Winstat

Tutorial para análise de regressão polinomial

Prof. Amauri de Almeida Machado

Exemplo

- Experimento: Efeito do espaçamento de plantio de batatinha sobre a produção de tubérculos
- Fatores
 - •Bloco: fator de unidade, 6 níveis, efeitos aleatórios
 - •Espaçamento: fator experimental quantitativo, 4 níveis, efeitos fixos. Os níveis foram: 0,10; 0,20; 0,30 e 0,40 m dentro da linha (entre linhas o espaçamento foi 1 m, fixo)

•Resposta: Produção de tubérculos de batatinha, em t/ha

Espasamento	Bloco					
Espaçamento	1	2	3	4	5	6
0,10m x 1m	9.8	13.9	15.1	16.0	17.5	18.5
0,20m x 1m	15.8	15.1	15.6	18.4	17.7	19.9
0,30m x 1m	14.8	16.8	18.6	17.6	21.6	22.9
0,40m x 1m	15.5	18.3	17.8	18.1	18.8	20.7

Análise

2. Acesse Análise, Modelos Lineares

4. Defina o modelo

3. Defina opções relativas ao conjunto de dados

Conjunto: Exemplo2_5	
Variáveis:	
Bloco	
Espacamento Producao	

Análise (cont)

5. Definição do quadro da análise e outras opções

Você pode ter
acesso ao quadro
da análise antes de
encerrar a definição
dos procedimentos
de discriminação

Você pode ter
Insere os gráficos na análise.
Observe que também serão
geradas janelas separadas com
os gráficos dos polinômios

Forma final das opções

Regressão Polino	mial		✓ Gráficos	
Fator	Grupo	Variância	Grau Máximo	Adjcionar
ESPACAMENTO			3	<u>E</u> ditar
				<u>R</u> emover
Quadro da Análise		< <u>V</u> oltar	Finalizar <u>C</u> ancelar	? <u>Aj</u> uda

6. Diálogo para definições da análise

Escolha o fator quantitativo para análise

Marque variáveis de grupo se você desejar analisar subgrupos de médias. Não é o caso deste exemplo.

Grau máximo para ajuste do polinômio. O grau máximo é o número de graus de liberdade da fonte de variação

Variância associada para o teste dos componentes ortogonais. Não indicar nada equivale indicar RESIDUO

Resultados da análise

Quadro da análise. Rejeitamos a hipótese de igualdade entre as médias de Espacamento

Fontes	GL	sQ	QM	F	Valor_p	Sig
BLOCO	5	103.22333	20.64467			
ESPACAMENTO	3	45.343333	15.11444	10.109	0.0006818	1%
RESIDUO	15	22.426667	1.495111			
TOTAL	23	170.99333		*		

Medias: Valores dos níveis, médias e médias estimadas

Medias	Espac1	Espac2	Espac3	Espac4
ESPACAMENTO	0.1	0.2	0.3	0.4
Observadas	15.133333	17.083333	18.716667	18.2
nObs	6	6	6	6

Para 4 níveis e k=1, os coeficientes são: -3, -1, 1 e 3. O teste para os efeitos polinomiais são realizados de maneira análoga aos contrastes ortogonais (a diferença é que, neste caso, temos contrastes ortogonais especiais). Assim

$$\hat{\theta}_1 = -3 \times 15.1333 - 1 \times 17.0833 + 1 \times 18.71667 + 3 \times 18.2 = 10.833$$

$$q^{(\theta_1)} = \frac{6 \times (10.833)^2}{20} = 35.208 \qquad f^{(\theta_1)} = \frac{35.208}{1.4951} = 23.55$$
$$p^{(\theta_1)} = 0.0002109 \qquad \qquad r_1^2 = \frac{35.208}{45.343} \times 100 = 77.65\%$$

Teste F para os componentes polinomiais ortogonais

Fontes	GL	sQ	F	Prob_p	Sig	R2
ESPACAMENTO	3	45.343333	7.0	•		
Linear	1	35.208333	23.54897	0.0002109	1%	77.65
Quadr	1	9.1266667	6.10434	0.02596	5%	97.78
Cúbico	1	1.0083333	0.6744203	0.4244	NS	100
Resíduo	15	22.426667	*			

$$\theta_k = p_{k1}\mu_1 + p_{k2}\mu_2 + p_{k3}\mu_3 + p_{k4}\mu_4$$

p representa os coeficientes dos componentes polinomiais ortogonais, obtidos especialmente para essa finalidade. O índice k representa o grau do polinômio: k=1, efeito linear; k=2, efeito quadrático; k=3, efeito cúbico (máximo para este exemplo). Assim, para k=1 o contraste entre as médias expressa o efeito linear; para k=2 o efeito quadrático e assim por diante.

Com esses resultados podemos concluir que:

- Os efeitos linear e quadrático são significativos, se tomarmos 5% como taxa máxima para o erro do tipo I (os valores p respectivos são 0.0002109 e 0.02596);
- Somente o efeito linear explica 77.65% da variação das médias de Espacamento. O percentual de explicação sobe para 97.78% se incluirmos o termo quadrático.

Resultados da análise (cont)

Regressão Polinomial Para ESPACAMENTO

Variável Resposta: Producao

InfTeste: Informações Para o Teste

InfTeste	Variancia	GLib	OrdMax
Valor	1.49511111	15	3

Médias estimadas pela polinômio de grau 2 e as diferenças com as médias observadas para cada Espacamento Pelos resultados da análise, a equação mais adequada parece ser a do polinômio de grau 2

Modelo: Coeficientes dos modelos polinomiais

Modelo	X_0	X_1	X_2	X_3
Média	17.283333	0	0	0
Linear	14.575	10.833333	0	0
Quadrático	11.491667	41.666667	-61.666667	0
Cúbico	14.7	-9.3611111	167.5	805.55556

A tabela a seguir mostra as médias observadas para cada Espacamento, as respectivas médias estimadas pelas equações e as diferenças entre elas (falta de ajuste)

Medias: Valores dos níveis, médias e médias estimadas

Medias	Espac1	Espac2	Espac3	Espac4
ESPACAMENTO	0.1	0.2	0.3	0.4
Observadas	15.133333	17.083333	18.716667	18.2
nObs	6	6	6	6
Linear	15.658333	16.741667	17.825	18.908333
Desvio Linear	-0.525	0.34166667	0.89166667	-0.70833333
Quadr	15.041667	17.358333	18.441667	18.291667
Desvio Quadr	0.091666667	-0.275	0.275	-0.09166666