

Statistik II, SoSe 23

3.7.23, Lineare Regressionsanalyse, Teil 2

Simone Abendschön

Inhalte heute

- Hinweise Klausur
- Lineare Regression, Teil 2

Hinweise E-Klausur

- Wann: 18.7.23 von 9 bis 10:30 Uhr (bitte um 8.45 Uhr vor Ort sein)
- Wo: Medizinisches Lehrzentrum (MLZ), Klinikstr. 29, Hörsaal 1 (R 036)
- Bitte mitbringen: Studiausweis,
 Personalausweis/Reisepass, ausgedruckte
 Formelsammlung (ohne Notizen), Taschenrechner,
 Stift
- → Konzeptpapier bekommen Sie von uns
- Diese und weitere Infos diese Woche über stud.ip

Lernziele Regression heute

- Sie verstehen, wie ein (bivariates) Regressionsmodell geschätzt wird
- Sie verstehen die lineare Regressionsgleichung und können Sie anwenden (heute)

Regressionsanalyse: Einführung

Was ist:

- die Richtung
- die Stärke
- die statistische Signifikanz

... des Einflusses von X auf Y?

Regressionsanalyse: Einführung

- kann also Fragen beantworten wie:
 - Welche Einflussgrößen tragen zur Erklärung eines Merkmals bei (bspw. Höhe des Einkommens/ Wahlverhalten einer Person/rechtsextreme Einstellungen/Lebenszufriedenheit ... einer Person)?
 - Wie stark sind diese jeweiligen Einflüsse und sind sie statistisch signifikant?
 - Wie gut können wir mit diesen Einflussfaktoren gemeinsam die aV Höhe des Einkommens (usw.) bestimmen (und damit auch vorhersagen)?

Regressionsanalyse: Einführung

Wichtig: **Theoretische Modellspezifizierung** (abgeleitet aus der konzeptionellen Forschungsarbeit/theoretische Plausibilität vorab), Beispiel:

- aV: Einkommen
- uV: Berufserfahrung, Geschlecht, Alter, Branche, Umfang Erwerbstätigkeit,...
- über die Richtung (und manchmal auch Stärke) des Einflusses der uVs treffen wir in Hypothesen bestimmte Vermutungen, die wir empirisch überprüfen
 - z.B. H1: Eine langjährige Berufserfahrung hat einen positiven Einfluss auf die Höhe des Einkommens

Bivariates lineares Regressionsmodell[®]

Grundprinzip

- Annahme einer linearen Beziehung zwischen X und Y: d.h.
 Stärke und Richtung des Zusammenhangs ist in jedem beliebigen Werteintervall auf der Variablen X gleich
- Voraussetzung: aV (pseudo-)metrisch, uV (pseudo-)metrisch bzw. dichotom

Kurze Wdh.

Lineare bzw. nicht-lineare Zusammenhänge

Prof. Dr. Simone Abendschön, Institut für Politikwissenschaft, Justus-Liebig-Universität Gießen

Bivariates lineares Regressionsmodell

Beispiel: Vorhersage der Abitur-Note einer Person (y) auf der Basis ihrer Intelligenz (x)

- Möglich, wenn Intelligenz und Abitur-Note miteinander korrelieren
- Allgemein gilt: Je höher die Korrelation zwischen X und Y, desto zuverlässiger gelingt die Vorhersage von Y durch X.
- Ohne Korrelation zwischen X und Y: Vorhersage des y-Wertes auf Basis des x-Wertes genau so gut/schlecht wie ohne Kenntnis von x → geringster Vorhersagefehler, wenn man für diese Person den Mittelwert von Y schätzt

Beispiel: Einfluss der Intelligenz auf die Abinote: Abinote= f(Intelligenz)

Geraden sind lineare Funktionen der allgemeinen Form

$$y=a+b\cdot x$$

- b: Steigungs-/Regressionskoeffizient (engl. *slope*)
- a: Konstante (engl. intercept); beschreibt Höhenlage der Geraden bei x = 0 bzw. den Schnittpunkt mit der y-Achse

Grafische Darstellung b

Um wie viele Einheiten ändert sich Y wenn sich X um eine Einheit nach rechts bewegt?

Grafische Darstellung a

Welchen Wert hat Y wenn x=0?

Grafische Darstellung

Regressionsgleichung Teil 1 formal

- $y_i = f(x_i) = \alpha + \beta \cdot x_i$
- Oder (Formelsammlung): $y_i = \beta_0 + \beta_1 * x_i$
 - β/β_1 (od. b): Regressions- oder Steigungskoeffizient (*slope*), Regressionsgewicht
 - α / β_0 (od. a): Konstante (*intercept*); beschreibt die Höhenlage der Geraden bei x = 0 bzw. den Schnittpunkt mit der y-Achse an diesem Punkt
- Abinote= f(Intelligenz)
- Abinote= α + β (Intelligenz)

Bivariates lineares Regressionsmodell

- Aber: In der Regel gibt es in der Sozialforschung keinen perfekten Zusammenhang zwischen zwei Variablen
 - zu viele Störvariablen im "wirklichen Leben"
 - Verschiedene Faktoren beeinflussen einen Sachverhalt
 - Messfehler bei der Datenerfassung
 - →D.h. in der Regel haben wir es NICHT mit perfekten Zusammenhängen zwischen aV und uV zu tun!
 - → D.h. auch: unsere Vorhersagen sind mit Unsicherheit behaftet

Bivariates lineares Regressionsmodell

Grundlagen bivariate lineare Regression

Bivariates lineares Regressionsmodell

- Eine Vorhersage ist trotz Störfaktoren möglich, aber: wird mit abnehmender Stärke des Zusammenhangs zwischen X und Yungenauer
- Annahme eines linearen Zusammenhangs zwischen X und Y bedeutet, dass man eine Gerade durch das Streudiagramm legen kann
- Wie kann man die Genauigkeit maximieren? Beliebig viele Geraden möglich – wir wollen die "beste" finden
- Vorgehen: Man schätzt die vorhergesagten Werte so, dass der Vorhersagefehler über alle Werte hinweg so gering wie möglich ist

Bivariate Regressionsanalyse

Punktwolke aV und uV mit Gerade

Punktwolke aV und uV mit Gerade und tatsächlichen sowie "geschätzten" y-Werten

Bivariate Regressionsanalyse

Punktwolke aV und uV mit Gerade, tatsächlichen und geschätzten y-Werten sowie Fehlerterm (Residuen e)

- Wir suchen die Gerade, bei der der Abstand aller Punkte zur Gerade minimal ist
- Wir nutzen diese Gerade, um die y-Werte bestmöglich vorherzusagen, zu "schätzen"

$$\hat{\mathbf{y}} = \alpha + \beta * \mathbf{x} \qquad \hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 * x_i$$

Gleichung (Teil 2) Regressionsfunktion unter Berücksichtigung der Residuen:

$$y = \alpha + \beta * x + e$$

Lineare Regression – OLS-Methode

- Regressionsgerade soll so durch die Punktewolke gelegt werden, dass die Summe der quadrierten Regressionsresiduen minimal ist
- → Ordinary Least Squares-Verfahren (OLS), Kriterium der kleinsten Quadrate
- → Formal:

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \alpha + \beta * x_i)^2 = Minimum$$

OLS = Ordinary Least Square = Kleinste Quadrate Schätzer (Methode der kleinsten Quadrate)

- mathematisches Verfahren, das eine Konstante a und eine Steigung b schätzt, und das die lineare Beziehung zwischen X und Y am Besten beschreibt
- minimiert die Quadrate der geschätzten Fehler
- ist BLUE (best unbiased linear estimator) nach Gauss-Markov

- Minimierungsvorschrift ist erfüllt, wenn die Regressionsparameter wie folgt bestimmt werden:
- (Geschätzter) Regressionskoeffizient β_1 :

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

• (geschätzte) Regressionskonstante \propto oder β_0 :

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = \bar{y} - \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} \quad \bar{x}$$

Beispiel: lineare Regression

Bivariates Regressionsmodell zur Erklärung der Lebenszufriedenheit durch Einkommen

Die Variable Lebenszufriedenheit wird im ALLBUS mit einer *elfstufigen Skala* erfasst.

Frageformulierung: "Und jetzt noch eine allgemeine Frage. Wie zufrieden sind Sie gegenwärtig – alles in allem – mit ihrem Leben?" Die Befragten können dabei Werte von 0 bis 10 angeben, wobei der Wert 0 "ganz und gar unzufrieden" und der Wert 10 "ganz und gar zufrieden" bedeutet.

ID (\	Lebenszufriedenheit Wert auf Skala von 0 bis 10)	Nettoeinkommen im Monat in Euro
1	7	2000
2	10	4550
3	2	1003
4	9	3200
5	7	2900
6	6	2850
7	4	1900
8	6	3700
Quelle: Eigene Darstellung	\bar{y} =6,38	\bar{x} =2762,88
	$s^2=6,55$	s ² =1244740,41
	Cov _{xy} =2371,34	

Prof. Dr. Simone Abendschön, Institut für Politikwissenschaft, Justus-Liebig-Universität Gießen

Bsp. Lineare Regression

ID (\	Lebenszufriedenheit Wert auf Skala von 0 bis 10)	Nettoeinkommen im Monat in Euro
1	7	2000
2	10	4550
3	2	1003
4	9	3200
5	7	2900
6	6	2850
7	4	1900
8	6	3700
Quelle: Eigene Darstellung	\bar{y} =6,38	\bar{x} =2762,88
	$s^2=6,55$	s ² =1244740,41
	Cov _{xy} =2371,34	

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} \qquad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = \bar{y} - \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} \quad \bar{x}$$

$$\widehat{\beta}_1 = \frac{2371,34}{1.244.740.41} = 0,002$$

$$\widehat{\beta}_0$$
 = 6,38-1.244.740,41* 2762,88= 1,11

Ouelle: Eigene Darstellung

 $\hat{y}_i = 1.11 + 0.002x_i$; oder Lebenszufriedenheit_i = 1.11 + 0.002 Einkommen_i

Übungsfrage: Wie hoch ist die geschätzte Lebenszufriedenheit einer Person 9 mit 3000 Euro Einkommen?

 $\hat{y}_i = 1,11 + 0,002x_i$ oder Lebenszufriedenheit_i = 1,11 + 0,002 Einkommen_i

Übungsfrage: Wie hoch ist die geschätzte Lebenszufriedenheit einer Person 9 mit 3000 Euro Einkommen?

 $\hat{y}_9 = 1.11 + 0.002x_i \text{ oder}$ Lebenszufriedenheit₉ = 1.11 + 0.002 * 3000= 7.11

Quelle: Eigene Darstellung

Grundlagen bivariate Regression

Was ist:

- die Richtung (Vorzeichen des Regressionskoeffizienten b!)
- die Stärke (Regressionskoeffizient b!)
- die statistische Signifikanz (nächste Einheit)

... des Einflusses von X auf Y?

Und:

Wie gut "erklärt" die Regressionsgerade (unser Modell) "die Realität"?

Determinationskoeffizient R²

- Auch Bestimmtheitsmaß oder Prozentsatz der erklärten Varianz
- Maß für die Güte der Anpassung der Regressionsfunktion an die beobachteten Daten
- Bestimmung durch globale Prüfung der Regressionsfunktion;
 gibt an, wie gut die einbezogene(n) UV(s) die aV erklären
- Ist ein PRE-Maß
- Kann Werte zwischen 0 und 1 annehmen. Je näher \mathbb{R}^2 an 1 ist, desto besser erklärt das spezifizierte Modell die Streuung
- Beispiel: R² = 0,5 => 50% der Varianz der abhängigen Variable kann durch das spezifizierte Modell erklärt werden

Varianzerklärung durch R²

Wie gut erklärt die Schätzung die Realität?

Bei der Berechnung wird die Gesamtvarianz s_y² der abhängigen Variable y in zwei Teile zerlegt:

- 1) in die durch die (geschätzte) Regressionsfunktion erklärte Varianz ${\rm s_{\hat{y}}}^2$
- 2) in die nicht erklärte "Restvarianz"

$$R^2 = \frac{\text{Varianz der vorhergesagten Werte}}{\text{Varianz der beobachteten Werte}}$$

$$R^2 = \frac{\text{Varianz der vorhergesagten Werte}}{\text{Varianz der beobachteten Werte}}$$

$$R^2 = \frac{SS_{model}}{SS_{total}}$$

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

- Anteil der durch die Regressionsfunktion aufgeklärte Streuung; Güte der Anpassung der Regressionsfunktion an die empirischen Daten
- berechnet den Anteil der Varianz von Y, der durch X erklärt werden kann

Übung R²

Zuhause bzw. Tutorium

Wir wollen für das Beispiel (Lebenszufriedenheit und Einkommen) den Determinationskoeffizienten berechnen. Wie gehen Sie vor und wie viel Prozent der Varianz wird durch unser "Modell" erklärt?

Prüfung / Interpretation Regressionsfunktion

- R²: Wie gut erklärt das Gesamtmodell die "Realität"?
- Wie gut erklären die einzelnen Variablen das geschätzte Modell?
- Regressionskoeffizient(en):
 - geben Ausmaß der Steigerung von Y an für den Fall dass X um eine Einheit steigt
 - in welche Richtung geht die Beziehung zwischen Y und X?
- Signifikanzprüfung (nächste Woche):
 - T-Tests prüfen die einzelnen Regressionskoeffizienten auf stat.
 Signifikanz
 - F-Test prüft Gesamtgüte des Modells (\mathbb{R}^2) auf stat. Signifikanz

Hintergrund

■ Bivariate lineare Regressionsanalyse: eine abhängige Y-Variable (aV) wird anhand einer unabhängigen X-Variablen (uV) vorhergesagt → lineare "Einfachregression"

 Beispiel: Lebenszufriedenheit (Y) wird vorhergesagt durch Einkommen (X)

- Aber: i.d.R. gehen wir davon aus, dass mehrere
 Merkmale einen Sachverhalt "erklären"
- Beispiel: Studiendauer wird durch Anzahl Wochenstunden (x_1) , durch allgemeine Studienbedingungen (x_2) , durch Nebentätigkeit (x_3) ,... (x_k) beeinflusst

Oder: Beispiel Lebenszufriedenheit

Abbildung 18: Schematische Darstellung der vermuteten multivariaten Einflussstruktur

Quelle: Eigene Darstellung

Diese und weitere Abbildungen wurden aus Kapitel 4 des Lehrbriefs entnommen

- Zur Verbesserung der Vorhersage und/oder zum Test mehrerer theoretischer Annahmen bietet es sich an, mehrere uVs in das Regressionsmodell mit aufzunehmen
- → Ziel der multiplen Regression:
 - \rightarrow Y auf Grundlage von zwei bzw. mehr uVs (X₁, X₂,..., X_k) bestmöglichst vorherzusagen
 - → Verschiedene uVs vergleichend in ihrem Einfluss prüfen
- Weitgehend parallele Logik und Interpretation wie im einfachen bivariaten Modell
- Wesentliche Veränderung: Vorstellung einer durch die Regressionsgleichung beschriebenen Regressionsgeraden lässt sich nicht mehr beibehalten (eher "Regressionsebene")

Der Begriff der "Kontrolle"

- In sozialwissenschaftlichen Analysen üben in der Regel viele (unabhängigen) Merkmale einen Einfluss auf die abhängige Variable aus
- Mit Hilfe der multiplen linearen Regression können wir alle uVs in das Regressionsmodell integrieren
- Um die Auswirkung der Änderung einer Variablen zu untersuchen, werden dabei alle anderen uVs konstant gehalten.
- Dies nennt man auch für andere Variablen zu "kontrollieren"