MATH 223: Linear Algebra

McGill University

Instructor: Prof. Jeremy Macdonald Notes by: C. A.

Condensed Notes July 1, 2025

The Similarity Transform (Theorem 68)

Contents

1	Complex Numbers		
	1.1	Basics of \mathbb{C}	
	1.2	Polar Form and Equation	
2	Vector Spaces		
	2.1	Vector Space Axioms	
	2.2	Linear Combinations and Subspaces	
	2.3	Linear Independence and Dependence	
	2.4	Basis and Dimension	
	2.5	Subspaces	
	2.6	Lagrange Interpolation	
3	Linear Transformations		
	3.1	Definition and Basic Properties	
	3.2	Kernel and Image	
	3.3	Injective, Surjective	
	3.4	Isomorphism and Coordinates	
	3.5	Matrix of a Linear Transformation	
	3.6	Change of Basis	
4	Inner Product Spaces 1		
	4.1	Definition and Main Examples	
	4.2	Norm and Angle	
	4.3	Orthogonal Sets and Complements	
	4.4	Orthogonal Projection and Gram-Schmidt Algorithm	
	4.5	Inner Product Defined by a Matrix	
5	Eigenvalues and Diagonalization		
	5.1	Eigenvalues and Eigenvectors	
	5.2	Diagonalization	
	5.3	Diagonalizability	
	5.4	Orthogonal Diagonalization	
		Singular Value Decomposition	

1 Complex Numbers

1.1 Basics of \mathbb{C}

Definition 1 (Field of Complex Numbers).

The field of complex numbers, \mathbb{C} , consists of all expressions of the form

$$a + bi$$
,

where $a, b \in \mathbb{R}$ and i is a symbol satisfying $i^2 = -1$.

Definition 2 (Addition and Multiplication).

Let $z = a_1 + b_1 i$ and $\omega = a_2 + b_2 i$. Define

$$z+\omega = (a_1+a_2)+(b_1+b_2)i,$$
 $z\omega = (a_1+b_1i)(a_2+b_2i) = (a_1a_2-b_1b_2)+(a_1b_2+a_2b_1)i.$

Definition 3 (Conjugate and Modulus).

For z = a + bi,

$$\overline{z} = a - bi$$
 (complex conjugate), $|z| = \sqrt{a^2 + b^2}$ (absolute value or modulus).

Proposition 4.

If $z = a + b i \neq 0$ (i.e. $z \neq 0 + 0i$), then the number

$$z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}i$$

is called the (multiplicative) inverse of z and satisfies

$$z z^{-1} = 1 = z^{-1} z.$$

Definition 5 (Division).

For $z, \omega \in \mathbb{C}$ with $\omega \neq 0$, define

$$\frac{z}{\omega} = z \omega^{-1}$$
.

Proposition 6.

Let $z, w \in \mathbb{C}$.

1.
$$\overline{z+w} = \overline{z} + \overline{w}$$
.

$$2. \ \overline{zw} = \overline{z}\overline{w}.$$

3.
$$\overline{\overline{z}} = z$$
.

4.
$$z\overline{z} = |z|^2$$
.

5.
$$z \in \mathbb{R} \iff \overline{z} = z$$
.

1.2 Polar Form and Equation

Definition 7 (Complex Exponential Function).

In the complex plane, $e^{i\theta}$ is the unique number of modulus 1 and argument θ . Equivalently,

$$e^{i\theta} = \cos\theta + i\sin\theta$$
,

(Euler's formula).

Theorem 8 (Fundamental Theorem of Algebra).

Let

$$p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0,$$

where $a_i \in \mathbb{C}$. Then p(z) factors into linear factors:

$$p(z) = a_n (z - r_1) (z - r_2) \cdots (z - r_n),$$

where each $r_i \in \mathbb{C}$ (the r_i may repeat).

2 Vector Spaces

2.1 Vector Space Axioms

Definition 9 (Field).

A field is a set F equipped with two operations + and \cdot such that:

- (F, +) is an abelian group.
- $(F \setminus \{0\}, \cdot)$ is an abelian group.
- Multiplication distributes over addition: for all $a, b, c \in F$,

$$a(b+c) = ab + ac, \qquad (a+b)c = ac + bc.$$

Examples include $\mathbb{Q}, \mathbb{R}, \mathbb{C}$. \mathbb{Z} is not a field since, e.g., $\frac{2}{3} \notin \mathbb{Z}$.

Definition 10 (Vector Space).

Let F be a field and V a set. A vector space over F is a pair (V,+) together with a scalar multiplication $F \times V \to V$ satisfying the following eight axioms for all $u, v, w \in V$ and $a, b \in F$:

- 1. u + v = v + u.
- 2. (u+v)+w=u+(v+w).
- 3. There exists $0 \in V$ with u + 0 = 0 + u = u.
- 4. For each u there is -u with u + (-u) = (-u) + u = 0.

- $5. \ a(u+v) = au + av.$
- 6. (a + b) u = au + bu.
- 7. a(bu) = (ab)u.
- 8. 1u = u, where 1 is the multiplicative identity in F.

Proposition 11 (Basic Vector Space Properties).

Let V be a vector space over a field F.

- 1. For all $u, v, w \in V$, if u + w = v + w then u = v.
- 2. The zero vector $\vec{0}$ in V is unique.
- 3. For each $u \in V$, its additive inverse -u is unique.
- 4. For all $u \in V$, $0u = \vec{0}$.
- 5. For all $c \in F$, $c\vec{0} = \vec{0}$.
- 6. For all $c \in F$ and $u \in V$, (-c)u = c(-u) = -(cu).

2.2 Linear Combinations and Subspaces

Definition 12 (Linear Combination).

Given vectors $u_1, u_2, \ldots, u_m \in V$ and scalars $c_1, \ldots, c_m \in F$, any vector of the form

$$c_1 u_1 + c_2 u_2 + \cdots + c_m u_m$$

is called a linear combination of u_1, \ldots, u_m .

Definition 13 (Span).

Let $S = \{u_1, u_2, \dots, u_m\} \subseteq V$. The span of S is

$$span(S) = \{ c_1u_1 + c_2u_2 + \dots + c_mu_m \mid c_i \in F \}.$$

If $S = \emptyset$, we define $\operatorname{span}(\emptyset) = \{0\}$.

Proposition 14.

If $A, B \in M_{m \times n}(F)$ and B is obtained from A by elementary row operations (EROs), then

$$row(A) = row(B).$$

Proposition 15 (Facts About Spans).

Let $S \subseteq V$. Then:

1. For all $u, w \in \text{span}(S)$, $u + w \in \text{span}(S)$ (closure under addition).

- 2. For all $u \in \text{span}(S)$ and $c \in F$, $cu \in \text{span}(S)$ (closure under scalar multiplication).
- $\vec{\partial} \cdot \vec{0} \in \operatorname{span}(S).$

Definition 16 (Subspace).

Let V be a vector space over a field F, and let $W \subseteq V$. We say W is a subspace of V (and write $W \subseteq V$) if:

- 1. For all $w_1, w_2 \in W$, $w_1 + w_2 \in W$.
- 2. For all $w \in W$ and all scalars $c \in F$, $cw \in W$.
- 3. The zero vector $0 \in W$.

Theorem 17.

Let $A \in M_{m \times n}(F)$, $b \in F^m$, and let $x \in F^n$ be the vector of variables. Let S be the set of all solutions to the linear system Ax = b. Then S is a subspace of F^n if and only if

$$b = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} = \vec{0} \quad (i.e. \ the \ system \ is \ homogeneous).$$

Proposition 18.

Subspaces are closed under forming linear combinations. If $W \leq V$, then for any positive integer n, if $w_1, w_2, \ldots, w_n \in W$ and $c_1, \ldots, c_n \in F$, then

$$c_1 w_1 + c_2 w_2 + \dots + c_n w_n \in W.$$

Proposition 19 (Spans Are Subspaces).

Let $S \subseteq V$ (a subset) and $W \leq V$ (a subspace). Then:

- 1. $S \subseteq \operatorname{span}(S)$.
- 2. If $S \subseteq W$, then $\operatorname{span}(S) \subseteq W$.
- 3. $\operatorname{span}(W) = W$.

2.3 Linear Independence and Dependence

Definition 20 (Linear Dependence).

Let V be a vector space over F and $S \subseteq V$. The set S is linearly dependent if there exist distinct vectors $u_1, \ldots, u_n \in S$ and scalars $c_1, \ldots, c_n \in F$, not all zero, such that

$$c_1 u_1 + c_2 u_2 + \dots + c_n u_n = 0.$$

Otherwise, S is linearly independent.

Definition 21 (Linear Independence).

Let V be a vector space over a field F and let $S \subseteq V$. The set S is said to be linearly independent if whenever distinct vectors $u_1, \ldots, u_n \in S$ and scalars $c_1, \ldots, c_n \in F$ satisfy

$$c_1 u_1 + c_2 u_2 + \dots + c_n u_n = 0,$$

it follows that $c_1 = c_2 = \cdots = c_n = 0$.

Proposition 22 (Dependency Special Cases).

- 1. The empty set \emptyset is linearly independent.
- 2. Let $S \subseteq V$. If $\vec{0} \in S$, then S is dependent (since $1 \cdot \vec{0} = \vec{0}$ provides a nontrivial dependence).
- 3. Let $u \in V$. Then $\{u\}$ is independent if and only if $u \neq \vec{0}$. Equivalently, $\{u\}$ is dependent if and only if $u = \vec{0}$.
- 4. Let $A \subseteq B \subseteq V$. Then:
 - (a) If A is dependent, then B is also dependent.
 - (b) If B is independent, then A is also independent.

Lemma 23 (Extending a Linearly Independent Set).

Let $S \subseteq V$ be a linearly independent set, and let $w \in V$ with $w \notin S$. Then $S \cup \{w\}$ is independent if and only if $w \notin \operatorname{span}(S)$. (Adding a vector already in the span of S makes the set dependent.)

2.4 Basis and Dimension

Definition 24 (Basis).

Let V be a vector space over F and let $W \leq V$. A subset $\beta \subseteq W$ is called a basis of W if

- 1. $\operatorname{span}(\beta) = W$,
- 2. β is linearly independent.

Theorem 25 ("Bases Exist").

Let $W \leq V$, and suppose $W = \operatorname{span}(S)$ for some finite set S. Then there exists a subset $\beta \subseteq S$ such that β is a basis of W. (Any finite spanning set can be reduced to a basis.)

Theorem 26 ("All Bases Have the Same Size").

Let $W = \operatorname{span}(S)$ with S finite. Then W has a finite basis, and all bases of W have the same cardinality. This common number is called $\dim(W)$.

Definition 27 (Dimension).

A vector space V (or subspace of one) is called finite-dimensional if it admits a finite basis. The dimension of V, written $\dim(V)$, is the number of vectors in any basis of V. If no finite basis exists, then V is infinite-dimensional.

Theorem 28.

Every vector space (even one without a finite spanning set) has a basis.

Proposition 29.

If we find the general solution to $A\vec{x} = \vec{0}$ as

$$\vec{x} = t_1 \vec{v}_1 + t_2 \vec{v}_2 + \cdots + t_r \vec{v}_r$$

where t_1, \ldots, t_r are the free variables, then $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_r\}$ forms a basis for null(A).

Theorem 30.

Suppose $\dim(W) = n$ is finite, and let $S \subseteq W$.

- 1. If $W = \operatorname{span}(S)$, then $|S| \ge n$, and there is a subset $\beta \subseteq S$ such that β is a basis of W. (Any spanning set can be "shrunk" to a basis.)
- 2. If S is independent, then $|S| \le n$, and there is a basis β of W such that $S \subseteq \beta$. (Any independent set can be "extended" to a basis.)
- 3. Let |S| = n. If and only if W = span(S), then S is independent.

2.5 Subspaces

Proposition 31.

Let $W \leq V$, where $\dim(V) = n$ is finite.

- 1. $\dim(W) \leq n$.
- $2. \dim(W) = n \iff W = V.$

Definition 32 (Column Space).

Let $A \in M_{m \times n}(F)$. The column space of A, denoted col(A), is the subspace of F^m spanned by the columns of A:

$$\operatorname{col}(A) = \operatorname{span} \{\operatorname{columns} \ \operatorname{of} \ A\} \ \leq F^m.$$

Theorem 33.

Let $A \in M_{m \times n}(F)$, and let R be the row-reduced echelon form of A.

- 1. A basis for row(A) is given by the nonzero rows of R.
- 2. The columns of A that correspond to the leading entries (pivots) in R form a basis for col(A).

Theorem 34.

Let $U \leq V$ and $W \leq V$ be subspaces of V. Then

$$U \cap W = \{ v \in V : v \in U \text{ and } v \in W \}$$

is a subspace of V.

Definition 35 (Sum of Subspaces).

Let V be a vector space over a field F and let $U, W \leq V$. The sum of U and W is the subspace

$$U + W = \{ u + w \mid u \in U, w \in W \} \le V.$$

Proposition 36.

Let U, W be subspaces of V. Then:

1.
$$U + W = \operatorname{span}(U \cup W)$$
.

2.
$$U < U + W$$
 and $W < U + W$.

Definition 37 (Direct Sum).

Suppose $U, W \leq V$ are subspaces such that every $v \in V$ can be written uniquely as

$$v = u + w$$
 with $u \in U$, $w \in W$.

Then V is called the direct sum of U and W, and we write

$$V = U \oplus W$$
.

Proposition 38.

Let U, W be subspaces of V. Then

$$V = U \oplus W \iff (V = U + W) \text{ and } (U \cap W = \{\vec{0}\}).$$

Theorem 39 (Inclusion-Exclusion Theorem).

Let U,W be finite-dimensional subspaces of V. Then

$$\dim(U+W) = \dim(U) + \dim(W) - \dim(U \cap W).$$

2.6 Lagrange Interpolation

Definition 40 (Lagrange Polynomials).

Let $a_0, \ldots, a_n \in \mathbb{R}$ be distinct. For each $i = 0, 1, \ldots, n$, the Lagrange polynomial $\ell_i(x)$ is defined by

$$\ell_i(x) = \prod_{\substack{0 \le j \le n \\ j \ne i}} \frac{x - a_j}{a_i - a_j}.$$

Each $\ell_i(x)$ has degree n and satisfies $\ell_i(a_j) = \delta_{ij}$.

Definition 41 (Kronecker Delta).

The Kronecker delta δ_{ij} is defined for any indices i, j by

$$\delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$$

Proposition 42.

- 1. If $l_i(a_j) = \delta_{i,j}$, then $\delta_{i,j} = \begin{cases} 1 & \text{if } j = i, \\ 0 & \text{if } j \neq i, \end{cases}$ (Kronecker delta).
- 2. The polynomials $l_0(x), l_1(x), \ldots, l_n(x)$ form a basis of $P_n(\mathbb{R})$.

3 Linear Transformations

3.1 Definition and Basic Properties

Definition 43 (Linear Transformation).

Let U and V be vector spaces over a field F, and let $T: U \to V$ be a function. If for all $u_1, u_2 \in U$ and all $c \in F$,

$$T(u_1 + u_2) = T(u_1) + T(u_2), T(cu) = cT(u),$$

then T is called a linear transformation.

Proposition 44 (Properties of Linear Transformations).

Let $T: U \to V$ be a linear transformation. Then:

- 1. $T(\vec{0}) = \vec{0}$.
- 2. For all $u_1, \ldots, u_n \in U$ and $c_1, \ldots, c_n \in F$,

$$T\left(\sum_{i=1}^{n} c_i u_i\right) = \sum_{i=1}^{n} c_i T(u_i).$$

Definition 45 (Matrix-Induced Linear Map).

For any $A \in M_{m \times n}(F)$, define the map

$$L_A \colon F^n \longrightarrow F^m, \qquad L_A(v) = A v,$$

for all $v \in F^n$. One checks that L_A is linear.

Proposition 46.

 L_A is a linear transformation.

3.2 Kernel and Image

Definition 47 (Kernel and Image).

Let $T: U \to V$ be a linear transformation. The kernel of T is

$$\ker(T) = \{ u \in U \mid T(u) = 0 \} \subseteq U,$$

and the image of T is

$$\operatorname{Im}(T) = \{ v \in V \mid v = T(u) \text{ for some } u \in U \} \subseteq V.$$

Proposition 48.

Let $T: U \to V$ be a linear transformation. Then:

- 1. $\ker(T) \leq U$ (i.e., $\ker(T)$ is a subspace of U).
- 2. $\operatorname{Im}(T) \leq V$ (i.e., $\operatorname{Im}(T)$ is a subspace of V).

Definition 49 (Rank and Nullity).

Let $T: U \to V$ be a linear transformation between finite-dimensional spaces. Then

$$rank(T) = dim(Im(T)),$$
 $nullity(T) = dim(ker(T)).$

Proposition 50 (Spanning Set of Im(T)).

 $T: U \to V \ linear, U = \operatorname{span}(\alpha).$

Denote
$$T(\alpha) = \{ T(u) \mid u \in \alpha \}$$
. Then $T(\alpha)$ spans $\text{Im}(T)$.

Theorem 51 (Rank-Nullity Theorem).

 $T: U \to V$ linear transformation, with $\dim(U) = n$ finite. Then

$$\operatorname{rank}(T) \ + \ \operatorname{nullity}(T) \ = \ \dim(U).$$

3.3 Injective, Surjective

Definition 52 (Injective, Surjective, Bijective).

Let $f: X \to Y$ be a function between sets X and Y.

 \bullet f is injective (one-to-one) if

$$\forall x_1, x_2 \in X, \ x_1 \neq x_2 \implies f(x_1) \neq f(x_2),$$

equivalently $f(x_1) = f(x_2) \implies x_1 = x_2$.

• f is surjective (onto) if

$$\forall y \in Y \ \exists x \in X \ with \ f(x) = y,$$

equivalently Im(f) = Y.

• f is bijective if it is both injective and surjective.

Proposition 53.

 $T: U \to V$ linear, U, V finite dimensional.

- 1. T injective $\iff \ker(T) = \{\vec{0}\} \iff \text{nullity}(T) = 0$.
- 2. T surjective \iff $Im(T) = V \iff rank(T) = dim(V)$.
- 3. If $\dim(U) = \dim(V)$, then T injective \iff T surjective.
- 4. If $\dim(U) > \dim(V)$, T is not injective. If $\dim(U) < \dim(V)$, T is not surjective.

3.4 Isomorphism and Coordinates

Definition 54 (Isomorphism of Vector Spaces).

Let $T: U \to V$ be a linear transformation between vector spaces over the same field.

- If T is bijective, then T is called an isomorphism.
- When such an isomorphism T exists, we say U is isomorphic to V and write

$$U \cong V$$
.

Proposition 55.

Let $\beta = \{\vec{v}_1, \dots, \vec{v}_n\}$ be a basis of V. Then every $\vec{v} \in V$ has a unique expression

$$\vec{v} = \sum_{i=1}^{n} c_i \, \vec{v}_i$$

as a linear combination of basis elements. The vector $(c_1, c_2, \ldots, c_n) \in F^n$ of coefficients is called the coordinate vector of \vec{v} relative to β , denoted $[\vec{v}]_{\beta} = (c_1, \ldots, c_n)$.

Theorem 56.

Let V and W be vector spaces, let $\alpha = \{v_1, \ldots, v_n\}$ be a basis of V, and let $w_1, \ldots, w_n \in W$ be arbitrary. Then there is a unique linear transformation $T: V \to W$ such that

$$T(v_i) = w_i \quad (i = 1, \dots, n).$$

Moreover, if $v = \sum_{i=1}^{n} c_i v_i$, then

$$T(v) = \sum_{i=1}^{n} c_i w_i.$$

Corollary 57.

If $T, S: V \to W$ are linear and $\alpha = \{v_1, \ldots, v_n\}$ is a basis of V with

$$T(v_i) = S(v_i)$$
 for $i = 1, \ldots, n$,

then T = S.

Theorem 58.

V vector space, dim V = n, finite, β basis. The function which computes coordinates

$$[-]_{\beta}:V\to F^n$$

is an isomorphism. Hence $V \cong F^n$ $(n = \dim V)$.

Proposition 59 (Composition and Inverses of Lin. Transforms).

Let $S: U \to V$, $T: V \to W$ be linear.

- 1. The composition $T \circ S : U \to W$ is linear.
- 2. If S, T both isomorphisms, $T \circ S$ also is an isomorphism.
- 3. If T is an isomorphism, there is an inverse $T^{-1}:W\to V,$ and T^{-1} is an isomorphism.

3.5 Matrix of a Linear Transformation

Theorem 60 ("Only Dimensions Matter").

Let U,V be finite-dimensional vector spaces over F. Then

$$U \cong V \quad (\Longleftrightarrow) \quad \dim(U) = \dim(V).$$

Definition 61 (Matrix of a Linear Transformation).

Let $T: U \to V$ be a linear transformation, and let $\alpha = \{u_1, \ldots, u_n\}$ and $\beta = \{v_1, \ldots, v_m\}$ be ordered bases of U and V, respectively. The matrix of T relative to α and β is the $m \times n$ matrix

$$[T]^{\beta}_{\alpha} = ([T(u_1)]_{\beta} \mid \dots \mid [T(u_n)]_{\beta}),$$

whose ith column is the coordinate vector of $T(u_i)$ in the basis β .

Theorem 62 (" $[T]^{\beta}_{\alpha}$ Computes T in Coordinates").

Let $T: U \to V$ be linear, α, β bases of U, V. Then for all $u \in U$,

$$[T]^{\beta}_{\alpha}[u]_{\alpha} = [T(u)]_{\beta}.$$

Proposition 63 (ker and Im in Coordinates).

Let $T: U \to V$, and let α, β be bases of U and V. Define $A = [T]^{\beta}_{\alpha}$.

1. $\ker(T)$ corresponds, via α -coordinates, to $\operatorname{null}(A)$ (i.e. the solution set of $A\vec{x} = \vec{0}$). In particular,

$$\operatorname{nullity}(T) = \operatorname{nullity}(A) = \#\{\text{free variables}\}.$$

2. $\operatorname{Im}(T)$ corresponds, via β -coordinates, to $\operatorname{Im}(L_A) = \operatorname{col}(A)$. Hence

$$rank(T) = rank(A).$$

Definition 64 (Linear Operator).

Let $T: V \to V$ be a linear transformation on a vector space V (the domain and codomain are the same vector space). Such a T is called a linear operator. If $\dim(V) = n$, then its matrix relative to any basis α of V is an $n \times n$ matrix, commonly denoted

$$[T]^{\alpha}_{\alpha} = [T]_{\alpha},$$

or simply [T] when the basis is understood.

Proposition 65.

Let $T: V \to V$ be a linear operator, and let α be a basis of V with $n = \dim(V)$. Then

T is invertible \iff $[T]_{\alpha}$ is invertible.

Moreover, if T is invertible, then

$$\left[T^{-1}\right]_{\alpha} = \left([T]_{\alpha}\right)^{-1}.$$

3.6 Change of Basis

Definition 66 (Change-of-Coordinates Matrix).

Let V be an n-dimensional vector space over a field F, and let α and β be two ordered bases of V. The change-of-coordinates matrix from α to β is the $n \times n$ matrix

$$Q^{\beta}_{\alpha} = [I]^{\beta}_{\alpha},$$

where $I: V \to V$ is the identity. Equivalently, the jth column of Q_{α}^{β} is the coordinate vector of the jth basis vector of α expressed in the basis β .

Proposition 67.

1. For every $u \in V$,

$$Q_{\alpha}^{\beta}[u]_{\alpha} = [u]_{\beta}.$$

2. Q_{α}^{β} is invertible and

$$\left(Q_{\alpha}^{\beta}\right)^{-1} = Q_{\beta}^{\alpha}.$$

Theorem 68 (Similarity Transformation).

Let $T: V \to V$ be a linear operator and let α, β be two bases of V. Then

$$Q_{\alpha}^{\beta} [T]_{\alpha} Q_{\beta}^{\alpha} = [T]_{\beta}.$$

Definition 69 (Similar Matrices).

Let $A, B \in M_{n \times n}(F)$. We say A and B are similar if there exists an invertible matrix $Q \in M_{n \times n}(F)$ such that

$$Q^{-1}AQ = B.$$

Proposition 70.

Let $Q \in M_{n \times n}(F)$ be any invertible matrix and let α be a basis of V (so $n = \dim V$). Then there exists a basis β of V such that

$$Q = Q_{\alpha}^{\beta}$$
.

Proposition 71.

Let $T: V \to V$ be a linear operator, let α be a basis of V, and let $B \in M_{n \times n}(F)$ be any matrix. Then

 $[T]_{\alpha}$ is similar to $B \iff \exists a \text{ basis } \beta \text{ of } V \text{ with } B = [T]_{\beta}.$

Theorem 72.

If $\dim V = n$ and $\dim W = m$, then

$$\mathcal{L}(V,W) \cong M_{m \times n}(F).$$

Moreover, given a basis α of V and a basis β of W, the map

$$\varphi: \mathcal{L}(V, W) \longrightarrow M_{m \times n}(F), \qquad \varphi(T) = [T]_{\alpha}^{\beta}$$

is a vector-space isomorphism.

4 Inner Product Spaces

4.1 Definition and Main Examples

Definition 73 (Inner Product).

Let V be a vector space over \mathbb{F} (where $\mathbb{F} = \mathbb{R}$ or \mathbb{C}). An inner product on V is a function

$$\langle \, \cdot \,, \, \cdot \, \rangle \colon V \times V \longrightarrow \mathbb{F}$$

satisfying for all $u, v, w \in V$ and all scalars $c \in \mathbb{F}$:

1.
$$\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$$
, $\langle u, cv \rangle = c \langle u, v \rangle$. (linearity).

- 2. $\langle u, v \rangle = \overline{\langle v, u \rangle}$ (conjugate symmetry).
- 3. $\langle u, u \rangle > 0$ for all $u \neq 0$ (positive definiteness).

Proposition 74 (Inner Product Properties).

Let V be an inner-product space over \mathbb{F} and let $u, v, w \in V$, $c \in \mathbb{F}$. Then:

1. (Conjugate-linearity in the second slot)

$$\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle, \qquad \langle u, c v \rangle = \overline{c} \langle u, v \rangle.$$

- 2. $\langle u, 0 \rangle = 0$ and $\langle 0, u \rangle = 0$.
- 3. $\langle u, u \rangle = 0$ if and only if u = 0.
- 4. If $\langle u, w \rangle = \langle v, w \rangle$ for all $w \in V$, then u = v.

Definition 75 (Conjugate and Adjoint of a Matrix).

Let $A = (a_{ij}) \in M_{m \times n}(\mathbb{F})$.

• The conjugate of A is the entrywise-conjugated matrix

$$\overline{A} = (\overline{a_{ij}}) \in M_{m \times n}(\mathbb{F}).$$

• If A is square (n = m), the adjoint (or Hermitian transpose) of A is

$$A^* = \overline{A}^T = (\overline{A})^T \in M_{n \times n}(\mathbb{F}),$$

characterized by $\langle Au, v \rangle = \langle u, A^*v \rangle$ for all u, v.

4.2 Norm and Angle

Definition 76 (Norm).

Let V be an inner-product space with inner product $\langle \cdot, \cdot \rangle$. The norm (or length) of a vector $u \in V$ is

$$||u|| = \sqrt{\langle u, u \rangle}$$
.

Proposition 77.

Let V be an inner-product space, $u \in V$, and $c \in \mathbb{F}$. Then

$$||cu|| = |c| ||u||.$$

Theorem 78 (Cauchy-Schwarz Inequality).

Let V be an inner-product space and $u, v \in V$. Then

$$1. \ \left| \langle u, v \rangle \right| \le \|u\| \|v\|.$$

2. Equality holds, $|\langle u, v \rangle| = ||u|| ||v||$, if and only if u = cv (equivalently v = cu) for some scalar $c \in \mathbb{F}$.

Proposition 79 (Triangle Inequality).

In any inner-product space V, for all $u, v \in V$,

$$||u+v|| \le ||u|| + ||v||.$$

Definition 80 (Angle).

Let V be a real inner-product space and let $u, v \in V$ be nonzero. By the Cauchy-Schwarz inequality, the quotient

$$\frac{\langle u, v \rangle}{\|u\| \ \|v\|}$$

lies in [-1,1], so there is a unique $\theta \in [0,\pi]$ with

$$\cos\theta = \frac{\langle u, v \rangle}{\|u\| \|v\|}.$$

This θ is called the angle between u and v.

4.3 Orthogonal Sets and Complements

Definition 81 (Orthogonal and Orthonormal Sets).

Let V be an inner-product space.

- 1. Two vectors $u, v \in V$ are called orthogonal if $\langle u, v \rangle = 0$. (In particular, the zero-vector is orthogonal to every vector.)
- 2. A subset $X \subseteq V$ is orthogonal if every pair of distinct vectors in X is orthogonal and $0 \notin X$.
- 3. If, in addition, ||u|| = 1 for all $u \in X$, then X is orthonormal.
- 4. An orthonormal subset that is also a basis of V is called an orthonormal basis (ONB).

Proposition 82.

Let V be an inner-product space and let $X \subseteq V$ be an orthogonal set. Then X is linearly independent.

Theorem 83 (Fourier Coefficients).

Let $\alpha = \{v_1, \ldots, v_n\}$ be an orthogonal basis of the inner-product space V. Then for every $u \in V$,

$$u = \sum_{i=1}^{n} \frac{\langle u, v_i \rangle}{\langle v_i, v_i \rangle} v_i,$$

and the coordinate vector $[u]_{\alpha}$ is

$$[u]_{\alpha} = \begin{pmatrix} \frac{\langle u, v_1 \rangle}{\langle v_1, v_1 \rangle} \\ \vdots \\ \frac{\langle u, v_n \rangle}{\langle v_n, v_n \rangle} \end{pmatrix}.$$

If α is orthonormal, then this simplifies to

$$u = \sum_{i=1}^{n} \langle u, v_i \rangle v_i.$$

Definition 84 (Orthogonal Complement).

Let V be an inner-product space and $X \subseteq V$. The orthogonal complement of X is

$$X^{\perp} \ = \ \{ \, v \in V \mid \langle v, x \rangle = 0 \, \, for \, \, all \, \, x \in X \},$$

which is a subspace of V.

Proposition 85.

Let $W \leq V$. Then:

- 1. W^{\perp} is a subspace of V.
- 2. If $\alpha = \{w_1, \dots, w_k\}$ is a basis of W, then for any $u \in V$,

$$u \in W^{\perp} \iff \langle u, w_i \rangle = 0 \quad (i = 1, \dots, k).$$

3. $W \cap W^{\perp} = \{0\}.$

4.4 Orthogonal Projection and Gram-Schmidt Algorithm

Theorem 86 (Orthogonal Projection).

Let V be an inner-product space and $W \leq V$ a finite-dimensional subspace. Then:

- 1. For each $u \in V$ there are unique $w \in W$ and $w' \in W^{\perp}$ such that u = w + w'. Hence $V = W \oplus W^{\perp}$.
- 2. If $\{u_1, \ldots, u_k\}$ is an orthogonal basis of W, then the projection $w \in W$ of any $u \in V$ is

$$w = \sum_{i=1}^{k} \frac{\langle u, u_i \rangle}{\langle u_i, u_i \rangle} u_i.$$

3. If V is finite-dimensional, then dim $V = \dim W + \dim W^{\perp}$.

Lemma 87 (Pythagoras' Theorem).

Let V be an inner-product space and let $u, v \in V$ be orthogonal. Then

$$||u+v||^2 = ||u||^2 + ||v||^2.$$

Theorem 88 (Projection is Closest Vector in W).

Let V be an inner-product space, $W \leq V$ finite-dimensional, and $u \in V$. Write the unique decomposition

$$u = w + w', \quad w \in W, \ w' \in W^{\perp},$$

so that $w = P_W(u)$. Then w is the closest vector in W to u, in the sense that for every $z \in W$,

$$||u - w|| \le ||u - z||.$$

Theorem 89 (Gram-Schmidt Orthogonalization).

With the notation of the Gram-Schmidt process applied to a basis $\{u_1, \ldots, u_n\} \subset V$, one defines vectors v_1, \ldots, v_n . Then:

1. For each k = 1, ..., n,

$$\operatorname{span}\{v_1,\ldots,v_k\} = \operatorname{span}\{u_1,\ldots,u_k\},\,$$

hence $\{v_1, \ldots, v_n\}$ spans the same subspace W.

2. For each k, the set $\{v_1, \ldots, v_k\}$ is orthogonal in $W_k = \text{span}\{u_1, \ldots, u_k\}$, and in particular $\{v_1, \ldots, v_n\}$ is an orthogonal basis of W.

4.5 Inner Product Defined by a Matrix

Definition 90 (Positive Definite Matrix).

Let $A \in M_{n \times n}(\mathbb{R})$ be symmetric. A is called positive definite if

$$u^T A u > 0$$
 for all nonzero $u \in \mathbb{R}^n$.

Proposition 91.

Let $A \in M_{n \times n}(\mathbb{R})$ be symmetric and positive definite. Then

$$\langle u, v \rangle_A = u^T A v$$

defines an inner product on \mathbb{R}^n .

5 Eigenvalues and Diagonalization

5.1 Eigenvalues and Eigenvectors

Definition 92 (Eigenvector and Eigenvalue).

Let $T: V \to V$ be a linear operator on a vector space V. A nonzero vector $u \in V$ is an eigenvector of T if there exists a scalar $\lambda \in F$ such that

$$T(u) = \lambda u.$$

The scalar λ is called the corresponding eigenvalue.

Definition 93 (Eigenspace).

If λ is an eigenvalue of $T: V \to V$, the eigenspace of λ is the subspace

$$E_{\lambda} = \{ u \in V \mid T(u) = \lambda u \}.$$

Definition 94 (Characteristic Polynomial).

Let $T: V \to V$ be a linear operator on an n-dimensional vector space V. The characteristic polynomial of T is

$$C_T(x) = \det([T]_{\alpha} - x I),$$

where α is any basis of V and $[T]_{\alpha}$ is the matrix of T relative to α .

Proposition 95 (Characteristic Polynomial).

Let $T: V \to V$ be a linear operator on an n-dimensional space V. Its characteristic polynomial $C_T(x)$ satisfies:

- 1. $C_T(x)$ is independent of the choice of basis.
- 2. $\deg C_T = n$.
- 3. A scalar λ is an eigenvalue of T if and only if $C_T(\lambda) = 0$.
- 4. The eigenspace $E_{\lambda} = \ker(T \lambda I)$ is a subspace of V.

5.2 Diagonalization

Definition 96 (Diagonalizable Operator).

Let $T: V \to V$ be a linear operator on a finite-dimensional vector space V. We say T is diagonalizable if there exists a basis α of V consisting entirely of eigenvectors of T; equivalently, in that basis the matrix of T is diagonal.

Proposition 97 (Diagonalizability Criterion).

Let $T: V \to V$ be a linear operator on a finite-dimensional space V. Then T is diagonalizable if and only if there exists a basis of V consisting of eigenvectors of T; equivalently, for any basis β , the matrix $[T]_{\beta}$ is similar to a diagonal matrix.

Definition 98 (Diagonalizable Matrix).

Let $A \in M_{n \times n}(F)$. We say A is diagonalizable if there exist an invertible matrix $Q \in M_{n \times n}(F)$ and a diagonal matrix $D \in M_{n \times n}(F)$ such that

$$Q^{-1}AQ = D.$$

5.3 Diagonalizability

Proposition 99.

Let V be a finite-dimensional real vector space and $T: V \to V$ linear. If the characteristic polynomial $C_T(x)$ has a nonreal complex root, then T is not diagonalizable over \mathbb{R} .

Lemma 100.

Let $T: V \to V$ be linear and let $\lambda_1 \neq \lambda_2$ be two distinct eigenvalues. Then

$$E_{\lambda_1} \cap E_{\lambda_2} = \{0\}.$$

Proposition 101.

Let $T: V \to V$ have distinct eigenvalues $\lambda_1, \ldots, \lambda_m$. For each i let β_i be a basis of the eigenspace E_{λ_i} , and set $\beta = \beta_1 \cup \cdots \cup \beta_m$. Then:

- 1. $|\beta| = \sum_i |\beta_i|$.
- 2. β is linearly independent.

Corollary 102.

If $T: V \to V$ is linear on an n-dimensional space and has n distinct eigenvalues, then T is diagonalizable.

Definition 103 (Geometric and Algebraic Multiplicity).

Let $T: V \to V$ be a linear operator and λ an eigenvalue of T.

- The geometric multiplicity of λ is dim E_{λ} , where $E_{\lambda} = \ker(T \lambda I)$.
- The algebraic multiplicity of λ is the exponent of the factor $(x \lambda)$ in the characteristic polynomial $C_T(x)$.

Theorem 104.

Let $T: V \to V$ be a linear operator on a finite-dimensional space V, and let λ be any eigenvalue of T. Then

 $1 \leq (geometric multiplicity of \lambda) \leq (algebraic multiplicity of \lambda).$

Proposition 105.

Let $T: V \to V$ be a linear operator on an n-dimensional vector space over a field F, with characteristic polynomial $C_T(x)$.

- 1. If $F = \mathbb{R}$ and $C_T(x)$ has a nonreal root, then T is not diagonalizable over \mathbb{R} .
- 2. If $F = \mathbb{R}$ and all roots of $C_T(x)$ lie in \mathbb{R} , or if $F = \mathbb{C}$, then

T is diagonalizable \iff $\forall \lambda$, (geom. mult. λ) = (alg. mult. λ).

3. When T is diagonalizable, let $\lambda_1, \ldots, \lambda_k$ be its distinct eigenvalues and β_i a basis of the eigenspace E_{λ_i} . Then

$$\beta = \beta_1 \cup \beta_2 \cup \cdots \cup \beta_k$$

is a basis of V consisting entirely of eigenvectors of T.

5.4 Orthogonal Diagonalization

Definition 106 (Symmetric, Orthogonal, Self-Adjoint, Unitary Matrices). Let $A \in M_{n \times n}(F)$.

- If $F = \mathbb{R}$, A is symmetric when $A^T = A$.
- If $F = \mathbb{R}$, A is orthogonal when its columns form an orthonormal basis of \mathbb{R}^n (equivalently $A^T = A^{-1}$).
- If $F = \mathbb{C}$, A is self-adjoint (Hermitian) when $A^* = A$.
- If $F = \mathbb{C}$, A is unitary when its columns form an orthonormal basis of \mathbb{C}^n (equivalently $A^* = A^{-1}$).

Proposition 107 (Orthogonal and Unitary Matrices).

- 1. If $A \in M_n(\mathbb{R})$, then A is orthogonal $\Leftrightarrow A^T = A^{-1}$.
- 2. If $A \in M_n(\mathbb{C})$, then A is unitary $\Leftrightarrow A^* = A^{-1}$.

Definition 108 (Orthogonal and Unitary Diagonalizability). Let $A \in M_{n \times n}(F)$.

• If $F = \mathbb{R}$, A is orthogonally diagonalizable if there exists an orthogonal matrix Q and a diagonal D with

$$Q^T A Q = D \quad \Longleftrightarrow \quad A = Q D Q^T.$$

• If $F = \mathbb{C}$, A is unitarily diagonalizable if there exists a unitary matrix Q and a diagonal D with

$$Q^* A Q = D \quad \Longleftrightarrow \quad A = Q D Q^*.$$

Proposition 109.

1. If $A \in M_n(\mathbb{R})$ is orthogonally diagonalizable, then A is symmetric $(A^T = A)$.

2. If $A \in M_n(\mathbb{C})$ is unitarily diagonalizable, then A is normal $(A^*A = AA^*)$.

Lemma 110.

1. If $A \in M_n(\mathbb{R})$ and $u, v \in \mathbb{R}^n$, then

$$\langle Au, v \rangle = \langle u, A^T v \rangle, \quad \langle u, Av \rangle = \langle A^T u, v \rangle.$$

2. If $A \in M_n(\mathbb{C})$ and $u, v \in \mathbb{C}^n$, then

$$\langle Au, v \rangle = \langle u, A^*v \rangle, \quad \langle u, Av \rangle = \langle A^*u, v \rangle.$$

Theorem 111 (Reality of Eigenvalues).

If $A \in M_n(\mathbb{R})$ is symmetric or $A \in M_n(\mathbb{C})$ is self-adjoint, then all roots of its characteristic polynomial lie in \mathbb{R} ; equivalently, every eigenvalue of A is real.

Theorem 112 (Orthogonality of Eigenspaces).

Let $A \in M_n(\mathbb{R})$ be symmetric or $A \in M_n(\mathbb{C})$ be normal. Then its eigenspaces are mutually orthogonal: if $u \in E_{\lambda_1}$ and $w \in E_{\lambda_2}$ with $\lambda_1 \neq \lambda_2$, then $\langle u, w \rangle = 0$.

Theorem 113 (Spectral Theorem).

1. For $A \in M_n(\mathbb{R})$:

A orthogonally diagonalizable \iff A symmetric $(A^T = A)$.

2. For $A \in M_n(\mathbb{C})$:

A unitarily diagonalizable \iff A normal $(A^*A = AA^*)$.

Definition 114 (Definiteness of a Symmetric Matrix).

Let $A \in M_{n \times n}(\mathbb{R})$ be symmetric. We say:

- A is positive definite if $u^T A u > 0$ for all nonzero $u \in \mathbb{R}^n$.
- A is positive semidefinite if $u^T A u \ge 0$ for all $u \in \mathbb{R}^n$.
- A is negative definite if $u^T A u < 0$ for all nonzero u.
- A is negative semidefinite if $u^T A u \leq 0$ for all u.
- Otherwise, A is called indefinite.

Theorem 115 (Positive Definiteness).

Let $A \in M_n(\mathbb{R})$ be symmetric. Then

A is positive definite \iff all eigenvalues of A are positive.

Lemma 116.

Let $A \in M_{m \times n}(\mathbb{R})$. Then:

- 1. $A^T A \in M_{n \times n}(\mathbb{R})$ and $AA^T \in M_{m \times m}(\mathbb{R})$ are symmetric and positive semi-definite.
- 2. $\operatorname{rank}(A^T A) = \operatorname{rank}(A) = \operatorname{rank}(AA^T)$.

5.5 Singular Value Decomposition

Theorem 117 (Singular Value Decomposition).

Let $A \in M_{m \times n}(\mathbb{R})$, and let $L_A : \mathbb{R}^n \to \mathbb{R}^m$ be the associated linear map. Set $r = \operatorname{rank}(A)$. Then there exist orthonormal bases

$$\beta = \{v_1, \dots, v_n\} \subset \mathbb{R}^n, \qquad \gamma = \{w_1, \dots, w_m\} \subset \mathbb{R}^m,$$

and positive scalars $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$, such that

$$L_A(v_i) = \begin{cases} \sigma_i w_i, & i = 1, \dots, r, \\ 0, & i = r + 1, \dots, n. \end{cases}$$

Consequently, the matrix of L_A relative to β, γ is

$$[L_A]^{\gamma}_{eta} = egin{pmatrix} \sigma_1 & & & & & & \\ & \sigma_2 & & & & & \\ & & \ddots & & & & \\ & & & \sigma_r & & & \\ & & & & 0 & & \\ & & & & \ddots & \\ & & & & & \ddots \end{pmatrix}_{m \times n}.$$

Definition 118 (Singular Values).

Let $A \in M_{m \times n}(\mathbb{R})$ have rank r. In its singular value decomposition one obtains positive scalars

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0.$$

These $\sigma_1, \ldots, \sigma_r$ are called the singular values of A.

Corollary 119.

In the SVD of Theorem 117:

- 1. $\{v_1, \ldots, v_n\}$ is an orthonormal basis of eigenvectors of $A^T A$ in \mathbb{R}^n .
- 2. $\{w_1, \ldots, w_m\}$ is an orthonormal basis of eigenvectors of AA^T in \mathbb{R}^m .
- 3. $A^T A$ and AA^T have the same nonzero eigenvalues, and the singular values σ_i are the positive square roots of these eigenvalues.