

Optimisation de la consommation

Etude de cas : Bluetooth® et Bluetooth® Low Energy

Ana LOIZEAU Ingénieur Logiciel Embarqué ESEO

Séminaire « Autonomie énergétique des systèmes communicants » Nantes – 14 Octobre 2014

Cadre du projet

LA RECHERCHE A L'ESEO:

Equipe de 43 docteurs/doctorants/ingénieurs:

- 6 équipes de recherche académique
- 1 équipe de transfert technologique
 - réalise des prestations en électronique et informatique
 - accompagne les entreprises tout au long de leur processus d'innovation
 - → de l'expression de besoin à la preuve de concept

Présentation du projet

Portée	10m	
Débit	100Kbps garanti	
Fréquence rafraichissement	16Hz (62,5ms)	
Consommation (module communication)	<15mAh	

Les technologies disponibles

Choix de la technologie

Portée	10m	
Débit	100Kbps garanti	
Fréquence rafraichissement	16Hz (62,5ms)	
Consommation	<15mAh	

Démarche de développement

1 - Evaluation solution Bluetooth Low Energy

2 - Evaluation solution Bluetooth Classique

3 - Prototypage

Carte d'évaluation Bluetooth Low Energy

Carte d'évaluation Bluetooth Low Energy

Bilan de la solution Bluetooth Low Energy

Portée	10m	
Débit	100Kbps garanti	
Fréquence rafraichissement	16Hz (62,5ms)	
Consommation	<15mAh	

Etude de la solution Bluetooth classique

Carte d'évaluation Bluetooth classique

Consommation moyenne 33mA

1 - Optimisation de la puissance

Carte d'évaluation Bluetooth classique

2 – Optimisation de la mise en veille

Carte d'évaluation Bluetooth classique

Bilan de la solution Bluetooth Classique sur carte d'évaluation générique

Portée	10m	
Débit	100Kbps garanti	
Fréquence rafraichissement	16Hz (62,5ms)	
Consommation	<15mAh	

Optimisation sur prototype

Carte Prototype Bluetooth classique

Comparaison des solutions

	Bluetooth Low Energy sur carte d'évaluation	Bluetooth Classique sur prototype
Portée	10m	10m
Débit	10600 Bytes/s max	11200 Bytes/s
Fréquence rafraichissement	16Hz flux continu	16Hz flux rafale
Consommation	10.3 mA	12 mA

Conclusion

Une technologie « low energy » n'est pas forcement celle permettant d'avoir la plus basse consommation

→ II faut optimiser selon le profil de mission