9.27 hierarchical clustering

2021年9月27日 星期一

- Two main type of hierarchical clustering
 - Agglomerative
 - Alg:
 - Let each point in the dataset be in its own cluster
 - Compute the distance between clusters
 - □ Merge two closet
 - □ Repeat
 - —> how to calculate the distance between cluster?
 - Single-link distance
 - The minimum of all pairwise distances between a point from one cluster and a point from the other cluster

$$D_{SL}(C_1, C_2) = \min \{ d(p_1, p_2) \mid p_1 \in C_1, p_2 \in C_2 \}$$

- Pro
 - Can handle clusters of different sizes \Diamond
- Cons
 - Sensitive to noise points
 - Tends to create elongated cluster
- □ Average-link distance
 - The average of all pairwise distances between a point from one cluster and a point from the other cluster

$$D_{AL}(C_1, C_2) = \frac{1}{|C_1| \cdot |C_2|} \sum_{p_1 \in C_1, p_2 \in C_2} d(p_1, p_2)$$

- Pros
 - Less susceptible to noise and outliers
- Cons
 - ♦ Tends to be biased towards globular clusters
- Centroid distance
 - The distance between the centroid of clusters

$$D_C(C_1, C_2) = d(\mu_1, \mu_2)$$

- Wards's distance
 - The difference between the spread/variance of points in the merged cluster and the unmerited clusters

$$D_{WD}(C_1, C_2) = \sum_{p \in C_{12}} d(p, \mu_{12}) - \sum_{p_1 \in C_1} d(p_1, \mu_1) - \sum_{p_2 \in C_2} d(p_2, \mu_2)$$

- - How?
 - □ Start with every point in the same cluster
 - ☐ At each step, split until every point is in its own cluster
- Density based clustering
 - Cluster together points that are densely packed together
 - How to define density?
 - ☐ Given a fixed radius s around a point, if there's at least min pts number of points in that area, then the section is dense.
 - Core point:
 - Have so much dense
 - Border point
 - Don't have so many dense point
 - Noise point
 - Neither a core nor a border
 - Algorithm:

DBScan Algorithm

ε and min_pts given:

- 1. Find the ε -neighborhood of each point
- Label the point as core if it contains at least min_pts
- 3. Label points in its neighborhood that are not **core** as **border**
- 4. Label points as **noise** if they are neither **core** nor **border**
- 5. For each **core** point, assign to the same cluster all **core** points in its neighborhood
- 6. Assign border points to nearby clusters
- Pro:
 - Can identify clusters of different shapes and sizes
 - Resistant to noise
- - Cons: Fail to identify clusters of varying densities
 - Tends to create clusters of the same density
 - Notion of density is problematic in high dementia spaces