MPSI 2

Programme des colles de mathématiques.

Semaine 27: du lundi 6 juin au vendredi 10 juin

Algèbre linéaire, AVEC les déterminants

Liste des questions de cours

- 1°) Enoncer puis établir les liens entre "antisymétrique" et "alternée" pour une application p-linéaire.
- $\mathbf{2}^{\circ}$) Lorsque e est une base de E, donner la définition de \det_e : on proposera deux formules et l'on montrera qu'elles sont égales.
- $\mathbf{3}^{\circ}$) Si e est une base de E, montrer que \det_{e} est alternée.
- $\mathbf{4}^{\circ}$) Montrer que pour tout $f \in A_n(E)$, $f = f(e) \det_e$.
- 5°) Donner et justifier la définition du déterminant d'un endomorphisme.
- $\mathbf{6}^{\circ}) \ \ \mathrm{Si} \ f,g \in L(E),$ que peut-on dire de $\det(fg)$? Démontrez-le.
- $\mathbf{7}^{\circ}$) Enoncer et démontrer la formule du développement de $\det(M)$ selon l'une de ses colonnes.
- 8°) Montrer que $M^tCof(M) = {}^tCof(M)M = \det(M)I_n$.
- 9°) Que vaut le déterminant d'une matrice triangulaire par blocs? Démontrez-le.
- 10°) Enoncer et démontrer les formules de Cramer.
- 11°) Calcul du déterminant de Vandermonde.

1 Programmes précédents

Les programmes de colles précédents, portant sur l'algèbre linéaire, sont à réviser.

2 Les déterminants

Notation. K désigne un corps quelconque.

3 Applications multilinéaires

Formes p-linéaires, formes bilinéaires.

Formes p-linéaires symétriques, antisymétriques, alternées. alternées antisymétrique. La réciproque est vraie lorsque $car(\mathbb{K}) \neq 2$.

Les trois notions de déterminants 4

4.1 Déterminant d'une famille de vecteurs

Notation. E désigne un \mathbb{K} -espace vectoriel de dimension finie égale à n, avec n > 0.

Lorsque $\mathbb{K} = \mathbb{R}$, le "volume algébrique" de l'hyperparallélépipède défini par $x = (x_1, \dots, x_n) \in E^n$ est nécessairement une forme n-linéaire alternée en fonction de x.

Notation. On note $A_n(E)$ l'ensemble des formes n-linéaires alternées.

Pour tout
$$x = (x_1, \dots, x_n) \in E^n$$
, si e est une base de E , on pose $\det_e(x_1, \dots, x_n) \stackrel{\Delta}{=} \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \prod_{j=1}^n e^*_{\sigma(j)}(x_j) = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \prod_{j=1}^n e^*_j(x_{\sigma(j)}).$

Si e est une base de E, pour tout $f \in A_n(E)$, $f = f(e) \det_e$. $A_n(E)$ est la droite vectorielle dirigée par \det_e .

4.2Déterminant d'une matrice

 $\det(M) = \det({}^tM).$

Formule de Sarrus.

Déterminant d'un endomorphisme

Soit $u \in L(E)$, $\det(u)$ est l'unique scalaire tel que $\forall f \in A_n(E), \ \forall x \in E^n, \ f(u(x)) = (\det(u))f(x)$.

Si e est une base de E et $u \in L(E)$, $\det_e(u(x_1), \dots, u(x_n)) = \det(u) \det_e(x_1, \dots, x_n)$. $\det(u) = \det_e(u(e_1), \dots, u(e_n)).$

Pour toute base e de E et pour tout $u \in L(E)$, det(u) = det(Mat(u, e)).

5 Propriétés du déterminant

Modification du déterminant lors d'une opération élémentaire portant sur les lignes ou sur les colonnes.

Pour tout $f, g \in L(E)$, $det(fg) = det(f) \times det(g)$.

x est une base si et seulement si $\det_e(x) \neq 0$.

 $u \in GL(E)$ si et seulement si $\det(u) \neq 0$ et dans ce cas, $\det(u^{-1}) = \frac{1}{\det(u)}$.

 $A \in GL_n(\mathbb{K})$ si et seulement si $\det(A) \neq 0$ et dans ce cas, $\det(A^{-1}) = \frac{1}{\det(A)}$

Groupe spécial linéaire de $E: SL(E) = \{u \in L(E) / \det(u) = 1\}.$

Le déterminant est un invariant de similitude.

Calcul des déterminants 6

Mineurs et cofacteurs.

Développement de det(M) selon l'une des ses lignes ou de ses colonnes.

Comatrice Com(M). $M^tCom(M) = {}^tCom(M)M = \det(M)I_n$.

Déterminant d'une matrice triangulaire par blocs.

Formules de Cramer.

7 Exemples de déterminants.

Déterminant de Vandermonde.

Déterminants tridiagonaux : relation de récurrence.

Déterminants circulants : On ajoute toutes les lignes (ou colonnes).

8 Le polynôme caractéristique

Il ne s'agit que d'une introduction à la théorie de la réduction. Aucune connaissance n'est attendue des élèves concernant les polynômes annulateurs, le lemme de décomposition des noyaux, la trigonalisation.

Si
$$M \in \mathcal{M}_n(\mathbb{K}), \chi_M = \det(XI_n - M).$$

$$\chi_{^tM} = \chi_M,$$

si
$$M$$
 est triangulaire, alors $\chi_M(X) = \prod_{i=1}^n (X - M_{i,i}),$

deux matrices semblables ont le même polynôme caractéristique (réciproque fausse).

Lorsque $u \in L(E)$, $\chi_u = \chi_{mat(u,e)}$ où e est une base de E. Le spectre de u est l'ensemble des racines dans \mathbb{K} de χ_u .

8.1 Propriétés du polynôme caractéristique

$$\chi_u(X) = X^n - Tr(u)X^{n-1} + \dots + (-1)^n \det(u).$$

Si $\mathbb{K} = \mathbb{C}$, u admet au moins un vecteur propre.

Prévisions pour la semaine suivante :

Espaces euclidiens