AutoTVM & AutoScheduler

Presenter: Jaehun Ryu

jaehunryu@postech.ac.kr

Introduction

- AutoTVM: Template-based Auto Tuning
 - Learning to optimize tensor programs(NIPS18,Chen et al)

- AutoScheduler: Template-free Auto Scheduling
 - Ansor: Generating High-Performance Tensor Programs for Deep Learning(OSDI 20, Zheng et al)

Both are TVM built-in autotuning methods.

Autotuning

Current Learning Systems

Current Learning Systems

Learning-based Learning Systems

Learning-based Learning Systems

Learning to optimize tensor programs

Learning to optimize tensor programs

- Why do we need machine learning for systems
- How to build intelligent systems with learning

Problem: Deep Learning Deployment

Model

Hardware Backends

Existing Deep Learning Frameworks

Existing Deep Learning Frameworks

Existing Deep Learning Frameworks

Learning-based Learning System

Learning to optimize tensor programs

- Why do we need machine learning for systems
- How to build intelligent systems with learning

Problem Setting

```
Tensor Expression(high level expression)
```

```
C = tvm.compute((m, n),
  lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))
```

Lowering


```
Loop Thread Bindings Cache Locality

Thread Cooperation Tensorization Latency Hiding
```

```
for y in range(1024):
    for x in range(1024):
        C[y][x] = 0
        for k in range(1024):
        C[y][x] += A[k][y] * B[k][x]
```

```
inp_buffer AL[8][8], BL[8][8]
acc_buffer CL[8][8]
for yo in range(128):
    for xo in range(128):
       vdla.fill_zero(CL)
       for ko in range(128):
       vdla.dma_copy2d(AL, A[ko*8:ko*8+8][yo*8:yo*8+8])
       vdla.dma_copy2d(BL, B[ko*8:ko*8+8][xo*8:xo*8+8])
       vdla.fused_gemm8x8_add(CL, AL, BL)
       vdla.dma_copy2d(C[yo*8:yo*8+8,xo*8:xo*8+8], CL)
```

Optimization Choices in a Search Space

It is hard to consider all hardware characteristics.

=> Template-based autotune

, ,

Optimization Choices in a Search Space

```
@autotym.template("tutorial/conv2d no_batching")
def conv2d_no_batching(N, H, W, CO, CI, KH, KW, stride, padding):
    assert N == 1, "Only consider batch_size = 1 in this template"
    data = te.placeholder((N, CI, H, W), name="data")
    kernel = te.placeholder((CO, CI, KH, KW), name="kernel")
    conv = topi.nn.conv2d_nchw(data, kernel, stride, padding, dilation=1, out_dtype="float32")
    s = te.create_schedule([conv.op])
    ান্দানাদ space definition begin কান্দানাদ
    n, f, y, x = s[conv].op.axis
    rc, ry, rx = s[conv].op.reduce_axis
    cfg = autotvm.get config()
    cfg.define_split("tile_f", f, num_outputs=4)
    cfg.define_split("tile_y", y, num_outputs=4)
    cfg.define_split("tile_x", x, num_outputs=4)
    cfg.define split("tile rc", rc, num outputs=3)
    cfg.define_split("tile_ry", ry, num_outputs=3)
    cfg.define_split("tile_rx", rx, num_outputs=3)
    cfg.define_knob("auto_unroll_max_step", [0, 512, 1500])
    cfg.define_knob("unroll_explicit", [0, 1])
    अविविधि space definition end अविविधि
    # inline padding
    pad data = s[conv].op.input tensors[0]
    s[pad_data].compute_inline()
    data, raw data = pad data, data
```



```
// attr [iter_var(nn.outer, )] pragma_auto_unroll_max_step = 0
// attr [iter var(nn.outer, )] pragma unroll explicit = 0
for (nn.outer, 0, 1) {
 // attr [iter var(blockIdx.z, , blockIdx.z)] thread extent = 4
 // attr [iter_var(blockIdx.y, , blockIdx.y)] thread_extent = 3
 // attr [iter var(blockIdx.x, , blockIdx.x)] thread extent = 3
 // attr [iter_var(vthread, , vthread)] virtual_thread = 2
 // attr [iter var(vthread, , vthread)] virtual thread = 1
 // attr [iter var(vthread, , vthread)] virtual thread = 1
 // attr [iter_var(threadIdx.z, , threadIdx.z)] thread_extent = 1
 // attr [iter_var(threadIdx.y, , threadIdx.y)] thread_extent = 1
  // attr [iter_var(threadIdx.x, , threadIdx.x)] thread_extent = 1
  // attr [compute.local] storage scope = "local"
  allocate compute.local[float32 * 1 * 1 * 1 * 1]
  for (rc.outer, 0, 4) {
    for (ry.outer, 0, 3) {
     for (rx.outer, 0, 3) {
       // attr [pad_temp.shared] storage_scope = "shared"
        allocate pad temp.shared[float32 * 1 * 1 * 1 * 1]
        // attr [iter_var(threadIdx.z, , threadIdx.z)] thread_extent = 1
        // attr [iter_var(threadIdx.y, , threadIdx.y)] thread_extent = 1
        // attr [iter var(threadIdx.x, , threadIdx.x)] thread extent = 1
        for (ax0.ax1.fused.ax2.fused.ax3.fused.inner.inner.inner, 0, 1) {
          pad temp.shared[0] = placeholder[((((rc.outer*64) + (blockIdx.y*16)) + (ry.outer
        // attr [placeholder.shared] storage scope = "shared"
        allocate placeholder.shared[float32 * 2 * 1 * 1 * 1]
        // attr [iter var(threadIdx.z, , threadIdx.z)] thread extent = 1
        // attr [iter_var(threadIdx.y, , threadIdx.y)] thread_extent = 1
        // attr [iter var(threadIdx.x, , threadIdx.x)] thread extent = 1
        for (ax0.ax1.fused.ax2.fused.ax3.fused.inner.inner.inner, 0, 2) {
          placeholder.shared[ax0.ax1.fused.ax2.fused.ax3.fused.inner.inner.inner] = placeholder.shared[ax0.ax1.fused.ax2.fused.ax3.fused.inner.inner.inner]
        for (rc.inner, 0, 1) {
          for (ry.inner, 0, 1) {
            for (rx.inner, 0, 1) {
              for (nn.c, 0, 1) {
                for (ff.c, 0, 1) {
                  for (yy.c, 0, 1) {
                    for (xx.c, 0, 1) {
                      compute.local[0] = (compute.local[0] + (pad_temp.shared[0]*placeholde
```

Problem Formalization

Objective
$$argmin_{c \in S_e} f(g(e,c))$$

Black-box Optimization

Try each configuration until we find a good one

Challenge: lots of experimental trials, each trial costs ~1 second

Statistical Cost Model

Use machine learning to learn a statistical cost model

Benefit: Automatically adapt to hardware type

Challenge: How to design the cost model

Loop Context Feature

Flatten as feature vector

Feature Vector

(b) Loop context vectors

Feature Name		Description		
length		The length of this loop		
annotation		One-hot annotation of this loop (can be vectorize, unrolled, paralleled,)		
top-down		The product of the lengths of outer loops		
bottom-up		The product of the lengths of inner loops		
access pattern (for every buffer)	touch count	The number of touched elements		
	reuse ratio	Reuse ratio of this buffer (= bottom-up / touch count)		
	stride	Coefficent of this loop variable in the index expression		

Table 2: Listing of loop context feature

Effectiveness of ML based Model

Transferable Cost Model

Impact of Transfer Learning

Figure 8: Impact of transfer learning. Transfer-based models quickly found better solutions.

Mxnet: v1.1 TF-GPU:v1.7 TFLite:7558b085 ARM Compute Library:v18.03

Figure 11: End-to-end performance across back-ends. ²AutoTVM outperforms the baseline methods.

Ansor: Generating High-Performance Tensor Programs for Deep Learning

TVM's Approach

AutoTVM: Template-guided search

Use **templates** to define the search space for every operator

Drawbacks

- Not fully-automated -> Requires huge manual effort(15K lines of code)
- Limited search space -> Does not achieve optimal performance

```
Parameter Search
Manual Template
for i.0 in range(?):
  for j.0 in range(
    for k.0 in range(
      for i.1 in range(
        for j.1 in range(
   for i.2 in range(?)
      for j.2 in range(?):
        D[...] = max(C[...], 0.0)
```

Challenges and ansor's approach

C1: How to build a large search space automatically?

Use a hierarchical search space

C2: How to search efficiently?

Sample complete programs and fine-tune them

Challenges and ansor's approach

Need to generate programs for all layers -> A lot of search tasks

C3: How to allocate resource for many search tasks?

• Utilize a task scheduler to prioritize important tasks

Ansor Overview

Program Sampling

• **Goal**: automatically construct a large search space and uniformly sample from the space

Approach

- Two-level hierarchical search space: Sketch + Annotation
- Sketch: a few good high-level structures
- Annotation: billions of low-level details

Sampling Process

Sketch Generation Examples

```
Example Input 1:
* The mathmetical expression:
C[i,j] = \sum A[i,k] \times B[k,j]
D[i,j] = \max(C[i,j], 0.0)
where 0 \le i, j, k < 512
* The corresponding naïve program:
for i in range(512):
  for j in range(512):
    for k in range(512):
      C[i, j] += A[i, k] * B[k, j]
for i in range(512):
  for j in range(512):
    D[i, j] = max(C[i, j], 0.0)
* The corresponding DAG:
```

```
Derivation: Input 1 \rightarrow \sigma(S_0, i = 4) \xrightarrow{\text{Rule 1}} \sigma(S_1, i = 3) \xrightarrow{\text{Rule 4}} \sigma(S_2, i = 2) \xrightarrow{\text{Rule 1}} \sigma(S_3, i = 1) \xrightarrow{\text{Rule 1}} Sketch 1
```

"SSRSRSS" multi-level tiling + fusion

Sketch Generation Examples

Example Input 1: * The mathmetical expression: $C[i,j] = \sum A[i,k] \times B[k,j]$ $D[i,j] = \max(C[i,j], 0.0)$ where $0 \le i, j, k < 512$ * The corresponding naïve program: for i in range(512): for j in range(512): for k in range(512): C[i, j] += A[i, k] * B[k, j]for i in range(512): for j in range(512):

```
Input 1 \rightarrow \sigma(S_0, i = 4) \xrightarrow{\text{Rule } 1} \sigma(S_1, i = 3) \xrightarrow{\text{Rule } 4}
Derivation:
                                                     \sigma(S_2, i=2) \xrightarrow{\text{Rule 1}} \sigma(S_3, i=1) \xrightarrow{\text{Rule 1}} Sketch 1
```

Generated sketch 1 for i.0 in range(TILE IO): for j.0 in range(TILE J0): for i.1 in range(TILE I1): for j.1 in range(TILE J1): for k.0 in range(TILE K0): for i.2 in range(TILE I2): for j.2 in range(TILE J2): for k.1 in range(TILE I1): for i.3 in range(TILE I3): for j.3 in range(TILE J3):

No	Rule Name	Condition	$C[\dots] += A[\dots] * B[\dots]$	
1	Skip	$\neg IsStrictInlinable(S,i)$	or i.4 in range(TILE_I2 * TILE_I3):	
2	Always Inline	IsStrictInlinable(S, i)	<pre>for j.4 in range(TILE_J2 * TILE_J3)</pre>	
3	Multi-level Tiling	HasDataReuse(S, i)	$D[\ldots] = \max(C[\ldots], 0.0)$	
4	Multi-level Tiling with Fusion	$HasDataReuse(S, i) \land HasFusibleConsumer(S, i)$	"SSRSRSS" multi-level tiling + fusion	
5	Add Cache Stage	$HasDataReuse(S, i) \land \neg HasFusibleConsumer(S, i)$		
6	Reduction Factorization	HasMoreReductionParallel(S, i)		
	User Defined Rule	***		

Random Annotation Examples

```
Sampled program 1

parallel i.0@j.0@i.1@j.1 in range(256):
   for k.0 in range(32):
     for i.2 in range(16):
        unroll k.1 in range(16):
        unroll i.3 in range(4):
            vectorize j.3 in range(16):
            C[...] += A[...] * B[...]

for i.4 in range(64):
     vectorize j.4 in range(16):
     D[...] = max(C[...], 0.0)
```

- Parallelize some outer loop
- Vectorize some inner loop
- unroll few inner loop
- randomly fill tile size

Learned Cost Model

Predict the score of each non-loop innermost statement

Example:

```
for i in range(10):
    for j in range(10):
        B[i][j] = A[i] * 2
    for i in range(10):
        C[i] = B[i][i] - 3
```

Cost = Cost of Statement B + Cost of Statement C

- Extract features for every non-loop innermost statement:
 - used cache lines, used memory, reuse distance, arithmetic intensity, ...
- Train on-the-fly with measured programs (typically less than 30,000)

Task Scheduler

- There are many **subgraphs** (search tasks) in a network
 - Example: ResNet-50 has 29 unique subgraphs after partition
- Existing systems: sequential optimization with a fixed allocation

Our task scheduler: slice the time and prioritize important subgraphs

Task 1	Task 1		Task 1	Task 1
Task 2		Task 2		
Ta	ask 3			Task 3

- Predict each task's impact on the end-to-end objective function
 - Using optimistic guess and similarity between tasks

Single Operator

Platform:

Intel-Platinum 8124M (18 cores)

Operators:

conv1d (C1D), conv2d (C2D), conv3d (C3D), matmul (GMM) group conv2d (GRP), dilated conv2d (DIL) depthwise conv2d (DEP), conv2d transpose (T2D), capsule conv2d (CAP), matrix 2-norm (NRM)

Analysis:

For most test cases, the best programs found by Ansor are outside the search space of existing search-based frameworks.

Subgraph

Platforms:

"@C" for Intel CPU (8124M)

"@G" for NVIDIA (V100)

Subgraphs:

ConvLayer = conv2d + bn + relu TBS = transpose + batch_matmul + softmax

Library Version

PyTorch (v1.5 with torch script)
TensorFlow (v2.0 with graph mode)
TensorRT (v6.0 with TensorFlow integration)
TensorFlow Lite (V2.0)

Network

Platforms:

Intel CPU (8124M) NVIDIA GPU (V100) ARM CPU (A53)

Networks:

ResNet-50, Mobilenet V2, 3D-ResNet, DCGAN, BERT

Library Version

PyTorch (v1.5 with torch script)
TensorFlow (v2.0 with graph mode)
TensorRT (v6.0 with TensorFlow integration)
TensorFlow Lite (V2.0)

Analysis

Ansor performs best or equally the best in all test cases with up to 3.8x speedup

Network

Platforms:

Intel CPU (8124M) NVIDIA GPU (V100) ARM CPU (A53)

Networks:

ResNet-50, Mobilenet V2, 3D-ResNet, DCGAN, BERT

Library Version

PyTorch (v1.5 with torch script)
TensorFlow (v2.0 with graph mode)
TensorRT (v6.0 with TensorFlow integration)
TensorFlow Lite (V2.0)

Analysis

Ansor performs best or equally the best in all test cases with up to 3.8x speedup

Network

Platforms:

Intel CPU (8124M) NVIDIA GPU (V100) ARM CPU (A53)

Networks:

ResNet-50, Mobilenet V2, 3D-ResNet, DCGAN, BERT

Library Version

PyTorch (v1.5 with torch script)
TensorFlow (v2.0 with graph mode)
TensorRT (v6.0 with TensorFlow integration)
TensorFlow Lite (V2.0)

Analysis

- Ansor performs best or equally the best in all test cases with up to 3.8x speedup
- Ansor delivers portable performance

Ablation Study

Analysis

- The most important factor is the search space
- Fine-tuning improves the search results significantly
- Task scheduler accelerates the search
- Match the performance of AutoTVM with 10x less search time

AutoTVM

- Well known parameter space
- Special operation(quantization, Winograd) and hardware(tensor-core)

AutoScheduler

- The effect of the parameter is unclear
- Need more potential performance gain
- when have a problem creating a sufficient template

- AutoTVM template
- Rule based transformation
- Runtime

4/22/21

```
# extract workloads from relay program
print("Extract tasks...")
mod, params, input_shape, _ = get_network(network, batch_size=1)
tasks = autotvm.task.extract_from_program(
    mod["main"],
    target=target,
    params=params,
    ops=(relay.op.get("nn.conv2d"),),
)
```

```
#### DEVICE CONFIG ####
target = tvm.target.cuda()

#### TUNING OPTION ####
network = "resnet-18"
log_file = "%s.log" % network
dtype = "float32"

tuning_option = {
    "log_filename": log_file,
    "tuner": "xgb",
    "n_trial": 2000,
    "early_stopping": 600,
    "measure_option": autotvm.measure_option(
        builder=autotvm.LocalBuilder(timeout=10),
        runner=autotvm.LocalRunner(number=20, repeat=3, timeout=4, min_repeat_ms=150),
    ),
}
```

```
print("Begin tuning...")
measure_ctx = auto_scheduler.LocalRPCMeasureContext(repeat=1, min_repeat_ms=300, timeout=10)

tuner = auto_scheduler.TaskScheduler(tasks, task_weights)
tune_option = auto_scheduler.TuningOptions(
    num_measure_trials=200, # change this to 20000 to achieve the best performance
    runner=measure_ctx.runner,
    measure_callbacks=[auto_scheduler.RecordToFile(log_file)],
)

tuner.tune(tune_option)
```

AutoTVM

Tips

- Search space design
- # of trial
- Kinds of exploration algorithm
- Cost model
- Hyper-parameter

Thanks

References

- Learning to optimize tensor programs paper
- Learning to optimize tensor programs <u>slide</u>
- <u>Dive into Deep Learning Compiler</u>
- Ansor slide
- Ansor <u>paper</u>
- Tvm docs