

# **Barcoded Plate-Based Single Cell RNA-seq**

# Satija Lab

## **Abstract**

This protocol presents a simple modification of the SMART-seq2 (Picelle et al, 2014) and SCRB-seq (Soumillon et al, 2014) protocols, with the goal of combining the sensitivity of SMART-Seq2 with the improved cost and throughput of 3' single cell protocols. Reverse transcription (RT) and PCR proceed as in SMART-Seq2, but using 3' barcoded oligos from SCRB-seq. While most barcoded methods (including SCRB-seq) pool cells together after RT, we perform PCR individually in each well, as this negates the need for an additional exonuclease and purification step, and therefore maintains the same molecular sensitivity as SMART-Seq2. However, we pool amplified cDNA from single wells immediately after PCR, and generate a single tagmentation-based 3' cDNA library. While this protocol therefore has advantages in both sensitivity and throughput, the absence of an exonuclease step prior to PCR disables the use of unique molecular identifiers for quantification.

Citation: Satija Lab Barcoded Plate-Based Single Cell RNA-seq. protocols.io

dx.doi.org/10.17504/protocols.io.nkgdctw

Published: 23 Mar 2018

## **Materials**

Deoxynucleotide (dNTP) Solution Mix N0447S by New England Biolabs

NxGen RNAse Inhibitor 30281-2 by Lucigen

Maxima RT 5X Buffer Provided with EP0752 by Thermo Fisher Scientific

Betaine solution (5M PCR Reagent) <u>B0300</u> by <u>Sigma - Aldrich</u>

Magnesium chloride solution for molecular biology (1.00 M) M1028 by Sigma - Aldrich

Maxima H Minus Reverse Transcriptase (200 U/uL) EP0752 by Thermo Fisher Scientific

Superscript II Reverse Transcriptase <u>18064071</u> by <u>Thermo Fisher Scientific</u>

KAPA HiFi HotStart ReadyMixPCR Kit KK2602 by Kapa Biosystems

Agencourt Ampure XP A63AA0 by Beckman Coulter

Qubit dsDNA HS Assay Kit Q32851 by Thermo Fisher Scientific

Agilent DNA 12000 Kit 5067-1508 by Agilent Technologies

Nextera XT DNA Library Preparation Kit FC-131-1096 by illumina

#### **Protocol**

#### **Pre-FACS**

Step 1.

Prepare the following master mix (Mix 1).

| Reagent                        | <u>uL/ sample</u> |
|--------------------------------|-------------------|
| dNTP Mix (10mM)                | 0.5               |
| NxGen RNAse Inhibitor (40U/uL) | 0.1               |
| Maxima RT Buffer               | 1.0               |
| Molecular Grade Water          | <u>1.3</u>        |
| Total per well                 | 2.9               |

#### **Pre-FACS**

## Step 2.

Add 2.9uL of Mix1 to each well of 96 well plates.

# **Pre-FACS**

# Step 3.

Transfer 0.5uL of 3'\_UMI\_primers from primer plate (10mM) to each well. Be sure to note which primer goes in each well of the working plate.

#### **Pre-FACS**

#### Step 4.

Seal plates, spin down and freeze at -20°C until ready to sort cells.

## FACS

# Step 5.

Once cells are sorted into Mix 1 in 96 well plates seal and store at -80°C.

## Post-FACS: RT PCR

## Step 6.

Preheat thermal cycler to 72°C.

# Post-FACS: RT PCR

## Step 7.

Spin plate with samples and Mix1 at 2500rmp for 1 minute.

# Post-FACS: RT PCR

# Step 8.

Incubate plate at 72°C for 3 minutes and cool to 4°C.

## Post-FACS: RT PCR

## Step 9.

Prepare the following master mix (Mix 2). This is different is you are using Maxima H Minus Reverse Transcriptase or SuperScript II Reverse Transcriptase. We find that SuperScript II Reverse Transcriptase tends to work best on immune cells.

#### **Maxima Master Mix**

| Reagent                        | uL/ well |
|--------------------------------|----------|
| Drops TSO Primer (10uM)        | 0.5      |
| Betaine (5M)                   | 0.925    |
| Magnesium Chloride (100mM)     | 0.4      |
| NxGen RNAse Inhibitor (40U/uL) | 0.125    |
| Maxima H Minus RT              | 0.05     |
| Total per well                 | 2        |

<sup>\*</sup>Add enzyme last to master mix

OR

## **SuperScript II Master Mix**

| Reagent                        | u <u>L/ well</u> |
|--------------------------------|------------------|
| Drops TSO Primer (10uM)        | 0.5              |
| Betaine (5M)                   | 1                |
| Magnesium Chloride (1M)        | 0.045            |
| NxGen RNAse Inhibitor (40U/uL) | 0.25             |
| SuperScript II RT              | 0.25             |
| Total per well                 | 2.045            |

<sup>\*</sup>Add enzyme last to master mix

## Post-FACS: RT PCR

# Step 10.

Add 2uL of Mix 2 to each well. Seal plate and mix on Thermomixer for 1 minute at 2000rpm. Spin down.

## Post-FACS: RT PCR

# **Step 11.**

Run Reverse Transcription program on thermal cycler.

| <u>Temperature</u> | <u>Time</u> |
|--------------------|-------------|
| 42°C               | 90 minutes  |
| 50°C               | 2 minutes   |
| 42°C               | 2 minutes   |

70°C 15 minutes \*\* heat inactivation 4°C forever

#### Post-FACS: RT PCR

## **Step 12.**

Make the following master mix (Mix 3).

| Reagent               | <u>uL/ well</u> |
|-----------------------|-----------------|
| SS2 PCR Primer (10mM) | 0.25            |
| KAPA HiFi ReadyMix    | 6.25            |
| Molecular Grade Water | 0.5             |
| Total per well        | 7.0             |

# Post-FACS: RT PCR

# **Step 13.**

Add 7uL of Mix 3 to each well. Seal, shake on Thermomixer for 1 min at 2000rpm. Spin down.

#### Post-FACS: RT PCR

# Step 14.

Run PCR program on thermal cycler.

Note: prefer to run this program overnight than storing plate after reverse transcription.

| <u>Temperature</u> | <u>Time</u> | <u>Cycles</u> |
|--------------------|-------------|---------------|
| 98°C               | 3 minutes   | 1 cycle       |
| 98°C               | 15 seconds  |               |
| 67°C               | 20 seconds  | 19 cyclos     |
| 72°C               | 6 minutes   | ——18 cycles   |
| 72°C               | 5 minutes   |               |
| 4°C                | forever     | 1 cycle       |
|                    |             |               |

<sup>\*</sup>Number of cycles in second step depends on input sample.

Can store plate at -20°C before clean-up.

## cDNA Purification

# Step 15.

Using a 12-multichannel pipette pool all columns of one plate into 12 strip tubes. Spin down and pool all of these tubes into a 1.5mL DNA LoBind eppindorf tube. Split this volume into two tubes noting the volume in each 1.5mL tube.

#### cDNA Purification

#### **Step 16.**

Do 0.6X AmPure XP bead clean up on sample making sure to warm beads to room temperature.

#### cDNA Purification

#### **Step 17.**

Add 0.6X beads to each tube mixing gently by pipetting up and down and incubate at room temperature for 5 minutes.

#### cDNA Purification

#### **Step 18.**

Place on magnet and wait for beads to separate.

# cDNA Purification

## **Step 19.**

Remove supernatant, being sure to not draw up any beads, and discard.

#### cDNA Purification

#### Step 20.

Wash beads 2X with 900uL of freshly made 70% molecular grade ethanol.

# cDNA Purification

## **Step 21.**

Allow beads to dry (but not crack) on magnet.

## cDNA Purification

## Step 22.

Elute with 15uL of molecular grade water.

#### cDNA Purification

#### Step 23.

Let sit off magnet for 3 minutes.

# cDNA Purification

#### Step 24.

Put back on magnet and collect sample.

## cDNA Quality Checks

## Step 25.

Using manufacturer directions, quantify cDNA concentrations with Qubit Flourometer and dsDNA HS

(high sensitivity) Assay Kit.

## cDNA Quality Checks

## Step 26.

Using manufacturer directions, assess the quality of the cDNA trace with BioAnalyzer and Agilent DNA 12000 Kit.

# **Nextera Library Preparation**

## **Step 27.**

Make a dilution of cDNA with molecular grade water to 0.20 ng/uL based of Qubit values in a final volume of 10uL. May have to make serial dilution to be accurate. If so, rerun first dilution on Qubit to confirm concentration before proceeding.

## **Nextera Library Preparation**

#### **Step 28.**

Combine the following tagmentation reaction in PCR tube strips. Mix by pipetting and spin down. Keep tubes on ice.

Reagent uL/well
Sample (diluted to 0.20ng/uL) 5
Tagment DNA Buffer 10
Amplicon Tagment Mix 5

# **Nextera Library Preparation**

#### Step 29.

Incubate at 55°C for 5 minutes on thermal cycler. Wait until temperature reaches 55°C before putting tubes in thermal cycler and wait until it cools down to 4°C to take tubes out and place on ice.

## **Nextera Library Preparation**

#### Step 30.

Add 5uL of Neutralization Buffer to each tube. Mix by pipetting and spin down.

## **Nextera Library Preparation**

## **Step 31.**

Incubate tubes at room temperature for 5 minutes. Place tubes back on ice.

#### **Nextera Library Preparation**

#### Step 32.

Add the following to each cDNA dilution

Reagent uL/well NPM PCR Master Mix 15

P5 TSO Hybrid (10uM) 1 \*use in all reactions
P7 primer (10uM) 1 \*unique for each sample-keep track
Molecular Grade Water 8

## **Nextera Library Preparation**

## Step 33.

Run Nextera PCR Program on thermal cycler

| <u>Temperature</u> | <u>Time</u> | <u>Cycles</u> |
|--------------------|-------------|---------------|
| 95°C               | 30 seconds  | 1 cycle       |
| 95°C               | 10 seconds  |               |
| 55°C               | 30 seconds  | 13 cycles     |
| 72°C               | 30 seconds  |               |
| 72°C               | 5 minutes   |               |
| 10°C               | forever     | 1 cycle       |

# **Nextera Library Purification**

## Step 34.

Do 0.7X AmPure XP bead clean up followed by a 0.6X on sample making sure to warm beads to room temperature.

# **Nextera Library Purification**

# Step 35.

Add 0.7X beads to each tube mixing gently by pipetting up and down and incubate at room temperature for 5 minutes.

## **Nextera Library Purification**

## **Step 36.**

Place on magnet and wait for beads to separate.

## **Nextera Library Purification**

## **Step 37.**

Remove supernatant, being sure to not draw up any beads, and discard.

## **Nextera Library Purification**

## **Step 38.**

Elute beads with 50uL of molecular grade water.

# **Nextera Library Purification**

**Step 39.** 

Add 30mL of beads to eluted beads (0.6X of 50uL).

## **Nextera Library Purification**

#### Step 40.

Put on magnet and remove supernatant.

## **Nextera Library Purification**

## Step 41.

Wash beads 2X with 400uL of freshly made 70% molecular grade ethanol.

## **Nextera Library Purification**

## Step 42.

Allow beads to dry (but not crack) on magnet.

## **Nextera Library Purification**

#### Step 43.

Elute with 17uL of molecular grade water.

## **Nextera Library Purification**

#### **Step 44.**

Let sit off magnet for 3 minutes.

## **Nextera Library Purification**

## Step 45.

Put back on magnet and collect sample.

## **Nextera Library Quality Checks**

## Step 46.

Using manufacturer directions, quantify Nextera library concentrations with Qubit Flourometer and dsDNA HS (high sensitivity) Assay Kit.

#### **Nextera Library Quality Checks**

## **Step 47.**

Using manufacturer directions, assess the quality of the Nextera library trace with BioAnalyzer and Agilent DNA 12000 Kit.

## Nextera Library Quality Checks

## **Step 48.**

If the quality of the libraries is satisfactory, pool together and proceed with sequencing.