2.6 Gradientes y derivadas direccionales

En la Sección 2.1 hemos estudiado las gráficas de las funciones con valores reales. Ahora vamos a retomar este estudio utilizando métodos de cálculo. Concretamente, emplearemos gradientes para obtener una fórmula del plano tangente a una superficie de nivel.

Gradientes en \mathbb{R}^3

Recordemos la definición.

Definición Gradiente Si $f: U \subset \mathbb{R}^3 \to \mathbb{R}$ es diferenciable, el **gradiente** de f en (x, y, z) es el vector del espacio dado por

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right).$$

Este vector también se denota por $\nabla f(x, y, z)$. Por tanto, ∇f es exactamente la matriz de la derivada $\mathbf{D}f$, escrita como vector.

Ejemplo 1

Sea $f(x, y, z) = \sqrt{x^2 + y^2 + z^2} = r$ la distancia desde **0** a (x, y, z). Entonces

$$\nabla f(x, y, z) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$
$$= \left(\frac{x}{\sqrt{x^2 + y^2 + z^2}}, \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \frac{z}{\sqrt{x^2 + y^2 + z^2}}\right) = \frac{\mathbf{r}}{r},$$

donde \mathbf{r} es el punto (x, y, z). Por tanto, ∇f es el vector unitario en la dirección de (x, y, z).

Ejemplo 2

Si f(x, y, z) = xy + z, entonces

$$\nabla f(x,y,z) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) = (y,x,1).$$

Supóngase que $f: \mathbb{R}^3 \to \mathbb{R}$ es una función con valores reales. Sean \mathbf{v} y $\mathbf{x} \in \mathbb{R}^3$ vectores fijos y considérese la función de \mathbb{R} en \mathbb{R} definida por $t \mapsto f(\mathbf{x} + t\mathbf{v})$. El conjunto de puntos de la forma $\mathbf{x} + t\mathbf{v}, t \in \mathbb{R}$, es la recta L que pasa por el punto \mathbf{x} y es paralela al vector \mathbf{v} (véase la Figura 2.6.1).

Derivadas direccionales

La función $t \mapsto f(\mathbf{x} + t\mathbf{v})$ representa la restricción de f a la recta L. Por ejemplo, si un pájaro vuela siguiendo esta recta con velocidad \mathbf{v} , de modo que $\mathbf{x} + t\mathbf{v}$ es su posición en el instante t, y si f representa la temperatura como función de la posición, entonces $f(\mathbf{x} + t\mathbf{v})$ es la temperatura en el instante t. Podemos preguntarnos: ¿con qué velocidad