PRESENTATION PROJET ALGO AV. Intelligence Artificielle Conception d'un Système Expert

Lundi 11/03/24 – Vendredi 15/03/24 ISEN 3

PROJET D'APPLICATION DU COURS D'ALGO AVANCEE

Dans l'alignement du cours d'algorithmique avancée, utilisation des aspects suivants du C :

- listes chaînées,
- récursivité,

Mais aussi une démarche projet

Et enfin un domaine d'application spécifique

ISEN MÉDITERRANÉE L'ÉCOLE DES INGÉNIEURS DU NUMÉRIQUE

SUJET PROPOSE

Sujet Système Expert:

- Spécifications du système expert (moteur d'inférences),
- Développement du système expert,
- spécification d'un domaine d'expertise à l'aide de règles (base de connaissances)

DEMARCHE PROJET (1)

- A intégrer impérativement pour tout élève ingénieur.
- L'objectif *réussite projet* se trouve à l'intérieur du triangle vertueux :

- Gérer les délais, le temps : son temps, (ou son manque de temps)
- Gérer les coûts : essentiellement les dépassements de temps
- Gérer la qualité : le respect du cahier des charges, les normes de codage

ISEN MÉDITERRANÉE L'ÉCOLE DES INGÉNIEURS DU NUMÉRIQUE

DEMARCHE PROJET (2)

- Préciser le périmètre fonctionnel
- Prévoir l'architecture et les composants logiciels
- Découper en tâches et sous-tâches,
- Evaluer les charges de travail
- Identifier les risques
- Prévoir et effectuer des points d'avancement

Dans le cas de ce projet : risque majeur de non maîtrise du planning

INTELLIGENCE ARTIFICIELLE LE TEST DE TURING (1)

- Le Mathématicien anglais Alan Turing 1912-1954 propose de tenter de répondre à la question :
- « Les machines peuvent-elles penser? ».

 Il propose donc un test pour répondre à cette question en 1950 dans son article Computing Machinery and Intelligence (considéré comme l'article fondateur de l'IA).

INTELLIGENCE ARTIFICIELLE LE TEST DE TURING (2)

- Pendant une heure, un juge dialogue sur n'importe quel thème avec un programme et un humain via des lignes de communication informatiques.
- Si il est impossible de déterminer l'interlocuteur humain e programme, alors ce dernier est considéré comme intellig (ou imitant l'intelligence).

- (1) Le prix Loebner (100.000 USD) récompense le programme qui réussit le test de Turing (pas encore gagné à ce jour!)
- (2) A noter que ChatGPT ne veut pas passer le test de turing (c'est une IA de service qui ne cherche pas à se faire passer pour un humain.

SYSTEME EXPERT (SE)

Les systèmes experts (S.E) viennent des recherches en Intelligence Artificielle (I.A).

Ils reproduisent certains raisonnements humains comme :

- les syllogismes,
- la déduction formelle.

RAISONNEMENT FORMEL (1)

Le syllogisme (logique aristotéliscienne) :

"Tous les Hommes sont Mortels",

or "les Grecs sont des Hommes",

donc "les Grecs sont Mortels"

C'est un modèle de raisonnement de type : {H est **M**} or {**G** est H} donc {G est M}.

Projet d'Algo avancée : IA & Systèmes Experts

RAISONNEMENT FORMEL (2)

 Les systèmes experts utilisent un raisonnement logique basé sur une règle d'inférence comme les syllogismes.
 C'est le *modus ponens* ou chaînage avant (fonctionnant de la sorte :

{Si A est vrai} et {Si A implique B}, alors on peut déduire que {B est vrai}.

Nota : les systèmes experts font aussi du chaînage arrière

ARCHITECTURE D'UN SYSTEME EXPERT

Un système expert est composé:

- d'un moteur d'inférences (capable de déduire des connaissances). Il est générique c'est celui que vous allez
 - devoir coder avec deux modes:
 - Le chainage avant
 - · Le chainage arrière
- d'une base de règles (expertise d'un domaine). Vous devez produire un exemple adapté à une situation.
- d'une base de faits (les données)

A noter que les règles sont formées d'une ou plusieurs hypothèses devant toutes être vérifiées et d'une seule conclusion (qui devient vraie si toutes les hypothèses sont vérifiées.

MOTEUR D'INFERENCES FAITS REGLES INTERFACE EXPERT

INTERFACE UTILISATEUR

FONDEMENTS DES SYSTEMES EXPERTS

Le type de raisonnement couramment reproduit par les systèmes experts est le raisonnement logique basé sur une règle d'inférence fonctionnant de la sorte : "Si A est vrai" et "Si A implique B", alors on peut déduire "B est vrai".

Ce sont des systèmes formels basés sur la logique : exemple de règles d'inférences

Modus ponens (chaînage avant)

Si A et (A -> B) Alors on **déduit** B (noté A, (A-> B) I— B)

Modus tollens (chaînage arrière)

Si non B et (A -> B) Alors on **déduit** non A

Enchaînement

Si A -> B et B-> C alors on déduit A -> C

FONDEMENTS DES SYSTEMES EXPERTS (SUITE)

On rappelle que la proposition logique "A implique B" ne prouve pas que B est vrai. Pour cela, il faut que la prémisse de l'implication soit vraie.

- Si la règle d'inférence ne produit que des phases vraies : la théorie est dite **cohérente**,
- Si la règle d'inférence produit toutes les phases vraies : la théorie est dite **complète**,
- Enfin une théorie complète est **décidable** s'il existe un algorithme qui permet de déterminer si un énoncé quelconque est (logiquement) vrai ou non.

Projet d'Algo avancée : IA & Systèmes Experts

COMPREHENSION DES MECANISMES D'INFERENCES

- 1. L'exemple proposé permet de comprendre le mode opératoire du **chainage avant** (à vous de le faire)
- Il permet aussi de comprendre le mode opératoire du chaînage arrière.
- Il montre que la recherche d'une solution oblige le moteur d'inférences à faire des **tentatives**.
- En effet l'arbre et/ou et parcouru jusqu'à ce qu'une solution soit trouvée.

UN EXEMPLE SIMPLE

Règles

$$b \rightarrow x;$$

$$a x \rightarrow h;$$

Faits

b;

c;

A noter que la syntaxe des règles et des faits devra suivre la syntaxe présentée :

- Hypothèses séparées par des espaces,
- Conclusion unique (derrière la flèche ->).
- Fin de la règle avec un point-virgule (comme en C!)

Faire l'exercice par groupe :

Toutes les règles dont toutes les hypothèses sont des faits conduisent à des faits déduits

Déduire tous les faits possibles à partir des faits initiaux.

Prouver que h est vrai.

Expliquer le raisonnement, c'est-à-dire les règles utilisées.

Proposer un algorithme itératif ou récursif.

Exemple sur la base de connaissance :

Démontrer que H est vrai

Suivi de l'algorithme de chainage arrière


```
Règles
b d e -> f;
g d -> a;
f c -> a;
b -> x;
e -> d;
a x -> h;
c -> d;
x c -> a;
x b -> d;

Faits
b;
c;
```



```
Règles
b d e -> f;
g d -> a;
f c -> a;
b -> x;
e -> d;
a x -> h;
c -> d;
x c -> a;
x b -> d;
```



```
Règles
b d e -> f;
g d -> a;
f c -> a;
b -> x;
e -> d;
a x -> h;
c -> d;
x c -> a;
x b -> d;
```



```
Règles
b d e -> f;
g d -> a;
f c -> a;
b -> x;
e -> d;
a x -> h;
c -> d;
x c -> a;
x b -> d;
```



```
Règles
b d e -> f;
g d -> a;
f c -> a;
b -> x;
e -> d;
a x -> h;
c -> d;
x c -> a;
x b -> d;
```



```
Règles
b d e -> f;
g d -> a;
f c -> a;
b -> x;
e -> d;
a x -> h;
c -> d;
x c -> a;
x b -> d;
```


ISEN MÉDITERRANÉE L'ÉCOLE DES INGÉNIEURS DU NUMÉRIQUE


```
Règles
b d e -> f;
g d -> a;
f c -> a;
b -> x;
e -> d;
a x -> h;
c -> d;
x c -> a;
x b -> d;
```



```
Chaînage arrière (But, Base-de-règles, Base-de-faits)
Début
    Résultat ← faux
```

```
Si But n'est pas dans Base-de-faits alors
{ Règle = première(Base-de-règles)
  Tant que Base-de-règles non vide et Résultat = faux faire
       Si Conclusion (Règle) = But alors
     { /*Vérifier que toutes les Hypothèses peuvent être vérifiées à partir de la Base-de-
faits */
        Hypothèse ← première-hypothèse(Règle)
        Continue ← vrai
        Tant que Existe(Hypothèse) et Continue faire
              Continue = Chaînage arrière (Hypothèse, Base-de-règles, Base-de-faits)
              Hypothèse ← hypothèse-suivante(Règle)
        } fin tant que
        /* Si toutes les Hypothèses sont vérifiées la conclusion est vérifiée
                  Sinon la conclusion n'est pas vérifiée */
       Résultat = Continue
     } fin si
     Règle ← suivante(Base-de-règles)
  }fin tant que
Sinon /* But est dans Base-de-faits */
Résultat ←vrai
```

Algorithme de chainage arrière en pseudo-code

Retourne (Résultat)

POUR AUJOURD'HUI...

L'équipe-projet choisit un sujet (une thématique d'expertise) et s'organise

- 1. Mettez en forme l'algorithme de chainage avant
- 2. Réfléchissez au sujet de votre base de connaissance (diagnostic de pannes, météo, arbre de décision...)
- 3. Organiser les tâches à réaliser et planifier les réalisations...

FONCTIONNALITES A METTRE EN OEUVRE

- Lecture (et intégration dans la base de règles) de fichiers de règles au format donné.
- Saisie de règles (intégration dans la base de règle)
- Saisie de faits (intégration dans la base de faits)
- Enregistrement de la base de règles dans un fichier texte (extension kbs)
- Appel de la fonctionnalité chainage avant, avec la question "que voulez-vous démontrer?"
- Appel de la fonctionnalité chainage arrière, avec la question "prouver que XXX est vrai"

PROCEDER PAR ETAPES

Commencer par le projet a minima.

- Vous devez présenter un exécutable qui répond strictement au cahier des charge.
- Vous pouvez faire une version adaptée au problème spécifique que vous traitez.

- IA générative (Machine Learning): capable de résoudre tout type de problème pour peu qu'elle ait été entrainée. Mais consommatrice de ressources, non stable pour les résultats, ne peut pas expliquer son raisonnement.
- IA Symbolique (Système Expert) : permet des raisonnements de type déduction ou induction. Base de connaissance doit être alimentée par un expert. Sait expliquer son raisonnement.

PROJET = ŒUVRE

 Le résultat peut être éloigné de l'objectif initial.

- Sur un projet normal cette dérive est interdite (coût).
- Sur le projet IA c'est encouragé dès lors que vous avez (une version qui) rempli(t) le Cahier des charges.

AJOUT DE NOUVELLES FONCTIONNALITES

- Les fonctionnalités minimales sont inscrites au cahier des charges.
- Certains projets intègrent :
 - un module interactif (questions/réponses)
 avec l'utilisateur,
 - la trace (preuve de démonstration)