Importing required libraries

```
In [146...
          # Libraries to help with reading and manipulating data
          import pandas as pd
          import numpy as np
          # libaries to help with data visualization
          import matplotlib.pyplot as plt
          import seaborn as sns
          from matplotlib.patches import Rectangle
          # Removes the limit for the number of displayed columns
          pd.set_option("display.max_columns", None)
          # Sets the limit for the number of displayed rows
          pd.set_option("display.max_rows", 200)
          # to scale the data using z-score
          from sklearn.preprocessing import StandardScaler
          # to perform statistical tests before PCA
          from factor_analyzer import FactorAnalyzer
          # to perform PCA
          from sklearn.decomposition import PCA
          # to suppress warnings
          import warnings
          warnings.filterwarnings("ignore")
```

Problem Statement:

PCA:

PCA FH (FT): Primary census abstract for female headed households excluding institutional households (India & States/UTs - District Level), Scheduled tribes - 2011 PCA for Female Headed Household Excluding Institutional Household. The Indian Census has the reputation of being one of the best in the world. The first Census in India was conducted in the year 1872. This was conducted at different points of time in different parts of the country. In 1881 a Census was taken for the entire country simultaneously. Since then, Census has been conducted every ten years, without a break. Thus, the Census of India 2011 was the fifteenth in this unbroken series since 1872, the seventh after independence and the second census of the third millennium and twenty first century. The census has been uninterruptedly continued despite of several adversities like wars, epidemics, natural calamities, political unrest, etc. The Census of India is conducted under the provisions of the Census Act 1948 and the Census Rules, 1990. The Primary Census Abstract which is important publication of 2011 Census gives basic information on Area, Total Number of Households, Total Population,

Scheduled Castes, Scheduled Tribes Population, Population in the age group 0-6, Literates, Main Workers and Marginal Workers classified by the four broad industrial categories, namely, (i) Cultivators, (ii) Agricultural Laborers, (iii) Household Industry Workers, and (iv) Other Workers and also Non-Workers. The characteristics of the Total Population include Scheduled Castes, Scheduled Tribes, Institutional and Houseless Population and are presented by sex and rural-urban residence. Census 2011 covered 35 States/Union Territories, 640 districts, 5,924 sub-districts, 7,935 Towns and 6,40,867 Villages. The data collected has so many variables thus making it difficult to find useful details without using Data Science Techniques. You are tasked to perform detailed EDA and identify Optimum Principal Components that explains the most variance in data. Use Sklearn only.

Data Dictionary

State Code: State Code **Dist.Code:** District Code

State: State Name

Area Name: Area Name
No_HH: No of Household
TOT_M: Total population Male
TOT_F: Total population Female

M_06: Population in the age group 0-6 Male
 F_06: Population in the age group 0-6 Female
 M_SC: Scheduled Castes population Male
 F_SC: Scheduled Castes population Female
 M_ST: Scheduled Tribes population Male
 F_ST: Scheduled Tribes population Female

M_LIT: Literates population Male **F_LIT:** Literates population Female

M_ILL: Illiterate Male **F_ILL:** Illiterate Female

TOT_WORK_M: Total Worker Population Male
TOT_WORK_F: Total Worker Population Female
MAINWORK_M: Main Working Population Male
MAINWORK_F: Main Working Population Female
MAIN_CL_M: Main Cultivator Population Male
MAIN_CL_F: Main Cultivator Population Female

MAIN_AL_M: Main Agricultural Labourers Population Male
MAIN_AL_F:: Main Agricultural Labourers Population Female
MAIN_HH_M: Main Household Industries Population Male
MAIN_HH_F: Main Household Industries Population Female

MAIN_OT_M: Main Other Workers Population Male **MAIN_OT_F:** Main Other Workers Population Female

```
MARGWORK_M: Marginal Worker Population Male MARGWORK_F: Marginal Worker Population Female
```

MARG_CL_M: Marginal Cultivator Population Male

MARG_CL_F: Marginal Cultivator Population Female

MARG_AL_M: Marginal Agriculture Labourers Population Male

MARG_AL_F: Marginal Agriculture Labourers Population Female

MARG_HH_M: Marginal Household Industries Population Male

MARG_HH_F: Marginal Household Industries Population Female

MARG_OT_M: Marginal Other Workers Population Male

MARG_OT_F: Marginal Other Workers Population Female

MARGWORK_3_6_M: Marginal Worker Population 3-6 Male

MARGWORK_3_6_F: Marginal Worker Population 3-6 Female

MARG_CL_3_6_M: Marginal Cultivator Population 3-6 Male

MARG_CL_3_6_F: Marginal Cultivator Population 3-6 Female

MARG_AL_3_6_M: Marginal Agriculture Labourers Population 3-6 Male

MARG_AL_3_6_F: Marginal Agriculture Labourers Population 3-6 Female

MARG_HH_3_6_M: Marginal Household Industries Population 3-6 Male

MARG_HH_3_6_F: Marginal Household Industries Population 3-6 Female

MARG_OT_3_6_M: Marginal Other Workers Population Person 3-6 Male

MARG_OT_3_6_F: Marginal Other Workers Population Person 3-6 Female

MARGWORK_0_3_M: Marginal Worker Population 0-3 Male

MARGWORK_0_3_F: Marginal Worker Population 0-3 Female

MARG_CL_0_3_M: Marginal Cultivator Population 0-3 Male

MARG CL 0 3 F: Marginal Cultivator Population 0-3 Female

MARG_AL_0_3_M: Marginal Agriculture Labourers Population 0-3 Male

MARG AL 0 3 F: Marginal Agriculture Labourers Population 0-3 Female

MARG_HH_0_3_M: Marginal Household Industries Population 0-3 Male

MARG HH 0 3 F: Marginal Household Industries Population 0-3 Female

MARG_OT_0_3_M: Marginal Other Workers Population 0-3 Male

MARG_OT_0_3_F: Marginal Other Workers Population 0-3 Female

NON_WORK_M: Non Working Population Male **NON_WORK_F:** Non Working Population Female

Understanding the structure of data

```
In [147... df_pca = pd.read_excel('PCA+India+Data_Census.xlsx')
In [148... df_pca.head() # Returns first 5 rows
```

\cap	ut	Г1	Л	0	
U	uч	1 1	4	0	

	State Code	Dist.Code	State	Area Name	No_HH	TOT_M	TOT_F	M_06	F_06	M_SC	F_S
0	1	1	Jammu & Kashmir	Kupwara	7707	23388	29796	5862	6196	3	
1	1	2	Jammu & Kashmir	Badgam	6218	19585	23102	4482	3733	7	
2	1	3	Jammu & Kashmir	Leh(Ladakh)	4452	6546	10964	1082	1018	3	
3	1	4	Jammu & Kashmir	Kargil	1320	2784	4206	563	677	0	
4	1	5	Jammu & Kashmir	Punch	11654	20591	29981	5157	4587	20	3

In [149...

df_pca.tail() # Returns Last 5 rows

Out[149...

	State Code	Dist.Code	State	Area Name	No_HH	тот_м	TOT_F	M_06	F_06	M_SC
635	34	636	Puducherry	Mahe	3333	8154	11781	1146	1203	21
636	34	637	Puducherry	Karaikal	10612	12346	21691	1544	1533	2234
637	35	638	Andaman & Nicobar Island	Nicobars	1275	1549	2630	227	225	0
638	35	639	Andaman & Nicobar Island	North & Middle Andaman	3762	5200	8012	723	664	0
639	35	640	Andaman & Nicobar Island	South Andaman	7975	11977	18049	1470	1358	0

Number of rows and columns in the dataset

```
In [150... # checking shape of the data

rows = str(df_pca.shape[0])
columns = str(df_pca.shape[1])

print(f"There are \033[1m" + rows + "\033[0m rows and \033[1m" + columns + "\033[0m]
```

There are 640 rows and 61 columns in the dataset.

Datatypes of the different columns in the dataset

In [151... df_pca.info() # Concise summary of dataset

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 640 entries, 0 to 639
Data columns (total 61 columns):

Data	columns (total	61 columns):	
#	Column	Non-Null Count	Dtype
0	State Code	640 non-null	int64
1	Dist.Code	640 non-null	int64
2	State	640 non-null	object
3	Area Name	640 non-null	object
4	No_HH	640 non-null	int64
5	TOT_M	640 non-null	int64
6	TOT_F	640 non-null	int64
7	M_06	640 non-null	int64
8	F_06	640 non-null	int64
9	M_SC	640 non-null	int64
10	F_SC	640 non-null	int64
11	M_ST	640 non-null	int64
12	F_ST	640 non-null	int64
13	M_LIT	640 non-null	int64
14	F_LIT	640 non-null	int64
15	M_ILL	640 non-null	int64
16	F_ILL	640 non-null	int64
17	TOT WORK M	640 non-null	int64
18	TOT_WORK_F	640 non-null	int64
19	MAINWORK_M	640 non-null	int64
20	MAINWORK_F	640 non-null	int64
21	MAIN_CL_M	640 non-null	int64
22	MAIN_CL_F	640 non-null	int64
23	MAIN_AL_M	640 non-null	int64
24	MAIN_AL_F	640 non-null	int64
25	MAIN_HH_M	640 non-null	int64
26	MAIN_HH_F	640 non-null	int64
27	MAIN_OT_M	640 non-null	int64
28	MAIN_OT_F	640 non-null	int64
29	MARGWORK M	640 non-null	int64
	MARGWORK F	640 non-null	int64
31	MARG_CL_M	640 non-null	int64
32	MARG_CL_F		int64
	MARG AL M	640 non-null	int64
	MARG AL F	640 non-null	int64
	MARG_HH_M	640 non-null	int64
	MARG_HH_F	640 non-null	int64
37	MARG_OT_M	640 non-null	int64
38	MARG_OT_F	640 non-null	int64
39		640 non-null	int64
40	MARGWORK_3_6_F		int64
	MARG_CL_3_6_M	640 non-null	
41			int64
42	MARG_CL_3_6_F	640 non-null	int64
43	MARG_AL_3_6_M	640 non-null	int64
44	MARG_AL_3_6_F		int64
45	MARG_HH_3_6_M		int64
46		640 non-null	int64
47		640 non-null	int64
48	MARG_OT_3_6_F	640 non-null	int64
49	MARGWORK_0_3_M		int64
50	MARGWORK_0_3_F	640 non-null	int64

```
51 MARG_CL_0_3_M 640 non-null
                                 int64
52 MARG_CL_0_3_F 640 non-null
                                 int64
53 MARG_AL_0_3_M 640 non-null
                                 int64
54 MARG_AL_0_3_F 640 non-null int64
55 MARG_HH_0_3_M 640 non-null
                                 int64
56 MARG_HH_0_3_F 640 non-null int64
57 MARG_OT_0_3_M 640 non-null int64
58 MARG_OT_0_3_F 640 non-null
                                 int64
59 NON_WORK_M
                  640 non-null
                                 int64
60 NON_WORK_F
                  640 non-null
                                 int64
dtypes: int64(59), object(2)
memory usage: 305.1+ KB
```

There are 61 columns in the dataset. Out of which 2 have object data type and 59 have integer data type.

Finding missing values in the dataset

```
In [152... df_pca.isna().sum() # Count NaN values in all columns of dataset
```

Out [152	State Code	0
00.0[232	Dist.Code	0
		0
	State	
	Area Name	0
	No_HH	0
	TOT_M	0
	TOT_F	0
	M_06	0
	F_06	0
	M_SC	0
	F_SC	0
	M_ST	0
	F_ST	0
	_ M_LIT	0
	F_LIT	0
	M_ILL	0
	F ILL	0
	TOT_WORK_M	0
	TOT_WORK_F	0
	MAINWORK_M	0
	MAINWORK_F	0
	MAIN_CL_M	0
	MAIN_CL_F	0
	MAIN_AL_M	0
	MAIN_AL_F	0
	MAIN_HH_M	0
	MAIN_HH_F	0
	MAIN_OT_M	0
	MAIN_OT_F	0
	MARGWORK_M	0
	MARGWORK_F	0
	MARG_CL_M	0
	MARG_CL_F	0
	MARG_AL_M	0
	MARG_AL_F	0
	MARG_HH_M	0
	MARG_HH_F	0
	MARG_OT_M	0
	MARG_OT_F	0
	MARGWORK_3_6_M	0
	MARGWORK_3_6_F	0
	MARG_CL_3_6_M	0
	MARG_CL_3_6_F	0
	MARG_AL_3_6_M	0
	MARG_AL_3_6_F	0
	MARG_HH_3_6_M	0
	MARG_HH_3_6_F	0
	MARG_OT_3_6_M	0
	MARG_OT_3_6_F	0
	MARGWORK_0_3_M	0
	MARGWORK_0_3_F	0
	MARG_CL_0_3_M	0
	MARG_CL_0_3_F	0
	MARG_AL_0_3_M	0
	MARG_AL_0_3_F	0
	MARG_HH_0_3_M	0

```
MARG_HH_0_3_F 0

MARG_OT_0_3_M 0

MARG_OT_0_3_F 0

NON_WORK_M 0

NON_WORK_F 0

dtype: int64
```

There are no missing values in the dataset.

Checking for Duplicates

```
In [153... df_pca.duplicated().sum()
Out[153... 0
```

There are no duplicate rows in the dataset.

Checking Summary Statistic

```
In [154... df_pca.describe(include='all').T
```

Out[154		count	unique	top	freq	mean	std	min	
	State Code	640.0	NaN	NaN	NaN	17.114062	9.426486	1.0	
	Dist.Code	640.0	NaN	NaN	NaN	320.5	184.896367	1.0	
	State	640	35	Uttar Pradesh	71	NaN	NaN	NaN	
	Area Name	640	635	Raigarh	2	NaN	NaN	NaN	
	No_HH	640.0	NaN	NaN	NaN	51222.871875	48135.405475	350.0	1
	TOT_M	640.0	NaN	NaN	NaN	79940.576563	73384.511114	391.0	3
	TOT_F	640.0	NaN	NaN	NaN	122372.084375	113600.717282	698.0	46
	M_06	640.0	NaN	NaN	NaN	12309.098438	11500.906881	56.0	۷
	F_06	640.0	NaN	NaN	NaN	11942.3	11326.294567	56.0	۷
	M_SC	640.0	NaN	NaN	NaN	13820.946875	14426.37313	0.0	3
	F_SC	640.0	NaN	NaN	NaN	20778.392188	21727.887713	0.0	Ē
	M_ST	640.0	NaN	NaN	NaN	6191.807813	9912.668948	0.0	
	F_ST	640.0	NaN	NaN	NaN	10155.640625	15875.701488	0.0	
	M_LIT	640.0	NaN	NaN	NaN	57967.979688	55910.282466	286.0	2
	F_LIT	640.0	NaN	NaN	NaN	66359.565625	75037.860207	371.0	2
	M_ILL	640.0	NaN	NaN	NaN	21972.596875	19825.605268	105.0	
	F_ILL	640.0	NaN	NaN	NaN	56012.51875	47116.693769	327.0	2
	TOT_WORK_M	640.0	NaN	NaN	NaN	37992.407813	36419.537491	100.0	1
	TOT_WORK_F	640.0	NaN	NaN	NaN	41295.760938	37192.360943	357.0	16
	MAINWORK_M	640.0	NaN	NaN	NaN	30204.446875	31480.91568	65.0	
	MAINWORK_F	640.0	NaN	NaN	NaN	28198.846875	29998.262689	240.0	Ĉ
	MAIN_CL_M	640.0	NaN	NaN	NaN	5424.342188	4739.161969	0.0	
	MAIN_CL_F	640.0	NaN	NaN	NaN	5486.042188	5326.362728	0.0	1
	MAIN_AL_M	640.0	NaN	NaN	NaN	5849.109375	6399.507966	0.0	1
	MAIN_AL_F	640.0	NaN	NaN	NaN	8925.995312	12864.287584	0.0	1
	MAIN_HH_M	640.0	NaN	NaN	NaN	883.89375	1278.642345	0.0	
	MAIN_HH_F	640.0	NaN	NaN	NaN	1380.773438	3179.414449	0.0	
	MAIN_OT_M	640.0	NaN	NaN	NaN	18047.101562	26068.480886	36.0	
	MAIN_OT_F	640.0	NaN	NaN	NaN	12406.035938	18972.202369	153.0	
	MARGWORK_M	640.0	NaN	NaN	NaN	7787.960938	7410.791691	35.0	

	count	unique	top	freq	mean	std	min	
MARGWORK_F	640.0	NaN	NaN	NaN	13096.914062	10996.474528	117.0	
MARG_CL_M	640.0	NaN	NaN	NaN	1040.7375	1311.546847	0.0	
MARG_CL_F	640.0	NaN	NaN	NaN	2307.682813	3564.626095	0.0	
MARG_AL_M	640.0	NaN	NaN	NaN	3304.326562	3781.555707	0.0	
MARG_AL_F	640.0	NaN	NaN	NaN	6463.28125	6773.876298	0.0	
MARG_HH_M	640.0	NaN	NaN	NaN	316.742188	462.661891	0.0	
MARG_HH_F	640.0	NaN	NaN	NaN	786.626562	1198.718213	0.0	
MARG_OT_M	640.0	NaN			3126.154687	3609.391821	7.0	
MARG_OT_F	640.0	NaN	NaN	NaN	3539.323438	4115.191314	19.0	1
MARGWORK_3_6_M	640.0	NaN	NaN	NaN	41948.16875	39045.316918	291.0	16
MARGWORK_3_6_F	640.0	NaN	NaN	NaN	81076.323438	82970.406216	341.0	2
MARG_CL_3_6_M	640.0	NaN	NaN	NaN	6394.9875	6019.806644	27.0	
MARG_CL_3_6_F	640.0	NaN	NaN	NaN	10339.864063	8467.473429	85.0	
MARG_AL_3_6_M	640.0	NaN	NaN	NaN	789.848438	905.639279	0.0	
MARG_AL_3_6_F	640.0	NaN	NaN	NaN	1749.584375	2496.541514	0.0	
MARG_HH_3_6_M	640.0	NaN	NaN	NaN	2743.635938	3059.586387	0.0	
MARG_HH_3_6_F	640.0	NaN	NaN	NaN	5169.85	5335.64096	0.0	1
MARG_OT_3_6_M	640.0	NaN	NaN	NaN	245.3625	358.728567	0.0	
MARG_OT_3_6_F	640.0	NaN	NaN	NaN	585.884375	900.025817	0.0	
MARGWORK_0_3_M	640.0	NaN	NaN	NaN	2616.140625	3036.964381	7.0	
MARGWORK_0_3_F	640.0	NaN	NaN	NaN	2834.545312	3327.836932	14.0	
MARG_CL_0_3_M	640.0	NaN	NaN	NaN	1392.973438	1489.707052	4.0	
MARG_CL_0_3_F	640.0	NaN	NaN	NaN	2757.05	2788.776676	30.0	
MARG_AL_0_3_M	640.0	NaN	NaN	NaN	250.889062	453.336594	0.0	
MARG_AL_0_3_F	640.0	NaN	NaN	NaN	558.098438	1117.642748	0.0	
MARG_HH_0_3_M	640.0	NaN	NaN	NaN	560.690625	762.578991	0.0	
MARG_HH_0_3_F	640.0	NaN	NaN	NaN	1293.43125	1585.377936	0.0	
MARG_OT_0_3_M	640.0	NaN	NaN	NaN	71.379688	107.897627	0.0	
MARG_OT_0_3_F	640.0	NaN	NaN	NaN	200.742188	309.740854	0.0	
NON_WORK_M	640.0	NaN	NaN	NaN	510.014063	610.603187	0.0	

	count	unique	top	freq	mean	std	min	
NON_WORK_F	640.0	NaN	NaN	NaN	704.778125	910.209225	5.0	

- 1. There are 35 unique States in the dataset.
- 2. There are 635 unique Area Names in the dataset.
- 3. Uttar Pradesh State has the greatest number of Area Names.
- 4. Raigarh Area Name is common in 2 States.
- 5. Female population is more than the Male population in the dataset.
- 6. There are more Female workers than Male workers in the dataset.
- 7. There are more Male main workers than Female main workers in the dataset.
- 8. There are more Female marginal workers than Male marginal workers in the dataset.
- 9. There are more Female non-workers than Males non-workers in the dataset.

Univariate analysis

```
# Hist Plots for No_HH, TOT_M, TOT_F, TOT_WORK_M, TOT_WORK_F, MAINWORK_M, MAINWORK_
In [155...
          fig, axes = plt.subplots(3,3, figsize=(17, 18))
          sns.histplot(ax=axes[0, 0], data=df_pca, x='No_HH')
          sns.histplot(ax=axes[0, 1], data=df_pca, x='TOT_M')
          sns.histplot(ax=axes[0, 2], data=df_pca, x='TOT_F')
          sns.histplot(ax=axes[1, 0], data=df_pca, x='TOT_WORK_M')
          sns.histplot(ax=axes[1, 1], data=df_pca, x='TOT_WORK_F')
          sns.histplot(ax=axes[1, 2], data=df_pca, x='MAINWORK_M')
          sns.histplot(ax=axes[2, 0], data=df_pca, x='MAINWORK_F')
          axes[2,1].axis("off")
          axes[2,2].axis("off")
          axes[0,0].set(xlabel='No of Household')
          axes[0,1].set(xlabel='Total Male population')
          axes[0,2].set(xlabel='Total Female population')
          axes[1,0].set(xlabel='Total Worker Male population')
          axes[1,1].set(xlabel='Total Worker Female population')
          axes[1,2].set(xlabel='Total Main Working Male population')
          axes[2,0].set(xlabel='Total Main Working Female population')
          plt.suptitle('Fig 1: Hist Plots: No_HH, TOT_M, TOT_F, TOT_WORK_M, TOT_WORK_F, MAINW
          plt.show()
```


- 1. No distribution (No_HH, TOT_M, TOT_F, TOT_WORK_M, TOT_WORK_F, MAINWORK_M, MAINWORK_F) is evenly distributed (symmetric).
- 2. No_HH, TOT_M, TOT_F, TOT_WORK_M, TOT_WORK_F, MAINWORK_M, MAINWORK_F are Positively Skewed (mean is more than the mode).

```
In [156... # Box Plots for No_HH, TOT_M, TOT_F, TOT_WORK_M, TOT_WORK_F, MAINWORK_M, MAINWORK_F
fig, axes = plt.subplots(3,3, figsize=(17, 18))
sns.boxplot(ax=axes[0, 0], data=df_pca, x='No_HH')
sns.boxplot(ax=axes[0, 1], data=df_pca, x='TOT_M')
sns.boxplot(ax=axes[0, 2], data=df_pca, x='TOT_F')
sns.boxplot(ax=axes[1, 0], data=df_pca, x='TOT_WORK_M')
```

```
sns.boxplot(ax=axes[1, 1], data=df_pca, x='TOT_WORK_F')
sns.boxplot(ax=axes[1, 2], data=df_pca, x='MAINWORK_M')
sns.boxplot(ax=axes[2, 0], data=df_pca, x='MAINWORK_F')
axes[2,1].axis("off")
axes[2,2].axis("off")

axes[0,0].set(xlabel='No of Household')
axes[0,1].set(xlabel='Total Male population')
axes[0,2].set(xlabel='Total Female population')
axes[1,0].set(xlabel='Total Worker Male population')
axes[1,1].set(xlabel='Total Worker Female population')
axes[1,2].set(xlabel='Total Main Working Male population')
axes[2,0].set(xlabel='Total Main Working Female population')
plt.suptitle('Fig 2: Box Plots: No_HH, TOT_M, TOT_F, TOT_WORK_M, TOT_WORK_F, MAINWO
plt.show()
```


No_HH, TOT_M, TOT_F, TOT_WORK_M, TOT_WORK_F, MAINWORK_M, MAINWORK_F columns are having outliers.

Bivariate Analysis

```
mask = np.triu(np.ones_like(corr, dtype=bool))
plt.figure(figsize=(40, 25))
sns.heatmap(df_pca_num.corr(), annot=True, vmin=-1, vmax=1, fmt=".2f", cmap="Spectr
plt.title('Fig 3: Correlation Between Numerical Variables')
plt.show()
df_pca_ra = df_pca.copy()
# calculate ratios
sums = df_pca[['TOT_M', 'TOT_F']].sum(axis=1)
df_pca_ra['MaleRatio'] = df_pca['TOT_M'] / sums
df_pca_ra['FemaleRatio'] = df_pca['TOT_F'] / sums
#df_pca_ra
df_pca_ra_st_mr = df_pca_ra.groupby(['State']).agg(Total_Male_Ratio = ('MaleRatio',
```

```
Out[162...
           State
                                Dadara & Nagar Havelli
           Total_Male_Ratio
                                               0.391961
           Name: 34, dtype: object
In [163...
           df_pca_ra_st_fr.loc[df_pca_ra_st_fr['Total_Female_Ratio'].idxmax()]
                                  Uttar Pradesh
Out[163...
           State
           Total_Female_Ratio
                                      40.308986
           Name: 0, dtype: object
           df_pca_ra_st_fr.loc[df_pca_ra_st_fr['Total_Female_Ratio'].idxmin()]
In [164...
Out[164...
           State
                                  Lakshadweep
           Total_Female_Ratio
                                      0.535314
           Name: 34, dtype: object
           Observations and Insights:
           State:

    Uttar Pradesh has the highest male ratio and Dadara & Nagar Havelli has the lowest

               male ratio.

    Uttar Pradesh has the highest female ratio and Lakshadweep has the lowest female

In [165...
           df_pca_ra_an_mr = df_pca_ra.groupby(['Area Name']).agg(Total_Male_Ratio = ('MaleRat
           df_pca_ra_an_fr = df_pca_ra.groupby(['Area Name']).agg(Total_Female_Ratio = ('Femal
In [166...
           df_pca_ra_an_mr.loc[df_pca_ra_an_mr['Total_Male_Ratio'].idxmax()]
Out[166...
           Area Name
                                Aurangabad
           Total_Male_Ratio
                                  0.814337
           Name: 0, dtype: object
In [167...
           df_pca_ra_an_mr.loc[df_pca_ra_an_mr['Total_Male_Ratio'].idxmin()]
Out[167...
           Area Name
                                 Krishna
           Total_Male_Ratio
                                0.304576
           Name: 634, dtype: object
In [168...
           df_pca_ra_an_fr.loc[df_pca_ra_an_fr['Total_Female_Ratio'].idxmax()]
Out[168...
           Area Name
                                   Raigarh
           Total_Female_Ratio
                                  1.316205
           Name: 0, dtype: object
           df_pca_ra_an_fr.loc[df_pca_ra_an_fr['Total_Female_Ratio'].idxmin()]
In [169...
Out[169...
           Area Name
                                  Lakshadweep
           Total_Female_Ratio
                                      0.535314
           Name: 634, dtype: object
           Observations and Insights:
```

Area Name:

- Aurangabad has the highest male ratio and Krishna has the lowest male ratio.
- Raigarh has the highest female ratio and Lakshadweep has the lowest female ratio.

Outlier Treatment

```
# User Defined Function (UDF) to treat outliers
In [170...
          def treat_outlier(x):
              # taking 5,25,75 percentile of column
              q5=np.percentile(x,5)
              q25=np.percentile(x,25)
              q75=np.percentile(x,75)
              q95=np.percentile(x,95)
              #calculationg IQR range
              IQR=q75-q25
              #Calculating minimum threshold
              lower_bound=q25-(1.5*IQR)
              upper bound=q75+(1.5*IQR)
              #Capping outliers
              return x.apply(lambda y: upper_bound if y > upper_bound else y).apply(lambda y:
          # Before outlier treatment
In [171...
          df_pca_num.boxplot(figsize=(15,5))
          plt.suptitle('Fig 4: Box Plots: Before Outlier Treatment')
          plt.xticks(rotation=90)
          plt.show()
```

Fig 4: Box Plots: Before Outlier Treatment

In [174... # After outlier treatment

df_pca_num.boxplot(figsize=(15,5))
plt.suptitle('Fig 5: Box Plots: After Outlier Treatment')
plt.xticks(rotation=90)
plt.show()

Fig 5: Box Plots: After Outlier Treatment

We can observe from above Box Plots that there are no outliers in the numerical columns (to be used for PCA) after the treatment.

Scaling

```
In [175...
           # scaling the data before clustering
           X = StandardScaler()
           scaled_df = X.fit_transform(df_pca_num)
In [176...
           # creating a dataframe of the scaled data
           scaled_df_pca = pd.DataFrame(scaled_df, columns=df_pca_num.columns)
           scaled_df_pca.head() # Returns first 5 rows
In [177...
Out[177...
                No HH
                          TOT M
                                      TOT F
                                                 M 06
                                                            F 06
                                                                     M SC
                                                                                 F SC
                                                                                          M ST
           0 -1.038986
                        -0.874837
                                   -0.937027 -0.624685 -0.561282
                                                                 -1.080201
                                                                            -1.079963
                                                                                       -0.510440 -0
             -1.076896
                                  -1.009723
                        -0.938023
                                            -0.773932 -0.835657
                                                                  -1.079873
                                                                            -1.079635
                                                                                      -0.771833
                                                                                                 -C
              -1.121858
                        -1.154665
                                 -1.141539 -1.141642 -1.138104
                                                                  -1.080201
                                                                            -1.079635
                                                                                       0.122588
                                                                                                  C
             -1.201599
                       -1.217171 -1.214930 -1.197772 -1.176091
                                                                 -1.080447
                                                                           -1.079963
                                                                                      -0.399531
                                                                                                 -0
           4 -0.938495 -0.921309 -0.935018 -0.700931 -0.740523 -1.078807 -1.078160
                                                                                       0.432534
```

Statistical tests to be done before PCA

Bartletts Test of Sphericity

Bartlett's test of sphericity tests the hypothesis that the variables are uncorrelated in the population.

- H0: All variables in the data are uncorrelated
- Ha: At least one pair of variables in the data are correlated

If the null hypothesis cannot be rejected, then PCA is not advisable.

If the p-value is small, then we can reject the null hypothesis and agree that there is at least one pair of variables in the data which are correlated hence PCA is recommended.

```
In [178... from factor_analyzer.factor_analyzer import calculate_bartlett_sphericity chi_square_value,p_value=calculate_bartlett_sphericity(scaled_df_pca) p_value
```

Out[178... 0.0

KMO Test

The Kaiser-Meyer-Olkin (KMO) - measure of sampling adequacy (MSA) is an index used to examine how appropriate PCA is.

Generally, if MSA is less than 0.5, PCA is not recommended, since no reduction is expected. On the other hand, MSA > 0.7 is expected to provide a considerable reduction is the dimension and extraction of meaningful components.

```
In [179... from factor_analyzer.factor_analyzer import calculate_kmo
kmo_all,kmo_model=calculate_kmo(scaled_df_pca)
kmo_model

Out[179... 0.9361896166652609

In [180... pca = PCA(n_components=57, random_state=123)
df_pca_ext = pca.fit_transform(scaled_df_pca)
df_pca_ext.transpose().round(2)
```

In [181... #Step 1: Obtaining the Eigen Vectors when the Principal Components are kept exactly

```
print('Eigen Vectors \n %s',pca.components_.round(2))
        Eigen Vectors
         %s [[ 0.15  0.16  0.16 ...  0.14  0.15  0.14]
         [-0.12 -0.08 -0.09 ... 0.04 -0.05 -0.04]
         [ 0.1 -0.04 0.03 ... -0.1 -0.13 -0.03]
         [ 0.
               -0.01 0.02 ... -0.01 0.06 -0.01]
                0.05 0. ... 0.01 -0.08 -0. ]
         [ 0.
         [-0.
               -0.
                      0.01 ... 0.
                                     0.01 0. ]]
In [182... var_exp = pca.explained_variance_ratio_
         print(var_exp.round(2))
        [0.62 0.13 0.07 0.05 0.03 0.02 0.02 0.01 0.01 0.01 0.
                                                                 0.
                                                                      0.
                                                            0.
                  0.
                       0.
                            0.
                                0.
                                     0.
                                          0.
                                              0.
                                                   0.
                                                            0.
                                                                 0.
                                                                      0.
         0.
              0.
                  0.
                       0.
                            0.
                                0.
                                     0.
                                          0.
                                              0.
                                                   0.
                                                        0.
                                                            0.
                                                                 0.
                                                                      0.
                                         0. 0.
         0.
             0.
                  0.
                       0.
                            0.
                                0.
                                     0.
                                                   0. 0.
                                                            0.
                                                                 0.
                                                                      0.
         0. ]
In [183...
         # Step 2: Obtaining the Cumulative Sum of the Expalained Variance
         cum_var_exp = np.cumsum(var_exp)
         print('Cumulative Variance Explained in Percentage:',(cum_var_exp*100).round(2))
        Cumulative Variance Explained in Percentage: [ 62.44 75.83 82.44 87.3
                                                                              90.64 9
        2.66 94.39 95.21 95.9
                                 96.47
          96.95 97.36 97.68 97.97 98.22 98.45 98.63 98.79 98.95 99.09
          99.2
                99.31 99.4
                             99.48 99.55 99.61 99.66 99.71 99.75 99.79
          99.82 99.85 99.87 99.89 99.91 99.93 99.94 99.95 99.96 99.97
          99.98 99.98 99.98 99.99 99.99 99.99 100.
                                                             100. 100.
         100.
               100.
                      100.
                             100.
                                   100.
                                          100.
                                                100.
```

- We can see above that more than 90% of the variance is explained by 5 Principal Components.
- Around 95% of the variance is explained by 8 Principal Components.
- Around 98% of the variance is explained by 15 Principal Components

Scree plot

```
In [184... # Step 3 View Scree Plot to identify the number of components to be built
sns.lineplot(y=var_exp,x=range(1,len(var_exp)+1),marker='o')
plt.xlabel('Number of Components')
plt.ylabel('Variance Explained')
plt.grid()
plt.title('Fig 6: Scree Plot')
plt.show()
```

Fig 6: Scree Plot

The number of components can be decided based upon the explained variance. Here, it is decided to keep the number of components as 8 (as the cumulative explained variance is around 95%).

```
In [185...
          # Step 4 Apply PCA for the number of decided components to get the loadings and com
          # NOTE - we are generating only 8 PCA dimensions (dimensionality reduction from 57
          pca = PCA(n_components=8, random_state=123)
          df_pca_final = pca.fit_transform(scaled_df_pca)
          df_pca_final.transpose().round(2) # Component output
Out[185...
          array([[-5.53, -5.49, -7.47, ..., -7.89, -7.86, -7.42],
                  [0.43, -0.11, -0.22, \ldots, -1., -1., -1.41],
                  [-1.47, -2.02, -0.25, ..., -0.91, -0.85, -0.87],
                  [0.54, -1.01, -0.15, \ldots, -0.05, 0.44, 0.55],
                  [-0.38, 0.29, -0.19, \ldots, 0.36, 0.31, 0.28],
                  [-0.26, -0.51, -0.12, \ldots, 0.04, 0.13, 0.07]])
In [186...
          df_pca_final.shape
Out[186...
           (640, 8)
In [187...
          # Loading of each feature on the components
          # Eigen Vectors when PC's are kept as 8
          pca.components_.round(2)
```

```
Out[187...
         array([[ 0.15, 0.16, 0.16, 0.16, 0.14, 0.14, 0.02, 0.02,
                        0.15, 0.15, 0.16, 0.15, 0.14, 0.14, 0.13, 0.11,
                  0.16,
                        0.12, 0.09,
                                      0.14, 0.13, 0.12, 0.12, 0.16, 0.15,
                  0.08,
                  0.09,
                        0.07, 0.13,
                                      0.12, 0.15, 0.14, 0.15, 0.15, 0.16,
                        0.16, 0.15,
                                      0.09, 0.07, 0.13,
                                                         0.11, 0.15,
                                                                      0.14,
                  0.16,
                        0.15, 0.14, 0.13, 0.06, 0.06,
                                                         0.12, 0.11,
                  0.15,
                  0.14, 0.15, 0.14
                [-0.12, -0.08, -0.09, -0.02, -0.01, -0.08, -0.09, 0.07, 0.07,
                 -0.11, -0.13, -0.01, -0.02, -0.12, -0.08, -0.17, -0.14, 0.04,
                  0.1, -0.05, -0.07, -0.1, -0.11, -0.2, -0.21, 0.08, 0.11,
                  0.27, 0.28, 0.16, 0.14, 0.04, 0.01, -0.07, -0.09, -0.04,
                 -0.09, 0.07, 0.09, 0.26, 0.27, 0.15, 0.12, 0.04, -0.
                 -0.08, -0.1, 0.14,
                                      0.17, 0.28, 0.29, 0.18, 0.18,
                  0.04, -0.05, -0.04
                [ 0.1 , -0.04, 0.03, -0.07, -0.07, -0.04,
                                                         0.02, 0.32, 0.34,
                 -0.03, -0.01, -0.05, 0.08, -0. , 0.19, 0.02, 0.21, 0.03,
                  0.19, 0.23, 0.36, -0.1, 0.02, -0.03, 0.07, -0.07, 0.1,
                 -0.1, -0.04, 0.07, 0.26, -0.14, -0.09, -0.13, -0.05, -0.07,
                 -0.06, -0.06, 0.13, -0.1, -0.02, 0.08, 0.28, -0.14, -0.09,
                 -0.13, -0.06, -0.1,
                                      0.03, -0.12, -0.09, 0.03, 0.16, -0.14,
                 -0.1 , -0.13 , -0.03],
                [ 0.08, 0.05, 0.07, 0.03, 0.02, 0.01, 0.02, 0.09, 0.08,
                  0.09, 0.13, -0.03, -0.01, 0.07, 0.11, 0.1, 0.13, 0.08,
                  0.27, -0.12, -0.02, -0.02, -0.05, 0.15, 0.16, -0.08, 0.02,
                  0.16, 0.29, -0.25, -0.15, -0.17, -0.15, 0.02, 0.06, 0.04,
                  0.05, -0.09, 0.02, 0.13, 0.29, -0.25, -0.14, -0.17, -0.14,
                  0.02, 0.06, -0.02,
                                      0.01, 0.21, 0.24, -0.24, -0.19, -0.17,
                 -0.17, 0.02, 0.06],
                [-0.01, -0.04, -0.02, -0.08, -0.08, -0.17, -0.16, 0.42, 0.42,
                 -0.01, 0.03, -0.1, -0.11, -0.02, -0.02, -0.04, -0.05, -0.3,
                 -0.26, -0.25, -0.2 , -0.06, -0.02, 0.07, 0.11, 0.07, 0.08,
                 -0.02, -0.06, -0.05, -0.01, 0.01, 0.04, 0.15, 0.19, -0.06,
                 -0.02, 0.06, 0.06, -0.01, -0.06, -0.06, -0.03, 0. , 0.04,
                  0.13, 0.17, 0.09,
                                      0.11, -0.02, -0.04, 0.02, 0.05, 0.01,
                  0.05, 0.19, 0.25],
                [0.08, 0.07, 0.08, 0.09, 0.08, 0.05, 0.05, -0.23, -0.21,
                        0.1, 0.04, 0.01, 0.04, -0.02, 0.02, -0.05, -0.29,
                  0.08,
                 -0.27, -0.02, -0.06, -0.14, -0.32, 0.07, 0.03, 0.08, 0.1,
                 -0.03, -0.03, 0.08, 0.12, -0.17, -0.32,
                                                         0.02, 0. , 0.1 ,
                  0.12, 0.07, 0.07, -0.04, -0.05, 0.07, 0.09, -0.17, -0.34,
                  0.02, -0. , 0.11, 0.19, -0. , 0.02, 0.11, 0.19, -0.15,
                 -0.23, 0.02, 0.04],
                [0.11, -0.12, -0.01, -0.2, -0.2, -0.04, 0.05, -0.36, -0.33,
                 -0.07, 0.01, -0.24, -0.04, -0.09, 0.17, -0.09, 0.15, -0.29,
                  0.03, -0.11, 0.13, -0.06, 0.23, -0.01, 0.09, -0.06, 0.15,
                 -0. , 0.06, -0.09, 0.09, -0.06, 0.18, -0.02, 0.1 , -0.15,
                 -0.1 , -0.06, 0.14, -0.01, 0.06, -0.1 , 0.09, -0.06, 0.18,
                 -0.02, 0.08, -0.03,
                                      0.18, 0.01, 0.07, -0.08, 0.11, -0.05,
                  0.19, -0.02, 0.18],
                [-0.1, -0.11, -0.12, -0.13, -0.14, 0.19, 0.18, -0.07, -0.08,
                 -0.1 , -0.13, -0.09, -0.05, -0.05, -0.07, -0.05, -0.08, 0.43,
                  0.2, 0.04, 0.05, -0.12, -0.25, -0.08, -0.08, 0.04, 0.06,
                 -0.06, -0.04, 0.02, 0.03, 0.03, -0.13, 0.18, 0.25, -0.15,
                 -0.12, 0.04, 0.07, -0.04, -0.01, 0.03, 0.06, 0.03, -0.12,
                  0.17, 0.22, 0.02, -0. , -0.12, -0.1 , -0.05, -0.07, 0.04,
                 -0.15, 0.23, 0.33]])
```

```
# Explained variance for each PC (it gives the Eigen Values when PC's are kept at 8
In [188...
          pca.explained_variance_ratio_.round(2)
Out[188...
           array([0.62, 0.13, 0.07, 0.05, 0.03, 0.02, 0.02, 0.01])
          Creation of dataframe to include PC scores
          df_pca_final = pd.DataFrame(df_pca_final.round(2),columns=['PC1','PC2','PC3','PC4',
In [189...
                                              'PC5', 'PC6', 'PC7', 'PC8'])
          df_pca_final.head()
Out[189...
               PC1
                    PC2
                           PC3
                                 PC4
                                       PC5
                                             PC6
                                                   PC7
                                                         PC8
           0 -5.53
                    0.43 -1.47 -1.28
                                       0.38
                                             0.54
                                                  -0.38
                                                        -0.26
           1 -5.49 -0.11 -2.02 -1.75 -0.01 -1.01
                                                   0.29 -0.51
           2 -7.47 -0.22 -0.25
                                 0.01
                                       0.56 -0.15 -0.19 -0.12
           3 -7.92 -0.65 -0.66 -0.74
                                       0.27
                                             0.21
                                                   0.11 -0.04
                    2.30 -1.16 1.06
                                       1.08 -0.05
                                                   0.07 -0.68
           4 -5.18
In [190...
          df_pca_final.shape
Out[190...
           (640, 8)
           Combining Categorical Fields & Principal Components
          df_cat = df_pca.select_dtypes(include = ['object'])
In [191...
          df_new = pd.concat([df_cat, df_pca_final], axis=1)
In [192...
          df_new.shape
Out[192...
           (640, 10)
In [193...
          df_new.head()
Out[193...
                                                  PC2
                                                        PC3
                        State Area Name
                                            PC1
                                                              PC4
                                                                    PC5
                                                                          PC6
                                                                                PC7
                                                                                      PC8
           0 Jammu & Kashmir
                                  Kupwara -5.53
                                                 0.43 -1.47 -1.28
                                                                    0.38
                                                                          0.54
                                                                               -0.38
                                                                                     -0.26
           1 Jammu & Kashmir
                                  Badgam -5.49 -0.11 -2.02 -1.75
                                                                   -0.01 -1.01
                                                                                0.29 -0.51
           2 Jammu & Kashmir Leh(Ladakh) -7.47 -0.22 -0.25
                                                              0.01
                                                                    0.56
                                                                         -0.15
                                                                               -0.19 -0.12
           3 Jammu & Kashmir
                                    Karqil -7.92 -0.65
                                                      -0.66
                                                             -0.74
                                                                    0.27
                                                                          0.21
                                                                                0.11
                                                                                    -0.04
           4 Jammu & Kashmir
                                    Punch -5.18
                                                 2.30 -1.16
                                                             1.06
                                                                    1.08 -0.05
                                                                                0.07 -0.68
```

In [194...

df_new.describe(include='all').T

Out[194...

_		count	unique	top	freq	mean	std	min	25%	50%	75%	1
	State	640	35	Uttar Pradesh	71	NaN	NaN	NaN	NaN	NaN	NaN	1
	Area Name	640	635	Raigarh	2	NaN	NaN	NaN	NaN	NaN	NaN	1
	PC1	640.0	NaN	NaN	NaN	-0.000125	5.970708	-8.35	-4.475	-1.43	3.8025	1
	PC2	640.0	NaN	NaN	NaN	-0.000109	2.76444	-7.66	-1.6	-0.295	1.695	
	PC3	640.0	NaN	NaN	NaN	-0.000141	1.94145	-4.32	-1.3725	-0.355	1.1825	1
	PC4	640.0	NaN	NaN	NaN	0.000094	1.666404	-4.56	-0.96	-0.31	0.835	
	PC5	640.0	NaN	NaN	NaN	-0.000016	1.380962	-3.47	-0.87	-0.11	0.78	4
	PC6	640.0	NaN	NaN	NaN	-0.000172	1.074742	-4.29	-0.5975	0.1	0.555	
	PC7	640.0	NaN	NaN	NaN	-0.000078	0.994013	-3.23	-0.5325	0.015	0.53	
	PC8	640.0	NaN	NaN	NaN	0.000094	0.681869	-2.84	-0.35	-0.01	0.3325	

PC1 component is explaining the most variance when combined with State and Area Name.

EDA (Categorical Fields & Principal Components)

Fig. 7: Box Plots: State vs PCI

In the state of the stat

PC1 component is highest for West Bengal, Uttar Pradesh States & lowest for Daman and Diu State.

```
In [196... fig,ax = plt.subplots(figsize=(22,7))
    sns.boxplot(x='State',y='PC2', data=df_new)
    plt.suptitle('Fig 8: Box Plots: State vs PC2')
    plt.grid()
    ax.tick_params(axis='x', rotation=90)
    plt.show()
```

Fig 8: Box Plots: State vs PC2

PC2 component is highest for Jharkhand State and lowest for Kerala State.

```
In [197... fig,ax = plt.subplots(figsize=(22,7))
    sns.boxplot(x='State',y='PC3', data=df_new)
    plt.suptitle('Fig 9: Box Plots: State vs PC3')
    plt.grid()
    ax.tick_params(axis='x', rotation=90)
    plt.show()
```

Fig 9: Box Plots: State vs PC3

PC3 component is highest for Andhra Pradesh State and lowest for Kerala State.

```
In [198... fig,ax = plt.subplots(figsize=(22,7))
    sns.boxplot(x='State',y='PC4', data=df_new)
    plt.suptitle('Fig 10: Box Plots: State vs PC4')
    plt.grid()
    ax.tick_params(axis='x', rotation=90)
    plt.show()
```

Fig 10: Box Plots: State vs PC4

PC4 component is highest for Himachal Pradesh State and lowest for Bihar State.

```
In [199... fig,ax = plt.subplots(figsize=(22,7))
    sns.boxplot(x='State',y='PC5', data=df_new)
    plt.suptitle('Fig 11: Box Plots: State vs PC5')
    plt.grid()
    ax.tick_params(axis='x', rotation=90)
    plt.show()
```

Fig 11: Box Plots: State vs PC5

PC5 component is highest for Kerala State and lowest for Maharashtra State.

```
fig,ax = plt.subplots(figsize=(22,7))
sns.boxplot(x='State',y='PC6', data=df_new)
plt.suptitle('Fig 12: Box Plots: State vs PC6Maharashtra ')
plt.grid()
ax.tick_params(axis='x', rotation=90)
plt.show()
```

Fig 12: Box Plots: State vs PC6Maharashtra

PC6 component is highest for Kerala State and lowest for Manipur State.

```
In [201... fig,ax = plt.subplots(figsize=(22,7))
    sns.boxplot(x='State',y='PC7', data=df_new)
    plt.suptitle('Fig 13: Box Plots: State vs PC7')
    plt.grid()
    ax.tick_params(axis='x', rotation=90)
    plt.show()
```

Fig 13: Box Plots: State vs PC7

PC7 component is highest for Tamil Nadu State and lowest for Meghalaya State.

```
fig,ax = plt.subplots(figsize=(22,7))
sns.boxplot(x='State',y='PC8', data=df_new)
plt.suptitle('Fig 14: Box Plots: State vs PC8')
plt.grid()
ax.tick_params(axis='x', rotation=90)
plt.show()
```


PC8 component is highest for Karnataka State and lowest for NCT of Delhi State.

Observations and Insights:

From above plots we observe that PC components are higher for the States which have higher population in comparison to other States which are having lower population.

Linear equation for first PC

```
Y1 = w11X1 + w12X2 + ... + w1pXp
```

Here p (= 57) is the number of observations in the original dataset which was used for PCA.

X1,X2,...,Xp = Observed variables (original attributes) in the dataset. w11,w12,...,wpp = Weights which were determined using PCA.

```
In [ ]:
```