DS7

4 heures

- Tout résultat ou raisonnement doit être clairement justifié, sauf mention du contraire.
- La qualité de la rédaction sera prise en compte dans l'évaluation.
- La présentation de la copie sera prise en compte dans l'évaluation :
 - ⊳ | encadrez les résultats principaux;
 - \vartriangleright soulignez les résultats et arguments intermédiaires importants ;
 - *⊳* soignez votre écriture ;
 - > maintenez une marge dans vos copies, aérez vos copies;
 - ⊳ enfin, numérotez vos copies (et non vos pages).
- Les documents, calculatrices et autres appareils électroniques sont interdits.
- Si vous constatez ce qui vous semble être une erreur d'énoncé, signalez-le sur votre copie en expliquant les initiatives que vous avez été amené à prendre.

DS7

Autour de ℓ^2

Les ensembles de parties {I}, {II, III, IV}, et {V, VI, VII} sont largement indépendants.

Partie I – Dualités.

Notations

 \triangleright Si E un \mathbb{R} -espace vectoriel muni d'un produit scalaire $(\cdot | \cdot)$, on note

$$E^* \coloneqq \mathcal{L}(E, \mathbb{R})$$
 et $E' \coloneqq \Big\{ f \in E^* \mid \exists C \in \mathbb{R}_+ : \forall x \in E, |f(x)| \leqslant C \|x\| \Big\},$

où $\|\cdot\|$ désigne la norme associée à $(\cdot\,|\,\cdot)$.

 \triangleright Si de plus $a \in E$, on note

$$q_a: \left\{ \begin{array}{l} E \longrightarrow \mathbb{R} \\ x \longmapsto (x \mid a) \, . \end{array} \right.$$

Dans cette partie, on fixe E un \mathbb{R} -espace vectoriel muni d'un produit scalaire $(\cdot | \cdot)$.

- 1. Montrer que E' est un sous-espace vectoriel de E^* .
- **2.** Soit $a \in E$. Montrer que $q_a \in E'$.
- 3. Montrer que

E de dimension finie $\implies E' = E^*$.

- **4.** Soit $n \in \mathbb{N}^*$ et soit $(e_1, \dots, e_n) \in E^n$.
 - (a) Montrer que

$$(e_1,\ldots,e_n)$$
 base de $E \implies (q_{e_1},\ldots,q_{e_n})$ base de E' .

(b) On suppose que (e_1, \ldots, e_n) est une base orthonormée de E.

Soit $f \in L(E)$. On note

$$f^*: \left\{ \begin{array}{l} E^* \longrightarrow E^* \\ \varphi \longmapsto \varphi \circ f. \end{array} \right.$$

Montrer que

$$\operatorname{Mat}_{\left(q_{e_{1}},\ldots,q_{e_{n}}\right)}\left(f^{*}\right) = \operatorname{Mat}_{\left(e_{1},\ldots,e_{n}\right)}\left(f\right)^{\mathsf{T}}.$$

5. On note

$$\Phi_E: \left\{ \begin{array}{l} E \longrightarrow E' \\ a \longmapsto q_a. \end{array} \right.$$

On admet que Φ_E est linéaire.

Montrer que Φ_E est injective.

Partie II – Premières propriétés de ℓ^2 .

Notations

 \triangleright On rappelle que si $a, b \in \mathbb{R}^{\mathbb{N}}$, on note $a \times b$ la suite définie par

$$\forall n \in \mathbb{N}, \ (a \times b)_n = a_n \times b_n.$$

 \triangleright On note

$$\ell^{1} := \left\{ (a_{n})_{n \geqslant 0} \in \mathbb{R}^{\mathbb{N}} \mid la \ s\acute{e}rie \sum_{n} |a_{n}| \ est \ convergente \right\}$$
$$\ell^{2} := \left\{ (a_{n})_{n \geqslant 0} \in \mathbb{R}^{\mathbb{N}} \mid la \ s\acute{e}rie \sum_{n} {a_{n}}^{2} \ est \ convergente \right\}.$$

 \triangleright On admet que ℓ^1 est un \mathbb{R} -espace vectoriel.

- **6.** Trouver une suite $a \in \ell^2 \setminus \ell^1$.
- 7. Montrer que $\ell^1 \subset \ell^2$.
- 8. Une propriété de transfert.

Soient $a, b \in \mathbb{R}^{\mathbb{N}}$. Montrer que

$$\left. \begin{array}{l} a \in \ell^2 \\ b \in \ell^2 \end{array} \right\} \implies a \times b \in \ell^1.$$

On passera par les sommes partielles et on pourra utiliser des inégalités classiques.

- 9. En déduire que ℓ^2 est un \mathbb{R} -espace vectoriel.
- **10.** Si $a, b \in \ell^2$, on note

$$(a \mid b) \coloneqq \sum_{n=0}^{\infty} a_n b_n.$$

Justifier cette définition.

On admet que $(\cdot | \cdot)$ définit un produit scalaire sur ℓ^2 .

Partie III – Un lemme sur les séries divergentes.

Hypothèses et notations

- \triangleright Dans cette partie, on considère une suite $(u_n)_n \in (\mathbb{R}_+^*)^{\mathbb{N}}$ telle que $\sum_n u_n$ diverge.
- $ightharpoonup Pour \ n \in \mathbb{N}, \ on \ note \ S_n := \sum_{k=0}^n u_k.$
- 11. Montrer que $\sum_{n} \frac{u_n}{(S_n)^2}$ converge.

On pourra utiliser que $(S_n)^2 \geqslant S_n S_{n-1}$ et exprimer u_n en fonction de S_n .

- 12. On veut montrer que $\sum_{n} \frac{u_n}{S_n}$ diverge.
 - (a) On suppose que $\frac{u_n}{S_n} \longrightarrow 0$. Conclure.
 - (b) On suppose que $\frac{u_n}{S_n} \longrightarrow 0$.
 - (i) Montrer que la série $\sum_{n} \ln \left(1 \frac{u_n}{S_n}\right)$ diverge.

On passera par les sommes partielles et on utilisera les propriétés du logarithme.

(ii) Conclure.

Partie IV – Trois belles propriétés de ℓ^2 .

Bilan et notations

 $ightharpoonup D'après ce qui précède, on sait que <math>\ell^2$ est un \mathbb{R} -espace vectoriel muni d'un produit scalaire $(\cdot\,|\,\cdot)$ défini par

$$(a \mid b) := \sum_{n=0}^{\infty} a_n b_n \quad \text{si } a, b \in \ell^2.$$

- $\rhd \ \textit{Dans la suite, si} \ a \in \ell^2, \ \textit{on notera} \ \|a\|_2 \coloneqq \sqrt{(a \, | \, a)}.$
- > On pourra utiliser librement dans la suite que

$$\forall a,b \in \mathbb{R}^{\mathbb{N}}, \quad a,b \in \ell^2 \implies a \times b \in \ell^1.$$

- 13. Réciproque de la propriété de transfert.
 - (a) Soit $a \in (\mathbb{R}_+^*)^{\mathbb{N}}$. Montrer que

$$(\forall b \in \ell^2, \ a \times b \in \ell^1) \implies a \in \ell^2.$$

On raisonnera par l'absurde et on utilisera les résultats de la partie III.

(b) Montrer que le résultat est encore valable si $a \in \mathbb{R}^{\mathbb{N}}$.

14. L'espace ℓ^2 n'a pas de borne supérieure.

Dans cette question, on veut montrer qu'il n'existe pas de suite $(M_n)_n$ telle que

$$\forall u \in \mathbb{R}^{\mathbb{N}}, \quad \left(u \in \ell^2 \iff u_n = \mathrm{o}(M_n) \text{ quand } n \to \infty\right).$$

On suppose l'existence d'une telle suite $(M_n)_n \in \mathbb{R}^{\mathbb{N}}$, qu'on fixe.

En utilisant la question 13.(b), aboutir à une contradiction et conclure.

15. L'espace $(\ell^2)'$ est isomorphe à ℓ^2 .

Montrer que

$$\Phi: \left\{ \begin{array}{ll} \ell^2 \longrightarrow (\ell^2)' \\ a \longmapsto q_a \end{array} \right.$$

est un isomorphisme.

Partie V – Un critère pour être ℓ^2 .

Notations

Dans cette partie, on fixe:

 \triangleright une fonction $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$ telle que

$$f(0) = 0$$
 et $\forall x > 0, f(x) > 0$;

 \triangleright une suite $(u_n)_n \in \mathbb{R}^{\mathbb{N}}$ telle que

$$u_0 \neq 0$$
 et $\forall n \in \mathbb{N}, (u_n \geqslant 0 \text{ et } u_{n+1} = f(u_n)).$

16. On suppose que

$$\exists \delta > 0: \ \forall x \in [0, \delta[, \ f(x) \geqslant x.]$$

Montrer que $u_n \to 0$.

17. Le critère pour être ℓ^2 .

Dans cette question, on suppose que

$$f(x) = x - Cx^{\alpha} + o(x^{\alpha})$$
 quand $x \to 0$,

où $C \in \mathbb{R}^*$ et $\alpha > 1$.

- (a) Montrer que $C < 0 \implies u_n \not\longrightarrow 0$.
- (b) On suppose que C > 0 et $u_n \longrightarrow 0$.
 - (i) Montrer que $u_n^{1-\alpha} \sim C(\alpha 1)n$. On pourra utiliser le théorème de Cesàro.
 - (ii) En déduire que

$$(u_n)_n \in \ell^2 \iff \alpha < 3.$$

Partie VI – Application à une suite récurrente.

Rappels et notations

▷ On pourra utiliser le résultat suivant, légère généralisation de la question 17. :

Proposition.

Soit I un intervalle de longueur non nulle contenant 0 et soit $f: I \longrightarrow \mathbb{R}$. Soit C > 0 et soit $\alpha > 1$ tels que

$$f(x) = x - Cx^{\alpha} + o(x^{\alpha})$$
 quand $x \to 0$.

Soit $(u_n)_n \in I^{\mathbb{N}}$ telle que $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$. Alors,

$$u_n \longrightarrow 0 \implies ((u_n)_n \in \ell^2 \iff \alpha < 3).$$

ightharpoonup Dans cette partie, on considère $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$ une fonction dérivable qui est solution du problème de Cauchy

$$\begin{cases} y' = y^2 - t + 1 \\ y(0) = 0. \end{cases}$$

- 18. Montrer que f est \mathscr{C}^{∞} .
- **19.** Montrer que $f \ge 0$ et que f est croissante sur [0,1].
- **20.** On veut montrer que $\forall x \in]0,1], f(x) < x$. On pose

$$A := \Big\{ x \in]0,1] \mid f(x) \geqslant x \Big\}.$$

On raisonne par l'absurde et on suppose $A \neq \emptyset$. On pose $a := \inf A$.

- (a) Montrer que $a \in A$.
- (b) Montrer que a > 0.
- (c) En utilisant le théorème des accroissements finis, aboutir à une contradiction.
- **21.** On considère la suite $(u_n)_n \in \mathbb{R}^{\mathbb{N}}$ définie par

$$u_0 = 1$$
 et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n).$

- (a) Montrer que $(u_n)_n$ est bien définie.
- (b) Montrer que $u_n \longrightarrow 0$ et $(u_n)_n \in \ell^2$.

Partie VII – Application à une intégrale imbriquée à l'infini.

ightharpoonup On fixe $\alpha > 0$ et on considère la fonction

$$g: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ t \longmapsto \frac{e^{1-2\cosh(t)}}{2}. \end{array} \right.$$

 \triangleright On considère la suite $(x_n)_n \in \mathbb{R}^{\mathbb{N}}$ définie par

$$x_0 := 1,$$

$$x_1 := \int_{-1}^{1} g(t) \, \mathrm{d}t,$$

$$x_2 := \int_{-\int_{-1}^{1} g(\theta) \, \mathrm{d}\theta}^{\int_{-1}^{1} g(\theta) \, \mathrm{d}\theta} g(t) \, \mathrm{d}t,$$

$$x_3 := \int_{-\int_{-1}^{1} g(x) \, \mathrm{d}x}^{\int_{-\int_{-1}^{1} g(x) \, \mathrm$$

$$x_4 \coloneqq \int_{-\int_{-1}^{1} g(u) \, \mathrm{d}u}^{\int_{-\int_{-1}^{1} g(u) \, \mathrm{d}u}^{1} g(x) \, \mathrm{d}x} g(\theta) \, \mathrm{d}\theta}$$

$$-\int_{-\int_{-1}^{1} g(u) \, \mathrm{d}u}^{\int_{-1}^{1} g(u) \, \mathrm{d}u} g(t) \, \mathrm{d}t}$$

$$-\int_{-\int_{-1}^{1} g(u) \, \mathrm{d}u}^{\int_{-1}^{1} g(u) \, \mathrm{d}u} g(t) \, \mathrm{d}t,$$

$$-\int_{-\int_{-1}^{1} g(u) \, \mathrm{d}u}^{\int_{-1}^{1} g(u) \, \mathrm{d}u} g(\theta) \, \mathrm{d}\theta$$

$$-\int_{-\int_{-1}^{1} g(u) \, \mathrm{d}u}^{\int_{-1}^{1} g(u) \, \mathrm{d}u} g(\theta) \, \mathrm{d}\theta$$

etc.

- **22.** Montrer que $(x_n)_n$ est décroissante.
- **23.** Montrer que $x_n \longrightarrow 0$.
- **24.** (a) Montrer que $(x_n)_n \notin \ell^2$.
 - (b) Donner un équivalent de x_n .

FIN DU SUJET.

