Foundation Models for Generalist Geospatial

Ryan Chesler San Diego Machine Learning

Abstract

- NASA/IBM geospatial foundation model
- Large scale pre-training of a masked image model for satellite images
- Technical challenges with this size of data
- Model can transfer knowledge to new problems

Pre-training Data

- HLS-2
 - 30 meter resolution
 - Temporal resolution of every 2-3 days
 - Harmonized from multiple satellites
 - o 3660x3660 tiles with 15 spectral bands
 - Goes back to 2015
 - o 3.61 Petabytes of data
- Clustered the data into 20 zones and sampled

Fig. 2: Geo-regions from the contiguous U.S. are clustered into one of 20 different categories based on temperature and precipitation data.

Reformatting to Zarr

- Data had to be filtered offline before training
- Preprocessing GeoTIFF files during training too slow
- Original files 3660 x 3660 x 15 x 3
- Model input 224 x 224 x 6 x 3
- 667x more reading than is necessary
- Further exacerbated by needing to filter missing and cloud covered areas
- Precomputed valid regions to sample from

	batch/GPU	workers	prefetch	epoch avg time (s)
GeoTiff 64 GPUs	16	1	2	384
GeoTiff 8 GPUs	128	8	2	690
Zarr 8 GPUs	128	2	4	381

Table 1: Average epoch time in seconds for different runs of data preprocessing and loading. Zarr-based data loading is approximately two times faster than corresponding GeoTiff loading.

Architecture/Training Process

Masked autoencoding

Downstream tasks

- Multi-Temporal Cloud Gap Imputation
- Flood Mapping
- Wildfire Scar Mapping
- Multi-Temporal Crop Segmentation

Multi-temporal cloud gap filling

(a) Mean absolute error after 200 epochs.

(b) Structural similarity index measure afte 200 epochs.

Flood mapping

	IoU (water)	F1 (water)	${ m mIoU}$ (both classes)	mF1-score (both classes)	$^{\rm mAcc}_{\rm (both\ classes)}$
Baseline [55]	24.21	-	_	-	-
ViT-base [19]	67.58	80.65	81.06	88.92	88.82
Swin [60]	79.43	88.54	87.48	93.13	90.63
Swin† [60]	80.58	89.24	87.98	93.44	92.02
AFTER 50 EPOCHS Prithvi (not pretrained) Prithvi (pretrained)	80.67	89.30	88.76	93.85	94.79
	81.26	89.66	89.10	94.05	95.07
AFTER 500 EPOCHS Prithvi (not pretrained) Prithvi (pretrained)	82.97	90.69	90.14	94.66	94.82
	82.99	90.71	90.16	94.68	94.60

Wildlife scar mapping

	loU (fire scar)	F1 (fire scar)	mIoU (both classes)	mF1-score (both classes)	mAcc (both classes)
U-Net (DeepLabV3) [61]	71.01	83.05	83.55	90.53	87.98
ViT-base [19]	69.04	81.69	82.20	89.65	90.14
Prithvi (not pretrained)	72.26	83.89	84.01	90.87	92.41
Prithvi (pretrained)	73.62	84.81	84.84	91.40	92.48

Conclusion

- Different from the previous geospatial foundational model we looked at
 - Filling in image instead of forecasting
 - Focused on individual data source
- Performance is good but not paradigm shifting