Cosine Similarity based TopoMap

Angle dependent Data Reduction Algorithm

Modifications

Cosine Similarity and Tree based hull alignment

- Uses Cosine Similarity Matrix instead of conventional Euclidian Distance Matrix.
- Implements tree based hull alignment method (custom) instead of Convex Hull Alignment.
- Encompasses the contact point in the component with linear placement along the y-axis.

Spanning Tree Algorithm

Based on Cosine Similarity

```
Vnew[] = {x}
Enew[] = {}
while Vnew is not equal to V
    u -> a node from Vnew
    v -> a node that is not in Vnew such that
        edge u-v has the angle between them
    add v to Vnew
    add edge (u, v) to Enew
end while
Return Vnew and Enew
```

Hull Alignment Algorithm Uses Custom tree-based Algorithm

Hull Alignment Algorithm Comparison

Result Comparison (Iris)

Comparison between Euclidian and Cosine Similarity

Euclidian Distance Matrix based Result

Cosine Similarity Matrix based Result

Result Comparison (Wine)

Comparison between Euclidian and Cosine Similarity

Cosine Similarity Matrix based Result

Result Comparison (Breast Cancer)

Comparison between Euclidian and Cosine Similarity

Euclidian Distance Matrix based Result

Cosine Similarity Matrix based Result

Conclusion Based on Results

- TopoMap using Cosine Similarity was able to preserve the relation between points more clearly than euclidian distance matrixes.
- The hull alignment algorithm was clearly able to provide the relation of a points with its complete cluster.
- More clear separation between the points and their respective clusters.
- Increase time efficiency with increase computation complexity and minimized computation processing time.