Лабораторная работа № 3 «Метод сеток решения граничной задачи для ОДУ»

Срок сдачи: 25.11.2022

Дана линейная граничная задача. Необходимо на равномерной сетке построить для граничной задачи разностную схему второго порядка аппроксимации на минимальном шаблоне и с помощью метода прогонки с шагами h=0.02 и h/2=0.01 найти численное решение y^h и $y^{h/2}$ соответственно. Проверить выполняются ли достаточные условия корректности и устойчивости метода прогонки. Сравнить найденное численное решение $y^{h/2}$ с точным решением u(x), т.е. найти $\left\|u-y^{h/2}\right\|_{\omega_{h/2}}=\max_{i=0,2N}\left|u_i-y_i^{h/2}\right|$. В одной системе координат построить график функции u(x) и график полученного численного решения $y^{h/2}$. Найти $\frac{1}{3}\|y^h-y^{h/2}\|_{\omega_h}=\frac{1}{3}\max_{i=0,N}\left|y_i^h-y_{2i}^{h/2}\right|$, где N=(b-a)/h.

Варианты заданий

Номер варианта	Граничная задача	Точное решение
1	u'' + (x+1)u' - 2u = 4(2x-1), 2u(0.5) - u'(0.5) = 3, u(1.5) = 0.5	$u(x) = 2(x-1)^2$
2	u'' + xu' - 2u = -6, u(0) - 5u'(0) = 4, u(1) + u'(1) = 7	$u(x) = x^2 + 4$
3	$u'' + \frac{3}{2(3x+1)}u' - \sqrt{3x+1}u = 2(3x+1),$ u(0) - u'(0) = 1, u(1) + 2u'(1) = -7	$u(x) = -2\sqrt{3x+1}$
4	$u'' + \frac{4x}{x^2 + 1}u' - \frac{1}{x^2 + 1}u = -\frac{3}{(x^2 + 1)^2},$ 3u(0) - 2u'(0) = 3, 2u(1) = 1	$u(x) = \frac{1}{x^2 + 1}$
5	$u'' - xu' - xu = -e^{-x},$ 3u(0) - 2u'(0) = 3, u(1) + 2u'(1) = 0	$u(x) = (x+1)e^{-x}$
6	u'' + 2xu' - 4u = 2x + 2, u(0) - u'(0) = 1, 2u(1) + u'(1) = 1	$u(x) = x^2 - x$
7	$u'' + \frac{3x}{x^2 + 1}u' - \frac{2}{x^2 + 1}u = -\frac{4x^2 + 8}{(x^2 + 1)^3},$ 5u(0.5) = 8, 3u(1) + 2u'(1) = 1	$u(x) = \frac{2}{x^2 + 1}$
8	$u'' + (x+2)u' - 3u = 6x^2 + 10x - 4,$ 2u(0) - u'(0) = 2, 3u(1) + 4u'(1) = 1	$u(x) = x^3 - 2x$
9	u'' + (x-1)u' - 2u = 6 + 2x, $u(0.5) = -\frac{7}{4}, u(1) + u'(1) = -5$	$u(x) = x^2 - 4x$

10	$u'' - 3(x+1)^{2}u' - \frac{2}{(x+1)^{2}}u = 3,$ u(0) = 1, u(1) + 6u'(1) = -1	$u(x) = \frac{1}{x+1}$
11	$u'' + xu' - 3u = 4 + 6x - 2x^{2},$ 4u'(0.5) = 11, u(1) + u'(1) = 10	$u(x) = x^3 + 2x^2$
12	$u'' - xu' - xu = -4e^{-x},$ $u'(0) = 2, u(1) + u'(1) = 2e^{-1}$	$u(x) = 2xe^{-x}$
13	$u'' + \frac{2}{x+1}u' - 3(x+1)^2 u = 3(x+1),$ u(0.5) - 3u'(0.5) = -2, u(1) + 2u'(1) = 0	$u(x) = -\frac{1}{x+1}$

По результатам лабораторной работы оформляется отчет. Он должен содержать:

- титульный лист;
- постановку задачи с учетом предложенного варианта;
- краткие теоретические сведения (построение разностной схемы, безындексная и индексная форма записи разностной схемы, указать алгоритм метода прогонки);
- результаты решения поставленной задачи;
- листинг программы с комментариями;
- выводы.

Отчет необходимо отправить на <u>yvolotovskaya@gmail.com</u>. **Тема письма**: «ЛРЗ 3к 1гр Фамилия».