HYPERCUBE MODEL PAPER:

1) Gom:

Ambulance deployment decision

Where should my ambulances loe when idle? If I receive a call for an ambulance, which one to send?

2) MODEL:

J cities (geographical atoms)

 $f_i = fraction of calls from city; (workload of atom;)

jeli,..., <math>5$]

Tij = travel time between cities i and j ij \{1, ..., J}

N ambulances (response vehicles)

L = location matrix with elements lnj = probability that ambulance n is in city j when idling $n \in \{1, ..., N\}$, $j \in \{1, ..., J\}$

Calls for ambulances \sim Poisson (A) \Rightarrow call for ambulance from city $j \sim$ Poisson (Afj).

Service time of any ambulance at any city ~ Expolu)

. ´Ł	$\mathcal{D} = \mathcal{D}$	N-di	nensiona	l binary	y vec	tor to	at re	present	cs sta	ite of	am	bulanc	.e'
		R" =).h if .	ambulance	2 10 3	s bu	ez =	nth e	lement	of 6	કે .		
			000				,						

In the paper, state \vec{B}_j is such that the integer with binary representation \vec{B}_j is equal to j.

Eq. $\vec{B}_0 = (0,0,...,0)$

 $g_3 = (0,0,...,0,7,1)$ $Q_0 = (0,0,...,0)$

1 = transition matrix of state vector with elements

· · λ_{ij} ; $i_{ij} \in \{0,..., 2^n - 1\}$.

· · reeds · to · be computed

Goal in terms of the model.

Compute stationary distribution of vector B

Why?

How? Solve balance equations: Paper has a nice representation in terms of enumeration of states as in .

What to do?

- (1) Compute transition matrix (1)
- 2 Solve balance equations = "easy"

(1) Transition matrix: "Downward transitions"; to i: If i has $w(B_i)$ nonzero elements, and j has $w(B_i)-1$ nonzero elements $\Rightarrow \lambda_{ij} = \mu \omega(B_i)$ Upward transitions" is to j: If i has w(R) < N nonzero elements and has w(b;)+1 nonzero elements Afr = rate at which a new call from city K occurs. < known mix = # response units that are optimal to send to coll a need to from city k when the system is in state i compute $\Rightarrow \lambda_{ij} = \sum_{\kappa} \frac{\lambda f_{\kappa}}{\kappa}$ > KE Snew busy ambulance in set; is one of the ? optimal ambulances to send in state i with call I from city k $t_{ij} = \sum_{k=1}^{3} lik c_{kj} = mean travel time of ambulance i to city j when it's available$ q:; = identifier of ith closest ambulance to city; when all units are available =) qui e arginin taj, qui e arginin taj ac (N) taj , where [b]={1,2,...b] aij e argmin taj

-> The optimal unit to dispatch in state B is the one with smallest q; among the available ones.

-> Efficient computation: compute adjacent vertices one after the other.

Tij = I among adjacent squares.

<u> Example.</u>

$$N = 3$$
 ambulances

$$J = 5$$
 cities

(1)
$$\mu = 3$$
, $\lambda = 9$, $\xi = \left(\frac{1}{10}, \frac{2}{10}, \frac{2}{10}, \frac{3}{10}, \frac{3}{10}, \frac{1}{10}\right)$

a) $L = \text{uniform distribution} \Rightarrow \text{ln}_j = 1/5 \text{ tn}_j$ b) All ambulances always wait in j=1.

(3)
$$\mu = 1, \lambda = 3$$
,
a) L uniform
b) L all in j= 1. 4 5
c) Better L?