5. Convex optimization

- Convex sets, functions
- Gradient descent
- Gradient based methods

Convex sets, functions

Convex set

$$\mathcal{S} \subset \mathbb{R}^d$$
 is a convex set if

$$\forall \theta, \nu \in \mathcal{S}, \quad \alpha\theta + (1 - \alpha)\nu \in \mathcal{S}, \quad 0 \le \alpha \le 1$$

Example: linear subspace

$$S$$
 is convex if $\forall \theta, \nu \in S$, $\alpha \theta + (1 - \alpha)\nu \in S$, $0 \le \alpha \le 1$

ullet ${\cal S}$ is a linear subspace if

$$\forall \theta, \nu \in \mathcal{S}, \ \forall \alpha, \beta \in \mathbb{R}, \quad \alpha\theta + \beta\nu \in \mathcal{S}$$

- Convex from definition
- Example: null space is convex. Proof:

$$A\theta = 0, A\theta = 0, \Rightarrow A(\alpha\theta + (1 - \alpha\theta)) = 0$$

• Example: solution space is convex. Proof:

$$X\theta = y, \ X\nu = y, \Rightarrow X(\alpha\theta + (1-\alpha)\nu) = \alpha y + (1-\alpha)y = y$$

Example: half-space

$$S$$
 is convex if $\forall \theta, \nu \in S$, $\alpha \theta + (1 - \alpha)\nu \in S$, $0 < \alpha < 1$

ullet S is a linear halfspace if it can be written as

$$\mathcal{S} = \{\theta : X\theta > y\}$$

for some X, y

- Convex?
- Example: nonnegative orthant $S = \{\theta : \theta_i \ge 0, \ \forall i\}$

$$\theta_i \ge 0$$
, $\nu_i \ge 0 \Rightarrow \alpha \theta_i + (1 - \alpha)\nu_i \ge 0$

Example: half-space

$$S$$
 is convex if $\forall \theta, \nu \in S$, $\alpha \theta + (1 - \alpha)\nu \in S$, $0 \le \alpha \le 1$

ullet ${\cal S}$ is a linear halfspace if it can be written as

$$\mathcal{S} = \{\theta : X\theta \ge y\}$$

for some X, y

- Convex? Yes! Proof: plug into definition of convexity.
- Example: nonnegative orthant $S = \{\theta : \theta_i \geq 0, \forall i\}$

$$\theta_i \ge 0, \quad \nu_i \ge 0 \Rightarrow \alpha \theta_i + (1 - \alpha)\nu_i \ge 0$$

since each term is nonnegative.

Example: Set of positive (semi)definite matrices

$$\mathcal{S}$$
 is convex if $\forall \theta, \nu \in \mathcal{S}$, $\alpha \theta + (1 - \alpha)\nu \in \mathcal{S}$, $0 \le \alpha \le 1$

• The set of positive semidefinite (PSD) matrices is defined as

$$\mathcal{S} = \{X : u^T X u \ge 0, \ \forall u\}$$

• The set of positive definite (PD) matrices is defined as

$$\mathcal{S} = \{X : u^T X u > 0, \ \forall u \neq 0\}$$

Convex?

Example: Set of positive (semi)definite matrices

$$S$$
 is convex if $\forall \theta, \nu \in S$, $\alpha \theta + (1 - \alpha)\nu \in S$, $0 \le \alpha \le 1$

• The set of positive semidefinite (PSD) matrices is defined as

$$\mathcal{S} = \{X : u^T X u \ge 0, \ \forall u\}$$

• The set of positive definite (PD) matrices is defined as

$$\mathcal{S} = \{X : u^T X u > 0, \ \forall u \neq 0\}$$

• Convex? Yes! if $u^T X u > 0$ and $u^T Y u > 0$ then

$$u^{T}(\alpha X + (1 - \alpha)Y)u = \alpha u^{T}Xu + (1 - \alpha)u^{T}Yu \ge 0$$

Proof for PD matrices is basically the same

Other important properties

The intersection of convex sets is convex

$$\mathcal{S}_1, \mathcal{S}_2 \text{ convex } \Rightarrow \mathcal{S}_1 \cap \mathcal{S}_2 \text{ convex }$$

• The union of sets is usually not convex

Example:
$$\{0\}$$
, $\{1\}$, ..., $\{n\}$ each convex, set of integers $\{1,2,...,n\}$ is not convex

• Affine transformations preserve convexity

$$S \text{ convex } \Rightarrow AS + b = \{Ax + b : x \in S\} \text{ convex }$$

Convex function

A function $f: \mathbb{Z} \to \mathbb{R}$ is convex if

$$\forall \theta, \nu \in \mathcal{Z}, \quad f(\alpha \theta + (1 - \alpha)\nu) \le \alpha f(\theta) + (1 - \alpha)f(\nu) \ \forall 0 \le \alpha \le 1$$

Operations that preserve convexity

Affine transformation

$$f(x)$$
 is convex $\Rightarrow g(w) = f(Aw + b)$ is convex.

Pointwise max and supremum

$$f(x) = \max_{i} f_i(x), \qquad g(x) = \sup_{s \in \mathcal{S}} g_s(x)$$

are convex if each f_i , each g_s are convex (\mathcal{S} may not be convex)

Minimization

$$g(x) = \inf_{y \in \mathcal{C}} f(x, y)$$

is convex if f is convex in (x, y), \mathcal{C} are convex

First order condition

ullet Recall the gradient operator $abla f: \mathcal{Z}
ightarrow \mathbb{R}^d$

$$\nabla f(\theta) = \begin{bmatrix} \partial f / \partial \theta_1 \\ \vdots \\ \partial f / \partial \theta_d \end{bmatrix}$$

ullet If $f:\mathcal{Z} \to \mathbb{R}$ is 1-differentiable, then f is convex if and only if

$$f(\theta) - f(\nu) \ge \nabla f(\nu)^{T} (\theta - \nu)$$

$$\sqrt{f(x)^{T}(x-y)}$$

$$x$$

$$y$$

Second order condition

• Recall the Hessian operator $\nabla f: \mathcal{Z} \to \mathbb{R}^{d \times d}$

$$\nabla^2 f(\theta) = \begin{bmatrix} \frac{\partial^2 f}{\partial \theta_1^2} & \frac{\partial^2 f}{\partial \theta_1 \partial \theta_2} & \cdots & \frac{\partial^2 f}{\partial \theta_d^2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial \theta_d \partial \theta_1} & \frac{\partial^2 f}{\partial \theta_d \partial \theta_2} & \cdots & \frac{\partial^2 f}{\partial \theta_d^2} \end{bmatrix}$$

ullet If $f:\mathcal{Z} \to \mathbb{R}$ is 2-differentiable, then $f:\mathcal{Z} \to \mathbb{R}$ is convex if and only if

$$\nabla^2 f(\theta)$$
 is PSD for all $\theta \in \mathcal{Z}$

$$g''(\alpha) \ge 0$$
 for all α

Example: Regularized linear regression

$$f(\theta) = \frac{1}{2} ||X\theta - y||_2^2 + \frac{\lambda}{2} ||\theta||_2^2$$

• Twice differentiable \rightarrow compute Hessian, check if convex

$$\nabla f(\theta) = X^T (X\theta - y) + \lambda \theta, \qquad \nabla^2 f(\theta) = X^T X + \lambda I$$

- Hessian does not depend on θ !
- Positive (semi)definite?

Example: Regularized linear regression

$$f(\theta) = \frac{1}{2} ||X\theta - y||_2^2 + \frac{\lambda}{2} ||\theta||_2^2$$

ullet Twice differentiable o compute Hessian, check if convex

$$\nabla f(\theta) = X^T (X\theta - y) + \lambda \theta, \qquad \nabla^2 f(\theta) = X^T X + \lambda I$$

- Hessian does not depend on θ !
- Positive (semi)definite? Ans: yes, PD if $\lambda > 0$, at least PSD if $\lambda = 0$

$$u^{T}(X^{T}X + \lambda I)u = ||Xu||_{2}^{2} + \lambda ||u||_{2}^{2} \ge 0$$

Global vs local optimality, stationary points

Consider the unconstrained minimization problem for f everywhere differentiable

$$\underset{\theta}{\text{minimize}}\; f(\theta)$$

- Any θ where $\nabla f(\theta) = 0$ is a <u>stationary point</u>
- \bullet If f is convex, then $\nabla f(\theta)=0$ implies θ is a global minimum

$$\forall \theta', \quad f(\theta) \le f(\theta')$$

ullet θ is a local minimum if

$$\forall \theta' : \|\theta - \theta'\| \le \epsilon, \quad f(\theta) \le f(\theta')$$

• If θ is stationary and $\nabla^2 f(\theta)$ is PD, θ is a local minimum

Quasiconvex functions

• A sublevel set of f(x) is defined as

$$S_{\alpha} = \{x : f(x) \le \alpha\}.$$

Every convex function has only convex sublevel sets.

• If a function has convex sublevel sets but is not convex, it is quasiconvex.

Quasiconvex functions

Example:
$$f(x) = \sqrt{|x|}$$

- Function is not convex
- Sublevel sets are closed intervals ⇒ convex.
- What happens when you use a gradient method? Step size choice?

Gradient descent

$$\underset{\theta}{\operatorname{minimize}} \quad f(\theta) := \sum_{i=1}^m f_i(\theta), \qquad f_i \text{ is differentiable everywhere}$$

• Gradient descent step: given stepsize $\alpha > 0$,

$$\theta^{(k+1)} = \theta^{(k)} - \alpha \sum_{i=1}^{m} \nabla f_i(\theta^{(k)})$$

$$= \nabla f(\theta^{(k)})$$

- If m is very large, each step pretty slow
- Difference between sampling m = 100 vs m = 1 billion?

see whiteboard

$$\underset{x \in \mathbb{R}}{\text{minimize}} \quad \frac{x^4}{4}$$

$$\underset{x \in \mathbb{R}}{\text{minimize}} \quad \frac{x^4}{4}$$

$$\underset{x \in \mathbb{R}}{\text{minimize}} \quad \frac{x^4}{4}$$

$$\underset{x \in \mathbb{R}}{\text{minimize}} \quad \frac{x^4}{4}$$

Somehow, convergence vs divergence depends on step size and initial value!

 $\underset{x \in \mathbb{R}}{\operatorname{minimize}} \quad |x|$

Gradient descent: $x^{(k+1)} = x^{(k)} - \alpha \operatorname{sign}(x^{(k)})$

 $\mathop{\mathrm{minimize}}_{x \in \mathbb{R}} \quad |x|$

Gradient descent: $x^{(k+1)} = x^{(k)} - \alpha \operatorname{sign}(x^{(k)})$

$$\underset{x \in \mathbb{R}}{\operatorname{minimize}} \quad |x|$$

Gradient descent: $x^{(k+1)} = x^{(k)} - \alpha \operatorname{sign}(x^{(k)})$

Doesn't converge no matter what we do!

We say that a function $f:\mathbb{R}^d \to \mathbb{R}$ is $\underline{L\text{-smooth}}$ if its gradient is L-Lipschitz

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2 \quad \forall x, y$$

- Is $f(x) = x^4/4$ smooth?
- Is f(x) = |x| *L*-smooth?
- Is $f(x) = x^2/2$ L-smooth?

We say that a function $f:\mathbb{R}^d \to \mathbb{R}$ is $\underline{L}\text{-smooth}$ if its gradient is L-Lipschitz

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2 \quad \forall x, y$$

- Is $f(x) = x^4/4$ smooth? Ans: No, trouble at $|x| \to +\infty$
- Is f(x) = |x| *L*-smooth?
- Is $f(x) = x^2/2$ L-smooth?

We say that a function $f:\mathbb{R}^d \to \mathbb{R}$ is $\underline{L}\text{-smooth}$ if its gradient is L-Lipschitz

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2 \quad \forall x, y$$

- Is $f(x) = x^4/4$ smooth? Ans: No, trouble at $|x| \to +\infty$
- Is f(x) = |x| L-smooth? Ans: No, trouble at x = 0
- Is $f(x) = x^2/2$ L-smooth?

We say that a function $f:\mathbb{R}^d \to \mathbb{R}$ is $\underline{L\text{-smooth}}$ if its gradient is L-Lipschitz

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2 \quad \forall x, y$$

- Is $f(x) = x^4/4$ smooth? Ans: No, trouble at $|x| \to +\infty$
- Is f(x) = |x| L-smooth? Ans: No, trouble at x = 0
- Is $f(x) = x^2/2$ L-smooth? Ans: Yes! L = 1

Descent lemma

 \bullet If f is L-smooth, then picking $\alpha<2/L$ guarantees descent:

$$f(x - \alpha \nabla f(x)) \le f(x).$$

• Furthermore, the gradient goes to 0

$$x^{(t+1)} = x^{(t)} - \alpha \nabla f(x^{(t)}), \qquad \|x^{(t)}\|_2 \overset{t \to \infty}{\longrightarrow} 0$$

$$\|\nabla \int (\nabla^{(t)})\|_2 \longrightarrow 0$$

ullet In particular, we do not require f to be convex.

Proof of descent lemma

Step one: Alternative form of Lipschitz smoothness

$$\|\nabla f(x) - \nabla f(y)\|_2 < L\|x - y\|_2 \quad \forall x, y$$

implies

$$f(x) \le f(y) + \nabla f(y)^T (x - y) + \frac{L}{2} ||x - y||_2^2$$

Proof in 1-D

$$f(y) - f(x) = \int_{x}^{y} f'(u)du$$

$$= \int_{x}^{y} f'(y)du + \int_{x}^{y} \underbrace{f'(u) - f'(y)}_{\leq |f(u) - f'(y)|} du$$

Since

$$|f'(u) - f'(y)| \le |f'(x) - f'(y)| \le \frac{L}{2}|x - y|$$

result follows

Proof of descent lemma

Step two: Plug in alternate Lipschitz smoothness

$$f(x - \alpha \nabla f(x)) \leq f(x) + \nabla f(x)^{T} (-\alpha \nabla f(x)) + \frac{L}{2} \|\alpha \nabla f(x)\|_{2}^{2}$$
$$= \alpha \left(\frac{L\alpha}{2} - 1\right) \|\nabla f(x)\|_{2}^{2} + 5 \langle \times \rangle$$

- As long as ???, each step is a guaranteed descent step
- The best choice of step size, based on this bound, is ????

Proof of descent lemma

Step two: Plug in alternate Lipschitz smoothness

$$f(x - \alpha \nabla f(x)) \leq \underbrace{f(x)} \nabla f(x)^T (-\alpha \nabla f(x)) + \frac{L}{2} \|\alpha \nabla f(x)\|_2^2$$
$$= \alpha \left(\frac{L\alpha}{2} - 1\right) \|\nabla f(x)\|_2^2$$

- As long as $\alpha < 2/L$, each step is a guaranteed descent step
- The best choice of step size, based on this bound, is ????

Proof of descent lemma

Step two: Plug in alternate Lipschitz smoothness

$$f(x - \alpha \nabla f(x)) \leq f(x) + \nabla f(x)^{T} (-\alpha \nabla f(x)) + \frac{L}{2} \|\alpha \nabla f(x)\|_{2}^{2}$$

$$= \alpha \left(\frac{L\alpha}{2} - 1\right) \|\nabla f(x)\|_{2}^{2} + \left(\kappa\right)$$

- As long as $\alpha < 2/L$, each step is a guaranteed descent step
- The best choice of step size, based on this bound, is $\alpha = 1/L$

Gradient norm to 0:

$$\sum_{t=0}^{T} f(x^{(t+1)}) - f(x^{(t)}) \le \alpha \left(\frac{L\alpha}{2} - 1\right) \sum_{t=0}^{T} \|\nabla f(x^{(t)})\|_{2}^{2}$$

Gradient norm to 0:

$$\sum_{t=0}^{T} f(x^{(t+1)}) - f(x^{(t)}) \le \alpha \left(\frac{L\alpha}{2} - 1\right) \sum_{t=0}^{T} \|\nabla f(x^{(t)})\|_{2}^{2}$$

↓ (Telescoping)

Gradient norm to 0:

$$\sum_{t=0}^{T} f(x^{(t+1)}) - f(x^{(t)}) \le \alpha \left(\frac{L\alpha}{2} - 1\right) \sum_{t=0}^{T} \|\nabla f(x^{(t)})\|_{2}^{2}$$

↓ (Telescoping)

$$f(x^{(0)}) - f(x^{(T)}) \ge \alpha \left(\frac{L\alpha}{2} - 1\right) \sum_{t=0}^{T} \|\nabla f(x^{(t)})\|_{2}^{2}$$

Gradient norm to 0:

$$\sum_{t=0}^{T} f(x^{(t+1)}) - f(x^{(t)}) \le \alpha \left(\frac{L\alpha}{2} - 1\right) \sum_{t=0}^{T} \|\nabla f(x^{(t)})\|_{2}^{2}$$

↓ (Telescoping)

$$f(x^{(0)}) - f(x^*) \ge f(x^{(0)}) - f(x^{(T)}) \ge \alpha \left(\frac{L\alpha}{2} - 1\right) \sum_{t=0}^{T} \|\nabla f(x^{(t)})\|_2^2$$

where $x^* = \text{limit point of } x^{(t)}$

Gradient norm to 0:

$$\sum_{t=0}^{T} f(x^{(t+1)}) - f(x^{(t)}) \le \alpha \left(\frac{L\alpha}{2} - 1\right) \sum_{t=0}^{T} \|\nabla f(x^{(t)})\|_{2}^{2}$$

↓ (Telescoping)

$$\underbrace{f(x^{(0)}) - f(x^*)}_{t=0} \ge f(x^{(0)}) - f(x^{(T)}) \ge \alpha \left(\frac{L\alpha}{2} - 1\right) \sum_{t=0}^{T} \|\nabla f(x^{(t)})\|_{2}^{2}$$

where $x^* = \text{limit point of } x^{(t)}$

Gradient norm to 0:

$$\sum_{t=0}^{T} f(x^{(t+1)}) - f(x^{(t)}) \le \alpha \left(\frac{L\alpha}{2} - 1\right) \sum_{t=0}^{T} \|\nabla f(x^{(t)})\|_{2}^{2}$$

↓ (Telescoping)

$$\underbrace{f(x^{(0)}) - f(x^*)}_{t=0} \ge f(x^{(0)}) - f(x^{(T)}) \ge \alpha \left(\frac{L\alpha}{2} - 1\right) \sum_{t=0}^{T} \|\nabla f(x^{(t)})\|_{2}^{2}$$

where $x^* = \text{limit point of } x^{(t)}$

$$\Rightarrow \|\nabla f(x^{(t)})\|_2 \to 0$$

More details

- Without further details, gradient descent on an L-smooth problem reaches a stationary point at iteration complexity $O(1/\epsilon)$
 - (Read as "it takes $O(1/\epsilon)$ iterations for $f(x^{(t)}) f(x^*) = \epsilon$ ")
- With acceleration, the iteration complexity reduces to $O(1/\sqrt{\epsilon})$. This is the best you can do using only 1st-order information ¹
- If problem is additionally strongly convex, rates may be much better

45

¹See Nesterov '83 or book Introductory Lectures on Convex Optimization

Ellipse

$$\underset{x}{\text{minimize}} \quad x_1^2 + 10000 \cdot x_2^2$$

(Go to demo)

Strong convexity

• $f: \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex if for mu > 0

$$f(x) - f(y) \ge \nabla f(y)^T (x - y) + \frac{\mu}{2} ||x - y||_2^2$$

• Compare with *L*-smooth:

$$f(x) - f(y) \le \nabla f(y)^T (x - y) + \frac{L}{2} ||x - y||_2^2$$

ullet Hessian bound: f is μ -strongly convex and L-smooth if for all x,

mu is smallest eigenvalue L is largest eigenvalue $\frac{1}{2}||x-y||_2^2 \qquad \text{A <= B iff (B-A) is positive semidefinite}$

If f is L-smooth and μ -strongly convex

ullet There is a unique stationary point x^*

If f is L-smooth and μ -strongly convex

• There is a unique stationary point x^*

Proof Suppose that
$$\nabla f(x) = \nabla f(y) = 0$$

Then

$$\begin{array}{lcl} f(x) - f(y) & \geq & \frac{\mu}{2} \|x - y\|_2^2 \\ f(y) - f(x) & \geq & \frac{\mu}{2} \|x - y\|_2^2 \\ \Rightarrow 0 & \geq & \mu \|x - y\|_2^2 \end{array}$$

If f is L-smooth and μ -strongly convex

- There is a unique stationary point x^*
- The constant $\kappa = L/\mu$ is often called the <u>condition number</u> of f (Compare with condition number of a matrix)

If f is L-smooth and μ -strongly convex

- There is a unique stationary point x^*
- The constant $\kappa = L/\mu$ is often called the <u>condition number</u> of f (Compare with condition number of a matrix)
- Gradient descent converges at rate $O(\kappa \log(\epsilon))$

If f is L-smooth and μ -strongly convex

- There is a unique stationary point x^*
- The constant $\kappa = L/\mu$ is often called the <u>condition number</u> of f (Compare with condition number of a matrix)
- Gradient descent converges at rate $O(\kappa \log(\epsilon))$
- Accelerated gradient descent converges at a rate $O(\sqrt{\kappa}\log(\epsilon))$

Gradient-based methods

Stochastic gradient method

$$\underset{\theta}{\operatorname{minimize}} \quad f(\theta) := \sum_{i=1}^m f_i(\theta), \qquad f_i \text{ is differentiable everywhere}$$

• Stochastic gradient method (SGD)

$$\theta^{(k+1)} = \theta^{(k)} - \alpha^{(k)} \nabla f_i(\theta^{(k)}), \quad i \sim \mathsf{Unif}\{1, ..., m\}$$

- This is not a descent method
 - $f^{(k+1)}$ is not necessarily less than $f^{(k)}$, even if step size $\to 0$)
- Step size choice
 - ullet $\alpha^{(k)}$ constant, gets to a noisy neighborhood
 - $\alpha^{(k)}$ decaying $(1/\sqrt{k} \text{ or } 1/k)$, provably convergent to local minimum

Minibatching

$$\underset{\theta}{\operatorname{minimize}} \quad f(\theta) := \sum_{i=1}^{m} f_i(\theta), \qquad f_i \text{ is differentiable everywhere}$$

Minibatching

• Uniformly without replacement, pick a subset $\mathcal{S} \subset \{1,...,m\}$

$$\theta^{(k+1)} = \theta^{(k)} - \alpha^{(k)} \sum_{i \in S} \nabla f_i(\theta^{(k)}),$$

- Larger S = smaller gradient variance, greater per-iteration complexity
- When $S = \{1, ..., m\}, \rightarrow$ gradient descent

Projections

$$\underset{\theta \in \mathcal{S}}{\operatorname{minimize}} \ f(\theta) \qquad f \ \operatorname{convex} \ \operatorname{function}, \ \mathcal{S} \ \operatorname{convex} \ \operatorname{set}$$

• The Euclidean projection on a convex set is defined as

$$\mathbf{proj}_{\mathcal{S}}(\hat{\theta}) = \underset{\theta \in \mathcal{S}}{\operatorname{argmin}} \|\theta - \hat{\theta}\|_{2}$$

- ullet Solution always exists and is unique when ${\mathcal S}$ is convex
- If $\hat{\theta} \in \mathcal{S}$, then $\mathbf{proj}_{\mathcal{S}}(\hat{\theta}) = \hat{\theta}$
- Some projections super easy: $\bar{\theta} = \mathbf{proj}_{\mathcal{S}}(\hat{\theta})$
 - $S = \{\theta : b_k \le \theta_k \le c_k\}, \quad \bar{\theta}_k = \min\{\max\{\hat{\theta}_k, b_k\}, c_k\}$

•
$$S = \{\theta : \|\theta\|_2 \le 1\}, \quad \bar{\theta}_k = \frac{1}{\max\{1, \|\hat{\theta}_k\|_2\}} \hat{\theta}_k$$

Projected gradient descent

$$\underset{\theta \in \mathcal{S}}{\operatorname{minimize}} \ f(\theta) \qquad f \ \operatorname{convex} \ \operatorname{function}, \ \mathcal{S} \ \operatorname{convex} \ \operatorname{set}$$

• Projected gradient descent:

$$\theta^{(k+1)} = \mathbf{proj}_{\mathcal{S}}(\theta^{(k)} - \alpha \nabla f(\theta^{(k)}))$$

- Is a descent method
- Constant step size α is fine (if small enough)
- Basically same analysis as unprojected gradient descent

Summary

- Definition of convex set, function
 - 1st order, 2nd order conditions
- Gradient descent
 - ullet L-smoothness, μ -strong convexity
 - Descent lemma
- Gradient-based methods
 - Stochastic GD
 - Projected GD