Контрольная работа 1-05

Вариант 10 (решения)

За разговоры с соседом -3 балла за каждый разговор.

1. (14 баллов) Рассмотрим однопроцессорную вычислительную систему с объемом оперативной памяти 200 Мb, в которой используется схема организации памяти с динамическими (переменными) разделами. Для долгосрочного планирования процессов в ней применен алгоритм SJF. В систему поступают пять заданий с различной длительностью и различным объемом занимаемой памяти по следующей схеме:

Номер за- дания	Момент поступления в очередь за- даний	Время исполнения (CPU burst)	Объем занимаемой памяти
1	0	3	80 Mb
2	2	4	50 Mb
3	3	5	60 Mb
4	4	2	80 Mb
5	5	1	10 Mb

Вычислите среднее время между стартом задания и его завершением (turnaround time) и среднее время ожидания (waiting time) для следующих комбинаций алгоритмов краткосрочного планирования и стратегий размещения процессов в памяти:

- a) RR (Round Robin) и first fit (первый подходящий);
- b) RR и best fit (наиболее подходящий);
- c) FCFS (First Come First Served) и first fit;
- d) FCFS и best fit.

При вычислениях считать, что процессы не совершают операций ввода-вывода, величину кванта времени принять равной 1. Временами переключения контекста, рождения процессов и работы алгоритмов планирования пренебречь. Освобождение памяти, занятой процессами, происходит немедленно по истечении их СРU burst. Краткосрочное планирование осуществляется после рождения новых процессов в текущий момент времени. Для алгоритма RR принять, что родившиеся процессы добавляются в САМЫЙ конец очереди готовых процессов (ПОСЛЕ процесса, перешедшего в состояние готовность из состояния исполнение в это время).

Решение:

а. Рассмотрим выполнение процессов в системе для алгоритма RR и стратегии first fit. По вертикали в таблице отложены номера процессов, по горизонтали — промежутки времени. Столбец 0 соответствует временному интервалу от 0 до 1. Буква И означает состояние исполнения, буква Г — состояние готовности, буква О — ожидание в очереди заданий. Под таблицей приведено распределение памяти, а еще ниже — содержимое очереди заданий.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	И	И	И												
2			Γ	И	Γ	И	Γ	Γ	И	Γ	И				
3				Γ	И	Γ	И	Γ	Γ	И	Γ	И	Γ	И	
4					О	О	О	О	О	О	О	Γ	И	Γ	И
5						Γ	Γ	И							

80 Pı	80 P ₁	80 Pı	60 P ₃	60										
0011	0011	0011	20	20	10 P ₅	10 P ₅	10 P ₅	20	20	20				
			20	20	10	10	10	20	20	20				
		50 P ₂	80 P ₄	80 P ₄	80 P ₄	80 P ₄								
120	120													
		70	70	70	70	70	70	70	70	70	60	60	60	60

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
				P ₄										

Среднее время между стартом задания и его завершением: t = (3 + 9 + 11 + 11 + 3)/5 = 7.4. Среднее время ожидания: t = (0 + 5 + 6 + 9 + 2)/5 = 4.4.

b. Рассмотрим выполнение процессов в системе для алгоритма RR и стратегии best fit.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	И	И	И												
2			Γ	И	Γ	И	Γ	Γ	Γ	И	Γ	Γ	И		
3				Γ	И	Γ	Γ	И	Γ	Γ	Γ	И	Γ	И	И
4					Γ	Γ	И	Γ	Γ	Γ	И				
5						Γ	Γ	Γ	И						

80 P ₁	80 P ₁	80 P ₁	80	80 P ₄	80	80	130	130						
		50 P ₂												
120	120	70	60 P ₃											
			10	10	10 P ₅	10 P ₅	10 P ₅	10 P ₅	10	10	10	10	10	10

1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

Среднее время между стартом задания и его завершением: tt = (3 + 11 + 12 + 7 + 4)/5 = 7.4. Среднее время ожидания: wt = (0 + 7 + 7 + 5 + 3)/5 = 4.4.

с. Рассмотрим выполнение процессов в системе для алгоритма FCFS и стратегии first fit.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	И	И	И												
2			Γ	И	И	И	И								
3				Γ	Γ	Γ	Γ	И	И	И	И	И			
4					О	О	О	Γ	Γ	Γ	Γ	Γ	Γ	И	И
5						Γ	Γ	Γ	Γ	Γ	Γ	Γ	И		

80 P ₁	80 P ₁	80 P ₁	60 P ₃	60	60	70								
			20	20	10 P ₅									
			20	20	10	10								
		50 P ₂	80 P ₄											
120	120	70	70	70	70	70								
		70	10	,0	,0	,0	50	50	50	50	50	50	50	50

\uparrow	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
					P ₄	P ₄	P ₄								

Среднее время между стартом задания и его завершением: tt = (3 + 5 + 9 + 11 + 8)/5 = 7.2. Среднее время ожидания: wt = (0 + 1 + 4 + 9 + 7)/5 = 4.2.

d. Рассмотрим выполнение процессов в системе для алгоритма FCFS и стратегии best fit.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	И	И	И												
2			Γ	И	И	И	И								
3				Γ	Γ	Γ	Γ	И	И	И	И	И			
4					Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	И	И	
5						Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	И

80 P ₁	80 P ₁	80 P ₁	80	80 P ₄						
		50 P ₂	50	50	50	50	50			190
120	120	70	60 P ₃	110	110					
			10	10	10 P ₅					

1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

Среднее время между стартом задания и его завершением: tt = (3 + 5 + 9 + 10 + 10)/5 = 7.4. Среднее время ожидания: wt = (0 + 1 + 4 + 8 + 9)/5 = 4.4.

<u>Оценка:</u>

За каждый алгоритм со стратегией — по 3 балла. Если времена нахождения в очереди заданий включены в подсчет времен — еще 2 балла на всю задачу

2. (12 баллов) В диком каннибальском племени вокруг котла с пищей спят дикари и повар. Изначально в котле находится N порций мяса. Дикари по очереди просыпаются, берут из котла порцию мяса, съедают его и засыпают снова. Дикарь, не обнаруживший мяса в котле, будит повара. Повар находит добычу и снова готовит N порций, не подпуская никого к котлу во время приготовления, после чего тоже засыпает. Используя семафоры Дейкстры и разделяемые переменные, постройте корректную модель происходящего, описав поведение каждого из дикарей и повара с помощью отдельных процессов.

Решение:

Заводим 2 семафора lock_cauldron (для ограничения доступа к котлу) и need_eat (для активизации повара) и разделяемую переменную Nportion (для количества порций в котле).

Semaphore lock_cauldron = 1, need_eat = 0; Shared int Nportion = N;

```
Для дикарей
                                                         Для повара
While(1){
                                                         While(1){
  P(lock cauldron);
                                                            P(need eat);
  if(Nportion == 0)
                                                            Найти добычу и приготовить еду;
     {Разбудить повара; V(need_eat);}
                                                            Nportion = N;
                                                            V(lock_cauldron);
     Взять порцию; Nportion--;
                                                            Лечь спать;
     V(lock_cauldron); Съесть порцию; Поспать;
                                                         }
}
```

Оценка:

Грубые ошибки: нет взаимоисключения, тупиковые ситуации, убитые за попытку взять пищу не вовремя дикари — -8 баллов, средней тяжести: циклы ожидания, прохождение дикарями критических участков без совершения разумных действий — -4 балла. Полный балл только за полностью правильный ответ.

3. (6 баллов) В вычислительной системе с сегментно-страничной организацией памяти и 32-х битовым адресом максимальный размер сегмента составляет 4 Мb, а размер страницы памяти 512 Кb. Для некоторого процесса в этой системе таблица сегментов имеет вид:

Номер сегмента	Длина сегмента				
0	0x180000				
1	0x080000				

Таблицы страниц, находящихся в памяти, для сегментов 0 и 1 приведены ниже:

Сегмент 0 Номер страницы Номер кадра (десятичный) 0 18

COMENTI					
Номер страницы	Номер кадра (десятичный)				
0	32				
1	63				

Cornegum 1

Каким физическим адресам соответствуют логические адреса: 0x000f0236, 0x00470111, 0x00502005?

Решение:

 $4 \,\mathrm{Mb}$ — это 2^{22} байт, т.е. под номер сегмента в логическом адресе отводится $10 \,\mathrm{бит}$, а $22 \,\mathrm{битa}$ — под смещение внутри сегмента. Размер страницы $512 \,\mathrm{Kb}$ — это $2^{19} \,\mathrm{байт}$, т.е. из смещения внутри сегмента $19 \,\mathrm{бит}$ отводится под смещение внутри страницы, а $3 \,\mathrm{битa}$ — под номер страницы.

```
0x000f0236 —> сегмент 0, смещение 0x0f0236 —> сегмент 0, страница 1, смещение 0x00070236 —> error, 0x00470111 —> сегмент 1, смещение 0x070111 —> сегмент 1, страница 0, смещение 0x00070236 —> кадр 32, смещение 0x00070236 —> 0x01070236.
```

0x00502005 —> сегмент 1, смещение 0x102005 —> смещение больше размера сегмента —> error.

Оиенка:

По 2 балла за адрес:

- 4. (6 баллов) Ответьте на следующие вопросы
 - а) Для чего в мониторах Хора применяются условные переменные? Можно ли придумать задачу на взаимодействие процессов, которая решалась бы с помощью мониторов Хора без использования условных переменных?
 - b) В чем заключается разница между процессом и нитями исполнения (thread'ами), реализованными на уровне ядра OC?

Решение:

- а) Условные переменные в мониторах Хора, как правило, применяются для взаимной синхронизации процессов, требующейся для обеспечения правильной очередности их доступа к разделяемым ресурсам. Задачу, для решения которой можно обойтись мониторами Хора без использования условных переменных придумать очень легко. Это может быть, например, задача «подсчет количества запусков программ» из семинара 6-7.
- b) В системах, поддерживающих нити исполнения на уровне ядра, thread'ы представляют собой единицы исполнения, а процессы — единицы выделения ресурсов. Процесс представляется как совокупность взаимодействующих нитей и выделенных ему ресурсов. Нити процесса разделяют его программный код, глобальные переменные и системные ресурсы, но каждая нить имеет свой собственный программный счетчик, свое содержимое регистров и свой собственный стек. Планирование использования процессора происходит в терминах нитей, а управление памятью и другими системными ресурсами остается в терминах процессов.

Оценка:

За каждый пункт предполагается по 3 балла.