Математическая модель мелкой воды на вращающейся бипереодической области

Третьяк И.Д.

15 февраля 2023 г.

Аннотация

Построена математическая модель мелкой воды на вращающейся бипереодической области.

1 Математическая модель

Математическая модель мелкой воды, используемая для тестирования специальных методов дифференцирования, представляет собой реализацию горизонтальных эффектов динамики атмосферы. Далее дадим краткое описание построенной модели.

1.1 Непрерывная формулировка задачи

Дифференциальные уравнения, составляющие непрерывную постановку задачи, рассматривались в двух видах.

1. Уравнения мелкой воды в адвективной форме:

$$\begin{cases} \frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} - v \frac{\partial u}{\partial y} - g \frac{\partial h}{\partial x} + f v, \\ \frac{\partial v}{\partial t} = -u \frac{\partial v}{\partial x} - v \frac{\partial v}{\partial y} - g \frac{\partial h}{\partial y} - f u, \\ \frac{\partial h}{\partial t} = -\frac{\partial h u}{\partial x} - \frac{\partial h v}{\partial y} \end{cases}$$

где u,v - компоненты вектора скорости, h - высота уровня жидкости, $g\approx 9.8~ms^{-2}$ - ускорение свободного падения, $f\approx 2\cdot 7.292\cdot 10^{-5}~s^{-1}$ - параметр Кориолиса.

В результате реализации схем численного решения данных уравнений, в некоторых тестах, требующих расчета на достаточно большие временные промежутки, мы столкнулись с явлением нелинейной неустойчивости. В результате этого было решено моделировать эквивалентную

систему, для которой в аналитической форме выражается закон сохранения энергии $E=h\frac{u^2+v^2}{2}+h\frac{h^2}{2}=const.$

2. Уравнения мелкой воды в векторно-инвариантной форме:

$$\begin{cases} \frac{\partial u}{\partial t} = (\xi + f)v - \frac{\partial}{\partial x}(K + gh) \\ \frac{\partial v}{\partial t} = -(\xi + f)u + \frac{\partial}{\partial y}(K + gh) \\ \frac{\partial h}{\partial t} = -\frac{\partial hu}{\partial x} - \frac{\partial hv}{\partial y} \end{cases}$$

где $\xi=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}$ - поле завихренности, $K=\frac{u^2+v^2}{2}$ - кинетическая энергия. Данные системы уравнений рассматриваются на двумерной вращающейся бипереодической области.

Кроме того, на каждом шаге по времени происходит решение диффузионного уравнения, продставляющее собой численный фильтр для сглаживания мелкомасштабных осцилляций:

$$\frac{\partial \Psi}{\partial t} = -K^2 \Delta^2 \Psi$$

где Ψ - сглаживаемое поле, K - коэффициент диффузии, Δ - оператор Лапласа.

1.2 Дискретная формулировка задачи на регулярной сетке без сгущений

Рассмотрим двумерную бипереодическую область Ω , введем на ней регулярную расчетную сетку $\omega \subset \Omega$: $\omega = \{(ih_x, jh_y) \mid i = 1 \dots N_x, j = 1 \dots N_y\}$, где h_x, h_y - шаги дискретизации по пространству, N_x, N_y - число интервалов разбиения. Будем решать данные системы уравненний на временном промежутку [0,T], проведем дискретизацию этого промежутку с шагом по времени Δt , получим $\omega_t = \{k\Delta t \mid k = 1 \dots N_t\}$.

Далее дискретизуем уравнения для получения конечно-разностного аналога в $\omega \times \omega_t$. Для наших целей удобнее всего будет воспользоваться разделением дискретизации уравнений по пространству и по времени.

Рассмотрим переодические разностные операторы дифференцирования по пространству, в рамках модели реализовано четыре вида таких операторов.

1. Центральная разность 2го порядка D_2 для дискретизации динамиче-

ских уравнений по пространству:

$$\begin{cases} D_2 f = \frac{f_{i+1} - f_{i-1}}{2h} \ i = 1, ..., N - 1, \\ D_2 f_0 = \frac{f_1 - f_{N-1}}{2h}, \\ D_2 f_N = D_2 f_0 \end{cases}$$

2. Центральная разность 4го порядка D_4 для дискретизации динамических уравнений по пространству:

$$\begin{cases} D_4 f = \frac{-f_{i+2} + 8f_{i+1} - 8f_{i-1} + f_{i-2}}{12h} & i = 2, ..., N - 2, \\ D_4 f_0 = \frac{-f_2 + 8f_1 - 8f_{N-1} + f_{N-2}}{12h}, \\ D_4 f_1 = \frac{-f_3 + 8f_2 - 8f_0 + f_{N-1}}{12h}, \\ D_4 f_{N-1} = \frac{-f_1 + 8f_N - 8f_{N-2} + f_{N-3}}{12h}, \\ D_4 f_N = D_4 f_0 \end{cases}$$

3. Дискретизация второй производной второго порядка D_2^2 для диффузионного уравнения:

$$\begin{cases} D_2^2 f = \frac{f_{i+1} - 2f_i + f_{i-1}}{h^2} \ i = 1, ..., N - 1, \\ D_2^2 f_0 = \frac{f_1 - 2f_0 + f_{N-1}}{h^2}, \\ D_2^2 f_N = D_2^2 f_0 \end{cases}$$

4. Дискретизация второй производной второго порядка D_4^2 для диффузионного уравнения:

$$\begin{cases} D_4^2 f = \frac{-f_{i+2} + 16f_i + 1 - 30f_i + 16f_{i-1} - f_{i-2}}{12h^2} \ i = 2, ..., N - 2, \\ D_4^2 f_0 = \frac{-f_2 + 16f_1 - 30f_0 + 16f_{N-1} - f_{N-2}}{12h^2}, \\ D_4^2 f_1 = \frac{-f_3 + 16f_2 - 30f_1 + 16f_0 - f_{N-1}}{12h^2}, \\ D_4^2 f_{N-1} = \frac{-f_1 + 16f_0 - 30f_{N-1} + 16f_{N-2} - f_{N-3}}{12h^2}, \\ D_4^2 f_N = D_4^2 f_0 \end{cases}$$

где N - число узлов в соответствующем направлении, h - шаг расчетной сетки.