UNIVERSIDADE DE AVEIRO Departamento de Matemática

Exame de Recurso de Matemática Discreta (2007/2008)

7 Julho de 2008

Justifique devidamente as suas respostas.

(Duração: 2,5 horas)

1- Considere as seguintes afirmações:

- a) Fernando Alonso é piloto de Fórmula 1.
- b) Todo o piloto de Fórmula 1 é um desportista.
- c) Todo o desportista é vencido por alguém.
- (2) 1.1 Exprima as afirmações das alíneas a), b) e c) como fbf's do cálculo de predicados.
- (2) 1.2 Prove, usando o Princípio de Resolução, que Fernando Alonso pode ser vencido.
- **2-** Seja R uma relação binária definida num conjunto A.
- (2) **2.1** Mostre que se R é reflexiva e transitiva então $R \cap R^{-1}$ é uma relação de equivalência, onde R^{-1} representa a relação inversa de R.
- (2) **2.2** Considere $A = \mathbb{Z}$ e R a relação definida em A por

$$xRy \Leftrightarrow x = y a$$
, para algum $a \in \mathbb{Z}$.

Tendo em conta 2.1, mostre que $R \cap R^{-1}$ é uma relação de equivalência e determine o conjunto quociente de $A/(R \cap R^{-1})$.

- **3-** Pretendem-se fazer bandeiras com 12 riscas horizontais utilizando as cores: C_1 =verde, C_2 =branco e C_3 =azul. Quantas bandeiras diferentes podemos obter:
- (1) **3.1** No caso de nenhuma bandeira ter a cor verde (indique o princípio combinatório aplicado).
- (1) 3.2 No caso em que quaisquer três riscas consecutivas têm cores diferentes?
- (1) 3.3 No caso de existirem 4 riscas verdes, 6 riscas brancas e 2 riscas azuis?
- (3)4- Determine uma fórmula não recursiva para a sucessão (a_n) dada pela seguinte relação de recorrência: $a_0=0,\ a_1=a_2=1,\ e\ a_{n+3}=3a_{n+1}+2a_n+2,\ n\geq 0.$
- (3)5- Determine o código de Prüfer da árvore a seguir representada.

(3)6- Considere a matriz $W = [w_{ij}]$ dos pesos w_{ij} associados às arestas $ij \in E(G)$ do grafo G,

$$A = \begin{bmatrix} \infty & 3 & \infty & 4 & \infty & \infty \\ 3 & \infty & 2 & \infty & 2 & \infty \\ \infty & 2 & \infty & 4 & \infty & 1 \\ 4 & \infty & 4 & \infty & 3 & \infty \\ \infty & 2 & \infty & 3 & \infty & 6 \\ \infty & \infty & 1 & \infty & 6 & \infty \end{bmatrix},$$

e determine a árvore abrangente de peso mínimo com recurso ao algoritmo de Kruskal.