Practice Midterm 1 Solutions

September 17, 2019

Problems:

1. True or False:

(a) 2.5 pt – If a set is not open, then it is closed.

Solution: False. The set A = [-1, 1) is neither open nor closed.

(b) **2.5 pt** – The conditional $P \rightarrow \neg P$ is a contradiction.

Solution: False. This conditional is true if *P* is false.

(c) **2.5 pt** – For sets $A, B \subseteq X$, we have $X - (A \cup B) = (X - A) \cap (X - B)$.

Solution: True. Follows from De Morgan's law.

(d) **2.5 pt** – It always holds that $\neg(\forall x, \exists y, P(x,y)) \Rightarrow \forall y, \exists x, \neg P(x,y)$.

Solution: True, because $\neg(\forall x, \exists y, P(x,y)) \Leftrightarrow \exists x, \forall y, \neg P(x,y) \Rightarrow \forall y, \exists x, \neg P(x,y)$

2. Short answer questions:

(a) **2.5 pt** – Given a conditional statement of the form $P \to Q$, what is the name of the related statement $\neg Q \to \neg P$?

Solution: Contrapositive.

(b) **2.5 pt** – If the statement $P \to Q$ is a tautology, what is the name of the meta-statement that characterizes P and Q?

Solution: Implication, $P \Rightarrow Q$.

(c) **2.5 pt** – Is the following statement a tautology: $(P \land Q) \rightarrow P$?

Solution: This statement is a tautology,

$$(P \land Q) \to P \Leftrightarrow \neg (P \land Q) \lor P \Leftrightarrow (\neg P \lor \neg Q) \lor P \Leftrightarrow \neg P \lor P.$$

(d) **2.5 pt** – For metric spaces X, Y and $x \in X$, let $f: X \to Y$ be a function where $\lim_{n \to \infty} f(x_n) = f(x)$ for all sequences $x_n \in X$ satisfying $x_n \to x$. What property does f possess?

Solution: It is continuous at x.

(e) **2.5 pt** – Let R(x, y) be an expression with free variables x and y. Let U and V be collections of possible values of x and y, respectively. Negate the statement: $\exists x \in U, \forall y \in V, R(x, y)$.

Solution: This is accomplished as follows,

$$\neg [(\exists x \in U)(\forall y \in V)R(x,y)] \Leftrightarrow (\forall x \in U) \neg [(\forall y \in V)R(x,y)]$$
$$\Leftrightarrow (\forall x \in U)(\exists y \in V)(\neg R(x,y)).$$

1

(f) **2.5 pt** – Let (X, d) be the standard metric space of real numbers and $Y = [-10, -1] \cup [1, 10]$. Is (Y, d) a compact metric space?

Solution: Yes, $Y \subset X$ is closed and totally bounded so (Y, d) is complete and totally bounded.

- (g) **2.5 pt** Negate the statement, "Every horse that is black and flies is named midnight moon". **Solution:** There exists a horse that is black and flies whose name is not midnight moon.
- (h) **2.5 pt** Suppose f and g are continuous functions from \mathbb{R} to \mathbb{R} . Is their composition $g \circ f$, defined pointwise by $(g \circ f)(x) = g(f(x))$, necessarily a continuous function? **Solution:** Yes. By the continuity of f, we see that, for any $x_n \to x$, it follows that $y_n = f(x_n)$ satisfies $y_n \to y = f(x)$. By the continuity of g, we see also that $g(f(x_n)) = g(y_n) \to g(y) = g(f(x))$. Since $g(f(x_n)) \to g(f(x))$ for all $x_n \to x$, it follows that $g \circ f$ is continuous.
- 3. Let $f: X \to Y$, $A, B \subseteq X$, and $C, D \subseteq Y$. Recall also that $f(A) \triangleq \{f(x) | x \in A\}$ and $f^{-1}(C) \triangleq \{x \in X | f(x) \in C\}$.

In this problem, proofs should only use the rules of logic and the following statements:

$$f(x) \in C \Leftrightarrow x \in f^{-1}(C)$$

$$x \in A \Rightarrow f(x) \in f(A)$$

$$x \in A \cup B \Leftrightarrow (x \in A) \lor (x \in B)$$

$$x \in A \cap B \Leftrightarrow (x \in A) \land (x \in B)$$

$$A = B \Leftrightarrow \forall x, (x \in A) \Leftrightarrow (x \in B)$$

(a) **5 pt** – Prove that $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$ (i.e., f^{-1} preserves unions). **Solution:** Applying the 1st and 3rd rules as needed, we find that

$$x \in f^{-1}(C \cup D) \Leftrightarrow f(x) \in C \cup D$$
$$\Leftrightarrow (f(x) \in C) \lor (f(x) \in D)$$
$$\Leftrightarrow (x \in f^{-1}(C)) \lor (x \in f^{-1}(D))$$
$$\Leftrightarrow x \in f^{-1}(C) \cup f^{-1}(D).$$

Applying the last rule, for all x, gives $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.

- (b) **5 pt** Unfortunately, $f(x) \in f(A) \to x \in A$ is not true in general. Give a counterexample. **Solution:** Consider $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$. If x = -1 and $A = \{1\}$, then this statement is false.
- 4. Your friend claims that the following recursive program computes the greatest common divisor of any two positive integers.

```
int gcd(int a,int b)
{
  if (a==b) { return a; }
```

```
if (a>b) { return gcd(b,a-b); }
else { return gcd(a,b-a); }
}
```

(a) **5 pt** – Use this program to write three statements that should be verified to prove that this program computes gcd(a, b) correctly for $a, b \in \mathbb{N}$, assuming it terminates.

Solution: The statements are: "if $a,b \in \mathbb{N}$ and a=b, then $\gcd(a,b)=a$ ", "if $a,b \in \mathbb{N}$ and a>b, then $\gcd(a,b)=\gcd(b,a-b)$ and $a-b \in \mathbb{N}$ ", and "if $a,b \in \mathbb{N}$ and a< b, then $\gcd(a,b)=\gcd(a,b-a)$ and $b-a \in \mathbb{N}$ ". To prove this recursion terminates, one would also need $\max(b,a-b)<\max(a,b)$ if a>b and $\max(a,b-a)<\max(a,b)$ if b>a

(b) **5 pt** – Prove the statements listed in part (a). Write a proof that this program terminates and computes gcd(a, b) correctly as long as $a, b \in \mathbb{N}$.

Solution: The first statement holds because a divides a and all divisors of a must be $\leq a$. The second statement holds because: (i) a-b>0 is a natural number because a>b, (ii) any divisor of a,b is also a divisor of b-a and (iii) any divisor of a,a-b is also a divisor of b. The third statement is the same as the second after swapping a,b.

The proof of correctness is by induction on $\max(a,b)$ If $\max(a,b)=1$, then the algorithm correctly returns $1=\gcd(1,1)$. Now, we assume that the algorithm works for all (a,b) such that $\max(a,b)< n$. Due to symmetry, we can assume that a>b. If a>b, then $\max(a,b)=a$ and $\max(b,a-b)< a$. Thus, $\gcd(a,b)=\gcd(b,a-b)$ by the above argument and the program correctly computes $\gcd(b,a-b)$ by the induction hypothesis. Thus, the algorithm computes the correct answer.

- (c) **5 pt** Unlike Euclid's algorithm, this algorithm does not use division. While that seems like an improvement, can you think of a reason why Euclid's algorithm might be preferred?
 - **Solution:** Using this algorithm, computing gcd(a, 2) takes roughly a/2 iterations while Euclid's algorithm uses at most 2 iterations.
- 5. In a metric space (X, d), a set $A \subseteq X$ is called open if, for every $x_0 \in A$, there is a $\delta > 0$ such that $B(x_0, \delta) \subseteq A$. Use this definition to prove:
 - (a) **5 pt** The intersection of any two open sets is open.

Solution: Let $A=A_1\cap A_2$ where $A_1,A_2\subseteq X$ are open. For all $x\in A$, the definition of A implies that $x\in A_1$ and $x\in A_2$. Sine A_1 and A_2 are open, it follows that there exist δ_1 and δ_2 such that $B(x,\delta_1)\subseteq A_1$ and $B(x,\delta_2)\subseteq A_2$. Let $\delta=\min\{\delta_1,\delta_2\}$ and observe that $B(x,\delta)\subseteq B(x,\delta_1)$ and $B(x,\delta)\subseteq B(x,\delta_2)$ because $\delta\leq \delta_1$ and $\delta\leq \delta_2$. Thus, we have $B(x,\delta)\subseteq A$ and A is open.

(b) **5 pt** – The intersection of a finite number of open sets is open.

Solution: Let A_1, A_2, \ldots be an arbitrary sequence of open sets in X. Let $C_n \triangleq \bigcap_{i \in \{1, 2, \ldots, n\}} A_i$ and observe that $C_{n+1} = C_n \cap A_{n+1}$. Also, C_n is the finite intersection of n arbitrary open sets in X. Now, we will prove that " C_n is open" for all $n \in \mathbb{N}$. To start, we observe that the

n=1 case is trivial and the n=2 case follows from part (a). Next, we prove the inductive step by assuming C_n is open and showing that this implies C_{n+1} is open. If C_n is open, then $C_{n+1}=C_n\cap A_{n+1}$ is the intersection of 2 open sets. Thus, part (a) implies that C_{n+1} is open. By induction, the statement holds for all $n\in\mathbb{N}$.

(c) 5 pt – The union of any two open sets is open.

Solution: Let $A = A_1 \cup A_2$ where $A_1, A_2 \subseteq X$ are open. For all $x \in A$, we find that $x \in A_1$ or $x \in A_2$. Without loss of generality, assume that $x \in A_1$. Then, there is a $\delta > 0$ such that $B(x, \delta) \subseteq A_1$. Since $A_1 \subseteq A$ (by definition of union), it follows that A is open.

- (d) **5 pt** If $\{A_t\}_{t\in T}$ is an arbitrary collection of open sets, then the union $U=\cup_{t\in T}A_t$ is open. **Solution:** Since U is a union, if $x_0\in U$, then there exists a $t_0\in T$ such that $x_0\in A_{t_0}$. By assumption, A_{t_0} is open and, thus there exists a $\delta>0$ such that $B(x_0,\delta)\subseteq A_{t_0}$. Since U is a union, we see that $A_{t_0}\subseteq U$ and, thus $B(x_0,\delta)\subseteq U$. It is worth noting that one cannot use finite induction based on part (c) because T can be infinite.
- 6. Consider finding the real positive solution of the equation $x^3 ax^2 b = 0$ for some $a, b \in \mathbb{R}_{>0}$. Note: Descartes' rule of signs shows there is exactly one real positive root.
 - (a) **5 pt** Show that any solution of this equation must also satisfy $x = f(x) \triangleq a + \frac{b}{x^2}$. **Solution:** Adding $ax^2 + b$ to both sides and dividing by x^2 gives the desired equation. Since x = 0 cannot be a solution, this transformation preserves the set of solutions.
 - (b) **7.5 pt** For a=4 and b=32, show that f(x) is a contraction on A=[4.5,8] and compute a value for the contraction coefficient γ .

Solution: First, we note that the relevant metric space is \mathbb{R} equipped with d(x,y) = |x-y|. Since f(x) is decreasing for $x \ge 0$, f(8) = 4.5, and $f(4.5) = 4 + 128/81 \le 4 + 128/64 = 6$, we see that $f([4.5,8]) \subseteq [4.5,6] \subseteq A$.

Taking the derivative gives $f'(x) = -\frac{64}{x^3}$ and integrating back shows that

$$|f(x) - f(y)| = \left| \int_{x}^{y} f'(s)ds \right| \le |x - y| \frac{64}{x^3},$$

for $y \ge x$. To get a contraction coefficient less than 1, we need x > 4. Thus, f is a contraction on A with contraction coefficient $\gamma = 64/(4.5)^3 = (8/9)^3 < 1$.

The contraction property can also be shown via the decomposition

$$|f(x) - f(y)| = \frac{32}{xy} \left| \frac{1}{y} + \frac{1}{x} \right| |x - y| \le \frac{64}{(4.5)^3} |x - y|.$$

However, bounding the numerator and denominator of $32(x+y)/(x^2y^2)$ separately (with worst-case values) does not work because $32(8+8)/(4.5)^4 \approx 1.24$.

(c) **5 pt** – For a = 4 and b = 32, prove that the sequence $x_{n+1} = f(x_n)$ converges starting from $x_1 \in A$? If so, what condition must its limit satisfy?

Solution: Since \mathbb{R} (with absolute distance) is a complete metric space and f is a contraction on the closed subset A, we can apply the contraction mapping theorem. The contraction mapping theorem implies that f(x) has unique fixed point x^* (in the set [4.5,8]) and that the sequence x_n converges to this fixed point. This limit x must be the unique solution in A of the fixed-point equation $x^3 - 4x^2 - 32 = 0$.

(d) **2.5 pt** – For a=4 and b=32, what happens to the sequence $x_{n+1}=f(x_n)$ starting from $x_1=3$? Why?

Solution: One can compute $x_2 = f(x_1) = 4 + 32/3^2$ explicitly. Since 32/9 > 3 and 32/9 < 4, it also follows that $x_2 \in [7, 8]$. Since $x_2 \in A$, the sequence x_n still converges to the unique fixed point.

7. Let \mathbb{R} be the field of real numbers equipped with absolute distance as a metric. Consider the set X = B[a, b] of bounded functions mapping [a, b] to \mathbb{R} equipped with the metric

$$d_{\infty}(f,g) = \sup_{t \in [a,b]} |f(t) - g(t)|.$$

A sequence of functions $f_n(t)$ converges pointwise if $f_n(t) \to f(t)$ for all $t \in [a,b]$. Uniform convergence also requires that, for all $\epsilon > 0$, there is a single N such that $|f_n(t) - f(t)| < \epsilon$ for all n > N and all $t \in [a,b]$.

(a) **5 pt** – Show that convergence $f_n \to f$ in the metric space (X, d_∞) implies uniform convergence. **Solution:** We need to prove that, for all $\epsilon > 0$, there is a single N such that $|f_n(t) - f(t)| < \epsilon$ for all n > N and all $t \in [a,b]$. Since $f_n \to f$ in X, we apply the definition of convergence in X (using the ϵ above) to see that there exists an N such that $d_\infty(f_n,f) < \epsilon$ for all n > N. Next, we note that

$$|f_n(t) - f(t)| \le \sup_{t \in [a,b]} |f_n(t) - f(t)| = d_{\infty}(f_n, f) < \epsilon$$

for all n > N and all $t \in [a, b]$.

(b) **5 pt** – Let $W \subseteq X$ be the subset of continuous functions and let $g_n \in W$ be a sequence of functions that converges uniformly to g. Show that g is continuous.

[Hint: Apply the triangle inequality to $d_{\infty}(g(x), g(y))$ along the path $g(x), g_n(x), g_n(y), g(y)$.] **Solution:** Following the hint, we get

$$d_{\infty}\left(g(x),g(y)\right) \leq d_{\infty}\left(g(x),g_n(x)\right) + d_{\infty}\left(g_n(x),g_n(y)\right) + d_{\infty}\left(g_n(y),g(y)\right).$$

Since g_n converges uniformly to g, we see that, for any $\epsilon>0$, there is an N such that $d_\infty\left(g(x),g_n(x)\right)<\epsilon/3$ and $d_\infty\left(g_n(y),g(y)\right)<\epsilon/3$ for all $n\geq N$. Notice that uniform convergence is required to use the same ϵ at x and y simultaneously. Since g_N is continuous, there is a δ (which depends on N,ϵ,x) such that $|g_N(x)-g_N(y)|<\epsilon/3$ for all $x,y\in[a,b]$ with $|x-y|<\delta$. This shows that, for any $\epsilon>0$, there is a $\delta>0$ such that $|g(x)-g(y)|<\epsilon$ for all $x,y\in[a,b]$ with $|x-y|<\delta$. Therefore, g(x) is continuous.

(c) $\mathbf{5} \ \mathbf{pt}$ – Let $x_n \to x$ be a sequence in $\mathbb R$ which converges. Use the above results to show that

$$\lim_{n \to \infty} \lim_{m \to \infty} g_n(x_m) = \lim_{m \to \infty} \lim_{n \to \infty} g_n(x_m).$$

Solution: The LHS expression is easily evaluated because the continuity of g_n implies that $\lim_{m\to\infty} g_n(x_m) = g_n(x)$ for all n. After that, the second limit requires only pointwise convergence to see that $\lim_{n\to\infty} g_n(x) = g(x)$.

The RHS expression can also be evaluated also by taking the limits separately. Since $g_n \to g$ is a sequence of continuous functions converging uniformly, the previous part implies that the limit function g is continuous. Thus, we can write

$$\lim_{m \to \infty} \lim_{n \to \infty} g_n(x_m) = \lim_{m \to \infty} g(x_m) = g(x),$$

where the first equality follows from the pointwise convergence of g_n to g (which follows from uniform convergence) and the second equality follows from the continuity of g.

To see how this can fail, try taking both these limits with $x_m = 1 - \frac{1}{m}$ and $g_n(x) = x^n$.