Supplementary Information

An Improvement to COSMO-SAC for Predicting Thermodynamic Properties

Ruichang Xiong, Stanley I. Sandler* and Russell I. Burnett

Department of Chemical and Biomolecular Engineering,

University of Delaware, Newark, Delaware, USA

*Author to whom correspondence should be addressed (sandler@udel.edu)

1. Derivation for the dispersion in mixtures	Page 2
2. Quantum mechanics (QM) COSMO calculation settings	Page 3
3. Liquid density fitting	Page 4
4. Figure S5	Page 7
5. Table S3	Page 8
6. Table S4	Page 9
7. Table S5	Page 10
8. Figure S6.	Page 11

1. Dispersion Derivation

$$\begin{split} E_{\alpha\beta} &= \sqrt{\varepsilon_{\alpha}\varepsilon_{\beta}} m_{\alpha} m_{\beta} \\ A_{\text{mix}}^{\text{disp}} &= -\frac{\sum_{j} \sum_{\alpha \text{el}} \sum_{\beta \text{e}_{j}} x_{j} x_{j} E_{\alpha\beta}}{V_{\text{mix}}} \\ A_{\text{ris}}^{\text{disp}} &= \frac{\partial \left(N_{\text{not}} A_{\text{mix}}^{\text{disp}}\right)}{\partial N_{i}} \bigg|_{T, Y, N_{\text{s, ris}}} = \frac{\partial}{\partial N_{i}} \left[-\frac{N_{\text{not}} \sum_{j} \sum_{k} \sum_{\alpha \text{ej}} \sum_{\beta \text{ek}} x_{j} x_{k} E_{\alpha\beta}}{V_{\text{mix}}} \right] \\ &= -\frac{\partial}{\partial N_{i}} \left[\frac{\sum_{j} N_{j} V_{j}}{\sum_{j} N_{j} V_{j}} \left(\sum_{j} N_{j} N_{j} K_{\alpha\beta} \right) - \frac{\partial}{\partial N_{i}} \left[\sum_{j} \sum_{k} \sum_{\alpha \text{ej}} \sum_{\beta \text{ek}} N_{j} N_{k} E_{\alpha\beta}}{\sum_{j} N_{j} V_{j}} \right] \right] \\ &= -\frac{\left(\sum_{j} N_{j} V_{j} \right) \left[\frac{\partial}{\partial N_{i}} \left(\sum_{j} \sum_{k} \sum_{\alpha \text{ej}} \sum_{\beta \text{ek}} N_{j} N_{k} E_{\alpha\beta} \right) \right] - \left(\sum_{j} \sum_{k} \sum_{\alpha \text{ej}} \sum_{\beta \text{ek}} N_{j} N_{k} E_{\alpha\beta} \right) \left[\frac{\partial}{\partial N_{i}} \left(\sum_{j} N_{j} V_{j} \right) \right] \\ &= -\frac{\left(\sum_{j} N_{j} V_{j} \right) \left[\frac{\partial}{\partial N_{i}} \left(\sum_{j} \sum_{k} \sum_{\alpha \text{ej}} \sum_{\beta \text{ek}} N_{j} N_{k} E_{\alpha\beta} \right) \right] - \left(\sum_{j} \sum_{k} \sum_{\alpha \text{ej}} \sum_{\beta \text{ek}} N_{j} N_{k} E_{\alpha\beta} \right) \left[\frac{\partial}{\partial N_{i}} \left(\sum_{j} N_{j} V_{j} \right) \right] \\ &= -\frac{\left(\sum_{j} N_{j} V_{j} \right) \left[\frac{\partial}{\partial N_{i}} \left(\sum_{j} \sum_{k} \sum_{\alpha \text{ej}} \sum_{\beta \text{ek}} N_{j} N_{k} E_{\alpha\beta} \right) - \left(\sum_{j} N_{j} V_{ej} \right) \right] \\ &= -\frac{\left(\sum_{j} N_{j} V_{j} \right) \left[\frac{\partial}{\partial N_{i}} \left(\sum_{j} N_{j} V_{ej} N_{i} E_{\alpha\beta} \right) \right] - \left(\sum_{j} \sum_{k} \sum_{\alpha \text{ej}} \sum_{\beta \text{ek}} N_{j} N_{k} E_{\alpha\beta} \right) \left[\frac{\partial}{\partial N_{i}} \left(\sum_{j} N_{j} V_{j} \right) \right] \\ &= -\frac{\left(\sum_{j} N_{j} V_{j} \right) \left[\frac{\partial}{\partial N_{i}} \left(\sum_{j} N_{j} V_{ej} N_{i} E_{\alpha\beta} \right) \right] - \left(\sum_{j} \sum_{k} \sum_{\alpha \text{ej}} \sum_{\beta \text{ek}} N_{j} N_{k} E_{\alpha\beta} \right) \left[\frac{\partial}{\partial N_{i}} \left(\sum_{j} N_{j} V_{ej} \right) \right] \\ &= -\frac{\left(\sum_{j} N_{j} V_{j} \right) \left[\frac{\partial}{\partial N_{i}} \left(\sum_{j} N_{j} V_{ej} N_{ej} E_{\alpha\beta} \right) \right] - \left(\sum_{j} \sum_{k} \sum_{\alpha \text{ej}} \sum_{\beta \text{ek}} N_{j} N_{k} E_{\alpha\beta} \right) \left[\frac{\partial}{\partial N_{i}} \left(\sum_{j} N_{j} V_{ej} N_{ej} E_{\alpha\beta} \right) \right] \\ &= -\frac{\left(\sum_{j} N_{j} V_{ej} \right) \left(\sum_{j} N_{j} V_{ej} N_{ej} E_{\alpha\beta} \right) \left[\sum_{j} N_{j} V_{ej} N_{ej} E_{\alpha\beta} \right] - \left(\sum_{j} N_{j} V_{ej} N_{ej} E_{\alpha\beta} \right) \left[\sum_{j} N_{j} V_{ej} N_{ej} E_{\alpha\beta} \right] \\ &= -\frac{\left(\sum_{j} N_{j} V_{ej} N_{ej} N_{ej} N_{ej} E_{\alpha\beta} N_{ej} N_{ej} E_{\alpha\beta} \right) \left[\sum_{j} N_{j} N_{ej} E_{\alpha\beta} N_{ej} N_{ej} E_{\alpha\beta} \right]$$

2. Quantum Mechanics (QM) COSMO Calculation Settings

Table S1 shows the settings used in the COSMO calculations at density functional theory (DFT) in the DMol^3 software package.

Table S1. DFT/COSMO calculation settings used in the DMol³ software package.

Functional	vwn-bp	Cosmo_Solvent_Radius	1.30
Pseudopotential	none	Cosmo_A-Matrix_Cutoff	7.00
Basis_Version	v4.0.0	Cosmo_Radius_Incr	0.000
Basis	dnp	Cosmo_A-Constant	1.882190
Atom_Rcut	5.50 Angstrom	Cosmo_B-Constant	0.010140
Charge	0.000	Cosmo_RadCorr_Incr	0.150000
Spin_Polarization	unrestricted	Mulliken_Analysis	charge
Occupation	Thermal	Hirshfeld_Analysis	charge
Symmetry	on	SCF_Density_Convergence	0.000001
Integration_Grid	fine	SCF_Charge_Mixing	0.200 10.000
Aux_Density	octupole	SCF_DIIS	6
Cosmo	on	SCF_Iterations	50
Cosmo_Dielectric	999.999	SCF_Number_Bad_Steps	13
Cosmo_Grid_Size	1082	SCF_Direct	on
Cosmo_Segments	92	SCF_Restart	off

Table S2 shows the settings used in the COSMO calculations at density functional theory (DFT) in the ADF software package.

Table S2. DFT/COSMO calculation settings used in the ADF software package.

XC potential in SCF	GGA:BP	solvation method	COSMO
XC energy after SCF	Default	solvent	CRS
Relativity (ZORA)	Scalar	Default radii	Klamt
Basis set	TZP	Surface	Delley
Frozen core	Small	Ndiv	4
Integration	Becke Good	Charge determination method	CONJ
Density used in XC-potential	Exact	Convergence	1.00E-06
Total charge	0.0	Max. iterations	300
Spin polarization	0.0	Correct for outlying charge	Yes
Coordinates used for optimization	Delocalized	Calculate Coulomb interaction	EXACT
Optimization method	New	Disc scaling	0.01
Number of geometry iterations	100	Disc Legendre order	4
Maximum number of SCF cycles	50	Disc tolerance	0.1
Convergence method	DIIS	Handle charges	VAR
Mixing	0.2	Charges in which SCF cycles	ALL

3. Liquid Density Fitting

There are 1456 compounds used for the fitting. The correlation between COSMO volume and molecular volume from experiment (expt. volume) at normal boiling point temperatures (NBTs) are shown in **Fig. S1**. The COSMO volume is from COSMO calculations in DMol³ software package (**Fig. S1**(a)) and ADF software package (**Fig. S1**(b)). The molecular volume from experiment is converted from the liquid density from DIPPR. There is strong polynomial correlation between COSMO volume and expt. volume at NBTs.

Fig. S1. Correlation between COSMO volume and molecular volume from experiment at normal boiling point temperatures (NBTs): (a) DMol³ and (b) ADF.

The correlation between COSMO volume and expt. volume at room temperature (RT, 298.15 K) are shown in **Fig. S2**. The COSMO volume from DMol³ is shown in **Fig. S2**(a), and that from ADF is shown in **Fig. S2**(b). Unlike at NBTs, there is strong linear correlation at RT.

Fig. S2. Correlation between COSMO volume and molecular volume from experiment at room temperature (RT): (a) DMol³ and (b) ADF.

The correlation between COSMO volume and expt. volume at melting point temperatures (MTs) are shown in **Fig. S3**. The COSMO volume from DMol³ is shown in **Fig. S3**(a), and that from ADF is shown in **Fig. S3**(b). Again, there is strong linear correlation at MTs.

Fig. S3. Correlation between COSMO volume and molecular volume from experiment at melting temperatures (MTs): (a) DMol³ and (b) ADF.

By combining these data points at the different temperatures, we fit a temperature-dependent relationship between COSMO volume and expt. volume by scaling the temperature to the NBTs since NBT can be estimated from group contribution methods when the experimental data are not available. The temperature-dependent relationship for predicting the molecular volume in DMol³ platform is

$$V = 0.000971 \times T_r^2 \times V_{\text{cosmo}}^2 + (0.233 \times T_r^2 + 1.14) \times V_{\text{cosmo}} - 4.42$$
 (S1)

where $T_r = T/T_b$ is the reduced temperature based on the NBT (T_b) and $V_{\rm cosmo}$ is the COSMO volume from the quantum software. Similarly, the temperature-dependent relationship for predicting the molecular volume in ADF platform is

$$V = 0.001040 \times T_r^2 \times V_{\text{cosmo}}^2 + \left(0.224 \times T_r^2 + 1.16\right) \times V_{\text{cosmo}} - 6.16$$
 (S2)

The predicted molecular volume (related to liquid density) is shown in **Fig. S4**. The data in **Fig. S4**(a) are calculated using eqn. S1 from DMol³ platform, and those in **Fig. S4**(b) are calculated using eqn. S2 from ADF platform.

Fig. S4. Predictions of liquid density (molecular volume) from (a) DMol³ and (b) ADF platform compared to experimental data

4. Turning on Mixture Dispersion in COSMO-SAC (2007) Model

It is found in the manuscript that the dispersion interaction increases prediction precision significantly in our COSMO-SAC (2013) model. It was assumed in the 2007 model that the dispersion effect is negligible and so the dispersion is disabled in the calculation of the mixture thermodynamic properties. It would be curious how the 2007 model works by simply turning on the dispersion interaction using the same parameters provided in the 2007 model for the calculation of the pure fluid properties such as vapor pressures. The results from 2007 model with dispersion are shown in **Fig. S5**. By comparing to the original 2007 model, the 2007 model with dispersion turning on does not improve the accuracy but become worse. This should be because the dispersion parameters were not parameterized for the mixture calculation, not due to that the dispersion does not work. The conclusion here is that by simply turning on the dispersion for 2007 model, the precision is not improved.

Fig. S5. Comparisons between the 2007 model and the 2007 model turning on dispersion for three different systems: (I) activity coefficient predicitions for 2353 binary systems; (II) octanol-water partition coefficient predicitions for 405 smaller compounds; (III) octanol-water partition coefficient predicitions for 89 larger pharmaceutical compounds.

5. Additional Parameters for the Prediction of Pure Compound Thermodynamic Properties

Additional sets of COSMO-SAC (2013) model parameters for the prediction of pure compound thermodynamic properties are shown in Table S3. These sets of parameters were biased for fitting the pure compound experimental data in the optimization.

Table S3. COSMO-SAC (2013) model parameters biased for the prediction of pure compound thermodynamic properties. In the manuscript, they are referred to as 2013-DMol³-pure and 2013-ADF-pure, respectively, for use with DMol³ and ADF.

		2013-Dmol ³ -pure	2013-ADF-pure					
Universal Parameters								
Parameter	Unit	Value	Value					
$a_{\it eff}$	$ m \AA^2$	0.85	0.75					
r_{avg}	Å	7.15	6.95					
C _{es}	kcal/mol•Å ⁴ /e ²	8932	9020					
с _{он-он}	kcal/mol•Å ⁴ /e ²	3572	3324					
$c_{\mathit{OH-OT}}$	kcal/mol•Å ⁴ /e ²	2894	2516					
$c_{OT ext{-}OT}$	kcal/mol•Å ⁴ /e ²	1677	1223					
$oldsymbol{q}_s$	-	0.57	0.60					
σ_0	e/Å ²	0.007	0.007					
q_0	$ \mathring{A}^2 $	79.53	79.53					
	Atom Bonding Specific P	arameters						
Atom type	R_i^{el} (Å)	$\varepsilon_i/R (\mathrm{K} \bullet \mathring{\mathrm{A}}^3)$	$\varepsilon_i/R \ (\mathbf{K} \mathbf{\cdot} \mathbf{\mathring{A}}^3)$					
Н	1.30	0	0					
C(sp ³)	2.00	39551	42479					
C(sp ²)	2.00	34703	37793					
C(sp)	2.00	22333	23743					
$N(sp^3)$	1.83	24851	36047					
$N(sp^2)$	1.83	20995	27820					
N(sp)	1.83	3662	5161					
O(sp ³ -H)	1.72	11033	13186					
$O(sp^3)$	1.72	7726	8258					
$O(sp^2)$	1.72	6932	7716					
$O(sp^2-N)$	1.72	12375	11880					
F	1.72	7836	8157					
P	2.12	53944	56643					
S	2.16	63711	67683					
Cl	2.05	40236	42223					
Br	2.16	61391	64170					
I	2.32	101311	106489					

Table S4. Comparison of HB and non-HB surface areas from different models for four selected compounds.

Compound	Model	Surface area (Ų)					
	Model	non-HB	НВ	Total			
Ethanol	2007 & 2010	72.2	16.2	88.4			
	2013-DMol ³	69.9	18.5	88.4			
	2013-ADF	81.1	8.9	90.0			
Aniline	2007 & 2010	121.5	14.7	136.2			
	2013-DMol ³	119.0	17.2	136.2			
	2013-ADF	129.6	7.1	136.7			
2-butanone	2007 & 2010	107.5		120.8			
	2013-DMol ³	105.3	15.5	120.8			
	2013-ADF	117.0	6.8	123.8			
Water	2007 & 2010	16.7	26.6	43.3			
	2013-DMol ³	13.3	30.0	43.3			
	2013-ADF	28.7	14.3	43.0			

Table S5. RMSD for the octanol-water partition coefficients. The compounds are classified based on elements and functional groups. N_c is number of data points in the sample set. The last four columns show the RMSD of 2013 models relative to that of 2010 and 2007 models. The negative sign means the decreased RMSD for the new model. "Mixed" means that the compound contains N and F, Cl, Br, I, P or S. "Mutiple" means that the compound contains two or more strong functional groups such as -OH, -C=O, -COOH, etc.

	Sample set N	Nc	RMSD			Relative RMSD difference to 2010 model		Relative RMSD difference to 2007 model		
			2013-DMol ³	2013-ADF	2010	2007	2013-DMol ³	2013-ADF	2013-DMol ³	2013-ADF
	N-containing	224	0.90	0.85	0.93	0.92	-3%	-9%	-2%	-8%
	F-containing	19	0.63	0.88	0.64	0.69	-2%	36%	-9%	26%
	Cl-containing	167	0.49	0.51	0.67	0.64	-27%	-24%	-23%	-19%
N/E/Cl/Dy/I/D/S containing compounds	Br-containing	16	0.21	0.23	0.25	0.30	-15%	-11%	-28%	-25%
N/F/Cl/Br/I/P/S-containing compounds	I-containing	7	0.33	0.27	0.46	0.53	-29%	-41%	-38%	-49%
	P-containing	7	0.64	0.51	0.96	0.71	-33%	-47%	-10%	-28%
	S-containing	23	0.40	0.39	0.43	0.46	-7%	-9%	-12%	-15%
	Mixed	58	0.94	0.88	1.16	0.96	-19%	-24%	-2%	-9%
	hydrocarbon	156	0.35	0.36	0.48	0.49	-28%	-25%	-29%	-27%
	acid	60	0.47	0.36	0.46	0.46	2%	-22%	1%	-23%
	alcohol	77	0.45	0.44	0.47	0.51	-4%	-6%	-12%	-14%
Others	aldehyde	7	0.51	0.37	0.35	0.51	47%	5%	0%	-29%
	ester	60	0.31	0.36	0.41	0.35	-24%	-11%	-12%	4%
	ether	26	0.50	0.62	0.70	0.64	-29%	-11%	-22%	-2%
	furan	3	0.27	0.19	0.36	0.36	-25%	-46%	-24%	-46%
	ketone	27	0.41	0.46	0.46	0.46	-11%	0%	-12%	-1%
	multiple	55	0.85	0.94	0.91	0.84	-6%	4%	2%	13%

Fig. S6. Comparison of the vapor-liquid equilibrium predictions with experimental data for hexane + tetrachloromethane system at 323.15 K.