



#### Bài giảng Tin học chuyên ngành

2

# TÀI LIỆU THAM KHẢO

- 1. Bài giảng tin học chuyên ngành Giảng viên: Hoàng Xuân Dương
- Matlab & Simulink dành cho kỹ sư điều khiển tự động Nguyễn Phùng Quang
- 3. An Introduction to Matlab *University of DUNDEE*
- 4. Electronics and circuit analysis using Matlab *John O.Attia*
- 5. Matrix analysis of circuits using Matlab James G.Gottling
- 6. Matlab tools for Control system analysis and design *Duane C.Hanelman, Benjamin C.Kuo*





3

### 1. MATLAB LÀ GÌ?

- Matlab (Matrix Laboratory) là một công cụ phần mềm của The Mathworks Ins, ban đầu phục vụ chủ yếu việc mô tả kỹ thuật bằng toán học với các phần tử cơ bản là ma trận
- Các dữ liệu rời rạc (discret) (trong các lĩnh vực điện, điện tử, vật lý hạt nhân, điều khiển tự động..., ngành toán như thống kê, kế toán,..., gien sinh học, khí hậu, thời tiết...) có thể lưu dưới dạng ma trận
- Dữ liệu liên tục như âm thanh, hình ảnh, dòng điện, điện áp, tần số, áp suất,... chuyển đổi thành các tín hiệu số → được xử lý bằng các hàm toán học của Matlab

Giảng viên: Hoàng Xuân Dương





#### Bài giảng Tin học chuyên ngành

4

# 

- Matlab cung cấp một công cụ tính toán và lập trình bậc cao dễ sử dụng, hiệu quả và thân thiện. Simulink giúp người dùng dễ dàng thực hiện các bài toán mô hình hóa, mô phỏng trên máy tính
- Matlab có tính mở, các hàm và các toolbox không ngừng được bổ sung theo sự phát triển của khoa học bởi chính The Mathworks Ins và cả người sử dụng trên toàn thế giới
- Có công cụ trợ giúp phong phú trực tuyến, trên mạng hay các tài liệu dạng pdf





5

# 3. SứC MẠNH CỦA MATLAB?

- Môi trường phát triển: gồm các công cụ và tiện nghi giúp viết chương trình, sử dụng các hàm Matlab và các file
- Thư viện các hàm toán học của Matlab: Các hàm sơ cấp: tổng, sin, tính số phức... các hàm phức tạp: Bessel, nghịch đảo ma trận, tính trị riêng, biến đổi Fourier nhanh, wavelet...
- Ngôn ngữ Matlab: Các lệnh cao cấp xử lý ma trận, lệnh rẽ nhánh, vòng lặp, xuất nhập, cấu trúc dữ liệu, lập trình hướng đối tương...
- ✓ Xử lý đồ họa: Hiển thị dữ liệu dạng đồ họa 2D, 3D, hoat hình, xử lý ảnh và cả GUI

Giảng viên: Hoàng Xuân Dương



#### Bài giảng Tin học chuyên ngành

6

# 3. SứC MẠNH CỦA MATLAB (tt)

- Thư viện API của Matlab: Cho phép liên kết các chương trình C và Fortran... Các ngôn ngữ khác có thể gọi các hàm dll được tạo bởi Matlab.
- Các hộp công cụ (Toolbox): Tập hợp các hàm Matlab được viết sẵn để giải quyết các vấn đề thuộc các chuyên ngành khác nhau. Các toolbox khiến cho Matlab có thể ứng dụng vào nhiều lĩnh vực khác nhau: Điện tử, Điều khiển tự động, Kỹ thuật điện, Viễn thông, Cơ khí, Động lực...



# Bài giảng Tin học chuyên ngành

7

# 4. AI CÓ THỂ HỌC VÀ SỬ DỤNG MATLAB?

- Các nhà chuyên môn, cán bộ nghiên cứu giảng dạy
- Các sinh viên theo học các trường Đại học và trung học chuyên nghiệp...
- Các kỹ sư, cán bộ kỹ thuật

.....

Giảng viên: Hoàng Xuân Dương



# Bài giảng Tin học chuyên ngành

8

**CHƯƠNG 1: CÁC KHÁI NIÊM CƠ BẢN** 

**CHƯƠNG 2: MA TRÂN VÀ CÁC PHÉP TOÁN MA TRÂN** 

**CHƯƠNG 3: LẬP TRÌNH TRONG MATLAB** 

**CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HOC** 

**CHƯƠNG 5: ĐỐ HỌA MATLAB** 

**CHƯƠNG 6: SIMULINK VÀ ỨNG DUNG** 

**CHƯƠNG 7: GUI VÀ ỨNG DUNG** 











12

# I. HOẠT ĐỘNG CỦA MATLAB:

Cửa sổ lệnh (Command window):

Với dấu nhắc >> dùng để chạy các lệnh, viết chương trình, chạy chương trình.

- Cửa sổ Lịch sử lệnh (Command history)
  - Liệt kê tất cả các lệnh đã sử dụng trước đó kèm theo thời gian làm việc
- Cửa sổ thư mục hiện tại (Current Directory)
  - Cho biết thư mục hiện tại đang làm việc. Mặc định khi cài đặt là MATLAB701\work (version 7.01)
- Cửa sổ không gian làm việc (workspace)
   Cho biết các biến được sử dụng trong chương trình







CHƯƠNG 1: CÁC KHÁI NIỆM CƠ BẢN

15

## II. BIẾN VÀ CÁC THAO TÁC CỦA CÁC BIẾN

#### 1. Biến trong Matlab:

- Tên biến có thể dài 31 ký tự, bắt đầu là chữ
- Matlab phân biệt chữ thường và chữ hoa
- Sử dụng dấu = để định nghĩa biến
- Tên biến có thể trùng với tên hàm có sẵn, khi đó hàm không còn sử dụng được cho đến khi biến được xóa

Ví du:

>> x=1

x=1

>> ten\_truong='Dai hoc DL Cong Nghe Sai Gon' ten\_truong = Dai hoc DL Cong Nghe Sai Gon





# CHƯƠNG 1: CÁC KHÁI NIỆM CƠ BẢN

16

# II. BIẾN VÀ CÁC THAO TÁC CỦA CÁC BIẾN

# 1. Biến trong Matlab (tt)

Một số hàm liên quan đến biến:

| Lệnh                | Ý nghĩa                                                           |
|---------------------|-------------------------------------------------------------------|
| clear               | xóa tất cả các biến                                               |
| who                 | hiển thị danh sách các biến trong worksapce                       |
| whos                | hiển thị các biến cùng kích thước của chúng, có<br>phải số phức ? |
| clear name1, name2, | xóa biến có tên được khai báo                                     |
| exist ('item')      | Kiểm tra sự tồn tại của đối tượng 'item'                          |
| save                | Lưu các biến trong workspace ra file                              |
| load                | Tải các biến vào trong workspace từ file                          |



# CHƯƠNG 1: CÁC KHÁI NIỆM CƠ BẢN

17

# II. BIẾN VÀ CÁC THAO TÁC CỦA CÁC BIẾN

# 2. Độ lớn của biến:

Xác định độ lớn hay chiều dài của biến vector cũng như ma trận thông qua một số hàm:

| Hàm           | Ý nghĩa                                                           |
|---------------|-------------------------------------------------------------------|
| size(A)       | Trả về 1 vector chứa kích thước A,<br>gồm số hàng và số cột của A |
| [m n]=size(A) | giá trị trả về chứa trong m và n                                  |
| size(A,p)     | p=1 → trả về số hàng                                              |
|               | p=2 → trả về số cột                                               |
| length(A)     | Trả về chiều dài của A, giá trị lớn<br>nhất của hàng và cột       |



# CHƯƠNG 1: CÁC KHÁI NIỆM CƠ BẢN

18

# II. BIẾN VÀ CÁC THAO TÁC CỦA CÁC BIẾN

# 2. Độ lớn của biến (tt)

Ví dụ:

$$A = 1 2 3$$

m = 2

n = 3

>> length(A)

ans = 3

>> size(A,1)

ans = 2



19

## II. BIẾN VÀ CÁC THAO TÁC CỦA CÁC BIẾN

# 3. Một số biến được định nghĩa trước:

Một số biến được Matlab sử dụng để chỉ các hằng số hay ký hiệu, nên tránh dùng chúng:

#### >> 1/0

Warning: Divide by zero.

(Type "warning off MATLAB:divideByZero" to suppress this warning.)

ans = Inf

#### >> 0/0

Warning: Divide by zero.

(Type "warning off MATLAB:divideByZero" to suppress this warning.)

ans = NaN

#### >> eps

ans = 2.2204e-016



# CHƯƠNG 1: CÁC KHÁI NIỆM CƠ BẢN

20

# II. BIẾN VÀ CÁC THAO TÁC CỦA CÁC BIẾN

# 3. Một số biến được định nghĩa trước (tt)

| Ký hiệu | Ý nghĩa                                                 |
|---------|---------------------------------------------------------|
| =       | Gán giá trị cho biến                                    |
| +-*/^   | Các phép tính                                           |
| ;       | Nhập giá trị, dấu cách khi nhập nhiều trị trên một dòng |
| ,       | Dấu cách khi xuất nhiều giá trị trên một dòng           |
| ans     | Đáp số mới nhất                                         |
| eps     | Cấp chính xác tương đối khi dùng dấu phẩy động          |
| pi      | số π = 3,14159265                                       |
| ij      | Toán tử ảo                                              |
| inf     | vô cùng                                                 |
| NaN     | không phải số (0/0 hay inf/inf)                         |

# CHƯƠNG 1: CÁC KHÁI NIỆM CƠ BẢN 21 II. BIẾN VÀ CÁC THAO TÁC CỦA CÁC BIẾN 4. Số phức: Các hàm đặc biệt của số phức: phần thực của x real(x) phần ảo của x imag(x)liên hợp phức của x conj(x) abs(x) độ lớn, trị tuyệt đối của x góc pha của số phức angle(x) tạo số phức từ phần thực và ảo complex(a,b)



#### CHƯƠNG 1: CÁC KHÁI NIỆM CƠ BẢN 23 II. BIẾN VÀ CÁC THAO TÁC CỦA CÁC BIẾN 5. Một số hàm toán: Hàm Ý nghĩa Căn bâc 2 sqrt(x) exp(x)Hàm mũ cơ số e Giá trị tuyệt đối abs(x)Hàm dấu (=1 nếu x>0; = -1 nếu x<0; = 0 nếu x=0) sign(x) Số dư phép chia x/y rem(x,y) Tổng các phần tử vector sum(v) Tích các phần tử vector prod(v) Phần tử vector bé nhất min(v) Phần tử vector lớn nhất max(v) Giá trị trung bình cộng mean(v)

```
CHƯƠNG 1: CÁC KHÁI NIỆM CƠ BẢN
                                                                 24
   Ví dụ 1:
   >> x=4;
   >> sqrt(x)
   ans = 2
   >> \exp(x)
   ans = 54.5982
   >> sign(x)
   ans = 1
   >> rem(x,3)
   ans = 1
   >> v=[1 2 3];
   >> min_v=min(v)
   min_v = 1
   >> mean(v)
   ans = 2
   >> sum(v)
   ans = 6
```

# CHƯƠNG 1: CÁC KHÁI NIỆM CƠ BẢN Ví dụ 2: Tìm nghiệm của phương trình x²-3x+2=0 Trong command window:

```
>> a=1; b=-3; c=2;

>> x1=(-b+sqrt(b^2-4*a*c))/(2*a)

x1 =

2

>> x2=(-b-sqrt(b^2-4*a*c))/(2*a)

x2 =

1
```



25

# CHƯƠNG 1: CÁC KHÁI NIỆM CƠ BẢN

26

# III. SƠ LƯỢC VỀ ĐỒ HỌA TRONG MATLAB:

Các lệnh thông dụng trong đồ họa Matlab:

vẽ đồ thị theo tọa độ x-y plot(x,y) vẽ đồ thị theo tọa độ x-y-z plot(x,y,z) đưa các title vào trong hình vẽ title đưa các nhãn theo chiều x của đồ thi xlabel đưa các nhãn theo chiều y của đồ thi ylabel đưa các nhãn theo chiều z của đồ thi zlabel vẽ lưới trên đồ thi grid vẽ đồ thị theo y, bỏ qua chỉ số theo x plot(y) plot(x,y,'S') S dùng để qui định màu, nét vẽ...



| ו צ | ƯỢC VỀ ĐỒ HỌA   | TRO | NG MATI AR:            |
|-----|-----------------|-----|------------------------|
|     |                 |     | NO I IAI LADI          |
|     | Các loại màu vẽ |     | Các loại Marker (điểm) |
| У   | yellow          |     | điểm                   |
| m   | magenta         | 0   | chữ o                  |
| С   | cyan            | X   | dấu x                  |
| r   | red             | +   | dấu +                  |
| g   | green           | #   | dấu #                  |
| b   | blue            |     | Các loại nét vẽ        |
| W   | white           | -   | dấu -                  |
| k   | black           | :   | dấu :                  |
|     |                 |     | dấu                    |
|     |                 |     | dấu                    |













33

- I. MA TRÂN
- II. CÁC MA TRÂN ĐẶC BIỆT
- III. CÁC PHÉP TOÁN TRÊN MẢNG
- IV. CÁC PHÉP TOÁN MA TRÂN
- V. GIẢI HỆ PHƯƠNG TRÌNH ĐỘC LẬP TUYẾN TÍNH
- VI. <u>BÀI TẬP</u>



# 4

### CHƯƠNG 2: MA TRẬN VÀ CÁC PHÉP TOÁN MA TRẬN

34

- I. MA TRẬN:
  - 1. Vector-Đại lượng vô hướng-Ma trận:
  - Ma trận là đối tượng chủ yếu của Matlab
  - Các phần tử của ma trân được xếp theo hàng và côt
  - Đại lượng vô hướng (giá trị đơn) là ma trận có 1 hàng và một cột
  - Ma trận chỉ có 1 hàng hoặc một cột được gọi là vector
  - Để truy cập một phần tử của ma trận, sử dụng chỉ số hàng và cột



35

#### MA TRÂN: I.

# 2. Một số qui ước về ma trận:

- Tên ma trân phải bắt đầu bằng chữ cái
- Bên phải dấu bằng là các giá trị ma trận được viết theo thứ tự hàng trong dấu ngoặc vuông
- Dấu chấm phẩy (;) phân cách hàng. Các giá trị trong hàng được phân cách bằng dấu phẩy (,) hoặc khoảng trắng. Dấu thập phân là dấu chấm (.). Kết thúc ma trận là dấu (;)



# CHƯƠNG 2: MA TRẬN VÀ CÁC PHÉP TOÁN MA TRẬN

36

# I. MA TRẬN:

Ví du:

ans = 6

```
>> a=[1 2 3; 4 5 6; 7 8 9] % ma trân 3 hàng 3 cột
        2
a = 1
        5
            6
    7
        8
>> b=[1 2 3 4]
        2
b = 1
>> c=[1;2]
c = 1
    2
>> d=[1]
d = 1
>> a(2,3)
```

% vector hàng

% vector côt

% giá tri đơn

% phần tử ở hàng 2 cột 3



37

- I. MA TRẬN:
  - 3. Khai báo vector và ma trận:

| Khai báo                    | Ý nghĩa                              |
|-----------------------------|--------------------------------------|
| [x1 x2; x3 x4]              | Nhập giá trị cho vector và ma trận   |
| start:increment:destination | Toán tử (:)                          |
| linspace(start,dest,number) | Khai báo tuyến tính cho vector       |
| logspace(start,dest,number) | Khai báo logarithm cho vector        |
| rand(line,column)           | Ma trận nhận giá trị ngẫu nhiên 0->1 |
| randn(line,column)          | Ma trận nhận giá trị ngẫu nhiên      |



# CHƯƠNG 2: MA TRẬN VÀ CÁC PHÉP TOÁN MA TRẬN

38

- I. MA TRẬN:
  - 3. Khai báo vector và ma trận (tt)
    - > Kiểu liệt kê trực tiếp:

Các phần tử được liệt kê trong dấu ngoặc vuông:

```
>> A=[3,5];

>> B=[1.7,3.2];

>> C=[-1 0 0; -1 1 0; 1 -1 0; 0 0 2]; Hoặc:

>> C = [-1 0 0

-1 1 0

1 -1 0

0 0 2];
```



# CHƯƠNG 2: MA TRẬN VÀ CÁC PHÉP TOÁN MA TRẬN I. MA TRẬN: 3. Khai báo vector và ma trận (tt) ➢ Kiểu liệt kê trực tiếp (tt) >> F = [1, 52, 45, 84, 94, 5, 65, 42, 85,... 23, 52, 65, 21, 74]; Định nghĩa ma trận từ ma trận khác: >> B=[1 2 4]; >> S=[3 B]; % S=[3 1 2 4] Mở rộng ma trận: >> S(5)=9; >> S(8)=3; % S(6), S(7) nhận giá trị 0



# CHƯƠNG 2: MA TRẬN VÀ CÁC PHÉP TOÁN MA TRẬN I. MA TRẬN: 3. Khai báo vector và ma trận (tt) Từ một file dữ liệu: Một file văn bản matran.dat có nội dung: 2 5 9 1 4 6 8 3 2 4 5 1 >> load c:\matran.dat >> matran matran= 2 5 9 1 4 6 8 3 2 4 5 1







# CHƯƠNG 2: MA TRẬN VÀ CÁC PHÉP TOÁN MA TRẬN I. MA TRẬN: 3. Khai báo vector và ma trận: Trực tiếp từ bàn phím: >> z=input('Nhap gia tri cho z:'); Nếu không có dữ liệu, z là ma trận rỗng



47

# I. MA TRẬN:

# 4. Hiển thị ma trận (tt)

disp → Xuất chuỗi ký tự ra màn hình

fprintf → cho phép xuất ra theo định dạng. Với cú pháp:

>> fprintf(định dạng, ma trận);

| Kiểu loại  | Dạng in ra                       | Ký tự      | Ý nghĩa         |
|------------|----------------------------------|------------|-----------------|
| %C         | Kiểu ký tự                       | \n         | Xuống dòng      |
| % <b>S</b> | Kiểu chuỗi                       | \t         | tab             |
| %d         | Kiểu số nguyên thập phân         | \b         | Backspace       |
| %f         | Kiểu số dấu chấm tĩnh            | \r         | Carriage return |
| %e         | Kiểu số dấu chấm động            | \f         | From feed       |
| %X         | Kiểu số Hex                      | <b>%</b> % | %               |
| %bx        | Kiểu chấm tĩnh trong Hex 64 bits | " or \"    | 1               |



# CHƯƠNG 2: MA TRẬN VÀ CÁC PHÉP TOÁN MA TRẬN 49 MA TRẬN: 4. Hiển thị ma trận (tt) Ví du 2: >> temp=78; >> st='do F'; >> fprintf('Nhiet do la %4.1f %s\n',temp,st) Nhiet do la 78.0 do F >> fprintf('Nhiet do la %4.1f\b %s\n',temp,st) Nhiet do la 78, do F >> fprintf('Nhiet do la %4.1f\t %s\n',temp,st) Nhiet do la 78.0 do F >> fprintf('It"s Friday.\n') It's Friday.



Matlab có một số hàm để tạo ma trận đặc biệt

- 1. Ma trận ma phương (magic(n))
- Ma phương bậc n là ma trận vuông cấp n
- Bao gồm các số nguyên từ 1 đến n²
- Các phần tử sắp xếp sao cho tổng các phần tử trên một hàng, một cột, đường chéo là bằng nhau

#### Ví dụ:

```
>> magic(4)
ans=

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
```



50

# СН

# CHƯƠNG 2: MA TRẬN VÀ CÁC PHÉP TOÁN MA TRẬN

51

# II. CÁC MA TRẬN ĐẶC BIỆT:

- 2. Ma trận zero:
- Hàm zeros(m,n) là ma trận có kích thước m x n chứa toàn số 0
- Nếu tham số chỉ có một → ma trận vuông

# Ví dụ:

```
>> zeros(3,4)
ans=
0 0 0 0 0
0 0 0 0
0 0 0 0
```



# CHƯƠNG 2: MA TRẬN VÀ CÁC PHÉP TOÁN MA TRẬN

52

# II. CÁC MA TRẬN ĐẶC BIỆT:

- 3. Ma trận ones:
- Hàm ones(m, n) là ma trận có kích thước m x n chứa toàn số 1
- Nếu tham số chỉ có một → ma trận vuông

#### Ví du:

```
>> ones(3,4)
ans=
    1 1 1 1
    1 1 1 1
    1 1 1 1
```



# CHƯƠNG 2: MA TRẬN VÀ CÁC PHÉP TOÁN MA TRẬN II. CÁC MA TRẬN ĐẶC BIỆT:

- Ma trận đường chéo đặc biệt (Identity Matrix):
- Ma trận có các phần tử trên đường chéo bằng 1
- Các phần tử còn lai bằng 0

Ví dụ:

```
>> eye(4)
ans=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
```



54

53

# CHƯƠNG 2: MA TRẬN VÀ CÁC PHÉP TOÁN MA TRẬN

- II. CÁC MA TRẬN ĐẶC BIỆT:
  - 5. Ma trận đường chéo mở rộng eye(m,n):
  - Ma trận kích thước mxn có các phần tử chỉ số hàng = chỉ số cột thì bằng 1
  - Các phần tử còn lại bằng 0

Ví du:

```
>> eye(4,5)
ans=

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
```







# CHƯƠNG 2: MA TRẬN VÀ CÁC PHÉP TOÁN MA TRẬN III. CÁC PHÉP TOÁN TRÊN MẢNG:

# 1. Tính toán với mảng:

| Ký hiệu | Ý nghĩa                   | Biểu thức          |
|---------|---------------------------|--------------------|
| a + b   | Cộng từng phần tử mảng    | [a1+b1 a2+b2an+bn] |
| a - b   | Trừ từng phần tử mảng     | [a1-b1 a2-b2an-bn] |
| a .* b  | Nhân từng phần tử mảng    | [a1*b1 a2*b2an*bn] |
| a ./ b  | Chia từng phần tử a cho b | [a1/b1 a2/b2an/bn] |
| a .\ b  | Chia từng phần tử b cho a | [b1/a1 b2/a2bn/an] |
| a .^ b  | Lũy thừa từng phần tử     | [a1^b1 a2^b2an^bn] |

Lưu ý: số phần tử 2 mảng a và b phải bằng nhau



**57** 

```
CHƯƠNG 2: MA TRẬN VÀ CÁC PHÉP TOÁN MA TRẬN
                                                            58
III. CÁC PHÉP TOÁN TRÊN MẢNG:
   Ví du:
   >> A=[4 8 15]; B=[2 2 3];
   >> A + B
   ans = 6 	 10 	 18
   >> A - B
   ans = 2 6 12
   >> A .* B
   ans = 8 	 16 	 45
   >> A ./ B
   ans = 2 4
                5
   >> A .\ B
   ans = 0.5000 0.2500 0.2000
   >> A .^ B
   ans = 16
                64
                       3375
```

# CHƯƠNG 2: MA TRẬN VÀ CÁC PHÉP TOÁN MA TRẬN III. CÁC PHÉP TOÁN TRÊN MẢNG: 2. Thứ tự ưu tiên của các toán tử:

| Ưu tiên | Toán tử                      |
|---------|------------------------------|
| 1       | Ngoặc đơn                    |
| 2       | Lũy thừa                     |
| 3       | Nhân & chia từ trái qua phải |
| 4       | Cộng & trừ từ trái qua phải  |

. . .



Một số hàm xử lý ma trận cơ bản:

| Hàm          | Ý nghĩa                                 |
|--------------|-----------------------------------------|
| matrix.'     | Chuyển vị ma trận                       |
| matrix'      | Chuyển vị ma trận có phần phức liên hợp |
| inv(matrix)  | Đảo ma trận                             |
| det(matrix)  | Tính định thức ma trận                  |
| eig(matrix)  | Tính các giá trị riêng của ma trận      |
| rank(matrix) | Xác định hạng của ma trận               |



60

59

61

# IV. CÁC PHÉP TOÁN MA TRẬN:

- 1. Ma trận chuyển vị:
- Ma trận chuyển vị của A ký hiệu là A<sup>T</sup>
- Các phần tử hàng của A trở thành phần tử cột của A<sup>T</sup>

### Ví dụ:

```
>> A=[1 2 3; 4 5 6]
A =

1 2 3
4 5 6
>> A'
ans =

1 4
2 5
3 6
```



# CHƯƠNG 2: MA TRẬN VÀ CÁC PHÉP TOÁN MA TRẬN

62

# IV. CÁC PHÉP TOÁN MA TRẬN:

- 2. Nhân ma trận:
- C=A.\*B nhân vô hướng
- C=A\*B nhân ma trận với:  $C_{ij} = \sum A_{ik}B_{kj}$ Số cột của ma trận A phải bằng số hàng của ma trận B

# Ví dụ:

```
>> A=[1 2 3; 4 5 6]; B=[3 4 5; 6 7 8];

>> C=A.*B

C= 3 8 15

24 35 48

>> B = B';

>> C = A*B

C= 26 44

62 107
```



63

# IV. CÁC PHÉP TOÁN MA TRẬN:

- 3. Phép quay:
- Cú pháp: rot90(matrix) hay rot90(matrix,num);
- Các phần tử của A được quay 90° theo ngược chiều kim đồng hồ
- Dùng tham số num để xác định số lần quay

#### Ví du:

```
>> A = [1 2 3; 4 5 6; 7 8 9];

>> B = rot90(A)

B= 3 6 9

2 5 8

1 4 7

>> C = rot90(A,2)

C= ...
```



# CHƯƠNG 2: MA TRẬN VÀ CÁC PHÉP TOÁN MA TRẬN

64

# IV. CÁC PHÉP TOÁN MA TRẬN:

- 4. Phép đảo ma trận:
- fliplr(A) → Đảo các phần tử A từ trái sang phải
- flipud(A) → Đảo các phần tử A từ trên xuống dưới

### Ví dụ:

```
>> A = [1 2 3; 4 5 6; 7 8 9];

>> B = fliplr(A)

B= 3 2 1

6 5 4

9 8 7

>> C = flipud(B)

C= 9 8 7

6 5 4

3 2 1
```





65

# IV. CÁC PHÉP TOÁN MA TRẬN:

# 5. Reshape:

- Cho phép định dạng lại ma trận với số hàng và số cột khác với ma trận gốc
- Số phần tử của ma trận gốc và ma trận mới phải bằng nhau
- Hàm có 3 tham số là ma trận gốc, số hàng và số cột
   Ví du:

```
>> A = [1 2 3; 4 5 6; 7 8 9];
>> B=reshape(A,1,9)
B=
1 4 7 2 5 8 3 6 9
```



# CI

# CHƯƠNG 2: MA TRẬN VÀ CÁC PHÉP TOÁN MA TRẬN

66

# IV. CÁC PHÉP TOÁN MA TRẬN:

# 6. Trích các phần tử từ ma trận:

| Hàm       | Ý nghĩa                                                                                                                              |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------|
| diag(A)   | Lấy đường chéo chính lưu vào một vector cột                                                                                          |
| diag(A,k) | Chọn đường chéo dựa vào k k=0 đường chéo chính k>0 đường chéo thứ k trên đường chéo chính k<0 đường chéo thứ k dưới đường chéo chính |
| A=diag(V) | Nếu V là vector thì A là ma trận vuông có V là<br>đường chéo chính. Các phần tử khác bằng 0                                          |



```
CHƯƠNG 2: MA TRẬN VÀ CÁC PHÉP TOÁN MA TRẬN
                                                             67
IV. CÁC PHÉP TOÁN MA TRẬN:
   6. Trích các phần tử từ ma trận (tt)
   Ví du:
   >> A=[1 2 3 4; 5 6 7 8; 9 10 11 12]; V=[1:3];
   >> diag(A)
   ans = 1
         6
        11
   >> diag(A,-1)
   ans = 5
        10
   >> A=diag(V)
   A = 1 \quad 0 \quad 0
       0 2 0
```

68

# IV. CÁC PHÉP TOÁN MA TRẬN:

6. Trích các phần tử từ ma trận (tt)

| Hàm       | Ý nghĩa                                                                                                                 |
|-----------|-------------------------------------------------------------------------------------------------------------------------|
| B=triu(A) | Sinh ra ma trận B cùng cỡ, chứa các phần tử A<br>nằm ở đường chéo chính và trên đường chéo<br>chính. Vị trí khác bằng 0 |
| triu(A,k) | Phần tử A nằm trên và phía trên đường chéo thứ k                                                                        |
| tril(A)   | Sinh ra ma trận cùng cỡ, chứa các phần tử A nằm<br>ở đường chéo chính và dưới đường chéo chính. Vị<br>trí khác bằng 0   |
| tril(A,k) | Phần tử A nằm ngay trên và phía dưới đường chéo<br>thứ k. Các vị trí khác bằng 0                                        |



```
CHƯƠNG 2: MA TRẬN VÀ CÁC PHÉP TOÁN MA TRẬN

IV. CÁC PHÉP TOÁN MA TRẬN:

6. Trích các phần tử từ ma trận (tt)

Ví dụ:

>> A = [1 2 3 4; 5 6 7 8; 9 10 11 12];

>> B = triu(A)

B= 1 2 3 4

0 6 7 8

0 0 11 12

>> C = triu(A,-1)

C= 1 2 3 4

5 6 7 8

0 10 11 12
```



71

# V. GIẢI HỆ PHƯƠNG TRÌNH ĐỘC LẬP TUYẾN TÍNH:

Xét hê:

$$x1 - 2x2 + x3 = 2$$

$$2x1 + x2 - 4x3 = -1$$

$$3x1 - 4x2 - x3 = 0$$

Giải:

$$D = \begin{vmatrix} 1 & -2 & 1 \\ 2 & 1 & -4 \\ 3 & -4 & -1 \end{vmatrix} = -8 \quad ; \quad D1 = \begin{vmatrix} 2 & -2 & 1 \\ -1 & 1 & -4 \\ 0 & -4 & -1 \end{vmatrix} = -28$$

$$D2 = \begin{vmatrix} 1 & 2 & 1 \\ 2 & -1 & -4 \\ 3 & 0 & 1 \end{vmatrix} = -16 \quad ; \quad D3 = \begin{vmatrix} 1 & -2 & 2 \\ 2 & 1 & -1 \\ 3 & -4 & 0 \end{vmatrix} = -20$$



# CHƯƠNG 2: MA TRẬN VÀ CÁC PHÉP TOÁN MA TRẬN

72

# V. GIẢI HỆ PHƯƠNG TRÌNH ĐỘC LẬP TUYẾN TÍNH:

Nghiệm của hệ là

$$x1 = D1/D = 3.5$$

$$x2 = D2/D = 2$$

$$x3 = D3/D = 2.5$$

Trong Matlab:

$$>> x=inv(A)*b$$

**x** =

3.5000

2.0000

2.5000

# CHƯƠNG 2: MA TRẬN VÀ CÁC PHÉP TOÁN MA TRẬN V. GIẢI HỆ PHƯƠNG TRÌNH ĐỘC LẬP TUYẾN TÍNH:

73

Bài tập:

$$x1 + x2 + x3 + x4 = 0$$

$$x2 + x3 + x4 + x5 = 0$$

$$x1 + 2x2 + 3x3 = 2$$

$$x2 + 2x3 + 3x4 = -2$$

$$x3 + 2x4 + 3x5 = 2$$

- -



### CHƯƠNG 2: MA TRẬN VÀ CÁC PHÉP TOÁN MA TRẬN

74

### VI. BÀI TẬP:

1) Hãy cho biết kết quả của từng dòng lệnh sau:

$$>> D = C+2$$

$$>> F = C*2 - 1$$

2) Hãy cho biết kết quả của từng dòng lệnh sau:

$$>> A = pascal(4)$$



```
CHƯƠNG 2: MA TRẬN VÀ CÁC PHÉP TOÁN MA TRẬN

VI. BÀI TẬP:

3) Hãy cho biết kết quả của từng dòng lệnh sau:

>> A = pascal(3)

>> B = rot90(A,3)

>> C = fliplr(flipud(B))

>> D = flipud(fliplr(C))

>> C + D

>> (A(:))'
```



**77** 

- I. PHẦN TỬ CƠ BẢN
- II. HÀM TOÁN HỌC
- III. CÁC DANG FILE
- IV. BIỂU THỨC QUAN HỆ VÀ LOGIC
- V. <u>CẤU TRÚC ĐIỀU KHIỂN</u>
- VI. <u>BÀI TẬP</u>

Giảng viên: Hoàng Xuân Dương



#### CHƯƠNG 3: LẬP TRÌNH TRONG MATLAB

78

### I. PHẦN TỬ CƠ BẢN

- 1. Giới hạn của các giá trị tính toán trong Matlab
- Đối với phần lớn máy tính, khoảng giá trị cho phép từ 10<sup>-308</sup> đến 10<sup>308</sup>.
- Nếu có giá trị tràn số mũ trên, nó được biểu diễn bởi inf (số vô hạn)
- Nếu tràn mũ dưới, nó được biểu diễn là 0
- Chia cho 0 là toán tử không hợp lệ, kết quả là inf.
   Matlab sẽ cảnh báo và sử dụng giá trị inf để tính tiếp.





#### I. PHẦN TỬ CƠ BẢN

- 2. Biến string:
- Chuỗi ký tự được đặt giữa 2 dấu nháy đơn
- Chuỗi ký tự là một mảng nhiều ký tự. Ký tự được lưu dưới dạng mã ASCII.
  - >> name= 'Trường Đại học DL Công Nghệ Sài Gòn'
- Có thể truy xuất đến từng phần tử chuỗi
  - >> fprintf ('Trường tôi là %s\n', name(8:35));
- Kết hợp các string tạo string mới
  - >> text1='Tôi học tại'; text=[text1 ' ' name];
- Nhập string từ bàn phím:
  - >> str= input('Nhap vao mot chuoi','s');

Giảng viên: Hoàng Xuân Dương



### СН

#### CHƯƠNG 3: LẬP TRÌNH TRONG MATLAB

80

### I. PHẦN TỬ CƠ BẢN

### 2. Biến string:

Các lệnh với biến string:

| Hàm     | Ý nghĩa                   |
|---------|---------------------------|
| char    | Tạo mảng ký tự từ mảng số |
| double  | Đổi chuỗi sang mã ASCII   |
| num2str | Đổi số sang chuỗi         |
| str2num | Đổi chuỗi sang số         |
| int2str | Đổi số nguyên sang chuỗi  |
| str2mat | Đổi chuỗi sang ma trận    |
| mat2str | Đổi ma trận sang chuỗi    |





81

### II. HÀM TOÁN HỌC

### 1. Hàm toán học cơ bản

| Hàm         | Ý nghĩa                        |
|-------------|--------------------------------|
| round       | Làm tròn về số nguyên gần nhất |
| fix         | Làm tròn về 0                  |
| floor       | Làm tròn nhỏ hơn               |
| ceil        | Làm tròn lớn hơn               |
| log(x)      | ln(x)                          |
| log10(x)    | log thập phân                  |
| pow2(x)     | Lũy thừa cơ số 2               |
| nextpow2(N) | Tìm p: 2 <sup>p</sup> =N       |

Giảng viên: Hoàng Xuân Dương



### 4

#### CHƯƠNG 3: LẬP TRÌNH TRONG MATLAB

82

### II. HÀM TOÁN HỌC

### 1. Hàm toán học cơ bản

#### Ví dụ:

- >> a=[-1.9 -0.2 3.4 5.6 7 2.4 +3.6i];
- >> fix(a)
  - -1.0000 0 3.0000 5.0000 7.0000 2.0000 0+3.0000i
- >> ceil(a)
  - -1.0000 0 4.0000 6.0000 7.0000 3.0000 0+4.0000i
- >> floor(a)
  - -2.0000 -1.0000 3.0000 5.0000 7.0000 2.0000 0+3.0000i
- >> round(a)
  - -2.0000 0 3.0000 6.0000 7.0000 2.0000 0+4.0000i

g The



### II. HÀM TOÁN HỌC

### 2. Hàm lượng giác cơ bản:

| Hàm     | Ý nghĩa                                 |
|---------|-----------------------------------------|
| sin(x)  | sin của x khi x có đơn vị radian        |
| cos(x)  | cos của x khi x có đơn vị radian        |
| tan(x)  | tan của x khi x có đơn vị radian        |
| asin(x) | $\in [-\pi/2,\pi/2]$ khi $x \in [-1,1]$ |
| acos(x) | $\in$ [0, $\pi$ ] khi x $\in$ [-1,1]    |
| atan(x) | khi $x \in [-\pi/2, \pi/2]$             |

### Đổi radian sang độ và ngược lại:

angle\_degrees=angle\_radians\*(180/pi) angle\_radians=angle\_degrees\*(pi/180)

Giảng viên: Hoàng Xuân Dương



### 1

#### CHƯƠNG 3: LẬP TRÌNH TRONG MATLAB

84

### III. CÁC DẠNG FILE

### 1. Script file (m file):

- Các chương trình, thủ tục bao gồm các dòng lệnh theo một thứ tự nào đó do người sử dụng viết ra được lưu trong các file \*.m. Được gọi là script file
- Dùng trình soạn thảo edit của Matlab để viết hàm
- Lưu dưới dạng ASCII
- Có thể chạy giống các lệnh, thủ tục của Matlab

g 📅







87

#### III. CÁC DANG FILE

- 2. Hàm và tạo hàm trong Matlab:
- Giống như script file. Cấu trúc tổng quát của hàm:

function [y1,y2,...]=function\_name (a,b,c...)
% help text in the usage of the function
%......
:
end

- Có thể chỉ là một nhóm dòng lệnh hay nhận vào các đối số và trả về kết quả
- Có thể gọi hàm từ các hàm, script khác
- Các biến trong hàm là các biến cục bộ

Giảng viên: Hoàng Xuân Dương



### 4

#### CHƯƠNG 3: LẬP TRÌNH TRONG MATLAB

88

### Qui tắc viết hàm M-files:

- 1) Bắt đầu bằng từ function, sau đó lần lượt các tham số đầu ra, dấu bằng, tên hàm và các tham số đầu vào
- 2) Một số dòng sau tên hàm bắt đầu bằng dấu % là các dòng chú thích về cách dùng hàm, nó được bỏ qua khi chạy. Được hiển thị khi lệnh help yêu cầu hàm
- 3) Matlab có thể chấp nhận nhiều tham số ngõ vào và tham số ngõ ra
- 4) Nếu hàm trả về nhiều hơn một giá trị, các giá trị được trả về như một vector
- 5) Nếu hàm nhận nhiều tham số ngõ vào, các tham số sẽ được liệt kê trong dấu ngoặc đơn
- 6) Kết thúc hàm là phát biểu 'end'



### III. CÁC DẠNG FILE

### 2. Hàm và tạo hàm trong Matlab (tt)

Ví du 1:

Thực hiện hàm luythua.m như sau:

```
function y=luythua(a,b)
% Ham tinh a^b
y=a^b;
```

#### Trong command window:

```
>> luythua(2,3)
ans = 8
>> c=luythua(4,2)
c = 16
```

Giảng viên: Hoàng Xuân Dương



#### CHƯƠNG 3: LẬP TRÌNH TRONG MATLAB

90

### III. CÁC DẠNG FILE

### 2. Hàm và tạo hàm trong Matlab (tt)

Ví dụ 2:

Để giải phương trình bậc 2: ax²+bx+c=0. Thực hiện hàm tính nghiệm như sau, lưu với tên quadroot.m

```
function [x1,x2]=quadroot(a,b,c)
% Hàm tính nghiệm của phương trình bậc 2
radical=sqrt(b^2-4*a*c);
x1=(-b+radical)/(2*a);
x2=(-b-radical)/(2*a);
```



91

### III. CÁC DẠNG FILE

#### 2. Hàm và tạo hàm trong Matlab (tt)

Chương trình có tên ptbac2.m có nội dung như sau:

```
disp('Chuong trinh giai phuong trinh bac 2: ax^2+bx+c=0');
a=input('Nhap a: ');
b=input('Nhap b: ');
c=input('Nhap c: ');
[x1,x2]=quadroot(a,b,c); % gọi hàm quadroot
disp('Nghiem cua phuong trinh: ');
fprintf('x1=%f\n',x1);
fprintf('x2=%f\n',x2);
```

Giảng viên: Hoàng Xuân Dương



## CHƯƠNG 3: LẬP TRÌNH TRONG MATLAB

92

### III. CÁC DẠNG FILE

### 2. Hàm và tạo hàm trong Matlab (tt)

Trong Command window:

```
>> [a,b]=quadroot(1,-3,2)
```

a = 2

b = 1

#### >> ptbac2

Chuong trinh giai phuong trinh bac 2: ax^2+bx+c=0

Nhap a: 1

Nhap b: -3

Nhap c: 2

Nghiem cua phuong trinh:

x1=2.000000

x2=1.000000





### III. CÁC DẠNG FILE

#### 3. File dữ liệu:

Matlab phân biệt 2 loại dữ liệu khác nhau:

- Mat-files: thích hợp cho dữ liệu chương trình Matlab.
   Phần mở rộng là .mat
  - >> save <tên file> <tên ma trận>;
  - >> load <tên file>;
- ASCII files: cho dữ liệu được chia sẻ với các chương trình khác. Phần mở rộng là .dat
  - >> save <tên file>.dat <tên ma trận> /ascii;
  - >> load <tên file>.dat;

Giảng viên: Hoàng Xuân Dương



### 1

#### CHƯƠNG 3: LẬP TRÌNH TRONG MATLAB

94

### IV. BIỂU THỨC QUAN HỆ VÀ LOGIC

1. Các phép toán quan hệ:

| Toán tử | Ý nghĩa           |
|---------|-------------------|
| <       | Nhỏ hơn           |
| <=      | Nhỏ hơn hoặc bằng |
| >       | Lớn hơn           |
| >=      | Lớn hơn hoặc bằng |
| ==      | Bằng              |
| ~=      | Không bằng        |

Phép so sánh 2 ma trận là so sánh từng phần tử. Kết quả sinh ra ma trận {0,1} cùng cỡ. Nếu phép so sánh đúng, các phần tử =1, ngược lại thì các phần tử bằng 0



95

### IV. BIỂU THỨC QUAN HỆ VÀ LOGIC

### 1. Các phép toán quan hệ (tt)

#### Ví du:

```
>> a=[3 4 3; 4 5 6];
>> b=[1 2 3; 7 8 6];
>> a==b
                 1
ans =
            0 1
>> a>b
                 0
         1 1
ans =
         0
            0 0
>> a>=b
ans =
         1
             1
                 1
                 1
```

Giảng viên: Hoàng Xuân Dương



### 1

#### CHƯƠNG 3: LẬP TRÌNH TRONG MATLAB

96

### IV. BIỂU THỨC QUAN HỆ VÀ LOGIC

### 2. Các phép toán logic:

| Toán tử | Ký hiệu |
|---------|---------|
| not     | ~       |
| and     | &       |
| or      |         |

- Thứ tự các toán tử trong biểu thức logic từ cao đến thấp là not, and, or. Tuy nhiên có thể dùng ngoặc đơn để thay đổi
- Trong Matlab, tất cả các giá trị khác không đều coi như đúng (true), còn giá trị 0 được coi như sai (false)



97

### IV. BIỂU THỨC QUAN HỆ VÀ LOGIC

### 2. Các phép toán logic (tt)

Ví dụ:

- >> b=[1 1 0; 1 0 1] >> a=[0 1 0; 0 0 1]
- >> a&b

ans = 
$$\begin{array}{cccc} 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}$$

- >> a|b
- >> ~a
- ans =  $\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$

Giảng viên: Hoàng Xuân Dương





### CHƯƠNG 3: LẬP TRÌNH TRONG MATLAB

98

### IV. BIỂU THỨC QUAN HỆ VÀ LOGIC

### 3. Các hàm quan hệ và logic:

| Hàm       | Ý nghĩa                                                                                            |
|-----------|----------------------------------------------------------------------------------------------------|
| any(x)    | Trả về vector hàng có các phần tử =1 nếu tồn tại phần tử cột của x khác 0, ngược lại =0            |
| all(x)    | Trả về vector hàng có các phần tử =1 nếu tất cả phần tử cột của x khác 0, ngược lại =0             |
| find(x)   | Trả về vector chứa chỉ số các phần tử của x khác 0                                                 |
| exit('a') | = 1 nếu a là biến, = 2 nếu là file, = 0 nếu a không<br>tồn tại                                     |
| isnan(x)  | Trả về ma trận cùng cỡ có các phần tử = 1 nếu các<br>phần tử tương ứng của x là nan, ngược lại = 0 |





### IV. BIỂU THỨC QUAN HỆ VÀ LOGIC

### 3. Các hàm quan hệ và logic (tt)

| Hàm           | Ý nghĩa                                                                                                          |
|---------------|------------------------------------------------------------------------------------------------------------------|
| finite(x)     | Trả về ma trận cùng cỡ có các phần tử = $1$ nếu các phần tử tương ứng của $x$ hữu hạn, = $0$ nếu vô hạn hoặc nan |
| isempty(x)    | = 1 nếu x rỗng, ngược lại = 0                                                                                    |
| isstr(x)      | = 1 nếu x là một chuỗi, ngược lại = 0                                                                            |
| strcmp(y1,y2) | So sánh 2 chuỗi, =1 nếu 2 chuỗi giống hệt<br>nhau, ngược lại =0. Phân biệt hoa-thường, dấu<br>cách, đầu dòng     |

Giảng viên: Hoàng Xuân Dương



### CHƯƠNG 3: LẬP TRÌNH TRONG MATLAB

100

### IV. BIỂU THỨC QUAN HỆ VÀ LOGIC

### 3. Các hàm quan hệ và logic (tt)

### Ví dụ:

```
>> a=[0 1 2; 0 0 3];
```

>> any(a)

ans = 0 1 1

>> all(a)

ans = 0 0 1

>> find(a)

ans =

5

6



```
CHƯƠNG 3: LẬP TRÌNH TRONG MATLAB
                                                        101
IV. BIỂU THỨC QUAN HỆ VÀ LOGIC
   3. Các hàm quan hệ và logic (tt)
   Ví du:
   >> a=[nan 12 4 0; inf 3 8 nan]
   a = NaN 12
                4 0
       Inf
            3
               8 NaN
   >> isnan(a)
   ans = 1 0
        0
   >> finite(a)
   ans = 0
        0
            1 1
   >> isempty(a)
   ans = 0
                              Giảng viên: Hoàng Xuân Dương
```

```
CHƯƠNG 3: LẬP TRÌNH TRONG MATLAB

IV. BIỂU THỨC QUAN HỆ VÀ LOGIC

3. Các hàm quan hệ và logic (tt)

Ví dụ:

>> text1='Lop HCDH';

>> text2='Lop';

>> text3='HCDH';

>> isstr(text1)

ans = 1

>> strcmp(text1,text2)

ans = 0

>> strcmp(text1,[text2'' text3])

ans = 1
```

```
CHƯƠNG 3: LẬP TRÌNH TRONG MATLAB

V. CẦU TRÚC ĐIỀU KHIỂN

1. Lệnh if else elseif:

Có các dạng sử dụng

if biểu thức logic

các phát biểu

end

hoặc

if biểu thức logic

các phát biểu 1

else

các phát biểu 2

end

Giảng viên: Hoàng Xuân Dương
```



```
CHƯƠNG 3: LẬP TRÌNH TRONG MATLAB
                                                                105
V. CẤU TRÚC ĐIỀU KHIỂN
   1. Lệnh if else elseif (tt)
   Ví dụ 1:
         if rem(a,2) = = 0
               disp('la mot so chan')
               b=a/2;
         end
         if n>0
               disp('la so duong')
         elseif n==0
                    disp('la so 0')
         else
               disp('la so am')
         end
                                   Giảng viên: Hoàng Xuân Dương
```

```
CHƯƠNG 3: LẬP TRÌNH TRONG MATLAB
                                                               106
V. CẤU TRÚC ĐIỀU KHIỂN
   1. Lệnh if else elseif (tt)
   Ví du 2: Hàm ngay_trong_thang.m
                   function y = ngay_trong_thang(th,nam)
                   if (th==4)|(th==6)|(th==9)|(th==11)
                        y = 30
                   elseif (th==2)
                        if (rem(nam,4)\sim=0)
                             y = 28
                        else
                             y = 29
                        end
                   else
                        y = 31
                   end
                                  Giảng viên: Hoàng Xuân Dương
```

```
CHƯƠNG 3: LẬP TRÌNH TRONG MATLAB

V. CẦU TRÚC ĐIỀU KHIỂN

2. Lệnh switch case:
Chọn nhiều trường hợp
switch biểu thức (vô hướng hay chuỗi)
case trị_1
Các phát biểu 1
case tri_2
Các phát biểu 2
......
otherwise
Các phát biểu khác
end

Giảng viên: Hoàng Xuân Dương
```



```
CHƯƠNG 3: LẬP TRÌNH TRONG MATLAB
                                                               109
V. CẤU TRÚC ĐIỀU KHIỂN
   2. Lệnh switch case (tt)
   Ví du 2:
         switch var
              case 1
                    disp('1');
              case {2,3,4}
                   disp('2 or 3 or 4');
              case 5
                   disp('5');
              otherwise
                    disp('something else');
         end
                                  Giảng viên: Hoàng Xuân Dương
```



### CHƯƠNG 3: LẬP TRÌNH TRONG MATLAB 111 V. CẤU TRÚC ĐIỀU KHIỂN 4. Lệnh for: for index=star:increment:end các biểu thức end Ví dụ 1: x(1)=1;for i=2:6 x(i)=2\*x(i-1);end Giảng viên: Hoàng Xuân Dương



112

### 4. Lệnh for (tt)

Ví dụ 2: Chương trình khởi tạo giá trị cho ma trận A(mxn)

```
for i=1:m
      for j=1:n
           A(i,j)=i+j;
     end
end
```

### V. CẤU TRÚC ĐIỀU KHIỂN

### 5. Gián đoạn bằng continue, break và return

- Trong vòng lặp for hay while, gọi continue thì ngay lập tức chu trình chuyển sang bước lặp kế tiếp, mọi lệnh chưa thực hiện của vòng lặp hiện tại sẽ bị bỏ qua
- Lệnh break mạnh hơn, ngừng vòng lặp đang tính
- Nếu break sử dụng ngoài vòng lặp for và while, nhưng nằm trong script file hoặc function thì sẽ dừng tại vị trí của break
- Lệnh return sử dụng để kết thúc sớm hàm trước khi gặp lệnh end

Giảng viên: Hoàng Xuân Dương



### CHƯƠNG 3: LẬP TRÌNH TRONG MATLAB

114

### V. CẤU TRÚC ĐIỀU KHIỂN

5. Gián đoạn bằng continue, break và return (tt)

```
for m=3:1:7

for n=2:1:m-1

if mod(m, n) ~=0

continue;

end

fprintf('%2d không là một số nguyên tố !\n',m)

break;

end

if n==m-1

fprintf('%2d là một số nguyên tố !\n',m)

end

end
```

115

- V. CẤU TRÚC ĐIỀU KHIỂN
  - 5. Gián đoạn bằng continue, break và return (tt)

### Kết quả:

- !! 3 là một số nguyên tố !
  - 4 không là một số nguyên tố!
- !! 5 là một số nguyên tố !
  - 6 không là một số nguyên tố!
- !! 7 là một số nguyên tố !

Giảng viên: Hoàng Xuân Dương



### CHƯƠNG 3: LẬP TRÌNH TRONG MATLAB

116

### VI. BÀI TẬP:

1. Hãy cho biết kết quả khi chạy đoạn chương trình sau:

2. Hãy cho biết kết quả khi chạy đoạn chương trình sau:

117

### VI. BÀI TẬP:

3. Hãy cho biết kết quả khi chạy đoạn chương trình sau:

```
n=4; giaithua=1

for i=1:n

giaithua=giaithua*i;

fprintf('%d! = %d\n',i,giaithua);

end
```

4. Hãy cho biết kết quả khi chạy đoạn chương trình sau:

### CHƯƠNG 3: LẬP TRÌNH TRONG MATLAB

118

### VI. BÀI TẬP:

5. Hãy cho biết kết quả khi chạy đoạn chương trình sau:

6. Viết chương trình cho hiển thị trên màn hình dãy số:

1 2 3 4 5 6 7 8 ... n Với n được nhập từ bàn phím

Giảng viên: Hoàng Xuân Dương



119

### VI. BÀI TẬP:

- Viết đoạn chương trình tính tổng của n số tự nhiên, với n được nhập từ bàn phím
- 8. Viết một hàm minmax.m với tham số ngõ vào là một ma trận a, Kết quả trả về của hàm là giá trị phần tử lớn nhất và phần tử nhỏ nhất trong ma trân
- 9. Viết một hàm findmax.m với tham số ngõ vào là một ma trận a; Kết quả trả về của hàm là vị trí của phần tử lớn nhất (hàng, cột) trong ma trận
- 10. Viết một hàm luythuabac3.m với tham số vào là giá trị n; Trả về giá trị tổng lũy thừa bậc 3 của n phần tử

$$1^3 + 2^3 + 3^3 + \dots + n^3$$

Giảng viên: Hoàng Xuân Dương



#### CHƯƠNG 3: LẬP TRÌNH TRONG MATLAB

120

### VI. BÀI TẬP:

11. Viết một hàm tinhtong.m có:

Nhận vào giá trị n

Trả về giá trị tổng các tích 2 số liên tiếp từ 1 đến n

$$1*2 + 2*3 + 3*4 + \dots + (n-1)*n$$

12. Tìm giá trị lớn nhất của n sao cho tổng:

$$1^2 + 2^2 + ... + n^2$$

nhận giá trị nhỏ hơn 100.

- 13. Mô phỏng một phép tính đơn giản cộng, trừ, nhân và chia 2 số.
- 14. Hàm tính n!. Sử dụng hàm để tính x=7!/(3!\*4!)









### I. ĐA THỨC:

- Đa thức được sắp xếp theo lũy thừa giảm
- Biểu diễn dưới dạng vector hàng, các phần tử là các hệ số của đa thức

#### Ví dụ:

```
Đa thức 2x^3 - 8x + 7 được biểu diễn bằng vector p p=[2\ 0\ -8\ 7]
```

Giảng viên: Hoàng Xuân Dương



### CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC

124

### I. ĐA THỨC:

Một số hàm xử lý đa thức:

| Hàm      | Chức năng                                    |
|----------|----------------------------------------------|
| conv     | Nhân đa thức                                 |
| poly     | Lập đa thức từ nghiệm                        |
| polyfit  | Xấp xỉ bằng đa thức                          |
| polyvalm | Tính ma trận đa thức                         |
| roots    | Tìm nghiệm đa thức                           |
| deconv   | Chia đa thức                                 |
| polyder  | Đạo hàm đa thức                              |
| polyval  | Tính giá trị đa thức                         |
| residue  | Tính thặng dư, khai triển riêng phần phân số |



### CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC 125 I. ĐA THỨC: 1. Nghiệm của đa thức: Nghiệm của đa thức bậc 2 Ví du: Giải phương trình bâc 2: $5x^2+6x+7=0$ >> p = [5 6 7]>> r = roots(p)r = -0.6000 + 1.0198i-0.6000 - 1.0198i >> t = real(r)t = -0.6000-0.6000 >> a = imag(r)a = 1.0198-1.0198Giảng viên: Hoàng Xuân Dương



127

#### I. ĐA THỨC:

#### 2. Nhân 2 đa thức:

Ví dụ: Cho 2 đa thức:  $y = x^3+2x^2+3x+4$ và  $z = x^3+4x^2+9x+16$ 

Nếu nhân nhiều đa thức thì lập lại nhiều lần lệnh conv

Giảng viên: Hoàng Xuân Dương



### CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC

128

### I. ĐA THỨC:

### 3. Cộng đa thức:

### > Hai đa thức cùng bậc:

$$p = p1 + p2;$$

tương tự cho trừ đa thức

$$p = p1 - p2;$$

### Hai đa thức khác bậc:

Thêm các hệ số 0 vào đa thức có bậc thấp hơn để 2 đa thức có cùng bậc



# CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC I. ĐA THỨC:

129

#### 4. Chia đa thức:

```
Ví dụ: Cho 2 đa thức: y = x^3 + 6x^2 + 12x + 8

z = x^2 + 1

>> y = [1 6 12 8];

>> z = [1 0 1];

>
```

Giảng viên: Hoàng Xuân Dương



### CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC

130

### I. ĐA THỨC:

#### 5. Đạo hàm:

Ví du: Cho đa thức  $y = x^3 + 6x^2 + 12x + 8$ 



```
CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC

I. ĐA THỨC:

6. Vẽ đô thị:

Ví dụ: đa thức y(x) = x³ + 4x² - 7x - 10

Cho các giá trị của x, tính các giá trị của y tương ứng

>> x = linspace(-1,3);
>> p = [1 4 -7 -10];
>> y = polyval(p,x);  % xác định y ứng với các giá trị x
>> plot(x,y)
>> xlabel('x')
>> ylabel('y = f(x) = x³ + 4x² - 7x - 10');
>> title('Vẽ đồ thị');
```





### I. ĐA THỨC:

#### 7. Đa thức hữu tỉ:

Ví dụ:

Cho phân thức:

$$\frac{P(x)}{Q(x)} = \frac{2(4x+7)}{(x+1)(x+3)(x+4)}$$

Phân chia phân thức ra từng hệ số:

$$\frac{P(x)}{Q(x)} = \frac{A}{x+1} + \frac{B}{x+3} + \frac{C}{x+4} + k$$

Nếu chiều dài hay bậc của Q(x) lớn hơn P(x) thì k=0

Giảng viên: Hoàng Xuân Dương



### CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC

134

#### I. ĐA THỨC:

### 7. Đa thức hữu tỉ (tt)

Giải:

- >> num=2\*[4 7];
- >> den=poly([-1;-3;-4]);
- >> [res,poles,k]=residue(num,den)

res = -6.0000

5.0000

1.0000

poles= -4.0000

-3.0000

-1.0000

$$k = []$$

$$P_0 = \frac{P(x)}{Q(x)} = \frac{1}{x+1} + \frac{5}{x+3} - \frac{6}{x+4}$$



135

#### I. ĐA THỨC:

#### 7. Đa thức hữu tỉ (tt)

Ngược lại từ res, poles, k có thể tìm lại đa thức P(x), Q(x)

Bài tập: Tìm các hệ số của các hàm sau

- 1. H(s)=10(s+2)/s(s+4)(s+5)
- 2. H(s)=4/(s+1)(s+2)
- 3. H(s)=10s/(s+1)(s+4)
- 4. H(s)=(s+1)/s(s+2)(s+3)
- 5.  $H(s)=10s^2/(s+1)(s+5)$

Giảng viên: Hoàng Xuân Dương



### CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC

136

### II. PHÉP NỘI SUY:

### 1. Nội suy một chiều:

Hàm nôi suy (interpolation) một chiều thông dung nhất:

Yi=interp1(X,Y,Xi)

Yi=interp1(Y,Xi)

Yi=interp1(X,Y,Xi,'method')

Yi=interp1(X,Y,Xi,'method','extrap')

Yi=interp1(X,Y,Xi,'method',extrapval)

Y là tập dữ liệu ứng với giá trị cho bởi tập X Yi là giá trị dữ liệu được nội suy ở giá trị Xi



137

### II. PHÉP NỘI SUY:

### 1. Nội suy một chiều (tt)

method là phương pháp sử dụng khi nội suy:

- nearest: nôi suy cân gần nhất
- linear: nội suy tuyến tính (mặc định)
- spline, pchip, cubic, v5cubic: nội suy bậc 3

extrap: dùng khi ngoại suy, các giá trị ngoài tầm x, giá trị trả về là extrapval

Giảng viên: Hoàng Xuân Dương

Giảng viên: Hoàng Xuân Dương



### CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC 138 II. PHÉP NỘI SUY: 1. Nội suy một chiều (tt) Ví du: >> hour=1:12; >> temps=[5 8 9 15 25 29 31 30 22 25 27 24]; >> plot(hour,temps,hour,temps,'.') >> h=linspace(1,12); >> t =interp1(hour,temps,h,'linear'); >> t1=interp1(hour,temps,h,'cubic'); >> t2=interp1(hour,temps,h,'nearest'); >> hold on >> plot(h,t,'g.') >> plot(h,t1,'r.') >> plot(h,t2,'k.')





141

II. PHÉP NỘI SUY:

2. Nội suy hai chiều (tt)

Ví dụ: Cho một tập dữ liệu lương nhân viên:

- >> years=1950:10:1990
- >> service=10:10:30

```
>> wage=[150.697 199.592 187.625
179.323 195.072 250.287
203.212 179.092 322.767
226.505 153.706 426.730
249.633 120.281 598.243]
```

Nội suy xem một nhân viên có 15 năm phục vụ lãnh lương bao nhiều vào năm 1975

>> w=interp2(service,years,wage,15,1975) w= 190.6287

Giảng viên: Hoàng Xuân Dương



### CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC

142

- II. PH**ÉP NỘI SUY:** 
  - 3. Nội suy nhiều chiều:

Vi=interp3(X,Y,Z,V,Xi,Yi,Zi) Vi=interpn(X1,X2,X3,...,V, Y1, Y2, Y3,...)



143

### III. HÀM CỦA HÀM:

Matlab biểu diễn các hàm toán học theo 2 cách: định nghĩa bằng hàm M và định nghĩa bằng inline

$$y = \frac{10(s+3)}{s(s+5)(s+10)}$$

có thể tạo file hamtruyen.m

hay định nghĩa từ dòng lệnh:

```
>> f=inline('10*(s+3)/(s*(s+5)*(s+10))');
```

có thể tạo hàm nhiều biến với inline

>> f=inline('y\*sin(x)+x\*sin(y)','x','y')



Giảng viên: Hoàng Xuân Dương

### CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC

144

### III. HÀM CỦA HÀM:

Hàm feval dùng để tính giá trị của một hàm theo biến: Ví du:

```
>> f=inline('sin(x)+sin(y)');
```

>> feval(f,90,45)

ans=1.7449

Ví dụ: hamtruyen.m

```
function y=hamtruyen(x)
y=2*x^2-3*x+1;
```

>> feval(@hamtruyen,3)

ans=10

, 1

145

### III. HÀM CỦA HÀM:

Hàm fplot dùng để vẽ hàm theo biến:

Ví dụ: hamtruyen.m

- >> fplot(@hamtruyen,[0,2])
- >> grid on



# 4

### CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC

146

### IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỗI BIỂU THỨC:

Matlab không chỉ tính toán trên các số cụ thể mà còn có thể thực hiện tính toán trên ký hiệu → Có thể sử dụng một chuỗi biểu thức để biểu diễn hàm

Ví dụ:

$$\frac{1}{2x^{n}} \Rightarrow '1/(2*x^{n})'$$

$$\frac{1}{\sqrt{2x}} \Rightarrow '1/\operatorname{sqrt}(2*x)'$$

$$\cos(x^{2}) - \sin(2x) \Rightarrow '\cos(x^{2}) - \sin(2*x)'$$

$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \Rightarrow \operatorname{sym}('[a, b; c, d]')$$



147

# IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỗI BIỂU THỨC:

| Hàm      | Ý nghĩa              | Hàm      | Ý nghĩa               |
|----------|----------------------|----------|-----------------------|
| syms     | Khai báo biến        | symop    | Tạo hàm mới           |
| sym      | Định nghĩa hàm       | symsum   | Tổng hàm              |
| diff     | Đạo hàm              | numden   | Tử+mẫu số hàm         |
| int      | Tích phân            | compose  | Hàm của hàm           |
| linsolve | Giải hệ phương trình | finverse | Tìm hàm ngược         |
| symadd   | Cộng hàm             | poly2sym | Tìm hệ số của hàm     |
| symsub   | Trừ hàm              | sym2poly | Tạo hàm từ hệ số      |
| symmul   | Nhân hàm             | eval     | Tính trị hàm          |
| symdiv   | Chia hàm             | numeric  | Tính trị hàm          |
| sympow   | Lũy thừa hàm         | subs     | Thay đổi giá trị biến |

Giảng viên: Hoàng Xuân Dương



## CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC

148

# IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỗI BIỂU THỨC:

| Hàm      | Ý nghĩa             | Hàm      | Ý nghĩa                   |
|----------|---------------------|----------|---------------------------|
| ezplot   | Vẽ hàm              | dsolve   | Giải phương trình vi phân |
| factor   | Phân tích tp bậc 1  | laplace  | Biến đổi laplace          |
| simplify | Đơn giản hàm        | ilaplace | Biến đổi laplace ngược    |
| simple   | Tối giản hàm        | fourier  | Biến đổi fourier          |
| pretty   | Biểu diễn trực quan | ifourier | Biến đổi fourier ngược    |
| taylor   | Khai triển taylor   | ztrans   | Biến đổi z                |
| collect  | Khai triển hàm      | iztrans  | Biến đổi z ngược          |
| horner   |                     | bode     | Vẽ biểu đồ bode           |
| expand   | Khai triển hàm      | freqs    | Vẽ đáp ứng tần số         |
| solve    | Giải phương trình   | nyquist  | Vẽ biểu đồ Nyquist        |











# CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỖI BIỂU THỨC:

153

- 1. Đạo hàm và vi phân gần đúng:
  - Đạo hàm đa thức hữu tỉ:

```
Ví du:
```

```
>> diff('x/(1-x^2)')
ans = 1/(1-x^2)+2*x^2/(1-x^2)^2
Rút gọn biểu thức:
>> simplify(sym('1/(1-x^2)+2*x^2/(1-x^2)^2'))
ans = (1+x^2)/(-1+x^2)^2
```

Giảng viên: Hoàng Xuân Dương



# CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC

154

## IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỗI BIỂU THỨC:

- 1. Đạo hàm và vi phân gần đúng:
  - Đạo hàm mảng:

### Ví du:

```
>> syms x
                                               % định nghĩa biến
>> A=[\cos(x),\sin(x);-\sin(x),\cos(x)]
A = [\cos(x), \sin(x)]
     [-\sin(x), \cos(x)]
>> diff(A)
ans =
     [-\sin(x), \cos(x)]
     [-\cos(x), -\sin(x)]
```



# CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỖI BIỂU THỨC: 1. Đạo hàm và vi phân gần đúng: Dạo hàm cấp cao: Ví dụ: Đạo hàm cấp 2 >> syms x >> diff(sin(x),2) ans = -sin(x) Đạo hàm cấp 3 >> diff(x^3,3) ans = 6



157

### IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỖI BIỂU THỨC:

### 2. Tích phân:

Tích phân bất định:

### Ví dụ:

```
>> syms x x1 alpha u t;

>> int(1/(1+x^2)) % tích phân mặc định theo x

ans = atan(x)

>> int(1/(1+x^2),t) % tích phân theo t

ans = 1/(1+x^2)*t

>> int(sin(alpha*u),alpha)

ans = -1/u*cos(alpha*u)
```

Giảng viên: Hoàng Xuân Dương



# CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC

158

### IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỖI BIỂU THỨC:

### 2. Tích phân:

### > Tích phân bất định (tt)

```
>> int(sin(alpha*u),u)
ans = -1/alpha*cos(alpha*u)
```

Nếu khi tính tích phân hay nguyên hàm của một lượng quá lớn hay phức tạp, đòi hỏi chiếm bộ nhớ lớn thì nó không thực hiện và trả về kết quả

```
>> int(\log(x)/\exp(x^2)')

ans = int(\log(x)/\exp(x^2),x)

>> int(\sin(x)/x')

ans = sinint(x) % sinint(x) = int(\sin(t)/t,t,0,x)
```



159

### IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỖI BIỂU THỨC:

### 2. Tích phân:

Tích phân mảng

```
Ví dụ:
```

Giảng viên: Hoàng Xuân Dương



# CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC

160

## IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỖI BIỂU THỨC:

### 2. Tích phân:

Tích phân xác định

### Ví du:

```
>> syms x x1 alpha t;

>> int(x1*log(1+x1),0,1)  % tích phân từ 0 \rightarrow 1

ans = 1/4

>> int('sin(s+2*x)','s',pi/2,pi)  % s chưa khai báo

ans = 2*cos(x)^2-1-2*sin(x)*cos(x)

>> int(sin(x),0,t)  % cận không được trùng

ans = -cos(t)+1  % với đối số của hàm
```







```
CHƯƠNG 4: XỪ LÝ CÁC HÀM TOÁN HỌC

IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỖI BIỂU THỨC:

3. Ma trận:

Dịnh thức:

Ví dụ:

NH = [a,b]
[c,d]
NH = [a,b]
(c,d]
NH = a*d-b*c

Hay:

NH = [a,b;c,d]'

Giảng viên: Hoàng Xuân Dương
```



```
CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC

IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỖI BIỂU THỨC:

3. Ma trận:

> Tính toán với ma trận:

Ví dụ:

>> G=sym('[cos(t),sin(t);-sin(t),cos(t)]')

G = [ cos(t), sin(t)]
    [ -sin(t), cos(t)]

Cộng mỗi phần tử G cho t

>> symadd(G,'t')

ans =

[ cos(t)+t, sin(t)+t]
    [ -sin(t)+t, cos(t)+t]

Giảng viên: Hoàng Xuân Dương
```



```
CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC

Rút gọn biểu thức

>> simplify(ans)

ans =

[ 2*cos(t)^2-1, 2*cos(t)*sin(t)]
 [ -2*cos(t)*sin(t), 2*cos(t)^2-1]

Hay:

>> simple(ans) % sau một số bước rút gọn

ans = [ cos(2*t), sin(2*t)]
 [ -sin(2*t), cos(2*t)]

Giảng viên: Hoàng Xuân Dương
```



169

### IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỖI BIỂU THỨC:

### 4. Da thức:

Tính toán với đa thức (tt)

```
>> symdiv(f,g) % Tính biểu thức f/g

ans = (2*x^2+3*x-5)/(x^2+x+7)

>> sympow(f,'3') % Tính biểu thức f^3

ans = (2*x^2+3*x-5)^3

>> sympow(f,'1/2') % Tính biểu thức f^1/2

ans = (2*x^2+3*x-5)^(1/2)
```

Giảng viên: Hoàng Xuân Dương



# CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC

170

## IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỗI BIỂU THỨC:

### 4. Da thức:

Xây dựng đa thức từ các ký hiệu:

### Ví du:

```
>> f='cos(x)';g='sin(2*x)';
>> symop(f,'/',g,'+',3)
ans = cos(x)/sin(2*x)+3
```

### > Kiểm tra lại các phép toán đa thức:

>> funtool

g T





173

### IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỖI BIỂU THỨC:

- 5. Hàm hữu tỉ:
  - > Tính tổng của 2 đa thức hữu tỉ:

### Ví du:

```
>> f=sym('(x^2+3)/(2*x-1)');g=sym('3*x/(x-1)');
>> [n,d]=numden(f+g)
n = x^3+5*x^2-3
d = (2*x-1)*(x-1)
```

Giảng viên: Hoàng Xuân Dương



# CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC

174

## IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỗI BIỂU THỨC:

- 5. Hàm hữu tỉ:
  - Ma trận:

### Ví dụ:

```
>> k=sym('[3/2,(2*x+1)/3;4/x^2,(3*x+4)]')
k = [ 3/2, (2*x+1)/3]
        [ 4/x^2, (3*x+4)]
>> [n,d]=numden(k)
n = [ 3, 2*x+1]
        [ 4, 3*x+4]
d = [ 2, 3]
        [ x^2, 1]
```



## CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC 175 IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỖI BIỂU THỨC: 6. Tìm hàm: Ví du: $>> f=sym('1/(1+x^2)');g=sym('sin(x)');$ $>> h=sym('1/(1+u^2)');k=sym('sin(v)');$ >> compose(f,g) % tính f(g(x)) ans = $1/(1+\sin(x)^2)$ >> compose(g,f) % tính g(f(x)) $ans = sin(1/(x^2+1))$ >> compose(h,k,'u','v') % tính h(k(v)) ans = $1/(1+\sin(v)^2)$ Giảng viên: Hoàng Xuân Dương



177

### IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỖI BIỂU THỨC:

### 8. Chuỗi:

Cú pháp:  $symsum(f,a,b) \rightarrow tính tổng hàm f từ a đến b$ 

### > Tổng hữu hạn:

$$\% \sum_{0}^{x-1} x^2 = \frac{1}{3}x^3 - \frac{1}{2}x^2 + \frac{1}{6}x$$

>> factor(ans)

% đổi lai dang kết quả

Giảng viên: Hoàng Xuân Dương



CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC

178

## IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỖI BIỂU THỨC:

### 8. Chuỗi (tt)

ans = 
$$11/3*n+8/3-4*(n+1)^2+4/3*(n+1)^3$$

ans = 
$$1/3*n*(2*n-1)*(2*n+1)$$

% 
$$\sum_{1}^{n} (2n-1)^{2} = \frac{n(2n-1)(2n+1)}{3}$$

Không tính được các tổng hôi tu có điều kiên

ans = 
$$sum(x^k, x = 0 ... n)$$

>> symsum(sym( x^k),0, n )  
ans = sum(x^k,x = 0 .. n) % 
$$\sum_{k=0}^{n} x^k = \frac{1}{1-x}$$
 ,  $|x| < 1$ 

# CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỖI BIỂU THỨC: 8. Chuỗi: Tổng vô hạn: >> symsum(sym('k'),0,inf) ans = inf Khi không có điều kiện hội tụ: >> symsum(sym('x^k'),0,'inf') ans = sum(x^k,x = 0 .. inf) Tính tổng 1/(2\*n-1)^2 với n từ 1..vô cùng >> symsum(sym('1/(2\*n-1)^2'),1,inf) ans = 1/8\*pi^2



### CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC 181 IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỖI BIỂU THỨC: 9. Thay đổi giá trị hàm và biến: Hàm (tt) >> syms x $>> f=2*x^2+x^3-3*x+5;$ >> n=sym2poly(f) % tìm các hệ số đa thức $n = 1 \quad 2 \quad -3 \quad 5$ % tạo lại đa thức từ hệ số >> p=poly2sym(n) % mặc định là x $p = 2*x^2+x^3-3*x+5$ >> p=poly2sym(n,'s') % thay x bằng s $p = s^3+2*s^2-3*s+5$ Giảng viên: Hoàng Xuân Dương



# CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỖI BIỂU THỨC: 9. Thay đổi giá trị hàm và biến: Biến (tt) >> g=3\*x^2+5\*x-4; >> h=subs(g,'x','2') h = 3\*(2)^2+5\*(2)-4 >> numeric(h) ans = 18 >> isstr(h) ans = 0 % h không là chuỗi Giảng viên: Hoàng Xuân Dương







187

### IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỖI BIỂU THỨC:

### 11. Định dạng và đơn giản biểu thức:

### Khai triển Taylor

```
>> syms x
>> f=taylor(log(x+1)/(x-5))
f=-1/5*x+3/50*x^2-41/750*x^3+293/7500*x^4-1207/37500*x^5
>> pretty(f)
```

Giảng viên: Hoàng Xuân Dương



# CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC

188

## IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỗI BIỂU THỨC:

### 11. Định dạng và đơn giản biểu thức:

### Khai triển hằng đẳng thức

```
>> f=sym('x^2-1')
f = x^2-1
>> factor(f)
ans = (x-1)*(x+1)
>> collect(ans)
ans = x^2-1
```

% lấy lại biểu thức f



# CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC 189 IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỖI BIỂU THỨC: 11. Định dạng và đơn giản biểu thức: > Tổng quát: $>> f=sym('(x^2-1)*(x-2)*(x-3)')$ $f = (x^2-1)*(x-2)*(x-3)$ >> collect(f) ans = $x^4-5*x^3+5*x^2+5*x-6$ >> horner(ans) ans = -6+(5+(5+(x-5)\*x)\*x)\*x>> factor(ans) ans = (x-1)\*(x-2)\*(x-3)\*(x+1)>> expand(f) ans = $x^4-5*x^3+5*x^2+5*x-6$ Giảng viên: Hoàng Xuân Dương



# CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỖI BIỂU THỨC: 12. Giải phương trình bậc n: Giải phương trình bậc 2 >> solve('x^2+2\*x-1') ans = [2^(1/2)-1] [-1-2^(1/2)] >> numeric(ans) ans = 0.4142 -2.4142 Giảng viên: Hoàng Xuân Dương

```
CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC

IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỖI BIỂU THỨC:

12. Giải phương trình bậc n:

Giải phương trình bậc 2 (tt)

>> [x,y]=solve('x^2+x*y+y=3','x^2-4*x+3=0')

x =

[1]

[3]

y =

[1]

[-3/2]
```

# TV. XỬ LÝ HÀM DƯỚI DẠNG CHUỖI BIỂU THỨC: 12. Giải phương trình bậc n: ➤ Giải phương trình bậc 3 >> solve('x^3+2\*x^2-4\*x+1') ans = [ 1] [-3/2+1/2\*13^(1/2)] [-3/2-1/2\*13^(1/2)] >> numeric(ans) ans = 1.0000 0.3028 -3.3028 Giảng viên: Hoàng Xuân Dương



# CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỖI BIỂU THỨC: 13. Giải hệ phương trình bậc nhất tuyến tính: Ví dụ: >> y1=sym('2\*x1+2\*x2-3\*x3+x4-4'); >> y2=sym('4\*x1+3\*x2-x3+2\*x4-6'); >> y3=sym('8\*x1+5\*x2-3\*x3+4\*x4-12'); >> y4=sym('3\*x1+3\*x2-2\*x3+2\*x4-6'); >> [x1,x2,x3,x4]=solve(y1,y2,y3,y4,'x1,x2,x3,x4') x1 = 1/3 x2 = 1/3 x3 = -1/3 x4 = 5/3



197

### IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỖI BIỂU THỨC:

### 14. Giải phương trình vi phân:

Phương trình vi phân cấp 2

```
Ví dụ: giải y"=\cos(2x)-y với y(0)=1 và y'(0)=0

>> \operatorname{dsolve}('D2y=\cos(2*x)-y','Dy(0)=0','y(0)=1','x')

ans = 4/3*\cos(x)-1/3*\cos(2*x)

Ví dụ: giải y"-2y'-3y=0 với y(0)=1 và y(1)=1

>> y=\operatorname{dsolve}('D2y-2*Dy-3*y=0','y(0)=0','y(1)=1','x')
```

y = 1/(exp(3)-exp(-1))\*exp(3\*x)-1/(exp(3)-exp(-1))\*exp(-x)

Giảng viên: Hoàng Xuân Dương



# CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC

198

### IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỗI BIỂU THỨC:

### 14. Giải phương trình vi phân:

> Phương trình vi phân cấp 2 (tt)

**D**ương





```
CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC
                                                             201
IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỖI BIỂU THỨC:
   15. Các phép biến đổi:
           Biến đổi Laplace:
   >> syms t s x a w
   >> laplace(sin(t))
   ans = 1/(s^2+1)
   >> ilaplace(1/(s^2+1))
                                 % Biến đổi ngược
   ans = sin(t)
   >> laplace(12*exp(-3*x))
   ans = 12/(s+3)
   >> laplace(sym(1))
   ans = 1/s
                                 Giảng viên: Hoàng Xuân Dương
```





203

### IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỖI BIỂU THỨC:

### 15. Các phép biến đổi:

### Biến đổi Laplace (tt)

Ví dụ: Tìm nghiệm một hệ thống biết hàm truyền đạt:

$$H(S) = \frac{1}{(s+1)(s^2+5s+6)} + \frac{(s+6)}{(s^2+5s+6)}$$

>> ilaplace(
$$1/((s+1)*(s^2+5*s+6))+(s+6)/(s^2+5*s+6))$$
  
ans =  $1/2*exp(-t)-5/2*exp(-3*t)+3*exp(-2*t)$ 

Giảng viên: Hoàng Xuân Dương



# CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC

204

## IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỖI BIỂU THỨC:

### 15. Các phép biến đổi:

### > Biến đổi Fourier:

- >> syms t x
- >> fourier(exp(-x^2),t)

ans =  $pi^{(1/2)}*exp(-1/4*t^2)$ 

 $>> ifourier(pi^{(1/2)*exp(-1/4*t^2)})$  %

% Biến đổi ngược

ans =  $3991211251234741/2251799813685248/pi^(1/2)*exp(-x^2)$ 

>> factor(3991211251234741/2251799813685248/pi^(1/2)\*exp(-x^2))

ans =  $\exp(-x^2)$ 

>>simplify(3991211251234741/2251799813685248/pi^(1/2)\*exp(-x^2))

ans =  $\exp(-x^2)$ 



205

## IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỗI BIỂU THỨC:

### 15. Các phép biến đổi:

### Biến đổi z:

- >> syms a n z
- >> ztrans(a^n)
- ans = z/a/(z/a-1)
- >> simplify(ans)
- ans = -z/(-z+a)
- >> iztrans(z/(z-a))

 $ans = a^n$ 

% Biến đổi ngược

Giảng viên: Hoàng Xuân Dương



# CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC

206

## IV. XỬ LÝ HÀM DƯỚI DẠNG CHUỗI BIỂU THỨC:

### 15. Các phép biến đổi:

### > Vẽ trong miền tần số:

Cho hệ thống có hàm số chuyển:

$$H(S) = \frac{2s^2 + 5s + 1}{s^2 + 2s + 3}$$

Nhập vào tử và mẫu số:

- >> num=[2 5 1];den=[1 2 3];
- Vẽ giản đồ bode
- >> bode(num,den)
- Vẽ đáp ứng tần số
- >> freqs(num,den)
- Vẽ giản đồ Nyquist
- >> nyquist(num,den)

9





```
CHƯƠNG 4: XỬ LÝ CÁC HÀM TOÁN HỌC

3) Hãy cho biết các dòng sau sai ở vị trí nào:

>> hamtruyen=inline('8*(s+a)/(s*(s+4)(s+3))')

>> fval(@hamtruyen,3,7)

>> plot(@hamtruyen,[4 8])

>> grid

4) Giải thích các dòng sau:

>> syms x

>> a=[sin(x);cos(x)]

>> y=diff(a);

>> x=linspace(0,2*pi);

>> plot(x,eval(y(1,1)), '-r',x,eval(y(2,1)), '.b');

>> gtext('cos(x)'); gtext('sin(x)'); title('Bai tap chuong 4');
```







```
CHƯƠNG 5: ĐỒ HỌA MATLAB
                                                             213
   ĐỒ HOA 2D:
   Các bước cơ bản để sử dung các hàm vẽ:
  1. Chuẩn bi dữ liêu
         x = 0:0.2:12;
         y1 = bessel(1,x);
         y2 = bessel(2,x);
         y3 = bessel(3,x);
  2. Chọn cửa sổ và vị trí một vùng vẽ trong của sổ
         figure(1)
         subplot(2,2,1)
  3. Goi các hàm vẽ
         h = plot(x,y1,x,y2,x,y3);
  4. Chon nét vẽ và màu sắc
         set(h,'LineWidth',2,{'LineStyle'},{'--';':';'-.'})
         set(h,{'Color'},{'r';'g';'b'})
                                 Giảng viên: Hoàng Xuân Dương
```

```
CHƯƠNG 5: ĐỒ HỌA MATLAB
                                                               214
   ĐỒ HỌA 2D:
     Cài đặt thông số trục và lưới
          axis([0 12 -0.5 1])
          grid on
  6. Tạo các chú thích và canh lề cho hình vẽ
          xlabel('Time')
          ylabel('Amplitude')
          legend(h,'First','Second','Third')
          title('Bessel Functions')
          [y,ix] = \min(y1);
          text(x(ix),y,'First Min \rightarrow',...
                   'HorizontalAlignment','right')
  7. Xuất hình vẽ
          print -depsc -tiff -r200 myplot
                                  Giảng viên: Hoàng Xuân Dương
```



215

## I. ĐỒ HỌA 2D:

Các hàm vẽ cơ bản:

| Hàm      | Ý nghĩa                                      |  |  |
|----------|----------------------------------------------|--|--|
| plot     | Vẽ 2D với 2 trục x và y tuyến tính           |  |  |
| plot3    | Vẽ 3D với 3 trục x, y và z tuyến tính        |  |  |
| loglog   | Vẽ với 2 trục x và y là logarithmic          |  |  |
| semilogx | Vẽ với trục x là logarithmic và y tuyến tính |  |  |
| semilogy | Vẽ với trục y là logarithmic và x tuyến tính |  |  |
| plotyy   | Vẽ có 2 trục y                               |  |  |

Giảng viên: Hoàng Xuân Dương



```
CHƯƠNG 5: ĐỒ HỌA MATLAB
```

216

# I. ĐỒ HỌA 2D:

### 1. Hàm plot:

```
Cú pháp hàm plot như sau

plot(Y)

plot(X1,Y1,...)

plot(X1,Y1,LineSpec,...)

plot(...,'PropertyName',PropertyValue,...)
```

plot(axes\_handle,...)
h = plot(...)

hlines = plot('v6',...)







218

# ĐỒ HỌA 2D:

### 1. Hàm plot (tt)

Handle: Mỗi một đối tương trong màn hình đồ hoa đều được nhận diện bằng một con số, được gọi là handle của đối tương

Một số hàm liên quan đến các handle đặc biệt:

- → handle đối tượng gốc
- qcf → trả về handle cho figure hiện hành
- gca → trả về handle cho truc vẽ hiện hành
- gco → trả về handle cho đối tượng hiện hành
- gcbf → trả về handle cho callback figure
- gcbo→ trả về handle cho callback object





220

- I. ĐỒ HỌA 2D:
  - 1. Hàm plot (tt)
    - > Các loại nét vẽ đặc biệt:

plot(x,y,'linestyle\_marker\_color')

| linestyle | Kiểu đường           |  |
|-----------|----------------------|--|
| 121       | Solid line (default) |  |
| 12.1      | Dashed line          |  |
| 1,1<br>•  | Dotted line          |  |
| 1!        | Dash-dot line        |  |
| 'none'    | No line              |  |

ương

| marker            | Ý nghĩa                       |  |
|-------------------|-------------------------------|--|
| '+'               | Plus sign                     |  |
| 'o'               | Circle                        |  |
| ' <b>*</b> '      | Asterisk                      |  |
| 1.1               | Point                         |  |
| 'X'               | Cross                         |  |
| 'square' or 's'   | Square                        |  |
| 'diamond' or 'd'  | Diamond                       |  |
| '^1               | Upward-pointing triangle      |  |
| 'V'               | Downward-pointing triangle    |  |
| '>'               | Right-pointing triangle       |  |
| '<'               | Left-pointing triangle        |  |
| 'pentagram' or 'p | Five-pointed star (pentagram) |  |
| 'hexagram' or 'h  | Six-pointed star (hexagram)   |  |
| 'none'            | No marker (default)           |  |























# CHƯƠNG 5: ĐỒ HỌA MATLAB

233

- Các thuộc tính của text:
  - horizontalalignment {left | center | right}

Thuộc tính canh lề theo hàng ngang cho text theo vị trí đặt text



### Ví du:

>> text(x,y,'string','HorizontalAlignment','right',...

Giảng viên: Hoàng Xuân Dương



# CHƯƠNG 5: ĐỒ HỌA MATLAB

234

- Các thuộc tính của text:
  - rotation scalar(degrees)

Xoay text đi một góc, mặc định là 0

Fontname

Kiểu font chữ của text (mặc định Helvetica). Có thể kết hợp với các option để định dạng:

\bf - bold font

\it - italics font

\sl - oblique font (rarely available)

\rm - normal font

### Ví du:

>> text(11,380,'\itConcentration','Rotation',-55,... 'FontName','Tahoma')



# CHƯƠNG 5: ĐỒ HỌA MATLAB

235

Các thuộc tính của text:

Fontsize

Kích thước font chữ (mặc định là 10) Ví du:

>> text(11,380,'Concentration','Rotation',-55, 'fontsize',12)

### string

Chuỗi văn bản cần được hiển thị. Có thể sử dụng các ký hiệu trong bảng sau để tạo các ký tự đặc biệt:

Giảng viên: Hoàng Xuân Dương



### Bài giảng Tin học chuyên ngành 236 Character Sequence | Symbol | Character Sequence | Symbol | Character Sequence Symbol \alpha \upsilon \sim \beta \phi \leq γ χ \infty \gamma \chi Ψ δ \delta \psi \clubsuit 3 \epsilon \omega ω \diamondsuit Γ ζ \zeta \Gamma \heartsuit η Δ \eta \Delta \spadesuit Θ \Theta \leftrightarrow $\leftrightarrow$ \theta в Λ \vartheta \Lambda \leftarrow \Xi Ξ \uparrow ↑ \iota П κ $\rightarrow$ \Pi \rightarrow Σ $\downarrow$ λ \downarrow \lambda \Sigma Y \Upsilon \circ \mu ν Φ \ nu \ pm ≥ \Psi \xi \geq \Omega \propto Giảng viên: Hoàng Xuân Dương

| \rho      | ρ      | \forall   | A        | \partial   | ð |
|-----------|--------|-----------|----------|------------|---|
| \sigma    | σ      | \exists   | 3        | \bullet    | * |
| \varsigma | 5      | \ni       | э        | \div       | ÷ |
| \tau      | τ      | \cong     | =        | \neq       | # |
| \equiv    | =      | \approx   | ~        | \aleph     | N |
| \ Im      | 3      | \ Re      | Я        | \wp        | В |
| \otimes   | 8      | \oplus    | <b>⊕</b> | \oslash    | Ø |
| \cap      | $\cap$ | \cup      | U        | \supseteq  | ⊇ |
| \supset   | )      | \subseteq | ⊆        | \subset    |   |
| \int      | ſ      | \in       | €        | \0         | 0 |
| \rfloor   | J      | \lceil    | Γ        | \nabla     | V |
| \lfloor   | L      | \cdot     |          | Vidots     |   |
| \perp     | Т      | \neg      | 7        | \prime     |   |
| \wedge    | ^      | \times    | х        | vo         | Ø |
| \rceil    | 7      | \surd     | 4        | \mid       | ı |
| wee       | v      | \varpi    | ប        | \copyright | 0 |
| \langle   | (      | \rangle   | )        |            |   |



```
CHƯƠNG 5: ĐỒ HỌA MATLAB
                                                                  239
    ĐỒ HỌA 2D:
   2. Các hàm gán nhãn (tt)
       b. tittle:
       Cú pháp:
          title('string')
          title(fname)
          title(...,'PropertyName',PropertyValue,...)
          h = title(...)
       Ví du:
       >> x=linspace(0,2*pi);
       >> plot(x,sin(x))
       >> title('Do thi sin(x)', 'FontName',...
       'SVNelvetica', 'Fontsize', 15, 'color', 'r')
                                    Giảng viên: Hoàng Xuân Dương
```



```
CHƯƠNG 5: ĐỒ HỌA MATLAB

I. ĐỒ HỌA 2D:

2. Các hàm gán nhãn (tt)

c. xlabel-ylabel-zlabel

Cú pháp:
 xlabel('string')
 xlabel(fname)
 xlabel(m,'PropertyName',PropertyValue,...)
 h = xlabel(...)

ylabel(...)
 h = ylabel(...)

Zlabel(...)

h = zlabel(...)
```



```
CHƯƠNG 5: ĐỒ HỌA MATLAB
                                                              243
   ĐỒ HOA 2D:
   2. Các hàm gán nhãn (tt)
          legend: Đặt chú thích cho hình vẽ
      Cú pháp:
          legend('string1','string2',...)
          legend(h,'string1','string2',...)
          legend(string_matrix)
          legend(h,string_matrix)
          legend(axes_handle,...)
          legend('off')
          legend(h,...)
          legend(...,pos)
          h = legend(...)
                                 Giảng viên: Hoàng Xuân Dương
```



# CHƯƠNG 5: ĐỒ HỌA MATLAB

245

## I. ĐỒ HỌA 2D:

## 2. Các hàm gán nhãn (tt)

### e. gtext

Đặt text theo vị trí click chuột trên màn hình đồ họa, trong không gian 2 chiều Cú pháp:

```
gtext('string')
h = gtext('string')
```

Giảng viên: Hoàng Xuân Dương



# CHƯƠNG 5: ĐỒ HỌA MATLAB

246

### I. ĐỒ HỌA 2D:

### 2. Các hàm gán nhãn (tt)

Ví dụ:

- >> x=linspace(0,2\*pi,30);
- >> y=sin(x);z=cos(x);
- >> plot(x,y,x,z)
- >> grid
- >> xlabel('Truc x','Fontname','SVNhelvetica','Fontsize',15,'color','g')
- >> ylabel('Do thi y va z','Fontname','SVNhelvetica','Fontsize',15,'color','b')
- >> title('Do hoa 2D','Fontname','SVNhelvetica','Fontsize',15,'color','r')
- >> text(2.5,0.7,'Do thi sin(x)',...

'FontName','SVNelvetica','Fontsize',11,'color','b')

- >> gtext('Do thi cos(x)','FontName','SVNelvetica','Fontsize',12,'color','g')
- >> legend('sin(x)','cos(x)',-1) % ghi chú về hình vẽ























# CHƯƠNG 5: ĐỒ HỌA MATLAB 257 ĐỒ HỌA 2D: 3. Các hàm cài đặt (tt) Đặt loại nét vẽ mặc định: Ví du: >> x = 0:pi/10:2\*pi; $>> y1 = \sin(x); y2 = \sin(x-pi/2); y3 = \sin(x-pi);$ % Đặt 3 loại đường vẽ >> set(0,'DefaultAxesLineStyleOrder',{'-o',':s','--+'}) % Đặt màu vẽ là xám >> set(0,'DefaultAxesColorOrder',[0.5,0.5,0.5]) % Vẽ 3 hình >> plot(x,y1,x,y2,x,y3)% Trả về mặc định >> set(0,'DefaultAxesLineStyleOrder','remove') >> set(0,'DefaultAxesColorOrder','remove') Giảng viên: Hoàng Xuân Dương



```
CHƯƠNG 5: ĐỒ HỌA MATLAB
                                                             259
I. ĐỒ HỌA 2D:
   3. Các hàm cài đặt (tt)
           Đặt trục vẽ:
       Cú pháp:
       semilogx(Y)
       semilogx(X1,Y1,...)
       semilogx(X1,Y1,LineSpec,...)
       semilogx(...,'PropertyName',PropertyValue,...)
       h = semilogx(...)
       hlines = semilogx('v6',...)
       semilogy(...)
       h = semilogy(...)
       hlines = semilogy('v6',...)
                                 Giảng viên: Hoàng Xuân Dương
```



```
CHƯƠNG 5: ĐỒ HỌA MATLAB
                                                            261
   ĐỒ HOA 2D:
  4. Hàm plotyy:
  Cú pháp hàm plotyy như sau:
      plotyy(X1,Y1,X2,Y2)
      plotyy(X1,Y1,X2,Y2,'function')
      plotyy(X1,Y1,X2,Y2,'function1','function2')
      [AX,H1,H2] = plotyy(...) sẽ trả về:
          AX = handle của truc
          H1 = handle của hình 1
          H2 = handle của hình 2
       'function' có thể là plot, semilogx, semilogy, loglog,
       stem, hay bất kỳ hàm Matlab theo cú pháp:
             h = function(x,y)
                                Giảng viên: Hoàng Xuân Dương
```











# CHƯƠNG 5: ĐỖ HỌA MATLAB I. ĐỖ HỌA 2D: 5. Hàm plot3 (tt) Ví dụ 1: >> t = 0:pi/50:10\*pi; >> plot3(sin(t),cos(t),t) >> axis square % chọn 3 trục x,y,z bằng nhau Giảng viên: Hoàng Xuân Dương







# CHƯƠNG 5: ĐỒ HỌA MATLAB I. ĐỒ HỌA 2D: 6. Đặt thông số cho trục (tt) .... axis equal % tỉ lệ các trục bằng nhau axis square % độ dài các trục bằng nhau axis normal axis off axis on



# CHƯƠNG 5: ĐỒ HỌA MATLAB 273 ĐỒ HOA 2D: I. 6. Đặt thông số cho trục (tt) Ví dụ 1 (tt) >> title('Ve sin(\Theta)','Fontname','SVNhelvetica',... 'Fontsize',15,'color','r') >> text(-pi/4,sin(-pi/4),'\leftarrow sin(-\pi\div4)',... 'HorizontalAlignment','left','color','r') >> hold on >> set(findobj(gca,'Type','line','Color',[1 0 0]),... 'Color',[0,0,1],'LineWidth',2) >> hold off >> set(findobj(gca,'Type','line','Color',[0 0 1]),... 'Color',[0 1 0],'LineWidth',2) Giảng viên: Hoàng Xuân Dương







```
CHƯƠNG 5: ĐỒ HỌA MATLAB
                                                                    277
I. ĐỒ HOA 2D:
   7. Vẽ nhiều hình:
   Ví du:
    >> h1=figure
                                       % Tạo khung hình 1
    >> x=linspace(0,2*pi);
    >> plot(x,sin(x));
   >> axis([0 2*pi -1 1]);title('sin(x)');
   >> h2=figure
                                       % Tạo khung hình 2
   >> plot(x,cos(x));
   >> axis([0 2*pi -1 1]);title('cos(x)');
   >> h3=figure
   >> plot(x,2.*sin(x).*cos(x));
    >> axis([0 2*pi -1 1]);title('2*sin(x)*cos(x)');
                                     Giảng viên: Hoàng Xuân Dương
```



```
CHƯƠNG 5: ĐỒ HỌA MATLAB
                                                            279
II. ĐỒ HOA 3D:
   1. Cách sử dụng các hàm vẽ:
           Chuẩn bị dữ liệu
              z=peaks(20)
           Chọn vị trí trong cửa số để vẽ
              figure(1)
              subplot(2,1,2)
          Goi hàm vẽ 3D
              h = surf(z);
           Chon màu và tô bóng
              colormap hot
              shading interp
              set(h,'EdgeColor','k')
                                Giảng viên: Hoàng Xuân Dương
```

```
CHƯƠNG 5: ĐỒ HỌA MATLAB
                                                               280
       Thêm lighting
          light('Position',[-2,2,20])
          lighting phong
          material([0.4,0.6,0.5,30])
          set(h,'FaceColor',[0.7 0.7 0],...'BackFaceLighting','lit')
  6.
       Chon view
          view([30,25])
          set(gca,'CameraViewAngleMode','Manual')
       Chon truc
  7.
          axis([5 15 5 15 -8 8])
          set(gca,'ZTickLabel','Negative||Positive')
                                  Giảng viên: Hoàng Xuân Dương
```

```
8. Chọn tỉ lệ
set(gca,'PlotBoxAspectRatio',[2.5 2.5 1])
9. Tạo các nhãn
xlabel('X Axis')
ylabel('Y Axis')
zlabel('Function Value')
title('Peaks')

10. In
set(gcf,'PaperPositionMode','auto')
print -dps2
```



```
CHƯƠNG 5: ĐỖ HỌA MATLAB

II. ĐỖ HỌA 3D:

2. Vẽ dữ liệu 3D (tt)

Ví dụ 2:

>> [X,Y] = meshgrid([-2:0.1:2]);

>> Z = X.*exp(-X.^2-Y.^2);

>> plot3(X,Y,Z)

>> grid on

Giảng viên: Hoàng Xuân Dương
```







```
CHƯƠNG 5: ĐỖ HỌA MATLAB

II. ĐỖ HỌA 3D:

3. Các loại hàm vẽ bề mặt (tt)

b. Hàm surf (tt)

Ví dụ:

>> [X,Y,Z] = peaks(30);
>> surfc(X,Y,Z)
>> colormap hsv
>> axis([-3 3 -3 3 -10 5])

Giảng viên: Hoàng Xuân Dương
```





289

### II. ĐỒ HỌA 3D:

### 4. Sử dụng màu (tt)

colormap(func(n)) tạo ma trận n hàng theo hàm func func có thể là: hsv, hot, cool, summer, gray, jet, bone, winter...

### Ví du:

- >> cm=colormap(hot(20))
- >> colormap(gray)
- >> colormap jet

Giảng viên: Hoàng Xuân Dương



### CHƯƠNG 5: ĐỒ HỌA MATLAB

290

| Red  | Green | Blue | Color      |
|------|-------|------|------------|
| 0    | 0     | 0    | black      |
| 1    | 1     | 1    | white      |
| 1    | 0     | 0    | red        |
| 0    | 1     | 0    | green      |
| 0    | 0     | 1    | blue       |
| 1    | 1     | 0    | yellow     |
| 1    | 0     | 1    | magenta    |
| 0    | 1     | 1    | cyan       |
| 0.5  | 0.5   | 0.5  | gray       |
| 0.5  | 0     | 0    | Dark red   |
| 1    | 0.62  | 0.40 | copper     |
| 0.49 | 1     | 0.83 | aquamarine |

Giảng viên: Hoàng Xuân Dương











# CHƯƠNG 5: ĐỖ HỌA MATLAB II. ĐỖ HỌA 3D: 5. Định nghĩa View (tt) ví dụ: >> [X,Y]=meshgrid([-2:.25:2]); >> Z=X.\*exp(-X.^2 -Y.^2); >> view([180 0]) >> view([-37.5 -30]) Giảng viên: Hoàng Xuân Dương







```
CHƯƠNG 5: ĐỒ HỌA MATLAB
                                                                299
II. ĐỒ HỌA 3D:
   6. Di chuyển hình (tt)
   Ví dụ 1(tt)
   Hay:
   >> axis equal
   >> set(gca,'Nextplot','replacechildren')
   >> for j=1:30
   plot(fft(eye(j+16)))
   M(j)=getframe;
   end
   Hay:
   >> movie(M)
   >> movie(M,30)
                                   Giảng viên: Hoàng Xuân Dương
```



### CHƯƠNG 5: ĐỒ HỌA MATLAB 301 III. CÁC LOẠI HÀM ĐẶC BIỆT: 1. Hàm bar: Dùng để diễn tả các dữ liệu rời rạc theo dạng biểu đồ cột Hàm bar và barh: % Đồ thị thanh đứng bar(Y) bar(x,Y)bar(...,width) bar(...,'style') bar(...,LineSpec) [xb,yb] = bar(...)h = bar(...)barh(...) % Đồ thị thanh ngang [xb,yb] = barh(...)h = barh(...)Giảng viên: Hoàng Xuân Dương











## TII. CÁC LOẠI HÀM ĐẶC BIỆT: 1. Hàm bar (tt) b. Hàm bar3 và bar3h: bar3(Y) bar3(...,width) bar3(...,'style') bar3(...,LineSpec) h = bar3(...) bar3h(...) h = bar3h(...)















```
CHƯƠNG 5: ĐỒ HỌA MATLAB
                                                                315
III. CÁC LOẠI HÀM ĐẶC BIỆT:
   2. Hàm area:
       area(Y)
       area(X,Y)
       area(...,ymin)
       area(...,'PropertyName',PropertyValue,...)
       h = area(...)
   Ví du:
   >> Y = [1, 5, 3; 3, 2, 7; 1, 5, 3; 2, 6, 1];
   >> area(Y); grid on
   >> colormap summer
   >> set(gca,'Layer','top')
   >> title 'Stacked Area Plot'
                                   Giảng viên: Hoàng Xuân Dương
```



```
CHƯƠNG 5: ĐỒ HỌA MATLAB
                                                                   317
III. CÁC LOẠI HÀM ĐẶC BIỆT:
    3. Hàm pie: Hàm vẽ dạng rẽ quạt
            pie:
       a.
           pie(X)
           pie(X,explode)
           pie(...,labels)
                                               Product A
           pie(axes_handle,...)
           h = pie(...)
   Ví du 1:
                                       Product B
                                                                roduct D
    >> pie(1:4,{'Product A',...
   'Product B','Product C','Product D'})
                                               Product C
                                    Giảng viên: Hoàng Xuân Dương
```



```
CHƯƠNG 5: ĐỒ HỌA MATLAB
                                                          319
III. CÁC LOẠI HÀM ĐẶC BIỆT:
   3. Hàm pie (tt)
                                 25%
          pie (tt)
      a.
                                                          42%
   Ví du 3:
   >> X = [ 19.3 22.1 51.6;
             34.2 70.3 82.4;
             61.4 82.9 90.8;
             50.5 54.9 59.1;
             29.4 36.3 47.0];
   >> x = sum(X); explode = zeros(size(x));
   >> [c,offset] = max(x);
   >> explode(offset) = 1;
   >> h = pie(x,explode); colormap summer
                               Giảng viên: Hoàng Xuân Dương
```







```
TII. CÁC LOẠI HÀM ĐẶC BIỆT:

4. Hàm Histograms (tt)

a. Histograms trong tọa độ phẳng (tt)

Ví dụ 3:

>> x = -2.9:0.1:2.9;

>> y = randn(10000,1);

>> hist(y,x)

% thay đổi màu

>> h = findobj(gca,'Type','patch');

>> set(h,'FaceColor','r','EdgeColor','w')
```



## CHƯƠNG 5: ĐỒ HỌA MATLAB III. CÁC LOẠI HÀM ĐẶC BIỆT: 4. Hàm Histograms (tt) b. Histograms trong tọa độ cực: rose(theta) rose(theta,x) rose(theta,nbins) rose(axes\_handles,...) h = rose(...) [tout,rout] = rose(...)











# CHƯƠNG 5: ĐỖ HỌA MATLAB III. CÁC LOẠI HÀM ĐẶC BIỆT: 5. Dữ liệu rời rạc (tt) a. Hàm stem (tt) Ví dụ: >> t = linspace(-2\*pi,2\*pi,10); >> h = stem(t,cos(t),'fill','--'); >> set(h,'MarkerFaceColor','red') Giảng viên: Hoàng Xuân Dương



# CHƯƠNG 5: ĐỒ HỌA MATLAB III. CÁC LOẠI HÀM ĐẶC BIỆT: 5. Dữ liệu rời rạc (tt) b. Vẽ nhiều hình: Ví dụ 1: Vẽ 2 chuỗi dữ liệu trên 1 hình >> x = 0:25; >> y = [exp(-.07\*x).\*cos(x);exp(.05\*x).\*cos(x)]'; >> h = stem(x,y); >> set(h(1),'MarkerFaceColor','blue') >> set(h(2),'MarkerFaceColor','red','Marker','square')



```
CHƯƠNG 5: ĐỒ HỌA MATLAB
                                                                   335
III. CÁC LOẠI HÀM ĐẶC BIỆT:
   5. Dữ liệu rời rạc (tt)
           Vẽ nhiều hình (tt)
   Ví dụ 2:
    >> x = linspace(0,2*pi,60);
    >> a = \sin(x); b = \cos(x);
    >> stem_handles = stem(x,a+b);
    >> hold on
    >> plot_handles = plot(x,a,'--r',x,b,'--g');
    >> hold off
    >> legend_handles = [stem_handles(1);plot_handles];
   >> legend(legend_handles,'a + b','a = \sin(x)','b = \cos(x)',3)
    >> xlabel('Time in \musecs'); ylabel('Magnitude')
    >> title('Linear Combination of Two Functions')
                                    Giảng viên: Hoàng Xuân Dương
```



```
TII. CÁC LOẠI HÀM ĐẶC BIỆT:

5. Dữ liệu rời rạc (tt)

c. Hàm stem3: Vẽ 1 chuỗi dữ liệu 3 chiều stem3(Z)
stem3(X,Y,Z)
stem3(...,'fill')
stem3(...,LineSpec)
h = stem3(...)
hlines = stem3('v6',...)
```









341

- I. SIMULINK
- II. MỘT SỐ HỆ THỐNG
- III. MACH ĐIỆN
- IV. KHŐI SUBSYSTEM
- V. <u>BÀI TÂP</u>

Giảng viên: Hoàng Xuân Dương



### CHƯƠNG 6: SIMULINK VÀ ỨNG DỤNG

342

### I. SIMULINK

### 1. Khái niệm:

- Simulink là công cụ dùng để mô phỏng và phân tích các hệ thống liên tục, rời rạc, tuyến tính và phi tuyến thông qua giao diên dang sơ đồ khối
- Trên cửa sổ lệnh gõ simulink hoặc chọn biểu tượng simulink trên thanh công cụ của Matlab
- Cửa sổ Simulink Library Browser xuất hiện

,









### CHƯƠNG 6: SIMULINK VÀ ỨNG DỤNG

347

### **SIMULINK**

### 2. Thực hiện mô hình (tt)

| Các thao tác khi tạo sơ đô khối |                                    |  |
|---------------------------------|------------------------------------|--|
| Thao tác                        | Phím + chuột                       |  |
| Chọn khối hay đường             | LMB (left mouse button)            |  |
| Chọn nhiều khối hay nhiều đường | Shift+LMB                          |  |
| Chọn khối kế                    | Tab                                |  |
| Chọn khối trước                 | Shift+Tab                          |  |
| Chép khối từ cửa sổ khác        | Bấm chuột và kéo thả (kéo khối)    |  |
| Di chuyển khối                  | Kéo khối                           |  |
| Tạo khối giống nhau             | RMB và kéo thả hay LMB+Ctrl và kéo |  |
| Nối các khối                    | LMB                                |  |
| Tháo khối                       | Shift+kéo khối                     |  |

Giảng viên: Hoàng Xuân Dương



### CHƯƠNG 6: SIMULINK VÀ ỨNG DỤNG

348

### **SIMULINK**

### 2. Thực hiện mô hình (tt)

| Các thao tác khi tạo sơ đô khối |                                 |  |  |
|---------------------------------|---------------------------------|--|--|
| Thao tác                        | Phím + chuột                    |  |  |
| Mở hệ con đã chọn               | Enter                           |  |  |
| Chuyển đến cha của hệ con       | Esc                             |  |  |
| Xóa khối                        | Chọn + bấm del                  |  |  |
| Tạo chú giải                    | Double click trong giản đồ      |  |  |
| Chép chú giải                   | Ctrl+kéo                        |  |  |
| Di chuyển chú giải              | Kéo                             |  |  |
| Biên tập chú giải               | LMB vào text                    |  |  |
| Bỏ chú giải                     | Shift+chọn chú giải rồi bấm del |  |  |
| Quay khối 90º theo chiều kim    | Ctrl+R                          |  |  |
| Lật khối (đảo đầu vào ra)       | Ctrl+I                          |  |  |
|                                 | Giảng viên: Hoàng Xuân Dương    |  |  |

### CHƯƠNG 6: SIMULINK VÀ ỨNG DỤNG

349

### I. SIMULINK

### 2. Thực hiện mô hình (tt)

- Muốn thêm chú thích vào hình, chọn vào chỗ trống trong sơ đồ khối, nhập các chú thích.
- Sau khi vẽ xong sơ đồ khối, chuyển sang giai đoạn mô phỏng. Chọn Simulation/start
- Chon File/save để lưu sơ đồ thành tập tin với đuôi .mdl



Giảng viên: Hoàng Xuân Dương



### CHƯƠNG 6: SIMULINK VÀ ỨNG DỤNG 350 3. Thư viện simulink: Continuous-Khối hàm liên tục Derivative Đao hàm tín hiệu vào Integrator Tích phân tín hiệu vào Memory Khối nhớ Phương trình trạng thái liên tục State-Space Transfer Fcn Hàm truyền liên tục Transport Delay Delay Delay thay đổi Variable Transport Delay Hàm truyền theo cực và zero Zero-Pole Discontinuous-Khối hàm phi tuyến Backlash Khe hở Coulomb & Viscous Friction Ma sát khô và ướt Dead Zone Vùng chết Manual Switch Chọn bằng tay Giảng viên: Hoàng Xuân Dương

| CHƯƠNG 6: SIMULINK VÀ    | a und Dùng                       | 351 |
|--------------------------|----------------------------------|-----|
| Multiport Switch         | Chọn các khối vào                |     |
| Quantizer                | Lượng tử                         |     |
| Rate Limiter             | Giới hạn đạo hàm tín hiệu        |     |
| Relay                    | Khâu rơle                        |     |
| Saturation               | Khâu bão hòa                     |     |
| Switch                   | Chuyển mạch giữa hai ngõ vào     |     |
| Disc                     | rete-Các khối rời rạc            |     |
| Discrete Filter          | Lọc IIR và FIR                   |     |
| Discrete State-Space     | Phương trình trạng thái rời rạc  |     |
| Discrete-Time Integrator | Tích phân rời rạc                |     |
| Discrete Transfer Fcn    | Hàm truyền rời rạc               |     |
| Discrete Zero-Pole       | Hàm truyền rời rạc theo cực zero |     |
| First-Order Hold         | Bộ lấy mẫu và giữ bậc một        |     |
| Unit Delay               | Bộ trễ một chu kỳ lấy mẫu        |     |



| CHƯƠNG 6: SIMULINK VÀ Ứ    | NG DỤNG                                |
|----------------------------|----------------------------------------|
|                            |                                        |
| Complex to Magnitude-Angle | Tính biên độ và pha tín hiệu số phức   |
| Complex to Real-Imag       | Tính phần thực và phần ảo của số phức  |
| Derivative                 | Tính đạo hàm                           |
| Dot Product                | Tính tích chấm                         |
| Gain                       | Khối tỉ lệ                             |
| Logical Operator           | Toán tử logic                          |
| Magnitude-Angle to Complex | Tạo tín hiệu số phức từ biên độ và pha |
| Math Function              | Hàm toán học                           |
| Matrix Gain                | Nhân tín hiệu vào với ma trận          |
| MinMax                     | Lấy cực đại hay cực tiểu               |
| Product                    | Tính tích hay thương đầu vào           |
| Real-Imag to Complex       | Đổi phần thực và ảo ra tín hiệu phức   |
| Relational Operator        | Toán tử quan hệ                        |
| Rounding Function          | Làm tròn                               |



| CHƯƠNG 6: SIMULINK  | VA UNG DŲNG 3:                         |
|---------------------|----------------------------------------|
| From                | Nhận tín hiệu từ khối goto             |
| Goto                | Chuyển tín hiệu đến khối From          |
| Goto Tag Visibility | Ấn định tag của khối goto              |
| Manual Switch       | Khóa hai chiều đk bằng tay             |
| Merge               | Hợp nhiều đường thành đường vô hướng   |
| Multiport Switch    | Khóa nhiều chiều                       |
| Mux                 | Kết hợp nhiều đường thành đường vector |
| Selector            | Chọn các phần tử của vector ngõ vào    |
| Switch              | Khóa hai chiều                         |
| Sinks-Các           | khối hiển thị hay lưu tín hiệu ra      |
| Display             | Hiển thị giá trị đầu vào               |
| Scope               | Hiển thị giá trị ra khi mô phỏng       |
| Stop Simulation     | Ngừng mô phỏng                         |
| To File             | Ghi dữ liệu vào file                   |



### CHƯƠNG 6: SIMULINK VÀ ỨNG DỤNG Repeating Sequence Tạo tín hiệu lặp lại Signal Generator Tạo dạng sóng Sine Wave Tạo sóng sin Step Tạo hàm nấc Uniform Random Number Tạo số ngẫu nhiên phân bố đều

Giảng viên: Hoàng Xuân Dương



357



### CHƯƠNG 6: SIMULINK VÀ ỨNG DỤNG

358

### I. SIMULINK

### 4. Function block parameters:

 Để định các thông số cho các hàm hệ thống liên kết với khối, double click vào khối để mở cửa sổ Function block parameters.

Ví dụ 1: Khối tích phân integrator



Giảng viên: Hoàng Xuân Dương















# II. MỘT SỐ HỆ THỐNG

### 1. Hệ thống Backlash:

## a. Khối MUX có 2 ngõ vào (tt)

- Khối Sin Wave: Simulink/ Sources
- Khối Backlash: Simulink/ Discontinuites
- Khối Mux: Simulink/ Signal routing
- Khối Outport: Simulink/ Ports & Subsystems
- Khối Scope: Simulink/ Sinks











# II. MỘT SỐ HỆ THỐNG

- 1. Hệ thống Backlash:
  - a. Khối MUX có 2 ngõ vào (tt)
- Có thể thay đổi thông số cho nguồn sin bằng cách double click khối Sin Wave, thay đổi giá trị như biên độ, tần số,...
- Có thể gọi lại mô hình bằng cách trong Command window:

>> trigger















# II. MỘT SỐ HỆ THỐNG

### 2. Hệ thống phương trình Van Der Pol

Thực hiện với:

- Khối Fcn: Simulink/ User-defines Function
- Khối Product, Gain, Sum: Simulink/ Math operations
- Khối Integrator: Simulink/ Continuous
   Ở khối tích phân thứ 2, vào properties chọn điều kiện đầu là bằng 1
- Lưu mô hình với tên ptvdp.mdl
- >> [t,x,y]=sim('ptvdp',30);
- >> plot(t,y(:,1),':b',t,y(:,2),'--r')









# II. MỘT SỐ HỆ THỐNG

- 3. Đáp ứng hệ thống
  - a. Sử dụng sóng sin vào cố định
- Lưu mô hình với tên transfer.mdl
- >> [t,x,y]=sim('transfer',10);
- >> plot(t,y(:,1),':b',t,y(:,2),'--r')
- Hệ thống có hồi tiếp âm nên sóng sin vào có tần số càng cao thì sóng ra tại 'Ngo ra 1' có biên độ càng nhỏ. Đây là dạng mạch lọc thông thấp









# II. MỘT SỐ HỆ THỐNG

- 3. Đáp ứng hệ thống
  - b. Khối Signal Generator (tt)

Thực hiên với:

- Khối Signal Generator: Simulink/ Source Vào properties chọn đơn vị của tần số là rad/s (hinh vẽ), dang sóng có thể là sin, vuông, tam giác hoặc ngẫu nhiên.
- Lưu mô hình với tên kdai.mdl
- >> [t,x,y]=sim('kdai',10);
- >> plot(t,y)

Khối Signal Generator có thể thay bằng khối Inport để nhập tín hiệu cần khuếch đại từ ngoài vào











# II. MỘT SỐ HỆ THỐNG

#### 3. Đáp ứng hệ thống

c. Hệ thống rời rạc

Thực hiện với:

- Khối Discreate Transfer Fcn: Simulink/ discreate
   Vào properties định các tham số cho hàm truyền
- Khối Step: Simulink/ Source
   Ở khối Fcn thứ 2, vào properties chọn thời gian lấy mẫu bằng 0.7
- Lưu mô hình với tên htrrac.mdl
- >> [t,x,y]=sim('htrrac',30);
- >> stairs(t,y,':r')







#### II. MỘT SỐ HỆ THỐNG

#### 4. Khối to Workspace

- Khối Workspace sẽ tự động trả về giá trị nằm trong biến được khai báo trong property mà không cần sử dụng hàm sim()
- Khi dùng khối này phải khai báo biến và chọn loại giá trị trả về







# II. MỘT SỐ HỆ THỐNG

### 4. Khối to Workspace (tt)

- Khối To Workspace: Simulink/ Sinks
   Khai báo biến delays và trị trả về là array
- Khối Transport delay: Simulink/ Continuous
- Lưu mô hình với tên delay.mdl
- >> delays % quan sát biến trả về
- >> plot(delays)









## III. MẠCH ĐIỆN

- 1. Đo điện thế:
  - a. Khối Voltage Measurement (tt)

Thực hiện với:

- AC Voltage Source: Simpowersystems/ Electrical Source
   Khai báo 3 VAC, tần số 50Hz và pha=0
- Khối mass: Simpowersystems/ Connectors
- Voltage Mesurement: Simpowersystems/ Mesurement
- Khối Series RLC Branch: Simpowersystems/ Elements
- Chọn thời gian Stop time là 10s
- Chọn time range là 0.10s
- Lưu mô hình với tên voltRLC.mdl











# 2. Đo dòng điện:

Thực hiện với:

- AC Current Source: Simpowersystems/ Electrical Source
   Khai báo dòng, tần số và pha.
- Khối T Connect: Simpowersystems/ Connectors
- Current Mesurement: Simpowersystems/ Mesurement
- Chọn thời gian Time range là 0.5s
- Lưu mô hình với tên currnet.mdl
- >> [t,x,y]=sim('current'); plot(t,y)
- >> [t,x,y]=sim('current',0.2); plot(t,y)

g 📅













### **IV. KHŐI SUBSYSTEM:**

- Có thể thực hiện theo 2 cách:
- 1. Tạo hệ con trước:
- i. Chọn Ports & Subsystems, kéo khối vào cửa sổ soạn thảo
- ii. Tạo các khối liên kết bên trong
- iii. Dùng khối inport/outport để biểu diễn tín hiệu vào ra của hệ con









#### IV. KHŐI SUBSYSTEM:

#### 3. Tạo mặt nạ hệ con:

 Hệ con gồm nhiều khối có các thông số khác nhau, có thể dùng một mặt nạ chung cho các khối này, đại diện cho hệ con và các thông số cho khối

Ví dụ: Tạo một hệ con thực hiện hàm y=mx+b

- m, b là các thông số phải đưa vào
- x là tín hiệu vào
- y là tín hiệu ra







































#### I. GRAPHICAL USER INTERFACE

#### 2. Soạn thảo các thuộc tính (tt)

| Thuộc tính                   | Ý nghĩa                                  |
|------------------------------|------------------------------------------|
| Tag                          | Tên gán cho component                    |
| BackgroundColor              | Màu nền của component                    |
| ForegroundColor              | Màu chữ trên component                   |
| FontName, FontAngle,         | Các đặc tính của font chữ trên component |
| String                       | Văn bản hiển thị trên component          |
| Enable                       | Cho phép component hoạt động hay không   |
| Visible                      | Hiển thị component hay không             |
| Nếu là layout                |                                          |
| Color                        | Màu nền cửa sổ                           |
| Name                         | Tên cửa sổ                               |
| Resize                       | Điều chỉnh kích thước cửa sổ             |
| Ciảng viên: Hoàng Vuên Dương |                                          |

Giảng viên: Hoàng Xuân Dương



#### CHƯƠNG 7: GUI VÀ ỨNG DỤNG

428

#### I. GRAPHICAL USER INTERFACE

#### 3. Các Callback:

- Quan trọng nhất đối với các component là callback, là các hàm con (function) mà file .m sẽ gọi khi tác động vào component
- Mỗi khi thêm vào một component, Matlab đều thêm vào file .m một hàm callback tương ứng (trừ frame, static text, axes)
- Hầu hết nội dung các callback được người sử dụng viết

Ví dụ: Xem nội dung file .m của một figure với một nút nhấn (pushbutton) như sau

































```
CHƯƠNG 7: GUI VÀ ỨNG DỤNG
                                                                         445
II.TAO MENU BĂNG GUI
    6. Tạo các menu khác (tt)
     Kích hoạt các menu mới thêm vào:
      function Hinh_sin_Callback(hObject, eventdata, handles)
      global hsin
     x=linspace(0,2*pi);
     y=sin(x);
     hsin=plot(x,y);
     title('Ham sin(x)')
      function Hinh_sinc_Callback(hObject, eventdata, handles)
      global hsin
      x=linspace(-2*pi,2*pi);
      y=sinc(x);
      hsin=plot(x,y);
      title('Ham sinc(x)')
                                        Giảng viên: Hoàng Xuân Dương
```



```
CHƯƠNG 7: GUI VÀ ỨNG DỤNG
                                                                            447
II.TAO MENU BĂNG GUI
      function View_3D_Callback(hObject, eventdata, handles)
      View(3)
      function Zoom_fill_Callback(hObject, eventdata, handles)
      zoom fill
      % -----
      function Zoom_out_Callback(hObject, eventdata, handles)
      ax=get(handles.figure1,'CurrentAxes');
      set(ax,'CameraViewAngleMode','auto');
      function Bang_mau_Callback(hObject, eventdata, handles)
      global hsin
      uisetcolor(hsin, 'Bang mau Windows')
      function Thoat_Callback(hObject, eventdata, handles)
      closereq
                                          Giảng viên: Hoàng Xuân Dương
```





















457

#### THO CAC DOT TOOMS DIE

#### 1. Tạo GUI (tt)

Menu-Inspect Properties → Định thuộc tính các đối tượng

| Figure            |                   |                              |  |  |  |
|-------------------|-------------------|------------------------------|--|--|--|
| Màu nền giao diện | Color             | Tùy ý                        |  |  |  |
| Tên tập tin .m    | Filename          | GUI_2                        |  |  |  |
| Tên Tiêu đề       | Name              | Tao cac doi tuong dieu khien |  |  |  |
| Độ lớn giao diện  | Position          | [10 7 90 20]                 |  |  |  |
| Chọn trục vẽ      | Handle Visibility | on                           |  |  |  |

| Frame         |                 |        |  |  |
|---------------|-----------------|--------|--|--|
| Màu nền       | BackgroundColor | Tùy ý  |  |  |
| Tên của frame | Tag             | frame1 |  |  |





#### CHƯƠNG 7: GUI VÀ ỨNG DỤNG

458

#### III.TẠO CÁC ĐỐI TƯỢNG ĐIỀU KHIỂN

1. Tạo GUI (tt)

| Static Text (số lượng 2) |          |           |          |  |  |
|--------------------------|----------|-----------|----------|--|--|
| STT                      | Fontsize | Tag       |          |  |  |
| 1                        | 12       | Vao do F: | text_DoF |  |  |
| 2                        | 12       | Do C la:  | text_DoC |  |  |

| Edit (số lượng 2)       |    |    |          |  |  |
|-------------------------|----|----|----------|--|--|
| STT Fontsize String Tag |    |    |          |  |  |
| 1                       | 12 | 32 | edit_DoF |  |  |
| 2                       | 12 | 0  | edit_DoC |  |  |

| Slider (số lượng: 1)         |     |   |            |    |  |
|------------------------------|-----|---|------------|----|--|
| STT Max Min SliderStep Value |     |   |            |    |  |
| 1                            | 100 | 0 | [0.01 0.1] | 32 |  |



## CHƯƠNG 7: GUI VÀ ỨNG DỤNG III.TẠO CÁC ĐỐI TƯỢNG ĐIỀU KHIỂN

1. Tạo GUI (tt)

| Axes (số lượng:1) |                            |    |    |    |  |
|-------------------|----------------------------|----|----|----|--|
| STT               | NextPlot XGrid YGrid ZGrid |    |    |    |  |
| 1                 | replacechildren            | on | on | on |  |

| RadioButton (số lượng: 3) |      |       |                 |  |  |
|---------------------------|------|-------|-----------------|--|--|
| STT String Value Tag      |      |       |                 |  |  |
| 1                         | Do C | [1.0] | radiobutton_DoC |  |  |
| 2                         | Do R | [0.0] | radiobutton_DoR |  |  |
| 3                         | Do K | [0.0] | radiobutton_DoK |  |  |

Giảng viên: Hoàng Xuân Dương

Giảng viên: Hoàng Xuân Dương



459

# CHƯƠNG 7: GUI VÀ ỨNG DỤNG III.TẠO CÁC ĐỐI TƯỢNG ĐIỀU KHIỂN 2. Viết hàm kích hoạt các đối tượng: Thêm vào nội dung GUI\_2.m % Chương trình kích hoạt edit\_DoF để lần lượt đổi nhiệt độ function edit\_DoF\_Callback(hObject, eventdata, handles) F=get(handles.edit\_DoF, 'string'); F=eval(F);

```
function edit_DoF_Callback(hObject, eventdata, handles)
F=get(handles.edit_DoF, 'string');
F=eval(F);
doC=get(handles.radiobutton_DoC, 'value');
doR=get(handles.radiobutton_DoR, 'value');
doK=get(handles.radiobutton_DoK, 'value');
if (doC)
    kq=(F-32)*(5/9);
elseif (doK)
    C=(F-32)*(5/9);
    kq=C+273.15;
elseif (doR)
    kq=F+459.7;
end
set(handles.edit_DoC, 'string', num2str(kq))
```

230

```
CHƯƠNG 7: GUI VÀ ỨNG DUNG
                                                                               461
    % Chương trình cho phép chọn một RadioButton duy nhất
    % --- Executes on button press in radiobutton_DoC.
    function radiobutton_DoC_Callback(hObject, eventdata, handles)
    set(handles.radiobutton_DoC,'value',1);
    set(handles.radiobutton_DoR,'value',0);
    set(handles.radiobutton_DoK,'value',0);
    % Gọi đến hàm kích hoạt edit_DoF
    edit_DoF_Callback(hObject, eventdata, handles)
    % --- Executes on button press in radiobutton_DoR.
    function radiobutton_DoR_Callback(hObject, eventdata, handles)
    set(handles.radiobutton_DoC,'value',0);
    set(handles.radiobutton_DoR,'value',1);
    set(handles.radiobutton_DoK,'value',0);
    edit_DoF_Callback(hObject, eventdata, handles)
    % --- Executes on button press in radiobutton_DoK.
    function radiobutton_DoK_Callback(hObject, eventdata, handles)
    set(handles.radiobutton_DoC,'value',0);
    set(handles.radiobutton_DoR,'value',0);
    set(handles.radiobutton_DoK,'value',1);
    edit_DoF_Callback(hObject, eventdata, handles)
                                          Giảng viên: Hoàng Xuân Dương
```















#### CHƯƠNG 7: GUI VÀ ỨNG DỤNG IV.ĐO TẦN SỐ

469

#### 1. Tạo GUI (tt)

Menu-Inspect Properties → Định thuộc tính các đối tượng

| Figure            |                   |              |  |  |
|-------------------|-------------------|--------------|--|--|
| Màu nền giao diện | Color             | Tùy ý        |  |  |
| Tên tập tin .m    | Filename          | GUI_3        |  |  |
| Tên Tiêu đề       | Name              | Do tan so    |  |  |
| Độ lớn giao diện  | Position          | [1 1 128 36] |  |  |
| Chọn trục vẽ      | Handle Visibility | on           |  |  |

| Frame         |                 |       |  |  |
|---------------|-----------------|-------|--|--|
| Màu nền       | BackgroundColor | Tùy ý |  |  |
| Tên của frame | Tag             | frame |  |  |

Giảng viên: Hoàng Xuân Dương



#### CHƯƠNG 7: GUI VÀ ỨNG DỤNG

470

#### IV.ĐO TẦN SỐ

|     | Static Text (số lượng 12) |                 |               |  |  |  |
|-----|---------------------------|-----------------|---------------|--|--|--|
| STT | Fontsize                  | String          | Tag           |  |  |  |
| 1   | 30                        | Song sin co F = | text_title    |  |  |  |
| 2   | 30                        | 7:38:18         | text_clock    |  |  |  |
| 3   | 11                        | Vao bien do:    | text_BDo      |  |  |  |
| 4   | 11                        | Vao tan so:     | text_TSo      |  |  |  |
| 5   | 11                        | LenStart        | text_LenStart |  |  |  |
| 6   | 15                        | 0               | text_Start0   |  |  |  |
| 7   | 15                        | 1               | text_Start1   |  |  |  |
| 8   | 15                        | 100             | text_Start100 |  |  |  |
| 9   | 11                        | LenStop         | text_LenStop  |  |  |  |
| 10  | 15                        | 0               | text_Stop0    |  |  |  |
| 11  | 15                        | 100             | text_Stop100  |  |  |  |
| 12  | 15                        | 100             | text_Stop1000 |  |  |  |











#### CHƯƠNG 7: GUI VÀ ỨNG DỤNG 475 IV.ĐO TẦN SỐ 2. Viết hàm kích hoạt các đối tượng (tt) Thêm vào nội dung GUI\_3.m function varargout = GUI\_3\_OutputFcn(hObject, eventdata, handles) varargout{1} = handles.output; Timer(handles); % Goi hàm timer function Timer(handles) % Hàm hiển thì đồng hồ hệ thống while find(get(0,'children')==handles.figure1) now=fix(clock); timestr=[num2str(now(4)) ':' sprintf('%02d',now(5))]; timestr=[timestr ':' sprintf('%02d',now(6))]; set(handles.text\_clock,'string',timestr); pause(1); end



# IV.ĐO TẦN SỐ 2. Viết hàm kích hoạt

477

#### 2. Viết hàm kích hoạt các đối tượng (tt)

Callback cho các đối tượng:

```
function edit_BDo_Callback(hObject, eventdata, handles)

Vesin(handles);
%-----
function edit_TSo_Callback(hObject, eventdata, handles)

Vesin(handles);
% --- Executes on slider movement.
function slider_Start_Callback(hObject, eventdata, handles)

Vesin(handles);
% --- Executes on slider movement.
function slider_Stop_Callback(hObject, eventdata, handles)

Vesin(handles);
% --- Executes on button press in pushbutton_Close.
function pushbutton_Close_Callback(hObject, eventdata, handles)

closereq;
```





478

#### 2. Viết hàm kích hoạt các đối tượng (tt)

```
% --- Executes on button press in radiobutton_TSo.
function radiobutton_TSo_Callback(hObject, eventdata, handles)
global y
[x1,y1]=ginput(1);
text(x1,y1,'|-->','color','r')
[x2,y2]=ginput(1);
text(x2-4,y2,'<--|','color','r')
Len=length(y);
F=Len/(x2-x1);
string=[sprintf('%.2g',F)];
text((x2+x1-4)/2,y1,string,'color','r');
set(gcbo,'value',0);
string=[sprintf('Song sin co F = %.2g',F)];
set(handles.text_title,'string',string);
```

,

```
CHƯƠNG 7: GUI VÀ ỨNG DỤNG
                                                                            479
IV.ĐO TẦN SỐ
          Viết hàm kích hoạt các đối tượng (tt)
      % --- Executes on button press in radiobutton_Color.
      function radiobutton_Color_Callback(hObject, eventdata, handles)
      global Hsin
      uisetcolor(Hsin, 'Bang mau windows');
      set(handles.radiobutton_Color,'value',0);
      % --- Executes on button press in radiobutton Grid.
      function radiobutton_Grid_Callback(hObject, eventdata, handles)
      check=get(gcbo,'value');
      if (check==1)
        grid on
      else
        grid off
      end
                                         Giảng viên: Hoàng Xuân Dương
```













#### 485

#### 1. Tạo GUI (tt)

|     | popupmenu (số lượng: 2) |                              |          |                |                      |  |  |  |
|-----|-------------------------|------------------------------|----------|----------------|----------------------|--|--|--|
| STT | String                  | UserData                     | Value    | Tag            | <b>TooltipString</b> |  |  |  |
|     | Loai 1                  |                              |          |                |                      |  |  |  |
|     | Loai 2                  |                              |          |                |                      |  |  |  |
| 1   | Loai 3                  | str2mat('1','2','3','4','5') | [1.0]    | Popupmenu_net  | Chon net pen         |  |  |  |
|     | Loai 4                  |                              |          |                |                      |  |  |  |
|     | Loai 5                  |                              | <u> </u> |                |                      |  |  |  |
|     | Loai :                  |                              |          |                |                      |  |  |  |
|     | Loai –                  |                              |          |                |                      |  |  |  |
| 2   | Loai +                  | str2mat(':','','+','*','>')  | [1.0]    | Popupmenu_loai | Chon loai pen        |  |  |  |
|     | Loai *                  |                              |          |                |                      |  |  |  |
|     | Loai >                  |                              |          |                |                      |  |  |  |

Giảng viên: Hoàng Xuân Dương



#### CHƯƠNG 7: GUI VÀ ỨNG DỤNG

486

#### V. ĐỒ HỌA 2D

#### 1. Tạo GUI (tt)

| Slider (số lượng: 2) |                                                |    |                |    |              |               |
|----------------------|------------------------------------------------|----|----------------|----|--------------|---------------|
| STT                  | STT Max Min SliderStep Value Tag TooltipString |    |                |    |              |               |
| 1                    | 0                                              | -8 | [0.0625 0.125] | -8 | slider_Start | Gioi han thap |
| 2                    | 100                                            | 0  | [0.0625 0.125] | 8  | slider_Stop  | Gio han cao   |

|                                       | PushButton (số lượng:1) |    |                 |                  |  |  |  |  |  |
|---------------------------------------|-------------------------|----|-----------------|------------------|--|--|--|--|--|
| STT String Fontsize Tag TooltipString |                         |    |                 |                  |  |  |  |  |  |
| 1                                     | Quit                    | 20 | pushbutton_Quit | Thoat ve Windows |  |  |  |  |  |

| Check box (số lượng:1)                |  |               |           |  |  |  |  |
|---------------------------------------|--|---------------|-----------|--|--|--|--|
| STT String Fontsize Tag TooltipString |  |               |           |  |  |  |  |
| 1 Doi Font 12                         |  | Checkbox_Font | Chon Font |  |  |  |  |



```
CHƯƠNG 7: GUI VÀ ỨNG DỤNG
                                                                                 487
V. ĐỒ HỌA 2D
     1. Các hàm kích hoạt:
      Thêm vào nội dung GUI_4.m:
      % --- Executes during object creation, after setting all properties.
      function frame_CreateFcn(hObject, eventdata, handles)
      global Start Stop hinh
      Start=-8;
      Stop=8;
      % Dat tua de cho nhan va truc
      title('Hinh ve','Fontsize',15,'Color','r');
      xlabel('Truc x','Fontsize',15,'Color','r');
      ylabel('Truc y', 'Fontsize', 15, 'Color', 'r');
      x=linspace(-8,8);
      func=x.^2;
      hinh=plot(x,func);
      % --- Executes when user attempts to close figure1.
      function figure1_CloseRequestFcn(hObject, eventdata, handles)
      %delete(hObject);
      closereq
                                            Giảng viên: Hoàng Xuân Dương
```



```
CHƯƠNG 7: GUI VÀ ỨNG DỤNG
                                                                                489
V.ĐỒ HOA 2D
      % --- Executes on button press in checkbox_Font.
      function checkbox_Font_Callback(hObject, eventdata, handles)
      check=get(hObject,'value')
      if (check==1)
         uisetfont(handles.text_hamve, 'Bang chon Font')
         set(hObject, 'value', 0)
      % --- Executes on slider movement.
      function slider_Start_Callback(hObject, eventdata, handles)
      global Start
      Start=get(hObject,'value')
      set(handles.text_piStart, 'string', num2str(Start))
      Truc;
      % --- Executes on slider movement.
      function slider Stop Callback(hObject, eventdata, handles)
      global Stop
      Stop=get(hObject,'value')
      set(handles.text_piStop,'string',num2str(Stop))
      Truc;
                                            Giảng viên: Hoàng Xuân Dương
```











#### CHƯƠNG 7: GUI VÀ ỨNG DỤNG VI.ỨNG DỤNG CÁC HÀM VỀ 3D

495

|     | Static Text (số lượng 6) |                  |         |               |  |  |  |  |
|-----|--------------------------|------------------|---------|---------------|--|--|--|--|
| STT | Fontsize String          |                  | Visible | Tag           |  |  |  |  |
| 1   | 30                       | Ham peaks        | off     | text_title    |  |  |  |  |
| 2   | 12                       | Ham ve 3D:       | off     | text_hamve3D  |  |  |  |  |
| 3   | 12                       | Shapding:        | off     | text_shapding |  |  |  |  |
| 4   | 12                       | Truc 3D:         | off     | text_truc     |  |  |  |  |
| 5   | 12                       | Kieu:            | off     | text_kieu     |  |  |  |  |
| 6   | 30                       | Bai tap ung dung | on      | text_baitap   |  |  |  |  |

| Edit (số lượng 1)           |                                 |  |  |  |  |  |  |
|-----------------------------|---------------------------------|--|--|--|--|--|--|
| STT                         | STT Fontsize String Visible Tag |  |  |  |  |  |  |
| 1 12 peaks off Edit_hamve3D |                                 |  |  |  |  |  |  |

,

Giảng viên: Hoàng Xuân Dương

#### CHƯƠNG 7: GUI VÀ ỨNG DỤNG VI.ỨNG DỤNG CÁC HÀM VỀ 3D

496

| Pushbutton (số lượng 3)         |    |       |     |                  |  |  |  |
|---------------------------------|----|-------|-----|------------------|--|--|--|
| STT Fontsize String Visible Tag |    |       |     |                  |  |  |  |
| 1                               | 12 | Move  | off | pushbuttom_move  |  |  |  |
| 2                               | 12 | Help  | off | pushbuttom_help  |  |  |  |
| 3                               | 12 | Close | off | pushbuttom_close |  |  |  |

|                  | Popupmenu (số lượng 2)    |       |                             |     |                    |  |  |  |
|------------------|---------------------------|-------|-----------------------------|-----|--------------------|--|--|--|
| STT String value |                           |       | UserData Visible            |     | Tag                |  |  |  |
| 1                | faceted<br>flat<br>interp | [1.0] | {'faceted';'flat';'interp'} | off | Popupmenu_shapding |  |  |  |
| 2                | on<br>off<br>ij<br>xy     | [1.0] | {'on';'off';'ij';'xy'}      | off | Popupmenu_truc     |  |  |  |

#### CHƯƠNG 7: GUI VÀ ỨNG DỤNG VI.ƯNG DUNG CÁC HÀM VỀ 3D

497

|     | listbox (số lượng 1)                                   |       |                                                                 |         |              |  |  |  |  |
|-----|--------------------------------------------------------|-------|-----------------------------------------------------------------|---------|--------------|--|--|--|--|
| STT | String                                                 | value | UserData                                                        | Visible | Tag          |  |  |  |  |
| 1   | surfl<br>surfl<br>mesh<br>meshz<br>waterfall<br>pcolor | [1.0] | str2mat('surf','surfl','mesh',<br>'meshz','waterfall','pcolor') | off     | listbox_kieu |  |  |  |  |

| Axes (số lượng:1) |                                        |    |    |    |    |  |  |  |
|-------------------|----------------------------------------|----|----|----|----|--|--|--|
| STT               | STT NextPlot Visible XGrid YGrid ZGrid |    |    |    |    |  |  |  |
| 1                 | replacechildren                        | on | on | on | on |  |  |  |

Giảng viên: Hoàng Xuân Dương



#### CHƯƠNG 7: GUI VÀ ỨNG DỤNG VI. ỨNG DỤNG CÁC HÀM VỀ 3D

498

#### 2. Viết các hàm kích hoạt:

Thêm vào nội dung GUI\_5.m

function edit\_hamve3D\_Callback(hObject, eventdata, handles) Ve3D(handles); % --- Executes on selection change in popupmenu\_shapding. function popupmenu\_shapding\_Callback(hObject, eventdata, handles) value=get(handles.popupmenu\_shapding,'value'); color=get(handles.popupmenu\_shapding,'UserData'); Shading(color{value}) % --- Executes on selection change in popupmenu truc. function popupmenu truc Callback(hObject, eventdata, handles) value=get(handles.popupmenu\_truc,'value'); truc=get(handles.popupmenu\_truc, 'UserData'); axis(truc{value}) % --- Executes on selection change in listbox\_kieu.

function listbox kieu Callback(hObject, eventdata, handles)

Ve3D(handles);



#### CHƯƠNG 7: GUI VÀ ỨNG DỤNG VI.ỨNG DỤNG CÁC HÀM VỀ 3D

#### 499

#### 2. Viết các hàm kích hoạt (tt)

```
% --- Executes on button press in pushbutton move.
function pushbutton move Callback(hObject, eventdata, handles)
for j=1:10
  view(-37.5+24*(j-1),30);
  n(:,1)=getframe;
end
movie(n,5)
% --- Executes on button press in pushbutton_help.
function pushbutton_help_Callback(hObject, eventdata, handles)
graf3d('info')
% --- Executes on button press in pushbutton close.
function pushbutton_close_Callback(hObject, eventdata, handles)
% --- Executes when user attempts to close figure 1.
function figure1_CloseRequestFcn(hObject, eventdata, handles)
delete(hObject);
closereq
```

### CHƯƠNG 7: GUI VÀ ỨNG DỤNG VI.ỨNG DỤNG CÁC HÀM VỀ 3D

#### 500

#### 2. Viết các hàm kích hoạt (tt)

```
% --- If Enable == 'on', executes on mouse press in 5 pixel border.
function varargout = text_baitap_ButtonDownFcn(hObject, eventdata,
handles)
handles=guihandles(gcbo); %Lay tat ca cac handle
promptstr={'Cho vao password'};
inistr={"};
dlgTitle='Nhap Password';
lineNo=1;
result=inputdlg(promptstr,dlgTitle,lineNo,inistr);
if strcmp(result, 'GUI 5')
       set(handles.text_baitap, 'visible', 'off');
       set(handles.frame1,'visible','on')
       set(handles.text_hamve3D,'visible','on');
       set(handles.edit_hamve3D,'visible','on')
       set(handles.text_shapding.'visible','on');
       set(handles.popupmenu shapding,'visible','on');
```

Giảng viên: Hoàng Xuân Dương



#### CHƯƠNG 7: GUI VÀ ỨNG DỤNG 501 VI. ỨNG DUNG CÁC HÀM VỀ 3D 2. Viết các hàm kích hoạt (tt) set(handles.text truc, 'visible', 'on'); set(handles.popupmenu truc,'visible','on'); set(handles.text\_kieu,'visible','on'); set(handles.listbox\_kieu,'visible','on'); set(handles.text\_title,'visible','on'); set(handles.axes1,'visible','on'); set(handles.pushbutton close, 'visible', 'on'); set(handles.pushbutton\_help,'visible','on'); set(handles.pushbutton\_move,'visible','on'); Ve3D(handles); else errordlg('Password?'); end













507

## 1. Tạo GUI (tt)

Định các thuộc tính:

| Đối tượng                    | STT | String           | Fontsize | Tag           |
|------------------------------|-----|------------------|----------|---------------|
|                              | 1   | Bien dieu Analog | 30       | text_title    |
|                              | 2   | Loai bien dieu:  | 12       | text_hamve3D  |
| Static Text                  | 3   | Tan so FS        | 12       | text_shapding |
|                              | 4   | Tan so Fc        | 12       | text_truc     |
|                              | 5   | Chi so m         | 12       | text_kieu     |
| Popup Menu                   | 1   | AM<br>FM<br>PM   | 10       | Popupmenu_BD  |
|                              | 1   | 2                | 10       | edit_Fs       |
| Edit Text                    | 2   | 5                | 10       | edit_Fc       |
|                              | 3   | 0.9              | 10       | edit_m        |
| Giảng viên: Hoàng Xuân Dương |     |                  |          |               |

# CHƯƠNG 7: GUI VÀ ỨNG DỤNG VII.BIẾN ĐIỆU ANALOG

508

#### 1. Tạo GUI (tt)

Định các thuộc tính:

| Đối tượng  | STT | String    | Fontsize | Tag              |
|------------|-----|-----------|----------|------------------|
| PushButton | 1   | Bien dieu |          | pushbutton_BD    |
|            | 2   | Close     |          | pushbutton_close |

| Đối tượng | STT | NextPlot        | XGrid | YGrid | ZGrid | Tag   |
|-----------|-----|-----------------|-------|-------|-------|-------|
| Axes      | 1   | replacechildren | on    | on    | on    | axes1 |
|           | 2   |                 |       |       |       | axes2 |
|           | 3   |                 |       |       |       | axes3 |

Giảng viên: Hoàng Xuân Dương

# CHƯƠNG 7: GUI VÀ ỨNG DỤNG VII.BIẾN ĐIỆU ANALOG

509

#### 2. Tạo các hàm kích hoạt:

Bổ sung vào tập tin GUI\_6.m

```
% --- Executes on button press in pushbutton_BD.
function pushbutton_BD_Callback(hObject, eventdata, handles)
Biendieu(handles)
% --- Executes on button press in pushbutton_close.
function pushbutton_close_Callback(hObject, eventdata, handles)
closereq;
% --- Executes during object creation, after setting all properties.
function frame_CreateFcn(hObject, eventdata, handles)
handles=guihandles(gcbo);
Biendieu(handles)
```

Giảng viên: Hoàng Xuân Dương



# CHƯƠNG 7: GUI VÀ ỨNG DỤNG VII.BIẾN ĐIỆU ANALOG

510

#### 2. Tạo các hàm kích hoạt (tt)

```
% Ham tu viet de ve hinh
function Biendieu(handles)
loai=get(handles.popupmenu_BD,'value');
Fs=get(handles.edit_Fs,'string'); Fs=eval(Fs);
Fc=get(handles.edit_Fc,'string'); Fc=eval(Fc);
m=get(handles.edit m,'string'); m=eval(m);
switch (loai)
  case 1
     AM(handles,Fs,Fc,m)
     set(handles.text title, 'string', 'Bien dieu AM');
  case 2
     FM(handles,Fs,Fc,m)
     set(handles.text_title,'string','Bien dieu FM');
     PM(handles,Fs,Fc,m)
     set(handles.text_title,'string','Bien_dieu_PM');
end
```

Giảng viên: Hoàng Xuân Dương



```
CHƯƠNG 7: GUI VÀ ỨNG DỤNG
                                                                             511
VII.BIẾN ĐIỆU ANALOG
    2. Tạo các hàm kích hoạt (tt)
      % Ham tu viet de bien dieu AM
      function AM(handles,Fs,Fc,m)
      t=(0:1000)/1000; x=cos(2*pi*Fs*t); c=cos(2*pi*Fc*t);
      y=0.5*(1+m*x).*c;
      plot(t,m*x,'Parent',handles.axes1);
      plot(t,y,'Parent',handles.axes2);
      [f,Pyy]=Pho(handles,y);
      plot(f,Pyy(1:257),'r','Parent',handles.axes3);
      % Ham tu viet de bien dieu FM
      function FM(handles,Fs,Fc,m)
      t=(0:1000)/1000; x=cos(2*pi*Fs*t); c=cos(2*pi*Fc*t);
      y=cos((2*pi*Fc*t)+(m/(2*pi*Fs))*200*sin(2*pi*Fs*t));
      plot(t,m*x,'Parent',handles.axes1);
      plot(t,y,'Parent',handles.axes2);
      [f,Pyy]=Pho(handles,y);
```

Giảng viên: Hoàng Xuân Dương

plot(f,Pyy(1:257),'r','Parent',handles.axes3);













517

## 1. Tạo GUI (tt)

Các thuộc tính của các component

| Đối tượng   | STT    | String           | Fontsize | Tag          |  |
|-------------|--------|------------------|----------|--------------|--|
|             | 1      | Bien dieu        | 30       | text_title   |  |
|             | 2      | Loai bien dieu:  | 12       | text_BD      |  |
|             | 3      | Nhap chuoi so:   | 12       | text_chuoiso |  |
| Static Text | 4      | Toc do bit:      | 12       | text_tocdo   |  |
| Static Text | 5      | Hang so lay mau: | 12       | text_laymau  |  |
|             | 6      | Song mang Fc:    | 12       | text_Fc      |  |
|             | 7      | Nhap Fmark       | 12       | text_Fmark   |  |
|             | 8      | Nhap Fspace:     | 12       | text_Fspace  |  |
| Popup Menu  |        | ASK              |          |              |  |
|             | 1enu 1 | FSK              | 10       | Popupmenu_BD |  |
|             |        | PSK              |          |              |  |

# CHƯƠNG 7: GUI VÀ ỨNG DỤNG VIII.BIẾN ĐIỆU DIGITAL

518

## 1. Tạo GUI (tt)

| Đối tượng  | STT | String    | Fontsize | Tag           |  |
|------------|-----|-----------|----------|---------------|--|
|            | 1   | 101001    | 10       | edit_chuoiso  |  |
|            | 2   | 300       | 10       | edit_tocdo    |  |
| Edit Text  | 3   | 120       | 10       | edit_laymau   |  |
|            | 4   | 1500      | 10       | edit_Fc       |  |
|            | 5   | 1200      | 10       | edit_Fmark    |  |
|            | 6   | 2000      | 10       | edit_Fspace   |  |
| PushButton | 1   | Bien dieu | 20       | pushbutton_BD |  |

| Đối tượng | STT | NextPlot        | XGrid | YGrid | ZGrid | Tag   |
|-----------|-----|-----------------|-------|-------|-------|-------|
|           | 1   |                 |       |       |       | axes1 |
| Axes      | 2   | replacechildren | on    | on    | on    | axes2 |
|           | 3   |                 |       |       |       | axes3 |

Giảng viên: Hoàng Xuân Dương

Giảng viên: Hoàng Xuân Dương

```
CHƯƠNG 7: GUI VÀ ỨNG DỤNG
                                                                              519
VIII.BIẾN ĐIỆU DIGITAL
     2. Tạo các hàm callback:
      function popupmenu_BD_Callback(hObject, eventdata, handles)
      value=get(gcbo,'value');
      if value==1
                    %ASK
         set(handles.edit_Fc,'enable','on')
         set(handles.edit_Fmark,'enable','off')
         set(handles.edit laymau,'enable','off')
      elseif value==2
                        %FSK
         set(handles.edit_Fc,'enable','off')
         set(handles.edit Fmark,'enable','on')
         set(handles.edit laymau, 'enable', 'on')
                       %PSK
      elseif value==3
         set(handles.edit Fc,'enable','on')
         set(handles.edit_Fmark,'enable','off')
         set(handles.edit_laymau,'enable','off')
      % --- Executes on button press in pushbutton_BD.
      function pushbutton BD Callback(hObject, eventdata, handles)
      Biendieu(handles);
                                           Giảng viên: Hoàng Xuân Dương
```



```
CHƯƠNG 7: GUI VÀ ỨNG DỤNG
                                                                            521
VIII.BIẾN ĐIÊU DIGITAL
      Fmark=get(handles.edit_Fmark,'string');
      Fmark=eval(Fmark);
      %Nhan gia tri Fspace(Fcmin) la tan so cao nhat cua song mang
      Fspace=get(handles.edit_Fspace,'string');
      Fspace=eval(Fspace);
      Fs=R*Sampling;
      %Xet muc duoc chon trong popupmenu
      LoaiBD=get(handles.popupmenu_BD,'value');
      if LoaiBD==1 %ASK
        if (Fc>=(R*Sampling)/2)
           ErrorDlg('Fspace<Sampling*(R/2)'); return;
        ve_digital(handles,binary_seq,Fs)
        out=ASK(handles,binary_seq,Fc,Fs,R);
        Pho digital(handles,out);
        set(handles.text_title,'string','Bien dieu ASK')
      elseif LoaiBD==2 %FSK
        if (Fc > = (R*Sampling)/2)
                                          Giảng viên: Hoàng Xuân Dương
```

```
CHƯƠNG 7: GUI VÀ ỨNG DỤNG
                                                                               522
VIII.BIẾN ĐIỆU DIGITAL
           ErrorDlg('Fspace<Sampling*(R/2)'); return;</pre>
         end
         if (Fmark<R)
           ErrorDlg('Fmark>=R'); return;
         ve_digital(handles,binary_seq,Fs)
         out=FSK(handles,binary_seq,[Fmark Fspace],Fs,R);
         Pho_digital(handles,out);
         set(handles.text_title,'string','Bien dieu FSK')
      elseif LoaiBD==3 %PSK
         if (Fc > = (R*Sampling)/2)
           ErrorDlg('Fspace<Sampling*(R/2)'); return;
         ve_digital(handles,binary_seq,Fs)
         out=PSK(handles,binary_seq,Fc,Fs,R);
         Pho_digital(handles,out);
         set(handles.text_title,'string','Bien dieu PSK')
                                            Giảng viên: Hoàng Xuân Dương
```

```
CHƯƠNG 7: GUI VÀ ỨNG DỤNG
                                                                              523
VIII.BIẾN ĐIỆU DIGITAL
      % Ham ve tin hieu so
      function ve_digital(handles,binary_seq,Fs)
      SAMPLING_FREQ=Fs;
      Ts=1/SAMPLING_FREQ;
      binary seq=binary seq(:);
                                   %Doi thanh cot
      no_sample=length(binary_seq); %Xet chieu dai chuoi
      amplitude=max(abs(binary_seq));
      time=[1:(no sample)]*Ts;
      ax=[min(time)/100 max(time) -2*amplitude 2*amplitude];
      axes(handles.axes1)
      stair(time,binary_seq); %Ham ve tin hieu so
      axis(ax);
      set(gca, 'XTickLabel', {", ", ", ", ", "});
      xlabel('Tin hieu nen', 'fontname', 'SVNhelvetica', 'fontsize', 12, 'color', 'r');
      % --- Ham stair ---
      function [xo,yo]=stair(x,y)
      n=length(x);
                                           Giảng viên: Hoàng Xuân Dương
```

```
CHƯƠNG 7: GUI VÀ ỨNG DỤNG
                                                                         524
VIII.BIẾN ĐIỆU DIGITAL
     if nargin==1
        y=x; x=1:n;
      end
      delta=(max(x)-min(x))/(n-1);
      nn=2*n;
      yy=zeros(nn+2,1);
      xx=yy;
      t=x(:)'-delta;
      xx(1:2:nn)=t;
     xx(2:2:nn)=t;
     xx(nn+1:nn+2)=t(n)+[delta;delta];
     yy(2:2:nn)=y;
     yy(3:2:nn+1)=y;
     if nargout==0
        plot(xx,yy)
      else
        xo=xx; yo=yy;
                                        Giảng viên: Hoàng Xuân Dương
```

```
CHƯƠNG 7: GUI VÀ ỨNG DỤNG
                                                                               525
VIII.BIẾN ĐIỀU DIGITAL
      % Ham bien dieu ASK
      function out=ASK(handles,binary_seq,Fc,Fs,R)
      %Tao data cua dang song khong tro ve zero nrz
      x=wave gen(handles,binary seq,'unipolar nrz',Fs,R);
      out=mixer(x,osc(Fc,Fs));
      Ts=1/Fc;
      out=out(:);
      no_sample=length(out);
      amplitude=max(abs(out));
      t=[1:(no_sample)]*Ts;
      ax=[min(t) max(t) -2*amplitude 2*amplitude]
      axes(handles.axes2)
      y=plot(t,out);
      axis(ax);
      set(gca,'XTickLabel',{",",",",","});
      xlabel('Tin hieu sau khi bien dieu','fontname',...
             'SVNhelvetica', 'fontsize', 12, 'color', 'r');
                                           Giảng viên: Hoàng Xuân Dương
```



```
CHƯƠNG 7: GUI VÀ ỨNG DỤNG
                                                                           527
VIII.BIẾN ĐIỆU DIGITAL
      %Tao tin hieu khong tro ve zero
      function out=rect_nrz(Rb,Fs)
      out=ones(1,Fs/Rb);
      %Ham tao song mang
      function [carrier]=osc(fc,Fs)
      t=[1:50000]/Fs;
      carrier=sin(2*pi*t*fc);
      % Ham tron 2 tin hieu
      function [out]=mixer(in,fc)
      %Z=MIXER(X,Y) Tao chuoi Z: Z(n)=X(n)*Y(n)
      n=length(in);
      carrier=fc(1:n);
     x=in;
     x=x(:)';
      out=carrier.*x;
                                         Giảng viên: Hoàng Xuân Dương
```



```
CHƯƠNG 7: GUI VÀ ỨNG DỤNG
                                                                             529
VIII.BIẾN ĐIỆU DIGITAL
      %Ham bien dieu FSK
      function out=FSK(handles,binary_seq,Fc,Fs,Rb)
      CARRIER FREQUENCY=[min(Fc) max(Fc)];
      x=wave_gen(handles,binary_seq,'polar_nrz',Fs,Rb);
      f_r=(CARRIER_FREQUENCY(2)+CARRIER_FREQUENCY(1))/2
      kf=(CARRIER_FREQUENCY(2)-CARRIER_FREQUENCY(1))/2
      out=vco digital(x,f r,kf,Fs);
      Ts=1/f_r; out=out(:); no_sample=length(out);
      amplitude=max(abs(out)); t=[1:(no_sample)]*Ts;
      ax=[min(t) max(t) -2*amplitude 2*amplitude]
      axes(handles.axes2)
      v=plot(t,out);
      axis(ax);
      set(gca,'XTickLabel',{",",",",","});
      xlabel('Tin hieu sau khi bien dieu','fontname',...
            'SVNhelvetica', 'fontsize', 12, 'color', 'r');
      % Ham luong cuc hoa chuoi nhi phan vao
      function [polar sequence]=bin2pol(handles,binary sequence)
      polar sequence=2*binary sequence-ones(size(binary sequence));
                                          Giảng viên: Hoàng Xuân Dương
```













Các hộp thoại dialog (tt)

| Dialog boxes | Ý nghĩa                                       |
|--------------|-----------------------------------------------|
| questdlg     | Tạo một dialog hỏi                            |
| uigetfile    | Hiển thị dialog box nhận tên của file cần đọc |
| uiputfile    | Hiển thị dialog box nhận tên của file để ghi  |
| uisetcolor   | Chọn màu bằng bảng màu của windows            |
| uisetfont    | Chọn font                                     |
| warndlg      | Tạo một dialog cảnh báo                       |

Giảng viên: Hoàng Xuân Dương



535

## CHƯƠNG 7: GUI VÀ ỨNG DỤNG 536 IX.CÁC HỘP HỘI THOẠI DIALOG CỦA WINDOWS 1. errordlg Cú pháp: errordlg errordlg('errorstring') errordlg('errorstring','dlgname') errordlg('errorstring','dlgname','on') %'on' → cho phép hay không thay thế dialog có cùng tên h = errordlg(...)Ví du: errordlg('File not found','File Error') File Error File not found OK Giảng viên: Hoàng Xuân Dương





















```
CHƯƠNG 7: GUI VÀ ỨNG DỤNG

IX.CÁC HỘP HỘI THOẠI DIALOG CỦA WINDOWS

7. printdlg

Cú pháp:
    printdlg
    printdlg(fig)
    printdlg('-crossplatform',fig)
    printdlg('-setup',fig)

Giảng viên: Hoàng Xuân Dương
```











```
CHƯƠNG 7: GUI VÀ ỨNG DỤNG
                                                                   553
IX.CÁC HỘP HỘI THOẠI DIALOG CỦA WINDOWS
    9. uigetfile
    Cú pháp:
        uigetfile
        uigetfile('FilterSpec')
        uigetfile('FilterSpec','DialogTitle')
        uigetfile('FilterSpec','DialogTitle',x,y)
        [fname,pname] = uigetfile(...)
    Trong đó:
        'FilterSpec'
                       → Lọc chọn các tập tin. Mặc định là *.m
                       → Vi trí xuất hiện hộp thoại
        [x,y]
        [fname,pname] → Trả về tên tập tin và đường dẫn
```



```
TX.CÁC HỘP HỘI THOẠI DIALOG CỦA WINDOWS

10. uiputfile

Cú pháp:

uiputfile('InitFile')

uiputfile('InitFile','DialogTitle')

uiputfile('InitFile','DialogTitle',x,y)

[fname,pname] = uiputfile(...)

Trong đó:

'InitFile' → Hộp thoại hiển thị các file trong thư mục hiện hành

xác định bởi 'InitFile'

[fname,pname] → Trả về tên file và đường dẫn ghi file
```



