Fiche d'exercices nº 5

Suites et séries de fonctions

Exercice 1.

Soit $\alpha > 0$ et pour $n \in \mathbb{N}$, $u_n = (-1)^n \left(1 - \cos \frac{1}{n^{\alpha}}\right)$.

Trouver pour quelles valeurs de α :

- la série $\sum u_n$ est absolument convergente;
- la série $\sum u_n$ est convergente, mais pas absolument convergente.

Exercice 2. *

- a) Démontrer que la série $\sum_{n} \frac{(-1)^{n}}{\sqrt{n}}$ converge.
- **b)** Démontrer que $\frac{(-1)^n}{\sqrt{n} + (-1)^n} = \frac{(-1)^n}{\sqrt{n}} \frac{1}{n} + \frac{(-1)^n}{n\sqrt{n}} + o\left(\frac{1}{n\sqrt{n}}\right).$
- c) Étudier la convergence de la série $\sum_{n} \frac{(-1)^n}{\sqrt{n} + (-1)^n}$.
- d) Qu'a-t-on voulu mettre en évidence dans cet exercice?

Exercice 3. *

Soit a une suite de réels positifs. Comparer les assertions

- (i) la série de terme général a_n converge
- (ii) la série de terme général $\sqrt{a_n a_{n+1}}$ converge.

Exercice 4. **

Donner un développement asymptotique à 2 termes de

$$\sum_{k=n+1}^{+\infty} \frac{1}{k^2}$$

Exercice 5. **

En utilisant des comparaisons séries-intégrales, montrer que

$$\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + \frac{1}{2n} - \frac{1}{12n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)$$

où $\gamma \in]0,1[$ est appelée la constante d'Euler.

Exercice 6. **

Étudier la suite $(u_n)_n$ définie par $u_n = \prod_{k=1}^n \left(1 + \frac{(-1)^{k-1}}{\sqrt{k}}\right)$, puis la série de terme général u_n .

Exercice 7. **

Montrer qu'il existe $K \in \mathbb{R}$ tel qu'au voisinage de $+\infty$, on ait :

$$\sum_{k=1}^{n} k^{1/k} = n + \frac{\ln^2(n)}{2} + K + o(1).$$

Exercice 8. **

Soit $p \in \mathbb{N}^*$. On considère la série de terme général $u_n = \frac{(-1)^n}{np+1}$.

a) Montrer que la série $(\sum u_n)$ converge et que :

$$\sum_{n=0}^{\infty} u_n = \int_0^1 \frac{dt}{1 + t^p}.$$

b) Trouver un développement assymptotique d'ordre 1 (ie. en $o(\frac{1}{n})$) du reste d'ordre n:

$$R_n = \int_0^1 \frac{dt}{1+t^p} - \sum_{k=0}^n \frac{(-1)^k}{kp+1}.$$

c) Étudier la série de terme général R_n .

Exercice 9. **

On rappelle que $e = \sum_{n=1}^{\infty} \frac{1}{n!}$. Pour $n \in \mathbb{N}$, on pose $a_n = \sum_{k=0}^{n} \frac{1}{k!}$ et $b_n = a_n + \frac{1}{n n!}$.

- a) Montrer que les suites (a_n) et (b_n) sont adjacentes et en déduire que e est irrationnel.
- b) Montrer qu'au voisinage de $+\infty$, on a :

$$e n! = a_{n+1} n! + O\left(\frac{1}{n^2}\right).$$

c) En déduire la nature de la série de terme général $u_n = (\sin(\pi e n!))^p$, selon la valeur de $p \in \mathbb{N}^*$.

Exercice 10. *

Etudier, suivant les valeurs de $p \in \mathbb{N}$, la nature de la sériede terme général :

$$u_n = \frac{1! + 2! + \dots + n!}{(n+p)!}.$$

Exercice 11.

Soit $\alpha \in \mathbb{R}$. Pour tout $n \in \mathbb{N}^*$, on définit sur \mathbb{R} la fonction $f_n : x \mapsto n^{\alpha} x e^{-nx}$. Étudier la convergence simple et uniforme de la suite de fonctions $(f_n)_{n \in \mathbb{N}^*}$.

Exercice 12.

Étudier la convergence simple et la convergence uniforme de la suite de fonctions $(f_n)_n$ définies sur \mathbb{R}_+ par $f_0(x) = 0$ et pour tout $n \ge 1$:

$$\begin{cases} f_n(x) = \left(1 - \frac{x}{n}\right)^n & \text{si } 0 \le x \le n \\ f_n(x) = 0 & \text{si } x > n. \end{cases}$$

Exercice 13.

Étudier la convergence simple et uniforme de la série de fonctions $\sum u_n$ où $u_n : \mathbb{R} \to \mathbb{R}$ est définie par :

$$u_n(t) = (-1)^n \ln \left(1 + \frac{t^2}{n(1+t^2)} \right).$$

Exercice 14.

Si $f \in \mathcal{C}^0(\mathbb{R}, \mathbb{R})$, étudier la convergence uniforme de la suite de fonctions définies sur \mathbb{R} par

$$f_n(x) = \sqrt{f^2(x) + \frac{1}{n}}.$$

(On pourra introduire l'ensemble $E = \{x \in \mathbb{R} \mid |f(x)| \leq \varepsilon\}.$)

Exercice 15.

Montrer que la série de fonctions $\sum f_n$ avec

$$f_n: \mathbb{R}_+^* \to \mathbb{R}_+^*, \ x \mapsto \frac{x e^{-nx}}{\ln(n)}, \ n \geqslant 2$$

converge normalement sur tout segment de \mathbb{R}_{+}^{*} , mais pas normalement sur \mathbb{R}_{+} .

Exercice 16.

Soit la fonction $f: x \mapsto \sum_{n=1}^{+\infty} \frac{2x}{n^2 + x^2}$.

- a) Déterminer le domaine de définition de la fonction f.
- b) Montrer que f est continue.
- c) Donner les limites de f aux bornes de son domaine de définition.

Exercice 17.

On considère la série de fonction $\sum f_n$, avec $f_n(x) = \frac{\left(1 - e^{-x}\right)^n}{n^2}$. On note f sa fonction somme.

- a) Montrer que la fonction f est définie et continue sur $[-\ln(2), +\infty[$.
- b) Déterminer la limite de f(x) lorsque x tend vers l'infini.
- c) Montrer que f est dérivable sur $]-\ln(2),+\infty[$ et calculer f'(x).

Exercice 18.

Soit $(P_n)_n$ une suite de fonctions polynômes à coefficients réels convergeant uniformément sur \mathbb{R} vers une fonction f. Montrer que f est une fonction polynôme.

Exercice 19.

Soit la suite de fonctions polynomiales définies par $P_0(x) = 0$ et pour tout $n \in \mathbb{N}$:

$$2P_{n+1}(x) = x + 2P_n(x) - P_n^2(x).$$

- a) Montrer que (P_n) converge simplement vers la fonction racine $x \mapsto \sqrt{x}$ sur [0,1].
- **b)** Montrer que pour tout $x \in [0, 1]$ et pour tout $n \in \mathbb{N}$:

$$0 \leqslant \sqrt{x} - P_n(x) \leqslant \frac{2\sqrt{x}}{2 + n\sqrt{x}}.$$

En déduire qu'il y a convergence uniforme sur [0,1].

Exercice 20.

Soit une fonction $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$ continue telle que f(0) = 0 et $\lim_{+\infty} f = 0$. Étudier la convergence simple, uniforme, et uniforme sur tout segment des suites de fonctions suivantes :

- $\mathbf{a)} \ f_n(x) = f(nx)$
- $\mathbf{b)} \ g_n(x) = f\left(\frac{x}{n}\right).$
- **c)** $h_n(x) = f_n(x) g_n(x)$.

Exercice 21.

Après en avoir justifié l'existence, calculer l'intégrale :

$$\int_0^1 \sum_{n=2}^{+\infty} \left(\frac{1}{n-x} - \frac{1}{n+x} \right) \mathrm{d}x$$

Exercice 22.

On considère la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ définie par :

$$\forall n \in \mathbb{N}^*, \ \forall x \in \mathbb{R}, \ f_n(x) = x \arctan(nx)$$

- a) Montrer que $(f_n)_n$ converge simplement vers une fonction f à déterminer.
- **b)** Montrer que pour tout $x \in \mathbb{R}^*$, $|f_n(x) f(x)| \le |x \arctan(\frac{1}{nx})|$, et en déduire que $(f_n)_n$ converge uniformément vers f.
- c) Que peut-en en conclure à propos d'un lien éventuel entre convergence uniformé et régularité de de la fonction limite?

Exercice 23.

Soit

$$f(x) = \sum_{n=1}^{+\infty} e^{-x\sqrt{n}}$$

- a) Quel est le domaine de définition de f? Etudier la continuité de f sur celui-ci.
- b) Montrer que f est strictement décroissante.
- c) Etudier la limite de f en $+\infty$.
- d) Déterminer un équivalent simple de f(x) quand $x \to 0^+$

Exercice 24.

Étudier la convergence simple et uniforme de la suite de fonctions $(f_n)_n$ définies par $f_n(x) = \frac{\sin(nx)}{n\sqrt{x}}$ sur \mathbb{R}_+^* .

Exercice 25.

Étudier les modes de convergence de la série de fonction $\sum f_n$, avec

$$f_n(x) = \frac{1}{1 + n^3 x^2}$$