

CAMBRIDGE
MATHEMATICAL JOURNAL.

THE
CAMBRIDGE
MATHEMATICAL JOURNAL.

VOL. IV.

EDITED BY R. L. ELLIS, M.A.

FELLOW OF TRINITY COLLEGE, CAMBRIDGE.

Οὐδὲ μὲν οὐδὲ οἱ ἀναρχοὶ ἔσται, πόθεον γε μὲν ἀρχόντι.

CAMBRIDGE:
PUBLISHED BY E. JOHNSON, TRINITY STREET;
AND WHITTAKER & CO., LONDON.

1845.

CAMBRIDGE.

PRINTED BY METCALFE AND PALMER, TRINITY-STREET.

ANOMIA, OR,
THE DISEASE OF THE
MIND.

QA

1

Q18

v. 4

INDEX TO VOL. IV.

Memoir of D. F. Gregory, M. A. Fellow of Trinity College. By the Editor	Page
	145

PLANE GEOMETRY.

Symmetrical investigation of points of inflection. <i>By W. Walton</i>	13
Demonstration of Pascal's Theorem. <i>By A. Cayley</i>	18
Of asymptotes to algebraical curves. <i>By D. F. Gregory</i>	42
Notes on conic sections	99
On the theory of algebraical curves. <i>By A. Cayley</i>	102
Polar equations to tangents to a conic section	112
On Brianchon's Hexagon. <i>By W. Walton</i>	163
Note on geometrical discontinuity	190
Proof of the property of the parabola	192
On Brianchon's Hexagon. <i>By P. Frost</i>	277

SOLID GEOMETRY.

Proof of a property of the tangent plane to any surface	47
Demonstration of Dupin's Theorem	62
On the partial differential equations to a family of envelops. <i>By W. Walton</i>	152
Reduction of the general equation of surfaces of the second order. <i>By W. Thomson</i>	227
On the lines of curvature of surfaces of the second order. <i>By W. Thomson</i>	279

ALGEBRA.

	Page
Method of finding the greatest common measure of two polynomials. <i>By A. Q. C. Craufurd</i>	9
On the successive approximations of a continued fraction	97
Chapters in the analytical geometry of (n) dimensions. <i>By A. Cayley</i>	119
Notes on linear transformations. <i>By G. Boole</i>	167
On the theory of linear transformations. <i>By A. Cayley</i>	193
Expressions for the sine and cosine of multiple arcs. <i>By R. Moon</i>	250

DIFFERENTIAL AND INTEGRAL CALCULI, ETC.

On certain definite multiple integrals. <i>By R. L. Ellis</i>	1
On the transformation of multiple integrals. <i>By G. Boole</i>	20
Problem, to find the value of a certain function	48
On the equation $(D + a)^n y = X$, and addendum	60-96
Note on a definite multiple integral. <i>By R. L. Ellis</i>	64
On the inverse calculus of definite integrals. <i>By G. Boole</i>	82
On a new species of equations of differences	87
On a multiple definite integral. <i>By R. L. Ellis</i>	116
On a certain definite integral	143
Applications of the symbolical form of Maclaurin's Theorem	176
On the use of the symbol $e^{\theta\sqrt{(-1)}}$ in certain transformations	177
Solution of equations in finite differences. <i>By R. L. Ellis</i>	182
On the theory of developments. Part I. <i>By G. Boole</i>	214
On certain integral transformations. <i>By B. Bronwin</i>	233
On certain continued fractions. <i>By P. Frost</i>	237
On the integrating factor of the homogeneous differential equation of the first order. <i>By G. G. Stokes</i>	241
On indeterminate maxima and minima. <i>By W. Walton</i>	253
On inverse elliptic functions. <i>By A. Cayley</i>	257

MECHANICS, ETC.

On the equations of motion of rotation. <i>By A. Bell</i>	7
On the motion of a piston and of the air in a cylinder. <i>By G. G. Stokes</i>	28
On the motion of the centre of gravity of a broken body. <i>By W. Walton</i>	77
On the axis of spontaneous rotation	158
Note on the spontaneous axis of rotation	173
On the law of gravity at the surface of a revolving homogeneous fluid	191

ASTRONOMY.

	Page
On the lunar theory	49
On a problem in precession and nutation	137
On a problem in central forces	171
Transformation of the differential equations of a planet's motion. <i>By B. Bronwin</i>	245

LIGHT, HEAT, ETC.

On the equations of the motion of heat referred to curvilinear coordinates	33
On some points in the theory of heat	67
On the intensity of light in the shadow of a very small circular disk	72
Notes on Magnetism. Parts I. II. <i>By R. L. Ellis</i>	90, 139
Demonstration of a proposition in physical optics	115
Note on orthogonal isothermal surfaces	179
Demonstration of a fundamental proposition in electricity. <i>By W. Thomson</i>	223
Note on a problem in plane optics. <i>By L. Fischer</i>	286

MISCELLANEOUS.

On a question in the theory of probabilities. <i>By R. L. Ellis</i>	127
On the balance of the chronometer. <i>By R. L. Ellis</i>	133
On magic squares. <i>By R. Moon</i>	209

