MATH-505A: Homework # 3

Due on Friday, September 12, 2014

Saket Choudhary 2170058637

${\bf Contents}$

E	cerc	is	\mathbf{e}	#	:]	7	7																																									į
	(1)											 																																				
	(2)																																															;
	(4)																																															_
	(5)																																															4
	[.																																															
	[.	•	•	•	٠	•	•	•	•	•	•	 	•	•	•	٠	٠	•	٠	•	•	•	•		•	•	 •	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	 •	٠	•	٠	•	2
1																																																_
_	(a)																																															4
	(b)																																															
	(c)																																															
	(d)	•	•	•	•	•	•	•	•	•	•	 	•	•	•	٠	٠	•	٠	•	•	•	•		•	•	 •	•	•	•	•	•	•	•	•	•			•	•	•	•	 •	•	•	٠	•	ļ
2																																																ļ
	(a)											 																															 					ţ
	(b)											 																															 					ţ
	(c)																																															(
	(d)																																															(
	(u)	•	•	•	•	•	•	•	•	•	•	 	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	 •	•	•	•	•	,
4																																																(
	(a)											 																															 					6
	(b)																																															
	(c)																																															(
	` '																																															
	5.																																															7
	6.	•	•	•	٠	•	•			•		 	•	•	•		٠	•		•	•	•	•				 •			•	•	٠	•	•		•	 •	•	•	•		•	 •	•	٠	•		7
	0																																															

Exercise # 1.7

open. To find: $Y = P(AB|AC^c)$.

(1)

Given: Two roads $r1_{AB}$, $r2_{AB}$ connecting points A and B and $s1_{BC}$, $s2_{BC}$ connecting B and C. Let p(AB) denote the probability that path between A \longrightarrow B is open and let $p(AB^c)$ denote the probability that there is no open road b/w A and B. Alternativels p(AB) denotes that road(s) between A and B are

Y is equal to the probability that road between A and B is open AND still the path between A and C is closed \implies Path between B and C is closed AND between A and B is open

p(AB) = Path b/w A,B is open = 1 - Path b/w A,B is closed = 1-p*p Thus

$$p(AB) = 1 - p^2 \tag{1}$$

Also,

$$p(AB) = p(BC) \tag{2}$$

 $p(AC^C) = 1$ - Probability A,C is open = 1 - Probability AB is open AND BC is open. Thus,

$$p(AC^c) = 1 - p(AB)p(AC) = 1 - (1 - p^2)^2$$
(3)

$$p(AB \cap AC^C) = p(AC^C|AB)p(AB) = p(BC^C)p(AB) = p^2(1 - p^2)$$
(4)

$$p(AB|AC^c) = \frac{P(AB \cap AC^c)}{p(AC^c)} = \frac{p(AC^c|AB)p(AB)}{p(AC^c)} = \frac{p^2(1-p^2)}{1-(1-p^2)^2}$$
 (5)

Part 2: Additional direct road from A to C. Find $p(AB|AC^c)$:

 $p(AC^c|AB)$ = Probability that A,C is closed given A,B are open = Probability A,C(direct) are closed AND B,C are closed

$$p(AC^C|AB) = p * p(BC^c)p(AB)$$
(6)

where the extra p in 6 as compared to 4 is because the direct path A,C should be blocked too.

$$p(AC^c) = 1 - (1 - p^2)^2 (1 - p)$$
(7)

where the extra (1-p) factor in 7 as compared to 3 accounts for the fact that direct path AC is open. Thus, for part 2:

$$p(AB|AC^c) = \frac{p^3(1-p^2)}{1-(1-p^2)^2(1-p)}$$
(8)

(2)

$$p(2K \cap 1A) = \frac{\binom{4}{2} * \binom{4}{1} * \binom{52-4-4}{10}}{\binom{52}{13}} = \frac{24 * 44! * 13!}{10! * 52!} = 1.357 * 10^{-9}$$
(9)

 $p(1A|2K) = \frac{p(1A \cap 2K)}{p(2K)}$

$$p(2K) = \frac{\binom{4}{2} * \binom{52-4}{11}}{\binom{52}{13}} \tag{10}$$

(4)

To prove/disprove: $p(x|C) > p(y|C)ANDp(x|C^c) > p(y|C^c) \implies p(x) > p(y)$

$$p(x|C) - p(y|C) > 0 \tag{11}$$

$$p(x|C^c) - p(y|C^c) > 0 (12)$$

$$p(x) = p(x|C)p(C) + p(x|C^{c})p(C^{c})$$
(13)

Also,

$$p(y) = p(y|C)p(C) + p(y|C^{c})p(C^{c})$$
(14)

Consider p(x) - p(y):

$$p(x) - p(y) = (p(x|C) - p(y|C))p(C) + (p(x|C^c) - p(y|C^c))p(C^c)$$
(15)

From the 12, ?? and 15:

$$p(x) - p(y) > 0 \forall x, y \tag{16}$$

Thus, x is always preferred over y.

(5)

Let X_i represent the i^{th} ccard draw

$$p(X_k = m | X_k > X_i) = \frac{p(X_k = m \cap X_k > X_i)}{p(X_k > X_i)} = \frac{p(X_k = m)}{p(X_k > X_i)} = \frac{\frac{1}{m}}{\frac{1}{k}}$$

Given: $X_k > X_i$, $\forall i \in [1, k-1] and k \in [1, m]$ $p(X_k = m | X_k > X_i) = \frac{p(X_k = m \cap X_k > X_i)}{p(X_k > X_i)} = \frac{p(X_k = m)}{p(X_k > X_i)} = \frac{\frac{1}{m}}{\frac{1}{k}}$ Where the equality in the last step comes from the fact that the probability of choosing cards such that $p(X_k > X_i)$ is simply to choose the largest card, i.e. k among the rest i.

Thus $p(X_k = m|X - k > X_i) = \frac{k}{m}$.

Exercise # 1.8]

1

(a)

Six turns up exactly once The dice on which 6 should appear is choosen in $\binom{2}{1}$ way and has just one option(6) while the other has 6-1=5 options. Total outcomes =6*6=36

Thus:
$$p = \frac{\binom{2}{1} * 1 * 5}{36} = \frac{5}{18}$$

(b)

Both numbers are odd. 3 out of 6 numbers are odd and the outcome of odd on both dice are independent. Thus,

$$p = \frac{3*3}{36} = \frac{1}{12}$$

(c)

Sum of scores is 4.

Possible configurations: (1,3); (2,2); (3,1)

Thus:

$$p=\tfrac{3}{36}=\tfrac{1}{12}$$

(d)

Sum of scores is divisible by 3.

Possible choices for sum to be divisible by 3:

3, 6, 9, 12:

3: (1,2), (2,1)

6: (1,5), (2,4), (3,3), (4,2), (5,1)

9: (3,6), (4,5), (5,4), (6,3)

12: (6,6)

Thus $p = \frac{2+5+4+1}{36} = \frac{1}{3}$

$\mathbf{2}$

(a)

Head appears the first time on n^{th} throw. Thus a series of n-1 consecutive tails followed by head. $p = \frac{1}{2^{n-1}} * \frac{1}{2} = \frac{1}{2^n}$

(b)

The number of heads and dates to date are equal:

Case1: n is odd.

Clearly the probability of heads and tails being equal in this case is zero!

Case 2: n is even.

A series of H,T such that |H| = |T|. Since the probability of occurence of either a H or a T is $\frac{1}{2}$, the result will still be:

 $p = \frac{1}{2^n}$

(c)

Exactly two heads have appeared together.

So exactly at two consecutive positions there is a H,H. The rest positions either alternate with H,T or only T.

$$p = \frac{1}{2} * \frac{1}{2} * \frac{1}{2^{n-2}}$$

(d)

At least two heads have appeared.

This is same as the one minus probability that 0 or 1 heads have appeared so far:

$$p = 1 - p(0 \ heads) - p(1 \ head \ only) \ p = 1 - \binom{n}{0} \frac{1}{2^0} \frac{1}{2^n} - \binom{n}{1} \frac{1}{2} \frac{1}{2^n - 1} = 1 - \frac{1}{2^n} - \frac{n}{2^n}$$

4

(a)

Biased coin tossed three times: Sample space: HHH,HHT,HTH,HTT,THH,TTT,TTH,TTT

(b)

(c)

Biased coin tossed till H tunrs up Sample Space:

$$\{H\}, \{T,H\}, \{T,T,H\}, \{T,T,T,H\}.....\{T,T,T,....,T,H\}$$

5

To find: Probablity that exactly one of A,B occurs

Probability that exactly one of A,B occurs is equal to the probability that either **only A** occurs or **only B** occurs. This is simply given by:

 $P(A \cup B) - P(A \cap B)$. That is either of A,B occurs removing the portion when both A,B occur.

Thus, the probability that exactly one of A,B occurs is :

$$p(A \cup b) - p(A \cap B) = p(A) + p(B) - p(A \cap B) - p(A \cap B) = p(A) + p(B) - 2p(A \cap B)$$

6

14