

UNIVERSIDADE DO ESTADO DE SANTA CATARINA - CENTRO DE CIÊNCIAS TECNOLÓGICAS

ANÁLISE ESTATÍSTICA DE TRÊS VARIÁVEIS QUE PODEM INFLUENCIAR NO TEMPO DE VOO DE GIROCÓPTEROS

Anna Paula Meneghelli de Oliveira Pedro Martins Bailer

Trabalho Final da Disciplina de Probabilidade e Estatística

1 O tamanho da asa exerce influência no tempo do vôo?

Para verificar se o tamanho da asa interfere no tempo de voo, realizamos um teste T no RStudio, e consideramos que, a hipótese nula e a hipótese alternativa respectivamente são: H0: a média do tempo de voo para o tipo de papel 1 é igual a média de voo para o tipo de papel 2, ou seja, o comprimento da asa não interfere no tempo de voo.

H1 é: as média dos tempos de voo para os dois comprimentos de asa são diferentes, ou seja, eles interferem no tempo de voo.

A partir do teste T no RStudio foram obtidos os seguintes resultados:

Two Sample t-test

```
data: girocoptero$Tempo by girocoptero$Asa t = -9.916, df = 14, p-value = 1.037e-07 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -2.873497 - 1.851503 sample estimates: mean in group Curta mean in group Longa 5.3350 7.6975
```

O p-valor é de 1,037e-07, menor que o nível de significância adotado, 0,05, então rejeitamos a hipótese nula e concluímos que as médias dos tempos de voo para os dois comprimentos de asa são diferentes.

2 O tipo de papel e o tamanho da asa afeta o tempo de vôo?

Para verificar se as variáveis influenciam no tempo de voo, foi feito um teste ANOVA, no RStudio. Neste caso, temos que:

H0: Não existe diferença entre as médias.

H1: Pelo menos uma das medidas difere.

A partir do teste foram obtidos os seguintes resultados:

```
Df Sum Sq Mean Sq F value Pr(>F)
girocoptero$Asa 1 22.326 22.326 91.38 3.03e-07 ***
girocoptero$Papel 1 0.002 0.002 0.01 0.921
Residuals 13 3.176 0.244
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '1
```

Analisando os resultados, temos que o p-valor para o comprimento da asa resultou em 3,03e-07, o que é muito menor que o valor do nível de significância que é de 0,05, então rejeitamos a hipótese nula, há pelo menos uma média que difere. Podemos supor que o comprimento da asa influencia no tempo de voo, pois já fizemos um teste referente a essa variável.

Para reafirmar esta conclusão e visualizar melhor os resultados, realizamos também o teste Tukey, no RStudio:

```
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = girocoptero$Tempo ~ girocoptero$Asa + girocoptero$Papel)
$`girocoptero$Asa`
diff lwr upr p adj
Longa-Curta 2.3625 | 1.828571 | 2.896429 3e-07
```

\$`girocoptero\$Papel`
diff lwr upr p adj
II-I -0.025 | -0.558929 | 0.508929 | 0.9209715

Novamente, observando os valores obtidos para o p-valor e comparando-os com o nível de significância, concluímos que para as variáveis, rejeita-se H0, e que o comprimento da asa influencia no tempo de voo e o tipo de papel parece não influenciar. Foram construídos dois gráficos a partir destes resultados:

95% family-wise confidence level

Gráfico 1: Tukey para o tipo de papel.

95% family-wise confidence level

Gráfico 2: Tukey para o comprimento da asa.

3 O tempo de vôo está associado com a quantidade de clips na base do girocóptero?

Para ver se o tipo de clips influencia no tempo de voo, realizamos um teste t no RStudio, e comparamos a média do tempo de voo dos giroscópios com clips grande com a média do tempo de voo dos giroscópios com clips pequeno. Temos que:

H0: O tamanho do clips não influencia no tempo de voo.

H1: O tamanho do clips influencia no tempo de voo.

A partir do teste, foram obtidos os seguintes resultados:

Two Sample t-test

```
data: girocoptero_clip$Tempo by girocoptero_clip$clips t = -2.8211, df = 36, p-value = 0.00774 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -2.5813218 -0.4221226 sample estimates: mean in group G mean in group P 6.472778 7.974500
```

Analisando os resultados do teste, vemos que o p-valor é de 0,007, menor que o nível de significância de 0,05, então rejeitamos a hipótese nula e concluímos que o tamanho do clips influencia no tempo de voo

4 O tempo de vôo está associado com a quantidade de clips, tipo de papel e tamanho da asa na base do girocóptero?

Para verificar se os três fatores influenciam no tempo de voo, realizamos um teste ANOVA no RStudio. Neste caso temos que:

H0: Não existe diferença entre as médias.

H1: Pelo menos uma das medidas difere.

A partir do teste foram obtidos os seguintes resultados:

```
Df Sum Sq Mean Sq F value Pr(>F)
girocoptero_clip$clips 1 21.36 21.36 31.470 2.77e-06 ***
girocoptero_clip$Papel 1 5.70 5.70 8.394 0.00654 **
girocoptero_clip$Asa 1 67.86 67.86 99.958 1.17e-11 ***
Residuals 34 23.08 0.68
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '1
```

Percebemos que todos os p-valores foram menores que o nível de significância 0,05 e rejeitamos a hipótese nula, pois há pelo menos um valor de média que difere. Concluímos que uma ou mais variáveis afetam o tempo de voo, a partir dos testes anteriores, supomos que estas variáveis sejam o comprimento da asa e o tamanho do clips. De acordo com o p-valor do tipo de papel ele também influencia na média, pois é menor que o nível de significância 0,05, porém há como confirmar com este teste.

Para reafirmar esta conclusão e visualizar melhor os resultados, realizamos também o teste Tukey, no RStudio:

```
Tukey multiple comparisons of means
95% family-wise confidence level
           aov(formula
                                        girocoptero clip$Tempo~girocoptero clip$clips+
Fit:
girocoptero clip$Papel + girocoptero clip$Asa)
$`girocoptero clip$clips`
         diff
                              upr
                                       p adj
P-G 1.501722 | 0.9576961 | 2.045748 | 2.8e-06
$`girocoptero clip$Papel`
         diff
                   lwr
                               upr
                                        p adj
II-I -0.7835581 | -1.333732 | -0.2333845 | 0.0065911
$`girocoptero clip$Asa`
                diff
                         lwr
                                   upr
                                            p adj
Longa-Curta 2.679307 | 2.129134 | 3.229481 | 0
```

Novamente, observando os valores obtidos para o p-valor e comparando-os com o nível de significância, concluímos que para as variáveis, rejeita-se H0, e que o comprimento da asa e o tamanho dos clips influenciam no tempo de voo. Foram construídos dois gráficos a partir destes resultados:

95% family-wise confidence level

Gráfico 3: Tukey para o tamanho do clips.

95% family-wise confidence level

Gráfico 4: Tukey para o tipo de papel.

95% family-wise confidence level

Gráfico 5: Tukey para o comprimento dá asa.

5 Escrever a equação de regressão linear simples para:

5.1 O tempo de vôo como função do tamanho da asa

```
Tempo = 5.3350 + 2.3625*Asa
Asa(longa) = 1; Asa(curta) = 0
```

5.2 O tempo de vôo como função do tamanho da asa e do tipo de papel

```
Tempo = 5.3475 + 2.3625*Asa - 0.0250*Papel
Asa(longa) = 1; Asa(curta) = 0
Papel(II) = 1; Papel(I) = 0
```

Comentários:

Cálculos do RStudio

Para obtermos a linha que aproxima as funções desejadas utilizamos a função lm do R que faz um estudo da regressão linear do evento dados os pontos. O que o lm calcula é atribuído a um índice e para vermos as informações gerados pelo lm usamos a função summary para esse índice.

Dentre o que é mostrado através do *summary* existe aquela pequena tabela produzida que é chamada de *Coefficients*. A primeira coluna dessa tabela mostra os coeficientes que geram a função da linha.

Nos resultados obtivemos coeficientes bem próximos para a Asa nos dois modelos. Podemos visualizar que a asa longa promove um tempo de voo significativamente maior que o que é associado à asa curta.

Para o Papel vimos que a mudança entre os papéis usados no experimento não altera o tempo de voo significativamente. Além disso o valor do coeficiente do Papel é negativo, então o tempo de voo de um girocóptero feito com o papel I deve ter um tempo de voo maior que o feito com o papel II para esse modelo.

6 Utilizando a equação obtida em 5.2 estime o tempo de vôo para o girocóptero que construiu.

A asa do meu era longa, 130mm. O papel era sulfite, não lembro se o sulfite era tipo 1 ou 2. Se formos usar a função da 5.1 então o tempo seria de aproximadamente 7.6975s que realmente é a média dos valores dos tempos para os lançamentos com asa longa. Mesmo não sabendo o tipo de papel, podemos inferir que o resultado obtido pela segunda fórmula seria muito próximo do obtido através da primeira já que o coeficiente da variável Papel é muito pequeno e, portanto, exerce pouca significância para o tempo de voo no experimento estudado.

7 A partir dos resultados anteriores qual seria a melhor combinação (tamanho da asa, tipo de papel e quantidade de clips) para construir um girocóptero de modo a obter o maior tempo de vôo?

Para construir um giroscópio com tempo de voo maior, analisamos todos os testes feitos para as três variáveis. De acordo com alguns testes, o tipo de papel não é fundamental na obtenção de um tempo de voo maior, porém como o item 3 apontou essa possibilidade escolhemos o tipo II. O comprimento da asa seria o longo, que apresentou tempo de voo consideravelmente maior e o tamanho do clips seria o P, que também indicou aumento no tempo de voo. Desta forma, o giroscópio com asa longa, clips tamanho P e papel tipo II seria o que possui maior tempo de voo.