3

6

We claim:

1	1.	A method	of forwarding	a packet to a	destination	comprising:
---	----	----------	---------------	---------------	-------------	-------------

- 2 examining a header of said packet to determine a private destination address;
- determining a private address of a private remote sub-endpoint of a tunnel,
- 4 said private sub-endpoint being associated with said private destination
- 5 address;
 - determining a public address of a public remote sub-endpoint of said tunnel;

encapsulating said packet, resulting in an encapsulated packet, to indicate a public address of a public local sub-endpoint of said tunnel as a source address and said public address of said public remote sub-endpoint of said tunnel as a destination address; and

forwarding said encapsulated packet to a node in a carrier network.

- 2. The method of claim 1 wherein said tunnel is a point to multipoint tunnel.
- 3. The method of claim 1 wherein said determining said private address of said first remote sub-endpoint of said tunnel comprises consulting a routing table to discover an address associated with said private destination address of said packet.
- 1 4. The method of claim 6 wherein said determining said public address of said
- 2 second remote sub-endpoint of said tunnel comprises consulting a static address
- 3 resolution protocol table to discover an address associated with said private address
- 4 of said first remote sub-endpoint of said tunnel.
- 1 5. The method of claim 1 further comprising determining a private address of a first
- 2 local sub-endpoint of said tunnel.
- 1 6. The method of claim 5 wherein said determining said private address of said first
- 2 local sub-endpoint of said tunnel comprises consulting a forwarding table to discover
- 3 an address associated with said private address of said first remote sub-endpoint of
- 4 said tunnel.

1	7. A carrier router comprising:			
2	a backbone router including:			
3	a public network interface for connecting to a public data network; and			
4 5	a sub-endpoint for a tunnel having a network address in an address space of said public data network; and			
6	a customer virtual router including:			
7	a private network interface for connecting to a private data network;			
	a sub-endpoint for said tunnel having a network address in an address space of said private data network.			
14 71	8. A carrier router comprising:			
	a private network interface;			
13	a public network interface;			
4	a processor operable to:			
5	receive a packet at said private network interface;			
6 7	examine a header of said packet to determine a private destination address;			
8	determine a private address of a private remote sub-endpoint of a			
9 10	tunnel, said private sub-endpoint being associated with said private destination address;			
11	determine a public address of a public remote sub-endpoint of said			
12	tunnel;			

13	encapsulate said packet, resulting in an encapsulated packet, to				
14	indicate a public address of a public local sub-endpoint of said tunnel				
15	as a source address and said public address of said public remote sub-				
16	endpoint of said tunnel as a destination address; and				
17	forward said encapsulated packet to a node in a public network via said				
18	public network interface.				
1	9. A computer readable medium containing computer-executable instructions which				
2	when performed by a processor in a carrier router, cause the processor to:				
	examine a header of said packet to determine a private destination address;				
4	determine a private address of a private remote sub-endpoint of a tunnel, said				
5	private sub-endpoint being associated with said private destination address;				
	determine a public address of a public remote sub-endpoint of said tunnel;				
7	encapsulate said packet, resulting in an encapsulated packet, to indicate a				
8	public address of a public local sub-endpoint of said tunnel as a source				
9	address and said public address of said public remote sub-endpoint of said				
10	tunnel as a destination address; and				
11	forward said encapsulated packet to a node in a carrier network.				
1	10.A method of receiving a packet, said packet having public source and destination				
2	addresses and private source and destination addresses, said method comprising:				
3	receiving said packet from a node in a carrier data network;				
4	forwarding said packet to a first tunnel sub-endpoint having said public				
5	destination address;				
6	at said first tunnel sub-endpoint, removing said public source and destination				
7	addresses from said packet;				
8	forwarding said packet to a second tunnel sub-endpoint; and				

3

said given carrier router.

9 at said second tunnel sub-endpoint, forwarding said packet to a device having 10 said private destination address. 1 11. A computer readable medium containing computer-executable instructions which, when performed by a processor in a carrier router, cause the processor to: 2 3 receive said packet from a node in a carrier data network; 4 forward said packet to a first tunnel sub-endpoint having said public 5 destination address: at said first tunnel sub-endpoint, remove said public source and destination addresses from said packet; forward said packet to a second tunnel sub-endpoint; and at said second tunnel sub-endpoint, forward said packet to a device having said private destination address. 12. A method of adding a given carrier router to a virtual private network, said virtual private network described by a plurality of tunnel definitions, each of said tunnel definitions defining tunnels between sub-endpoints of existing carrier routers, said method comprising: adding a public network address of a sub-endpoint of said given carrier router as a destination address in each of said plurality of tunnel definitions to create a plurality of amended tunnel definitions; and adding a new tunnel definition where said public network address for said sub-endpoint of said given carrier router is a source address in said new tunnel definition and public network addresses for said sub-endpoints of said existing carrier routers are destination addresses in said new tunnel definition. 13. The method of claim 12 further comprising distributing said plurality of amended 1 tunnel definitions and said new tunnel definition to said existing carrier routers and 2

- 1 14. The method of claim 13, where said sub-endpoint of said given carrier router is a
- 2 first sub-endpoint and said given carrier router has a second sub-endpoint with a
- 3 private network address, said method further comprising adding an association of
- 4 said private network address of said second sub-endpoint to said public network
- 5 address of said first sub-endpoint to an existing Address Resolution Protocol table to
- 6 give rise to an amended Address Resolution Protocol table.
- 1 15. The method of claim 14 further comprising distributing said amended Address
- 2 Resolution Protocol table to said existing carrier routers and said given carrier router.
 - 16. A computer readable medium containing computer-executable instructions which, when performed by a processor in a network management console, cause the processor to:

add a public network address of a sub-endpoint of a given carrier router as a destination address in each of a plurality of tunnel definitions to create a plurality of amended tunnel definitions; and

add a new tunnel definition where a public network address for a sub-endpoint of said given carrier router is a source address in said new tunnel definition and public network addresses for sub-endpoints of said existing carrier routers are destination addresses in said new tunnel definition.