1 | Problem: Axler 3.E exercise 18

Suppose $T \in \mathcal{L}(V,W)$ and U is a subspace of V. Let π denote the quotient map from V onto V/U. Prove that there exists $S \in \mathcal{L}(V/U,W)$ such that $T = S \circ \pi$ if and only if $U \subseteq \text{null } T$.

Intuitively, if we mod out part of the null T, then we should still be able to have a map that does what T would do. If we are able to do what T would do, then when modding out U we only removed part of null T and lost no information.

2 | Forward Direction

Intuitively, we can treat $S \circ \pi$ as a single map and take a basis of V to the same place that T would, and the maps would be equal.

If V is finite dimensional, suppose v_1, \ldots, v_n is a basis of V and v_1, \ldots, v_k is a basis of U ($k = \dim U$ and $n = \dim V$). For each $k < j \le n$, $\pi v_i \ne 0$, and we can control where S should send it. Let S be defined by:

$$S(\pi v_i) = Tv_i$$

Then, $S \circ \pi$ will send each vector in U to 0 and each other vector where T would send it. Because $U \subseteq \text{null } T$, $S \circ \pi = T$.

This argument does not work for infinite dimensional vector spaces. Instead, perhaps we can send anything not in U to where T would send it and show that the resulting S is linear? I'm not convinced by the following argument:

Let
$$S: V/U \to W$$
 s.t. $S(\pi v) = Tv$. Then, $S \circ \pi = T$.

For S to be linear, it needs to be additive and homogenous. For $u,v\in V$ and $\lambda\in\mathbb{F}$, . $S\pi u+S\pi v=Tu+Tv=T(u+v)=S(\lambda \pi u)=S(\lambda \pi u)=S(\lambda \pi u)$.

In other words, T is linear thus $S \circ \pi$ is also linear.

Let S be a relation between V/U and W defined by

$$S(U+v) = Tv$$

If S is well defined (every element in V/U is mapped to exactly one place), then S will inherit additivity and homogeneity from T and $S \circ \pi$ will equal T.

Let $v \in V$ and $v' \in V/U$ s.t. $v' = \pi v$ (v' is where π takes v). Then, to show that S is well defined, we must show that v has atleast one and at most one image through $S \circ \pi$.

Because πv is well defined, and U+v was arbitrary in the definition of S, each v must have atleast one image in W.

Take S to be an arbitrary linear map. The only restriction on S that could cause $S(U+v) \neq Tv$ is S(0)=0 (this statement is not watertight). Thus, S is defined if $\forall U+v=U=0$, Tv=0. Equivalently, S is defined if $U\subseteq \mathsf{null}\ T$, which is given in the problem.

Thus, S is well defined. To show that it inherits additivity and homogeneity:

$$S(U+u) + S(U+v) = Tu + Tv = T(u+v) = S(U+u+U+v) = S(U+(u+v))$$
$$\lambda \left(S(U+v)\right) = \lambda Tv = T(\lambda v) = S(U+(\lambda v))$$

Thus, S is linear, and $S \circ \pi = T$ if $U \subseteq \text{null } T$.

ExrOn • 2021-2022 Page 1

$2.1 \mid define S(U + v) = T v$

2.1.1 | check that it is well defined

1. every element is sent to exactly one place

2.1.2 | check that linearity is inhereted from T

3 | Reverse Direction by Contrapositive

Intuitively, if we lost information, then we can't reconstruct what T would do.

Assume $U \nsubseteq \text{null } T$. There exists $v \in U$ s.t. $Tv \ne 0$. This is some of the "information" that was "lost". Because $v \in U$,

$$\pi v = U + v = U$$

Because U is the additive identity (0) in V/U, and because linear maps take zero to zero, $S \in \mathcal{L}(V/U,W)$ must take $\pi v = 0$ to zero. Thus, either $S(\pi v) \neq Tv$ or S is not a linear map, both of which are contradictions.

This shows that if $U \nsubseteq \text{null } T$, then $S \notin \mathcal{L}(V/U,W)$ or $T \neq S \circ \pi$. Thus, if $S \in \mathcal{L}(V/U,W)$ and $T = S \circ \pi$, then $U \subseteq \text{null } T$.

ExrOn • 2021-2022 Page 2