Ejercicio 1. Problema 4 del Capitulo 3 del Rudin

Solución: En este caso queremos mostrar por inducción que:

$$s_{2m} = \frac{1}{2} - \frac{1}{2^m}$$
$$s_{2m+1} = 1 - \frac{1}{2^m}$$

Ahora bien, la segunda ecuación es consecuencia directa de la primera dadas las definiciones iniciales. Desarrollemos rapidamente esto:

$$s_{2m+1} = \frac{1}{2} + s_{2m}$$

$$= \frac{1}{2} + \left(\frac{1}{2} - \frac{1}{2^m}\right)$$

$$= 1 - \frac{1}{2^m}$$

Ahora bien, desarrollando esto solo nos queda demostrar la primera ecuación. Con esto entonces podemos iniciar por los casos base. Que son :

$$s_{2} = \frac{s_{1}}{2} = \frac{0}{2}$$

$$= 0$$

$$s_{3} = \frac{1}{2} + s_{2} = \frac{1}{2} + 0$$

$$= \frac{1}{2}$$

Ahora, por inducción fuerte asuma que estas ecuaciones funcionan para $m \leq r$. Entonces,

$$s_{2(r+1)} = \frac{s_{2r+1}}{2} = \frac{1}{2} \left(1 - \frac{1}{2^r} \right)$$
$$= \frac{1}{2} - \frac{1}{2^{r+1}}$$

Lo que demuestra esto por inducción.

Ahora bien, con esto ya encontrado podemos notar que cuando n tiende a infinito los valores supremo e infimo son 1 y $\frac{1}{2}$ respectivamente.

Ejercicio 1. Problema 5 del Capitulo 3 del Rudin

Solución: En este caso, tomaremos $\{a_n\}$ acotado pues es evidente que esto es verdad en este caso dado que en el enunciado se quita $\infty - \infty$

Ahora, sea $\{n_k\}$ una subserie de enteros positivos tales que

$$\lim_{k \to \infty} (a_{n_k} + b_{b_k}) = \lim \sup_{n \to \infty} (a_n + b_n)$$

Entonces, escoja una subserie de enteros positivos $\{k_m\}$ tal que

$$\lim_{m \to \infty} a_{n_{k_m}} = \lim \sup_{k \to \infty} a_{n_k}$$

Ahora, la subserie $a_{n_{k_m}} + b_{n_{k_m}}$ aun converge al mismo limite que $a_{n_k} + b_{n_k}$. Ahora bien dado que a_{n_k} esta acotado por arriba se sigue que $b_{n_{k_m}}$ converge a la diferencia:

$$\lim_{m \to \infty} b_{n_{k_m}} = \lim_{m \to \infty} (a_{n_{k_m}} + b_{n_{k_m}}) - \lim_{m \to \infty} a_{n_{k_m}}$$

Con esto mostramos que existen subsucesiones tales que convergen a a y b y dado que cada uno es el limite de una subsecuencia de cada sucesión entonces queda que $a \le \text{lím sup } a_n$ y $b \le \text{lím sup } b_n$ lo que nos lleva a la desigualdad que desebamos originalmente.

Ejercicio 2. Problema 7 del Capitulo 3 del Rudin

Solución: Dado que $\left(\sqrt{a_n} - \frac{1}{n}\right)^2 \ge 0$, se sigue que

$$\frac{\sqrt{a_n}}{n} \le \frac{1}{2} \left(a_n^2 + \frac{1}{n^2} \right)$$

Ahora bien, $\sum a_n^2$ converge por comparación a $\sum a_n$. Dado que $\sum a_n$ converge tenemos que $a_n < 1$ para un n grande, y por lo tanto $a_n^2 < a_n$. Ahora, dado que $\sum \frac{1}{n^2}$ tambien converge se sigue que $\sum \frac{\sqrt{a_n}}{n}$ converge.

Ejercicio 2. Problema 8 del Capitulo 3 del Rudin

Solución: Debemos mostrar que la suma parcial de esta serie por una secuencia de Cauchy.

Para hacer esto, sea
$$S_n = \sum_{k=1}^n a_k (S_0 = 0)$$
, tal que $a_k = S_k - S_{k-1}$ para $k = 1, 2, \dots$ Sea

M un limite superior para $|b_n|$ y $|S_n|$ y sea $S = \sum a_n$ y $b = \lim b_n$. Escoja entonces N tan largo que las siguientes tres inecuaciones se cumplan para todo m > N y n > N

$$|b_n S_n - bS| < \frac{\epsilon}{3}$$

$$|b_m S_m - bS| < \frac{\epsilon}{3}$$

$$|b_m - b_n| < \frac{\epsilon}{3M}$$

Entonces si n > m > N, tenemos que por la formula de suma por partes nos queda:

$$\sum_{k=m+1}^{n} a_n b_n = b_n S_n - b_m S_m + \sum_{k=m}^{n-1} (b_k - b_{k+1}) S_k$$

Estas suposiciones hacen que caiga inmediatamente que $|b_n S_n - b_m S_m| < \frac{2\epsilon}{3}$ y

$$\left| \sum_{k=m}^{n-1} (b_k - b_{k+1}) S_k \right| \le M \sum_{k=m}^{n-1} |b_k - b_{k+1}|$$

Dado que la secuencia $\{b_n\}$ es monotonico tenemos:

$$\sum_{k=m}^{n-1} |b_k - b_{k+1}| = \left| \sum_{k=m}^{n-1} (b_k - b_{k+1}) \right| = |b_m - b_n| < \frac{\epsilon}{3M}$$

De donde se sigue la inecuación deseada.

Ejercicio 3. Problema 24 del Capitulo 3 del Rudin

Solución: A)

Necesitamos mostrar que

- 1. $\{p_n\}$ es equivalente a si mismo. Que viene de $d(p_n, p_n) = 0$ para todo n.
- 2. Si $\{p_n\}$ es equivalente a $\{q_n\}$ entonces el inverso tambien es cierto. Esto se pude ver tambien por $d(p_n, q_n) = d(q_n, p_n)$.
- 3. Si $\{p_n\}$ es equivalente a $\{q_n\}$ y este a su vez es equivalente a $\{r_n\}$ entonces $\{p_n\}$ es equivalente a este. Esto se puede conseguir por la desigualdad triangular pues $d(p_n, r_n) \leq d(p_n, q_n) + d(q_n, r_n)$ en donde como ambos son 0 lo unico que puede ser es 0.

B)

Sea $\{p_n\}$ equivalente a $\{p'_n\}$ y $\{q_n\}$ equivalente a $\{q'_n\}$. Entonces, desde que sabemos que todos los limites existen. Entonces tenemos:

$$\lim_{n \to \infty} d(p'_n, q'_n) \le \lim_{n \to \infty} (d(p'_n, p_n) + d(p_n, q_n) + d(q_n, q'_n)) = \lim_{n \to \infty} d(p_n, q_n)$$

Ahora bien, por simetria sabemos que la inecuación inversa tambien existe y por tanto ambos limites son iguales.

Ahora, X^* es un espacio metrico para el cual $\Delta(P,Q) \geq 0$ y por definición $\Delta(P,Q) = 0$. y por lo tanto la simetria y la desigualdad triangular en X^* siguen de las mismas propiedades de X.

 \mathbf{C})

Suponga que $\{P_k\}$ es una sucesión de Cauchy en X^* . Escoja una subsucesion $\{p_{kn}\}$ in X tal que $\{p_{kn}\} \in P_k$, $k = 1, 2, \ldots$. Por cada k, sea N_k sea el primer entero positivo tal que $d(p_{kn}, p_{km}) < 2^{-k}$ si $m \ge N_k$ y $n \ge N_k$. Sea $p_k = p_k N_k$. Observe que por esto $\lim_{n \to \infty} d(p_k, p_{kn}) \le 2^{-k}$. Ahora

$$d(p_k, p_l) \le d(p_k, p_{kn}) + d(p_{kn}, p_{ln}) + d(p_{ln}, p_l)$$

Con esto entonces conseguimos

$$d(p_k, p_l) \le 2^{-k} + \Delta(p_k, p_l) + 2^{-k} + 2^{-l} < 3 \cdot 2^{-k} + \Delta(p_k, p_l)$$

Entonces se sigue que $\{p_k\}$ es una sucesión de Cauchy. Sea P

Definamos una nueva clase de equivalencia P_{∞} que contiene a $\{p^k\}$. Afirmamos que $\lim_{n\to\infty}P_n=P_{\infty}$. Para cualquier $\varepsilon>0$, podemos encontrar $N\geq N_0$ tal que para todo $n\geq N$, $\Delta(P_n,P_{N_0})<\varepsilon$, lo que implica $\Delta(P_n,P_{\infty})<\varepsilon$. Por lo tanto, cada sucesión de Cauchy en X^* converge a un elemento en X^* , lo que prueba que X^* es completo.

D)

Sabemos que

$$\Delta(P_q, P_q) = \lim_{n \to \infty} d(p, p)$$

dado que $\{p\}$ y $\{q\}$ son constantes su distancia d(p,q) no cambia conforme n se hace infinito. y por tanto se llega a la conclusión solicitada.

 $\mathbf{E})$

Para demostrar que $\varphi(X)$ esso en X*, debemos probar que para cada elemento $P \in X^*$ y para cualquier $\epsilon > 0$, existe un $p \in X$ tal que la distancia entre $\varphi(p)$ y P es menor que ϵ . Tomamos un $P \in X^*$ y consideramos una secuencia $\{p_n\}$ en X. Elegimos un $p \in X$ de manera que la distancia entre p y p_n sea menor que ϵ para algún n. Entonces, tenemos:

$$\Delta(\varphi(p), P) = \Delta(P_p, P) \le \Delta(P_p, P_{p_n}) + \Delta(P_{p_n}, P)$$

donde P_{p_n} es el elemento de X^* que contiene la secuencia $\{p_n\}$. Dado que $\{p_n\} \in P$ y $\Delta(P_p, P_{p_n}) = d(p, p_n)$, obtenemos:

$$\Delta(\varphi(p), P) \le d(p, p_n)$$