4^a Lista de Análise de Sobrevivência e Confiabilidade

- 1. Os dados a continuação representam os tempos (em meses), T_1, \ldots, T_n entre a falhas do equipamentos de ar condicionado de um avião Boing 720: 74, 57, 48, 29 509, 12, 70, 21, 29, 386, 59, 27, 153, 26, 326. Asumindo que os dados se ajustam a uma distribuição exponencial com média $\theta > 0$.
 - (a) Obtenha a estimativa de máxima verossimilhança de θ e seu respectivo erro padrão.
 - (b) Densevolva o teste escore para testar: $H_0: \theta = 100$ contra $H_1: \theta \neq 100$ (use nivel de significância de 10%).
 - (c) Comparar os itervalos de confiança de 95% para θ usando a quantidade pivotal aproximado (normalidade assintótica do EMV) e a quantidade pivotal exata dada por $2\sum_{i=1}^{n} T_i/\theta$.
 - (d) Supondo que os dados podem ser modelados por uma distribuição gama com f.d.p dada por

 $f(t) = \frac{1}{\Gamma(\alpha)\theta^{\alpha}} t^{\alpha-1} \exp\{-\frac{t}{\theta}\}, \quad \alpha > 0, \ \theta > 0.$

Suponha que tem-se interesse em testar as hipóteses: $H_0: \alpha=1$ contra $\theta\neq 1$ ao nível 5% de significância. Testar as hipóteses acima, considerando as estatísticas: razão de verossimilhaça e escore.

- 2. O tempo, em dias, para o desenvolvimento de tumor em ratos expostos a uma substância cancerígena segue uma distribuição Weibull com função de taxa de falha $h(t; \alpha, \beta) = \alpha \beta t^{\alpha-1}$. Suponha que $\beta = 0.0001$ e $\alpha = 2$
 - (a) Qual é a probabilidade de um rato sobreviver sem tumor aos primeiros 30 dias?
 - (b) Qual é o tempo médio até o aparecemento do tumor? E o tempo mediano?
 - (c) Encontre a taxa de falha de aparecemento de tumor aos 30, 45 e 60 dias. Interprete os resultados
- 3. Considere a distribuição de Weibull com parâmetros α e β (i.e, com função de risco ou taxa de falha dada item anterior). Utilizando qualquer aplicativo ou pacote estatístico (R, SAS ou SPSS) construa o gráfico da função de taxa de falha. f.d.p e função de sobrevivência da distribuição de Weibull, variando os valores dos parêmtros α e β (não considere $\alpha = 1$). Considere pelo menos 6 combinações diferentes dos valores de α e β .
- 4. Os dados a seguir representam o tempo até a ruptura de um tipo de isolante elétrico sujeito uma tensão de estresse de 35 Kvolts. O experimento consistiu em deixar 25 destes isolantes funcionando até que 15 deles falhassem (censura tipo II), obtendo-se os seguintes resultados (em minutos)

0,19	0,78	0,96	1,31	2,78	3,16	4,67	4,85
$6,\!50$	$7,\!35$	8,27	12,07	$32,\!52$	33,91	36,71	

Suponha que tempo até a ruptura podem ser modelados por uma distribuição exponencial com função de taxa de falha igual a $\theta > 0$. A partir desses dados amostrais, deseja-se obter:

- (a) Obtenha uma estimativa de máxima de verossimilhança de θ e seu respectivo erro padrão.
- (b) Considerando a normalidade do estimador de máxima verossimilhança (EMV), apresente um intervalo de 95% de confiança para o tempo medio de vida deste tipo de isolante elétrico funcionando a 35 Kvolts.
- (c) Refaça o item (c) considerado a quantidade pivotal baseada no EMV de θ e compare com com o intervalo de confiança aproximado.
- (d) Uma estimativa pontual e intervalar de (95% de confiança) para o tempo mediano de vida deste tipo de isolante elétrico funcionando a 35 Kvolts.
- (e) Um estimativa para proporção de isolantes que falharam após os dois primeiros minutos de funcionamento.
- (f) No item (e) uma estimativa por intervalo de 95% de confiança.
- (f) O tempo necessário para 20 % dos isolates estarem fora de operação.
- 5. No item anterior suponha que os dados seguem um distribuição de Weibull com função de taxa de falha $h(t; \alpha, \beta) = \alpha \beta t^{\alpha-1}$.
 - (a) Obtenha uma estimativa de máxima de verossimilhança de de α e β e seus respectivos erro padrões.
 - (b) Uma estimativa pontual e intervalar de (95% de confiança) para o tempo mediano de vida deste tipo de isolante elétrico funcionando a 35 Kvolts.
 - (c) Suponha que tem-se interesse em testar as hipóteses: $H_0: \alpha = 1$ contra $\theta \neq 1$ ao nível 5% de significância. Testar as hipóteses acima, considerando as estatísticas: razão de verossimilhaça, Wald e escore.
- 6. Os dados de tempos de remissão (em semanas) de um grupo de pacientes com leucemia

+ denota observação censurada.

Suponha que os tempos de remissão de pacientes com leucemia podem ser modeladas por uma distribuição Weibull, com função de sobrevivência dada por, $S(t) = \exp\{-\beta t^{\alpha}\}$.

- (a) Obtenha as estimativas de máxima verossimilhança de α e β .
- (b) A estimativa de máxima verossimilhança do tempo de remissão mediano dos pacientes.
- (c) No item (a) e (b) apresente um estimativa intervalar de 95% de confiança.
- (d) Suponha que tem-se interesse em testar as hipóteses: $H_0: \alpha = 1$ contra $H_1: \alpha \neq 1$ ao nível 5% de significância. Testar as hipóteses acima, considerando as estatísticas: razão de verossimilhaça, Wald e escore.
- (e) Apresente uma estimativa pontual e intervalar (de 95% de confiança) de S(10).