# Estudo, Definição e Implementação de Ambiente de Ensino-Aprendizagem com Arquitetura de Agentes e Modelo Multidimensional de Aprendizagem

João Paulo de Freitas Matos Orientadora Prof<sup>a</sup>Dr<sup>a</sup>Célia Ghedini Ralha

# Universidade de Brasília Instituto de Ciências Exatas Departamento de Ciência da Computação

12 de março de 2013



Referências



#### Sumário

- Introdução
  - Problema
  - Objetivos
  - Metodologia
- 2 Fundamentos
- Proposta
  - Modelagem
  - Arquitetura
  - Experimentações
- Trabalhos Correlatos
- Conclusões e Trabalhos Futuros
- 6 Referências





## Introdução

- Aprendizagem individual;
- Modelo multidimensional como representação do aluno;
- Determinação do estilo de aprendizagem.
- Auxílio na didática do docente;





#### Problema

- Arquitetura n\u00e3o apropriada para a infer\u00e9ncia do modelo multidimensional;
- Abordagem cliente-servidor é desvantajosa.
  - Alta complexidade;
  - Não há representação individualizada em tempo real.





# Objetivos

#### Objetivo Geral

 Definir uma arquitetura distribuída com abordagem de Sistema multiagente (SMA), visando a inferência do modelo do aluno.

#### Objetivos Específicos

- Projeto da arquitetura geral do SMA, com metodologia apropriada;
- Definir e implementar a arquitetura da solução: agentes assistentes de cognição, metacognição e afetivo;
- Interface do agente cognitivo com o aluno e o docente;



# Metodologia

Introdução

- Levantamentos bibliográficos:
  - Informática na Educação (IE);
  - Sistemas Multiagente (SMA);
  - SMA em contextos pedagógicos.
- Levantamentos de metodologias apropriadas para modelagem de SMA.
- Estudo de frameworks para o desenvolvimento.
- Escolha da plataforma web necessária para a interação com o aluno/docente.



Referências



# Informática na Educação

- Inserção do computador no processo de aprendizagem.
- Computador apresenta recursos importantes que auxiliam o ensino-aprendizagem.
- Ambientes Virtuais de Aprendizagem





# Informática na Educação

- Modelo Multidimensional:
  - Cognitivo;
  - Afetivo;
  - Metacognitivo.
- Estilos de Aprendizagem:
  - Classificam o aluno em uma hierarquia;
  - Diversos modelos de estilo;
  - Questionário de Estilo de Aprendizagem.
- Orientação do docente.





# Agentes e Sistema Multiagente

- Agentes [4];
- Ambiente;
- Sensor;

Introdução

- Características:
  - Proatividade;
  - Reatividade;
  - Habilidade Social.







# Sistema Multiagente

- Interação Vários agentes em um ambiente;
  - Objetivos Distintos;
  - Capacidade de decomposição dos problemas;
  - Autonomia de decisões.
- Comunicação Protocolos:
  - KQML
  - FIPA Agent Comunication Language (ACL).
- Ontologias.





# Metodologias de Modelagem de SMA

- Diferem de projetos orientados à objetos.
- Alternativa: Multiagent Multiagent Systems Engineering (MASE).
  - Série de modelos gráficos.
  - Requisitos e metas iniciais.
  - Iterativa.





# Metodologias de Modelagem de SMA

- Duas fases.
- Análise:
  - Capturar metas;
  - Desenvolvimento dos casos de uso;
  - Refinar Regras.
- Design:
  - Classes;
  - Conversações;
  - Montar agentes;
  - Design do Sistema.





#### Ferramentas - JADE

- Desenvolvimento do SMA: JADE.
- Simplificação.
- Arquitetura distribuída.





Figura: Arquitetura do framework JADE → < 3 → < 3 →

#### Ferramentas - Seam

- Desenvolvimento da interface web: Jboss Seam.
- Integra as principais ferramentas consolidadas 3.
- Geração automática de código.









- Atores;
- Interação com os atores;
- Requisitos;
- Nome da solução: Frank;





- Regras:
  - StudentInterface:
  - WebServiceInterface;
  - Manager;
  - StudenWorkgroup;
  - CognitiveAction;
  - MetacognitiveAction;
  - AffectiveAction;
  - LearningMethodAnalyzer.





#### Regras e Tarefas:



Figura: Mase Role Model



Agentes e conversações:



Figura: Diagrama de Classes de Agentes





# Arquitetura - Aspectos

- Duas aplicações: Frank Web e SMA.
- Aspectos:
  - Maior Distribuição;
  - Menor Complexidade;
  - Menor Dificuldade;





#### Arquitetura







# Arquitetura

- Frank Web: Divisão em camadas MVC.
- Servidor de Aplicações.
- Autenticação conjunta com SMA.





# Arquitetura - Integração

- Container específico;
- DynamicJadeGateway no início da plataforma;
- Plataforma web é independente das mensagens;





# Arquitetura - Integração

- Conexão por objetos serializados;
- Implementação de Comandos:
  - AnswerCommand
  - CreateAgentCommand
  - DestroyAgentCommand
  - DimensionCommand
  - ProcessQuestionnaireCommand
  - RequestCognitiveModelCommand





# Experimentações

- No trabalho, dois cenários:
  - Aluno: Inferência do estilo de aprendizagem.
  - Docente: Verificação de estilos de aprendizagem.





# Experimentações - Fluxo do Aluno



Figura: Fluxo do Aluno



# Experimentações - Fluxo do Docente



Figura: Fluxo do Aluno





# Experimentações - Demonstração

• Demonstração.



#### Trabalhos Correlatos

- Agente Inteligente no Apoio ao Ensino-Aprendizagem [5]:
  - Interação com humanos.
  - Não é voltada para a abordagem multidimensional;
  - Não prevê a inferência de dados vindos de outros AVA.
- FIPA Ferramenta de Identificação de Aprendizes [1]:
  - Identificação de estilos de aprendizagem.
  - Arquitetura distinta Cliente-servidor.





#### Trabalhos Correlatos

- SEMEAI [2]:
  - Ensino adaptado;
  - Não foca no modelo multidimensional;
- EDULIVRE [3]:
  - Não é multiagente.
  - Desenvolvido como AVA.





#### Conclusões

- Contribuição para a área de IE:
  - Auxílio a docentes;
  - Auxílio a alunos.





#### Trabalhos Futuros

- Modelar ontologias: Modelo metacognitivo e afetivo;
- Aprofundar características dos agentes;
- Integração com diversos AVA;
- Validação da arquitetura em ambiente real;
- Plataforma Web: Major controle sobre SMA.





#### Referências I



Cláudio Geyer, Adriana Soares Pereira, Alessandra Rodrigues, Débora Nice Ferrari, José Emiliano, and Alex Francisco Oliveira.

Semeai - sistema multiagente de ensino e aprendizagem na internet.

In Anais do Simpósio Brasileiro de Informática na Educação, volume 1, pages 293–299, 2001.





## Referências II









#### Referências III



Michael Wooldridge.

An Introduction to MultiAgent Systems.

Number 1. John Wiley and Sons Ltd, Krst Sussex POI0 IIJD, England, 2004.





Obrigado! Dúvidas.

