**Is GDP(Gross Domestic Product) of a country a direct contributer to the climate change?

**I have used two data sources for builing my pipeline:

source1: GDP Data of countries(World Bank IBRD-IDA) url: https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?end=2022&start=2021&view=chart) licence:CC-BY 4.0 https://datacatalog.worldbank.org/public-licenses#cc-by) (https://datacatalog.worldbank.org/public-licenses#cc-by)

source2: Surface temperature data of countries(GlobalDataLab) url: https://globaldatalab.org/geos/download/surfacetempyear/ (https://globaldatalab.org/geos/download/surfacetempyear/)

Firstly we make the necessary imports

```
In [1]: import pandas as pd
import sqlite3
```

we read the CSV file using Pandas as pandas has numerous features to clean and transform our data.

```
In [2]: df1 = pd.read_csv(
    r"C:\Users\YUGAL\Downloads\API_NY.GDP.MKTP.CD_DS2_en_csv_v2_584499\API_NY.GDP.MKTP.CD_DS2_en_csv_v2_584499.csv",
    sep=',',
    skiprows=4,
    error_bad_lines=False,
    low_memory=False
)
```

In [3]: df1.head() # To get a rough picture of the data we are dealing with

Out[3]:

:	Country	Country	Indicator								
	Country Name	Country Code	Name	Indicator Code	1960	1961	1962	1963	1964	1965	 2015
-) Aruba	ABW	GDP (current US\$)	NY.GDP.MKTP.CD	NaN	NaN	NaN	NaN	NaN	NaN	 2.962907e+09
•	Africa Eastern and Southern	AFE	GDP (current US\$)	NY.GDP.MKTP.CD	1.847810e+10	1.936631e+10	2.050647e+10	2.224273e+10	2.429433e+10	2.661956e+10	 9.325135e+11
:	2 Afghanistan	AFG	GDP (current US\$)	NY.GDP.MKTP.CD	5.377778e+08	5.488889e+08	5.466667e+08	7.511112e+08	8.000000e+08	1.006667e+09	 1.913422e+10
;	Africa Western and Central	AFW	GDP (current US\$)	NY.GDP.MKTP.CD	1.041165e+10	1.113592e+10	1.195171e+10	1.268581e+10	1.384900e+10	1.487476e+10	 7.692632e+11
	1 Angola	AGO	GDP (current US\$)	NY.GDP.MKTP.CD	NaN	NaN	NaN	NaN	NaN	NaN	 9.049642e+10

5 rows × 69 columns

**Currently let us target at the data from the years (2002-2022) and we only need the "Country Name" column and get rid of the other columns.

```
In [4]: year_range = range(2002,2023)
    years = [str(i) for i in year_range]
    cat_cols = ['Country Name']
    cols_to_keep = cat_cols + years
    gdp_data = df1[cols_to_keep]
```

```
In [6]: print(set(gdp_data['Country Name'].unique()))
```

('Affrica Eastern and Southern', 'Monaco', 'Fragile and conflict affected situations', 'Central Europe and the Baltics', 'Suda and,' Cayama Islands', 'El Salvadoro', 'South Africa', 'Slovenia', 'Lithuania', 'Zimbabue', 'Brunei Darussalam', 'French Polyme sia', 'Gabon', "Cote d'Ivoire", 'Indonesia', 'Least developed countries: UN classification', 'Euro area', 'Brazil', 'Armeni a', 'Vanuatu', 'Latin America & Caribbean (excluding high income)', 'Botswana', 'Ecuador', 'Djibouti', 'Early-demographic dividend', 'Gibraltar', 'Serbia', 'Lao PDR", 'North America', 'San Marino', 'Figil', 'Nepal', 'Central Africa Republic', 'Hondur as', 'IDA only', 'Gambia, The', 'Switzerland', 'Guinea', 'Middle East & North Africa (excluding high income)', 'Paraguay', 'C roatia', 'West Bank and Gaza', 'Europe & Central Asia (IDA & IBRD countries)', 'Zambia', 'Angola', 'Chile', 'Nauru', 'Arab World', 'Guyana', 'Ghana', 'East Asia & Pacific (excluding high income)', 'Liechtenstein', 'Mozambique', 'East Asia & Pacific (IDA & IBRD countries)', 'Zambia', 'Angola', 'Ghile', 'Nauru', 'Arab World', 'Guyana', 'Ghana', 'Unada', 'Spain', 'Bulgaria', 'Singapore', 'Madagascar', 'Panama', 'Peru', 'St. Martin (French par tly', 'Tajikistan', 'Belize', 'Curacao', 'Mali', 'Pacific island small states', 'Bermuda', 'Solomo Islands', 'Bahrain', 'Not classified', 'Turkmenistan', 'New Caledonia', 'St. Kitts and Nevis', 'Latin America & the Caribbean (IDA & IBRD countries)', 'Ukraine', 'Namibia', 'St. Lucia', 'Puerto Rico', 'Greenland', 'Upper middle income', 'Papua New Guinea', 'Late-demographic dividend', 'Macao SAR, China', 'IDA blend', 'Estonia', 'Angentina', 'Tanzania', 'Sierra Leone', 'Uruguay', 'Lower middle income', 'Liberia', 'Austria', 'Maldives', 'Luxembourg', 'Comgo, Dem. Rep.', 'Burkina Faso', 'Small states', 'Algeria', 'Tuvalu', 'Finland', 'Myanmar', 'Portugal', 'France', 'IBRD only', 'Somalia', 'East Asia & Pacific', 'Cuba', 'Norway', 'Senegal', France e Islands', 'Slowak Republic', 'Tsle of Man', 'Sub-Saharan Africa (IDA & IBRD countries)', 'Eg

**selcting 5 European countries for our study

```
In [7]: countries_to_study = ['Germany','Ireland','Poland','Greece','Italy']
gdp_filtered = gdp_data[gdp_data['Country Name'].isin(countries_to_study)]
```

In [8]: gdp_filtered.head()

Out[8]:

	Country Name	2002	2003	2004	2005	2006	2007	2008	2009	2010	 1
55	Germany	2.078485e+12	2.501640e+12	2.814354e+12	2.846864e+12	2.994704e+12	3.425578e+12	3.745264e+12	3.411261e+12	3.399668e+12	 3.733805
89	Greece	1.545642e+11	2.023701e+11	2.409636e+11	2.478754e+11	2.735467e+11	3.189028e+11	3.559087e+11	3.313085e+11	2.971250e+11	 2.389077
111	Ireland	1.285960e+11	1.646708e+11	1.943721e+11	2.118770e+11	2.321806e+11	2.700793e+11	2.754475e+11	2.364431e+11	2.219136e+11	 2.381125
116	Italy	1.276769e+12	1.577622e+12	1.806543e+12	1.858217e+12	1.949552e+12	2.213102e+12	2.408655e+12	2.199929e+12	2.136100e+12	 2.141924
190	Poland	1.990704e+11	2.178287e+11	2.551073e+11	3.061459e+11	3.446267e+11	4.290208e+11	5.335998e+11	4.397316e+11	4.756966e+11	 5.157620

5 rows × 22 columns

4

In [9]: df2 = pd.read_csv(r"C:\Users\YUGAL\Downloads\GDL-Yearly-Average-Surface-Temperature-(ºC)-data.csv")

^{**}Read the surface temperature data from the second dataset source

In [10]: df2.head() # Rough picture of the data																					
Out[10]: Country Continent ISO_Code Level GDLCODE Region 1990 1991											1991	199	2 19	93	2013	2014	2015	2016	2017	2018	20
	0 Af	ghanistan	Asia/Paci	ic	AFG	National	AFC	Gt .	Total	9.466	8.369	8.20	3 8.7	'54	9.752	9.400	9.999	11.000	10.730	10.910	10.0
	1 Af	ghanistan	Asia/Paci	īc	AFG	Subnat	AFGr10)1 k	Central (Kabul Vardak Kapisa Logar Parwan Panj	5.755	4.302	4.22	8 5.0)13	5.216	5.403	5.920	7.382	6.887	7.200	5.7
	2 Af	ghanistan	Asia/Paci	īc	AFG	Subnat	AFGr10	12 High (Ba	Central hlands amyan ikundi)	4.144	3.013	2.81	9 3.5	501	4.200	3.920	4.462	5.528	5.369	5.909	4.3
	3 Af	ghanistan	Asia/Paci	īc	AFG	Subnat	AFGr10	3 Lag	East garhar Kunar ghman ristan)	8.965	7.778	7.69	6 8.3	362	8.808	8.618	8.942	10.320	10.090	9.796	9.1
	4 Af	ghanistan	Asia/Paci	īc	AFG	Subnat	AFGr10	Sar Ja	North angan r-e-Pul Balkh awzjan aryab)	11.460	10.840	10.56	0 10.6	660	12.070	11.520	12.330	12.910	12.660	12.750	12.6
	5 rows	s × 39 col	umns																		
	4																				•
In [11]:	df2 =	df2.dro	opna()#	dropp	oina al	LL the	missina	values													
	Selecting the range of years for which we intend to conduct our study(data should match with the earlier dataframes from other sources) and selecting which columns to keep from the whole DataFrame.													hich							
	cat_c	= [stro ols = [' to_keep data = c	Country cat_c	','Lev ols +	vel'] years	ange j															
	Selec	ting the co	ountries v	/e inten	d to stu	ıdy(shou	ld match	with the	other o	latafran	nes)										
In [13]:	untrie mp_fil	es_to_st ltered =	udy = [temp_da	'German ata[ten	ny','I mp_dat	reland' a['Cour	,'Poland	d','Gre sin(cou	ece', untrie	'Italy s_to_s	'] tudy) {	k (te	mp_da	ta[' <mark>L</mark>	evel']=	=="Natio	onal")]	.drop(column	s=['Le	vel'
	1																				•
In [14]:	temp_	filtered	d.head()																		
Out[14]:		Country	2002	2003	2004	2005	2006	2007	2008	2009	2010		2013	2014	2015	2016	2017	2018	2019	2020	202 ⁻
	933	Germany		9.541	9.181	9.307	9.864		9.780	9.458	8.055				10.140			10.680			9.396
	962	Greece	15.530	15.420	15.380	15.120	15.100	15.980 <i>′</i>	15.980	15.890	16.350	1	6.250	16.160	15.860	16.190	15.850	16.490	16.35	16.24	16.220
	1171	Ireland	10.100	10.140	10.050	10.200	10.280	10.460	9.726	9.693	8.707		9.707	10.230	9.609	9.903	10.220	10.050	10.09	10.04	10.250
	1182	Italy	12.490	12.640	12.120	11.560	12.300	12.700	12.570	12.570	11.880	1	2.390	13.040	13.090	12.870	12.810	13.160	13.06	13.04	12.730
	1812	Poland	9.201	8.363	8.378	8.353	8.750	9.407	9.472	8.624	7.567		8.550	9.731	9.864	9.272	9.006	9.905	10.33	10.03	8.664

with this we are done with the data cleaning and preprocesing.

5 rows × 22 columns