Name ______ Period ____

Skill 31.01 Problem 1

Marshmallows (M₂) react with hot tamales (T₂) according to the following equation.

$$2M_2 + T_2 \rightarrow 2M_2T$$

If 5.0 moles of hot tamales react with excess marshmallows, how much in moles of MarshmallowHotTamalide can be made.

Given	Mole ratio	Unknown

Skill 31.01 Problem 2

Atmospheric oxygen reacts with nitrogen in automobile engines to produce NO, a poisonous greenhouse gas

 $O_2 + N_2 \rightarrow 2NO$

If 5 moles of nitrogen react, how much oxygen gas in moles is consumed?

Given	Mole ratio	Unknown

Skill 31.02 Problem 1

Marshmallows (M_2) react with hot tamales (T_2) according to the following equation.

 $2M_2 + T_2 \rightarrow 2M_2T$

What mass of marshmallows (1 mole M_2 = 11.0 g) is needed to produce 3 moles of MarshmallowHotTamalide.

Given	Mole ratio	Molar mass Unknown	Unknown

Skill 31.02 Problem 2

In the lower atmosphere where we live, NO and UV light catalyze the production, O₃ from O₂ as shown,

 $3O_2 \rightarrow 2O_3$

If 10.0 moles of oxygen react, how much in grams of O_3 (1 mole = 48 g) is produced?

Given	Mole ratio	Molar mass Unknown	Unknown

© Pluska

Set 31: Reaction Stoichiometry Part 2

Name ______Period _____

Skill 31.03 Problem 1

Marshmallows (M₂) react with hot tamales (T₂) according to the following equation.

 $2M_2 + T_2 \rightarrow 2M_2T$

If 3.0 g of hot tamales (1 mole = 48.0 g) react with excess marshmallows, how many moles of MarshmallowHotTamalide can be made.

Given	Molar mass given	Mole ratio	Unknown

Skill 31.03 Problem 2

How much, in moles, of 1-chloropropane (C_3H_7Cl) is produced if 400. g of C_3H_8 (1 mole = 44 g) react with excess chlorine gas according to the equation

 $C_3H_8 + Cl_2 \rightarrow C_3H_7Cl + HCl$

Given	Molar mass given	Mole ratio	Unknown

Skill 31.04 Problem 1

Marshmallows (M_2) react with hot tamales (T_2) according to the following equation.

 $2M_2 + T_2 \rightarrow 2M_2T$

How much in grams of hot tamales (1 mole = 48.0 g) is needed to produce 2.0 g of MarshmallowHotTamalide (1 mole = 35.0 g)

Given	Molar mass given	Mole ratio	Molar mass Unknown	Unknown

Skill 31.04 Problem 2

Laughing gas (nitrous oxide, N_2O) is sometimes used as an anesthetic in dental work. It is produced when ammonium nitrate is decomposed according to the reaction,

 $NH_4NO_3 \rightarrow N_2O + 2H_2O$

How many grams of NH_4NO_3 (1 mole = 80 g) are required to produce 33.0 g of N_2O (1 mole = 44 g)?

Given	Molar mass given	Mole ratio	Molar mass Unknown	Unknown

© Pluska

Name ______Period _____

© Pluska 3