网格参数化

Mesh Parameterization

陈中贵

http://graphics.xmu.edu.cn/~zgchen

Mesh Parameterization

Mesh Parameterization

Problem Definition

- Input: a 3D triangular mesh surface
- Output: a 2D isomorphic triangulation

Texture mapping

Normal Mapping

Many operations are simpler on planar domain

Remeshing

Compression

Unfolding the World

Spherical Coordinates

$$\theta \in [0, 2\pi), \phi \in [-\pi/2, \pi/2)$$

$$x(\theta, \phi) = R\cos\theta\cos\phi$$

$$y(\theta, \phi) = R\sin\theta\cos\phi$$

$$z(\theta, \phi) = R\sin\phi$$

Standard Map Projections

Mesh Parameterization

- Q: What is a **good** parameterization?
- A: One that preserves all the basic geometry length, angles, area, ...
 - → Isometric parameterization

But: possibly only for developable surfaces e.g. there will always be distortions!

Try to keep the distortion as small as possible

Desirable Properties

- Low distortion
- Bijective mapping
- Efficiently computable

Definitions

- □ *f* is *isometric* (length preserving), if the *length* of any arc on *S* is preserved on *S**.
- f is conformal (angle preserving), if the angle of intersection of every pair of intersecting arcs on Sis preserved on S*.
- f is equiareal (area preserving) if the area of an area element on S is preserved on S*.

Distortion Analysis

Distortion Analysis

Isometric Maps

Developable surface

Isometric Maps

 Martin Kilian, Simon Floery, Zhonggui Chen, Niloy J. Mitra, Alla Sheffer, Helmut Pottmann, CURVED FOLDING, <u>ACM SIGGRAPH 2008</u>

Conformal Map

Similarity = Rotation + Scale
Preserves angles

Conformal Parameterization

Equiareal Maps

Relationships

 Theorem: Every isometric mapping is conformal and equiareal, and vice versa.

isometric ← conformal + equiareal

- Isometric is ideal... but rare. In practice, we use:
 - -conformal
 - -equiareal
 - -some balance between the two

Riemann Conformal Mapping Theorem

Any two simply connected compact planar regions can be mapped conformally onto each other.

Mesh Parameterization

-- Typical Domains

Planar Parameterization

□ Fixed boundary

Non-fixed boundary

Fixed Boundary

Fixing the boundary of the mesh onto

Linear Methods: Idea

For interior mesh points:

$$p_i = \sum_{\substack{\{j: (i,j) \in \text{edges}\}}} \lambda_{i,j_k} \, p_k \,, \quad \sum_{k=1}^{d_i} \lambda_{i,j_k} = 1, \quad \lambda_{i,j_k} > 0$$

=> Forming a sparse linear system

2D Barycentric Embeddings

- Fix 2D boundary to convex polygon
- Define embedding as a solution of

$$\begin{aligned} Wx &= b_x \\ Wy &= b_y \end{aligned} \qquad w_{_{ij}} = \begin{cases} \begin{array}{ccc} > 0 & (i,j) \in E \\ -\sum\limits_{j \neq i} w_{_{ij}} & (i,i), i \not \in B \\ 1 & (i,i), i \in B \\ 0 & otherwise \\ \end{array} \end{cases}$$

$$W$$
 is $symmetric: w_{ij} = w_{ji}$

 \square Weights w_{ij} control triangle shapes

Why it Works

- □ Theorem [Tutte,63], [Maxwel,1864]
 - If G = <V,E> is a 3-connected planar graph (triangular mesh) then any **barycentric** embedding is a valid embedding

Example

$$w_{ij} = 1$$

Laplacian Matrix

$$b_{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 3 \\ 2 \\ 0 \\ 0 \\ 0 \end{pmatrix} \qquad b_{y} = \begin{pmatrix} 2 \\ 3 \\ 3 \\ 2 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Choices of the Weights--Barycentric Formulation

- Uniform Weights
 - No shape information
 - Fastest to compute and solve

Harmonic Weights

$$w_{ij} = \frac{\cot(\alpha_{ij}) + \cot(\beta_{ij})}{2}$$

- Weights can be negative –not always valid
- Weights depend only on angles -close to conformal

Mean-Value Weights

$$w_{ij} = \frac{\tan(\gamma_{ij} / 2) + \tan(\delta_{ij} / 2)}{2 \mid\mid V_i - V_j \mid\mid}$$

■ No negative weights –always

Fixing the Boundary

- Simple convex shape (triangle, square, circle)
- Distribute points on boundary
 - Use chord length parameterization
- Fixed boundary can create high distortion

Non-Convex Boundary

- Convex boundary creates significant distortion
- "Free" boundary is better

Fixed vs Free Boundary

Fixed vs Free Boundary

Free Boundary

Zhonggui Chen, Ligang Liu, Zhengyue Zhang, and Guojin Wang.
Surface Parameterization via Aligning Optimal Local Flattening.
Proceedings of the 2007 ACM symposium on Solid and physical modeling

Literature

- Floater & Hormann: Surface parameterization: a tutorial and survey, Springer, 2005
- Lévy, Petitjean, Ray, and Maillot: Least squares conformal maps for automatic texture atlas generation, SIGGRAPH 2002
- Desbrun, Meyer, and Alliez: Intrinsic parameterizations of surface meshes, Eurographics 2002
- Sheffer & de Sturler: Parameterization of faceted surfaces for meshing using angle based flattening, Engineering with Computers, 2000.

Questions?