AIM: To perform binary to gray and gray to binary conversion.

RESOURCE REQUIRED: Digital Lab Kit, ICs, breadboards, Connecting Wires.

THEORY:

a	BINARY TO	GRAY	CONVERSION

100	52 00	0	11	10	
000	0	0	1	1	
ø 11	0	0	1	1	
11	0	0	1	1	
10	0	0	1	1	
Boal					_

Bab	200	o)	11%	10
mo mo	Ö	1	0	1
O	0	1	0	1
11	0	1	0	1
og	0	1	0	1
~ O.	6	<u> </u>		,

$$62 = B_3 B_2 + B_3 \overline{B}_2$$

G2= B3 \oplus B2

20	36200	01	11	10
1 bo	0	1	1	σ
دن ما	0	1	1	0
01	-11	0	0	1-1
11			0	'
104	1	0	0	1
0 7				

G1=B1 ⊕ B2

$$G0 = \overline{B}_1 B_0 + \overline{B}_1 \overline{B}_0$$

 $G0 = B1 \oplus B2$

	Bir	Gray							
B3	B2	Bl	B0	G3	G2	1	Gl	G	0
0	0	0	0	0	0		0		0
0	0	0	1	0	0	L	0	_	1
0	0	1	0	0	0		1		1
q	0	1	1	. 0	0		1		0
0	1	, 0	0	0	1		1		0
0	1	0	1	0	1		1		1.
0	1	1	0	0	1		0		1
0	1	1	1	0	1	I	0	T	0
1	0	0	0	1	1	ī	0	T	0
1	0	0	1	1		1	(7	1
1	0	1	0) 1		1	1	I	1
1	0	1	1	1 1		1	:	ı	0
1	1	0) :	1	0		1	0
1	1	0)	1	1	Ó		1	1
1	1	1		0	1	0		0	1
1	. 1	1 1		1	1	0		0	0

BOOLEAN EXPRESSIONS:

G3=B3,G2=B3 \oplus B2, G1=B1 \oplus B2; G0=B1 \oplus B0

BINARY TO GRAY CODE CONVERSION USING EX-OR GATE

b. GRAY TO BINARY CONVERSION

BOOLEAN EXPRESSIONS:

B3=G3

B2=G3 ⊕ G2

B1=G3 ⊕ G2 ⊕ G1

 $B0=G3 \oplus G2 \oplus G1 \oplus G0$

GRAY TO BINARY CODE CONVERSION USING EX-OR GATE

Engineering 3/17/13 VV Engineering

PROCEDURE:

- a. The circuit connections are made as shown in fig.
- b. Pin (14) is connected to +Vcc and Pin (7) to ground.
- c. In the case of binary to gray conversion, the inputs B0, B1, B2 and B3 are given at respective pins and outputs G0, G1, G2, G3 are taken for all the 16 combinations of the input.
- d. In the case of gray to binary conversion, the inputs G0, G1, G2 and G3 are given at respective pins and outputs B0, B1, B2, and B3 are taken for all the 16 combinations of inputs.
- e. The values of the outputs are tabulated.

RESULT: Binary to gray code conversion and vice versa is realized using EX-OR gates

CONCLUSION: Thus, we have studied and implemented the binary to gray and gray to binary code converter.