Research School of Engineering College of Engineering and Computer Science

ENGN2228 Signal Processing

HOMEWORK 4 - SOLUTIONS

Homework 4-1

Draw the following signals

(a)
$$x(t) = 2 \delta(t+1)$$

Solution:

Notice that you really should draw in the fact that the functions zero everywhere except at t = -2.

(b)
$$-1.5 \delta(t-2)$$

Solution:

(c)
$$x(t) = \sum_{k=3}^{7} 2^{k-5} \delta(t-2k)$$

Solution:

(d)
$$x(t) = \int_{-\infty}^{t} \delta(\tau - 2) \, d\tau$$

Solution:

$$\int_{-\infty}^{t} \delta(\tau - 2) d\tau = \int_{-\infty}^{t-2} \delta(s) ds = u(t - 2)$$

Don't worry about what the exact value is a t = 2.

(e)
$$x(t) = \int_{-\infty}^{t} \delta(t-2) d\tau$$

Solution: Well this is a bit weird. Firstly, the integrand is independent of the integration variable τ . For all values $t \neq 2$ we have $\delta(t-2) = 0$ so x(t) = 0 for $t \neq 2$. For t=2 is best to leave the $\delta(t-2)$ inside the integral. At t=2 it has area 1 so x(2)=1.

Not a delta function at t = 2 just the value of 2 (zero area).

(f)
$$\int_{-t}^{t} \delta(t-2) \, d\tau$$

Solution: Messing with your head. Same as previous part.

Homework 4-2

Draw the following signals

(a)
$$x[n] = -2\delta[n+2]$$

Solution:

Notice that you really should draw in the fact that the functions zero everywhere except at n = -2.

(b)
$$x[n] = u[n] - u[n-1]$$

Solution:

Yep, it's the same as $\delta[n]$.

(c)
$$x[n] = -u[-n] + u[-n-1]$$

Solution:

Or
$$-u[-n] + u[-n-1] = -\delta[n]$$
.

(d) x[n] = 2u[-n] - u[n-3]

Solution:

(e) $x[n] = \sum_{k=-\infty}^{-1} \delta[k] + u[n]$

Solution:

That is, x[n] = u[n].

(f) $x[n] = \sum_{k=-\infty}^{-1} \delta[n-k] + u[n]$

Solution:

That is, x[n] = 1 for all n.