Arjuna JEE 2.0 (2024)

GOC

DPP-01

- 1. The inductive effect of the groups: $-NH_3^{\oplus}$; -D; $-CO_2^{\ominus}$; -COOH are respectively
 - (1) -I, +I, +I, -I
 - (2) -I, -I, -I, +I
 - (3) +I, No effect, -I, -I
 - (4) +I, -I, -I, -I
- **2.** Which of the following belongs to + I group?
 - (1) -OMe
- (2) $-NH_3$
- (4) –OH
- **3.** Choose the correct statement
 - (1) I effect operates in both σ and π bonds
 - (2) I effect creates net charge in molecule
 - (3) I effect transfers electron from one carbon to another
 - (4) I effect creates partial charges and it is distance dependent
- **4.** The most stable carbocation among the following is:
 - (1) H_3^{\dagger}
 - (2) $H_2^{+}CCH_2 OCH_3$
 - (3) $H_3C \overset{+}{C} CH_2 CH_3$ CH_3
 - (4) $H_3C \overset{+}{C} CH_2 OCH_3$
- **5.** Order of stability of given free radical is:

$$H_3C - \dot{C}H_2$$
 $H_3C - \dot{C}H - CH_3$

$$\begin{array}{c} \mathbf{H_3C-C-CH_2-CH_3} \\ \mathbf{CH_3} \\ \mathbf{(III)} \end{array}$$

- $(1) \quad III > I > II$
- (2) I>II>III
- $(3) \quad II > I > III$
- (4) III > II > I

- **6.** The –I effect is shown by:
 - (1) -COOH
- (2) $-CH_3$
- (3) -CH₂CH₃
- (4) –CHR₂
- 7. The increasing order of +ve I-effect shown by H, CH_3 , C_2H_5 and C_3H_7 is:
 - $(1) \quad H < CH_3 < C_2H_5 < C_3H_7$
 - (2) $H > CH_3 > C_2H_5 > C_3H_7$
 - (3) $H < C_2H_5 < CH_3 < C_3H_7$
 - (4) None of the above
- **8.** Inductive effect refers to
 - (1) electron displacement along a carbon chain
 - (2) Complete transfer of one of the shared pair of electrons to one of the atoms joined by a double bond
 - (3) Complete transfer of electron with the help of conjugation
 - (4) None of the above
- 9. Decreasing order of -I effect of the triad $[-NO_2, -NH_3, -CN] \ is$

$$(1) \quad -\stackrel{\oplus}{N} H_3 > -NO_2 > -CN$$

(2)
$$-NH_3 > -CN > -NO_2$$

$$(3) \quad -CN > -NO_2 > -NH_3$$

$$(4) \quad -NO_2 > -CN > -\stackrel{\oplus}{N}H_3$$

- **10.** Which is the least stable carbocation?
 - (I) CH₃CH, CH,
 - (II) CH₃ CHCH₃
 - (III) (CH₃)₃ C
 - (IV) (CH₃)₂HCCH₂
 - (1) I
- (2) II
- (3) III
- (4) IV

- **11.** Amongst the given cations, the most stable carbonium ion is
 - (1) CH₃
- (2) $(CH_3)_3 \overset{+}{C}$
- (3) $CH_3 \overset{+}{C}H_2$
- $(4) (CH_3)_2 \overset{+}{C}H$
- **12.** The least stable free radical is
 - (1) $CH_3 \dot{C}H_2$
- (2) $CH_3CH_2CH_2$
- (3) $(CH_3)_2$ CH
- (4) $(CH_3)_3 C$
- **13.** Which is the correct stability order of following intermediates:

- (1) a > b > c
- (2) a > c > b
- (3) c > b > a
- (4) b > a > c

14. $\overset{\Theta}{\text{CH}}_3$ is less stable than

(1)
$$CH_3 - \overset{\Theta}{C}H_2$$

(2)
$$CH_3 \stackrel{\Theta}{-} CH - CH_3$$

$$(3) \quad \overset{\Theta}{\text{C}}\text{H}_2 - \text{NO}_2$$

(4)
$$CH_3 - \overset{\Theta}{C}H - C_2H_5$$

15. The correct order of stability of given carbanions will be

(I)
$$CH_3 - CH_2$$

(II)
$$CH_2 = \overset{\Theta}{C}H$$

(III)
$$HC \equiv \stackrel{\Theta}{C}$$

$$(1) \quad I > II > III$$

$$(2) \quad III > II > I$$

$$(3) \quad I > III > II$$

$$(4) \quad II > I > III$$

Note: Kindly find the Video Solution of DPPs Questions in the DPPs Section.

Answer Key

1	(1)
I.	(1)

2. (3)

3. (4)

4. (3)

5. (4)

6. (1)

7. (1)

8. (1)

9. (1)

10. (4)

11. (2)

12. (2)

13. (3)

14. (3)

15. (2)

