Эквивалентность и порядок

Note 1

f30a93a82ch7436dhf01a4f27h739d36

Каким одним требованием можно заменить симметричность и транзитивность в определении отношения эквивалентности?

Евклидовость.

Note 2

0eb76bd962504c05aac97e46fec59cf8

Всегда ли пересечение эквивалентностей есть эквивалентность?

Да.

Note 3

dd29e40951124bd680e98b6254d5580a

Всегда ли объединение эквивалентностей есть эквивалентность?

Нет.

Note 4

23b76ed0b5e7470fa4c94e0e7d49ec94

Как визуально представить фактор-множество по пересечению эквивалентностей?

Границы классов "накладываются" друг на друга.

Note 5

1cc6c8f320a24c858acdeb80dc2e7662

Пусть $R,S\subseteq A\times A$ — отношения эквивалентности. Что представляет из себя $A/(R\cap S)$?

Множество всевозможных пересечений классов R и S соответственно.

Какая структура рассматривается в теореме Рамсея для бесконечных множеств?

Множество k-подмножеств разбито на конечное число классов.

Note 7

9d28ae71e4614fcb8fe1ce901861a29b

Что мы можем заключить из теоремы Рамсея для бесконечных множеств?

Найдётся бесконечное подмножество, все k-подмножества которого принадлежат одному классу.

Note 8

03c961e533a443ef83dda0c0e73fc61c

Интерпретация теоремы Рамсея для бесконечного множества людей...

Можно выбрать либо бесконечно много попарно знакомых, либо — попарно незнакомых.

Note 9

0579b76c71c94ac186f8247d673f79c4

Как представляется разбиение в доказательстве теоремы Рамсея для бесконечных множеств?

Отображение в [n].

Note 10

caf7a467bf8436ab61457a8a605802c

В чём ключевая идея доказательства теоремы Рамсея для бесконечных множеств?

Индукция по размеру подмножеств.

В чём ключевая идея доказательства теоремы Рамсея для бесконечных множеств (база индукции)?

Равносильно разбиению на конечное число подмножеств.

Note 12

d51f2f782f864a188943df833b4a2118

В чём первая ключевая идея доказательства теоремы Рамсея для бесконечных множеств (индукционный переход)?

Выбрать x_0 и индуцировать разбиение (k-1)-подмножеств без x_0 .

Note 13

41fce67926c3477cb2ce339e6e6e1a8c

В вторая первая ключевая идея доказательства теоремы Рамсея для бесконечных множеств (индукционный переход)?

Индуктивно построить последовательность.

Note 14

f4cf3a7c62f54bd3984be24ba082648

Каким свойством обладает последовательность, построенная в доказательстве теоремы Рамсея для бесконечных множеств (индукционный переход)?

Класс её k-подмножества зависит только от элемента с минимальным индексом.

Note 15

81aeb78de249474392e75752eb0d4ce6

Как строится искомое множество в доказательстве теоремы Рамсея для бесконечных множеств (индукционный переход)?

Выбирается подпоследовательность элементов, отвечающих одному классу.

Note 16

d8936dde76084fbfaa621700f57c7cd4

Пусть $R\subseteq A\times A$ — отношение эквивалентности. (кан Множество классов эквивалентности R_0 называется (конфактормножеством множества A по отношению R_0)

Note 17

e212c805b47c40c48f35bdbd5130db2l

Бинарное отношение $R\subseteq \{(c3:A\times A)\}$ называется $\{(c2:$ называется отношением частичного порядка,((c1:) оно рефлексивно, антисимметрично и транзитивно.((c1:)

Note 18

2a3a6e89d50d41068b22bfd1c595b39

Отношение _{{{с2.}частичного порядка_{}} обычно обозначается символом _{{{с1.}≤.}}</sub>

Note 19

90faa1ffef764c7d808d6757d97dfa4b

Множество A с (с2::заданным на нём отношением частичного порядка) называется (с1::частично упорядоченным множеством.)

Note 20

4157aa1725c244a58f3e32a92a0937bh

Пусть (A, \leqslant) — частично упорядоченное множество, $x, y \in A$. Говорят, что $\{(c^2)^2 x$ и y сравнимы, $\{(c^2)^2 x \in Y\}$ или $\{(c^2)^2 x \in Y\}$ или $\{(c^2)^2 x \in Y\}$

Note 21

e75ca87d267f4673a53c15a0e7adcccb

Бинарное отношение $R\subseteq \{(cs):A\times A\}$ называется $\{(cs):A\times A\}$ называется $\{(cs):A\times A\}$ ного порядка, $\{(cs):A\times A\}$ стношение частичного порядка и любые $x,y\in A$ сравнимы.

Note 22

9eba4d41c8b4aafa75c4a7c56268adl

Множество A с $\{c_2, 3$ аданным на нём отношением линейного порядка $\{c_1, 3\}$ называется $\{c_1, 3\}$ инейно упорядоченным множеством. $\{c_1, a_2, a_3\}$

Пусть (A, \leqslant) — частично упорядоченное множество, $x, y \in A$. Говорят, что $\{(can x < y, y) \in A\}$

Note 24

c264501d4458400e8b0073eac66b95fe

Пусть (A,\leqslant) — частично упорядоченное множество. Во избежание путаницы, отношение $\{(c1),c2\}$ называют отношением $\{(c1),c2\}$ порядка.

Note 25

ec44ba694d2541deaae260221aaafdc5

Пусть (A,\leqslant) — частично упорядоченное множество. Во избежание путаницы, отношение $((c2),\leqslant)$) называют отношением ((c1) нестрого) порядка.

Note 26

962a3744a3cc4153bd9317aab2cb46cb

Пусть (A, \leq) — частично упорядоченное множество. Мы читаем знак < как (как «меньше».)

Note 27

850b05ff29334d869b6a9c7e96eef9a9

Пусть (A,\leqslant) — частично упорядоченное множество. Мы читаем знак \leqslant как $\|(a)\|$ «меньше или равно».

Note 28

0e5d3d3ef97541309f99f132d7d20073

Пусть (A,\leqslant) — частично упорядоченное множество, $x,y\in A$. Тогда (162: $x\leqslant y$)) (163: Тогда и только тогда, когда)) (161: x< y)) или (161: x=y.))

Note 29

9b75255301e143ba94b347847852b33f

Пусть (A,\leqslant) — частично упорядоченное множество. Является ли отношение < рефлексивным?

Нет.

Пусть (A, \leqslant) — частично упорядоченное множество. Является ли отношение < антирефлексивным?

Да.

Note 31

2d5bf110950f42b4bc343f143b82dfc8

Пусть (A,\leqslant) — частично упорядоченное множество. Является ли отношение < транзитивным?

Да.

Note 32

378780d3b9d74367a71bdf0fb3f67e9f

Пусть (A, \leqslant) — частично упорядоченное множество. Является ли отношение < асимметричным?

Да.

Note 33

f4e2e2fe9c8140a6b8fcda896dd5da35

Пусть (A,\leqslant) — частично упорядоченное множество, $x,y\in A$. Тогда если $\{(a,b) \in X \leqslant y \leqslant x, \}$ то $\{(a,b) \in X \leqslant y \leqslant x, \}$ то $\{(a,b) \in X \leqslant y \leqslant x, \}$

Note 34

1ca369e310d2477782f82089ab512891

Пусть (A,\leqslant) — частично упорядоченное множество, $x,y\in A$. Тогда если $x\leqslant y\leqslant x$, то x=y. В чём ключевая идея доказательства?

Антисимметричность.

Note 35

0af7ee8e9a5c4ad88db6ea371bee9527

Пусть (A, \leqslant) — частично упорядоченное множество, $x, y \in A$. Почему не стоит читать $x \leqslant y$ как «x не больше y»?

 $\overline{x \geqslant y} \implies x \leqslant y$, если порядок не линеен.

Note 36

114d948920404634bec1fec01bd9b0b2

Бинарное отношение $R\subseteq \{\{c^3:A\times A\}\}$ называется $\{\{c^2:A\times A\}\}$ если $\{\{c^1:A\}\}$ если $\{\{c$

Note 37

a0d3dae2151442795c045fdb2e1ba7f

Пусть \leqslant — ${\tt (сс)}$ -предпорядок ${\tt ()}$ на множестве A. Тогда \leqslant задаёт естественное ${\tt ()}$ -сс ${\tt ()}$ -отношение частичного порядка ${\tt ()}$ ${\tt ()}$ -сс ${\tt ()}$ -на фактор множестве A по отношению

$$x \leqslant y$$
 и $y \leqslant x$.

Note 38

ac3052b941bd4ae981f8d3559789c7e0

Пусть (A,\leqslant) — частично упорядоченное множество, $\{(c^3):B\subseteq A.\}$ $\{(c^2):$ Частичный порядок $(\leqslant)\cap B^2\}$ называется $\{(c^1):$ частичным порядком на B, индуцированным из $A.\}$

Note 39

01c0ab122f3d4940ab98f766e6b357c2

Пусть (A,\leqslant) — частично упорядоченное множество, $B\subseteq A$. «са: Частичный порядок на B, индуцированный из A, обозначается $\{c1:\leqslant B\}$.

Note 40

2a1949206b6843f8859d96feb5f3d640

Пусть (A,\leqslant) — частично упорядоченное множество, $B\subseteq A$. Если $\{(c2:\leqslant)\}$ линеен, $\{(c1:\alpha)\}$ то $\{(c1:\alpha)\}$ линеен. $\{(c1:\alpha)\}$

Note 41

76f003723d594be4bb2f9df3ea565469

Пусть X и Y — два множества. Что есть множество X + Y?

Объединение непересекающихся копий X и Y.

Пусть X и Y — два множества. Если X и Y пересекаются, то как они разделяются в X+Y?

 \blacksquare Элементы из Y записываются с чертой (как вариант).

Note 43

b9a67a4ebd2542d6b6cf86b0d4505d81

Пусть X и Y — два частично упорядоченных множества. Как задаётся порядок на X+Y?

Внутри X и Y порядок обычный и $x \leqslant \overline{y}$.

Note 44

aa0e9e0bd594f80aff6ab6d1711059e

Пусть X и Y — два частично упорядоченных множества. При каком условии порядок на X+Y будет линейным?

lacktriangle Только если порядки на X и Y линейны.

Note 45

2f6406e74c4443c191caa1532527294f

Пусть X и Y — два частично упорядоченных множества. Как определятся покоординатное сравнение на $X \times Y$?

 \blacksquare Первая координаты \leqslant_X и вторые \leqslant_Y .

Note 46

fec1ac2eb92d496e9677d8011742333e

Пусть X и Y — два частично упорядоченных множества. В чём недостаток покоординатного сравнения на $X \times Y$?

Он не линеен.

Note 47

f80cf291316d430489b6ed3f5ea1f116

Пусть X и Y — два частично упорядоченных множества. Как определятся порядок на $X \times Y$?

Аналогично лексикографическому порядку.

Note 48

6f82b93d571d44e1a269d81a2e81f940

Пусть X и Y — два частично упорядоченных множества. При задании естественного порядка на $X \times Y$, какая из координат считается главенствующей?

Вторая (с элементами Y.)

Note 49

a3950be00a93447ba48cc93e24fc1436

Сколько существует различных линейных порядков на множестве из n элементов?

n!

Note 50

5dc17edbd7424921a6801b645ec91847

Всякий ли частичный порядок на конечном множестве можно продолжить до линейного?

Да.

Note 51

8ee88fb845d94611a7bad34e78b447b0

Всякий ли частичный порядок на бесконечном множестве можно продолжить до линейного?

Да.

Note 52

d5d18db2bf744c3f95cc4c390a2b63fa

Всякий частичный порядок на конечном множестве можно продолжить до линейного. В чём ключевая идея доказательства?

По индукции выбирать минимальный элемент.

Пусть X- (са бесконечное) частично упорядоченное множество. Тогда найдётся (са бесконечное подмножество X, элементы которого либо (са все сравнимы,)) либо (са все несравнимы.)

Note 54

eb211955acee4c57a93149e9322d4c94

Пусть X — бесконечное частично упорядоченное множество. Тогда найдётся бесконечное подмножество X, элементы которого либо все сравнимы, либо все несравнимы. В чём ключевая идея доказательства?

Теорема Рамсея для разбиения множества пар по сравнимости.

Note 55

53391ec9f26040328fc75be035ca15c7

Какой элемент частично упорядоченного множества называется наибольшим?

Тот, что больше любого другого элемента.

Note 56

1fbc4c3d075344fb8889b64fc11d73cc

Какой элемент частично упорядоченного множества называется максимальным?

Тот, для которого не существует большего элемента.

Note 57

ba81375ada8245dc86f019d40cfc73b2

При каком условии понятия наибольшего и максимального элемента совпадают?

Если порядок линеен.

Сколько наибольших элементов может существовать у произвольного частично упорядоченного множества?

Не более одного.

Note 59

dd861e24b4c246bc9769d4d9d8c1684a

Сколько максимальных элементов может существовать у произвольного частично упорядоченного множества?

Сколь угодно.

Note 60

fe2b7f694c644bfbbab346e18477d765

Какой элемент частично упорядоченного множества называется наименьшим?

Тот, что меньше любого другого элемента.

Note 61

f42b3c3570904de282e2a8bfe96a337a

Какой элемент частично упорядоченного множества называется минимальным?

Тот, для которого не существует меньшего элемента.

Note 62

0d235255b51b40e2970c6f0c00ee671e

Любые два различных максимальных элемента $\{ \{c1\} \}$ несравнимы. $\{ \{c1\} \}$

Note 63

e6a3453de9ae404f80ca583e6ea036c5

Пусть X — частично упорядоченное множество и $\{(c) \in X\}$ конечно. Для любого $x \in X$ найдётся максимальный элемент $\{(c) \in X\}$

Пусть A,B — частично упорядоченные множества, $f:A\to B.$ Отображение f называется (самонотонным,)) если (самонотонным)

$$a \leqslant b \implies f(a) \leqslant f(b) \quad \forall a, b \in A.$$

11

Изоморфизмы

Note 1

110d1d04fa2246daa69b785b7fd393fe

Пусть A,B — частично упорядоченные множества, $f:A\to B$. Отображение f называется прядок упорадизмом, если прядок обиективно и сохраняет порядок.

Note 2

13d514hd40fc4478a6ed3a4ah34ff19

Пусть A,B — частично упорядоченные множества. Множества A и B называют ([c2] изоморфными,]) если ([c1] существует изоморфизм $f:A\to B$.]

Note 3

007687446bf044fb8b2643fb03f6dcd9

Все частично упорядоченные множества разбиваются на классы изоморфных, называемые порядковыми типами.

Note 4

b680b5e72c204aad8c291c056457dc4d

 $\{(c)\}$ Конечные линейно $\}$ упорядоченные множества $\{(c)\}$ из одинакового числа элементов $\}$ $\{(c)\}$ изоморфны. $\}$

Note 5

5083f28c1c664d26a48aba53a9beae8c

Конечные линейно упорядоченные множества из одинакового числа элементов изоморфны. В чём ключевая идея доказательства?

Построить изоморфизм в $\{1, 2, ..., n\}$, начиная с наименьшего элемента.

Note 6

743cdca62182497686915562c74cf65d

Вещественная последовательность называется (сезфинитной,)) если ((сывсе её члены, кроме конечного числа, равны 0.))

Множестве всех финитных последовательностей в $\{(c4:\mathbb{Z}_+)\}$ с $\{(c3:3$ аданным на нём покомпонентным порядком $\}$ изоморфно $\{(c2:\mathbb{N})\}$ с отношением $\{(c1:8)\}$ в отношени

Note 8

5d322f891eb4f7797645163e5f45497

Как изоморфизм частично упорядоченных множеств действует на наибольший элемент?

Переводит его в наибольший элемент.

Note 9

2793f2d5da5d4b4397c20d874b1fc14e

Пусть A — частично упорядоченное множество. (кез::Изоморфизм $A \to A$); называется (кез::автоморфизмом A.)

Note 10

5995cccf4e2848eebf953a18d27ff7cf

Любой автоморфизм (\mathbb{N},\leqslant) ({cleeсть $id_{\mathbb{N}}$.))

Note 11

9a1b8384b96b4c1b80082eaa74d708ad

Любой автоморфизм частично упорядоченного множества $\mathbb N$ является тождественным отображением. В чём ключевая идея доказательства?

По индукции f(n) = n.

Note 12

9ec39c6ae7d94216b153421659205a07

Пусть A-k-элементное множество и $\mathcal{P}(A)$ упорядоченно по включению. Тогда

$$|\operatorname{Aut} \mathcal{P}(A)| = \{\{c1::k!.\}\}$$

Пусть A-k-элементное множество и $\mathcal{P}(A)$ упорядоченно по включению. Тогда $|\operatorname{Aut}\mathcal{P}(A)|=k!$. В чём ключевая идея доказательства?

Автоморфизм определяется его действием на одноэлементных множествах.

Note 14

0c815486f4924485acded03c5bcfcbdd

Пусть $\mathbb N$ упорядоченно отношением «быть делителем». Тогда

$$|\mathrm{Aut}\,\mathbb{N}|=\{\{\mathrm{cl}::\mathfrak{c.}\}\}$$

Note 15

3e9541105db840b299859a32c0f7ceb9

Пусть $\mathbb N$ упорядоченно отношением «быть делителем». Тогда $|\operatorname{Aut}\mathbb N|=\mathfrak c$. В чём ключевая идея доказательства?

Можно "перемешать" простые числа.

Note 16

c0d051d05a0b4228902a6d0ea3506209

Изоморфен ли $([0,1], \leq)$ множеству (\mathbb{R}, \leq) ?

Нет.

Note 17

6e4e63c5d18f46dd9e164c78f193c40e

Почему $([0,1],\leqslant)$ не изоморфен (\mathbb{R},\leqslant) ?

 \mathbb{R} В \mathbb{R} нет наибольшего элемента.

Note 18

9a8f1a6138c949ba91eee96998f166b7

Изоморфно ли (\mathbb{Z},\leqslant) множеству (\mathbb{Q},\leqslant) ?

Нет.

Note 19

87d5dfed83174bec88c290c54882ec3a

Почему (\mathbb{Z}, \leqslant) не изоморфно (\mathbb{Q}, \leqslant) ?

 \mathbb{Q} плотно в \mathbb{R} .

Note 20

2b69523f72144db68161c333b4e5ec82

Изоморфны ли (\mathbb{Z},\leqslant) и $(\mathbb{Z}+\mathbb{Z},\leqslant)$?

Нет.

Note 21

23d161737e134362b37a92013b77c5d8

Почему (\mathbb{Z},\leqslant) и $(\mathbb{Z}+\mathbb{Z},\leqslant)$ не изоморфны?

Между 0 и $\overline{0}$ бесконечно много элементов, что невозможно в \mathbb{Z} .

Note 22

360028f6f71143e99dc483ac687c9383

Изоморфны ли (\mathbb{N},\leqslant) и (\mathbb{Z},\leqslant) ?

Нет.

Note 23

7a70e9e2377c4257b8efb486b7967d89

Почему (\mathbb{N},\leqslant) и (\mathbb{Z},\leqslant) не изоморфны?

В № есть наименьший элемент.

Note 24

697e50108ea547c3a372fb441f7d1448

Как можно визуально представить $(\mathbb{Z} \times \mathbb{N}, \leqslant)$?

Последовательность непересекающихся "столбцов"

$$\mathbb{Z} \times \{i\}$$
.

Как представить ($\mathbb{Z} \times \mathbb{N}, \leqslant$) в виде суммы?

 $\mathbb{Z} + \mathbb{Z} + \mathbb{Z} + \dots$

Note 26

92hc6cda07d46c683eh8e4c46538e69

Как представить $(\mathbb{Z} \times \mathbb{Z}, \leqslant)$ в виде суммы?

 $\blacksquare \ldots + \mathbb{Z} + \mathbb{Z} + \mathbb{Z} + \ldots$

Note 27

cf7ddd424cb247a89eb9529d690840ad

Как представить $(\mathbb{N} \times \mathbb{Z}, \leqslant)$ в виде суммы?

 $\dots + \mathbb{N} + \mathbb{N} + \mathbb{N} + \dots$

Note 28

1a67db9b47ea40bf95ec1d08c9e9c699

Изоморфны ли ($\mathbb{Z} \times \mathbb{N}, \leqslant$) и ($\mathbb{Z} \times \mathbb{Z}, \leqslant$)?

Нет.

Note 29

19a444a43c154a90be9f954bb3b05480

Почему $(\mathbb{Z} \times \mathbb{N}, \leqslant)$ и $(\mathbb{Z} \times \mathbb{Z}, \leqslant)$ не изоморфны?

От обратного и каждому "столбцу" в $\mathbb{Z} \times \mathbb{N}$ соответствует "столбец" в $\mathbb{Z} \times \mathbb{Z}$.

Note 30

8a9b0bca924d47f4b16ce8a62942464

Допустим, что f — изоморфизм ($\mathbb{Z} \times \mathbb{N}, \leqslant$) и ($\mathbb{Z} \times \mathbb{Z}, \leqslant$). Как показать, что f сопоставляет "столбцу" в $\mathbb{Z} \times \mathbb{N}$ "столбец" в $\mathbb{Z} \times \mathbb{Z}$.

Между элементами одного столбца есть лишь конечное число других элементов.

Изоморфны ли $(\mathbb{N} \times \mathbb{Z}, \leqslant)$ и $(\mathbb{Z} \times \mathbb{Z}, \leqslant)$?

Нет.

Note 32

122d3d1f24854d10abc217203fc5af3

Почему $(\mathbb{N} \times \mathbb{Z}, \leqslant)$ и $(\mathbb{Z} \times \mathbb{Z}, \leqslant)$ не изоморфны?

От обратного и любому "столбцу" в $\mathbb{N} \times \mathbb{Z}$ соответствует "столбец" в $\mathbb{Z} \times \mathbb{Z}$.

Note 33

2554b1cb3c6c4f17a2aae72ec3237ec4

Изоморфны ли $(\mathbb{Q} \times \mathbb{N}, \leqslant)$ и $(\mathbb{Q} \times \mathbb{Z}, \leqslant)$?

Да.

Note 34

b81b5778d5b84d9692f1a7e9b2a7213e

Почему ($\mathbb{Q} \times \mathbb{N}, \leqslant$) и ($\mathbb{Q} \times \mathbb{Z}, \leqslant$) изоморфны?

Можно разделить $\mathbb{Q} \times \{0\}$ на интервалы с иррациональными границами.

Note 35

38a9f34456fe49d897d1266a579abb34

Изоморфны ли упорядоченные множества рациональных точек интервалов (0,1) и $(0,\sqrt{2})$?

Да.

Note 36

349e19c69cbf4e538962f2b5647c9ec8

Упорядоченные множества рациональных точек интервалов (0,1) и $(0,\sqrt{2})$ изоморфны. В чём ключевая идея доказательства?

Выбрать строго возрастающие последовательности, сходящиеся к 1 и к $\sqrt{2}$, и построить кусочно-линейную функцию.

Note 37

9935ca5d5b984b1d8a3abdb6a136e45e

Для каких упорядоченных множеств вводят понятие соседних элементов?

Для линейно упорядоченных.

Note 38

6c9efbfcd1f248499b3684e875f90187

Какие два элемента линейно упорядоченного множества называются соседними?

x < y и не существует элемента между ними.

Note 39

5257d91e2bd644a394471f45f956b38

 $\{(c3)$ Линейно $\}$ упорядоченное множество называется $\{(c2)$ плотным, $\}$ если $\{(c1)$ в нём нет соседних элементов. $\}$

Note 40

fbb41cd3433e4f518aad0470091368f8

«сы Любые» два «сы счётных плотных линейно» упорядоченных множества «сы без наибольшего и наименьшего элементов» «сы изоморфны.»

Note 41

897a90582ea34029857e54219cdaae9b

Любые два счётных плотных линейно упорядоченных множества без наибольшего и наименьшего элементов изоморфны. В чём ключевая идея доказательства?

Построить изоморфизм по шагам.

Любые два счётных плотных линейно упорядоченных множества без наибольшего и наименьшего элементов изоморфны. Что строится на n-м шаге доказательства?

Два изоморфных n-элементных подмножества.

Note 43

81d3607a53a44a02adc761c77683cfcd

Любые два счётных плотных линейно упорядоченных множества без наибольшего и наименьшего элементов изоморфны. Как строятся изоморфные подмножества на 0-м шаге?

Два пустых множества.

Note 44

8c36dbd253ad4e49accbfda588771eba

Любые два счётных плотных линейно упорядоченных множества без наибольшего и наименьшего элементов изоморфны. Как строятся изоморфные подмножества на каждом следующем ((n+1)-м) шаге?

Выбирается «неохваченный» элемент из X и для его позиции выбирается элемент из Y.

Note 45

4c20edaf43894fa6aad8ff406ff4551

Любые два счётных плотных линейно упорядоченных множества без наибольшего и наименьшего элементов изоморфны. Как в доказательстве гарантировать, что все элементы обоих множеств будут охвачены?

Пронумеровать и поочерёдно выбирать «неохваченный» элемент с наименьшим индексом.

Сколько существует неизоморфных счётных плотных линейных множеств?

Четыре.

Note 47

00ea7e2d37ed47ebba2ca53baf9f132d

Существует только 4 неизоморфных счётных плотных линейных множеств. В чём ключевая идея доказательства?

Изоморфность зависит только от наличия наибольших и наименьших элементов.

Note 48

888cf7317e604c62adeadeb29423837e

 $\{(c4) B \text{сякое}\}$ $\{(c3) \text{счётное линейно}\}$ упорядоченное множество $\{(c2) \text{изоморфно}\}$ $\{(c1) \text{некоторому подмножеству } \mathbb{Q}.\}$

Note 49

3003b82fd8b342478147fe3f6da09ad

Всякое счётное линейно упорядоченное множество изоморфно некоторому подмножеству \mathbb{Q} . В чём ключевая идея доказательства?

По шагам «охватывать» элементы изоморфизмом.

Note 50

5071d1ba54de4db0955aa3bc403cbc54

Всякое счётное линейно упорядоченное множество изоморфно некоторому подмножеству \mathbb{Q} . Почему именно \mathbb{Q} ?

Можно было взять любое счётное плотное линейно упорядоченное множество без наибольшего и наименьшего элементов.