

# Projet réalisé par les "PlantSpy Girls":

- Marie-Laure Fichoux
- Ilham EL Bouloumi

Data Scientist Bootcamp - Avril 2022

# **PlantSpy**

# Détecter le type de plante et sa maladie grâce au Deep Learning

| I- Contexte:                                                                                          | 3  |
|-------------------------------------------------------------------------------------------------------|----|
| II- Exploration des données :                                                                         | 4  |
| III- Premiers modèles Deep Learning : classification de l'espèce d'une plante                         | 11 |
| 1- Baseline : Modèle CNN classique                                                                    | 11 |
| Le premier modèle testé en Baseline, est un simple modèle CNN classique avec l'architecture suivante: | 11 |
| 3- Modèle CNN combiné au générateur d'images                                                          | 12 |
| 4- Modèle LeNet combiné au générateur d'images                                                        | 14 |
| 5- Modèle LeNet avec Rééquilibrage des données et générateur d'images                                 | 17 |
| 5- Transfer Learning                                                                                  | 19 |
| 5- Conclusions- Synthèse tirées des modèles précédents                                                | 21 |
| IV- Détection de la maladie et classification du type de maladie                                      | 22 |
| 1- Détection de la maladie                                                                            | 22 |
| 2- Classification du type de maladie de la plante                                                     | 23 |
| 2.1- L'espèce "Tomato" comme exemple                                                                  | 23 |
| 2.2- Résultats sur les autres espèces                                                                 | 27 |
| V- Approche : un modèle pour triple classification                                                    | 28 |
| VI- Combinaison de modèles                                                                            | 31 |
| 1- Détermination de l'espèce et détection de la maladie                                               | 32 |
| 2- Détermination de l'espèce et détection du type de maladie                                          | 34 |
| 3- Classification finale avec agrégation des modèles:                                                 | 35 |
| VI- Points d'amélioration:                                                                            | 36 |
| VII- Annexes                                                                                          | 38 |
| Annexe 1: Classification type de Maladie                                                              | 38 |
| A- Espèce "Grape"                                                                                     | 38 |
| B- Espèce "Corn"                                                                                      | 38 |
| C- Espèce "Potato"                                                                                    | 38 |
| C- Espèce "Apple"                                                                                     | 38 |
| Annexe 2 : Modèle combine final- Performance de la classification Espèces+Type de Maladie             | 39 |
| VIII- Programmes/Code                                                                                 | 42 |

### I- Contexte:

D'après Wikipedia, "il existerait (en 2015) plus de 400 000 espèces décrites, dont la grande majorité sont des plantes à fleurs (369 000 espèces répertoriées), sachant que près de 2000 nouvelles espèces sont découvertes chaque année."

Devant ce nombre évolutif d'espèces, l'intelligence artificielle pourrait apporter son aide afin de faciliter la reconnaissance et la classification des différentes plantes, la finalité étant d'assurer une meilleure compréhension de la biodiversité de l'écosystème et de son évolution.

Dans ce contexte, le projet "PlantSpy" apporte une pierre à l'édifice en jouant le rôle du botaniste. En effet, l'objectif du projet est de localiser et classifier l'espèce d'une plante dans une image. Une fois la classification est faite, l'application informe l'utilisateur si la feuille de la plante est saine ou malade. Et si maladie il y a, "PlantSpy" devrait détecter le type de maladie.

Dans les pages qui suivent, nous vous présenterons la démarche effectuée afin de trouver le modèle Deep Learning qui permet d'apporter les meilleures réponses possibles aux questions suivantes :

- 1. Quelle est la catégorie de la plante?
- 2. Est-ce que la feuille est malade ou saine?
- 3. Quel est le type de maladie détecté ?

A partir des dataset fournis par la plateforme Kaggle, nous avons développé une première version de "PlantSpy" permettant de classifier 14 catégories de plantes différentes.

Dans le rapport suivant, nous vous présenterons :

- Le dataset choisi pour le projet et ses spécificités
- Les différentes approches de Deep Learning testées et leurs performances respectives
- Le choix du meilleur modèle possible et ses performances

Enfin, nous finirons avec des propositions d'améliorations à apporter au projet.

# II- Exploration des données :

#### - Description du dataset New Plant Disease

Nous avons essentiellement travaillé sur une base de données Kaggle (new-plant-disease-dataset) contenant près de 90K images de plantes labellisées en fonction de l'espèce de la plante et du type maladie.

Le dataset est constitué 3 répertoires :

train: 38 sous-Dir, 70 295 imagesvalid: 38 sous-Dir, 17 552 images

• test: 33 images

Le nom de chaque sous-répertoire défini l'espèce de la plante et sa maladie:





#### La base de données contient au total 14 espèces de plantes (listée en anglais) :

| 1- Apple     | 6- Orange     | 11- Soybean    |
|--------------|---------------|----------------|
| 2- Blueberry | 7- Peach      | 12- Squash     |
| 3- Cherry    | 8- Pepper     | 13- Strawberry |
| 4- Corn      | 9- Potato     | 14- Tomato     |
| 5- Grape     | 10- Raspberry |                |



La répartition entre les différentes espèces de plantes n'est pas uniforme. La catégorie "Tomato" contient plus de 3 fois plus d'images que les autres espèces.

Dans l'échantillon d'apprentissage, nous avons plus de 18000 images "Tomato" contre 7771 images "Apple" et seulement 1736 "Squash". Il y a donc un fort déséquilibre dans notre base de données qu'il conviendra de corriger par des techniques de ré-échantillonnage (Over ou underSampling) ou de pondération.

#### Plantes saines et malades:

Notre dataset contient des photos de ces 14 espèces de plantes saines et malades. Près de 68% des images correspondent à des photos de plantes malades.





Encore une fois, nous observons un déséquilibre dans la répartition entre les espèces saines et malades:

- L'espèce "Tomato" contient 10% d'image de plantes saines,
- Les espèces "Blueberry", "Raspberry" et "squash" ne contiennent aucune photo de plante malade
- A l'inverse, les espèces "Squash" et "Orange" ne présentent que des plantes malades.

#### Types de maladie:

Notre dataset contient des photos de 20 types de maladies différentes observées sur les 14 espèces de plantes. Seulement 5 types de maladie peuvent être communs à plusieurs espèces de plantes ("Bacterial Spot", "black\_rot", powdery\_mildew" et "early" and "late blight")





La répartition du nombre de type de maladie par espèces:



La répartition du type de maladie par espèce n'est pas uniforme. L'espèce "Tomato" contient 9 types de maladies différentes, quant aux autres espèces, elles contiennent entre 1 et 3 types de maladies.

#### Tableau de synthèse:

| Categorie de plante | Echantillon<br>d'apprentissage | Echantillon de validation | % plantes<br>saines | # types de<br>Maladie |
|---------------------|--------------------------------|---------------------------|---------------------|-----------------------|
| Apple               | 7771                           | 1943                      | 26%                 | 3                     |
| Blueberry           | 1816                           | 454                       | 100%                | 0                     |
| Cherry              | 3509                           | 877                       | 52%                 | 1                     |
| Corn                | 7316                           | 1829                      | 25%                 | 3                     |
| Grape               | 7222                           | 1805                      | 23%                 | 3                     |
| Orange              | 2010                           | 503                       | 0%                  | 1                     |
| Peach               | 3566                           | 891                       | 48%                 | 1                     |
| Pepper              | 3901                           | 975                       | 51%                 | 1                     |
| Potato              | 5702                           | 1426                      | 32%                 | 2                     |
| Raspberry           | 1781                           | 445                       | 100%                | 0                     |
| Soybean             | 2022                           | 505                       | 100%                | 0                     |
| Squash              | 1736                           | 434                       | 0%                  | 1                     |
| Strawberry          | 3598                           | 900                       | 51%                 | 1                     |
| Tomato              | 18345                          | 4585                      | 10%                 | 9                     |
| Total               | 70295                          | 17572                     | 32%                 | 26                    |

#### Analyse des images:

Les images de la base de données ont une haute définition et ont toutes le même format de (256x256x3). Pour réduire la mémoire (RAM) nécessaire et le temps de traitement sans pour autant perdre d'information, nous avons choisi de réduire la taille des images à (100,100,3).

Certaines espèces et surtout les types de maladies ont de grandes similarités, il nous a donc paru important de garder tout de même une bonne définition et la couleur pour mieux les distinguer.

Pour un format, (255x255x3) la modélisation porterait sur 195.075 params alors que pour des images de format (100,100,3) ce nombre passe à 30.000, ce qui paraît bien plus raisonnable sans pour autant perdre trop en résolution par rapport au format d'origine.

Nous présentons ci-dessous une sélection aléatoire d'images correspondant à chacune des espèces référencées dans notre dataset:



Nous ponvons constater que les photos de notre dataset presentent une structure assez similaire et standard: Il s'agit de la photo de la feuille d'une plante posee sur un support de couleur homogene (gris, rose, beige, noir). Il n'y a donc dans nos données aucune information ou biais liés à l'environnement/ background. Il n'aura donc aucun impact sur la modélisation.

Après une première observation de ces photos nous pouvons déjà repérer quelques espèces qui seront plus facilement identifiables et celles qui présentent de probables erreurs de prédictions. Par exemple:

- Les espèces "Corn" et "squash" devraient être facilement identifiables car la forme de leur feuillage est assez différente des autres espèces.
- En revanche sur cet exemple, nous voyons qu'il peut être délicat de distinguer "Blueberry" et "Orange".

Bien que les photos d'origine présentent le même format d'origine/résolution, nous observons de grande disparités de qualité entre les photos (voir échantillon ci-dessous)

- Photos surexposées ou sous-exposées
- photo avec ombre de la feuille
- Photos floues, etc.

Ces caractéristiques rendent la tâche de classification plus difficile mais elles sont essentielles dans l'apprentissage pour une meilleure performance du modèle.

#### Un échantillon de photos :



# III- Premiers modèles Deep Learning : classification de l'espèce d'une plante

Comme nous avons pu le voir dans la section précédente, les images de notre modèle se définissent par plusieurs niveaux de classification/labels:

- l'espèce de plantes (tomate, pomme, etc.)
- la dimension Malade ou Saine
- le type de maladie qui sera différent en fonction du type de plante.

Dans ce contexte, nous avons décidé de procéder en plusieurs étapes pour la modélisation. Dans cette section, nous nous intéresserons uniquement à la classification de l'espèce

# 1- Baseline : Modèle CNN classique

Nous nous sommes intéressés aux Réseaux de neurones convolutifs car ce type de modèle est particulièrement adapté au traitement des images du fait de son format matriciel.

Le premier modèle testé en Baseline, est un simple modèle CNN classique avec l'architecture suivante:

- une première couche de convolution composée de 32 matrices de convolution
- une couche de MaxPooling
- une couche de Dropout avec un taux de 20%
- une couche d'aplatissement en vecteur

Non-trainable params: 0

- une couche dense à 128 neurones
- une dernière couche dense "output" a 14 neurones, correspondant aux nombres de catégorie d'espèce de notre classification avec une fonction d'activation Softmax

| Layer (type)                | Output Shape          | Param # |
|-----------------------------|-----------------------|---------|
|                             |                       |         |
| Input (InputLayer)          | [(None, 100, 100, 3)] | 0       |
|                             |                       |         |
| conv2d_4 (Conv2D)           | (None, 96, 96, 32)    | 2432    |
|                             |                       |         |
| max_pooling2d_4 (MaxPooling | (None, 48, 48, 32)    | 0       |
| 2D)                         |                       |         |
| 1                           | (1) 40 40 70)         |         |
| dropout_3 (Dropout)         | (None, 48, 48, 32)    | 0       |
| flatten 2 (Flatten)         | (None, 73728)         | 0       |
| riaccen_2 (Flaccen)         | (None, 73726)         | 0       |
| dense 4 (Dense)             | (None, 128)           | 9437312 |
| delise_4 (belise)           | (1011)                | 3437312 |
| dense 5 (Dense)             | (None, 14)            | 1806    |
| _ ` ,                       | ,                     |         |
|                             |                       |         |
| Total params: 9,441,550     |                       |         |
| Trainable params: 9,441,550 |                       |         |

\_\_\_\_\_

Nous avons utilisé la fonction de perte "Sparse-sparse categorical crossentropy" adaptée au problématique de classification a plusieurs classes et nous utilisons la métrique "Accuracy" pour évaluer les performances.

L'entraînement du modèle sur 10 Epochs et des batch de taille 100 donne les résultats suivants:



Nous voyons bien que l'apprentissage se stabilise assez rapidement (présence de plateau après 2 Epochs). En revanche, les performances sur l'échantillon de validation sont médiocres et instables. Ces résultats révèlent un sur apprentissage du modèle.

# 3- Modèle CNN combiné au générateur d'images

Afin de pallier au problème de surapprentissage, nous avons utilisé le générateur d'images. Les générateurs d'images permettent de générer des lots d'images transformées (rotation, zoom, décalage, ...) pour entraîner notre modèle. Cette approche permet d'augmenter notre jeu de données et d'éviter au maximum le sur-apprentissage.

Nous avons donc instancié un générateur d'images avec les paramètres suivants:

```
train_data_generator = ImageDataGenerator(
    rotation_range=50,
    width_shift_range=1,
    height_shift_range=1,
    zoom_range=[0.7, 1.2],
    horizontal_flip=True)
```

Nous entraînons entraînons ensuite le même modèle que précédemment mais cette fois-ci en y intégrant le générateur d'images et nous obtenons les résultats suivants:



Cette fois-ci les performances convergent entre l'échantillon d'entraînement et de test. Nous évitons le surapprentissage et les performances (niveau d'accuracy) atteignent des niveaux très satisfaisants dès 10 Epochs. Notons toutefois que les performances sur l'échantillon de validation présentent une certaine instabilité.

#### **Classification Report:**

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| Apple        | 0.93      | 0.84   | 0.88     | 1943    |
| Blueberry    | 0.86      | 0.91   | 0.88     | 454     |
| Cherry       | 0.91      | 0.94   | 0.93     | 877     |
| Corn         | 0.99      | 0.96   | 0.97     | 1829    |
| Grape        | 0.98      | 0.97   | 0.97     | 1805    |
| Orange       | 0.97      | 0.93   | 0.95     | 503     |
| Peach        | 0.93      | 0.88   | 0.90     | 891     |
| Pepper       | 0.93      | 0.83   | 0.88     | 975     |
| Potato       | 0.79      | 0.96   | 0.87     | 1426    |
| Raspberry    | 0.85      | 0.95   | 0.90     | 445     |
| Soybean      | 1.00      | 0.83   | 0.91     | 505     |
| Squash       | 0.94      | 0.98   | 0.96     | 434     |
| Strawberry   | 0.96      | 0.94   | 0.95     | 900     |
| Tomato       | 0.92      | 0.94   | 0.93     | 4585    |
| accuracy     |           |        | 0.92     | 17572   |
| macro avg    | 0.93      | 0.92   | 0.92     | 17572   |
| weighted avg | 0.93      | 0.92   | 0.92     | 17572   |
|              |           |        |          |         |

L'accuracy globale du modèle est très bonne (0.92 sur l'échantillon de validation). Les niveaux de f1-score par espèces de plantes varient mais restent correctes. La catégorie "Apple" présente la performance la plus faible avec une accuracy de 0.88 et "Corn" la performance la plus élevée avec 0.97.

#### La matrice de confusion:

une analyse de la matrice de confusion permet de mieux comprendre les erreurs de prédictions:



Nous voyons que les catégories qui présentent le plus d'erreurs de prédiction sont "Tomato" et "Apple".

La catégorie "Tomato" étant sur-représentée dans notre dataset il est assez logique d'observer que beaucoup d'images ont été classées par erreur dans cette catégorie. En effet, à chaque fois qu'une photo sera difficile à classer, le modèle aura tendance a lui affecter par défaut la catégorie "Tomato".

# 4- Modèle LeNet combiné au générateur d'images

Nous avons vu que le générateur d'images améliore considérablement notre modèle en évitant le surapprentissage. Dans cette partie, nous gardons le générateur mais nous considérons cette fois-ci une d'architecture de réseaux de neurones convolutifs plus complexe: l'architecture LeNet.

L'architecture du LeNet est constituée des couches suivantes:

- Une première couche de **Convolution**
- Une couche de Max-Pooling 1
- Une nouvelle couche de Convolution
- Une couche de Max-Pooling 2
- Une couche **Dropout** (Connexions coupées: 20%)
- Une couche d'**Aplatissement**
- Une couche Dense 1 a 128 neurones
- Une dernière couche Dense Output a 14 neurones correspondant au nombre de catégorie de plantes - fonction d'activation Softmax

Model: "sequential\_1"

| Layer (type)                       | Output Shape       | Param # |
|------------------------------------|--------------------|---------|
| conv2d_3 (Conv2D)                  | (None, 96, 96, 30) | 2280    |
| max_pooling2d_3 (MaxPooling<br>2D) | (None, 32, 32, 30) | 0       |
| dropout_2 (Dropout)                | (None, 32, 32, 30) | 0       |
| conv2d_4 (Conv2D)                  | (None, 30, 30, 64) | 17344   |
| max_pooling2d_4 (MaxPooling<br>2D) | (None, 15, 15, 64) | 0       |
| conv2d_5 (Conv2D)                  | (None, 13, 13, 32) | 18464   |
| max_pooling2d_5 (MaxPooling<br>2D) | (None, 6, 6, 32)   | 0       |
| dropout_3 (Dropout)                | (None, 6, 6, 32)   | 0       |
| flatten_1 (Flatten)                | (None, 1152)       | 0       |
| dense_2 (Dense)                    | (None, 64)         | 73792   |
| dense_3 (Dense)                    | (None, 14)         | 910     |
|                                    |                    |         |

Total params: 112,790 Trainable params: 112,790

Non-trainable params: 0

L'entraînement du modèle LeNet avec générateur d'images donne les résultats suivants:



Encore une fois les performances convergent entre l'échantillon d'entraînement et de test. Nous évitons le surapprentissage et les performances atteintes (niveaux d'accuracy) sont excellentes et beaucoup plus stables.

#### **Classification Report:**

| precision | recall                                                                                       | f1-score                                                                                                                                                              | support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | 0.05                                                                                         | 0.05                                                                                                                                                                  | 4043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           |                                                                                              | 0.95                                                                                                                                                                  | 1943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.96      | 0.96                                                                                         | 0.96                                                                                                                                                                  | 454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.98      | 0.95                                                                                         | 0.96                                                                                                                                                                  | 877                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.99      | 0.98                                                                                         | 0.98                                                                                                                                                                  | 1829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.00      | 0.98                                                                                         | 0.99                                                                                                                                                                  | 1805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.99      | 0.96                                                                                         | 0.98                                                                                                                                                                  | 503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.98      | 0.89                                                                                         | 0.93                                                                                                                                                                  | 891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.97      | 0.86                                                                                         | 0.92                                                                                                                                                                  | 975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.89      | 0.99                                                                                         | 0.93                                                                                                                                                                  | 1426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.98      | 0.96                                                                                         | 0.97                                                                                                                                                                  | 445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.94      | 0.94                                                                                         | 0.94                                                                                                                                                                  | 505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.96      | 0.99                                                                                         | 0.98                                                                                                                                                                  | 434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.97      | 0.98                                                                                         | 0.98                                                                                                                                                                  | 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.96      | 0.98                                                                                         | 0.97                                                                                                                                                                  | 4585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           |                                                                                              |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           |                                                                                              | 0.96                                                                                                                                                                  | 17572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.96      | 0.96                                                                                         | 0.96                                                                                                                                                                  | 17572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.96      | 0.96                                                                                         | 0.96                                                                                                                                                                  | 17572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 0.94<br>0.96<br>0.98<br>0.99<br>1.00<br>0.99<br>0.98<br>0.97<br>0.98<br>0.94<br>0.96<br>0.97 | 0.94 0.96<br>0.96 0.96<br>0.98 0.95<br>0.99 0.98<br>1.00 0.98<br>0.99 0.96<br>0.98 0.89<br>0.97 0.86<br>0.89 0.99<br>0.98 0.99<br>0.98 0.99<br>0.98 0.96<br>0.99 0.98 | 0.94       0.96       0.95         0.96       0.96       0.96         0.98       0.95       0.96         0.99       0.98       0.98         1.00       0.98       0.99         0.99       0.96       0.98         0.98       0.89       0.93         0.97       0.86       0.92         0.89       0.99       0.93         0.98       0.96       0.97         0.94       0.94       0.94         0.96       0.99       0.98         0.97       0.98       0.98         0.96       0.98       0.97         0.96       0.96       0.96 |

Les performances avec l'architecture LeNet sont excellentes avec une accuracy globale de 0.96. Les niveaux de f1-score par espèces sont également très bons variant entre 0.92 et 0.98.

#### La matrice de confusion:



La matrice de confusion confirme les bons résultats du modèle LeNet par rapport au modèle CNN en révélant moins d'erreurs de prédiction même sur les categorie "Tomates" et "Apple"

# 5- Modèle LeNet avec Rééquilibrage des données et générateur d'images

Comme évoqué dans la partie exploration des données, notre dataset présente un fort déséquilibre entre les différentes espèces. En effet, la catégorie "Tomates" à elle seule contient plus de 23.000 images différentes, 4 fois plus que la moyenne des 13 autres catégories. Il nous a paru pertinent de tester l'impact d'un rééquilibrage de nos données sur l'échantillon d'entraînement sur la performance du modèle.

Au-delà du rééquilibrage de nos données, il nous a également semblé important de réduire la taille de notre échantillon d'apprentissage. En effet, cela engagera moins de ressources de calculs : RAM, disque dur. Durant les tests des premiers modèles, nous avons été mis en épreuve, à plusieurs reprises, par des crash lors de l'exécution du programme faute de disponibilité de mémoire RAM, ressource vitale pour le Deep Learning en particulier.

Afin de réduire la taille du dataset tout en le rééquilibrant, nous avons appliqué le modèle "RandomUnderSampler". Cela nous a permis d'obtenir un nouveau dataset de 18K images réparties en 1286 images par catégories.

Les resultats du Modele LeNet combiné au générateur de d'images sur ce nouveau dataset:



L'apprentissage a partir de ce sous-échantillon d'entraînement est très satisfaisant. Les performances convergent et atteignent de très bon niveaux. Il nous a fallu en revanche un peu plus d'Epoch pour atteindre le plateau d'apprentissage.

#### **Classification Report:**

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| Apple        | 0.93      | 0.73   | 0.82     | 1943    |
| Blueberry    | 0.85      | 0.94   | 0.90     | 454     |
| Cherry       | 0.91      | 0.90   | 0.91     | 877     |
| Corn         | 0.98      | 0.94   | 0.96     | 1829    |
| Grape        | 0.93      | 0.98   | 0.95     | 1805    |
| 0range       | 0.98      | 0.95   | 0.96     | 503     |
| Peach        | 0.91      | 0.92   | 0.91     | 891     |
| Pepper       | 0.84      | 0.83   | 0.84     | 975     |
| Potato       | 0.76      | 0.93   | 0.84     | 1426    |
| Raspberry    | 0.85      | 0.98   | 0.91     | 445     |
| Soybean      | 0.86      | 0.93   | 0.90     | 505     |
| Squash       | 0.84      | 0.99   | 0.91     | 434     |
| Strawberry   | 0.90      | 0.97   | 0.93     | 900     |
| Tomato       | 0.92      | 0.88   | 0.90     | 4585    |
| accuracy     |           |        | 0.90     | 17572   |
| macro avg    | 0.89      | 0.92   | 0.90     | 17572   |
| weighted avg | 0.90      | 0.90   | 0.90     | 17572   |

#### Matrice de confusion:



Les performances du modèle restent excellentes bien que légèrement moins bonnes que le modèle entraîné sur les tout le dataset d'entraînement (70K images) avec déséquilibre. Toutefois, il est important de noter que nous avons maintenu la performance tout en réduisant notre dataset de 75%.

## 5- Transfer Learning

Nous allons dans cette section appliquer la technique de transfert de connaissance à partir d'une modèle de classification d'image existant VGG16 (d'imageNet). En effet, dans la littérature scientifique sur la classification de plante, l'utilisation de modèles existants (VGG, ResNet, etc) est très souvent utilisée.

Le principe est le suivant: ces modèles existants sont composés de **deux grandes parties**. La première est un ensemble de convolutions qui va permettre l'extraction des features. La seconde est une succession de dense layers qui a pour but de classifier le modèle de la voiture. Dans ce contexte, pour construire notre modèle, nous allons **initialiser les poids de la partie d'extraction de features par les poids du modèle pré-entraîné**. Les couches de la partie de classification seront remplacées et initialisées de manière aléatoire.

Model: "sequential"

| Layer (type)                                          | Output Shape            | Param #  |
|-------------------------------------------------------|-------------------------|----------|
| vgg16 (Functional)                                    | (None, None, None, 512) | 14714688 |
| global_average_pooling2d (G<br>lobalAveragePooling2D) | (None, 512)             | 0        |
| dense (Dense)                                         | (None, 1024)            | 525312   |
| dropout (Dropout)                                     | (None, 1024)            | 0        |
| dense_1 (Dense)                                       | (None, 512)             | 524800   |
| dropout_1 (Dropout)                                   | (None, 512)             | 0        |
| dense_2 (Dense)                                       | (None, 14)              | 7182     |
|                                                       |                         |          |

\_\_\_\_\_

Total params: 15,771,982 Trainable params: 8,136,718 Non-trainable params: 7,635,264

Au cours de l'apprentissage, nous avons testé deux approches:

- Approche 1: "freezer" entièrement les poids de la partie pré-entraînée
- Approche 2: entrainer 4 couches et "freezer" le reste

Pour la suite, nous ne présentons que les résultats de la deuxième approche qui nous a donné de meilleurs résultats.

Compte tenu du temps de traitement d'un tel modèle, nous avons réalisé l'apprentissage sur l'échantillon "Undersampling"

L'entraînement du modèle sur l'échantillon ré-échantillonne (Undersampling) donne les résultats suivants:



Avec le transfert, l'apprentissage atteint plus vite un plateau (des 4 epochs vs 50 epochs) en revanche le temps d'exécution est extrêmement long (presque 5H) même en ayant "unfeeze" que 4 couches du modèle VGG16.

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| Apple        | 0.97      | 0.77   | 0.86     | 1943    |
| Blueberry    | 0.88      | 0.97   | 0.92     | 454     |
| Cherry       | 0.86      | 0.99   | 0.92     | 877     |
| Corn         | 1.00      | 0.99   | 0.99     | 1829    |
| Grape        | 0.99      | 1.00   | 0.99     | 1805    |
| Orange       | 0.89      | 1.00   | 0.94     | 503     |
| Peach        | 0.89      | 0.96   | 0.92     | 891     |
| Pepper       | 0.89      | 0.96   | 0.92     | 975     |
| Potato       | 0.81      | 0.96   | 0.88     | 1426    |
| Raspberry    | 0.93      | 0.99   | 0.96     | 445     |
| Soybean      | 0.85      | 1.00   | 0.92     | 505     |
| Squash       | 0.99      | 0.99   | 0.99     | 434     |
| Strawberry   | 0.93      | 0.99   | 0.96     | 900     |
| Tomato       | 0.99      | 0.90   | 0.94     | 4585    |
| accuracy     |           |        | 0.94     | 17572   |
| macro avg    | 0.92      | 0.96   | 0.94     | 17572   |
| weighted avg | 0.94      | 0.94   | 0.94     | 17572   |
|              |           |        |          |         |

Les performances sont très bonnes avec une accuracy globale de 0.94 et des f1 score par espèces entre 0.86 et 0.99.



# 5- Conclusions- Synthèse tirées des modèles précédents

|       |            | Baseline: CNN Classique | CNN +<br>Generateurs de<br>donnees | LeNet + Generateur de<br>Donnees | LeNet + Generateur de<br>Donnees + Reequilibrage<br>des donnees<br>(UnderSampling)-50<br>Epochs | Transfer Learning VGG6+<br>UnderSampling (18K) -<br>10Epochs |
|-------|------------|-------------------------|------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|       | Apple      | 0.76                    | 0.88                               | 0.95                             | 0.82                                                                                            | 0.86                                                         |
|       | Blueberry  | 0.81                    | 0.88                               | 0.96                             | 0.90                                                                                            | 0.92                                                         |
|       | Cherry     | 0.78                    | 0.93                               | 0.96                             | 0.91                                                                                            | 0.92                                                         |
|       | Com        | 0.96                    | 0.97                               | 0.98                             | 0.96                                                                                            | 0.99                                                         |
|       | Grape      | 0.95                    | 0.97                               | 0.99                             | 0.95                                                                                            | 0.99                                                         |
| o)    | Orange     | 0.92                    | 0.95                               | 0.98                             | 0.96                                                                                            | 0.94                                                         |
| Score | Peach      | 0.79                    | 0.90                               | 0.93                             | 0.91                                                                                            | 0.92                                                         |
| F1 S  | Pepper     | 0.80                    | 0.88                               | 0.92                             | 0.84                                                                                            | 0.92                                                         |
| ш.    | Potato     | 0.78                    | 0.87                               | 0.93                             | 0.84                                                                                            | 0.88                                                         |
|       | Raspberry  | 0.84                    | 0.90                               | 0.97                             | 0.91                                                                                            | 0.96                                                         |
|       | Soybean    | 0.89                    | 0.91                               | 0.94                             | 0.90                                                                                            | 0.92                                                         |
|       | Squash     | 0.90                    | 0.96                               | 0.98                             | 0.91                                                                                            | 0.99                                                         |
|       | Strawberry | 0.89                    | 0.95                               | 0.98                             | 0.93                                                                                            | 0.96                                                         |
|       | Tomato     | 0.77                    | 0.93                               | 0.97                             | 0.90                                                                                            | 0.94                                                         |
| Acc   | uracy      | 0.83                    | 0.92                               | 0.96                             | 0.90                                                                                            | 0.94                                                         |

Nous avons entraîné au total 5 modèles pour la classification d'espèces, avec des performances très satisfaisantes (aussi bien en accuracy global que les F1 Score par espèces)

- le générateur d'images s'est avéré particulièrement efficace pour éviter le sur-apprentissage
- L'architecture LeNet semble plus adapté à notre problématique apportant la meilleure performance

- Undersampling n'améliore pas les performances du modèle mais permet de réduire notre dataset d'apprentissage de 75% tout en conservant le même niveau d'accuracy.
- l'approche par transfert learning paraît prometteuse en performance mais très gourmande en temps d'exécution.

# IV- Détection de la maladie et classification du type de maladie

Lors de l'exploration des données, nous avons montré que l'information disponibles sur les maladie des plantes n'est pas homogène:

- Les types de maladies ne sont pas les mêmes d'une espèce à l'autre.
- Certaines espèces ne présentent aucune photo malade dans le dataset et à l'inverse certaines espèces n'ont que des images avec maladie.
- Certaines espèces ne présentent qu'un seul type de maladie et enfin d'autres espèces comme "Tomato" présentent différents types de maladies.

Compte tenu de ses disparités, nous avons décidé de travailler en deux temps:

- Tout d'abord, nous avons entraîné un modèle générique permettant de détecter la présence de maladie indépendamment de l'espèce de la plante,
- et dans un deuxième, nous avons travaillé sur des modèles dédiés par catégorie de plantes pour classifier le type de maladie.

#### 1- Détection de la maladie

Dans cette partie, on entraîne un modèle de Deep Learning à détecter si la plante est malade ou pas, toutes catégories confondues. Comme pour la classification par catégorie, on a utilisé le modèle LeNet combiné du générateur de Data.

Après entraînement du modèle, on obtient une "accuracy" de **98%**. Le modèle arrive facilement à détecter les plantes malades des non malades car la maladie de la plante se présente sous forme d'une non-uniformité de la surface de la plante et un changement de la couleur verte de la plante : présence de taches noires, taches marrons ou encore jaunes, couleur verte dégradées, ... etc. Ce qui facilite l'apprentissage binaire du modèle.

- Dataset d'entraînement : un répertoire réduit de 18K images
- Dataset de validation : le repo "Valid" contenant 17572 images

Ci-dessous les résultats du modèle appliqué au dataset de validation. D'après le rapport de classification, on obtient une "accuracy" de **92%** :



| ₽          | precision       | recall | f1-score | support |
|------------|-----------------|--------|----------|---------|
|            | 0 1.00          | 0.88   | 0.94     | 12000   |
|            | 1 0.86          | 0.99   | 0.88     | 5572    |
| accura     | СУ              |        | 0.92     | 17572   |
| macro av   | 3               |        | 0.91     | 17572   |
| weighted a | /g <b>0.</b> 93 | 0.92   | 0.92     | 17572   |

Les mêmes valeurs sont représentées sous forme de matrice de confusion comme suit :



Ce modèle de détection de présence de maladie a été aussi sauvegardé pour servir pour les prochaines classifications et combinaisons avec d'autres modèles Deep Learning.

# 2- Classification du type de maladie de la plante

Seules les espèces de plantes présentant au moins 2 types de maladie en plus du statut "healthy" ont été prises en comptes dans cette section:

- 1) Apple
- 2) Corn
- 3) Grape
- 4) Potato
- 5) Tomato

Nous allons détailler le modèle Tomato puis présenter la synthèse des résultats des 5 modèles sur les 5 catégories de plantes.

# 2.1- L'espèce "Tomato" comme exemple

Il s'agit dans cette partie d'évaluer la possibilité de classification par type de maladie. Nous présentons ici les résultats obtenus pour l'espèce "Tomato". Nous avons choisi la tomate qui présente non seulement un nombre important d'images mais également une grande variété de type de maladie dans la base de données.

On part de l'hypothèse que l'on connait la catégorie de la plante. On va chercher alors à classer de type de maladie de la plante.

#### **Dataset:**

La base de données d'apprentissage contient 18 845 photos de tomates réparties en 10 catégories de maladie (dont la catégorie "Healthy" plus 9 maladies différentes):



La répartition entre les différentes classes est bien équilibrée.

L'échantillon de validation contient 4585 photos de tomates également uniformément réparties entre les différentes catégories de maladies.

#### **Data visualisation:**



Ces images montrent à quel point la classification n'est pas une tâche aisée. La distinction entre les différentes maladies semble particulièrement difficile à première vue!

#### Deep Learning: Classification des maladies de "Tomates"

Suite aux conclusions précédentes pour la classification d'espèce, nous avons choisi d'appliquer un modèle de **Deep Learning** de classification, utilisant une **architecture LeNet** avec **générateur de données** pour éviter le sur apprentissage.



Les performances du modèles atteignent des niveaux satisfaisants et stables après 15 Epochs et nous évitons bien le surapprentissage avec des performances convergentes entre l'échantillon d'apprentissage et l'échantillon de validation.

#### **Classification Report**

|                                     | precision | recall | f1-score | support |
|-------------------------------------|-----------|--------|----------|---------|
| Bacterial_spot                      | 0.96      | 0.92   | 0.94     | 425     |
| Early_blight                        | 0.75      | 0.97   | 0.85     | 480     |
| Late_blight                         | 0.95      | 0.82   | 0.88     | 463     |
| Leaf_Mold                           | 0.94      | 0.95   | 0.95     | 470     |
| Septoria_leaf_spot                  | 0.92      | 0.88   | 0.90     | 436     |
| pider_mites Two-spotted_spider_mite | 0.93      | 0.85   | 0.89     | 435     |
| Target_Spot                         | 0.92      | 0.80   | 0.86     | 457     |
| Tomato_Yellow_Leaf_Curl_Virus       | 0.98      | 0.93   | 0.95     | 490     |
| Tomato_mosaic_virus                 | 0.98      | 0.98   | 0.98     | 448     |
| healthy                             | 0.87      | 0.99   | 0.93     | 481     |
| accuracy                            |           |        | 0.91     | 4585    |
| macro avg                           | 0.92      | 0.91   | 0.91     | 4585    |
| weighted avg                        | 0.92      | 0.91   | 0.91     | 4585    |

Le rapport de classification confirme les performances du modèles avec une "accuracy" globale de 0.91 et avec des valeurs de f1-score correctes pour toutes les classes (Minimum 0.85, maximum: 0,98).

Les types de maladie qui présentent les meilleures performances sont "Tomato\_mosaic\_virus", "Tomato\_Yellow\_leaf\_curl\_virus" et "Leaf\_mold" car elles se démarquent par des caractéristiques très différentes des autres types de maladie (Couleur, forme) et donc plus facilement identifiables.

### Matrice de confusion - Prédiction des types de maladie de Tomates:



# 2.2- Résultats sur les autres espèces

Nous avons procédé de même pour les 4 autres espèces de plantes présentant au moins 2 types de maladies (Apple, Corn, Grape et Potato).

On a gardé aussi la même stratégie de dataset que celle des modèles précédents:

- Dataset d'entraînement : un répertoire réduit de 18K images
- Dataset de validation : le repo "Valid" contenant 17572 images
- Modèle utilisé : architecture LeNet + générateur d'images

Ci-dessous une synthèse des résultats obtenus (plus de détails dans l'Annexe-1):

|        | # de types de maladie | Accuracy du modèle | F1-Score Min | F1-Score Max |
|--------|-----------------------|--------------------|--------------|--------------|
| Tomato | 9                     | 0.91               | 0.85         | 0.98         |
| Apple  | 3                     | 0.91               | 0.89         | 0.95         |
| Corn   | 3                     | 0.84               | 0.73         | 0.98         |
| Grape  | 3                     | 0.98               | 0.96         | 1            |
| Potato | 2                     | 0.98               | 0.97         | 1            |

Les modèles de classification obtiennent d'excellentes performances sur toutes ces catégories.

# V- Approche : un modèle pour triple classification

Dans cette approche on va explorer la piste d'entraîner un modèle de Deep Learning avec toutes les classes / catégories de plantes, avec leurs maladies associées.

Selon le dataset disponible, cela reviendrait à classifier 38 classes différentes. La sortie du modèle devrait donner une concaténation de deux informations qui peuvent prendre un des deux formats suivants :

- 1- "catégorie"\_healthy : si on prédit que la feuille est saine.
- 2- "catégorie" "typeMaladie": si on prédit que la feuille est malade,
- où "catégorie" peut prendre une des 14 valeurs disponibles dans le dataset
- et "typeMaladie" peut prendre une des 20 valeurs disponibles dans le dataset.

Ce modèle, à première vue, permettrait de répondre rapidement et efficacement à l'objectif du projet : répondre aux 3 questions (catégorie, si maladie, quelle type de maladie). En effet, on obtient la performance suivante :

- R1: Entraînement et validation du modèle sur le dataset réduit de 18K images dont 4501 images utilisées pour le test :
  - accuracy = 91%
  - F1-Score min = 53%
  - F1-Score max = 98%
- R2: Application du modèle obtenu sur la dataset "Valid" contenant 17K images :
  - accuracy = 84%
  - F1-Score min = 55%
  - F1-Score max = 98%

# Les rapportsde Classification associés aux résultats R1 et R2 : • Pour R1 :

| 0 | <pre>print(metrics.classification_report(y_test_label, test_pred_LeNet1_label))</pre> |              |              |              |          |  |  |
|---|---------------------------------------------------------------------------------------|--------------|--------------|--------------|----------|--|--|
| ₽ |                                                                                       | precision    | recall       | f1-score     | support  |  |  |
|   | Apple_Apple_scab Apple_Black_rot                                                      | 0.86<br>0.91 | 0.70<br>0.84 | 0.78<br>0.87 | 81<br>82 |  |  |

| _²                                                  | precision | recatt | 11-30016 | Support |  |
|-----------------------------------------------------|-----------|--------|----------|---------|--|
| Apple_Apple_scab                                    | 0.86      | 0.70   | 0.78     | 81      |  |
| Apple_Black_rot                                     | 0.91      | 0.84   | 0.87     | 82      |  |
| Apple_Cedar_apple_rust                              | 0.97      | 0.84   | 0.90     | 70      |  |
| Apple_healthy                                       | 0.81      | 0.76   | 0.78     | 76      |  |
| Blueberry_healthy                                   | 0.96      | 0.95   | 0.95     | 316     |  |
| Cherry_Powdery_mildew                               | 0.97      | 0.94   | 0.95     | 172     |  |
| Cherry_healthy                                      | 0.99      | 0.95   | 0.97     | 160     |  |
| Corn_Cercospora_leaf_spot Gray_leaf_spot            | 0.89      | 0.82   | 0.85     | 76      |  |
| Corn_Common_rust_                                   | 0.95      | 0.99   | 0.97     | 77      |  |
| Corn_Northern_Leaf_Blight                           | 0.95      | 0.91   | 0.93     | 76      |  |
| Corn_healthy                                        | 0.99      | 0.93   | 0.96     | 74      |  |
| Grape_Black_rot                                     | 0.79      | 0.75   | 0.77     | 84      |  |
| <pre>Grape_Esca_(Black_Measles)</pre>               | 0.83      | 0.93   | 0.87     | 97      |  |
| <pre>Grape_Leaf_blight_(Isariopsis_Leaf_Spot)</pre> | 0.94      | 0.92   | 0.93     | 98      |  |
| Grape_healthy                                       | 0.98      | 0.79   | 0.87     | 70      |  |
| Orange_Haunglongbing_(Citrus_greening)              | 1.00      | 0.97   | 0.99     | 327     |  |
| Peach_Bacterial_spot                                | 0.92      | 0.92   | 0.92     | 167     |  |
| Peach_healthy                                       | 0.98      | 0.99   | 0.99     | 143     |  |
| Pepper_Bacterial_spot                               | 0.92      | 0.87   | 0.89     | 152     |  |
| Pepper_healthy                                      | 0.93      | 0.86   | 0.90     | 150     |  |
| Potato_Early_blight                                 | 0.87      | 0.98   | 0.92     | 99      |  |
| Potato_Late_blight                                  | 0.77      | 0.89   | 0.83     | 116     |  |
| Potato_healthy                                      | 0.85      | 0.91   | 0.88     | 103     |  |
| Raspberry_healthy                                   | 0.91      | 1.00   | 0.95     | 321     |  |
| Soybean_healthy                                     | 0.93      | 0.97   | 0.95     | 342     |  |
| Squash_Powdery_mildew                               | 0.97      | 0.99   | 0.98     | 316     |  |
| Strawberry_Leaf_scorch                              | 0.94      | 0.97   | 0.95     | 150     |  |
| Strawberry_healthy                                  | 0.96      | 0.96   | 0.96     | 167     |  |
| Tomato_Bacterial_spot                               | 0.88      | 0.76   | 0.82     | 38      |  |
| Tomato_Early_blight                                 | 0.61      | 0.74   | 0.67     | 23      |  |
| Tomato_Late_blight                                  | 0.71      | 0.48   | 0.58     | 31      |  |
| Tomato_Leaf_Mold                                    | 0.65      | 0.68   | 0.67     | 41      |  |
| Tomato_Septoria_leaf_spot                           | 0.67      | 0.47   | 0.55     | 38      |  |
| Tomato_Spider_mites Two-spotted_spider_mite         | 0.77      | 0.60   | 0.68     | 45      |  |
| Tomato_Target_Spot                                  | 0.47      | 0.62   | 0.53     | 32      |  |
| Tomato_Tomato_Yellow_Leaf_Curl_Virus                | 0.85      | 0.82   | 0.84     | 28      |  |
| Tomato_Tomato_mosaic_virus                          | 0.78      | 0.92   | 0.85     | 39      |  |
| Tomato_healthy                                      | 0.73      | 0.92   | 0.81     | 24      |  |
| accuracy                                            |           |        | 0.91     | 4501    |  |
| macro avg                                           | 0.86      | 0.85   | 0.85     | 4501    |  |
| weighted avg                                        | 0.91      | 0.91   | 0.91     | 4501    |  |
|                                                     |           |        |          |         |  |

#### Pour R2 :

| • Tourna.                                                              |                 |           |          |         |
|------------------------------------------------------------------------|-----------------|-----------|----------|---------|
| <pre>print(metrics.classification_report(y_valid_label, test_g</pre>   | ored_LeNet1_val | idlabel)) |          |         |
| D-                                                                     | precision       | recall    | f1-score | support |
| Apple_Apple_scab                                                       | 0.90            | 0.66      | 0.76     | 504     |
| Apple_Black_rot                                                        | 0.91            | 0.82      | 0.86     | 497     |
| Apple Cedar apple rust                                                 | 0.92            | 0.83      | 0.87     | 440     |
| Apple_healthy                                                          | 0.87            | 0.76      | 0.81     | 502     |
| Blueberry_healthy                                                      | 0.84            | 0.95      | 0.89     | 454     |
| Cherry (including sour) Powdery mildew                                 | 0.90            | 0.91      | 0.91     | 421     |
| Cherry_(including_sour)_healthy                                        | 0.95            | 0.92      | 0.93     | 456     |
| Corn_(maize)_Cercospora_leaf_spot Gray_leaf_spot                       | 0.78            | 0.78      | 0.78     | 410     |
| Corn_(maize)_corespond_tear_spot dray_tear_spot                        | 0.97            | 0.99      | 0.98     | 477     |
| Corn_(maize)_Northern_Leaf_Blight                                      | 0.89            | 0.84      | 0.87     | 477     |
| Corn_(maize)_healthy                                                   | 0.99            | 0.91      | 0.95     | 465     |
| Grape_Black_rot                                                        | 0.82            | 0.81      | 0.81     | 472     |
| Grape_Esca_(Black_Measles)                                             | 0.87            | 0.95      | 0.91     | 480     |
| Grape_Leaf_blight_(Isariopsis_Leaf_Spot)                               | 0.89            | 0.95      | 0.91     | 430     |
| Grape_healthy                                                          | 0.99            | 0.80      | 0.88     | 423     |
| Orange_Haunglongbing_(Citrus_greening)                                 | 0.94            | 0.97      | 0.95     | 503     |
| Peach_Bacterial_spot                                                   | 0.81            | 0.85      | 0.83     | 459     |
| Peach healthy                                                          | 0.94            | 0.97      | 0.96     | 432     |
| Pepper,_bell_Bacterial_spot                                            | 0.76            | 0.88      | 0.81     | 478     |
| Pepper,_bell_healthy                                                   | 0.85            | 0.85      | 0.85     | 497     |
| Potato_Early_blight                                                    | 0.84            | 0.96      | 0.90     | 485     |
| Potato_Late_blight                                                     | 0.63            | 0.89      | 0.74     | 485     |
| Potato_balthy                                                          | 0.78            | 0.03      | 0.74     | 456     |
| Raspberry_healthy                                                      | 0.79            | 0.99      | 0.88     | 445     |
| Soybean healthy                                                        | 0.78            | 0.95      | 0.86     | 505     |
| Squash_Powdery_mildew                                                  | 0.78            | 0.99      | 0.90     | 434     |
| Strawberry_Leaf_scorch                                                 | 0.90            | 0.99      | 0.90     | 444     |
| Strawberry_Lear_scorting                                               | 0.96            | 0.94      | 0.95     | 456     |
| Tomato_Bacterial_spot                                                  | 0.87            | 0.74      | 0.80     | 425     |
| Tomato_Early_blight                                                    | 0.73            | 0.62      | 0.67     | 480     |
| Tomato_Earty_btight                                                    | 0.78            | 0.62      | 0.59     | 463     |
| Tomato_Leaf_Mold                                                       | 0.80            | 0.68      | 0.39     | 470     |
| Tomato_Septoria_leaf_spot                                              | 0.68            | 0.47      | 0.74     | 436     |
| Tomato_Spider_mites Two-spotted_spider_mite                            | 0.72            | 0.78      | 0.75     | 435     |
| Tomato_Spider_mites Two-Spotted_Spider_mite  Tomato_Target_Spot        | 0.72<br>0.74    | 0.62      | 0.73     | 457     |
| Tomato_Tomato_Yellow_Leaf_Curl_Virus                                   | 0.74            | 0.84      | 0.89     | 490     |
| Tomato_Tomato_Tertow_LeaT_curt_virus Tomato_Tomato_Tomato_mosaic_virus | 0.95<br>0.87    | 0.04      | 0.89     | 448     |
| Tomato_nomato_nosaic_virus Tomato_healthy                              | 0.81            | 0.91      | 0.87     | 481     |
| Tolliaco_neactify                                                      | A * 01          | v.94      |          |         |
| accuracy                                                               |                 |           | 0.84     | 17572   |
| macro avg                                                              | 0.85            | 0.84      | 0.84     | 17572   |
| weighted avg                                                           | 0.85            | 0.84      | 0.84     | 17572   |
|                                                                        |                 |           |          |         |

Mais en analysant de plus près les résultats, nous trouvons que le modèle est limité à cause du biais du dataset. En effet, il existe des catégories avec des données non équilibrée:

- Les catégories (Cherry, Peach, Pepper, Squash) ont une seule et unique maladie. Donc le modèle ne saurait prédire qu'un seul type de maladie pour ces plantes.
- Pour Orange, même si la détection de catégorie avec ce modèle est bonne, en termes de maladie. Avec ce modèle, cette prédiction sera toujours associée à la maladie "Huanglongbing" même si la plante aurait pu être saine.
- Les catégories (Raspberry, Blueberry, Soybean) sont toutes saines dans le dataset. Donc le modèle associera ces catégorie à l'état "health" même si la photo correspondait à une feuille malade.
- Pour la classe "Tomato\_Septoria\_Leaf\_spot", on voit que le F1-score est de juste 55%, ce qui reste relativement faible. On va voir dans la suite avec l'approche combinant 3 modèles que ce F1-score peut être amélioré. En l'occurrence il aura la valeur de 89,29% sur le dataset de validation

Nous nous apercevons vite que pour ces catégories, les prédictions vont être tout le temps associées aux mêmes labels pour le type de maladie.

Afin de pallier ce biais introduit par le déséquilibre du dataset, on a choisi de faire appel aux modèles de prédictions indépendants. Cette approche sera expliquée dans le chapitre suivant.

Ci-dessous le tableau des 38 classes possibles à prédire :

| Apple_Apple_scab           | Corn_Common_rust              | Peach_Bacterial_spot  | Soybean_healthy         | Tomato_Septoria_leaf<br>_spot     |
|----------------------------|-------------------------------|-----------------------|-------------------------|-----------------------------------|
| Apple_Black_rot            | Corn_Northern_Leaf_<br>Blight | Peach_healthy         | Squash_Powdery_mil dew  | Tomato_Spider_mites               |
| Apple_Cedar_apple_r ust    | Corn_healthy                  | Pepper_Bacterial_spot | Strawberry_Leaf_scor ch | 'Tomato_Target_Spot'              |
| Apple_healthy              | Grape_Black_rot               | 'Pepper_healthy       | Strawberry_healthy      | Tomato_Yellow_Leaf_<br>Curl_Virus |
| Blueberry_healthy          | Grape_Esca                    | Potato_Early_blight   | Tomato_Bacterial_spot   | Tomato_mosaic_virus               |
| Cherry_Powdery_mild ew     | Grape_Leaf_blight             | Potato_Late_blight    | Tomato_Early_blight     | Tomato_healthy                    |
| Cherry_healthy             | Grape_healthy                 | Potato_healthy        | Tomato_Late_blight      |                                   |
| Corn_Cercospora_lea f_spot | Orange_Haunglongbi<br>ng      | Raspberry_healthy     | 'Tomato_Leaf_Mold       |                                   |

- Les cases vertes correspondent aux plantes ayant un seul type de maladie
- Les cases avec des degrés de bleu correspondent aux plantes ayant juste une seule maladie répertoriée.

# VI- Combinaison de modèles

Après avoir entraîné et comparé les performance de plusieurs modèles et compte tenu des biais de la database utilisée pour l'entraînement, il a été décidé de suivre l'approche suivante :

- \* Etape 1 : Classifier les plantes par catégorie avec le modèle 1 (qui classifie les 14 catégories de fruits/légumes du dataset)
- \* Etape 2 : En fonction du résultat de la prédiction de l'étape 1, décider quel modèle enchainer pour la prédiction suivante:
  - a) Si la prédiction est une catégorie qui fait partie de la liste [Apple, Corn, Grape, Potato, Tomato], on fait alors appel au modèle qui prédit directement l'état de santé de la feuille liée à sa catégorie.

Par exemple, si la catégorie prédite est "Tomato", appeler le modèle qui prédit les types de maladies de "Tomato"

En sortie on aura comme résultat deux types d'infos :

- catégorie + "healthy"
- catégorie + "nom de l'éventuelle maladie"

b) Sinon, appeler le modèle qui détecte seulement la présence ou pas de maladie sur la feuille de la plante.

En sortie on aura comme résultat deux types d'infos :

- catégorie + "healthy"
- catégorie + "unhealthy"

Cette approche permet d'éviter d'associer par défaut un nom de maladie à une plante alors qu'elle aurait pu être "saine" juste parce que le modèle qui prédit le type de maladie n'est entraîné qu'avec des photos de la plante malade.

Le schéma suivant résume la démarche expliquée ci-dessus :



Dans la partie suivante, nous présentons les résultats de cette approché après avoir appliqué les différents modèles sur la dataset de validation (Plus de 17k images)

# 1- Détermination de l'espèce et détection de la maladie

Nous nous intéressons dans cette partie a la possibilité de classer les photos à la fois selon leur catégorie (Orange, Peach, ...., etc.) et la présence de maladie (sans spécification du type de maladie).

Etant donné que nous avons déjà entraîné deux modèles dédiés (un modèle pour déterminer la catégorie de plante et un modèle pour déterminer la présence de maladie), nous avons tout simplement combine les résultats de ses deux modèles:



#### Rapport de classification:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| Apple_0      | 0.94      | 0.83   | 0.88     | 1441    |
| Apple_1      | 0.65      | 0.91   | 0.76     | 502     |
| Blueberry_0  | 0.00      | 0.00   | 0.00     | 0       |
| Blueberry_1  | 0.96      | 0.95   | 0.96     | 454     |
| Cherry_0     | 0.98      | 0.74   | 0.85     | 421     |
| Cherry_1     | 0.82      | 0.95   | 0.88     | 456     |
| Corn_0       | 0.99      | 0.97   | 0.98     | 1364    |
| Corn_1       | 0.98      | 0.98   | 0.98     | 465     |
| Grape_0      | 0.99      | 0.97   | 0.98     | 1382    |
| Grape_1      | 0.93      | 0.93   | 0.93     | 423     |
| Orange_0     | 1.00      | 0.89   | 0.94     | 503     |
| Orange_1     | 0.00      | 0.00   | 0.00     | 0       |
| Peach_0      | 0.96      | 0.81   | 0.88     | 459     |
| Peach_1      | 0.95      | 0.93   | 0.94     | 432     |
| Pepper_0     | 0.97      | 0.82   | 0.89     | 478     |
| Pepper_1     | 0.92      | 0.86   | 0.89     | 497     |
| Potato_0     | 0.91      | 0.94   | 0.93     | 970     |
| Potato_1     | 0.78      | 0.98   | 0.87     | 456     |
| Raspberry_0  | 0.00      | 0.00   | 0.00     | 0       |
| Raspberry_1  | 0.99      | 0.96   | 0.98     | 445     |
| Soybean_0    | 0.00      | 0.00   | 0.00     | 0       |
| Soybean_1    | 0.94      | 0.94   | 0.94     | 505     |
| Squash_0     | 0.97      | 0.90   | 0.93     | 434     |
| Squash_1     | 0.00      | 0.00   | 0.00     | 0       |
| Strawberry_0 | 0.97      | 0.97   | 0.97     | 444     |
| Strawberry_1 | 0.96      | 0.99   | 0.98     | 456     |
| Tomato_0     | 0.95      | 0.76   | 0.84     | 4104    |
| Tomato_1     | 0.33      | 0.96   | 0.49     | 481     |
| accuracy     |           |        | 0.88     | 17572   |
| macro avg    | 0.74      | 0.75   | 0.74     | 17572   |
| weighted avg | 0.93      | 0.88   | 0.89     | 17572   |

Nous obtenons une bonne performance de **0.88 d'accuracy.** En quelque sorte la combinaison des deux modèles cumule les erreurs de prédiction des deux modèles. Pour rappel, l'accuracy du modèle de classification par espèces était de l'ordre de 0.96 et celui de la détermination de présence de maladie de 0.93.

Le modèle qui classifie les 38 classes du dataset (chapitre V) obtient une performance globale de **84% sur le dataset de validation**. Donc la combinaison des deux modèles permet ici d'améliorer la performance à 88% tout en ajoutant plus de précision sur l'état de certaines plantes.

Il convient toutefois de remarquer que la performance est à relativiser par espèces:

- Tomato": le modèle présente des difficultés à classer correctement les Tomates Saines. Probablement car ces dernières sont sous-représentées dans notre dataset relativement aux tomates malades. L'autre explication est que certaines maladies de tomate sont difficiles à repérer sur la feuille : le changement de la couleur verte est tellement peu visible que le modèle peut confondre une feuille saine avec une feuille malade.
- Les catégories de plantes qui ne présentent aucune image avec maladie ("Blueberry", "Soybean", "Raspberry") et à l'inverse sans maladie (Squash", "Orange") dans notre dataset obtiennent des performances biaisées et bonnes par construction
- Pour les autres catégories par contre les performances sont bonnes et les deux modèles se complètent bien.

# 2- Détermination de l'espèce et détection du type de maladie

Comme expliqué précédemment, cette approche a été limitée aux 5 catégories : Apple, Corn, Grape, Potato et Tomato. Si une prédiction donne comme résultat une catégorie parmi les 5 citées, on applique le modèle de prédiction de type de maladie associée à cette catégorie. Les performances du modèle correspondant à chacune de ces 5 catégories est dans Annex 1.

Cette approche a été testé sur le dataset de validation et on a pu combiner les deux modèles ( prédiction de catégorie + prédiction type de maladie ). Ci-dessous, on a les résultats pour la catégorie "Apple".

Ci-dessous la matrice de confusion et le rapport de classification. La classe "not\_Apple" correspond aux images qui ont été classifiées par erreur comme "Apple" par le modèle 1.

Malgré les erreurs de prédictions de catégorie et les erreurs de prédictions de type de maladie d'Apple, la performance globale reste très satisfaisante.

En effet, la valeur min de F1-score est de 84% qui correspond à la détection de la maladie "Black\_rot".

#### Matrice de confusion - Prédiction type de maladie d'"Apple" :

| maladie_pred     | Apple_scab | Black_rot | Cedar_apple_rust | healthy | not_Apple |
|------------------|------------|-----------|------------------|---------|-----------|
| Maladie_reelle   |            |           |                  |         |           |
| Apple_scab       | 410        | 45        | 5                | 18      | 26        |
| Black_rot        | 27         | 464       | 0                | 0       | 6         |
| Cedar_apple_rust | 1          | 7         | 399              | 4       | 29        |
| healthy          | 10         | 28        | 0                | 440     | 24        |
| not_Apple        | 16         | 58        | 10               | 31      | 15514     |

#### Rapport de classification - Prédiction type de maladie d'"Apple" :

|                  | precision | recall | f1-score | support |
|------------------|-----------|--------|----------|---------|
|                  |           |        |          |         |
| Apple_scab       | 0.88      | 0.81   | 0.85     | 504     |
| Black_rot        | 0.77      | 0.93   | 0.84     | 497     |
| Cedar_apple_rust | 0.96      | 0.91   | 0.93     | 440     |
| healthy          | 0.89      | 0.88   | 0.88     | 502     |
| not_Apple        | 0.99      | 0.99   | 0.99     | 15629   |
|                  |           |        |          |         |
| accuracy         |           |        | 0.98     | 17572   |
| macro avg        | 0.90      | 0.90   | 0.90     | 17572   |
| weighted avg     | 0.98      | 0.98   | 0.98     | 17572   |

**NB** : Pour les 4 autres catégories, les résultats des modèles sont disponibles dans l'annexe-2

# 3- Classification finale avec agrégation des modèles:

Ce tableau résume les performances obtenues à la sortie de la combinaison des 3 modèles (cf schéma page 32)

|                                                | Accuracy<br>(% Bonnes predictions) |
|------------------------------------------------|------------------------------------|
| Classification Globale Especes + Maladie       | 89,24%                             |
| Classification Espece de la Plante             | 96,15%                             |
| Plantes Groupe I - Detection de la maladie     |                                    |
| Total                                          | 96,00%                             |
| Peach                                          | 97,76%                             |
| Cherry                                         | 88,83%                             |
| Pepper                                         | 96,72%                             |
| Strawberry                                     | 99,78%                             |
| Squash                                         | 91,01%                             |
| Orange                                         | 91,05%                             |
| Blueberry                                      | 99,34%                             |
| Raspberry                                      | 100,00%                            |
| Soybean                                        | 100,00%                            |
| Plantes Groupe II - Healthy ou Type de Maladie |                                    |
| Total                                          | 89,80%                             |
| Tomato                                         | 87,35%                             |
| Apple                                          | 89,60%                             |
| Com                                            | 82,89%                             |
| Grape                                          | 97,45%                             |
| Potato                                         | 97,12%                             |

- La performance globale est très bonne avec une accuracy de 89,24%. Il s'agit de la bonne prédiction de la catégorie et l'état de santé de la plante, tout en associant le type de maladie aux 5 catégories choisies précédemment.
- En comparaison avec le modèle classifiant 38 classe qui avait 84% d'accuracy, il est clair que notre combinaison de modèles permet d'augmenter l'accuracy de 5,25%
- L'accuracy pour prédire la bonne catégorie est de 96,15%
- L'accuracy pour prédire la catégorie et l'état de santé de 9 catégories de plantes est en moyenne de 96%.
   Pour les catégories comme "Soybean", l'accuracy était de 100% car le modèle est entraîné avec un seul état de santé, en l'occurrence toutes les photos de "Soybean" sont en bonne santé.
- L'accuracy pour prédire la catégorie et le type de maladie de 5 catégorie est de 89.80%

### VI- Points d'amélioration:

Après avoir présenté notre démarche de recherche du meilleur modèle de prédiction possible pour répondre aux objectifs de "PlantSpy", nous présentons ici quelques pistes d'améliorations :

- 1- La majeure contrainte de ce projet était le déséquilibre de database, notamment le manque de données pour certaines plantes. Afin de pouvoir générer un modèle généralisable, l'idéal serait d'inclure plus de photos avec plus de types de maladie pour avoir une meilleure pertinence de détection des types de maladie.
- 2- Aussi les photos de l'entraînement étaient prises sur un background uniforme. Donc on peut se poser la question sur la performance du modèle si le background change de couleur/forme ou si la plante n'est plus centree sur la photo.
- 3- Dans une perspective plus long terme, on pourrait étendre le scope du projet aux 20 fruits et 20 légumes les plus cultivés en France. Cette approche pourrait donner naissance à un projet "PlantSpy" commercialisable et d'une utilité pour les agriculteurs ou les ingénieurs agronomes.

# VII- Annexes

# Annexe 1: Classification type de Maladie

# A- Espèce "Grape"

|                                    | precision | recall | f1-score | support |
|------------------------------------|-----------|--------|----------|---------|
|                                    |           |        |          |         |
| Black_rot                          | 0.99      | 0.93   | 0.96     | 472     |
| Esca_(Black_Measles)               | 0.96      | 0.99   | 0.97     | 480     |
| Leaf_blight_(Isariopsis_Leaf_Spot) | 0.98      | 1.00   | 0.99     | 430     |
| healthy                            | 1.00      | 1.00   | 1.00     | 423     |
|                                    |           |        |          |         |
| accuracy                           |           |        | 0.98     | 1805    |
| macro avg                          | 0.98      | 0.98   | 0.98     | 1805    |
| weighted avg                       | 0.98      | 0.98   | 0.98     | 1805    |

# B- Espèce "Corn"

|                                     | precision | recall | f1-score | support |
|-------------------------------------|-----------|--------|----------|---------|
| Cercospora_leaf_spot Gray_leaf_spot | 0.60      | 0.95   | 0.73     | 410     |
| Common_rust_                        | 0.98      | 0.61   | 0.75     | 477     |
| Northern_Leaf_Blight                | 0.95      | 0.87   | 0.90     | 477     |
| healthy                             | 1.00      | 0.95   | 0.98     | 465     |
|                                     |           |        | 0.04     | 4020    |
| accuracy                            |           |        | 0.84     | 1829    |
| macro avg                           | 0.88      | 0.85   | 0.84     | 1829    |
| weighted avg                        | 0.89      | 0.84   | 0.85     | 1829    |

## C- Espèce "Potato"

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| Early_blight | 0.95      | 1.00   | 0.97     | 485     |
| Late_blight  | 1.00      | 0.94   | 0.97     | 485     |
| healthy      | 0.99      | 1.00   | 1.00     | 456     |
| accuracy     |           |        | 0.98     | 1426    |
| macro avg    | 0.98      | 0.98   | 0.98     | 1426    |
| weighted avg | 0.98      | 0.98   | 0.98     | 1426    |

# C- Espèce "Apple"

|              | precision | recall | f1-score | support |  |
|--------------|-----------|--------|----------|---------|--|
| 0            | 0.89      | 0.89   | 0.89     | 756     |  |
| 1            | 0.89      | 0.93   | 0.91     | 750     |  |
| 2            | 0.98      | 0.93   | 0.95     | 639     |  |
| 3            | 0.91      | 0.90   | 0.91     | 767     |  |
|              |           |        |          |         |  |
| accuracy     |           |        | 0.91     | 2912    |  |
| macro avg    | 0.92      | 0.91   | 0.91     | 2912    |  |
| weighted avg | 0.91      | 0.91   | 0.91     | 2912    |  |
|              |           |        |          |         |  |

# <u>Annexe 2</u>: Modèle combine final- Performance de la classification Espèces+Type de Maladie

#### Categorie "Tomato":

|                                      | precision | recall | f1-score | support |
|--------------------------------------|-----------|--------|----------|---------|
| Destrois land                        | 0.00      | 0.00   | 0.07     | 425     |
| Bacterial_spot                       | 0.89      | 0.86   | 0.87     | 425     |
| Early_blight                         | 0.66      | 0.91   | 0.76     | 480     |
| Late_blight                          | 0.88      | 0.77   | 0.82     | 463     |
| Leaf_Mold                            | 0.97      | 0.85   | 0.91     | 470     |
| Septoria_leaf_spot                   | 0.89      | 0.73   | 0.80     | 436     |
| Spider_mites Two-spotted_spider_mite | 0.83      | 0.82   | 0.82     | 435     |
| Target_Spot                          | 0.83      | 0.80   | 0.81     | 457     |
| Tomato_Yellow_Leaf_Curl_Virus        | 0.99      | 0.92   | 0.95     | 490     |
| Tomato_mosaic_virus                  | 0.90      | 0.97   | 0.94     | 448     |
| healthy                              | 0.77      | 1.00   | 0.87     | 481     |
| not_Tomato                           | 0.99      | 0.98   | 0.99     | 12987   |
|                                      |           |        |          |         |
| accuracy                             |           |        | 0.95     | 17572   |
| macro avg                            | 0.87      | 0.87   | 0.87     | 17572   |
| weighted avg                         | 0.96      | 0.95   | 0.95     | 17572   |



## Categorie "Potato"

maladie\_pred Early\_blight Late\_blight healthy not\_potato

| Mala | adie | ree] | lle |
|------|------|------|-----|
|      |      |      |     |

| Early_blight | 480 | 0   | 0   | 5     |
|--------------|-----|-----|-----|-------|
| Late_blight  | 27  | 447 | 3   | 8     |
| healthy      | 0   | 0   | 449 | 7     |
| not_potato   | 28  | 65  | 84  | 15969 |

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| Early_blight | 0.90      | 0.99   | 0.94     | 485     |
| Late_blight  | 0.87      | 0.92   | 0.90     | 485     |
| healthy      | 0.84      | 0.98   | 0.91     | 456     |
| not_potato   | 1.00      | 0.99   | 0.99     | 16146   |
|              |           |        |          |         |
| accuracy     |           |        | 0.99     | 17572   |
| macro avg    | 0.90      | 0.97   | 0.93     | 17572   |
| weighted avg | 0.99      | 0.99   | 0.99     | 17572   |

# Categorie"Grape"

maladie\_pred Black\_rot Esca\_(Black\_Measles) Leaf\_blight\_(Isariopsis\_Leaf\_Spot) healthy not\_grape

| Malad: | ie_r | eelle |
|--------|------|-------|
|--------|------|-------|

| Black_rot                          | 437 | 22  | 7   | 1   | 5     |
|------------------------------------|-----|-----|-----|-----|-------|
| Esca_(Black_Measles)               | 3   | 475 | 1   | 0   | 1     |
| Leaf_blight_(lsariopsis_Leaf_Spot) | 0   | 0   | 423 | 1   | 6     |
| healthy                            | 0   | 0   | 0   | 398 | 25    |
| not_grape                          | 2   | 3   | 2   | 0   | 15760 |

|                                    | precision | recall | f1-score | support |  |
|------------------------------------|-----------|--------|----------|---------|--|
|                                    |           |        |          |         |  |
| Black_rot                          | 0.99      | 0.93   | 0.96     | 472     |  |
| Esca_(Black_Measles)               | 0.95      | 0.99   | 0.97     | 480     |  |
| Leaf_blight_(Isariopsis_Leaf_Spot) | 0.98      | 0.98   | 0.98     | 430     |  |
| healthy                            | 0.99      | 0.94   | 0.97     | 423     |  |
| not_grape                          | 1.00      | 1.00   | 1.00     | 15767   |  |
|                                    |           |        |          |         |  |
| accuracy                           |           |        | 1.00     | 17572   |  |
| macro avg                          | 0.98      | 0.97   | 0.97     | 17572   |  |
| weighted avg                       | 1.00      | 1.00   | 1.00     | 17572   |  |
|                                    |           |        |          |         |  |

## Catégorie "Apple"

 ${\tt maladie\_pred} \ \ \, {\tt Apple\_scab} \ \ \, {\tt Black\_rot} \ \ \, {\tt Cedar\_apple\_rust} \ \ \, {\tt healthy} \ \ \, {\tt not\_Apple}$ 

| maladie_reelle   |     |     |     |     |       |
|------------------|-----|-----|-----|-----|-------|
| Apple_scab       | 410 | 45  | 5   | 18  | 26    |
| Black_rot        | 27  | 464 | 0   | 0   | 6     |
| Cedar_apple_rust | 1   | 7   | 399 | 4   | 29    |
| healthy          | 10  | 28  | 0   | 440 | 24    |
| not_Apple        | 16  | 58  | 10  | 31  | 15514 |

|                  | precision | recall | f1-score | support |
|------------------|-----------|--------|----------|---------|
| Apple_scab       | 0.88      | 0.81   | 0.85     | 504     |
| Black_rot        | 0.77      | 0.93   | 0.84     | 497     |
| Cedar_apple_rust | 0.96      | 0.91   | 0.93     | 440     |
| healthy          | 0.89      | 0.88   | 0.88     | 502     |
| not_Apple        | 0.99      | 0.99   | 0.99     | 15629   |
| accuracy         |           |        | 0.98     | 17572   |
| macro avg        | 0.90      | 0.90   | 0.90     | 17572   |
| weighted avg     | 0.98      | 0.98   | 0.98     | 17572   |

# Categorie "Corn"

maladie\_pred Cercospora\_leaf\_spot Gray\_leaf\_spot Common\_rust\_ Northern\_Leaf\_Blight healthy not\_Corn

| Maladie_reelle                      |     |     |     |     |       |
|-------------------------------------|-----|-----|-----|-----|-------|
| Cercospora_leaf_spot Gray_leaf_spot | 366 | 0   | 20  | 0   | 24    |
| Common_rust_                        | 185 | 291 | 0   | 0   | 1     |
| Northern_Leaf_Blight                | 55  | 1   | 408 | 1   | 12    |
| healthy                             | 14  | 4   | 2   | 437 | 8     |
| not_Corn                            | 9   | 1   | 1   | 0   | 15732 |

|                                     | precision | recall | f1-score | support |
|-------------------------------------|-----------|--------|----------|---------|
| Commence look and Committee and     | 0.50      | 0.00   | 0.70     | 440     |
| Cercospora_leaf_spot Gray_leaf_spot | 0.58      | 0.89   | 0.70     | 410     |
| Common_rust_                        | 0.98      | 0.61   | 0.75     | 477     |
| Northern_Leaf_Blight                | 0.95      | 0.86   | 0.90     | 477     |
| healthy                             | 1.00      | 0.94   | 0.97     | 465     |
| not_Corn                            | 1.00      | 1.00   | 1.00     | 15743   |
| accuracy                            |           |        | 0.98     | 17572   |
|                                     |           |        |          |         |
| macro avg                           | 0.90      | 0.86   | 0.86     | 17572   |
| weighted avg                        | 0.99      | 0.98   | 0.98     | 17572   |

# VIII- Programmes/Code

| Nom de Fichier                                                     | Description du contenu                                                            |  |  |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|
| Model3_Categorie_TypeMaladie.ipynb                                 |                                                                                   |  |  |
|                                                                    | Modele Combine - Classification Espece + type de maladie                          |  |  |
|                                                                    | - Especes: Tomato, Potato, Corn, Apple, Grape                                     |  |  |
|                                                                    | - Pas de modele detection de maladie                                              |  |  |
| Model3_Categorie_DetectionMaladie_Type Maladie_VersionFinale.ipynb | Modele Combine final                                                              |  |  |
|                                                                    | A- Espece plantes                                                                 |  |  |
|                                                                    | B- DetectionMaladie (toutes plante sauf                                           |  |  |
|                                                                    | Tomato, Apple, Corn, Grapes, Potato)                                              |  |  |
|                                                                    | C- definir le type de maladie/Healthy                                             |  |  |
|                                                                    | (seulement pour Tomato, Apple, Corn,                                              |  |  |
|                                                                    | Grape, Potato)                                                                    |  |  |
| Model2_Tomato_Diseases_CNN.ipynb                                   | Classification du Type de Maladie "Tomato"                                        |  |  |
| Model2_Potato_Diseases_CNN.ipynb                                   | Classification du Type de Maladie "Potato"                                        |  |  |
| Model2_Grape_Diseases_CNN.ipynb                                    | Classification du Type de Maladie "Grape"                                         |  |  |
| Model2_Corn_Diseases_CNN.ipynb                                     | Classification du Type de Maladie "Corn"                                          |  |  |
| Model2_Apple_Diseases_CNN.ipynb                                    | Classification du Type de Maladie "Apple"                                         |  |  |
| Model1_Classification_EspecesPlantes.ipy nb                        | Contient tous les modeles de la partie classification Espece                      |  |  |
| DoubleClassification_Categorie_Detection Maladie.ipynb             | Modèle combine: Espèces et Detection Maladie (2 modeles/ 2 outputs)               |  |  |
| Model_Detection_Maladie_Classif_Binaire.i pynb                     | Modèle permettant de prédire si la feuille de plante contient une maladie ou pas. |  |  |
| Model_Classification_38_Classes_Categori e_TypeMaladie.ipynb       | Modèle permettant de classifier les 38 classes du dataset                         |  |  |
| Download_Dataset_from_Kaggle.ipynb                                 | Code permettant de télécharger les dataset depuis Kaggle                          |  |  |