

Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ciencias Exactas y Naturales Departamento de Matemática

Álgebra Lineal (R211 - CE9)

2025

UNIDAD 6 - EL TEOREMA DE DESCOMPOSICIÓN ESPECTRAL

1. La transformación adjunta

Para un F-ev V de dimensión finita dim(V) = n hemos visto que $V \simeq V^* \simeq F^n$. Un isomorfismo canónico viene dado por el que asigna a una base de V su base dual. Cuando el ev está dotado de un pi $\langle \cdot, \cdot \rangle$, podremos probar un resultado que nos permitirá establecer otro isomorfismo.

El teorema de Representación de Riesz: Sea $(V, \langle \cdot, \cdot \rangle)$ un F-ev con pi, y dim(V) = n. Sea $\varphi \in V^*$. Entonces existe un único vector $u \in V$ tal que $\varphi(v) = \langle v, u \rangle$ para todo $v \in V$.

Demostración: Sea $B = \{v_1, \dots, v_n\}$ bon de V.

Para $v \in V$, $v = \langle v, v_1 \rangle v_1 + \cdots + \langle v, v_n \rangle v_n$. Luego,

$$\varphi(v) = \langle v, v_1 \rangle \varphi(v_1) + \dots + \langle v, v_n \rangle \varphi(v_n) = \langle v, \overline{\varphi(v_1)} v_1 \rangle + \dots + \langle v, \overline{\varphi(v_n)} v_n \rangle.$$

Definimos entonces $u := \overline{\varphi(v_1)}v_1 + \cdots + \overline{\varphi(v_n)}v_n$, así $\varphi(v) = \langle v, u \rangle$.

La unicidad sigue de considerar otro $u' \in V$ tal que $\varphi(v) = \langle v, u' \rangle$ para todo $v \in V$. Luego, para todo $v \in V$, $\langle v, u \rangle = \langle v, u' \rangle$, de donde $\langle v, u - u' \rangle = 0$. Tomando particularmente v = u - u' sigue que u - u' = 0 y por lo tanto u' = u.

Proposición 1 $(V, \langle \cdot, \cdot \rangle)$ un F-ev con pi, y dim(V) = n. $T \in L(V)$. Existe un $T^* \in L(V)$ tal que

$$\langle Tv, u \rangle = \langle v, T^*u \rangle,$$
 (1)

y tal endomorfismo se denomina transformación adjunta de T.

Demostración: Sea $B = \{v_1, \dots, v_n\}$ una bon de V. Si $u \in V$, con $u = \langle u, v_1 \rangle v_1 + \dots + \langle u, v_n \rangle v_n$. Para definir T^*u observemos que debería satisfacer que

$$T^*(u) = \langle T^*(u), v_1 \rangle v_1 + \dots + \langle T^*(u), v_n \rangle v_n$$

$$= \overline{\langle v_1, T^*(u) \rangle} v_1 + \dots + \overline{\langle v_n, T^*(u) \rangle} v_n$$

$$= \overline{\langle T(v_1), u \rangle} v_1 + \dots + \overline{\langle T(v_n), u \rangle} v_n$$

$$= \langle u, T(v_1) \rangle v_1 + \dots + \langle u, T(v_n) \rangle v_n.$$

Luego definimos para $u \in V$, $T^*(u) = \langle u, T(v_1) \rangle v_1 + \cdots + \langle u, T(v_n) \rangle v_n$.

• Con esta definición, $T^*: V \to V$ es una t.l. (EJERCICIO)

■ T^* verifica (1). En efecto, si $u, v \in V$ con $v = \sum_{i=1}^n \langle v, v_i \rangle v_i$,

$$T(v) = T\left(\sum_{i=1}^{n} \langle v, v_i \rangle v_i\right) = \sum_{i=1}^{n} \langle v, v_i \rangle T(v_i),$$

$$\langle T(v), u \rangle = \langle \sum_{i=1}^{n} \langle v, v_i \rangle T(v_i), u \rangle = \sum_{i=1}^{n} \langle v, v_i \rangle \langle T(v_i), u \rangle,$$

$$\langle v, T^*u \rangle = \langle v, \sum_{i=1}^{n} \langle u, T(v_i) \rangle v_i \rangle = \sum_{i=1}^{n} \overline{\langle u, T(v_i) \rangle} \langle v, v_i \rangle = \sum_{i=1}^{n} \langle T(v_i), u \rangle \langle v, v_i \rangle,$$

que es exactamente (1).

• Para verificar la unicidad supongamos que existe otra tal \hat{T} : para todos $u, v \in V$ tenemos que

$$\langle T(v), u \rangle = \langle v, T^*(u) \rangle = \langle v, \hat{T}(u) \rangle,$$

esto nos dice que para todos $u, v \in V$ debe ser

$$\langle v, T^*(u) - \hat{T}(u) \rangle = 0,$$

y si en particular tomamos $v = T^*(u) - \hat{T}(u)$ resulta que $T^*(u) - \hat{T}(u) = \overline{0}$ para todo $u \in V$, de donde $T^* = \hat{T}$.

A nivel de matrices tenemos la siguiente proposición:

Proposición 2 $(V, \langle \cdot, \cdot \rangle)$ un F-ev con pi, y dim(V) = n, B bon de V, $T \in L(V)$. Entonces

$$[T^*]_B = ([T]_B)^* = \overline{[T]_B^t}.$$

Demostración: Sea $B = \{v_1, \dots, v_n\}$ una bon de V. Recordemos que si $S \in L(V)$, $[S]_B = ([S(v_j)]_B^t) = (\langle S(v_i), v_i \rangle)$, puesto que $S(v_j) = \sum_{i=1}^n \langle T(v_j), v_i \rangle v_i$. Entonces,

$$([T^*]_B)_{ij} = \langle T^*v_j, v_i \rangle = \overline{\langle v_i, T^*v_j \rangle} = \overline{\langle T(v_i), v_j \rangle} = \overline{([T]_B)_{ji}} = \overline{([T]_B^t)_{ij}} = (([T]_B)^*)_{ij}.$$

Ejemplo 1 $T: \mathbb{C}^2 \to \mathbb{C}^2$ definida por T(z, w) = (2z - w, z + iw). Calcular la expresión de T^* a partir del planteo de (1). Además, se tiene que

$$[T]_E = \begin{pmatrix} 2 & -1 \\ 1 & i \end{pmatrix}$$

y

$$[T^*]_E = \begin{pmatrix} 2 & 1 \\ & \\ -1 & -i \end{pmatrix}.$$

2. El teorema de descomposición espectral

El teorema de descomposición espectral es un caso particular del teorema de diagonalización. Cuando la transformación es simétrica (en el caso real) o hermítica (en el caso complejo), podremos diagonalizarla y con condiciones muy especiales: autovalores positivos y base ortonormal de autovectores. A eso apuntamos.

Definición 1 $(V, \langle \cdot, \cdot \rangle)$ un F-ev con pi, y dim(V) = n. $T \in L(V)$ se dice que es autoadjunta si $T^* = T$. Esto es, T es autoadjunta sii p.t. $u, v \in V$,

$$\langle Tv, u \rangle = \langle v, Tu \rangle.$$

Matricialmente, si B bon de V y $A=[T]_B$, puesto que $[T^*]_B=([T]_B)^*=\overline{[T]_B^t}$ tenemos que:

- Si $F = \mathbb{R}$, $A = A^t$, es decir, A es simétrica.
- Si $F = \mathbb{C}$, $A = A^* = \overline{A^t}$, es decir, A es hermítica.

En general diremos que A es hermítica, y sobreentenderemos que si el cuerpo es \mathbb{R} hermítica se reduce a simétrica. Salvo que sea necesaria la aclaración por alguna cuestión particular, hablaremos de hermítica.

La siguiente proposición nos parece en este momento un poco evidente, pero hay que completar los detalles.

Proposición 3 $(V, \langle \cdot, \cdot \rangle)$ un F-ev con pi, dim(V) = n, $T \in L(V)$. Son equivelentes:

- 1. T es autoadjunta,
- 2. P.t. B bon de V, $[T]_B$ es hermítica,
- 3. Existe B bon de V t.q. $[T]_B$ es hermítica.

Demostración: EJERCICIO.

La siguiente proposición tiene interés en si mismo: nos asegura, aún en el caso de cuerpo complejo, que toda transformación autoadjunta tiene sus autovalores reales.

Proposición 4 $(V, \langle \cdot, \cdot \rangle)$ un F-ev con pi, dim(V) = n, $T \in L(V)$ autoadjunta. Si $\lambda \in F$ es autovalor de T, entonces $\lambda \in \mathbb{R}$.

Demostración: Si λ autovalor de T existe $v \in V$ no nulo (luego $||v|| \neq 0$) t.q. $Tv = \lambda v$. Entonces

$$\text{elevar al cuadrado} \ \, \lambda ||v|| \overset{\textbf{2}}{=} \lambda \langle v,v \rangle = \langle \lambda v,v \rangle = \langle Tv,v \rangle = \langle v,T^*v \rangle = \langle v,Tv \rangle = \langle v,\lambda v \rangle = \overline{\lambda} ||v||, \overset{\textbf{2}}{=} \lambda \langle v,v \rangle = \overline$$

de donde $\lambda = \overline{\lambda}$, luego $\lambda \in \mathbb{R}$.

Matricialmente: los autovalores de una matriz hermítica son reales.

Veamos el teorema más importante de esta unidad:

El teorema de descomposición espectral para transformaciones autoadjuntas $(V, \langle \cdot, \cdot \rangle)$ un F-ev con pi, dim(V) = n, $T \in L(V)$ autoadjunta. Entonces existe una bon B de V de autovectores de V tal que $[T]_B$ es una matriz diagonal real.

Demostración: Por inducción sobre dim(V) = n.

• Caso base: n = 1 nada que hacer.

sacar -1 o poner menor o igual

- Hipótesis de inducción: suponemos que para todo V tal que 1 < dim(V) < n 1 se verifica la afirmación.
- Consideremos dim(V) = n. Como T es autoadjunta, existe $\lambda \in \mathbb{R}$ autovalor de T. Sea $v \in V$, $v \neq \overline{0}$ un autovector de T asociado al autovalor λ . Sea $w := \frac{v}{||v||}$. Así definido, w también es un autovector de T asociado al autovalor λ , normalizado.

Sea $U = (span\{w\})^{\perp}$. Tenemos que $U \subset V$ sev y dim(U) = n - 1. Además, U es T-invariante (EJERCICIO: justificar esta afirmación).

Aplicaremos la HI a este sev. Para esto, consideramos $T|_U$ y $\langle \cdot, \cdot \rangle_U$ el pi de V restringido a U.

 $T|_U$ es autoadjunta (EJERCICIO: justificar esta afirmación).

Así, por HI existe $B' = \{v_1, \ldots, v_{n-1}\}$ bon de U de autovectores de $T|_U$ t.q. $[T|_U]_{B'}$ es una matriz diagonal real:

$$[T|_U]_{B'} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_{n-1} \end{pmatrix},$$

con $\lambda_1, \lambda_2, \dots, \lambda_{n-1} \in \mathbb{R}$ y $Tv_i = \lambda_i v_i$ para $i = 1, \dots, n-1$.

Sea $B = B' \cup \{w\}$. Entonces B bon de T (EJERCICIO: por qué?) de autovectores de T y

$$[T]_{B} = \left(\begin{array}{c|ccc} |T|_{U]_{B'}} & 0 \\ \hline 0 & \lambda \end{array}\right) = \begin{pmatrix} \lambda_{1} & 0 & \dots & 0 & 0 \\ 0 & \lambda_{2} & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \\ 0 & 0 & \dots & \lambda_{n-1} & 0 \\ 0 & 0 & \dots & 0 & \lambda \end{pmatrix}.$$

Matricialmente: si $A \in \mathbb{C}^{n \times n}$ hermítica, existe $B = \{v_1, \dots, v_n\}$ bon de \mathbb{C}^n de autovectores de A y $D \in \mathbb{R}^{n \times n}$ diagonal t.q. $D = C_{E \to B} A C_{B \to E}$ ($E = \{e_1, \dots, e_n\}$ base canónica respecto del pi, es decir, tal que la matriz del pi respecto de la base E es la matriz identidad). Entonces,

$$(C_{B\to E}^{-1})_{ij} = (C_{E\to B})_{ij} = \langle e_j, v_i \rangle = \overline{\langle v_i, e_j \rangle} = \overline{(C_{B\to E})_{ji}} = (C_{B\to E}^*)_{ij}.$$

Se desprende que

$$(C_{B\to E})^{-1} = C_{B\to E}^*$$

Y en el caso real,

$$(C_{B\to E})^{-1} = C_{B\to E}^t.$$

Este tipo de matrices es tan importante que llevan nombre propio:

Definición 2 • $U \in \mathbb{C}^{n \times n}$ inversible y tal que $U^{-1} = U^*$ se llama matriz unitaria,

• $O \in \mathbb{R}^{n \times n}$ inversible y tal que $O^{-1} = O^t$ se llama matriz ortogonal.

Para cualquier par de bon, la matriz de cambio de base es unitaria (ortogonal).

Tenemos entonces que toda matriz hermítica $A \in \mathbb{C}^{n \times n}$ se descompone como $A = UDU^*$, donde D es una matriz diagonal real (de autovalores de A) y U es una matriz unitaria.

De manera análoga, toda matriz simétrica $A \in \mathbb{R}^{n \times n}$ se descompone como $A = ODO^t$, donde D es una matriz diagonal real (de autovalores de A) y O es una matriz ortogonal.

3. Transformaciones unitarias y ortogonales

Recordemos la última definición de la sección anterior:

Si $U \in \mathbb{C}^{n \times n}$ inversible y tal que $U^{-1} = U^*$ se llama matriz unitaria,

Si $O \in \mathbb{R}^{n \times n}$ inversible y tal que $\mathbf{U}^{-1} = \mathbf{U}^t$ se llama matriz ortogonal.

A nivel de transformaciones lineales, esto significa que $T \circ T^* = T^* \circ T = id_V$. Estos endomorfismos preservan el producto interno y por lo tanto las distancias. Toda esta información se resume en un teorema, cuya demostración no veremos pero dejamos como ejercicio intentarlo. Al menos algunas implicancias deberían salir.

Teorema 1 $(V, \langle \cdot, \cdot \rangle)$ un F-ev con pi, dim(V) = n, $T \in L(V)$. Son equivalentes:

- 1. Existe B bon de V t.q. T(B) bon de V.
- 2. P.t. $v, u \in V$, $\langle T(v), T(u) \rangle = \langle v, u \rangle$.
- 3. P.t. B bon de V, T(B) bon de V.
- 4. P.t. $v \in V$, ||T(v)|| = ||v||.
- 5. $T^* \circ T = T \circ T^* = id_V$.

Desafío 1 Probar el teorema. Vale buscar en la bibliografía.

Una t.l. que verifica cualquiera de las condiciones del teorema se dice **unitaria** (en el caso complejo) u **ortogonal** (en el caso real). Se desprende de todo lo que hemos estudiado que, dada una B bon de V, T es unitaria sii $[T]_B$ es unitaria (caso complejo), ortogonal sii $[T]_B$ es ortogonal (caso real).

Una t.l. que preserva la norma (item (vi) del teorema) se llama isometría.

El item (v) del teorema dice que T es un isomorfismo.

Estudiaremos a continuación el caso real en dimensiones 2 y 3: clasificaremos las transformaciones ortogonales. En el caso de dimensión 2, estudiaremos las isometrías del plano y en dimensión 3 las isometrías del espacio. Éstas serán, en ambos casos, rotaciones y simetrías.

Tenemos dos resultados inmediatos, muy interesantes

Proposición 5 $T: V \to V$ t.l. ortogonal, $\lambda \in \mathbb{R}$ autovalor de T. Entonces $\lambda = \pm 1$.

Demostración: Sabemos que existe $v \in V$ no nulo autovector de T asociado a λ . Como T es ortogonal, ||Tv|| = ||v||. Así,

$$||v|| = ||Tv|| = ||\lambda v|| = |\lambda|||v||,$$

de donde $\lambda = \pm 1$.

La siguiente proposición la hemos usado mil veces, y la hemos probado mil veces.

Proposición 6 $T:V\to V$ t.l. ortogonal, $U\subset V$ sev T-invariante. Entonces U^\perp también es T-invariante.

Desafío 2 Escribir la prueba.

Simetrías en dimensión 2

Sea V espacio euclídeo con dim(V) = 2, T t.l. ortogonal. $B = \{v_1, v_2\}$ bon de V.

Tenemos que $\{Tv_1, Tv_2\}$ bon de V y más aún, si $Tv_1 = \alpha v_1 + \beta v_2$ y $Tv_2 = \alpha' v_1 + \beta' v_2$, entonces $\{(\alpha, \beta), (\alpha', \beta')\}$ bon de \mathbb{R}^2 , luego $||(\alpha, \beta)|| = ||(\alpha', \beta')|| = 1$ y $(\alpha, \beta) \times (\alpha', \beta') = \alpha \alpha' + \beta \beta' = 0$. Sigue que $\alpha^2 + \beta^2 = 1$ y o bien $(\alpha', \beta') = (-\beta, \alpha)$ o bien $(\alpha', \beta') = (\beta, -\alpha)$.

En el primer caso,
$$(\alpha', \beta') = (-\beta, \alpha)$$
, tenemos que $[T]_B = \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$, y $\chi_T(X) = (X - \alpha)^2 + \beta^2 = (X - \alpha)^2 + (X - \alpha)^2 +$

 $X^2 - 2\alpha X + 1$. El caso $[T]_B$ diagonal se da sólo cuando $\alpha = \pm 1$, pues en otro caso χ_T no tiene raíces

reales. Más aún, como $||(\alpha, \beta)|| = 1$, existe $\theta \in [0, 2\pi)$ t.g.

$$[T]_B = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

Y más aún, si cambiamos base $\{v_1, v_2\}$ a $\{v_1, -v_2\}$ podemos elegir $\theta \in [0, \pi]$.

En el segundo caso, $(\alpha', \beta') = (\beta, -\alpha)$, tenemos que $[T]_B = \begin{pmatrix} \alpha & \beta \\ \beta & -\alpha \end{pmatrix}$, o sea que T es simétrica, y $\chi_T(X) = (X - \alpha)(X + \alpha) - \beta^2 = X^2 - 1 = (X + 1)(X - 1)$. O sea,

$$[T]_B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Esto nos lleva a las siguientes definiciones:

- 1. $T: \mathbb{R}^2 \to \mathbb{R}^2$ t.l.ortogonal es una **rotación** si det(T) = 1,
- 2. $T: \mathbb{R}^2 \to \mathbb{R}^2$ t.l.ortogonal y $H \subset \mathbb{R}^2$ sev de dimensión 1, T es una simetría respecto de H si $T|_H = id_H$ y $T|_{H^{\perp}} = -id_{H^{\perp}}$.

Así, toda t.l. ortogonal en \mathbb{R}^2 es una simetría o una rotación.

- **Ejemplos 1** 1. En \mathbb{R}^2 consideremos la recta L de ecuación x+y=0. Buscamos la simetría respecto de L. Como $L=span\{(1,-1)\}$ y $L^\perp=span\{(1,1)\}$, podemos definir T en la base $\{(1,-1),(1,1)\}$ como T(1,-1)=(1,-1) y T(1,1)=(-1,-1). Luego $T|_L=id_L$ y $T|_{L^\perp}=-id_{L^\perp}$. Así, T(x,y)=(-y,-x), como era esperable.
 - 2. Hallar una rotación T en \mathbb{R}^2 tal que T(2,1)=(1,2) "es una t.l. ortogonal"

Para esto, recordemos que una rotación es una simetría, así que $||T(2,1)|| = ||(1,2)|| = \sqrt{5} = ||(2,1)||$, es decir, ambos puntos (2,1) y (1,2) se ubican en la misma circunferencia centrada en el origen de radio $\sqrt{5}$. Normalicemos por este radio, y completemos a una bon: $B = \{\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right), \left(\frac{-1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)\}$, como T t.l. debe ser $T\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right) = \left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$. En coordenadas, tenemos que $\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right) = \frac{4}{5}\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right) + \frac{3}{5}\left(\frac{-1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$. Resulta entonces que, puesto que T es una rotación,

$$[T]_B = \begin{pmatrix} \frac{4}{5} & \frac{-3}{5} \\ \\ \frac{3}{5} & \frac{4}{5} \end{pmatrix}.$$

Finalmente, sigue que $T\left(\frac{-1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right) = \left(\frac{-2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$.

Simetrías en dimensión 3

Sea V espacio euclídeo con dim(V)=3. Si $T:V\to V$ t.l. ortogonal, como $\chi_T\in\mathbb{R}[X]$ es de grado $gr(\chi_T)=3$, debe tener una raíz real, o sea T tiene un autovalor real λ . Hemos visto que $|\lambda|=1$, luego $\lambda=\pm 1$.

Definimos en forma análoga:

- 1. $T: \mathbb{R}^3 \to \mathbb{R}^3$ t.l.ortogonal es una **rotación** si det(T) = 1,
- 2. $T: \mathbb{R}^3 \to \mathbb{R}^3$ t.l.ortogonal y $H \subset \mathbb{R}^3$ sev de dimensión 2, T es una **simetría respecto de** H si $T|_H = id_H$ y $T|_{H^{\perp}} = -id_{H^{\perp}}$.

Si $\lambda=1,$ y v_1 autovector asociado de norma 1, $U=span\{v_1\}$ es T-invariante, luego también su ortogonal U^\perp , de dimensión 2. Entonces $T|_{U^\perp}:U^\perp\to U^\perp$ y por el estudio anterior $T|_{U^\perp}$ es o bien una rotación o bien una simetría. Si $B_1=\{v_2,v_3\}$ bon de U^\perp , sigue que para $B=\{v_1,v_2,v_3\}$, o bien

$$[T]_B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix},$$

o bien

$$[T]_B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix},$$

y en el primer caso T es una rotación con **eje de rotación** el sev $span\{v_1\}$ y en el segundo caso T es una simetría respecto del sev $span\{v_2, v_2\}$.

Si $\lambda=1$ no es un autovalor de T, tenemos que $\lambda=-1$ sí lo es. Sean en forma análoga v_1 autovector asociado de norma 1, $U=span\{v_1\}$ y $U^\perp=span\{v_2,v_3\}$. $T|_{U^\perp}$ es ortogonal, y más aún, una rotación. Entonces, en $B=\{v_1,v_2,v_3\}$ tenemos que

$$[T]_B = \begin{pmatrix} -1 & 0 & 0\\ 0 & \cos\theta & -\sin\theta\\ 0 & \sin\theta & \cos\theta \end{pmatrix},$$

y más aún,

$$[T]_B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix},$$

es decir, una rotación compuesta con una simetría.

Así, toda t.l. ortogonal en \mathbb{R}^3 es una simetría o una rotación o una rotación compuesta con una simetría.

Ejemplo 2 Definir una rotación T en \mathbb{R}^3 t.q. T(1,1,0) = (0,1,1) y el eje de la rotación sea ortogonal a (1,1,0) y (0,1,1).

Sea $H = span\{(1,1,0),(0,1,1)\}$ y $H^{\perp} = span\{(1,-1,1)\}$. Queremos que H sea el eje de la rotación: $T|_{H^{\perp}} = id_{H^{\perp}}$.

Construimos una bon de \mathbb{R}^3 tal que el primer vector sea bon de H^{\perp} y los dos siguientes de H:

$$B = \left\{ \left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right), \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right), \left(\frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}} \right) \right\}.$$

 $Definimos\ T\ en\ la\ base\ como\ sigue:$

$$T\left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) = \left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right),$$

$$T\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right) = \left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = \frac{1}{2}\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right) + \frac{\sqrt{3}}{2}\left(\frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right).$$

$$\begin{split} T\left(\frac{-1}{\sqrt{6}},\frac{1}{\sqrt{6}},\frac{2}{\sqrt{6}}\right) &= \frac{-\sqrt{3}}{2}\left(\frac{1}{\sqrt{2}},\frac{1}{2},0\right) + \frac{\sqrt{3}}{2}\left(\frac{-1}{\sqrt{6}},\frac{1}{\sqrt{6}},\frac{2}{\sqrt{6}}\right). \\ Asi, \end{split}$$

$$[T]_B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{-\sqrt{3}}{2} \\ 0 & \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}.$$

Observaciones 1 Se puede hacer un razonamiento análogo para dim(V) = n.