Question Number	Scheme	Marks
7(a)	$\frac{(x+1)}{(x-3)} = \frac{(4x-2)}{(x+1)} \text{or } (x+1)^2 = (x-3)(4x-2)$ $(x+1)^2 = (4x-2)(x-3) \Rightarrow 3x^2 - 16x + 5 (=0)$ $(x-5)(3x-1) = 0 \Rightarrow x = 5, \frac{1}{3}$	M1
	$(x+1)^2 = (4x-2)(x-3) \Rightarrow 3x^2 - 16x + 5 (= 0)$	A1
	$(x-5)(3x-1) = 0 \Rightarrow x = 5, \frac{1}{3}$	M1A1A1 (5)
(b)	$x = \frac{1}{3} \Rightarrow r = \frac{x+1}{x-3} = \frac{\frac{4}{3}}{\frac{-8}{3}}$	M1
	$r = -\frac{1}{2}$: convergent as $-1 < r < 1$	A1cso (2)
(c)	$S = \frac{a}{1-r} = \frac{-\frac{8}{3}}{1+\frac{1}{2}} = -\frac{16}{9} \text{ oe}$	M1A1 (2)
	$\frac{S}{S_n} = \frac{a}{1-r} \times \frac{1-r}{a(1-r^n)} = \frac{1}{(1-r^n)} = \frac{256}{255}$	M1
	$255 = 256(1 - r^{n})$ $256r^{n} = 1 \qquad \left(-\frac{1}{2}\right)^{n} = \frac{1}{256} \text{oe} n = 8$	dM1A1 (3) [12]
(a)M1	Form an equation using the given information about the terms	
A1 M1	Simplify their equation to a correct 3TQ, terms in any order Condone missing = 0 Attempt to solve their 3TQ by any valid method. Must reach $x =$ (at least one root)	
1411	Calculator solutions: <i>Both</i> roots correct from a correct equation scores M1A1A1	
	Incorrect equation or incorrect roots scores M0A0A0	
A1	One correct value of x	
A1	Both correct values of x	
(b) M1	Use either of their values of x , provided it is < 1 , to find the corresponding value of r . No need to simplify	
A1cso	Correct value of r and the conclusion including the reason	
(c) M1	Use their value of r (not x) provided $-1 < r < 1$ (as found in (b) or here) and the formula for the sum to infinity to obtain a value for S	
A1	Correct value	
(d)		
M1	Obtain an equation in r and n . May use the formulae to cancel a or may sub values of a and r in the formulae for the LHS Must equate to $256/255$ Value of r not needed for this mark so allow any value used.	
dM1	Solve their equation of the form $r^n =$ where $-1 < r < 1$ (r not x). May use trial and improvement or logs. This mark can be given if the equation and value of r are incorrect. Evidence of method needed if final answer is incorrect. If logs used condone $\log (-1/2)^n$	
A1	Correct value from correct working	