§ 10.3 自感 互感

- 一. 自感现象 自感系数 自感电动势
 - 1. 自感现象

线圈电流变化 I = I(t)

- \Rightarrow 穿过自身磁通变化 $\Phi_m(t)$
- 在线圈中产生感应电动势

$$\varepsilon = -\frac{\mathrm{d}\Phi_m}{\mathrm{d}t}$$

—自感电动势遵从法拉第定律

二. 互感

线圈1中的电流变化 引起线圈 2 的磁通变化 线圈 2 中产生感应电动势 根据毕 — 萨定律

穿过线圈 2 的磁通量正比于 线圈1 中电流 I

$$\Psi_{21} = M_{21}I_1$$

 $|Y_{21} = M_{21}I_1|$ M_{21} 是回路1 对回路2 的互感系数

• 互感电动势
$$\varepsilon_{21} = -\frac{d(M_{21}I_1)}{dt} = -M_{21}\frac{dI_1}{dt} - I_1\frac{dM_{21}}{dt}$$

若回路周围不存在铁磁质 且两线圈结构、相对位置 及其周围介质分布不变时

$$\varepsilon_{21} = -M_{21} \frac{\mathrm{d}I_1}{\mathrm{d}t}$$
 同理
$$\varepsilon_{12} = -M_{12} \frac{\mathrm{d}I_2}{\mathrm{d}t}$$

🕂 讨论

- (1) 可以证明: $M_{21} = M_{12} = M$
- (2) 互感反映了线圈本身的电磁性质。 M仅与两回路本身形状、大小、两者相对位置及所处 介质有关,若回路周围不存在铁磁质,M与电流I无关。
- (3) 线圈之间的连接
 - 线圈的顺接 (磁场相互加强)

$$\Psi_1 = L_1I + MI$$
 $\Psi_2 = L_2I + MI$
$$\varepsilon_1 = -L_1 \frac{\mathrm{d}I}{\mathrm{d}t} - M \frac{\mathrm{d}I}{\mathrm{d}t}$$
 $\varepsilon_2 = -L_2 \frac{\mathrm{d}I}{\mathrm{d}t} - M \frac{\mathrm{d}I}{\mathrm{d}t}$
$$\varepsilon = \varepsilon_1 + \varepsilon_2 = -(L_1 + L_2 + 2M) \frac{\mathrm{d}I}{\mathrm{d}t} = -L \frac{\mathrm{d}I}{\mathrm{d}t}$$
 线圈顺接的等效总自感 $L = L_1 + L_2 + 2M$

●线圈的反接(磁场相互消弱)

$$\Psi_1 = L_1 I - MI$$
 $\Psi_2 = L_2 I - MI$

$$\varepsilon_1 = -L_1 \frac{\mathrm{d}I}{\mathrm{d}t} + M \frac{\mathrm{d}I}{\mathrm{d}t}$$
 $\varepsilon_2 = -L_2 \frac{\mathrm{d}I}{\mathrm{d}t} + M \frac{\mathrm{d}I}{\mathrm{d}t}$

$$\varepsilon = \varepsilon_1 + \varepsilon_2 = -(L_1 + L_2 - 2M) \frac{dI}{dt} = -L \frac{dI}{dt}$$

线圈反接的等效总自感 $L = L_1 + L_2 - 2M$

$$L = L_1 + L_2 - 2M$$

(4) 互感系数的计算

$$M_{21} = M_{12} = M$$

$$M_{21} = \frac{\Psi_{21}}{I_1}$$

$$M_{12} = \frac{\Psi_{12}}{I_2}$$

例 计算共轴的两个长直螺线管之间的互感系数

设两个螺线管的半径、长度、

匝数为 $R_1, R_2, l_1, l_2, N_1, N_2$

$$l_1 = l_2 = l, R_1 > R_2$$

解 设直螺线管1通有工

$$P_{1} = \frac{\mu_{0} N_{1} I_{1}}{l}$$

$$P_{21} = N_{2} B_{1} \pi R_{2}^{2}$$

$$= \frac{\mu_{0} N_{1} N_{2}}{l} \pi R_{2}^{2} I_{1}$$

$$M_{21} = \frac{\mu_{0} N_{1} N_{2}}{l} \pi R_{2}^{2}$$

同理设直螺线管2通有电流 /___

$$B_{2} = \frac{\mu_{0} N_{2} I_{2}}{l}$$

$$\Psi_{12} = N_{1} B_{2} \pi R_{2}^{2}$$

$$M_{12} = \frac{\mu_{0} N_{1} N_{2}}{l} \pi R_{2}^{2}$$

$$M_{12} = M_{21} = M$$

例 一无限长导线通有电流 $I = I_0 \sin \omega t$ 现有一矩形线框与长直导线共面。(如图所示)

求 互感系数和互感电动势

$$\mathbf{M} = \frac{\mu_0 I}{2\pi r}$$

穿过线框的磁通量

$$\Phi_m = \int_{a/2}^{3a/2} B dS = \frac{\mu_0 Ia}{2\pi} \ln 3$$

互感系数
$$M = \frac{\Phi_m}{I} = \frac{\mu_0 a}{2\pi} \ln 3$$

互感电动势
$$\varepsilon = -M \frac{dI}{dt} = -\frac{\mu_0 a}{2\pi} \ln 3I_0 \alpha \cos \omega t$$

例 在相距为 2a 的两根无限长平行导线之间,有一半径为 a 的导体圆环与两者相切并绝缘。

求 互感系数

解
$$M_{12} = M_{21} = M$$

设电流 $I \longrightarrow B = \frac{\mu_0 I}{2\pi} \left(\frac{1}{a+r} + \frac{1}{a-r} \right)$

$$\Phi_m = \int_S \vec{B} \cdot d\vec{S} = \int_S B dS$$

$$= \int_{-a}^a \frac{\mu_0 I}{2\pi} \left(\frac{1}{a+r} + \frac{1}{a-r} \right) 2\sqrt{a^2 - r^2} dr$$

$$= 2\mu_0 I a$$

$$M = \frac{\Phi_m}{I} = 2\mu_0 a$$

§ 10.4 磁场能量

一. 磁能的来源

▶ 结论: 在原通有电流的线圈中存在能量 —— 磁能

电源克服自感电动势作功转化为磁能储存在线圈中

• 自感磁能的计算

在t 时刻,回路电流i(t),感应电动势 ε_L ,则电源在dt时间内克服自感电动势 ε_L 所作的元功为: $dA = -\varepsilon_L i dt$

电流由0—I过程中 电源所作的总功为:

$$A = \int dA = \int_0^I Lidi = \frac{1}{2}LI^2$$

$$A = \left| \frac{1}{2} LI^2 = W_m \right| \qquad \text{(自感磁能公式)}$$

┿ 讨论

(1) 在电流消失过程中自感电动势作功

$$dA = \varepsilon_L i dt = -L \frac{di}{dt} i dt = -L i di$$

$$A = \int dA = \int_I^0 -L i di = \frac{1}{2} L I^2 = W_m$$

(2) 与电容储能比较

$$W_m = \frac{1}{2}LI^2 \longleftrightarrow W_e = \frac{1}{2}CU^2$$

自感线圈也是一个储能元件,自感系数反映线圈储能的本领

二. 磁能的分布

• 以无限长直螺线管为例

$$B = \mu_0 \mu_r nI$$

$$L = \frac{N\Phi_m}{I} = \frac{N\mu_0\mu_r nI\underline{S} \cdot l}{I \cdot l} = \mu_0\mu_r n^2 V$$

磁能
$$W_m = \frac{1}{2}LI^2 = \frac{1}{2}\mu n^2 VI^2 = \frac{1}{2}\mu n^2 V \frac{B^2}{\mu^2 n^2} = \frac{B^2}{2\mu} V$$

$$W_m = \frac{BH}{2}V$$

$$w_m = \frac{W_m}{V} = \frac{BH}{2}$$

$$w_m = \frac{BH}{2} = \frac{B^2}{2\mu} = \frac{\mu H^2}{2}$$

说明

上式不仅适用于无限长直螺线管中的均匀磁场,也适用于非均匀磁场,磁能密度一般是空间和时间的函数

• 在有限区域内

$$W_m = \int_V w_m dV = \int_V \frac{1}{2} BH dV$$

积分遍及磁场 存在的空间

- 计算磁场能量的两个基本点
- (1) 求磁场分布 \longrightarrow \vec{B} , \vec{H} \longrightarrow 建立磁场能量密度
- (2) 定体积元 $dV \longrightarrow$ 遍及磁场存在的空间积分

 $\boxed{\mathbf{M}}$ 一由 N 匝线圈绕成的螺绕环,通有电流 \boxed{I} ,其中充有均匀 磁介质

解 根据安培环路定理, 螺绕环内

$$H = \frac{NI}{2\pi r} \iff B = \frac{\mu_0 \mu_r NI}{2\pi r}$$

$$w_m = \frac{1}{2}BH = \frac{1}{2}\frac{\mu_0 \mu_r N^2 I^2}{4\pi^2 r^2}$$

取体积元 $dV = 2\pi rhdr$

$$W_{m} = \int_{V} w_{m} dV = \int_{R_{1}}^{R_{2}} \frac{\mu_{0} \mu_{r} N^{2} I^{2}}{8\pi^{2} r^{2}} 2\pi r h dr = \frac{\mu_{0} \mu_{r} N^{2} I^{2} h}{4\pi} \ln \left(\frac{R_{2}}{R_{1}}\right)$$

例:一同轴电缆,由两个无限长的同轴圆筒状导体组成, 沿内外筒流动的电流大小相同,方向相反,设内外圆 筒截面半径为R₁、R₂

求:长为!的一段电缆内的磁能。

解: 磁场在空间的分布

$$r < R_1$$
 $B_1 = 0$ $R_1 < r < R_2$ $B_2 = \frac{\mu_0 I}{2\pi r}$ $R_1 < R_2$ $R_2 = 0$

磁场集中在二圆之间,磁能密度为:

$$w_m = \frac{B^2}{2\mu_0} = \frac{\mu_0 I^2}{8\pi^2 r^2}$$

取一体积元 $dV = 2\pi r l dr$

$$dW_{m} = w_{m}dV = \frac{\mu_{0}I^{2}}{8\pi^{2}r^{2}} \cdot 2\pi r l dr = \frac{\mu_{0}I^{2}}{4\pi r} l dr$$

$$W_{m} = \int dW_{m} = \int_{R_{1}}^{R_{2}} \frac{\mu_{0}I^{2}}{4\pi r} l dr = \frac{\mu_{0}I^{2}}{4\pi} l \ln \frac{R_{2}}{R_{1}}$$

又总磁能:
$$W_m = \frac{1}{2}LI^2$$

可求得长度为l 的一段自感系数 $L = \frac{\mu_0 l}{2\pi} \ln \frac{R_2}{R_1}$

> 互感

$$M_{21} = M_{12} = M$$

$$M_{21} = \frac{\Psi_{21}}{I_1}$$

$$M_{12} = \frac{\Psi_{12}}{I_2}$$

$$\varepsilon_{21} = -M_{21} \frac{\mathrm{d}I_1}{\mathrm{d}t}$$

$$\varepsilon_{12} = -M_{12} \frac{\mathrm{d}I_2}{\mathrm{d}t}$$

> 磁场能量

$$W_m = \frac{1}{2}LI^2$$

$$w_m = \frac{BH}{2} = \frac{B^2}{2\mu} = \frac{\mu H^2}{2}$$

$$W_m = \int_V w_m \mathrm{d}V$$

例 两个同心线圈半径分别为a、b(a<<b),起初共面,大线圈保持不动并通有恒定电流 I_2 ,小线圈电阻为R,当小线圈绕直径以 ω 转动,忽略自感。 I_2

- 求 1 两线圈互感系数
 - 2小线圈的电流
 - 3大线圈的感应电动势
- 解 1)设小线圈为线圈1,大线圈为线圈2 线圈2在圆心处产生的磁场 $B_2 = \frac{\mu_0 I_2}{2b}$ 通过小线圈的磁通量

$$\Phi_{12} = \vec{B}_2 \cdot \vec{S}_1 = B_2 S_1 \cos \theta = \frac{\mu_0 I_2}{2b} \pi a^2 \cos \omega t$$

$$M = \frac{\Phi_{12}}{I_2} = \frac{\mu_0 \pi a^2}{2b} \cos \omega t$$

2)小线圈感应电动势 $\varepsilon_1 = -\frac{\mathrm{d}\Phi_{12}}{\mathrm{d}t} = \frac{\mu_0 I_2 \pi a^2 \omega}{2b}$.

$$I_1 = \frac{\varepsilon_1}{R} = \frac{\mu_0 I_2 \pi a^2 \omega}{2bR} \sin \omega t$$

3)小线圈的电流 I_2 产生的磁场穿过线圈2的磁通量为

$$\Phi_{21} = MI_1$$

$$\varepsilon_2 = -\frac{\mathrm{d}\Phi_{21}}{\mathrm{d}t} = -\left(\frac{\mu_0 \pi a^2 \omega}{2b}\right)^2 \frac{I_2}{R} \cos 2\omega t$$