Hypothesis Testing

Logan Kelly, Ph.D.

Managerial Statistics - ECON 730

University of Wisconsin-River Falls

Objectives

- · After this lecture you should be able to conduct Hypothesis Tests
- · Topics:
 - What is Hypothesis Testing
 - · Null and Alternative Hypothesizes
 - · Type I and Type II Error
 - · Confidence Level, Significance Level, and Power
 - p-values

Case Background

Three Cases

- Test Marketing
- · Gender Gap
- · Asset Return

Hypothsis Testing

Student's t distributions with various degrees of freedom

Comparison of t Distributions

The Two-tailed Test Rejection Region

Type 1 and Type 2 Error, and Power in Hypothesis Testing

- \cdot Type 1 error: Rejecting the null hypothesis (H_0) when H_0 is true
 - Significance level (lpha) is the probability of making Type 1 error
 - This value is usually set to 0.05
- Type 2 error: Failing to reject the null hypothesis (H_0) when H_0 is false
 - \cdot The value eta is the probability of making Type 2 error
- The Power of a test: the probability of correctly rejecting H_0 when it is false (1-eta)

The wrights and wrongs of a hypothsis test

- $\cdot H_0$ is true
 - \cdot Fail to reject H_0
 - · Correct Conclusion
 - \cdot Probability = 1-lpha which is called the Confidence Level
 - \cdot Reject H_0
 - Incorrect Conclusion ~ Type 1 error
 - \cdot Probability = lpha which is called the Significance Level
- $\cdot H_0$ is false
 - \cdot Fail to reject H_0
 - Incorrect Conclusion ~ Type 2 error
 - Probability = β
 - · Reject H_0
 - Correct Conclusion
 - \cdot Probability = 1-eta which is called the Power of the Test

p-value

- · p-value:
 - \cdot Assume that H_0 is true, then
 - the p-value is it is the probability of getting a statistic as or more in favor of the alternative hypothesis HA
- \cdot Low p-values indicate that if H_0 is true, we have observed an improbable event
- NOTE: Failing to reject ${\cal H}_0$ does not mean we have gathered evidence in favor of it (i.e., absence of evidence does not imply evidence of absence)

Case 1: Test Markiting

Case Bankground

- The Pineapple Computer Company is deciding whether or not to introduce a new color option in their flagship laptop computer.
- Adding a new color will only be Profitable if average sales greater than 275 units per week.
- · Data: Sales data collected over 36 weeks.

Hypothsis Test

- $\cdot \,\, H_0$: Average sales is less than 275 per week
- \cdot H_{lpha} : Average sales is greater than 275 per week

Load the Data

```
test.market <- read.csv("data/PCC_TestMarket.csv")</pre>
```

Conduct the Test

```
t.test(test.market$sales,
       mu = 275, alternative = "greater", conf.level = 0.95)
    One Sample t-test
data: test.market$sales
t = 1.7575, df = 35, p-value = 0.04379
alternative hypothesis: true mean is greater than 275
95 percent confidence interval:
 275,601
             Inf
sample estimates:
mean of x
 290,5495
```

Graph the Test

