Beyond classification theorem of Cameron, Goethals, Seidel
and Shult (6655).
Fundamental problem: Characterization of graphs with
Cimited eigenvalues.
$G(\lambda) = \frac{5}{2}$ graphs to with smallest eigenvale $\lambda_1(t_1) = -\lambda^3$ (refer to adjacency matrix).
· Review of g(2)
· Classification theorem
of g(x*)/g(2).
· Beyond G(x*)
Review of G(2):
Well known: 9(2) = 3 line graphs }.
L(G)
edge-vertex incidence adjacency matrix $A = BB^{T} - 2I.$ matrix B:
matrib B:
Hafman 1969: g(2) = { generalized linguaphs }.
petals 2 edges share L(G) a exactly one vtx
G espartly one vtx L(G)
Note Gan is closed under taking disjoint union.

(1976)

Ge G(2) $\iff \frac{1}{2} A_6 + I \geq 0 \iff \text{unit vectors.}$ pairwise angle $60^{\circ} \text{ or } 90^{\circ}$ representation theory of semisimple Lie algebra.

Classification than:

{ connected graphs in G(x) } = { generalized line graphs}

v { exceptional graphs }

t represented by subset of Es root system

at most 36 vertices

· Classification theorem of g(x*) \ g(2).

X* = 2.0198008871 ...

* not totally real . cannot be graph e.v. (Some conjugates are not real)

 $g(x^*) \setminus g(z) = g$ graphs G with $\lambda_1(G) \in (-x^*, -z)$ THM: $\forall x \in (z, x^*)$. $g(x) \setminus g(z)$ has finishly connected graphs

"Every sufficiently large graph in $g(x^*) \setminus g(z)$

books more or less like En".

36. Generalized

exceptional G(2).

DEF:	
e	juipped with nonempty subset R of vertices
The	augmented path extention (ape) (Fr. l. 0) of FR
is del	pined by FR
Part 1:	Every sufficiently large connected G & G(x*) \G(z) is an ape. of a rooted graph.
	t classify this?
DEF: A	single-rooted graph Hr is a rooted graph H with a single
r	outr. The line graph L(Hr) is the rooted graph R. where F = L(H) and R. { edges of H incident tor}
Part 2:	There exists a finite family F of rooteds graphs st. Bonnested bipartite singles y Fr in F is L(Hr) for some rooted Hri
@ eve	ry connected age in G(X*) G(2) is an age of
some	Fin F.
3 for	every FR in F, there exists lot {0,, 67. lapes !!
5. 4.	λ, (FR, l, 00) ∈ (-1*, -2) if l ≥ lo. 19-1+1+1
Quantation	every F_R in F , there exists lot $\{0,, 67\}$ hapes $\{1,, 67\}$
	Computer assisted. (48 maximal)

DEF. A marerick graph is a connected graph in G(x*) 19(21/3)
that is not an ape.

Part's. Enumeration of 4752 maverick graphs. at most 19 vertices. (computer assisted). order 17 18 19 Key linear algebraic lemms: (mention after Part 2). Example: $(F_R, l_1, -0) \in \mathcal{G}(X^*) \Leftrightarrow (F_R, 0, -0) \in \mathcal{G}(X^*)$.

Example: $C_{onsider}$ two cases $F_R \in \{1, 0\}$ (1, l. -0) = 1>000000 x17-16 BOR: If $\lambda_1(F_R,l,0) > - \chi^*$ then F[R] is complete. Beyond G(X). A notable portion of maverick graphs look alike OPP., Twisted path extension (tpe). (FR, l, ...) = FB There'se 1161 twisted maverick graphs.

 λ_1 $\lambda_2 \approx 2.02124$.

brenevalization of Part 1,

YX6 (x*. x') every sufficiently large graph in G(x) (4(2) is an ape.

Moogo thm for Part ? Yx>x*, finite F of rooted graphs, NEN. 36 on >N vertices in Gas (Gas) that is not an ape of the EF.

Every connected graph on 318 vertices in y(x*)/y(z) Contains a unique leaf u sit. 6-6-4 is the line graph of a pipartite graph.