Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 265.1 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figur E 656.98 656.95 656.92 Bølgelengde (nm) 656.90 656.88 656.85 656.82 656.80 5 10 15 20 25 30 0 Periode (år)

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 11.08, tilsynelatende blå størrelseklass $m_B=13.32$

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 5.56, tilsynelatende blå størrelseklass $m_B = 7.80$

Stjerna C: Tilsynelatende visuell størrelseklasse m $_{-}\mathrm{V}=11.08,$ tilsynelatende

blå størrelseklass m_B = 12.32

Stjerna D: Tilsynelatende visuell størrelseklasse m
_V = 5.56, tilsynelatende blå størrelseklass $m_B = 6.80$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.46 og store halvakse a=49.40 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.46 og store halvakse a=58.35 AU.

Filen 1F.txt

Ved bølgelengden 579.00 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

Figur E 5.20 5.00 Tilsynelatende størrelsklasse m_V 4.80 4.60 4.40 4.20 4.00 3.80 20 100 40 Ó 60 80 120 Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 20.80 solmasser, temperatur på 43.80 Kelvin og tetthet 1.98e-21 kg per kubikkmeter

Gass-sky B har masse på 31.60 solmasser, temperatur på 17.20 Kelvin og tetthet 1.65e-20 kg per kubikkmeter

Gass-sky C har masse på 18.00 solmasser, temperatur på 56.40 Kelvin og

tetthet 2.74e-21 kg per kubikkmeter

Gass-sky D har masse på 8.00 solmasser, temperatur på 20.70 Kelvin og tetthet 7.09e-22 kg per kubikkmeter

Gass-sky E har masse på 11.20 solmasser, temperatur på 53.60 Kelvin og tetthet 4.52e-21 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjernas energi kommer hovedsaklig fra hydrogenfusjon i skall

STJERNE B) stjernas energi kommer hovedsaklig fra heliumfusjon i skall

STJERNE C) stjernas energi kommer hovedsaklig fra fusjon av magnesium i sentrum

STJERNE D) stjernas overflate består hovedsaklig av helium

STJERNE E) stjernas energi kommer fra vibrerende molekyler og ikke fra fusjon

Filen 1L.txt

Stjerne A har spektralklasse G3 og visuell tilsynelatende størrelseklasse m $_{-}\mathrm{V}$ = 4.91

Stjerne B har spektralklasse M7 og visuell tilsynelatende størrelseklasse m_V = 8.23

Stjerne C har spektralklasse K2 og visuell tilsynelatende størrelseklasse m $_{\text{-}}\mathrm{V}$ = 1.63

Stjerne D har spektralklasse F2 og visuell tilsynelatende størrelseklasse m_V

= 9.01

Stjerne E har spektralklasse B6 og visuell tilsynelatende størrelseklasse m_V = 9.01

Filen 1P.txt

Partiklene har hastighetskomponent langs synsretningen som er Gaussisk fordelt med gjennomsnittsverdi på 100 m/s i retning mot deg

$Filen~2A/Oppgave 2A_Figur 1.png$

i

ź

3

5

x-posisjon (buesekunder)

9

10

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.217999999999999933387 AU.

Tangensiell hastighet er 72297.398872933525126427 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=2.034 AU.

Kometens avstand fra jorda i punkt 2 er r2=5.520 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=15.450.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9428 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00078 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=930.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9894 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 744.00 nm.

Filen 4A.txt

Stjernas masse er 3.82 solmasser.

Stjernas radius er 0.65 solradier.

Filen 4C.png

Figur 4C 1.6500 1.5000 1.3500 Sannsynlighetstetthet i 10⁻⁴ % 1.2000 1.0500 0.9000 0.7500 0.6000 0.4500 0.3000 0.1500 0.0000 -750 -500 250 500 -1000 -250 750 1000 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 27.63 millioner K

Filen 4G.txt

Massen til det sorte hullet er 2.05 solmasser.

r-koordinaten til det innerste romskipet er r $=6.14~\mathrm{km}.$

r-koordinaten til det innerste romskipet er
r $=11.52~\mathrm{km}.$