TP3

Traitement Statistique des signaux discrets

I. But

Le but de ce TP est d'analyser des estimateurs de la fonction de corrélation et de la densité spectrale de puissance (DSP).

1. Estimation des fonctions de corrélation

la fonction de corrélation se définit de différentes façons suivant la classe de signaux à laquelle on s'adresse:

> signaux déterministes

Energie finie: $R_{x,y}(\tau) = \int_{-\infty}^{+\infty} x(t) y^*(t-\tau) dt$

Puissance finie: $R_{x,y}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_0^T x(t) y^*(t-\tau) dt$

> signaux aléatoires

$$R_{x,y}(\tau) = E[x(t)y^*(t-\tau)]$$

Lorsque x=y, on parle de la fonction d'autocorrélation ($R_{xx}(\tau) = R_x(\tau)$).

2. Propriétés de la fonction d'autocorrélation

Parité: $R_x(-\tau) = R_x(\tau)$

Maximum en zéro: $|R_x(\tau)| \le R_x(0)$

Puissance moyenne du signal = $R_x(0)$

3. Propriétés de la fonction d'inter corrélation

Symétrie hermitienne : $R_{x,y}(\tau) = R_{x,y}^*(-\tau)$

Majoration: $|R_{x,y}(\tau)| \le \frac{1}{2} (R_x(0) + R_y(0))$

4. Algorithme de calcul

L'estimation de la fonction de corrélation fait appel aux algorithmes temporels et fréquentiels.

Dans le calcul temporel, $R_{x,y}(k)$ est estimé à partir de N-k valeurs:

$$\hat{R}_{xy}(k) = \frac{1}{N} \sum_{n=0}^{N-k-1} x(n) y(n+k) \qquad 0 \le k \le N-1$$

Lorsque $N \to N-1$, le terme de normalisation est égal à $\frac{1}{N}$. Par conséquent, un biais est introduit dans l'estimation: la corrélation est pondérée par une fenêtre triangulaire.

Pour éliminer ce biais, un second estimateur peut être défini par:

$$\hat{R}_{xy}(k) = \frac{1}{N-k} \sum_{n=0}^{N-k-1} x(n)y(n+k) \qquad 0 \le k \le N-1$$

Par calcul fréquentiel, le calcul est basé sur une fonction de corrélation. Les estimateurs deviennent:

Estimateur biaisé: $\hat{R}_{xy}(k) = \frac{1}{N} FFT^{-1}(X(f)Y^*(f))$

Estimateur non biaisé: $\hat{R}_{xy}(k) = \frac{1}{N-k} FFT^{-1}(X(f)Y^*(f))$

où X(f) = FFT(x(k)) et Y(f) = FFT(y(k)), avec n = 0, ..., N où N représente le nombre de points calculés en fréquence.

II. Estimation de la densité spectrale de puissance

Pour l'estimation du spectre, il existe deux techniques classiques :

- ➤ Le PERIODOGRAMME
- ➤ Le CORRELOGRAMME

III. Travail demandé:

Autocorrélation

1) Autocorrélation d'un sinus

- a) Générer 128 échantillons d'une sinusoïde de fréquence 15Hz sur un intervalle [0s, 1s]. On la note x1. Observer son spectre X1.
- b) Observer les estimations de son autocorrélation.
- c) Quelle est l'allure du biais ?

2) Autocorrélation d'un sinus bruité

- a) Générer un bruit blanc avec la fonction randn.
- b) Observer les estimations de son autocorrélation. Laquelle parait la plus satisfaisante ? Retrouver les caractéristiques du bruit.
- c) Ajouter au sinusoïde le bruit blanc généré.
- d) Observer le signal bruité et l'estimation biaisée de son autocorrélation.

Estimations spectrales

1) Périodogramme Simple

- a) Calculer et comparer les périodogrammes des fonctions sinus et sinus bruité.
- b) Que représente la valeur du périodogrammes pour la fréquence 0 ?
- c) Trouver la variance du signal.

2) Corrélogramme

- a) A l'aide de l'estimateur biaisé de l'autocorrélation, comparer le périodogramme et le corrélogramme de la fonction sinus bruité générée.
 Expliquer.
- b) A l'aide de l'estimateur non biaisé de l'autocorrélation, représenter le corrélogramme de la fonction sinus bruité générée. Quel est le principal inconvénient ?

Limitations de Fourier: Etude de la résolution de fréquence

- a) Générer un sinusoïde x2 de fréquence f2 = 16Hz. Observer x2 ainsi que son spectre x2.
- b) Ajouter le signal x2 au signal x1. On le note y1. Observer son spectre y1.

- c) Observer les estimations de corrélation possibles.
- d) Observer les différentes fenêtres temporelles d'apodisation (traingulaire, Hamming, Hanning).
- e) Pondérer le signal sinusoïde généré par ces fenêtres. Observer leur spectres centrés à zéro.
- f) Comparer les effets des différentes fenêtres en fonction de leur pouvoir à réduire l'amplitude des lobes secondaires.
- g) Qu'elle est la résolution de fréquence ?
- h) Ajouter un signal x3 de fréquence f3 = 55Hz au signal x1. On le note y2
- i) Recommencer les questions b) et d) avec le signal y2.
- j) Que devient la résolution de fréquence ?