Geometric-Transformation-Example-Solutions

Question 1

You are given the following (forward) geometric transformation:

The pixel at coordinate (x, y) in the original picture moves to the location $(\frac{2x+y}{3}, x)$ in the new picture.

Describe the result of applying this transformation to the following picture. Compute the transformed image only in a 4×3 window, where the values of x are 2, 3, 4, and the values of y are 1, 2, 3, 4.

	x = 0	x = 1	x = 2	x = 3	x = 4
y = 0	0	1	2	3	4
y=1	1	2	3	4	5
y=2	2	3	4	5	6
y = 3	3	4	5	6	7
y=4	4	5	6	7	8
y = 5	5	6	7	8	9
y = 6	6	7	8	9	9
y = 7	7	8	9	9	9
y = 8	8	9	9	9	9

Answer

Write the forward transformation as:

$$\frac{2x+y}{3} = X, \quad x = Y$$

Solving for x, y we get:

$$x = Y, \quad y = 3X - 2Y$$

Therefore, the inverse transformation is:

$$X = \text{new } x = y, \quad Y = \text{new } y = 3x - 2y$$

The following table shows where each pixel is coming:

	X = 2	X = 3	X = 4
Y=1	x = 1, y = 4	x = 1, y = 7	x = 1, y = 10
Y=2	x = 2, y = 2	x = 2, y = 5	x = 2, y = 8
Y = 3	x = 3, y = 0	x = 3, y = 3	x = 3, y = 6
Y=4	x = 4, y = -2	x = 4, y = 1	x = 4, y = 4

Since all locations are integer coordinates, the result of nearest neighbor is the same as the result of bilinear interpolation, and it is given by:

	x = 2	x = 3	x = 4
y = 1	5	8	0*
y=2	4	7	9
y = 3	3	6	9
y=4	0*	5	8

The two pixels marked with a * are out of the range of the original image.