Measure Theory & Probability

Sebastian Müksch, v1, 2019/20

Example 1.1.

Simplest σ -algebra:

- $\{\emptyset, \Omega\}$, contained in every σ -algebraon
- Family of all subsets of Ω , containing every σ -algebraon Ω .

Exercise 1.1.

Let \mathcal{F} be a σ -algebra. Then $A_n \in \mathcal{F}$ for every integer $n \geqslant 1 \Rightarrow \bigcap_{n=1}^{\infty} A_n \in \mathcal{F}$.

Expectation Integrals

Exercise 3.5.

Let $A \in \mathcal{F}$ s.t. $\mu(A) = 0$. Then for **any** measurable function $f: \Omega \to \overline{\mathbb{R}}$:

$$\int_A f \, d\mu = 0.$$

 ${\bf Theorem~3.8~(Monotone~Convergence)}.$ Let $(f_n)_{n=1}^{\infty}$ be increasing sequence of non-negative, measurable functions $f_n: \Omega \to \overline{\mathbb{R}}$, converging to some f. Then:

$$\int_{\Omega} \lim_{n \to \infty} f_n \, d\mu = \lim_{n \to \infty} \int_{\Omega} f_n \, d\mu$$

Proposition 3.18 (Markov-Chebyshev's Inequality).

Let X be a **non-negative** R.V., then

$$P(X \ge \lambda) \le \lambda^{-\alpha} E(X^{\alpha}) \quad \forall \lambda > 0, \alpha > 0.$$

Remark 3.3.

Let $(\Omega, \mathcal{F}, \mu)$ be measure space, $f: \Omega \to \overline{\mathbb{R}}$ $non-negative \mathcal{F}-measurable, then$

$$\mu(f \geqslant \lambda) \leqslant \lambda^{-\alpha} \int_{\Omega} f^{\alpha} d\mu \quad \forall \lambda > 0, \alpha > 0.$$

Proposition (Restricted Expectation). Let X be a random variable and $A \in \mathcal{F}$, then:

$$E(X\mathbf{1}_A) = \int_A X \, dP.$$

Definitions

In the following, Ω is a set, \mathcal{F} a σ -algebra on Ω . If used, then μ is a measure. Otherwise, the measure is the probability measure P.

Definition 1.1.

Let \mathcal{F} be a family of subsets of set Ω . \mathcal{F} is called a σ -algebra if:

- Closed Under Complement: $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$,
- Closed Under Arbitrary Union: $A_n \in \mathcal{F}$ for integer $n \geqslant 1$ $\Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F},$
- Contains Entire Set: $\Omega \in \mathcal{F}$

Definition 1.2. Let $\mathcal C$ be a family of subsets of Ω . There exists a σ -algebra which contains Cand which is contained in every σ -algebra that contains C (take intersection of all σ -algebras. Such σ -algebra is unique and called smallest σ -algebra containing C or σ -algebra

generated by \mathcal{C} , denoted by $\sigma(\mathcal{C})$. Simplest example, let $A \subseteq \Omega$:

$$\sigma(A) = \{\emptyset, A, A^c, \Omega\}.$$

Definition 2.1.1.

Let $A\subseteq \Omega$ and $\mathbf{1}_A$ be defined as follows:

$$\mathbf{1}_{A}(\omega) = \begin{cases} 1, & \omega \in A \\ 0, & \omega \notin A \end{cases}.$$

Then $\mathbf{1}_A$ is a R.V. and called the *indicator* (function) of (events) A.

Definition 2.1.1.

Let $A \subset \Omega$, then:

$$\int_{\Omega} \mathbf{1}_A \, d\mu = \mu(A).$$

Definition (Lebesgue Integral for Expectation).

Let X be a random variable. Then we write:

$$EX = \int_{\Omega} X \, dP.$$

Definition (Unknown).

Let $A \in \mathcal{F}$ and $f: \Omega \to \overline{\mathbb{R}}$ is a measurable function, then we define:

$$\int_A f\,d\mu = \int_\Omega {\bf 1}_A f\,d\mu,$$
 when the integral of ${\bf 1}_A f$ w.r.t
 μ exists.

Definition (Unknown).

Let X be a random variable. Then X has finitesecond moment if $EX^2 < \infty$.