1. A partir de l'equació de l'enunciat

$$y = 0, 4\sin\pi(t/2 - x/4)$$

podem reescriure-la com

$$y(x,t) = 0, 4\sin\pi\left(\frac{t}{2} - \frac{x}{4}\right)$$

en aquest moment hem de triar si deixem un 2π com a factor comú dins el sin o l'introduïm dintre. En cada cas les identificacions que podrem fer seran diferents. En el primer cas multipliquem i dividim per 2 per obtenir

$$y(x,t) = 0, 4\sin 2\pi \left(\frac{1}{2} \cdot \frac{t}{2} - \frac{1}{2} \cdot \frac{x}{4}\right) = 0, 4\sin 2\pi \left(\frac{t}{4} - \frac{x}{8}\right)$$

d'on podem identificar $T=4\,s$ i $\lambda=4\,m$

Si triem introduir el factor π tenim

$$y(x,t) = 0, 4\sin\left(\frac{\pi t}{2} - \frac{\pi x}{4}\right)$$

de forma que les identificacions són ara

$$\omega = \frac{\pi}{2} rad/s$$
 $k = \frac{\pi}{4} rad/m$

Per resoldre aquest primer exercici no ens cal això que acabem de discutir, però ho presentem ara com a referència futura per els exercicis de la resta del tema, ja que és una tècnica típica que cal conèixer.

Calculem el que demana explícitament l'exercici, l'elongació per $x=0\,m$ i $t=6\,s$, (ho fem a partir de la darrera equació)

$$y(0,6) = 0, 4\sin\left(\frac{\pi \cdot 6}{2} - \frac{\pi \cdot 0}{4}\right) = 0, 4\sin(3\pi) = 0 m$$

Ara, per la velocitat transversal v_y calculem la derivada de l'elongació y(x,t) en funció del temps

$$v_y(x,t) = 0, 4 \cdot \frac{\pi}{2} \cos\left(\frac{\pi t}{2} - \frac{\pi x}{4}\right)$$

llavors,

$$v_y(0,6) = 0, 4 \cdot \frac{\pi}{2} \cos\left(\frac{\pi \cdot 6}{2} - \frac{\pi \cdot 0}{4}\right) = 0, 4 \cdot \frac{\pi}{2} \cos(3\pi) = -0, 2\pi = 0,628 \, m/s$$

2. Reescrivint l'equació de l'enunciat

$$y = 0.03\sin(10\pi x - 40\pi t)$$

Ara, per la velocitat transversal v_y calculem la derivada de l'elongació y(x,t) en funció del temps

$$v_y(x,t) = 0.03 \cdot (-40\pi) \cos(10\pi x - 40\pi t)$$

de forma que

$$v_y(0.1, 0.025) = 0.03 \cdot (-40\pi) \cos(10\pi \cdot 0.1 - 40\pi \cdot 0.025)$$

$$= 0.03 \cdot (-40\pi) \cos(\pi - \pi)$$

$$= 0.03 \cdot (-40\pi) \cos(0)$$

$$= 0.03 \cdot (-40\pi) \cdot 1$$

$$= 3.77 \, m/s$$

3. La distància demanada és la longitud d'ona λ de forma que

$$\lambda = vT = \frac{v}{f} = \frac{300}{550} = \frac{6}{11} = 0,545 \, m$$

4. A partir de

$$\lambda = vT = \frac{v}{f} \rightarrow v = \lambda f = 0, 15 \cdot 20 = 3 \, m/s$$

Noteu que la dada de l'amplitud de l'ona no és necessària.

5. (a) Calculem la longitud d'ona

$$\lambda = \frac{v}{f} = \frac{3 \cdot 10^8}{3 \cdot 10^{10}} = 0,01 \, m$$

Llavors, dividint la distància total entre la longitud d'ona

$$\frac{50 \cdot 10^3}{0.01} = 5 \cdot 10^5$$

hi ha $5\cdot 10^5$ longitud
s d'ona entre l'avió i l'estació de radar

(b) Ara, amb la formula de cinemàtica x = vt

$$t = \frac{x}{v} = \frac{2 \cdot 50 \cdot 10^3}{3 \cdot 10^8} = 3,33 \cdot 10^{-2} \, s$$