

"Space Data Processing: Making Sense of Experimental Data"

Laboratory work 7
Development of forward-backward Kalman filter in conditions of correlated state noise

Tatiana Podladchikova Rupert Gerzer Term 4, March 28 – May 27, 2016 t.podladchikova@skoltech.ru

Correlated state noise

In practice correlated noise is often presented as a Gauss-Markov first-order process

Random acceleration
$$a_i = e^{-\lambda T} a_{i-1} + \zeta_i$$

Uncorrelated noise with variance
$$\sigma_{\zeta}^2 = \sigma_a^2 (1 - e^{-2\lambda T})$$

Value that is inverse to correlation interval

$$\lambda = 1000$$
 a_i - uncorrelated noise $\lambda = 0.1$ a_i - correlated noise

$$\sigma_a^2$$
 Variance of acceleration

Moving object which trajectory is disturbed by correlated random acceleration

Moving object which trajectory is disturbed by correlated random acceleration

$$X_i = \begin{vmatrix} x_i \\ V_i \\ a_i \end{vmatrix}$$
 State State of state vector

Beside estimation of coordinate x_i and velocity V_i , Kalman filter will also estimate the dynamics of correlated acceleration a_i

State space model

Smoothing with fixed interval

Smoothing is performed in backward in time

$$X_{i,N} = X_{i,i} + A_i(X_{i+1,N} - \Phi_{i+1,i}X_{i,i})$$

$$i = N-1, N-2, \cdots 1$$

Coefficient
$$A_i = P_{i,i} \Phi_{i+1,i} P_{i+1,i}^{-1}$$

Smoothing error covariance matrix

$$P_{i,N} = P_{i,i} + A_i (P_{i+1,N} - P_{i+1,i}) A_i^T$$

 $X_{i,i}$ - filtered estimate, $X_{N,N}$ - initial estimate

 $P_{i,i}$ - filtration error covariance matrix

 $P_{i+1,i}$ - prediction error covariance matrix

Smoothing takes into account both current and future measurements and therefore provides improved estimation