Chapitre 1

Initiation

1.1 Les espaces de Hilbert

 $\mathbb{K} = \mathbb{C}$ ou $\mathbb{K} = \mathbb{R}$.

Définition 1. Soit E un \mathbb{K} espace vectoriel. Une application $\varphi: E \times E - > \mathbb{R}$ est une FORME HERMITIENNE

- 1. $\forall y \in E : \varphi(\cdot, y) : E \rightarrow \mathbb{R}$ est linéaire
- 2. $\forall (x,y) \in E \times E : \varphi(x,y) = \overline{\varphi(y,x)}$

Définition 2. Un PRODUIT SCALAIRE est une forme hermitienne définie positive : $\forall e \in E \ \varphi(x,x) \geq 0 \ ; \ \varphi(x,x) = 0 <=> x = 0_E$. Notation :

$$\varphi(x,y):=(x|y)$$

Définition 3. Le couple $(E, (\cdot | \cdot))$ s'appelle un ESPACE PRÉHILBERTIEN.

Définition 4. On définit la NORME sur $E: \forall x \in E \|x\|_E = (x|x)^{\frac{1}{2}}$.

Remarque. En particulier on a l'inégalité de Cauchy-Schwartz :

$$\forall (x, y) \in E^2 \ |(x|y)| < ||x|| ||y||.$$

Donc inégalité triangulaire. Ainsi c'est vraiment une norme.

Définition 5. $x, y \in E$ sont dits Orthogonaux si (x|y) = 0. Nous dénotons cela comme $x \perp y$.

Définition 6. $(E, \|\cdot\|)$ est dit Complet si toutes les suites de Cauchy de E convergent dans E.

Définition 7. Une Espace de Hilbert est un espace préhilbertien complet pour la distance $\|\cdot - \cdot\| = (\cdot - \cdot|\cdot - \cdot)^{\frac{1}{2}}$.

Exemple 1. $l^2(\mathbb{N}) = \{n \in \mathbb{N} \mapsto f(n) \in \mathbb{C} \text{ t.q. } \sum_{n \geq 0} |f(n)|^2 < \infty\}$ $l^2(\mathbb{N}) \text{ est } \mathbb{C} \text{ espace. } \forall f, g \in l^2(\mathbb{N}) :$

$$(f|g)_{l^2(\mathbb{N})} \stackrel{\text{def}}{=\!\!\!=\!\!\!=} \sum_{n\geq 0} f(n) \overline{g(n)}.$$

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de Cauchy dans $l^2(\mathbb{N})$:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > p \ge N : \quad ||f_n - f_p||_{l^2(\mathbb{N})} < \varepsilon. \tag{*}$$

Question.
$$\exists f \in l^2(\mathbb{N})$$
 telle que $\lim_{n \to \infty} f_n = f$?
(??) $\Leftrightarrow \forall \varepsilon > 0 \ \exists N \ t.q. \ \forall n > p \ge N \ ||f_n - f_p||^2 = \sum_{j > 0} |f_n(j) - f_p(j)|^2 \le \varepsilon^2$

$$\Rightarrow |f_n(j) - f_p(j)| \le \varepsilon \ \forall j \in \mathbb{N}.$$

$$\Rightarrow \forall j \in \mathbb{N} \ (f_n(j))_{n \in \mathbb{N}}$$
 est de Cauchy dans \mathbb{C} qui est complet, donc $\exists f(j) \in \mathbb{C}$ telle que $\lim_{n \to \infty} |f_n(j) - f_n(j)| = 0$

 $\lim_{n\to\infty} |f_n(j) - f(j)| = 0.$

Il faut montrer que
$$f$$
 est la limite dans $l^2(\mathbb{N})$ de la suite f_n . $\forall \varepsilon > 0 \; \exists N \; \text{t.q.} \; \forall n > p \geq N \sum_{j \geq 0} |f_n(j) - f_p(j)|^2 \leq \varepsilon^2$

$$\Rightarrow \forall J \in \mathbb{N} \sum_{j=0}^{J} |f_n(j) - f_p(j)|^2 \leq \varepsilon^2, \text{ par passage à la limite sur } p: \sum_{j=0}^{J} |f_n(j) - f(j)|^2 \leq \varepsilon^2$$

somme partielle

$$\text{Conclusion}: \forall \varepsilon > 0 \ \exists N \ \text{telle que} \ \forall n \geq N \ ||f_n - f|| < \varepsilon \Longrightarrow \lim_{n \to \infty} f_n = f.$$

Mais $f \stackrel{?}{\in} l^2(\mathbb{N})$.

Vérifions que $f \in l^2(\mathbb{N})$:

$$(\sum_{j\geq 0} |f(j)|^2)^{1/2} = (\sum_{j\geq 0} |f_n(j) - f(j) + f(j)|^2)^{\frac{1}{2}} = ||\underbrace{f - f_n}_{\in l^2(\mathbb{N})} + \underbrace{f_n}_{\in l^2(\mathbb{N})}|| \leq ||f - f_n|| + \underbrace{f_n}_{\in l^2(\mathbb{N})}|| + \underbrace{f_n}$$

 $||f_n|| < +\infty.$

 ε^2

Théorème 1 (Projection orthogonale). Soit H un espace de Hilbert et C une partie convexe fermée et non vide de H. Alors $\forall x \in H \exists ! y_0 \in C$ t.q.

- 1. $\operatorname{dist}(x,C) := \inf\{d(x,y), y \in C\} = \inf\{||x-y||_H, y \in C\} = ||x-y_0||_H$
- 2. $\forall y \in C \ \operatorname{Re}(x-y_0|y-y_0) \leq 0 \ \dots ??$ why in the world would scalar product have values other than real

 y_0 est la projection orthogonale de x sur C.

Remarque.

- 1. C est convexe si $\forall x, y \in C \ [x, y] = \{tx + (1 t)y, t \in [0, 1]\} \in C$
- 2. $H = \mathbb{R}^2 : [x, y] \in C$
- 3. $si \ x_0 \in C \ dans \ le \ cas \ y_0 = x_0 \ et \ dist(x_0, C) = 0 = ||x_0 x_0||_H$

Démonstration. Notons par d=d(x,C)>0 $(x\in H\setminus C)$. Soit $y,z\in C$ on pose $b=x-\frac{1}{2}(y+z),\ c=\frac{1}{2}(y-z)$: $||b||=||x-\frac{1}{2}\underbrace{(y+z)}||\geq d$. On a aussi b-c=x-y et

 $b+c=x-z \Rightarrow ||x-y||^2+||x-z||^2=||b-c||^2+||b+c||^2=(b-c|b-c)+(b+c|b+c)=||b||^2+||c||^2-(b|c)-(c|b)+||b||^2+||c||^2+(b|c)+(c|b).$

 $||x-y||^2 + ||x-z||^2 = 2(||b||^2 + ||c||^2) \ge 2d^2 + 2\frac{1}{4}||y-z||^2 \Rightarrow ||y-z||^2 \le 2(||x-y||^2 - d^2) + 2(||x-z||^2 - d^2). \text{ Pour } n \in \mathbb{N} \ C_n = \{y \in C ||x-y||^2 \le d^2 + \frac{1}{n}\} \text{ est fermée dans H (boule fermée)}.$

Puisque C est fermé, $C_n = \{y \in H | |x-y||^2 \le d^2 + \frac{1}{n}\} \cap C$ est fermé dans C. De plus : $\delta(n) := \sup\{||y-z||, (y,z) \in C_n \times C_n\} \le \sup\{[2(||x-y||^2 - d^2) + 2(||x-z||^2 - d^2)]^{\frac{1}{2}}, y, z \in C_n \Rightarrow \delta(n) \le \frac{2}{n^{\frac{1}{2}}} \to 0 \text{ quand } n \to +\infty.$

H est complet et $C \subset H_x$ c est fermé. C est un espace métrique complet. Il satisfait le critère de Cantor : $\bigcap C_n = \{y_0\}$.

 $y_0 \in \bigcup_n C_n \ d^2 \le ||x - y_0||^2 \le d^2 + \frac{1}{n} \ \forall n \in \mathbb{N}^* = \mathbb{N}$ $\{0\} \Rightarrow ||x - y_0|| = d^2.$

Montrons ii): $\forall t \in [0, 1], \ \forall \in H \ \phi(t) = ||\underbrace{y_0 + t(y - y_0)}_{CC} - x||^2 = ||y_0 - x||^2 + 2tRe(y_0 - y_0) + 2tRe(y_0 - y_0)||_{CC} + 2tR$

 $|x|y-y_0|+t^2||y-y_0||^2$. $\phi(0)=d^2\leq\phi(t)\ \forall t\in(0,1]\Rightarrow\phi'(0)\geq0$. $\phi'(t)=2Re(y_0-x|y-y_0)+2t||y-y_0||^2$. $\phi'(0)\leq0\Rightarrow2Re(y_0-x|y-y_0)\leq0\Rightarrow(i)$.

Théorème 2 (corollaire). Soit F un sous-espace FERMÉ de H alors : $H = F \oplus F^{\perp}$.

Démonstration. — F est convexe puisque $\forall \alpha, \beta \in \mathbb{C} \forall x, y \in F \ \alpha x + \beta y \in F \Rightarrow$ Cela est vrai si $\alpha = t, \ \beta = 1 - t \ t \in [0, 1]$.

On peut ceci appliquer le Thm 1 :

— On a toujours $F + F^{\perp} \subset H$ et $F + F^{\perp} = F \bigoplus F^{\perp}$ car si $x \in F \cap F^{\perp} \Rightarrow (x|x) = 0 = ||x||^2 \Rightarrow x = 0_H$

Soit $x \in H$, et $y_0 \in F$ sa projection orthogonale : $\forall d \in \mathbb{C}, y \in F, y_0 + dy \in F$ et donc $Re(x-y_0|y_0+dy-y_0) \leq 0 \Rightarrow Re(x-y_0|dy) \leq 0$

 $d = (x - y_0|y) \Rightarrow (x - y_0) \dots$

Conclusion $Re(x - y_0|dy)$.. donc $H = F \bigoplus F^{\perp}$.

Définition 8. Dans ces conditions, l'application $P: x \in H, x = x_1 + x_2, x_1 \in$

Exemple 1.1.1. Montrer que P est linéaire continue et satisfait $P^2 = P$.

Définition 9. Une partie A de H est dite TOTALE si le plus petit sous espace fermé contenant A et H.

H est SÉPARABLE si H admet une famille totale dénombrable.

Exemple 2. $H = l^2(\mathbb{N}) : \mathcal{F} = \{e_0, e_1, ...\}$ avec $e_j(i) = \delta_{ij} \to (0, 0, ..., 0, 1, 0, ...0)$. \mathcal{F} est totale. Elle est dénombrable, $l^2(\mathbb{N})$ est séparable.

Théorème 3. Soit H un espace de Hilbert et $A \subset H$:

- 1. $\overline{\operatorname{vect}(A)} = (A^{\perp})^{\perp}$
- 2. A est un sous-espace alors $(A^{\perp})^{\perp} = \bar{A}$
- 3. A est totale $\Leftrightarrow A^{\perp} = \{0_H\}$

1.2 Séries dans un espace vectoriel normé

Soit $(E, ||\cdot||_E)$ un espace vectoriel normé (e.v.n).

Définition 10. On appelle SÉRIE de terme général $u_n \in E$ la suite $(S_N)_{N \in \mathbb{N}}$ de E t.q. $S_N = \sum_{n=0}^N u_n$. La série est CONVERGENTE dans $(E, ||\cdot||_E)$ si la suite $(S_N)_{N \in \mathbb{N}}$ admet une limite dans E : S— c'est la somme de la série.

Définition 11. Une série $\sum u_n$ est dite Absolument Convergente (AC) si la série $\sum ||u_n||_E$ est convergente dans \mathbb{R}^+ .

Théorème 4. Si E est complet (espace de Banach/Hilbert) Alors toute série AC est convergente et $||\sum_{n=0}^{\infty}|| \leq \sum_{n=0}^{\infty}||u_n||$.

Démonstration.
$$J_n = \sum_{n=0}^{N} ||u_n||$$
 et convergente $\Leftrightarrow (J_n)_{N \in \mathbb{N}}$ est de Cauchy $\forall \varepsilon > 0 \ \exists K \ t.q. \ \forall N > P \geq K \Rightarrow |J_n - J_p| \leq \varepsilon. \sum_{j=p+1}^{N} ||u_j|| \leq \varepsilon. \text{ meus } ||S_n - S_p|| = ||\sum_{j=p+1}^{N} u_j|| \leq \varepsilon.$

 $r \geq \Lambda \Rightarrow |J_n - J_p| \leq \varepsilon$. $\sum_{j=p+1} ||u_j|| \leq \varepsilon$. meus $||S_n - S_p|| = ||\sum_{j=p+1} u_j|| + \sum_{j=p+1}^N ||u_j||$ inégalité triangulaire.

 $\Rightarrow N > p \le K \Rightarrow ||S_N - S_P|| \le \varepsilon \Leftrightarrow (S_N)_{N \in \mathbb{N}}$ est de Cauchy dans E et donc convergente.

D'autre part $||S_n|| = ||\sum_{j=0}^n u_j|| \le \sum_{j=0}^n \le \sum_{j=0} ||u_j|| \Rightarrow ||\sum_{j=0} u_j|| \le \sum_{j=0} ||u_j||$. Cfd.

Définition 12. Une suite $(x_n)_{n\in\mathbb{N}}n\in\mathbb{N}$ de H est dite Orthogonal si $(x_i|x_j)=0$ $\forall i\neq j.$

Théorème 5. Soit $(a_n)_{n\in\mathbb{Z}}$ une suite orthogonale dans un espace de Hilbert H. Alors la série $\sum x_n$ est convergente $\iff \sum_{n>0} ||x_n||_H^2$ est convergente et

$$||\sum_{n>0} x_n||_H^2 = \sum_{n>0} ||x_n||_H^2.$$

Démonstration. $\forall l > p$ on a $||\sum_{n=l}^p||^2 = (\sum_n = e^p x_n | \sum_n = e^p x_n) = \sum_n, n' = l(x_n|x_n') = \sum_n = l^p ||x_n||^2$ Alors $(x_n)_{n \in \mathbb{N}} n \in \mathbb{N}$ est de Cauchy $\Leftrightarrow (||x_n||^2)_{n \in \mathbb{N}}$ est de Couchy dans \mathbb{R} .

D'autre part $S_N = \sum_{n\geq 0}^N x_n \Rightarrow ||S_N||^2 = \sum_{n\geq 0}^N ||x_n||^2$. Alors $S = \lim S_N = \sum x_n ||S||^2 = ||\lim NS_N||^2 = \lim ||S_N||^2$ par continuité de la $||\cdot||$ et donc $||S||^2 = \lim ||S_N||^2 = 0^N ||x_n||^2 = \sum_{n\geq 0} ||x_n||^2$

1.3 Bases Hilbertiennes

Définition 13. On appelle BASE HILBERTIENNE, une suite de vecteur $(x_n)_{n\in\mathbb{N}}n\in\mathbb{N}$ telle que

- 1. $\forall n, m(x_n|x_m) = \delta_{nm}$,
- 2. $\operatorname{vect}\{(x_n)_{n\in\mathbb{N}}n\in\mathbb{N}\}=H\Leftrightarrow \operatorname{vect}(x_n)_{n\in\mathbb{N}}n\in\mathbb{N}^\perp=\{0_H\}\Leftrightarrow (x_n)_{n\in\mathbb{N}}n\in\mathbb{N}$ est totale.

Théorème 6 (Inégalité de Bessel). Soit (x_n) une suite orthonormale $(\forall n, m(x_n|x_m) = \delta_{nm})$ dans H. Alors $\forall x \in H \sum_{n>0} |(x|x_n)|^2$ est convergente et $\sum_{n>0} |(x|x_n)|^2 \le ||x||^2$.

Exemple: $H = l^2(\mathbb{N})$. $(e_n|e_m) = \sum_{k\geq 0} e_n(k) e_m(k) = \sum_{k\geq 0} \delta_{nk} \delta_{mk} = \delta_{nm}$. En fait on montre que $\sum_{n\geq 0} |(e_n|x)|^2 = ||x||^2$ c'est une base Hilbertienne.

Démonstration. Soit $x \in H$ on pose $y_i = (x|e_i)e_i$ et $Y_N = \sum_1^N y_i$, $Z_N = X - Y_N$. Alors: $(Z_N|y_i) = (X - Y_N|y_i) = (X|y_i) - (Y_N|y_i)$. $(x|y) = (x|(x|e_i)e_i) = \overline{(x|e_i)}(x|e_i) = |(x|e_j)|^2$. $(Y_N|y_i) = \sum_{j=1}^N (y_j|y_j)$ mais $y_j \perp y_i \Rightarrow (Y_N|y_i) = ||y_i||^2$ si $N \geq i$. (autrement =0)

Dans ces conditions puisque $||y_i||^2 = |(x|e_i)|^2$. Alors $(Z_n|y_i) = 0 \Rightarrow (Z_N|Y_N) = 0$ cas $Y_n = \sum_{i=0}^N y_i \Rightarrow ||x||^2 = ||Z_n||^2 + ||Z_N||^2$ $(x = Z_n + Y_n) + ||Y_n||^2 = \sum ||y_n||^2 \le ||x||^2$

La seuie $\sum_{n\geq 0}^N ||y_n||^2$ est positive, majorée donc convergente et par passage à la limite : $\sum_{n\geq 0} ||y_n||^2 = \sum |(x|e_n)|^2 \le ||x||^2$. QED

Théorème 7 (Egalité de Parseval). Soit (e_n) une base Hilbertienne de H alors

- 1. La série $\sum_{n\geq 0} |(x|e_n)|^2$ est convergente et $||X||^2 = \sum_{n\geq 0} |(x|e_n)|^2$,
- 2. La série $\sum_{n\geq 0} (x|e_i)e_i$ est convergente dans H et $\sum_{i\geq 0} (x|e_i)e_i = x$.

Démonstration. En utilisant le théorème précédent alors $\sum |(x|e_i)|^2$ est convergent. On utilise l'identité de la médiane : $\sum (x|e_i)e_i$ est convergente dans $H(||(x|e_i)e_i||^2 = |(x|e_i)|^2)$.

On pose $y = \sum_{i \geq 0} (x|e_i)e_i$ alors $||y||^2 = \sum_{i \geq 0} |(x|e_i)|^2$ mais $(y|e_j) = (\sum (x|e_i)e_i|e_j) = \sum (x|e_i)(e_i|e_j) = (x|e_j)$... Conclusion $\forall j \in \mathbb{N}(x|e_j) = (y|e_j) \Leftrightarrow (x-y|e_j) = 0 \Rightarrow x-y \in \text{vect}((e_n)_{n \in \mathbb{N}})^{\perp} \Rightarrow x-y = 0_H \Leftrightarrow x=y = \sum (x|e_i)e_i||x||^2 = \sum_{i \geq 0} |(x|e_i)|^2$

Remarque. Si $(e_n)_{n\in\mathbb{N}}$ est une suite orthonormale telle que $\forall x\in Hx=\sum_{i\geq 0}(x|e_i)e_i$:

 $x = \lim_{N} \sum_{i \geq 0}^{N} a_i e_i \text{ où } a_i = (x|e_i) \in \mathbb{C}$ $\in \text{vect}\{(e_n)_n \in \mathbb{N}\}; a_i = (x|e_i) \Rightarrow \text{vect}\{(e_n)_n \in \mathbb{N}\} = H. \ (e_n)_n \in \mathbb{N} \text{ est une base}$ $Hilbertienne. \ ii) \gg (e_n)_n \in \mathbb{N} \text{ est base Hilbertienne de } H \Leftrightarrow \forall x \in H: \sum (x|e_i)e_i = x$ $\sum (x|e_i)e_i = x \Leftrightarrow \sum |(x|e_i)|^2 = ||x||^2 i >> (e_n) \text{ est une base Hilbertienne de } H \Leftrightarrow$

 $\sum |(x|e_i)|^2 = ||x||^2 \forall x \in H$ Exemple (suite): $H = l^2(\mathbb{N})$. $(e_n)_{n \in \mathbb{N}} t.q.e_n(k) = \delta_{nk}$. $u \in H \Leftrightarrow \sum_{n \geq 0} |u(n)|^2 = ||u||^2 \text{ mais } u(n) = (u|e_n) = \sum u(k)e_n(k) \Leftrightarrow \sum_n \geq 0 |(u|e_n)|^2 = ||u||^2, \Rightarrow \text{ c'est une base Hilbertienne.!?}$

1.4 Dual d'un espace de Hilbert

On rappelle que si S est un e.v.n. une FORME LINÉAIRE sur X est une application linéaire de X dans \mathbb{C} . Soit $l: X \to \mathbb{C}: \forall d \in \mathbb{C} \ \forall x,y \in Xl(x+dy) = l(x)+dl(y)$. L'ensemble des formes linéaires de X: est un espace vectoriel X^* . On considère X' dual topologique: c'est l'espace vectoriel des formes linéaires continues sur X: $\{l: (X,||\cdot||_X) \to (\mathbb{C},|\cdot|)\}$.

Exercice 1. l est continue \Leftrightarrow

$$\exists C > 0 \ x \forall x \in X, |l(x)| \le C||x|| \tag{*}$$

On définit $l \in X'$, $||l|| = \inf\{C > 0 \text{ t.q. (??) est satisfait}\} = \sup\{|l(x)| \mid ||x|| = 1\}$. $(X', ||\cdot||)$ est un espace de Banach (un e.v.n. complet)

Théorème 8 (Théorème de représentation de Riez). . Soit H un espace de Hilbert H' son dual topologique. On définit $I: H \to H$ par $\forall x \in HI(x) = (\cdot|x)$. Alors I est un isomorphisme isométrique de $H \to H'$.

Remarque. $H = \mathbb{C}^n$, une forme linéaire sur $\mathbb{C}^n : l.\ l(x_1, ..., x_n) = \sum_{i=1}^n a_i x_i,\ a_i \in \mathbb{C}$ $|l(x)| = |\sum_{i=1}^n a_i x_i| \le \sup\{a_i|\} \cdot ||x||_{\mathbb{R}^n}$. Ici $X^* = X'$!?

$$l(x) = (a_1, a_2, \dots, a_n) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

 $=(\bar{a}|x)\forall x\in\mathbb{C}^n\ \forall l\in X',\ \exists a\in\mathbb{C}:\ l(x)=(x|\bar{a})\ G\'{e}n\'{e}ralisation\ \grave{a}\ la\ dimension$ quelconque c'est le th\'{e}or\`{e}me de Riez: $\forall l\in H'\ \exists a\in H\ \forall x\in H:\ l(x)=(x|a)|$

Démonstration. Soit $l \in H'$ $l \neq 0'_b \Leftrightarrow$

Remarque. Si l est anti-linéaire : $\forall d \in \mathbb{C} \ \forall x, y \in H \ l(x+dy) = l(x) + \bar{d}l(y)$ et $\exists u \ t.q.$ $\forall x \in H : \ l(x) = (u|x)$

1.5 Convergence faible dans les espaces de Hilbert

1.5.1 Définition et premières propriétés

Définition 14. Soit H un espace de Hilbert. Une $\mathrm{suit}(x_n)_{n\in\mathbb{N}}n\in\mathbb{N}$ de H est dit Converge Faiblement vers $X\in H$ si $\forall y\in H(x_n|y)\to (x|y)$. On notera $x_n\rightharpoonup x$, x est dite limite faible de $(x_n)_{n\in\mathbb{N}}n\in\mathbb{N}$.

Exp. $H = l^2(\mathbb{N}), x_n \in l^2(\mathbb{N}^*)$ t.q. $x_n(j) = \delta_{nj}$.

 $(x_n)_{n\in\mathbb{N}}n\in\mathbb{N}$ est une base hilbertienne de H. On regarde la convergence faible. Soit $y\in l^2(\mathbb{N}^*)$ on doit calculer $\lim_{n\to+\infty}(x_n|y),\ (x_n|y)=\sum_j x_n(j)\overline{y(j)}=\overline{y(n)}.\ |(x_n|y)|\leq |y(n)|$ on sait $\sum_j |y(j)|^2<+\infty\Rightarrow |y(j)|\to 0$ qd $j\to+\infty$ et donc $|(x_n|y)|=|y(n)|\to 0$ qd $n\to+\infty$. On ercit $0=(0_H|y)$ alors $\lim_n(x_n|y)=(0_H|y).\ 0_H$ est une limite de la suite $(x_n)_{n\in\mathbb{N}}n\in\mathbb{N}$ (On montrera la limite faible est unique). $\|x_n\|^2=\sum_j |x_n(j)|^2=1$ $\Rightarrow x_n\not\to 0$ puisque $\lim_n\|x_n-0_H\|=\lim_n\|x_n\|=1\not\to 0.\ 0_H$ n'est pas limite de la suite $(x_n)_{n\in\mathbb{N}}$.

Proposition 1. La limite faible, si elle existe elle est unique.

Démonstration. Supposons que $\forall y \in H(x_n|y) \to (x|y)$ et $(x_n|y) \to (x'|y)$, $x, x' \in H$. Supposons $x \neq x' \Leftrightarrow x - x' \neq 0_H \Rightarrow \exists y \in H \text{ t.q. } (x|y) \neq (x'|y)$ (*)

Remarque. On suppose (*) faux : $\forall y \in H(x|y) = (x'|y) \Leftrightarrow (x-x'|y) = 0 \Rightarrow x-x' \perp H \Rightarrow x-x' = 0_H$ c'est Absurde.

On pose $u_n = (x_n|y)$ u = (x|y) u' = (x'|y) $u_n \to u$: $\forall \varepsilon > 0 \ \exists N \ \text{t.q.} \ \forall n \ge N|u_n - u| \le \varepsilon$. On choisit $\varepsilon < |u - u'| \ \text{alors on a toujours si} \ n \ge N \ |u_n - u'| = |u_n - u + u - u'| = ||u - u'| - |u_n - u|| \ge |u - u'| - \varepsilon \ge \frac{|u - u'|}{2} \Rightarrow \forall n \ge N|u_n - u'| \ge \frac{|u - u'|}{2} \Rightarrow |u_n - u'| \not\to 0 \Leftrightarrow u_n \not\to u' \ \text{QED.}$

Dans l'exemple précédent 0_H est la limite unique de la suite $(x_n)_{n\in\mathbb{N}}$ Exemple. $H=L^2(\mathbb{R})$. Soit $H_0\in C_c^\infty(\mathbb{R})$ On pose $\forall n\in\mathbb{N}, \varphi_n(x)=\varphi_0(x-n) \ x\in\mathbb{R}$.

Rappel. $C_c^{\infty}(\mathbb{R})$ ensemble des fonctions $f: \mathbb{R} \to \mathbb{C}$.

```
* support f compact: borne et ferme.

* f \in C^n(\mathbb{R}) \Leftrightarrow f \in C^\infty_X(\mathbb{R}) support f = \{x \in \mathbb{R}, f(x) \neq 0\}
```

$$L^{2}(\mathbb{R}) = \overline{C_{x}^{\infty}(\mathbb{R})}|_{\|\cdot\|_{L^{2}(\mathbb{R})}}$$

$$\varphi_0 \in C_C^{\infty}(\mathbb{R}), \forall n \in \mathbb{N} \varphi_n(x) = \varphi_0(x-n).$$

 $\forall \psi \in L^{2}(\mathbb{R}) : (\varphi_{n}|\psi) \to 0 = (0_{H}|\psi) \ (\varphi_{n}|\psi) = \int_{\mathbb{R}} dx \, \varphi_{n}(x) \overline{\psi(x)} = \int_{n-1}^{n+1} dx \, \varphi_{0}(x - n) \overline{\psi}(x). \ |(.|.)|_{L^{2}((n-1,n+1))} \leq ||.|| ||.|| \Rightarrow \int_{n-1}^{n+1} |\varphi_{0}(x-n)|^{2} dx = \int_{-1}^{+1} |\varphi_{0}(t)|^{2} dt = 1 \Rightarrow |(\varphi_{n}|\psi)| \leq (\int_{n-1}^{n+1} |\psi(x)|^{2} dx)^{\frac{1}{2}}$

$$\psi \in L^2(\mathbb{R}) \Rightarrow \int_{n-1}^{n+1} |\psi(t)|^2 dt \to 0$$
 quand $n \to +\infty$. $\|\psi\| = \sum_n \int_{n-1}^{n+1} |\psi|^2 dt < \infty$.

Proposition 2. 1. soit $(x_n)_{n\in\mathbb{N}}$ t.q. $x_n \rightharpoonup x \in Halors(x_{k(n)})_{n\in\mathbb{N}}$ Converge faiblement et $x_{k(n)} \rightharpoonup x$ 2. $si(x_n)_n \in \mathbb{N}$ et $(y_n)_{n \in \mathbb{N}}$ sait deux suites t.q. $x_n \rightharpoonup x$ et $y_n \rightharpoonup y$ alors $x_n + y_n \rightharpoonup x + y$

3. $si \ x_n \rightharpoonup x \ et \ soit \ (d_n)_{n \in \mathbb{N}} \ une \ suite \ des \mathbb{C} \ t.q. \ d_n \rightarrow d \in \mathbb{C} \Rightarrow d_n x_n \rightharpoonup dx.$

1. i est évident $\forall y \in H$ si $u_n = (y|x_n) \Rightarrow u = (y|x) \Rightarrow u_{k(n)} \to u \Rightarrow$ Démonstration.

i)

2. $\forall y \in H(y|x_n + z_n) = (y|x_n) + (y|x_n) \to (y|x) + (y|z) = (y|x+z).$

3. On suppose $\forall y \in H(x_n|y) \to (x|y)$ et $d_n \to d$. $(d_n x_n - dx|y) = (d_n x_n - dx_n + dx_n)$ $dx_n - dx|y) = (d_n - d)(x_n|y) + d(x_n - x|y) \Rightarrow |(d_n x_n - dx|y)| \le |d_n - d||(x_n|y)| + |d_n - dx|y| \le |d_n - dx|y| \le |d_n - dx|y| + |d_n - dx|y| \le |d_n - dx|y| \le |d_n - dx|y| + |d_$ $|d||(x_n-x|y)|$ (a) $(x_n|y) \to (x|y) \Rightarrow \exists M \text{ t.q. } |(x_n|y)| \leq M \ \forall n \in \mathbb{N} \Rightarrow |d_n - d||(x_n|x)| \leq |d_n$ $d|M \to 0qdn \to +\infty$. $|(x_n - x|y)| \to 0qdn \to +\infty$ par (*) la proposition est

Remarque. On a toujours que $|(x_n - x|y)| \le ||x_n - x||_H ||y||_H$. Si $\lim_n ||x_n - x|| = 0 \Leftrightarrow$ $\lim_n x_n = x \Rightarrow x_n \rightharpoonup x!$ l'inverse est faux en général.

Proposition 3. Si $x_n \rightharpoonup x$ dans H alors $\lim_{n \to +\infty} \inf \|x_n\| \ge \|x\|$.

démontrer.

Remarque. Si $(x_n)_{n\in\mathbb{N}}$ converge $\exists x\in H$ et $\lim_{n\to+\infty} ||x_n-x||=0$ alors par |||x||-1 $||x_n|| \le ||x-x_n|| \Rightarrow \lim_{n\to\infty} ||x_n|| = ||x||$. Mais si on a que $x_n \to x$ on ne sait

pas que la suite $||x_n||$ converge, c.a.d. que la limite existe par contre $\lim_n \inf ||x_n|| =$ $\lim_{n\to\infty}\inf\{\|x_k\|, k\geq n\}$ et $\lim_n\sup\|x_n\|-\lim_{n\to+\infty}\sup\{\|x_k\|, k\geq n\}$ existe toujours.

Démonstration. Puisque $x_n \rightharpoonup x$, alors $(x_n|x) \rightarrow (x|x) = ||x||^2$ en utilisant Cauchy Schwartz $|(x_n|x)| \le ||x_n||x| \Rightarrow ||x||^2 \le ||x_n|| ||x|| \Leftrightarrow ||x|| \le ||x_n|| \Rightarrow ||x|| \le \lim_{n \to \infty} \inf ||x_n||.$

Proposition 4. Soit $(x_n)_{n\in\mathbb{N}}$ une suite dans H. Alors $x_n\to x\Leftrightarrow x_n\to x$ et $\lim_n\sup\|x_n\|\le$ ||x||

 $D\acute{e}monstration. \ (\Rightarrow) \ x_n \rightarrow x \Rightarrow x_n \rightharpoonup x_n \ \text{et} \ \|x_n\| \rightarrow \|x\| \ (\Leftarrow) \ \|x - x_n\|^2 = \|x\|^2 + \|x_n\|^2 - x_n \ \text{et} \ \|x_n\| \rightarrow \|x\| \ (\Rightarrow) \ \|x - x_n\|^2 = \|x\|^2 + \|x_n\|^2 - x_n \ \text{et} \ \|x_n\| \rightarrow \|x\| \ (\Rightarrow) \ \|x - x_n\|^2 = \|x\|^2 + \|x_n\|^2 - x_n \ \text{et} \ \|x_n\| \rightarrow \|x\| \ (\Rightarrow) \ \|x - x_n\|^2 = \|x\|^2 + \|x_n\|^2 - x_n \ \text{et} \ \|x_n\| \rightarrow \|x\| \ (\Rightarrow) \ \|x - x_n\|^2 = \|x\|^2 + \|x$ $2\operatorname{Re}(x|x_n) \lim_n \sup \|x - x_n\|^2 \le \|x\|^2 + \lim_n \sup \|x_n\|^2 - 2\|x\|^2$. $\lim_n \sup \|x - x_n\|^2$

 $\lim_{n} \sup \|x - x_n\|^2 = \lim_{n} \inf \|x - x_n\|^2 = \lim_{n} \|x\|$ **Exemple 1.** Soit $(x_n)_{n\in\mathbb{N}}$ une suite bornée de H. Soit $D\subset H$ dense (D=H). Alors

 $\lim_{n} \sup \|x_n\|^2 - \|x\|^2 \le 0 \Rightarrow \lim_{n} \sup \|x - x_n\|^2 = 0 \ge \lim_{n} \inf \|x - x_n\|^2 \ge 0 \Rightarrow$

 $x_n \rightharpoonup x \text{ sur } H \Leftrightarrow (x_n|y) \rightarrow (x|y) \ \forall y \in D.$

Exercice 2. On considère $H = L^2(\mathbb{R}, dx)$, soit $\varphi \in H <=> \int_{\mathbb{R}} |\varphi|^2 dx = ||\varphi||_{L^2(\mathbb{R})}^2$. $H = \overline{C_c^{\infty}(\mathbb{R})}$

Soit $\varphi_0 \in C_0^{\infty}(\mathbb{R})$ tq $\|\varphi_0\|_{L^2(\mathbb{R})} = 1$ (sinon on pose $\varphi = \frac{\varphi_0}{\|\varphi_0\|}, \|\varphi\| = 1$) On pose $\varphi_n(x) = \varphi_0(x-n)$, on veut montrer que $\varphi_n \rightharpoonup \varphi \in L^2(\mathbb{R})$ On remarque que : $\|\varphi_n\|^2 = \varphi_n(x)$ $\int_{\mathbb{R}} |\varphi_0(x-n)|^2 dx \text{ On pose } u = x-n : \|\varphi_n\|^2 = \int_{\mathbb{R}} du \, |\varphi_0(u)|^2 = 1 \, \varphi_n \not\to 0 \|f_n - 0\| = 1.$

Est ce que la suite conv faiblement? $\exists \varphi \in H, (\varphi_n | \psi) - > (\varphi | \psi) \forall \psi \in H.$

Soit $\psi : \psi(x) = 1$ ssi $x \in [-1, 1]$ $\psi(x) = 0$ sinon. $\int_{\mathbb{R}} |\psi(x)|^2 dx = \int_{-1}^1 1 dx = 2$ On choisit $n \geq N$ avec N tq $a + N \geq = \int_{\mathbb{R}} \varphi_n \psi \, dx = 0$ On a montré $(f_c | \psi) - > 0 = (0 | \psi)$.

Question $\varphi_n \rightharpoonup 0_{L^2(\mathbb{R})}$?

Proposition 5. Soit H un espace de Hilbert $D \subset H$ dense dans $H : \overline{D} = H$. Alors soit $(x_n)_{n \in \mathbb{N}}$ une suite borné dans H, $x_n \rightharpoonup x \in H <=> (x_n|y) \rightarrow (x|y) \ \forall y \in D$.

Exercice(suite) On doit monter que $\forall \psi \in C^2(\mathbb{R}): (\varphi_n | \psi) \to 0$. On remarque que $\|\varphi_n\| = 1 \ \forall n \in \mathbb{N}$ donc elle est bornée. (Suite bornée : $\exists \prod tq \forall n \|x_n\| \leq \prod$) Il suffit de montrer $(\varphi_n | \varphi) \to 0 \forall \psi \in C_0^\infty(\mathbb{R})$. Montrons a dernier point : $\int_{\mathbb{R}} \psi(x) \varphi_n(x) \, \mathrm{d}x$; $\exists a, b \in \mathbb{R}$, $supp\psi \subset [A, B]$. On ch isit tq supp $\varphi_N = [a + N, b + N]$, $a + > => \int_{\mathbb{R}} \psi \varphi_n = 0 => \lim_n (\psi | \varphi_n) = 0 = (\psi | 0)$

Démonstration. Si $\varphi_n \to \varphi$ dans $H => \varphi_n \to \varphi$ dans D. Supposons que $(\varphi_n|\psi) \to (\varphi|\psi)\forall \psi \in D$. Soit $\eta \in H\exists (\eta_k)_{k \in \mathbb{N}}$ suite de D tq $\lim_n \|\eta_k - \eta\| = 0$. On calcul $(\varphi_n|\eta) = (\varphi_n|\eta_k) + (\varphi_n|\eta - \eta_k)$. Soit $\varepsilon > 0$, $\exists K$ tq si $k > K\|\eta - \eta_k\| \le \frac{\varepsilon}{2}$ alors $|(\varphi_n|\eta - \eta_k)| \le \|\varphi_\nu\|\|\eta - \eta_k\| \le \prod_{\varepsilon} \varepsilon$. On fixe un tel k. On conclut que $\forall \varepsilon > 0$, $\exists N$ tq si $n \ge N$; $|(\varphi_n|\eta)| \le (\prod_{\varepsilon} +1)\varepsilon => (\varphi_n|\eta) \to 0$.

Théorème 9 (1). Toute suite faiblement convergente dans un espace de Hilbert est bornée.

Théorème 10 (2, Banach-Alaoglu-Bourbaki). Une espace de Hilbert vérifie la propriété de Bolzano-Weierstrass faible. De toute suite bornée de H, en peut extraire une sous suite.

Remarque. Dans \mathbb{R} , de toute suite borné on peut extraire une sous-suite c.v. (B.W.) c'est vrai si $p < +\infty$. Mais c'est faux en dimension quelconque. Le Thm 2 > c'est vrai au sous faible.

Démonstration. Soit $(x_n)n \in N$ une suite borné dans $H: \exists L > 0$ tq $\forall n \in \|x_n\| \le L$. Soit $M = \overline{\text{vect}(x_n)}$. Si M est de dimension fini, alors $(x_n)_{n \in \mathbb{N}} \subset B_f(0_M, L) \subset M$. qui est compact <=> elle satisfait la propriété de B.W. $\exists (X_{k(n)})_{n \in \mathbb{N}}$ sous suite et $x \in B_f(0, L)$ tq $\lim_n \|x_{k(n)} - x\| \to 0 => x_{k(n)} \rightharpoonup x$ dans H. Alors le Theoreme 2 est démontré. Supponons que M n'est pas de dimension finie. M est un espace Hilbert (sous espace ferme de H) Soit $(\varphi_k)_{k \in \mathbb{N}}$ une base hilbertiere de M. La suite $((x_n|e-1))_{n \in \mathbb{N}}$ est bornee car $|(x_n|e_1)| \le \|x_n\| \|e_1\| \le L \cdot 1 = L$ On appleque la proprieté de B.W. dans $\mathbb{C}: \exists (a_{k(n)})_{n \in \mathbb{N}}$ et $c_1 \in \mathbb{C}$ tq $a_{k(n)} \to c_1$ qd $n \to +\infty$ on réécrit: $a_{k(n)}$ on pose $x_{k(n)} = x'_n$. $\forall n \in \mathbb{N}$ alors $(x_n^1|e_1) \to c_1$ qd $n \to +\infty$. 2 la suite $(x'_n|e_2)$ est borné, \exists une sous suite $(x_n^2)_{n \in \mathbb{N}}$ et $c_2 \in \mathbb{C}$ tq $(x_n^2|e_2) \to c_2$ qd $n \to +\infty$ etc...

Canclusion : On a construit des sous suité $(x_n)_{n\in\mathbb{N}}\subset (x_n^1)_{n\in\mathbb{N}}\subset ...(x_n^k)_{n\in\mathbb{N}}...$ et des complexes C_k , k=1,2,3... tq $(x_n^k|e_k)\to c_k$ qd $n\to+\infty$. (présidé deogonal de

Cantor) : on pose $z_n=x_n^n$. Montrer que $z_n \to \sum_k c_k e_k$ si $\sum_k c_k e_k$ est conv dans H. Le thm 2 est démontré. Montrons que $\sum_k c_k e_k = z \in M$ i.e (*). Puisque M est complet alors il faut montrer $S_n = \sum_{k=1}^n c_k e_k$ est de Cauchy : $\|s_n - s_m\|^2 = \left\|\sum_{k=n+1}^m c_k e_k\right\|^2 = \sum_{k=n+1}^m |c_k|^2$ (Parseval). S_n est de Cauchy $<=>\tilde{S}_n = \sum_{k=1}^n |c_k|^2$ est de Cauchy $<=>\tilde{S}_n$ est convergent dans \mathbb{C} . Montrons ce dernier point. On utilise l'inégalité de Bessel. $\sum_{k=1}^N |(x_n|e_k)|^2 \le \|z_n\|^2 \le L^2$ mais : $(z_n|e_k) + (x_n^n|e_k) \to c_k$ qd $n \to +\infty$. puisque $(x_n^n)_{n\in\mathbb{N}}$ est une sous suite de $(x_n^k)_{n\in\mathbb{N}}$ pour $n \ge k$.

 $(x_n)_{n\in\mathbb{N}}\subset (x_n^2)_{n\in\mathbb{N}}\subset ...(x_n^k)_{n\in\mathbb{N}}\subset (x_n^{k+1})_{n\in\mathbb{N}}...\ x_1^1\ x_2^2\ ...\ x_k^k\ \text{alors }\lim_{n\to+\infty}(x_n^n|e_k)=c_k.\ \text{Alors }\sum_{k=1}^N|c_k|^2=\sum_{k=1}^N\lim_n|(x_n^n|e_k)|^2=\lim_n\sum_{k=1}^N|(x_n^n|e_k)|^2=\lim_n\sum_{k=1}^N|(z_n|e_k)|^2$ on utilisant (*) alors $\sum_{k=1}^N|c_k|^2\leq L^2$ (par passage à la limite) Par conséquent $\sum |c_k|^2$ est convergente dans M. Soit $z=\sum_{k=1}c_k\varphi_k$ alors $(z|e_c)=c_e$. Alors on a montre que $\forall C\in\mathbb{N}^*\ (z_n|e_c)\to c_e=(z|e_c)$ En utilisant que

