

Лекция Word Embeddings

Владимир Гулин

октябрь 2020 г.

Недостатки рассмотренных моделей

Какие недостатки есть в тех моделях, которые рассмотрели?

Latent semantic analysis (1988)

Latent semantic analysis (1988)

Фактически латентно-семантический анализ - это применение SVD разложения к матрице "термин-документ"

- ✓ Оценка близости документов
- Оценка близости терминов
- Кластеризация документов
- ✓ Взвешивание пары запрос-документ
- 🗱 Низкая скорость для больших коллекций

Что такое тема?

- тема семантический кластер текстов
- тема набор терминов предметной области
- тема условное распределение на множестве слов

$$p(w|t)$$
 — вероятность слова w в теме t

тема - тематический профиль документа

$$p(t|d)$$
 — вероятность темы t в документе d

Цель тематической модели:

Найти латентные темы документов коллекции по наблюдаемым распределениям слов p(w|d) в документах.

Основные положения:

- ▶ Модель мешка слов для документов (порядок не важен)
- Модель мешка документов для коллекции (порядок не важен)
- lacktriangle Коллекция это i.i.d. выборка $(d_i,w_i,t_i)_{i=1}^n \sim p(d,w,t)$
- ▶ d_i, w_i наблюдаемые переменные, t_i скрытые
- lacktriangle Гипотеза условной независимости: p(w|d,t) = p(w|t)
- Считаем, что тексты предобработаны (стемминг, лемматизация, удаление стоп-слов и т.д.)

$$p(w|d) = \sum_{t \in T} p(w|t) \cdot p(t|d)$$

Темы

gene 0.04 dna 0.02 genetic 0.01

life 0.02 evolve 0.01 organism 0.01

brain 0.04 neuron 0.02 nerve 0.01

data 0.02 number 0.02 computer 0.01

Дано:

- W словарь слов
- ▶ D коллекция документов
- $lacktriangledown d = \{w_1 \dots w_{n_d}\}$ документ
- $ightharpoonup n_{dw}$ число раз, когда слово w встретилось в документе d
- n_d длина документа d

Найти:

Параметры модели
$$\frac{n_{dw}}{n_d} \approx p(w|d) = \sum_{t \in T} \psi_{wt} \theta_{td}$$
 $\psi_{wt} = p(w|t)$ - вероятности слов w в каждой теме t $\theta_{td} = p(t|d)$ - вероятности тем w в каждой документе d

- ▶ $X = (d_i, w_i)_{i=1}^n$ исходные данные
- ▶ $T = (t_i)_{i=1}^n$ скрытые переменные, темы
- $ightharpoonup \Omega = (\Psi, \Theta)$ параметры

Нужно по X найти Ω

Максимизируем неполное правдоподобие

$$ln \, p(X|\Omega) = ln \, \sum_{T} p(X, \, T|\Omega) \rightarrow \max_{\Omega}$$

ЕМ алгоритм:

$$\begin{array}{ll} \mathsf{E\text{-}step:} & q(T) = p(T|X,\Omega) \\ \mathsf{M\text{-}step:} & \sum_{T} q(T) \mathit{ln} \, p(X,T|\Omega) \to \max_{\Omega} \end{array}$$

 $p(\Omega)$ - априорное распределение параметров модели Принцип максимума правдоподобия

$$p(X,\Omega) = p(X|\Omega)p(\Omega) o \max_{\Omega}$$
 In $p(X,\Omega) = \ln p(X|\Omega) + \ln p(\Omega) o \max_{\Omega}$

Обозначим $R(\Omega) = \operatorname{In} \ p(\Omega)$

PLSA [Hofmann, 1999]: $R(\Omega) = 0$

LDA [Blei, 2003]: $R(\Omega) = ln \prod_{t \in T} Dir(\psi_t | \beta) \prod_{d \in D} Dir(\theta_d | \alpha)$

ЕМ алгоритм:

$$\begin{array}{ll} \mathsf{E}\text{-step:} & q(T) = p(T|X,\Omega) \\ \mathsf{M}\text{-step:} & \sum_T q(T) ln \, p(X,T|\Omega) + R(\Omega) \to \max_\Omega \end{array}$$

Semantic hashing (Hinton, Salakhutdinov, 2009)

A Neural Probabilistic Language Model (Y. Bengio 2003)

Пытаемся с помощью нейросетей оценить вероятность следующего слова по набору из предыдущих слов (сеть может быть как последовательной так и рекурентной)

х Долго и сложно обучать

Дистрибутивная гипотеза

Гипотеза:

Лингвистические единицы, встречающиеся в схожих контекстах, имеют близкие значения.

Вывод:

Значит, векторы слов, можно построить с помощью контекстов этих слов.

Представление слов контекстами

Дано:

- V словарь слов
- С множество контекстов

Можем построить матрицу S размера $|V| \times |C|$, элементы которой будут описывать связь слова w_i с контекстом c_j .

Например, можно взять положительную поточечную взаимную информацию (PPMI):

$$S_{i,j} = max(PMI(w_i, c_j), 0),$$
 $PMI(w, c) = log \frac{p(w, c)}{p(w)p(c)} = log \frac{freq(w, c)|V|}{freq(w)freq(c)}$

× Очень большая размерность матрицы

Word2Vec (2013)

Архитектуры CBOW и Skip-gram

CBOW (Continious Bag of Words)

Skip-gram

Skip-gram

Оптимизируем

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \leq j \leq c, j \neq 0} \log p(w_{t+j}|w_t)$$

Вычисление вероятностей выходных слов

Используется softmax

$$p(w_O|w_I) = \frac{\exp{\langle \mathbf{v}'_{w_O}, \mathbf{v}_{w_I} \rangle}}{\sum\limits_{w=1}^{|V|} \exp{(\langle \mathbf{v}'_w, \mathbf{v}_{w_I} \rangle)}}$$

На практике эту формулу применять сложно, так как вычисление градиента пропорционально |V|.

На практике применяют разные аппроксимации: иерархический softmax или negative sampling.

Negative sampling

Идея:

Не будем рассматривать все слова из словаря, а учтем только рассматриваемое слово + подмешаем еще k отрицательных примеров.

Заменим $log p(w_O|w_I)$ на

$$\log \sigma(\langle \mathbf{v}_{w_O}', \mathbf{v}_{w_I} \rangle) + \sum_{i=1}^k \mathbb{E}_{w_i \sim P_n(w)}[\log \sigma(-\langle \mathbf{v}_{w_i}', \mathbf{v}_{w_I} \rangle)]$$

- ightharpoonup kpprox 5-20 для небольших выборок
- ▶ $k \approx 2 5$ для больших данных

Смысл Negative Sampling

- ▶ Фактически, мы имеем два распределения слов: "положительное" (D) и "отрицательное" (N).
- ▶ Мы их смешиваем в пропорции 1 : k
- Задача модели: угадать, из какого распределения пришло слово

Смысл Negative Sampling

По предположению,

$$p(D|w,c) = \sigma(\langle w,c\rangle)$$

Но по формуле Байесса

$$p(D|w,c) = \frac{p(w,c|D)p(D)}{p(w,c|D)p(D) + p(w,c|N)p(N)}$$

Считаем, что контексты в негативных примерах не зависят от слова:

$$p(w,c|N) = p(w|D)p(c|D)$$

Таким образом

$$p(D|w,c) = \frac{p(w,c|D)\frac{1}{k+1}}{p(w,c|D)\frac{1}{k+1} + p(w,c|N)\frac{k}{k+1}} = \frac{1}{1 + k\frac{p(w|D)p(c|D)}{p(w,c|D)}}$$

Смысл Negative Sampling

Заметим, что выражение стоящее в знаметеле очень похоже на взаимную информацию

$$PMI(w,c) = log \frac{p(w,c|D)}{p(w|D)p(c|D)}$$

Таким образом,

$$p(D|w,c)=rac{1}{1+ke^{-PMI(w,c)}}$$
 $\langle w,c
angle =PMI(w,c)-ln\,k$ – "сдвинутый" PMI

 $\langle w,c\rangle = Fini(w,c) - m\kappa - \mathsf{CdB}$

Skip-gram Negative Sampling эквивалентен факторизации матрицы "сдвинутого" PMI.

Свойства выученных представлений

 $v(\text{king}) - v(\text{man}) + v(\text{woman}) \approx v(\text{queen})$

GLoVe (2014)

$$J(\theta) = \frac{1}{2} \sum_{i,j=1}^{W} f(P_{ij}) (u_i^T v_j - \log P_{ij})^2$$

$$X_{final} = U + V$$

Word2vec

Вопрос

▶ Как это использовать в поиске?

Вопросы

