CCA-Security

THM: Cramer-Shoup PRE is CCA-secure under DDH.

Proof. We consider some hybrid.

$$A(i^{\lambda}) \qquad pk \qquad e(i^{\lambda})$$

$$c = (c_{i,c_{2,c_{3},c_{4}}}) \qquad (G,g,q) \leftarrow $6roupben(i^{\lambda})$$

$$(m \text{ or } \lambda) \qquad g_{n} = g_{i}g_{2} = g_{i}^{\alpha}$$

$$m_{0}^{*}, m_{1}^{*} \qquad params = (G,g_{i},g_{2},q)$$

$$c^{*} \qquad \times_{i,x_{2},x_{3}} \leftarrow $2q$$

$$c^{*} \qquad \times_{i,x_{2},x_{3}} \leftarrow $2q$$

$$k = (params, h_{i},h_{2},h_{3})$$

$$h_{i} = g_{i}^{x_{1}}g_{2}^{y_{1}} \quad h_{2} = g_{1}^{x_{2}}g_{2}^{y_{2}} \quad m_{2}^{*}$$

$$c_{1}^{*} = g_{3} \quad c_{1}^{*} = g_{4}$$

$$c_{1}^{*} = g_{3} \quad c_{1}^{*} = g_{4}$$

$$c_{2}^{*} = g_{3}^{x_{1}} \quad m_{2}^{*} \quad c_{4}^{*}$$

$$c_{4}^{*} = g_{3}^{x_{2}} \quad g_{4}^{y_{1}} \quad m_{2}^{*}$$

HYB TA

93=91 94=92 $7,5' \leftarrow $7/4$ $5^{*}=95$ $5^{*}=94$ $5^{*}=95$ $5^{*}=94$ $5^{*}=95$ $5^{*}=94$

C4 = 93 +3 X3 94 ×5+372

LEMMA: GAME (1,6) = HVB(1,6), YLE {0,1}
EXERCISE by DDH

LEHMA: HYB(),0) = HVB(),1)

Proof (sketch): Similar to cs-lite. In particular, it still holds

that so long as A makes no ILLEGAL decryption query C that is not rejected, then b is information-theoretically hidden (Try or excercise)

CLAIM Attacker can make decryption query c that is ILLEGAL and not rejected only with negligible prob.

Proof: What does to know about x2, y2, X3, y3?

· log g, hz = x2+xy2

logg, hj = x3+dy3 d = logg, gz

Given the challenge c*= (93,94, c3=93'94', nt, c4")

with 95=91,94=92 for rfr' (whp). = H(c,,c2,c3)

· logg c4 = (X2+B42)r + (X3+B43) xr'

because C4 = 93x2+Byz. 94 49+By3 (the attacker knows true 3

Let c=(c,,cz,cs,c4) be any decryption query Look at cases:

1. (c,,c2,c3) = (c,*,c2*,c3), but c4+c4*

Then, H(c,c2,c3) = H(c,*,c*,c3) = B C, x2+8x3. C2 92+893 = C * x2+8x3. C * 92+893

- 2. (c, c2, c3) \(\frac{1}{2}\), (c, \(\frac{1}{2}\), (c, \(\frac{1}{2}\), (c, \(\frac{1}{2}\), (c, \(\frac{1}{2}\), (c_3) = \(\frac{1}{2}\), (c_1, c_2, c_3) = \(\frac{1}\), (c_1, c_2, c_3) = \(\frac{1}{2}\), (c_1, c_3, c_3) = \(\frac{1}\), (c_1, c_3, c_3) = \(\frac{1}\), (c_1, c_3, c_3) = \(\fra
- 3. (c,,c2,c3) \$ (c,*,c2*,c3*), \$\f(c,c2,c3) = \beta \for \text{H(c,*,c2*,c3*)}\$

 In order for C4 not to be rejected we need

 \[
 \left(\text{og}_{9_1}\text{C4} = (\text{X2} + \beta \text{X3}) \text{Y}_1 + (\text{Y2} + \beta \text{Y3}) \alpha \text{Y}_2
 \]

logg, c, = r, + r2 = loggz C2

Fact: So long as $\beta = \beta^*$, $r_2 \neq r_1$, $r \neq r'$, the above equation is linearly independent of the 3 previous equations. The system has a unique solution, uniformly likely

As in CS-lite, this implies the dam. O

DIGITAL SIGNATURE

We have two more algorithms, and there is no way

		nake without explainly
Knowing A	lice's Sk. This kind	of technology is used
for exam	ple in Bitaoin.	05
In practice		SIGNATURE to authenticate INFRASTRUCTURE.
Alice	KEY EXCHANGE	Amazon
Why does Alice	PR	(ple, sie) for Pleet
believe that ple		
is from Amazon?		
K=\$ {0,1}		
for AES	<u> </u>	, k:Dec(sle,c)
C+Enc(pk,k)		-
	SEURE CHANNEL	
This method	is the base of the TS	Protocol
cectca	+ AM = Sign (sleca, ple 1	Anezon)
Amezon		
	pr	CA pleen, sleco
_	cetca + AM	— paes, saces
Africe check	es Vrfy (pka, pkll A	nezon, custca + an) = 1

But why does Alice believe place is actually from ca?

$$A(i^{\lambda})$$

$$Pk$$

$$(pk,sk) \leftarrow \$kGm(i^{\lambda})$$

$$M \rightarrow G = Sign(sk,m)$$

$$M^{\lambda},\sigma^{*} \rightarrow A w.n.(iF)$$

$$Vrfy(pk,m^{*},\sigma^{*}) = 1$$

$$M^{*} \neq \{m\}$$

THM: UF-CHA signatures exist assuming owfs.
But it's not practical...

What about RSA? Would this work?

UF-CMA? Assume given
$$(n, \sigma)$$
, (n', σ')

Forge for $m \cdot m' = m^*$
 $T \cdot \sigma' = \sigma^*$

Also, withous sign. queries: pick TE Z'n*

Let n= Te mod n

Forge m, T

How to fix this? Hash the nessage!

Sign (sk, m) = H(m) d mod n Vrfy (pk, m, r) = ve = H(m)

Why is this secure? Intuitively we need CR: given valid (m, r), if I can find $m' \not\models m$ with H(m) = H(m'), then (m', σ) is also valid.

Let's abstract it: RSA , s just a TDP:

(Gen, f, f') $K6en(i^{\lambda}) = Gen(i^{\lambda}) \not \Rightarrow \rightarrow (pk, sk)$ $Sign(n, ik) = f^{-1}(sk, H(m))$ $Vrfy(pk, n, \sigma) : f(pk, \sigma) ? H(m)$

FULL BONDER STORE TO STORE STO

This works, only accoming H behaves like a RANDOM

ORACLE, and it is PROVABLY SECURE

The RANDOM oracle methodology: Assume algorithm and attacker here occess to H(·).

Why this? Clearly security is only houristic, because sometimes it's impossible to do things without a random oracle. Also, it is super efficient when replacing Rowith SHA-3.

THM: Full Domain thanh is UF-CMD in the Ro model assuming (gen, f, f-1) is a TOP.

Proof: We need to show that no A por exist s.t.

Game
$$\frac{Game}{\pi_{A}}$$
 (1) Ro H: $\frac{1}{61} \rightarrow \chi_{pe}$

A($\frac{1}{4}$) px

 $\frac{C(\frac{1}{4})}{(pk,1k)} \leftarrow \sharp Gen(\frac{1}{4})$

Rowards $\frac{M}{2}$

H($\frac{M}{4}$)

sign queries
$$(n^*, \sigma^*)$$
 $f = f^{-1}(sk, H(m))$

$$f(pk, \sigma^*) = H(m^*)$$

$$f^* : s \in FRESH$$

Assume I per attacker to succeeding up > 1/poly and construct A' for TOP.

Assumption: Before signature query on n: (or forgery on m*), attacker asks n: to Ro (or m*).

Also As neur repeats queries.

> light guess query not to Ro A' (PKJY) A(id) pk 6 (pk,12) +5 ym (11) X + Zpk >j->[q] IF : # j y = f(pk, x) ×: + Hpre Y: = { (pk, x;) Else return y=y; 4 Ro programing perfect simulation as (y = \$ * Fpr) = { y: x = * pr } > Perfect simulation as X; = { -1 (sky:)

The power of Ros.

= heg((
$$\lambda$$
) for $n = w \log \lambda$
 $q = poly(\lambda)$