KAUNO TECHNOLOGIJOS UNIVERSITETAS

Elektros ir elektronikos fakultetas Elektronikos inžinerijos katedra

Įterptinės sistemos (T170B417)

Inžinerinio projekto ataskaita Rato apsukų greičio matavimas

> Atliko: Ignas Stanys EEI – 2/3 Pridavimo data: 2025 – 04 – 07

> > Tikrino:

Turinys

Darbo tikslas	3
Darbo užduotis	3
Įrenginio veikimo aprašymas	3
Komponentų pasirinkimas	3
OLED indikatorius	3
Herkonas	4
Komponentų sąrašas (BOM)	5
Inžinerinio projekto schemos	6
Blokinė schema	6
Principinė schema	6
Realiai sujungta schema	7
Paklaidos skaičiavimas	8

Darbo tikslas

Suprojektuoti ir realizuoti įterptinę sistemą, sudarytą iš:

- STM32xxx serijos mikrovaldiklio
- Nurodytų jutiklių
- Pasirinkto indikatoriaus
- Duomenų perdavimo sąsajos į personalinį kompiuterį (PK) Suprojektuota įterptinė sistema matuojamus duomenis turi perduoti į PK atvaizdavimui ir išsaugojimui.

Darbo užduotis

Lentelėje pateikta užduotis pagal paskirtą variantą.

Lentelė 1 Inžinerinio projekto užduotis ir variantas.

Var. Nr	Matuojamas fizikinis dydis	Kanalų skaičius	Vaizduojami ir perduodami į kompiuterį parametrai	Signalo pralaid umo juosta	Dydžio diapazonas, signalo amplitudė	Parodymų atnaujinimo indikatoriuj e periodas, s	Perduodamų į kompiuterį parametrų diskretizavim o periodas, s
16.	Rato apsukų greičio matavimas (herkonas)	1	Vidurkis	ı	(0-30km/val.)	1	0,2

Įrenginio veikimo aprašymas

Suprojektuotas įrenginys veikia paprastu principu. Matuojant greitį ratui apsisukus vieną kartą herkonas prasilenkia su magnetu, kuris jį trumpam atveria ir per pastarajį gali pratekėti srovė. Taip sukuriamas trumpas impulsas kurį užfiksuoja STM32 mikrovaldiklis ir jis yra užskaitomas kaip vienas apsisukimas. Kadangi yra žinomas rato skersmuo, tai greitį apskaičiuojame šia formule:

Greitis_kmh = Apsisukimų_Skaičius * PI * Rato_Skersmuo_Metrais * 3,6 Apskaičiuotas greitis bus perduodamas į indikatorių ir į kompiuterį.

Komponentų pasirinkimas

OLED indikatorius

Darbui atlikti buvo pasirinktas 128x32 px SSD1306 OLED indikatorius. Indikatorius buvo pasirinktas dėl I2C valdymo sąsajos, reikalingos maitinimo įtampos, kuri yra 3,3-5 V, ir dėl patogumo, nes indikatoriaus nereikėjo įsigyti.

1 pav. Naudojamas indikatorius.

Herkonas

Herkoninis kontaktas (herkonas) buvo pasirinktas atsižvelgiant į jo jautrumą. Projekte naudojamas herkoninis magnetinis kontakatas kuris dažniausiai yra panaudojamas namų apskaugos sistemose. Jis pasirinktas dėl jautrumo, darbinės įtampos ir izoliuoto herkono.

2 pav. Naudojamas herkoninis kontaktas.

Komponentų sąrašas (BOM)

Nr.	Komponentas	Aprašas	Gamintojas	Tiekėjas	Vnt. kaina, Eu	Minimaliai parduodamas vnt. skaičius	Vienetų projektui skaičius	Projekto savikaina, Eu	Pirkimo suma, Eu	
1	STM32L073RZ	Mikrovaldiklis	STMicroelectronics	Nuoroda	12,68	1	1	12,68	12,68	
2	Įleidžiami magnetiniai kontaktai	Herkonas	Nepateikta	Nuoroda	1,6	1	1	1,6	1,6	
3	SSD1306	OLED indikatorius	Nepateikta	Nuoroda	5,4	1	1	5,4	5,4	
4	CP2102	USB-UART TTL keitiklis	Waveshare	Nuoroda	12,1	1	1	12,1	12,1	
5	Molex 105133- 0001	USB-B	<u>Mouser</u>	Nuoroda	0,95	1	1	0,95	0,95	
6	Q8.00M HC49-S	Kvarcinis rezonatorius	YIC	<u>Nuoroda</u>	0,29	1	1	0,29	0,29	
7	CBR04C200J1GAC	Kondesatorius 20pF	KEMET	<u>Nuoroda</u>	0,22	1	2	0,44	0,22	
8	CE1W 390	Rezistorius 390Ω	ROYAL OHM	Nuoroda	0,09	1	2	0,18	0,09	
9	CR1/4W 100K	Rezistorius 100kΩ	El. parduotuvėje nenurodyta	<u>Nuoroda</u>	0,4	1	1	0,4	0,4	
10	CM100NF50V Y5V	Kondensatorius 100nF	SR PASSIVES	<u>Nuoroda</u>	0,26	1	1	0,26	0,26	
							Viso:	34,3	33,99 €	

Inžinerinio projekto schemos

Blokinė schema

Principinė schema

Principinėje schemoje pavaizduotas jungimas tarp herkono, STM32L0 mikrovaldiklio, OLED indikatoriaus SSD1306, USB – B jungties ir CP2120 USB-UART TTL keitiklio. USB – B jungtis naudojama tam, kad būtų galima programuoti mikrovaldiklį jam esant sulituotam ant

spausdintinio montažo plokštės. USB-UART TLL keitiklis naudojamas duomenis perduoti į kompiuterį.

Realiai sujungta schema

Šioje schemoje nėra prijungto TLL keitiklio, nes yra naudojamas vidinis SMT32L073RZ UART.

Paklaidos skaičiavimas

Matavimų paklaida yra skaičiuojama pagal projekto instrukcijose pateiktą pavyzdį.

$$\sigma v = \sqrt{\left(\frac{\pi}{T}\right)^2 \left(\frac{\Delta d}{\sqrt{12}}\right)^2 + \left(-\frac{\pi d}{T^2}\right)^2 \left(\frac{\Delta T}{\sqrt{12}}\right)^2} = \sqrt{\left(\frac{3,14}{0,2s}\right)^2 \left(\frac{10^{-2}}{\sqrt{12}}\right)^2 + \left(-\frac{3,14\cdot0.7m}{(0,2s)^2}\right)^2 \left(\frac{10^{-5}}{\sqrt{12}}\right)^2}$$

d – yra rato diametras

 Δd – yra prietaiso paklaida, su kuriuo buvo atliktas diametro matavimas.

T – yra išmatuotas laiko tarpas su laikmačiu.

 ΔT – yra laikmačio paklaida.

Darbe yra naudojamas kvarcinis rezonatorius, kurio vidutinė paklaida per 1 s yra $20 \ \mu s$. Tarkime rato diametras yra $0.4 \ \text{m}$, o prietaiso su kuriuo buvo matuojama paklaida yra $1.1 \ \text{mm}$. Išmatuotas laiko tarpas yra $1 \ \text{s}$, o paklaida yra $20 \ \mu s$. Šius skaičius įsistatome į tam tinkamas vietas ir atliekame skaičiavimus pasinaudojant MatLab programinę įrangą.

```
T= 1; % [sek.]
D=0.4; % [m]
dD=0.0011; % [m]|
dT=0.01e-6; % [sek.]
stdv = sqrt((pi/T)^2*((dD/sqrt(12))^2)+(-pi*D/T^2)^2*((dT/sqrt(12))^2))
```

Gauta paklaida yra: 0,99759 mm/s