Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

14-513

18-613

Virtual Memory: Systems

15-213/18-213/14-5ig/nment/Project Exam Help Introduction to Com 18th Lecture, Octobe https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Announcements

- Lab 5 (malloclab)
 - Checkpoint due Thu, Oct. 29, 11:59pm ET
- Written Assignment 7 peer grading
 - Due Wed, Assignment Project Exam Help
- Written Assign https://eduassistpro.github.io/
 - Due Wed, Nov.
- Recitation on MathocLabe Catelledu_assist_pro
 - Mon, Nov. 2. Slides are already posted
- U.S. Election Day is Tues, Nov.3
 - If eligible, go VOTE!
 - Skip class if need be (NO QUIZ on TUES!)

Review: Virtual Memory & Physical Memory

 A page table contains page table entries (PTEs) that map virtual pages to physical pages.

Translating with a k-level Page Table

Having multiple levels greatly reduces page table size

Translation Lookaside Buffer (TLB)

A small cache of page table entries with fast access by MMU

Typically, a TLB hit eliminates the k memory accesses required to do a page table lookup.

Review of Symbols

Basic Parameters

- $N = 2^n$: Number of addresses in virtual address space
- $M = 2^m$: Number of addresses in physical address space
- P = 2^p : Page sæssignment Project Exam Help
- Components of the v https://eduassistpro.github.io/

TLBI: TIB index

TLBT: TLB tag

vpo: Virtual page offset dd WeChat edu_assist_pro

VPN: Virtual page number

Virtual Page Number

Virtual Page Offset

Components of the *physical address* (PA)

- **PPO**: Physical page offset (same as VPO)
- **PPN:** Physical page number
- **CO**: Byte offset within cache line
- **CI:** Cache index
- **CT**: Cache tag

(bits per field for our simple example)

Physical Page Offset

Today

■ Simple memory system example CSAPP 9.6.4

Case study: Core i7/Linux memory system CSAPP 9.7

 Memory mapping Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Simple Memory System Example

Addressing

- 14-bit virtual addresses
- 12-bit physical address
- Page size = 64 bytes ment Project Exam Help

10

Simple Memory System TLB

- 16 entries
- 4-way associative

VPN = 0bAtate We Chat edu_assist_pro

Translation Lookaside Buffer (TLB)

Set	Tag	PPN	Valid									
0	03	_	0	09	0D	1	00	_	0	07	02	1
1	03	2D	1	02	-	0	04	-	0	0A	_	0
2	02	_	0	08	-	0	06	-	0	03	_	0
3	07	-	0	03	0D	1	0A	34	1	02	_	0

Simple Memory System Page Table

Only showing the first 16 entries (out of 256)

Simple Memory System Cache

- 16 lines, 4-byte cache line size
- Physically addressed

Direct mapped

V[0b00001101101001] = V[0x369] P[0b101101101001] = P[0xB69] = 0x15

Add WeChat edu assist pro

ldx	Tag	Valid	<i>B0</i>	B1	B2	<i>B3</i>
0	19	1	99	11	23	11
1	15	0	_	_	_	_
2	1B	1	00	02	04	08
3	36	0	_	_	_	_
4	32	1	43	6D	8F	09
5	0D	1	36	72	F0	1D
6	31	0	_	-	_	_
7	16	1	11	C2	DF	03

		id	B0	B1	B2	В3
8	24	1	3A	00	51	89
9	2D	0	_	_	_	_
Α	2D	1	93	15	DA	3B
В	0B	0	_	_	-	_
С	12	0	_	-	_	_
D	16	1	04	96	34	15
Е	13	1	83	77	1B	D3
F	14	0	_	_	_	_

Address Translation Example

Virtual Address: 0x03D4

VPN <u>0x0</u>F TLBI <u>0x</u> https://eduassistpro.github.io/ PPN: <u>0x0</u>D

Valid PPN Vali Set **PPN** Taa **Valid** Taa **PPN Valid** Tag weChatedu_assist_ord 03 0 02 1 03 **2D** 02 0 1 04 0 **0A** 0 02 08 0 06 03 0 0 0 3 07 0 03 **0D 0A** 34 02 0 1 1

Physical Address

TLB

Address Translation Example

Physical Address

CO <u>0</u>

CI <u>0x5</u>

https://eduassistpro.gifhub.io/

ldx	Tag	Valid	В0	BI	d_{B2} V	e Ch
0	19	1	99	11	23	11
1	15	0	-	-	_	_
2	1B	1	00	02	04	08
3	36	0	_	_	_	_
4	32	1	43	6D	8F	09
5	0D	1	36	72	F0	1D
6	31	0	_	_	_	_
7	16	1	11	C2	DF	03

t eat	l_as	SIST IId-	PFO	B1	B2	В3
8	24	1	3A	00	51	89
9	2D	0	_	ı	-	_
Α	2D	1	93	15	DA	3B
В	0B	0	-	ı	1	_
С	12	0	_	_	_	_
D	16	1	04	96	34	15
E	13	1	83	77	1B	D3
F	14	0	_	_	_	_

Address Translation Example: TLB/Cache Miss

Virtual Address: 0x0020

Add WeChat edu_assist_pro

Physical Address

Page table

rage	abic	
VPN	PPN	Valid
00	28	1
01	ı	0
02	33	1
03	02	1
04	_	0
05	16	1
06	_	0
07	_	0

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Address Translation Example: TLB/Cache Miss

Cache

Idx	Tag	Valid	В0	B1	B2	В3		ldx	Tag	Valid	В0	B1	B2	В3
0	19	1	99	11	23	11		8	24	1	3A	00	51	89
1	15	0	-	_	-	_		9	2D	0	_	_	_	_
2	1B	1	00	02	04	08		A	2D	1_	93	15	DA	3B
3	36	0	As	sign	men	t Pro)]	egt I	LXan	n He	lp_	_	_	_
4	32	1	43							0	_	_	_	_
5	0D	1	36	htt	ps://	edu	a	ssist	pro.	aithu	1040	96	34	15
6	31	0	_	_	' – _	_					83	77	1B	D3
7	16	1	11	C2_(l dÞ ₹ ₩	/e@h	8	t ed	u as	sist	pro	_	_	_

Physical Address

Quiz Time! Assignment Project Exam Help

https://eduassistpro.github.io/

Check out: Add WeChat edu_assist_pro

https://canvas.cmu.edu/courses/17808

Today

- Simple memory system example
- Case study: Core i7/Linux memory system
- Memory mapping Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Intel Core i7 Memory System

End-to-end Core i7 Address Translation

Core i7 Level 1-3 Page Table Entries

Available for OS (page table location on disk)

P=0

Assignment Project Exam Help Each entry references a 4K child page table. Significant fields:

P: Child page table present i https://eduassistpro.github.io/

R/W: Read-only or read-write access access permiss le pages.

u/s: user or supervisor (kernen alde Wcesc parats edu_assist_a pro.

WT: Write-through or write-back cache policy for the child page table.

A: Reference bit (set by MMU on reads and writes, cleared by software).

PS: Page size either 4 KB or 4 MB (defined for Level 1 PTEs only).

Page table physical base address: 40 most significant bits of physical page table address (forces page tables to be 4KB aligned)

XD: Disable or enable instruction fetches from all pages reachable from this PTE.

Core i7 Level 4 Page Table Entries

Available for OS (page location on disk)

P=0

Assignment Project Exam Help Each entry references a 4K child page. Significant fields:

P: Child page is present in m https://eduassistpro.github.io/

R/W: Read-only or read-write access permission for

u/s: User or supervisor mode Adds WeChat edu_assist_pro

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software)

D: Dirty bit (set by MMU on writes, cleared by software)

G: Global page (don't evict from TLB on task switch)

Page physical base address: 40 most significant bits of physical page address (forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.

Core i7 Page Table Translation

Cute Trick for Speeding Up L1 Access

- Observation
 - Bits that determine CI identical in virtual and physical address
 - Can index into cache while address translation taking place
 - Generally we hit in TLB, so PPN bits (CT bits) available quickly
 - "Virtually indexed, physically tagged"
 - Cache carefully sized to make this possible

Virtual Address Space of a Linux Process

Linux Organizes VM as Collection of "Areas"

Linux Page Fault Handling

Today

- Simple memory system example
- Case study: Core i7/Linux memory system
- Memory mapping Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Memory Mapping

- VM areas initialized by associating them with disk objects.
 - Called *memory mapping*
- Area can be Assigning (iteP, rge etits Initiativalues from):
 - *Regular file* on
 - Initial page https://eduassistpro.gitleub.io/
 - Anonymous file (e.g., nething) hat edu_assist_pro
 First fault will allocate a physic 's (demand-zero page)

 - Once the page is written to (dirtied), it is like any other page
- Dirty pages are copied back and forth between memory and a special swap file.

Review: Memory Management & Protection

Code and data can be isolated or shared among processes

Sharing Revisited: Shared Objects

Sharing Revisited: Shared Objects

Sharing Revisited: Private Copy-on-write (COW) Objects

Sharing Revisited: Private Copy-on-write (COW) Objects

Finding Shareable Pages

Kernel Same-Page Merging

- OS scans through all of physical memory, looking for duplicate pages
- When found, merge into single copy, marked as copy-on-write
- Implement Assignment Project Exam Help
- Limited to page
- Especially useful https://eduassistpro.gjthແມ່ງເທດ chines

Add WeChat edu_assist_pro

User-Level Memory Mapping

```
void *mmap(void *start, int len,
           int prot, int flags, int fd, int offset)
```

- Map len bytes starting at offset offset of the file specified by file description for preferably at address start
 - start: may b
 https://eduassistpro.github.io/
 prot: PROT_R

 - flags: MAP_AAQN NWEPHWA edu_assistDpro
- Return a pointer to start of mapped area (may not be start)

User-Level Memory Mapping

Uses of mmap

- Reading big files
 - Uses paging mechanism to bring files into memory
- Shared data structures
 - When call dissignment Project Exam Help
 - Multiple pro https://eduassistpro.github.io/
 Risky! gion of memory gion of memory
- File-based data structures Chat edu_assist_pro
 - E.g., database
 - Give prot argument PROT_READ | PROT_WRITE
 - When unmap region, file will be updated via write-back
 - Can implement load from file / update / write back to file

Example: Using mmap to Support Attack Lab

- **Problem**
 - Want students to be able to perform code injection attacks
 - Shark machine stacks are not executable
- Solution
 - Assignment Project Exam Help Suggested by Sam King (now at UC Davis)
 - Use mmap to https://eduassistpro.gitmanked/executable
 - Divert stack to new region Add WeChat edu_assist_pro Execute student attack code

 - Restore back to original stack
 - Remove mapped region

Summary

- VM requires hardware support
 - Exception handling mechanism
 - TLB
 - Various co Assignment Project Exam Help
- VM requires OS

https://eduassistpro.github.io/

- Managing page
- Implementing page representate edu_assist_pro
- Managing file system
- VM enables many capabilities
 - Loading programs from memory
 - Providing memory protection

Allocate new region

Divert stack to new region & executivation of edu assistack and remove region

```
stack_top = new_stack + STACK_SIZE - 8;
asm("movq %%rsp,%%rax ; movq %1,%%rsp ;
movq %%rax,%0"
    : "=r" (global_save_stack) // %0
    : "r" (stack_top) // %1
);
launch(global_offset);
```

```
0,%%rsp"
:
: "r" (global_save_stack) // %0
);
munmap(new_stack, STACK_SIZE);
```