▼ BPL_TEST2_Fedbatch script with PyFMI

The key library PyFMI is installed.

After the installation a small application BPL_TEST2_Fedbatch is loaded and run. You can continue with this example if you like.

```
!lsb release -a # Actual VM Ubuntu version used by Google
     No LSB modules are available.
     Distributor ID: Ubuntu
     Description: Ubuntu 22.04.2 LTS
                       22.04
     Release:
     Codename:
                       jammy
%env PYTHONPATH=
     env: PYTHONPATH=
!wget https://repo.anaconda.com/miniconda/Miniconda3-py310_23.1.0-1-Linux-x86_64.sh
!chmod +x Miniconda3-py310_23.1.0-1-Linux-x86_64.sh
!bash ./Miniconda3-py310 23.1.0-1-Linux-x86 64.sh -b -f -p /usr/local
import sys
sys.path.append('/usr/local/lib/python3.10/site-packages/')
     --2023-09-26 05:59:41-- <a href="https://repo.anaconda.com/miniconda/Miniconda3-py310_23.1.0-1-Linux-x86_64.sh">https://repo.anaconda.com/miniconda/Miniconda3-py310_23.1.0-1-Linux-x86_64.sh</a> Resolving repo.anaconda.com (repo.anaconda.com)... 104.16.130.3, 104.16.131.3, 2606:4700::6810:8203, ...
     Connecting to repo.anaconda.com (repo.anaconda.com) | 104.16.130.3 | :443... connected.
     HTTP request sent, awaiting response... 200 OK
     Length: 74403966 (71M) [application/x-sh]
     Saving to: 'Miniconda3-py310_23.1.0-1-Linux-x86_64.sh'
     Miniconda3-py310_23 100%[=============] 70.96M 29.3MB/s
     2023-09-26 05:59:45 (29.3 MB/s) - 'Miniconda3-py310_23.1.0-1-Linux-x86_64.sh' saved [74403966/74403966]
     PREFIX=/usr/local
     Unpacking payload ...
     Installing base environment...
     Downloading and Extracting Packages
     Downloading and Extracting Packages
     Preparing transaction: done
     Executing transaction: done
     installation finished.
!conda update -n base -c defaults conda --yes
```

```
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
```

!conda --version
!python --version

conda 23.7.4 Python 3.10.13

!conda install -c conda-forge pyfmi --yes # Install the key package

```
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
```

→ BPL_TEST2_Fedbatch setup

This notebook just produce the Figure 2 in the paper "Design ideas behind Bioprocess Library for Modelica", by J P Axelsson, to be presented at the 15th International Modelica Conference in Aachen, Germany, October 9-11, 2023.

Now specific installation and the run simulations. Start with connecting to Github. Then upload the two files:

- FMU BPL_TEST2_Fedbatch_linux_om_me.fmu
- Setup-file BPL_TEST2_Fedbatch_explore.me.py

```
git clone https://github.com/janpeter19/CONF 2023 10 MODELICA15
    Cloning into 'CONF_2023_10_MODELICA15'...
%cd CONF_2023_10_MODELICA15
    /content/CONF_2023_10_MODELICA15
run -i BPL TEST2 Fedbatch explore.py
    Linux - run FMU pre-comiled OpenModelica 1.21.0
    Model for bioreactor has been setup. Key commands:
     - par()
                   - change of parameters and initial values
     - init()
                   - change initial values only
     - simu()
                   - simulate and plot
     - newplot()
                  - make a new plot
                   - show plot from previous simulation
     - show()
                   - display parameters and initial values from the last simulation
     - disp()
     - describe() - describe culture, broth, parameters, variables with values/units
    Note that both disp() and describe() takes values from the last simulation
    and the command process_diagram() brings up the main configuration
    Brief information about a command by help(), eg help(simu)
    Key system information is listed with the command system_info()
%matplotlib inline
plt.rcParams['figure.figsize'] = [25/2.54, 20/2.54]
import warnings
warnings.filterwarnings("ignore")
process_diagram()
                                                                               bioreactor
                                               feedtank
            dosagescheme
```

```
dosagescheme
```

describe('culture'); print(); #describe('liquidphase')

Pump schedule parameter

Simplified text book model - only substrate S and cell concentration X

```
# Simulation of the process
newplot(plotType='TimeSeries')
ax2.set_ylim([0, 0.45])
init(V_0=1000, VX_0=1*1e3, VS_0=10*1e3)
par(feedtank_S_in=600, Ks=0.1, Y=0.40)
par(t_start=4, F_start=4.0, mu_feed=0.2, F_max=35)
simu(20)
```



```
disp('culture')
    Y : 0.4
    qSmax : 1.0
    Ks : 0.1
describe('mu')
    Cell specific growth rate variable : 0.098 [ 1/h ]
describe('parts')
    ['bioreactor', 'bioreactor.culture', 'dosagescheme', 'feedtank']
describe('MSL')
    MSL: 3.2.3 - used components: RealInput, RealOutput
system_info()
8
    System information
     -OS: Linux
     -Python: 3.10.12
     -Scipy: not installed in the notebook
     -PyFMI: 2.11.0
     -FMU by: OpenModelica Compiler OpenModelica 1.21.0
     -FMI: 2.0
     -Type: FMUModelME2
     -Name: BPL_TEST2.Fedbatch
     -Generated: 2023-04-20T12:24:29Z
     -Description: Bioprocess Library version 2.1.1
     -Interaction: FMU-explore version 0.9.8
```