VideoFACT: Detecting Video Forgeries using Attention, Scene Context, and Forensic Traces

Tai D. Nguyen, Shengbang Fang, Matthew C. Stamm

Multimedia & Information Security Lab Drexel University, Philadelphia, USA

Introduction

- Misinformation is a threat to society
- Many ways to create fake videos

Deepfakes

Inpainting

Splicing/Editing

Problem

- Existing media forensic techniques fall into two categories:
 - "Specialist" detectors for video (deepfake detectors, inpainting detectors)
 - "Generalist" detectors for images
- Problem: No generalist detector for video, capable of identifying many forgery types
 - Existing detectors for video only work on one manipulation type
 - Image manipulation detectors all fail on video!

Effects of Modern Video Coding

- Modern Video Codecs (H.264) adversely affects anomaly-based forgery detectors
 - These detectors search for inconsistencies in forensic traces
 - H.264 encodes each macroblocks differently
 - Naturally induces inconsistencies
 - Causing all image detectors to fail!

Proposed Approach

- We propose VideoFACT, a network capable of detecting and localizing a wide variety of video forgeries
 - Capture forensic features specific to video
 - Learn new context features to control for variation in forensic traces caused by video coding
 - Create a set of joint feature embeddings that are analyzed using a deep self-attention module
 - Refine the joint feature embeddings using attention maps
 - Produce accurate decisions using separate subnetworks for detection and localization

Low-Level Feature Extraction

- We use two types of feature embeddings
 - Forensic Feature Embeddings designed to capture traces specific to video
 - Context Feature Embeddings learned to control for variation in forensic traces caused by video coding
 - Concatenate to make Joint Feature Embeddings

Deep Self-Attention Module (DSAM)

- This module's purpose is to
 - Estimate the quality and relative importance of local embeddings by
 - De-emphasizing regions of low-quality traces
 - Emphasizing regions with high-quality traces and potential manipulation

Attention-Informed Feature Refinement

- This module refines the Joint Feature Embeddings by
 - Using attention maps from DSAM to scale embedding vectors by its respective weights
 - Enabling accurate decision making
 - Minimizing false alarms due to video coding

Detection and Localization

- The Detection Subnetwork
 - Combines refined embeddings into detection score
- The Localization Subnetwork
 - Distills refined embeddings into patch-level localization map
 - Converts patch-level map into pixel-level map using bilinear interp. & smart thresholding

Datasets

- No public general video forgery datasets
 - Only Adobe VideoSham (WACV 2023) for evaluation
 - None for training
- "Standard Manipulation" datasets created by us
- "In-the-Wild" datasets
 - Al-Based Inpainting
 - Created by us using E2FGVI & FuseFormer algorithms
 - Deepfakes
 - DeepFaceLab deepfakes created by us
 - FaceForensics++, Deepfake Detection Dataset (DFD)

VCMS

VPVM

VPIM

VPV

Deepfake Video

Inpainted Video

VideoSham

Multi-Stage Training Protocol

- We employ a multi-stage training protocol
 - Improve generalization to unseen manipulations
 - Improve convergence during training
 - Protocol:
 - Pretrain FFE on Camera Identification task using VideoASID dataset
 - Progressively train on increasingly challenging manipulations (VCMS -> VPVM -> VPIM)
 - Not training on deepfake or inpainting

Stage	Dataset	Opti- mizer	Epochs	Initial Lr	Decay rate	Decay step
1	A	SGD	6	$1.0e{-4}$	0.75	2
2	В	SGD	6	$8.5e{-5}$	0.85	2
3	C	SGD	23	$8.5e{-5}$	0.85	2
4	A, B, C	SGD	10	$8.5e{-5}$	0.85	2
5	A, B, C, D, E, F	SGD	9	$5.0e{-5}$	0.85	2

Table 1. Training parameters for different training stages of our model. We denote: A=VCMS, B=VPVM, C=VPIM, D=ICMS, E=IPVM, F=IPIM.

Experiments

- We benchmarked against
 - SOTA general image forgery detectors
 - Specialized video manipulation detectors
- We benchmarked on
 - Set A: Standard Video Manipulations Datasets
 - Set B: In-the-Wild Video Manipulation Datasets
- We reported performance with
 - mAP and accuracy for detection
 - MCC and F1 for localization

Results – Splicing & Editing

- Very strong detection & localization performance
 - VCMS Splicing
 - VPVM Editing
 - VPIM Editing (Invisible)
- Existing detectors largely fail

Method	VCMS					VP	VM			VPIM			
Method	Det. mAP	Det. ACC	Loc. MCC	Loc. F1	Det. mAP	Det. ACC	Loc. MCC	Loc. F1	Det. mAP	Det. ACC	Loc. MCC	Loc. F1	
FSG [40]	0.445	0.497	0.001	0.064	0.431	0.480	0.004	0.067	0.485	0.494	0.011	0.065	
EXIFnet [26]	0.610	0.502	0.208	0.230	0.568	0.501	0.213	0.236	0.509	0.500	0.026	0.124	
Noiseprint [12]	0.521	0.500	0.041	0.030	0.495	0.500	0.012	0.013	0.511	0.500	0.010	0.010	
ManTra-Net [58]	0.451	0.500	0.079	0.114	0.526	0.500	0.110	0.145	0.513	0.500	0.025	0.064	
MVSS-Net [8]	0.883	0.602	0.545	0.557	0.644	0.529	0.267	0.279	0.482	0.492	0.018	0.042	
VideoFACT	0.995	0.987	0.530	0.526	0.980	0.950	0.676	0.697	0.869	0.797	0.515	0.547	

Results - Inpainting

- Baseline VideoFACT: not trained on any inpainting data
 - Good detection & localization results
- VideoFACT-FT: fine tuned using very small number of examples
 - Excellent detection & localization results
- Existing approaches largely fail

Method	E2	FGVI Inp	painted V	FuseFormer Inpainted Videos						
Method	Det. mAP	Det. ACC	Loc. MCC	Loc. F1	Det. mAP	Det. ACC	Loc. MCC	Loc. F1		
FSG [40]	0.386	0.452	0.208	0.302	0.351	0.484	0.241	0.290		
EXIFnet [26]	0.635	0.501	0.160	0.244	0.506	0.507	0.146	0.225		
Noiseprint [12]	0.601	0.500	0.091	0.232	0.471	0.500	0.001	0.200		
ManTra-Net [58]	0.499	0.500	0.009	0.055	0.613	0.500	0.031	0.204		
MVSS-Net [8]	0.341	0.435	0.058	0.227	0.230	0.359	0.029	0.206		
VideoFACT	0.782	0.687	0.225	0.309	0.652	0.527	0.118	0.237		
VideoFACT-FT	0.908	0.820	0.411	0.445	0.948	0.846	0.361	0.411		

Inpainted Video

Results – Adobe VideoSham

- VideoSHAM contains multiple types of manipulation
 - Color swapping, object add/remove, text add/remove, etc.
- VideoFACT not trained or finetuned on any of this data
 - Strongest reported results
- Existing approaches largely fail

Method	á	VideoSham [42]								
Method	Det. mAP	Det. ACC	Loc. MCC	Loc. F1						
FSG [40]	0.596	0.538	0.162	0.246						
EXIFnet [26]	0.584	0.555	0.148	0.246						
Noiseprint [12]	0.422	0.447	0.034	0.206						
ManTra-Net [58]	0.551	0.553	0.009	0.058						
MVSS-Net [8]	0.595	0.449	0.142	0.096						
VideoFACT	0.691	0.656	0.193	0.312						

Results - Deepfakes

- Baseline VideoFACT performance is mixed
- VideoFACT-FT: fine tuned 10% of DFD & FF++ dedicated training data
 - Excellent detection & localization results
- VideoFACT-FT outperforms existing approaches
 - Splicing detectors largely fail
 - Outperforms existing deepfake detectors on this experiment

Method	Deep	pFaceLab	Deepfak	e Videos		DF	D [14]		FF++ [49]				
Method	Det. Det.		Loc.	Loc.	Det.	Det.	Loc.	Loc.	Det.	Det.	Loc.	Loc.	
	mAP	ACC	MCC	F1	mAP	ACC	MCC	F1	mAP	ACC	MCC	F1	
FSG [40]	0.450	0.515	0.204	0.137	0.449	0.325	0.097	0.043	0.509	0.519	0.144	0.113	
EXIFnet [26]	0.447	0.492	0.180	0.133	0.489	0.258	0.095	0.051	0.487	0.519	0.141	0.073	
Noiseprint [12]	0.591	0.500	0.010	0.062	0.489	0.252	0.000	0.021	0.486	0.518	0.000	0.066	
ManTra-Net [58]	0.450	0.500	0.004	0.042	0.476	0.253	0.017	0.025	0.504	0.514	0.070	0.091	
MVSS-Net [8]	0.464	0.498	0.199	0.189	0.513	0.532	0.152	0.108	0.499	0.487	0.133	0.164	
VideoFACT	0.666	0.648	0.415	0.410	0.468	0.444	0.081	0.077	0.529	0.519	0.160	0.167	
VideoFACT-FT	0.988	0.922	0.745	0.732	0.937	0.804	0.536	0.490	0.916	0.837	0.661	0.645	
E.ViT [10]	0.896	0.805	N/A	N/A	0.811	0.737	N/A	N/A	0.764	0.676	N/A	N/A	
CCE.ViT [10]	0.962	0.837	N/A	N/A	0.816	0.761	N/A	N/A	0.796	0.719	N/A	N/A	
CNN Ensemble [6]	0.936	0.857	N/A	N/A	0.829	0.745	N/A	N/A	0.713	0.672	N/A	N/A	

Deepfake Video

Results – Key Takeaways

- Baseline Performance
 - Able to detect & localize a wide variety of forgery types (splicing, editing, deepfakes, inpainting)
 - Significantly outperforms SOTA image detectors
- Targeted Manipulation Performance
 - Can massively improve performance by fine-tuning on small amount of data of a specific manipulation
 - Significant performance gain for inpainting & deepfake detection
 - Achieve equivalent or better performance than SOTA specialists

^{*}Important because manipulation is not known a priori in real world

Working Modes

- Our network performs best when
 - The falsified region is larger than our analysis window size (128 x 128 pixels)
 - The forgery and its surrounding do not suffer from poor lighting/texture
 - Color swapping in objects can be challenging
 - Network's input size is limited to 1080p video resolution

Ablation Study

Setup	Component							VideoSham					
Setup			Trans-	Attn.	Data	\overline{I}	et.	Det.	Loc.	Loc.			
	FFE	CFE	former	maps	comb.	\boldsymbol{A}	CC	mAP	<i>F1</i>	MCC			
Proposed	+	+	+	3	Add	0.	656	0.691	0.258	0.168			
No FFE	_	+	+	3	Add	0.	610	0.646	0.209	0.118			
No CFE	+	_	+	3	Add	0.	586	0.635	0.163	0.043			
No DSAM	+	+	_	_	_	0.	601	0.626	0.144	0.000			
No Transformer	+	+	_	3	Add	0.	533	0.538	0.140	0.048			
No Attention Squeeze	+	+	+	_	_	0.	622	0.656	0.254	0.120			
1 Attention Map	+	+	+	1	Add	0.	610	0.655	0.175	0.121			
10 Attention Maps	+	+	+	10	Add	0.	622	0.676	0.212	0.127			
Diff. Feat. Refine			+	3	Concat	0.	614	0.684	0.162	0.091			

Table 4. Ablation study of the components in our proposed network and their performance evaluations.

Thank you!

