Методы численного интегрирования

i.vdovin1

October 2022

1 Задача Коши

В данном задании я решаю следующую задачу Коши:

 $y' = x^2 - 2 * y$. Начальные данные: f(0) = 1.

Я ручками решил эту задачу и получил следующий ответ. Он точный, понадобится для сравнения точности вместо сравнения предыдущего ответа с текущим, который я использовал при вычислении интегралов (кстати, было бы забавно в нём совершить ошибку):

$$3/4 * e^{-2*x} + 1/2 * x^2 - 1/2 * x + 1/4$$

2 Метод Эйлера стандартный

Функция имеет много аргументов, а именно: f - сама функция Коши. start и fstart - начальные условия х и f(x) соответственно, x^2 - крайнее значение промежутка, f 1ым значением промежутка считается start, чтобы не загромождать функцию большим количеством переменных, ерѕ - точность по которой считаем. Важное замечание, я заметил, что наибольшее значение от первоначальной функции получается в крайней точке (т. к. она дальше всего от начальных условий), поэтому проверять значение f abs(myf - orig) f серѕ f буду проверять не для всех точек, а только для последней, это поможет уменьшить количество вычислений. Ну и orig - функция, являющаяся ответом, которую я вычислил на листочке

def eilerMethod(f, start, fstart, x2, eps, orig):

Графики для точности eps = 0.1 и 0.000001:

Видно, что для разного количества точек точность разная

Теперь покажем, что сходится метод сходится 1ым порядком. Я поставил while, в котором я постепенно понижал значения эпсилон. И делил значение функции, полученное на этом шаге на значение, полученное на предыдущем. Опять же замечу, что значения я делил только в последней точке, так как там наибольшие расхождения. Получил я следующее:

l N	ļ	eps	ļ	у	Ţ	yi/y(i-1)
†======= 4	1	0.1	ļ	0.197531	 	0.561963
8	į	0.01	į	0.288822	Ï	0.821681
64	į	0.001	į	0.344814	Ï	0.980974
512	į	0.0001	į	0.350681	Ï	0.997665
8192		1e-05		0.35145		0.999854
65536	į	1e-06	į	0.351495	Ĭ	0.999982
524288	į	1e-07	į	0.351501	į	0.999998

3 Метод Эйлера Усовершенствованный

Сравним 2 метода. Решаем то же уравнение. Для eps = 0.1 и 0.000001. Получим следующее:

Мы видим, что для маленький точности, метод сошёлся уже после 2 итерации (4 точки). Стандартный же метод эйлера сошелся за 3 итерации. В случае с большой точностью ситуация сильно не поменялась, а именно улучшенный Эйлер сошёлся на 262143 точек на разбиении, а стандартный за в 2 раза большее количество - 524287

Таким образом, несмотря на то, что оба метода имеют порядок сходимости 1, видно, что улучшенный сходится на 1ых шагах быстрее и стремится к 1 сверху, а стандартный - наоборот

l N	eps	ј у	yi/y(i-1)
2	0.1	0.53125	1.51137
4	0.01	0.403056	1.14667
16	0.001	0.360723	1.02623
256	0.0001	0.352033	1.00151
2048	1e-05	0.351568	1.00019
16384	1e-06	0.35151	1.00002
262144	1e-07	0.351502	1