

THE CITY OF NEW YORK DEPARTMENT OF HEALTH AND MENTAL HYGIENE DIVISION OF ENVIRONMENTAL HEALTH

NOTICE

CLOSED

BY ORDER OF THE COMMISSIONER OF HEALTH AND MENTAL HYGIENE

April 18, 2019

DEPARTMENT SHALL BE MUTILATED. UNLESS AUTHORIZED TO DO SO BY THE DEPARTMENT OR BY THIS CODE OR OTHER APPLICABLE LAW.

NYC Health Code §3.17

DO NOT REMOVE

By André Ruckdaeschel, Kaspar Lichtsteiner & Matthias Steiner

Predicting Food Store Inspection Grades

By André Ruckdaeschel, Kaspar Lichtsteiner & Matthias Steiner

Disable Review Priemer	NVC
Date travell	
	For additional ordinaryals or a copy of an inspecto

Card Number	
Edulishment Norw	NYC
Date Issued	Health

For subtilized information in a copy of an imperior report, call \$15 or out mps.gov/health

Cord Newton	
Establishment Name	
Date based	

For additional information or a rogs of an inspection report, rail BHI or road equipms beautiful.

Inspection Grade	Store Name	County	Location	Date	•••••
A	ZUMY 833 INC	Queens	1007 BRIGHTON BEACH AVE BROOKLYN, NY 11235 (40.578152, -73.959054)	01/16/2019	
Α	MACKALLIE LLC	Suffolk	209 UNION AVE NEW ROCHELLE, NY 10801 (40.909533, -73.793911)	04/27/2018	
С	BALS BAGELS	Kings	NA	12/31/2018	
Α	QUICKWAY 68	Bronx	324 JACKSON AVE SYOSSET, NY 11791 (40.810935, -73.501746)	05/08/2018	
В	TARGET 2211	Kings	NA	01/16/2019	

Inspection Grade	Store Name	County	Address	Latitude	Longitude	Date	•••••
A	ZUMY 833 INC	Queens	1007 BRIGHTON BEACH AVE BROOKLYN, NY 11235	40.578152	-73.959054	01/16/2019	
Α	MACKALLIE LLC	Suffolk	209 UNION AVE NEW ROCHELLE, NY 10801	40.909533	-73.793911	04/27/2018	
С	BALS BAGELS	Kings	222 HOYT ST BROOKLYN, NY 11217	NA	NA	12/31/2018	
Α	QUICKWAY 68	Bronx	324 JACKSON AVE SYOSSET, NY 11791	40.810935	-73.501746	05/08/2018	
В	TARGET 2211	Kings	204 LIBERTY ST PENN YAN, NY 14527	NA	NA	01/16/2019	
					:		

Inspection Grade	Store Name	County	Address	Latitude	Longitude	Date	•••••
A	ZUMY 833 INC	Queens	1007 BRIGHTON BEACH AVE BROOKLYN, NY 11235	40.578152	-73.959054	01/16/2019	
А	MACKALLIE LLC	Suffolk	209 UNION AVE NEW ROCHELLE, NY 10801	40.909533	-73.793911	04/27/2018	
С	BALS BAGELS	Kings	222 HOYT ST BROOKLYN, NY 11217	NA	NA	12/31/2018	
Α	QUICKWAY 68	Bronx	324 JACKSON AVE SYOSSET, NY 11791	40.810935	-73.501746	05/08/2018	
В	TARGET 2211	Kings	204 LIBERTY ST PENN YAN, NY 14527	NA	NA	01/16/2019	
					:		

Google Maps API for Missing Coordinates

- Free Service offered by Google
- Requires a one-time registration with a valid Email address
- Then the personal API key must be included in the R script

```
118
      # use Google maps to get missing coordiantes (takes few minutes an requires API in the head)
       inspect_data_na <- inspect_data %>%
         filter(is.na(Latitude)) %>% # all missing coordinates
         mutate_geocode(Address) %>% # applies Google Maps API
         mutate(Latitude = lat, Longitude = lon) %>%
         dplyr::select(-c(lat, lon)) %>%
  125
         filter(!is.na(Latitude)) # 248 still missing and dropped
  126
       # add new coordinates
       inspect_data <- inspect_data %>%
         filter(!is.na(Latitude)) %>%
  130
         bind_rows(inspect_data_na)
  131
       table(is.na(inspect_data$Longitude)) # no more coordinates with NA
  133
  134
       rm(inspect_data_na)
  135
      save(inspect_data, file = "./data/inspect_data.RData")
                                                                                                                   R Script :
Console
        Terminal
 ~/DSF/
> rm(coord)
> # 748 coordinates are missing
> table(is.na(inspect_data$Longitude))
FALSE TRUE
16508
      748
> # create address column
> inspect_data <- inspect_data %>%
   mutate(Address = str_c(Street, Zip.Code, sep = ", ")) %>%
   mutate(Address = str_c(Address, City, sep = " ")) %>%
   mutate(Address = str_c(Address, State.Code, sep = ", "))
> register_google(key = "AIzaSyCnb_afuEHvqD4CR-xBY_u9Z4El21KpQus")
```

River Tenafly Edge Rating Bayvill Pelhan Saddle Brook Lattingtown A Locust BC Bogota ittle Valley Hasbrouck Heights Little Leonia Sands Ferry Point Glen East Rutherford Head Verona Edgewater Kings Mutto Point Fairview Brookvill Greenvale Great East Neck Hills Thomaston Albertson Weehawken Manhasset Hills Cassel Harrison New Hyde Park Merric South Malverne Hempstead Valley East Stream Baldwin Rockaway Harbor Inwood Island Park Point Lido Atlantic Lookout Beach Beach Reading Island

Focus on New York City

- More covariate data available
- Classes are more equally distributed

Haversine Formula

$$a = \sin^2\left(\frac{\Delta\alpha}{2}\right) + \cos(\alpha_1)\cos(\alpha_2)\sin^2\left(\frac{\Delta\lambda}{2}\right)$$
$$c = R\left[2\arctan^2(\sqrt{a}, \sqrt{1-a})\right]$$

With:

R = (Mean) radius of the earth (6,371km) $\alpha_{1,2} = Latitude \; \lambda_{1,2} = Longitude$

Demographic Data

- U.S. Census Bureau: Counties
 - merging via counties
- U.S. Census Bureau: Census Tracts
 - merging via census tract
 - Translation necessary: AddTrac
 - Geocoding service: Addresses
 - State FIPS
 - County FIPS
 - Census Tract Id

Google web scraper

- Automated Googles search
- Gather Google star ratings and number of reviews

Evaluation of Over- and Under-Bagging

- Under-bagging:
 - No loss of information¹
- Over-bagging:
 - Reduce the risk for over-fitting¹

Computationally Intensive¹

1st Model Selection Approach

- 1) 100 Bagged Samples 2) 10-Fold-CV 3) Best Subset Selection¹
- Three Functions:
 - Best_subset_selection <- function(df train , df test , Y, FUN){ ... }
 - K_fold_CV<- function(df, Y, K, FUN){ ... }
 - Over_under_bagging <- function(df, Y, B, sample size, FUN){ ...}
- Number of estimated models:
 - $B \times K \times 2^p \approx 1$ Billion with B = 100, K = 10, p = 100

¹According to James et al. (2017, p. 205)

2nd Model Selection Approach

Increase the function's efficiency

- Instead of CV, use out-of-bag errors:
 - $B \times K \times 2^p \approx 100 \, Million$ with B = 100, K = 1, p = 100

3rd Model Selection Approach

- Instead of best subset selection, new function for forward stepwise selection¹:
 - forward_stepwise_selection <- function(df train , df test , Y, FUN){ ... }
 - $B \times K \times \left(\frac{p(p+1)}{2} 1\right) \approx 10 \, Million$ with B = 100, K = 10, p = 100

¹According to James et al. (2017, p. 207)

4th Model Selection Approach

- Reducing the number of covariates to 20
 - Some demographic could be eliminated due to perfect multicollinearity (e.g. Ethnicity per census track)
 - Highest correlation to Inspection Grades (Not an optimal approach¹)
- Number of estimated models:

•
$$B \times K \times \left(\frac{p(p+1)}{2} - 1\right) \approx 200'000$$
 with $B = 100, K = 10, p = 20$

• 1) Under- and Over-bagging 2) 100 Bagged Samples 3) 10-Fold-CV 4) Best Subset Selection for only 20 Covariates

¹According to Hastie, Tibshirani & Friedman (2013, p. 245)

Decision Boundaries LDA 150-Shop Density in 1km Radius Grade 50-0-Ethnicity White per Census Tract 25 75 100

Prediction Trade-Off

QDA KNN

Error Rate: 54% Error Rate: 66%

Obs / Pred	A	В	C	Obs / Pred	A	В	С
Α	2839	462	1164			204	
В	1260	173	594	В	1928	335	885
C	228	26	103	С	935	122	506

Random Forest and Boosting

- Methodology needs very high computational power
 - Fewer iterations lead to higher variance
- Tendence to over-fitting with over-bagging
 - Training error of 5%

RF over-bagging	RF under-bagging	Boosting under-bagging	Boosting over-bagging
0.533	0.51	0.68	0.63

Results

Conclusion

- Correlation of best 20 covariates: between 0.09 to 0.03
- More sophisticated approach to imbalance problem (e.g. Synthetic Resampling Technique)
- Opportunities for agency:
 - Use of internal data
 - Unique data from every food store

Appendix 1: OOB Testing Sample

Probability for a not picking observation

$$\frac{N-1}{N}$$

Probability for a not picking N observations (with replacement)

$$\left(\frac{N-1}{N}\right)^N$$

Probability for a not picking N observations (with replacement)

$$\lim_{N \to \infty} \left(\frac{N - 1}{N} \right)^N = e^{-1} = 0.368$$