Data-Efficient Image Recognition with Contrastive Predictive Coding

Пудяков Ярослав

Национальный Исследовательский Университет Высшая Школа Экономики

yaapudyakov@edu.hse.ru

28 ноября 2019 г.

План доклада

- Motivation
- 2 Contrastive Predictive Coding
- Prediction Task
- Contrastive Loss
- 5 Unsupervised learning with CPC
- 6 Semi-supervised learning with CPC
- Results: ImageNet classification. Linear separability
- 8 Low-data classification: fully-supervised
- Dow-data classification: semi-supervised
- 10 Transfer to PASCAL detection
- Learning dynamics
- Conclusion

Motivation

Contrastive Predictive Coding

- Contrastive Predictive Coding (CPC) self-supervised метод обучения представлений, который обучается при помощи данных представленных последовательностями. Метод предсказывает признаки при помощи уже полученных представлений.
- СРС поощряет стабильные представления
- Хотя обучение СРС не контролируется, его представления имеют тенденцию быть лин. разделяемыми по классам

Prediction Task

Unsupervised pre-training

$$egin{aligned} z_{i,j} &= f_{ heta}(x_{i,j}) \ c_{i,j} &= g_{ ext{context}}\left(z_{i,j}
ight) \ \hat{z}_{i+k,j} &= W_k c_{i,j} \end{aligned}$$

Contrastive Loss

$$egin{aligned} \mathcal{L}_{ ext{CPC}} &= -\sum_{i,j,k} \log p(z_{i+k,j} | \hat{z}_{i+k,j}, \{z_l\}) \ &= -\sum_{i,j,k} \log rac{\exp\left(\hat{z}_{i+k,j}^T z_{i+k,j}
ight)}{\exp\left(\hat{z}_{i+k,j}^T z_{i+k,j}
ight) + \sum_l \exp\left(\hat{z}_{i+k,j}^T z_l'
ight)} \end{aligned}$$

 $\{z_I\}$ - negative samples

Цель - корректно распознавать таргет среди множества случайно сэмплированных таргетов патчей из датасета $\{z_I\}$.

Unsupervised learning with CPC

- Увеличивая количество слоев в сети f_{θ} (network capacity) улучшается качество представлений
- В статье использовалась расширенная ResNet-170 (stack of ResNet-101)
- Более сложная архитектура сложнее обучается. Экспериментально получили, что BatchNormalization ухудшает эффективность обучения, а LayerNormalization наоборот повышает

Semi-supervised learning with CPC

$$egin{aligned} heta^* &= rg \min_{ heta} rac{1}{N} \sum_{n=1}^N \mathcal{L}_{ ext{CPC}}[f_{ heta}(x_n)] \ \phi^* &= rg \min_{\phi} rac{1}{M} \sum_{m=1}^M \mathcal{L}_{ ext{Sup}}[g_{\phi} \circ f_{ heta^*}(x_m), y_m] \ & \{\mathsf{x}_n\} \text{ - dataset of N images} \ & \{\mathsf{x}_m, \mathsf{y}_m\} \text{ - dataset of M labeled images.} \ & g_{\phi} \text{ - 11-block ResNet} \end{aligned}$$

 L_{Sup} - cross entropy between model predictions and image labels

Results: ImageNet classification. Linear separability

Method	Top-1	Top-5
Motion Segmentation (MS) [50]	27.6	48.3
Exemplar (Ex) [17]	31.5	53.1
Relative Position (RP) [14]	36.2	59.2
Colorization (Col) [69]	39.6	62.5
Combination of		
MS + Ex + RP + Col [15]	_	69.3
CPC [49]	48.7	73.6
Rotation + RevNet [36]	55.4	-
CPC (ours)	61.0	83.0

- Качество self-supervised метода оценивалось в способности линейной разделимости представлений (связь со сложностью классификации).
- Для оценки качества представлений-векторов были взяты mean-pooled CPC признаки $(z_{i,j})$ и на них обучили линейный классификатор.

Low-data classification: fully-supervised

- Чтобы исследовать эффективность архитектуры производится обучение с варьированием числа используемых размеченных данных от 1% до 100%.
- В процессе, использовалась аугментация данных и настройка параметров по валидационной выборке.

Low-data classification: semi-supervised

Labeled data	1%	10%		
Method	Top-5 accuracy			
Supervised baseline	44.10	82.08		
Methods using label-propagation:				
Pseudolabeling [68]	51.56	82.41		
VAT [68]	44.05	82.78		
VAT + Entropy Minimization [68]	46.96	83.39		
Unsup. Data Augmentation [65]	-	88.52		
Rotation + VAT + Ent. Min. [68]	-	91.23		
Methods only using representation learning:				
Instance Discrimination [64]	39.20	77.40		
Exemplar [68]	44.90	81.01		
Exemplar (joint training) [68]	47.02	83.72		
Rotation [68]	45.11	78.53		
Rotation (joint training) [68]	53.37	83.82		
CPC (ours)	64.03	84.88		

- Предобучаем наш feature extractor на всем датасете неразмеченных данных.
- Обучаем и настраиваем классификатор по размеченной части датасета.

Transfer to PASCAL detection

Method	mAP
Transfer from labeled ImageNet:	
Supervised - ResNet-152	74.7
Transfer from unlabeled ImageNet:	
Exemplar (Ex) [17]	60.9
Motion Segmentation (MS) [50]	61.1
Colorization (Col) [69]	65.5
Relative Position (RP) [14]	66.8
Combination of	
Ex + MS + Col + RP [15]	70.5
Deep Cluster [8]	65.9
Deeper Cluster [9]	67.8
CPC - ResNet-101	70.6
CPC - ResNet-170	72.1

- Наши представления будут информативными, если при помощи них можно будет решать другие задачи, например object classification.
- Для этого обучили СРС представления на ImageNet. Эти признаки уже подавали на вход в Faster-RCNN
- Тестировали модель на датасете PASCAL

Learning dynamics

- В начале случайно инициализированный ResNet не дает никакой выгоды. Точность меньше 10%.
- Однако в процессе обучения СРС эти результаты быстро улучшаются; 40000 итераций достаточно, чтобы обойти контролируемые методы в режиме с низким уровнем данных, даже если многие параметры не настроены точным образом
- После 350k итераций мы получаем предельную точность, это говорит о том, что СРС действительно играет решающую роль в результатах.

Conclusion

- Semi-supervised СРС работает!.
- State of the art классификации изображений с малым числом размеченных данных (+20% supervised, +10% semi-supervised)
- State of the art unsupervised перенос на задачу детекции изображений

References

- Data-Efficient Image Recognition with Contrastive Predictive Coding, DeepMind, 2019
- International Conference on Machine Learning Live (Grand Ballroom A), Facebook research, 2019