and

$$A^{T}A = \begin{bmatrix} 2 & 1 & 0 \\ 3 & -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & -1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 5 \\ 5 & 14 \end{bmatrix}.$$

Thus.

$$\sqrt{\det(A^T A)} = \sqrt{70 - 25} = \sqrt{45} = 3\sqrt{5}$$
.

A region G of \mathbb{R}^2 having area V is mapped by T into a plane region of area $3\sqrt{5} \cdot V$ in \mathbb{R}^3 . Thus the disk $x^2 + y^2 \le 4$ of area 4π is mapped into a plane region in \mathbb{R}^3 of area

$$(3\sqrt{5})(4\pi) = 12\pi\sqrt{5}.$$

SUMMARY

Transfer of the state of the

1. An *n*-box in \mathbb{R}^m , where $m \ge n$, is determined by *n* independent vectors $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ and consists of all vectors \mathbf{x} in \mathbb{R}^m such that

$$\mathbf{x} = t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \cdots + t_n \mathbf{a}_n$$

where $0 \le t_i \le 1$ for $i = 1, 2, \ldots, n$.

- 2. A 1-box in \mathbb{R}^m is a line segment, and its "volume" is its length.
- 3. A 2-box in \mathbb{R}^m is a parallelogram determined by two independent vectors, and the "volume" of the 2-box is the area of the parallelogram.
- 4. A 3-box in \mathbb{R}^m is a skewed box (parallelepiped) in the usual sense, and its volume is the usual volume.
- 5. Let $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ be independent vectors in \mathbb{R}^m for $m \ge n$, and let A be the $m \times n$ matrix with jth column vector \mathbf{a}_j . The volume of the n-box in \mathbb{R}^m determined by the n vectors is $\sqrt{\det(A^TA)}$.
- 6. For the case of an *n*-box in the space \mathbb{R}^n of the same dimension, the formula for its volume given in summary item 5 reduces to $|\det(A)|$.
- 7. If $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation of rank n with standard matrix representation A, then T maps a region in its domain of volume V into a region of volume $|\det(A)|V$.
- 8. If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation of rank n with standard matrix representation A, then T maps a region in its domain of volume V into a region of \mathbb{R}^m of volume $\sqrt{\det(A^TA)} \cdot V$.

EXERCISES

- Find the area of the parallelogram in R³ determined by the vectors [0, 1, 4] and [-1, 3, -2].
- 2. Find the area of the parallelogram in \mathbb{R}^5 determined by the vectors [1, 0, 1, 2, -1] and [0, 1, -1, 1, 3].

- 3. Find the volume of the 3-box in ℝ⁴ determined by the vectors [-1, 2, 0, 1], [0, 1, 3, 0], and [0, 0, 2, -1].
- 4. Find the volume of the 4-box in \mathbb{R}^5 determined by the vectors [1, 1, 1, 0, 1], [0, 1, 1, 0, 0], [3, 0, 1, 0, 0], and [1, -1, 0, 0, 1].

In Exercises 5–10, find the volume of the n-box determined by the given vectors in \mathbb{R}^n .

- 5. [-1, 4], [2, 3] in \mathbb{R}^2
- 6. [-5, 3], [1, 7] in \mathbb{R}^2
- 7. $[1, 3, -5], [2, 4, -1], [3, 1, 2] \text{ in } \mathbb{R}^3$
- 8. [-1, 4, 7], [3, -2, -1], [4, 0, 2] in \mathbb{R}^3
- 9. [1, 0, 0, 1], [2, -1, 3, 0], [0, 1, 3, 4],[-1, 1, -2, 1] in \mathbb{R}^4
- 10. [1, -1, 0, 1], [2, -1, 3, 1], [-1, 4, 2, -1], [0, 1, 0, 2] in \mathbb{R}^4
- Find the area of the triangle in R³ with vertices (-1, 2, 3), (0, 1, 4), and (2, 1, 5).
 [HINT: Think of vectors emanating from (-1, 2, 3). The triangle may be viewed as half a para!le!ogram.]
- 12. Find the volume of the tetrahedron in R³ with vertices (1, 0, 3), (-1, 2, 4), (3, -1, 2), and (2, 0, -1). [HINT: Think of vectors emanating from (1, 0, 3).]
- 13. Find the volume of the tetrahedron in R⁴ with vertices (1, 0, 0, 1), (-1, 2, 0, 1), (3, 0, 1, 1), and (-1, 4, 0, 1). [HINT: See the hint for Exercise 12,]
- 14. Give a geometric interpretation of the fact that an $n \times n$ matrix with two equal rows has determinant zero.
- 15. Using the results of this section, give a criterion that four points in \mathbb{R}^n lie in a plane.
- 16. Determine whether the points (1, 0, 1, 0), (-1, 1, 0, 1), (0, 1, -1, 1), and (1, -1, 4, -1) lie in a plane in \mathbb{R}^4 . (See Exercise 15.)
- Determine whether the points (2, 0, 1, 3),
 (3, 1, 0, 1), (-1, 2, 0, 4), and (3, 1, 2, 4) lie in a plane in R⁴. (See Exercise 15.)

In Exercises 18-21, let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by T([x, y]) =

[4x - 2y, 2x + 3y]. Find the area of the image under T of each of the given regions in \mathbb{R}^2 .

- 18. The square $0 \le x \le 1$, $0 \le y \le 1$
- 19. The rectangle $-1 \le x \le 1, 1 \le y \le 2$
- 20. The parallelogram determined by $2e_1 + 3e_2$ and $4e_1 e_2$
- 21. The disk $(x-1)^2 + (y+2)^2 \le 9$

In Exercises 22–25, let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by T([x, y, z]) = [x - 2y, 3x + z, 4x + 3y]. Find the volume of the image under T of each of the given regions in \mathbb{R}^3 .

- **22.** The cube $0 \le x \le 1$, $0 \le y \le i$, $0 \le z \le 1$
- 23. The box $0 \le x \le 2$, $-1 \le y \le 3$, $2 \le z \le 5$
- 24. The box determined by $2e_1 + 3e_2 e_3$, $4e_1 2e_3$, and $e_1 e_2 + 2e_3$
- 25. The ball $x^2 + (y 3)^2 + (z + 2)^2 \le 16$

In Exercises 26–29, let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by T([x, y]) = [y, x, x + y]. Find the area of the image under T of each of the given regions in \mathbb{R}^2 .

- 26. The square $0 \le x \le 1$, $0 \le y \le 1$
- 27. The rectangle $2 \le x \le 3$, $-1 \le y \le 4$
- 28. The triangle with vertices (0, 0), (6, 0), (0, 3)
- 29. The disk $x^2 + y^2 \le 25$

In Exercises 30–32, let $T: \mathbb{R}^2 \to \mathbb{R}^4$ be defined by T([x, y]) = [x - y, x, -y, 2x + y]. Find the area of the image under T of each of the given regions in \mathbb{R}^2 .

- 30. The square $0 \le x \le 1$, $0 \le y \le 1$
- 31. The square $-1 \le x \le 3, -1 \le y \le 3$
- 32. The disk $x^2 + y^2 \le 9$
- 33. a. If one attempts to define an *n*-box in \mathbb{R}^m for n > m, what will its volume as an *n*-box be?
 - b. Let A be an $m \times n$ matrix with n > m. Find $det(A^TA)$.

TO THE STATE OF TH

34. We have seen that, for $n \times n$ matrices A and B, we have $\det(AB) = \det(A) \cdot \det(B)$, but the proof was not intuitive. Give an intuitive

geometric argument showing that at least $|\det(AB)| = |\det(A)| \cdot |\det(B)|$. [Hint: Use the fact that, if A is the standard matrix representation of $T: \mathbb{R}^n \to \mathbb{R}^n$ and B is the standard matrix representation of $T': \mathbb{R}^n \to \mathbb{R}^n$, then AB is the standard matrix representation $T \circ T'$.]

- 35. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation of rank n with standard matrix representation A. Mark each of the following True or False.
 - a. The image under T of a box in \mathbb{R}^n is again a box in \mathbb{R}^n .
 - b. The image under T of an n-box in Rⁿ of volume V is a box in Rⁿ of volume det(A) · V.
- _ c. The image under T of an n-box in \mathbb{R}^n of volume > 0 is a box in \mathbb{R}^n of volume > 0.
 - _ d. If the image under T of an n-box B in \mathbb{R}^n has volume 12, the box B has volume $|\det(A)| \cdot 12$.

е.	If the image under T of an n -box B in \mathbb{R}^n
	has volume 12, the box B has volume
	$12/ \det(A) $.

- ___ f. If n = 2, the image under T of the unit disk $x^2 + y^2 \le 1$ has area $|\det(A)|$.
- ___ g. The linear transformation T is an isomorphism.
- ___ h. The image under $T \circ T$ of an *n*-box in \mathbb{R}^n of volume V is a box in \mathbb{R}^n of volume $\det(A^2) \cdot V$.
- i. The image under T ∘ T ∘ T of an n-box in Rⁿ of volume V is a box in Rⁿ of volume det(A³) · V.
- ___ j. The image under T of a nondegenerate 1-box is again nondegenerate.
- 36. Prove Eq. (1); that is, prove that the square of the length of the line segment determined by a₁ in R* is ||a₁||² = det([a₁ · a₁]).