

SECOND SEMESTER 2023-2024

Course Handout Part II

Date: 09-01-2024

In addition to Part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : CHE F343

Course Title : Process Design Principles-II

Instructor-in-Charge : Dr. Arnab Dutta

Scope and Objective of the Course:

Process Design Principles-II course deals with the understanding of detailed process design coupled with process economics. Cost estimation of chemical engineering processes is an important metric to assess the viability of any chemical process. The purpose of this course is to introduce the students to detailed design and economical aspects of different chemical engineering operations. The course encompasses design procedures and sizing of chemical engineering equipment, costing and profitability analysis of chemical process, and introduction to optimization concepts pertaining to chemical process. The student will also be exposed to the ASPEN software and MATLAB.

On completion of this course, students should be able to appreciate the following **learning outcomes**:

- Apply mass and energy balance principles to design chemical engineering equipment
- Apply the role of thermodynamics to understand the process feasibility
- > Importance of solving system of linear, nonlinear, and differential equations
- ➤ Perform economic calculations for different chemical process equipment and evaluate profitability metrics of a chemical process
- ➤ Understand the concept of optimization in the context of chemical process design

Textbooks:

1. W. D. Seider, J. D. Seader, and D. R. Lewin, "Product & Process Design Principles: Synthesis, Analysis, and Evaluation", John Wiley & Sons, New York, 3rd Edition, I.S.V. [Reprint: 2017]

Reference books

- 1. S. B. Thakore, B. I. Bhatt, "Introduction to Process Engineering & Design", McGraw Hill Publications.
- 2. R. Smith, "Chemical Process: Design and integration", John Wiley & Sons, New York, 2nd Edition.
- 3. G. Towler, R. Sinnott, "Chemical Engineering Design", Butterworth-Heinemann Publications.
- 4. R. Turton, R. C. Bailie, W. B. Whiting, J. A. Shaeiwitz, D. Bhattacharyya, "Analysis, Synthesis, and Design of Chemical Processes", Prentice Hall Publications.

Course Plan:

Lecture No.	Learning objectives	Topics to be covered	Chapter(s) in the Text Book
1-2	Introduction to	Recap of process design principles learnt in	-
	Course	PDP-1 and general introduction to the	
		major topics of PDP-2, importance of cost	
		estimation in chemical engineering plant	
		design	
3-9	Design of	Distillation systems: Tower diameter	Chapter 19 TB
	Separation	calculations, pressure drop principles,	Chapter 9 Ref 2
	towers	choosing the type of towers, shortcut methods	Chapter 11 Ref 3
		for designing towers	
10-13	Process design Optimum pipe size calculation		Chapter 5 Ref 1
	of piping	recommended fluid velocities in pipe	
		pressure drop in pipes, fittings and valves,	
		fluid moving devices flow	
14.10	D 1	meters	Cl 4 15 TD
14-16	Process design	Centrifugal pumps, positive displacement	Chapter 15 TB
	of Pumps,	pumps, characteristic curves, NPSH and	Chapter 5 Ref 1
	Compressors &	power requirement, pump, compressors and	
17.10	Expanders	expanders	Chantay F Dof 1
17-19	Process design	Process design of flow meters orifice/venturi	Chapter 5 Ref 1
	of fluid moving devices	and rotameters	
20-25	Process	Introduction, problem formulation, type of	Chapter 24 TB
	optimization	optimization problems: linear	Additional reference
		programming, non-linear programming,	materials will be
		mixed-integer linear/mom-linear	provided
		programming.	
		Implementation and solving optimization	
26.24	D	problems using MS-EXCEL and MATLAB.	Cl. 42 FFD
26-31	Design of	Introduction, HE equipment, Heat transfer	Chapter 13 TB
	Heat	coefficients & Pressure Drop calculations,	Chapter 6 Ref 1
22.20	Exchangers	Shell & tube HE design	Chapter 22 0 22 TD
32-36	Cost	Cost indexes, six-tenths factor, Estimation of	Chapter 7 % 9 Def 4
	accounting,	purchase cost for chemical process equipment	Chapter 7 & 8 Ref 4
	Capital costs, and Annual	(heat exchangers, pumps, compressors, tower,	
		etc.), capital cost, operating costs, revenue,	
	costs	and total annualized cost.	

37-40	Profitability	Return on investments, payback period,	Chapter 23 TB
	measures, cash	annualized costs, time value of money, cash	Chapter 9 & 10 Ref 4
	flows, and	flows, depreciation, net present value,	
	depreciation	investors rate of return.	

Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature of Component
Mid-Term Exam	90 min	25	13/03 - 2.00 - 3.30PM	Open book
Comprehensive Exam	180 min	40		Closed book (20%) Open book (20%)
Assignments (2)	ТВА	20	1 before mid-term and 1 after mid-term	Open book
Quiz (2)	ТВА	15	1 before mid-term and 1 after mid-term	Closed Book

Chamber Consultation Hour: TBA

Make-up Policy: Make-up is granted only for genuine cases with valid justifications at the discretion of the IC. A prior permission from the IC is required. Decision of the IC will be final.

There will be NO provision for Make-up w.r.t. assignments and quizzes.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Arnab Dutta
Dr. Arnab

Dutta Instructor-in-

CHE F343

charge