

Gene Expression for Biomarker Discovery

BYRON REEVE & CAROLINE BELTRAN
UWC BIOMARKERS MODULE
20 AUGUST 2019

Measuring gene expression

- •Central dogma: DNA → RNA → Protein
- •Formation of functional proteins starts with transcription of coding genes (DNA) into mRNA
- •Nearly all cells contain the same set of genes but not all genes are expressed
 - Gene expression is dynamic
 - Different genes and quantities at different times
 - Same gene may be expressed differently in different conditions and cells (RNA editing, modification, alternative splicing...)
- •Quantify level at which gene is expressed within cell, tissue or organism
 - Measure the **transcriptome**
 - Coding: mRNA
 - Non-coding: rRNA, tRNA, short and long non-coding RNAs regulatory function

Gene expression XIST RNA and X Chromosome inactivation

Formation of functional proteins starts with transcription of coding genes into mRNA

Nearly all cells contain the same set of genes but not all genes are expressed

- Gene expression is dynamic
- Same gene may be expressed differently in different conditions and cells

Quantify level at which gene is expressed within cell, tissue or organism

- Measure the **transcriptome**
- Coding: mRNA
- Non-coding: rRNA, tRNA, short and long non-coding RNAs

regulatory function

Available methods for transcriptomics

Subdivided into two categories:

- 1. Targeted: Northern Blots (single genes), RT-qPCR (multiple genes)
- 2. Untargeted: global analysis of expression profiles
 - Gene microarrays:
 - Probes immobilized on surface
 - a priori sequence
 - Limited dynamic range
 - RNA-Sequencing: Whole Transcriptome Shotgun Sequencing [Next Generation Sequencing (NGS) of CDNA]

Gene Microarrays

- Analysis of gene expression whose sequence is already known
- Up to thousands of genes
- DNA fragments (probes) representing coding region of genes are immobilized onto surface
- cDNA labelled with dyes and hybridized
- Relative gene expression ratio of two fluorophores
- Cross hybridization
 - Need a priori knowledge
 - Difficult to detect low expression genes

RNA Sequencing

- Whole Transcriptome Shotgun Sequencing (WTSS)
 - Entire transcriptome [mRNA, tRNA, non-coding, splicing events and post-transcriptional modifications (PTMs)]
 - Mutations, single nucleotide polymorphisms (SNPs), insertions, deletions, copy number variations, chromosome rearrangements
- Small amount of starting material (~100 ng RNA)
 - Immense amount of data
- Large dynamic range and high sensitivity

RNA Seq Workflow

A survey of best practices for RNA-seq data analysis

Ana Conesa ≅, Pedro Madrigal ≊, Sonia Tarazona, David Gomez-Cabrero, Alejandra Cervera, Andrew McPhersor Michał Wojciech Szcześniak, Daniel J. Gaffney, Laura L. Elo, Xuegong Zhang and Ali Mortazavi ≌

Genome Biology 2016 17:13

https://doi.org/10.1186/s13059-016-0881-8 © Conesa et al. 2016

Published: 26 January 2016

- 1. Library Preparation
 - RNA Isolation: Dnase treat, RNA quality (RIN), quantify
 - RNA Selection/Depletion (90% = rRNA)
 - "As is"
 - Poly A selection: mature processed mRNAs
 - Ribosomal depletion
 - cDNA synthesis (RNA reverse transcribed to cDNA)
 - Sequence purification (remove low quality sequences)
- 2. Sequencing: NGS platform
- 3. Analysis
 - Transcriptome assembly (*de novo* or sequence guided)
 - Differential gene expression: count number of reads that mapped to each locus in transcriptome assembly
 - Co-expression networks/functional analysis

The final test will look at ratios: $\frac{6}{5}$ $\frac{5}{6}$ $\frac{3}{4}$

RNA Seq Workflow

1. Library Preparation

- RNA Isolation: Dnase treat, RNA quality (RIN), quantify
- RNA Selection/Depletion (90% = rRNA)
 - "As is"
 - Poly A selection: mature processed mRNAs
- cDNA synthesis (RNA reverse transcribed to cDNA)
- 2. Sequencing: NGS platform
- 3. Analysis
 - Transcriptome assembly (*de novo* or sequence guided) Potential disease gene
 - Gene expression: count number of reads that mapped to each locus in transcriptome assembly
 - Co-expression networks

Bioinformatics

- Bulk of your time
- Highly complex
- Quality control of raw reads: pre-processing, filtering, trimming
- Quality control of mapping
- Quality control of counts
- Statistical analysis for differential expression
- Multivariate statistical analysis/visualization to assess transcriptome-wide differences among samples
- Biological insight
- •Tools are constantly evolving!

Sampling Design

- What is your research question?
 - Tissue to target?
 - Homogeneous sampling
 - Replicates (biological and technical)
 - RNA yield?
- Stabilize RNA
 - Snap freezing: immediate storage at -80°C
 - RNA Later/Trizol/RNA Later
- RNA is not a stable molecule:
 - Success is dependent on pure and intact RNA
 - Act fast
 - RNase-free tubes and reagents

Assumptions

Protein activity is regulated: phosphorylation, ubiquitation

mRNA templates have different speeds of protein production: rate of mRNA degradation, alternative splicing...

Loss during RNA extraction, conversion of cDNA not 100%

Fail to map reads to correct gene, biases on reading cDNA fragments

Phenotype

Define the phenotype

Proteins

Proxy for protein activity

mRNA levels

Represent the RNA pool we've extracted

cDNA pool

Represent the cDNA pool we've created

RNA Seq reads

Single Cell RNA Seq

- Bulk sequencing = average expression profile for all the constituent cells
 - Fail to identify if a change in the expression profile is due to a change in regulation or composition in which one cell type arises to dominate the population
- RNA profiling of single cells
- Isolate single cells from tissue/cell suspension (e.g. Fluidigm)
 - Microfluidics/FACS
 - Laser capture microdissection
- Hundreds of single cells in one experiment
- Spatial and cellular context of cells with their transcriptomes

Validation

- Whole-transcriptome experiments must be validated by **independent technique**
 - RT-qPCR
 - *In situ* hybridization
 - Functional validation: gene knock-down/rescue experiment
 - Proteomics
- Validation is important especially if you do not have many biological replicates
- Target choice is important:
 - Sequence depth
 - Pathway relevance
 - New biological replicates

Application in the clinic

Pathogen detection

AlloMap

- Non-invasive gene expression-based blood test for clinical care of heart transplant recipients
- Quantified score for the risk of rejection based on the measurement of expression of 20 genes

"Personalised medicine"

REVIEWS

"multi-gene Fingerprints"

((iii) APPLICATIONS OF NEXT-GENERATION SEQUENCING

Translating RNA sequencing into clinical diagnostics: opportunities and challenges

Table 1 | Selected examples of current RNA-based clinical tests

RNA biomolecule	Method	Examples	Use
Viral RNA	qRT-PCR	 Influenza virus⁶⁸ Dengue virus⁶⁸ HIV⁷⁰ Ebola virus⁷¹ 	Viral detection and typing
mRNA	qRT-PCR	AlloMap (CareDx; heart transplant) ^{15,16} Cancer Type ID (BioTheranostics) ¹⁴³	Diagnosis
	Microarray	Afirma Thyroid Nodule Assessment (Veracyte) ¹¹⁶	Diagnosis
	qRT-PCR	OncotypeDx (Genome Health; breast, prostate and colon cancer) Breast Cancer Index (BioTheranostics) Prolaris (Myriad; prostate cancer) 136	Prognosis
	Digital barcoded mRNA analysis	Prosigna Breast Cancer Prognostic Gene Signature (Nanostring) ¹⁴⁹	Prognosis
	Microarray	MammaPrint (Agendia; breast cancer) ¹³⁴ ColoPrint (Agendia; colon cancer) ¹⁵⁰ Decipher (Genome Dx; prostate cancer) ¹⁵¹	Prognosis
miRNA	Місгоагтау	Cancer Origin (Rosetta Genomics) ¹⁵²	Diagnosis
Fusion transcript	qRT-PCR	AML (RUNX1-RUNX1T1) ¹⁸	Diagnosis
	qRT-PCR	BCR-ABL1 (REF. 21)	Monitoring molecular response during therapy
	qRT-PCR (exosomal RNA)	ExoDx Lung (ALK) (Exosome Dx) ¹⁶¹	Fusion detection
	RNA-seq	FoundationOne Heme ^{2,1}	Fusion detection

AML, acute myeloid leukaemia; BCR, breakpoint cluster region; miRNA, microRNA; qRT-PCR, quantitative reverse transcription PCR; RNA-seq, RNA sequencing; RUNX1, runt-related transcription factor 1; RUNX1T1, runt-related transcription factor 1 translocated to 1 (cyclin D related).

Summary

- Transcriptomics offers insights into how gene expression dictates and controls cell physiology
- RNA Seq offers a versatile, comprehensive solution with high reproducibility and resolution without "prior knowledge"
- Bioinformatics of transcriptomic data is challenging and complex
- Experimental design should be carefully considered and appropriate number of replicates calculated
- Transcriptomics are being used more routinely in disease management