Determine the probabilities when adding up 4 Bernoulli trials if each trial has chance 0.77. Each trial could be thought of as a spin of the spinner below.

Then, use $\mu = \sum x \cdot \Pr(x)$ to find the mean and $\sigma = \sqrt{\sum (x - \mu)^2 \cdot \Pr(x)}$ to determine the standard deviation.

Solution:

You could make a tree.

You could also just use the binomial formula.

$$Pr(x) = {}_{n}C_{x}(p)^{x}(1-p)^{n-x}$$

We want 5 probabilities, letting x vary from 0 to 4. For each probability, n = 4 and p = 0.77. A table is useful.

X	$_{n}C_{x}p^{x}(1-p)^{n-x}$	Pr(x)
0	$({}_{4}C_{0})(0.77)^{0}(1-0.77)^{4-0}$	0.0028
1	$({}_{4}C_{1})(0.77)^{1}(1-0.77)^{4-1}$	0.0375
2	$({}_{4}C_{2})(0.77)^{2}(1-0.77)^{4-2}$	0.188
3	$({}_{4}C_{3})(0.77)^{3}(1-0.77)^{4-3}$	0.42
4	$({}_{4}C_{4})(0.77)^{4}(1-0.77)^{4-4}$	0.352

X	Pr(x)	$x \cdot Pr(x)$	$X - \mu$	$(x-\mu)^2$	$(x-\mu)^2 \cdot Pr(x)$
0	0.0028	0	-3.08	9.5	0.0266
1	0.0375	0.0375	-2.08	4.33	0.163
2	0.188	0.376	-1.08	1.17	0.22
3	0.42	1.26	-0.082	0.00672	0.00282
4	0.352	1.41	0.918	0.843	0.297
=======	=======	=======	=======	=======	=======
		$\sum x \cdot Pr(x) = 3.082$			$\sum (x_i - \mu)^2 \cdot Pr(x) = 0.709$
		μ = 3.082			$\sigma = \sqrt{\sum (x_i - \mu)^2 \cdot Pr(x)} = 0.84$

$$\mu = np = (4)(0.77) = 3.08$$

$$\sigma = \sqrt{npq} = \sqrt{(4)(0.77)(0.23)} = \sqrt{0.708} = 0.842$$

Determine the probabilities when adding up 4 Bernoulli trials if each trial has chance 0.26. Each trial could be thought of as a spin of the spinner below.

Then, use $\mu = \sum x \cdot \Pr(x)$ to find the mean and $\sigma = \sqrt{\sum (x - \mu)^2 \cdot \Pr(x)}$ to determine the standard deviation.

.image

Solution:

You could make a tree.

You could also just use the binomial formula.

$$Pr(x) = {}_{n}C_{x}(p)^{x}(1-p)^{n-x}$$

We want 5 probabilities, letting x vary from 0 to 4. For each probability, n = 4 and p = 0.26. A table is useful.

X	$_{n}C_{x}p^{x}(1-p)^{n-x}$	Pr(x)
0	$({}_{4}C_{0})(0.26)^{0}(1-0.26)^{4-0}$	0.3
1	$({}_{4}C_{1})(0.26)^{1}(1-0.26)^{4-1}$	0.421
2	$({}_{4}C_{2})(0.26)^{2}(1-0.26)^{4-2}$	0.222
3	$({}_{4}C_{3})(0.26)^{3}(1-0.26)^{4-3}$	0.052
4	$({}_{4}C_{4})(0.26)^{4}(1-0.26)^{4-4}$	0.00457

X	Pr(x)	$x \cdot Pr(x)$	$X - \mu$	$(x-\mu)^2$	$(x-\mu)^2 \cdot Pr(x)$
0	0.3	0	-1.04	1.08	0.324
1	0.421	0.421	-0.039	0.00152	0.00064
2	0.222	0.444	0.961	0.924	0.205
3	0.052	0.156	1.96	3.85	0.2
4	0.00457	0.0183	2.96	8.77	0.0401
=======	=======	=======	=======	=======	======
		$\sum x \cdot Pr(x) = 1.039$			$\sum (x_i - \mu)^2 \cdot Pr(x) = 0.77$
		μ = 1.039			$\sigma = \sqrt{\sum (x_i - \mu)^2 \cdot Pr(x)} = 0.88$

$$\mu = np = (4)(0.26) = 1.04$$

$$\sigma = \sqrt{npq} = \sqrt{(4)(0.26)(0.74)} = \sqrt{0.77} = 0.877$$

Determine the probabilities when adding up 3 Bernoulli trials if each trial has chance 0.35. Each trial could be thought of as a spin of the spinner below.

Then, use $\mu = \sum x \cdot \Pr(x)$ to find the mean and $\sigma = \sqrt{\sum (x - \mu)^2 \cdot \Pr(x)}$ to determine the standard deviation.

.image

Solution:

You could make a tree.

You could also just use the binomial formula.

$$Pr(x) = {}_{n}C_{x}(p)^{x}(1-p)^{n-x}$$

We want 4 probabilities, letting x vary from 0 to 3. For each probability, n = 3 and p = 0.35. A table is useful.

X	${}_{n}C_{x}p^{x}(1-p)^{n-x}$	Pr(x)
0	$({}_{3}C_{0})(0.35)^{0}(1-0.35)^{3-0}$	0.275
1	$({}_{3}C_{1})(0.35)^{1}(1-0.35)^{3-1}$	0.444
2	$({}_{3}C_{2})(0.35)^{2}(1-0.35)^{3-2}$	0.239
3	$({}_{3}C_{3})(0.35)^{3}(1-0.35)^{3-3}$	0.0429

X	Pr(x)	$x \cdot Pr(x)$	$\mathbf{X} - \mathbf{\mu}$	$(x - \mu)^2$	$(x-\mu)^2 \cdot Pr(x)$
0	0.275	0	-1.05	1.1	0.304
1	0.444	0.444	-0.051	0.0026	0.00115
2	0.239	0.478	0.949	0.901	0.215
3	0.0429	0.129	1.95	3.8	0.163
=======	=======	=======	=======	=======	=======
		$\sum x \cdot Pr(x) = 1.051$			$\sum (x_i - \mu)^2 \cdot Pr(x) = 0.683$
		μ = 1.051			$\sigma = \sqrt{\sum (x_i - \mu)^2 \cdot Pr(x)} = 0.83$

$$\mu = np = (3)(0.35) = 1.05$$

$$\sigma = \sqrt{npq} = \sqrt{(3)(0.35)(0.65)} = \sqrt{0.682} = 0.826$$

Determine the probabilities when adding up 4 Bernoulli trials if each trial has chance 0.79. Each trial could be thought of as a spin of the spinner below.

Then, use $\mu = \sum x \cdot \Pr(x)$ to find the mean and $\sigma = \sqrt{\sum (x - \mu)^2 \cdot \Pr(x)}$ to determine the standard deviation.

.image

Solution:

You could make a tree.

You could also just use the binomial formula.

$$Pr(x) = {}_{n}C_{x}(p)^{x}(1-p)^{n-x}$$

We want 5 probabilities, letting x vary from 0 to 4. For each probability, n = 4 and p = 0.79. A table is useful.

X	${}_{n}C_{x}p^{x}(1-p)^{n-x}$	Pr(x)
0	$({}_{4}C_{0})(0.79)^{0}(1-0.79)^{4-0}$	0.00194
1	$({}_{4}C_{1})(0.79)^{1}(1-0.79)^{4-1}$	0.0293
2	$({}_{4}C_{2})(0.79)^{2}(1-0.79)^{4-2}$	0.165
3	$({}_{4}C_{3})(0.79)^{3}(1-0.79)^{4-3}$	0.414
4	$({}_{4}C_{4})(0.79)^{4}(1-0.79)^{4-4}$	0.39

X	Pr(x)	$x \cdot Pr(x)$	$X - \mu$	$(x-\mu)^2$	$(x-\mu)^2 \cdot Pr(x)$
0	0.00194	0	-3.16	9.99	0.0194
1	0.0293	0.0293	-2.16	4.67	0.137
2	0.165	0.33	-1.16	1.35	0.222
3	0.414	1.24	-0.161	0.0259	0.0107
4	0.39	1.56	0.839	0.704	0.275
=======	=======	=======	=======	=======	=======
		$\sum x \cdot Pr(x) = 3.161$			$\sum (x_i - \mu)^2 \cdot Pr(x) = 0.664$
		μ = 3.161			$\sigma = \sqrt{\sum (x_i - \mu)^2 \cdot Pr(x)} = 0.81$

$$\mu = np = (4)(0.79) = 3.16$$

$$\sigma = \sqrt{npq} = \sqrt{(4)(0.79)(0.21)} = \sqrt{0.664} = 0.815$$