Math 60 HW 12 Thursday, June 2, 2016

 $7.2.\{6, 14, 22, 28\}, 7.3.\{4, 6\}, T/F(pg.522)\{6, 10, 18\}$

Colley 7.2.6 Find $\iint_S (x^2 + y^2) dS$, where *S* is the lateral surface of the cylinder of radius *a* and height *h* whose axis is the *z*-axis.

1

Colley 7.2.14 In Exercises 10-18, let S denote the closed cylinder with bottom given by z=0, top given by z=4, and lateral surface given by the equation $x^2+y^2=9$. Orient S with outward normals. Determine the indicated scalar and vector surface integrals.

$$\iint_{S} (x \mathbf{i} + y \mathbf{j}) \cdot d\mathbf{S}$$

Colley 7.2.22 In Exercises 19-22, find the flux of the given vector field **F** across the upper hemisphere $x^2 + y^2 + z^2 = a^2$, $z \ge 0$. Orient the hemisphere with an upward-pointing normal.

$$\mathbf{F} = x^2 \,\mathbf{i} + xy \,\mathbf{j} + xz \,\mathbf{k}$$

Colley 7.2.28 The glass dome of a futuristic greenhouse is shaped like the surface $z = 8 - 2x^2 - 2y^2$. The greenhouse has a flat dirt floor at z = 0. Suppose that the temperature T, at points in and around the greenhouse, varies as

$$T(x,y,z) = x^2 + y^2 + 3(z-2)^2$$
.

Then the temperature gives rise to a **heat flux density field H** given by $\mathbf{H} = -k\nabla T$. (Here k is a positive constant that depends on the insulating properties of the particular medium.) Find the total heat flux outward across the dome and the surface of the ground if k = 1 on the glass and k = 3 on the ground.

Colley 7.3.4 In Exercises 1-4, verify Stokes's theorem for the given surface and vector field.

$$S$$
 is defined by $x^2+y^2+z^2=4$, $z\leq 0$, oriented by downward normal;
$$\mathbf{F}=(2y-z)\ \mathbf{i}+(x+y^2-z)\ \mathbf{j}+(4y-3x)\ \mathbf{k}$$

Colley 7.3.6 In Exercises 6-9, verify Gauss's theorem for the given three-dimensional region *D* and vector field **F**.

$$\mathbf{F} = x \, \mathbf{i} + y \, \mathbf{j} + z \, \mathbf{k},$$

$$D = \left\{ (x, y, z) \mid 0 \le z \le 9 - x^2 - y^2 \right\}$$

Colley TRUE/FALSE PAGE 522

- **6.** If *S* is the unit sphere centered at the origin, then $\iint_S x^3 dS = 0$.
- **10.** $\iint_{S} (-y\mathbf{i} + x\mathbf{j}) \cdot d\mathbf{S} = 0$, where *S* is the cylinder $x^2 + y^2 = 9$, $0 \le z \le 5$.
- **18.** $\iint_S \nabla \times \mathbf{F} \cdot d\mathbf{S}$ has the same value for all piecewise smooth, oriented surfaces S that have the same boundary curve C. *Hint*: think about what the field is doing.

7