2D ディジタル回路

2025/5/26

第6回

本日の流れ

- ◆ 小テスト
- 課題HW0519の解説
- 授業内容
 - 標準形
 - カルノー図

標準形

- 加法形
 - AND項のOR接続
 - 例) F = AB + BC + CA
- 加法標準形
 - AND項のOR接続
 - 各項が全ての論理変数を含んでいること
 - 例) $F = A\overline{B}C + \overline{A}BC$
- 乗法形も同様

標準形の求め方

- (A) 真理值表
- (B) 式変形

加法標準形

・論理関数の値が1になる組み合わせの論理積 (AND)をとったものの論理和(OR)

	A	В	C	\overline{F}		
•	0	0	0	0		
	0	0	1	0		
	0	1	0	0	_	
	0	1	1	$1 \overline{A}$	BC	
	1	0	0	0		
	1	0	1	1 A	$\overline{B}C$	$- F = \bar{A}BC + A\bar{B}C + AB\bar{C} + ABC$
	1	1	0	1 A	В $ar{\mathcal{C}}$	
	1	1	1	1 A	B <i>C</i>	

乗法標準形

- ・論理関数の値がOになる組み合わせの論理和 (OR)をとったものの論理積(AND)
 - Oが反転するので気をつけよう!

	_	F	C	В	\overline{A}
-C	A+ B+C	0	0	0	0
\cdot \overline{C}	\bigcap A+B+ $ar{C}$	0	1	0	0
+C -	\Box A+ $ar{B}$ +C	0	0	1	0
		1	1	1	0
+C	$\Box \bar{A}$ + B+C	0	0	0	1
	_	1	1	0	1
$= (A+B+C)(A+B+\bar{C})(A+\bar{B}+C)(\bar{A}+B+C)$	F = (A+	1	0	1	1
95		1	1	1	1

標準形の求め方:式変形

- 加法標準形
 - 不足している変数が出現するように式を変形
- 例. F = AB + BC + AC

標準形の求め方:式変形

- 乗法標準形
 - 加法標準形求め、ドモルガンの定理を使用
- 例. F = (A+B)(B+C)(C+A)

カルノ一図

- 論理式の導出:乗法標準形/加法標準形
- ・式の簡略化:ブール代数
- 論理式の導出&簡略化:カルノー図
 - ・ 真理値表を2次元の平面図として表したもの

C	0	1
AB 00		
01		
11		
10		

C	D 00	01	11	10
AB 00				
00				
01				
11				
10				

カルノ一図の手順

- (1) F=1となるところに1を入力しよう
- (2) グループ化し、論理式で表示する
 - 2のべき乗×2のべき乗
 - 重複してもok
 - 端と端は繋がっている
- (3) 共通項の論理積を抽出する
- (4) まとめた論理積を論理和で結合する

(1) F=1となるところに1を入力

\overline{A}	B	C	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

演習問題

カルノー図を使って論理式の導出・簡略化して みよう

\overline{A}	В	C	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

カルノー図 (乗法形)

- 乗法標準形で簡略化するには?
 - ドモルガンの定理を使う $\rightarrow \bar{F}$ を求める
- F=0になるところに着目

C	0	1
AB 00		1
01	1	1
11	1	
10	1	1