Algebraic Numbers MAT397, Fall 2024

SHIVANK GOEL

September, 2024

Primitive Polynomial

A **primitive polynomial** is a polynomial with integer coefficients in $\mathbb{Z}[x]$ such that the greatest common divisor (GCD) of its coefficients is 1. In other words, a polynomial is primitive if its coefficients have no common prime divisor.

Example of a Primitive Polynomial:

$$f(x) = 2x^2 + 3x + 1$$

Here, the GCD of the coefficients $\{2,3,1\}$ is 1, so this polynomial is primitive.

Non-Example (Not Primitive):

$$q(x) = 2x^2 + 4x + 6$$

In this case, the GCD of the coefficients {2, 4, 6} is 2, so this polynomial is not primitive.

Key Concept: A primitive polynomial is related to the content of the polynomial, which is the GCD of its coefficients. If the content is 1, the polynomial is primitive.

Irreducible Polynomial

A **polynomial is irreducible** if it cannot be factored into the product of two non-constant polynomials with coefficients in the same ring (e.g., $\mathbb{Z}[x]$ or $\mathbb{Q}[x]$).

Example of an Irreducible Polynomial (over \mathbb{Q}):

$$f(x) = x^2 + 1$$

This polynomial cannot be factored over $\mathbb{Q}[x]$ into lower-degree polynomials, so it is irreducible over \mathbb{Q} .

Non-Example (Not Irreducible):

$$g(x) = x^2 - 1 = (x - 1)(x + 1)$$

Here, g(x) can be factored into two polynomials of degree 1, so it is not irreducible.

Key Concept: Irreducibility refers to the inability to factor a polynomial into lower-degree polynomials with coefficients in the same field or ring.

Summary of Differences

- **Primitive Polynomial**: Focuses on the **coefficients** of the polynomial. A polynomial is primitive if the GCD of its coefficients is 1.
- Irreducible Polynomial: Focuses on the factorization of the polynomial. A polynomial is irreducible if it cannot be factored into the product of two non-constant polynomials with coefficients in the same field or ring.

Combining the Concepts

A polynomial can be both primitive and irreducible, but these properties are independent of each other:

• A polynomial can be **primitive but reducible**, e.g.,

$$f(x) = x^2 - 1 = (x - 1)(x + 1)$$

Here, f(x) is reducible but primitive, as the GCD of its coefficients is 1.

• A polynomial can be irreducible but not primitive, e.g.,

$$g(x) = 2x^2 + 4x + 6$$

This polynomial is irreducible over \mathbb{Z} , but not primitive, as the GCD of its coefficients is 2.

Theorem 1: 1

Product of two primitive polynomials is primitive.

Let $f(x), g(x) \in \mathbb{Z}[x]$ be primitive polynomials, i.e., c(f(x)) = c(g(x)) = 1, where c(f(x)) denotes the content of f(x), which is the greatest common divisor of the coefficients of f(x).

Assume, for contradiction, that h(x) = f(x)g(x) is not primitive. This would mean that $c(h(x)) \neq 1$, so there exists a prime p such that p divides all the coefficients of h(x).

Write $f(x) = a_0 + a_1x + \cdots + a_nx^n$ and $g(x) = b_0 + b_1x + \cdots + b_mx^m$, where $a_i, b_j \in \mathbb{Z}$. Since f(x) and g(x) are primitive, p does not divide all the coefficients of either f(x) or g(x).

Now consider the product:

$$h(x) = f(x)g(x) = a_0b_0 + (a_0b_1 + a_1b_0)x + \dots + a_nb_mx^{n+m}.$$

By assumption, p divides all the coefficients of h(x). In particular, p divides the constant term a_0b_0 . Thus, p must divide either a_0 or b_0 , but not both (since f(x) and g(x) are primitive).

Without loss of generality, assume $p \mid a_0$ but $p \nmid b_0$. Consider the next term in h(x), which is $a_0b_1 + a_1b_0$. Since $p \mid a_0$ and $p \mid a_0b_1 + a_1b_0$, we must have $p \mid a_1b_0$. Since $p \nmid b_0$, it follows that $p \mid a_1$.

Continuing in this way, we conclude that p divides all the coefficients of f(x). This contradicts the assumption that f(x) is primitive.

Similarly, if we had assumed $p \mid b_0$ and $p \nmid a_0$, we would have reached the conclusion that p divides all the coefficients of g(x), contradicting the fact that g(x) is primitive.

Therefore, our assumption that h(x) is not primitive must be false, and so h(x) = f(x)g(x) is primitive.

Lemma 1: Gauss Lemma

If a monic polynomial f(x) with integral coefficient factors into two monic polynomials with rational coefficient say f(x) = g(x)h(x), then g(x) and h(x) have integral coefficients.

In other words, Reducibility over Q implies reducibility over Z.

Let $f(x) \in \mathbb{Z}[x]$.

Given that f(x) is reducible over \mathbb{Q} , we have f(x) = g(x)h(x), where g(x) and h(x) are monic polynomials with rational coefficients, i.e. $g(x), h(x) \in \mathbb{Q}[x]$, with $\deg(g(x)) < \deg(f(x))$ and $\deg(h(x)) < \deg(f(x))$.

Assume f(x) is primitive.

Since g(x) and h(x) have rational coefficients, let a be the least common multiple of the denominators of the coefficients of g(x), and b the least common multiple of the denominators of the coefficients of h(x).

Now multiply both sides of the equation f(x) = g(x)h(x) by ab to clear the denominators. This gives:

$$abf(x) = ag(x)bh(x)$$

Let $g_1(x) = ag(x)$ and $h_1(x) = bh(x)$, where $g_1(x), h_1(x) \in \mathbb{Z}[x]$.

Now let $c_1 = c(g_1(x))$ and $c_2 = c(h_1(x))$ be the contents of $g_1(x)$ and $h_1(x)$, respectively.

We can then write:

$$ab f(x) = c_1 q_2(x) c_2 h_2(x)$$

where $g_2(x)$ and $h_2(x)$ are primitive polynomials.

Since the product of two primitive polynomials is primitive, $g_2(x)h_2(x)$ is primitive.

Therefore, we have:

$$ab = c_1c_2$$

which implies that f(x) is primitive.

If f(x) is not primitive, we can write $f(x) = cf_1(x)$, where c = c(f(x)) and $f_1(x)$ is primitive. Since $f_1(x)$ is reducible over \mathbb{Z} (from the argument above), it follows that f(x) is reducible over \mathbb{Z} as well.

This completes the proof.

Algebraic Number

Definition 2: Algebraic Number

x is algebraic if x is root of polynomial with integer coefficient, i.e. there are integers $a_n, a_{n-1}, \ldots, a_0$ such that

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0 = 0$$

Example.

$$x = \sqrt[3]{\frac{\sqrt{2}-3}{5}}$$
 is algebraic?

$$x^3 = \frac{\sqrt{2} - 3}{5}$$

$$5x^3 + 3 = \sqrt{2}$$

$$25x^6 + 30x^3 + 9 = 2$$

$$25x^6 + 30x^3 + 7 = 0$$

Therefore, x is algebraic.

Definition 3: Transcendental Number

A number that is not algebraic.

Example.

 π , e are transcendental numbers.

Definition 4: Algebraic Integers

Algebraic Integers: These are a special subset of algebraic numbers that satisfy a monic polynomial (leading coefficient 1) with integer coefficients. for example, $\sqrt{2}$ is also an algebraic integer because it satisfies $x^2 - 2 = 0$ monic polynomial with integer coefficients.

Definition 5: Unique Minimal Polynomial

For any algebraic number g, there is a unique minimal polynomial over \mathbb{Q} . This is the irreducible monic polynomial that has g as a root. It is the polynomial of the smallest degree with rational coefficients that has g as a solution.

Example.

For example, for $\sqrt{2}$, the minimal polynomial is x^2-2 , since this is the simplest polynomial with rational coefficients that has $\sqrt{2}$ as a root. As x^2-2 is irreducible over \mathbb{Q} , it is the unique minimal polynomial for $\sqrt{2}$. (if we factor it, we get $x^2-2=(x-\sqrt{2})(x+\sqrt{2})$ i.e. it is reducible over \mathbb{R} but not over \mathbb{Q} .)

Theorem 2: 9.8

For any algebraic number g, there is a unique irreducible monic polynomial over $\mathbb Q$ such that:

- 1. g satisfies the polynomial equation g(x) = 0,
- 2. Any other polynomial over \mathbb{Q} that has g as a root is divisible by g(x).

Step 1: Finding the Polynomial of Lowest Degree Since g is an algebraic number, it satisfies some polynomial equation with rational coefficients. Out of all such polynomials, let's choose one of the lowest degree, say G(x), such that G(g) = 0. If G(x) is not monic, we divide it by its leading coefficient to create a monic polynomial g(x). Now, g(x) is a monic polynomial of the lowest degree that has g as a root.

Step 2: Proving that g(x) is Irreducible We now show that g(x) is irreducible over \mathbb{Q} . Suppose, for contradiction, that g(x) can be factored as:

$$q(x) = h_1(x)h_2(x)$$

where $h_1(x)$ and $h_2(x)$ are lower-degree polynomials with rational coefficients. Since g is a root of g(x), one of $h_1(g) = 0$ or $h_2(g) = 0$ must be true. This would contradict the fact that g(x) was chosen to have the lowest degree, since $h_1(x)$ or $h_2(x)$ would have a smaller degree than g(x). Hence, g(x) must be irreducible.

Step 3: Any Polynomial with g as a Root is Divisible by g(x) Now, let

f(x) be any polynomial over \mathbb{Q} that has g as a root (i.e., f(g) = 0). Using the division algorithm for polynomials, we can write:

$$f(x) = g(x)q(x) + r(x)$$

where r(x) is a remainder with degree smaller than that of g(x). Since f(g) = g(g) = 0, it follows that:

$$0 = f(g) = g(g)q(g) + r(g) = 0 + r(g)$$

which implies that r(g) = 0. Since the degree of r(x) is less than that of g(x), the only way this is possible is if r(x) = 0. Therefore, f(x) must be divisible by g(x).

Step 4: Proving Uniqueness of g(x) Finally, let's assume there is another irreducible monic polynomial, say $g_1(x)$, such that $g_1(g) = 0$. Since $g_1(x)$ has g as a root, and g(x) is the minimal polynomial, we know $g_1(x)$ must divide g(x) and vice versa. Since both polynomials are irreducible and monic, this implies that $g_1(x) = g(x)$. Thus, g(x) is unique.

Conclusion For any algebraic number g, there exists a unique irreducible monic polynomial over \mathbb{Q} , and any other polynomial over \mathbb{Q} with g as a root is divisible by this minimal polynomial.

Definition 6: Degree of an Algebraic Number

The degree of an algebraic number is the degree of its minimal polynomial over \mathbb{Q} .

Example.

The degree of $\sqrt{2}$ is 2, as its minimal polynomial is x^2-2 .

Theorem 3: 9.9

Among the rational numbers, the only ones that are algebraic integers are the integers $0, \pm 1, \pm 2, \pm 3, \dots$

Step 1: Integers Are Algebraic Integers Any regular integer m is an algebraic integer because it satisfies the monic polynomial x - m = 0. This is a monic polynomial (the leading coefficient is 1) with integer coefficients, so by definition, every integer is an algebraic integer.

Step 2: Rational Numbers that Are Algebraic Integers Must Be Integers Now, let's suppose we have a rational number $\frac{m}{q}$ (where m and q are integers and $\gcd(m,q)=1$, meaning they have no common factors other than 1). We want to see if this rational number can be an algebraic integer.

- Since $\frac{m}{q}$ is an algebraic integer, it must satisfy a monic polynomial with integer coefficients:

$$\left(\frac{m}{q}\right)^n + b_{n-1} \left(\frac{m}{q}\right)^{n-1} + \dots + b_0 = 0$$

where b_{n-1}, \ldots, b_0 are integers.

- Multiplying through by q^n to clear the denominators:

$$m^n + b_{n-1}m^{n-1}q + \dots + b_0q^n = 0$$

Now, observe that this equation implies q must divide m^n (the first term on the left-hand side). Since m and q have no common factors (we assumed gcd(m,q)=1), the only way q can divide m^n is if $q=\pm 1$.

- Therefore, $\frac{m}{q}$ must be an integer because $q=\pm 1$.

Conclusion: This shows that the only rational numbers that are algebraic integers are the integers themselves, $0, \pm 1, \pm 2, \dots$

Additional Explanation: - The term rational integer is used in algebraic number theory to distinguish regular integers from other types of algebraic integers that are not rational numbers. For example, $\sqrt{2}$ is an algebraic integer because it satisfies the equation $x^2 - 2 = 0$, but it's not a **rational integer** because it's not a rational number.

Example: - Rational integer: 2, because it satisfies x - 2 = 0, and it's also a rational number. - Algebraic integer but not a rational integer: $\sqrt{2}$, because it satisfies $x^2 - 2 = 0$, but it's not a rational number.

Thus, the integers are the only rational numbers that can be algebraic integers.

Theorem 4: 9.10

The minimal equation of an algebraic integer is monic with integral coefficients.

Step 1: The Equation is Monic by Definition By definition, the minimal polynomial of an algebraic integer is **monic**, meaning its leading coefficient is 1. Therefore, there is no need to prove that the polynomial is monic, as it is assumed from the start.

Step 2: Showing that the Coefficients are Integers Let g be an algebraic integer. Since g is an algebraic integer, it satisfies some polynomial equation with integer coefficients. Let this polynomial be f(x), such that:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$$

where $a_n, a_{n-1}, \ldots, a_0$ are integers.

Let g(x) = 0 be the minimal polynomial of g, which is **monic** and **irreducible** over \mathbb{Q} . By **Theorem 9.8**, the minimal polynomial g(x) divides any polynomial with g as a root. Therefore, g(x) divides f(x), which gives:

$$f(x) = g(x)h(x)$$

where h(x) is another polynomial, and both g(x) and h(x) have rational coefficients.

Since f(x) is monic and has integer coefficients, g(x) and h(x) must be monic as well. By **Gauss Lemma**, if a monic polynomial with rational coefficients divides a polynomial with integer coefficients, then the dividing polynomial must have integer coefficients. Hence, the minimal polynomial g(x) of the algebraic integer g must have integer coefficients.

Theorem 5: 9.11

Let n be a positive rational integer, and g a complex number. Suppose we have a system of n equations involving complex numbers $\theta_1, \theta_2, \ldots, \theta_n$, not all zero, given by:

$$g\theta_j = a_{j,1}\theta_1 + a_{j,2}\theta_2 + \dots + a_{j,n}\theta_n, \quad j = 1, 2, \dots, n$$

where $a_{j,i}$ are rational numbers. Then:

- 1. g is an algebraic number.
- 2. If $a_{j,i}$ are rational integers, g is an algebraic integer.

Theorem 6: 9.12

If α and β are algebraic numbers, then so are $\alpha + \beta$ and $\alpha\beta$. If α and β are algebraic integers, then so are $\alpha + \beta$ and $\alpha\beta$.

1 Ring Theory

Example 1: The Ring of Integers \mathbb{Z}

The set of integers \mathbb{Z} has two operations: addition and multiplication.

- $(\mathbb{Z},+)$ is an abelian group.
- (Z, ×) is not a group since there is no multiplicative inverse for every element. However, a multiplicative inverse is not required for a set to be a ring.

Example 2: The Field of Rational Numbers Q

The set $\mathbb Q$ of rational numbers has two operations: addition and multiplication.

- $(\mathbb{Q}, +)$ is an abelian group.
- (\mathbb{Q}, \times) is not a group, but $(\mathbb{Q} \setminus \{0\}, \times)$ forms an abelian group.

Similarly, the sets \mathbb{R} (real numbers) and \mathbb{C} (complex numbers) also form rings under addition and multiplication.

Example 3: The Gaussian Integers $\mathbb{Z}[i]$

Consider $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$, where i is the imaginary unit, i.e., $i^2 = -1$.

• $1 \in \mathbb{Z}[i]$, and for any integer $n \in \mathbb{Z}$, $n \in \mathbb{Z}[i]$.

• $\mathbb{Z}[i] \subseteq \mathbb{C}$, and it is closed under addition:

$$(a+bi) + (c+di) = (a+c) + (b+d)i,$$

where $a + bi \in \mathbb{Z}[i]$ and $c + di \in \mathbb{Z}[i]$.

- It is easy to verify that $\mathbb{Z}[i]$ is an abelian group under addition and is a subgroup of $(\mathbb{C}, +)$.
- $\mathbb{Z}[i]$ is closed under multiplication as well:

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i,$$

and both terms are in $\mathbb{Z}[i]$.

Thus, $\mathbb{Z}[i]$ is a ring under addition and multiplication.

Example 4: A Non-Ring Set

Consider the set $A = \{a + \frac{b}{2} \mid a, b \in \mathbb{Z}\}$ (where 1/2 replaces i). Note:

• $\frac{1}{2} \in A$, but $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4} \notin A$.

Therefore, A is not closed under multiplication, and hence it is not a ring.

Definition 7: Ring

A ring R is a set with two operations, denoted by + (addition) and \times (multiplication), satisfying the following properties:

- 1. (R, +) is an abelian group.
- 2. Multiplication is commutative, associative, and contains an identity element.
- 3. Addition and multiplication are distributive over each other, i.e., $\forall a, b, c \in R$:

$$(a+b)c = ac + bc$$
 and $a(b+c) = ab + ac$.

Examples: The sets $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}[i]$ are all rings. Additionally, the distributive property holds for \mathbb{C} , and thus it also holds for the sets $\mathbb{Z} \subseteq \mathbb{Z}[i] \subseteq \mathbb{C}$, and similarly for $\mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$.

Distribtuive property holds for \mathbb{C} so it also holds for other sets above: $\mathbb{Z} \subseteq Z[i] \subseteq \mathbb{C}$.

 $\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}\subseteq\mathbb{C}.$

Definition 8: Subring

Let R be a ring. A subset S of R is called a **subring** of R if it satisfies the following conditions:

- It is closed under addition and multiplication.
- It is a subgroup of (R, +).
- It contains the multiplicative identity 1.
- \mathbb{Z} , \mathbb{Q} , \mathbb{R} , $\mathbb{Z}[i]$ are subrings of \mathbb{C} .

It is possible to define rings without asking for multiplication to be commutative. They are called non-commutative rings. For example, the set of matrix rings: ex: 3×3 square matrices with real entries.

Rings can also be defined by not asking for multiplicative identity. ex: $R = 2Z = \{$ even integers $\}$ does not have 1.

More Examples of Rings

- 1. **Zero Ring:** Let $R = \{0\}$. In this ring, the only element is 0, and here 0 = 1. This is a trivial example of a ring.
- 2. \mathbb{Z} and $\mathbb{Z}/3\mathbb{Z}$: Consider the integers \mathbb{Z} . The set $3\mathbb{Z}$ (multiples of 3) is a subgroup of $(\mathbb{Z}, +)$. Now consider the quotient group:

$$\mathbb{Z}/3\mathbb{Z} = \{0, 1, 2\}.$$

More generally, for any $n \geq 1$, $\mathbb{Z}/n\mathbb{Z}$ is a ring. If n > 0, the number of elements in $\mathbb{Z}/n\mathbb{Z}$ is n.

F or $n \geq 2$, $\mathbb{Z}/n\mathbb{Z}$ is not a subring of \mathbb{C} .

3. Continuous Functions: Let $R = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous}\}$. This set forms a ring under pointwise addition and multiplication of functions. There is a well-defined ring structure on this set.

2 Field

Definition 9: Field

A field F is a set equipped with two operations: addition (+) and multiplication (\times) , such that the following properties are satisfied:

1. Additive Group:

(F, +) is an abelian group.

This means:

- For all $a, b \in F$, $a + b \in F$ (closure under addition).
- There exists an element $0 \in F$ such that a + 0 = a for all $a \in F$ (additive identity).
- For every $a \in F$, there exists $-a \in F$ such that a + (-a) = 0 (additive inverse).
- Addition is associative: (a + b) + c = a + (b + c) for all $a, b, c \in F$.
- Addition is commutative: a + b = b + a for all $a, b \in F$.
- 2. **Multiplicative Group:** The set $F \setminus \{0\}$ (i.e., all non-zero elements of F) is an abelian group under multiplication:
 - For all $a, b \in F \setminus \{0\}$, $a \times b \in F \setminus \{0\}$ (closure under multiplication).
 - There exists an element $1 \in F$ such that $a \times 1 = a$ for all $a \in F$ (multiplicative identity).
 - For every $a \in F \setminus \{0\}$, there exists $a^{-1} \in F$ such that $a \times a^{-1} = 1$ (multiplicative inverse).
 - Multiplication is associative: $(a \times b) \times c = a \times (b \times c)$ for all $a, b, c \in F$.
 - Multiplication is commutative: $a \times b = b \times a$ for all $a, b \in F \setminus \{0\}$.
- 3. **Distributive Property:** Addition and multiplication are distributive over each other. For all $a, b, c \in F$:

$$a \times (b+c) = a \times b + a \times c$$
 and $(a+b) \times c = a \times c + b \times c$.

Key Differences Between Fields and Rings

- In a field, every non-zero element has a multiplicative inverse. In a ring, this is not required. For example, in the ring of integers \mathbb{Z} , only 1 and -1 have multiplicative inverses, while in a field like \mathbb{Q} (the rational numbers), every non-zero element has a multiplicative inverse.
- Multiplication in a field is always commutative, whereas rings can be either commutative or non-commutative.

Examples of Fields

- 1. **The Rational Numbers** Q: Every non-zero rational number has a multiplicative inverse, and all field properties are satisfied.
- 2. The Real Numbers \mathbb{R} : The set of real numbers is a field under the usual addition and multiplication.
- 3. **The Complex Numbers** C: The complex numbers form a field under addition and multiplication, where every non-zero complex number has a multiplicative inverse.
- 4. Finite Fields $\mathbb{Z}/p\mathbb{Z}$: For a prime p, the set $\mathbb{Z}/p\mathbb{Z}$ (integers modulo p) forms a field. In this case, every non-zero element has a multiplicative inverse modulo p. For example, $\mathbb{Z}/5\mathbb{Z} = \{0, 1, 2, 3, 4\}$ is a field.

Non-Examples of Fields

• The Integers \mathbb{Z} : While \mathbb{Z} is a ring, it is not a field because most elements (other than 1 and -1) do not have a multiplicative inverse in \mathbb{Z} .

Theorem 7: 9.13

The set of all algebraic numbers forms a field. The set of all algebraic integers forms a ring.

We begin by recalling the definitions of a *field* and a *ring*.

Field Properties

A field satisfies the following conditions:

- 1. Closure under addition and multiplication: If a and b are elements of the field, then a + b and $a \cdot b$ are also in the field.
- 2. Associativity of addition and multiplication: For any a, b, c in the field, (a + b) + c = a + (b + c) and $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- 3. Commutativity of addition and multiplication: For any a,b in the field, a+b=b+a and $a\cdot b=b\cdot a$.
- 4. Additive identity: There exists an element 0 such that for any a, a + 0 = a.
- 5. Multiplicative identity: There exists an element 1 such that for any $a, a \cdot 1 = a$.
- 6. Additive inverses: For every element a, there exists an element -a such that a + (-a) = 0.
- 7. Multiplicative inverses: For every non-zero element a, there exists an element a^{-1} such that $a \cdot a^{-1} = 1$.
- 8. Distributive property: For all a, b, c in the field, $a \cdot (b + c) = a \cdot b + a \cdot c$.

Algebraic Numbers Form a Field

Let us now show that the set of all algebraic numbers forms a field. Algebraic numbers are complex numbers that satisfy polynomial equations with rational coefficients. We verify that algebraic numbers satisfy the conditions for a field:

- Closure under addition and multiplication: The sum and product of two algebraic numbers is also an algebraic number. For example, $\sqrt{2} + \sqrt{3}$ is an algebraic number, and $\sqrt{2} \cdot \sqrt{3} = \sqrt{6}$ is also an algebraic number.
- **Associativity**: Algebraic numbers inherit the associative properties of addition and multiplication from complex numbers.
- **Commutativity**: Addition and multiplication of algebraic numbers are commutative because complex numbers are commutative.
- Additive identity: The number 0 is an algebraic number because it satisfies the polynomial equation x = 0, which has rational coefficients.
- Multiplicative identity: The number 1 is an algebraic number because it satisfies the polynomial equation x 1 = 0, which has rational coefficients.
- Additive inverse: If α is an algebraic number, its additive inverse $-\alpha$ is also algebraic. For example, if α satisfies a polynomial, then $-\alpha$ satisfies the same equation with appropriate sign changes.
- Multiplicative inverse: If $\alpha \neq 0$ is an algebraic number, its multiplicative inverse α^{-1} is also algebraic. For example, if α satisfies a polynomial equation, then α^{-1} satisfies a polynomial equation constructed from it. For instance, 2 has an inverse 1/2, which satisfies 2x 1 = 0.
- **Distributive property**: Algebraic numbers satisfy the distributive property since complex numbers satisfy the distributive property.

Since all the conditions for a field are satisfied, the set of algebraic numbers forms a field.

Ring Properties

A ring satisfies the following conditions:

- 1. Closure under addition and multiplication.
- 2. Associativity of addition and multiplication.
- 3. Additive identity.
- 4. Additive inverse.

5. Distributive property.

Note that a ring does not require the existence of a multiplicative inverse.

Algebraic Integers Form a Ring

Now, consider the set of all algebraic integers, which are algebraic numbers that satisfy monic polynomial equations with integer coefficients. We check the conditions for a ring:

- Closure under addition and multiplication: The sum and product of two algebraic integers are also algebraic integers. For example, $\sqrt{2} \cdot \sqrt{2} = 2$ is an algebraic integer because it satisfies x 2 = 0.
- **Associativity**: Algebraic integers inherit the associative properties of addition and multiplication from complex numbers.
- Additive identity: The number 0 is an algebraic integer because it satisfies x = 0.
- Additive inverse: If α is an algebraic integer, then $-\alpha$ is also an algebraic integer. For example, if $\alpha = \sqrt{2}$, then $-\sqrt{2}$ satisfies the same equation $x^2 2 = 0$.
- **Distributive property**: Algebraic integers satisfy the distributive property since complex numbers do.

However, **algebraic integers do not necessarily have multiplicative inverses** that are also algebraic integers. For example, the inverse of 2 is 1/2, which is an algebraic number but not an algebraic integer.

Thus, the set of algebraic integers forms a **ring**, not a field, because it lacks multiplicative inverses for all elements.