Session 3: PRS calculation and evaluation

Instructors: Meng Lin and Maizy Brasher

Table of contents

- Concepts and tools: from weights to scores
- Application of PRS prediction on phenotypes
 - Associations and confounders
 - Common metrics of evaluation
 - Hands-on exercise and discussion
- Ancestry calibration
 - Assumptions and methods overview
 - Hands-on exercise

Overview: From weights to scores

- Lots of publications on developing PRS models using various methods and training datasets (e.g. your exercise in the previous session)
- Outputs of these models (i.e. weight files) are often publicly available
 - o For example, PGS catalog (https://www.pgscatalog.org/) is a centralized resource
 - In a form of summary statistics of risk effect at a selction of variants

chr_na	me	chr_pos	ition	effect_allele	other_allele	effect_weight
1	779322	G	Α	-6.211012e-06		1000
1	1005806	T	C	-3.127074e-05		
1	1017197	T	C	-3.070467e-05		
1	1017587	T	C	-6.693554e-05		
1	1018704	G	Α	-5.915339e-05		
1	1021695	G	Α	-0.0002213063		
1	1030565	T	C	2.667483e-05		
1	1030633	Α	G	5.357169e-05		
1	1031540	G	Α	-0.0001155718		

Weight file (M x 1)

SNP1	-0.3
SNP2	0.2
SNP3	-0.1
SNPM	0.3

Test cohort genotypes (N x M)

	SNP1	SNP2	 SNPM
Sample1	0	2	 1
Sample2	1	0	 2
SampleN	2	1	 1

Weight file (M x 1)

SNP1	-0.3
SNP2	0.2
SNP3	-0.1
SNPM	0.3

Test cohort genotypes (N x M)

	SNP1	SNP2	 SNPM
Sample1	0	2	 1
Sample2	1	0	 2
SampleN	2	1	 1

• dot product

Weight file (M x 1)

SNP1	-0.3
SNP2	0.2
SNP3	-0.1
SNPM	0.3

Score values (N x 1)

```
Sample1 1.1
Sample2 0.6
Sample3 0.2
... ...
SampleN -0.1
```

Test cohort genotypes (N x M)

	SNP1	SNP2		SNPM
Sample1	0	2	:	1
Sample2	1	0	:	2
SampleN	2	1		1

• dot product

Weight file (M x 1)

SNP1	-0.3
SNP2	0.2
SNP3	-0.1
SNPM	0.3

Score values (N x 1)

Sample1 1.1
Sample2 0.6
Sample3 0.2
... ...
SampleN -0.1

Yes, it's that simple!

Test cohort genotypes (N x M)

	SNP1	SNP2		SNPM
Sample1	0	2	:	1
Sample2	1	0		2
SampleN	2	1		1

- You can code it in R, python, or any other of your favorite language
- You can use PLINK --score feature

Score values (N x 1)

• dot product

Sample1	1.1
Sample2	0.6
Sample3	0.2
SampleN	-0.1

Weight file (M x 1)

SNP1	-0.3
SNP2	0.2
SNP3	-0.1
SNPM	0.3

Yes, it's that simple!

However, harmonization is important in the real world

- Many differences may exist between your dataset (test data) and those used in publications for GWAS and PRS training
- Just imagine trying to merge two very different array datasets
 - Not all variants are found?
 - Genome build difference?
 - Does the test data reflect the counts of the *risk* allele codes?
 - Ambiguous allele code? (MAF matching has limitations)
 - Effect of a risk allele is relative to a given reference allele (e.g. thinking about GWAS) all allele code matching
- Workload increases with larger datasets

Tools for PRS harmonization and calculation

 pgsc_calc: provided by the PGS catalog, https://github.com/PGScatalog/pgsc_calc

- ESCALATOR: https://github.com/menglin44/escalator
 - Container and examples provided in this workshop
 - Optional exercise in Session 3 hands-on markdown

Table of contents

- Concepts and tools: from weights to scores
- Application of PRS prediction on phenotypes
 - Associations and confounders
 - Common metrics of evaluation
 - Hands-on exercise and discussion
- Ancestry calibration
 - Assumptions and methods overview
 - Hands-on exercise

Polygenic scoring can be imperfect

A short list of limitations in example -

Polygenic scoring can be imperfect

- Upstream limitations
 - Genetic discovery limited, are you approaching the heritability "upper bound"?
 - Not capturing/decoding true differences in genetic architectures across ancestries or other context (including GxE, SDOH)
- Uncorrected confounders and bias
 - Baked in from GWAS: ascertainment bias (array+imputation), w/ LD differences
 - Bias furthered in training cohort: LD
 - Methods' limitations
 - Etc.

Geographic Variation and Bias in of Complex Diseases and Traits i

Research Article **Genetics and Genomics**

Sini Kerminen, ¹ Alicia R. Martin, ^{2,3,4} Jukka Kosl Ida Surakka, 1,6 Aarno Palotie, 1,2,3,7,8 Markus Pera Samuli Ripatti.^{1,9} and Matti Pirinen^{1,9,10,*}

Variable prediction accuracy of polygenic scores within an ancestry group

Polygenic scoring accuracy varies across the genetic Demographic history mediates the effect of

an K Pritchard, Molly

Yi Ding M. Kange stratification on polygenic scores

Highly parameterized polygenic scores tend to overfit to population stratification via random effects

ations

D Alan J. Aw, Jeremy McRae, Elior Rahmani, D Yun S. Song **doi:** https://doi.org/10.1101/2024.01.27.577589

This article is a preprint and has not been certified by peer review [what does this mean?].

article 85 r 2020, Pages 4027–4036,

https://doi.org/10.1534/g3.120.401658 Genetic Risk

Published: 01 November 2020 Article history ▼

Alicia R. Martin, 1,2 Benjamin M. Neale,^{1,2,3} Simon Gravel,^{5,6} Mark J. Daly,^{1,2,3} Carlos D. Bustamante,⁴ and Eimear E. Kenny^{7,8,9,10,*}

Polygenic scoring can be imperfect

- A limited list of limitations
- Development of PRS is evolving, with improvement in multiple dimensions
 - Bigger GWAS
 - Collecting data from individuals of diverse backgrounds
 - Improvement of methods
 - Etc.

- Estimated PRS is confounded by ancestry
 - Note that this is a different concept than "PRS prediction accuracy decreases/varies by ancestry"

- Estimated PRS is confounded by ancestry (right)
 - Note that this is a different concept than "PRS prediction accuracy decreases/varies by ancestry" (left)

Martin et al. AJHG. 2017.

Ding et al. Nature. 2023

- Estimated PRS is confounded by ancestry
 - Note that this is a different concept than "PRS prediction accuracy decreases/varies by ancestry"
- Why is that?

- Estimated PRS is confounded by ancestry
 - Note that this is a different concept than "PRS prediction accuracy decreases/varies by ancestry"
- Why is that?
 - What if causal variants are indeed ancestry-informative? (related to the next section)

- Should you compare raw PRS values across populations?
- PRS unit (within a presumably homogeneous group)
 - Standardization
 - Stratification
- Control for confounders in your phenotype associations
 - Think of GWAS "full model"
- Compare with predictions with just non-PRS covariates
 - Think of GWAS "null model"
 - Look at incremental improvement in measurement

- Prediction accuracy (commonly used ones):
 - Beta, R² (quantitative trait)
 - OR, pseudo-R², AUC (dichotomous trait)
 - Individual level (w/ posterior distribution of risk effects available)
 - Etc.

- Metrics you'll use in the hands-on exercise
 - AUC (dichotomous trait)
 - "area under the curve"
 - Measuring performance of a classifier method: if true positive rate is higher than false positive rate
 - Ranges from 0.5 (complete random guess) to 1 (always correctly classify): the higher the better performance

- Metrics you'll use in the hands-on exercise
 - |2
 - Heterogeneity of a score's effects across groups
 - Similar metrics include Cochran's Q, tau², etc.
 - (One of many ways to proxy) portability

Hands-on Exercise: Evaluating PRS performance in the presence of potential confounders

Return to the R Markdown you used for session 1

- This part of the tutorial will look at: score distributions between cases and controls, AUC and incremental AUC, and I²
- Work through the code up until "Discussion Break"
 - Note that the section on PRS calculation using ESCALATOR is provided for your reference, but for this tutorial the scores from the PGS catalog have been calculated for you
 - If you can't follow the code or get stuck, DON'T PANIC, figures and tables can be seen in the HTML document
 - Ask a neighbor for help

Discussion Question: which of these six scores is the "best"?

- Consider evidence from the tutorial
- Discuss with the people around you
- We will ask for people to share their thoughts

Score distributions by case/control status

AUC values for European 1000genomes population

Table of contents

- Concepts and tools: from weights to scores
- Application of PRS prediction on phenotypes
 - Associations and confounders
 - Common metrics of evaluation
 - Hands-on exercise and discussion
- Ancestry calibration
 - Assumptions and methods overview
 - Hands-on exercise

Ancestry calibration after PRS calculations

- Previous exercise: stratified group definitions are used
- But human ancestry is continuous: esp. admixed populations with a variation of ancestries. This makes interpretation of risk scores even trickier.
- Recently proposed methods of ancestry calibration:
 - Khera et al, 2019, eMERGE network papers etc. See the full list in the "recommended readings" in the end
 - To adjust for ancestry confounding effects from PRS values
 - To move away from using discrete group labels in practical applications

Assumptions behind ancestry calibrations

- Given a trait, the expectation is the true genetic scores across all populations are i.i.d and will follow a normal distribution
 - Based on CLT: PRS= linear combination of lots of causal (common) loci, -> genotypes of the risk loci follow the same binomial sampling
 - The same / similar genetic architectures across populations for the trait
 - Is this always expected to be true?
- Ancestry's effect on PRS is thus only confounding, instead of having true contributions to the genetic values
- Both the mean and variance of an estimated PRS per population is affected by ancestry (proxied by PCs)

Calibration type 1: mean calibration

Khera et al. 2019; Wang et al. 2020

$$PRS = \alpha_0 + \sum \alpha_i PC_i + \varepsilon$$
Adjusted PRS

• Regression in the dataset as it is, or obtain the coefficients (α_0 , α_i) from a separate training dataset, while all the future samples are projected onto that training set to obtain PC in the same space.

Calibration type 2: mean and variance calibration

Ge et al. 2022; Khan et al., 2022

Separately regress out PC effects from the mean and the variance

Obtaining parameters

$$egin{aligned} oldsymbol{PRS} &= lpha_0 + \sum lpha_i P C_i + oldsymbol{arepsilon} & ext{Mean adjustment} \ oldsymbol{\delta} &= var(oldsymbol{arepsilon}) & ext{Residual variance} \ oldsymbol{\delta} &= eta_0 + \sum eta_i P C_i + oldsymbol{arepsilon}' & ext{Linear adjustment} \end{aligned}$$

$$PRS_{adj} = \frac{PRS - (\widehat{\alpha}_0 + \sum \widehat{\alpha}_i PC_i)}{\sqrt{\widehat{\beta}_0 + \sum \beta_i PC_i}}$$

Final adjusted "z-score"

Linear adjustment of variance

Calibration type 2.5: mean and variance calibration with non-linear link function

Lennon et al. 2024

- PC-based predicted variance go become negative in a linear model
- Exponential link function to replace the linear model between variance and PCs

$$PRS = \alpha_0 + \sum \alpha_i PC_i + \varepsilon$$

$$\delta = var(\varepsilon)$$

$$\delta = exp(\beta_0 + \sum \beta_i PC_i + \varepsilon')$$

Obtaining parameters through maximal likelihood method in a training dataset
 More details in the recommended readings.

Link function to prevent estimated variance becomes negative values.

Potential limitation and misuse of ancestry calibration

- Cancelling out true ancestry effects on genetic values
 - think about differential selection pressures and causal variants being ancestry informative
- False assumptions of the genetic architectures across ancestries being homogeneous?
- Does this solve the more upstream problems in PRS model development (i.e. various levels of prediction accuracy across ancestries)?

Hands-on Exercise: Ancestry calibration

Return to the R Markdown

- This part of the tutorial demonstrates that score distribution varies by ancestry group and scores are correlated with PCs, then performs mean and variance calibration based on PCs
- Work through the rest of the code (from "Discussion Break" to the end)
 - All output can be seen in the HTML if you are unable to follow along
 - Talk to your neighbors if you get stuck
- In the final density plots, you should be able to see the by-ancestry distributions shift to almost completely overlap post-calibration

Recommended readings

- Reviews:
 - (tutorial) Choi et al. Nature Protocols. 2020
 - (application) Kachuri et al. Nature Review Genetics. 2024
- Ancestry calibration methods:
 - Khera et al. Circulation. 2019.
 - Wang et al. Journal of the American College of Cardiology. 2020.
 - Khan et al. Nature Medicine, 2022
 - Ge et al. Genome Medicine. 2022
 - Lennon et al. Nature Medicine. 2024