Problém konečnosti můžeme rozhodovat na základě platnosti Pumping lemma pro CFL:

- Dle Pumping lemma pro bezkontextové jazyky existuje pro každý bezkontextový jazyk L konstanta $k \in \mathbb{N}$ taková, že každou větu $w \in L$, $|w| \geq k$, můžeme rozepsat jako uvwxy, kde $vx \neq \varepsilon$ a $|vwx| \leq k$, a $\forall i \in \mathbb{N} : uv^iwx^iy \in L$.
- Pro testování konečnosti tedy postačí ověřit, že žádný řetězec ze Σ^* o délce mezi k a 2k-1 nepatří do daného jazyka:
 - Pokud takový řetězec existuje, může být "napumpován" a dostáváme nekonečně mnoho řetězců patřících do daného jazyka.
 - Jestliže takový řetězec neexistuje, k-1 je horní limit délky řetězců L.
 - Pokud by existoval řetězec délky 2k nebo větší patřící do L, můžeme v něm podle Pumping lemma najít vwx a vypustit vx. Vzhledem k tomu, že $0 < |vx| \le k$, postupným opakováním vypouštění bychom se dostali k nutné existenci řetězce z L o délce mezi k a 2k-1.
- K určení konstanty k postačí reprezentovat L pomocí bezkontextové gramatiky v CNF s n nonterminály a zvolit $k = 2^n$ (viz důkaz Pumping lemma).