有限群の表現論

寺杣 友秀

1. 群の表現

V を \mathbf{C} 上のベクトル空間、G を群とする。GL(V) を V の \mathbf{C} 上の自己同型のなす群とする。V と群の準同型 $\rho:G\to GL(V)$ の組 (V,ρ) を G の表現という。 ρ を書かなくても、混同の恐れのないときには単に V と書く。G を群とするとき、 \mathbf{C} を係数とする G の群環を $\mathbf{C}[G]$ と書く。群の元 G に対する $\mathbf{C}[G]$ の基底を G と書く。

- 定義 1.1. (1) \mathbf{C} には $\rho(g) = 1$ と定めることにより、表現が定まる。これを単位表現という。
 - (2) 群環 $\mathbf{C}[G]$ の左からの掛け算による表現を正則表現という。 $R=R_G$ と表す。
 - (3) $(V,\rho),(W,\tau)$ を G の表現とするとき $V \oplus W$ にはそれぞれに G を作用 させることにより、G の表現が定まる。これを $(V,\rho) \oplus (W,\tau)$ あるいは単に $V \oplus W$ と書き、表現の直和という。
 - (4) 部分空間 W で G の作用で閉じているものは G の表現となる。これを 部分表現という。また、部分表現 W による V の商空間 V/W には G の表現の構造が定まる。これを商表現という。
 - (5) (V, ρ) を G の表現とする。G による固定部分を $V^G = \{v \in V \mid \rho(g)v = v\}$ と書く。これは V の部分表現である。
- 定義 1.2 (表現の準同型). (1) $(V, \rho), (W, \tau)$ を G の二つの表現とする。線型写像 $f: V \to W$ が G の表現の準同型であるとは

$$f(\rho(q)x) = \tau(f(x))$$

が成り立つことである。上の状況のとき、表現の準同型全体を $\operatorname{Hom}_G(V,W)$ と書く。これはベクトル空間となる。

(2) V,W を G の表現として、 $\varphi:V\to W$ を準同型とする。準同型 $\psi:W\to V$ が存在して $\varphi\circ\psi=1_W,\psi\circ\varphi=1_V$ となるとき、 φ は同型であるという。準同型が線型写像として同型であれば、表現として同型となることがわかる。

2. Hom とテンソル

 $(V,\rho),(W,\tau)$ を G の有限次元表現とする。V から W への \mathbb{C} -線型写像全体のなすベクトル空間を $\mathrm{Hom}(V,W)$ と書く。また \mathbb{C} 上のテンソル積を単に \otimes であらわす。

Date: January 7, 2015.

命題 **2.1.** (1) $\operatorname{Hom}(V, W)$ には $\varphi \in \operatorname{Hom}(V, W)$ に対して、

$$(\gamma(g)\varphi)v = \tau(g) \circ \varphi \circ \rho(g^{-1})(v)$$

という作用γにより群の表現の構造が定まる。

(2) $V \otimes W$ には

$$\gamma(g)(v \otimes w) = \rho(g) \otimes \tau(g)$$

という作用により G の表現の構造が定まる。

Proof. 証明は容易なので各自チェックすること。作用が結合的であることを確かめること、

- 定義 2.2. (1) 上の命題の状況 (1) で $\operatorname{Hom}(V,W)$ を G の表現とみたものを準同型表現という。また (2) の状況で定まる $V\otimes W$ への G の表現をテンソル表現という。
 - (2) \mathbf{C} を単位表現とするとき、 $V^* = \operatorname{Hom}(V, \mathbf{C})$ を V の反傾表現、あるいは双対表現という。

命題 2.3. 次はGの表現として同型

(1)

$$\operatorname{Hom}(V, W) = V^* \otimes W$$

(2)

$$\operatorname{Hom}_G(V, W) = \operatorname{Hom}(V, W)^G.$$

Proof. (1) の同型 $V^* \otimes W \to \operatorname{Hom}(V,W)$ は

$$v^* \otimes w \mapsto [v \mapsto v^*(v)w]$$

によって与えられる。実際に同型になることは有限次元性を用いて、基底を基底に移すことを確かめればよい。

3. シューアの補題とマシュケの定理

V を G の表現とする。 V の任意の部分表現 W が 0 または V に一致するとき V が既約表現であるという。

命題 3.1 (シューアの補題). V,W を既約表現とすると $\operatorname{Hom}_G(V,W)$ は ${\bf C}$ または 0 である。前者であれば、V と W は同型である。

 $Proof.\ \varphi\in \operatorname{Hom}_G(V,W)$ が 0 でないとする。このとき V,W の既約性から $\ker(\varphi)=0,\operatorname{Im}(\varphi)=W$ がわかり φ は同型となる。さらに $\psi\in \operatorname{Hom}_G(V,W)$ と すると、 $\alpha=\psi\circ\varphi^{-1}\in \operatorname{Hom}_G(W,W)$ は G 準同型である。 α の固有値の一つ λ ($\lambda\in\mathbf{C}$) をとり λ に属する固有ベクトルを v とする。このとき $\beta=\alpha-\lambda 1_G$ は W 上の G 準同型となり、かつ $\beta(v)=0$ なので $\ker(\beta)\neq 0$ で $\ker(\beta)=W$ 、すなわち $\alpha=\lambda 1_W$ となる。したがって $\psi=\lambda\varphi$ となる。

V を \mathbf{C} 上の有限次ベクトル空間、G を有限群とする。

命題 3.2. $(1) \ p = \frac{1}{\mid G \mid} \sum_{g \in G} \rho(g) \ \text{li} \ V \ \text{の射影子である、つまり} \ pp = p$ となる。

(2) V を G の表現とするとき、

$$V^G = \operatorname{Im}(p)$$

Proof. (1)

$$p^{2} = \frac{1}{\mid G \mid^{2}} \sum_{q,h \in G} \rho(g) \rho(h) = \frac{1}{\mid G \mid^{2}} \sum_{q,h \in G} \rho(gh)$$

ここで gh = k として和を g,k についてとることにすると上式は

$$\frac{1}{|G|^2} \sum_{g,k \in G} \rho(k) = \frac{1}{|G|} \sum_{k \in G} \rho(k) = p$$

となる。

(2) $g \in V^G$ とすると、 $\rho(g)v = v$ なので

$$v = \frac{1}{|G|} \sum_{g \in G} v = \frac{1}{|G|} \sum_{g \in G} \rho(g)v = p(v) \in \text{Im}(p)$$

したがって $V^G \subset \operatorname{Im}(p)$. 逆に $p(v) \in \operatorname{Im}(p)$ であれば、

$$\rho(g)p(v) = \frac{1}{|G|} \sum_{h \in G} \rho(g)\rho(h)v = \frac{1}{|G|} \sum_{k \in G} \rho(k)v = p(v)$$

となり $p(V) \subset V^G$ となる。ここで gh = k として和を取り替えた。

命題 3.3 (マシュケの定理). W を V の部分表現とすると、ある V の部分表現 K が存在して表現として

$$V = W \oplus K$$

となる。この K を W の補空間表現という。

Proof.~U=V/W を商表現として $\pi:V\to U$ を自然な射影とする。さらに $s:U\to V$ を $\pi\circ s$ が U 上恒等写像となるものをとる。このとき $s'=\frac{1}{\mid G\mid}\sum_{g\in G}g\circ s\circ g^{-1}$ とおくと、これは G-準同型となる。また、 $\pi\circ s'$ は恒等写像で gs'=s'g となる。そして $\pi\circ s'$ は射影子となる。

系 3.4. 任意の表現は既約表現の直和である。

 $Proof.\ V$ を G の表現として $\dim V$ に関する帰納法で証明する。 $\dim V = 1$ のときは部分空間が V または 0 なので、成り立つ。 $\dim V > 1$ のとき、もし V の部分表現が 0 または V 以外の存在しなければ、V は既約表現となる。もし部分表現が存在すれば、それを W として、その補空間表現 K をとる。このとき、 $\dim W < \dim V$, $\dim K < \dim V$ なので帰納法の仮定から W も K 既約表現の直和に分解するので、その直和である V も既約表現の直和に分解する。したがってすべての有限次元表現は既約表現の直和に分解する。

定義 3.5. 既約表現の直和の形に表すことを既約分解という。単位表現の直和 を考えればわかるように、分解は一意的ではない。

命題 **3.6.** G の任意の既約表現は $R_G = \mathbf{C}[G]$ を既約分解したときに現れる既約表現のどれかと同型である。特に既約表現の個数は有限個である。

 $Proof.\ V$ を既約表現とする。 R_G を既約表現の直和として $R_G = \bigoplus_i V_i$ と書く。 V を既約表現 $v \neq 0$ を V の元とすると $\varphi: \mathbf{C}[G] \to V: g \to gv$ は表現の準同型となる。 φ を直和成分 V_i に制限した φ_i を考えるとき、すべての i について $\varphi_i = 0$ であれば $\varphi = 0$ となるので、ある i については φ_i は 0 はなく既約性から同型となる。

命題 3.7. 有限アーベル群の既約表現は1次元である。

Proof. 有限アーベル群の基本定理により G は有限巡回群の直積であるから、 $\mathbf{Z}/d_1 \times \cdots \times \mathbf{Z}/d_r$ とあらわすことができる。r に関する帰納法で証明する。r=1 のとき G は巡回群であるので、その生成元を h として、 (V,ρ) を既約表現とする。 $\rho(g)$ の固有値の一つを λ として、v を ρ の固有ベクトルとする。このとき $\rho(g)v = \lambda v$ なので $\mathbf{C}v$ は G の表現となる。V の既約性から $V = \mathbf{C}v$ となり $\dim V = 1$ となる。r > 1 のとき、上の直和分解の最後の因子である $\mathbf{Z}/d_r\mathbf{Z}$ の生成元を h とおく。 $\rho(h)$ の固有値の一つを λ とすると、 λ に対する $\rho(h)$ の固有空間 $V_{\lambda} = \{v \in V \mid \rho(h)v = \lambda v\}$ は非自明な空間で $\mathbf{Z}/d_1 \times \cdots \times \mathbf{Z}/d_{r-1}$ の作用で安定な空間になる。実際 $g \in \mathbf{Z}/d_1 \times \cdots \times \mathbf{Z}/d_{r-1}$ とすると gh = hg であるので、 $v \in V_{\lambda}$ であれば、

$$\rho(h)(\rho(g)v) = \rho(g)(\rho(h)v) = \rho(g)(\lambda v) = \lambda \rho(g)v$$

となり $\rho(g)v \in V_{\lambda}$ となるからである。ここで V_{λ} を既約分解したとき、一つの 既約成分 W は 1 次元となる。これは h の作用でも安定なので 1 次元の G に関する V の部分表現となる。V は G 既約表現としていたので V=W となり、 $\dim V=1$ となる。

系 3.8. $GL(n, \mathbb{C})$ の有限位数の元 ρ は対角化可能である。

Proof. ρ で生成される部分群は有限アーベル群となるので、その表現である \mathbb{C}^n は 1 次元の既約表現の直和に分解する。したがってその分解における基底をとれば、固有値からなる基底がとれ、対角化可能となる。

4. 表現と指標

定義 4.1. (V, ρ) を G の表現とする。

(1)

$$\chi_V(g) = \operatorname{tr}(\rho(g))$$

をVの指標という。

(2) dim V を V の次数という。

命題 **4.2.** (1) $\chi_V(g^{-1}) = \overline{\chi_V(g)} = \chi_{V^*}(g)$

- (2) $\chi_V(e)$ は V の次数である。
- (3) χ_V は類関数である。すなわち $\chi_V(g) = \chi_V(hgh^{-1})$ が成り立つ。
- (4) V,W を G の表現とするとき、

$$\chi_{V \otimes W}(g) = \chi_V(g)\chi_W(g^{-1})$$
$$\chi_{\text{Hom}(V,W)}(g) = \chi_V(g)\chi_W(g^{-1})$$

Proof. (1) V の反傾表現 V^*, ρ^*) において $\rho^*(g)$ を双対基底であらわすと $\rho(g)$ であらわす行列 A を用いて $^tA^{-1}$ と表されるので、A の固有値を $\lambda_1,\ldots,\lambda_n$ と すると、これは 1 の冪根であり、 $^tA^{-1}$ の固有値は $\lambda_1^{-1}=\overline{\lambda_1},\ldots,\lambda_n^{-1}=\overline{\lambda_n}$ と なる。 したがって

$$\operatorname{tr}(\rho^*(g)) = \lambda_1^{-1} + \dots + \lambda_n^{-1} = \operatorname{tr}(\rho(g^{-1})) = \overline{\lambda_1} + \dots + \overline{\lambda_n} = \overline{\operatorname{tr}(\rho(g))}$$
 (3) は正方行列 A, B に対して $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ となる、トレースの性質によりわかる。

(2)

$$\dim(V^G) = \frac{1}{\mid G \mid} \sum_{g \in G} \chi_V(g)$$

とくに

$$\dim \operatorname{Hom}_G(V, W) = \frac{1}{|G|} \sum_{g \in G} \chi_V(g) \chi_W(g^{-1})$$

Proof. (1) p は射影子なので $V = p(V) \oplus (1-p)(V)$ であり、p(V),(1-p)(V) はそれぞれ p の固有値 1,0 の固有空間であるので、固有値 1 の固有空間の次元は tr(p) と一致する。(2) は命題 (3.2) の帰結である。

複素数値の類関数全体のなすベクトル空間の次元は G の共役類の数と等しい。ここに次の内積(正定値エルミート形式)を導入する。

定義 **4.4** (内積). G の類関数 χ_1, χ_2 に対してその内積

$$(\chi_1, \chi_2) = \frac{1}{|G|} \sum_{g \in G} \chi_1(g) \overline{\chi_2(g)}$$

と定める。

 $\mathbf{A.5}$ (指標の直交性). V,W を G の既約表現とすると、

$$(\chi_V, \chi_W) = \begin{cases} 1 & (V \simeq W) \\ 0 & (otherwise) \end{cases}$$

既約表現の指標(既約指標)は類関数の全体で直交系をなす。特に独立である。 特に既約表現の個数は共役類の個数以下である。

5. 群環の分解と第二直交関係

ここでは群環を $G \times G$ の表現とみて分解することにする。

命題 **5.1.** V を G の表現、Irr(G) を G の既約表現の同値類の集合とする。このとき自然な写像

$$\bigoplus_{W \in Irr(G)} W \otimes \operatorname{Hom}_G(W, V) \to V : w \otimes \varphi \mapsto \varphi(w)$$

$$\bigoplus_{W \in Irr(G)} \operatorname{Hom}_G(V, W) \otimes W^* \to V^* : \varphi \otimes w^* \mapsto [v \mapsto w^*(\varphi(v))]$$

は同型である。

 $Proof.\ V$ に関する加法性を用いて、V を既約分解して、W が既約であるときに帰着する。

C[G] を左の作用により G 加群とみたものを $R = R_G$ と書く。

命題 **5.2.** *V* を *G* 加群とする。

- (1) $\operatorname{Hom}_G(V,R)$ に左 G 加群の構造が $\varphi \in \operatorname{Hom}(V,R)$ に対して $(g\varphi)(v) = \varphi(v)g^{-1}$ によって定まる。
- (2) 自然な同型

$$\operatorname{Hom}_G(V,R) \xrightarrow{\simeq} V^*$$

がある。

Proof. (1) $g,h \in G$ に対して

$$g(h\varphi)(v)=(h\varphi)(v)g^{-1}=\varphi(v)h^{-1}g^{-1}=\varphi(v)(gh)^{-1}=((gh)\varphi)(v)$$
となり、 G の作用となる。

(2) $c_e: R \to \mathbb{C}$ を $a \in R$ に対して $a = \sum_g c_g[g]$ によって定める。とくに $c_e(a)$ は a における [e] の係数で $c_e(ag^{-1}) = c_e(g^{-1}a) = c_g(a)$ である。 α を $\varphi \in \operatorname{Hom}_G(V,R), v \in V$ に対して

$$\alpha(\varphi)(v) = c_e(\varphi(v))$$

とおく。 α が G の作用と協調的であることをみる。

$$\alpha(g\varphi)(v) = c_e((g\varphi)(v)) = c_e(\varphi(v)g^{-1}) = c_g(\varphi(v))$$
$$(g(\alpha(\varphi)))(v) = \alpha(\varphi)(g^{-1}v) = c_e(\varphi(g^{-1}v)) = c_e(g^{-1}\varphi(v)) = c_g(\varphi(v))$$
よって $\alpha(g\varphi) = g(\alpha(\varphi))$ となる。

 $\mathbf{C}[G]$ への $G \times G$ の左作用を $[k] \in \mathbf{C}[G]$ に対して、 $(g,h)[k] = [gkh^{-1}]$ と定義したものを B_G と書く。また V を G の表現としたとき、第一射影 (第二射影) $G \times G \xrightarrow{pr_1} G$ を通して $G \times G$ の表現とみたものを $V^{(l)}(V^{(r)})$ と書く。

命題 **5.3.** (1) $G \times G$ の表現として次の同型が成り立つ。

$$B_G \simeq \bigoplus_{V \in Irr(G)} V^{(r)} \otimes \operatorname{Hom}_G(V, R)^{(r)}$$
$$\simeq \bigoplus_{V \in Irr(G)} V^{(r)} \otimes V^{*(l)}$$

(2) $\sum_{V \in Irr(G)} \dim(V)^2 = |G|$.

Proof. (1) はじめの等式は命題 5.1 から得られ、二つめの等式は命題 5.2 から得られる。

 $g \in G$ の共役類の集合を $\{g\}$ と書く。

系 5.4. (1) g,h を G の元とする。このとき

$$tr_{B_G}(g,h) = \sum_{V \in Irr(G)} \chi_V(g) \chi_V(h^{-1})$$

が成立する。

(2)

$$\sum_{V \in Irr(G)} \chi_V(g) \overline{\chi_V(h)} = \begin{cases} \frac{\mid G \mid}{\mid [g] \mid} & ([g] = [h]) \\ 0 & (otherwise) \end{cases}$$

とくに共役類は個数は既約表現の個数以下である。

Proof. (1) 命題 5.3 の同型に対して両辺の $(g,h) \in G \times G$ におけるトレースをとることにより得られる。

(2) $g,h \in G$ に対して (g,h) の作用による固定点の個数は gxh = x となる x の個数と等しく、 $xgx^{-1} = h^{-1}$ となる x の個数なので $\frac{|G|}{|g|}$ と等しい。

 $K_G = \bigoplus_{V \in Irr(G)} \mathbf{C}[V]$ とおく。共役類 $c = \{g\}$ に対してベクトル $v_c = (\chi_V(g))_{V \in Irr(G)}$ と定める。G の共役類の集合を G^{\natural} とおく。 K_G に [V] を標準基底として標準内積をいれておくと、系 5.4 の (2) により、ベクトルの集合 $\{v_c\}_{c \in G^{\natural}}$ は互いに直交していて、一次独立であることがわかる。したがって次の命題がなりたつ。

命題 5.5. G の共役類の個数と G の既約指標の同型類の個数は等しい。

Proof. $\{v_c\}_{c \in G^{\natural}}$ が K_G で独立であることから、 $|G^{\natural}| \leq |Irr(G)|$ となる。系 4.5 より $|Irr(G)| \leq |G^{\natural}|$ なので $|G^{\natural}| = |Irr(G)|$ となる。

- 例 5.6. (1) 有限可換群の既約指標の数にその群の位数と等しい。
 - (2) \mathfrak{S}_n の既約指標の数は分割数と等しい。