CURSO DE ANÁLISIS DE INCENDIOS FORESTALES **NIVEL AVANZADO**

Fondo Europeo de Desarrollo Regional

Presentación

Google earth engine

Aplicación web que permite, mediante el uso de código, acceder a petabytes de información espacial.

Google earth engine

PROS

- Acceso a gran cantidad de información
 - Enorme capacidad de cálculo
 - Rapidez realizando operaciones complejas
 - Posibilidad de compartir código
 - Posibilidad de crear páginas web personalizadas

CONTRAS

Dificultad de uso

Google earth engine

- Ejemplo 1: Uso del Dataset MODIS para mostrar anomalias térmicas (posibles incendios forestales) en un periodo de tiempo dado.
- https://code.earthengine.google.com/f68844228b05212b2f6d49d437f8af2f

Google earth engine

- Ejemplo 2: Uso de Sentinel 2 para afinar el perímetro del incendio y guardarlo como capa vectorial
- https://code.earthengine.google.com/70aa9edfa0c3797eb50fd009beed4d96

Google earth engine

- Ejemplo 3: Evolución de diferentes indices de vegetación a lo largo del tiempo en una zona previamente seleccionada
- https://code.earthengine.google.com/d32026604dcf8141a8747869b66e0cf1

Google earth engine

- Ejemplo 4: Creación de aplicación web con el código creado
- https://bartulo.users.earthengine.app/view/indices

Python

 Lenguaje de programación con gran impacto en el campo de la investigación y el mundo científico (entre otros muchos campos) debido a su "facilidad" de aprendizaje, no se necesita ser programador para sacarle provecho.

Python

PROS

- Posibilidad de automatizar procesos sobretodo en la adquisición de datos
 - Gran cantidad de módulos, probablemente hay un módulo que cubre nuestras necesidades
 - Ambiente de comunidad
 - Capacidad de compartir código

CONTRAS

- Dificultad de uso
- Posibles problemas en la instalación de módulos

Python

- Ejemplo 1: Adquisición de datos topográficos y climáticos el mismo día en el que se produce un supuesto incendio forestal
- https://mybinder.org/v2/gh/bartulo/jupyter-cilifo.git/sincartopy?
 labpath=jornadas cilifo.ipynb

Python

• Ejemplo 2: Integración en QGIS

Python

- Ejemplo 3: Aplicación web
- https://github.com/bartulo/mapa_clima.git

Datos LiDAR

 Nube de puntos obtenida mediante pulsos laser y que puede servir para caracterizar la estructura vegetal

Datos LiDAR

PROS

- Información de la estructura vertical de las masas forestales
- Posibilidad de automatizar la obtención de mapas de combustibles mediante algoritmos de decisión

CONTRAS

- Gran volumen de datos, dificil de manipular
- Poca resolución temporal (Datos IGN)
 - Tecnología cara

Visor POTREE

 Visor web gratuito de datos LiDAR desarrollado en la universidad de Viena. Posee un algoritmo que le hace muy fluído incluso con volumenes grandes de datos (nivel GIF)

Visor POTREE

PROS

- Visor gratuito
- Muy fluido incluso con gran cantidad de datos

CONTRAS

- Se requiere ciertos conocimientos de servidores web para hacerlo correr con los datos de nuestro interés
 - Software en desarrollo

Visor POTREE

 Ejemplo: aplicación web que descarga datos LiDAR de la página del IGN y crea de forma automática un servidor POTREE en local con los datos descargados. También tiene la posibilidad de crear mapa de combustible usando un algoritmo de decisión.