Because the current in each bulb is equal to the total current, you can also use  $\Delta V = IR$  to calculate the potential difference across each resistor.

$$\Delta V_1 = IR_1$$
 and  $\Delta V_2 = IR_2$ 

The method described above can be used to find the potential difference across resistors in a series circuit containing any number of resistors.

### SAMPLE PROBLEM A

## **Resistors in Series**

### **PROBLEM**

A 9.0 V battery is connected to four light bulbs, as shown at right. Find the equivalent resistance for the circuit and the current in the circuit.



1. DEFINE Given:

$$\Delta V = 9.0 \text{ V}$$
  $R_1 = 2.0 \Omega$   $R_2 = 4.0 \Omega$   $R_3 = 5.0 \Omega$ 

$$R_1 = 2.0 \ \Omega$$

$$R_2 = 4.0 \Omega$$

$$R_3 = 5.0 \Omega$$

$$R_4 = 7.0 \ \Omega$$

**Unknown:** 

$$R_{eq} = ? I = ?$$

Diagram:



#### 2. PLAN Choose an equation or situation:

Because the resistors are connected end to end, they are in series. Thus, the equivalent resistance can be calculated with the equation for resistors in series.

$$R_{eq} = R_1 + R_2 + R_3 \dots$$

The following equation can be used to calculate the current.

$$\Delta V = IR_{eq}$$

## Rearrange the equation to isolate the unknown:

No rearrangement is necessary to calculate  $R_{eq}$ , but  $\Delta V = IR_{eq}$  must be rearranged to calculate current.

$$I = \frac{\Delta V}{R_{eq}}$$

# **3. CALCULATE** Substitute the values into the equation and solve:

 $R_{eq} = 2.0 \ \Omega + 4.0 \ \Omega + 5.0 \ \Omega + 7.0 \ \Omega$ 

continued on next page

$$R_{eq} = 18.0 \Omega$$

 $4.0 \Omega$ 

 $5.0 \Omega$