Electrónica Básica Clase 6

Tabla de I/O Máquina de Estados Finito

Tabla de entradas y salidas

- Muy utilizada para identificar las I/O en un proceso industrial.
- Permite **distinguir** a cualquier usuario claramente una **variable** usada en un diagrama de flujo o pseudocódigo.
- Es el **primer paso** cuando se elabora un **algoritmo** que **actúa** sobre el **hardware**.

ENTRADAS			SALIDAS		
Nombre	Descripción	Tipo	Nombre	Descripción	Tipo
SL1	Sensor de nivel (NA)	Booleana (Digital)	L1	Indicador LED de encendido	Booleana (Digital)
SH1	Sensor de temperatura	Análoga (0 a 5V) (0° a 40°)	T1	Temporizador Interno del tiempo de calefacción	Variable Interna
BTNS	Botón de encendido (NA)	Booleana (Digital)	M1	Salida hacia el motor del agitador	Análoga (0 a 12V) (0 a 1200 rpm)
			C1	Contador interno de ciclos de agitado	Variable Interna

Tabla de entradas y salidas - Ejemplo

Identifique la tabla de I/O de un inyector de plástico tal como el que se describe a continuación.

Sensor de materia prima (SMP1)

Sensor de materia prima lista para extruirse (SMP2)

Motor Tornillo Extrusor (MT)

Sensor de temperatura Resistencia (RT) del tornillo (ST)

- El sensor de materia prima (SMP1) es un sensor de presencia que indica que la materia prima ya llego a su nivel óptimo (este es normalmente abierto NA y solo tiene dos estados: detectó material o no hay material).
- El sensor de materia prima lista para extruirse (SMP2) funciona igual que el SMP1, solo que sirve para detectar si el material derretido ya llego a la punta del extrusor.
- El motor tornillo extrusor (MT) permite girar el tornillo extrusor para llevar el material desde su tolva hasta la parte final. Solo permite estar encendido o apagado y funciona a 12V.
- El sensor de temperatura del tornillo (ST) permite monitorear en todo momento la temperatura a la que se encuentra el tornillo. Esta tiene un rango de 0 a 100° C (Entrega en voltaje de 0 a 5V).
- La resistencia (RT) permite calentar la materia prima. Esta solo puede estar encendida o apagada y funciona a 110V AC.

Tabla de entradas y salidas - Ejemplo

ENTRADAS			SALIDAS		
Nombre	Descripción	Tipo	Nombre	Descripción	Tipo
bSTART	Botón de Start (NA)	Booleana (Digital)	MT	Motor del tornillo extrusor	Booleana (Digital) (0 ó 12V)
SMP1	Sensor de nivel de materia prima (NA)	Booleana (Digital)	RT	Resistencia para calentar el tornillo extrusor	Booleana (Digital) (0 ó 110 VAC)
SMP2	Sensor de nivel de materia prima lista para extruirse (NA)	Booleana (Digital)			
ST	Sensor de temperatura	Análoga (0 a 5V) (0° a 100°C)			

Máquina de estados finito (MEF)

- Es una forma estructurada de dar una solución de programa (algoritmo) a un proceso.
- Se basa en estados y transiciones entre los estados según ciertas condiciones.
- Siempre se modifican en lo posible todas las **salidas físicas (hardware)** dentro de los estados.

SIMBOLO	NOMBRE	DESCRIPCIÓN
	ESTADO INICIAL	Estado en el que comienza el programa con ciertos valores iniciales en las salidas.
	ESTADO	Estado cualquiera en donde las salidas toman algún valor requerido.
$X \ge VALOR$	transición	Condición para pasar de un estado "A" a un estado "B".
$X \neq VALOR$	transición Estacionaria	Condición para quedarse en un estado "A" (loop).

Elabore una MEF que sume dos números A y B ingresados por el usuario, almacene su valor en una variable Y, imprima su resultado y finalice.

ESTADO	DESCRIPCIÓN
EIA	Estado Ingresar A
EIB	Estado Ingresar B
ECY	Estado Calcular Y

SOLUCIÓN 1

EJEMPLO 2 MEF + TABLA I/O

Elabore un programa que haga "**titilar**" un LED (**L1**) 1/2 seg prendido y 1/2 seg apagado mientras que no se presione el suiche de emergencia (*BEMG*). Si este queda accionado el LED queda apagado hasta que se libere el suiche de emergencia, donde volverá el proceso a su funcionamiento normal.

ENTRADAS			SALIDAS		
Nombre	Descripción	Tipo	Nombre	Descripción	Tipo
BEMG	Suiche de emergencia	Booleana (Digital)	<i>L</i> 1	LED	Booleana (Digital)
			t	Temporizador	Variable Interna

ESTADO	DESCRIPCIÓN
ELOFF	Estado LED ON
ELON	Estado LED OFF
EAEMG	Estado Alarma Emergencia

ESTADO	DESCRIPCIÓN	
ELOFF	Estado LED ON	
ELON	Estado LED OFF	

EJEMPLO MEF AVANZADO

- Realice una máquina de estados finito que controle la inyectora de plásticos, teniendo en cuenta el siguiente funcionamiento:
 - La inyectora esta totalmente apagada (RT y MT apagados) al comienzo.
 - Para iniciar la inyectora de plásticos se debe presionar el botón de Start.
 - Primero, la inyectora debe verificar que la materia prima este en el nivel adecuado (SMP1 = ON).
 - Luego se debe calentar el tornillo extrusor mediante la resistencia RT hasta que haya alcanzado una temperatura de 80°C ($ST \ge 80$).
 - Una vez el tornillo este en la temperatura adecuada, se debe apagar RT y se debe prender MT para comenzar a llevar la materia prima derretida hasta la punta del inyector.
 - Cuando la materia prima llegue a la punta del inyector (SMP2 = ON), la inyectora debe esperar 15 segundos y luego debe apagar MT para comenzar de nuevo el ciclo (desde verificar materia prima).
 - Si se presiona STOP (bSTOP) en cualquier momento vuelve al estado inicial.\
 - Agregue un contador (C1 Variable Interna) que si el proceso se ha repetido mas de 3 veces, este vuelva al estado inicial (en donde todo vuelve a ceros).

EJEMPLO MEF

ESTADO	DESCRIPCIÓN
EINI	Estado Inicial
EVMP	Estado Verificar Materia Prima
ECTE	Estado Calentar Tornillo Extrusor
EMTE	Estado Mover Tornillo Extrusor
EEMPE	Estado Esperar Materia Prima Extruida

MUCHAS GRACIAS