Package 'pgraph'

October 14, 2022

Type Package
Title Build Dependency Graphs using Projection
Version 1.6
Date 2020-01-20
Imports SAM, energy, glasso, glmnet, splines
Description Implements a general framework for creating dependency graphs using projection as introduced in Fan, Feng and Xia (2019) <arxiv:1501.01617>. Both lasso and sparse additive model projections are implemented. Both Pearson correlation and distance covariance options are available to generate the graph.</arxiv:1501.01617>
License GPL-2
LazyData TRUE
RoxygenNote 7.0.2
Encoding UTF-8
NeedsCompilation no
Author Yang Feng [aut, cre], Jianqing Fan [aut], Lucy Xia [aut]
Maintainer Yang Feng <yangfengstat@gmail.com></yangfengstat@gmail.com>
Repository CRAN
Date/Publication 2020-01-21 09:20:07 UTC
R topics documented:
greg
pgraph
projcov
roc
Index

2 greg

greg

Regularized graphical model estimation

Description

greg calculate the regularized graphical model estimation using lasso, scad and adaptive lasso penalties. It report the results in the form of roc results for each method.

Usage

```
greg(z, A, eps = 1e-15, rholist = NULL, gamma = 0.5, trace = FALSE)
```

Arguments

```
z n*p dimensional matrix

A p*p true graph

eps a tolerence level for thresholding

rholist a sequence of penalty parameters

gamma the adaptive lasso penalty parameter

trace whether to trace to estimation process.
```

Value

```
a list.

roc.lasso roc results for lasso

roc.scad roc results for scad

roc.alasso roc results for adaptive lasso
```

See Also

```
pgraph, roc, projcov
```

Examples

```
set.seed(0)
p = 20;
n = 300;
tmp=runif(p-1,1,3)
s=c(0,cumsum(tmp));
s1=matrix(s,p,p)
cov.mat.true=exp(-abs(s1-t(s1)))
prec.mat.true=solve(cov.mat.true);
a=matrix(rnorm(p*n),n,p)
data.sa=a%*%chol(cov.mat.true);
true.graph = outer(1:p,1:p,f<-function(x,y){(abs(x-y)==1)})
greg.fit = greg(data.sa, true.graph)</pre>
```

pgraph 3

```
auc.lasso = sum(diff(greg.fit$roc.lasso[,1])*greg.fit$roc.lasso[-1,2])
auc.alasso = sum(diff(greg.fit$roc.alasso[,1])*greg.fit$roc.alasso[-1,2])
auc.scad = sum(diff(greg.fit$roc.scad[,1])*greg.fit$roc.scad[-1,2])
auc.lasso
auc.alasso
auc.scad
```

pgraph

Calculate the Conditional Dependency Graph

Description

pgraph calculate the conditional dependency graph (with/without external factors) via projection using lasso or sparse additive model.

Usage

```
pgraph(
  z,
  f = NULL,
  method = c("lasso", "sam", "ols"),
  cond = TRUE,
  R = 199,
  randSeed = 0,
  trace = FALSE
)
```

Arguments

 $\begin{array}{lll} z & & n * p \ dimensional \ matrix \\ f & & n * q \ factor \ matrix. \ Default = `NULL'. \\ method & & projection \ method. \ Default = `lasso'. \\ cond & & whether \ to \ create \ a \ conditional \ graph \ or \ unconditional \ graph. \ Default = TRUE. \\ If \ cond = FALSE, \ f \ must \ be \ provided. \\ R & & number \ of \ random \ permutations \ for \ the \ test. \\ randSeed & the \ random \ seed \ for \ the \ program. \ Default = 0. \\ trace & whether \ to \ trace \ to \ estimation \ process. \\ \end{array}$

Value

```
a list to be used to calculate the ROC curve.

statmat.pearson

matrix with pearson correlation test

statmat.dcov

matrix with distance covariance test
```

4 projecre

See Also

```
greg, roc, projcov
```

Examples

```
library(splines)
set.seed(0)
p = 5;
n = 100;
tmp=runif(p-1,1,3)
s=c(0,cumsum(tmp));
s1=matrix(s,p,p)
cov.mat.true=exp(-abs(s1-t(s1)))
prec.mat.true=solve(cov.mat.true);
a=matrix(rnorm(p*n),n,p)
data.sa=a%*%chol(cov.mat.true);
true.graph = outer(1:p,1:p,f<-function(x,y){(abs(x-y)==1)})
methodlist = c('lasso','sam')
fit = vector(mode='list', length=2)
info = vector(mode='list', length=2)
auc = NULL
for(i in 1:2){
method = methodlist[i]
fit[[i]] = pgraph(data.sa, method = method)
info[[i]] = roc(fit[[i]]$statmat.pearson, true.graph)
auc[i] = sum(-diff(info[[i]][,1])*info[[i]][-1,2])
  cat(method, ': auc=', auc[i],'\n')
```

projcore

Calculate the Projected matrix given factors

Description

projecre calculate the projected matrix given factors.

Usage

```
projcore(
   x,
   b,
   method = c("lasso", "sam", "ols"),
   one.SE = TRUE,
   refit = TRUE,
   randSeed = 0
)
```

projcov 5

Arguments

X	first vector
b	factor matrix
method	projection method. Default = 'lasso'.
one.SE	whether to use the 1se rule for glmnet. Default = TRUE.
refit	whether to refit the selected model. Default = TRUE.
randSeed	the random seed for the program. Default $= 0$.

Value

eps the residual matrix after projection

See Also

```
greg, roc, pgraph
```

projcov

Calculate the Projected Covariance of Two Vectors

Description

projcov calculate the projected distance covariance of two vectors given common factors.

Usage

```
projcov(
    x,
    y,
    b,
    method = c("lasso", "sam", "ols"),
    one.SE = TRUE,
    refit = TRUE,
    R = 199,
    randSeed = 0,
    normalized = FALSE
)
```

Arguments

```
x first vector
y second vector
b factor matrix
method projection method. Default = 'lasso'.
one.SE whether to use the 1se rule for glmnet. Default = TRUE.
```

6 roc

```
refit whether to refit the selected model. Default = TRUE.

R number of random permutations for the test.

randSeed the random seed for the program. Default = 0.
```

normalized whether to normalized by S2. Default = FALSE.

Value

```
a list.
```

test.pearson pearson correlection test statistic
test.dcov distance covariance test statistic
xeps residual of projection of x on b
yeps residual of projection of y on b

See Also

```
greg, roc, pgraph
```

Examples

```
library(splines)
set.seed(0)
K = 3
n = 100
b = matrix(rnorm(K*n),n,K)
bx = 1:3
by = c(1,2,2)
x = b%*%bx+rnorm(n)
y = b%*%by+rnorm(n)
fit1 = projcov(x, y, b, method = 'lasso')
fit2 = projcov(x, y, b, method = 'sam')
```

roc

Compute the Projected Graph

Description

roc calculate the fpr and tpr for the roc curve

Usage

```
roc(a, a0)
```

Arguments

```
a p * p estimated grapha0 p * p true graph
```

roc 7

Value

a list.

tpr tpr sequence fpr fpr sequence

Index

```
greg, 2, 4–6

pgraph, 2, 3, 5, 6

projcore, 4

projcov, 2, 4, 5

roc, 2, 4–6, 6
```