

智嵌 ZQWL-IO-1BNRA16-I 使用手册

版本号: V1.1

拟制人: 智嵌物联团队

审核人: 赵工

时间: 2017年04月26日

密级:公开

修订信息

编号	修订内容简述	修订 日期	订前 版本	订后 版本	拟制	审核	批准
1	创建						
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							

目 录

前言		3
1	硬件功能介绍	3
	1.1 硬件特点	3
2	模块硬件接口	4
	2.1 模块接口及尺寸	4
3	模块输入接线	5
	3.1 模块电源输入	5
	3.2 模块开关量输入	5
4	模块输出接线	<i>6</i>
5	模块通讯	<i>6</i>
6	模块地址设置	7
	6.1 地址设置	7
	6.2 恢复出厂	7
7	模块串口通讯协议	7
	7.1 自定义协议	7
	1、控制指令	8
	2、配置指令	9
	7.2 Modbus rtu 协议	11
	7.3 Modbus rtu 指令码举例	11
8	模块串口通讯协议举例	. 14
	8.1 自定义协议举例	. 14
	8.2 Modbus RTU 协议举例	. 14
9	模块 CAN 通讯协议	. 17
	9.1 CAN 扩展帧通讯格式	. 17
	9.2 CAN 标准帧通讯格式	. 17
10	附录 恕据物群 IO 系列产品选刑表	10

前言

智嵌物联系列产品命名规则一览:

SS:传感器系列

AN:模拟量板卡系列

GP:GPRS dtu & GPS系列

ECAN:can转网络系列

RF:射频识别系列 ZB: zigbee通讯系列

IO 控制板系列产品命名规则如下:

如: ZOWL-IO-1CNRC16-I

12V供电/带外壳/NPN输入/10A电流/网络+串口/16路输出/通讯隔离

1 硬件功能介绍

ZQWL-IO-1BNRA16-I是一款16路NPN型光电输入、16路继电器输出的工业级IO控制板。他 具有1路RS232、1路RS485和1路CAN通讯接口;三种接口都具有ESD保护功能和优良的EMI/RFT 特性,硬件具有超强的抗干扰能力。

提供两种通讯协议: 自定义协议和Modbus RTU协议。

硬件特点 1.1

表 1 硬件参数

序号	名称	参数
1	型号	ZQWL-IO-1BNRA16-I
2	供电电压	111~131 (推荐121)
3	供电电流	大于440ma
4	CPU	32位高性能
5	RS232/485/CAN	3种通讯接口互相独立,可同时使用

6	输入	16路NPN型光电输入
7	输出(宏发继电器:	16路继电器输出,每路都有常开、常闭和公共端3个
	HF3FF-12V-1ZS)	端子; 光电隔离
8	指示灯	电源、输入以及输出都带指示灯
9	出厂默认参数	串口: 115200,8, n, 1; 控制板地址: 1;
10	恢复出厂拨码	当拨码开关拨到全"OFF"时,恢复出厂参数

2 模块硬件接口

2.1 模块接口及尺寸

图 1 模块正视

图 2 尺寸

3 模块输入接线

3.1 模块电源输入

表 2 控制板功率测试

项目	电压(伏)	电流(毫安)	功率(瓦)
4路常闭闭合,常开断开(空载)	12	50	0.60
1 路常闭断开,常开闭合	12	80	0.96
2 路常闭断开,常开闭合	12	110	1.32
3 路常闭断开,常开闭合	12	140	1.68
4 路常闭断开,常开闭合	12	170	2.04
路数增1	12	电流增加 30	功率增加 0.36

测试条件: 温度 25°, 湿度 46%。

以上数据可以得出,控制板在满负荷时功率为 6.36 瓦,因此模块的供电电源应选择电压 12V,电流大于 530ma 即可。比如选 12V/1a 电源给控制板供电。

3.2 模块开关量输入

本控制板为 NPN 型输入,与外部设备连接示意图如下:

图 5 输入连接方式

由上图可知,外部设备的输出端接控制板的输入(X1~16),并且外部设备要和控制板共地(可接到控制板的"GND"端子上)。

控制板输入电平有两种规格(2.7V~7V规格和6V~12V规格),采购时需要注明。

(A) J工中介人们/				
输入(X1~16)电压	逻辑值			
0~1.5V	0			
1.5V~2.7V	不确定			
2.7V~7V	1			
大于 7V	长时间会损伤控制板			

表 3 控制板输入电平(2.7V~7V规格)

177.1.1 100 1111	* L (0 , 12 , //L //L
输入 (X1~8) 电压	逻辑值
0~5V	0
5V~6V	不确定
6V~12V	1
士工 10V	上时间

表 4 控制板输入电平(6V~12V 规格)

4 模块输出接线

该控制板共有 16 路继电器输出,每路都有常开、常闭和公共端三个触点,采用宏发原装继电器,每路可承载负荷如下:

项目	参数
触点材料	Silver Alloy
触点负载	240VAC/10A
最大转换电压	250VAC/30VDC
最大转换电流	15A
最大转换功率	2770VA/240W
接触电阻	100mΩMax at 6VDC 1A
机械寿命	10,000,000 次

表 5 继电器可承载负荷

每路继电器的公共端触点互相独立,16 路可以分别控制不同的电压。每个端子均有标示(见图1)。

5 模块通讯

控制板具有 RS485/RS232/CAN 通讯功能,接口具有 ESD 防护器,采用自动换向高性能 485 芯片,为通讯的稳定性提供了强大的硬件支持。

该模块可以通过 RS485 接口与本公司网络型 IO 级联, 拓扑结构如下:

图 5.1.1 网络型 IO 与 RS485 型 IO 模块级联

6 模块地址设置

6.1 地址设置

本控制板上有一个6位的拨码开关,如下图所示。

拨码开关的位与板子的地址关系如下:

拨码开关位	6	5	4	3	2	1
控制板地址位	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1

当拨码开关相应位拨到"ON"时,值为0,反之值为1。例如上图中的拨码开关取值为:

拨码开关位	6	5	4	3	2	1
控制板地址位	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1
取值	0	0	0	0	0	1

即板子地址为 0x01。

6.2 恢复出厂

当控制板地址拨码开关拨到全"OFF"状态时,控制板恢复出厂设置。

如果使用通讯协议配置控制板子参数出错而导致无法通讯时,可以将拨码开关拨到全 "OFF"状态,此时控制板将恢复出厂参数,然后再将拨码拨到正常位置即可通讯,出厂参数如下:

RS485/232: 波特率 115200; 数据位 8; 不校验; 1 位停止位; CAN:波特率 250Kbps。

7 模块串口通讯协议

该模块支持两种串口通讯协议: 自定义协议和 modbus rtu 协议。

7.1 自定义协议

自定义协议采用固定帧长,采用十六进制格式,并具有帧头帧尾标识,该协议适用于 "ZQWL-IO" 系列带外壳产品。该协议为"一问一答"形式,主机询问,控制板应答,只 要符合该协议规范,每问必答。

该协议指令可分为两类:控制指令类和配置指令类。

控制指令只要是控制继电器状态和读取开关量输入状态。配置指令类主要是配置板子的运行参数以及复位等。

1、控制指令

控制类指令分为2种格式:一种是集中控制指令,一种是单路控制指令。

(1) 集中控制指令

此类指令帧长为 15 字节,可以实现对继电器的集中控制(一帧数据可以控制全部继电器状态)。详细集中控制指令如表 7.1.1。

次 / ZQ W IO										
		帧头		帧头 地址码 命令码 8字		8 字节数据	校验和	帧尾		
指令名称	Byte1	Byte2	Byte3	Byte3 Byte4 Byte5~Byte12 By		Byte13	Byte14	Byte15		
读输入状态	0X48	0X3A	Addr	0X52	任意	前 12 字节和 (只取低 8 位)	0X45	0X44		
应答"读输入状态"	0X48	0X3A	Addr	0X41	DATA1~DATA8	前 12 字节和 (只取低 8 位)	0X45	0X44		
写继电器状态	0X48	0X3A	Addr	0X57	DATA1~DATA8	前 12 字节和 (只取低 8 位)	0X45	0X44		
应答"写继电器状态"	0X48	0X3A	Addr	0X54	DATA1~DATA8	前 12 字节和 (只取低 8 位)	0X45	0X44		
读继电器状态	0X48	0X3A	Addr	0X53	任意	前 12 字节和 (只取低 8 位)	0X45	0X44		
应答"读继电器状态"	0X48	0X3A	Addr	0X54	DATA1~DATA8	前 12 字节和 (只取低 8 位)	0X45	0X44		

表 7.1.1 ZOWL-IO 集中控制指令表

注: 表中的"8字节数据"即对应继电器板的状态数据, 4个bit表示1路状态,每1个字节表示2路状态:

DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7	DATA8
1/2	3/4	5/6	7/8 路状	9/10	11/12	13/14	15/16
路状态	路状态	路状态	态	路状态	路状态	路状态	路状态

每个字节表示两路: 低 4 位表示奇数路, 高 4 位表示偶数路, 例 如 DATA1 为 0x10, 其含义是第 1 路断开, 第二路闭合; 例如 DATA2 为 0x01, 其含 义是第 3 路闭合, 第 4 路断开。

控制码举例如下(十六进制):

● 读取地址为1的控制板开关量输入状态:

发送: 48 3a 01 52 00 00 00 00 00 00 00 00 d5 45 44

地址为1的控制板收到上述指令后应答:

48 3A 01 41 11 00 00 00 11 11 11 11 08 45 44

此应答表明,控制板的 X1 和 X2 输入有信号(高电平),其余 6 路无信号(低电平)。注意,对于输入来说只有 DATA1~4($\frac{11}{2}$ 00 00 00)有意义,DATA5~8($\frac{11}{2}$ 11 11 11)无意义。

● 向地址为1的控制板写继电器状态:

发送: 48 3a 01 57 01 00 01 00 00 00 00 00 dc 45 44

此命令码的含义是令地址为1的控制板的第1个和第5个继电器常开触点闭合,常闭触点断开;其余继电器为常开触点断开,常闭触点闭合。

注意继电器板只识别 0 和 1,其他数据不做任何动作,所以如果不想让某一路动作,可以将该路赋为其他值。例如不让第 3 个和第 7 个继电器改变状态,可以发如下指令:

48 3a 01 57 01 02 01 02 00 00 00 00 e0 45 44

只需要将第2和第4路置为02(或其他值)即可。

控制板收到以上命令后,会返回控制板继电器状态,如:

48 3a 01 54 01 00 01 00 00 00 00 00 d9 45 44

(2) 单路控制指令

此类指令帧长为 10 字节,可以实现对单路继电器的控制(一帧数据只能控制一个继电器状态)。此类指令也可以实现继电器的延时关闭功能。

详细指令如表 7.1.2 所示:

表 7.1.2 ZQWL-IO 单路控制指令表

	1	帧头	地址码	命令码		4 字节数据				帧尾	
指令名称	Byte1	Byte1 Byte2		Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10	
写继电器状态	0X48	0X3A	Addr	0X70	继电器序号	继电器状态	时间 TH	时间 TL	0X45	0X44	
应答"写继电器状态"	0X48	0X3A	Addr	0X71	继电器序号	继电器状态	时间 TH	时间 TL	0X45	0X44	
读继电器状态	0X48	0X3A	Addr	0X72	继电器序号	继电器状态	时间 TH	时间 TL	0X45	0X44	
应答"读继电器状态"	0X48	0X3A	Addr	0X71	继电器序号	继电器状态	时间 TH	时间 TL	0X45	0X44	

上表中,Byte3 是控制板的地址,取值范围 0x00~0xfe,用户可以通过拨码开关来设置; Byte5 是要操作的继电器序号,取值范围是 1 到 16 (对应十六进制为 0x01 到 0x10); Byte6 为要操作的继电器状态: 0x00 为常闭触点闭合常开触点断开,0x01 为常闭触点断开常开触点闭合,其他值无意义(继电器保持原来状态); Byte7 和 Byte8 为延时时间 T (收到 Byte6 为 0x01 时开始计时,延时结束后关闭该路继电器输出),延时单位为秒,Byte7 是时间高字节 TH,Byte8 是时间低字节 TL。例如延时 10 分钟后关闭继电器,则:

时间 T=10 分钟=600 秒, 换算成十六进制为 0x0258, 所以 TH=0x 02, TL=0x 58。

如果 Byte7 和 Byte8 都填 0x00,则不启用延时关闭功能(即继电器闭合后不会主动关闭)。

单路命令码举例(十六讲制):

● 将地址为1的控制板的第1路继电器打开:

发送: 48 3a 01 70 01 01 00 00 45 44

控制板收到以上命令后,将第1路的继电器常闭触点断开,常开触点闭合,并会返回控制板继电器状态:

48 3a 01 70 01 01 00 00 45 44

● 将地址为1的控制板的第1个继电器关闭:

发送: 48 3a 01 70 01 00 00 00 45 44

控制板收到以上命令后,将第1路的继电器常闭触点闭合,常开触点断开,并会返回控制板继电器状态:

48 3A 01 71 01 00 00 00 45 44

● 将地址为1的控制板的第1路继电器打开延时10分钟后关闭:

发送: 48 3a 01 70 01 01 02 58 45 44

控制板收到以上命令后,将第1路的继电器常闭触点断开,常开触点闭合,并会返回控制板继电器状态,然后开始计时,10分钟之后将第一路的继电器常闭触点闭合,常开断开。

● 将地址为1的控制板的第1路继电器打开延时5秒后关闭:

发送: 48 3a 01 70 01 01 00 05 45 44

控制板收到以上命令后,将第1路的继电器常闭触点断开,常开触点闭合,并会返回控制板继电器状态,然后开始计时,5秒之后将第一路的继电器常闭触点闭合,常开断开。

2、配置指令

当地址码为 0xff 时为广播地址,只有"读控制板参数"命令使用广播地址,其他都不能使用。

9

表 7.2.1 ZQWL-IO 配置指令表

		帧头	地址码	命令码	8 字节数据	校验和	帧	尾
读控制板参数	0X48 0X3A		0XFF	0x60	任意	前 12 字节和 (只取低 8 位)	0X45	0X44
应答"读控制板参数"	0X48	0X3A	Addr	0x61	参考表 3	前 12 字节和 (只取低 8 位)	0X45	0X44
修改波特率	0X48	0X3A	Addr	0x62	参考表 4	前 12 字节和 (只取低 8 位)	0X45	0X44
应答"修改波特率"	0X48	0X3A	Addr	0x63	任意	前 12 字节和 (只取低 8 位)	0X45	0X44
读取版本号	0X48	0X3A	Addr	0x66	任意	前 12 字节和 (只取低 8 位)	0X45	0X44
应答"读取版本号"	0X48	0X3A	Addr	0x67	参考表 5	前 12 字节和 (只取低 8 位)	0X45	0X44
恢复出厂	0X48	0X3A	Addr	0x68	任意	前 12 字节和 (只取低 8 位)	0X45	0X44
应答"恢复出厂"	0X48	0X3A	Addr	0x69	任意	前 12 字节和 (只取低 8 位)	0X45	0X44
复位	0X48	0X3A	Addr	0x6A	任意	前 12 字节和 (只取低 8 位)	0X45	0X44
应答"复位"	0X48	0X3A	Addr	0x6B	任意	前 12 字节和 (只取低 8 位)	0X45	0X44

表 3 控制板参数表

字节	DATA 1	DATA 2	DATA 3	DATA 4	DATA 5	DATA 6	DATA 7	DATA 8
	预留	串口波特率	数据位	校验位	停止位	CAN 波特率	预留	预留
		0x01:1200	7,8,9	'N': 不校	1:1bit	0x00:250K		
		0x02:2400		验	2:1.5bit	0x01:10 K		
		0x03:4800		'E': 偶校验	3:2bit	0x02:15 K		
		0x04:9600		'D': 奇校		0x03:20 K		
		0x05:14400		验		0x04:25 K		
		0x06:19200				0x05:40 K		
		0x07:38400				0x06:50 K		
含义		0x08:56000				0x07:80 K		
		0x09:57600				0x08:100 K		
		0x0A:115200				0x09:125 K		
		0x0B:128000				0x0A:200 K		
		0x0C:230400				0x0B:400 K		
		0x0D:256000				0x0C:500 K		
		0x0E:460800				0x0D:666 K		
		0x0F:921600				0x0E:800 K		
		0x10:1024000				0x0F:1000K		

表 4 修改波特率表

字节	1	2	3	4	5	6	7	8
含义	修改后波特率码	数据位	校验位	停止位	CAN 波特率,参考表 3 中的 DTAT6	未用	未用	未用

表 5 读取版本号表

字节	1	2	3	4	5	6	7	8
含义	'I'	'O'	·_'	'1'	' 6'	·_•	'0'	'0'

版本号为 ascii 字符格式,如 "IO-16-00", IO 表示产品类型为 IO 控制板; 16 表示 16 路系列; 00 表示固件版本号。

7.2 Modbus rtu 协议

本控制板实现部分必要的 modbus rtu 协议,通讯格式如下:

Addr Cmd Data(n字节) Crc (2字节)

Addr 为 0xff 时,是广播地址,所有从机都能接收并处理,必要时要做出回应。广播地址可以用于对控制板的编址以及获取控制板的地址。

控制板实现如下功能码:

Cmd	含义	备注
0x01	读线圈	Data: 2字节起始地址+2字节线圈个数,线圈个数不能超过16
0x02	读离散量输入	Data: 2 字节起始地址+2 字节输入点个数,输入点个数不能超过 8
0x03	读寄存器	Data: 2 字节起始地址+2 字节寄存器个数(寄存器含义见表 6.2.1)
0x05	写单个线圈	Data: 2字节起始地址+2字节线圈值
0x06	写单个寄存器	Data: 2字节起始地址+2字节寄存器值
0x0f	写多个线圈	Data: 2字节起始地址+2字节线圈个数+1字节个数+数值

表 6.2.1 保持寄存器地址以及含义

	1	
寄存器地址	含义	备注
0X0000	预留	
0X 0001	波特率	实际波特率除以 100, 比如 12 代表 1200, 96 代表 9600,1152
		代表 115200,10240 代表 1024000 等
0X 0002	数据位	仅支持 0X0007, 0X0008, 0X0009 三种
0X 0003	校验位	0X004E: 不校验;
		0X0045: 偶校验;
		0X004F: 奇校验
0X 0004	停止位	0X0001: 1bit
		0X0002: 1.5bit
		0X0003: 2bit
0X 0005~	版本号	ASCII 表示,比如"IO-16-00": IO 表示产品类型为 IO 控制板;
0X 000c		16表示16路系列;00表示固件版本号
0X 000d	恢复出厂	读无意义; 当写 0X0001 时,控制板恢复出厂设置,写其他值
		无意义。
0X 000e	复位	读无意义; 当写 0X0001 时,控制板复位,写其他值无意义。

7.3 Modbus rtu 指令码举例

以地址码 addr 为 0x01 为例说明。

1) 读线圈(0X01)

为方便和高效,建议一次读取16个线圈的状态。

外部设备请求帧:

•	0X01	0X01	0X00	0X00	0X00	0X10	计算	获得
			(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
	Addr (ID)	功能码	起始地址	起始地址	线圈数量	线圈数量	CRC16	CRC16

控制板响应帧:

Addr (ID)	功能码	字节数	线圈状态	CRC16	CRC16	
				(高字节)	(低字节)	
0X01	0X01	0X01	XX	计算获得		

其中线圈状态 XX 释义如下(B0~B15 是 XX 的 16 个 bit 位):

В7		B6	B5	B4	В3	B2	B1	В0
线圈	8	线圈 7	线圈 6	线圈 5	线圈 4	线圈 3	线圈 2	线圈 1

B15	B14	B13	B12	B11	B10	B9	B8
线圈 16	线圈 15	线圈 14	线圈 13	线圈 12	线圈 11	线圈 10	线圈 9

B0~B15 分别代表控制板 16 个继电器状态 (Y1~Y16), 位值为 1 代表继电器常开触点闭合,常闭触点断开;位值为 0 代表继电器常开触点断开,常闭触点闭合;位值为其他值,无意义。

2) 读离散量输入(0X02)

为方便和高效,建议一次读取16个输入量的状态。

外部设备请求帧:

Addr (ID)	功能码	起始地址	起始地址	输入数量	输入数量	CRC16	CRC16
		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X02	0X00	0X00	0X00	0X10	计算	获得

控制板响应帧:

Addr (ID)	功能码	字节数	输入状态	CRC16	CRC16
				(高字节)	(低字节)
0X01	0X02	0X02	XX	计算	算获得

其中输入状态 XX 释义如下:

	, , , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		** *					
	B7	B6	B5	B4	В3	B2	B1	B0
	输入8	输入7	输入6	输入5	输入4	输入3	输入2	输入1
ſ	B15	B14	B13	B12	B11	B10	B9	B8
ſ	输入8	输入7	输入6	输入5	输入4	输入3	输入2	输入1

B0~B15 分别代表控制板 16 个输入状态 (X1~X16), 位值为 1 代表输入高电平; 位值为 0 代表输出低电平; 位值为其他值, 无意义。

读寄存器(0X03)

寄存器地址从 0X0000 到 0X000E,一共 15 个寄存器。其含义参见表 6.2.1。 建议一次读取全部寄存器。

外部设备请求帧:

Addr (ID)	功能码	起始地址	起始地址	寄存器数量	寄存器数量	CRC16	CRC16
		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X02	0X00	0X00	0X00	0x0F	计算	获得

控制板响应帧:

(ID) 0X01	0X03	0X1E	(高字节) XX	(低字节) XX	(高字节) XX	(低字节) XX	(高字节)	(低字节)
Addr	功能码	字节数	数据 1	数据 1	 数据 30	数据 30	CRC16	CRC16

3) 写单个线圈(0X05)

外部设备请求帧:

0X01	0X05	0X00	XX	XX	0X00		
		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
Addr (ID)	功能码	起始地址	起始地址	线圈状态	线圈状态	CRC16	CRC16

注意:起始地址(低字节)取值范围是0X00~0X0F分别对应控制板的16个继电器(Y1~Y16); 线圈状态(高字节)为0XFF时,对应的继电器常开触点闭合,常闭触点断开;

线圈状态(高字节)为0X00时,对应的继电器常开触点断开,常闭触点闭合。

线圈状态(高字节)为其他值时,无意义。

控制板响应帧:

Addr (ID)	功能码	起始地址	起始地址	线圈状态	线圈状态	CRC16	CRC16
		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X05	0X00	XX	XX	0X00	计算	获得

4) 写单个寄存器 (0X06)

用此功能码既可以配置控制板的地址、波特率等参数,也可以复位控制板和恢复出厂设置。

外部设备请求帧:

Addr (ID)	功能码	起始地址	起始地址	寄存器数据	寄存器数据	CRC16	CRC16
		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X06	0X00	XX	XX	XX	计算	获得

控制板响应帧:

Addr (ID)	功能码	起始地址	起始地址	寄存器数据	寄存器数据	CRC16	CRC16
		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X06	0X00	XX	XX	XX	计算	获得

5) 写多个线圈 (0X0F)

建议一次写入16个线圈状态。

外部设备请求帧:

2 7 7 7 7	2 T 11 T	. 12 1 .							
Addr	功能码	起始地址	起始地	线圈数量	寄存器数据	字节数	线圈状态	CRC16	CRC16
(ID)		(高字节)	址 (低	(高字节)	(低字节)			(高字节)	(低字节)
			字节)						
0X01	0X0F	0X00	XX	0X00	0X10	0X01	XX	计算	草获得

其中,线圈状态 XX 释义如下:

В7	B6	B5	B4	В3	B2	B1	B0
线圈 8	线圈 7	线圈 6	线圈 5	线圈 4	线圈 3	线圈 2	线圈 1

B15	B14	B13	B12	B11	B10	B9	B8
线圈 16	线圈 15	线圈 14	线圈 13	线圈 12	线圈 11	线圈 10	线圈 9

B0~B15 分别代表控制板 16 个继电器状态 (Y1~Y16), 位值为 1 代表继电器常开触点闭合,常闭触点断开;位值为 0 代表继电器常开触点断开,常闭触点闭合;位值为其他值,无意义。

控制板响应帧:

7	DC 14/	1711						
	Addr	功能码	起始地址	起始地址	线圈数量	寄存器数据	CRC16	CRC16
	(ID)		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
	0X01	0X0F	0X00	XX	0X00	0X10	计算获得	

8 模块串口通讯协议举例

8.1 自定义协议举例

● 读输入状态

主控设备发送: 48 3a 01 52 00 00 00 00 00 00 00 00 00 d5 45 44 控制板收到后返回: 48 3A 01 41 00 00 00 00 00 00 00 00 00 C4 45 44 此返回说明 8 路输入均无信号。

写继电器状态

主控设备发送: 48 3a 01 57 11 11 11 11 11 11 11 11 162 45 44 此命令含义为命令所有继电器常开触点闭合,常闭触点断开。 控制板收到后返回: 48 3A 01 54 11 11 11 11 11 11 11 11 5F 45 44

● 读继电器状态

主控设备发送: 48 3a 01 53 00 00 00 00 00 00 00 00 d6 45 44 控制板收到后返回: 48 3A 01 54 00 00 00 00 00 00 00 00 D7 45 44 此返回说明 16 路继电器的常开触点断开,常闭触点闭合。

● 读控制板参数

主控设备发送: 48 3a ff 60 00 00 00 00 00 00 00 00 00 e1 45 44 控制板收到后返回: 48 3A FF 61 01 04 08 4E 01 00 00 00 3E 45 44 此返回即为出厂默认参数。

8.2 Modbus RTU 协议举例

● 0x01 读线圈

现读取 16 路线圈状态

主控设备发送: 01 01 00 00 00 10 3D C6

控制板收到后返回: 01 01 02 00 00 B9 FC

此返回说明16路继电器的常开触点断开,常闭触点闭合。

也可以直接使用"modbus poll"软件:

0x02 读离散量输入

现读取8路输入状态

主控设备发送: 01 02 00 00 00 08 79 CC

控制板收到后返回: 01 02 01 00 A1 88

此返回说明8路输入均无信号。

也可以直接使用"modbus poll"软件:

0x05 写单个线圈

现写第一个线圈

主控设备发送: 01 05 00 00 FF 00 8C 3A

此命令含义为使第一路继电器常开触点闭合,常闭触点断开。

控制板收到后返回: 01 05 00 00 FF 00 8C 3A

也可以直接使用"modbus poll"软件:

● 0x0f 写多个线圈

现写 16 个线圈

主控设备发送: 01 0F 00 00 00 10 02 FF 01 62 10

此命令含义为使第 1 路至第 9 继电器常开触点闭合,常闭触点断开;第 10 第 16 路常开触点断开,常闭触点闭合。

控制板收到后返回: 01 0F 00 00 00 10 54 07

也可以直接使用"modbus poll"软件:

9 模块 CAN 通讯协议

模块具有 1 路 CAN 通讯接口,默认波特率为 250kbs,兼容标准帧和扩展帧格式。

9.1 CAN 扩展帧通讯格式

(1) CAN 参数

波特率为 250kbps, 扩展数据帧, 8 字节长度数据。

(2) CAN 报文 ID 含义

采用一问一答形式,即主控单元查询,继电器板应答。CAN 报文 ID 一共有 29 位, 其含义如下:

Bit	29~24	23~16	15~8	7~0
意义	任意	0XAA	功能码	地址码

功能码含义如下:

功能码值	含义
0X52	读取输入状态
0X41	继电器板返回输入状态
0X57	写继电器状态
0X53	读继电器状态
0X54	继电器板返回继电器状态

地址码的范围是 0X00 至 0X3F,总共可以级联 64 个继电器板。

(3) CAN 报文含义

CAN 报文有 8 个字节的数据,每个字节代表两路输入/继电器状态: 低 4 位表示奇数路,高 4 位表示偶数路,例如报文的第一个字节为 0X01 表示第一路输入有信号(或第 1 路继电器常开触点闭合),第一个字节为 0X10 表示第 2 路输入有信号(或第 2 路继电器常开触点闭合)。实例:

将地址为1的控制板第一路继电器状态设为吸合状态:

9.2 CAN 标准帧通讯格式

(1) CAN 参数

波特率: 250kbps, 标准帧格式 (11位 ID), 8字节数据。

(2) CAN 报文 ID 含义

Bit	10~8	7~0
含义	功能码	地址码

功能码含义如下:

功能码值	含义
0x02	读取输入状态
0x01	继电器板返回输入状态
0x07	写继电器状态
0x03	读继电器状态
0x00	继电器板返回继电器状态

(3) CAN 报文含义

与扩展帧通讯格式中的报文含义相同(参考9.1节中的第(3)条)。

-----以下无正文

10 附录--智嵌物联 IO 系列产品选型表

智嵌 IO 控制板系列产品选型表(有关 IO 系列产品的命名规则参看本文档前言部分):

系列	型号	规格	
		x=1为12V供电; x=2为24V供电;	
	ZQWL-IO-xBNRR4-I	不带外壳/4 路 NPN 型光电输入/10A 电流/串口通讯/4 路继电	
		器输出/通讯隔离	
		x = 1 为 12V 供电; x = 2 为 24V 供电;	
	ZQWL-IO-xCNRR4-I	#外壳/4 路 NPN 型光电输入/10A 电流/串口通讯/4 路继电器	
		输出/通讯隔离 x=1 为 12V 供电: x=2 为 24V 供电:	
	ZQWL-IO-xCNRC4-I	X = 1 为 12 V 供电;	
	<u>ZQWL-10-XCIVIC4-1</u>	路继电器输出/通讯隔离	
-		供电依据 x 而定/不带外壳/输入类型依据 x 而定/16A 电流/串	
	ZQWL-IO-xBx0R4-I	口通讯/4 路继电器输出/通讯隔离	
4路		供电依据 x 而定/带外壳/输入类型依据 x 而定/16A 电流/串口	
	ZQWL-IO-xCx0R4-I	通讯/4 路继电器输出/通讯隔离	
		供电依据 x 而定/带外壳/输入类型依据 x 而定/16A 电流/网络	
	ZQWL-IO-xCx0C4-I	+串口通讯/4 路继电器输出/ <mark>通讯隔离</mark>	
		供电依据 x 而定/不带外壳/输入类型依据 x 而定/30A 电流/串	
	ZQWL-IO-xBx3R4-I	口通讯/4 路继电器输出/通讯隔离	
		供电依据 x 而定/带外壳/输入类型依据 x 而定/30A 电流/串口	
	ZQWL-IO-xCx3R4-I	通讯/4 路继电器输出/通讯隔离	
		供电依据 x 而定/带外壳/输入类型依据 x 而定/30A 电流/	
	ZQWL-IO-xCx3C4-I	+串口通讯/4 路继电器输出/通讯隔离	
	TOWN IO D TO I	供电依据 x 而定/不带外壳/输入类型依据 x 而定/磁保持 50A	
	ZQWL-IO-xBx5R4-I	电流/串口通讯/4 路继电器输出/通讯隔离	
	ZQWL-IO-xCx5R4-I	供电依据 x 而定/带外壳/输入类型依据 x 而定/50A 磁保持/串口通讯/4 路继电器输出/通讯隔离	
	ZQWL-1O-XCXJR4-1	x = 1: 12V 供电: x = 2: 24V 供电:	
	ZQWL-IO-xBNRA8-C	不带外壳/8 路 NPN 型光电输入/10A 电流/串口+CAN 通讯/8	
	<u> </u>	路继电器输出/通讯不隔离	
-		x=1: 12V 供电; x=2: 24V 供电;	
	ZQWL-IO-xBNRR8-I	不带外壳/4 路 NPN 型光电输入/10A 电流/串口通讯/8 路继电	
8路		器输出/ <mark>通讯隔离</mark>	
	ZQWL-IO-xBxRC8-I	供电依据 x 而定/不带外壳/输入类型依据 x 而定/10A 电流/网	
		络+串口通讯/8 路继电器输出/ <mark>通讯隔离</mark>	
		x=1为12V供电; x=2为24V供电;	
	ZQWL-IO-xCNRR8-I	<i>带外壳</i> /4 路 NPN 型光电输入/10A 电流/串口通讯/8 路继电器	
	_	输出/通讯隔离	
	ZQWL-IO-xCNRC8-I	x=1 为 12V 供电; x=2 为 24V 供电;	
		带外壳 /8 路 NPN 型光电输入/10A 电流/网络+RS485 通讯/8	
		路继电器输出/通讯隔离	

智嵌 IO 控制板 1BNRA16-I 使用手册

	4
1	3

H DO POTE	<u> </u>	
	ZOWL-IO-xBNRA16-C	x = 1 为 12V 供电; x = 2 为 24V 供电; 不带外壳/16 路 NPN 型光电输入/10A 电流/串口+CAN 通讯
		/16 路继电器输出/通讯不隔离
		x=1为12V供电; x=2为24V供电;
16 路	ZQWL-IO-xBNRC16-I	不带外壳 /16 路 NPN 型光电输入/10A 电流/网络+串口/16 路
		继电器输出/通讯隔离
		x=1为12V供电; x=2为24V供电;
	ZQWL-IO-xCNRR16-I	#外壳/8 路 NPN 型光电输入/10A 电流/串口通讯/16 路继电
		器输出/通讯隔离
	ZQWL-IO-xCNRC16-I	x=1为12V供电; x=2为24V供电;
		<i>带外壳</i> /8 路 NPN 型光电输入/10A 电流/网络+RS485 通讯/16
		路继电器输出/通讯隔离
	ZQWL-IO-xCN1R16-I	x=1为12V供电; x=2为24V供电;
		<i>带外壳</i> /3A 磁保持/串口通讯/16 路继电器输出/通讯隔离
	ZQWL-IO-xCN1C16-I	x=1为12V供电; x=2为24V供电;
		<i>带外壳</i> /3A 磁保持/网络+串口通讯/16 路继电器输出/通讯隔
		离
	ZQWL-IO-3BTLC32-I	3.3V 供电/不带外壳/TTL 输入/TTL 输出/网络+串口通讯/32
		路/工业级
		x=1为12V供电;x=2为24V供电;
32 路	ZQWL-IO-xBNRR32-I	<i>不带外壳</i> /无输入/10A 电流/串口/32 路继电器输出/通讯隔离
		x=1为12V供电;x=2为24V供电;
	ZQWL-IO-xBNRC32-I	不带外壳 无输入/10A 电流/网络+串口/32 路继电器输出/通讯
		隔离