

Градиентный бустинг

This is just the beginning of something big.

"стакать xgboost-ы"

Бустинг — это метод ансамблевого обучения

Последовательность улучшений: Создается серия простых моделей (обычно деревьев решений), каждая из которых исправляет ошибки предыдущей модели.

При каждой итерации рассчитывается остаточная ошибка (или градиент), которую следует минимизировать.

Bagging Boosting Here to be a second of the second of the

Sequential

Parallel

L(y, F(x))

у — истинное значение

F(x) — предсказание

На каждом шаге алгоритм:

Вычисляет градиент (частные производные) функции потерь по предсказаниям текущей модели.

Строит новое дерево, чтобы корректировать ошибки на основе этого градиента. Добавляет это дерево к существующей модели с некоторым весом (обычно малым, характеризуемым параметром learning rate).

Градиентный бустинг имеет несколько важных гиперпараметров, которые значительно влияют на его производительность:

Количество деревьев: Чем больше деревьев, тем лучше модель может подстраиваться под данные, но это может привести к переобучению.

Глубина деревьев: Мелкие деревья обобщают лучше, но могут не уловить сложные закономерности. **Скорость обучения (learning rate):** Контролирует долю, которую каждое дополнительное дерево вносит в итоговую модель. Меньшие значения ведут к лучшей обобщающей способности, но требуют больше деревьев.

Размер подвыборки: Процент данных, которые используются для обучения каждого дерева. Может уменьшить переобучение.

Градиентный бустинг

pip install numpy pandas scikit-learn xgboost

```
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
# Загрузка данных
iris = load_iris()
X, y = iris.data, iris.target
# Разделение на обучающую и тестовую выборки
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Стандартизация данных
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```

#1 Что подарить девушке датасаентисту?

Ирисы Фишера					
Длина ф чашелистика	Ширина ф чашелистика	Длина ф лепестка	Ширина ф лепестка	Вид ириса ◆	Â
5.1	3.5	1.4	0.2	setosa	
4.9	3.0	1.4	0.2	setosa	
4.7	3.2	1.3	0.2	setosa	
4.6	3.1	1.5	0.2	setosa	
5.0	3.6	1.4	0.2	setosa	
5.4	3.9	1.7	0.4	setosa	
4.6	3.4	1.4	0.3	setosa	
5.0	3.4	1.5	0.2	setosa	
4.4	2.9	1.4	0.2	setosa	
4.9	3.1	1.5	0.1	setosa	
5.4	3.7	1.5	0.2	setosa	
4.8	3.4	1.6	0.2	setosa	
4.8	3.0	1.4	0.1	setosa	


```
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import accuracy_score

# Создание и обучение модели
gb_model = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=3, random_state=42)
gb_model.fit(X_train, y_train)

# Оценка точности модели
y_pred = gb_model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")
```

```
import matplotlib.pyplot as plt
# Извлечение важности признаков
feature_importance = gb_model.feature_importances_
# Визуализация важности признаков
plt.barh(iris.feature names, feature importance)
plt.xlabel('Feature Importance')
plt.ylabel('Features')
plt.title('Feature Importance in Gradient Boosting Model')
plt.show()
```

```
from sklearn.model_selection import GridSearchCV
# Настройка гиперпараметров
param_grid = {
    'n_estimators': [50, 100, 150],
    'learning_rate': [0.01, 0.1, 0.2],
    'max_depth': [3, 4, 5]
grid_search = GridSearchCV(GradientBoostingClassifier(random_state=42), param_grid, cv=3, n_jobs=-1, verbose=1)
grid_search.fit(X_train, y_train)
print("Best parameters found by GridSearchCV:")
print(grid_search.best_params_)
# Оценка с оптимальными параметрами
best_gb_model = grid_search.best_estimator_
best_y_pred = best_gb_model.predict(X_test)
best_accuracy = accuracy_score(y_test, best_y_pred)
print(f"Accuracy with best parameters: {best_accuracy:.2f}")
```



```
import xgboost as xgb

# Обучение модели XGBoost

xgb_model = xgb.XGBClassifier(n_estimators=100, learning_rate=0.1, max_depth=3, random_state=42)
xgb_model.fit(X_train, y_train)

# Оценка точности модели XGBoost
xgb_y_pred = xgb_model.predict(X_test)
xgb_accuracy = accuracy_score(y_test, xgb_y_pred)
print(f"XGBoost Accuracy: {xgb_accuracy:.2f}")
```

Gradient Boosting Accuracy (scikit-learn): 0.97

Optimized Gradient Boosting Accuracy: 0.98

XGBoost Accuracy: 0.98

CatBoost

Работа с категориальными признаками: CatBoost может автоматически обрабатывать категориальные признаки, превращая их в числовые представления. Это одна из ключевых причин использования CatBoost для данных с множеством категориальных переменных.

Стабильность и высокая скорость: CatBoost обеспечивает стабильные результаты и часто показывает высокую производительность без необходимости тщательной настройки гиперпараметров.

Уменьшение переобучения: CatBoost используется механизм обучения, который снижает вероятность переобучения по сравнению с другими библиотеками бустинга.

Отказоустойчивость: Дает возможности вставки обработки ошибок и восстановления, что может быть полезно при работе с большими данными.

```
from catboost import CatBoostClassifier
from sklearn.metrics import accuracy_score

# Создание и обучение модели CatBoost
catboost_model = CatBoostClassifier(iterations=100, learning_rate=0.1, depth=3, random_seed=42, verbose=0)
catboost_model.fit(X_train, y_train)

# Оценка точности модели CatBoost
catboost_y_pred = catboost_model.predict(X_test)
catboost_accuracy = accuracy_score(y_test, catboost_y_pred)
print(f"CatBoost Accuracy: {catboost_accuracy:.2f}")
```

CatBoost Accuracy: 0.98

$$\hat{f}\left(x
ight) = rg \min_{f(x)} \mathbb{E}_{x,y}[L(y,f(x))]$$

$$\hat{ heta} = \sum_{i=1}^M \hat{ heta_i}, \ L_{ heta}(\hat{ heta}) = \sum_{i=1}^N L(y_i, f(x_i, \hat{ heta}))$$

$$\hat{f}(x) = f(x, \hat{ heta}), \ \hat{ heta} = rg\min_{ heta} \mathbb{E}_{x,y}[L(y, f(x, heta))]$$

$$egin{aligned} \hat{f}(x) &= \sum_{i=0}^{t-1} \hat{f}_i(x), \ r_{it} &= -iggl[rac{\partial L(y_i, f(x_i))}{\partial f(x_i)} iggr]_{f(x) = \hat{f}(x)}, \quad ext{for } i = 1, \dots, n, \ heta_t &= rg \min_{ heta} \ \sum_{i=1}^n (r_{it} - h(x_i, heta))^2, \
ho_t &= rg \min_{
ho} \ \sum_{i=1}^n L(y_i, \hat{f}(x_i) +
ho \cdot h(x_i, heta_t)) \end{aligned}$$

$$egin{aligned} \hat{f}(x) &= \sum_{i=0}^{t-1} \hat{f}_i(x), \ (
ho_t, heta_t) &= rg \min_{
ho, heta} \mathbb{E}_{x,y}[L(y, \hat{f}(x) +
ho \cdot h(x, heta))], \ \hat{f}_t(x) &=
ho_t \cdot h(x, heta_t) \end{aligned}$$

- 1. Инициализировать начальное приближение параметров $\hat{ heta}=\hat{ heta_0}$
- 2. Для каждой итерации $t=1,\ldots,M$ повторять:
 - 1. Посчитать градиент функции потерь $abla L_{ heta}(\hat{ heta})$ при текущем приближении $\hat{ heta}$

$$abla L_{ heta}(\hat{ heta}) = \left[rac{\partial L(y,f(x, heta))}{\partial heta}
ight]_{ heta=\hat{ heta}}$$

2. Задать текущее итеративное приближение $\hat{ heta_t}$ на основе посчитанного градиента

$$\hat{ heta_t} \leftarrow -
abla L_{ heta}(\hat{ heta})$$

3. Обновить приближение параметров $\hat{\theta}$:

$$\hat{ heta} \leftarrow \hat{ heta} + \hat{ heta_t} = \sum_{i=0}^t \hat{ heta_i}$$

3. Сохранить итоговое приближение $\hat{ heta}$

$$\hat{ heta} = \sum_{i=0}^M \hat{ heta_i}$$

4. Пользоваться найденной функцией $\hat{f}\left(x
ight)=f(x,\hat{ heta})$ по назначению