Cyclistic Membership

Neal 2025-10-15

1. Clean and manipulate the data in excel

Data source:

Divvy Trip data: https://divvy-tripdata.s3.amazonaws.com/index.html

September 2024 to August 2025

Removed:

- start station id
- end_station_id
- start lat
- start_lng
- end_lat
- end lng

Added:

- day_of_week
 - o formula: =WEEKDAY([started_at],1)
 - then converted the numerical values to the weekday text values using =TEXT([day_of_week], "dddd"). Afterwards, copied and pasted the text values to the day_of_week column to replace numerical values with the text values.
- Proper cased the member_casual values

1. Load in packages

```
library(tidyverse)
library(readxl)
library(scales)
library(knitr)
```

2. Import 12 months of data

3. Combine all sheets in order

```
combine_12_months <- bind_rows(aug_25, july_25, june_25,may_25, apr_25,
mar_25, feb_25, jan_25, dec_24, nov_24, oct_24, sep_24)</pre>
```

4. Separate the time and date from the ride_length column and convert the data type into doubles

```
combine_12_months <- combine_12_months %>%
   separate(ride_length, c("ride_date", "ride_length"), sep = " ") %>%
   select(-ride_date)

combine_12_months$ride_length <- as.numeric(combine_12_months$ended_at -
   combine_12_months$started_at)/60

combine_12_months$day_of_week <- factor(combine_12_months$day_of_week, levels
   = c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
   "Saturday"))</pre>
```

5. Further analyze and plot data

I. Find the average ride length per user type and plot it

II. Find the relationship between user type and day of week, then plot

III. Plot the Count of Bike Types over the past year

```
bike type <- combine 12 months %>%
  group by(rideable type) %>%
  count(member casual)
bike type plot <- ggplot(data = bike type, mapping = aes(x=rideable type,
y=n, fill = member casual)) +
  geom_col(position = position_dodge() ,aes(fill = member_casual))+
  scale_fill_manual(values = c("Casual" = "blue", "Member" = "green")) +
  scale_y_continuous(labels = label_comma()) +
  scale_x_discrete(labels = c("Classic Bike", "Electric Bike", "Electric
Scooter")) +
  labs(title = "Count of Bike Types Per User Type", x = "Bike Types", y =
NULL, fill ="User Type") +
  theme(axis.text.x = element_text(size = 12, color = "black"), axis.title.x
= element_text(size = 15), plot.title = element_text(size = 19), legend.title
= element_text(size = 14), legend.text = element_text(size = 12), plot.margin
= margin(1=10, r=5, t=5, b=5))
plot(bike type plot)
```

Count of Bike Types Per User Type

IV. Find and plot the electric bike usage over the weekday

```
elec_bike <- combine_12_months %>%
  filter(rideable_type == "electric_bike") %>%
  group_by(day_of_week, member_casual) %>%
  count(rideable_type) %>%
  ggplot(mapping = aes(x=day_of_week, y=n, fill = member_casual)) +
  geom_col(position = position_dodge())+
  scale_fill_manual(values = c("Casual" = "lightgreen", "Member" = "yellow"))
+
  labs(title = "Number of Electric Bike Usage Per Weekday", x=NULL, y=NULL,
fill= "User Type") +
  theme(axis.text.x = element_text(size = 12, color = "black"), plot.title =
  element_text(size = 19), legend.title = element_text(size = 14), legend.text
  = element_text(size = 12), plot.margin = margin(l=10, r=5, t=5, b=5))+
  scale_y_continuous(labels = label_comma())
```

Number of Electric Bike Usage Per Weekday

VI. Counts how many people start at each start station for casual users, top 5, then plots

```
start_station <- combine_12_months %>%
  group_by(member_casual, start_station_name) %>%
  na.omit() %>%
  summarise(Count = n()) %>%
  arrange(desc(Count)) %>%
  top_n(5)
station_casual_plot <- ggplot(data = start_station , mapping</pre>
=aes(x=start_station_name, y=Count, fill = member_casual)) +
  geom_col(position = position_dodge()) +
  theme(axis.text.x = element_text(angle = 70, vjust = .6, hjust = .5, size =
14, color = "black"), plot.title = element_text(size = 15), axis.title.x =
element text(size = 15),plot.margin = margin(l=10, r=5, t=5, b=5)) +
  labs(title = "Top 5 Start Stations", x="Start Station", y=NULL, fill =
"User Type")+
  scale_fill_manual(values = c("Casual" = "orange", "Member" = "magenta")) +
  scale_x_discrete(labels = function(x) str_wrap(x, width = 15))
plot(station_casual_plot)
```

Top 5 Start Stations

Start Station