \begin{bmatrix} Z_{11} & Z_{1\Gamma} \\ Z_{C1} & Z_{CC} \end{bmatrix} \begin{bmatrix} \overline{I}_{1} \\ \overline{I}_{\Gamma} \end{bmatrix} \qquad Z_{11} = \frac{V_{1}}{\overline{I}_{1}} \Big|_{\overline{I}_{\Gamma} = 0} \qquad Z_{\Gamma} = \frac{V_{1}}{\overline{I}_{\Gamma}} \Big|_{\overline{I}_{\Gamma} = 0}$$

$$Z_{11} = \frac{V_{1}}{\overline{I}_{1}} \Big|_{\overline{I}_{\Gamma} = 0} \qquad Z_{\Gamma} = \frac{V_{1}}{\overline{I}_{\Gamma}} \Big|_{\overline{I}_{\Gamma} = 0} \qquad Z_{\Gamma} = \frac{V_{1}}{\overline{I}_{\Gamma}} \Big|_{\overline{I}_{\Gamma} = 0}$$

 $\begin{bmatrix} v_{i} \\ \overline{I}_{\Gamma} \end{bmatrix}^{2} \begin{bmatrix} h_{ii} & h_{ic} \\ h_{ci} & h_{ic} \end{bmatrix} \begin{bmatrix} \overline{I}_{I} \\ v_{f} \end{bmatrix}^{2} h_{i} = \frac{v_{i}}{I_{I}} \begin{vmatrix} v_{f=0} \\ v_{f} \end{bmatrix}^{2} h_{ic} = \frac{V_{I}}{V_{C}} \begin{vmatrix} \overline{I}_{I=0} \\ h_{ii} \end{vmatrix} = \frac{v_{i}}{V_{C}} \begin{vmatrix} \overline{I}_{I=0} \\ h_{ii} \end{vmatrix}$ $h_{ic} = \frac{V_{I}}{V_{C}} \begin{vmatrix} \overline{I}_{I=0} \\ h_{ii} \end{vmatrix} = \frac{v_{i}}{V_{C}} \begin{vmatrix} \overline{I}_{I=0} \\ h_{ii} \end{vmatrix}$ ~ ho ho ho local ve [B] = [H] $\begin{bmatrix} I_1 \\ v_r \end{bmatrix} = \begin{bmatrix} g_{11} & g_{1r} \\ g_{r_1} & g_{r_2} \end{bmatrix} \begin{bmatrix} V_1 \\ I_r \end{bmatrix}$ Siz Ti / Train Str = Vr / Ima -+ 9,2 II / N=0 9, 2 Ic/ N=0 V1 911 912 \$ 92, V1 اراترهاك انتقال $\begin{bmatrix} V_{i} \\ I_{i} \end{bmatrix} = \begin{bmatrix} t_{ii} & t_{ir} \\ t_{ci} & t_{cr} \end{bmatrix} \cdot \begin{bmatrix} V_{i} \\ I_{i} \end{bmatrix} = \begin{bmatrix} t_{ii} & \frac{V_{i}}{V_{r}} \end{bmatrix} I_{r=0}$ tir = 1/1 te, = II | Ic= .

ter 2 - Ir | Vr=.

I ₁ N ₁ :N ₂ I ₂ + • • • • • • • • • • • • • • • • • •	$Z = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad Y = \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_$	
v ₁	$\begin{bmatrix} \circ & -\frac{1}{\alpha} \\ \end{bmatrix} \qquad T = \begin{bmatrix} \circ & -\alpha \\ -\frac{1}{\alpha} \\ \end{bmatrix} \qquad H = \begin{bmatrix} \circ \\ \circ \\ \end{bmatrix}$	
V ₂	$Z = \begin{bmatrix} \circ & \alpha \\ -\alpha & \circ \end{bmatrix} \qquad Y = \begin{bmatrix} 1 & 0 \\ \alpha & 0 \end{bmatrix} \qquad \begin{bmatrix} \alpha & \beta \\ \alpha & \gamma & \gamma \end{bmatrix} \qquad \begin{bmatrix} L_{\gamma}S & \mp MS \end{bmatrix}$	1
	$Y = \frac{1}{L_1 L_1 S^T - M^T S^T} \begin{bmatrix} \pm MS & L_1 S \end{bmatrix}$	
I_1 M I_2 $0+$ V_2	$Z = \begin{bmatrix} \pm MS & L_{r}S \end{bmatrix} $	
V_1 L_1 $\{L_2, V_2, \ldots, V_n\}$	$Z = \begin{bmatrix} \pm jX_M & jX_{L_Y} \end{bmatrix}$	_

اتصال دوقطبيها

حالت اول: اگر ماتریس ادمیتانس یک دوقطبی به صورت $\begin{bmatrix} y_{11} & y_{17} \\ y_{71} & y_{77} \end{bmatrix}$ باشد، آنگاه با اتصال عناصر به این دوقطبی ماتریس ادمیتانس دوقطبی جدید (دوقطبی داخل نقطهچین) به صورت زیر خواهد بود:

$$Y$$
 جدید =
$$\begin{bmatrix} y_{11} + y_1 + y_7 & y_{17} - y_7 \\ y_{71} - y_7 & y_{77} + y_7 + y_7 \end{bmatrix}$$

حالت دوم: اگر ماتریس امپدانس یک دوقطبی به صورت $\begin{bmatrix} z_{11} & z_{17} \\ z_{71} & z_{77} \end{bmatrix}$ باشد، آنگاه با اتصال سری عناصر به آن، ماتریس امپدانس دوقطبی جدید (دوقطبی داخل نقطه چین) به صورت زیر بیان می شود:

$$\mathbf{Z}$$
 جدید =
$$\begin{bmatrix} \mathbf{Z}_1 + \mathbf{Z}_{11} & \mathbf{Z}_{17} \\ \mathbf{Z}_{71} & \mathbf{Z}_{77} + \mathbf{Z}_{7} \end{bmatrix}$$

حالت سوم: در صورتی که امیدانس Z_۲ و ادمیتانس y_۲ در ورودی و خروجی یک شبکه هایبرید اضافه شود، ماتریس H جدید به صورت زیر تعریف می شود:

$$\mathbf{H}$$
 جدید =
$$\begin{bmatrix} \mathbf{h}_{11} + \mathbf{Z}_1 & \mathbf{h}_{17} \\ \mathbf{h}_{71} & \mathbf{h}_{77} + \mathbf{y}_7 \end{bmatrix}$$

در استفاده از فرمولهای ذکر شده در بالا، باید به واحد نوشته شده در کنار المانهای اطراف شبکه دقت شود، زیرا در برخی موارد انـدازه امپـدانس المـان داده شده است، در صورتی که باید اندازه ادمیتانس آنها در فرمولها وارد شود.

كسترش دوقطبىها

ا_ سری کردن دوقطبیها

اگر دو شبکه b و a به صورت روبرو با هم سری شوند، ماتریس امپدانس آنها با یکدیگر جمع شده و ماتریس امپدانس نهایی را تشکیل میدهند.

$$[Z_T] = [Z_a] + [Z_b]$$

۲_موازی کردن دوقطبیها

اگر دو شبکه به صورت روبرو با هم موازی شوند، ماتریس ادمیتانس آنها با یکدیگر جمع شده و ماتریس ادمیتانس نهایی را تشکیل میدهند.

$$[Y_T] = [Y_a] + [Y_b]$$

۳_ سری و موازی کردن دوقطبیها

حالت اول: اگر ترمینالهای یک دوقطبی در ورودی سری و در خروجی موازی شود، رابطه زیر برقرار است:

حالت دوم: اگر ترمینالهای یک دوقطبی در خروجی سری و در ورودی موازی شود، رابطه زیر برقرار است:

$[G_T] = [G_a] + [G_b]$

4_متوالى كردن دوقطبيها

در صورتی که دو شبکه به صورت متوالی به هم متصل شوند، رابطه زیر برقرار است:

$\{\mathbf{T}_{\mathbf{T}}\} = \{\mathbf{T}_{\mathbf{1}}\}.[\mathbf{T}_{\mathbf{r}}]$

🗷 مثال ۴۸: برای مدار زیر ماتریس امپدانس Z کدام است؟

$$Z = \begin{bmatrix} j\lambda + 1/\Delta & jq - 1 \\ jq - 1 & 1/777 - j10 \end{bmatrix}$$

 $Z = \begin{bmatrix} -j\lambda + 1 & 1 - jq \\ -1 + jq & 1/r - jq \end{bmatrix}$

$$Z = \begin{bmatrix} -j\lambda + 1/\Delta & -jq + 1 \\ +1 - jq & 1/77 - jr \end{bmatrix}$$

$$Z = \begin{bmatrix} -jA - 1/\Delta & -jQ - 1 \\ & & \end{bmatrix} (q)$$

امپدانسهای خروجی و ورودی و بهره ولتاژ در دوقطبیها

 $C_{\rm c}$ در صورتی که برای شبکه N پارامترهای Z و V و V و V و جود داشته باشد، می توان میدانس ورودی و خروجی و بهره ولتاژ $\frac{V_{
m o}}{V_{
m S}}$ را از فرمولهای جدول زیر محاسبه کرد:

ماتريس موجود	امپدانس یا ادمیتانس ورودی	امپدانس یا ادمیتانس خروجی	$(rac{{ m V_0}}{{ m V_S}})$ بهره ولتاژ
$\mathbf{Z} = \begin{bmatrix} \mathbf{Z}_{11} & \mathbf{Z}_{17} \\ \mathbf{Z}_{71} & \mathbf{Z}_{77} \end{bmatrix}$	$Z_{in} = Z_{11} - \frac{Z_{17}.Z_{71}}{Z_{77} + Z_{L}}$	$Z_o = Z_{\gamma\gamma} - \frac{Z_{\gamma\gamma}Z_{\gamma\gamma}}{Z_{\gamma\gamma} + Z_S}$	$\frac{Z_{\gamma_1}.Z_L}{(Z_{\gamma\gamma} + Z_L)(Z_{11} + Z_S) - (Z_{1\gamma}Z_{\gamma_1})}$
$\mathbf{y} = \begin{bmatrix} \mathbf{y}_{11} & \mathbf{y}_{1Y} \\ \mathbf{y}_{Y1} & \mathbf{y}_{YY} \end{bmatrix}$	$y_{in} = y_{ij} - \frac{y_{ij}y_{jj}}{y_{jj} + \frac{1}{Z_L}}$	$y_0 = y_{YY} - \frac{y_{1Y}y_{Y1}}{y_{11} + \frac{1}{Z_S}}$	$\frac{-y_{\gamma_1}.Z_S^{-1}}{(y_{\gamma\gamma}+Z_L^{-1})(y_{11}+Z_S^{-1})-y_{1\gamma}y_{\gamma_1}}$
$\mathbf{H} = \begin{bmatrix} \mathbf{h}_{11} & \mathbf{h}_{1Y} \\ \mathbf{h}_{Y1} & \mathbf{h}_{YY} \end{bmatrix}$	$Z_{in} = h_{11} - \frac{h_{11}h_{11}}{h_{11} + Z_L^{-1}}$	$\mathbf{y_o} = \mathbf{h_{\Upsilon\Upsilon}} - \frac{\mathbf{h_{\Upsilon\Upsilon}} \mathbf{h_{\Upsilon\Upsilon}}}{\mathbf{h_{\Upsilon\Upsilon}} + \mathbf{Z_S}}$	$\frac{-h_{\gamma_1}}{(h_{\gamma\gamma} + Z_L^{-1})(h_{11} + Z_S) - h_{1\gamma}h_{\gamma_1}}$
$\mathbf{T} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}$	$Z_{in} = \frac{AZ_L + B}{CZ_L + D}$	$Z_0 = \frac{DZ_S + B}{CZ_S + A}$	$\frac{Z_{L}}{(A+CZ_{S})Z_{L}+B+DZ_{S}}$

 $\frac{V_o}{V_S}$ مثال ۵۳: در مدار زیر مقدار تابع شبکه $\frac{V_o}{V_S}$ ، در حالت ۱ S=1 کدام است؟

- -0/08(1
- -0/00 (٢
- -0/04(4
- -0/07 (4

پاسخ: گزینه «۲» برای بدست آوردن تابع شبکه، ابتدا می توان ماتریس y مدار مشخص شده به صورت خطچین را محاسبه کرد. با توجه به موازی بودن ژیراتور با المانهای اطراف آن، ماتریس Y_T به صورت زیر محاسبه می شود:

$$Y\left(\frac{1}{2}\right) = \begin{bmatrix} \circ & \frac{-1}{\alpha} \\ \frac{1}{\alpha} & \circ \end{bmatrix} = \begin{bmatrix} \circ & \frac{-1}{r} \\ \frac{1}{r} & \circ \end{bmatrix} \Rightarrow Y_{T} = \begin{bmatrix} \circ + r + (rS)^{-1} & \frac{-1}{r} - (rS)^{-1} \\ \frac{1}{r} - (rS)^{-1} & \circ + (rS)^{-1} \end{bmatrix} = \begin{bmatrix} r + \frac{1}{rS} & \frac{-1}{r} - \frac{1}{rS} \\ \frac{1}{r} - \frac{1}{rS} & \frac{1}{rS} \end{bmatrix}$$

با توجه به روابط پارامترهای ادمیتانس داریم:

$$\frac{V_{o}}{V_{S}} = \frac{-y_{r_{1}}Z_{S}^{-1}}{(y_{r_{1}} + Z_{L}^{-1})(y_{1_{1}} + Z_{S}^{-1}) - y_{1_{1}}y_{r_{1}}} \Rightarrow \frac{V_{o}}{V_{S}} = \frac{-(\frac{1}{r} - \frac{1}{r_{S}})(1)}{(\frac{1}{r_{S}} + \frac{1}{r_{S}})(r + \frac{1}{r_{S}} + 1) - (\frac{-1}{r} - \frac{1}{r_{S}})(\frac{1}{r_{S}} - \frac{1}{r_{S}})}$$

$$\frac{V_o}{V_S} = -\circ/\circ\Delta 1 Y \simeq -\circ/\circ\Delta$$

عدد یک قرار دهیم، داریم: