Gen Z Dating Dynamics*

Statistical Insights and Neuroscience Perspectives on the 'Undateable Generation

Chay Park

March 20, 2024

Describe more about why it matters

1 Introduction

You can and should cross-reference sections and sub-sections.

The remainder of this paper is structured as follows. Section 2....

The structure of the paper should be described clearly.

"The estimand is the difference in whether an applicant would be called back if their CV signalled White with a felony vs Black without. This is considered in terms of applications to jobs in Milwaukee." "The estimand is the difference in whether a mother would be employed if she had three children compared with if she had two children. This is considered in terms of those who would have a third birth only if the first two children were of the same sex."

2 Data

Include coded variable names in the paper. Include graphs, and possible data looks like. Some of our data is of penguins (Figure 1), from Horst, Hill, and Gorman (2020).

Talk more about it.

And also planes (Figure 2). (You can change the height and width, but don't worry about doing that until you have finished every other aspect of the paper - Quarto will try to make it look nice and the defaults usually work well once you have enough text.)

Talk way more about it.

^{*}Code and data are available at: https://github.com/Chay-HyunminPark/Undateable-generation.

Figure 1: Bills of penguins

Figure 2: Relationship between wing length and width

3 Model

The goal of our modelling strategy is twofold. Firstly,...

Here we briefly describe the Bayesian analysis model used to investigate... Background details and diagnostics are included in Appendix B.

3.1 Model set-up

Define y_i as the number of seconds that the plane remained a loft. Then β_i is the wing length, both measured in millimeters.

$$y_i | \mu_i, \sigma \sim \text{Normal}(\mu_i, \sigma)$$
 (1)

$$\mu_i = \alpha + \beta_i + \gamma_i \tag{2}$$

$$\alpha \sim \text{Normal}(0, 2.5)$$
 (3)

$$\beta \sim \text{Normal}(0, 2.5)$$
 (4)

$$\gamma \sim \text{Normal}(0, 2.5)$$
 (5)

$$\sigma \sim \text{Exponential}(1)$$
 (6)

We run the model in R (R Core Team 2022) using the rstanarm package of Goodrich et al. (2022). We use the default priors from rstanarm.

3.1.1 Model justification

We expect a positive relationship between the size of the wings and time spent aloft. In particular...

We can use maths by including latex between dollar signs, for instance θ .

4 Results

Our results are summarized in Table 1.

Table 1: Explanatory models of flight time based on wing width and wing length

	First model
(Intercept)	1.12
	(1.70)
length	0.01
	(0.01)
width	-0.01
	(0.02)
Num.Obs.	19
R2	0.320
R2 Adj.	0.019
Log.Lik.	-18.128
ELPD	-21.6
ELPD s.e.	2.1
LOOIC	43.2
LOOIC s.e.	4.3
WAIC	42.7
RMSE	0.60

5 Discussion

5.1 First discussion point

If my paper were 10 pages, then should be be at least 2.5 pages. The discussion is a chance to show off what you know and what you learnt from all this.

5.2 Second discussion point

5.3 Third discussion point

5.4 Weaknesses and next steps

Weaknesses and next steps should also be included.

Appendix

A Additional data details

B Model details

B.1 Posterior predictive check

In Figure 3a we implement a posterior predictive check. This shows...

In Figure 3b we compare the posterior with the prior. This shows...

Figure 3: Examining how the model fits, and is affected by, the data

B.2 Diagnostics

Figure 4a is a trace plot. It shows... This suggests...

Figure 4b is a Rhat plot. It shows... This suggests...

Figure 4: Checking the convergence of the MCMC algorithm

References

Goodrich, Ben, Jonah Gabry, Imad Ali, and Sam Brilleman. 2022. "Rstanarm: Bayesian Applied Regression Modeling via Stan." https://mc-stan.org/rstanarm/.

Horst, Allison Marie, Alison Presmanes Hill, and Kristen B Gorman. 2020. *Palmerpenguins: Palmer Archipelago (Antarctica) Penguin Data*. https://doi.org/10.5281/zenodo.3960218.

R Core Team. 2022. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.