Package 'israelcurves'

September 28, 2016

Title Calculates historical curves for the Israeli sovereign bond

Type Package

market
Version 0.1.0
Author Or Moses
Author@R person(``Or",``Moses",email=``or.moses@gmail.com",role=c(``aut",``cre"))
Maintainer Or Moses <or.moses@gmail.com></or.moses@gmail.com>
Description Functions to calculate historical yield curves for the Israeli sovereign bond market. The calculation uses the Nelson-Siegel and Svensson models.
License GPL-3
LazyData TRUE
Imports ggplot2, Rblpapi, dplyr, Rsolnp, tidyr, lubridate
RoxygenNote 5.0.1
Suggests testthat
R topics documented:
bond
bond_by_name
calc_bond
calc_yields
create_all_bonds
create_bonds
create_bond_from_data

3

5

 create_vanilla_bond
 6

 curve_model
 7

 get_bond_data
 8

 get_daily_data
 9

 israelcurves
 9

 make_params_for_all_dates
 10

 plot.bond
 11

 price_bond
 11

 price_bond_model
 12

 print.bond
 12

 summary.bond
 13

bond_by_name

Index 14

bond Add a bond object (class bond)

Description

bond is a helper function for building a bond class object.

Usage

```
bond(dates, payments, face_value = 100, name = NULL, issue_date = NULL,
  type = NULL, known_CPI = NULL)
```

Arguments

dates A vector of payment dates

payments A vector of payments (has to be same size as dates)

face_value A number of the face value of the bond

name (optional) The name of the bond

issue_date (optional) The date the bond was issued

type (optional) A string represents the type of the bond

known_CPI (optional) A number represents the known CPI value at the time of issue of the

bond

Value

An object of class "bond"

See Also

```
create_vanilla_bond
```

Description

A function that gets a list of bonds (bond class) and returns a bond object by its name.

Usage

```
bond_by_name(bond_list, name)
```

Arguments

bond_list a list containing bond objects

name A character contains the name of the bond.

Value

A bond class object

calc_bond 3

calc_bond Calculate main bond attributes
--

Description

A function that calculates 3 main attributes for a bond:

- Yield to Maturity (ytm)
- Duration And modified duration
- Convexity

Usage

```
calc_bond(thebond, calc_date, market_price, ex_day = NULL, year_days = 365)
```

Arguments

thebond	A bond object.
calc_date	A date. The calculation date.

market_price A number. The price of the bond to calculate by.

ex_day (optional) A number indicating the Ex-day in the month where the bond pays

coupon.

year_days A number. The number of days in each year.

Value

A list with 4 items: yield to maturity, duration, modified duration and convexity

See Also

```
calc_bond_name
```

calc_bond_name	Calculate bond attributes by name

Description

A function that calculates the bond attributes from calc_bond by bonds' name. The function gets a list of bonds, name of bond, date and market price and calculates the attributes.

Usage

```
calc_bond_name(bonds_list, bond_name, calc_date, market_price, ex_day = NULL,
  year_days = 365)
```

4 calc_yields

Arguments

bonds_list a list containing bond objects
bond_name a string. The name of the bond.
calc_date A date. The calculation date.

market_price A number. The price of the bond to calculate by.

ex_day (optional) A number indicating the Ex-day in the month where the bond pays

coupon.

year_days A number. The number of days in each year.

Value

A list with 4 items: yield to maturity, duration, modified duration and convexity

See Also

calc_bond

calc_yields Calculate a yield curve using a model

Description

A function that calculates yields for a vector of terms using a model (Nelson Siegel or Svensson)

Usage

```
calc_yields(maturities, params, model = "NS")
```

Arguments

maturities a numeric vector of positive maturities

params a numeric vector. The model parameters. A 4-length for Nelson Siegel (NS)

model and a 6-length for Svensson (NSS).

model A string indicating the model to use - "NS" for Nelson Siegel and "NSS" for

Svensson.

Value

A numeric vector of yields matching each number in the maturities vector.

create_all_bonds 5

create_all_bonds

Create a list of bond objects using Bloomberg SRCH

Description

A function that takes a Bloomberg save SRCH and creates a list of bond objects from this search.

Usage

```
create_all_bonds(srch_name)
```

Arguments

srch_name

A string. A bloomberg saved SRCH name.

Value

a list of bond objects

See Also

get_bond_data for getting the data from Bloomberg, create_bond_from_data for creating one bond and create_bonds for creating a list of bonds.

create_bonds

Create a list of bond objects from the bloomberg data

Description

A function that takes a list of bonds' cashflows and creates a list of bond objects

Usage

```
create_bonds(bond_cf)
```

Arguments

bond_cf

a list. A list of bond cashflows created by get_bond_data.

Value

a list of bond objects

See Also

get_bond_data for getting the data from Bloomberg, create_bond_from_data for creating one bond.

6 create_vanilla_bond

Description

Convert the bloomberg data into bond class A function that takes a list of bonds' cashflow and an item number and creates a bond object from the matching item in the list.

Usage

```
create_bond_from_data(bond_cf, n)
```

Arguments

bond_cf a list. A list of bond cashflows created by get_bond_data.

n A number indicates the item from the list to create bond from.

Value

a bond object

See Also

get_bond_data for getting the data from Bloomberg.

create_vanilla_bond Create vanilla bond object

Description

create_vanilla_bond is a simpler function than bond. It creates a bond object using generic details instead of exact dates and payments. The bond is a vanilla one - with coupons and one principal payment at maturity.

Usage

```
create_vanilla_bond(issue_date, first_payment, term, coupon, name = NULL,
eom = TRUE, payment_frequency = 1, face_value = 100, year_days = 365,
type = NULL, known_CPI = NULL)
```

curve_model 7

Arguments

issue_date A date. The issue date of the bond.

first_payment A date. The date of the first coupon payment. term A number. The term of the bond in years.

coupon A number. The coupon in percentage (for 5% use 5)

name (optional) The name of the bond

eom logical. A logical variable that indicates if the payments are at the end of each

month.

payment_frequency

A number. The number of payments per year.

face_value A number of the face value of the bond
year_days A number. The number of days in each year.
type (optional) A string represents the type of the bond

(optional) A string represents the type of the bond

known_CPI (optional) A number represents the known CPI value at the time of issue of the

bond

Value

An object of class "bond"

See Also

bond

curve_model

Calculate a zero yield curve using a model for a certain day

Description

create a Nelson Siegel or Svensson interpolation zero curve using a bonds list, market prices and optionaly trade volumes for a certain date. The optimization is done using Rsolnp package. The basic cost function is:

$$(P_{market} - P_{model})^2$$

Duration adjusted equation is:

$$\frac{(P_{market} - P_{model})^2}{Duration}$$

Volume Adjusted equation is:

$$(P_{market} - P_{model})^2 \cdot \frac{Volume}{Total Volume}$$

With both adjustment the equation is:

$$\frac{(P_{market} - P_{model})^2}{Duration} \cdot \frac{Volume}{Total Volume}$$

Usage

```
curve_model(bonds_list, market_data, calc_date, model = "NS",
  init_guess = NULL, adj_dur = TRUE, adj_vol = FALSE, max_vol = NULL)
```

get_bond_data

Arguments

bonds_list	a list of bond objects
market_data	A dataframe. The known daily market data for the calculation date. The dataframe should have a "name" column that has names from the bonds list, a "market_price" column and optionally a "trade_volume" column.
calc_date	The calculation date.
model	A string indicating the model to use - "NS" for Nelson Siegel and "NSS" for Svensson.
init_guess	the initial guess for the optimization algorithm.
adj_dur	A logical indicates weather the calculation should be duration adjusted.
adj_vol	A logical indicates weather the calculation should be volume adjusted.
max_vol	A numeric indicates a maximal trade volume to be considered when calculating the volume adjustment for each bond.

Value

A vector of model parameters after optimization.

get_bond_data	Get SRCH data from bloomberg	

Description

Code to get the data from the bloomberg SRCH using bsrch function (a custom SRCH needed to be saved) The code gets the main attributes of each bound found in the search as well as each bond's cashflow.

Usage

```
get_bond_data(srch_name)
```

Arguments

srch_name A string. A bloomberg saved SRCH name.

Value

a list containing 2 items:

- 1. A dataframe contains the bonds main data
- 2. A list where each item is a bond's cashflow (normalized to 100)

get_daily_data 9

get_daily_data	Get daily data for a list of bonds	

Description

A function that gets a Bloomberg SRCH, list of bonds and a start date and returns a data frame with data for each date on each bond (market prices,trade volumes,time to maturity)

Usage

```
get_daily_data(srch_name, bond_list, start_date)
```

Arguments

srch_name A string. A bloomberg saved SRCH name.

bond_list A list of bond objects.

start_date A date to start getting the data from.

Value

A dataframe with the following columns:

- date
- · market price
- · trade volume
- name of the bond
- maturity date of the bond
- time to maturity of the bond in the date

See Also

create_all_bonds for a function that creates a bond list that can be used in get_daily_data from a Bloomberg SRCH.

israelcurves israelcurves: calculating curves for the Israeli sovereign bonds.

Description

The package uses Nelson Siegel and Svensson interpolation methods to calculate historical zero curves for the Israeli sovereign bond market.

israelcurves functions

bond calc_all

```
make_params_for_all_dates
```

Compute daily curves from data

Description

Split the daily data by date and compute a curve for each day using a chosen model ("NS"/"NSS" for Nelson Siegel and Svensson)

Usage

```
make_params_for_all_dates(bond_list, daily_data, min_obs = 6, model = "NS",
   adj_dur = TRUE, adj_vol = FALSE, max_vol = NULL)
```

Arguments

bond_list	a list of bond objects
daily_data	a dataframe contains daily data of the bonds constructs to be compatible with curve_model and can be extracted from Bloomberg using get_daily_data.
min_obs	an integer. The minimal number of bond's price observation in order to compute a curve for a certain date.
model	A string indicating the model to use - "NS" for Nelson Siegel and "NSS" for Svensson.
adj_dur	A logical indicates weather the calculation should be duration adjusted.
adj_vol	A logical indicates weather the calculation should be volume adjusted.
max_vol	A numeric indicates a maximal trade volume to be considered when calculating the volume adjustment for each bond.

Value

a list containing:

- 1. model name (string)
- 2. is duration adjusted (logical)
- 3. is volume adjusted (logical)
- 4. maximum volume for consideration (numeric)
- 5. dataframe of the results

plot.bond 11

Lot.bond Plot method for bond class

Description

Plot a cashflow of a bond.

Usage

```
## S3 method for class 'bond'
plot(x, y = NULL, ...)
```

Arguments

x, y a bond object (class "bond").... Additional parameters

price_bond	Price a bond

Description

A function that gets a bond, discount_date and a vector of rates to discount and returns the bond's price as of the discount date

Usage

```
price_bond(thebond, disc_date, rates, ex_day = NULL, year_days = 365)
```

Arguments

thebond A bond object
disc_date The discount date
rates A numeric vector of the discount rates corresponding to the payment dates

ex_day (optional) A number indicating the Ex-day in the month where the bond pays

coupon.

year_days A number. The number of days in each year.

Value

The price of the bond for the discount date (numeric)

See Also

price_bond_model to price a bond using a model calculated discount rates.

12 print.bond

Description

A function that prices a bond using a discount rates calculated from a model: Nelson Siegel or Svensson.

Usage

```
price_bond_model(thebond, disc_date, model, model_params, ex_day = NULL,
    year_days = 365)
```

Arguments

thebond	A bond object
disc_date	The discount date
model	A string indicating the model to use - "NS" for Nelson Siegel and "NSS" for Svensson.
model_params	a numeric vector indicates the model parameters. A 4-length for Nelson Siegel (NS) model and a 6-length for Svensson (NSS).
ex_day	(optional) A number indicating the Ex-day in the month where the bond pays coupon.
year_days	A number. The number of days in each year.

See Also

price_bond to price a bond using a manual vector of discount rates.

|--|

Description

Print method for bond class

Usage

```
## S3 method for class 'bond'
print(x, ...)
```

Arguments

```
x a bond object (class "bond").... Additional parameters
```

summary.bond 13

summary.bond

Summary method for bond class

Description

Summary method for bond class

Usage

```
## S3 method for class 'bond'
summary(object, ...)
```

Arguments

```
object a bond object (class "bond").
... Additional parameters
```

Index

```
bond, 2, 6, 7
bond_by_name, 2
calc_bond, 3, 3, 4
calc_bond_name, 3, 3
calc_yields, 4
create_all_bonds, 5, 9
{\tt create\_bond\_from\_data}, {\tt 5}, {\tt 6}
\verb|create_bonds|, 5, 5
create_vanilla_bond, 2, 6
\texttt{curve\_model}, 7, \textcolor{red}{10}
get\_bond\_data, 5, 6, 8
get_daily_data, 9, 10
israelcurves, 9
israelcurves-package (israelcurves), 9
{\tt make\_params\_for\_all\_dates}, 10
plot.bond, 11
price_bond, 11, 12
price_bond_model, 11, 12
\verb|print.bond|, 12|
summary.bond, 13
```