Enoncés et corrections : F. Lescure

Devoir maison : frontière et connexité

Exercice 1

- 1. Soit E un espace métrique et $A \subset E$ une de ses parties. On désigne par \overline{A} l'adhérence de A et par Fr(A) la frontière de A dans E. On a $Fr(A) = \overline{A} \cap \overline{A^c}$.
 - (a) Montrez que $x \in Fr(A)$, si et seulement si il existe une suite (x_n) d'éléments de A et une suite (y_n) d'éléments du complémentaire $E \setminus A$ de A dans E, qui convergent l'une et l'autre vers x.
 - (b) Soit $E =]-\infty, -1] \cup [0, 1[\cup [2, +\infty[$ muni de la topologie induite par \mathbb{R} . Avec $A = [0, \frac{1}{2}]$, qu'elle est la frontière de A dans E. Considérée comme sous-partie de \mathbb{R} , qu'elle serait la frontière de A dans \mathbb{R} ?
- 2. Soient E et F deux espaces métriques respectivement au moyen des distances d et d'.
 - (a) Précisez ce que l'on entend par la distance $\sup(d,d')$ sur $E \times F$. Dîtes rapidement pourquoi cette distance définit sur $E \times F$ le produit des topologies métriques sur E et F.
 - (b) Soient $A \subset E$ et $B \subset F$. Montrez que l'intérieur $A \times B \setminus Fr(A \times B)$ de $A \times B$ dans $E \times F$ est le produit cartésien de l'intérieur $A \setminus Fr(A)$ de A dans E avec l'intérieur $B \setminus Fr(B)$ de B dans F.
- 3. E et F sont toujours comme dans la deuxième question çi dessus.
 - (a) Si (ξ_n, ξ'_n) est une suite de points dans le complémentaire $E \times F \setminus A \times B$ de $A \times B$ dans $E \times F$, montrez qu'au moins une des deux alternatives suivantes (i) ou (ii) est vérifiée :
 - (i) il existe une suite extraite ξ_{n_k} dont tous les termes sont dans $E \setminus A$.
 - (ii) il existe une suite extraite ξ'_{n_k} dont tous les termes sont dans $F \setminus B$.
 - (b) Déduire, de tout ce qui précède, que la frontière $Fr(A \times B)$ de $A \times B$ dans $E \times F$ est donnée par la formule :

$$\operatorname{Fr}(A \times B) = \left(\operatorname{Fr}(A) \times \overline{B}\right) \cup \left(\overline{A} \times \operatorname{Fr}(B)\right)$$

- 4. Supposons E et F comme çi dessus mais avec l'hypothèse supplémentaire d'être connexes, et avec des inclusions strictes $A \subset E$ et $B \subset F$.
 - (a) Soient, dans $E \times F$, les points $(x,x') \notin A \times B$ et $(y,y') \notin A \times B$. Supposons que $x \in A$ et $y \notin A$; Montrez qu'il existe une partie connexe entièrement contenue dans le complémentaire de $A \times B$ qui contient (x,x') et (y,y').
 - (b) En déduire, sous les présentes hypothèses de cette quatrième question, que le complémentaire de $A \times B$ dans $E \times F$ est connexe.

Correction ▼ [002424]

Correction de l'exercice 1 A

- 1. (a) Si $x \in Fr(A) = \overline{A} \cap \overline{E \setminus A}$, alors $\forall n \in \mathbb{N}^*$ la boule $B(x, \frac{1}{n})$ rencontre nécessairement A (respectivement $E \setminus A$). Soit donc (axiome du choix) x_n (respectivement y_n) dans $B(x, \frac{1}{n}) \cap A$ (respectivement y_n dans $B(x, \frac{1}{n}) \cap (E \setminus A)$. Alors les suites x_n et y_n répondent clairement à la question : On a une suite (x_n) d'éléments de A et une suite (y_n) d'éléments du complémentaire $E \setminus A$ de A dans E, qui convergent l'une et l'autre vers x.
 - (b) On voit, qu'en posant pour $n \ge 1$, d'une part $x_n = \frac{1}{2} \frac{1}{4n}$ et d'autre part, $y_n = \frac{1}{2} + \frac{1}{4n}$, on obtient, respectivement comme plus haut, une suite de points dans A et une autre dans $E \setminus A$ qui convergent vers le même point $\frac{1}{2} \in A$ qui, adhérent à A comme à son complémentaire dans E est donc dans la frontière de A dans E. Par contre, si $x \in A$ est différent de $+\frac{1}{2}$, on voit que la boule (dans E) de centre x et de rayon $\frac{1}{2} x > 0$ ne rencontre pas le complémentaire de A et qu'en conséquence $[0, \frac{1}{2}[$ est l'intérieur de A dans E.

A contrario une boule de centre 0 et de rayon strictement positif rencontre toujours le complémentaire de A dans \mathbb{R} ce qui permet aisément de voir que la frontière de A dans \mathbb{R} est $\{0,\frac{1}{2}\}$.

- 2. Soient E et F deux espaces métriques respectivement au moyen des distances d et d'.
 - (a) Pour abréger les notations posons : $\delta = \sup(d, d')$. C'est sur $E \times F$, la distance donnée par la formule :

$$\delta((x,x'),(y,y')) = \sup(d(x,y),d'(x',y'))$$

Une boule pour δ n'est donc rien d'autre que le produit cartésien d'une boule pour d avec une boule pour d'. Or ces produits cartésiens forment précisément une base d'ouverts qui définie la topologie produit qui est donc aussi la topologie associée à la métrique δ .

- (b) Soient $A \subset E$ et $B \subset F$. Soit $(x,x') \in A \times B \setminus \operatorname{Fr}(A \times B)$ dans l'intérieur de $A \times B$ dans $E \times F$. Cet intérieur est un ouvert pour la topologie produit. La définition de cette topologie produit d'être engendrée par la base des produits cartésiens d'ouverts de E avec des ouverts de F a comme conséquence l'existence d'un ouvert U_x de E qui contient x et d'un autre $U_{x'}$ de F qui contient x' tels que $U_x \times U_{x'}$ soient entièrement contenus dans cet intérieur de $A \times B$ et donc à fortiori dans $A \times B$ lui même. Mais celà n'est possible que si U_x et $U_{x'}$ sont respectivement entièrement inclus dans A et B ce qui implique que x et x' sont respectivement intérieurs dans A et B. Réciproquement si x est intérieur à A et x' intérieurs à B et que U_x et $U_{x'}$ soient alors des ouverts pour lesquels $x \in U_x \subset A$ et $x' \in U_{x'} \subset B$, on voit que $U_x \times U_{x'} \subset A \times B$ est un ouvert pour la topologie qui contient (x,x') qui est donc intérieur à $A \times B$. $A \setminus Fr(A)$ de A dans E avec l'intérieur $B \setminus Fr(B)$ de B dans F.
- 3. E et F sont toujours comme dans la deuxième question çi dessus.
 - (a) Si (ξ_n, ξ_n') est une suite de points dans le complémentaire $E \times F \setminus A \times B$ de $A \times B$ dans $E \times F$, désignons par N_1 (respectivement N_2) l'ensemble des $n \in \mathbb{N}$ pour lesquels $\xi_n \notin A$ (respectivement $\xi_n' \notin B$.) L'hypothèse montre que : $\mathbb{N} = N_1 \cup N_2$. \mathbb{N} étant un ensemble infini, il faut bien qu'au moins l'une des deux parties N_1 ou N_2 le soit aussi. Si par exemple N_1 est infini, on peut ranger ses éléments en ordre croissant

$$n_0 < n_1 < n_2 < \dots < n_k < n_{k+1} < \dots$$

mais alors, par définition, la suite extraite ξ_{n_k} a tous ses termes dans $E \setminus A$. Mutatis mutandis lorsque N_2 est infini, ce qui est assuré dès lors que N_1 ne le serait pas.

(b) Commençons par montrer, par exemple, que : $\operatorname{Fr}(A) \times \overline{B} \subset \operatorname{Fr}(A \times B)$. En effet si $(x,x') \in \operatorname{Fr}(A) \times \overline{B}$, il existe une suite b_n dans B qui converge vers $x' \in \overline{B}$. De la même manière, on trouve une suite a_n d'éléments de A qui converge vers $x \in \operatorname{Fr}(A) \subset \overline{A}$. Mais aussi, comme on l'a vu plus haut, une suite d'éléments c_n dans le complémentaire $E \setminus A$ de A dans E qui converge aussi vers x. Mais alors (a_n,b_n) est une suite de points de $A \times B$ qui converge vers (x,x') et (c_n,b_n) est une suite de points du complémentaire de $A \times B$ qui converge aussi vers (x,x') qui se trouve donc à la fois dans l'adhérence de $A \times B$ et de son complémentaire cqfd. En renversant les rôles de A et B, on voit comment montrer que : $\overline{A} \times \operatorname{Fr}(B) \subset \operatorname{Fr}(A \times B)$. Ne reste donc plus qu'à montrer l'inclusion :

 $\operatorname{Fr}(A \times B) \subset (\operatorname{Fr}(A) \times \overline{B}) \cup (\overline{A} \times \operatorname{Fr}(B))$. Or, $(x, x') \in \operatorname{Fr}(A \times B)$, est la limite d'une suite de points (ξ_n, ξ_n') dans le complémentaire $E \times F \setminus A \times B$ de $A \times B$ dans $E \times F$, comme aussi la limite d'une suite de points (η_n, η_n') de $A \times B$, deuxième observation qui montre immédiatement que $x \in \overline{A}$ et $x' \in \overline{B}$. Enfin on a vu en a) immédiatement plus haut, qu'on pouvait extraire ξ_{n_k} dans $E \setminus A$ de la suite x_n ou $\xi_{n_k'}'$ dans $E \setminus B$ de la suite x_n' qui assure que x est dans l'adhérence de $E \setminus A$ ou que x' est dans celle de $F \setminus B$ ce qui assure que $x \in \operatorname{Fr}(A)$ ou $x' \in \operatorname{Fr}(B)$, et démontre la dernière inclusion recherchée.

- 4. (a) L'hypothèse (x,x') ∉ A × B et x ∈ A implique que x' ∉ B, si bien que E × {x'} est entièrement contenu dans le complémentaire de A × B. Evidemment y ∉ A implique que {y} × F est aussi entièrement contenu dans ce même complémentaire de A × B.
 Mais alors la partie E × {x'} ∪ {y} × F est connexe pour la raison que E × {x'} et {y} × F respectivement homéomorphes à E et F sont connexes et que leur intersection qui est le point (y,x') est non vide. Cette partie répond donc à la question.
 - (b) Prenons $(x,x') \notin A \times B$ et $(y,y') \notin A \times B$. exactement comme ci-dessus et qui sont dans la même composante connexe de $(E \times F) \setminus (A \times B)$. Soit maintenant $(z,z') \in (E \times F) \setminus (A \times B)$; si $z \notin A$, le raisonnement du a) se répète pour voir que (z,z') est raccordé à (x,x') par une partie connexe. Mais si $z \in A$, le a) montre que (z,z') est raccordé à (y,y') par une partie connexe, et donc aussi à (x,x') qui a donc $(E \times F) \setminus (A \times B)$ tout entier comme composante connexe.