## Paphatphong Painee 6670089723

1. Prove that if  $\mathcal{F}$  is a finite subset of C(X) then  $\mathcal{F}$  is equicontinuous.

Proof Let  $\{f_1,...,f_n\} = \mathcal{F} \subseteq C(X)$ .

Let  $x_0 \in X$  and  $\varepsilon > 0$ . Since  $f_i$  is continuous at  $x_0$ .

for all  $i \in \{1,...,n\}$ , there exists  $x_0 \cup i_1 \in \mathcal{V}_X$  such that  $d(f_i(x), f_i(x_0)) < \varepsilon$  for all  $x \in \mathcal{V}_i$ .

Choose  $U = \bigcap_{i \geq 1} U_i$ . Clearly U is an open set containing  $x_0$ .

Then we have  $d(f_i(x), f_i(x_0)) < \varepsilon$  for all  $x \in U$  all  $f \in \mathcal{F}$ .

Hence  $\mathcal{F}$  is equicantinuous.

**2.** Let  $f_n, f \in C(X)$  for each  $n \in \mathbb{N}$ . Suppose that  $(f_n(x))$  is decreasing and that  $f_n(x) \to f(x)$  for each  $x \in X$ . Prove that  $\{f_n\}$  is equicontinuous.

Proof. Since  $f_n \to f$ ,  $f_1(x) \to f_2(x) \to ... \to f(x)$ for all  $x \in X$ . It follows that  $f_1(x) - f(x) \to f_2(x) - f(x) \to ... \to 0$ , and thus  $|f_1(x) - f(x)| \to |f_2(x) - f(x)| \to ... \to 0$ .

Let e > 0. Then there is |e > 0 such that  $|f_n(x) - f(x)| < e/3$  for all u > 0.

Next, we show that  $f_m \in B_p(f_N : E)$  for all m > 0 where p is an uniform metric.

Observe that |fn(x)-f(x) < |fn(x)-f(x) | < 2/2

It follows that  $|f_{\rm in}(x) - f_{\rm in}(x)| < \varepsilon/3 + \varepsilon/3 = 2\varepsilon/3$ . Thus sup  $|f_{\rm in}(x) - f_{\rm in}(x)| \leq 2\varepsilon/3 < \varepsilon$ .

Paphatphong Paine 6670089723 Hence  $f_m \in B_p(f_N; \mathcal{E})$ . Now, we see that for every 200 , there is a finite covering of sting by & balls, say  $B_{g}(f_{1}; \varepsilon), B_{g}(f_{2}; \varepsilon), \dots B_{p}(f_{N}; \varepsilon)$ Since stus is totally bounded under the uniterm metric, then sty is equicantinuous under 1-1.

**3.** For each  $n \in \mathbb{N}$ , define  $f_n : \mathbb{R} \to \mathbb{R}$  by

$$f_n(x) = \begin{cases} 0, & \text{if } x \le n; \\ x - n, & \text{if } n < x < n + 1; \\ 1, & \text{if } x \ge n + 1, \end{cases}$$

Determine if the family  $\{f_n\}$  is equicontinuous.



**4.** For each  $n \in \mathbb{N}$ , define  $f_n : \mathbb{R} \to \mathbb{R}$  by

$$f_n(x) = \begin{cases} 0, & \text{if } x < 0 \text{ or } x > 2/n; \\ nx, & \text{if } 0 \le x \le 1/n; \\ 2 - nx, & \text{if } 1/n < x \le 2/n, \end{cases}$$

Determine if the family  $\{f_n\}$  is equicontinuous.

## Sketch Proof



Choose  $x_0 = 0$  and E = 1/4. Let  $\sqrt[4]{2}$  . Then there is  $k \in \mathbb{N}$  such that  $1 < \alpha$  by Archimedean Broporty. Let  $x = \frac{1}{2k}$ . Then we have  $|\frac{1}{2k} - \alpha| < \frac{1}{2k} < \alpha$ . Consider  $f_k \in Sf_n 3$ , we see that

Thus  $|f_{\kappa}(z) - f_{\kappa}(z_0)| \ge |1 \cdot k - ck| = 1 > 1$ .
Thus  $|f_{\kappa}(z)| \le |x| = 1 > 1$ .
Thus  $|f_{\kappa}(z)| \le |x| = 1 > 1$ .

| Paphatphong | Painee | 6670089723 |
|-------------|--------|------------|
|-------------|--------|------------|

funt P.W.

**5.** If  $\{f_n\}$  is a family of equicontinuous real-valued functions defined on a space X and  $(x_n)$  is a sequence in X converging to x, show that  $(f(x_n))$  converges to f(x).

Proof. Let 206X, 270.

Since  $F = 9f_n 3$  is a family of equi continuous real-value of functions, there is open set u in X containing to such that for every  $f \in U$ , and for any  $f_k f$ ,  $f(f) - f_k(x_0) | < \frac{\varepsilon}{3}$ .

Since  $f_n(x_0) \longrightarrow f(x_0)$ , then there is  $N_1 \in \mathbb{N}$ such that  $|f_n(x_0) - f(x_0)| \leq \underline{\xi}$  for all  $n \nearrow N_1$ . Let  $y \in U$ . Then there is  $N_2 \in \mathbb{N}$ , such that  $|f_n(y) - f(y)| \leq \underline{\xi}$ .

Put N= m>x {N, N2 }.

low, we have

 $|f(x_0) - f(y)| \le |f(x_0) - f_N(x_0)| + |f_N(x_0) - f_N(y)| + |f_N(y) - f(y)|$ 

< 3E = E.

Hence f is continuous, and thus fix -> f(x)

**6.** For each  $n \in \mathbb{N}$ , let  $f_n \colon [0,1] \to \mathbb{R}$  be a continuously differentiable function such that  $f_n(0) = 0$  and  $\int_0^1 |f_n'(x)|^2 \, dx \le 1.$ 

Show that the sequence  $(f_n)$  has a uniformly convergent subsequence.

Proof we claim that SIAn(x) | dx <1. By Cauchy Schnarz, we have \$ |fn(x)|.1dx \( \int\_{n(\infty)} | dx \) (\int\_{n(\infty)} | dx) \( \int\_{n(\infty)} | \int\_{n(\in( Next, we show that study is pointwise bounded. Since for all XECO, 17 and all nED we have  $|f_n(x)| = |f_n(x) - f_n(0)| = |\int_{x}^{x} f_n'(t) dt| \leq \int_{x}^{x} |f_n'(t)| dt \leq \int_{x}^{x} |f_n'(t)| dt + \int_{x}^{x} |f_n'(t)| dt + \int_{x}^{x} |f_n'(t)| dt$ =  $\int |f_n(t)| dt \leq 1$ .

This implies that 9 fn q is pointwise bounded. Next, we show that 9 fn q is equicontinuous.

Let & 70 and de & 2 and x, y & [0,1] such that 12-yld. By Canchy By Fundamental theorem of  $\leq \sqrt{\int_{y}^{x} |f_{n}(t)|^{2}} dt / \int_{y}^{x} |f_{n}(t)|^{2} dt$  Calculus. Schnarz inequality tor integrals. = \[ \int\_n(t) \| \at \| \| \\ \ta - \| \| < 1. VF = 1. VE2 = E for all n∈ N. Hence Sty is equicantinuous, and thus (fn) has a uniformly convergent subsequence by Arzela Theorem.