The okicmd and okithm Packages

Taihei Oki

February 3, 2021

1 The okicmd Package

1.1 Letters

Input	Output	I₽TEX equivalent
1	ℓ	\ell
\ell	l	1
\epsilon	arepsilon	\varepsilon
\varepsilon	ϵ	\epsilon
\phi	φ	\varphi
\varphi	ϕ	\phi

1.2 Parentheses

Possible size options are \big, \Big, \bigg, and \Bigg. If a size option is missing, parentheses' size is adjusted automatically.

Input	Output	LATEX (almost) equivalent
\prn{\cdot}	(.)	\mleft(\cdot\mright)
\prn[\big]{\cdot}	(\cdot)	\bigl(\cdot\bigr)
\prn[\Big]{\cdot}	(\cdot)	\Bigl(\cdot\Bigr)
\prn[\bigg]{\cdot}	$\left(\cdot\right)$	\biggl(\cdot\biggr)
\prn[\Bigg]{\cdot}	$\left(\cdot\right)$	\Biggl(\cdot\Biggr)
\curl{\cdot}	$\{\cdot\}$	\mleft\{\cdot\mright\}
\sqbr{\cdot}	[.]	\mleft[\cdot\mright]
\agbr{\cdot}	$\langle \cdot \rangle$	\mleft\langle\cdot\mright\rangle
\dbbr{\cdot}	[·]	\mleft\llbracket\cdot\mright\rrbracket
\pipe{\cdot}	Ī·Ī	\mleft \cdot\mright
\dbpp{\cdot}	•	\mleft\ \cdot\mright\
\floor{\cdot}	ï · ï	\mleft\lfloor\cdot\might\rfloor
\ceil{\cdot}	[·]	\mleft\lceil\cdot\mright\rceil
\pprn{\cdot}	$((\cdot))$	<pre>\mleft(\mleft(\cdot\mright)\mright)</pre>
\ccurl{\cdot}	$\{\{\cdot\}\}$	<pre>\mleft\{\mleft\{\cdot\mright\}\mright\}</pre>
\ssqbr{\cdot}	$[[\cdot]]$	\mleft[\mleft[\cdot\mright]\mright]
\aagbr{\cdot}	$\langle\langle\cdot\rangle\rangle$	<pre>\mleft\langle\mleft\langle \cdot\mright\rangle\mright\rangle</pre>

1.3 Logic

Input	Output	ĿTEX equivalent
\bigland	\wedge	\bigwedge
\biglor	V	\bigvee
a \defeq b	$a \coloneqq b$	a \coloneqq b
a \eqdef b	b =: a	a \eqqcolon b
P \defiff Q	$P \stackrel{\mathrm{def}}{\iff} Q$	<pre>P \overset{\mathrm{def}}{\iff} Q</pre>

1.4 Sets

Input	Output	I⁴TEX (almost) equivalent
\set{a \in S}	$\{a \in S\}$	\left\{a \in S\right\}
\set{a \in S}[a^2 = 1]	$\left\{a \in S \mid a^2 = 1\right\}$	<pre>\left\{a \in S\middle a^2 = 1\right\}</pre>
\set*{a}[\$a\$ is odd]	$\{a \mid a \text{ is odd}\}$	<pre>\left\{a\middle \text{\$a\$ is odd}\right\}</pre>
\card{X}	X	\left X\right
X \symdif Y	$X \triangle Y$	<pre>X \mathbin{\triangle} Y</pre>
\setN	\mathbb{N}	\mathbb{N}
\setZ	${\mathbb Z}$	\mathbb{Z}
\setQ	$\mathbb Q$	\mathbb{Q}
\setR	\mathbb{R}	\mathbb{R}
\setC	$\mathbb C$	\mathbb{C}
\setH	\mathbb{H}	\mathbb{H}
\setF	${\mathbb F}$	\mathbb{F}
\setK	\mathbb{K}	\mathbb{K}
\setZp	$\mathbb{Z}_{\geq 0}$	$\mbox{mathbb{Z}_{\{\ge0\}}}$
\setQp	$\mathbb{Q}_{\geq 0}$	\mathbb{Q}_{\ge0}
\setRp	$\mathbb{R}_{\geq 0}$	$\mathbf{R}_{\mathbb{R}_{\leq 0}}$
\setNpp	$\mathbb{N}_{>0}$	\mathbb{N}_{<>0}
\setZpp	$\mathbb{Z}_{>0}$	\mathbb{Z}_{>0}
\setQpp	$\mathbb{Q}_{>0}$	\mathbb{Q}_{<>0}
\setRpp	$\mathbb{R}_{>0}$	\mathbb{R}_{<}0}

1.5 Maps

Input	Output	I₄TEX (almost) equivalent
\doms{X}{Y}	$X \to Y$	{X}\to{Y}
\funcdoms{f}{X}{Y}	$f:X\to Y$	<pre>{f}\vcentcolon{X}\to{Y}</pre>
\restr{f}{S}	$f _S$	\left.f\right _{S}
\id_K	id_K^{\sim}	\operatorname{id}_K
\dom f	$\operatorname{dom} f$	\operatorname{dom} f
\cod f	$\operatorname{cod} f$	\operatorname{cod} f
\supp f	$\operatorname{supp} f$	<pre>\operatorname{supp} f</pre>

1.6 Lattices

Input	Output	L ^A T _E X equivalent
x \meet y x \join y	$\begin{array}{c} x \wedge y \\ x \vee y \end{array}$	<pre>x \mathbin{\wedge} y x \mathbin{\vee} y</pre>
\bigmeet \bigjoin	\ \	\bigwedge \bigvee

1.7 Algebra

Input	Output	IATEX (almost) equivalent
\Hom(G)	$\operatorname{Hom}(G)$	\operatorname{Hom}(G)
∖End R	$\operatorname{End} R$	\operatorname{End} R
\Aut_k K	$\operatorname{Aut}_k K$	\operatorname{Aut}_k K
$\gcd\{a,b\}$	$\langle a,b \rangle$	\left\langlea,b\right\rangle
$\gcd\{a,b\}[ab = e]$	$\langle a,b \mid ab = e \rangle$	<pre>\left\langlea,b\middle ab = e\right\rangle</pre>
\abel{G}	$G_{ m ab}$	G_{\mathrm{ab}}
\comm{G}	[G,G]	<pre>\left[G, G\right]</pre>
\ord G	$\operatorname{ord} G$	\operatorname{ord} G
\sym_n	\mathfrak{S}_n	\mathfrak{S}_n
\sgn(\sigma)	$\operatorname{sgn}(\sigma)$	\operatorname{sgn}(\sigma)
\mult{R}	$R^{ imes}$	R^{\times}
$M_{m,n}(R)$	$M_{m,n}(R)$	\operatorname{M}_{m,n}(R)
$\GL_n(R)$	$\mathrm{GL}_n(R)$	\operatorname{GL}_n(R)
$\SL_n(R)$	$\mathrm{SL}_n(R)$	\operatorname{SL}_n(R)
\0(n)	$\mathrm{O}(n)$	\operatorname{0}(n)
\SO(n)	SO(n)	\operatorname{SO}(n)
$\U(n)$	$\mathrm{U}(n)$	\operatorname{U}(n)
\SU(n)	SU(n)	\operatorname{SU}(n)
L \extends K	L / K	L \mathbin{/} K
\ch (K)	$\operatorname{ch}(K)$	\operatorname{ch}(K)
\GF(2)	GF(2)	\operatorname{GF}(2)

1.8 Number Theory

Input	Output	LATEX (almost) equivalent
\abs{x}	x	\left x\right
$\displaystyle \begin{array}{l} {\tt intset\{n\}} \end{array}$	[n]	\left[n\right]
a \coprime b	$a \perp b$	a \mathrel{\bot} b
a \divides b	$a \mid b$	a \mid b
a \ndivides b	$a \nmid b$	a \nmid b

1.9 Linear Algebra

Input	Output	LATEX (almost) equivalent
\tr A	$\operatorname{tr} A$	\operatorname{tr} A
\rank A	$\operatorname{rank} A$	\operatorname{rank} A
\trank A	$\operatorname{t-rank} A$	\operatorname{t-rank} A
\Det A	$\operatorname{Det} A$	\operatorname{Det} A
\Pf A	$\operatorname{Pf} A$	\operatorname{Pf} A
\perm A	$\operatorname{perm} A$	\operatorname{perm} A
\Hf A	$\operatorname{Hf} A$	\operatorname{Hf} A
\diag(2 1 \dotas 2 n)	$\operatorname{diag}(a, a)$	\operatorname{diag}
\diag(a_1,\dotsc,a_n)	$\operatorname{diag}(a_1,\ldots,a_n)$	$(a_1, dotsc, a_n)$
\blockdiag(A_1,\dotsc,A_n)	block-diag (A_1, \ldots, A_n)	<pre>\operatorname{block-diag}</pre>
(blockdiag(H_1, \dotsc, H_II)	block-diag (A_1,\ldots,A_n)	$(A_1, \cdot dotsc, A_n)$
\vectorize(A)	$\operatorname{vec}(A)$	\operatorname{vectorize}(A)
\Row(A)	$\operatorname{Row}(A)$	\operatorname{Row}(A)
\Col(A)	$\operatorname{Col}(A)$	\operatorname{Col}(A)
\trsp{A}	$A^{ op}$	A^\top
\adjo{A}	A^*	A^*
\onevec	1	\mathds{1}
\norm{x}	x	\mleft\ x\mright\
\inpr{x}{y}	$\langle x,y \rangle$	<pre>\left\langle{x},{y} \right\rangle</pre>

1.10 Analysis

Input	Output	LATEX (almost) equivalent
\intoo{a,b}	(a,b)	\left(a,b\right)
\intoc{a,b}	(a, b]	\left(a,b\right]
\intco{a,b}	[a,b)	\left[a,b\right)
\intcc{a,b}	[a,b]	\left[a,b\right]
\e	e	\mathrm{e}
\d	d	\mathrm{d}
$\displaystyle \operatorname{dif}\{f\}\{x\}$	$\frac{\mathrm{d}f}{\mathrm{d}x}$	\frac{\mathrm{d} f}{\mathrm{d} x}
$\displaystyle \begin{array}{l} \begin{array}{l} \mathbf{y} \\ \mathbf{y} \end{array} \end{array}$	$rac{\mathrm{d}f}{\mathrm{d}x} \ rac{\partial f}{\partial x} \ \mathrm{d}f \ \mathrm{d}f$	\frac{\partial f}{\partial x}
$\dif{f}{x}$		<pre>\dfrac{\mathrm{d} f}{\mathrm{d} x}</pre>
$\displaystyle \frac{dpdif\{f\}\{x\}}{}$	$\frac{\mathrm{d}x}{\partial f}$	<pre>\dfrac{\partial f}{\partial x}</pre>

1.11 Complex Analysis

Input	Output	IATEX equivalent
\i	i	\mathrm{i}
∖Re z	$\operatorname{Re} z$	\operatorname{Re} z
\Im z	$\operatorname{Im} z$	\operatorname{Im} z
\Arg z	$\operatorname{Arg} z$	\operatorname{Arg} z
\Log z	$\operatorname{Log} z$	\operatorname{Log} z
\Sin z	$\operatorname{Sin} z$	\operatorname{Sin} z
\Cos z	$\cos z$	\operatorname{Cos} z
\Tan z	$\operatorname{Tan} z$	\operatorname{Tan} z
$\Res_{z=0} f(z)$	$\operatorname{Res}_{z=0} f(z)$	$\operatorname{\operatorname{Noperatorname}}_{z=0} f(z)$

1.12 Optimization

Input	Output	L ^A T _E X equivalent
\argmin_{x \in S} f(x)	$\operatorname{argmin}_{x \in S} f(x)$	<pre>\operatorname*{arg~min} _{x \in S} f(x)</pre>
\argmax_{x \in S} f(x)	$\arg\max\nolimits_{x\in S}f(x)$	<pre>\operatorname*{arg~max} _{x \in S} f(x)</pre>
\Order(n)	$\mathrm{O}(n)$	0 (n)
\order(n)	o(n)	\mathrm{o}(n)
\poly(n)	poly(n)	\operatorname{poly}(n)
\polylog(n)	$\operatorname{polylog}(n)$	<pre>\operatorname{polylog}(n)</pre>

2 The okithm Package

2.1 Theorems

If the language is set to Japanese like by \usepackage[main = japanese] {babel}, okithm will translate all the environment titles (Theorem, Definition, etc.) into Japanese. You can disable theorems by giving the option notheorem to okicmd.

```
1 \begin{theorem}[Awesome theorem]
    The square root \sqrt{2} of two is irrational.
3 \end{theorem}
5 \begin{definition}[Coprime]
    Integers $a$ and $b$ are said to be \emph{coprime} if their greatest common
    divisor is one.
7 \end{definition}
  \begin{lemma}
9
    If a and b are coprime, so are a^2 and b^2.
10
11 \end{lemma}
13 \begin{proposition}
    If \sqrt{2} = a/b, then a^2 = 2b^2.
15 \end{proposition}
16
17 \begin{corollary}
```

```
If $\sqrt{2} = a/b$ with $a$ and $b$ being coprime, then $a$ is even.
19 \end{corollary}
20
21 \begin{example}
    If a = 2 and b = 1, then a is even but \left( \frac{2}{a} \right) e^{a/b}.
22
23 \end{example}
25 \begin{remark}
    Note that $a$ and $b$ must be integers.
26
27 \end{remark}
29 \begin{proof}[of Awesome theorem]
    Suppose to the contrary that \frac{2}{2} = a/b with coprime a and b.
    Then both $a$ and $b$ are even, which contradicts the assumption.
32 \end{proof}
Theorem 2.1 (Awesome theorem). The square root \sqrt{2} of two is irrational.
Definition 2.2 (Coprime). Integers a and b are said to be coprime if their greatest common
divisor is one.
Lemma 2.3. If a and b are coprime, so are a^2 and b^2.
Proposition 2.4. If \sqrt{2} = a/b, then a^2 = 2b^2.
Corollary 2.5. If \sqrt{2} = a/b with a and b being coprime, then a is even.
Example 2.6. If a=2 and b=1, then a is even but \sqrt{2} \neq a/b.
                                                                                       Remark 2.7. Note that a and b must be integers.
Proof (of Awesome theorem). Suppose to the contrary that \sqrt{2} = a/b with coprime a and
b. Then both a and b are even, which contradicts the assumption.
```

2.2 Algorithms

You can disable algorithms by setting the option noalgorithm.

```
1 \begin{algorithmic}[1]
   \Input{$n \in \setN$}
3
    \operatorname{\mathbf{n+1}/2\$}
    \State{$s \gets 0$}
    ForTo{$i = 1$}{$n$}
    \State{$s \gets s + i$}
    \EndFor
    \State{\Return $s$}
9 \end{algorithmic}
Input : n \in \mathbb{N}
Output: n(n+1)/2
 1: s \leftarrow 0
 2: for i = 1 to n do
       s \leftarrow s + i
 3.
```

2.3 Optimization Problems

You can change minimize, maximize and subject to into min, max and s.t., respectively, by setting the option optstyle = short.