计算机网络课程设计报告

院	系	电子与信息工程学院
专	业	计算机科学与技术
姓	名	
学	号_	
指导:	老师	<u> </u>
完成	日期	2024. 7. 25
手机 [.]	号码	
电子	邮箱	

目录

一、	项目概述	3
	1.1 题目简介	
	1.2 项目要求	3
_,	可行性分析	3
	2.1 ip 地址划分	3
	2.2 拓扑结构分析	4
三、	需求分析	
	3.1 需求概述	4
	3.2 IP 地址规划	5
	3.3 设备需求	6
	3.4 拓扑结构需求	6
四、	网络结构设计	
五、	系统配置与实施	8
	5.1 终端与服务器 ip、子网掩码、默认网关设置	8
	5.2 二层交换机设置	9
	5.3 三层交换机 vlan 配置、端口 ip 地址分配	9
	5.4 三层交换机静态路由设置	. 11
	5.5 学院网站设计	. 13
六、	Cisco 仿真器验证	. 16
	6.1 连通测试	. 16
	6.2 连接学院主页测试	. 18
七、	小组成员及进度安排	. 19
八、	实验总结	. 20
九、	参考资料	. 20

一、项目概述

1.1 题目简介

选择题目三作为课程设计题目:

某学院有 1900 台个人计算机,50 台服务器,其中办公用计算机 60 台,教学用计算机 60 台,科研用计算机 120 台,研究生计算机 200 台。其余为学生实验电脑。分配的 IP 地址为:

服务器: 172.16.1.1—172.16.1.61/26

网关为: 172.16.1.62/26

个人计算机: 192.168.0.0—192.168.7.255

学院现在三层交换机 6 台,每台三层交换机可划 VLAN(虚拟局域网)个数为 100。24 口二 层交换机若干台,请为学院的全部计算机分配 IP 地址,并使用上述设备为学院设计网络。

1.2 项目要求

项目要求:

- a. 画出网络拓扑图。
- b. 给出每个网段的 IP 范围, 子网掩码, 默认网关。
- c. 为三层交换机规划 VLAN。给每个 VLAN 接口分配 IP 地址。
- d. 做好三层交换机之间的路由设计(可使用静态路由和 RIP)
- e. 设计学院网站,写出功能版块及初步描述。

二、可行性分析

2.1 ip 地址划分

本项目中给出了计算机个数与划分方式,个人计算机为1900台,可以划分为:

- 研究生计算机 200 台
- 科研用计算机 120 台
- 教学用计算机 60 台
- 公用计算机 60 台
- 学生实验电脑为 1900-60-60-120-200 = 1460 台

针对除了学生电脑的办公计算机,即研究生计算机、科研用计算机、教学用计算机和公用计算机,其中科研用计算机、教学用计算机和公用计算机台数总共为 60 + 60 + 120 = 240 < 256 - 4 - 2 = 250, (减去网关和网络+广播地址)则可以规划在网段:

 $192.168.0.2 \sim 192.168.0.250$

由于研究生计算机有200台,可以规划在网段

 $192.168.2.0 \sim 192.168.1.201$

剩下的学生实验电脑共 1460 台, 而 1460/254 > 5,则需要 6 个网段, 规划在

 $192.168.2.0 \sim 192.168.7.255$

二服务器的 ip 地址已经给出,为

172.16.1.1—172.16.1.61/26

则ip地址划分具有可行方案

2.2 拓扑结构分析

供应方提供了三层交换机以及 24 口二层交换机,这里针对于上述的每一个网段,使用一个二层交换机(服务器+公用+教学+研究生+科研+学生*6 = 11 个),同时学生组总体使用一个三层交换机,其余四个部门使用一个三层交换机,服务器使用一个三层交换机。针对上述需要分配 11 个 vlan,对于每一个 vlan,在对应的二层交换机和三层交换机中使用 PVST(Per-VLAN Spanning Tree)协议,防止产生冗余的回路问题。最后在三层交换机当中根据对应的 vlan 划分 ip 地址,之后采用静态路由的方式实现下一跳与不同 vlan 之间的联系。

三、需求分析

3.1 需求概述

针对上述可行性分析,需求部分主要考虑 IP 地址规划需求,网络设备需求,布线结构需求三个主要部分。

3.2 ip 地址规划

IP 地址规划涉及到 IP 范围的设计、子网掩码的设计、默认网关设置以及 VLAN 分配问题。根据题目要求,我们将分为三个大板块进行 IP 地址的分配,分别是办公板块、学生板块和服务器板块。每一个板块的划分根据计算机数量的要求计算来分配。并且为每一个默认功能区域划分 VLAN。

办公板块

名称	IP 地址范围	子网掩码	默认网关	VLAN
办公	192. 168. 0. 2-192. 168. 0. 61	255. 255. 255. 192	192. 168. 0. 1	20
教学	192. 168. 0. 66-192. 168. 0. 125	255. 255. 255. 192	192. 168. 0. 65	30
科研	192. 168. 0. 130-192. 168. 0. 249	255. 255. 255. 128	192. 168. 0. 129	40
研究生	192. 168. 1. 2–192. 168. 1. 201	255. 255. 255. 0	192. 168. 1. 1	50

学生板块

名称	IP 地址范围	子网掩码	默认网关	VLAN
学生组1	192. 168. 2. 2–192. 168. 2. 251	255. 255. 255. 0	192. 168. 2. 1	60
学生组 2	192. 168. 3. 2–192. 168. 3. 251	255. 255. 255. 0	192. 168. 3. 1	70
学生组3	192. 168. 4. 2–192. 168. 4. 251	255. 255. 255. 0	192. 168. 4. 1	80
学生组 4	192. 168. 5. 2–192. 168. 5. 251	255. 255. 255. 0	192. 168. 5. 1	90
学生组 5	192. 168. 6. 2–192. 168. 6. 251	255. 255. 255. 0	192. 168. 6. 1	100
学生组 6	192. 168. 7. 2–192. 168. 7. 251	255. 255. 255. 0	192. 168. 7. 1	110

服务器板块

名称	IP 地址范围	子网掩码	默认网关	VLAN
服务器	172. 16. 1. 2-172. 16. 1. 51	255. 255. 255. 192	172. 16. 1. 1	10

3.3 设备需求

根据可行性分析,项目中除了要求配置的计算机外,还需要二层交换机和三层交换机完成网络的拓扑链接。 具体的交换机需求为:

名称	说明	思科仿真组件
二层交换机	办公区域*4 + 学生区域*6 + 服务器区域*1 = 11 个	2950-24

三层交换机

学生组*1 + 办公组*1 + 服务器组*1 = 3 个

3.4 拓扑结构需求

本设计采用网状拓扑和星形拓扑相结合,三层交换机连接各个板块使用网状拓扑结构;二层交换机与 三层交换机连接采用星形拓扑联通。在 **网络结构设计** 一节中将展示网络拓扑图。

四、网络结构设计

总体网络拓扑图如下图所示:

办公板块:

该板块包括科研、教学、办公和研究生四个类别的计算机

学生板块:

该板块包括 1-6 学生组

服务器板块:

三层交换机板块:

实现不同板块之间的互联,三层交换机分配规划 VLAN,分配 IP 地址,使用静态路由技术进行连接

五、系统配置与实施

5.1 终端与服务器 ip、子网掩码、默认网关设置

以科研计算机配置为例:

打开 IP Configuration,按照 IP 地址规划配置信息,包括 IP 地址、子网掩码、默认网关。其余计算机和服务器配置类似。

5.2 二层交换机设置

题目提供 24 口二层交换机,为了模拟多台设备,将 2 到 24 端口均配置为对应的 VLAN,而 1 模式使用 trunk 进行聚合。以学生组 6 为例:

Switch>en

Switch#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Switch(config)#vlan 110 // VLAN number

Switch(config-vlan)#int range f0/2-24

Switch(config-if-range)#sw mode acc

Switch(config-if-range)#sw acc vlan 110 // VLAN number

Switch(config-if-range)#exit

Switch(config)#int f0/1

Switch(config-if)#sw mode trunk // set trunk mode

Switch(config-if)#exit

Switch(config)#

其余的二层交换机配置类似,将对应的 VLAN number 修改即可

5.3 三层交换机 vlan 配置、端口 ip 地址分配

首先创建 VLAN, 之后为其分配 IP 地址

Switch>en

Switch#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Switch(config)#vlan 10 // create vlan

Switch(config-vlan)#int vlan 10

Switch(config-if)#ip add 172.16.1.1 255.255.255.192 // allocate ip address

Switch(config-if)#exit

Switch(config)#

各个板块的分配情况为

办公板块:

VLAN	IP 地址	子网掩码
20	192. 168. 0. 1	255. 255. 255. 192
30	192. 168. 0. 65	255. 255. 255. 192
40	192. 168. 0. 129	255. 255. 255. 128
50	192. 168. 1. 1	255. 255. 255. 0

在三层交换机特权模式下运行 show running-config 查看配置信息

```
interface Vlan20
  mac-address 0009.7ca1.d001
  ip address 192.168.0.1 255.255.255.192
!
interface Vlan30
  mac-address 0009.7ca1.d002
  ip address 192.168.0.65 255.255.255.192
!
interface Vlan40
  mac-address 0009.7ca1.d003
  ip address 192.168.0.129 255.255.255.128
!
interface Vlan50
  mac-address 0009.7ca1.d004
  ip address 192.168.1.1 255.255.255.0
```

学生组 1-6 板块:

VLAN	IP 地址	子网掩码
60	192. 168. 2. 1	255. 255. 255. 0
70	192. 168. 3. 1	255. 255. 255. 0
80	192. 168. 4. 1	255. 255. 255. 0
90	192. 168. 5. 1	255. 255. 255. 0
100	192. 168. 6. 1	255. 255. 255. 0
110	192. 168. 7. 1	255. 255. 255. 0

在三层交换机特权模式下运行 show running-config 查看配置信息

```
interface Vlan60
mac-address 0002.17bd.ac01
ip address 192.168.2.1 255.255.255.0
interface Vlan70
mac-address 0002.17bd.ac02
ip address 192.168.3.1 255.255.255.0
interface Vlan80
mac-address 0002.17bd.ac03
ip address 192.168.4.1 255.255.255.0
interface Vlan90
mac-address 0002.17bd.ac04
ip address 192.168.5.1 255.255.255.0
interface Vlan100
mac-address 0002.17bd.ac05
ip address 192.168.6.1 255.255.255.0
interface Vlan110
mac-address 0002.17bd.ac06
ip address 192.168.7.1 255.255.255.0
```

服务器板块:

VLAN	IP 地址	子网掩码
10	172. 16. 1. 1	255. 255. 255. 192

在三层交换机特权模式下运行 show running-config 查看配置信息

interface Vlan10 mac-address 000b.be99.c301 ip address 172.16.1.1 255.255.255.192

则三层交换机的 VLAN 划分、IP 地址分配完成。

5.4 三层交换机静态路由设置

首先为三层路由器连接端口配置 IP 地址,以服务器三层交换机为例

Switch>en

Switch#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Switch(config)#int f0/1

Switch(config-if)#no sw

Switch(config-if)#ip add 2.2.2.1 255.0.0.0

Switch(config-if)#

同理按照拓扑图中的端口设置,将每一个三层交换机配置即可。接着对三层交换机配置静态路由使其相互连接,使用 ip-routing,添加 ip route 即可。具体语法为

ip routing

ip route destination subnetmask nexthop

以服务器三层交换机配置为例,添加静态路由

ip routing

ip route 192.168.0.0 255.255.255.192 2.2.2.2

ip route 192.168.0.64 255.255.255.192 2.2.2.2

.

各个板块的配置情况为

办公板块:

目的地址	子网掩码	下一跳
192. 168. 2. 0	255. 255. 255. 0	1. 1. 1. 4
192. 168. 3. 0	255. 255. 255. 0	1. 1. 1. 4
192. 168. 4. 0	255. 255. 255. 0	1. 1. 1. 4
192. 168. 5. 0	255. 255. 255. 0	1. 1. 1. 4
192. 168. 6. 0	255. 255. 255. 0	1. 1. 1. 4
192. 168. 7. 0	255. 255. 255. 0	1. 1. 1. 4
172. 16. 1. 0	255. 255. 255. 192	2. 2. 2. 1

学生组板块:

目的地址	子网掩码	下一跳
192. 168. 0. 0	255. 255. 255. 192	1. 1. 1. 3
192. 168. 0. 64	255. 255. 255. 192	1. 1. 1. 3
192. 168. 0. 128	255. 255. 255. 128	1. 1. 1. 3
192. 168. 1. 0	255. 255. 255. 0	1. 1. 1. 3
172. 16. 1. 0	255. 255. 255. 192	3. 3. 3. 1

服务器板块:

目的地址	子网掩码	下一跳
192. 168. 0. 0	255. 255. 255. 192	2. 2. 2. 2
192. 168. 0. 64	255. 255. 255. 192	2. 2. 2. 2
192. 168. 0. 128	255. 255. 255. 128	2. 2. 2. 2
192. 168. 2. 0	255. 255. 255. 0	3. 3. 3. 2
192. 168. 3. 0	255. 255. 255. 0	3. 3. 3. 2
192. 168. 4. 0	255. 255. 255. 0	3. 3. 3. 2
192. 168. 5. 0	255. 255. 255. 0	3. 3. 3. 2
192. 168. 6. 0	255. 255. 255. 0	3. 3. 3. 2
192. 168. 7. 0	255. 255. 255. 0	3. 3. 3. 2
192. 168. 1. 0	255. 255. 255. 0	2. 2. 2. 2

则三层交换机的路由设置完成

5.5 学院网站设计

学院网站主要划分为以下几个模块:

- 1. 教学平台:课程信息展示、教学资源发布以及在线课堂等教学相关内容。
- 2. 科研交流:科研项目展示、优秀学术论文展示、研究成果展示如专利、产品等。
- 3. 信息传递: 用于发布学院公告,包括招聘信息、通知信息等。
- 4. 联系信息: 用于展示学院部门的联系方式,同时具有留言反馈的相关功能

网站文件提供欢迎页以及详情页面模板,便于后续扩充。使用 HTML 编写,对应 CSS 文件与 JS 文件嵌入到 HTML 标签中。**具体实现详见本文件目录下的 webpage 文件夹。**

网站页面展示:

欢迎界面:

教学界面:

科研界面:

第 14 页

信息传递界面:

联系我们界面:

打开服务器的 Services , 左侧选择 HTTP 服务, 将 HTML 页面上传

六、Cisco 仿真器验证

6.1 连通测试

1. 测试同一网段能否相互连通。

此处进入研究生计算机, ping 同一网段下的科研计算机和教学计算机:

进入学生组1计算机, ping 学生组2计算机

观察到可以 ping 通,证明同一网段下能相互连接

2. 测试不同板块之间能否相互联通

进入教学计算机, ping 学生组 3 计算机和 ping 服务器

第 17 页

进入学生组4计算机,ping 教学计算机和服务器

均可以 ping 通,证明各个板块之间能够相互连接

6.2 连接学院主页测试

1. 测试办公板块能否连接网页

进入教学计算机,在web browser应用的URL 栏输入服务器 IP 地址,点击回车

正常显示渲染学院主页 HTML 页面

2. 测试学生板块能否连接网页

进入学生组5计算机,在web browser应用的URL栏输入服务器IP地址,点击回车

正常显示渲染学院主页 HTML 页面,同理测试办公板块和学生板块其余计算机,均能够正常连接服务器学院主页。

至此功能测试完成。

七、小组成员及进度安排

小组成员:

本小组为个人小组,组员为

联系方式为: 电话,邮件

进度安排:

- 1. **复习与实验准备:** 在启动实验项目前,需要重温并深化对先前学习内容的理解,主要包括网络拓扑结构、子网划分技巧、IP 地址分配规则、VLAN 管理以及路由原理等方面的知识。此外,还需熟练掌握 Cisco Packet Tracer 模拟软件的操作方法。
- 2. **题目选择与实验计划:** 本次实验采用题目三作为课程设计题目。首先需要深入理解题目要求,例如如何合理划分 IP 地址空间、构建 VLAN 架构以及配置静态路由等。在此基础上,进行详细的可行性研究以确保方案的实用性。

- 3. **网络拓扑设计与配置:** 在这一阶段需要根据选定题目的具体要求,着手设计网络拓扑结构、明确 IP 地址分配策略,并规划 VLAN 布局。同时在这一步还需要确定各子网的 IP 地址段、子网掩码以及默认网关等关键参数。最后配置核心三层交换机以实现网络互联。
- 4. **网页设计与实现:**根据学院主页的功能要求进行网页设计并将其部署在服务器的 HTTP 服务商。
- 5. **实验部署与验证:** 借助 Cisco Packet Tracer 工具,依据预先设计好的方案逐步搭建网络环境。 具体操作包括配置路由器、交换机和终端 PC 设备,设定 VLAN,绑定接口与相应的 IP 地址,并加入静态路由表项。配置完成后,执行多方面的测试以确认各个子网间能够顺利通信。
- 6. 撰写实验报告与总结:完成实验后撰写实验报告并进行总结反思。

八、实验总结

本次课程设计中我选择了规划学院网络(给定题目 3)作为我的课程设计题目。这个项目中不仅涉及到了计算机网络理论知识如 IP 地址分配、子网掩码计算、拓扑结构设计等,还涉及到采用思科仿真器进行网络的连接仿真,其中涉及到 VLAN 设置、交换机配置、路由配置等内容,帮助我全面地巩固了计算机网络知识。

在具体实现中,首先需要根据题目提供的计算机数量合理规划 IP 地址的分配,这里运用了理论课中所学习的 IP 地址划分和子网掩码计算知识,确保 IP 地址资源可以高效被利用,同时保留了网络的扩展性并满足网络的性能需求。

接着需要配置 11 台二层交换机搭建局域网,同时使用 Per-VLAN Spanning Tree 协议防止贿赂的产生,该协议有效避免了广播风暴和网络拓扑不确定性问题,我们同时需要对 VLAN 划分和端口设置进行配置,确保协议正常运行。之后需要配置三层交换机的 IP 地址分配,这里需要管理不同 VLAN 之间的通信,并且通过静态路由的方式实现交换机之间的连接。这里需要配置静态路由规定数据传输路径,保证信息在不同 VLAN 之间能够正确传递。最后进行学院主页网页的设计,使用 HTML,CSS, JS 实现网站的设计,并且将网站部署在指定服务器上。

实验在思科的 Cisco Packet Tracer 上进行,实验部署完成后进行了验证环节,连通性测试和网站渲染测试检验了网络系统的设计正确性。

通过这一次计算机网路理论加实践的课程设计,我能够更加深入理解计算机网络的理论知识点,并了解了如何将理论应用于实际的计算机网络设计中。同时这次课程设计也提升了我的工程实践能力,帮助我补充了关于计算机网络仿真的相关知识,为未来进行网络项目的开发打下基础。

九、参考资料

- [1] 塔嫩鲍姆, 计算机网络. 2022.
- [2]"IP 路由," Cisco, Dec. 21, 2021. https://www.cisco.com/c/zh cn/tech/ip/ip-routing/index.html
- [3]"Packet Tracer Official Tutorials." https://tutorials.ptnetacad.net/
- [4]"Cisco VLAN 常用命令_思科交换机 vlan 命令-CSDN 博客." https://blog.csdn.net/pzhier/article/details/78883218

- [5]"三层交换机端口配置 ip 地址 CSDN 文库."
 - https://wenku.csdn.net/answer/2ntmi481a4?ydreferer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8%3D
- [6]"Cisco 三层交换机的详细配置_思科三层交换机配置-CSDN 博客." https://blog.csdn.net/weixin 47716438/article/details/115525526
- [7]"了解 Ping 和 Traceroute 命令," *Cisco*, Feb. 15, 2024. https://www.cisco.com/c/zh_cn/support/docs/ios-nx-os-software/ios-software-releases-121-mainline/12778-ping-traceroute.html
- [8]"实现二层交换机状态的控制访问_二层交换机 访问控制 知了-CSDN 博客." https://blog.csdn.net/asdfghhklxm/article/details/126239034
- [9]谢希仁, 计算机网络. 2017.
- [10] "Spanning Tree Protocol," Wikipedia, Jul. 31, 2024. https://en.wikipedia.org/wiki/Spanning_Tree_Protocol