CAP#01: OPERACIONES CON EXPRESIONES ALGEBRAICAS

1.1. TÉRMINO ALGEBRAICO

Definición	Ejemplos
Es una expresión matemática que	$7\frac{x^2}{y}$
está compuesta por varios elementos	$-4\sqrt{xy}$
(Coeficiente, parte literal y exponente).	$6x^{-\frac{1}{3}}$

1.2. EXPRESIÓN ALGEBRAICA

Definición	Ejemplos
Es un conjunto de números y letras asociadas entre sí	$a = 7\frac{x^2}{y} + \frac{3}{4}x^{10}y$
mediante las seis operaciones del álgebra (Suma,	$b = 6x^{-2} + -4\sqrt{xy}$
resta, multiplicación, división, potenciación y radicación).	$c = \left(6x^{-\frac{1}{3}} + xy\right)\left(\sqrt{11}x^6z + \frac{x}{z}\right)$

1.3. POLINOMIO ALGEBRAICO

Definición	Ejemplos
Es una expresión algebraica que constituye la suma o	$P_{(x)} = 4x^2y - 3xy^2$
la resta ordenadas de un número finito	$Q_{(x)} = -8x^3 + 9x^2 - 1$
de términos con exponentes numéricos positivos.	$R_{(x)} = 9x^4 - x^3 + 3x^2 - 1$

1.4. LEYES DE EXPONENTES Y RADICALES

Leyes de EXPONENTES	
$a^n a^m = a^{n+m}$	$a^n b^n = (ab)^n$
$\frac{a^n}{a^m} = a^{n-m} \qquad ; a \neq 0$	$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n \qquad ; b \neq 0$
$\left(\alpha^n\right)^m=\alpha^{nm}$	$\left(a^n\right)^{m^r}=a^{nm^r}$
$a^{-n} = \frac{1}{a^n} \qquad ; a \neq 0$	$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n} ; a \land b \neq 0$
$a^0 = 1$; $a \neq 0$	$a^1 = a$

Leyes de RADICALES	
$\sqrt[n]{a^m} = a^{\frac{m}{n}}$	$\sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$
$\sqrt[n]{a}\sqrt[n]{b} = \sqrt[n]{ab}$	$a\sqrt[n]{b} = \sqrt[n]{a^n b}$
$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}} \qquad ; b \neq 0$	$\frac{\sqrt[n]{a}}{b} = \sqrt[n]{\frac{a}{b^n}} \qquad ; b \neq 0$
$\sqrt[m]{\sqrt[n]{a}} = \sqrt[nm]{a}$	$\sqrt[n]{a^m} = \sqrt[nr]{a^{mr}}$

1.5. SUMA Y RESTA DE EXPRESIONES ALGEBRAICAS

Definición		
Sean a,b,s expresiones algebraicas:		
s = a + b		
Propiedades suma y resta algebraica		
a+b=b+a	(a+b)+c=a+(b+c)	
a - b = a + (-b)	$k_1 a + k_2 a = (k_1 + k_2) a$	
a+0=a	a-a=0	

Regla de signos	Ejemplos
Términos semejantes con signos	8a + 3a = 11a
iguales se suman y se copia el signo al resultado	-2a-5a=-7a
Términos semejantes con signos	-3a+a=-2a
distintos se restan y se copia el signo del mayor al resultado.	-5a+12a=7a

MULTIPLICACIÓN DE **EXPRESIONES** 1.6. ALCEDDAICAC

ALGEDRAICAS		
Definición		
Sean a,b,p expresiones algebraicas:		
$p = a \cdot b = ab$		
Propiedades multiplicación algebraica		
ab = ba $(ab)c = a(bc)$		=a(bc)
a(b+c) = ab + ac		$a \cdot 1 = a$
(a+b)(c+d) = ac + ad + bc + bd		$a \cdot 0 = 0$

Ley de signos multiplicación	Ejemplo
(+)(+)=(+)	(8a)(3b) = 24ab
(+)(-)=(-)	(2a)(-5b) = -10ab
(-)(+)=(-)	(-3a)(2b) = -6ab
(-)(-)=(+)	(-7a)(-2b) = 14ab

1.7. PRODUCTOS NOTABLES

Cuadrado de un binomio	Suma y diferencia	
$\left(a \pm b\right)^2 = a^2 \pm 2ab + b^2$	$(a+b)(a-b) = a^2 - b^2$	
Cubo de un binomio		
$(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$		
Producto de la forma l		
$(a \pm b)(a^2 \mp ab + b^2) = a^3 \pm b^3$		
Producto de la forma II		
$(x+a)(x+b) = x^2 + (a+b)x + ab$		
Producto de la forma III		
$(mx+a)(nx+b) = mnx^2 + (an+bm)x + ab$		

1.8. BINOMIO DE NEWTON

Forma General	
$\left(a\pm b\right)^2 = C_0 a^n \pm C_1 a^{n-1} b + C_2 a^{n-2} b^2 \pm \ldots + C_n b^n$	
Número de términos	Termino k-ésimo
N = n + 1	$t_k = \binom{n}{k-1} a^{N-k} b^{k-1}$

Coeficientes (Números Combinatorios) $C_k = \binom{n}{k-1} = \frac{n!}{(n-k+1)!(k-1)!}$ Factorial $\rightarrow \begin{cases} n! = n(n-1)(n-2)...(3)(2)(1) \\ 0! = 1 & 1! = 1 \end{cases}$ Coeficientes (Triángulo de Pascal) $C_k \to n = 0$ 1 $C_k \rightarrow n = 1$

FACTORIZACIÓN

1.9. FACTORIZACIÓN		
Factor Común	Trinomio cuadrado perfecto	
ab + ac = a(b+c)	$a^2 \pm 2ab + b^2 = \left(a \pm b\right)^2$	
Cuatrinomio cubico perfecto		
$a^3 \pm 3a^2b + 3ab^2 \pm b^3 = (a \pm b)^3$		
Diferencia de cuadrados		
$a^2 - b^2 = (a+b)(a-b)$		
Suma y diferencia de cubos		
$a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)$		
Trinomio de la forma		
$x^{2} + px + q = (x+a)(x+b) \rightarrow \begin{cases} a+b=p \\ ab=q \end{cases}$		

$$+q = (x+a)(x+b) \rightarrow \begin{cases} ab = q \end{cases}$$

Aspa simple

Aspa doble I

$$px^{4} + qx^{3} + rx^{2} + sx + t = (mx^{2} + ax + b)(nx^{2} + cx + d)$$

$$mx^{2} \longrightarrow ax \longrightarrow b$$

$$nx^{2} \longrightarrow ax \longrightarrow b$$

$$d \longrightarrow d \longrightarrow d$$

$$d \longrightarrow bc = s$$

$$dm + bn = r$$

Aspa doble II

$$px^{2} + qxy + ry^{2} + sy + tx + u = (mx + ay + b)(nx + cy + d)$$

Factor reciproco

$$px^{6} + qx^{5} + rx^{4} + sx^{3} + rx^{2} + p$$

$$= x^{3} \left[p\left(x^{3} + \frac{1}{x^{3}}\right) + q\left(x^{2} + \frac{1}{x^{2}}\right) + r\left(x + \frac{1}{x}\right) \right]$$

$$CV : \begin{cases} x + \frac{1}{x} = u \\ x^{2} + \frac{1}{x^{2}} = u^{2} - 2 \\ x^{3} + \frac{1}{x^{3}} = u^{3} - 3u \end{cases}$$

Método de Ruffini

$$px^{n} + qx^{n-1} + rx^{n-2} + \dots + s$$

$$= (x-a)(px^{n-1} + bx^{n-2} + cx^{n-3} + \dots + d)$$

$$a \begin{vmatrix} p & q & r & \dots & s \\ \downarrow & ap & ab & \dots & -s \\ p & b & c & \dots & 0 \end{vmatrix} \rightarrow \begin{cases} b = q + ap \\ c = r + ab \end{cases}$$

1.10. DIVISIÓN DE EXPRESIONES ALGEBRAICAS

Definición

Sean a,b,c expresiones algebraicas

$$c = a \div b = \frac{a}{b}$$

Propiedades división algebraica

$\frac{a}{a} = \left(\frac{b}{a}\right)^{-1}$			a+b	$=\frac{a}{a}$
$b \setminus a$			c	c
$\frac{0}{0} = 0$	<u>a</u>	$\ddot{a} = a$		

Ley de signos DIVISIÓN	Ejemplo
$\frac{\left(+\right)}{\left(+\right)} = \left(+\right)$	$\frac{8a}{2b} = \frac{4a}{b}$
$\frac{\binom{+}{-}}{\binom{-}{-}} = \binom{-}{-}$	$\frac{9a}{-3b} = -\frac{3a}{b}$

$$\frac{\left(-\right)}{\left(+\right)} = \left(-\right) \qquad \frac{-14a}{2b} = -\frac{7a}{b}$$

$$\frac{\left(-\right)}{\left(-\right)} = \left(+\right) \qquad \frac{-18a}{-6b} = \frac{3a}{b}$$

1.11. TEOREMA DEL RESTO

Definición

Sean $P_{(x)}$ y $Q_{(x)}$ polinomios algebraicos:

$$\frac{P_{(x)}}{D_{(x)}} = C_{(x)} + \frac{R}{D_{(x)}} \to \boxed{P_{(x)} = C_{(x)}D_{(x)} + R}$$

$$D_{(x)} = 0 \to x = k \to \boxed{P_{(k)} = R}$$

Sí R = 0 entonces $P_{(x)}$ es divisible entre $Q_{(x)}$.

Sí $R \neq 0$ entonces $P_{(x)}$ no es divisible entre $Q_{(x)}$.

1.12. COCIENTES NOTABLES

Caso#01. Cociente exacto para todo n

$$\frac{a^{n}-b^{n}}{a-b}=a^{n-1}+a^{n-2}b+a^{n-3}b^{2}+\ldots+ab^{n-2}+b^{n-1}$$

Caso#02. Cociente exacto para n par

$$\frac{a^{n}-b^{n}}{a+b}=a^{n-1}-a^{n-2}b+a^{n-3}b^{2}-\ldots-ab^{n-2}+b^{n-1}$$

Caso#03. Cociente exacto para n impar

$$\frac{a^{n}+b^{n}}{a+b}=a^{n-1}-a^{n-2}b+a^{n-3}b^{2}-\ldots+ab^{n-2}-b^{n-1}$$

Forma General	Número de términos			
$\frac{a^r + b^s}{a^p + b^q} \to \frac{\left(a^p\right)^{\frac{r}{p}} + \left(a^q\right)^{\frac{s}{q}}}{a^p + b^q}$	$n = \frac{r}{p} = \frac{s}{q}$			
Termino k-ésimo				
$\begin{split} t_k &= a^{n-k}b^{k-1} \rightarrow Caso \# 1 \\ t_k &= \left(-1\right)^{k-1}a^{n-k}b^{k-1} \rightarrow \begin{cases} Caso \# 2 \\ Caso \# 3 \end{cases} \end{split}$				
Términos centrales				
$t_{c} = t_{\frac{n+1}{2}} = \left(ab\right)^{\frac{n-1}{2}} \rightarrow \begin{cases} Caso\#1 \\ n ightarrow impar \end{cases}$				

$$\begin{split} &t_{c_{1}}=t_{\frac{n}{2}}=a^{\frac{n}{2}}b^{\frac{n}{2}-1}\\ &t_{c_{2}}=t_{\frac{n}{2}+1}=a^{\frac{n}{2}-1}b^{\frac{n}{2}} \end{pmatrix} \to \begin{cases} Caso\,\#1\\ n\to par \end{cases}\\ &t_{c_{1}}=t_{\frac{n}{2}}=a^{\frac{n}{2}}\left(-b\right)^{\frac{n}{2}-1}\\ &t_{c_{1}}=t_{\frac{n}{2}}=a^{\frac{n}{2}-1}\left(-b\right)^{\frac{n}{2}} \end{pmatrix} \to Caso\,\#2\\ &t_{c_{2}}=t_{\frac{n}{2}+1}=a^{\frac{n}{2}-1}\left(-b\right)^{\frac{n}{2}} \end{pmatrix} \to Caso\,\#3 \end{split}$$

SUMA Y RESTA DE FRACCIONES ALGEBRAICAS 1.13.

Definición para FRACCIONES HOMOGÉNEAS

Sean a,b,c,d expresiones algebraicas:

$$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$$

Definición para FRACCIONES HETEROGÉNEAS

Sean a,b,c,d expresiones algebraicas:

$$\frac{a}{c} + \frac{b}{d} = \frac{pa + qc}{e} \rightarrow \begin{cases} e = mcm(c, d) \\ p = \frac{e}{c} \\ q = \frac{e}{d} \end{cases}$$

1.14 MULTIPLICACIÓN

DF

FRACCIONES

ALGEBRAICAS

Definición

Sean a,b,c,d expresiones algebraicas:

$$\frac{a}{c} \times \frac{b}{d} = \frac{a}{c} \cdot \frac{b}{d} = \frac{a \cdot b}{c \cdot d}$$

1.15. DIVISIÓN DE FRACCIONES ALGEBRAICAS

Definición

Sean a,b,c,d expresiones algebraicas:

$$\frac{a}{c} \div \frac{b}{d} = \frac{\frac{a}{c}}{\frac{b}{d}} = \frac{a \cdot d}{b \cdot c}$$

RACIONALIZACIONCOCIENTES NOTABLES 1.16.

Raíz cuadrada	Raíz n-ésima	
$\frac{p}{\sqrt{a}} \left(\frac{\sqrt{a}}{\sqrt{a}} \right) = \frac{p\sqrt{a}}{a}$	$\frac{p}{\sqrt[n]{a^k}} \left(\frac{\sqrt[n]{a^{n-k}}}{\sqrt[n]{a^{n-k}}} \right) = \frac{p\sqrt[n]{a^{n-k}}}{a}$	

Suma o diferencia de raíces cuadradas

$$\frac{p}{\sqrt{a} \pm \sqrt{b}} \left(\frac{\sqrt{a} \mp \sqrt{b}}{\sqrt{a} \mp \sqrt{b}} \right) = \frac{p(\sqrt{a} \mp \sqrt{b})}{a - b}$$

Suma o diferencia de raíces cubicas

$$\frac{p}{\sqrt[3]{a} \pm \sqrt[3]{b}} \left(\frac{\sqrt[3]{a^2} \mp \sqrt[3]{ab} + \sqrt[3]{b^2}}{\sqrt[3]{a^2} \mp \sqrt[3]{ab} + \sqrt[3]{b^2}} \right)$$

$$= \frac{p\left(\sqrt[3]{a^2} \mp \sqrt[3]{ab} + \sqrt[3]{b^2}\right)}{a \pm b}$$

Suma o diferencia de raíces n-ésima pares

$$\begin{split} \frac{p}{\sqrt[n]{a} \pm \sqrt[n]{b}} & \left(\frac{\sqrt[n]{a^{n-1}} \mp \sqrt[n]{a^{n-2}b} + \dots \mp \sqrt[n]{b^{n-1}}}{\sqrt[n]{a^{n-1}} \mp \sqrt[n]{a^{n-2}b} + \dots \mp \sqrt[n]{b^{n-1}}} \right) \\ & = \frac{p \left(\sqrt[n]{a^{n-1}} \mp \sqrt[n]{a^{n-2}b} + \dots \mp \sqrt[n]{b^{n-1}} \right)}{a - b} \end{split}$$

Suma o diferencia de raíces n-ésima impares

$$\frac{p}{\sqrt[n]{a} \pm \sqrt[n]{b}} \left(\frac{\sqrt[n]{a^{n-1}} \mp \sqrt[n]{a^{n-2}b} + \dots + \sqrt[n]{b^{n-1}}}{\sqrt[n]{a^{n-1}} \mp \sqrt[n]{a^{n-2}b} + \dots + \sqrt[n]{b^{n-1}}} \right) \\
= \frac{p\left(\sqrt[n]{a^{n-1}} \mp \sqrt[n]{a^{n-2}b} + \dots + \sqrt[n]{b^{n-1}}\right)}{a \pm b}$$

