Integral Calculus

Integration is the continuous analog of a sum, which is used to calculate areas, volumes, and their generalizations.

Consider the function f(t) = 5. Find the area of the region bounded by a to x.

$$A = 5(\pi - a) \text{ units}^{2}$$

$$y = 5$$

$$x - a + 1$$

Consider the function f(t) = t. Find the area bounded by the region from a to x.

Consider as well the function y=f(x)

Approximating the area under a curve

Example 1. Approximate the area under the curve $f(x) = x^2$ from 0 to 1.

$$= \frac{1}{4} \left(f(0) + \frac{1}{4} \left(f(\frac{1}{4}) \right) + \frac{1}{4} \left(f(\frac{1}{2}) \right) +$$

$$=\frac{7}{32}\approx 0.29$$

$$=\frac{1}{4}\left(f\left(\frac{1}{4}\right)\right)+\frac{1}{4}\left(f\left(\frac{1}{2}\right)\right)+$$

$$\frac{1}{4}\left(f\left(\frac{3}{4}\right)\right)+\frac{1}{4}\left(f\left(\frac{3}{4}\right)\right)$$

Arrage:
$$0.219 + 0.469 = 0.344$$

Jupper

Finction, integrand

$$\int_{0}^{2} dx = \frac{1}{3}$$
Ly variable of Integration

Le bourd

TRAPEZOIDAL RULE

If the area under the curve is evaluated, then the total area is divided into small trapezoids instead of rectangles

Example 2. Use the trapezoidal rule with 6 subintervals to estimate the area between $f(x) = \sqrt{6 - x^2}$ and the x-axis from x = 1 to x = 2.

$$f(1) = f(\frac{\pi}{6}) = f(\frac{\pi}{6}$$

Antidifferentiation and Indefinite Integral

5.5	Integral of x^n	$\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$	
5.11	Standard integrals	$\int \frac{1}{-} dx = \ln x + C$	

5.11 Standard integrals
$$\int \frac{1}{x} dx = \ln|x| + C$$

$$\int \sin x dx = -\cos x + C$$

$$\int \cos x dx = \sin x + C$$

$$\int \frac{1}{\cos^2 x} dx = \tan x + C$$

$$\int e^x dx = e^x + C$$

Example 3. If $f(x) = 3x^2$ is the derivative of F(x), find F(x).

$$F(\pi) = \int f(\pi) d\pi \qquad \text{Indefinite Inkeyrol}$$

$$= \int 3x^2 dx \qquad \qquad \frac{f(\pi) = f'(\pi) = f(\pi)}{dx}$$

$$= \frac{3x^{2+1}}{2+1} + C$$

$$F(\pi) = \pi^3 + C \qquad \text{general solution}$$

Example 4. Find the integrals of the following

$$\int x^6 dx = \frac{\cancel{x}^{6+1}}{\cancel{6+1}} + C = \frac{\cancel{x}^{7}}{\cancel{7}} + C$$

b.

$$\int (3x^2 + 2x) \, dx = \int 3x^2 \, dx + \int 2x \, dx = x^3 + C + x^2 + C$$

$$= x^3 + x^2 + C$$

c. U-substitution

$$\int e^{2x+1} dx \qquad \lim_{z \to x+1} \int e^{u} du = \frac{1}{2} \int e^{u} du = \frac{1}{2} e^{u} + C$$

$$= \frac{1}{2} e^{2x+1} + C$$

d.

$$\int (2x+1)^3 dx = \frac{1}{2} \int u^3 du = \frac{1}{2} \cdot \frac{u^4}{4} + C = \frac{(2x+1)^4}{8} + C$$

$$du = 2dx$$

$$dx = du$$

e.

$$\int \sqrt{x} \, dx = \int \chi^{\frac{1}{2}} dx = \frac{\chi^{\frac{3}{2}}}{\frac{3}{2}} + C = \frac{2\chi^{\frac{3}{2}}}{\frac{3}{2}}$$

f.

$$\int \frac{1}{x\sqrt{x}} dx = \int \frac{1}{|x|} dx = \int \sqrt{x}^{\frac{3}{2}} dx = \frac{x^{-\frac{3}{2} + \frac{2}{2}}}{-\frac{1}{2}} + C$$

$$= \sqrt{x^{-\frac{1}{2}}} + C = -\sqrt{x} + C$$

g.

$$\int \sin 2x \, dx$$

h.

$$\int \cos(1-5x)\,dx$$

i.

$$\int \frac{1}{\sqrt{1-4x}} \, dx$$

j.

$$\int \frac{3\sin x}{\cos^2 x} dx$$

k.

$$\int e^{3x} dx$$

l.

$$\int \frac{1}{3x - 2} dx$$

Particular Solutions

Example 5. If $G'(x) = 3x^2$ is the derivative of G and (1,6) lies on G, find G.

Example 6. Find f(x) given that $f'(x) = 3x^2 - 4x + 1$ and f(0) = 12.