Subgradient and subdifferential

Motivation

Важным свойством непрерывной выпуклой функции f(x) является то, что в выбранной точке x_0 для всех $x \in \mathrm{dom}\ f$ выполнено неравенство:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

для некоторого вектора g, то есть касательная к графику функции является *глобальной* оценкой снизу для функции.

- ullet Если f(x) дифференцируема, то $g =
 abla f(x_0)$
- Не все непрерывные выпуклые функции дифференцируемы :)

Не хочется лишаться такого вкусного свойства.

Subgradient

Вектор g называется **субградиентом** функции $f(x):S o\mathbb{R}$ в точке x_0 , если $orall x\in S$:

$$f(x) \geq f(x_0) + \langle g, x - x_0
angle$$

Subdifferential

Множество всех субградиентов функции f(x) в точке x_0 называется **субдифференциалом** f в x_0 и обозначается $\partial f(x_0)$.

- ullet Если $x_0 \in \mathbf{ri}S$, то $\partial f(x_0)$ выпуклое компактное множество.
- ullet Выпуклая функция f(x) дифференцируема в точке $x_0 \iff \partial f(x_0) =
 abla f(x_0)$
- ullet Если $\partial f(x_0)
 eq \emptyset \quad orall x_0 \in S$, то f(x) выпукла на S.

Moreau - Rockafellar theorem (subdifferential of a linear combination)

Пусть $f_i(x)$ - выпуклые функции на выпуклых множествах $S_i,\ i=\overline{1,n}.$ Тогда, если $\bigcap_{i=1}^n \mathbf{ri} S_i
eq \emptyset$ то функция $f(x)=\sum_{i=1}^n a_i f_i(x),\ a_i>0$ имеет субдифференциал $\partial_S f(x)$ на множестве $S=\bigcap_{i=1}^n S_i$ и

$$\partial_S f(x) = \sum_{i=1}^n a_i \partial_{S_i} f_i(x)$$

Dubovitsky - Milutin theorem (subdifferential of a point-wise maximum)

Пусть $f_i(x)$ - выпуклые функции на открытом выпуклом множестве $S\subseteq \mathbb{R}^n,\ x_0\in S$, а поточечный максимум определяется как $f(x)=\max f_i(x)$. Тогда:

$$\partial_S f(x_0) = \mathbf{conv} \, iggl\{ igcup_{i \in I(x_0)} \partial_S f_i(x_0) iggr\},$$

где
$$I(x) = \{i \in [1:m]: f_i(x) = f(x)\}$$

Chain rule for subdifferentials

Пусть g_1,\dots,g_m - выпуклые функции на открытом выпуклом множестве $S\subseteq\mathbb{R}^n$, $g=(g_1,\dots,g_m)$ - образованная из них вектор - функция, φ - монотонно неубывающая выпуклая функция на открытом выпуклом множестве $U\subseteq\mathbb{R}^m$, причем $g(S)\subseteq U$. Тогда субдифференциал функции $f(x)=\varphi\left(g(x)\right)$ имеет вид:

$$\partial f(x) = igcup_{p \in \partial arphi(u)} \Biggl(\sum_{i=1}^m p_i \partial g_i(x) \Biggr),$$

где
$$u = g(x)$$

В частности, если функция arphi дифференцируема в точке u=g(x), то формула запишется так:

$$\partial f(x) = \sum_{i=1}^m rac{\partial arphi}{\partial u_i}(u) \partial g_i(x)$$

Subdifferential calculus

- $\partial(\alpha f)(x) = \alpha \partial f(x)$, for $\alpha \geq 0$
- ullet $\partial (\sum f_i)(x) = \sum \partial f_i(x)$, f_i выпуклые функции
- ullet $\partial (\overline{f(Ax+b)})(\overline{x}) = A^T \partial f(Ax+b)$, f выпуклая функция

Examples

Концептуально, различают три способа решения задач на поиск субградиента:

- Теоремы Моро Рокафеллара, композиции, максимума
- Геометрически
- По определению

1

Наити $Of(x)$, если $f(x) = x $																						
	٠		٠	•	•		•	•	٠			٠	٠		•	•				•		
		٠					•								•							
															•							
			•				•						٠		•	•						
			•				•						٠		•	•						
			•	•	•		•						•	•	•	•	•	•				
	•		•	•	·		•	•	•	•	٠		ė	•	•	•	•	•	•	•	•	
•	•		٠	•	•		•	•					٠		•	•		•		•	•	
			٠	•			•						٠		•	•						
			٠	•			•						•		•	•						
			٠				•						٠		•	•						
				•			•						•		•	•		•				

Решение:

Решить задачу можно либо геометрически (в каждой точке числовой прямой указать угловые коэффициенты прямых, глобально подпирающих функцию снизу), либо по теореме Моро - Рокафеллара, рассмотрев f(x) как композицию выпуклых функций:

$$f(x) = \max\{-x, x\}$$

2

Найти
$$\partial f(x)$$
, если $f(x) = |x-1| + |x+1|$

Решение:

Совершенно аналогично применяем теорему Моро - Рокафеллара, учитывая следующее:

$$\partial f_1(x) = egin{cases} -1, & x < 1 \ [-1;1], & x = 1 \ 1, & x > 1 \end{cases} \quad \partial f_2(x) = egin{cases} -1, & x < -1 \ [-1;1], & x = -1 \ 1, & x > -1 \end{cases}$$

Таким образом:

$$\partial f(x) = egin{cases} -2, & x < -1 \ [-2;0], & x = -1 \ 0, & -1 < x < 1 \ [0;2], & x = 1 \ 2, & x > 1 \end{cases}$$

Найти $\partial f(x)$, если $f(x)=[\max(0,f_0(x))]^q$. Здесь $f_0(x)$ - выпуклая функция на открытом выпуклом множестве $S,q\geq 1$.

Решение

Согласно теореме о композиции (функция $\varphi(x)=x^q$ - дифференцируема), а $g(x)=\max(0,f_0(x))$ имеем: $\partial f(x)=q(g(x))^{q-1}\partial g(x)$

По теореме о поточечном максимуме:

$$\partial g(x) = egin{cases} \partial f_0(x), & f_0(x) > 0, \ \{0\}, & f_0(x) < 0 \ \{a \mid a = \lambda a', \; 0 \leq \lambda \leq 1, \; a' \in \partial f_0(x)\}, \; \; f_0(x) = 0 \end{cases}$$

4

Найти $\partial f(x)$, если $f(x)=\sin x, x\in [\pi/2;2\pi]$

$$\partial f_G(x) = \begin{cases} (-\infty, \cos x_0], & x = \pi/2; \\ \varnothing, & x \in (\pi/2, x_0); \\ \cos x, & x \in [x_0, 2\pi); \\ [1, +\infty], & x = 2\pi. \end{cases}$$

Решение: Пусть $f_1(x)=|c_1^{ op}x|$, а $f_2(x)=|c_2^{ op}x|$. Так как эти функции выпуклы, субдифференциал их суммы равен сумме субдифференциалов. Найдем каждый из них:

$$\partial f_1(x) = \partial \left(\max\{c_1^ op x, -c_1^ op x\}
ight) = egin{cases} -c_1, & c_1^ op x < 0 \ \mathbf{conv}(-c_1; c_1), & c_1^ op x = 0 \ c_1, & c_1^ op x > 0 \ c_2, & c_2^ op x < 0 \ \mathbf{conv}(-c_2; c_2), & c_2^ op x = 0 \ c_2, & c_2^ op x > 0 \end{cases}$$

Далее интересными представляются лишь различные взаимные расположения векторов c_1 и c_2 , рассмотрение которых предлагается читателю.

6

Найти $\partial f(x)$, если $f(x) = \|x\|_1$

Решение: По определению

$$||x||_1 = |x_1| + |x_2| + \ldots + |x_n| = s_1x_1 + s_2x_2 + \ldots + s_nx_n$$

Рассмотрим эту сумму как поточечный максимум линейных функций по x: $g(x) = s^{\top}x$, где $s_i = \{-1, 1\}$. Каждая такая функция однозначно определяется набором коэффициентов $\{s_i\}_{i=1}^n$.

Тогда по теореме Дубовицкого - Милютина, в каждой точке $\partial f = \mathbf{conv}\left(igcup_{i\in I(x)}\partial g_i(x)
ight)$

Заметим, что
$$\partial g(x) = \partial \left(\max\{s^{\top}x, -s^{\top}x\} \right) = \begin{cases} -s, & s^{\top}x < 0 \\ \mathbf{conv}(-s; s), & s^{\top}x = 0. \\ s, & s^{\top}x > 0 \end{cases}$$

Причем, правило выбора "активной" функции поточечного максимума в каждой точке следующее:

- ullet Если j-ая координата точки отрицательна, $s_i^j=-1$
- ullet Если j-ая координата точки положительна, $s_i^j=1$
- Если ј-ая координата точки равна нулю, то подходят оба варианта коэффициентов и соответствующих им функций, а значит, необходимо включать субградиенты этих функций в объединение в теореме Дубовицкого Милютина.

В итоге получаем ответ:

$$\partial f(x) = \left\{ g \ : \ \|g\|_{\infty} \le 1, \quad g^{\top} x = \|x\|_1 \right\}$$

References

• Lecture Notes for ORIE 6300: Mathematical Programming I by Damek Davis