Imputación de datos perdidos mediante técnicas de Machine Learning

Un experimento usando la Encuesta Permanente de Hogares

Germán Rosati german.rosati@gmail.com

IDAES-UNSAM / PIMSA / UNTREF

07 de Agosto de 2019

Hoja de ruta

- ¿Qué es y como se genera un dato perdido?
- ¿Cómo lidiar con los datos perdidos?
 - Técnicas tradicionales (imputación simpe)
 - Técnicas basadas en Machine Learning
- Metodología de imputación utilizada
- Resultados y discusión

¿Qué es un valor perdido?

- Valor del que se carece una dato válido en la variable observada
- Problema generalizado en investigaciones por encuestas
- Problema cada vez más frecuente en investigaciones que usan registros administrativos o datos de redes sociales, aplicaciones, etc.
- ¿Cómo se generan esos datos perdidos?

Procesos de generación de valores perdidos

Ejemplos

MCAR			
X1	Υ		
0	NA		
0	1		
0	1		
1	1		
1	NA		
2	NA		
2	1		
2	1		
3	1		
3	1		
3	NA		
3	1		
4	1		
4	NA		
4	1		
4	NA		
4	1		
4	1		

MAR		
Υ		
1		
1		
1		
1		
1		
1		
1		
1		
1		
NA		
NA		
1		
1		
NA		
1		
NA		
1		
NA		

MAR		
X1		
0	1	
0	1	
0	1	
1	1	
1	1	
2	1	
2	1	
2	1	
3	1	
3	1	
3	1	
3	1	
4	1	
4	NA	
4	1	
4	NA	
4	NA	

¿Por qué es importante imputar datos?

Un ejemplo: EPH

Proporción de casos imputados (sin datos en alguna variable de ingresos) en EPH. Total de aglomerados urbanos, 2003-2015 (II-Trimestre de cada año)

Imputación simple

- Exclusión de casos → se achica el dataset
- ullet Reemplazo por la media o alguna otra medida o intervalos de confianza más estrechos de forma artificial
- ullet Reponderación o es incómodo trabajar con varios sets de pesos.
- ullet Hot Deck o problema en la selección de métrica de similitud y en la selección de los donantes

Ensamble Learning

- Técnicas de aprendizaje supervisado donde se combinan varios modelos base.
- Ampliar el espacio de hipótesis posibles para mejorar la precisión predictiva del modelo combinado resultante.
- Los ensambles suelen ser mucho más precisos que los modelos base que los componen.

Ensamble Learning - Bagging

- Construcción de estimadores independientes -Boostrap-
- Combinación las predicciones mediante función agregación.
- Ejemplos: Random Forest, ExtraTrees, etc.

Ensamble Learning - Boosting

- Construcción secuencial de los estimadores
- Mayor peso en aquellos casos en los que se observa una peor performance.
- Ejemplos: AdaBoost y Gradient Tree Boosting, XGBoost.

Ensamble Learning - Multi Layer Perceptron

Fuente: https://technology.condenast.com/story/a-neural-network-primer

- Cada neurona aplica una transformación lineal $x_i w_i^T + b$ seguida de una función de activación
- Al apilar capas de neuronas se aplican sucesivas de transformaciones lineales que permiten la construcción de modelos altamente no lineales

- Dataset: EPH 2do. trimestre de 2015
- Población: Ocupados en la semana de referencia
- Objetivo: Generar un imputador de la variable ingresos
- Variables predictoras sociodemográficas, laborales y otros ingresos

Estrategia de validación 1

- Estimación de métricas de error
- Supuesto: Proceso de generación de datos perdidos MCAR o MAR

Tabla 3. Métricas de performance predictiva de los diferentes algoritmos entrenadas

Algoritmo	RMSE	MAE
Hot Deck	\$5930.6	\$3740.6
Random Forest	\$2800.6	\$1561.9
XGBoost	\$3260.8	\$2016.8
MLP	\$3974.2	\$2293.1

Fuente: elaboración propia en base a microdatos de la EPH - 2do. trimestre de 2015

Estrategia de validación 2

 Comparación de distribuciones sobre datos perdidos reales (es decir, imputados por INDEC)

Estrategia de validación 2

Comparación de distribución de datos completos (imputados + respuesta)

Resumen

- Machine Learning como alternativa para la imputación
- \bullet Reducción considerable en el RMSE entre casos perdidos comparado a Hot Deck -entre 30 % y 50 %-
- Problemas a futuro
 - Extensión del alcance del ejercicio
 - Propiedades de los estimadores y estimaciones de medidas basadas en ingresos al utilizar estas técnicas
 - Performance relativa a HotDeck en procesos de generación de datos no aleatorios

¿Preguntas?

german.rosati@gmail.com