

João Pedro de Souza e Silva Luiza Lorena Toscano de Medeiros Thatiana Jéssica da Silva Ribeiro Volney Lourenço dos Santos Oliveira

Recapitulando...

Objetivo da pesquisa: aplicar os conhecimentos aprendidos durante a disciplina de Ciência de Dados para fazer o agrupamento e traçar o perfil de algum problema real.

Nas primeiras discussões, decidiu-se explorar os dados referentes as turmas dos últimos anos do ensino médio, tendo um foco na presença feminina (do ponto de vista de sexo biológico).

Brainstorming: Perguntas

01. Presença feminina vs masculina nos últimos anos do ensino médio

03. Para onde direcionar recursos para melhorar a educação dessas mulheres?

02. Perfil das mulheres nos últimos anos do ensino médio

04. Intensificar a política de "cotas raciais"

1. Proposta de estudo inicial

- > Brainstorm inicial
- Escolha de datasets: dados de matriculas no ensino médio, no ano de 2019, na região nordeste (INEP)

5. Análise final dos dados

- Agrupamento baseado em MUNICÍPIOS - Kmeans
- > Analise estatística dos *clusters*
- Discussões sobre perfil das estudantes para cada cluster

(C) **ETAPAS**

2. Ajuste nos dados

- > Importação do dataset
- Tratamento de dados inválidos ou inexistentes
- Filtragem de dados: sexo biologico, etapa do ensino médio, RN

4. Refactoring do código

- Foco na agregação de dados por MUNICÍPIOS
- Ênfase em gerar dados NUMÉRICOS percentuais
- > Divisão em duas análises:
 - Com 2 características Com 3 características (esta vai ser mostrada)

3. Análise de dados

- Inicialmente, abordagem com foco nas ESTUDANTES
- Discussões do porquê a ideia inicial não funcionaria
- > Novo brainstorm
- Mudança na abordagem: foco nos MUNICÍPIOS

Ajustes no dataset

Características selecionadas e dificuldade encontrada

	TP_COR_RACA	TP_ZONA_RESIDENCIAL	CO_MUNICIPIO	TP_DEPENDENCIA
6448835	0	2	2404408	2
6448883	3	1	2410405	2
6448903	1	1	2408003	2
6448939	1	1	2408102	2
6448940	3	1	2408102	2
	***	Cana	***	***
7485738	1	2	2414159	2
7486028	3	1	2409506	2
7486055	3	1	2407104	2
7486086	2	1	2408102	2
7486597	1	1	2408102	1

Out[12]:

18965 rows × 4 columns

our Liti.	Our	+T	14	1	
	ou	-1	-	-	

Nome do Municipio	ingo do Marincipio	
Acari	2400109	0
Açu	2400208	1
Afonso Bezerra	2400307	2
Água Nova	2400406	3
Alexandria	2400505	4
***	***	
Várzea	2414704	162
Venha-Ver	2414753	163
Vera Cruz	2414803	164
Viçosa	2414902	165
Vila Flor	2415008	166

167 rows × 2 columns

Código do Município Nome do Município

	NOME_MUNICIPIO	COUNT
0	Acari	25
1	Afonso Bezerra	38
2	Alexandria	40
3	Almino Afonso	12
4	Alto do Rodrigues	83

161	Vera Cruz	89
162	Vila Flor	16
163	Viçosa	4
164	Várzea	26
165	Água Nova	31

166 rows × 2 columns

Etapas de processamento dos dados

1. Conversão dos dados "categóricos" para porcentagem

		L		
	7			- 46

	NOME_MUNICIPIO	COUNT	TP_ZONA_RESIDENCIAL_1	TP_ZONA_RESIDENCIAL_2	TP_DEPENDENCIA_1	TP_DEPENDENCIA_2	TP_DEPENDENCIA_3
0	Acari	25	0.920000	0.080000	0.0	1.0	0.0
1	Afonso Bezerra	38	0.526316	0.473684	0.0	1.0	0.0
2	Alexandria	40	0.675000	0.325000	0.0	1.0	0.0
3	Almino Afonso	12	0.916667	0.083333	0.0	1.0	0.0
4	Alto do Rodrigues	83	0.638554	0.361446	0.0	1.0	0.0
	***	***		***	***		
161	Vera Cruz	89	0.775281	0.224719	0.0	1.0	0.0
162	Vila Flor	16	0.812500	0.187500	0.0	1.0	0.0
163	Viçosa	4	1.000000	0.000000	0.0	1.0	0.0
164	Várzea	26	0.884615	0.115385	0.0	1.0	0.0
165	Água Nova	31	0.709677	0.290323	0.0	1.0	0.0

TP_DEPENDENCIA_4	TP_COR_RACA_0	TP_COR_RACA_1	TP_COR_RACA_2	TP_COR_RACA_3	TP_COR_RACA_4	TP_COR_RACA_5
0.0	0.800000	0.080000	0.000000	0.120000	0.0	0.0
0.0	0.000000	0.289474	0.026316	0.684211	0.0	0.0
0.0	0.575000	0.175000	0.000000	0.250000	0.0	0.0
0.0	0.000000	0.750000	0.000000	0.250000	0.0	0.0
0.0	0.385542	0.180723	0.012048	0.421687	0.0	0.0
***					***	
0.0	0.258427	0.213483	0.033708	0.494382	0.0	0.0
0.0	0.562500	0.250000	0.000000	0.187500	0.0	0.0
0.0	0.000000	0.250000	0.000000	0.750000	0.0	0.0
0.0	0.153846	0.153846	0.000000	0.692308	0.0	0.0
0.0	0.677419	0.225806	0.000000	0.096774	0.0	0.0

2. Preparação dos dados para aplicar Kmeans

```
In [69]: np zona dep cor = df zona dep cor.to numpy(dtype=np.float32)
         print(np zona dep cor)
In [70]: # calculate distortion for a range of number of cluster
         distortions = []
         N C = 16
         for i in range(1, N C):
             km = KMeans(
                 n clusters=i, init='random',
                 n init=20, max iter=2000,
                 tol=1e-04, random state=0
             km.fit(np zona dep cor)
             distortions.append(km.inertia)
         # plot
         plt.plot(range(1, N C), distortions, marker='o')
         plt.xlabel('Number of clusters')
         plt.ylabel('Distortion')
         plt.show()
```


3. Aplicação do *Kmeans* e exportação dos dados

93]:	NOME_MUNICIPIO	CLUSTER	COUNT	TP_ZONA_RESIDENCIAL_1	TP_ZONA_RESIDENCIAL_2	TP_DEPENDENCIA_1	TP_DEPENDENCIA_2
155	Timbaúba dos Batistas	0	5	0.800000	0.200000	0.000000	1.000000
69	Lagoa de Velhos	0	7	0.714286	0.285714	0.000000	1.000000
104 38	Pilōes	0	13	0.769231	0.230769	0.000000	1.000000
	Fernando Pedroza	0	14	0.857143	0.142857	0.000000	1.000000
162	Vila Flor	0	16	0.812500	0.187500	0.000000	1.000000
 32 46				· · ·		***	
	Doutor Severiano	5	53	0.396226	0.603774	0.000000	1.000000
	Guamaré	5	74	0.418919	0.581081	0.000000	1.000000
65	Lagoa Nova	5	92	0.510870	0.489130	0.000000	1.000000
23	Caraúbas	5	95	0.547368	0.452632	0.000000	1.000000
26	Ceará-Mirim	5	573	0.485166	0.514834	0.193717	0.790576

In [94]: df_zona_dep_cor2.to_csv("/home/thaty/cien_dadosthati/ApresentacaoFinal/data_clusters2.csv")

4. Análise estatística dos clusters

```
In [77]: df_preview_analysis2 = df_zona_dep_cor2.copy().drop(["NOME_MUNICIPIO"], axis=1)
    df_analysis2 = df_preview_analysis2.groupby(["CLUSTER"]).agg(["mean", "std", "max", "min"])
```


Resultados e discussões

Clusters

Zona residencial

Clusters mais similares: 1 e 4 (mediana similar, porém valores mínimos são distintos)

Cluster mais diferente: 5

Clusters com outliers p/ valores máximos: 0 Clusters com outliers p/ valores mínimos: 3

Clusters mais similares: 1 e 4 (mediana similar, porém valores

máximos são distintos) *Cluster* mais diferente: 5

Clusters com outliers p/ valores máximos: 3 Clusters com outliers p/ valores mínimos: 0

Dependência da escola

Somente o *cluster* 3 apresenta maior distribuição com relação ao tipo de escola (onde está cidades como Natal, Mossoró e Parnamirim). Os clusters 1 e 5 tem alguns *outliers* com escolas federais, que são as cidades de : Macaíba e Ceará Mirim

O *cluster* 4 é composto totalmente por escolas estaduais, por isso não há uma distribuição no boxplot.

Ja para os *clusters* 0, 1, 2 e 5, há cidades nas quais há escolas diferentes de estaduais, porém não muitas. (ex 5: somente Ceará Mirim)

Somente o *cluster* 3 apresenta uma maior distribuição de escolas.

Dependência da escola

Nenhuma amostra do nosso *database* apresentou escolas municipais.

Percebe-se a tendência de distribuição de tipo de escolas somente no *cluster* 3 (onde está cidades como Natal, Mossoró e Parnamirim). No *cluster* 4 não há escolas privadas e nos outros há poucas (ex 5: também em Ceará Mirim, 2: somente Santo Antônio e Goianinha)

Etnia

Clusters mais similares: 1, 4 e 5
Cluster com maior dificuldade de fazer a declaração da etnia: 0 e 2
Clusters com outliers p/ valores máximos: 1 e 3

Clusters com outliers p/ valores mínimos: 2

Cluster onde a maioria se declara branca: 4
Cluster onde a minoria se declara branca: 2 e 0
Clusters com outliers p/ valores máximos: 0 e 2 (Ex: 0 na cidade de Jardim de Piranhas, 2: em Antonio Martins e Olho D'agua do Borges)

Etnia

De modo geral, há uma baixíssima representatividade de etnia negra no estado no cenário dos últimos anos do ensino médio entre as mulheres.

Há algumas cidades que há *outliers* em todos os *clusters*, exceto no 2. (ex: 5 na cidade de Bodó)

Bastante estudantes se identificam com a etnia Parda no estado.

Clusters com maior representatividade Parda: 1 e 5 A distribuição é mais uniforme em todos os clusters, não aparecem outliers.

Etnia

De modo geral, há uma baixíssima representatividade de etnia amarela.

No cluster 4 não há nenhuma cidade onde alguém se declarou como etnia amarela.

Há algumas cidades que são *outliers* em todos os *clusters* restantes, mas mesmo assim com baixo valor. (ex: 1 na cidade de Lagoa d'anta)

De modo geral, há uma baixíssima representatividade de etnia indígena.

No cluster 4 não há nenhuma cidade onde alguém se declarou como etnia indigena.

Há algumas cidades que são *outliers* em todos os *clusters* restantes, mas mesmo assim com baixo valor. (ex: 2 na cidade de Sao Tome e São Miguel do Gostoso)

Entendendo melhor os clusters

- Cidades do cluster com a maior quantidade de estudantes mulheres
- Cidades do cluster com a menor quantidade de estudantes mulheres

Entendendo melhor os clusters (cidades com maior quantidade)

Zona Residencial

Entendendo melhor os clusters (cidades com menor quantidade)

• Zona Residencial

Entendendo melhor os clusters (cidades com maior quantidade)

• Dependência da escola

Entendendo melhor os clusters (cidades com menor quantidade)

Dependência da escola

Entendendo melhor os clusters (cidades com maior quantidade)

Etnia

Entendendo melhor os clusters (cidades com menor quantidade)

• Etnia

Entendendo melhor os clusters

PIB (em milhões) das 3 maiores cidades de cada cluster

	Cluster 0	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
1ª Cidade	São José de Mipibu (815 mi)	Macaíba (1.679 mi)	Goianinha (410 mi)	Natal (24.856 mi)	Tenente Laurentino Cruz (131 mi)	Ceará-Mirim (899 mi)
2ª Cidade	Alto do Rodrigues (488 mi)	Açu (1.242 mi)	Touros (680 mi)	Mossoró (6.926 mi)	Portalegre (64 mi)	Caraúbas (377 mi)
3ª Cidade	Passa e Fica (123 mi)	Extremoz (452 mi)	Santo Antônio (239 mi)	Parnamirim (5.595 mi)	Jardim do Seridó (178 mi)	Lagoa Nova (324 mi)

PIB (em milhões) da menor cidade de cada cluster

	Cluster 0	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
Cidade	Timbaúba dos Batistas (35 mi)	Viçosa (19 mi)	Antônio Martins (58 mi)	Lajes (119 mi)	Francisco Dantas (29 mi)	João Dias (24 mi)

Conclusões

01. Presença feminina vs masculina nos últimos anos do ensino médio

Para o estado do RN: mulheres nos ultímos anos correspondem a 54,21 % e homens 45,79 %

03. Para onde direcionar recursos para melhorar a educação dessas mulheres?

Levar institutos federais à regiões mais "interiorizadas" Incentivos fiscais para implantação de escolas privadas também nessas regiões

02. Perfil das mulheres nos últimos anos do ensino médio

A maioria se declara branca? negra? indigena? Parda ou na realidade nem se declara

Moram em zona rural? urbana? Urbana Frequentam escolas federais? estaduais? municipais? privadas? Estaduais

04. Intensificar a política de "cotas raciais"

Adicionar mais vagas por cotas em institutos federais? Incentivos fiscais para implantação de cotas também em escolas privadas?

Lei de cotas no IFRN

*Segundo o último censo IBGE, 5.24% da população do RN se declara preta, 52.48% parda e 0.08% indígena, totalizando 57.8% de PPI no estado.

Passos futuros sugeridos

- Traçar também um perfil dos estudantes do sexo masculino e fazer uma comparação com as do sexo feminino que foi o objeto deste estudo
- Analisar como esse perfil que foi identificado neste estudo tem se comportado ao longo dos anos, utilizando datasets de anos anteriores ou posteriores ao aqui utilizado
- Utilizando-se um dataset a partir de 2020, seria possível analisar se a pandemia afetou o perfil que foi analisado por este estudo
- Traçar paralelos entre este estudo, e algum estudo posterior que conseguisse analisar a progressão dessas estudantes, como por exemplo, utilizando um *dataset* relativo aos dados do SISU, e também o ingresso nas universidades

https://github.com/thatianajessica/CienciaDeDados

Dados gráficos

