A Menace 2 Society

Input file: standard input
Output file: standard output

Time limit: 15 seconds Memory limit: 256 megabytes

Jay and Jay's son ja 5 on are playing a game together. This game involves counting occurrences of a string J in another string S. But, ja 5 on has gotten so good at this game, Jay is at a loss for how to keep it interesting.

Jay is a menace to society and has decided to make the game more fun for Jay's son ja\$on by adding some new rules. On top of S, Jay will define K+1 more strings S_0, S_1, \ldots, S_K . S_i can be created by taking the first character in S, skipping the next i characters, then taking the next character, then skipping the next i characters, and so on. For example, if S is southpacific, then S_2 is staf. Note that S_0 and S are the same string.

Further, in honour of Jay's son ja\$on's name, Jay will use letters from a language called 'Engli\$h', which contains all lowercase English letters, except that the letter s is replaced with the letter \$. So \$outh, pacific, programming, conte\$t are valid words in Engli\$h, but south and contest are not.

In Jay's new game, he must find the string J in each of the K+1 words. For example, if S is aacbc and J is ac, then S_1 is acc, and S_2 is ab. J is found once in both S_0 and S_1 , but not S_2 .

Given the strings S and J, as well as the value of K, determine the number of occurrences of J in each S_i .

Input

The first line of the input contains a single integer K ($0 \le K < 1\,000\,000$), which is the number of strings to check.

The second line of the input contains a single non-empty string S that has strictly more than K and at most $1\,000\,000$ characters, consisting of Engli\$h letters.

The third line of the input contains a single non-empty string J, consisting of English letters. The length of J is at most the length of S.

Output

Display the number of occurrences of J in S_0, S_1, \ldots, S_K .

Examples

standard input	standard output
3	0
ca\$hca\$h	0
cc	0
	1
0	1
abc	
abc	
2	1
aacbc	1
ac	0
3	3
\$f\$f\$f	0
\$f	1
	0