МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ярославский государственный университет им. П.Г. Демидова»

Кафедра дискретного анализа

«Допустить і	к защите»
Заведующий	кафедрой,
д.фм.н., п	рофессор
Бондар	енко В.А.
<u>« 13 _ »июня</u>	<u>я</u> 2020 г.

Выпускная квалификационная работа бакалавра по направлению 01.03.02 Прикладная математика и информатика

Анализ алгоритмов глубокого машинного обучения в задачах распознавания изображений

Научный руководитель
к.т.н., старший преподаватель
Д.В. Матвеев
<u>« »</u> 2020 г.
Студент группы ИВТ-41БО
А.С. Коротков
<u>«</u> » 2020 г.

РЕФЕРАТ

Выпускная квалификационная работа 20 стр., 6 гл., 2рис., 0 источников

Ключевые слова: машинное обучение, глубокие нейронные сети, распознавание изображений, TensorFlow, OpenCV, Keras.

Объектом исследования являются методы на основе глубоких нейронных сетей для задач распознавания изображений.

Цель работы — изучить применение глубокого машинного обучения в задачах распознавания изображений.

В результате работы была разработана и реализована нейронная сеть для решения ???. Проведен анализ полученных результатов и сделан вывод о качестве работы нейронных сетей в задачах распознавания изображений.

СОДЕРЖАНИЕ

BE	ВЕДЕ:	НИЕ .		4
1	ОБЗ	ОР ПРЕ	ЕДМЕТНОЙ ОБЛАСТИ	5
	1.1	Задача	компьютерного зрения	5
	1.2	Искус	ственные нейронные сети	5
		1.2.1	Понятие искусственной нейронной сети	5
		1.2.2	Активационная функция	6
		1.2.3	Структура нейронной сети	7
		1.2.4	Глубокие нейронные сети	8
		1.2.5	Сверточные нейронные сети	8
		1.2.6	Проблемы обучения нейронных сетей	8
	1.3	Приме	енение нейронных сетей в задачах распознавания изображений	8
2	ПОС	СТАНО	ВКА ЗАДАЧИ	9
3	ПРС	ЕКТИР	РОВАНИЕ СИСТЕМЫ ДЛЯ ???	10
4	ПРА	КТИЧЕ	ССКАЯ РЕАЛИЗАЦИЯ	11
5	ПРИ	ІМЕРЫ	РАБОТЫ ПРОГРАММЫ	12
6	AHA	АЛИЗ Р.	АБОТЫ ПРОГРАММЫ	13
3A	КЛЮ	ОЧЕНИІ	Ε	14
СГ	ІИСС	к лит	ЕРАТУРЫ	15
СГ	ІИСС	к илл	ЮСТРАТИВНОГО МАТЕРИАЛА	16
СГ	ІИСС	Ж ТАБ.	ПИЧНОГО МАТЕРИАЛА	17
ПЕ	νиπο	жени	F. A	18

ВВЕДЕНИЕ

В настоящее время, в связи со стремительным развитием цифровых технологий,

использование автоматизированных и роботизированных систем распространилось на

множество областей как в промышленности, науке, так и в повседневной жизни. В

следствие этого, возрастает необходимость в эффективной обработке информации, пред-

ставленной, в частности, в формате видео и изображений.

На текущий момент изображения тесно влились в жизнь человека. Поэтому многие

автоматизированные системы используют их в качестве основного источника инфор-

мации. Нахождение, локализация, классификация и анализ объектов на изображении

компьютером – сложная задача компьютерного зрения.

В процессе обработки информации, получаемой из глаз, человеческий мозг про-

делывает колоссальный объем работы. Человек без труда сможет описать что находится

и что происходит на случайно взятой фотографии. Изображения могут нести в себе

колоссальное количество деталей и отличаться множеством параметров, таких как: раз-

решение, цветность, качество, яркость, наличие шума и т.д. Объекты на изображениях

также могут обладать множеством особенностей: масштаб, положение, цвет, поворот,

наклон и т.д. Однако, в цифровом формате, каждое изображение представляет собой лишь

массив числовых данных. Научить компьютер находить и классифицировать образы на

изображении с учетом всех факторов – очень сложная алгоритмическая задача. Для её

решения активно применяют технологии машинного обучения.

В данной работе был проведен анализ алгоритмов глубокого машинного обучения

для решения задач распознавания изображений, а также разработана система для ???.

В первой главе проведен обзор основных тем и задач ???

Во второй главе ???

В третьей главе ???

4

1 ОБЗОР ПРЕДМЕТНОЙ ОБЛАСТИ

1.1 Задача компьютерного зрения

Компьютерное (машинное) зрение — это совокупность программно-технических решений в сфере искусственного интеллекта (ИИ), нацеленных на считывание и получение информации из изображений, в реальном времени и без участия человека.

Большое количество информации человек получает при помощи зрения.

В основе компьютерного зрения лежит В настоящий момент, такие технологии применяются для решения таких сложных задач как:

- OCR Optical character recognition (Оптическое распознавания символов): преобразование текста на изображении в редактируемый.
- Фотограмметрия технология создания трехмерной модели объекта на основе фотографий, сделанных с различных ракурсов.
- Motion capture технология, широко применяемая в киноиндустрии, позволяющая преобразовывать движения реальных людей в компьютерную анимацию.
- Дополненная реальность (AR) технология, позволяющая в реальном времени проецировать виртуальные объекты на изображение реального окружения.
- Медицинская диагностика обнаружение раковых клеток на ранней стадии, увеличение качества МРТ изображений, их анализ и т.д.

1.2 Искусственные нейронные сети

1.2.1 Понятие искусственной нейронной сети

Машинное обучение – раздел исследований в сфере ИИ, в основе которых лежат методы разработки систем способных к обучению. ???

Искусственная нейронная сеть (ИНС) — компьютерная модель, в основе которой лежат принципы работы биологической нейронной сети - совокупности связанных между собой нервных клеток - нейронов. Каждый нейрон имеет набор входных связей - синапсов, по которым он получает информацию, представленную в виде импульсов, от других нейронов. По полученным данным нейрон формирует своё состояние и, с помощью аксона, сообщает его другим нейронам, обеспечивая функционирование системы. В про-

цессе формирования системы одни нейронные связи укрепляются, а другие ослабляются, обеспечивая обучаемость сети.

Рисунок 1.1 – Типичная структура нейрона

Искусственный нейрон представляет собой упрощенную модель биологического нейрона. На вход подаются n-мерные вектор значений $X=(x_1,...,x_n)$ и вектор весов $W=(w_1,...,w_n)$. Входные значения несут информацию, а веса указывают на "силу"межнейронных связей. Процесс подбора весов называется обучением нейронной сети. Значение выхода нейрона вычисляется по формуле:

$$out(x) = \sigma(\sum_{i=1}^{n} x_i w_i)$$

Где σ - функция активации.

1.2.2 Активационная функция

При вычислении взвешенной суммы входов нейрона, результат может принимать абсолютно любое значение $x \in (-\infty; +\infty)$, что препятствует дальнейшим вычеслениям. Активационная функция нейрона обеспечивает нормализацию посчитанной суммы, таким образом, что значение выхода нейрона всегда принадлежит некоторому, заранее заданному, диапазону, часто: (0; 1) или (-1; 1). Для многих моделей нейронных сетей также требуется, чтобы активационная функция была нелинейной, монотонной и непрерывнодифференцируемой на всей области определения.

Существует большое количество функций активации. Наиболее распространенные из них представлены в табл. 1.1

Таблица 1.1 – Нелинейные активационные функции

Название	Функция	Вид
Сигмоидная	$\sigma(x) = \frac{1}{1 + e^{-x}}$	
Гиперболический тангенс	$\tanh(x) = \frac{e^x - e^{-x}}{e^z + e^{-z}}$	
ReLU	$f(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x \ge 0. \end{cases}$	

1.2.3 Структура нейронной сети

Множества нейронов формируют слои, слои в свою очередь формируют нейронную сеть. Входной слой получает данные, обрабатывает и передает нейронам скрытого слоя. Аналогично срабатывет каждый последующий слой вплоть до выходного.

Рисунок 1.2 – Схема простой нейронной сети

1.2.4 Глубокие нейронные сети

Под глубокими нейронными сетями понимают сети с большим количеством скрытых слоев.

1.2.5 Сверточные нейронные сети

???

1.2.6 Проблемы обучения нейронных сетей

???

1.3 Применение нейронных сетей в задачах распознавания изображений

???

2 ПОСТАНОВКА ЗАДАЧИ

3 ПРОЕКТИРОВАНИЕ СИСТЕМЫ ДЛЯ ???

4 ПРАКТИЧЕСКАЯ РЕАЛИЗАЦИЯ

5 ПРИМЕРЫ РАБОТЫ ПРОГРАММЫ

6 АНАЛИЗ РАБОТЫ ПРОГРАММЫ

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ

СПИСОК ИЛЛЮСТРАТИВНОГО МАТЕРИАЛА

Рисунок 1.1	Типичная структура нейрона	6
Рисунок 1.2	Схема простой нейронной сети	7

СПИСОК ТАБЛИЧНОГО МАТЕРИАЛА

Таблица 1.1	Нелинейные активационные функции									7

ПРИЛОЖЕНИЕ А

Листинг 1

```
from __future__ import absolute_import, division, print_function,
      unicode_literals
2
3
   import numpy as np
   import cv2
4
5
   from tensorflow.keras.callbacks import ModelCheckpoint
  from tensorflow.keras.layers import Conv2D, Flatten, MaxPooling2D,
6
      Dense, Dropout
   from tensorflow.keras.models import Sequential
7
8
   from tensorflow.keras.preprocessing.image import ImageDataGenerator,
      img_to_array, load_img, array_to_img
   import random, os, glob
9
10
   import matplotlib.pyplot as plt
11
   DIR_PATH = '/home/alexandr/dev/datasets/garbage-classification/
12
      garbage classification/Garbage classification'
   img_list = glob.glob(os.path.join(DIR_PATH, '*/*.jpg'))
14
15
16
   def load_data():
17
       train=ImageDataGenerator(
18
           horizontal_flip=True, vertical_flip=True, validation_split
              =0.1, rescale=1./255,
19
           shear_range=0.1,
20
           zoom_range=0.1,
21
           width_shift_range=0.1,
22
           height_shift_range=0.1)
23
       test=ImageDataGenerator(rescale=1/255, validation_split=0.1)
24
       train_generator=train.flow_from_directory(DIR_PATH,target_size
          =(300,300), batch_size=32,
25
                                                 class_mode='categorical',
                                                    subset='training')
```

```
26
       test_generator=test.flow_from_directory(DIR_PATH,target_size
          =(300,300), batch_size=32,
27
                                                 class_mode='categorical',
                                                    subset='validation')
28
       labels = (train generator.class indices)
29
       labels = dict((v,k) for k,v in labels.items())
30
31
       print (labels)
32
33
       model=Sequential()
34
35
       model.add(Conv2D(32,(3,3), padding='same',input_shape=(300,300,3)
          ,activation='relu'))
36
       model.add(MaxPooling2D(pool_size=2))
37
       model.add(Conv2D(64,(3,3), padding='same',activation='relu'))
38
       model.add(MaxPooling2D(pool_size=2))
39
       model.add(Conv2D(32,(3,3), padding='same',activation='relu'))
40
       model.add(MaxPooling2D(pool_size=2))
41
       model.add(Flatten())
42
       model.add(Dense(64,activation='relu'))
43
       model.add(Dense(6, activation='softmax'))
44
45
       filepath="trained_model.h5"
46
       checkpoint1 = ModelCheckpoint(filepath, monitor='val_acc',
          verbose=1, save_best_only=True, mode='max')
47
       callbacks_list = [checkpoint1]
48
       model.summary()
49
       model.compile(loss='categorical_crossentropy', optimizer='adam',
          metrics=['acc'])
50
       model.fit(train_generator, epochs=150, steps_per_epoch=2276//32,
          validation_data=test_generator,
51
                        validation_steps=251//32, callbacks=callbacks_list
52
       model.save("model.h5")
53
54 | if __name__ == '__main__':
```

```
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'
load_data()
```