Deep Learning and Temporal Data Processing

3 - Recurrent Neural Networks

Andrea Palazzi

June 21th, 2017

University of Modena and Reggio Emilia

Agenda

Introduction

Credits

Introduction

Recurrent Neural Networks

test [1]

Recurrent Neural Networks

In **feedforward neural network** computation flows directly from input x through intermediate layers h to output y.

Conversely, some networks topology feature feedback connections, in other words model outputs are fed back into the model itself.

The term **recurrent neural networks** defines this family of models.

Recurrent Neural Networks

Recurrent neural networks (RNN) are specialized for processing sequences.

Similarly, we saw that convolutional neural networks feature specialized architecture for processing images.

RNNs boast a much wider API with respect to feedforward neural networks.

Indeed, these models can deal with sequences in the input, in the output or even both.

Vanilla RNN

The vanilla RNN is provided with three sets of parameters:

- **U** maps inputs to the hidden state
- W parametrizes hidden state transition
- **V** maps hidden state to output

System dynamics is as simple as:

$$\begin{cases} \boldsymbol{h}^{(t)} = \phi(\boldsymbol{W} \, \boldsymbol{h}^{(t-1)} + \boldsymbol{U} \, \boldsymbol{x}^{(t)}) \\ \boldsymbol{o}^{(t)} = \boldsymbol{V} \, \boldsymbol{h}^{(t)} \end{cases}$$
(1)

Intuition about Hidden State

The hidden state $h^{(t)}$ can be intuitively viewed as a *lossy* summary of the sequence of past inputs fed to the network, in which are stored the main task-relevant aspects of the past sequence of inputs up to time t.

Since the an input sequence of arbitrary length $(x^{(1)}, x^{(2)}, ..., x^{(t)})$ is mapped into a fixed size vector $\mathbf{h}^{(t)}$, this summary is necessarily lossy.

Unfolding the Computational Graph

A recurrent computational graph can be unfolded into a sequential computational graph with a repetitive structure.

$$\boldsymbol{h}^{(t)} = f(\boldsymbol{h}^{t-1}, \boldsymbol{x}^{(t)}; \boldsymbol{\theta})$$

Backpropagation Through Time

how to unroll a recursive graph

The Challenge of Long-Term Dependencies

Vanishing and exploding gradient problem.

Long Short-Term Memory networks

Vanishing and exploding gradient problem.

Notes

No matter how's the network topology, during backpropagation the network is unfolded in a DAG, so there are no loops.

Credits

Credits

These slides heavily borrow from the following Stanford course:

• http://cs231n.stanford.edu/

if you want to deepen your knowledge of these concepts, I'd really suggest you to start from here!

Also, nice convolution animations are taken from here:

• https://github.com/vdumoulin/conv_arithmetic

References i

[1] G. Cybenko.

Approximation by superpositions of a sigmoidal function.

Mathematics of Control, Signals, and Systems (MCSS), 2(4):303–314, 1989.