Estructuras de Datos y Algoritmos

Tema 5: Tablas de Dispersión

Departamento de Informática Universidad de Valladolid

Curso 2022-23

Grado en Ingeniería Informática Grado en Estadística

1. DEFINICIONES Y OBJETIVOS

Motivación

- Los árboles equilibrados consiguen un orden O(log n) para las operaciones básicas de los TADs Conjunto, Mapa, Diccionario y Lista ordenada.
- En el tema 3, sin embargo, vimos que los arrays de bits pueden conseguir un orden O(1) para acceso, inserción y borrado por valor.
- Problemas:
 - Los valores/claves deben ser números naturales.
 - El espacio de almacenamiento era proporcional al número de claves posibles, u. En general este valor es enorme.
 - Las operaciones de acceso al i-ésimo menor y recorrido en orden son O(u).
- Esto los convierte en inútiles para la gran mayoría de casos.

Caso práctico

- Supongamos un mapa en el que se almacenan datos sobre personas cuya clave es el DNI (número de 8 dígitos).
- Se necesitaría un array indexado por DNI, que almacena 100.000.000 de enlaces a registros/objetos.
- Ese espacio es independiente del número de registros que realmente almacenemos.

Solución

- La solución consiste en definir una función que permita traducir y comprimir la clave a un índice de una tabla, cuyo tamaño, m, sea proporcional al número de elementos almacenados, n, en vez de al número de claves posibles.
- El problema de éste enfoque son las colisiones. Según la manera de resolverlo hablaremos de dispersión perfecta, ábierta o cerrada.

Notación utilizada

- \mathbb{U} : **Espacio de claves**. Representa todos los valores posibles del tipo de datos que representa a las claves. Usaremos el símbolo k para representar una clave. u es el tamaño de \mathbb{U} , el número de posibles valores de clave.
- \mathbb{D} : **Espacio de datos**. Es el subconjunto de \mathbb{U} que representa las claves que se van a almacenar. n es el tamaño de \mathbb{D} , el número de claves almacenadas.
- m: Capacidad de la **tabla de dispersión**. El objetivo es que sea proporcional a n, no a u. Es decir $m \in O(n)$.
- h'(k): Función de dispersión primaria. Traduce (y posiblemente comprime) un valor de clave a una secuencia de bits que se interpreta como un número natural.
- h(k, m): Función de dispersión secundaria. Traduce y comprime un valor de clave a un entero en el rango [0..m-1].
 - i = h(k,m) es el **índice** de la tabla correspondiente a la clave k.

Funciones de Dispersión (Hash)

- Una función de dispersión (hash function) traduce un valor de un determinado tipo de datos (posiblemente complejo) a una secuencia de bits que suele interpretarse como un número natural.
- Si dos claves son iguales (en el contexto en que se trabaja), la función de dispersión debe devolver el mismo valor para ambas (determinismo):

$$k_1 = k_2 \Rightarrow h'(k_1) = h'(k_2)$$

 Pero el inverso no es cierto: Es perfectamente posible (y habitual) que dos claves distintas obtengan el mismo valor al aplicarseles la función de dispersión (colisión):

$$k_1 \neq k_2 \Rightarrow h'(k_1) \neq h'(k_2)$$

Funciones de Dispersión Criptográficas

- En criptografía, las funciones de dispersión (o resumen) se aplican a un documento o una serie de datos para obtener un valor resumen (digest, MAC, checksums) que se pueda usar para validarlos (los datos y el resumen se adquieren por "canales" distintos)
- Se obtiene una secuencia de bits (tipicamente 256 ó 512 bits)
- El objetivo primordial es diseñar funciones "de un sólo sentido", en el que el cálculo i=h(k) sea sencillo, pero el inverso (conocido i obtener un k cualquiera que al aplicar la función devuelva i) sea básicamente imposible (por muestreo)
- No suelen usarse para tablas de dispersión (existen alternativas más eficientes)
- Ejemplos: MD5, SHA-1, SHA-2, SHA-3, BLAKE3.

Funciones de Dispersión Normales

- Lo habitual es que el resultado sea un entero positivo en el rango típico de la máquina (32 o 64 bits)
- Existe una función distinta por cada tipo de datos que se vaya a utilizar para representar las claves. Ejemplos:
 - Enteros: h'(n) = |n|
 - Datos con más bits que un entero: Se dividen en trozos con el tamaño en bits de un entero y se hace un xor entre ellos.
 - Cadenas de caracteres: $h'(c_0...c_{n-1}) = \sum_{i=0}^{n-1} 31^i \cdot c_i$
- En Python existe la función hash para tipos de datos simples.
- En Java la clase Object incluye la función hashCode, por lo que todo objeto tiene definida una función de dispersión. Cuidado: Para nuevas clases devuelve la dirección de memoria del objeto.

Colisiones y Uniformidad

- Se produce una colisión cuando a dos claves distintas la función de dispersión les asigna la misma posición en la tabla.
 - Si se desconocen los datos concretos que se van a introducir...
 - .. y el tamaño de la tabla es menor que el tamaño del espacio de claves (m < u)..
 - .. entonces la existencia de colisiones es inevitable.
- Respecto a la eficiencia, es importante que las funciones de dispersión tengan un comportamiento uniforme respecto al conjunto de datos que se almacenan.
 - Uniforme significa que la probabilidad de que a cualquier clave k del conjunto de datos se le asigne el índice i de la tabla sea 1/m.
 - La misma función de dispersión puede ser uniforme para un conjunto de datos y no serlo para otro (no se puede garantizar que una función de dispersión sea uniforme para cualquier conjunto de datos)

Ejemplo de uniformidad

 Tomamos los DNI's de 50 alumnos de EDA y escogemos dos funciones de dispersión, la izquierda toma los dos últimos dígitos del DNI y la derecha los dos primeros:

• Si el conjunto de datos fuera "personas con DNI terminado en 00", la primera función pasaría a no ser uniforme.

Factor de Carga

• Se define **factor de carga** como el ratio entre el número de elementos y la capacidad de una tabla de dispersión.

$$L = \frac{n}{m}$$

- En dispersión cerrada (0 o 1 claves por celda) es un valor entre 0 (tabla vacía) y 1 (tabla llena)
- En dispersión abierta (una celda puede almacenar varias claves) puede tomar valores mayores que 1.
- La eficiencia de las operaciones sobre las tablas de dispersión dependen directamente del factor de carga.
- Para que se puedan considerar de tiempo constante, se estable un límite, L_{max} . Cuando al insertar elementos el factor de carga supera ese límite, se **reestructura** la tabla: Se amplía su tamaño, m (típicamente se duplica).

Funciones de dispersión secundaria

En general existen dos niveles en la definición de funciones de dispersión:

- En el primero se definen funciones que traducen el tipo de datos a un número natural.
 - Las denominamos h'(k)
 - Estan asociadas a cada tipo de dato concreto (definidas en la clase base (Java) o mediante una interfaz).
- En el segundo nivel se **comprime** el valor obtenido del primer nivel a un índice en el rango [0..m-1].
 - Las denominamos h(k, m).
 - Se debe tener en cuenta que el tamaño de la tabla de dispersión, m, puede cambiar debido a las reestructuraciones.

Funciones de dispersión secundaria

El método más utilizado se denomina método de división:

$$h(k,m) = h'(k) \bmod m$$

- Para evitar problemas con la uniformidad, se debería escoger un valor de m que fuera primo (al reestructurar se escogería el siguiente primo mayor que $2 \cdot m$)
- Otro enfoque (Java) consiste en "barajar" los bits de h'(k) antes de calcular el módulo. Con ello se pueden usar valores de m que sean potencias de dos (simplifica la reestructuración):

Desplaz. bits derecho
$$\uparrow$$
 xor $(h'(k) \gg 20) \otimes (h'(k) \gg 12) \otimes (h'(k) \gg 7) \otimes (h'(k) \gg 4) \otimes h'(k)$

 Existen otros métodos (multiplicación, producto de vectores) que no estudiaremos.

Recapitulación

- Una tabla de dispersión consistirá en una tabla (array) de capacidad
 m que contiene elementos o listas de elementos, n elementos en un momento dado. Los elementos pueden ser pares clave-valor.
- Se necesita una función de dispersión primaria que traduzca las claves a números positivos.
- Se define un función de dispersión secundaria que comprima esos números a índices (tipicamente el método de división).
- Se especifica un factor de carga máximo. Cuando al insertar se supere ese valor, se reestructura la tabla.
- Veremos 3 variantes de tablas, según el método de resolver el problema de las colisiones: Dispersión perfecta, abierta y cerrada.

2. DISPERSIÓN PERFECTA

Dispersión Perfecta

- La estrategia de dispersión perfecta (perfect hashing) consiste en encontrar un conjunto de funciones de dispersión que al ser aplicadas a un conjunto de datos conocido no produzca ninguna colisión entre ellos.
- El conjunto de datos debe conocerse antes del diseño de la tabla, y no se puede modificar.
- Sólo se permiten operaciones de acceso, no se puede modificar la tabla (ni insertar ni borrar).
- Se basa en un conjunto de funciones de dispersión, parametrizadas por un valor aleatorio (producto vectorial).
- La búsqueda de las funciones adecuadas se realiza al azar, pero está garantizado que en un tiempo promedio O(n) se pueden encontrar las funciones adecuadas.

3. DISPERSIÓN ABIERTA (CHAINING)

Dispersión Abierta (chaining)

- La estrategia de **dispersión abierta** resuelve el problema de las colisiones permitiendo que se almacene más de un elemento en cada celda de la tabla.
- Lo habitual es que cada celda almacene un enlace a una lista simplemente enlazada de elementos.
- Ejemplo: (Secuencia de inserciones: 16, 8, 12, 20, 22, 45, 5)

Operaciones

- Las operaciones basadas en valor (búsqueda, inserción y borrado por valor) consisten en:
 - Usar la función de dispersión secundaria para obtener el índice de la tabla correspondiente al valor (o clave).
 - Realizar la operación sobre la lista enlazada referenciada en esa posición.
 - La búsqueda y el borrado recorren la lista hasta encontrar el elemento (búsqueda secuencial).
 - La inserción es inmediata: Se crea un nuevo nodo con el elemento (o par clave/valor) y se inserta al principio de la lista.
 - Si en la inserción se supera el factor de carga máximo, se reestructura la tabla.
- Para cualquier otro tipo de operación (acceso i-ésimo menor, recorrido ordenado, fusión, etc.) se comporta como un vector de listas desordenadas.

Eficiencia promedio

- Si la función de dispersión es uniforme para el conjunto de datos utilizado:
 - Cada clave tiene la misma probabilidad de que se le asigne cualquiera de los *m* índices.
 - La longitud promedio de las listas es n/m, igual al factor de carga
- Búsquedas exitosas: 1 + L/2 accesos en promedio.
 - En una lista de longitud L el promedio es L/2 accesos.
 - El **borrado** de una clave equivale a una búsqueda exitosa.
- Búsquedas fallidas: 1 + L accesos en promedio.
 - m búsquedas fallidas, una por cada índice de la tabla, recorren la suma de longitudes de las listas: (m + n)/m = 1 + L
- Inserción: 1 acceso mejor caso, O(1) en tiempo amortizado.
 - La **reestructuración** es O(n), pero garantiza n inserciones en O(1)

Eficiencia peor caso

- El peor caso se da cuando la función de dispersión es extremadamente no uniforme: Asigna la misma posición a todas o la mayoría de las claves del conjunto de datos.
- La tabla contiene una única lista con los n elementos.
- En circunstancias normales la probabilidad de caer en el peor caso es insignificante (1/m!)
- Pero definida una función de dispersión, siempre es posible diseñar un conjunto de datos que provoque el peor caso (ataque por degradación de eficiencia).
 - **Búsqueda, borrado**: O(n) accesos en promedio.
 - Inserción: Sigue siendo O(1) en tiempo amortizado.

Resumen eficiencia

L = n/m < Lmax
$m \in O(n)$
L ∈ O(1)
* Tiempo amortizado

Búsqueda exitosa

Búsqueda fallida

Borrado por valor

Inserción por valor

Espacio

Uniforme promedio (exacto)	Uniforme promedio	No uniforme promedio
1 + L/2	O (1)	O(n)
1 + L	<i>O</i> (1)	<i>O</i> (<i>n</i>)
1 + L/2	<i>O</i> (1)	O(n)
1 n	<i>O</i> (1)*	<i>O</i> (1)*
O(n+m)	O(n)	<i>O</i> (<i>n</i>)

Ejemplo en Java (I)

```
// Tabla de dispersión abierta que almacena pares clave-valor
public class TablaDispAbi<K,V> {
   // Clase interna que representa un
   // nodo de una lista simplemente enlazada
   private class Nodo<K,V> {
       K clave;
       V valor;
       Nodo<K,V> sig;
       Nodo(K clave, V valor, Nodo<K,V> sig) {
           this.clave = clave; this.valor = valor;
           this.sig = sig;
   int m; // Capacidad de la tabla
    int n; // Número de elementos
   double maxL; // Máximo factor de carga
```


Ejemplo en Java (II)

```
// Tabla de dispersión (array de listas de pares)
Nodo<K,V>[] tabla;
// Constructor con valores por defecto
public TablaDispAbi() { this(16,2.5); }
// Constructor: m0 - capacidad inicial
// maxL - factor de carga máximo
public TablaDispAbi(int m0, double maxL) {
    this.maxL = maxL;
    this.m = m0;
    tabla = new Nodo[m];
    for(int i = 0; i < m; i++) tabla[i] = null;
    this.n = 0;
// Devuelve el indice correspondiente a esa clave
protected int indice(K c) { return Math.abs(c.hashCode()) % m; }
```


Ejemplo en Java (IV)

```
protected void reestructurar() {
    // Salvamos la tabla anterior
    Nodo<K,V>[] tmp = tabla;
    // Creamos una nueva tabla
    n = 0; m = 2*m; // Duplicamos el tamaño
    tabla = new Nodo[m];
    for(int i = 0; i < m; i++) tabla[i] = null;</pre>
    // Recorremos la tabla anterior insertando elementos
    for(int i = 0; i < tmp.length; i++) {</pre>
        Nodo<K,V> nodo = tmp[i];
        while(nodo != null) {
            ins(nodo.clave, nodo.valor);
            nodo = nodo.sig;
```


Ejemplo en Java (V)

```
public V get(K clave) {
    // Aplicar función de dispersión a la clave
     int i = indice(clave);
    // Buscar en la lista i-ésima
     Nodo<K,V> p = tabla[i];
     while(p != null && !p.clave.equals(clave)) p = p.sig;
     return (p == null) ? null : p.valor;
public void ins(K clave, V valor) {
    // Incrementar n y comprobar factor de carga
    n++;
    if((1.0*n)/m > maxL) reestructurar();
    // Aplicar función de dispersión a la clave
    int i = indice(clave);
   // Insertar al principio de la lista i-ésima
    tabla[i] = new Nodo(clave, valor, tabla[i]);
```


Ejemplo en Java (VI)

```
public boolean del(K clave) {
 // Aplicar función de dispersión a la clave
  int i = indice(clave);
 // Buscar nodo controlando elemento anterior
 Nodo<K,V> ant = null;
 Nodo<K,V> act = tabla[i];
 while(act != null && !act.clave.equals(clave)) {
   ant = act;
   act = act.sig;
  if(act == null) { return false; }
 // Comprobar caso especial borrado del primero
  if(ant == null) tabla[i] = act.sig; else ant.sig = act.sig;
 n--;
  return true;
```


4. DISPERSIÓN CERRADA (OPEN ADDRESSING)

Dispersión Cerrada (open addressing)

- En la estrategia de **dispersión cerrada** cada celda de la tabla almacena un único elemento (o ninguno).
 - Una consecuencia directa es que, a diferencia de la dispersión abierta, el número de elementos almacenados no puede superar la capacidad de la tabla: n < m, L < 1.0
- El problema de las colisiones se resuelve estableciendo una secuencia de posiciones (ruta de exploración) en las que puede encontrarse un elemento en la tabla.
 - Dispersión abierta: Varios elementos en cada celda.
 - Dispersión cerrada: Varias celdas disponibles para cada elemento
- Cada celda de la tabla puede estar en 3 estados distintos:
 - Ocupada: Contiene un elemento, no se puede insertar en ella.
 - Vacía: Se puede insertar en ella, detiene la exploración.
 - Borrada: Se puede insertar en ella, no detiene la exploración.

Dispersión Cerrada (II)

- Los estados de las celdas se pueden representar:
 - Mediante valores especiales de las claves (uno para indicar celda vacía y otro para indicar celda borrada)
 - O mediante una tabla extra que almacene valores que indiquen en cuál de los 3 estados se encuentra la celda correspondiente de la tabla principal.
- Además de la función de dispersión, en este tipo de tablas es necesario definir una estrategia de exploración
 - La estrategia indica cuál es la siguiente celda que se debe explorar cuando la celda actual no esté vacía (inserción) o no contenga el elemento buscado (acceso, borrado)
 - Se suele expresar mediante una función que depende de la posición inicial (la proporcionada por la función de dispersión) y el número de intento (número de colisiones hasta el momento).
 - Cada intento debe proporcionar una posición de la tabla por la que no se halla pasado en intentos anteriores (recorrido completo)

- Es la estrategia de exploración más sencilla:
 - Cada nuevo intento explora la **siguiente** celda de la tabla.
 - Si estamos en la última celda, pasamos a la primera.

Posición inicial,
$$i_0 = h(k, m)$$

$$f(i_0, j, m) = (i_0 + j) \bmod m$$

$$\uparrow \qquad \text{Número de intento}$$

• Ejemplo: Inserción del valor 28 en una tabla con m = 10 y los siguientes elementos ya incluidos:

30 Nov 2018

- Es la estrategia de exploración más sencilla:
 - Cada nuevo intento explora la **siguiente** celda de la tabla.
 - Si estamos en la última celda, pasamos a la primera.

Posición inicial,
$$i_0 = h(k, m)$$

$$f(i_0, j, m) = (i_0 + j) \bmod m$$

$$\uparrow \qquad \text{Número de intento}$$

• Ejemplo: Inserción del valor 28 en una tabla con m = 10 y los siguientes elementos ya incluidos:

30 Nov 2018

- Es la estrategia de exploración más sencilla:
 - Cada nuevo intento explora la **siguiente** celda de la tabla.
 - Si estamos en la última celda, pasamos a la primera.

Posición inicial,
$$i_0 = h(k, m)$$

$$f(i_0, j, m) = (i_0 + j) \bmod m$$

$$\uparrow \qquad \text{Número de intento}$$

• Ejemplo: Inserción del valor 28 en una tabla con m = 10 y los siguientes elementos ya incluidos:

30 Nov 2018 34

- Es la estrategia de exploración más sencilla:
 - Cada nuevo intento explora la **siguiente** celda de la tabla.
 - Si estamos en la última celda, pasamos a la primera.

Posición inicial,
$$i_0 = h(k, m)$$

$$f(i_0, j, m) = (i_0 + j) \bmod m$$

$$\uparrow \qquad \text{Número de intento}$$

• Ejemplo: Inserción del valor 28 en una tabla con m = 10 y los siguientes elementos ya incluidos:

30 Nov 2018

Agrupamiento (clustering)

- La estrategia de exploración lineal sufre del problema del agrupamiento: La formación de grandes bloques de celdas ocupadas.
 - Si se forma (al azar) un bloque de celdas ocupadas...
 - Si una clave es enviada a una posición dentro del bloque..
 - ..deberá explorarlo hasta el final, ocupando la siguiente posición vacía contigua al bloque..
 - ..y haciendo que el bloque incremente su tamaño!
- Consecuencia: Las claves se agrupan en bloques donde el número de intentos es alto, degradando la eficiencia.
 - Este problema es independiente de la uniformidad de la función de dispersión.
 - Deriva directamente de la estrategia de exploración.
- Solución: Usar un factor de cárga límite más pequeño.

Exploración Doble (double hashing)

- Otra solución reside en hacer que la exploración no dependa tan sólo de la posición inicial, sino también del propio valor de la clave.
 - De esa forma claves distintas que han sido enviadas a la misma posición inicial seguirán rutas distintas.
 - Y se consigue un mejor aprovechamiento de las posiciones vacías que existan en la tabla.
 - Para obtener otro parámetro dependiente de la clave se necesita definir una segunda función de dispersión, distinta de la usada habitualmente (por eso el nombre de exploración doble).
- Lo habitual es que ese segundo parámetro defina el salto en la exploración:

Cada intento salta **d** celdas
$$\neg$$

$$f(i_0, j, d, m) = (i_0 + d \cdot j) \bmod m$$

Exploración Doble (II)

- Cada nuevo intento explora la celda situada a una distancia de d celdas a la derecha (la tabla se interpreta como si fuera circular). Si d = 1 tendríamos una exploración lineal.
- El valor del salto, *d*, depende del valor de la clave. Un método habitual de definirlo, si se utiliza como función de dispersión secundaria el método de división, es:

$$i_0(k,m) = h'(k) \bmod m$$

$$d(k,m) = \max\{1, h'(k) \operatorname{div} m\}$$

- De esta forma se consigue un valor de salto dependiente de la clave pero independiente de la posición inicial.
- Existen algunos detalles a tener en cuenta para garantizar una exploración completa.

Exploración Doble (III)

- La exploración lineal garantiza de forma trivial la exploración de toda la tabla.
- Pero una exploración a base de saltos de d celdas no siempre va a recorrer todas las celdas.
 - Por ejemplo, si la tabla tiene tamaño 12 y el salto es 4, sólo vamos a recorrer 3 celdas distintas antes de entrar en un ciclo.
- **Teorema**: Si m y d son primos entre sí (no tienen factores en común) esta garantizado un recorrido completo.
 - Solución #1: Imponer que m sea un número primo. Al reestructurar, escoger el siguiente primo mayor que 2m
 - Solución #2: Imponer que m se una potencia de dos, y que d sea un número impar (si es par, se le suma 1)

Exploración Doble - Ejemplo

• Tabla con $m = 2^3 = 8$ (solución #2), inserción de 17:

 0
 1
 2
 3
 4
 5
 6
 7

 40
 9
 2
 36
 14
 17

$$d = 17 \text{ div } 8 = 2 \rightarrow 3$$

Exploración Doble - Ejemplo

Misma tabla, inserción de 73:

$$d = 73 \text{ div } 8 = 9$$

El problema del borrado (I)

 Supongamos que tenemos la siguiente tabla (método de exploración lineal) donde la secuencia de inserción ha sido 14, 25, 4, 5:

- Si buscamos el valor 15, comenzaremos en la posición 5 e iremos explorando las celdas siguientes hasta llegar a la 8, que está vacía. Detenemos la búsqueda porque si se hubiera insertado el valor 15 la exploración lo hubiera colocado en la celda 8 (o anteriores). Si está vacía, es que no se ha insertado.
- Pero si ahora borramos el valor 25, los valores 4 y 5 son inalcanzables!

El problema del borrado (II)

- Una posición vacía indica el final de una ruta de exploración
- Si al borrar un elemento marcamos la casilla como vacía, entonces se rompen las rutas en las que éste elemento es un punto intermedio.
- Si no se elimina el elemento, el borrado sería imposible (una búsqueda sobre él volvería a encontrarlo)
- Si la exploración no se detiene en las casillas vacías, las búsquedas fallidas recorrerían toda la tabla: O(m)
- El recolocar los elementos de las rutas rotas causaría que el borrado fuera O(n): El recolocar un elemento supone de hecho borrarle y puede producir nuevas recolocaciones en cascada.
- Solución: No eliminar el elemento, pero marcar la casilla como borrada para que la búsqueda no lo encuentre.

Estrategia de borrado perezoso

 Se definen 3 estados asociados a cada celda: ocupado, vacío, borrado. La lógica de las operaciones es:

MIENTRAS BORRADA(T[i]) Ó

(OCUPADA(T[i]) Y T[i] $\neq k$):

| $i \leftarrow (i+d) \mod m$

MIENTRAS OCUPADA(T[i]): $| i \leftarrow (i+d) \mod m$

```
SI OCUPADA(T[i]):

| MARCAR T[i] BORRADA

| \nabla n
```

```
T[i] \leftarrow k
MARCAR T[i] OCUPADA
```


Ejemplo en Java (I)

```
// Tabla de dispersión cerrada que almacena pares clave-valor
public class TablaDispCer<K,V> {
   // Clase interna que representa un par clave-valor
   private class Par<K,V> {
        K clave;
       V valor;
       Par(K clave, V valor, Nodo<K,V> sig) {
           this.clave = clave; this.valor = valor;
   int m; // Capacidad de la tabla
   int n; // Número de elementos
   double maxL; // Máximo factor de carga
   // Tabla de pares clave-valor. Si un par existe pero la
   // clave es nula, se ha realizado un borrado perezoso.
   Par<K,V>[] tabla;
```


Ejemplo en Java (II)

```
// Constructor con valores por defecto
public TablaDispCer() { this(16,0.6); }
// Constructor: m0 - capacidad inicial (potencia de dos)
// maxL - factor de carga máximo (maxL < 1)
public TablaDispCer(int m0, double maxL) {
    this.maxL = maxL; this.m = m0;
    tabla = new Par[m];
    for(int i = 0; i < m; i++) tabla[i] = null;</pre>
    this.n = 0;
// Devuelve el indice correspondiente a esa clave
protected int indice(K c) { return Math.abs(c.hashCode()) % m; }
// Calcula el salto de exploración
protected int salto(K c) {
    int s = Math.abs(c.hashCode()) / m;
    return (s % 2 == 0) ? s+1 : s; }
                                                   VER TRANSP. 39
```


Ejemplo en Java (IV)

```
protected void reestructurar() {
   // Salvamos la tabla anterior
    Par<K,V>[] tmp = tabla;
    // Creamos una nueva tabla
    n = 0; m = 2*m; // Duplicamos el tamaño
    tabla = new Par[m];
    for(int i = 0; i < m; i++) tabla[i] = null;
    // Recorremos la tabla anterior insertando elementos
    for(int i = 0; i < tmp.length; i++) {</pre>
        Par<K,V> par = tmp[i];
        if(par != null && par.clave != null) {
            ins(par.clave, par.valor);
```


Ejemplo en Java (V)

```
public V get(K clave) {
   // Aplicar función de dispersión a la clave
    int i = indice(clave);
   // Calcular el salto de exploración
    int d = salto(clave);
   // Explorar la tabla hasta posición nula o encontrado
   // Una par nulo detiene la exploración, pero una
   // clave nula no (borrado perezoso)
   while(tabla[i] != null &&
           (tabla[i].clave == null ||
            !tabla[i].clave.equals(clave))) {
        i = (i+d) \% m;
    return (tabla[i] == null) ? null : tabla[i].valor;
```


Ejemplo en Java (VI)

```
public void ins(K clave, V valor) {
 // Incrementar n y comprobar factor de carga
 n++; if(1.0*n/m > maxL) reestructurar();
 // Aplicar función de dispersión a la clave
 int i = indice(clave);
  int d = salto(clave);
 // Explorar la tabla hasta encontrar un par nulo o
 // una clave nula (borrado perezoso)
 while(tabla[i] != null && tabla[i].clave != null) i = (i+d) % m;
 // Insertar clave en posición
 if(tabla[i] == null) {
   tabla[i] = new Par(clave, valor);
  } else { // Borrado perezoso, reutilizar el par
   tabla[i].clave = clave; tabla[i].valor = valor;
```


Ejemplo en Java (VII)

```
public boolean del(K clave) {
 // Aplicar función de dispersión a la clave
 int i = indice(clave);
 int d = salto(clave);
 // Explorar la tabla hasta posición nula o encontrado
 // Las claves nulas no detienen la exploración (borrado perezoso)
 while(tabla[i] != null &&
       (tabla[i].clave == null || !tabla[i].clave.equals(clave))) {
       i = (i+d) \% m;
 if(tabla[i] == null) { return false; }
 tabla[i].clave = null; // Borrado perezoso
 n--;
 return true;
```


Análisis dispersión cerrada (I)

- Llamamos $T_f(m,n)$ al número **promedio** de accesos hasta encontrar una **posición vacía** en una tabla de capacidad m que contiene n elementos.
 - Si la función de dispersión es uniforme, la probabilidad de caer en una celda ocupada es n/m
 - En ese caso, la función de exploración calculará otra posición de la tabla. Ya que no va a volver a elegir la celda donde estamos, el problema es identico al de buscar una posición vacía en una tabla de capacidad m-1 con n-1 elementos.
- Se tiene la relación de recurrencia:

$$T_f(m,n) = 1 + \frac{n}{m} \cdot T_f(m-1, n-1)$$

Análisis dispersión cerrada (II)

 Esta relación se puede resolver por tanteo, explorando la forma que adquiere con valores crecientes de n

$$T_{f}(m,n) = 1 + \frac{n}{m} \cdot T_{f}(m-1,n-1)$$

$$T_{f}(m,0) = 1$$

$$T_{f}(m,1) = 1 + \frac{1}{m} \cdot T_{f}(m-1,0) = 1 + \frac{1}{m} = \frac{m+1}{m}$$

$$T_{f}(m,2) = 1 + \frac{2}{m} \cdot T_{f}(m-1,1) = 1 + \frac{2}{m} \cdot \frac{m}{m-1} = \frac{m+1}{m-1}$$

$$T_{f}(m,3) = 1 + \frac{3}{m} \cdot T_{f}(m-1,2) = 1 + \frac{3}{m} \cdot \frac{m}{m-2} = \frac{m+1}{m-2}$$

$$T_f(m,n) = \frac{m+1}{m+1-n} = \frac{1}{1-\frac{n}{m+1}} = \boxed{\frac{1}{1-\alpha}}$$

Análisis dispersión cerrada (III)

- Llamamos $T_e(m,n)$ al número **promedio** de accesos hasta encontrar un **elemento existente** en una tabla de capacidad m que contiene n elementos.
 - Es el tiempo de una **búsqueda exitosa** de un elemento.
 - La búsqueda recorre el mismo camino seguido en la inserción de ese elemento en la tabla
 - El tiempo de búsqueda del i-ésimo elemento que se insertó en la tabla es igual al del tiempo promedio para encontrar una posición vacía en una tabla de capacidad m y i-1 elementos.
 - Se realiza el promedio sobre los n elementos existentes:

$$T_e(m,n) = \frac{1}{n} \sum_{i=1}^{n} T_f(m,i-1)$$

Análisis dispersión cerrada (IV)

• Sustituyendo:

$$T_e(m,n) = \frac{1}{n} \sum_{i=1}^n T_f(m,i-1) = \frac{m+1}{n} \sum_{i=0}^{n-1} \frac{1}{m+1-i}$$

• Cambiando la variable del sumatorio por j = m+1-i:

$$T_e(m,n) = \frac{m+1}{n} \sum_{j=m-n+2}^{m+1} \frac{1}{j} = \frac{m+1}{n} \left(\sum_{j=1}^{m+1} \frac{1}{j} - \sum_{j=1}^{m+1-n} \frac{1}{j} \right)$$

• Aplicando la fórmula $\sum_{i=1}^{n} 1/n = \ln n + \gamma$

$$T_e(m,n) = \frac{m+1}{n} \ln \frac{m+1}{m+1-n} = \frac{1}{\alpha} \ln \frac{1}{1-\alpha}$$

Análisis dispersión cerrada (V)

- Del análisis anterior podemos concluir:
 - La dependencia con respecto al factor de carga es mucho mayor que en dispersión abierta: Cuando L → 1, el número de accesos tiende a infinito (más acusado en'las búsquedas fallidas).
 - La exploración lineal es muy sensible a la uniformidad de la función de dispersión (por el agrupamiento), la exploración doble es mucho más robusta en ese aspecto.

Resumen eficiencia

* Tiempo amortizado	Dispersión abierta (exacto)	Dispersión cerrada (exacto)	Uniforme	No uniforme
Búsqueda exitosa	1 + L/2	ln(1/(1+L))/L	0(1)	O(n)
Búsqueda fallida	1 + L	1/(1+L)	0(1)	O(n)
Borrado por valor	1 + L/2	ln(1/(1+L))/L	O (1)	O(n)
Inserción por valor	1 n	1/(1+L)	<i>O</i> (1)*	O(n)

• Para cualquier otro tipo de operaciones, una tabla de dispersión cerrada se comporta como un vector desordenado con posiciones vacías y borradas entre los elementos.

Uso de las Tablas de Dispersión

- Las tablas de dispersión, cuando se cumplen todos sus requisitos, son una alternativa mejor que los árboles equilibrados para los TADs Conjunto y Mapa.
 - Se debe definir una función de dispersión.
 - El factor de carga no debe superar un límite (reestructuraciones)
 - La función de dispersión debe ser (+ o -) uniforme para el conjunto de datos utilizado.
- No se comportan bien, sin embargo, para TADs con un orden interno:
 Lista ordenada, Cola de Prioridad, Diccionario.
- ¿Dispersión abierta o cerrada?
 - La dispersión cerrada utiliza mejor el espacio si los datos a almacenar tienen un tamaño pequeño. La dependencia con el factor de carga es mucho más crítica, sin embargo.
 - La dispersión abierta tiene una dependencia lineal con el factor de carga (las reestructuraciones pueden ser menos frecuentes).

Eficiencia TADs Conjunto/Mapa

	Contigua ordenada	Árbol AVL	Tabla de Disp. (promedio)
Pertenencia (conjunto) Acceso por clave (mapa)	$O(\log n)$	$O(\log n)$	O (1)
Borrado (por valor/clave)	O(n)	$O(\log n)$	<i>O</i> (1)
Inserción (por valor)	O(n)	$O(\log n)$	<i>O</i> (1)*
Iterar todos los elementos	O(n)	O(n)	O(n)
Unión (ambos tamaño n)	O(n)	$O(n \log n)$	O(n)

Eficiencia TAD Diccionario

	Contigua	Arbol AVL	Tabla Disp (promed.)
Acceso por clave	$O(\log n)$	$O(\log n)$	<i>O</i> (1)
Acceso clave <i>i</i> -ésima menor	O (1)	$O(\log n)$	O(n)
Acceso por iterador	O (1)	<i>O</i> (1)	<i>O</i> (1)
Borrado por clave	O(n)	$O(\log n)$	<i>O</i> (1)
Borrado clave <i>i</i> -ésima menor	O(n)	$O(\log n)$	O(n)
Borrado por iterador	O(n)	$O(\log n)$	<i>O</i> (1)
Inserción por valor	O(n)	$O(\log n)$	<i>O</i> (1)

The long and winding road..

