Dans tout ce problème, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} et on identifiera les vecteurs de $\mathcal{M}_{n,1}(\mathbb{K})$ à ceux de \mathbb{K}^n . On notera I_n la matrice identité d'ordre n. Si $(A_p)_{p\in\mathbb{N}}$ est une suite de matrices d'ordre n, la série de terme général

 A_p , notée $\sum A_p$ est la suite des sommes partielles $\left(\sum_{p=0}^N A_p\right)_{N\in\mathbb{N}}$. Si cette

suite converge, sa limite est la somme de la série et notée $\sum_{p=0}^{+\infty} A_p$.

Pour toute matrice $A \in \mathcal{M}_n(\mathbb{K})$, la série exponentielle associée à A est la série de terme général $\frac{A^p}{p!}$. Nous allons prouver que la série exponentielle converge et noterons $\exp(A) = \sum_{p=0}^{+\infty}$ sa somme.

1. Deux cas particuliers.

- a) Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice diagonalisable. Montrer que $\sum \frac{A^p}{p!}$ converge et exprimer $\exp(A)$ en fonction des valeurs propres de A.
- **b)** Soit $N \in \mathcal{M}_n(\mathbb{K})$ une matrice nilpotente d'ordre k, i.e. $N^{k-1} \neq 0_n$ et $N^k = 0_n$. Montrer que $\sum \frac{N^p}{p!}$ converge et exprimer $\exp(N)$ comme combinaison linéaire des matrices $\{I_n, N, \dots, N^{k-1}\}$.

Pour tout vecteur $u = (u_1, \dots, u_n) \in \mathbb{R}^n$ et toute matrice $A \in \mathscr{M}_n(\mathbb{K})$, on note $||u|| = \max_{1 \leq i \leq n} |u_i|$ et $|||A||| = \sup\{||AX||_{\infty}, X \in \mathscr{M}_{n,1}(\mathbb{K}) \setminus \{0\}\}.$

- **2. Prélude.** Soient $A = (a_{i,j})_{1 \le i,j \le n}$ et B des matrices de $\mathcal{M}_n(\mathbb{K})$.
 - a) Montrer que $|||\cdot|||$ est une norme sur $\mathcal{M}_n(\mathbb{K})$.
 - **b)** Montrer que la norme subordonnée satisfait $|||A||| = \max_{1 \le i \le n} \sum_{i=1}^{n} |a_{i,j}|$.
 - c) Montrer que $|||AB||| \le |||A||| \cdot |||B|||$.
- **d)** Montrer qu'il existe une constante c (indépendante de la matrice A) strictement positive telle que pour tout $(i,j) \in [1,n]^2$, $|a_{i,j}| \leq c \cdot ||A|||$.

- **3. Convergence de la série exponentielle.** Soit $A \in \mathcal{M}_n(\mathbb{K})$. Pour tout entier naturel k et tout couple $(i,j) \in [\![1,n]\!]^2$, on note $a_{i,j}^{(k)}$ le coefficient d'ordre (i,j) de la matrice A^k et $e_{i,j}^{(k)}$ celui de la matrice $\sum_{j=0}^k \frac{A^j}{j!}$.
 - a) Montrer qu'il existe une constante c>0 telle que

$$\forall k \in \mathbb{N}, \forall (i, j) \in [1, n], |a_{i, j}^{(k)}| \leq c \cdot ||A||^k.$$

- **b)** En déduire que pour tout couple $(i,j) \in [1,n]^2$, la suite $\left(e_{i,j}^{(k)}\right)_{k\in\mathbb{N}}$ converge.
 - c) Conclure quant à la convergence de la série exponentielle.
- **4. Exponentielle d'une somme.** Soient A et B deux matrices telles que AB = BA.
- **a)** Montrer que, pour tout entier naturel k, il existe un ensemble $\Delta_k \subset [0, k]^2$ tel que

$$\left| \left| \left| \sum_{j=0}^{k} \frac{(A+B)^{j}}{j!} - \left(\sum_{j=0}^{k} \frac{A^{j}}{j!} \right) \cdot \left(\sum_{j=0}^{k} \frac{B^{j}}{j!} \right) \right| \right| \leq \sum_{(j,\ell) \in \Delta_{k}} \frac{\left| \left| |A| \right| \right|^{j} \left| \left| |B| \right| \right|^{\ell}}{j!\ell!}.$$

b) Montrer que pour tout entier naturel k, avec les notations précédentes.

$$\begin{split} \Big| \sum_{j=0}^k \frac{(|||A||| + |||B|||)^j}{j!} - \left(\sum_{j=0}^k \frac{|||A|||^j}{j!} \right) \cdot \left(\sum_{j=0}^k \frac{|||B|||^j}{j!} \right) \Big| \\ = \sum_{(j,\ell) \in \Delta_k} \frac{|||A|||^j |||B|||^\ell}{j!\ell!}. \end{split}$$

- c) En déduire que $\exp(A+B) = \exp(A) \cdot \exp(B)$.
- **d)** On pose $A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Exprimer $\exp(A + B)$ puis $\exp(A) \cdot \exp(B)$.

5. Applications.

a) Montrer que si $A \in \mathcal{M}_n(\mathbb{K})$, alors $\exp(A)$ est inversible et déterminer son inverse.

Thème XXII PSI

b) Soient N et D deux matrices de $\mathcal{M}_n(\mathbb{K})$ telles que N soit nilpotente, D soit diagonalisable et ND = DN. En posant A = D + N, exprimer, pour tout réel t, la matrice $\exp(tA)$.

Cette décomposition de la matrice A est la décomposition de Dunford. La matrice $\exp(tA)$ apparaît naturellement dans la résolution de systèmes différentiels linéaires.

- **6. Extension d'un résultat classique.** Soit $A \in \mathcal{M}_n(\mathbb{K})$.
 - a) Pour tout entier naturel k non nul, montrer que

$$\left\| \left| \left(I_n + \frac{A}{k} \right)^k - \sum_{j=0}^k \frac{A^j}{j!} \right| \right\| \le \left| \left(1 + \frac{|||A|||}{k} \right)^k - \sum_{j=0}^k \frac{|||A|||^j}{j} \right|.$$

b) En déduire que $\lim_{k \to +\infty} (I_n + \frac{A}{k})^k = \exp(A)$.

Mathématiciens

DUNFORD Nelson (12 déc. 1906 à St Louis-7 sept. 1986 à Sarasota).