代数1H班作业5

2022 年 10 月 15 日

题 1. Artin, Chapter 11, 1.7 (a)

Let U be an arbitrary set and R be the set of subsets in U. Addition and multiplication of elements of R are defined by $A + B = A \cup B - A \cap B$ and $A \cdot B = A \cap B$. Prove that R is a ring.

題 2. Determine whether the division with reminder g(x) = f(x)q(x) + r(x) exists in R[x] for the following R, f(x), g(x). If it exists, find the q(x), r(x).

1.
$$R = \mathbb{Z}, f(x) = 2x^2 + x + 1, g(x) = 2x^3 + 7x^2 + 4x + 8$$

2.
$$R = \mathbb{Z}/6\mathbb{Z}, f(x) = 2x + 1, g(x) = 2x^2 + 2x$$

3.
$$R = \mathbb{Z}/6\mathbb{Z}, f(x) = 5x + 1, g(x) = 2x^2 + 2x$$

题 3. Artin, Chapter 11, 1.8

Determine the units in $\mathbb{Z}/12\mathbb{Z}$, $\mathbb{Z}/8\mathbb{Z}$.

题 4. Let R be a ring and I, J ideals of R. Prove the following

- 1. $I \cap J$ is an ideal of R,
- 2. $I + J = \{a + b | a \in I, b \in J\}$ is an ideal of R,
- 3. $IJ = \{\sum_{i=0}^n a_i b_i | a_i \in I, b_i \in J, n \in \mathbb{Z}_{\geq 0}\}$ is an ideal of R.

12. Example 13.4 Let $\phi \colon \mathbb{C}[x,y] \to \mathbb{C}[t]$ defined by $x \mapsto t+1$ and $y \mapsto t^3 - 1$. Determine the kernel K of ϕ and prove that every ideal K of $\mathbb{C}[x,y]$ that contains K can be generated by two elements.

题 6 (Nilpotent groups).

- 定义 1. Let $G_1 = G/C(G)$, and $G_{n+1} = G_n/C(G_n)$. We call a group G unipotent if and only if G_m has order 1 for some m.
 - 1. Prove that p-groups have nontrivial center and hence nilpotent.
 - 2. Prove that a finite group is nilpotent if and only if it is the product of its Sylow subgroups.
 - 3. Prove that if G is nilpotent, then the subgroups and quotient groups of G are also nilpotent.
 - 4. Prove that the group U consisting of $n \times n$ upper triangular matrices with elements in a ring R and diagonal elements being 1 is nilpotent.
 - 5. Prove that a finite group G is nilpotent if and only if it is a isomorphic to a subgroup of U for some n and R.
 - 6. Prove that if G is nilpotent and [G:G]=G, then G has only one element.
- 题 7. Use the notation from homework 1, question 5. Prove the Bruhat decomposition.

$$GL(n,F) = \sqcup_{w \in W} BwB. \tag{1}$$

- 題 8 (Parabolic subgroup of PSL(n, F)). Let $n \geq 3$ and F a field. Denote by G = SL(n, F) the group of matrices with determinant 1.
 - 1. Let B be the subgroup of G consisting of upper triangular matrices, T the subgroup of G consisting of diagonal matrices, N the normalizer of T in G. Prove that B and N generates G.
 - Let e_i be the column vector in Fⁿ with i-th component 1 and other components 0. Prove that the multiplication of matrices with vectors induces an group operation of W = N/T on the set {Span(e₁), ···, Span(e_n)}. Identify Span(e_i) with i ∈ [n]. Prove this action induces an isomorphism f: N/T → S_n.
 - 3. Fixing $w \in S_n$, let $\tilde{w} \in N$ be a representative in $f^{-1}(w)$. Prove that $\tilde{w}B$, $B\tilde{w}$ and $B\tilde{w}B$ do not depend on the choice of \tilde{w} . So we can

denote by BwB for $B\tilde{w}B$. Prove the following decomposition.

$$G = \sqcup_{w \in W} BwB. \tag{2}$$

- 4. Let $\{s_1, \dots, s_{n-1}\}$ be the set of fundamental transpositions. Prove that s_i are not in the normalizer of B and $s_iBw \subset BwB \sqcup Bs_iwB$. In general, when S_n is replaced by other Coxeter groups (not necessarily finite), such a structure is called a (B, N)-pair.
- 5. Let π be a subset of fundamental transpositions $\{s_1, \dots, s_{n-1}\}$. Let W_{π} be the subgroup of S_n generated by π . Prove that

$$P_{\pi} = \sqcup_{w \in W_{\pi}} BwB$$

is a subgroup of G.

- 6. Prove that any subgroup P of G containing B is of the form P_{π} . We call them parabolic subgroups. (Hint: if $\tilde{\omega} = \tilde{s}_{i_1} \cdots \tilde{s}_{i_l} \in P$ with length l(w) = l, try to prove all $\tilde{s}_{i_j} \in P$.)
- 7. Count the number of parabolic subgroups.
- **12.** Simplicity of PSL(n, F). Following the notation in last question. Let U be the subgroup of G consisting of upper triangular matrices with diagonal elements being 1. Prove that
 - 1. Show that the center of G is

$$Z = \{\lambda I | \lambda^n = 1\}.$$

- 2. G is generated by conjugates of U.
- 3. G = [G, G].
- 4. The intersection of conjugates of B is the center of G.
- Let H be a normal subgroup of G, then either H ⊂ Z or HU = G.
 (Hint: 1. Use the classification of parabolic groups. 2. Take a look at the proof in the class. 3. Prove that if s_i ∈ HU, then the nearby s_j ∈ HU.)

- 6. Let H be a normal subgroup of G, then either $H \subset Z$ or H = G.
- 7. Prove that PSL(n, F) is simple for $n \geq 3$.
- **10.** Let V be a n-dimensional vector space over field F.
- 定义 2 (Flag). A flag F is defined to be a chain of subspaces

$$F: \{0\} = V_0 \subsetneq V_1 \subsetneq V_2 \cdots \subsetneq V_n = V$$

Denote by FL the set of flags.

Let G = GL(V), and define an action of G on the set of flags by

$$g \cdot F \colon \{0\} = V_0 \subset g(V_1) \subset g(V_2) \dots \subset V_n = V.$$

定义 3 (Borel subgroup). Let F be a flag, the stablizer of F is denoted by B and called the Borel subgroup of G.

Fixing a flag F and the corresponding Borel subgroup B, prove that the linear action of B on V_i induces a linear action on quotient space V_i/V_{i-1} , or in other words, there is a group homomorphism

$$B \to GL(V_n/V_{n-1}) \times GL(V_{n-1}/V_{n-2}) \cdots \times GL(V_1/V_0).$$

定义 4 (Nilponent subgroup). Define U to be the kernel of the above homomorphism.

- 1. Prove that the action of G on FL is transitive and hence the Borel subgroups are conjugate to each other.
- 2. Restrict the action of G on FL to B. Find a bijection between the set of B-orbits with S_n , and for each orbit corresponding to $\omega \in S_n$, find a bijection to $F^{l(\omega)}$.
- 3. Prove that B is the normalizer of U in G.
- 4. Prove that U is a unipotent group.
- 5. Is it true that U is the commutator subgroup of B?

6. Define a partial flag to be a chain of subspaces

$$F: \{0\} = V_0 \subsetneq V_1 \subsetneq V_2 \cdots \subsetneq V_m = V.$$

Find the relations between partial flags and parabolic subgroups.

B 11. Let F be a field. Find the derived subgroup or the commutator subgroup of GL(n, F).