Sangwon Lee

Last updated: Sep 10, 2023

Professional, Data Analysis PJT, Analytical Sciences Center, LG Chem

LG Science Park, Seoul, Republic of Korea

Isw91.main@gmail.com | (+82) 10-2291-6467 | GitHub | Google Scholar

Education

Korea Advanced Institute of Science and Technology (Daejeon, Korea)

Postdoctoral Researcher in Applied Science Research Institute (Apr. 2021)

Ph.D. in Chemical and Biomolecular Engineering (Feb. 2020)

Dissertation: Nanoporous Materials Discovery for Energy and Environmental Applications using Machine Learning (Advisor: Jihan Kim)

University of Seoul (Seoul, Korea)

M.S. in Chemical Engineering (Feb. 2016)

Thesis: Prediction of chemical potential and phase transition of molecular crystals using Monte Carlo simulations (Advisor: Jaeeon Chang)

B.S. in Chemical Engineering (Feb. 2014)

Research interests

- · Materials informatics
- · Machine learning
- · Bayesian inference
- · Energy management system
- · Molecular simulations
- · Analytical chemistry
- · Software engineering
- · Numerical analysis

Publications

First and co-first author papers

^{*}The number of citations is obtained by scraping Google Scholar

Title	Citations	Year
(Contributed Equally) Inverse design of porous materials using artificial neural networks, B Kim, S Lee, J Kim, Science advances 6 (1), eaax9324, 2020	219	2020
User-friendly graphical user interface software for ideal adsorbed solution theory calculations, S Lee, JH Lee, J Kim, <i>Korean Journal of Chemical Engineering 35</i> , 214-221, 2018	81	2018
Computational screening of trillions of metal–organic frameworks for high- performance methane storage, S Lee, B Kim, H Cho et al., ACS Applied Materials & Interfaces 13 (20), 23647-23654, 2021	67	2021
Predicting performance limits of methane gas storage in zeolites with an artificial neural network, S Lee, B Kim, J Kim, <i>Journal of Materials Chemistry A 7 (6)</i> , 2709-2716, 2019	40	2019
(Contributed Equally) Computational Analysis of Linker Defective Metal–Organic Frameworks for Membrane Separation Applications, H Kim, S Lee, J Kim, Langmuir 35 (11), 3917-3924, 2019	9	2019
(Contributed Equally) Machine learning-based discovery of molecules, crystals, and composites: A perspective review, S Lee, H Byun, M Cheon, J Kim, JH Lee, Korean Journal of Chemical Engineering, 1-12, 2021	5	2021
(Contributed Equally) Performance Evaluation of Deep Learning Architectures for Load and Temperature Forecasting under Dataset Size Constraints and Seasonality, W Choi, S Lee, <i>Energy and Buildings</i> , 113027, 2023	2	2023
Chemical potential and solid-solid equilibrium of near-spherical Lennard-Jones dumbbell crystal, S Lee, M Kim, J Chang, <i>Korean Journal of Chemical Engineering</i> 33, 1047-1058, 2016	1	2016
(Contributed Equally) Interpretable deep learning model for load and temperature forecasting: Depending on encoding length, models may be cheating on wrong answers, W Choi, S Lee, <i>Energy and Buildings</i> , 113410, 2023		2023

Other papers

Title	Citations	Year
Applications of machine learning in metal-organic frameworks, S Chong, S Lee, B Kim, J Kim, Coordination Chemistry Reviews 423, 213487, 2020	99	2020
Finding hidden signals in chemical sensors using deep learning, SY Cho, Y Lee, S Lee et al., <i>Analytical chemistry</i> 92 (9), 6529-6537, 2020	35	2020
Size-Matching Ligand Insertion in MOF-74 for Enhanced CO2 Capture under Humid Conditions, BL Suh, S Lee, J Kim, <i>The Journal of Physical Chemistry C</i> 121 (44), 24444-24451, 2017	32	2017
Finely tuned inverse design of metal–organic frameworks with user-desired Xe/Kr selectivity, Y Lim, J Park, S Lee, J Kim, <i>Journal of Materials Chemistry A</i> 9 (37), 21175-21183, 2021	17	2021

Title	Citations	Year
New model for S-shaped isotherm data and its application to process modeling using IAST, S Ga, S Lee, G Park, J Kim, M Realff, JH Lee, <i>Chemical Engineering Journal 420, 127580, 2021</i>	11	2021
Computational design of metal–organic frameworks with unprecedented high hydrogen working capacity and high synthesizability, J Park, Y Lim, S Lee, J Kim, Chemistry of Materials 35 (1), 9-16, 2022	10	2022
Isotherm parameter library and evaluation software for CO2 capture adsorbents, S Ga, S Lee, J Kim, JH Lee, Computers & Chemical Engineering 143, 107105, 2020	10	2020
Deep learning-based initial guess for minimum energy path calculations, H Park, S Lee, J Kim, <i>Korean Journal of Chemical Engineering 38, 406-410, 2021</i>	1	2021
Real-time probabilistic backfill thermal property estimation method enabling estimation convergence judgment, W Choi, S Lee, BH Dinh, YS Kim, Case Studies in Thermal Engineering 48, 103108, 2023		2023
Automatic Object Extraction from Electronic Documents Using Deep Neural Network, H Jang, Y Chae, S Lee, J Jo, KIPS Transactions on Software and Data Engineering 7 (11), 411-418, 2018		2018

Projects

LG Chem

Predicting oxidation states and coordination numbers from XANES using deep learning (2021, with LG AI Research)

- · Contributions: designed deep learning architecture, developed knowledge transfer method
- Patent application submitted

Building MLOps infrastructure for instance sementation models (2021-2022)

• Contributions: designed infrastructure architecture, established the infrastructure

Developmenet of a segmentation tool using segment anything model (2023)

• Contributions: worked on back-end development

Estimation of length dimension of carbon nanotubes in SEM images (2023)

• Contributions: developed a length estimation algorithm, worked on back-end development

Monocrystalinity analysis of cathodes from EBSD using machine learning (2022-2023)

- Contributions: developed the theory of monocrystallinity, designed deep learning models, worked on back-end development
- · Patent application submitted

Tortousity estimation of bettery separators using Monte Carlo simaultions (2022)

· Contributions: developed a tortuosity calculation algorithm, created a 3D visualization tool

Predicting biodegradation of polymers using kinetics and Bayesian inference (2022-2023)

• Contributions: developed a kinetics model for polymer biodegradation, designed a Bayesian inference model, contributed to back-end development

EBSD orientation analysis for lithium-ion path in cathodes (2022)

• Contributions: developed the theory, contributed to back-end development

Determination of the diffusion coefficient of lithum in separators (2023)

· Contributions: developed the theory for the diffusion model

Orientation analysis of glass fibers in the engineering plastics (2021)

· Contributions: developed deep learning model

Classification of crystal phases in cathodes from 4D-STEM data (2023)

• Contributions: developed a diffraction pattern classification algorithm

Softwares & Libraries

DeepTimeSeries (Python, PyTorch)

GitHub Repository

A deep learning library designed for time series forecasting, built on the PyTorch framework

PORMAKE (Python)

GitHub Repository

A Python library for the construction of porous materials using topology and building blocks

IAST++ (C++)

GitHub Repository

User-friendly software for ideal adsorbed solution theory calculations

GRIDAY (C++)

GitHub Repository

An energy shape calculator for the porous materials

PC-SAFT (Fortran)

GitHub Repository

A software tool that facilitates the calculation of chemical equilibrium using perturbed chain statistical associating fluid theory

MonteCarloSimulator (Fortran)

GitHub Repository

A molecular Monte Carlo simulator employed for free energy calculations of molecules in both fluid and solid states

dartwork-mpl (Python, Matplotlib)

GitHub Repository

A Matplotlib styling and utility package crafted for the creation of publication-ready figures

LabeledImage (Python)

(private, LG Chem)

A library designed for managing labeled images, specifically tailored for instance segmentations. This library includes tools for format conversion, patch detection aggregation, and image augmentation.

Deep learning architectures

MOF-NET (Tensorflow)

GitHub Repository

GitHub Repository (Graph-network version)

A deep neural network engineered for predicting MOF (Metal-Organic Framework) properties based on topology and building blocks

ZeoGAN (Tensorflow)

GitHub Repository

A generative adversarial network (GAN) designed for the inverse design of zeolites

ESGAN (Tensorflow)

GitHub Repository

A generative adversarial network (GAN) created for generating energy shapes of porous materials

XANES-Net (PyTorch)

(private, LG Chem, with LG AI Research)

An architecture developed for predicting oxidation states and coordination numbers from XANES data, leveraging knowledge transfer from crystal structures

Skills

oo: Proficiently usable

ooo: Usable at an expert level

Programming languages

- C/C++ 000
- Python ooo
- Fortran ooo
- Mathematica ooo
- Javascript o
- Rust o

Machine learning

- PyTorch ooo
- Tensorflow ooo
- PyTorch Lightning ooo
- PyTorch Geometric o
- Detectron2 oo
- MMDetection oo
- scikit-learn oo
- XGBoost o
- JAX 00
- Darts oo

Bayesian inference

- PyMC ooo
- Pyro o

Data visualization

- Matplotlib ooo
- Seaborn oo
- Plotly oo
- Bokeh o
- d3.js o

Version control

- Git **oo**
- GitHub oo

CI/CD

• Github Actions oo

Package and project management

- Poetry & Pyenv ooo
- Conda oo

Unit test

• pytest oo

Data structure & numerical analysis

- Pandas ooo
- Xarray oo
- NumPy ooo
- SciPy ooo

GUI programming

• Qt, PySide6 ooo

Symbolic computation

- Mathematica ooo
- SymPy oo

Computer vision

- OpenCV ooo
- scikit-image ooo

3D visualization

- PyVista ooo
- OpenGL (GLSL) o
- Panda3D oo

Containerization

- Docker oo
- Docker compose oo

Back-end & ML serving

- FastAPI oo
- MLflow models oo

Documentation

- Sphinx oo
- LaTeX oo

MLOps

- MLflow ooo
- Tensorboard o

Reverse proxy

• Traefik oo

Configuration management

• Hydra oo

Operating system

• Linux (Ubuntu, CentOS) oo

Molecular simulations

- PyMatGen ooo
- ASE 000
- LAMMPS ooo
- VASP o
- PySCF o

Database

• SQLite o

Presentations

Oral presentations

- Construction of MOF Structures from Topology and Building Blocks, 2019 KIChE Fall Meeting and International Symposium
- Evaluating Performance Limits of Methane Storage Separations of Porous Materials Using Artificial Neural Network, IUMRS-ICEM 2018

Posters

- IAST++: Software for Ideal Adsorbed Solution Theory (IAST) Calculations with User-friendly Interface, 2017 KIChE Fall Meeting and International Symposium
- Sensitivity Analysis of CO2 Capture Materials in Post-combustion Flue Gas, ChemIndix 2016
- Order-disorder transition and free energy of the crystal of Lennard-Jones diatomics, 2014 KIChE Fall Meeting

Awards

Gold Prize (2nd), Engineering Mathematics Competition, University of Seoul, Nov. 2012