電磁學 (Electromagnetism) Final Exam

滿分 100

[Griffiths Chs. 10 and 12] 2018/06/11,

10:10am - 12:00am.

教師:張存續

- 1. Write the equations (if possible) and explain the following terms as clear as possible.
 - (a) The Lorentz gauge and the Coulomb gauge. (4%)
 - (b) Gauge transformations and gauge freedom. (4%)
 - (c) Phase velocity and group velocity. (4%)
 - (d) The two postulates of the special relativity. (4%)
 - (e) Invariant quantity and conserved quantity. (4%)
 - (f) Lienard-Wiechert potentials. (5%)
 - (g) Hidden momentum. (5%)
- 2. (a) The transformations between two inertial system S and \bar{S} are $\bar{x} = \gamma(x vt)$ and $\bar{t} = \gamma(t vx/c^2)$. Show that when $\Delta t = 0$, $\Delta x = \Delta \bar{x}/\gamma$; but when $\Delta \bar{t} = 0$, $\Delta \bar{x} = \Delta x/\gamma$. Explain why the length relations depend on the simultaneity. (8%+2%)
 - (b) Show that (**E**·**B**) is relativistically invariant. (10%)

[Hint:
$$\bar{E}_x = E_x$$
, $\bar{E}_y = \gamma (E_y - vB_z)$, $\bar{E}_z = \gamma (E_z + vB_y)$; $\bar{B}_x = B_x$, $\bar{B}_y = \gamma (B_y + \frac{v}{c^2}E_Z)$, $\bar{B}_z = \gamma (B_z - \frac{v}{c^2}E_y)$]

- 3. (a) $\vec{\eta} = \mathbf{r} \mathbf{r}'$, $\eta = |\mathbf{r} \mathbf{r}'| = c(t t_r)$, and $\mathbf{v} = \mathbf{v}(t_r)$. Find $\nabla \eta$ and $(\vec{\eta} \cdot \nabla)\mathbf{v}$. (10%) (Note: Express your answer in terms of ∇t_r .)
 - (b) Show that the retarded potentials satisfy the Lorentz gauge condition $\nabla \cdot \mathbf{A} + \mu_0 \varepsilon_0 \partial V / \partial t = 0$.

(10%) [Hint: the retarded potentials
$$V(\mathbf{r},t) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(r',t_r)}{\eta} d\tau'$$
 and $\mathbf{A}(\mathbf{r},t) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(r',t_r)}{\eta} d\tau'$]

- 4. Suppose V=0 and $\mathbf{A}=A_0\cos(kx-\omega t)\hat{\mathbf{z}}$, where A_0 , ω , and k are constants.
- (a) Find **E** and **B** (10%)
- (b) Use the gauge function $\lambda = xt$ to transform the potential V' and A'. (10%)
- (c) Find the news $\, {f E}' \,$ and $\, {f B}' .$ Comment on the gauge freedom. (8%+2%)

[Hint:
$$\mathbf{A}' = \mathbf{A} + \nabla \lambda$$
 and $V' = V - \partial \lambda / \partial t$]