CHAPTER 1

GROUPS

1 Basix

Definition 1.1: A group (G, \cdot)

A group consists of a set and a binary relation $\cdot: G \times G \to G$ (which makes it closed by definition) such that:

- 1. $\forall a, b, c \in G, (a \cdot b) \cdot c = a \cdot (b \cdot c)$ (Associative)
- 2. There exists an element $e \in G$ called identity so that for every $a \in G$ we have $a \cdot e = e \cdot a = a$
- 3. For every element a in G we have another element a^{-1} so that $aa^{-1}=a^{-1}a=e$

A way to remember group axioms is to remember ASCII: **AS**sociative, **C**losed, **I**dentity, and **I**nverse

Example: Some group examples:

 \mathbb{Z} with the usual addition, with 0 as identity. Inverse being -a.

 $\mathbb{Z}/n\mathbb{Z}$ with the modular addition, with identity being $\overline{0}$ and inverse being $\overline{-a}$.

In fact $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are groups with respective addition, identity being 0 and inverse being -a.

 $\mathbb{R}^+, \mathbb{C} - \{0\}, \mathbb{R} - \{0\}$, etc. are groups with multiplication as the operation. Here identity is 1, and inverse is $\frac{1}{a}$.

 $\mathbb{Z}/n\mathbb{Z}*$, the set of all congruence classes in $\mathbb{Z}/n\mathbb{Z}$ which have a multiplicative inverse (or equivalently, those that have gcd with n as 1) forms a group under multiplication. The identity is $\overline{1}$ and the inverse is that \overline{c} , which was shown to exist, such that $\overline{a} \cdot \overline{c} = \overline{1}$.

Definition 1.2: Direct Product

If (A, !) and (B, *) are each groups, then we define the **Direct Product** as the group formed by $A \times B := \{(a, b) : a \in A, b \in B\}$ with the operation $\&: (A \times B) \times (A \times B) \rightarrow A \times B$ defined by $(a_1, b_1)\&(a_2, b_2) = (a_1!a_2, b_1 * b_2)$

Proposition 1.3

If G, \cdot is a group, then the following hold:

- 1. The identity element e is unique.
- 2. for every $a \in G$, the inverse element a^{-1} is unique
- 3. $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$
- 4. For any $a_1, a_2, \ldots a_n \in G$, the expression $a_1 \cdot a_2 \cdot \cdots \cdot a_n$ is independent of how it is bracketed.
- **Proof.** (1) Suppose the identity is not unique, i.e, there exists e_1 and e_2 so that it obeys identity axioms. We have $a \cdot e = e \cdot a = a$, which means $(e_1)e_2 = e_2(e_1) = e_2$, treating e_2 as true identity. But also, $(e_2)e_1 = e_1(e_2) = e_1, = e_2$. Hence we see easily that $e_1 = e_2$.
- (2) Suppose two inverses x and y exist. ax = e, which means yax = ye = y, but from associativity, (ya)x = x = y. Hence, $x = y := a^{-1}$
- (3) $a \cdot b(a \cdot b)^{-1} = e$ which implies $a^{-1}a \cdot b(a \cdot b)^{-1} = a^{-1} \implies b^{-1}(a^{-1}a) \cdot b(a \cdot b)^{-1} = b^{-1}a^{-1}$ which directly gives $(a \cdot b)^{-1} = b^{-1}a^{-1}$
- (4) (PEDANTIC PROOF AHEAD, SKIP IF NOT A PEDANT) For just one element a_1 , there is no need to even check. Assume that the bracketing does not change the meaning for any consequetive n operations. Consider

$$a_1 \cdot a_2 \cdot a_3 \cdot \cdot \cdot a_n \cdot a_{n+1}$$

First look at the bracketing

$$\{(a_1 \cdot a_2 \cdot a_3 \cdots a_n)\} \cdot (a_{n+1})$$

From induction hypothesis, no bracketing inside the $\{\}$ affects the operations. Next, consider the kind

$$\{(a_1 \cdot a_2 \cdot a_3 \cdots)\}(a_n \cdot a_{n+1})$$

Again, from induction, no bracketing affects the operations. By means of reverse induction, we show that no bracketing affects the end result of these operations. \Box

Proposition 1.4

Let G be a group and let a, b be elements in the group. Then the equations ax = b and ya = b have unique solutions. Explicitly, we have the left and right cancellation laws:

If au = av, then u = v

If ub = vb, then u = v

Proof. If au = av, we multiply both sides by a^{-1} to preserve equality u = v. Similarly, we multiply b^{-1} to either side of the equation ub = vb which gives u = b

Definition 1.5: Order of an element g in a group G

We say an element g in G is of order $n \in \mathbb{N}$ if n is the smallest natural number so that $g^n = g \cdot g \cdots g = e$, the identity. We denote this as O(g).

Definition 1.6: Order of a Group G, denoted by |G|.

The cardinality of the group.

Theorem 1.7

If G is a group and a an element in G with O(a) = n, then $a^m = 1$ if and only if n|m

Proof for Theorem.

 \implies) Given O(a) = n we have n to be the smallest natural number so that $a^n = 1$. If we have that $a^m = 1$, and $n \not| m$, then m = qn + r where 0 < r < n. Therefore, $a^r \neq 1$. We have that $a^{qn+r} = a^{qn} \cdot a^r = a^r \neq 0$ which is absurd.

 \iff) Given n|m, obviously then $a^m = 1$.

Theorem 1.8

If O(a) = n, then $O(a^m) = \frac{n}{acd(m,n)}$.

Proof for Theorem.

We understand that $\frac{n}{\gcd(m,n)}$ is at least a candidate, since we can see clearly that $(a^m)^{\frac{n}{\gcd(m,n)}} = (a^n)^{\frac{m}{\gcd(m,n)}} = 1$. Suppose k is the order, with $k < \frac{n}{\gcd(m,n)}$ so that $a^{mk} = 1$. From the previous theorem, we see that n|mk. i.e, $n\delta = mk \implies \frac{n}{\gcd(m,n)}\delta = \frac{m}{\gcd(m,n)}k$. Note that $\frac{n}{(m,n)}$ and $\frac{m}{(m,n)}$ share no common divisors, for if they did, then that, multiplied with the

actual gcd would yield a divisor larger than the gcd. Hence, $gcd(\frac{n}{(m,n)},\frac{m}{(m,n)})=1$. This means, from previous lemmas, that $\frac{n}{(m,n)}$ divides k. This is, ofcourse, absurd.

Theorem 1.9: Real Numbers mod(1)

Let $G := \{x \in \mathbb{R} : 0 \le x < 1\}$. Define $x \circ y = \{x + y\}$ where $\{\cdot\}$ denotes the fractional part (and $[\cdot]$ denotes the integral part, or the GIF). Then, G is an abelian group under $\{\circ\}$

Proof for Theorem.

Closure of $x \circ y$ is pretty obvious. We freely use $\{\cdot\}$, $frac\{\cdot\}$ and $\underline{\cdot}$ interchangibly. We consider $x \circ (y \circ z) = frac(\underline{x} + [x] + frac(y + z)) = frac(\underline{x} + [x] + frac(\underline{y} + [y] + \underline{z} + [z])) = frac(\underline{x} + frac(y + \underline{z})) = frac(\underline{x} + (y + \underline{z}) - [y + \underline{z}]) = frac(\underline{x} + y + \underline{z})$

Now consider $(x \circ y) \circ z = frac(frac(\underline{x} + \underline{y}) + \underline{z} + [\underline{z}]) = frac(frac(\underline{x} + \underline{y}) + \underline{z}) = frac((\underline{x} + \underline{y}) - [\underline{x} + \underline{y}] + \underline{z} + [\underline{z}]) = frac(\underline{x} + \underline{y} + \underline{z})$. Hence we see \circ is associative. Trivial to note that the idenity element is $\underline{0}$ and the inverse for every \underline{x} is $\underline{-x}$.

Theorem 1.10: Group of the *n*-th roots of unity

Suppose $G := \{ z \in \mathbb{C} : z^n = 1 : \text{ for some } n \}$

Proof for Theorem.

We want to solve $z^n=1$. Applying polar coordinates we have $|z|^n(cis(\theta))^n=1$. Taking mod gives us |z|=1. We have to solve for, then, $cis(theta)^n=1$. It is simple computation to see that $cis(\theta)^n=cis(n\theta)$ which gives us $cis(n\theta)=1$. The solutions to this are $\theta=\frac{2\pi k}{n}$ for any integer k. Therefore, the solutions to $z^n=1$ are of the form $z=cis(\frac{2k\pi}{n})$. We assume a modulo 2π structure, i.e, we classify solutions of the kind $\theta+2k\pi$ in the class of θ . We see then, that for $k\leq n-1$, each solution is unique. If we let $\omega=cis(\frac{2\pi}{n})$. We see that all the other elements are generated by ω since for k=2, we just have ω^2 (from the way cis powers work). Till k=n-1, we have unique solutions generated by ω given by $1,\omega,\omega^2\cdots\omega^{n-1}$. We see that when k=n we get $\theta=\frac{2\pi n}{n}=2\pi\equiv0\bmod(2\pi)$. For n+j where j< n, we see that $\theta=\frac{2\pi(n+j)}{n}=2\pi+\frac{2\pi j}{n}\bmod(2\pi)$. Hence, all the unique solutions are $1,\omega,\omega^2\cdots\omega^{n-1}$.

To see that this is a group under multiplication, we note that $\omega^x(\omega^y\omega^z) = (\omega^x\omega^y)\omega^z = \omega^{(x+y+z)mod(n)}$. Every element has an inverse since $\omega^j \cdot \omega^{n-j} = 1$ (1 is the identity here since $1\omega^j = \omega^j \cdot 1 = \omega^j$)

G, though a group under multiplication, is not one under addition. For example, consider ω and 1. $(1+\omega)^n = 1 + \binom{n}{1}\omega + \binom{n}{2}\omega^2 \cdots + 1$ (**TO BE FILLED IN LATER**)

5

Fact 1.11

If $a, b \in G$, then |ab| = |ba|

Proof. We have $(ab)(ab)\cdots(ab)=(ab)^n=e$. Rearranging the brackets we get $a(ba)(ba)\cdots(b)=a(ba)^{n-1}(b)=e$ which gives $(ba)^{n-1}=a^{-1}b^{-1}=(ba)^{-1}$ which eventually gives $(ba)^n=e$. Therefore, if m was the order of ba, then m|n. Similarly we can re-run the argument in the other direction starting with $(ba)^m=e$ to get n|m. This gives n=m.

Fact 1.12

If $x^2 = 1$ for every $x \in G$, then G is abelian

Proof. Let $ab \neq ba \implies a^2b = b \neq a(ba)$. This implies $b^2 = e \neq (ba)^2 \implies 1 \neq 1$. Absurd.

Fact 1.13

Any finite group of even order contains an element a with order 2.

Proof. Suppose that for every non-identity element x we have $o(x) = p \neq 2$ with $p \geq 3$. We can then notice that for every element, $x \neq x^{-1}$. Hence, every element along with its inverses would form an even sized set (due to uniqueness of inverses, none overlap). Hence, adding identity to this would make the group odd.

Example: $G = \{1, a, b, c\}$ is |G| = 4 with 1 identity. This group has a unique multiplication table

We can immediately fill up the initial parts:

Since this is a finite group of order 4, there should be at least one element with order 2. We WLOG select that element to be a so that $a^2 = q$. Question: Is ab = a, or b? Neither, because that would imply a or b is identity. So ab = c. We then have that $a^2b = b = ac$. Is ba = c? It can't be identity obviously, so yes. Same way, ac = b and likewise ca = b (cuz what else is there?). Same way, bc = cb = a. So far we got:

Suppose $c^2 = a$. Then $c(ca) = a^2$ which would mean cb = 1. Is it then that $c^2 = b$? (ac)(c) = ab = c but ac = b which means bc = c. Again, absurd. So $c^2 = 1$. In a similar vein, $b^2 = 1$. Finally we got