数据库系统 期末速通教程

4. 关系代数

[Select] $\sigma_{\text{conditions}}(\text{relation})$ 取行.

[**Projection**] $\pi_{\text{attributes}}(\text{relation})$ 取列.

[例1] 在学生表 "students" 中进行如下查询:

(1) 查询 19 岁的学生.

 $\sigma_{\text{age}=19}(\text{students})$.

(2) 查询 20 岁且姓名为 "ZHONGWEILONG" 的学生.

 $\sigma_{
m age=20 \, \wedge \, name='ZHONGWEILONG'}({
m students})$

或 $\sigma_{\text{age}=20}(\sigma_{\text{name}=\text{'ZHONGWEILONG'}}(\text{students}))$ 或 $\sigma_{\text{name}(\sigma_{\text{age}=20}=\text{'ZHONGWEILONG'}}(\text{students}))$.

(3) 查询所有学生的年龄.

 $\pi_{\rm age}({\rm students})$.

(4) 查询 20 岁的学生的姓名.

 $\pi_{\text{name}}(\sigma_{\text{age}=20}(\text{students}))$.

[Join]

- (1) 定义: $R \propto_{\text{join-condition}} S$ 返回 Cartesian 积 $R \times S$ 中满足 join-condition 的行.
- (2) $R \propto_{\text{join-condition}} S \Leftrightarrow \sigma_{\text{join-condition}}(R \times S)$.
- (3) 分类:

(4) [**Equal Join 与 Theta Join**] 若 join-condition 中的运算符只有等号, 则称为 **Equal Join** , 否则称为 **Theta Join** . [**Natural Join**] 省略 join-condition 的 join 称为 **Natural Join** .

[例2]

(1) 关系 $R_1(x_1,x_2,x_3,M)$ 与关系 $R_2(y_1,y_2,M)$ 有公共字段 M , 则 natural join $R_1 \propto R_2$ 的字段为 (x_1,x_2,x_3,M,y_1,y_2) .

(2)

			В	E	A	В	\boldsymbol{C}	E
	В		b_1	3		,	_	
a_1	\boldsymbol{b}_1	5			a_1	$\boldsymbol{b_1}$	5	3
<i>a</i> ₁	b ₂	6	\boldsymbol{b}_2	7	a_1	<i>b</i> ,	6	7
a ₂	b ₃	8	b_3	10				
a ₂	<i>b</i> ₄	12			a_2	b ₃	8	10
	4		b_3	2				
	R		b ₅	2	a_2	b_3	8	2
			\overline{S}			R ∞	S	

[例3] 在学生表 "students" 和修课表 "enrollment" 中查询所有学生的姓名和所选课程的编号.

 $\pi_{\text{name, cid}}(\sigma_{\text{students.id}=\text{enrollment.sid}}(\text{students} \times \text{enrollment}))$ 或 $\pi_{\text{name, cid}}(\text{students} \propto \text{enrollment})$.

[Outer Join] 保留不参与 join 的行的 natrual join.

- (1) [Left Outer Join] $R_1 \bowtie R_2$ 表示 $R_1 \propto R_2$ 并保留 R_1 中未参与 join 的行.
- (2) [**Right Outer Join**] R_1 \bowtie R_2 表示 $R_1 \propto R_2$ 并保留 R_2 中未参与 join 的行.
- (3) [Full Outer Join] R_1 区 R_2 表示 $R_1 \propto R_2$ 并保留 R_1 和 R_2 中未参与 join 的行.

[例4]

[**Division**] 对关系表 A 和 B, 除法 A/B 的字段是 (A-B) 的字段.

[例5]

sno	pno	pno	pno	pno
s1	p1	p2	p2	p1
s1	p2	B1	p4	p2
s1	p2 p3	DI	B2	p4
s1	p4		DZ	В3
s2	p1	sno		DS
s2	p2	s1		
s3	p2	s2	sno	
s4	p2 p2	s3	s1	sno
s4	p4	s4	s4	s1
	\overline{A}	A/B1	<i>A/</i> B2	A/B3

[例6] 在学生表 "students"、课程表 "courses" 和修课表 "enrollment" 中查询修了所有课的学生的 ID.

- (1) 查询所有课程的 ID: $\pi_{cid}(courses)$.
- (2) 查询选课的学生的 ID 和所选课程的 ID: $\pi_{\rm sid,cid}({\rm enrollments})$.
- (3) 做除法: $\pi_{\rm sid,cid}$ (enrollments) / $\pi_{\rm cid}$ (courses).

[例7]

s	Sŧ	SNAME	STATUS.	CITY		SP		Sŧ	P#	QIX
	S1	Smith	20	London	7			Sl	P1	300
	S2 S3	Jones Blake	10 30	Paris Paris	1			S1 S1 •	P2	200 400
	S4	Clark	20	London				Sl	P4	200
	S5	Adams	30	Athens				S1 S1	P5 P6	100
			;		_	•		52	Pl	300
P	P#	PNAME	COLOR	WEIGHT	CITY			S2 S3	P2	400 200
	P1 P2 P3	Nut Bolt Screw	Red Green Blue	12.0 17.0 17.0	London Paris Oslo	`		54 54 54	P2 P4 P5	200 300 400
	P4 P5 P6	Screw Cam C'g	Red Blue Red	14.0 12.0 19.0	London Paris London		,			

(1) 查询供应 P_2 的供应商的名称.

$$\pi_{\mathrm{sname}} \ \sigma_{\mathrm{P\#=P_2}}(\mathrm{S} \propto \mathrm{SP})$$
 .

(2) 查询至少供应了红色部件的供应商的名称.

 $\pi_{
m sname}~\sigma_{
m color='red'}({
m S}~\infty~{
m SP}~\infty~{
m P})$, 注意表 ${
m S}$ 与表 ${
m P}$ 虽有公共属性 ${
m CITY}$, 但并非按该属性 join .

- (3) 查询供应了所有部件的供应商的名称.
 - ① 先在表 SP 和表 P 查询供应了所有部件的供应商的 $ID:\pi_{S\#,P\#}(SP) \ / \ \pi_{P\#}(P)$.
 - ② 将上述结果与表 S join 后查询 ID 对应的供应商的名称: $\pi_{\text{sname}}((\pi_{S\#,P\#}(SP) \ / \ \pi_{P\#}(P)) \infty S)$.
- (4) 查询至少供应了供应商 S_2 供应的部件的供应商的 ID : $\pi_{S\#,P\#}(SP) / \pi_{P\#}(\sigma_{S\#=S_2}(SP))$.