

MapleT.A. 2010 Matematik 2A hold 4: teori opgaver A

View Grade Quit & Save **View Details** Help

Feedback: Details Report

[PRINT]

2010 Matematik 2A hold 4, teori opgaver A Jens Mohr Mortensen, 6/3/10 at 4:57 PM

Question 1: Score 0/10

Der er givet en n imes n matrix A med den egenskab, at søjlerne i A udspænder R^n Markér alle sande udsagn nedenfor.

Choice	Selected		Points
A er invertibel.	No	X	
Nul er ikke en egenværdi for A_{\cdot}	No	X	
Ligningssystemet $A\mathbf{x} = 0$ har en ikke-triviel løsning.	No		
A er diagonaliserbar.	No		

Number of available correct choices: 2

Partial Grading Explained

Question 2: Score 0/10

Der er givet en 3 \times n matrix A med følgende egenskaber:

- 1. Det er givet, at søjlerummet for A har dimension 2, dvs. dim Col A = 2.
- 2. Der findes et \boldsymbol{b} , således at ligningssystemet $A\boldsymbol{x} = \boldsymbol{b}$ er inkonsistent.

Find den mindste værdi af $\,n\,$, for hvilken $\,A\,$ har begge disse egenskaber. Skriv svaret som et tal nedenfor, for eksempel

Your Answer: No answer Comment: Svaret er 2.

Question 3: Score 0/10

Der er givet en $n \times n$ matrix A med determinanten $\det A = 0$. Markér alle sande udsagn nedenfor.

Choice	Selected		Points
A er ikke invertibel.	No	X	
A har altid egenværdien nul.	No	X	
Ligningssystemet $A\mathbf{x} = \mathbf{b}$ er konsistent for alle \mathbf{b} .	No		
$oldsymbol{A}$ er altid diagonaliserbar.	No		

Number of available correct choices: 2

Partial Grading Explained

Question 4: Score 0/10

Der er givet en $n \times n$ matrix A, $n \ge 2$, med den egenskab, at alle indgange i den første søjle er lig 1, altså at $a_{i1}=1,\ \ \, i=1,\,2,...,\,n.$

Hvad kan man sige om determinanten $\det A$? Marker det af nedenstående tre udsagn, der er sandt.

03-06-2010 16:57 2 of 2