fri iot tandon

Here's your content formatted into clean, exam-ready **notes** style for Weeks 7 and 8:

Week 7: Software-Defined Networking (SDN)

Traditional vs SDN Architecture

- Traditional Networks: Distributed control (e.g., OSPF) on each device.
- **SDN:** Separation of control plane (decision-making) and data plane (packet forwarding).

SDN Architecture Components

- Controller: Centralized decision-making entity.
- Switches: Simple forwarding devices.
- APIs: Facilitate communication between controller \leftrightarrow switches, controller \leftrightarrow apps.

Flow Table and Rule Placement

- Flow Table: Contains flow-rules in switches.
- **PACKET-IN:** Triggered when no matching flow-rule found.
- Controller installs rule via flow-mod messages.

Challenges in Rule Placement

- Limited TCAM memory in switches.
- Delays in packet-in handling and rule installation.

Objectives

- Efficient TCAM usage.
- Minimize PACKET-IN events.

Controller Placement

Can be Local or Remote (Cloud-based).

Tools and Controllers

- Mininet: Virtual SDN network emulator.
- Popular Controllers: Pox, Nox, FloodLight, OpenDayLight, ONOS.

SDN in IoT

- Use-cases:
 - Rule-placement & traffic engineering (backbone networks).
 - Flow classification & security (data centers).

Software-Defined Wireless Sensor Networks (Soft-WSN)

- Applies SDN principles to WSNs.
- Features:
 - Real-time reprogramming.
 - Dynamic path updates.

III Experimental Benefits of Soft-WSN

- † Packet delivery ratio
- ↓ Replicated packets
- † Control messages (due to PACKET-IN)

SDN-WISE

- A software-defined WSN platform.
- Sensor nodes use flow tables.
- Programming support via APIs (any language).

Week 8: Cloud Computing

Definition (NIST)

"A model enabling convenient, on-demand access to a shared pool of configurable computing resources."

Essential Characteristics

1. On-demand self-service

- 2. Broad network access
- 3. Resource pooling
- 4. Rapid elasticity
- 5. Measured service
- 6. Availability & reliability
- 7. Performance & optimization

Cloud Service Models (NIST Visual Model)

- IaaS (Infrastructure-as-a-Service): Users manage OS/apps (e.g., AWS EC2).
- PaaS (Platform-as-a-Service): Users develop/run apps (e.g., Google App Engine).
- SaaS (Software-as-a-Service): Full apps delivered online (e.g., Google Workspace).

Cloud Deployment Models

- **Private Cloud:** Exclusive to one organization.
- **Community Cloud:** Shared by a specific group.
- Public Cloud: Open to general public.
- **Hybrid Cloud:** Combination of above.

SLAs (Service Level Agreements)

• Define non-functional guarantees: **Availability, Performance, Response time**, etc.

Accounting & Billing

- **Service accounting:** Tracks usage.
- **Billing:** Applies pricing models to usage data.

Economics of Scaling

- Cap-Ex free computing
- On-demand scalability
- Rapid deployment
- Cost-efficiency

Data Management in Cloud

- Choose DBMS based on deployment type.
- DBaaS examples: Amazon RDS, Azure SQL, Google Cloud SQL

Trust & Risk in Cloud

- Trust mechanisms: SLAs, audits, ratings, self-assessment tools.
- **Risk Assessment:** Formal/informal, qualitative/quantitative analysis.

Cloud Simulators

CloudSim, CloudAnalyst: For simulating and evaluating cloud environments.

Amazon EC2

- Offers instances with customizable configurations.
- Supports multiple OS, EBS/S3 storage, auto-scaling, security groups.

Let me know if you'd like this as a PDF or formatted for Anki flashcards too!

Here's a clean, easy-to-learn **notes-style format** for Weeks 9 and 10, perfect for MCQ exam prep:

Week 9: Sensor-Cloud and Fog Computing

WSNs Recap

- Components: Sensing unit, Processing unit, Communication unit
- **Features:** Short range, rely on **multi-hop** communication
- Applications: Target tracking, Healthcare, Smart cities

Cloud Computing Recap

- Services: SaaS, PaaS, IaaS
- Benefits: Elasticity, Pay-per-use, Self-service

Sensor-Cloud

- Goal: Virtualization of physical sensor nodes
- Key Concepts:
 - Virtual Sensors (VSs) are composed from real sensors
 - **CoV-I**: Same region
 - CoV-II: Multiple regions
- Management Issues:

The optimal composition of Virtual sensor nodes is a management issue in sensor-cloud. (

- Optimal VS composition
- Data caching Internal Cache (IC) and External Cache (EC) are two different types of caching
- Pricing strategy:
 - **pH** (hardware) Usage of physical sensors
 - pI (infrastructure) Usage of cloud infrastructure

Fog Computing

- Why Needed: Cloud can't handle IoT's volume, latency, and bandwidth needs
- Definition: Layer between IoT devices and the cloud
- Fog Nodes: Routers, switches, embedded servers
 - Provide storage, compute, and network services

Time Sensitivity-Based Handling

Data Type	Action
Very time-sensitive	Processed at nearest fog node
Less time-sensitive	Processed at aggregate node
Non-time-sensitive	Sent to cloud for storage and analysis

Advantages

- ↓ Latency → Faster decisions
- ↑ Privacy → Local data analysis
- † Business agility

- - Real-time health monitoring
 - Smart energy systems
 - Rail & pipeline monitoring
 - Wind turbine optimization

TCP/IP works best with localized data, which is not present in V2X environments.

This restricts the use of TCP/IP for V2X communication.

1 Challenges

- † Power usage (extra nodes)
- Ensuring data security across distributed fog
- Maintaining reliability

Link durations are short due to the highly dynamic nature of VANETs.

Week 10: Smart Parking & Intelligent Connected Vehicles (ICVs)

Smart Parking

📡 Information Collection Methods

- Sensors
- Parking meters
- Sensor networks
- Crowd sensing

The phases of ICV development:

Phase 1: Based on 2G, Phase 2: Based on 4G LTE,

Phase 3: Vehicles connected to cloud

(ICN)

🧠 System Deployment

- Software system
- E-parking & guidance
- Data analytics for optimization

Decision Layer

- Monitors parking conditions
- Controls sensors

ai can bridge Decision making gaps between sensors and actuators

CCN (Content Centric Networking) is derived from Information Centric Networking

HAN standards

Physical and MAC layers are defined by IEEE802.15.4. Network layer and Application layers are defined by Zigbee.

- Intelligent Connected Vehicles (ICVs)
- **III** Spectrum Allocation
- 75 MHz (5850–5925 MHz) reserved for ICVs by US DoT & FCC
- **IEEE WAVE Standards (DSRC)** ■

Standard	Focus
IEEE 1609.2	Security services (messages & apps)
IEEE 1609.3	Networking services
IEEE 1609.4	Multi-channel operations
IEEE P1609.11	Over-the-air data exchange for ITS

Let me know if you want these notes exported as a PDF or formatted for flashcards!