Generalized Linear Models for Predicting the Levels of Nitrogen Oxides (NOX) using the Boston Housing Dataset

Contents

I. Intr	oduction	2
i.	Description and Origin of Data	2
ii.	A question of interest	3
iii.	Dependent and Independent Variables	3
iv.	Basic Descriptive Analysis	4
II Met	thod	4
i.	Initial Modeling with General Linear Model	4
ii.	Generalized Linear Model with Gamma Distribution	5
iii.	Generalized Linear Model with Inverse Gaussian Distribution	6
iv.	Comparison between Gamma Model and Inverse Gaussian Model	6
٧.	Final Generalized Linear Model with Inverse Gaussian Distribution and Log Link Function	8
III. AN	NOVA Analysis on RAD	8
IV. Po	ossible Explanations and Remained Issues	9
Appe	ndix A: Basic Descriptive Information on Continuous Variables	10
Appe	ndix B: General Linear Model	16
Appe	ndix C: Gamma Models	19
Appe	ndix D: Inverse Gaussian Models	25
Appe	ndix E: One-way ANOVA	30

I. Introduction

i. Description and Origin of Data

The dataset used in this analysis was originally compiled from multiple sources by David Harrison Jr. and Daniel L. Rubinfeld in their article titled "Hedonic Housing Prices and the Demand for Clean Air" which was published in the Journal of Environmental Economics and Management in 1978. The dataset contains 506 observations across 14 variables. The following table provides a summary of each of these variables and their sources.

Variable	Description of Variable	Source
CRIM	Crime rate per capita by town.	FBI (1970)
ZN	Proportion of residential land zoned for lots over 25,000 square feet.	Metropolitan Area Planning Commission (1972)
INDUS	Proportion of non-retail business acres per town.	Vogt, Ivers, and Associates (1965)
CHAS	Dummy variable for proximity to the Charles River. 0 means houses are far from the river. 1 means houses are close to the river.	1970 U.S. Census
NOX	Concentration of Nitrogen oxide in pphm.	TASSIM
RM	Average number of rooms.	1970 U.S. Census
AGE	Percentage of houses built prior to 1940.	1970 U.S. Census
DIS	Weighted distance to major employment center.	Schnare (1973)
RAD	Index value of accessibility to highways.	MIT Boston Project
TAX	Property tax rate.	Mass. Taxpayers Foundation (1970
PTRATIO	Ratio of number of students to teachers by district.	Massachusetts Dept. of Education (1971-1972)
BL	Proportion of population that is African American	1970 U.S. Census

LSTAT	Log of the percentage of adults that are either classified as having not graduated high school or men whose profession is manual labor	1970 U.S. Census
MEDV	Median value of homes as reported by homeowners (reported in units of \$1000)	1970 U.S. Census

ii. A question of interest

The question investigated in this report is how the level of air pollution, represented by the nitric oxide levels (NOX), is affected as a function of other variables.

According to Wikipedia, Nitrogen oxides (NOx) refers to a mixture of compounds such as nitric oxide (NO), nitrogen dioxide (NO2) and nitrous oxide (N2O). Nitrogen oxides occur naturally and also are produced by man's activities. The primary source of man-made nitrogen oxides is from the burning of fossil fuels. Nitrogen oxides help form acid rain and can also cause a wide range of health and environmental damage. By identifying what factors might be associated with the nitric oxide levels, proactive steps can be planned to limit nitrogen oxides emissions, thus to improve the air quality.

iii. Dependent and Independent Variables

Six variables that might not be relevant to air pollution were removed from consideration when modeling the nitric oxide levels (NOX), which include the crime rate (CRIM), the proportion of residential land (ZN), average number of rooms per house (RM), tax rate (TAX), the student-teacher ratio (PTRATIO), and the proportion of black population (B). Seven independent variables were kept, which include four continuous variables and two categorical variables as listed below. The reasons why

Variable	Description of Variable	Type of Variable	Reason for Inclusion
Dependent Vari	able		
NOX	nitric oxides concentration (parts per 10 million)	Continuous	
Independent Va	riables		
INDUS	Proportion of non-retail business acres per town	Continuous	Non-retail business might be a source of NOX emission.
AGE	Proportion of owner-occupied units built prior to 1940	Continuous	Old-style stoves, ovens or heaters used in these houses might give off more air pollution.
DIS	weighted distances to five Boston employment centers	Continuous	Areas close to the major employment centers might have higher level of air pollution.
MEDV	Median value of owner-occupied homes in \$1000's	Continuous	Houses with higher value should be associated with lower level of air pollution.

CHAS	Charles River dummy variable (= 1 if	Categorical	Charles River might be a source of
	tract bounds river or 0 otherwise)	(Dichotomo	pollution which can be converted to air
		us)	pollution.
RAD	Index of accessibility to radial highways (9 levels, 1-8 and 24)	Categorical (Nominal)	Areas close to radial highways might have higher level of air pollution.

iv. Basic Descriptive Analysis

The Proc univariate procedure was used to get basic statistics such as mean, median, standard deviation, range, and skewness as well as descriptive plots such as histograms and probability plots for each continuous variable. The purpose is to have a preliminary exploration on each variable before modeling. Detailed information can be found in Appendix A. All the histograms are skewed and don't follow a bell-shape which indicate the continuous variables don't follow a normal distribution.

II Method

i. Initial Modeling with General Linear Model

Since the independent variables involve both continuous variables and categorical variables, general linear model was used in initial modeling. First the GLMSELECT procedure was used to perform model selection in the framework of general linear model. Similar to REG procedure, GLMSELECT has forward, backward, and stepwise selection methods with a variety of fit criteria to specify.

The CLASS statement was put before the MODEL statement to specify the two categorical variables to be used in the analysis, CHAS and RAD. By specifying the selection =stepwise (select=SL) stats=all option in the MODEL statement, all the six variables were kept in the model. Even though CHAS would be excluded if based on some of the criteria, I decide to temporarily keep it for the GLM model in the next step.

	Stepwise Selection Summary										
Step	Effect Entered	Effect Removed	Number Effects In	Number Parms In	Model R-Square	Adjusted R-Square	AIC	AICC	BIC	СР	
0	Intercept		1	1	0.0000	0.0000	-1672.0838	-1672.0599	-2180.7949	1668.5677	
1	dis		2	2	0.5917	0.5909	-2123.3534	-2123.3056	-2631.4407	385.0269	
2	indus		3	3	0.6879	0.6867	-2257.2883	-2257.2085	-2764.9396	178.0556	
3	rad		4	11	0.7448	0.7397	-2343.1898	-2342.5569	-2851.1248	70.3758	
4	age		5	12	0.7666	0.7614	-2386.3988	-2385.6589	-2892.4458	24.9929	
5	medv		6	13	0.7721	0.7666	-2396.4777	-2395.6223	-2901.9027	15.0337	
6	chas		7	14	0.7735	0.7676*	-2397.5881*	-2396.6085*	-2902.7929*	14.0000*	
				* Op	timal Valu	e Of Criteri	on				

	Stepwise Selection Summary									
Step	Effect Entered	Effect Removed	SBC	PRESS	ASE	F Value	Pr > F			
0	Intercept		-2175.8573	6.8078	0.0134	0.00	1.0000			
1	dis		-2622.9003	2.7951	0.0055	730.43	<.0001			
2	indus		-2752.6087	2.1460	0.0042	155.02	<.0001			
3	rad		-2804.6979	1.7869	0.0034	13.80	<.0001			
4	age		-2843.6803	1.6381	0.0031	46.17	<.0001			
5	medv		-2849.5327*	1.6051*	0.0031	11.91	0.0006			
6	chas		-2846.4165	1.6096	0.0030	3.03	0.0822			
		* Opt	imal Value C	of Criteri	ion					

The six variables were used to fit the model by using PROC GLM procedure. Again, the CLASS statement was used before the MODEL statement since RAD and CHAS are categorical variables. The model is significantly better than an error-only model. However, the diagnostic plots show a clear trend that residuals increase as the predicted values increase. So generalized linear models may be a good option for the next step.

Detailed results on General Linear Model can be found in Appendix B.

ii. Generalized Linear Model with Gamma Distribution

First a generalized linear model with gamma distribution and log link function was used to build the model. The GENMOD procedure was performed.

The type 1 analysis shows only one variable CHAS is not significant at a 0.05 level when the terms are added sequentially. The type 3 analysis shows that given all the other variables, only one variable CHAS is not significant at a 0.05 level. Based on the analyses of Type 1 and Type 3, the variable CHAS should be removed and

the model should be refit. Examining the residuals and Cook's distances with the criterion as larger than .5, no observations should be removed.

The model was refit with all predictors except CHAS. All the parameters are significant at a 0.05 level in the estimation table except one level of RAD (RAD=5). Both the type 1 and type 3 analyses indicate that all the five terms should be retained in the model. No observations should be removed by using the Cook's distance to check the influential points. The residual plots look fine and there are no more issues.

Detailed results on the GENMOD procedure with Gamma distribution and log link function can be found in Appendix C.

iii. Generalized Linear Model with Inverse Gaussian Distribution

Then a generalized linear model with a different distribution, the Inverse Gaussian distribution and log link function was also performed.

The type 1 analysis shows five variables INDUS, AGE, DIS, MEDV and RAD are significant at a level of 0.05. The type 3 analysis shows that given all the other variables, INDUS, AGE, DIS, MEDV and RAD are significant at a level of 0.05. The Cook's distance was used to check the influential points. All of the points have Cook's distance less than 0.5. Therefore the model needs to be refit by removing the variable CHAS.

The model was refit with these five variables identified above. All the parameters are significant at a 0.05 level in the estimation table except RAD=5. The type 1 and type 3 analyses both indicate that all these five terms are significant at a level of 0.05. All the observations have Cook's distance less than 0.5 and the diagnostic plots look good.

Detailed results on the GENMOD procedure with the Inverse Gaussian distribution and log link function can be found in Appendix D.

iv. Comparison between Gamma Model and Inverse Gaussian Model

When comparing the Gamma model with Inverse Gaussian model, both have the same set of significant terms and similar parameter estimates. But the Inverse Gaussian model has smaller AIC, AICC and BIC, so it was chosen as the final model.

Model Information					
Data Set	WORK.HOUSE				
Distribution	Gamma				
Link Function	Log				
Dependent Variable	nox				

Criteria For Assessing Goodness Of Fit								
Criterion	DF	Value	Value/DF					
Deviance	493	3.7069	0.0075					
Scaled Deviance	493	506.6171	1.0276					
Pearson Chi-Square	493	3.8160	0.0077					
Scaled Pearson X2	493	521.5200	1.0578					
Log Likelihood		834.2130						
Full Log Likelihood		834.2130						
AIC (smaller is better)		-1640.4261						

Model Information				
Data Set	WORK.HOUSE			
Distribution	Inverse Gaussian			
Link Function	Log			
Dependent Variable	nox			

Criteria For Assessing Goodness Of Fit								
Criterion		Value	Value/DF					
Deviance	493	6.2905	0.0128					
Scaled Deviance	493	506.0000	1.0264					
Pearson Chi-Square	493	6.5577	0.0133					
Scaled Pearson X2	493	527.4967	1.0700					
Log Likelihood		855.0649						
Full Log Likelihood		855.0649						
AIC (smaller is better)		-1682.1298						
AICC (smaller is better)		-1681.2744						
BIC (smaller is better)		-1622.9583						

v. Final Generalized Linear Model with Inverse Gaussian Distribution and Log Link Function

Based on the parameter estimation table, the final model tells us that given all the other variables, one unit increase in the proportion of non-retail business acres per town (INDUS) corresponds to NOX increasing by 0.0075 (parts per 10 million); given all the other variables, one unit increase in the proportion of owner-occupied units built prior to 1940 (AGE) corresponds to NOX increasing by 0.0016 (parts per 10 million); given all the other variables, one unit increase in weighted distances to five Boston employment centers (DIS) corresponds to NOX decreasing by a multiple of -0.0302(parts per 10 million); given all the other variables, one unit increase in the median value of owner-occupied homes in \$1000's (MEDV) corresponds to NOX decreasing 0.0018 (parts per 10 million). The index of accessibility to radial highways (RAD) is negatively associated with NOX, with the parameter for different levels of RAD ranging from 0 to -0.1437.

	Analysis Of Maximum Likelihood Parameter Estimates									
Parameter		DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi- Square	Pr > ChiSq		
Intercept		1	-0.5885	0.0335	-0.6542	-0.5228	308.17	<.0001		
indus		1	0.0075	0.0010	0.0056	0.0094	59.94	<.0001		
age		1	0.0016	0.0002	0.0012	0.0020	65.30	<.0001		
dis		1	-0.0302	0.0029	-0.0358	-0.0246	112.23	<.0001		
rad	1	1	-0.0801	0.0213	-0.1217	-0.0384	14.16	0.0002		
rad	2	1	-0.1437	0.0194	-0.1818	-0.1056	54.61	<.0001		
rad	3	1	-0.1113	0.0178	-0.1462	-0.0764	39.07	<.0001		
rad	4	1	-0.1102	0.0128	-0.1352	-0.0852	74.69	<.0001		
rad	5	1	-0.0237	0.0129	-0.0490	0.0017	3.35	0.0674		
rad	6	1	-0.0867	0.0190	-0.1239	-0.0495	20.82	<.0001		
rad	7	1	-0.0845	0.0224	-0.1284	-0.0405	14.19	0.0002		
rad	8	1	-0.0852	0.0203	-0.1250	-0.0454	17.61	<.0001		
rad	24	0	0.0000	0.0000	0.0000	0.0000				
medv		1	-0.0018	0.0005	-0.0027	-0.0008	12.37	0.0004		
Scale		1	0.1115	0.0035	0.1048	0.1186				

III. ANOVA Analysis on RAD

Since categorical variable RAD has been identified as a significant term in both Gamma model and Inverse Gaussian model, a one-way ANOVA analysis was performed to compare the NOX differences in these regions with different RAD index.

This ANOVA model is statistically significant at a 5% level, along with the individual terms in the model. Based on the R-square value, about 46.8% of the variance in NOX is explained by RAD.

By testing the equal variance assumption using Levene's test. We see that Levene's test has a p-value less than 0.0001, so there are significant differences between the sample variances and a Welch correction would be appropriate.

By using Tukey's test, we get all pairwise comparisons. RAD 24 has the significantly higher NOX level than other regions. RAD 5 is the second highest one.

Detailed results can be found in Appendix E.

IV. Possible Explanations and Remained Issues

The positive relationship between non-retail business proportion and NOX can be explained by the possibility that non-retail business sometimes does cause pollution. According to the <u>Small Business Environmental</u> <u>Assistance Program</u> set up by the Environmental Protection Agency (EPA), there are a variety of businesses activities that can generate air pollution.

The proportion of structures built before 1940 (AGE) is also positively related to NOX. A possible explanation is that maybe some appliances used in these houses such as the stove or the heating systems are old-fashioned and may cause some air pollution.

The other three terms are negatively related to air pollution.

The quality of air is associated with housing values. As the median house value increases, the air pollution level is expected to decrease as the air quality tends to be a factor to take into consideration when people buy houses.

The distance to employment centers is surprisingly negative related to NOX. Maybe because most air pollution come from industrial plants which usually are not located in downtown? Or maybe because the skyscrapers serve as a shelter from the pollution? No solid explanation has been found yet due to my limit knowledge on this subject matter.

The distance from roadways appears to have an impact on nitrogen dioxide levels. But surprisingly, a negative one, in this case. Vehicles emission is always a big cause of air pollution so again it is not clear why the accessibility to highway is negatively associated with NOX levels.

Appendix A: Basic Descriptive Information on Continuous Variables

Variable NOX: The mean and median of NOX are 0.5547 and 0.5380, respectively, with standard deviation 0.1159. The range is 0.486. The skewness is positive as 0.7293 so the distribution has a long tail to the right. The histogram does not match a bell curve and the probability plot shows deviation from a straight line so the data is not normally distributed.

Moments				
N	506	Sum Weights	506	
Mean	0.55469506	Sum Observations	280.6757	
Std Deviation	0.11587768	Variance	0.01342764	
Skewness	0.72930792	Kurtosis	-0.0646671	
Uncorrected SS	162.47038	Corrected SS	6.78095604	
Coeff Variation	20.8903385	Std Error Mean	0.00515139	

Basic Statistical Measures			
Location Variability			
Mean	0.554695	Std Deviation	0.11588
Median	0.538000	Variance	0.01343
Mode	0.538000	Range	0.48600
		Interquartile Range	0.17500

Variable INDUS: The mean and median of INDUS are 11.1367 and 9.6900, respectively, with standard deviation 6.8604. The range is 27.2800. The skewness is positive as 0.2950. The histogram does not match a bell curve and the probability plot shows deviation from a straight line so the data is not normally distributed.

Moments				
N	506	Sum Weights	506	
Mean	11.1367787	Sum Observations	5635.21	
Std Deviation	6.86035294	Variance	47.0644425	
Skewness	0.29502157	Kurtosis	-1.2335396	
Uncorrected SS	86525.6299	Corrected SS	23767.5434	
Coeff Variation	61.6008736	Std Error Mean	0.30497989	

Basic Statistical Measures					
Loca	Location Variability				
Mean	11.13678	Std Deviation	6.86035		
Median	9.69000	Variance	47.06444		
Mode	18.10000	Range	27.28000		
		Interquartile Range	12.91000		

Variable AGE: The mean and median of AGE are 68.5749 and 77.5000, respectively, with standard deviation 28.1489. The range is 97.1000. The skewness is negative as -0.5990 so the distribution has a long tail to the left. The histogram does not match a bell curve and the probability plot shows deviation from a straight line so the data is not normally distributed.

Moments					
N 506 Sum Weights 506					
Mean	68.5749012	Sum Observations	34698.9		
Std Deviation 28.1488614 Variance		Variance	792.358399		
Skewness	-0.5989626	Kurtosis	-0.9677156		

Moments				
Uncorrected SS 2779614.63 Corrected SS 400140.9				
Coeff Variation	1.25136953			

Basic Statistical Measures				
Location Variability				
Mean	68.5749	Std Deviation	28.14886	
Median	77.5000	Variance	792.35840	
Mode	100.0000	Range	97.10000	
		Interquartile Range	49.10000	

Variable DIS: The mean and median of DIS are 3.7950 and 3.2075, respectively, with standard deviation 2.1057. The range is 10.9969. The skewness is positive as 1.0118 so the distribution has a long tail to the right. The histogram does not match a bell curve and the probability plot shows deviation from a straight line so the data is not normally distributed.

Moments				
N	506	Sum Weights	506	
Mean	3.79504269	Sum Observations	1920.2916	
Std Deviation	2.10571013	Variance	4.43401514	
Skewness	1.01178058	Kurtosis	0.48794112	
Uncorrected SS	9526.76624	Corrected SS	2239.17764	
Coeff Variation	55.4858087	Std Error Mean	0.09361023	

Basic Statistical Measures			
Location Variability			
Mean	3.795043	Std Deviation	2.10571
Median	3.207450	Variance	4.43402
Mode	3.495200	Range	10.99690
		Interquartile Range	3.11190

Variable MEDV: The mean and median of MEDV are 22.5328 and 21.2000, respectively, with standard deviation 9.1971. The range is 45.0000. The skewness is positive as 1.1081. The histogram does not match a bell curve and the probability plot shows deviation from a straight line so the data is not normally distributed.

Moments				
N	506	Sum Weights	506	
Mean	22.5328063	Sum Observations	11401.6	
Std Deviation	9.19710409	Variance	84.5867236	
Skewness	1.10809841	Kurtosis	1.49519694	
Uncorrected SS	299626.34	Corrected SS	42716.2954	
Coeff Variation	40.8165053	Std Error Mean	0.40886115	

Basic Statistical Measures				
Location Variability				
Mean	22.53281	Std Deviation	9.19710	
Median	21.20000	Variance	84.58672	
Mode	50.00000	Range	45.00000	
		Interquartile Range	8.00000	

Categorical variable CHAS is a dummy variable. Among 506 observations, 471 observations for CHAS=0 which means tract does not bound river with mean of NOX as 0.55 and standard deviation 0.11. Only 35 observations for CHAS=1 with mean of NOX as 0.59 and standard deviation 0.14. Area close to the Charles River has higher level of NOX.

Categorical variable RAD has 9 levels, from 1-8 and 24. RAD 24 has more observations (n=132) than others. It also has the highest mean value of NOX among all the RAD levels (mean=0.67 with standard deviation 0.06). RAD 4 and 5 also have large number of observations (n=110, 115, respectively). The rest have observations from 17 to 38.

	1	10X	
	Mean	Std	N
chas			
0	0.55	0.11	471
1	0.59	0.14	35
rad			
1	0.46	0.08	20
2	0.48	0.07	24
3	0.45	0.03	38
4	0.50	0.07	110
5	0.57	0.14	115
6	0.51	0.07	26
7	0.44	0.02	17
8	0.49	0.02	24
24	0.67	0.06	132

Appendix B: General Linear Model

The GLMSELECT procedure was used to perform stepwise selection and identify significant terms, with all the selection criteria. Even though CHAS would be excluded if based on some of the criteria, I decide to temporarily keep it for the GLM model in the next step.

	Stepwise Selection Summary										
Step	Effect Entered	Effect Removed	Number Effects In	Number Parms In	Model R-Square	Adjusted R-Square		AICC	BIC	СР	
0	Intercept		1	1	0.0000	0.0000	-1672.0838	-1672.0599	-2180.7949	1668.5677	
1	dis		2	2	0.5917	0.5909	-2123.3534	-2123.3056	-2631.4407	385.0269	
2	indus		3	3	0.6879	0.6867	-2257.2883	-2257.2085	-2764.9396	178.0556	
3	rad		4	11	0.7448	0.7397	-2343.1898	-2342.5569	-2851.1248	70.3758	
4	age		5	12	0.7666	0.7614	-2386.3988	-2385.6589	-2892.4458	24.9929	
5	medv		6	13	0.7721	0.7666	-2396.4777	-2395.6223	-2901.9027	15.0337	
6	chas		7	14	0.7735	0.7676*	-2397.5881*	-2396.6085*	-2902.7929*	14.0000*	
	* Optimal Value Of Criterion										

	Stepwise Selection Summary									
Step	Effect Entered	Effect Removed	SBC	PRESS	ASE	F Value	Pr > F			
0	Intercept		-2175.8573	6.8078	0.0134	0.00	1.0000			
1	dis		-2622.9003	2.7951	0.0055	730.43	<.0001			
2	indus		-2752.6087	2.1460	0.0042	155.02	<.0001			
3	rad		-2804.6979	1.7869	0.0034	13.80	<.0001			
4	age		-2843.6803	1.6381	0.0031	46.17	<.0001			
5	medv		-2849.5327*	1.6051*	0.0031	11.91	0.0006			
6	chas		-2846.4165	1.6096	0.0030	3.03	0.0822			
	* Optimal Value Of Criterion									

The six variables were used to fit the model by using PROC GLM procedure. The model is significantly better than an error-only model. However, the diagnostic plots show a clear trend that residuals increase as the predicted values increase.

Class Level Information						
Class	Levels	Values				
chas	2	0 1				
rad	9	1 2 3 4 5 6 7 8 24				

Number of Observations Read	506
Number of Observations Used	506

Dependent Variable: nox

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	13	5.24533971	0.40348767	129.27	<.0001
Error	492	1.53561632	0.00312117		
Corrected Total	505	6.78095604			

R-Square	Coeff Var	Root MSE	nox Mean	
0.773540	10.07174	0.055867	0.554695	

Source	DF	Type I SS	Mean Square	F Value	Pr > F
indus	1	3.95440628	3.95440628	1266.96	<.0001
rad	8	0.63897444	0.07987180	25.59	<.0001
chas	1	0.01095290	0.01095290	3.51	0.0616
age	1	0.44753753	0.44753753	143.39	<.0001
dis	1	0.14951062	0.14951062	47.90	<.0001
medv	1	0.04395796	0.04395796	14.08	0.0002

Source	DF	Type III SS	Mean Square	F Value	Pr > F
indus	1	0.15999151	0.15999151	51.26	<.0001
rad	8	0.34332722	0.04291590	13.75	<.0001
chas	1	0.00946855	0.00946855	3.03	0.0822
age	1	0.10209335	0.10209335	32.71	<.0001
dis	1	0.18102222	0.18102222	58.00	<.0001
medv	1	0.04395796	0.04395796	14.08	0.0002

Appendix C: Gamma Models

The type 1 analysis shows only one variable CHAS is not significant at a 0.05 level when the terms are added sequentially. The type 3 analysis shows that given all the other variables, only one variable CHAS is not significant at a 0.05 level. Based on the analyses of Type 1 and Type 3, the variable CHAS should be removed and the model should be refit. Examining the residuals and Cook's distances with the criterion as larger than .5, no observations should be removed.

Model Information				
Data Set	WORK.HOUSE			
Distribution	Gamma			
Link Function	Log			
Dependent Variable	nox			

Criteria For Assessing Goodness Of Fit							
Criterion	DF	Value	Value/DF				
Deviance	492	3.6936	0.0075				
Scaled Deviance	492	506.6149	1.0297				
Pearson Chi-Square	492	3.7964	0.0077				
Scaled Pearson X2	492	520.7189	1.0584				
Log Likelihood		835.1249					
Full Log Likelihood		835.1249					
AIC (smaller is better)		-1640.2498					
AICC (smaller is better)		-1639.2703					
BIC (smaller is better)		-1576.8518					

	Analysis Of Maximum Likelihood Parameter Estimates									
Parameter		DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi- Square	Pr > ChiSq		
Intercept		1	-0.5549	0.0399	-0.6331	-0.4768	193.62	<.0001		
indus		1	0.0075	0.0010	0.0056	0.0094	57.75	<.0001		
chas	0	1	-0.0210	0.0156	-0.0516	0.0095	1.82	0.1776		
chas	1	0	0.0000	0.0000	0.0000	0.0000		•		
age		1	0.0016	0.0002	0.0012	0.0020	52.10	<.0001		
dis		1	-0.0323	0.0032	-0.0386	-0.0260	101.10	<.0001		
rad	1	1	-0.0700	0.0230	-0.1151	-0.0249	9.24	0.0024		
rad	2	1	-0.1420	0.0204	-0.1820	-0.1021	48.66	<.0001		

	Analysis Of Maximum Likelihood Parameter Estimates								
Parameter		DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi- Square	Pr > ChiSq	
rad	3	1	-0.1051	0.0190	-0.1422	-0.0679	30.74	<.0001	
rad	4	1	-0.1074	0.0127	-0.1323	-0.0826	71.82	<.0001	
rad	5	1	-0.0128	0.0127	-0.0377	0.0122	1.01	0.3157	
rad	6	1	-0.0789	0.0198	-0.1177	-0.0402	15.92	<.0001	
rad	7	1	-0.0764	0.0248	-0.1250	-0.0279	9.53	0.0020	
rad	8	1	-0.0817	0.0216	-0.1241	-0.0394	14.33	0.0002	
rad	24	0	0.0000	0.0000	0.0000	0.0000			
medv		1	-0.0021	0.0005	-0.0031	-0.0011	15.87	<.0001	
Scale		1	137.1596	8.6127	121.2764	155.1228			

Note: The scale parameter was estimated by maximum likelihood.

LR Statistics For Type 1 Analysis							
Source	2*LogLikelihood	DF	Chi-Square	Pr > ChiSq			
Intercept	789.5166						
indus	1272.6639	1	483.15	<.0001			
chas	1274.1119	1	1.45	0.2288			
age	1452.9114	1	178.80	<.0001			
dis	1539.8670	1	86.96	<.0001			
rad	1654.7475	8	114.88	<.0001			
medv	1670.2498	1	15.50	<.0001			

LR Statistics For Type 3 Analysis							
Source	DF	Chi-Square	Pr > ChiSq				
indus	1	54.98	<.0001				
chas	1	1.82	0.1769				
age	1	49.45	<.0001				
dis	1	91.30	<.0001				
rad	8	115.50	<.0001				
medv	1	15.50	<.0001				

The model was refit with all predictors except CHAS. All the parameters are significant at a 0.05 level in the estimation table except one level of RAD (RAD=5). Both the type 1 and type 3 analyses indicate that all the five terms should be retained in the model. No observations should be removed by using the Cook's distance to check the influential points. The residual plots look fine and there are no more issues.

Model Information				
Data Set	WORK.HOUSE			
Distribution	Gamma			
Link Function	Log			
Dependent Variable	nox			

Criteria For Assessing Goodness Of Fit						
Criterion	DF	Value	Value/DF			
Deviance	493	3.7069	0.0075			
Scaled Deviance	493	506.6171	1.0276			
Pearson Chi-Square	493	3.8160	0.0077			
Scaled Pearson X2	493	521.5200	1.0578			
Log Likelihood		834.2130				
Full Log Likelihood		834.2130				

Criteria For Assessing Goodness Of Fit						
Criterion DF Value Value/D						
AIC (smaller is better)		-1640.4261				
AICC (smaller is better)		-1639.5707				
BIC (smaller is better)		-1581.2546				

	Analysis Of Maximum Likelihood Parameter Estimates								
Parameter		DF	Estimate	Standard Error	Wald Confi Lin	dence	Wald Chi- Square	Pr > ChiSq	
Intercept		1	-0.5810	0.0350	-0.6495	-0.5125	276.27	<.0001	
indus		1	0.0076	0.0010	0.0057	0.0096	60.43	<.0001	
age		1	0.0016	0.0002	0.0012	0.0020	53.08	<.0001	
dis		1	-0.0323	0.0032	-0.0386	-0.0260	100.74	<.0001	
rad	1	1	-0.0689	0.0231	-0.1141	-0.0237	8.93	0.0028	
rad	2	1	-0.1433	0.0204	-0.1832	-0.1033	49.42	<.0001	
rad	3	1	-0.1045	0.0190	-0.1417	-0.0673	30.29	<.0001	
rad	4	1	-0.1065	0.0127	-0.1314	-0.0817	70.53	<.0001	
rad	5	1	-0.0119	0.0127	-0.0369	0.0130	0.87	0.3497	
rad	6	1	-0.0791	0.0198	-0.1179	-0.0402	15.92	<.0001	
rad	7	1	-0.0767	0.0248	-0.1253	-0.0281	9.56	0.0020	
rad	8	1	-0.0788	0.0215	-0.1210	-0.0366	13.41	0.0002	
rad	24	0	0.0000	0.0000	0.0000	0.0000			
medv		1	-0.0019	0.0005	-0.0030	-0.0009	14.30	0.0002	
Scale		1	136.6673	8.5817	120.8412	154.5660			

Note: The scale parameter was estimated by maximum likelihood.

LR Statistics For Type 1 Analysis							
Source	2*LogLikelihood	DF	Chi-Square	Pr > ChiSq			
Intercept	789.5166						
indus	1272.6639	1	483.15	<.0001			
age	1452.3690	1	179.71	<.0001			
dis	1539.7638	1	87.39	<.0001			
rad	1654.4478	8	114.68	<.0001			
medv	1668.4261	1	13.98	0.0002			

LR Statistics For Type 3 Analysis							
Source	DF	Chi-Square	Pr > ChiSq				
indus	1	57.37	<.0001				
age	1	50.33	<.0001				
dis	1	91.01	<.0001				
rad	8	115.14	<.0001				
medv	1	13.98	0.0002				

Obs	nox	indus	age	dis	rad	medv	cd
1	0.5380	2.31	65.2	4.0900	1	24.0	0.005605
2	0.4690	7.07	78.9	4.9671	2	21.6	0.000059
3	0.4690	7.07	61.1	4.9671	2	34.7	0.001011
4	0.4580	2.18	45.8	6.0622	3	33.4	0.001930
5	0.4580	2.18	54.2	6.0622	3	36.2	0.001699
6	0.4580	2.18	58.7	6.0622	3	28.7	0.000713
7	0.5240	7.87	66.6	5.5605	5	22.9	0.000002
8	0.5240	7.87	96.1	5.9505	5	27.1	0.000143
9	0.5240	7.87	100.0	6.0821	5	16.5	0.000623
10	0.5240	7.87	85.9	6.5921	5	18.9	0.000000

Appendix D: Inverse Gaussian Models

Inverse Gaussian distribution and log link function was used to build the generalized linear model. The type 1 analysis shows five variables INDUS, AGE, DIS, MEDV and RAD are significant at a level of 0.05. The type 3 analysis shows that given all the other variables, INDUS, AGE, DIS, MEDV and RAD are significant at a level of 0.05. The Cook's distance was used to check the influential points. All of the points have Cook's distance less than 0.5. Therefore the model needs to be refit by removing the variable CHAS.

Model Information				
Data Set WORK.HO				
Distribution	Inverse Gaussian			
Link Function	Log			
Dependent Variable	nox			

Criteria For Assessing Goodness Of Fit						
Criterion	DF	Value	Value/DF			
Deviance	492	6.2823	0.0128			
Scaled Deviance	492	506.0000	1.0285			
Pearson Chi-Square	492	6.5409	0.0133			
Scaled Pearson X2	492	526.8252	1.0708			
Log Likelihood		855.3912				
Full Log Likelihood		855.3912				
AIC (smaller is better)		-1680.7824				
AICC (smaller is better)		-1679.8028				
BIC (smaller is better)		-1617.3843				

	Analysis Of Maximum Likelihood Parameter Estimates							
Parameter		DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi- Square	Pr > ChiSq
Intercept		1	-0.5734	0.0384	-0.6486	-0.4983	223.49	<.0001
indus		1	0.0074	0.0010	0.0055	0.0093	57.94	<.0001
chas	0	1	-0.0123	0.0153	-0.0423	0.0177	0.65	0.4211
chas	1	0	0.0000	0.0000	0.0000	0.0000		
age		1	0.0016	0.0002	0.0012	0.0020	64.61	<.0001
dis		1	-0.0302	0.0029	-0.0358	-0.0246	112.38	<.0001
rad	1	1	-0.0808	0.0213	-0.1225	-0.0391	14.43	0.0001
rad	2	1	-0.1431	0.0194	-0.1812	-0.1050	54.20	<.0001

Analysis Of Maximum Likelihood Parameter Estimates								
Parameter		DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi- Square	Pr > ChiSq
rad	3	1	-0.1117	0.0178	-0.1466	-0.0768	39.35	<.0001
rad	4	1	-0.1108	0.0128	-0.1358	-0.0858	75.39	<.0001
rad	5	1	-0.0242	0.0130	-0.0495	0.0012	3.48	0.0621
rad	6	1	-0.0866	0.0190	-0.1238	-0.0494	20.82	<.0001
rad	7	1	-0.0844	0.0224	-0.1283	-0.0404	14.17	0.0002
rad	8	1	-0.0868	0.0204	-0.1268	-0.0468	18.12	<.0001
rad	24	0	0.0000	0.0000	0.0000	0.0000		
medv		1	-0.0018	0.0005	-0.0028	-0.0008	13.01	0.0003
Scale		1	0.1114	0.0035	0.1048	0.1185		

 $\textbf{Note:} \ \text{The scale parameter was estimated by maximum likelihood.}$

	LR Statistics For Type 1 Analysis								
Source	2*LogLikelihood	DF	Chi-Square	Pr > ChiSq					
Intercept	805.1130								
indus	1300.3746	1	495.26	<.0001					
chas	1300.8944	1	0.52	0.4709					
age	1495.3083	1	194.41	<.0001					
dis	1584.8857	1	89.58	<.0001					
rad	1698.1876	8	113.30	<.0001					
medv	1710.7824	1	12.59	0.0004					

LR Statistics For Type 3 Analysis						
Source	DF	Chi-Square	Pr > ChiSq			
indus	1	55.96	<.0001			
chas	1	0.65	0.4192			
age	1	60.30	<.0001			
dis	1	98.87	<.0001			
rad	8	114.91	<.0001			
medv	1	12.59	0.0004			

The model was refit with these five variables identified above. All the parameters are significant at a 0.05 level in the estimation table except RAD=5. The type 1 and type 3 analyses both indicate that all these five terms are significant at a level of 0.05. All the observations have Cook's distance less than 0.5 and the diagnostic plots look good.

Model Information							
Data Set	WORK.GAMMA	Predicted Values and Diagnostic Statistics					
Distribution	Inverse Gaussian						
Link Function	Log						
Dependent Variable	nox						

Criteria For Assessing Goodness Of Fit							
Criterion	DF	Value	Value/DF				
Deviance	493	6.2905	0.0128				
Scaled Deviance	493	506.0000	1.0264				
Pearson Chi-Square	493	6.5577	0.0133				
Scaled Pearson X2	493	527.4967	1.0700				
Log Likelihood		855.0649					
Full Log Likelihood		855.0649					
AIC (smaller is better)		-1682.1298					

Criteria For Assessing Goodness Of Fit					
Criterion	DF	Value	Value/DF		
AICC (smaller is better)		-1681.2744			
BIC (smaller is better)		-1622.9583			

Analysis Of Maximum Likelihood Parameter Estimates								
Parameter		DF	Estimate	Standard Error	Wald Confi Lin	dence	Wald Chi- Square	Pr > ChiSq
Intercept		1	-0.5885	0.0335	-0.6542	-0.5228	308.17	<.0001
indus		1	0.0075	0.0010	0.0056	0.0094	59.94	<.0001
age		1	0.0016	0.0002	0.0012	0.0020	65.30	<.0001
dis		1	-0.0302	0.0029	-0.0358	-0.0246	112.23	<.0001
rad	1	1	-0.0801	0.0213	-0.1217	-0.0384	14.16	0.0002
rad	2	1	-0.1437	0.0194	-0.1818	-0.1056	54.61	<.0001
rad	3	1	-0.1113	0.0178	-0.1462	-0.0764	39.07	<.0001
rad	4	1	-0.1102	0.0128	-0.1352	-0.0852	74.69	<.0001
rad	5	1	-0.0237	0.0129	-0.0490	0.0017	3.35	0.0674
rad	6	1	-0.0867	0.0190	-0.1239	-0.0495	20.82	<.0001
rad	7	1	-0.0845	0.0224	-0.1284	-0.0405	14.19	0.0002
rad	8	1	-0.0852	0.0203	-0.1250	-0.0454	17.61	<.0001
rad	24	0	0.0000	0.0000	0.0000	0.0000		
medv		1	-0.0018	0.0005	-0.0027	-0.0008	12.37	0.0004
Scale		1	0.1115	0.0035	0.1048	0.1186		

Note: The scale parameter was estimated by maximum likelihood.

LR Statistics For Type 1 Analysis									
Source	2*LogLikelihood	DF	Chi-Square	Pr > ChiSq					
Intercept	805.1130								
indus	1300.3746	1	495.26	<.0001					
age	1495.2108	1	194.84	<.0001					
dis	1584.8693	1	89.66	<.0001					
rad	1698.1661	8	113.30	<.0001					
medv	1710.1298	1	11.96	0.0005					

LR St	LR Statistics For Type 3 Analysis						
Source	DF	Chi-Square	Pr > ChiSq				
indus	1	57.73	<.0001				
age	1	60.89	<.0001				
dis	1	98.75	<.0001				
rad	8	114.62	<.0001				
medv	1	11.96	0.0005				

Obs	nox	indus	age	dis	rad	medv	cd
1	0.5380	2.31	65.2	4.0900	1	24.0	0.006982
2	0.4690	7.07	78.9	4.9671	2	21.6	0.000216
3	0.4690	7.07	61.1	4.9671	2	34.7	0.000820
4	0.4580	2.18	45.8	6.0622	3	33.4	0.002421
5	0.4580	2.18	54.2	6.0622	3	36.2	0.002034
6	0.4580	2.18	58.7	6.0622	3	28.7	0.000777
7	0.5240	7.87	66.6	5.5605	5	22.9	0.000007
8	0.5240	7.87	96.1	5.9505	5	27.1	0.000147
9	0.5240	7.87	100.0	6.0821	5	16.5	0.000562
10	0.5240	7.87	85.9	6.5921	5	18.9	0.000000

Appendix E: One-way ANOVA

This ANOVA model is statistically significant at a 5% level, along with the individual terms in the model. Based on the R-square value, about 46.8% of the variance in NOX is explained by RAD.

By testing the equal variance assumption using Levene's test. We see that Levene's test has a p-value less than 0.0001, so there are significant differences between the sample variances and a Welch correction would be appropriate.

By using Tukey's test, we get all pairwise comparisons. RAD 24 has the significantly higher NOX level than other regions. RAD 5 is the second highest one.

Class Level Information				
Class	Levels	Values		
rad	9	1 2 3 4 5 6 7 8 24		

Number of Observations Read	506
Number of Observations Used	506

Dependent Variable: nox

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	8	3.17543890	0.39692986	54.71	<.0001
Error	497	3.60551713	0.00725456		
Corrected Total	505	6.78095604			

R-Square	Coeff Var	Root MSE	nox Mean
0.468288	15.35505	0.085174	0.554695

Source	DF	Anova SS	Mean Square	F Value	Pr > F
rad	8	3.17543890	0.39692986	54.71	<.0001

Levene's Test for Homogeneity of nox Variance ANOVA of Squared Deviations from Group Means					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
rad	8	0.0210	0.00262	12.19	<.0001
Error	497	0.1067	0.000215		

Welch's ANOVA for nox					
Source	DF	F Value	Pr > F		
rad	8.0000	170.04	<.0001		
Error	114.5				

Tukey's Studentized Range (HSD) Test for nox

Note: This test controls the Type I experimentwise error rate.

Alpha	0.05
Error Degrees of Freedom	497
Error Mean Square	0.007255
Critical Value of Studentized Range	4.40601

Comparisons significant at the 0.05 level are indicated by ***.					
rad Comparison	Difference Between Means	Simultaneous 95% Confidence Limits			
24 - 5	0.10153	0.06768	0.13538	***	
24 - 6	0.15757	0.10063	0.21451	***	
24 - 4	0.16811	0.13385	0.20236	***	
24 - 8	0.17992	0.12103	0.23880	***	
24 - 2	0.18750	0.12861	0.24639	***	
24 - 1	0.20953	0.14585	0.27320	***	
24 - 3	0.21999	0.17114	0.26884	***	
24 - 7	0.23142	0.16304	0.29979	***	
5 - 24	-0.10153	-0.13538	-0.06768	***	
5 - 6	0.05604	-0.00159	0.11366		
5 - 4	0.06657	0.03118	0.10196	***	
5 - 8	0.07838	0.01883	0.13793	***	
5 - 2	0.08597	0.02642	0.14552	***	
5 - 1	0.10799	0.04370	0.17228	***	
5 - 3	0.11846	0.06881	0.16811	***	
5 - 7	0.12988	0.06093	0.19884	***	
6 - 24	-0.15757	-0.21451	-0.10063	***	
6 - 5	-0.05604	-0.11366	0.00159		
6 - 4	0.01054	-0.04733	0.06840		
6 - 8	0.02235	-0.05277	0.09746		
6 - 2	0.02993	-0.04519	0.10504		
6 - 1	0.05196	-0.02697	0.13088		

Comparisons significant at the 0.05 level are indicated by ***.				
rad Comparison	Difference Between Means			
6 - 3	0.06242	-0.00512	0.12996	
6 - 7	0.07385	-0.00892	0.15661	
4 - 24	-0.16811	-0.20236	-0.13385	***
4 - 5	-0.06657	-0.10196	-0.03118	***
4 - 6	-0.01054	-0.06840	0.04733	
4 - 8	0.01181	-0.04797	0.07160	
4 - 2	0.01939	-0.04039	0.07918	
4 - 1	0.04142	-0.02308	0.10593	
4 - 3	0.05189	0.00196	0.10182	***
4 - 7	0.06331	-0.00584	0.13246	
8 - 24	-0.17992	-0.23880	-0.12103	***
8 - 5	-0.07838	-0.13793	-0.01883	***
8 - 6	-0.02235	-0.09746	0.05277	
8 - 4	-0.01181	-0.07160	0.04797	
8 - 2	0.00758	-0.06902	0.08419	
8 - 1	0.02961	-0.05073	0.10995	
8 - 3	0.04008	-0.02911	0.10926	
8 - 7	0.05150	-0.03262	0.13562	
2 - 24	-0.18750	-0.24639	-0.12861	***
2 - 5	-0.08597	-0.14552	-0.02642	***
2 - 6	-0.02993	-0.10504	0.04519	
2 - 4	-0.01939	-0.07918	0.04039	
2 - 8	-0.00758	-0.08419	0.06902	
2 - 1	0.02203	-0.05832	0.10237	
2 - 3	0.03249	-0.03670	0.10168	
2 - 7	0.04392	-0.04020	0.12804	
1 - 24	-0.20953	-0.27320	-0.14585	***
1 - 5	-0.10799	-0.17228	-0.04370	***
1 - 6	-0.05196	-0.13088	0.02697	
1 - 4	-0.04142	-0.10593	0.02308	

Comparisons significant at the 0.05 level are indicated by ***.					
rad Comparison	Difference Between Means	Simultaneous 95% Confidence Limits			
1 - 8	-0.02961	-0.10995	0.05073		
1 - 2	-0.02203	-0.10237	0.05832		
1 - 3	0.01047	-0.06284	0.08377		
1 - 7	0.02189	-0.06565	0.10943		
3 - 24	-0.21999	-0.26884	-0.17114	***	
3 - 5	-0.11846	-0.16811	-0.06881	***	
3 - 6	-0.06242	-0.12996	0.00512		
3 - 4	-0.05189	-0.10182	-0.00196	***	
3 - 8	-0.04008	-0.10926	0.02911		
3 - 2	-0.03249	-0.10168	0.03670		
3 - 1	-0.01047	-0.08377	0.06284		
3 - 7	0.01142	-0.06600	0.08885		
7 - 24	-0.23142	-0.29979	-0.16304	***	
7 - 5	-0.12988	-0.19884	-0.06093	***	
7 - 6	-0.07385	-0.15661	0.00892		
7 - 4	-0.06331	-0.13246	0.00584		
7 - 8	-0.05150	-0.13562	0.03262		
7 - 2	-0.04392	-0.12804	0.04020		
7 - 1	-0.02189	-0.10943	0.06565		
7 - 3	-0.01142	-0.08885	0.06600		