Quadratic Machine Homework

Perceptron Configuration:

• Inputs: x, y, xy, x², y²

• Weights: w_0 (bias), w_1 (x), w_2 (y), w_3 (xy), w_4 (x²), w_5 (y²)

• Activation Function: Output z = 1 if net > 0, else z = 0

• Learning Rate (c): 0.5

• Initial Weights: All weights are initialized to 0.

Training Set:

Pattern	x	у	Target (t)
1	0	0.4	0
2	-0.1	1.2	1
3	0.5	0.8	0

Weight Update Rule:

 $\Delta wi = c \times (t - z) \times xi$

• For the bias (w_0) , xi = 1.

Training Process:

Initial Weights:

 $W = [W_0, W_1, W_2, W_3, W_4, W_5] = [0, 0, 0, 0, 0, 0]$

Pattern 1: x = 0, y = 0.4, Target t = 0

1. Compute Inputs:

Input₀ = 1
Input₁ = x = 0
Input₂ = y = 0.4
Input₃ = xy = 0 × 0.4 = 0
Input₄ =
$$x^2 = 0^2 = 0$$

Input₅ = $y^2 = 0.4^2 = 0.16$

2. Calculate Net Input:

net =
$$W_0 \times 1 + W_1 \times 0 + W_2 \times 0.4 + W_3 \times 0 + W_4 \times 0 + W_5 \times 0.16 = 0$$

3. Determine Output (z):

$$z = 0$$
 (since net ≤ 0)

4. Calculate Error:

$$t - z = 0 - 0 = 0$$

- 5. **Update Weights:** Since the error is 0, no weights are updated.
- 6. Weights After Pattern 1:

$$w = [0, 0, 0, 0, 0, 0]$$

Pattern 2: x = -0.1, y = 1.2, Target t = 1

1. Compute Inputs:

Input₀ = 1
Input₁ = x = -0.1
Input₂ = y = 1.2
Input₃ = xy = -0.1 × 1.2 = -0.12
Input₄ =
$$x^2 = (-0.1)^2 = 0.01$$

Input₅ = $y^2 = 1.2^2 = 1.44$

2. Calculate Net Input:

$$net = 0 + 0 \times (-0.1) + 0 \times 1.2 + 0 \times (-0.12) + 0 \times 0.01 + 0 \times 1.44 = 0$$

3. Determine Output (z):

$$z = 0$$

4. Calculate Error:

$$t - z = 1 - 0 = 1$$

5. Update Weights:

$$\Delta w_0 = 0.5 \times 1 \times 1 = 0.5$$
 $\Delta w_1 = 0.5 \times 1 \times (-0.1) = -0.05$
 $\Delta w_2 = 0.5 \times 1 \times 1.2 = 0.6$
 $\Delta w_3 = 0.5 \times 1 \times (-0.12) = -0.06$
 $\Delta w_4 = 0.5 \times 1 \times 0.01 = 0.005$
 $\Delta w_5 = 0.5 \times 1 \times 1.44 = 0.72$

Updated Weights:

$$W_0 = 0 + 0.5 = 0.5$$

 $W_1 = 0 - 0.05 = -0.05$
 $W_2 = 0 + 0.6 = 0.6$
 $W_3 = 0 - 0.06 = -0.06$
 $W_4 = 0 + 0.005 = 0.005$
 $W_5 = 0 + 0.72 = 0.72$

6. Weights After Pattern 2:

$$W = [0.5, -0.05, 0.6, -0.06, 0.005, 0.72]$$

Pattern 3: x = 0.5, y = 0.8, Target t = 0

1. Compute Inputs:

Input₀ = 1
Input₁ = x = 0.5
Input₂ = y = 0.8
Input₃ = xy = 0.5 × 0.8 = 0.4
Input₄ =
$$x^2 = 0.5^2 = 0.25$$

Input₅ = $y^2 = 0.8^2 = 0.64$

2. Calculate Net Input:

net =
$$w_0 \times 1 + w_1 \times 0.5 + w_2 \times 0.8 + w_3 \times 0.4 + w_4 \times 0.25 + w_5 \times 0.64$$

net = $0.5 \times 1 + (-0.05) \times 0.5 + 0.6 \times 0.8 + (-0.06) \times 0.4 + 0.005 \times 0.25 + 0.72 \times 0.64$
net = $0.5 - 0.025 + 0.48 - 0.024 + 0.00125 + 0.4608 = 1.39305$

3. Determine Output (z):

$$z = 1$$
 (since net = 1.39305 > 0)

4. Calculate Error:

$$t - z = 0 - 1 = -1$$

5. Update Weights:

$$\Delta w_0 = 0.5 \times (-1) \times 1 = -0.5$$

$$\Delta w_1 = 0.5 \times (-1) \times 0.5 = -0.25$$

$$\Delta w_2 = 0.5 \times (-1) \times 0.8 = -0.4$$

$$\Delta w_3 = 0.5 \times (-1) \times 0.4 = -0.2$$

$$\Delta w_4 = 0.5 \times (-1) \times 0.25 = -0.125$$

$$\Delta w_5 = 0.5 \times (-1) \times 0.64 = -0.32$$

Updated Weights:

$$W_0 = 0.5 - 0.5 = 0$$

 $W_1 = -0.05 - 0.25 = -0.3$
 $W_2 = 0.6 - 0.4 = 0.2$
 $W_3 = -0.06 - 0.2 = -0.26$
 $W_4 = 0.005 - 0.125 = -0.12$
 $W_5 = 0.72 - 0.32 = 0.4$

6. Weights After Pattern 3:

$$W = [0, -0.3, 0.2, -0.26, -0.12, 0.4]$$

Summary of Weight Updates After Each Pattern:

After Pattern	W _o	W ₁	W ₂	W ₃	W ₄	W ₅
Initial	0	0	0	0	0	0
After Pattern 1	0	0	0	0	0	0
After Pattern 2	0.5	-0.05	0.6	-0.06	0.005	0.72
After Pattern 3	0	-0.3	0.2	-0.26	-0.12	0.4

Final Weights After One Epoch:

$$W = [0, -0.3, 0.2, -0.26, -0.12, 0.4]$$

These weights will be used in the next epoch for further training.