MATH 216A HOMEWORK 3

ARPON RAKSIT

original: October 13, 2016 updated: October 14, 2016

§1 Hartshorne exercise II.2.4

I.I Let *X* be a locally ringed space and $s \in \Gamma(X, \mathcal{O}_X)$ a global section of its structure sheaf.

NOTATION — For $x \in X$, we will denote the *stalk* of s at x in the local ring \mathcal{O}_x by s_x , and the *value* of s at x in the residue field $\kappa(x) := \mathcal{O}_x/\mathfrak{m}_x$ by s(x).

NOTATION — We define $X_s := \{x \in X : s(x) \neq 0\}.$

- I.I.I LEMMA (a) X_s is an open subset of X.
 - (b) The restriction of s to X_s is invertible in $\Gamma(X_s, \mathcal{O}_X)$.

PROOF — Let $x \in X_s$. Then $s(x) \neq 0$ means $s_x \notin \mathfrak{m}_x$, and since \mathcal{O}_x is local this means there exists $t_x \in \mathcal{O}_x$ such that $s_x t_x = 1$. Thus we can find an open neighborhood U of x and a local section $t \in \Gamma(U, \mathcal{O}_X)$ with stalk t_x at x such that $s|_U t = 1 \in \Gamma(U, \mathcal{O}_X)$. This clearly implies $s(y) \neq 0$ for $y \in U$, i.e. $U \subseteq X_s$. This proves X_s is open.

We have also proven that we may cover X_s by open subsets U_i which have local sections $t_i \in \Gamma(U_i, \mathcal{O}_X)$ inverse to (the restrictions of) s. But since inverses are unique, these local sections evidently glue to give a well-defined section $t \in \Gamma(X_s, \mathcal{O}_X)$ inverse to (the restriction of) s.

I.I.2 Lemma — Let $\pi: Y \longrightarrow X$ be a map of locally ringed spaces. Let $\phi: \Gamma(X, \mathcal{O}_X) \longrightarrow \Gamma(Y, \mathcal{O}_Y)$ denote the pullback of global sections in π . Then $\pi^{-1}(X_s) = Y_{\phi(s)}$.

PROOF — This is immediate from π being a map of *locally* ringed spaces, which implies that $s(\pi(y)) = 0 \iff \phi(s)(y) = 0$.

1.2 Proposition — Let X be a locally ringed space. Let A be a ring. Then the map $^{\mathrm{I}}$

$$\alpha: \operatorname{Map}_{\operatorname{LocRingSpaces}}(X, \operatorname{Spec} A) \longrightarrow \operatorname{Map}_{\operatorname{Rings}}(A, \Gamma(X, \mathcal{O}_X))$$

given by taking a map $\pi: X \longrightarrow \operatorname{Spec} A$ to pullback of global sections in π is a bijection.

PROOF — Let's write $Y := \operatorname{Spec} A$.

We first prove α is injective. Let $\pi: X \longrightarrow \operatorname{Spec} A$ be a map of locally ringed spaces, and let $\phi := \alpha(\pi): A \longrightarrow \Gamma(X, \mathcal{O}_X)$ be pullback of global sections. We will show that π is uniquely determined by ϕ .

Let's first consider the map on topological spaces; for $x \in X$ and $s \in A$, we see from (1.1.2) that $x \in \pi^{-1}(Y_s) \iff \phi(s)(x) \neq 0$, or equivalently $\pi(x) \in V(s) \iff \phi(s)(x) = 0$

^IIn case it's not clear, here LocRingSpaces denotes the category of locally ringed spaces and Rings denotes the category of (commutative, unital) rings.

0. This implies that $\pi(x)$ must be the prime ideal $\{s \in A : \phi(s)(x) = 0\}$. Hence π is determined on topological spaces by ϕ .

We now consider the map on structure sheaves π^{\sharp} : $\mathcal{O}_{Y} \longrightarrow \pi_{*}\mathcal{O}_{X}$. It suffices to show that the map is determined by ϕ over the distinguished basic opens $Y_{s} = D(s)$ for $s \in A$. By (1.1.2) we have $\pi^{-1}(Y_{s}) = X_{\phi(s)}$. Since π^{\sharp} is a map of sheaves, the diagram

$$\Gamma(Y, \mathcal{O}_Y) \xrightarrow{\pi^{\sharp}} \Gamma(X, \mathcal{O}_X) \\
\downarrow \qquad \qquad \downarrow \\
\Gamma(Y_s, \mathcal{O}_Y) \xrightarrow{\pi^{\sharp}} \Gamma(X_{\phi(s)}, \mathcal{O}_X)$$

must commute (where the vertical maps are restriction). But now recall the construction of Spec A: the left map is isomorphic to the localization map $A \rightarrow A_s$. By the universal property of localization it follows that the bottom map is determined uniquely by the top map, which is ϕ . This completes the proof that α is injective.

We now prove surjectivity, taking cue for our construction from the argument for injectivity. Suppose given a map of rings $\phi \colon A \longrightarrow \Gamma(X, \mathcal{O}_X)$. We define a map of sets $\pi \colon X \longrightarrow \operatorname{Spec} A$ by setting

$$\pi(x) := \{ s \in A : \phi(s)(x) = 0 \in \kappa(x) \}$$

(it's easy to see this is a prime ideal in A). For $s \in A$ we have immediately from the definitions that $\pi^{-1}(D(s)) = X_{\phi(s)}$, which is open by (I.I.I)(a); since $\{D(s)\}_{s \in S}$ form a base of Spec A, this implies π is in fact continuous.

Now, again writing $Y := \operatorname{Spec} A$, we must define a (local) map of sheaves $\pi^{\sharp} \colon \mathscr{O}_{Y} \to \pi_{*}\mathscr{O}_{X}$. It suffices to do so on the distinguished base of opens $\{D(s)\}_{s \in A}$ of Y (in a consistent fashion). Globally, i.e. on D(1) = Y, we define $\pi^{\sharp} \colon A = \Gamma(Y, \mathscr{O}_{Y}) \to \Gamma(X, \mathscr{O}_{X})$ to be ϕ ; thus, when we've finished constructing the map, we'll have $\alpha(\pi) = \phi$, and hence have proven surjectivity. For each basic open $D(s) = Y_{s}$ we have from the above that $\pi^{-1}(Y_{s}) = X_{\phi(s)}$; by $(\mathbf{I.I.I})(b)$ the restriction of $\phi(s)$ to $X_{\phi(s)}$ is invertible. Since $\Gamma(Y, \mathscr{O}_{Y}) \to \Gamma(Y_{s}, \mathscr{O}_{Y})$ is isomorphic to the localization map $A \to A_{s}$, it follows that there is a unique map ϕ_{s} making the diagram

$$\Gamma(Y, \mathcal{O}_Y) \xrightarrow{\phi} \Gamma(X, \mathcal{O}_X)
\downarrow \qquad \qquad \downarrow
\Gamma(Y_s, \mathcal{O}_Y) \xrightarrow{\phi_s} \Gamma(X_{\phi(s)}, \mathcal{O}_X)$$

commute; we define π^{\sharp} on Y_s to be ϕ_s . It is immediate from this construction that whenever $Y_t \subseteq Y_s$ the diagram

$$\Gamma(Y_{s}, \mathcal{O}_{Y}) \xrightarrow{\phi_{s}} \Gamma(X_{\phi(s)}, \mathcal{O}_{X})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Gamma(Y_{t}, \mathcal{O}_{Y}) \xrightarrow{\phi_{t}} \Gamma(X_{\phi(t)}, \mathcal{O}_{X})$$

commutes. Hence π^{\sharp} is a well-defined map of sheaves.

Finally, for $x \in X$, we see from the above construction that the induced map on stalks π^{\sharp} : $A_{\pi(x)} \simeq \mathcal{O}_{\pi(x)} \longrightarrow \mathcal{O}_{x}$ is the localization of the composite $A \longrightarrow \Gamma(X, \mathcal{O}_{X}) \longrightarrow \mathcal{O}_{x}$

at the prime ideal $\pi(x)$. By definition, $\pi(x)$ is the preimage of the maximal ideal $\mathfrak{m}_x \subseteq \mathcal{O}_{\pi(x)}$, and hence this map on stalks is local. Thus π^{\sharp} is a map of locally ringed spaces, finishing the proof.

- I.2.I Remark Suppose we take X to be an affine scheme Spec B in the above. Then from the construction of the proof we see that α^{-1} is given precisely by applying the functor Spec.
- I.2.2 COROLLARY For any locally ringed space X, there is a natural map of locally ringed spaces $\eta \colon X \longrightarrow \operatorname{Spec} \Gamma(X, \mathcal{O}_X)$, which is an isomorphism if and only if X is an affine scheme.

PROOF — The map η corresponds to the identity map of rings $\Gamma(X, \mathcal{O}_X) \to \Gamma(X, \mathcal{O}_X)$ under the bijection α^{-1} of (1.2). If η is an isomorphism then $X \simeq \operatorname{Spec}\Gamma(X, \mathcal{O}_X)$ is tautologically an affine scheme. The converse, that η is an isomorphism if X is affine, follows from (1.2.1).