Bachelorarbeit

Explizite Berechnung der Levelt-Turrittin-Zerlegung für spezielle D-Moduln

vorgelegt von Maximilian Huber

am Institut für Mathematik der Universität Augsburg

betreut durch Prof. Dr. Marco Hien

abgegeben am 04.07.2013

Inhaltsverzeichnis

Ei	nleitung	V			
1		1 2 3 3			
2	Meromorphe Zusammenhänge 2.1 Meromorphe Zusammenhänge 2.2 Äquivalenz zu holonomen lokalisierten D-Moduln 2.3 Newton-Polygon	5 7 8			
3	Operationen auf meromorphen Zusammenhängen3.1Tensorprodukt3.2pull-back und push-forward3.3Fouriertransformation3.4Betrachten bei Unendlich3.5Twisten von meromorphen Zusammenhängen	12 12 18 18 18			
4		26 26 27 29			
5	Explizite Berechnung einer Levelt-Turrittin-Zerlegung 5.1 Betrachte \mathcal{M}_{φ} für allgemeine φ	31 32 36 43			
6	Schluss				
Ar	nhang	47			
Α	A Aufteilung von $t arphi'(t)$				
В	Genaueres zu $(x^2\partial_x)^k$	49			
C	Quelltexte C.1 ComplRat.hs	50 50 51			

In halts verzeichn is

α	SaveToFile hs	F.C.
() 3	Save Lottle ns	5.5

Abbildungsverzeichnis

2.1	Newton-Polygon zu $P_1 = x\partial_x^2 \dots \dots$
2.2	Newton-Polygon zu P_2
3.1	Newton-Polygon zu $P = x^3 \partial_x^2 - 4x^2 \partial_x - 1 \dots \dots$
3.2	Newton-Polygon zu $\rho^* P = \frac{1}{4} t^4 \partial_t^2 - \frac{1}{2} t^3 \partial_t - 1 \dots \dots$
3.3	Newton-Polygon zu P
3.4	Newton-Polygon zu \mathcal{F}_P
3.5	Newton-Polygon zu P
3.6	Newton-Polygon zu P^{∞}
4.1	Zu Bemerkung 4.8
4.2	Zu Beispiel 4.11
5.1	Newton-Polygon zu P_{φ} zusammen mit $H(x^{2(q-m)}\partial_x^{q-m})$
5.2	Newton-Polygon zu P_{φ}
5.3	Newton-Polygon zu $\rho^* P_{\varphi}$
5.4	Newton-Polygon zu \mathcal{N}
5.5	Newton-Polygon zu Q_1
5.6	Newton-Polygon zu Q_2
5.7	Die Beträge der v_n in Abhängigkeit von n für unterschiedliche u_{-2}
5.8	Wurzlkriterium angewendet auf die Koeffizienten
5.9	Quotientenkriterium angewendet auf die Koeffizienten

Tabellenverzeichnis

C.1	Numerisch	berechnete	Koeffizienten	von $v(t)$ fi	ir $u_{-2} = i$ bzw.	$a=\frac{1}{8}$	 53
				\ /	_	~	

Listings

C.1	ComplRat.hs	50
C.2	Koeffs.hs	51
C.3	estKoeffs.hs	52
C.4	SaveToFile.hs	53

Einleitung

In dieser Arbeit soll zunächst die Theorie der meromorphen Zusammenhänge eingeführt werden.

Im ersten Kapitel wird die Theorie der \mathcal{D} -Moduln eingeführt.

Im zweiten Kapitel werden die meromorphen Zusammenhänge Definiert, diese sind das wichtigste Objekt, dass in dieser Arbeit diskutiert werden soll. Ein wichtiges Resultat, in diesen Kapitel, ist die Äquivalenz von meromorphen Zusammenhängen zu holonomen lokalisierten \mathcal{D} -Moduln, da man mit diesen gut rechnen kann.

Das dritte Kapitel beschäftigt sich ausschließlich mit Operationen auf meromorphen Zusammenhängen.

Im vierten Kapitel soll das Levelt-Turrittin-Theorem vorgestellt werden, welches

Das letzte Kapitel wird die Levelt-Turrittin-Zerlegung auf einen meromorphen Zusammenhang angewendet.

1 Moduln über \mathcal{D}_k

In diesem Kapittel wird die Weyl Algebra, wie in [Sab90, Chapter 1], in einer Veränderlichen einführen. Ähnlich wie auch in [AV09, Kapittel 2]. Allgemeiner und in mehreren Veränderlichen wird die Weyl-Algebra beispielsweise in [Cou95, Chapter 1] definiert.

Definition 1.1 (Kommutator). Sei R ein Ring. Für $a, b \in R$ wird

$$[a,b] = a \cdot b - b \cdot a$$

als der Kommutator von a und b definiert.

Proposition 1.2. Sei $k = \mathbb{C}[x]$ (bzw. $\mathbb{C}[x]$) bzw. $\mathbb{C}[x]$) ein Ring der Potenzreihen in x über \mathbb{C} . Sei $\partial_x : k \to k$ der gewohnte Ableitungsoperator nach x, so gilt

1.
$$[\partial_x, x] = \partial_x x - x \partial_x = 1$$

2. $f\ddot{u}r \ f \in k \ ist$

$$[\partial_x, f] = \frac{\partial f}{\partial x}. \tag{1.1}$$

3. Es gelten die Formeln

$$\left[\partial_x, x^k\right] \stackrel{\text{(1.1)}}{=} \frac{\partial x^k}{\partial x} = kx^{k-1} \tag{1.2}$$

$$[\partial_x^j, x] = j\partial_x^{j-1} \tag{1.3}$$

$$[\partial_x^j, x^k] = \sum_{i>1} \frac{k(k-1)\cdots(k-i+1)\cdot j(j-1)\cdots(j-i+1)}{i!} x^{k-i} \partial_x^{j-i}$$
(1.4)

Beweis. Die erste Aussage ist klar. Für die zweite Aussage gilt für ein Testobjekt $g \in k$:

$$[\partial_x, f] \cdot g = \underbrace{\partial_x (fg) - f \partial_x g}_{= (\partial_x f)g + \underbrace{f(\partial_x g) - f(\partial_x g)}_{= 0}}_{= 0}$$
$$= (\partial_x f)g.$$

Der rest der Proposition wird beispielsweise in [Sab90, 1.2.4.] oder [AV09, Kor 2.8] bewiesen.

1.1 Weyl-Algebra und der Ring \mathcal{D}_k

Sei dazu $\frac{\partial}{\partial x} = \partial_x$ der Ableitungsoperator nach x und sei $f \in \mathbb{C}[x]$ (bzw. $\mathbb{C}[x]$). Man hat die folgende Kommutations-Relation zwischen dem *Ableitungsoperator* und dem *Multiplikations Operator* f:

$$\left[\frac{\partial}{\partial x}, f\right] = \frac{\partial f}{\partial x} \tag{1.5}$$

wobei die rechte Seite die Multiplikation mit $\frac{\partial f}{\partial x}$, also dem bereits abgeleiteten f, darstellt. Dies bedeutet, für alle $g \in \mathbb{C}[x]$ hat man

$$[\frac{\partial}{\partial x}, f] \cdot g = \underbrace{\frac{\partial(fg)}{\partial x} - f \cdot \frac{\partial g}{\partial x}}_{= \underbrace{\frac{\partial f}{\partial x} \cdot g + \underbrace{f \cdot \frac{\partial g}{\partial x} - f \cdot \frac{\partial g}{\partial x}}_{= 0}}_{= 0}$$
$$= \underbrace{\frac{\partial f}{\partial x} \cdot g}_{= 0}.$$

Definition 1.3. Definiere nun den Ring \mathcal{D}_k als die Quotientenalgebra der freien Algebra, welche von dem Koeffizientenring in k zusammen mit dem Element ∂_x , erzeugt wird, Modulo der Relation (1.5). Wir schreiben diesen Ring auch als:

- $A_1(\mathbb{C})$ falls $k = \mathbb{C}[x] := \{\sum_{i=1}^N a_i x^i \mid N \in \mathbb{N}\}$, und nennen ihn die Weyl Algebra.
- \mathcal{D} falls $k = \mathbb{C}\{x\} := \{\sum_{i=1}^{\infty} a_i x^i \mid \text{pos. Konvergenz adius}\}$ die konvergenten Potenzreihen.
- $\widehat{\mathcal{D}}$ falls $k = \mathbb{C}[x] := \{\sum_{i=1}^{\infty} a_i x^i\}$ die formalen Potenzreihen.
- \mathcal{D}_K falls $k=K:=\mathbb{C}(\{x\}):=\mathbb{C}\{x\}[x^{-1}]$ der Ring der Laurent Reihen.
- $\mathcal{D}_{\widehat{K}}$ falls $k = \widehat{K} := \mathbb{C}(\!(x)\!) := \mathbb{C}[\![x]\!][x^{-1}]$ der Ring der formalen Laurent Reihen^[1].

Bemerkung 1.4. 1. Es bezeichnet der Hut (^) das jeweils formale Pendant zu einem konvergentem Objekt. Dementsprechend könnte man auch $\mathbb{C}[\![x]\!]$ für $\widehat{\mathbb{C}\{x\}}$ schreiben.

- 2. Es gilt $\mathcal{D}[x^{-1}] = \mathcal{D}_K$ und $\widehat{\mathcal{D}}[x^{-1}] = \mathcal{D}_{\widehat{K}}$.
- 3. Offensichtlich erhält \mathcal{D}_k in kanonischer Weise eine nichtkommutative Ringstruktur, dies ist in [AV09, Kapittel 2 Section 1] genauer ausgeführt.

Proposition 1.5. Jedes Element in \mathcal{D}_k kann auf eindeutige Weise als $P = \sum_{i=0}^n a_i(x) \partial_x^i$, mit $a_i(x) \in k$, geschrieben werden.

Beweis. Siehe [Sab90, Proposition 1.2.3].

Definition 1.6. Sei $P = \sum_{i=0}^{n} a_i(x) \partial_x^i$, wie in Proposition 1.5, gegeben, so definiere

$$\deg P := \max \left\{ \{ i \mid a_i \neq 0 \} \cup \{ -\infty \} \right\}$$

als den Grad (oder den ∂_x -Grad) von P.

^[1] Wird in [AV09] mit $\widehat{\mathcal{D}}_{\widehat{K}}$ bezeichnet.

1.2 (Links-) \mathcal{D} -Moduln

Da \mathcal{D} ein nichtkommutativer Ring ist, muss man vorsichtig sein und zwischen Links- und Rechts- \mathcal{D} -Moduln unterscheiden. Wenn im folgendem von \mathcal{D} -Moduln gesprochen wird, werden immer Links- \mathcal{D} -Moduln gemeint.

Beispiel 1.7. Hier einige Beispiele für (Links-) \mathcal{D} -Moduln

- 1. \mathcal{D} ist ein Links- und Rechts- \mathcal{D} -Modul
- 2. $\mathcal{M} = \mathbb{C}[x]$ oder $\mathcal{M} = \mathbb{C}[x, x^{-1}]$ jeweils durch $x \cdot x^m = x^{m+1}$ und $\partial(x^m) = mx^{m-1}$
- 3. Führe formal, also ohne analytischen Hintergrund, ein Objekt $\exp(\lambda x)$ ein, mit $\partial(f(x)\exp(\lambda x)) = \frac{\partial f}{\partial x}\exp(\lambda x) + f\lambda\exp(\lambda x)$. So ist $\mathcal{M} = \mathbb{C}[x]\exp(\lambda x)$ ein \mathcal{D} -Modul.
- 4. Führe analog ein Symbol $\log(x)$ mit den Eigenschaften $\partial_x \log(x) = \frac{1}{x}$ ein. Erhalte nun das \mathcal{D} -Modul $\mathbb{C}[x] \log(x) + \mathbb{C}[x, x^{-1}]$. Dieses Modul ist über \mathcal{D} durch $\log(x)$ erzeugt und man hat

$$\mathbb{C}[x]\log(x) + \mathbb{C}[x, x^{-1}] = \mathcal{D} \cdot \log(x) = \mathcal{D}/\mathcal{D}(\partial_x x \partial_x).$$

1.3 Holonome \mathcal{D}_k -Moduln

Definition 1.8. Sei \mathcal{M}_k ein Links- \mathcal{D}_k -Modul ungleich \mathcal{D}_k . \mathcal{M}_k heißt *holonom*, falls es ein Element $m \in \mathcal{M}_k$ gibt, das \mathcal{M}_k als \mathcal{D}_k -Modul erzeugt. Im speziellen folgt damit, dass $\mathcal{M}_k \cong \mathcal{D}_k/\mathfrak{a}$ für ein $0 \neq \mathfrak{a} \triangleleft \mathcal{D}_k$.

Bemerkung 1.9. In [Cou95] wird der Begriff holonom über die Dimension definiert und bei [Sab90] über die charakteristische Varietät.

Bemerkung 1.10. Nach [Cou95, Prop 10.1.1] gilt

- Submoduln und Quotienten von holonomen \mathcal{D}_k -Moduln sind holonom
- ullet sowie endliche Summen von holonomen \mathcal{D}_k -Moduln sind holonom

und laut [Sab90, Thm. 4.2.3] gilt, dass

• für ein holonomes $\mathcal{D}_{\mathbb{C}\{x\}}$ -Modul $\mathcal{M}_{\mathbb{C}\{x\}}$ (bzw. ein $\mathcal{D}_{\mathbb{C}[x]}$ -Modul $\mathcal{M}_{\mathbb{C}[x]}$) ist die Lokalisierung

$$\mathcal{M}_{\mathbb{C}\{x\}}[x^{-1}] := \mathcal{M}_{\mathbb{C}\{x\}} \otimes_{\mathbb{C}\{x\}} K \qquad \text{(bzw. } \mathcal{M}_{\mathbb{C}[\![x]\!]}[x^{-1}] := \mathcal{M}_{\mathbb{C}[\![x]\!]} \otimes_{\mathbb{C}[\![x]\!]} \widehat{K} \text{)},$$

mit der $\mathcal{D}_{\mathbb{C}\{x\}}$ (bzw. $\mathcal{D}_{\mathbb{C}[\![x]\!]}$) Modul Struktur durch

$$\partial_x(m\otimes x^{-k})=((\partial_x m)\otimes x^{-k})-km\otimes x^{-k-1}$$

wieder holonom.

Satz 1.11. Sei \mathcal{M}_k ein holonomes \mathcal{D}_k -Modul, dann gilt, dass seine Lokalisierung isomorph zu $\mathcal{D}_k/\mathcal{D}_k \cdot P$, mit einem $P \in \mathcal{D}_k$ ungleich Null, ist.

Beweis. Siehe [Sab90, Cor 4.2.8].

2 Meromorphe Zusammenhänge

In diesem Kapittel werden wir das Konzept der meromorphen Zusammenhänge einführen und die folgenden zwei Eins-zu-Eins Entsprechungen besprechen:

$$\begin{array}{ccc} Systeme & Meromorphe & Lokalisierte \\ von & \longleftarrow 1-1 & \longrightarrow Zusammenhänge & \longleftarrow 1-1 & \longrightarrow holonome \\ ODEs & \mathcal{D}\text{-}Moduln \end{array}$$

Zum Schluss des Kapittels werden noch die Newton-Polygone eingeführt, welche als Invarianten für meromorphe Zusammenhänge fungieren sollen.

Wir beginnen mit der klassischen Theorie von gewöhnlichen Differentialgleichungen. Sei V ein geeigneter Funktionenraum, beispielsweise der Raum der holomorphen Funktionen.

Definition 2.1 (Systeme von ODEs). Für eine Matrix $A = (a_{ij}(x))_{ij} \in M(n \times n, K)^{[1]}$ definieren wir das System von gewöhnlichen Differentialgleichungen (kurz System von ODEs) als

$$\frac{d}{dx}u(x) = Au(x), \qquad (2.1)$$

wobei $u(x) = {}^t(u_1(x), \ldots, u_n(x))$ ein Spaltenvektor^[2] von unbekannten Funktionen ist. Wir sagen $v(x) = {}^t(v_1(x), \ldots, v_n(x))$ ist eine *Lösung* von (2.1), falls $v_i \in V$ für alle $i \in \{1, \ldots, n\}$ und v die Gleichung (2.1), auf einer Umgebung um die 0, erfüllt.

Durch Setzen von w(x) := Tu(x), für eine invertierbare Matrix $T \in GL(n, K)^{[3]}$, erhält man aus 2.1 das äquivalente System

$$\frac{d}{dx}w(x) = (T^{-1}AT - T^{-1}\frac{d}{dx}T)w(x),$$

und damit erhalten wir die folgende Definition.

Definition 2.2 (Differenziell Äquivalent). Man nennt A und $B \in M(n \times n, K)$ (differenziell) äquivalent $(A \sim B)$ genau dann, wenn es ein $T \in GL(n, K)$ gibt, mit $B = T^{-1}AT - T^{-1}\frac{d}{dx}T$. Dementsprechend sind zwei Systeme von ODEs äquivalent, wenn ihre zugeordneten Matrizen differenziell äquivalent sind.

$$^{[2]}$$
Für $v=(v_1,\ldots,v_n)$ ein Vektor, bezeichnet $^tv:=\begin{pmatrix}v_1\\\vdots\\v_n\end{pmatrix}$ den transponierten Vektor.

 $^{^{[1]}}$ Es bezeichnet $M(n \times m, k)$ die Menge der n mal m dimensionalen Matrizen mit Einträgen in k.

 $^{^{[3]}}GL(n,K)$ bezeichnet die Menge der invertierbaren Matrizen in $M(n \times n,K)$.

Mit elementarer Theorie über gewöhnliche Differentialgleichungen lässt sich ein System von ODEs in eine einzige ODE der Form

$$\left(\underbrace{a_n \partial_x^n + a_{n-1} \partial_x^{n-1} + \dots + a_1 \partial_x + a_0}_{=:P}\right) \cdot u(t) = 0, \qquad (2.2)$$

mit $a_i \in K$ für alle $i \in \{0, ..., n\}$, umschreiben. Dieses so erhaltene $P \in \mathcal{D}_K$ ist ein sogenannter linearer Differentialoperator und es gilt

$$v(x)$$
 ist Lösung von $P \cdot u(x) = 0 \quad \Rightarrow \quad \forall Q \in \mathcal{D}_K$ ist $v(x)$ Lösung von $QP \cdot u(x) = 0$.

Also ist eine Lösung von $P \cdot u(x) = 0$ auch eine Lösung von $Q \cdot u(x) = 0$ für alle $Q \in \mathcal{D}_K \cdot P \triangleleft \mathcal{D}_K$. Diese Eigenschaft, dass ein linearer Differentialoperator P, ein Ideal bestimmt, wollen wir nun nutzen, um das Problem der Differentialgleichungen algebraisch zu betrachten.

2.1 Meromorphe Zusammenhänge

Nun wollen wir dieses klassische Gebilde in die moderne Sprache der meromorphen Zusammenhänge übersetzen.

Definition 2.3 (Meromorpher Zusammenhang). Ein meromorpher Zusammenhang (bei x = 0) ist ein Tupel $(\mathcal{M}_K, \partial)$ und besteht aus folgenden Daten:

- \mathcal{M}_K , ein endlich dimensionaler K-Vektor Raum und
- einer C-linearen Abbildung $\partial: \mathcal{M}_K \to \mathcal{M}_K$, genannt Derivation oder Zusammenhang, welche für alle $f \in K$ und $u \in \mathcal{M}_K$ die Leibnitzregel

$$\partial(fu) = f'u + f\partial u \tag{2.3}$$

erfüllen soll.

Bemerkung 2.4. Analog definiert man einen formalen meromorphen Zusammenhang $(\mathcal{M}_{\widehat{K}}, \partial)$ bestehend, genau wie in Definition 2.3, aus folgenden Daten:

- $\mathcal{M}_{\widehat{K}}$, ein endlich dimensionaler \widehat{K} -Vektor Raum und
- einer \mathbb{C} -linearen Derivation $\partial: \mathcal{M}_{\widehat{K}} \to \mathcal{M}_{\widehat{K}}$, welche die *Leibnitzregel* (2.3) erfüllen soll.

Bemerkung 2.5. Alle in dieser Arbeit vorgestellten Resultate, welche für meromorphe Zusammenhänge gelten, gelten auch für formale meromorphe Zusammenhänge. Anderstherum gilt dies aber nicht, ein Beispiel hierfür ist Satz 2.28.

Bemerkung 2.6. Später wird man auf die Angabe von ∂ verzichten und einfach \mathcal{M}_K als den meromorphen Zusammenhang bezeichnen, auch wird manchmal auf die Angabe von K im Subscript verzichtet, sofern klar ist, welches K gemeint ist.

Definition 2.7. Seien $(\mathcal{M}, \partial_{\mathcal{M}})$ und $(\mathcal{N}, \partial_{\mathcal{N}})$ zwei meromorphe Zusammenhänge über k. Eine k-lineare Abbildung $\varphi : \mathcal{M} \to \mathcal{N}$ ist ein Morphismus von meromorphen Zusammenhängen, falls sie $\varphi \circ \partial_{\mathcal{M}} = \varphi \circ \partial_{\mathcal{N}}$ erfüllt. In diesem Fall schreiben wir auch $\varphi : (\mathcal{M}, \partial_{\mathcal{M}}) \to (\mathcal{N}, \partial_{\mathcal{N}})$. Ein solcher Morphismus ist ein Isomorphismus, falls die Abbildung $\varphi : \mathcal{M} \to \mathcal{N}$ ein Isomorphismus von k-Vektorräumen ist.

Definition 2.8. Wir erhalten damit die Kategorie der meromorphen Zusammenhänge über k mit

Objekte: (M, ∂) meromorpher Zusammenhang über k

Morphismen: $(M, \partial) \xrightarrow{f} (M', \partial')$ Morphismus von meromorphen Zusammenhängen.

Lemma 2.9. Sei \mathcal{M}_K ein endlich dimensionaler K-Vektor Raum mit ∂_1 und ∂_2 zwei darauf definierte Derivationen, so gilt, die Differenz zweier Derivationen ist K-linear.

Beweis. Seien ∂_1 und ∂_2 zwei Derivationen auf \mathcal{M}_K . Da ∂_1 und ∂_2 \mathbb{C} -linear, ist $\partial_1 - \partial_2$ \mathbb{C} -linear, also muss nur noch gezeigt werden, dass $(\partial_1 - \partial_2)(fu) = f \cdot (\partial_1 - \partial_2)(u) \ \forall f \in K$ und $u \in \mathcal{M}_K$ gilt.

$$(\partial_1 - \partial_2)(fu) = \partial_1(fu) - \partial_2(fu)$$

$$= f'u + f\partial_1 u - f'u - f\partial_2 u$$

$$= \underbrace{f'u - f'u}_{=0} + f \cdot (\partial_1 u - \partial_2 u)$$

$$= f \cdot (\partial_1 - \partial_2)(u).$$

Dieser lineare Unterschied zweier Derivationen lässt sich als Matrix darstellen, und so kommt man zur folgenden Definition

Definition 2.10 (Zusammenhangsmatrix). Sei $(\mathcal{M}_K, \partial)$ ein meromorpher Zusammenhang so wähle eine K-Basis $\{e_i\}_{i\in\{1,\dots,n\}}$ von \mathcal{M} . Dann ist die Zusammenhangsmatrix bzgl. der Basis $\{e_i\}_{i\in\{1,\dots,n\}}$ die Matrix $A=(a_{ij}(x))_{i,j\in\{1,\dots,n\}}\in M(n\times n,K)$ definiert durch

$$a_{ij}(x) := -^t e_i \partial e_j .$$

Damit ist, bezüglich der Basis $\{e_i\}_{i\in\{1,\ldots,n\}}$, die Wirkung von ∂ auf $u=:{}^t(u_1,\ldots,u_n)$ beschrieben durch $\partial(u)=u'(x)-Au(x)$, denn

$$\partial(u) = \partial\left(\sum_{i=1}^{n} u_i(x)e_i\right)$$

$$= \sum_{i=1}^{n} \left(u'_i(x) - \sum_{j=1}^{n} a_{ij}u_j(x)\right)e_i$$

$$= \sum_{i=1}^{n} u'_i(x)e_i - \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}u_j(x)e_i$$

$$= u'(x) - Au(x).$$

Somit ist die Bedingung $\partial u(x) = 0$, für $u(x) = \sum_{i=1}^{n} u_i e_i$ äquivalent zu der Gleichung

$$u'(x) = Au(x)$$

für $u(x) = {}^t(u_1(x), \ldots, u_n(x))$. Damit haben wir gesehen, dass jeder meromorphe Zusammanhang (\mathcal{M}, ∂) ausgestattet mit einer K-Basis $\{e_i\}_{i \in \{1, \ldots, n\}}$ von \mathcal{M} zu einem System von gewöhnlichen Differentialgleichungen zugeordnet werden kann.

Definition 2.11. Wenn wir umgekehrt mit einer Matrix $A = (a_{ij}(x)) \in M(n \times n, K)$, welche eine System von ODEs beschreibt, beginnen, können wir durch

$$\mathcal{M}_A := \bigoplus_{i=1}^n Ke_i$$
 und $\partial_A \sum_{i=1}^n u_i e_i := \sum_{i=1}^n \left(\frac{\partial u_i}{\partial x} - \sum_{j=1}^n a_{ij}(x) u_j \right) e_i$

den assoziierten meromorphen Zusammenhang $(\mathcal{M}_A, \partial_A)$ definieren.

Lemma 2.12. Sind A_1 , $A_2 \in M(n \times n, K)$ zwei Matrizen, die zwei Systeme von ODEs beschreiben, dann gilt

$$\frac{d}{dx}u(x) = A_1u(x) \qquad ist \ \ddot{a}quivalent \ zu \qquad \qquad \frac{d}{dx}u(x) = A_2u(x)$$

genau dann, wenn

$$(\mathcal{M}_{A_1}, \partial_{A_1})$$
 ist äquivalent zu $(\mathcal{M}_{A_2}, \partial_{A_2})$.

Damit haben wir eine Eins-zu-Eins Beziehung zwischen meromorphen Zusammenhängen und Systemen von ODEs. Genauer betrachtet wird dies beispielsweise in [HTT07, Sec 5.1] oder auch in [Sab90, Sec 3].

2.2 Äquivalenz zu holonomen lokalisierten \mathcal{D} -Moduln

Lemma 2.13 (Lemma vom zyklischen Vektor). Sei \mathcal{M}_K ein meromorpher Zusammenhang. Es existiert ein Element $m \in \mathcal{M}_K$ und eine ganze Zahl d so dass $m, \partial_x m, \ldots, \partial_x^{d-1} m$ eine K-Basis von \mathcal{M}_K ist.

Beweis. Ein Beweis ist beispielsweise in [Sab90, Thm 4.3.3] oder ausführlicher in [AV09, Satz 4.8] zu finden.

Lemma/Definition 2.14. Ist \mathcal{M}_K ein meromorpher Zusammenhang, dann existiert ein $P \in \mathcal{D}_K$, so dass $\mathcal{M}_K \cong \mathcal{D}_K/\mathcal{D}_K \cdot P$. So ein P wird dann als Minimalpolynom von \mathcal{M}_K bezeichnet.

Beweis. Siehe dazu [AV09, Satz 4.12]. \Box

Bemerkung 2.15. Dieses so definierte Minimalpolynom ist nicht eindeutig.

Proposition 2.16. In der Situation von Lemma 2.13 sei

$$\partial_x^d m = \alpha_{d-1} \partial_x^{d-1} m + \alpha_{d-2} \partial_x^{d-2} m + \dots + \alpha_1 \partial_x m + \alpha_0 m \qquad \alpha_i \in K$$

eine Basisdarstellung von $\partial_x^d m$, dann ist

$$\left(\underbrace{\partial_x^d - \alpha_{d-1}\partial_x^{d-1} - \alpha_{d-2}\partial_x^{d-2} - \dots - \alpha_1\partial_x - \alpha_0}_{=:P}\right) m = 0.$$

Da der ∂_x -Grad von P gleich d ist, folgt, dass P ein Minimalpolynom ist. Also gilt damit $\mathcal{M}_K \cong \mathcal{D}_K/\mathcal{D}_K \cdot P$.

Satz 2.17. Ist $P = P_1 \cdot P_2$ mit $P_1, P_2 \in \mathcal{D}_K$ so gilt

$$\mathcal{D}_K/\mathcal{D}_K \cdot P \cong \mathcal{D}_K/\mathcal{D}_K \cdot P_1 \oplus \mathcal{D}_K/\mathcal{D}_K \cdot P_2$$
.

Beweis. Beweisen wird dies in [AV09, Seite 57-64] oder auch in [Sab90, Seite 30-32]. \Box

Korollar 2.18. Sei $P = P_1 \cdot P_2$ mit $P_1, P_2 \in \mathcal{D}_K$ wie in Satz 2.17 so gilt

$$\mathcal{D}_K/\mathcal{D}_K \cdot (P_1 \cdot P_2) \cong \mathcal{D}_K/\mathcal{D}_K \cdot (P_2 \cdot P_1)$$
.

Beweis. Denn:

$$\mathcal{D}_{K}/\mathcal{D}_{K} \cdot P = \mathcal{D}_{K}/\mathcal{D}_{K} \cdot (P_{1} \cdot P_{2})$$

$$\cong \mathcal{D}_{K}/\mathcal{D}_{K} \cdot P_{1} \oplus \mathcal{D}_{K}/\mathcal{D}_{K} \cdot P_{2}$$

$$= \mathcal{D}_{K}/\mathcal{D}_{K} \cdot P_{2} \oplus \mathcal{D}_{K}/\mathcal{D}_{K} \cdot P_{1}$$

$$\cong \mathcal{D}_{K}/\mathcal{D}_{K} \cdot (P_{2} \cdot P_{1}).$$

Satz 2.19. Ein meromorpher Zusammenhang bestimmt ein holonomes lokalisiertes \mathcal{D}_K -Modul und umgekehrt.

Beweis. Dies wird beispielsweise in [Sab90, Thm 4.3.2] bewiesen.

2.3 Newton-Polygon

Jedes $P \in \mathcal{D}_{\widehat{K}}$, also insbesondere auch jedes $P \in \mathcal{D}_K$, lässt sich nach Proposition 1.5 eindeutig als

$$P = \sum_{k=0}^{n} a_k(x) \partial_x^k = \sum_{k=0}^{n} \left(\sum_{l=-N}^{\infty} \alpha_{kl} x^l \right) \partial_x^k$$

mit $a_k \in \widehat{K}$ bzw. $\alpha_{kl} \in \mathbb{C}$ schreiben. Betrachte das zu P dazugehörige

$$\begin{split} H(P) :&= \bigcup_{m,l \text{ mit } \alpha_{ml} \neq 0} \left((m,l-m) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \subset \mathbb{R}^2 \\ &= \bigcup_{m \text{ mit } a_m \neq 0} \left((m,deg(a_m) - m) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \subset \mathbb{R}^2 \,. \end{split}$$

Definition 2.20. Das Randpolygon der konvexen Hülle conv(H(P)) von H(P) heißt das Newton-Polygon von P und wird als N(P) geschrieben.

Bemerkung 2.21. Claude Sabbah definiert das Newton-Polygon in [Sab90, 5.1] auf eine andere Weise. Er schreibt

$$P = \sum_{k} a_k(x) (x\partial_x)^k$$

mit $a_k(x) \in \mathbb{C}\{x\}$ und definiert das Newton-Polygon als das Randpolygon der konvexen Hülle von

$$H'(P) := \bigcup_{m \text{ mit } a_m \neq 0} \left((m, deg(a_m)) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \subset \mathbb{R}^2.$$

Es bemerkt auch, das seine Definition, bis auf möglicherweise vertikales verschieben, zu Definition 2.20 äquivalent ist.

Definition 2.22. Die Menge slopes(P) (genannt Slopes) sind die nicht-vertikalen Steigungen von N(P), die sich echt rechts von $\{0\} \times \mathbb{R}$ befinden.

- Schreibe $\mathcal{P}(\mathcal{M})$ für die Menge der zu \mathcal{M} gehörigen Slopes.
- P heißt regulär oder regulär singulär : \Leftrightarrow slopes $(P) = \{0\}$ oder deg P = 0, sonst irregulär singulär.
- Ein meromorpher Zusammenhang $\mathcal{M}_{\widehat{K}}$ (bzw. \mathcal{M}_K) heißt regulär singulär, falls es ein regulär singuläres $P \in \mathcal{D}_{\widehat{K}}$ (bzw. $P \in \mathcal{D}_K$) gibt, mit $\mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$ (bzw. $\mathcal{M}_K \cong \mathcal{D}_K/\mathcal{D}_K \cdot P$).

Beispiel 2.23. 1. Ein einfaches Beispiel ist $P_1 = x^1 \partial_x^2$. Es ist abzulesen, dass

$$m=2$$
 und $l=1$

so dass

$$H(P_1) = ((2, 1-2) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0}) = \{(u, v) \in \mathbb{R}^2 | u \leq 2, v \geq -1\}.$$

In Abbildung 2.1 ist der Quadrant, der zum Monom $x\partial_x^2$ gehört (blau) sowie das Newton-Polygon eingezeichnet. Offensichtlich ist slopes $(P_1) = \{0\}$ und damit ist P_1 regulär singulär.

2. Sei $P_2 = x^4(x+1)\partial_x^4 + x\partial_x^2 + \frac{1}{x}\partial_x + 1$, so kann man das entsprechende Newton-Polygon konstruieren. Das Newton-Polygon wurde in Abbildung 2.2 visualisiert. Man erkennt, dass $\mathcal{P}(P_2) = \{0, \frac{2}{3}\}$ ist.

Bemerkung 2.24. Sei P ein Minimalpolynom zu \mathcal{M}_K . Für jedes $f \in \mathcal{D}_K^{\times [4]}$ gilt, dass $f \cdot P$ ebenfalls ein Minimalpolynom von cM_K ist, denn $\mathcal{D}_K \cdot P = \mathcal{D}_K \cdot (f \cdot P) \lhd \mathcal{D}_K$. Allerdings sind die zugehörigen Newton-Polygone möglicherweise vertikal verschoben.

Nach [Sab90, Seite 25] gilt, dass das Newton-Polygon, bis auf vertikales Verschieben, nur von dem assoziierten meromorphen Zusammenhang abhängt. Dies wird auch in [AV09, Bem 5.4] thematisiert.

 $^{^{[4]}}$ Für einen Ring R, bezeichnet R^{\times} die Einheitengruppe von R.

Abbildung 2.1: Newton-Polygon zu $P_1 = x\partial_x^2$

Abbildung 2.2: Newton-Polygon zu P_2

Definition 2.25. Seien $\varepsilon x^p \partial_x^q$ und $\varepsilon' x^{p'} \partial_x^{q'}$ zwei Monome aus $\mathcal{D}_{\widehat{K}}$, also mit $\varepsilon, \varepsilon' \in \mathbb{C}$ und $p, q, p', q' \in \mathbb{Z}$. Man sagt, dass $\varepsilon' x^{p'} \partial_x^{q'}$ ein *Term im Quadranten* von $\varepsilon x^p \partial_x^q$ ist, falls $p' \geq p$ und $q' \leq q$ gilt.

Bemerkung 2.26. • Anschaulich bedeutet dies, dass

$$H(\varepsilon x^p \partial_x^q) = \left((q, p-q) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \supset \left((q', p'-q') + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) = H(\varepsilon' x^{p'} \partial_x^{q'}) .$$

• Sei P ein Polynom, bei dem alle Koeffizienten im Quadranten von $\varepsilon x^p \partial_x^q$ sind, dann gilt:

$$H(P) = H(\varepsilon x^p \partial_x^q + \mathbf{T.i.Q. von} \ x^p \partial_x^q)$$
$$= H(\varepsilon x^p \partial_x^q)$$
$$\Rightarrow N(P) = N(\varepsilon x^p \partial_x^q).$$

Also können Terme, die sich bereits im Quadranten eines anderen Terms befinden und nicht der Term selbst sind, vernachlässigt werden, wenn das Newton-Polygon gesucht ist. Das **T.i.Q.** ist eine hier Abkürzung für Terme im Quadranten.

Bemerkung 2.27. Nach [Sab90] gilt sogar, dass beim kommutieren von zwei elementen $a,b\in\mathcal{D}_{\widehat{K}}$ nur Elemente im gemeinsamen Quadranten auftauchen, also es gilt

$$a \cdot b = b \cdot a + \mathbf{T.i.Q.}$$
 von $b \cdot a$.

Damit sieht man auch, das kommutieren innerhalb von P das Newton-Polygon zu P nicht ändert.

Ein erster Schritt zur Levelt-Turrittin-Zerlegung ist der folgende Satz, er erlaubt es, meromorphe Zusammenhänge "entlang der Slopes" zu zerlegen.

Satz 2.28. Sei $\mathcal{M}_{\widehat{K}}$ ein formaler meromorpher Zusammenhang und sei $\mathcal{P}(\mathcal{M}_{\widehat{K}}) = \{\Lambda_1, \dots, \Lambda_r\}$ die Menge seiner Slopes. Es existiert eine (bis auf Permutation) eindeutige Zerlegung

$$\mathcal{M}_{\widehat{K}} \cong \bigoplus_{i=1}^r \mathcal{M}_{\widehat{K}}^{(i)}$$

in formale meromorphe Zusammenhänge mit $\mathcal{P}(\mathcal{M}_{\widehat{K}}^{(i)}) = \{\Lambda_i\}.$

Beweis. Einen Beweis hierfür findet man in [Sab90, Thm 5.3.1] oder [AV09, 5.15].

Bemerkung 2.29. In Satz 2.28 ist es wirklich notwendig, formale meromorphe Zusammenhänge zu betrachten, denn das Resultat gilt nicht für konvergente meromorphe Zusammenhänge.

3 Operationen auf meromorphen Zusammenhängen

3.1 Tensorprodukt

Bemerkung 3.1. Hier einige Rechenregeln für das Tensorprodukt,

$$(M \otimes_R N) \otimes_S L \cong M \otimes_R (N \otimes_S L)$$

$$(3.1)$$

$$M \otimes_R R \cong M \tag{3.2}$$

Sei $f: M' \to M$ eine Abbildung, so gilt

$$N \otimes_R (M/\operatorname{im}(f)) \cong N \otimes_R M/\operatorname{im}(\operatorname{id}_R \otimes f)$$
(3.3)

Proposition 3.2. Seien $(\mathcal{M}, \partial_{\mathcal{M}})$ und $(\mathcal{N}, \partial_{\mathcal{N}})$ meromorphe Zusammenhänge. Sei $n \otimes n \in \mathcal{M} \otimes_K \mathcal{N}$. Durch Setzten von

$$\partial_{\otimes}(m\otimes n) = \partial_{\mathcal{M}}(m)\otimes n + m\otimes \partial_{\mathcal{N}}(n) \tag{3.4}$$

als die Wirkung von ∂ auf das K-Modul $\mathcal{M} \otimes_K \mathcal{N}$, wird $(\mathcal{M} \otimes_K \mathcal{N}, \partial)$ zu einem meromorphen Zusammenhang.

Lemma 3.3. Falls \mathcal{N} regulär und nicht Null, dann ist die Menge der Slopes von $\mathcal{M} \otimes \mathcal{N}$ genau die Menge der Slopes von \mathcal{M} .

Beweis. Siehe [Sab90, Ex
$$5.3.7$$
].

3.2 pull-back und push-forward

Es sei

$$\rho: \mathbb{C} \to \mathbb{C}, t \mapsto x := \rho(t) \qquad \in t\mathbb{C}[\![t]\!]$$

eine polynomielle Abbildung mit Bewertung $p \ge 1$. Hier werden wir meistens $\rho(t) = t^p$ für ein $p \in \mathbb{N}$ betrachten. Diese Funktion induziert eine Abbildung

$$\rho^* : \mathbb{C}\{x\} \hookrightarrow \mathbb{C}\{t\}, f \mapsto f \circ \rho$$
 bzw. $\rho^* : \mathbb{C}[\![x]\!] \hookrightarrow \mathbb{C}[\![t]\!], f \mapsto f \circ \rho$.

Analog erhalten wir

$$\rho^* : K \hookrightarrow L := \mathbb{C}(\{t\}), f \mapsto f \circ \rho \qquad \text{bzw.} \qquad \rho^* : \widehat{K} \hookrightarrow \widehat{L} := \mathbb{C}((t)), f \mapsto f \circ \rho,$$

wobei L (bzw. \widehat{L}) eine endliche Körpererweiterung von K (bzw. \widehat{K}) ist. Sei $\mathcal{M}_{\widehat{K}}$ ein endlich dimensionaler $\mathbb{C}((x))$ Vektorraum ausgestattet mit einem Zusammenhang ∇ .

Definition 3.4 (pull-back). Der *pull-back* oder das *inverse Bild* $\rho^+\mathcal{M}_{\widehat{K}}$ von $(\mathcal{M}_{\widehat{K}}, \nabla)$ ist der Vektorraum

$$\rho^*\mathcal{M}_{\widehat{K}}:=\widehat{L}\otimes_{\widehat{K}}\mathcal{M}_{\widehat{K}}\stackrel{\mathrm{def}}{=}\mathbb{C}(\!(t)\!)\otimes_{\mathbb{C}(\!(x)\!)}\mathcal{M}_{\mathbb{C}(\!(x)\!)}$$

mit dem pull-back Zusammenhang $\rho^* \nabla$ definiert durch

$$\partial_t(1\otimes m) := \rho'(t)\otimes \partial_x m. \tag{3.5}$$

Für ein allgemeines $\varphi \otimes m \in \rho^* \mathcal{M}_{\widehat{K}}$ gilt somit

$$\partial_t(\varphi \otimes m) := \rho'(t)(\varphi \otimes \partial_x m) + \frac{\partial \varphi}{\partial t} \otimes m.$$
(3.6)

Der folgende Satz zeigt, wie man mit dem pull-back rechnen lässt, bzw. wie man konkret ein entsprechendes Minimalpolynom berechnen kann.

Satz 3.5. In der Situation von Lemma 3.4, mit $\mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P(x, \partial_x)$ für ein $P(x, \partial_x) \in \mathcal{D}_{\widehat{K}}$, gilt

$$\rho^* \mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot P(\rho(t), \rho'(t)^{-1} \partial_t).$$

Für $P(\rho(t), \rho'(t)^{-1}\partial_t)$ werden wir auch $\rho^*P(t, \partial_t)$ schreiben.

Für den Beweis von Satz 3.5 werden zunächst einige Lemmata bewiesen.

Lemma 3.6. Es gilt $\rho^* \mathcal{D}_{\widehat{K}} \stackrel{\text{def}}{=} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \cong \mathcal{D}_{\widehat{L}}$ als $\mathcal{D}_{\widehat{L}}$ -Vektorräume, mittels

$$\Phi: \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\cong} \mathcal{D}_{\widehat{L}}$$

$$f(t) \otimes Q(x, \partial_x) \longmapsto f(t)Q(\rho(t), \rho'(t)^{-1}\partial_t)$$

Beweis. Prüfe zunächst die Injektivität. Sei $f(t) \otimes Q(x, \partial_x) \in \ker(\Phi)^{[1]}$ so, dass

$$0 = \Phi(f(t) \otimes Q(x, \partial_x))$$

= $f(t)Q(\rho(t), \rho'(t)^{-1}\partial_t)$

und, da hier alles nullteilerfrei ist, ist die Bedingung äquivalent zur folgenden

$$\Leftrightarrow 0 = f(t) \qquad \text{oder} \qquad 0 = Q(\rho(t), \rho'(t)^{-1}\partial_t)$$

$$\Leftrightarrow 0 = f(t) \qquad \text{oder} \qquad 0 = Q(x, \partial_x)$$

$$\Leftrightarrow 0 = f(t) \otimes Q(x, \partial_x).$$

 $[\]overline{{}^{[1]} \ker(\Phi) := \{ x \in \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \mid \Phi(x) = 0 \}}$

Nun zur Surjektivität. Sei $g(t, \partial_t) = \sum_k a_k(t) \partial_t^k \in \mathcal{D}_{\widehat{L}}$, so gilt

$$g(t, \partial_t) = \sum_k a_k(t) \partial_t^k$$

$$= \sum_k a_k(t) (\underbrace{\rho'(t)\rho'(t)^{-1}}_{=1})^k \partial_t^k$$

$$= \sum_k a_k(t)\rho'(t)^k (\rho'(t)^{-1} \partial_t)^k$$

und zerlege $a_k(t)\rho'(t)^k = \sum_{i=0}^{p-1} t^i a_{k,i}(t^p)$. Damit gilt dann

$$g(t,\partial_t) = \sum_k \sum_{i=0}^{p-1} t^i a_{k,i}(t^p) (\rho'(t)^{-1} \partial_t)^k$$
$$= \sum_{i=0}^{p-1} t^i \Big(\sum_k a_{k,i}(t^p) (\rho'(t)^{-1} \partial_t)^k \Big)$$
$$= \Phi\Big(\sum_{i=0}^{p-1} t^i \otimes (\sum_k a_{k,i}(x) (\partial_x)^k) \Big).$$

Somit haben wir ein Urbild gefunden und die Surjektivität gezeigt.

Lemma 3.7. Das in Lemma 3.6 definierte Φ ist sogar ein Morphismus von meromorphen Zusammenhängen, also gilt sogar $\rho^*\mathcal{D}_{\widehat{K}} \stackrel{\text{def}}{=} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \cong \mathcal{D}_{\widehat{L}}$ als meromorphe Zusammenhänge.

Beweis. Sei ∂_t wie gewohnt und ∂_{\otimes} der Zusammenhang auf $\widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}}$, welcher wie in Proposition 3.2 definiert sei. Wir wollen noch zeigen, dass $\partial_t \circ \Phi = \Phi \circ \partial_{\otimes}$ gilt, also dass Φ ein Morphismus von meromorphen Zusammenhängen ist. Betrachte dazu das Diagramm

und für einen Elementartensor $f(t)\otimes Q(x,\partial_x)\in \widehat{L}\otimes_{\widehat{K}}\mathcal{D}_{\widehat{K}}$ folgt dann

$$f(t) \otimes Q(x, \partial_x) \longmapsto \partial_t f(t) \otimes Q(x, \partial_x) + \rho'(t) \otimes \partial_x Q(x, \partial_x)$$

$$\downarrow \Phi \qquad \qquad \partial_t f(t) Q(x, \partial_x) + \underbrace{\rho'(t) \cdot \rho'(t)^{-1}}_{=1} \partial_t Q(\rho(t), \rho'(t)^{-q} \partial_t)$$

$$= f(t) Q(\rho(t), \rho'(t)^{-1} \partial_t) \longmapsto \partial_t f(t) Q(x, \partial_x) + \partial_t Q(\rho(t), \rho'(t)^{-q} \partial_t)$$

also kommutiert das Diagramm.

Lemma 3.8. Sei $P(x, \partial_x) \in \mathcal{D}_K$. In der Situation

$$\begin{array}{ccc} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} & \xrightarrow{\operatorname{id} \otimes \underline{\ \cdot \ } P(x,\partial_x)} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \\ & \downarrow & & \downarrow \\ & \mathcal{D}_{\widehat{L}} & \xrightarrow{\alpha} & \mathcal{D}_{\widehat{L}} \end{array}$$

 $mit \ \Phi \ wie \ in \ Lemma \ 3.6 \ macht \ \alpha := _\cdot P(\rho(t), \rho'(t)^{-1}\partial_t) \ das \ Diagramm \ kommutativ.$

Beweis. Betrachte ein $f(t) \otimes Q(x, \partial_x) \in \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}}$. So gilt

$$f(t) \otimes Q(x, \partial_x) \xrightarrow{\operatorname{id} \otimes_{-} \cdot P(x, \partial_x)} f(t) \otimes Q(x, \partial_x) \cdot P(x, \partial_x)$$

$$\downarrow \Phi$$

$$f(t)Q(\rho(t), \rho'(t)^{-1}\partial_t) \cdot P(\rho(t), \rho'(t)^{-1}\partial_t)$$

und

$$f(t) \otimes Q(x, \partial_x)$$

$$\downarrow^{\Phi}$$

$$f(t)Q(\rho(t), \rho'(t)^{-1}\partial_t) \longmapsto^{-P(\rho(t), \rho'(t)^{-1}\partial_t)} f(t)Q(\rho(t), \rho'(t)^{-1}\partial_t) \cdot P(\rho(t), \rho'(t)^{-1}\partial_t),$$

also kommutiert das Diagramm mit $\alpha = \underline{} \cdot P(\rho(t), \rho'(t)^{-1}\partial_t)$.

Beweis zu Satz 3.5. Sei $P \in \mathcal{D}_{\widehat{K}}$ und $\mathcal{M}_{\widehat{K}} := \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$. Wir wollen zeigen, dass

$$\rho^* \mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot Q$$

für $Q = P(\rho(t), \rho'(t)^{-1}\partial_t)$ gilt. Betrachte dazu die kurze Sequenz

$$0 \xrightarrow{\qquad} \mathcal{D}_{\widehat{K}} \xrightarrow{\stackrel{\cdot \cdot P}{\longrightarrow}} \mathcal{D}_{\widehat{K}} \xrightarrow{\qquad \pi_{\widehat{K}}} \mathcal{M}_{\widehat{K}} \xrightarrow{\qquad} 0$$

$$u \longmapsto u \cdot P$$

$$u \longmapsto u \mod \mathcal{D}_{\widehat{K}} \cdot P$$

ist exakt, weil $\mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot P = \operatorname{coker}(\underline{} \cdot P)$. Weil \widehat{L} flach über den Körper \widehat{K} ist, ist auch, nach Anwenden des Funktors $\widehat{L} \otimes_{\widehat{K}} \underline{}$, die Sequenz

$$0 \longrightarrow \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes \underline{\cdot} P} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes \pi_{\widehat{K}}} \widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}} \longrightarrow 0$$

$$\rho^* \mathcal{M}_{\widehat{K}}$$

exakt. Also mit Φ wie in Lemma 3.6 und $Q(t,\partial_t):=P(\rho(t),\rho'(t)^{-1}\partial_t)$ nach Lemma 3.8 ergibt sich

$$0 \longrightarrow \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes_{-} \cdot P} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \longrightarrow \rho^{*} \mathcal{M}_{\widehat{K}} \longrightarrow 0$$

$$\stackrel{\stackrel{\mid}{\cong} \Phi}{\cong \Phi} \stackrel{\stackrel{\mid}{\cong} \Phi}{\downarrow^{\downarrow}} \mathcal{D}_{\widehat{L}}$$

als kommutatives Diagramm. Nun, da $_\cdot Q$ injektiv ist, lässt sich die untere Zeile zu einer exakten Sequenz fortsetzen

$$0 \longrightarrow \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes_{-} \cdot P} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes \pi_{\widehat{K}}} \rho^{*} \mathcal{M}_{\widehat{K}} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

und damit folgt, wegen Isomorphie der Kokerne, die Behauptung.

Lemma 3.9. Sei $\mathcal{P}(\mathcal{M}_{\widehat{K}}) = \{\Lambda_1, \dots, \Lambda_r\}$ die Menge der Slopes von $\mathcal{M}_{\widehat{K}}$ und $\rho: t \mapsto x := t^p$, dann gilt für $\mathcal{P}(\rho^*\mathcal{M}_{\widehat{K}}) = \{\Lambda'_1, \dots, \Lambda'_r\}$, dass $\Lambda'_i = p \cdot \Lambda_i$.

Beweis. Siehe [Sab90, 5.4.3] für einen Beweis.

Hier nun ein explizit berechneter pull-back.

Beispiel 3.10. Wir wollen $\mathcal{M}_{\widehat{K}} := \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$ bzgl. $P := x^3 \partial_x^2 - 4x^2 \partial_x - 1$ betrachten. Unser Ziel ist es, hier ganzzahlige Slopes zu erhalten. Es gilt slopes $(P) = \{\frac{1}{2}\}$ (siehe Abbildung 3.1). Wende den pull-back mit $\rho: t \to x := t^2$ an. Zunächst einige Nebenrechnungen, damit wir Satz 3.5 einfacher anwenden können:

$$\partial_x \leadsto \frac{1}{\rho'(t)} \partial_t = \frac{1}{2t} \partial_t ,$$

$$\partial_x^2 \leadsto (\frac{1}{2t} \partial_t)^2 = \frac{1}{2t} \partial_t (\frac{1}{2t} \partial_t) = \frac{1}{2t} (-\frac{1}{2t^2} \partial_t + \frac{1}{2t} \partial_t^2) = \frac{1}{4t^2} \partial_t^2 - \frac{1}{4t^3} \partial_t .$$

Also ergibt Einsetzen

$$\rho^* P = (t^2)^3 (\frac{1}{4t^2} \partial_t^2 - \frac{1}{4t^3} \partial_t) - 4(t^2)^2 \frac{1}{2t} \partial_t - 1$$

$$= \frac{1}{4}t^{4}\partial_{t}^{2} - t^{3}\frac{1}{4}\partial_{t} - 4t^{3}\frac{1}{2}\partial_{t} - 1$$

$$= \frac{1}{4}t^{4}\partial_{t}^{2} - 2\frac{1}{4}t^{3}\partial_{t} - 1.$$

Also ist $\rho^*P = \frac{1}{4}t^4\partial_t^2 - \frac{1}{2}t^3\partial_t - 1$ mit slopes $(\rho^*P) = \{1\}$ (siehe Abbildung 3.2) und somit $\rho^*\mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot (\frac{1}{4}t^4\partial_t^2 - \frac{1}{2}t^3\partial_t - 1)$.

Abbildung 3.1: Newton-Polygon zu $P = x^3 \partial_x^2 - 4x^2 \partial_x - 1$

Abbildung 3.2: Newton-Polygon zu $\rho^* P = \frac{1}{4} t^4 \partial_t^2 - \frac{1}{2} t^3 \partial_t - 1$

Sei $\mathcal{N}_{\widehat{L}}$ ein endlich dimensionaler \widehat{L} -VR mit Verknüpfung, so definiere den push-forward wie folgt.

Definition 3.11 (push-forward). Der push-forward oder das direktes Bild $\rho_+ \mathcal{N}_{\widehat{L}}$ von $\mathcal{N}_{\widehat{L}}$ ist

- der \widehat{K} -VR $\rho_*\mathcal{N}$ ist definiert als der \mathbb{C} -Vektor Raum $\mathcal{N}_{\widehat{L}}$ mit der \widehat{K} -Vektor Raum Struktur durch die skalare Multiplikation $\cdot: \widehat{K} \times \mathcal{N}_{\widehat{L}} \to \mathcal{N}_{\widehat{L}}$ und $(f(x), m) \mapsto f(x) \cdot m := f(\rho(t))m$
- mit der Wirkung ∂_x beschrieben durch $\rho'(t)^{-1}\partial_t$.

Satz 3.12. Es gilt die Projektionsformel

$$\rho_{+}(\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} \rho^{+} \mathcal{M}_{\widehat{K}}) \cong \rho_{+} \mathcal{N}_{\widehat{L}} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}}. \tag{3.7}$$

Beweis.

$$\rho_{+}(\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} \rho^{+} \mathcal{M}_{\widehat{K}}) \stackrel{\text{def}}{=} \rho_{+}(\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} (\widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{L}}))$$

$$\stackrel{(3.1)}{\cong} \rho_{+}((\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} \widehat{L}) \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}})$$

$$\stackrel{(3.2)}{\cong} \rho_{+}(\mathcal{N}_{\widehat{L}} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}})$$

$$= \rho_{+} \mathcal{N}_{\widehat{L}} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}}.$$

3.3 Fouriertransformation

Definition 3.13 (Fouriertransformation). Sei $P = \sum_{i=0}^{d} a_i(x) \partial_x^i$, dann ist die fouriertransformierte von P gegeben durch

$$\mathcal{F}_P := \mathcal{F}_P(z, \partial_z) = \sum_{i=0}^d a_i(\partial_z)(-z)^i$$
.

Definition 3.14. Ist $\mathcal{M}_{\widehat{K}} \cong \widehat{K}/\widehat{K} \cdot P$ so ist die Fouriertransformierte davon definiert als ${}^{\mathcal{F}}\mathcal{M}_{\widehat{K}} := \widehat{K}/\widehat{K} \cdot \mathcal{F}_P(x, \partial_x)$.

Beispiel 3.15. Sei $P=x^3\partial_x^4+x^2\partial_x^2+x$ dann ist die Fouriertransformierte davon

$$\begin{split} \mathcal{F}_{P} &= \partial_{z}^{3}(-z)^{4} + \partial_{z}^{2}(-z)^{2} + \partial_{z} \\ &= \partial_{z}^{2}z^{2} + \partial_{z}^{3}z^{4} + \partial_{z} \\ &= z^{4}\partial_{z}^{3} + \left[\partial_{z}^{3}, z^{4}\right] + z^{2}\partial_{z}^{2} + \left[\partial_{z}^{2}, z^{2}\right] + \partial_{z} \\ &= z^{4}\partial_{z}^{3} + \sum_{i=1}^{3} \frac{4 \cdot 3 \dots (5-i) \cdot 3 \cdot 2 \dots (4-i)}{i!} z^{4-i}\partial_{z}^{3-i} + z^{2}\partial_{z}^{2} \\ &+ \sum_{i=1}^{2} \frac{2 \cdot 1 \dots (3-i) \cdot 2 \cdot 1 \dots (3-i)}{i!} z^{2-i}\partial_{z}^{2-i} + \partial_{z} \\ &= z^{4}\partial_{z}^{3} + 12z^{3}\partial_{z}^{2} + \frac{72}{2}z^{2}\partial_{z} + \frac{144}{6}z + z^{2}\partial_{z}^{2} + 4z\partial_{z} + \frac{4}{2} + \partial_{z} \\ &= z^{4}\partial_{z}^{3} + (12z^{3} + z^{2})\partial_{z}^{2} + (36z^{2} + 4z + 1)\partial_{z} + 24z + 2 \end{split}$$

mit den Newton-Polygonen wie in Abbildung 3.3 und 3.4.

Abbildung 3.3: Newton-Polygon zu P

Abbildung 3.4: Newton-Polygon zu \mathcal{F}_P

3.4 Betrachten bei Unendlich

Sei $P \in \mathcal{D}_{\widehat{K}}$ ein Minimalpolynom zum meromorphen Zusammenhang $\mathcal{M}_{\widehat{K}}$. Wir wollen den Übergang $x \leadsto z^{-1}$ durchführen, dies ist formal wie folgt defininiert.

Definition 3.16. Wir definieren den Zusammenhang bei Unendlich $\mathcal{M}_{\widehat{K}}^{\infty}$ von $\mathcal{M}_{\widehat{K}}$ als den zu P^{∞} assoziierten Zusammenhang, wobei wir $P^{\infty}(z,\partial_z):=P(z^{-1},-z^2\partial_z)$ setzen.

Vergleiche dazu beispielsweise [Sab90, Seite 70 Exmp. 2].

Beispiel 3.17. Sei $P = x^3 \partial_x^4 + x^2 \partial_x^2 + x$ dann ist P^{∞} gegeben durch

$$\begin{split} P^{\infty} &= \underbrace{x^{-3}(-x^2\partial_x)^4 + x^{-2}(-x^2\partial_x)^2 + x^{-1}}_{= \underbrace{x^{-3+8}\partial_x^4 + \mathbf{T.i.Q} + x^{-2+4}\partial_x^2 + \mathbf{T.i.Q}}_{= \underbrace{x^5}\partial_x^4 + \mathbf{T.i.Q} + \underbrace{x^2}\partial_x^2 + \mathbf{T.i.Q} + x^{-1} \end{split}$$

mit den Newton-Polygonen wie in Abbildung 3.5 und 3.6.

Abbildung 3.5: Newton-Polygon zu P

Abbildung 3.6: Newton-Polygon zu P^{∞}

3.5 Twisten von meromorphen Zusammenhängen

Definition 3.18. Sei $\varphi \in \widehat{K}$. Wir schreiben $\mathscr{E}_{\widehat{K}}^{\varphi}$ für den (formalen) Rang 1 Vektorraum $e \cdot \widehat{K}$, wobei $e \in \mathscr{E}_{\widehat{K}}^{\varphi}$ Basis ist, ausgestattet mit $\partial_x (f \cdot e) = (\frac{\partial f}{\partial x} + f \cdot \frac{\partial \varphi}{\partial x}) \cdot e$, im speziellen also $\partial_x e = \varphi'$.

Bemerkung 3.19. 1. Auf die Angabe des Rang 1 Vektorraums im Subscript wird, falls dieser klar ist, meist verzichtet.

- 2. Das hier definierte $\mathscr{E}_{\widehat{K}}^{\varphi}$ entspricht $\mathcal{F}_{\widehat{K}}^{\varphi(x^{-1})}$ in der Notation von [Sab90, 5.4.4] und \widehat{E}_{φ} in [Hei10, Def 5.8].
- 3. Es ist $\mathscr{E}^{\varphi} \cong \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot (\partial_x \varphi'(x))$, denn für den zyklischen Vektor e gilt, dass $\partial_x \cdot e = \varphi'(x) \cdot e$.
- 4. Wir werden oft e = 1 als Basis nehmen.

Lemma 3.20.
$$F\ddot{u}r\,\varphi(x) = \sum_{i=-p}^{\infty} a_i x^i \in \widehat{K} \ mit \ a_{-p} \neq 0 \ gilt, \ dass \ \mathcal{P}(\mathscr{E}_{\widehat{K}}^{\varphi}) = \begin{cases} \{p\} &, \ wenn \ p \geq 0 \\ \{0\} &, \ wenn \ p < 0 \end{cases}$$

Beweis. Es ist

$$\varphi'(x) = \sum_{i=-p}^{\infty} i a_i x^{i-1}$$

$$= \sum_{i=-p+1}^{\infty} (i+1) a_{i+1} x^i$$

$$= \underbrace{-p a_{-p}}_{\neq 0} x^{-(p+1)} + \sum_{i=-p}^{\infty} (i+1) a_{i+1} x^i$$

und damit wissen wir, dass die einzigen zwei Punkte, die Ecken des Newton Polygons sein können, (1,-1) und (0,-(p+1)) sind. Da einer der relevanten Punkte auf der vertikalen Achse liegt, kann es insgesamt nur einen Slope Λ geben, welcher sich wie folgt berechnet:

$$\begin{split} &\Lambda = \max\{0, \frac{-1 - (-(p+1))}{1}\} \\ &= \max\{0, p\} \\ &= \begin{cases} p & \text{, wenn } p \geq 0 \\ 0 & \text{, wenn } p < 0 \end{cases} \end{split}$$

Bemerkung 3.21. Nach [Sab07, 1.a] gilt $\mathscr{E}^{\varphi} \cong \mathscr{E}^{\psi}$ genau dann wenn $\varphi \equiv \psi \mod \mathbb{C}[x]$.

Lemma 3.22. Sei $\mathcal{M} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$ ein meromorpher Zusammenhang mit P von Grad q und mit e als ein zyklischer Vektor, so ist $e \otimes 1$ ein zyklischer Vektor für $\mathcal{N} := \mathcal{M} \otimes_{\widehat{K}} \mathscr{E}_{\widehat{K}}^{\psi}$.

Beweis. Da der Grad von P gleich q ist, ist nach Lemma 3.23 auch Q von grad q und somit $\dim_{\widehat{K}} \mathcal{N} = q$. Also reicht es zu zeigen, dass $e \otimes 1$, $\partial_x(e \otimes 1)$, $\partial_x^2(e \otimes 1)$,..., $\partial_x^{q-1}(e \otimes 1)$ ein linear unabhängiges System ist. Es gilt

$$\partial_{x}(\boldsymbol{e} \otimes 1) = (\partial_{x}\boldsymbol{e}) \otimes 1 + x \otimes \partial_{x}1$$

$$= (\partial_{x}\boldsymbol{e}) \otimes 1 + \boldsymbol{e} \otimes \psi'(x)$$

$$= (\partial_{x}\boldsymbol{e}) \otimes 1 + \psi'(x)(\boldsymbol{e} \otimes 1)$$

$$\partial_{x}^{2}(\boldsymbol{e} \otimes 1) = \partial_{x}((\partial_{x}\boldsymbol{e}) \otimes 1 + \psi'(x)(\boldsymbol{e} \otimes 1))$$

$$= (\partial_{x}^{2}\boldsymbol{e}) \otimes 1 + (\partial_{x}\boldsymbol{e}) \otimes \psi'(x) + \psi''(x)(\boldsymbol{e} \otimes 1) + \psi'(x)((\partial_{x}\boldsymbol{e}) \otimes 1 + \boldsymbol{e} \otimes \psi'(x))$$

$$= (\partial_{x}^{2}\boldsymbol{e}) \otimes 1 + \psi'(x)(\partial_{x}\boldsymbol{e}) \otimes 1 + \psi''(x)(\boldsymbol{e} \otimes 1) + \psi'(x)(\partial_{x}\boldsymbol{e}) \otimes 1 + \psi'(x)^{2}(\boldsymbol{e} \otimes 1)$$

$$= (\partial_{x}^{2}\boldsymbol{e}) \otimes 1 + 2\psi'(x)(\partial_{x}\boldsymbol{e}) \otimes 1 + (\psi''(x) + \psi'(x)^{2})(\boldsymbol{e} \otimes 1)$$

$$\vdots$$

$$\partial_{x}^{q-1}(\boldsymbol{e} \otimes 1) = (\partial_{x}^{q-1}\boldsymbol{e}) \otimes 1 + \lambda_{q-2}(\partial_{x}^{q-2}\boldsymbol{e}) \otimes 1 + \dots + \lambda_{1}(\partial_{x}\boldsymbol{e}) \otimes 1 + \lambda_{0}(\boldsymbol{e} \otimes 1)$$

und somit ist dann

$$\begin{pmatrix} e \otimes 1 \\ \partial_x(e \otimes 1) \\ \partial_x^2(e \otimes 1) \\ \vdots \\ \partial_x^{q-2}(e \otimes 1) \\ \partial_x^{q-1}(e \otimes 1) \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ \psi'(x) & 1 & 0 & & \vdots \\ \star & \star & 1 & 0 & & \vdots \\ \star & \cdots & \ddots & \ddots & \vdots \\ \star & \cdots & \cdots & \star & 1 & 0 \\ \lambda_0 & \lambda_1 & \cdots & \cdots & \lambda_{q-2} & 1 \end{pmatrix} \begin{pmatrix} e \otimes 1 \\ (\partial_x e) \otimes 1 \\ (\partial_x^2 e) \otimes 1 \\ \vdots \\ (\partial_x^{q-2} e) \otimes 1 \\ (\partial_x^{q-1} e) \otimes 1 \end{pmatrix}.$$

Da bekanntlich $e \otimes 1$, $(\partial_x e) \otimes 1$, $(\partial_x^2 e) \otimes 1$,..., $(\partial_x^{q-1} e) \otimes 1$ linear unabhängig sind, gilt dies auch für $e \otimes 1$, $\partial_x (e \otimes 1)$, $\partial_x^2 (e \otimes 1)$,..., $\partial_x^{q-1} (e \otimes 1)$. Damit folgt die Behauptung.

Lemma 3.23. Sei $\mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P(x, \partial_x)$ und sei $\varphi \in \widehat{K}$. So gilt

$$\mathcal{M}_{\widehat{K}} \otimes_{\widehat{K}} \mathscr{E}^{\varphi} = \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot Q(x, \partial_x)$$

$$mit\ Q(x,\partial_x) = P(x,\partial_x - \frac{\partial \varphi}{\partial x}).$$

Beweisidee. Zeige, dass $P(x, \partial_x - \frac{\partial \varphi}{\partial x})\mathbf{e} \otimes 1 = 0$ gilt, da $\mathbf{e} \otimes 1$ eine zyklischer Vektor ist folgt damit aus Gradgründen die Behauptung. Genauer ausgeführt wird dies in [Hei10, Seiten 39 bis 44].

Korollar 3.24. Sei $\mathcal{M}_{\widehat{K}}$ und φ wie in 3.23, so gilt

$$\mathcal{M}_{\widehat{K}} \otimes_{\widehat{K}} \mathscr{E}^{\varphi} \otimes_{\widehat{K}} \mathscr{E}^{-\varphi} = \mathcal{M}_{\widehat{K}}.$$

Beweis. Denn

$$\begin{split} \mathcal{M}_{\widehat{K}} \otimes_{\widehat{K}} \mathscr{E}^{\varphi} \otimes_{\widehat{K}} \mathscr{E}^{-\varphi} &= \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot P(x, \partial_x) \otimes_{\widehat{K}} \mathscr{E}^{\varphi} \otimes_{\widehat{K}} \mathscr{E}^{-\varphi} \\ &= \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot P(x, \partial_x - \frac{\partial \varphi}{\partial x}) \otimes_{\widehat{K}} \mathscr{E}^{-\varphi} \\ &= \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot P(x, \partial_x - \frac{\partial \varphi}{\partial x} - \frac{\partial (-\varphi)}{\partial x}) \\ &= \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot P(x, \partial_x) = \mathcal{M}_{\widehat{K}} \,. \end{split}$$

Nun wollen wir noch das Lemma 2.4 aus [Sab07, Lem 2.4] beweisen. Dieses Lemma wird im weiteren nicht weiter verwendet, deshalb kann ein Leser, der nur an den letzten Kapiteln interesiert ist, den Beweis überspringen. Jedoch werden im Beweis mehrere interessante Tricks verwendet, die diesen auf jeden Fall lesenswert machen.

Lemma 3.25. Sei $\rho: t \mapsto x := t^p$ und $\mu_{\xi}: t \mapsto \xi t$. Für alle $\varphi \in \widehat{L}$ gilt

$$\rho^+ \rho_+ \mathscr{E}^{\varphi} = \bigoplus_{\xi^p = 1} \mathscr{E}^{\varphi \circ \mu_{\xi}}.$$

Beweis. Wir wollen zeigen, dass das folgende Diagramm, für einen passenden Isomorphismus, kommutiert:

$$\rho^{+}\rho_{+}\mathscr{E}^{\varphi(u)} \xrightarrow{\cong} \bigoplus_{\xi^{p}=1} \mathscr{E}^{\varphi\circ\mu_{\xi}}
\downarrow \partial_{t} \qquad \qquad \downarrow \partial_{t}
\rho^{+}\rho_{+}\mathscr{E}^{\varphi(u)} \xrightarrow{\cong} \bigoplus_{\xi^{p}=1} \mathscr{E}^{\varphi\circ\mu_{\xi}}$$

Es sei oBdA $\varphi \in t^{-1}\mathbb{C}[t^{-1}]$, dies ist nach Bemerkung 3.21 berechtigt. Wir wählen eine \widehat{L} Basis e des Rang 1 \widehat{L} -Vektorraum \mathscr{E}^{φ} und damit erhält man die Familie $e, te, ..., t^{p-1}e$ als \widehat{K} -Basis von $\rho_+\mathscr{E}^{\varphi}$. Es gilt

$$\partial_x t^k \mathbf{e} = \rho'(t)^{-1} \partial_t t^k \mathbf{e}$$

$$= \rho'(t)^{-1} (t^k \partial_t + kt^{k-1}) \mathbf{e}.$$
(3.8)

Durch die Setzung $e_k := t^{-k} \otimes_{\widehat{K}} t^k e$ wird die Familie $\mathbf{e} := (e_0, ..., e_{p-1})$ eine \widehat{L} -Basis von $\rho^+ \rho_+ \mathscr{E}^{\varphi}$. Zerlege nun $t\varphi'(t)$, wie in Anhang A beschrieben, in

$$t\varphi'(t) = \sum_{j=0}^{p-1} t^j \psi_j(t^p) \qquad \in t^{-2} \mathbb{C}[t^{-1}]$$
 (3.9)

mit $\psi_j \in \mathbb{C}[x^{-1}]$ für alle j > 0 und $\psi_0 \in x^{-1}\mathbb{C}[x^{-1}]$. Damit gilt

$$t\partial_t e_k = \sum_{i=0}^{p-1-k} t^i \psi_i(t^p) e_{k+1} + \sum_{i=p-k}^{p-1} t^i \psi_i(t^p) e_{k+i-p},$$

denn:

$$t\partial_{t}e_{k} = t\partial_{t}(t^{-k} \otimes_{\widehat{K}} t^{k}e)$$

$$\stackrel{(3.4)}{=} t(-kt^{-k-1} \otimes_{\widehat{K}} t^{k}e + pt^{p-1} \cdot t^{-k} \otimes_{\widehat{K}} \partial_{x}(\underbrace{t^{k}e}_{)})$$

$$\stackrel{(3.8)}{=} -kt^{-k} \otimes_{\widehat{K}} t^{k}e + pt^{p-1}t^{-k+1} \otimes_{\widehat{K}} (pt^{p-1})^{-1}(kt^{k-1}e + t^{k}\varphi'(t)e)$$

$$= -kt^{-k} \otimes_{\widehat{K}} t^{k}e + t^{-k+1} \otimes_{\widehat{K}} (kt^{k-1}e + t^{k}\varphi'(t)e)$$

$$= \underbrace{-kt^{-k} \otimes_{\widehat{K}} t^{k}e + t^{-k+1} \otimes_{\widehat{K}} kt^{k-1}e}_{=0} + t^{-k+1} \otimes_{\widehat{K}} t^{k}\varphi'(t)e$$

$$= t^{-k} \otimes_{\widehat{K}} t^{k}t\varphi'(t)e$$

$$\stackrel{(3.9)}{=} t^{-k} \otimes_{\widehat{K}} t^{k}\underbrace{\sum_{i=0}^{p-1} t^{i}\psi_{i}(t^{p})e}_{=i}$$

$$= \sum_{i=0}^{p-1} \psi_{i}(t^{p})(t^{-k} \otimes_{\widehat{K}} t^{k}t^{i}e)$$

$$= \sum_{i=0}^{p-1} t^{i} \psi_{i}(t^{p})(t^{-k-i} \otimes_{\widehat{K}} t^{k+i} e)$$

$$= \sum_{i=0}^{p-1-k} t^{i} \psi_{i}(t^{p}) e_{k+i} + \sum_{i=p-k}^{p-1} t^{i} \psi_{i}(t^{p}) e_{k+i-p}.$$

Sei

$$V := \begin{pmatrix} 0 & & & 1 \\ 1 & 0 & & \\ & \ddots & \ddots & \\ & & 1 & 0 \end{pmatrix},$$

so dass $\mathbf{e} \cdot V = (\mathbf{e}_1, ..., \mathbf{e}_{p-1}, \mathbf{e}_0)$ gilt. Es gilt

$$t\partial_t \mathbf{e} = \mathbf{e} \left[\sum_{j=0}^{p-1} t^j \psi_j V^j \right] ,$$

denn:

$$t\partial_{t}\mathbf{e} = (t\partial_{t}\mathbf{e}_{0}, ..., t\partial_{t}\mathbf{e}_{p-1})$$

$$= \left(\sum_{i=0}^{p-1-k} t^{i}\psi_{i}(t^{p})\mathbf{e}_{k+1} + \sum_{i=p-k}^{p-1} t^{i}\psi_{i}(t^{p})\mathbf{e}_{k+i-p}\right)_{k\in\{0,...,p-1\}}$$

$$= \mathbf{e} \begin{bmatrix} u^{p-1}\psi_{p-1}(t^{p}) & \cdots & t^{3}\psi_{3}(t^{p}) & t^{2}\psi_{2}(t^{p}) & t^{1}\psi_{1}(t^{p}) \\ t^{1}\psi_{1}(t^{p}) & t^{p-1}\psi_{p-1}(t^{p}) & \cdots & t^{2}\psi_{2}(t^{p}) \\ t^{2}\psi_{2}(t^{p}) & t^{1}\psi_{1}(t^{p}) & \cdots & \vdots \\ t^{3}\psi_{3}(t^{p}) & \cdots & \cdots & \cdots & \vdots \\ \vdots & & \ddots & t^{1}\psi_{1}(t^{p}) & t^{p-1}\psi_{p-1}(t^{p}) \\ t^{p-2}\psi_{p-2}(t^{p}) & \cdots & t^{3}\psi_{3}(t^{p}) & t^{2}\psi_{2}(t^{p}) & t^{1}\psi_{1}(t^{p}) & t^{p-1}\psi_{p-1}(t^{p}) \end{bmatrix}$$

$$= \mathbf{e} \begin{bmatrix} \sum_{j=0}^{p-1} t^{j}\psi_{j}(t^{p})V^{j} \\ \sum_{j=0}^{p-1} t^{j}\psi_{j}(t^{p})V^{j} \end{bmatrix}.$$

Die Wirkung von ∂_t auf die Basis e von $\rho^+\rho_+\mathscr{E}^{\varphi(t)}$ ist also beschrieben durch

$$\partial_t \mathbf{e} = \mathbf{e} \left[\sum_{j=0}^{p-1} t^{j-1} \psi_j V^j \right].$$

Da V das Minimalpolynom $\chi_V(X) = X^p - 1$ hat, können wir diese Matrix durch Ähnlichkeitstransformation mit T auf die Form

$$D := TVT^{-1} = \begin{pmatrix} \xi^0 & & & \\ & \xi^1 & & \\ & & \ddots & \\ & & & \xi^{p-1} \end{pmatrix},$$

mit $\xi^p = 1$, bringen. Sei so ein ξ ab jetzt fixiert. So dass gilt:

$$T \left[\sum_{j=0}^{p-1} t^{j-1} \psi_j(t^p) V^j \right] T^{-1} = \left[\sum_{j=0}^{p-1} t^{j-1} \psi_j(t^p) (TVT^{-1})^j \right]$$

$$= \left[\sum_{j=0}^{p-1} t^{j-1} \psi_j(t^p) D^j \right]$$

$$= \left(\sum_{j=0}^{p-1} t^{j-1} \psi_j(t^p) \left(\xi^1 \right)^j \right)$$

$$= \left(\sum_{j=0}^{p-1} t^{j-1} \psi_j(t^p) \left(\xi^1 \right)^j \right)$$

$$= \left(\sum_{j=0}^{p-1} t^{j-1} \psi_j(t^p) \left(\xi^{p-1} \right)^j \right)$$

$$= \left(\sum_{j=0}^{p-1} t^{j-1} \psi_j(t^p) \left(\xi^{p-1} \right)^{j-1} \psi_j(t^p) \xi^1 \right)$$

$$= \left(\sum_{j=0}^{p-1} t^{j-1} \psi_j(t^p) \left(\xi^{p-1} \right)^{j-1} \psi_j(t^p) \xi^{p-1} \right)$$

$$= \left(\sum_{j=0}^{p-1} t^{j-1} \psi_j(t^p) \left(\xi^{p-1} \right)^{j-1} \psi_j(t^p) \xi^{p-1} \right)$$

$$= \left(\sum_{j=0}^{p-1} t^{j-1} \psi_j(t^p) \left(\xi^{p-1} \right)^{j-1} \psi_j(t^p) \xi^{p-1} \right)$$

$$= \left(\sum_{j=0}^{p-1} t^{j-1} \psi_j(t^p) \left(\xi^{p-1} \right)^{j-1} \psi_j(t^p) \xi^{p-1} \right)$$

$$= \left(\sum_{j=0}^{p-1} t^{j-1} \psi_j(t^p) \left(\xi^{p-1} \right)^{j-1} \xi^{p-1} \right)$$

$$= \left(\sum_{j=0}^{p-1} t^{j-1} \psi_j(t^p) \left(\xi^{p-1} \right)^{j-1} \xi^{p-1} \right)$$

da $\varphi'(t) = pt^{p-1}$. Damit wissen wir bereits, dass im Diagramm

der mit (\star) bezeichnete Teil kommutiert, wobei $\Phi:(0,\ldots,0,\stackrel{\downarrow}{1},0,\ldots,0)\mapsto e_k$ der kanonische Basisisomorphismus und e_k Basis von $\mathscr{E}^{\varphi\circ\mu_{\xi^{k-1}}}$. Um zu zeigen, dass das vollständige Diagramm

k-te Stelle

kommutiert, zeigen wir noch, dass

$$\partial_t(v) = \Phi(\Phi^{-1}(v) \cdot \left[\sum_{j=0}^{p-1} t^{j-1} \psi_j(t^p) D^j \right]) \qquad \forall v \in \bigoplus_{i=0}^{p-1} \mathscr{E}^{\varphi \circ \mu_{\xi^i}}$$

gilt. Es reicht zu zeigen, dass die Aussage für alle Basiselemente e_k gilt. Nach Definition 3.18 gilt

$$\begin{aligned} \partial_t e_k &= (\varphi \circ \mu_{\xi^{k-1}})'(t) e_k \\ &= \varphi(\mu'_{\xi^{k-1}}) \cdot \varphi'(t) e_k \\ &= (\xi^{k-1})^p \cdot (pt^{p-1}) e_k \\ &= p(\xi^{k-1}t)^{p-1} \xi^{k-1} e_k \end{aligned}$$

und auf dem anderem Weg gilt:

Also kommutiert das Diagramm und damit ist die Aussage gezeigt.

4 Levelt-Turrittin-Theorem

Nun zum wichtigsten Satz in dieser Arbeit. Das Levelt-Turrittin-Theorem sagt, dass sich jeder meromorphe Zusammenhang \mathcal{M} , nach einem möglicherweise nötigem pull-back, in eine direkte Summe von "elementaren" meromorphen Zusammenhängen zerlegen lässt.

Zunächst soll geklärt werden, was die richtigen elementaren meromorphen Zusammenhänge sind.

4.1 Elementare meromorphe Zusammenhänge

Definition 4.1. Ein elementarer regulärer meromorpher Zusammenhang ist ein Zusammenhang \mathcal{M} , welcher isomorph zu $\mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot (x\partial_x - \alpha)^p$, mit passendem α und p, ist.

Bemerkung 4.2. Es ist leicht zu sehen, dass jeder elementare reguläre meromorphe Zusammenhang tatsächlich auch regulär ist.

Lemma 4.3. Es existiert eine Basis von $\mathcal{M}_{\widehat{K}}$ über \widehat{K} mit der Eigenschaft, dass die Matrix, die $x\partial_x$ beschreibt, nur Einträge in $\mathbb{C}[\![x]\!]$ hat.

Beweis. Wähle einen zyklischen Vektor $m \in \mathcal{M}_{\widehat{K}}$ und betrachte die Basis $m, \partial_x m, \dots, \partial_x^{d-1} m$ (siehe Lemma 2.13). Schreibe $\partial_x^d m = \sum_{i=0}^{d-1} (-b_i(x)) \partial_x^i m$ in Basisdarstellung mit Koeffizienten $b_i \in \widehat{K}$. Also erfüllt m die Gleichung $\partial_x^d m + \sum_{i=0}^{d-1} b_i(x) \partial_x^i m = 0$. Tatsächlich kann man, wegen Regularität, $b_i(x) = x^i b_i'(x)$ mit $b_i' \in \mathbb{C}[x]$ schreiben. Dies impliziert, dass $m, x \partial_x m, \dots, (x \partial_x)^{d-1} m$ ebenfalls eine Basis von $\mathcal{M}_{\widehat{K}}$ ist. Die Matrix von $x \partial_x$ zu dieser neuen Basis hat nur Einträge in $\mathbb{C}[x]$.

Nach [Sab90, Thm 5.2.2] gilt sogar das folgende Lemma.

Lemma 4.4. Es existiert sogar eine Basis von $\mathcal{M}_{\widehat{K}}$ über \widehat{K} so dass die Matrix zu $x\partial_x$ konstant ist.

Satz 4.5. Ein regulärer formaler Zusammenhang $\mathcal{M}_{\widehat{K}}$ ist isomorph zu einer direkten Summe von elementaren regulären meromorphen Zusammenhängen.

Beweisskizze. Man wählt eine Basis von $\mathcal{M}_{\widehat{K}}$, in der die Matrix zu $x\partial_x$ konstant ist. Diese Matrix kann in Jordan Normalform gebracht werden und damit erhält man das Ergebnis. Ausgeführt wurde das in [Sab90, Cor. 5.2.6].

Durch twisten der elementaren regulären meromorphen Zusammenhänge erhält man wie folgt die elementaren meromorphen Zusammenhänge.

Definition 4.6. Ein elementarer meromorpher Zusammenhang ist ein Zusammenhang \mathcal{M} , für den es $\psi \in \mathbb{C}((x))$, $\alpha \in \mathbb{C}$ und $p \in \mathbb{N}$ gibt, so dass

$$\mathcal{M} \cong \mathscr{E}^{\psi} \otimes R_{\alpha,p}$$
,

mit $R_{\alpha,p} := \mathcal{D}/\mathcal{D}(x\partial_x - \alpha)^p$, also ein elementarer regulärer meromorpher Zusammenhang, ist.

Lemma 4.7. In der Situation von Definition 4.6 gilt $\mathscr{E}^{\psi} \otimes R_{\alpha,p} \cong \mathcal{D}/\mathcal{D} \cdot (x\partial_x - (\alpha + x\frac{\partial \psi}{\partial x}))^p$.

Beweis. Denn

$$\mathcal{E}^{\psi} \otimes R_{\alpha,p} = \mathcal{E}^{\psi} \otimes \mathcal{D}/\mathcal{D}(x\partial_{x} - \alpha)^{p}$$

$$\stackrel{3.23}{=} \mathcal{D}/\mathcal{D}(x(\partial_{x} - \frac{\partial \psi}{\partial x}) - \alpha)^{p}$$

$$= \mathcal{D}/\mathcal{D}(x\partial_{x} - (\alpha + x\frac{\partial \psi}{\partial x}))^{p}.$$

4.2 Die Filtrierung ${}^\ell V\mathcal{D}_{\widehat{K}}$ und das $\ell ext{-Symbol}$

Dieser Abschnitt bezieht sicht auf [Sab90, Seite 25] und beschreibt das ℓ -Symbol, welches im Beweis des Levelt-Turittin-Theorems verwendung findet.

Sei $\Lambda = \frac{\lambda_0}{\lambda_1} \in \mathbb{Q}_{\geq 0}$ vollständig gekürtzt, also mit λ_0 und λ_1 in \mathbb{N} relativ prim. Definiere die Linearform $\ell(s_0, s_1) = \lambda_0 s_0 + \lambda_1 s_1$. Sei $P \in \mathcal{D}_{\widehat{K}}$, falls $P = x^a \partial_x^b$ mit $a \in \mathbb{Z}$ und $b \in \mathbb{N}$, setzen wir

$$\operatorname{ord}_{\ell}(P) := \ell(b, b - a)$$

und falls $P = \sum_{i=0}^{d} b_i(x) \partial_x^i$ mit $b_i \in \widehat{K}$, setzen wir

$$\operatorname{ord}_{\ell}(P) := \max_{\{i \mid a_i \neq 0\}} \ell(i, i - v(b_i)).$$

Die folgende Bemerkung soll helfen, $\operatorname{ord}_{\ell}(P)$ bildlich zu verstehen.

Bemerkung 4.8. Sei $\ell(s_0, s_1) = \lambda_0 s_0 + \lambda_1 s_1$ gegeben und P ein linearer Differenzialoperator. Betrachte die Geradenschar $g_a(x) := \frac{\lambda_0}{\lambda_1} + a$, dann gibt es genau ein a, welches minimal unter der Eigenschaft, dass $g_a(x)$ das Newton-Polygon zu P schneidet, ist. Dieses so gefundene a entspricht genau dem $\operatorname{ord}_{\ell}(P)$.

In Abbildung 4.1 ist das ganze für $P = x^3 \partial_x^2 + 1$ und $\lambda_0 = \lambda_1 = 1$ bildlich dargestellt. Man liest ab, dass $\operatorname{ord}_{\ell}(P) = -1$.

Abbildung 4.1: Zu Bemerkung 4.8.

Bemerkung 4.9. Nach [Sab90, Seite 25] gilt, dass man $\operatorname{ord}_{\ell}(PQ) = \operatorname{ord}_{\ell}(P) + \operatorname{ord}_{\ell}(Q)$ hat und falls $\lambda_0 \neq 0$, hat man auch, das $\operatorname{ord}_{\ell}([P,Q]) \leq \operatorname{ord}_{\ell}(P) + \operatorname{ord}_{\ell}(Q) - 1$.

Nun können wir die aufsteigende Filtration ${}^{\ell}V\mathcal{D}_{\widehat{K}}$, welche mit $\mathbb Z$ indiziert ist, durch

$${}^{\ell}V_{\lambda}\mathcal{D}_{\widehat{K}} := \{ P \in \mathcal{D}_{\widehat{K}} \mid \operatorname{ord}_{\ell}(P) \leq \lambda \}$$

definieren. Falls $\lambda_0 \neq 0$, ist der gradierte Ring $gr^{\ell V} \mathcal{D}_{\widehat{K}} \stackrel{\text{def}}{=} \bigoplus_{\lambda \in \mathbb{Z}} gr_{\lambda}^{\ell V} \mathcal{D}_{\widehat{K}}$ ein kommutativer Ring. Bezeichne die Klasse von ∂_x in dem Ring durch ξ , dann ist der Ring isomorph zu $\widehat{K}[\xi]$.

Definition 4.10 (ℓ -Symbol). Sei $P \in \mathcal{D}_{\widehat{K}}$, so ist $\sigma_{\ell}(P)$ definiert als die Klasse von P in $gr_{\mathrm{ord}_{\ell}(P)}^{\ell V}\mathcal{D}_{\widehat{K}}$ und wird als das ℓ -Symbol bezeichnet.

Beispiel 4.11. Zum Beispiel ist $\sigma_{\ell}(x^a \partial_x^b) = x^a \xi^b$ für alle $a \in \mathbb{Z}$, $b \in \mathbb{N}$. Ein komplexeres Beispiel ist $P = x^2 \partial_x + 1$. Betrachte dazu ein $\ell(s_0, s_1) = \lambda_0 s_0 + \lambda_1 s_1$ mit $\lambda_0 \neq 0$ und unterscheide die folgenden drei Fälle:

- $\lambda_0 \lambda_1 > 0$, so ist $\sigma_\ell = x^2 \xi$.
- $\lambda_0 = \lambda_1$, so ist $\sigma_\ell = x^2 \xi + 1$.
- $\lambda_0 \lambda_1 < 0$, so ist $\sigma_\ell = 1$.

In Abbildung 4.2 sind, für jeden der Fälle, jeweils das Newton-Polygon, zusammen mit $g_{\mathrm{ord}_{\ell}(P)}(x) = \frac{\lambda_0}{\lambda_1} + \mathrm{ord}_{\ell}(P)$ in Braun, eingezeichnet. Das ℓ -Symbol von P sind, bildlich vorgestellt, jeweils die Monome, die auf $g_{\mathrm{ord}_{\ell}(P)}(x)$ "liegen". Mit dieser Vorstellung ist es klar, dass $\sigma_{\ell}(P)$ genau dann aus mehr als einem Monom besteht, wenn $\Lambda := \frac{\lambda_0}{\lambda_1}$ ein Slope von P ist.

Abbildung 4.2: Zu Beispiel 4.11.

Bemerkung 4.12. Ist $P \in \mathcal{D}_{\widehat{K}}$ geschrieben als $P = \sum_{i} \sum_{j} \alpha_{ij} x^{j} \partial_{x}^{i}$. So erhält man $\sigma_{\ell}(P)$ durch die Setzung

$$\sigma_{\ell}(P) = \sum_{\{(i,j)|\ell(i,i-j) = \operatorname{ord}_{\ell}(P)\}} \alpha_{ij} x^{j} \xi^{i}.$$

Bemerkung 4.13. Bei [Sab90] wird der Buchstabe L anstatt ℓ für Linearformen verwendet, dieser ist hier aber bereits für $\mathbb{C}\{t\}$ reserviert. Dementsprechend ist die Filtrierung dort als ${}^LV\mathcal{D}_{\widehat{K}}$ und das ℓ -Symbol als L-Symbol zu finden.

Bemerkung 4.14 (Stützfunktion). Die Funktion

$$\omega_P : [0, \infty) \to \mathbb{R}, \omega_P(t) := \inf\{v - tu \mid (u.v) \in N(P)\}$$

heißt Stützfunktion und wird in [AV09] als Alternative zur hier definierten Filtrierung verwendet. Wenn $\ell(x_0, s_1)$ wie oben aus Λ entstanden ist, so gilt

$$\omega_P(\Lambda) = ord_\ell(P)$$
.

4.3 Levelt-Turrittin-Theorem

Satz 4.15. [Sab90, Thm 5.4.7] Sei $\mathcal{M}_{\widehat{K}}$ ein formaler meromorpher Zusammenhang, so gibt es eine ganze Zahl p, so dass der Zusammenhang $\mathcal{M}_{\widehat{L}} := \rho^+ \mathcal{M}_{\widehat{K}}$, mit $\rho : t \mapsto x := t^p$, isomorph zu einer direkten Summe von formalen elementaren meromorphen Zusammenhänge ist.

Beweisskizze. Zum Beweis wird Induktion auf die lexicographisch geordnetem Paare $(\dim_{\widehat{K}} \mathcal{M}_{\widehat{K}}, \kappa)$ angewendet. Wobei $\kappa \in \mathbb{N} \cup \{\infty\}$ dem größtem Slope von $\mathcal{M}_{\widehat{K}}$, falls dieser ganzzahlig ist, entspricht. Sonsts wird $\kappa = \infty$ gesetzt. In jedem Induktionsschritt wird entweder die Dimension oder das κ verringert.

Wir nehmen oBdA an, dass $\mathcal{M}_{\widehat{K}}$ genau einen Slope Λ hat, sonst Teile $\mathcal{M}_{\widehat{K}}$ mittels Satz 2.28 in meromorphe Zusammenhänge mit je einem Slope und wende jeweils die Induktion an. Mit $\Lambda =: \frac{\lambda_0}{\lambda_1}$ (vollständig gekürtzt) definieren wir die dem Slope entsprechende Linearform $\ell(s_0, s_1) := \lambda_0 s_0 + \lambda_1 s_1$. Wir nehmen oBdA auch an, dass $\operatorname{ord}_{\ell}(P) = 0$. Dies geht nach Bemerkung 2.24. Da ℓ zu einem Slope von P gehört, besteht $\sigma_{\ell}(P)$ aus zumindest zwei Monomen. Schreibe

$$\sigma_{\ell}(P) = \sum_{\ell(i,i-j) = \text{ord}_{\ell}(P)} \alpha_{ij} x^{j} \xi^{i}$$

$$= \sum_{\ell(i,i-j)=0} \alpha_{ij} x^j \xi^i$$

und setze $\theta := x^{\lambda_0 + \lambda_1} x i^{\lambda_1}$ so erhalten wir

$$\sigma_{\ell}(P) = \sum_{k \ge 0} \alpha_k \theta^k \,,$$

wobei $\alpha_0 \neq 0$ ist.

Erster Fall: $\lambda_1 = 1$. Das bedeutet, dass der Slope ganzzahlig ist. Betrachte die Faktorisierung

$$\sigma_{\ell}(P) = \varepsilon \prod_{\beta \text{ Nullstelle}} (\theta - \beta)^{\gamma_{\beta}}.$$

Wobei $\varepsilon \in \mathbb{C}^{\times}$ eine Konstante ist. Sei β eine der Nullstellen, so setze $\psi(x) := (\beta_0/\lambda_0)x^{-\lambda_0}$ und betrachte $\mathcal{M}_{\widehat{K}} \otimes_{\widehat{K}} \mathscr{E}_{\widehat{K}}^{\psi}$. Sei P ein Minimalpolynom von $\mathcal{M}_{\widehat{K}}$, dann ist nach Lemma 3.23 ein Minimalpolynom von $\mathcal{M}_{\widehat{K}} \otimes_{\widehat{K}} \mathscr{E}_{\widehat{K}}^{\psi}$ gegeben durch

$$P'(x, \partial_x) = P(x, \partial_x - \frac{\partial \psi}{\partial x})$$
$$= P(x, \partial_x + \frac{\beta}{x^{\lambda_0 + 1}})$$

mit Koeffizienten in $\mathbb{C}[x]$. Des weiteren ist $\sigma_{\ell}(P') = \sum_{k \geq 0} \alpha_k (\theta + \beta_0)^k$. Wir unterscheiden nun 2 Unterfälle:

- 1. Die Determinanten Gleichung $\sigma_{\ell}(P)$ hat nur eine Nullstelle. In diesem fall wurde die maximale Steigung echt verringert.
- 2. Die Determinanten Gleichung $\sigma_{\ell}(P)$ hat mehrere Nullstellen. In diesem fall hat $\mathcal{M}_{\widehat{K}} \otimes_{\widehat{K}} \mathscr{E}_{\widehat{K}}^{\psi}$ mehr als einen Slope und kann deshalb mit Satz 2.28 in eine direkte Summe von Meromorphen Zusammenhängen, mit echt niedrigerer Dimension, zerlegt werden.

In beiden Unterfällen muss danach das Twisten, nach Anwenden der Induktion, durch ein tensorieren mit $\mathcal{E}_{\widehat{k}}^{-\psi}$ rückgängig gemacht werden.

Zweiter Fall: $\lambda_1 \neq 1$ (bzw. $\kappa = +\infty$). In diesem Fall ist einzige Slope Λ nicht ganzzahlig. Mache deshalb einen pull-back mit λ_1 . Sei $\rho: t \mapsto x := t^{\lambda_1}$ und erhalte P' so dass $\rho^* \mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot P'$. Nach Lemma 3.9 hat P' den einen Slope $\Lambda' = \Lambda \cdot \lambda_1 = \lambda_0 \in \mathbb{N}$.

Bemerkung 4.16. Eine sehr detailierte Version dieses Beweises, ist beispielsweise in [Hei10, Thm 5.16] zu finden.

5 Explizite Berechnung einer Levelt-Turrittin-Zerlegung

In diesem Kapitel soll für spezielle meromorphe Zusammenhänge, zunächst allgemein und ab Abschnitt 5.2 für einen konkreten Zusammenhang, die Levelt-Turrittin-Zerlegung berechnet werden.

Hier wird zunächst ein allgemeines Rezept gegeben, welches zu gegebenem φ einen meromorphen Zusammenhang liefert:

Schritt 1: Wähle zunächst ein $\varphi \in \{\varphi = \sum_{k \in I} \frac{a_k}{t^k} | I \subset \mathbb{N} \text{ endlich}, a_k \in \mathbb{C}\}$ aus

Schritt 2: und beginne mit \mathscr{E}^{φ} . Es gilt

$$\begin{split} \mathscr{E}^{\varphi} &= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \left(\partial_t - \frac{d}{dt}\varphi(t)\right) \\ &= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \left(\underbrace{\mathbf{Hauptnenner \ von } \frac{d}{dt}\varphi(t)}_{\in \mathbb{C}[t] \subset \mathcal{D}_{\widehat{L}}^*} \cdot \left(\partial_t - \frac{d}{dt}\varphi(t)\right)\right) \\ &= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \left(\underbrace{t^{\max(I)+1} \cdot \left(\partial_t - \frac{d}{dt}\varphi(t)\right)}_{=:Q(t,\partial_t) \in \mathbb{C}[t] < \partial_t >}\right). \end{split}$$

Schritt 3: Fouriertransformiere \mathscr{E}^{φ} und erhalte

$$\stackrel{\mathcal{F}_{\mathcal{C}}^{\varphi}}{=} \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \mathcal{F}_{Q}(z, \partial_{z})$$

$$\stackrel{\text{def}}{=} \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \underbrace{Q(\partial_{z}, -z)}_{\in \mathbb{C}[z] < \partial_{z} >} .$$

Schritt 4: Betrachte den Zusammenhang bei Unendlich und somit erhalte das entsprechende Minimalpolynom

$$P_{\varphi}(x,\partial_x) := \mathcal{F}_Q^{\infty}(x,\partial_x) \stackrel{\text{def}}{=} \mathcal{F}_Q(x^{-1},-x^2\partial_x) \in \mathbb{C}[x] < \partial_x > .$$

Im folgendem werden wir den zum Minimalpolynom P_{φ} assoziierten formalen meromorphen Zusammenhang $\mathcal{M}_{\varphi} := \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P_{\varphi}$ betrachten.

5.1 Betrachte \mathcal{M}_{φ} für allgemeine φ

Lemma 5.1. Zu einem $\varphi = \sum_{k \in I} \frac{a_k}{t^k} \in \{\varphi = \sum_{k \in I} \frac{a_k}{t^k} | I \subset \mathbb{N} \text{ endlich, } a_k \in \mathbb{C}\}$ ist das Minimalpolynom von \mathcal{M}_{φ} explizit gegeben durch

$$P_{\varphi}(x,\partial_x) = (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k \in I} ka_k(-x^2\partial_x)^{\max(I)-k} \qquad \in \mathbb{C}[x] < \partial_x > .$$

Beweis. Sei $\varphi = \sum_{k \in I} \frac{a_k}{t^k}$, so ist

$$\begin{split} Q(t,\partial_t) &= t^{\max(I)+1} (\partial_t - \frac{d}{dt} \varphi(t)) \\ &= t^{\max(I)+1} \Big(\partial_t + \sum_{k \in I} k \frac{a_k}{t^{k+1}} \Big) \\ &= t^{\max(I)+1} \partial_t + \sum_{k \in I} k a_k t^{\max(I)-k} \\ \mathcal{F}_Q(z,\partial_z) &= Q(\partial_z,-z) \\ &= -\partial_z^{\max(I)+1} z + \sum_{k \in I} k a_k \partial_z^{\max(I)-k} \end{split}$$

und damit ist

$$P_{\varphi}(x, \partial_{x}) = \mathcal{F}_{Q}(x^{-1}, -x^{2}\partial_{x})$$

$$= -(-x^{2}\partial_{x})^{\max(I)+1}x^{-1} + \sum_{k \in I} ka_{k}(-x^{2}\partial_{x})^{\max(I)-k}$$

$$= (-x^{2}\partial_{x})^{\max(I)}x^{2}\partial_{x}x^{-1} + \sum_{k \in I} ka_{k}(-x^{2}\partial_{x})^{\max(I)-k}$$

$$= (-x^{2}\partial_{x})^{\max(I)}x^{2}(x^{-1}\partial_{x} - x^{-2}) + \sum_{k \in I} ka_{k}(-x^{2}\partial_{x})^{\max(I)-k}$$

$$= (-x^{2}\partial_{x})^{\max(I)}(x\partial_{x} - 1) + \sum_{k \in I} ka_{k}(-x^{2}\partial_{x})^{\max(I)-k} \in \mathbb{C}[x] < \partial_{x} > 0$$

Im Anhang B wird das $(x^2\partial_x)^k$ genauer diskutiert. Dies führt aber hier an dieser Stelle nicht mehr weiter in die gewünschte Richtung.

Lemma 5.2. Es gilt
$$\mathcal{P}(\mathcal{M}_{\varphi}) = \{\frac{q}{q+1}\}.$$

Beweis. Um zu zeigen, dass die Behauptung gilt, formen wir P_{φ} um und isolieren die Monome, die für das Newton-Polygon nicht von Bedeutung sind und deshalb vernachlässigt werden können. Betrachte dazu die konvexen Hüllen, die wie in Abschnitt 2.3 konstruiert werden. Sei $q := \max(I)$.

$$H(P_{\varphi}(x,\partial_x)) = H(\underbrace{(-x^2\partial_x)^q(x\partial_x - 1)} + \sum_{k \in I} ka_k(-x^2\partial_x)^{q-k})$$

$$= H\left((-1)^{q}(x^{2q}\partial_{x}^{q} + \underbrace{\mathbf{T.i.Q. \ von} \ x^{2q}\partial_{x}^{q}})(x\partial_{x} - 1) + \sum_{k \in I} ka_{k}(-x^{2}\partial_{x})^{q-k}\right)$$

$$= H\left(\underbrace{(-1)^{q}}_{\text{liefert keinen Beitrag}} x^{2q}\partial_{x}^{q}(x\partial_{x} - 1) + \sum_{k \in I} ka_{k}(-x^{2}\partial_{x})^{q-k}\right)$$

$$= H\left(x^{2q}\partial_{x}^{q}x\partial_{x} - x^{2q}\partial_{x}^{q} + \sum_{k \in I} ka_{k}(-x^{2}\partial_{x})^{q-k}\right)$$

$$= H\left(x^{2q}(x\partial_{x}^{q} + q\partial_{x}^{q-1})\partial_{x} - x^{2q}\partial_{x}^{q} + \sum_{k \in I} ka_{k}(-x^{2}\partial_{x})^{q-k}\right)$$

$$= H\left(x^{2q+1}\partial_{x}^{q+1} + \underbrace{qx^{2q}\partial_{x}^{q} - x^{2q}\partial_{x}^{q}}_{\text{sind also vernachlässigbar}} + \sum_{k \in I} ka_{k}(-x^{2}\partial_{x})^{q-k}\right)$$

$$= H\left(x^{2q+1}\partial_{x}^{q+1} + qa_{q} + \sum_{k \in I \setminus \{q\}} ka_{k}(-x^{2}\partial_{x})^{q-k}\right)$$

Nun wollen wir noch zeigen, dass die Summe auch vernachlässigt werden kann.

Behauptung: Es gilt

$$H\left(x^{2q+1}\partial_x^{q+1} + qa_q + \sum_{k \in I \setminus \{q\}} ka_k(-x^2\partial_x)^{q-k}\right) \subset H\left(x^{2q+1}\partial_x^{q+1} + qa_q\right)$$

Denn: Betrachte zu einem $m \in I \setminus \{q\}$, einen Summanten $ma_m(-x^2\partial_x)^{q-m}$ aus der Summe:

$$\begin{split} H(ma_m(-x^2\partial_x)^{q-m}) &= H(ma_m(-1)^q(x^{2(q-m)}\partial_x^{q-m} + \mathbf{T.i.Q. \ von} \ x^{2(q-m)}\partial_x^{q-m})) \\ &= H(x^{2(q-m)}\partial_x^{q-m}) \\ &= (q-m, q-m) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \end{split}$$

In Abbildung 5.1 ist die Situation, die wir gerade betrachten, mit $N(x^{2q+1}\partial_x^{q+1}+qa_q)$ in der gewohnten Farbe und $H(x^{2(q-m)}\partial_x^{q-m})$ in Blau, dargestellt. Man sieht also, dass die Behauptung gilt.

Mit der Behauptung gilt dann, dass

$$\begin{split} H\Big(P_{\varphi}(x,\partial_x)\Big) &= H\Big(x^{2q+1}\partial_x^{q+1} + qa_q + \sum_{k \in I \setminus \{q\}} ka_k(-x^2\partial_x)^{q-k}\Big) \\ &\stackrel{\text{Beh.}}{=} H\Big(x^{2q+1}\partial_x^{q+1} + qa_q\Big) \,. \end{split}$$

Also ist

$$N(P_{\varphi}(x,\partial_x)) = N(x^{2q+1}\partial_x^{q+1} + qa_q).$$

womit die Behauptung des Lemmas folgt und das Newton-Polygon wie in Abbildung 5.1 aussieht.

Abbildung 5.1: Newton-Polygon zu P_{φ} zusammen mit $H(x^{2(q-m)}\partial_x^{q-m})$

Also ist, nach Lemma 3.9, ein pull-back mit Grad q+1 hinreichend, um einen ganzzahligen Slope zu bekommen. Denn wir wissen, dass nach Anwenden eines solchem pull-backs die Slopes mit q+1 multipliziert werden, also gilt $\mathcal{P}(\rho^+\mathcal{M}_{\varphi})=\{q\}\subset\mathbb{N}$.

Lemma 5.3. Im Fall $\varphi = \frac{a}{t^q}$ ist mit $\rho: t \mapsto x := -(q+1)t^{q+1}$ der pull-back gegeben durch

$$\rho^{+}\mathcal{M}_{\varphi} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot ((t^{q+2}\partial_{t})^{q}(t\partial_{t} - (q+1)) + (q+1)qa).$$

Beweis. Sei $\varphi = \frac{a}{t^q}$, so ist P gegeben durch

$$P_{\varphi}(x,\partial_x) = (-x^2\partial_x)^q(x\partial_x - 1) + qa,$$

und sei $\rho: t \mapsto x := -(q+1)t^{q+1}$. Damit gilt

$$\begin{split} \rho^+ \mathcal{M}_\varphi &= \rho^+ (\mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot P_\varphi(x, \partial_x)) \\ &= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot \rho^* P_\varphi(t, \partial_t) \\ &= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot P_\varphi(\rho(t), \rho'(t)^{-1} \partial_t) \\ &= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot P_\varphi \Big(- (q+1)t^{q+1}, -\frac{1}{(q+1)^2 t^q} \partial_t \Big) \\ &= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot \left(\left(- (-(q+1)t^{q+1})^2 \frac{-1}{(q+1)^2 t^q} \partial_t \right)^q (-(q+1)t^{q+1} \frac{-1}{(q+1)^2 t^q} \partial_t - 1) + qa \right) \\ &= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot \left(\underbrace{\left(\frac{(q+1)^2}{(q+1)^2} t^{2(q+1)-q} \partial_t \right)^q}_{=1} \left(\frac{1}{q+1} t \partial_t - 1 \right) + qa \right) \\ &= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot \left((t^{q+2} \partial_t)^q (\frac{1}{q+1} t \partial_t - 1) + qa \right) \\ &= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot \left((t^{q+2} \partial_t)^q (t \partial_t - (q+1)) + (q+1)qa \right) \end{split}$$

Das so erhaltene $\rho^+\mathcal{M}_{\varphi}$ wollen wir, wenn nötig, noch weiter zerlegen. Dazu würden wir gerne den Satz 2.28 anwenden, leider haben wir momentan genau einen Slope. Hier hilft uns aber ein Trick, nach Korollar 3.24 gilt $\rho^+\mathcal{M}_{\varphi} = \rho^+\mathcal{M}_{\varphi} \otimes_{\widehat{K}} \mathscr{E}^{\psi} \otimes_{\widehat{K}} \mathscr{E}^{-\psi}$, wobei $\mathcal{N} := \mathcal{M}_{\varphi} \otimes_{\widehat{K}} \mathscr{E}^{\psi}$ möglicherweise mehr als einen Slope hat. Genau diesen Sonderfall wollen wir, um mit Satz 2.28 die Zerlegung $\mathcal{N} = \bigoplus_i \mathcal{N}_i$ zu erhalten und damit ist dann

$$\rho^+ \mathcal{M}_{\varphi} = \bigoplus_{i} \mathcal{N}_i \otimes_{\widehat{L}} \mathscr{E}_{\widehat{L}}^{-\psi}.$$

Definiere dazu, mittels $q = \frac{q}{1} =: \frac{\lambda_0}{\lambda_1}$, die Linearform

$$\ell(s_0, s_1) = \lambda_0 s_0 + \lambda_1 s_1 = q s_0 + s_1.$$

Schreibe $\rho^* P_{\varphi} = \sum_i \sum_j \alpha_{ij} t^j \partial_t^i$ und berechne die *Determinanten Gleichung* $\sigma_{\ell}(\rho^* P_{\varphi}) \in \widehat{L}[\xi]$.

$$\sigma_{\ell}(\rho^* P_{\varphi}) = \sum_{\{(i,j) \in \mathbb{N} \times \mathbb{Z} | \ell(i,i-j) = 0\}} \alpha_{ij} t^j \xi^i$$
$$= \sum_{\{(i,j) \in \mathbb{N} \times \mathbb{Z} | (q+1)i-j = 0\}} \alpha_{ij} t^j \xi^i$$

Da $\widehat{L}[\xi]$ kommutativ ist, gilt hier, dass $(t^j\xi^i)^k=t^{jk}\xi^{ik}$ ist. Setze $\theta=t^{\lambda_0+\lambda_1}\xi^{\lambda_1}=t^{q+1}\xi$ so, können wir

$$\sigma_{\ell}(\rho^* P_{\varphi})(\theta) = \sum_{k \ge 0} \alpha_k \theta^k \qquad \alpha_k \in \mathbb{C}$$

schreiben. Sei β eine der Nullstellen von $\sigma_{\ell}(\rho^* P_{\varphi})(\theta)$. Da $\operatorname{ord}_{\ell}(\rho^* P_{\varphi}) = 0$ und der einzige Slope von $\rho^* P_{\varphi}$ nicht gleich 0 ist, gilt offensichtlich, dass $\alpha_0 \neq 0$. Also ist 0 keine Nullstelle von $\sigma_{\ell}(\rho^* P_{\varphi})$. Setze $\psi(x) := (\beta/\lambda_0)t^{-\lambda_0} = (\beta/q)t^{-q}$ und betrachte

$$\begin{split} \mathcal{N} &:= \rho^{+} \mathcal{M}_{\varphi} \otimes_{\widehat{L}} \mathscr{E}_{\widehat{L}}^{\psi} \\ &= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot \left(\rho^{*} P_{\varphi}(t, \partial_{t}) \right) \otimes_{\widehat{L}} \mathscr{E}_{\widehat{L}}^{\psi} \\ &\stackrel{3.23}{=} \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot \left(\rho^{*} P_{\varphi}(t, \partial_{t} - \frac{\partial \psi}{\partial t}) \right) \\ &= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot \left(\rho^{*} P_{\varphi}(t, \partial_{t} + \frac{\beta}{t^{q+1}}) \right) \\ &= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot \left((t^{q+2} (\partial_{t} + \frac{\beta}{t^{q+1}}))^{q} (t(\partial_{x} + \frac{\beta}{t^{q+1}}) - (q+1)) + (q+1)qa \right) \end{split}$$

Zerlege nun wie in Satz 2.28 den meromorphen Zusammenhang \mathcal{N} in $\mathcal{N} = \bigoplus_i \mathcal{N}_i$ wobei \mathcal{N}_i meromorphe Zusammenhänge mit genau einem Slope sind. Zerlege jedes reguläre \mathcal{N}_i möglichst weit mittels dem Satz 4.5. Nutze Korollar 3.24 und twiste die \mathcal{N}_i jeweils mit $\mathscr{E}_{\widehat{L}}^{-\psi}$ und somit ist dann

$$\rho^+ \mathcal{M}_{\varphi} = \bigoplus_{i} \mathcal{N}_i \otimes_{\widehat{L}} \mathscr{E}_{\widehat{L}}^{-\psi}.$$

Für jeden Summanden lässt sich nun, falls dieser nicht schon ein elementarer meromorpher Zusammenhang ist, Induktion anwenden.

5.2 Levelt-Turrittin-Zerlegung für \mathcal{M}_{arphi} mit $arphi_1:=rac{a}{x}$

Als konkreten Fall betrachten wir nun \mathcal{M}_{φ} bezüglich $\varphi_1 := \frac{a}{x}$. Es ist das zugehörigen Minimalpolynom gegeben durch

$$P_{\varphi}(x, \partial_x) = -x^2 \partial_x (x \partial_x - 1) + a$$

$$= -x^2 \partial_x x \partial_x + x^2 \partial_x + a$$

$$= -x^2 (x \partial_x + 1) \partial_x + x^2 \partial_x + a$$

$$= -x^3 \partial_x^2 - x^2 \partial_x + x^2 \partial_x + a$$

$$= -x^3 \partial_x^2 + a.$$

Erhalte daraus das Newton-Polygon mit den Slopes $\mathcal{P}(\mathcal{M}_{\varphi}) = \{\frac{1}{2}\}.$

Abbildung 5.2: Newton-Polygon zu P_{φ}

Berechne nun zu $\rho:t\mapsto x:=-2t^2$ ein Minimalpolynom ρ^*P_φ zu $\rho^+\mathcal{M}_\varphi$:

$$\rho^* P_{\varphi}(x, \partial_x) = t^3 \partial_t (t \partial_t - 2) + 2a$$

$$= t^3 \partial_t t \partial_t - 2t^3 \partial_t + 2a$$

$$= t^3 (t \partial_t + 1) \partial_t - 2t^3 \partial_t + 2a$$

$$= t^4 \partial_t^2 + t^3 \partial_t - 2t^3 \partial_t + 2a$$

$$= t^4 \partial_t^2 - t^3 \partial_t + 2a$$

und erhalte einen meromorphen Zusammenhang $\rho^+ \mathcal{M}_{\varphi} = \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \rho^* P_{\varphi}$ mit genau dem Slope $1 = \frac{1}{1} =: \frac{\lambda_0}{\lambda_1}$.

Abbildung 5.3: Newton-Polygon zu $\rho^* P_{\varphi}$

Definiere die Linearform $\ell(s_0, s_1) := \lambda_0 s_0 + \lambda_1 s_1 = s_0 + s_1$. Wir suchen nun ein ψ , so dass der Twist $\rho^+ \mathcal{M}_{\varphi} \otimes_{\widehat{L}} \mathscr{E}^{\psi}$ mehr als einen Slope hat, damit wir entlang der Slopes zerlegen können. Berechne dazu die *Determinanten Gleichung* $\sigma_{\ell}(\rho^* P_{\varphi}) \in \widehat{L}[\xi]$ von $\rho^* P_{\varphi}$.

$$\sigma_{\ell}(\rho^* P_{\varphi}) = \sum_{\{(i,j)|2i-j=0\}} \alpha_{ij} x^j \xi^i$$
$$= t^4 \xi^2 + 2a$$

Setze $\theta:=t^{\lambda_0+\lambda_1}\xi^{\lambda_1}=t^2\xi$, so erhalten wir

$$\sigma_{\ell}(\rho^* P_{\varphi}) = \theta^2 + 2a \,,$$

mit den Nullstellen $i\sqrt{2a} =: \beta$ und $-i\sqrt{2a}$. Setze $\psi(x) := (\beta/\lambda_0)t^{-\lambda_0} = i\sqrt{2a}t^{-1}$ und betrachte den Twist $\mathcal{N} := \rho^+\mathcal{M}_{\varphi} \otimes \mathscr{E}^{\psi}$ von $\rho^+\mathcal{M}_{\varphi}$. Es ist $e \otimes 1$ ein zyklischer Vektor, wobei e ein zyklischer Vektor von $\rho^+\mathcal{M}$ ist. Mit dem Lemma vom Zyklischen Vektor, bzw. der Proposition 2.16, wollen wir nun ein Minimalpolynom zu \mathcal{N} berechnen^[1]:

$$\partial_{t}^{2}(e \otimes 1) = \partial_{t}(\partial_{t}(e \otimes 1))$$

$$\stackrel{(3.4)}{=} \partial_{t}((\partial_{t}e) \otimes 1 + e \otimes \psi'(t))$$

$$\stackrel{(3.4)}{=} (\partial_{t}^{2}e) \otimes 1 + (\partial_{t}e) \otimes \psi'(t) + (\partial_{t}e) \otimes \psi'(t) + e \otimes \underbrace{(\psi''(t) + \psi'(t)^{2})}_{\in K}$$

$$= \underbrace{((t^{-1}\partial_{t} - 2at^{-4})e) \otimes 1 + 2\psi'(t)(\partial_{t}e) \otimes 1}_{\in K} + \underbrace{(\psi''(t) + \psi'(t)^{2})e \otimes 1}_{\in K}$$

$$= \underbrace{(t^{-1}\partial_{t}e) \otimes 1 - 2at^{-4}e \otimes 1 + 2\psi'(t)(\partial_{t}e) \otimes 1 + \psi''(t)e \otimes 1 + \psi'(t)^{2}e \otimes 1}_{= (t^{-1} + 2\psi'(t))(\partial_{t}e) \otimes 1 + (-2at^{-4} + \psi''(t) + \psi'(t)^{2})e \otimes 1}$$

$$\stackrel{(3.4)}{=} (t^{-1} + 2\psi'(t))(\partial_{t}(e \otimes 1) - e \otimes \psi'(t)) + (-2at^{-4} + \psi''(t) + \psi'(t)^{2})e \otimes 1$$

$$= (t^{-1} + 2\psi'(t))\partial_{t}(e \otimes 1) - (\psi'(t)t^{-1} + 2\psi'(t)^{2})e \otimes 1$$

$$+ (-2at^{-4} + \psi''(t) + \psi'(t)^{2})e \otimes 1$$

 $^{^{[1]}}$ Dies wäre auch schneller, aber weit weniger interessant, mit Lemma 3.23 möglich.

$$= ((t^{-1} + 2\psi'(t))\partial_t - \psi'(t)t^{-1} - 2\psi'(t)^2 - 2at^{-4} + \psi''(t) + \psi'(t)^2)\mathbf{e} \otimes 1$$
$$= ((t^{-1} + 2\psi'(t))\partial_t - \psi'(t)t^{-1} - 2at^{-4} + \psi''(t) - \psi'(t)^2)\mathbf{e} \otimes 1$$

also

$$0 = \left(\underbrace{\partial_t^2 - (t^{-1} + 2\psi'(t))\partial_t + \psi'(t)t^{-1} + 2at^{-4} - \psi''(t) + \psi'(t)^2}_{=:P'}\right)e \otimes 1$$

und mit $\psi(t)=i\sqrt{2a}t^{-1}$ ist $\psi'(t)=-i\sqrt{2a}t^{-2}$ und $\psi''(t)=2i\sqrt{2a}t^{-3}$. Also durch Einsetzen ergibt sich

$$\begin{split} P' &= \partial_t^2 - (t^{-1} + 2\psi'(t))\partial_t + \psi'(t)t^{-1} + 2at^{-4} - \psi''(t) + \psi'(t)^2 \\ &= \partial_t^2 - (t^{-1} - 2i\sqrt{2a}t^{-2})\partial_t - i\sqrt{2a}t^{-3} + 2at^{-4} - 2i\sqrt{2a}t^{-3} + \underbrace{(-i\sqrt{2a}t^{-2})^2}_{=0} \\ &= \partial_t^2 - (t^{-1} - 2i\sqrt{2a}t^{-2})\partial_t - 3i\sqrt{2a}t^{-3} + \underbrace{2at^{-4} - 2at^{-4}}_{=0} \\ &= \partial_t^2 - (t^{-1} - 2i\sqrt{2a}t^{-2})\partial_t - 3i\sqrt{2a}t^{-3} \end{split}$$

mit, wie gewünscht, mehr als einem Slope (siehe Abbildung 5.4).

Abbildung 5.4: Newton-Polygon zu $\mathcal N$

Nachdem wir jetzt ein Minimalpolynom gefunden haben, ist unser nächstes Ziel, $\mathcal{N} = \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}}$. P' in zwei meromorphe Zusammenhänge mit nur einem Slope zerlegen. Betrachte hierzu das Minimalpolynom und zerlege dieses in ein Produkt $P'(t, \partial_t) = Q_1(t, \partial_t) \cdot Q_2(t, \partial_t)$.

Da der ∂_t -Grad von P' genau 2 ist, müssen die Q_i jeweils den Grad 1 haben, um eine echte nichttriviale Zerlegung zu bekommen. Allgemein haben dir Q_i also die Form

$$Q_1 := \bar{v}(t)\partial_t + v(t) \qquad \qquad Q_2 := \bar{u}(t)\partial_t + u(t) \qquad \qquad \text{mit } \bar{v}(t), v(t), \bar{u}(t), u(t) \in \widehat{L}.$$

Beobachtung 5.4. Ist Q_1 und Q_2 so ein solches Paar, dann ist für $\sigma \in \widehat{L}$ das Paar $\overline{Q}_1 := Q_1 \cdot \sigma^{-1}$ und $\overline{Q}_2 := \sigma \cdot Q_2$ ebenfalls eine Zerlegung, denn

$$P' = Q_1 \cdot Q_2 = Q_1 \cdot \underbrace{\sigma^{-1} \cdot \sigma}_{=1} \cdot Q_2 = \bar{Q}_1 \cdot \bar{Q}_2.$$

Mit der Beobachtung 5.4 ist klar, dass wir den Faktor vor ∂_t in Q_2 frei wählen können. Setze $\bar{u}(t) := 1$ und erhalte

$$Q_1 = \bar{v}(t)\partial_t + v(t)$$
 $Q_2 = \partial_t + u(t)$ mit $\bar{v}(t), v(t), u(t) \in \hat{L}$

und somit ist ist das Produkt gegeben durch

$$Q_{1} \cdot Q_{2} = \bar{v}(t)\partial_{t}^{2} + \bar{v}(t)\partial_{t}u(t) + v(t)\partial_{t} + v(t)u(t)$$

$$\stackrel{!}{=} \partial_{t}^{2} - (t^{-1} - 2i\sqrt{2a}t^{-2})\partial_{t} - 3i\sqrt{2a}t^{-3}.$$
(5.1)

Damit ist ebenfalls $\bar{v}(t) = 1$.

Durch das Wissen über die Slopes der Q_i erhalten wir noch Informationen über die Reihen $v(t) := \sum_n v_n t^n$ und $u(t) := \sum_n u_n t^n$. Die beiden Polynome Q_1 und Q_2 enthalten ∂_t als einziges Monom vom ∂_t -Grad 1, deshalb ist (1,-1) in beiden zugehörigen Newton-Polygonen enthalten. Da Q_1 nur den Slope 0 hat, muss das Newton-Polygon wie in Abbildung 5.5 aussehen und somit wissen wir, dass $v_n = 0$ für alle n < -1. Da Q_2 genau den Slope 1 hat, ist das Newton-Polygon gegeben durch Abbildung 5.6. Damit ist $u_n = 0$ für alle n < -2 und $u_{-2} \neq 0$.

Abbildung 5.5: Newton-Polygon zu Q_1

Abbildung 5.6: Newton-Polygon zu Q_2

Mit diesen Informationen erhalten wir aus (5.1) die Gleichung

$$Q_1 \cdot Q_2 = \partial_t^2 + \partial_t \sum_{n=-2}^{\infty} u_n t^n + \sum_{n=-1}^{\infty} v_n t^n \partial_t + \left(\sum_{n=-1}^{\infty} v_n t^n\right) \left(\sum_{n=-2}^{\infty} u_n t^n\right)$$

$$(5.2)$$

und mit denn Kommutatorregeln gilt

$$\partial_t \sum_{n=-2}^{\infty} u_n t^n = \sum_{n=-2}^{\infty} (u_n t^n \partial_t + [\partial_t, u_n t^n])$$

$$\stackrel{(1.1)}{=} \sum_{n=-2}^{\infty} (u_n t^n \partial_t + n u_n t^{n-1})$$

$$= \sum_{n=-2}^{\infty} u_n t^n \partial_t + \sum_{n=-2}^{\infty} n u_n t^{n-1}$$

Wenn wir dieses Ergebnis nun in (5.2) einsetzen, ergibt sich

$$Q_{1} \cdot Q_{2} = \partial_{t}^{2} + \sum_{n=-2}^{\infty} u_{n} t^{n} \partial_{t} + \sum_{n=-2}^{\infty} n u_{n} t^{n-1} + \sum_{n=-1}^{\infty} v_{n} t^{n} \partial_{t} + \left(\sum_{n=-1}^{\infty} v_{n} t^{n}\right) \left(\sum_{n=-2}^{\infty} u_{n} t^{n}\right)$$

$$= \partial_{t}^{2} + \sum_{n=-2}^{\infty} (u_{n} + v_{n}) t^{n} \partial_{t} + \sum_{n=-3}^{\infty} (n+1) u_{n+1} t^{n} + \left(\sum_{n=-1}^{\infty} v_{n} t^{n}\right) \left(\sum_{n=-2}^{\infty} u_{n} t^{n}\right).$$
(5.3)

Betrachte nun das letzte Glied, auf welches wir die Cauchy-Produktformel anwenden wollen:

$$\left(\sum_{n=-1}^{\infty} v_n t^n\right) \left(\sum_{n=-2}^{\infty} u_n t^n\right) = t^{-3} \left(\sum_{n=0}^{\infty} v_{n-1} t^n\right) \left(\sum_{n=0}^{\infty} u_{n-2} t^n\right)$$

$$= t^{-3} \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} v_{k-1} t^k u_{n-k-2} t^{(n-k)}\right)$$

$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} v_{k-1} u_{n-k-2} t^{k+(n-k)-3}\right)$$

$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} v_{k-1} u_{n-k-2}\right) t^{n-3}$$

$$= \sum_{n=-3}^{\infty} \left(\sum_{k=0}^{n+3} v_{k-1} u_{n-k+1}\right) t^n$$

Wenn wir auch diese Rechnung in (5.3) integrieren, erhalten wir

$$Q_1 \cdot Q_2 = \partial_t^2 + \sum_{n=-2}^{\infty} (u_n + v_n) t^n \partial_t + \sum_{n=-3}^{\infty} (n+1) u_{n+1} t^n + \sum_{n=-3}^{\infty} \left(\sum_{k=0}^{n+3} v_{k-1} u_{n-k+1} \right) t^n$$

$$= \partial_t^2 + \sum_{n=-2}^{\infty} (u_n + v_n) t^n \partial_t + \sum_{n=-3}^{\infty} \left((n+1) u_{n+1} + \sum_{k=0}^{n+3} v_{k-1} u_{n-k+1} \right) t^n$$

$$\stackrel{!}{=} \partial_t^2 - (t^{-1} - 2i\sqrt{2a}t^{-2}) \partial_t - 3i\sqrt{2a}t^{-3}.$$

Damit haben wir ein Ergebnis, das sich Koeffizientenweise mit der gewünschten Formel vergleichen lässt:

$$2i\sqrt{2a}t^{-2} - t^{-1} = \sum_{n=-2}^{\infty} (u_n + v_n)t^n$$
(5.4)

$$-3i\sqrt{2a}t^{-3} = \sum_{n=-3}^{\infty} \left((n+1)u_{n+1} + \sum_{k=0}^{n+3} v_{k-1}u_{n-k+1} \right) t^n$$
(5.5)

Nun können wir mit (5.4) und (5.5) jeweils nochmals einen Koeffizientenvergleich durchführen und erhalten zunächst aus (5.4), die Bedingungen

$$2i\sqrt{2a} = u_{-2} + \underbrace{v_{-2}}_{=0} = u_{-2} \tag{5.6}$$

$$-1 = u_{-1} + v_{-1} \tag{5.7}$$

$$0 = u_n + v_n \qquad \forall n \ge 0 \tag{5.8}$$

welche wir als nächstes mit (5.5) kombinieren wollen. Betrachte zunächst die Vorfaktoren vor t^{-3} :

$$\begin{aligned} -3i\sqrt{2a} &= (-2)u_{-2} + \sum_{k=0}^{0} v_{k-1}u_{-3-k+1} \\ &= -2u_{-2} + v_{-1}u_{-2} \\ &\stackrel{(5.6)}{=} -2 \cdot 2i\sqrt{2a} + v_{-1}2i\sqrt{2a} \\ &\stackrel{a\neq 0}{\Rightarrow} v_{-1} = \frac{4i\sqrt{2a} - 3i\sqrt{2a}}{2i\sqrt{2a}} \\ &= \frac{1}{2} \end{aligned}$$

und somit

$$\stackrel{(5.7)}{\Rightarrow} -1 = u_{-1} + v_{-1}$$

$$= u_{-1} + \frac{1}{2}$$

$$\Rightarrow u_{-1} = -\frac{3}{2}.$$

Nun zum allgemeinem Koeffizienten vor t^n mit n > -3:

$$0 = (n+1)u_{n+1} + \sum_{k=0}^{n+3} v_{k-1}u_{n-k+1}$$

$$= (n+1)u_{n+1} + (\sum_{k=0}^{n+2} v_{k-1}u_{n-k+1}) + \underbrace{v_{n+3-1}u_{n-(n+3)+1}}_{n+2}$$

$$= (n+1)u_{n+1} + (\sum_{k=0}^{n+2} v_{k-1}u_{n-k+1}) + \underbrace{v_{n+3-1}u_{n-(n+3)+1}}_{n+2}$$

$$\Rightarrow v_{n+2}u_{-2} = -\left((n+1)u_{n+1} + \sum_{k=0}^{n+2} v_{k-1}u_{n-k+1}\right)$$

$$\stackrel{u_{-2}\neq 0}{\Rightarrow} v_{n+2} = -\frac{1}{u_{-2}}\left((n+1)u_{n+1} + \sum_{k=0}^{n+2} v_{k-1}u_{n-k+1}\right)$$

und nach passendem Indexshift folgt

$$\Rightarrow v_n = -\frac{1}{u_{-2}} \left((n-1)u_{n-1} + \sum_{k=0}^n v_{k-1}u_{n-k-1} \right)$$

$$\stackrel{(5.6)}{=} -\frac{1}{2i\sqrt{2a}} \left((n-1)u_{n-1} + \sum_{k=0}^n v_{k-1}u_{n-k-1} \right)$$

$$= \frac{i}{2\sqrt{2a}} \left((n-1)u_{n-1} + \sum_{k=0}^n v_{k-1}u_{n-k-1} \right)$$

Also ist $\mathcal{N} = \mathcal{N}_1 \oplus \mathcal{N}_2$ mit $\mathcal{N}_1 = \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (\partial_t + \sum_{n=-1}^{\infty} v_n t^n)$ und $\mathcal{N}_2 = \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (\partial_t + \sum_{n=-2}^{\infty} u_n t^n)$ Zusammen mit $u_{-2} = 2i\sqrt{2a}$, $u_{-1} = -\frac{3}{2}$ und $v_{-1} = \frac{1}{2}$ sind durch

$$v_n = -u_n = \frac{i}{2\sqrt{2a}} \left((n-1)u_{n-1} + \sum_{k=0}^n v_{k-1}u_{n-k-1} \right) \qquad \forall n \ge 0$$
 (5.9)

die Koeffizienten von v(t) und u(t) vollständig bestimmt.

Nun lässt sich diese Zerlegung mit $\mathscr{E}^{-\psi(t)}$ zurücktwisten und wir erhalten damit die Zerlegung

$$\rho^{+}\mathcal{M}_{\varphi} \stackrel{3.24}{=} \rho^{+}\mathcal{M}_{\varphi} \otimes \mathscr{E}^{\psi(t)} \otimes \mathscr{E}^{-\psi(t)}$$

$$= (\mathcal{N}_{1} \oplus \mathcal{N}_{2}) \otimes \mathscr{E}^{-\psi(t)}$$

$$= \mathcal{N}_{1} \otimes \mathscr{E}^{-\psi(t)} \oplus \mathcal{N}_{2} \otimes \mathscr{E}^{-\psi(t)}$$

$$= (\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_{1} \otimes \mathscr{E}^{-\psi(t)}) \oplus (\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_{2} \otimes \mathscr{E}^{-\psi(t)})$$

wobei Q_1 bereits regulär. Betrachte also noch $\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_2 \otimes \mathscr{E}^{-\psi(t)}$:

$$\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_{2} \otimes \mathscr{E}^{-\psi(t)} \stackrel{3.23}{=} \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_{2}(t, \partial_{t} - i\sqrt{2a}t^{-2})$$

$$= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot (\partial_{t} - i\sqrt{2a}t^{-2} + u(t))$$

$$= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot (\partial_{t} + i\sqrt{2a}t^{-2} + \sum_{n=-1}^{\infty} u_{n}t^{n})$$

$$\stackrel{3.23}{=} \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot (\partial_{t} + \sum_{n=-1}^{\infty} u_{n}t^{n}) \otimes \mathscr{E}^{\psi(t)}$$
regulär

Also zerlegt sich \mathcal{M} , nach einem pull-back mit $\rho: t \mapsto x = -2t^2$, in

$$\rho^{+}\mathcal{M}_{\varphi} = \left(\underbrace{\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \left(\partial_{t} + \sum_{n=-1}^{\infty} v_{n} t^{n}\right)}_{=:\mathcal{R}_{1}} \otimes \mathscr{E}^{-\psi(t)}\right) \oplus \left(\underbrace{\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \left(\partial_{t} + \sum_{n=-1}^{\infty} u_{n} t^{n}\right)}_{=:\mathcal{R}_{2}} \otimes \mathscr{E}^{\psi(t)}\right).$$

Nach Zerlegen von \mathcal{R}_1 und \mathcal{R}_2 in eine direkte Summe von elementaren formalen meromorphen Zusammenhängen, wie in Satz 4.5, ist die Levelt-Turrittin-Zerlegung vollständig gegeben.

5.2.1 Konvergenz der Summanden

Für n > 0 gilt $v_{n-1} \stackrel{(5.8)}{=} -u_{n-1}$ und damit wollen wir die Formel (5.9) noch weiter vereinfachen, um eine Version zu bekommen, die sich gut implementieren lässt. Aus (5.9) ergeben sich zunächst für n = 0 die Koeffizienten

$$\begin{aligned} v_0 &= -\frac{1}{u_{-2}}((-1)u_{-1} + \sum_{k=0}^0 v_{k-1}u_{-k-1}) \\ &= -\frac{1}{u_{-2}}(\frac{3}{2} - \frac{3}{4}) \\ &= -\frac{3}{4u_{-2}} \\ \stackrel{(5.6)}{=} \frac{3i}{8\sqrt{2a}} = -u_0 \end{aligned}$$

Nun vereinfachen wir die Formel:

$$\begin{split} v_n &= -\frac{1}{u_{-2}} \Big((n-1)u_{n-1} + \sum_{k=0}^n v_{k-1}u_{n-k-1} \Big) \\ &= -\frac{1}{u_{-2}} \Big((n-1)u_{n-1} + v_{-1}u_{n-1} + (\sum_{k=1}^{n-1} v_{k-1}u_{n-k-1}) + v_{n-1}u_{-1} \Big) \\ &\stackrel{(5.8)}{=} -\frac{1}{u_{-2}} \Big(-(n-1)v_{n-1} + \underbrace{v_{-1}(-v_{n-1})}_{-1} + (\sum_{k=1}^{n-1} v_{k-1}(-v_{n-k-1}) + \underbrace{v_{n-1}u_{-1}}_{-1} \Big) \\ &= -\frac{1}{u_{-2}} \Big(-(n-1)v_{n-1} - \frac{1}{2}v_{n-1} - \sum_{k=1}^{n-1} v_{k-1}v_{n-k-1} - \frac{3}{2}v_{n-1} \Big) \\ &= \frac{1}{u_{-2}} \Big((n-1)v_{n-1} + \sum_{k=1}^{n-1} v_{k-1}v_{n-k-1} \Big) \\ &= \frac{1}{u_{-2}} \Big((n+1)v_{n-1} + \sum_{k=1}^{n-1} v_{k-1}v_{n-k-1} \Big) \end{split}$$

Zu gegebenem $u_{-2} = 2i\sqrt{2a}$, sind die Koeffizienten gegeben durch:

$$v_{-1} = \frac{1}{2}$$

$$v_{0} = -u_{0} = -\frac{3}{4u_{-2}}$$

$$v_{n} = -u_{n} = \frac{1}{u_{-2}} \left((n+1)v_{n-1} + \sum_{k=1}^{n-1} v_{k-1}v_{n-k-1} \right)$$

$$\forall n > 0$$

Im Anhang wird in Abschnitt C.2 eine Haskell Modul vorgestellt, welches zu gegebenem u_{-1} die Werte von v(t) und u(t) berechnet.

In der Abbildung 5.7 sind die Beträge der Koeffizienten von v(t) in Abhängigkeit von n für verschiedene u_{-2} angetragen.

Abbildung 5.7: Die Beträge der v_n in Abhängigkeit von n für unterschiedliche u_{-2} .

Nun wollen wir das Konvergenzverhalten genauer betrachten. Es gilt, dass

$$Q_1 \in \mathcal{D}_{\widehat{L}} \backslash \mathcal{D}_L \Leftrightarrow v(t) \in \widehat{L} \backslash L$$
 bzw. $(\partial_t + \sum_{n=-1}^{\infty} u_n t^n) \in \mathcal{D}_{\widehat{L}} \backslash \mathcal{D}_L \Leftrightarrow u(t) \in \widehat{L} \backslash L$.

Außerdem gilt, dass $v(t) \in \widehat{L} \setminus L \Leftrightarrow u(t) \in \widehat{L} \setminus L$. Also reicht es eine der beiden Potenzreihen zu untersuchen. Wir betrachten die folgenden zwei klassischen Konvergenzkriterien.

Satz 5.5 (Wurzlkriterium nach Cauchy). Sei $\sum_n a_n x^n$ eine Potenzreihe. Es gilt:

$$\limsup_{n\to\infty} \sqrt[n]{|a_n|} = +\infty \Rightarrow die \ Potenzreihe \ ist \ nirgends \ konvergent.$$

Beweis. Siehe [Kno64, §18, Satz 94].

In der Abbildung 5.8 sind, für verschiedene u_{-2} die Numerischen Werte von $\sqrt[n]{|a_n|}$ in Abhängigkeit von n angetragen. Der graue Bereich ist leider außerhalb der Rechengenauigkeit, da mit zu großen Fließkommazahlen gerechnet werden muss. Der graue Bereich ist hier näherungsweise gegeben durch $\{(x,n)\in\mathbb{R}\times\mathbb{N}\mid x>10^{300/n}\}$, da die größte Zahl im Zahlenbereich näherungsweise 10^{300} entspricht.

Abbildung 5.8: Wurzlkriterium angewendet auf die Koeffizienten

Satz 5.6 (Quotientenkriterium). Sei $\sum_n a_n x^n$ eine Potenzreihe. Es gilt:

$$\lim_{n\to\infty}\frac{|a_n|}{|a_{n+1}|}=0 \Rightarrow \ die \ Potenzreihe \ ist \ nirgends \ konvergent.$$

Abbildung 5.9: Quotientenkriterium angewendet auf die Koeffizienten

6 Schluss

A Aufteilung von $t\varphi'(t)$

Sei $\varphi \in t^{-1}\mathbb{C}[t^{-1}]$, so ist $\varphi' \coloneqq \sum_{i=2}^N a_{-i}t^{-i} \in t^{-2}\mathbb{C}[t^{-1}]$ also $u\varphi'(t) = \sum_{i=1}^N a_{-i-1}t^{-i} \in t^{-1}\mathbb{C}[t^{-1}]$, welches wir zerlegen wollen. Zerlege also $t\varphi'(t) = \sum_{j=0}^{p-1} t^j \psi_j(t^p)$ mit $\psi_j \in \mathbb{C}[x^{-1}]$ für alle j > 0 und $\psi_0 \in x^{-1}\mathbb{C}[x^{-1}]$:

also:

$$\psi_0(t^p) = a_{-(p+1)}t^{-p} + a_{-(2p+1)}t^{-2p} + \dots$$

$$\psi_1(t^p) = a_{-p}t^{-p} + a_{-2p}t^{2p} + \dots$$

$$\vdots$$

$$\psi_{p-1}(t^p) = a_{-2}t^p + a_{-(p+2)}t^{2p} + \dots$$

B Genaueres zu $(x^2\partial_x)^k$

Nun wollen wir noch $(x^2\partial_x)^{k+1}$ besser verstehen.

$$(x^{2}\partial_{x})^{k+1} = x^{2}\partial_{x}x^{2}\partial_{x}(x^{2}\partial_{x})^{k-1}$$

$$= x^{2}(2x + x^{2}\partial_{x})\partial_{x}(x^{2}\partial_{x})^{k-1}$$

$$= (2x^{3}\partial_{x} + x^{4}\partial_{x}^{2})(x^{2}\partial_{x})^{k-1}$$

$$= (2x^{3}\partial_{x} + x^{4}\partial_{x}^{2})(x^{2}\partial_{x})(x^{2}\partial_{x})^{k-2}$$

$$= (2x^{3}\partial_{x}x^{2}\partial_{x} + x^{4}\partial_{x}^{2}x^{2}\partial_{x})(x^{2}\partial_{x})^{k-2}$$

$$= (2x^{3}(2x + x^{2}\partial_{x})\partial_{x} + x^{4}(2x\partial_{x} + 1 + x^{2}\partial_{x}^{2})\partial_{x})(x^{2}\partial_{x})^{k-2}$$

$$= (4x^{4}\partial_{x} + 2x^{5}\partial_{x}^{2} + 2x^{5}\partial_{x}^{2} + x^{4}\partial_{x} + x^{6}\partial_{x}^{3})(x^{2}\partial_{x})^{k-2}$$

$$= (5x^{4}\partial_{x} + 4x^{5}\partial_{x}^{2} + x^{6}\partial_{x}^{3})(x^{2}\partial_{x})^{k-2}$$

$$= \sum_{n=1}^{k+1} \binom{k}{n-1} \frac{(k+1)!}{n!} x^{n+k} \partial_{x}^{n}$$

also gilt für spezielle k

$$(x^{2}\partial_{x})^{k+1} = \begin{cases} 2x^{3}\partial_{x} + x^{4}\partial_{x}^{2} & \text{falls } k = 1\\ 5x^{4}\partial_{x} + 4x^{5}\partial_{x}^{2} + x^{6}\partial_{x}^{3} & \text{falls } k = 2\\ \sum_{n=1}^{k+1} \binom{k}{n-1} \frac{(k+1)!}{n!} x^{n+k} \partial_{x}^{n} \end{cases}$$
 (B.1)

C Quelltexte

C.1 ComplRat.hs

Das Modul ComplRat implementiert die Zahlen $\mathbb{Q}(i)$.

Listing C.1: ComplRat.hs

```
1 -- | Dieses Modul stellt den Datentyp 'ComplRat' komplexrationaler
   -- Zahlen, also den Elementen von /Q(i)/, bereit.
3 module ComplRat
      ( ComplRat(..)
5
       , realPart
       , imagPart
       , magnitude
       , magnitudeSq
       ) where
10 import Data. Ratio
11
   -- | Typ für komplexrationale Zahlen in kartesischer Darstellung.
12
13 -- Der Konstruktor ist strikt in seinen beiden Argumenten.
14 data ComplRat = !Rational :+: !Rational
       deriving (Eq)
15
16
   17
   -- Funktionen
18
19
20 -- | Gibt den reelen Teil einer gegebenen complexen Zahl zurück
21 realPart :: ComplRat \rightarrow Rational
22 realPart (x :+: _) = x
23
24 -- | Gibt den imaginären Teil einer gegebenen complexen Zahl zurück
25 imagPart :: ComplRat -> Rational
26 imagPart (_ :+: y) = y
27
28
   -- | Der nichtnegative Betrag einer complexen Zahl
29 -- nur für rein reele oder complexe Zahlen, da es sonst, aufgrund der fehlenden
30 -- Wurzel, zu problemen kommt
31 magnitude :: ComplRat -> Rational
32 magnitude (x :+: 0) = abs x
33 magnitude (0 :+: y) = abs y
34 magnitude (_ :+: _) = error "Oops! Use magnitudeSq instead."
35
   \{-magnitude (x :+: y) = P.sqrt (sqr x P.+ (sqr y))-\}
     \{-\text{where sqr } z = z P.* z-\}
36
37
38 -- | Das quadrat des Betrags einer complexen Zahl
39 -- ist für alle complexen zahlen geeignet
40 \quad {\tt magnitudeSq} \ :: \ {\tt ComplRat} \ {\tt \hbox{->}} \ {\tt Rational}
   magnitudeSq (x :+: y) = x*x + y*y
41
42
43
   -- Instanzen von ComplRat
45
46 instance Show ComplRat where
     show (x : +: y) | y == 0
                                   = show x
```

```
| otherwise = "(" ++ show x ++ "+i" ++ show y ++ ")"
48
49
   instance Num ComplRat where
50
       (x : +: y) + (x' : +: y') = (x+x') : +: (y+y')
51
       (x : +: y) * (x' : +: y') = (x*x' - y*y') : +: (x*y' + y*x')
52
       negate (x :+: y)
                                = negate x :+: negate y
53
       fromInteger i
                                = fromInteger i :+: 0
54
       abs z
                                = magnitude z :+: 0
55
56
       signum (0:+:0)
                                     x P./r :+: y P./r where r = magnitude z-
57
       \{-signum z@(x:+:y)\}
58
   instance Fractional ComplRat where
59
     from Rational r = from Rational r:+: 0
60
     (a :+: b)/(c :+: d) = ((a*c + (b*d))/n) :+: ((b*c - (a*d))/n)
       where n = c*c + d*d
62
```

Hier ist :+: ein Infix-Konstruktor der Klasse ComplRat und erzeugt mit einem Aufruf der Form a :+: b eine Imaginärzahl, die a + ib entspricht.

C.2 Koeffs.hs

Dieses Modul Koeffs stelle die Funktionen v Koeffs und u Koeffs bereit, welche zu einem gegebenem Wert von u_{-2} eine unendliche Liste der Koeffizienten generieren. Die Einträge in der Liste sind vom Typ ComplRat. Dies ermöglicht es, dass die Berechung ohne numerische Fehler erfolgt, da nie gerundet wird.

Listing C.2: Koeffs.hs

```
-- | Dieses Modul stellt Funktionen bereit, welche die zu einem Startwert
   -- gehörigen Koeffizienten von v(t) und u(t) generieren
   module Koeffs
      ( vKoeffs
4
      , uKoeffs
5
     ) where
   import ComplRat
7
   import Data.MemoTrie (memo) -- https://github.com/conal/MemoTrie
   -- returns array with the coefficients of {\rm v}\left({\rm t}\right)
10
   -- first element in array is koefficient from t^{-1}
11
  vKoeffs :: ComplRat -> [ComplRat]
12
   vKoeffs uMin2 = 1/2:+:0 : [koeff i|i <- [0..]]
13
      where koeff :: Int -> ComplRat
14
            koeff = memo koeff
15
            koeff' :: Int -> ComplRat
16
            koeff' n | n > 0 = (koeff (n-1)
 | n == 0 = -3/(uMin2*4)
                                  = (koeff (n-1)*(fromIntegral n+1)+summe)/uMin2
17
18
19
                      | n == -1
                                   = 1/2
                      | otherwise = 0
20
                      where summe = sum [koeff (k-1)*(koeff (n-k-1))|k <- [1..n-1]]
21
22
   -- returns array with the coefficients of u(t)
23
   -- first element in array is koefficient from t^{-2}
24
25  uKoeffs :: ComplRat -> [ComplRat]
  uKoeffs uMin2 = uMin2 : -3/2:+:0 : (map negate (tail $ vKoeffs uMin2))
```

Beispielhaft kann man mit dem folgendem Programm die Koeffizienten von v(t), zu $a=\frac{1}{8}$ also $u_{-2}=i=2i\sqrt{2a}$, erzeugen lassen.

Listing C.3: testKoeffs.hs

```
1 module Main where
2 import ComplRat
3 import Koeffs
4 import System.Environment
  uMin2=(0:+:1)
   main :: IO()
8
  main = do x <- getArgs
9
             putStrLn $ "n \t| v_n\n----+"++(replicate 70 '-')
10
11
             main' $ head $ map (\x -> read x :: Int) x
     where main' :: Int -> 10()
12
           main' end = mapM_{-} addLine  zip [-1..end]  vKoeffs uMin2
13
             where addLine (i,a) = putStrLn $ show i ++ "\t| " ++ show a
14
```

Ist der Code in einer Datei /Pfad/zu/testKoeffs.hs gespeicher, so lässt er sich in Unix-Artigen Systemen beispielsweise mit den folgenden Befehlen compilieren und ausführen.

```
1 $ ghc --make /Pfad/zu/testKoeffs.hs
2 $ /Pfad/zu/testKoeffs 15
```

Durch das Ausführen berechnet das Programm die Koeffizienten von v bis zum Index 15 und gibt in der Konsole das folgende aus

```
| v_n
   -1
            1 1 % 2
3
            | (0 % 1+i3 % 4)
5
            | 3 % 2
   1
6
   2
            | (0 % 1+i(-63) % 16)
            | (-27) % 2
7
   3
            | (0 % 1+i1899 % 32)
8
   4
9
   5
            | 324 % 1
10
            | (0 % 1+i(-543483) % 256)
   6
11
   7
            | (-32427) % 2
12
   8
            | (0 % 1+i72251109 % 512)
            | 2752623 % 2
13
   9
14 10
            | (0 % 1+i(-30413055339) % 2048)
15
   11
            | (-175490226) % 1
            | (0 % 1+i9228545313147 % 4096)
16
   12
17
   13
            | 31217145174 % 1
18
   14
            | (0 % 1+i(-30419533530730323) % 65536)
            | (-14741904895227) % 2
19
   15
```

Übersetzt in unsere Zahlenschreibweise ergibt sich daraus die folgende Tabelle:

n	v_n
-1	$\frac{1}{2}$
0	$\frac{3}{4}i$
1	$\frac{3}{2}$
2	$-\frac{63}{16}i$
3	$-\frac{27}{2}$
4	$\frac{1899}{32}i$
5	$\frac{342}{1}$
6	$-\frac{543483}{256}i$
7	$-\frac{32427}{2}$
8	$\frac{72251109}{512}i$
9	$\frac{2752623}{2}$
10	$-\frac{30413055\overline{3}39}{2048}i$
11	$-\frac{2048}{175490226}$
12	$\frac{922854531\overline{3}147}{4096}i$
13	31217145174 1
14	$-\frac{30419533530730323}{65536}i$
15	$-\frac{14741904895227}{2}$

Tabelle C.1: Numerisch berechnete Koeffizienten von v(t) für $u_{-2}=i$ bzw. $a=\frac{1}{8}$

C.3 SaveToFile.hs

Listing C.4: SaveToFile.hs

```
1 module Main where
2 import ComplRat
 3 import Koeffs
    -- from numbers
 6 import Data.Number.CReal (CReal)
8
    -- from monad-parallel
    import qualified Control.Monad.Parallel as P (sequence_)
10
11
     -- for writing to file
   import System. Environment
12
13
    import System. IO
14
     import Data.Time
15
16
    main :: IO()
     main = do x <- getArgs; P.sequence_ $ main' $ (read $ head x :: Int)</pre>
17
        where
18
                                                    [ ("./data/u_-2=i" , (0:+:1)) , ("./data/u_-2=1.0e-5i" , (0:+:1.0e-5)) , ("./data/u_-2=1.0e-4i" , (0:+:1.0e-4)) , ("./data/u_-2=1.0e-3i" , (0:+:1.0e-3)) , ("./data/u_-2=1.0e-2i" (0:+:1.0e-3))
           main' x = map (saveData x) [ ("./data/u_-2=i"
19
20
21
22
                                                    ("./data/u__2=1.0e_31", (0:::1.0e_3))
, ("./data/u_-2=1.0e-2i", (0:::1.0e-2))
, ("./data/u_-2=1.0e-1i", (0:::1.0e-1))
, ("./data/u_-2=10000i", (0:::10000))
23
24
25
                                                     , ("./data/u_-2=1000i"
                                                                                         , (0:+:1000))
26
                                                    , ("./data/u_-2=100i"
                                                     , ("./data/u_-2=100i" , (0:+:100))
, ("./data/u_-2=10i" , (0:+:10))
27
28
```

```
]
29
30
31
       saveData :: Int -> (String, ComplRat) -> IO()
       saveData end (fn, uMin2) =
32
          do start <- getCurrentTime</pre>
33
             withFile fn WriteMode (\handle -> do
34
              hPutStr handle (concat $ take end $ map genLine triples))
35
36
             stop <- getCurrentTime</pre>
37
             putStrLn $ fn ++ " " ++ (show $ diffUTCTime stop start)
                      = vKoeffs uMin2
38
          where vals
39
                triples = zip3 [0..] (tail vals) vals
40
        genLine :: (Int, ComplRat, ComplRat) -> String
41
       genLine (i,v1,v2) = concat [ show i
                                                                 "\t"
                                    , genItemBetrag (i,v1,v2) , "\t^{"}
43
                                                               , "\t"
                                    , genItemCauchy (i,v1,v2)
44
                                    , genItemQuot (i,v1,v2)
                                                                , "\n" ]
45
          where realMag = fromRational $ magnitude v1 :: CReal
46
47
                genItemBetrag :: (Int, ComplRat, ComplRat) -> String
48
                genItemBetrag (_,v,_) = show $ realMag
49
                genItemCauchy :: (Int, ComplRat, ComplRat) -> String
51
52
                genItemCauchy (i,v,_)
                  | i == 0 = show $ realMag
53
                  | otherwise = show $ realMag**(1 / (fromIntegral i))
54
                genItemQuot :: (Int, ComplRat, ComplRat) -> String
56
                genItemQuot (_,v1,v2) = show $ sqrt $ fromRational $ genItemQuot'
57
                  where genItemQuot' = magnitudeSq v2 / magnitudeSq v1
```

In diesem Modul werden zusätzlich die Module Data.Number.CReal und Control.Monad.Parallel eingebunden. Die Datentyp CReal des ersten Moduls implementiert die Reellen Zahlen und wird verwendet, da die berechneten Zahlen den Zahlenbereich des Floating Datentypes übersteigen. Das zweite Modul stellt eine veränderte Version von sequence_ bereit, welches automatisch die ausführungen parallelisiert.

Literaturverzeichnis

- [Ara] D. Arapura, Notes on d-modules and connections with hodge theory.
- [Ark12] S. Arkhipov, *D-modules*, unpublished lecture notes available online, May 2012.
- [AV09] B. Alkofer and F. Vogl, Lineare differentialgleichungen und deren fouriertransformierte aus algebraischer sicht / lineare differentialgleichungen aus algebraischer sicht, 2009.
- [Ayo09] J. Ayoub, Introduction to algebraic d-modules, Vorlesungsskript, 2009.
- [BD04] A. Beilinson and V.G. Drinfeld, *Chiral algebras*, Colloquium Publications American Mathematical Society, no. Bd. 51, American Mathematical Society, 2004.
- [Blo04] Spencer Bloch, Local fourier transforms and rigidity for d-modules, Asian J. Math (2004), 587–605.
- [Cou95] S.C. Coutinho, A primer of algebraic d-modules, London Mathematical Society Student Texts, Cambridge University Press, 1995.
- [Ell10] C. Elliott, *D-modules*, unpublished notes available online, April 2010.
- [Gin98] V. Ginzburg, Lectures on d-modules, Vorlesungsskript, 1998.
- [GL04] Ricardo García López, Microlocalization and stationary phase, Asian J. Math. 8 (2004), no. 4, 747–768. MR MR2127946 (2005m:32014)
- [Har77] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, Springer, 1977.
- [Hei10] Hedwig Heizinger, Verschwindungszykel regulär singulärer D-Moduln und Fouriertransformation, 2010.
- [HTT07] R. Hotta, K. Takeuchi, and T. Tanisaki, *D-modules, perverse sheaves, and representation theory*, Progress in Mathematics, Birkhäuser Boston, 2007.
- [Hut07] Graham Hutton, Programming in Haskell, Cambridge University Press, January 2007.
- [Kas03] M. Kashiwara, D-modules and microlocal calculus, Translations of Mathematical Monographs, American Mathematical Society, 2003.
- [Kno64] Konrad Knopp, Theorie und anwendung der unendlichen reihen, Die Grundlehren der mathematischen Wissenschaften, Springer, Berlin, 1964.
- [MR89] H. Matsumura and M. Reid, *Commutative ring theory*, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1989.
- [Sab90] C. Sabbah, Introduction to algebraic theory of linear systems of differential equations, Vorlesungsskript, 1990.

Literatur verzeichn is

- $[Sab07] \ ____, \ An \ explicit \ stationary \ phase \ formula \ for \ the \ local \ formal \ Fourier-Laplace \ transform, \ June \ 2007.$
- [Sch94] J.P. Schneiders, An introduction to d-modules, unpublished lecture notes available online, 1994.
- [Sta12] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, December 2012.