```
def get_pdf_probability(ds,startrange,endrange):
from matplotlib import pyplot
from scipy.stats import norm
import seaborn as sns
ax=sns.distplot(ds,kde=True,kde_kws={'color':'blue'},color='green')
pyplot.axvline(startrange,color='Red')
pyplot.axvline(endrange,color='Red')
 #generate a sample
sample=ds
#calculate parameters
sample_mean=sample.mean()
 sample_std=sample.std()
print('Mean=%.3f,Standard Deviation=%.3f' %(sample_mean,sample_std))
#define the distribution
dist=norm(sample_mean,sample_std)
#sample probabilities for a range of outcomes
values=[value for value in range(startrange,endrange)]
probabilities=[dist.pdf(value) for value in values]
prob=sum(probabilities)
 print("The area between range({},{}):{}".format(startrange,endrange,sum(probabilities)))
 return prob
```

1. Import Libraries:

- * matplotlib.pyplot: Used for plotting and visualization.
- * scipy.stats.norm: Provides the normal distribution for calculating probabilities.
- * seaborn : Used for statistical data visualization, specifically for creating the distribution plot.

2. Function:

- * startrange: The starting value of the range.
- * endrange: The ending value of the range.
- 3. Visualization (Distribution Plot):
 - * ax = sns.distplot(ds, kde=True, kde_kws={'color': 'blue'}, color='green')
- * Creates a distribution plot (histogram with kernel density estimation) of the data sample ds using seaborn.distplot.
 - * kde=True enables the kernel density estimate

- * kde_kws={'color': 'blue'} sets the color of the KDE curve to blue.
- * color='green' sets the color of the histogram bars to green.
- * pyplot.axvline(startrange, color='Red')
- * Draws a vertical red line at the startrange value on the plot.
- * pyplot.axvline(endrange, color='Red')
- * Draws a vertical red line at the endrange value on the plot.
- 4. Calculate Sample Statistics:
- * sample mean = sample.mean()
- * Calculates the mean (average) of the sample.
- * sample_std = sample.std()
- * Calculates the standard deviation of the sample.
- * print('Mean=%.3f, Standard Deviation=%.3f' % (sample_mean, sample_std))
- * Prints the calculated mean and standard deviation to the console, formatted to three decimal places.
- 5. Define Normal Distribution:
 - * dist = norm(sample mean, sample std)
- * Creates a normal distribution object (dist) using the calculated sample_mean and sample_std as its parameters.
- 6. Calculate Probabilities:
- * values = [value for value in range(startrange, endrange)]
- * Creates a list of integer values within the specified range (from startrange to endrange 1).
 - * probabilities = [dist.pdf(value) for value in values]