COMP417 Lecture 2

Artificial Neural Networks -The Basics

Dr. Hend Dawood

Neural Networks: The Perceptron

Perceptron: Simplified model

- Number of inputs combine linearly
 - Threshold logic: Fire if combined input exceeds threshold

$$Y = \begin{cases} 1 & if \\ \sum_{i} w_{i}x_{i} - T \ge 0 \\ 0 & else \end{cases}$$

Also provided a learning algorithm

$$\mathbf{w} = \mathbf{w} + \eta (d(\mathbf{x}) - y(\mathbf{x}))\mathbf{x}$$

Sequential Learning:

d(x) is the desired output in response to input \mathbf{x} y(x) is the actual output in response to \mathbf{x}

- Boolean tasks
- Update the weights whenever the perceptron output is wrong
 - Update the weight by the product of the input and the error between the desired and actual outputs
- Proved convergence for linearly separable classes

Neural Networks: The Perceptron

Perceptron

- Easily shown to mimic any Boolean gate
- But...

Neural Networks: The Perceptron

Individual units

No solution for XOR!

30MP417

Neural Networks: The Perceptron

• What can perceptrons represent?

- Functions which can be separated in this way are called Linearly Separable.
- Only linearly Separable functions can be represented by a perceptron.

• Example: Training a Perceptron

I_1	I_2	I_3	Summation	Output
-1	0	0	(-1*0.3) + (0*0.5) + (0*-0.4) = -0.3	0
-1	0	1	(-1*0.3) + (0*0.5) + (1*-0.4) = -0.7	0
-1	1	0	(-1*0.3) + (1*0.5) + (0*-0.4) = 0.2	1
-1	1	1	(-1*0.3) + (1*0.5) + (1*-0.4) = -0.2	0

Neural Networks: The Perceptron

A single neuron is not enough

- Individual elements are weak computational elements
 - Marvin Minsky and Seymour Papert, 1969, Perceptrons:
 An Introduction to Computational Geometry
- Networked elements are required

Multi-layer Perceptron!

- XOR
 - The first layer is a "hidden" layer

Neural Networks: The Perceptron

A more generic model

 $((A\&\overline{X}\&Z)|(A\&\overline{Y}))\&((X\&Y)|\overline{(X\&Z)})$

- A "multi-layer" perceptron
- Can compose arbitrarily complicated Boolean functions!
 - In cognitive terms: Can compute arbitrary Boolean functions over sensory input
 - More on this in the next class

But our brain is not Boolean

- We have real inputs
- We make non-Boolean inferences/predictions

The perceptron with *real* inputs

- $x_1...x_N$ are real valued
- $w_1...w_N$ are real valued
- Unit "fires" if weighted input matches (or exceeds) a threshold

Neural Networks: The Perceptron

The perceptron with real inputs

- Alternate view:
 - A threshold "activation" $\theta(z)$ operates on the weighted sum of inputs plus a bias
 - · An affine function of the inputs
 - $-\theta(z)$ outputs a 1 if z is non-negative, 0 otherwise
- Unit "fires" if weighted input matches or exceeds a threshold

Neural Networks: The Perceptron

The perceptron with real inputs

"linear" and "affine"?

- Alternate view:
 - A threshold "activation" $\theta(z)$ operates on the weighted sum of inputs plus a bias

 What is the difference between
 - An affine function of the inputs
 - $-\theta(z)$ outputs a 1 if z is non-negative, 0 otherwise
- Unit "fires" if weighted input matches or exceeds a threshold

The perceptron with *real* inputs

and a real output

Activation functions $\sigma(z)$

- $x_1...x_N$ are real valued
- $w_1...w_N$ are real valued
- The output y can also be real valued
- For now we will continue to assume threshold activations

A Perceptron on Reals

- A perceptron operates on real-valued vectors
 - This is a linear classifier

Boolean functions with a real perceptron

- Boolean perceptrons are also linear classifiers
 - Purple regions have output 1 in the figures
 - What are these functions
 - Why can we not compose an XOR?

Composing complicated "decision" boundaries

 Build a network of units with a single output that fires if the input is in the coloured area

Booleans over the reals

Booleans over the reals

Booleans over the reals

Neural Networks: The Perceptron

Booleans over the reals

Neural Networks: The Perceptron

Booleans over the reals

Booleans over the reals

Neural Networks: The Perceptron

More complex decision boundaries

- Network to fire if the input is in the yellow area
 - "OR" two polygons
 - A third layer is required

)MP417

Neural Networks: The Perceptron

Complex decision boundaries

- Can compose very complex decision boundaries
 - How complex exactly? More on this in the next class

Complex decision boundaries

- Classification problems: finding decision boundaries in high-dimensional space
 - Can be performed by an MLP
- MLPs can classify real-valued inputs
- They are universal classifiers
 - For any decision boundary, we can construct an MLP that captures it with arbitrary precision

But what about continuous valued outputs?

- Inputs may be real-valued
- Can outputs be continuous-valued too?

Neural Networks: The Perceptron

MLP as a continuous-valued regression

- A simple 3-unit MLP with a "summing" output unit can generate a "square pulse" over an input
 - Output is 1 only if the input lies between T₁ and T₂
 - T₁ and T₂ can be arbitrarily specified

Neural Networks: The Perceptron

MLP as a continuous-valued regression

- A simple 3-unit MLP can generate a "square pulse" over an input
- An MLP with many units can model an arbitrary function over an input
 - To arbitrary precision
 - · Simply make the individual pulses narrower
- This generalizes to functions of any number of inputs (next class)

Neural Networks: The Perceptron

These tasks are functions

- Each box is actually a function
 - E.g f: Image \rightarrow Caption
 - It can be approximated by a neural network