

## RBC Royal Bank

https://ca.finance.yahoo.com/ https://www.investing.com/ https://www.dbrsmorningstar.com/

### **MERTON MODEL**

# $DD(t) = \frac{\log(\frac{V_A}{D}) + (r - \frac{1}{2}\sigma_A^2)(T - t)}{\sigma_A \sqrt{T - t}}$

mathematical model

Needed

DATA

Total assets: 1917.219B

Outstanding debt: 1405.265B

Divident yield: 0.037

Risk-free rate: 0.03157

std of daily returns: 0.025 (code is shown below)

```
def equations(vars):
   V, sigma = vars
    d1 = (np.log(V / D) + (r + 0.5 * sigma**2) * T) / (sigma * np.sqrt(T))
   d2 = d1 - sigma * np.sqrt(T)
   eq1 = E - V * norm.cdf(d1) + D * np.exp(-r * T) * norm.cdf(d2)
   eq2 = sigma_E - sigma * norm.cdf(d1)
   return [eq1, eq2]
solution, info, _, _ = opt.fsolve(equations, [V0, sigma0], full_output=True)
V, sigma = solution
FVD = 1000
dividend yield = 0.037
mu = r - dividend yield
DD = (np.log(V / FVD) + (mu - 0.5 * sigma**2) * T) / (sigma * np.sqrt(T))
PD = 1 - norm.cdf(DD)
print(f"Probability of default for RBC: {format(PD, '.10f')}")
Probability of default for RBC: 0.0000000512
```

### **CREDITMETRICS MODEL**

uses credit ratings (DBRS in this case)

|    | Date       | Credit_Rating |
|----|------------|---------------|
| 0  | 2004-12-31 | AA            |
| 1  | 2005-12-31 | AA            |
| 2  | 2006-12-31 | AA            |
| 3  | 2007-12-31 | AA            |
| 4  | 2008-12-31 | AA            |
| 5  | 2009-12-31 | AA            |
| 6  | 2010-12-31 | AA            |
| 7  | 2011-12-31 | AA            |
| 8  | 2012-12-31 | AA            |
| 9  | 2013-12-31 | AA            |
| 10 | 2014-12-31 | AA            |
| 11 | 2015-12-31 | AA            |
| 12 | 2016-12-31 | AA            |
| 13 | 2017-12-31 | AA            |
| 14 | 2018-12-31 | AA            |
| 15 | 2019-12-31 | AA            |
| 16 | 2020-12-31 | AA            |
| 17 | 2021-12-31 | AA            |
| 18 | 2022-12-31 | AA            |
| _  |            |               |

|         | AAA     | AA      | Α       | BBB     | ВВ      | В       | ccc     | Default |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| AAA     | 0.90788 | 0.08291 | 0.00716 | 0.00102 | 0.00102 | 0.00000 | 0.00000 | 0.00000 |
| AA      | 0.00103 | 0.91219 | 0.07851 | 0.00620 | 0.00103 | 0.00103 | 0.00000 | 0.00000 |
| Α       | 0.00924 | 0.02361 | 0.90041 | 0.05441 | 0.00719 | 0.00308 | 0.00103 | 0.00103 |
| BBB     | 0.00000 | 0.00318 | 0.05938 | 0.86947 | 0.05302 | 0.01166 | 0.00117 | 0.00212 |
| ВВ      | 0.00000 | 0.00110 | 0.00659 | 0.07692 | 0.80549 | 0.08791 | 0.00989 | 0.01209 |
| В       | 0.00000 | 0.00114 | 0.00227 | 0.00454 | 0.06470 | 0.82747 | 0.04086 | 0.05902 |
| CCC     | 0.00228 | 0.00000 | 0.00228 | 0.01251 | 0.02275 | 0.12856 | 0.60637 | 0.22526 |
| Default | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 |

transition matrix

#### imported data