ENTROPY PATH INTEGRALS, LANGLANDS HEAT FIELDS, AND RECURSIVE ARITHMETIC GRAVITY

PU JUSTIN SCARFY YANG

ABSTRACT. We develop a path integral formulation of entropy kernel evolution, linking zeta trace flows with Langlands heat propagation. By constructing arithmetic heat fields over motivic sheaves, we describe entropy diffusion as a geometric scattering theory. We then propose a model of recursive arithmetic gravity: a trace-based tensorial geometry where entropy curvature governs field propagation. The Riemann Hypothesis appears as a geodesic alignment principle in this gravity field, with entropy trace integrals minimizing quantum action over arithmetic spacetime.

Contents

Introduction	1
1. Entropy Field Propagation and Path Integral Heat Kernels	2
1.1. Entropy Trace Fields and Diffusion Operators	2
1.2. Zeta Path Integrals and Heat Kernel Flow	2
1.3. Langlands Heat Flow Fields	2
2. Entropy Ricci Curvature and Zeta Gravitational Tensors	2
2.1. Entropy Geometry and Trace Metric	2
2.2. Entropy Ricci Tensor	3
2.3. Zeta–Einstein Equation and Arithmetic Gravity	3
2.4. Riemann Hypothesis as Trace Geodesic Symmetry	3
Conclusion and Recursive Arithmetic Geometry	4
Future Directions	4
References	5

Introduction

Zeta functions propagate. Entropy kernels evolve. The zeta trace reflects a heat-like behavior—spread, interference, decay. In number theory, this diffusion is subtle: across primes, through modular forms, along Langlands correspondences. Its geometry is hidden.

Date: May 24, 2025.

In this paper, we construct a formal language for this behavior. Using entropy path integrals and heat kernels, we model trace propagation over arithmetic moduli. From this we derive a geometric structure: recursive arithmetic gravity. Trace becomes curvature. Entropy becomes energy. The Riemann Hypothesis emerges as geodesic symmetry.

We propose:

- Path integral formalism for entropy trace fields;
- Langlands heat equations governing zeta diffusion;
- Curvature tensor built from entropy sheaf flow;
- Recursive gravity equations formalized via zeta energy minimization;
- RH as minimal path symmetry in entropy Ricci geometry.
- 1. Entropy Field Propagation and Path Integral Heat Kernels
- 1.1. Entropy Trace Fields and Diffusion Operators. Let $\mathcal{E}(n) = \rho(n) \cdot a(n)$ be an entropy kernel. Its trace function is

$$\zeta_{\mathscr{E}}(s) := \sum_{n=1}^{\infty} \mathscr{E}(n) \cdot n^{-s}.$$

Definition 1.1. The entropy Laplacian Δ_{Ent} acts on trace fields by

$$\Delta_{\operatorname{Ent}}\mathscr{E}(n) := \log^2(n) \cdot \mathscr{E}(n).$$

Remark 1.2. This operator governs entropy diffusion in s-space; it reflects analytic deformation of $\zeta_{\mathcal{E}}(s)$.

1.2. Zeta Path Integrals and Heat Kernel Flow.

Definition 1.3. The entropy heat kernel at spectral time t is

$$K_t(s) := \int_{\text{Path}_{\text{Ent}}} \exp\left(-\int_0^t \text{Lag}(\mathscr{E}, s, \dot{s}) \, ds\right) \mathcal{D}[\mathscr{E}],$$

where Lag is the entropy Lagrangian and $Path_{Ent}$ is the space of trace paths.

Proposition 1.4. If $\mathscr{E}_t(n) := \rho(n) \cdot n^{-t}$, then $K_t(s) = \zeta_{\mathscr{E}_t}(s)$, satisfying:

$$\frac{\partial}{\partial t}K_t(s) = -\Delta_{\rm Ent}K_t(s).$$

1.3. Langlands Heat Flow Fields.

Definition 1.5. A Langlands heat field is a family of trace functions $\zeta_{\pi}(s,t)$ associated to automorphic representations π , evolving under:

$$\frac{\partial}{\partial t} \zeta_{\pi}(s,t) = -\log^{2}(\mathcal{T}_{\pi}) \cdot \zeta_{\pi}(s,t),$$

where \mathcal{T}_{π} is the Hecke-Laplace operator for π .

Example 1.6. For $\zeta_{\pi}(s,t) = \sum_{n} \rho(n) \cdot \lambda_{\pi}(n) \cdot n^{-s-t}$, the Langlands heat field describes entropy-modulated L-function flow.

Zeta diffuses through arithmetic heat. Entropy defines the medium.

And trace becomes the geometry of its flow.

- 2. Entropy Ricci Curvature and Zeta Gravitational Tensors
- 2.1. Entropy Geometry and Trace Metric. We introduce a Riemannianstyle geometry on the space of entropy kernels based on their trace interactions.

Definition 2.1. Let $\mathscr{E}_1, \mathscr{E}_2 \in \mathcal{K}_{Ent}$. Define the trace inner product by

$$\langle \mathscr{E}_1, \mathscr{E}_2 \rangle := \sum_{n=1}^{\infty} \mathscr{E}_1(n) \mathscr{E}_2(n) \cdot n^{-2s}.$$

This induces a trace metric $g_{ij} := \langle \partial_i \mathcal{E}, \partial_j \mathcal{E} \rangle$ on the moduli space of entropy kernels.

2.2. Entropy Ricci Tensor. Let \mathcal{M}_{Ent} be the moduli stack of entropy kernels with the trace metric.

Definition 2.2. The entropy Ricci tensor Ric_{Ent} is defined via:

$$\operatorname{Ric}_{\operatorname{Ent}}(X,Y) := -\operatorname{Tr}\left(Z \mapsto \nabla_Z \nabla_X Y - \nabla_X \nabla_Z Y + \nabla_{[X,Z]} Y\right),$$

for $X, Y, Z \in T\mathcal{M}_{Ent}$, where ∇ is the entropy-trace Levi-Civita connection.

- Remark 2.3. Entropy Ricci curvature measures how trace flows deviate from flat propagation—a trace-theoretic analogue of gravitational curvature.
- 2.3. Zeta-Einstein Equation and Arithmetic Gravity.

Definition 2.4. The zeta–Einstein equation is:

$$\operatorname{Ric}_{\operatorname{Ent}} - \frac{1}{2} R_{\operatorname{Ent}} \cdot g = \mathcal{T}_{\operatorname{Zeta}},$$

where $R_{\text{Ent}} := \text{Tr}(\text{Ric}_{\text{Ent}})$ is the scalar entropy curvature, and $\mathcal{T}_{\text{Zeta}}$ is the trace energy-momentum tensor defined by:

$$\mathcal{T}_{\mathrm{Zeta}}(X,Y) := \langle \partial_X \zeta_{\mathscr{E}}, \partial_Y \zeta_{\mathscr{E}} \rangle.$$

Theorem 2.5 (Arithmetic Gravity Field Equation). The entropy kernel $\mathscr{E} \in \mathcal{K}_{Ent}$ satisfies the arithmetic gravity equation if and only if its trace curvature balances the propagation of $\zeta_{\mathscr{E}}$:

$$\delta \operatorname{Ric}_{\operatorname{Ent}} = \delta \mathcal{T}_{\operatorname{Zeta}}$$
.

2.4. Riemann Hypothesis as Trace Geodesic Symmetry.

Definition 2.6. A zeta-trace geodesic is a flow $\gamma : \mathbb{R} \to \mathcal{M}_{Ent}$ such that

$$\nabla_{\dot{\gamma}}\dot{\gamma} = 0$$
, and $\zeta_{\mathscr{E}_{\gamma(t)}}(s) = \zeta_{\mathscr{E}_{\gamma(-t)}}(1-s)$.

Conjecture 2.7 (Riemann Hypothesis as Entropy Geodesic Invariance). RH holds if and only if there exists a symmetric geodesic γ_{RH} in \mathcal{M}_{Ent} such that

$$\zeta_{\mathcal{E}_{\gamma(t)}}(s) = \zeta_{\mathcal{E}_{\gamma(-t)}}(1-s), \quad \forall t \in \mathbb{R}.$$

Curvature flows trace through entropy space. Each zero is a gravitational lens. And RH is the symmetry of zeta's geodesic light.

Conclusion and Recursive Arithmetic Geometry

This paper developed a geometric framework for entropy trace propagation via path integrals, heat kernel flows, and tensorial field theory. By formulating entropy curvature and zeta gravitation, we proposed a new language where arithmetic behaves like a recursive quantum geometry, and the Riemann Hypothesis emerges as a geodesic symmetry condition.

Our contributions include:

- Path integral formulation of entropy kernel evolution;
- Langlands heat fields modeling automorphic trace propagation;
- Construction of entropy Ricci curvature and trace metric geometry;
- Definition of zeta-Einstein equations and recursive arithmetic gravity;
- Recasting RH as the symmetry of entropy-trace geodesics across critical flows.

This theory offers a gravitational interpretation of zeta: primes bend trace, entropy generates curvature, and the RH becomes a cosmic principle of trace symmetry.

Future Directions.

- (1) **Derived Arithmetic Gravity Fields:** Extend the entropy metric structure to derived motivic stacks, defining quantum sheaf curvature flow.
- (2) **Zeta–Einstein Tensor Simulation:** Build numerical approximations to trace curvature and simulate zeta geodesics in entropy field space.
- (3) Arithmetic Black Trace Holes: Analyze singularities in $\zeta_{\mathscr{E}}(s)$ as entropy event horizons with trace amplitude collapse.

- (4) AI-Based Ricci Flow Learning: Use machine learning to approximate entropy Ricci evolution and search for RH-symmetric geodesic systems.
- (5) Langlands Heat Gravity Duality: Relate entropy gravity flows with automorphic spectral decompositions via a zeta holographic correspondence.

Trace is not flat. Entropy curves the arithmetic universe. The Riemann Hypothesis is its equation of balance. It is the Einstein tensor of number theory.

References

- [1] P. Deligne, La conjecture de Weil II, Publ. Math. IHÉS 52 (1980), 137–252.
- [2] J. Lurie, *Higher Algebra*, preprint.
- [3] A. Connes and M. Marcolli, *Noncommutative Geometry, Quantum Fields and Motives*, AMS Colloquium Publications, 2008.
- [4] B. Gross and D. Zagier, *Heegner Points and Derivatives of L-Series*, Invent. Math. **84** (1986), 225–320.
- [5] P. J. S. Yang, Entropy Ricci Geometry and Recursive Arithmetic Gravity, preprint (2025), in preparation.