BÀI SỐ 2

XÁC ĐỊNH MÔ MEN QUÁN TÍNH CỦA VẬT RẮN ĐỐI XỨNG NGHIỆM LẠI ĐỊNH LÝ STEINER - HUYGENS

Xác nhận của giáo viên hướng dẫn

Trường	Đại học Bách Kho	a Hà Nôi	
	715930	Nhóm 5	
Họ tên	Tạ Công Nam		

I. MỤC ĐÍCH THÍ NGHIỆM

Xác định mô men quán tính của vật rắn đối xứng; nghiệm lại định lý Steiner - Huygens

II. KẾT QUẢ THÍ NGHIỆM

1. Xác định mô men quán tính $I_{\scriptscriptstyle 0}$ của một số vật rắn đối xứng

Bảng 1

- Mô men quán tính của đĩa đỡ khối trụ: $I_{\scriptscriptstyle D} = ~\pm~{\rm (kg.m^2)}$
- Độ chính xác của bộ đếm thời gian: $\left(\Delta T\right)_{dc}$ = (s)

	Thanh dài		Đĩa đặc		Trụ rỗng		Khối cầu	
Lần đo	T_{TH} (s)	ΔT (s)	T_{DD} (s)	ΔT (s)	T_{TR+D} (s)	ΔT (s)	T_{C} (s)	ΔT (s)
1								
2								
3								
4								
5								
Trung bình								

2. Nghiệm lại định lý Steiner - Huygens

Bảng 2	d (x 10 ⁻³ m)	T(s)	$x = d^2 (x 10^{-6} \text{ m}^2)$	$I = D_z \left(\frac{T}{2\pi}\right)^2 (\text{kg.m}^2)$
	0			
	30			
	60			
	90			
	120			

III. XỬ LÝ SỐ LIÊU

- 1. Tính mô men quán tính của các vật rắn đối xứng
- **a.** Thanh dài $L = 620 \pm 1 \text{ (mm)}, M = 240 \pm 1 \text{ (g)}$

- Sai số tuyệt đối của phép đo chu kỳ $T_{T\!H}$ (đo trực tiếp):

$$\Delta T_{TH} = (\Delta T)_{dc} + \overline{\Delta T}_{TH} = (s)$$

- Mô men quán tính trung bình của thanh dài:

$$\overline{I}_{TH} = D_z \left(\frac{\overline{T}_{TH}}{2\pi}\right)^2 = \text{(kg.m}^2\text{)}$$

- Sai số tương đối trung bình của phép đo mô men quán tính của thanh dài:

$$\delta = \frac{\Delta I_{TH}}{\overline{I}_{TH}} = \frac{\Delta D_z}{D_z} + \frac{2\Delta T_{TH}}{\overline{T}_{TH}} + \frac{2\Delta \pi}{\pi} = (\%)$$

- Sai số tuyệt đối của mô men quán tính $\Delta I_{\scriptscriptstyle TH}$:

$$\Delta I_{TH} = \delta . \bar{I}_{TH} = (\text{kgm}^2)$$

- Kết quả đo mô men quán tính của thanh dài:

$$I_{TH} = \overline{I}_{TH} \pm \Delta I_{TH} = \pm \text{ (kgm}^2)$$

- Mô men quán tính của thanh dài tính theo lý thuyết $\left(I_{\mathit{TH}}\right)_{\mathit{IT}}$:

$$(I_{TH})_{LT} = \frac{1}{12}ML^2 = (kgm^2)$$

- Sai số tỉ đối:
$$\delta^* = \frac{\left|\left(I_{TH}\right)_{LT} - I_{TH}\right|}{\left(I_{TH}\right)_{LT}} = (\%)$$

b. Đĩa đặc
$$D = 220 \pm 1 \text{ (mm)}, M = 795 \pm 1 \text{ (g)}$$

- Sai số tuyệt đối của phép đo chu kỳ $T_{\scriptscriptstyle DD}$ (đo trực tiếp):

$$\Delta T_{DD} = (\Delta T)_{dc} + \overline{\Delta T}_{DD} = (s)$$

- Mô men quán tính trung bình của đĩa đặc:

$$\overline{I}_{DD} = D_z \left(\frac{\overline{T}_{DD}}{2\pi}\right)^2 = (\text{kg.m}^2)$$

- Sai số tương đối trung bình của phép đo mô men quán tính của đĩa đặc:

$$\delta = \frac{\Delta I_{DD}}{\overline{I}_{DD}} = \frac{\Delta D_z}{D_z} + \frac{2\Delta T_{DD}}{\overline{T}_{DD}} + \frac{2\Delta \pi}{\pi} = (\%)$$

- Sai số tuyệt đối của mô men quán tính $\Delta I_{{\scriptscriptstyle D}{\scriptscriptstyle D}}$:

$$\Delta I_{DD} = \delta . \bar{I}_{DD} = (\text{kgm}^2)$$

- Kết quả đo mô men quán tính của đĩa đặc:

$$I_{DD} = \overline{I}_{DD} \pm \Delta I_{DD} = \pm \text{ (kgm}^2\text{)}$$

- Mô men quán tính của đĩa đặc tính theo lý thuyết $\left(I_{{\scriptscriptstyle DD}}\right)_{{\scriptscriptstyle LT}}$:

$$\left(I_{\scriptscriptstyle DD}\right)_{\scriptscriptstyle LT} = \frac{1}{8}MD^2 = (\text{kgm}^2)$$

- Sai số tỉ đối:
$$\delta^* = \frac{\left|\left(I_{BB}\right)_{LT} - I_{BB}\right|}{\left(I_{BB}\right)_{LT}} = (\%)$$

- **c.** Trụ rỗng $D = 89 \pm 1 \text{ (mm)}, M = 780 \pm 1 \text{ (g)}$
- Sai số tuyệt đối của phép đo chu kỳ $T_{\mathit{TR+D}}$ (đo trực tiếp):

$$\Delta T_{TR+D} = (\Delta T)_{dc} + \overline{\Delta T}_{TR+D} =$$
 (s)

- Mô men quán tính trung bình của trụ rỗng và đĩa đỡ:

$$\overline{I}_{TR+D} = D_z \left(\frac{\overline{T}_{TR+D}}{2\pi}\right)^2 = (\text{kg.m}^2)$$

- Sai số tương đối trung bình của phép đo mô men quán tính của trụ rỗng và đĩa đỡ:

$$\delta = \frac{\Delta I_{TR+D}}{\overline{I}_{TR+D}} = \frac{\Delta D_z}{D_z} + \frac{2\Delta T_{TR+D}}{\overline{T}_{TR+D}} + \frac{2\Delta \pi}{\pi} = (\%)$$

- Sai số tuyệt đối của mô men quán tính $\Delta I_{\mathit{TR+D}}$:

$$\Delta I_{TR+D} = \delta . \bar{I}_{TR+D} = (kgm^2)$$

- Mô men quán tính trung bình của trụ rỗng \overline{I}_{TR} :

$$\overline{I}_{TR} = \overline{I}_{TR+D} - \overline{I}_D = (\text{kgm}^2)$$

- Sai số tuyệt đối của mô men quán tính trụ rỗng $\Delta I_{\it TR}$:

$$\Delta I_{TR} = \Delta I_{TR+D} + \Delta I_D = (\text{kgm}^2)$$

- Kết quả đo mô men quán tính của đĩa đặc:

$$I_{TR} = \overline{I}_{TR} \pm \Delta I_{TR} = \pm \text{ (kgm}^2)$$

- Mô men quán tính của trụ rỗng tính theo lý thuyết $\left(I_{\mathit{TR}}\right)_{\mathit{LT}}$:

$$(I_{TR})_{LT} = \frac{1}{4}MD^2 = \text{(kgm}^2\text{)}$$

- Sai số tỉ đối:
$$\delta^* = \frac{\left|\left(I_{TR}\right)_{LT} - I_{TR}\right|}{\left(I_{TR}\right)_{LT}} =$$
 (%)

- **d.** Khối cầu đặc $D = 146 \pm 1 \text{ (mm)}, M = 2290 \pm 1 \text{ (g)}$
- Sai số tuyệt đối của phép đo chu kỳ $T_{\scriptscriptstyle C}$ (đo trực tiếp):

$$\Delta T_C = (\Delta T)_{dc} + \overline{\Delta T}_C = (s)$$

- Mô men quán tính trung bình của khối cầu đặc:

$$\overline{I}_C = D_z \left(\frac{\overline{T}_C}{2\pi}\right)^2 = \text{(kg.m²)}$$

- Sai số tương đối trung bình của phép đo mô men quán tính của khối cầu đặc:

$$\delta = \frac{\Delta I_C}{\overline{I}_C} = \frac{\Delta D_z}{D_z} + \frac{2\Delta T_C}{\overline{T}_C} + \frac{2\Delta \pi}{\pi} = (\%)$$

- Sai số tuyệt đối của mô men quán tính $\Delta I_{\scriptscriptstyle C}$:

$$\Delta I_C = \delta . \bar{I}_C = (\text{kgm}^2)$$

- Kết quả đo mô men quán tính của khối cầu đặc:

$$I_C = \overline{I}_C \pm \Delta I_C = \pm \text{ (kgm}^2\text{)}$$

- Mô men quán tính của trụ rỗng tính theo lý thuyết $\left(I_{\scriptscriptstyle C}\right)_{\!\scriptscriptstyle LT}$:

$$(I_C)_{LT} = \frac{1}{10}MD^2 = (kgm^2)$$

- Sai số tỉ đối:
$$\delta^* = \frac{\left|\left(I_C\right)_{LT} - I_C\right|}{\left(I_C\right)_{LT}} =$$
 (%)

3. Kiểm nghiệm định lý Steiner - Huygens

Đồ thị
$$I=Mx+I_o\left(x=d^2\right)$$
 (Đồ thi)

- Đánh giá kết quả thu được từ thực nghiệm: Dựa vào đồ thị thu được, ta thấy dạng đồ thị thỏa mãn đúng cho phương trình $I=Mx+I_o\left(x=d^2\right)$ là đồ thị của hàm số bậc nhất. Như vậy, định lý Steiner - Huygens được nghiệm đúng.

Bảng 3. Nghiệm lại định lý Steiner – Huygens (Kẻ ra mặt sau tờ báo cáo)

I	ΔI	X	Δx