Sets, Relations and Languages

Lin Chen

Email: Lin.Chen@ttu.edu

- A set is an unordered collection of objects
- $\bullet S = \{a, b, c\}$
 - a, b, c are elements or members of the set S

- A set is an unordered collection of objects
- $\bullet S = \{a, b, c\}$
 - a, b, c are elements or members of the set S

An abstraction of an object, can be numbers, points, lines, graphs, vectors, matrices...

- A set is an unordered collection of objects
- $\bullet S = \{a, b, c\}$
 - a, b, c are elements or members of the set S
- {red, blue, red} = {red, blue}
- {red, blue} = {blue, red}

- A set is an unordered collection of objects
- $\bullet S = \{a, b, c\}$
 - a, b, c are elements or members of the set S
- {red, blue, red} = {red, blue}
- {red, blue} = {blue, red}
- Element may also be a set: {red, {red}} ≠ {red}

- A set is an unordered collection of objects
- $\bullet S = \{a, b, c\}$
 - a, b, c are elements or members of the set S
- {red, blue, red} = {red, blue}
- {red, blue} = {blue, red}
- Element may also be a set: {red, {red}} ≠ {red}
- Empty set: {} or Ø
- {{}} is **not** empty

Sets – Cardinality

- Cardinality of a set is the number of elements in the set
- $|\{a,b,c\}| = 3$ $|\{\text{red, blue}\}| = 2$ $|\{\{a,b\},c\}| = 2$

Sets – Cardinality

- Cardinality of a set is the number of elements in the set
- $|\{a,b,c\}| = 3$ $|\{\text{red, blue}\}| = 2$ $|\{\{a,b\},c\}| = 2$
- $|\{\}| = 0$

Sets – Singleton

• Set with one element is called Singleton

```
|\{\text{red}\}| = 1
|\{a\}| = 1
```

Sets – Singleton

• Set with one element is called Singleton

```
|\{\text{red}\}|=1
|\{a\}|=1
```

• $|\{\{\}\}| = 1$

Sets – Membership

- Element a contained in a set $S = \{a, b, c\}$: $a \in S$
 - $-3 \in \{1,3,5\}$
 - $a \notin \{b, c, d\}$
 - $-a \in \{a, \{b, c\}\}\$
 - $-b \notin \{a, \{b, c\}\}$

Sets – Describing

- Different ways of writing a set
 - List all members: $S = \{a, b, c\}, S = \{2,3,4,5...\}$
 - $S = \{x : x \text{ has a certain property}\}$
 - $S = \{x \mid x \text{ has a certain property}\}$
 - $S = \{x : x \in N \text{ and } x < 10\}$
 - $S = \{x : x \text{ is prime }\}$

Sets – Subset

- A is a subset of B, denoted as $A \subseteq B$ if:
 - Any element of A is also an element of B
 - Any (\forall) $x \in A$ implies (\Rightarrow) $x \in B$
 - If $x \in A$, then $x \in B$

Sets – Subset

- A is a subset of B, denoted as $A \subseteq B$ if:
 - Any element of A is also an element of B
 - Any (\forall) $x \in A$ implies (\Rightarrow) $x \in B$
 - If $x \in A$, then $x \in B$
- A is a proper subset of B, denoted as $A \subset B$ if:
 - $A \subseteq B$ and B contains at least one element not in A

Sets – Subset (examples)

- A is a subset of B:
 - $-\{a,b,c\} \subseteq \{a,b,c,d\}$
 - $-\{1,3,5,7,...\}\subseteq\{1,2,3,4,5,...\}$
 - $\emptyset \subseteq A$ for any set A
 - $-A \subseteq A$
- *A* is a proper subset of *B*:
 - $- \{a, b, c\} \subset \{a, b, c, d\}$
 - $-\{1,3,5,7,...\} \subset \{1,2,3,4,5,...\}$
 - $\emptyset \subset A$ for any set $A \neq \emptyset$
 - $-A \not\subset A$

Sets – Operations

Union

- $-A \cup B = \{x : x \in A \text{ or } x \in B\}$
- $\{1,3,9\} \cup \{3,5,7\} = \{1,3,5,7,9\}$
- {red, blue} U {red, {red, blue}} = {red, blue, {red, blue}}

Sets – Operations

Union

- $-A \cup B = \{x : x \in A \text{ or } x \in B\}$
- $-\{1,3,9\} \cup \{3,5,7\} = \{1,3,5,7,9\}$
- {red, blue} U {red, {red, blue}} = {red, blue, {red, blue}}
- Intersection
 - $-A \cap B = \{x : x \in A \text{ and } x \in B\}$
 - $-\{1,3,9\} \cap \{3,5,7\} = \{3\}$
 - {red, blue} ∩ {red, {red, blue}} = {red}
 - {red, blue} ∩ {{red, blue}} = {}

Sets – Operations

Difference

- $-A B = \{x : x \in A \text{ and } x \notin B\}$
- $-\{1,3,9\} \{3,5,7\} = \{1,9\}$
- $\{\text{red}, \text{blue}\}\$ $\{\text{red}, \text{fred}, \text{blue}\}\}\$ = $\{\text{blue}\}\$

Sets – Power Set

- Power set: Set of all subsets
 - $-2^S = \{x : x \subseteq S\}$
 - $-2^{\{a,b\}} = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}\$
 - $-2^{\emptyset} = \{\emptyset\}$
 - $-|2^{S}|=2^{|S|}$

Sets – Partition

- Π is a partition of S if:
 - $-\Pi \subseteq 2^S$
 - Ø ∉ Π
 - $-A \cap B = \emptyset$ for any $A, B \in \Pi, A \neq B$
 - $\cup \Pi = S$

Sets – Partition

- Π is a partition of S if:
 - $-\Pi \subseteq 2^S$
 - Ø ∉ Π
 - $-A \cap B = \emptyset$ for any $A, B \in \Pi, A \neq B$
 - $\cup \Pi = S$
- $\{\{a\}, \{b\}, \{c\}\}\$ is a partition of $\{a, b, c\}$

• Q: For two arbitrary sets A, B, show $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

- Q: For two arbitrary sets A, B, show $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
- What does it mean by X = Y?
- Any element of X is also an element of Y, and every element of Y is also an element of X.

- Q: For two arbitrary sets A, B, show $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
- What does it mean by X = Y?
- Any element of *X* is also an element of *Y*, and every element of *Y* is also an element of *X*.
 - Equivalently, $X \subseteq Y$ and $Y \subseteq X$.

- Q: For two arbitrary sets A, B, show $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
- We first show: $(A \cap B) \cup C \subseteq (A \cup C) \cap (B \cup C)$
 - We aim to show any $x \in (A \cap B) \cup C$, $x \in (A \cup C) \cap (B \cup C)$

- Q: For two arbitrary sets A, B, show $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
- We first show: $(A \cap B) \cup C \subseteq (A \cup C) \cap (B \cup C)$
 - We aim to show any $x \in (A \cap B) \cup C$, $x \in (A \cup C) \cap (B \cup C)$
- By definition of Union, $x \in (A \cap B) \cup C$ means $x \in (A \cap B)$ or $x \in C$

- Q: For two arbitrary sets A, B, show $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
- We first show: $(A \cap B) \cup C \subseteq (A \cup C) \cap (B \cup C)$
 - We aim to show any $x \in (A \cap B) \cup C$, $x \in (A \cup C) \cap (B \cup C)$
- By definition of Union, $x \in (A \cap B) \cup C$ means $x \in (A \cap B)$ or $x \in C$
 - Thus, we aim to show
 - i) $x \in (A \cap B)$, then $x \in (A \cup C) \cap (B \cup C)$, and
 - ii) $x \in C$, then $x \in (A \cup C) \cap (B \cup C)$

- Q: For two arbitrary sets A, B, show $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
- We first show: $(A \cap B) \cup C \subseteq (A \cup C) \cap (B \cup C)$
 - We aim to show any $x \in (A \cap B) \cup C$, $x \in (A \cup C) \cap (B \cup C)$
 - By definition of Union, $x \in (A \cap B) \cup C$ means $x \in (A \cap B)$ or $x \in C$
 - Thus, we aim to show
 - i) $x \in (A \cap B)$, then $x \in (A \cup C) \cap (B \cup C)$, and
 - 1. If $x \in (A \cap B)$, then by definition of intersection, $x \in A$ and $x \in B$;

- Q: For two arbitrary sets A, B, show $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
- We first show: $(A \cap B) \cup C \subseteq (A \cup C) \cap (B \cup C)$
 - We aim to show any $x \in (A \cap B) \cup C$, $x \in (A \cup C) \cap (B \cup C)$
 - By definition of Union, $x \in (A \cap B) \cup C$ means $x \in (A \cap B)$ or $x \in C$
 - Thus, we aim to show
 - i) $x \in (A \cap B)$, then $x \in (A \cup C) \cap (B \cup C)$, and
 - 1. If $x \in (A \cap B)$, then by definition of intersection, $x \in A$ and $x \in B$;
 - 2. Because $x \in A$, $x \in (A \cup C)$ (by the definition of union)

- Q: For two arbitrary sets A, B, show $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
- We first show: $(A \cap B) \cup C \subseteq (A \cup C) \cap (B \cup C)$
 - We aim to show any $x \in (A \cap B) \cup C$, $x \in (A \cup C) \cap (B \cup C)$
 - By definition of Union, $x \in (A \cap B) \cup C$ means $x \in (A \cap B)$ or $x \in C$
 - Thus, we aim to show
 - i) $x \in (A \cap B)$, then $x \in (A \cup C) \cap (B \cup C)$, and
 - 1. If $x \in (A \cap B)$, then by definition of intersection, $x \in A$ and $x \in B$;
 - 2. Because $x \in A$, $x \in (A \cup C)$ (by the definition of union)
 - 3. Because $x \in B$, $x \in (B \cup C)$

- Q: For two arbitrary sets A, B, show $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
- We first show: $(A \cap B) \cup C \subseteq (A \cup C) \cap (B \cup C)$
 - We aim to show any $x \in (A \cap B) \cup C$, $x \in (A \cup C) \cap (B \cup C)$
 - By definition of Union, $x \in (A \cap B) \cup C$ means $x \in (A \cap B)$ or $x \in C$
 - Thus, we aim to show
 - i) $x \in (A \cap B)$, then $x \in (A \cup C) \cap (B \cup C)$, and
 - 1. If $x \in (A \cap B)$, then by definition of intersection, $x \in A$ and $x \in B$;
 - 2. Because $x \in A$, $x \in (A \cup C)$ (by the definition of union)
 - 3. Because $x \in B$, $x \in (B \cup C)$
 - 4. Hence, $x \in (A \cup C) \cap (B \cup C)$ (by the definition of intersection)

- Q: For two arbitrary sets A, B, show $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
- We first show: $(A \cap B) \cup C \subseteq (A \cup C) \cap (B \cup C)$
 - We aim to show any $x \in (A \cap B) \cup C$, $x \in (A \cup C) \cap (B \cup C)$
 - By definition of Union, $x \in (A \cap B) \cup C$ means $x \in (A \cap B)$ or $x \in C$
 - Thus, we aim to show
 - ii) $x \in C$, then $x \in (A \cup C) \cap (B \cup C)$
 - 1. Because $x \in C$, $x \in (A \cup C)$ (why?)
 - 2. Because $x \in C$, then $x \in (B \cup C)$ (why?)
 - 3. Because $x \in (A \cup C)$ and $x \in (B \cup C)$, $x \in (A \cup C) \cap (B \cup C)$ (why?)

- Q: For two arbitrary sets A, B, show $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
- We first show: $(A \cap B) \cup C \subseteq (A \cup C) \cap (B \cup C)$

$$x \in (A \cap B) \cup C$$
, then $x \in (A \cup C) \cap (B \cup C)$

 $x \in (A \cap B)$ or $x \in C$, then $x \in (A \cup C) \cap (B \cup C)$

- i) $x \in (A \cap B)$, then $x \in (A \cup C) \cap (B \cup C)$, and
- ii) $x \in C$, then $x \in (A \cup C) \cap (B \cup C)$

Summarize and rewrite in the logic flow

- Q: For two arbitrary sets A, B, show $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
- We next show: $(A \cup C) \cap (B \cup C) \subseteq (A \cap B) \cup C$

Homework