Assignment 2: Selected solutions

October 15, 2021

• Problem 1:

Relate Y to X_2 : $\hat{Y}=42.1087+0.4239X_2$, with residuals $e_{Y \cdot X_2}$ Relate X_1 to X_2 : $\hat{X}_1=34.3196+0.6075X_2$, with residuals $e_{X_1 \cdot X_2}$ Relate $e_{Y \cdot X_2}$ to $e_{X_1 \cdot X_2}$: $\hat{e}_{Y \cdot X_2}=0.78035e_{X_1 \cdot X_2}$

- Problem 2: see R file
 - (a) see R file.
 - (b) In all three models, the null hypothesis $\beta_0 = 0$ is not rejected according the output in R.
 - (c) P_2 is better, for a larger R^2 .
 - (a) P_3 is the best, for the largest adjusted R^2 . In this case, $\hat{F} = 80.71282$ with prediction interval (71.79724, 89.6284)

• Problem 3:

Table 3.11 Regression Output When Y is Regressed on X_1 for 20 Observations

ANOVA Table				
Source	Sum of Squares	df	Mean Square	F-Test
Regression	1848.76	1	1848.76	69.2224
Residuals	480.7357	18	26.7075	
	Coeffi	icients Table		
Variable	Coefficient	s.e.	t-Test	p-value
Constant	-23.4325	12.74	-1.8393	0.0824
X_1	1.2713	0.1528	8.32	< 0.0001
n = 20	$R^2 = 0.7936$	$R_a^2 = 0.7822$	$\hat{\sigma} = 5.168$	df = 18

- Problem 4: see R file. For both model (a) and model (b), we do not reject the null hypothesis according to the F-statistic.
- Problem 5:

(a) $F = 22.98 > F_{(4,88;0.05)} = 2.475277$. Note the $F_{(4,88;0.05)}$ is the upper tail probability of F distribution with $\alpha = 0.05$, which can be checked via R using command

- (b) Conside the hypothesis testing $H_0: \beta_3 = 0$ v.s. $H_1: \beta_3 > 0$. Since $t_3 = 2.16 > t_{0.05,88} = 1.662354$, hence the null hypothesis is rejected and there is a positive linear relationship between salary and experience.
- (c)&(d) $\widehat{Salary} = 3526.4 + 722.5 Gender + 90.02 Education + 1.2690 Experience + 23.406 Months = 5692.92$
 - (e) Salary = 3526.4 + 722.5Gender + 90.02Education + 1.2690Experience + 23.406Months = 4970.42
 - Problem 6: Let $X_1 = Gender, X_2 = Education, X_3 = Experience, X_4 = Months$. The hypothesis testing becomes

$$H_0: Y = \beta_0 + \beta_2 X_2 + \varepsilon$$
 v.s. $H_1: Y = \beta_0 + \beta_2 X_1 + \beta_2 X_2 + \beta_2 X_3 + \beta_2 X_4 + \varepsilon$

Then

$$F = \frac{[SSE(RM) - SSE(FM)]/(4+1-2)}{SSE(FM)/(93-4-1)} = 20.459 > F_{(3,88;0.05)} = 2.708186$$

The null hypothesis is rejected and hence at least one of *Gender*, *Experience*, *Months* would be statistically significant in predicting *Salary*, we shall prefer the full model.

- Problem 7: see R file. According to the residual versus fitted value plot, the linearity assumption is violated. Also, potential-residual plot implies that the assumption of equally reliability of each observation is kind of violated. Assumptions about the constant variance of error terms is also violated / not violated, according to standardized residual against the predictor variable.
- Problem 8: Point 1 and 2 are high-leverage points/outliers in X-space (not influential points as their residuals are small). Point 3 is high-leverage/outlier in both X and Y space/influential point. Point 4 is an outlier in Y-space.
- Problem 9:
 - (a) scatter plot of response against each predictor variable / rotating plot / scatter plot of the standardized residual against each predictor variable / scatter plot of the standardized residual versus the fitted values
 - (b) index plot of residuals (meaningful when index is in natural order like time)
 - (c) scatter plot of standardized residual against fitted value
 - (d) scatter plot of standardized residual against each predictor variable
 - (e) normal q-q plot
 - (f) index plot of Cook's distance / potential-residual plot
- Problem 10: see R file. Omitted.
- Problem 11: You could use potential-residual plot/index plot of Cook's distance to identify the unusual points. The point (0, 8.11) is a high-leverage point and (5, 11.00) is an outlier (both influential).