Mémoire de Stage de M2

Phase Géométrique de Signal Multivarié et puis c'est déjà pas mal

Grégoire Doat

Encadré par Nicolas LE BIHAN, Michel BERTHIER, et al.

TABLES DES MATRIÈRES

		des notations	1 2
	PA	RTIE I — PHASE ET FRÉQUENCE INSTANTANÉE D'UN SIGNAL	3
I	_	Paramètre instantanée dans la cas complexe	3
	1.1 1.2	Quelques définitions	3 4
II	_	Transformée en signal analytique	5
	2.1 2.2	Le problème de signaux réels et comment le résoudre	5
Ш	ī —	Généralisation aux signaux multivariés	9
		Phase et fréquence instantanée de signal multivarié	9
Aı		exe A Un bon moment	13 13 14
\mathbf{V}		Généralisation aux signaux multivariés	16
		Phase et fréquence instantanée de signal multivarié	16
	5.2	Cas bivarié et trivarié	
T 7 T			
VI	6.1	Notes sur l'approche Géométrique	
		Notes sur l'approche à avoir	24
		La vision de Bohm [1, fig. 4.3]	
	6.4	La vision Mukunda & Simon [8, 9]	26
VI	I —	Intuition sur les fondamentaux	
	7.1	Réflexion autour du produit hermitien	27
VI	Ι Ι —	Description des signaux multivariés	2 8
	8.1	Cas bivarié et trivarié	28 28 29
	8.2	Mon blabla	30
IX	_	Vrac	31
	9.1	Random stuff ready pour rédac (+labeled)	31
	9.2 9.3	Bilan des formules	32 32

Introduction

La phase géométrique fait partie de ces concepts qui apparaissent régulièrement en physique, mais qui demande énormément de prérequis pour être expliqué proprement. Pour l'introduire rapidement, la phase géométrique à l'instant t d'un signal complexe ψ est donné par :

$$\Phi_{\text{geo}}(\psi, t_0, t) = \arg \langle \psi(t), \psi(t_0) \rangle + \Im m \int_{t_0}^t \frac{\langle \psi(s), \dot{\psi}(s) \rangle}{\|\psi(s)\|^2} ds$$

Ce qui rend cette phase si intéressante c'est qu'elle est invariante par transformation de jauge, c'est-à-dire invariante par toute transformation du type :

$$\psi(t) \rightsquigarrow \psi'(t) = e^{i\alpha(t)}\psi(t)$$

Cette propriété rend la phase Φ_{geo} intrinsèquement liée à la trajectoire que prend la projection $[\psi] \in \mathbb{PC}^{n-1}$ de ψ dans l'espace complexe. En d'autre terme à la géométrie de l'espace projectif \mathbb{PC}^n , d'où son nom.

Cela étant dit, ces résultats ont toujours été décrit, à notre connaissant, dans le cadre de système dynamique régis par une EDP (généralement Schrödinger). L'objectif de ce mémoire sera donc de décrire ce phénomène pour un signal quelconque et ceux avec une approche géométrique.

Cela demandera de faire appelle, entre autre, à des outils de variété différentielle complexe et fibrée principale ; et comme il serait inapproprié de considérer que le lecteur a toutes les bases nécessaire sur le sujet, des **nombreuses** annexes seront dédiées aux mathématiques utile à cette fin.

... sûrement plus de blabla pour détailler le plan du mémoire...

INDEXE DES NOTATIONS

Objet/fonctions	Notations
Conjugué complexe	\overline{x}
Transposée (resp. adjoint) de la matrice A	tA (resp. A^{\dagger})
Distribution de Dirac	δ
Indicatrice de E	$\mathbb{1}_E$
Fonction signe	sign(x)
Transformée de Fourier	$\mathcal{F}[x], \hat{x}$
Transformée en SA	$\mathcal{A}[x], x_+$
Transformée de Hilbert	$\mathcal{H}\left[x\right]$
Produit hermitien (resp. scalaire)	$\langle x y \rangle$ (resp. $\langle x, y \rangle$)
Espérance et variance de f suivant ρ	$\mathbb{E}_{\rho}[f(t)], \mathbb{V}_{\rho}[f(t)]$
Espace des fonctions p.p. de puissance p^{eme} intégrable à valeur de E dans F	$L^p(E,F)$
Support d'une fonction f	$supp f = \{x \in \mathbb{R} \mid f(x) \neq 0\}$
Matrice de rotation de paramètre Θ (resp. d'angle θ en dimension 2)	R_{Θ} (resp. R_{θ})
Ensemble des matrices symétrique (resp. anti-symétrique)	$S_n(\mathbb{R})$ (resp. $A_n(\mathbb{R})$)

PARTIE I

Phase et Fréquence instantanée d'un Signal

Les deux premières section de cette partie sont fortement inspirées des propos de COHEN dans son livre Time frequency analysis [3], chapitre 1 & 2.

I — Paramètre instantanée dans la cas complexe

1.1 Quelques définitions

Soit x un signal complexe dont \hat{x} ou $\mathcal{F}[x]$ est la transformée de Fourier (dont on supposera quelle existe, ici au moins $x \in L^2(\mathbb{R}, \mathbb{C})$):

$$x : \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ x & \longmapsto & x(t) \end{array} \qquad \qquad \mathcal{F}[x] = \hat{x} : \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ \nu & \longmapsto & \int_{\mathbb{D}} x(t)e^{-2\pi i\nu t}dt \end{array}$$

Avant de parlé de fréquences instantanée, il nous faut introduire quelle que définition afin de pouvoir proprement argumenter sa définition. Tout d'abord, à x sont associées deux densités d'énergie :

DÉFINITION 1 (DENSITÉS D'ÉNERGIE) — La densité d'énergie (resp. spectrale) du signal x, noté ρ (resp. ϱ), est définie comme :

$$\rho: \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R}^+ \\ t & \longmapsto & \left| x(t) \right|^2 \end{array} \qquad \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R}^+ \\ \nu & \longmapsto & \left| \hat{x}(\nu) \right|^2 \end{array} \qquad (1.1)$$

La transformée de Fourier étant une isométrie de l'espace $L^2(\mathbb{R},\mathbb{C})$, l'énergie totale $E(x) = ||x||_{L^2}$ du signal est indépendante de la représentation de ce dernier (temporelle ou spectrale) :

$$E(x) := \int_{\mathbb{D}} \rho(t)dt = \int_{\mathbb{D}} \varrho(\nu)d\nu \tag{1.2}$$

La première densité, $\rho(t)$, correspond à la puissance (énergie par unité de temps) déployée pour émettre le signal à l'instant t et la seconde, $\varrho(\nu)$, à l'énergie associée à la fréquence ν sur tout le signal. Par exemple, si $x(t) = e^{2\pi i \nu_0 t}$, alors $\hat{x}(t) = \delta(x - \nu_0)$ et on a les densités :

$$\rho(t) = 1 \qquad \qquad \varrho(\nu) = \delta(\nu - \nu_0)$$

On comprend alors que, du point de vu temporel, le signal a été émis avec une puissance régulière, mais le fait que ϱ soit un dirac indique que toute l'énergie du signal est concentré en une unique fréquence ν_0 .

Les espérances et écart-type on également une interprétation physique :

Définition 2 (Durée et largeur de bande) — L'espérance ces densités, pour peu qu'elles existent, sont notées :

$$\mathbb{E}_{\rho}[t] := \int_{\mathbb{R}} t |x(t)|^2 dt \qquad \qquad \mathbb{E}_{\varrho}[\nu] := \int_{\mathbb{R}} \nu |\hat{x}(\nu)|^2 d\nu$$

Si un signal est localisé temporellement, alors la première espérance/moyenne donne une idée de l'instant d'émission du signal. Si *a contrario*, le signal est localisé en fréquence, la seconde espérance peut s'interpréter comme la fréquence "dominante" du le signal, ou plus généralement comme sa *fréquence moyenne*.

En particulier, et ce sera important pour la suite, dans le cas des signaux réels, l'espérance de ϱ est toujours nulles.

On note de même les variances (toujours à condition d'existence) :

$$\mathbb{V}_{\rho}[t] := \mathbb{E}_{\rho}\left[\left(t - \mathbb{E}_{\rho}[t]\right)^{2}\right] \qquad \mathbb{V}_{\varrho}[\nu] := \mathbb{E}_{\varrho}\left[\left(\nu - \mathbb{E}_{\varrho}[\nu]\right)^{2}\right] \\
= \mathbb{E}_{\rho}\left[t^{2}\right] - \mathbb{E}_{\rho}[t]^{2} \qquad = \mathbb{E}_{\varrho}\left[\nu^{2}\right] - \mathbb{E}_{\varrho}[\nu]^{2}$$

Les écart-types associés sont plus facilement interprétable. Le premier est appelé durée d'émission du signal, puisqu'il renseigne l'étalement temporelle du signal; et le second largeur de bande (fréquentielle) puisque, lui, renseigne l'étalement fréquentielle.

Ces interprétations reste limité à des cas particulier. Par exemple, et nous y reviendrons, si le support de \hat{x} n'est pas connexe, alors la fréquence moyenne devient beaucoup moins pertinente parce qu'elle à toutes les chances de donnée une fréquence qu'il n'est pas dans le support de \hat{x} . Idem pour la largeur de bande qui, dans ce cas, aura plutôt tendance à donnée la distance entre la première et la dernière composante connexe.

1.2 Amplitude, phase et fréquence instantanée

Dans le cas des signaux purement complexe, sont très naturellement définit les notions d'amplitude et de phase instantanée puisqu'elles correspondent respectivement au module et à l'argument de x à l'instant t. Dans le cas le plus simple, où $x(t) = e^{2\pi i \nu t + \varphi}$, la fréquence ν du signal peut s'écrire comme la dérivée :

$$\nu = \frac{1}{2\pi} \frac{d}{dt} (2\pi\nu t + \varphi) = \frac{1}{2\pi} \frac{d}{dt} \arg x(t)$$

Cela invite poser les définitions suivantes :

DÉFINITION 3 — Étant donnée un signal $x: t \mapsto a(t)e^{i\phi(t)}$, on appelle a l'amplitude instantanée du signal x, ϕ sa phase instantanée et respectivement ϕ' et $1/2\pi\phi'$ son impulsion et fréquence instantanée.

Pour mieux justifier ces choix de définition, considérons la proposition suivante :

Proposition 1 — Si ϱ admet une espérance, que x est dérivable et que l'on note : alors a et ϕ hérite des régularité de x et on a l'égalité (cf. sous-section A pour une démonstration) :

$$\mathbb{E}_{\varrho}\left[\nu\right] = \frac{1}{2\pi} \int_{\mathbb{R}} \phi'(t)\rho(t)dt = \frac{1}{2\pi} \mathbb{E}_{\varrho}\left[\phi'\right]$$
 (1.3)

De même pour la variance de ϱ :

$$\mathbb{V}_{\varrho}\left[\nu\right] = \frac{1}{4\pi^{2}} \mathbb{V}_{\varrho}\left[\left(\ln a\right)'\right] + \frac{1}{4\pi^{2}} \mathbb{V}_{\varrho}\left[\phi'\right]$$
(1.4)

La première égalité (1.3) montre que la moyenne (temporelle) de la fréquence instantanée est égale à la fréquence moyenne (au sens de Fourier). Exprimer ainsi cela parait évident, ce qui est tout à fait rassurant.

Pour la seconde (1.4), on constate deux composantes (qui, par ailleurs, sont des variances purement temporelle). La première ne porte que sur l'amplitude du signal, et inversement, l'amplitude n'apparaît que sur la première. Il donc cohérent que le terme restant, *i.e.* là où apparaît ϕ' , porte l'information fréquentielle du signal.

II — Transformée en signal analytique

Maintenant que la fréquence instantanée est proprement définie pour les signaux complexes, il nous faut adresser le cas réel.

2.1 Le problème de signaux réels et comment le résoudre

D'abord, du point de vue de l'analyse temps-fréquence, les signaux réels sont problématiques car leur spectre sont à symétrie hermitienne et leur densité spectrale symétrique :

$$\forall t \in \mathbb{R}, \ x(t) \in \mathbb{R} \quad \Longrightarrow \quad \forall \nu \in \mathbb{R}, \ \hat{x}(-\nu) = \overline{\hat{x}(\nu)} \\ \Longrightarrow \quad \forall \nu \in \mathbb{R}, \ \varrho(-\nu) = \varrho(\nu)$$

Comme mentionné plus haut, cela implique que la fréquence moyenne de tout signal réel est nulle (intégrale d'une fonction impaire). Ce qui, en plus de ne pas être très instructif, n'est pas cohérent avec l'interprétation physique qu'on voudrait faire cette moyenne. Par exemple, si ϱ prend la forme ci-dessous (fig. 1.1), alors il serait plus naturelle de demander à ce que la fréquence moyenne se trouve autour de 1,4. De même, la largeur de bande spectrale ne correspond plus à l'étalement de chaque gaussienne, mais plutôt à leur espacement.

fig. 1.1 — Exemple de densité spectrale d'un signal réel ESP A 1,4

Même problème avec la covariance : sachant l'égalité des deux notions de fréquences moyenne (équation (1.3), proposition (1.3)), on peut définir la covariance temps-fréquence d'un signal (x) par :

$$Cov(x) := Cov(t, \phi'(t)) = \mathbb{E}_{\rho} [t\phi'(t)] - \mathbb{E}_{\rho} [t] \mathbb{E}_{\rho} [\phi'(t)]$$
$$= \mathbb{E}_{\rho} [t\phi'(t)] - \mathbb{E}_{\rho} [t] \mathbb{E}_{\rho} [\nu]$$

Ce coefficient est sensé mesurer une corrélation entre l'évolution d'un signal au cours du temps avec ses fréquences. S'il est réel, alors Cov(x) sera toujours nulle ; de là à en conclure que la fréquence instantanée de n'importe quel signal (réel) est toujours décorrélée du temps serait, pour le moins, insatisfaisant.

Pour résoudre le problème, une méthode consiste à construire un nouveau signal $\mathcal{A}[x]$ en supprimant les fréquences négatives de x:

$$\mathcal{F}[\mathcal{A}[x]] = 2\mathbb{1}_{\mathbb{R}^+}\hat{x}$$

où $\mathbb{1}_E$ est la fonction indicatrice sur l'ensemble E et où le facteur 2 assure la conservation de l'énergie du signal. Cela mène à la définition :

Définition 4 (Transformée de Hilbert et en SA) — On appelle transformée de Hilbert de

$$\mathcal{H}[x]: \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ \mathcal{H}[x]: & t & \longmapsto \frac{1}{\pi} \int_{\mathbb{R}} \frac{x(s)}{t-s} ds \end{array}$$
 (1.5)

où l'intégrale barré représente la valeur principale de Cauchy (voir sous-section B pour plus de détail) :

$$\int_{\mathbb{R}} \frac{x(s)}{t-s} ds := \lim_{\varepsilon \longrightarrow 0^+} \int_{-\infty}^{-\varepsilon} \frac{\varphi(t)}{t} dt + \int_{+\varepsilon}^{+\infty} \frac{\varphi(t)}{t} dt$$

Avec, on définit la transformée en signal analytique (SA) de tout signal x comme l'unique application $\mathcal{A}\left[x\right]$ telle que $\,\mathcal{F}\left[\mathcal{A}\left[x\right]\right]=2\mathbbm{1}_{\mathbb{R}^{+}}\hat{x}.$ Elle est donnée par la formule :

$$A[x]: \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ t & \longmapsto & x(t) + i\mathcal{H}[x](t) \end{array}$$
 (1.6)

Plus généralement, tout signal dont le spectre est à support dans \mathbb{R}^+ sera dit analytique.

Pour mieux comprendre ce que fait la transformation en signal analytique, revenons sur la notion de fréquence instantanée pour les signaux réels.

2.2 Interprétabilité de la transformée en SA

Pour définir l'amplitude et la phase instantanée d'un signaux réel, on par a nouveau du cas le plus simple. Si x est un signal pur, il va s'écrire :

$$x(t) = a\cos(2\pi\nu t + \varphi), \qquad a, \nu, \varphi \in \mathbb{R}$$

Pour généraliser cette écriture, il suffit donc de poser les amplitude et phase instantanée a et ϕ telles que :

$$x(t) = a(t)\cos(\phi(t))$$

Contrairement au cas complexe, ici la pair (a, ϕ) n'est pas unique et pour contraindre ce choix, on s'appuie sur la transformée $\mathcal{A}[x]$. Sachant que, dans le cas $x(t) \in \mathbb{R}$, la transformée de Hilbert est à valeur dans \mathbb{R} (intégrale d'une fonction réelle), on a :

$$\mathcal{A}[x](t) = a(t)e^{i\phi(t)} \implies \begin{cases} x(t) = \Re e\mathcal{A}[x] = a(t)\cos\phi(t) \\ \mathcal{H}[x](t) = \Im m\mathcal{A}[x] = a(t)\sin\phi(t) \end{cases}$$

D'où la définition :

Définition 5 (Amplitude et phase instantanée) — L'amplitude instantanée a_x et la phase instantanée ϕ_x de tout signal x réel sont définies comme étant respectivement l'amplitude et la phase

$$a_x = |\mathcal{A}[x]|$$
 $\phi_x = \arg(\mathcal{A}[x])$ (1.7)

 $a_x = \left| \mathcal{A} \left[x \right] \right| \qquad \qquad \phi_x = \arg \left(\mathcal{A} \left[x \right] \right)$ De même, les *impulsion* et *fréquence instantanée* sont données par ϕ_x' et $^{1}/_{2\pi}\phi_x'$.

Si un signal est présenté sous la forme $x = a \cos \phi$, rien n'implique que a et ϕ correspondent bel et bien à l'amplitude et la phase instantanée. Si ce n'est pas le cas, c'est que cette décomposition n'est "pas la bonne", en cela qu'elles ne s'interprètent pas comme l'on aimerait.

Aussi, quand bien même x peut toujours être écrit comme partie réel de sa transformé en SA, cette écriture

fig. 1.2 — Représentation graphique du signal x (rouge) avec $\nu_1 = 3$ et $\nu_2 = 0.1$. Sur l'image de gauche, avec signaux de fréquences pures (bleu et vert). Sur l'image de droite, avec son amplitude (bleu) et sa phase instantanée (vert). Les discontinuités de la phase sont dû à l'arrondi à 2π près de l'argument de $\mathcal{A}[x_1]$ et à la façon dont il est calculé lorsque le signal s'annule (mise à 0). Voir ici pour un graphique dynamique.

n'est nécessairement toujours satisfaisante. Pour le comprendre, détaillons le cas où x s'écrit comme produit de deux signaux pures (fig. 1.2):

$$x_1(t) = \cos(2\pi\nu_1 t)\cos(2\pi\nu_2 t)$$

On montre sans mal que si $\nu_1 \geqslant \nu_2$, alors la transformée en SA de x_1 s'écrit :

$$\mathcal{A}\left[x_1\right] = \cos\left(2\pi\nu_2 t\right) e^{2\beta\pi\nu_1 t}$$

Le signal $\mathcal{A}[x_1]$ n'est ici pas sous forme exponentielle à proprement parler puisque le cosinus peut être négatif (pour s'y ramener, il suffit de passer le cos en valeur absolue et d'ajouter π à l'argument lorsque nécessaire) mais l'avantage de cette forme est qu'elle fait clairement apparaître les fréquences $\nu_{1,2}$. En particulier, la fréquence instantanée du signal est la plus grandes des deux fréquences ν_1 et ν_2 . La plus petite, elle, se retrouve dans l'amplitude.

Ce résultat est rassurant en cela qu'il est plus naturel de voir le cosinus de basse fréquence comme modulant celui de haute fréquence que l'inverse comme on le voit sur la première image de la figure 1.2.

Aussi, en mettant les hautes fréquences du signal dans la fréquence instantanée, on s'assure de limiter les variations de l'amplitude. Cela apporte bien plus de contrainte en terme de décomposition (a_{x_1}, ϕ_{x_1}) , en cela qui si l'inverse étant vrai, alors toute les fréquences pourrait être envoyé dans l'amplitude, ce qui laisserait la phase invariante.

Cela étant dit, lorsque l'on fait varier ν_1 et ν_2 , le résultat n'est pas toujours si intuitif. C'est notamment le cas lorsque les deux deviennent de plus en plus proche :

fig. 1.3 — Idem que pour la figure 1.2 précédente, avec cette fois $\nu_1 = 1.5$ et $\nu_2 = 1.3$.

Pour comprendre pourquoi l'amplitude ne fait pas ce qu'on attendrait d'elle, est introduit le théorème de Bedrosian :

Théorème de Bedrosian (1) — Dans sa formulation la plus générale, le théorème de Bedrosian énonce que si deux fonctions $f, g \in L^2(\mathbb{R})$ sont telles l'une des trois assertions suivantes est vraie :

•
$$\exists \lambda \in \mathbb{R}^+ \mid \operatorname{supp} \hat{f} \subset [-\lambda, +\infty[, \operatorname{supp} \hat{g} \subset [\lambda, +\infty[$$

 $^{^{1}\}hat{x}_{1}$ est donné par 4 Diracs, en ne gardant que ce non nul sur \mathbb{R}^{+} on obtient le spectre de $\mathcal{A}[x_{1}]$ et il reste plus qu'à inverser la transformée de Fourier.

- $\exists \lambda \in \mathbb{R}^+ \mid \operatorname{supp} \hat{f} \subset]-\infty, \lambda], \operatorname{supp} \hat{g} \subset]-\infty, -\lambda]$
- $\exists (\lambda_1, \lambda_2) \in \mathbb{R}^+ \times \mathbb{R}^+ \setminus \{(0, 0)\} \mid \operatorname{supp} \hat{f} \subset [-\lambda_1, \lambda_2], \operatorname{supp} \hat{g} \subset \mathbb{R} \setminus [-\lambda_2, \lambda_1]$

alors la transformée de Hilbert de leur produit s'écrit (voir [11] pour une démonstration) :

$$\mathcal{H}\left[fg\right] = f\mathcal{H}\left[g\right] \tag{1.8}$$

Dans le cas d'un signal réel, suivant la définition 5 on peut écrire $x = a_x \cos \phi_x$. Comme a_x et $\cos \phi_x$ sont réelles, seule la troisième condition du théorème de Bedrosian peut être satisfaite pour peu que $\lambda_1 = \lambda_2$. Ainsi :

COROLLAIRE 1.1 — Toujours avec les même notations, si $a_x \in L^2(\mathbb{R})$, $\cos \phi_x \in L^2(\mathbb{R})$ et qu'il existe $\lambda \in \mathbb{R}^{+_*}$ tel que :

$$\operatorname{supp} \mathcal{F}[a_x] \subset [-\lambda, \lambda], \quad \operatorname{supp} \mathcal{F}[\cos \phi_x] \subset \mathbb{R} \setminus [-\lambda, \lambda]$$
(1.9)

Alors on a:

$$\mathcal{H}[x] = a_x \mathcal{H}[\cos \phi_x]$$
 et si $a_x(t) \neq 0$, $\mathcal{H}[\cos \phi_x](t) = \sin \phi_x(t)$ (1.10)

Pour interpréter ce corollaire, prenons un autre exemple : $x_2(t) = a(t)\cos(2\pi\nu_0 t)$. Sa transformé de Fourier est donnée par :

$$\hat{x}_2(\nu) = \hat{a}(\nu) * \frac{1}{2} \Big(\delta(\nu - \nu_0) + \delta(\nu + \nu_0) \Big)$$
$$= \frac{1}{2} \Big(\hat{a}(\nu + \nu_0) + \hat{a}(\nu - \nu_0) \Big)$$

Graphiquement, la transformé de Fourier de x_2 duplique le graphe de \hat{a} en $\pm \nu_0$ et somme les deux. La condition (1.9) du corollaire 1.1 demande alors que ν_0 soit choisie de telle sorte que :

$$\operatorname{supp} \mathcal{F}[a] \subset [-\nu_0, \nu_0]$$

C'est-à-dire qu'il n'y ait pas de chevauchement entre les deux courbes $\Gamma_{\pm}: \nu \longmapsto \hat{a}(\nu \mp \nu_0)$ (voir fig. 1.4 ci-dessous). Moralement, cela assure qu'en ne prenant que la partie positive du spectre de x_2 , l'on ne ramène pas avec une partie de $\hat{a}(\nu + \nu_0)$. Quant bien même cette explication est simpliste puisqu'ici ϕ est linaire, on peut voir que le phénomène est finalement très proche de celui d'aliasing.

fig. 1.4 — Sur les deux graphiques sont représentés en vert \hat{a} et en violet \hat{x}_2 . Dans le premier cas l'hypothèse de Bedrosian et respectée mais pas dans le second.

Pour revenir sur l'exemple x_1 précédent, dans la seconde figure 1.3, l'amplitude ne colle plus à l'interprétation que l'on voudrait justement parce que la condition de Bedrosian n'est plus respecter (à savoir $\nu_1 \ge 2\nu_2$). Formellement, JE COMPRENDS TOUJOURS PAS COMMENT CA POSE PROBLEME DANS LA DEFINITON / INTERPRETATION DE $\mathcal{A}[x]$! HHHHHHH!!!

III — Généralisation aux signaux multivariés

Maintenant que les paramètres instantanée sont proprement définie pour les cas réel et complexe, qu'en est il des signaux multivariés :

DÉFINITION 6 (SIGNAL MULTIVARIÉ) — Un signal multivarié, ou n-varié, est un vecteur composé de $n \in \mathbb{N}^*$ signaux x_i . Pour n=2 (resp.= 3), on parle de signal bivari (resp. trivarié). Dans la continuité de ce qui à été dit dans lplus tôt, dans le cas des signaux réels, on s'intéressera au vecteur composé des transformées en SA (eq. (1.6), déf. 4) des x_i . Au moins dans toute cette section, un tel signal sera noté :

$$\begin{array}{ccc}
\mathbb{R} & \longrightarrow & \mathbb{C}^n \\
x_+(t) & : & & \downarrow & \begin{pmatrix} \mathcal{A}[x_1] \\ \mathcal{A}[x_2] \\ \vdots \\ \mathcal{A}[x_n] \end{pmatrix}$$

On supposera que chaque composante x_i de x aura autant de régularité et de condition d'intégrabilité que nécessaire (il vaudra préciser lesquelles à un moment).

Le fait que x soit à valeur dans \mathbb{C}^n impose un choix naturel de d'amplitude instantanée : sa norme. L'on notera alors dans tout la suite (sauf précision) :

$$\forall t \in \mathbb{R}, \qquad \boldsymbol{x}(t) = a(t) \begin{pmatrix} a_1(t)e^{i\phi_1(t)} \\ a_2(t)e^{i\phi_2(t)} \\ \vdots \\ a_n(t)e^{i\phi_n(t)} \end{pmatrix} \quad \text{avec} \quad \left\| (a_i)_{1 \leqslant i \leqslant n} \right\| = 1, \quad a \geqslant 0$$

Le choix de la phase instantanée, en revanche, n'est pas plus commode. Si l'on cherche à écrire x sous la forme :

$$a(t)e^{i\phi(t)} \begin{pmatrix} a_1(t)e^{i\alpha_1(t)} \\ a_2(t)e^{i\alpha_2(t)} \\ \vdots \\ a_n(t)e^{i\alpha_n(t)} \end{pmatrix}$$

alors n'importe quel choix de ϕ est valable, il suffit que $\alpha_i = \phi_i - \phi$.

3.1 Phase et fréquence instantanée de signal multivarié

Afin de contraindre ce choix, on s'inspire propriétés de la phase instantanée vu plus tôt pour en déduire deux approches :

- D'une part, l'espérance de la fréquence instantanée (ici vu comme dérivée à 2π près de la phase²) doit donnée la fréquence moyenne au sens de Fourier, eq. (1.3).
- D'autre part, les conditions d'interprétation (1.9) de la décomposition (a_x, ϕ_x) , corollaire 1.1, exige que les hautes fréquences du signal se retrouve dans la phase.

Pour cela on introduit les notations utiles au cas multivarié :

²La pertinence de cette définition dans le cas multivarié sera discuté plus loin... or is it ? (si oui, dis cref où)

DÉFINITION 7 (DENSITÉ D'ÉNERGIE) — Étant donné un signal multivarié $\boldsymbol{x}=(x_i)_{1\leqslant i\leqslant n}$, les densités d'énergie de chaque composante x_i sont notées :

$$\rho_{i} : \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R}^{+} & & \mathbb{R} & \longrightarrow & \mathbb{R}^{+} \\ t & \longmapsto & \left| x_{i}(t) \right|^{2} = a(t)^{2} a_{i}(t)^{2} & & \varrho_{i} : \\ & & \nu & \longmapsto & \left| \hat{x}_{i}(\nu) \right|^{2} \end{array}$$

$$(1.11)$$

Et les densités d'énergies associées au signal \boldsymbol{x} complet :

$$\mathbb{R} \longrightarrow \mathbb{R}^{+} \qquad \mathbb{R} \longrightarrow \mathbb{R}^{+}$$

$$\rho : \qquad t \longmapsto \|\mathbf{x}(t)\|^{2} = \sum_{i=1}^{n} \rho_{i}(t) \qquad \qquad \varrho : \qquad \nu \longmapsto \|\hat{\mathbf{x}}(\nu)\|^{2} = \sum_{i=1}^{n} \varrho_{i}(t) \qquad (1.12)$$

La première approche, inspiré de [2] consiste donc de reprendre le "calculation trick" (1.18), pour en déduire la fréquence moyenne

$$\mathbb{E}_{\varrho} \left[\nu \right] = \int_{\mathbb{R}} \nu \varrho(\nu) d\nu = \int_{\mathbb{R}} \nu \sum_{i=1}^{n} \varrho_{i}(\nu) d\nu$$

$$= \sum_{i=1}^{n} \mathbb{E}_{\varrho_{i}} \left[\nu \right]$$

$$= \sum_{i=1}^{n} \frac{1}{2\pi} \int_{\mathbb{R}} \phi'_{i}(t) \rho_{i}(t) dt$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} a(t)^{2} \sum_{i=1}^{n} \phi'_{i}(t) a_{i}(t)^{2} dt$$

$$= \frac{1}{2\pi} \mathbb{E}_{\varrho} \left[\sum_{i=1}^{n} \phi'_{i} a_{i}^{2} \right]$$

Ce qui mène à une première (potentielle) définition de la phase instantanée :

$$\phi = \int \sum_{i=1}^{n} \phi_i'(s) a_i(s)^2 ds = \sum_{i=1}^{n} \int \phi_i'(s) a_i(s)^2 ds$$
 (1.13)

La seconde approche, fortement inspirée par les travaux de Lilly & Olhede [7], se base sur l'idée de séparation haute/basse fréquences du signal \boldsymbol{x} . Pour cela, l'on commence par faire apparaître la phase ϕ — pour l'instant inconnue — en écrivant \boldsymbol{x} sous la forme :

$$\forall t \in \mathbb{R}, \qquad \boldsymbol{x}(t) = e^{i\phi(t)}e^{-i\phi(t)}\boldsymbol{x}(t) := e^{i\phi(t)}\boldsymbol{y}(t)$$

Si ϕ est bien choisie, alors \boldsymbol{y} ne devrait contenir que les informations associées à l'amplitude et la polarisation de \boldsymbol{x} . Or, la phase doit contenir les hautes fréquences du signal. Pour s'en assurer on demande, à l'inverse, que les basses fréquences du signal soient données par \boldsymbol{y} en limitant ces variations. Concrètement, ϕ doit être choisie de sorte à minimiser la dérivée $\dot{\boldsymbol{y}}'$:

$$\forall t \in \mathbb{R}, \qquad \phi(t) = \underset{\theta(t)}{\operatorname{argmin}} \left\| \dot{\boldsymbol{y}}(t) \right\|_{2}^{2} = \underset{\theta(t)}{\operatorname{argmin}} \left\| e^{-i\theta(t)} \left(\dot{\boldsymbol{x}}(t) - i\theta(t)' \boldsymbol{x}(t) \right) \right\|_{2}^{2} = \underset{\theta(t)}{\operatorname{argmin}} \left\| \dot{\boldsymbol{x}}(t) - i\theta'(t) \boldsymbol{x}(t) \right\|_{2}^{2}$$

La contrainte ne dépendant que de la dérivée $\theta',$ on se ramène à :

$$\min_{\theta(t)} \|\dot{\boldsymbol{y}}(t)\|_2^2 = \min_{\theta'(t)} \|\dot{\boldsymbol{x}}(t) - \theta'(t)\boldsymbol{x}(t)\|_2^2$$

En rappelant que $\frac{d}{dx} \|f(x)\|_2^2 = 2\Re e \langle f(x), f'(x) \rangle$, il vient que ce minimum³ est atteint par $\phi'(t)$ à condition

 $^{^3}L$ 'extremum obtenu est l'unique minimum globale puisque $t \longmapsto \|at+b\|^2$ est strictement convexe pour $a \neq 0$.

que:

$$\frac{d}{d\phi'} \|\dot{\boldsymbol{x}} - i\phi'\boldsymbol{x}\|_{2}^{2} = 0 \iff 0 = 2\Re e \left\langle \dot{\boldsymbol{x}} - i\phi'\boldsymbol{x}, \frac{d}{d\phi'} (\dot{\boldsymbol{x}} - i\phi'\boldsymbol{x}) \right\rangle$$

$$= 2\Re e \left\langle \dot{\boldsymbol{x}} - i\phi'\boldsymbol{x}, -i\boldsymbol{x} \right\rangle$$

$$= 2\Re e \left(i\langle \dot{\boldsymbol{x}}, \boldsymbol{x} \rangle \right) + 2\phi' \Re e \langle \boldsymbol{x}, \boldsymbol{x} \rangle$$

$$= -2\Im \langle \dot{\boldsymbol{x}}, \boldsymbol{x} \rangle + 2\phi' \|\boldsymbol{x}\|_{2}^{2}$$

Ainsi:

$$\phi' = \frac{\Im m \langle \dot{\boldsymbol{x}}, \boldsymbol{x} \rangle}{\|\boldsymbol{x}\|_2^2} = \frac{-\Im m \langle \boldsymbol{x}, \dot{\boldsymbol{x}} \rangle}{\|\boldsymbol{x}\|_2^2} \qquad \text{et} \qquad \phi = -\Im m \int \frac{\langle \boldsymbol{x}(s), \dot{\boldsymbol{x}}(s) \rangle}{\|\boldsymbol{x}(s)\|^2} ds \qquad (1.14)$$

Ce qui, sous forme exponentiel, se réécrit :

$$-\Im m \frac{\langle \boldsymbol{x}(t), \dot{\boldsymbol{x}}(t) \rangle}{\|\boldsymbol{x}(t)\|^2} = -\Im m \frac{1}{a(t)^2} \sum_{i=1}^n a(t) a_i(t) e^{i\phi_i(t)} \overline{\left(\left(aa_i\right)'(t) + a(t)a_i(t)i\phi_i'(t)\right)} e^{i\phi_i(t)}$$

$$= -\Im m \frac{1}{a(t)^2} \sum_{i=1}^n a(t) a_i(t) \left(aa_i\right)'(t) - ia(t)^2 a_i(t)^2 \phi_i'(t)$$

$$= -\frac{1}{a(t)^2} \sum_{i=1}^n -a(t)^2 a_i(t)^2 \phi_i'(t)$$

$$= \sum_{i=1}^n a_i(t)^2 \phi_i'(t)$$

Soit la même expression que (1.25) obtenue par le premier raisonnement :

$$-\Im m \int \frac{\langle \boldsymbol{x}(s), \dot{\boldsymbol{x}}(s) \rangle}{\|\boldsymbol{x}(s)\|^2} ds = \int \sum_{i=1}^n a_i(s)^2 \phi_i'(s) = \sum_{i=1}^n \int a_i(s)^2 \phi_i'(s) ds$$

Cela entraı̂ne la définition :

DÉFINITION 8 (PHASE DYNALIQUE/INSTANTANÉE) — Étant donné un signal $x \in \mathcal{C}(\mathbb{R}, \mathbb{C}^n)$ quelconque, on appelle phase instantanée ou dynamique à l'instant t partant du t_0 , le réel :

$$\forall t_0, t \in \mathbb{R}, \quad \Phi_{\text{dyn}}(\boldsymbol{x}, t_0, t) := -\int_{t_0}^t \frac{\Im m \langle \boldsymbol{x}(s), \dot{\boldsymbol{x}}(s) \rangle}{\|\boldsymbol{x}(s)\|^2} ds = \sum_{i=1}^n \int_{t_0}^t a_i(s)^2 \phi_i'(s) ds$$
 (1.15)

On s'autorisera à omettre les paramètres de $\Phi_{\rm dyn}$ lorsque cela ne prête pas à confusion.

Le terme "dynamique" viens, entre autre, du fait que dans son cadre d'étude habituelle, la dérivée \dot{x} se voit remplacé par un hamiltonien hx, voir par exemple [1, sec. 2], [8, p. 215]. En particulier, en mécanique quantique, cet hamiltionien régie l'équation de Schödinger :

$$i\frac{d\psi(t)}{dt} = h\psi(t) \tag{1.16}$$

Sachant que x n'a aucune raison de suivre une telle équation dans notre cas, poser $h = i\frac{d}{dt}$ enlève toute contrainte. On retrouve ainsi, modulo un jeu de convention sur le produit hermitien, la formule (1.15) cidessus.

Notons enfin qu'une fois la phase dynamique "extraite" de x, le vecteur restant y n'a évidement pas de phase dynamique, ce qui se traduit par la formule :

3.2 Apparition de la phase géométrique — MEH

Pour rentre compte de la pertinence de cette expression, commençons par noter qu'il exsite une autre façon standard de définir calculer la phase d'un signal via la *phase totale* :

$$\Phi_{\text{tot}}(\boldsymbol{x}, t_0, t) := \arg \langle \boldsymbol{x}(t), \boldsymbol{x}(t_0) \rangle \tag{1.17}$$

Il n'est pas clair, dans un cadre générale comment pour quoi cela s'interprète bien comme une phase et c'est encore pire lors que l'on explicite ca valeur :

$$\Phi_{\text{tot}}(\boldsymbol{x}, t_0, t) = \arg \sum i = 1^n a_i(t) a_i(t_0) e^{i\phi(t) - \phi(t_0)}$$

et on reviendra dans la ?? suivante sur détaillons un cas particulier. Supposons que le signal x soit cyclique à une phase près. C'est-à-dire qu'entre les deux instant t_0 et t donnés, l'on ait la relation :

$$\exists \theta \in \mathbb{R} \mid \boldsymbol{x}(t) = e^{i\theta} \boldsymbol{x}(t_0)$$

Dès lors, la phase instantanée à l'instant t devrait être correspondre à θ et on peut l'écrire en fonction de x:

$$\operatorname{arg} \langle \boldsymbol{x}(t), \boldsymbol{x}(t_0) \rangle = \operatorname{arg} \langle e^{i\theta} \boldsymbol{x}(t_0), \boldsymbol{x}(t_0) \rangle = \theta$$

On pourrait alors s'attendre à avoir l'égalité :

$$\arg \langle \boldsymbol{x}(t), \boldsymbol{x}(t_0) \rangle = \theta = -\Im m \int_{t_0}^t \frac{\langle \boldsymbol{x}(s), \dot{\boldsymbol{x}}(s) \rangle}{\|\boldsymbol{x}(s)\|^2} ds$$

Or, si c'est vrai dans le cas univarié (i.e. n = 1), dès que $n \ge 2$, ce n'est plus le cas. Cette erreur, cette nouvelle phase ne peut pas être

COMPLÉMENT SUR L'ANALYSE TEMPS-FRÉQUENCE

Annexe A — Un bon moment...

Pour montrer les formules de la proposition 1, on commence par montrer ce que Cohen [3] appelle les :

PROPOSITION 2 ("CALCULATION TRICKS") — Si le signal est n fois dérivable et que la densité d'énergie spectrale associée ϱ admet un moment d'ordre n, alors ce moment est donnée par la formule :

$$\forall n \in \mathbb{N}, \qquad \mathbb{E}_{\varrho}\left[\nu^{n}\right] = \left(\frac{i}{2\pi}\right)^{n} \int_{\mathbb{R}} x(t) \frac{d^{n}}{dt^{n}} \overline{x(t)} dt = \left(\frac{i}{2\pi}\right)^{n} \left\langle x, \frac{d^{n}}{dt^{n}} x \right\rangle \tag{1.18}$$

Avec les hypothèses analogues, les moments de ρ s'écrivent :

$$\forall n \in \mathbb{N}, \qquad \mathbb{E}_{\rho}\left[t^{n}\right] = \left(\frac{1}{2i\pi}\right)^{n} \int_{\mathbb{R}} \hat{x}(\nu) \frac{d^{n}}{dt^{n}} \overline{\hat{x}(\nu)} dt = \left(\frac{1}{2i\pi}\right)^{n} \left\langle \hat{x}, \frac{d^{n}}{d\nu^{n}} \hat{x} \right\rangle$$
(1.19)

Démonstration de la proposition 2

À supposer que les intégrales existes et que le théorème de Fubini s'applique, on a $\forall n \in \mathbb{N}$:

$$\mathbb{E}_{\varrho} \left[\nu^{n} \right] = \int_{\mathbb{R}} \nu^{n} \varrho(\nu) d\nu = \int_{\mathbb{R}} \nu^{n} \hat{x}(\nu) \overline{\hat{x}(\nu)} d\nu$$

$$= \int_{\mathbb{R}} \nu^{n} \int_{\mathbb{R}} x(t) e^{-2i\pi\nu t} dt \int_{\mathbb{R}} \overline{x(t')} e^{2i\pi\nu t'} dt' d\nu$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} x(t) \overline{x(t')} \int_{\mathbb{R}} \nu^{n} e^{-2i\pi\nu(t-t')} d\nu dt dt'$$

Ici, on remarque que:

$$\begin{split} \nu^n e^{-2i\pi\nu(t-t')} &= \nu^{n-1} \frac{1}{-2i\pi} \frac{d}{dt} e^{-2i\pi\nu(t-t')} \\ &= \nu^{n-2} \frac{1}{(-2i\pi)^2} \frac{d^2}{dt^2} e^{-2i\pi\nu(t-t')} \\ &\vdots \\ &= \frac{1}{(-2i\pi)^n} \frac{d^n}{dt^n} e^{-2i\pi\nu(t-t')} \end{split}$$

Ce qui permet, en jouant sur les ordres d'intégrations et les propriétés du Dirac, d'obtenir :

$$\mathbb{E}_{\varrho} \left[\nu^{n} \right] = \int_{\mathbb{R}} \int_{\mathbb{R}} x(t) \overline{x(t')} \int_{\mathbb{R}} \nu^{n} e^{-2i\pi\nu(t-t')} d\nu \, dt \, dt'$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} x(t) \overline{x(t')} \int_{\mathbb{R}} \frac{1}{(-2i\pi)^{n}} \frac{d^{n}}{dt^{n}} e^{-2i\pi\nu(t-t')} d\nu \, dt \, dt'$$

$$= \frac{1}{(-2i\pi)^{n}} \int_{\mathbb{R}} \int_{\mathbb{R}} x(t) \overline{x(t')} \frac{d^{n}}{dt^{n}} \int_{\mathbb{R}} e^{-2i\pi\nu(t-t')} d\nu \, dt \, dt'$$

$$= \left(\frac{1}{-2i\pi}\right)^{n} \int_{\mathbb{R}} \int_{\mathbb{R}} x(t) \overline{x(t')} \frac{d^{n}}{dt^{n}} \mathcal{F}[1](t-t') dt \, dt'$$

$$= \left(\frac{i}{2\pi}\right)^{n} \int_{\mathbb{R}} \int_{\mathbb{R}} x(t) \overline{x(t')} \frac{d^{n}}{dt^{n}} \delta(t-t') dt \, dt'$$

$$= \left(\frac{i}{2\pi}\right)^{n} \int_{\mathbb{R}} x(t) \int_{\mathbb{R}} \overline{x(t')} \frac{d^{n}}{dt^{n}} \delta(t-t') dt' dt$$

$$= \left(\frac{i}{2\pi}\right)^{n} \int_{\mathbb{R}} x(t) \frac{d^{n}}{dt^{n}} \overline{x(t)} dt$$

Démonstration de la proposition 1

Avec le hypothèses de la proposition 2 précédente, on a :

$$\begin{split} \mathbb{E}_{\varrho}\left[\,\nu\,\right] &= \frac{i}{2\pi} \rho(t) \int_{\mathbb{R}} x(t) \overline{x'(t)} dt = \frac{i}{2\pi} \int_{\mathbb{R}} a(t) e^{i\phi(t)} \overline{\left(a'(t) e^{i\phi(t)} + ia(t) \phi'(t) e^{i\phi(t)}\right)} dt \\ &= \frac{i}{2\pi} \int_{\mathbb{R}} a(t) e^{i\phi(t)} \left(a'(t) e^{-i\phi(t)} - ia(t) \phi'(t) e^{-i\phi(t)}\right) dt \\ &= \frac{i}{2\pi} \int_{\mathbb{R}} a(t) \left(a'(t) - ia(t) \phi'(t)\right) dt \\ &= \frac{i}{2\pi} \int_{\mathbb{R}} a'(t) a(t) dt + \int_{\mathbb{R}} \frac{1}{2\pi} \phi'(t) a(t)^2 dt \end{split}$$

On peut se convaincre que le premier terme doit être nul car l'espérance doit être réelle. On peut s'en assurer par le calcul en notant que c'est l'inégale d'une dérivée :

$$\int_{\mathbb{R}} a'(t)a(t)dt = \frac{1}{2} \int_{\mathbb{R}} (a^2)'(t)dt = \frac{1}{2} \rho(t) \Big|_{-\infty}^{+\infty} = 0$$

Ce qui donne bien:

$$\mathbb{E}_{\varrho}\left[\nu\right] = \frac{i}{2\pi} \int_{\mathbb{R}} a'(t)a(t)dt + \int_{\mathbb{R}} \frac{1}{2\pi} \phi'(t)a(t)^2 dt = \frac{1}{2\pi} \int_{\mathbb{R}} \phi'(t)\rho(t)dt$$

La seconde équation (1.4) ce montre de la même façon.

Annexe B — Transformée inverse de la fonction de Heaviside

Définissons d'abord proprement la valeur principale de Cauchy :

DÉFINITION 9 (VALEUR PRINCIPALE DE CAUCHY) — La valeur principale de Cauchy est la dis-

tribution, notée $\operatorname{vp} \frac{1}{x}$, définie par dualité :

$$\forall \varphi \in \mathcal{S}(\mathbb{R}), \qquad \left\langle \operatorname{vp} \frac{1}{x}, \varphi \right\rangle = \int_0^t \frac{\varphi(t)}{t} dt := \lim_{\varepsilon \to 0^+} \int_{-\infty}^{-\varepsilon} \frac{\varphi(t)}{t} dt + \int_{+\varepsilon}^{+\infty} \frac{\varphi(t)}{t} dt$$
$$= \int_0^{+\infty} \frac{\varphi(t) - \varphi(-t)}{t} dt \tag{1.20}$$

Ici $\mathcal{S}(\mathbb{R})$ est l'espace de Schwartz des fonctions C^{∞} à décroissance rapide et la limite en ε assure que l'intégrale (impropre) converge bien. La valeur de cette intégrale est également appelée sa valeur principale.

La distribution vp $\frac{1}{x}$ est la valeur principale de la fonction inverse dans le sens où son produit avec l'identité donne 1 ($\langle id_{\mathbb{R}} \times \mathrm{vp} \frac{1}{x}, \varphi \rangle = \langle \mathrm{vp} \frac{1}{x}, id_{\mathbb{R}} \times \varphi \rangle = 1$) mais avec des propriétés d'intégration supplémentaires. Entre autre :

Propriété 1 — La transformée de Fourier de la valeur principale de Cauchy est donnée, au sens des distributions, par :

$$\mathcal{F}\left[\operatorname{vp}\frac{1}{x}\right] = -i\pi\operatorname{sign} \tag{1.21}$$

On en déduit la transformée de Fourier inverse :

$$\mathcal{F}^{-1}\left[2\mathbb{1}_{\mathbb{R}^+}\right] = \mathcal{F}^{-1}\left[1 + \operatorname{sign}\right] = \delta + \frac{i}{\pi}\operatorname{vp}\frac{1}{x}$$
(1.22)

Démonstration

Par définition, la transformée de Fourier de la valeur principale est telle que, $\forall \varphi \in \mathcal{S}(\mathbb{R})$:

$$\left\langle \mathcal{F}\left[\operatorname{vp}\frac{1}{x}\right],\varphi\right\rangle = \left\langle \operatorname{vp}\frac{1}{x},\hat{\varphi}\right\rangle = \int_{\mathbb{R}} \frac{\hat{\varphi}(\nu)}{\nu}d\nu$$

$$= \int_{0}^{+\infty} \frac{\hat{\varphi}(\nu) - \hat{\varphi}(-\nu)}{\nu}d\nu$$

$$= \int_{0}^{+\infty} \frac{1}{\nu} \left(\int_{\mathbb{R}} \varphi(t)e^{-2i\pi\nu t}dt - \int_{\mathbb{R}} \varphi(t)e^{2i\pi\nu t}dt\right)d\nu$$

$$= \int_{0}^{+\infty} \frac{1}{\nu} \int_{\mathbb{R}} \varphi(t)\left(e^{-2i\pi\nu t} - e^{2i\pi\nu t}\right)dt\,d\nu$$

$$= \int_{0}^{+\infty} \frac{1}{\nu} \int_{\mathbb{R}} -2i\varphi(t)\sin(2\pi\nu t)dt\,d\nu$$

$$= -2i\int_{\mathbb{R}} \varphi(t) \int_{0}^{+\infty} \frac{\sin(2\pi\nu t)}{\nu}d\nu\,dt$$

En posant $u = 2\pi\nu t \text{sign}(t)$ (le signe de t assure que l'on ait le même signe dans et hors du sin), on obtient :

$$\begin{split} \left\langle \mathcal{F} \left[\operatorname{vp} \frac{1}{x} \right], \varphi \right\rangle &= -2i \int_{\mathbb{R}} \varphi(t) \int_{0}^{+\infty} \operatorname{sign}(t) \frac{\sin(u)}{u} du \, dt \\ &= -2i \int_{\mathbb{R}} \varphi(t) \frac{\pi}{2} \operatorname{sign}(t), dt \\ &= \left\langle -i \pi \operatorname{sign}, \varphi \right\rangle \end{split}$$

15

Finalement, la condition sur $\mathcal{A}[x]$ se traduit bien par :

$$\begin{split} \mathcal{F}\left[\mathcal{A}\left[x\right]\right] &= 2\mathbbm{1}_{\mathbb{R}^{+}}\hat{x} \iff \mathcal{A}\left[x\right] = \mathcal{F}^{-1}\left[\mathbbm{1}_{\mathbb{R}^{+}}\hat{x}\right] \\ &= \mathcal{F}^{-1}\left[\mathbbm{1}_{\mathbb{R}^{+}}\right] * \mathcal{F}\left[\hat{x}\right] \\ &= \left(\delta + \frac{i}{\pi}\mathrm{vp}\frac{1}{x}\right) * x \\ &= x + \frac{i}{\pi}\mathrm{vp}\frac{1}{x} * x \end{split}$$

V — Généralisation aux signaux multivariés

DÉFINITION 10 (SIGNAL MULTIVARIÉ) — Un signal multivarié, ou n-varié, est un vecteur composé de $n \in \mathbb{N}^*$ signaux x_i . Si n=2, alors on parle de signal bivarié.

Dans la continuité de ce qui à été dit dans la ??, dans le cas des signaux réels, on s'intéressera au vecteur composé des transformées en SA (eq. 1.6, déf. 4) des x_i . Au moins dans toute cette section, un tel signal sera noté :

$$\begin{array}{ccc}
\mathbb{R} & \longrightarrow & \mathbb{C}^n \\
x_+(t) & : & & \\
t & \longmapsto & \begin{pmatrix} \mathcal{A}[x_1] \\ \mathcal{A}[x_2] \\ \vdots \\ \mathcal{A}[x_n] \end{pmatrix}$$

On supposera que chaque composante x_i de x aura autant de régularité et de condition d'intégrabilité que nécessaire (il vaudra préciser lesquelles à un moment).

Le fait que x soit à valeur dans \mathbb{C}^n impose un choix naturel de d'amplitude instantanée : sa norme. L'on notera alors dans tout la suite (sauf précision) :

$$\forall t \in \mathbb{R}, \qquad \boldsymbol{x}(t) = a(t) \begin{pmatrix} a_1(t)e^{i\phi_1(t)} \\ a_2(t)e^{i\phi_2(t)} \\ \vdots \\ a_n(t)e^{i\phi_n(t)} \end{pmatrix} \quad \text{avec} \quad \|(a_i)_{1 \leqslant i \leqslant n}\| = 1, \quad a \geqslant 0$$

Le choix de la phase instantanée, en revanche, n'est pas plus commode. Si l'on cherche à écrire \boldsymbol{x} sous la forme :

$$a(t)e^{i\phi(t)} \begin{pmatrix} a_1(t)e^{i\psi_1(t)} \\ a_2(t)e^{i\psi_2(t)} \\ \vdots \\ a_n(t)e^{i\psi_n(t)} \end{pmatrix}$$

alors n'importe quel choix de ϕ est valable, il suffit que $\psi_i = \phi_i - \phi$.

5.1 Phase et fréquence instantanée de signal multivarié

Afin de contraindre ce choix, on s'inspire propriétés de la phase instantanée vu plus tôt pour en déduire deux approches :

- D'une part, l'espérance de la fréquence instantanée (ici vu comme dérivée à 2π près de la phase⁴) doit donnée la fréquence moyenne au sens de Fourier, eq. (1.3).
- D'autre part, les conditions d'interprétation de la décomposition (a_x, ϕ_x) , théorème 1, exige que les hautes fréquences du signal se retrouve dans la phase.

Pour cela on introduit les notations utiles au cas multivarié :

⁴La pertinance de cette définition dans le cas multivarié sera discuté plus loin

DÉFINITION 11 (DENSITÉ D'ÉNERGIE) — Étant donné un signal multivarié $\boldsymbol{x}=(x_i)_{1\leqslant i\leqslant n}$, les densités d'énergie de chaque composante x_i sont notées :

$$\rho_{i} : \begin{array}{c} \mathbb{R} \longrightarrow \mathbb{R}^{+} \\ t \longmapsto |x_{i}(t)|^{2} = a(t)^{2} a_{i}(t)^{2} \end{array} \qquad \begin{array}{c} \mathbb{R} \longrightarrow \mathbb{R}^{+} \\ \varrho_{i} : \\ \nu \longmapsto |\hat{x}_{i}(\nu)|^{2} \end{array} \qquad (1.23)$$

Et les densités d'énergies associées au signal \boldsymbol{x} complet :

$$\mathbb{R} \longrightarrow \mathbb{R}^{+} \qquad \mathbb{R} \longrightarrow \mathbb{R}^{+}$$

$$\rho : \qquad t \longmapsto \|\mathbf{x}(t)\|^{2} = \sum_{i=1}^{n} \rho_{i}(t) \qquad \qquad \varrho : \qquad \nu \longmapsto \|\hat{\mathbf{x}}(\nu)\|^{2} = \sum_{i=1}^{n} \varrho_{i}(t) \qquad (1.24)$$

La première approche, inspiré de [2] consiste donc de reprendre le "calculation trick" (1.18), pour en déduire la fréquence moyenne

$$\mathbb{E}_{\varrho} \left[\nu \right] = \int_{\mathbb{R}} \nu \varrho(\nu) d\nu = \int_{\mathbb{R}} \nu \sum_{i=1}^{n} \varrho_{i}(\nu) d\nu$$

$$= \sum_{i=1}^{n} \mathbb{E}_{\varrho_{i}} \left[\nu \right]$$

$$= \sum_{i=1}^{n} \frac{1}{2\pi} \int_{\mathbb{R}} \phi'_{i}(t) \rho_{i}(t) dt$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} a(t)^{2} \sum_{i=1}^{n} \phi'_{i}(t) a_{i}(t)^{2} dt$$

$$= \frac{1}{2\pi} \mathbb{E}_{\varrho} \left[\sum_{i=1}^{n} \phi'_{i} a_{i}^{2} \right]$$

Ce qui mène à une première définition de la phase instantanée :

$$\phi = \int \sum_{i=1}^{n} \phi_i'(s) a_i(s)^2 ds = \sum_{i=1}^{n} \int \phi_i'(s) a_i(s)^2 ds$$
 (1.25)

La seconde approche, fortement inspirée par les travaux de Lilly & Olhede [7], se base sur la discussion autour du théorème Bedrisan sur la séparation haute-basse fréquence du signal \boldsymbol{x} (??). Pour cela, l'on commence par faire apparaître la phase ϕ — pour l'instant inconnue — en écrivant \boldsymbol{x} sous la forme :

$$\forall t \in \mathbb{R}, \qquad \boldsymbol{x}(t) = e^{i\phi(t)}e^{-i\phi(t)}\boldsymbol{x}(t) := e^{i\phi(t)}\tilde{\boldsymbol{x}}(t)$$

Si ϕ est bien choisie, alors $\tilde{\boldsymbol{x}}$ contient les informations associées à l'amplitude et la polarisation de \boldsymbol{x} . Or, la phase doit contenir les hautes fréquences du signal. Pour s'en assurer on demande, à l'inverse, que les basses fréquences du signal soit données par $\tilde{\boldsymbol{x}}$ en limitant ces variations. En clair, ϕ doit être choisi de sorte à minimiser la dérivée $\tilde{\boldsymbol{x}}'$:

$$\forall t \in \mathbb{R}, \qquad \phi(t) = \underset{\alpha(t)}{\operatorname{argmin}} \left\| \tilde{\boldsymbol{x}}'(t) \right\|_{2}^{2} = \underset{\alpha(t)}{\operatorname{argmin}} \left\| e^{-i\alpha} \left(\boldsymbol{x}' - i\alpha' \boldsymbol{x} \right) \right\|_{2}^{2} = \underset{\alpha(t)}{\operatorname{argmin}} \left\| \boldsymbol{x}' - i\alpha' \boldsymbol{x} \right\|_{2}^{2}$$

La contrainte ne dépendant que de la dérivée α' , on se ramène à :

$$\min_{\alpha(t)} \|\tilde{\boldsymbol{x}}'(t)\|_2^2 = \min_{\alpha'(t)} \|\boldsymbol{x}'(t) - \alpha'(t)\boldsymbol{x}(t)\|_2^2$$

En rappelant que $\frac{d}{dx} \|f(x)\|_2^2 = 2\Re e \langle f(x), f'(x) \rangle$, il vient que ce minimum⁵ est atteint par $\phi'(t)$ à condition

⁵L'extremum obtenu est l'unique minimum puisque $t \longmapsto \|at+b\|^2$ est strictement convexe pour $a \neq 0$.

que:

$$\frac{d}{d\phi'} \| \mathbf{x}' - i\phi' \mathbf{x} \|_{2}^{2} = 0 \iff 0 = 2\Re e \left\langle \mathbf{x}' - i\phi' \mathbf{x}, \frac{d}{d\phi'} (\mathbf{x}' - i\phi' \mathbf{x}) \right\rangle$$

$$= 2\Re e \left\langle \mathbf{x}' - i\phi' \mathbf{x}, -i\mathbf{x} \right\rangle$$

$$= 2\Re e \left(i\langle \mathbf{x}', \mathbf{x} \rangle \right) + 2\phi' \Re e \langle \mathbf{x}, \mathbf{x} \rangle$$

$$= -2\Im \langle \mathbf{x}', \mathbf{x} \rangle + 2\phi' \| \mathbf{x} \|_{2}^{2}$$

Ainsi:

$$\phi' = \frac{\Im m \langle \mathbf{x}', \mathbf{x} \rangle}{\|\mathbf{x}\|_2^2} = \frac{-\Im m \langle \mathbf{x}, \mathbf{x}' \rangle}{\|\mathbf{x}\|_2^2} \qquad \text{et} \qquad \phi = -\Im m \int \frac{\langle \mathbf{x}(s), \mathbf{x}'(s) \rangle}{\|\mathbf{x}(s)\|^2} ds \qquad (1.26)$$

Ce qui, sous forme exponentiel, se réécrit :

$$-\Im \frac{\langle \boldsymbol{x}(t), \boldsymbol{x}'(t) \rangle}{\|\boldsymbol{x}(t)\|^{2}} = -\Im \frac{1}{a(t)^{2}} \sum_{i=1}^{n} a(t)a_{i}(t)e^{i\phi_{i}(t)} \overline{\left(\left(aa_{i}\right)'(t) + a(t)a_{i}(t)i\phi_{i}'(t)\right)}e^{i\phi_{i}(t)}}$$

$$= -\Im \frac{1}{a(t)^{2}} \sum_{i=1}^{n} a(t)a_{i}(t)\left(aa_{i}\right)'(t) - ia(t)^{2}a_{i}(t)^{2}\phi_{i}'(t)$$

$$= -\frac{1}{a(t)^{2}} \sum_{i=1}^{n} -a(t)^{2}a_{i}(t)^{2}\phi_{i}'(t)$$

$$= \sum_{i=1}^{n} a_{i}(t)^{2}\phi_{i}'(t)$$

Soit la même expression que (1.25) obtenue par le premier raisonnement.

(NOTATION À REPRENDRE (aa_i)) Toujours avec les mêmes notations, une conséquence de l'équation (1.26) est que les fréquences ψ_i restantes sont de moyenne nulle dans le sens où :

$$\sum_{i=1}^{n} \int \psi_i'(s)a_i(s)^2 ds = 0 \tag{1.27}$$

Moralement, ca revient juste à dire qu'en définissant ϕ suivant Lilly, on a ôté au ψ_i la phase moyenne pondérée et donc, tout naturellement, les nouvelles phase individuelles ψ_i sont centrés (à la même pondération près). Cela revient peut ou prou à la première équation (1.25). Pour le montrer, il suffit de refaire le calcul de la phase instantanée :

$$\langle \mathbf{x}(t) \, | \, \dot{\mathbf{x}}(t) \rangle = \left\langle \left(a_i(t) e^{i(\phi(t) + \psi_i(t))} \right)_i \, \middle| \, \left(\left(a_i'(t) + i \left(\phi(t) + \psi_i(t) \right) a_i(t) \right) e^{i(\phi(t) + \psi_i(t))} \right)_i \right\rangle$$

$$= \sum_i a_i(t) \left(a_i'(t) - i \left(\phi'(t) + \psi_i'(t) \right) a_i(t) \right)$$

$$= \sum_i a_i(t) a_i'(t) - i \sum_i \left(\phi'(t) + \psi_i'(t) \right) a_i(t)^2$$

$$= \sum_i a_i(t) a_i'(t) - i \phi'(t) \sum_i a_i(t)^2 - i \sum_i \psi_i'(t) a_i(t)^2$$

$$= \sum_i a_i(t) a_i'(t) - i \phi'(t) ||a(t)||^2 - i \sum_i \psi_i'(t) a_i(t)^2$$

Ce qui mène à :

$$\Phi_{\text{dyn}}(\boldsymbol{x}, t_0, t) = \int_{t_0}^{t} \frac{\varphi'(s) \|a(s)\|^2}{\|a(s)\|^2} ds + \sum_{i} \int_{t_0}^{t} \frac{\varphi'_i(s) a_i(s)^2}{\|a(s)\|^2} ds$$
$$= \Phi_{\text{dyn}}(\boldsymbol{x}, t_0, t) + \sum_{i=1}^{n} \int \psi'_i(s) a_i(s)^2 ds$$

5.2 Cas bivarié et trivarié

5.2.1 Bivarié

PROPOSITION 3 (PHASES DE SIGNAL AM–FM–PM) — Étant donné un signal bivarié AM–FM–PM ${m x}, i.e.$ de la forme :

$$\mathbf{x} = ae^{i\varphi}R_{\theta}\begin{pmatrix} \cos\chi\\ -i\sin\chi \end{pmatrix} = a(t)e^{i\varphi}\begin{pmatrix} \cos\theta\cos\chi + i\sin\theta\sin\chi\\ \sin\theta\cos\chi - i\cos\theta\sin\chi \end{pmatrix}$$
(1.28)

la phase dynamique de \boldsymbol{x} est donnée par :

$$\Phi_{\text{dyn}}(\boldsymbol{x}, t_0, t) = \int_{t_0}^{t} \dot{\varphi}(s) + \dot{\theta}(s) \sin 2\chi(s) ds = \varphi(t) - \varphi(t_0) + \int_{t_0}^{t} \dot{\theta}(s) \sin 2\chi(s) ds$$
 (1.29)

Soit une différence de phase φ mais avec un terme en plus. Donc φ ne doit (**doit?**) pas être interpréter comme la phase instantanée du signal, où du moins pas au sens donnée dans la sous-section 5.1. La phase totale, elle, s'écrit :

$$\Phi_{\text{tot}}(\boldsymbol{x}, t_0, t) = \arg \left\langle \boldsymbol{x}(t), \boldsymbol{x}(t_0) \right\rangle = \varphi(t) - \varphi(t_0) + \arg \left(\cos \Delta \theta \cos \Delta \chi + i \sin \Delta \theta \sin \left(\chi(t_0) + \chi(t) \right) \right) \\
= \varphi(t) - \varphi(t_0) + \arctan \left(\tan \Delta \theta \frac{\tan \chi(t_0) + \tan \chi(t)}{1 + \tan \chi(t_0) \tan \chi(t)} \right) \\
\text{ou } \Delta y = y(t) - y(t_0) \text{ pour } y = \varphi, \theta, \chi. \text{ (adapte signe démo)}$$
(1.30)

Démonstration de la proposition 3

Par souci de lisibilité, on note $\mathcal{U} = R_{\theta} \begin{pmatrix} \cos \chi \\ -i \sin \chi \end{pmatrix}$ de sorte que la dérivée de \boldsymbol{x} s'écrive :

$$\begin{split} \dot{\boldsymbol{x}} &= \dot{a}e^{i\varphi}\mathcal{U} + ia\dot{\varphi}e^{i\varphi}\mathcal{U} + ae^{i\varphi}\dot{\theta}\begin{pmatrix} -\sin\theta\cos\chi + i\cos\theta\sin\chi \\ \cos\theta\cos\chi + i\sin\theta\sin\chi \end{pmatrix} + ae^{i\varphi}\dot{\chi}\begin{pmatrix} -\cos\theta\sin\chi + i\sin\theta\cos\chi \\ -\sin\theta\sin\chi - i\cos\theta\cos\chi \end{pmatrix} \\ &= \dot{a}e^{i\varphi}\mathcal{U} + ia\dot{\varphi}e^{i\varphi}\mathcal{U} + ae^{i\varphi}\dot{\theta}\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\mathcal{U} + ae^{i\varphi}\dot{\chi}\begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}\overline{\mathcal{U}} \end{split}$$

Le produit hermitien $\langle \boldsymbol{x}, \dot{\boldsymbol{x}} \rangle$ s'écrit alors :

$$\langle \boldsymbol{x}, \dot{\boldsymbol{x}} \rangle = \left\langle ae^{i\varphi}\mathcal{U}, \dot{a}e^{i\varphi}\mathcal{U} + ia\dot{\varphi}e^{i\varphi}\mathcal{U} + ae^{i\varphi}\dot{\theta} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathcal{U} + ae^{i\varphi}\dot{\chi} \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \overline{\mathcal{U}} \right\rangle$$

$$= \left\langle a\mathcal{U}, \dot{a}\mathcal{U} + ia\dot{\varphi}\mathcal{U} + a\dot{\theta} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathcal{U} + a\dot{\chi} \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \overline{\mathcal{U}} \right\rangle$$

$$= a\dot{a}\langle \mathcal{U}, \mathcal{U} \rangle - ia^2\dot{\varphi}\langle \mathcal{U}, \mathcal{U} \rangle + a^2\dot{\theta} \left\langle \mathcal{U}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathcal{U} \right\rangle + ia^2\dot{\chi} \left\langle \mathcal{U}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \overline{\mathcal{U}} \right\rangle$$

où les deux derniers produits hermitiens donnent :

$$\left\langle \mathcal{U}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathcal{U} \right\rangle = -\mathcal{U}_1 \overline{\mathcal{U}}_2 + \mathcal{U}_2 \overline{\mathcal{U}}_1$$

$$= 2i \Im m (\overline{\mathcal{U}}_1 \mathcal{U}_2)$$

$$= 2i \Im m (\cos \theta \cos \chi - i \sin \theta \sin \chi) (\sin \theta \cos \chi - i \cos \theta \sin \chi)$$

$$= 2i (-\cos^2 \theta \cos \chi \sin \chi - \sin^2 \theta \sin \chi \cos \chi)$$

$$= -2i (\cos \chi \sin \chi + \sin \chi \cos \chi)$$

$$= -i \sin 2\chi$$

$$\left\langle \mathcal{U}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \overline{\mathcal{U}} \right\rangle = -\mathcal{U}_1 \mathcal{U}_2 + \mathcal{U}_2 \mathcal{U}_1 = 0$$

D'où, sachant que $\|\boldsymbol{x}\|^2 = a^2$ et $\|\mathcal{U}\| = 1$, la formule :

$$-\frac{\Im m\langle \boldsymbol{x}, \dot{\boldsymbol{x}}\rangle}{\|\boldsymbol{x}\|^2} = -\frac{1}{a^2} \Im m\Big(a\dot{a}\langle \mathcal{U}, \mathcal{U}\rangle - ia^2\dot{\varphi}\langle \mathcal{U}, \mathcal{U}\rangle - ia^2\dot{\theta}\sin 2\chi\Big)$$
$$= \frac{1}{a^2} \Big(a^2\dot{\varphi}\|\mathcal{U}\|^2 + a^2\dot{\theta}\sin 2\chi\Big)$$
$$= \dot{\varphi} + \dot{\theta}\sin 2\chi$$

Pour la phase totale, on note cette fois $\mathcal{V} = \begin{pmatrix} \cos \chi \\ -i \sin \chi \end{pmatrix}$ et on a :

$$\langle \boldsymbol{x}(t_0), \boldsymbol{x}(t) \rangle = \left\langle a(t_0) e^{i\varphi(t_0)} R_{\theta(t_0)} \mathcal{V}(t_0), a(t) e^{i\varphi(t)} R_{\theta(t)} \mathcal{V}(t) \right\rangle$$

$$= a(t_0) e^{i\varphi(t_0)} a(t) e^{-i\varphi(t)} \left\langle R_{\theta(t_0)} \mathcal{V}(t_0), R_{\theta(t)} \mathcal{V}(t) \right\rangle$$

$$= a(t_0) a(t) e^{i(\varphi(t_0) - \varphi(t))} \left\langle \mathcal{V}(t_0), R_{\theta(t) - \theta(t_0)} \mathcal{V}(t) \right\rangle$$

Pour alléger les notations, on note $\Delta y = y(t) - y(t_0)$, $y_1 = y(t_0)$ et $y_2 = (t)$ pour $y = \varphi, \theta, \chi$. Le produit hermitien à droite s'écrit alors :

$$\begin{split} \left\langle \mathcal{V}(t_0), R_{\Delta\theta} \mathcal{V}(t) \right\rangle &= \left(\cos \chi_1 - i \sin \chi_1 \right) \begin{pmatrix} \cos \Delta\theta \cos \chi_2 - i \sin \Delta\theta \sin \chi_2 \\ \sin \Delta\theta \cos \chi_2 + i \cos \Delta\theta \sin \chi_2 \end{pmatrix} \\ &= \cos \chi_1 \left(\cos \Delta\theta \cos \chi_2 - i \sin \Delta\theta \sin \chi_2 \right) - i \sin \chi_1 \left(\sin \Delta\theta \cos \chi_2 + i \cos \Delta\theta \sin \chi_2 \right) \\ &= \cos \Delta\theta \left(\cos \chi_1 \cos \chi_2 + \sin \chi_1 \sin \chi_2 \right) - i \sin \Delta\theta \left(\cos \chi_1 \sin \chi_2 + \sin \chi_1 \cos \chi_2 \right) \\ &= \cos \Delta\theta \cos \Delta\chi - i \sin \Delta\theta \sin(\chi_1 + \chi_2) \end{split}$$

5.2.2 Trivarié

• Version de Lilly [6]

$$\mathbf{x}_{+}(t) = e^{i\phi(t)} R_{1}(\alpha(t)) R_{3}(\beta(t)) R_{1}(\theta(t)) \begin{pmatrix} a(t) \\ -ib(t) \\ 0 \end{pmatrix}$$

$$= a(t) e^{i\phi(t)} R_{1}(\alpha(t)) R_{3}(\beta(t)) R_{1}(\theta(t)) \begin{pmatrix} \cos \chi(t) \\ -i\sin \chi(t) \\ 0 \end{pmatrix}$$

$$(1.31)$$

20

avec:
$$R_1(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \qquad R_3(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Donc une amplitude / phase instantanée A / ϕ et une polarisation instantanée d'ellipse paramétrée par χ et orientée par la rotation $R_1R_3R_1$.

• On note d'abord que (Lefevre [5]) :

$$\begin{pmatrix} \cos \chi(t) \\ -i\sin \chi(t) \\ 0 \end{pmatrix} = \begin{pmatrix} \cos \chi(t) & i\sin \chi(t) & 0 \\ -i\sin \chi(t) & \cos \chi(t) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Ce qui, en terme de matrice de Gall-man (λ_i) (généralisation de la base de Pauli à $\mathbb{U}(3)$), devient :

$$\mathbf{x}_{+}(t) = a(t)e^{i\phi(t)}R_{1}(\alpha(t)) R_{3}(\beta(t)) R_{1}(\theta(t)) \begin{pmatrix} \cos\chi(t) \\ -i\sin\chi(t) \\ 0 \end{pmatrix}$$
$$= a(t)e^{i\phi(t)}e^{i\alpha\lambda_{7}}e^{i\beta\lambda_{3}}e^{i\theta\lambda_{7}}e^{-i\chi\lambda_{1}} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

5.3 Généralisation de ces formules au cas n-varié

PROPOSITION 4 (PHASE DE SIGNAL AM-FM-PM n-VARIÉ) — La formule (1.29) de la proposition 3 ce généralise très bien à plus haute dimension. En écrivant x sous la forme :

$$\boldsymbol{x}(t) = a(t)e^{i\varphi}R_{\Theta(t)}\mathcal{V}(t) \qquad \text{où } R_{\Theta(t)} \in SO_n(\mathbb{R}) \text{ et } \mathcal{V}(t) = \begin{pmatrix} \cos\chi(t) \\ -i\sin\chi(t) \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 (1.32)

la phase dynamique de x est donnée par :

$$\Phi_{\text{dyn}}(\boldsymbol{x}, t_0, t) = \int_{t_0}^{t} \dot{\varphi}(s) + \sin 2\chi \langle \tilde{R}_{\Theta(s)} e_1, e_2 \rangle ds$$

$$= \varphi(t) - \varphi(t_0) + \int_{t_0}^{t} \sin 2\chi \langle \tilde{R}_{\Theta(s)} e_1, e_2 \rangle ds$$
(1.33)

où $e_j = \delta^i_j \in \mathbb{R}^n$ et $\tilde{R}_{\Theta(t)}$ est la matrice anti-symétrique :

$$\tilde{R}_{\Theta(t)} = {}^{t}R_{\Theta(t)}\dot{R}_{\Theta(t)} \in \mathcal{A}_{n}(\mathbb{R})$$

En récrivant R_{Θ} comme composition d'une rotation R_{Λ} et d'une rotation R_{θ} de l'ellipse dans son plan, i.e.:

$$R_{\Theta} = R_{\Lambda} R_{\theta} = R_{\Lambda} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

$$\mathbb{O}_{n-2}$$

alors la phase dynamique ce réécrit encore :

$$\Phi_{\text{dyn}}(\boldsymbol{x}, t_0, t) = \varphi(t) - \varphi(t_0) + \int_{t_0}^{t} \dot{\theta}(s) \sin 2\chi(s) ds + \int_{t_0}^{t} \sin 2\chi(s) \left\langle \tilde{R}_{\Lambda(s)} \tilde{e}_1(s), \tilde{e}_2(s) \right\rangle ds$$
 (1.34)

où cette fois \tilde{e}_1 (resp. \tilde{e}_1) donne la direction du demi-grand (resp. -petit) axe de l'ellipse paramétrée par χ :

$$\tilde{e}_1 = R_\theta e_1 \qquad \qquad \tilde{e}_2 = R_\theta e_2$$

$D\'{e}monstration$

D'abord, on a la différentielle :

$$\dot{\boldsymbol{x}} = \frac{d}{dt} \left(a e^{i\varphi} R_{\Theta} \mathcal{V} \right) = \dot{a} e^{i\varphi} R_{\Theta} \mathcal{V} + i a \dot{\varphi} e^{i\varphi} R_{\Theta} \mathcal{V} + a e^{i\varphi} \dot{R}_{\Theta} \mathcal{V} + a e^{i\varphi} R_{\Theta} \dot{\mathcal{V}}$$
$$= \left(\dot{a} + i a \dot{\varphi} \right) e^{i\varphi} R_{\Theta} \mathcal{V} + a e^{i\varphi} \left(\dot{R}_{\Theta} \mathcal{V} + R_{\Theta} \dot{\mathcal{V}} \right)$$

où le vecteur $\dot{\mathcal{V}}$ se réécrit :

$$\dot{\mathcal{V}} = \frac{d}{dt} \begin{pmatrix} \cos \chi \\ -i \sin \chi \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \dot{\chi} \begin{pmatrix} -\sin \chi(t) \\ -i \cos \chi \\ 0 \\ \vdots \\ 0 \end{pmatrix} = i\dot{\chi} \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ & \mathbb{O}_{n-2} \end{pmatrix} \begin{pmatrix} \cos \chi \\ -i \sin \chi \\ 0 \\ \vdots \\ 0 \end{pmatrix} := i\dot{\chi}J\mathcal{V}$$

On en déduit alors :

$$-\frac{\Im m\langle \boldsymbol{x}, \dot{\boldsymbol{x}}\rangle}{\|\boldsymbol{x}\|^{2}} = -\frac{1}{\|\boldsymbol{x}\|^{2}} \Im m \left\langle ae^{i\varphi}R_{\Theta}\mathcal{V}, \left(\dot{a} + ia\dot{\varphi}\right)e^{i\varphi}R_{\Theta}\mathcal{V} + ae^{i\varphi}\left(\dot{R}_{\Theta}\mathcal{V} + i\dot{\chi}R_{\Theta}J\mathcal{V}\right)\right\rangle$$
$$= \dot{\varphi} + \Im m \left\langle R_{\Theta}\mathcal{V}, \dot{R}_{\Theta}\mathcal{V}\right\rangle + \Im m \left(i\dot{\chi}\langle R_{\Theta}\mathcal{V}, R_{\Theta}J\mathcal{V}\rangle\right)$$
$$= \dot{\varphi} + \Im m \left\langle R_{\Theta}\mathcal{V}, \dot{R}_{\Theta}\mathcal{V}\right\rangle + \dot{\chi}\Re e\langle \mathcal{V}, J\mathcal{V}\rangle$$

On montre, avec un calcul similaire à la démonstration de la proposition 3, que le dernier terme est nul. Le deuxième terme, lui, ce réécrit en fonction de la base canonique (e_i) de \mathbb{R}^n :

$$\begin{split} \left\langle R_{\Theta} \mathcal{V}, \dot{R}_{\Theta} \mathcal{V} \right\rangle &= \left\langle R_{\Theta} (\cos \chi e_1 - i \sin \chi e_2), \dot{R}_{\Theta} (\cos \chi e_1 - i \sin \chi e_2) \right\rangle \\ &= \cos^2 \chi \left\langle R_{\Theta} e_1, \dot{R}_{\Theta} e_1 \right\rangle + \sin^2 \chi \left\langle R_{\Theta} e_2, \dot{R}_{\Theta} e_2 \right\rangle - i \cos \chi \sin \chi \left(\left\langle R_{\Theta} e_1, \dot{R}_{\Theta} e_2 \right\rangle - \left\langle R_{\Theta} e_2, \dot{R}_{\Theta} e_1 \right\rangle \right) \end{split}$$

Notons à présent que comme $R_{\Theta(t)} \in SO_n(\mathbb{R})$, la différentielle \dot{R}_{Θ} est à valeur dans le fibré tangent $TSO_n(\mathbb{R})$. Sachant que $T_{\Theta(t)}SO_n(\mathbb{R}) = R_{\Theta(t)}\mathcal{A}_n(\mathbb{R})$, la différentielle \dot{R}_{Θ} s'écrit :

$$\forall t \in \mathbb{R}, \quad \dot{R}_{\Theta(t)} \in \mathcal{T}_{\Theta(t)} SO_n(\mathbb{R}) \iff \exists \tilde{R}_{\Theta(t)} \in \mathcal{A}_n(\mathbb{R}) \mid \dot{R}_{\Theta(t)} = R_{\Theta(t)} \tilde{R}_{\Theta(t)}$$

Cela permet d'écrire :

$$-\frac{\Im m\langle \boldsymbol{x}, \dot{\boldsymbol{x}}\rangle}{\|\boldsymbol{x}\|^2} = \dot{\varphi} + \Im m\langle R_{\Theta} \mathcal{V}, \dot{R}_{\Theta} \mathcal{V}\rangle = \dot{\varphi} - \cos\chi\sin\chi\left(\langle R_{\Theta}e_1, \dot{R}_{\Theta}e_2\rangle - \langle R_{\Theta}e_2, \dot{R}_{\Theta}e_1\rangle\right)$$

$$= \dot{\varphi} - \frac{1}{2}\sin2\chi\left(\langle e_1, \tilde{R}_{\Theta}e_2\rangle - \langle {}^t\tilde{R}_{\Theta}e_2, e_1\rangle\right)$$

$$= \dot{\varphi} - \sin2\chi\langle e_1, \tilde{R}_{\Theta}e_2\rangle$$

$$= \dot{\varphi} + \sin2\chi\langle \tilde{R}_{\Theta}e_1, e_2\rangle$$

• Les quaternions ça ce généralise trop mal (au dessus c'est les octinions, c'est un calvaire et ca va pas plus loin)

• Ca peut s'écrire en terme d'algèbre de Cliffor (Lefevre [5])... pas dingue non plus (pb de dimension

principalement)

- Les bases de $\mathbb{U}(n)$ parait être le meilleur choix mais on a pas de "bonne base" pour de plus haute dimension
- question : est-ce qu'on en a besoin pour la phase géométrique ? (transi vers une formulation géo diff-like ?)

VI — Notes sur l'approche Géométrique

6.1 Le plan du mémoire (trop long)

- I Introduction du phénomène
 - 1 "En phase" de Pancharatnam
 - 2 Dessin de Bohm
 - cas cyclique (plus intéressant qu'adiabatique)
 - \bullet cadre quantique, on a Schrödonger (1.35)
 - Explique le dessin de Bohm fig. 1.5
 - Ils font un peu de géo diff [8, 1] mais nous on veut écrire ca propre
 - 3 On veut une description géo diff, on a besoin de quoi ?
 - $\bullet\,$ passage en complexe
 - Espace : $\mathbb{U}(1) \times \mathbb{P}\mathbb{C}^n$
 - fibré principal
 - connexion
 - holonomie

II — Préliminaire

- 1 Transformation en SA
- 2 Un peu de géo diff
 - 2.1 Variété complexe
 - 2.2 Holonomie et Bonnet-Gauss
 - 2.3 Fibré principaux
 - variété fibrée
 - fibré principal
 - esapce tangent
 - — verticaux et horizontaux
 - — connexion vie métric
 - \bullet "universal $\mathbb{U}(1)$ principal bundle"
 - 2.4 Connexion
 - Connexion sur fibré principal
 - Connexion sur variété/fibré tangent (Levi-Civita)
 - Lien entre les deux
 - Courbure de la connexion ?
 - 2.5 Espace $P\mathbb{C}^n$
 - "universal U(1) principal bundle"
 - Connexion de Fubini-Study
 - Séparation Fisher/phase géo
 - $\operatorname{Hol} = \mathbb{U}(n)$

III — Cœur du sujet

1 — On pose le cadre (très rapidement)

.

- n Cas des géodésiques
 - n.1 Invariant de Birgmann
 - n.2 $\Phi_{\rm geo}$ comme 2-forme (et rien d'autre)
 - n.3 formule de l'air (Stokes & Birgmann)

IV — Généralisation à $\mathbb{U}(()k) \times \mathbb{P}\mathbb{C}^n$?

TO DO

- Ecrire $\mathbb{U}(1) \times \mathbb{P}\mathbb{C}^{n-1}$ comme un fibré principale
- Explicité une connexion (A-A)

•

6.2 Notes sur l'approche à avoir

- Quel espace? Pour la gauge invariance, c'est du $\mathbb{U}(1) \times X$ mais qui est X?
 - les xx^{\dagger} sont plus calculable mais isomorphe à l'esapce projectif complexe $P\mathbb{C}^n$, lequel des deux choisir ? (les deux sont équivalent, 1^{er} théorème d'isomorphisme -ish)
 - Y'a aussi les Grassmanniennes $G_{n,k}(\mathbb{K})$, mais $G_{n,1}(\mathbb{C}) \cong \mathbb{PC}^n$
 - En somme, sûrement que $X = \mathbb{PC}^n$ (à voir comment faire les changements d'espaces)
 - $-\mathbb{C}^{n*}/(1)$ sounds good mais n'a pas de structure complexe (aucune, dim impaire)
- Ensuite, comme on a un produit(-ish), on veut un côté fibré (sûrement principale)
 A ce sujet, Wikipédia dit : "La théorie des fibrés principaux recouvre la théorie des fibrés vectoriels, de leurs orientations, de leurs structures riemanniennes, de leurs structures symplectiques, etc. " (sounds reaaaally good)
- Puis une métrique pour l'espace :
 - vu que c'est complexe j'y connais R
 - mettre la bonne connexion (A-A mais y'a aussi Fubini-Study)
 - si la connexion du fibré est équivalente à la connexion d'une variété, qu'est-ce qu'il se passe du côté de cette variété ? est-ce qu'on peut en déduire des choses ? (sûrement que non parce que U(1) est pas un e.v.)
- ullet Phase géo \cong transport parallèle

Réponse : holonomie

- refs de GPT pour la connexion sur fibré :
 - Kobayashi & Nomizu Foundations of Differential Geometry (vol. 1 & 2)
 C'est la bible sur les connexions et fibrés principaux! Chapitres sur les connexions dans les fibrés principaux et leur relation avec les connexions dans les fibrés vectoriels associés.
 - J. M. Lee Introduction to Smooth Manifolds (Chapitre sur les connexions et les fibrés principaux).
 Accessible et bien expliqué, en particulier sur le lien entre les connexions dans les fibrés vectoriels et les fibrés principaux.
 - S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces
 Approche plus avancée et lie bien la géométrie différentielle à la théorie des groupes de Lie.

Pour la géometrie projectives complexe :

- Kobayashi, Differential Geometry of Complex Vector Bundles
 Introduction aux connexions sur les fibrés vectoriels complexes, crucial pour comprendre les métriques de Fubini-Study et les structures kählériennes.
- Huybrechts, Complex Geometry: An Introduction
 Introduction aux variétés complexes et kählériennes, avec des applications aux espaces projectifs complexes.
- Gunning, Introduction to Complex Analysis and Geometry
 Bon compromis entre analyse complexe et géométrie différentielle.

- Wells, Differential Analysis on Complex Manifolds
 Bon livre pour le lien entre la géométrie différentielle et la géométrie projective
- Ballmann, Introduction to Kähler Geometry
 Très bon pour comprendre l'aspect kählérien des variétés projectives.
- Voisin, Hodge Theory and Complex Algebraic Geometry (vol. 1 & 2)
 Référence avancée, mais incontournable si tu veux plonger dans la topologie des variétés projectives complexes.
- Improbable mais on sait jamais :
 - Spin-strucure ? (c'est que $P\mathbb{C}^n$ + pas sur que ca ait de l'intérêt parce que ca existe qu'en dimension impair)
 - Espace de Siegel? (ellipse vs ellipsoïde tout ca tout ca)
- Autour de $\mathbb{U}(n)$: Classif de $\mathbb{U}(n)$

6.3 La vision de Bohm [1, fig. 4.3]

Dans cette sous-section, ψ sera toujours supposée pseudo-cyclique :

DÉFINITION 12 — Un signal ψ sera dit cyclique si à l'instant t, ψ reprend les même valeurs qu'en t_0 :

$$\psi(t) = \psi(t_0)$$

Et ψ sera dit pseudo-cyclique s'il est cylique à une transformation de gauge près :

$$\exists \theta : \mathbb{R} \longrightarrow \mathbb{R} \mid \psi(t) = e^{i\theta(t)}\psi(t_0) \text{ et } \theta(t_0) = 0$$

On note \mathcal{C} le trajet effectué par ψ et \mathfrak{C} le projeté de se trajet sur la base $P\mathbb{C}^n$. On note également $\tilde{\mathcal{C}}$ (resp. \mathcal{C}_c) le lift horizontal (resp. un lift cylique) de \mathfrak{C} , et on lui associe la paramétrisation $\tilde{\psi}$ (resp. ϕ). En clair :

$$\mathcal{C} = \left\{ \psi(t) \in \mathbb{C}^n \mid t \in \mathbb{R} \right\}$$

$$\mathfrak{C} = \left\{ \psi(t)\psi(t)^{\dagger} \in \mathbb{P}\mathbb{C}^n \mid t \in \mathbb{R} \right\}$$

$$\tilde{\mathcal{C}} = \left\{ \tilde{\psi}(t) \in \mathbb{C}^n \mid t \in \mathbb{R} \right\}$$

$$\tilde{\psi} \text{ horizontal lift}$$

$$\mathcal{C}_c = \left\{ \phi(t) \in \mathbb{C}^n \mid t \in \mathbb{R} \right\}$$

$$\phi \text{ cyclique}$$

Quand on dit que $\tilde{\psi}$ est l'horizontal lift, on sous entend que le fibré est munie d'une connexion. Suivant l'approche quantique, elle est de la forme :

$$\forall \eta \in \Gamma(\mathcal{M}), \quad \mathcal{A} := \int_{\gamma} \left\langle \eta, h(\eta) \right\rangle$$

où h est l'Hamiltonien de l'équation de Schrödinger (dont ψ est supposé solution) :

$$i\frac{d}{dt}\psi(t) = h(\psi(t)) \tag{1.35}$$

Mais on a le choix de h. En particulier, si on veut pas de contrainte, on peut toujours poser :

$$h = i\frac{d}{dt}$$

Est-ce qu'on a le droit ? (je vois pas pourquoi on pourrait pas) Et si on le fait, qu'est-ce que ca dit du point de vue mécha Hamiltonienne ? (a priori rien vue l'EDP)

Aussi, du pvd calculatoire / de la phase g
, qu'est-ce qu'il se passe ? Typiquement, est-ce que y'
a $\tilde{\psi}$ devient un ϕ ?

Aussi, chose remarquable, le fait que la phase géométrique soit invariante par gauge transfo réapprait dans le fait que ϕ ne soit pas définie à gauge transfo près (sauf au bord). Par contre c'est étrange que

fig. 1.5 — Schéma de Bohm [1] sur les trois phases

6.4 La vision Mukunda & Simon [8, 9]

• Mukunda & Simon[8, p. 10] partent des matrices de corrélation $\rho = \psi \psi^{\dagger}$ vérifiant (cas normé, p.50 pour le cas générale) :

$$\rho = \rho^{\dagger} \geqslant 0$$

$$\operatorname{tr}(\rho) = 1 (= \|\rho\|^2)$$

et pose l'Hamiltonien (resp. l'énergie kiné) :

$$H = i(\dot{\psi}\psi^{\dagger} - \psi\dot{\psi}^{\dagger} - \langle\psi,\dot{\psi}\rangle) \qquad \text{resp. } K = \frac{d}{dt}(\psi\psi^{\dagger}) = \dot{\rho}$$

qui donne:

$$\frac{d}{dt}\psi = -iH\psi = \left(K + \langle \psi, \dot{\psi} \rangle\right)$$

K est "mieux" dans le sens où il est invariant par gauge-t. Aussi, comme c'est une dérivée d'une hermitienne elle est... hermitienne ? (mmmh).

Anyway, on peut poser avec la bonne gauge:

$$\frac{d}{dt}\tilde{\psi} = K\tilde{\psi}$$

- \bullet Voir page 20 pour passer de $\Phi_{\rm geo}$ au Birgmann invar
- La phase totale $\Phi_{\text{tot}}(\psi, t_0, t)$ est la phase dyn de la géodésique reliant $\psi(t)$ à $\psi(t_0)$ (ca commute ? surement pas)

 En somme, la phase totale est complètement indépendante du chemin ψ , ce qui est rassurant puisque c'est ce qu'on attend la phase totale : qu'elle ne compare que les états $\psi(t_0)$ et $\psi(t)$.
- L'invariant de Birgmann à des propriétés sommatoires similaires à un calcul de volume... transition parfaite vers la formule de Stokes !!!
- SUPER IMPORTANT : [8, (8.6),p.51] pour l'originie/choix de $\Phi_{\rm geo}$!

VII — Intuition sur les fondamentaux

7.1 Réflexion autour du produit hermitien

Soit $x, y \in \mathbb{C}^n$ des vecteurs complexes et $X, Y \in \mathbb{R}^{2 \times n}$ leur versions réelles. On note x^j sa j^{eme} composante complèxe et x_1 (resp. x_2) le vecteur composé de ses parties réelles (resp. imaginaires):

$$x = (x^{j})_{i} = x_{1} + ix_{2} = (x_{1}^{j})_{i} + i(x_{2}^{j})_{i}$$

On a deux façon d'écrire le produit hermitien (canonique) de x avec y. La première :

$$\begin{split} \langle x,y \rangle &= \langle x_1 + i x_2, y_1 + i y_2 \rangle = \langle x_1, y_1 \rangle - i \langle x_1, y_2 \rangle + i \langle x_2, y_1 \rangle + \langle x_2, y_2 \rangle \\ &= \langle x_1, y_1 \rangle + \langle x_2, y_2 \rangle + i \left(\langle x_2, y_1 \rangle - \langle x_1, y_2 \rangle \right) \\ &= \sum_j x_1^j y_1^j + x_2^j y_2^j + i \left(\sum_j x_2^j y_1^j - x_1^j y_2^j \right) \\ &= \left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle + i \left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} -y_2 \\ y_1 \end{pmatrix} \right\rangle \\ &= \left\langle X, Y \right\rangle + i \left\langle X, \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle \\ &= \left\langle X, Y \right\rangle - i \left\langle X, \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix} Y \right\rangle \end{split}$$

Cette formule peut s'interpréter en disant que le produit hermitien encode le produit scalaire entre X et Y et le produit scalaire de X avec les vecteurs $y^j = (y_1^j, y_2^j)$ auquel on aurait applique une rotation de 90° (rotation qui, par ailleurs, correspond à la multiplication par i dans le plan complexe). Moralement, $\langle x, y \rangle = 0$ demande une orthogonalité de X à un plan, ce qui fait sens puisque cela tient compte du fait que les x^j, y^j sont complexes (donc de dimension 2 en tant que \mathbb{R} -e.v.).

Pour les connaisseurs, on retrouve l'égalité "produit hermitien = produit scalaire -i forme symplectique" !! Voir plan proj complexe et variété kählérienne

On a aussi l'écriture (quand-même moins clair) :

$$\langle x, y \rangle = \langle x_1, y_1 \rangle + \langle x_2, y_2 \rangle + i \left(\langle x_2, y_1 \rangle - \langle x_1, y_2 \rangle \right)$$

$$= \sum_j x_1^j y_1^j + x_2^j y_2^j + i \sum_j \left(x_2^j y_1^j - x_1^j y_2^j \right)$$

$$= \sum_j \left\langle X^j, Y^j \right\rangle - i \sum_j \det(X^j, Y^j)$$

Cette formule dit que les parties reélles et imaginaires du produit $\langle x,y \rangle$ encodent respectivement "l'orthogonalité moyenne" et la "linéarité moyenne "entre les familles de vecteurs $X^j \in \mathbb{R}^2$ et $Y^j \in \mathbb{R}^2$. L'orthogonalité d'une part parce que le produit scalaire s'annule en cas d'orthogonalité (no shit), la linéarité d'autre part car le déterminant s'annule en cas de colinéarité et moyenne car se sont des sommes sur j. $\langle x,y \rangle = 0$ ne dit pas que les le vecteurs sont à la fois colinéaire et orthogonaux parce que ce sont des valeurs moyennes (*i.e.* annuler une somme ne veut pas dire que chacun des termes sont nuls).

Si maintenant on s'intéresse au cas y=x, on a $\forall h\in\mathbb{C}^n$:

$$\langle x+h,x+h\rangle = \langle x,x\rangle + \langle x,h\rangle + \langle h,x\rangle + \langle h,h\rangle = \langle x,x\rangle + \langle x,h\rangle + \overline{\langle x,h\rangle} + \langle h,h\rangle \\ = \langle x,x\rangle + 2\Re e\langle x,h\rangle + \langle h,h\rangle$$

Donc si $x \in \mathbb{C}^n$ est fonction d'un paramètre t, l'égalité $\langle x, \dot{x} \rangle = \frac{1}{2} \partial_t \langle x, x \rangle$ du cas réel devient :

$$\langle x \,|\, \dot{x} \rangle = \frac{1}{2} \partial_t \langle x \,|\, x \rangle + i \left\langle X \,\middle|\, \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix} \dot{X} \right\rangle \tag{1.36}$$

En particulier, quand bien-même x serait de norme constante, on aurait toujours un degré de liberté pour $\langle x, \dot{x} \rangle$:

$$||x|| = c \implies \langle x, \dot{x} \rangle = i \left\langle X, \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix} \dot{X} \right\rangle$$

VIII — Description des signaux multivariés

8.1 Cas bivarié et trivarié

8.1.1 Bivarié

• Avec la transformation :

$$\boldsymbol{x} \leadsto \left(e^{i\phi}, \boldsymbol{x} \boldsymbol{x}^{\dagger}\right) \in \mathbb{U}(1) \times \mathbf{P}\mathbb{C}^1 - ish$$

On a:

$$egin{aligned} m{x}m{x}^\dagger &= rac{1}{2}\sum_{n=1}^3 S_i(t)\sigma_i \ & egin{aligned} S_0(t) = {}^tm{x}\overline{m{x}} = \|m{x}\|^2 \ S_1(t) &= S_0(t)\cos 2\chi(t)\cos 2\theta(t) \ S_2(t) &= S_0(t)\cos 2\chi(t)\sin 2\theta(t) \ S_3(t) &= S_0(t)\sin 2\chi(t) \end{aligned}$$

• En version quaternion (j fait office de i) [5]:

$$\boldsymbol{x}_{+} = a(t)e^{\boldsymbol{i}\theta}e^{-\boldsymbol{k}\chi}e^{\boldsymbol{j}\phi} \tag{1.37}$$

Et les Stokes parameters sont donnée par :

$$\boldsymbol{x}_{+}\boldsymbol{j}\overline{\boldsymbol{x}_{+}} = S_0 + \boldsymbol{i}S_3 + \boldsymbol{j}S_1 + \boldsymbol{k}S_2$$

Et le lien avec les σ_i se fait via (mais du coup les notations colles par :/) :

$$(\sigma_0, \sigma_1, \sigma_2, \sigma_3) \rightsquigarrow (1, \boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k})$$

• Et en version matrice de Pauli :

$$\mathbf{x}_{+} = a(t)e^{i\phi}e^{i\theta\sigma_{2}}e^{-i\chi\sigma_{1}}\begin{pmatrix}1\\0\end{pmatrix}$$
(1.38)

Plus de détail:

On a un signal bivarié x(t) = (x(t), y(t)) qu'on transforme (voir ??) soit la forme :

$$\boldsymbol{x}_{+}(t) = \begin{pmatrix} x_{+}(t) \\ y_{+}(t) \end{pmatrix} = \begin{pmatrix} a_{x}(t)e^{i\phi_{x}(t)} \\ a_{y}(t)e^{i\phi_{y}(t)} \end{pmatrix} \in \mathbb{C}^{2}$$

À côté de ça, on a les ellipses modulées :

$$z(t) = e^{i\theta} \left(a(t)\cos\phi(t) + ib(t)\sin\phi(t) \right) = a(t)e^{i\theta} \left(\sin\chi(t)\cos\phi(t) + i\sin\chi(t)\sin\phi(t) \right) \in \mathbb{C}$$

Qui sous forme vectoriel se réécrit (pourquoi ???):

$$z(t) = e^{i\phi(t)} R_{\theta(t)} \begin{pmatrix} a(t) \\ -ib(t) \end{pmatrix} = a(t)e^{i\phi(t)} R_{\theta(t)} \begin{pmatrix} \cos \chi(t) \\ -i\sin \chi(t) \end{pmatrix} \in \mathbb{C}^2, \qquad R_{\theta} \in SO_2(\mathbb{R})$$
 (1.39)

Pour avoir la désinscription de \boldsymbol{x} en terme d'ellipse, il suffit donc de poser :⁶

$$\boldsymbol{x}_{+}(t) = z(t) \quad \Longleftrightarrow \quad \begin{pmatrix} a_{x}(t)e^{i\phi_{x}(t)} \\ a_{y}(t)e^{i\phi_{y}(t)} \end{pmatrix} = A(t)e^{i\phi}R_{\theta(t)} \begin{pmatrix} \cos\chi(t) \\ -i\sin\chi(t) \end{pmatrix}$$

Ensuite, on pose:

$$\begin{pmatrix} z_+ \\ z_- \end{pmatrix} = \begin{pmatrix} a_+ e^{i\phi_+} \\ a_- e^{i\phi_-} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} x_+ + iy_+ \\ x_+ - iy_+ \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix} \begin{pmatrix} x_+ \\ y_+ \end{pmatrix}$$

Et on a:

$$2\phi = \phi_{+} + \phi_{-}$$
 $a = A \cos \chi = a_{+} + a_{-}$
 $2\theta = \phi_{+} - \phi_{-}$ $b = A \sin \chi = a_{+} - a_{-}$

et on en déduit :

$$A = \sqrt{(a_{+} + a_{-})^{2} + (a_{+} - a_{-})^{2}}$$

$$\cos \chi = \frac{a_{+} + a_{-}}{\sqrt{(a_{+} + a_{-})^{2} + (a_{+} - a_{-})^{2}}}$$

$$\sin \chi = \frac{a_{+} - a_{-}}{\sqrt{(a_{+} + a_{-})^{2} + (a_{+} - a_{-})^{2}}}$$

Ce qui donne in fine(super osef):

$$\begin{pmatrix} x_+ \\ y_+ \end{pmatrix} = e^{i\frac{\phi_+ + \phi_-}{2}} R_{\frac{\phi_+ - \phi_-}{2}} \begin{pmatrix} a_+ + a_- \\ -i(a_+ - a_-) \end{pmatrix}$$

L'équation (1.28) ce généralise très bien, il suffit d'augmenter la taille de $R_{\theta} \in SO_n(\mathbb{R})$ et de lui donner le vecteur étendu :⁷

$$z_x(t) = \begin{pmatrix} x_{1+}(t) \\ \vdots \\ x_{n+}(t) \end{pmatrix} = e^{i\phi} R_{\theta(t)} \begin{pmatrix} a(t) \\ -ib(t) \\ 0 \\ \vdots \\ 0 \end{pmatrix} = A(t) e^{i\phi} R_{\theta(t)} \begin{pmatrix} \cos \chi(t) \\ -i\sin \chi(t) \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Maintenant, la question est de savoir comment généraliser la transformation en (z_+, z_-) pour obtenir les paramètres $(A, \phi, R_\theta, \chi)$ dans ce cas...

Pour généraliser le procédé, on peut noter que :

$$\begin{pmatrix} z_+ \\ z_- \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix} \begin{pmatrix} x_+ \\ y_+ \end{pmatrix} = \frac{1}{\sqrt{2}} U \begin{pmatrix} x_+ \\ y_+ \end{pmatrix} \quad \text{avec} \quad U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix} \in \mathbb{U}(2)$$

Ce qui ramène à se demander comment généraliser U à $\mathbb{U}(n)$. Le problème est que U est indépendant de tout les paramètres $(A, \phi, R_{\theta}, \chi)$ et sa généralisation est vraiment pas évidente sachant qu'on que le formule avec n = 2... et pour n = 3 ca devient déjà chaud (pour rappelle $\dim SO_n(\mathbb{R}) = \frac{n(n-1)}{2}$ et donc $\theta \in \mathbb{R}^n$, ce qui rend le problème de pire en pire à mesure qu'on augmente n).

8.1.2 Trivarié

• Version de Lilly [6]

$$\mathbf{x}_{+}(t) = e^{i\phi(t)} R_{1}(\alpha(t)) R_{3}(\beta(t)) R_{1}(\theta(t)) \begin{pmatrix} a(t) \\ -ib(t) \\ 0 \end{pmatrix}$$

$$= a(t) e^{i\phi(t)} R_{1}(\alpha(t)) R_{3}(\beta(t)) R_{1}(\theta(t)) \begin{pmatrix} \cos \chi(t) \\ -i\sin \chi(t) \\ 0 \end{pmatrix}$$

$$(1.40)$$

⁶C'est la version analytique du la version vectorielle de l'ellipse!

⁷Sachant que le vecteur contenant a et b est principalement nul, on peut réécrire le produit ne considérant que les deux premières colonnes de R_{θ} .

avec:
$$R_1(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \qquad R_3(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Donc une amplitude / phase instantanée A / ϕ et une polarisation instantanée d'ellipse paramétrée par χ et orientée par la rotation $R_1R_3R_1$.

• On note d'abord que (Lefevre [5]) :

$$\begin{pmatrix} \cos \chi(t) \\ -i\sin \chi(t) \\ 0 \end{pmatrix} = \begin{pmatrix} \cos \chi(t) & i\sin \chi(t) & 0 \\ -i\sin \chi(t) & \cos \chi(t) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Ce qui, en terme de matrice de Gall-man (λ_i) (généralisation de la base de Pauli à $\mathbb{U}(3)$), devient :

$$\mathbf{x}_{+}(t) = a(t)e^{i\phi(t)}R_{1}(\alpha(t)) R_{3}(\beta(t)) R_{1}(\theta(t)) \begin{pmatrix} \cos\chi(t) \\ -i\sin\chi(t) \\ 0 \end{pmatrix}$$
$$= a(t)e^{i\phi(t)}e^{i\alpha\lambda_{7}}e^{i\beta\lambda_{3}}e^{i\theta\lambda_{7}}e^{-i\chi\lambda_{1}} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

8.2 Mon blabla

Proposition 5 — Les signaux bivariés se décrivent très simplement à l'aide des quaternions. En considérant $\{1, i, j, k\}$ la base canonique des quaternions \mathbb{H} , on peut voir ψ comme étant à valeur dans \mathbb{C}_{j}^{n} ($\mathbb{C}_{j} := \mathbb{R} \times j\mathbb{R}$), de sorte que :

$$\forall \psi \in L^2(\mathbb{R}, \mathbb{H}), \ \exists a, \theta, \chi, \varphi \in \mathcal{C}(\mathbb{R}) \mid \ \psi(t) = a(t)e^{i\theta(t)}e^{-k\chi(t)}e^{j\varphi(t)}$$

Sous cette forme, les paramètres a et φ s'interprètent respectivement comme l'amplitude et la phase instantanée du signal. Les deux paramètres restant contrôle l'ellipticité (χ) et l'orientation (θ) de l'ellipse de polarisation instantanée. C'est-à-dire l'ellipse que suit la signal à l'instant t.

Dit autrement, à tout instant t, $\psi(t)$ est vu comme une point d'une ellipse dont la taille est caractériser par a(t), l'ellipticité par $\chi(t)$ et l'orientation par $\theta(t)$. $\phi(t)$ permet lui de situer $\varphi(t)$ sur cette ellipse.

Le problème de cette représentation est qu'elle se généralise mal aux signaux plus que 2-variés et, à notre connaissant, il n'existe pas d'extensions des quaternions à de plus haute dimension. voir propositions 6 et 7, équations (1.42), (1.43) et (1.44)

Il est évident que cette représentation est présent bien plus de paramètre que nécessaire, puisse que deux devrait suffire. Pour autant, elle permet de mieux **je sais quoi mais c'est sur qu'il y'a une raison**. Si cette représentation se généralise mal parce qu'elle demanderait d'avoir une extension de H, sont interprétations graphique, elle, se généralise très bien. Par exemple, en dimension 3, alors l'ellipse devient une ellipsoïde. L'amplitude reste de dimension 1 parce qu'elle ne fait que contrôler la taille de cet ellipsoïde, mais les autres paramètres eux doivent être de dimension 2. L'ellipsoïde à besoin de deux angles pour être orienté, possède deux degrés d'ellipticité et ces points sont déterminés par deux angles.

Proposition 6 — Plus généralement, tout signal multivarié ψ est (devrait être) caractérisé par quatre paramètres (donc $1+(n-1)(\frac{n}{2}-2)$ scalaires) :

$$a \in \mathcal{C}(\mathbb{R}, \mathbb{R}^+) \qquad \theta \in \mathcal{C}(\mathbb{R}, [-\pi/2, \pi/2]^{\frac{n(n-1)}{2}}) \qquad \chi \in \mathcal{C}(\mathbb{R}, [-\pi/4, \pi/4]^{n-1}) \qquad \varphi \in \mathcal{C}(\mathbb{R}, [-\pi, \pi]^{n-1})$$

À bien y réfléchir, décrire un ellipsoïde dans l'espace, c'est exactement de que font les matrices symétriques définies positives. Donc on pourrait tout à fait remplacer les informations (a, θ, χ) par une matrice symétrique positive de dimension n. Il ne resterait alors plus que φ qui, de toute façon ne devrait pas trop être lié aux autres paramètres.

Enfin, surement que si parce que y'a un monde pour $\varphi = 0_{\mathbb{R}}^n$ et c'est le reste des paramètres qui fait le travail. Mais clairement c'est pas intéressant comme description. L'idée serait plutôt décrire le signal ψ en minimisant les variations de (a, θ, χ) . Ca appelle clairement à chercher que dans l'espace de Siegel mais pas seulement, parce que c'est pas juste des chemins chez Siegel qui nous intéresse.

Ou alors c'est le jeu de gauge qui fait qu'on tue φ ? auquel cas tout les jours Siegel.

BTW, les quaternions c'est fait pour décrire les rotations et c'est (quasiment) ce qu'on fait avec, donc aller chercher dans un espace de matrices pour généraliser le principe c'est pas déconnant.

D'ailleurs, vu que c'est pas exactement ce qu'on fait avec, dans quelle mesure c'est pas le cas et est-ce qu'on exploite vraiment la structure des quaternions?

Proposition 7 — Autre approche : un signal multivarié étant moralement un chemin de \mathbb{R}^n , son graphe est une variété (plongée) de dimenion 1. Sachant cela, si en chaque instant on veut définir l'ellipsoïde sur laquelle elle repose à un insant t, il est morale que cette ellipsoïde soit en fait une ellipse puisque c'est elle-même une variété de dimension 1.

Partant de là, on aurait toujours a, χ et ϕ pour la décrire et seulement θ gagnerait en dimension pour pouvoir orienter l'ellipse dans les n axes. ψ serait alors la données de $3 + \frac{n(n-1)}{2}$ paramètres :

$$a \in \mathcal{C}(\mathbb{R}, \mathbb{R}^+)$$
 $\theta \in \mathcal{C}(\mathbb{R}, [-\pi, \pi]^{\frac{n(n-1)}{2}})$ $\chi \in \mathcal{C}(\mathbb{R}, [-\pi/4, \pi/4])$ $\varphi \in \mathcal{C}(\mathbb{R}, [-\pi, \pi])$

On aurait beaucoup moins de paramètre et c'est quand-même bien. En même temps ca parait plus contraignant comme modèle. Pour comparer les deux, il faudrait voir comment les deux se décomposant dans le cas d'un signal qui ne varierait sur une ellipsoïde fixe. *i.e.*dans un cas où θ , χ de la proposition 6 varie pas alors que ceux de la proposition 7 si.

IX — Vrac

9.1 Random stuff ready pour rédac (+labeled)

DÉFINITION 13 (SIGNAL MULTIVARIÉ) — Un signal multivarié, ou n-varié, est un vecteur composé de $n \in \mathbb{N}^*$ signaux x_i . Si n=2, alors on parle de signal bivarié.

Dans la continuité de ce qui à été dit dans la ??, dans le cas des signaux réels, on s'intéressera au vecteur composé des transformées en SA (eq. 1.6, déf. 4) des x_i . Au moins dans toute cette section, un tel signal sera noté :

$$\begin{array}{ccc}
\mathbb{R} & \longrightarrow & \mathbb{C}^n \\
x_+(t) & : & & \downarrow & \begin{pmatrix} \mathcal{A}[x_1] \\ \mathcal{A}[x_2] \\ \vdots \\ \mathcal{A}[x_n] \end{pmatrix}$$

On supposera que chaque composante x_i de x aura autant de régularité et de condition d'intégrabilité que nécessaire (il vaudra préciser lesquelles à un moment).

DÉFINITION 14 — Ainsi, il reste tout un degré de liberté au produit $\langle x, \dot{x} \rangle$ même si $x \in \mathbb{S}^{2n}$. En intégrant ce degré de liberté supplémentaire, c'est-à-dire en tenant compte de son évolution sur la période $[t_0, t]$, l'on obtient ce qui est appeller le *phase dynamique*:

$$\Phi_{\rm dyn} := \Phi_{\rm dyn}(t_0, t) = \int_{t_0}^t \Im m \langle \psi(s) \, | \, \dot{\psi}(s) \rangle ds$$

Elle dynamique en cela qu'elle est propre au variation de ψ et qu'elle considère tout l'évolution de ψ : ça dynamique.

DÉFINITION 15 (CONNEXION DE BERRY) — On appelle $connexion\ de\ Berry$ le champ de forme linéaire :

$$\forall \psi \in \mathcal{M}, \quad A_{\psi} : \begin{array}{ccc} T_{\psi}\mathcal{M} & \longrightarrow & \mathbb{R} \\ \phi & \longmapsto & \Im m \langle \psi(s) \, | \, \phi(s) \rangle \end{array}$$
 (1.41)

Elle a rien d'une connexion par contre :/

9.2 Bilan des formules

• Les phases de ψ entre les instants t_0 et t:

$$\Phi_{\text{tot}}(\psi, t_0, t) := \arg \langle \psi(t_0) | \psi(t) \rangle = \arctan \left(-\frac{\langle \psi(t_0), \omega \psi(t) \rangle}{\langle \psi(t_0), \psi(t) \rangle} \right)$$
(1.42)

$$\Phi_{\text{dyn}}(\psi, t_0, t) := \Im m \int_{t_0}^t \langle \psi(s) | \dot{\psi}(s) \rangle ds$$
(1.43)

$$\Phi_{\text{geo}}(\psi, t_0, t) := \Phi_{\text{tot}}(\psi, t_0, t) - \Phi_{\text{dvn}}(\psi, t_0, t)$$
(1.44)

• (conservative) Équation Schrödinger et de Liouville-von Neumann (h(R): Hamiltonien des paramètres R, W: opérateurs statistique) [1, p.6]:

$$i\frac{d\psi(t)}{dt} = h(R)\psi(t) \tag{1.45}$$

$$i\frac{dW(t)}{dt} = [h(R), W(t)]$$
 $[\cdot, \cdot] = \text{commutateur }?$ (1.46)

• Moment angulaire (viteuf) $\forall z \in \mathbb{C}$:

$$M(t) = \Re e(iz\overline{z}') = -\Im mz\overline{z}'$$
 thoughts? (1.47)

9.3 Thoughts

- Si la phase géo est la phase dyn phase tot et est invariante as gauge t, est-ce que la phase tot correspond à la phase (dyn) entre t_0 et t suivant la géodesique ?
- La "Berry connection" c'est une vraie connexion ? elle est où la covariance alors ?
- "horizontal lift": pourquoi horizontal? en quel sens? (parce que fibré)
- Fréquence de Rubi
- Matrice/base de Pauli et généralisation, groupe SU(n) (un peu de quantique ?)
- \bullet Monopole de Dirac + lien avec la phase géo (un peu d'électro-magnétisme ?)
- ullet Invariant de Bargmann + série de Dyson

TABLE DES FIGURES

1.1	Exemple de densité spectrale d'un signal réel ESP A 1,4	5
1.2	Représentation graphique du signal x (rouge) avec $\nu_1=3$ et $\nu_2=0.1$. Sur l'image de gauche,	
	avec signaux de fréquences pures (bleu et vert). Sur l'image de droite, avec son amplitude	
	(bleu) et sa phase instantanée (vert). Les discontinuités de la phase sont dû à l'arrondi à 2π	
	près de l'argument de $\mathcal{A}[x_1]$ et à la façon dont il est calculé lorsque le signal s'annule (mise à	
	0). Voir ici pour un graphique dynamique	7
1.3	Idem que pour la figure 1.2 précédente, avec cette fois $\nu_1 = 1.5$ et $\nu_2 = 1.3$	7
1.4	Sur les deux graphiques sont représentés en vert \hat{a} et en violet \hat{x}_2 . Dans le premier cas	
	l'hypothèse de Bedrosian et respectée mais pas dans le second.	8
1.5	Schéma de Bohm [1] sur les trois phases	26

TABLE DES CODES

RÉFÉRENCES

- [1] A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, and J. Zwanziger, *The Geometric Phase in Quantum Systems*, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.
- [2] C. Cano, Mathematical tools and signal processing algorithms for the study of gravitational waves polarization, phdthesis, Université Grenoble Alpes [2020-....], Oct. 2022.
- [3] L. Cohen, *Time frequency analysis*, Prentice Hall signal processing series, Prentice Hall, Englewood Cliffs, NJ, 1995.
- [4] J. LAFONTAINE, An Introduction to Differential Manifolds, Springer International Publishing, Cham, 2015.
- [5] J. Lefevre, *Polarization analysis and optimization geometry*, phdthesis, Université Grenoble Alpes [2020-....]; University of Melbourne, Dec. 2021.
- [6] J. M. Lilly, *Modulated Oscillations in Three Dimensions*, IEEE Transactions on Signal Processing, 59 (2011), pp. 5930–5943.
- [7] J. M. LILLY AND S. C. OLHEDE, Analysis of Modulated Multivariate Oscillations, IEEE Transactions on Signal Processing, 60 (2012), pp. 600–612.
- [8] N. MUKUNDA AND R. SIMON, Quantum Kinematic Approach to the Geometric Phase. I. General Formalism, Annals of Physics, 228 (1993), pp. 205–268.
- [9] —, Quantum Kinematic Approach to the Geometric Phase. II. The Case of Unitary Group Representations, Annals of Physics, 228 (1993), pp. 269–340.
- [10] M. Nakahara, Geometry, Topology and Physics, Second Edition, Taylor & Samp; Francis, June 2003.
- [11] S. Wang, Simple proofs of the Bedrosian equality for the Hilbert transform, Science in China Series A: Mathematics, 52 (2009), pp. 507–510.