

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Tetrakis[μ -N-(2,4,6-trimethylphenyl)-acetamidato]- κ ⁴N:O; κ ⁴O:N-bis[(benzonitrile- κN)rhodium(II)](Rh—Rh)

Cassandra T. Eagle,* Kenneth K. Kpogo, Landon C. Zink and Albert E. Smith

Chemistry Department, East Tennessee State University, PO Box 70695, Johnson City, Tennessee, TN 37614, USA Correspondence e-mail: eaglec@etsu.edu

Received 2 March 2012; accepted 29 May 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean $\sigma(C-C) = 0.006$ Å; R factor = 0.036; wR factor = 0.074; data-to-parameter ratio = 18.0.

The title structure, $[Rh_2(C_{11}H_{14}NO)_4(C_7H_5N)_2]$, contains a dinuclear Rh complex of point symmetry $\overline{4}$ with an Rh—Rh unit and two benzonitrile ligands located in special positions along the twofold axis passing through $\overline{4}$. Four symmetry-equivalent mesitylacetamidate ligands bridge the Rh—Rh unit. Thus, each Rh^{II} atom has an approximately octahedral coordination by one Rh $[Rh-Rh=2.4290\ (6)\ \mathring{A}]$, two acetamidate O atoms *trans* to each other $[Rh-O=2.044\ (3)\ \mathring{A}]$, two acetamidate N atoms *trans* to each other $[Rh-N=2.091\ (4)\ \mathring{A}]$, and a benzonitrile N atom *trans* to Rh $[Rh-N=2.222\ (3)\ \mathring{A}]$. The structure is held together by weak van der Waals forces.

Related literature

For the synthesis and crystal structure of a related compound, see: Eagle *et al.* (2000).

Experimental

Crystal data

[Rh₂(C₁₁H₁₄NO)₄(C₇H₅N)₂] Z=2 $M_r=1117.01$ Mo $K\alpha$ radiation Tetragonal, $P\overline{4}2_1c$ $\mu=0.69~\text{mm}^{-1}$ a=10.9928 (19) Å T=298~K c=21.4549 (19) Å $0.18\times0.13\times0.07~\text{mm}$ V=2592.6 (7) Å³

Data collection

Rigaku XtaLAB mini diffractometer 2969 independent reflections 48sorption correction: multi-scan (REQAB; Jacobson, 1998) $T_{min} = 0.618, T_{max} = 0.953$ 48863 measured reflections 2969 independent reflections 1950 reflections with $I > 2\sigma(I)$ $R_{int} = 0.105$

Refinement

 $\begin{array}{lll} R[F^2>2\sigma(F^2)]=0.036 & \Delta\rho_{\rm max}=0.64~{\rm e}~\mathring{\rm A}^{-3} \\ wR(F^2)=0.074 & \Delta\rho_{\rm min}=-0.71~{\rm e}~\mathring{\rm A}^{-3} \\ S=1.03 & {\rm Absolute~structure:~Flack~(1983)}, \\ 2969~{\rm reflections} & 1275~{\rm Friedel~pairs} \\ 165~{\rm parameters} & {\rm Flack~parameter:~-0.03~(5)} \end{array}$

Data collection: CrystalClear (Rigaku, 2011); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

The authors thank Dr Lee Daniels of Rigaku Americas for his training on the use of the Rigaku XtaLAB Mini and his helpful suggestions regarding this crystal structure. Support was provided by a Start Up Grant from ETSU. We thank Johnson Matthey for their generous loan of rhodium trichloride.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QK2033).

References

Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). *J. Appl. Cryst.* **38**, 381–388.

Eagle, C. T., Farrar, D. G., Holder, G. N., Pennington, W. T. & Bailey, R. D. (2000). *J. Organomet. Chem.* **596**, 90–94.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.

Rigaku (2010). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.

Rigaku (2011). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2012). E68, m877 [doi:10.1107/S1600536812024518]

Tetrakis[μ -N-(2,4,6-trimethylphenyl)acetamidato]- κ ⁴N:O; κ ⁴O:N-bis[(benzonitrile- κN)rhodium(II)](Rh—Rh)

The title compound, a dinuclear Rh complex with a Rh—Rh bond and four equivalent bridging ligands (Fig. 1), is the

Cassandra T. Eagle, Kenneth K. Kpogo, Landon C. Zink and Albert E. Smith

Comment

mesitylacetamidato analogue of the previously published phenylacetamidato compound $Rh_2[N(C_6H_5)C(O)CH_3]_4 2NCC_6H_5$ (Eagle *et al.*, 2000), both having the 2,2-*trans* stereochemistry in the complex-core, which is one out of four possible isomers. The highest molecular symmetry that these two complexes can adopt is $\overline{42m}$ with two mirror planes trough the acetamidate chelate ring pairs and twofold axes in bisecting directions. While in the crystal structure of $Rh_2[N(C_6H_5)C(O)CH_3]_4 2NCC_6H_5$ the Rh complex has point symmetry 1 and adopts a considerably twisted conformation in the core and one benzonitrile ligand (significantly bent off from the Rh—Rh axis), the complex of the title structure is more regular and has $\overline{4}$ symmetry, not far from $\overline{42m}$ if the axial benzonitrile ligands are disregarded. Thus, in $Rh_2[N(C_6H_5)C(O)CH_3]_4 2NCC_6H_5$ the four N—Rh—Rh—O dihedral angles range from 9.03 to 11.89°, while in the title compound the same torsion angle is only 1.12 (9)°. The inclination angle of the mesityl phenyl rings to the Rh—Rh-bond is in the title compound about 26°, while about 34° in the phenylacetamidato complex. This makes the space between adjacent mesityl rings narrow and forces the benzonitrile phenyl rings into a more inclined

orientation than in $Rh_2[N(C_6H_5)C(O)CH_3]_42NCC_6H_5$, where they are not far from perpendicular to the acetamidinato phenyl rings. A packing diagram of the structure is shown in Fig. 2. It reveals that the molecules are held together by weak Van der Waals forces, which is not surprising in view of the 16 CH₃ groups on the outer surface of the Rh complex.

Experimental

Approximately 10 mg of 2,2-trans-tetrakis[μ -(N-{2,4,6-trimethylphenyl} acetamidato- κN : κO)]dirhodium(II), synthesized by adapting the procedure described by Eagle *et al.* (2000), was dissolved in 5 mL of dichloromethane forming a green solution. Approximately 2.29 μ L of benzonitrile was added to the solution causing the color to become blue. Crystals of the title compound were obtained using a vapor diffusion technique with acetonitrile for a week. The crystal was measured at 298 K on a Rigaku XtaLAB mini diffractometer.

Refinement

All H atoms were placed in calculated positions and thereafter treated as riding, C—H = 0.93 - 0.96 Å. $U_{iso}(H) = 1.2U_{eq}(C)$ for CH groups; $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃ groups. A torsional parameter was refined for the methyl groups.

Computing details

Data collection: *CrystalClear* (Rigaku, 2011); cell refinement: *CrystalClear* (Rigaku, 2011); data reduction: *CrystalClear* (Rigaku, 2011); program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CrystalStructure* (Rigaku, 2010); software used to prepare material for

Acta Cryst. (2012). E68, m877 Sup-1

publication: CrystalStructure (Rigaku, 2010).

Figure 1

The molecular structure of the title compound showing displacement ellipsoids at the 30% probability level. Hydrogen atoms are shown as small spheres.

Figure 2 Packing diagram of the title structure viewed along the *a*-axis. H-atoms omitted for clarity.

Tetrakis[μ -N-(2,4,6-trimethylphenyl)acetamidato]- $\kappa^4 N$:O; $\kappa^4 O$:N-bis[(benzonitrile- κN)rhodium(II)](Rh—Rh)

Crystal data

 $[Rh_2(C_{11}H_{14}NO)_4(C_7H_5N)_2]$ $D_{\rm x} = 1.431 \; {\rm Mg \; m^{-3}}$ Mo $K\alpha$ radiation, $\lambda = 0.71075 \text{ Å}$ $M_r = 1117.01$ Tetragonal, $P\overline{4}2_1c$ Cell parameters from 32577 reflections $\theta = 3.2-27.7^{\circ}$ Hall symbol: P-42n a = 10.9928 (19) Å $\mu = 0.69 \text{ mm}^{-1}$ T = 298 Kc = 21.4549 (19) Å $V = 2592.6 (7) \text{ Å}^3$ Prism, blue Z = 2 $0.18\times0.13\times0.07~mm$ F(000) = 1156.00

Acta Cryst. (2012). E68, m877 Sup-2

Data collection

Rigaku XtaLAB mini 48863 measured reflections 2969 independent reflections diffractometer Radiation source: fine-focus sealed tube 1950 reflections with $I > 2\sigma(I)$ Graphite monochromator $R_{\rm int} = 0.105$

Detector resolution: 6.827 pixels mm⁻¹ $\theta_{\text{max}} = 27.5^{\circ}$ $h = -14 \rightarrow 14$ ω scans Absorption correction: multi-scan $k = -14 \rightarrow 14$ $l = -27 \rightarrow 27$ (REQAB; Jacobson, 1998)

 $T_{\min} = 0.618, T_{\max} = 0.953$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.036$ H-atom parameters constrained $wR(F^2) = 0.074$ $w = 1/[\sigma^2(F_0^2) + (0.0213P)^2 + 2.1713P]$ where $P = (F_0^2 + 2F_c^2)/3$ S = 1.032969 reflections $(\Delta/\sigma)_{\rm max} = 0.003$ $\Delta \rho_{\text{max}} = 0.64 \text{ e Å}^{-3}$ 165 parameters 0 restraints $\Delta \rho_{\min} = -0.71 \text{ e Å}^{-3}$ Primary atom site location: structure-invariant Absolute structure: Flack (1983), 1275 Friedel

direct methods

Flack parameter: -0.03(5)Secondary atom site location: difference Fourier map

Special details

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 . R-factor (gt) are based on F. The threshold expression of $F^2 > 2.0 \, \sigma(F^2)$ is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Rh1	0.5000	0.5000	0.556606 (14)	0.03097 (10)	
O1	0.6695(3)	0.4236(3)	0.44533 (15)	0.0342 (8)	
N1	0.5000	0.5000	0.66016 (16)	0.0443 (9)	
N2	0.6716(3)	0.4187(3)	0.55161 (19)	0.0349 (10)	
C1	0.5000	0.5000	0.7117 (2)	0.0490 (12)	
C2	0.5000	0.5000	0.7799 (2)	0.0477 (11)	
C3	0.5590 (5)	0.4097 (5)	0.8123 (2)	0.0669 (16)	
H3	0.6002	0.3484	0.7913	0.080*	
C4	0.5561 (7)	0.4115 (6)	0.8766 (2)	0.100 (2)	
H4	0.5943	0.3493	0.8986	0.119*	
C5	0.5000	0.5000	0.9084(3)	0.118 (3)	
H5	0.5000	0.5000	0.9517	0.141*	
C6	0.7216(3)	0.3988 (3)	0.4977 (3)	0.0376 (8)	
C7	0.8472(3)	0.3448 (4)	0.4909(2)	0.0481 (11)	
H7A	0.8635	0.3293	0.4476	0.072*	
H7B	0.8516	0.2699	0.5138	0.072*	
H7C	0.9064	0.4009	0.5069	0.072*	
C8	0.7316 (4)	0.3860 (4)	0.60846 (17)	0.0350 (9)	
C9	0.7176 (4)	0.2700 (4)	0.63427 (19)	0.0447 (10)	

sup-3 Acta Cryst. (2012). E68, m877

C10	0.7689 (4)	0.2470 (5)	0.6922(2)	0.0538 (12)	
H10	0.7613	0.1693	0.7089	0.065*	
C11	0.8302 (5)	0.3333 (6)	0.7260(2)	0.0585 (15)	
C12	0.8474 (4)	0.4461 (5)	0.6986 (2)	0.0473 (12)	
H12	0.8909	0.5050	0.7203	0.057*	
C13	0.8015 (4)	0.4747 (4)	0.63927 (18)	0.0416 (11)	
C14	0.6525 (5)	0.1711 (4)	0.5992(2)	0.0578 (14)	
H14A	0.6895	0.1608	0.5590	0.087*	
H14B	0.5685	0.1931	0.5940	0.087*	
H14C	0.6578	0.0963	0.6221	0.087*	
C15	0.8820 (5)	0.3097 (6)	0.7897 (2)	0.080(2)	
H15A	0.8394	0.2431	0.8088	0.120*	
H15B	0.8729	0.3812	0.8150	0.120*	
H15C	0.9667	0.2897	0.7861	0.120*	
C16	0.8312 (5)	0.5947 (4)	0.6108(2)	0.0585 (15)	
H16A	0.7604	0.6459	0.6117	0.088*	
H16B	0.8567	0.5830	0.5685	0.088*	
H16C	0.8955	0.6326	0.6340	0.088*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Rh1	0.0331 (3)	0.0354(3)	0.02438 (14)	0.0012 (5)	0.000	0.000
O1	0.036(2)	0.041(2)	0.0255 (18)	0.0021 (19)	0.0032 (18)	-0.0047(18)
N1	0.037 (4)	0.066 (5)	0.0301 (19)	-0.006(7)	0.000	0.000
N2	0.031(2)	0.041(3)	0.033(2)	0.006(2)	-0.002(2)	-0.003(2)
C1	0.037 (4)	0.057 (5)	0.053(3)	0.014 (7)	0.000	0.000
C2	0.039 (4)	0.068 (6)	0.035(2)	-0.002(10)	0.000	0.000
C3	0.093 (4)	0.062 (4)	0.045 (3)	0.025(3)	-0.003(3)	0.000(2)
C4	0.155 (7)	0.086 (5)	0.057(3)	0.049 (4)	-0.030(4)	0.005(3)
C5	0.206 (13)	0.116 (9)	0.030(3)	0.033 (15)	0.000	0.000
C6	0.0387 (19)	0.0369 (18)	0.0373 (19)	0.0014 (16)	0.010(3)	-0.007(3)
C7	0.038(2)	0.062(3)	0.045 (3)	0.0112 (19)	0.003(2)	-0.006(3)
C8	0.036(2)	0.040(2)	0.029(2)	0.005(2)	-0.0011 (17)	-0.0024 (18)
C9	0.037(3)	0.052(3)	0.045 (2)	0.0105 (19)	-0.002(2)	0.005(2)
C10	0.056(3)	0.056(3)	0.050(2)	0.013(2)	-0.003(3)	0.008(3)
C11	0.049(3)	0.084 (4)	0.042(3)	0.025(3)	-0.003(2)	0.007(3)
C12	0.039(3)	0.060(3)	0.043 (2)	0.007(2)	-0.012 (2)	-0.011 (2)
C13	0.037(2)	0.049(3)	0.039(2)	0.0027 (19)	-0.0053 (18)	0.003(2)
C14	0.065 (4)	0.037(3)	0.072(3)	0.003(3)	0.001(3)	0.004(3)
C15	0.072 (4)	0.121 (6)	0.048 (3)	0.010 (4)	-0.017(3)	0.016 (4)
C16	0.057 (4)	0.051(3)	0.068(3)	-0.008(3)	-0.018(3)	-0.004(3)

Geometric parameters (Å, o)

Rh1—O1 ⁱ	2.044 (3)	С7—Н7В	0.9600
Rh1—O1 ⁱⁱ	2.044 (3)	C7—H7C	0.9600
Rh1—N2	2.091 (4)	C8—C9	1.399 (6)
Rh1—N2 ⁱⁱⁱ	2.091 (4)	C8—C13	1.406 (5)
Rh1—N1	2.222 (3)	C9—C10	1.389 (6)

Acta Cryst. (2012). E68, m877 Sup-4

Rh1—Rh1 ⁱ	2.4290 (6)	C9—C14	1.504 (7)
O1—C6	1.290(6)	C10—C11	1.370(7)
O1—Rh1 ⁱ	2.044 (3)	C10—H10	0.9300
N1—C1	1.106 (6)	C11—C12	1.385 (7)
N2—C6	1.300 (6)	C11—C15	1.504 (6)
N2—C8	1.432 (5)	C12—C13	1.406 (5)
C1—C2	1.463 (6)	C12—H12	0.9300
C2—C3 ⁱⁱⁱ	1.375 (5)	C13—C16	1.489 (6)
C2—C3	1.375 (5)	C14—H14A	0.9600
C3—C4	1.380 (7)	C14—H14B	0.9600
C3—H3	0.9300	C14—H14C	0.9600
C4—C5	1.338 (6)	C15—H15A	0.9600
C4—C3	0.9300	C15—H15B	0.9600
C5—C4 ⁱⁱⁱ		C15—H15C	0.9600
	1.338 (6)		
C5—H5	0.9300	C16—H16A	0.9600
C6—C7	1.510 (5)	C16—H16B	0.9600
С7—Н7А	0.9600	C16—H16C	0.9600
O1 ⁱ —Rh1—O1 ⁱⁱ	177.67 (18)	C6—C7—H7C	109.5
O1 ⁱ —Rh1—N2	88.85 (16)	H7A—C7—H7C	109.5
O1 —R11—N2 O1 ii—Rh1—N2	` '	H7B—C7—H7C	109.5
	91.03 (16)		
O1i—Rh1—N2iii	91.03 (16)	C9—C8—C13	120.4 (4)
O1"—Rh1—N2"	88.85 (16)	C9—C8—N2	121.0 (4)
N2—Rh1—N2 ⁱⁱⁱ	174.1 (2)	C13—C8—N2	118.5 (4)
01 ⁱ —Rh1—N1	91.16 (9)	C10—C9—C8	118.4 (5)
O1 ⁱⁱ —Rh1—N1	91.16 (9)	C10—C9—C14	120.7 (4)
N2—Rh1—N1	92.94 (11)	C8—C9—C14	120.9 (4)
N2 ⁱⁱⁱ —Rh1—N1	92.94 (11)	C11—C10—C9	123.2 (5)
O1 ⁱ —Rh1—Rh1 ⁱ	88.84 (9)	C11—C10—H10	118.4
O1 ⁱⁱ —Rh1—Rh1 ⁱ	88.84 (9)	C9—C10—H10	118.4
N2—Rh1—Rh1 ⁱ	87.06 (11)	C10—C11—C12	117.6 (4)
N2 ⁱⁱⁱ —Rh1—Rh1 ⁱ	87.06 (11)	C10—C11—C15	123.2 (6)
N1—Rh1—Rh1 ⁱ	180.0	C12—C11—C15	119.2 (6)
C6—O1—Rh1 ⁱ	120.6 (3)	C11—C12—C13	122.4 (5)
C1—N1—Rh1	180.000(1)	C11—C12—H12	118.8
C6—N2—C8	121.4 (4)	C13—C12—H12	118.8
C6—N2—Rh1	119.9 (3)	C12—C13—C8	117.8 (4)
C8—N2—Rh1	118.6 (3)	C12—C13—C16	119.4 (4)
N1—C1—C2	180.000 (2)	C8—C13—C16	122.8 (4)
C3 ⁱⁱⁱ —C2—C3	119.2 (5)	C9—C14—H14A	109.5
C3 ⁱⁱⁱ —C2—C1	120.4 (3)	C9—C14—H14B	109.5
C3—C2—C1	120.4 (3)	H14A—C14—H14B	109.5
C2—C3—C4	119.0 (5)	C9—C14—H14C	109.5
C2—C3—H3	120.5	H14A—C14—H14C	109.5
C4—C3—H3	120.5	H14B—C14—H14C	109.5
C5—C4—C3	122.0 (5)	C11—C15—H15A	109.5
C5—C4—H4	119.0	C11—C15—H15B	109.5
C3—C4—H4	119.0	H15A—C15—H15B	109.5
C4—C5—C4 ⁱⁱⁱ		C11—C15—H15C	109.5
U4-U3-U4	118.8 (6)	С11—С15—П13С	109.3

Acta Cryst. (2012). E**68**, m877

C4—C5—H5	120.6	H15A—C15—H15C	109.5
C4 ⁱⁱⁱ —C5—H5	120.6	H15B—C15—H15C	109.5
O1—C6—N2	123.5 (3)	C13—C16—H16A	109.5
O1—C6—C7	113.9 (4)	C13—C16—H16B	109.5
N2—C6—C7	122.6 (5)	H16A—C16—H16B	109.5
C6—C7—H7A	109.5	C13—C16—H16C	109.5
C6—C7—H7B	109.5	H16A—C16—H16C	109.5
H7A—C7—H7B	109.5	H16B—C16—H16C	109.5
O1—Rh1 ⁱ —Rh1—N2	-1.10(16)	Rh1—N2—C8—C9	91.8 (4)
O1 ⁱ —Rh1—N2—C6	90.8 (3)	C6—N2—C8—C13	94.2 (5)
O1 ⁱⁱ —Rh1—N2—C6	-86.9 (3)	Rh1—N2—C8—C13	-85.8 (4)
N1—Rh1—N2—C6	-178.1(3)	C13—C8—C9—C10	3.2 (6)
Rh1 ⁱ —Rh1—N2—C6	1.9 (3)	N2—C8—C9—C10	-174.3(4)
O1 ⁱ —Rh1—N2—C8	-89.2 (3)	C13—C8—C9—C14	-174.6(4)
O1 ⁱⁱ —Rh1—N2—C8	93.1 (3)	N2—C8—C9—C14	7.9 (6)
N1—Rh1—N2—C8	1.9 (3)	C8—C9—C10—C11	1.6 (7)
Rh1 ⁱ —Rh1—N2—C8	-178.1(3)	C14—C9—C10—C11	179.4 (5)
C3 ⁱⁱⁱ —C2—C3—C4	0.8 (5)	C9—C10—C11—C12	-4.1 (7)
C1—C2—C3—C4	-179.2(5)	C9—C10—C11—C15	177.8 (5)
C2—C3—C4—C5	-1.6 (10)	C10—C11—C12—C13	1.9 (7)
C3—C4—C5—C4 ⁱⁱⁱ	0.8 (5)	C15—C11—C12—C13	-179.9(4)
Rh1 ⁱ —O1—C6—N2	0.6 (4)	C11—C12—C13—C8	2.6 (7)
Rh1 ⁱ —O1—C6—C7	-179.0(2)	C11—C12—C13—C16	-175.6(5)
C8—N2—C6—O1	178.0 (4)	C9—C8—C13—C12	-5.2 (6)
Rh1—N2—C6—O1	-2.0(5)	N2—C8—C13—C12	172.4 (4)
C8—N2—C6—C7	-2.4 (6)	C9—C8—C13—C16	172.9 (4)
Rh1—N2—C6—C7	177.6 (3)	N2—C8—C13—C16	-9.5(6)
C6—N2—C8—C9	-88.2 (5)		

Symmetry codes: (i) y, -x+1, -z+1; (ii) -y+1, x, -z+1; (iii) -x+1, -y+1, z.

Acta Cryst. (2012). E**68**, m877