Learn_Seaborn

January 18, 2023

0.1 Setup

```
[2]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

%reload_ext autoreload
%autoreload 2
%matplotlib inline
```

0.2 Import Data

```
[3]: # df = pd.read_csv()
    crash_df = sns.load_dataset('car_crashes')
    crash_df.head(10)
```

[3]:	total	speeding	alcohol	not_distracted	no_previous	ins_premium	\
0	18.8	7.332	5.640	18.048	15.040	784.55	
1	18.1	7.421	4.525	16.290	17.014	1053.48	
2	18.6	6.510	5.208	15.624	17.856	899.47	
3	22.4	4.032	5.824	21.056	21.280	827.34	
4	12.0	4.200	3.360	10.920	10.680	878.41	
5	13.6	5.032	3.808	10.744	12.920	835.50	
6	10.8	4.968	3.888	9.396	8.856	1068.73	
7	16.2	6.156	4.860	14.094	16.038	1137.87	
8	5.9	2.006	1.593	5.900	5.900	1273.89	
9	17.9	3.759	5.191	16.468	16.826	1160.13	

```
ins_losses abbrev
0
       145.08
                   AL
       133.93
1
                   AK
2
       110.35
                   AZ
3
       142.39
                   AR
4
       165.63
                   CA
5
       139.91
                   CO
6
       167.02
                   CT
7
       151.48
                   DE
```

```
8 136.05 DC
9 144.18 FL
```

1 Distribution Plots

1.1 Distribution Plot

```
[4]: # sns.distplot(crash_df['not_distracted'])
sns.displot(crash_df['not_distracted'],kde=False,bins=50)
plt.show()
```


1.2 Joint Plot

```
[5]: # compare two distribution and plot a scatter plot by default
sns.jointplot(x='speeding',y='alcohol',data=crash_df,kind='kde') # king =
□
□ ['kde','hex','reg']
plt.show()
```


1.3 KDE Plot

```
[6]: sns.kdeplot(crash_df['alcohol'])
plt.show()
```


1.4 Pair Plot

```
[7]: # It plot the the relationship across entire dataframe and numerical values # sns.pairplot(crash_df)
tips_df = sns.load_dataset('tips')
sns.pairplot(tips_df,hue='sex',palette='Blues') # hue :-> with hue we can pass_u
the categorial data and chart will be colorised based on that data
plt.show()
```


1.5 Rug Plot

```
[8]: # It plots the a sigle column of datapoints in a dataframe as sticks on the x_ axis, it show more dense number of lines where the amount is more common sns.rugplot(tips_df['tip']) plt.show()
```


1.6 Styling

```
[9]: sns.set_style('ticks') # style= ['white', 'whitegrid', dark, ticks, 'darkgrid']
sns.set_context('paper', font_scale=1.0) # [paper, talk, poster]
plt.figure(figsize=(2,2))
sns.jointplot(x='speeding',y='alcohol',data=crash_df,kind='reg')
# sns.despine(left=True,bottom=True) # [right, top]
plt.show()
```

<Figure size 144x144 with 0 Axes>

2 Categorial Plots

2.1 Bar Plot

2.2 Count Plot

[11]: # kind of bar plot but estimator is just count the number of occurances sns.countplot(x='sex',data=tips_df)

[11]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff4add963a0>

2.3 Box Plot

[12]: # A box plot is going to compare the different variables qurtile of the data sns.boxplot(x='day',y='total_bill',data=tips_df,hue='sex')

[12]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff4add9f460>

2.4 Violin Plot

```
[13]: # it is combination of box plot and a kde plot
# a violin plot uses the kde estimation of data points
sns.violinplot(x='day',y='total_bill',data=tips_df,hue='sex',split=True)
```

[13]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff4b1b82280>

2.5 Strip Plot

2.6 Swarm Plot

```
[15]: # It is a combination of violin and a strip plot
plt.figure(figsize=(12,10))
sns.violinplot(x='day',y='total_bill',data=tips_df)
sns.swarmplot(x='day',y='total_bill',data=tips_df,color='white',hue='sex')
plt.show()
```


2.7 Palettes

- by setting the palettes you can change the default coloring of the any plot
- to see more detail about the color palette click here

```
[16]: # by setting the palettes you can change the default coloring of the any plot
    plt.figure(figsize=(12,9))
    sns.set_style('white')
    sns.set_context('talk')
    sns.stripplot(x='day',y='total_bill',data=tips_df,hue='sex',palette='afmhot')
    # plt.legend(loc=1)
    plt.show()
```


3 Matrix Plot

3.1 Heatmaps

```
[17]: #
   plt.figure(figsize=(8,7))
   sns.set_context('paper',font_scale=1.4)

   crash_mx = crash_df.corr()

   sns.heatmap(crash_mx,annot=True,cmap='Blues',linewidth=1,linecolor='black')
   plt.show()
```


3.2 Cluster Map

```
[19]: # it gives the cluster data by finding the closest distance between various

points

iris = sns.load_dataset('iris')

# species = iris.pop('species')

# sns.clustermap(iris)

[20]: sns.clustermap(flights,cmap='Blues',standard_scale=1)
```

[20]: <seaborn.matrix.ClusterGrid at 0x7ff4adc3b670>

3.3 Pair Grid

```
[21]: # to plot or change the default plots in the different position use the 'shift+tab' [iris_g.map_upper,.map_lower,.map_offdiag,...]

iris_g = sns.PairGrid(iris,hue='species')

# iris_g.map(plt.scatter)

iris_g.map_diag(plt.hist)

iris_g.map_offdiag(plt.scatter)
```

[21]: <seaborn.axisgrid.PairGrid at 0x7ff4b1c02c70>


```
[22]: # for our custom grid plot we can define the x and y variables with dataset iris_g = sns.

→PairGrid(iris,hue='species',x_vars=['sepal_length','sepal_width'],y_vars=['petal_length','p iris_g.map(plt.scatter) iris_g.add_legend()
```

[22]: <seaborn.axisgrid.PairGrid at 0x7ff4addad880>

3.4 Facet Grid

[23]: <seaborn.axisgrid.FacetGrid at 0x7ff4ad7d3b20>


```
[24]: tips_fg1 = sns.FacetGrid(tips_df,col='time',hue='smoker',height=6,aspect=1.4) tips_fg1.map(plt.scatter,'total_bill','tip')
```

[24]: <seaborn.axisgrid.FacetGrid at 0x7ff4adf1a7c0>

[25]: <seaborn.axisgrid.FacetGrid at 0x7ff4ad5e6e80>

[26]: <seaborn.axisgrid.FacetGrid at 0x7ff4ad553df0>

3.5 Regression Plot


```
[28]: sns.

slmplot(x='total_bill',y='tip',col='sex',row='time',data=tips_df,height=8,aspect=1.

37)
```

[28]: <seaborn.axisgrid.FacetGrid at 0x7ff4ad4743d0>

