Конспект по курсу

Гармонический анализ

Contributors: Андрей Степанов *Лектор:* Трушин Б.В.

МФТИ

Последнее обновление: 12 марта 2015 г.

Содержание

1	Абсолютно интегрируемые функции. Приближение ступен-		
	чатами. Лемма Римана об осцилляции		2
	1.1	Теорема о приближении интегрируемой на отрезке функции ступенчатой	2
	1.2	Теорема о приближении абсолютно интегрируемой функции	
		финитно-ступенчатой	2
	1.3	Лемма Римана об осцилляции	4
2	Тригонометрический ряд Фурье. Ядро Дирихле. Принцип		
	лок	ализации	5
	2.1	Тригонометрический ряд Φ урье	5
	2.2	Ядро Дирихле	7
	2.3	Принцип локализации	8
3	Cxc	одимость ряда Фурье. Условие Гёльдера	8
4	Теоремы Вейерштрасса о приближении функции многочле-		
	нами и тригонометрическими многочленами. Интегрирование и дифференцирование тригонометрического ряда. Экс-		
	пон	енциальная форма ряда Фурье.	10
	4.1	Теорема о приближении тригонометрическими многочленами	10
	4.2	Теорема о приближении обычными многочленами	11
	4.3	Интегрирование и дифференцирование тригонометрического	
		ряда	11
	4.4	Экспоненциальная форма ряда Фурье	12
5	Метрические и нормированные пространства. Банаховы про-		
	странства. Евклидовы пространства. Неравенство треуголь-		
	ник	а и Коши-Буняковского для Евклидовых пространств.	12
	5.1	Метрические и нормированные пространства	12
	5.2	Банаховы пространства	14
	5.3	Евклидовы пространства	15
	5.4	Неравенство Коши-Буняковского и треугольника для Евкли-	
		ловых пространств	15

1 Абсолютно интегрируемые функции. Приближение ступенчатами. Лемма Римана об осцилляции

1.1 Теорема о приближении интегрируемой на отрезке функции ступенчатой

Определение 1.1. Функция $f:[a,b] \mapsto \mathbb{R}$ называется ступенчатой, если $\exists \{c_i\}_{i=0}^n, a=c_0 < c_1 < \ldots < c_n=b: \forall i \in \{1,\ldots,n\}: f$ – постоянная на (c_{i-1},c_i) .

Теорема 1.1. Пусть $f:[a,b]\mapsto \mathbb{R}$ интегрируема по Риману. Тогда $\forall \varepsilon>0:\exists h(x)$ – ступенчатая: $\int_a^b|f(x)-h(x)|dx<\varepsilon$

Доказательство. Зафиксируем $\varepsilon_0 > 0$. Пусть $\tau = \{c_i\}_{i=0}^n$ — некоторое разбиение отрезка [a,b], такое что $a=c_0 < c_1 < \ldots < c_n = b$. Пусть $\xi_i \in (c_{i-1},c_i)$. Запишем сумму Римана для данного разбиения:

$$S_{\tau}(f;\xi_1,\cdots,\xi_n) = \sum_{i=1}^n f(\xi_i)(c_i - c_{i-1})$$

Рассмотрим ступенчатую функцию

$$h(x) = \begin{cases} f(\xi_i), \text{ если } x \in (c_{i-1}, c_i), \\ 0, \text{ иначе }. \end{cases}$$

Заметим, что в силу определения колебания $\omega_i(f)$ функции на отрезке $[c_{i-1},c_i]$ верно следующее:

$$\int_{a}^{b} |f(x) - h(x)| dx = \sum_{i=1}^{n} \int_{c_{i-1}}^{c_i} |f(x) - f(\xi_i)| dx \le$$

$$\le \sum_{i=1}^{n} \omega_i(f) (c_i - c_{i-1})$$

По критерию интегрируемости $\forall \varepsilon: \exists \delta$ последняя сумма меньше ε для всех достаточно мелких разбиений (тех, у которых мелкость $|\tau| \leq \delta$). Значит, если взять в качетсве $\varepsilon = \varepsilon_0$, а в качестве разбиения – любое разбиение с мелокстью $< \delta$, получим утверждение теоремы.

1.2 Теорема о приближении абсолютно интегрируемой функции финитно-ступенчатой

Определение 1.2. Пусть функция $f:(a,b)\mapsto \mathbb{R}$, где $-\infty \le a < b \le +\infty$. Такая функция называется абсолютно интегрируемой, если:

1. $\exists \{c_i\}_{i=0}^n, a = c_0 < c_1 < \ldots < c_n = b : f$ интегрируема на любом отрезке $[\alpha, \beta] \subset (a, b) \setminus \{c_i\}$

2. |f| интегрируема в несобственном смысле на (a, b)

Определение 1.3. Функция $f : \mathbb{R} \to \mathbb{R}$ называется финитной, если она равна нулю вне некоторого отрезка, т.е. $\exists [a,b] : \forall x \notin [a,b] : f(x) = 0$.

Определение 1.4. Функция $f: \mathbb{R} \mapsto \mathbb{R}$ называется финитно-ступенчатой, если она финитная и ступенчатая.

Теорема 1.2. Пусть функция $f: X \mapsto \mathbb{R}$ – абсолютно интегрируема, где X – конечный отрезок или бесконечный интервал (полуинтервал). Тогда $\forall \varepsilon > 0: \exists h(x)$ – финитно-ступенчатая: $\int_a^b |f(x) - h(x)| dx < \varepsilon$

Доказательство. Пусть $\varepsilon > 0$. Можно считать, что $X = \mathbb{R}$, иначе доопределим f на нулем. Поскольку f – абсолютно интегрируема, то:

- 1. $\exists \{c_i\}_{i=0}^{n+1}, a = c_0 < c_1 < \ldots < c_n = b : f$ интегрируема на любом отрезке $[\alpha, \beta] \subset (a, b) \setminus \{c_i\}$
- 2. |f| интегрируема в несобственном смысле на (a,b)

Считаем, что $c_0 = -\infty, c_{n+1} = +\infty$ Из определения несобственного интеграла:

$$\int_{c_i}^{c_{i+1}} |f(x)| dx = \lim_{a \to c_i, b \to c_{i+1}} \int_a^b |f(x)| dx$$

Значит, можно выбрать a_{i+1} и b_{i+1} так, что

$$\int_{c_i}^{a_{i+1}} |f(x)| dx + \int_{b_{i+1}}^{c_{i+1}} |f(x)| dx < \frac{\varepsilon}{n}$$

Тогда понятно, что любого наперед заданного эпсилон, можно написать следующее

$$\exists \{a_i\}_{i=1}^n, \{b_i\}_{i=1}^n$$
:

 $-\infty = c_0 < a_1 < b_1 < c_1 < a_2 < b_2 < c_2 < \dots < a_n < b_n < c_{n+1} = +\infty$:

$$J := \int_{c_0}^{a_1} |f(x)| dx + \int_{b_1}^{a_2} |f(x)| dx + \ldots + \int_{b_n}^{c_{n+1}} |f(x)| dx < \varepsilon$$

, т.к. |f| интегрируем на $\mathbb R$ в несобственном смысле. Пусть

$$f_{\varepsilon}(x) = \begin{cases} f(x), x \in \cup_{i=1}^{n} [a_i, b_i], \\ 0, \text{ иначе.} \end{cases}$$

Тогда

$$\int_{-\infty}^{+\infty} |f(x) - f_{\varepsilon}(x)| dx = J < \varepsilon$$

. f_{ε} интегрируема по Риману (т.к. все плохие точки мы выкинули). По предыдущей теореме существует $h_{\varepsilon}(x):[a_1,b_n]\mapsto \mathbb{R}$ — ступенчатая функция: $\int_{a_1}^{b_n}|h_{\varepsilon}(x)-f_{\varepsilon}(x)|dx<\varepsilon$. Доопределим $h_{\varepsilon}(x)$ нулем вне отрезка $[a_1,b_n]$. Тогда h — финитно-ступенчатая. Кроме того:

$$\int_{-\infty}^{+\infty} |h_{\varepsilon}(x) - f_{\varepsilon}(x)| dx < \varepsilon$$

Тогда:

$$\int_{-\infty}^{+\infty} |h_{\varepsilon}(x) - f(x)| dx < \int_{-\infty}^{+\infty} (|h_{\varepsilon}(x) - f_{\varepsilon}(x)| + |f_{\varepsilon}(x) - f(x)|) dx < 2\varepsilon$$

1.3 Лемма Римана об осцилляции

Теорема 1.3. Пусть $f:(a,b) \mapsto \mathbb{R}$ абсолютно интегрируема. Доопределим её на \mathbb{R} нулем. Тогда

$$\int_{-\infty}^{+\infty} |f(x+\alpha) - f(x)| dx \to 0, \ npu \ \alpha \to 0$$

Доказательство. Этот интеграл существует, т.к. его можно оценить как $\int_{-\infty}^{+\infty} |f(x+\alpha)| dx + \int_{-\infty}^{+\infty} |f(x)| dx$, а оба этих интеграла существуют, так как |f| абсолютно интегрируема.

Докажем сначала эту теорему для произвольной финитно-ступенчатой функции $h: \mathbb{R} \mapsto \mathbb{R}$. Поскольку $\alpha \to 0$, мы можем рассматривать лишь такие α , что

$$|\alpha| < \frac{\min_i (c_i - c_{i-1})}{2}$$

. Пусть $M = \sup |h|$. Тогда

$$\int_{-\infty}^{+\infty} |h(x+\alpha) - h(x)| dx < 2M(n+1)|\alpha|$$

Теперь докажем теорему для произвольной абсолютно интегрируемой f. Пусть $\varepsilon>0$. Пусть h(x) — финитно-ступенчатая: $\int_{-\infty}^{+\infty}|f(x)-h(x)|dx<\varepsilon$. Тогда: $\int |f(x+\alpha)-f(x)|dx \leq \int |f(x+\alpha)-h(x+\alpha)|dx+\int |h(x+\alpha)-h(x)|dx+\int |h(x)-f(x)|dx \leq 3\varepsilon$.

Лемма 1.4 (Римана об осцилляции). Пусть $f:(a,b)\mapsto \mathbb{R}$ – абсолютно интегрируемая функция. Тогда

$$\lim_{\lambda \to \infty} \int f(x) \sin(\lambda x) dx = \lim_{\lambda \to \infty} \int f(x) \cos(\lambda x) dx = 0$$

Доказательство. Доопределим f нулем на \mathbb{R} . Рассмотрим:

$$I(\lambda) = \int_{-\infty}^{+\infty} f(x) \sin(\lambda x) dx$$

Этот интеграл существует, так как f абсолютно интегрируема. Сделаем замену $x=t+\frac{\pi}{\lambda}.$ Тогда:

$$I(\lambda) = -\int_{-\infty}^{+\infty} f\left(t + \frac{\pi}{\lambda}\right) \sin(\lambda t) dt$$

. Сложив и поделив пополам, получаем, что:

$$I(\lambda) = \frac{1}{2} \int_{-\infty}^{+\infty} \left(f(x) - f\left(x + \frac{\pi}{\lambda}\right) \right) \sin(\lambda x) dx$$

Применяя теорему 1.3, получаем, что

$$I(\lambda) \to 0$$

.

2 Тригонометрический ряд Фурье. Ядро Дирихле. Принцип локализации

2.1 Тригонометрический ряд Фурье

Определение 2.1. Функциональный ряд

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kx) + b_k \sin(kx) \tag{1}$$

называется тригонометрическим рядом. a_k, b_k — коэффициенты ряда. Система

$$\left\{\frac{1}{2}, \sin x, \cos x, \sin 2x, \cos 2x, \ldots\right\}$$

называется тригонометрической системой

Утверждение 2.1. Тригонометрическая система является ортогональной со скалярным произведением $[f,g]=\int_{-\pi}^{\pi}f(x)g(x)dx$

Доказательство.

$$[1,1] = \int_{-\pi}^{\pi} dx \neq 0$$

$$[\sin kx, \sin kx] = \int_{-\pi}^{\pi} \sin^2 kx dx \neq 0$$

$$[\cos kx, \cos kx] = \int_{-\pi}^{\pi} \cos^2 kx dx \neq 0$$

$$[1, \sin kx] = \int_{-\pi}^{\pi} \sin kx dx = 0$$

$$[1, \cos kx] = \int_{-\pi}^{\pi} \cos kx dx = 0$$

$$[\sin nx, \cos mx] = \int_{-\pi}^{\pi} \sin nx \cos mx dx = 0$$

$$[\sin nx, \sin mx] = \frac{1}{2} \int_{-\pi}^{\pi} \cos(n-m)x - \cos(n+m)x dx = 0$$

$$[\sin nx, \sin mx] = \frac{1}{2} \int_{-\pi}^{\pi} \cos(n-m)x + \cos(n+m)x dx = 0$$

Заметим, что второе и третье равенство выполнены, так как интеграл берется от положительной непрерывной функции. Четвертое и пятое получается использованием Формулы Ньютона-Лейбницы. Шестое выполенно, так как подинтегральная функция нечетна. А седьмое и восьмое (при $n \neq m$) — это результат применения тригонометрических Формул и использовании формулы Ньютона-Лейбница.

Определение 2.2. Пусть функция f является 2π периодической и абсолютно интегрируемой на $[-\pi,\pi]$. Тогда ряд 1, где

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx$$
$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx$$

называется тригонометрическим рядом Фурье функции f. Обозначение: Обозначаем $f \sim \frac{a_0}{2} + \sum_{k=1}^\infty a_k \cos(kx) + b_k \sin(kx)$.

Утверждение 2.2. Пусть

$$T(x) = \frac{\alpha_0}{2} + \sum_{i=0}^{\infty} \alpha_k \cos kx + \beta_k \sin kx$$

cxodumcя равномерно на \mathbb{R} . Тогда ряд Фурье для T(x) – это $cam\ T(x)$.

Доказательство. Зафиксируем $k \in \mathbb{N}$. Мы хотим показать, что

$$a_k = \int_{-\pi}^{\pi} T(x) \cos kx dx = \alpha_k$$

Обозначим за $T_n(x)$ сумму первых n членов ряда. Фиксируем $\varepsilon > 0$. Так как ряд T(x) сходится равномерно, то $\exists n > k : |T(x) - T_n(x)| < \varepsilon$.

$$\pi a_k = \int_{-\pi}^{\pi} T(x) \cos kx dx = \int_{-\pi}^{\pi} (T_n(x) + (T(x) - T_n(x))) \cos kx dx =$$

$$= \int_{-\pi}^{\pi} T_n(x) \cos kx dx + \int_{-\pi}^{\pi} (T(x) - T_n(x)) \cos kx dx$$

Заметим, что первое слагаемое в этой сумме равно α_k . Тогда

$$\pi |a_k - \alpha_k| = \left| \int_{-\pi}^{\pi} (T(x) - T_n(x)) \cos kx dx \right| \le 2\pi \varepsilon$$

Следствие (из леммы Римана об осцилляции). *Если* f – *абсоллютно интегрируемая* u 2π *периодическая, то* $a_k \to 0, b_k \to 0$ *при* $n \to \infty$.

2.2 Ядро Дирихле

Определение 2.3.

$$S_n(f)(x) = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos kx + b_k \sin kx$$

Определение 2.4. $D_n(x) = \frac{1}{2} + \sum_{k=1}^n \cos kx$ – ядро Дирихле.

3амечание. Умножим и поделим ядро Дирихле на $\sin x/2$. Получаем:

$$\sin\frac{x}{2}D_n(x) = \sum_{k=1}^n \frac{\sin(k+\frac{1}{2})x + \sin(k-\frac{1}{2})x}{2} = \frac{\sin(n+\frac{1}{2})x}{2}$$

Можно считать, что

$$D_n(x) = \frac{\sin(n + \frac{1}{2})x}{2\sin\frac{x}{2}}$$

, если $x \neq 0$, а в нуле $D_n(x)$ – это предел этого выражения, то есть $n+\frac{1}{2}$ Замечание.

$$\frac{1}{\pi} \int_{-\pi}^{\pi} D_n(x) dx = 1$$

Замечание. Подставим в формулу для $S_n(f)(x)$ коэффициенты a_k и b_k . После использования формулы косинуса разности, а так же вспоминая, что ядро Дирихле – чётная функция, получаем:

$$S_n(f)(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} D_n(t-x)f(t)dt = \frac{1}{\pi} \int_{-\pi-x}^{\pi-x} D_n(u)f(x+u)du =$$

$$\frac{1}{\pi} \int_{-\pi}^{\pi} D_n(u)f(x+u)du = \frac{1}{\pi} \int_{-\pi}^{0} D_n(u)f(x+u)du + \frac{1}{\pi} \int_{0}^{\pi} D_n(u)f(x+u)du =$$

$$\frac{1}{\pi} \int_{0}^{\pi} D_n(-u)f(x-u)du + \frac{1}{\pi} \int_{0}^{\pi} D_n(u)f(x+u)du =$$

$$\frac{1}{\pi} \int_{0}^{\pi} D_n(u)(f(x-u)+f(x+u))du = \frac{1}{\pi} \left(\int_{0}^{\delta} + \int_{\delta}^{\pi} \right) D_n(t)(f(x+t)+f(x-t))dt =$$

$$\frac{1}{\pi} \int_{0}^{\delta} D_n(t)(f(x+t)+f(x-t))dt + \int_{\delta}^{\pi} \frac{\sin(n+1/2)t}{2\sin t/2} (f(x+t)+f(x-t))dt$$

В последнем интеграле функция $\frac{f(x+t)+f(x-t)}{\sin t/2}$ абсолютно интегрируема, если исходная функция абсолютно интегрируема, а значит, по лемме Римана об осцилляции, последний интеграл стемится к нулю.

2.3 Принцип локализации

Теорема 2.3. Пусть $f - 2\pi$ периодическая, абсолютно интегрируемая на $[-\pi, \pi]$ функция. Тогда частичные суммы $S_n(f)(x)$ сходятся в точке x_0 тогда и только тогда, когда $\exists \delta > 0$, что сходится интеграл

$$\int_0^{\delta} D_n(t)(f(x+t) + f(x-t))dx$$

. Причем если они сходятся, то к одному и тому же числу.

Следствие (принцип локализации). Сходимость ряда Фурье в точке и величина предела зависят только от значений функции в сколь угодно малой окрестности этой точки.

3 Сходимость ряда Фурье. Условие Гёльдера

Определение 3.1. Пусть x_0 – точка разрыва первого рода. Определим

$$f'_{+}(x_0) = \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0 + 0)}{x - x_0}$$

$$f'_{-}(x_0) = \lim_{x \to x_0 - 0} \frac{f(x) - f(x_0 - 0)}{x - x_0}$$

Определение 3.2. Точка x_0 называется почти регулярной точкой функции f, если $\exists f(x_0+0), f(x_0-0), f'_+(x_0), f'_-(x_0)$

Определение 3.3. Точка x_0 называется регулярной, если она является почти регулярной, и дополнительно

$$f(x_0) = \frac{f(x_0 + 0) + f(x_0 - 0)}{2}$$

Теорема 3.1. Пусть f – абсолютно иниегрируемая на $[-\pi,\pi]$, 2π периодическая функция. x_0 её почти регулярная точка. Тогда $S_n(f)(x) \to \frac{f(x_0+0)+f(x_0-0)}{2}$

Теорема 3.2. Если $f - 2\pi$ периодическая и абсолютно интегрируемая на $[-\pi,\pi]$. Пусть x_0 – почти регулярная точка. Тогда

$$S_n(x_0) \to \frac{f(x_0 - 0) + f(x_0 + 0)}{2}$$

Доказательство. $S_n(x) = \int_0^{\pi} D_n(t) (f(x-t) + f(x+t)) dt$, где $D_n(t) = \frac{\sin(n+\frac{1}{2})t}{2\sin\frac{t}{2}}$. Пусть $\delta \in (0,\pi)$. Посчитаем разность

$$S_n(t) - \frac{f(x_0 - 0) + f(x_0 + 0)}{2} = \frac{1}{\pi} \int_0^{\pi} D_n(t) (f(x_0 - t) + f(x_0 + t)) dt - \frac{1}{\pi} \int_0^{\pi} D_n(t) (f(x_0 - 0) + f(x_0 + 0)) dt = \frac{1}{\pi} \int_0^{\pi} (f(x_0 - t) - f(x_0 - 0) + f(x_0 + t) - f(x_0 + 0))$$

$$\frac{\sin(n + 1/2)t}{\sin t/2} dt = \frac{1}{\pi} \left(\int_0^{\delta} + \int_{\delta}^{\pi} \right) \frac{f(x_0 - t) + f(x_0 - 0)}{t} + \frac{f(x_0 + t) + f(x_0 + 0)}{t} \frac{t}{2\sin(t/2)} \sin(n + 1/2) t dt$$

Пусть $\varepsilon>0$. $\exists \delta'\in(0,\delta): |\frac{f(x_0-t)+f(x_0-0)}{t}|\leq |f'_-(x_0)|+\varepsilon$. Аналогично для второй дроби. Поэтому первый интеграл не превосходит $\frac{1}{\pi}\delta(|f'_-|+|f'_+|+2\varepsilon)$. На интервале (δ,π) подынтегральная функция абсолютно интегрируема, поэтому по лемме Римана об осцилляции второй интеграл стремится к 0.

Замечание (Условие Гёльдера). Можно потребовать, чтобы для некоторого $\alpha>1$ было выполнено $|f(x_0+t)-f(x_0+0)|\leq C\cdot t^{\alpha},\, |f(x_0-t)+f(x_0-0)|\leq C\cdot t^{\alpha}.$ Это является более слабым условием по сравнению с сущетвованием односторонних производных, однако, при этом условии теорема доказывается так же.

Определение 3.4. Функция f называется кусочно-гладкой на [a,b], если она непрерывна на [a,b] и $\exists \ a=c_0< c_1< \cdots < c_n=b$: для любого отрезка $[c_{k-1},c_k]$ функция f непрерывно дифференцируема на нём

Определение 3.5. 2π периодическая функция называется кусочно-гладкой, если она непрерывна на \mathbb{R} и кусочно-гладкая на $[-\pi,\pi]$

Теорема 3.3. Пусть f кусочно-гладкая 2π периодическая функция. Тогда:

1. $S_n(f) \to f$ равномерно

2.
$$\sup_{x \in \mathbb{R}} |S_n(f, x) - f(x)| \le C \cdot \frac{\ln n}{n}$$

Доказательство.

$$S_n(f,x) - f(x) = \frac{1}{\pi} \left(\int_0^{\delta} + \int_{\delta}^{\pi} D_n(t) (f(x+t) + f(x-t) - 2f(x)) dx = \frac{1}{\pi} \left(\int_0^{\delta} + \int_{\delta}^{\pi} \right) \sin((n+1/2)t) g_x(t) dt$$

Оценим с помощью теоремы Лагранжа следующую разность: $|f(x+t)+f(x-t)-2f(x)| \leq |f(x+t)-f(x)|+|f(x-t)-f(x)| \leq 2|t|M_1 \leq 2\pi M_1$. Кроме того, оценим $|\frac{d}{dt}g_x(t)| \leq \cdots$

Причем,
$$|\int_0^{\delta}|$$
 ТО BE CONTINUED...

- 4 Теоремы Вейерштрасса о приближении функции многочленами и тригонометрическими многочленами. Интегрирование и дифференцирование тригонометрического ряда. Экспоненциальная форма ряда Фурье.
- 4.1 Теорема о приближении тригонометрическими многочленами

Определение 4.1. Функция

$$T_n(x) = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos kx + b_k \sin kx$$

называется тригонометррическим многочленом порядка n

Теорема 4.1. Пусть f — непрерывная 2π периодическая функция. Тогда $\forall \varepsilon > 0: \exists T(x): \sup_{x \in \mathbb{R}} |T(x) - f(x)| < \varepsilon$. То есть эту функцию можно с любой точностью приблизить тригонометрическим многочленом.

Доказательство. Функция f непрерывная на $[-\pi,\pi]$, а следовательно равномерно непрерывна на $[-\pi,\pi]$, т.е. $\forall \varepsilon>0:\exists \delta>0:\forall x_1,x_2,\|x_1-x_2\|<\delta:\|f(x_1)-f(x_2)\|<\varepsilon.$ Зафиксируем $\varepsilon.$ Пусть $\tau=\{x_i\}_{i=0}^n$ — некоторое разбиение отрезка $[-\pi,\pi]$ с мелкостью $|\tau|<\delta.$ Рассмотрим функцию f_τ — непрерывная, такая что $f_\tau(x_i)=f(x_i)$, а на интервалах (x_{i-1},x_i) она линейна. Тогда f_τ — кусочно-гладкая. Следовательно ряд Фурье сходится к ней

равномерно, следовательно $\forall \varepsilon > 0: \exists n_0: \sup_{x \in [-\pi,\pi]} \|S_{n_0}(f_\tau,x) - f_\tau(x)\| < \varepsilon.$ Кроме того $\sup_{x \in [-\pi,\pi]} \|f(x) - f_\tau(x)\| < \varepsilon.$ Получаем, что для нашего ε существует $n_0: \sup_{x \in [-\pi,\pi]} \|S_{n_0}(x) - f(x)\| < 2\varepsilon$

4.2 Теорема о приближении обычными многочленами

Теорема 4.2 (Вейрштрасса). Пусть f непрервна на [a,b]. Тогда $\forall \varepsilon > 0: \exists$ многочлен $P(x): \sup_{x \in [a,b]} \|f(x) - P(x)\| < \varepsilon$

Доказательство. Рассмотрим функцию $g(t) = f(a + (b - a) \cdot \frac{t}{\pi})$, где $t \in [0,\pi]$. Рассмотрим функцию g^* такую что $g^*(t) = g(-t)$, если $t \in [-pi,0]$ и $g^*(t) = g(t)$, если $t \in [0,\pi]$. Кроме того, продолжим g^* на всю числовую прямую периодическим образом.

Фиксируем $\varepsilon>0$. По предыдущей теореме существует тригонометрический многочлен $T(x):\sup_x\|T(x)-f(x)\|<\varepsilon$. Функция T(x) как линейная комбинация синусов и косинусов раскладывается в ряд Тейлора с бесконечным радиусом сходимости. Следовательно, частичные суммы ряда Тейлора равномерно на $[-\pi,\pi]$ сходятся к T(x). Значит, $\exists P(x):\sup|P(x)-T(x)|<\varepsilon$. Следовательно, $\sup_x\|g^*(x)-P(x)\|<2\varepsilon$. Тогда $\sup_x\|f(x)-P(\frac{x-a}{b-a}\cdot\pi)\|<2\varepsilon$

4.3 Интегрирование и дифференцирование тригонометрического ряда.

Теорема 4.3. Пусть $f-2\pi$ -периодическая кусочно-гладкая функция. $f(x)=\frac{a_0}{2}+\sum_{k=1}^{\infty}a_k\cos kx+b_k\sin kx$. Тогда $f'\sim\sum_{k=1}^{\infty}kb_k\cos kx+ka_k\sin kx$

Доказательство. Поскольку f' — кусочно-непрерывная, то ей можно сопоставить ряд. Пусть этот ряд — это $\frac{\alpha_0}{2} + \sum_{k=1}^{\infty} \alpha_k \cos kx + \beta_k \sin kx$. Тогда $\alpha_0 = \int_{-\pi}^{\pi} f'(x) dx = \frac{1}{\pi} f(x) \Big|_{-\pi}^{\pi} = 0$.

$$\alpha_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f'(x) \cos kx dx = \frac{1}{\pi} (f(x) \cos kx) \Big|_{-\pi}^{\pi} + k \int_{-\pi}^{\pi} f(x) \sin kx dx = \frac{1}{\pi} k \int_{-\pi}^{\pi} f(x) \sin kx dx = k b_k$$

Аналогично для β_k .

Определение 4.2. Пусть $f-2\pi$ -периодическая функция, причем $f^{(m-1)}$ – непрерывна, а $f^{(m)}$ – кусочно непрервына. Тогда $|a_k|+|b_k|=o(\frac{1}{k^m})$

Доказательство. Пусть $f \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} a_K \cos kx + b_k \sin kx$. Пусть $f^{(m)} \sim \sum_{k=1}^{\infty} \alpha_k \cos kx + \beta_k \sin kx$. Применяя предыдущую теорему k раз, имеем $|\alpha_k| + |\beta_k| = k^m (|a_K| + |b_k|)$. Но по лемме Римана об осцилляции, $|\alpha_k| + |\beta_k| = o(1)$. В итоге $|a_k| + |b_k| = o(\frac{1}{k})$.

Теорема 4.4. Пусть $f-2\pi$ периодическая и кусочно-непрерывная на $[-\pi,\pi]$. Пусть $f\sim \frac{a_k}{2}+\sum_{k=1}^\infty a_k\cos kx+b_k\sin kx$. Тогда $\int_0^x f(\tau)d\tau=\frac{a_0}{2}x+\sum_{k=1}^\infty \frac{1-\cos kx}{k}b_k+\frac{a_k\sin kx}{k}$. При этом ряд сходится равномерно.

Доказательство. Пусть $F(x)=\int_0^x (f(t)-\frac{a_0}{2})dt$. Понятно, что она непрерывна как интеграл с переменной верхней границей, кроме того, она кучосно непрерывно дифференируема и $F'(x)=f(x)-\frac{a_0}{2}$. Напишем для неё ряд Фурье, который будет сходится к ней равномерно. $F(x)=\frac{A_0}{2}+\sum_{k=1}^\infty A_k\cos kx+B_k\sin kx$. Тогда $a_k=kB_k,b_k=-kA_k$. $A_0=\frac{1}{\pi}\int_{-\pi}^\pi F(x)dx$. $F(0)=\frac{A_0}{2}+\sum_{k=1}^\infty A_k$. $\frac{A_0}{2}=\sum_{k=1}^\infty \frac{b_k}{k}$. Тогда $\int_0^x f(t)dt=\frac{a_0}{2}x+\sum_{k=1}^\infty \frac{1-\cos kx}{k}b_k+\frac{a_k}{k}\sin kx$

4.4 Экспоненциальная форма ряда Фурье.

Пусть g(t)-T-периодическая. Рассмотрим $f(x)=g(\frac{x}{2\pi})$. Как выглядит её ряд Фурье мы знаем. Ну и понятно, что вся теория, которую мы развивали про 2π периодические функции обобщается на произвольный период. Кроме того, $\cos t=\frac{e^{it}+e^{-it}}{2}, \sin t=\frac{e^{it}-e^{-it}}{2i}$. Переписав ряд Фурье в экспоненциальной форме, получим: $\sum_{k=-\infty}^{\infty}e^{ikx}c_k$, где $c_k=\frac{1}{2\pi}\int_{-\pi}^{\pi}f(x)e^{-ikx}dx$

5 Метрические и нормированные пространства. Банаховы пространства. Евклидовы пространства. Неравенство треугольника и Коши-Буняковского для Евклидовых пространств.

5.1 Метрические и нормированные пространства

Определение 5.1. Множество M называется метрическим пространством, если на нём введена функция $\rho(x,y)$, называемая метрикой, которая удовлетворяет следующим свойствам:

- 1. $\forall x \in M : \rho(x, x) = 0$
- 2. $\forall x, y \in M : \rho(x, y) = \rho(y, x) \geq 0$
- 3. $\forall x, y, z \in M : \rho(x, z) \leq \rho(x, y) + \rho(y, z)$

Пример. В \mathbb{R}^n метрика $\rho(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$. В пространстве непрерывных функций на [a,b] можно взять метрику $\rho(f,g) = \max_{x \in [a,b]} \|f(x) - g(x)\|$

Определение 5.2. Множество L с операцией сложения и умножения на элемент из $\mathbb R$ называется линейным пространством, если $\forall x,y,z\in L: \forall \alpha,\beta,\lambda\in\mathbb R$:

1. $\lambda x \in L$

- $2. \ x+y \in L$
- 3. x + y = y + x
- 4. x + (y + z) = (x + y) + z
- 5. $\exists 0 \in L : \forall u \in L : u + 0 = 0 + u = u$
- 6. $\exists (-x) \in L : x + (-x) = 0$
- 7. $\alpha(\beta x) = (\alpha \beta)x$
- 8. $\alpha(x+y) = \alpha x + \alpha y$
- 9. $1 \cdot x = x$
- 10. $(\alpha + \beta)x = \alpha x + \beta x$

Определение 5.3. Линейное пространство X называется нормированным, если на нём определена функция $\|\cdot\|$, такая, что $\forall x,y\in X,\lambda\in\mathbb{R}$

- 1. $||x|| = 0 \Leftrightarrow x = 0$
- 2. $||\lambda x|| = |\lambda| ||x||$
- 3. $||x + y|| \le ||x|| + ||y||$

Замечание. Нормированное пространство является метрическим, $\rho(x,y) = \|x-y\|$

Замечание. Вместо $\mathbb R$ можно написать $\mathbb C$ или вообще произвольное поле F.

Определение 5.4. ε окрестностью точки x_0 из нормированного пространства X называется

$$U_{\varepsilon}(x_0) = \{ x \in X : ||x - x_0|| < \varepsilon \}$$

Определение 5.5. Последовательность $\{x_n\}_{n=1}^{\infty}$ из нормированного пространства X сходится к точке $x_0 \in X$, если $\lim_{n \to \infty} \|x_n - x_0\| = 0$

Замечание. Поскольку у нас теперь есть предел, то все определения из \mathbb{R}^n переносятся сюда, а именно: открытые множества, замкнутые множества, граница, и т.д.

Пример.

- 1. C([a,b]) пространство непрерывных на [a,b] функций с нормой $\|f\|=\max_{x\in[a,b]}|f(x)|$
- 2. $CL_1([a,b])$ пространство непрерывных на [a,b] функций с нормной $||f|| = \int_a^b |f(x)| dx$
- 3. $CL_2([a,b])$ пространство непрерывных на [a,b] функций с нормой $\|f\| = \sqrt{\int_a^b |f(x)|^2 dx}$

4. $RL_p([a,b])$ — пространство интегрируеммых по Риману на [a,b] функций, с нормой из CL_p

Замечание. Проблема в том, что в RL_p есть не тождественно равные нулю функции, у которых интеграл от модуля равен нулю. Например, тождественно равная нулю функция, измененная в конечном числе точек. Есть два варианта решения проблемы.

Первый:

Определение 5.6. Пространство называется полунормированным, если в нём выполнены все свойства нормированного пространства, кроме первого.

Второй:

Замечание. Профакторизуем RL_p по отношению $f \sim g \Leftrightarrow \left(\int_a^b (f(x) - g(x))^p dx\right)^{1/p} = 0.$ $\hat{RL_p} = RL_p/\sim$

5.2 Банаховы пространства

Определение 5.7. Пусть X – метрическое пространство. Последовательность $\{x_n\}_{n=1}^{\infty}$ называется фундаментальной, если $\forall \varepsilon > 0: \exists N \in \mathbb{N}: \forall m, n \geq N: \rho(x_n, x_m) < \varepsilon$

Определение 5.8. Метрическое пространство называется полным, если в нём любая фундаментальная последовательность является сходящейся.

Определение 5.9. Нормированное пространство называется Банаховым, если оно полно по метрике, порожденной нормой.

Пример. C([a,b]) – Банахово. Используем теорему Коши для равномерной сходимости функциональных последовательностей, а также тот факт, что ряд непрерывных функций, если сходится равномерно, то обязательно к непрерывной функции.

Пример. $CL_1([a,b]), CL_2([a,b])$ — не Банаховы. Возьмем последовательность функций

$$f_n = \begin{cases} 1, -1 \le x \le 0\\ 1 - xn, 0 \le x \le 1/n\\ 0, x > 1/n \end{cases}$$

Очевидно, что это последовательность является фундаментальной, ведь $\|f_n-f_m\|\leq \frac{1}{\min\{n,m\}}$. Пусть эта последовательность сходится в CL_1 к $\varphi(x)$. Тогда $\int_{-1}^1 |f_n(x)-\varphi(x)|dx\geq \int_{-1}^0 |f_n(x)-\varphi(x)|dx$. Но левый интеграл стемится к нулю, а правый не зависит от n. Значит, правый интеграл равен нулю. А так как φ должна быть непрерывна, $\varphi\equiv 1$ на [-1,1]. Аналогично, $\forall 0<\delta<1:\int_{-1}^1 |f_n(x)-\varphi(x)|dx\geq \int_{\delta}^1 |f_n(x)-\varphi(x)|dx$. Аналогично получаем, что $\varphi\equiv 0$ на $[\delta,1]$. Но это верно для любого δ . Получаем, что φ разрывна.

5.3 Евклидовы пространства

Определение 5.10. Линейное пространство R называется Евклидовым, если на нём определено скалярное произведение (\cdot, \cdot) , удовлетворяющее следующим свойствам:

- 1. $(x,x) \ge 0$
- $2. (x,x) = 0 \Leftrightarrow x = 0$
- 3. (x, y) = (y, x)
- 4. $(\lambda x, y) = \lambda(x, y)$
- 5. (x + y, z) = (x, z) + (y, z)

Замечание. В Евклидовом пространстве можно ввести норму как $||x|| = \sqrt{(x,x)}$. Все свойства, кроме неравенства треугольника, очевидны. Для неравенства треугольника докажем КБШ.

5.4 Неравенство Коши-Буняковского и треугольника для Евклидовых пространств

Теорема 5.1 (Неравенство Коши-Буняковского). $(x,y) \le \sqrt{(x,x)(y,y)}$

Доказательство.

$$0 \le (x + ty, x + ty) = (x, x) + 2t(x, y) + t^{2}(y, y)$$

При фиксированных x,y справа написано квадратное уравнение. Значит дискриминант должен быть неположительный. $\frac{D}{4}=(x,y)^2-(x,x)(y,y)\leq 0$

Следствие (Неравенство треугольника).
$$(x+y,x+y)=(x,x)+2(x,y)+(y,y)\leq (x,x)+2\sqrt{(x,x)(y,y)}+(y,y)=(\sqrt{(x,x)}+\sqrt{(y,y)})^2$$

Пример. Рассмотрим пространство CL_2 . В нем можно ввести скалярное произведение как $(f,g)=\int_a^b f(x)g(x)dx$. Оно действительно является скалярным произведением, это легко проверить. Тогда норма $\|f\|=\left(\int_a^b |f(x)|^2 dx\right)^{1/2}$ действительно является нормой