Group theory

Peter Rowlett

Recall that we defined (G, \circ) as a set G and a binary operation on that set, \circ . Remember that the definition of a binary operation tells us that (G, \circ) has **closure**.

• Closure: $\forall a, b \in G \ (a \circ b \in G)$.

1 Group

If (G, \circ) satisfies the following, then it is called a *group*.

- Associativity: $\forall a, b, c \in G \ (a \circ (b \circ c) = (a \circ b) \circ c).$
- Identity: $\exists e \in G \ \forall a \in G \ (e \circ a = a \circ e = a).$
- Inverse: $\forall a \in G \ \exists b \in G \ (a \circ b = b \circ a = e)$

2 Abelian group

If (G, \circ) is a group that also satisfies commutativity, it is called an *Abelian group*.

• Commutativity: $\forall a, b \in G \ (a \circ b = b \circ a)$.

3 Algebraic structures that are not groups

- If (G, \circ) satisfies closure but none of the other properties, it is called a magma, or sometimes a groupoid.
- If (G, \circ) satisfies closure and associativity only, it is a *semi-group*.
- If (G, \circ) satisfies closure, associativity, and has an identity, it is a monoid.

4 Order of an element and generators

For a group with identity e, the *order* of an element a is the smallest positive integer power of a such that $a^n = e$.

A generator is an element g such that every element of the group can be expressed as some power of g.

A group with a generator is called a cyclic group.

If g is a generator for a group and $g^n = e$, then we can draw a general group table.

	e	g	g^2	g^3		g^{n-2}	g^{n-1}
e						g^{n-2}	
g	g	g^2	g^3	g^4		g^{n-1}	e
g^2	g^2	g^3	g^4	g^5		e	g
g^3	g^3	g^4	g^5	g^6		g	g^2
÷		÷	÷	:	٠.	:	÷
g^{n-2}	q^{n-2}	q^{n-1}	e	q		q^{n-4}	g^{n-3}
g^{n-1}	g^{n-1}	e	g	g^2		g^{n-3}	g^{n-2}

5 Subgroups

A subgroup of a group (G, \circ) is some $H \subseteq G$ such that (H, \circ) forms a group in its own right.