Some Notes on Set Theory, Pt $1\,$

Daniel Rogozin

Contents

1	Cardinals				
	1.1	The ordering of $\alpha \times \alpha$	4		
	1.2	Cofinality	4		
	1.3	Some Exercises	7		
2	Real Numbers and The Baire Space 8				
	2.1		9		
	2.2		1		
	2.3	Lebesgue Measure	1		
	2.4	8	2		
	2.5		4		
	2.6		4		
3	The Axiom of Choice				
	3.1	Cardinal Arithmetic the Generalised Continuum Hypothesis 1	8		
	3.2		9		
	3.3	The Continuum Function	22		
	3.4	Cardinal Exponentiation	24		
	3.5	The Singular Cardinal Hypothesis	25		
	3.6	Some Exercises	26		
4	The Axiom of Regularity 29				
	4.1	The Cumulative Hierarchy of Sets	0		
	4.2	€-induction	1		
	4.3	Well-Founded Relations	2		
	4.4	The Bernays-Gödel Axiomatic Set Theory	5		
	4.5	· · · · · · · · · · · · · · · · · · ·	5		
5	Filters, Ultrafilters and Boolean Algebras				
	5.1	Ultrafilters over ω	9		
	5.2	κ -complete Filters and Ideals	0		
	5.3	Boolean Algebras	0		
	5.4		1		
	5.5		3		
	5.6		4		

	5.7	Saturation
	5.8	Distributivity of Complete Boolean Algebras
	5.9	Some Exercises
6	Stat	cionary Sets 53
	6.1	Closed Unbounded Sets
	6.2	Mahlo Cardinals
	6.3	Normal Filters
	6.4	Silver's Theorem
	6.5	A Hierarchy of Stationary Sets
		The Closed Unbounded Filter on $P_{\kappa}(\lambda)$ 61

1 Cardinals

An ordinal number α is a *cardinal number* if no $\beta < \alpha$ such that $|\alpha| = |\beta|$. Further, we shall use κ, λ, μ to denote cardinal numbers.

Let W be a well-ordered set, then there exists an ordinal α such that $|W| = |\alpha|$, so we let:

$$|W|$$
 = the least ordinal α such that $|W| = |\alpha|$

An aleph is an infinite cardinal number.

Let α be an ordinal, then α^+ is the least cardinal bigger than α .

Lemma 1.1.

- 1. For every α there is a cardinal number κ such that $\kappa > \alpha$.
- 2. Let X be a set of cardinal, then $\sup X$ is a cardinal.

Proof.

1. Let X be a set, let

$$h(X)$$
 = the least α such that no injection from α into X

Consider $X \times X$, so $2^{X \times X}$ is the set of relations on X and there are well-orderings of subsets of X amongst all relations in $2^{X \times X}$, so consider the set

$$Y = \{ R \subseteq Y \times Y \mid Y \subseteq X \& Y \text{ is a well-ordering } \}$$

So there is a set of ordinals:

$$Ord(Y) = \{ \alpha \in Ord \mid \exists R \in Y \mid \alpha \text{ is the order type of } Y \}$$

Note that Ord(Y) is a set and take the least element ordinal β does not belong to Ord(Y). So $h(X) = \beta$. To be more precise, we have:

$$\beta = \sup Ord(Y)$$

Then $|\alpha| < h(\alpha)$ for each ordinal α .

2. Let $\alpha = \sup X$. Let f be a one-to-one function from α onto some $\beta < \alpha$. Let κ be a cardinal such that $\beta < \kappa \le \alpha$, then $|\kappa| = |\{f(\xi) \mid \xi < \kappa\}| \le \beta$, so contradiction and α is a cardinal.

The enumeration of all alephs is defined by transfinite induction:

- $\aleph_0 = \omega$
- $\aleph_{\alpha+1} = \aleph_{\alpha}^+ = \omega_{\alpha+1}$
- If β is a limit ordinal, then $\aleph_{\beta} = \omega_{\beta} = \sup\{\omega_{\alpha} \mid \alpha < \beta\}.$

A cardinal of the form $\aleph_{\alpha+1}$ is a *successor* cardinal, a cardinal \aleph_{β} for limit β is a *limit cardinal*.

1.1 The ordering of $\alpha \times \alpha$

Define a well-ordering of the class Ord × Ord the following way:

$$(\alpha, \beta) < (\gamma, \delta)$$
 iff either $\max(\alpha, \beta) < \max(\gamma, \delta)$ or $\max(\alpha, \beta) = \max(\gamma, \delta)$ and $\alpha < \gamma$ or $\max(\alpha, \beta) = \max(\gamma, \delta)$ and $\alpha = \gamma$ and $\beta < \delta$.

Then < is a well-ordering and linear relation on Ord. Moreover, $\alpha \times \alpha$ is the initial segment of (Ord \times Ord, <) given by $(0, \alpha)$.

We let:

$$\Gamma(\alpha, \beta)$$
 = the order type of $\{(\xi, \eta) \mid (\xi, \eta) < (\alpha, \beta)\}$

 Γ is also one-to-one:

$$(\alpha, \beta) < (\gamma, \delta)$$
 iff $\Gamma(\alpha, \beta) < \Gamma(\gamma, \delta)$

 Γ is increasing and continuous and $\Gamma(\alpha \times \alpha) = \alpha$ for arbitrarily large α .

Theorem 1.1. $\aleph_{\alpha} \cdot \aleph_{\alpha} = \aleph_{\alpha}$

Proof. Let us show that $\Gamma(\omega_{\alpha} \times \omega_{\alpha}) = \omega_{\alpha}$.

- 1. If $\alpha = 0$, then $\Gamma(\omega \times \omega) = \omega$.
- 2. Let α be the least ordinal such that $\Gamma(\omega_{\alpha} \times \omega_{\alpha}) \neq \omega_{\alpha}$. Let β, γ be ordinals such that $\Gamma(\beta, \gamma) = \omega_{\alpha}$. Take $\delta < \omega_{\alpha}$ such that $\delta > \beta, \gamma$. $\delta \times \delta$ is the initial segment of Ord^2 and it contains (β, γ) . So $\Gamma(\delta \times \delta) \supset \omega_{\alpha} = \Gamma(\beta, \gamma)$. Thus $|\delta \times \delta| \geq \aleph_{\alpha}$. But $|\delta \times \delta| = |\delta| \cdot |\delta| = |\delta|$. But $|\delta| < \aleph_{\alpha}$ by the assumption of minimality of α . Contradiction.

As a corollary:

$$\aleph_{\alpha} + \aleph_{\beta} = \aleph_{\alpha} \cdot \aleph_{\beta} = \max(\aleph_{\alpha}, \aleph_{\beta})$$

1.2 Cofinality

Let $\alpha, \beta > 0$ be limit ordinals. An increasing β -sequence $\langle \alpha_{\xi} : \xi < \beta \rangle$ is *cofinal* in α if $\lim_{\xi \to \beta} \alpha_{\xi} = \alpha$. A subset $X \subseteq \alpha$ is *cofinal* in α whenever $\sup X = \alpha$.

Let $\alpha > 0$ be a limit ordinal, the *cofinality* of α is:

cf α = the least ordinal β such that $\exists \langle \alpha_{\xi} : \xi < \beta \rangle$ such that $\lim_{\xi \to \beta} \alpha_{\xi} = \alpha$

Note that for each α cf α is a limit ordinal and cf $\alpha \leq \alpha$.

Lemma 1.2. For each α cf(cf α) \leq cf α .

Proof. Let $\langle \alpha_{\xi} : \xi < \beta \rangle$ be cofinal in α and let $\langle \xi_{\nu} : \nu < \gamma \rangle$ be cofinal in β . Consider $\langle \alpha_{\xi_{\nu}} : \nu < \gamma \rangle$, then

$$\lim_{\nu < \gamma} \alpha_{\xi_{\nu}} = \alpha$$

since the limit of a subsequence equals the limit of a sequence as in usual real analysis or topology. \Box

Lemma 1.3. Let α be a non-zero limit ordinal, then

- 1. If $A \subseteq \alpha$ and $\sup A = \alpha$, the order-type of A is at least cf α .
- 2. Let $\beta_0 \leq \beta_1 \leq \cdots \leq \beta_{\xi} \leq \ldots$ for $\xi < \gamma$ be a non-decreasing sequence of ordinals such that $\lim_{\xi \to \gamma} = \alpha$, then cf $\gamma = \alpha$.

Proof.

- 1. The order-type of A is the length of the increasing enumeration of A, the limit of which (as an increasing sequence) is α .
- 2. If $\gamma = \lim_{\nu \to cf \gamma} \xi_{\nu}$, then $\alpha = \lim_{\nu \to cf \gamma} \beta_{\xi_{\nu}}$, and the non-decreasing sequence $\langle \beta_{\xi_{\nu}} : \nu < cf \gamma \rangle$ has an increasing sequence of the length at most cf γ and it has the same limit, so cf $\alpha \le cf \gamma$.

To show cf $\gamma \leq$ cf α , assume $\alpha = \lim_{\nu \to \text{cf }\alpha} \alpha_{\nu}$. Take $\nu <$ cf α , let ξ_{ν} be the least ξ greater than all ξ_{ι} for $\iota < \nu$ such that $\beta_{\xi} > \alpha_{\nu}$. We have $\alpha = \lim_{\nu \to \text{cf }\alpha} \beta_{\xi_{\nu}}$, so $\gamma = \lim_{\nu \to \text{cf }\alpha} \xi_{\nu}$, so the inequation is proved.

An infinite cardinal \aleph_{α} is regular if cf $\omega_{\alpha} = \omega_{\alpha}$. \aleph_{α} is singular if cf $\omega_{\alpha} < \omega_{\alpha}$.

Lemma 1.4. Let α be a limit ordinal, then cf α is a regular cardinal.

Proof. If α is not a cardinal, then there exists an ordinal $\beta < \alpha$ such that $|\beta| = |\alpha|$, then we construct a cofinal sequence in α of length $|\beta|$, then of $\alpha = |\beta|$ and of $\alpha < \alpha$.

Let κ be a limit ordinal, a subset $X \subset \kappa$ is bounded if $\sup X < \kappa$ and unbounded if $\sup X = \kappa$.

Lemma 1.5. Let κ be an aleph, then:

- 1. If $X \subset \kappa$ and $|X| < \operatorname{cf} \kappa$, then X is bounded.
- 2. If $\lambda < \operatorname{cf} \kappa$ and $f : \lambda \to \kappa$, then $\operatorname{Im} f$ is bounded in κ .

Proof. 1. Let X be such subset of κ and assume X is unbounded, so $\sup X = \kappa$. By 1 of Lemma 1.3, the order-type of X is at least of κ , which contradicts to $|X| < \operatorname{cf} \kappa$, so X is bounded.

2. Follows from the first item.

Lemma 1.6. (Hausdorff)

Let κ be a cardinal, then the following are equivalent:

- 1. κ is singular.
- 2. There is a cardinal $\lambda < \kappa$ and a family $\{S_{\xi} | \xi < \lambda\}$ such that each $S_{\xi} \subset \kappa$, $|S_{\xi}| < \kappa$ and $\kappa = \bigcup_{\xi < \lambda} S_{\xi}$.

Proof.

1. $(1) \Rightarrow (2)$.

If κ is singular, then there is an increasing sequence $\langle \alpha_{\xi} : \xi < \operatorname{cf} \kappa \rangle$, so a family of required subsets is actually a family of those α_{ξ} 's and $\lambda = \operatorname{cf} \kappa$ which is strictly less than κ since κ is singular.

2. $(2) \Rightarrow (1)$.

Let λ be the least cardinal such that $\lambda < \kappa$ and there exists a family $\{S_{\xi} \mid \xi < \lambda\}$ where each $S_{\xi} \subset \kappa$, $|S_{\xi}| < \kappa$ and

$$\kappa = \bigcup_{\xi < \lambda} S_{\xi}$$

For each $\xi < \lambda$, let β_{ξ} be the order-type of $\bigcup_{\nu < \xi} S_{\nu}$. The sequence $\langle \beta_{\xi} : \xi < \lambda \rangle$ is non-decreasing and each $\beta_{\xi} < \kappa$ for all $\xi < \lambda$ since λ is minimal.

Let us show that $\lim_{\xi \to \kappa} \beta_{\xi} = \kappa$ to show that cf $\kappa \leq \lambda$.

Assume $\beta = \lim_{\xi \to \kappa} \beta_{\xi}$. There is a one-to-one mapping $f : \bigcup_{\xi < \beta} S_{\xi} \to \lambda \times \beta$ such that:

$$f: \alpha \mapsto (\xi, \gamma)$$

where ξ is the least ordinal such that $\alpha \in S_{\xi}$ and γ is the order-type of $S_{\xi} \cap \gamma$.

We have $\lambda < \kappa$ and $|\lambda \times \beta| = \lambda \cdot |\beta|$, then $\kappa = \beta$.

Theorem 1.2. Let κ be an infinite cardinal, then $\kappa < \kappa^{\text{cf }\kappa}$.

Proof. Let F be a collection of κ functions from cf κ to κ :

$$F = \{ f_{\alpha} : \operatorname{cf} \kappa \to \kappa \mid \alpha < \kappa \}$$

Let us construct f that does not belong to F.

We have $\kappa = \lim_{\xi < \operatorname{cf} \kappa} \alpha_{\xi}$, for $\xi < \operatorname{cf} \kappa$ we let:

$$f(\xi) = \text{least } \gamma \text{ such that } \gamma \neq \forall \alpha < \alpha_{\xi} f_{\alpha} \neq \gamma$$

Such γ does exist and f is different from all the f_{α} .

An uncountable cardinal κ is weakly inaccessible if it is limit and regular, but we cannot prove the existence of weakly inaccessible cardinals in ZFC.

1.3 Some Exercises

Exercise 1.1. The set of all finite sequences in \mathbb{N} is countable.

Proof. The set of finite sequences is $\bigcup_{n<\omega} \mathbb{N}^n$. Each of \mathbb{N}^n is countable for each $n<\omega$, so is the whole union $\bigcup_{n<\omega} \mathbb{N}^n$.

Exercise 1.2. $\Gamma(\alpha \times \alpha) \leq \omega^{\alpha}$.

Proof. Induction on α .

1. If $\alpha = 0$, then trivially

$$\Gamma(0 \times 0) = \Gamma(0) = 0 < \omega^0 = 1$$

2. Assume $\alpha = \beta + 1$ and $\Gamma(\beta \times \beta) \leq \omega^{\beta}$. Take $\gamma(\beta) = \Gamma(\beta \times \beta)$. Then

$$\gamma(\alpha) = \gamma(\beta + 1) = \gamma(\beta) + \beta + \beta + 1 = \gamma(\beta) + 2 \cdot \beta + 1.$$

By the induction hypothesis, we have $\gamma(\beta) \leq \omega^{\beta}$, so $\gamma(\beta) + 2 \cdot \beta + 1 \leq \omega^{\beta} + 2 \cdot \beta + 1 < \omega^{\beta+1} = \omega^{\alpha}$.

Assume $\alpha = \lim_{\beta \to \alpha} \beta$ and $\Gamma(\beta \times \beta) \le \omega^{\beta}$ for each β .

We have

$$\gamma(\alpha) = \gamma(\lim_{\beta \to \alpha} \beta) = \lim_{\beta \to \alpha} (\gamma(\beta)) \le \lim_{\beta \to \alpha} \omega^{\beta} = \omega^{\alpha}.$$

A set B is a projection of a set A if there is a mapping of A onto B. B is a projection of A if and only if there is a partition P of A such that |P| = |B|. If $|A| \ge |B| > 0$, then B is a projection of A. Conversely, by the Axiom of Choice, one can show that B is a projection of A, then $|A| \ge |B|$. This cannot be proved if we assume no the Axiom of Choice.

Exercise 1.3. Let B a projection of ω_{α} , then $|B| \leq \aleph_{\alpha}$.

Proof. If B is a projection of
$$\omega_{\alpha}$$
, so $\omega_{\alpha} \to B$, so $|B| \leq |\omega_{\alpha}| = \aleph_{\alpha}$.

Exercise 1.4. If B is a projection of A, then $|2^B| \leq |2^A|$.

Proof. Let $f: A \to B$ maps A onto B. Define $g: 2^B \to 2^A$ as

$$g: X \mapsto f^{-1}(X)$$

Then g is one-to-one since

$$g(X) = g(Y) \leftrightarrow f^{-1}(X) = f^{-1}(Y) \leftrightarrow \{x \in A \mid f(x) \in X\} = \{y \in A \mid f(y) \in Y\} \leftrightarrow X = Y.$$

Exercise 1.5. Let \aleph_{α} be an uncountable limit cardinal, then cf $\omega_{\alpha} = \operatorname{cf} \alpha$; ω_{α} is the limit of a cofinal sequence $\langle \omega_{\xi} : \xi < \operatorname{cf} \alpha \rangle$ of cardinals.

П

Proof. \aleph_{α} is a limit cardinal, so

$$\aleph_{\alpha} = \sup \{ \omega_{\beta} \mid \beta < \alpha \}$$

But the sequence $\langle \omega_{\beta} : \beta < \alpha \rangle$ is non-decreasing, so by Lemma 1.3(2) we have cf $\omega_{\alpha} = \text{cf } \alpha$.

Moreover:

$$\omega_{\alpha} = \lim_{\xi \to \operatorname{cf} \alpha} \omega_{\xi}.$$

2 Real Numbers and The Baire Space

The *continuum* is the cardinality of \mathbb{R} denoted as \mathfrak{c} .

Theorem 2.1. (Cantor)

 $\aleph_0 < \mathfrak{c}$.

Proof. One can think of it as a consequence of Theorem 1.2. \Box

Definition 2.1. The *Continuum Hypothesis* (CH) is the following statement:

$$\aleph_1 = \mathfrak{c}$$
.

Let (P, <) be an ordered set, a subset $D \subset P$ is a *dense* subset of P if a < b in P implies a < d and d < b for some $d \in D$.

Theorem 2.2. $(\mathbb{R}, <)$ is the unique complete linear ordering that has a countable dense subset isomorphic to $(\mathbb{Q}, <)$.

Proof. Let C and C' be two complete dense linear orderings and let P and P' be dense in C and C' respectively. Let $f: P \cong P'$, so f can be extended to $f^*: C \cong C'$ by letting:

$$f^*: x \mapsto \sup\{f(p) \mid p \in P \& p \le x\}$$

That is, $(.)^*$ is functorial.

The existence of $(\mathbb{R}, <)$ follows from the following general statement:

Theorem 2.3. Let (P, <) be a dense unbounded linear ordering, then there exists a complete dense unbounded linear ordering (C, \prec) such that:

- 1. (P, <) embeds to (C, \prec) .
- 2. P is dense in C.

Proof. Recall that a *Dedekind cut* in P is a pair (A, B) of disjoint subsets of P such that:

- 1. $A \cup B = P$.
- 2. $\forall a \in A \ \forall b \in B \ a < b$.
- 3. A has no greatest element.

Let C be the set of all Dedekind cuts in P. We let $(A_1, B_1) \leq (A_2, B_2)$ if $A_1 \subset A_2$ and $B_2 \subset B_1$. (C, \leq) is complete.

Let $\{C_i \mid i \in I\} \neq \emptyset$ be a bounded subset of C, then $(\bigcup_i A_i, \bigcap_i B_i)$ is its supremum.

Let $p \in P$, let

$$A_p = \{x \in P \mid x < p\}$$

$$B_p = \{x \in P \mid x \ge p\}$$

Then
$$(\{(A_p, B_p) \mid p \in P\}, \preceq) \cong (P, <)$$
 and is dense in C .

 \mathbb{Q} is dense in \mathbb{R} , so every open interval (a,b) contains some rational number. Then if S is a disjoint collection of open intervals, then S is at most countable.

Let P be a dense linearly ordered set, if every disjoint collection of open intervals is at most countable, then we say that P satisfies the *countable chain condition*.

(Suslin's Problem) Let P be a dense linearly ordered set satisfying the countable chain condition. Is P isomorphic to $(\mathbb{R}, <)$?

Note that neither Suslin's Problem nor its negation can be decided in ZFC.

2.1 Topology of \mathbb{R}

The real line is equipped with the natural topology induced by the metric d(a,b) = |b-a| coincides with the order topology on $(\mathbb{R}, <)$. \mathbb{R} is also a complete separable metric space.

Every open set in \mathbb{R} is the union of intervals with rational endpoints, so there are continuum many open sets (and the same observation holds for open sets as well).

A subset P is *perfect* is it has no isolated points.

Theorem 2.4. Every perfect set P has cardinality \mathfrak{c} .

Proof. We construct a one-to-one function F from $\{0,1\}^{\omega}$ to P. Let S be the set of all finite binary sequences and let $s \in S$.

By induction on len(s) one can find closed intervals I_s such that for each $n < \omega$ and for each $s \in S$ such that len(s) = n:

- 1. $I_s \cap P$ is perfect,
- 2. the diameter of I_s is $\leq 1/2$,

3. $I_{0:s}, I_{1:s} \subset I_s \text{ and } I_{0:s} \cap I_{1:s} = \emptyset$

Take $f \in \{0,1\}^{\omega}$, the set $P \cap \bigcap_{n < \omega} I_{f \upharpoonright n}$ has exactly one element, so let:

$$F: f \mapsto \bigcap_{n < \omega} I_{f \upharpoonright n}$$

Theorem 2.5. (Cantor-Bendixon)

If F is an uncountable closed set, then $F = P \cup S$, where P is perfect and S is at most countable.

Proof.

Let $F \subset \mathbb{R}$, let

$$F'$$
 = the set of all limit points of F

 $F^{'}$ is also called the *derived set* of F. $F^{'}$ is closed and obviously a subset of A. We let:

- 1. $F_0 = A$.
- 2. $F_{\alpha+1} = F'_{\alpha}$.
- 3. $F_{\alpha} = \bigcap_{\gamma < \alpha} F_{\gamma}$ if $\alpha > 0$ is a limit ordinal.

Since $F_0 \supset F_1 \supset \cdots \supset F_\alpha \supset$, so we have an ordinal θ such that $F_\theta = F_{\theta+1}$ (otherwise we could map the proper class of ordinals onto some set). We let $P = F_\alpha$. If P is nonempty, then P is also perfect.

Let us show that F-P is at most countable. Let $\langle J_k:k<\omega\rangle$ be an enumeration of rational intervals. We have

$$F - P = \bigcup_{\alpha < \theta} (F_{\alpha} - F_{\alpha+1})$$

So if $a \in F - P$, then there exists $\alpha < \theta$ such that $a \in F_{\alpha} - F_{\alpha+1}$, that is, a is an isolated point of F_{α} . We let k_a be the least k such that a is the only point of F_{α} in J_k .

If $\alpha \leq \beta$ and $a \neq b$ and b is isolated in F_{β} , then $b \notin J_{k_a}$, so $k_a \neq k_b$, so the mapping $a \mapsto k_a$ is one-to-one.

Corollary 2.1. If $C \subseteq \mathbb{R}$ is closed, then either $|C| = 2^{\aleph_0}$ or $|C| \leq \aleph_0$.

A set $A \subset \mathbb{R}$ is nowhere dense if Int Cl $A = \emptyset$. The following theorem shows that \mathbb{R} is not of the *first category*, that is, \mathbb{R} is not the union of a countable family of nowhere dense sets.

Theorem 2.6. (The Baire Category Theorem)

Let $\{D_i \mid i < \omega\}$ be a countable family of dense open subsets of \mathbb{R} , then $D = \bigcap_{i < \omega} D_i$ is dense in \mathbb{R} .

Proof. We show that $D \cap I \neq \emptyset$ for each open interval I.

Note that each finite intersection $D_0 \cap D_1 \cap \cdots \cap D_n$ is dense and open for each $n < \omega$. Let $\langle J_k : k < \omega \rangle$ be an enumeration of rational intervals.

Let $I_0 := I$ and for each n $I_{n+1} = J_k = (q_k, r_k)$ where k is the smallest index such that $[q_k, r_k] \subset I_n \cap D_n$.

Take
$$a = \lim_{k \to \infty} q_k$$
, then $a \in I \cap D$.

2.2 Borel Sets

Definition 2.2. An algebra of sets is a collection S of subsets of S satisfying the following axioms:

- $S \in \mathcal{S}$,
- $X, Y \in \mathcal{S} \Rightarrow X \cup Y \in \mathcal{S}$,
- $X \in \mathcal{S} \Rightarrow -X \in \mathcal{S}$

An algebra of sets is σ -algebra if its closed under countable unions:

• Given $\{X_n \in \mathcal{S} \mid n < \omega\}$, then $\bigcup_{n < \omega} X_n \in \mathcal{S}$.

Let \mathcal{X} be a collection of sets, there is the smallest σ -algebra containing \mathcal{X} .

Definition 2.3. A set of reals B is B orel if it belongs to the smallest σ -algebra that contains all open sets.

2.3 Lebesgue Measure

The outer measure $\mu(X)$ for $X \subset \mathbb{R}^n$ is the infimum of all possible sums of the form

$$\sum_{k<\omega}v(I_k)$$

where $\{I_k \mid k < \omega\}$ is the collection of n-dimensional intervals such that

$$X \subset \bigcup_{k < \omega} I_k$$

where v(I) is the volume of I.

Clearly $\mu^*(X) \geq 0$ for each $X \subset \mathbb{R}^n$ and $\mu^*(X)$ could equal ∞ . A set X is null $\mu^*(X) = 0$.

A set A is Lebesgue measurable if for each $X \subset \mathbb{R}^n$ one has

$$\mu^*(X) = \mu^*(X \cap A) + \mu^*(X - A).$$

The above formula is also knows

If A is measurable, then we write $\mu(A)$ instead of $\mu^*(A)$. We shall call $\mu(A)$ the Lebesque measure of A.

Some standard facts about Lebesgue measure:

- 1. Every interval I is Lebesgue measurable and $\mu(I) = v(I)$.
- 2. The Lebesgue measurable sets form a σ -algebra. In particular, every Borel set is Lebesgue measurable.
- 3. μ is σ -additive. Let $\{A_n \mid n < \omega\}$ be a family of pairwise disjoint and Lebesgue measurable sets, then

$$\mu(\bigcup_{n<\omega} A_n) = \sum_{n<\omega} \mu(A_n).$$

- 4. μ is σ -finite. If A is Lebesgue measurable, then there are sets A_n for $n < \omega$ such that $A = \bigcup_{n < \omega} A_n$ and $\mu(A_n) < \infty$ for each $n < \omega$.
- 5. Every null set is measurable.
- 6. If A is measurable, then

$$\mu(A) = \sup \{ \mu(K) \mid K \subset A \& K \text{ is compact} \}$$

2.4 The Baire Space

The Baire Space is the space $\mathcal{N} = \omega^{\omega}$ of infinite sequences of natural numbers with the topology defined the following way. Let s be a finite sequence $s = \langle a_k : k < n \rangle$, we let:

$$O(s) = \{ f \in \mathcal{N} \mid s \subset f \} = \{ \langle c_k \mid k < \omega \rangle \mid \forall k < n \ c_k = a_k \}$$

All those O(s)'s form the open basis for \mathcal{N} .

The Baire space is separable and metrisable. The metric is defined as $d(f,g)=1/2^{n+1}$ where n is the smallest natural number such that $f(n)\neq g(n)$. We also have separability since the set of all eventually constant sequences is dense in \mathcal{N} .

Every infinite sequence $\langle a_k : k < \omega \rangle$ defines a continued fraction $1/(a_0 + 1/(a_1 + 1/(a_2 + \ldots)))$, so we have a continuous bijection between infinite sequences and irrational points of the open interval (0,1). Moreover, the Baire space is homeomorphic to the space of irrational numbers.

Now we describe the characterisation of perfect sets in the Baire space.

Let Seq be the set of all finite sequences in \mathcal{N} . A *tree* is a set $T \subset \text{Seq}$ satisfying:

If $t \in T$ and there exists $n < \omega$ such that $s = t \upharpoonright n$, then $s \in T$.

Let T be a tree, let [T] be the set of all infinite paths through T:

$$[T] = \{ f \in \mathbb{N} \mid \forall n < \omega \ f \upharpoonright n \in T \}$$

For each T, the set [T] is closed in the Baire space. Let $f \in \mathcal{N}$ such that $f \notin [T]$. Then there exists $n < \omega$ such that $s = f \upharpoonright n \notin T$, so the open neighbourhood of $f(O(s)) = \{g \in \mathcal{N} \mid g \supset s\}$. Thus [T] is closed.

Conversely, let F be closed in \mathcal{N} , then the set

$$T_F = \{ s \in \text{Seq} \mid \exists f \in F \ s \subset f \}$$

is a tree and one can verify that $[T_F] = F$. If $f \in \mathcal{N}$ such that $f \upharpoonright n \in T$ for each $n < \omega$, then for each n there is some $g \in F$ such that $g \upharpoonright n = f \upharpoonright n$, so $f \in F$ since F is closed.

If f is an isolated point of a closed set F in \mathcal{N} , then there is $n \in \mathbb{N}$ such that no $g \in F$ such that $g \neq f$ and $g \upharpoonright n = f \upharpoonright n$, so we have no branching starting from the n-th position.

So we have the notion of a perfect set P in the Baire space. A tree T is perfect if $t \in T$, then there exist incomparable $t_1, t_2 \supset t$ such that both of them are in T and neither $t_1 \subset t_2$ nor $t_2 \subset t_1$.

Theorem 2.7. A closed set $F \subset \mathcal{N}$ is perfect iff the tree T_F is perfect.

Let us discuss the Cantor-Bendixon analysis of closed subsets of the Baire space. Let T be a tree, define:

$$T' = \{ t \in T \mid \exists t_1, t_2 \supset t \ (t_1, t_2 \in T \ \& \ \neg (t_1 \subset t_2 \lor t_2 \subset t_1)) \}$$

Then a set T is perfect iff $T = T' \neq \emptyset$.

[T]-[T'] is at most countable: take $f \in [T]$ such that $f \notin [T']$. Take $s_f = f \upharpoonright n$ where $n < \omega$ is the smallest index such that $f \upharpoonright n \notin T'$. If $f,g \in [T]-[T']$, then $s_f \neq s_g$ by the definition of T', so the mapping $f \mapsto s_f$ is one-to-one.

Now let:

$$T_0 = T$$

$$T_{\alpha+1} = T'_{\alpha}$$

$$T_{\alpha} = \bigcap_{\beta < \alpha} T_{\beta} \text{ if } \alpha > 0 \text{ is limit.}$$

We have $T_0 \supset T_1 \supset \cdots \supset T_\alpha \supset \ldots$. T_0 is at most countable, so there is $\theta < \omega_1$ at which the sequence stabilises. If $T_\theta \neq \emptyset$, then T_θ is perfect.

One can verify that:

$$\left[\bigcap_{\beta < \alpha} T_{\beta}\right] = \bigcap_{\beta < \alpha} [T_{\beta}]$$

so we have

$$[T] - [T_{\theta}] = \bigcup_{\beta < \alpha} ([T_{\alpha} - T'_{\alpha}])$$

and the set $[T] - [T_{\theta}]$ is at most countable. So we have a version of Theorem 2.5 for the Baire space.

In descriptive set theory we often deal with the *Lebesgue measure* on the Baire space \mathcal{N} . Such a measure is defined as the extension of the product measure m on Borel sets induced by the probability measure on \mathbb{N} that measures each singleton $\{n\}$ as $1/2^{n+1}$.

So if $s \in \text{Seq}$ such that $\text{len}(s) \geq 1$ we have

$$m(O(s)) = \prod_{k=0}^{n-1} 1/2^{s(k)+1}$$

2.5 Polish Space

Definition 2.4. A *Polish space* is a topological space homeomorphic to a separable complete metric space.

The examples of Polish spaces are \mathbb{R} , \mathcal{N} , the Cantor space, [0,1], the Hilbert cube $[0,1]^{\omega}$.

2.6 Some Exercises

Exercise 2.1. The set of all continuous functions $f: \mathbb{R} \to \mathbb{R}$ has cardinality \mathfrak{c} .

Proof. \mathbb{Q} is dense in \mathbb{R} , so for every $a \in \mathbb{R}$ there is a sequence $\langle q_n \mid n \in \mathbb{N} \rangle$ of rationals such that

$$\lim_{n \to \infty} q_n = a$$

If f is continuous, then

$$f(a) = f(\lim_{n \to \infty} q_n) = \lim_{n \to \infty} (f(q_n))$$

Thus every continuous f is determined by its values at its rational points $\{f(q) \mid q \in \mathbb{Q}\}.$

Exercise 2.2. The set of all algebraic numbers is countable.

Proof. If $a \in \mathbb{R}$ is algebraic, then there is a polynomial $p(x) = c_n x^n + c_{n-1} x^{n-1} + \ldots + c_1 x + c_0$ such that p(a) = 0 and each $c_i \in \mathbb{Z}$. There is a clear bijection between algebraic numbers and finite sequences of integers (or sequences of polynomial coefficients), thus the set of all algebraic numbers is countable. \square

Exercise 2.3. Let S be a countable set of reals, then $|\mathbb{R} - S| = \mathfrak{c}$.

Proof. Consider $|\mathbb{R} \times \mathbb{R} - S|$, then it is going to have the cardinality \mathfrak{c} .

Exercise 2.4.

- 1. The set of irrational numbers has cardinality \mathfrak{c} .
- 2. The set of transcendental numbers has cardinality \mathfrak{c} .

Proof. Both parts are derived from the previous exercise by the obvious instantiation. \Box

Exercise 2.5. The set of all open sets of \mathbb{R} has cardinality \mathfrak{c} .

Proof. Each open set is the union of some collection intervals, but such a collection is at most countable since the disjoint collection of open intervals is countable as far as \mathbb{Q} is dense \mathbb{R} .

Exercise 2.6. The Cantor Set is perfect.

Proof. We remove the open middle thirds from [0,1] infinitely many times, so we have The sequence of sets $\{C_n \mid n < \omega\}$

where

- 1. $C_0 = [0, 1],$
- 2. $C_{n+1} = \frac{C_n}{3} \cup (\frac{2}{3} + \frac{C_n}{3})$
- 3. $C = \bigcap_{n < \omega} C_n$

One can approximate any element $c \in C$ by the converging sequence of endpoints, thus C is perfect.

Exercise 2.7. Let $P \subset \mathbb{R}$ be a perfect set and let (a,b) be an open interval such that $(a,b) \cap P \neq \emptyset$, then $|P \cap (a,b)| = \mathfrak{c}$.

Proof. Take $x \in (a,b) \cap P$ and take $\epsilon > 0$ such that $(x - \epsilon, x + \epsilon) \subset (a,b)$, but P is perfect, so there is $y \in P$ such that $y \in (x - \epsilon, x + \epsilon)$, so $y \in P \cap (a,b)$. \square

Exercise 2.8. Let $P_1, P_2 \subset \mathbb{R}$ be perfect sets such that $P_1 \not\subset P_2$, then $|P_1 - P_2| = \mathfrak{c}$.

Proof. $-P_2$ is open, so $-P_2$ can be viewed as the union of some intervals. The intersection of P_1 with each of them is \mathfrak{c} by the previous exercise.

Let $A \subset \mathbb{R}$ be a set of real, then $a \in \mathbb{R}$ is a *condensation point* of A if every neighbourhood of a contains uncountably many elements of A. A^* is the set of all condensation points of A.

Exercise 2.9. If P is perfect, then $P^* = P$.

Proof. P, so every condensation point of P belongs to P, so $P^* \subset P$. P has no isolated points, every element of P has a sequence converging to it, so every element of P is a condensation point.

Exercise 2.10. If F is closed and $P \subset F$ is perfect, then $P \subset F^*$.

Proof. The * is functorial, so $P^* \subset F^*$, so $P \subset F^*$ by Exercise 2.9.

Exercise 2.11. Let F be an uncountable closed set and let P be a perfect set from Theorem 2.5, then $F^* \subset P$ and thus $F^* = P$.

Proof. We have $P \subset F^*$ by Exercise 2.6. Take $a \in F^*$. We need $a \in P$. a is a condensation point, $U_a \cap F = \mathfrak{c}$ for any neighbourhood of a and F - P is at most countable by the Cantor-Bendixon theorem, so $U_a \cap P \neq \emptyset$. So a is a limit point of P, but P is closed so $a \in P$.

Exercise 2.12. Let F be an uncountable closed set, then $F = F^* \cup (F - F^*)$ is the unique partition of F into a perfect set and an at most countable set.

Proof. By Cantor-Bendixon theorem, F^* is countable and $(F - F^*)$ is at most countable. Let $P \subset F$ be a perfect set, then $P \subset F^*$. If P and F^* are different, then by Exercise 2.8, $|P - F^*| = \mathfrak{c}$, which is contradiction, so $P = F^*$, and thus such a partition is unique.

Exercise 2.13. \mathbb{Q} is not the intersection of a countable collection of open sets.

Proof. Let

$$\mathbb{Q} = \bigcap_{n < \omega} O_n$$

where each $O_n \subset \mathbb{R}$ is open. Each O_n is also dense in \mathbb{R} since $\mathbb{Q} \subset O_n$ for each $n < \omega$.

Assume we have some numeration $q:\omega\to\mathbb{Q}$ of rationals. Construct the following sequence of intervals:

- 1. I_0 is a closed subinterval of O_0 such that $q_0 \notin I_0$.
- 2. I_{n+1} is a closed subinterval of $I_n \cap D_n$ such that $q_{n+1} \notin I_{n+1}$.

Then
$$\cap_{n<\omega}I_n\subset\cap_{n<\omega}D_n$$
, but $\cap_{n<\omega}D_n=\emptyset$ and $\cap_{n<\omega}D_n\cap\mathbb{Q}=\emptyset$.

Exercise 2.14. Let f be a continuous function and let B be a Borel set, then $f^{-1}(B)$ is Borel.

Proof. Follows from the definition of a continuous function. \Box

3 The Axiom of Choice

Recall that the axiom of choice (AC) says that if we have a family of sets S such that $\emptyset \notin S$, then we have a *choice function* on S such that $f(X) \in X$.

In some cases we can show the existence of a choice function without using the axiom of choice. For example, for families of a complete lattice, the choice function can return the supremum or infimum of each set belonging to a family.

Using the axiom of choice one can also show that every infinite set has cardinality equal to \aleph_{α} for some α .

Theorem 3.1. (Zermelo)

Every set can be well-ordered.

Proof. Let A be a set. It is sufficient to construct a transfinite sequence $\langle a_{\alpha} : \alpha < \theta \rangle$ that enumerates A. We do that by induction and by using the choice function f on non-empty subsets of A. For α we let:

$$a_{\alpha} = f(A - \{a_{\xi} \mid \xi < \alpha\})$$

whenever $A - \{a_{\xi} \mid \xi < \alpha\}$ is non-empty. Let θ be the smallest ordinal such that $A = \{a_{\alpha} \mid \alpha < \theta\}$. Thus $\langle a_{\alpha} : \alpha < \theta \rangle$ enumerates A.

As it is well-known, Zermelo's theorem implies the axiom of choice. Let S be a family of sets such that $\emptyset \notin S$. By Zermelo's theorem, we can well-order $\cup S$, so let f(X) be the smallest element of X.

Note that Zermelo's theorem also implies that \mathbb{R} can be well ordered and also that 2^{\aleph_0} is an aleph and $2^{\aleph_0} \geq \aleph_1$.

Another important consequence of the axiom of choice:

Theorem 3.2. The union of a countable family of countable sets is countable.

Proof. Let A_n be a countable set for each $n < \omega$. For each n let us choose an enumeration $\langle a_{n,k} : k < \omega \rangle$ of A_n . So we have a projection of $\mathbb{N} \times \mathbb{N}$ onto $\bigcup_{n < \omega} A_n$ by mapping $(n,k) \mapsto a_{n,k}$.

In fact, the theorem above can be generalised the following way:

Theorem 3.3. $|S| \le S \cdot \sup\{|X| \mid X \in S\}.$

Proof. Let $\kappa = |S|$ and $\lambda = \sup\{|X| \mid X \in S\}$. We have $S = \{X_{\alpha} \mid \alpha < \kappa\}$ and for each $\alpha < \kappa$ we choose an enumeration $X_{\alpha} = \{a_{\alpha,\beta} \mid \beta < \lambda_{\alpha}\}$ where $\lambda_{\alpha} = |X_{\alpha}|$. Clearly that $\lambda_{\alpha} \leq \lambda$ for each $\alpha < \kappa$. So we have a projection of $\kappa \times \lambda$ onto $\cup S$ by mapping $(\alpha, \beta) \mapsto a_{\alpha,\beta}$.

Corollary 3.1. For every $\alpha \aleph_{\alpha+1}$ is a regular cardinal.

Proof. If $\aleph_{\alpha+1}$ were singular for some α , then $\omega_{\alpha+1}$ would be the union of at most \aleph_{α} sets of cardinality \aleph_{α} by Lemma 1.6, which would mean that $\aleph_{\alpha+1} = \aleph_{\alpha}$ by Theorem 3.3. Contradiction.

Let (P, <) be a poset, an element $a \in P$ is maximal if no $b \in P$ such that b > a. Let X be a non-empty subset of P, then c is the upper bound of X if $c \ge X$. X is a chain in P if any two elements of X are comparable.

Theorem 3.4. (Zorn)

Let (P, <) be a poset such that every chain C has an upper bound, then P has a maximal element.

Proof. Let f be a choice function on non-empty subsets of P. We construct a chain C leading to a maximal element.

Construct the following elements by induction:

 a_{α} = an element of P such that $a_{\alpha} > a_{\xi}$ for every $\xi > \alpha$ if it exists

If $\alpha > 0$ is a limit ordinal, then C_{α} is a chain in P and a_{α} does exist. Eventually, there is θ such that no $a_{\theta+1} > a_{\theta}$. Thus a_{θ} is maximal. \square

As it is known, Zorn's lemma implies the axiom of choice. Let S be a family of non-empty sets, then we check that the set $\{f|f$ is a choice function on some $S' \subset S\}$ ordered by inclusion satisfies the condition of Zorn's lemma, so a maximal element of that poset is a choice function on S.

There is a weaker version of the axiom of choice for countable families of non-empty sets. The countable AC implies Theorem 3 and regularity of \aleph_1 , but the countable AC is too weak to show that \mathbb{R} can be well-ordered.

There is a stronger version of the countable AC.

Definition 3.1. (The Principle of Dependent Choice (DC))

Let R be a binary relation on A such that for all $x \in A$ there exists $y \in A$ such that yRx, then there is a sequence $a_0, a_1, \ldots, a_n, \ldots$ for $n < \omega$ such that:

$$\forall n < \omega \ (a_{n+1}Ra_n)$$

The Principle of Dependent Choices allows characterising well orderings and (as well as well-founded relations) the following way:

Lemma 3.1. Let (A, <) be a poset, then the following are equivalent:

- 1. (A, <) is a well-ordering.
- 2. No infinite sequences $a_0, a_1, \ldots, a_n, \ldots$ for n < omega such that:

$$a_0 > a_1 > \dots > a_n > \dots$$

3.1 Cardinal Arithmetic the Generalised Continuum Hypothesis

Now let us discuss the cardinal exponentiation operator.

Lemma 3.2. Let λ be infinite and $2 \le \kappa \le \lambda$, then $\kappa^{\lambda} = 2^{\lambda}$.

Proof.
$$2^{\lambda} \leq \kappa^{\lambda} \leq (2^{\kappa})^{\lambda} = 2^{\kappa \cdot \lambda} = 2^{\lambda}$$
.

The evaluation of κ^{λ} is more complicated when $\lambda < \kappa$. If $2^{\lambda} \geq \kappa$, then we have $\kappa^{\lambda} = 2^{\lambda}$ since $\kappa \leq (2^{\lambda})^{\lambda} = 2^{\lambda}$. But if $2^{\lambda} < \kappa$, the only thing we can conclude:

$$\kappa \leq \kappa^{\lambda} \leq 2^{\kappa}$$

which is already known by Cantor's theorem.

Let λ be a cardinal and let A be a set such that $|A| \geq \lambda$, we let:

$$[A]^\lambda = \{X \in 2^A \mid |X| = \lambda\}$$

Lemma 3.3. If $|A| = \kappa \ge \lambda$, then the set $[A]^{\lambda}$ has cardinality κ^{λ} .

Proof. On the one hand every function $f:\lambda\to A$ is a subset of $\lambda\times A$ and $|f|=\lambda.$ Thus:

$$\kappa^{\lambda} \le |[\lambda \times A]^{\lambda}| = |[A]^{\lambda}|$$

On the other hand, there is a one-to-one function $F: [A]^{\lambda} \to A^{\lambda}$. If $X \in [A]^{\lambda}$, let F(X) be some function f on λ whose range is X.

Let λ be a limit cardinal, let:

$$\kappa^{<\lambda} = \sup\{\kappa^{\mu} \mid \mu \text{ is a cardinal such that } \mu < \lambda\}$$

We also define $\kappa^{<\lambda^+}$ for successors λ^+ .

Let κ be an infinite cardinal and $|A| \geq \kappa$, let:

$$[A]^{<\kappa} = \{X \in 2^A \mid |X| < \kappa\}$$

Clearly, the cardinality of $[A]^{<\kappa}$ is $|A|^{<\kappa}$.

3.2 Infinite Sums and Products

Let $\{\kappa_i \mid i \in I\}$ be an indexed family of cardinals, define:

$$\sum_{i \in I} \kappa_i = |\bigcup_{i \in I} X_i|$$

where each for $i \in I |X_i| = \kappa_i$. Note that, by the Axiom of Choice, the definition of sum does not depend on the choice of $\{X_i \mid i \in I\}$.

Let λ, κ be cardinals and let $\kappa_i = \kappa$, then:

$$\sum_{i<\lambda} \kappa_i = \lambda \cdot \kappa$$

More generally, we have:

Lemma 3.4. Let λ be an infinite cardinal and $\kappa_i > 0$ for each $i < \lambda$, then:

$$\sum_{i<\lambda} \kappa_i = \lambda \cdot \sup_{i<\lambda} \kappa_i$$

Proof. Let $\kappa = \sup_{i < \lambda} \kappa_i$ and $\sigma = \sum_{i < \lambda} \kappa_i$. On the one hand, we have $\forall i < \lambda \ \kappa_i \le \kappa$,

$$\sum_{i<\lambda} \kappa_i \le \lambda \cdot \kappa$$

On the other hand, since $\kappa_1 \geq 1$ for each i, we have

$$\lambda = \sum_{i < \lambda} 1 \le \sigma$$

 $\sigma \geq \kappa_i$ for each i, so we have

$$\sigma \ge \sup_{i < \lambda} \kappa_i = \kappa$$

So $\sigma \geq \lambda \cdot \kappa$.

Let $\{X_i \mid i \in I\}$ be an indexed family of sets, we let:

 $\prod_{i \in I} X_i = \{ f \mid f \text{ is a function on } I \text{ such that } \forall i \in I \ f(i) \in X_i \}$

If each of X_i 's is non-empty, then the whole product is non-empty and this is equivalent to the axiom of choice.

Let $\{\kappa_i \mid i \in I\}$ be a family of cardinals, define:

$$\prod_{i \in I} \kappa_i = |\prod_{i \in I} X_i|$$

where for each i X_i is a set of cardinality of κ_i . As in the case of sum, assuming the axiom of choice, one can show that the definition of product does not depend on the choice of X_i 's.

If $\kappa_i = \kappa$ for each $i \in I$ and I has cardinality λ , then:

$$\prod_{i\in I}\kappa_i=\lambda$$

If I is a disjoint union $I = \bigcup_{j \in J} A_j$, then:

$$\prod_{i \in I} \kappa_i = \prod_{j \in J} \left(\prod_{i \in A_j} \kappa_i \right)$$

If $\kappa_i \geq 2$ for each $i \in I$, then:

$$\sum_{i \in I} \kappa_i \le \prod_{i \in I} \kappa_i$$

If I is finite, then the inequality is self-evident. Assume I is infinite. We have:

$$\prod_{i \in I} \kappa_i \geq \prod_{i \in I} 2 = 2^{|I|} > |I|$$

We show that $\sum_{i} \kappa_{i} \leq |I| \cdot \prod_{i} \kappa_{i}$. Let $\{X_{i} \mid i \in I\}$ be a disjoint family such that for each $i \in I$ $|X_{i}| = \kappa_{i}$. Assign each $x \in \bigcup_i X_i$ to a pair (i, f) such that $x \in X_i$ and $f \in \prod_i X_i$ such that f(i) = x.

Lemma 3.5. Let λ be an infinite cardinal and let $\langle \kappa_i : i < \lambda \rangle$ be a nondescreasing sequence of ordinals, then

$$\prod_{i \in I} \kappa_i = (\sup_{i \in I} \kappa_i)^{\lambda}$$

Proof. Let $\kappa = \sup_i \kappa_i$. Since $\kappa_i \leq \kappa$ for each $i < \lambda$, we have:

$$\prod_{i \in I} \kappa_i \le \prod_{i \in I} \kappa = \kappa^{\lambda}$$

Let us show $\kappa^{\lambda} \leq \prod_{i \in I} \kappa_i$.

Consider a partition of λ into λ disjoint sets A_j , each of which has cardinality λ :

$$\lambda = \bigcup_{j < \lambda} A_j$$

For each $j < \lambda$ we have:

$$\kappa = \sup_{i \in A_j} \kappa_i \le \prod_{i \in A_j} \kappa_i$$

And thus:

$$\prod_{i \in I} \kappa_i = \prod_{j < \lambda} \left(\prod_{i \in A_j} \kappa_i \right) \ge \prod_{j < \lambda} \kappa = \kappa^{\lambda}$$

Theorem 3.5. (König)

Assume $\kappa_i < \lambda_i$ for each $i \in I$, then:

$$\sum_{i \in I} \kappa_i < \prod_{i \in I} \lambda_i$$

Proof. Let us show $\Sigma_i \kappa_i \ngeq \Pi_i \lambda_i$. Let $\{T_i \mid i \in I\}$ be an indexed family such that $|T_i| = \lambda_i$. It sufficies to show that if we have a family $\{Z_i \mid i \in I\}$ of subsets of $T = \Pi_i T_i$ such that $|Z_i| < \kappa_i$ for each i, then $\cup_i Z_i \ne T$.

For every $i \in I$, let S_i be the projection of Z_i into the *i*-th coordinate:

$$S_i = \{ f(i) \mid f \in Z_i \}$$

As far as $|Z_i| < |T_i|$, we have $S_i \subset T_i$ and $S_i \neq T_i$ for each $i \in I$. Let $f \in T$ be a function such that $f(i) \notin S_i$. f does not belong to any Z_i , so $\bigcup_i Z_i \neq T$. \square

Corollary 3.2. $\kappa < 2^{\kappa}$

Proof.
$$\sum_{i<\kappa} 1 < \prod_{i<\kappa} 2$$
.

Corollary 3.3. For each $\alpha \aleph_{\alpha} < cf(2^{\aleph_{\alpha}})$.

Proof. Let us show that if for each $i < \omega_{\alpha}$ $\kappa_i < 2^{\aleph_{\alpha}}$, then $\Sigma_{i < \omega_{\alpha}} \kappa_i < 2^{\aleph_{\alpha}}$. Let $\lambda_i = 2^{\aleph_{\alpha}}$.

$$\sum_{i<\omega_{\alpha}}\kappa_{i}<\prod_{i<\omega_{\alpha}}\lambda_{i}=(2^{\aleph_{\alpha}})^{\aleph_{\alpha}}=2^{\aleph_{\alpha}}$$

Corollary 3.4. For all $\alpha, \beta \aleph_{\beta} < \operatorname{cf}(\aleph_{\alpha}^{\aleph_{\beta}})$.

Proof. We show that if $\kappa_i < \aleph_{\alpha}^{\aleph_{\beta}}$ for each $i < \omega_{\beta}$, then $\Sigma_{i < \omega_{\beta}} \kappa_i < \aleph_{\alpha}^{\aleph_{\beta}}$. Let $\lambda_i = \aleph_{\alpha}^{\aleph_{\beta}}$, then

$$\sum_{i<\omega_{\beta}} \kappa_{i} < \prod_{i<\omega_{\beta}} \kappa_{i} = \aleph_{\alpha}^{\aleph_{\beta}}$$

Corollary 3.5. Let κ be an infinite cardinal, then $\kappa < \kappa^{\operatorname{cf} \kappa}$

Proof. Let $i < \operatorname{cf} \kappa$ and $\kappa_i < \kappa$ be such that $\kappa = \sum_{i < \operatorname{cf} \kappa} \kappa_i$.

$$\kappa = \sum_{i < \text{cf } \kappa} \kappa_i < \prod_{i < \text{cf } \kappa} \kappa = \kappa^{\text{cf } \kappa}.$$

3.3 The Continuum Function

Cantor's theorem claims that $\aleph_{\alpha} < 2^{\aleph_{\alpha}}$, so $\aleph_{\alpha+1} \leq 2^{\aleph_{\alpha}}$ for each α . The Generalised Continuum Hypothesis (GCH) is the statement

$$2^{\aleph_{\alpha}} = \aleph_{\alpha+1}$$

for each α . GCH is independent of ZFC, but ZFC + GCH proves the following properties of cardinal exponentiation:

Theorem 3.6. Assume GCH. Let κ and λ be infinite cardinals, then:

- 1. If $\kappa \leq \lambda$, then $\kappa^{\lambda} = \lambda^{+}$.
- 2. If cf $\kappa \leq \lambda < \kappa$, then $\kappa^{\lambda} = \kappa^{+}$.
- 3. If $\lambda < \operatorname{cf} \kappa$, then $\kappa^{\lambda} = \kappa$.

Proof.

- 1. By Lemma 3.2 we have $\kappa^{\lambda} = 2^{\lambda}$, but $2^{\lambda} = \lambda^{+}$.
- 2. Combine Lemma 3.3 and Lemma 3.4.
- 3. By Lemma 1.5 we have:

$$\kappa^{\lambda} = \{ \alpha^{\lambda} \mid \alpha < \kappa \}$$

so:

$$|\alpha^{\lambda}| \le 2^{|\alpha| \cdot \lambda} = (|\alpha| \cdot \lambda)^{+} \le \kappa$$

The $beth\ function$ is defined by induction:

- 1. $\beth_0 = \aleph_0$
- 2. $\beta_{\alpha+1} = 2^{\beta_{\alpha}}$
- 3. $\beta_{\alpha} = \sup\{\beta_{\beta} \mid \beta < \alpha\}$ if α is limit ordinal.

So we can reword GCH as $\beta_{\alpha} = \aleph_{\alpha}$ for all α .

Now we study the behaviour of the continuum function $\kappa\mapsto 2^\kappa$ assuming no GCH.

Theorem 3.7. Let κ, λ be cardinals, then

- 1. If $\kappa < \lambda$, then $2^{\kappa} \leq 2^{\lambda}$.
- $2. \ \kappa < \operatorname{cf} 2^{\kappa}$
- 3. If κ is a limit cardinal, then $2^{\kappa} = (2^{<\kappa})^{\operatorname{cf} \kappa}$

Proof.

- 1. Fairly obvious.
- 2. Corollary 3.3.
- 3. Let $\kappa = \sum_{i < cf} \kappa \kappa_i$ where each $\kappa_i < \kappa$ for each i. We have

$$2^{\kappa} = 2^{\sum_{i < \operatorname{cf} \kappa} \kappa_i} = \prod_{i < \operatorname{cf} \kappa} 2^{\kappa_i} \le \prod_{i < \operatorname{cf} \kappa} 2^{<\kappa} = (2^{<\kappa})^{\operatorname{cf} \kappa} \le (2^{\kappa})^{\operatorname{cf} \kappa} \le 2^{\kappa}$$

Corollary 3.6. Let κ be a singular cardinal. Assume the continuum function is eventually constant below κ , with value λ , then $2^{\kappa} = \lambda$.

Proof. If κ is singular and it satisfies the assumption of the statement, then there is ν such that cf $\kappa \leq \nu < \kappa$ and that $2^{<\kappa} = \lambda = 2^{\nu}$. Thus:

$$2^{\kappa} = (2^{<\kappa})^{\operatorname{cf} \kappa} = 2^{\nu}.$$

The *gimel function* is the function:

$$\mathfrak{I}(\kappa) = \kappa^{\operatorname{cf} \kappa}$$

If κ is a limit cardinal and the continuum function below κ is not eventually constant, then the cardinal $\lambda = 2^{<\kappa}$ is a limit of a non-decreasing sequence:

$$\lambda = 2^{<\kappa} = \lim_{\alpha \to \kappa} 2^{|\alpha|}$$

Then, by Lemma 1.3, cf $\lambda = \text{cf }\kappa$. Thus, by Theorem 3.7(3), we have:

$$2^{\kappa} = (2^{<\kappa})^{\operatorname{cf} \kappa} = 2^{\operatorname{cf} \lambda}$$

If κ is regular, then $\kappa = \operatorname{cf} \kappa$ and, since $\kappa^{\kappa} = 2^{\kappa}$ we have:

$$2^{\kappa} = \kappa^{\operatorname{cf} \kappa}$$

So we can specify the behaviour of the continuum function in terms of the gimel function.

Corollary 3.7.

- 1. If κ is a successor cardinal, then $2^{\kappa} = \Im(\kappa)$.
- 2. If κ is a limit cardinal and $\lambda x.2^x$ below κ is eventually constant, then $2^{\kappa} = 2^{<\kappa} \cdot \mathbb{J}(\kappa)$.
- 3. If κ is a limit cardinal and $\lambda x.2^x$ below κ is not eventually constant, then $2^{\kappa} = \Im(2^{<\kappa})$.

3.4 Cardinal Exponentiation

Let κ be a regular cardinal and let $\lambda < \kappa$, then every function $f : \lambda \to \kappa$ is bounded, i.e., $\sup\{f(\xi) \mid \xi < \lambda\} < \kappa$. Thus:

$$\kappa^{\lambda} = \bigcup_{\alpha < \kappa} \alpha^{\lambda}$$

that is,

$$\kappa^{\lambda} = \sum_{\alpha < \kappa} |\alpha|^{\lambda}$$

If κ is a successor cardinal, then we obtain the *Hausdorff formula*:

$$\aleph_{\alpha+1}^{\beta} = \aleph_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+1}$$

We can compute κ^{λ} using the following fact. If κ is a limit cardinal, we use use the notation:

$$\lim_{\alpha \to \kappa} \alpha^{\lambda} := \sup \{ \mu^{\lambda} \mid \mu \text{ is a cardinal and } \mu < \kappa \}$$

Lemma 3.6. Let κ be a limit cardinal and assume that cf $\kappa \leq \lambda$, then

$$\kappa^{\lambda} = (\lim_{\alpha \to \kappa} \alpha^{\lambda})^{\operatorname{cf} \kappa}$$

Proof. Let $\kappa = \sum_{i < \text{cf } \kappa} \kappa_i$, where $\kappa_i < \kappa$ for each i. We have:

$$\kappa^{\lambda} \leq (\prod_{i < \operatorname{cf} \kappa} \kappa_i)^{\lambda} = \prod_{i < \operatorname{cf} \kappa} \kappa_i^{\lambda} \leq \prod_{i < \operatorname{cf} \kappa} (\lim_{\alpha \to \kappa} \alpha^{\lambda})^{\operatorname{cf} \kappa} \leq (\kappa^{\lambda})^{\operatorname{cf} \kappa} = \kappa^{\lambda}$$

Theorem 3.8.

Let λ be an infinite cardinal, then for all infinite cardinals κ , the value of κ^{λ} is computed as follows:

- 1. $\kappa \leq \lambda$ implies $\kappa^{\lambda} = 2^{\lambda}$.
- 2. If there exists $\mu < \kappa$ such that $\kappa \le \mu^{\lambda}$, then $\kappa^{\lambda} = \mu^{\lambda}$.
- 3. Assume $\kappa > \lambda$ and if for all $\mu < \kappa \ \mu^{\lambda} < \kappa$, then:
 - (a) cf $\kappa > \lambda$ implies $\kappa^{\lambda} = \kappa$.
 - (b) cf $\kappa \leq \lambda$ implies $\kappa^{\lambda} = \kappa^{\text{cf } \kappa}$.

Proof.

- 1. Follows from Lemma 3.2.
- 2. $\mu^{\lambda} \leq \kappa^{\lambda} \leq (\mu^{\lambda})^{\lambda} = \mu^{\lambda}$.
- 3. If κ is a successor cardinal, then apply the Hausdorff formula. If κ is a limit cardinal. We have $\kappa = \lim_{\alpha \to \kappa} \alpha^{\lambda}$.

If cf $\kappa > \lambda$, then every $f : \lambda \to \kappa$ is bounded and we have:

$$\kappa^{\lambda} = \lim_{\alpha \to \kappa} \alpha^{\lambda} = \kappa.$$

If cf $\kappa \leq \lambda$, then, by Lemma 3.6, we have:

$$\kappa^{\lambda} = (\lim_{\alpha \to \kappa} \alpha^{\lambda})^{\operatorname{cf} \kappa} = \kappa^{\operatorname{cf} \kappa}$$

Theorem 3.8 allows defining all cardinal exponentiation in terms of the gimel function:

Corollary 3.8. Let κ and λ be cardinals, then the value of κ^{λ} is either 2^{λ} , or κ or $\mathfrak{I}(\mu)$ for some μ such that cf $\mu \leq \lambda < \mu$.

Proof. Assume $\kappa^{\lambda} > 2^{\lambda} \cdot \kappa$. Let μ be the least cardinal such that $\mu^{\lambda} = \kappa^{\lambda}$, so, by Theorem 3.8, $\mu^{\lambda} = \mu^{\text{cf } \mu}$.

A cardinal κ is a strong limit cardinal if

$$\forall \lambda < \kappa \ 2^{\lambda} < \kappa$$

Every strong limit cardinal is a limit cardinal, and, assuming the generalised continuum hypothesis, the converse is also true. If κ is a strong limit cardinal, then

$$\forall \lambda, \nu < \kappa \ \lambda^{\nu} < \kappa$$

 \aleph_0 is the smallest strong limit cardinal. Also, strong limit cardinals form a proper class: if α is an arbitrary cardinal, then the cardinal

$$\kappa = \{\alpha, 2^{\alpha}, 2^{2^{\alpha}}, \dots\}$$

(of cofinality ω) is a strong limit cardinal.

Also, if κ is a strong limit cardinal, then $2^{\kappa} = \kappa^{\text{cf} \kappa}$. A cardinal κ is strongly inaccessible if $\kappa > \aleph_0$, if κ is strong limit and regular. Every strongly inaccessible cardinal is strongly inaccessible, and the converse is true assuming the generalised continuum hypothesis. Generally, inaccessibility describes the impossibility of being obtained from smaller cardinals by usual set-theoretic operations:

$$|X|<\kappa\Rightarrow 2^{|X|}<\kappa.$$

$$|S|<\kappa \text{ and } |X|<\kappa \text{ for each } X\in S\text{, then } |\cup S|<\kappa.$$

3.5 The Singular Cardinal Hypothesis

The Singular Cardinal Hypothesis (SCH) states that

If κ is singular, then $2^{\operatorname{cf} \kappa} < \kappa$ implies $2^{\operatorname{cf} \kappa} = \kappa^+$.

The singular cardinal hypothesis follows from the generalised continuum hypothesis. Indeed, if $\kappa \leq 2^{\text{cf }\kappa}$, then $\kappa^{\kappa} = 2^{\text{cf }\kappa}$. If $2^{\text{cf }\kappa} < \kappa$, then κ^+ is the least possible value of $\kappa^{\text{cf }\kappa}$.

The singular cardinal hypothesis allows determining cardinal exponentiation by the values of the continuum function on regular cardinals.

Theorem 3.9. Assume SCH holds, then:

- 1. If κ is a singular cardinal, then:
 - (a) If the continuum function is eventually constant below κ , then $2^{\kappa} = 2^{\kappa}$.
 - (b) $2^{\kappa} = (2^{<\kappa})^+$ otherwise.
- 2. If κ and λ are infinite cardinals, then:
 - (a) If $\kappa \leq 2^{\lambda}$, then $\kappa^{\lambda} = 2^{\lambda}$.
 - (b) If $2^{\lambda} < \kappa$, then $\lambda < \operatorname{cf} \kappa$ implies $\kappa = \kappa^{\lambda}$.
 - (c) If $2^{\lambda} < \kappa$, then cf $\kappa \le \lambda$ implies $\kappa^{\lambda} = \kappa^{+}$.

3.6 Some Exercises

Exercise 3.1. There exists a subset $A \subset \mathbb{R}$ such that A has cardinality 2^{\aleph_0} but it has no perfect subsets.

Proof. Let $\langle P_{\alpha} : \alpha < 2^{\aleph_0} \rangle$ be an enumeration of all perfect subsets of reals. Construct the following disjoint sets

$$A = \{a_{\alpha} \mid \alpha < 2^{\aleph_0}\}$$

$$B = \{b_{\alpha} \mid \alpha < 2^{\aleph_0}\}$$

the following way. For each $\alpha < 2^{\aleph_0}$ a_{α} and b_{α} are such that:

$$a_{\alpha} \notin \{a_{\xi} \mid \xi < \alpha\} \cup \{b_{\xi} \mid \xi < \alpha\}$$
$$b_{\alpha} \in P_{\alpha} - \{a_{\xi} \mid \xi < \alpha\}$$

By the construction A and B are disjoint. Moreover, A is the set. Let ρ be the order-type of \mathbb{R} (which does exist by Zermelo's theorem), so there is a one-to-one mapping from ρ to A defined as $\alpha \mapsto a_{\alpha}$ and, by the construction, if $\alpha, \beta < 2^{\aleph_0}$ are different, so are a_{α} and b_{β} .

Let $P_{\alpha} \subseteq A$ be a perfect subset. In particular we have $P_{\alpha} \cap B = \emptyset$ by the construction. But $b_{\alpha} \in P_{\alpha} \cap B$, which is impossible, or $P_{\alpha} - \{a_{\xi} \mid \xi < \alpha\} = \emptyset$, which is also a contradiction.

Exercise 3.2. Let (P, <) be a linear ordering and let κ be a cardinal. If every initial segment has cardinality $< \kappa$, then $|P| \le \kappa$.

Proof. Let $a \in P$, define $P_a = \{b \in P \mid b \leq a\}$. The condition states that $|P_a| < \kappa$ for each $a \in P$.

Assume $|P| > \kappa$. So we can construct a sequence $\langle a_{\alpha} : \alpha \leq \kappa \rangle$ by letting every a_{α} to be greater that all previous a_{β} 's for each $\beta < \alpha$. Such a_{α} always exists since the union

$$\bigcup_{\beta < \alpha} P_{a_{\beta}}$$

is the union of at most κ sets and the cardinality of each of which is at most $\kappa \leq |P|$.

But then a_{κ} is smaller that all a_{α} 's for each $\alpha < \kappa$, so $|P_{a_{\kappa}}| = \kappa$, which contradicts the assumption.

Exercise 3.3. If A can be well-ordered, then 2^A can be linearly ordered.

Proof. Let $X, Y \subset A$, define

X < Y iff the least element of $X\Delta Y$ belongs to X.

- 1. The relation is clearly irreflexive since $X\Delta X = \emptyset$ for each X.
- 2. Assume there are sets X, Y such that neither X < Y nor Y < X nor X = Y. That is, the least element of $X\Delta Y$ belong neither to X nor Y and X and Y are different. Let a be the least element of $X\Delta Y$, so $a \notin X$ and $b \notin Y$, so A is not a well-ordering.
- 3. This relation is transitive. Assume X < Y < Z, we need X < Z. X < Y means that the least element of $X\Delta Y$, say a, belongs to X-Y, whereas Y < Z is the case if the least element of $Y\Delta Z$, say b belongs to Y-Z. Note that the least element exists in every case since A is well-ordered. We also note that $a \neq b$ since $a \in X-Y$ and $b \in Y-Z$, so $a \notin Y$.

We have the following alternatives:

- Assume a < b. Take any $x \in A$ such that x < a, then $x \in X$ iff $x \in Y$ iff $x \in Z$, so $x \notin X\Delta Z$. But $a \notin Y$ and $a \notin C$, so a is the least in $X\Delta Z$.
- Assume b < a. Take x < b, then $x \in X$ iff $x \in Y$ iff $x \in Z$, so $x \notin X\Delta Z$. Provided $b \in X Y$, we conclude that b is the least in $X\Delta Z$.

Exercise 3.4. Assume the Countable Axiom of Choice, then every infinite set has a countable subset.

Proof. Let A be infinite, define $A_n = \{f : n \to A \mid f \text{ is one-to-one}\}$. Consider a family $\{A_n \mid n \in \omega\}$, each of those A_n is non-empty, so we have a choice function f on $\bigcup_{n < \omega} A_n$, so $f(n) : n \to A$, so take $\{f(n)(0) \mid n < \omega\}$ and this set is clearly countable.

Exercise 3.5. The Dependent Choice Principle implies The Countable Axiom of Choice.

Proof. Let $S = \{A_n \mid n < \omega\}$ be a countable family of non-empty sets. Let $S = \bigcup_{n < \omega} A_n$.

Construct a relation $R \subset \mathcal{S} \times \mathcal{S}$ such that

$$(a,b) \in R \leftrightarrow \exists n < \omega \ a \in A_{n+1} \& b \in A_n$$

so the relation satisfies the condition of DC, so we have the following sequence:

$$a_0 R^{-1} a_1 R^{-1} \dots a_n R^{-1} a_{n+1} R^{-1} \dots$$

So construct a function $f: \omega \to \mathcal{S}$ such that $f: n \mapsto a_n$.

Exercise 3.6. $\prod_{0 < n < \omega} n = 2^{\aleph_0}$.

Proof. The set of all countable sequences of natural numbers is 2^{\aleph_0} , but it is also obviously $\Pi_{0 < n < \omega} n$.

Exercise 3.7. $\prod_{n<\omega} \aleph_n = \aleph_\omega^{\aleph_0}$

Proof. By Lemma 3.5 we have:

$$\prod_{n<\omega}\aleph_n=(\sup_{n<\omega}\aleph_n)^{\aleph_0}=\aleph_\omega^{\aleph_0}.$$

Exercise 3.8. $\prod_{\alpha<\omega+\omega}\aleph_{\alpha}=\aleph_{\omega+\omega}^{\aleph_0}$

Proof. By Lemma 3.5 we have:

$$\prod_{\alpha<\omega+\omega}\aleph_\alpha=(\sup_{\alpha<\omega+\omega}\aleph_\alpha)^{\aleph_0}=\aleph_\omega^{\aleph_0}.$$

as far as $|\omega + \omega| = \aleph_0$.

Exercise 3.9. Let β be such $2^{\aleph_{\alpha}} = \aleph_{\alpha+\beta}$ for each α , then β is finite.

Proof. Assume $\beta \geq \alpha$, let α be the least such that $\alpha + \beta < \beta$. We have $0 < \alpha \leq \beta$ and α is limit.

Let $\kappa = \aleph_{\alpha+\alpha}$. κ is singular since

$$\operatorname{cf} \kappa = \operatorname{cf} \alpha < \alpha < \kappa$$

For each $\xi < \alpha$ we have $\xi + \beta = \beta$ by our assumption, thus

$$2^{\alpha+\xi} = \aleph_{\alpha+\xi+\beta} = \aleph_{\alpha+\beta} = 2^{\kappa}$$

which is a contradiction since $\aleph_{\alpha+\beta} < \aleph_{\alpha+\alpha+\beta}$.

Exercise 3.10. $\prod_{\alpha<\omega_1+\omega}\aleph_\alpha=\aleph_{\omega_1+\omega}^{\aleph_1}.$

Proof.
$$\prod_{\alpha < \omega_1 + \omega} \aleph_{\alpha} = (\sup_{\alpha < \omega_1 + \omega} \aleph_{\alpha})^{\aleph_1} = \aleph_{\omega_1 + \omega}^{\aleph_1}$$
 since $|\omega_1 + \omega| = \aleph_1$.

Exercise 3.11. Let κ be a limit cardinal and let $\lambda < \operatorname{cf} \kappa$, then

$$\kappa^\lambda = \sum\limits_{\alpha < \kappa} |\alpha|^\lambda$$

Proof. As far as $\lambda < \operatorname{cf} \kappa$, then the range of $f : \lambda \to \kappa$ is bounded, so

$$\kappa^{\lambda} = |\bigcup_{\alpha < \kappa} \alpha^{\lambda}| \leq \sum_{\alpha < \kappa} |\alpha|^{\lambda} \leq \kappa \cdot \kappa^{\lambda} = \kappa^{\lambda}.$$

4 The Axiom of Regularity

The Axiom of Regularity states that the membership relation on any family of sets is well-founded:

$$\forall S(S \neq \emptyset \rightarrow \exists s \in S \ S \cap x = \emptyset)$$

that is, no infinite sequences are allowed:

$$x_0 \ni x_1 \ni x_2 \ni \dots$$

neither are cycles:

$$x_0 \ni x_1 \ni x_2 \ni \cdots \ni x_n \ni x_0$$

Thus the Axiom of Regularity prevents some sets from existing. This is of interest for metamathematics of set theory, in particular, we can classify all sets with respect to ranks and arrange them in a cumulative hierarchy.

Recall that a set A is transitive if $x \in A$ implies $x \subseteq A$.

Lemma 4.1. Let S be a set, then there exists a transitive set $T \supset S$.

Proof. By induction:

- 1. $S_0 = S$
- 2. $S_{n+1} = \bigcup S_n$
- $3. T = \bigcup_{n < \omega} S_n$

 $\mathrm{TC}(S)$ is the *transitive closure* of S, that is, the minimal transitive set extending S.

Lemma 4.2. Let C be a non-empty class, then C has an \in -minimal element.

Proof. Let S be a set from C. If $S \cap C = \emptyset$, then S is minimal. Otherwise take $X = T \cap C$ where T = TC(S) and $X \neq \emptyset$. Then X has a minimal x such that $x \cap X = \emptyset$, then $x \cap C = \emptyset$.

4.1 The Cumulative Hierarchy of Sets

We define by transfinite induction:

- 1. $V_0 = \emptyset$
- $2. \ \mathcal{V}_{\alpha+1} = 2^{\mathcal{V}_{\alpha}}$
- 3. $V_{\alpha} = \bigcup_{\beta < \alpha} V_{\beta}$

By induction, one can show the following:

- 1. Each \mathcal{V}_{α} is transitive.
- 2. $\alpha < \beta$ implies $\mathcal{V}_{\alpha} \subset \mathcal{V}_{\beta}$.
- 3. $\alpha \subset \mathcal{V}_{\alpha}$.

Lemma 4.3. For every x there exists α such that $x \in \mathcal{V}_{\alpha}$:

$$\bigcup_{lpha} \mathcal{V}_{lpha} = \mathcal{V}$$

where $V = \{x \mid x = x\}.$

Proof. Let C be the class of all x that no α exists such that $x \in \mathcal{V}_{\alpha}$. If C is non-empty, then C has an \in -minimal element x. That, $x \in C$ and $z \in \cup_{\alpha \vee \alpha} \mathcal{V}_{\alpha}$ for some α for each $z \in x$. Hence $x \subset \cup_{\alpha \in \operatorname{Ord}} \mathcal{V}_{\alpha}$. By Replacement, there exists γ such that $x \subset \cup_{\alpha < \gamma} \mathcal{V}_{\alpha}$, so $x \in \mathcal{V}_{\gamma+1}$. So C cannot be empty.

Since every x belongs to some \mathcal{V}_{α} for some α , we can define the rank of x:

$$\operatorname{rank}(x) = \text{the smallest ordinal } \alpha \text{ such that } x \in \mathcal{V}_{\alpha+1}$$

Thus each V_{α} is a collection of sets having lower ranks and we have:

- 1. $x \in y$ implies rank(x) < rank(y).
- 2. $rank(\alpha) = \alpha$.

The rank function is often needed when we deal with equivalence classes for equivalence relation on a proper class. Let C be a class, let

$$\hat{C} = \{ x \in C \mid \forall z \in C \text{ rank}(x) < \text{rank}(x) \}$$

Note that \hat{C} is always set and \hat{C} is non-empty whenever C is non-empty.

Let \equiv be an equivalence relation on C. Apply the definition above to each equivalence class and define

$$[x] = \{ y \in C \mid y \equiv x \land \forall z \in C \ (z \equiv x \to \operatorname{rank}(y) \le \operatorname{rank}(z)) \}$$

and

$$C/_{\equiv} = \{ [x] \mid x \in C \}$$

One can use the same to prove the Collection Principle:

$$\forall X \; \exists Y \; (\forall u \in X) [\exists v \varphi(u, v, p) \to (\exists v \in Y) \varphi(u, v, p)]$$

where p is a parameter.

We can formulate the collection principle the following way. Let C_u be a collection of classes for $u \in X$, where X is a set, then there exists a set Y such that for every $u \in X$

$$C_u \neq \emptyset \Rightarrow C_u \cap Y = \emptyset$$

To prove the collection principle, we let

$$Y = \bigcup_{u \in X} \hat{C}_u$$

where $C_u = \{v \mid \varphi(u, v, p)\}$, that is,

$$v \in Y \leftrightarrow \exists u \in X(\varphi(u, v, p) \& \forall z(\varphi(u, z, p) \to \operatorname{rank} v \le \operatorname{rank} z))$$

By Replacement, Y is a set.

$4.2 \in -induction$

Theorem 4.1. Let T be a transitive class and let Φ be a property such that:

- 1. $\Phi(\emptyset)$
- 2. $x \in T \& \forall z \in x \Phi(z) \Rightarrow \Phi(x)$

then every element of T satisfies Φ .

Proof. Let C be the class of all $x \in T$ such that Φ is not the case for x. If C is non-empty, then either $\neg \Phi(\emptyset)$ or there exists $x \in T$ such that there exists $z \in x$ such that $\Phi(z)$ and $\neg \Phi(x)$.

Theorem 4.2. Let T be a non-empty transitive class and let G be a function. Then there exists a unique function F on T such that

$$\forall x \in T \ F(x) = G(F \upharpoonright x)$$

Proof. Let $x \in T$, we let F(x) = y if and only if there exists a function f such that dom(f) is a transitive subset T and

- 1. $\forall z \in \text{dom}(f)$ $f(z) = G(f \upharpoonright z)$
- 2. f(x) = y

The uniqueness is proved by \in -induction.

Corollary 4.1. Let A be a class, there is a unique class B such that

$$B = \{ x \in A \mid x \subset B \}$$

Proof. Let

$$F(x) = \begin{cases} 1, & \text{if } x \in A \text{ and } F(z) = 1 \text{ for all } z \in x \\ 0, & \text{otherwise} \end{cases}$$

Let $B = \{x \mid F(x) = 1\}$. The uniqueness is proved by \in -induction.

In such case we say that each $x \in B$ is hereditarily in A.

The Axiom of Regularity also implies that the universe does not admit non-trivial automorphisms.

Theorem 4.3. Let T_1 and T_2 be transitive classes and let π be an \in -automorphism of T_1 onto T_2 , i.e. π is one-to-one and

$$u \in v \leftrightarrow \pi u \in \pi v$$

Then $T_1 = T_2$ and $\pi u = u$ for every $u \in T_1$.

Proof. One can show by \in -induction that $\pi x = x$ for each $x \in T_1$. Assume $\pi z = z$ for each $z \in x$ and let $y = \pi x$.

We have $x \subset y$, then, as far as $z \in x$, we have $z = \pi z \in \pi x = y$.

We also have $y \subset x$. Let $t \in y$. Provided $y \subset T_2$, there is $z \in T_1$ such that $\pi z = t$. Since $\pi z \in y$, we have $z \in x$ and so $t = \pi z = z$. Thus $t \in x$. Therefore $\pi x = x$ for each $x \in T_1$ and $T_1 = T_2$.

4.3 Well-Founded Relations

Let E be a binary relation on a class P. Let $x \in P$, we let the extension of x:

$$\operatorname{ext}_{E}(x) = \{ z \in P \mid zEx \}$$

Definition 4.1. A relation E on P is well-founded if

- 1. Every non-empty set $x \subset P$ has an E-minimal element.
- 2. For all $x \in P \operatorname{ext}_E(x)$ is a set.

Lemma 4.4. Let E be a well-founded relation on a class P, then every class $C \subset P$ has an E-minimal element.

Proof. We need some $x \in C$ such that $\operatorname{ext}_E(x) \cap x = \emptyset$. Let $S \in C$ be arbitrary assume $\operatorname{ext}_E(S) \cap C \neq \emptyset$. We let $X = T \cap C$ where

- 1. $S_0 = \text{ext}_E(S)$
- 2. $S_{n+1} = \bigcup_{n} \{ \text{ext}_{E}(z) \mid z \in S_{n} \}$
- 3. $T = \bigcup_{n < \omega} S_n$.

The following two theorems are proved similarly to Theorem 4.1 and Theorem 4.2 respectively.

Theorem 4.4. Let E be a well-founded relation on P and let Φ be a property such that

- 1. Every E-minimal element of P satisfies Φ .
- 2. If $x \in P$ and if for each z such that zEx $\Phi(z)$ is the case, then $\Phi(x)$ holds.

Then Φ holds for every element of P.

Theorem 4.5. Let E be a well-founded relation on P. Let G be a function on $V \times V$, then there exists a unique function F on P such that for each $x \in P$

$$F(x) = G(x, F \upharpoonright \text{ext}_E(x)).$$

Example 4.1. (The Rank Function)

Let us define, by induction, for all $x \in P$

$$\rho(x) = \sup \{ \rho(z) + 1 \mid zEx \}.$$

The codomain of ρ is either a particular ordinal or the class of all ordinals. One has

$$\forall x, y \in P \ (xEy \to \rho(x) < \rho(y)).$$

Example 4.2. (The Transitive Collapse)

By induction, let

$$\forall x \in P \ \pi(x) = \{\pi(z) \mid zEx\}.$$

The range of π is a transitive class such that

$$\forall x, y \in P \ (xEy \to \pi(x) \in \pi(y))$$

 π is one-to-one whenever E is extensional.

Definition 4.2. A well-founded relation E on a class P is extensional if

$$\forall x, y \in P \ x \neq y \to \operatorname{ext}_E(x) \neq \operatorname{ext}_E(y)$$

A class M is extensional if the membership relation on M is extensional, that is,

$$\forall x, y \in M \ x \neq y \rightarrow x \cap M \neq y \cap M.$$

Theorem 4.6. (Mostowski's Collapsing Theorem)

1. Let E be a well-founded relation and extensional relation on a class P, then there exists a unique transitive class M and a unique isomorphism $\pi:(P,E)\cong(M,\in)$.

- 2. Every extensional class P is isomorphic to some transitive class M.
- 3. In the case of the previous item, if $T \subset P$ is transitive, then $\pi x = x$ for every $x \in T$.

Proof. Let us show the general existence of an isomorphism.

E is well-founded, so we can define π by well-founded induction. That is, take any $x \in P$, then $\pi(x)$ can be defined by $\pi(z)$'s where zEx:

$$\pi(x) = \{\pi(z) \mid zEx\}$$

In particular, if E is the membership relation, then $\pi(x)$ becomes

$$\pi(x) = \{ \pi(z) \mid z \in x \cap P \}.$$

 π maps P onto the class $M=\pi(P)$, which turns out to be transitive by the definition of π .

We use extensionality of E in order to show that π is one-to-one. Let $z \in M$ be of least rank such that $z = \pi(x) = \pi(y)$ for some different $x, y \in P$. $x \neq y$ implies $\operatorname{ext}_E(x) \neq \operatorname{ext}_E(y)$. In other words, there is some $u \in \operatorname{ext}_E(x)$ such that $u \notin \operatorname{ext}_E(y)$.

Let $t = \pi(u)$. Since $t \in z = \pi(y)$, there is $v \in \text{ext}_E(y)$ such that $t = \pi(v)$. Thus we have $t = \pi(u) = \pi(v)$ for different u, v of less rank that z has since $t \in z$. Contradiction.

Now it follows that

$$xEy \leftrightarrow \pi(x)E\pi(y)$$

because

 $xEy \leftrightarrow$ By the definition of π $\pi(x)E\pi(y) \rightarrow$ By the definition of π $\exists z zEy \& \pi(x) = \pi(z) \rightarrow$ As far as π is one-to-one $x = z \land xEy$

The uniqueness of the isomorphism as well as the transitive class $M = \pi(P)$ by Theorem 4.3. Let π_1 and π_2 be two isomorphisms of P and M_1 and M_2 , then $\pi_2 \circ \pi_1^{-1} : M_1 \cong M_2$ and therefore $\pi_2 \circ \pi_1^{-1}$ is the identity mapping. Thus $M_1 = M_2$.

To show (3), let $T\subset P$ be transitive. Observe $x\subset P$ for every $x\in T$ and $x\cap P=x$ and we have

$$\pi(x) = \{\pi(z) \mid z \in x\}$$

for all $x \in T$. By \in -induction one can show that $\pi(x) = x$ for each $x \in T$. \square

4.4 The Bernays-Gödel Axiomatic Set Theory

In the Bernays-Gödel set theory we consider two types of objects: *sets* (denoted with lowercase letters) and *classes* (denoted with uppercase letters).

- 1. Extensionality: $\forall u(u \in X \leftrightarrow u \in Y) \to X = Y$.
- 2. Every set is a class.
- 3. If $X \in Y$, then X is a set.
- 4. Pairing: if x, y are sets, so is $\{x, y\}$.
- 5. Let φ be a formula where only set variables are quantified, then

$$\forall X_1 \dots \forall X_n \exists Y \ Y = \{x \mid \varphi(x, X_1, \dots, X_n)\}\$$

- 6. Infinite: there exists an infinite set.
- 7. Union: for every set $x \cup x$ exists.
- 8. Powerset: for every set x the powerset P(x) exists.
- 9. Replacement: if a class F is a function and x is a set, then $\{F(z) \mid z \in x\}$ is a set.
- 10. Regularity.
- 11. Choice: any family of non-empty sets has a choice function.

4.5 Some Exercises

Exercise 4.1. $rank(x) = sup\{rank(z) + 1 \mid z \in x\}$

Proof. If $x = \emptyset$, then

$$rank(\emptyset) = 1 = \sup\{rank(\emptyset) + 1\}$$

If there is $z \in x$, then assume that

$$\operatorname{rank}(z) = \sup\{\operatorname{rank}(z') + 1 \mid z' \in z\}$$

On the other hand, we have

$$\operatorname{rank}(x) = \operatorname{the least} \alpha \operatorname{such that} x \in V_{\alpha+1}$$

which is $\cup \operatorname{rank}(z) = \sup \{\operatorname{rank}(z) + 1 \mid z \in x\}.$

Exercise 4.2. $|\mathcal{V}_{\omega+\alpha}| = \beth_{\alpha}$

Proof. 1. $\alpha = 0$, then let us show $|\mathcal{V}_{\omega}| = \aleph_0 = \beth_0$.

Recall that

$$\mathcal{V}_{\omega} = \bigcup_{n < \omega} \mathcal{V}_n$$

In turn each of \mathcal{V}_n is finite and we have

$$\mathcal{V}_0 \subset \mathcal{V}_1 \subset \dots \mathcal{V}_n \subset \dots$$
 for $n < \omega$.

so the whole union $\bigcup_{n<\omega} \mathcal{V}_n$ is countable.

2. Assume $\alpha = \beta + 1$, we have to show that $|\mathcal{V}_{\omega+\beta+1}| = \beth_{\beta+1} = 2^{\beth_{\beta}}$ Assume we have already showed that $|\mathcal{V}_{\omega+\beta}| = \beth_{\beta}$. But then

$$|\mathcal{V}_{\omega+(\beta+1)}| = |\mathcal{V}_{(\omega+\beta)+1}| = |P(\mathcal{V}_{\omega+\beta})| = 2^{\beth_{\beta}}.$$

3. Let $\alpha = \sup\{\beta \mid \beta < \alpha\}$ and assume $\mathcal{V}_{\omega+\beta} = \beth_{\beta}$ for each $\beta < \omega$. We have

 $\begin{aligned} |\mathcal{V}_{\omega+\alpha}| &= \\ |\mathcal{V}_{\omega+\sup\{\beta \mid \beta < \alpha\}}| &= \\ |\mathcal{V}_{\sup\{\omega+\beta \mid \beta < \alpha\}}| &= \\ |\bigcup_{\gamma} \mathcal{V}_{\gamma}| &= \\ \sup\{\exists_{\beta} \mid \beta < \alpha\} &= \exists_{\alpha}. \end{aligned}$

5 Filters, Ultrafilters and Boolean Algebras

Definition 5.1. Let S be a non-empty set, a *filter* is a collection F of subsets of S such that:

- $S \in F$ and $\emptyset \notin F$,
- $A, B \in F$ implies $A \cap B \in F$,
- $A \subset B$ and $A \in F$, then $B \in F$.

An ideal is a collection I of subsets of S such that:

- $\emptyset \in I$ and $S \notin I$,
- $A, B \in I$ implies $A \cup B \in I$,
- $A \subset B$ and $B \in I$, then $A \in I$.

If I is an ideal, then -I is a filter and if F is a filter, then -F is an ideal, so filters and ideals are dual to each other.

Here are some examples:

1. A trivial filter: $F = \{F\}$.

- 2. A principal filter: Let X_0 be a non-emptyset of F, the filter $\{X \subset F | X_0 \subset X\}$ is called the principal filter generated by X_0 .
- 3. There are dual trivial and principal ideals.
- 4. The Fréchet filter: let S be an infinite set and let I be the ideal of all finite subsets. The dual filter $F = \{X \subset S \mid |S X| < \aleph_0\}$ is called the Fréchet filter on S. Note that the Fréchet filter cannot be principal.
- 5. Let A be an infinite set and let $S = [A]^{<\omega}$ be the set of all finite subsets of A. For each $P \in S$ let $\hat{P} = \{Q \in S \mid P \subset Q\}$.
 - Let F be the set of all $X \subset S$ such that $X \supset \hat{P}$ for some $P \in S$. Then F is a non-principal filter on S.
- 6. A set $A \subset \omega$ has density 0 if $\lim_{n \to \infty} |A \cap n|/n = 0$. The set of all A's of density 0 is an ideal.

A family G of sets has the finite intersection property if the following holds for each $n < \omega$:

$$\forall G_0 \dots \forall G_n \bigcap_{i < n+1} G_i \neq \emptyset.$$

Every filter satisfies the finite intersection property.

Lemma 5.1.

- 1. Let \mathcal{F} be a family of filters on S, then $\cap \mathcal{F}$ is a filter on S.
- 2. Let \mathcal{C} be a \subset -chain of filters on S, then $\cup \mathcal{C}$ is a filter on S.
- 3. If $G \subset 2^S$ satisfies the finite intersection property, then there is a filter F on S such that $F \supset G$.

Proof.

(i) and (ii) are simple, let F be a set of such subsets X that there are $G_0, \ldots, G_n \in G$ such that $\cap_i G_i \subset X$. Then F is a filter. \square

Every filter $F \supset G$ contains all finite intersections of sets from G, so the filter generated generated as in the above lemma is the smallest filter containing G. In this case we say that a filter F is generated by G.

Definition 5.2. A filter U on a set S is an *ultrafilter* if for every $X \subset S$ either $X \in U$ or $-X \in U$.

The dual notion is a *prime ideal*, an ideal I is prime if $X \in I$ or $-X \in I$ for every $X \subset I$.

A filter F on S is maximal if there is no filter $F' \neq F$ on S such that $F \subset F'$.

Lemma 5.2. A filter F is maximal iff F is an ultrafilter.

Proof.

- 1. Let U be an ultrafilter. Let $F \supset U$ and $X \in F U$. Then $S X \in U$, so $S X \in F$, contradiction.
- 2. Let F be a filter such that F is not an ultrafilter. Let us show that F cannot be maximal. Let us $Y \subset S$ such that neither $Y \in F$ nor $S Y \in F$. Consider $G = F \cup \{Y\}$, we claim G has the finite intersection property. Take $X \in F$, then $X \cap Y \neq \emptyset$, for otherwise we would have $S Y \supset X$, so $S Y \in F$. Thus if $X_1, \ldots, X_n \in F$, then $Y \cap X_1 \cap \cdots \cap X_n \neq \emptyset$. Thus G has the finite intersection property, so there exists a filter $F' \supset G$ by Lemma 5.1. We have $Y \in F' F$, so F is not maximal.

Theorem 5.1. (Tarski)

Every filter can be extended to an ultrafilter.

Proof. Let $F_0 \subset S$ be an ultrafilter on S, let P be the set of all filters extending F_0 . Consider the poset (P, \subset) . It satisfies Zorn's lemma by Lemma 5.1, so it has the maximal element U, then U is an ultrafilter by Lemma 5.2.

Note that the existence of ultrafilter cannot be shown assuming no the Axiom of Choice.

Let $s \in S$, then the principal filter generated by the singleton $\{s\}$ is an ultrafilter. If S is finite, then every filter is an ultrafilter. But there are non-principal ultrafilters as well, for example, one can apply Theorem 5.4 to the Fréchet filter.

If S is infinite and $|S| = \kappa$, then there are at most $2^{2^{\kappa}}$ ultrafilters. An ultrafilter D is uniform if $|X| = \kappa$ for each $X \in D$.

Theorem 5.2. Let S be an infinite set of cardinality κ , then there are $2^{2^{\kappa}}$ ultrafilters.

To show this theorem, we will show the following lemma. A family \mathcal{A} of subsets κ is *independent* if for any distinct subset $X_1, \ldots, X_n, Y_1, \ldots, Y_m$ the intersection

$$X_1 \cap \cdots \cap X_n \cap (\kappa - Y_1) \cap \cdots \cap (\kappa - Y_m)$$

has cardinality κ .

Lemma 5.3. There exists an independent family of subsets of κ of cardinality 2^{κ} .

Proof. Let P be the set of all pairs (F, \mathcal{F}) where $F \subset \kappa$ is finite and \mathcal{F} is a finite set of finite subsets of κ . Since $|P| = \kappa$, it is enough to find an independent family \mathcal{A} of subsets of P such that $|\mathcal{A}| = 2^{\kappa}$.

For each $u \subset \kappa$ let

$$X_u = \{ (F, \mathcal{F}) \in P \mid F \cap u \in \mathcal{F} \}$$

and let $\mathcal{A} = \{X_u \mid u \subset \kappa\}$. If $u, v \subset \kappa$ are distinct, so are X_u and X_v . Thus $|\mathcal{A}| = 2^{\kappa}$.

Let us show that \mathcal{A} is independent, let $u_1, \ldots, u_n, v_1, \ldots, v_m$ be distinct subsets of κ . For each $i \leq n$ and $j \leq m$, let $\alpha_{i,j}$ be some element of κ such that either $\alpha_{i,j} \in u_i - v_j$ or $\alpha_{i,j} \in v_j - u_i$. Let F be any finite subset of κ such that $F \supset \{\alpha_{i,j} \mid i \leq n, j \leq m\}$ and there are κ many such finite sets. We have $F \cap u_i \neq F \cap v_j$ for any $i \leq n$ and $j \leq m$. Let $\mathcal{F} = \{F \cap u_i \mid i \leq n\}$, we have $(F, \mathcal{F}) \in X_{u_i}$ for all $i \leq n$ and $(F, \mathcal{F}) \notin X_{v_j}$ for each $j \leq m$. Consequently

$$|X_{u_1} \cap \cdots \cap X_{u_n} \cap X_{v_1} \cap \cdots \cap X_{v_m}| = \kappa.$$

Proof of Theorem 5.2. Let \mathcal{A} be an independent family of subsets of κ . For every function $f: \mathcal{A} \to \{0,1\}$, consider the following family

$$G_f = \{X \mid |\kappa - X| < \kappa\} \cup \{X \mid f(X) = 1\} \cup \{\kappa - X \mid f(X) = 0\}$$

The family G_f satisfies the finite intersection property, so there is an ultrafilter $D_f \supset G_f$ such that D_f is also uniform. If $f \neq g$, then there is $X \in \mathcal{A}$ such that $f(X) \neq g(X)$, so either $X \in D_f$ and $\kappa - X \in D_g$ or vice versa. And there are $2^{2^{\kappa}}$ such ultrafilters.

5.1 Ultrafilters over ω

Let D be a non-principal ultrafilter on ω . D is a p-point if for every partition $\{A_n \mid n < \omega\}$ of ω into \aleph_0 pieces such that no n such that $A_n \in D$, there exists $X \in D$ such that $X \cap A_n$ is finite for each $n < \omega$.

Note that there is a non-principal ultrafilter which is not a p-point. Let $\{A_n \mid n < \omega\}$ be a partition of ω into \aleph_0 pieces. Let F be the following filter on ω :

 $X \in F$ iff expect for finitely many $n, X \cap A_n$ contains all but finitely many elements of A_n .

Let D be an ultrafilter extending F, D is not a p-point since almost each intersection $X \cap A_n$ is countable.

The below theorem shows that the existence of p-points can be shown assuming the Continuum Hypothesis. Note that there is a model of ZFC where no p-points exist.

A nonprincipal ultrafilter D over ω is a Ramsey ultrafilter if every partition $\{A_n \mid n < \omega\}$ of ω into \aleph_0 pieces such that $A_n \notin D$ for each $n < \omega$, there exists $X \in D$ each $X \cap A_n$ is a singleton. Clearly every Ramsey ultrafilter is a p-point.

Theorem 5.3. Assume CH, then there exists a Ramsey ultrafilter.

Proof. Let \mathcal{A}_{α} , for $\alpha < \omega_1$, be an enumeration of all partitions of ω and let us construct an ω_1 -sequence of infinite subsets of ω the following way: given G_{α} , let $G_{\alpha+1} = G_{\alpha}$ be such that either there is $A \in \mathcal{A}$ such that $X_{\alpha+1} \subset A$ or $|X_{\alpha+1} \cap A| \leq 1$ for each $A \in \mathcal{A}_{\alpha}$.

If α is a limit ordinal, let X_{α} be such that $X_{\alpha} - X_{\beta}$ is finite for each $\beta < \alpha$ and such X_{α} exists since α is countable. Then

$$D = \bigcup_{\alpha < \omega_1} \{ X \mid X_\alpha \subset X \}$$

is a Ramsey ultrafilter.

5.2 κ -complete Filters and Ideals

A filter F on S is countably complete (σ -complete) if whenever $\{X_n | n < \omega\} \subset F$, then

$$\bigcap_{n<\omega}X_n\in F.$$

A filter F on S is κ -complete if whenever $\{X_{\alpha} \mid \alpha < \gamma\} \subset F$ for any $\gamma < \kappa$, then

$$\bigcap_{\alpha < \gamma} X_{\kappa} \in F.$$

Note that the notions of σ -complete and \aleph_1 -filters are equivalent. σ -ideals (or *countably complete ideals*) and κ -complete ideals are defined dually. A simple example: let S be of cardinality at least κ , then $I = \{X \subset S \mid |X| < \kappa\}$ is a κ -complete ideal.

There are no nonprincipal σ -complete filters on a countable set. If S is uncountable, then

$${X \subset S \mid |X| \leq \aleph_0}$$

is a σ -ideal on S.

Similarly, if $\kappa > \omega$ is regular and $|S| \geq \kappa$, then

$${X \subset S \mid |X| < \kappa}$$

is the smallest κ -complete ideal on S containing all the singletons $\{a\}$ for $a \in S$.

5.3 Boolean Algebras

Definition 5.3. A *Boolean algebra* is a set B with at least two elements 0 and 1 and operations +, \cdot and - such that

- $\bullet \ u + v = v + u,$
- u + (v + w) = (u + v) + w,
- $u \cdot (v + w) = u \cdot v + u \cdot w$,
- $\bullet \ u \cdot (u+v) = u,$
- u + (-u) = 1.

- $\bullet \ u \cdot v = v \cdot u,$
- $u \cdot (v \cdot w) = (u \cdot v) \cdot w$,
- $u + (v \cdot w) = (u + v) \cdot (u + w)$,
- $u + (u \cdot v) = u$,
- $\bullet \ u \cdot (-u) = 0.$

A subset A of a Boolean algebra B is a *subalgebra* of B such that A contains 0 and 1 and is closed under all the required operations. If $X \subset B$, there is a smallest subalgebra A of B containing X. A can be characterised in either of the following ways:

- $A = \bigcap \{C \mid X \subset C \subset B \& C \text{ is a subalgebra}\}.$
- A is the set of all Boolean combinations of elements of X in B.

Let B be a Boolean algebra, let $B^+ = B \setminus \{0\}$ denote the set of all non-zero elements of B. Let $a \in B^+$, the set

$$B \upharpoonright a = \{u \in B \mid u \le a\}$$

is a Boolean algebra, where + and \cdot are the same and the complement of $u \in B \upharpoonright a$ is defined as a-u.

An element $a \in B$ is an atom if $a \in B^+$ and if b < a in B, then b = 0. A Boolean algebra is atomic is every $b \in B^+$ has an atom a beneath b. A Boolean algebra is atomless if it has no atoms at all.

Let B_1 and B_2 be Boolean algebras, a function $h: B_1 \to B_2$ is a homomorphism if it preserves all the operations and constants.

The set $\text{Im}(B_2) = \{f(x) \mid x \in B_1\}$ is a subalgebra of B_2 and $u \leq v$ impplies $h(u) \leq h(v)$. A one-to-one homomorphism of B_1 onto B_2 is an isomorphism. An embedding of B in C is an isomorphism of B onto some subalgebra of C. A one-to-one mapping $h: B_1 \to B_2$ is an isomorphism if and only if $f(u) \leq f(v)$ implies $u \leq v$. An isomorphism of a Boolean algebra of B onto itself is called an automorphism.

5.4 Ideals and Filters on Boolean Algebras

An *ideal* on a Boolean algebra B is a subset $I \subset B$ such that

- $0 \in I$,
- $a, b \in I \Rightarrow a + b \in I$,
- $a < b \& b \in I \Rightarrow a \in I$.

A filter on a Boolean algebra B is a subset $F \subset B$ such that

• $1 \in F$,

- $a, b \in F \Rightarrow a \cdot b \in F$,
- $a < b \& a \in F \Rightarrow b \in F$.

The trivial ideal is the singleton $\{0\}$; an ideal is principal if $I = \{u \in B \mid u \le u_0\}$ for some $u_0 \ne 0$. Similarly for filters. A subset G of B^+ has the finite intersection property if no $\{u_1, \ldots, u_n\} \subset G$ such that $u_1 \cdots u_n = 0$. Similarly every such a subset can be extended to some filter.

Let $h: B_1 \to B_2$ be a Boolean homomorphism, consider the set

$$I = \{ u \in B \mid h(u) = 0 \}.$$

is an ideal on B (the *kernel* of the composition). On the other hand, let I be an ideal on B, consider the following equivalence relation:

$$u \sim v \leftrightarrow u \Delta v \in I$$
.

where

$$u \Delta v = (u - v) + (v - u).$$

Let C be the set of all equivalence classes, $C = B/\sim$, we equip C with the following operations:

- [u] + [v] = [u + v],
- $[u] \cdot [v] = [u \cdot v],$
- $\bullet -[u] = [-u],$
- 0 = [0],
- 1 = [1].

Then C is a Boolean algebra, the *quotient* of B modulo I, written B/I, and C is a homomorphic image of B under the mapping $u \mapsto [u]$.

An ideal I is *prime* if for each $u \in B$ either $u \in I$ or $-u \in I$. A ideal is prime if and only if I is maximal if and only if $B/I = \{0,1\}$. Theorem has the following generalisation:

Theorem 5.4. (The Prime Ideal Theorem)

Every ideal on a Boolean algebra B can extended to a prime ideal.

Theorem 5.5. (Stone's Representation Theorem)

Every Boolean algebra is isomorphic to an algebra of sets.

Proof. Let B be a Boolean algebra. We let

$$S = \{p \mid p \text{ is an ultrafilter on } B \}$$

By Theorem 5.4 S is non-empty. Let $u \in B$, define

$$X_u = \{ p \in S \mid u \in p \}$$

and also let

$$\mathcal{S} = \{X_u \mid u \in B\}.$$

Consider the mapping $\pi(u) = X_u$ from B onto S. Clearly $\pi(1) = S$ and $\pi(0) = \emptyset$. From the definition of an ultrafilter one has:

$$\pi(u+v) = \pi(u) \cup \pi(v)$$

$$\pi(u \cdot v) = \pi(u) \cap \pi(v)$$

$$\pi(-u) = -\pi(u)$$

 π is one-to-one since if $u \neq v$, then by Theorem 5.4 there exists an ultrafilter p on B that contains u and does not contain v. Thus $\pi(u) \neq \pi(v)$.

5.5 Complete Boolean Algebras

Let B be a Boolean algebra and let $X \subset B$, define

$$\Pi\{u \mid u \in X\} = \inf X,$$

$$\Sigma\{u \mid u \in X\} = \sup X.$$

and they are well-defined whenever the corresponding supremum and infimum exist. We also define

$$\Sigma \emptyset = 0,$$

 $\Pi \emptyset = 1.$

A Boolean algebra is *complete* if every supremum and infimum exist. Let κ be an uncountable regular cardinal, then B is κ -complete if every supremum and infimum of any subset of cardinality $< \kappa$ exist. An \aleph_1 -complete Boolean algebra is σ -complete or countably complete.

An algebra of sets S is κ -complete if its closed under unions and intersections of $< \kappa$ sets. A κ -complete algebra of sets is a κ -complete Boolean algebra and for every $X \subset S$ such that $|X| < \kappa$ and $\Sigma X = \bigcup X$.

An ideal I on a κ -complete Boolean algebra is κ -complete if

$$\sum_{u \in X} u \in I.$$

whenever $X \subset I$ and $|X| < \kappa$. A κ -complete filter is a dual notion.

Let I be a $\kappa\text{-complete}$ ideal on a $\kappa\text{-complete}$ Boolean algebra B, then B/I is $\kappa\text{-complete}$ and

$$\sum \{[u] \mid u \in X\} = [\sum \{u \mid u \in X\}]$$

for every $X \subset B$ such that $|X| < \kappa$.

A σ -ideal is an \aleph_1 -complete ideal.

There are several important examples of σ -ideal on the Boolean algebra of all Borel sets of reals: the σ -ideal of Borel sets of Lebesgue measure 0 and the σ -ideal of meager Borel sets.

Let A be a subalgerba of a Boolean algebra B, then A is a dense subalgebra of B if for every $u \in B^+$ there is a $v \in A^+$ such that $v \leq u$.

A completion of a Boolean algebra B is a complete algebra C such that B is a dense subalgebra in C.

Lemma 5.4. The completion of a Boolean algebra B is unique up to isomorphism.

Proof. Let C and D be completions of B. Define an isomorphism $\pi: C \cong D$ by

$$\pi(c) = \sum^{D} \{u \in B \mid u \le c\}.$$

Theorem 5.6. Every Boolean algebra has a completion.

Proof. Let A be a Boolean algebra, a subset $U \subset A^+$ is a cut if $p \leq q$ and $q \in U$ implies $p \in U$. Associate the cut $U_p = \{x \in A \mid x \leq p\}$ with each $p \in A^+$. A cut U is regular if $p \notin U$, then there is $q \leq p$ such that $U_q \cap U = \emptyset$. Note that every U_p is regular and every cut contains some U_p .

Let B be the set of all regular cuts in A^+ . (B, \subset) is a complete Boolean algebra. The intersection of any family of regular cuts is a regular cut and each cut U is included in at least regular cut \overline{U} . In fact

$$\overline{U} = \{ p \mid (\forall q \le p) U \cap U_q \ne \emptyset \}$$

Thus for $u, v \in B$ we have

$$\begin{aligned} u \cdot v &= u \cap v \\ u + v &= \overline{u + v} \\ -u &= \{ p \mid U_p \cap U = \emptyset \} \end{aligned}$$

 \emptyset and A^+ are the zero and the unit of B. Furthermore, for $p,q\in A^+$ we have

$$\begin{split} U_p + U_q &= U_{p+q}, \\ U_p \cdot U_q &= U_{p \cdot q}, \\ -U_p &= U_{-p}. \end{split}$$

Thus A embeds in B.

5.6 Complete and Regular Subalgebras

Let B be a complete Boolean algebra. A subalgebra A of B is complete if every ΠX and ΣX exist in A for each $X \subset A$. A complete homomorphism is a homomorphism h of B into C such that

$$h(\sum X) = \sum h[X]$$

$$h(\prod X) = \prod h[X]$$

A *complete embedding* is an embedding that satisfies the condition above. Note that every isomorphism is complete.

As far as the intersection of any family of complete Boolean algebras is a complete Boolean algebra, every $X \subset B$ is included in the smallest complete Boolean subalgebra containing X. Such an algebra is said to be *completely generated by* X.

Definition 5.4. A set $W \subset B^+$ is an *antichain* in a Boolean algebra if $u \cdot v = 0$ for each distinct $u, v \in W$. If W is an antichain and $\Sigma W = u$, then W is a partition of u. If u = 1, then W is a maximal antichain or a partition.

Let B be a Boolean algebra and A is a subalgebra of B, then a maximal antichain in A does not have to be a maximal antichain in B, but if every maximal antichain in A is maximal in B, then A is a regular subalgebra of B.

5.7 Saturation

Let κ be an infinite cardinal. A Boolean algebra B is κ -saturated if there is no partition W of B such that $|W| = \kappa$ and

 $\operatorname{sat}(B) = \operatorname{the least} \kappa \operatorname{such that} B \operatorname{is} \kappa \operatorname{-saturated}.$

B is also said to satisfy the κ -chain condition; as far as B is complete, B is κ -saturated if and only if there is no descending κ -sequence $u_0 > u_1 > \cdots > u_{\alpha} > \ldots$ for $\alpha < \kappa$ where each $u_{\alpha} \in B$. The \aleph_1 -chain condition is called the countable chain condition.

Theorem 5.7. If B is an infinite complete Boolean algebra, then sat(B) is a regular uncountable cardinal.

Proof. Let $\kappa = \operatorname{sat}(B)$. Clearly κ is uncountable, assume κ is singular. We obtain a contradiction by providing a partition of size κ .

Let $u \in B^+$, let $\operatorname{sat}(u)$ denote $\operatorname{sat}(B_u)$. $u \in B$ is stable if $\operatorname{sat}(u) = \operatorname{sat}(v)$ for every non-zero $v \leq u$. The set S of stable elements is dense in B, otherwise there would be a descending sequence $u_0 < u_1 < u_2 < \ldots$ with descending cardinals $\operatorname{sat}(u_0) < \operatorname{sat}(u_1) < \operatorname{sat}(u_2) < \ldots$

Let T be a maximal set of pairwise disjoint elements of S. So T is a partition of B and $|T| < \kappa$. There are two subcases:

1. There is $u \in T$ such that $\operatorname{sat}(u) = \kappa$. We have $\operatorname{cf} \kappa < \kappa$, there is a partition W of u of size $\operatorname{cf} \kappa$: $W = \{u_{\alpha} \mid \alpha < \operatorname{cf} \kappa\}$. Let κ_{α} for $\alpha < \operatorname{cf} \kappa$ be an increasing sequence with limit κ . For each α , $\operatorname{sat}(u_{\alpha}) = \operatorname{sat}(u) = \kappa$. So let W_{α} be a partition of u_{α} of size κ_{α} . Thus

$$\bigcup_{\alpha < \operatorname{cf} \kappa} W_{\alpha}$$

is a partition of u of size κ .

2. For all $u \in T$ we have $\operatorname{sat}(u) < \kappa$ but $\sup\{\operatorname{sat}(u) \mid u \in T\} = \kappa$. Let $\kappa_{\alpha} \to \kappa$ for $\alpha < \operatorname{cf} \kappa$. For each $\alpha < \operatorname{cf} \kappa$ we find $u_{\alpha} \in T$ distinct from all u_{β} , $\beta < \alpha$ which admits a partition W_{α} of size κ_{α} . Then

$$\bigcup_{\alpha < \operatorname{cf} \kappa} W_{\alpha}$$

is an antichain B of size κ .

5.8 Distributivity of Complete Boolean Algebras

The following distributivity law holds in any complete Boolean algebra:

$$\sum_{i \in I} u_{0,i} \cdot \sum_{j \in J} u_{1,j} = \sum_{(i,j) \in I \times J} u_{0,i} \cdot u_{1,j}$$

To formulate the general distributivity law, let κ be a cardinal, then a complete Boolean algebra B is κ -distributive if

$$\prod_{\alpha < \kappa} \sum_{i \in I_{\alpha}} u_{\alpha,i} = \sum_{f \in \prod_{\alpha \in I} I_{\alpha}} \prod_{\alpha < \kappa} u_{\alpha,f(\alpha)}$$

Every complete algebra of sets satisfies the general distributivity law. For now, we give two equivalent formulations of κ -distributivity.

Let W and Z be partitions of B, then W is a refinement of Z if for every $w \in W$ there is $z \in Z$ such that $w \leq z$. A set $D \subset B$ is open dense if D is dense in B and $0 \neq u \leq v \in D$ implies $u \in D$.

Lemma 5.5. Let B be a complete Boolean algebra and let κ be a cardinal, then the following are equivalent:

- 1. B is κ -distributive,
- 2. The intersection of κ sets open dense subsets of B is open dense in B,
- 3. Every collection of κ refinements of B has a common refinement.

Proof.

1. $(i) \rightarrow (ii)$.

Let D_{α} for $\alpha < \kappa$ be open dense and

$$D = \bigcap_{\alpha < \kappa} D_{\alpha}$$

D is open, so let $u \in B^+$. Let

$$\{u_{\alpha,i} \mid i \in I_{\alpha}\} = \{u \cdot v \mid v \in D_{\alpha}\}\$$

then for each α we have

$$\sum_{i} u_{\alpha,i} = u = \prod_{\alpha < \kappa} \sum_{i \in I_{\alpha}} u_{\alpha,i}$$

Take $f \in \Pi_{\alpha}I_{\alpha}$ and let $u_f = \Pi_{\alpha}u_{\alpha,f(\alpha)}$. Each non-zero u_f is in D. But $\Sigma_f u_f = u$, so some u_f is non-zero.

2. $(ii) \rightarrow (iii)$.

Let W_{α} for $\alpha < \kappa$ be partitions of B. For each α we let

$$D_{\alpha} = \{ u \mid \exists v \in W_{\alpha} \ u \le v \}.$$

Each D_{α} is open dense. Let

$$D = \bigcap_{\alpha < \kappa} D_{\alpha}$$

Let W be a maximal set of pairwise disjoint elements of D. D is dense, W is a partition of B and W refines each W_{α} .

3. $(iii) \rightarrow (i)$.

Let $\{u_{\alpha,i} \mid \alpha < \kappa, i \in I_{\alpha}\}$ be a collection of elements of B. First of all, observe that

$$\sum_{f \in \prod_{i}} \prod_{I_{\alpha}} u_{\alpha,f(\alpha)} \leq \prod_{\alpha < \kappa} \sum_{i \in I_{\alpha}} u_{\alpha,i}.$$

Indeed, take $f \in \Pi_{\alpha < \kappa} I_{\alpha}$, let $u_f = \Pi_{\alpha < \kappa} u_{\alpha, f(\alpha)}$. We have $u_f \le u_{\alpha, f(\alpha)}$, so $u_f \le \Sigma_{i \in I_{\alpha}} u_{\alpha, i}$ for each $\alpha < \kappa$. Thus, for each α ,

$$\sum_{f} u_f \le \sum_{i} u_{\alpha,i}$$

and thus

$$\sum_{f} \prod_{\alpha} u_{\alpha, f(\alpha)} = \sum_{f} u_{f} \le \prod_{\alpha} \sum_{i} u_{\alpha, i}.$$

So assume (iii) holds. Let $u=\Pi_{\alpha}\Sigma_{i}u_{\alpha,i}$. We need to show that $\Sigma_{f}\Pi_{\alpha}u_{\alpha,f(\alpha)}=u$. Assume u=1. For each α we can replace $\{u_{\alpha,i}\mid i\in I_{\alpha}\}$ by pairwise disjoint $W_{\alpha}=\{v_{\alpha,i}\mid i\in I_{\alpha}\}$ such that $v_{\alpha,i}\leq u_{\alpha,i}$ and $\Sigma_{i}v_{\alpha,i}=\Sigma_{i}u_{\alpha,i}$. Clearly we have $\Sigma_{f}\Pi_{\alpha}v_{\alpha,f(\alpha)}\leq \Sigma_{f}\Pi_{\alpha}u_{\alpha,f(\alpha)}$. Each W_{α} is a partition of B and there is a partition W refining each W_{α} . So for each $w\in W$ there is f such that $w\leq \Pi_{\alpha}v_{\alpha,f(\alpha)}$, so $\Sigma_{f}\Pi_{\alpha}v_{\alpha,f(\alpha)}=1$.

5.9 Some Exercises

Exercise 5.1. If F is a filter and $X \in F$, then $P(X) \cap F$ is a filter on X.

Proof. Let $A \subset B \subset X$ and $A \in 2^X \cap F$, so $A \in F$. We need $B \subset X$ since B obviously belongs to F.

Let $A, B \in 2^X \cap F$, so $A, B \subset X$ and $A, B \in F$, so $A \cap B \in F$ as well as $A \cap B \subset X$.

Obviously, $X \in 2^X \cap F$. Assume $\emptyset \in 2^X \cap F$, so $\emptyset \in F$, contradiction.

Exercise 5.2. If U is an ultrafilter, then $X \cup Y \in U$ implies either $X \in U$ or $Y \in U$.

Proof. Assume $X \notin U$ and $Y \notin U$, so $-X, -Y \in U$, then $-X \cap -Y \in U$, so contradiction.

Exercise 5.3. Let U be an ultrafilter on S, then the set U' of all $X \subset S \times S$ such that $\{a \in S \mid \{b \in S \mid (a,b) \in X\} \in U\} \in U$ is an ultrafilter on $S \times S$.

Proof. Reword the definition from the condition as follows:

$$U' = \{ X \subset S \times S \mid \{ a \in S \mid \{ b \in S \mid (a, b) \in X \} \in U \} \in U \}$$

- 1. Obviously, $\emptyset \notin U'$ and $S \times S \in U'$.
- 2. Let $A, B \in U'$, then we have

$${a \in S \mid \{b \in S \mid (a,b) \in A\} \in U\} \in U}$$

 ${a \in S \mid \{b \in S \mid (a,b) \in B\} \in U\} \in U}$

But U is filter, so

$$\{a \in S \mid \{b \in S \mid (a,b) \in A\} \in U\} \cap \{a \in S \mid \{b \in S \mid (a,b) \in B\} \in U\} \in U\}$$

But the latter is

$$\{ a \in S \mid \{b \in S \mid (a,b) \in A\} \in U \land \{b \in S \mid (a,b) \in B\} \in U \} = \{ a \in S \mid \{b \in S \mid (a,b) \in A\} \cap \{b \in S \mid (a,b) \in B\} \in U \} = \{ a \in S \mid \{b \in S \mid (a,b) \in A \land (a,b) \in B\} \in U \} = \{ a \in S \mid \{b \in S \mid (a,b) \in A \cap B\} \in U \}$$

which completes the proof.

3. Let $A \subset B$ and $A \in U'$. We need $B \in U'$, that is, we need

$$\{a \in S \mid \{b \in S \mid (a, b) \in B\} \in U\} \in U.$$

Assume the contrary, then

$$\{a \in S \mid \{b \in S \mid (a,b) \notin B\} \in U\} \in U$$

But $A \in U'$, so

$${a \in S \mid \{b \in S \mid (a, b) \in A\} \in U\} \in U}$$

U is a filter, so we have

$$\{a \in S \mid \{b \in S \mid (a,b) \in A\} \in U\} \cap \{a \in S \mid \{b \in S \mid (a,b) \notin B\} \in U\} \in U \leftrightarrow \{a \in S \mid \{b \in S \mid (a,b) \in A\} \in U \land \{b \in S \mid (a,b) \notin B\} \in U\} \in U \leftrightarrow \{a \in S \mid \{b \in S \mid (a,b) \in A \land (a,b) \notin B\} \in U\} \in U$$

But $A \subset B$, so no such $a, b \in S$ such that $(a, b) \in A$ and $(a, b) \notin B$, so the set above is empty, which implies $\in U$, contradiction.

4. Assume there is $A, B \subset X \times X$ such that $A \cup B \in U'$, which means that

$$\{ a \in S \mid \{ b \in S \mid (a,b) \in A \cup B \} \in U \} \in U = \\ \{ a \in S \mid \{ b \in S \mid (a,b) \in A \cup B \} \in U \} \in U = \\ \{ a \in S \mid \{ b \in S \mid (a,b) \in A \} \cup \{ b \in S \mid (a,b) \in B \} \in U \} \in U = \\ \{ a \in S \mid \{ b \in S \mid (a,b) \in A \} \cup \{ b \in S \mid (a,b) \in B \} \in U \} \in U = \\ \{ a \in S \mid \{ b \in S \mid (a,b) \in A \} \cup \{ b \in S \mid (a,b) \in B \} \in U \} \in U = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in A \} \cup \{ b \in S \mid (a,b) \in B \} \in U \} \in U = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in A \cup B \} \in U \} \in U = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in A \cup B \} \in U \} \in U = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in A \cup B \} \in U \} \in U = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in A \cup B \} \in U \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in A \cup B \} \in U \} \in U = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in A \} \cup \{ b \in S \mid (a,b) \in B \} \in U \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in A \} \cup \{ b \in S \mid (a,b) \in B \} \in U \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in A \} \cup \{ b \in S \mid (a,b) \in B \} \in U \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in A \} \cup \{ b \in S \mid (a,b) \in B \} \in U \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in A \} \cup \{ b \in S \mid (a,b) \in B \} \in U \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in A \} \cup \{ b \in S \mid (a,b) \in B \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in B \} \in U \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in B \} \in U \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in B \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in B \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in B \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in B \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in B \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in B \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in B \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in B \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in B \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in B \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in B \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in B \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in B \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in B \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in B \} \in U \} = \\ \{ b \in S \mid (a,b) \in B \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in B \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in B \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in B \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in B \} \in U \} = \\ \{ b \in S \mid \{ b \in S \mid (a,b) \in B \} \in U \} = \\ \{ b \in S \mid \{ b \in S$$

which implies that either $A \in U'$ or $B \in U'$, so U' is prime and thus U' is an ultrafilter.

Exercise 5.4. Let U be an ultrafilter on S and $f: S \to T$, then the set $f_*(U) = \{X \subset T \mid f^{-1}(X) \in U\}$ is an ultrafilter on T.

Proof. 1. $f^{-1}(\emptyset) = \emptyset \notin U$, so $\emptyset \notin f_*(U)$.

- 2. Let $A, B \in f_*(U)$, so $f^{-1}(A), f^{-1}(B) \in U$, so $f^{-1}(A) \cap f^{-1}(B) \in U$, but $f^{-1}(A \cap B) \in U$, so $A \cap B \in f_*(U)$.
- 3. Let $A \in f_*(U)$ and $A \subset B \subset T$. So $f^{-1}(A) \in U$, but U is upward closed, so $B \in U$.
- 4. Assume $A \cup B \in f_*(U)$, so $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B) \in U$, so either $f^{-1}(A) \in U$ or $f^{-1}(B) \in U$.
- 5. Let $A \subset B$ and $A \in f_*(U)$. We have $A = A \cap B$, so $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B) \in U$, so $f^{-1}(B) \in U$ as well since $f^{-1}(A) \cap f^{-1}(B) \subset f^{-1}(B)$ and U is upward closed.

Exercise 5.5. Let U be an ultrafilter on ω and let $\langle x_n : n < \omega \rangle$ be a bounded sequence of real numbers, then there exists a unique U-limit $a = \lim_{U} a_n$ such that for every $\epsilon > 0$ $\{n \mid |a_n - a| < \epsilon\} \in U$.

Proof. Take a_0 and b_0 such that $a_0 \leq x_n \leq b_0$ for each n. Let $c_0 = \frac{a_0 + b_0}{2}$, then either $\{n < \omega \mid x_n \in [a_0, c_0]\} \in U$ or $\{n < \omega \mid x_n \in [c_0, b_0]\} \in U$. We choose subinterval $[a_1, b_1]$ as the subinterval of $[a_0, c_0]$ and $[c_0, b_0]$ such that $\{n < \omega \mid x_n \in [a_1, b_1]\}$.

Now we let $c_1 = \frac{a_1 + b_1}{2}$, let $A = \{n < \omega \mid x_n \in [a_1, c_1]\}$ and $B = \{n < \omega \mid x_n \in [c_1, b_1]\}$. Either A or B belongs to U. Similarly we define c_2 and choose $[a_2, b_2]$.

Thus we have monotonous sequences $\langle a_n : n < \omega \rangle$ and $\langle b_n : n < \omega \rangle$ with the same limit

$$a = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$$

and moreover $\{n < \omega \mid x_n \in [a_1, b_1]\} \in U$.

We put

$$a = \lim_{U} x_n$$

Take any $\epsilon > 0$ there is $n < \omega$ such that $[a_n, b_n] \subset (a - \epsilon, a + \epsilon)$, so $\{n < \omega \mid x_n \in [a_n, b_n]\} \in U$ as far as $\{n < \omega \mid x_n \in [a_1, b_1]\} \in U$. So $\{n \mid |a_n - a| < \epsilon\} \in U$. \square

Exercise 5.6. Let D be a nonprincipal ultrafilter on ω , then D is a p-point if and only if the following holds: if $A_0 \supset A_1 \supset \ldots \supset A_n \supset \ldots$ is a decreasing sequence of elements of D, then there exists $X \in D$ such that for each $n \times A_n$ is finite.

Proof.

1. The "if" part.

Assume there is a partition $\{P_n \mid n < \omega\}$ disjoint from D. Construct a family of sets $\{X_n \mid n < \omega\}$ where for each $n < \omega$:

$$X_n = \bigcup_{m \ge n} P_m$$

So we have the increasing sequence $X_0 \subset X_1 \subset \ldots \subset X_n \subset \ldots$ where no such $n < \omega$ that $X_n \in D$. Thus we have the decreasing sequence $-X_0 \supset -X_1 \supset \ldots \supset -X_n \supset \cdots$, where each $-X_0$ belongs to D. Then there is $X \in D$ such that for each $n < \omega X - (-X_n) = X \cap X_n$ is finite.

So one can show by induction that each intersection $X \cap P_n$ is finite.

2. The "only if part".

Let $A_0 \supset A_1 \supset ... \supset A_n \supset ...$ be a decreasing sequence of elements in D, construct a family of sets $\{P_n \mid n < \omega\}$ the following way by induction:

- $P_0 = -A_0$,
- $\bullet \ P_{n+1} = A_n \bigcap_{j < n} A_j$

Then each $P_i \notin D$ and $\{P_n \mid n < \omega\}$ is the partition of ω . Thus there is $X \in D$ such that $X \cap P_n$ is finite for each n.

Exercise 5.7. An ultrafilter on ω is Ramsey iff every function $f:\omega\to\omega$ is either one-to-one on a set in D or f is constant on a set in D.

Proof. TODO.
$$\Box$$

Let D,E be ultrafilters on $\omega,$ then the Rudin-Keisler ordering is defined as follows:

$$D \leq E \text{ iff } \exists f : \omega \to \omega \ D = f_*(E).$$

 $D \equiv E$ means there is a one-to-one function $f: \omega \to \omega$ such that $E = f_*(D)$.

Exercise 5.8. If $D = f_*(D)$, then $\{n \mid f(n) = n\} \in D$.

Proof. Let $X = \{n \mid f(n) < n\}$ and $Y = \{n \mid f(n) > n\}$. Take $n \in X$, let l(n) be the length of the maximal sequence $n > f(n) > f(f(n)) > \dots$. Let $X_0 = \{n \mid l(n) \equiv 0 \mod 2\}$ and $X_1 = \{n \mid l(n) \equiv 1 \mod 2\}$. Neither X_0 nor X_1 belong to D since $f^{-1}(X_0) \cap X_0 = \emptyset$. We handle Y similarly, but we have got to show that the set Z of all n such that the sequence $n < f(n) < f(f(n)) < f(f(f(n))) < \dots$ is infinite does not belong to D. Take $x, y \in Z$, we say that $x \equiv y$ if $\exists k, m < \omega$ $f^k(x) = f^m(y)$. Take $x \in Z$ and let a_x be a fixed representative of the class $y \mid y \equiv x$. Let l(x) be the least k + m such that $f^k(x) = f^m(a_x)$. Take $Z_0 = \{x \in Z | l(x) \equiv 0 \mod 2\}$ and $Z_1 = \{x \in Z | l(x) \equiv 1 \mod 2\}$. Thus $Z_0 \cap f^{-1}(Z_0) = \emptyset$.

Exercise 5.9. $D \leq E$ and $E \leq D$ implies $D \equiv E$

Proof. Let $D \leq E$ and $E \leq D$, then there are $f, g : \omega \to \omega$ such that $D = f_*(E)$ and $E = g_*(D)$. We have $D = (f \circ g)_*(D)$ since

$$(f \circ g)_*(D) = \{X \subset \omega \mid (f \circ g)^{-1}(X) \in D\} = \{X \subset \omega \mid X \in D\}.$$

Thus by the above lemma, the set $X_0 = \{n \mid f(g(n)) = n\}$ is in D and thus $f \circ g \upharpoonright_{X_0}$ is the identity function. Thus $g \upharpoonright_{X_0}$ and $f \upharpoonright_{g[X_0]}$ are one-to-one, so f and g are both bijections on X_0 and $g[X_0]$. Let us find $X_0' \subset X_0 \in D$ such that $g \upharpoonright_{X_0}'$ can be extended to a bijection $\overline{g} : \omega \to \omega$.

If $|\omega - X_0| = |\omega - g[X_0]|$, so take any bijection $h : \omega - X_0 \to \omega - g[X_0]$. In this case we let $X_0' = X_0$ and \overline{g} as $g \cup f$. Otherwise X_0 must be infinite and one split X_0 into two disjoint parts X_0' and X_0'' where $X_0' \in D$. And then we take a bijection $h : \omega - X_0' \to \omega - g[X_0']$ and $\overline{g} = g \cup h$.

In either case \overline{g} is a bijection, we have $X_0' \in D$, $E = f_*(D)$ and $g \upharpoonright_{X_0'} = \overline{g} \upharpoonright_{X_0'}$, so $\overline{g}[X_0'] \in E$. The rest is to show that $\overline{g}_*(E) = D$. Since $g_*(E) = D$, we get

$$\{g[X] \mid X \in D\} \subset E, \\ \{g^{-1}[Y] \mid Y \in E\} \subset D.$$

Take any $Y \in E$ and let $Y' = Y \cap \overline{g}[X'_0]$ and let $X' = \overline{g}^{-1}[Y']$, then $Y' \in E$, $X' \in D$ and $g'[X'] \subset Y$ and thus $\overline{g}_*(E) = D$.

Exercise 5.10. The set of all $X \subset \mathbb{R}$ having Lebesgue measure 0 is a σ -ideal.

Proof. Let $I = \{X \subset \mathbb{R} \mid \mu(I) = 0\}$. Then $\emptyset \in I$ since $\mu(\emptyset) = 0$. Let $A \subset B$ and $\mu(B) = 0$, but $\mu(A) \leq \mu(B)$ and $\mu(A) \geq 0$. The Lebesgue measure is σ -additive, so I is closed under countable unions.

Recall that a set $A \subset \mathbb{R}$ is meagre if A is the union of countable of nowhere dense sets.

Exercise 5.11. The set of all $A \subset \mathbb{R}$ meagre sets is a σ -ideal.

Proof. We let

$$I = \{A \subset \mathbb{R} \mid A \text{ is meagre}\}$$

By Theorem 2.6, $\mathbb{R} \notin I$. We have $\emptyset = \text{Int}(Cl \emptyset)$, so \emptyset is nowhere dense.

Now let $A \subset B$ and assume $B \in I$, thus there is a family $\{B_n \mid n < \omega\}$ such that each $B_n \subset \mathbb{R}$ is nowhere dense in \mathbb{R} and $B = \bigcup_{n < \omega} B_n$. Thus

$$A \subset \bigcup_{n < \omega} B_n \leftrightarrow A \cap \bigcup_{n < \omega} B_n = \bigcup_{n < \omega} A \cap B_n$$

Note that each $A \cap B_n$ is nowhere dense for each $n < \omega$. Thus $A \in I$.

Let $\{A_n \mid n < \omega\}$ be a collection of elements of I. For each $k < \omega$ A_k is the countable union of some nowhere dense sets, that is

$$A_k = \bigcup_{i < \omega} A_{ik}$$

where each A_{ik} is countable. Consider the family $\{A_{ik} | i, k < \omega\}$. Such a family is obviously countable, so $\cup_{i,k} A_{ik}$ is meagre and thus belongs to I.

Exercise 5.12. Let A be a subalgebra of a Boolean algebra B. Let $u \in B$ and let A(u) be the algebra generated by $A \cup \{u\}$. Let C be a complete Boolean algebra. If $h: A \to C$ is a homomorphism, then h extends to a homomorphism from A(u) into C.

Proof. We let

$$\begin{array}{l} r = \sum \{g(x) \mid x \in A \land x \leq u\} \\ t = \prod \{g(y) \mid y \in A \land u \leq y\} \end{array}$$

Both r and t do exist since C is complete. Clearly $r \leq t$. Take $r \leq v \leq t$.

Every element c of A(u) has the form $a \cdot u + b \cdot (-u)$. Define $h' : A(u) \to C$ as

$$h'(c) = h(a \cdot u + b \cdot (-u)) = h(a) \cdot t + h(b) \cdot -t.$$

Then h' is a Boolean homomorphism.

Exercise 5.13 (Sikorski's Extension Theorem). Let A be a subalgebra of a Boolean algebra B and let h be a homomorphism into a complete Boolean algebra C. Then h can be extended to a homomorphism from $B \to C$.

Proof. Let M be the set of all pairs (h_D, D) such that D is a subalgebra of B containing A and $h_D: D \to C$ is a homomorphism extending h. M is non-empty since $(h, A) \in M$. Define the \leq relation on M the following way:

$$(h_D, D) \le (h_{D'}, D') \leftrightarrow D \subset D \land h_D \subset h_{D'}.$$

Clearly (M, \leq) is a poset. Let us check (M, \leq) satisfies Zorn's lemma. Let C be a chain in M, so the following pair

$$(\bigcup \{\pi_1 m \mid m \in C\}, \bigcup \{\pi_2 m \mid m \in C\}).$$

is the upper bound of C. So by Zorn's lemma, we have the maximal pair (g, E). Let us show that B = E. Assume $B \neq E$, take $a \in B - E$ and apply Exercise 5.12 to A, B and a. Then we have a pair (h', A(u)) > (g, E), but this is a contradiction.

Exercise 5.14. Let B be a Boolean algebra and let A be a regular subalgebra of B, then the inclusion mapping extends to a (unique) complete embedding of the completion of A into the completion of B.

6 Stationary Sets

6.1 Closed Unbounded Sets

Let X be a set of ordinals and α be a limit ordinal, then α is a *limit point* of X if $a = \sup(X \cap \alpha)$.

Definition 6.1. Let κ be a regular uncountable cardinal. A set $C \subset \kappa$ is a closed unbouned subset (or a club) of κ if C is unbounded in κ and it contains all limit points less than κ .

A set $S \subset \kappa$ is stationary if $S \cap C \neq \emptyset$ for every closed unbounded $C \subset \kappa$.

An unbounded set $C \subset \kappa$ is closed if and only if for every sequence $\alpha_0 < \alpha_1 < \ldots < \alpha_\gamma < \ldots$ for where each $\alpha_\gamma \in C$ $\gamma < \kappa$ we have $\lim_{\xi \to \gamma} \alpha_\xi \in C$.

Lemma 6.1. If $C, D \subset \kappa$ are closed unbounded, so is $C \cap D$.

Proof. $C \cap D$ is self-evidently closed, let us show it is unbounded. Take any $\alpha < \kappa$. C is unbounded, so one can take $\alpha_1 > \alpha$ such that $\alpha \in C$. Similarly one can take $\alpha_2 > \alpha_1$ from D and et cetera.

So we construct a sequence

$$\alpha < \alpha_1 < \alpha_2 < \ldots < \alpha_n < \ldots$$

where $\{\alpha_1, \alpha_3, \dots\} \subset C$ and $\{\alpha_2, \alpha_4, \dots\} \subset D$. Let β be the limit of the above sequence. Then $\beta < \kappa$, so $\beta \in C$ and $\beta \in D$.

The collection of all closed unbounded subsets of κ has the finite intersection property. The filter generated by this collection consists of all $X \subset \kappa$ that contain some closed unbounded set. Such a filter is called the closed unbounded filter on κ .

The set of all limit ordinals $\alpha < \kappa$ is closed unbounded in κ . Let $A \subset \kappa$ be an unbounded subset of κ , then the set of limit points of A is closed in κ .

Recall that a function $f:\kappa\to\kappa$ is normal if f is continuous and increasing. The range of a normal function is a closed unbounded set. Conversely, if C is closed unbounded then there exists a unique normal function that enumerates C.

Theorem 6.1. The intersection of fewer than κ closed unbounded subsets of κ is closed unbounded.

Proof. Take $\gamma < \kappa$, let us show that the intersection of a sequence $\langle C_{\alpha} : \alpha < \gamma \rangle$ of clubs is a club. The induction step for successor ordinals was actually proved in Lemma 6.1.

Let γ be limit and assume the statement holds for each $\alpha < \gamma$. Then we can replace each C_{α} with $\bigcap_{\xi < \alpha} C_{\xi}$ and obtain a decreasing sequence with the same intersections. Assume that for $\alpha < \gamma$

$$C_0 \supset C_1 \supset \ldots \supset C_\alpha \supset \ldots$$

are closed unbounded and let $C = \bigcap_{\alpha < \gamma} C_{\alpha}$. α is closed, to show unboundedness of C, take $\alpha < \kappa$. Let us construct a γ -sequence

$$\beta_0 < \beta_1 < \ldots < \beta_{\xi} < \ldots$$

the following way. Let $\beta_0 \in C_0$ such that $\beta_0 > \alpha$ and for each $\xi < \gamma$ we let $\beta_{\xi} \in C_{\xi}$ such that $\beta_{\xi} > \sup\{\beta_{\nu} \mid \nu < \xi\}$.

 κ is regular and $\gamma < \kappa$, the above sequence does exist and $\lim_{\xi \to \gamma} \beta_{\xi} = \beta < \kappa$. For each $\eta < \kappa$, β is the limit of a sequence of a sequence $\langle \beta_{\xi} : \eta \leq \xi < \gamma \rangle \in C_{\eta}$, so $\beta \in C_{\eta}$. Thus $\beta \in C$.

Let $\langle X_{\alpha} \mid \alpha < \kappa \rangle$ be a sequence of subsets of κ . The diagonal intersection of X_{α} for $\alpha < \kappa$ is defined as follows

$$\Delta_{\alpha < \kappa} X_{\alpha} = \{ \xi < \kappa \mid \xi \in \bigcap_{\alpha < \xi} X_{\alpha} \}.$$

Note that $\Delta_{\alpha < \kappa} X_{\alpha} = \Delta_{\alpha < \kappa} Y_{\alpha}$ where $Y_{\alpha} = \{ \xi \in X_{\alpha} \mid \xi > \alpha \}$. Also note that $\Delta_{\alpha} X_{\alpha} = \bigcap_{\alpha} (X_{\alpha} \cup \{ \xi \mid \xi \leq \alpha \})$.

Lemma 6.2. The diagonal intersection of a κ -sequence of clubs is a club.

Proof. Let $\langle C_{\alpha}: \alpha < \kappa \rangle$ be a sequence of clubs. We can replace each C_{α} with $\bigcap_{\xi < \alpha} C_{\xi}$, the diagonal intersection remains the same. By the previous theorem we can assume that, for $\alpha < \kappa$

$$C_0 \supset C_1 \supset C_2 \supset \ldots \supset C_{\alpha} \supset \ldots$$

Let $C = \Delta_{\alpha < \kappa} C_{\alpha}$. Let us show C is closed. Let α be a limit point of C. We need $\alpha \in C$ or $\alpha \in C_{\xi}$ for each $\xi < \alpha$. Let $X = \{\nu \mid \xi < \nu < \alpha\}$. Every $\nu \in X$ is in C_{ξ} by the previous theorem. Thus $X \subset C_{\xi}$ and $\alpha = \sup X \in C_{\xi}$, so $\alpha \in C$.

Let us show that C is unbounded. Let $\alpha < \kappa$. Construct a sequence $\langle \beta_n : n < \omega \rangle$ the following way. Let $\beta_0 > \alpha$ such that $\beta_0 \in C_0$ and for each n, let $\beta_{n+1} > \beta_n$ such that $\beta_{n+1} \in C_{\beta_n}$. Let us that that $\beta = \lim_n \beta_n$ is in C. If $\xi < \beta$, let us show that $\beta \in C_{\xi}$. Since $\xi < \beta$, there is $n < \omega$ such that $\xi < \beta_n$. Each β_k for k > n belongs to C_{β_n} , so $\beta \in C_{\beta_n}$. Thus $\beta \in C_{\xi}$ and thus $\beta \in C$.

Corollary 6.1. The closed unbounded filter on κ is closed under diagonal intersections.

The dual notion of a closed unbounded filter is the ideal of nonstationary sets, the nonstationary ideal I_{NS} . I_{NS} is κ -complete and is closed under diagonal unions:

$$\sum_{\alpha < \kappa} X_{\alpha} = \{ \xi < \kappa \ : \ \xi \in \bigcup_{\alpha < \xi} X_{\alpha} \}$$

The quotient algebra $B=P(\kappa)/I_{NS}$ is a κ -complete where infinitary operations are induced by infinitary intersection and union (up to κ , of course). By Lemma 6.2, B is also κ^+ -complete. Indeed, let $\{X_\alpha \mid \alpha < \kappa\}$ be a collection of subsets of κ , then the equivalence classes of $\Delta_\alpha X_\alpha$ and $\Sigma_\alpha X_\alpha$ are the greatest lower bound and the least upper bound of the equivalence classes $[X_\alpha]$ in B. Also note that if $\langle X_\alpha : \alpha < \kappa \rangle$ and $\langle Y_\alpha : \alpha < \kappa \rangle$ are two enumerations of the same collection, then $\Delta_\alpha X_\alpha$ and $\Delta_\alpha Y_\alpha$ differ only by a nonstationary set.

Definition 6.2. An ordinal function f on a set S is *regressive* if $f(\alpha) < \alpha$ for all non-zero $\alpha \in S$.

Theorem 6.2 (Fodor).

Let f be a regressive function on a stationary set $S \subset \kappa$, then there is a stationary set $T \subset S$ and some $\gamma < \kappa$ such that $f(\alpha) = \gamma$ for all $\alpha \in T$.

Proof. Assume that for each $\gamma < \kappa$ the set $\{\alpha \in S \mid f(\alpha) = \gamma\}$ is nonstationary and choose a closed unbounded set C_{γ} such that $f(\alpha \neq \gamma)$ for each $\alpha \in S \cap C_{\gamma}$. Let $C = \Delta_{\gamma < \kappa} C_{\gamma}$. The set $S \cap C$ is stationary and if $\alpha \in S \cap C$, so we have $f(\alpha \neq \gamma)$ for $\gamma < \alpha$, or $f(\alpha) \geq \alpha$, but f is regressive. Contradiction. \square

Let κ be a regular uncountable cardinal and let $\lambda < \kappa$ be regular, let

$$E_{\lambda}^{\kappa} = \{ \alpha < \kappa \mid \text{cf } \alpha = \lambda \}$$

One can check that E_{λ}^{κ} is a stationary subset of κ .

Note that the closed unbounded filter on κ is not an ultrafilter. This is because there is a stationary subset of κ with a stationary complement. If $\kappa > \omega_1$, this is clear since E^{κ}_{ω} and $E^{\kappa}_{\omega_1}$ are disjoint. If $\kappa = \omega_1$, then the decomposition of ω_1 into disjoint stationary sets requires the Axiom of Choice.

Lemma 6.3. Every stationary subset of E_{ω}^{κ} is the union of κ disjoint stationary sets.

Proof. Let $W = \{ \alpha < \kappa \mid \text{cf } \alpha = \omega \}$ be stationary. Take $\alpha \in W$ and choose an increasing sequence $\langle a_n^{\alpha} : n < \omega \rangle$ such that $\lim_n a_n^{\alpha} = \alpha$. Let us first show that there is $n < \omega$ such that for all $\eta < \kappa$ the set

$$\{\alpha \in W \mid a_n^{\alpha} \geq \eta\}$$

is stationary. Otherwise there is η_n and a club C_n such that $a_n^{\alpha} < \eta_n$ for each $\alpha \in C_n \cap W$ for every $n < \omega$. If we let η be the supremum of the η_n and C the intersection of C_n 's, we have $a_n^{\alpha} < \eta$ for all n and all $\alpha \in C \cap W$. Contradiction. Now let n be such that $\{\alpha \in W \mid a_n^{\alpha} \geq \eta\}$ is stationary for every $\eta < \kappa$. Define the following function f on W

$$f(\alpha) = a_n^{\alpha}$$

f is regressive, so by Theorem 6.2, there is a stationary set $S_{\eta} \subset \{\alpha \in W \mid a_n^{\alpha} \geq \eta\}$ and $\gamma_{\eta} \geq \eta$ such that $f(\alpha) = \gamma_{\eta}$ on S_{η} . If $\gamma_{\eta} \neg \gamma_{\eta'}$, then $S_{\eta} \cap S_{\eta'} = \emptyset$. But κ is regular, thus

$$\kappa = |\{S_{\eta} \mid \eta < \kappa\}| = |\{\gamma_{\eta} \mid \eta < \kappa\}|.$$

Lemma 6.4. Let S be a stationary set of a cardinal κ such that evert $\alpha \in S$ is a regular uncountable cardinal. Then the set

$$T = \{ \alpha \in S \mid S \cap \alpha \text{ is not stationary subset of } \alpha \}$$

is stationary.

Proof. We need to show that T intersects every closed unbounded subset of κ . Take any unbounded closed $C \subset \kappa$. The set C' of all limit points of C is also unbounded, so $S \cap C'$ is non-empty. Let α be the least element of $S \cap C'$. α is regular and a limit point of C, so $C \cap \alpha$ is closed unbounded subset of α and so is $C' \cap \alpha$. α is the least element of $S \cap C'$, so $C' \cap \alpha$ is disjoint from $S \cap \alpha$ and thus $S \cap \alpha$ is a non-stationary subset of α . Thus $\alpha \in T \cap C$.

Theorem 6.3 (Solovay). Let κ be a regular uncountable cardinal, then every stationary subset of κ is the disjoint union of κ stationary subsets.

Proof. The proof is fairly similar to the proof of Lemma 6.3.

Let A be a stationary subset of κ . We can assume that the set

$$W = \{ \alpha \in A \mid \alpha \text{ is a regular cardinal and } A \cap \alpha \text{ is nonstationary} \}$$

is stationary. For each $\alpha \in W$ there exists a continuous increasing sequence $\langle a_{\xi}^{\alpha} : \xi < \alpha \rangle$ such that $a_{\xi}^{\alpha} \notin W$ for all α and ξ and $\alpha = \lim_{\xi \to \alpha} a_{\xi}^{\alpha}$.

First of all, let us show that there is ξ such that for all $\eta < \kappa$, the set $\{\alpha \in W \mid a_{\xi}^{\alpha} \geq \eta\}$ is stationary. Otherwise, there is for each ξ some $\eta(\xi)$ and a club C_{ξ} such that $a_{\xi}^{\alpha} < \eta(\xi)$ for all $\alpha \in C_{\xi} \cap W$ whenever a_{ξ}^{α} is defined.

club C_{ξ} such that $a_{\xi}^{\alpha} < \eta(\xi)$ for all $\alpha \in C_{\xi} \cap W$ whenever a_{ξ}^{α} is defined. Let C be the diagonal intersection of the C_{ξ} . Then if $\alpha \in C \cap W$, then $a_{\xi}^{\alpha} < \eta(\xi)$ for all $\xi < \alpha$. Now let D be the closed unbounded set of all $\gamma \in C$ such that $\eta(\xi) < \gamma$ for all $\xi < \gamma$. W is stationary as well as $W \cap D$. Let $\gamma < \alpha$ be two ordinals in $W \cap D$. If $\xi < \gamma$, then $a_{\xi}^{\alpha} < \eta(\xi) < \gamma$, so a_{γ}^{α} . This is a contradiction since $\gamma \in W$, but $a_{\gamma}^{\alpha} \notin W$.

We have found ξ such that the set $\{\alpha \in W \mid a_{\xi}^{\alpha} \geq \eta\}$ is stationary for all $\eta < \kappa$. We proceed as in Lemma 6.3. Let f be the function on W defined by $f(\alpha) = a_{\xi}^{\alpha}$. f is regressive, so for every $\eta < \kappa$ we find a stationary subset S_{η} of $\{\alpha \in W \mid a_{\xi}^{\alpha} \geq \eta\}$ by Fodor's theorem and $\gamma_{\eta} \geq \eta$ such that $f(\alpha) = \gamma_{\eta}$ on S_{η} . Assume $\gamma_{\eta} \neq \gamma_{\eta'}$, so $S_{\eta} \cap S_{\eta'} = \emptyset$. κ is regular, so

$$|\{S_{\eta} \mid \eta < \kappa\}| = \{\gamma_{\eta} \mid \eta < \kappa\} = \kappa.$$

6.2 Mahlo Cardinals

Let κ be an inaccessible cardinals. The set of all cardinals below κ is a closed unbounded subset of κ , so is the set of its limit points. The set of all strong limit cardinals below κ is closed unbounded as well.

If κ is the least unaccessuble cardinal, then all strong limit cardinals below κ are singular and the set of all strong limit cardinals below κ is a club. If κ is the α -th inaccessible for $\alpha < \kappa$, then the set of all regular cardinals below κ is nonstationary.

An inaccessible cardinal κ is a *Mahlo cardinal* if the set of all regular cardinals below κ is stationary. A cardinal is *weakly Mahlo* if it is weakly inaccessible and the set of all regular cardinals below κ is stationary.

6.3 Normal Filters

Let F be a filter on a cardinal κ . F is *normal* if it is closed under diagonal intersections:

$$\forall \alpha < \kappa \ X_{\alpha} \in F \Rightarrow \Delta_{\alpha < \kappa} X_{\alpha} \in F.$$

An ideal I on κ is normal if the dual filter is normal. The closed unbounded filter is κ -complete and normal and contains all complements of bounded sets. It is the smallest such filter on κ .

Lemma 6.5. Let κ be a regular and uncountable cardinal and let F be a normal filter on κ that contains all final segments $\{\alpha \mid \alpha_0 < \alpha < \kappa\}$, then F contains all closed unbounded sets.

Proof. First of all the set C_0 of all limit ordinals is in F: C_0 is the diagonal intersection of the sets $X_{\alpha} = \{\xi \mid \alpha < \xi < \kappa\}$. Let C be a closed unbounded set and let $C = \{a_{\alpha} \mid \alpha < \kappa\}$ be an increasing enumeration of C. We let $X_{\alpha} = \{\xi \mid a_{\alpha} < \xi < \kappa\}$, so $C \supset C_0 \cap \Delta_{\alpha < \kappa} X_{\alpha}$.

6.4 Silver's Theorem

We are going to show the following theorems

Theorem 6.4 (Silver). Let κ be a singular cardinal such that cf $\kappa > \omega$. If for each $\alpha < \kappa$ we have $2^{\alpha} = \alpha^{+}$, then $2^{\kappa} = \kappa^{+}$.

Theorem 6.5 (Silver). If the Singular Cardinals Hypothesis holds for all singular cardinals of cofinality ω , then it holds for all singular cardinals.

First of all, we need the following lemma:

Lemma 6.6. Let κ be a singular cardinal such that $\operatorname{cf} \kappa > \omega$ and for each $\lambda < \kappa$ we have $\lambda^{\operatorname{cf} \kappa} < \kappa$. Let $\langle \kappa_{\alpha} : \alpha < \operatorname{cf} \kappa \rangle$ be a normal sequence of cardinals such that $\lim \kappa_{\alpha} = \kappa$. If the set $\{\alpha < \operatorname{cf} \kappa \mid \kappa_{\alpha}^{\operatorname{cf} \kappa_{\alpha}} = \kappa_{\alpha}^{+}\}$ is stationary in $\operatorname{cf} \kappa$, then $\kappa^{\operatorname{cf} \kappa} = \kappa^{+}$.

Note that if GCH holds below κ , then the assumptions of Lemma 6.6 are satisfied and $2^{\kappa} = \kappa^{\text{cf } \kappa}$. So Theorem 6.4 from Lemma 6.6.

Proof of Theorem 6.5. Let us show by induction on the cofinality of κ that $2^{\operatorname{cf} \kappa} < \kappa$ implies $\kappa^{\operatorname{cf} \kappa} = \kappa^+$. By the assumption of the theorem, this implication holds for each κ of countable cofinality. Let κ be a cardinal such that $\operatorname{cf} \kappa \geq \omega_1$. Then we apply the induction hypothesis and Theorem 3.9 to verify by induction on λ that $\lambda^{\operatorname{cf} \kappa} < \kappa$ for all $\lambda < \kappa$.

Let $\langle \kappa_{\alpha} \mid \alpha < \operatorname{cf} \kappa \rangle$ be a normal sequence of cardinals such that $\kappa = \lim \kappa_{\alpha}$. Then the set

$$S = \{ \alpha < \operatorname{cf} \kappa \mid \operatorname{cf} \kappa_{\alpha} = \omega \wedge \kappa_{\alpha} > 2^{\aleph_0} \}$$

is stationary in κ . Moreover, for every $\alpha \in S$ $\kappa_{\alpha}^{\operatorname{cf} \kappa_{\alpha}} = \kappa_{\alpha}^{+}$ by the assumption. Thus $\kappa^{+} = \kappa^{\operatorname{cf} \kappa}$.

Now let us show Lemma 6.6. We consider the instance of the statement for $\kappa = \aleph_{\omega_1}$. Let f and g be functions on ω_1 . f and g are almost disjoint if there is $\alpha_0 < \omega_1$ such that $f(\alpha) \neq g(\alpha)$ for each $\alpha \geq \alpha_0$. A family F of functions on ω_1 is an almost disjoint family if all functions from F are pairwise almost disjoint.

Lemma 6.6 follows from

Lemma 6.7. Assume that $\aleph_{\alpha}^{\aleph_1} < \aleph_{\omega_1}$ for all $\alpha < \omega_1$. Let F be an almost disjoint family of functions

$$F \subset \prod_{\alpha < \omega_1} A_\alpha$$

such that the set $\{\alpha < \omega_1 \mid |A_{\alpha}| \leq \aleph_{\alpha+1}\}$ is stationary. Then $|F| < \aleph_{\omega_1+1}$.

Proof of Lemma 6.7 from Lemma 6.6. Assume that $\aleph_{\alpha}^{\aleph_1} < \aleph_{\omega_1}$ and $\aleph_{\alpha}^{\text{cf }\aleph_{\alpha}} = \aleph_{\alpha+1}$ for a stationary set of α 's. We need $\aleph_{\omega_1}^{\aleph_1} = \aleph_{\omega_1+1}$. Take $h: \omega_1 \to \aleph_{\omega_1}$, we let $f_h = \langle h_\alpha : \alpha < \omega_1 \rangle$ where dom $h_\alpha = \omega_1$ and

$$h_{\alpha}(\xi) = \left\{ h(\xi), \text{ if } h(\xi) < \aleph_{\alpha} 0, \text{ otherwise} \right\}$$

and let $F=\{f_h\mid h\in\aleph_{\omega_1}^{\omega_1}\}$. If $h\neq g$, then f_h and f_g are almost disjoint. Moreover,

$$F \subset \prod_{\alpha < \omega_1} \aleph_{\alpha}^{\omega_1}.$$

and

$$|\aleph_{\omega_1}^{\omega_1}| = \aleph_{\omega_1+1}.$$

Lemma 6.8. Assume $\aleph_{\alpha}^{\aleph_1} < \aleph_{\omega_1}$ for all $\alpha < \omega_1$. Let F be an almost disjoint family of functions

$$F \subset \prod_{\alpha < \omega_1} A_\alpha$$

such that the set

$$\{\alpha < \omega_1 \mid |A_{\alpha}| \le \aleph_{\alpha}\}$$

is stationary. Then $|F| \leq \aleph_{\omega_1}$.

Proof. We may assume that each A_{α} is a set of ordinals and $A_{\alpha} \subset \omega_{\alpha}$ for all α in some stationary subset of \aleph_1 . Let

$$S_0 = \{ \alpha < \omega_1 \mid \alpha \text{ is a limit ordinal and } A_\alpha \subset \omega_\alpha \}.$$

If $f \in F$, then $f(\alpha) < \omega_{\alpha}$ for each $\alpha \in S_0$. Given $f \in F$, one can find for each $\alpha > 0$ in S_0 some $\beta < \alpha$ such that $f(\alpha) < \omega_{\beta}$. Let us call this $\beta = g(\alpha)$. g is regressive on S, so, by Fodor's Theorem, there is a stationary $S \subset S_0$ such that g is constant on S_0 . f is bounded on S by some $\omega_{\gamma} < \omega_{\omega_1}$.

Let us assign f to a pair $(S, f \upharpoonright S)$ where $S \subset S_0$ is a stationary set and $f \upharpoonright S$ is a bounded function. For any S if $f \upharpoonright S = g \upharpoonright S$, then f = g since two distinct functions in F are almost disjoint. So the map $f \mapsto (S, f \upharpoonright S)$ is one-to-one.

For a given S, the number of bounded functions on S is at most

$$\textstyle\sum_{\gamma<\omega_1}\aleph_\gamma^{|S|}=\sup_{\gamma<\omega_1}\aleph_\gamma^{\aleph_1}=\aleph_{\omega_1}.$$

We have $|2^{\omega_1}| = 2^{\aleph_1} < \aleph_{\omega_1}$, so the number of pairs $(S, f \upharpoonright S)$ is at most \aleph_{ω_1} . Thus $|F| \leq \aleph_{\omega_1}$.

Proof of 6.7. Let U be an ultrafilter on ω_1 that extends the closed unbounded filter. Every $S \in U$ stationary.

Let us assume that each A_{α} is a subset of $\omega_{\alpha+1}$. Take $f,g\in F$, let

$$f < g \leftrightarrow \{\alpha < \omega_1 \mid f(\alpha) < g(\alpha)\} \in U.$$

Since U is a filter, the relation < is transitive. As far as U is an ultrafilter, $\{\alpha \mid f(\alpha) = g(\alpha)\} \notin U$ for distinct $f, g \in F$, and the relation < is also a linear ordering of F. Take $f \in F$, let

$$F_f = \{g \in F \mid \exists T(T \text{ is stationary} \land \forall \alpha \in T \ g(\alpha) < f(\alpha))\}\$$

By the previous lemma, $|F_f| \leq \aleph_{\omega_1}$. If g < f, then $g \in F_f$ and thus $|\{g \in F \mid g < f\}| \leq \aleph_{\omega_1}$. So $|F| \leq \aleph_{\omega_1+1}$.

6.5 A Hierarchy of Stationary Sets

If α is a limit ordinal of uncountable cofinality, we can also consider its closed unbounded subsets. Since cf $\alpha > \omega$, the closed unbounded sets generate a filter on α . The closed unbounded filter is cf α -complete. A set $S \subset \alpha$ is stationary if and only if for some normal function $f : \text{cf } \alpha \to \alpha$, $f^{-1}(S)$ is stationary subset of α .

Let κ be a regular uncountable cardinal, let us consider the *Mahlo operation* on stationary sets:

Definition 6.3. If $S \subset \kappa$ is stationary, the *trace* of S is the set

$$\operatorname{Tr}(S) = \{ \alpha < \kappa \mid \operatorname{cf} \alpha > \omega \wedge S \cap \alpha \text{ is stationary} \}.$$

The Mahlo operation is invariant under equivalence $\mod I_{NS}$ and can be considered as an operation on the Boolean algebra $P(\kappa)/I_{NS}$.

We shall use the phrase for almost all $\alpha \in S$ for the cases when the set of all contrary $\alpha \in S$ is non-stationary.

Definition 6.4. Let S < T be stationary subsets of κ , then

$$S < T$$
 iff $S \cap \alpha$ is stationary for almost all $\alpha \in T$.

For example, if $\lambda < \mu$ are regular, then $E^{\kappa}_{\lambda} < E^{\kappa}_{\mu}$. We also have the following properties:

Lemma 6.9.

- 1. A < Tr(A),
- 2. $A < B \land B < C \rightarrow A < C$,
- 3. if A < B, $A \simeq A' \mod I_{NS}$, $B \simeq B' \mod I_{NS}$, then A' < B'.

Theorem 6.6 (Jech). The relation < is well-founded.

Proof. Assume there exist stationary sets such that $A_0 > A_1 > A_2 > \dots$. Therefore there exist closed unbounded sets C_n such that $A_n \cap C_n \subset \text{Tr}(A_{n+1})$ for $n < \omega$. For each $n < \omega$, let

$$B_n = A_n \cap C_n \cap \operatorname{Lim}(C_{n+1}) \cap \operatorname{Lim}(\operatorname{Lim}(C_{n+1})) \cap \dots$$

where Lim(C) is the set of all limit points of C.

Each B_n is stationary and $B_n \subset \text{Tr}(B_{n+1})$. Let $\alpha_n = \min B_n$. Since $B_{n+1} \cap \alpha_n$ is stationary, so we have $\alpha_{n+1} < \alpha_n$ and therefore we have a decreasing sequence $\alpha_0 > \alpha_1 > \dots$

The rank of a stationary set $A \subset \kappa$ in the relation < is called the *order* of a set A. The height of < is the order of the cardinal κ :

$$o(A) = \sup\{o(X) + 1 \mid X < A\},$$

$$o(\kappa) = \sup\{o(A) + 1 \mid A \subset \kappa \text{ is stationary}\}.$$

We also define $o(\aleph_0) = 0$, $o(\alpha) = \operatorname{cf} \alpha$ for every limit α .

6.6 The Closed Unbounded Filter on $P_{\kappa}(\lambda)$

Now we learn how to generalise stationary and closed unbounded sets to the space $P_{\kappa}(\lambda)$. Such a generalisation allows one to replace $(\kappa, <)$ with $(P_{\kappa}(\lambda), \subset)$. Let κ be a regular uncountable cardinal and let A be a set such that $|A| \geq \kappa$.

Definition 6.5. A set $X \subset P_{\kappa}(A)$ is *unbounded* if for every $x \in P_{\kappa}(A)$ there exists $y \subset x$ such that $y \in X$.

A set $X \subset P_{\kappa}(A)$ is *closed* if for any chain $x_0 \subset x_1 \subset \ldots \subset x_{\xi} \subset \cdots$ of sets in X for $\xi < \alpha < \kappa$, the union $\bigcup_{\xi < \alpha} x_{\xi}$ is in X.

A set $C \subset P_{\kappa}(A)$ is *closed unbounded* if it is closed unbounded.

A set $S \subset P_{\kappa}(A)$ is stationary if $S \cap C \neq \emptyset$ for any closed unbounded C.

The closed unbounded filter on $P_{\kappa}(A)$ is the filter generated by the closed unbounded sets.

If |A| = |B|, then $P_{\kappa}(A)$ and $P_{\kappa}(B)$ are isomorphic, so it is sufficient to consider sets in $P_{\kappa}(\lambda)$. If $|A| = \kappa$, then the set $\kappa \subset P_{\kappa}(\kappa)$ is closed unbounded and the closed unbounded filter on κ is the restriction to κ of the closed unbounded filter on $P_{\kappa}(\kappa)$.