Up Down Counters

Counters continued

Ripple Up Down Counter

- This is the combination of both ripple up as well as down counter.
- The counter starts its count from 000 to 111 as well as form 111 back to 000.
- The circuit itself can't perform up counting as well as down counting at the same time itself.
- Mode control input (M) is used to select either up mode or down mode.
- Combinational circuit is also required between each pair of flip-flop with accepts the output generated from previous flip-flop and mode control input as input.
- Then it generates output which is then fed to the clock of next flip-flop.

Illustration Up Down Counter with Mode

Let the circuit perform up count when M = 0 and down count when M = 1. That is, when M = 0, then the value of Y will be Q and when M = 1, then the value of Y will be Q'

Truth table of desire combinational circuit:

M	Q	Q'	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

K-Map for Y:

State Diagram
Ripple Up/Down
Counter

Up Down Counter

Count Sequence Table:

CIII-		For M=0				For M=1			
Clk	Qc	Qh	Qa	Q _a D.E Q _c Q _b			Qa	D.E	
Initially	0	0	0	0	1	1	1	7	
1 ₩	0	0	1	1	1	1	0	6	
2 ♦	0	1	0	2	1	0	1	5	
3 ↓	0	1	1	3	1	0	0	4	
4 ↓	1	0	0	4	0	1	1	3	
5 ↓	1	0	1	5	0	1	0	2	
6 ↓	1	1	0	6	0	0	1	1	
7 🗼	1	1	1	7	0	0	0	0	

Construct 3bit synchronous up/down counter

•In synchronous Count the clock input is same for the all flipflops used.

• For up Down Counting mode control input must be used to decide whether to up count or down count.

•Flip-Flop used = JK

•Total no. of FF used = 3

ExcitationTable ofthe flip-flop used

Qn	Q _{n+1}	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

Circuit excitation table

Mode	233	Present State			Next State Flip-Flop Excitation Table			Next State		Flip-Flop Excitation			ıb1e
M	С	В	A	C,	B*	A*	Jc	Ke	Jъ	Kb	Ja	Ka	
0	0	0	0	0	0	1	0	X	0	X	1	:X	
0	0	0	1	0	1	0	0	X	1	X	X	C	
0	0	1	0	0	1	1	0	X	X	0	1	X	
0	0	1	1	1	0	0	1	X	X	1	X	С	
0	1	0	0	1	0	1	X	0	0	X	1	:X	
0	1	0	1	1	1	0	X	0	1	X	X	C	
0	1	1	0	1	1	1	X	0	X	0	1	X	
0	1	1	1	0	0	0	X	1	X	1	X	О	
1	0	0	0	1	1	1	1	X	1	X	1	X	
1	0	0	1	0	0	0	0	X	0	X	X	C	
1	0	1	0	0	0	1	0	X	X	1	1	:X	
1	0	1	1	0	1	0	0	X	X	0	X	0	
1	1	0	0	0	1	1	X	1	1	X	1	:X	
1	1	0	1	1	0	0	X	0	0	X	X	C	
1	1	1	0	1	0	1	X	0	X	1	1	X	
1	1	1	1	1	1	0	X	0	X	0	X	O	

map Synchronous UP Down

K - map for Ka

	B'A'	B'A	BA	BA'
M'C'	X	0	0	X
M'C	X	0	0	X
MC	X	0	0	X
MC'	X	0	0	X)

 \rightarrow K_a= 1

K - map for Jc

	B'A'	B'A	BA	BA'
M'C'	0	0	1	0
M'C	X	X	X	X
MC	X	X	X	X
MC'	1	0	0	0

→ J_c = MB'A' + M'BA

K - map for Kb

	B'A'	B'A	BA	BA'
M'C'	X	X	1	0
M'C	X	X	1	0
MC	X	X	0	1
MC'	X	X	0	1

→ Kb= M'A + MA'

K - map for Jb

	B'A'	B'A	BA	BA'
M'C'	0	1	X	X
M'C	0	1	X	X
MC	1	0	X /	X
MC'	1_/	0	X	X

→ Jb = M'A + MA'

K - map for Ja

	B'A'	B'A	BA	BA'
M'C'	(1	X	X	1
M'C	1	X	X	1
MC	1	X	X	1
MC'	1	X	X	1
	•			

→ Ja = 1

K - map for Kc

	B'A'	B'A	BA	BA'
M'C'	X	X	X	X
M'C	0	0	1	0
MC	1	0	0	0
MC'	X	X	X	X

→ Kc= MB'A' + M'BA

Synchronous Up Down Counter diagram

Count Sequence Table

Clock			M=0				M=1	
Clock Pulse	Q _C	Q_{B}	Q_{A}	Decimal Equivalent	Q _C '	Q _B '	Q _A '	Decimal Equivalent
Initially	0	0	0	0	1	1	1	7
1 st	0	0	1	1	1	1	0	6
2 nd	0	1	0	2	1	0	1	5
3 _{rd}	0	1	1	3	1	0	0	4
4 th	1	0	0	4	0	1	1	3
5 th	1	0	1	5	0	1	0	2
6 th	1	1	0	6	0	0	1	1
7 th	1	1	1	7	0	0	0	0

Timing Diagram

