

Figure 1: Time Evolution of $\phi(1,1)$ and $\phi(1,-1)$, denoted by ϕ_+ , for the drift instability using the nonlinear gyrokinetic code with $\theta=0.002$, $\tau=100$, $v_{ei}=0.001$, $\Delta t=1.09$, and $(k_x,k_y)=0.842(m,n)$.

Figure 2: Time evolution of ϕ_{\pm} using the linearized- E_{\parallel} algorithm of Section 4.1 for $\theta=0.002, \tau=100, v_{ri}=0.001,$ and $\Delta t=1.09.$

Figure 3: *Time history for the electron particle flux induced by the instability shown in Fig. 2.*

Figure 4: Electron particle flux calculated from a linearized- E_{\parallel} code with non-self-consistent electric potentials similar to those of Fig. 1.

 $\textbf{Figure 5:} \ \textit{Diagram showing the decrease of the total (weighted) number of the electrons in the \textit{resonance region}.$

Figure 6: Time evolution of ϕ_{\pm} using the fully nonlinear gyrokinetic code with $\theta=0.01, \tau=4, \nu_{ei}=0$, and $\Delta t=2.18$.

Figure 7: Time evolution of ϕ_{\pm} using the linearized- E_{\parallel} algorithm of Section 4.1 with $\theta=0.01, \tau=4, v_{ei}=0$, and At=2.18

Figure 8: Time history of ϕ_+ using the nonlinear gyrokinetic code with $\phi_+ = \phi_-^*, \theta = 0.01, \tau = 4, v_{ei} = 0$, and $\Delta t = 2.18$.

Figure 9: Time history of ϕ_+ using the low-noise/long-time-step linearized- E_{\parallel} algorithm with the same parameters as those used in Fig. 8 except for $\Delta t = 5.45$.

Figure 10: Time history of ϕ_+ using the low-noise linearized- E_{\parallel} algorithm including the adiabatic approximation for the fast electrons with the same parameters as those used in Fig. 8.

Figure 11: Time history of ϕ_+ using the low-noise linearized- E_{\parallel} & κ algorithm with the same parameters as those used in Fig. 8.

Figure 12: Time history of ϕ_+ using the low-noise/long-time-step linearized- E_{\parallel} & κ algorithm with the same parameters as those used in Fig. 8 except for $\Delta t = 5.45$

Figure 13: Time history of ϕ_{\pm} using the low-noise/long-time-step linearized- E_{\parallel} algorithm with the same parameters as those used in Fig. 7. The smaller time step used here is necessary due to the large saturation amplitude.