HW6 r08921a07 曾梓豪

Problem 1:

1.

2.

I do two preprocessing to input data:

- 1. Standardize a dataset along the axis 0.
- 2. I used a second-order polynomial transformation to expand the input dimension.

following is the second-order polynomial transformation:
$$\Phi_2(X) = (1, x_1, x_2, \dots, x_d, x_1^2, x_1x_2, \dots x_1x_d, x_2^2, x_2x_3, \dots x_2x_d, \dots, x_d^2)$$

I do the three experiment with the above preprocessing technique:

First, I adjusted the dimension of the hidden layer from 18 to 20, the loss in 100 epoch improved from 0.038 to 0.0032.

Second, I add an NN layer and an activation function in the middle, whose input dimension and output dimension are 18, the loss in 100 epoch is 0.0296988.

Third, I combine the two methods above, the loss in 100 epoch is 0.029600453.

I thought, the size of the dataset is too small to train a complex model, so I just adjust the hidden layer from 18 to 20 to get my best model.

3. learning rates = 0.2epochs = 100optimizer = SGD weight decay = 0 momentum = 0 all random seed = 892107

4. Following is the structure of my best model:

```
linearRegression(
  (linear): Sequential(
    (0): Linear(in_features=15, out_features=20, bias=True)
    (2): Linear(in_features=20, out_features=2, bias=True)
```

5. Following is the prediction of testing data:

3 282 5.4 12 - 4 283 -5 -12.1 2 5 284 -10.2 11.5 - 6 285 -0.9 2.1 - 7 286 -1 -14.1 -1 8 287 -10.3 -1.1 - 9 288 2.4 5.7 - 10 289 -25.9 -10.5 -	x4 y1 y2 0.7 4.8 0.6868 -0.4395 -1.6 12.6 -0.5428 0.6969 21.4 -9.1 0.3374 -0.4075
3 282 5.4 12 - 4 283 -5 -12.1 2 5 284 -10.2 11.5 - 6 285 -0.9 2.1 - 7 286 -1 -14.1 -1 8 287 -10.3 -1.1 - 9 288 2.4 5.7 - 10 289 -25.9 -10.5 -	-1.6 12.6 -0.5428 0.6969
4 283 -5 -12.1 2 5 284 -10.2 11.5 6 285 -0.9 2.1 7 286 -1 -14.1 -1 8 287 -10.3 -1.1 9 288 2.4 5.7 10 289 -25.9 -10.5	
5 284 -10.2 11.5 6 285 -0.9 2.1 7 286 -1 -14.1 -1 8 287 -10.3 -1.1 9 288 2.4 5.7 10 289 -25.9 -10.5	14 01 02274 04075
6 285 -0.9 2.1	21.4 -9.1 0.3374 -0.4075
7 286 -1 -14.1 -1 8 287 -10.3 -1.1 - 9 288 2.4 5.7 10 289 -25.9 -10.5 -	-4.3 0.8 -0.4482 0.2632
8 287 -10.3 -1.1 - 9 288 2.4 5.7 10 289 -25.9 -10.5	-4.8 -2.7 0.6284 -0.5994
9 288 2.4 5.7 10 289 -25.9 -10.5 -	9.2 0.5 -1.2243 1.1324
10 289 -25.9 -10.5 -	-5.2 6.8 0.2833 -0.5338
	8.1 -6 0.6831 -0.6428
11 290 -2.9 12.2 1	-1.5 -6.4 0.0554 -0.4293
	1.1 9.6 -0.2629 0.368
12 291 11.7 13.3 -	-8.1 9.6 -0.8615 1.1455
13 292 17.2 -1.1	8.6 -0.8 0.9023 -0.5463
14 293 -8.4 -15.3	4.6 -4.2 -0.8924 0.7669
15 294 -12.1 2 1	1.7 -0.3 0.7203 -0.9249
16 295 1.3 -14.1	4.3 7.8 -0.9917 0.8946
17 296 -13.3 -1.7 1	1.7 -5.7 0.7673 -1.0612
18 297 1.2 -7 -1	6.6 -1.2 -0.0534 0.0217
19 298 -8.1 4.6	
20 299 -7.3 -1	7.9 12.9 0.4256 -0.4432
21 300 10.3 -16	7.9 12.9 0.4256 -0.4432 0.8 11.8 0.3374 -0.4765


```
Problem 2:

1. learning rates = 0.05
epochs = 100
batch_size = 64
optimizer = SGD
weight decay = 0
momentum = 0
all_random_seed = 892107
```

2.

Following is the structure of my best model:

```
Model(
  (cnn): Sequential(
    (0): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU6()
    (3): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=16)
    (4): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (5): ReLU6()
    (6): Conv2d(16, 16, kernel_size=(1, 1), stride=(1, 1))
    (7): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (8): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=16)
    (9): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (10): ReLU6()
    (11): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1))
(12): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32)
    (13): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (14): ReLU6()
    (15): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1))
    (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (17): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32)
    (18): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (19): ReLU6()
    (20): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
    (21): Dropout2d(p=0.2, inplace=False)
    (22): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64)
    (23): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (24): ReLU6()
    (25): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
    (26): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (27): Dropout2d(p=0.2, inplace=False)
    (28): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64)
    (29): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (30): ReLU6()
    (31): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
    (32): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64)
    (33): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (34): ReLU6()
    (35): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
  (fc): Sequential(
    (0): Linear(in_features=12544, out_features=512, bias=True)
    (1): Dropout(p=0.5, inplace=False)
    (2): LeakyReLU(negative_slope=0.05)
    (3): Linear(in_features=512, out_features=64, bias=True)
    (4): Dropout(p=0.2, inplace=False)
    (5): LeakyReLU(negative_slope=0.05)
    (6): Linear(in_features=64, out_features=2, bias=True)
    (7): ReLU()
```

3. train accuracy: 0.95049 valid accuracy: 0.94952

