Major Project - Review 3

An improved LinkNet based approach for Retinal Image Segmentation

Guide:-

Dr. Velliangiri S

Assistant Professor, Department of Computational Intelligence, SRM Institute of Science and Technology, Kattankulathur.

Team Members : -Srijarko Roy (RA1911026010087) Ankit Mathur (RA1911026010088)

Abstract

The characteristics of Retinal Blood Vessels helps diagnose various eye ailments. The proper localization, extraction and segmentation of the blood vessels is very essential to the cause of treatment of the eye. Manual segmentation of blood vessels may be error prone and inaccurate, leading to difficulty in further treatment. We present a novel approach of semantic segmentation of Retinal Blood Vessels using Linked Networks to account for lost spatial information during feature extraction. The implementation of the segmentation technique involves using Residual Networks as a feature extractor and Transpose Convolution for image to image translation thereby giving a segmentation mask as an output. The main feature of the architecture is the links between the Feature Extractor and the Decoder networks that enhance the performance of the network by helping in the recovery of lost spatial information. Training and Validation using the Pytorch framework has been performed on the Digital Retinal Images for Vessel Extraction (DRIVE) Dataset to establish quality results.

Introduction

- The retinal vascular system is the only non-invasive imaging technique that can get visible blood vessels from the human body, and it offers abundant information on the health of the eye.
- For the detection of various disorders, retinal vascular segmentation is of utmost importance. Retinal scans are therefore often utilised to identify early indicators of systemic vascular disease.
- Accurate segmentation of the arteries is necessary to make systemic vascular disorders easier to diagnose. As a result, in the realm of medical imaging, the automated segmentation of retinal blood vessels from fundus pictures has grown in popularity.

Motivation

Manual segmentation of blood arteries may be incorrect and mistake prone, making subsequent treatment challenging. The retinal blood vessels system provides extensive information on the health of the eye and is the only non-invasive imaging tool that can get visible blood vessels from the human body. Retinal vascular segmentation is crucial for the identification of many diseases. Therefore, retinal scans are frequently used to detect early signs of systemic vascular disease. The diagnosis of systemic vascular diseases requires accurate segmentation of the arteries. The automatic segmentation of retinal blood vessels from fundus images has therefore gained favour in the field of medical imaging.

Plan of Action

Events	Time Period
Ideation	30th December 2022
Base Paper Review and Literature Survey	31st December 2022 - 5th January 2023
Data collection and Preprocessing	7th January 2023 - 16th February 2023
Model Implementation and Validation	18th February 2023 - 17th March 2023
Model Testing	19th March 2023 - 20th April 2023
Deployment	20th April 2023 - 28th April 2023

Requirements

Software Requirements:

- Google Colab for Training
- VS Code
- Linux Terminal for local Testing
- Python
- PyTorch

Hardware Requirements:

- NVIDIA P100
- cuDNN VERSION 8005

Paper	Author(s)	Dataset	Method	Metric	Year
Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network	Wang Xiancheng et. al.	DRIVE Dataset	U-Net with specific data augmentations	0.9790 (AUC ROC)	2018

Paper	Author(s)	Dataset	Method	Metric	Year
Blood Vessel Segmentation in Retinal Images Using Lattice Neural Networks	Gildardo Sanchez-Ante <i>et.</i> <i>al</i> .	STARE Database	Lattice Neural Networks with Dendritic Processing	0.81 (F1 Score)	2013
Methods for the detection of blood vessels in retinal fundus images and reduction of false-positive pixels around the optic nerve head	Ashish Kumar Dhara et. al.	DRIVE Dataset	Multiscale vesselness measures and Gabor filters	0.9616 (F1 Score)	2014

Paper	Author(s)	Dataset	Method	Metric	Year
A Fundus Retinal Vessels Segmentation Scheme Based on the Improved Deep Learning U-Net Model	Xiuqin Pan <i>et. al.</i>	DRIVE Dataset	Improved U-Net	96.50% (Segmentation Accuracy)	2019
DeepVessel: Retinal Vessel Segmentation via Deep Learning and Conditional Random Field	Huazhu Fu et. al.	DRIVE, STARE and CHASE_DB1	Multi-level CNN with Conditional Random Fields	0.9523 (Accuracy)	2016

Paper	Author(s)	Dataset	Method	Metric	Year
Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction	Mendonca <i>et. al.</i>	DRIVE Dataset	Morphological Processing	0.9452 (Accuracy)	2006
An effective retinal blood vessel segmentation method using multi-scale line detection	Nguyen et. al.	STARE Dataset	Multi-Scale Line Detection	0.9326 (Accuracy)	2013

Paper	Author(s)	Dataset	Method	Metric	Year
Retinal blood vessel segmentation based on heuristic image analysis	Maja Braovic <i>et. al.</i>	DRIVE and STARE Dataset	Modified SUSAN edge detector and shape analysis	96.33% and 96.10% (Accuracy) respectively	2019
Retinal vessels segmentation based on level set and region growing	Yu Qian Zhao et. al.	DRIVE and STARE databases	Contrast-limited adaptive histogram equalization (CLAHE), followed by a 2D Gabor wavelet to enhance the contrast of the retinal image.	94.77% on the DRIVE database and 95.09% on the STARE database (Accuracy)	2014

Paper	Author	Dataset	Method	Metric	Year
An Ensemble Classification-Base d Approach Applied to Retinal Blood Vessel Segmentation	Fraz et. al.	DRIVE, STARE, CHASE	Ensemble system of bagged and boosted decision trees and utilizes a feature vector based on the orientation analysis of gradient vector field, morphological transformation, line strength measures, and Gabor filter	0.9480, 0.9534, 0.9469 respectively (Accuracy)	2012
A New Supervised Method for Blood Vessel Segmentation in Retinal Images by Using Gray-Level and Moment Invariants-Based Features	Diego Marin et. al.	DRIVE	neural network (NN) scheme for pixel classification and moment invariants-based features for pixel representation	0.9452 (Accuracy)	2010

Paper	Author(s)	Dataset	Method	Metrics	Year
Trainable COSFIRE filters for vessel delineation with application to retinal images	G Azzopardi et. al.	DRIVE	B-COSFIRE filter	0.9442 (Accuracy)	2015
Iterative vessel segmentation of fundus images	Roychowdhury et. al.	DRIVE	Unsupervised Iterative Segmentation with tophat reconstruction and global thresholding	0.9494 (Accuracy)	2015

Paper	Author(s)	Dataset	Method	Metrics	Year
Ridge-Based Vessel Segmentation in Color Images of the Retina	Joes Staal <i>et. al</i> .	DRIVE	Ridge-Based	0.9441 (Accuracy)	2004
Holistically-Nested Edge Detection	Saining Xie, Zhuowen Tu	DRIVE	HED	0.9435 (Accuracy)	2016

Paper	Author(s)	Dataset	Method	Metrics	Year
Comparative Analysis of Vessel Segmentation Techniques in Retinal Images	AZHAR IMRAN et. al.	DRIVE, STARE, CHASE_DB1, HRF, MESSIDOR, REVIEW	Vector machine-based methods, neural network-based methods, miscellaneous methods, matched filter methods.	67.6% On CHASE_DB1 (Accuracy)	2019
A retinal vessel boundary tracking method based on Bayesian theory and multi-scale line detection	JiaZhang et. al.	REVIEW (KPIS, CLRIS, HRIS, VDIS)	A Bayesian method with the Maximum a posterior (MAP)	100%, 98.23%, 94.2%, 100% (Width Error)	2014

Paper	Author(s)	Dataset	Method	Metrics	Year
Accurate Retinal Vessel Segmentation via Octave Convolution Neural Network	Zhun Fan et. al.	DRIVE, STARE, CHASE DB1, and HRF	Octave UNet	0.9663 (Accuracy), on DRIVE Dataset	2019
Retinal Blood Vessel Segmentation by Support Vector Machine Classification	Eva Tuba <i>et. al.</i>	DRIVE	Overlapping-block- based supervised machine learning approach for blood vessel segmentation	0.9538 (Accuracy), 0.9773 (Specificity)	2017

Paper	Author(s)	Dataset	Method	Metrics	Year
AUTOMATIC BLOOD VESSEL SEGMENTATION IN COLOR IMAGES OF RETINA	A. OSAREH and B. SHADGAR	Custom Dataset	Octave UNet	95.24% (Accuracy)	2009
Segmentation of retinal blood vessels using the radial projection and semi-supervised approach	Xinge You et. al.	DRIVE and STARE	Vessel segmentation	0.9434 on DRIVE And 0.9497 on STARE	2011

Paper	Author(s)	Dataset	Method	Metrics	Year
Morphology Approach for Features Extraction in Retinal Images for Diabetic Retionopathy Diagnosis	Ibrahim Abdurrazaq et. al.	DRIVE	Mathematical morphology theory and intensity transformation algorithm	TPF value of 0.8214 (True Positive Fraction)	2008
Retinal Vessel Segmentation Using Deep Neural Networks	Martina Melinscak, Pavle Prentasic and Sven Loncaric	DRIVE	DNNs or CNNs which instead of subsampling or down-sampling layers have a maxpooling layer (MPCNNs).	0.9466 with 0.7276 and 0.0215 TPR and FPR	2015

Paper	Author(s)	Dataset	Method	Metrics	Year
Construction of Retinal Vessel Segmentation Models Based on Convolutional Neural Network	Qiangguo Jin et. al.	DRIVE and STARE	Deformable-Conv Net	Accuracy of 0.9628/0.9690	2020
Retinal Vessel Segmentation Using the 2-D Morlet Wavelet and Neural Network	R.Ghaderi et. al.	DRIVE	Morlet transform	0.90% to 0.9668% of the area under the ROC curve	2008

Challenges and limitations in existing system

 Existing systems for Retinal Blood Vessel Segmentation such as UNETs, CNNs, SVMs have a common problem of the loss of important spatial information during the feature extraction stage as a result of multiple downsampling.
 Hence, the existing models are not able to achieve the accuracy that it could have if the spatial information has been retained.

 Certain networks such as UNETs use Transpose Convolutions for the Upsampling task. The usage of Transpose Convolution often leads to noisy outputs.

Problem Statement: -

Manual segmentation of Retinal Blood Vessels is often error prone and exhausting for skilled ophthalmologists, leading to improper diagnosis of the eye ailments.

Objective: -

Implementations of a Semantic Segmentation Network to accurately segment the Blood Vessels present in the retina for proper treatment and reduction of operator fatigue.

Innovation idea of the project

In order to counter the problem of lost spatial information, we propose using an improved LinkNet based architecture for semantic segmentation of Retinal Blood Vessels.

- The network makes use of skip connections to link each Encoder Block to its corresponding Decoder Block, passing on the lost spatial information to be concatenated during Upsampling.
- Using Upsample instead of Transpose Conv counters the problem of noisy output.

Scope and application of the project

- Medical Science
- Ophthalmology
- Retinal Disease Diagnosis
- Disease Monitoring in Diagnosis Centers
- Ophthalmic Research Institutes
- Educational Institutions offering courses in Ophthalmology

Architecture

Encoder: ResNet18

Decoder: ConvTranspose Blocks

Linking between each Encoder Block with corresponding Decoder Block

Modules

- Albumentations It is used for augmenting the image during preprocessing.
- Imageio This module is responsible for performing image processing.
- Pytorch This is acts as the framework for our model's architecture.
- Urllib.request This module is used for getting an input image into the ui via image address.
- Streamlit: This the platform on which our web application has been developed.

Modules (Architecture)

Encoder: The encoder network comprises of an initial block and 4 residual blocks for feature extraction purposes.

- Initial Block: The initial block of the encoder performs a convolution operation on the input image, with a (7x7) kernel and a stride of 2. This is followed by Batch Normalization and ReLU activation before a spatial max-pooling operation with a kernel size of (3x3) and a stride of 2.
- Residual Blocks: Following the initial block of the encoder are the residual blocks, used for feature extraction. Each residual block has a strided convolution operation followed by 3 convolutional operations with a (3x3) kernel accompanied by skip connections.

Modules

Linked Architecture:

The linking of each encoder to each decoder has been performed exactly as mentioned in, in order to recover the lost spatial information as a result of multiple downsampling operations in its encoder. To enable the linking operation, strided convolutions have been used in the encoder.

Modules

Decoder: The decoder network takes the output from the encoder as its input. It comprises 4 decoder blocks and a final segmentation block to perform the main segmentation task.

- Decoder Blocks: Each decoder block has 2 convolutional operations with a (1x1) kernel and an
 Upsample operation in trilinear mode with scale factor 2, between them. The Upsample
 operation counters the noisy output produced by transpose convolution. The decoder blocks are
 followed by the final segmentation block.
- Final Segmentation Block: The final segmentation block of the decoder performs the main segmentation task on the output received from Decoder Block 1. A convolution operation with kernel size (3x3) is performed on the decoder output, followed by an Upsample operation with scale factor 2 in the trilinear mode for a noise-reduced output. Finally, another convolution operation with kernel size (3x3) is performed before passing it through a softmax layer to get the final segmentation mask with pixel probabilities.

Decoder Blocks

Algorithmic description using Workflow Diagram

UML Diagrams (Sequence Diagram)

A. Dataset

We have used the Digital Retinal Images for Vessel Extraction (DRIVE) dataset for retinal vessel segmentation. It consists of a total of JPEG 40 color fundus images; including 7 abnormal pathology cases. Each image resolution is 584x565 pixels with eight bits per color channel (3 channels), resized to 512x512 for our model. The data has been augmented using the albumentations module. Data Augmentation has been accomplished by doing HorizontalFlip, VerticalFlip and Rotate, thereby generating 160 images for training.

Figure 4.2: Original, Horizontal Flip, and Vertical Flip Images

Pre-processing techniques like normalisation and standardisation have been applied along with augmentations. All images were processed to have zero mean and unit standard deviation as a part of the pre-processing. The standard normal images were passed to the model for training.

B. Metrics

1. **Dice Loss:** We have adopted Dice Loss as a metric for evaluating the performance of our model. The overlap or resemblance between two sets is calculated using the dice coefficient. This metric is particularly popular with class-imbalance problems. The predicted label and the ground truth can be considered as two sets for the purposes of semantic segmentation. The Dice coefficient ranges in value from 0 to 1, where 0 indicates no overlap and 1 indicates total overlap. The dice coefficient is calculated using the following formula.

Dice Coefficient = $2 | T \cap P| / |T| + |P|$

The generalised loss function is calculated from the dice coefficient by subtracting it from 1. This dice loss is minimised which maximises the dice coefficient as higher value implies a better overlap.

2. IoU Loss: We have used Intersection over Union as another metric for evaluating the performance of our model. IoU, as the name suggests, is calculated as a ratio of the overlap of the predicted label with the ground truth to their union, i.e. the total area they cover. Similar to the dice loss, it ranges from 0 to 1, with 0 indicating no overlap and 1 indicating total overlap. The Intersection over Union value is calculated as:

Intersection over Union = | T ∩ P| / |T U P|

The IoU loss function is calculated by subtracting the IoU Score from 1, and similar to the Dice Loss, a lower IoU loss gives a better overlap, hence is minimised.

C. Training Details

The PyTorch framework was used to code the architecture, and the NVIDIA Tesla T4 GPU and CUDA integration were used to train it on 80 images with a batch size of 4. Before being loaded into a dataloader object for training, each picture underwent pre-processing, was enhanced, normalised, and standardised. To reduce the dice and IoU loss, the model was trained using the Adam optimizer for 100 iterations at a learning rate 0.0001.

D. Experimental Results

Validation was performed on the DRIVE Dataset and the STARE Dataset using NVIDIA Tesla T4 GPU. The weights were hosted and downloaded via gdown for further tests. The Figure on the next slide shows the test results of the input retinal images from DRIVE Dataset and validation results are mentioned in the below Table.

Metrics	DRIVE	STARE
Dice Loss	0.1164	0.1277
IoU Loss	0.2086	0.1962

Comparison with State-of-the-Art

Architecture	Metric	
UNETs	0.9790 (AUC ROC)	
Lattice NN with Dendrite Processing	0.81 (F1 Score)	
Multi-level CNN with Conditional Random Fields	0.9523 (Accuracy)	
Multi-scale Line Detection	0.9326 (Accuracy)	
CLAHE	0.9477 (Accuracy)	
Modified SUSAN edge detector	0.9633 (Accuracy)	
LinkNet	0.8836 (Dice Score)	