Learning Multi-Step Predictive State Representations

Lucas Langer, Borja Balle, Doina Precup

July 9, 2016

M-PSRs, PSRs, WFA, and OOMs

Goals:

- Make predictions in partially observable environments
- Learn a representation of hidden states

Motivation:

- Globally optimal guaranteed (unlike HMMs)
- 2 Learn smaller representations

What does Multi-Step mean?

- Learn state transitions for interesting observation sequences
- Output Description
 Output Descript

PSR: The single observation case

- $\begin{array}{l} \bullet \quad \text{PSR defined by: } \langle \alpha_0, \{A_\sigma\}, \alpha_\infty \rangle \\ \text{where} \\ \alpha_0 \text{ is an initial weighting on states } 1xn \\ A_\sigma \text{ is a transition matrix } nxn \\ \alpha_\infty \text{ is a normalizer } nx1 \\ \end{array}$
- ② PSRs compute probabilities of observations $f(\sigma^k) = \alpha_0 \cdot A_{\sigma}^k \cdot \alpha_{\infty}$

Spectral Learning of PSRs

Step 1: Represent Data as a Hankel Matrix

Step 2: Singular Value Decomposition

Step 3: Pick Model Size

Step 4: Learn PSR: $\langle \alpha_0, \{A_\sigma\}, \alpha_\infty \rangle$

The Base System

• Idea: Learn $\{A_{\sigma}, A_{\sigma^2}, A_{\sigma^4}, A_{\sigma^8}, ... A_{\sigma^{2N}}\}$ as extra transition operators Note: operators learned separately $f(\sigma^{11}) = \alpha_0 \cdot A_{\sigma^8} \cdot A_{\sigma^2} \cdot A_{\sigma^1} \cdot \alpha_{\infty}$

• Why might this help? Reduce error build up

Capture structure

Faster computations

Timing with the Base

Agent drives around loops until leaving through an exit state.

Base System Performance for Loops

64-16 Loop Lengths

47-27 Loop Lengths

Pacman-like Labyrinth

(a) Pacman

(b) Graph

Wall Color Predictions

We paint the first loop green and the second loop blue

In general, which operators to learn?

- Observations: $\{"a^{30}":10, "a^{60}":5, "b^{18}":15\}$ Desired Base System: $A_{a^{30}}, A_{b^{18}}, A_a, A_b$
- Substring properties: long, frequent, diverse
 Structured environments should be easier
- Iterative greedy heuristic works well
 Could also try an entropy based approach

How should we execute queries

Minimize number of matrices

Compact representation, lower error build-up

- Query string: "abcacb", Operators = $\{A_{ab}, A_{bca}, A_{cb}, A_a, A_b\}$ Desired partition: "a—bca—cb" Computation: $f(abcacb) = \alpha_0 \cdot A_a \cdot A_{bca} \cdot A_{cb} \cdot \alpha_{\infty}$
- Solution: dynamic programming
 State update for online applications

Performance of Heuristics

The Big Picture

Questions?