ben.guo

基于试验员在大楼中的位置信息和其手机中传感器信号数据(如wifi强度、wifi基站ID、磁场强度),使用深度学习方法建立模型,达到当给定任意手机传感器数据时,即可定位手机在大楼中位置信息的目的。

https://www.kaggle.com/c/indoor-location-navigation

Time	Data Type	Value			
1578462618392	TYPE_WAYPOINT	196.418	117.849		
	Location surveyor labeled on the map	Coordinate x (meter)	Coordiante y (meter)		
	TVDE ACCELEDOME				
1578462618392	TYPE_ACCELEROME TER	-1.7086	-0.2748	16.6572	2
	Android Sensor.TYPE_ACCEL EROMETER	X axis	Y axis	Z axis	accuracy
1578462618392	TYPE_GYROSCOPE	-0.3022	0.27733	0.10754	3
	Android Sensor.TYPE_GYROS COPE	X axis	Y axis	Z axis	accuracy
1578462618392	TYPE_MAGNETIC_FI ELD	20.1813	16.2094	-32.22	3
	Android Sensor.TYPE_MAGNE TIC_FIELD	X axis	Y axis	Z axis	accuracy
1578462618392	TYPE_ROTATION_VE CTOR	-0.0086	0.05137	0.3625	3
	Android Sensor.TYPE_ROTATI ON_VECTOR	X axis	Y axis	Z axis	accuracy

要预测的目标

Time	Data Type	Value						
157846261839 2	TYPE_ACCELEROM ETER_UNCALIBRAT ED	-1.7086	-0.2748	16.6572	0	0	0	3
	Android Sensor.TYPE_ACCEL EROMETER_UNCALI BRATED	X axis	Y axis	Z axis	X axis	Y axis	Z axis	accuracy
157846261839 2	TYPE_GYROSCOPE _UNCALIBRATED	-0.4233	0.20203	0.09624	4.2E-4	3.20E-04	4.12E-04	3
	Android Sensor.TYPE_GYRO SCOPE_UNCALIBRA TED	X axis	Y axis	Z axis	X axis	Y axis	Z axis	accuracy
157846261839 2	TYPE_MAGNETIC_FI ELD_UNCALIBRATE D	-29.831	-26.363	-300.3	-50.012	-42.572	-268.08	3
	Android Sensor.TYPE_MAGN ETIC_FIELD_UNCALI BRATED	X axis	Y axis	Z axis	X axis	Y axis	Z axis	accuracy

Time	Data Type	Value								BSSID:
1.6E+12	TYPE_WI FI	intime_fre e	0e:74:9c: a7:b2:e4	-43	5805	1.6E+12				无线路由器的MAC
	Wi-Fi data	ssid	bssid	RSSI	frequency	last seen timestam p				SSID: 手机上搜到的wifi名 RSSI:
										信号强度(负值,起
1.6E+12	TYPE_B EACON	FDA5069 3-A4E2- 4FB1- AFCF- C6EB076 47825	10073	61418	-65	-82	5.50634	6B:11:4C: D1:29:F2	1.6E+12	lbeacon:
	iBeacon data	UUID	MajorID	MinorID	Tx Power	RSSI	Distance	MAC Address	same with Unix time, padding data	蓝牙定位技术 UUID:唯一识别码

MAC地址(唯一)

/ifi名字 (不唯一)

直,越大越强)

评价体系

评价指标: mean position error

Submissions are evaluated on the mean position error as defined as:

mean position error =
$$\frac{1}{N} \sum_{i=1}^{N} \left(\sqrt{(\hat{x}_i - x_i)^2 + (\hat{y}_i - y_i)^2} + p \cdot |\hat{f}_i - f_i| \right)$$

where:

- N is the number of rows in the test set
- \hat{x}_i, \hat{y}_i are the predicted locations for a given test row
- x_i, y_i are the ground truth locations for a given test row
- p is the floor penalty, set at 15
- \hat{f}_i, f_i are the predicted and ground truth integer floor level for a given test row

```
site_path_timestamp,floor,x,y
5a0546857ecc773753327266_046cfa46be49fc10834815c6_1578474564146,0,15.0,55.0
5a0546857ecc773753327266_046cfa46be49fc10834815c6_1578474573154,0,25.0,65.0
5a0546857ecc773753327266_046cfa46be49fc10834815c6_1578474579463,0,35.0,75.0
etc.
```

思路分析: 回归+分类

特征抽取: 从log文件中抽取关键数据

```
#--startTime:1573893345497
   #- SiteID:5dc8cea7659e181adb076a3f SiteName:龙湖杭州滨江天街 FloorId:5dc8cea7659e181adb076a4d FloorName:F7
   #--Brand:OPPO-Model:PBCM10--AndroidName:8.1.0--APILevel:27
   #-vtype:1 name:BMI160 Accelerometer version:2062600 vendor:BOSCH resolution:0.0023956299 power:0.18 maximumRange:39.22661
   # type:4 name:BMI160 Gyroscope version:2062600 vendor:BOSCH resolution:0.0010681152 power:0.9 maximumRange:34.906586
   #--type:2 name:AK09911 Magnetometer -version:1--vendor:AKM-resolution:0.5996704 power:2.4 maximumRange:4911.9995
   # type:35 name:BMI160 Accelerometer Uncalibrated version:2062600 vendor:BOSCH resolution:0.0023956299 power:0.18 maximumRange:39.22661
   # type:16 name:BMI160 Gyroscope Uncalibrated version:2062600 vendor:BOSCH resolution:0.0010681152 power:0.9 maximumRange:34.906586
   # "type:14 name:AK09911 Magnetometer Uncalibrated "version:1" vendor:AKM "resolution:0.5996704" power:2.4 "maximumRange:4911.9995
10 #-VersionName:v20191105-nightly-16-qcd7805b-VersionCode:403
  1573893345513-TYPE WAYPOINT-213.38832-148.14653
12 1573893345640 TYPE_ACCELEROMETER -2.2906494 0.13172913 14.326675 2
13 | 1573893345640--*TYPE_MAGNETIC_FIELD 26.307678--*1.8371582--*-32.559204--3
14 1573893345640 TYPE GYROSCOPE 0.22261047 -0.31906128 -0.25778198 3
15 | 1573893345640 -- TYPE_ROTATION_VECTOR -- - 0.014648812 -- 0.051296107 0.65353626 - 3
16 1573893345640 TYPE MAGNETIC FIELD UNCALIBRATED --26.184082 -17.34314 --388.78174 -52.49176 -19.180298 -356.22253 3
17 | 1573893345640 - TYPE GYROSCOPE_UNCALIBRATED 0.31628418 - 0.30941772 - 0.15859985 0.0025939941 - 0.0016479492 - - 9.460449E - 4 - 3
18 | 1573893345640 - TYPE ACCELEROMETER UNCALIBRATED -2.4133453 0.4615326 - 15.120956 - 0.0 0.0 0.0 3
19 1573893345660 TYPE ACCELEROMETER -1.9428864 -0.5488281 13.538391 2
20 | 1573893345660--TYPE_MAGNETIC_FIELD 24.92981---3.2241821---31.887817-3
21 | 1573893345660 | TYPE_GYROSCOPE | 0.36535645 | -0.2498169 | -0.078826904 | | | | |
22 | 1573893345660 TYPE ROTATION VECTOR -0.01913079 0.051839676 0.6580919 3
23 | 1573893345660-*TYPE_MAGNETIC_FIELD_UNCALIBRATED--*-27.56195-*-15.956116 *-388.11035 *-52.49176-*-19.180298 *-356.22253 *3
24 | 1573893345660 - TYPE_GYROSCOPE_UNCALIBRATED 0.40629578 - 0.16134644 - 0.01852417 0.0025939941 - 0.0016479492 - - 9.460449E-4 - 3
25 | 1573893345660 - TYPE_ACCELEROMETER_UNCALIBRATED - 2.1092834 - 0.20585632 13.744293 - 0.0 0.0 0.0 3
26 1573893345680 TYPE ACCELEROMETER -1.4963684 -1.1976471 13.055954 2
27 1573893345680-TYPE MAGNETIC FIELD 24.92981-1.8371582-1-31.887817-3
28 | 1573893345680 -- TYPE_GYROSCOPE | 0.4489746 -- 0.11399841 | 0.026641846 | 3
  30 | 1573893345680-*TYPE_MAGNETIC_FIELD_UNCALIBRATED-*-28.251648*-14.569092*-387.4405-*-52.49176-*-19.180298*-356.22253*3
31 | 1573893345680 | TYPE_GYROSCOPE_UNCALIBRATED 0.51123047 | -0.11553955 0.0491333 | 0.0025939941 | 0.0016479492 | -9.460449E-4 | 3
```

坐标数据

	ts_waypoint	x	у
0	1578462618392	230.03738	153.49635
1	1578462628512	231.40290	158.41515
2	1578462638947	232.46200	164.41673
3	1578462649660	233.94418	171.41417
4	1578463966691	198.36833	163.52063

Wifi数据

Sensor数据

	timestamp	ssid	bssid	rssi	last_timestamp		ts_sensor	x_acce	y_acce	z_acce	x_magne	y_magne	z_r
0	1578462618826	63159	162932	-46	1578462603277	0	1578462618653	0.023697	4.450943	9.055649	-0.037537	0.075256	0.0
1	1578462618826	32835	65513	-49	1578462618272	1	1578462618673	0.050629	4.552109	9.074799	-0.043411	-0.005722	0.0
2	1578462618826	62583	41416	-49	1578462618268	2	1578462618693	0.001556	4.462326	9.131668	-0.040741	-0.036072	-0.0
3	1578462618826	52951	213743	-49	1578462618270	3	1578462618713	0.055420	4.552704	8.652237	0.001877	-0.097336	-0.
4	1578462618826	53216	159807	-49	1578462618271	4	1578462618733	-0.029572	4.634110	8.662399	0.017853	-0.035538	-0.

特征抽取: 构建训练集

最近距离法

以wifi的timestamp为标杆, 选择最近的时间点的sensor和 坐标数据,构建训练集。

线性插值法

以wifi的timestamp为标杆,使用线性插值方法,结合sensor和坐标数据,计算wifi的timestamp对应的sensor和坐标值。

模型构建: 损失函数

Floor预测:构建多分类模型,损失函数使用交叉熵

坐标预测:构建回归模型,损失函数使用MSE

Floor+坐标预测: 自定义损失函数

tf.keras.losses.CategoricalCrossentropy

tf.keras.losses.MSE

模型训练:模型架构

```
inputs = L.Input(shape=(seq_len, 3))
LSTM/GRU模型
                          input\_time = L.lnput(shape = (4+12,))
                          input_site = L.Input(shape = (1,))
       Wifi
                          categorical_fea1 = inputs[:, :, :1]
                          categorical_fea2 = inputs[:, :, 1:2]
                          numerical fea = inputs[:, :, 2:]
       Sensor
                          embed = L.Embedding(input_dim=sid_size, output_dim=embed_dim)(categorical_fea1)
       Floor
                          reshaped = tf.reshape(embed, shape=(-1, embed.shape[1], embed.shape[2] * embed.shape[3]))
                          reshaped = L.SpatialDropout1D(sp_dropout)(reshaped)
                          embed2 = L.Embedding(input_dim=bssid_size, output_dim=embed_dim)(categorical_fea2)
       Site
                          reshaped2 = tf.reshape(embed2, shape=(-1, embed2.shape[1], embed2.shape[2] * embed2.shape[3]))
                          reshaped2 = L.SpatialDropout1D(sp_dropout)(reshaped2)
                          hidden = L.concatenate([reshaped, reshaped2, numerical_fea], axis=2)
                          for x in range(n_layers):
                             hidden = gru_layer(hidden_dim, dropout)(hidden)
                          truncated = hidden[:, :pred_len]
                          truncated = L.Flatten()(truncated)
                          embed_site = L.Embedding(input_dim=site_size, output_dim=1)(input_site)
                          embed site = L.Flatten()(embed site)
                          truncated = L.concatenate([truncated, input_time,embed_site], axis=1)
                          out = L.Dense(2, activation='linear')(truncated)
                          model = tf.keras.Model(inputs=[inputs,input_time,input_site], outputs=out)
```

后处理: 结合sensor坐标点

To combine machine learning (wifi features) predictions with sensor data (acceleration, attitude heading), I defined cost function as follows,

$$L(X_{1:N}) = \sum_{i=1}^{N} lpha_i \|X_i - \hat{X}_i\|^2 + \sum_{i=1}^{N-1} eta_i \|(X_{i+1} - X_i) - \Delta \hat{X}_i\|^2$$

where \hat{X}_i is absolute position predicted by machine learning and $\Delta \hat{X}_i$ is relative position predicted by sensor data.

$$(X - \hat{X})^T A (X - \hat{X}) + (DX - \Delta \hat{X})^T B (DX - \Delta \hat{X})$$

$$A = \begin{pmatrix} \alpha_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \alpha_n \end{pmatrix},$$

$$B = \begin{pmatrix} \beta_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \beta_{n-1} \end{pmatrix},$$

$$D = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 0 & \ddots & \ddots & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$

后处理: 结合train坐标点

将预测的点坐标调整到最近的train的路径点

模型结果

将各种模型融合后处理,各模型的表现如下:

模型	public LB	private LB
WIFI GRU模型	6.4x	6.8x
WIFI+sensor GRU模型	6.2x	6.6x
WIFI LSTM模型	6.3x	6.7x
WIFI+sensor LSTM模型	6.1x	6.5x
模型融合	5.7x	6.2x
基于sensor的后处理	4.1x	4.5x
基于训练坐标点的后处理	4.0x	4.4x
基于sensor的后处理again	3.9x	4.3x
基于训练坐标点的后处理again	3.8x	4.2x

模型融合后的结果即可得到top3%的成绩。