Apunts de teoria de la probabilitat

ALEIX TORRES I CAMPS

Anna de Mier (anna.de.mier@upc.edu), Guillem Perearnau i Sonia Perez

1 Espais de probabilitat

1.1 Motivació

L'objectiu de la teoria de la probabilitat és trobar models per a fenònems que depenen de l'atzar (no deterministes), cada realització d'un fenomen en direm experiment, del qual n'obtindrem un resultat. A més, tindrem els successos (observables) que son totes les preguntes raonables que ens podem fer.

1.2 Experiments i probabilitat

Definició 1. Un experiment és un parell (Ω, \mathscr{A}) on Ω és un conjunt i $\mathscr{A} \subset \mathscr{P}(\Omega)$ tal que:

- 1. $\emptyset \in \mathscr{A}$
- $2. A \in \mathscr{A} \implies A^c \in \mathscr{A}$
- 3. Si $\{A_n\}_{n\geq 1}$ és una col·lecció numerables d'elements de $\mathscr{A}\implies\bigcup_{n\geq 1}A_n\in\mathscr{A}$

Exemple 1. Uns quants exemples...

Volem una funció que assigni probabilitats de successos, és a dir, $P: \mathcal{A} \to \mathbf{R}$. Llavors definim:

Definició 2. Un espai de probabilitat és una terna (Ω, \mathcal{A}, P) on:

- 1. (Ω, \mathscr{A}) és un experiment.
- 2. $P: \mathscr{A} \to R$ tal que: $P(\emptyset) = 0$, $P(A) \ge 0$, $\forall A \in \mathscr{A}$. Si $\{A_n\}_{n \ge 1}$ és una col·lecció de successos dos a dos dijunts $\implies P(\bigcup_{n \ge 1} A_n) = \sum_{n \ge 1} P(A_n)$.
- 3. $P(\Omega) = 1$.

Per tant, la probabilitat és una mesura a (Ω, \mathscr{A}) normalitzada a 1. A P se l'anomena funció de probabilitat.

Exemple 2. Espia discret, si Ω és numerable i $\mathscr{A} = \mathscr{P}(\Omega)$. Si $\Omega = \{w_1, w_2, w_3, \ldots\}$ prenem $\sum_{i \geq 1} p_i = 1$ (amb $p_i \geq 0$) i definim $\mathscr{P}(A) = \sum_{w_i \in A} P(\{w_i\})$, alleugerint la notació podem fer servir $P(\{w_i\}) = P(w_i) = p_i$.

Exemple 3. Espai clàssic, és un éspai discret amb $|\Omega| = N$ i $p_i = 1/N$. Çassos favorables entre cassos possibles": $P(A) = \frac{|A|}{N}$.

Exemple 4. Espais clàssics amb monedes o daus, tot ben repartit.

Exemple 5. Durada d'un mòbil? $\Omega=(0,\infty)$ o bé, (0,L]. Si $\mathscr{A}=\mathscr{P}(\Omega)$ sabem que no podem assignar-hi una mesura. Però com ens interessen els intervals com (a,b), agafe, la σ -àlgebra que conté tots els intervals (oberts). Aquí apareixen els burelians $\mathcal{B}=\sigma(I)$ i podem agafar la mesura de Lebesque a \mathbf{R} . En resum, $\Omega=(0,L)$, $\mathbf{B}=\sigma(I)$ i $P(B)=\frac{\mu(B)}{L}$. On $\mu(B)$ és la seva mesura de Lebesque. Tot i així, no és realistic perquè és massa uniforme.

Proposició 3. Propietats d'espais de probabilitat. Sigui (Ω, \mathcal{A}, P) :

- 1. Per $r \geq 2$, si $A_1, \ldots, A_r \in \mathcal{A}$, $A_i \cap A_j = \emptyset$ si $i \neq j$ llavors $P(\bigcup_{i=0}^r a_i) = \sum_{i=1}^r P(A_i)$
- 2. $Si \ A, B \in \mathcal{A} \ i \ A \subset B \implies P(B \setminus A) = P(B) P(A) \ i \ P(A) < P(B)$.
- 3. $P(A^c) = 1 P(A), \forall A \in \mathscr{A}$
- 4. (Designaltat de Boole) Si $A_1, \ldots, A_r \in \mathscr{A} \implies P(\bigcup_{i=1}^r A_i) \leq P(A_1) + \cdots + P(A_r)$

Demostraci'o.

- 1. En els cassos finits, per r < k, cal agafar $A_k = \emptyset$, ja que així, com que $P(\emptyset) = 0$, $P(\bigcup_{1 \le n \le r}) = P(\bigcup_{1 \le n} A_n) = \sum_{1 \le n} P(A_n) = \sum_{1 \le n \le r} P(A_n)$.
- 2. Primer de tot $B \setminus A \in \mathscr{A}$, ja que $B \setminus A = (B^c \bigcup A)^c \in \mathscr{A}$. Després, reordenant el fet que $P(A) + P(B \setminus A) = P(B)$, ens queda el que volíem. Com les propietats són positives, la desigualtat es demostra automàticament.
- 3. De $P(A) + P(A^c) = P(\Omega) = 1$ obtenim l'expressió de l'enunciat.
- 4. Ho anem a fer per inducció sobre r. Clarament per r=1 és cert, suposem que ho és per r-1, anem a veure-ho per a un r arbitrari. Sigui $B=(\bigcup_{i=1}^{r-1}A_i)\bigcap A_r$, llavors $P(\bigcup_{i=1}^rA_i)=P((\bigcup_{i=1}^{r-1}A_i)\bigcup A_r)=P((\bigcup_{i=1}^{r-1}A_i)\bigcup (A_r-B_r))=P((\bigcup_{i=1}^{r-1}A_i))+P(A_r-B_r)=[\text{per hipòtesi i per 2}] \leq P(A_1)+\cdots+P(A_{r-1})+P(A_r)$ que és la desigualtat de Boole.

Proposició 4. Successions monòtones:

Si
$$A \in \mathcal{A}$$
, $i \ge 1$ i $A_1 \subset A_2 \subset A_3 \subset \cdots$, aleshores $P(\bigcup_{i \ge 1} A_i) = \lim_{i \to \infty} P(A_i)$.
Si $A \in \mathcal{A}$, $i \ge 1$ i $A_1 \subset A_2 \subset A_3 \subset \cdots$, aleshores $P(\bigcup_{i \ge 1} A_i) = \lim_{i \to \infty} P(A_i)$.

Demostració. Fem $B_1=A_1,\ B_2=A_2\smallsetminus A_1,\ B_3=A_3\smallsetminus A_2,\ \dots$ Aleshores, $B_i\bigcap B_j=\emptyset$ per $i\neq j$ i $A_i=\bigcup_{j=1}^i B_i$. Per tant:

$$P(\bigcup_{n\geq 1} A_n) = P(\bigcup_{n\geq 1} B_n) = \sum_{n\geq 1} P(B_i) = \lim_{N\to\infty} \sum_{n=1}^N P(B_n) = \lim_{N\to\infty} P(A_N)$$

L'altre és demostra passant al complementari.

Teorema 5. Siguin $A_1, \ldots, A_r \in \mathcal{A}$. Per $I \subset [r]$, posem: $A_I = \bigcap_{i \in I} A_i$ i $S_k = \sum_{I \subset [r] \mid |I| = k} P(A_I)$. Aleshores,

$$P(\bigcup_{i=1}^{r} A_i) = \sum_{k=1}^{r} (-1)^{k+1} S_k$$

Demostració. Per inducció, el cassos r=1,2 són fàcils. Aleshores, pel cas inducctiu fa falta el cas r-1 i el cas 2.

Proposició 6. Designaltats de Bonferroni. Signi $M_T = \sum_{k=1}^T (-1)^{k+1} S_k$. Aleshores, si:

- 1. $T \text{ \'es senar } \Longrightarrow P(\bigcup_{i=1}^r A_i) \leq M_T$.
- 2. $T \text{ \'es parell} \implies P(\bigcup_{i=1}^r A_i) \ge M_T$.

Demostració. La demostració per inducció és semblant a l'anterior.

1.3 La probabilitat condicionada

Sigui (Ω, \mathcal{A}, P) un espai de probabilitat. Prenem $B \in \mathcal{A}$ amb P(B) > 0. Volem recalcular la probabilitat P dels successos sabent que ha passat B.

Definició 7. Si $B \in \mathcal{A}$ amb P(B) > 0 i $A \in \mathcal{A}$, la probabilitat de A condicionada a B és

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Observació 8.

- 1. P(A|B), a priori, pot ser major o menor a P(A)2. Fixat B, $P_B: \mathscr{A} \to \mathscr{R}$ definida com $P_B(A) = \frac{P(A \cap B)}{P(B)}$, dona una funció de probabilitat en (Ω, \mathscr{A}) . (També ho és en $(\Omega, \mathscr{A}_B = \{A \cap B : A \in \mathscr{A}\})$).

Sigui ara B_1, \dots, B_n una partició de Ω (amb $B_i \in \mathcal{A}$ i P(B) > 0). Llavors, la llei de les probabilitats totals

$$P(A) = P(A \cap \Omega) = P(A \cap (\bigcup B_i)) = P(\bigcup (A \cap B_i)) = \sum_{i=1}^n P(A \cap B_i) = \sum_{i=1}^n P(A|B_i)P(B_i)$$

- $\mathbf{2}$ Variables aleatòries
- 3 V.a Discretes
- V.a Contínues 4
- Funcions característiques i famílies exponencials **5**
- Convergència de variables aleatòries 6