Instructor: Subhadip Mitra

QUANTUM MECHANICS

Monsoon 2022 - CND Core - Credit 4

Date: NOVEMBER 19, 2022

Time: 03 H 00 M

End Examination

Total Marks: 100

Instructions:

- Keep your answers to the point. You may skip 'trivial' steps. However, unless the logic is clear, you will not get any credit for a problem.
- Illegible answers will not be graded.
- No 'benefit of doubt' because of bad notation/illegible hand-writing etc.

Q 1. Consider a finite square well,

$$V(x) = \begin{cases} -V_0 & \text{for } -a < x < a \quad (V_0 > 0) \\ 0 & \text{otherwise,} \end{cases}$$

with a particle of energy E > 0 (scattering state).

- (a) Show that the probability of the particle reflecting back is nonzero in general.
- (b) What happens if $E \gg V_0$ or $E \to 0$? Show that there are some energies for perfect transmission (transmission resonance, this is why you get a very large transmission when you scatter low-energy electrons through noble-gas atoms).
- (c) We say that the absolute value of potential does not matter, only the difference matters. Hence, if we add a constant to the overall potential, nothing changes. Is this true in Quantum Mechanics? If so, how do we see that? If not, why not?

[3+3+4=10] CO: 1,4,5

(a) Show with the momentum-space wave function $\Phi(p,t)$ that

$$\langle x \rangle = \int \Phi^* \left(-\frac{h}{i} \frac{\partial}{\partial p} \right) \Phi dp.$$

(b) Prove the Virial theorem:

$$\frac{d}{dt}\langle xp\rangle = 2\langle T\rangle - \left\langle x\frac{dV}{dx}\right\rangle,\,$$

where T is the kinetic energy.

- (c) Consider a periodic potential, i.e., $V(x+\lambda) = V(x)$. Show that the wave function at $(x_0 + \lambda)$ is proportional to $\psi(x_0)$ up to a constant (i.e., x-independent) phase.
- (d) Explain how one gets dynamic solutions out of the stationary states for the time-independent potential.
- (9) Show that for a simple harmonic oscillator $\langle \hat{V} \rangle = \langle \hat{T} \rangle$.

[2+3+3+2+5=15] CO: 1,3,4,5

Q 3. A spinning electron constitutes a magnetic dipole. Its dipole moment is proportional to the spin,

$$\vec{\mu} = \gamma \vec{S}$$

where γ is the gyromagnetic ratio. If you put it in a magnetic field \vec{B} , it feels a torque. The energy associated with the torque is $-\vec{\mu} \cdot \vec{B}$.

- If the magnetic field is constant $\vec{B} = B_0 \hat{z}$, then show that $\langle \vec{S} \rangle$ gets titled and it precesses about the field with a constant
- (b) If $\vec{B} = B_0 \cos(\omega t)\hat{z}$ (where ω is a constant) and the electron starts out in the spin-up state in the x direction, i.e.,

$$\chi(0) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$

then obtain $\chi(t)$ by solving the time dependent Schrödinger equation

$$i\hbar \frac{\partial \chi}{\partial t} = H\chi,$$

where H is the Hamiltonian matrix.

[7+8=15]

Q 4. (a) Let, for a system of interest $\{|a_i\rangle\}$ be the set of eigenstates of an Hermitian operator A. Show that

(i) the matrix $A_{ij} = \langle a_i | A | a_j \rangle$ is diagonal,

- (ii) the matrix $B_{ij} = \langle a_i | B | a_i \rangle$ is also diagonal where A and B are compatible observables.
- (iii) the transformation from the basis $\{|a_i\rangle\}$ to another basis $\{|c_i\rangle\}$ is unitary, where $\{|c_i\rangle\}$ are the eigenstates of another Hermitian operator C incompatible with A or B.
- (b) In the case of perturbation theory with degenerate states, why does one first look for some operator that commutes with the perturbed Hamiltonian?
- (c) If the lowest-order relativistic correction to the Hamiltonian is given as

$$H' = -\frac{p^4}{8m^3c^2},$$

find the lowest-order relativistic correction to the energy levels of the one-dimensional harmonic oscillator.

[(1+2+2)+3+7=15] CO: 1,2,4,5

- **Q 5.** Use a Gaussian trial function, $\psi(x) = \left(\frac{2b}{\pi}\right)^{1/4} e^{-bx^2}$ to obtain the lowest upper bound on the ground state energy of
 - (a) the linear potential: $V(x) = \alpha |x|$,
 - (b) the quartic potential: $V(x) = \alpha x^4$.

[5+5=10] CO: 3,4

- Q 6. Show that the x, y and z components of the angular momentum operator $(\hat{L}_x, \hat{L}_y, \hat{L}_z)$ are mutually incompatible but all of them commute with $\hat{L}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2$ (it is sufficient to show that \hat{L}^2 commutes with any one component, say \hat{L}_z , the rest can be argued similarly).
 - Since \hat{L}^2 and \hat{L}_z commute, lets denote their common eigenstates as $|\lambda,\mu\rangle$ where

$$\hat{L}^2|\lambda,\mu\rangle = \lambda|\lambda,\mu\rangle$$
 and $\hat{L}_z|\lambda,\mu\rangle = \mu|\lambda,\mu\rangle$.

Now, with the following operators

$$\hat{L}_{\pm} = \hat{L}_{x} \pm i\hat{L}_{y}$$

show that

$$\left[\hat{L}_{z},\hat{L}_{\pm}\right]=\pm\hbar\hat{L}_{\pm}\quad;\quad \left[\hat{L}^{2},\hat{L}_{\pm}\right]=0\quad;\quad \hat{L}^{2}=\hat{L}_{\pm}\hat{L}_{\mp}+\hat{L}_{z}^{2}\mp\hbar\hat{L}_{z}\quad\text{and}\quad$$

(c) the operators \hat{L}_{\pm} take one eigenstate to another eigenstate as:

$$\hat{L}_{\pm}|\lambda,\mu\rangle \propto |\lambda,\mu\pm\hbar\rangle$$

i.e., they act like ladder operators. In other words, show that

$$\begin{array}{lcl} \hat{L}^2 \left(\hat{L}_{\pm} | \lambda, \mu \rangle \right) & = & \lambda \left(\hat{L}_{\pm} | \lambda, \mu \rangle \right), \\ \hat{L}_z \left(\hat{L}_{\pm} | \lambda, \mu \rangle \right) & = & \left(\mu \pm \hbar \right) \left(\hat{L}_{\pm} | \lambda, \mu \rangle \right). \end{array}$$

(d) Now, there will be a μ_{max} and a μ_{min} , i.e., if we start with some $|\lambda, \mu\rangle$ and keep on applying \hat{L}_+ on it, the process will terminate when we apply \hat{L}_+ on $|\lambda, \mu_{max}\rangle$ and, similarly, $\hat{L}_-|\lambda, \mu_{min}\rangle = 0$. Show that λ for the μ_{max} state will be given as

$$\lambda = \mu_{max}(\mu_{max} + \hbar)$$
 and $\mu_{min} = -\mu_{max}$.

(e) Finally show

$$\hat{L}_{\pm}|\lambda,\mu\rangle = \sqrt{\mu_{max}(\mu_{max}+\hbar) - \mu(\mu\pm\hbar)} |\lambda,\mu\pm\hbar\rangle.$$

[5+4+(2+2)+(2+2)+3=20] CO: 1,2,3

Q 7. Consider a box of volume V containing free electron gas (assume the total number of atoms to be N with each one contributing q electrons). The normalized wave functions are given as

$$\psi_{n_x,n_y,n_z} = \sqrt{\frac{8}{V}} \sin\left(\frac{n_x \pi}{l_x} x\right) \sin\left(\frac{n_y \pi}{l_y} y\right) \sin\left(\frac{n_z \pi}{l_z} z\right)$$

where $V = l_x l_y l_z$. The allowed energies are

$$E_{n_x,n_y,n_z} = \frac{\hbar^2 k^2}{2m} = \frac{\hbar^2}{2m} (k_x^2 + k_y^2 + k_z^2)$$

where the wave vector $\vec{k} = (k_x, k_y, k_z)$ with $k_i = n_i^2/l_i^2$.

- (a) Show that the Fermi energy is $E_F = \frac{\hbar^2}{2m} (3\rho \pi^2)^{2/3}$ where ρ is the free electron density. How is it related to the chemical potential? potential?
- (b) The total energy $E_{tot} \propto V^{-2/3}$. Find the proportionality constant and the degeneracy pressure. (c) Covalent bonding between two electrons requires the two to be in the singlet state. Explain.

[4+6+5=15] CO: 1,4,5