```
In [1]: import numpy as np
         import matplotlib.pyplot as plt
         import numpy.random as npr
         import cv2
         from time import time
         import warnings
         warnings. filterwarnings ("ignore")
In [2]: # Load the dataset
         X train = np. load('Dataset/data train.npy'). T
         t_train = np. load('Dataset/labels_train_corrected.npy')
         X test = np. load('Dataset/data_test.npy'). T
         t_test = np. load('Dataset/labels_test_corrected.npy')
         X_train. shape, t_train. shape, X_test. shape, t_test. shape
         ((6720, 90000), (6720,), (2880, 90000), (2880,))
Out[2]:
In [3]: # Reshape the training adm test data set
         X_{\text{train\_reshaped}} = \text{np. zeros}((6720, 2500))
         X_{\text{test\_reshaped}} = \text{np. zeros}((2880, 2500))
         for i in range(len(X_train[:, 0])):
             im1 = X train[i, :]. reshape(300, 300)
             res = cv2. resize(im1, dsize=(50, 50), interpolation=cv2. INTER_CUBIC)
             X_train_reshaped[i, :] = res. reshape(2500,)
         for i in range(len(X_test[:, 0])):
             im1 = X_{test}[i, :]. reshape (300, 300)
             res = cv2. resize(im1, dsize=(50, 50), interpolation=cv2. INTER_CUBIC)
             X_test_reshaped[i, :] = res. reshape(2500,)
         X_train_reshaped. shape, X_test_reshaped. shape
         ((6720, 2500), (2880, 2500))
Out[3]:
In [4]: from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
         from scipy import stats
         from \ sklearn. \ model\_selection \ import \ cross\_val\_score
         # Define a function for evaluating performance
         def Evaluate_performance(estimator, Name, confidence=True, X_train=X_train_reshaped
             t0 = time()
             y train = estimator.predict(X train)
             t1 = time()
             predict train time = t1 - t0
             t0 = time()
             y_test = estimator.predict(X_test)
             t1 = time()
             predict test time = t1 - t0
             # Accuracy
             train accuracy = accuracy score(t train, y train)
             test_accuracy = accuracy_score(t_test, y_test)
             if confidence == True:
                 # 95% CI in training set
                 scores = cross val score (estimator, X train, t train,
```

```
scoring=scoring,
                           cv=5)
   confidence_{-} = 0.95
    train_interval = stats. t. interval(confidence_,
                                    len (scores)-1,
                                    loc = scores. mean(),
                                    scale=scores. std(ddof=1)/np. sqrt(len(scores
   # Accuracy and 95% CI in test set
   scores = cross_val_score(estimator, X_test, t_test,
                           scoring=scoring,
                           cv=5)
   confidence_ = 0.95
    test interval = stats. t. interval (confidence,
                                    1en(scores)-1.
                                    loc = scores. mean(),
                                    scale=scores. std(ddof=1)/np. sqrt(len(scores
print('Performance of {}:\n'. format(Name))
print('1. In training set: (time used in predict: {:.2f} sec)'.format(predict_tr
print(classification_report(t_train, y_train))
print('Accuracy: {}'.format(train_accuracy))
if confidence == True:
   print('95% CI: {}\n'. format(train_interval))
print('Confusion Matrix')
print(confusion_matrix(t_train, y_train))
print('\n ========\\n')
print('2. In test set: (time used in predict: {:.2f} sec)'.format(predict_test_t
print(classification report(t test, y test))
print('Accuracy: {}'. format(test_accuracy))
if confidence == True:
   print('95% CI: {}\n'. format(test_interval))
print('Confusion Matrix')
print(confusion_matrix(t_test, y_test))
```

• Identify which pixels are selected and displaymask examples from the training dataset.

```
In [5]: # Load the model
    import joblib

    rfe_lr = joblib. load('Model/rfe_lr_question1.pkl')
    rfe_svm = joblib. load('Model/rfe_svm_question1.pkl')

In [6]: # For Logistic Regression with RFE
    pixels = rfe_lr. named_steps['RFE']. support_. reshape(50, 50)
    plt. imshow(pixels, cmap='gray')
    plt. title('Selected Pixels')
Out[6]: Text(0.5, 1.0, 'Selected Pixels')
```



```
In [7]: plt. figure(figsize=(15, 15))
         for i in range (10):
              index = np. where(t_train==i)
              plt. subplot (1, 10, i+1)
              plt.imshow(X_train_reshaped[index[0][0], :].reshape(50,50), cmap='gray')
              plt. axis ('off')
              plt. title('Class {:.0f}'.format(t_train[index[0][0]]))
         plt. figure (figsize= (15, 15))
         for i in range (10):
              index = np. where (t train==i)
              plt. subplot (1, 10, i+1)
              plt.imshow(X_train_reshaped[index[0][0], :].reshape(50,50)*pixels, cmap='gray')
              plt. axis ('off')
              plt. title('Class {:.0f}'.format(t_train[index[0][0]]))
                                                                                       Class 8
                    Class 1
                              Class 2
                                        Class 3
                                                 Class 4
                                                           Class 5
                                                                    Class 6
                                                                              Class 7
                                                                                                 Class 9
                    Class 1
                              Class 2
                                       Class 3
                                                 Class 4
                                                           Class 5
                                                                    Class 6
                                                                              Class 7
                                                                                       Class 8
In [8]: # For SVM with RFE
         pixels = rfe_svm.named_steps['RFE']. support_. reshape(50, 50)
         plt. imshow(pixels, cmap='gray')
         plt. title('Selected Pixels')
```

Out[8]: Text(0.5, 1.0, 'Selected Pixels')


```
plt. figure (figsize= (15, 15))
In [9]:
          for i in range (10):
              index = np. where (t train==i)
              plt. subplot (1, 10, i+1)
              plt.imshow(X_train_reshaped[index[0][0], :].reshape(50,50), cmap='gray')
              plt. axis ('off')
              plt. title('Class {:.0f}'.format(t_train[index[0][0]]))
          plt. figure (figsize= (15, 15))
          for i in range (10):
              index = np. where (t train==i)
              plt. subplot (1, 10, i+1)
              plt.imshow(X_train_reshaped[index[0][0], :].reshape(50,50)*pixels, cmap='gray')
              plt. axis ('off')
              plt. title('Class \{:.0f\}'. format(t_{train[index[0][0]]}))
                     Class 1
                               Class 2
                                         Class 3
                                                   Class 4
                                                                                Class 7
                                                                                          Class 8
                                                                                                    Class 9
                     Class 1
                               Class 2
                                         Class 3
                                                   Class 4
                                                            Class 5
                                                                      Class 6
                                                                                Class 7
                                                                                          Class 8
                                                                                                    Class 9
```

Question 2

Was training faster using the reduced dataset?

When training the dataset with the 182 dimension's dataset, it took 8.76 seconds. When training the dataset with whole 2500 reshaped pixels, it took 76.26 seconds. Classifier with PCA is almost 10 times faster than the original classifier.

• Compare performances.

```
In [10]: # Load the model
    svm_pca = joblib. load('Model/svm_pca_question2.pkl')
    svm = joblib. load('Model/svm_question2.pkl')
In [11]: Evaluate_performance(estimator=svm_pca, confidence=True, Name='SVM with PCA')
```


1. In train	ning	set: (time	used in	predict: 8.3	36 sec)
	I	orecision	recal1	fl-score	support
0.	. 0	0.60	0.64	0.62	686
1.	. 0	0.61	0.57	0.59	680
2.	. 0	0.44	0.78	0.57	680
3.	. 0	0.66	0.60	0.63	658
4.	. 0	0.69	0.56	0.62	656
5.	. 0	0.56	0.59	0.58	664
6.	. 0	0.68	0.65	0.66	671
7.	. 0	0.57	0.54	0.56	680
8.	. 0	0.72	0.55	0.63	672
9.	. 0	0.74	0.59	0.66	673
accura	су			0.61	6720
macro a	vg	0.63	0.61	0.61	6720
weighted a	vg	0.63	0.61	0.61	6720

Accuracy: 0.6066964285714286

95% CI: (0.44942447657130097, 0.4776588567620324)

Confusion Matrix

[[436	26	62	32	24	25	22	35	4	20]
[31	385	104	14	14	34	14	45	25	14]
[23	16	532	16	26	16	10	25	2	14]
[52	21	64	396	16	31	27	23	10	18]
[27	28	116	28	365	34	15	22	6	15]
[20	19	76	16	23	392	49	23	33	13]
[32	19	57	19	10	35	435	22	32	10]
[39	72	90	19	21	32	11	365	13	18]
[25	35	33	29	11	68	45	34	372	20]
[37	15	62	31	20	31	16	41	21	399]]

2. In test set: (time used in predict: 3.58 sec)

	precision	recall	fl-score	support
0.0	0.45	0.50	0.48	274
1.0	0.43	0.44	0.43	273
2.0	0.35	0.69	0.47	285
3.0	0.52	0.50	0.51	296
4.0	0.60	0.40	0.48	309
5.0	0.44	0.42	0.43	296
6.0	0.54	0.52	0.53	291
7.0	0.43	0.38	0.40	280
8.0	0.58	0.42	0.48	291
9.0	0.60	0.48	0.53	285
accuracy			0.47	2880
macro avg	0.49	0.47	0.47	2880
weighted avg	0.50	0.47	0.48	2880

Accuracy: 0.47430555555555554

95% CI: (0.36523618896418947, 0.4007360332580328)

Confusion Matrix

[[138	12	41	19	4	15	10	18	5	12]
[13	120	38	15	12	17	6	26	15	11]
[15	7	196	12	19	5	14	12	0	5]
[38	15	29	147	3	20	17	12	5	10]
F 20	2.1	67	16	125	21	10	18	2	97

```
    [
    8
    22
    45
    15
    11
    125
    26
    14
    23
    7]

    [
    22
    10
    32
    18
    7
    13
    150
    12
    14
    13]

    [
    18
    45
    52
    10
    10
    12
    5
    107
    9
    12]

    [
    12
    16
    27
    16
    3
    39
    27
    18
    121
    12]

    [
    21
    11
    26
    15
    14
    18
    15
    13
    15
    137]
```

In [12]: Evaluate_performance(estimator=svm, confidence=True, Name='SVM without PCA')

1. In	training	set: (time	used in	predict: 86.	77 sec)
]	precision	recal1	fl-score	${\tt support}$
	0.0	0.67	0.68	0.68	686
	1.0	0.67	0.63	0.65	680
	2.0	0.46	0.82	0.59	680
	3.0	0.71	0.64	0.67	658
	4.0	0.74	0.61	0.67	656
	5.0	0.62	0.64	0.63	664
	6.0	0.73	0.70	0.71	671
	7.0	0.63	0.60	0.62	680
	8.0	0.78	0.61	0.68	672
	9.0	0.78	0.63	0.70	673
ac	curacy			0.66	6720
mac	ro avg	0.68	0.66	0.66	6720
weight	ed avg	0.68	0.66	0.66	6720

Accuracy: 0.65625

95% CI: (0.43644462129632317, 0.4599839501322484)

Confusion Matrix

[[468	20	58	28	23	22	17	30	3	17]
[20	427	92	13	8	31	13	42	22	12]
[18	14	560	12	19	9	9	22	2	15]
[39	21	65	423	12	30	21	23	8	16]
[22	19	108	23	398	33	17	19	5	12]
[21	20	81	10	17	423	38	18	24	12]
[21	17	58	14	7	31	467	23	25	8]
[31	53	86	20	24	20	10	410	13	13]
[20	36	36	28	12	48	38	29	408	17]
[35	13	64	26	19	30	14	34	12	426]]

2. In test set: (time used in predict: 34.87 sec)

	precision	recal1	fl-score	support
0.0	0.42	0.49	0.45	274
1.0	0.44	0.42	0.43	273
2.0	0.34	0.70	0.46	285
3.0	0.53	0.48	0.50	296
4.0	0.57	0.39	0.46	309
5.0	0.42	0.40	0.41	296
6.0	0.52	0.51	0.51	291
7.0	0.44	0.39	0.42	280
8.0	0.59	0.42	0.49	291
9.0	0.59	0.48	0.53	285
accuracy			0.47	2880
macro avg	0.49	0.47	0.47	2880
weighted avg	0.49	0.47	0.47	2880

Accuracy: 0.46631944444444445

95% CI: (0.35006720212576103, 0.39159946454090566)

Confusion Matrix

[[133	10	44	20	9	15	12	15	6	10]
	[14	116	45	11	10	15	7	25	17	13]
	[12	5	199	10	18	7	14	14	0	6]
	[41	13	30	142	4	21	16	13	6	10]
	<pre>[23</pre>	18	72	15	119	24	13	15	2	8]

```
[ 12 29 46 15 8 118 26 12 21 9]
[ 22 9 35 18 8 13 147 11 14 14]
[ 20 39 55 8 11 13 4 110 8 12]
[ 14 13 30 13 4 33 28 21 123 12]
[ 23 10 27 15 16 20 14 14 10 136]]
```

From the performance, we can see svm classifier without PCA has better accuracy in training data set, but in test data set, the accuracies are almost the same.

Visualize the top 10 eigenvectors. Discuss what they represent.

```
In [13]: plt. figure(figsize=(20,5))
    for i in range(10):
        plt. subplot(1, 10, i+1)
        plt. imshow(svm_pca. named_steps['PCA']. components_[i,:]. reshape(50, 50), cmap='graplt. title('PC'+str(i+1)); plt. axis('off');
PC1     PC2     PC3     PC4     PC5     PC6     PC7     PC8     PC9     PC10
```

They represent the 10 maximum variance direction in the data. They are also the outline handwritten characters.

• Visualize examples of image reconstruction from PCA projections.

```
In [15]: ypca_test = pca_pipe. transform(X_test_reshaped)
    X_test_reconstructed = pca_pipe. inverse_transform(ypca_test)

# Visualization
    N = 5
    idx = np. random. choice(range(X_test_reconstructed. shape[0]), size=N, replace=False)

fig = plt. figure(figsize=(15, 5))

j=1
    for i in range(N):
        fig. add_subplot(2, N, j)
        plt. imshow(X_test_reshaped[idx[i], :]. reshape(50, 50), cmap='gray')
        plt. axis('off')
```


Question 3

Visualize the dataset, be sure to color-code each point to its corresponding target label.

```
In [16]:
          # Load the dataset
          X_lda = np. load('Dataset/data_train_lda_question3.npy')
          X tsne = np. load('Dataset/data_train_tsne_question3.npy')
          1da = joblib. load('Model/lda_question3.pkl')
          tsne = joblib. load('Model/tsne_question3.pk1')
          X_1da. shape, X_tsne. shape
          ((6720, 2), (6720, 2))
Out[16]:
          #Visualization in training set
In [17]:
          ## Visualization for LDA
          plt. figure (figsize= (10,7))
          plt. scatter(X_lda[:,0], X_lda[:,1], c=t_train, cmap=plt.cm.gist_rainbow)
          plt. xlabel('Component 1', size=15)
plt. ylabel('Component 2', size=15)
          plt. title('LDA in training Set')
          plt. colorbar()
          ## Visualization for t_SNE
          plt. figure (figsize= (10, 7))
          plt.scatter(X_tsne[:,0], X_tsne[:,1], c=t_train, cmap=plt.cm.gist_rainbow)
          plt. xlabel('Component 1', size=15)
          plt.ylabel('Component 2', size=15)
          plt.title('t_SNE in training Set')
          plt. colorbar();
```



```
In [18]: # Visualization in test set
ylda = lda. transform(X_test_reshaped)
ytsne = tsne. fit_transform(X_test_reshaped)

## Visualization for LDA
plt. figure(figsize=(10,7))
plt. scatter(ylda[:,0], ylda[:,1], c=t_test, cmap=plt.cm. gist_rainbow)
```

```
plt. xlabel('Component 1', size=15)
plt. ylabel('Component 2', size=15)
plt. title('LDA in test Set')
plt. colorbar()

## Visualization for LDA
plt. figure(figsize=(10,7))
plt. scatter(ytsne[:,0], ytsne[:,1], c=t_test, cmap=plt.cm. gist_rainbow)
plt. xlabel('Component 1', size=15)
plt. ylabel('Component 2', size=15)
plt. title('t-SNE in test Set')
plt. colorbar()
```

Out[18]: <matplotlib.colorbar.Colorbar at 0x2b6df8124130>

How many features would you select? Why?

In [20]: lda_num_to_choose = np. where(np. cumsum(lda. named_steps['features_selector']. explained print('For LDA, I select {} features.'. format(lda_num_to_choose))
 print('This is because when 8 features are selected, the explained varianced is above...)

For LDA, I select 8 features. This is because when 8 features are selected, the explained varianced is above 90%

For t_SNE, which is used for visualization, its numbers of components can only be setted in 2 and 3.

 Visualize and compare the 2-dimensional projections with PCA. Discuss your observations.

```
In [21]: X_pca = np. load('Dataset/data_train_pca_question3.npy')
          pca = joblib. load('Model/pca_question3.pkl')
          # For training
          plt. figure (figsize= (10, 7))
          plt.scatter(X_pca[:,0], X_pca[:,1], c=t_train, cmap=plt.cm.gist_rainbow)
          plt. xlabel('Component 1', size=15)
plt. ylabel('Component 2', size=15)
          plt. title ('PCA in training Set')
          plt. colorbar()
          # For test
          ypca = pca. transform(X test reshaped)
          plt. figure (figsize= (10, 7))
          plt.scatter(ypca[:,0], ypca[:,1], c=t_test, cmap=plt.cm.gist_rainbow)
          plt.xlabel('Component 1', size=15)
          plt. ylabel('Component 2', size=15)
          plt. title('PCA in test Set')
          plt. colorbar()
```

Out[21]: <matplotlib.colorbar.Colorbar at 0x2b6df92f2980>

From the three figures above, we can see the LDA has the best performance. It has distinct clusters for some classes. Compared to LDA, PCA and t_SNE cannot clearly classify the classes.

Question 4

• Which manifold learning algorithm would you select?

```
# Load the model
In [22]:
          from sklearn.base import BaseEstimator, TransformerMixin
          from sklearn. manifold import MDS, Isomap
          from sklearn.manifold import LocallyLinearEmbedding as LLE
          import warnings
          import joblib
          warnings. filterwarnings ("ignore")
          {\tt class} \ {\tt Custom\_MDS} \ ({\tt BaseEstimator}, \ {\tt TransformerMixin}):
              def init (self, n components=2):
                  self. n\_components = n\_components
                  self. mds = MDS (n_components=self. n_components)
              def fit(self, X, y=None):
                  self. mds. fit_transform(X, y)
                  return self
              def transform(self, X, y=None):
                  self. embedding_ = self. mds. fit_transform(X, y)
                  return self.embedding_
              def fit_transform(self, X, y=None):
```

```
self. mds. fit_transform(X, y)
        self.embedding_ = self.mds.fit_transform(X,y)
        return self.embedding_
svm_mds = joblib.load('Model/svm_mds_question4.pkl')
svm_isomap = joblib. load('Model/svm_isomap_question4.pkl')
svm_lle = joblib. load('Model/svm_lle_question4.pkl')
```

```
In [23]: # Performance of MSD
         Evaluate_performance(estimator=svm_mds, Name='SVM classifier with MDS', confidence=F
```

1. In	tran	11 111 8	prec						score	167.02 se support
	0.	. 0		0.0	8	0	. 07		0.08	686
	1.	. 0		0.1	2	0	. 11		0.11	680
	2.	. 0		0.1	2	0	. 10		0.11	680
		. 0		0.0	9	0	. 17		0.12	658
	4.	. 0		0.1		0	. 08		0.09	656
		. 0		0.0			. 06		0.07	664
		. 0		0.1			. 06		0.07	671
		. 0		0.1			. 06		0.07	680
		. 0		0.1			. 19		0.13	672
	9.	. 0		0.1	4	0	. 13		0.14	673
	cura			0 1	0	0	1.0		0.10	6720
	ro av			0.1			. 10		0.10	6720
weight	ed av	vg		0.1	0	0	. 10		0.10	6720
Accura	-			4285	7142	858				
Confus									7	
[[50	68		154	44	55	36		107	64]	
[63	73 50	61	133	33	52	33	29	132	71]	
[61	59	71	132	31	55 51	35	43	140	53]	
[53	61		112	48	51	47	51	128	58]	
[69 [69	51 55	56 57	128 115	51 35	43 38	47 43	43 37	115 147	53] 68]	
[70	70	73	107	40	40	40	41	127	63]	
[62	62		133	40	63	32	41	144	54]	
[66	45	59	125	40	38	55		131	67]	
[68	68	61	89	57	39	41		122	89]]	
===== 2. In	test	==== se1	t: (t prec			in			256.86	sec)
	0	. 0		0.1	2	0	. 07		0.09	274
		. 0		0. 0			. 10		0.09	273
		. 0		0. 2			. 19		0.19	285
		. 0		0.1			. 27		0.15	296
	4.	. 0		0.1			. 05		0.07	309
	5.	. 0		0.1		0	. 17		0.13	296
	6.	. 0		0.1	0	0	. 05		0.06	291
	7.	. 0		0.1	4	0	. 05		0.07	280
	8.	. 0		0.1	2	0	. 10		0.11	291
	9.	. 0		0.1	0	0	. 08		0.09	285
		C V							0.11	2880
ac	cura	\cup j								
	curac ro av			0.1	2	0	. 11		0.11	2880

[[19 30 25 58 9 61 20

5 25 22] [17 26 22 73 7 51 12 18 28] 19 [13 33 55 67 12 52 12 8 16 17] [18 21 32 81 20 53 17 8 27 19] [21 32 37 72 16 66 10 5 19 31] 28 [17 30 75 16 51 9 10 27 33] [9 32 22 99 12 39 14 16 33 15] [14 26 27 77 12 47 14 14 28 21]

```
[ 12 26 18 105 8 44 13 9 29 27]
[ 21 27 14 95 8 52 19 12 14 23]]
```

In [24]: # Performance of Isomap Evaluate_performance(estimator=svm_isomap, Name='SVM classifier with Isomap', confid

Performance of SVM	l classii	iler with	n Isomap:	
1. In training set	: (time	used in recall	predict: 1 f1-score	13.79 sec) support
0.0	0.31	0.44	0.37	686
1.0	0.36	0. 44	0.36	680
2.0	0.33	0.56	0.41	680
3.0	0.41	0. 28	0.33	658
4.0	0.45	0.29	0.35	656
5.0	0.32	0.36	0.34	664
6.0	0.32	0.28	0.30	671
7.0	0.45	0.33	0.38	680
8.0	0.46	0.40	0.43	672
9.0	0.45	0.39	0.42	673
accuracy			0.37	6720
macro avg	0.39	0.37	0.37	6720
weighted avg	0.39	0.37	0.37	6720
werghtee avg				*· - *
Accuracy: 0.371875 Confusion Matrix				
[[303 36 82 36	28 49	52 27	32 41]	
[73 253 100 16	25 52	30 55	28 48]	
[69 39 378 19	54 40	25 22	16 18]	
[85 44 102 186	17 54	59 24	48 39]	
[73 48 141 25	191 59	42 26	17 34]	
[63 50 85 28	26 237	44 37	65 29]	
[102 41 84 43	28 72	190 25	51 35]	
[75 100 74 26	23 54	40 226	26 36]	
[50 58 45 37	10 77	57 27	270 41]	
[76 38 62 41	24 44	50 38	35 265]]	
==========	======		=======	
2. In test set: (t	ime used	d in pred	lict: 6.02	sec)
	ision		f1-score	support
0.0	0.21	0.32	0.25	274
1.0	0.28	0.30	0.29	273
2.0	0.26	0.47	0.34	285
3.0	0.19	0.12	0.15	296
4.0	0.27	0.16	0.20	309
5. 0	0.19	0.21	0.20	296
6.0	0. 26	0.25	0.26	291
7. 0	0.32	0.23	0. 27	280
8. 0	0.32	0. 26	0. 28	291
9.0	0.32	0. 26	0. 29	285
accuracy			0.26	2880
macro avg	0.26	0.26	0.25	2880
weighted avg	0.26	0.26	0.25	2880
_ 0		·		
Accuracy: 0.25625				
Confusion Matrix				
[[87 16 35 19	15 26	27 12	23 14]	
[87 16 35 19 [21 82 54 19	15 26 13 13	27 12 12 19	23 14] 20 20]	

[38

[46

[39

[48

7

20

[45 27 37 36 15 32

10 134

24 86

40 43

13 27

[26 38 41

35 25

15 50 32 21

19 16 25 22 63

15 11 37

10

38 18 31

9 62 22 14 32 15]

14

73

3

9 13 13]

17 23 27]

9 21]

9]

17]

```
[ 28 17 27
             8 39
                    36 15 76 25]
           20
[ 36 30 29
                   16 18 19 75]]
          19 15 28
```

In [25]: # Performance of LLE
Evaluate_performance(estimator=svm_lle, Name='SVM classifier with LLE', confidence=F

1. In t	raining	set: (time	used in	predict: 13	.07 sec)
]	orecision	recall	fl-score	support
	0.0	0.24	0.35	0.28	686
	1.0	0.28	0.34	0.31	680
	2.0	0.38	0.32	0.35	680
	3.0	0.22	0.26	0.24	658
	4.0	0.36	0.21	0.27	656
	5.0	0.25	0.29	0.27	664
	6.0	0.30	0.24	0.27	671
	7.0	0.36	0.19	0.25	680
	8.0	0.31	0.38	0.34	672
	9.0	0.30	0.30	0.30	673
acc	uracy			0.29	6720
macr	o avg	0.30	0.29	0.29	6720
weighte	ed avg	0.30	0.29	0.29	6720
Accurac	y: 0.287	764880952380	095		
Confuci	on Motn	1 17			

Confusion Matrix

[[239]	67	53	70	38	40	35	19	59	66]
[86	232	42	56	17	54	30	45	66	52]
[80	62	218	73	72	44	38	24	34	35]
[105	43	35	169	28	52	46	22	99	59]
[73	62	98	74	141	77	39	21	23	48]
[74	84	27	55	13	192	59	26	84	50]
[102	55	33	69	28	71	160	24	81	48]
[98	103	38	75	22	59	44	129	50	62]
[84	60	10	50	10	94	32	23	253	56]
[71	71	23	71	22	71	50	29	65	200]]

2.	In	test	set:	(time	used	in	pred	ict:	5.59	sec)	
			pr	recisio	on	rec	call	f1-s	score	support	

		precision	recall	fl-score	support
	0.0	0.18	0.28	0.22	274
	1.0	0.21	0.26	0.23	273
	2.0	0.27	0.23	0.25	285
	3.0	0.16	0.20	0.18	296
	4.0	0.28	0.14	0.19	309
	5.0	0.15	0.17	0.16	296
	6.0	0.20	0.18	0.19	291
	7.0	0.22	0.12	0.16	280
	8.0	0.23	0.26	0.24	291
	9.0	0.23	0.24	0.23	285
accur	acy			0.21	2880
macro	avg	0.21	0.21	0.20	2880
weighted	avg	0.21	0.21	0.20	2880

Accuracy: 0.205208333333333333

Confusion Matrix

[[77 24 21 36 17 19 20 12 26 22] [31 72 21 35 11 28 13 12 25 25] [38 24 65 33 33 27 21 15 17 12] [48 31 22 58 11 18 24 14 46 24] [44 32 37 36 43 37 34 15 16 15] [45 48 14 36 3 49 27 8 42 24] [48 19 16 30 14 35 51 13 33 32] [38 46 25 25 7 32 18 34 22 33]

```
[33 26 7 32 6 37 24 15 75 36]
[34 29 9 37 9 37 24 17 22 67]]
```

From the evaluation above, I will select ISOMAP as my dimensinality reduction algorithm. This is because ISOMAP has the highest accuracy score in both training set and test set, and it takes lower time on training.

 Visualize and interprEvaluate_performancest 2 dimensions in the manifold learning algorithm you train.

```
plt. figure (figsize= (20, 15))
In [27]:
          # Load the model
          svm_mds = joblib. load('Model/svm_mds_question4.pk1')
          svm_isomap = joblib.load('Model/svm_isomap_question4.pkl')
          svm_lle = joblib. load('Model/svm_lle_question4.pkl')
          # MDS
          proj = svm_mds. named_steps['features_selector']. embedding_
          plt. subplot (2, 2, 1)
          plt. scatter(proj[:, 0], proj[:, 1], c=t_train, cmap=plt. cm. get_cmap('jet', 10))
          plt. colorbar(ticks=range(10))
          plt. clim(-0.5, 9.5);
          plt. title('MDS')
          # Isomap
          proj = svm_isomap. named_steps['features_selector']. embedding_
          plt. subplot (2, 2, 2)
          plt. scatter(proj[:, 0], proj[:, 1], c=t_train, cmap=plt. cm. get_cmap('jet', 10))
          plt. colorbar (ticks=range (10))
          plt. clim(-0.5, 9.5)
          plt. title('Isomap')
          # LLE
          proj = svm_lle. named_steps['features_selector']. embedding_
          plt. subplot (2, 2, 3)
          plt. scatter(proj[:, 0], proj[:, 1], c=t_train, cmap=plt. cm. get_cmap('jet', 10))
          plt. colorbar (ticks=range (10))
          plt. clim(-0.5, 9.5)
          plt. title('LLE')
          Text (0.5, 1.0, 'LLE')
```

Out[27]:


```
from matplotlib import offsetbox
In [28]:
          def plot_components(data, model, images=None, ax=None,
                               thumb_frac=0.05, cmap='gray'):
              ax = ax \text{ or plt. gca}()
              proj = model.fit_transform(data)
              ax. plot(proj[:, 0], proj[:, 1], '.k')
              if images is not None:
                  \min_{dist_2} = (thumb_{frac} * \max(proj. \max(0) - proj. \min(0))) ** 2
                  shown_images = np. array([2 * proj. max(0)])
                  for i in range (data. shape [0]):
                      dist = np. sum((proj[i] - shown_images) ** 2, 1)
                      if np. min(dist) < min_dist_2:</pre>
                          # don't show points that are too close
                           continue
                      shown_images = np. vstack([shown_images, proj[i]])
                      imagebox = offsetbox. AnnotationBbox(
                           offsetbox.OffsetImage(images[i], cmap=cmap),
                                                  proj[i])
                      ax. add artist (imagebox)
          #%%
          data = X train reshaped[::6]
          # MDS
          fig, ax = plt. subplots(figsize=(10, 10))
          mode1 = MDS (n_components=2)
          plot_components(data, model, images=X_train_reshaped.reshape((-1, 50, 50)),
                           ax=ax, thumb frac=0.05, cmap='gray')
          plt. title('MDS')
          # ISOMAP
          fig, ax = plt. subplots(figsize=(10, 10))
          mode1 = Isomap(n components=2, n neighbors=100)
```


In []: