Correction to last time:

Variation of parameters:

\[\tau(t) \parameters \tau(t) \quad \quad \tau(t) \quad \quad \tau(t) \quad \quad \tau(t) \quad \quad \tau(t) \quad \tau(t) \quad \tau(t) \quad \quad \tau(t) \quad \quad \tau(t) \quad \quad

Nonlinear autonomous 2×2 system. * $\{x'=F(x,y) \ y'=G(x,y)$

Can write $\vec{x} = \vec{f}(\vec{x})$ $\vec{x} = \begin{pmatrix} x \\ y \end{pmatrix} \vec{f} = \begin{pmatrix} F \\ G \end{pmatrix}$

 $\lambda = (y) \quad f^{-1}(a)$

Special case: linear systems $\chi' = \alpha x + by$ $\chi' = cx + dy$ $\pi' = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \vec{x}$

No, yo is a critical point for (%) if $F(x_0, y_0) = G(x_0, y_0) = 0$. Then $\chi(t) = \chi_0$, $\chi(t) = y_0$ is then a solution of (x_0) .

We're interested in "nearby" solutions to critical points (70, y_0). Introduce $u=x-x_0$, $v=y-y_0$

u=x-x0, v=y-y, (Then the critical point con to u=0,v=0)

(*) becomes $u'=f(x_0+u, y_0+v)$ $v'=G(x_0+u, y_0+v)$

By Taylor theorem for function of two variables, $F(x_0+u,y_0+v)=F(x_0,y_0)$ $=\frac{\partial F}{\partial x}(x_0,y_0)u+\frac{\partial F}{\partial y}(x_0,y_0)v$ +R(u,v)

(for F twice differentiable)

where R(u,v) < C(u2+v2) for u,v sufficiently small.

Similar for GCX+u, y.+v).

Have Fixo, yo) = G(xo, yo) = 0 by assumption.

For u,v->0, remainder term becomes very small ~> linearized's ystem V

Summary: If (x, yo) is a critical point, put u=x-xo, v=y-yo, and approximate the DE by the linear system

$$\begin{pmatrix} u' \\ v' \end{pmatrix} = A \begin{pmatrix} u \\ v \end{pmatrix}$$
 $A = J(x_0, y_0)$

$$J = \begin{pmatrix} \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} \\ \frac{\partial G}{\partial x} & \frac{\partial G}{\partial y} \end{pmatrix}$$

is the Jacobian of Fand &

Expect that linearized system gives approximate behaviour near (xo,yo)

$$\frac{\text{Example:}}{y'=l-\chi^2=G(\chi,y)}$$

· Critical points:

$$(\ \ \ \) \ \ (\ \ \ \ \ \ \)$$

• Jacobian
$$J = \begin{pmatrix} 1 & -1 \\ -2x & 0 \end{pmatrix}$$

· linearized system

a) (1)
$$A = \begin{pmatrix} 1 & -1 \\ -2 & 0 \end{pmatrix}$$

eigenvalues: $\frac{1}{2} \pm \sqrt{\frac{1}{4} + 2} = \begin{cases} 2 \\ -1 \end{cases}$

=> saddle

Note: A eigenvalue:

tr(A) ±1 det(A)

$$r=2$$
 has eigenvector $\binom{1}{2}$
 $r=-1$ has eigenvector $\binom{1}{2}$

(b)
$$\begin{pmatrix} -1 \\ -1 \end{pmatrix}$$
 $A = \begin{pmatrix} 1 & -1 \\ +2 & 0 \end{pmatrix}$
eigenvalues $: \frac{1}{2} \pm \sqrt{\frac{1}{4} - 2} = -\frac{1}{2} \pm \sqrt{\frac{1}{4}} \implies \text{contextable spiral}$
 $\begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$
contextables

Phase portrait of nonlinear egn (*)

I) Distinct real eigenvalues

Ib) $\lambda^{(1)} > \lambda^{(2)} > 0$ Note that $\lambda^{(2)}$ dominates for $t \to -\infty$ while $\lambda^{(1)}$ dominates for $t \to \infty$.

Ic) $0 > \lambda^{(1)} > \lambda^{(2)}$ Here $\lambda^{(2)}$ dominates for $t \to -\infty$ while $\lambda^{(1)}$ dominates for $t \to \infty$

Id) $\lambda_{(1)} > \lambda_{(5)} = 0$

Ie) $\lambda^{(1)} = 0 > \lambda^{(2)}$

Similes to Id), amow reversed:

1	-	٦
ı	/	1
۱	_	1

II) Repeated real eigenvalue 2	2
IIa) λ>0	
Ia1) A has two indep. eigenvectors with eigenvalue 7	
ITa2) A has only one eigenvector (up to factor)	unstable proper node
	unstable improper node
IIb) $\lambda = 0$ IIb1) A has two independent eigenv with eigenvalue O : Happens only if $A = (00)$. Every not is cons IIb2) A has only one eigenvector (up to factor)	*****
Ic) X<0 (Like Ia, amous reversed) Ic1) A has two independent eigenvectors	stable proper node
Ic2) A has only one eigenvector (up to factor)	able improper node

Remark: A simple way of deciding between the two possibilities in cases $\mathbb{T}a2$, $\mathbb{T}b2$, $\mathbb{T}c2$ and $\mathbb{T}a$, $\mathbb{T}b$, $\mathbb{T}c$ is to compute \vec{x}' at a suitable point $\vec{x}=\begin{pmatrix} x_1\\ x_2 \end{pmatrix}$. For example, in $\mathbb{T}a$ — $\mathbb{T}c$) one can take $\vec{x}=\begin{pmatrix} 1\\ 0 \end{pmatrix}$. Then $\vec{x}'=A\vec{x}=\begin{pmatrix} a_{11}&a_{12}\\ a_{21}&a_{22} \end{pmatrix}$ showing that one has Grunto clockwise motion for $a_{21}<0$.