- 1. [5] Imagine you have an He-Ne (632.8 nm) laser pointer, which delivers a Gaussian beam output of 1 mW with a waist ω_0 =1.75mm.
 - a. At which distance will the beam spot become wide enough to fill in a dilated pupil (~7mm diameter aperture)?
 - b. Considering a simplified model, were the light is focused on the back of the eye (~24mm away from the surface of the cornea [refractive index of cornea 1.376]), and estimate the power density at the retina, in the conditions described above.
 - c. Describe the potential effects on the eye.
 - d. What will happen if a similar laser, but with an emission wavelength of 300 nm, is used?
- 2. [6] Consider you want to perform corneal refractive surgery using ablative laser processes.

For this task you have available a Nd:YAG laser with an energy of 2 mJ, pulse time of 12 ns and a beam quality factor of 6, with an output diameter of 2 mm. Knowing that the onset for optical breakdown in cornea tissue is approximately $2.31 \times 10^{10} \text{ W/cm}^2$, setup an "optical probe" using the necessary lens system, which will allow you to do the job.

Lens set: +100 mm; +50 mm; +25 mm; -50 mm; -25 mm.

- a) Calculate the energy density at the focal point at the output of your probe.
- b) Make a simple scheme of the optical probe, indicating components and distances. Justify your choices.
- c) Estimate your working tolerance, i.e, how far can the cornea surface be from the focal point and still be ablated? Consider a diffraction limited beam.
- 3 Quatro placas de diferentes materiais óticos estão dispostas como representado na figura. As placas estão rodeadas de ar e os respetivos índices de refração estão indicados. Raios de luz incidem na extremidade esquerda da placa de forma indicada na figura.
 - a. Indique em que interfaces pode ocorrer reflexão interna total.
 - b. Em algum caso existe a possibilidade de a luz ser guiada, por reflexão interna total em duas interfaces, de uma extremidade à outra?
 - c. Em caso afirmativo, calcule o ângulo crítico em cada uma das interfaces.
 - d. Em que tipo de dispositivo ótico o fenómeno descrito anteriormente é utilizado? Quais as suas aplicações em medicina?
- 4 Um objeto com altura de 1 cm está situado 15 cm à frente de um lente esférica (a) convexa, com uma distância focal de |f|=10 cm. Determine a posição, ampliação e a natureza da imagem correspondente. Qual o tamanho da imagem? Pode ser projetada num alvo? Faça o respetivo traçado de raios.

- b) Descreva qualitativamente o tipo de imagem obtida (natureza, ampliação e orientação), para o caso de a lente ser substituída por uma lente côncava com |f|=10 cm.
- 5 Um observador encontra-se a 1.8 m de uma fonte pontual isotrópica que irradia uma potência de 250 W.
 - a. Qual o valor RMS do Campo elétrico e magnético na posição do observador?
 - b. Se a fonte for substituída por um laser contínuo, com um feixe de diâmetro inicial igual a 1 mm, com a mesma potência e uma divergência de 5 mrad. Qual a intensidade luminosa (ou irradiância) no ponto de observação?
 - c. Qual a potência de pico atingida se o laser for pulsado, com impulsos de duração de 1 fs?
- 6 Imagine que foi contratado/a para fabricar um Laser.
 - a. Faça um esquema com os três elementos essenciais para conseguir ação Laser. Explique com detalhe, o papel de cada um desses elementos no funcionamento do sistema.
 - b. Depois de construído o Laser. A única forma que tem de verificar se foi bem-sucedido, é caracterizar a radiação emitida pelo dispositivo. Descreva as três propriedades distintivas da radiação Laser.
 - c. Explique em que medida essas propriedades resultam da construção que descreveu na alínea a).
- 7 Pretende-se escolher um laser para aplicar em processos de cirurgia baseados em fotodisrupção. Considere os limiares de densidade de potência necessários à ocorrência deste processo na córnea, na tabela 1.
 - Considere também que tem à sua disposição os lasers descritos na tabela 2, bem como um conjunto de lentes de 200mm, 100mm e 50 mm de distância focal.

Tabela 1

Pulse duration	Onset of	
	photodisruption	
	Power density (W/cm2)	
100 ps	5x10^11	
10 ns	2.3x10^10	

Tabela 2

1 40 014 2		
	Laser 1	Laser 2
	Nd:YAG	Nd:YAG
	ModeLock	Fiber Laser
λ (nm)	1060	1064
τ (ns)	10	0.1
Pmédia (W)	10	1
Taxa repetição (Hz)	1000	100
M2	6	1.3
Diâmetro feixe (mm)	4	2

- a) Dimensione um sistema com uso em fotodisrupção usando um dos lasers. Justifique as suas opções com os cálculos adequados.
- b) Considerando o comprimento de onda do laser, e as características de absorção da córnea nesta região espectral, com o laser a operar em regime de fotodisrupção, explique se há ou não risco de exposição da retina.
- 8 Considere um laser em fibra com emissão a 1.035 um, com duração de impulso de 200 ns, e uma energia de 120 mJ. O sistema esta equipado com uma ponta de prova que emite um feixe gaussiano à saída, com 2 mm de diâmetro e uma divergência de 1.5 mrad.
 - a. [1.5]Calcule qual a densidade ótica (OD) nos óculos de proteção, para poder trabalhar com este laser em segurança. (Considere o pior cenário de exposição ocular direta, abertura max de pupila de 7 mm).
 - b. [1.5] Qual seria a distância mínima, para que um observador com óculos de OD=4 estivesse em segurança?
 - c. [1]Qual a classe de segurança deste laser? Explique o que esta classificação implica.