Lecture 7

Multiple Linear Regression

Reading: Chapter 12

STAT 8020 Statistical Methods II September 4, 2019

Notes

Whitney Huang Clemson University

Agenda

- Species Diversity on the Galapagos Islands
- Multiple Linear Regression in Matrix Form
- 3 Estimation
- Inference
- **6** Coefficient of Determination R^2

Multiple Linear Regression

Goal: To model the relationship between two or more explanatory variables (X's) and a response variable (Y) by fitting a **linear equation** to observed data:

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{p-1} X_{p-1} + \varepsilon_i, \quad \varepsilon_i \overset{i.i.d.}{\sim} N(0, \sigma^2)$$

Example: Species diversity on the Galapagos Islands.

We are interested in studying the relationship between the number of plant species (Species) and the following geographic variables: Area, Elevation, Nearest, Scruz, Adjacent.

negrecolon
CLEMS#N
UNIVERSITI
Species Diversity on the Galapagos Islands

Multiple Linear

Notes			
Notes			

Data: Species Diversity on the Galapagos Islands

	Species	Endemics	Area	Elevation	Nearest	Scruz	Adjacent
Baltra	58	23	25.09	346	0.6	0.6	1.84
Bartolome	31	21	1.24	109	0.6	26.3	572.33
Caldwell	3	3	0.21	114	2.8	58.7	0.78
Champion	25	9	0.10	46	1.9	47.4	0.18
Coamano			0.05	77	1.9	1.9	903.82
Daphne Major	18	11	0.34	119	8.0	8.0	1.84
Daphne.Minor	24	0	0.08	93	6.0	12.0	0.34
Darwin	10		2.33	168		290.2	2.85
Eden	8	4	0.03	71	0.4	0.4	17.95
Enderby	2	2	0.18	112	2.6	50.2	0.10
Espanola	97	26	58.27	198	1.1	88.3	0.57
Fernandina	93	35	634.49	1494	4.3	95.3	4669.32
Gardner1	58	17	0.57	49	1.1	93.1	58.27
Gardner2	5		0.78	227	4.6	62.2	0.21
Genovesa	40	19	17.35	76	47.4	92.2	129.49
Isabela	347	89	4669.32	1707	0.7	28.1	634.49
Marchena	51		129.49	343	29.1	85.9	59.56
Onslow			0.01		3.3	45.9	0.10
Pinta	104		59.56		29.1	119.6	129.49
Pinzon	108		17.95	458	10.7	10.7	0.03
Las.Plazas			0.23	94	0.5	0.6	25.09
Rabida	70	30	4.89	367	4.4	24.4	572.33
SanCristobal	280	65	551.62	716	45.2	66.6	0.57
SanSalvador	237	81	572.33	906	0.2	19.8	4.89
SantaCruz	444	95	903.82	864	0.6	0.0	0.52
SantaFe	62	28	24.08	259	16.5	16.5	0.52
SantaMaria	285		170.92	640	2.6	49.2	0.10
Seymour	44	16	1.84	147	0.6	9.6	25.09
Tortuga	16		1.24	186	6.8	50.9	17.95
Wolf			2.85	253	34.1	254.7	2.33

Notes			

Let's Take a Look at the Correlation Matrix

Notes			

$\textbf{Model 1: Species} \sim \textbf{Elevation}$

Call: lm(formula = Species ~ Elevation, data = gala)
Residuals: Min 1Q Median 3Q Max -218.319 -30.721 -14.690 4.634 259.180
Coefficients: Estimate Std. Error t value Pr(> t)
(Intercept) 11.33511 19.20529 0.590 0.56 Elevation 0.20079 0.03465 5.795 3.18e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 78.66 on 28 degrees of freedom Multiple R-squared: 0.5454, Adjusted R-squared: 0.5291 F-statistic: 33.59 on 1 and 28 DF, p-value: 3.177e-06

Multiple Linear Regression
Species Diversity on the Galapagos Islands

Notes				

Model 2: Species \sim Elevation + Area

Notes

Model 3: Species \sim Elevation + Area + Adjacent

Notes

"Full Model"

lm(formula = Species ~ Area + Elevation + Nearest + Scruz + Adjacent, data = gala)
Residuals:
Min 10 Median 30 Max
-111.679 -34.898 -7.862 33.460 182.584
Coefficients:
Estimate Std. Error t value Pr(> t)
(Intercept) 7.068221 19.154198 0.369 0.715351
Area -0.023938 0.022422 -1.068 0.296318
Elevation 0.319465 0.053663 5.953 3.82e-06
Nearest 0.009144 1.054136 0.009 0.993151
Scruz -0.240524 0.215402 -1.117 0.275208
Adjacent -0.074805 0.017700 -4.226 0.000297
(Intercept)
Area
ELEVACION
Nearest
Scruz
Aujucene
 Sianif. codes:
o (**** 0.001 (*** 0.01 (*) 0.05 (.' 0.1 (' 1
Residual standard error: 60.98 on 24 degrees of freedom
Multiple R-squared: 0.7658, Adjusted R-squared: 0.7171
F-statistic: 15.7 on 5 and 24 DF, p-value: 6.838e-07
- State State Late State Late State Co. State Co.

Multiple Linear Regression
CLEMS N
Species Diversity on the Galapagos Islands
7.9

Notes			

Multiple Linear Regression in Matrix Notation

Multiple Linear Regression (MLR):

$$\begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} 1 & X_{1,1} & X_{2,1} & \cdots & X_{p-1,1} \\ 1 & X_{1,2} & X_{2,2} & \cdots & X_{p-1,2} \\ \vdots & \cdots & \ddots & \vdots & \vdots \\ 1 & X_{1,n} & X_{2,n} & \cdots & X_{p-1,n} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

We can express MLR as

$$Y = X\beta + \varepsilon$$

Error Sum of Squares (SSE) $= \sum_{i=1}^n (Y_i - \beta_0 - \sum_{j=1}^{p-1} \beta_j X_j)^2 \text{ can be expressed in matrix notation as:}$

$$(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})$$

Again, we are going to find $\hat{\beta}$ to minimize SSE as our estimate for β

Estimation of Regression Coefficients

• The resulting least squares estimate is

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

• Fitted values:

$$\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X} \left(\mathbf{X}^T \mathbf{X} \right)^{-1} \mathbf{X}^T \mathbf{Y} = \mathbf{H} \mathbf{Y}$$

Residuals:

$$e = Y - \hat{Y} = (I - H)Y$$

Notes

Notes

Estimation of σ^2

Similar approach as we did in SLR

$$\hat{\sigma}^2 = \frac{e^T e}{n-p}$$

$$= \frac{(Y - X\hat{\beta})^T (Y - X\hat{\beta})}{n-p}$$

$$= \frac{\text{SSE}}{n-p}$$

$$= \text{MSE}$$

Multiple Linear Regression								
\mathbb{C}^{1}	Ļ		Ņ		S	ť	į	Ĵ

Notes			

ANOVA Table

Source	df	SS	MS	F Value
Model	p - 1	SSR	MSR = SSR/(p-1)	MSR/MSE
Error	n-p	SSE	MSE = SSE/(n-p)	
Total	n _ 1	SST		

- F Test: Tests if the predictors $\{X_1,\cdots,X_{p-1}\}$ collectively help explain the variation in Y
 - $H_0: \beta_1 = \beta_2 = \cdots = \beta_{p-1} = 0$
 - H_a : at least one $\beta_k \neq 0$, $1 \leq k \leq p-1$
 - $\bullet \ F^* = \frac{\text{MSR}}{\text{MSE}} = \frac{\text{SSR}/(p-1)}{\text{SSE}/(n-p)} \overset{H_0}{\sim} F(p-1,n-p)$
 - Reject H_0 if $F^* > F(1 \alpha, p 1, n p)$

Notes

Testing Individual Predictor

- ullet We can show that $\hat{oldsymbol{eta}}\sim \mathbf{N}_p\left(oldsymbol{eta},\sigma^2\left(oldsymbol{X}^Toldsymbol{X}
 ight)^{-1}
 ight)$ $\hat{\beta}_k \sim N(\beta_k, \sigma_{\hat{\beta}_k}^2)$
- Perform t test:
 - $H_0: \beta_k = 0$ vs. $H_a: \beta_k \neq 0$
 - $\bullet \ \frac{\hat{\beta}_k \beta_k}{\hat{\sigma}_{\hat{\beta}_k}} \sim t_{n-p} \Rightarrow t^* = \frac{\hat{\beta}_k}{\hat{\sigma}_{\hat{\beta}_k}} \stackrel{H_0}{\sim} t_{n-p}$
 - Reject H_0 if $|t^*| > t_{1-\alpha/2,n-p}$
- Confidence interval for β_k : $\hat{\beta}_k \pm t_{1-\alpha/2,n-p} \hat{\sigma}_{\hat{\beta}_k}$

Notes

Coefficient of Multiple Determination

 Coefficient of Determination R² describes proportional reduction in total variation associated with the full set of predictor variables

$$\label{eq:resolvent} \textit{R}^2 = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SSR}}, \quad 0 \leq \textit{R}^2 \leq 1$$

- R^2 usually increases with the increasing p, the number of the predictors
 - \bullet Adjusted $\mathit{R}^{2},$ denoted by $\mathit{R}^{2}_{\mathsf{adj}} = \frac{\mathsf{SSR}/(n-p)}{\mathsf{SST}/(n-1)}$ attempts to account for p

Notes