Scalable Clustering with Graph Neural Networks using DGL

NICHOLAS CHOMA, JOAN BRUNA

Clustering with GNNs

Particle Tracking

- Proton bunches circulate at LHC and collide at high energy
- Each collision produces many new particles, which spread outward in a shower
- To identify the types of particles and their kinematic properties, an applied magnetic field bends their trajectories
- These particles are recorded having passed through the detector cells
- From the recorded hits, the goal is to cluster them such that each cluster is associated with one particle

Particle Tracking

Given a set of $\approx 10^5$ points created by $\approx 10^4$ particle tracks, cluster hits such that each cluster is associated with one track.

Input:

- N hits (x, y, z) and detector ID)
- Detector cell pattern for each hit

Output:

k clusters of the N hits

Challenges:

- Variable number of tracks which is not a priori known
- Inference must be efficient

Traditional method, k-means

- Input: $X = \{x_1, ..., x_n\}, x_i \in \mathbb{R}^d$
- Output: k clusters of X
- Hyperparameters
 - \circ k, the number of clusters
 - *i*, the number of iterations for convergence
- Algorithm
 - **1. Assign** points to current cluster centroids
 - Update cluster centroids from assigned points
- Time complexity
 - *O*(*ndki*)

Traditional method, DBSCAN

- Input: $X = \{x_1, ..., x_n\}, x_i \in \mathbb{R}^d$
- Output: k clusters of X
- Hyperparameters
 - ϵ , the maximum distance between two points to be considered within the same neighborhood
 - m, the minimum number of points per cluster
- Related to spectral clustering
 - But no need to pre-specify number of clusters

k-means vs. DBSCAN

DBSCAN succeeds where k-means fails

k-means vs. DBSCAN

DBSCAN fails when cluster density varies drastically

Clustering with GNNs

- Graph neural network model is trained in stages
- 1. Construct graph by pre-selecting potential hit pairs, which become edges (hits are vertices)
- 2. Embed hits using proxy goal of classifying whether hit pairs belong to same track
- 3. Cluster embedded hits into tracks

Construct Graph

Construct graph by pre-selecting potential hit pairs, which become edges

- Relevant hit pairs are selected in stages
 - 1. Embed hits into new space with Euclidean distance metric
 - 2. Build k-d tree using embedded hits
 - 3. Find all nearby hits within ϵ -neighborhood

Construct Graph

- Hits are embedded from original feature space to new space with Euclidean distance metric
 - Hits belonging to same track are nearby
 - Hits belonging to different tracks are far apart

Construct Graph

- From embedded hits, construct k-d tree with Euclidean distance
 - Efficient querying for fast graph construction
- Construct graph by finding hits within ϵ -neighborhood of each hit

GNN Edge prediction

Embed hits by classifying whether hit pairs belong to same track

- Train graph neural network (GNN) model with sparse graph constructed by metric learning stage
- GNN improves hit embedding by using information from each hit's local neighborhood
- Model is a message-passing GNN, where each layer re-computes weighted edges

Clustering

Cluster embedded hits into tracks

- Run GNN-embedded hits through DBSCAN algorithm, fine-tuned for optimal ϵ -neighborhood and minimum cluster size
- Evaluate final clusters (tracks) on TrackML scoring funciton