Introduction to Machine Learning

Random Forest Basics

Learning goals

- Know how random forests are defined by extending the idea of bagging
- Understand general idea to decorrelate trees
- Understand effects of hyperparameters
- RFs and overfitting

MOTIVATION

CARTs offer several appealing features:

- Interpretability: Easy to understand and explain
- Invariance to rank-preserving transformations:
 E.g., unaffected by scaling or shifting of features
- Versatility: Work on categorical and numerical data
- Robustness to missing values: Can work with missings

Despite these benefits, CARTs are not without drawbacks:

▶ Hastie, Tibshirani, and Friedman 2009

"Trees have one aspect that prevents them from being the ideal tool for predictive learning, namely inaccuracy."

RANDOM FORESTS • Breiman 2001

- RFs use bagging with CARTs as BLs
- Random feature sampling decorrelates the base learners
- Fully expanded trees further increase variability of trees

INTUITION BEHIND DECORRELATION

- Since bootstrap samples are similar, models $\hat{b}^{[m]}$ are correlated, affecting the variance of an ensemble \hat{f}
- We would like variance to go down linearly with ensemble size, but because of correlation we cannot really expect that
- Assuming $Var(\hat{b}^{[m]}) = \sigma^2$, $Corr(\hat{b}^{[m]}, \hat{b}^{[j]}) = \rho$, semi-formal analysis, without proper analysis of prediction error:

$$\operatorname{Var}\left(\hat{f}\right) = \operatorname{Var}\left(\frac{1}{M} \sum_{m=1}^{M} \hat{b}^{[m]}\right) = \frac{1}{M^{2}} \left(\sum_{m=1}^{M} \operatorname{Var}(\hat{b}^{[m]}) + 2\sum_{m < j} \operatorname{Cov}(\hat{b}^{[m]}, \hat{b}^{[j]})\right)$$
$$= \frac{1}{M^{2}} \left(M\sigma^{2} + 2\frac{M(M-1)}{2}\rho\sigma^{2}\right) = (1-\rho)\frac{\sigma^{2}}{M} + \rho\sigma^{2}$$

- Ensemble variance is "convex-combo of linear-reduction and no-reduction, controlled by ρ"
- Maybe we can decorrelate trees, to reduce ensemble variance?
 And get less prediction error?

RANDOM FEATURE SAMPLING

RFs decorrelate trees with a simple randomization:

- For each node of tree, randomly draw mtry ≤ p features (mtry = name in some implementations)
- Only consider these features for finding the best split
- Careful: Our previous analysis was simplified! The more we decorrelate by this, the more random the trees become! This also has negative effects!

	Color	Form	Length	Origin	Banana
???	yellow	oblong	14	imported	yes
	brown	oblong	19	imported	no
	red	round	6	domestic	no

EFFECT OF FEATURE SAMPLING

- Optimal mtry typically larger for regression than for classification
- Good defaults exist, but still most relevant tuning param
- Rule of thumb:
 - Classification: $\mathtt{mtry} = \lfloor \sqrt{p} \rfloor$
 - Regression: mtry = |p/3|

TREE SIZE

In addition to mtry, RFs have two other important HPs:

Min. nr. of obs. in each decision tree node
 Default (ranger): min.node.size = 5

- Depth of each tree Default (ranger): $maxDepth = \infty$
- There are more alternative HPs to control depth of tree: minimal risk reduction, size of terminal nodes, etc.

RF usually use fully expanded trees, without aggressive early stopping or pruning, to further **increase variability of each tree**. Louppe 2015

ENSEMBLE SIZE

- RFs usually better if ensemble is large

 Breiman 2001
- But: Increases computational costs, and diminishing returns
- 100 or 500 is a sensible default
- Can also inspect the OOB error (see later)

EFFECT OF ENSEMBLE SIZE

EFFECT OF ENSEMBLE SIZE

EFFECT OF ENSEMBLE SIZE

CAN RF OVERFIT? Probst and Boulesteix 2018

- Just like any other learner, RFs can overfit!
- However, RFs generally less prone to overfitting than individual CARTs.
- Overly complex trees can still lead to overfitting!
 If most trees capture noise, so does the RF.
- But randomization and averaging helps.

Since each tree is trained *individually and without knowledge of previously trained trees*, increasing ntrees generally reduces variance **without increasing the chance of overfitting!**

RF IN PRACTICE

0

Benchmarking bagged ensembles with 100 BLs each on spam versus RF (ntrees = 100, mtry = \sqrt{p} , minnode = 1), we see how well RF performs!

 \Rightarrow RFs combine the benefits of random feature selection and fully expanded trees.

DISCUSSION

Advantages:

- Most advantages of trees also apply to RF: not much preprocessing required, missing value handling, etc.
- Easy to parallelize
- Often work well (enough)
- Works well on high-dimensional data
- Works well on data with irrelevant "noise" variables

Disadvantages:

- Same extrapolation problem as for trees
- Harder to interpret than trees (but many extra tools are nowadays available for interpreting RFs)
- Implementation can be memory-hungry
- Prediction can be computationally demanding for large ensembles

