A couple more facts about Gamma random variables:
Exponential random variables have the memoryless property But
Gama condin variables only have the memoryless peroperty if
they are actually Exponential candom variables, i.e. only if r=1.
Similarly the minimum of independent Exponential random variables is also an Exponential random variable.
It is not the case for Gamma random variables (unless, again, r=1 so they are really Exponential random variables)
The density of a Gamma random variable looks like!
$f_{\chi}(x) = \frac{1}{x} \text{ if } r \ge 2, \text{ or } f_{\chi}(x)$ $\text{if } r \ge 2, \text{ or } f_{\chi}(x)$
lemember: An Exponential random variable with r=1.