Introduction to Algebraic Topology PSET 11

Nilay Kumar

Last updated: April 30, 2014

Proposition 1. Hatcher exercise 2.2.43

Proof.

(a) Given a chain complex of free abelian groups C_n , we wish to show that it splits as a direct sum of subcomplexes $0 \to L_{n+1} \to K_n \to 0$ with at most two nonzero terms. First note that for any n the first isomorphism theorem yields the exact sequence

$$0 \longrightarrow \ker \partial_n \longrightarrow C_n \longrightarrow \operatorname{im} \partial_n \longrightarrow 0.$$

This exact sequence splits, as we can find a section s of $\partial_n : C_n \to \text{im } \partial_n$. Indeed, choose a basis $\{e_\alpha\}$ for im ∂_n (as a subgroup of a free abelian group it must be free abelian as well), and define $s : \text{im } \partial_n \to C_n$ by taking $s(e_\alpha)$ to be any element $c_\alpha \in C_n$ such that $\partial_n c_\alpha = e_\alpha$. Hence we can write $C_n \cong \ker \partial_n \oplus \operatorname{im } \partial_n$, which now allows us to decompose the chain complex C_n . Indeed, we take K_n above to be $\ker \partial_n$ and L_{n+1} to be im ∂_{n+1} :

$$\cdots \longrightarrow C_2 \longrightarrow C_1 \longrightarrow C_0 \longrightarrow 0$$

$$0 \longrightarrow \operatorname{im} \partial_1 \longrightarrow \ker \partial_0 \longrightarrow 0$$

$$0 \longrightarrow \operatorname{im} \partial_2 \longrightarrow \ker \partial_1 \longrightarrow 0$$

$$0 \longrightarrow \operatorname{im} \partial_3 \longrightarrow \ker \partial_2 \longrightarrow 0$$

$$\vdots$$

- (b) Now suppose that the groups C_n are finitely generated. Then the map $L_{n+1} \to K_n$ is a linear transformation of finite-dimensional vector space. Note now that $L_{n+1} \subset K_n$ as C_n is a chain complex and $\partial^2 = 0$ requires that im $\partial_{n+1} \subset \ker \partial_n$. Now, without loss of generality, we can write im $\partial_n \cong \mathbb{Z}^j$ and $\ker \partial_n \cong \mathbb{Z}^k$ for $j \leq k$. By an appropriate change of basis, we can write the map ∂_n as taking each basis vector in \mathbb{Z}^j to a multiple of a basis vector in \mathbb{Z}^k . This yields a further splitting of the complex into summands of the form $0 \to \mathbb{Z} \to 0$ and $0 \to \mathbb{Z} \to \mathbb{Z} \to 0$, where the first type generate the subspace of \mathbb{Z}^k not in the image of the map $L_{n+1} \to K_n$ and the latter type generate the image.
- (c) Let X be a CW complex with finitely many cells in each dimension. The chain complex C_n obtained by cellular homology satisfies the conditions necessary for the results of part (b) to hold. From this chain complex we can compute the homology groups $H_n(X)$. If we now consider instead the chain complex C_n with coefficients in G (again obtained by cellular homology)...I'm not sure how to relate the \mathbb{Z} case to the G case.

Proposition 2. Hatcher exercise 2.3.1

Proof. Let $T_n(X,A)$ denote the torsion subgroup of $H_n(X,A;\mathbb{Z})$. Consider the functors $(X,A)\mapsto T_n(X,A)$, with the obvious induced homomorphisms $T_n(X,A)\to T_n(Y,B)$ and boundary maps $T_n(X,A)\to T_{n-1}(A)$. Consider the CW pair (\mathbb{RP}^2,A) , where A is the union of the zero- and one-cells. It is easy to see that $\tilde{H}_2(\mathbb{RP}^2)=0$, $\tilde{H}_1(\mathbb{RP}^2)=\mathbb{Z}_2$, $\tilde{H}_0(\mathbb{RP}^2)=0$, $\tilde{H}_2(A)=0$, $\tilde{H}_1(A)=\mathbb{Z}$, $\tilde{H}_0(A)=0$, and since $X/A=S^2$, we have that $\tilde{H}_2(X/A)=0$, $\tilde{H}_1(X/A)=\mathbb{Z}$, $\tilde{H}_0(X/A)=0$. Working now instead with the torsion functor, we obtain via the second axiom the sequence $0\to\mathbb{Z}_2\to 0$, which is not exact, which is a contradiction. If, instead, we were to work with the modtorsion functor $MT_n(X,A)=H_n(X,A;\mathbb{Z})/T_n(X,A)$, we would find the sequence $0\to\mathbb{Z}\to 0$, which is again not exact.

Proposition 3. Hatcher exercise 2.3.4

Proof. We proceed by induction on the number of wedge summands. Consider first the CW pair $(X_1 \vee X_2, X_1)$, i.e. n = 2. We obtain a long exact sequence

$$\cdots \xrightarrow{\partial} \tilde{h}_n(X_1) \xrightarrow{i_*} \tilde{h}_n(X) \xrightarrow{q_*} \tilde{h}_n(X_2) \xrightarrow{\partial} \tilde{h}_{n-1}(X_1) \xrightarrow{i_*} \cdots$$

From the retraction $q: X_1 \vee X_2 \to X_1$ we find that i_* in the diagram above is injective, which yields a number of short exact sequences

$$0 \xrightarrow{\partial} \tilde{h}_n(X_1) \xrightarrow{i_*} \tilde{h}_n(X) \xrightarrow{q_*} \tilde{h}_n(X_2) \xrightarrow{\partial} 0.$$

which, due to the existence of the retraction splits as $\tilde{h}_n(X) \cong \tilde{h}_n(X_1) \oplus \tilde{h}_n(X_2)$.

Now suppose we have that $\tilde{h}_n(\vee_i^n X_i) \cong \bigoplus_i^n \tilde{h}_n(X_i)$. Then consider the CW pair $(\vee_i^n X_i \vee X_{n+1}, X_{n+1})$. By exactly the same reasoning as above (using the retraction from the wedge sum to X_{n+1}) we find that $\tilde{h}_n(\vee_i^n X_i \vee X_{n+1}) \cong \bigoplus_i^n \tilde{h}_n(X_i) \oplus \tilde{h}_n(X_{n+1})$, which concludes the proof. \square

Proposition 4. Hatcher exercise 3.1.6

Proof.

(a) Consider the usual simplicial structure for the torus T^2 (Hatcher p. 102) consisting of 1 0-simplex v, 3 1-simplices a, b, c, and 2 2-simplices U, L. Recall that we obtain the chain complex

$$0 \longrightarrow \mathbb{Z}^2 \xrightarrow{a+b-c} \mathbb{Z}^3 \xrightarrow{\quad 0 \quad} \mathbb{Z} \longrightarrow 0$$

with homology $H_0(T^2) = \mathbb{Z}$, $H_1(T^2) = \mathbb{Z}^2$, $H_2(T^2) = \mathbb{Z}$. The corresponding cochain complex is

$$0 \xleftarrow{\delta_2} \mathbb{Z}^2 \xleftarrow{\delta_1} \mathbb{Z}^3 \xleftarrow{\delta_0} \mathbb{Z} \longleftarrow 0$$

where $\delta_0 = \partial_1^* = 0$ and $\delta_1 = \partial_2^*$. Clearly $H^0(T^2) = \mathbb{Z}$. Next, note that $H^1(T^2) = \ker \delta_1 / \operatorname{im} \delta_0 = \ker \delta_1 = \ker \partial_2^*$. We can write a basis for C_1^* as $\{\alpha, \beta, \gamma\}$ dual to a, b, c respectively. For any $\phi \in C_1^*$, we find that $\delta_1 \phi = \phi \circ \partial_2$, but the image of ∂_2 is a+b-c, and hence $\ker \delta_1 = \langle \alpha - \gamma, \beta - \gamma \rangle$ and $H^1(T^2) = \mathbb{Z}^2$. Finally, $H^2(T^2) = \mathbb{Z}^2 / \operatorname{im} \delta_1 = \mathbb{Z}$ by rank-nullity.

Now consider the case of \mathbb{Z}_2 coefficients. We obtain the chain complex

$$0 \longrightarrow \mathbb{Z}_2^2 \longrightarrow \mathbb{Z}_2^3 \longrightarrow \mathbb{Z}_2 \longrightarrow 0$$

where $\partial_1 = 0$ and $\partial_2 = a + b + c$. The homology is given $H_0(T^2; \mathbb{Z}_2) = \mathbb{Z}$, $H_1(T^2; \mathbb{Z}_2) = \mathbb{Z}_2^3/\mathbb{Z}_2 = \mathbb{Z}_2^2$, $H_2(T^2; \mathbb{Z}_2) = \mathbb{Z}_2$. The associated cochain complex is given

$$0 \xleftarrow{\delta_2} \mathbb{Z}_2^2 \xleftarrow{\delta_1} \mathbb{Z}_2^3 \xleftarrow{\delta_0} \mathbb{Z}_2 \longleftarrow 0$$

where $\delta_0 = 0$. Clearly $H^0(T^2; \mathbb{Z}_2) = \mathbb{Z}_2$. Next, $H^1(T^2; \mathbb{Z}_2) = \ker \delta_1 = \ker \partial_2^*$. As above, we can write a basis for C_1^* to be $\{\alpha, \beta, \gamma\}$ dual to a, b, c respectively. Since the image of ∂_2 is a + b + c, we find that $H^1(T^2; \mathbb{Z}_2) = \langle \alpha + \beta, \beta + \gamma \rangle = \mathbb{Z}_2^2$. Finally, $H^2(T^2; \mathbb{Z}_2) = \mathbb{Z}_2^2 / \text{im } \delta_2 = \mathbb{Z}_2$ by rank-nullity.

(b) Consider the usual simplicial structure for \mathbb{RP}^2 (Hatcher p. 102) consisting of 2 0-simplices v, w, 3 1-simplices a, b, c, and 2 2-simplices U, L. We obtain the chain complex

$$0 \longrightarrow \mathbb{Z}^2 \longrightarrow \mathbb{Z}^3 \longrightarrow \mathbb{Z}^2 \longrightarrow 0$$

where $\partial_1 a = \partial_1 b = w - v$, $\partial_1 c = 0$, $\partial_2 U = -a + b + c$, $\partial_2 L = a - b + c$. The homology is given $H_0(\mathbb{RP}^2) = \mathbb{Z}$, $H_1(\mathbb{RP}^2) = \mathbb{Z}_2$, $H_2(\mathbb{RP}^2) = 0$. The associated cochain complex is

$$0 \stackrel{\delta_2}{\longleftarrow} \mathbb{Z}^2 \stackrel{\delta_1}{\longleftarrow} \mathbb{Z}^3 \stackrel{\delta_0}{\longleftarrow} \mathbb{Z}^2 \longleftarrow 0.$$

By definition, $H^0(\mathbb{RP}^2) = \ker \delta_0 = \ker \partial_1^*$. Note that $\partial_1^* \nu$ is a morphism that maps $a \mapsto -1, b \mapsto -1, c \mapsto 0$ and $\partial_1^* \omega$ is a morphism that maps $a \mapsto 1, b \mapsto 1, c \mapsto 0$ and hence $H^0(\mathbb{RP}^2) = \langle \nu + \omega \rangle = \mathbb{Z}$. Next, $H^1(\mathbb{RP}^2) = \ker \delta_1/\text{im } \delta_0 = \ker \delta_1/\mathbb{Z}$. Note that $\partial_2^* \alpha$ is a morphism that maps $U \mapsto -1, L \mapsto 1$, $\partial_2^* \beta$ is a morphism that maps $U \mapsto 1, L \mapsto -1$, and $\partial_2^* \gamma$ is a morphism that maps $U \mapsto 1, L \mapsto 1$. Thus $H^1(\mathbb{RP}^2) = \mathbb{Z}/\langle \alpha + \beta \rangle = 0$. Finally, $H^2(\mathbb{RP}^2) = \langle \mu, \lambda \rangle/\text{im } \delta_1$. By above, we find that $H^2(\mathbb{RP}^2) = \langle \mu, \lambda \rangle/\langle \mu - \lambda, \mu + \lambda \rangle = \langle \mu - \lambda, \lambda \rangle/\langle \mu - \lambda, \mu + \lambda \rangle = \mathbb{Z}_2$.

Now consider the case of \mathbb{Z}_2 coefficients. We obtain the chain complex

$$0 \longrightarrow \mathbb{Z}_2^2 \longrightarrow \mathbb{Z}_2^3 \longrightarrow \mathbb{Z}_2^2 \longrightarrow 0$$

where $\partial_1 a = \partial_1 b = v + w$, $\partial_1 c = 0$ and $\partial_2 U = \partial_2 L = a + b + c$. The homology is easily found $H_0(\mathbb{RP}^2; \mathbb{Z}_2) = H_1(\mathbb{RP}^2; \mathbb{Z}_2) = H_2(\mathbb{RP}^2; \mathbb{Z}_2) = \mathbb{Z}_2$. The associated cochain complex is

$$0 \stackrel{\delta_2}{\longleftarrow} \mathbb{Z}_2^2 \stackrel{\delta_1}{\longleftarrow} \mathbb{Z}_2^3 \stackrel{\delta_0}{\longleftarrow} \mathbb{Z}_2^2 \longleftarrow 0.$$

By definition, $H^0(\mathbb{RP}^2; \mathbb{Z}_2) = \ker \partial_1^*$. The morphisms $\partial_1^* \nu = \partial_1^* \omega$ map $a \mapsto 1, b \mapsto 1, c \mapsto 0$ and thus $H^0(\mathbb{RP}^2; \mathbb{Z}_2) = \langle \nu + \omega \rangle = \mathbb{Z}_2$. Next, $H^1(\mathbb{RP}^2; \mathbb{Z}_2) = \ker \delta_1 / \text{im } \delta_0 = \ker \delta_1 / \mathbb{Z}_2$. Since $\delta_1 \alpha = \delta_1 \beta = \delta_1 \gamma$ take $U \mapsto 1, L \mapsto 1$, $\ker \delta_1 = \langle \alpha + \beta, \beta + \gamma \rangle = \mathbb{Z}_2^2$, and hence $H^1(\mathbb{RP}^2; \mathbb{Z}_2) = \mathbb{Z}_2$. Finally, $H^2(\mathbb{RP}^2; \mathbb{Z}_2) = \ker \delta_2 / \text{im } \delta_1 = \mathbb{Z}_2^2 / \mathbb{Z}_2 = \mathbb{Z}_2$.

(c) Consider the usual simplicial structure for the Klein bottle K (Hatcher p. 102) consisting of 1 0-simplex, 3 1-simplices, and 2 2-simplices. We obtain the chain complex

$$0 \longrightarrow \mathbb{Z}^2 \longrightarrow \mathbb{Z}^3 \longrightarrow \mathbb{Z} \longrightarrow 0$$

where $\partial_1 = 0$, $\partial_2 U = a + b - c$, $\partial_2 L = -a + b + c$. Clearly $H^0(K) = \mathbb{Z}$. Next, $H^1(K) = \ker \delta_1$ and since $\delta_1 \alpha$ maps $U \mapsto 1$, $L \mapsto -1$, $\delta_1 \beta$ maps $U \mapsto 1$, $L \mapsto 1$, and $\delta_1 \gamma$ maps $\mapsto -1$, $L \mapsto 1$, we find that $H^1(K) = \langle \alpha + \gamma \rangle = \mathbb{Z}$. Finally, $H^2(K) = \ker \delta_2 / \text{im } \delta_1 = \mathbb{Z}^2 / \mathbb{Z}^2 = 0$.

Now consider the case of \mathbb{Z}_2 coefficients. We obtain the chain complex

$$0 \longrightarrow \mathbb{Z}_2^2 \longrightarrow \mathbb{Z}_2^3 \longrightarrow \mathbb{Z} \longrightarrow 0.$$

The associated cochain complex is given

$$0 \stackrel{\delta_2}{\longleftarrow} \mathbb{Z}_2^2 \stackrel{\delta_1}{\longleftarrow} \mathbb{Z}_2^3 \stackrel{\delta_0}{\longleftarrow} \mathbb{Z}_2 \longleftarrow 0.$$

Again, $H^0(K; \mathbb{Z}_2) = \mathbb{Z}_2$, but now $H^1(K; \mathbb{Z}_2) = \mathbb{Z}_2^2$ as $\ker \delta_1 = \langle \alpha + \beta, \beta + \gamma \rangle$. Finally, $H^2(K; \mathbb{Z}_2) = \mathbb{Z}_2$.

Proposition 5. Hatcher exercise 3.1.8

Proof.

- (a) Consider the pair $(X, A) = (D^n, S^{n-1})$, so $X/A = S^n$. The long exact sequence of cohomology groups for the pair (X, A) has every third term $\tilde{H}^i(D^n)$ zero since D^n is contractible and the chain and cochain groups are zero. Hence we find that $\tilde{H}^{i-1}(S^{n-1}) \cong \tilde{H}^i(S^n)$. The result follows by induction as usual. Similarly, using the Mayer-Vietoris sequence for reduced cohomology with $X = S^n$ and A, B the northern and southern hemispheres, we obtain $\tilde{H}^i(S^{n-1}; G) \cong \tilde{H}^{i+1}(S^n; G)$, as the split term goes to zero by contractibility.
- (b) Let A be a closed subspace of X that is a deformation retract of some neighborhood V. We obtain a commutative diagram

$$H^{n}(X,A;G) \longleftarrow H^{n}(X,V;G) \longrightarrow H^{n}(X-A,V-A;G)$$

$$q^{*} \uparrow \qquad \qquad q^{*} \uparrow$$

$$H^{n}(X/A,A/A;G) \longleftarrow H^{n}(X/A,V/A;G) \longrightarrow H_{n}(X/A-A/A,V/A-A/A;G)$$

Note that in the long exact sequence of the triple (X, V, A), the groups $H^n(V, A; G)$ are zero for all n because a deformation retraction of V onto A gives a homotopy equivalence of pairs $(V, A) \cong (A, A)$ and $H^n(A, A; G) = 0$. Hence the upper left map is an isomorphism. The deformation retraction of V onto A induces a deformation retraction of V/A onto A/A, and hence the same argument shows that the lower left map is an isomorphism. The remainder of the horizontal maps are isomorphisms via excision for cohomology. Finally, the right-hand vertical map q^* is an isomorphism since q restricts to a homeomorphism on the complement of A. It follows by the commutativity of the diagram, now, that $H^n(X,A;G) \cong H^n(X/A,A/A;G) \cong \tilde{H}^n(X/A;G)$.

(c) Consider the short exact sequence

$$0 \longleftarrow H^n(A;G) \stackrel{i^*}{\longleftarrow} H^n(X;G) \longleftarrow H^n(X,A;G) \longleftarrow 0.$$

Suppose A is a retract of X, i.e. we have a map $r: X \to A$ such that $r \circ i = \mathrm{Id}_A$, and hence $(r \circ i)^* = i^* \circ r^* = \mathrm{Id}_{H^n(A;G)}$. The splitting lemma now implies that $H^n(X;G) \cong H^n(A;G) \oplus H^n(X,A;G)$, as desired.