Κωνικές Τομές Ελλειψη

Κωνσταντίνος Λόλας

- 📵 σταθερή απόσταση από ένα σημείο
- ② ίση απόσταση από δύο σημεία
- 🗿 σταθερή απόσταση από ευθεία
- ίση απόσταση από δύο ευθείες
- ⑤ ίση απόσταση από σημείο και ευθείο

- 📵 σταθερή απόσταση από ένα σημείο
- ίση απόσταση από δύο σημεία
- σταθερή απόσταση από ευθεία
- ίση απόσταση από δύο ευθείες
- ⑤ ίση απόσταση από σημείο και ευθείο

- 📵 σταθερή απόσταση από ένα σημείο
- ίση απόσταση από δύο σημεία
- σταθερή απόσταση από ευθεία
- (ση απόσταση από δύο ευθείες
- ⑤ ίση απόσταση από σημείο και ευθείο

- 📵 σταθερή απόσταση από ένα σημείο
- ίση απόσταση από δύο σημεία
- σταθερή απόσταση από ευθεία
- ίση απόσταση από δύο ευθείες
- ⑤ ίση απόσταση από σημείο και ευθεία

Κάναμε

- σταθερή απόσταση από ένα σημείο
- ίση απόσταση από δύο σημεία
- ③ σταθερή απόσταση από ευθεία
- ίση απόσταση από δύο ευθείες
- ⑤ ίση απόσταση από σημείο και ευθεία

άρα ψάχοντνας για επόμενο...

Κάναμε

- 📵 σταθερή απόσταση από ένα σημείο
- ίση απόσταση από δύο σημεία
- ③ σταθερή απόσταση από ευθεία
- ίση απόσταση από δύο ευθείες
- 🗿 ίση απόσταση από σημείο και ευθεία

σταθερό άθροισμα αποστάσεων από δύο σημεία?

Φύγαμε για Geogebra

Λίγο πιο απλά?

Φυσικά. Θα ασχοληθούμε μόνο με τις ελλείψεις που έχουν εστίες πάνω στους άξονες συμμετρικές ως προς την αρχή των αξόνων

Ακόμα πιο απλά?

Και πάλι φυσικά.

- \bullet Εστίες $\mathbf{E}(\gamma,0)$ και $\mathbf{E}'(-\gamma,0)$ ή
- \bullet Εστίες $\mathbf{E}(0,\gamma)$ και $\mathbf{E}'(0,-\gamma)$

Πιο επίσημα?

Εξίσωση Ελλειψης 1

Η έλλειψη με εστίες τα σημεία ${\rm E}(\gamma,0)$, ${\rm E}'(-\gamma,0)$ και σταθερό άθροισμα 2α είναι η

$$\frac{x^2}{\alpha^2} + \frac{y^2}{\alpha^2 - \gamma^2} = 1$$

ή πιο ωραία

Εξίσωση Ελλειψης

Η έλλειψη με εστίες τα σημεία ${\rm E}(\gamma,0)$, ${\rm E}'(-\gamma,0)$ και σταθερό άθροισμα 2α είναι η

$$\frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} = 1$$

όπου
$$\beta^2 = \alpha^2 - \gamma^2$$

Πάμε νια απόδειξη?

- ullet Εστιακή απόσταση: Το μήκος ${
 m EE}'=2\gamma$
- Κορυφές έλλειψης: Τα σημεία $A(\alpha,0)$, $A'(-\alpha,0)$, $B(0,\beta)$ και $B'(0,-\beta)$
- ullet <u>Μεγάλος άξονας</u>: Το ευθύγραμμο τμήμα ${
 m AA}'$ μήκους 2lpha
- Μικρός άξονας: Το ευθύγραμμο τμήμα ${\rm BB}'$ μήκους 2β
- Κέντρο: Το σημείο (0,0)
- Διάμετρος: Το ευθύγραμμο τμήμα που ορίζουν δύο συμμετρικά ως προς το κέντρο της έλλειψης
- ullet Εκκεντρότητ $oldsymbol{lpha}$: Ο λόγος $arepsilon=rac{1}{arepsilon}$
- Ομοιες Ελλείψεις: Δύο ελλείψεις με ίσες εκκεντρότητες

- ullet Εστιακή απόσταση: Το μήκος ${
 m EE'}=2\gamma$
- \bullet Κορυφές έλλειψης: Τα σημεία $A(\alpha,0)$, $A'(-\alpha,0)$, $B(0,\beta)$ και $B'(0,-\beta)$
- Μεγάλος άξονας: Το ευθύγραμμο τμήμα AA' μήκους 2α
- Μικρός άξονας: Το ευθύγραμμο τμήμα BB' μήκους 2β
- Κέντρο: Το σημείο (0,0)
- Διάμετρος: Το ευθύγραμμο τμήμα που ορίζουν δύο συμμετρικά ως προς το κέντρο της έλλειψης
- ullet Εκκεντρότητ $oldsymbol{lpha}$: Ο λόγος $arepsilon=rac{\gamma}{lpha}$
- Ομοιες Ελλείψεις: Δύο ελλείψεις με ίσες εκκεντρότητε

- ullet Εστιακή απόσταση: Το μήκος ${
 m EE'}=2\gamma$
- \bullet Κορυφές έλλειψης: Τα σημεία $A(\alpha,0)$, $A'(-\alpha,0)$, $B(0,\beta)$ και $B'(0,-\beta)$
- Μεγάλος άξονας: Το ευθύγραμμο τμήμα AA' μήκους 2α
- Μικρός άξονας: Το ευθύγραμμο τμήμα BB' μήκους 2β
- Κέντρο: Το σημείο (0,0)
- Διάμετρος: Το ευθύγραμμο τμήμα που ορίζουν δύο συμμετρικά ως προς το κέντρο της έλλειψης
- ullet Εκκεντρότητlpha: Ο λόγος $arepsilon=rac{\gamma}{2}$
- Ομοιες Ελλείψεις: Δύο ελλείψεις με ίσες εκκεντρότητες

- ullet Εστιακή απόσταση: Το μήκος ${
 m EE'}=2\gamma$
- ο Κορυφές έλλειψης: Τα σημεία $A(\alpha,0)$, $A'(-\alpha,0)$, $B(0,\beta)$ και $B'(0,-\beta)$
- Μεγάλος άξονας: Το ευθύγραμμο τμήμα AA' μήκους 2α
- Μικρός άξονας: Το ευθύγραμμο τμήμα ${
 m BB}'$ μήκους 2eta
- Διάμετρος: Το ευθύγραμμο τμήμα που ορίζουν δύο συμμετρικά ως προς το κέντρο της έλλειψης
- ullet Εκκεντρότητlpha: Ο λόγος $arepsilon=rac{1}{2}$
- Ομοιες Ελλείψεις: Δύο ελλείψεις με ίσες εκκεντρότητες

- ullet Εστιακή απόσταση: Το μήκος ${
 m EE'}=2\gamma$
- \bullet Κορυφές έλλειψης: Τα σημεία $A(\alpha,0)$, $A'(-\alpha,0)$, $B(0,\beta)$ και $B'(0,-\beta)$
- Μεγάλος άξονας: Το ευθύγραμμο τμήμα AA' μήκους 2α
- Μικρός άξονας: Το ευθύγραμμο τμήμα ${
 m BB}'$ μήκους 2eta
- \bullet <u>Κέντρο</u>: Το σημείο (0,0)
- Διάμετρος: Το ευθύγραμμο τμήμα που ορίζουν δύο συμμετρικά ως προς το κέντρο της έλλειψης
- ullet Εκκεντρότητlpha: Ο λόγος $arepsilon=rac{\gamma}{c}$
- Ομοιες Ελλείψεις: Δύο ελλείψεις με ίσες εκκεντρότητες

- ullet Εστιακή απόσταση: Το μήκος ${
 m EE'}=2\gamma$
- Κορυφές έλλειψης: Τα σημεία $A(\alpha,0)$, $A'(-\alpha,0)$, $B(0,\beta)$ και $B'(0,-\beta)$
- Μεγάλος άξονας: Το ευθύγραμμο τμήμα AA' μήκους 2α
- Μικρός άξονας: Το ευθύγραμμο τμήμα ${
 m BB}'$ μήκους 2eta
- ullet Κέντρο: Το σημείο (0,0)
- Διάμετρος: Το ευθύγραμμο τμήμα που ορίζουν δύο συμμετρικά ως προς το κέντρο της έλλειψης
- ullet Εκκεντρότητ $oldsymbol{lpha}$: Ο λόγος $arepsilon=rac{\gamma}{lpha}$
- Ομοιες Ελλείψεις: Δύο ελλείψεις με ίσες εκκεντρότητες

- ullet Εστιακή απόσταση: Το μήκος ${
 m EE}'=2\gamma$
- Κορυφές έλλειψης: Τα σημεία $A(\alpha,0)$, $A'(-\alpha,0)$, $B(0,\beta)$ και $B'(0,-\beta)$
- Μεγάλος άξονας: Το ευθύγραμμο τμήμα AA' μήκους 2α
- Μικρός άξονας: Το ευθύγραμμο τμήμα ${
 m BB}'$ μήκους 2eta
- ullet Κέντρο: Το σημείο (0,0)
- Διάμετρος: Το ευθύγραμμο τμήμα που ορίζουν δύο συμμετρικά ως προς το κέντρο της έλλειψης
- ullet Εκκεντρότητα: Ο λόγος $\varepsilon=rac{\gamma}{lpha}$
- Ομοιες Ελλείψεις: Δύο ελλείψεις με ίσες εκκεντρότητες

- ullet Εστιακή απόσταση: Το μήκος ${
 m EE}'=2\gamma$
- Κορυφές έλλειψης: Τα σημεία $A(\alpha,0)$, $A'(-\alpha,0)$, $B(0,\beta)$ και $B'(0,-\beta)$
- Μεγάλος άξονας: Το ευθύγραμμο τμήμα AA' μήκους 2α
- Μικρός άξονας: Το ευθύγραμμο τμήμα ${
 m BB}'$ μήκους 2eta
- ullet Κέντρο: Το σημείο (0,0)
- Διάμετρος: Το ευθύγραμμο τμήμα που ορίζουν δύο συμμετρικά ως προς το κέντρο της έλλειψης
- ullet Εκκεντρότητα: Ο λόγος $arepsilon=rac{\gamma}{lpha}$
- Ομοιες Ελλείψεις: Δύο ελλείψεις με ίσες εκκεντρότητες

Τα ίδια, αλλά ανάποδα!

Αλλάξτε τα x με τα y!

Εξίσωση Ελλειψης 2

Η έλλειψη με εστίες τα σημεία $\mathrm{E}(0,\gamma)$, $\mathrm{E}'(0,-\gamma)$ και σταθερό άθροισμα 2α είναι η

$$\frac{x^2}{\alpha^2 - \gamma^2} + \frac{y^2}{\alpha^2} = 1$$

ή πιο ωραία

Εξίσωση Ελλειψης

Η έλλειψη με εστίες τα σημεία $\mathrm{E}(0,\gamma)$, $\mathrm{E}'(0,-\gamma)$ και σταθερό άθροισμα 2α είναι η

$$\frac{x^2}{\beta^2} + \frac{y^2}{\alpha^2} = 1$$

όπου
$$\beta^2 = \alpha^2 - \gamma^2$$

Λόλας Κωνικές Τομές

8/25

- ullet Οι κορυφές βρίσκονται εύκολα για x=0 ή y=0
- Η έλλειψη κλείνεται στο ορθογώνιο που έχει πλευρές παράλληλες στους άξονες που διέρχονται από τις κορυφές
- Ο μεγάλος άξονας είναι πάντα ο άξονας των εστιών
- Το κέντρο της έλλειψης είναι κέντρο συμμετρίας
- Οι άξονες είναι άξονες συμμετρίας
- ullet Για την εκκεντρότητα ισχύει 0<arepsilon<
- ullet Αν $\gamma=0$ τότε η έλλειψη μετετρέπεται σε κύκλο

- ullet Οι κορυφές βρίσκονται εύκολα για x=0 ή y=0
- Η έλλειψη κλείνεται στο ορθογώνιο που έχει πλευρές παράλληλες στους άξονες που διέρχονται από τις κορυφές
- Ο μεγάλος άξονας είναι πάντα ο άξονας των εστιών
- Το κέντρο της έλλειψης είναι κέντρο συμμετρίας
- Οι άξονες είναι άξονες συμμετρίας
- ullet Για την εκκεντρότητα ισχύει 0<arepsilon<1
- Αν $\gamma = 0$ τότε η έλλειψη μετετρέπεται σε κύκλο

- ullet Οι κορυφές βρίσκονται εύκολα για x=0 ή y=0
- Η έλλειψη κλείνεται στο ορθογώνιο που έχει πλευρές παράλληλες στους άξονες που διέρχονται από τις κορυφές
- Ο μεγάλος άξονας είναι πάντα ο άξονας των εστιών
- Το κέντρο της έλλειψης είναι κέντρο συμμετρίας
- Οι άξονες είναι άξονες συμμετρίας
- Για την εκκεντρότητα ισχύει $0 < \varepsilon < 1$
- Αν $\gamma = 0$ τότε η έλλειψη μετετρέπεται σε κύκλο

- ullet Οι κορυφές βρίσκονται εύκολα για x=0 ή y=0
- Η έλλειψη κλείνεται στο ορθογώνιο που έχει πλευρές παράλληλες στους άξονες που διέρχονται από τις κορυφές
- Ο μεγάλος άξονας είναι πάντα ο άξονας των εστιών
- Το κέντρο της έλλειψης είναι κέντρο συμμετρίας
- Οι άξονες είναι άξονες συμμετρίας
- ullet Για την εκκεντρότητα ισχύει 0<arepsilon<1
- Αν $\gamma=0$ τότε η έλλειψη μετετρέπεται σε κύκλο

- ullet Οι κορυφές βρίσκονται εύκολα για x=0 ή y=0
- Η έλλειψη κλείνεται στο ορθογώνιο που έχει πλευρές παράλληλες στους άξονες που διέρχονται από τις κορυφές
- Ο μεγάλος άξονας είναι πάντα ο άξονας των εστιών
- Το κέντρο της έλλειψης είναι κέντρο συμμετρίας
- Οι άξονες είναι άξονες συμμετρίας
- ullet Για την εκκεντρότητα ισχύει 0<arepsilon<1
- Αν $\gamma=0$ τότε η έλλειψη μετετρέπεται σε κύκλο

- ullet Οι κορυφές βρίσκονται εύκολα για x=0 ή y=0
- Η έλλειψη κλείνεται στο ορθογώνιο που έχει πλευρές παράλληλες στους άξονες που διέρχονται από τις κορυφές
- Ο μεγάλος άξονας είναι πάντα ο άξονας των εστιών
- Το κέντρο της έλλειψης είναι κέντρο συμμετρίας
- Οι άξονες είναι άξονες συμμετρίας
- ullet Για την εκκεντρότητα ισχύει 0<arepsilon<1
- ullet Αν $\gamma=0$ τότε η έλλειψη μετετρέπεται σε κύκλο

- ullet Οι κορυφές βρίσκονται εύκολα για x=0 ή y=0
- Η έλλειψη κλείνεται στο ορθογώνιο που έχει πλευρές παράλληλες στους άξονες που διέρχονται από τις κορυφές
- Ο μεγάλος άξονας είναι πάντα ο άξονας των εστιών
- Το κέντρο της έλλειψης είναι κέντρο συμμετρίας
- Οι άξονες είναι άξονες συμμετρίας
- ullet Για την εκκεντρότητα ισχύει 0<arepsilon<1
- ullet Αν $\gamma=0$ τότε η έλλειψη μετετρέπεται σε κύκλο

Εφαπτομένη έλλειψης

Εξίσωση

Η εξίσωση της εφαπτομένης της έλλειψης $\frac{x^2}{\alpha^2}+\frac{y^2}{\beta^2}=1$ στο σημείο της (x_1,y_1) είναι η

$$\frac{xx_1}{\alpha^2} + \frac{yy_1}{\beta^2} = 1$$

Πάμε για απόδειξη?

Ιδιότητα Ελλειψης

Η κάθετη στην εφαπτόμενη σε ένα σημείο της έλλειψης ${\rm M}$, διχοτομεί την γωνία ΕΜΕ΄

Εστω η έλλειψη με εστίες ${\rm E}'(-3,0)$, ${\rm E}(3,0)$ και το μήκος του κικρού άξονα είναι 8

- Να βρείτε το μήκος του μεγάλου άξονα
- Να βρείτε την εξίσωσή της
- ③ Να βρείτε την εκκεντρότητά της

Εστω η έλλειψη με εστίες E'(-3,0), E(3,0) και το μήκος του κικρού άξονα είναι 8

- Να βρείτε το μήκος του μεγάλου άξονα
- Να βρείτε την εξίσωσή της

Λόλας Κωνικές Τομές 12/25

Εστω η έλλειψη με εστίες E'(-3,0), E(3,0) και το μήκος του κικρού άξονα είναι 8

- Να βρείτε το μήκος του μεγάλου άξονα
- Να βρείτε την εξίσωσή της
- Να βρείτε την εκκεντρότητά της

Λόλας Κωνικές Τομές 12/25

Εστω η έλλειψη που έχει κέντρο την αρχή των αξόνων και εστίες στον άξονα y'y. Αν η έλλειψη διέρχεται από το σημείο $M\left(1,\frac{10\sqrt{2}}{3}\right)$ και έχει

εκκεντρότητα $\varepsilon=rac{4}{5}$, να βρείτε

- την εξίσωσή της
- ② τις εστίς και τα μήκη των αξόνων της

Εστω η έλλειψη που έχει κέντρο την αρχή των αξόνων και εστίες στον άξονα y'y. Αν η έλλειψη διέρχεται από το σημείο $M\left(1,\frac{10\sqrt{2}}{3}\right)$ και έχει

εκκεντρότητα $\varepsilon=rac{4}{5}$, να βρείτε

- ① την εξίσωσή της
- ② τις εστίς και τα μήκη των αξόνων της

Να βρείτε την εξίσωση της εφαπτομένης της έλλειψης $C: x^2+3y^2=4$, που διέρχεται από το σημείο $\mathbf{P}(2,1)$

Δίνεται η έλλειψη $C: 2x^2+y^2=6$ και το σημείο της $\mathrm{M}(\mu,2)$, $\mu<0$. Να βρείτε την εξίσωση της ευθείας που διχοτομεί την γωνία $\widetilde{E'ME}$ όπου E' και Ε οι εστίες της C

> Λόλας Κωνικές Τομές 15/25

Εστω ότι η ευθεία $\varepsilon: y = -8x + 2$ εφάπτεται στην έλλειψη C στο σημείο της M(2,1). Να βρείτε την εξίσωση της έλλειψης C που έχει κέντρο την αρχή των αξόνων

> Λόλας Κωνικές Τομές 16/25

Δίνεται η έλλειψη $C: 3x^2 + 4y^2 = 16$. Να δείξετε ότι η ευθεία $\varepsilon: 3x+2y-8=0$ εφάπτεται στην έλλειψη C και να βρείτε το σημείο επαφής.

> Λόλας Κωνικές Τομές 17/25

Δίνεται η έλλειψη $C: \frac{x^2}{5} + \frac{y^2}{4} = 1$. Από το σημείο P(2,-3) φέρουμε τις εφαπτόμενες PA, PB προς την C. Να βρείτε την απόσταση του σημείου P από την ευθεία AB

Να βρείτε τις κοινές εφαπτόμενες του κύκλου $C_1: x^2+y^2=2$ και της έλλειψης $C_2: x^2+3y^2=3$

Εστω τα σημεία E'(-4,0) και E(4,0). Να βρείτε το γεωμετρικό τόπο των σημείων Μ, για τα οποία ισχύει

$$|ME| + |ME'| = 10$$

και στη συνέχεια την εξίσωσή του

Να βρείτε το γεωμετρικό τόπο των σημείων M, για τα οποία ισχύει

$$3\overrightarrow{OM}^2 + 2\overrightarrow{OM} \cdot \overrightarrow{OM'} = 5$$

όπου M' το συμμετρικό σημείο του M ως προς τον άξονα x'x

Αν ${\bf M}$ σημείο της έλλειψης $C:\frac{x^2}{5}+\frac{y^2}{4}=1$, με εστίες τα σημεία ${\bf E}'$ και ${\bf E}$, να δείξετε ότι

$$|\overrightarrow{\mathrm{ME'}}| \cdot |\overrightarrow{\mathrm{ME}}| + \overrightarrow{\mathrm{OM}}^2 = 9$$

όπου Ο η αρχή των αξόνων

Να βρείτε την εξίσωση της χορδής AB της έλλειψης $C:4x^2+9y^2=36$, που έχει μέσο το σημείο ${\rm M}(2,1)$

Δίνεται η έλλειψη $C_1: x^2+4y^2=4$ και ο κύκλος $C_2: x^2+y^2-10x+24=0.$ Να βρείτε την ελάχιστη και την μέγιστη απόσταση ενός σημείου της C_1 από ένα σημείο της C_2

Να βρείτε το πλησιέστερο σημείο της έλλειψης $C: x^2 + 2y^2 = 6$ από την ευθεία x+y-8=0

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση

Οι εστίες είναι οι ${\rm E}(\gamma,0)$, ${\rm E}(-\gamma,0)$ και η σταθερή απόσταση είναι 2α . Για κάθε σημείο M(x,y) θα ισχύει:

$$|ME| + |ME'| = 2\alpha$$

$$\sqrt{(x-\gamma)^2 + (y-0)^2} + \sqrt{(x+\gamma)^2 + (y-0)^2} = 2\alpha$$

$$\sqrt{(x-\gamma)^2 + y^2} = 2\alpha - \sqrt{(x+\gamma)^2 + y^2}$$

$$\left(\sqrt{(x-\gamma)^2 + y^2}\right)^2 = \left(2\alpha - \sqrt{(x+\gamma)^2 + y^2}\right)^2$$

 $\cancel{x}^{2} - 2\gamma x + \cancel{\gamma}^{2} + \cancel{y}^{2} = 4\alpha^{2} - 4\alpha\sqrt{(x+\gamma)^{2} + y^{2} + \cancel{x}^{2} + 2\gamma x + \cancel{\gamma}^{2} + \cancel{y}^{2}}$

 $4\alpha\sqrt{(x+\gamma)^2 + y^2} = 4\alpha^2 + 4\gamma x A\alpha\sqrt{(x+\gamma)^2 + y^2} = A\alpha^2 + A\gamma x$

Οι εστίες είναι οι ${\rm E}(\gamma,0)$, ${\rm E}(-\gamma,0)$ και η σταθερή απόσταση είναι 2α . Για κάθε σημείο M(x,y) θα ισχύει:

$$|ME| + |ME'| = 2\alpha$$

$$\sqrt{(x-\gamma)^2 + (y-0)^2} + \sqrt{(x+\gamma)^2 + (y-0)^2} = 2\alpha$$

$$\sqrt{(x-\gamma)^2 + y^2} = 2\alpha - \sqrt{(x+\gamma)^2 + y^2}$$

$$\left(\sqrt{(x-\gamma)^2 + y^2}\right)^2 = \left(2\alpha - \sqrt{(x+\gamma)^2 + y^2}\right)^2$$

 $\cancel{x} - 2\gamma x + \cancel{\gamma}^2 + \cancel{x} = 4\alpha^2 - 4\alpha\sqrt{(x+\gamma)^2 + y^2 + \cancel{x}^2 + 2\gamma x + \cancel{\gamma}^2 + y}$

 $4\alpha\sqrt{(x+\gamma)^2+y^2}=4\alpha^2+4\gamma x \text{A}\alpha\sqrt{(x+\gamma)^2+y^2}=\text{A}\alpha^2+\text{A}\gamma x$

Οι εστίες είναι οι ${\rm E}(\gamma,0)$, ${\rm E}(-\gamma,0)$ και η σταθερή απόσταση είναι 2α . Για κάθε σημείο M(x,y) θα ισχύει:

$$|ME| + |ME'| = 2\alpha$$

$$\sqrt{(x-\gamma)^2 + (y-0)^2} + \sqrt{(x+\gamma)^2 + (y-0)^2} = 2\alpha$$

$$\sqrt{(x-\gamma)^2 + y^2} = 2\alpha - \sqrt{(x+\gamma)^2 + y^2}$$

$$\left(\sqrt{(x-\gamma)^2 + y^2}\right)^2 = \left(2\alpha - \sqrt{(x+\gamma)^2 + y^2}\right)^2$$

$$\cancel{x}^{2} - 2\gamma x + \cancel{x}^{2} + \cancel{y}^{2} = 4\alpha^{2} - 4\alpha\sqrt{(x+\gamma)^{2} + y^{2}} + 2\gamma x + \cancel{x}^{2} + 2\gamma x + \cancel{x}^{2} + \cancel{y}^{2}$$

$$4\alpha\sqrt{(x+\gamma)^{2} + y^{2}} = 4\alpha^{2} + 4\gamma x 4\alpha\sqrt{(x+\gamma)^{2} + y^{2}} = 4\alpha^{2} + 4\alpha\sqrt{(x+\gamma)^{2} + y^{2}} = 4\alpha\sqrt{$$

Οι εστίες είναι οι ${\rm E}(\gamma,0)$, ${\rm E}(-\gamma,0)$ και η σταθερή απόσταση είναι 2α . Για κάθε σημείο M(x,y) θα ισχύει:

$$|ME| + |ME'| = 2\alpha$$

$$\begin{split} \sqrt{(x-\gamma)^2 + (y-0)^2} + \sqrt{(x+\gamma)^2 + (y-0)^2} &= 2\alpha \\ \sqrt{(x-\gamma)^2 + y^2} &= 2\alpha - \sqrt{(x+\gamma)^2 + y^2} \\ \left(\sqrt{(x-\gamma)^2 + y^2}\right)^2 &= \left(2\alpha - \sqrt{(x+\gamma)^2 + y^2}\right)^2 \\ x^2 - 2\gamma x + \gamma^2 + y^2 &= 4\alpha^2 - 4\alpha\sqrt{(x+\gamma)^2 + y^2} + x^2 + 2\gamma x + \gamma^2 + y^2 \\ 4\alpha\sqrt{(x+\gamma)^2 + y^2} &= 4\alpha^2 + 4\gamma x A\alpha\sqrt{(x+\gamma)^2 + y^2} = A\alpha^2 + A\gamma x \end{split}$$

Οι εστίες είναι οι ${\rm E}(\gamma,0)$, ${\rm E}(-\gamma,0)$ και η σταθερή απόσταση είναι 2α . Για κάθε σημείο M(x,y) θα ισχύει:

$$|ME| + |ME'| = 2\alpha$$

$$\sqrt{(x-\gamma)^{2} + (y-0)^{2}} + \sqrt{(x+\gamma)^{2} + (y-0)^{2}} = 2\alpha$$

$$\sqrt{(x-\gamma)^{2} + y^{2}} = 2\alpha - \sqrt{(x+\gamma)^{2} + y^{2}}$$

$$\left(\sqrt{(x-\gamma)^{2} + y^{2}}\right)^{2} = \left(2\alpha - \sqrt{(x+\gamma)^{2} + y^{2}}\right)^{2}$$

$$\cancel{x}^{2} - 2\gamma x + \cancel{\gamma}^{2} + \cancel{y}^{2} = 4\alpha^{2} - 4\alpha\sqrt{(x+\gamma)^{2} + y^{2}} + \cancel{x}^{2} + 2\gamma x + \cancel{\gamma}^{2} + \cancel{y}^{2}$$

$$4\alpha\sqrt{(x+\gamma)^{2} + y^{2}} = 4\alpha^{2} + 4\gamma x \cancel{A}\alpha\sqrt{(x+\gamma)^{2} + y^{2}} = \cancel{A}\alpha^{2} + \cancel{A}\gamma x$$

Οι εστίες είναι οι ${\rm E}(\gamma,0)$, ${\rm E}(-\gamma,0)$ και η σταθερή απόσταση είναι 2α . Για κάθε σημείο M(x,y) θα ισχύει:

$$|ME| + |ME'| = 2\alpha$$

$$\begin{split} \sqrt{\left(x-\gamma\right)^2+\left(y-0\right)^2} + \sqrt{\left(x+\gamma\right)^2+\left(y-0\right)^2} &= 2\alpha \\ \sqrt{\left(x-\gamma\right)^2+y^2} &= 2\alpha - \sqrt{\left(x+\gamma\right)^2+y^2} \\ \left(\sqrt{\left(x-\gamma\right)^2+y^2}\right)^2 &= \left(2\alpha - \sqrt{\left(x+\gamma\right)^2+y^2}\right)^2 \\ \mathscr{L} - 2\gamma x + \gamma^2 + \mathscr{L} &= 4\alpha^2 - 4\alpha\sqrt{\left(x+\gamma\right)^2+y^2} + \mathscr{L} + 2\gamma x + \gamma^2 + \mathscr{L} \\ 4\alpha\sqrt{\left(x+\gamma\right)^2+y^2} &= 4\alpha^2 + 4\gamma x \mathscr{A} \alpha \sqrt{\left(x+\gamma\right)^2+y^2} &= \mathscr{A} \alpha^2 + \mathscr{A} \gamma x \end{split}$$

Οι εστίες είναι οι ${\rm E}(\gamma,0)$, ${\rm E}(-\gamma,0)$ και η σταθερή απόσταση είναι 2α . Για κάθε σημείο M(x,y) θα ισχύει:

$$|ME| + |ME'| = 2\alpha$$

$$\alpha\sqrt{(x+\gamma)^{2} + y^{2}} = \alpha^{2} + \gamma x$$

$$\alpha^{2} ((x+\gamma)^{2} + y^{2}) = (\alpha^{2} + \gamma x)^{2}$$

$$^{2} + 2\alpha^{2}\gamma x + \alpha^{2}\gamma^{2} + \alpha^{2}y^{2} = \alpha^{4} + 2\alpha^{2}\gamma x + \gamma^{2}x$$

$$(\alpha^{2} - \gamma^{2})x^{2} + \alpha^{2}y^{2} = \alpha^{4} - \alpha^{2}\gamma^{2}$$

$$(\alpha^{2} - \gamma^{2})x^{2} + \alpha^{2}y^{2} = \alpha^{2}(\alpha^{2} - \gamma^{2})$$

Οι εστίες είναι οι ${\rm E}(\gamma,0)$, ${\rm E}(-\gamma,0)$ και η σταθερή απόσταση είναι 2α . Για κάθε σημείο M(x,y) θα ισχύει:

$$|ME| + |ME'| = 2\alpha$$

$$\alpha\sqrt{(x+\gamma)^2 + y^2} = \alpha^2 + \gamma x$$

$$\alpha^2 \left((x+\gamma)^2 + y^2 \right) = (\alpha^2 + \gamma x)^2$$

$$\alpha^2 x^2 + 2\alpha^2 \gamma x + \alpha^2 \gamma^2 + \alpha^2 y^2 = \alpha^4 + 2\alpha^2 \gamma x + \gamma^2 x$$

$$(\alpha^2 - \gamma^2) x^2 + \alpha^2 y^2 = \alpha^4 - \alpha^2 \gamma^2$$

$$(\alpha^2 - \gamma^2) x^2 + \alpha^2 y^2 = \alpha^4 - \alpha^2 \gamma^2$$

Οι εστίες είναι οι ${\rm E}(\gamma,0)$, ${\rm E}(-\gamma,0)$ και η σταθερή απόσταση είναι 2α . Για κάθε σημείο M(x,y) θα ισχύει:

$$|ME| + |ME'| = 2\alpha$$

$$\alpha\sqrt{(x+\gamma)^2 + y^2} = \alpha^2 + \gamma x$$

$$\alpha^2 \left((x+\gamma)^2 + y^2 \right) = (\alpha^2 + \gamma x)^2$$

$$\alpha^2 x^2 + 2\alpha^2 \gamma x + \alpha^2 \gamma^2 + \alpha^2 y^2 = \alpha^4 + 2\alpha^2 \gamma x + \gamma^2 x^2$$

$$(\alpha^2 - \gamma^2) x^2 + \alpha^2 y^2 = \alpha^4 - \alpha^2 \gamma^2$$

$$(\alpha^2 - \gamma^2) x^2 + \alpha^2 y^2 = \alpha^2 (\alpha^2 - \gamma^2)$$

Οι εστίες είναι οι ${\rm E}(\gamma,0)$, ${\rm E}(-\gamma,0)$ και η σταθερή απόσταση είναι 2α . Για κάθε σημείο M(x,y) θα ισχύει:

$$|ME| + |ME'| = 2\alpha$$

$$\alpha\sqrt{(x+\gamma)^2 + y^2} = \alpha^2 + \gamma x$$

$$\alpha^2 \left((x+\gamma)^2 + y^2 \right) = (\alpha^2 + \gamma x)^2$$

$$\alpha^2 x^2 + 2\alpha^2 \gamma x + \alpha^2 \gamma^2 + \alpha^2 y^2 = \alpha^4 + 2\alpha^2 \gamma x + \gamma^2 x^2$$

$$(\alpha^2 - \gamma^2) x^2 + \alpha^2 y^2 = \alpha^4 - \alpha^2 \gamma^2$$

$$(\alpha^2 - \gamma^2) x^2 + \alpha^2 y^2 = \alpha^2 (\alpha^2 - \gamma^2)$$

$$\frac{x^2}{\alpha^2} + \frac{y^2}{\alpha^2} = 1$$

Οι εστίες είναι οι $E(\gamma, 0)$, $E(-\gamma, 0)$ και η σταθερή απόσταση είναι 2α . Για κάθε σημείο M(x,y) θα ισχύει:

$$|ME| + |ME'| = 2\alpha$$

$$\alpha\sqrt{(x+\gamma)^{2} + y^{2}} = \alpha^{2} + \gamma x$$

$$\alpha^{2} ((x+\gamma)^{2} + y^{2}) = (\alpha^{2} + \gamma x)^{2}$$

$$\alpha^{2}x^{2} + 2\alpha^{2}\gamma x + \alpha^{2}\gamma^{2} + \alpha^{2}y^{2} = \alpha^{4} + 2\alpha^{2}\gamma x + \gamma^{2}x^{2}$$

$$(\alpha^{2} - \gamma^{2})x^{2} + \alpha^{2}y^{2} = \alpha^{4} - \alpha^{2}\gamma^{2}$$

$$(\alpha^{2} - \gamma^{2})x^{2} + \alpha^{2}y^{2} = \alpha^{2}(\alpha^{2} - \gamma^{2})$$

$$\frac{x^{2}}{\alpha^{2}} + \frac{y^{2}}{\alpha^{2} - \gamma^{2}} = 1$$

Οι εστίες είναι οι ${\rm E}(\gamma,0)$, ${\rm E}(-\gamma,0)$ και η σταθερή απόσταση είναι 2α . Για κάθε σημείο M(x,y) θα ισχύει:

$$|ME| + |ME'| = 2\alpha$$

$$\alpha\sqrt{(x+\gamma)^{2} + y^{2}} = \alpha^{2} + \gamma x$$

$$\alpha^{2} ((x+\gamma)^{2} + y^{2}) = (\alpha^{2} + \gamma x)^{2}$$

$$\alpha^{2}x^{2} + 2\alpha^{2}\gamma x + \alpha^{2}\gamma^{2} + \alpha^{2}y^{2} = \alpha^{4} + 2\alpha^{2}\gamma x + \gamma^{2}x^{2}$$

$$(\alpha^{2} - \gamma^{2})x^{2} + \alpha^{2}y^{2} = \alpha^{4} - \alpha^{2}\gamma^{2}$$

$$(\alpha^{2} - \gamma^{2})x^{2} + \alpha^{2}y^{2} = \alpha^{2}(\alpha^{2} - \gamma^{2})$$

$$\frac{x^{2}}{\alpha^{2}} + \frac{y^{2}}{\alpha^{2} - \gamma^{2}} = 1$$

Οι εστίες είναι οι ${\rm E}(\gamma,0)$, ${\rm E}(-\gamma,0)$ και η σταθερή απόσταση είναι 2α . Για κάθε σημείο M(x,y) θα ισχύει:

$$|ME| + |ME'| = 2\alpha$$

$$\alpha\sqrt{(x+\gamma)^{2} + y^{2}} = \alpha^{2} + \gamma x$$

$$\alpha^{2} ((x+\gamma)^{2} + y^{2}) = (\alpha^{2} + \gamma x)^{2}$$

$$\alpha^{2}x^{2} + 2\alpha^{2}\gamma x + \alpha^{2}\gamma^{2} + \alpha^{2}y^{2} = \alpha^{4} + 2\alpha^{2}\gamma x + \gamma^{2}x^{2}$$

$$(\alpha^{2} - \gamma^{2})x^{2} + \alpha^{2}y^{2} = \alpha^{4} - \alpha^{2}\gamma^{2}$$

$$(\alpha^{2} - \gamma^{2})x^{2} + \alpha^{2}y^{2} = \alpha^{2}(\alpha^{2} - \gamma^{2})$$

$$\frac{x^{2}}{\alpha^{2}} + \frac{y^{2}}{\alpha^{2} - \gamma^{2}} = 1$$

Απόδειξη εφαπτόμενης

Αντε ρε που θέλετε και την απόδειξη!

Πίσω στη θεωρία

Απόδειξη ανακλαστικής ιδιότητας

Είπαμε!

Πίσω στη θεωρία