Project 2 Overview Document

Python Programming (CSEG1021)

Project Title

Car Evaluation

Objective

To develop a machine learning model that predicts the condition of a car based technical data, such as its maintenance, price and features. The project leverages a dataset from the UCI Machine Learning Repository and includes steps from data cleaning to model deployment via a web interface.

Tools & Libraries Used

- Python 3.13.3
- Pandas, Numpy
- Matplotlib, Seaborn
- Scikit-learn
- Flask
- Joblib

Steps Involved

- 1. Problem & Dataset Selection:
 - Chosen dataset: Car Evaluation UCI Dataset from UCI Repository.
- 2. Data Cleaning and Transformation:

Project 2 Overview Document

- Addressed missing values.
- Created a label encoder for the column names
- Separated its features from its target
3. Exploratory Data Analysis (EDA):
- Visualized data distribution and correlations.
- Used histograms, heatmaps, pair plots, etc.
4. Model Building:
- Applied classification models (Random Forest Classifier)
- Evaluated performance using metrics like accuracy, Decision Tree Model, confusion matrix etc.
5. Model Export:
- Saved the trained model using joblib for later use.
6. Web Application Development:
- Created a user-friendly interface using Flask.
- Added CSS styling to make it look more appealing.
- Users can input car features and get the result in accountable, unaccountable, good, very good.
7. Integration and Deployment:
- Integrated the model with the web app for real-time predictions.
8. Submission:

Project 2 Overview Document

- Uploaded source code and documentation to GitHub.
- Recorded a demo video showcasing the app and its features.

Outcome

Built a machine learning-based web application that predicts a car's condition based on its features and specifications given by the user as inputs.

Links

- GitHub Repository: https://github.com/DimpleRogha/CarEvaluation.git
- Demo Video: https://drive.google.com/file/d/1y7Ohgl9lijyzZJIZjHUfR1S74NFYkCW9/view?usp=drive link