

GPU Teaching Kit

Accelerated Computing

Module 8 – Parallel Computation Patterns (Stencil)

Lecture 8.1 - Convolution

Objective

- To learn convolution, an important method
 - Widely used in audio, image and video processing
 - Foundational to stencil computation used in many science and engineering applications
 - Basic 1D and 2D convolution kernels

Convolution as a Filter

- Often performed as a filter that transforms signal or pixel values into more desirable values.
 - Some filters smooth out the signal values so that one can see the big-picture trend
 - Others like Gaussian filters can be used to sharpen boundaries and edges of objects in images..

Convolution – a computational definition

- An array operation where each output data element is a weighted sum of a collection of neighboring input elements
- The weights used in the weighted sum calculation are defined by an input mask array, commonly referred to as the convolution kernel
 - We will refer to these mask arrays as convolution masks to avoid confusion.
 - The value pattern of the mask array elements defines the type of filtering done
 - Our image blur example in Module 3 is a special case where all mask elements are of the same value and hard coded into the source code.

1D Convolution Example

- Commonly used for audio processing
 - Mask size is usually an odd number of elements for symmetry (5 in this example)
- The figure shows calculation of P[2]

$$P[2] = N[0]*M[0] + N[1]*M[1] + N[2]*M[2] + N[3]*M[3] + N[4]*M[4]$$

Calculation of P[3]

Convolution Boundary Condition

- Calculation of output elements near the boundaries (beginning and end) of the array need to deal with "ghost" elements
 - Different policies (0, replicates of boundary values, etc.)

A 1D Convolution Kernel with Boundary Condition Handling

This kernel forces all elements outside the valid input range to 0

```
void convolution 1D basic kernel(float *N, float *M,
      float *P, int Mask Width, int Width)
int i = blockldx.x*blockDim.x + threadIdx.x;
float Pvalue = 0;
int N start point = i - (Mask Width/2);
for (int j = 0; j < Mask Width; <math>j++) {
  if (N start point + j >= 0 && N_start_point + j < Width) {
    Pvalue += N[N start point + j]*M[j];
P[i] = Pvalue;
```


A 1D Convolution Kernel with Boundary Condition Handling

This kernel forces all elements outside the valid input range to 0

```
global void convolution 1D basic kernel(float *N, float *M,
       float *P, int Mask Width, int Width)
int i = blockIdx.x*blockDim.x + threadIdx.x:
float Pvalue = 0;
int N start point = i - (Mask Width/2);
if (i < M/id+h)
 for (int j = 0; j < Mask Width; <math>j++) {
   if (N start point + j >= 0 && N start point + j < Width) {
    Pvalue += N[N start point + j]*M[j];
 P[i] = Pvalue:
```

2D Convolution

N						
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	5	6
5	6	7	8	5	6	7
6	7	8	9	0	1	2
7	8	9	0	1	2	3

P								
1	2	3	4	5				
	3	4	5	6				
3	4	321	6	7				
4	5	J ,		8				
5	6	7	8	5				

1	2	3	2	1
2	3	4	3	2
3	4	5	4	3
2	3	4	3	2
1	2	3	2	1

1	4	9	8	5
4	9	16	15	12
4	16	25	24	21
8	15	24	21	16
5	12	21	16	5

2D Convolution - Ghost Cells

GPU Teaching Kit

Accelerated Computing

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under the Creative Commons Attribution-NonCommercial 4.0 International License.

GPU Teaching Kit

Accelerated Computing

Module 8 - Parallel Computation Patterns (Stencil)

Lecture 8.2 - Tiled Convolution

Objective

- To learn about tiled convolution algorithms
 - Some intricate aspects of tiling algorithms
 - Output tiles versus input tiles

Tiling Opportunity Convolution

- Calculation of adjacent output elements involve shared input elements
 - E.g., N[2] is used in calculation of P[0], P[1], P[2]. P[3 and P[5] assuming a 1D convolution Mask Width of width 5
- We can load all the input elements required by all threads in a block into the shared memory to reduce global memory accesses

Input Data Needs

- Assume that we want to have each block to calculate T output elements
 - T + Mask_Width -1 input elements are needed to calculate T output elements
 - T + Mask+Width -1 is usually not a multiple of T, except for small T values
 - T is usually significantly larger than Mask_Width

Definition – output tile

Each thread block calculates an output tile

Each output tile width is O_TILE_WIDTH

For each thread,

O_TILE_WIDTH is 4 in this example

5

Definition - Input Tiles

Each input tile has all values needed to calculate the corresponding output tile.

Two Design Options

- Design 1: The size of each thread block matches the size of an output tile
 - All threads participate in calculating output elements
 - blockDim.x would be 4 in our example
 - Some threads need to load more than one input element into the shared memory
- Design 2: The size of each thread block matches the size of an input tile
 - Some threads will not participate in calculating output elements
 - blockDim.x would be 8 in our example
 - Each thread loads one input element into the shared memory
- We will present Design 2 and leave Design 1 as an exercise.

Thread to Input and Output Data Mapping

For each thread, $Index_i = index_o - n$

were n is Mask Width /2 n is 2 in this example

All Threads Participate in Loading Input Tiles

```
float output = 0.0f;

if((index_i >= 0) && (index_i < Width)) {
   Ns[tx] = N[index_i];
}
else{
   Ns[tx] = 0.0f;
}</pre>
```

Some threads do not participate in calculating output

```
if (threadIdx.x < O TILE WIDTH) {
   output = 0.0f;
   for(j = 0; j < Mask Width; j++) {</pre>
       output += M[j] * Ns[j+threadIdx.x];
   P[index o] = output;
```

- index_o = blockldx.x*O TILE WIDTH + threadIdx.x
- Only Threads 0 through O TILE WIDTH-1 participate in calculation of output.

Setting Block Size

```
#define O_TILE_WIDTH 1020
#define BLOCK_WIDTH (O_TILE_WIDTH + 4)

dim3 dimBlock(BLOCK_WIDTH,1, 1);

dim3 dimGrid((Width-1)/O_TILE_WIDTH+1, 1, 1)

The Mask_Width is 5 in this example
In general, block width should be
   output tile width + (mask width-1)
```

Shared Memory Data Reuse

Element 2 is used by thread 4 (1X)

Element 3 is used by threads 4, 5 (2X)

Element 4 is used by threads 4, 5, 6 (3X)

Element 5 is used by threads 4, 5, 6, 7 (4X)

Element 6 is used by threads 4, 5, 6, 7 (4X)

Element 7 is used by threads 5, 6, 7 (3X)

Element 8 is used by threads 6, 7 (2X)

Element 9 is used by thread 7 (1X)

Ghost Cells

GPU Teaching Kit

Accelerated Computing

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under the <u>Creative Commons Attribution-NonCommercial 4.0 International License.</u>

GPU Teaching Kit

Accelerated Computing

Module 8 - Parallel Computation Patterns (Stencil)

Lecture 8.4. – Analyzing Data Reuse in Tiled Convolution

Objective

- To learn to analyze the cost and benefit of tiled parallel convolution algorithms
 - More complex reuse pattern than matrix multiplication
 - Less uniform access patterns

An 8-element Convolution Tile

For Mask_Width=5, we load 8+5-1=12 elements (12 memory loads)

Each output P element uses 5 N elements

P[8] uses N[6], N[7], N[8], N[9], N[10] P[9] uses N[7], N[8], N[9], N[10], N[11] P[10] use N[8], N[9], N[10], N[11], N[12]

P[14] uses N[12], N[13], N[14], N[15], N[16] P[15] uses N[13], N[14], N[15], N[16], N[17]

A simple way to calculate tiling benefit

- -(8+5-1)=12 elements loaded
- 8*5 global memory accesses replaced by shared memory accesses
- This gives a bandwidth reduction of 40/12=3.3

In General, for 1D TILED CONVOLUTION

- O_TILE_WIDTH+MASK_WIDTH -1 elements loaded for each input tile
- O_TILE_WIDTH*MASK_WIDTH global memory accesses replaced by shared memory accesses
- This gives a reduction factor of

```
(O_TILE_WIDTH*MASK_WIDTH)/(O_TILE_WIDTH+MASK_WIDTH-1)
```

This ignores ghost elements in edge tiles.

Another Way to Look at Reuse

N ds


```
N[6] is used by P[8] (1X)
N[7] is used by P[8], P[9] (2X)
N[8] is used by P[8], P[9], P[10] (3X)
N[9] is used by P[8], P[9], P[10], P[11] (4X)
N10 is used by P[8], P[9], P[10], P[11], P[12] (5X)
... (5X)
N[14] is used by P[12], P[13], P[14], P[15] (4X)
N[15] is used by P[13], P[14], P[15] (3X)
```

Another Way to Look at Reuse

The total number of global memory accesses (to the (8+5-1)=12 N elements) replaced by shared memory accesses is:

$$1+2+3+4+5*(8-5+1)+4+3+2+1$$

= $10+20+10$
= 40

So the reduction is:

In General, for 1D

 The total number of global memory accesses to the input tile can be calculated as

```
1 + 2+...+ MASK WIDTH-1 + MASK WIDTH*(O TILE WIDTH-
        MASK WIDTH+1) + MASK WIDTH-1 + ... + 2 + 1
= MASK_WIDTH * (MASK_WIDTH-1) + MASK_WIDTH *
        (O TILE WIDTH-MASK WIDTH+1)
= MASK WIDTH * O TILE WIDTH
```

For a total of O TILE WIDTH + MASK WIDTH -1 input tile elements

Examples of Bandwidth Reduction for 1D

The reduction ratio is:

MASK_WIDTH * (O_TILE_WIDTH)/(O_TILE_WIDTH+MASK_WIDTH-1)

O_TILE_WIDTH	16	32	64	128	256
MASK_WIDTH= 5	4.0	4.4	4.7	4.9	4.9
MASK_WIDTH = 9	6.0	7.2	8.0	8.5	8.7

GPU Teaching Kit

Accelerated Computing

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under the <u>Creative Commons Attribution-NonCommercial 4.0 International License.</u>