

2025 DCS Lab09 Pipeline/FIR filter

吳俊諺

Purpose

- Learn how to write a pipeline architecture in Verilog.
- FIR filter's hardware implementation

Low-pass FIR filter

- FIR filter Block Diagram
- 數位低通濾波器
- 相較於類比低通濾波器來說製作難易度低、成本低。
- 硬體上只需要暫存器、乘法器和加法器即可實現濾波效果。

3rd-Order FIR Filter

- 這次Lab要實作一個三階FIR Filter: y[n] = b₀x[n] + b₁x[n-1] + b₂x[n-2] + b₃x[n-3]
- 3 ADDs, 4 MULTs如果放在同一個cycle算 => critical path太長
- Solution: Pipeline!

• The FIR circuit:

$$y[n] = b_0x[n] + b_1x[n-1] + b_2x[n-2] + b_3x[n-3]$$

• Cycle 0:

$$y[n] = b_0 x[n] + b_1 x[n-1] + b_2 x[n-2] + b_3 x[n-3]$$

• Cycle 1:

$$y[n] = b_0x[n] + b_1x[n-1] + b_2x[n-2] + b_3x[n-3]$$

• Cycle 2:

$$y[n] = b_0x[n] + b_1x[n-1] + b_2x[n-2] + b_3x[n-3]$$

• Cycle 3:

$$y[n] = b_0x[n] + b_1x[n-1] + b_2x[n-2] + b_3x[n-3]$$

• Cycle 4:

$$y[n] = b_0x[n] + b_1x[n-1] + b_2x[n-2] + b_3x[n-3]$$

Something you should know

You need to block the input/output, or you will fail!

critical path越長,合成時間越久。

FIR.sv

Input Signal	Bit Width	Definition
clk	1	Clock.
rst_n	1	Asynchronous active-low reset.
in_valid	1	High when input is valid.
weight_valid	1	High when weight is valid.
X	16	Unsigned input x.
b0, b1, b2, b3	16	Unsigned weight b0, b1, b2, b3.

Output Signal	Bit Width	Definition
out_valid	1	High when the output is valid. Should be reset when rst_n is low. Should be continuous.
У	34	Unsigned output y. Should be reset when rst_n is low.

Specs

- 所有output必須asynchoronous negedge reset
- weight_valid上拉一個cycle後,in_valid連續上拉1003個cycle
- out_valid在第四個input x之後才能上拉
- out_valid必須連續
- out_valid必須在input 100個x之前上拉
- 連續輸出1000個正確答案即PASS
- Input/output signals皆為unsigned
- 01_RTL PASS
- 02_SYN clock period = 4.5ns, timing slack must be MET, no error and latch
- 03_GATE PASS, no error and timing violation

Output & Waveform

Waveform

in_valid will be high for 1003 continuous cycles. out_valid should be continuous.

Grading Policy

- Pass the RTL & Synthesis & Gate-level simulation: 100%
 - 合成結果不能有Error、Timing report slack 必須是 MET、不能有Latch
 - Gate-level simulation不可以發生timing violation
- Demo 2 打7折

Upload

- 請將Lab09/01_RTL裡的FIR.sv依以下命名規則重新命名後上傳至E3
- 命名規則:FIR_dcsxxx.sv,xxx為工作站帳號號碼
- 命名錯誤扣5分!!!
- Deadline:
 - Demo 1: 5/8 17:25
 - Demo 2: 5/8 23:59