Summary in Graph

Exam Summary (GO Classes Test Series 2024 | Digital Logic | Test 3)

Qs. Attempted:	12 ₄₊₈	Correct Marks:	15 3 + 12
Correct Attempts:	9 3 + 6	Penalty Marks:	1 0.33 + 0.67
Incorrect Attempts:	3 1+2	Resultant Marks:	14 2.66 + 11.33

Total Questions:	15
	5 + 10
Total Marks:	25
	5 + 20
Exam Duration:	45 Minutes
Time Taken:	45 Minutes

EXAM RESPONSE EXAM STATS FEEDBACK

Technical

A flip-flop can be constructed from two NAND gates connected as follows:

What restriction must be placed on S and R so that P always equals Q'?

- A. we do not allow the R=S=0 state.
- B. we do not allow the R=S=1 state.
- C. we do not allow the R=0, S=1 state.
- D. P is always equal to Q' regardless of the inputs S,P.

Your Answer: A Correct Answer: A Discuss

https://gateoverflow.in/quiz/results.php

Consider the following decimal numbers. Which of the following decimal numbers Do Not have an exact representation in binary notation?

- A. U=0.1
- B. V=0.3
- $\mathsf{C.}\ X = 0.4$
- D. Z=0.5

A D flip-flop has a hold time of $3\ ns$, a setup time of $5\ ns$, and a propagation delay from the rising edge of the clock to the change in flip- flop output in the range of 6 to $12\ ns$. A comparator (combinational circuit) unit delay is $2\ ns$.

What is the shortest clock period(in ns) for proper operation of the circuit below (i.e. the circuit should not violate the timing constraints)?

The figure below shows a 4-bit, right shift register, and a NOR gate. If the register outputs $\{ABCD\}$ at time 0 are 0110, then their values 4 clock pulses later are :

- A. 0100
- B. 0110

C. 0111

D. 1000

Which of the following flip flops can be made to emulate all other flip flops without any additional hardware (except probably a NOT gate)?

- A. JK flipflop
- B. SR flipflop
- C. T flipflop
- D. D flipflop

A new flip-flop, called AB flip-flop, is created as shown below. What does the flip-flop do?

- A. Set command when A=0, B=0
- B. Reset command when A=0, B=1
- C. Hold command when A=1, B=0
- D. Toggle command when A=1, B=1

What will the output sequence of the following JK flip flop be after 7 clock pulses?

- A. 0101011
- B. 0110011
- C. 0110110
- D. 0101010

An XY flip-flop operates as indicated by the following table :

Input(X)	Input(Y)	Current State	Next State
X	Y		
0	0	Q	1
0	1	Q	\overline{Q}
1	1	Q	0
1	0	Q	Q

Which of the following expresses the next state in terms of the X and Y inputs and the current state Q?

- A. $(\overline{X}\wedge \overline{Q})ee (\overline{Y}\wedge Q)$
- B. $(\overline{Y} \wedge \overline{Q}) \vee (\overline{X} \wedge Q)$
- C. $(X \wedge \overline{Q}) \vee (Y \wedge Q)$
- D. $(\overline{Y} \wedge \overline{Q}) \vee (\overline{Q} \wedge X)$

Consider the circuit given below with initial state $A_1=1, A_2=A_0=0$. The state of the circuit is given by the value $4A_2+2A_1+A_0$

Which one of the following is the correct state sequence of the circuit?

- A. 2, 1, 0, 7, 6, 5, 4, 3
- B. 2, 4, 6, 0, 2, 4, 6, 0
- $\mathsf{C.}\ 2,3,4,5,6,7,0,1$
- D. None of the above.

Your Answer: C Correct Answer: C Discuss

https://gateoverflow.in/quiz/results.php

Analyze the following asynchronous network. Starting in the total stable state for which X=Z=0, what will be the output sequences Z when the input sequence is $X=0,1,0,1,0,1,\ldots$

- A. The output will be $Z=0\ 1\ 1\ 0\ 0\ 1\ 1\ 0\ \dots$
- B. The output will be $Z=0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1$. . .
- C. The output will be $Z=0\ 1\ 1\ 1\ 0\ 0\ 0\ 1\ 1\ 1\ \dots$
- D. The output will be $Z=0\ 1\ 0\ 0\ 1\ 0\ 0\ 1\ 0\ \dots$

Two D Flip flops are connected as a synchronous counter that goes through the following sequence

$$00 \rightarrow 01 \rightarrow 11 \rightarrow 10 \rightarrow 00$$

Inputs D_0 and D_1 should be connected as (Flip flop D_1 provides the MSB)

- A. \overline{Q}_1 and Q_0
- B. \overline{Q}_0 and Q_1
- C. \overline{Q}_1Q_0 and \overline{Q}_0Q_1
- D. $\overline{Q}_0\overline{Q}_1$ and Q_0Q_1

The pattern detected by the above circuit is?

- A. 100
- B. 010
- C. 110
- D. 101

The figure below shows a control circuit, consisting of a 3-bit register(all the three flip flops of the register are D flip flops) and some combinational logic. This circuit is initially in the state $Q_1Q_2Q_3=000$. On subsequent clock pulses, the circuit is required to generate the control sequence:

$$(100)
ightarrow (010)
ightarrow (001)
ightarrow (001)
ightarrow (001)
ightarrow \ldots$$

Which of the following is a correct set of equations to be implemented by the combinational logic?

$$\begin{array}{l} \mathsf{A.}\ D_1 = \overline{Q_1}\ \overline{Q_2}\ \overline{Q_3}, D_2 = Q_1, D_3 = Q_2 \lor Q_3 | \\ \mathsf{B.}\ D_1 = \overline{Q_1}\ \overline{Q_2}\ \overline{Q_3}, D_2 = Q_1 \overline{Q_2} \overline{Q_3}, D_3 = \overline{Q_1} Q_2 \overline{Q_3} \\ \mathsf{C.}\ D_1 = \overline{Q_1}, D_2 = \overline{Q_2}, D_3 = \overline{Q_3} \\ \mathsf{D.}\ D_1 = Q_3, D_2 = Q_1, D_3 = Q_2 \end{array}$$

A 3 bit down counter is used to control the output of the multiplexer as shown in the figure. The counter is initially at $A_2A_1A_0=101$, the output of multiplexer will follow the sequence:(Output of mux is controlled by select lines, S1S0)


```
A. I_2, 0, I_1, 0 \dots
B. I_1, 0, I_2, 0 \dots
C. I_1, 0, 0, I_2 \dots
D. I_2, I_1, I_2, 0 \dots
```


Consider the circuit below. If 'in' and 'out' were both 0, to begin with, and 'in' suddenly becomes 1, how many clock pulses later will out become '1' as well?

- A. 1
- B. 2
- C. 3
- D. 4

You're doing good, you can target above 70 percentage!

Copyright & Stuff

https://gateoverflow.in/quiz/results.php