RANK-ONE FLOWS OF TRANSFORMATIONS WITH INFINITE ERGODIC INDEX

ALEXANDRE I. DANILENKO AND KYEWON K. PARK

ABSTRACT. A rank-one infinite measure preserving flow $T = (T_t)_{t \in \mathbb{R}}$ is constructed such that for each $t \neq 0$, the Cartesian powers of the transformation T_t are all ergodic.

0. Introduction

In 1963 Kakutani and Parry discovered an interesting phenomenon in the theory of infinite measure preserving maps. They showed that for each p>0, there exists a transformation whose p-th Cartesian power is ergodic but (p+1)-th one is not [KP]. Since then a number of other examples of transformations with exotic (from the point of view of the classical "probability preserving" ergodic theory) weak mixing properties were constructed. See surveys [Da2] and [DaS3] for a detail discussion on that. In [Da1], [DaS1] these examples were extended to infinite measure preserving actions of discrete countable Abelian groups. Weak mixing properties of infinite measure preserving actions of *continuous* Abelian groups such as \mathbb{R} and \mathbb{R}^d were under consideration in [I-W]. In particular, a rank-one flow (i.e. R-action) whose Cartesian square is ergodic was constructed there. A rank-one infinite measure preserving flow $T = (T_t)_{t \in \mathbb{R}}$ with infinite ergodic index (i.e. the Cartesian powers of T are all ergodic) appeared in a recent paper [DaSo]. It can be deduced easily from [DaSo] that there is a residual subset D_T of \mathbb{R} such that for each $t \in D_T$, the transformation T_t has infinite ergodic index. However the following more subtle question by C. Silva remained open so far:

Is there a rank-one infinite measure preserving flow T with $D_T = \mathbb{R} \setminus \{0\}$? Our purpose in this paper is to answer his question in the affirmative.

Theorem 0.1. There is a rank-one infinite σ -finite measure preserving flow $T = (T_t)_{t \in \mathbb{R}}$ such that for each $t \neq 0$, the transformation T_t has infinite ergodic index.

The main idea of the proof is different from those that were used in [I–W] and [DaSo]. It is based on a technique to *force* a dynamical property. Originating from [Ry1], such techniques were utilized in [Ry2], [DaR], etc. to obtain mixing, power weak mixing, etc. of some systems. In this paper the desired flow appears as a certain limit of a sequence of weakly mixing finite measure preserving flows. We construct this sequence in such a way to retain the property of infinite ergodic index

m +1 4 cm x

¹⁹⁹¹ Mathematics Subject Classification. Primary 37A40; Secondary 37A10, 37A25.

Key words and phrases. Infinite ergodic index, (C, F)-construction.

The first author thanks Ajou University and KIAS for supporting in part his visit to South Korea. The second author is supported in part by KRF 2007-313-C00044.

in the limit. The construction is implemented in the language of (C, F)-actions (see [Da2]).

1. Preliminaries: Rank-one actions and (C, F)-actions of \mathbb{R}^d

We first recall the definition of rank one. Let $S = (S_g)_{g \in \mathbb{R}^d}$ be a measure preserving action of \mathbb{R}^d on a standard σ -finite measure space (Y, \mathfrak{C}, ν) .

Definition 1.1.

- (i) A Rokhlin tower or column for S is a triple (A, f, F), where $A \in \mathfrak{C}$, F is a cube in \mathbb{R}^d and $f: A \to F$ is a measurable mapping such that for any Borel subset $H \subset F$ and an element $g \in \mathbb{R}^d$ with $g + H \subset F$, one has $f^{-1}(g+H) = S_q f^{-1}(H)$.
- (ii) S is said to be of rank-one (by cubes) if there exists a sequence of Rokhlin towers (A_n, f_n, F_n) such that the volume of F_n goes to infinity and for any subset $C \in \mathfrak{C}$ of finite measure, there is a sequence of Borel subsets $H_n \subset F_n$ such that

$$\lim_{n \to \infty} \nu(C \triangle f_n^{-1}(H_n)) = 0.$$

The (C, F)-construction of measure preserving actions for discrete countable groups was introduced in [dJ] and [Da1]. It was extended to the case of locally compact second countable Abelian groups in [DaS2]. (See also [Da2].) Here we outline it briefly for \mathbb{R}^d , $d \in \mathbb{N}$.

Given two subsets $E, F \subset \mathbb{R}^d$, by E+F we mean their algebraic sum, i.e. $E+F=\{e+f\mid e\in E, f\in F\}$. The algebraic difference E-F is defined in a similar way. If F is a singleton, say $F=\{f\}$, then we will write E+f for E+F. Two subsets E and F of \mathbb{R}^d are called *independent* if $(E-E)\cap (F-F)=\{0\}$, i.e. if e+f=e'+f' for some $e,e'\in E, f,f'\in F$ then e=e' and f=f'.

Fix $p \in \mathbb{N}$ and consider two sequences $(F_n)_{n=0}^{\infty}$ and $(C_n)_{n=1}^{\infty}$ of subsets in \mathbb{R}^d such that F_n is a cube $[0, h_n) \times \cdots \times [0, h_n)$ (d times) for an $h_n \in \mathbb{R}$, $C_n \subset \mathbb{R}^d$ is a finite set, $\#C_n > 1$,

(1-1)
$$F_n$$
 and C_{n+1} are independent;

$$(1-2) F_n + C_{n+1} \subset F_{n+1}.$$

This means that $F_n + C_{n+1}$ consists of $\#C_{n+1}$ mutually disjoint 'copies' $F_n + c$ of F_n , $c \in C_{n+1}$, and all these copies are contained in F_{n+1} . We equip F_n with the measure $(\#C_1 \cdots \#C_n)^{-1}(\lambda_{\mathbb{R}^d} \upharpoonright F_n)$, where $\lambda_{\mathbb{R}^d}$ denotes Lebesgue measure on \mathbb{R}^d . Endow C_n with the equidistributed probability measure. Let $X_n := F_n \times \prod_{k>n} C_k$ stand for the product of measure spaces. Define an embedding $X_n \to X_{n+1}$ by setting

$$(f_n, c_{n+1}, c_{n+2}, \dots) \mapsto (f_n + c_{n+1}, c_{n+2}, \dots).$$

It is easy to see that this embedding is measure preserving. Then $X_0 \subset X_1 \subset \cdots$. Let $X := \bigcup_{n=0}^{\infty} X_n$ denote the inductive limit of the sequence of measure spaces X_n and let μ denote the corresponding measure on X. Then μ is σ -finite. It is infinite if and only if

(1-3)
$$\lim_{n \to \infty} \frac{h_n^d}{\#C_1 \cdots \#C_n} = \infty.$$

Given $g \in \mathbb{R}^d$ and $n \in \mathbb{N}$, we set

$$L_g^{(n)} := (F_n \cap (F_n - g)) \times \prod_{k > n} C_k$$
 and $R_g^{(n)} := (F_n \cap (F_n + g)) \times \prod_{k > n} C_k$.

Clearly, $L_g^{(n)} \subset L_g^{(n+1)}$ and $R_g^{(n)} \subset R_g^{(n+1)}$. Define a map $T_g^{(n)}: L_g^{(n)} \to R_g^{(n)}$ by setting

$$T_g^{(n)}(f_n, c_{n+1}, \dots) := (f_n + g, c_{n+1}, \dots).$$

Put

$$L_g := \bigcup_{n=1}^{\infty} L_g^{(n)} \subset X$$
 and $R_g := \bigcup_{n=1}^{\infty} R_g^{(n)} \subset X$.

Then a Borel one-to-one map $T_g: L_g \to R_g$ is well defined by $T_g \upharpoonright L_g^{(n)} = T_g^{(n)}$. Since $h_n \to \infty$, it follows that $\mu(X \setminus L_g) = \mu(X \setminus R_g) = X$ for each $g \in \mathbb{R}^d$. It is easy to verify that $T := (T_g)_{g \in \mathbb{R}^d}$ is a Borel μ -preserving action of \mathbb{R}^d .

Definition 1.2. T is called the (C, F)-action of \mathbb{R}^d associated with $(C_{n+1}, F_n)_{n \geq 0}$.

Each (C, F)-action is of rank one.

Given a Borel subset $A \subset F_n$, we set $[A]_n := \{ x = (x_i)_{i=n}^{\infty} \in X_n \mid x_n \in A \}$ and call it an n-cylinder in X. Clearly,

$$[A]_n = \bigsqcup_{c \in C_{n+1}} [A+c]_{n+1}.$$

Notice also that

(1-5)
$$T_q[A]_n = [A+g]_n \text{ for all } g \in \mathbb{R}^d \text{ and } A \subset F_n \cap (F_n-g), \ n \in \mathbb{N}.$$

The sequence of all *n*-cylinders approximates the entire Borel σ -algebra on X when $n \to \infty$.

We state without proof the following standard lemma (see, e.g., Lemma 2.4 from [Da1]).

Lemma 1.3. Let \mathcal{P}_n be a finite partition of F_n into parallelepipeds such that for each atom Δ of \mathcal{P}_n and an element $c \in C_{n+1}$, the parallelepiped $\Delta + c$ is \mathcal{P}_{n+1} -measurable and the maximal diameter of the atoms in \mathcal{P}_n goes to zero. Let S be a measure preserving transformation of X. Then the following holds.

- (i) The sequence of collections of n-cylinders $\{[A]_n \mid A \subset F_n \text{ is } \mathcal{P}_n\text{-measurable}\}$ approximates the entire $\sigma\text{-algebra }\mathfrak{B} \text{ as } n \to \infty$.
- (ii) If for each pair of atoms $\Delta_1, \Delta_2 \in \mathcal{P}_n$, there are a subset $A \subset [\Delta_1]_n$ and a μ -preserving one-to-one map $\gamma : A \to [\Delta_2]_n$ such that $\mu(A) > 0.5\mu([\Delta_1]_n)$, and $\gamma x \in \{S^i x \mid i \in \mathbb{Z}\}$ for all $x \in A$ then S is ergodic.

We will also use the following property of the (C, F)-actions. If T is associated with $(C_{n+1}, F_n)_{n\geq 0}$ then for each p>1, the product action

$$(T_{t_1} \times \cdots \times T_{t_p})_{(t_1,\dots,t_p) \in (\mathbb{R}^d)^p}$$

is the (C, F)-action of $(\mathbb{R}^d)^p$ associated with $(C_{n+1}^p, F_n^p)_{n\geq 0}$. The upper index p means the p-th Cartesian power.

2. Two auxiliary facts

Given a σ -finite measure space (X, μ) , we denote by $\operatorname{Aut}(X, \mu)$ the group of all μ -preserving (invertible) transformations of X. It is a Polish group when endowed with the weak topology [Aa]. Recall that the weak topology is the weakest topology in which the maps

$$\operatorname{Aut}(X,\mu)\ni T\mapsto \mu(TA\cap B)\in\mathbb{R}$$

are continuous for all subsets $A, B \subset X$ of finite measure.

Given $S \in \operatorname{Aut}(X, \mu)$ and two subsets $A, B \subset X$ with $\mu(A) = \mu(B) < \infty$, we define subsets A_0, A_1, \ldots of A as follows:

$$(2-1) A_0 := A \cap B,$$

$$A_i := \left(A \setminus \bigsqcup_{j=0}^{i-1} A_j\right) \cap S^{-i} \left(B \setminus \bigsqcup_{j=0}^{i-1} S^j A_j\right), \quad i > 0.$$

We now let $\mathcal{N}_{S,A,B} := \min\{i \geq 0 \mid \mu(A_0 \sqcup \cdots \sqcup A_i) > 0.5\mu(A)\}$. If S is ergodic then $A = \bigsqcup_{i \geq 0} A_i$ and hence $\mathcal{N}_{S,A,B}$ is well defined. Denote by \mathcal{E} the subset of all ergodic transformations in $\operatorname{Aut}(X,\mu)$. It is well known that \mathcal{E} is a dense G_{δ} in $\operatorname{Aut}(X,\mu)$. Since for each $i \geq 0$, the map

$$\operatorname{Aut}(X,\mu) \ni S \mapsto \mu(A_0 \sqcup \cdots \sqcup A_i) \in \mathbb{R}$$

is continuous, we obtain the following lemma.

Lemma 2.1. The map $\mathcal{E} \ni S \mapsto \mathcal{N}_{S,A,B} \in \mathbb{R}$ is upper semicontinuous for all subsets $A, B \subset X$ with $\mu(A) = \mu(B) < \infty$.

In the case of (C, F)-actions we can say more about the "structure" of the sets A_i , $i = 0, \ldots, \mathcal{N}_{S,A,B}$. For $q = (q_1, \ldots, q_d) \in \mathbb{R}^d$, we let $||q|| := \max_{1 \le i \le d} |q_i|$.

Lemma 2.2. Let $(X, \mu, (T_t)_{t \in \mathbb{R}^d})$ be a (C, F)-action of \mathbb{R}^d associated with a sequence $(C_{n+1}, F_n)_{n \geq 0}$ such that

$$(2-2) a + F_n + C_{n+1} \subset F_{n+1}$$

for each $a = (a_1, \ldots, a_p)$ with $a_i \ge 0$, $i = 1, \ldots, p$, and $||a|| \le 1$. Fix two n-cylinders A and B of equal measure and a transformation $S = T_q$ for some $q \in \mathbb{R}^d_+$. Then the subsets $A_0, A_1, \ldots, A_{\mathcal{N}(S,A,B)}$ defined by (2-1) are $(n + Q \cdot \mathcal{N}(S,A,B))$ -cylinders, where Q is any integer greater than ||q||.

Proof. We let $N := Q \cdot \mathcal{N}(S, A, B)$. If $A = [\widetilde{A}]_n$ for some $\widetilde{A} \subset F_n$ then $A = [\widehat{A}]_{n+N}$, where $\widehat{A} := \widetilde{A} + C_{n+1} + \cdots + C_{n+N} \subset F_{n+N}$. From (1-2) and (2-2) we deduce that the sets $\widehat{A} + q, \ldots, \widehat{A} + \mathcal{N}(S, A, B)q$ are all contained in F_{n+N} . It remains to use (2-1) and (1-5). \square

We also note that $S^iA_i \subset B$ and $S^iA_i \cap S^jA_j = \emptyset$ for all $i, j = 0, \dots, \mathcal{N}(S, A, B)$.

3. Proof of the main result

Theorem 3.1. There exists a (C, F)-flow $T = (T_t)_{t \in \mathbb{R}}$ such that each transformation T_t , $t \neq 0$, has infinite ergodic index.

Proof. We will construct this flow via an inductive procedure. Fix a sequence of integers $(p_n)_{n>1}$ in which every integer greater then 1 occurs infinitely many times. Suppose that after n-1 steps of the construction we have already defined

$$(3-1) F_0, C_1, F_1, \dots, C_{m_{n-1}}, F_{m_{n-1}}.$$

Suppose also that for each $0 \le i \le m_{n-1}$, a finite partition \mathcal{P}_i of F_i into intervals is chosen in such a way that

- the interval $\Delta + c$ is \mathcal{P}_{i+1} -measurable for each atom Δ of \mathcal{P}_i , $0 \leq i < m_{n-1}$, and each $c \in C_{i+1}$ and
- the length of any atom of \mathcal{P}_i is no more than i^{-1} , $1 \leq i \leq m_{n-1}$.

Step n. Consider a rank-one weakly mixing finite measure preserving (C, F)-flow $T^{(n)} = (T_t^{(n)})_{t \in \mathbb{R}}$ associated with a sequence $(C_{k+1,n}, F_{k,n})_{k \geq 0}$ such that $F_{0,n} :=$ $F_{m_{n-1}}$. Examples of weakly mixing rank-one finite measure preserving flows are well known—see, e.g., [dJP]. In [DaS2] one can find explicit (C, F)-construction of mixing finite measure preserving flows. Let $(X^{(n)}, \mu_n)$ be the space of this action. Since $T^{(n)}$ is weakly mixing, it follows that for each t > 0, the transformation

$$S_t := T_t^{(n)} \times \dots \times T_t^{(n)} \ (p_n \text{ times})$$

of the product space $(X^{(n)}, \mu_n)^{p_n}$ is ergodic. We note that this space is the space of the (C, F)-action of \mathbb{R}^{p_n} associated with the sequence $(C_{k+1,n}^{p_n}, F_{k,n}^{p_n})_{k\geq 0}$ (see our remark at the end of §1). Given $k \geq 0$, let $\mathcal{P}_{k,n}$ be a finite partition of $F_{k,n}$ into intervals such that

- $\mathcal{P}_{0,n} = \mathcal{P}_{m_{n-1}}$, the interval $\Delta + c$ is $\mathcal{P}_{k+1,n}$ -measurable for each atom Δ of $\mathcal{P}_{k,n}$ and $c \in$
- the length of any atom of $\mathcal{P}_{k,n}$ is no more than $(m_{n-1}+k)^{-1}$.

We now let $\mathcal{P}_{k,n}^{p_n} := \mathcal{P}_{k,n} \times \cdots \times \mathcal{P}_{k,n}$ (p_n times). Then $\mathcal{P}_{k,n}^{p_n}$ is a finite partition of $F_{k,n}^{p_n}$ into parallelepipeds and

- the parallelepiped $\Delta + c$ is $\mathcal{P}_{k+1,n}^{p_n}$ -measurable for each atom Δ of $\mathcal{P}_{k,n}^{p_n}$ and $c \in C^{p_n}_{k+1,n}$ and
- the diameter of an atom of $\mathcal{P}_{k,n}^{p_n}$ is no more than $(m_{n-1}+k)^{-p_n}$.

Denote by D_n the maximum of $\mathcal{N}(S_t, [\Delta]_0, [\Delta']_0)$ when Δ and Δ' run independently the atoms of $\mathcal{P}_{0,n}^{p_n}$ and t runs the segment $[n^{-1},n]\subset\mathbb{R}$. It exists by Lemma 2.1. It now follows from Lemma 2.2 that for any pair of parallelepipeds $\Delta, \Delta' \in \mathcal{P}_{0,n}^{p_n}$ and a real $t \in [n^{-1}, n]$, there exist nD_n -cylinders $A_1, \ldots, A_{D_n} \subset [\Delta]_0$ such that

(3-2)
$$\mu_n^{p_n} \left(\bigsqcup_{i=1}^{D_n} A_i \right) > \frac{1}{2} \mu_n^{p_n} ([\Delta]_0),$$

$$S_t^i A_i \subset [\Delta']_0 \text{ for each } 1 \le i \le D_n \text{ and }$$

$$S_t^i A_i \cap S_t^j A_j = \emptyset \text{ if } 1 \le i \ne j \le D_n.$$

We now "continue" the sequence (3-1) by setting

$$C_{m_{n-1}+1} := C_{1,n}, F_{m_{n-1}+1} := F_{1,n}, \dots, C_{m_{n-1}+nD_n} := C_{nD_n,n}.$$

Next, to define $F_{m_{n-1}+nD_n}$ we "double" the set $F_{nD_n,n}$, i.e.

(3-3)
$$F_{m_{n-1}+nD_n} := [0, 2a) \text{ if } F_{nD_n,n} = [0, a) \text{ for some } a > 0.$$

It remains to put $m_n := m_{n-1} + nD_n$. The *n*-th step is now completed.

Continuing this procedure infinitely many times, we obtain the entire sequence $(C_{i+1}, F_i)_{i=0}^{\infty}$. Denote by $T = (T_t)_{t \in \mathbb{R}}$ the associated (C, F)-flow. Let (X, μ) be the space of this flow. It follows from (3-3) that $\lambda_{\mathbb{R}}(F_i) > 2\lambda_{\mathbb{R}}(F_{i-1}) \# C_i$ for infinitely many i. Hence $\mu(X) = \infty$. Moreover, a finite partition \mathcal{P}_i of F_i into intervals is fixed such that the conditions of Lemma 1.3 are satisfied. Next, there are one-to-one correspondences (natural identifications) between

- the collection of 0-cylinders in $X^{(n)}$ and the collection of m_{n-1} -cylinders in X and
- the collection of nD_n -cylinders in $X^{(n)}$ and the collection of m_n -cylinders in X.

Moreover, the "dynamics" of $T^{(n)}$ on the nD_n -cylinders is the same as the dynamics of T on the m_n -cylinders. This means the following: if $A, B \subset F_{nD_n}^{(n)}$ and $[B]_{nD_n} = T_w^{(n)}[A]_{nD_n}$ for some $w \in \mathbb{R}$ then $[B]_{m_n} = T_w[A]_{m_n}$. Therefore we deduce from (3-2) that for any pair of parallelepipeds $\Delta, \Delta' \in \mathcal{P}_{m_n-1}^{p_n}$ and a real $t \in [n^{-1}, n]$, there exist m_n -cylinders $A_1, \ldots, A_{D_n} \subset [\Delta]_{m_{n-1}}$ such that

$$\mu^{p_n} \left(\bigsqcup_{i=1}^{D_n} A_i \right) > \frac{1}{2} \mu^{p_n} ([\Delta]_{m_{n-1}}),$$

$$V_t^i A_i \subset [\Delta']_{m_{n-1}} \text{ for each } 1 \le i \le D_n \text{ and}$$

$$V_t^i A_i \cap V_t^j A_j = \emptyset \text{ if } 1 \le i \ne j \le D_n,$$

where $V_t := T_t \times \cdots \times T_t$ (p_n times). Fix p > 0. Passing to a subsequence where $p_n = p$ we now deduce from Lemma 1.3(ii) that $T_t \times \cdots \times T_t$ (p times) is ergodic for each t > 0. Hence T_t has infinite ergodic index. \square

4. Concluding remarks

4.1. When constructing T, we use only finitely many initial terms of the sequence $(C_{k+1}^{(n)}, F_k^{(n)})_{k\geq 0}$ for each n>0. However to determine "where to stop" (i.e. to determine D_n) we use the weak mixing properties of the auxiliary flow $T^{(n)}$ which depends on the entire *infinite* sequence $(C_{k+1}^{(n)}, F_k^{(n)})_{k\geq 0}$. No upper bound on D_n is found. This means that the construction of T is not *effective*. In this connection we rise a question:

is it possible to find an effective construction for the flow from Theorem 0.1? We note that the construction in [DaSo] is effective.

4.2. It is possible to strengthen Theorem 0.1 by replacing the infinite ergodic index with a stronger property of power ergodicity. Recall that a measure preserving transformation S is called power ergodic if for each finite sequence n_1, \ldots, n_k of nonzero integers the transformation $S^{n_1} \times \cdots \times S^{n_k}$ is ergodic. Only a slight modification of our argument is needed to show the following theorem.

Theorem 4.1. There exists a rank-one infinite σ -finite measure preserving flow $T = (T_t)_{t \in \mathbb{R}}$ such that the transformation T_t is power weakly mixing for each $t \neq 0$.

Also, it is easy to extend Theorem 0.1 to actions of \mathbb{R}^d .

Theorem 4.2. For each d > 1, there exists a rank-one infinite σ -finite measure preserving action $T = (T_g)_{g \in \mathbb{R}^d}$ of \mathbb{R}^d such that the transformation T_g has infinite ergodic index for each $g \neq 0$.

We leave the proofs of Theorems 4.1 and 4.2 to the reader.

References

- [Aa] J. Aaronson, An introduction to infinite ergodic theory, Amer. Math. Soc., Providence, R.I., 1997.
- [Da1] A. I. Danilenko, Funny rank one weak mixing for nonsingular Abelian actions, Isr. J. Math. 121 (2001), 29–54.
- [Da2] _____, (C, F)-actions in ergodic theory, Geometry and Dynamics of Groups and Spaces, Progr. Math., vol. 265, 2008, pp. 325–351.
- [DaS1] A. I. Danilenko and C. E. Silva, Multiple and polynomial recurrence for abelian actions in infinite measure, J. London Math. Soc. 69 (2004), 183–200.
- [DaS2] _____, Mixing rank-one actions of locally compact Abelian groups, Ann. Inst. H. Poincaré, Probab. Statist. 43 (2007), 375-398.
- [DaS3] ______, Ergodic theory: non-singular transformations, Encyclopedia of complexity and systems science, Springer, 2009.
- [DaSo] A. I. Danilenko and A. Solomko, *Infinite measure preserving flows with infinite ergodic index*, Colloq. Math. **115** (2009), 13–19.
- [DaR] A. I. Danilenko and V. V. Ryzhikov, Mixing constructions with infinite invariant measure and spectral multiplicities, preprint arXiv:0908.1643.
- [dJ] A. del Junco, A simple map with no prime factors, Isr. J. Math. 104 (1998), 301–320.
- [dJP] A. del Junco and K. K. Park, An example of a measure preserving flow with minimal self-joinings, J. d'Analyse Mathematique 42 (1984), 199-209.
- [I-W] S. Iams, B. Katz, C. E. Silva, B. Street and K. Wickelgren, On weakly mixing and doubly ergodic nonsingular actions, Colloq. Math. 103 (2005), 247–264.
- [KP] S. Kakutani and W. Parry, *Infinite measure preserving transformations with "mixing"*, Bull. Amer. Math. Soc. **69** (1963), 752-756.
- [Ry1] V. V. Ryzhikov, Homogeneous spectrum, disjointness of convolutions, and mixing properties of dynamical systems, Selected Russian Mathematics 1 (1999), 13–24.
- [Ry2] _____, Weak limits of powers, the simple spectrum of symmetric products and mixing constructions of rank 1, Sb. Math. 198 (2007), 733–754.

Institute for Low Temperature Physics & Engineering of National Academy of Sciences of Ukraine, 47 Lenin Ave., Kharkov, 61164, UKRAINE

E-mail address: alexandre.danilenko@gmail.com

Department of Mathematics, College of Natural Science, Ajou University, Suwon 442-749, KOREA

 $E ext{-}mail\ address: kkpark@madang.ajou.ac.kr}$