More on Partial Derivatives

Reading: Textbook, \$14.5-14.7

§1. The chain rule

We next investigate the analogue of the one-variable chain rule in the multivariable case.

Thm. If
$$Z = f(x,y)$$
 is a differentiable function, and $x = x(t)$, $y = y(t)$ are differentiable functions in t, then for $z(t) = f(x(t), y(t))$
$$\frac{clZ}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$

Eq. Compute
$$\frac{dz}{dt}$$
 for $z = \sqrt{1 + x^2 + y^2}$ and $x = sint$, $y = cost$.

Using the theorem, one variable a time, we can prove

Thm. If
$$Z = f(x,y)$$
 is a differentiable function, and $x = \chi(s,t)$, $y = y(s,t)$ are differentiable functions in s.t. then

 $\frac{\partial z}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s} , \quad \frac{\partial z}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} .$

More generally, if $Z = f(x_1, ..., x_n)$ is differentiable and $x_i = x_i(t_i, ..., t_k)$, then

then
$$\frac{\partial Z}{\partial t_i} = \sum_{i=1}^n \frac{\partial f}{\partial x_i} \frac{\partial x_j}{\partial t_i}$$

Eg. Use the chain rule to find
$$\frac{\partial Z}{\partial S}$$
, where $Z = \chi^4 + \chi^2 y$, $\chi = S + 2t - u$, $y = stu^2$.

• Application: implicit function theorem

In certain cases, a function y=y(x) is implicitly given as satisfying an equation of the form F(x,y)=o. We can use partial derivatives to help us compute the ordinary derivative $\frac{dy}{dx}$. Regarded as a function of x,

derivative
$$\frac{\partial y}{\partial x}$$
. Regarded as a function of x , $0 = F(x, y(x)) \implies 0 = \frac{dF(x, y(x))}{dx} = \frac{\partial F}{\partial x} \frac{dx}{\partial x} + \frac{\partial F}{\partial y} \frac{dy}{\partial x}$
$$\implies \frac{dy}{dx} = -\left(\frac{\partial F}{\partial x}\right) / \left(\frac{\partial F}{\partial u}\right).$$

Note that to do division, we need $\frac{\partial F}{\partial y} \neq 0$. This is equivalent to requiring the curve F(x,y) = 0 is not, locally, parallel to the y-axis.

More generally, if F(x,y,z) determines z implicity as a function z = z(x,y), then

$$\frac{\partial Z}{\partial x} = -\left(\frac{\partial F}{\partial x}\right) / \left(\frac{\partial F}{\partial z}\right), \qquad \frac{\partial Z}{\partial y} = -\left(\frac{\partial F}{\partial y}\right) / \left(\frac{\partial F}{\partial z}\right).$$

Eg. Find
$$\frac{\partial Z}{\partial x}$$
 at $(x,y)=(0,0)$ for the implicit function $x^2+4y^2+Z^2=1$.

§2. Directional derivative

It turns out, for f = f(x,y), once f_x and f_y are determined, you can find any directional derivative from them.

Let $\vec{u} = (a,b)$ be a unit vector (direction in xy-plane). A small displacement in the \vec{u} direction is given by $\Delta t(a,b)$. The change of value of f(x,y) along this small displacement is given by: $f(x_0 + \Delta t a, y_0 + \Delta t b) - f(x_0, y_0) \approx f_{\pi}(x_0, y_0) \Delta t a + f_{\psi}(x_0, y_0) \Delta t b$

Thm The directional derivative along \vec{u} , denoted $D\vec{u}f$, at a point (x_0, y_0) in the domain of f, is given by $(D\vec{u}f)(x_0, y_0) = a f_x(x_0, y_0) + b f_y(x_0, y_0)$.

Dividing both sides by Δt and taking limit, we get

Eg. Find the directional derivative of $f(x,y) = ye^{-x}$ at the point (0,4), in the unit direction \vec{u} making an angle $2\pi/3$ with the positive x-axis.

Another way to describe the thm.

Def. Given (a,b) in the domain of f(x,y), the gradient vector of f at (a,b), denoted $\nabla f(a,b)$, is the vector $\nabla f(a,b) := f_{x}(a,b)\vec{\iota} + f_{y}(a,b)\vec{\jmath}$.

Thus the thm

Daf = ∇f·ū

• $\nabla f(a,b)$ is orthogonal to the level curves of f.

• $\nabla f(a,b)$ is the direction at (a,b) s.t. the value of f increases the fastest:

Eg. Find the gradient vector of the function $f(x,y) = x^2 - 4y^2$, and use it to find the directional derivative of f(x,y) at (2.1) in the direction $\vec{v} = \vec{i} + 3\vec{j}$. What is the maximal rate of change for f? In which direction does it happen?

• For functions in 3 variables (or more), we can define directional derivatives in a similar way. If $\vec{u} = (a,b,c)$ is a unit direction, then

where

$$\nabla f = f_{x}\vec{l} + f_{y}\vec{j} + f_{z}\vec{k}$$

is the gradient vector. This is also the direction in which f increases the fastest.

Application: tangent planes of surfaces in IR3

If $C: \vec{r}(t) = (x(t), y(t), z(t))$ is a curve on F(x,y,z) = 0, then

F(x(t), y(t), z(t)) = 0
$$\Longrightarrow \frac{dF}{dt}\Big|_{t=0}^{t=0} \Longrightarrow$$

 $\frac{\partial F}{\partial x}\frac{dx}{dt} + \frac{\partial F}{\partial y}\frac{dy}{dt} + \frac{\partial F}{\partial z}\frac{dz}{dt} = \nabla F \cdot \vec{\Gamma} = 0$

Since $\vec{\Gamma}(0)$ is a tangent vector at $\vec{\Gamma}(0) = (0, y_0, z_0) \Longrightarrow$

$$\nabla F(x_0, y_0, z_0)$$
 is the normal direction to $F(x, y, z) = 0$ at (x_0, y_0, z_0) . \Longrightarrow The tangent plane has equation

$$F_{x}(\%_{0}, y_{0}, Z_{0})(X - X_{0}) + F_{y}(\%_{0}, y_{0}, Z_{0})(y - y_{0}) + F_{z}(\%_{0}, y_{0}, Z_{0})(z - z_{0}) = 0$$

Eg. Find the equation of the tangent plane of the surface
$$x+y+z=e^{xyz}$$
 at the point $(0,0,1)$.

§ 3. Maximum and minimum values

Def. (1). A function f has a (local) maximum at P if in the domain \mathbb{D} (a neighborhood V of P), $f(Q) \leq f(P)$, for any Q in \mathbb{D} (V).

(2). A function f has a (local) minimum at P if in the domain $\mathbb D$ (a neighborhood V of P), $f(Q) \leq f(P)$, for any Q in $\mathbb D$ (V).

In the two-variable function case, the def. is more visual: (local) maximum corresponds to (local) summit on the graph.

In one variable case, we (1). Find critical points by solving f(x) = 0 (2). Perform a second order test.

local max:
$$f''(\alpha) < 0$$
, so that graph locally looks like $\frac{f''(\alpha)}{2}(\alpha - \alpha)^2$. local min: $f''(\alpha) > 0$, so that graph locally looks like $\frac{f''(\alpha)}{2}(\alpha - \alpha)^2$. inflection point: $f'''(\alpha) = 0$.

Now we will develope the analogue of these criteria for 2 (or more) variable functions.

Thm If f reaches local maximum or minimum at P in a neighborhood of P, and f is differentiable, then $\nabla f(P) = 0$.

Def. The points where $\nabla f = 0$ are called <u>critical points</u> of f.

Eg. At which points can the function $f(x,y,z) = x^2+y^2+z^2-2y+4z+6$ attain an extreme value.

To determine whether a critical point is a local maximum/ minimum, we need to resort to the second order information of f. For simplicity, we only consider the two-variable case.

Eg. Consider (a) $f(x,y) = x^2 + y^2 + 2x$, (b) $g(x,y) = x^2 - 4y^2$, (c) $h(x,y) = 2 - x^2 - 2y^2$. Draw their graphs and compute their Hessians $f_{xx} f_{yy} - f_{xy}^2$ at their critical points.

The above example models the local behavior of critical points. It turns out we have the following.

Thm. Suppose f(x,y) has continuous second order partial derivatives on a domain D, and (a,b) is a critical point of f. Let $H(a,b) := \int_{\mathcal{R}^n} (a,b) \int_{\mathcal{Y}^n} y(a,b) - \int_{\mathcal{R}^n} y(a,b)^2.$

Then, (a,b) is a

(1) local minimum if $f_{xx}(a,b) > 0$, H(a,b) > 0(2) local maximum if $f_{xx}(a,b) < 0$, H(a,b) > 0(3) Saddle point if H(a,b) < 0.

The theorem allows us to find local max/min. But just as for 1-variable function, one also has to test the boundary behavior. This can be done if f is defined on a region $\mathcal D$ which is bounded and containing its boundary.

A bounded region containing its boundary

A bounded region not containing its boundary

Thm. If f is a continuous function defined on a bounded region $\mathbb D$ containg its boundary, then f attains its maximum/minimum on $\mathbb D$.

Eq. Find the maximum and minimum of $f(x,y) = x^2 + y^2 - 2x + 1$ on

the disk $D = \{(x,y) | x^2 + y^2 \le 4\}$