- 1. Show that the function $f(z) = \frac{x^3(1+i) y^3(1-i)}{x^2 + y^2}$ for $z = x + iy \neq 0$ and f(0) = 0 is continuous at z = 0.
- 2. Let $f(z) = (8x x^3 xy^2) + i(x^2y + y^3 8y)$ for $z = x + iy \in \mathbb{C}$. Determine the region S in \mathbb{C} at which f is differentiable. What is the domain of analyticity of f in \mathbb{C} ?
- 3. Assume Re(a), $Re(b) \le 0$ where $a, b \in \mathbb{C}$. Show that $|e^a e^b| \le |a b|$. [2]
- 4. Evaluate $\int_C \frac{e^{-iz}}{(z^2+1)^2} dz$, if C is the circle |z-3i|=3. [2]
- 5. Find the power series of the function $f(z) = \frac{1}{(z-1)(z-2)}$ in the domain 1 < |z| < 2. [2]
- 6. Prove or disprove(by an example): If a function f(z) = u(x, y) + iv(x, y) is analytic in \mathbb{C} and satisfies u(x, y) + v(x, y) = 1 for all z = x + iy in \mathbb{C} then f is a constant function in \mathbb{C} . [1]
- 7. Find out the harmonic conjugate of the function $u(x, y) = y^3 3x^2y$. [2]
- 8. Write down the singular points with the of singularities of the functions

a.
$$f_1(z) = \sum_{k=-\infty}^{-1} z^k + \sum_{k=0}^{\infty} \frac{z^k}{2^{k+1}}$$
 and b. $f_2(z) = \frac{e^{z^2} - 1}{z^4}$. [2]

- 9. Find the singularities of the function $f(z) = \cot(z)$. What are the residues at singular points? [2]
- 10. Show that $\sin(z_1 + z_2) = \sin(z_1)\cos(z_2) + \cos(z_1)\sin(z_2)$, $z_1, z_2 \in \mathbb{C}$. You may use the fact that it works when $z_1, z_2 \in \mathbb{R}$.
- 11. Let $f(z) = \sin(z)$ and R be the rectangular region $0 \le y \le 1$, $0 \le x \le \pi$. Find the points in R where the function |f(z)| reaches its maximum values.
- 12. Evaluate $\int_C \frac{z^2 + 3z + 2}{z^3 z^2} dz$ where C: |z| = 2. (Hint: You may use Cauchy's residue theorem)[3]
- 13.a) Find the Fourier Series of the 2π periodic function $f(x) = x \sin(x)$, $-\pi \le x < \pi$. Where does this obtained Fourier series converge to for $x = \pm \pi$? [2.5]
 - b) Given the Fourier Series of 2π periodic piecewise continuous function f(x) for $0 < x < 2\pi$ as:

$$f(x) \sim \frac{A_0}{2} + \sum_{n=1}^{\infty} (A_n \cos(nx) + B_n \sin(nx)),$$

where $A_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) dx$, $A_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) dx$, $B_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) dx$, $n = 1, 2, 3, \dots$ Find the Fourier Series of f(x) for $-\pi < x < \pi$ in terms of A_0, A_n 's & B_n 's. [1.5]

c) Is
$$tan(x)$$
 a piecewise continuous function in $[-\pi, \pi]$? Justify. [1]