Mining arguments in scientific abstracts with discourse-level embeddings.

(Accuosto and Saggion, 2020)

Laurine Huber

LORIA, Université de Lorraine, France

Café TAL April 27, 2021

"Argumentation is a verbal, social, and rational activity aimed at convincing a reasonable critic of the acceptability of a standpoint by putting forward a constellation of propositions justifying or refuting the proposition expressed in the standpoint."

(van Eemeren and Grootendorst, 2004)

"Argumentation is a verbal, social, and rational activity aimed at convincing a reasonable critic of the acceptability of a standpoint by putting forward a constellation of propositions justifying or refuting the proposition expressed in the standpoint."

(van Eemeren and Grootendorst, 2004)

"Argumentation is a verbal, social, and rational activity aimed at convincing a reasonable critic of the acceptability of a standpoint by putting forward a constellation of propositions justifying or refuting the proposition expressed in the standpoint."

(van Eemeren and Grootendorst, 2004)

"Argumentation is a verbal, social, and rational activity aimed at convincing a reasonable critic of the acceptability of a standpoint by putting forward a constellation of propositions justifying or refuting the proposition expressed in the standpoint."

(van Eemeren and Grootendorst, 2004)

"Argumentation is a verbal, social, and rational activity aimed at convincing a reasonable critic of the acceptability of a standpoint by putting forward a constellation of propositions justifying or refuting the proposition expressed in the standpoint."

(van Eemeren and Grootendorst, 2004)

"Argumentation is a verbal, social, and rational activity aimed at convincing a reasonable critic of the acceptability of a standpoint by putting forward a constellation of propositions justifying or refuting the proposition expressed in the standpoint."

(van Eemeren and Grootendorst, 2004)

Argumentation in scientific abstracts

Introduction

000

"State-of-art systems for grammar error correction often correct errors based on word sequences or phrases. In this paper, we describe a grammar error correction system which corrects grammatical errors at tree level directly. [...] Experiments show that our system outperforms the state-of-art systems and improves the F1 score." ¹

[Assertion] - support \longrightarrow [Proposal] \leftarrow support - [Result]

L. Huber (LORIA) café TAL 3 / 3

¹Simplified abstract from SciDTB (*D14-1033*)

Argumentation in scientific abstracts

"State-of-art systems for grammar error correction often correct errors based on word sequences or phrases. In this paper, we describe a grammar error correction system which corrects grammatical errors at tree level directly. [...] Experiments show that our system outperforms the state-of-art systems and improves the F1 score." ¹

$$[Assertion] - support \longrightarrow [Proposal] \longleftarrow support - [Result]$$

¹Simplified abstract from SciDTB (D14-1033)

L. Huber (LORIA) café TAL

"State-of-art systems for grammar error correction often correct errors based on word sequences or phrases. In this paper, we describe a grammar error correction system which corrects grammatical errors at tree level directly. [...] Experiments show that our system outperforms the state-of-art systems and improves the F1 score." 1

$$[Assertion] - support \longrightarrow [Proposal] \longleftarrow support - [Result]$$

.. Huber (LORIA) café TAL 3 /

¹Simplified abstract from SciDTB (*D14-1033*)

Conclusion

Argumentation in scientific abstracts

Introduction

000

"State-of-art systems for grammar error correction often correct errors based on word sequences or phrases. In this paper, we describe a grammar error correction system which corrects grammatical errors at tree level directly. [...] Experiments show that our system outperforms the state-of-art systems and improves the F1 score." ¹

 $[Assertion] - support \longrightarrow [Proposal] \longleftarrow support - [Result]$

L. Huber (LORIA) café TAL 3 / 2

¹Simplified abstract from SciDTB (*D14-1033*)

Argumentation mining

- 1. Segment the text into argumentative units
- 2. Identify the central claim
- 3. Identify the type of argumentative units
- 4. Identify the function of argumentative units
- 5. Identify the relations between argumentative units

SciDTB

- ▶ 798 abstracts from ACL Anthology
- ► NLP conferences (ACL, EMNLP, ...)
- Annotated in dependency (almost like RST²)
- Extension: 60 documents annotated in argumentation

²Rhetorical Structure Theory, Mann and Thompson, 1988

L. Huber (LORIA) café TAL 5 / 2

Discourse annotation (in RST)

Discourse relations

- ▶ 17 coarse grained relations
- ▶ 26 fine grained relations
 Attribution, Background (Related, Goal, General),
 Cause-effect (Cause, Result), Comparison, Condition,
 Contrast, Elaboration (Addition, Aspect, Process-step,
 Definition, Enumerate, Example), Enablement, Evaluation,
 Explain (Evidence, Reason)...

Argumentation annotation

Argumentation annotation

- ▶ 6 argument types proposal, assertion, result, observation, means, description
- ► 5 argumentative functions support, attack, detail, additional, sequence

Leveraging discourse structures for AM

Do discourse structures help to improve argument mining?

Introduction

Conclusion

Leveraging discourse structures for AM

How to leverage discourse structures to improve argument mining?

- ▶ Discourse features as input: The AM model takes as input a concatenation of linguistic features and specific discourse features.
- Multi-task learning: The AM model and the discourse parsing model have a shared a layer.
- ► **Transfer learning**: The AM model takes as input vectors learnt from a discourse parsing model.

Experiments overview

Introduction

- Argumentation structure prediction:
 - **Boundaries**
 - Types (ATy)
 - Function (**AFu**)
 - Attachment (APa)
- Discourse structure prediction
 - Function (DFu)
 - Attachment (DPa)
- Token labeling $(f: tok \rightarrow tag)$

Token	ABound	АТу	AFu	APa
We	В	Proposal	ROOT	
describe		Proposal	ROOT	
		Proposal	ROOT	
grammar		Proposal	ROOT	
error		Proposal	ROOT	
correction		Proposal	ROOT	
system		Proposal	ROOT	
		Proposal	ROOT	
at		Proposal	ROOT	
tree		Proposal	ROOT	
level		Proposal	ROOT	
directly.		Proposal	ROOT	
Experimen	nts B	Result	Support	
show		Result	Support	
that		Result	Support	
our		Result	Support	
system		Result	Support	
		Result	Support	
improves		Result	Support	
Et acore		Deput	Cupport	

RST as input features

- ► Majority-class Classifier
- CRF Classifier
- ▶ Bi-LSTM + CRF

Multi-task architecture

Transfer learning architecture

Results - Discourse features

Average F1-measures and standard deviations obtained with and without discourse (Disc), syntactic (Syn) and positional (Pos) features for the different types of classifiers in 10-fold cross-validation settings.

Algorithm	Features	AFu		ATy		APa	
		Avg. F1	σ	Avg. F1	σ	Avg. F1	σ
Majority Majority	Syn, Pos Syn, Pos, Disc	46.52 57.04	3.54 7.87	43.84 56.03	10.69 8.14	31.26 47.06	6.29 9.89
CRF CRF	Syn, Pos Syn, Pos, Disc	53.33 62.51	17.53 10.54	61.62 66.04	12.21 15.42	39.81 44.96	15.42 7.61
BiLSTM	No Feat.	69.94	6.30	66.94	8.82	41.74	10.43
BiLSTM BiLSTM	Disc Syn, Pos	71.07 68.45	8.51 4.22	69.72 67.91	8.70 9.84	43.23 42.95	10.17 9.06
BiLSTM	Syn, Pos, Disc	70.02	5.40	69.67	9.07	43.39	10.66

Results - Discourse features

- Incorporating discourse information contributes to better performances in all cases
- Deep learning models > Classical classifiers (no optimization + few data)
- Syn and Pos: no significant improvement
- Argumentative Parent: large number of categories + unbalanced data

Distance to parent					
adjacent	167				
1 arg. unit	55				
2 arg. units	36				
3 arg. units	17				
4 arg. units	11				
5 arg. units					
6 arg. units					

Results - TL

Average F1-measures and standard deviations with and without information transferred from discourse parsing tasks.								
Method	Input	AFu		АТу		APa	APa	
		Avg. F1	σ	Avg. F1	σ	Avg. F1		
Single-task	$[\vec{k}, \vec{e}]$	69.94	6.30	66.94	8.82	41.74	10.43	
Multi-task	$[\vec{k}, \vec{e}]$	67.38	6.90	65.65	12.39	40.69	9.98	
Seq. transfer	$[\vec{k}, \vec{e}, \vec{d}]$	70.98	7.17	70.38	8.39	43.44	11.16	

Results - TL

- ► Seq. transfer > Multi-task
- Seq. transfer advantage : can be applied to texts where no discourse level annotation is provided
- Multi-task : negative transfer effect (regularization effect introduced by aux. tasks too strong → affects performances of the main task)

Conclusion

- ► Including discourse data improves AM, independently of the learning algorithm
- ▶ Use other deep learning archi. (e.g. attention-based)
- Working on optimization could yield better performances

Other directions

- ► Transition-based parsing
- ▶ Using other corpora in a Multi-Task setting:
 - BioDRB (Prasad et. al., 2011)
 - Argument Annotated Scientific Publications (Lauscher, 2018)
 - Argumentative Zoning corpus (Teufel, 2014)
 - ArgMicroTexts (Peldsusz and Stede, 2016)
- Other tree properties (depth, width)

Thank you!

