Training algorithms for fuzzy support vector machines with noisy data Presented by Josh Hoak

Chun-fu Lin¹ Sheng-de Wang¹

¹National Taiwan University

13 April 2010

Prelude

▶ **Problem:** SVMs are particularly susceptible to outliers. Fuzzy SVMs are a method to cope with outliers in SVMs.

A Motivating Example

Recap: Linear Support Vector Machine

- ▶ Training Data: $(y_1, x_1) \dots (y_m, x_m) : x_i \in \mathbb{R}^n, y_i \in \{1, -1\}$
- ► **Goal:** Draw a hyperplane separating data with two classes; that is, find a vector **w** and a translation *b* such that

$$\mathbf{w} \cdot \mathbf{x} + b = 0,$$

where **x** is an example of from the training data, subject to the **constraint**:

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$$
, for $i = 1, \dots I$

Non-linear SVM

▶ **Non-linear Mapping:** Transform the data and then try to separate. Let $\phi: \mathbf{R}^n \to \mathcal{F}$, where \mathcal{F} indicates the feature space. Then,

$$\mathbf{z} = \phi(\mathbf{x})$$

Error term: Add an error term ξ to the constraint:

$$y_i(\mathbf{w} \cdot \mathbf{z}_i + b) \ge 1 - \xi_i, \quad i = 1, \dots, I$$

Non-linear SVMs continued

► Thus, we can minimize:

$$\frac{1}{2}\mathbf{w}\cdot\mathbf{w}-C\sum_{i=1}^{l}\xi_{i},$$

subject to

$$y_i(\mathbf{w} \cdot \mathbf{z}_i - b) \geq 1 - \xi_i$$

Non-linear SVMs continued

▶ **Kernel Trick:** Find a *kernel* function $K(\cdot, \cdot)$: $\mathbb{R}^n \times \mathbb{R}^n \to \mathcal{F}$ such that:

$$K(\mathbf{x}_i,\mathbf{x}_j) = \phi(x_i) \cdot \phi(x_j) = \mathbf{z}_i \cdot \mathbf{z}_j$$

Construct the optimal hyperplane:

$$\mathbf{w} = \sum_{i=1}^{I} \alpha_i y_i \mathbf{z}_i$$

Optimal hyperplane is then:

$$f_H(\mathbf{x}) = \sum_{i=1}^{I} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}) + b$$

Decision function: $f_D(\mathbf{x}) = \text{sign}(f_{\mathbf{H}}(\mathbf{X}))$

Fuzzy SVMs

► Training Data

$$(y_1, \mathbf{x}_1, s_1), \dots, (y_l, \mathbf{x}_l, s_l), \quad \sigma \leq s_i \leq 1, \quad (\sigma > 0)$$

▶ Fuzzy membership: s_i is viewed as our *confidence* that the corresponding point \mathbf{x}_i has class y_i

Fuzzy SVMs

▶ **Optimal Hyperplane:** The solution to minimizing:

$$\frac{1}{2}\mathbf{w} \cdot \mathbf{w} + C \sum_{i=1}^{l} s_i \xi_i,$$
 constrained by
$$y_i(\mathbf{w} \cdot \mathbf{z}_i + b) \ge 1 - \xi_i$$

Equivalently we can write:

$$\frac{1}{2}\mathbf{w}\cdot\mathbf{w}+C\sum_{i=1}^{I}\psi(\xi_{i})$$

A more familiar formulation

Maximize:

$$W(\alpha) = \sum_{i=1}^{I} \alpha_i - \frac{1}{2} \sum_{i=1}^{I} \sum_{j=1}^{I} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i \mathbf{x}_j)$$

Subject to:

$$\sum_{i=1}^{I} y_i \alpha_i = 0,$$

$$0 \le \alpha_i \le s_i C, \quad i = 1, \dots, I$$

SVMs Fuzzy SVMs Confidence Values Multi-class SVM

How do we find the confidence values?

Fuzzy SVMs: The error function

Note: We model the theoretical error $\psi(\xi_i)$ by the probability that a point is noise $-p_x(\mathbf{x}_i)$. The error function becomes $\sum_{i=1}^{l} p_x(\mathbf{x}_i) \xi_i$

One model:

$$p_{x}(\mathbf{x}_{i}) = \begin{cases} 1, & \text{if } h(\mathbf{x}_{i}) > h_{c}, \\ \sigma, & \text{if } h(\mathbf{x}_{i}) < h_{T}, \\ \sigma + (1 - \sigma) \left(\frac{h(\mathbf{x}_{i}) - h_{T}}{h_{C} - h_{T}}\right)^{d}, & \text{otherwise.} \end{cases}$$

New definitions: h_c is the confidence factor, h_T is the 'trashy' factor, h(x) is a heuristic function.

Fuzzy SVMs: The error function

Fig. 1. The mapping between the probability density function $p_x(x)$ and the heuristic function h(x).

Generating fuzzy memberships – $p_x(\mathbf{x})$

- We choose $\sigma > 0$ as a lower bound.
- Let's suppose that our fuzzy membership (or outlier status) is based on only one feature t. Then, we have:

$$s_i = h(\mathbf{x}_i) = f(t_i).$$

Generating fuzzy memberships (continued)

- Let the maximum of these be t_{max} and let t_{min} be the minimum; when $t_i = t_{min}$, we want the output to be σ .
- ▶ If we make s; be a linear function of t then we get

$$s_i = f(t_i) = at_i + b$$

Solving the system of equations:

$$\sigma = a(t_{min}) + b$$

$$1 = a(t_{max}) + b$$

Generating fuzzy memberships (continued)

▶ Solving, we get:

$$s_i = f(t_i) = \frac{1 - \sigma}{t_{max} - t_{min}} t_i + \frac{t_{max}\sigma - t_{min}}{t_{max} - t_{min}}$$

▶ If we wish to make the function polynomial, we get:

$$s_i = f(t_i) = (1 - \sigma) \left(\frac{t_i - t_{min}}{t_{max} - t_{min}} \right)^2 + \sigma$$

Fuzzy SVM: The heuristic function

Strategy 1: Kernel-target alignment. Defined as

$$A_{KT} = \frac{\sum_{i=1}^{I} f_K(\mathbf{x}_i, y_i)}{I\sqrt{\sum_{i,j=1}^{I} K^2(\mathbf{x}_i, \mathbf{x}_j)}}$$

where
$$f_K(\mathbf{x}_i, y_i) = \sum_{j=1}^{I} y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$$

Idea: Use $f_K(\mathbf{x}_i, y_i)$ as the heuristic function.

Fuzzy SVMs: The heuristic function—

Strategy 2: **k-NN.** Find the nearest neighbors of a data point \mathbf{x}_i (of the same class). Assume that the data point with fewer nearest neighbors (of the same class) has higher probability of being noisy data. Let the heuristic function be:

$$h(\mathbf{x}_i) = n_i,$$

where n_i is the number of nearest neighbors.

Overall Procedure

- 1. Use the original algorithm of SVMs to get the optimal kernel parameters and the regularization parameter C.
- 2. Fix the kernel parameters and the regularization parameter *C* from (1), and then find the other parameters in FSVMs.
 - 2.1 Define the heuristic function.
 - 2.2 Use exhaustive search to find the h_T , h_C , d, and σ .

Results

Table 1: Error rates for SVMs and FSVMs using KT and k-NN

	TR	SVMs	KT	k-NN
Banana	6.7	11.5 ± 0.7	*10.4 ± 0.5	11.4 ± 0.6
B. Cancer	18.3	26.0 ± 4.7	25.3 ± 4.4	$*25.2 \pm 4.1$
Diabetes	19.4	23.5 ± 1.7	*23.3 \pm 1.7	23.5 ± 1.7
German	16.2	23.6 ± 2.1	*23.3 \pm 2.3	23.6 ± 2.1
Heart	12.8	16.0 ± 3.3	$*14.2 \pm 3.1$	23.6 ± 2.1
Image	3.0	3.0 ± 0.6	$*2.9 \pm 0.7$	-
Ringnorm	0.0	$*1.7 \pm 0.1$	-	-
F. Solar	32.6	$*32.4 \pm 1.8$	32.4 ± 1.8	32.4 ± 1.8
Splice	0.0	$*10.9 \pm 0.7$	-	-
Thyroid	0.4	4.8 ± 2.2	*4.± 2.3	-
Titanic	19.6	22.4 ± 1.0	*22.3±0.9	*22.3 \pm 1.1
Twonorm	0.4	3.0 ± 0.2	$*2.4 \pm 0.1$	2.9 ± 0.2
Waveform	3.5	$*9.9 \pm 0.4$	9.9 ± 0.4	-

13 data sets from the UCI, DELVE and STAT- LOG

Multi-class SVM

Ensemble Method Use the OAA (One Against All) method of multiple-classification. Given M classes, we construct M binary SVM classifiers that separate one class from the rest. The class associated with the classifier that outputs the highest value given an example is then chosen.

Fuzzy Membership Function: When training,

$$\textit{Fuzz}(\mathbf{x}) = \begin{cases} 1 & \text{if the output of the ensemble on } \mathbf{x} \text{ is } 1, \\ h & \text{if the output of ensemble on } \mathbf{x} \text{ is } -1. \end{cases}$$

Confusion Matrix

Actual Class	Predicted Class					
_	Earn	Acq	Money-fx	Grain	Total	
Earn	679	3	3	7	692	
Acq	24	425	2	2	453	
Money-Fx	6	5	86	4	101	
Grain	12	1	2	87	102	
Total	721	434	93	100	1348	

Note: Overall Accuracy = 0.945

Data: Reuters Documents

Results

Macro-average perf. of OAA-SVM and OAA-FSVM

Classifier		4-fold	
	Precision	Recall	F Measure
OAA-FSVM(1, 0.5)	0.775	0.624	0.672
OAA-FSVM(1, 0.6)	0.772	0.630	0.675
OAA-SVM	0.764	0.616	0.659

Thoughts

- Statistically significant results?
- Diminishing returns?
- ► Cost?
- ▶ How much do outliers affect the model?