程序代写代做 CS编程辅字100174M

High-Performance Parallel and Distributed Systems

WeChat: cstutorcs
Open Individual Assessment

Issued: 9th March 2022, 12:00 noon

Submission due: 2012, 42:00 Hoon Project Exam Help

Feedback and marks due: 25th May 2022, 12:00 noon

Email: tutorcs@163.com

All students should submit their answers through the electronic submission system: http://www.cs.york.ac.uk/student/assessment/submit/ by 20th April 2022, 12:00 noon. An assessment that has been submitted after this dead in will be marked initially as if it had been handed in on time, but the Board of Examiners will normally apply a lateness penalty.

Your attention is drawn to the section about Academic Misconduct in your Departmental Handbook: https://www.es.york/acutk/student/handbook/

Any queries on this assessment should be addressed by email to Steven Wright at steven.wright@york.ac.uk. Answers that apply to all students will be posted on the VLE.

Rubric:

Carry out the whole task as described in the following pages. Your report must not exceed 8 sides of A4, with a minimum 11pt font, minimum 120% line spacing (what Word calls "Multiple 1.08"), and minimum 2cm margins on all sides. This does not include any covering page, table of contents, reference list or appendices. Excess pages will not be marked.

References must be listed at the end of the document and do not count towards page limits. Appendices may be used for supplementary data only.

Your exam number should be on the front cover of your assessment. You should not be otherwise identified anywhere on your submission.

程序代写代做 CS编程辅學74M

The Problem

Maxwell's equations artial differential equations (PDEs), that together with the Lorentz force law artial differential equations (PDEs), that together with the Lorentz force law artial differential equations. The equations describe how electric and make a support of the fields. The four equations are also artial differential equations (PDEs), that together with the Lorentz force law artial differential equations (PDEs), that together with the Lorentz force law artial differential equations (PDEs), that together with the Lorentz force law artial differential equations (PDEs), that together with the Lorentz force law artial differential equations (PDEs), that together with the Lorentz force law artial differential equations (PDEs), that together with the Lorentz force law artial differential equations (PDEs), that together with the Lorentz force law artial differential equations (PDEs), that together with the Lorentz force law artial differential equations (PDEs), that together with the Lorentz force law artial differential equations (PDEs), that together with the Lorentz force law artial differential equations (PDEs), that together with the Lorentz force law artial differential equations (PDEs), that together with the Lorentz force law artial differential equations (PDEs), that together with the Lorentz force law artial differential equations (PDEs), that together with the Lorentz force law articles are also articles are also articles are also are also articles are also are

In these equations, \vec{E} is the electric field, \vec{B} is the magnetic field, \vec{e} and $\vec{\mu}$ are the permittivity and permeability of free space, ρ is the charge density and \vec{J} is the current density. **Luckily, it is not necessary that you understand these equations for this assessment.** This assessment will focus on a method of solving these equations for this assessment. This assessment will focus on a method of solving these equations for this assessment of the proposed by Kane Yee in 1966 [1].

Figure 1: A two-dimensional Yee grid

Yee's approach to solving Maxwell's equations relies first on using central-difference approximations to the space and time partial derivatives, and then on using leapfrog integration to solve these equations. First, the space is discretised (in our case, in two-dimensions) into a grid of cells (a so-called "Yee grid"), as seen in Figure 1, where the electric fields are calculated on the edges of each grid square, and the magnetic fields are calculated in the middle of each grid square¹. Then, Faraday's law and Ampère's law are rewritten into the following system of scalar

¹You may notice that the electric field (*E*) has an *x* and a *y* component, while the magnetic field (*B*) has only a *z* component. This is because an electric field flowing in the *x* and *y* direction will create a magnetic field in the *z* direction (as per the "right-hand rule").

程序代写代做 CS编程辅学00174M equations (with current density (\vec{J}) omitted for simplicity):

$$\frac{\mathbf{r}}{\partial y} = \frac{\partial \vec{E}_x}{\partial y} - \frac{\partial \vec{E}_y}{\partial x}$$

$$\frac{\mathbf{r}}{\partial z} = \frac{\partial B_z}{\partial y} \times \frac{1}{\mu \times \epsilon}$$

$$\frac{\mathbf{r}}{\partial z} = -\frac{\partial \vec{B}_z}{\partial x} \times \frac{1}{\mu \times \epsilon}$$

These equations can then be written into a series of finite difference equations that can be solved computationally using a leapfrog method. In the leapfrog method, we update the magnetic field on a half time step, entitle incare the electric flet on each time step, the magnetic field and the electric field updates "leap frog" each other).

$$\frac{B_{z}^{n+\frac{1}{2}}(i+\frac{1}{2},j+\frac{1}{2})-E_{x}^{n}E_{y}^{n-\frac{1}{2}}(i+\frac{1}{2},j+\frac{1}{2})}{\sum_{\Delta t}^{n}E_{y}^{n$$

This approach to solving Maxwell's equations is formalised in the maxwell C application that can be downbaded from the VLEL the application implements the above equations on a rectilinear grid, and provides functionality to start the application for various simple problems.

Download the source code and build the application using:

\$ make

You can then run the application with:

\$./maxwell

At the end of execution, a VTK file will be written that can be loaded into a visualisation application such as Vislt (https://visit-dav.github.io/visit-website/). The output file will contain information about the geometry of the problem, and the values of the electric and magnetic fields at the grid points (i.e. the intersections of the grid). The final simulation state will be based upon the default configuration options, but you can customise the parameters by changing the runtime arguments passed to the application.

\$./maxwell --help

程序代写代做 CS编程辅呼对M

The maxwell application consists of 5 C files and 4 associated header files.

args.c contains the command line options, and can override some simulation parts.

data.c contains have hared storage and simulation parameters that are used in the all the ctions to allocate addressable, contiguous 2D and 3D arrays.

setup.c has fun **Lad "5" - Late La** nulation based on the input problem that is chosen, and assigns and allocates the required variables and storage.

vtk.c handles the file-input and output for the application.

maxwell.c contains the main method, and the methods required to progress the simulation.

Assignment Project Exam Help

References

[1] Kane Yee, "Numerical Scittle of https:// Profilm: J.Cov. fj. Naxwell's Equations in Isotropic Media" in: IEEE Transactions on Antennas and Propagation; 1966

QQ: 749389476

Assignment

The maxwell application postronty as the striples in Gedin plementation of the Yee method described above. Your task is to produce three parallelisations of the maxwell application and write a report detailing the parallelisation process, the scaling performance of your three parallelisations, and a comparative study of these parallelisations.

You are expected to produce parallelisations using the following three programming models:

- OpenMP
- The Message Passing Interface (MPI)
- CUDA

Your parallelisations should produce the same result (within some small tolerance due to floating point arithmetic) as the original single-threaded application for equivalent starting parameters. You are expected to fully evaluate your applications using the HPC hardware that is available within the University (e.g. CUDA-capable workstations within the Department, the Viking cluster, etc.), and that is appropriate for each particular programming model.

程序代写代做 CS编程辅字 10174M

Submission

Your submission at will contain your three application "ports" and a report that documents:

- Validation process used to verify the correctness of your applications.
- Experimental Setup [15 marks]

 A summar of the systems used for performance evaluation and an account of the process of collecting results.
- Performance Evaluation [20 marks]

 Appropriate lata demonstrating the performance and scaling behaviour myour let p applications.
- Comparative Analysis [20 marks]
 A comparative analysis of youth temperature 163.com

Your report must not exceed 8 sides of A4, with a minimum 11pt font, minimum 120% line spacing (what Word calls "Multiple 1.08"), and minimum 2cm margins on all sides. This does not include any covering page tuble of contents, reference his dappendices. Excess pages will not be marked.

References must be listed at the end of the document and do not count towards page limits. Appendices may be used for supplemental data only O11

End of examination paper