

NATIONAL OPEN UNIVERSITY OF NIGERIA 14/16 AHMADU BELLO WAY, VICTORIA ISLAND, LAGOS

SCHOOL OF SCIENCE AND TECHNOLOGY OCTOBER, 2013 EXAMINATION

COURSE CODE: BIO 403

COURSE TITLE: POPULATION GENETICS

TIME ALLOWED: 2 HOURS

INSTRUCTION: ANSWER ANY FOUR QUESTIONS

1ai. How can allelic frequency be calculated?

ii. The number of individuals living in a town is 600. A study showed that the number of individuals in the town with different M-N blood group phenotypes are as follows:

Phenotype	No. of individuals
M	180
MN	300
N	120

Calculate the genotypic frequency and the allelic frequency,

bi. List the assumptions upon which Hardy-Weinberg law depends.

ii, Are there Hardy-Weinberg populations in real life?

2ai.How can genotype frequencies of the next generation be predicted using the genotype and allele frequencies?

- ii. Write short notes on the following:
- (i) Natural selection (ii) Darwinian fitness
- b. In a population of 200,000 people carrying the recessive allele, a for albinism, there are 200 aa albinos, 196,200 AA and 3,600 Aa heterozygous carriers.
- (i) Compute the allelic frequencies in the parent population,
- (ii) Using Hardy-Weinberg equation, predict the number of individuals of each genotype in the next generation,

3ai. Differentiate between population genetics and transmission genetics.

- ii. How can allelic frequencies at an X-linked locus be determined from the genotypic frequencies?
- b. Calculate the genotypic and allelic frequencies tor hemoglobin variants among Europeans where multiple alleles are present.

Hemoglobin genotypes:

AA	AS	SS	AC	SC	CC	Total
2,017	783	4	173	14	11	3,002

- 4ai. What is the consequence of having many alleles at a locus?
- ii. Write short notes on the following:
 - (i) Selective mating (ii) Adaptation (iii) Migration
- bi. What do you understand by sex-linked traits?
- ii. How long does it take to approach equilibrium frequencies if the alleles are sex-linked and the sexes differ in allelic frequency? Give reasons for your answer.
- 5ai. What is the implication of a Chi square test?
- ii. Consider a locus that codes for transferring a blood protein in *Clethrinomysgapperis*, three genotypes are found at the transferring locus: MM, MJ and JJ in a population of *gapperis* trapped in North America in 1998, 24 MM, 106 MJ, 24 JJ individuals are found. Calculate the expected number of individuals with each of the observed genotypes.
- bi. How does mutation affect evolution?
- ii. In a population, the initial allelic frequencies are p = 0.9 and q = 0.1 and the forward and reverse mutation rates are $u = 5x10^{-5}$ and $v = 2x10^{-5}$ respectively. Calculate:
 - (i) the change in allelic frequency in the first generation.
 - (ii) The frequency of a allele at equilibrium.
- 6ai. What do you understand by genetic drift?
- ii. Write short notes on the following:
- (i) Bottleneck effect (ii) small population (iii) founder effect.
- b. Complete the following Table:

The Hardy-Weinberg principle applied to the ABO blood group system

Female gametes	M-1-	Carrata	(f.,, .,, ., ., .,
(frequencies)	Male	Gametes	(frequencies)
		$I^{B}(q)$	
		I ^A I ^B (pq)	
		1 1 (pq)	
		AB	
			I ^B I ^O (qr)
			1 (4-)
			D
			В
	I ^A I ^O (pr)		
10.4	1 1 (pi)		
$I^{O}\left(r\right)$			
	A		