# MA1522 Linear Algebra for Computing Lecture 10: Applications (of Orthogonality) and Eigenvalues

Yang Yue

Department of Mathematics National University of Singapore

24 March, 2025

#### Outline

Exercises and Questions posed in Dr.Teo's Lectures

Challenges posed in Dr. Teo's Lectures

#### Exercise One in Section 5.4

- 1. Prove that  $\mathbf{Q}^T\mathbf{Q} = \mathbf{I}_n$ .
- 2. Prove that the diagonal entries of **R** are positive,  $r_{ii} > 0$  for all i = 1, ..., n.
- 3. Prove that the upper triangular matrix

$$\mathbf{R} = \begin{pmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ 0 & r_{22} & \cdots & r_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_{nn} \end{pmatrix} \text{ is invertible.}$$

(Exercises are part of proofs that Dr. Teo skipped.)

#### Slide 57: QR Factorization

### Theorem (QR Factorization)

Suppose **A** is an  $m \times n$  matrix with linearly independent columns. Then **A** can be written as

$$\mathbf{A} = \mathbf{Q}\mathbf{R}$$

for some  $m \times n$  matrix **Q** such that  $\mathbf{Q}^T \mathbf{Q} = \mathbf{I}_n$  and invertible upper triangular matrix **R** with positive diagonal entries.

#### Definition

The decomposition given in the theorem above is called a *QR factorization* of **A**.

#### Where do **Q** and **R** come from?

Suppose  $\mathbf{A} = \begin{pmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{pmatrix}$  whose columns are linearly independent. Applying the Gram-Schmidt process on the columns, we obtain a matrix  $\mathbf{Q} = \begin{pmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_n \end{pmatrix}$  whose columns are orthonormal.

By Gram-Schmidt, span $\{\mathbf{q}_1,\mathbf{q}_2,...,\mathbf{q}_i\}=\mathrm{span}\{\mathbf{a}_1,\mathbf{a}_2,...,\mathbf{a}_i\}.$  Thus,

$$\mathbf{a}_{i} = r_{1i}\mathbf{q}_{1} + r_{2i}\mathbf{q}_{2} + \cdots + r_{ii}\mathbf{q}_{i} + 0\mathbf{q}_{i+1} + \cdots + 0\mathbf{q}_{n}$$

$$= \left(\mathbf{q}_{1} \cdots \mathbf{q}_{i} \cdots \mathbf{q}_{n}\right) \begin{pmatrix} r_{1i} \\ \vdots \\ r_{ii} \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

# Where do **Q** and **R** come from? (conti.)

Putting things together,

$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_n \end{pmatrix} \begin{pmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ 0 & r_{22} & \cdots & r_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_{nn} \end{pmatrix}$$

$$= \mathbf{Q}\mathbf{R}$$

for some  $m \times n$  matrix **Q** with orthonormal columns, and an upper triangular  $n \times n$  matrix **R**.

### Algorithm to QR Factorization

Let **A** be an  $m \times n$  matrix with linearly independent columns.

- 1. Perform Gram-Schmidt on the columns of  $\mathbf{A} = \begin{pmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{pmatrix}$  to obtain an orthonormal set  $\{\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_n\}$ .
- 2. Set  $\mathbf{Q} = \begin{pmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_n \end{pmatrix}$ .
- 3. Compute  $\mathbf{R} = \mathbf{Q}^T \mathbf{A}$ .

Note, item 3 gave us an alternative way to calculate  ${\bf R}$ .

# Answer to Exercise One in Section 5.4 (part 1)

1. Prove that  $\mathbf{Q}^T\mathbf{Q} = \mathbf{I}_n$ .

Proof. Since **Q** is an  $m \times n$  matrix, **Q**<sup>T</sup> is  $n \times m$ . Thus **Q**<sup>T</sup>**Q** is  $n \times n$ . By block multiplication,

$$\mathbf{Q}^{T}\mathbf{Q} = \begin{pmatrix} \mathbf{q}_{1}^{T} \\ \vdots \\ \mathbf{q}_{n}^{T} \end{pmatrix} \begin{pmatrix} \mathbf{q}_{1} & \cdots & \mathbf{q}_{n} \end{pmatrix} = \begin{pmatrix} \mathbf{q}_{i}^{T}\mathbf{q}_{j} \end{pmatrix}$$

Observe that  $\mathbf{q}_i^T \mathbf{q}_j$  (as matrix multiplication) is equal to the dot product  $\mathbf{q}_i \cdot \mathbf{q}_j$ , and  $\{\mathbf{q}_1, \dots, \mathbf{q}_n\}$  is orthonormal, we then have

$$\left(\mathbf{q}_{i}^{T}\mathbf{q}_{j}\right)=\mathbf{I}_{n}.$$

### Answer to Exercise One in Section 5.4 (part 2)

2. Prove that the diagonal entries of **R** are positive,  $r_{ii} > 0$  for all i = 1, ..., n.

Proof. By earlier slides, we have, for each  $i \le n$ ,

$$\mathbf{a}_i = r_{1i}\mathbf{q}_1 + r_{2i}\mathbf{q}_2 + \dots + r_{ii}\mathbf{q}_i. \tag{1}$$

Using  $\mathbf{q}_i$  to dot multiply both sides of (1), we have

$$r_{ii} = \mathbf{a}_i \cdot \mathbf{q}_i$$
.

Now back to Gram-Schmidt, we have

$$\mathbf{v}_i = \mathbf{a}_i - \left(\frac{\mathbf{v}_1 \cdot \mathbf{a}_i}{\|\mathbf{v}_1\|^2}\right) \mathbf{v}_1 - \left(\frac{\mathbf{v}_2 \cdot \mathbf{a}_i}{\|\mathbf{v}_2\|^2}\right) \mathbf{v}_2 - \dots - \left(\frac{\mathbf{v}_{i-1} \cdot \mathbf{a}_i}{\|\mathbf{v}_{i-1}\|^2}\right) \mathbf{v}_{i-1}. \tag{2}$$

and  $\mathbf{q}_i = \frac{\mathbf{v}_i}{\|\mathbf{v}_i\|}$ , using  $\mathbf{q}_i$  to dot multiply both sides of (2), we have

$$\mathbf{a}_i \cdot \mathbf{q}_i = \mathbf{v}_i \cdot \mathbf{q}_i = ||\mathbf{v}_i|| > 0.$$

Consequently,  $r_{ii} > 0$ .



# Answer to Exercise One in Section 5.4 (part 3)

3. Prove that the upper triangular matrix

$$\mathbf{R} = \begin{pmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ 0 & r_{22} & \cdots & r_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_{nn} \end{pmatrix}$$

is invertible.

Proof. It follows from

$$\det(\mathbf{R})=r_{11}\ldots r_{nn}>0.$$

#### Exercise Two in Section 5.4

Use QR factorization to prove the following

#### Corollary

Suppose **A** is an  $m \times n$  matrix with linearly independent columns, i.e. rank(**A**) = n. Then **A**<sup>T</sup>**A** is invertible, and **A** has a left inverse; that is, there is a **B** such that

$$BA = I_n$$
.

#### Answer to Exercise Two in Section 5.4

Use QR factorization to prove that if  $\mathbf{A}$  is an  $m \times n$  matrix with linearly independent columns, then  $\mathbf{A}^T \mathbf{A}$  is invertible, and  $\mathbf{A}$  has a left inverse; that is, there is a  $\mathbf{B}$  such that

$$BA = I_n$$
.

Proof. Since  ${\bf A}$  has independent columns,  ${\bf A}$  has a QR-decomposition  ${\bf A}={\bf Q}{\bf R}.$  Then

$$\mathbf{A}^T \mathbf{A} = \mathbf{R}^T \mathbf{Q}^T \mathbf{Q} \mathbf{R} = \mathbf{R}^T \mathbf{R},$$

because  $\mathbf{Q}^T\mathbf{Q} = \mathbf{I}_n$  by Exercise above. Since  $\mathbf{R}$  is invertible (by the same exercise),  $\mathbf{R}^T$  is also invertible, and hence  $\mathbf{A}^T\mathbf{A}$  is invertible. Let  $\mathbf{P}$  be its inverse, then  $\mathbf{B} = \mathbf{P}\mathbf{A}^T$  is a left inverse of  $\mathbf{A}$ .

#### Question in Section 5.5

Suppose the system  $\mathbf{A}\mathbf{x} = \mathbf{b}$  is consistent.

- 1. Suppose  $\mathbf{u}$  is a solution to  $\mathbf{A}\mathbf{x} = \mathbf{b}$ . Is  $\mathbf{u}$  a least square solution to  $\mathbf{A}\mathbf{x} = \mathbf{b}$ ?
- 2. Suppose  $\mathbf{u}$  is a least square solution to  $\mathbf{A}\mathbf{x} = \mathbf{b}$ . Is  $\mathbf{u}$  a solution to  $\mathbf{A}\mathbf{x} = \mathbf{b}$ ?

### Slide 64: Least Square Approximation

#### Definition

Let **A** be an  $m \times n$  matrix and **b** a vector in  $\in \mathbb{R}^m$ . A vector **u** in  $\mathbb{R}^n$  is a *least square solution* of  $\mathbf{A}\mathbf{x} = \mathbf{b}$  if for every vector  $\mathbf{v} \in \mathbb{R}^n$ ,

$$\|\mathbf{A}\mathbf{u} - \mathbf{b}\| \le \|\mathbf{A}\mathbf{v} - \mathbf{b}\|.$$

Geometrically, by the best approximation theorem, the vector  $\mathbf{b}' = \mathbf{A}\mathbf{u}$  in  $\text{Col}(\mathbf{A})$  closest to  $\mathbf{b}$  is the projection of  $\mathbf{b}$  onto  $\text{Col}(\mathbf{A})$ .

Col(A)



#### Answer to Question in Section 5.5

Suppose the system  $\mathbf{A}\mathbf{x} = \mathbf{b}$  is consistent.

1. Suppose **u** is a solution to Ax = b. Is **u** a least square solution to Ax = b?

Answer: Yes, because for every vector  $\mathbf{v} \in \mathbb{R}^n$ ,

$$\|\mathbf{A}\mathbf{u} - \mathbf{b}\| = 0 \le \|\mathbf{A}\mathbf{v} - \mathbf{b}\|.$$

Suppose u is a least square solution to Ax = b. Is u a solution to Ax = b?

Answer: Yes. By the assumption that  $\mathbf{A}\mathbf{x} = \mathbf{b}$  is consistent, there is some  $\mathbf{v}$  with  $\mathbf{A}\mathbf{v} = \mathbf{b}$ . Since  $\mathbf{u}$  is a least square solution,

$$\|\mathbf{A}\mathbf{u} - \mathbf{b}\| \le \|\mathbf{A}\mathbf{v} - \mathbf{b}\| = 0.$$

Hence  $\mathbf{A}\mathbf{u} = \mathbf{b}$ .



#### Exercise in Section 5.5

Suppose **A** is an  $m \times n$  matrix with linearly independent columns, i.e. rank(**A**) = n. QR factorize **A**,

$$\mathbf{A} = \mathbf{Q}\mathbf{R}$$
.

Show that the unique least square solution of  $\mathbf{A}\mathbf{x} = \mathbf{b}$  is

$$\mathbf{u} = \mathbf{R}^{-1} \mathbf{Q}^T \mathbf{b}.$$

That is, suffice to solve for

$$\mathbf{R}\mathbf{x} = \mathbf{Q}^T \mathbf{b}$$
.

This is easy to solve by hand since  $\mathbf{R}$  is an upper triangular matrix (i.e. an REF).

### Slide 65: Least Square Approximation

#### **Theorem**

Let  $\mathbf{A}$  be an  $m \times n$  matrix and  $\mathbf{b}$  a vector in  $\mathbb{R}^m$ . A vector  $\mathbf{u}$  in  $\mathbb{R}^n$  is a least square solution to  $\mathbf{A}\mathbf{x} = \mathbf{b}$  if and only if  $\mathbf{A}\mathbf{u}$  is the projection of  $\mathbf{b}$  onto the column space of  $\operatorname{Col}(\mathbf{A})$ .

#### **Theorem**

Let **A** be an  $m \times n$  matrix and **b** a vector in  $\mathbb{R}^m$ . A vector **u** in  $\mathbb{R}^n$  is a least square solution to  $\mathbf{A}\mathbf{x} = \mathbf{b}$  if and only if **u** is a solution to  $\mathbf{A}^T \mathbf{A}\mathbf{x} = \mathbf{A}^T \mathbf{b}$ .

#### Answer to Exercise in Section 5.5

Suppose **A** is an  $m \times n$  matrix with linearly independent columns, and  $\mathbf{A} = \mathbf{Q}\mathbf{R}$  is a QR factorization. Show that the unique least square solution of  $\mathbf{A}\mathbf{x} = \mathbf{b}$  is

$$\mathbf{u} = \mathbf{R}^{-1} \mathbf{Q}^T \mathbf{b}.$$

Proof. By the Theorem on previous slide, the least square solution  ${\bf u}$  is the solution to

$$\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$$
.

Substituting  $\mathbf{A} = \mathbf{Q}\mathbf{R}$ , and using  $\mathbf{Q}^T\mathbf{Q} = \mathbf{I}$  and  $\mathbf{R}$  and  $\mathbf{R}^T$  are invertible, we have

$$\begin{split} \textbf{A}^T \textbf{A} \textbf{x} &= \textbf{A}^T \textbf{b} &\Leftrightarrow & \textbf{R}^T \textbf{Q}^T \textbf{Q} \textbf{R} \textbf{u} = \textbf{R}^T \textbf{Q}^T \textbf{b} \\ &\Leftrightarrow & \textbf{R}^T \textbf{R} \textbf{u} = \textbf{R}^T \textbf{Q}^T \textbf{b} \\ &\Leftrightarrow & \textbf{u} = \textbf{R}^{-1} \textbf{Q}^T \textbf{b}. \end{split}$$

#### Questions in Section 6.1

- 1. Let **A** and **B** be row equivalent order *n* square matrices.
  - (a) If  $\lambda$  is an eigenvalue of **A**, is it an eigenvalue of **B**?
  - (b) If  $\mathbf{v}$  is an eigenvector of  $\mathbf{A}$ , is it an eigenvector of  $\mathbf{B}$ ?
- 2. Can we compute the characteristic polynomial of a square matrix using row reduction instead of cofactor expansion?

### Slide 6: Eigenvalues and Eigenvectors

#### Definition

Let **A** be a square matrix of order n. A real number  $\lambda$  is an <u>eigenvalue</u> of **A** if there is a <u>nonzero</u> vector **v** in  $\mathbb{R}^n$ , such that

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$
.

In this case, the nonzero vector  $\mathbf{v}$  is called an <u>eigenvector</u> associated to  $\lambda$ .

#### Remarks:

- ▶ Think of a matrix as an *action* on  $\mathbb{R}^n$  (we will learn linear transformation later). Geometrically, eigenvectors are the vectors that are being scaled (stretch, dilate, or reflect) when acted upon by  $\mathbf{A}$ , and eigenvalues are the amount to scale the eigenvectors.
- We require the eigenvector to be nonzero,  $\mathbf{v} \neq \mathbf{0}$ , otherwise, the definition becomes uninteresting.

## Slides 8 and 9: Characteristic Polynomial

#### Definition

Let **A** be a square matrix of order n, the <u>characteristic polynomial</u> of **A**, denoted as char(**A**), is the <u>degree</u> n polynomial

$$\det(x\mathbf{I} - \mathbf{A}).$$

#### **Theorem**

Let **A** be a square matrix of order n.  $\lambda$  is an eigenvalue of **A** if and only if  $\lambda$  is a root of the characteristic polynomial  $det(x\mathbf{I} - \mathbf{A})$ .

# Answer to Questions in Section 6.1 (part 1)

- 1. Let **A** and **B** be row equivalent order *n* square matrices.
  - (a) If  $\lambda$  is an eigenvalue of **A**, is it an eigenvalue of **B**?
  - (b) If v is an eigenvector of A, is it an eigenvector of B?

Answer: Both (a) and (b) are false. For example, let

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 0 & 4 \\ 1 & 0 \end{pmatrix},$$

which are row equivalent. But

$$\det(x\mathbf{I} - \mathbf{A}) = (x-1)(x-4) \quad \det(x\mathbf{I} - \mathbf{B}) = (x+2)(x-2),$$

which shows that they don't share the same eigenvalues. Moreover  $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$  is an eigenvector of  ${\bf A}$  associated with 1, but it is not an eigenvalue of  ${\bf B}$ .

# Answer to Questions in Section 6.1 (part 2)

2. Can we compute the characteristic polynomial of a square matrix using row reduction instead of cofactor expansion?

Answer: Yes, as long as the row operations are on the matrix  $x\mathbf{I} - \mathbf{A}$  (not on  $\mathbf{A}$ ).

### Challenge one in Section 5.5

Let **A** be an  $m \times n$  matrix and **b** a vector in  $\mathbb{R}^m$ . Prove that for any choice of least square solution **u**, that is, for any solution **u** of  $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$ , the projection  $\mathbf{A} \mathbf{u}$  is unique.

Recall that on Slide 65, we have

#### **Theorem**

Let **A** be an  $m \times n$  matrix and **b** a vector in  $\mathbb{R}^m$ . A vector **u** in  $\mathbb{R}^n$  is a least square solution to  $\mathbf{A}\mathbf{x} = \mathbf{b}$  if and only if  $\mathbf{A}\mathbf{u}$  is the projection of **b** onto the column space of  $\operatorname{Col}(\mathbf{A})$ .

The Challenge is essentially the "only if" direction.

### Answer to Challenge one in Section 5.5

Q: Let **A** be an  $m \times n$  matrix and **b** a vector in  $\mathbb{R}^m$ . Prove that for any choice of least square solution **u**, that is, for any solution **u** of  $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$ , the projection  $\mathbf{A} \mathbf{u}$  is unique.

Answer: Suppose that  $\mathbf{A}^T \mathbf{A} \mathbf{u} = \mathbf{A}^T \mathbf{b}$ . Then  $\mathbf{A}^T (\mathbf{A} \mathbf{u} - \mathbf{b}) = \mathbf{0}$ , in other words,  $\mathbf{A} \mathbf{u} - \mathbf{b} \in \text{Null}(\mathbf{A}^T)$ .

By Orthogonal to a Subspace algorithm (on Slide 16 in Chapter 5),  ${\bf Au-b}$  is orthogonal to the column space of  ${\bf A}$ . Hence

$$\mathbf{b} = \mathbf{A}\mathbf{u} + (\mathbf{b} - \mathbf{A}\mathbf{u})$$

is a decomposition as in Orthogonal Projection Theorem. Thus  $\mathbf{A}\mathbf{u}$ , being the unique orthogonal projection of  $\mathbf{b}$  to  $\mathsf{Col}(\mathbf{A})$ , is unique.

### Challenge two in Section 5.5

Let  $V \subseteq \mathbb{R}^n$  be a subspace and suppose  $\{\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_k\}$  is an orthonormal basis of V. Write

$$\mathbf{Q} = \begin{pmatrix} \mathbf{w}_1 & \mathbf{w}_2 & \cdots & \mathbf{w}_k \end{pmatrix}.$$

Then for any  $\mathbf{w} \in \mathbb{R}^n$ , the projection of  $\mathbf{w}$  onto V is

$$\mathbf{Q}\mathbf{Q}^T\mathbf{w}$$
.

### Answer to Challenge two in Section 5.5

Let  $V \subseteq \mathbb{R}^n$  be a subspace and suppose  $\{\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_k\}$  is an orthonormal basis of V. Write

$$\mathbf{Q} = \begin{pmatrix} \mathbf{w}_1 & \mathbf{w}_2 & \cdots & \mathbf{w}_k \end{pmatrix}.$$

Then for any  $\mathbf{w} \in \mathbb{R}^n$ , the projection of  $\mathbf{w}$  onto V is  $\mathbf{Q}\mathbf{Q}^T\mathbf{w}$ .

From Challenge one, we know that if  $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$ , then  $\mathbf{A} \mathbf{u}$  is the projection of  $\mathbf{b}$  onto  $\text{Col}(\mathbf{A})$ .

In Challenge Two,  $\bf A$  is  $\bf Q$  and  $\bf b$  is  $\bf w$ . It suffices to check that  $\bf u = \bf Q^T \bf w$  satisfies

$$\mathbf{Q}^T\mathbf{Q}\mathbf{u} = \mathbf{Q}^T\mathbf{w},$$

which follows immediately from  $\mathbf{Q}^T\mathbf{Q} = \mathbf{I}$ .

### Challenges in Section 6.1

#### Let **A** be an $n \times n$ matrix.

- Show that the characteristic polynomial of A is equal to the characteristic polynomial of A<sup>T</sup>. Hence A and A<sup>T</sup> have the same eigenvalues.
- 2. Let  $\lambda$  be an eigenvalue of  $\mathbf{A}$ . Show that the geometric multiplicity of  $\lambda$  as an eigenvalue of  $\mathbf{A}$  is equal to its geometric multiplicity as an eigenvalue of  $\mathbf{A}^T$ .

#### Slide 17: Eigenspace

Recall that eigenvectors of  ${\bf A}$  associated to eigenvalue  $\lambda$  are nontrivials solution to

$$(\lambda \mathbf{I} - \mathbf{A})\mathbf{x} = \mathbf{0}.$$

Since the system is homogeneous, the set of all solutions is a subspace. We will call it the eigenspace of  $\bf A$  associated to eigenvalue  $\lambda$ .

#### Definition

Let  ${\bf A}$  be an order n square matrix. The  $\underline{eigenspace}$  associated to an eigenvalue  $\lambda$  of  ${\bf A}$  is

$$E_{\lambda} = \{ \mathbf{v} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{v} = \lambda \mathbf{v} \} = \text{Null}(\lambda \mathbf{I} - \mathbf{A}).$$

The <u>geometric multiplicity</u> of an eigenvalue  $\lambda$  is the <u>dimension</u> of its eigenspace,

$$\dim(E_{\lambda}) = \operatorname{nullity}(\lambda \mathbf{I} - \mathbf{A}).$$



### Slide 37 in Chapter 4: Rank-Nullity Theorem

#### Theorem (Rank-Nullity Theorem)

Let **A** be a  $m \times n$  matrix. The sum of its rank and nullity is equal to the number of columns,

$$rank(\mathbf{A}) + nullity(\mathbf{A}) = n.$$

Sketch of Proof: This follows from the fact that the nullity of **A** is equal to the number of non-pivot columns in its reduced row-echelon form, and that the rank of **A** is equal to the number of pivot columns of its reduced row-echelon form.

# Answer to Challenges in Section 6.1 (part 1)

Let **A** be an  $n \times n$  matrix.

 Show that the characteristic polynomial of A is equal to the characteristic polynomial of A<sup>T</sup>. Hence A and A<sup>T</sup> have the same eigenvalues.

Proof. The following fact is useful for both parts: For a square matrix  ${\bf A}$ 

$$(\lambda \mathbf{I} - \mathbf{A})^T = (\lambda \mathbf{I})^T - \mathbf{A}^T = \lambda \mathbf{I} - \mathbf{A}^T.$$

For part 1, we have

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \det(\lambda \mathbf{I} - \mathbf{A})^T = \det(\lambda \mathbf{I} - \mathbf{A}^T),$$

where we used the fact in the last equality.

# Answer to Challenges in Section 6.1 (part 2)

Let **A** be an  $n \times n$  matrix.

2. Let  $\lambda$  be an eigenvalue of **A**. Show that the geometric multiplicity of  $\lambda$  as an eigenvalue of **A** is equal to its geometric multiplicity as an eigenvalue of  $\mathbf{A}^T$ .

Proof. For part 2, we have

nullity
$$(\lambda \mathbf{I} - \mathbf{A}) = n - \operatorname{rank}(\lambda \mathbf{I} - \mathbf{A})$$
  
 $= n - \operatorname{rank}(\lambda \mathbf{I} - \mathbf{A})^T$   
 $= n - \operatorname{rank}(\lambda \mathbf{I} - \mathbf{A}^T)$   
 $= \operatorname{nullity}(\lambda \mathbf{I} - \mathbf{A}^T).$