

GRADUATION PROJECT PROGRAM

Meeting 5G Reliability Requirements in Cell Outage Compensation (COC) in Self-Organizing Networks (SONs) using Hardware Acceleration

MEET OUR TEAM

Mentor: Ensaf Atef Senior Embedded SW Engineer, Valeo Egypt

PROBLEM DEFINITON

AI Algorithms DO NOT Meet Real-Time Requirements

NOT Fast Enough in Critical Decision Making

Inefficient AI-Algorithm Processing Time (SLOW)

Efficient AI-Algorithm Processing Time (FAST)

Research Gap

"Although RL is a great promise for general intelligence, it also has the challenge that it requires time to learn and in online form. This is a great challenge in communication network and other mission critical systems where there is no room for failure."

S. S. Mwanje and C. Mannweiler, "TOWARDS COGNITIVE AUTONOMOUS NETWORKS IN 5G," 2018 ITU Kaleidoscope: Machine Learning for a 5G Future (ITUK), Santa Fe, Argentina, 2018, pp. 1-8, doi: 10.23919/ITU-WT.2018.8597732.

"Challenge 4: Meeting 5G latency requirements in Self-healing 5G mobile cellular networks are expected to have end-to end data latency of 1 ms. This means that any Self-healing solution deployed in the network must be able to detect, diagnose and compensate any outage in far less time than state-of-the-art solutions."

A. Asghar, H. Farooq and A. Imran, "Self-Healing in Emerging Cellular Networks: Review, Challenges, and Research Directions," in IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 1682-1709, thirdquarter 2018, doi:

"Real-time applications may have different time restrictions. (...) Traditional mechanisms and methods are not always able to overcome the barriers imposed by the more challenging time constraints."

L. M. D. Da Silva, M. F. Torquato and M. A. C. Fernandes, "Parallel Implementation of Reinforcement Learning Q-Learning Technique for FPGA," in IEEE Access, vol. 7, pp. 2782-2798, 2019, doi: 10.1109/ACCESS.2018.2885950.

AI Algorithms DO NOT Meet Real-Time Requirements in 5G Self-Healing Capabilities

02 PROPOSED SOLUTION

Our AI-Algorithm used in 5G V2N Service Restoration Should be FASTER

Design an Intelligent AI-Accelerator to Enable 5G V2N Self-Healing Full Features

AI-Accelerator mean that AI algorithm built in specialized hardware (specific chip)

An AI-ACCELERATOR TO MEET AUTOMOTIVE CONEECTION REQUIRMENTS

FROM

CPU-Based AI TO

FPGA-Based AI

FPGA-Based AI

03 WORKFLOW in TWO MINUTES ©

The figure shows the workflow of out project

IEEE Xplore® Digital Library

The figure shows the resources of specifications and requirements for the algorithm

The figure shows the Model-based design of model using SIMULINK

The figure shows the Serial implementation of the Q-learning technique on an FPGA.

HIGH-LEVEL SW MODEL RESULTS

Туре	Tabular RL
Algorithm	Q-Learning
Programming Language	MATLAB
Style of Programming	ООР
Actions	9
States	20
Epsilon- Greedy	Yes (0.5)

Learning Rate	0.7
Discount Factor	0.1
Features	Vanilla
	Visualization
	Parametric Model
	GUI Application

Transmitters Locations **Distance Component** Q-Learning Component Componnent Angle Between Lines **User's Locations Component Result Component** Component Antenna Gain Componnent **Evaluation Component** Path Loss Component **Recieved Power Component Q-Learning Sub-System Channel Link Sub-System** Cellular Environment Sub-System Cell Outage Compensation System-Level Model

The figure shows the High-level model as layered architecture

Cell Outage Compensation Model

System Model Parameters

Run Simulation

The figure shows the High-level model for the algorithm using MATLAB – GUI for high-level Model

The figure shows the High-level model for the algorithm using MATLAB – Antenna Pattern, Cellular Mobile Network

HARDWARE IMPLEMETATION RESULTS

Туре	Tabular RL
Algorithm	Q-Learning
Platform	Altera Cyclone®
Reference Platform	3C16 FPGA Device
States	20
Reward Width	15 bit

Resources	LUTs	410 Logic Element
	FFs	124 Register
	IM	1792 Memory Bit
	DPS	Null
TP ^a [MSps]		50
TP ^a per Power [MSps/mW]		0.24
TP ^a per LUT [MSps/LUT]		0.122

$\overline{Qn+1(s,a)=Qn(s,a)+\alpha[r(A_{gap},a)+\gamma\max(Q(s',a'))-Qn(s,a)]}$

The figure shows the Serial implementation of the Q-learning technique on an FPGA.

The figure shows the used FPGA.

Valeo

Final Product

Semi-Conductor Intellectual Property Core (IP core)

From VALEO to Connected Mobility Community

Q&A

