EE 562 Image Processing

Assoc. Prof. Dr. Cem Ünsalan

Contents

- Introduction
- Digital image fundamentals
- Intensity transformations and spatial filtering
- Filtering in the frequency domain
- Image restoration and reconstruction
- Color image processing
- Image compression
- Morphological image processing
- Image segmentation

Tell me and I forget.

Show me and I remember.

Let me do and I understand.

Intensity transformation functions

$$g(x, y) = T[f(x, y)]$$

Contrast stretching

Thresholding

Intensity transformation functions

Some basic intensity functions

Obtaining the Negative Image

Original mammogram and its negative

Power Law (Gamma) Transformations

$$g(x, y) = cf^{\gamma}(x, y)$$

MRI

 $c=1, \gamma=0.6$

 $c=1, \gamma=0.4$

 $c=1, \gamma=0.3$

Power Law (Gamma) Transformations

$$g(x, y) = cf^{\gamma}(x, y)$$

Aerial image

 $c=1, \gamma=3$

 $c=1, \gamma=4$

 $c=1, \gamma=5$

Piecewise Linear Transformations

Low contrast image

Transformation

Contrast stretched image

Thresholding and Slicing Transformations

Aortic angiogram

Transformation

Transformation

Result

Result

Bit Plane Representation

Bit planes of the dollar image

Bit Plane Representation

Combining bit planes 7 and 8

Combining bit planes 6, 7, and 8

Combining bit planes 5, 6, 7 and 8

Histogram based Intensity Transformation

What is a histogram?

- •Histogram equalization
- •Histogram specification
- •Local enhancement

Histograms of Different Images

Dark image

Light image

Low contrast image High contrast image

Histogram Equalization

$$s = T(r) = (L-1) \int_{0}^{r} p_{r}(w) dw$$

Obtaining a uniform pdf

FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original histogram. (b) Transformation function. (c) Equalized histogram.

Histogram Equalization

FIGURE 3.26 (a) Original image. (b) Result of global histogram equalization. (c) Result of local histogram equalization applied to (a), using a neighborhood of size 3×3 .

a b c

FIGURE 3.27 (a) SEM image of a tungsten filament magnified approximately 130×. (b) Result of global histogram equalization. (c) Image enhanced using local histogram statistics. (Original image courtesy of Mr. Michael Shaffer, Department of Geological Sciences, University of Oregon, Eugene.)

Spatial Filter Types

- •Smoothing filters
 - •Lowpass
- •Sharpening filters
 - •Bandpass
 - •Highpass
 - •High-boost
- •Derivative filters
- •Fuzzy logic filters

Spatial Filtering Operation

Linear Spatial Filter Masks

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

A general 3x3 mask

	1	1	1		1	2	1
$\frac{1}{9}$ ×	× 1 1 1	$\frac{1}{16} \times$	2	4	2		
	1	1	1		1	2	1

3x3 and 4x4 smoothing filter masks

Smoothing Filters

Smoothing applied at different levels

Smoothing Filters

Hubble image

Smoothing applied

Thresholded

Band Pass and High Pass Filtering

0	1	0	1	1	1
1	-4	1	1	-8	1
0	1	0	1	1	1
0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	0	-1	-1	-1

Sample (Laplacian) filter masks

Image Sharpening by Filtering

North pole of the moon

Laplacian image

Sharpened image

a b c d

FIGURE 3.39 1-D illustration of the mechanics of unsharp masking.
(a) Original signal. (b) Blurred signal with original shown dashed for reference. (c) Unsharp mask. (d) Sharpened signal, obtained by adding (c) to (a).

DIP-XE DIP-XE DIP-XE DIP-XE

a b

С

d

6

FIGURE 3.40

- (a) Original image.
- (b) Result of blurring with a Gaussian filter.
- (c) Unsharp mask. (d) Result of using unsharp masking.
- (e) Result of using highboost filtering.

Derivative Filters

$egin{array}{c ccccccccccccccccccccccccccccccccccc$	z_1	z_2	z_3
z ₇ z ₈ z ₉	z_4	z_5	z_6
	z_7	z_8	z_9

-1	0	0	-1
0	1	1	0

-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

Roberts operators

Sobel operators

Derivative Filters

Original image

Sobel gradient

Cascade Filtering

Original image; Laplacian; Sharpened; Sobel gradient

Sobel gradient and smoothing; mask image; sharpened image; power law transformed image

FIGURE 3.58
Fuzzy rules for boundary detection.

FIGURE 3.59 (a) CT scan of a human head. (b) Result of fuzzy spatial filtering using the membership functions in Fig. 3.57 and the rules in Fig. 3.58. (c) Result after intensity scaling. The thin black picture borders in (b) and (c) were added for clarity; they are not part of the data. (Original image courtesy of Dr. David R. Pickens, Vanderbilt University.)