SustAlnability

Verifying Product Carbon Footprints (sine foundation)

Team 2.2: Anastasia Shulman & Aleks Aleksandrov

How can we increase data quality and transparency in sustainability initiatives?

Key problems

Greenwashing

- Misreporting or manipulating data to present a more positive environmental image
- Double accounting by entering mitigating data multiple times
- Manipulation of metrics by using non-standardized units or choosing metrics that downplay environmental impact

Data complexity

- Massive datasets from various sources, including suppliers, production processes, and distribution channels
- Supply chains are intricate networks involving multiple companies and locations
- Unstructured data, such as qualitative information from stakeholder reports

- Al algorithms can process vast amounts of data at unparalleled speeds
- Machine learning excels at identifying patterns and anomalies
- Al enables real-time data verification, providing instant feedback

Data

Product Carbon Footprint (PCF): Total carbon emissions generated by a product over the different stages of its life cycle.

- Direct activities: relevant activity data and emissions based on company's own processes
- Upstream activities: relevant material and energy input flows from suppliers upstream
- Emission factors: representative values that quantify the environmental impact of products and processes

Steps for PCF calculation:

Our solution

- Benchmarking: Compare the Product Carbon Footprint of a product against industry standards or similar products
- Ranking: Rank products based on their PCF, allowing users to make informed decisions

Comparative Analysis Algorithms

Comparative analysis algorithm example

product_data: Dictionary containing data for the product (e.g., materials, energy inputs, components, manufacturing, transportation)

weights: Dictionary containing weights for different factors affecting the carbon footprint

total_score: overall weighted carbon footprint score for the product

```
total_score = 8

for factor, value in product_data.items():
    if factor in weights:
        total_score = x value * weights[factor]

return total_score

def rank_products(products_data, weights):

product_scores = []

for product_data in products_data:
        score = calculate_carbon_footprint_score(product_data, weights)
    product_scores.append((product_data['product_name'], score))

# Sort products based on their scores in descending order
        ranked_products = sorted(product_scores, key=lambda x: x[1], reverse=True)

return ranked_products
```

Demonstration

(C) Help

friedrich_rewe

Demonstration

Al Sustainability

Al impact

Large language models such as GPT3 have a CO2 footprint of over 500 tonnes CO2eq

Patterson et al 2021, Luccioni et al. 2022

Greenwashing impact

French multinational oil and gas company "Total" greenwashed at least 10 million tonnes of CO2 in 2020

https://www.clientearth.org/projects/the-greenwashing-files/total/

Thank You For Your Attention!

Quellen

- Patterson et al. 2021, S. 6; Luccioni et al. 2022, S. 7
- Total. (2022, 18. November). ClientEarth. https://www.clientearth.org/projects/the-greenwashing-files/total/
- World Business Council for Sustainable Development. (o. D.). Guidance for the Accounting and Exchange of Product Life Cycle Emissions. Pathfinder Framework, 22. https://www.carbon-transparency.com/media/jpslsujn/pathfinder-framework.pdf