Analiza sygnałów 1

Patryk Bartel e-mail: recorday12@gmail.com

Grudzień 2018

0.1 Definicja amplitudy i trzy przykłady

Moja definicja: Amplituda jest to wartość bezwzględna z różnicy wartości odchylenia minimalnego bądź maksymalnego i wartości środkowej.

Rysunek 1: Amplituda =1

Rysunek 2: Amplituda = 3

Rysunek 3: Amplituda = 6

0.2 Definicja częstotliwości i trzy przykłady

Moja definicja: Jeśli przyjmiemy, że słowo "cykl" jest określeniem pewnego procesu polegającego na odchyleniu się od wartości środkowej do wartości minimalnej i powrót, oraz od wartości środkowej do wartości maksymalnej i powrót, to częstotliwość jest liczbą wystąpienia takich cykli w określonej jednostce czasu.

Rysunek 4: Czestotliwość = 3

Rysunek 5: Częstotliwość = 10

Rysunek 6: Częstotliwość = 20

0.3 Definicja przesunięcia fazowego i trzy przykłady

Moja definicja: Przesunięcie fazowe można określić jako różnicę w czasie, która dzieli dwa sygnały od tego by znajdować się na tym samym etapie przebiegu swojego cyklu.

Rysunek 7: Przesunięcie fazowe = 180°

Rysunek 8: Przesunięcie fazowe = 270°

Rysunek 9: Przesunięcie fazowe = 360°

0.4 Definicja częstotliwości próbkowania i trzy przykłady

Moja definicja: Częstotliwość próbkowania jest to liczba wartości sygnału ciągłego jaką pobrano w określonej jednostce czasu. Poprzez próbkowanie jesteśmy w stanie stworzyć sygnał dyskretny stanowiący mniej lub bardziej wierne odwzorowanie sygnału ciągłego.

Rysunek 10: Częstotliwość próbkowania = 15

Rysunek 11: Częstotliwość próbkowania = 20

Rysunek 12: Częstotliwość próbkowania = 30