

B.TECH SECOND YEAR

ACADEMIC YEAR: 2020-2021

COURSE NAME: ENGINEERING MATHEMATICS-III

COURSE CODE : MA 2101

LECTURE SERIES NO: 27 (TWENTY-SEVEN)

CREDITS : 3

MODE OF DELIVERY: ONLINE (POWER POINT PRESENTATION)

FACULTY: DR. ALOK BHARGAVA

EMAIL-ID : alok.bhargava@jaipur.manipal.edu

PROPOSED DATE OF DELIVERY: 16 OCTOBER 2020

VISION

Global Leadership in Higher Education and Human Development

MISSION

- Be the most preferred University for innovative and interdisciplinary learning
- · Foster academic, research and professional excellence in all domains
- Transform young minds into competent professionals with good human values

VATTIES

Integrity, Transparency, Quality,
Team Work Execution with Passion, Humane Touch

SESSION OUTCOME

"TO UNDERSTAND THE BASICS OF PROPOSITIONS"

ASSIGNMENT

QUIZ

MID TERM EXAMINATION -I & II
END TERM EXAMINATION

ASSESSMENT CRITERIA'S

Propositional Calculus

Proposition

A proposition is a statement which is either true or false. It is a declarative sentence.

Ex. 1 Dr. G. K. Prabhu is the president of Manipal University Jaipur.

Ex. 2 It rained yesterday.

Ex. 3 If x is an integer then x^2 is a positive integer.

Following are not propositions-

Ex. 4 Please give me that book.

Ex. 5 What is your name?

Ex. 6
$$x^2 = 8$$

Propositional Variables

Normally, the lower-case letters p, q, r,... are used to represent propositions. e.g.

p: India is in Europe

q: 2 + 2 = 4

Combination of Propositions

We can combine the propositions to produce new propositions.

There are three fundamental There are three derived connectors-

- a) Conjunction a) NAND
- b) Disjunction b) NOR
 -) Negation c) XOR

Conjunction (∧)

It means AND-ing of two statements.

Let p and q are two propositions, Conjunction of p and q be a proposition which is true when both p and q are true otherwise false. It is denoted by $p \land q$. The truth table for conjunction of p and q can be constructed as follows

p	\boldsymbol{q}	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Disjunction (V)

It means OR-ing of two statements.

Let p and q are two propositions, disjunction of p and q be a proposition which is true when atleast one of p and q is true and false when both are false. It is denoted by $p \lor q$. The truth table for disjunction of p and q can be constructed as follows

p	\boldsymbol{q}	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Negation (∼or¬)

It means opposite of original statement.

Let p be a proposition, the negation of p be a proposition which is true when p is false, and is false when p is true. For negation of a proposition, we can construct the truth table as follows

p	$\neg p$
Т	F
F	Т

NAND

It means negation after ANDing of two statements.

Let p and q are two propositions, NAND of these two propositions is a proposition which is false when both p and q are true, otherwise true. It is denoted by $\sim(p \land q)$ or $p \uparrow q$. For NAND, we can construct the truth table as follows

\boldsymbol{p}	\boldsymbol{q}	$p \uparrow q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	Т

NOR

It means negation after Or-ing of two statements.

Let p and q are two propositions, NOR of these two propositions is a proposition which is true when both p and q are false, otherwise false. It is denoted by $\sim(p \lor q)$ or $p \downarrow q$. For NOR, we can construct the truth table as follows

p	q	$p \downarrow q$
Т	Т	F
Т	F	F
F	Т	F
F	F	Т

XOR

Let p and q be two propositions, XORing of p and q is true if p is true or q is true but not both and vice versa. It is denoted by $p \oplus q$ and the truth table can be constructed as

p	\boldsymbol{q}	$p \oplus q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Some Other Connectors

Conditional or Implication

• $p \rightarrow q$

Biconditional or Equivalence

• $p \leftrightarrow q$

Conditional or Implication

Statements of the form "If p then q" are called conditional statements.

It is denoted as $p \rightarrow q$ and read as "p implies q" or "q is necessary for p" or "p is sufficient for q".

Conditional statement is true if both p and q are true or if p is false. It is false if p is true and q is false. The truth table for implication is as

\boldsymbol{p}	q	$m{p} ightarrow m{q}$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Thanks for your attention!!

