Appendix A: PDP-8 Instructions

Memory Reference Instructions: Opcodes 0 - 5 A.1

```
0 1 2 3 4 5 6 7 8 9 10 11
| Op-code | I | M | O F F S E T | +--+--+--+---+---+---+---+---+
```

Bits 0 - 2 : Operation Code

Bit 3 : Indirect Addressing Bit (0:Direct/1:Indirect)
Bit 4 : Memory Page (0:Zero Page/1 Current Page)
Bits 5 - 11 : Offset Address

Assembler Mnemonic	Machine Code	Effect
AND	0nnn	logical AND C(AC) <- C(AC) AND C(EAddr)
TAD	1nnn	Twos Complement Add C(AC) <- C(AC) + C(EAddr) If carry out then complement Link
ISZ	2nnn	<pre>Increment and Skip on Zero C(EAddr) <- C(EAddr) + 1 If C(EAddr) = 0 then C(PC) <- C(PC) + 1</pre>
DCA	3nnn	Deposit and Clear Accumulator C(EAddr) <- C(AC) C(AC) <- 0
JMS	4nnn	JuMp to Subroutine C(EAddr) <- C(PC) C(PC) <- EAddr + 1
JMP	5nnn	JuMP C(PC) <- EAddr

A.2 Input Output Transfer Instructions: Opcode 6

	0		1		2	3		4	5	6	7		8	9	10	11	
+-		+-		-+-		-+	-+-		+	+	+	-+-	+		+	+	-+
	1		1		0			De	vice	Nun	ber				opco	de	
+-		-+-		-+-		-+	-+-		+	+	+	-+-	+		+	+	-+

Bits 0 - 2 : Opcode 6
Bits 3 - 8 : Device Number

Bits 9 - 11 : Extended Opcode (operation specification bits)

A.2.1 Keyboard - Device #3

Assembler Mnemonic	Machine Code	Effect
KCF	6030	Clear Keyboard Flag
KSF	6031	Skip on Keyboard Flag set
KCC	6032	Clear Keyboard flag and aCcumulator
KRS	6034	Read Keyboard buffer Static AC4AC11 <- AC4AC11 OR Keyboard Buffer
KRB	6036	Read Keyboard Buffer dynamic C(AC) <- 0; Keyboard Flag <- 0; AC4AC11 <- AC4AC11 OR Keyboard Buffer

A.2.2 Printer (CRT) - Device #4

Assembler Mnemonic	Machine Code	Effect
TFL	6040	set prinTer FLag
TSF	6041	Skip on prinTer Flag set
TCF	6042	Clear prinTer Flag
TPC	6044	<pre>load prinTer buffer with aCcumulator and Print Printer Buffer <- AC4-11</pre>
TLS	6046	Load prinTer Sequence Printer Flag <- 0; Printer Buffer <- AC4-11

A.2.3 Interrupt System - Device #0

Assembler Mnemonic	Machine Code	Effect
SKON	6000	Skip if the interrupt system is on and turn the interrupt system off
ION	6001	Execute the next instruction then turn the interrupt system on
IOF	6002	Turn the interrupt system off

A.3 Microinstructions: Opcode 7

A.3.1 Group 1 Microinstructions (Bit 3 = 0)

Sequence Numbers are in ()

Assembler Mnemonic	Machine Code	Effect
NOP	7000	No Operation
CLA CLL	7200 7100	CLear Accumulator (1) CLear Link (1)
CMA CML	7040 7020	CoMplement Accumulator (2) CoMplement Link (2)
IAC	7001	Increment ACumulator (3)
RAR RTR	7010 7012	Rotate Accumulator and link Right (4) Rotate accumulator and link Right Twice (4)
RAL RTL	7004 7006	Rotate Accumulator and link Left (4) Rotate Accumulator and link left Twice (4)

Group One microinstructions may be freely combined as long as the combination makes sense. Order of operations is determined by the sequence number.

A.3.2 Group 2 Microinstructions (Bit 3 = 1, Bit 11 = 0)

1 in bit 8 : reverses skip sensing of bits 5,6,7

Sequence Numbers are in ()

Assembler Mnemonic	Machine Code	Effect
SMA	7500	Skip on Minus Accumulator (1)
SZA	7440	Skip on Zero Accumulator (1)
SNL	7420	Skip on Nonzero Link (1)

Combinations of SMA, SZA, and/or SNL will skip if at least one condition is true (OR Subgroup)

SPA	7510	Skip on Positive Accumulator (1)
SNA	7450	Skip on Nonzero Accumulator (1)
SZL	7430	Skip on Zero Link (1)

Combinations of SPA, SNA and/or SZL will skip when all conditions are true (AND Subgroup)

SKP	7410	SKiP always (1)
CLA	7600	CLear Accumulator (2)
OSR	7404	Or Switch Register with accumulator (3)
$_{ m HLT}$	7402	HaLT (3)

Group Two microinstructions many be combined as long as instructions from the OR and the AND subgroups are not mixed and the combination makes sense. Order of operations is determined by sequence number.

A.3.3 Group 3 Microinstructions (Bit 3 = 1, Bit 11 = 1)

Sequence Numbers are in ()

Assembler Mnemonic	Machine Code	Effect
CLA	7601	CLear Accumulator (1)
MQL	7421	Load MQ register from AC and Clear AC (2) C(MO) <- C(AC); C(AC) <- 0;
MQA	7501	Or AC with MQ register (2) C(AC) <- C(AC) Or C(MQ)
SWP CAM	7521 7621	SWap AC and MQ registers (3) Clear AC and MQ registers (3)

Appendix B: PDP-8 Addressing Modes

B.1 Zero Page Addressing (Bit 4 = 0)

Effective Address <- 00000 + Offset where '+' is the concatenate operation

B.2 Current Page Addressing (Bit 4 = 1)

Effective Address <- Old PC0..Old PC4 + Offset

where '+' is the concatenate operation. Old_PC0..Old_PC4 are bits 0 thru 4 of the PC *before* it is incremented (i.e. address of the current instruction).

B.3 Indirect Addressing (Bit 3 = 0)

If Zero Page Addressing (Bit 3 = 0) Then

Effective Address <- C(00000 + Offset)

If Current Page Addressing (Bit 3 = 0) Then

Effective Address <- C(Old PC0-4 + Offset)

where '+' is the concatenate operation.

B.4 Autoindexing (Bit 3 = 0, Bit 4 = 0, Offset = 0100 - 0170)

Addresses 0010o - 0017o are special AutoIndex Registers.

Whenever one of these locations is addressed indirectly, its contents is first incremented then used as the address of the Effective Address.

C(AutoIndex_Register) <- C(AutoIndex_Register) + 1 Effective Address <- C(AutoIndex_Register)

where AutoIndex Register is an address in the range 0010o - 0017o.