

Metaheuristic Chess Artificial Intelligence

Paweł Pałus 197004@student.pwr.edu.pl Mariusz Waszczyński 192660@student.pwr.edu.pl

Abstract

This paper reflects on metaheuristics algorithms (genetic algorithm and simulated annealing) implemented for playing chess for standard and arbitrary initial arrangement of the chessboard. It is a new idea especially the possibility of starting the game from arbitrary initial arrangement of the chessboard which allows to consider certain close to the end of the game situations. external artificial intelligence is used for learning of implemented algorithms. New software experimentation system is developed and described with explaining of its features. Finally the results are presented and summarised with conclusions and new ideas for research extension. The implemented algorithms seem to achieve not satisfactory results.

Index Terms: chess; metaheuristics; artificial intelligence; genetic; simulated annealing

1 Introduction

In nowadays metaheuristics are increasingly used in different aspects. They base on nature. Many problems are tried solve by those procedures which unfortunately can not give the optimal global solution. That is the cost, hence computing is not highly important. The memory should be considered. The "human DNA contains about 3 billion nucleotides constituting genes, regulatory sequences and other non-coding regions all residing in a one-dimensional sequence that is organized in 3-dimensional space" [4]. This is the huge memory in which can be stored any informations.

Main goal is to use yet another Artificial Intelligence. There are significant number of IT systems try to appear intelligent one way to another. For example decision trees, neural networks, fuzzy logic. Each of them has different benefits. Therefore the aim is to extend the database of known solutions to have more potentials. There are many fields where metaheuristics can be applied. One of them where intelligence has major factor are multiplayer games. Today appeard e-sport, which many players contend together. Learning with artifical intelligence which imitates a real player could be very helpful.

In the paper game of chess is considered. The game is popular and its rules are known for many people. There are complex and therefore can be applied many strategies. The competence of predicting next few moves are also here used. The humans are using several methods. They are basing on their experience, strategies and predicting skills. The most important here is training. Each chess figure has well-defined moves it is able to take, which results in an astoundingly big number of possible scenarios. A new player quickly finds out that some pieces are more important than others and subconsciously assign to them different weights. It is an important property, which is generally taken into consideration when designing an artificial chess player. [1]

From the perspective of one of the players a real chess game is not deterministic. Nevertheless, a metaheuristic could be used in this situation to learn from its own miastakes when playing a game of chess, especially when the rival always uses the same strategy (which is the case when playing with a normal chess AI). The main goal of this research is to check how would genetic and simulated annealing algorithms behave when used as an artificial intelligence in chess game.

The paper is organised as follows: Section 2 contains the description of considered problem and its mathematical model. In Section 3 the experimentation system being GUI is introduced and described. Section 4 covers description and results for Genetic Algorithm and Simulated Annealing and also ideas for their enhancements, separately for each algorithm. Section 5 contains ideas for improvements in application. Section 6 presents conclusions and possibilities for further work

2 Optimization Problem

The problem describes a standard game of chess, with a square board of 64 fields. Two players have to consecutively move a piece the board onto another field according to complex, well-defined rules. Our task is to find the series of movements in a game of chess that gives the best chance of winning the game in the end. The starting position of pieces can be arbitrary.

2.1 Mathematical model

indices

- $t \in N$ initial game turn
- $n \in \mathbb{N}$ maximum number of game turns intended for playing

• $i, j \in \{1, 2, 3, 4, 5, 6, 7, 8\}$ - number of rows and columns

variables

- $B_{8,8,t}$ fields on the board taking values $v_{i,j,t} \in R$ describing the field on board (e.g. the chessmen standing on field) during turn t
- $f(B_{8,8,t}, v_{i,j,t})$ takes negatives values for bad situations on the field $v_{i,j,t}$ (e.g. an opponent's piece) positive for good situations (e.g. player's piece)

objective

Find a series of movements starting from $B_{8,8,t}$ and ending in $B_{8,8,t+n}$ according to rules of chess

$$\sum_{i,j} f(B_{8,8,t+n}, v_{i,j,t+n}) \quad is \quad maximised \tag{1}$$

3 Experimentation system

3.1 Chess engine

For learning purposes a real, competitive artificial intelligence was required. A choice has been made to use an external chess engine, which provides required functionality. Such engines commonly implement the Universal Chess Interface (UCI) [5] for two-way communication between outside application (like the one made for this research) and the engine implementing an artificial intelligence. In the end Firenzina Engine [6] has been used because of its good implementation of UCI standard and being able to make good moves in a very short amount of time (one milisecond).

From the side of our application the UCI interface had to be implemented, as well as the whole set of chess rules so that human player can know which moves are valid (through graphical cues). Metaheuristics also require this knowledge, because they have to start from making random moves chosen from the set of valid ones. A Graphical User Interface (GUI) was also fully implemented for user's convinience.

3.2 GUI

Figure 1: Initial, empty run panel enables us to choose the types of players and starting game situation

Figure 1 shows run panel that is displayed after starting the application. On the right side of the application the user can see options for white and black player. Checking proper radio button one can choose what type of player will play a game as white player and also as a black player. The choices are: AI (Firenzina engine), human, or one of 3 metaheuristics. There are also File buttons that are used to input knowledge base for genetic algorithm (proper file button for proper white or black player), and a Next button that is used to make movements one after another from a textbox that is located in annealing tab. It will be further discussed in a later section. The Next button is not displayed in another figures.

Figure 2: Initial Run panel after pressing run button to start the game

Figure 2 shows the run panel after pressing the run button. Initial locations of chessmen are set according to chess rules. In the bottom right corner of the board there is a square coloured black or white depending on which player is expected to make the next move.

The application allows the possibility to start a game from any position other than the standard initial locations of chessmen what is depicted in figure 3. For this purpose sequence of valid movements should be typed (or pasted) to the textbox located above the run button.

On the right side from the run button one can see the textbox responsible for showing the history of the movements as depicted in figure 4. This is the full history of movements including movements that was made using the textbox above the run button and its primary use is to copy it into a move history field to always start the game from this position.

At the top of the application are tabs for metaheuristics, where the learning phase can be started, which will be described in according sections later.

Figure 3: Initial board after started with a certain move history

Figure 4: History of movements

4 Algorithms

4.1 Genetic algorithm

4.1.1 Idea

Our second proposal of a metaheuristic algorithm is the genetic algorithm. It is purely related to how living beings nature evolves through the ages. Looking at it from the perspective of one life beaing equal to one chess game, it may give interesting results. The population consist of many individuals living through their lifes, which in this case are end up being games. The individual is a set of gens which here are called moves. From a programming point of view a mapping is created between a placement of chess pieces on a chessboard and a move for the current player, when provided such board. Each individual is additionally annotated with a real value, which describes the fitness of the final move, calculated with help of cost function (Equation 1).

In the application each metaheuristic algorithm works

as a set of players. Even Artificial Inteligence is marked as player. Hence different players can play against each other. Genetic player is divided into two modes:

• Adventurous Mode

Used for learning. In this case the individual is created. The moves are chosen randomly.

• Greedy Mode

Used for testing and real games. Based on global individual choosing appropriate moves. If the individual does not recognize current placement of chess pieces on a chessboard, the move is picked randomly.

Entire process is divided into two phases: generating a population and learning. Generating population phase creates a new thread for playing individuals, waits for them to end and updates their fitness. When the first phase has been finished the learning process which consist of many interations is started.

The iteration has follwing steps:

1. Selection

The general assume is 80 percent of population have wrong gens and are going to remove (Figure 6).

Figure 6: Genetic - selection phase

2. Choosing the global individual

From the remaining population the individual which has the best cost function is compared with global individual. If it is higher, then global individual is overwritten (Figure 7).

Figure 7: Genetic - comparing with the global individual

Figure 5: Genetic - crossing phase

3. Crossing phase

Two individuals are chosen randomly. Every board from first individual is comparing with every board from second individual. If the boards are equal the proper one is chosen and added to the descendant. Cost function is used to provide probabilities, by which a good candidate is chosen. Cost function from first and second individual is summed. The sum is the boundary for a random number. If the random value is from zero to the value of first individual cost function then first individual is chosen, otherwise second individual. Nevertheless if the board has not found an equivalent, it is added to the descendant. Process is showed on Figure 5. This step is repeating up to fill population, in order to avoid a decrease in population size.

When user decides to stop learning, global individual is stored to file which can be used in normal game - greedy mode. Optimal time for 5 moves for learning is couple hours.

4.1.2 Experiment

Figure 8: Genetic tab in application

In order to play with genetic algorithm, firstly the optimal global individual should be finded. The genetic tab is designed for learning purposes. It contains four text fields.

Number of turns

Determine how many moves the individual have to do. Low value should be used to confine time for learning.

Number of population

Determine size of population.

How many individuals have good gens

Needed for selection phase. Defined 20 percent by default.

Move history

Learning process can start from specified board.

Button "start" implies generating population and turning learning process on. Optimal time for learning depends on parameters provided by user. Significant parameters are "Number of turns" and "How many individuals have good gens". First one can minimalize time of learning to achive certain point of knowledge. Second one has direct impact of removing individuals and is associated with "Number of population" parameter.

4.1.3 Result

Unfortunetelly checkmate was not achived. For almost 2 thousand tries Artificial Inteligence was winning. The importance of initial board should be emphasized. If cost function is very high at the beginning then is the most probability that genetic algorithm will win. Of course there is a significant impact of the way how cost function is calculated. What factors are takien into consideration, what weight are associated with pieces.

4.2 Simulated Annealing

4.2.1 Idea

Simulated annealing as any other metaheuristics algorithm is used when search space is too large to use exact methods. The algorithm seeks to find an optimal solution (but not necessarily finds it) unlike many metaheuristics algorithms it allows with certain probability for the adoption of worse solution what makes the algorithm resistant to getting cought in local minimum solutions

The algorithm consideres typically optimization task which is every game it plays, it is not intended to learn and then play with other player. The algorithm plays his first game choosing random moves. At the end of the first game all

¹a placement of chess pieces on a chessboard

Figure 9: Diagram of the implemented simululated annealing algorithm

moves (including opponent's moves) are stored and cost function is calculated (at this point it is the best cost function). Then the algorithm simulate another game (iteration) in which depending on the temperature it chooses a stored move or a random move. If the algorithm chooses a stored move for its turn then a stored move is chosen for the opponent's turn, but if a random move is chosen then the opponent's move is performed by AI (and the stored move is omitted in further game). At the beginning the algorithm chooses random moves often but in any another iteration the probability of random move decreases. If there is a checkmate or maximum number of turns is achived the game ends. At the end of every simulated game (every iteration) cost funcion is calculated and if it is better than the best stored cost function then the old stored moves and the best cost function are exchanged for present ones. Sometimes a stored move cannot be performed becouse of a change in previous moves therefore in such situations random move is performed. There can occour a situation in which game ends before achieving maximum number of turns (for example if there is a checkmate) and its cost function is greater than the previous one. Then in the next simulated game the algorithm will have less stored moves for example 4 and when this number is exceeded random moves are performed in metaheuristic's turns and AI moves in opponent turns. The cost function is based only on weights of chess pieces. Weights for chess pieces are as follows:

pawn - 1 knight - 5 bishop - 5 rook - 7 queen - 10

king - 1000

Weights are positive for own pieces and negetive for opponent pieces. It is important to assign a weight to the king instead of giving weight (in absolute value) value for checkmate, because then it is possible to consider better and worse situations for games that end before achieving max number of turns. without that the algorithm would have all the time the same sequence of stored moves except very unlikly situations that metaheuristics wins, then the sequence would change only once.

4.2.2 GUI

GUI is depicted in figure 10).

Figure 10: Simulated annealing - dialog boxes

• Steps
Here is a place to input sequence of moves, after that

one can display all or a part of a game in a way that every another move is displayed after pressing a button

• Initial temperature

A decimal number in a range from 0 to 1.0. The greater the temperature the greater the chance of choosing a random move. Temperature decreases after every iteration of algorithm.

• Drop in temperature

A value by which the temperature drops after each iteration.

• Max number of turns

An integer number that says how many turns at most can be performed in one game. A turn is defined as two moves, but to simplify number of turns increases after every black player move.

• number of internal iterations

An integer number that says how many times the algorithm should repeat an action of searching better solution.

experiments 4.2.3

Due to big randomness of the algorithm work it is not simple to tell which parameters should be used in order to obtain the best results. Using trial and error method following parameters have been chosen:

• Initial temperature = 0.8

• Drop in temperature = $\frac{Initial\ temperature}{number\ of\ internal\ iterations} \cdot 0.9$

in this case the temperature for the last iteration equals 10% of the initial temperature. that means 7.2%

Of course the greater number of the "number of internal iterations" parameter the greater the chance to achieve better solution. Experiments was made in a range from 10 to 20000 for "number of internal iterations" parameter. Experiments was made most often for value of 10 for "Max number of turns" parameter. There were considered 2 kinds of initial board, standard initial situation for chess and situation depicted in figure 5.

For both boards metaheuristic player is white and it is actually its turn.

4.2.4 Result

Unfortunetelly checkmate was not achived. The best result for standard initial chess board was cost function: 21.0 for parameters:

- internal iteration number: 10000

- max turn number: 10 - initial temperature: 0.8

- drop in temperature: $\frac{0.8}{10000} \cdot 0.9 = 0.000072$

in time: 1485 seconds

And for initial situation depicted in figure 11 the best result was cost function equals 31.0 for parameters:

- internal iteration number: 20000

- max turn number: 10 - initial temperature: 0.8

- drop in temperature: $\frac{0.8}{20000} \cdot 0.9 = 0.000031$

in time: 3734 seconds

Figure 11: Initial board

It is difficult to achive a checkmate by the algorithm due to several precised moves has to be performed to obtain onetime increasing of the cost function. Different wariants of the algorithm could be considered, the algorithm could simultaneously play for example 5 different games instead of one and at the end of all games choose moves (that would exchange previous stored moves) from the game that achieved the greatest cost function (as far as this cost function would be greater than previous one), or the algorithm could save only its moves and every opponent move would be performed by AI.

5 Improvements

Some improvements in application could be considered for further development:

- Providing a possibility of entering all the modes and variables in GUI, so that one is able to change a wider range of parameters non-programically
- providing new engines implementing UCI (other than Firenzina). They could be used randomly as AI is choosing his move. Through that the metaheuristics algorithms would have much wider knowledge. Sometimes mistake moves can be made due to using only one artificial intelligence, but by using several different engines randomly, it would with high probability not be just a mistake of external AI, but a truly needed sacrifice.
- Providing previous data import for algorithms to make them able to continue learning from previous stored points.

Conclusion

In conclusion, our experiments proved that it is possible to make a kind of artificial intelligence for chess using metaheuristics that can play better than a completly random algorithm. The results can vary greatly between not only a chosen metaheuristic, but also the chosen parameters and

algorithm's details. However, it has to be emphasized that metaheuristics require a huge amount of learning time even when being close to the end of the game and as such would not be viable alternative for a standard type of artificial intelligence. The algorithm would work better if the cost function better expressed a situation on the board. Actually only a material situation is considered, there is a possibility to consider a positional situation, for example the weight of a pawn would increase after each move towards promotion field or the weight of a rook would increase with the number of possible moves that can be performed by the rook, it could be also considered if certain chess piece is protected or not. Implementation of prediction of one or several moves ahead could make the algorithms work better. Through that the algorithms could avoid simple tricks depending on temptation by the enemy to execute a favorable movement in this turn but obtaining much worse situation in next turn, for example, in this turn you can refute my bishop but in another turn I will refute your queen.

References

- [1] Vecek, N.; Crepinsek, M.; Mernik, M.; Hrncic, D., A comparison between different chess rating systems for ranking evolutionary algorithms
- [2] DAVID, O.E.; VAN DEN HERIK, H.J.; KOPPEL, M.; NETANYAHU, N.S., Genetic Algorithms for Evolving Computer Chess Programs
- [3] S. Kirkpatrick; C. D. Gelatt; M. P. Vecchi., Optimization by Simulated Annealing
- [4] DAVID J D'ONOFRIO; GARY AN, A comparative approach for the investigation of biological information processing: An examination of the structure and function of computer hard drives and DNA
- [5] R. Huber, S. Meyer-Kahlen, Universal Chess Interface, http://www.shredderchess.com/chess-info/features/uci-universal-chess-interface.html, 2015/06/01
- [6] Kranium (Norman Schmidt), Yuri Censor (Dmitri Gusev), Firenzina Engine, http://firenzina.wikispaces.com/, 2015/06/01