Language Engineering - Problem Sheet 3

Dom Hutchinson

November 1, 2018

Question 1 - Simple Expressions

Consider the following simple expression language consisting of just values and additions.

Question 1.1

Write a recursive function $eval :: Expr \rightarrow Int$ which evaluates these arithmetic expressions.

My Solution 1.1

```
eval :: Expr \rightarrow Int
eval (Val n) = n
eval (Add x y) = (eval x) + (eval y)
```

Question 1.2

Question 1.2.1

Define the datatype $Fix\ f$ with a single constructor called $In::f\ (Fix\ f)\to Fix\ f$. Also define $inop::Fix\ f\to f\ (Fix\ f)$ which unwraps one layer of structure.

My Solution 1.2.1

```
data Fix f = In (f (Fix f))

inop :: Fix f \rightarrow f (Fix f)

inop (In x) = x
```

Question 1.2.2

Define a new datatype $ExprF\ k$ which mirrors the constructors of Expr except that the parameter k replaces recursive occurrences of Expr.

My Solution 1.2.2

Question 1.2.3

Let Expr' be a type alias for $Fix\ ExprF$. Write down three values of type Expr'.

My Solution 1.2.3

$$\begin{array}{lll} \operatorname{ex1} &=& \operatorname{In}\left(\operatorname{ValF} & 1\right) \\ \operatorname{ex2} &=& \operatorname{In}\left(\operatorname{ValF} & 4\right) \\ \operatorname{ex3} &=& \operatorname{In}\left(\operatorname{AddF} & \left(\operatorname{In} & \left(\operatorname{ValF} & 1\right)\right) & \left(\operatorname{In} & \left(\operatorname{ValF} & 2\right)\right)\right) \end{array}$$

Question 1.2.4

Define the recursive function $from Expr :: Expr \to Expr'$ that converts values from Expr to Expr'.

My Solution 1.2.4

```
fromExpr :: Expr -> (Fix ExprF)
fromExpr (Val n) = In (ValF n)
fromExpr (Add x y) = In(AddF (fromExpr x) (fromExpr y))
```

Question 1.3

Question 1.3.1

Define a function cata :: Functor $f \Rightarrow (f \ a \rightarrow a) \rightarrow Fix \ f \rightarrow a$ which reduces the Fix f structure into a single value of type a using the provided algebra of type $f \ a \rightarrow a$.

My Solution 1.3.1

```
cata :: Functor f \Rightarrow (f a \rightarrow a) \rightarrow Fix f \rightarrow a cata alg (In x) = alg (fmap (cata alg) x)
```

Question 1.3.2

Give a Functor instance for your ExprF type.

My Solution 1.3.2

Question 1.3.3

Write a function $eval' :: Expr' \to Int$ using the function cata and an appropriate algebra.

My Solution 1.3.3

```
eval' :: Fix ExprF-> Int
eval' = cata alg
where
    alg :: ExprF Int -> Int
    alg (ValF n) = n
    alg (AddF x y) = x+y
```

Question 1.3.4

Discuss the advantages of using cata to define the evaluation function for the Expr' type versus the original eval for Expr.

My Solution 1.3.4

TODO

Question 1.4

Question 1.4.1

Define the function $toExpr :: Expr' \to Expr$ that converts values from Expr' to Expr. This must not be a recursive function.

My Solution 1.4.1

```
toExpr :: Fix ExprF -> Expr
toExpr = cata alg
where
   alg :: ExprF (Expr) -> Expr
   alg (ValF n) = Val n
   alg (AddF x y) = Add x y
```

Question 1.4.2

An isomorphism between two types A and B, written $A \cong B$, exists when there are functions $f: A \to B$ and $g: B \to A$ such that $f \circ g = id$ and $g \circ f = id$. Prove that $Expr \cong Expr'$.

My Solution 1.4.2

TODO

Question 2 - Composing Expressions

It is possible to take the coproduct of functors f and g as given by the following type. This is a type operator that we have declared ot be right associative with precedence 5.

```
data (f :+: g) a = L (f a)
| R (g a)
infixr 5 :+:
```

Question 2.1

Give the Functor instance for f : + : g under ten assumption that f and g are functors.

My Solution 2.1

```
instance (Functor f, Functor g) \Rightarrow Functor (f:+:g) where fmap f (L x) = L (fmap f x) fmap f (R y) = R (fmap f y)
```

Question 2.2

The datatpe ExprF you defined in the last section can be decomposed into two parts: $ValF\ k$ and $AddF\ k$ which represent the abstract syntax for values and addition respectively.

Question 2.2.1

Give the definitions of both ValF and AddF.

My Solution 2.2.1

```
\begin{array}{lll} data & ValF & k = ValF & k \\ data & AddF & k = AddF & k & k \end{array}
```

Question 2.2.2

Give Functor instances for both ValF and AddF.

My Solution 2.2.2

```
instance Functor ValF
  where
    fmap f (ValF n) = ValF (f n)

instance Functor AddF
  where
    fmap f (AddF x y) = AddF (f x) (f y)
```

Question 2.3

Dom Hutchinson

Write a new data type SubF k which represents the abstract syntax for subtraction. Furthermore, write a Functor instance for SubF.

My Solution 2.3

```
data SubF k = SubF k k
instance Functor SubF
where
fmap f (SubF x y) = SubF (f x) (f y)
```

Question 2.4

Write a function $evalAddSub :: Fix(ValF : + : AddF : + : SubF) \rightarrow Int$ using cata which can evaluate arithmetric expressions containing values, additions and subtractions.

Hint - Look at the associativity of the : + : operator.

My Solution 2.4

Question 2.5

Explain why this method of composing datatypes will become more cumbersome as more datatypes are added into the composition.

My Solution 2.5

TODO

Question 3 - Classy Algebras

Consider the new typeclass $Alg\ f\ a$ which contains the operation of an algebra, $alg: f\ a \to a$, where f is a functor and a is the carrier.

This class requires multiple parameters.

```
class Functor f \Rightarrow Alg \ f \ align where alg :: \ f \ a \rightarrow a
```

Question 3.1

Give an instance for Alg for ValF with carrier Int.

My Solution 3.1

Question 3.2

Give an instance for Alg for AddF with carrier Int.

My Solution 3.2

instance Alg AddF Int where
$$alg (AddF x y) = x + y$$

Question 3.3

Give an instance for Alg for SubF with carrier Int.

My Solution 3.3

```
instance Alg SubF Int
where
alg (SubF x y) = x - y
```

Question 3.4

Give the instance for $Alg\ (f:+:g)\ a$, assuming that instances of $Alg\ f\ a$ and $Alg\ g\ a$ exist. Hint - Use class constraints on your instance.

My Solution 3.4

```
instance (Alg f a, Alg g a) \Rightarrow Alg (f :+: g) a where 
— alg :: (f :+: g) a \Rightarrow a alg (L x) = alg x alg (R y) = alg y
```

Question 3.5

Now give a new definition for $evalAddSub :: Fix (ValF : + : AddF : + : SubF) \rightarrow Int$ using cata and an appropriate algebra.

Hint - Your answer should use the algebra from the Alg class.

My Solution 3.5

Question 3.6

Define a function $cati :: Alg \ f \ a \Rightarrow Fix \ f \rightarrow a$ which performs teh same role as cata, but using the alg given by $Alg \ g \ a$ instance.

My Solution 3.6

cati :: Alg f a
$$\Rightarrow$$
 Fix f \Rightarrow a cati (In x) = alg (fmap cati x)

Question 3.7

Question 3.7.1

Extend the expression language you have built so far by including a new datatype MulF.

My Solution 3.7.1

```
data MulF k = MulF k k
instance Functor MulF
  where
    fmap f (MulF x y) = MulF (f x) (f y)
mul :: MulF Int -> Int
mul (MulF x y) = x * y
```

Question 3.7.2

Define an appropriate algebra with carrier Int that performs the multiplication.

My Solution 3.7.2

```
instance Alg MulF Int
where
alg (MulF x y) = x * y
```

Question 3.7.3

Redefine Expr to be a synonym for the expression language that includes multiplication.

My Solution 3.7.3

```
type ExprF = Fix (ValF :+: AddF :+: MulF :+: SubF)
```

Question 3.7.4

Use *cati* to define a function $eval :: Expr \rightarrow Int$ that evaluates expressions.

My Solution 3.7.4

```
eval :: ExprF -> Int
eval = cati
```

Question 3.8

Without changing any previous code, write a function $depth :: Expr \to Int$ which returns the depth of the deepest node in an expression.

Hint - Use a newtype for Int to provide a specialisation carrier.

My Solution 3.8

TODO