A Scaled-2D CNN for Skin Cancer Diagnosis

Course:

ENEL 645 (Winter 2022) - Data Mining & Machine Learning

Instructor:

Dr. Roberto Souza

Presented by group 20:

Anja Slama
Esmaeil Shakeri Hossein Abad
Kayode Awe
Melissa Liao Chen
Maliha Zakir
Serhiy Chaykovskyy

Motivation & Significance

- Cancer: leading cause of death
- Skin Cancer
 - Most diagnosed
 - Treated when diagnosed in early stages.
- 2 types of tumors: Benign / Malignant
- 3 significant sorts of skin cancer:

Melanoma Basal Cell Carcinoma (BCC) Squamous Cell Carcinoma (SCC)

- → Computer based skin cancer diagnosis is highly efficient for non-dermatologists to classify the skin tumors from other skin oriented diseases
- Disease diagnostics can be based on:
 - Microscopic images
 - Dermoscopic images
- → Deep neural network trained with dermoscopic images.

Introduction

Predict skin cancer

- Scaled 2D-CNN fine-tuned model
- Dermoscopic images from a publicly available dataset
- EfficientNet-B7 deep neural architecture with prior image pre-processing

Compare the performance

- Proposed architecture
- Pre-trained deep neural networks (VGG-19, ResNet50)

Methodology - Data Collection

- The Dataset for skin cancer dermoscopic gathered from ISIC Challenge in 2017.
- The dataset has two types of tumor
- 3,637 images in two class
- 2,637 (244x244) images for two types of the tumor used for training
- 660 images for testing

fig. 2.

b) Three individual Malignant images are used to cascade

Methodology - Image Pre-processing

- Image Resize: Image input resized to a target of 224 x 224 to achieve uniformity.
- Image Conversion: Grayscale images were changed to RGB images by using average method. This is to achieve 3-input channel data for the network.
- Image Augmentation: Used to improve the overall performance of the network as few training data were available.

Conversion from grayscale to RGB

Same image after different types of transformation

Methodology - Transfer Learning

 By using pre-trained TL methods, training time and computational complexity can reduce.

In this study, three models were used which are mainly for the ImageNet 1000 classification problem.

EfficientNet-B7

 $224 \times 224 \times 3$ $224 \times 224 \times 64$

ResNet-50

Proposed Architecture - 2D-CNN

2D - Convolutional Neural Network

3 Phases:

• patch extraction \rightarrow feature extraction \rightarrow label identification

Feature maps computed at each layer by: $v_{i,j}^{x,y} = F(b_{ij} + \sum_{m=a=0}^{A_i-1} \sum_{b=0}^{B_i-1} w_{ijm}^{abc} v_{(i-1)m}^{(x+a)(y+b)})$

Activation Function: ReLU F(x) = max(0,x)

Final Layer:

- Global Average Pooling
- softmax
- 25% dropout

Proposed Architecture - Scaling

EfficientNet-B7 is utilized to scale up the model

- Top 5 ImageNet accuracy: 97.1%
- 6.1x faster inference
- 66M parameters
- 37B FLOPS

Compound scaling

- Depth, $d=\alpha^{\Phi}$ Width, $w=\beta^{\phi}$ Resolution, $r=\gamma^{\Phi}$

Experimental Setup and Training

- 3,297 images \rightarrow 10,351 images
- 70% for training and 30% for testing
- Shape of 224 x 224 x 3
- ReLU activation
- Adam optimizer
 - Learning rate of 0.003
 - Categorical cross-entropy
- Batch size of 24
- 60 epochs
- 15,000 iterations

Experimental Results

Architectures	AUC	Accuracy	Specificity	Sensitivity	F1-Score
VGG-19	0.849	0.862	0.88	0.85	0.86
ResNet-50	0.945	0.924	0.92	0.94	0.93
Developed	0.993	0.987	0.97	0.98	0.93

Fig. 3. ROC curve of scaled 2D-CNN model (Developed), ResNet-50 model and VGG-19 model.

Conclusion - Methodology Strengths

- Efficient Train-Test split (80/20)
- Image resize, conversion and augmentation
- Same size (224X224) image classification
- All grayscale images to RGB
- Less training data for augmentation
- EfficientNet-B7 and ResNet-50 TL models
- Reduced time, computational complexity

Conclusion - Methodology Limitations

- Inadequate dataset description
- Lacks detailed information on
 - 1. train and test set split
 - 2. image resize, conversion and augmentation
- Color enhancement software: expensive and time consuming
- Configuration of image augmentation was unclear
- Deciding factor in choosing Transfer Learning architectures

References

T. Hasan Rafi and R. M. Shubair, "A Scaled-2D CNN for Skin Cancer Diagnosis," 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 2021, pp. 1-6, doi: 10.1109/CIBCB49929.2021.9562888.

Paper Link: A Scaled-2D CNN for Skin Cancer Diagnosis

