Figure 1.

Figure 2.

Figure 3.

Representative chromophore structure	GFP.			Ċ	DsRed:	2	asulcP:	خ
Toloo.		NΞ	GRE	LETTOM	-RED	ISNARO	PLE-BLUE	สบจ
Representative spectra excitation emission equo equo equo equo	458 488 emajGFP	399s 496 A96 Capage PP	20enGFP 492,500 C	Zoen/FP 528 538	Zoan7RFP 553 574 E	mcavRFP 507 519 580	absoitance only (asulCP)	(400 mm objection
Emission . maxima, nm	486 484 483	508 496 499	508 506 506 499 499 512 517 517 506	538	583 693 574	519, 580 516, 574	none	none none none
Excitation maxima, nm	458 456 443	395, 471 399, 482 405, 481	500 498 496 403 480 503 494 508 508 497	494, 528	558 673 653	507, 572 506, 567	568	578 571 571 580
Taxonomy Genus species (Class, Sub-class, Order)	Ansmonia majano (Anthozca, Zoandharin, Actiniaria) Discosoma striata (Anthozca, Zoandharia, Corallianonpharia) Clavularia sp. (Anthozca, Aleyonaria, Aleyonacea)	Augnorea victoria (Hydrozoa,, Hydroida) Condylactis giganica (Anthozoa, Zoantharia, Actiniaria) Heteractis crispa (Anthozoa, Zoantharia, Actiniaria)	Ptilosareus sp. (Anthozoa, Aleyonaria, Peunatulacea) Renilla muelleri (Anthozoa, Aleyonaria, Pennatulacea) Zoanthus sp. (Anthozoa, Zoantharia, Zoanthicka) Anemonia sulcara (Anthozoa, Zoantharia, Achinaria) Discosoma sp. 3 (Anthozoa, Zoantharia, Carallinnerylaria) Dendronaphiliya sp. (Anthozoa, Zoantharia, Aleyonacea) Montastraea cavernosa (Anthozoa, Zoantharia, Scleractinia) Ricordeu florida (Anthozoa, Zoantharia, Scleractinia) Scolymia cubensis (Anthozoa, Zoantharia, Scleractinia) Scolymia cubensis (Anthozoa, Zoantharia, Scleractinia)	Zoanthus sp. (Anthozoa, Zoanthaira, Zoanthidea)	Discosoma sp. 1 (Anthozoa, Zoantharia, Conellimorpharia). Discosoma sp. 2 (Anthozoa, Zoantharia, Conellimorpharia). Zoanthus sp. 2 (Anthozoa, Zoantharia, Zoanthalea).	Мотикичен сачетныя (Anthozoa, Zognițaria, Seleracinia) Rivordea florida (Anthozoa, Zoantharia, Corallincopharia)	Anemonia suleata (Authozoa, Zonutharia, Actiniatia)	Heteractis crispa (Anthoxes, Zountharia, Actiniaria) Condylactis gigantea (Authoxes, Zoantharia, Actiniaria) Condylactis passiflora (Anthoxes, Zoantharia, Actiniaria) Goniopora tenudens (Anthoxes, Zoantharia, Seleractinia)
Reference	. 222	34 this paper this paper	35 35 2 2 4 this paper this paper this paper this paper this paper this paper	2	2 36 this paper	this paper this paper	, 3. 4.	מימימים
GenBank accession #	AF168421 AF168420 AF168424	M62653 AY037776 AF420592	AY015995 AY015996 AF168422 AF322221 AF420593 AF420593 AY037769 AY037777 AY0377777	AF168423	AF168419 AF272711 AY059642	AY037770 AY037773	AF246709	AF363776 AF363775 AF383155 AF383156
Protein ID (original ID)	amajGFP (aṃFP486) dstrGFP (dsFP483) clayGFP (cFP484)	GFP cgigGFP hcriGFP	ptilGFP imulGFP zoanGFP (zFP506) asu(GFP (asFP489) disdGFP mcavGFP mcavGFP scubGFP1 scubGFP2	zoanYFP (zFP538)	DsRed (drFP583) dls2RFP (dsFP593) zoan2RFP	mcavRFP rfloRFP	asulCP (asCP)	horiCP (hcCP) egigCP (egCP). epasCP (epCP) gtenCP (gtCP)

Table 1. Summary of spectral features and chromophore structures in the family of GFP-like proteins. Note that this paper uses different names for GFP-like proteins than proposed in original publications (the original names, where available, are given in brackets in the first column; see text for nomenclature details).

Table 2

clade	colors	Zoantharia orders
Α	Green, purple-blue	Actiniaria
В	Green, orange-red, purple-blue	Corallimorpharia, Scleractinia
С	Green, yellow, orange-red	Actiniaria, Zoanthidea
D	Green, orange-red	Corallimorpharia, Scleractinia

BEST AVAILABLE COPY THIS PAGE BLANK (USPTO)

2.

Figure 7

M C S Y I K E T M Q S K V Y M E G K V AACGACCACAACTTCAAGTGCACTGCAGAAGGAAAAGGAGAAACCATACAAAGGCTCACAA N D H N F K C T A E G K G E P Y K G S Q .220 AGCCTGACGATCACCGTAACTGAAGGAGGTCCTCTGCCATTTGCCTTCGACATTCTTTCA SLTITVTEGGPLPFAFDILS CACGCCTTTCGATATGGCAATAAGGTGTTCGCCAAGTACCCCAAAGATCATCCTGATTTT HAFRYGNKVFAKYPKDHPDF TTTAAGCAGTCTCTTCCTGAAGGTTTTACTTGGGAAAGAGTAAGCAACTATGAGGACGGA F K Q S L P E G F T W E R V S N Y E D G G V L T V K Q E T'S L E G D C I I C K I AAAGCACATGGCACTAACTTCCCCGCAGATGGTCCGGTGATGCAAAAACGGACCAATGGA K A H G T N F P A D G P V M Q K R T N G 500. TGGGAGCCATCAACTGAAACGGTTATTCCACGGGGTGGAGGAATTCTGATGCGCGATGTG W E P S T E T V I P R G G G I L M R D V . 590 $\verb|CCCGCACTGAAGCTGCTTGGTAACAAAGGACATCTTCTCTGCGTCATGGAAACAACTTAC|\\$ P A L K L L G N K G H L L C V M E T T Y AAGTCAAAAAAAAAGGTGAACCTGCCAAACCGCACTTTCATCATTTGAGAATGGAGAAG K S K K G E P A K P H F H H L R M E K GATAGTGTTAGTGACGATGAGAAGACCATTGAGCAGCACGAGAATGTGAGGGCAAGCTAC D S V S D D E K T I E Q H E N V R A S Y TTCAATGATAGTGGAAAATGATCATTTCCTTATTGATTTCAATGTTAGGGCATTCAGTTT F N D S G K * $. \ \ \, CCAAATTTTCTTAGACACAGTCTTTTCCTTTAGCTTCGTAGCCTACTTACCCATGTTTTG$

850 860
TTGAAGTCAATAAATAGCTAAGCACTAC (SEQ ID NOS: 01 & 02)

Green fluorescent protein from Dendronephthya sp. dendGFP

10 20 30 40 50 60 5 'CATATCGAGAAAGTTGTGAAACCAAATTCTTACTTACTTTTACTACCATGAATCTGATT

190 200 210 220 230 240

AAAGAAGGCGCGCCTCTCCCATTTTCTTACGACATCTTGACAACAGCATTGCACTACGGA

K E G A P L P F S Y D I L T T A L H Y G

250 260 270 280 290 300 AACAGAGTATTCACTGAATACCCAGCAGATATCACGGATTATTTCAAGCAATCATTTCCT N R V F T E Y P A D I T D Y F K Q S F P

310 320 330 340 350 360

GAAGGATATTCCTGGGAAAGAACCATGACTTATGAAGACAAGGGCATTTGTACCATCAGA
E G Y S W E R T M T Y E D K G I C T I R

370 380 390 400 410 420
AGCGACATAAGCTTGGAAGGTGACTGCTTTTTCCAAAACATTCGTTTTAATGGGATGAAC
S D I S L E G D C F F Q N I R F N G M N

430 440 450 460 470 480
TTTCCCCCAAATGGTCCAGTTATGCAGAAGAAAACTTTGAAGTGGGAACCATCCACAGAG
F P P N G P V M Q K K T L K W E P S T E

730 740 750 760 770 780 CTGGTAGAGGGAAAGCCATAATGACTGCATAGATAAACATGTAGTGAAGACCA L V E V Q G K A I M T A *

790 800 810 820 830 840 CATACTCGGGATTAGAGTTTAGGGATTGGTAGTTGTGGTAGATTCTAGCCTACAAATTTT

GAGTTGAGTTCTCGACTTCAGTTGTATCACTTTTGACGTATCAAGTGATCTATTCTCAAC M A H S K H G L T D D M T M H F R M E G TGCGTCGATGGACATAAGTTTGTAATCGAGGGCAACGGCAATGGAAATCCTTTCAAAGGG C V D G H K F V I E G N G N P F K G AAACAGTTTATTAATCTGTGTGTGATTGAAGGAGGACCACTGCCATTCTCCGAAGACATA K Q F I N L C V I E G G P L P F S E D I . 260 TTGTCTGCTGCGTTTGACTACGGAAACAGGCTCTTCACTGAATATCCTGAAGGCATAGTT LSAAFDYGNRLFTEYPEGIV GACTATTTCAAGAACTCGTGTCCTGCTGGATATACGTGGCACAGGTCTTTTCGCTTTGAA D Y F K N S C P A G Y T W H R S F R F E ÷ 390 GATGGAGCAGTTTGCATATGCAGTGCAGATATAACAGTAAATGTTAGGGAAAACTGCATT D G A V C I C S A D I T V N V R E N C I TATCATGAGTCCACGTTTTATGGAGTGAACTTTCCTGCTGATGGACCTGTGATGAAAAAG Y H E S T F Y G V N F P A D G P V M K K M T T N W E P S C E K I I P I N S Q K I TTAAAAGGGGATGTCTCCATGTACCTCCTTCTGAAGGATGGTGGGCGTTACCGCTGCCAG 650 . TTTGACACAATTTACAAAGCAAAGACTGAGCCAAAAGAAATGCCGGACTGGCACTTCATC F D'T I Y K A K T E P K E M P D W H F I CAGCATAAGCTCAACCGTGAAGACCGCAGCGATGCTAAGAATCAGAAATGGCAACTGATA Q H K L N R E D R. S D A K N Q K W Q L I 730 · .740 GAACATGCTATTGCATCCCGATCTGCTTTACCCTGATAACAAAGGAGTTGCTATTGCATG E H A I A S R S A L P * 830-

(SEQ ID NOS:05 & 06)

TTACCCTGATA

Green fluorescent protein from Scolymia cubensis scubGFP1 (AY037767) 5 TGTGACATTCAGTCATATAGGAGCCTCTATCGGAGCTGAGGTCCCATTCACCGTTGTGAT CTACCAACATGCAGCGTGCTGGGATGAAGGTTAAGGAACATATGAAGATCAAACTGCGTA MQRAGMKV·KEHMKIKLRM 210 . TGGGAGGTACTGTAAACGGAAAGCATTTCGCGGTTAATGGGACAGGAGACGGCTACCCTT G G T V N G K H F A .V N G T G D G Y P Y ATCAGGGAAACAGATTTTGAAACTTATCGTCGAAGGCAGCGAACCTCTGCCTTTCGCTT $\begin{smallmatrix} Q & G & K & Q & I & L & K & L & I & V & E & G & S & E & P & L & P & F & A & F \\ \end{smallmatrix}$ TTGATATCTTGTCAGCAGCATTCCAGTATGGCAACAGGGCATTCACCGAATACCCAACAG DIL'S A A F Q Y G N R Å F T E Y P T E AGATAGCAGACTATTTCAAGCAGTCGTTTGAGTTTGGCGAGGGGTTCTCCTGGGAACGAA IADYFKQSFEFGEGFSWERS F T F E D G A I C V A T N D I T M V G G GTGAGTTTCAGTATGATATTCGATTTGATGGTCTGAACTTCCCTGAAGATGGTCCAGTGA E F Q Y D I R F D G L N F P E D G P V M TGCAAAAGAAAACCGTAAAATGGGAGCCATCCACTGAGATAATGTATATGCAAAATGGAG Q K K T V K W E P S T E I M Y M Q N G V TGCTGAAGGGTGAGGTTAACATGGCTCTGTTGCTTCAAGACAAAAGCCATTACCGTTGCG ACCTCAAAACTACTTACAAAGCTAAGAATAATGTGCCGCATCCTCCAGGCTACCACTATG L K T T Y K A K N N. V P H P P G Y H Y V TGGATCACTGCATTGAAATACTCGAAGAACGTAAGGATCACGTTAAGCTGCGGGAGCATG DHCIEILEERKDHVKLREHA 830- $\tt CTAAAGCTCGTTCTAGCCTGTCACCTACCAGTGCAAAAGAACGAAAGGCTTAGGTGATAG$ ${\tt TCAAAAAGACAAGACGAAAATGAAAGGTGTTCATTGTTAGAATTTGATATTTTCGAT$ TCAATGATTCGTTAAGGGATTTGCTAGAGGCTAGCTAACAGGTTAACATCATAAGGATAG AGATTYCGTTGCGGAGTTAGAACCTTWATATTTTCCGAATTCCAMCTAGAGTCGTTGAGA AATTTATTAGAGACTAGCTTTAGAGTTACTTTTGTGGAAAAAAAGGTTTCCAT TTTTTGC GTTATTACAGCATTTAAAGCATAGGAATAGAGATTCGGTTATGGAAAATAACAGTAGGAA

(SEQ ID NOS:07&08)

AATACGTTGTGAAAATAAACTTGTTGTCGAAAAAAAA 3'

Green fluorescent protein from Scolymia cubensis scubGFP2 (AY037771)

- 10 20 30 40 50 60 5 'CCTGGTGATTTGGACGAGAGCAGATCGAGAATAGCAAGGTTTTACCAGCGTGATAATTTA 70 80 90 100 110 120 CTTTACATCTAACAACATGCAATCTGCTGGGAAGAAGAATGTCGTTAAGGACTTCATGAA M Q S A G K K N V V K D F M K
 - 130 140 150 160 170 180
 GATCACACTGCGTATGGACGGTGCTGTAAACGGGAAGCCCTTCGCGGTTAATGGAACAGG
 I T L R M D G A V N G K P F A V N G T G
 - 190 200 210 220 230 240
 AGATGGCAACCCTTATGGTGGAATACAGAGTTTGAAGCTTACCGTCGATGGCAACAAACC
 D G N P Y G G I Q S L K L T V D G N K P

 - 490 500 510 520 530 540
 AGATGGTCCWGTYATGCAGAAAAAACGGTGAAĞTGGGAGCCATCCACAGAGATAATGCG
 D G P V M Q K K T V K W E P S T E I M R
 - 550 560 570 580 590 600
 TGTGCAAGGTGGAGTGCTAAAGGGTGAGGTTAACATGGCTCTGTTGCTTAAAGACAAAG
 V Q G G V L K G E V N M A L L L K D K S

 - 790 800 810
 GTAAAGGCTTAGGCGATAGTCAAGACGACAACGAGAAGA 3'

(SEQ ID NO:09 & 10)

Red fluorescent protein from Ricordea florida rfloRFP (AY037773)

70 80 90 100 110 120
AAATCAAGCTTACATTGGTGGGCGTTGTTAACGGGCACCCATTCAAGATCATTGGGGACG
I K L T L V G V V N G H P F K I I G D G

250 260 270 280 290 300
TGAACTACCCAAAGGACATACCAGATATTTTCAAGCAGACCTGCTCTGGTCCTGGTGCTG
N Y P K D I P D I F K Q T C S G P G A G

430 440 450 460 470 480 CTCTTAATGGTCCAGTGATGCAGAAAAGAACAGTGAAATGGGAGCCATCCACTGAGATAA L N G P V M Q K R T V K W E P S T E I M

610 620 630 640 650 660 CAGGTTACCATTTGTGGACCACTGCATTGAGATAACGAGTCAACAGGACGATTACAACG G Y H F V D H C I E I T S Q Q D D Y N V

TGGTTGAGCTGTACGAGGGTGCTGTAGCCCACTACTCTCCTCTGCAGAAACCATGCCAAG
V E L Y E G A V A H Y S P L Q K P C Q A

730 740 750 760 770 780 CAAAGGCATAAAGCCAAACAAGAGGACAACAAGACATTTAATCAAATCACATCTT K A *

790 800 TGTATTTTTGGTTAGAGTTGAAAAAA 3'

(SEQ. ID NO:11 & 12)

Green fluorescent protein from Ricordea florida rfloGFP (AY037772)

10 20 .30 40 50 60
5'AGTCACCTCGGTGTTTTTAGGACAGGAAGGATCACGAGCAAGAAGAACTGTGAAAGTT
70 80 90 100 110 120
AACACTTTACTCTACTTCTACCAGCATGAGTGCACTCAAAGAGGAAATGAAAATCAAGCT
M S A L K E E M K I K L

190 200 210 220 230 240
ACCTTACGAGGGATCACAGAAATTAACCCTTGAAGTGGTGGAAGGAGGGCCTCTGCTCTT
P Y E G S Q K L T L E V V E G G P L L F

310 320 330 340 350 360
AAAGGACATACCAGATATTTTCAAGCAGACCTGCTCTGGTCCTGATGGTGGATTTTCCTG
K D I P D I F K Q T C S G P D G G F S W

370 380 390 400 410 420 GCAAAGGACCATGACTTATGAAGACGAGGGGTTTGCACTGCTTCAAACCACATCAGCGT Q R T M T Y E D G G V C T A S N H I S V

430 440 450 460 470 480 GGACGGCGACACTTTTTATTATGGATAAGATTTAATGGAGAGAATTTTCCTCCAAATGG D G D T F Y Y V I R F N G E N F P P N G

490 500 510 520 530 540 TCCAGTAATGCAGAAAAGAACAGTGAAATGGGAGCCATCCACTGAGATAATGTTTGAACG P V M Q K R T V K W E P S T E I M F E R

550 560 570 580 - 590 600
TGATGGATTGCTGAGGGGTGACATTGCCATGTCTCTGTTGCTGAAAGGAGGCGGCCATTA
D G L L R G D I A M S L L L K G G G H Y

730 740 750 760 770 780 CTCTGAGGATGCTGAGCACACTCTCCTCTGGAGAAAAAAGCCAAGCAAAGGCGTA S E D A V A H N S P L E K K S Q A K A *

. 790 AAGCCAAACAACCTAA 3'

(SEQ ID NO:13&14)

Red fluorescent protein from Montastraea cavernosa mcavRFP (AY037770)

310 320 . 330 340 350 360

ATACCCAAAACATATCCCAGACTATTTCAAGCAGATGTTTCCTGAGGAGTATTCCTGGGA
Y P K H I P D Y F K Q M F P E E Y S W E

. 370 380 390 400 410 420
ACGAAGCATGAATTTCGAAGGCGGGGGCATTTGCACCGCCAGGAACGAGATAACAATGGA
R S M N F E G G G I C T A R N E I T M E

610 620 630 640 650 660
ATGTGACTTCAGAACTACTTACAGAGCTAAGAAGAAGGGTGTCAAGTTACCAGATTATCA
C D F R T T Y R A K K K G V K L P D Y H

730 740 750 760 770 780
GTATGAGCATGCCGAAGCTCATTCTGGGCTGCCGAGGGTGGCAAAGTAAAGGCTTAACGA
Y E H A E A H S G L P R V A K *

.790 AAAGCCAAGACCACA 3'

(SEQ ID NO:15 & 16)

Green fluorescent protein from Montastraea cavernosa mcavGFP (AY037769)

5'ATTCGCCCTGGTGATTTGGAAGAGAGCAGATCGAGAACAACAAGAGCTGTAAGGTTGATA 90 100 TCTTACTTACGTCTACCATCATGACAAGTGTTGCACAGGAAAAGGGTGTGATTAAACCAG MTSVAQEKGVIKPD ACATGAAGATGAAGCTGCGTATGGAAGGTGCTGTAAACGGGCACAAGTTCGTGGTTGAAG M K M K L R M E G A V N G H K F V V E G ${\tt GAGATGGAAAAGGGAAGCCTTTCGACGGAACACAGACTATGGACCTTACAGTCATAGAAG}$ DGKGKPFDGTQTMDLTVIEG ${\tt GCGCACCATTGCCTTTCGCTTACGATATCTTGACAACAGTATTCGATTACGGCAACAGGG},$ A P L P F A .Y D I L T T V F D Y G N R V ${\tt TATTCGCCAAATACCCAGAAGACATAGCAGATTATTTCAAGCAGACGTTTCCTGAGGGGT$ FAKYPED I ADYFKQTF.PEGY 400 . ACTTCTGGGAACGAAGCATGACATACGAAGACCAGGGCATTTGCATCGCCACAAACGACA F W E R S M T Y E D Q G I C I A T N D I ${\tt TAACAATGATGGAAGGCGTCGACGACTGTTTTGCCTATAAAATTCGATTTGATGGTGTGA}$ TMMEGVDDCFAYKIRFDGVN ACTTTCCTGCCAATGGTCCAGTTATGCAGAGGAAGACGCTGAAATGGGAGCCATCCACTG FPANGPVMQRKTLKWEFSTE 560. AGATAATGTATGCGCGTGATGGAGTGCTGAAGGGTGATGTTAACATGGCTCTGTTGCTTG I M Y A R D G V L K G D' V N M A L L L E 630 , * AAGGAGGTGGCCATTACCGATGTGACTTCAAAACTACTTACAAAGCTAAGAAGGTTGTCC G G G H Y R C D F K T T Y K A K K V V R 700 -GGTTGCCAGACTATCACTTTGTGGACCATCGCATTGAGATTGTGAGCCACGACAAAGATT LPDYHFVDHRIEIVSHDKDY NKVKLHEHAEARHGLSRKAK AGTAAAGGCTTAATGAAAAGTCAAGACGACAACGAGGAGAAACAAAGTACTTTTTTGTTA AATTTGAAGGCATTTACTCGGAATTAGTATTTGATACTTTCGATTCAAGGATTTGTTCCG GGATTTGTTAGAGACTAGCTCTAGAGTTGTATTTTGTGAAAAAAGATAGTTTCCAGTTTT TGCGGGATTACAGCATGGGGATAGACTTTTTAAACTCAGTTGTGGTCAAATGCAAGTAAG

(SEQ ID NOS: 17 & 18)

Green fluorescent protein from Condylactis gigantea cgigGFP (AY037776) 20 30 40 5'ACAGCTGTTCATCCACGCTCATTCAAGACGCCGTCAACTTTATTCCAGTCAGGAAAATGT 80 90 . 100 ATCCTTGGATCAAGGAAACCATGCGCAGTAAGGTTTACATGGAAGGAGATGTTAACAACC PWIKETMRSKVYMEGDVNNH 160 140 150 ACGCCTTCAAGTGCACTGCAGTAGGAGAAGGAAAACCATACAAAGGCTCACAAGACCTGA A F K C T A V G E G K P Y K G S Q D L T 200 210 220 CGATTACCGTCACTGAAGGAGGTCCTCTGCCATTTGCTTTCGACATTCTTTCACACGCCT I T V T E G G P L P F A F D I L S H A F 260 270 280 TTCAGTATGGCAACAAGGTGTTCACCGATTACCCCGACGATATTCCTGATTTCTTTAAGC Q Y G N K V F T D Y P D D I P D F F K Q 330 340 AGTCTCTCTGGATGGTTTTACTTGGAGAAGAGTAAGCACSTATGACGATGGAGGAGTCC S L S D G F T W R R V S T Y D D G G V L 390 380 400 ${\tt TCACAGTTACCCAAGACACTAGTCTGAAGGGAGATTGCATTATTTGCAACATTAAAGTCC}$ T V T Q D T S L K G D C I I C N I K V H 430 ` 440 450 460 G T N F P E N G P V M Q N K T D G W E P 500 510 520 CATCCAGCACTGAAACGGTTATTCCACAAGATGGAGGAATTGTTGCTGCGCGATCACCCG S S T E I V I P Q D G G I V A A R S P A 560 570 580 590 CACTAAGGCTGCGTGATAAAGGTCATCTTATCTGCCACATGGAAACAACTTACAAGCCAA 620 630 640 ACAAAGAGGTGAAGCTGCCAGAACTCCACTTTCATCATTTGCGAATGGAAAAGCTGAGTG K E V K L P E L H F H H L R M E K L S V 680 ^{`.} 670 690 700 710 S D D G K T I K Q H E Y V V A S Y S K V 750 760 740 TGCCTTCGAAGATAGGACGTCAATGATCATTTCCCTTATTAAATATCAATGATGTGGCTT PSKIGRQ * 800 790 810 820 830 TCAATTTTCCAAAATTTTGTTAAGACATAGGTCTTTTGGATTTTTGGTAACCCCAACCTT 860 870 880 AATTCCCAATAATTTTTGTTGGAAAGTCAAATAAAACCAGCCTTCCCTGGGCCTTTAA 3'

(SEQ ID NOS: 19 & 20)

Green fluorescent protein from Agaricia fragilis afraGFP (AY037765) 5 'CAAGGAAGCCAAATCTTTTACCAGAGATCTCGCGTGAAAGCAACCTATGAGTGATGGCGA 100 110 TTTCTACTCTAAAGAACGTCATCATCATCGTTATTATATACTCCTGCAGCACTTGTGCTG STLKNVIIIVVIIYSCSTCAV TTTGGTCGAATTCAAACTCTGAATCCTCTTTCACTAATGGGATTGCAGAGGAAATGAAGA W S N S N S E S S F T N G I A E E M K T CTAGGGTACATTTGGAGGGTACTGTTAACGGGCACTCCTTTACAATTAAAGGCGAAGGAA GAGGCTACCCTTACAAAGGAGAACAGTTTATGAGCCTTGAGGTCGTCAATGGTGCTCCTC GYPYKGEQFMSLEVVNGAPL PFSFDILTPAFMYGNRVFTK 390 ' AGTACCCACCAAACATACCAGACTATTTCAAGCAGACGTTTCCTGAAGGGTATCACTGGG Y P, P N I P D Y F K Q T F. P E G Y H, W E AAAGAAACATTCCCTTTGAAGATCAGGCCGCGTGCACGGTAACCAGCCACATAAGATTGG $R \ N \cdot \ I \ P \ F \ E \ D \ Q \ A \ A \ C \ T \ V \ T \ S \ H \ I \ R \ L \ E$ AAGAGGAAGAGGCGTTTTGTAAATAACGTCAGATTTCACTGTGTGAACTTTCCCCCTA EEERRFVNNVRFHCVNFPPN ATGGTCCAGTCATGCAGAGGAGGATACTGAAATGGGAGCCATCCACTGAGAACATTTATC $\label{eq:control_gradient} \mathsf{G} \ \ \mathsf{P} \ \ \mathsf{V} \ \ \ \mathsf{M} \ \ \ \mathsf{Q} \ \ \ \mathsf{R} \ \ \ \mathsf{I} \ \ \ \mathsf{L} \ \ \ \mathsf{K} \ \ \ \mathsf{W} \ \ \ \mathsf{E} \cdot \ \mathsf{P} \ \ \mathsf{S} \ \ \mathsf{T} \ \ \ \mathsf{E} \ \ \mathsf{N} \ \ \mathsf{I} \ \ \ \mathsf{Y} \ \ \mathsf{P}$ CGCGTGATGGGTTTCTGGAGGGCCATGTTGATATGACTCTTCGGGTTGAAGGAGGTGGCT RDGFLEGHVDMTLRVEGGGY ATTACCGAGCTGAGTTCAAAAGTACTTACAAAGGGAAGACCCCAGTCCGCGACATGCCAG Y R A E F K S T Y K G K T P V R D M P D ACTTTCACTTCATAGACCACCGCATTGAGATTACGGAGCATGACGAAGACTACACCAATG F H F I D H R I E I T E H D E D Y T N V TTGAGCTGCATGACGTATCCTGGGCTCGTTACTCTATGCTGCCGACTATGTAAGCGGAAA ELHDVSWARYSMLPTM AGGCAAGGCAACAAGACGCAAAACCGCCCTGTTTGTCTCTTTTCATAAGAGATTTGACAA 920 930 940 CCGTGGTTCTTTGCCATTTAATTTGAATTAATTTAAATCTTTGGGATTGATGTAG 980 990 1000 ACGCTTTGGTTGCTAAGTAAGAAAACATTTGTGATTATTAAATTTGTTGCCTGAAGCAAA

(SEQ ID NOS:21 & 22)

AAAAAAAAAA 3' Green fluorescent protein from Ricordea florida rfloGFP2 (AY037774) 10 20 30 40 80 90 100 110 AAAATTTTACTTTACTTCCCAGCATGAATGCACTTCAAGAGGAAATGAAAATCAAGCT MNALQEEMKIKL 130 140 150 160 17.0 TACAATGGTGGGCGTTGTTAACGGGCAGTCATTTAAGATCGATGGGAAAGGAAAAGGGAA $\texttt{T} \ \texttt{M} \ \texttt{V} \ \texttt{G} \ \texttt{V} \ \texttt{V} \ \texttt{N} \ \texttt{G} \ \texttt{Q} \ \texttt{S} \ \texttt{F} \ \texttt{K} \ \texttt{I} \ \texttt{D} \ \texttt{G} \ \texttt{K} \ \texttt{G} \ \texttt{K}$ 200 210 220 230 ACCTTACGAGGGATCACAGGAATTGACCCTTAAAGTGGTGGAAGGCGGGCCTCTGCTCTT 280 · 290 260 · 270 CTCTTATGATATCCTGACAACGATATTTCAGTATGGCAACAGGGCATTCGTGAACTACCC S Y D I L T T I F Q Y G N R A F V N Y P 340 320 330 350 AAAGGACATACCAGATATTTTCAAGCAAACGTGTTCTGGTCTTGATGGCGGATATTCGTG K D I P D I F K Q T C S G L D G G Y S W 380 390 400 410 GCAAAGGACCATGACTTATGAGGACGGAGGGGTTTGTACTGCTACAAGCAACGTCAGCGT 430 440 . 450 460 470 GGTCGGCGACACTTTCAATTATGAAATTCACTTTATGGGGGCGAATTTTCCTCCAAATGG V G D T F N Y E I H F M G A N F P P N G 510 520 530 540 500 ${\tt TCCRGTGATGCAGAAAGAACAGTGAAGTGGGAGCCCTCCACTGAGATAATGTTTGAACG}$ PVMQK-RTVKWEPSTEIMFER . 560 590 570 580 550 TGATGGATTGCTGAGGGGTGATGTTCCCATGTCTCTGTTGCTGAAAGGAGGCGACCATTA D G L L R G D V P M S L L L K G G D H Y 650 620 630 640 CCGATGTGACTTTAAAACTATTTATAAACCCAACAAGAAGGTCAAGCTGCCAGGTTACCA R C D F K T I Y K P N K K V K L P G Y H 680 690 700 710 TTTTGTGGACCACTGCATTGAGATAAAGAGTCAAGAGAATGATTACAACATGGTTGCGCT F V D H C I E I K S Q E N D Y N M V A L 760 770 750 740 CTTTGAGGATGCTGTAGCACACTACTCTCCTCTGGAGAAAAAGAGCCAGGCAAAGGCGTA F E D A V A H Y S P L E K K S Q' A K A * 800 . .810 820 $\verb|AATCCAAACCAAGCTAAGAAGACGACAAGGCATTCAATCTAATCGCATGTTTGAATTTTTG|$ 860 870 880 850 890 GTTAGGAATGTGTTGGGTCAGACTAGGTCTAGAACGTTTCATTTTGGCTGGATTTGTTTT 920 930 940 950 ACTCAGTTATAGACAAGAAAAAATCTTAAATGACTTGGGTTGGATTTAGCTTTCGGCAC 990 1000 980 970 1010 1020

TGTCAATTCCGGATTCCTTAGAAATATTTGAGACCAAGCCTTTTTTTGAGCTGAGAACGT

(SEQ ID NOS: 23 & 24)

AATC 3'

Green fluorescent protein from Montastraea cavernosa mcavGFP2 (AY037768)

70 80 90 100 110 120
GGGTGTGATTAAACCAGACATGAAGATGAAGCTGCGTATGGAAGGTGCTGTAAACGGGCA
G V I K P D M K M K L R M E G A V N G H

250 260 270 280 290 300
CGATTACGGCAACAGGGTATTCGCCAAATACCCAGAAGACATAGCAGATTATTTCAAGCA
D Y G N R V F A K Y P E D I A D Y F K Q

370 380 390 400 410 420
CATCGCCACAAACGACATAACAATGATGAAAGGCGTCGACGACTGTTTTGTCTATAAAAT
I A T N D I T M M K G V D D C F V Y K I

490 500 510 520 530 540 ATGGGAGCCATCCACTGAGAAAATGTATGCGCGTGATGGAGTGCTGAAGGGTGATGTTAA WEPSTEKMYARDGCCTGAAGGGTGATGTTAA

610 620 630 640 650 660
AGCTAAGAAGGTTGTCCAGTTGCCAGACTATCATTTTGTGGACCATCGCATTGAGATTGT
A K K V V Q L P D Y H F V D H R I E I V

670 680 690 700 710 720 GAGCCACGACAAGATTACAACAAGGTTAAGCTGTATGAGCATGCCGAAGCTCATTCTGG S H D K D Y N K V K L Y E H A E A H S G

730 740 750 760 770 780 GCTGCCGAGGCAAGCAAGTAAAGGCTTAATGAAAAGCCAAGACGACAACAAGGAGAAAC L P R Q A K *

. 790 800 810 820 830 840
AAAGTATTTTTTTTTTTTAAATTTCAAGGCATTTACTCGGAATTAGTATTTGATACTTTCG
850 860 870 880 890 900
ATTCAAGGATTTGTTTCGGGACTTGTTAGAGACCAGCTCTAGAGTTGTATTTTGTGAAAA

910 AAAGATAGTTTCC 3'

(SEQ ID NOS: 25 & 26)

Green fluorescent protein homolog from Montastraea annularis mannFP (AY037766)

```
20 -
                         30
                                   40
5'TGGTTAACGCAGAGTCGCGGGGGGTTCCTGGCTAATAATTGATTCTATTTTGGGTGTGAC
                 80
                         90 100
                                          110 .
 ATTCAGGTTTAAAGCAGCATCCTCAGTGCTGAGGTCTCATTCACCCTGGTGATTTGGAAG
               140 150 160 170
       130
                                                   1.80
 AGAGCAGATCGAGAACACCAAGAGCTGTATTACGCTAAAATCTTACTTGCCTCTACCACC
       190
               200 210 220 230
 ATGAGTATGATTAAACCAGAAATGAAGATCAAGATGCGTATGGACGGTGCTGTAAACGGG
 M S M I K P E M K I K M R M D G A V N G
                260
                         270
                                  280
 CACAAGTTCGTGATTACAGGGGAAGGAAGCGGCGAGCCTTTCGAGGGAAAACAGACTATG
 H K F V I T G E G S G E P F E G K Q T M
               320
                        330
                               340
                                         350
 AACCTGACAGTCATAGACGGCGGACCTCTGCCTTTCGCTTTCGACATCTTGACAACAGCA
 N L T V I D G G P L P F A F D I L T T A.
                                       . 410
                380
                         390
                                 400
 {\tt TTCGATTACGGCAMCAGGGTATTCGCCAAATACCCAGAAGACATCCCAGACTATTTCAAG}
 F D Y G X R V F A K Y P E D I P D Y F K
                         450
                                  460
 {\tt CAGTCGTTTCCTGAGGGGTTTTCTTGGGAACGAGGCATGACTTACGAAGACGGGGGCATT}
 Q S F P E G F S W E R S M T Y E D G G I
                500
                         510 ·
                                  520
                                           530
 TGCATCGCCACAAATGACATAAAAATGGAAGGCGACTGCTTTTCCTATGAAATTCGATTT
 CIATNDIKMEGDCFSYEIRF
                                       590 600
                     570 580
              560
 GATGGGGTGAACTTTCCTGCCAATAGTCCAGTTATGCAGAAGAACACCGTGAAATGGGAG
 620 630
                              640
 CCATGCACTGRGGAAATGTATGTGCGTGATGGAGTGCTTAAAGGTGGTCTTAACATGGCT
 PCTXEMYVRDGVLKGGLNMA
                                         710
                680
                         690
                                  700
 CTGTTGCTTGAAGGAGGTGGCCATTTCCGATGTGACTTGAAAACTACTTACAAAGCTAAG
 \mathbf{L} \cdot \mathbf{L}^{\cdot} \ \mathbf{L} \ \mathbf{E} \ \mathbf{G} \ \mathbf{G} \ \mathbf{H} \ \mathbf{F} \ \mathbf{R} \ \mathbf{C} \ \mathbf{D} \ \mathbf{L} \ \mathbf{K} \ \dot{\mathbf{T}} \ \mathbf{T} \ \mathbf{Y} \ \mathbf{K} \ \mathbf{A} \ \mathbf{K}
                                 760
                740
                         750
  AAGGTTGTCCAGATGCCAGACTATCACTTTGTGAATCACCGACTTGAGATAACATGGCAT
  K V V Q M P D Y H F V N H R L E I T W H
                800
                         810
                                 820
                                          830
  GACGAGGATTACAACAATGTTAAGCTGTCTGAGCATGCAGAAGCTCATTCTGGACTGCCA
  DEDYNNVKLSEHAEAHSGLP
             · 860 870
                                880
                                         .890
  AGGCAGGCCAAATAAAGGCTTGACGAAAAGCCCAAAACGGCAAAGAGTACAAGAAAGTATA
  RQAK*
```

930

990

TATAAATGTATATTTTCAACTGAAAGGCATTCCACTCGGAATTAGTATTTGATACTTTC

AATTCAAGGATTTATTTTGGGATTTGCTAGCCACTAGCTTTATTGTTAAATTAAGTTAAA

GACGGTTTAGCATTTTTCGGTATTACAACATAGGCACAGACGTCTTAACCCCAGTAGTG

1110

GTCAGGTACAAGTAAGAAAACTTTGGTGAGAATAGACTTGTAGTCGAAAAAAA 3'

940

1000

1060

1120

950

1070

1130

1010

(SEO ID NOS: 27 & 28)

910

970

1030

1090

920

980

1100

1040 1050