Model-Checking LTL: approche par automates

- Donnée: Structure de Kripke M, formule LTL φ.
- Etapes de l'algorithme :
 - Transformer M en un automate A_M tel que L(A_M)=[M]
 - Transformer φ en un automate $A_{\neg \varphi}$ tel que $L(A_{\neg \varphi}) = \llbracket \neg \varphi \rrbracket$
 - Tester si $L(A_M) \cap L(A_{\neg \varphi}) = \emptyset$.

Model-Checking LTL: approche par automates

- Donnée: Structure de Kripke M, formule LTL φ.
- Etapes de l'algorithme :
 - Transformer M en un automate A_M tel que L(A_M)=[M]
 - Transformer ϕ en un automate $A_{\neg \phi}$ tel que $L(A_{\neg \phi}) = \llbracket \neg \phi \rrbracket$
 - Tester si $L(A_M) \cap L(A_{\neg \varphi}) = \emptyset$.

Transformer M en un automate de Büchi

- Soit $M=(Q,T,A,q_0,AP,I)$ une structure de Kripke. On construit un automate de Büchi $B=(Q',\Sigma,q'0,T',F)$ tel que L(B)=[M]:
- Idée: on fait «basculer» les étiquettes des états vers les transitions + tous les états sont acceptants
 - $\Sigma = 2^{AP}$
 - Q'=T U {q₀'}
 - F=Q'
 - Soit $t=(q_0,q)\in T$, alors $(q_0',l(q_0),t)\in T'$
 - Soient t=(q,q') et $t'=(q',q'')\in T$, alors $(t,l(q'),t')\in T'$

Exemple

• au tableau

Model-Checking LTL: approche par automates

- Donnée: Structure de Kripke M, formule LTL φ.
- Etapes de l'algorithme :
 - Transformer M en un automate A_M tel que L(A_M)=[M]
 - Transformer ϕ en un automate $A_{\neg \phi}$ tel que $L(A_{\neg \phi}) = \llbracket \neg \phi \rrbracket$
 - Tester si $L(A_M) \cap L(A_{\neg \varphi}) = \emptyset$.

Model-Checking LTL: approche par automates

- Donnée: Structure de Kripke M, formule LTL φ.
- Etapes de l'algorithme :
 - Transformer M en un automate A_M tel que L(A_M)=[M]
 - Transformer ϕ en un automate $A_{\neg \phi}$ tel que $L(A_{\neg \phi}) = \llbracket \neg \phi \rrbracket$
 - Tester si $L(A_M) \cap L(A_{\neg \varphi}) = \emptyset$.

Tester le vide de l'intersection

- Construire l'automate $A_M \otimes A_{\neg \varphi}$ tel que $L(A_M \otimes A_{\neg \varphi}) = L(A_M) \cap L(A_{\neg \varphi})$. (cf théorème)
- Rechercher s'il existe un mot accepté par $A_M \otimes A_{\neg \phi}$. (cf théorème)

Model-Checking LTL: catching bugs with a lasso

Model-Checking LTL: approche par automates

- Donnée: Structure de Kripke M, formule LTL φ.
- Etapes de l'algorithme :
 - Transformer M en un automate A_M tel que L(A_M)=[M] ✓ O(|M|)
 - Transformer φ en un automate $A_{\neg \varphi}$ tel que $L(A_{\neg \varphi}) = \llbracket \neg \varphi \rrbracket \checkmark \bigcirc (2|\varphi|)$
 - Tester si $L(A_M) \cap L(A_{\neg \varphi}) = \emptyset$. \checkmark $O(|M|.2|\varphi|)$

Model-Checking LTL: techniques à la volée

- Pas nécessaire de construire l'automate produit en entier
- On construit pas à pas, et on s'arrête lorsqu'on trouve un cycle (=contreexemple).

3.3 Inclure des notions d'équité

Exécutions équitables

- Chaque processus est activé infiniment souvent : \(\lambda_i\) (GF enabled_i)
- Aucun processus ne reste infiniment dans la section critique : ∧i¬(FGcritici)= ∧iGF(¬critici)

Contraintes d'équité

- Contrainte d'équité inconditionnelle : GFφ
- Contrainte d'équité forte : GFφ→GFφ'
- Contrainte d'équité faible : FGφ→GFφ'

Conditions d'équité

- Une condition d'équité est une conjonction de contraintes d'équité
- Une condition d'équité est une formule LTL!

Exécutions équitables

- Soit t une trace d'exécution d'une structure de Kripke M, fair une condition d'équité
- t est équitable si t,0 ⊨ fair

LTL équitable

- Soit une structure de Kripke M, *fair* une condition d'équité et φ une formule LTL.
- M⊧ fair φ ssi t,0⊧ fair φ pour toute trace initiale t de M ssi t,0⊧ φ pour toute trace initiale équitable de M.

Exemple

 $GF(w_1 \land \neg c_2) \rightarrow GFc_1 \land GF(w_2 \land \neg c_1) \rightarrow GFc_2$

Λ

 $(FGn_1 \rightarrow GFw_1) \land (FGn_2 \rightarrow GFw_2)$

 $M \models_{fair} GFc_1 \land GFc_2$

Model-Checking LTL équitable

Théorème: $M \models_{fair} \phi$ ssi $M \models fair \rightarrow \phi$.

CTL équitable

- Conditions d'équité ne peuvent pas s'écrire en CTL
- On voudrait dire A(fair→φ) ou E(fair∧φ)
 mais ce sont des formules CTL*

CTL équitable

 $φ:= p \in AP \mid \neg φ \mid φ \lor φ$ $|E_fXφ| A_fXφ| E_fφUφ \mid A_fφUφ$

```
\begin{array}{l} s \models p \; ssi \; p \in I(s) \\ s \models \neg \phi \; ssi \; s \not\models \phi \\ s \models \phi_1 \lor \phi_2 \; ssi \; s \models \phi_1 \; ou \; s \models \phi_2 \\ s \models E_f X \phi \; ssi \; il \; existe \; une \; exécution \; \mbox{\'equitable} \; s_0 s_1 ... \; tell \; que \; s_0 = s, \; t.q. \; s_1 \models \phi \\ s \models A_f X \phi \; ssi \; s', \; pour \; toute \; exécution \; \mbox{\'equitable} \; s_0 s_1 ... \; telle \; que \; s_0 = s, \; s_1 \models \phi \\ s \models E_f \phi_1 U \phi_2 \; ssi \; il \; existe \; une \; exécution \; \mbox{\'equitable} \; s_0 s_1 ... s_k \; tel \; que \; s_0 = s, \; s_k \models \phi_2 \; et \\ pour \; tout \; 0 \leq i \leq k, \; s_i \models \phi_1. \\ s \models A_f \phi_1 U \phi_2 \; ssi \; pour \; toute \; exécution \; \mbox{\'equitable} \; s_0 s_1 ... \; telle \; que \; s_0 = s, \; il \; existe \; k \\ t.q. \; s_k \models \phi_2 \; et \; pour \; tout \; 0 \leq i \leq k, \; s_i \models \phi_1. \end{array}
```

Model-Checking de CTL équitable

- On suppose qu'on a étiqueté les états avec une nouvelle AP fair, qui indique s'il existe une exécution équitable partant de l'état
- s⊧E_fXφ ssi s⊧EX(φ∧fair)
- s⊧A_fXφ ssi s⊧AX(¬ fair∨φ)
- s⊧E_fφUφ' ssi s⊧EφU(fair∧φ')
- $s \neq A_f \phi U \phi'$ $s \leq s \neq \neg E_f G \neg \phi' \land \neg E_f (\neg \phi' U (\neg \phi \land \neg \phi'))$ $s \leq s \neq \neg E_f G \neg \phi' \land \neg E (\neg \phi' U (fair \land \neg \phi \land \neg \phi'))$

Model-Checking de CTL équitable

- I er problème : Comment calculer fair?
- Rappel : s|fair ssi il existe une exécution équitable partant de s
- → Dépend de la condition d'équité!
- 2ème problème : calculer E_fGφ

Calculer fair : les composantes fortement connexes

Définition: Dans un graphe, une composante fortement connexe (SCC) est un sous-graphe maximal tel que pour toute paire de noeuds (s,s') s' est accessible depuis s, et s est accessible depuis s'

L'algorithme de Tarjan permet de calculer les SCC d'un graphe en temps linéaire.

Calculer fair : le cas inconditionnel

- On considère une condition d'équité de la forme $GF\psi$, avec ψ formule CTL.
- On marque les états par ψ .
- On calcule les SCC de M par l'algorithme de Tarjan.
- Soit S' l'union des SCC qui intersectent $S(\psi)$.
- fair est l'ensemble des états pouvant atteindre S'.
- (accessibilité se calcule en temps linéaire)

Calculer E_fGφ: le cas inconditionnel

- Effectuer mark(ϕ).
- Soit $M(\phi)$ la restriction de M aux états de $S(\phi)$.
- Calculer les SCC de $M(\phi)$ (algo de Tarjan).
- Soit S' l'union de SCC de $M(\phi)$ intersectant $S(\psi)$, avec ψ la condition d'équité.
- M,s⊧E_fGφ ssi M,s⊧EφUS' ssi M(φ),s⊧EFS'.
- →problème d'accessibilité.

Model-Checking de CTL équitable

- On suppose qu'on a étiqueté les états avec une nouvelle AP fair, qui indique s'il existe une exécution équitable partant de l'état 🗸
- s⊧E_fXφ ssi s⊧EX(φ∧fair)
- s⊧A_fXφ ssi s⊧AX(¬ fair∨φ)
- s⊧E_fφUφ' ssi s⊧EφU(fair∧φ')
- $s \neq A_f \phi U \phi'$ $s \leq s \neq \neg E_f G \neg \phi' \land \neg E_f (\neg \phi' U (\neg \phi \land \neg \phi'))$ $s \leq s \leq s \neq \neg E_f G \neg \phi' \land \neg E (\neg \phi' U (fair \land \neg \phi \land \neg \phi'))$

Et aussi...

- Autres logiques temporelles : CTL*,mucalcul... (plus expressives), ForSpec, PSL, Sugar... (industrie)
- Méthodes efficaces : méthodes symboliques, techniques de réduction (ordres partiels...)