Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ» (ФИНУНИВЕРСИТЕТ)

Кафедра

«Теория вероятностей и математическая статистика»

А. В. Браилов С.А. Зададаев П.Е. Рябов

ПРАКТИКУМ

для самостоятельной работы студентов по дисциплине «Теория вероятностей и математическая статистика»

Для студентов, обучающихся по направлению 080100.62 «Экономика» для всех профилей (программа подготовки бакалавра)

Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ» (ФИНУНИВЕРСИТЕТ)

Кафедра «Теория вероятностей и математическая статистика»

УТВЕРЖДАЮ

Заведуйщий кафедрой «Теория вероятностей и математическая статистика»

И. А. Ленежкина

«27» мая 2014 г.

А.В. Браилов С.А. Зададаев П.Е. Рябов

ПРАКТИКУМ

для самостоятельной работы студентов по дисциплине «Теория вероятностей и математическая статистика»

Для студентов, обучающихся по направлению 080100.62 «Экономика» для всех профилей (программа подготовки бакалавра)

Одобрено кафедрой «Теория вероятностей и математическая статистика» (протокол № 10 от 26 мая 2014 г.)

Москва 2014

УДК 519.2(072) ББК 22.17я73Б 87

Рецензенты: В.Б. Горяинов - д.ф.-м.н., доцент кафедры «Математическое моделирование», МГТУ им. Н.Э. Баумана И. М. Эйсымонт - к.ф.-м.н., доцент кафедры «Теория вероятностей и математическая статистика», Финансовый университет

Б 87 Браилов А.В., Зададаев С.А., Рябов П.Е.

> Практикум для самостоятельной работы студентов по дисциплине «Теория вероятностей и математическая статистика». - М.: Финуниверситет, кафедра «Теория вероятностей и математическая статистика», 2014. - 206 с.

> Практикум по теории вероятностей предназначен для организации самостоятельной работы студентов, изучающих дисциплину «Теория вероятностей и математическая статистика». В теоретической справке приведены решения типовых задач, которые вошли в варианты заданий практикума. Учебное издание содержит 120 вариантов контрольных заданий, требования к оформлению решений заданий практикума. В конце учебного издания приведена рекомендуемая литература.

УДК 519.2(072) **ББК** 22.17 \mathfrak{g} 73

Учебное издание

Браилов Андрей Владимирович Зададаев Сергей Алексеевич Рябов Павел Евгеньевич

Практикум для самостоятельной работы студентов по дисциплине «Теория вероятностей и математическая статистика»

Компьютерный набор, верстка Рябов П.Е. Формат $60 \times 90/16$. Гарнитура Times New Roman

- © Браилов Андрей Владимирович, 2014
- © Зададаев Сергей Алексеевич, 2014
- © Рябов Павел Евгеньевич, 2014 © Финуниверситет, 2014

Содержание

§1. Комбинации событий.
Классический способ подсчета вероятностей4
$\S 2$. Геометрическое определение вероятности $\dots 7$
$\$3.$ Правила сложения и умножения вероятностей \dots . 9
$\$4.$ Формула полной вероятности и формула Байеса $\dots 13$
§5. Независимые испытания. Схема Бернулли.
Приближенные формулы Лапласа и Пуассона 1 5
\$6. Распределение дискретной случайной величины 20
$\S7.$ Независимые дискретные случайные величины $\dots 21$
§8. Математическое ожидание дискретной
случайной величины24
$\S 9.$ Дисперсия дискретной случайной величины $$ 26
§10. Числовые характеристики основных
дискретных законов распределения29
§11. Ковариация и коэффициент корреляции33
§12. Абсолютно непрерывные случайные величины и
их числовые характеристики35
§13. Закон распределения функции от случайной
величины $\ldots 43$
§14. Нормальное и логнормальное законы
распределения случайной величины $\dots 46$
\$15. Центральная предельная теорема 50
\$ 16. 3акон распределения двумерной дискретной случай
ной величины $\ldots 52$
§17. Условные распределения и условные числовые
характеристики59
$\$18$. Абсолютно непрерывные случайные векторы $\dots 72$
$\$19$. Двумерные нормальные векторы $\dots 80$
Требования к оформлению заданий
лабораторного практикума85
Варианты заданий лабораторного практикума86–205
Рекомендуемая литература206

§1. Комбинации событий. Классический способ подсчета вероятностей

Суммой событий A и B называется событие A+B, заключающееся в наступлении хотя бы одного из событий A и B. Вообще, суммой конечного или счетного множества событий называется событие, заключающееся в наступлении хотя бы одного события из данного множества событий.

Произведением событий A и B называется событие AB, заключающееся в одновременном (совместном) наступлении обоих событий A и B. Произведением конечного или счетного множества событий называется событие, заключающееся в одновременном наступлении всех событий из данного множества.

Противоположным событием для A называется событие \overline{A} , заключающееся в том, что A не наступает. Иначе говоря, \overline{A} — это не наступление A.

Справедливы формулы:

$$\overline{A_1 + A_2 + \ldots + A_n} = \overline{A_1} \cdot \overline{A_2} \cdot \ldots \cdot \overline{A_n},
\overline{A_1 A_2 \ldots A_n} = \overline{A_1} + \overline{A_2} + \ldots + \overline{A_n}.$$

С формальной точки зрения, событие — подмножество пространства элементарных событий Ω , испытание — случайный выбор элемента ω (называемого элементарным исходом) из множества Ω . Если для элементарного исхода ω выполняется включение $\omega \in A$, то событие наступает, если же $\omega \notin A$, то — не наступает.

В классической вероятностной модели пространство элементарных событий $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$ — конечное множество, при этом все элементарные события $\omega_1, \omega_2, \dots, \omega_n$ имеют одну и ту же вероятность.

Пусть событие A состоит из k = |A| элементарных событий ω_i (последние называются «благоприятными» для A).

Тогда для определения вероятности события A применяется следующая формула (классический способ подсчета вероятностей):

$$P(A) = \frac{k}{n} = \frac{|A|}{|\Omega|},$$

где $n = |\Omega|$ — число всех элементарных исходов.

Пример 1. Независимо друг от друга 5 человек садятся в поезд, содержащий 13 вагонов. Найдите вероятность того, что все они поедут в разных вагонах.

Решение. Всего способов рассадить 5 человек в 13 вагонов равно $|\Omega|=13^5$, из них событию A, что все они поедут в разных вагонах, благоприятствует $|A|=13\cdot 12\cdot 11\cdot 10\cdot 9$ различных способов. Поэтому искомая вероятность равна

$$P(A) = \frac{|A|}{|\Omega|} = \frac{154440}{371293} \approx 0,416.$$

Ответ: 0,416.

Пример 2. Компания из n = 16 человек рассаживается в ряд случайным образом. Найдите вероятность того, что между двумя определенными людьми окажутся ровно k = 6 человек.

Решение. Приведем одно из решений задачи, которое связано с выбором 2 мест, а не с размещением людей. Итак, два места из 16 можно выбрать C_{16}^2 способами. Событию A, выбору 2 мест, так чтобы между ними было ровно 6, благоприятствует 16-6-1=9 способов. Таким образом, искомая вероятность события A равна

$$P(A) = \frac{|A|}{|\Omega|} = \frac{9}{120} = 0,075.$$

Ответ: 0,075.

Пример 3. В группе учатся 13 юношей и 9 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что все дежурные окажутся юношами.

Решение. Количество способов выбрать троих для дежурства совпадает с числом сочетаний из 22 по 3, т.е. $|\Omega| = C_{22}^3$. Из них событию A, что все дежурные окажутся юношами, благоприятствует $|A| = C_{13}^3$ способов выбрать троих юношей. Таким образом, искомая вероятность равна

$$P(A) = \frac{|A|}{|\Omega|} = \frac{C_{13}^3}{C_{22}^3} = \frac{286}{1540} \approx 0,186.$$

Ответ: 0,186.

Пример 4. В партии из 13 деталей имеется 8 стандартных. Наудачу отобраны 7 деталей. Найдите вероятность того, что среди отобранных деталей ровно 5 стандартных.

Решение. Число способов отобрать 7 деталей совпадает с числом сочетаний из 13 по 7, т.е. $|\Omega| = C_{13}^7$. Событию A, что среди 7 деталей окажется ровно 5 стандартных, а, следовательно, остальные 2 — не стандартные, благоприятствует $|A| = C_8^5 \cdot C_5^2$ исходов. Поэтому искомая вероятность равна

$$P(A) = \frac{|A|}{|\Omega|} = \frac{C_8^5 \cdot C_5^2}{C_{13}^7} = \frac{560}{1716} \approx 0,326.$$

Ответ: 0,326.

Пример 5. В киоске продается 9 лотерейных билетов, из которых число выигрышных составляет 3 штуки. Студент купил 4 билета. Какова вероятность того, что число выигрышных среди них будет не меньше 2, но не больше 3?

Решение. Количество способов выбрать 4 билета из 9 равно $|\Omega| = C_9^4$. Требуется определить вероятность события A, что среди 4 билетов окажется либо 2 (событие A_1), либо 3 (событие A_2) выигрышных билета. Событию A_1 благоприятствует $|A_1| = C_3^2 \cdot C_6^2$ способов, а событию $A_2 - |A_2| = C_3^3 \cdot C_6^1$ способов. Искомая вероятность равна

$$P(A) = \frac{|A_1| + |A_2|}{|\Omega|} = \frac{C_3^2 \cdot C_6^2 + C_3^3 \cdot C_6^1}{C_9^4} = \frac{51}{126} \approx 0,405.$$

Ответ: 0,405.

§2. Геометрическое определение вероятности

Одним из недостатков классического определения вероятности является то, что оно предполагает конечное число возможных исходов. Приводимые здесь примеры не укладываются в классическую схему, поскольку связаны с бесконечным множеством элементарных исходов опыта. Но в основе их, как и в классической схеме, лежит представление о равновозможных исходах. Говоря о том, что точка выбирается наугад в некоторой области $\Omega \in \mathbb{R}^n$ (n=1,2,3), имеют в виду следующее: вероятность попадания точки в некоторую часть A области Ω равна отношению

$$P(A) = \frac{\mu(A)}{\mu(\Omega)},$$

где $\mu(A) = l_A$ — длина (n = 1), $\mu(A) = S_A$ — площадь (n = 2) или $\mu(A) = V_A$ объем (n = 3) множества A.

Пример 6. На отрезок AB длины 240 наудачу поставлена точка X. Найдите вероятность того, что меньший из отрезков AX и XB имеет длину меньшую, чем 48.

Решение. Пусть x – координата точки X, тогда множество

$$\Omega = \{x : 0 \leqslant x \leqslant 240\}$$

представляет собой множество элементарных исходов, так что $l_{\Omega}=240-0=240$. Событие A, что меньший из отрезков AX и XB имеет длину меньшую, чем 48, представляет собой подмножество Ω :

$$A = \{x \in \Omega : 0 \le x \le 48 \text{ или } 192 \le x \le 240\}.$$

Поэтому $l_A = (48-0) + (240-192) = 96$. Искомая вероятность равна

$$P(A) = \frac{l_A}{l_Q} = \frac{96}{240} = 0,4.$$

Ответ: 0,4.

Пример 7. Два лица X и Y договорились о встрече между 9 и 10 часами утра. Если первым приходит X, то он ждет Y в течение 5 минут. Если первым приходит Y, то он ждет X в течение 10 минут. Считая, что момент прихода на встречу выбирается каждым «наудачу» в пределах указанного часа, найти вероятность того, что встреча состоится.

Решение. Пусть x — момент прихода X в пределах указанного часа, y — момент прихода Y в пределах того же часа, тогда $\omega = (x, y)$ — элементарный исход. Множество

$$\Omega = \{(x, y) : 0 \le x \le 1, 0 \le y \le 1, \}$$

представляет собой множество всех элементарных исходов, так что $S_{\Omega}=1^2=1$. Обозначим через A — событие, что встреча состоится. Тогда, согласно условию задачи, событие A представляет собой подмножество Ω :

$$A = \{(x, y) \in \Omega : y - x \le \frac{1}{12}, x - y \le \frac{1}{6}\}.$$

Искомая вероятность равна отношению площади выделенного шестиугольника к площади квадрата:

$$P(A) = \frac{S_A}{S_O} = \frac{1^2 - \frac{1}{2} \cdot \left(\frac{11}{12}\right)^2 - \frac{1}{2} \cdot \left(\frac{5}{6}\right)^2}{1^2} = \frac{67}{288} \approx 0,233.$$

Ответ: 0,233.

§3. Правила сложения и умножения вероятностей Правило сложения вероятностей:

$$P(A+B) = P(A) + P(B) - P(AB).$$

Правило сложения вероятностей для несовместных событий: если события A_1, A_2, \ldots, A_n попарно несовместны (никакие два из них не могут наступить вместе в одном испытании), то

$$P(A_1 + A_2 + ... + A_n) = P(A_1) + P(A_2) + ... + P(A_n).$$

Для двух событий A и \overline{A} отсюда следует равенство $P\left(A\right)+P\left(\overline{A}\right)=1$ или $P\left(\overline{A}\right)=1-P\left(A\right)$.

Вероятность события A при условии, что наступило событие B (условная вероятность) определяется формулой

$$P(A|B) = \frac{P(AB)}{P(B)}.$$

Правило умножения вероятностей: $ecnu\ \partial ля\ coбытий$ A_1 , A_2 , ..., A_n вероятности $P(A_1)>0$, $P(A_1A_2)>0$, ..., $P(A_1\cdots A_{n-1})>0$, то

$$P(A_1 A_2 ... A_n) = P(A_1) \cdot P(A_2 | A_1) \cdot P(A_3 | A_1 A_2) \cdots P(A_n | A_1 A_2 ... A_{n-1}).$$
(1)

Если A и B — независимые события с положительной вероятностью, то выполняются равенства:

$$P(A|B) = P(A), \quad P(B|A) = P(B).$$

Правило умножения вероятностей для независимых событий: ecnu события $A_1, A_2, ..., A_n$ независимы, то

$$P(A_1A_2...A_n) = P(A_1) \cdot P(A_2) \cdot \cdot \cdot P(A_n).$$

Вычисление вероятности суммы событий можно свести к вычислению вероятности произведения по формуле

$$P(A_1 + A_2 + \dots + A_n) = 1 - P(\overline{A}_1 \overline{A}_2 \cdots \overline{A}_n).$$
 (2)

В частности, если события A_1, A_2, \ldots, A_n независимы, из последнего равенства вытекает: вероятность наступления хотя бы одного из независимых событий A_1, A_2, \ldots, A_n равна $1 - P(\overline{A_1}) \cdot P(\overline{A_2}) \cdots P(\overline{A_n})$.

Пример 8. Имеется 25 экзаменационных билетов, на каждом из которых напечатано условие некоторой задачи. В 15 билетах задачи по статистике, а в остальных 10 билетах задачи по теории вероятностей. Трое студентов выбирают наудачу по одному билету. Найдите вероятность того, что хотя бы одному из них не достанется задача по теории вероятностей.

Решение. Приведем решение задачи, которое использует формулу умножения (другое решение основано на классической вероятности). Итак, обозначим через A_k событие, что k-му студенту не достанется задача по теории вероятности, следовательно, $\overline{A_k} - k$ -му студенту достанется задача по теории вероятностей. Тогда $A = A_1 + A_2 + A_3$ означает событие, что хотя бы одному из них не достанется задача по теории вероятностей. Тогда, используя (1) и (2), находим

$$P(A) = P(A_1 + A_2 + A_3) = 1 - P(\overline{A_1} \cdot \overline{A_2} \cdot \overline{A_3}) =$$

$$= 1 - P(\overline{A_1}) \cdot P(\overline{A_2} | \overline{A_1}) \cdot P(\overline{A_3} | \overline{A_1} \cdot \overline{A_2}) =$$

$$= 1 - \frac{10}{25} \cdot \frac{9}{24} \cdot \frac{8}{23} \approx 0,948.$$

Ответ: 0,948

Пример 9. В электрическую цепь последовательно включены три элемента, работающие независимо один от другого. Вероятности отказов первого, второго и третьего элементов соответственно равны $p_1 = 0.17$, $p_2 = 0.73$ и $p_3 = 0.14$. Найдите вероятность того, что тока в цепи не будет.

Решение. Пусть A_k обозначает событие, что тока не будет в k-ом элементе. Тогда $A = A_1 + A_2 + A_3$ означает событие, что тока в цепи не будет (поскольку элементы соединены последовательно). Тогда

$$P(A) = P(A_1 + A_2 + A_3) = 1 - P(\overline{A_1}) \cdot P(\overline{A_2}) \cdot P(\overline{A_3}) =$$

$$= 1 - (1 - P(A_1)) \cdot (1 - P(A_2)) \cdot (1 - P(A_3)) =$$

$$= 1 - (1 - p_1)(1 - p_2)(1 - p_3) = 0.807.$$

Ответ: 0,807.

Пример 10. Вероятность того, что при одном измерении некоторой физической величины допущена ошибка,

равна p=0,05. Найдите наименьшее число n измерений, которые необходимо произвести, чтобы c вероятностью больше, чем 0,83, можно было ожидать, что хотя бы один результат измерений окажется неверным.

Решение. Пусть A_k обозначает событие, что при k-ом измерении некоторой физической величины допущена ошибка, где $k=1,2\ldots,n$. Через n обозначено количество измерений. Тогда $A=A_1+\ldots+A_n$ означает событие, что xoms бы один результат измерений окажется неверным при n измерениях. Поэтому

$$P = P(A) = P(A_1 + ... + A_n) = 1 - (1 - p)^n > 0.83.$$

Откуда, решая полученное неравенсто, находим:

$$n > \frac{\ln(1-a)}{\ln(1-p)} = \frac{\ln 0,17}{\ln 0,95} \approx 34,5.$$

Ответ: $n_{\min} = 35$.

Пример 11. События A, B, C независимы и P(A) = 0.8; P(B) = 0.7; P(C) = 0.6. Найдите $P(AB | \overline{B} + \overline{C})$.

Решение. Используя: **a)** определение условной вероятности; **б)** правило сложения вероятностей; **в)** независимость событий A, B и C, получаем

$$P(AB | \overline{B} + \overline{C}) \stackrel{\mathbf{a}}{=} \frac{P(AB \cdot (\overline{B} + \overline{C}))}{P(\overline{B} + \overline{C})} \stackrel{\mathbf{f}}{=} \frac{P(AB \cdot \overline{C})}{P(\overline{B}) + P(\overline{C}) - P(\overline{B} \cdot \overline{C})} =$$

$$\stackrel{\mathbf{B}}{=} \frac{P(A) \cdot P(B) \cdot P(\overline{C})}{P(\overline{B}) + P(\overline{C}) - P(\overline{B}) \cdot P(\overline{C})} = \frac{0, 8 \cdot 0, 7 \cdot 0, 4}{0, 3 + 0, 4 - 0, 3 \cdot 0, 4} \approx 0,386.$$

Ответ: 0,386.

§4. Формула полной вероятности и формула Байеса

События H_1, H_2, \ldots, H_n образуют *полную группу*, если они попарно несовместны и при каждом испытании обязательно наступает хотя бы одно из этих событий.

Если события H_1, H_2, \ldots, H_n образуют полную группу, то для любого события A справедливо равенство

$$P(A) = P(A|H_1)P(H_1) + P(A|H_2)P(H_2) + ... + P(A|H_n)P(H_n)$$

(формула полной вероятности). При этом события $H_1, H_2, ..., H_n$ называют гипотезами.

В тех же предположениях справедлива формула Байеса:

$$P(H_i|A) = \frac{P(A|H_i)P(H_i)}{P(A|H_1)P(H_1) + P(A|H_2)P(H_2) + \ldots + P(A|H_n)P(H_n)},$$

(i = 1,2,...,n).

Пример 12. В ящике содержится $n_1 = 6$ деталей, изготовленных на заводе 1, $n_2 = 5$ деталей — на заводе 2 и $n_3 = 6$ деталей — на заводе 3. Вероятности изготовления брака на заводах с номерами 1, 2 и 3 соответственно равны: $p_1 = 0.04$, $p_2 = 0.02$ и $p_3 = 0.03$. Найдите вероятность того, что извлеченная наудачу деталь окажется качественной.

Решение. Пусть H_k — событие, что извлеченная наудачу деталь изготовлена на k-ом заводе, где k=1,2,3. Тогда H_1,H_2,H_3 образуют полную группу событий, причем

$$P(H_1) = \frac{n_1}{n_1 + n_2 + n_3} = \frac{6}{17}, P(H_2) = \frac{n_2}{n_1 + n_2 + n_3} = \frac{5}{17}, P(H_3) = \frac{6}{17}.$$

Обозначим через A событие, что извлеченная наудачу деталь окажется бракованной. Противоположное к A будет

событие \overline{A} , что извлеченная наудачу деталь окажется качественной. Тогда по формуле полной вероятности имеем:

$$P(A) = P(H_1)P(A|H_1) + P(H_2)P(A|H_2) + P(H_3)P(A|H_3) =$$

$$= \frac{6}{17} \cdot 0.04 + \frac{5}{17} \cdot 0.02 + \frac{6}{17} \cdot 0.03 = \frac{13}{425} \approx 0.031.$$

Откуда искомая вероятность, что извлеченная наудачу деталь окажется качественной, равна

$$P(\overline{A}) = 1 - P(A) = 0,969.$$

Ответ: 0,969.

Пример 13. Имеется три одинаковых по виду ящика. В первом ящике n=23 белых шаров, во втором — m=9 белых и n-m=14 черных шаров, в третьем — n=23 черных шаров. Из выбранного наугад ящика вынули белый шар. Найдите вероятность того, что шар вынут из второго ящика.

Решение. Введем гипотезы, H_k , что выбран k-ый ящик, k=1,2,3. Тогда $P(H_1)=P(H_2)=P(H_3)=\frac{1}{3}$. Обозначим через A событие, что ивлеченный наудачу шар *окажется* белым. Поскольку у нас есть неопределенность, связанная с выбором ящика, то по формуле полной вероятности имеем

$$P(A) = P(H_1)P(A|H_1) + P(H_2)P(A|H_2) + P(H_3)P(A|H_3) =$$

$$= \frac{1}{3} \left(1 + \frac{9}{23} + 0 \right) = \frac{32}{69} \approx 0,464.$$

После того, как событие A произошло (вынутый шар $o\kappa a$ зался белым), по формуле Байеса переоценим вероятность гипотезы H_2 :

$$P(H_2|A) = \frac{P(H_2)P(A|H_2)}{P(A)} = \frac{\frac{1}{3} \cdot \frac{9}{23}}{\frac{32}{69}} = \frac{9}{32} \approx 0,281.$$

Таким образом, вероятность того, что шар вынут из второго ящика, равна 0,281.

Ответ: 0,281.

§5. Независимые испытания. Схема Бернулли. Приближенные формулы Лапласа и Пуассона

Несколько испытаний (с конечным числом исходов) называются *независимыми*, если вероятность того или иного исхода в любом из этих испытаний не зависит от исхода других испытаний.

Схема Бернулли: производится n независимых испытаний, в каждом из которых с одной и той же вероятностью p наступает некоторое событие A (называемое обычно «успехом») и, следовательно, с вероятностью q=1-p наступает событие \overline{A} , противоположное A.

Пусть $P_n(k)$ — вероятность того, что в схеме Бернулли успех наступит k раз. Справедлива формула Бернулли:

$$P_n(k) = C_n^k p^k q^{n-k}.$$

Известно, что наиболее вероятное число успехов приближенно равно np. Точнее: если число $\alpha = np + p$ является целым, то максимум чисел $P_n(k)$ достигается при $k = \alpha$ и $k = \alpha - 1$; если же α — не целое, то максимум достигается при $k = [\alpha]$, где $[\alpha]$ — целая часть α .

При больших n имеет место так называемая nриближенная локальная формула Лапласа:

$$P_n(k) \approx \frac{\varphi(x_0)}{\sqrt{npq}},$$

где $x_0 = \frac{k-np}{\sqrt{npq}}$, $\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} - функция Гаусса.$

Также при больших *п* справедлива *приближенная интегральная формула Лапласа*:

$$P_n(k_1 \leqslant k \leqslant k_2) \approx \Phi(x_2) - \Phi(x_1),$$

где $x_1 = \frac{k_1 - np}{\sqrt{npq}}, \quad x_2 = \frac{k_2 - np}{\sqrt{npq}}, \quad \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{t^2}{2}} dt - \phi y n \kappa u u s$ Лапласа.

Приближенными формулами Лапласа на практике пользуются, если npq>10.

Из приближенной интегральной формулы Лапласа следует, что при заданном $\varepsilon>0$ и большом n вероятность события $\left|\frac{k}{n}-p\right|<\varepsilon$ близка к $2\Phi\left(\varepsilon\cdot\sqrt{\frac{n}{pq}}\right)$.

При больших n и малых p (точнее при $np^2 \ll 1$) справедлива npuближенная формула $\Pi yaccoha$:

$$P_n(k) \approx \frac{\lambda^k}{k!} e^{-\lambda},$$

где $\lambda = np$.

Пример 14. Вероятность попадания в цель при одном выстреле равна 0,18. Сделано 7 выстрелов. Найдите вероятность того, что в цель попали менее трех раз.

Решение. Пусть *A* событие, что в цель попали менее трех раз, причем вероятность успеха («попадет в цель при одном выстреле») p=0,18, а q=1-p=0,82. Тогда по формуле Бернулли имеем:

$$P(A) = P_7(0) + P_7(1) + P_7(2) =$$

= $q^7 + 7pq^6 + 21p^2q^5 \approx 0.885$.

Ответ: 0,885.

Пример 15. Отрезок длины 6 поделен на две части длины 4 и 2 соответственно, 8 точек последовательно бросают случайным образом на этот отрезок. Найдите вероятность того, что количество точек, попавших на отрезок длины 4 будет больше или меньше 1.

Решение. Сначала найдем вероятность события A, что количество точек, попавших на отрезок длины 4, будет pas-но одному. Используя геометрическую вероятность, вероятность успеха для одной точки попасть в указанный отрезок равна $p=\frac{4}{6}=\frac{2}{3}$. Тогда по формуле Бернулли

$$P(A) = P_8(1) = 8pq^7 = \frac{16}{6561} \approx 0,00244.$$

Следовательно, вероятность того, что количество точек, попавших на отрезок длины 4 будет больше или меньше 1, равна $1 - P(A) \approx 0.998$.

Ответ: 0,998.

Пример 16. Монета подбрасывается до тех пор, пока герб не выпадет 7 раз. Найдите вероятность того, что будет произведено 14 бросков.

Решение. Неверным было бы считать, что речь идет о 14 бросках, в семи из которых выпадет герб. По условию задачи при последнем, четырнадцатом бросании, должен выпасть герб (вероятность этого события равна p=0,5). Остальные появления шести раз гербов могут случиться произвольно в предыдущих тринадцати бросаниях (вероятность такого события равна $C_{13}^6 p^6 q^7$). Таким образом, искомая вероятность равна

$$(C_{13}^6 p^6 q^7) \cdot p = C_{13}^6 p^7 q^7 = \frac{429}{4096} \approx 0{,}105.$$

Ответ: 0,105.

Пример 17. Игральная кость подбрасывается до тех пор, пока не выпадет 5 раз число очков, отличное от 6. Какова вероятность, что будет произведено 8 бросков?

Решение. По условию задачи при последнем восьмом подбрасывании не выпадает 6 (вероятность этого события равна $p = \frac{5}{6}$. Остальные четыре раза выпадения числа очков,

отличного от 6, могут случиться произвольно в семи предыдущих подбрасываниях игральной кости (вероятность такого события равна $C_7^4 p^4 q^3$). Искомая вероятность равна

$$p \cdot (C_7^4 p^4 q^3) = C_7^4 \left(\frac{5}{6}\right)^5 \left(\frac{1}{6}\right)^3 \approx 0,0651.$$

Ответ: 0,0651.

Пример 18. Вероятность попадания стрелком в цель равна $\frac{1}{12}$. Сделано 132 выстрелов. Определите наивероятнейшее число попаданий в цель.

Решение. Мы имеем дело со схемой Бернулли, для которой n=132, вероятность успеха $p=\frac{1}{12}$. Поскольку $\alpha=np+p=\frac{133}{12}$ — не целое, то наиболее вероятное число попаданий в цель равно $k=[\alpha]=11$.

Ответ: 11.

Пример 19. Вероятность выпуска бракованного изделия равна 0,4. Найдите вероятность того, что среди 104 выпущенных изделий ровно 62 изделия без брака.

Решение. Мы имеем дело со схемой Бернулли, для которой n=104, вероятность успеха, что изделие без брака, равна p=0,6; q=1-p=0,4. Требуется оценить $P_{104}(62)$. Поскольку $npq=104\cdot 0, 6\cdot 0, 4=24, 96>10$, то воспользуемся приближенной локальной формулой Лапласа, согласно которой

$$P_{104}(62) \approx \frac{1}{\sqrt{104 \cdot 0, 6 \cdot 0, 4}} \cdot \varphi\left(\frac{62 - 104 \cdot 0, 6}{\sqrt{104 \cdot 0, 6 \cdot 0, 4}}\right) \approx 0.2 \cdot \varphi(-0.08) \approx 0.2 \cdot 0.3977 \approx 0.0795.$$

Ответ: 0,0795.

Пример 20. Вероятность выпуска бракованного изделия равна $p = \frac{7}{20}$. Найдите вероятность того, что среди n = 108 выпущенных изделий будет хотя бы одно, но не более s = 37 бракованных изделий.

Решение. В нашем случае, n=108, вероятность успеха, что изделие бракованное, равна p=0,35; q=0,65. Требуется найти $P_{108}(1 \le k \le 37)$. Поскольку $npq=108\cdot 0,35\cdot 0,65=24,57>10$, воспользуемся приближенной интегральной формулой Лапласа, согласно которой

$$P_{108}(1 \le k \le 37) \approx \Phi\left(\frac{37 - 108 \cdot 0,35}{\sqrt{108 \cdot 0,35 \cdot 0,65}}\right) - \Phi\left(\frac{1 - 108 \cdot 0,35}{\sqrt{108 \cdot 0,35 \cdot 0,65}}\right) \approx \Phi(-0,16) - \Phi(-7,42) \approx -0,0675 + 0,5 \approx 0,433.$$

Ответ: 0,433.

Пример 21. Прядильщица обслуживает 1000 веретен. Вероятность обрыва нити на одном веретене в течение 1 минуты равна 0,004. Найдите вероятность того, что в течение одной минуты обрыв произойдет более чем на 2 веретенах.

Решение. Применяется схема Бернулли: n=1000 — число веретен; p=0,004 — вероятность обрыва на 1-ом веретене; $A=\{k>2\}$. Используя: **a**) формулу для вероятности противоположного события; **б**) $\overline{A}=\{k=0\}+\{k=1\}+\{k=2\};$ **в**) приближенную формулу Пуассона $(np^2=0,016\ll 1,\lambda=np=4)$, имеем

$$\begin{split} &P(A) \stackrel{\mathbf{a}}{=} 1 - P(\overline{A}) \stackrel{\mathbf{6}}{=} 1 - P_{1000}(0) - P_{1000}(1) - P_{1000}(2) \approx \\ \stackrel{\mathbf{B}}{\approx} 1 - e^{-\lambda} - \lambda e^{-\lambda} - \frac{\lambda^2}{2} e^{-\lambda} = \\ &= 1 - e^{-\lambda} \left(\frac{2 + 2\lambda + \lambda^2}{2} \right) \approx 1 - 0,238 = 0,762. \end{split}$$

Ответ: 0,762.

§6. Распределение дискретной случайной величины

Случайная величина X называется $\partial u c \kappa p e m h o \tilde{u}$, если множество всех ее возможных значений $\{x_1, x_2, \ldots\}$ конечно или счетно. Вероятность попадания X в какое-либо множество $B \subseteq \mathbb{R}$ находится по формуле

$$P(X \in B) = \sum_{x_i \in B} p_i,$$

где $p_i = P(X = x_i)$ — вероятность i-го возможного значения. Закон распределения дискретной случайной величины X может быть представлен в форме таблицы:

X	x_1	x_2	
P	p_1	p_2	 •

Нетрудно убедиться в том, что сумма чисел во второй строке этой таблицы равна $P(X \in \mathbb{R}) = 1$. В случае дискретной случайной величины X ее функция распределения имеет вид

$$F(x) = P(X < x) = \sum_{x_i < x} p_i,$$

т.е. F(x) — ступенчатая функция со скачками в точках x_1 , x_2 , ..., причем величины скачков равны соответственно p_1, p_2, \ldots

Пример 22. Случайная величина X принимает только целые значения $1,2,\dots 28$. При этом вероятности возможных значений X пропорциональны значениям: P(X=k)=ck. Найдите значение константы c и вероятность P(X>2).

Решение. Имеем

$$1 = \sum_{k=1}^{28} P(X = k) = \sum_{k=1}^{28} c \cdot k = c \frac{28 \cdot 29}{2} = 406 \cdot c \Rightarrow c = \frac{1}{406}.$$

Далее, вероятность P(X > 2) равна

$$P(X > 2) = 1 - P(X \le 2) = 1 - (P(X = 1) + P(X = 2)) = 1 - (c + 2c) = 1 - 3c = 1 - 3\frac{1}{406} = \frac{403}{406} \approx 0,993.$$

Other: $c = \frac{1}{406}$; P(X > 2) = 0.993.

§7. Независимые дискретные случайные величины

Для независимости дискретных случайных величин $X_1, X_2, ..., X_n$ необходимо и достаточно, чтобы для любого набора их возможных значений $a_1, a_2, ..., a_n$ выполнялось равенство

$$P(X_1 = a_1, X_2 = a_2, \dots, X_n = a_n) = P(X_1 = a_1) \cdot P(X_2 = a_2) \cdot \dots \cdot P(X_n = a_n).$$

Пример 23. Независимые дискретные случайные величины X, Y принимают только целые значения: X от -6 до 5 c вероятностью $\frac{1}{12}$, Y от -6 до 9 c вероятностью $\frac{1}{16}$. Найдите вероятность P(XY=0).

Решение. Используя: а) правило сложения вероятностей; б) независимость случайных величин X и Y, имеем

$$P(XY = 0) \stackrel{\text{a}}{=} P(X = 0) + P(Y = 0) - P(X = 0, Y = 0) =$$

$$\stackrel{6}{=} P(X = 0) + P(Y = 0) - P(X = 0) \cdot P(Y = 0) =$$

$$= \frac{1}{12} + \frac{1}{16} - \frac{1}{12} \cdot \frac{1}{16} = \frac{9}{64} \approx 0,141.$$

Ответ: 0,141.

Пример 24. Независимые случайные величины X, Y, Z принимают только целые значения: X — от 0 до 7, Y — от 0 до 10, Z — от 0 до 13. Найдите вероятность P(X+Y+Z=4), если известно, что возможные значения X, Y и Z равновероятны.

Решение. Поскольку возможные значения X, Y и Z равновероятны, имеем:

$$P(X = k) = \frac{1}{8}, k = 0, 1, \dots, 7,$$

$$P(Y = l) = \frac{1}{11}, l = 0, \dots, 10,$$

$$P(Z = m) = \frac{1}{14}, m = 0, \dots, 13.$$

С учетом: а) попарной несовместности событий $\{X = k, Y = l, Z = m\}$ при различных k, l, m; б) независимости событий $\{X = k\}$, $\{Y = l\}$, $\{Z = m\}$, находим

$$P(X+Y+Z=4) \stackrel{\text{a}}{=} \sum_{k+l+m=4} P(X=k,Y=l,Z=m) =$$

$$\stackrel{\text{6}}{=} \sum_{k+l+m=4} P(X=k) \cdot P(Y=l) \cdot P(Z=m) =$$

$$= C_6^2 \cdot \frac{1}{8} \cdot \frac{1}{11} \cdot \frac{1}{14} = \frac{C_6^2}{1232} = \frac{15}{1232} \approx 0,0122.$$

При подсчете количества слагаемых в последней сумме мы использовали тот факт, что число троек k+l+m=4 совпадает с числом последовательностей, состоящих из 4 единиц и 2 нулей.

Ответ: 0,0122.

Пример 25. Независимые случайные величины X, Y, Z принимают только целые значения: X – от 1 до 13 с вероятностью $\frac{1}{13}$, Y – от 1 до 9 с вероятностью $\frac{1}{9}$, Z – от 1 до 7 с вероятностью $\frac{1}{7}$. Найдите вероятность P(X < Y < Z).

Решение. Используя: а) попарную несовместность событий $\{X = k, Y = l, Z = m\}$ при различных k, l, m; б) независимость событий $\{X = k\}$, $\{Y = l\}$, $\{Z = m\}$, находим

$$P(X < Y < Z) \stackrel{\mathbf{a}}{=} \sum_{1 \le k < l < m \le 7} P(X = k, Y = l, Z = m) =$$

$$\stackrel{\mathbf{6}}{=} \sum_{1 \le k < l < m \le 7} P(X = k) \cdot P(Y = l) \cdot P(Z = m) =$$

$$= C_7^3 \cdot \frac{1}{13} \cdot \frac{1}{9} \cdot \frac{1}{7} = \frac{C_7^3}{13 \cdot 9 \cdot 7} = \frac{35}{819} \approx 0,0427.$$

При подсчете количества слагаемых в последней сумме мы использовали тот факт, что число троек (k,l,m), для которых $1 \le k < l < m \le 7$, совпадает с числом способов выбора трех различных чисел из множества $\{1,2,\ldots,7\}$. Ответ: 0,0427.

Пример 26. Независимые случайные величины X, Y, Z могут принимать только целые значения: Y и Z – от 1 до 20 с вероятностью $\frac{1}{20}$, а X только значения 5 и 10, при этом $P(X=5)=\frac{9}{10}$. Найдите вероятность P(X<Y<Z).

Решение. С учетом: а) формулы полной вероятности; б) независимости Y и Z от X; в) попарной несовместности событий $\{Y=l,Z=m\}$ для различных l и m; г) независимости Y и Z, находим

$$P(X < Y < Z) \stackrel{\mathbf{a}}{=} P(5 < Y < Z | X = 5) \cdot P(X = 5) + \\ + P(10 < Y < Z | X = 10) \cdot P(X = 10) = \\ \stackrel{\mathbf{6}}{=} P(5 < Y < Z) \cdot P(X = 5) + P(10 < Y < Z) \cdot P(X = 10) = \\ \stackrel{\mathbf{B}}{=} \Big[\sum_{6 \le l < m \le 20} P(Y = l, Z = m) \Big] \cdot P(X = 5) + \\ + \Big[\sum_{11 \le l < m \le 20} P(Y = l, Z = m) \Big] \cdot P(X = 10) =$$

$$\frac{\mathbf{r}}{\mathbf{r}} \left[\sum_{0 \le l < m \le 20} P(Y = l) \cdot P(Z = m) \right] \cdot P(X = 5) +
+ \left[\sum_{11 \le l < m \le 20} P(Y = l) \cdot P(Z = m) \right] \cdot P(X = 10) =$$

$$= C_{15}^2 \cdot \frac{1}{20} \cdot \frac{1}{20} \cdot \frac{1}{20} \cdot \frac{9}{10} + C_{10}^2 \cdot \frac{1}{20} \cdot \frac{1}{20} \cdot \frac{1}{10} = \frac{99}{400} = 0,2475.$$

Ответ: 0,2475.

§8. Математическое ожидание дискретной случайной величины

Mатематическим ожиданием дискретной случайной величины X, множество возможных значений которой конечно, называется сумма произведений всех ее возможных значений на соответствующие вероятности:

$$E(X) = x_1 p_1 + x_2 p_2 + \ldots + x_n p_n$$
.

Если множество возможных значений счетное, то

$$E(X) = \sum_{i=1}^{\infty} x_i p_i,$$

причем математическое ожидание существует, если ряд в правой части сходится абсолютно.

Математическое ожидание обладает следующими свойствами:

1. Математическое ожидание константы равно этой константе:

$$E(C) = C$$
.

2. Постоянный множитель можно выносить за знак математического ожидания:

$$E(CX) = CE(X)$$
.

3. Математическое ожидание суммы случайных величин равно сумме математических ожиданий слагаемых:

$$E(X_1 + X_2 + ... + X_n) = E(X_1) + E(X_2) + ... + E(X_n).$$

4. Математическое ожидание произведения независимых случайных величин равно произведению математических ожиданий сомножителей:

$$E(X_1 \cdot X_2 \cdot \ldots \cdot X_n) = E(X_1) \cdot E(X_2) \cdot \ldots \cdot E(X_n).$$

5. Если $\varphi(x)$ – числовая функция и X – дискретная случайная величина, то

$$E[\varphi(X)] = \varphi(x_1)p_1 + \varphi(x_2)p_2 + \dots$$

6. Если $\varphi(x)$ — выпуклая функция, то для любой случайной величины X выполняется неравенство Йенсена:

$$E[\varphi(X)] \geqslant \varphi(E[X]).$$

Пример 27. Независимые случайные величины $X_1, X_2, ..., X_8$ принимают только целые значения -9, -8, ..., 6, 7. Найдите математическое ожидание $E(X_1 \cdot X_2 \cdot ... \cdot X_8)$, если известно, что возможные значения равновероятны.

Решение. Сначала найдем математическое ожидание какойнибудь одной случайной величины X_k :

$$E(X_k) = \frac{1}{17} \cdot (-9 - 8 - \dots - 0 + 1 + 2 + \dots - 7) = -1.$$

Используя свойства математического ожидания, находим

$$E(X_1 \cdot X_2 \cdots X_8) = E(X_1) \cdot E(X_2) \cdots E(X_8) = [E(X_k)]^8 = (-1)^8 = 1.$$

Ответ: 1.

Пример 28. Независимые случайные величины $X_1, ..., X_5$ могут принимать только значения 0 и 1. При этом $P(X_i = 0) = 0, 4$, i = 1, ... 5. Найдите математическое ожидание $E[4^{X_1 + ... + X_5}]$.

Решение. Для одной случайной величины X_k имеем

$$E[4^{X_k}] = 4^0 \cdot 0, 4 + 4^1 \cdot 0, 6 = 2, 8.$$

Тогда, используя, что 4^{X_1} , ..., 4^{X_5} — независимые случайные величины, находим

$$E[4^{X_1+...+X_5}] = E[4^{X_1}] \cdots E[4^{X_5}] = (E[4^{X_k}])^5 = (2,8)^5 \approx 172,1.$$

Ответ: 172,1.

§9. Дисперсия дискретной случайной величины

Математическое ожидание квадрата отклонения случайной величины X от E(X) называется $\partial ucnepcue X$:

$$D(X) = E([X - E(X)]^2).$$

Стандартное (среднее квадратичное) отклонение случайной величины X определяется как корень из дисперсии и обозначается σ_X или $\sigma(X)$,

$$\sigma(X) = \sqrt{D(X)}$$
.

Дисперсия обладает следующими свойствами:

- **1.** $D(X) = E(X^2) [E(X)]^2$.
- **2.** Дисперсия константы равна нулю: D(C) = 0.
- **3.** Постоянный множитель выносится из-под знака дисперсии в квадрате:

$$D(CX) = C^2 D(X).$$

4. Дисперсия суммы независимых случайных величин равна сумме дисперсий слагаемых:

$$D(X_1 + X_2 + ... + X_n) = D(X_1) + D(X_2) + ... + D(X_n).$$

В частности, прибавление константы к случайной величине X не меняет ее дисперсии: D(X+C)=D(X).

Свойство 2 дисперсии обращается в несколько ослабленном виде: $ecnu\ D(X)=0$, то для некоторой константы C равенство X=C выполняется c вероятностью 1.

Пример 29. Распределение случайной величины X задано таблицей

X	4	8	11	14	18
P	0,1	0,25	0,3	0,25	0,1

Найдите математическое ожидание m=E(X), среднее квадратичное отклонение $\sigma=\sigma_X$ и вероятность $P(|X-m|<\sigma)$.

Решение. По определению математического ожидания и свойства дисперсии имеем:

$$m = E(X) = 4 \cdot 0, 1 + 8 \cdot 0, 25 + 11 \cdot 0, 3 + 14 \cdot 0, 25 + 18 \cdot 0, 1 = 11;$$

$$E(X^{2}) = 4^{2} \cdot 0, 1 + 8^{2} \cdot 0, 25 + 11^{2} \cdot 0, 3 + 14^{2} \cdot 0, 25 + 18^{2} \cdot 0, 1 = 135, 3;$$

$$D(X) = E(X^{2}) - [E(X)]^{2} = 135, 3 - 11^{2} = 14, 3.$$

Следовательно, стандартное отклонение равно

$$\sigma = \sigma_X = \sqrt{D(X)} = \sqrt{14,3} \approx 3,782.$$

Таким образом, искомая вероятность равна

$$P(|X - m| < \sigma) = P(|X - 11| < 3,782) = P(7,218 < X < 14,782) =$$

= $P(X = 8) + P(X = 11) + P(X = 14) = 0,25 + 0,3 + 0,25 = 0,8.$

Other: m = 11; $\sigma = 3{,}782$; $P(|X - m| < \sigma) = 0{,}8$.

Пример 30. Независимые дискретные случайные величины X, Y могут принимать только значения 0 и 1. При этом P(X=0)=0,9, P(Y=0)=0,3. Найдите математическое ожидание $E[(X-Y)^2]$.

Решение. Сначала найдем математические ожидания и дисперсии случайных величин X и Y:

$$E(X) = 0 \cdot 0.9 + 1 \cdot 0.1 = 0.1;$$
 $E(Y) = 0 \cdot 0.3 + 1 \cdot 0.7 = 0.7;$ $E(X^2) = 0^2 \cdot 0.9 + 1^2 \cdot 0.1 = 0.1;$ $E(Y^2) = 0^2 \cdot 0.3 + 1^2 \cdot 0.7 = 0.7;$ $D(X) = 0.1 - (0.1)^2 = 0.09;$ $D(Y) = 0.7 - (0.7)^2 = 0.21.$

Тогда, используя свойства дисперсии, находим:

$$E[(X - Y)^{2}] = D(X - Y) + [E(X - Y)]^{2} =$$

$$= D(X) + D(Y) + [E(X) - E(Y)]^{2} =$$

$$= 0.09 + 0.21 + (0.1 - 0.7)^{2} = 0.66.$$

Ответ: 0,66.

Пример 31. Для независимых случайных величин $X_1, ..., X_4$ известно, что их математические ожидания $E(X_i) = -2$, дисперсии $D(X_i) = 1$, i = 1, ... 4. Найдите дисперсию произведения $D(X_1 \cdots X_4)$.

Решение. Используя свойства дисперсии, находим

$$D(X_1 \cdots X_4) = E[(X_1 \cdots X_4)^2] - [E(X_1 \cdots X_4)]^2 =$$

$$= E(X_1^2 \cdots X_4^2) - [E(X_1) \cdots E(X_4)]^2 =$$

$$= E(X_1^2) \cdots E(X_4^2) - [E(X_i)]^8 =$$

$$= [D(X_i) + [E(X_i)]^2]^4 - (-2)^8 =$$

$$= [1 + (-2)^2]^4 - 256 = 625 - 256 = 369.$$

Ответ: 369.

Пример 32. Вероятность выигрыша 3 рублей в одной партии равна $\frac{2}{5}$, вероятность проигрыша 2 рублей равна $\frac{3}{5}$. Найдите дисперсию капитала игрока после 5 партий.

Решение. Представим случайную величину K, капитал игрока, в виде суммы

$$K = K_0 + K_1 + K_2 \dots + K_5$$
,

где K_0 — начальный капитал, K_i — изменение капитала игрока в результате i-ой партии (i = 1, 2, ..., 5). Тогда

$$D(K_i) = E(K_i^2) - [E(K_i)]^2 =$$

$$= \left(3^2 \cdot \frac{2}{5} + (-2)^2 \cdot \frac{3}{5}\right) - \left[3 \cdot \frac{2}{5} - 2 \cdot \frac{3}{5}\right]^2 = 6.$$

Следовательно, дисперсия капитала игрока после 5 сыгранных независимых партий составит

$$D(K) = D(K_0 + K_1 + \dots + K_5) =$$

= $D(K_1) + \dots + D(K_5) = 5 \cdot D(K_i) = 5 \cdot 6 = 30.$

Ответ: 30.

§10. Числовые характеристики основных дискретных законов распределения

Биномиальным распределением с параметрами n и p называется распределение числа успехов в n независимых испытаниях с вероятностью успеха в каждом испытании p. Биномиальное распределение имеет вид:

X	0	1	2	 n	
P	$C_n^0 p^0 q^n$	$C_n^1 p^1 q^{n-1}$	$C_n^2 p^2 q^{n-2}$	 $C_n^n p^n q^0$!

где q=1-p. Для случайной величины X , распределенной по биномиальному закону с параметрами n и p , имеем:

$$E(X) = np$$
, $D(X) = npq$.

 $Pacnpe \partial e$ ление $\Pi yaccoнa$ с параметром $\lambda>0$ задается следующей бесконечной таблицей

X	0	1	2	 k	
P	$e^{-\lambda}$	$\frac{\lambda e^{-\lambda}}{1!}$	$\frac{\lambda^2 e^{-\lambda}}{2!}$	 $\frac{\lambda^k e^{-\lambda}}{k!}$	 ľ

Математическое ожидание и дисперсия дискретной случайной величины, распределенной по закону Пуассона, равны параметру λ данного распределения.

 Γ еометрическим распределением с параметром p называется распределение числа испытаний до первого успеха в серии независимых испытаний с вероятностью успеха p в каждом испытании. Геометрическое распределение имеет вид бесконечной таблицы

X	1	2	3	 k	
P	p	qp	q^2p	 $q^{k-1}p$	 •

Для дискретной случайной величины X , распределенной по геометрическому закону, $E(X)=\frac{1}{p}$, $D\left(X\right) =\frac{q}{p^{2}}$.

Пример 33. Производится 1920 независимых испытаний, состоящих в том, что одновременно подбрасываются 7 монет. Пусть X — число испытаний, в которых выпало 3 герба. Найдите математическое ожидание E(X).

Решение. По условию задачи случайная величина X, число испытаний, распределена по биномиальному закону, причем n=1920. Вероятность успеха в одном испытании p найдем как вероятность события, что при одновременном подбрасывании 7 монет выпадет 3 герба. Здесь можно воспользоваться формулой Бернулли, согласно которой

$$p = P_7(3) = C_7^3 \left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^4 = \frac{35}{128}.$$

Следовательно, искомое математическое ожидание равно

 $E(X) = np = 1920 \cdot \frac{35}{128} = 525.$

Ответ: 525.

Пример 34. Производится 10 независимых испытаний с вероятностью успеха 0,6 в каждом испытании. Пусть X — число успехов в испытаниях с номерами $1,2,\ldots,7,Y$ — число успехов в испытаниях с номерами $5,6,\ldots,10$. Найдите дисперсию D[X+2Y].

Решение. Представим случайные величины X и Y в виде X = U + V и Y = V + W, где U обозначает число успехов в испытаниях с номерами 1, 2, 3 и 4, V — число успехов в испытаниях с номерами 5, 6 и 7, а W — число успехов в испытаниях с номерами 8, 9 и 10. Поскольку испытания независимы, то случайные величины U, V и W также независимы, что нельзя сказать о случайных величинах X и Y. Ясно, что U, V и W распределены по биномиальному закону, причем D(U) = 4pq, D(V) = 3pq, D(W) = 3pq, где p = 0, 6—вероятность успеха в одном испытании, а q = 1 - p = 0, 4. Следовательно,

$$D(X + 2Y) = D(U + 3V + 2W) = D(U) + 9D(V) + 4D(W) =$$

= $4pq + 27pq + 12pq = 43pq = 43 \cdot 0, 6 \cdot 0, 4 = 10, 32.$

Ответ: 10,32.

Пример 35. На плоскости начерчены два квадрата, стороны которых 10 и 50 соответственно. Меньший квадрат содержится внутри большего квадрата. В большой квадрат случайным образом бросают точки до тех пор, пока не попадут в маленький квадрат. Пусть случайная величина X — число бросаний. Найдите математическое ожидание E(X) и дисперсию D(X).

Решение. По условию задачи случайная величина X (число бросаний) распределена по геометрическому закону. Вероятность успеха p в одном испытании определим как вероятность события A, что точка, брошенная в большой квадрат Ω , попадет и в маленький. Используя геометрическую вероятность, найдем

$$p = P(A) = \frac{\mu(A)}{\mu(\Omega)} = \frac{10^2}{50^2} = \frac{1}{25}.$$

Таким образом, используя формулы для математического ожидания и дисперсии в случае геометрического распределения, находим

$$E(X) = \frac{1}{p} = 25$$
, $D(X) = \frac{q}{p^2} = 600$.

Ответ: 25; 600.

Пример 36. Для пуассоновской случайной величины X отношение $\frac{P(X=10)}{P(X=9)}=6$. Найдите математическое ожидание E[X].

Решение. Если *X* распределена по закону Пуассона, то

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, k = 0, 1, 2, \dots$$

Поэтому

$$6 = \frac{P(X = 10)}{P(X = 9)} = \frac{\lambda^{10}}{10}.$$

Откуда, $\lambda = 60$. Следовательно, $E(X) = D(X) = \lambda = 60$. Ответ: 60.

§11. Ковариация и коэффициент корреляции

 $Kosapuaция \ {
m Cov}(X\,,Y)$ случайных величин X , Y задается формулой

$$Cov(X, Y) = E[(X - E(X))(Y - E(Y))].$$

Ковариация обладает следующими свойствами:

- **1.** Cov(X,Y) = E(XY) E(X)E(Y).
- **2.** Cov(X, X) = D(X).
- **3.** D(X+Y) = D(X) + D(Y) + 2Cov(X,Y).
- **4.** Если *X* и *Y* независимы, то Cov(X,Y) = 0.
- **5.** Cov(X, Y) = Cov(Y, X).
- 6. Cov(aX, Y) = Cov(X, aY) = aCov(X, Y), где a = const.
- 7. Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z).
- **8.** Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z).

Если Cov(X,Y) = 0, то случайные величины X и Y называются некоррелированными. Таким образом, из независимости X и Y следует их некоррелированность. Обратное утверждение неверно.

$$\rho_{XY} = \rho(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sigma(X)\sigma(Y)}.$$

Свойства коэффициента корреляции:

- 1. $\rho_{XY} = \rho_{YX}$.
- **2.** $|\rho_{XY}| \leq 1$.
- 3. Условие $|\rho_{XY}|=1$ равнозначно существованию таких констант α и $\beta \neq 0$, что равенство $Y=\alpha+\beta X$ выполняется с вероятностью 1.

Пример 37. Случайные величины X, Y принимают только значения 0 и 1. Найдите дисперсию D(X-Y), если вероятности P(X=1) = P(Y=1) = 0,5, а коэффициент корреляции X и Y равен 0,7.

Решение. Математические ожидания и дисперсии случайных величин X и Y равны:

$$E(X) = E(Y) = 0.5;$$
 $D(X) = D(Y) = 0.25.$

Используя определение коэффициента корреляции и свойства ковариации, находим

$$D(X - Y) = D(X) + D(Y) - 2\operatorname{Cov}(X, Y) =$$

$$= D(X) + D(Y) - 2\rho_{XY}\sigma(X)\sigma(Y) =$$

$$= 0.25 + 0.25 - 2 \cdot 0.7\sqrt{0.25} \cdot \sqrt{0.25} = 0.15.$$

Ответ: 0,15.

Пример 38. Случайные величины X, Y распределены по закону Пуассона. Найдите $E\{(X+Y)^2\}$, если E(X)=40 и E(Y)=70, а коэффициент корреляции X и Y равен 0,8.

Решение. Поскольку случайные величины X и Y распределены по закону Пуассона и известны их математические ожидания, соответствующие дисперсии равны:

$$D(X) = E(X) = 40;$$
 $D(Y) = E(Y) = 70.$

Следовательно,

$$E\{(X+Y)^2\} = D(X+Y) + [E(X+Y)]^2 =$$

$$= D(X) + D(Y) + 2\rho_{XY}\sigma(X)\sigma(Y) + [E(X) + E(Y)]^2 =$$

$$= 40 + 70 + 2 \cdot 0, 8\sqrt{40}\sqrt{70} + (40 + 70)^2 \approx 12294, 7.$$

Ответ: 12294,7.

§12. Абсолютно непрерывные случайные величины и их числовые характеристики

Пусть F(x) = P(X < x) — функция распределения некоторой случайной величины X. Если F(x) непрерывна, то P(X=c)=0 для любого $c\in\mathbb{R}$. Кроме того, вероятности событий

$${a \le X \le b}, {a \le X < b}, {a < X \le b}, {a < X < b}$$

одинаковы и равны F(b) - F(a), если $a \leq b$.

Абсолютно непрерывная случайная величина X характеризуется наличием nлоmноcmu расnреdеnения (вероятноcmu) — неотрицательной функции f(x), такой, что для любого отрезка [a,b] вероятность

$$P(X \in [a, b]) = \int_{a}^{b} f(x)dx.$$

Функция распределения F(x) абсолютно непрерывной случайной величины непрерывна и может быть представлена в виде

$$F(x) = \int_{-\infty}^{x} f(t)dt.$$

Отметим, что для любой функции плотности справедливы соотношения:

- $\int_{-\infty}^{\infty} f(x)dx = 1$ (свойство нормированности);
- f(x) = F'(x) в точках непрерывности f(x).

Нахождение математического ожидания абсолютно непрерывной случайной величины X в общем случае сводится к вычислению несобственного интеграла

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx,$$

а для случайной величины X , сосредоточенной на отрезке [a,b] , $P(X\in [a,b])=1$, — к вычислению интеграла по этому отрезку

$$E(X) = \int_{a}^{b} x f(x) dx.$$

Пусть Y — случайная величина вида $Y = \varphi(X)$. Математическое ожидание Y вычисляется в общем случае по формуле

$$E(\varphi(X)) = \int_{-\infty}^{\infty} \varphi(x)f(x)dx,$$

а для случайной величины, сосредоточенной на отрезке [a,b], — по формуле

$$E(\varphi(X)) = \int_{a}^{b} \varphi(x)f(x)dx.$$

В частности, для начальных моментов $v_k = E(X^k)$ и центральных моментов $\mu_k = E\{(X-v_1)^k\}$ имеем

$$\mathbf{v}_k = \int\limits_{-\infty}^{\infty} x^k f(x) dx,$$

$$\mu_k = \int_{-\infty}^{\infty} (x - v_1)^k f(x) dx.$$

Поскольку $D(X) = \mu_2 = \nu_2 - \nu_1^2$, приведенные формулы используются и для вычисления дисперсии.

Пример 39. Функция плотности распределения случайной величины X имеет вид $f(x) = \begin{cases} 0, x < 5, \\ \frac{C}{x^2}, x \geqslant 5. \end{cases}$ Найдите константу C и вероятность P(X < 6).

Решение. Из свойства нормированности имеем

$$1 = \int_{-\infty}^{\infty} f(x)dx = C \int_{5}^{\infty} \frac{dx}{x^2} = \frac{C}{5}.$$

Отсюда C = 5. Далее,

$$P(X < 6) = F(6) = \int_{-\infty}^{6} f(x)dx = 5 \int_{5}^{6} \frac{dx}{x^{2}} dx = \frac{1}{6}.$$

Ответ: C = 5, $P(X < 6) = \frac{1}{6}$.

Пример 40. Плотность распределения случайной величины X имеет вид $f(x) = \left\{ \begin{array}{l} \frac{3}{2}x^2, \ ecлu \ |x| \leqslant a, \\ 0, \ ecлu \ |x| > a. \end{array} \right.$ Найдите a и $P\left(|X| > \frac{a}{2}\right)$.

Решение. Из условия нормированности находим

$$1 = \int_{-\infty}^{\infty} f(x)dx = \frac{3}{2} \int_{-a}^{a} x^{2} dx = a^{3},$$

Поэтому a = 1. Тогда искомая вероятность при a = 1 равна:

$$P\left(|X| > \frac{1}{2}\right) = 1 - P\left(-\frac{1}{2} \leqslant X \leqslant \frac{1}{2}\right) = 1 - \frac{3}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} x^2 dx = 1 - \frac{1}{8} = \frac{7}{8}.$$

Otbet: $a = 1, P(|X| > \frac{1}{2}) = \frac{7}{8}$.

Пример 41. Случайная величина X равномерно распределена на отрезке [-2,3]. Найдите вероятность $P\left(\frac{1}{X-2}>7\right)$.

Решение. Отметим, что если случайная величина X равномерно распределена на отрезке [a,b], то вероятность события $\{a \leqslant \alpha < X < \beta \leqslant b\}$ можно найти, используя «геометрическую вероятность», т.е.

$$P(X \in (\alpha, \beta)) = \frac{\beta - \alpha}{b - a}, \quad a \le \alpha < \beta \le b.$$

В нашем случае событие $\left\{\frac{1}{X-2}>7\right\}$ равносильно событию $\left\{X\in\left(2;\frac{15}{7}\right)\right\}$. Поэтому искомая вероятность равна

$$P\left(\frac{1}{X-2} > 7\right) = P\left(X \in \left(2; \frac{15}{7}\right)\right) = \frac{\frac{15}{7} - 2}{3 - (-2)} = \frac{1}{35}.$$

Otbet: $P\left(\frac{1}{X-2} > 7\right) = \frac{1}{35}$.

Пример 42. Случайная величина X равномерно распределена на отрезке [0,1]. Найдите дисперсию $D\left(7X^{\frac{5}{2}}\right)$.

Решение. Поскольку случайная величина X равномерно распределена на отрезке [0,1], её плотность вероятности f(x) имеет вид $f(x) = \begin{cases} 1, & x \in [0,1], \\ 0, & x \notin [0,1]. \end{cases}$ Используя свойства

дисперсии, находим

$$D\left(7X^{\frac{5}{2}}\right) = 7^{2}D\left(X^{\frac{5}{2}}\right) = 49\left(E\left(X^{5}\right) - \left(E\left(X^{\frac{5}{2}}\right)\right)^{2}\right) =$$

$$= 49\left(\int_{-\infty}^{\infty} x^{5}f(x)dx - \left(\int_{-\infty}^{\infty} x^{\frac{5}{2}}f(x)dx\right)^{2}\right) =$$

$$= 49\left(\int_{0}^{1} x^{5} \cdot 1dx - \left(\int_{0}^{1} x^{\frac{5}{2}} \cdot 1dx\right)^{2}\right) = 49\left(\frac{1}{6} - \left(\frac{2}{7}\right)^{2}\right) = \frac{25}{6}.$$

Ответ: $D\left(7X^{\frac{5}{2}}\right) = \frac{25}{6}$.

Пример 43. Случайная величина X равномерно распределена на отрезке [0,9]. Найдите $E\{5-\ln(3X)\}$.

Решение. Плотность вероятности для случайной величины X, равномерно распределенной на отрезке [0,9], имеет вид $f(x) = \begin{cases} \frac{1}{9}, & x \in [0,9], \\ 0, & x \notin [0,9]. \end{cases}$ Используя свойства математического ожидания и формулу интегрирования по частям, находим

$$E\{5 - \ln(3X)\} = 5 - E(\ln(3X)) = 5 - \int_{-\infty}^{\infty} \ln(3x)f(x)dx =$$

$$= 5 - \frac{1}{9} \int_{0}^{9} \ln(3x)dx = 5 - \frac{1}{9} \left(x \cdot \ln(3x) \Big|_{0}^{9} - \int_{0}^{9} x \cdot \frac{1}{3x} \cdot 3 dx \right) =$$

$$= 5 - \frac{1}{9} (9 \ln(27) - 9) = 6 - 3 \ln 3 \approx 2,7042.$$

Other: $E\{5 - \ln(3X)\} = 6 - 3\ln 3 \approx 2{,}7042.$

Пример 44. Случайные величины X и Y независимы и равномерно распределены на отрезках: X — на отрезке [0,1], Y — на отрезке [3,7]. Найдите $E\{X \cdot (6X^4 + Y)\}$.

Решение. Плотности вероятностей f(x) и g(x) для случайных величин X и Y имеют вид

$$f(x) = \begin{cases} 1, & x \in [0,1], \\ 0, & x \notin [0,1], \end{cases} \quad g(x) = \begin{cases} \frac{1}{4}, & x \in [3,7], \\ 0, & x \notin [3,7]. \end{cases}$$

Используя свойства математического ожидания для независимых случайных величин, находим

$$E\{X \cdot (6X^4 + Y)\} = 6E(X^5) + E(X) \cdot E(Y) =$$

$$= 6 \int_{-\infty}^{\infty} x^5 f(x) dx + \frac{0+1}{2} \cdot \frac{7+3}{2} = 6 \int_{0}^{1} x^5 dx + \frac{5}{2} = 1 + \frac{5}{2} = \frac{7}{2}.$$

Ответ: $E\{X \cdot (6X^4 + Y)\} = \frac{7}{2}$.

Пример 45. Случайная величина X имеет равномерное распределение на отрезке [-7,7]. Найдите коэффициент корреляции случайных величин X и $Y = X^7$.

Решение. Плотность вероятности для случайной величины X, равномерно распределенной на отрезке [-7,7], имеет вид $f(x) = \begin{cases} \frac{1}{14}, & x \in [-7,7], \\ 0, & x \notin [-7,7]. \end{cases}$

Последовательно находим:

$$E(X) = \frac{7 + (-7)}{2} = 0, \quad D(X) = \frac{(7 - (-7))^2}{12} = \frac{49}{3},$$

$$E(Y) = E(X^7) = \int_{-\infty}^{\infty} x^7 f(x) dx = \frac{1}{14} \int_{-7}^{7} x^7 dx = 0,$$

$$D(Y) = E(Y^2) - E^2(Y) = E(X^{14}) - 0 =$$

$$= \frac{1}{14} \int_{-7}^{7} x^{14} dx = 4,5215 \cdot 10^{10},$$

$$E(X \cdot Y) = E(X^8) = \frac{1}{14} \int_{-7}^{7} x^8 dx = 6,4053 \cdot 10^5,$$

$$Cov(X, Y) = E(X \cdot Y) - M(X) \cdot E(Y) = 6,4053 \cdot 10^5.$$

Таким образом, коэффициент корреляции равен

$$\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sqrt{D(X)} \cdot \sqrt{D(Y)}} = \frac{\sqrt{5}}{3} \approx 0,7454.$$

Ответ: $\rho(X,Y) \approx 0.7454$.

Пример 46. Найдите математическое ожидание и дисперсию произведения независимых случайных величин X и Y с равномерными законами распределения: X — на отрезке [0,1], Y — на отрезке [2,9].

Решение. Последовательно находим

$$E(X) = \frac{0+1}{2} = \frac{1}{2}, D(X) = \frac{(1-0)^2}{12} = \frac{1}{12}, E(Y) = \frac{11}{2}, D(Y) = \frac{49}{12}.$$

Используя свойства математического ожидания для независимых случайных величин X и Y, определяем

$$\begin{split} E(X \cdot Y) &= E(X) \cdot E(Y) = \frac{1}{2} \cdot \frac{11}{2} = 2,75, \\ D(X \cdot Y) &= E(X^2 \cdot Y^2) - E^2(X \cdot Y) = \\ &= E(X^2) \cdot E(Y^2) - E^2(X) \cdot E^2(Y) = \\ &= (D(X) + E^2(X)) \cdot (D(Y) + E^2(Y)) - E^2(X) \cdot E^2(Y) = \\ &= D(X) \cdot D(Y) + E^2(X) \cdot D(Y) + E^2(Y) \cdot D(X) = \frac{559}{144} \approx 3,8819. \end{split}$$

Other: $E(X \cdot Y) = 2,75$; $D(X \cdot Y) \approx 3,8819$.

Пример 47. Случайные величины $X_1, ..., X_4$ независимы и распределены по показательному закону. Найдите $E\{(X_1 + ... + X_4 - 5)^2\}$, если $E(X_1) = ... = E(X_4) = 5$.

Решение. Напомним, что если случайная величина X распределена по показательному закону с параметром λ , то $E(X) = \frac{1}{\lambda}$, $D(X) = \frac{1}{\lambda^2}$. Поэтому, $D(X_1) = E^2(X_1) = 25$. Используя свойства дисперсии для независимых случайных величин X_1, \ldots, X_4 , находим

$$E\{(X_1 + \dots + X_4 - 5)^2\} =$$

$$= D(X_1 + \dots + X_4 - 5) + E^2(X_1 + \dots + X_4 - 5) =$$

$$= 4 \cdot D(X_1) + (4 \cdot E(X_1) - 5)^2 = 4 \cdot 25 + 15^2 = 325.$$

Ответ: $E\{(X_1 + ... + X_4 - 5)^2\} = 325$.

Пример 48. Случайная величина X распределена по показательному закону. Найдите математическое ожидание $E\{(X-7)\cdot(6-X)\}$, если дисперсия D(4-4X)=36.

Решение. Из условия, что D(4-4X)=36, находим $D(X)=\frac{9}{4}$. Поскольку X распределена по показательному закону, $E(X)=\frac{3}{2}$. Используя свойства математического ожидания, находим

$$E\{(X-7)\cdot(6-X)\} = E(13X-42-X^2) =$$

$$= 13\cdot E(X) - E(X^2) - 42 = 13\cdot E(X) - (D(X) + E^2(X)) - 42 =$$

$$= 13\cdot \frac{3}{2} - \left(\frac{9}{4} + \left(\frac{3}{2}\right)^2\right) - 42 = -27.$$

Other: $E\{(X-7)\cdot(6-X)\}=-27$.

Пример 49. Случайная величина X распределена по показательному закону. Найдите вероятность P(16 < X < 32), если $E(X) = \frac{8}{\ln 2}$.

Решение. Из условия, что $E(X) = \frac{8}{\ln 2}$, находим $\lambda = \frac{\ln 2}{8}$. Если X распределена по показательному закону с параметром λ , то

$$P(a < X < b) = e^{-\lambda \cdot a} - e^{-\lambda \cdot b}$$
.

Поэтому искомая вероятность равна

$$P(16 < X < 32) = e^{-16 \cdot \frac{\ln 2}{8}} - e^{-32 \cdot \frac{\ln 2}{8}} = \frac{1}{4} - \frac{1}{16} = \frac{3}{16}.$$

Ответ: $P(16 < X < 32) = \frac{3}{16}$.

Пример 50. Случайные величины X и Y независимые и распределены по показательному закону, причём E(X) = 1, E(Y) = 5. Найдите $Cov(X \cdot Y, X - Y)$.

Решение. Используя свойства ковариации математического ожидания для независимых случайных величин X и

Y, находим

$$\begin{aligned} & \text{Cov}(X \cdot Y, X - Y) = E(XY \cdot (X - Y)) - E(X \cdot Y) \cdot E(X - Y) = \\ & = E(X^2) \cdot E(Y) - E(X) \cdot E(Y^2) - E(X) \cdot E(Y) \cdot (E(X) - E(Y)) = \\ & = E(Y) \cdot \left(E(X^2) - E^2(X) \right) - E(X) \cdot \left(E(Y^2) - E^2(Y) \right) = \\ & = E(Y) \cdot D(X) - E(X) \cdot D(Y) = 5 \cdot 1^2 - 1 \cdot 5^2 = -20. \end{aligned}$$

Other: $Cov(X \cdot Y, X - Y) = -20$.

§ 13. Закон распределения функции от случайной величины

Пусть X — произвольная случайная величина, Y — случайная величина вида $Y = \varphi(X)$; $F_X(x)$ и $F_Y(x)$ — их функции распределения. Можно доказать, что $F_Y(x)$ однозначно определяется функциями $\varphi(x)$ и $F_X(x)$. Если, например, $\varphi(x)$ — возрастающая функция с обратной функцией $\psi(x)$, то

$$F_Y(x) = P(Y < x) = P(X < \psi(x)) = F_X(\psi(x)).$$

Предположим, что $F_Y(x)$ дифференцируема всюду, за исключением, быть может, конечного числа точек. Тогда случайная величина Y является абсолютно непрерывной, а плотностью распределения Y в этом случае является любая неотрицательная функция, совпадающая с $F_Y'(x)$ везде, где определена $F_V'(x)$.

Пример 51. Распределение случайной величины X задано плотностью вероятности f(x). Найдите плотность вероятности g(x) случайной величины Y = 5 - 9X.

Решение. Пусть F(x) — функция распределения случайной величины X, F(x) = P(X < x) и $f(x) = \frac{d}{dx}F(x)$. Обозначим через G(x) функцию распределения случайной величины

Y, а через $g(x) = \frac{d}{dx}G(x)$ — её плотность вероятности. Выразим G(x) через F(x):

$$G(x) = P(Y < x) = P(5 - 9X < x) = P(X > \frac{5-x}{9}) = 1 - P(X \le \frac{5-x}{9}) = 1 - F(\frac{5-x}{9}).$$

Дифференцируя полученное равенство, находим плотность вероятности g(x) случайной величины Y = 5 - 9X:

$$g(x) = \frac{d}{dx}G(x) = \frac{d}{dx}\left(1 - F\left(\frac{5-x}{9}\right)\right) =$$
$$= -F'\left(\frac{5-x}{9}\right) \cdot \left(\frac{5-x}{9}\right)' = \frac{1}{9} \cdot f\left(\frac{5-x}{9}\right).$$

Otbet: $g(x) = \frac{1}{9} \cdot f(\frac{5-x}{9})$.

Пример 52. Случайная величина X имеет равномерное распределение на отрезке [0,1]. Найдите функцию распределения G(x) случайной величины $Y=-\frac{1}{7}\ln X$.

Решение. Функция распределения F(x) случайной величины X, равномерно распределенной на отрезке [0,1], имеет вид

$$F(x) = \begin{cases} 0, & \text{если} \quad x \le 0, \\ x, & \text{если} \quad 0 < x \le 1, \\ 1, & \text{если} \quad x > 1. \end{cases}$$

Выразим функцию распределения G(x) случайной величины $Y = -\frac{1}{7} \ln X$ через F(x).

$$G(x) = P(Y < x) = P\left(-\frac{1}{7}\ln X < x\right) = P(\ln X > -7x) =$$

= $P(X > e^{-7x}) = 1 - P(X \le e^{-7x}) = 1 - F(e^{-7x}).$

Используя явный вид функции распределения F(x) для различных значений x, находим из предыдущего равенства окончательное выражение для G(x)

$$G(x) = 1 - F(e^{-7x}) = \begin{cases} 0, & x \le 0, \\ 1 - e^{-7x}, & x > 0. \end{cases}$$

Ответ:
$$G(x) = \begin{cases} 0, & x \le 0, \\ 1 - e^{-7x}, & x > 0. \end{cases}$$

Пример 53. Случайная величина X имеет плотность вероятности f(x). Найдите плотность вероятности g(x) случайной величины $Y = X^3$.

Решение. Используя обозначения примера 18, выразим функцию распределения G(x) случайной величины $Y = X^3$ через F(x)

$$G(x) = P(Y < x) = P(X^3 < x) = P(X < \sqrt[3]{x}) = F(\sqrt[3]{x}).$$

Дифференцируя полученное равенство, находим для $x \neq 0$ плотность вероятности g(x) случайной величины $Y = X^3$:

$$g(x) = \frac{d}{dx}G(x) = \frac{d}{dx}F\left(\sqrt[3]{x}\right) = F'\left(\sqrt[3]{x}\right) \cdot \left(\sqrt[3]{x}\right)' =$$
$$= \frac{1}{3 \cdot \sqrt[3]{x^2}} \cdot f\left(\sqrt[3]{x}\right).$$

Ответ: $g(x) = \frac{1}{3 \cdot \sqrt[3]{x^2}} \cdot f(\sqrt[3]{x})$.

Пример 54. Случайная величина X имеет функцию распределения $F(x) = \left\{ \begin{array}{ll} 1 - e^{-9x}, \ ecлu \ x \geqslant 0, \\ 0, \ ecлu \ x < 0. \end{array} \right.$ Найдите плотность вероятности g(x) случайной величины $Y = X^2$.

Решение. Выразим функцию распределения G(x) случайной величины $Y = X^2$ через функцию распределения F(x) случайной величины X.

$$G(x) = P(Y < x) = P\left(X^2 < x\right) = \begin{cases} 0, \text{ если } x \leqslant 0, \\ P\left(|X| < \sqrt{x}\right), \text{ если } x > 0, \end{cases} =$$

$$= \begin{cases} 0, \text{ если } x \leqslant 0, \\ P\left(-\sqrt{x} < X < \sqrt{x}\right), \text{ если } x > 0, \end{cases} =$$

$$= \begin{cases} 0, \text{ если } x \leqslant 0, \\ F\left(\sqrt{x}\right) - F\left(-\sqrt{x}\right), \text{ если } x > 0 \end{cases} =$$

$$= \begin{cases} 0, \text{ если } x \leqslant 0, \\ \left(1 - e^{-9\sqrt{x}}\right) - 0, \text{ если } x > 0. \end{cases}$$

Дифференцируя полученное равенство, находим плотность вероятности g(x) случайной величины $Y = X^2$.

$$g(x) = \frac{d}{dx}G(x) = \begin{cases} 0, x \le 0, \\ \frac{9}{2} \cdot \frac{e^{-9\sqrt{x}}}{\sqrt{x}}, x > 0. \end{cases}$$

Ответ:
$$g(x) = \begin{cases} 0, x \leq 0, \\ \frac{9}{2} \cdot \frac{e^{-9\sqrt{x}}}{\sqrt{x}}, x > 0. \end{cases}$$

§ 14. Нормальное и логнормальное законы распределения случайной величины

Определение. Непрерывная случайная величина X имеет **нормальный закон распределения** или **закон Гаусса** с параметрами μ и σ^2 , $X \sim N\left(\mu,\sigma^2\right)$, если её плотность вероятностей имеет вид:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < +\infty.$$

Параметры μ и σ^2 имеют смысл математического ожидания и дисперсии случайной величины X, т.е. $EX=\mu$, $DX=\sigma^2$. Функция распределения F(x)=P(X< x) и вероятность P(X>x) выражаются через функцию Лапласа $\Phi(x)$ следующим образом

$$F(x) = P(X < x) = \frac{1}{2} + \Phi\left(\frac{x - \mu}{\sigma}\right),$$

$$P(X > x) = \frac{1}{2} - \Phi\left(\frac{x - \mu}{\sigma}\right).$$

Отметим следующий факт, что если X_1,\ldots,X_n — независимые случайные величины и $X_i \sim N(\mu_i,\sigma_i^2), i=1,\ldots,n$, то $\sum_{i=1}^n c_i X_i \sim N\left(\sum_{i=1}^n c_i \mu_i,\sum_{i=1}^n c_i^2 \sigma_i^2\right)$.

Определение. Случайная величина Y распределена погарифмически нормально или погнормально c параметрами μ и σ^2 , $Y \sim LN(\mu, \sigma^2)$, если $\ln Y \sim N(\mu, \sigma^2)$.

Из определения следует, что если $Y \sim LN(\mu,\sigma^2)$, то $Y = e^X$, где $X \sim N\left(\mu,\sigma^2\right)$.

Пример 55. Для нормальной случайной величины X с математическим ожиданием E(X) = 19 и дисперсией D(X) = 25 найдите вероятность P(X > 17,5).

Решение. По условию $X \sim N(19; 5^2)$. Следовательно, искомая вероятность равна

$$P(X > 17,5) = \frac{1}{2} - \Phi\left(\frac{17,5-19}{5}\right) = \frac{1}{2} - \Phi(-0,3) =$$

= 0,5+\Phi(0,3) \approx 0,5+0,1179 = 0,6179.

Ответ: $P(X > 17,5) \approx 0,6179$.

Пример 56. Для независимых нормальных случайных величин X, Y известны их математические ожидания и дисперсии E(X) = 13, E(Y) = 15, T, D(X) = 6, D(Y) = 3. Найдите вероятность P(X < Y + 3).

Решение. Для независимых нормальных случайных величин разность Z = X - Y, как и сумма, также является нормальной случайной величиной, причём

$$E(Z) = E(X - Y) = E(X) - E(Y) = 13 - 15,7 = -2,7;$$

 $D(Z) = D(X - Y) = D(X) + D(Y) = 6 + 3 = 9.$

Поэтому искомая вероятность равна

$$P(X < Y + 3) = P(X - Y < 3) = P(Z < 3) = F(3) =$$

= $\frac{1}{2} + \Phi\left(\frac{3 - (-2,7)}{3}\right) = \frac{1}{2} + \Phi(1,9) \approx 0,5 + 0,4713 = 0,9713.$

Other: P(X < Y + 3) = 0.9713.

Пример 57. Независимые нормальные случайные величины X_1, \ldots, X_{16} имеют одинаковые параметры $E(X_i) = 2$, $D(X_i) = \sigma^2$, $i = 1, \ldots, 16$. Для случайной величины $S = X_1 + \ldots + X_{16}$ найдите вероятность $P\left(|S - 32| < \frac{6}{5}\sigma\right)$.

Решение. Случайная величина $S = X_1 + \ldots + X_{16}$, как сумма независимых нормальных случайных величин, распределена по нормальному закону с математическим ожиданием $E(S) = 2 \cdot 16 = 32$ и дисперсией $D(S) = 16\sigma^2$. Тогда искомая вероятность равна

$$P(|S - 32| < \frac{6}{5}\sigma) = P(32 - \frac{6}{5}\sigma < S < 32 + \frac{6}{5}\sigma) =$$

$$= \Phi\left(\frac{32 + \frac{6}{5}\sigma - 32}{4\sigma}\right) - \Phi\left(\frac{32 - \frac{6}{5}\sigma - 32}{4\sigma}\right) = \Phi(0,3) - \Phi(-0,3) =$$

$$= 2 \cdot \Phi(0,3) \approx 2 \cdot 0,1179 = 0,2358.$$

Ответ: $P(|S-32| < \frac{6}{5}\sigma) = 0.2358$.

Пример 58. Для нормальной случайной величины X известно, что математическое ожидание E(X) = 54,9 и вероятность P(X < 57) = 0,7580. Найдите дисперсию D(X).

Решение. Из условия имеем

$$0,7580 = P(X < 57) = F(57) = \frac{1}{2} + \Phi\left(\frac{57 - 54,9}{\sigma}\right).$$

Таким образом, получаем уравнение

$$\Phi\left(\frac{2,1}{\sigma}\right) = 0,2580.$$

Откуда по таблице значений функции Лапласа определяем

$$\frac{2,1}{\sigma} = 0,7.$$

Следовательно, $\sigma = 3$, а дисперсия $D(X) = \sigma^2 = 9$. **Ответ:** D(X) = 9.

Пример 59. Случайные величины X и Y независимы и распределены по нормальному закону, D(X) = 4, E(Y) = -2. Найдите $Cov(X \cdot Y, X)$.

Peweнue. Используя свойства ковариации и математического ожидания для независимых случайных величин, находим

$$Cov(X \cdot Y, X) = E(X^{2} \cdot Y) - E(XY) \cdot E(X) =$$

$$= E(X^{2}) \cdot E(Y) - E^{2}(X) \cdot E(Y) = E(Y) \cdot D(X) = -2 \cdot 4 = -8.$$

Ответ: $Cov(X \cdot Y, X) = -8$.

Пример 60. Пусть S(n) обозначает цену акции к концу n-ой недели, $n \geqslant 1$. Предполагая, что отношения цен $\frac{S(n)}{S(n-1)}$, n > 1, являются независимыми случайными величинами, распределенными логнормально с параметрами $\mu = 0,00331$ и $\sigma = 0,0513$, найдите вероятность того, что цена акции в конце четвертой недели будет выше, чем в конце первой недели.

Решение. Случайные величины $\ln\left(\frac{S(n)}{S(n-1)}\right)$, n=2,3,4, независимые и распределены по нормальному закону с параметрами $\mu=0,00331$ и $\sigma^2=0,0513^2=0,00263$. Поэтому $X=\ln\left(\frac{S(4)}{S(3)}\right)+\ln\left(\frac{S(3)}{S(2)}\right)+\ln\left(\frac{S(2)}{S(1)}\right)$, как сумма независимых нормальных случайных величин, также является нормальной, причём $X\sim N\left(3\cdot 0,00331;3\cdot 0,0513^2\right)$. Следовательно

$$P\left(\frac{S(4)}{S(1)} > 1\right) = P\left(\frac{S(4)}{S(3)} \cdot \frac{S(3)}{S(2)} \cdot \frac{S(2)}{S(1)} > 1\right) =$$

$$= P\left(\ln\left(\frac{S(4)}{S(3)}\right) + \ln\left(\frac{S(3)}{S(2)}\right) + \ln\left(\frac{S(2)}{S(1)}\right) > 0\right) =$$

$$= P(X > 0) = \frac{1}{2} - \Phi\left(\frac{0 - 3 \cdot \mu}{\sqrt{3} \cdot \sigma}\right) = \frac{1}{2} + \Phi(0, 11) =$$

$$= 0.5 + 0.0438 \approx 0.544.$$

Ответ: 0,544.

В теории вероятностей центральными предельными теоремами называют теоремы, которые формулируются приблизительно следующим образом:

Распределение большого числа независимых случайных величин при весьма общих условиях близко к нормальному распределению.

Наиболее известной является так называемая ЦПТ для одинаково распределенных слагаемых:

Для бесконечной последовательности одинаково распределенных случайных величин $X_1, X_2, \ldots,$ для которых существует математическое ожидание $\mu = E(X_i)$ и дисперсия $\sigma^2 = D(X_i)$, функции распределения нормированных частичных сумм

$$S'_{n} = \frac{X_{1} + ... + X_{n} - n\mu}{\sqrt{n}\sigma}, \quad n = 1, 2, ...$$

стремятся при $n \to \infty$ к функции распределения нормального закона с параметрами 0 и 1:

$$\lim_{n\to\infty} F_{S_n'}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt.$$

Их этой теоремы следует, что для промежутка Δ любого вида предел вероятности попадания нормированной частичной суммы в Δ существует и

$$\lim_{n\to\infty} P(S_n'\in\Delta) = P(Z\in\Delta),$$

где $Z\sim N(0,1)$ — стандартная нормальная случайная величина. В частности, для промежутка $\Delta=(a,b)$ или $\Delta=[a,b]$ имеем

$$\lim_{n \to \infty} P(S'_n \in \Delta) = \Phi(b) - \Phi(a),$$

где $\Phi(x)$ – функция Лапласа.

Пример 61. Для независимых случайных величин $X_1, X_2, \ldots,$ принимающих с равной вероятностью значения 1, 4 и 7, найдите предел $\lim_{n\to\infty} P(X_1+\ldots+X_n<4n+\sqrt{n})$.

Решение. Сначала найдем математическое ожидание $E\left(X_{i}\right)$ и дисперсию $D\left(X_{i}\right)$: $E\left(X_{i}\right)$ = 4, $D\left(X_{i}\right)$ = 6. Тогда искомый предел равен

$$\lim_{n \to \infty} P(X_1 + \dots + X_n < 4n + \sqrt{n}) =$$

$$= \lim_{n \to \infty} P\left(\frac{X_1 + \dots + X_n - 4n}{\sqrt{n}\sqrt{6}} < \frac{1}{\sqrt{6}}\right) =$$

$$= \frac{1}{2} + \Phi\left(\frac{1}{\sqrt{6}}\right) = 0.5 + \Phi(0.40825) = 0,65845.$$

Ответ: 0,65845.

Пример 62. Для независимых, распределенных по геометрическому закону случайных величин X_1, X_2, \ldots , найдите предел $\lim_{n\to\infty} P(X_1 + \ldots + X_n > 6n + \sqrt{3n})$, если известно, что $E(X_i) = 6$.

Решение. Для случайной величины X_i , распределенной по геометрическому закону, дисперсия равна 30. Следовательно, искомый предел равен

$$\lim_{n \to \infty} P(X_1 + \dots + X_n > 6n + \sqrt{3n}) =$$

$$= \lim_{n \to \infty} P\left(\frac{X_1 + \dots + X_n - 6n}{\sqrt{n}\sqrt{30}} > \frac{1}{\sqrt{10}}\right) =$$

$$= \frac{1}{2} - \Phi\left(\frac{1}{\sqrt{10}}\right) = 0.5 - \Phi(0.31623) = 0,37591.$$

Ответ: 0,37591.

Пример 63. Для независимых случайных величин $X_1, X_2, ...$, равномерно распределенных на отрезке [3,12], найдите предел $\lim_{n\to\infty} P\left(X_1+...+X_n>\frac{15}{2}n+\sqrt{n}\right)$.

Решение. Для равномерно распределенной на отрезке [3, 12] случайной величины X_i математическое ожидание и дисперсия соответственно равны $\frac{15}{2}$ и $\frac{27}{4}$. Поэтому искомый предел равен

$$\lim_{n \to \infty} P\left(X_1 + \dots + X_n > \frac{15}{2}n + \sqrt{n}\right) =$$

$$= \lim_{n \to \infty} P\left(\frac{X_1 + \dots + X_n - \frac{15}{2}n}{\sqrt{n} \cdot \frac{3\sqrt{3}}{2}} > \frac{2}{3\sqrt{3}}\right) =$$

$$= \frac{1}{2} - \Phi\left(\frac{2}{3\sqrt{3}}\right) = 0.5 - \Phi(0.3849) = 0,35016.$$

Ответ: 0,35016.

§16. Закон распределения двумерной дискретной случайной величины

Закон распределения случайного вектора (X,Y) (двумерной случайной величины) называется также совместным распределением случайных величин X и Y. Закон распределения вектора (X,Y) однозначно определяет как законы распределения его компонент X и Y, так и распределение любой случайной величины $Z = \varphi(X,Y)$.

Для дискретных случайных величин X и Y с возможными значениями x_1, \ldots, x_m и y_1, \ldots, y_n их совместное распределение обычно записывается следующим образом:

	$Y = y_1$	$Y = y_2$		$Y = y_n$
$X = x_1$	p_{11}	p_{12}	:	p_{1n}
•••	•••	•••		•••
$X = x_m$	p_{m1}	p_{m2}		p_{mn}

Суммируя в этой таблице вероятности по строкам и столбцам, получаем распределения X и Y:

X	x_1	 x_m
P	$p_{1\bullet}$	 $p_{m\bullet}$

где
$$p_{i\bullet} = \sum_{i} p_{ij}, \ p_{\bullet j} = \sum_{i} p_{ij}.$$

Для вероятности возможного значения z случайной величины $Z = \varphi(X,Y)$ имеем

$$P(Z=z) = \sum_{\varphi(x_i, y_j)=z} p_{ij},$$

что позволяет достаточно эффективно находить распределение Z.

Математическое ожидание E(Z) можно найти двумя способами:

• непосредственно, по формуле

$$E(Z) = \sum_{i,j} \varphi(x_i, y_j) p_{ij},$$

• или, предварительно построив распределение

$$\begin{array}{c|ccccc} Z & z_1 & \dots & z_s \\ \hline P & p_1 & \dots & p_s \end{array},$$

по формуле

$$E(Z) = \sum_{k=1}^{s} z_k p_k.$$

Для Z = aX + bY оптимальным, как правило, является способ вычисления E(Z), основанный на тождестве

$$E(Z) = aE(X) + bE(Y).$$

Z = X + Y и E(Z), если известно распределение случайного дискретного вектора (X,Y)

	X = 3	X = 4	X = 5	
Y = -3	<u>1</u>	1/24	<u>1</u>	•
Y = -2	<u>5</u> 24	<u>1</u> 12	$\frac{1}{3}$	

Решение. Возможные значения случайной величины Z = X + Y есть 0, 1, 2, 3. Найдем соответствующие вероятности:

$$\begin{split} &P(Z=0) = P(X+Y=0) = P(X=3,Y=-3) = \frac{1}{6}, \\ &P(Z=1) = P(X+Y=1) = \\ &= P(X=3,Y=-2) + P(X=4,Y=-3) = \frac{5}{24} + \frac{1}{24} = \frac{1}{4}, \\ &P(Z=2) = P(X+Y=2) = \\ &= P(X=4,Y=-2) + P(X=5,Y=-3) = \frac{1}{12} + \frac{1}{6} = \frac{1}{4}, \\ &P(Z=3) = P(X+Y=3) = P(X=5,Y=-2) = \frac{1}{3}. \end{split}$$

Таким образом, закон распределения случайной величины

ожидание случайной величины Z равно

$$E(Z) = 0 \cdot \frac{1}{6} + 1 \cdot \frac{1}{4} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{3} = \frac{7}{4}.$$

Пример 65. Найдите распределение случайной величины

 $Z = \max(X,Y) u E(Z)$, если известно распределение дискретного случайного вектора (X,Y)

	X = -2	X = -1	X = 0
Y = -1	1 12	$\frac{1}{24}$	<u>5</u> 24
Y = 0	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{3}$

Решение. Возможными значениями случайной величины $Z = \max(X, Y)$ будут -1 и 0, при этом

$$\begin{split} &P(Z=-1) = P\left(\max(X,Y) = -1\right) = \\ &= P(X=-2,Y=-1) + P(X=-1,Y=-1) = \frac{1}{12} + \frac{1}{24} = \frac{1}{8}, \\ &P(Z=0) = P\left(\max(X,Y) = 0\right) = P(X=-2,Y=0) + \\ &+ P(X=-1,Y=0) + P(X=0,Y=-1) + P(X=0,Y=0) = \\ &= \frac{1}{6} + \frac{1}{6} + \frac{5}{24} + \frac{1}{3} \stackrel{\text{M.TM}}{=} 1 - P(Z=-1) = 1 - \frac{1}{8} = \frac{7}{8}. \end{split}$$

Таким образом, закон распределения случайной величи-

ское ожидание случайной величины Z равно

$$E(Z) = -1 \cdot \frac{1}{8} + 0 \cdot \frac{7}{8} = -\frac{1}{8}.$$

Ответ:

Z	-1	0		$E(Z) = -\frac{1}{2}$
P	1/8	$\frac{7}{8}$,	$L(Z) = -\frac{1}{8}$

Пример 66. Найдите распределение случайной величины

 $Z = \min(X, Y)$ и E(Z), если известно распределение дискретного случайного вектора (X, Y)

	X = -2	X = -1	X = 0
Y = -1	1/12	1/12	$\frac{5}{24}$
Y = 0	1/8	$\frac{1}{4}$	$\frac{1}{4}$

Решение. Возможными значениями случайной величины $Z = \min(X, Y)$ будут -2, -1 и 0. Кроме того,

$$P(Z = -2) = P(\min(X, Y) = -2) =$$

$$= P(X = -2, Y = -1) + P(X = -2, Y = 0) = \frac{1}{12} + \frac{1}{8} = \frac{5}{24},$$

$$P(Z = -1) = P(\min(X, Y) = -1) =$$

$$= P(X = -1, Y = -1) + P(X = -1, Y = 0) + P(Y = -1, X = 0) =$$

$$= \frac{1}{12} + \frac{1}{4} + \frac{5}{24} = \frac{13}{24},$$

$$P(Z = 0) = P(\min(X, Y) = 0) = P(X = 0, Y = 0) = \frac{1}{4}.$$

Таким образом, закон распределения случайной величины

ское ожидание случайной величины Z равно

$$E(Z) = -2 \cdot \frac{5}{24} - 1 \cdot \frac{13}{24} + 0 \cdot \frac{1}{4} = -\frac{23}{24}$$

Ответ:

Z	-2	-1	0		$E(\mathbf{Z}) = 23$
P	<u>5</u>	13 24	$\frac{1}{4}$,	$E(Z) = -\frac{23}{24}$

Пример 67. Найдите распределение случайной величины

 $Z = \min(6, X - Y)$ и E(Z), если известно распределение дискретного случайного вектора (X,Y)

	X = 3	X = 4	X = 5	
Y = -2	$\frac{1}{4}$	<u>1</u>	1 8	
Y = -1	1/8	$\frac{1}{4}$	1 12	

Решение. Возможными значениями случайной величины $Z = \min(6, X - Y)$ будут 4, 5 и 6. Найдем соответствующие

вероятности:

$$\begin{split} &P(Z=4) = P(\min(6,X-Y)=4) = P(X=3,Y=-1) = \frac{1}{8}, \\ &P(Z=5) = P(\min(6,X-Y)=5) = \\ &= P(X=3,Y=-2) + P(X=4,Y=-1) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}, \\ &P(Z=6) = P(\min(6,X-Y)=6) = \\ &= P(X=4,Y=-2) + P(X=5,Y=-2) + P(X=5,Y=-1) = \\ &= \frac{1}{6} + \frac{1}{8} + \frac{1}{12} \stackrel{\text{M.TM}}{=} 1 - P(Z=4) - P(Z=5) = \frac{3}{8}. \end{split}$$

Таким образом, закон распределения случайной величи-

ны $Z = \min(6, X - Y)$ имеет вид $\begin{vmatrix} Z & 4 & 5 & 6 \\ P & \frac{1}{8} & \frac{1}{2} & \frac{3}{8} \end{vmatrix}$. Математи-

ческое ожидание случайной величины Z равно

$$E(Z) = 4 \cdot \frac{1}{8} + 5 \cdot \frac{1}{2} + 6 \cdot \frac{3}{8} = \frac{21}{4}$$
.

Ответ:

Z	4	5	6		$E(Z) = \frac{21}{4}.$
P	1/8	$\frac{1}{2}$	3/8	,	$L(L) = \frac{1}{4}$.

Пример 68. Для случайного дискретного вектора (X,Y), распределенного по закону

	X = -1	X = 0	X = 1	
Y = -1	$\frac{1}{28}$	<u>3</u> 14	$\frac{1}{28}$,
Y = 0	$\frac{3}{14}$	13 28	$\frac{1}{28}$	

выясните, зависимы или нет события $A = \{X \cdot Y \neq 0\}$ и $B = \{X + Y = 0\}.$

Решение. Напомним, что события A и B называются **независимыми**, если $P(A \cdot B) = P(A) \cdot P(B)$. В противном случае, события A и B называются **зависимыми**. Найдем вероятности событий P(A), P(B) и $P(A \cdot B)$:

$$P(A) = P(X \cdot Y \neq 0) = P(X = -1, Y = -1) + P(X = 1, Y = -1) = \frac{1}{14},$$

$$P(B) = P(X + Y = 0) = P(X = 0, Y = 0) + P(X = 1, Y = -1) = \frac{1}{2},$$

$$P(A \cdot B) = P(X \cdot Y \neq 0, X + Y = 0) = P(X = 1, Y = -1) = \frac{1}{28}.$$

Имеем,

$$P(A \cdot B) = \frac{1}{28} = \frac{1}{14} \cdot \frac{1}{2} = P(A) \cdot P(B).$$

Следовательно, A и B — независимые события.

Ответ: независимые.

Пример 69. Распределение случайного вектора (X,Y) задается таблиией

	X = 0	X = 1
Y = 0	$-\frac{1}{3}+\frac{2}{3}\alpha$	$\frac{2}{3} - \frac{2}{3}\alpha$
Y = 1	$\frac{2}{3} - \frac{2}{3}\alpha$	$\frac{2}{3}\alpha$

Найдите значение параметра α при котором коэффициент корреляции между X и Y равен $-\frac{1}{4}$.

Решение. Найдем законы распределения компонент X и Y. Возможные значения X это 0 и 1, а вероятности

$$P(X = 0) = P(X = 0, Y = 0) + P(X = 0, Y = 1) =$$

$$= -\frac{1}{3} + \frac{2}{3}\alpha + \frac{2}{3} - \frac{2}{3}\alpha = \frac{1}{3},$$

$$P(X = 1) = 1 - P(X = 0) = 1 - \frac{1}{3} = \frac{2}{3}.$$

Возможные значения Y — также 0 и 1. Соответствующие вероятности

$$P(Y = 0) = P(Y = 0, X = 0) + P(Y = 0, X = 1) =$$

$$= -\frac{1}{3} + \frac{2}{3}\alpha + \frac{2}{3} - \frac{2}{3}\alpha = \frac{1}{3},$$

$$P(Y = 1) = 1 - P(Y = 0) = 1 - \frac{1}{3} = \frac{2}{3}.$$

Наконец, возможными значениями произведения $X \cdot Y$ будут 0 и 1, при этом

$$P(X \cdot Y = 1) = P(X = 1, Y = 1) = \frac{2}{3}\alpha,$$

 $P(X \cdot Y = 0) = 1 - P(X \cdot Y \neq 0) = 1 - P(X = 1, Y = 1) = 1 - \frac{2}{3}\alpha.$

В итоге, законы распределения X , Y и $X \cdot Y$ имеют вид

X, Y	0	1		$X \cdot Y$	0	1
P	$\frac{1}{3}$	<u>2</u> 3	,	Р	$1-\frac{2}{3}\alpha$	$\frac{2}{3}\alpha$

Найдем $\mathbf{Cov}(X,Y)$, вычислив предварительно E(X), E(Y) и $E(X\cdot Y)$,

$$E(X) = E(Y) = 0 \cdot \frac{1}{3} + 1 \cdot \frac{2}{3} = \frac{2}{3},$$

$$E(X \cdot Y) = 0 \cdot \left(1 - \frac{2}{3}\alpha\right) + 1 \cdot \frac{2}{3}\alpha = \frac{2}{3}\alpha.$$

Следовательно,

$$Cov(X,Y) = E(X \cdot Y) - E(X) \cdot E(Y) = \frac{2}{3}\alpha - \frac{2}{3} \cdot \frac{2}{3} = \frac{2}{3}\alpha - \frac{4}{9}$$

Далее,

$$D(X) = D(Y) = E(X^2) - E^2(X) = 0^2 \cdot \frac{1}{3} + 1^2 \cdot \frac{2}{3} - \left(\frac{2}{3}\right)^2 = \frac{2}{9}.$$

Поэтому, $\sigma(X) \cdot \sigma(Y) = \frac{2}{9}$. Таким образом, коэффициент корреляции X и Y равен

$$\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sigma(X) \cdot \sigma(Y)} = 3\alpha - 2$$
 по условию $-\frac{1}{4}$.

Отсюда, $\alpha = \frac{7}{12}$. Закон распределения в этом случае имеет вид

	X = 0	X = 1	
Y = 0	1 18	<u>5</u> 18	
Y = 1	<u>5</u> 18	<u>7</u> 18	

Ответ: $\alpha = \frac{7}{12}$.

§17. Условные распределения и условные числовые характеристики

Пусть (X,Y) — дискретный случайный вектор с законом распределения $f(x_k,y_l) = P(X=x_k,Y=y_l)$, где x_k и y_l —

возможные значения компонент X и Y, соответственно, $f_Y(y_l) = P(Y=y_l) = \sum_k f(x_k,y_l)$ — распределение случайной величины Y, $f_X(x_k) = P(X=x_k) = \sum_l f(x_k,y_l)$ — распределение случайной величины X.

Определение. Набор вероятностей

$$f_{X|Y}(x_k|y_l) = P(X = x_k|Y = y_l) = \frac{P(X = x_k, Y = y_l)}{P(Y = y_l)} = \frac{f(x_k, y_l)}{f_Y(y_l)}$$

для всех значений y_l , таких, что $f_Y(y_l) > 0$, определяет условное распределение дискретной случайной величины X при условии, что $Y = y_l$.

Можно показать, что для фиксированного y_l набор $\{f_{X|Y}(x_k|y_l)\}$ действительно определяет распределение вероятностей, т.е. $\sum_k f_{X|Y}(x_k|y_l) = 1$. Точно так же определяется условное распределение дискретной случайной величины Y при условии, что $X = x_k$.

Заметим, что если X и Y независимы, то $f_{X|Y}(x_k|y_l) = f_X(x_k)$, и условное распределение совпадает с распределением компоненты X .

Определение. Условным математическим ожиданием дискретной случайной величины X при условии, что $Y = y_l$, называется число

$$E(X|Y = y_l) = \sum_k x_k P(X = x_k | Y = y_l) = \sum_k x_k f_{X|Y}(x_k | y_l).$$

Меняя ролями X и Y, получим $E(Y|X=x_k) = \sum_l y_l f_{Y|X}(y_l|x_k)$.

Аналогичным образом определяется условная вероятность события $\{Y=y_l\}$ при условии, что $X\in B$,

$$P(Y = y_l | X \in B) = \frac{P(Y = y_l, X \in B)}{P(X \in B)},$$

а также условное математическое ожидание Y при условии, что $X \in \mathcal{B}$,

$$E(Y|X \in B) = \sum_{l} y_{l} \cdot \frac{P(Y=y_{l}, X \in B)}{P(X \in B)},$$

где

$$P(X \in B) = \sum_{x_k \in B} P(X = x_k),$$

 $P(Y = y_l, X \in B) = \sum_{x_k \in B} P(Y = y_l, X = x_k).$

Условные распределения удовлетворяют всем свойствам распределения вероятностей, поэтому и условные математические ожидания также удовлетворяют всем свойствам обычных математических ожиданий. Например, имеют место формулы

1.
$$E[\varphi(X)|Y=y] = \sum_{k} \varphi(x_k) f_{X|Y}(x_k|y).$$

2.
$$E\left[\sum_{k=1}^{n} X_k | Y = y\right] = \sum_{k=1}^{n} E[X_k | Y = y].$$

Определение. Условным математическим ожиданием случайной величины X относительно случайной величины Y называется случайная величина E(X|Y), которая принимает значение E(X|Y=y) при Y=y.

Условное математическое ожидание E(X|Y) обладает следующими свойствами:

- **1.** E(c|Y) = c, где c = const.
- **2.** E(aX + b|Y) = aE(X|Y) + b, где a и b постоянные.
- **3.** E(X + Y|Z) = E(X|Z) + E(Y|Z).
- **4.** Если X и Y независимые случайные величины, то E(X | Y) = E(X).
- **5.** $E\left[\varphi(Y)\cdot X|Y\right] = \varphi(Y)\cdot E(X|Y)$.

Понятие условного математического ожидания можно распространить на абсолютно непрерывные случайные величины, при этом сохраняются все перечисленные выше свойства.

Теорема (формула полного математического ожидания).

$$E(X) = E[E(X|Y)].$$

Если Y — дискретная случайная величина, то указанное выше соотношение означает, что выполняется равенство

$$E(X) = \sum_{l} E(X | Y = y_l) P(Y = y_l).$$

Доказательство. Пусть X и Y — дискретные случайные величины, тогда

$$\begin{split} E[E(X|Y)] &= \sum_{l} E(X|Y = y_{l}) P(Y = y_{l}) = \\ &= \sum_{l} \sum_{k} x_{k} P(X = x_{k}|Y = y_{l}) P(Y = y_{l}) = \\ &= \sum_{l} \sum_{k} x_{k} \frac{P(X = x_{k}, Y = y_{l})}{P(Y = y_{l})} \cdot P(Y = y_{l}) = \sum_{l} \sum_{k} x_{k} P(X = x_{k}, Y = y_{l}) = \\ &= \sum_{k} x_{k} \sum_{l} P(X = x_{k}, Y = y_{l}) = \sum_{k} x_{k} P(X = x_{k}) = E(X). \end{split}$$

Определение. Условной дисперсией случайной величины X относительно случайной величины Y называется случайная величина

$$D(X|Y) \equiv E[(X - E(X|Y))^{2}|Y],$$

которая принимает значение D(X|Y=y) при Y=y.

Значение D(X|Y=y) определяется формулой

$$D[X|Y = y] = E[(X - E(X|Y = y))^{2}|Y = y] =$$

$$= \sum_{k} [x_{k} - E(X|Y = y)]^{2} f_{X|Y}(x_{k}|y).$$

Свойства условной дисперсии:

- **1.** D(c|Y) = 0, где c = const.
- **2.** $D(aX + b|Y) = a^2D(X|Y)$, где a и b постоянные.
- **3.** $D(X|Y) = E(X^2|Y) (E(X|Y))^2$.
- **4.** если X и Y независимые случайные величины, то D(X|Y) = D(X).
- **5.** $D[\varphi(Y) \cdot X | Y] = \varphi^2(Y) \cdot D(X | Y)$.

Понятие условной дисперсии, как и понятие условного математического ожидания, можно распространить на абсолютно непрерывные случайные величины, при этом перечисленные свойства также сохраняются.

Теорема (формула полной дисперсии).

$$D(X) = E[D(X|Y)] + D[E(X|Y)].$$

Доказательство. Поскольку $D(X|Y) = E[X^2|Y] - (E[X|Y])^2$, имеем

$$E[D(X|Y)] = E[E(X^{2}|Y)] - E[(E(X|Y))^{2}] =$$

= $E(X^{2}) - E[(E(X|Y))^{2}].$

C другой стороны, так как E[E(X|Y)] = E(X), то

$$D[E(X|Y)] = E[(E(X|Y))^{2}] - (E(X))^{2}.$$

Складывая полученные выше равенства, приходим к формуле полной дисперсии. \Box

Определение. Условной ковариацией случайных величи X и Y относительно случайной величины Z называется случайная величина

$$Cov(X,Y|Z) = E\left[(X - E(X|Z)(Y - E(Y|Z)|Z)\right].$$

Упражнение. Покажите, что справедливы равенства:

- **1.** $Cov(X, Y|Z) = E(XY|Z) E(X|Z) \cdot E(Y|Z)$.
- **2.** Cov(X, E(Y|X)) = Cov(X, Y).
- **3.** Cov(X,Y) = E[Cov(X,Y|Z)] + Cov(E(X|Z), E(Y|Z)).

Последнее соотношение называется формулой полной ковариации.

Пример 70. Дискретный случайный вектор (X,Y) имеет распределение

	X = 0	X = 1	
Y = 0	<u>2</u> 5	1 10	
Y = 1	$\frac{1}{5}$	3 10	

Hайдите условное распределение случайной величины X при условии, что Y = 1.

Решение. Используя определение, находим

$$f_{X|Y}(0|1) = P(X = 0|Y = 1) = \frac{\frac{1}{5}}{\frac{1}{5} + \frac{3}{10}} = \frac{2}{5},$$

$$f_{X|Y}(1|1) = P(X = 1|Y = 1) = \frac{\frac{3}{10}}{\frac{1}{5} + \frac{3}{10}} = \frac{3}{5}.$$

Запишем условный закон распределения в виде таблицы

X	0	1	
P(X Y=1)	<u>2</u> <u>5</u>	<u>3</u> <u>5</u>	

Пример 71. Дискретный случайный вектор (X,Y) имеет распределение

	X = 0	X = 1
Y = 0	$\frac{2}{5}$	$\frac{1}{10}$
Y = 1	$\frac{1}{5}$	3 10

 $Ha\ddot{u}\partial ume\ E(X|Y=1).$

Решение. Условный закон распределения определяется таблицей

X	0	1	
$P(X \mid Y = 1)$	$\frac{2}{5}$	<u>3</u> <u>5</u>	,

из которой находим, что

$$E(X|Y=1) = 0 \cdot f_{X|Y}(0|1) + 1 \cdot f_{X|Y}(1|1) = 0 \cdot \frac{2}{5} + 1 \cdot \frac{3}{5} = \frac{3}{5}.$$

Other: $E(X|Y=1) = \frac{3}{5}$.

Пример 72. Дискретный случайный вектор (X,Y) имеет распределение

	X = 0	X = 1	X = 2
Y = 1	$\frac{1}{4}$	1 12	<u>1</u> 8
Y = 2	<u>5</u> 24	1 12	$\frac{1}{4}$

Hай ∂ ите условное математическое ожи ∂ ание $E(Y|X\geqslant 1)$.

Решение. Последовательно находим:

$$\begin{split} P(X \geqslant 1) &= P(X = 1) + P(X = 2) = P(X = 1, Y = 1) + P(X = 1, Y = 2) + \\ &+ P(X = 2, Y = 1) + P(X = 2, Y = 2) = \frac{1}{12} + \frac{1}{12} + \frac{1}{8} + \frac{1}{4} = \frac{13}{24}, \\ P(Y = 1, X \geqslant 1) &= P(Y = 1, X = 1) + P(Y = 1, X = 2) = \frac{1}{12} + \frac{1}{8} = \frac{5}{24}, \\ P(Y = 2, X \geqslant 1) &= P(Y = 2, X = 1) + P(Y = 2, X = 2) = \frac{1}{12} + \frac{1}{4} = \frac{1}{3}, \end{split}$$

$$P(Y = 1|X \ge 1) = \frac{P(Y=1,X \ge 1)}{P(X \ge 1)} = \frac{\frac{5}{24}}{\frac{13}{24}} = \frac{5}{13},$$

$$P(Y = 2|X \ge 1) = \frac{P(Y=2,X \ge 1)}{P(X \ge 1)} = \frac{\frac{1}{3}}{\frac{13}{24}} = \frac{8}{13}.$$

Таким образом, условный закон распределения случайной величины Y при условии, что $X \geqslant 1$, имеет вид

Y	1	2	
$P(Y X \geqslant 1)$	<u>5</u> 13	8 13	ľ

Условное математическое ожидание $E(Y|X\geqslant 1)$ случайной величины Y при условии $X\geqslant 1$ получается простым вычислением

$$E(Y|X \ge 1) = 1 \cdot P(Y = 1|X \ge 1) + 2 \cdot P(Y = 2|X \ge 1) = 1 \cdot \frac{5}{13} + 2 \cdot \frac{8}{13} = \frac{21}{13}.$$

Ответ: $E(Y|X \ge 1) = \frac{21}{13}$.

Пример 73. Дискретный случайный вектор (X,Y) имеет распределение

	X = -2	X = -1	X = 0
Y = 1	$\frac{1}{6}$	1 12	$\frac{1}{6}$
Y = 2	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{4}$

Hай ∂ ите условное математическое ожи ∂ ание E(Y|X+Y=1).

Решение. Последовательно находим:

$$\begin{split} P(X+Y=1) &= P(X=0,Y=1) + (X=-1,Y=2) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}, \\ P(Y=1,X+Y=1) &= P(X=0,Y=1) = \frac{1}{6}, \\ P(Y=2,X+Y=1) &= P(X=-1,Y=2) = \frac{1}{6}, \\ P(Y=1|X+Y=1) &= \frac{P(Y=1,X+Y=1)}{P(X+Y=1)} = \frac{\frac{1}{6}}{\frac{1}{3}} = \frac{1}{2}, \\ P(Y=2|X+Y=1) &= \frac{P(Y=2,X+Y=1)}{P(X+Y=1)} = \frac{\frac{1}{6}}{\frac{1}{3}} = \frac{1}{2}. \end{split}$$

Следовательно, условный закон распределения случайной величины Y при условии, что X + Y = 1, имеет вид

Y	1	2	
P(Y X+Y=1)	1/2	1/2	

Поэтому искомое условное математическое ожидание E(Y|X+Y=1) равно

$$E(Y|X+Y=1) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{2} = 1,5.$$

Otbet: E(Y|X+Y=1)=1,5.

Пример 74. Дано P(Y=20)=0.2, P(Y=70)=0.8, E(X|Y=20)=1, E(X|Y=70)=4. Найдите E(X).

Решение. Используя формулу полного математического ожидания, находим

$$E(X) = E[E(X|Y)] =$$
= $E(X|Y = 20) \cdot P(Y = 20) + E(X|Y = 70) \cdot P(Y = 70) =$
= $1 \cdot 0, 2 + 4 \cdot 0, 8 = 3, 4.$

Ответ: E(X) = 3.4.

Пример 75. Дано P(X = 30) = 0.9, P(X = 60) = 0.1, E(Y|X = 30) = 3 и E(Y|X = 60) = 2. Найдите Cov(X,Y) и $D\{E(Y|X)\}$.

Решение. Последовательно находим:

$$E(X) = 30 \cdot 0,9 + 60 \cdot 0,1 = 33,$$

$$E(Y) = E[E(Y|X)] =$$

$$= E(Y|X = 30) \cdot P(X = 30) + E(Y|X = 60) \cdot P(X = 60) =$$

$$= 3 \cdot 0,9 + 2 \cdot 0,1 = 2,9,$$

$$E(XY) = E[E(XY|X)] = E[X \cdot E(Y|X)] =$$

$$= 30 \cdot E(Y|X = 30) \cdot P(X = 30) + 60 \cdot E(Y|X = 60) \cdot P(X = 60) =$$

$$= 30 \cdot 3 \cdot 0,9 + 60 \cdot 2 \cdot 0,1 = 93.$$

$$Cov(X,Y) = E(XY) - E(X) \cdot E(Y) = 93 - 33 \cdot 2, 9 = -2, 7.$$

Наконец, найдем дисперсию D[E(Y|X)] случайной величины E(Y|X)

$$D[E(Y|X)] = E[E^{2}(Y|X)] - (E[E(Y|X)])^{2} =$$

$$= E^{2}(Y|X = 30) \cdot P(X = 30) + E^{2}(Y|X = 60) \cdot P(X = 60) - E^{2}(Y) =$$

$$= 3^{2} \cdot 0.9 + 2^{2} \cdot 0.1 - 2.9^{2} = 0.09.$$

Otbet: Cov(X,Y) = -2.7, D[E(Y|X)] = 0.09.

Пример 76. Дискретный случайный вектор (X,Y) имеет распределение

	X = 0	X = 1	X = 2
Y = 2	1 12	1 12	<u>5</u> 24
Y = 3	<u>1</u> 8	$\frac{1}{4}$	$\frac{1}{4}$

Hайдите распределение условного математического ожидания $Z=E(X^2+Y^2|Y)$ и E(Z).

Решение. Используя свойства условного математического ожидания, запишем случайную величину Z в виде:

$$Z = E(X^2 + Y^2|Y) = E(X^2|Y) + E(Y^2|Y) = E(X^2|Y) + Y^2.$$

Найдем распределение случайной величины $E(X^2|Y)$. Сначала найдем её возможные значения $E(X^2|Y=y)$ при условии, что Y=y, где y=2 или 3:

$$\begin{split} E(X^2|Y=2) &= 0^2 \cdot f_{X|Y}(0|2) + 1^2 \cdot f_{X|Y}(1|2) + 2^2 \cdot f_{X|Y}(2|2) = \\ &= 0^2 \cdot \frac{P(X=0,Y=2)}{P(Y=2)} + 1^2 \cdot \frac{P(X=1,Y=2)}{P(Y=2)} + 2^2 \cdot \frac{P(X=2,Y=2)}{P(Y=2)} = \\ &= 0^2 \cdot \frac{\frac{1}{12}}{\frac{1}{12} + \frac{1}{12} + \frac{5}{24}} + 1^2 \cdot \frac{\frac{1}{12}}{\frac{3}{8}} + 2^2 \cdot \frac{\frac{5}{24}}{\frac{3}{8}} = \frac{22}{9}, \end{split}$$

$$\begin{split} E(X^2|Y=3) &= 0^2 \cdot f_{X|Y}(0|3) + 1^2 \cdot f_{X|Y}(1|3) + 2^2 \cdot f_{X|Y}(2|3) = \\ &= 0^2 \cdot \frac{P(X=0,Y=3)}{P(Y=3)} + 1^2 \cdot \frac{P(X=1,Y=3)}{P(Y=3)} + 2^2 \cdot \frac{P(X=2,Y=3)}{P(Y=3)} = \\ &= 0^2 \cdot \frac{\frac{1}{8}}{\frac{1}{8} + \frac{1}{4} + \frac{1}{4}} + 1^2 \cdot \frac{\frac{1}{4}}{\frac{5}{8}} + 2^2 \cdot \frac{\frac{1}{4}}{\frac{5}{8}} = 2. \end{split}$$

Таким образом, закон распределения случайной величины $Z = E(X^2|Y) + Y^2$ имеет вид

Следовательно, математическое ожидание случайной величины ${\cal Z}$ равно

$$E(Z) = \frac{58}{9} \cdot \frac{3}{8} + 11 \cdot \frac{5}{8} = \frac{223}{24} \approx 9,292.$$

Можно также воспользоваться формулой полного математического ожидания

$$\begin{split} E(Z) &= E[E(X^2 + Y^2 | Y)] = E(X^2 + Y^2) = E(X^2) + E(Y^2) = \\ &= 0^2 \cdot P(X = 0) + 1^2 \cdot P(X = 1) + 2^2 \cdot P(X = 2) + 2^2 \cdot P(Y = 2) + \\ &+ 3^2 \cdot P(Y = 3) = 1^2 \cdot \left(\frac{1}{12} + \frac{1}{4}\right) + 2^2 \cdot \left(\frac{5}{24} + \frac{1}{4}\right) + 2^2 \cdot \frac{3}{8} + 3^2 \cdot \frac{5}{8} = \frac{223}{24}. \end{split}$$

Пример 77. Дано: P(X = 50) = 0,1, P(X = 70) = 0,9, E(Y|X = 50) = 4, E(Y|X = 70) = 2, D(Y|X = 50) = 9 и D(Y|X = 70) = 5. Найдите E[D(Y|X)] и D(Y).

 ${\it Pewenue}$. Сначала найдем E[D(Y|X)]

$$E[D(Y|X)] = D(Y|X = 50) \cdot P(X = 50) + D(Y|X = 70) \cdot P(X = 70) =$$

= 9 \cdot 0, 1 + 5 \cdot 0, 9 = 5, 4.

Для вычисления D(Y) найдем по формуле полного математического ожидания E(Y) = E[E(Y|X)] и D[E(Y|X)]:

$$E(Y) = E[E(Y|X)] =$$

$$= E(Y|X = 50) \cdot P(X = 50) + E(Y|X = 70) \cdot P(X = 70) =$$

$$= 4 \cdot 0, 1 + 2 \cdot 0, 9 = 2, 2;$$

$$D[E(Y|X)] = E[E^{2}(Y|X)] - (E[E(Y|X)])^{2} =$$

$$= E^{2}(Y|X = 50) \cdot P(X = 50) + E^{2}(Y|X = 70) \cdot P(X = 70) - E^{2}(Y) =$$

$$= 4^{2} \cdot 0, 1 + 2^{2} \cdot 0, 9 - 2, 2^{2} = 0, 36.$$

Следовательно, по формуле полной дисперсии

$$D(Y) = E[D(Y|X)] + D[E(Y|X)] = 5,4+0,36 = 5,76.$$

Приведем также другое решение, не использующее формулы полной дисперсии,

$$E(Y^{2}) = E[E(Y^{2}|X)] =$$

$$= E(Y^{2}|X = 50) \cdot P(X = 50) + E(Y^{2}|X = 70) \cdot P(X = 70) =$$

$$= (D(Y|X = 50) + E^{2}(Y|X = 50)) \cdot P(X = 50) +$$

$$+ (D(Y|X = 70) + E^{2}(Y|X = 70)) \cdot P(X = 70) =$$

$$= (9 + 4^{2}) \cdot 0, 1 + (5 + 2^{2}) \cdot 0, 9 = 10, 6;$$

$$D(Y) = E(Y^{2}) - E^{2}(Y) = 10, 6 - 2, 2^{2} = 5, 76.$$

Other: E[D(Y|X)] = 5,4, D(Y) = 5,76.

Пример 78. Дано совместное распределение случайных величин X и Y

	Y = 2	Y = 4	Y = 9
X = 60	0,3	0,1	0
X = 90	0,1	0,2	0,3

 $Ha\ddot{u}\partial ume D[E(X|Y)] u E[D(X|Y)].$

Решение. Последовательно находим возможные значения случайной величины E(X|Y):

$$E(X|Y=2) = 60 \cdot f_{X|Y}(60|2) + 90 \cdot f_{X|Y}(90|2) =$$

$$= 60 \cdot \frac{P(X=60,Y=2)}{P(Y=2)} + 90 \cdot \frac{P(X=90,Y=2)}{P(Y=2)} =$$

$$= 60 \cdot \frac{0.3}{0.3+0.1} + 90 \cdot \frac{0.1}{0.3+0.1} = 67,5;$$

$$M(X|Y=4) = 60 \cdot f_{X|Y}(60|4) + 90 \cdot f_{X|Y}(90|4) =$$

$$= 60 \cdot \frac{P(X=60,Y=4)}{P(Y=4)} + 90 \cdot \frac{P(X=90,Y=4)}{P(Y=4)} =$$

$$= 60 \cdot \frac{0,1}{0,1+0,2} + 90 \cdot \frac{0,2}{0,1+0,2} = 80;$$

$$\begin{split} &M(X \mid Y = 9) = 60 \cdot f_{X \mid Y}(60 \mid 9) + 90 \cdot f_{X \mid Y}(90 \mid 9) = \\ &= 60 \cdot \frac{P(X = 60, Y = 9)}{P(Y = 9)} + 90 \cdot \frac{P(X = 90, Y = 9)}{P(Y = 9)} = \\ &= 60 \cdot \frac{0}{0 + 0, 3} + 90 \cdot \frac{0, 3}{0 + 0, 3} = 90. \end{split}$$

Таким образом, закон распределения случайной величины E(X | Y) имеет вид

E(X Y)	67,5	80	90
P	P(Y=2)=0,4	0,3	0,3

Дисперсия D[E(X|Y)] случайной величины E(X|Y) равна

$$D[E(X|Y)] = (67,5^2 \cdot 0,4 + 80^2 \cdot 0,3 + 90^2 \cdot 0,3) - (67,5 \cdot 0,4 + 80 \cdot 0,3 + 90 \cdot 0,3)^2 = 6172,5 - 78^2 = 88,5.$$

Далее, находим возможные значения случайной величины D(X|Y):

$$D(X|Y=2) = E(X^2|Y=2) - (E(X|Y=2))^2 =$$

$$= 60^2 \cdot \frac{3}{4} + 90^2 \cdot \frac{1}{4} - 67, 5^2 = 168, 75;$$

$$D(X|Y=4) = E(X^{2}|Y=4) - (E(X|Y=4))^{2} =$$

$$= 60^{2} \cdot \frac{1}{3} + 90^{2} \cdot \frac{2}{3} - 80^{2} = 200;$$

$$D(X|Y=9) = E(X^{2}|Y=9) - (E(X|Y=9))^{2} =$$

$$= 60^{2} \cdot 0 + 90^{2} \cdot 1 - 90^{2} = 0.$$

Следовательно, закон распределения случайной величины D(X|Y) имеет вид

D(X Y)	168,75	200	0	
P	P(Y=2)=0,4	0,3	0,3	۰

Математическое ожидание E[D(X|Y)] случайной величины D(X|Y) равно

$$E[D(X|Y)] = 168,75 \cdot 0,4 + 200 \cdot 0,3 + 0 \cdot 0,3 = 127,5.$$

Для проверки воспользуемся формулой полной дисперсии, предварительно вычислив дисперсию D(X),

$$D(X) = E(X^2) - E^2(X) =$$
= $60^2 \cdot 0.4 + 90^2 \cdot 0.6 - (60 \cdot 0.4 + 90 \cdot 0.6)^2 = 6300 - 78^2 = 216.$

С другой стороны, по формуле полной дисперсии имеем

$$D(X) = E[D(X|Y)] + D[E(X|Y)] = 127,5 + 88,5 = 216.$$

Other: D[E(X|Y)] = 88.5; E[D(X|Y)] = 127.5.

§18. Абсолютно непрерывные случайные векторы

Случайный вектор (X,Y) называется абсолютно непрерывным, если найдется неотрицательная функция $f_{X,Y}(x,y)$, называемая плотностью распределения, такая, что для любого множества $G \subset \mathbb{R}^2$, которое может служить областью интегрирования, вероятность попадания

точки (X,Y) в G находится по формуле

$$P\{(X,Y)\in G\}=\iint_G f_{X,Y}(x,y)dxdy.$$

Если (X,Y) — абсолютно непрерывный случайный вектор, то вероятность попадания точки (X,Y) в какую-либо линию (график непрерывной функции) равна 0.

Функция распределения $F_{X,Y}(x,y)$ абсолютно непрерывного случайного вектора (X,Y) является непрерывной и может быть представлена в виде несобственного интеграла

$$F_{X,Y}(x,y) = \iint_{s \le x, t \le y} f_{X,Y}(s,t) \, ds \, dt.$$

Плотность распределения обладает следующими свойствами:

- $\int\limits_{-\infty}^{\infty}\int\limits_{-\infty}^{\infty}f_{X,Y}(x,y)\,dx\,dy=1$ (свойство нормированности);
- $f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}}{\partial x \partial y}(x,y)$ в точке непрерывности $f_{X,Y}(x,y)$.

Компоненты X, Y абсолютно непрерывного случайного вектора (X,Y) также являются абсолютно непрерывными. Плотности распределения $f_X(x)$, $f_Y(y)$ случайных величин X и Y могут быть получены как интегралы от плотности их совместного распределения:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy, \quad f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dx.$$

Компоненты X, Y абсолютно непрерывного случайного вектора (X,Y) являются независимыми случайными величинами, тогда и только тогда, когда произведение их

плотностей совпадает с какой-либо плотностью совместного распределения

$$f_X(x)f_Y(y) = f_{X,Y}(x,y).$$

Математическое ожидание функции $Z = \varphi(X,Y)$ от компонент случайного вектора находится путем интегрирования произведения функции $\varphi(x,y)$ и плотности распределения:

$$E[\varphi(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi(x,y) f_{X,Y}(x,y) dx dy.$$

В частности, математическое ожидание XY находится по формуле

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{X,Y}(x,y) dx dy.$$

Случайный вектор (X,Y) называется равномерно распределенным в области $G \subset \mathbb{R}^2$, если для него существует плотность распределения вида

$$f_{X,Y}(x,y) = \begin{cases} 0, & (x,y) \notin G, \\ |G|^{-1}, & (x,y) \in G, \end{cases}$$

где |G| – площадь G.

Случайный вектор (X,Y) называется cocpedomovenhum на множестве $G \subset \mathbb{R}^2$, если $P\{(X,Y) \in G\} = 1$. Для такого вектора математическое ожидание функции от его компонент может быть представлено в виде интеграла

$$E[\varphi(X,Y)] = \iint_G \varphi(x,y) f_{X,Y}(x,y) dx dy.$$

Пример 79. Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} \frac{1}{2}x + Cy, ecnu \ 0 < x < 1, \ 0 < y < 2, \\ 0, s ocmaльных точках. \end{cases}$$

Hайдите константу C и P(X+Y>1).

Решение. Константу C найдем из условия нормировки плотности распределения

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1,$$

которое в данном случае принимает вид

$$\iint\limits_{\substack{0 < x < 1\\0 < y < 2}} \left(\frac{1}{2}x + Cy\right) dx dy = 1.$$

Вычисляя выражение слева, получаем

$$1 = \int_0^1 dx \left(\int_0^2 \left(\frac{1}{2} x + C y \right) dy \right) = \int_0^1 \left(\frac{1}{2} x y + C \frac{y^2}{2} \Big|_{y=0}^{y=2} \right) dx =$$

$$= \int_0^1 (x + 2C) dx = \frac{x^2}{2} + 2C x \Big|_0^1 = \frac{1}{2} + 2C.$$

Решая уравнение относительно C, находим $C = \frac{1}{4}$. Для вычисления искомой вероятности воспользуемся формулой

$$P\{(X,Y)\in G\}=\iint\limits_G f(x,y)\,dx\,dy,$$

с помощью которой получаем

$$\begin{split} P(X+Y>1) &= 1 - P(X+Y\leqslant 1) = 1 - \iint\limits_{\substack{0 < x < 1, \\ 0 < y < 2, \\ x+y \leqslant 1.}} \left(\frac{1}{2}x + \frac{1}{4}y\right) \, dx \, dy = \\ &= 1 - \int_0^1 dx \left(\int_0^{1-x} \left(\frac{1}{2}x + \frac{1}{4}y\right) \, dy\right) = 1 - \int_0^1 \left(\frac{1}{2}xy + \frac{y^2}{8}\Big|_{y=0}^{y=1-x}\right) \, dx = \\ &= 1 - \int_0^1 \left(\frac{1}{2}x(1-x) + \frac{(1-x)^2}{8}\right) \, dx = 1 - \int_0^1 \left(\frac{1}{4}x - \frac{3}{8}x^2 + \frac{1}{8}\right) \, dx = \\ &= 1 - \left(\frac{x^2}{8} - \frac{x^3}{8} + \frac{x}{8}\Big|_0^1\right) = 1 - \frac{1}{8} = \frac{7}{8}. \end{split}$$

Ответ: $C = \frac{1}{4}$, $P(X + Y > 1) = \frac{7}{8}$.

Пример 80. Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} 24xy, ecnu \, x \ge 0, \, y \ge 0, \, x+y \le 1, \\ 0, eocmaльных moчкax. \end{cases}$$

Hай ∂ ите E(X).

Решение. Компонента X абсолютно непрерывного случайного вектора (X,Y) также является абсолютно непрерывной случайной величиной. Найдем плотность распределения $f_X(x)$, используя формулу

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy.$$

Для $0 \leqslant x \leqslant 1$ имеем

$$f_X(x) = \int_0^{1-x} 24xy \, dy = 12xy^2 \Big|_{y=0}^{y=1-x} = 12x(1-x)^2.$$

Таким образом, плотность распределения $f_X(x)$ компоненты X записывается в виде

$$f_X(x) = \begin{cases} 12x(1-x)^2, \text{если } 0 \leqslant x \leqslant 1, \\ 0, \text{в остальных точках.} \end{cases}$$

Математическое ожидание E(X) определяется стандартным образом

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx = 12 \int_0^1 x^2 (1 - x)^2 dx =$$

$$= 12 \int_0^1 \left(x^2 - 2x^3 + x^4 \right) dx = 12 \left(\frac{x^3}{3} - \frac{x^4}{2} + \frac{x^5}{5} \Big|_0^1 \right) = \frac{2}{5}.$$

Ответ: $E(X) = \frac{2}{5}$.

Пример 81. Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} 2e^{-x-2y}, ecnu \ 0 \leqslant x < +\infty, \ 0 \leqslant y < +\infty, \\ 0, \ \textit{в остальных точках}. \end{cases}$$

Hай ∂ ите вероятность P(X < 2).

 $\boldsymbol{Peшeнue}.$ Сначала найдем плотность распределения $f_X(x)$ компоненты X

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, dy = 2 \int_{0}^{\infty} e^{-x - 2y} \, dy =$$
$$= 2e^{-x} \left(-\frac{1}{2} e^{-2y} \Big|_{0}^{\infty} \right) = e^{-x}, \text{ если } x \geqslant 0.$$

Следовательно, плотность распределения $f_X(x)$ имеет вид

$$f_X(x) = \begin{cases} e^{-x}, \text{ если } 0 \leqslant x < +\infty, \\ 0, \text{ если } x < 0. \end{cases}$$

$$P(X < 2) = F_X(2) = \int_{-\infty}^2 f_X(x) dx =$$

$$= \int_0^2 e^{-x} dx = -e^{-x} \Big|_0^2 = 1 - e^{-2} \approx 0,865.$$

Ответ: $P(X < 2) \approx 0.865$.

Пример 82. Случайный вектор (X,Y) равномерно распределен в треугольнике $x \ge 0$, $y \ge 0$, $8x + 9y \le 72$. Найдите значение функции распределения $F_X(6)$ и E(X).

Решение.

Используя свойства равномерного распределения, находим

$$F_X(6) = P(X < 6) = \frac{S_{OADC}}{S_{OAB}} = 1 - P(X \ge 6) = 1 - \frac{S_{CDB}}{S_{OAB}} = 1 - \frac{\frac{1}{2} \cdot 3 \cdot \frac{8}{3}}{\frac{1}{2} \cdot 9 \cdot 8} = 1 - \frac{1}{9} = \frac{8}{9},$$

где S_{OADC} , S_{OAB} и S_{CDB} обозначают площади трапеции OADC и треугольников OAB и CDB соответственно.

Плотность распределения f(x,y) случайного вектора (X,Y) задается в виде

$$f(x,y) = \begin{cases} \frac{1}{S_{OAB}} = \frac{1}{\frac{1}{2} \cdot 8 \cdot 9} = \frac{1}{36}, \text{ если } x \geqslant 0, y \geqslant 0, 8x + 9y \leqslant 72, \\ 0, \text{ в остальных точках.} \end{cases}$$

Далее, для $0 \leqslant x \leqslant 9$ находим плотность распределения компоненты X

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, dy = \frac{1}{36} \int_{0}^{8 - \frac{8}{9}x} 1 \, dy = \frac{2}{9} \left(1 - \frac{x}{9} \right).$$

Следовательно,

$$f_X(x) = \begin{cases} \frac{2}{9} \left(1 - \frac{x}{9} \right), \text{ если } 0 \leqslant x \leqslant 9, \\ 0, \text{ в противном случае.} \end{cases}$$

Затем находим математическое ожидание

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx = \frac{2}{9} \int_0^9 x \left(1 - \frac{x}{9} \right) dx = \frac{2}{9} \left(\frac{x^2}{2} - \frac{x^3}{27} \Big|_0^9 \right) = 3.$$

Ответ: $F_X(6) = \frac{8}{9}, E(X) = 3.$

Пример 83. Случайный вектор (X,Y) равномерно распределен в треугольнике $x \ge 0$, $y \ge 0$, $33x + y \le 33$. Найдите математическое ожидание $E(X^{10}Y)$.

Решение. Поскольку случайный вектор (X,Y) равномерно распределен в треугольнике G: $x \ge 0$, $y \ge 0$, $33x + y \le 33$, плотность распределения f(x,y) случайного вектора (X,Y) задается в виде:

$$f(x,y) = \begin{cases} \frac{1}{S_G} = \frac{1}{\frac{1}{2} \cdot 1 \cdot 33} = \frac{2}{33}, \text{ если}(x,y) \in G : x \geqslant 0, y \geqslant 0, 33x + y \leqslant 33, \\ 0, \text{ в остальных точках}, \end{cases}$$

где S_G — площадь треугольника G.

Математическое ожидание $E(X^{\,10}Y)$ находится в результате вычисления интеграла

$$E(X^{10}Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{10}y \cdot f(x,y) dx dy =$$

$$= \frac{2}{33} \int_{0}^{1} dx \left(\int_{0}^{33-33x} x^{10}y dy \right) = \frac{2}{33} \int_{0}^{1} \left(x^{10} \frac{y^{2}}{2} \Big|_{y=0}^{y=33(1-x)} \right) dx =$$

$$= 33 \int_{0}^{1} x^{10} (1-x)^{2} dx = 33 \int_{0}^{1} (x^{10} - 2x^{11} + x^{12}) dx =$$

$$= 33 \left(\frac{x^{11}}{11} - \frac{x^{12}}{6} + \frac{x^{13}}{13} \Big|_{0}^{1} \right) = 33 \left(\frac{1}{11} - \frac{1}{6} + \frac{1}{13} \right) = \frac{1}{26}.$$

Otbet: $E(X^{10}Y) = \frac{1}{26}$.

§19. Двумерные нормальные векторы

Определение. Случайный вектор (X,Y) имеет невырожденное двумерное нормальное распределение с параметрами $m_1, m_2, \sigma_1^2, \sigma_2^2, \rho$, $(X,Y) \sim N(m_1, m_2, \sigma_1^2, \sigma_2^2, \rho)$, если его функция плотности распределения имеет вид

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{q(x,y)}{2}},$$

где

$$q(x,y) = \frac{1}{(1-\rho^2)} \left(\frac{(x-m_1)^2}{\sigma_1^2} - \frac{2\rho(x-m_1)(y-m_2)}{\sigma_1\sigma_2} + \frac{(y-m_2)^2}{\sigma_2^2} \right)$$

 $u \sigma_1 > 0, \sigma_2 > 0, |\rho| < 1.$

Используя ковариационную матрицу C вектора (X,Y), функцию q(x,y) можно представить в матричном виде

$$q(x,y) = \begin{pmatrix} x - m_1 \\ y - m_2 \end{pmatrix}^T \cdot C^{-1} \cdot \begin{pmatrix} x - m_1 \\ y - m_2 \end{pmatrix},$$

где C^{-1} — обратная матрица для

$$C = \left(\begin{array}{cc} \sigma_X^2 & \rho \, \sigma_X \, \sigma_Y \\ \rho \, \sigma_X \, \sigma_Y & \sigma_Y^2 \end{array} \right).$$

Теорема. $Ecлu(X,Y) \sim N(m_1,m_2,\sigma_1^2,\sigma_2^2,\rho)$, $moX \sim N(m_1,\sigma_1^2)$, $Y \sim N(m_2,\sigma_2^2)$, $Cov(X,Y) = \rho \sigma_1 \sigma_2$.

Пример 84. Пусть $m_1 = m_2 = 0$, $\sigma_1 = \sigma_2 = 1$, $\rho = 0$, тогда случайный вектор (X,Y) имеет функцию плотности распределения

$$f_{X,Y}(x,y) = \frac{1}{2\pi}e^{-\frac{x^2+y^2}{2}},$$

которая определяет стандартное нормальное распределение на плоскости, $m.e.~(X,Y) \sim N(0,0,1,1,0)$.

Пример 85. Случайный вектор (X,Y) распределен по нормальному закону с плотностью

$$f_{X,Y}(x,y) = \frac{9}{2\pi}e^{-\frac{9}{2}x^2+3x-5-12xy+13y-\frac{25}{2}y^2}$$
.

Найдите математическое ожидание E(X), дисперсию D(X) и коэффициент корреляции $\rho(X,Y)$.

Решение. Выражение для q(x, y) имеет вид

$$q(x, y) = 9x^2 + 24xy + 25y^2 - 6x - 26y + 10.$$

Найдем ковариационную матрицу C

$$C = \begin{pmatrix} 9 & 12 \\ 12 & 25 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{25}{81} & -\frac{4}{27} \\ -\frac{4}{27} & \frac{1}{9} \end{pmatrix}.$$

Следовательно, $D(X)=\frac{25}{81}$, $D(Y)=\frac{1}{9}$, $\rho\sigma_1\sigma_2=-\frac{4}{27}$. Поэтому $\rho=-\frac{4}{5}$. Наибольшее значение $f_{X,Y}(x,y)$ достигается в точ-

$$(E(X),E(Y)). \quad \text{Составим} \quad \text{систему} \quad \left\{ \begin{array}{l} \frac{\partial}{\partial x} \, q(x,y) = 0, \\ \frac{\partial}{\partial y} \, q(x,y) = 0 \end{array} \right. \quad \text{или} \\ \left\{ \begin{array}{l} 9x + 12y = 3, \\ 12x + 25y = 13. \end{array} \right. \quad \text{Решение} \quad \text{этой} \quad \text{системы} \quad \text{имеет} \quad \text{вид} \\ x_{\text{max}} = -1, \, y_{\text{max}} = 1. \, \text{Следовательно,} \, E(X) = -1, \, E(Y) = 1. \\ \text{Ответ:} \, E(X) = -1, \, D(X) = \frac{25}{81}, \, \rho = -\frac{4}{5}. \end{array} \right.$$

Теорема. Для нормального случайного вектора (X,Y) понятия независимости и некоррелированности компонент X и Y эквивалентны.

Доказательство. Если X и Y независимы, то Cov(X,Y)=0, т.е. X и Y — некоррелированные случайные величины. Это общий факт. Пусть теперь X и Y — некоррелированы, т.е. $\rho(X,Y)=0$, тогда

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2}e^{-\frac{1}{2}\left(\frac{(x-m_1)^2}{\sigma_1^2} + \frac{(y-m_2)^2}{\sigma_2^2}\right)} =$$

$$= \frac{1}{\sigma_1\sqrt{2\pi}}e^{-\frac{(x-m_1)^2}{2\sigma_1^2}} \cdot \frac{1}{\sigma_2\sqrt{2\pi}}e^{-\frac{(x-m_2)^2}{2\sigma_2^2}} = f_X(x) \cdot f_Y(y).$$

Следовательно, X и Y — независимые случайные величины. \square

Пример 86. Пусть $X \sim N(1,4)$, $Y \sim N(2,16)$ — независимые случайные величины, тогда случайный вектор (X,Y) распределен по нормальному закону с плотностью распределения

$$f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y) =$$

$$= \frac{1}{2\sqrt{2\pi}} e^{-\frac{(x-1)^2}{8}} \cdot \frac{1}{4\sqrt{2\pi}} e^{-\frac{(y-2)^2}{32}} = \frac{1}{16\pi} e^{-\frac{4(x-1)^2 + (y-2)^2}{32}}.$$

Теорема. Если случайный вектор (X,Y) имеет нормальное распределение, $(X,Y) \sim N(m_1,m_2,\sigma_1^2,\sigma_2^2,\rho)$, то

$$(X|Y = y) \sim N\left(m_1 + \rho \frac{\sigma_1}{\sigma_2}(y - m_2); \sigma_1^2(1 - \rho^2)\right),$$

 $(Y|X = x) \sim N\left(m_2 + \rho \frac{\sigma_2}{\sigma_1}(x - m_1); \sigma_2^2(1 - \rho^2)\right),$

т.е. условная плотность одной из компонент при фиксированном значении другой является нормальной, причём справедливы формулы

$$\begin{split} f_{X|Y}(x|y) &= \frac{1}{\sigma_1 \sqrt{2\pi(1-\rho^2)}} e^{-\frac{1}{2\sigma_1^2(1-\rho^2)} \left(x - m_1 - \rho \frac{\sigma_1}{\sigma_2}(y - m_2)\right)^2}, \\ f_{Y|X}(y|x) &= \frac{1}{\sigma_2 \sqrt{2\pi(1-\rho^2)}} e^{-\frac{1}{2\sigma_2^2(1-\rho^2)} \left(y - m_2 - \rho \frac{\sigma_2}{\sigma_1}(x - m_1)\right)^2}, \\ E(X|Y=y) &= m_1 + \rho \frac{\sigma_1}{\sigma_2}(y - m_2), \\ D(X|Y=y) &= \sigma_1^2(1-\rho^2), \\ E(Y|X=x) &= m_2 + \rho \frac{\sigma_2}{\sigma_1}(x - m_1), \\ D(Y|X=x) &= \sigma_2^2(1-\rho^2). \end{split}$$

Доказательство. Поскольку $(X,Y) \sim N(m_1,m_2,\sigma_1^2,\sigma_2^2,\rho)$, совместная плотность распределения имеет вид

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}\left(\frac{(x-m_1)^2}{\sigma_1^2} - \frac{2\rho(x-m_1)(y-m_2)}{\sigma_1\sigma_2} + \frac{(y-m_2)^2}{\sigma_2^2}\right)},$$

а плотность компоненты У

$$f_Y(y) = \frac{1}{\sigma_2 \sqrt{2\pi}} e^{-\frac{(y-m_2)^2}{2\sigma_2^2}}.$$

Следовательно,

$$\begin{split} &f_{X|Y}(x|y) = \frac{f(x,y)}{f_{Y}(y)} = \\ &= \frac{1}{\sigma_{1}\sqrt{2\pi(1-\rho^{2})}}e^{-\frac{1}{2(1-\rho^{2})}\left(\frac{(x-m_{1})^{2}}{\sigma_{1}^{2}} - \frac{2\rho(x-m_{1})(y-m_{2})}{\sigma_{1}\sigma_{2}} + (1-(1-\rho^{2}))\frac{(y-m_{2})^{2}}{\sigma_{2}^{2}}\right) = \\ &= \frac{1}{\sigma_{1}\sqrt{2\pi(1-\rho^{2})}}e^{-\frac{1}{2(1-\rho^{2})}\left(\frac{(x-m_{1})^{2}}{\sigma_{1}^{2}} - \frac{2\rho(x-m_{1})(y-m_{2})}{\sigma_{1}\sigma_{2}} + \frac{\rho^{2}(y-m_{2})^{2}}{\sigma_{2}^{2}}\right) = \\ &= \frac{1}{\sigma_{1}\sqrt{2\pi(1-\rho^{2})}}e^{-\frac{1}{2\sigma_{1}^{2}(1-\rho^{2})}\left(x-m_{1}-\rho\frac{\sigma_{1}}{\sigma_{2}}(y-m_{2})\right)^{2}}. \end{split}$$

Пример 87. Плотность распределения случайного вектора (X,Y) имеет вид

$$f_{X,Y}(x,y) = \frac{1}{2\pi}e^{-\frac{5}{2}x^2 - 10x - 10 - 3yx - 6y - y^2}$$
.

Найдите условное математическое ожидание E(X|Y=y) и D(X|Y=y).

Решение. Случайный вектор (X,Y) распределен по нормальному закону, причём $(X,Y)\sim N\left(-2;0;2;5;-\frac{3}{\sqrt{10}}\right)$. Следовательно,

$$E(X|Y=y) = m_1 + \rho \frac{\sigma_1}{\sigma_2} (y - m_2) =$$

$$= -2 - \frac{3}{\sqrt{10}} \cdot \frac{\sqrt{2}}{\sqrt{5}} \cdot (y - 0) = -2 - \frac{3}{5} y,$$

$$D(X|Y=y) = \sigma_1^2 (1 - \rho^2) = 2 \left(1 - \frac{9}{10}\right) = \frac{1}{5}.$$

Other: $E(X|Y=y) = -2 - \frac{3}{5}y$, $D(X|Y=y) = \frac{1}{5}$.

Требования к оформлению заданий лабораторного практикума

- ✓ Порядок записи решений задач повторяет порядок условий в варианте заданий.
- ✓ Перед решением указывается порядковый номер задачи, условие не переписывается.
- ✔ Номер задачи выделяется маркером или иным образом. В конце решения приводится ответ по форме: «Ответ:...».
- ✓ Как правило, ответ записывается как десятичная дробь или целое. Допускается также запись в виде несократимой дроби, если такая запись содержит не более 5 символов (например: ¹¹/₃₆). Ошибка округления в ответе не должна превосходить 0,1%.
- ✔ Если задача не решена, после ее номера ставится прочерк.
- ✔ Решения, которые содержат грубые ошибки (отрицательная дисперсия, вероятность больше 1, ...), считаются неправильными.
- ✓ Неправильное решение, решение задачи из другого варианта или задачи с измененным условием, отсутствие решения или ответа приводит к минимальной оценке задачи (0 баллов).
- ✔ Отсутствие обоснования при правильном решении влечет снижение оценки на 2 балла.
- ✔ Неправильный ответ (в том числе из-за ошибок округления) при правильном решении снижает оценку.
- ✔ Оценка также снижается за плохое оформление работы (зачеркнутый текст, вставки, . . .).

- 1. В группе учатся 18 юношей и 5 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что все дежурные окажутся либо юношами, либо девушками.
- 2. В круг радиуса 120 наудачу бросаются 2 точки. Найдите вероятность того, что расстояние от центра круга до ближайшей точки будет не меньше 40.
- 3. Вероятность попадания при одном выстреле в мишень 0,81. Найдите вероятность хотя бы одного попадания при 3 выстрелах.
- 4. С первого станка-автомата на сборочный конвеер поступает 15% деталей, со 2-го и 3-го по 35% и 50%, соответственно. Вероятности выдачи бракованных деталей составляют для каждого из них соответственно 0,3%, 0,35% и 0,05%. Найдите вероятность того, что поступившая на сборку деталь окажется бракованной, а также вероятности того, что она изготовлена на 1-м, 2-м и 3-м станках-автоматах, при условии, что она оказалась бракованной.
- **5.** Игральная кость подбрасывается до тех пор, пока не выпадет 4 раза число очков, отличное от 6. Какова вероятность, что «шестерка» выпадет 2 раза?

- 1. В партии из 15 деталей имеется 9 стандартных. Наудачу отобраны 6 деталей. Найдите вероятность того, что среди отобранных деталей ровно 4 стандартных.
- 2. Двое договорились о встрече между 10 и 11 часами утра, причем договорились ждать друг друга не более a=5 минут. Считая, что момент прихода на встречу выбирается каждым «наудачу» в пределах указанного часа, найти вероятность того, что встреча не состоится.
- **3.** События A, B и C независимы; P(A) = 0, 2, P(B) = 0, 5 и P(C) = 0, 7. Найдите вероятность события A + B при условии, что наступило событие B + C.
- **4.** В первой урне $m_1 = 6$ белых и $n_1 = 6$ черных шаров, во второй $m_2 = 7$ белых и $n_2 = 6$ черных. Из второй урны случайным образом перекладывают в первую два шара, после чего из первой урны берут один шар. Какова вероятность того, что этот шар белый?
- 5. Фирма участвует в четырех проектах, каждый из которых может закончиться неудачей с вероятностью 0,23. В случае неудачи одного проекта вероятность разорения фирмы равна 17%, двух 33%, трех 72%, четырех 82%. Определите вероятность разорения фирмы.

- 1. В группе учатся 11 юношей и 11 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что все дежурные окажутся юношами.
- 2. На плоскости начерчены две концентрические окружности, радиусы которых 15 и 30 соответственно. Найдите вероятность того, что точка, брошенная наудачу в большой круг, попадет также и в кольцо, образованное построенными окружностями.
- 3. События A, B и C независимы. Найдите вероятность события $(A+B)\cdot (A+C)\cdot (B+C)$, если P(A)=0,1, P(B)=0,4 и P(C)=0,9.
- 4. В урну, содержащую 14 шаров, опущен белый шар, после чего наудачу извлечен один шар. Найдите вероятность того, что извлеченный шар окажется белым, если равновероятны все возможные предположения о первоначальном количестве белых шаров в урне.
- 5. Отрезок длины 5 поделен на две части длины 2 и 3 соответственно, 10 точек последовательно бросают случайным образом на этот отрезок. Найдите вероятность того, что количество точек, попавших на отрезок длины 2, не будет равно 9.

- 1. Независимо друг от друга 4 человека садятся в поезд, содержащий 13 вагонов. Найдите вероятность того, что все они поедут в разных вагонах.
- **2.** На отрезок AB длины 60 наудачу поставлена точка X . Найдите вероятность того, что меньший из отрезков AX и XB имеет длину меньшую, чем 15.
- **3.** Вероятность события P(A) = 0.69, P(B) = 0.78, P(C) = 0.82. Найдите наименьшую возможную вероятность события ABC.
- 4. В первой урне $m_1 = 8$ белых и $n_1 = 3$ черных шаров, во второй $m_2 = 7$ белых и $n_2 = 8$ черных. Из второй урны случайным образом перекладывают в первую два шара, после чего из первой урны берут один шар, который оказывается белым. Какова вероятность того, что два шара, переложенные из второй урны в первую, были разных цветов?
- 5. Банк решил вложить поровну средств в три предприятия при условии возврата ему каждым предприятием через определенный срок 164% от вложенной суммы. Вероятность банкротства каждого из предприятий 0,22. Найдите вероятность того, что по истечении срока кредитования банк получит обратно по крайней мере вложенную сумму.

- 1. В группе учатся 9 юношей и 16 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что среди дежурных будет хотя бы одна девушка.
- 2. В квадрат со стороной 12 см случайным образом вбрасывается точка. Найдите вероятность того, что эта точка окажется в правой верхней четверти квадрата или не далее, чем в 1 см от центра квадрата.
- **3.** Вероятность события P(A) = 0.86, P(B) = 0.94. Найдите наименьшую возможную вероятность события AB.
- 4. В среднем из 100 клиентов банка n=37 обслуживаются первым операционистом и 63 вторым операционистом. Вероятность того, что клиент будет обслужен без помощи заведующего отделением, только самим операционистом, составляет $p_1=0,54$ и $p_2=0,92$ соответственно для первого и второго служащих банка. Какова вероятность, что клиент, для обслуживания которого потребовалась помощь заведующего, был направлен к первому операционисту?
- **5.** Монета подбрасывается до тех пор, пока герб не выпадет 6 раз. Найдите вероятность того, что будет произведено 12 бросков.

- 1. В киоске продается 9 лотерейных билетов, из которых число выигрышных составляет 4 штуки. Студент купил 5 билетов. Какова вероятность того, что число выигрышных среди них будет не меньше 2, но не больше 3?
- **2.** В круг радиуса 60 наудачу бросаются 2 точки. Найдите вероятность того, что расстояние от центра круга до ближайшей точки будет не больше 40.
- 3. В электрическую цепь последовательно включены три элемента, работающие независимо один от другого. Вероятности отказов первого, второго и третьего элементов соответственно равны $p_1 = 0.45$, $p_2 = 0.67$ и $p_3 = 0.59$. Найдите вероятность того, что тока в цепи не будет.
- 4. В магазине было проведено исследование продаж некоторого товара. Выяснилось, что этот товар покупают 28% женщин, 18% мужчин и 33% детей. В настоящий момент среди покупателей: 160 женщин, 75 мужчин и 26 детей. Найдите вероятность того, что случайно выбранный для мониторинга покупатель приобретет этот товар.
- **5.** Завод отправил на базу 5000 доброкачественных изделий. Вероятность того, что в пути изделие повредится, равна 0,002. Какова вероятность того, что на базу поступят 2 некачественных изделия?

- 1. Имеется 22 экзаменационных билета, на каждом из которых напечатано условие некоторой задачи. В 12 билетах задачи по статистике, а в остальных 10 билетах задачи по теории вероятностей. Трое студентов выбирают наудачу по одному билету. Найдите вероятность того, что хотя бы одному из них не достанется задачи по теории вероятностей.
- 2. Внутрь круга радиуса 15 наудачу брошена точка. Найдите вероятность того, что точка окажется внутри вписанного в круг квадрата.
- 3. Вероятность хотя бы одного попадания в мишень при k=13 выстрелах равна p=0,71. Найдите вероятность попадания при одном выстреле.
- 4. Имеется 14 монет, из которых 2 штуки бракованные: вследствие заводского брака на этих монетах с обеих сторон отчеканен герб. Наугад выбранную монету, не разглядывая, бросают 8 раз, причем при всех бросаниях она ложится гербом вверх. Найдите вероятность того, что была выбрана монета с двумя гербами.
- **5.** Вероятность попадания стрелком в цель равна $\frac{1}{5}$. Сделано 38 выстрелов. Определите наивероятнейшее число попаданий в цель.

- 1. Компания из n = 22 человек рассаживается в ряд случайным образом. Найдите вероятность того, что между двумя определенными людьми окажутся ровно k = 5 человек.
- 2. Двое договорились о встрече между 7 и 8 часами утра, причем договорились ждать друг друга не более a=30 минут. Считая, что момент прихода на встречу выбирается каждым «наудачу» в пределах указанного часа, найти вероятность того, что встреча состоится.
- 3. Фирма участвует в четырех независимых проектах, вероятности успеха которых составляют 0,9; 0,4; 0,8 и 0,2 соответственно. Найдите вероятность того, что хотя бы два проекта завершатся успехом.
- 4. Имеется три одинаковых по виду ящика. В первом ящике n=24 белых шара, во втором m=9 белых и n-m=15 черных шаров, в третьем n=24 черных шара. Из выбранного наугад ящика вынули белый шар. Найдите вероятность того, что шар вынут из второго ящика.
- 5. При введении вакцины против птичьего гриппа иммунитет создается в 99,98% случаях. Определите (приближенно) вероятность того, что из 10000 вакцинированных птиц заболеют 4.

- 1. Независимо друг от друга 3 человека садятся в поезд, содержащий 10 вагонов. Найдите вероятность того, что по крайней мере двое из них окажутся в одном вагоне.
- 2. Внутрь круга радиуса 40 наудачу брошена точка. Найдите вероятность того, что точка окажется внутри вписанного в круг правильного шестиугольника.
- 3. События A, B и C независимы. Найдите вероятность того, что из событий A, B и C наступит ровно одно событие, если P(A) = 0, 2, P(B) = 0, 4 и P(C) = 0, 9.
- 4. Пассажир может обратиться за получением билета в одну из трёх касс (*A*, *B*, *C*). Вероятности обращения в каждую кассу зависят от их местонахождения и равны соответственно 0,35, 0,3 и 0,35. Вероятности того, что к моменту прихода пассажира, имеющиеся в кассе билеты распроданы равны соответственно 0,25, 0,35 и 0,05. Найдите вероятность того, что билет куплен. В какой из касс это могло произойти с наибольшей вероятностью?
- 5. Прядильщица обслуживает 2000 веретен. Вероятность обрыва нити на одном веретене в течение 1 минуты равна 0,004. Найдите (приближенно) вероятность того, что в течение одной минуты обрыв произойдет более чем на 2 веретенах.

- 1. В ящике 9 белых и 2 черных шара. Найдите вероятность того, что из двух вынутых наудачу шаров один белый, а другой черный. Вынутый шар в урну не возвращается.
- **2.** На отрезок AB длины 240 наудачу поставлена точка X . Найдите вероятность того, что меньший из отрезков AX и XB имеет длину большую, чем 60.
- 3. Вероятность того, что при одном измерении некоторой физической величины допущена ошибка, равна p=0,21. Найдите наименьшее число n измерений, которые необходимо произвести, чтобы с вероятностью больше a=0,92 можно было ожидать, что хотя бы один результат измерений окажется неверным.
- 4. Фирма A занимает 14% рынка электронной техники, фирма B-50%, фирма C-36%. Доля мобильных телефонов в поставках фирмы A составляет 14%, в поставках фирмы B-3%, в поставках фирмы C-21%. Случайный покупатель приобрел мобильный телефон. Какова вероятность того, что этот телефон произведен фирмой B или фирмой C?
- 5. В банке, осуществляющем кредитование населения, 1000 клиентов. Каждому из клиентов выдается кредит 200 тыс. ден. ед. при условии возврата 119,31% от этой суммы. Вероятность невозврата кредита каждым из клиентов составляет 0,09. С какой вероятностью прибыль банка будет не ниже 12,8 млн. рублей?

- 1. В группе учатся 11 юношей и 11 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что среди дежурных будет хотя бы одна девушка.
- **2.** На отрезок AB длины 180 наудачу поставлена точка X . Найдите вероятность того, что меньший из отрезков AX и XB имеет длину меньшую, чем 45.
- 3. Студент, разыскивая уникальную книгу, решил подать запрос в 10 библиотек. Наличие или отсутствие в фонде каждой библиотеки нужной книги одинаково вероятны. Также одинаково вероятно выдана она или нет. Какова вероятность, что хотя бы от одной библиотеки студент получит уведомление о наличии книги в свободном доступе?
- 4. Студент пользуется тремя библиотеками, комплектование которых осуществляется независимо друг от друга. Нужная ему книга может быть в данных библиотеках с вероятностями 0,29; 0,85 и 0,42 соответственно. Какова вероятность того, что учащийся достанет нужную ему книгу, обратившись наугад в одну из этих библиотек?
- 5. Всхожесть семян данного растения равна 60%. Найдите (приближенно) вероятность того, что из 1200 посаженных семян число проросших семян заключено между 699 и 739.

- 1. Имеется 25 экзаменационных билетов, на каждом из которых напечатано условие некоторой задачи. В 13 билетах задачи по статистике, а в остальных 12 билетах задачи по теории вероятностей. Трое студентов выбирают наудачу по одному билету. Найдите вероятность того, что хотя бы одному из них не достанется задачи по теории вероятностей.
- 2. В квадрат со стороной 20 см случайным образом вбрасывается точка. Найдите вероятность того, что эта точка окажется в правой верхней четверти квадрата или не далее, чем в 1 см от центра квадрата.
- **3.** События A, B и C независимы; P(A) = 0.8, P(B) = 0.5 и P(C) = 0.3. Найдите вероятность события A + B при условии, что наступило событие A + B + C.
- 4. В ящике содержится $n_1 = 5$ деталей, изготовленных на заводе 1, $n_2 = 10$ деталей на заводе 2 и $n_3 = 6$ деталей на заводе 3. Вероятности изготовления брака на заводах с номерами 1, 2 и 3 соответственно равны $p_1 = 0.07$, $p_2 = 0.08$ и $p_3 = 0.09$. Найдите вероятность того, что извлеченная наудачу деталь окажется качественной.
- 5. Вероятность выпуска бракованного изделия равна 0,2. Используя приближенную формулу для числа успехов в схеме Бернулли, найдите вероятность того, что среди 106 выпущенных изделий ровно 84 изделий без брака.

- 1. В партии из 17 деталей имеется 9 стандартных. Наудачу отобраны 9 деталей. Найдите вероятность того, что среди отобранных деталей ровно 4 стандартных.
- 2. Двое договорились о встрече между 8 и 9 часами утра, причем договорились ждать друг друга не более a=10 минут. Считая, что момент прихода на встречу выбирается каждым «наудачу» в пределах указанного часа, найти вероятность того, что встреча состоится.
- **3.** События *A*, *B* и *C* независимы; P(A) = 0,7, P(B) = 0,6 и P(C) = 0,3. Найдите вероятность события *A* при условии, что наступило событие $\overline{A} + \overline{B} + \overline{C}$.
- 4. Детали, изготовленные в цехе, попадают к одному из 2-х контролёров. Вероятность того, что деталь попадёт к 1-му контролёру, равна 0,3; ко 2-му 0,7. Вероятность того, что годная деталь будет признана стандартной 1-м контролёром равна 0,95; 2-м контролёром 0,98. Годная деталь при проверке оказалась стандартной. Найдите вероятность того, что эту деталь проверял 1-й контролёр.
- **5.** Вероятность попадания в цель при одном выстреле равна 0,4. Сделано 6 выстрелов. Найдите вероятность того, что в цель попали менее трех раз.

- 1. Независимо друг от друга 3 человека садятся в поезд, содержащий 12 вагонов. Найдите вероятность того, что по крайней мере двое из них окажутся в одном вагоне.
- **2.** Двое договорились о встрече между 8 и 9 часами утра, причем договорились ждать друг друга не более a=5 минут. Считая, что момент прихода на встречу выбирается каждым «наудачу» в пределах указанного часа, найти вероятность того, что встреча не состоится.
- **3.** Вероятность попадания при одном выстреле в мишень 0,63. Найдите вероятность хотя бы одного попадания при 4 выстрелах.
- 4. В центральную бухгалтерию корпорации поступили пачки накладных для проверки и обработки. 54% пачек были признаны удовлетворительными: они содержали 1% неправильно оформленных накладных. Остальные пачки были признаны неудовлетворительными, т.к. они содержали 6% неправильно оформленных накладных. Какова вероятность того, что взятая наугад накладная оказалась неправильно оформленной?
- 5. При введении вакцины против птичьего гриппа иммунитет создается в 99,99% случаях. Определите (приближенно) вероятность того, что из 10000 вакцинированных птиц заболеют по меньшей мере две птицы.

- 1. Независимо друг от друга 4 человека садятся в поезд, содержащий 14 вагонов. Найдите вероятность того, что все они поедут в разных вагонах.
- 2. Внутрь круга радиуса 50 наудачу брошена точка. Найдите вероятность того, что точка окажется внутри вписанного в круг правильного шестиугольника.
- 3. Студент, разыскивая уникальную книгу, решил подать запрос в 13 библиотек. Наличие или отсутствие в фонде каждой библиотеки нужной книги одинаково вероятны. Также одинаково вероятно выдана она или нет. Какова вероятность, что хотя бы от одной библиотеки студент получит уведомление о наличии книги в свободном доступе?
- 4. В первой урне $m_1 = 8$ белых и $n_1 = 4$ черных шара, во второй $m_2 = 6$ белых и $n_2 = 7$ черных. Из второй урны случайным образом перекладывают в первую два шара, после чего из первой урны берут один шар, который оказывается белым. Какова вероятность того, что два шара, переложенные из второй урны в первую, были разного цвета?
- 5. Завод отправил на базу 3 000 доброкачественных изделий. Вероятность того, что в пути изделие повредится, равна 0,001. Какова вероятность того, что на базу поступят 3 некачественных изделия?

- 1. В ящике 2 белых и 6 черных шаров. Найдите вероятность того, что из двух вынутых наудачу шаров один белый, а другой черный. Вынутый шар в урну не возвращается.
- 2. Внутрь круга радиуса 100 наудачу брошена точка. Найдите вероятность того, что точка окажется внутри вписанного в круг квадрата.
- 3. Фирма участвует в четырех независимых проектах, вероятности успеха которых составляют 0,6; 0,5; 0,9 и 0,2 соответственно. Найдите вероятность того, что хотя бы два проекта завершатся успехом.
- 4. Пассажир может обратиться за получением билета в одну из трёх касс (*A*, *B*, *C*). Вероятности обращения в каждую кассу зависят от их местонахождения и равны соответственно 0,35, 0,6 и 0,05 Вероятности того, что к моменту прихода пассажира, имеющиеся в кассе билеты распроданы равны соответственно 0,4, 0.5 и 0,15. Найдите вероятность того, что билет куплен. В какой из касс это могло произойти с наибольшей вероятностью?
- **5.** Прядильщица обслуживает 1000 веретен. Вероятность обрыва нити на одном веретене в течение 1 минуты равна 0,001. Найдите (приближенно) вероятность того, что в течение одной минуты обрыв произойдет более чем на 2 веретенах.

- 1. В киоске продается 9 лотерейных билетов, из которых число выигрышных составляет 4 штуки. Студент купил 5 билетов. Какова вероятность того, что число выигрышных среди них будет не меньше 2, но не больше 3?
- 2. В круг радиуса 30 наудачу бросаются 3 точки. Найдите вероятность того, что расстояние от центра круга до ближайшей точки будет не больше 15.
- 3. События A, B и C независимы; P(A) = 0,9, P(B) = 0,5 и P(C) = 0,3. Найдите вероятность события A+B при условии, что наступило событие A+B+C.
- 4. В центральную бухгалтерию корпорации поступили пачки накладных для проверки и обработки. 39% пачек были признаны удовлетворительными: они содержали 4% неправильно оформленных накладных. Остальные пачки были признаны неудовлетворительными, т.к. они содержали 9% неправильно оформленных накладных. Какова вероятность того, что взятая наугад накладная оказалась неправильно оформленной?
- 5. Вероятность выпуска бракованного изделия равна 0,27. Используя приближенную формулу для числа успехов в схеме Бернулли, найдите вероятность того, что среди 110 выпущенных изделий ровно 80 изделий без брака.

- 1. В группе учатся 11 юношей и 9 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что все дежурные окажутся юношами.
- 2. На плоскости начерчены две концентрические окружности, радиусы которых 15 и 60 соответственно. Найдите вероятность того, что точка, брошенная наудачу в большой круг, попадет также и в кольцо, образованное построенными окружностями.
- 3. В электрическую цепь последовательно включены три элемента, работающие независимо один от другого. Вероятности отказов первого, второго и третьего элементов соответственно равны $p_1 = 0.05$, $p_2 = 0.7$ и $p_3 = 0.31$. Найдите вероятность того, что тока в цепи не будет.
- 4. Имеется 15 монет, из которых 3 штуки бракованные: вследствие заводского брака на этих монетах с обеих сторон отчеканен герб. Наугад выбранную монету, не разглядывая, бросают 6 раз, причем при всех бросаниях она ложится гербом вверх. Найдите вероятность того, что была выбрана монета с двумя гербами.
- **5.** При введении вакцины против птичьего гриппа иммунитет создается в 99,98% случаях. Определите (приближенно) вероятность того, что из 20000 вакцинированных птиц заболеют 4.

- 1. В группе учатся 11 юношей и 10 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что все дежурные окажутся либо юношами, либо девушками.
- **2.** На отрезок AB длины 120 наудачу поставлена точка X . Найдите вероятность того, что меньший из отрезков AX и XB имеет длину большую, чем 20.
- **3.** Вероятность события P(A) = 0.91, P(B) = 0.71, P(C) = 0.95. Найдите наименьшую возможную вероятность события ABC.
- 4. Фирма A занимает 17% рынка электронной техники, фирма B-45%, фирма C-38%. Доля мобильных телефонов в поставках фирмы A составляет 10%, в поставках фирмы B-3%, в поставках фирмы C-22%. Случайный покупатель приобрел мобильный телефон. Какова вероятность того, что этот телефон произведен фирмой B или фирмой C?
- 5. Отрезок длины 5 поделен на две части длины 2 и 3 соответственно, 9 точек последовательно бросают случайным образом на этот отрезок. Найдите вероятность того, что количество точек, попавших на отрезок длины 2, не будет равно 4.

- 1. Компания из n=21 человек рассаживается в ряд случайным образом. Найдите вероятность того, что между двумя определенными людьми окажутся ровно k=15 человек.
- 2. В круг радиуса 90 наудачу бросаются 3 точки. Найдите вероятность того, что расстояние от центра круга до ближайшей точки будет не меньше 60.
- 3. События A, B и C независимы. Найдите вероятность того, что из событий A, B и C наступит ровно одно событие, если P(A) = 0, 1, P(B) = 0, 6 и P(C) = 0, 7.
- 4. В ящике содержатся $n_1 = 5$ деталей, изготовленных на заводе 1, $n_2 = 8$ деталей на заводе 2 и $n_3 = 6$ деталей на заводе 3. Вероятности изготовления брака на заводах с номерами 1, 2 и 3 соответственно равны $p_1 = 0.09$, $p_2 = 0.06$ и $p_3 = 0.01$. Найдите вероятность того, что извлеченная наудачу деталь окажется качественной.
- 5. Монета подбрасывается до тех пор, пока герб не выпадет 6 раз. Найдите вероятность того, что будет произведено 12 бросков.

- 1. В группе учатся 11 юношей и 13 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что среди дежурных будет хотя бы одна девушка.
- **2.** На отрезок AB длины 240 наудачу поставлена точка X . Найдите вероятность того, что меньший из отрезков AX и XB имеет длину меньшую, чем 40.
- 3. Вероятность того, что при одном измерении некоторой физической величины допущена ошибка, равна p=0,47. Найдите наименьшее число п измерений, которые необходимо произвести, чтобы с вероятностью больше a=0,77 можно было ожидать, что хотя бы один результат измерений окажется неверным.
- 4. Детали, изготовленные в цехе, попадают к одному из 2-х контролёров. Вероятность того, что деталь попадёт к 1-му контролёру, равна 0,6; ко 2-му 0,4. Вероятность того, что годная деталь будет признана стандартной 1-м контролёром равна 0,92; 2-м контролёром 0,97. Годная деталь при проверке оказалась стандартной. Найдите вероятность того, что эту деталь проверял 1-й контролёр.
- **5.** Вероятность попадания в цель при одном выстреле равна 0,7. Сделано 4 выстрела. Найдите вероятность того, что в цель попали менее трех раз.

- 1. В ящике 10 белых и 2 черных шаров. Найдите вероятность того, что из двух вынутых наудачу шаров один белый, а другой черный. Вынутый шар в урну не возвращается.
- 2. Внутрь круга радиуса 10 наудачу брошена точка. Найдите вероятность того, что точка окажется внутри вписанного в круг квадрата.
- **3.** Вероятность события P(A) = 0.86, P(B) = 0.6. Найдите наименьшую возможную вероятность события AB.
- 4. В магазине было проведено исследование продаж некоторого товара. Выяснилось, что этот товар покупают 16% женщин, 13% мужчин и 33% детей. В настоящий момент среди покупателей: 155 женщин, 77 мужчин и 29 детей. Найдите вероятность того, что случайно выбранный для мониторинга покупатель приобретет этот товар.
- 5. В банке, осуществляющем кредитование населения, 1500 клиентов. Каждому из клиентов выдается кредит 600 тыс. ден. ед. при условии возврата 113,48% от этой суммы. Вероятность невозврата кредита каждым из клиентов составляет 0,062. С какой вероятностью прибыль банка будет не ниже 45,6 млн. рублей?

- 1. В группе учатся 14 юношей и 10 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что все дежурные окажутся либо юношами, либо девушками.
- 2. В круг радиуса 120 наудачу бросаются 2 точки. Найдите вероятность того, что расстояние от центра круга до ближайшей точки будет не меньше 60.
- **3.** События A, B и C независимы; P(A) = 0,9, P(B) = 0,6 и P(C) = 0,1. Найдите вероятность события A при условии, что наступило событие $\overline{A} + \overline{B} + \overline{C}$.
- **4.** В первой урне $m_1 = 6$ белых и $n_1 = 7$ черных шаров, во второй $m_2 = 3$ белых и $n_2 = 4$ черных. Из второй урны случайным образом перекладывают в первую два шара, после чего из первой урны берут один шар. Какова вероятность того, что этот шар белый?
- **5.** Вероятность попадания стрелком в цель равна $\frac{1}{8}$. Сделано 150 выстрелов. Определите наивероятнейшее число попаданий в цель.

- 1. Независимо друг от друга 4 человека садятся в поезд, содержащий 11 вагонов. Найдите вероятность того, что по крайней мере двое из них окажутся в одном вагоне.
- 2. На плоскости начерчены две концентрические окружности, радиусы которых 25 и 50 соответственно. Найдите вероятность того, что точка, брошенная наудачу в большой круг, попадет также и в кольцо, образованное построенными окружностями.
- 3. Вероятность хотя бы одного попадания в мишень при k=8 выстрелах равна p=0,67. Найдите вероятность попадания при одном выстреле.
- 4. В среднем из 100 клиентов банка n=39 обслуживаются первым операционистом и 61 вторым операционистом. Вероятность того, что клиент будет обслужен без помощи заведующего отделением, только самим операционистом, составляет $p_1=0,59$ и $p_2=0,53$ соответственно для первого и второго служащих банка. Какова вероятность, что клиент, для обслуживания которого потребовалась помощь заведующего, был направлен к первому операционисту?
- 5. Банк решил вложить поровну средств в три предприятия при условии возврата ему каждым предприятием через определенный срок 163% от вложенной суммы. Вероятность банкротства каждого из предприятий 0,24. Найдите вероятность того, что по истечении срока кредитования банк получит обратно по крайней мере вложенную сумму.

- 1. В киоске продается 9 лотерейных билетов, из которых число выигрышных составляет 3 штуки. Студент купил 5 билетов. Какова вероятность того, что число выигрышных среди них будет не меньше 1, но не больше 2?
- **2.** На отрезок AB длины 180 наудачу поставлена точка X . Найдите вероятность того, что меньший из отрезков AX и XB имеет длину большую, чем 30.
- **3.** События A, B и C независимы; P(A) = 0, 1, P(B) = 0, 5 и P(C) = 0, 8. Найдите вероятность события A + B при условии, что наступило событие B + C.
- 4. В урну, содержащую 6 шаров, опущен белый шар, после чего наудачу извлечен один шар. Найдите вероятность того, что извлеченный шар окажется белым, если равновероятны все возможные предположения о первоначальном количестве белых шаров в урне.
- 5. При введении вакцины против птичьего гриппа иммунитет создается в 99,99% случаях. Определите (приближенно) вероятность того, что из 20000 вакцинированных птиц заболеют по меньшей мере две птицы.

- 1. Компания из n=15 человек рассаживается в ряд случайным образом. Найдите вероятность того, что между двумя определенными людьми окажутся ровно k=8 человек.
- 2. Двое договорились о встрече между 7 и 8 часами утра, причем договорились ждать друг друга не более a=24 минут. Считая, что момент прихода на встречу выбирается каждым «наудачу» в пределах указанного часа, найти вероятность того, что встреча состоится.
- **3.** События *A*, *B* и *C* независимы. Найдите вероятность события $(A+B)\cdot (A+C)\cdot (B+C)$, если P(A)=0,2, P(B)=0,6 и P(C)=0,9.
- 4. Имеется три одинаковых по виду ящика. В первом ящике n=10 белых шаров, во втором m=3 белых и n-m=7 черных шаров, в третьем n=10 черных шаров. Из выбранного наугад ящика вынули белый шар. Найдите вероятность того, что шар вынут из второго ящика.
- **5.** Всхожесть семян данного растения равна 30%. Найдите (приближенно) вероятность того, что из 1200 посаженных семян число проросших семян заключено между 339 и 379.

- 1. Имеется 20 экзаменационных билетов, на каждом из которых напечатано условие некоторой задачи. В 10 билетах задачи по статистике, а в остальных 10 билетах задачи по теории вероятностей. Трое студентов выбирают наудачу по одному билету. Найдите вероятность того, что хотя бы одному из них не достанется задачи по теории вероятностей.
- 2. В квадрат со стороной 20 см случайным образом вбрасывается точка. Найдите вероятность того, что эта точка окажется в правой верхней четверти квадрата или не далее, чем в 5 см от центра квадрата.
- **3.** Вероятность события P(A) = 0.69, P(B) = 0.73, P(C) = 0.79. Найдите наименьшую возможную вероятность события ABC.
- 4. С первого станка-автомата на сборочный конвеер поступает 15% деталей, со 2-го и 3-го по 35% и 50%, соответственно. Вероятности выдачи бракованных деталей составляют для каждого из них соответственно 0,25%, 0,45% и 0,1%. Найдите вероятность того, что поступившая на сборку деталь окажется бракованной, а также вероятности того, что она изготовлена на 1-м, 2-м и 3-м станках-автоматах, при условии, что она оказалась бракованной.
- 5. Фирма участвует в четырех проектах, каждый из которых может закончиться неудачей с вероятностью 0,23. В случае неудачи одного проекта вероятность разорения фирмы равна 18%, двух 40%, трех 65%, четырех 93%. Определите вероятность разорения фирмы.

- 1. В партии из 14 деталей имеется 7 стандартных. Наудачу отобраны 6 деталей. Найдите вероятность того, что среди отобранных деталей ровно 4 стандартных.
- **2.** В круг радиуса 30 наудачу бросаются 4 точки. Найдите вероятность того, что расстояние от центра круга до ближайшей точки будет не больше 15.
- 3. События A, B и C независимы. Найдите вероятность того, что из событий A, B и C наступит ровно одно событие, если P(A) = 0, 3, P(B) = 0, 6 и P(C) = 0, 7.
- 4. Студент пользуется тремя библиотеками, комплектование которых осуществляется независимо друг от друга. Нужная ему книга может быть в данных библиотеках с вероятностями 0,1; 0,88 и 0,66 соответственно. Какова вероятность того, что учащийся достанет нужную ему книгу, обратившись наугад в одну из этих библиотек?
- **5.** Игральная кость подбрасывается до тех пор, пока не выпадет 3 раза число очков, отличное от 6. Какова вероятность, что «шестерка» выпадет 3 раза?

- 1. В группе учатся 11 юношей и 12 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что все дежурные окажутся юношами.
- 2. Двое договорились о встрече между 8 и 9 часами утра, причем договорились ждать друг друга не более a=5 минут. Считая, что момент прихода на встречу выбирается каждым «наудачу» в пределах указанного часа, найти вероятность того, что встреча не состоится.
- 3. Вероятность того, что при одном измерении некоторой физической величины допущена ошибка, равна p=0,32. Найдите наименьшее число n измерений, которые необходимо произвести, чтобы с вероятностью больше a=0,91 можно было ожидать, что хотя бы один результат измерений окажется неверным.
- 4. Имеется три одинаковых по виду ящика. В первом ящике n=12 белых шаров, во втором m=8 белых и n-m=4 черных шаров, в третьем n=12 черных шаров. Из выбранного наугад ящика вынули белый шар. Найдите вероятность того, что шар вынут из второго ящика.
- 5. Вероятность выпуска бракованного изделия равна 0,47. Используя приближенную формулу для числа успехов в схеме Бернулли, найдите вероятность того, что среди 110 выпущенных изделий ровно 57 изделий без брака.

- 1. Независимо друг от друга 3 человека садятся в поезд, содержащий 11 вагонов. Найдите вероятность того, что все они поедут в разных вагонах.
- 2. Внутрь круга радиуса 25 наудачу брошена точка. Найдите вероятность того, что точка окажется внутри вписанного в круг правильного шестиугольника.
- **3.** События *A*, *B* и *C* независимы. Найдите вероятность события $(A+B)\cdot (A+C)\cdot (B+C)$, если P(A)=0,1, P(B)=0.5 и P(C)=0.7.
- 4. Фирма A занимает 29% рынка электронной техники, фирма B-42%, фирма C-29%. Доля мобильных телефонов в поставках фирмы A составляет 13%, в поставках фирмы B-7%, в поставках фирмы C-25%. Случайный покупатель приобрел мобильный телефон. Какова вероятность того, что этот телефон произведен фирмой B или фирмой C?
- 5. Всхожесть семян данного растения равна 30%. Найдите (приближенно) вероятность того, что из 900 посаженных семян число проросших семян заключено между 249 и 289.

Вариант № 2-01

- 1. Независимые случайные величины X, Y, Z принимают только целые значения: X от 1 до 13 с вероятностью $\frac{1}{13}$, Y от 1 до 10 с вероятностью $\frac{1}{10}$, Z от 1 до 8 с вероятностью $\frac{1}{8}$. Найдите вероятность P(X < Y < Z).
- **2.** Дискретные случайные величины X_1, X_2, \dots, X_9 распределены по закону, заданному таблицей

X	-1	0	1	
P	0,4	0,3	0,3	•

Найдите математическое ожидание $E(X_1^2 + X_2^2 + ... + X_9^2)$.

- 3. Вероятность повышения цены акции за один рабочий день на 2% равна 0,3, вероятность повышения на 0,1% равна 0,5,а вероятность понижения на 3% равна 0,2. Найдите математическое ожидание изменения цены акции за 100 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- **4.** Случайные величины X_1, \ldots, X_{256} распределены по биномиальному закону с параметрами n=3 и $p=\frac{5}{8}$. Найдите математическое ожидание $E\left(X_1^2+\ldots+X_{256}^2\right)$.
- **5.** Случайные величины независимы X_1, \ldots, X_{17} и распределены по геометрическому закону с одинаковым математическим ожиданием, равным 6. Найдите математическое ожидание $E\left\{(X_1+\ldots+X_{17})^2\right\}$.

- 1. Независимые случайные величины X, Y, Z могут принимать только целые значения: X от 0 до 12 с вероятностью $\frac{1}{13}$, Y от 0 до 13 с вероятностью $\frac{1}{14}$, а Z только значения 3 и 7, при этом $P(Z=3)=\frac{9}{10}$. Найдите вероятность того, что сумма данных случайных величин будет равна 13.
- **2.** Независимые случайные величины X_1, \ldots, X_4 могут принимать только значения 0 и 1. При этом $P(X_i=0)=0,4$, $i=1,\ldots,4$. Найдите математическое ожидание $E\left[2^{X_1+\ldots+X_4}\right]$.
- 3. Вероятность выигрыша 30 рублей в одной партии равна 0,4, вероятность проигрыша 10 рублей равна 0,3, а вероятность проигрыша 40 рублей равна 0,3. Найдите дисперсию капитала игрока после 3 партий.
- **4.** Производится 10 независимых испытаний, в каждом из которых подбрасываются 3 игральные кости. Пусть X число испытаний, в которых все выпавшие цифры оказались \geqslant 2. Найдите дисперсию D(X).
- **5.** Случайные величины X_1, \ldots, X_7 распределены по геометрическому закону с одинаковым математическим ожиданием, равным 10. Найдите математическое ожидание $E\left(X_1^2 + \ldots + X_7^2\right)$.

Вариант № 2-03

- 1. Независимые случайные величины X, Y могут принимать только целые значения: Y от 1 до 12 с вероятностью $\frac{1}{12}$, а X только значения 2 и 10, при этом $P(X=2)=\frac{2}{5}$. Найдите вероятность того, что сумма данных случайных величин не равна 12.
- 2. Распределение случайной величины X задано таблицей

X	7	8	11	14	15
P	0,25	0,2	0,1	0,2	0,25

Найдите математическое ожидание $\mu = E(X)$, среднее квадратичное отклонение $\sigma = \sigma_X$ и вероятность $P(|X - \mu| < \sigma)$.

- 3. Вероятность повышения цены акции за один рабочий день на 1% равна 0,2, вероятность повышения на 0,1% равна 0,7, а вероятность понижения на 2% равна 0.1. Найдите математическое ожидание изменения цены акции за 200 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- 4. Отрезок длины 35 поделен на две части длины 25 и 10 соответственно. 8 точек последовательно бросаются наудачу на отрезок. Пусть X случайная величина, равная числу точек, попавших на отрезок длины 10. Найдите математическое ожидание и среднее квадратичное отклонение величины X.
- 5. На плоскости начерчены два квадрата, стороны которых $10\,$ и $50\,$ соответственно. Меньший квадрат содержится внутри большего квадрата. В большой квадрат случайным образом бросают точки до тех пор, пока не попадут в маленький квадрат. Пусть случайная величина X число бросаний. Найдите математическое ожидание E(X) и дисперсию D(X).

- 1. Независимые случайные величины X, Y, Z могут принимать только целые значения: X от 1 до 7 с вероятностью $\frac{1}{7}$, Y от 1 до 14 с вероятностью $\frac{1}{14}$, а Z только значения 7 и 14, при этом $P(Z=7)=\frac{3}{5}$. Найдите вероятность того, что сумма данных случайных величин будет не меньше 21.
- **2.** Независимые дискретные случайные величины X, Y могут принимать только значения 0 и 1. При этом P(X=0)=0,3, P(Y=0)=0,9. Найдите математическое ожидание $E\left[(X-Y)^2\right]$.
- 3. Вероятность выигрыша 20 рублей в одной партии равна 0,5, вероятность проигрыша 10 рублей равна 0,3, а вероятность проигрыша 50 рублей равна 0,2. Найдите дисперсию капитала игрока после 6 партий.
- 4. На плоскости начерчены две окружности, радиусы которых 10 и 50 соответственно. Меньшая окружность содержится внутри большего круга. В большой круг наудачу бросаются 7 точек. Пусть случайная величина X число точек, попавших в малый круг. Вычислите математическое ожидание E(X) и дисперсию D(X).
- 5. В спортивной лотерее каждую неделю на 100 билетов разыгрывается 18 палаток и 18 рюкзаков. Турист решил каждую неделю покупать по одному билету до тех пор, пока он не выиграет палатку и рюкзак. Найдите среднее время реализации данного намерения (время измеряется в неделях).

- 1. Независимые случайные величины X,Y,Z принимают только целые значения: X от 1 до 10 с вероятностью $\frac{1}{10}$, Y от 1 до 7 с вероятностью $\frac{1}{7}$, Z от 1 до 6 с вероятностью $\frac{1}{6}$. Найдите вероятность того, что X,Y,Z примут разные значения.
- **2.** Независимые случайные величины X_1, X_2, \ldots, X_{10} принимают только целые значения $-6, -5, \ldots, 3, 4$. Найдите математическое ожидание $E(X_1 \cdot X_2 \cdots X_{10})$, если известно, что возможные значения равновероятны.
- 3. Вероятность выигрыша 20 рублей в одной партии равна 0,6, вероятность проигрыша 10 рублей равна 0,2, а вероятность проигрыша 60 рублей равна 0,2. Найдите дисперсию капитала игрока после 5 партий.
- 4. Производится $3\,840$ независимых испытаний, состоящих в том, что одновременно подбрасываются 7 монет. Пусть X число испытаний, в которых выпало 3 герба. Найдите математическое ожидание E(X).
- 5. Для пуассоновской случайной величины X отношение $\frac{P(X=6)}{P(X=5)}=7$. Найдите математическое ожидание E(X).

- 1. Независимые случайные величины X и Y принимают только целые значения: X от -7 до 7, Y от -5 до 5. Найдите P(XY>0), если известно, что возможные значения X и Y равновероятны.
- **2.** Независимые дискретные случайные величины X, Y могут принимать только значения 0 и 1. При этом P(X=0)=0,4, P(Y=0)=0,1. Найдите математическое ожидание $E[(X+Y)^2]$.
- 3. Вероятность повышения цены акции за один рабочий день на 3% равна 0,2, вероятность повышения на 0,2% равна 0,5, а вероятность понижения на 2% равна 0,3. Найдите математическое ожидание изменения цены акции за 300 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- **4.** Случайные величины X,Y принимают только значения 0 и 1. Найдите дисперсию D(X-Y), если вероятности P(X=1) = P(Y=1) = 0,3, а коэффициент корреляции X и Y равен 0,1.
- **5.** Случайные величины X,Y распределены по геометрическому закону. Найдите дисперсию D(X-Y), если их математические ожидания равны 6, а коэффициент корреляции X и Y равен 0,8.

Вариант № 2-07

- **1.** Независимые случайные величины X, Y, Z могут принимать только целые значения: Y и Z от 1 до 21 с вероятностью $\frac{1}{21}$, а X только значения 5 и 10, при этом $P(X=5)=\frac{3}{10}$. Найдите вероятность P(X< Y< Z).
- **2.** Распределение дискретной случайной величины X задано таблицей

X	1	4	7	
P	0,4	0,4	0,2	

Найдите дисперсию D(X).

- 3. Вероятность выигрыша 20 рублей в одной партии равна 0,7, вероятность проигрыша 10 рублей равна 0,1, а вероятность проигрыша 70 рублей равна 0,2. Найдите дисперсию капитала игрока после 5 партий.
- **4.** Случайные величины X_1, \dots, X_{245} независимы и распределены по биномиальному закону с параметрами n=5 и $p=\frac{3}{7}$. Найдите математическое ожидание $E\left\{(X_1+\dots+X_{245})^2\right\}$.
- **5.** Случайные величины X_1, \dots, X_6 распределены по закону Пуассона с одинаковым математическим ожиданием, равным 2. Найдите математическое ожидание $E(X_1^2 + \dots + X_6^2)$.

- 1. Независимые случайные величины X, Y принимают только целые значения: X от —5 до 5 с вероятностью $\frac{1}{11}$, Y от —9 до 9 с вероятностью $\frac{1}{19}$. Найдите P(XY < 0).
- **2.** Для случайной величины X известно, что E(X) = 4, E(|X|) = 9, D(|X|) = 90. Найдите дисперсию D(X).
- 3. Вероятность повышения цены акции за один рабочий день на 1% равна 0,4, вероятность повышения на 0,2% равна 0,5, а вероятность понижения на 4% равна 0,1. Найдите математическое ожидание изменения цены акции за 300 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- **4.** Для случайных величин X,Y даны их математические ожидания и дисперсии E(X) = E(Y) = 7, D(X) = D(Y) = 90, а также коэффициент корреляции 0,4. Найдите математическое ожидание $E[(X+Y)^2]$.
- **5.** Случайные величины X_1, \ldots, X_{16} независимы и распределены по закону Пуассона с одинаковым математическим ожиданием, равным 8. Найдите математическое ожидание $E\{(X_1 + \ldots + X_{16})^2\}$.

- 1. Независимые случайные величины X,Y могут принимать только целые значения: Y от 1 до 12 с вероятностью $\frac{1}{12}$, а X только значения 3 и 9, при этом $P(X=3)=\frac{9}{10}$. Найдите вероятность того, что сумма данных случайных величин будет меньше 12.
- **2.** Независимые случайные величины X_1, \ldots, X_{90} могут принимать только значения 0 и 1. При этом $P(X_i = 0) = 0, 7, i = 1, \ldots, 90$. Найдите математическое ожидание $E[(X_1 + \ldots + X_{90})^2]$.
- 3. Вероятность повышения цены акции за один рабочий день на 2% равна 0,4, вероятность повышения на 0,3% равна 0,4, а вероятность понижения на 4% равна 0,2. Найдите математическое ожидание изменения цены акции за 200 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- **4.** Даны математические ожидания случайных величин X и Y: E(X) = 40, E(Y) = 30, их дисперсии D(X) = 9, D(Y) = 8 и ковариация Cov(X,Y) = 6. Найдите математическое ожидание E(X-Y) и дисперсию D(X-Y).
- 5. В серии независимых испытаний, которые проводятся с частотой одно испытание в единицу времени, вероятность наступления события A в одном испытании равна $\frac{1}{7}$. Пусть T время ожидания наступления события A 13 раз (за все время ожидания). Найдите математическое ожидание E(T) и дисперсию D(T).

- 1. Независимые дискретные случайные величины X, Y принимают только целые значения: X от 1 до 18 с вероятностью $\frac{1}{18}$, Y от 1 до 23 с вероятностью $\frac{1}{23}$. Найдите вероятность P(X+Y=34).
- **2.** Для независимых случайных величин X_1, \ldots, X_6 известно, что их математические ожидания $E(X_i) = 1$, дисперсии $D(X_i) = 3$, $i = 1, \ldots, 6$. Найдите дисперсию произведения $D(X_1 \cdots X_6)$.
- 3. Вероятность выигрыша 50 рублей в одной партии равна 0,4, вероятность проигрыша 10 рублей равна 0,1, а вероятность проигрыша 40 рублей равна 0,5. Найдите дисперсию капитала игрока после 6 партий.
- **4.** Производится 13 независимых испытаний с вероятностью успеха 0,7 в каждом испытании. Пусть X число успехов в испытаниях с номерами $1,2,\ldots,9$, Y число успехов в испытаниях с номерами $6,7,\ldots,13$. Найдите дисперсию D(X+2Y).
- 5. На плоскости начерчены два квадрата, стороны которых 20 и 40 соответственно. Меньший квадрат содержится внутри большего квадрата. В большой квадрат случайным образом бросают точки до тех пор, пока не попадут в маленький квадрат. Пусть случайная величина X число бросаний. Найдите математическое ожидание E(X) и дисперсию D(X).

Вариант № 2-11

- 1. Независимые случайные величины X_1, \dots, X_7 принимают только целые значения от 0 до 10. Найдите вероятность $P(X_1 \cdot X_2 \cdot \dots \cdot X_7 = 0)$, если известно, что все возможные значения равновероятны.
- **2.** Дискретные случайные величины X_1, X_2, \dots, X_5 распределены по закону, заданному таблицей

X	-1	0	1	
P	0,2	0,1	0,7	•

Найдите математическое ожидание $E[X_1^2 + X_2^2 + ... + X_5^2]$.

- 3. Вероятность выигрыша 30 рублей в одной партии равна 0,6, вероятность проигрыша 10 рублей равна 0,1, а вероятность проигрыша 60 рублей равна 0,3. Найдите дисперсию капитала игрока после 3 партий.
- **4.** Случайные величины X,Y принимают только значения 0 и 1. Найдите дисперсию D(X-Y), если вероятности P(X=1) = P(Y=1) = 0,9, а коэффициент корреляции X и Y равен 0,3.
- 5. Для пуассоновской случайной величины X отношение $\frac{P(X=10)}{P(X=9)}=13$. Найдите математическое ожидание E(X).

- 1. Независимые случайные величины X, Y принимают только целые значения: X от 1 до 12 с вероятностью $\frac{1}{12}$, Y от 1 до 16 с вероятностью $\frac{1}{16}$. Найдите вероятность P(X+Y<7).
- **2.** Для случайной величины X известно, что E(X) = 1, E(|X|) = 2, D(|X|) = 70. Найдите дисперсию D(X).
- 3. Вероятность повышения цены акции за один рабочий день на 2% равна 0,4, вероятность повышения на 0,2% равна 0,4, а вероятность понижения на 4% равна 0,2. Найдите математическое ожидание изменения цены акции за 100 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- **4.** Даны математические ожидания случайных величин X и Y: E(X) = 40, E(Y) = 20, их дисперсии D(X) = 5, D(Y) = 3 и ковариация Cov(X,Y) = 1. Найдите математическое ожидание E(X-Y) и дисперсию D(X-Y).
- **5.** Случайные величины независимы X_1, \ldots, X_8 и распределены по геометрическому закону с одинаковым математическим ожиданием, равным 3. Найдите математическое ожидание $E\{(X_1 + \ldots + X_8)^2\}$.

- 1. Независимые случайные величины X, Y принимают только целые значения: X от —5 до 9 с вероятностью $\frac{1}{15}$, Y от —8 до 5 с вероятностью $\frac{1}{14}$. Найдите вероятность P(XY=0).
- **2.** Независимые дискретные случайные величины X, Y могут принимать только значения 0 и 1. При этом P(X=0)=0,9, P(Y=0)=0,2. Найдите математическое ожидание $E[(X-Y)^2]$.
- 3. Вероятность выигрыша 20 рублей в одной партии равна 0,6, вероятность проигрыша 10 рублей равна 0,2, а вероятность проигрыша 60 рублей равна 0,2. Найдите дисперсию капитала игрока после 7 партий.
- 4. Производится 13 независимых испытаний с вероятностью успеха 0,7 в каждом испытании. Пусть X число успехов в испытаниях с номерами $1,2,\ldots,9$, Y число успехов в испытаниях с номерами $5,6,\ldots,13$. Найдите дисперсию D(X+2Y).
- 5. В спортивной лотерее каждую неделю на 100 билетов разыгрывается 19 палаток и 19 рюкзаков. Турист решил каждую неделю покупать по одному билету до тех пор, пока он не выиграет палатку и рюкзак. Найдите среднее время реализации данного намерения (время измеряется в неделях).

- 1. Независимые случайные величины X, Y принимают только целые значения: X от 1 до 17 с вероятностью $\frac{1}{17}$, Y от 1 до 5 с вероятностью $\frac{1}{5}$. Найдите вероятность P(X < Y).
- 2. Распределение случайной величины Х задано таблицей

X	7	11	13	15	19	
Р	0,1	0,05	0,7	0,05	0,1	١.

Найдите математическое ожидание $\mu = E(X)$, среднее квадратичное отклонение $\sigma = \sigma_X$ и вероятность $P(|X - \mu| < \sigma)$.

- 3. Вероятность повышения цены акции за один рабочий день на 3% равна 0,4, вероятность повышения на 0,2% равна 0,3, а вероятность понижения на 4% равна 0,3. Найдите математическое ожидание изменения цены акции за 100 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- 4. На плоскости начерчены две окружности, радиусы которых 20 и 100 соответственно. Меньшая окружность содержится внутри большего круга. В большой круг наудачу бросаются 5 точек. Пусть случайная величина X число точек, попавших в малый круг. Вычислите математическое ожидание E(X) и дисперсию D(X).
- **5.** Случайные величины X_1, \ldots, X_{16} независимы и распределены по закону Пуассона с одинаковым математическим ожиданием, равным 8. Найдите математическое ожидание $E\{(X_1 + \ldots + X_{16})^2\}$.

- 1. Случайная величина X принимает только целые значения $1,2,\ldots,25$. При этом вероятности возможных значений X пропорциональны значениям: P(X=k)=ck. Найдите значение константы c и вероятность P(X>4).
- **2.** Независимые случайные величины X_1, X_2, \ldots, X_5 принимают только целые значения $-8, -7, \ldots, 3, 4$. Найдите математическое ожидание $E(X_1 \cdot X_2 \cdot \cdots X_5)$, если известно, что возможные значения равновероятны.
- 3. Вероятность выигрыша 20 рублей в одной партии равна 0,5, вероятность проигрыша 10 рублей равна 0,3, а вероятность проигрыша 50 рублей равна 0,2. Найдите дисперсию капитала игрока после 5 партий.
- 4. Производится 1 280 независимых испытаний, состоящих в том, что одновременно подбрасываются 8 монет. Пусть X число испытаний, в которых выпало 2 герба. Найдите математическое ожидание E(X).
- 5. На плоскости начерчены два квадрата, стороны которых 20 и 60 соответственно. Меньший квадрат содержится внутри большего квадрата. В большой квадрат случайным образом бросают точки до тех пор, пока не попадут в маленький квадрат. Пусть случайная величина X число бросаний. Найдите математическое ожидание E(X) и дисперсию D(X).

- 1. Независимые случайные величины X, Y могут принимать только целые значения: Y от 1 до 15 с вероятностью $\frac{1}{15}$, а X только значения 6 и 9, при этом $P(X=6)=\frac{9}{10}$. Найдите вероятность того, что сумма данных случайных величин будет меньше 15.
- **2.** Распределение дискретной случайной величины X задано таблицей

X	1	3	5
P	0,2	0,2	0,6

Найдите дисперсию D(X).

- 3. Вероятность повышения цены акции за один рабочий день на 4% равна 0,1, вероятность повышения на 0,3% равна 0,5, а вероятность понижения на 1% равна 0,4. Найдите математическое ожидание изменения цены акции за 200 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- 4. Отрезок длины 35 поделен на две части длины 15 и 20 соответственно. 8 точек последовательно бросаются наудачу на отрезок. Пусть X случайная величина, равная числу точек, попавших на отрезок длины 20. Найдите математическое ожидание и среднее квадратичное отклонение величины X.
- **5.** Случайные величины X_1, \ldots, X_5 распределены по геометрическому закону с одинаковым математическим ожиданием, равным 6. Найдите математическое ожидание $E(X_1^2 + \ldots + X_5^2)$.

- 1. Независимые случайные величины X, Y могут принимать только целые значения: Y от 1 до 8 с вероятностью $\frac{1}{8}$, а X только значения 2 и 6, при этом $P(X=2)=\frac{2}{5}$. Найдите вероятность того, что сумма данных случайных величин не равна 8.
- **2.** Независимые случайные величины X_1, \ldots, X_4 могут принимать только значения 0 и 1. При этом $P(X_i=0)=0,4$, $i=1,\ldots,4$. Найдите математическое ожидание $E[3^{X_1+\ldots+X_4}]$.
- 3. Вероятность повышения цены акции за один рабочий день на 3% равна 0,2, вероятность повышения на 0,3% равна 0,5, а вероятность понижения на 2% равна 0,3. Найдите математическое ожидание изменения цены акции за 300 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- **4.** Случайные величины X_1, \dots, X_{243} независимы и распределены по биномиальному закону с параметрами n=4 и $p=\frac{1}{9}$. Найдите математическое ожидание $E\left\{(X_1+\dots+X_{243})^2\right\}$.
- 5. Случайные величины X, Y распределены по геометрическому закону. Найдите дисперсию D(X-Y), если их математические ожидания равны 5, а коэффициент корреляции X и Y равен 0,3.

- 1. Случайная величина X принимает только целые значения $1,2,\ldots,27$. При этом вероятности возможных значений X пропорциональны значениям: P(X=k)=ck. Найдите значение константы с и вероятность P(X>5).
- **2.** Независимые дискретные случайные величины X, Y могут принимать только значения 0 и 1. При этом P(X=0)=0,9, P(Y=0)=0,6. Найдите математическое ожидание $E[(X+Y)^2]$.
- 3. Вероятность выигрыша 60 рублей в одной партии равна 0,2, вероятность проигрыша 10 рублей равна 0,2, а вероятность проигрыша 20 рублей равна 0,6. Найдите дисперсию капитала игрока после 3 партий.
- **4.** Для случайных величин X, Y даны их математические ожидания и дисперсии E(X) = E(Y) = 3, D(X) = D(Y) = 10, а также коэффициент корреляции 0, E(X) = 0. Найдите математическое ожидание E(X) = 0.
- **5.** Случайные величины X_1, \dots, X_{12} распределены по закону Пуассона с одинаковым математическим ожиданием, равным 6. Найдите математическое ожидание $E(X_1^2 + \dots + X_{12}^2)$.

- 1. Независимые случайные величины X, Y, Z могут принимать только целые значения: X от 1 до 6 с вероятностью $\frac{1}{6}$, Y от 1 до 14 с вероятностью $\frac{1}{14}$, а Z только значения 6 и 14, при этом $P(Z=6)=\frac{1}{10}$. Найдите вероятность того, что сумма данных случайных величин будет не меньше 20.
- **2.** Независимые случайные величины X_1, \ldots, X_{10} могут принимать только значения 0 и 1. При этом $P(X_i = 0) = 0, 9, i = 1, \ldots, 10$. Найдите математическое ожидание $E[(X_1 + \ldots + X_{10})^2]$.
- **3.** Вероятность выигрыша 30 рублей в одной партии равна 0,5, вероятность проигрыша 10 рублей равна 0,2, а вероятность проигрыша 50 рублей равна 0,3. Найдите дисперсию капитала игрока после 7 партий.
- **4.** Случайные величины X_1,\dots,X_{243} распределены по биномиальному закону с параметрами n=5 и $p=\frac{2}{9}$. Найдите математическое ожидание $E\left(X_1^2+\dots+X_{243}^2\right)$.
- 5. На плоскости начерчены два квадрата, стороны которых 10 и 50 соответственно. Меньший квадрат содержится внутри большего квадрата. В большой квадрат случайным образом бросают точки до тех пор, пока не попадут в маленький квадрат. Пусть случайная величина X число бросаний. Найдите математическое ожидание E(X) и дисперсию D(X).

- **1.** Независимые дискретные случайные величины X, Y принимают только целые значения: X от 1 до 12 с вероятностью $\frac{1}{12}$, Y от 1 до 14 с вероятностью $\frac{1}{14}$. Найдите вероятность P(X+Y=21).
- **2.** Для независимых случайных величин X_1, \ldots, X_4 известно, что их математические ожидания $E(X_i) = -1$, дисперсии $D(X_i) = 3$, $i = 1, \ldots, 4$. Найдите дисперсию произведения $D(X_1 \cdots X_4)$.
- 3. Вероятность повышения цены акции за один рабочий день на 2% равна 0,1, вероятность повышения на 0,2% равна 0,7, а вероятность понижения на 1% равна 0,2. Найдите математическое ожидание изменения цены акции за 300 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- 4. Производится 10 независимых испытаний, в каждом из которых подбрасываются 2 игральные кости. Пусть X число испытаний, в которых все выпавшие цифры оказались \geqslant 4. Найдите дисперсию D(X).
- **5.** В серии независимых испытаний, которые проводятся с частотой одно испытание в единицу времени, вероятность наступления события A в одном испытании равна $\frac{1}{7}$. Пусть T время ожидания наступления события A 17 раз (за все время ожидания). Найдите математическое ожидание E(T) и дисперсию D(T).

- 1. Независимые случайные величины X, Y, Z принимают только целые значения: X от 1 до 13 с вероятностью $\frac{1}{13}$, Y от 1 до 12 с вероятностью $\frac{1}{12}$, Z от 1 до 8 с вероятностью $\frac{1}{8}$. Найдите вероятность того, что X, Y, Z примут разные значения.
- **2.** Для независимых случайных величин X_1, \ldots, X_4 известно, что их математические ожидания $E(X_i) = -2$, дисперсии $D(X_i) = 1$, $i = 1, \ldots, 4$. Найдите дисперсию произведения $D(X_1 \cdots X_4)$.
- 3. Вероятность повышения цены акции за один рабочий день на 3% равна 0,1, вероятность повышения на 0,1% равна 0,6, а вероятность понижения на 1% равна 0,3. Найдите математическое ожидание изменения цены акции за 100 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- **4.** Случайные величины X_1, \dots, X_{180} распределены по биномиальному закону с параметрами n=3 и $p=\frac{5}{6}$. Найдите математическое ожидание $E\left(X_1^2+\dots+X_{180}^2\right)$.
- **5.** Случайные величины X_1, \ldots, X_{18} независимы и распределены по закону Пуассона с одинаковым математическим ожиданием, равным 7. Найдите математическое ожидание $E\{(X_1 + \ldots + X_{18})^2\}$.

- 1. Независимые случайные величины X, Y, Z могут принимать только целые значения: Y и Z от 1 до 20 с вероятностью $\frac{1}{20}$, а X только значения 5 и 9, при этом $P(X=5)=\frac{4}{5}$. Найдите вероятность P(X<Y<Z).
- **2.** Распределение случайной величины X задано таблиней

X	6	7	11	15	16	
P	0,2	0,15	0,3	0,15	0,2]

Найдите математическое ожидание $\mu = E(X)$, среднее квадратичное отклонение $\sigma = \sigma_X$ и вероятность $P(|X - \mu| < \sigma)$.

- 3. Вероятность выигрыша 20 рублей в одной партии равна 0,7, вероятность проигрыша 10 рублей равна 0,1, а вероятность проигрыша 70 рублей равна 0,2. Найдите дисперсию капитала игрока после 6 партий.
- 4. Даны математические ожидания случайных величин X и Y: E(X) = 30, E(Y) = 70, их дисперсии D(X) = 5, D(Y) = 8 и ковариация Cov(X,Y) = 3. Найдите математическое ожидание E(X-Y) и дисперсию D(X-Y).
- 5. В серии независимых испытаний, которые проводятся с частотой одно испытание в единицу времени, вероятность наступления события A в одном испытании равна $\frac{1}{11}$. Пусть T время ожидания наступления события A 15 раз (за все время ожидания). Найдите математическое ожидание E(T) и дисперсию D(T).

- 1. Независимые случайные величины X, Y, Z могут принимать только целые значения: X от 0 до 6 с вероятностью $\frac{1}{7}$, Y от 0 до 18 с вероятностью $\frac{1}{19}$, а Z только значения 1 и 8, при этом $P(Z=1)=\frac{9}{10}$. Найдите вероятность того, что сумма данных случайных величин будет равна 11.
- **2.** Независимые дискретные случайные величины X, Y могут принимать только значения 0 и 1. При этом P(X=0)=0,7, P(Y=0)=0,1. Найдите математическое ожидание $E[(X+Y)^2]$.
- 3. Вероятность повышения цены акции за один рабочий день на 1% равна 0,2, вероятность повышения на 0,1% равна 0,7, а вероятность понижения на 2% равна 0,1. Найдите математическое ожидание изменения цены акции за 100 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- **4.** Производится 14 независимых испытаний с вероятностью успеха 0,8 в каждом испытании. Пусть X число успехов в испытаниях с номерами $1,2,\ldots,9$, Y число успехов в испытаниях с номерами $5,6,\ldots,14$. Найдите дисперсию D(X+2Y).
- **5.** Случайные величины независимы X_1, \ldots, X_{14} и распределены по геометрическому закону с одинаковым математическим ожиданием, равным 5. Найдите математическое ожидание $E\{(X_1 + \ldots + X_{14})^2\}$.

- 1. Независимые случайные величины X, Y принимают только целые значения: X от 1 до 12 с вероятностью $\frac{1}{12}$, Y от 1 до 7 с вероятностью $\frac{1}{7}$. Найдите вероятность P(X < Y).
- **2.** Дискретные случайные величины X_1, X_2, \dots, X_9 распределены по закону, заданному таблицей

X	-1	0	1	
P	0,2	0,3	0,5	ľ

Найдите математическое ожидание $E[X_1^2 + X_2^2 + ... + X_9^2]$.

- 3. Вероятность выигрыша 30 рублей в одной партии равна 0,5, вероятность проигрыша 10 рублей равна 0,2, а вероятность проигрыша 50 рублей равна 0,3. Найдите дисперсию капитала игрока после 6 партий.
- 4. Производится 18 независимых испытаний, в каждом из которых подбрасываются 4 игральные кости. Пусть X число испытаний, в которых все выпавшие цифры оказались \geqslant 3. Найдите дисперсию D(X).
- 5. В спортивной лотерее каждую неделю на 100 билетов разыгрывается 5 палаток и 5 рюкзаков. Турист решил каждую неделю покупать по одному билету до тех пор, пока он не выиграет палатку и рюкзак. Найдите среднее время реализации данного намерения (время измеряется в неделях).

- 1. Независимые случайные величины X и Y принимают только целые значения: X от -8 до 8, Y от -9 до 6. Найдите P(XY>0), если известно, что возможные значения X и Y равновероятны.
- **2.** Независимые случайные величины X_1, \ldots, X_{50} могут принимать только значения 0 и 1. При этом $P(X_i=0)=0,6$, $i=1,\ldots,50$. Найдите математическое ожидание $E[(X_1+\ldots+X_{50})^2]$.
- 3. Вероятность повышения цены акции за один рабочий день на 3% равна 0,4, вероятность повышения на 0,3% равна 0,3, а вероятность понижения на 4% равна 0,3. Найдите математическое ожидание изменения цены акции за 300 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- **4.** Случайные величины X_1, \ldots, X_{147} независимы и распределены по биномиальному закону с параметрами n=4 и $p=\frac{1}{7}$. Найдите математическое ожидание $E\{(X_1+\ldots+X_{147})^2\}$.
- **5.** Случайные величины X_1, \ldots, X_{19} распределены по закону Пуассона с одинаковым математическим ожиданием, равным 9. Найдите математическое ожидание $E(X_1^2 + \ldots + X_{19}^2)$.

- 1. Независимые случайные величины X, Y принимают только целые значения: X от —9 до 9 с вероятностью $\frac{1}{19}$, Y от —6 до 5 с вероятностью $\frac{1}{12}$. Найдите вероятность P(XY=0).
- **2.** Независимые дискретные случайные величины X, Y могут принимать только значения 0 и 1. При этом P(X=0)=0,2, P(Y=0)=0,7. Найдите математическое ожидание $E[(X-Y)^2]$.
- 3. Вероятность выигрыша 40 рублей в одной партии равна 0,3, вероятность проигрыша 10 рублей равна 0,3, а вероятность проигрыша 30 рублей равна 0,4. Найдите дисперсию капитала игрока после 4 партий.
- 4. Отрезок длины 35 поделен на две части длины 15 и 20 соответственно. 6 точек последовательно бросаются наудачу на отрезок. Пусть X случайная величина, равная числу точек, попавших на отрезок длины 20. Найдите математическое ожидание и среднее квадратичное отклонение величины X.
- **5.** Для пуассоновской случайной величины X отношение $\frac{P(X=10)}{P(X=9)}=4$. Найдите математическое ожидание E(X).

- 1. Независимые случайные величины X, Y принимают только целые значения: X от 1 до 13 с вероятностью $\frac{1}{13}$, Y от 1 до 14 с вероятностью $\frac{1}{14}$. Найдите вероятность P(X+Y<6).
- **2.** Независимые случайные величины X_1, X_2, \ldots, X_7 принимают только целые значения $-9, -8, \ldots, 12, 13$. Найдите математическое ожидание $E(X_1 \cdot X_2 \cdots X_7)$, если известно, что возможные значения равновероятны.
- 3. Вероятность выигрыша 20 рублей в одной партии равна 0,7, вероятность проигрыша 10 рублей равна 0,1, а вероятность проигрыша 70 рублей равна 0,2. Найдите дисперсию капитала игрока после 6 партий.
- 4. На плоскости начерчены две окружности, радиусы которых 5 и 15 соответственно. Меньшая окружность содержится внутри большего круга. В большой круг наудачу бросаются 10 точек. Пусть случайная величина X число точек, попавших в малый круг. Вычислите математическое ожидание E(X) и дисперсию D(X).
- 5. Случайные величины X, Y распределены по геометрическому закону. Найдите дисперсию D(X-Y), если их математические ожидания равны 6, а коэффициент корреляции X и Y равен 0,8.

- 1. Независимые случайные величины X_1, \ldots, X_4 принимают только целые значения от 0 до 10. Найдите вероятность $P(X_1 \cdot X_2 \cdots X_4 = 0)$, если известно, что все возможные значения равновероятны.
- **2.** Независимые случайные величины X_1, \ldots, X_5 могут принимать только значения 0 и 1. При этом $P(X_i = 0) = 0, 6, i = 1, \ldots, 5$. Найдите математическое ожидание $E[2^{X_1 + \ldots + X_5}]$.
- 3. Вероятность повышения цены акции за один рабочий день на 1% равна 0,2, вероятность повышения на 0,3% равна 0,7, а вероятность понижения на 2% равна 0,1. Найдите математическое ожидание изменения цены акции за 200 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- 4. Производится 640 независимых испытаний, состоящих в том, что одновременно подбрасываются 7 монет. Пусть X число испытаний, в которых выпало 2 герба. Найдите математическое ожидание E(X).
- **5.** Случайные величины X_1, \ldots, X_{15} распределены по геометрическому закону с одинаковым математическим ожиданием, равным 3. Найдите математическое ожидание $E(X_1^2 + \ldots + X_{15}^2)$.

Вариант № 2-29

- 1. Независимые случайные величины X, Y принимают только целые значения: X от —8 до 7 с вероятностью $\frac{1}{16}$, Y от —9 до 8 с вероятностью $\frac{1}{18}$. Найдите P(XY < 0).
- **2.** Распределение дискретной случайной величины X задано таблицей

X	3	6	7	
P	0,4	0,4	0,2	•

Найдите дисперсию D(X).

- 3. Вероятность выигрыша 60 рублей в одной партии равна 0,2, вероятность проигрыша 10 рублей равна 0,2, а вероятность проигрыша 20 рублей равна 0,6. Найдите дисперсию капитала игрока после 4 партий.
- **4.** Для случайных величин X, Y даны их математические ожидания и дисперсии E(X) = E(Y) = 9, D(X) = D(Y) = 40, а также коэффициент корреляции 0,5. Найдите математическое ожидание $E[(X+Y)^2]$.
- 5. На плоскости начерчены два квадрата, стороны которых 25 и 50 соответственно. Меньший квадрат содержится внутри большего квадрата. В большой квадрат случайным образом бросают точки до тех пор, пока не попадут в маленький квадрат. Пусть случайная величина X число бросаний. Найдите математическое ожидание E(X) и дисперсию D(X).

- 1. Независимые случайные величины X, Y, Z принимают только целые значения: X от 1 до 16 с вероятностью $\frac{1}{16}$, Y от 1 до 13 с вероятностью $\frac{1}{13}$, Z от 1 до 9 с вероятностью $\frac{1}{9}$. Найдите вероятность P(X < Y < Z).
- **2.** Для случайной величины X известно, что E(X) = 3, E(|X|) = 4, D(|X|) = 20. Найдите дисперсию D(X).
- 3. Вероятность повышения цены акции за один рабочий день на 4% равна 0,2, вероятность повышения на 0,1% равна 0,4, а вероятность понижения на 2% равна 0,4. Найдите математическое ожидание изменения цены акции за 200 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- **4.** Случайные величины X, Y принимают только значения 0 и 1. Найдите дисперсию D(X-Y), если вероятности P(X=1) = P(Y=1) = 0.8, а коэффициент корреляции X и Y равен 0.9.
- 5. На плоскости начерчены два квадрата, стороны которых 5 и 25 соответственно. Меньший квадрат содержится внутри большего квадрата. В большой квадрат случайным образом бросают точки до тех пор, пока не попадут в маленький квадрат. Пусть случайная величина X число бросаний. Найдите математическое ожидание E(X) и дисперсию D(X).

Вариант № 3-01

- **1.** Случайная величина X равномерно распределена на отрезке [-8,12]. Найдите вероятность $P\left(\frac{1}{X-8}>4\right)$.
- **2.** Случайная величина X равномерно распределена на отрезке [-1,1]. Найдите математическое ожидание $E\left(\sqrt[7]{X^{12}}\right)$.
- **3.** Для нормальной случайной величины X с математическим ожиданием E(X) = 15 и дисперсией D(X) = 16 найдите вероятность P(X > 10, 2).
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели, $n \geqslant 1$. Известно, что отношения цен $\frac{S(n)}{S(n-1)}$, n > 1, являются независимыми случайными величинами, которые распределены логнормально с параметрами $\mu = 0,00264$ и $\sigma = 0,0671$. Найдите вероятность того, что цена акции будет расти подряд две недели.
- **5.** Для независимых, распределенных по геометрическому закону случайных величин X_1, X_2, \ldots найдите предел

$$\lim_{n\to\infty} P(X_1+\ldots+X_n>8n+\sqrt{3n}).$$

если известно, что $E(X_i) = 8$.

1. Функция плотности вероятности случайной величины X имеет вид

$$f(x) = \begin{cases} 0, & x < 5, \\ \frac{C}{x^4}, & x \geqslant 5. \end{cases}$$

Найдите константу C и вероятность P(X < 6).

- **2.** Случайная величина X равномерно распределена на отрезке [-5,4]. Найдите $E\left(e^{4X}\right)$.
- **3.** Случайная величина X распределена по показательному закону. Найдите математическое ожидание $E\{(X+3)^2\}$, если дисперсия D(X) = 100.
- 4. Пусть S(n) цена акции в конце n-ой недели, $n\geqslant 1$. Найдите вероятность того, что цена акции в конце третьей недели будет выше, чем в конце первой недели, если известно, что отношения цен $\frac{S(n)}{S(n-1)}$, n>1, являются независимыми случайными величинами, которые распределены логнормально с параметрами $\mu=0,00143$ и $\sigma=0,0435$.
- **5.** Для независимых случайных величин X_1, X_2, \ldots , равномерно распределенных на отрезке [1,7], найдите предел

$$\lim_{n\to\infty}P(X_1+\ldots+X_n>4n+2).$$

Вариант № 3-03

1. Плотность вероятности случайной величины X имеет вид

$$f(x) = \begin{cases} \frac{3}{16}x^2, \text{ если } |x| \leqslant a, \\ 0, \text{ если } |x| > a. \end{cases}$$

Найдите a и $P\left(-\frac{a}{4} < X < \frac{a}{4}\right)$.

- **2.** Случайная величина X равномерно распределена на отрезке [0,1]. Найдите дисперсию $D\left(5X^{\frac{2}{5}}\right)$.
- **3.** Для нормальной случайной величины X с математическим ожиданием E(X) = 10 и дисперсией D(X) = 4 найдите вероятность P(X < 12, 2).
- 4. Пусть S(n) цена акции к концу n-ой недели, $n\geqslant 1$. Известно, что отношения цен $\frac{S(n)}{S(n-1)}$, n>1, являются независимыми случайными величинами, которые распределены логнормально с параметрами $\mu=0,0013$ и $\sigma=0,0468$. Найдите вероятность того, что за три недели цена акции вырастет более, чем на 2%.
- **5.** Для независимых случайных величин X_1, X_2, \ldots , равномерно распределенных на отрезке [1, 10], найдите предел

$$\lim_{n\to\infty}P\left(X_1+\ldots+X_n<\frac{11}{2}n+\sqrt{n}\right).$$

- **1.** Случайная величина X имеет плотность вероятности f(x). Найдите плотность вероятности g(x) случайной величины $Y = X^3$.
- **2.** Случайная величина X равномерно распределена на отрезке [-1,1]. Найдите математическое ожидание $E\left(\sqrt[5]{X^{14}}\right)$.
- **3.** Для нормальной случайной величины X с математическим ожиданием E(X) = 0,7 и дисперсией D(X) = 49 найдите вероятность P(|X| > 4,9).
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели, $n \geqslant 1$. Предполагая, что отношения цен $\frac{S(n)}{S(n-1)}$, n > 1, являются независимыми случайными величинами, распределенными логнормально с параметрами $\mu = 0,00236$ и $\sigma = 0,0599$, найдите вероятность того, что цена акции в конце четвертой недели будет выше, чем в конце первой недели.
- **5.** Для независимых, распределенных по геометрическому закону случайных величин X_1, X_2, \ldots найдите предел

$$\lim_{n\to\infty}P(X_1+\ldots+X_n>9n-\sqrt{n}),$$

если известно, что $E(X_i) = 9$.

Вариант № 3-05

- **1.** Случайная величина X равномерно распределена на отрезке [-2,9]. Найдите вероятность $P\left(\frac{1}{X-2}<6\right)$.
- **2.** Случайная величина X равномерно распределена на на отрезке [0,1]. Найдите дисперсию $D\left(4X^{\frac{7}{4}}\right)$.
- **3.** Случайные величины X_1, \ldots, X_{10} независимы и распределены по показательному закону. Найдите $E\{(X_1 + \ldots + X_{10} 3)^2\}$, если $E(X_1) = \ldots = E(X_{10}) = 3$.
- 4. Пусть S(n) цена акции в конце n-ой недели, $n\geqslant 1$. Найдите вероятность того, что цена акции в конце третьей недели будет выше, чем в конце первой недели, если известно, что отношения цен $\frac{S(n)}{S(n-1)}$, n>1, являются независимыми случайными величинами, которые распределены логнормально с параметрами $\mu=0,00446$ и $\sigma=0,0858$.
- **5.** Для независимых, распределенных по показательному закону случайных величин X_1, X_2, \ldots найдите предел

$$\lim_{n\to\infty} P(X_1+\ldots+X_n>4n-\sqrt{2n}),$$

если известно, что $E(X_i) = 4$.

1. Плотность вероятности случайной величины X имеет вид

$$f(x) = \begin{cases} \frac{1}{18}x^2, \text{ если } |x| \leqslant a, \\ 0, \text{ если } |x| > a. \end{cases}$$

Найдите a и $P\left(|X|>\frac{a}{6}\right)$.

- **2.** Случайная величина X равномерно распределена на отрезке [-1,5]. Найдите $E(e^{4X})$.
- **3.** Случайная величина X имеет нормальное распределение с параметрами E(X) = 40 и $D(X) = \sigma^2$. Найдите вероятность попадания X в интервал $(40 2\sigma, 40)$.
- 4. Пусть S(n) цена акции к концу n-ой недели, $n\geqslant 1$. Известно, что отношения цен $\frac{S(n)}{S(n-1)}$, n>1, являются независимыми случайными величинами, которые распределены логнормально с параметрами $\mu=0,0019$ и $\sigma=0,0785$. Найдите вероятность того, что за три недели цена акции вырастет более, чем на 6%.
- **5.** Для независимых случайных величин X_1, X_2, \ldots , распределенных по биномиальному закону с параметрами n=4 и $p=\frac{2}{3}$, найдите предел

$$\lim_{t\to\infty}P\left(X_1+\ldots+X_t>\frac{8}{3}t+\sqrt{2t}\right).$$

Вариант № 3-07

- **1.** Распределение случайной величины X задано плотностью вероятности f(x). Найдите плотность вероятности g(x) случайной величины Y = 8 7X.
- **2.** Случайная величина X равномерно распределена на отрезке [0,1]. Найдите дисперсию $D\left(5X^{\frac{7}{5}}\right)$.
- **3.** Для нормальной случайной величины X с математическим ожиданием E(X) = 29 и дисперсией D(X) = 64 найдите вероятность P(26, 6 < X < 34, 6).
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели, $n \geqslant 1$. Известно, что отношения цен $\frac{S(n)}{S(n-1)}$, n > 1, являются независимыми случайными величинами, которые распределены логнормально с параметрами $\mu = 0,00126$ и $\sigma = 0,0641$. Найдите вероятность того, что цена акции будет расти подряд три недели.
- **5.** Для независимых, распределенных по показательному закону случайных величин X_1, X_2, \ldots найдите предел

$$\lim_{n\to\infty} P(X_1+\ldots+X_n>5n+\sqrt{n}),$$

если известно, что $E(X_i) = 5$.

- **1.** Случайная величина X имеет плотность вероятности f(x). Найдите плотность вероятности g(x) случайной величины $Y = X^7$.
- **2.** Случайная величина X равномерно распределена на отрезке [-1,1]. Найдите математическое ожидание $E\left(\sqrt[5]{X^6}\right)$.
- **3.** Для нормальной случайной величины X известно, что математическое ожидание E(X)=20,3 и вероятность P(X<41)=0,98928. Найдите дисперсию D(X).
- **4.** Пусть S(n) обозначает цену акции к концу n-ой недели, $n \geqslant 1$. Предполагая, что отношения цен $\frac{S(n)}{S(n-1)}$, n > 1, являются независимыми случайными величинами, распределенными логнормально с параметрами $\mu = 0,00211$ и $\sigma = 0,0475$, найдите вероятность того, что цена акции в конце четвертой недели будет выше, чем в конце первой недели.
- **5.** Для независимых, распределенных по геометрическому закону случайных величин X_1, X_2, \ldots найдите предел

$$\lim_{n\to\infty}P(X_1+\ldots+X_n<9n+\sqrt{2n}),$$

если известно, что $E(X_i) = 9$.

Вариант № 3-09

- **1.** Случайная величина X равномерно распределена на отрезке [-9,18]. Найдите вероятность $P\left(\frac{1}{X-9}<3\right)$.
- **2.** Случайная величина X равномерно распределена на отрезке [-2,1]. Найдите $E(e^{5X})$.
- **3.** Для нормальной случайной величины X известно, что дисперсия D(X)=81 и вероятность P(X<54)=0,61791. Найдите математическое ожидание m=E(X).
- 4. Пусть S(n) цена акции в конце n-ой недели, $n\geqslant 1$. Найдите вероятность того, что цена акции в конце третьей недели будет выше, чем в конце первой недели, если известно, что отношения цен $\frac{S(n)}{S(n-1)}$, n>1, являются независимыми случайными величинами, которые распределены логнормально с параметрами $\mu=0,00266$ и $\sigma=0,0707$.
- **5.** Для независимых, распределенных по закону Пуассона случайных величин X_1, X_2, \ldots найдите предел

$$\lim_{n\to\infty} P(X_1+\ldots+X_n<5n+\sqrt{3n}),$$

если известно, что $E(X_i) = 5$.

- **1.** Распределение случайной величины X задано плотностью вероятности f(x). Найдите плотность вероятности g(x) случайной величины Y = 9 4X.
- **2.** Случайная величина X равномерно распределена на отрезке [0,1]. Найдите дисперсию $D\left(4X^{\frac{3}{4}}\right)$.
- **3.** Математические ожидания и дисперсии независимых нормальных случайных величин X,Y,Z,U равны 1. Найдите вероятность P(X+Y+Z-U<0).
- 4. Пусть S(n) цена акции к концу n-ой недели, $n\geqslant 1$. Известно, что отношения цен $\frac{S(n)}{S(n-1)}$, n>1, являются независимыми случайными величинами, которые распределены логнормально с параметрами $\mu=0,00132$ и $\sigma=0,0589$. Найдите вероятность того, что за три недели цена акции вырастет более, чем на 4%.
- **5.** Для независимых, распределенных по геометрическому закону случайных величин X_1, X_2, \ldots найдите предел

$$\lim_{n\to\infty} P(X_1+\ldots+X_n<8n-\sqrt{2n}),$$

если известно, что $E(X_i) = 8$.

Вариант № 3-11

1. Плотность вероятности случайной величины X имеет вид

$$f(x) = \begin{cases} \frac{3}{2}x^2, \text{ если } |x| \leqslant a, \\ \\ 0, \text{ если } |x| > a. \end{cases}$$

Найдите a и $P\left(|X|>\frac{a}{5}\right)$.

- **2.** Случайная величина X равномерно распределена на отрезке [-3,4]. Найдите $E(e^{4X})$.
- **3.** Случайные величины X_1, \ldots, X_8 независимы и распределены по показательному закону. Найдите $E\{(X_1+\ldots+X_8-3)^2\}$, если $E(X_1)=\ldots=E(X_8)=3$.
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели, $n \geqslant 1$. Предполагая, что отношения цен $\frac{S(n)}{S(n-1)}$, n > 1, являются независимыми случайными величинами, распределенными логнормально с параметрами $\mu = 0,00353$ и $\sigma = 0,0696$, найдите вероятность того, что цена акции в конце четвертой недели будет выше, чем в конце первой недели.
- **5.** Для независимых, распределенных по закону Пуассона случайных величин X_1, X_2, \ldots найдите предел

$$\lim_{n\to\infty}P(X_1+\ldots+X_n>6n+\sqrt{2n}).$$

если известно, что $E(X_i) = 6$.

1. Плотность вероятности случайной величины X имеет вид

$$f(x) = \begin{cases} \frac{3}{16} x^2, \text{ если } |x| \leqslant a, \\ \\ 0, \text{ если } |x| > a. \end{cases}$$

Найдите a и $P\left(-\frac{a}{3} < X < \frac{a}{3}\right)$.

- **2.** Случайная величина X равномерно распределена на отрезке [-1,1]. Найдите математическое ожидание $E\left(\sqrt[3]{X^{14}}\right)$.
- **3.** Случайная величина X имеет нормальное распределение с параметрами E(X) = 20 и $D(X) = \sigma^2$. Найдите вероятность попадания X в интервал $(20 \sigma, 20)$.
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели, $n \geqslant 1$. Известно, что отношения цен $\frac{S(n)}{S(n-1)},\ n>1$, являются независимыми случайными величинами, которые распределены логнормально с параметрами $\mu=0,00257$ и $\sigma=0,0547$. Найдите вероятность того, что цена акции будет расти подряд три недели.
- **5.** Для независимых случайных величин X_1, X_2, \ldots , распределенных по биномиальному закону с параметрами n=7 и $p=\frac{1}{2}$, найдите предел

$$\lim_{t\to\infty}P\left(X_1+\ldots+X_t<\frac{7}{2}t+\sqrt{3t}\right).$$

Вариант № 3-13

- **1.** Случайная величина X равномерно распределена на отрезке [-3,6]. Найдите вероятность $P\left(\frac{1}{X-3}>5\right)$.
- **2.** Случайная величина X равномерно распределена на отрезке [0,1]. Найдите дисперсию $D\left(6X^{\frac{7}{6}}\right)$.
- **3.** Для нормальной случайной величины X с математическим ожиданием E(X) = 17 и дисперсией D(X) = 16 найдите вероятность P(15, 8 < X < 21, 8).
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели, $n \geqslant 1$. Предполагая, что отношения цен $\frac{S(n)}{S(n-1)}$, n > 1, являются независимыми случайными величинами, распределенными логнормально с параметрами $\mu = 0,0025$ и $\sigma = 0,0565$, найдите вероятность того, что цена акции в конце четвертой недели будет выше, чем в конце первой недели.
- **5.** Для независимых, распределенных по закону Пуассона случайных величин X_1, X_2, \ldots найдите предел

$$\lim_{n\to\infty}P(X_1+\ldots+X_n>4n-\sqrt{n}),$$

если известно, что $E(X_i) = 4$.

1. Функция плотности вероятности случайной величины X имеет вид

$$f(x) = \begin{cases} 0, & x < 4, \\ \frac{C}{x^3}, & x \geqslant 4. \end{cases}$$

Найдите константу C и вероятность P(X < 5).

- **2.** Случайная величина X равномерно распределена на отрезке [-1,5]. Найдите $E(e^{2X})$.
- **3.** Случайная величина X распределена по показательному закону. Найдите математическое ожидание $E\{(X+4)^2\}$, если дисперсия D(X)=100.
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели, $n \geqslant 1$. Известно, что отношения цен $\frac{S(n)}{S(n-1)}$, n > 1, являются независимыми случайными величинами, которые распределены логнормально с параметрами $\mu = 0,00205$ и $\sigma = 0,0544$. Найдите вероятность того, что цена акции будет расти подряд две недели.
- **5.** Для независимых случайных величин X_1, X_2, \ldots , распределенных по биномиальному закону с параметрами n = 5 и $p = \frac{1}{2}$, найдите предел

$$\lim_{t\to\infty}P\left(X_1+\ldots+X_t>\frac{5}{2}t-\sqrt{3t}\right).$$

Вариант № 3-15

- **1.** Случайная величина X равномерно распределена на отрезке [-8,12]. Найдите вероятность $P\left(\frac{1}{X-8}<2\right)$.
- **2.** Случайная величина X равномерно распределена на отрезке [-1,1]. Найдите математическое ожидание $E\left(\sqrt[15]{X^2}\right)$.
- **3.** Для нормальной случайной величины X с математическим ожиданием E(X) = 26 и дисперсией D(X) = 49 найдите вероятность P(X > 21, 1).
- 4. Пусть S(n) цена акции в конце n-ой недели, $n\geqslant 1$. Найдите вероятность того, что цена акции в конце третьей недели будет выше, чем в конце первой недели, если известно, что отношения цен $\frac{S(n)}{S(n-1)}$, n>1, являются независимыми случайными величинами, которые распределены логнормально с параметрами $\mu=0,00196$ и $\sigma=0,0821$.
- **5.** Для независимых случайных величин X_1, X_2, \ldots , равномерно распределенных на отрезке [1, 10], найдите предел

$$\lim_{n\to\infty}P\left(X_1+\ldots+X_n<\frac{11}{2}n-\sqrt{2n}\right).$$

- **1.** Случайная величина X имеет плотность вероятности f(x). Найдите плотность вероятности g(x) случайной величины $Y = X^9$.
- **2.** Случайная величина X равномерно распределена на отрезке [0,1]. Найдите дисперсию $D\left(2X^{\frac{5}{2}}\right)$.
- **3.** Математические ожидания и дисперсии независимых нормальных случайных величин X,Y,Z,U равны 1. Найдите вероятность P(X-Y+Z+U<6).
- 4. Пусть S(n) цена акции к концу n-ой недели, $n\geqslant 1$. Известно, что отношения цен $\frac{S(n)}{S(n-1)}$, n>1, являются независимыми случайными величинами, которые распределены логнормально с параметрами $\mu=0,00162$ и $\sigma=0,0387$. Найдите вероятность того, что за три недели цена акции вырастет более, чем на 5%.
- **5.** Для независимых, распределенных по показательному закону случайных величин X_1, X_2, \ldots найдите предел

$$\lim_{n\to\infty} P(X_1+\ldots+X_n<9n+\sqrt{2n}).$$

если известно, что $E(X_i) = 9$.

Вариант № 3-17

1. Функция плотности вероятности случайной величины X имеет вид

$$f(x) = \begin{cases} 0, & x < 5, \\ \frac{C}{x^3}, & x \geqslant 5. \end{cases}$$

Найдите константу C и вероятность P(X < 6).

- **2.** Случайная величина X равномерно распределена на отрезке [-1,1]. Найдите математическое ожидание $E\left(\sqrt[3]{X^{10}}\right)$.
- **3.** Для нормальной случайной величины X известно, что дисперсия D(X) = 121 и вероятность P(X < 57) = 0,18406. Найдите математическое ожидание m = E(X).
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели, $n \geqslant 1$. Предполагая, что отношения цен $\frac{S(n)}{S(n-1)}$, n > 1, являются независимыми случайными величинами, распределенными логнормально с параметрами $\mu = 0,0043$ и $\sigma = 0,0562$, найдите вероятность того, что цена акции в конце четвертой недели будет выше, чем в конце первой недели.
- **5.** Для независимых случайных величин X_1, X_2, \ldots , принимающих с равной вероятностью значения 5, 14 и 23, найдите предел

$$\lim_{n\to\infty} P\left(X_1+\ldots+X_n>14n+\sqrt{2n}\right).$$

- **1.** Распределение случайной величины X задано плотностью вероятности f(x). Найдите плотность вероятности g(x) случайной величины Y = 1 6X.
- **2.** Случайная величина X равномерно распределена на отрезке [-2,2]. Найдите $E(e^{4X})$.
- **3.** Для нормальной случайной величины X известно, что математическое ожидание E(X)=43.5 и вероятность P(X<53)=0.97128. Найдите дисперсию D(X).
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели, $n \geqslant 1$. Известно, что отношения цен $\frac{S(n)}{S(n-1)}$, n > 1, являются независимыми случайными величинами, которые распределены логнормально с параметрами $\mu = 0,00124$ и $\sigma = 0,092$. Найдите вероятность того, что цена акции будет расти подряд две недели.
- **5.** Для независимых, распределенных по показательному закону случайных величин X_1, X_2, \ldots найдите предел

$$\lim_{n\to\infty}P(X_1+\ldots+X_n<9n-\sqrt{n}),$$

если известно, что $E(X_i) = 9$.

Вариант № 3-19

1. Плотность вероятности случайной величины X имеет вид

$$f(x) = \begin{cases} \frac{3}{2}x^2, \text{ если } |x| \leqslant a, \\ \\ 0, \text{ если } |x| > a. \end{cases}$$

Найдите a и $P\left(|X|>\frac{a}{6}\right)$.

- **2.** Случайная величина X равномерно распределена на на отрезке [0,1]. Найдите дисперсию $D\left(8X^{\frac{3}{8}}\right)$.
- **3.** Для нормальной случайной величины X с математическим ожиданием E(X) = 13 и дисперсией D(X) = 16 найдите вероятность P(X < 14, 6).
- 4. Пусть S(n) цена акции в конце n-ой недели, $n\geqslant 1$. Найдите вероятность того, что цена акции в конце третьей недели будет выше, чем в конце первой недели, если известно, что отношения цен $\frac{S(n)}{S(n-1)}$, n>1, являются независимыми случайными величинами, которые распределены логнормально с параметрами $\mu=0,00159$ и $\sigma=0,0945$.
- **5.** Для независимых случайных величин X_1, X_2, \ldots , принимающих с равной вероятностью значения 2, 10 и 18, найдите предел

$$\lim_{n\to\infty}P\left(X_1+\ldots+X_n<10n+\sqrt{2n}\right).$$

1. Плотность вероятности случайной величины X имеет вид

$$f(x) = \begin{cases} \frac{3}{16}x^2, \text{ если } |x| \leqslant a, \\ 0, \text{ если } |x| > a. \end{cases}$$

Найдите a и $P\left(-\frac{a}{4} < X < \frac{a}{4}\right)$.

- **2.** Случайная величина X равномерно распределена на отрезке [-1,1]. Найдите математическое ожидание $E\left(\sqrt[9]{X^2}\right)$.
- **3.** Для нормальной случайной величины X с математическим ожиданием E(X) = 4 и дисперсией D(X) = 64 найдите вероятность P(|X| > 4).
- 4. Пусть S(n) цена акции к концу n-ой недели, $n\geqslant 1$. Известно, что отношения цен $\frac{S(n)}{S(n-1)}$, n>1, являются независимыми случайными величинами, которые распределены логнормально с параметрами $\mu=0,00172$ и $\sigma=0,0996$. Найдите вероятность того, что за две недели цена акции вырастет более, чем на 4%.
- **5.** Для независимых случайных величин X_1, X_2, \ldots , принимающих с равной вероятностью значения 9, 18 и 27, найдите предел

$$\lim_{n\to\infty} P\left(X_1+\ldots+X_n<18n-\sqrt{2n}\right).$$

Вариант № 3-21

- **1.** Случайная величина X равномерно распределена на отрезке [-3,11]. Найдите вероятность $P\left(\frac{1}{X-3}>4\right)$.
- **2.** Случайная величина X равномерно распределена на отрезке [-4,2]. Найдите $E(e^{4X})$.
- **3.** Случайная величина X распределена по показательному закону. Найдите математическое ожидание $E\{(X+8)^2\}$, если дисперсия D(X)=36.
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели, $n \geqslant 1$. Известно, что отношения цен $\frac{S(n)}{S(n-1)}$, n > 1, являются независимыми случайными величинами, которые распределены логнормально с параметрами $\mu = 0,00242$ и $\sigma = 0,0505$. Найдите вероятность того, что цена акции будет расти подряд две недели.
- **5.** Для независимых, распределенных по закону Пуассона случайных величин X_1, X_2, \ldots найдите предел

$$\lim_{n\to\infty} P(X_1+\ldots+X_n<7n-\sqrt{2n}),$$

если известно, что $E(X_i) = 7$.

1. Плотность вероятности случайной величины X имеет вид

$$f(x) = \begin{cases} \frac{3}{16} x^2, \text{ если } |x| \leqslant a, \\ \\ 0, \text{ если } |x| > a. \end{cases}$$

Найдите a и $P\left(|X|>\frac{a}{8}\right)$.

- **2.** Случайная величина X равномерно распределена на отрезке [-5,3]. Найдите $E(e^{3X})$.
- **3.** Для нормальной случайной величины X с математическим ожиданием E(X) = 2,1 и дисперсией D(X) = 49 найдите вероятность P(|X| > 6,3).
- 4. Пусть S(n) цена акции в конце n-ой недели, $n\geqslant 1$. Найдите вероятность того, что цена акции в конце третьей недели будет выше, чем в конце первой недели, если известно, что отношения цен $\frac{S(n)}{S(n-1)}$, n>1, являются независимыми случайными величинами, которые распределены логнормально с параметрами $\mu=0,00435$ и $\sigma=0,0831$.
- **5.** Для независимых случайных величин X_1, X_2, \ldots , распределенных по биномиальному закону с параметрами n = 9 и $p = \frac{1}{3}$, найдите предел

$$\lim_{t\to\infty}P\left(X_1+\ldots+X_t<3t-\sqrt{2t}\right).$$

Вариант № 3-23

1. Плотность вероятности случайной величины X имеет вид

$$f(x) = \begin{cases} \frac{1}{18}x^2, \text{ если } |x| \leqslant a, \\ \\ 0, \text{ если } |x| > a. \end{cases}$$

Найдите a и $P\left(-\frac{a}{3} < X < \frac{a}{3}\right)$.

- **2.** Случайная величина X равномерно распределена на отрезке [-1,1]. Найдите математическое ожидание $E\left(\sqrt[3]{X^4}\right)$.
- **3.** Случайная величина X имеет нормальное распределение с параметрами E(X) = 20 и $D(X) = \sigma^2$. Найдите вероятность попадания X в интервал ($20 2\sigma$, 20).
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели, $n \geqslant 1$. Предполагая, что отношения цен $\frac{S(n)}{S(n-1)}$, n > 1, являются независимыми случайными величинами, распределенными логнормально с параметрами $\mu = 0,00298$ и $\sigma = 0,0365$, найдите вероятность того, что цена акции в конце четвертой недели будет выше, чем в конце первой недели.
- **5.** Для независимых случайных величин X_1, X_2, \ldots , принимающих с равной вероятностью значения 8, 14 и 20, найдите предел

$$\lim_{n\to\infty} P\left(X_1+\ldots+X_n>14n-\sqrt{3n}\right).$$

- **1.** Случайная величина X равномерно распределена на отрезке [-5,10]. Найдите вероятность $P\left(\frac{1}{X-5}<9\right)$.
- **2.** Случайная величина X равномерно распределена на отрезке [0,1]. Найдите дисперсию $D\left(9X^{\frac{4}{9}}\right)$.
- **3.** Для нормальной случайной величины X с математическим ожиданием E(X) = 28 и дисперсией D(X) = 81 найдите вероятность P(19, 9 < X < 37).
- 4. Пусть S(n) цена акции к концу n-ой недели, $n\geqslant 1$. Известно, что отношения цен $\frac{S(n)}{S(n-1)}$, n>1, являются независимыми случайными величинами, которые распределены логнормально с параметрами $\mu=0,00145$ и $\sigma=0,0745$. Найдите вероятность того, что за три недели цена акции вырастет более, чем на 7%.
- **5.** Для независимых случайных величин X_1, X_2, \ldots , равномерно распределенных на отрезке [1, 13], найдите предел

$$\lim_{n\to\infty} P\left(X_1+\ldots+X_n>7n-\sqrt{n}\right).$$

Вариант № 3-25

1. Функция плотности вероятности случайной величины X имеет вид

$$f(x) = \begin{cases} 0, & x < 5, \\ \frac{C}{x^4}, & x \geqslant 5. \end{cases}$$

Найдите константу C и вероятность P(X < 6).

- **2.** Случайная величина X равномерно распределена на отрезке [-5,3]. Найдите $E(e^{3X})$.
- **3.** Для нормальной случайной величины X известно, что дисперсия D(X)=49 и вероятность P(X<45)=0,18406. Найдите математическое ожидание m=E(X).
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели, $n \geqslant 1$. Предполагая, что отношения цен $\frac{S(n)}{S(n-1)}$, n > 1, являются независимыми случайными величинами, распределенными логнормально с параметрами $\mu = 0.00465$ и $\sigma = 0.088$, найдите вероятность того, что цена акции в конце четвертой недели будет выше, чем в конце первой недели.
- **5.** Для независимых случайных величин X_1, X_2, \ldots , принимающих с равной вероятностью значения 5, 10 и 15, найдите предел

$$\lim_{n\to\infty} P\left(X_1+\ldots+X_n<10n-\sqrt{n}\right).$$

- 1. Случайная величина X равномерно распределена на отрезке [-2,8]. Найдите вероятность $P\left(\frac{1}{X-2}>6\right)$.
- **2.** Случайная величина X равномерно распределена на отрезке [-1,1]. Найдите математическое ожидание $E\left(\sqrt[7]{X^8}\right)$.
- **3.** Случайные величины X_1, \ldots, X_6 независимы и распределены по показательному закону. Найдите $E\{(X_1+\ldots+X_6-5)^2\}$, если $E(X_1)=\ldots=E(X_6)=5$.
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели, $n \geqslant 1$. Известно, что отношения цен $\frac{S(n)}{S(n-1)}$, n > 1, являются независимыми случайными величинами, которые распределены логнормально с параметрами $\mu = 0,0015$ и $\sigma = 0,0432$. Найдите вероятность того, что цена акции будет расти подряд две недели.
- **5.** Для независимых, распределенных по закону Пуассона случайных величин X_1, X_2, \ldots найдите предел

$$\lim_{n\to\infty}P(X_1+\ldots+X_n>5n+\sqrt{3n}),$$

если известно, что $E(X_i) = 5$.

Вариант № 3-27

- **1.** Случайная величина X имеет плотность вероятности f(x). Найдите плотность вероятности g(x) случайной величины $Y = X^5$.
- **2.** Случайная величина X равномерно распределена на отрезке [0,1]. Найдите дисперсию $D\left(8X^{\frac{3}{8}}\right)$.
- **3.** Для нормальной случайной величины X с математическим ожиданием E(X) = 20 и дисперсией D(X) = 36 найдите вероятность P(X > 18, 2).
- 4. Пусть S(n) цена акции к концу n-ой недели, $n\geqslant 1$. Известно, что отношения цен $\frac{S(n)}{S(n-1)}$, n>1, являются независимыми случайными величинами, которые распределены логнормально с параметрами $\mu=0,00169$ и $\sigma=0,056$. Найдите вероятность того, что за три недели цена акции вырастет более, чем на 4%.
- **5.** Для независимых случайных величин X_1, X_2, \ldots , распределенных по биномиальному закону с параметрами n=4 и $p=\frac{2}{5}$, найдите предел

$$\lim_{t\to\infty}P\left(X_1+\ldots+X_t>\frac{8}{5}t-\sqrt{3t}\right).$$

- **1.** Распределение случайной величины X задано плотностью вероятности f(x). Найдите плотность вероятности g(x) случайной величины Y = 7 4X.
- **2.** Случайная величина X равномерно распределена на отрезке [-5,5]. Найдите $E(e^{4X})$.
- **3.** Для нормальной случайной величины X с математическим ожиданием E(X)=24 и дисперсией D(X)=49 найдите вероятность P(X<20,5).
- 4. Пусть S(n) цена акции в конце n-ой недели, $n\geqslant 1$. Найдите вероятность того, что цена акции в конце третьей недели будет выше, чем в конце первой недели, если известно, что отношения цен $\frac{S(n)}{S(n-1)}$, n>1, являются независимыми случайными величинами, которые распределены логнормально с параметрами $\mu=0,00367$ и $\sigma=0,0851$.
- **5.** Для независимых случайных величин X_1, X_2, \ldots , равномерно распределенных на отрезке [3, 15], найдите предел

$$\lim_{n\to\infty}P\left(X_1+\ldots+X_n>9n+\sqrt{3n}\right).$$

Вариант № 3-29

1. Плотность вероятности случайной величины X имеет вид

$$f(x) = \begin{cases} \frac{1}{18}x^2, \text{ если } |x| \leqslant a, \\ 0, \text{ если } |x| > a. \end{cases}$$

Найдите a и $P\left(|X|>\frac{a}{7}\right)$.

- **2.** Случайная величина X равномерно распределена на отрезке [0,1]. Найдите дисперсию $D\left(10X^{\frac{3}{10}}\right)$.
- **3.** Для нормальной случайной величины X известно, что математическое ожидание E(X)=40,4 и вероятность P(X<35)=0,18406. Найдите дисперсию D(X).
- 4. Пусть S(n) цена акции к концу n-ой недели, $n\geqslant 1$. Известно, что отношения цен $\frac{S(n)}{S(n-1)}$, n>1, являются независимыми случайными величинами, которые распределены логнормально с параметрами $\mu=0,00133$ и $\sigma=0,0996$. Найдите вероятность того, что за две недели цена акции вырастет более, чем на 4%.
- **5.** Для независимых, распределенных по геометрическому закону случайных величин X_1, X_2, \ldots найдите предел

$$\lim_{n\to\infty}P(X_1+\ldots+X_n<4n+\sqrt{3n}).$$

если известно, что $E(X_i) = 4$.

- **1.** Случайная величина X равномерно распределена на отрезке [-9,17]. Найдите вероятность $P\left(\frac{1}{X-9}<3\right)$.
- **2.** Случайная величина X равномерно распределена на отрезке [-1,1]. Найдите математическое ожидание $E\left(\sqrt[9]{X^2}\right)$.
- **3.** Математические ожидания и дисперсии независимых нормальных случайных величин X,Y,Z,U равны 1. Найдите вероятность P(X+Y+Z-U<0).
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели, $n \geqslant 1$. Известно, что отношения цен $\frac{S(n)}{S(n-1)}$, n > 1, являются независимыми случайными величинами, которые распределены логнормально с параметрами $\mu = 0,0018$ и $\sigma = 0,0598$. Найдите вероятность того, что цена акции будет расти подряд две недели.
- **5.** Для независимых случайных величин X_1, X_2, \ldots , равномерно распределенных на отрезке [0, 15], найдите предел

$$\lim_{n\to\infty}P\left(X_1+\ldots+X_n<\frac{15}{2}n+\sqrt{3n}\right).$$

Вариант № 4-01

- **1.** Случайный вектор (X,Y) распределен по закону: $P(X=1,Y=1)=0,15; \ P(X=1,Y=2)=0,1; \ P(X=1,Y=3)=0,15; \ P(X=2,Y=1)=0,19; \ P(X=2,Y=2)=0,15; \ P(X=2,Y=3)=0,26.$ Найдите условную вероятность P(Y=2|X=2).
- **2.** Найдите распределение случайной величины $Z = \min(4, X Y)$ и E(Z), если известно распределение дискретного случайного вектора (X, Y):

	X = 2	X = 3	X = 4	
Y = -1	$\frac{1}{6}$	1/12	<u>1</u>	
Y = 0	<u>1</u>	<u>1</u>	$\frac{1}{4}$	

3. Найдите E(X), D(X), E(Y), D(Y), E(XY), Cov(X,Y) и $\rho(X,Y)$ для случайного дискретного вектора (X,Y), распределенного по закону

	X = 0	X = 1	X = 2	
Y = 0	0,1	0,1	0,1	1
Y = 1	0,1	0,2	0,4	

4. Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} 12e^{-3x-4y}, & \text{если } 0 \leqslant x < +\infty, 0 \leqslant y < +\infty, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите вероятность P(X > 1).

5. Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{2\pi} e^{-x^2 - 10x - 26 - 3xy - 16y - \frac{5}{2}y^2}.$$

Найдите D(X|Y=y).

1. Для случайного дискретного вектора (X,Y), распределенного по закону

	X = -1	X = 0	X = 1	
Y = -1	1/8	<u>1</u> 8	1/8	
Y = 0	1/8	<u>3</u>	<u>1</u> 8	

выясните, зависимы или нет события $A = \{X = -1\}$ и $B = \{X = Y\}$.

2. Найдите распределение случайной величины $Z = \max(X, Y)$ и E(Z), если известно распределение дискретного случайного вектора (X, Y):

	X = -3	X = -2	X = -1
Y = -2	1/12	0	<u>5</u> 24
Y = -1	<u>5</u> 24	1 12	<u>5</u> 12

- 3. Дано: P(X=40)=0.9, P(X=80)=0.1, E(Y|X=40)=4, E(Y|X=80)=1. Найдите E(Y).
- **4.** Случайный вектор (X,Y) равномерно распределен в треугольнике $x \geqslant 0$, $y \geqslant 0$, $52x + y \leqslant 52$. Найдите математическое ожидание $E(X^{10}Y)$.
- **5.** Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{\pi}e^{-\frac{5}{2}x^2 - 18x - 36 - xy - 6y - \frac{1}{2}y^2}.$$

Найдите условное математическое ожидание E(Y|X=x).

Вариант № 4-03

1. Для случайного дискретного вектора (X,Y), распределенного по закону

	X = -1	X = 0	X = 1
Y = -1	3 32	<u>5</u> 32	3 32
Y = 0	$\frac{5}{32}$	$\frac{13}{32}$	$\frac{3}{32}$

выясните, зависимы или нет события $A = \{X = -1\}$ и $B = \{X = Y\}$.

2. Найдите распределение случайной величины Z = X + Y и E(Z), если известно распределение случайного дискретного вектора (X,Y):

	X = 2	X = 3	X = 4	
Y = -2	$\frac{1}{4}$	<u>1</u>	<u>1</u> 8	
Y = -1	1/8	$\frac{1}{4}$	$\frac{1}{12}$	

3. Дискретный случайный вектор (X,Y) задан распре-

делением $Y = -2$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{5}{24}$. Найди $Y = -1$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$			X = 0	X = 1	X = 2	
$Y = -1$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{4}$	делением	Y = -2	1 12	1 12	<u>5</u> 24	. Найдите
		Y = -1	1/8	$\frac{1}{4}$	$\frac{1}{4}$	

условное математическое ожидание $E(Y|X\geqslant 1)$.

4. Случайный вектор (X,Y) имеет плотность распределения $f(x,y) = \begin{cases} \frac{1}{2}x + Cy, & \text{если} \quad 0 < x < 1, \, 0 < y < 2, \\ 0, & \text{в остальных точках.} \end{cases}$ Найдите константу C и P(X+Y<1).

5. Плотность распределения случайного вектора (X,Y) имеет вид: $f_{X,Y}(x,y)=\frac{1}{\pi}e^{-\frac{1}{2}x^2-4x-16-xy-12y-\frac{5}{2}y^2}$. Найдите D(Y|X=x).

1. Для случайного дискретного вектора (X,Y), распределенного по закону

	X = -1	X = 0	X = 1
Y = -1	1/12	$\frac{1}{6}$	1 12
Y = 0	$\frac{1}{6}$	<u>5</u> 12	1 12

выясните, зависимы или нет события $A = \{X = -1\}$ и $B = \{Y = 0\}$.

2. Найдите распределение случайной величины Z = X - Y и E(Z), если известно распределение случайного дискретного вектора (X,Y):

	X = 1	X = 2	X = 3]
Y = -1	1 12	1 24	<u>5</u> 24	
Y = 0	<u>1</u> 6	<u>1</u>	$\frac{1}{3}$	

- **3.** Дано: P(X = 10) = 0.2, P(X = 70) = 0.8, E(Y|X = 10) = 2, E(Y|X = 70) = 4. Найдите E(XY).
- **4.** Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} Ce^{-x-2y}, & \text{если } 0 \leqslant x < +\infty, \ 0 \leqslant y < +\infty, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите константу C и P(X < 1).

5. Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{2\pi}e^{-x^2+x-\frac{1}{2}-xy-\frac{1}{2}y^2}.$$

Найдите условное математическое ожидание E(X|Y=y).

1. Для случайного дискретного вектора (X,Y), распределенного по закону

	X = -1	X = 0	X = 1	
Y = -1	<u>5</u> 28	1 14	<u>5</u> 28	
Y = 0	$\frac{1}{14}$	$\frac{9}{28}$	$\frac{5}{28}$	

выясните, зависимы или нет события $A = \{X = 1\}$ и $B = \{X + Y = 0\}$.

2. Найдите распределение случайной величины $Z = \max(5, X - Y)$ и E(Z), если известно распределение дискретного случайного вектора (X, Y):

	X = 3	X = 4	X = 5	
Y = -2	$\frac{1}{4}$	1/8	1/8	
Y = -1	$\frac{1}{6}$	$\frac{1}{6}$	<u>1</u>	

- 3. Дано: P(X = 50) = 0,3, P(X = 80) = 0,7, E(Y|X = 50) = 3, E(Y|X = 80) = 4. Найдите $D\{E(Y|X)\}$.
- **4.** Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} \frac{1}{9}x + Cy, & \text{если} \quad 0 < x < 2, 0 < y < 4, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите константу C и P(X+Y>1).

5. Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{2\pi}e^{-\frac{5}{2}x^2 - 3xy - y^2}.$$

Найдите E(X|Y=y).

1. Для случайного дискретного вектора (X,Y), распределенного по закону

	X = -1	X = 0	X = 1	
Y = -1	1/8	1/8	1/8	١.
Y = 0	1/8	3/8	1/8	

выясните, зависимы или нет события $A = \{X = 1\}$ и $B = \{X + Y = 0\}$.

2. Найдите распределение случайной величины $Z = \min(X, Y)$ и E(Z), если известно распределение дискретного случайного вектора (X, Y):

	X = -2	X = -1	X = 0
Y = -1	$\frac{1}{6}$	$\frac{1}{24}$	$\frac{1}{6}$
Y = 0	<u>5</u> 24	1/12	$\frac{1}{3}$

3. Распределение случайного вектора (X,Y) задается таб-

		X = 0	X = 1	
лицей	Y = 0	$\frac{1}{2}X$	$\frac{1}{2} - \frac{1}{2}x$	•
	Y = 1	$\frac{1}{2} - \frac{1}{2}x$	$\frac{1}{2}x$	

. Найдите х так, что-

бы коэффициент корреляции между X и Y был равен $-\frac{1}{4}$.

4. Случайный вектор (X,Y) имеет плотность распределения $f(x,y) = \begin{cases} Ce^{-2x-y}, & \text{если } 0 \leqslant x < +\infty, 0 \leqslant y < +\infty, \\ 0, & \text{в остальных точках.} \end{cases}$ Найдите константу C и P(X < 2).

5. Плотность распределения случайного вектора (X,Y) имеет вид: $f_{X,Y}(x,y)=\frac{1}{2\pi}e^{-\frac{5}{2}x^2+9x-\frac{17}{2}-3xy+5y-y^2}$. Найдите

имеет вид: $f_{X,Y}(x,y) = \frac{1}{2\pi}e^{-}$ D(Y|X=x). v

1. Для случайного дискретного вектора (X,Y), распределенного по закону

Вариант № 4-07

	X = -1	X = 0	X = 1	
Y = -1	1/16	<u>3</u> 16	1 16	
Y = 0	$\frac{3}{16}$	<u>7</u> 16	1/16	

выясните, зависимы или нет события $A = \{X = -1\}$ и $B = \{Y = 0\}$.

2. Найдите распределение случайной величины $Z = \frac{X}{Y}$ и E(Z), если известно распределение дискретного случайного вектора (X,Y):

	X = -1	X = 0	X = 1
Y = -1	$\frac{1}{4}$	$\frac{1}{6}$	1/8
Y = 1	<u>1</u> 8	$\frac{1}{4}$	$\frac{1}{12}$

- 3. Дано: P(X=20)=0.5, P(X=60)=0.5, E(Y|X=20)=1, E(Y|X=60)=4, D(Y|X=20)=5 и D(Y|X=60)=8. Найдите D(Y).
- **4.** Случайный вектор (X,Y) равномерно распределен в треугольнике $x \ge 0$, $y \ge 0$, $5x + 12y \le 60$. Найдите значение функции распределения $F_X(4)$ и E(X).
- **5.** Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{\pi}e^{-\frac{1}{2}x^2 + 5x - \frac{41}{2} - xy + 13y - \frac{5}{2}y^2}.$$

Найдите условное математическое ожидание E(Y|X=x).

- 1. Случайный вектор (X,Y) распределен по закону: $P(X=1,Y=1)=0.18; \ P(X=1,Y=2)=0.11; \ P(X=1,Y=3)=0.11; \ P(X=2,Y=1)=0.16; \ P(X=2,Y=2)=0.16; \ P(X=2,Y=3)=0.28.$ Найдите условную вероятность P(X=1|Y=3).
- **2.** Найдите распределение случайной величины $Z = \min(2, X Y)$ и E(Z), если известно распределение дискретного случайного вектора (X, Y):

	X = 1	X = 2	X = 3
Y = 0	$\frac{1}{4}$	1/8	<u>1</u> 8
Y = 1	<u>1</u>	$\frac{1}{6}$	$\frac{1}{6}$

3. Найдите E(X) и Cov(X,Y) для случайного дискретного вектора (X,Y), распределенного по закону

	X = 0	X = 1	X = 2
Y = 0	0,3	0,1	0
Y = 1	0,1	0,1	0,4

4. Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} \frac{2}{7}x + Cy, & \text{если} \quad 0 < x < 1, 0 < y < 3, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите константу C.

5. Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{\pi}e^{-2x^2 - 2xy - y^2}.$$

Найдите E(X|Y=y).

Вариант № 4-09

1. Для случайного дискретного вектора (X,Y), распределенного по закону

	X = -1	X = 0	X = 1	
Y = -1	$\frac{1}{7}$	$\frac{3}{28}$	<u>1</u> 7].
Y = 0	$\frac{3}{28}$	<u>5</u> 14	$\frac{1}{7}$	

выясните, зависимы или нет события $A = \{XY \neq 0\}$ и $B = \{X + Y = 0\}$.

2. Найдите распределение случайной величины Z = X + Y и E(Z), если известно распределение случайного дискретного вектора (X,Y):

	X = 2	X = 3	X = 4
Y = -2	$\frac{1}{4}$	1/8	1/8
Y = -1	$\frac{1}{6}$	<u>1</u>	<u>1</u>

3. Найдите Cov(X,Y) и $\rho(X,Y)$ для случайного дискретного вектора (X,Y), распределенного по закону

	X = 0	X = 1	X = 2
Y = 0	0,3	0,2	0
Y = 1	0	0,1	0,4

4. Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \left\{ \begin{array}{l} 12e^{-4x-3y}, & \text{если } 0 \leqslant x < +\infty, \, 0 \leqslant y < +\infty, \\ 0, & \text{в остальных точках.} \end{array} \right.$$

Найдите вероятность P(X < 2).

5. Плотность распределения случайного вектора (X,Y) имеет вид: $f_{X,Y}(x,y) = \frac{1}{\pi}e^{-\frac{1}{2}x^2-2-xy+4y-\frac{5}{2}y^2}$. Найдите D(X|Y=y).

1. Для случайного дискретного вектора (X,Y), распределенного по закону

	X = -1	X = 0	X = 1
Y = -1	1 12	<u>1</u> 6	1 12
Y = 0	<u>1</u>	<u>5</u> 12	1/12

выясните, зависимы или нет события $A = \{X = -1\}$ и $B = \{Y = 0\}$.

2. Найдите распределение случайной величины $Z = \max(X, Y)$ и E(Z), если известно распределение дискретного случайного вектора (X, Y):

	X = -1	X = 0	X = 1	
Y = 0	$\frac{1}{6}$	$\frac{1}{24}$	<u>1</u>	
Y = 1	<u>5</u> 24	1 12	$\frac{1}{3}$	

3. Дискретный случайный вектор (X,Y) задан распре-

		X = -1	X = 0	X = 1	
делением	Y = 0	$\frac{1}{4}$	<u>1</u> 8	1 8	
	Y = 1	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	
				/ /	

условное математическое ожидание E(Y|X+Y=1).

Найдите

- **4.** Случайный вектор (X,Y) равномерно распределен в треугольнике $x \ge 0$, $y \ge 0$, $55x + y \le 55$. Найдите математическое ожидание $E(X^9Y)$.
- **5.** Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{2\pi}e^{-\frac{5}{2}x^2+9x-\frac{17}{2}-3xy+5y-y^2}.$$

Найдите условное математическое ожидание $E\left(X \mid Y=y\right)$.

Вариант № 4-11

1. Для случайного дискретного вектора (X,Y), распределенного по закону

	X = -1	X = 0	X = 1
Y = -1	<u>1</u> 8	1/8	1/8
Y = 0	1/8	<u>3</u> 8	1/8

выясните, зависимы или нет события $A = \{X = -1\}$ и $B = \{X = Y\}$.

2. Найдите распределение случайной величины $Z = \frac{X}{Y}$ и E(Z), если известно распределение дискретного случайного вектора (X,Y):

	X = -1	X = 0	X = 1	
Y = -1	1/12	1 12	<u>5</u> 24	
Y = 1	<u>1</u> 8	$\frac{1}{4}$	$\frac{1}{4}$	

3. Дискретный случайный вектор (X,Y) задан распре-

		X = -2	X = -1	X = 0	
делением	Y = 2	1 12	0	$\frac{5}{24}$. Найди-
	Y = 3	$\frac{5}{24}$	1 12	<u>5</u> 12	

те условное математическое ожидание $E(Y|X\leqslant -1)$.

- **4.** Случайный вектор (X,Y) имеет плотность распределения $f(x,y) = \begin{cases} Ce^{-2x-y}, & \text{если } 0 \leqslant x < +\infty, \ 0 \leqslant y < +\infty, \\ 0, & \text{в остальных точках.} \end{cases}$ Найдите константу C и P(X < 1).
- **5.** Плотность распределения случайного вектора (X,Y) имеет вид: $f_{X,Y}(x,y)=\frac{1}{2\pi}e^{-\frac{5}{2}x^2-2xy-\frac{1}{2}y^2}$. Найдите E(X|Y=y).

- 1. Случайный вектор (X,Y) распределен по закону: $P(X=1,Y=1)=0,11; \ P(X=1,Y=2)=0,19; \ P(X=1,Y=3)=0,19; \ P(X=2,Y=1)=0,17; \ P(X=2,Y=2)=0,1; \ P(X=2,Y=3)=0,24.$ Найдите условную вероятность P(X=2|Y=2).
- **2.** Найдите распределение случайной величины $Z = \max(5, X Y)$ и E(Z), если известно распределение дискретного случайного вектора (X, Y):

	X = 3	X = 4	X = 5	
Y = -2	$\frac{1}{4}$	<u>1</u>	1/8	1
Y = -1	1/8	$\frac{1}{4}$	1 12	

- **3.** Дано: P(X = 40) = 0.4, P(X = 60) = 0.6, E(Y|X = 40) = 4, E(Y|X = 60) = 1. Найдите Cov(X,Y).
- **4.** Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} \frac{1}{8}x + Cy, & \text{если} \quad 0 < x < 2, \, 0 < y < 3, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите константу C и P(X+Y>1).

5. Плотность распределения случайного вектора $(X\,,Y)$ имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{2\pi}e^{-\frac{5}{2}x^2 - 3xy - 6x - y^2 - 4y - 4}$$
.

Найдите D(Y|X=x).

Вариант № 4-13

- 1. Случайный вектор (X,Y) распределен по закону: $P(X=1,Y=1)=0,14; \ P(X=1,Y=2)=0,13; \ P(X=1,Y=3)=0,15; \ P(X=2,Y=1)=0,11; \ P(X=2,Y=2)=0,2; \ P(X=2,Y=3)=0,27.$ Найдите условную вероятность P(Y=3|X=1).
- **2.** Найдите распределение случайной величины $Z = \min(X, Y)$ и E(Z), если известно распределение дискретного случайного вектора (X, Y):

	X = -2	X = -1	X = 0
Y = -1	$\frac{1}{6}$	1/8	$\frac{1}{6}$
Y = 0	1/8	$\frac{1}{4}$	$\frac{1}{6}$

- **3.** Дано: P(X = 30) = 0.7, P(X = 70) = 0.3, D(Y|X = 30) = 9 и D(Y|X = 70) = 5. Найдите $E\{D(Y|X)\}$.
- **4.** Случайный вектор (X,Y) равномерно распределен в треугольнике $x \ge 0$, $y \ge 0$, $7x + 3y \le 21$. Найдите значение функции распределения $F_X(2)$ и E(X).
- **5.** Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{3}{2\pi}e^{-\frac{5}{2}x^2 - xy - x - y^2 - 2y - 1}$$
.

Найдите условное математическое ожидание E(Y|X=x).

1. Для случайного дискретного вектора (X,Y), распределенного по закону

	X = -1	X = 0	X = 1
Y = -1	3 14	<u>1</u> 28	3 14
Y = 0	$\frac{1}{28}$	$\frac{2}{7}$	<u>3</u> 14

выясните, зависимы или нет события $A = \{X = 1\}$ и $B = \{X + Y = 0\}$.

2. Найдите распределение случайной величины Z = X - Y и E(Z), если известно распределение случайного дискретного вектора (X,Y):

	X = 1	X = 2	X = 3
Y = -1	$\frac{1}{4}$	1 12	1/8
Y = 0	<u>5</u> 24	<u>1</u> 12	$\frac{1}{4}$

3. Найдите E(Y) и D(X) для случайного дискретного вектора (X,Y), распределенного по закону

	X = 0	X = 1	X = 2
Y = 0	0,1	0,2	0
Y = 1	0,1	0,1	0,5

4. Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \left\{ \begin{array}{ll} 12e^{-4x-3y}, & \text{если } 0 \leqslant x < +\infty, \, 0 \leqslant y < +\infty, \\ 0, & \text{в остальных точках.} \end{array} \right.$$

Найдите вероятность P(X > 2).

5. Плотность распределения случайного вектора (X,Y) имеет вид: $f_{X,Y}(x,y) = \frac{1}{2\pi}e^{-\frac{1}{2}x^2-x-\frac{5}{2}-2xy-4y-\frac{5}{2}y^2}$. Найдите условное математическое ожидание E(X|Y=y).

Вариант № 4-15

1. Для случайного дискретного вектора (X,Y), распределенного по закону

	X = -1	X = 0	X = 1	
Y = -1	3 16	1 16	3 16	
Y = 0	1/16	<u>5</u> 16	$\frac{3}{16}$	

выясните, зависимы или нет события $A = \{X = -1\}$ и $B = \{Y = 0\}$.

2. Найдите распределение случайной величины $Z = \min(X, Y)$ и E(Z), если известно распределение дискретного случайного вектора (X, Y):

	X = -3	X = -2	X = -1	
Y = -2	1 12	1 12	<u>5</u> 24]
Y = -1	1/8	$\frac{1}{4}$	$\frac{1}{4}$]

3. Найдите E(X), D(X), E(Y), D(Y), E(XY), Cov(X,Y) и $\rho(X,Y)$ для случайного дискретного вектора (X,Y), распределенного по закону

	X = 0	X = 1	X = 2
Y = 0	0,2	0,1	0
Y = 1	0	0,1	0,6

4. Случайный вектор (X,Y) имеет плотность распределения $f(x,y) = \left\{ \begin{array}{l} 6e^{-3x-2y}, \ \text{если} \ 0 \leqslant x < +\infty, \ 0 \leqslant y < +\infty, \\ 0, \quad \text{в остальных точках.} \end{array} \right.$

Найдите вероятность P(X < 2).

5. Плотность распределения случайного вектора (X,Y) имеет вид: $f_{X,Y}(x,y)=\frac{3}{2\pi}e^{-x^2+x-\frac{41}{2}-xy-13y-\frac{5}{2}y^2}$. Найдите D(X|Y=y).

1. Для случайного дискретного вектора (X,Y), распределенного по закону

	X = -1	X = 0	X = 1
Y = -1	<u>1</u> 8	<u>1</u> 8	1/8
Y = 0	1/8	<u>3</u> 8	1/8

выясните, зависимы или нет события $A = \{X = 1\}$ и $B = \{X + Y = 0\}$.

2. Найдите распределение случайной величины $Z = \frac{X}{Y}$ и E(Z), если известно распределение дискретного случайного вектора (X,Y):

	X = -2	X = 0	X = 2	
Y = -2	$\frac{1}{4}$	1/8	1/8	
Y = 2	$\frac{1}{6}$	$\frac{1}{6}$	<u>1</u>	

3. Найдите E(X) и Cov(X,Y) для случайного дискретного вектора (X,Y), распределенного по закону

	X = 0	X = 1	X = 2
Y = 0	0,1	0,1	0
Y = 1	0,1	0,1	0,6

4. Случайный вектор (X,Y) имеет плотность распределения $f(x,y) = \begin{cases} Ce^{-2x-y}, & \text{если } 0 \leqslant x < +\infty, 0 \leqslant y < +\infty, \\ 0, & \text{в остальных точках.} \end{cases}$ Найдите константу C и P(X < 1).

5. Плотность распределения случайного вектора (X,Y) имеет вид: $f_{X,Y}(x,y) = \frac{1}{2\pi}e^{-\frac{1}{2}x^2-x-1-xy-y^2}$. Найдите D(X|Y=y).

Вариант № 4-17

1. Для случайного дискретного вектора (X,Y), распределенного по закону

	X = -1	X = 0	X = 1	
Y = -1	$\frac{5}{28}$	1/14	<u>5</u> 28	
Y = 0	1/14	9 28	$\frac{5}{28}$	1

выясните, зависимы или нет события $A = \{X = -1\}$ и $B = \{X = Y\}$.

2. Найдите распределение случайной величины $Z = \max(X, Y)$ и E(Z), если известно распределение дискретного случайного вектора (X, Y):

	X = -1	X = 0	X = 1	
Y = 0	<u>1</u>	1 12	<u>1</u>	
Y = 1	$\frac{1}{6}$	<u>1</u>	$\frac{1}{4}$	

3. Найдите E(Y) и D(X) для случайного дискретного вектора (X,Y), распределенного по закону

	X = 0	X = 1	X = 2
Y = 0	0,2	0,2	0
Y = 1	0	0,2	0,4

4. Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} \frac{2}{5}x + Cy, & \text{если} \quad 0 < x < 1, 0 < y < 3, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите константу C и P(X+Y<1).

5. Плотность распределения случайного вектора (X,Y) имеет вид: $f_{X,Y}(x,y) = \frac{1}{2\pi}e^{-\frac{5}{2}x^2-x-1-2xy-y-\frac{1}{2}y^2}$. Найдите условное математическое ожидание E(X|Y=y).

1. Для случайного дискретного вектора (X,Y), распределенного по закону

	X = -1	X = 0	X = 1
Y = -1	$\frac{1}{7}$	3 28	$\frac{1}{7}$
Y = 0	$\frac{3}{28}$	<u>5</u> 14	$\frac{1}{7}$

выясните, зависимы или нет события $A = \{XY \neq 0\}$ и $B = \{X + Y = 0\}$.

2. Найдите распределение случайной величины $Z = \max(5, X - Y)$ и E(Z), если известно распределение дискретного случайного вектора (X, Y):

	X = 3	X = 4	X = 5
Y = -2	$\frac{1}{4}$	<u>1</u> 12	1/8
Y = -1	$\frac{5}{24}$	$\frac{1}{12}$	1/4

- **3.** Дано: P(X = 50) = 0,3, P(X = 90) = 0,7, E(Y|X = 50) = 1, E(Y|X = 90) = 4. Найдите E(Y).
- **4.** Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} \frac{2}{7}x + Cy, & \text{если} \quad 0 < x < 1, 0 < y < 3, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите константу C.

5. Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{2\pi}e^{-\frac{5}{2}x^2 + 21x - \frac{89}{2} - 3xy + 13y - y^2}$$
.

Найдите D(Y|X=x).

Вариант № 4-19

1. Для случайного дискретного вектора (X,Y), распределенного по закону

	X = -1	X = 0	X = 1	
Y = -1	1/28	<u>3</u> 14	1/28	1
Y = 0	$\frac{3}{14}$	$\frac{13}{28}$	$\frac{1}{28}$	1

выясните, зависимы или нет события $A = \{XY \neq 0\}$ и $B = \{X + Y = 0\}$.

2. Найдите распределение случайной величины Z = X - Y и E(Z), если известно распределение дискретного случайного вектора (X,Y):

	X = 2	X = 3	X = 4	
Y = -2	$\frac{1}{6}$	1/8	<u>1</u>	
Y = -1	<u>1</u> 8	$\frac{1}{4}$	<u>1</u>	

3. Дискретный случайный вектор (X,Y) задан распре-

		X = 0	X = 1	X = 2	
делением	Y = 1	$\frac{1}{4}$	1/8	1/8	. Найдите
	Y = 2	$\frac{1}{6}$	$\frac{1}{6}$	<u>1</u>	
				T7/T7	TT > 4 \

условное математическое ожидание $E(Y|X\geqslant 1)$.

4. Случайный вектор (X,Y) имеет плотность распределения $f(x,y) = \begin{cases} Ce^{-2x-y}, & \text{если } 0 \leqslant x < +\infty, 0 \leqslant y < +\infty, \\ 0, & \text{в остальных точках.} \end{cases}$ Найдите константу C и P(X < 2).

5. Плотность распределения случайного вектора (X,Y) имеет вид: $f_{X,Y}(x,y) = \frac{1}{\pi}e^{-\frac{1}{2}x^2-xy-\frac{5}{2}y^2}$. Найдите условное математическое ожидание E(X|Y=y).

1. Для случайного дискретного вектора (X,Y), распределенного по закону

	X = -1	X = 0	X = 1
Y = -1	<u>5</u> 28	1 14	$\frac{5}{28}$
Y = 0	1 14	<u>9</u> 28	<u>5</u> 28

выясните, зависимы или нет события $A = \{X = -1\}$ и $B = \{X = Y\}$.

2. Найдите распределение случайной величины Z = X + Y и E(Z), если известно распределение дискретного случайного вектора (X,Y):

	X = 2	X = 3	X = 4	1
Y = -2	$\frac{1}{4}$	1/8	1/8	
Y = -1	<u>1</u>	<u>1</u>	<u>1</u>	

3. Распределение случайного вектора (X,Y) задается таб-

		X = 0	X = 1	
лицей	Y = 0	$-\frac{1}{3} + \frac{2}{3}x$	$\frac{2}{3} - \frac{2}{3}x$	
	Y = 1	$\frac{2}{3} - \frac{2}{3}x$	$\frac{2}{3}x$	

. Найдите *х* так, что-

бы коэффициент корреляции между X и Y был равен $-\frac{1}{4}$.

- 4. Случайный вектор (X,Y) имеет плотность распределения $f(x,y) = \begin{cases} \frac{2}{7}x + Cy, & \text{если} \quad 0 < x < 1, \, 0 < y < 3, \\ 0, & \text{в остальных точках.} \end{cases}$ Найдите константу C и P(X+Y<1).
- **5.** Плотность распределения случайного вектора (X,Y) имеет вид: $f_{X,Y}(x,y) = \frac{1}{\pi}e^{-\frac{1}{2}x^2-2-xy-4y-\frac{5}{2}y^2}$. Найдите условное математическое ожидание E(Y|X=x).

Вариант № 4-21

1. Для случайного дискретного вектора (X,Y), распределенного по закону

	X = -1	X = 0	X = 1	
Y = -1	<u>5</u> 28	1 14	<u>5</u> 28	
Y = 0	1/14	$\frac{9}{28}$	$\frac{5}{28}$	

выясните, зависимы или нет события $A = \{X = 1\}$ и $B = \{X + Y = 0\}$.

2. Найдите распределение случайной величины $Z = \min(2, X - Y)$ и E(Z), если известно распределение дискретного случайного вектора (X, Y):

	X = 1	X = 2	X = 3	
Y = 0	$\frac{1}{6}$	<u>1</u> 12	$\frac{1}{6}$	
Y = 1	<u>1</u>	$\frac{1}{6}$	$\frac{1}{4}$	

3. Дискретный случайный вектор (X,Y) задан распре-

		X = 2	X = 3	X = 4	
делением	Y = -1	$\frac{1}{6}$	<u>1</u> 8	$\frac{1}{6}$. Найдите
	Y = 0	1/8	$\frac{1}{4}$	$\frac{1}{6}$	

условное математическое ожидание $E(Y|X\leqslant 3)$.

- **4.** Случайный вектор (X,Y) имеет плотность распределения $f(x,y) = \left\{ \begin{array}{l} 12e^{-3x-4y}, \ \text{если} \ 0 \leqslant x < +\infty, \ 0 \leqslant y < +\infty, \\ 0, \quad \text{в остальных точках.} \end{array} \right.$ Найдите P(X < 1).
- **5.** Плотность распределения случайного вектора (X,Y) имеет вид: $f_{X,Y}(x,y) = \frac{1}{2\pi}e^{-\frac{5}{2}x^2+9x-9-2xy+3y-\frac{1}{2}y^2}$. Найдите условное математическое ожидание E(X|Y=y).

1. Для случайного дискретного вектора (X,Y), распределенного по закону

	X = -1	X = 0	X = 1
Y = -1	1/16	<u>3</u> 16	1 16
Y = 0	3 16	7 16	1 16

выясните, зависимы или нет события $A = \{X = -1\}$ и $B = \{Y = 0\}$.

2. Найдите распределение случайной величины $Z = \max(X,Y)$ и E(Z), если известно распределение дискретного случайного вектора (X,Y):

	X = -3	X = -2	X = -1]
Y = -2	1/12	0	<u>5</u> 24	١.
Y = -1	$\frac{5}{24}$	1 12	<u>5</u> 12	

- 3. Дано: P(X=40)=0,3, P(X=90)=0,7, E(Y|X=40)=4, E(Y|X=90)=3. Найдите $D\{E(Y|X)\}$.
- **4.** Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} \frac{1}{2}x + Cy, & \text{если} \quad 0 < x < 1, 0 < y < 2, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите константу C и P(X+Y>1).

5. Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{2\pi}e^{-\frac{1}{2}x^2 - 3x - 5 - 2xy - 7y - \frac{5}{2}y^2}.$$

Найдите условное математическое ожидание E(Y|X=x).

Вариант № 4-23

- **1.** Случайный вектор (X,Y) распределен по закону: $P(X=1,Y=1)=0,17; \ P(X=1,Y=2)=0,18; \ P(X=1,Y=3)=0,12; \ P(X=2,Y=1)=0,14; \ P(X=2,Y=2)=0,16; \ P(X=2,Y=3)=0,23.$ Найдите условную вероятность P(Y=1|X=1).
- **2.** Найдите распределение случайной величины Z = X + Y и E(Z), если известно распределение дискретного случайного вектора (X,Y):

	X = 1	X = 2	X = 3	
Y = -1	1 12	$\frac{1}{24}$	<u>5</u> 24	
Y = 0	<u>1</u>	<u>1</u>	$\frac{1}{3}$	

- 3. Дано: P(X = 10) = 0, 1, P(X = 60) = 0, 9, E(Y|X = 10) = 2, E(Y|X = 60) = 4, D(Y|X = 10) = 9 и D(Y|X = 60) = 5. Найлите D(Y).
- **4.** Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} \frac{1}{9}x + Cy, & \text{если} \quad 0 < x < 2, 0 < y < 4, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите константу C.

5. Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{3}{2\pi}e^{-\frac{5}{2}x^2 - 3x - \frac{9}{2} - xy + 3y - y^2}.$$

Найдите D(X|Y=y).

1. Для случайного дискретного вектора (X,Y), распределенного по закону

	X = -1	X = 0	X = 1	
Y = -1	1/8	1/8	1/8	
Y = 0	1/8	<u>3</u> 8	<u>1</u> 8	

выясните, зависимы или нет события $A = \{X = -1\}$ и $B = \{X = Y\}$.

2. Найдите распределение случайной величины $Z = \min(2, X - Y)$ и E(Z), если известно распределение дискретного случайного вектора (X, Y):

	X = 1	X = 2	X = 3
Y = 0	1 12	<u>1</u> 24	<u>5</u> 24
Y = 1	<u>1</u>	<u>1</u>	$\frac{1}{3}$

- **3.** Дано: P(X = 10) = 0.9, P(X = 80) = 0.1, E(Y|X = 10) = 2, E(Y|X = 80) = 3. Найдите Cov(X,Y).
- **4.** Случайный вектор (X,Y) равномерно распределен в треугольнике $x \geqslant 0$, $y \geqslant 0$, $26x + y \leqslant 26$. Найдите математическое ожидание $E(X^{10}Y)$.
- **5.** Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{2\pi}e^{-\frac{1}{2}x^2 - 2xy - \frac{5}{2}y^2}.$$

Найдите условное математическое ожидание E(X|Y=y).

Вариант № 4-25

- 1. Случайный вектор (X,Y) распределен по закону: $P(X=1,Y=1)=0,13;\ P(X=1,Y=2)=0,17;\ P(X=1,Y=3)=0,15;\ P(X=2,Y=1)=0,14;\ P(X=2,Y=2)=0,13;\ P(X=2,Y=3)=0,28.$ Найдите условную вероятность P(X=2|Y=1).
- **2.** Найдите распределение случайной величины $Z = \max(3, X Y)$ и E(Z), если известно распределение дискретного случайного вектора (X, Y):

	X = 2	X = 3	X = 4	
Y = -1	$\frac{1}{4}$	1 12	<u>1</u> 8	
Y = 0	<u>5</u> 24	1 12	$\frac{1}{4}$	

- **3.** Дано: P(X = 10) = 0.4, P(X = 60) = 0.6, E(Y|X = 10) = 4, E(Y|X = 60) = 1. Найдите E(XY).
- **4.** Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \left\{ \begin{array}{l} 12e^{-3x-4y}, \ \text{если} \ 0 \leqslant x < +\infty, \ 0 \leqslant y < +\infty, \\ 0, \quad \text{в остальных точках}. \end{array} \right.$$

Найдите P(X > 2).

5. Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{\pi}e^{-2x^2+12x-18-2xy+6y-y^2}$$
.

Найдите D(Y|X=x).

1. Для случайного дискретного вектора (X,Y), распределенного по закону

	X = -1	X = 0	X = 1
Y = -1	1/8	1/8	1/8
Y = 0	1/8	<u>3</u>	<u>1</u> 8

выясните, зависимы или нет события $A = \{X = 1\}$ и $B = \{X + Y = 0\}$.

2. Найдите распределение случайной величины Z = X - Y и E(Z), если известно распределение дискретного случайного вектора (X,Y):

	X = 2	X = 3	X = 4
Y = -2	1 12	0	<u>5</u> 24
Y = -1	$\frac{5}{24}$	1 12	<u>5</u> 12

3. Дискретный случайный вектор (X,Y) задан распределением

	X = -1	X = 0	X = 1	
Y = -2	<u>1</u> 6	1/24	<u>1</u>]
Y = -1	<u>5</u> 24	1 12	$\frac{1}{3}$	

Найдите условное математическое ожидание E(Y|X+Y=-1).

- **4.** Случайный вектор (X,Y) равномерно распределен в треугольнике $x \geqslant 0$, $y \geqslant 0$, $5x + 12y \leqslant 60$. Найдите значение функции распределения $F_X(8)$ и E(X).
- **5.** Плотность распределения случайного вектора (X,Y) имеет вид: $f_{X,Y}(x,y) = \frac{3}{2\pi}e^{-x^2-xy-\frac{5}{2}y^2}$. Найдите условное математическое ожидание E(X|Y=y).

Вариант № 4-27

1. Для случайного дискретного вектора (X,Y), распределенного по закону

	X = -1	X = 0	X = 1	
Y = -1	1/12	<u>1</u>	1 12].
Y = 0	$\frac{1}{6}$	<u>5</u> 12	1 12	

выясните, зависимы или нет события $A = \{X = -1\}$ и $B = \{Y = 0\}$.

2. Найдите распределение случайной величины $Z = \min(X, Y)$ и E(Z), если известно распределение дискретного случайного вектора (X, Y):

	X = -1	X = 0	X = 1
Y = 0	$\frac{1}{4}$	<u>1</u>	1/8
Y = 1	1/8	$\frac{1}{4}$	1 12

- **3.** Дано: P(X=10)=0.9, P(X=70)=0.1, D(Y|X=10)=7 и D(Y|X=70)=9. Найдите $E\left\{D(Y|X)\right\}$.
- **4.** Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} Ce^{-x-y}, \ \text{если} \ 0 \leqslant x < +\infty, \ 0 \leqslant y < +\infty, \\ 0, \quad \text{в остальных точках}. \end{cases}$$

Найдите константу C и P(X < 2).

5. Плотность распределения случайного вектора $(X\,,Y)$ имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{2\pi}e^{-x^2+4x-4-3xy+6y-\frac{5}{2}y^2}.$$

Найдите D(X|Y=y).

1. Для случайного дискретного вектора (X,Y), распределенного по закону

	X = -1	X = 0	X = 1
Y = -1	1/12	<u>1</u>	1 12
Y = 0	$\frac{1}{6}$	<u>5</u> 12	1 12

выясните, зависимы или нет события $A = \{X = 1\}$ и $B = \{Y = -1\}$.

2. Найдите распределение случайной величины $Z = \frac{X}{Y}$ и E(Z), если известно распределение дискретного случайного вектора (X,Y):

	X = -3	X = 0	X = 3
Y = -3	1/12	1 12	<u>5</u> 24
Y = 3	1/8	$\frac{1}{4}$	$\frac{1}{4}$

3. Найдите Cov(X,Y) и $\rho(X,Y)$ для случайного дискретного вектора (X,Y), распределенного по закону

	X = 0	X = 1	X = 2
Y = 0	0,3	0,2	0,1
Y = 1	0,1	0,1	0,2

- 4. Случайный вектор (X,Y) имеет плотность распределения $f(x,y) = \begin{cases} \frac{2}{7}x + Cy, & \text{если} \quad 0 < x < 1, \, 0 < y < 3, \\ 0, & \text{в остальных точках.} \end{cases}$ Найдите константу C и P(X+Y<1).
- **5.** Плотность распределения случайного вектора (X,Y) имеет вид: $f_{X,Y}(x,y) = \frac{1}{2\pi}e^{-x^2-3xy-6x-\frac{5}{2}y^2-10y-10}$. Найдите D(Y|X=x).

Вариант № 4-29

- 1. Случайный вектор (X,Y) распределен по закону: P(X=1,Y=1)=0,16; P(X=1,Y=2)=0,14; P(X=1,Y=3)=0,12; P(X=2,Y=1)=0,15; P(X=2,Y=2)=0,18; P(X=2,Y=3)=0,25. Найдите условную вероятность P(Y=2|X=1).
- **2.** Найдите распределение случайной величины $Z = \max(X, Y)$ и E(Z), если известно распределение дискретного случайного вектора (X, Y):

	X = -3	X = -2	X = -1	
Y = -2	$\frac{1}{4}$	1/8	1/8	١.
Y = -1	$\frac{1}{6}$	<u>1</u>	<u>1</u>	

- **3.** Дано: P(X = 30) = 0.6, P(X = 90) = 0.4, D(Y|X = 30) = 6 и D(Y|X = 90) = 7. Найдите $E\{D(Y|X)\}$.
- **4.** Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} 6e^{-3x-2y}, \text{ если } 0 \leqslant x < +\infty, 0 \leqslant y < +\infty, \\ 0, \text{в остальных точках.} \end{cases}$$

Найдите P(X > 2).

5. Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{2\pi}e^{-\frac{1}{2}x^2 - \frac{1}{2} - xy - y - y^2}.$$

Найдите условное математическое ожидание E(X|Y=y).

1. Для случайного дискретного вектора (X,Y), распределенного по закону

	X = -1	X = 0	X = 1
Y = -1	$\frac{3}{16}$	1 16	3 16
Y = 0	1/16	<u>5</u> 16	3 16

выясните, зависимы или нет события $A = \{X = -1\}$ и $B = \{Y = 0\}$.

2. Найдите распределение случайной величины $Z = \min(4, X - Y)$ и E(Z), если известно распределение дискретного случайного вектора (X, Y):

	X = 2	X = 3	X = 4	
Y = -1	$\frac{1}{6}$	$\frac{1}{24}$	<u>1</u>	
Y = 0	$\frac{5}{24}$	1 12	$\frac{1}{3}$	

- **3.** Дано: P(X = 10) = 0.3, P(X = 70) = 0.7, E(Y|X = 10) = 1, E(Y|X = 70) = 4. Найдите $D\{E(Y|X)\}$.
- **4.** Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} Ce^{-2x-y}, \text{ если } 0 \leqslant x < +\infty, 0 \leqslant y < +\infty, \\ 0, \text{в остальных точках.} \end{cases}$$

Найдите константу C и P(X < 1).

5. Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{2\pi}e^{-x^2 - 10x - 26 - 3xy - 16y - \frac{5}{2}y^2}.$$

Найдите условное математическое ожидание E(Y|X=x).

Рекомендуемая литература

- [1] Солодовников А.С., Бабайцев В.А., Браилов А.В. Математика в экономике: учебник: В 3-х ч. Ч. 3. Теория вероятностей и математическая статистика. М.: Финансы и статистика, 2008. 464 с.
- [2] *Браилов А.В., Солодовников А.С.* Сборник задач по курсу «Математика в экономике». Ч.З. Теория вероятностей: учеб. пособие. М.: Финансы и статистика; ИНФРА-М, 2013. 128 с.