Final Demo Of project

Jay Pandya: 110023841

Dhairya Chahuhan: 110025738

Shivang Thaker: 110013338

Agreta Gupta: 105182704

Submitted to: Prof. Kalyani Selvarajah

Instagram Insight Using Business Intelligent

Step 1: We have connected to Instagram graph API and collected Instagram data using APIs. We have used the data from an Instagram business account. Note that in milestone II we used data for testing. Next step is to collect our actual instagram data and show insights through MODE visualization tool.

Step 2: After that we make different python files in order to extract data, there are total seven different python files namely business discovery, debug access token, defines, get Instagram account ,get long live access token, get user media and get user token.

Inights.py fil

Business_discovery.py file

Get_user_media.py

With this python script we extract instagram user data which consist of engagement, impression, reach, saved. In which engagement defines total numbers of like and count of comment, impression is how many time user visit media, reach defines distinguish user visits, and saved defines total media save entries.

Extracted data are shown below,

A	Α	В	С	D	E	F
1	id	Engagement	Impressions	Reach	Saved	
2	1.81E+16	90	474	418	0	
3	1.79E+16	76	345	270	0	
4	1.81E+16	98	488	413	1	
5	1804870000	92	591	483	4	
6	0000000	76	622	486	0	
7	1.81E+16	100	838	693	4	
8	1.79E+16	68	739	596	2	
9	1.79E+16	38	494	371	0	
10	1.78E+16	36	634	539	0	
11	1.79E+16	31	554	479	0	
12	1.80E+16	32	477	419	0	
13	1.79E+16	44	491	371	0	
14	1.79E+16	37	400	338	0	
15	1.79E+16	60	626	493	0	
16	1.80E+16	45	450	336	0	
17	1.78E+16	54	597	529	0	
18	1.81E+16	56	436	324	0	
19	1.81E+16	53	668	569	0	
20	1.81E+16	43	494	402	0	
21	1.81E+16	39	604	366	1	
22	1.81E+16	66	730	456	1	
23	1.79E+16	41	601	374	1	
24	1.80E+16	72	959	608	2	

Step 3: Then in this step we link this tables to our panoply data warehouse.

Step 4: Now last step is to connect our panoply to different BI visualization tool, in this step we try to visualized this data through various platform like Mode, teblue, Chartio etc, here I shows photos of mode graphical visualization.

Performance by Media Type using average comments

Performance by Media Type using average likes

These are the step by step procedure of our project.