${\bf Math~10350-Example~Set~07C}$ Section 4.1 Linear Approximation and Applications

1. The population of wolves w(t) and wild boars p(t) in the thousands are given by the equations:

$$w(t) = 3\sin t + 5;$$
 $p(t) = 2\cos t + 5.$

- (a) What is the rate of change of w with respect to p at $t = \frac{\pi}{4}$? (b) Find a relation between w and p by eliminating t. (c) Draw the graph of the p and w relationship in a p-w coordinate plane, (d) Describe what is happening between the two populations as time t progresses. Hint: Input different values of t and trace the curve you drew.
- **1.** Find the tangent line to $f(x) = \sqrt{x}$ at x = 4.
- (b) Write down the linearization (linear approximation) of $f(x) = \sqrt{x}$ at x = 4.

(c) Using your answer in (b), estimate the following values and comment on their accuracy with a calculator:

(i)
$$f(4.05) \stackrel{?}{\approx} 2.0125$$

(ii)
$$f(3.9) \stackrel{?}{\approx} 1.975$$

(iii)
$$f(5) \stackrel{?}{\approx} 2.25$$

- **2.** Find the linearization (tangent line approximation) of e^x at x = 0. Estimate $e^{0.04}$. Draw a graph to illustrate your estimation. Is your estimate an overestimate or underestimate?
- Linear Approximation of change in a function. The linearization of f(x) at x=a is often used in estimating the change Δf of a function f(x) as x changes from a to $a+\Delta x$ is often difficult to compute exactly. Draw in the graph below to show where Δf is.
- (a) Exact value of $\Delta f = f'(0)(x-0)$
- (b) For small Δx , the linear approximation of f(x) at x = a gives:

$$\Delta f \approx \frac{\text{fialdx}}{\text{Algorithm}}$$

(c) Such estimates for Δf are often used to approximate change and percentage change.

- $f(a + \Delta x)$ y = f(x) a $a + \Delta x$
- **3.** (Concept Test) If g(3) = 4 and g'(3) = -1. Estimate Δg and the percentage change of g as x changes from 3 to 3.01. Estimate g(3.01).

1. The population of wolves w(t) and wild boars p(t) in the thousands are given by the equations:

$$w(t) = 3\sin t + 5;$$
 $p(t) = 2\cos t + 5.$

(a) What is the rate of change of w with respect to p at $t = \frac{\pi}{4}$? (b) Find a relation between w and p by eliminating t. (c) Draw the graph of the p and w relationship in a p-w coordinate plane, (d) Describe what is happening between the two populations as time t progresses. Hint: Input different values of t and trace the curve you drew.

(a) find do	b) $w = 3\sin t + 5 \rightarrow t = \arcsin$	(<u>w-5</u>)
dp - (de)/(de) dp - de - de	p = 2 cost +5	
	2 1 14-5	
dt = 3cos(t) +0 dt = -2sin(t) +0	$p = 2\cos(\arcsin(\frac{\omega-5}{3})) + 5$	simplify cos(arcsin(f)) arcsin(f) = 0
do 3cos(t) dp -2sin(t)	$p = 2(\frac{19+1\omega-5)^2}{3})+5$	a = sin 8 = opp
	$p = 2(\frac{4 - (\omega^2 - 10\omega + 25)}{3}) + 5$	$\cos(\theta) = \frac{\rho}{10^{2} \cdot \theta_{z}}$
$\frac{d\omega}{dp} = -\frac{3}{2} \cot(t)$	= 3 19-w2+10w-25 +5	a= w-5, b=3
$\frac{d\omega}{dp}(\frac{\pi}{4}) = \frac{3}{2} \cot(\frac{\pi}{4})$	= 3 + (w²-10w+1b) +5	
= - 3 (1)	= \$ \frac{1}{5} \cdot \(\omega \cdot \omega \) \(\omega \cdot \omega \cdot \omega \) \(\omega \cdot \omega \) \(\omega \cdot \omega \cdot \omega \cdot \omega \) \(\omega \cdot \omega	
: - 3		
(b) alternative: utilize sin2(1	$(c) + \cos^2(t) = 1$ (c) araph	(x,y) → (p,ω)
$w = 3 \sin t + 5 \Rightarrow \sin t$	elipse:	$\frac{a_2}{a_2} + \frac{b_2}{(A-K)} = 1$
p=2cost+5 => cost	= P-3 Lyerti	ces: (n t a, K)
1= $(sint)^2 + (cost)^2 = (\frac{w-5}{3})^2$)2 + (2-5)2 Ly CO/16	crtices: (h. K±b)
$1 = \frac{1}{4}(\omega - 5)^2 + \frac{1}{4}(p - 5)^2$	La lengt	or axis: 2b

2. Find the linearization (tangent line approximation) of e^x at x = 0. Estimate $e^{0.04}$. Draw a graph to illustrate your estimation. Is your estimate an overestimate or underestimate?

3. (Concept Test) If g(3) = 4 and g'(3) = -1. Estimate Δg and the percentage change of g as x changes from 3 to 3.01. Estimate g(3.01).

Summary: Linearization of a Differentiable Function at x = a

The linear approximation (or <u>linerization</u> or <u>tangent line approx.</u>

of a differentiable function f(x) at x = a is given by the function of the graph of f(x) at x = a.

$$f(x) \approx L(x) = f'(a)(x-a) + f(a)$$

this is just the equation of the tangent line at the point (a, f(a)) in a simplified format

- (a) Exact value of $\Delta f = f(\alpha + \Delta x) f(\alpha)$
- (b) For small Δx , the change in f(x) as x changes from a to $a + \Delta x$ is given by:

$$\Delta f \approx f'(a) \Delta X$$

(ii) Such estimates for Δf are often used to approximate change and percentage change.