ANALYSIS AND PREDICTION OF PERIPARTUM MATERNAL HEALTH RISK

Presenter: Brad Presson

CONTENTS

- Background
- Methods
- Results
- Conclusion

BACKGROUND

- Health information was collected from South Asian hospitals, community clinics, and maternal health centers.
- Used a sensors-based risk monitoring system.
- Aim to reduce maternal and fetal mortality.

BACKGROUND

- Sample size (N): 1,014
- No null data
- Seven features:
 - Blood Sugar
 - Systolic Blood Pressure
 - Diastolic Blood Pressure
 - Body Temperature
 - Heart Rate
 - Age
 - Risk level

- Outputs (risk)
 - Low-risk
 - Medium-risk
 - High-risk
- Hypothesis: The higher the values of the features, the higher the risk category.

(Maternal Health Risk Data, n.d.)

METHODS: EXPLORATORY DATA ANALYSIS

METHODS: DATA PREPROCESSING

- Converted the ordinal class labels to integers
 - Low-risk: 0
 - Mid-risk: I
 - High-risk: 2
- Training data: 80% of the total data
- Test data: 20% of the total data

METHODS FEATURE SELECTION

Features	Variation %
Blood Sugar	0.359
Systolic	0.186
Blood	
Pressure	
Age	0.159
Diastolic	0.125
Blood	
Pressure	
Heart Rate	0.103
Body	0.065
Temperature	

- Set threshold to 0.13
 - Utilizing the first three features for our model
- Minimal change in the accuracy of the algorithms

RESULTS ORDINAL REGRESSION

Features	Coefficients	P-values
	(Standard Error)	
Systolic Blood	0.0288	0.000
Pressure	(0.004)	
Diastolic Blood	-0.0014	0.777
Pressure	(0.005)	
Blood Sugar	0.2415	0.000
	(0.021)	
Body	0.2443	0.000
Temperature	(0.033)	
Heart Rate	0.252	0.000
	(0.006)	
Age	-0.0041	0.311
	(0.004)	

- Systolic BP, Blood Sugar, Body Temperature, and Heart Rate are all <u>significant</u> variables in this regression
- Accuracy of categorizing Test Data: 61%

RESULTS TRAINING DATA

Classification Algorithm	Mean Cross- Validation Accuracy
Logistic Regression	53.9%
Support Vector Machine	64.3%
K-nearest Neighbors	72%
Decision Tree	72%
Random Forest	82.4%

- Random Forest with Tuned Hyperparameters
 - Mean CV accuracy: 82.8%

TEST DATA

 Total Accuracy of Categorizing Test Data: 81.3%

o FI score: 81.2%

• True Low-Risk: 85.2%

• True Medium-Risk: 71.6%

• True High-Risk: 87.3%

CONCLUSION

ROI

- Assumptions:
 - 40% uptake of app
 - 10% of severe maternal morbidity due to inappropriate risk categorization
- Decrease SMM to 84.6 from 88.2, a decrease of 4%
 - o 1270 people
- Drawbacks
 - Limited sample size may have affected accuracy

THANK YOU

REFERENCE

- Ahmed, M., & Kashem, M. (2021, February 16). *IoT Based Risk Level Prediction Model For Maternal Health Care In The Context Of Bangladesh*. https://doi.org/10.1109/STI50764.2020.9350320
- Ahmed, M., Kashem, M., Rahman, M., & Khatun, S. (2020). *Review and Analysis of Risk Factor of Maternal Health in Remote Area Using the Internet of Things (IoT)* (pp. 357–365). https://doi.org/10.1007/978-981-15-2317-5 30
- Big majority of doctors see upsides to using health care AI | American Medical Association. (n.d.). Retrieved July 14, 2024, from https://www.ama-assn.org/practice-management/digital/big-majority-doctors-see-upsides-using-health-care-ai
- *Births in hospitals total number United States 1946-2019* | *Statista*. (n.d.). Retrieved July 14, 2024, from https://www.statista.com/statistics/459751/total-hospital-birth-numbers-in-the-us/
- *Maternal Health Risk Data*. (n.d.). Retrieved July 14, 2024, from https://www.kaggle.com/datasets/csafrit2/maternal-health-risk-data
- Moroz, L., & Simpson, L.(2024). Severe maternal morbidity. UpToDate. Retrieved July, 14, 2024, from https://www.uptodate.com/contents/severe-maternal-morbidity