Introduction to Machine Learning

Joint Entropy and Mutual Information

Learning goals

- Know the joint entropy
- Know conditional entropy as remaining uncertainty
- Know mutual information as the amount of information of an RV obtained by another

JOINT ENTROPY

• The **joint entropy** of two discrete random variables X and Y with a joint distribution p(x, y) is:

$$H(X,Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log(p(x,y)),$$

which can also be expressed as

$$H(X, Y) = -\mathbb{E}\left[\log(p(X, Y))\right].$$

 For continuous random variables X and Y with joint density p(x, y), the differential joint entropy is:

$$h(X,Y) = -\int_{\mathcal{X},\mathcal{Y}} p(x,y) \ln p(x,y) dxdy$$

For the rest of the section we will stick to the discrete case. Pretty much everything we show and discuss works in a completely analogous manner for the continuous case - if you change sums to integrals.

CONDITIONAL ENTROPY

- The **conditional entropy** H(Y|X) quantifies the uncertainty of Y that remains if the outcome of X is given.
- H(Y|X) is defined as the expected value of the entropies of the conditional distributions, averaged over the conditioning RV.
- If $(X, Y) \sim p(x, y)$, the conditional entropy H(Y|X) is defined as

$$H(Y|X) = \mathbb{E}_X[H(Y|X=x)] = \sum_{x \in \mathcal{X}} p(x)H(Y|X=x)$$

$$= -\sum_{x \in \mathcal{X}} p(x) \sum_{y \in \mathcal{Y}} p(y|x) \log p(y|x)$$

$$= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(y|x)$$

$$= -\mathbb{E}\left[\log p(Y|X)\right].$$

• For the continuous case with density f we have

$$h(Y|X) = -\int f(x,y) \log f(x|y) dxdy.$$

CHAIN RULE FOR ENTROPY

The **chain rule for entropy** is analogous to the chain rule for probability and, in fact, derives directly from it.

$$H(X, Y) = H(X) + H(Y|X)$$
Proof: $H(X, Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x, y)$

$$= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x) p(y|x)$$

$$= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x) - \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(y|x)$$

$$= -\sum_{x \in \mathcal{X}} p(x) \log p(x) - \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(y|x)$$

$$= H(X) + H(Y|X)$$

n-Variable version:

$$H(X_1, X_2, ..., X_n) = \sum_{i=1}^n H(X_i|X_{i-1}, ..., X_1).$$

JOINT AND CONDITIONAL ENTROPY

The following relations hold:

$$H(X,X) = H(X)$$

$$H(X|X) = 0$$

$$H(X,Y|Z) = H(X|Z) + H(Y|X,Z)$$

Which can all be trivially derived from the previous considerations.

Furthermore, if H(X|Y) = 0, then X is a function of Y, so for all x with p(x) > 0, there is only one y with p(x, y) > 0. Proof is not hard, but also not completely trivial.

MUTUAL INFORMATION

- The MI describes the amount of information about one random variable obtained through the other one or how different the joint distribution is from pure independence.
- Consider two random variables X and Y with a joint probability mass function p(x,y) and marginal probability mass functions p(x) and p(y). The MI I(X;Y) is the Kullback-Leibler distance between the joint distribution and the product distribution p(x)p(y):

$$I(X; Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \rho(x, y) \log \frac{\rho(x, y)}{\rho(x)\rho(y)}$$
$$= D_{KL}(\rho(x, y) || \rho(x)\rho(y))$$
$$= \mathbb{E}_{\rho(x, y)} \left[\log \frac{\rho(X, Y)}{\rho(X)\rho(Y)} \right].$$

• For two continuous random variables with joint density f(x, y):

$$I(X; Y) = \int f(x, y) \log \frac{f(x, y)}{f(x)f(y)} dxdy.$$

MUTUAL INFORMATION

We can rewrite the definition of mutual information I(X; Y) as

$$I(X; Y) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

$$= \sum_{x,y} p(x,y) \log \frac{p(x|y)}{p(x)}$$

$$= -\sum_{x,y} p(x,y) \log p(x) + \sum_{x,y} p(x,y) \log p(x|y)$$

$$= -\sum_{x} p(x) \log p(x) - \left(-\sum_{x,y} p(x,y) \log p(x|y)\right)$$

$$= H(X) - H(X|Y).$$

Thus, mutual information I(X; Y) is the reduction in the uncertainty of X due to the knowledge of Y.

MUTUAL INFORMATION

The following relations hold:

$$I(X; Y) = H(X) - H(X|Y)$$

$$I(X; Y) = H(Y) - H(Y|X)$$

$$I(X; Y) = H(X) + H(Y) - H(X, Y)$$

$$I(X; Y) = I(Y; X)$$

$$I(X; X) = H(X)$$

All of the above are trivial to prove.

MUTUAL INFORMATION - EXAMPLE

Let *X*, *Y* have the following joint distribution:

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄
<i>Y</i> ₁	1 8	1 16	1 32	1 32
Y_2	1 16	<u>1</u> 8	$\frac{1}{32}$	$\frac{1}{32}$
<i>Y</i> ₃	$\frac{1}{16}$	1 16	$\frac{1}{16}$	1 16
<i>Y</i> ₄	$\frac{1}{4}$	0	0	0

The marginal distribution of X is $(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8})$ and the marginal distribution of Y is $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$, and hence $H(X) = \frac{7}{4}$ bits and H(Y) = 2 bits.

MUTUAL INFORMATION - EXAMPLE

The conditional entropy H(X|Y) is given by:

$$H(X|Y) = \sum_{i=1}^{4} \rho(Y=i)H(X|Y=i)$$

$$= \frac{1}{4}H\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\right) + \frac{1}{4}H\left(\frac{1}{4}, \frac{1}{2}, \frac{1}{8}, \frac{1}{8}\right)$$

$$+ \frac{1}{4}H\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right) + \frac{1}{4}H(1, 0, 0, 0)$$

$$= \frac{1}{4} \cdot \frac{7}{4} + \frac{1}{4} \cdot \frac{7}{4} + \frac{1}{4} \cdot 2 + \frac{1}{4} \cdot 0$$

$$= \frac{11}{8} \text{ bits.}$$

Similarly, $H(Y|X) = \frac{13}{8}$ bits and $H(X, Y) = \frac{27}{8}$ bits.

MUTUAL INFORMATION - COROLLARIES

Non-negativity of mutual information: For any two random variables, X, Y, $I(X; Y) \ge 0$, with equality if and only if X and Y are independent.

Proof: $I(X; Y) = D_{KL}(p(x, y)||p(x)p(y)) \ge 0$, with equality if and only if p(x, y) = p(x)p(y) (i.e., X and Y are independent).

Conditioning reduces entropy (information can't hurt):

$$H(X|Y) \leq H(X)$$

with equality if and only if X and Y are independent.

Proof: $0 \le I(X; Y) = H(X) - H(X|Y)$

Intuitively, the theorem says that knowing another random variable Y can only reduce the uncertainty in X. Note that this is true only on the average.

MUTUAL INFORMATION - COROLLARIES

Independence bound on entropy: Let X_1, X_2, \ldots, X_n be drawn according to $p(x_1, x_2, \ldots, x_n)$. Then

$$H(X_1, X_2, \ldots, X_n) \leq \sum_{i=1}^n H(X_i),$$

with equality if and only if the X_i are independent.

Proof: With the chain rule for entropies,

$$H(X_1, X_2, ..., X_n) = \sum_{i=1}^n H(X_i|X_{i-1}, ..., X_1) \le \sum_{i=1}^n H(X_i),$$

where the inequality follows directly from above. We have equality if and only if X_i is independent of X_{i-1}, \ldots, X_1 for all i (i.e., if and only if the X_i 's are independent).

MUTUAL INFORMATION PROPERTIES

- MI is a measure of the amount of "dependence" between variables. It is zero if and only if the variables are independent.
- On the other hand, if one of the variables is a deterministic function of the other, the mutual information is maximal, i.e. entropy of the first.
- Unlike (Pearson) correlation, mutual information is not limited to real-valued random variables.
- Mutual information can be used to perform feature selection.
 Quite simply, each variable X_i is rated according to I(X_i; Y), this is sometime called information gain.
- The same principle can also used in decision trees to select a feature to split on. Splitting on MI/IG is then equivalent to risk reduction with log-loss.

MUTUAL INFORMATION VS. CORRELATION

- If two variables are independent, their correlation is 0.
- However, the reverse is not necessarily true. It is possible for two dependent variables to have 0 correlation because correlation only measures linear dependence.

- The figure above shows various scatterplots where, in each case, the correlation is 0 even though the two variables are strongly dependent, and MI is large.
- Mutual information can therefore be seen as a more general measure of dependence between variables than correlation.

MUTUAL INFORMATION - EXAMPLE

Let X, Y be two correlated Gaussian random variables. $(X,Y) \sim \mathcal{N}(0,K)$ with correlation ρ and covariance matrix K:

$$K = \begin{pmatrix} \sigma^2 & \rho \sigma^2 \\ \rho \sigma^2 & \sigma^2 \end{pmatrix}$$

Then $h(X) = h(Y) = \frac{1}{2} \log(2\pi e)\sigma^2$, and $h(X, Y) = \log(2\pi e)^2 |K| = \log(2\pi e)^2 \sigma^4 (1 - \rho^2)$, and thus

$$I(X;Y) = h(X) + h(Y) - h(X,Y) = -\frac{1}{2}\log(1-\rho^2).$$

For $\rho=0$, X and Y are independent and I(X;Y)=0. For $\rho=\pm 1$, X and Y are perfectly correlated and $I(X;Y)\to \infty$.