09, 2024 NLP WITH DEEP LEARNING

Word Vectors

Natural Language Processing Tasks Machine translation

Question
answering and informationretrieval

Summarization and analysis of text

Note: speechto-text

Natural Language Processing Tasks

Word Representation

Signifier Sign

Signified Meaning

Word meaning is endlessly complex

Zuko makes the tea for his uncle.

Zuko makes the coffee for his uncle.

Zuko makes the drink for his uncle.

1-hot encoding

$$\mathbf{v}_{\text{tea}} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} \quad \mathbf{v}_{\text{coffee}} = \begin{bmatrix} \vdots \\ 0 \\ 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$

No notion of similarity

$$\mathbf{v}_{\text{tea}}^{\mathsf{T}}\mathbf{v}_{\text{coffee}} = \mathbf{v}_{\text{tea}}^{\mathsf{T}}\mathbf{v}_{\text{the}} = 0$$

Vectors from annotated discrete properties

Reduced vocabulary
Always incomplete

Sparse vector

Neural Networks prefer dense vectors

[Miller, 1995] Miller, G. A. (1995). Wordnet: a lexical database for english. Communications of the ACM, 38(11):39-41.

Deep Learning promises to learn

Self learning

Rich Representations

of complex objects

What should a good word distribution be like?

Co-occurrence matrices

More useful that 1-hot

		w_1	w_2	w_3	w_4	w_5	w_6
	w_1	0	0.4	0.3	0.1	0.1	0.1
	w_2	0.2	0	0.3	0.2	0.2	0.1
X =	w_3	0.25	0.25	0	0.25	0.15	0.1
	w_4	0.3	0.1	0.2	0	0.3	0.1
	w_5	0.1	0.4	0.2	0.1	0	0.2
	w_6	$0 \\ 0.2 \\ 0.25 \\ 0.3 \\ 0.1 \\ 0.2$	0.2	0.2	0.1	0.3	0

How count co-occurrence

Whole document

Window with fixed size

[It's hot and delicious. [I poured [the tea for]₁ my uncle]₃.]document center word

Feedforward Neural Net Language Model (NNLM)

Efficient Estimation of Word Representations in Vector Space (original word2vec paper)

notes 1: https://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes02-wordvecs2.pdf

Recurrent Neural Net Language Model (RNNLM)

Efficient Estimation of Word Representations in Vector Space (original word2vec paper)

notes 1: https://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes02-wordvecs2.pdf

Continuous Bag-of-Words Model (CBOW)

Efficient Estimation of Word Representations in Vector Space (original word2vec paper) notes 1: https://web.stanford.edu/class/cs224n/readings/cs224n-2019- notes 02-wordvecs 2.pdf

Continuous Skip-gram Model

Efficient Estimation of Word Representations in Vector Space (original word2vec paper)

GloVe

GloVe: Global Vectors for Word Representation (original GloVe paper)

notes: https://web.stanford.edu/class/cs224n/readings/

cs224n-2019-notes02-wordvecs2.pdf

CS224N Assignment1: Exploring Word Vectors