	Sunday, 8 October 2023, 6:03 PM
State	Finished
Completed on	Sunday, 8 October 2023, 6:38 PM
Time taken	35 mins 22 secs
Grade	10.00 out of 10.00 (100 %)
Question 1	
Correct	
Mark 1.00 out of 1.00	
,	
Concepts of dates	tion theory, one be used
Concepts of detec	tion theory can be used
Select one:	
Only in Wireles	ss Technology
All of these ✓	
Only in DADAD	
Only in RADAR	
\bigcirc	
Only in Machin	e Learning
Your answer is cor	rect.
The correct answe	r is:
All of these	
Question 2	
Correct	
Mark 1.00 out of 1.00	
The general proble	em in detection is
Select one:	
Multiple cost d	etermination
Binary hypothe	esis testina 🗸
Gaussian discri	minant analysis
Optimal pattern	n recognition
Your answer is cor	rect.
The correct answer	r is: Binary hypothesis testing
THE COHECT ANSWE	i io. Dinary hypothesis testing
Question 3	
Correct	
Mark 1.00 out of 1.00	
i de la companya de	

Consider the binary hypothesis testing problem described in lectures with noise variance 4. The distribution of the output under H₀ is

Select one:

- $\mathcal{N}(0,2\mathbf{I})$
- $\mathcal{N}(\bar{\mathbf{s}}, 2\mathbf{I})$
- $\mathcal{N}(\bar{\mathbf{s}}, 4\mathbf{I})$

Your answer is correct.

The correct answer is: $\mathcal{N}(0,4\mathbf{I})$

Question 4

Correct

Mark 1.00 out of 1.00

Consider the binary hypothesis testing problem described in lectures with noise variance 1. The distribution of the output under H₁ is

Select one:

- $\mathcal{N}(\bar{\mathbf{s}},\mathbf{I}) \checkmark$
- $\mathcal{N}(0,\mathbf{I})$
- $\mathcal{N}(0,2\mathbf{I})$
- $\mathcal{N}(\bar{\mathbf{s}}, 2\mathbf{I})$

Your answer is correct.

The correct answer is: $\mathcal{N}(\bar{\mathbf{s}}, \mathbf{I})$

Question **5**

Correct

Mark 1.00 out of 1.00

 $hildsymbol{\mathbb{P}}$ Flag question

Consider the binary hypothesis testing problem described in lectures with noise variance σ^2 . The likelihood of H₀ is

Select one:

$$\bigcirc \quad \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}}e^{-\frac{\sum_{i=1}^{N}y(i)}{2\sigma^2}}$$

$$\bigcirc \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}} e^{-\frac{\left(\sum_{i=0}^{N} y(i) - s(i)\right)^2}{2\sigma^2}}$$

$$\qquad \qquad \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}}e^{-\frac{\sum_{i=1}^{N}y^2(i)}{2\sigma^2}} \checkmark$$

$$\bigcirc \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}}e^{-\frac{\sum_{i=0}^{N}\left(y(i)-s(i)\right)^2}{2\sigma^2}}$$

Your answer is correct.

The correct answer is: $\left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}}e^{-\frac{\sum_{i=1}^{N}y^2(i)}{2\sigma^2}}$

Question 6

Correct

Mark 1.00 out of 1.00

Consider the binary hypothesis testing problem described in lectures with noise variance σ^2 . The likelihood of H₁ is

Select one:

$$\bigcirc \quad \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}}e^{-\frac{\sum_{i=1}^{N}y(i)}{2\sigma^2}}$$

$$\bigcirc \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}} e^{-\frac{\left(\sum_{i=0}^{N} y(i) - s(i)\right)^2}{2\sigma^2}}$$

$$\bigcirc \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}} e^{-\frac{\sum_{i=1}^N y^2(i)}{2\sigma^2}}$$

Your answer is correct.

The correct answer is: $\left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}}e^{-\frac{\sum_{i=0}^{N}\left(y(i)-s(i)\right)^2}{2\sigma^2}}$

Question 7

Correct

Mark 1.00 out of 1.00

The principal tool in detection is

Select one:

- Maximum Likelihood
- Likelihood Ratio Test
- Maximum Aposteriori Probability
- Minimum Mean Squared Error

Your answer is correct.

The correct answer is: Likelihood Ratio Test

Question 8

Correct

Mark 1.00 out of 1.00

The LRT chooses H₀ if

Select one:

- $\bigcirc \ \frac{p(\overline{\mathbf{y}};\mathcal{H}_0)}{p(\overline{\mathbf{y}};\mathcal{H}_1)} \geq 1$
- $\bigcirc \quad \frac{p(\bar{\mathbf{y}};\mathcal{H}_0)}{p(\bar{\mathbf{y}};\mathcal{H}_1)} < \widetilde{\gamma}$
- $\bigcirc \quad \frac{p(\bar{\mathbf{y}}:\mathcal{H}_0)}{p(\bar{\mathbf{y}}:\mathcal{H}_1)} < 1$

Your answer is correct.

The correct answer is: $\frac{p(\bar{\mathbf{y}};\mathcal{H}_0)}{p(\bar{\mathbf{y}};\mathcal{H}_1)} \geq \widetilde{\gamma}$

Question 9

Correct

Mark 1.00 out of 1.00

The LRT for the signal detection problem reduces to choose H₀ if

Select one:

Your answer is correct.

The correct answer is: $\bar{\mathbf{s}}^T \bar{\mathbf{y}} \leq \gamma$

Question 10

Correct

Mark 1.00 out of 1.00

The LRT reduces to the ML decision rule for γ =

Select one:

- ||**s**||
- $\frac{\|\bar{s}\|^2}{4}$

Your answer is correct.

The correct answer is: $\frac{\|\bar{s}\|^2}{2}$

Finish review