UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO.

: 7,185,269 B2

Page 1 of 2

APPLICATION NO.: 10/612678

DATED

: February 27, 2007

INVENTOR(S)

: William Mar et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On Title Page Item 30 "Foreign Application Priority Data" please delete "91114690" and replace it with --091114690--.

Column 1 beginning at line 55, please delete "Accordingly, the transfer function can be adjusted into "Y(D)/X(D)=PR(1,1)=1+D", "Y(D)/X(D)=PR (1,2,1)=1+2*D+D02" or "Y(D)/X(D)=PR(1,1,1,1)=1+D+D02+D03"." and replace it with -- Accordingly, the transfer function can be adjusted into "Y(D)/X(D)= PR(1,1) = 1 + D", "Y(D)/X(D) $= PR(1,2,1) = 1 + 2 * D + D^2$ " or "Y(D)/X(D) = PR $(1,1,1,1) = 1 + D + D^2 + D^3$.--

Column 1, line 66, please delete "PR(1,2,1) = $1 + 2*D + D^2$ " and replace it with $--PR(1,2,1) = 1 + 2*D + D^2--$.

Column 2 beginning at line 5, please replace "PR(1,1,1,1) = $1 + D + D \cdot 2 + D \cdot 3$ " with $--PR(1,1,1,1) = 1 + D + D^2 + D^3--$.

Column 5 beginning at line 25, please replace "Then, branch metric values $(v(k)-2\hat{0}2, (v(k)-1)\hat{0}2, (v(k))\hat{0}2, (v(k)+1)\hat{0}2, (v(k)+2)\hat{0}2, (v(k-1)-1.5)\hat{0}2, (v(k-1)-1)\hat{0}2, (v(k)+1)\hat{0}2, ($ (k-1)) $\hat{\mathbf{0}}$ 2, $(y(k-1)+1)\hat{\mathbf{0}}$ 2, $(y(k-1)+1.5)\hat{\mathbf{0}}$ 2 are obtained" with --Then, branch metric values $(y(k)-2)^2$, $(y(k)-1)^2$, $(y(k))^2$, $(y(k)+1)^2$, $(y(k)+2)^2$, $(y(k-1)-1.5)^2$, $(y(k-1)-1)^2$, $(y(k-1)-1)^2$, $(y(k)+2)^2$, $(y(k-1)-1.5)^2$, $(y(k-1)-1)^2$, $(y(k-1)-1)^2$, $(y(k)+2)^2$, $(y(k-1)-1.5)^2$, $(y(k-1)-1)^2$, $(y(k)+2)^2$, $(y(k-1)-1.5)^2$, $(y(k-1)-1)^2$, $(y(k)+2)^2$, (y $(k-1)^2$, $(y(k-1)+1)^2$, $(y(k-1)+1.5)^2$ are obtained...

Column 6 beginning at line 13, please replace "to output the branch metric values $(y(k)-2)\hat{0}2 (y(k))\hat{0}2, (y(k)+2)\hat{0}2, (y(k)+2)\hat{0}2, (y(k-1)-1.5)\hat{0}2, (y(k-1)-1)\hat{0}2, (y(k-1$ $\hat{\mathbf{0}}$ 2) (y(k-1)+1) $\hat{\mathbf{0}}$ 2, (y(k-1)+1.5) $\hat{\mathbf{0}}$ 2 to the adder-comparator-selector unit 52" with

UNITED STATES PATENT AND TRADEMARK OFFICE **CERTIFICATE OF CORRECTION**

PATENT NO.

: 7,185,269 B2

Page 2 of 2

APPLICATION NO.: 10/612678

DATED

: February 27, 2007

INVENTOR(S)

: William Mar et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

--to output the branch metric values $(y(k)-2)^2$, $(y(k)-1)^2$, $(y(k))^2$, $(y(k)+1)^2$, (y(k)+1 $+2)^2$, $(y(k-1)-1.5)^2$, $(y(k-1)-1)^2$, $(y(k-1))^2$, $(y(k-1)+1)^2$, $(y(k-1)+1.5)^2$ to the adder-comparator-selector unit 52--.

Signed and Sealed this

Twenty Second Day of April, 2008

JON W. DUDAS Director of the United States Patent and Trademark Office