COSC265 Tutorial 4

1. What are the results of the following relational algebra queries given that the extension of the PRODUCT table is:

Number	Type	Quantity
1	A	2
2	В	3
3	A	4
4	D	2
5	В	4
6	A	1
7	С	5

- $\bullet \ _{\mathcal{F} \, SUM \, Quantity}(PRODUCT)$
- $Number \mathcal{F} SUM Quantity(PRODUCT)$
- $_{Type \ \mathcal{F} \ SUM \ Quantity}(PRODUCT)$
- $\mathcal{F}_{MAXIMUM\ Quantity}(PRODUCT)$
- $_{\mathcal{F}\,MINIMUM\,\,Quantity}(PRODUCT)$
- $_{\mathcal{F}\ AVERAGE\ Quantity}(PRODUCT)$
- F COUNT Number (PRODUCT)
- $\mathcal{F}_{SUM\ Quantity}(\sigma_{Type='A'}\ (PRODUCT))$
- 2. Given two relations, R and S, determine:

В	С
b1	c1
b2	c3
b1	c2
b1	c2
b1	c3
b2	c3
b1	c3
	b1 b2 b1 b1 b1 b1 b2

S	
D	Ε
a1	b1
a1	b2
a2	b1

- (a) $R \times S$
- (b) R S
- (c) $R \div S$

3. The following tables form a database:

HOTEL(<u>Hotel_No</u>, Name, Address)
ROOM(<u>Room_No</u>, <u>Hotel_No</u>, Type, Price)
BOOKING(<u>Hotel_No</u>, <u>Guest_No</u>, <u>Date_From</u>, Date_To, Room_No)
GUEST(<u>Guest_No</u>, Name, Address)

Generate the relational algebra operations for the following queries:

- (a) List all hotels.
- (b) List all single rooms with a price below \$40 per night.
- (c) List all guests currently staying at the Park Hotel.
- (d) List the details of all rooms at the Park Hotel, including the name(s) of the guest(s) staying in the room, if the room is occupied.
- 4. The STUDENT file has r=20,000 fixed-length records. Each record has the following fields: Name (30B), SSN (9B), Address (40B), Phone (9B), Birthdate (8B), Gender (1B), MajorDept (4B), MinorDept (4B), Course (4B, integer) and Degree (3B). An additional byte is used as a deletion marker. The file is stored on the disks with block size B=512B.
 - (a) Calculate the record size R.
 - (b) Calculate the blocking factor bfr, and the number of file blocks b assuming an unspanned organization.
 - (c) How many blocks need to be accessed on average to find a record by doing a linear search on the file?
 - (d) Assume the file is ordered by SSN. How many blocks need to be transferred from the disk to search for a record given its SSN value?

5.	recor recor Phor	sider a disk with block size $B = 512B$. A block pointer is $P = 6B$ long, and a rd pointer is $P_r = 7B$ long. A file has $r = 30,000$ records of fixed length. Each rd has the following fields: Name (30B), SSN (9B), Dept (9B), Address (40B), ne (9B), Birthdate (8B), SEX (1B), Jobcode (4B), Salary (4B, real number). Additional byte is used as a deletion marker.
	(a)	Calculate the record size R .
	(b)	Calculate the blocking factor and the number of file blocks b assuming an unspanned organization.
	(c)	Suppose the file is ordered by the key field SSN and we want to construct a primary index on SSN. Calculate the index blocking factor bfr_i (which is also the index fan-out, fo). Find the number of first-level index entries and the number of first-level index blocks. How many levels are needed if we want a multi-level index? What is the total number of blocks required for a multi-level index? How many block accesses are needed to search for a record given its SSN value, using the multilevel index?
	(d)	Suppose the file is not ordered, and we want to construct a secondary index on SSN. How many block accesses are needed using multilevel indexing to retrieve a specific record?
	(e)	Suppose that the file is not ordered by the key field SSN and we want to construct a B^+ -tree index on SSN. Calculate the orders p and p_{leaf} of the B^+ -tree.

6. Consider the following two queries based on the COMPANY database:

SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME FROM EMPLOYEE E, EMPLOYEE S WHERE E.SUPERSSN = S.SSN;

SELECT FNAME, LNAME, SALARY FROM EMPLOYEE, WORKS_ON, PROJECT WHERE SSN=ESSN AND PNO=PNUMBER and PNAME='ProductX'; Draw the initial (canonical) query tree and also one other query tree for each SELECT statement.