### Machine Learning in Healthcare

### #CI5 Feature Selection

Technion-IIT, Haifa, Israel

Assist. Prof. Joachim Behar Biomedical Engineering Faculty Technion-IIT













# Introducing the Problem



### History

- Before the 90<sup>th</sup> few domains used more than 40 features.
- This has changed dramatically since then with many applications using hundreds to tens of thousands of variables (e.g. DNA microarray).
- In many instances the number of training examples is limited (e.g. cost, technical challenge) and this may cause problems.
- How can we identify the feature subset that is the most adequate for our learning task?



### Many, too many features...

- Main challenges with many features:
  - Visualization: how to visualise data in  $\mathbb{R}^N$ , N>3?? Too many features may obstruct interpretability.
  - Curse of dimensionality: As the number of features increases (equivalently the dimensionality of our problem) we need exponentially more examples in order to ensure our model will generalize well.
- Other: computing time, cost for collecting many features.





#### Feature Selection vs. Feature Transformation

Introducing the idea

$$a + b + c + d = e$$

$$\bullet \quad ab = a + b$$

• 
$$ab + c + d = e$$
 Feature Transformation

• 
$$c = 0$$

$$\bullet$$
  $ab + d = e$  Feature Selection

- Feature transformation
  - Results are not easily interpretable
- Feature selection
  - Discard non-contributing features to the prediction
  - Keep interpretability
- We will focus on feature selection in this lecture i.e. selecting subsets of features that are useful to build a good predictor.



# Feature Selection



### Relevance and Redundancy

- When performing feature selection we assume that some features are either redundant or irrelevant.
- These are two different notions.
  - A relevant feature may be redundant.
  - Two partially redundant features may both be relevant.
- We will seek maximum relevant and minimal redundancy in selecting our feature set.
- Intuition for both concepts: features F and response y.

#### Relevance



#### Redundancy





### Relevance and Redundancy

- Formal definition of relevance:
  - Let F be a full set of features,  $F_i$  a feature, and  $S_i = F \{F_i\}$ .
  - Let C be the target Concept (Boolean)
  - Definition 1 (Strong relevance) A feature  $F_i$  is strongly relevant iff
    - $P(C|F_i,S_i) \neq P(C|S_i).$
    - A feature indicates that the feature is always necessary for an optimal subset; it cannot be removed without affecting the original conditional class distribution.
  - Definition 2 (Weak relevance) A feature  $F_i$  is weakly relevant iff
    - $P(C|F_i,S_i) = P(C|S_i)$ , and
    - $\exists S'_i \subseteq S_i$  such that  $P(C|F_i, S'_i) \neq P(C|S'_i)$
    - The feature is not always necessary but may become necessary for an optimal subset at certain conditions.
  - Corollary 1 (Irrelevance): A feature  $F_i$  is irrelevant *iff*:
    - $\forall S_i' \subseteq S_i, P(C|F_i, S_i') = P(C|S_i').$
    - The feature is not necessary at all.
- For a formal definition of redundancy see Yu et al.



### Categories of Feature Selection Algorithms

- Filters: select subsets of features as a pre-processing step, independently of the model. That is filters, do not take into account the classifier that is used.
- Wrappers: assess subsets of features according to their usefulness to a given predictor.
- Embedded: directly optimize a two-part objective function with a goodness of fit term and a penalty for a large number of features.



**Figure 3.** (a) Filter, (b) wrapper, and (c) embedded feature selection methods. Filter methods perform the feature selection independently of construction of the classification model. Wrapper methods iteratively select or eliminate a set of features using the prediction accuracy of the classification model. In embedded methods the feature selection is an integral part of the classification model.



### Categories of Feature Selection Algorithms

- Filters: select subsets of features as a pre-processing step, independently of the model.
  - (+) Computation time.
  - (+) Robust to overfitting.
  - (-) Tend to select redundant variables.
  - (+/-) The set of feature selected is not tuned to a particular model.
- Wrappers: assess subsets of features according to their usefulness to a given predictor.
  - (+) Detect possible interactions between variables.
  - (+) Accuracy.
  - (-) Tuned for a specific classifier.
  - (-) Increased overfitting risk when a low number of examples.
  - (-) Computation time.
- Embedded: directly optimize a two-part objective function with a goodness of fit term and a penalty for a large number of features. Thus feature selection is performed simultaneously with classification.
  - (+) Usually provide the best performing feature set for the type of model chosen.
  - (-) Computation time.



## Examples of Filters, Wrappers and Embedded Algorithms

 We will explore more in details one example for each category. Examples of algorithms for each category is given below.

#### Filters

- Pearson correlation coefficient
- Statistical test
- Minimum redundancy and maximum relevance (mRMR)
- Mutual information
- Relief-based algorithms

#### Wrappers

- Genetic algorithm
- Embedded
  - LASSO
  - Recursive feature elimination (RFE)
  - Other popular: Ridge regression, Boruta.



#### Filters: Pearson correlation coefficient



- Pearson correlation coefficient,
  - $R(i) = \frac{cov(X_i, Y)}{\sqrt{var(X_i)var(Y)}}$
  - The estimate of R(i) between a given feature  $x_i$  and the response outcome variable y:

$$R(i) = \frac{\sum_{k=1}^{m} (x_i^{(k)} - \bar{x}_i)(y^{(k)} - \bar{y})}{\sqrt{\sum_{k=1}^{m} (x_i^{(k)} - \bar{x}_i)^2 \sum_{k=1}^{m} (y^{(k)} - \bar{y})^2}}$$

- *k*: example number.
- In linear regression, the coefficient of determination  $R(i)^2$  corresponds to the total variance around the mean  $\bar{y}$  that is explained by the linear relation between  $x_i$  and y.
- In this context, using  $R(i)^2$  as the variable ranking criterion will enforce a ranking according to the goodness of linear fit.



### Filters: Statistical test

- Get the p-value
- Rank them
- Remove features where both groups come from the same distribution according to the statistical test.







### Filters Limitations

- A variable useless by itself can be useful together with others.
- This example highlight the importance of **features interaction**.







#### Filters Limitations



- Filters may have important limitations such as:
  - Correlation does not capture non-linear relationship between feature and target.
  - A variable useless by itself can be useful together with others.
  - If only looking at the feature to target traditional filters (e.g. correlation, mutual information) do not consider relationships among features. Thus the selected features may be correlated and information redundant.
- We will see how to alleviate some of these limitation with a popular algorithm called:
   minimum redundancy and maximum relevance (mRMR).



#### Filter: mRMR



- Minimize redundancy:
  - $\min_{S} W(S)$ ,  $W(S) = \frac{1}{|S|^2} \sum_{f_i, f_j \in S} I(f_i, f_j)$
  - S is the set of features.
  - $I(f_i, f_j)$  is mutual information between feature  $f_i$  and  $f_j$ .
- Maximize relevance:
  - $max_S V(S)$ ,  $V(S) = \frac{1}{|S|} \sum_{f_i \in S} I(c, f_i)$
  - c: target classes (e.g. types of different cancers, atrial fibrillation or not.)
- mRMR criterion:
  - $mRMR = max_S \left[ \frac{1}{|S|} \sum_{f_i \in S} I(f_i, c) \frac{1}{|S|^2} \sum_{f_i, f_j \in S} I(f_i, f_j) \right]$
- In practice mRMR shows to perform well.



#### Filter: mRMR



- The purpose of mRMR is to select features that are mutually far away from each other while still having high "correlation" to the classification variable.
- Usually in mRMR mutual information is used and not "correlation".
- mRMR is an approximation to maximizing the dependency between the joint distribution of the selected features and the classification variable.
- In practice mRMR performs well!
- However:
  - Does not account for non-pairwise redundancy.

• 
$$W(S) = \frac{1}{|S|^2} \sum_{f_i, f_j \in S} I(f_i, f_j)$$

Does not account for interactions between features and the target.

$$V(S) = \frac{1}{|S|} \sum_{f_i \in S} I(c, f_i)$$



### Wrappers: Genetic Algorithm

- Optimization algorithm.
- Type of evolutionary algorithm (EA).
- Mimicking evolutive biology techniques.
- robust, adaptive search techniques.



### Genetic Algorithms



https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3



#### Embedded Methods: LASSO

Feature selection

Classification

- LASSO Regularization:
  - Reminder, the cost function in LASSO regularized LR:

$$J(w) = \frac{1}{m} \sum_{i=1}^{m} \left[ -y^{(i)} log \left( h_w(x^{(i)}) \right) - \left( 1 - y^{(i)} \right) log \left( 1 - h_w(x^{(i)}) \right) \right] - \frac{\lambda}{2m} \sum_{j=1}^{n} |w_j|$$

- LASSO is a form of regularization.
- In practice it makes some coefficients tend to zero so it is essentially doing feature selection.
- Example: using LASSO for estimating feature importance in obstructive sleep apnea diagnosis.





#### Embedded Methods: RFE

Feature selection

Classification

- Recursive feature elimination (RFE)
- Select features by recursively considering smaller and smaller sets of features:
  - Train on the initial set of features and obtain the importance of each feature
  - The least important features are pruned
  - Procedure is recursively repeated.
- Example: RFE in SVM for atrial fibrillation prediction.
  - Recall the dual Lagrangian:

$$\tilde{L}(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m y^{(n)} y^{(m)} \phi(x^{(n)})^T \phi(x^{(m)})$$





- The -k means that the feature k has been removed.
- We look at the difference in the cost function between including and excluding feature k for all k.
- We can use that for features ranking.





# Combining Different Flavors





### Comparing Algorithms





#### Take home

- Feature transformation versus feature selection.
- Relevance, redundancy and feature interaction. Need to find a trade-off.
- Filters, Wrappers and Embedded methods for feature selection.
- Simple filters do not take into account the relationship between features.
  - To alleviate that use mRMR.
- Wrappers and Embedded methods may give better results for a given classifier but it will be more computational.
- Examples of popular algorithms which works well:
  - LASSO.
  - mRMR.
  - Recursive feature elimination.
  - Genetic algorithm.



#### References

- [1] Guyon, Isabelle, and André Elisseeff. "An introduction to variable and feature selection." Journal of machine learning research3. Mar (2003): 1157-1182.
- [2] Yu, Lei, and Huan Liu. "Efficient feature selection via analysis of relevance and redundancy." Journal of machine learning research 5.Oct (2004): 1205-1224.
- [3] Athanasios Tsanas. Information Driven Healthcare. Course notes on Feature selection I Concepts.
- [4] Rokach, Lior. "Genetic algorithm-based feature set partitioning for classification problems." Pattern Recognition 41.5 (2008): 1676-1700.