```
# IMPORTANT: RUN THIS CELL IN ORDER TO IMPORT YOUR KAGGLE DATA SOURCES,
# THEN FEEL FREE TO DELETE THIS CELL.
# NOTE: THIS NOTEBOOK ENVIRONMENT DIFFERS FROM KAGGLE'S PYTHON
# ENVIRONMENT SO THERE MAY BE MISSING LIBRARIES USED BY YOUR
# NOTEBOOK.
import kagglehub
iammustafatz\_diabetes\_prediction\_dataset\_path = kagglehub.dataset\_download('iammustafatz/diabetes-prediction-dataset')
print('Data source import complete.')
→ Data source import complete.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
from \ sklearn.preprocessing \ import \ Label Encoder \ , \ Min Max Scaler
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
```

LOADING DATA

from sklearn.svm import SVC

from sklearn.neighbors import KNeighborsClassifier

df = pd.read_csv("/kaggle/input/diabetes-prediction-dataset/diabetes_prediction_dataset.csv")
df

View recommended plots

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

	gender	age	hypertension	heart_disease	smoking_history	bmi	HbA1c_level	blood_glucose_level	diabetes	
0	Female	80.0	0	1	never	25.19	6.6	140	0	
1	Female	54.0	0	0	No Info	27.32	6.6	80	0	
2	Male	28.0	0	0	never	27.32	5.7	158	0	
3	Female	36.0	0	0	current	23.45	5.0	155	0	
4	Male	76.0	1	1	current	20.14	4.8	155	0	
99995	Female	80.0	0	0	No Info	27.32	6.2	90	0	
99996	Female	2.0	0	0	No Info	17.37	6.5	100	0	
99997	Male	66.0	0	0	former	27.83	5.7	155	0	
99998	Female	24.0	0	0	never	35.42	4.0	100	0	
99999	Female	57.0	0	0	current	22.43	6.6	90	0	
100000 rows × 9 columns										

DATA OVERVIEW

Next steps: Generate code with df

df.head()

	gender	age	hypertension	heart_disease	smoking_history	bmi	HbA1c_level	blood_glucose_level	diabetes	
0	Female	80.0	0	1	never	25.19	6.6	140	0	ıl.
1	Female	54.0	0	0	No Info	27.32	6.6	80	0	
2	Male	28.0	0	0	never	27.32	5.7	158	0	
3	Female	36.0	0	0	current	23.45	5.0	155	0	
4	Male	76.0	1	1	current	20.14	4.8	155	0	

New interactive sheet

Next steps: (Generate code with df) (View recommended plots) (New interactive sheet)

df.tail()

df.info()

object 100000 non-null float64 1 age 2 hypertension 100000 non-null int64 3 heart_disease 100000 non-null int64 4 smoking_history 100000 non-null object 5 bmi 100000 non-null float64 6 HbA1c_level 100000 non-null float64 blood_glucose_level 100000 non-null int64 100000 non-null diabetes int64

Dtype

dtypes: float64(3), int64(4), object(2)

memory usage: 6.9+ MB

df.describe()

df.describe(include="0")

df.shape

→ (100000, 9)

df.isnull().sum()

```
gender 0
age 0
hypertension 0
heart_disease 0
smoking_history 0
bmi 0
HbA1c_level 0
blood_glucose_level 0
diabetes 0
```

df.duplicated().sum()

```
→ np.int64(3854)
```

```
df.drop_duplicates(inplace=True)
```

```
plt.figure(figsize=(12,6))
sns.histplot(x=df['bmi'],kde=True,color="green")
plt.title('bmi Distribution',fontsize=20,fontweight='bold')
plt.xlabel('bmi',fontsize=16)
plt.ylabel('count',fontsize=16)
plt.show()
```


bmi Distribution


```
q1 = df['bmi'].quantile(0.25)
q3 = df['bmi'].quantile(0.75)
iqr = q3 - q1
lower_bound = q1 - 1.5 * iqr
upper_bound = q3 + 1.5 * iqr
df['bmi']=df['bmi'].clip(lower_bound,upper_bound)

plt.figure(figsize=(12,6))
sns.histplot(x=df['bmi'],kde=True,color="green")
plt.title('bmi Distribution',fontsize=20,fontweight='bold')
```

```
plt.xlabel('bmi',fontsize=16)
plt.ylabel('count',fontsize=16)
plt.show()
```



```
plt.figure(figsize=(10,5))
sns.lineplot(x=df['age'],y=df['diabetes'],color='green')
plt.title('Age vs Diabetes',fontsize=20,fontweight='bold')
plt.xlabel('Age',fontsize=16)
plt.ylabel('Diabates',fontsize=16)
plt.show()
```



```
plt.figure(figsize=(10,5))
sns.lineplot(x=df['hypertension'],y=df['diabetes'],color='green')
plt.title('hypertension vs Diabetes',fontsize=20,fontweight='bold')
plt.xlabel('hypertension',fontsize=16)
plt.ylabel('Diabates',fontsize=16)
plt.show()
```


CONVERT COLUMNS INTO NUMERIC

le = LabelEncoder()
df['gender']= le.fit_transform(df['gender'])

df["gender"]

_		gender	
	0	0	
	1	0	
	2	1	
	3	0	
	4	1	
	99994	0	
	99996	0	
	99997	1	
	99998	0	
	99999	0	
	96146 ro	ws × 1 colum	ns
	deunas in	+6.4	

le = LabelEncoder()
df['smoking_history']= le.fit_transform(df['smoking_history'])

df["smoking_history"]

	smoking_history
0	4
1	0
2	4
3	1
4	1
99994	0
99996	0
99997	3
99998	4
99999	1

96146 rows × 1 columns

```
plt.figure(figsize=(25, 10))
corr_matrix = df.corr()
sns.heatmap(corr_matrix, annot=True,cmap='Purples', fmt=".2f")
plt.title("correlation Matix")
```


SCALLING

```
numerical_cols = ['age','bmi', 'HbA1c_level', 'blood_glucose_level']
scaler = MinMaxScaler()
df[numerical_cols] = scaler.fit_transform(df[numerical_cols])
```

SPILT DATA

```
x = df.drop('diabetes',axis=1)
y = df['diabetes']

x_train,x_test,y_train,y_test = train_test_split(x,y, test_size = 0.2, random_state=42)
```

LOGISTIC REGRESSION MODEL

```
model = LogisticRegression()
model.fit(x_train,y_train)
```


ACCURACY

```
y_pred = model.predict(x_test)
print("Accuracy : ",accuracy_score(y_test,y_pred))
Accuracy: 0.9573062922516901
print(model.score(x_train,y_train))
print(model.score(x_test,y_test))
     0.9593062561755682
     0.9573062922516901
print(classification_report(y_test,y_pred))
<del>_</del>__
                   precision
                                recall f1-score
                                                    support
                0
                        0.96
                                   0.99
                                             0.98
                                                      17509
                        0.86
                                  0.62
                                                       1721
                1
                                             0.72
```

0.91

0.95

CONFUSION MATRIX

accuracy

macro avg weighted avg

```
sns.heatmap(confusion_matrix(y_test,y_pred) , annot=True, fmt='d' )
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix For Logistic Regression')
plt.show()
```

0.81

0.96

0.96

0.85

0.95

19230

19230

19230

SAVING MODEL

```
import pickle
pickle.dump(model,open("Logistic_Model.pkl","wb"))
```

SVC MODEL

```
svc_model=SVC()
svc_model.fit(x_train,y_train)

v SVC (1) ?

svc_model.fit(x_train,y_train)

y_pred_svc=svc_model.predict(x_test)
print(accuracy_score(y_pred_svc, y_test))

v 0.9583463338533541

sns.heatmap(confusion_matrix(y_test, y_pred_svc), annot=True, fmt='d')
plt.xlabel('Predicted Labels')
plt.ylabel('True Labels')
plt.title('Confusion Matrix For SVC Model')
plt.show()
```

