Weil Pairing - study

arnaucube

August 2022

Abstract

Notes taken from Matan Prasma math seminars and while reading about Bilinear Pairings, Matan's course seminars are available at the following youtube playlist:

https://www.youtube.com/watch?v=JYSQYaAhJYclist=PLV91V4b0yVq $Q_inAjuIB5SwBNyYmA9S6M$ and in his website there are the full notes on that course, named *Elliptic* curves over finite fields and their pairings, an elementary and rigorous account

https://sites.google.com/view/matanprasmashomepage/publications; highly recommended!

Usually while learning I take handwritten notes, this document contains some of them re-written to LaTeX. The notes are not complete, don't include all the steps neither all the proofs. I use these notes to revisit the concepts after some time of reading the topic.

Contents

1	Rational functions 1.1 Zeros, poles, uniformizers and multiplicities	1 3
2	Divisors	3
3	Weil reciprocity	4
4	Generic Weil Pairing	5
5	Properties	6
6	Exercises	6

1 Rational functions

Let E/\mathbb{k} be an elliptic curve defined by: $y^2 = x^3 + Ax + B$.

set of polynomials over E: $\mathbb{k}[E] := \mathbb{k}[x,y]/(y^2 - x^3 - Ax - B = 0)$ we can replace y^2 in the polynomial $f \in \mathbb{k}[E]$ with $x^3 + Ax + B$

canonical form: f(x,y) = v(x) + yw(x) for $v, w \in \mathbb{k}[x]$

conjugate: $\overline{f} = v(x) - yw(x)$

norm: $N_f = f \cdot \overline{f} = v(x)^2 - y^2 w(x)^2 = v(x)^2 - (x^3 + Ax + B)w(x)^2 \in \mathbb{k}[x] \subset \mathbb{k}[x]$ $\mathbb{k}[E]$

we can see that $N_{fg} = N_f \cdot N_g$

set of rational functions over E: $k(E) := k[E] \times k[E] / \sim$ For $r \in \mathbb{k}(E)$ and a finite point $P \in E(\mathbb{k})$, r is finite at P iff

$$\exists \ r = \frac{f}{g} \text{ with } f, g \in \mathbb{k}[E], \ s.t. \ g(P) \neq 0$$

We define $r(P) = \frac{f(P)}{g(P)}$. Otherwise, $r(P) = \infty$. Remark: $r = \frac{f}{g} \in \mathbb{k}(E)$, $r = \frac{f}{g} = \frac{f \cdot \overline{g}}{g \cdot \overline{g}} = \frac{f \overline{g}}{N_g}$, thus

$$r(x,y) = \frac{(f\overline{g})(x,y)}{N_g(x,y)} = \underbrace{\frac{v(x)}{N_g(x)} + y\frac{w(x)}{N_g(x)}}_{\text{canonical form of } r(x,y)}$$

degree of f: Let $f \in \mathbb{k}[E]$, in canonical form: f(x,y) = v(x) + yw(x),

$$deg(f) := max\{2 \cdot deg_x(v), 3 + 2 \cdot deg_x(w)\}\$$

For $f, g \in \mathbb{k}[E]$:

- i. $deg(f) = deg_x(N_f)$
- ii. $deq(f \cdot q) = deq(f) + deq(q)$

Def 1.1. Let $r = \frac{f}{g} \in \mathbb{k}(E)$

- i. if deg(f) < deg(g) : r(0) = 0
- ii. if deg(f) > deg(g): r is not finite at 0
- iii. if deg(f) = deg(g) with deg(f) even: f's canonical form leading terms ax^d g's canonical form leading terms bx^d $a, b \in \mathbb{k}^{\times}, \ d = \frac{deg(f)}{2}, \ \text{set} \ r(0) = \frac{a}{b}$
- iv. if deg(f) = deg(g) with deg(f) odd f's canonical form leading terms ax^d g's canonical form leading terms bx^d $a, b \in \mathbb{k}^{\times}, \ deg(f) = deg(g) = 3 + 2d, \ set \ r(0) = \frac{a}{b}$

1.1 Zeros, poles, uniformizers and multiplicities

 $r \in \mathbb{k}(E)$ has a zero in $P \in E$ if r(P) = 0 $r \in \mathbb{k}(E)$ has a pole in $P \in E$ if r(P) is not finite.

uniformizer: Let $P \in E$, uniformizer: rational function $u \in \Bbbk(E)$ with u(P) = 0 if $\forall r \in \Bbbk(E) \setminus \{0\}, \ \exists d \in \mathbb{Z}, \ s \in \Bbbk(E)$ finite at P with $s(P) \neq 0$ s.t.

$$r = u^d \cdot s$$

order: Let $P \in E(\mathbb{k})$, let $u \in \mathbb{k}(E)$ be a uniformizer at P. For $r \in \mathbb{k}(E) \setminus \{0\}$ being a rational function with $r = u^d \cdot s$ with $s(P) \neq 0, \infty$, we say that r has order d at P (ord $_P(r) = d$).

multiplicity: multiplicity of a zero of r is the order of r at that point, multiplicity of a pole of r is the order of r at that point.

if $P \in E(\mathbb{k})$ is neither a zero or pole of r, then $ord_P(r) = 0 \ (= d, \ r = u^0 s)$.

Multiplicities, from the book "Elliptic Tales" (p.69), to provide intuition

Factorization into linear factors: $p(x) = c \cdot (x - a_1) \cdot \cdot \cdot (x - a_d)$

d: degree of p(x), $a_i \in \mathbb{k}$ Solutions to p(x) = 0 are $x = a_1, \dots, a_d$ (some a_i can be repeated)

eg.: p(x) = (x-1)(x-1)(x-3), solutions to p(x) = 0: 1,1,3

x = 1 is a solution to p(x) = 0 of multiplicity 2.

The total number of solutions (counted with multiplicity) is d, the degree of the polynomial whose roots we are finding.

2 Divisors

Def 2.1. Divisor

$$D = \sum_{P \in E(\mathbb{k})} n_p \cdot [P]$$

Def 2.2. Degree & Sum

$$deg(D) = \sum_{P \in E(\mathbb{k})} n_p$$

$$sum(D) = \sum_{P \in E(\mathbb{k})} n_p \cdot P$$

The set of all divisors on E forms a group: for $D = \sum_{P \in E(\mathbb{k})} n_P[P]$ and $D' = \sum_{P \in E(\mathbb{k})} m_P[P]$,

$$D + D' = \sum_{P \in E(\mathbb{k})} (n_P + m_P)[P]$$

Def 2.3. Associated divisor

$$div(r) = \sum_{P \in E(\mathbb{k})} ord_P(r)[P]$$

Observe that

$$div(rs) = div(r) + div(s)$$

$$div(\frac{r}{s}) = div(r) - div(s)$$

Observe that

$$\sum_{P \in E(\mathbb{k})} ord_P(r) \cdot P = 0$$

Def 2.4. Support of a divisor

$$\sum_{P} n_P[P], \ \forall P \in E(\mathbb{k}) \text{ s.t. } n_P \neq 0$$

Def 2.5. Principal divisor iff

$$deg(D) = 0$$

$$sum(D) = 0$$

 $D \sim D'$ iff D - D' is principal.

Def 2.6. Evaluation of a rational function (function r evaluated at D)

$$r(D) = \prod r(P)^{n_p}$$

3 Weil reciprocity

Thm 3.1. (Weil reciprocity) Let E/\mathbb{k} be an e.c. over an algebraically closed field. If $r, s \in \mathbb{k} \setminus \{0\}$ are rational functions whose divisors have disjoint support, then

$$r(div(s)) = s(div(r))$$

Proof. (todo)

Example

$$\begin{split} p(x) &= x^2 - 1, \, q(x) = \frac{x}{x - 2} \\ & div(p) = 1 \cdot [1] + 1 \cdot [-1] - 2 \cdot [\infty] \\ & div(q) = 1 \cdot [0] - 1 \cdot [2] \\ & \text{(they have disjoint support)} \\ & p(div(q)) = p(0)^1 \cdot p(2)^{-1} = (0^2 - 1)^1 \cdot (2^2 - 1)^{-1} = \frac{-1}{3} \\ & q(div(p)) = q(1)^1 \cdot q(-1)^1 - q(\infty)^2 \\ & = (\frac{1}{1 - 2})^1 \cdot (\frac{-1}{-1 - 2})^1 \cdot (\frac{\infty}{\infty - 2})^2 = \frac{-1}{3} \end{split}$$

so,
$$p(div(q)) = q(div(p))$$
.

4 Generic Weil Pairing

Let $E(\mathbb{k})$, with \mathbb{k} of char p, n s.t. $p \nmid n$.

 \mathbb{K} large enough: $E(\mathbb{K})[n] = E(\overline{\mathbb{K}}) = \mathbb{Z}_n \oplus \mathbb{Z}_n$ (with n^2 elements). For $P, Q \in E[n]$,

$$D_P \sim [P] - [0]$$
$$D_Q \sim [Q] - [0]$$

We need them to have disjoint support:

$$D_P \sim [P] - [0]$$

$$D_O' \sim [Q + T] - [T]$$

$$\Delta D = D_Q - D_Q' = [Q] - [0] - [Q + T] + [T]$$

Note that nD_P and nD_Q are principal. Proof:

$$nD_P = n[P] - n[O]$$

$$deg(nD_P) = n - n = 0$$

$$sum(nD_P) = nP - nO = 0$$

(nP = 0 bcs. P is n-torsion)

Since nD_P , nD_Q are principal, we know that f_P , f_Q exist. Take

$$f_P : div(f_P) = nD_P$$

$$f_Q : div(f_Q) = nD_Q$$

We define

$$e_n(P,Q) = \frac{f_P(D_Q)}{f_Q(D_P)}$$

Remind: evaluation of a rational function over a divisor D:

$$D = \sum n_P[P]$$
$$r(D) = \prod r(P)^{n_P}$$

If $D_P = [P + S] - [S]$, $D_Q = [Q - T] - [T]$ what is $e_n(P, Q)$?

$$f_P(D_Q) = f_P(Q+T)^1 \cdot f_P(T)^{-1}$$

$$f_Q(D_P) = f_Q(P+S)^1 \cdot f_Q(S)^{-1}$$

$$e_n(P,Q) = \frac{f_P(Q+T)}{f_P(T)} / \frac{f_Q(P+S)}{f_Q(S)}$$

with $S \neq \{O, P, -Q, P - Q\}$.

5 Properties

- i. $e_n(P,Q)^n = 1 \ \forall P,Q \in E[n]$ ($\Rightarrow e_n(P,Q)$ is a n^{th} root of unity)
- ii. Bilinearity

$$e_n(P_1 + P_2, Q) = e_n(P_1, Q) \cdot e_n(P_2, Q)$$

 $e_n(P, Q_1 + Q_2) = e_n(P, Q_1) \cdot e_n(P, Q_2)$

proof: recall that $e_n(P,Q) = \frac{g(S+P)}{g(S)}$, then,

$$e_n(P_1, Q) \cdot e_n(P_2, Q) = \frac{g(P_1 + S)}{g(S)} \cdot \frac{g(P_2 + P_1 + S)}{g(P_1 + S)}$$
(replace S by $S + P_1$)
$$= \frac{g(P_2 + P_1 + S)}{g(S)} = e_n(P_1 + P_2, Q)$$

iii. Alternating

$$e_n(P,P) = 1 \ \forall P \in E[n]$$

iv. Nondegenerate

if
$$e_n(P,Q) = 1 \ \forall Q \in E[n]$$
, then $P = 0$

6 Exercises

An Introduction to Mathematical Cryptography, 2nd Edition - Section 6.8. Bilinear pairings on elliptic curves

6.29. $div(R(x) \cdot S(x)) = div(R(x)) + div(S(x))$, where R(x), S(x) are rational functions.

proof:

Norm of $f: N_f = f \cdot \overline{f}$, and we know that $N_{fg} = N_f \cdot N_g \ \forall \ \mathbb{k}[E]$, then

$$deg(f) = deg_x(N_f)$$

and

$$deg(f \cdot g) = deg(f) + deg(g)$$

Proof:

$$deg(f \cdot g) = deg_x(N_{fg}) = deg_x(N_f \cdot N_g)$$
$$= deg_x(N_f) + deg_x(N_g) = deg(f) + deg(g)$$

$$\begin{array}{l} \text{So, } \forall P \in E(\mathbbm{k}), \ ord_P(rs) = ord_P(r) + ord_P(s). \\ \text{As } div(r) = \sum_{P \in E(\mathbbm{k})} ord_P(r)[P], \ div(s) = \sum ord_P(s)[P]. \end{array}$$

So,

$$div(rs) = \sum ord_P(rs)[P]$$

=
$$\sum ord_P(r)[P] + \sum ord_P(s)[P] = div(r) + div(s)$$

6.31.

$$e_m(P,Q) = e_m(Q,P)^{-1} \forall P, Q \in E[m]$$

Proof: We know that $e_m(P, P) = 1$, so:

$$1 = e_m(P + Q, P + Q) = e_m(P, P) \cdot e_m(P, Q) \cdot e_m(Q, P) \cdot e_m(Q, Q)$$

and we know that $e_m(P, P) = 1$, then we have:

$$1 = e_m(P, Q) \cdot e_m(Q, P)$$

$$\implies e_m(P,Q) = e_m(Q,P)^{-1}$$