MATH 441 CRN 33477 Quiz 1

April 16th, 2018

(1) Prove that the subset $\{(x_1, x_2, x_3) \in \mathbb{C}^3 : x_1x_2 = 0\}$ is not a subspace of the vector space \mathbb{C}^3 .

Proof. Let $U = \{(x_1, x_2, x_3) \in \mathbb{C}^3 : x_1 x_2 = 0\}.$

Then $(1,0,0) \in U$ and $(0,1,0) \in U$, but the sum of these two vectors, which equals (1,1,0), is not in U. Thus U is not closed under addition. Thus U is not a subspace of \mathbb{C}^3 .

(2) Suppose v_1, v_2, v_3 spans V. Prove that the list $v_1, v_2 + v_3, -v_3$ also spans V.

Proof. Let $v \in V$.

Because v_1, v_2, v_3 spans V, there exist $b_1, b_2, b_3 \in \mathbb{F}$ such that $v = b_1v_1 + b_2v_2 + b_3v_3$.

Then
$$v = b_1v_1 + b_2v_2 + (b_2v_3 - b_2v_3) + b_3v_3 = b_1v_1 + (b_2v_2 + b_2v_3) + (-b_2v_3 + b_3v_3)$$

= $b_1v_1 + b_2(v_2 + v_3) + (b_2 - b_3)(-v_3)$.

Thus
$$v = a_1v_1 + a_2(v_2 + v_3) + a_3(-v_3)$$
 for $a_1 = b_1$, $a_2 = b_2$, $a_3 = b_2 - b_3$.

Therefore $v_1, v_2 + v_3, -v_3$ spans V by definition.