Introduction to Mali-V61

Media Processing Group

Mali Video

Roger Barker

November 2016

Confidential © ARM 2016

Mali-V550 & Mali-V500

Current Video IP

Mali Video products

Flexible video IP for 'freedom of use'

- Multi-core, multi-codec, scalable solution
 - Single core supports 1080p60 pixel throughput (28HPM@600 MHz)
 - 4 cores support 4K60, 8 cores support 4K120
- Smallest area multi-standard codec, (28HPM)
 - Mali-V500: 1080p60 8-bit decode < 1 mm²
 - Mali-V550: 1080p60 8-bit decode <1.3mm²
 - Mali-V61: 1080p60 10-bit decode < 1.6mm²
- AFBC yields ~35% lower in-video bandwidth
- Integrated Android stack
 - Optimised for Mali Display, GPU and Video

Mali-V500	<u> </u>	Mali-V550		Mali-V61	
Encode & Decode: H.264 BP/MP/HP & VP8 Decode only: H.263, MPEG2/4, VC-1, DivX 4/ & RealVideo 8/9/10		HEVC Main 10 Decode, HEVC Main Encode (Lite) Baseline JPEG Compliant	Adds:	Full HEVC Main 10 Encode VP9 10-bit P2 & 8-bit P0 Encode VP9 10-bit P2 & 8-bit P0 Decode	

ARM® Frame Buffer Compression
(AFBC)
 Trustzone™ technology enabled

Mali-V550 PPA Estimates (28 HPM)

Operating Point	Cores	Freq (MHz)	8-bit V550 (mm²)	10-bit V550 (mm²)	Typ Encode Power (mW)	Typ Decode Power (mW)
1080 _P 60	1	600	1.5 (1.3)	1.6 (1.4)	79	43
4K30 (2160p30)	2	600	2.9 (2.5)	3.0 (2.6)	158	86
4K60 (2160p60)	4	600	5.5 (4.8)	6.0 (5.2)	316	172

- Mali-V550 Decode only area numbers shown in brackets
- C35 transistor, 9 track library, 7-metal layers, SVT cells only, 600MHz timing closure, ~80% utilization
- Power data is for 28HPM, 85C, 0.9v, dynamic power only, gate level netlist simulation, measured on one stream using HEVC on a Mali-V550 MPI
 - Stream used is Tractor 1920x1080 with IPB frame pattern for decode and IPP pattern for encode
- Power numbers for MP2 & MP4 configurations are indicative, based on linear scaling of MP1 numbers

Mali-V500 PPA Estimates (28 HPM)

Operating Point	Cores	Freq (MHz)	Mali-V500 En/Decode (mm²)	Mali-V500 Decode only (mm²)	Typ Encode Power (mW)	Typ Decode Power (mW)
1080 _P 60	I	600	1.14	0.97	78	62
4K30 (2160p30)	2	600	2.10	1.78	156	124
4K60 (2160p60)	4	600	4.22	3.42	312	248

- C35 transistor, 9 track library, 7-metal layers, SVT cells only, 600MHz timing closure, ~85% utilization
- Power data is for 28HPM, 85C, 0.9v, dynamic power only, gate level netlist simulation, measured on one stream using HEVC on a Mali-V500 MPI
- Power numbers for MP2 & MP4 configurations are indicative, based on linear scaling of MP1 numbers

Mali-V5x0 source and output frame formats

Farmer	VDMA	Alles	Bit	YUV	Diamen	Mali-	V 500	Mali-	V 550
Format	Spec	Spec Alias		TUV	Planes	Dec	Enc	Dec	Enc
YUV420AFBC			8	420	AFBC	X	-	х	1
YUV420AFBC_10b			10	420	AFBC	-	+	X	
YUV422AFBC			8	422	AFBC			x	-
YUV420Planar	YUV420_3P	1420	8	420	3	×	X	X	X
YUV420SemiPlanar	YUV420_2P_UV	NVI2	8	420	S 2	X	X	X	X
YVU420SemiPlanar	YUV420_2P_VU	NV2I	8	420	2	-	-	X	X
YUV422_IP	YUV422_IP_YUYV	YUY2	8	422	1	-	-	X	X
YVU422_IP	YUV422_IP_UYVY	UYVY	8	422	1	-	-	X	X
YUV420_10b_MS	YUV420_2P_I0BIT	P010	10	420	2	-	-	X	-
YUV422_10b_MS	YUV422_2P_10BIT	Y210	10	422	2	-	-	Х	-
YUYAAYVYAA_10b	YUV420_2x2_I0BIT_0	Y0L2	10	420	I	-	-	X	-
AAYUYAAYVY_10b	YUV420_2x2_10BIT_1		10	420	I	-	-	X	-

Rotation 0, 90, 180 or 270 degrees:

- Rotation is not supported for any AFBC format
- Rotation is not supported for 422, needs conversion to 420
- Rotation supported for all 420 YUV formats
- Interlaced output for decode is supported for all formats

Cropping of the source frame before encoding is supported

For **decode**, the AFBC format always has to match the decoded stream
All YUV output can be downscaled by a factor of 2 or 4, no scaling for encode
9/10-bit \rightarrow 8-bit conversion for decode supported for all YUV formats
9/10-bit \rightarrow 8-bit conversion for encode supported for 2x2_10BIT formats
YUV422 \rightarrow YUV420 conversion is supported, both for decode & encode

Roadmap

ARM a founder member of the AOM

The initial project will pursue a new, open patent royalty-free video codec specification and open-source implementation based on the contributions of members, along with binding specifications for media format, content encryption and adaptive streaming, thereby creating opportunities for next-generation media experiences.

"Customer expectations for media delivery continue to grow, and fulfilling their expectations requires the concerted energy of the entire ecosystem. The Alliance for Open Media brings together the leading experts in the entire video stack to work together in pursuit of open, royalty-free and interoperable solutions for the next generation of video delivery.

Gabe Frost, Executive Director
Alliance for Open Media

Mali-ViDDK roadmap

R2p0

Android M support CTS compliant

R2p2

Maintenance improvements

R0p0 Dev

V61 Dev release

Video for Linux support

R₀p₀ EAC

V61 Dev release

Video for Linux support

Introduction to Mali-V61

Mali-V61: 4K UHD Video Processor

- The simplest way to unleash VP9 ready 4K multimedia
 - One scalable video solution to address mobile and home multimedia SoCs
 - Exceeds current premium mobile video requirements
 - Adds VP9 encode expected to be a requirement in 2018

- Smallest multi video codec solution
 - OEM 'freedom of use' with simultaneous encode & decode of multiple streams
 - 50% silicon of our competitors with unified IP for all codecs, encode & decode
- Multi-standard, scalable, flexible video IP for encode and decode
 To encode and/or decode video streams on mobile and home consumer devices
 - Supports HEVC H 264 VP9 VP8 encode & decode and legacy decoders
 - Supports HEVC, H.264, VP9, VP8, encode & decode and legacy decoders

Mali-V61 flexibility

- Software:
 - Memory allocation
 - Scheduling
 - Power gating

Memory/register interface

Android Driver Linux Kernel Driver

Host Communication

Firmware:

- Codec implementation
- Error concealment
- Display frame reordering
- Rate control
- Communication between cores

Decoder Binaries

VP9 10-bit Profile 2 VP9 Profile 0 HEVC

Main 10 High Tier, H.264, H.263, MPEG4, VP8 MPEG2, VC1, Real 8/9/10, JPEG

Encoder Binaries

VP9 10-bit Profile 2
VP9 Profile 0 HEVC
Main 10 High Tier
H.264,VP8, JPEG

Register interface

Hardware:

- Fixed function blocks
- Dedicated controllers
- Control logic

Firmware – binaries

Hardware – RTL, integration kit

Mali-V61 scalability examples

No. of Cores	28HPM @ 600MHz	Typical Displays
I	119Mpps	1080p60 WQXGAp30
2	237Mpps	4K UHDp30 1080p120
3	356Mpps	WQXGAp90 4K UHDp45
4	475Mpps	4K UHDp60

"Mali-V61" 28HPM @ 600MHz

Mali-V61 PPA, 28 HPM

Operating point	Cores	Freq [MHz]	8-bit [mm²]	l0-bit [mm²]	Typical Encode Power [mW]	Typical Decode Power [mW]
1080 _P 60	I	600	2.2 (1.5)	2.4 (1.6)	140	39
4K30 (2160 _P 30)	2	600	4.1 (2.9)	4.4 (3.0)	280	78
4K45 (2160p45)	3	600	6.0 (4.3)	6.5 (4.5)	420	117
4K60 (2160p60)	4	600	7.9 (5.6)	8.5 (5.9)	560	156
4K90 (2160 _P 90)	6	600	11.8(8.4)	12.6 (8.7)	840	254
4K120 (2160p120)	8	600	15.6(11.1)	16.7 (11.6)	1120	312

Mali-V61 decode only area numbers shown in brackets

- C35 transistor, 9 track library, 7-metal layers, SVT cells, 600MHz timing closure, ~80% utilization
- Power data is 28HPM, 85°C, 0.9v, dynamic power only, gate level netlist simulation, measured on one stream using HEVC on Mali-V61 MP1
 - Stream used: 8-bit Tractor 1920x1080, 50/50 P/B frame pattern for decode and encode
- Power numbers for MP2-MP8 configurations are indicative, based on scaling of the MP1 numbers
 Power numbers updated 23rd November, 2016

Mali-V61 PPA, 16 FinFet

Operating Point	Cores	Freq (MHz)	8-bit (mm²)	l 0-bit (mm²)	Typical Encode Power [mW]	Typical Decode Power [mW]
1080 _P 80	1	800	1.3 (0.7)	1.4 (1.0)	130	39
4K40 (2160 _P 40)	2	800	2.4 (1.7)	2.6 (1.8)	220	78
4K60 (2160p60)	3	800	3.6 (2.6)	3.8 (2.7)	390	117
4K80 (2160 _P 80)	4	800	4.7 (3.4)	5.0 (3.5)	520	156
4K120(2160p120)	6	800	6.9 (5.0)	7.4 (5.2)	780	234

Mali-V61 decode only area numbers shown in brackets

- C16 transistor, 7.5 track library, 7-metal layers, LVT cells, 800MHz timing closure, ~80% utilization
- Power data is 16FF+, 85°C, 0.8v, dynamic power only, gate level netlist simulation, measured on one stream using HEVC on Mali-V61 MP1 using scaling from 28HPM.
 - Stream used: 8-bit Tractor 1920x1080, 50/50 P/B frame pattern for decode and encode
- Power numbers for MP2-MP6 configurations are indicative, based on scaling of the MP1 numbers
- I6FF+ scaling derived from 28HPM using netlist simulation

Power numbers updated 25th November, 2016

Mali Video encode and decode

	Standard	Resolution	Mali-V500	Mali-V550	Mali-V61
	HEVC Main 10 Profile up to Level 5.2 High Tier	720p/1080p/2160p		7	
a	VP9 Profile 2, 10-bit, 4:2:0	720p/1080p/2160p	105°		✓
Decode	HEVC Main Profile up to Level 5.2 High Tier	720p/1080p/2160p		Encode Lite	✓
∞	VP9 Profile 0, 8-bit, 4:2:0	720p/1080p/2160p			✓
Encode	H.264 BP/MP/HP MPI @L4.2 - MP4 @L5.2	720p/1080p/1080i/21 60p	✓	√	√
Ш	VP8	720p/1080p/2160p	✓	√	✓
	JPEG compliance (4:2:2 and 4:2:0)	8Kx8K pixels		√	✓

Mali Video decode only

	Standard	Resolution	Mali-V500	Mali-V550	Mali-V61
	MPEG4 SP/ASP@L6	720p/1080p/1080i	/	107	1
<u>></u>	DivX 4.x/5.x/6.x	720p/1080p/1080i/21 60p	r405		✓
e only	VC-I SP/MP/AP@L4	720p/1080p/1080i		✓	✓
Decode	MPEG2 MP@HL	720p/1080p/1080i	✓	✓	✓
	H.263 profile0@L70	720p/1080p	✓	✓	✓
	Real Video RV8/9/10	720p/1080p	√	√	✓

H.264 encoding tools

New elements/features in green

- CABAC/CAVLC entropy coding
- ME down to 1/4 pel (search window +/-128 horizontal, +/- 64 vertical)
- 8x8, I6x6 inter P modes supported
- 8x8,16x16 inter B modes supported with CABAC encoding
- Spatial direct supported for B frames with CABAC encoding
- Improved RDO based mode selection
- Support for 4x4, 8x8, 16x16 luma and chroma 8x8 intra modes
- Constrained intra prediction selectable
- Support for 4x4 and 8x8 transform
- Flexible rate control (CBR or VBR)
- In-built deblock filtering

HEVC encoding tools

New elements/features in green

- I, P and B-frame progressive encoding
- 8-bit and 10-bit sample depth
- Wavefront encoding
- Horizontal tiles
- 64x64 CTU size
- Support for all transform sizes
- ME down to I/4 pel (search window +/-128 horizontal, +/- 64 vertical)

- Inter P splits down to 8x8
- Inter B splits down to 8x8
- Improved RDO based mode selection
- Constrained intra prediction selectable
- Flexible rate control (CBR or VBR)
- In-built deblock filtering

New in Mali-V61:VP9 encoding tools

All new for Mali Video

- 8-bit Profile 0 and Profile 2 at 10-bit sample depth
- Tile columns and tile rows
- Support for all transform sizes
- ME down to 1/4 pel (search window +/-128 horizontal, +/- 64 vertical)
- Single reference inter splits down to 8x8
- Reference Frame Scaling for both encode and decode
- RDO based mode selection
- Implicit probability update
- Explicit probability update and frame_parallel
- Flexible rate control (CBR or VBR)
- In-built deblock filtering

Mali-V61 C model

Available to Partners under LUL

- Programs mve_decode and mve_encode are pre-built statically linked executables running on Linux, require at least GLIBC_2.3.2 to run
- Output is bit-exact to hardware/firmware implementation
- For decode a conformant bitstream is always decoded to the same output
- For encode, rate control adjustments can cause different output streams

- Does not directly provide PSNR or performance measurements
- Note:
 - Hardware model is Beta quality in October
 - There are quality and performance improvements being made between Hardware Beta and EAC
 - Firmware will not be Beta quality until December (HW EAC)
 - Rate Control, for example, will not be available before Firmware EAC in March 2017

Mali-V61 encode quality – 4K UHD 2160p

Based on bit exact alpha firmware model

Mali-V61 encode quality – Full HD 1080p

Based on bit exact alpha firmware model

Mali-V61 decoder output formats

Frame Sample	Bit Depth	Memory Format
YUV420	8-bit	NVI2: 2-plane, scan-line, Y and UV
YUV420	8-bit	NV21: 2-plane, scan-line, Y and VU
YUV420	8-bit	I420: 3-plane, scan-line Y, U,V
YUV420	8-bit	AFBC 1.0 Layout I
YUV420	8-bit	AFBC 1.2 Layout I
YUV420	10-bit	Y0L2: Single-plane block format YUYAAYVYAA
YUV420	10-bit	Single-plane block format AAYUYAAYVY
YUV420	I 0-bit	P010: 2-plane, scan-line, Y and UV, 10-bit in 16-bit, Microsoft format
YUV420	10-bit	AFBC I.0 Layout I
YUV420	10-bit	AFBC 1.2 Layout I
YUV422 (JPEG only)	8-bit	YUY2: Single-plane, scan-line, YUYV order
YUV422 (JPEG only)	8-bit	UYVY: Single-plane, scan-line, UYVY order
YUV422 (JPEG only)	8-bit	AFBC 1.0 Layout 2
YUV422 (JPEG only)	8-bit	AFBC 1.2 Layout 2

Limitations:

- Rotation not supported for AFBC output
- Cropping not supported for AFBC output
- Rotation not supported for YUV422
 - unless converted to YUV420
- For interlace the same rotation and scale may be used for each field
- No color conversion support
- No general scaling support
- No general mip maps support
- No deinterlacing support
- No out of loop filtering support
- No AFBC layout modes 5 and 6 (32x8) support
- No AFBC block split mode support

Mali-V61 output frame supported combinations

Output Frame Format	Crop	Downscale	Rotation	8 to B	I0 to B	422 to 420
YUV420, 2 or 3 plane	Yes	1×1, 2×2, 4×4	0°, 90°, 180°, 270°	CFG10b	No	Yes
YUV420, Single plane (Y0L2)	Yes	1×1, 2×2, 4×4	0°, 90°, 180°, 270°	CFG I 0b	Any	Yes
YUV422, Single plane (JPEG only)	Yes	Ix1,2x2,4x4	Art	No	No	N/A
YUV420,AFBC	No	lx1,2x2		CFG10b	No	Yes
YUV422,AFBC (JPEG only)	No	l×1,2×2	-	No	No	N/A

- The reference frame output will always be in AFBC format of the bit-depth B determined by the bitstream without any post processing
 - Value of B is 8 or 10 dependent on codec support and configuration
- CFG10b: means this is supported if the 10-bit configuration is implemented
- NB an arbitrary crop could lead to less efficient AXI access if the picture is no longer burst aligned

Mali-V61 encode source frame inputs

Frame Sample	Bit Depth	Memory Format
YUV420	8-bit	NVI2: 2-plane, scan-line, Y and UV
YUV420	8-bit	NV21: 2-plane, scan-line, Y and VU
YUV420	8-bit	I420: 3-plane, scan-line Y, U,V
YUV420	8-bit	AFBC 1.2 16x16 and 32x8 block size
YUV420	I0-bit	P010: 10 bits stored in 16-bit (Microsoft format)
YUV420	10-bit	Y0L2: I-plane block format YUYAAYVYAA
YUV420	10-bit	I-plane block format AAYUYAAYVY
YUV420	10-bit	AFBC 1.2 16x16 and 32x8 block size
YUV422	8-bit	YUY2: I-plane, scan-line, YUYV order
YUV422	8-bit	UYVY: I-plane, scan-line, UYVY order
YUV422	8-bit	AFBC 1.2 16x16 and 32x8 block size
RGBA	8-bit	RGBA8888: I-plane byte address order R,G,B,A
BGRA	8-bit	BGRA8888: I-plane byte address order B,G,R,A
ARGB	8-bit	ARGB8888: I-plane byte address order A,R,G,B
ABGR	8-bit	ABGR8888: I-plane byte address order A,B,G,R

Limitations:

- The encoder may read data outside the crop region but shall not be affected by its contents and shall not go beyond a 4K page boundary
- No interlaced input support
- No scaled input support
- No noise filtering support
- No video stabilization support
- AFBC input does not support cropping
- AFBC input does not support rotation

Mali-V61 input source frame supported

Input Format	AFBC	Coded Format	Crop	Downscale	Rotation	Mirror	8 to B	I0 to B
YUV420	No	YUV420	Yes	lxl	0°, 90°, 180°, 270°	0, X,Y	CFG10b	Any
YUV422	No	YUV420	Yes	lxl	0°, 90°, 180°, 270°	0, X,Y	No	No
YUV422	No	YUV422 (JPEG only)	Yes	lxl	0°, 180°	0, X,Y	No	No
YUV422	No	YUV440 (JPEG only)	Yes	IxI	90°, 270°	0, X,Y	No	No
RGB	No	YUV420	Yes	lxl	0°, 90°, 180°, 270°	0, X,Y	CFG10b	No
RGB	No	YUV422	Yes	IxL	0°, 180°	0, X,Y	No	No
RGB	No	YUV440	Yes	lxl	90°, 270°	0, X,Y	No	No
YUV420	Yes	YUV420	No	lxl	-	-	CFG10b	CFG10b
YUV422	Yes	YUV420	No	lxl	-	-	No	No
YUV422	Yes	YUV422 (JPEG only)	No	lxl	-	-	No	No

- Input frame is encoded at bit depth B
 - Value of B is 8 or 10 dependent on codec support and configuration
- CFG10b: means this is supported if the 10-bit configuration is implemented
- NB an arbitrary crop could lead to less efficient AXI access if the picture is no longer burst aligned

JPEG Support

Mali-V61 JPEG encode capabilities

'Freedom of use' through flexible architecture

- YUV420 and YUV422 baseline sequential JPEG encode
- Multi-shot encoding
 - It is possible to encode Single or Multishot JPEG concurrently with encoding/decoding video
 - Performance implementation dependent
- Examples based on cores running at 450MHz

Four Cores
32MP
Multi-shot at
20 FPS

Single Core

8MP

Multi-shot at
20 FPS

JPEG encode thumbnail support

- Status
 - No JPEG encode Thumbnail support is planned for Mali-V61 or Atle
- Reasoning
 - To support JPEG thumbnails requires an arbitrary scaler from Full-resolution to Thumbnail-resolution
 - The video encode path does not include an arbitrary scaler this would be an additional complexity and area cost that would only be useful for JPEG
 - For ISPs that provide multi-channel output, a higher quality Thumbnail resolution image can be generated by the ISP
 - There is a software workaround to read every n'th row that has acceptable performance in current systems
- Recommended system:

AFBC in Mali-V61

Mali-V61 AFBC decode Casino Royale 1080p24

Testing

System testing – overview of tests

- Codecs
 - All supported codecs tested on system level
 - More than 4,000 test streams in total
- Conformance
 - Verifies that codecs conform to standards
 - Decode conformance tests streams from standard bodies
 - Encode syntax conformance checks
- Industry standard stress streams
 - Allegro (H.264) <u>AL-H264-ES</u>
 - Argon (HEVC, VP9) <u>Argon Streams HEVC & VP9</u>
 - Tektronix (VC-I, H.264, MPEG4)
- Bandwidth
 - Test against codec bandwidth requirements
- Error handling
 - Stress testing to ensure robustness and concealment
- Encode quality
 - Compare encode quality to reference encoders
 - Rate controller testing

- API test
 - Stress testing of the communication protocol between the driver and firmware
- Multicore
 - Verify that the performance scales with the number of cores and that the number of cores does not affect codec behavior in unexpected ways
- Multisession
 - Verify stability when several concurrent sessions run on the same hardware
- Features
 - Verifies that every supported feature behaves as expected
- Robustness testing
 - Decode of complete Blu-ray movies
- Performance while varying external bus behavior
 - Frame rate
 - Frame lag
 - Encode latency

Timelines

Mali-V61 timeline

- Binary model evaluation tool
 - Alpha available now
 - Beta release 14th December 2016
 - EAC release March 2017
- Hardware
 - Beta available now
 - EAC release 14th December 2016
- Firmware
 - Beta release 14th December 2016
 - EAC release March 2017
- Software
 - ViDDK r4p0 EAC release April 2017

ARM

Thank you

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

Copyright © 2016 ARM Limited

Confidential © ARM 2016