Université Akli Mohand Oulhadj-Bouira
Faculté des sciences et sciences appliquées
Département d'Informatique

Année universitaire: 2022-2023
Module: Architecture des ordinateurs
TD N°3

EXERCICE Nº1:

Donner un programme assembleur x86 pour calculer la factorielle d'un entier en utilisant un sous programme.

- lire l'entier à partir le clavier.
- passage des paramètres par pile.
- retour de résultat par pile.
- sauvegarder le résultat dans la case 100h.

EXERCICE N°2:

Donner un programme assembleur x86 pour calculer la factorielle d'un entier en utilisant un sous programme.

- lire l'entier à partir de l'adresse FF00h: 0100h.
- passage des paramètres par registres.
- retour de résultat par pile.
- afficher le résultat sur l'écran.

EXERCICE N°3:

Soit le jeu d'instruction suivant:

on ie jeu u msu uchon survant.	
ع قد يكون سجل، عدد أو خانة	انقل ع1، ع2 ع:=ع1،
;	في الذاكرة
1+ س2	ا جمع س1،س2،س3 س3:=س
1- س2	اطرح س1،س2،س3 س3:=س
1* س2	اضرب س1،س2،س3 س3:=س
اصل، س2:=الباقي	اقسم س1،س2،س3 س3:=الح
ي	قارن س1،س2 طرح شكل
ن	اقفز عنوان ع:= عنوار
0، ع:= عنوان	اقفرصفر عنوان إذا النتيجة
إذا الأول أصغر،ع:= عنوان	اقفزأقل عنوان بعد قارن،
إذا مختلفان،ع:= عنوان	اقفزمختلف عنوان بعد قارن،
امج	نهاية البرن

1- Donner un programme pour faire les opérations suivantes sur 03 nombres x,y et z stockés dans [100h], [104h] et [108h] respectivement. Ensuite, calculer:

x := x+1;

y := y-1;

y:=y*x;

z := z/y;

Sauvegarder le résultat de la dernière opération dans [200h] et [204h].

2- Définir pour ce processeur: la taille mémoire adressable, le mot mémoire, et l'adresse de la dernière case. es qu'on a besoin de segmenter la mémoire? justifier.

EXERCICE N°4:

Soient le jeu d'instructions suivants:

- LOAD [adr] : La valeur de l'emplacement mémoire pointé par l'adresse est copiée dans l'accumulateur.
- **SAVE [adr]:** La valeur de l'accumulateur est copiée à l'emplacement pointé par l'adresse.
- ADD [adr]: La valeur de l'emplacement pointé par l'adresse est ajoutée à la valeur de l'accumulateur.
- **SUB** [adr]: La valeur de l'emplacement pointé par l'adresse est soustraite à la valeur de l'accumulateur.
- INC [adr]: La valeur de l'emplacement pointé par l'adresse est incrémentée.
- **DEC** [adr]: La valeur de l'emplacement pointé par l'adresse est décrémentée.
- **NULL [adr]:** La valeur de l'emplacement pointé par l'adresse est mise à zéro.
- TST [adr]: l'instruction suivante est ignorée si et seulement si la valeur de l'emplacement pointé par l'adresse est nulle.
- JMP etq: Le programme se poursuit à l'adresse indiquée par etq dans le programme.
- JL [adr]; ignorer l'instruction suivante si ACC < [adr]
- FIN : L'exécution du programme est terminée.

En se basant sur le jeu d'instruction précédent, donner les programmes pour:

1- Calculer: [300h]:= [100h] * [200h]

2- Calculer: [300h]:= [100h] / [200h]

EXERCICE N°5:

Soit le jeu d'instructions d'un processeur suivant:

Instruction; Signification stop; Fin saut i; compteur de programme \leftarrow i saut Ri j; Si la valeur Ri = 0, compteur de programme \leftarrow j val x Ri; Ri \leftarrow valeur de x lect i Rj; Rj \leftarrow contenu d'adresse i ecrit Ri j; Ri \rightarrow dans la mémoire d'adresse j add Ri Rj; Rj \leftarrow Ri + Rj soustr Ri Rj; Rj \leftarrow Ri - Rj mult Ri Rj; Rj \leftarrow Ri * R j div Ri Rj; Rj \leftarrow Ri / R j (division entière)

En se basant sur le jeu d'instruction précédant, écrire les programmes en assembleur correspondant aux cas suivants:

- 1. Tester un nombre A s'il est pair on met 1 dans le registre R5 sinon 0.
- 2. Calculer la somme des nombres naturels de p à q inclus (où p < q).