B-10 (ANSYS)

Формулировка задачи:

Дано: Стержень в трубке.

E — модуль упругости материала;

A – площадь поперечного сечения.

 $\it Haйmu:$ эпюры $\it N$, $\it \sigma$, $\it \epsilon$, $\it w$.

Аналитический расчёт (см. В-10) даёт следующие решения:

Задача данного примера: при помощи ANSYS Multyphisics получить эти же решения методом конечных элементов.

Предварительные настройки:

Для решения задачи используется ANSYS Multiphysics 14.0:

С меню M_M и U_M работают мышью, выбирая нужные опции.

B окно C_P вручную вводят текстовые команды, после чего следует нажать на клавиатуре Enter.

Меняем чёрный цвет фона на белый:

U M > PlotCtrls > Style > Colors > Reverse Video

Скрываем пункты меню, не относящиеся к прочностным расчётам:

 ${\tt M_M}$ > Preferences > Отметить "Structural" > OK

При построениях полезно видеть номера узлов и номера конечных элементов (один участок – один конечный элемент):

```
U_M > PlotCtrls > Numbering >
OTMETUTЬ NODE;

Установить Elem на "Element numbers";
Установить [/NUM] на "Colors&numbers"
> OK
```

Для большей наглядности увеличим размер шрифта:

```
U_M > PlotCtrls > Font Controls > Legend Font > Установить «Размер» на «22» > ОК
U_M > PlotCtrls > Font Controls > Entity Font > Установить «Размер» на «22» > ОК
```

Предварительные настройки выполнены, можно приступать к решению задачи.

<u>Решение задачи:</u> Приравняв E, A, F и l, к единице, результаты получим в виде чисел, обозначенных на $puc.\ l$. синим цветом.

No	Действие	Результат		
1	Задаём параметры расчёта — базовые величины задачи:U_M > Parameters > Scalar Parameters >E=1 > Accept >A=1 > Accept >Iz=1e6 > Accept >F=1 > Accept >l=1 > Accept >nu=0.3 > Accept >> CloseIz — изгибный момент инерции; nu — коэффициент Пуассона для металлов.	Scalar Parameters		
2	Первая строчка в таблице конечных элементов — плоский балочный тип BEAM3: М_М > Preprocessor С_Р > ET, 1, BEAM3 > Enter Посмотрим таблицу конечных элементов: М_М > Preprocessor > Element Type > Add/Edit/Delete > Close	Add Options Delete Close Help		

№	Действие	Результат		
3	Наборов реальных констант столько, сколько вариантов поперечных сечений в конструкции: Сечение площадью A : С_P > R, 1, A, Iz, $l/10$ > Enter Сечение площадью $2\cdot A$: С_P > R, 2, $2 \times A$, Iz, $l/5$ > Enter Сечение площадью $3\cdot A$: С_P > R, 3, $3 \times A$, Iz, $l/2 \cdot 5$ > Enter Сечение площадью $3/2\cdot A$: С_P > R, 4, $3/2 \times A$, Iz, $l/8$ > Enter " $l/$ " — высота поперечного сечения; формальная величина, использоваться не будет, но задать каким-либо положительным числом нужно. Посмотрим таблицу реальных констант: М_M > Preprocessor > Real Constants > Add/Edit/Delete > Close	Defined Real Constant Sets Set 1 Set 2 Set 3 Set 4 Add Edit Delete Close Help		
4	Cooйcmoa материала стержня—модуль упругости и коэффициент Пуассона: M_M > Preprocessor > Material Props > Material Models > Structural > Linear > Elastic > Isotropic > EX пишем "E", PRXY пишем "nu" > OK > Закрываем окно«Deine Material Model Behavior».	Material Model Behavior Material Edit Favorite Help		

№	Действие	Результат			
5	Координаты точек конструкции: Определяемся с положением точек относительно глобальной декартовой системы координат. Для того, чтобы рисунки будущих эпюр не накладывались друг на друга, ось стержня смещаем влево на расстояние l , ось трубки — вправо на то же расстояние:	$B''(-l, 2 \cdot l, 0)$ $2 \cdot F$ 0 $(l, l, 0)$ $(l, l, 0)$ $(l, l, 0)$ $H(l, 0, 0)$			
	Конечноэлементная модель				
6	V злы l , 2 , 3 , 4 , 5 u 6 e m очк a х G , D , B ', H , C u B '' c oom e em c m e e e н o : M _M> Preprocessor> Modeling> Create> Nodes> In Active CS > NODE пишем 1 X , Y , Z пишем $-l$, 0 , 0 > Apply >	1 NODES .3 .6			
	NODE пишем 2 X,Y,Z пишем $-l,l,0 > Apply > NODE пишем 3 X,Y,Z пишем -l,2*l,0 > Apply > NODE пишем 4 X,Y,Z пишем l,0,0 > Apply > NODE пишем 5 X,Y,Z пишем l,l,0 > Apply > NODE пишем 6 X,Y,Z пишем X,Y,Z пишем X,Y,Z пишем X,Y,Z пишем X,Y,Z пишем X,Y,Z пишем X,Z,Z,Z пишем X,Z,Z,Z пишем X,Z,Z,Z пишем X,Z,Z,Z пишем Z,Z,Z,Z пишем Z,Z,Z,Z,Z пишем Z,Z,Z,Z,Z$	2 5 Y			
	X,Y,Z пишем $l,2*l,0$ > OK	.1 Z.X .4			
	Прорисовываем всё, что есть: U_M > Plot > Multi-Plots				

No	Действие	Результат
	Участки стержня:	
	Устанавливаем текущим nonepeunoe сечение A: M_M > Preprocessor > Modeling > Create > Elements > > Elem Attributes > [ТҮРЕ]установить "1 ВЕАМЗ"	
	[MAT] установить "1" [REAL] установить "1" > OK	
	Протягиваем конечный элемент №1 (первый участок): M_M > Preprocessor > Modeling > Create > Elements > > Auto Numbered > Thru Nodes Левой кнопкой мыши последовательно кликаем узлы 2 и 1	1 3 .6 E-N 2
7	> OK	2 5
	Устанавливаем текущим nonepeuhoe сечение 2A: M_M > Preprocessor > Modeling > Create > Elements > > Elem Attributes > [REAL] установить "2" > OK	1 1
	Протягиваем конечный элемент №2 (второй участок): M_M > Preprocessor > Modeling > Create > Elements > > Auto Numbered > Thru Nodes Левой кнопкой мыши последовательно кликаем узлы 3 и 2 > OK	
	Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	

№	Действие			Результат	
	Участки трубки:				
	Устанавливаем текущим поперечное сечение $\frac{3}{2}A$:				
	M_M > Preprocessor > Modeling > Create > Elements > > Elem Attributes > [REAL]установить "4" > OK				
	Протягиваем конечный элемент №3 (третий участок): M_M > Preprocessor > Modeling > Create > Elements > > Auto Numbered > Thru Nodes	1 E-N	.3		.6
	Левой кнопкой мыши последовательно кликаем узлы 6 и 5		2		3
8	> OK		2		.5
	Vcmaнавливаем текущим nonepeuhoe сечение 3A: M_M > Preprocessor > Modeling > Create > Elements > > Elem Attributes > [REAL]установить "3"		1		4
	> OK		.1	Y Z_X	4
	Протягиваем конечный элемент №4 (четвёртый участок): M_M > Preprocessor > Modeling > Create > Elements > > Auto Numbered > Thru Nodes Левой кнопкой мыши последовательно кликаем узлы 5 и 4 > OK				
	Прорисовываем всё, что есть: U_M > Plot > Multi-Plots				

No	Действие	Результат			
	Расчёт				
13	Запускаем расчёт: M_M > Solution > Solve > Current LS Синхронно появляются два окна: белое информационное и серое исполнительное. Белое закрываем, на сером нажимаем ОК. Расчёт пошёл. Когда он закончится, появится окно «Solution is done!». Закройте это окно. Расчёт окончен.	Solution is done!			
	Просмотр результатов				
14	<pre>U_ветовая шкала будет состоять из десяти цветов: U_M > PlotCtrls > Style > Contours > Uniform Contours > NCONT пишем 10 > OK</pre>				

N₂	Действие	Результат
17	Cocmaвление эпюры осевого напряжения: M_M > General Postproc > Element Table > Define Table > Add > "By sequence num", "LS,", "1" > Apply > "By sequence num", "LS,", "4" > OK > > Close	Currently Defined Data and Status: Label Item Comp Time Stamp Status SMIS1 SMIS 1 Time= 1,0000 (Current) SMIS7 SMIS 7 Time= 1,0000 (Current) LS1 LS 1 Time= 1,0000 (Current) IS4 LS 4 Time= 1,0000 (Current) ES4 LS 4 Time= 1,0000 (Current) LS1 LS HES HES HES HES HES HES HES HES HES HE
18	Прорисовка эпюры осевого напряжения: M_M > General Postproc > Plot Results > Contour Plot > Line Elem Res > LabI установить "LS1" LabJ установить "LS4" > ОК Получаем тот же результат, что и на рис. 1. (Ост и Отр, числа, выделенные синим цветом).	LINE STRESS STEP=1 SUB =1 TIME=1 LS1

№	Действие	Результат
19	Осевые перемещения узлов стержня и трубки: М_M > General Postproc > List Results > Nodal Solution > Nodal Solution > DOF Solution > Y-Component of displacement > OK Получаем окно "PRNSOL Command" с табличкой, где NODE — номер узла конечноэлементной модели, а UY — его перемещение по горизонтали. Получаем тот же результат, что и на рис. 1. (W _{cm} и W _{mp} , числа, выделенные синим цветом).	PRINT U NODAL SOLUTION PER NODE ****** POST1 NODAL DEGREE OF FREEDOH LISTING ****** LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0 THE FOLLOHING DEGREE OF FREEDOH RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM NODE UY 1 0.00000 2 1.1333 3 0.20000 4 0.00000 5 -0.377778 6 0.20000 MAXIMUM ABSOLUTE VALUES NODE 2 VALUE 1.1333

Сохраняем проделанную работу:

U M > File > Save as Jobname.db

Закройте ANSYS:

U M > File > Exit > Quit - No Save! > OK

После выполнения указанных действий в рабочем каталоге остаются файлы с расширениями ".BCS", ".db", ".emat", ".err", ".esav", ".full", ".log", ".mntr", ".rst" и ".stat".

Интерес представляют ".db" (файл модели) и ".rst" (файл результатов расчёта), остальные файлы промежуточные, их можно удалить.