CS 475 Machine Learning: Homework 5 Graphical Models

Due: Friday Nov 18, 2016, 11:59pm 100 Points Total Version 1.0

1 Analytical (40 points)

1. (12 points) Consider the Bayesian Network given in Figure 1(a). Are the sets A and B d-separated given set C for each of the following definitions of A, B and C? Justify each answer.

a.
$$\mathbf{A} = \{x_1\}, \mathbf{B} = \{x_9\}, \mathbf{C} = \{x_5, x_{14}\}$$

b.
$$\mathbf{A} = \{x_{11}\}, \mathbf{B} = \{x_{13}\}, \mathbf{C} = \{x_1, x_{15}\}$$

c.
$$\mathbf{A} = \{x_4\}, \mathbf{B} = \{x_5\}, \mathbf{C} = \{x_{10}, x_{16}\}$$

d.
$$\mathbf{A} = \{x_3, x_4\}, \mathbf{B} = \{x_{13}, x_9\}, \mathbf{C} = \{x_{10}, x_{15}, x_{16}\}$$

Now consider a Markov Random Field in Figure 1(b), which has the same structure as the previous Bayesian network. Re-answer each of the above questions with justifications for your answers.

Figure 1: Two graphs are the same. However since (a) is directed and (b) is undirected the two graphs have different a conditional independence interpretation.

Directed:

- (a) Sets A and B are d-separated because x_5 is observed which blocks off x_9 from the top because it is a tail to tail path, and x_{14} is observed which blocks off x_9 from the bottom because it is a head to tail connection.
- (b) Sets A and B are not d-separated because x_{15} is observed and it is a head to head connection, so it remains unblocked, so the path between x_{11} and x_{13} is unblocked.

- (c) Sets A and B are d-separated because x_{15} is unobserved, so it blocks the path between x_4 and x_5 .
- (d) Sets A and be are not d-separated because x_{15} is observed, and x_{16} is observed so the head to head connection at x_{16} is unblocked and the head to head connection at x_{15} is also unblocked.

Undirected

- (a) It is d-separated because all paths from x_1 to x_9 must pass through set C.
- (b) It is d-separated because all paths from set A to set B pass through x_{15}
- (c) Not d-separated because not all paths from set A to set B pass through set C
- (d) It is d-separated because all paths from set A to set B have to pass through x_{15}

2. (15 points) Let $X = (X_1, ..., X_d^T)$ be a random vector, which follows a d-variate Gaussian distribution $N(0, \Sigma)$. Define the precision matrix as $\Omega = \Sigma^{-1}$. Please prove that $\Omega_{ij} = 0$ implies the conditional independence between variables X_i and X_j given the remaining variables, i.e., a sparsity pattern Ω is equivalent to an adjacency matrix of a Gaussian Markov Random Field.

My Answer:

Using the hint from piazza, we have to prove that:

$$P(X_i, X_j | X_{-i,-j}) = P(X_i | X_{-i,-j}) P(X_j | X_{-i,-j})$$

And using the rules of conditional probability we can rearrange these probabilities such that the equation becomes:

$$\frac{P(X_i, X_j, X_{-i,-j})}{P(X_{-i,-j})} = \frac{P(X_i, X_{-i,-j})}{P(X_{-i,-j})} \frac{P(X_j, X_{-i,-j})}{P(X_{-i,-j})}$$

$$P(X_i, X_j, X_{-i,-j}) = P(X_i, X_{-i,-j}) \frac{P(X_j, X_{-i,-j})}{P(X_{-i,-j})}$$

Now looking at the the multivariate distribution, we can see that the above equation is only true if:

$$exp(X^T\Omega X) = \frac{exp(X_i^T\Omega X_i)exp(X_j^T\Omega X_j)}{exp(X_{-i,-j}^T\Omega X_{-i,-j})}$$

which in terms of sums is:

$$X^T \Omega X = X_i^T \Omega X_i + X_j^T \Omega X_j - X_{-i,-j}^T \Omega X_{-i,-j}$$

Looking at the left hand side, we have:

$$X^T\Omega X = \sum_{p,q|p,q\neq j} X_p^T\Omega_{pq}X_q + \sum_{p,q|p,q\neq i} X_p^T\Omega_{pq}X_q + \sum_{p,q|p,q\in\{i,j\}} X_p^T\Omega_{pq}X_q - \sum_{p,q|p,q\notin\{i,j\}} X_p^T\Omega_{pq}X_q$$

The third summation becomes 0 because Ω_{ij} we know to be 0. So the LHS becomes:

$$\sum_{p,q|p,q\neq j} X_p^T \Omega_{pq} X_q + \sum_{p,q|p,q\neq i} X_p^T \Omega_{pq} X_q - \sum_{p,q|p,q\notin\{i,j\}} X_p^T \Omega_{pq} X_q$$

Now if we exponentiate this, it becomes:

$$\frac{exp(X_i^T \Omega X_i) exp(X_j^T \Omega X_j)}{exp(X_{-i,-j}^T \Omega X_{-i,-j})}$$

which means the LHS equals RHS and our proof is complete.

3. (13 points) The probability density function of most Markov Random Fields cannot be factorized as the product of a few conditional probabilities. This question explores some MRFs which can be factorized in this way.

Consider the graph structure in Figure 2. From this graph, we know that X_2 and X_3

Figure 2: The Original Undirected Graph

are conditionally independent given X_1 . We can draw the corresponding directed graph as Figure 3. This suggests the following factorization of the joint probability:

Figure 3: The Converted Directed Graph

$$P(X_1, X_2, X_3) = P(X_3|X_1)P(X_2|X_1)P(X_1)$$

Now consider the following graphical model in Figure 4.

Figure 4: An Undirected Graph

As before, we can read the conditional independence relations from the graph.

- (a) Following the example above, write a factorization of the joint distribution: $P(X_1, X_2, X_3, X_4, X_5, X_6)$.
- (b) Is this factorization unique, meaning, could you have written other factorizations that correspond this model?
- (c) If the factorization is unique, explain why it is unique. If it is not unique, provide an alternate factorization.

My Answer:

- (a) $P(X_1, X_2, X_3, X_4, X_5, X_6) = P(X_1|X_2)P(X_3|X_2)P(X_4|X_2)P(X_6|X_5, X_2)$
- (b) No its not unique.
- (c) $P(X_1, X_2, X_3, X_4, X_5, X_6) = P(X_2|X_1)P(X_3|X_2, X_1)P(X_4|X_2, X_1)P(X_6|X_5, X_2, X_1)$