# Algoritmos e Lógica de Programação

Douglas Baptista de Godoy









#### **Ementa**

- Projeto e representação de algoritmos.
- Estruturas de controle de fluxo de execução: sequência, seleção e repetição.
- Tipos de dados básicos e estruturados (vetores e registros).
- Rotinas. Arquivos.
- Implementação de algoritmos usando uma linguagem de programação.









#### Objetivo

 Analisar problemas computacionais e projetar soluções por meio da construção de algoritmos.









## Avaliação

- Nota1 Avaliar os conhecimentos adquiridos no 1º bimestre Nota 1
  - 15/10/2020
- Nota2 Avaliar os conhecimentos adquiridos no 2º bimestre Nota 2
  - 10/12/2020
- Recuperação Substituíra a menor nota do aluno. O aluno só poderá fazer se tirar menos do que 6 em uma das duas provas. - Recuperação abordando todo o conteúdo da disciplina no semestre.
  - 17/12/2020









#### Princípios de programação

- Linguagem C/C++
- Segundo Schildt(1996), Dennis Ritchie inventou a linguagem C e foi o primeiro a implementa-la usando um computador DEC PDP-11, que utilizava o sistema operacional Unix.
- A linguagem C++ é uma extensão da linguagem C, e as instruções que fazem parte desta ultima representam um subconjunto da primeira. Os incrementos encontrados na linguagem C++ foram feitos para dar suporte à programação orientada a objetos, e a sintaxe dessa linguagem é basicamente a mesma da linguagem C.

Fonte: Fundamentos da Programação de Computadores, Pearson Editora, 3ª edição









## Lógica de Programação conceitos básicos

Estrutura Sequencial

```
#include<nome_da_biblioteca>
int main()
{
    bloco_comandos;
    return 0;
}
```











#### Definição e criação de Variáveis e Constantes

| Tipo   | Faixa de Valores                               | Tamanho           |
|--------|------------------------------------------------|-------------------|
| char   | - 128 a 127                                    | 8 bits = 1 bytes  |
| int    | -2.147.483,648 a 2.147.483,647                 | 32 bits = 4 bytes |
| float  | $3.4 \times 10^{-38}$ a $3.4 \times 10^{38}$   | 32 bits = 4 bytes |
| double | $1.7 \times 10^{-308}$ a $1.7 \times 10^{308}$ | 64 bits = 8 bytes |

Fonte: Fundamentos da Programação de Computadores, Pearson Editora, 3ª edição









#### Definição e criação de Variáveis e Constantes

- Declaração de variáveis em C/C++
- As variáveis são declaradas após a especificação de seus tipos. Os tipos de dados mais utilizados são: int,float e char.
- Exemplo

```
float x;
float y,z;
char sexo;
```

```
#include <stdio.h>
      int main ()
3 🖃
        int n1, n2, n3, n4, soma;
       // Mostra mensagem antes da leitura dos quatro números
       // \n - coloca o cursor na linha de baixo
       printf("\nDigite quatro números\n");
       // Recebe os quatro números
       scanf("%d%*c",&n1);
       scanf("%d%*c",&n2);
       scanf("%d%*c",&n3);
11
       scanf("%d%*c",&n4);
12
13
       // Soma os números digitados
14
       soma = n1 + n2 + n3 + n4;
15
       // Mostra mensagem e o resultado da soma
       printf("\nResultado da soma = %d\n", soma);
16
17
       // Pára o programa a espera de um ENTER
18
       getchar();
19
        return 0:
20
```









#### Definição e criação de Variáveis e Constantes

- Declaração de constantes em C/C++
- As constantes são declaradas depois das bibliotecas e seus valores não podem ser alterados durante a execução do programa. A declaração deve obedecer à seguinte sintaxe: "#define nome valor"
- Exemplo
- #define x 7
- #define y 4.5
- #define nome "MARIA"

```
#include <stdio.h>
     #define x 7
     int main ()
       int n1, n2, n3, n4, soma;
       // Mostra mensagem antes da leitura dos guatro números
       // \n - coloca o cursor na linha de baixo
       printf("\nDigite quatro números\n");
       // Recebe os quatro números
10
       scanf("%d%*c",&n1);
       scanf("%d%*c",&n2);
       scanf("%d%*c",&n3);
       scanf("%d%*c",&n4);
       // Soma os números digitados
15
       soma = n1 + n2 + n3 + n4;
16
       // Mostra mensagem e o resultado da soma
17
       printf("\nResultado da soma = %d\n",soma);
       printf("valor de x %d",x);
19
       // Pára o programa a espera de um ENTER
20
       getchar();
       return 0;
```









- Comando de entrada em C/C++
- O comando de entrada é utilizado para receber dados digitados pelo usuário. Os dados recebidos são armazenados em variáveis.
- Exemplo
- scanf("%d%\*c",&x);
- scanf("%f%\*c",&z);
- scanf("%c%\*c",&sexo);

```
#include <stdio.h>
      int main ()
        int n1, n2, n3, n4, soma;
        // Mostra mensagem antes da leitura dos quatro números
        // \n - coloca o cursor na linha de baixo
        printf("\nDigite quatro números\n");
        // Recebe os quatro números
        scanf("%d%*c",&n1);
        scanf("%d%*c",&n2);
11
        scanf("%d%*c",&n3);
12
        scanf("%d%*c",&n4);
13
        // Soma os números digitados
        soma = n1 + n2 + n3 + n4;
15
        // Mostra mensagem e o resultado da soma
16
        printf("\nResultado da soma = %d\n",soma);
17
       // Pára o programa a espera de um ENTER
18
        getchar();
19
        return 0;
```



Escola Técnica Estadual





Comando de saída em C/C++

O camando de saída é utilizado para mostrar dados na tela

ou na impressora.

Exemplo

printf("%f",y);

printf("Conteudo de Y = %f",y);

- printf("Aula");
- printf("\nFácil");

```
#include <stdio.h>
     int main ()
3 🗔
       int n1, n2, n3, n4, soma;
       // Mostra mensagem antes da leitura dos quatro números
       // \n - coloca o cursor na linha de baixo
       printf("\nDigite quatro números\n");
       // Recebe os quatro números
       scanf("%d%*c",&n1);
       scanf("%d%*c",&n2);
11
       scanf("%d%*c",&n3);
       scanf("%d%*c",&n4);
12
       // Soma os números digitados
       soma = n1 + n2 + n3 + n4;
14
15
       // Mostra mensagem e o resultado da soma
       printf("\nResultado da soma = %d\n",soma);
16
       // Pára o programa a espera de um ENTER
17
18
       getchar();
       return 0;
```









Comando de atribuição em C/C++

O comando de atribuição é utilizado para conceder valores ou operações a variáveis, sendo representado por = (sinal de

igualdade).

Exemplo

```
• x = 4;
```

• 
$$x = x + 2$$
;

```
• sexo = 'F';
```

```
#include <stdio.h>
     int main ()
 3 - {
       int n1, n2, n3, n4, soma;
       // Mostra mensaaem antes da leitura dos auatro números
       // \n - coloca o cursor na linha de baixo
       printf("\nDigite quatro números\n");
       // Recebe os quatro números
       scanf("%d%*c",&n1);
       scanf("%d%*c",&n2);
11
       scanf("%d%*c",&n3);
       scanf("%d%*c",&n4);
       // Soma os números digitados
       soma = n1 + n2 + n3 + n4;
15
       // Mostra mensagem e o resultado da soma
16
       printf("\nResultado da soma = %d\n",soma);
17
       // Pára o programa a espera de um ENTER
       getchar();
18
       return 0;
```

Fonte: Fundamentos da Programação de Computadores, Pearson Editora, 3º edição Faculdade de Tecnologia

Escola Técnica Estadual





- Comentários em C/C++
- Comentários são textos que podem ser inseridos em programas com o objetivo de documentá-los. Eles não são analisados pelo compilador.
- Os comentários podem ocupar uma ou várias linhas, devendo ser inseridos nos programas utilizando-se os símbolos /\* ...... \*/ ou //.
- Exemplo
- // comentário de uma linha
- /\* comentário de múltiplas linhas \*/
- Ctrl + Shift + c
- Ctrl + Shift + x

```
int main ()
 3 □ {
       int n1, n2, n3, n4, soma;
       // Mostra mensagem antes da leitura dos quatro números
       // \n - coloca o cursor na linha de baixo
       printf("\nDigite quatro números\n");
       // Recebe os quatro números
       scanf("%d%*c",&n1);
        scanf("%d%*c",&n2);
        scanf("%d%*c",&n3);
12
       scanf("%d%*c",&n4);
13
       // Soma os números digitados
14
       soma = n1 + n2 + n3 + n4;
15
       // Mostra mensagem e o resultado da soma
16
       printf("\nResultado da soma = %d\n",soma);
17
       // Pára o programa a espera de um ENTER
18
       getchar();
        return 0;
```









Algoritmo em pseudocódigo

Estrutura básica: Este é o mínimo para todos os Algoritmo em pseudocódigo

**ALGORITMO** 

DECLARE nome\_da\_variável tipo\_da\_variável

bloco\_de\_comandos

FIM\_ALGORITMO.









- Algoritmo em pseudocódigo
- Declaração de variáveis em algoritmos
- As variáveis são declaradas após a palavra DECLARE e os tipos mais utilizados são: NUMÉRICO (para variáveis que receberão números), LITERAL (para variáveis que receberão caracteres) e LÓGICO (para variáveis que receberão apenas dois valores: verdadeiro ou falso).
- Exemplo:

DECLARE X NUMÉRICO Y, Z LITERAL TESTE LÓGICO









- Algoritmo em pseudocódigo
- Comando de atribuição em algoritmos
- O comando de atribuição é utilizado para conceder valores ou operações a variáveis, sendo representado pelo símbolo ←. (=)

Exemplo:

$$x \leftarrow 4$$
  
 $x \leftarrow x + 2$   
 $y \leftarrow$  "aula"  
teste  $\leftarrow$  falso









- Algoritmo em pseudocódigo
- Comando de entrada em algoritmos
- O comando de entrada é utilizado para receber dados digitados pelo usuário, que serão armazenados em variáveis. Esse comando é representado pela palavra LEIA.

#### Exemplo:

LEIA X

Um valor digitado pelo usuário será armazenado na variável X.

LEIA Y

Um ou vários caracteres digitados pelo usuário serão armazenados na variável Y.









- Algoritmo em pseudocódigo
- Comando de saída em algoritmos
- O comando de saída é utilizado para mostrar dados na tela ou na impressora. Esse comando é representado pela palavra ESCREVA, e os dados podem ser conteúdos de variáveis ou mensagens.

#### Exemplo:

**ESCREVA X** 

Mostra o valor armazenado na variável X.

ESCREVA "Conteúdo de Y = ",Y

Mostra a mensagem "Conteúdo de Y = " e, em seguida, o valor armazenado na variável Y.









#### Programação estruturada

Estrutura condicional em algoritmos - A estrutura condicional em algoritmos pode ser simples ou composta.

Exemplo:

Estrutura condicional simples

SE condição *ENTÃO* 

comando

 O comando só será executado se a condição for verdadeira. Uma condição é uma comparação que possui dois valores possíveis: verdadeiro ou falso.

Exemplo:

SE condição *ENTÃO* 

INÍCIO

comando1

comando2

comando3

**FIM** 

 Os comandos 1, 2 e 3 só serão executados se a condição for verdadeira. As palavras INÍCIO e FIM serão necessárias apenas quando dois ou mais comandos forem executados.









#### Programação estruturada

Estrutura condicional composta

Exemplo1:

SE condição ENTÃO

comando1

**SENÃO** 

comando2

Se a condição for verdadeira, será executado o comando1; caso contrário, será executado o comando2.

Exemplo2:

SE condição

**ENTÃO INÍCIO** 

comando1

comando2

FIM

SENÃO INÍCIO

comando3

comando4

FIM

Se a condição for verdadeira, o comando1 e o comando2 serão executados; caso contrário, o comando3 e o comando4 serão executados.









## Algoritmo em pseudocódigo

 Exemplo: Faca um algoritmo para mostrar o resultado da divisão de dois números

```
ALGORITMO
DECLARE N1, N2, D NUMÉRICO
ESCREVA "Digite dois Números"
LEIA N1, N2
SE N2 = 0 ENTÃO
ESCREVA "Impossível dividir"
SENÃO INÍCIO
D = N1/N2
ESCREVA "Divisão = ", D
FIM
FIM_ALGORITMO
```



Fonte: Fundamentos da Programação de Computadores, Pearson Editora, 3ª edição









## Operadores Aritméticos e Expressões Aritméticas

| Operador | Exemplo | Comentário                                                                                                                                                                                                                                                                                                                                                 |  |
|----------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| =        | x = y   | O conteúdo da variável Y é atribuído à variável X (A uma variável pode ser atribuído o conteúdo de outra, um valor constante ou, ainda, o resultado de uma função).                                                                                                                                                                                        |  |
| +        | x + y   | Soma o conteúdo de X e de Y.                                                                                                                                                                                                                                                                                                                               |  |
| -        | x – y   | Subtrai o conteúdo de Y do conteúdo de X.                                                                                                                                                                                                                                                                                                                  |  |
| *        | x * y   | Multiplica o conteúdo de X pelo conteúdo de Y.                                                                                                                                                                                                                                                                                                             |  |
| /        | x / y   | Obtém o quociente da divisão de X por Y. Se os operandos são inteiros, o resultado da operação será o quociente inteiro da divisão. Se os operadores são reais, o resultado da operação será a divisão. Por exemplo: int $z = 5/2$ ; $\rightarrow$ a variável z receberá o valor 2. float $z = 5.0/2.0$ ; $\rightarrow$ a variável z receberá o valor 2.5. |  |
| %        | x % y   | Obtém o resto da divisão de X por Y.                                                                                                                                                                                                                                                                                                                       |  |

Fonte: Fundamentos da Programação de Computadores, Pearson Editora, 3º edição









#### Operadores Aritméticos e Expressões Aritméticas

| Operador | Exemplo   | Comentário                                |
|----------|-----------|-------------------------------------------|
| +=       | x + = y   | Equivale a X = X + Y.                     |
| -=       | x - = y   | Equivale a $X = X - Y$ .                  |
| * =      | x * = y   | Equivale a X = X * Y.                     |
| /=       | x / = y   | Equivale a X = X / Y.                     |
| % =      | x % = y   | Equivale a X = X % Y.                     |
| ++       | x + +     | Equivale a X = X + 1.                     |
| ++       | y = + + x | Equivale a X = X + 1 e depois Y = X.      |
| ++       | y = x + + | Equivale a Y = X e depois X = X + 1.      |
|          | X         | Equivale a $X = X - 1$ .                  |
|          | y = x     | Equivale a $X = X - 1$ e depois $Y = X$ . |
|          | y = x     | Equivale a $Y = X$ e depois $X = X - 1$ . |

Fonte: Fundamentos da Programação de Computadores, Pearson Editora, 3ª edição









# Funções pré-definidas

| Funções Matemáticas - biblioteca math.h |                    |                                                                                                                     |  |
|-----------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------|--|
| Função                                  | Exemplo            | Comentário                                                                                                          |  |
| ceil                                    | ceil ( X )         | Arredonda um numero real para cima. Por exemplo, ceil (3.2) é 4.                                                    |  |
| cos                                     | cos (X)            | Calcula o cosseno de X (X deve estar representado em radianos).                                                     |  |
| ехр                                     | exp ( X )          | Obtém o logaritmo natural e elevado à potência X.                                                                   |  |
| abs                                     | abs ( X )          | Obtém o valor absoluto de X.                                                                                        |  |
| floor                                   | floor (X)          | Arredonda um número real para baixo. Por exemplo, floor (3.2) é 3.                                                  |  |
| log                                     | log (X)            | Obtém o logaritmo natural de X.                                                                                     |  |
| log10                                   | log10 ( X )        | Obtém o logaritmo de base 10 de X.                                                                                  |  |
| modf                                    | z = modf ( X, & Y) | Decompõe o número real armazenado em X em duas partes: Y recebe a parte fracionária e z, a parte inteira do número. |  |
| pow                                     | pow ( X, Y)        | Calcula a potência de X elevado a Y.                                                                                |  |
| sin                                     | sin ( X )          | Calcula o seno de X (X deve estar representado em radianos).                                                        |  |
| sqrt                                    | sqrt ( X )         | Calcula a raiz quadrada de X.                                                                                       |  |
| tan                                     | tan ( X )          | Calcula a tangente de X (X deve estar representado em radianos).                                                    |  |









## **Operadores Relacionais**

| Operador | Exemplo | Comentário                                         |
|----------|---------|----------------------------------------------------|
| ==       | x = = y | O conteúdo de X é igual ao conteúdo de Y.          |
| ! =      | x ! = y | O conteúdo de X é diferente do conteúdo de Y.      |
| <=       | x < = y | O conteúdo de X é menor ou igual ao conteúdo de Y. |
| >=       | x > = y | O conteúdo de X é maior ou igual ao conteúdo de Y. |
| <        | x < y   | O conteúdo de X é menor que o conteúdo de Y.       |
| >        | x > y   | O conteúdo de X é maior que o conteúdo de Y.       |

Fonte: Fundamentos da Programação de Computadores, Pearson Editora, 3ª edição









- Estrutura condicional em C/C++
- A estrutura condicional é apresentada em três maneiras: simples, composta e case.

Exemplo:

Estrutura condicional simples

if(condição) comando;

Exemplo:

Estrutura condicional simples

```
if(condição)
{
    comando1;
    comando2;
    comando3;
}
```









- Estrutura condicional simples
- Exemplo: Faça um programa que receba um numero inteiro e verifique se este numero é maior que zero.









Estrutura condicional em C/C++

#### Exemplo: Estrutura condicional composta if(condição) comando1; else comando2;

```
Exemplo:
Estrutura condicional composta
if(condição)
  comando1;
  comando2;
else
  comando3;
  comando4;
```





- Estrutura condicional composta
- Exemplo: Faça um programa que receba um numero inteiro e verifique se é par ou ímpar.

```
#include <stdio.h>
     int main()
     int num;
     //Mostra mensagem solicitando um n£mero
     printf( "\nDigite um n£mero: ");
     //Recebe o n£mero
     scanf("%d%*c",&num);
     if (num % 2 == 0)
          printf( "\n0 n£mero , par");
     else
11
          printf( "\nO n£mero , ;mpar");
     return 0;
13
14
     getchar();
15
```









- Estrutura condicional em C/C++ e Estrutura case
- Em alguns programas, existem situações mutuamente exclusivas, isto é, se uma situação for executada, as demais não serão.

```
Exemplo:

switch(variável)
{
    case valor1:
        lista_de_comandos;
        break;
    case valor2:
        lista_de_comandos;
        break;
    default:
        lista_de_comandos;
        break;
```

```
switch(op)
16 🗀
17
              case 1:
                  printf("\nDigite um valor para o primeiro n£mero: ");
18
19
                  scanf("%f%*c",&num1);
                  printf("\nDigite um valor para o segundo n£mero: ");
20
21
                  scanf("%f%*c",&num2);
22
                  soma = num1 + num2;
23
                  printf("\nA soma de %f e %f = %f",num1,num2,soma);
24
25
              case 2:
26
                  printf("\nDigite um valor: ");
27
                  scanf("%f%*c",&num1);
28
                  raiz = sqrt(num1);
                  printf("\nA raiz quadrada de %f = %f",num1,raiz);
29
30
                  break:
31
           default:
32
                  printf("\nOp‡ao invalida !");
33
```











Exemplo:

Estrutura case

```
#include<stdio.h>
     #include <math.h>
     int main()
 4 🖂 🚹
      float num1, num2, soma, raiz;
      //Mostra um menu de op‡oes
      printf("\n1- Somar dois n£meros");
      printf("\n2- Raiz quadrada de um n£mero");
10
      //Mostra mensagem solicitando a op‡ao do usuario
11
      printf("\nDigite sua op‡ao:");
12
         //Recebe a op‡ao do usu rio
13
      scanf("%d%*c",&op);
      //Avalia o valor da vari vel op para decidir qual CASE ser executado
14
15
      switch(op)
16 -
17
             case 1:
                  printf("\nDigite um valor para o primeiro n£mero: ");
18
                  scanf("%f%*c",&num1);
19
20
                  printf("\nDigite um valor para o segundo n£mero: ");
21
                  scanf("%f%*c",&num2);
22
                  soma = num1 + num2;
23
                  printf("\nA soma de %f e %f = %f",num1,num2,soma);
24
                  break:
25
             case 2:
26
                  printf("\nDigite um valor: ");
27
                  scanf("%f%*c",&num1);
                  raiz = sqrt(num1);
28
                  printf("\nA raiz quadrada de %f = %f",num1,raiz);
29
30
                  break:
           default:
31
32
                  printf("\nOp‡ao invalida !");
33
34
      //Para o programa a espera de um ENTER
35
      getchar();
```



Escola Técnica Estadual





#### Operadores Relacionais

- Exemplos
- if( x == 3)
- printf("Número igual a 3");
- if (num1 > num2)
- printf("\nO maior numero : %f",num1);
- if (x > 0)
- printf("O numero digitado e positivo");

```
#include <stdio.h>
     int main()
 3 🔲
     float num1, num2;
     //Mostra mensagem solicitando o primeiro n£mero
     printf("\nDigite o primeiro numero: ");
     //Recebe o valor do primeiro n£mero
     scanf("%f%*c",&num1);
     //Mostra mensagem solicitando o segundo n£mero
     printf("\nDigite o segundo numero: ");
10
     //Recebe o valor do segundo n£mero
     scanf("%f%*c",&num2);
13
      //Determina e mostra o maior n£mero
14
      if (num1 > num2)
           printf("\nO maior numero : %f",num1);
15
16
      if (num2 > num1)
17
          printf("\n0 maior numero : %f",num2);
18
      if (num1 == num2)
19
          printf("\nOs numeros sao iguais");
     //Para o programa a espera de um ENTER
     getchar();
```









## Operadores Lógicos e Expressões Lógicas

| TABELA E (&&) | TABELA OU (  ) | TABELA NÃO (!) |
|---------------|----------------|----------------|
| V e V = V     | V ou V = V     | Não V = F      |
| V e F = F     | V ou F = V     | Não F = V      |
| F e V = F     | F ou V = V     |                |
| F e F = F     | F ou F = F     |                |









#### Operadores Lógicos e Expressões Lógicas

| р          | q          | p && q     | p  q       |
|------------|------------|------------|------------|
| falso      | falso      | falso      | falso      |
| falso      | verdadeiro | falso      | verdadeiro |
| verdadeiro | falso      | falso      | verdadeiro |
| verdadeiro | verdadeiro | verdadeiro | verdadeiro |













## Operadores Lógicos e Expressões Lógicas

- Exemplos
- if (x > 5 && x < 10)
- printf("\n Numero entre 5 e 10 ");
- if ((x == 5 && y == 2) | | (y == 3)
- printf(" x é igual a 5 e y é igual a 2, ou y é igual a 3");
- if (x == 5 && (y == 2 | | y == 3))
- printf(" x é igual a 5, e y é igual a 2 ou y é igual a 3");









#### Referencias Bibliográficas

• ASCENCIO, Ana Fernanda Gomes; CAMPOS, Edilene Aparecida Veneruchi de, **Fundamentos da Programação de Computadores**, Pearson Editora, 3ª edição.







