

Deep Learning

Margonis Phevos

June 2024

Contents

- 1. Introduction
- 2. Datasets
- 3. Baselines
- 4. Models
- 5. Results
- 6. Failed Experiment

Introduction

Problem Definition

- What is Domain Adaptation?
- Large labeled *source* dataset
- Small unlabeled target dataset
- Learn domain invariant features
- Generalize better to the target domain
- Perform two experiments with one algorithm

Data sets

Experiment 1 - SVHN to MNIST

SVHN:

- 100.000 RGB images
- 32 x 32
- Transformations

MNIST:

- 70.000 Gray scale images
- 28 x 28
- Normalize

Experiment 2 - Amazon to Webcam

Amazon:

- 2.817 RGB images
- 300 x 300
- Transformations (Resize, C.Crop, Norm)

Webcam:

- 795 RGB images
- 640 x 480
- Transformations (Resize, C.Crop, Norm)

Baselines

- 1. No Adaptation
- 2. Paper Implementation
- 3. Train on Target

Domain-Adversarial Neural Network (DANN)

Model

- 1. Feature Extraction
- 2. Label Prediction
- 3. Domain Classification
- 4. Adversarial Training

Feature extractor for the *Digits* experiment

A modified LeNet, with dropout and Batch Norm.

Feature extractor for the *Office-31* experiment

A pretrained ResNet 50

GRL

The **alpha** (λ) parameter in GRL adjusts gradient reversal, balancing domain learning and accuracy.

Criterion and Optimizers

SVHN to MNIST:

- Cross Entropy Loss
- Adam optimizer
 - Learning rate = 0.001

Amazon to Webcam:

- Cross Entropy Loss
- SGD optimizer
 - Learning rate = 0.001
 - \circ Momentum = 0.9

Overfit?

Adversarial training breakdown

Results

Results

We outperform the two baselines

Method	Accuracy	
	SVHN MNIST	Amazon Webcam
No Adaptation	70%	74%
Paper Implementation	74%	73%
Our DANN	78%	80%
Train on Target	99%	99%

Failed Experiment

Correlation Alignment (CORAL)

Algorithm 1: Correlation Alignment (CORAL)

Output: Aligned source feature matrix X'_s

1 Compute the covariance matrices:

$$C_s = cov(X_s), C_t = cov(X_t);$$

2 Regularize the covariance matrices:

$$C'_s = C_s + \lambda I, C'_t = C_t + \lambda I;$$

3 Compute the square root inverse of C'_s :

$$C_s^{-\frac{1}{2}} = C_s'^{-\frac{1}{2}};$$

- 4 Compute the square root of C'_t : $C_t^{\frac{1}{2}} = C'_t^{\frac{1}{2}}$;
- 5 Remove complex components if any:

$$C_s^{-\frac{1}{2}} = \Re(C_s^{-\frac{1}{2}}), C_t^{\frac{1}{2}} = \Re(C_t^{\frac{1}{2}});$$

- 6 Align the source features: $X_s' = X_s C_s^{-\frac{1}{2}} C_t^{\frac{1}{2}}$;
- 7 return X'_s

