CVPR 2021

BLACK-BOX EXPLANATION OF OBJECT DETECTORS VIA SALIENCY MAPS

presented by: Julia Chylak, Aleksandra Mysiak

D-RISE: Detector Randomized Input Sampling for Explanation

D-RISE

- * method of creating saliency maps
- * designed for object detection
- * measures output disturbances
 with masked inputs
- * based on RISE

RISE - RESULTS

(a) Sheep - 26%, Cow - 17% (b) Importance map of 'sheep' (c) Importance map of 'cow'

Detection is not classification:

- * location matters
- * multiple proposals per object
- * not a single vector of class probabilities
- → existing methods for classification are not applicable

DETECTION VECTOR

$$d_i = \left[L_i, O_i, P_i \right]$$

$$= [(x_1^i, y_1^i, x_2^i, y_2^i), O_i, (p_1^i, \dots, p_C^i)]$$

[bounding box, objectness score, class probabilities]

SIMILARITY SCORES AND SELECTION

how:

$$s(d_t, d_j) = s_L(d_t, d_j) \cdot s_P(d_t, d_j) \cdot s_O(d_t, d_j)$$

$$s_L(d_t, d_j) = \text{IoU}(L_t, L_j)$$
 $s_P(d_t, d_j) = \frac{P_t \cdot P_j}{\|P_t\| \|P_j\|}$ $s_O(d_t, d_j) = O_j$

where:

$$S(d_t, f(M_i \odot I))) \triangleq \max_{d_j \in f(M_i \odot I)} s(d_t, d_j)$$

ADVANTAGES OF D-RISE

first black-box method for explaining object detectors:

- * takes object location into account
- * allows multiple proposals per object
 - * agnostic to type of model
- * can produce explanations for arbitrary detections

MISSED DETECTION

%

POOR LOCALIZATION AND MISCLASSIFICATION

Mislocalized 'umbrella'

'monitor' misclassified as 'microwave'

Saliency

Saliency

Difference

CORRECT PREDICTIONS

USER TRUST

- * YOLOv3 (55.3% mAP) vs YOLOv3-Tiny (33.1% mAP)
- * 242 correct predictions' explanations rated by humans
- * more users found explanations from the more accurate model to be better (50.2% vs 27.4%)

SUMMARY

- * D-RISE is a black-box method of explaining object detectors
- * it can be used to analyse multiple types of errors
 - * explanations of more accurate networks seem more trustworthy
 - * we really liked the paper :)

THANK YOU FOR YOUR ATTENTION!

