Maximizing XOR

Given two integers: L and R,

find the maximal values of $A \times B$ given, $L \le A \le B \le R$

Input Format

The input contains two lines, *L* is present in the first line.

R in the second line.

Constraints

 $1 \le L \le R \le 10^3$

Output Format

The maximal value as mentioned in the problem statement.

Sample Input#00

```
10
```

Sample Output#00

```
15
```

Sample Input#01

```
10
15
```

Sample Output#01

Explanation

In the second sample let's say L=10, R=15, then all pairs which comply to above condition are

```
10 \oplus 10 = 0
```

$$10 \oplus 11 = 1$$

$$10 \oplus 12 = 6$$

$$10 \oplus 13 = 7$$

$$10 \oplus 14 = 4$$

$$10 \oplus 15 = 5$$

$$11 \oplus 11 = 0$$

$$11 \oplus 12 = 7$$

$$11 \oplus 13 = 6$$

$$11 \oplus 14 = 5$$

$$11 \oplus 15 = 4$$

$$12 \oplus 12 = 0$$

$$12 \oplus 13 = 1$$

$$12 \oplus 14 = 2$$

$$12 \oplus 15 = 3$$

$$13 \oplus 13 = 0$$

$$13 \oplus 14 = 3$$

 $13 \oplus 15 = 2$

$$14 \oplus 14 = 0$$

$$14 \oplus 15 = 1$$

$$15 \oplus 15 = 0$$

Here two pairs (10,13) and (11,12) have maximum xor value 7 and this is the answer.