In a trapezium, AD // BC, BC = BD = 1, AB = AC, CD < 1, $\angle BAC + \angle BDC = 180^{\circ}$, find CD.

Reflect $\triangle ABC$ along BC to $\triangle EBC$. Let CD = x.

ABEC is a rhombus since AB = AC = BE = CE

Suppose AE intersects BC at O. Then $\angle AOB = 90^{\circ}$ (property of rhombus)

$$\angle DAO = 90^{\circ}$$
 (alt. \angle s, $AD // BC$)

Let $\angle BAE = a = \angle CAE$ (property of rhombus)

Let
$$\angle CAD = b = \angle ACB$$
 (alt. $\angle s$, $AD // BC$)

$$a + b = 90^{\circ}$$
 (ext. \angle of $\triangle ACO$) ······· (1)

$$\angle BAC + \angle BDC = 180^{\circ}$$
 (given)

$$\angle BDC = 180^{\circ} - 2a$$

$$\angle BCD = \angle BDC = 180^{\circ} - 2a \text{ (base } \angle s, \text{ isos. } \Delta)$$

$$\angle ACD = \angle BCD - \angle ACB = 180^{\circ} - 2a - b$$

= $180^{\circ} - a - b - a$
= $180^{\circ} - 90^{\circ} - a$ (by (1))
= $90^{\circ} - a$
= b (by (1))

∴ ACD is an isos. Δ (base \angle s. eq.)

$$AD = CD = x$$
 (sides opp. eq. \angle s)

 $= \angle CAD$

 $\therefore \Delta BCD$ is an isos. Δ with BC = BD = 1

$$\therefore x = 2 \times 1 \times \cos 2b = 2 \cos 2b \cdots (2)$$

From D, drop a perpendicular line down to K on BC

Sub. (3) into (2):
$$x = \frac{1-2x}{x}$$

$$x = \sqrt{2} - 1$$

Reflect $\triangle BDC$ along BC to $\triangle BEC$. Let CD = x = CE.

Let $\angle BAC = \theta$, $\angle BDC = 2\phi = \angle BCD = \angle BCE = \angle BEC$

 $\theta + 2\phi = 180^{\circ}$ (given)

A, B, E, C are concylic (opp. \angle s supp.)

Let $\angle ACD = a$, $\angle ACB = b$, $\angle AEB = c$

 $\angle AEC = d$, $\angle CAD = e$

Join AE, suppose it cuts BC at P.

Let CP = y

AB = AC (given)

 $\therefore c = d$ (eq. chords. eq. \angle s)

 $= \phi$

b = c (\angle s in the same seg.)

 $= \phi$

 $a = 2\phi - \phi = \phi$

 $e = b = \phi$ (alt. \angle s AD // BC)

∴ $\triangle ACD$ is isos. (base \angle s eq.)

AD = x (sides opp. eq. \angle s)

Produce AD and EC to meet at K.

 $\angle CDK = a + b = 2\phi$ (alt. $\angle s AD // BC$)

 $\angle DKC = 2\phi \text{ (corr. } \angle s AK // BC)$

∴ ΔCDK is isos. (base \angle s eq.)

CK = x (sides opp. eq. \angle s)

= CE

::PC //AK

AP = PE (intercept theorem)

AK = 2 PC = 2y (mid point theorem on $\triangle AEK$)

$$DK = 2y - x$$

It is easy to see that $\triangle AKC \sim \triangle EAK$ (equiangular)

$$\therefore \frac{KC}{AK} = \frac{AK}{EK} \Rightarrow \frac{x}{2y} = \frac{2y}{2x} \Rightarrow x^2 = 2y^2 \cdot \dots (1)$$

Further, $\triangle CDK \sim \triangle BCD$ (equiangular)

$$\frac{2y - x}{x} = \frac{x}{1}$$

$$\therefore y = \frac{x^2 + x}{2} \cdot \dots \cdot (2)$$

Sub. (2) into (1): $x^2 = 2(\frac{x^2 + x}{2})^2$

$$x^2 = \frac{x^2(x+1)^2}{2}$$

$$(x+1)^2 = 2$$

$$x = \sqrt{2} - 1$$

