P8106_hw4_yh3554

Data Science II Homework 4

Yi Huang

2023-04-21

Contents

Problem 1.	2
Data cleaning	
(a)	4
(-)	4
(ii) create a plot of the tree	٤
(b)	(
(i) Perform Random forest on train data	
(ii) Report the variable importance and the test error	7
(c)	7
(i) Perform Boosting on the training data	
(ii) Report the variable importance and the test error	5
Problem 2.	ç
Data cleaning	Ć
(a)	10
(i)	10
(ii)	12
(b)	15
(i)	15
(ii)	17
Additional analysis: comparing classfication tree and boostrap	17

```
library(tidyverse)
library(dplyr)
library(knitr)
library(caret)
library(ISLR)
library(mlbench)
library(rpart)
library(rpart.plot)
library(party)
library(partykit)
library(pROC)
library(ranger)
library(gbm)
library(pdp)
library(ggplot2)
library(parallel)
library(doParallel)
```

Problem 1.

In this exercise, we will build tree-based models using the College data (see "College.csv" in Homework 2). The response variable is the out-of-state tuition (Outstate). Partition the dataset into two parts: training data (80%) and test data (20%).

The predictors are:

- Apps: Number of applications received
- Accept: Number of applications accepted
- Enroll: Number of new students enrolled
- Top10perc: Pct. new students from top 10% of H.S. class
- Top25perc: Pct. new students from top 25% of H.S. class
- F.Undergrad: Number of fulltime undergraduates
- P.Undergrad: Number of parttime undergraduates
- Room.Board: Room and board costs
- Books: Estimated book costs
- Personal: Estimated personal spending
- PhD: Pct. of faculty with Ph.D.'s
- Terminal: Pct. of faculty with terminal degree
- S.F.Ratio: Student/faculty ratio

- perc.alumni: Pct. alumni who donate
- Expend: Instructional expenditure per student
- Grad.Rate: Graduation rate

Data cleaning

```
# load data
dat <- read.csv("data/College.csv")[,-1]</pre>
dat <- na.omit(dat)</pre>
head(dat)
     Apps Accept Enroll Top10perc Top25perc F.Undergrad P.Undergrad Outstate
## 1 1660
             1232
                      721
                                   23
                                              52
                                                          2885
                                                                        537
                                                                                 7440
## 2 2186
                                              29
                                                                       1227
             1924
                      512
                                   16
                                                          2683
                                                                                12280
## 3 1428
             1097
                      336
                                   22
                                              50
                                                          1036
                                                                          99
                                                                                11250
                                                                          63
                                                                                12960
## 4
      417
                      137
                                   60
                                              89
                                                           510
              349
                                                                        869
                                                                                 7560
## 5
      193
              146
                       55
                                   16
                                              44
                                                           249
## 6
      587
              479
                       158
                                   38
                                              62
                                                           678
                                                                          41
                                                                                13500
##
     Room.Board Books Personal PhD Terminal S.F.Ratio perc.alumni Expend Grad.Rate
## 1
                                                       18.1
                                                                             7041
            3300
                    450
                             2200
                                    70
                                              78
                                                                       12
## 2
            6450
                    750
                             1500
                                    29
                                              30
                                                       12.2
                                                                       16
                                                                            10527
                                                                                           56
## 3
            3750
                    400
                             1165
                                    53
                                              66
                                                       12.9
                                                                       30
                                                                             8735
                                                                                           54
## 4
            5450
                    450
                              875
                                    92
                                              97
                                                        7.7
                                                                       37
                                                                            19016
                                                                                           59
## 5
            4120
                    800
                             1500
                                    76
                                              72
                                                       11.9
                                                                        2
                                                                            10922
                                                                                           15
## 6
            3335
                    500
                              675
                                    67
                                                                             9727
                                                                                           55
                                              73
                                                        9.4
                                                                       11
summary(dat)
```

```
Top10perc
##
                          Accept
                                            Enroll
         Apps
                                 72
##
    Min.
                81
                     Min.
                                       Min.
                                               :
                                                  35.0
                                                                  : 1.00
##
    1st Qu.:
               619
                      1st Qu.:
                                501
                                       1st Qu.: 206.0
                                                          1st Qu.:17.00
##
    Median: 1133
                     Median:
                                859
                                       Median: 328.0
                                                          Median :25.00
##
            : 1978
                             : 1306
                                               : 456.9
                                                                  :29.33
    Mean
                     Mean
                                       Mean
                                                          Mean
##
    3rd Qu.: 2186
                     3rd Qu.: 1580
                                       3rd Qu.: 520.0
                                                          3rd Qu.:36.00
            :20192
##
                             :13007
    Max.
                     Max.
                                       Max.
                                               :4615.0
                                                          Max.
                                                                  :96.00
##
      Top25perc
                        F. Undergrad
                                         P. Undergrad
                                                             Outstate
##
    Min.
           : 9.00
                              :
                                 139
                                                                 : 2340
                      Min.
                                        Min.
                                                     1
                                                          Min.
##
    1st Qu.: 42.00
                       1st Qu.:
                                 840
                                        1st Qu.:
                                                    63
                                                          1st Qu.: 9100
                      Median: 1274
##
    Median: 55.00
                                        Median:
                                                   207
                                                          Median :11200
##
                              : 1872
                                                                  :11802
    Mean
            : 56.96
                       Mean
                                        Mean
                                                   434
                                                          Mean
##
    3rd Qu.: 70.00
                       3rd Qu.: 2018
                                        3rd Qu.:
                                                   541
                                                          3rd Qu.:13970
    Max.
            :100.00
                      Max.
                              :27378
                                                :10221
                                                          Max.
                                                                  :21700
##
                                        Max.
##
                         Books
      Room.Board
                                          Personal
                                                             PhD
                                       Min.
##
    Min.
            :2370
                            : 250.0
                                               : 250
                                                       Min.
                                                               : 8.00
                    Min.
                                                       1st Qu.: 60.00
##
    1st Qu.:3736
                    1st Qu.: 450.0
                                       1st Qu.: 800
                    Median : 500.0
##
    Median:4400
                                       Median:1100
                                                       Median: 73.00
##
                            : 547.5
                                               :1214
                                                               : 71.09
    Mean
            :4586
                    Mean
                                       Mean
                                                       Mean
##
    3rd Qu.:5400
                    3rd Qu.: 600.0
                                       3rd Qu.:1500
                                                       3rd Qu.: 85.00
##
    Max.
            :8124
                    Max.
                            :2340.0
                                       Max.
                                               :6800
                                                       Max.
                                                               :100.00
##
                         S.F.Ratio
       Terminal
                                         perc.alumni
                                                              Expend
                                                                             Grad.Rate
    Min.
            : 24.00
                      Min.
                              : 2.50
                                        Min.
                                                : 2.00
                                                          Min.
                                                                 : 3186
                                                                           Min.
```

```
## 1st Qu.: 68.00 1st Qu.:11.10 1st Qu.:16.00 1st Qu.: 7477
                                                                   1st Qu.: 58
## Median: 81.00 Median: 12.70 Median: 25.00 Median: 8954 Median: 69
                                                                  Mean : 69
## Mean : 78.53 Mean :12.95 Mean :25.89 Mean :10486
## 3rd Qu.: 92.00
                    3rd Qu.:14.50
                                    3rd Qu.:34.00
                                                                   3rd Qu.: 81
                                                   3rd Qu.:11625
## Max.
          :100.00
                    Max. :39.80
                                   Max. :64.00
                                                   Max. :56233
                                                                   Max.
                                                                          :118
set.seed(123)
train_rows <- createDataPartition(y = dat$Outstate,</pre>
                               p = 0.8,
                               list = FALSE)
# training data
dat_train <- dat[train_rows, ]</pre>
x <- dat_train %>% select(-Outstate)
y <- dat_train$Outstate</pre>
# test data
dat_test <- dat[-train_rows, ]</pre>
x2 <- dat_test %>% select(-Outstate)
y2 <- dat_test$Outstate
set.seed(123)
# resampling method
ctrl <- trainControl(method = "cv")</pre>
```

(a)

Build a regression tree on the training data to predict the response. Create a plot of the tree.

(i) Build a regression tree on train data

rpart.fit\$finalModel\$tuneValue[[1]]

[1] 0.002478752

(ii) create a plot of the tree

rpart.plot(rpart.fit\$finalModel)

(b)

Perform random forest on the training data. Report the variable importance and the test error.

(i) Perform Random forest on train data

rf.fit\$bestTune

```
## mtry splitrule min.node.size
## 44 8 variance 2
```

The best tuning parameters are mtry = 8 with min.node.size = 2.

(ii) Report the variable importance and the test error.


```
# test error
rf.predict <- predict(rf.fit, newdata = dat_test)
rf.RMSE <- RMSE(rf.predict, y2)
rf.RMSE</pre>
```

[1] 1850.927

The top 6 most important variables are Expend, Room. Board, Apps, Accept, Terminal, and Top10perc. The RMSE of test set is 1850.93.

(c)

Perform boosting on the training data. Report the variable importance and the test error.

(i) Perform Boosting on the training data

gbm.fit\$bestTune

```
## n.trees interaction.depth shrinkage n.minobsinnode ## 1166 1000 6 0.005 15
```

The best tuning parameters are n.trees = 1000, interaction.depth = 6, shrinkage = 0.005 and nminobsinode = 15.

(ii) Report the variable importance and the test error.


```
# test error
gbm.predict <- predict(gbm.fit, newdata = dat_test)
gbm.RMSE <- RMSE(gbm.predict, y2)
gbm.RMSE</pre>
```

[1] 1733.132

The top 6 most important variables are Expend, Room.Board, Apps, Terminal, Top10perc, and Accept. The RMSE of test set is 1733.13.

Problem 2.

This problem involves the OJ data in the ISLR package. The data contains 1070 purchases where the customers either purchased Citrus Hill or Minute Maid Orange Juice. A number of characteristics of customers and products are recorded. Create a training set containing a random sample of 700 observations, and a test set containing the remaining observations.

Data cleaning

(a)

(i)

Build a classification tree using the training data, with Purchase as the response and the other variables as predictors. Which tree size corresponds to the lowest cross-validation error?

rpart.fit.OJ\$bestTune

cp ## 11 0.004572226

summary(rpart.fit.OJ)
rpart.plot(rpart.fit.OJ\$finalModel)

The tree size of 13 has lowest cross-validation error with cp =0.004572. Note: tree size = number of split + 1

(ii)

Is this the same as the tree size obtained using the 1 SE rule?

```
set.seed(123)
tree1 <- rpart(formula = Purchase ~ . ,</pre>
               OJ_train,
               control = rpart.control(cp = 0))
cpTable <- printcp(tree1)</pre>
##
## Classification tree:
## rpart(formula = Purchase ~ ., data = OJ_train, control = rpart.control(cp = 0))
## Variables actually used in tree construction:
## [1] ListPriceDiff LoyalCH
                                      PriceCH
                                                      PriceDiff
                                                                     PriceMM
## [6] SpecialCH
                                      WeekofPurchase
                      StoreID
##
## Root node error: 334/857 = 0.38973
##
## n= 857
##
##
           CP nsplit rel error xerror
## 1 0.517964
                        1.00000 1.00000 0.042745
                   0
## 2 0.026946
                   1
                        0.48204 0.52096 0.035257
## 3 0.011976
                       0.42814 0.49401 0.034559
                   3
## 4 0.007485
                   6
                        0.39222 0.46108 0.033651
## 5 0.005988
                      0.37725 0.45808 0.033566
```

```
## 6 0.004491 12 0.35329 0.48503 0.034317
## 7 0.002994 14 0.34431 0.49701 0.034638
## 8 0.000998 16 0.33832 0.48802 0.034398
## 9 0.000000 19 0.33533 0.52395 0.035332
```

plotcp(tree1)

size of tree


```
# rpart.plot(tree1)
set.seed(123)
# 1SE rule
minErr <- which.min(cpTable[,4])</pre>
tree2 <- prune(tree1,cp = cpTable[cpTable[,4]<cpTable[minErr,4]+cpTable[minErr,5],1][1])</pre>
cpTable <- printcp(tree2)</pre>
##
## Classification tree:
## rpart(formula = Purchase ~ ., data = OJ_train, control = rpart.control(cp = 0))
##
## Variables actually used in tree construction:
## [1] LoyalCH PriceDiff PriceMM
##
## Root node error: 334/857 = 0.38973
##
## n= 857
##
           CP nsplit rel error xerror
                    0
                        1.00000 1.00000 0.042745
## 1 0.517964
## 2 0.026946
                        0.48204 0.52096 0.035257
```

3 0.011976 3 0.42814 0.49401 0.034559 ## 4 0.007485 6 0.39222 0.46108 0.033651

rpart.plot(tree2)

size of tree

Under 1 SE rule, the tree size with lowest cross-validation error is 7. The tree size obtained by using cross validation is different from the tree size obtained by using 1 SE rule.

(b)

(i)

Perform boosting on the training data and report the variable importance.

```
gbmA.grid \leftarrow expand.grid(n.trees = c(1000,2000,3000,4000,5000),
                           interaction.depth = 1:6,
                           shrinkage = c(0.0005, 0.001, 0.002),
                           n.minobsinnode = 1)
set.seed(123)
no_cores <- detectCores() - 1</pre>
cl <- makePSOCKcluster(no_cores)</pre>
registerDoParallel(cl)
gbmA.fit <- train(Purchase ~ . ,</pre>
                   OJ_train,
                   tuneGrid = gbmA.grid,
                   trControl = ctrl2,
                   method = "gbm",
                   distribution = "adaboost",
                   metric = "ROC",
                   verbose = FALSE)
stopCluster(cl)
registerDoSEQ()
ggplot(gbmA.fit, highlight = TRUE)
```


Table 1: Variable importance from boosting model

	var	rel.inf
LoyalCH	LoyalCH	77.013
PriceDiff	PriceDiff	10.524
ListPriceDiff	ListPriceDiff	3.089
SalePriceMM	SalePriceMM	2.229
WeekofPurchase	WeekofPurchase	1.794
StoreID	StoreID	1.242
STORE	STORE	0.789
DiscCH	$\mathrm{Disc}\mathrm{CH}$	0.769
SpecialCH	SpecialCH	0.634
DiscMM	DiscMM	0.525
SalePriceCH	SalePriceCH	0.452
PriceMM	$\operatorname{PriceMM}$	0.378
PriceCH	PriceCH	0.253
PctDiscCH	PctDiscCH	0.101
SpecialMM	SpecialMM	0.086
Store7Yes	Store7Yes	0.061
${\bf PctDiscMM}$	PctDiscMM	0.059

In the boosting model, the top 2 most important variables are LoyalCH and PriceDiff.

(ii)

What is the test error rate?

```
gbmA.pred <- predict(gbmA.fit, newdata = OJ_test, type = "raw")
error.rate.gbmA <- mean(gbmA.pred != OJ$Purchase[-train_rows2])
error.rate.gbmA</pre>
```

```
## [1] 0.1971831
```

The test error rate is 0.197.

Additional analysis: comparing classfication tree and boostrap

Report cross-validation results on train data

```
set.seed(123)
resamp <- resamples(list( ctrees = rpart.fit.OJ,</pre>
                          gbmA = gbmA.fit))
summary(resamp)
##
## Call:
## summary.resamples(object = resamp)
## Models: ctrees, gbmA
## Number of resamples: 10
##
## ROC
##
               Min.
                       1st Qu.
                                  Median
                                               Mean
                                                      3rd Qu.
                                                                    Max. NA's
## ctrees 0.7777149 0.8547942 0.8879662 0.8794884 0.9177400 0.9268648
```

```
0.8546380 0.8899477 0.9073427 0.9055784 0.9278846 0.9519726
## gbmA
                                                                           0
##
## Sens
##
                      1st Qu.
                                                     3rd Qu.
                                                                  Max. NA's
               Min.
                                 Median
                                              Mean
## ctrees 0.7884615 0.8537736 0.8762700 0.8642598 0.8846154 0.9038462
                                                                           0
          0.8269231 0.8750000 0.9143687 0.8966255 0.9230769 0.9245283
## gbmA
                                                                           0
##
## Spec
##
               Min.
                      1st Qu.
                                  Median
                                              Mean
                                                     3rd Qu.
                                                                  Max. NA's
## ctrees 0.6470588 0.6519608 0.7121212 0.7220143 0.7803030 0.8484848
                                                                           0
          0.6176471\ 0.6742424\ 0.7205882\ 0.7397504\ 0.8181818\ 0.8484848
```

Based on the cross-validation results on train data, bootstrap has a higher mean ROC value, implies bootstrap method performs better than classification tree.