Controller Area Network (CAN)

Presentation Goals

- CAN Introduction
 - Overview
 - History
- CAN Characteristics
 - OSI Model
 - Physical Layer
 - Transmission Characteristics
- Message Format
 - Bus Arbitration
 - Error Handling
- Miscellaneous

Overview

- It is an advanced serial bus system that efficiently supports distributed control systems.
- CAN Specification
 - Specified by Robert Bosch GmbH, Germany
 - Late 1980
- Internationally standardized
 - ISO and Society of Automotive Engineers (SAE)
 - ISO 11898

Intra-vehicular Communication

- A typical vehicle has a large number of electronic control systems
- The growth of automotive electronics is a result of:
 - Customers wish for better comfort and better safety.
 - Government requirements for improved emission control
 - Reduced fuel consumption
- Control systems com
 - Engine timing
 - Gearbox and carburetor throttle control
 - Anti-block systems (ABS)
 - Acceleration skid control (ASC)

How it all began...

Engine Control

Anti-Lock Brakes

Lighting

Air Condition ing

Power Locks

Airbag

Transmissior Control Active Suspension Power Seats

Apex Mountain Engineering Inc.

Dashboard

Power Windows

How it all began...

How it all began... (cont.)

CAN Features

- Physical medium two wires terminated at both ends by resistors.
- Differential signal better noise immunity.
- Benefits:
 - Reduced weight, Reduced cost
 - Fewer wires = Increased reliability

Conventional multi-wire looms

http://canbuskit.com/what.php

VS.

History

- 1983 : First CAN project at Bosch
- 1986 : CAN protocol introduced
- 1987 : First CAN controller chips sold
- 1991 : CAN 2.0A specification published
- 1992 : Mercedes-Benz used CAN network
- 1993: ISO 11898 standard
- 1995: ISO 11898 amendment
- Present: The majority of vehicles use CAN bus.

OSI Model

 Protocol uses Data Link Layer and Physical Layer

Application Layer

CAN Layers
in silicon

Physical Layer

Description of OSI layers [edit]

The recommendation X.200 describes seven layers, labeled 1 to 7. Layer 1 is the lowest layer in this model.

OSI Model				
Layer		Data unit	Function ^[3]	Examples
Host layers	7. Application	Data	High-level APIs, including resource sharing, remote file access, directory services and virtual terminals	HTTP, FTP, SMTP
	6. Presentation		Translation of data between a networking service and an application; including character encoding, data compression and encryption/decryption	ASCII, EBCDIC, JPEG
	5. Session		Managing communication sessions, i.e. continuous exchange of information in the form of multiple back-and-forth transmissions between two nodes	RPC, PAP
	4. Transport	Segments	Reliable transmission of data segments between points on a network, including segmentation, acknowledgement and multiplexing	TCP, UDP
Media layers	3. Network	Packet/Datagram	Structuring and managing a multi-node network, including addressing, routing and traffic control	IPv4, IPv6, IPsec, AppleTalk
	2. Data link	Bit/Frame	Reliable transmission of data frames between two nodes connected by a physical layer	PPP, IEEE 802.2, L2TP
	1. Physical	Bit	Transmission and reception of raw bit streams over a physical medium	DSL, USB

Basic Concepts

- Multi-master bus
- No node addressing
 - Message identifier specifies content & priority
- Easy connection/disconnection of nodes
- Multicasting and Broadcasting capability

Basic Concepts (cont.)

- Sophisticated Error Detection/Handling
- NRZ Code + Bit Stuffing for Synchronization
- High data transfer rate of 1.0 Mbps
 - 40 m using twisted wire pair.
- Message length (Max. 8 bytes payload)
- Advanced Serial Communication
 - Bus access via Carrier Sense Multiple Access/Collision
 Detection with Non-Destructive Arbitration (CSMA/CD w/AMP (Arbitration on Message Priority)

Differential Signals

Differential Signals

Physical CAN connection

Transmission Characteristics

- Up to 1 Mbit/sec.
- Common baud rates: 1 MHz, 500 KHz and 125 KHz
- All nodes same baud rate
- Max length:120' to 15000' (rate dependent)

Message Oriented Transmission Protocol

- Each node receiver & transmitter
- A sender of information transmits to all devices on the bus
- All nodes read message, then decide if it is relevant to them
- All nodes verify reception was error-free
- All nodes acknowledge reception

Node A: Important message from the speed wheel sensor! Wheel speed is 100 rpm.

Node B: Not for me.

Node C: Got it.

CAN bus

Basic Concepts - Signals CAN Bus Characteristics — Wired-AND

- Two bus states
 - Dominant "0"
 - Recessive "1"
- Bus Logic
 - Wired-AND mechanism
 - Dominant bits overwrite recessive bits

"1" recessive

"0" dominant

Frame Formats

- Data Frame
- Remote Frame
- Error Frame
- Overload Frame
- Inter-frame Space

Message Format

- Each message has an ID, Data and overhead.
- Data 8 bytes max
- Overhead start, end, CRC, ACK

Example of Message Transaction

Instrument panel ECU says "can anyone tell me what the block temperature is? ID

Data

400

 Block ECU sees this message and issues a message "block temperature is 76 Celsius" 400

076

 Instrument panel ECU sees block temperature message and displays it on console

Bus Arbitration

Message importance is encoded in message ID.

Lower value = More important

- As a node transmits each bit, it verifies that it sees the same bit value on the bus that it transmitted.
- A "0" on the bus wins over a "1" on the bus.
- Losing node stops transmitting, winner continues.

Implicit collision handling in the CAN bus: example

MAC protocols which suffers from bandwidth degradation when a collision occurs. CAN does not. There is no wastage of bandwidth.

Hence, CAN achieves 100% bandwidth utilization

Error Detection

- CRC Cyclic Redundancy Check
 - Checksum is calculated by both transmitter and receiver. Checksum must match.
- Acknowledge
 - A frame must be acknowledged by at least one other node.
- Frame Check Form Error
 - No dominant bits allowed in CRC Delimiter, ACK Delimiter, End-of-Frame and Intermission
- Bit Monitoring
 - A transmitted bit must be correctly read back from the CAN bus.
 - Dominant bits may overwrite recessive bits only in the Arbitration Field and in the Acknowledge Slot.
- Bit Stuffing Check
 - 6 consecutive bits with same polarity are not allowed between Start of Frame and CRC Delimiter.

Error Handling

- Detected errors are made public to all other nodes via Error Frames
- The transmission of the erroneous message is aborted and the frame is repeated as soon as possible.
- Reliability Undetected Errors
 - Example: Vehicle with CAN running 2000 hours/year at 500 kbps with 25% bus load.
 - Results in 1 undetected error every 1000 years.

CAN Protocol Versions

- Two CAN protocol versions
 - V2.0A (Standard) 11 bit Message IDs 2048 IDs available.
 - V2.0B (Extended) 29 bit Message IDs more than 536 Million IDs available.

Bit Construction

- One bit time is composed of four segments
- Each segment is an integer number of time quanta (TQ)
 - Synchronization Segment an edge must lie in this segment
 - Propagation Segment compensate for physical delays
 - Phase Segments compensate for edge phase errors

CAN Bus Connectors

- Mainly implemented on DSUB 9 connector (DB9).
- CAN_L on pin 2.
- CAN Honpin 7

CAN Transceivers

- Microchip MCP2551
- NXP (Philips) TJA1050
- Texas Instruments
- Linear Technology

Summary

- CAN bus Controller Area Network bus
- Primarily used for building ECU networks in automotive applications.
- Two wires
- OSI Physical and Data link layers
- Differential signal noise immunity
- 1Mbit/s, 120'
- Messages contain up to 8 bytes of data
- CAN is being replaced by FlexRay for high speed critical applications (engine & transmission control)