Московский физико-технический институт

Лабораторная работа 5.1.1

Фотоэффект

выполнил студент 924 группы ФОПФ Панферов Андрей **Цель работы:** Исследовать зависимость фототока от величины задерживающего потенциала и частоты падающего излучения, что позволяет вычислить величину постоянной Планка.

Теоретическая часть

Фотоэффект — явление испускания электронов фотокатодом, облучаемым светом, Это явление хорошо объясняется фотонной теорией света. Взаимодействие монохроматического света с веществом можно описывать как взаимодействие с веществом частиц, называемых фотонами, которые обладают энергией $\hbar\omega$ и импульсом $\hbar\omega/c$. При столкновении фотона с электроном фотокатода энергия отона полностью передается электрону, и фотон прекращает свое существование. Энергетический баланс этого взаимодействия для вылетающих электронов описывается уравнением

$$\hbar\omega = E_{max} + W \tag{1}$$

Рис. 1: Зависимость фототока от напряжения на аноде фотоэлемента

Здесь E_{max} — максимальная кинетическая энергия электрона после выхода из фотокатода, W — работа выхода электрона из катода. Реально энергетический спектр вылетевших из фотокатода электронов непрерывен — он простирается от нуля до E_{max} .

Для измерения энергии вылетевших фотоэлектронов вблизи фотокатода обычно располагается второй электрод (анод), на который подается задерживающий (V < 0) или ускоряющий (V > 0) потенциал. При достаточно больших ускоряющих напряжениях фототок достигает насыщения (рис. 1): все испущенные электроны попадают на анод.

При задерживающих потенциалах на анод попадают лишь электроны, обладающие достаточно большой кинетической энергией, в то время как медленно движущиеся электроны заворачиваются полем и возвращаются на катод. При некотором значении $V=-V_0$ (потенциал запирания) даже наиболее быстрые фотоэлектроны не могут достичь анода. Максимальная кинетическая энергия E_{max} электронов связана с запирающим потенциалом V_0 очевидным соотношением $E_{max}=eV_0$. Тогда (1) примет вид, называемый уравнением Эйнштейна:

$$eV_0 = \hbar\omega - W \tag{2}$$

Чтобы определить величину запирающего напряжения, нам надо правильно экстраполировать получаемую токовую зависимость к нулю, т. е. определить, какова функциональная зависимость I(V). Расчет для простейшей геометрии — плоский катод, освещаемый светом, и параллельный ему анод — приводит к зависимости

$$\sqrt{I} \propto V_0 - V \tag{3}$$

т. е. корень квадратный из фототока линейно зависит от запирающего напряжения. Эта зависимость хорошо описывает экспериментальные данные.

В работе изучается зависимость фототока из фотоэлемента от величины задерживающего потенциала V для различных частот света ω , лежащих в видимой области спектра.

С целью экспериментальной проверки уравнения Эйнштейна определяются потенциалы запирания V_0 при разных частотах света и строится зависимость $V_0(\omega)$, которая, как это следует из (2), должна иметь вид

$$V_0(\omega) = \frac{\hbar\omega - W}{e} \tag{4}$$

Потенциал запирания V_0 для любого катода линейно зависит от частоты света ω . По наклону прямой на графике $V_0(\omega)$ (рис. 2) можно определить постоянную Планка:

$$\frac{dV_0}{d\omega} = \frac{\hbar}{e} \tag{5}$$

Как показывает формула (5), угол наклона прямой $V_0(\omega)$ не зависит от рода вещества, из которого изготовлен фотокатод. От рода вещества, однако, зависит величина фототока, работа выхода W и форма кривой I(V) (рис. 1). Все это определяет выбор пригодных для опыта катодов.

Рис. 2: Зависимость запирающего потенциала от частоты света

Выполнение работы

Сначала выполним градуировку монохроматора. Проведем серию измерений для линий спектра неона, снимая зависимость

длины волны света от параметра θ барабана монохроматора. Результаты занесем в Таблицу 1 и построим График ?? зависимости, профитировав функцию $\lambda(\theta)$ многочленом второй степени в силу нелинейности.

Зависимость длины волны от угла

Таблица 1: Градуировка монохроматора

θ , °	$\lambda,\ \mathring{A}$
2296	5852
2342	5945
2412	6096
2434	6143
2534	6402
2574	6507
2644	6717
2038	5401

Теперь проведем 3 серии измерений зависимости фототока от напряжения для разных длин волн падающего света, изменяя на монохроматоре параметр θ и переводя его в длину волны с помощью градуировки. Ток приведен в безразмерных единицах в силу работы установки.

Таблица 2: Фототок

$\lambda = 54$	$101\mathring{A}$	$\lambda = 5860\mathring{A}$		$\lambda = 6717\mathring{A}$	
$\theta = 2038^{\circ}$		$\theta = 2300^{\circ}$		$\theta = 2644^{\circ}$	
V_I , V	V, V	V_I , V	V, V	V_I , V	V, V
0.51	0.726	0.54	0.726	0.56	0.726
0.26	-0.107	0.25	-0.117	0.30	0.047
0.30	-0.043	0.30	-0.070	0.35	0.081
0.35	0.034	0.35	-0.020	0.40	0.125
0.40	0.136	0.40	0.050	0.45	0.200
0.45	0.300	0.45	0.164	0.50	0.350
		0.50	0.395		

Результаты измерений занесем в Таблицу 2. Вблизи потенциала запирания, искомая зависимость описывается формулой (3). Согласно этой формуле (3), построим График $\ref{eq:condition}$ зависимости в координатах $\sqrt{I}(V)$ и аппроксимируем линейные участки прямой. Экстраполируя прямую к нулю, получим значения потенциала запирания для каждой серии измерения (длины волны). Результаты сведем в Таблицу $\ref{eq:condition}$?

Зависимость фототока от напряжения

Таблица 3: Зависимость запирающего напряжения от частоты

λ, \mathring{A}	5401	5860	6717
V_0, V	0.80	0.66	0.50

Зависимость длины волны от угла

Теперь построим график зависимости $V_0(\omega)$. Согласно (4) профитируем это прямой. Из наклона прямой согласно (5) получаем значение постоянной Планка:

$$\frac{dV_0}{d\omega} = \frac{\hbar}{e} \implies$$

$$\hbar = (0.50 \pm 0.14 \cdot 10^{-15} \text{ B} \cdot \text{c}) \cdot e =$$

$$= 0.8 \pm 0.2 \cdot 10^{-34} \text{ Дж} \cdot \text{c}$$

В пределах погрешности это согласуется с табличным значением $\hbar = 1,054 \cdot 10^{-34} \, \text{Дж} \cdot \text{с}.$

Вывод

Таким образом, в ходе выполнения работы мы проверили Энштейновское описание фотоэффекта и с помощью уравнения последнего измерили постоянную Планка. Результаты вполне согласуются с табличными.