ANALYSE

I. Fonctions réelles de la variable réelle

Définition 7.1

Une fonction réelle de la variable réelle est une application $f:D_f \longrightarrow \mathbb{R}$ où $D_f \subset \mathbb{R}$. L'ensemble D_f est appelé domaine de définition de f.

1. Vocabulaire

a. Graphe

Définition 7.2

Soit f une fonction réelle définie sur D_f . On appelle **graphe de** f l'ensemble $\mathcal{C}_f = \{(x, f(x)) \mid x \in D_f\}$. Cet ensemble est une partie de \mathbb{R}^2 , on peut donc le représenter dans un plan muni d'un repère.

Exemple 7.1

Considérons la fonction suivante :

$$f: x \longmapsto \begin{cases} -(x+1)^2 + 4 & \text{si } x < -1 \\ (x+1)^2 + 1 & \text{si } x \ge -1 \end{cases}$$

f est définie sur $\mathbb{R},$ une partie de son graphe est représentée ci-contre :

b. Variations

Définition 7.3

Soit c un réel fixé et $D \subset \mathbb{R}$. On appelle **fonction constante égale à** c **sur** D la fonction

$$\begin{array}{cccc} f \colon & D & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & c \end{array}$$

On appelle fonction nulle la fonction

$$\begin{array}{cccc} f: & D & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & 0 \end{array}$$

c'est à dire la fonction constante égale à 0.

2/25 Chapitre 7 : Analyse

Définition 7.4

Soit $f:I\longrightarrow \mathbb{R}$ une fonction définie sur un **intervalle** I. On dit que

- f est **croissante** sur I si $\forall (a, b) \in I^2$, $a < b \Rightarrow f(a) \le f(b)$
- f est **décroissante** sur I si $\forall (a, b) \in I^2$, $a < b \Rightarrow f(a) \ge f(b)$
- f est **constante** sur I si $\forall (a,b) \in I^2$, $a < b \Rightarrow f(a) = f(b)$

On dit que f est **monotone** sur I si elle est croissante sur I ou décroissante sur I.

c. Fonction périodique

Définition 7.5

Soit $f: D_f \longrightarrow \mathbb{R}$ une fonction. On dit que f est périodique s'il existe un réel $T \neq 0$ tel que pour tout réel $x \in D_f$ pour lequel $x + T \in D_f$ on a f(x + T) = f(x). On dit alors que T est une **période** de f (ou que f est T-périodique).

Exemple 7.2

Les fonctions sinus et cosinus sont périodiques de période 2π . La fonction tangente est périodique de période π . En effet,

$$\forall x \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}, \quad \tan(x + \pi) = \frac{\sin(x + \pi)}{\cos(x + \pi)} = \frac{-\sin(x)}{-\cos(x)} = \frac{\sin x}{\cos x} = \tan x$$

Remarque

Si f est T-périodique, alors f est aussi 2T-périodique, 3T-périodique, etc. La période d'une fonction périodique n'est donc pas unique.

d. Parité

Définition 7.6

Soit $f:D_f\longrightarrow \mathbb{R}$ une application telle que $\forall x\in D_f$, $-x\in D_f$ (on dit que D_f est symétrique par rapport à 0).

- On dit que f est **paire** si $\forall x \in D_f$, f(-x) = f(x)
- On dit que f est **impaire** si $\forall x \in D_f$, f(-x) = -f(x).

Propriété 7.1

- La courbe représentative d'une fonction paire est symétrique par rapport à l'axe des ordonnées. En effet, si $(x, f(x)) \in \mathcal{C}_f$, alors (-x, f(-x)) = (-x, f(x)) est un point de \mathcal{C}_f . Ces deux points sont bien symétriques par rapport à l'axe des ordonnées.
- De même, la courbe représentative d'une fonction impaire est symétrique par rapport à l'origine du repère.

Remarque

Si f est paire, alors f(0) = 0. En effet, il faut avoir f(-0) = -f(0) donc f(0) = -f(0) d'où 2f(0) = 0 et finalement f(0) = 0.

Exemple 7.3

Quelques fonctions paires:

- $x \mapsto x^n$ lorsque $n \in \mathbb{Z}$ est pair (d'où le nom)
- $x \mapsto \cos x$

Quelques fonctions impaires :

- $x \mapsto x^n$ lorsque $n \in \mathbb{Z}$ est impair
- $x \mapsto \sin x$
- $x \mapsto \tan x$
- $x \longmapsto \frac{1}{x}$

Propriété 7.2

La seule fonction à la fois paire et impaire sur un intervalle centrée en 0 est la fonction nulle $x \mapsto 0$.

e. Opérations

Définition 7.7

Si f et g sont deux fonctions définies sur un même domaine D, on définit sur D les fonctions **somme** et **produit** de f et g, notées f+g et $f\times g$, par

$$\forall x \in D, (f+g)(x) = f(x) + g(x)$$
 et $\forall x \in D, (f \times g)(x) = f(x) \times g(x)$

si de plus g ne s'annule pas sur D on peut définir la fonction quotient $\frac{f}{g}$ par

$$\forall x \in D, \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

f. Majorant, minorant, extrema

Définition 7.8

Soit $f:D_f\longrightarrow \mathbb{R}$ une fonction. On dit que

- f est **majorée** s'il existe un réel M tel que $\forall x \in D_f$, $f(x) \le M$. On dit alors que M est un **majorant** de f
- f est **minorée** s'il existe un réel m tel que $\forall x \in D_f$, $f(x) \ge m$. On dit alors que m est un **minorant** de f.
- *f* est bornée si elle est à la fois majorée et minorée.
- f admet un minimum sur D_f s'il existe un réel $a \in D_f$ tel que $\forall x \in D_f$, $f(x) \ge f(a)$. Le réel m = f(a) s'appelle alors **minimum** de f sur D_f et on dit qu'il est **atteint en** a.
- f admet un maximum sur D_f s'il existe un réel $a \in D_f$ tel que $\forall x \in D_f$, $f(x) \le f(a)$. Le réel M = f(a) s'appelle alors **maximum** de f sur D_f et on dit qu'il est **atteint en** a.
- On appelle extremum un minimum ou un maximum. .

2. Fonctions de référence

L'allure des graphes des fonctions suivantes doit être connu. Connaître le graphe peut souvent aider à comprendre comment résoudre un problème, ou à se souvenir des limites usuelles.

a. Fonctions affines et affines par morceaux

Définition 7.9

Une fonction affine est une fonction polynôme de degré au plus 1, c'est à dire une fonction de la forme $f: x \mapsto ax + b$ où a et b sont des réels fixés.

Sa courbe représentative est une droite d'équation réduite y = ax + b. a est le **coefficient directeur** de cette droite et b est son **ordonnée à l'origine**.

Définition 7.10

On dit qu'une fonction $f:D_f\to\mathbb{R}$ est **affine par morceaux** s'il existe une suite d'intervalles deux à deux disjoints $(I_n)_{n\in\mathbb{N}}$ telle que $\bigcup_{n=0}^{+\infty}I_n=D_f$ et telle que $\forall n\in\mathbb{N},\, f_{|I_n}$ est une fonction affine.

Exemple 7.4

- La fonction valeur absolue est affine par morceau. Sa restriction à $]-\infty;0[$ est la fonction $x\mapsto -x$ et sa restriction à $[0;+\infty[$ est $x\mapsto x.$
- La fonction **partie entière**, qui à un réel x associe l'unique entier $n \in \mathbb{Z}$ tel que $n \le x < n+1$, est affine par morceaux. Sa restriction à chaque intervalle de la forme [n, n+1] est constante (donc affine).

b. Courbe représentative d'une fonction affine $f: x \longmapsto ax + b$

c. Courbe représentative de la fonction valeur absolue et de la fonction partie entière

Fonction $x \mapsto |x|$

Fonction $x \mapsto \lfloor x \rfloor$

d. Fonction polynôme de degré 2

Une fonction polynôme de degré 2 est une fonction de la forme $f: x \longmapsto ax^2 + bx + c$ où $(a, b, c) \in \mathbb{R}^* \times \mathbb{R} \times \mathbb{R}$.

Définition 7.11

Soit $f: x \longmapsto ax^2 + bx + c$ une fonction polynôme de degré 2. On appelle **discriminant de** f le nombre $\Delta = b^2 - 4ac$

On rappelle les deux propriété suivante :

Propriété 7.3 –

Soit $f: x \mapsto ax^2 + bx + c$ une fonction polynôme de degré 2. Alors

- Si a > 0, f est décroissante sur $]-\infty; \frac{-b}{2a}[$ et croissante sur $]\frac{-b}{2a}; +\infty[$.
- Si a < 0, f est croissante sur] $-\infty$; $\frac{-b}{2a}$ [et décroissante sur] $\frac{-b}{2a}$; $+\infty$ [.

Propriété 7.4

• Si $\Delta > 0$, l'équation f(x) = 0 admet deux solutions réelles, notées x_1 et x_2 et données par

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

• Si $\Delta = 0$, l'équation f(x) = 0 admet une unique solution réelle, notée x_0 et donnée par

$$x_0 = -\frac{b}{2a}$$

• Si Δ < 0, l'équation f(x) = 0 n'admet aucune solution réelle.

e. Courbe représentative d'une fonction polynôme de degré $2\,$

.

f. Fonctions cube, inverse, racine carrée, racine cubique

Fonction $x \mapsto x^3$ définie sur \mathbb{R}

Fonction $x \mapsto \frac{1}{x}$ définie sur \mathbb{R}^*

Fonction $x \mapsto \sqrt{x} = x^{1/2}$ définie sur $[0; +\infty[$

Fonction $x \mapsto \sqrt[3]{x} = x^{1/3}$ définie sur \mathbb{R}

g. Fonctions exponentielle et logarithme

Définition 7.12

La fonction logarithme naturel, notée ln, est l'unique primitive de la fonction $x\mapsto \frac{1}{x}$ sur $]0;+\infty[$ s'annulant en 1. La fonction logarithme naturel réalise une bijection de $]0,+\infty[$ vers $\mathbb R$. La fonction exponentielle, notée exp, est définie comme étant l'application réciproque de ln.

Ainsi, on a

- $\forall x \in \mathbb{R}$, $\ln(\exp(x)) = x$
- $\forall x \in]0, +\infty[, \exp(\ln(x)) = x$

Fonction $x \mapsto e^x$ définie sur \mathbb{R} Fonction $x \mapsto \ln x$ définie sur $]0; +\infty[$

Propriété 7.5 (Propriétés analytiques de la fonction exponentielle)

- $x \mapsto e^x$ est dérivable et $(e^x)' = e^x$

• $x \mapsto e^x$ est strictement croissante

- $e^0 = 1$
- $\forall x \in \mathbb{R}, e^x > 0$

- $e^x = 1 \iff x = 0$
- $e^x > 1 \iff x > 0$
- $e^x < 1 \iff x < 0$

Propriété 7.6 (Propriétés algébriques de la fonction exponentielle)

• $\forall (a,b) \in \mathbb{R}^2$, $e^{a+b} = e^a e^b$

- $\forall (a,b) \in \mathbb{R}^2$, $e^{a-b} = \frac{e^a}{e^b}$
- $\forall a \in \mathbb{R}, \forall n \in \mathbb{Z}, (e^a)^n = e^{na}$

• $\forall a \in \mathbb{R}, e^{-a} = \frac{1}{e^a}$

• $\forall a \in \mathbb{R}, \sqrt{e^a} = e^{a/2}$

Définition 7.13

• ln(1) = 0

Si $(a, b) \in]0, +\infty[\times \mathbb{R}, \text{ on définit } a^b \text{ par : }$

$$a^b = e^{b \ln(a)}$$

Ainsi, la dernière propriété peut se généraliser en $\forall (a,b) \in]0, +\infty[\times \mathbb{R}, (e^a)^b = e^{ab}]$.

Propriétés 7.7 (Propriétés analytiques de la fonction logarithme)

- $x \mapsto \ln x$ est dérivable et $(\ln x)' = \frac{1}{x}$
- $x \mapsto \ln x$ est strictement croissante

- $\forall x \in \mathbb{R}^{+*}$, $\ln x = 0 \iff x = 1$
- $\forall x \in \mathbb{R}^{+*}$, $\ln x > 0 \iff x > 1$
- $\forall x \in \mathbb{R}^{+*}$, $\ln x < 0 \iff x < 1$

Propriétés 7.8 (Propriétés algébriques de la fonction logarithme)

- $\forall (a, b) \in (\mathbb{R}^{+*})^2$, $\ln(ab) = \ln a + \ln b$
- $\forall (a,b) \in (\mathbb{R}^{+*})^2$, $\ln\left(\frac{a}{b}\right) = \ln a \ln b$
- $\forall a \in \mathbb{R}^{+*}, \forall n \in \mathbb{Z}, \ln(a^n) = n \ln a$

• $\forall a \in \mathbb{R}^{+*}$, $\ln\left(\frac{1}{a}\right) = -\ln a$

• $\forall a \in \mathbb{R}^{+*}, \ln(\sqrt{a}) = \frac{1}{2} \ln a$

- → Exercice de cours nº 2.
- → Exercice de cours nº 3.

Définition 7.14

Soit b > 0 un réel tel que $b \ne 1$. Le logarithme en base b est l'application qui à un réel x strictement positif associe l'unique réel y tel que $b^y = x$. On la note \log_b .

Remarque

On a
$$b^y = x \Longleftrightarrow \mathrm{e}^{y\ln(b)} = x \Longleftrightarrow y\ln(b) = \ln(x) \Longleftrightarrow y = \frac{\ln(x)}{\ln(b)} \mathrm{car}\ b \neq 1\ \mathrm{donc}\ \ln(b) \neq 0.$$
 Ainsi, pour tout $b \in \mathbb{R}^+ \setminus \{1\}$, on a $\log_b(x) = \frac{\ln(x)}{\ln(b)}$

Propriété 7.9

Quelle que soit la base b, le logarithme en base b vérifie les mêmes propriétés algébriques que le logarithme naturel.

h. Fonctions trigonométriques

Sinus et cosinus ensemble :

3. Fonctions polynômes de degré n

Définition 7.15

Soit $n \in \mathbb{N}$. On appelle **polynôme à coefficients réels de degré** n une expression P(X) de la forme

$$P(X) = \sum_{k=0}^{n} a_k X^k = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$$

où $(a_0, a_1, ..., a_n) \in \mathbb{R}^{n+1}$ avec $a_n \neq 0$ et où X désigne une **indéterminée**. Si l'indéterminée est une variable réelle x, alors P définit une fonction réelle de la variable réelle :

$$\forall x \in \mathbb{R}, \quad P(x) = \sum_{k=0}^{n} a_k x^k$$

Une telle fonction est une **fonction polynôme de degré** *n*.

- Pour tout $k \in \{0, 1, ..., n\}$, le réel a_k s'appelle **coefficient de degré** k
- le coefficient a_n s'appelle **coefficient dominant de P**.
- Si $a_n = 1$, on dit que P est un polynôme **unitaire**.
- On appelle polynôme nul le polynôme dont tous les coefficients sont nuls.
- On note $\mathbb{R}_n[X]$ l'ensemble des polynômes de degré inférieur ou égal à n, et $\mathbb{R}_n[x]$ l'ensemble des fonctions polynomiales de degré inférieur ou égal à n.

Remarque

On distingue un **polynôme** et une **fonction polynôme** car l'indéterminée X peut être remplacée par différents objets mathématiques.

Par abus de langage on appelle parfois polynôme une fonction polynôme.

Définition 7.16

On note $\deg(P) = n$ si P est un polynôme de degré $n \in \mathbb{N}$. Par convention, on pose $\deg(P) = -\infty$ si P est le polynôme nul.

Remarque

- La fonction associée au polynôme nul est la fonction nulle.
- Les fonctions polynômes de degré 0 sont les fonctions constantes.
- Les fonctions polynômes de degré 1 sont les fonctions affines.

Propriété 7.10

Soit $P: x \mapsto \sum_{k=0}^{n} a_k x^k$ une fonction polynôme de degré n (avec $a_n \neq 0$). Alors P est dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \quad P'(x) = \sum_{k=1}^{n} k a_k x^{k-1} = \sum_{k=0}^{n-1} (k+1) a_{k+1} x^k$$

Remarque

Si P est une fonction polynôme de degré n, alors P' est une fonction polynôme de degré n-1. Si on note $P^{(k)}$ la dérivée k-ième de P, alors $P^{(k)}$ est un polynôme de degré n-k. En particulier, $P^{(n)}$ est constant et $P^{(k)} = 0$ dès que k > n.

→ Exercice de cours nº 4.

Propriété 7.11

- Une fonction polynôme est la fonction nulle sur $\mathbb R$ si et seulement si tous ses coefficients sont nuls.
- Deux fonctions polynômiales sont égales si et seulement si elles ont même degré et tous leurs coefficients sont égaux.

Propriété 7.12

Soient P et Q deux polynômes à coefficients réels. Alors

• $deg(P + Q) \le max(deg(P), deg(Q))$

10/25 Chapitre 7 : Analyse

- $deg(P \times Q) = deg(P) + deg(Q)$
- $deg(\lambda P) = deg(P)$ si $\lambda \in \mathbb{R}^*$.
- $deg(P \circ Q) = deg(P) \times deg(Q)$

Définition 7.17

On appelle **racine** d'un polynôme P tout nombre $\lambda \in \mathbb{R}$ tel que $P(\lambda) = 0$.

Propriété 7.13 -

Soit $n \in \mathbb{N}^*$ et $P \in \mathbb{R}_n[x]$. Pour tout réel λ ,

 λ est une racine de $P \iff$ il existe $Q \in \mathbb{R}_{n-1}[x]$ tel que $P(x) = (x - \lambda)Q(x)$.

→ Exercice de cours nº 5.

Propriété 7.14

Une fonction polynôme de degré n non nulle admet au plus n racines distinctes. Autrement dit, le seul polynôme de degré inférieur ou égal à n qui admet n+1 racines distinctes est le polynôme nul.

→ Exercice de cours nº 6.

II. Limites

Dans toute cette section et sauf exception, D_f est une partie de \mathbb{R} et f est une fonction définie sur D_f à valeurs dans \mathbb{R} . Intuitivement, on dira que « f a pour limite $\ell \in \overline{R}$ lorsque x tend vers $a \in \overline{R}$ » si les valeurs de f(x) « s'approchent » de ℓ lorsque la valeur de x « s'approche » de a. Les définitions suivantes visent à donner un sens rigoureux au verbe « s'approcher ».

1. Limite en $+\infty$, limite en $-\infty$

a. Limite infinie

Définition 7.18

On dit que f admet pour limite $+\infty$ en $+\infty$ si :

$$\forall A \in \mathbb{R}, \exists x_0 \in \mathbb{R}, \forall x \in D_f, x > x_0 \Rightarrow f(x) > A$$

On note alors $\lim_{x \to +\infty} f(x) = +\infty$ ou $f(x) \xrightarrow[x \to +\infty]{} +\infty$.

Remarque

Sans changer le sens de cette définition, on peut lui ajouter quelques mots qui ne sont pas nécessaires du point de vue logique mais aident à la compréhension :

 $\lim_{x \to +\infty} f(x) = +\infty$ si quel que soit le réel A, **aussi grand soit-il**, il existe un réel x_0 **qui peut dépendre de** A tel que pour tout réel $x > x_0$ on a f(x) > A.

On définit de même les limites infinies en $\pm\infty$:

Définition 7.19

- $\lim_{x \to +\infty} f(x) = -\infty \iff \forall A \in \mathbb{R}, \exists x_0 \in \mathbb{R}, \forall x \in D_f, x > x_0 \Rightarrow f(x) < A$
- $\lim_{x \to -\infty} f(x) = +\infty \iff \forall A \in \mathbb{R}, \exists x_0 \in \mathbb{R}, \forall x \in D_f, x < x_0 \Rightarrow f(x) > A$
- $\bullet \ \lim_{x \to -\infty} f(x) = -\infty \iff \forall A \in \mathbb{R}, \exists x_0 \in \mathbb{R}, \forall x \in D_f, x < x_0 \Rightarrow f(x) < A$
- → Exercice de cours nº 7.

b. Limite finie

Définition 7.20

Soit $\ell \in \mathbb{R}$.

• On dit que f admet pour limite le réel ℓ en $+\infty$, si :

$$\forall \varepsilon > 0, \exists x_0 \in \mathbb{R}, \forall x \in D_f, x > x_0 \Rightarrow |f(x) - \ell| < \varepsilon$$

• f admet pour limite le réel ℓ en $-\infty$, si :

$$\forall \varepsilon > 0, \exists x_0 \in \mathbb{R}, \forall x \in D_f, x < x_0 \Rightarrow |f(x) - \ell| < \varepsilon$$

Remarque

On rappelle que $|f(x) - \ell| < \varepsilon \iff f(x) \in]\ell - \varepsilon, \ell + \varepsilon[$

Remarque

Sans changer le sens de cette définition, on peut la reformuler de la façon suivante :

 $\lim_{x \to +\infty} f(x) = \ell$ si pour tout réel ε strictement positif, **aussi petit soit-il**, il existe un réel x_0 **qui peut dépendre de** ε tel que pour tout $x > x_0$, la distance entre f(x) et ℓ est inférieure à ε .

→ Exercice de cours nº 8.

2. Limite en un réel a

Définition 7.21

f admet pour limite $+\infty$ en a, si

$$\forall A \in \mathbb{R}, \exists \delta > 0, \forall x \in D_f, \; |x-a| < \delta \Rightarrow f(x) > A$$

On peut définir de même les autres types de limite en un réel *a* :

Définition 7.22

- $\lim_{x \to a} f(x) = -\infty \iff \forall A \in \mathbb{R}, \exists \delta > 0, \forall x \in D_f, |x a| < \delta \Rightarrow f(x) < A$
- $\bullet \ \lim_{x \to a} f(x) = \ell \iff \forall \varepsilon > 0, \exists \delta > 0, \forall x \in D_f, \ |x a| < \delta \Rightarrow |f(x) \ell| < \varepsilon$

Proposition 7.15 (Unicité de la limite)

Si f tend vers une limite $\ell \in \overline{R}$ lorsque x tend vers un réel a, ou x tend vers $\pm \infty$, alors ℓ est unique.

3. Définition unifiée

On note $\mathbb{R} = \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$ la **droite réelle achevée**. On utilise cette notation **uniquement dans le cours** pour généraliser plus facilement des définitions et des propriétés sur les limites.

Les différentes définitions de limites vues dans les sections précédentes peuvent être synthétisé en une seule grâce à la notion de **voisinage**.

Définition 7.23

Un **voisinage** d'un réel a est un intervalle de la forme $]a - \delta, a + \delta[$ avec $\delta > 0$.

Un **voisinage** de $+\infty$ (respectivement de $-\infty$) est un intervalle de la forme A; $+\infty$ [(respectivement de la forme A] $-\infty$, A[avec $A \in \mathbb{R}$.

Définition 7.24

Soient $a \in \mathbb{R}$ et $\ell \in \mathbb{R}$. f admet pour limite ℓ lorsque x tend vers a si pour tout voisinage V_{ℓ} de ℓ , il existe un voisinage V_a de a tel que $f(V_a) \subset f(V_{\ell})$ (autrement dit tel que $\forall x \in V_a, f(x) \in V_{\ell}$).

En adaptant la définition de voisinage selon la valeur réelle ou infinie de a et de ℓ , on retrouve dans cette définition toutes les définitions de limites précédentes.

Chapitre 7 : Analyse

4. Limites et monotonie

Proposition 7.16 (théorème de la limite monotone)

Soient $a, b \in \overline{R}$ et $f :]a, b[\to \mathbb{R}$ une fonction monotone.

- Si f est croissante et majorée sur a, b, alors f admet une limite finie en b.
- Si f est croissante et non majorée sur] a, b[, alors $\lim_{x \to b} f(x) = +\infty$
- Si f est croissante et minorée sur] a, b[, alors f admet une limite finie en a
- Si f est croissante et non minorée sur] a, b[, alors $\lim_{x \to a} f(x) = -\infty$.

Remarque

On a des propositions analogues lorsque f est décroissante sur] a, b[

Proposition 7.17

- Si f est croissante sur] a, b[et $\lim_{x \to b} f(x) = \ell$, alors $\forall x \in]a, b[, f(x) \le \ell$.
- Si f est croissante sur] a, b[et $\lim_{x \to a} f(x) = \ell$, alors $\forall x \in]a, b[$, $\ell \leq f(x)$.
- Si f est décroissante sur] a,b[et $\lim_{x\to b} f(x) = \ell$, alors $\forall x\in]a,b[,f(x)\geq \ell$
- Si f est décroissante sur] a, b[et $\lim_{x \to a} f(x) = \ell$, alors $\forall x \in]a, b[$, $a \ge f(x)$.

5. Théorèmes de comparaison

Dans toute cette section, f, g et h sont trois fonctions définies dans un voisinage de a, avec $a \in \overline{\mathbb{R}}$.

Proposition 7.18 (passage à la limite dans une inégalité)

Si $f(x) \le g(x)$ pour tout x dans un voisinage de a et que $\lim_{x \to a} f(x) = \ell$ et $\lim_{x \to a} g(x) = \ell'$, alors $\ell \le \ell'$.

Remarque

Le passage à la limite dans une inégalité stricte donne une inégalité large :

Si
$$V$$
 est un voisinage de a ,
$$\left\{ \begin{array}{ccc} \lim_{x \to a} f(x) = \ell \\ \lim_{x \to a} g(x) = \ell' & \Longrightarrow & \ell \leq \ell' \\ \forall x \in V, f(x) < g(x) \end{array} \right.$$

Proposition 7.19 -

Supposons que $f(x) \le g(x)$ dans un voisinage de a.

- si $\lim_{x \to a} f(x) = +\infty$, alors $\lim_{x \to a} g(x) = +\infty$
- si $\lim_{x \to a} g(x) = -\infty$, alors $\lim_{x \to a} f(x) = -\infty$

Théorème 7.20 des gendarmes

Supposons que $f(x) \le g(x) \le h(x)$ dans un voisinage de a. Si $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = \ell$ avec $\ell \in \mathbb{R}$, alors $\lim_{x \to a} g(x) = \ell$.

6. Limite à gauche, limite à droite

Définition 7.25

Limite à gauche

• On dit que f tend vers $+\infty$ à gauche en $a \in I$, et on note $\lim_{\substack{x \to a \\ x < a}} f(x) = \lim_{\substack{x \to a^-}} f(x) = +\infty$, si

$$\forall A \in \mathbb{R}, \exists \delta > 0, \forall x \in D_f, x \in]a - \delta, a[\Rightarrow f(x) > A$$

• On dit que f tend vers un réel ℓ à gauche en $a \in I$, et on note $\lim_{\substack{x \to a \\ x < a}} f(x) = \lim_{\substack{x \to a^-}} f(x) = \ell$, si

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in D_f, x \in]a - \delta, a[\Rightarrow |f(x) - \ell| < \varepsilon$$

Limite à droite

• On dit que f tend vers $+\infty$ à droite en $a \in I$, et on note $\lim_{\substack{x \to a \\ x > a}} f(x) = \lim_{\substack{x \to a^+}} f(x) = +\infty$, si

$$\forall A \in \mathbb{R}, \exists \delta > 0, \forall x \in D_f, x \in]a, a + \delta [\Rightarrow f(x) > A$$

• On dit que f tend vers un réel ℓ à droite en $a \in I$, et on note $\lim_{\substack{x \to a \\ x > a}} f(x) = \lim_{\substack{x \to a^+}} f(x) = \ell$, si

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in D_f, x \in]a, a + \delta [\Rightarrow |f(x) - \ell| < \varepsilon$$

Remarque

On définit de même $\lim_{x \to a^+} f(x) = -\infty$ et $\lim_{x \to a^-} f(x) = -\infty$.

Exemple 7.5

- $\lim_{x \to 0^{-}} \frac{1}{x} = -\infty$ et $\lim_{x \to 0^{+}} \frac{1}{x} = +\infty$
- $\lim_{x \to 3^+} \lfloor x \rfloor = 3$ et $\lim_{x \to 3^-} \lfloor x \rfloor = 2$. En effet, pour tout $x \in]3 \delta, 3[$ avec δ suffisamment petit, on a $\lfloor x \rfloor = 2$.

Proposition 7.21 —

Soit $f: I \to \mathbb{R}$ une fonction et $a \in I$. On a

- $\lim_{x \to a} f(x) = \ell$ si et seulement si $\lim_{x \to a^{-}} f(x) = \ell$ et $\lim_{x \to a^{+}} f(x) = \ell$
- $\lim_{x \to a} f(x) = +\infty$ si et seulement si $\lim_{x \to a^{-}} f(x) = +\infty$ et $\lim_{x \to a^{+}} f(x) = +\infty$
- $\lim_{x \to a} f(x) = \ell$ si et seulement si $\lim_{x \to a^{-}} f(x) = -\infty$ et $\lim_{x \to a^{+}} f(x) = -\infty$

7. Asymptotes

Définition 7.26

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction et $a \in \mathbb{R}$. On dit que

- f admet une asymptote verticale d'équation x = a en a si $\lim_{x \to a} f(x) = \pm \infty$ (ou si $\lim_{x \to a^-} f(x) = \pm \infty$) ou $\lim_{x \to a^+} f(x) = \pm \infty$)
- f admet une asymptote horizontale d'équation $y = \ell$ si $\lim_{x \to +\infty} f(x) = \ell$ ou $\lim_{x \to -\infty} f(x) = \ell$

Remarque

Graphiquement, une asymptote est une droite indiscernable de la courbe de f à l'infini.

Une fonction peut admettre au plus 2 asymptotes horizontales, mais une infinité d'asymptotes verticales

Exemple 7.6

- La fonction inverse admet une asymptote verticale d'équation x = 0 et une asymptote horizontale d'équation y = 0
- La fonction exponentielle admet une asymptote horizontale d'équation y = 0
- La fonction tangente admet une infinité d'asymptote verticales, d'équation $x = \frac{n}{2} + k\pi$ avec $k \in \mathbb{Z}$.

III. Calcul de limites

1. Opérations sur les limites

Dans cette section, a désigne un réel, ou $+\infty$, ou $-\infty$, et ℓ désigne un réel fini.

Chapitre 7 : Analyse

a. Somme

Proposition 7.22 —

$\operatorname{Si} \lim_{x \to a} f(x) = \cdots$	ℓ	ℓ	ℓ	+∞	+∞	$-\infty$
$\operatorname{et} \lim_{x \to a} g(x) = \cdots$	ℓ'	+∞	$-\infty$	+∞	$-\infty$	$-\infty$
alors $\lim_{x \to a} (f(x) + g(x)) = \cdots$	$\ell + \ell'$	+∞	-∞	+∞	FI	$-\infty$

b. Produit

Proposition 7.23

$\operatorname{Si} \lim_{x \to a} f(x) = \cdots$	ℓ	<i>l</i> > 0	<i>l</i> > 0	ℓ < 0	ℓ < 0	0	+∞	+∞	$-\infty$
$\operatorname{et} \lim_{x \to a} g(x) = \cdots$	ℓ'	+∞	$-\infty$	+∞	$-\infty$	±∞	+∞	$-\infty$	$-\infty$
alors $\lim_{x \to a} f(x) \times g(x) = \cdots$	$\ell + \ell'$	+∞	$-\infty$	$-\infty$	+∞	FI	+∞	$-\infty$	+∞

c. Quotient

Proposition 7.24

Si $\lim_{x\to a} g(x) \neq 0$:

$\operatorname{Si} \lim_{x \to a} f(x) = \cdots$	ℓ	l	+∞	+∞	+∞	-∞	-∞
$\operatorname{et} \lim_{x \to a} g(x) = \cdots$	$\ell' \neq 0$	±∞	±∞	$\ell' > 0$	ℓ' < 0	$\ell' > 0$	$\ell' < 0$
alors $\lim_{x \to a} \frac{f(x)}{g(x)} = \cdots$	$\frac{\ell}{\ell'}$	0	FI	+∞	-∞	-∞	+∞

Si $\lim_{x \to a} g(x) = 0$:

Si $\lim_{x \to a} f(x) = \cdots$	<i>l</i> > 0	<i>l</i> > 0	ℓ < 0	ℓ < 0	+∞	+∞	$-\infty$	$-\infty$	0
$\operatorname{et} \lim_{x \to a} g(x) = \cdots$	0+	0-	0+	0-	0+	0-	0+	0-	0
alors $\lim_{x \to a} \frac{f(x)}{g(x)} = \cdots$	+∞	-∞	-∞	+∞	+∞	-∞	-∞	+∞	FI

Remarque

On note $\lim_{x \to a} g(x) = \ell^+$ (respectivement $\lim_{x \to a} g(x) = \ell^-$) si g(x) tend vers 0 en gardant des valeurs supérieure ou égal à ℓ (respectivement inférieure ou égale à ℓ).

Autrement dit:

$$\begin{split} & \lim_{x \to a} g(x) = \ell^+ \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \lim_{x \to a} g(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow g(x) \in [\ell, \ell + \varepsilon[\\ & \text{lim}(x) = \ell^- \iff \forall$$

Ainsi, la notation $\lim_{x \to a} g(x) = 0^+$ si g(x) tend vers 0 en gardant des valeurs positive

$$\forall \varepsilon, \exists \delta > 0, |x - a| < \delta \Rightarrow 0 \le g(x) < \varepsilon$$

(de même pour $\lim_{x \to a} g(x) = 0^-$)

2. Composition de limites

Proposition 7.25

Soient a,b,c trois réels, ou $\pm \infty$, et soient f et g deux fonctions telles que $g \circ f$ soit définie dans un voisinage de a. Supposons que $\lim_{x \to a} f(x) = b$ et que $\lim_{x \to b} g(x) = c$. Alors $\lim_{x \to a} g \circ f(x) = c$

Exemple 7.7

Calculer la limite de $x \mapsto e^{-1/x}$ en 0^+ et en 0^- .

3. Croissances comparée

a. Négligeabilité

Définition 7.27

Soient f et g deux fonctions définies sur un intervalle I et $a \in I$.

On dit que f est négligeable devant g au voisinage de a, et on note f(x) = o(g(x)), s'il existe une fonction $\varepsilon : I \to \mathbb{R}$ telle que $\lim_{x \to a} \varepsilon(x) = 0$ et $f(x) = \varepsilon(x)g(x)$

Si g ne s'annule pas au voisinage de a, cette définition est équivalente à $\lim_{x\to a}\frac{f(x)}{g(x)}=0$.

→ Exercice de cours nº 9.

Les règles sont les mêmes que pour les suites :

Propriété 7.26

Soit $a \in \mathbb{R}$, ou $a = \pm \infty$, et f, g et h trois fonctions définies au voisinage de a.

- Si f(x) = o(g(x)) et g(x) = o(h(x)), alors f(x) = o(h(x))
- Si f(x) = o(g(x)), alors f(x)h(x) = o(g(x)h(x))
- $\lim_{x \to a} f(x) = 0$ si et seulement si f(x) = 0

Par composition de limites, on obtient la proposition suivante :

Proposition 7.27

Supposons que f(x) = o(g(x))

- Si $\lim_{x \to b} h(x) = a$, alors f(h(x)) = o(g(h(x))).
- Si $\lim_{n \to +\infty} u_n = a$, alors $f(u_n) = o(g(u_n))$

On peut donc poser des changements de variables dans les relations de négligeabilité lorsque les limites correspondent.

b. Comparaisons usuelles

Proposition 7.28 (croissances comparées)

Soient $\alpha > 0$ et $\beta > 0$ deux réels. On a les limites suivantes :

Limite	$\lim_{x \to +\infty} \frac{x^{\beta}}{e^{\alpha x}} = 0$	$\lim_{x \to -\infty} x^{\beta} e^{\alpha x} = 0 \text{ si } \beta \in \mathbb{N}^*$	$\lim_{x \to +\infty} \frac{(\ln x)^{\alpha}}{x^{\beta}} = 0$	$\lim_{x \to 0^+} x^{\beta} \ln x ^{\alpha} = 0$
Notation de Landau	$x^{\beta} = o(e^{\alpha x})$	$e^{\alpha x} = o\left(\frac{1}{x^{\beta}}\right)$	$(\ln x)^{\alpha} = o(x^{\beta})$	$ \ln x ^{\alpha} = o\left(\frac{1}{x^{\beta}}\right)$

Remarque

En particulier,
$$\lim_{x \to +\infty} \frac{\mathrm{e}^x}{x} = +\infty$$
 , $\lim_{x \to -\infty} x \, \mathrm{e}^x = 0$, $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$, $\lim_{x \to 0} x \ln x = 0$ et $\forall n \in \mathbb{N}^*$, $\lim_{x \to +\infty} \frac{\mathrm{e}^x}{x^n} = +\infty$, $\lim_{x \to -\infty} x^n \, \mathrm{e}^x = 0$, $\lim_{x \to +\infty} \frac{\ln x}{x^n} = 0$, $\lim_{x \to 0} x^n \ln x = 0$

→ Exercice de cours nº 10.

c. Équivalence

Définition 7.28

Soit $a \in \mathbb{R}$ ou $a = \pm \infty$. Soient f et g deux fonctions définies dans un voisinage V de a. On dit que f est **équivalente** à g au voisinage de a s'il existe une fonction α vérifiant $\lim_{x\to a} \alpha(x) = 1$ telle que $\forall x \in V$, $f(x) = \alpha(x)g(x)$. On note $f(x) \underset{x \to a}{\sim} g(x)$.

Si g(x) ne s'annule pas au voisinage de a, cette définition est équivalente à $\lim_{x\to a} \frac{f(x)}{g(x)} = 1$

Les propriétés de l'équivalence sont les mêmes que pour les suites :

Propriété 7.29

 $f(x) \underset{x \to a}{\sim} g(x)$ si et seulement si f(x) - g(x) = o(g(x)).

Propriété 7.30 (Opérations sur les équivalents)

Soit $a \in \mathbb{R}$ ou $a = \pm \infty$ et soient f, g, h et k quatre fonctions définies au voisinage de a.

- Si $f(x) \sim g(x)$, alors $g(x) \sim f(x)$
- Si $f(x) \sim g(x)$ et que $g(x) \sim h(x)$, alors $f(x) \sim h(x)$
- Si $\ell \in \mathbb{R}^*$, alors $f(x) \sim \ell \iff \lim_{x \to a} f(x) = \ell$
- Si $f(x) \sim g(x)$ et $h(x) \sim k(x)$
 - $ightharpoonup f(x)h(x) \sim g(x)k(x)$
 - $ightharpoonup \frac{f(x)}{h(x)} \sim \frac{g(x)}{k(x)}$ si h(x) et k(x) ne s'annulent pas
- Si f et g sont strictement positives et telles que $f(x) \sim g(x)$ et si $a \in \mathbb{R}$, alors $f(x)^a \sim g(x)^a$. En particulier $\sqrt{f(x)} \sim \sqrt{g(x)}$.

Remarque

Attention: On n'ajoute pas des équivalence.

En général $f(x) \sim g(x) \Rightarrow f(x) + k(x) \sim g(x) + k(x)$ Par exemple : $x^2 + 1 \sim x^2$ et $1 - x^2 \sim x^2 \sim -x^2$ mais $x^2 + 1 + 1 - x^2 \sim 2 \sim 0$.

Par composition de limites, on a immédiatement le résultat suivant :

Proposition 7.31

Soient $(a, b) \in (\overline{\mathbb{R}})^2$. Si $f(x) \underset{x \to b}{\sim} g(x)$ et que $\lim_{x \to a} h(x) = b$, alors $f(h(x)) \underset{x \to a}{\sim} g(h(x))$.

Exemple 7.8

On sait que $x^2 + x \underset{+\infty}{\sim} x^2$ et que $\lim_{x \to +\infty} \ln x = +\infty$ donc $\ln(x)^2 + \ln(x) \underset{+\infty}{\sim} \ln(x)^2$.

Remarque

Attention : On ne compose pas des équivalences à gauche. En général, $f(x) \sim g(x) \Rightarrow h \circ f(x) \sim h \circ g(x)$ Par exemple $x + 1 \underset{x \to +\infty}{\sim} x$ mais $\lim_{x \to +\infty} \frac{e^{x+1}}{e^x} = e^1 \neq 1$ donc $e^{x+1} \nsim e^x$.

→ Exercice de cours nº 11.

d. Équivalents usuels

Proposition 7.32

Soit $P : \mathbb{R} \to \mathbb{R}$ un polynôme.

- Lorsque $x \to +\infty$ ou $x \to -\infty$, P(x) est équivalent à son terme de plus haut degré.
- Lorsque $x \to 0$, P(x) est équivalent à son terme de plus petit degré non nul.

Proposition 7.33

Soit $f: I \to \mathbb{R}$ une fonction dérivable en $a \in I$. Alors

$$f(x) = f(a) + f'(a)(x-a) + o(x-a)$$

On en déduit les égalités suivantes

Propriété 7.34 (développements limités à l'ordre 1)

Lorsque $x \rightarrow 0$ on a :

•
$$\sin x = x + o(x)$$

•
$$\cos x = 1 + o(x)$$

$$\bullet \ \exp(x) = 1 + x + o(x)$$

•
$$\ln(1+x) = x + o(x)$$

•
$$\sqrt{1+x} = 1 + \frac{1}{2}x + o(x)$$

•
$$(1+x)^{\alpha} = 1 + \alpha x + o(x)$$

•
$$\frac{1}{1-x} = 1 + x + o(x)$$

→ Exercice de cours nº 12.

On peut exprimer ces développements limités sous forme d'équivalents :

Propriété 7.35 (équivalents usuels)

Lorsque $x \rightarrow 0$ on a :

•
$$\sin x \sim x$$

•
$$\cos x \sim 1$$

•
$$\exp(x) - 1 \underset{x \to 0}{\sim} x$$

•
$$\ln(1+x) \sim x$$

$$\bullet \sqrt{1+x} - 1 \underset{x \to 0}{\sim} \frac{1}{2}x$$

•
$$(1+x)^{\alpha}-1 \sim \alpha x$$

•
$$(1+x)^{\alpha} - 1 \sim_{x \to 0} \alpha x$$

$$\bullet \ \frac{1}{1-x} - 1 \underset{x \to 0}{\sim} x$$

→ Exercice de cours nº 13.

IV. Continuité

Dans toute cette section I désigne un intervalle réel.

1. Définition

Définition 7.29

Soit $f: I \longrightarrow \mathbb{R}$ une fonction définie sur I et soit $a \in I$. On dit que f est **continue en a** si $\lim_{x \to a} f(x) = f(a)$, c'est à dire si

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in I, |x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon$$

Définition 7.30

Soit $f: I \longrightarrow \mathbb{R}$ une fonction définie sur I. On dit que f est **continue sur** I si f est continue en a quel que soit $a \in I$.

Propriété 7.36 (admise)

La plupart des fonctions de référence sont continues sur tout intervalle où elles sont définies :

- Toute fonction polynôme est continue sur $\mathbb R$
- $x \mapsto \sin x$ est continue sur \mathbb{R}
- $x \mapsto \cos x$ est continue sur \mathbb{R}
- $x \mapsto \tan x$ est continue sur $\left] \frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[$ pour tout $k \in \mathbb{Z}$.
- $x \mapsto e^x$ est continue sur \mathbb{R}
- $x \mapsto \ln x$ est continue sur $]0, +\infty[$
- $x \mapsto \frac{1}{x}$ n'est pas continue sur \mathbb{R}^* car \mathbb{R}^* n'est pas un intervalle, mais elle est continue sur $]-\infty,0[$ et continue sur $]0,+\infty[$.

Remarque

La fonction partie entière n'est pas continue sur ℝ

→ Exercice de cours nº 14.

Propriété 7.37 (Opérations)

Soit f et g deux fonctions continues sur I. Alors

- f + g est continue sur I
- $f \times g$ est continue sur I

• Si $\forall x \in I, g(x) \neq 0$, alors $\frac{f}{g}$ est continue sur I.

Propriété 7.38 (Composée de fonctions continues)

Soit $f: I \to \mathbb{R}$ une fonction continue et $g: J \to \mathbb{R}$ telles que $f(I) \subset J$. Alors $g \circ f: I \to \mathbb{R}$ est continue sur I.

2. Prolongement par continuité

Définition 7.31

Soit I un intervalle et $a \in I$ et soit $f: I \setminus \{a\} \longrightarrow \mathbb{R}$ une fonction. On dit que f est **prolongeable par continuité en** a s'il existe un prolongement de f à I continu sur I, c'est à dire une fonction $\hat{f}: I \to \mathbb{R}$ continue sur I et telle que $\forall x \in I \setminus \{a\}, \ \hat{f}(x) = f(x)$.

Proposition 7.39

Soit I un intervalle, soit $a \in I$ et soit f une fonction continue définie sur $I \setminus \{a\}$. f est prolongeable par continuité en a si et seulement si f admet une limite finie en a.

→ Exercice de cours nº 15.

Proposition 7.40

Si a n'est pas une borne de I, alors f est prolongeable par continuité en a si et seulement si f admet une limite finie à gauche et une limite finie à droite en a et que $\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x)$.

→ Exercice de cours nº 16.

3. Applications

a. Continuité et suites

Proposition 7.41

Si (u_n) converge vers une limite finie ℓ , et que f est une fonction continue en ℓ , alors $f(u_n)$ converge aussi et $\lim_{n \to +\infty} f(u_n) = f(\ell)$.

→ Exercice de cours nº 17.

Exemple 7.9

Un contre exemple avec une fonction non continue : $f: x \mapsto \lfloor x \rfloor$.

Le fait que (u_n) converge n'entraine pas nécessairement que $(\lfloor u_n \rfloor)$ converge. Exemple avec la suite $1 + \frac{(-1)^n}{n}$ qui converge vers 1, mais pour $n \ge 2$ on a :

$$ightharpoonup$$
 Si n est pair $\left[1 + \frac{(-1)^n}{n}\right] = \left[1 + \frac{1}{n}\right] = 1$

$$ightharpoonup$$
 Si n est impair $\left[1 + \frac{(-1)^n}{n}\right] = \left[1 - \frac{1}{n}\right] = 0$

donc la suite $\left(\lfloor 1 + \frac{(-1)^n}{n} \rfloor\right)_{n \in \mathbb{N}^*}$ diverge.

Proposition 7.42 —

Plus généralement, si $(a,b) \in (\overline{\mathbb{R}})^2$ et si $\lim_{n \to +\infty} u_n = a$ et $\lim_{x \to a} f(x) = b$, alors $\lim_{n \to +\infty} f(u_n) = b$.

Chapitre 7 : Analyse 21/25

b. Continuité et monotonie

Propriété 7.43

Soient a < b deux réels. Alors

- Si f est continue sur [a, b] et monotone sur [a, b] alors f est monotone sur [a, b].
- Si f est continue sur [a, b] et strictement monotone sur]a, b[alors f est strictement monotone sur [a, b]

c. Théorème des valeurs intermédiaire

Théorème 7.44 (des valeurs intermédiaires) -

Soient a < b deux réels et soit $f : [a, b] \longrightarrow \mathbb{R}$ une fonction **continue**. Soit $\alpha \in [f(a), f(b)]$ (ou $\alpha \in [f(b), f(a)]$ le cas échéant). Alors il existe un réel $c \in [a, b]$ tel que $f(c) = \alpha$.

Remarque

Le théorème est encore vrai si $a=-\infty$ ou $b=+\infty$ (ou les deux). On remplace alors f(a) par $\lim_{x\to -\infty} f(x)$ et f(b) par $\lim_{x\to +\infty} f(x)$.

→ Exercice de cours nº 18.

Remarque

Les équations à une inconnue x peuvent souvent se ramener à une équation de la forme g(x) = 0. Lorsqu'on cherche à démontrer l'existence d'un antécédent de 0 par la fonction g, le théorème des valeurs intermédiaires peut se formuler de la façon suivante :

Si g est continue et que $g(a)g(b) \le 0$, alors il existe $c \in [a,b]$ tel que g(c) = 0

En effet, $g(a)g(b) \le 0$ signifie que g(a) et g(b) sont de signes contraires donc que 0 est compris entre g(a) et g(b), le TVI s'applique donc.

→ Exercice de cours nº 19.

Théorème 7.45 (Corollaire du TVI) -

Soient a < b deux réels et soit $f : [a, b] \to \mathbb{R}$ une fonction continue et strictement monotone sur [a, b]. Soit $\alpha \in [f(a), f(b)]$ (ou $\alpha \in [f(b), f(a)]$ le cas échéant). Alors il existe un **unique** réel $c \in [a, b]$ tel que $f(c) = \alpha$.

Remarque

Le corollaire est encore vrai si $a = -\infty$ ou $b = +\infty$ (ou les deux). On remplace alors f(a) par $\lim_{x \to +\infty} f(x)$ et f(b) par $\lim_{x \to +\infty} f(x)$.

→ Exercice de cours nº 20.

Proposition 7.46 (conséquence du TVI) –

Si I est un intervalle et que f est continue sur I, alors f(I) est un intervalle.

d. Théorème des valeurs atteintes

Définition 7.32

On appelle **intervalle fermé borné** ou **segment** tout intervalle qui contient ses bornes, de la forme [a;b].

Théorème 7.47 (des valeurs atteintes, admis)

Si I est un intervalle fermé borné, alors f(I) est un intervalle fermé borné.

En particulier, si f est une fonction continue sur un intervalle [a,b], alors f est bornée sur [a,b] et atteint ses bornes : elle admet un minimum et un maximum sur [a,b].

e. Théorème de la bijection

Une autre formulation du corollaire du TVI est le théorème de la bijection

Théorème 7.48 de la bijection

Soient a < b deux réels et soit I = [a; b]. Soit f une fonction continue et strictement monotone sur I. Alors J = f(I) est un intervalle dont les bornes sont f(a) et f(b) et f réalise une bijection de I vers J. De plus, sa fonction réciproque f^{-1} est continue et strictement monotone sur J, de même sens de variation que f.

Remarque

Le théorème de la bijection est encore vrai si $a=-\infty$ ou $b=+\infty$, on remplace alors f(a) et f(b) par $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} f(x)$ le cas échéant.

Le théorème est aussi vrai si l'une des bornes est ouverte, l'image d'une borne ouverte est alors ouverte et l'image d'une borne fermée est fermée.

→ Exercice de cours nº 21.

f. Fonction arctangente

Définition 7.33

La fonction $x \mapsto \tan x$ est continue et strictement croissante sur $I =]-\frac{\pi}{2}; \frac{\pi}{2}[$. De plus, $\tan(I) = \mathbb{R}$. En vertu du théorème de la bijection, il existe donc une fonction notée arctan définie et continue sur \mathbb{R} et à valeurs dans $]-\frac{\pi}{2}, \frac{\pi}{2}[$ telle que $\forall x \in \mathbb{R}$, $\tan(\arctan(x)) = x$.

On retient que $\arctan(-1) = -\frac{\pi}{4}$, $\arctan(1) = \frac{\pi}{4}$, $\lim_{x \to -\infty} \arctan(x) = -\frac{\pi}{2}$ et $\lim_{x \to +\infty} \arctan(x) = \frac{\pi}{2}$.

→ Exercice de cours nº 22.

Propriété 7.49

Soient I et J deux intervalles et f une bijection de I vers J dérivable sur I. Si f' ne s'annule pas sur I, alors f^{-1} est dérivable sur J et on a :

$$\forall x \in J, \quad (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Propriété 7.50

La fonction arctan est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, arctan' $(x) = \frac{1}{1 + x^2}$

Exercices de cours

Exercice 1 —

Montrer les deux inégalités suivantes :

$$\forall x \in \mathbb{R}, \quad e^x \ge x+1 \quad ; \quad \forall x > 0, \quad \ln(1+x) \le x$$

Exercice 2 -

Simplifier les expressions suivantes :

1.
$$\frac{e^x + e^{2x}}{1 + e^{-x}}$$

3.
$$\ln(x^2-4) - \ln(x+2)$$

5.
$$\exp\left(\sum_{k=1}^{n}\ln(k^2+k) - \ln(k+1)\right)$$

2.
$$\frac{2\ln(2) + \ln(9)}{\ln(6)}$$

4.
$$\ln\left(e^{x^2} \times (e^{2-2x})^2\right) e^{-\ln(x-2)}$$

6.
$$x + \ln(1 + e^{-x}) + \ln(1 - e^{x})$$

— Exercice 3 —

Résoudre les équations et inéquations d'inconnue $x \in \mathbb{R}$ suivantes :

a)
$$e^{2x} + 2e^x = e^x + 6$$

b)
$$\ln(2) + \ln(x - 1) + \ln(x - 3) =$$
 c) $2\ln(x)^2 - \ln(x) - 1 = 0$
 $\ln(4 - 4x)$

c)
$$2\ln(x)^2 - \ln(x) - 1 = 0$$

— Exercice 4 –

Montrer qu'il n'existe aucun polynôme P tel que $\forall x \in \mathbb{R}, e^x = P(x)$.

Exercice 5

Factoriser les polynômes suivants :

a)
$$f(X) = X^3 + X^2 - 2$$

b)
$$g(X) = X^3 + X^2 + X + 1$$

b)
$$g(X) = X^3 + X^2 + X + 1$$
 c) $h(X) = X^3 - 2X^2 + X - 2$

— Exercice 6 —

Déterminer l'ensemble des polynômes à coefficients réels P tels que $\forall x \in \mathbb{R}$, P(x+1) = P(x).

Exercice 7 —

Montrer en utilisant uniquement la définition que $\lim_{x \to +\infty} \sqrt{x} = +\infty$.

Exercice 8 —

Montrer en utilisant uniquement la définition que $\lim_{x\to +\infty} \frac{1}{x^2} = 0$.

_____ Exercice 9 —

Montrer que $x^2 = o(x^3)$ et $x^3 = o(x^2)$.

Déterminer les limites des fonctions suivantes lorsque x tend vers $+\infty$

1.
$$f(x) = (\ln x)^3 e^{-x}$$

3.
$$h(x) = \ln(x) \times \frac{x+1}{e^x}$$

2.
$$g(x) = e^{4x} - x^2 e^{3x} \ln(x)$$

4.
$$k(x) = \frac{\ln(\ln(x))}{\sqrt{\ln(x)}}$$

Exercice 11

Démontrer les équivalents suivants :

1.
$$\sqrt{x+1} \sim \sqrt{x}$$

3.
$$e^x + x^3 \sim e^x$$

5.
$$\ln x + 2 \sim \ln x$$

2.
$$\ln(x+x^2) \sim 2\ln(x)$$
 4. $e^x + x^3 \sim x^3$

4.
$$e^x + x^3 \sim x^3$$

6.
$$\ln x + \frac{1}{x} \sim \frac{1}{x}$$

Exercice 12

Utiliser des développement limités à l'ordre 1 pour calculer les limites suivantes :

1.
$$\lim_{x \to 0} \frac{\ln(1+x)}{\sin x}$$

2.
$$\lim_{x\to 0} (1+x)^{1/x}$$

3.
$$\lim_{x \to 0} \frac{\sin x}{\sqrt{9+x}-3}$$

3.
$$\lim_{x\to 0} \frac{\sin x}{\sqrt{9+x}-3}$$
 4. $\lim_{x\to 0} \frac{\ln(1+3x^2)}{\sin(x)\sqrt{1-x}}$

Exercice 13 —

Déterminer un équivalent simple des expressions suivantes au voisinage de *a* :

1.
$$f(x) = \sqrt{x+1} - \sqrt{x}$$
, $a = +\infty$

3.
$$h(x) = \frac{\ln(e^{1/x} + 1)}{e^{\ln(x) + x} - x}, a = 0$$

2.
$$g(x) = \ln(x^2 + x) - \ln(x^2)$$
, $a = +\infty$

4.
$$k(x) = 1 - \cos^2(\sqrt{x}), a = 0$$

Exercice 14 -

Étudier la continuité des deux fonctions suivantes :

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} e^{x} & \text{si } x \ge 0 \\ \cos(x) & \text{si } x < 0 \end{cases}$$

$$\mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} e^{x} & \sin x \ge 0 \\ \cos(x) & \sin x < 0 \end{cases} ; \quad x \longmapsto \begin{cases} 3 - x^{2} & \sin x < -2 \\ x + 1 & \sin -2 \le x < 3 \\ x^{2} + 1 & \sin x \ge 3 \end{cases}$$

Exercice 15

On considère la fonction définie par $f(x) = \frac{\sin x}{x}$ définie sur \mathbb{R}^* . Montrer que f peut se prolonger par continuité en une fonction définie sur R.

Exercice 16 -

On considère la fonction f définie par

$$\forall x \in \mathbb{R}^*, \quad f(x) = \begin{cases} e^{-1/x} & \text{si } x > 0 \\ \frac{1}{1 + \ln(x)^2} & \text{si } x < 0 \end{cases}$$

Montrer que f se prolonge par continuité en une fonction définie sur \mathbb{R} .

Exercice 17

Soit (u_n) la suite définie par $u_{n+1} = u_n + e^{u_n}$ et $u_0 = 3$. Montrer que $\lim_{n \to +\infty} u_n = +\infty$.

Exercice 18

Soit $f:[0,+\infty[\to\mathbb{R}$ définie par $f(x)=x\,\mathrm{e}^{1-x}$.

Montrer qu'il existe au moins deux réels $x \in \mathbb{R}$ tels que $f(x) = \frac{1}{2}$.

Exercice 19 -

Soit f une fonction continue sur [0,1]. Montrer qu'il existe un réel $c \in [0,1]$ tel que f(c) = f(1-c).

— Exercice 20 —

Montrer qu'il existe un unique réel $x_0 \in]0,1[$ tel que $\sin\left(\frac{\pi x_0}{2}\right) = \frac{\sqrt{5}}{3}.$

— Exercice 21 —

Montrer que la fonction $f:x\longmapsto \frac{2-6\operatorname{e}^x}{1+2\operatorname{e}^x}$ réalise une bijection de $\mathbb R$ vers un intervalle que l'on déterminera.

- Exercice 22 -

Déterminer la valeur de $\arctan(-\sqrt{3})$ et $\arctan\left(\frac{\sqrt{3}}{3}\right)$