## Algunas aplicaciones de la integración

## 1.2. El área de una región comprendida entre dos gráficas expresada como una integral

**TEOREMA 1.1** Supongamos que f y g son integrables y que satisfacen  $f \leq q$  en [a,b]. La región S entre sus gráficas es medible y su área a(S) viene dada por la integral

$$a(S) = \int_a^b [g(x) - f(x)] dx$$

Demostración.- Demostración.- Supongamos primero que f y g son no negativas,. Sean F y G los siguientes conjuntos:

$$F = (x, y)|a < x < b, 0 < y < f(x), \quad G = (x, y)|a < x < b, 0 < y < g(x).$$

Esto es, G es el conjunto de ordenadas de g, y F el de f, menos la gráfica de f. La región S es la diferencia G-F. Según los teoremas 1.10 y 1.11, F y G son ambos medibles. Puesto que  $F\subseteq G$  la diferencia S=G-F es también medible, y se tiene

$$a(S) = a(G) - a(F) = \int_{a}^{b} g(x) dx = \int_{a}^{b} [g(x) - f(x)] dx$$

Consideremos ahora el caso general cuando  $f \leq q$  en [a,b], pero no son necesariamente no negativas. Este caso lo podemos reducir al anterior trasladando la región hacia arriba hasta que quede situada encima del eje x. Esto es, elegimos un número positivo c suficientemente grande que asegure que  $0 \leq f(x) + c \leq g(x) + c$  para todo x en [a,b]. Por lo ya demostrado la nueva región T entre las gráficas de f+c y g+c es medible, y su parea viene dad por la integral

$$a(T) = \int_{a}^{b} [(g(x) + c) - (f(x) + c)] = \int_{a}^{b} [g(x) - f(x)] dx$$

Pero siendo T congruente a S, ésta es también medible y tenemos

$$a(S) = a(T) = \int_{a}^{b} [g(x) - f(x)] dx$$

Esto completa la demostración.

**Nota 1.1** En los intervalos [a,b] puede descomponerse en un número de subintervalos en cada uno de los cuales  $f \leq g$  o  $g \leq f$  la fórmula (2.1) del teorema 2.1 adopta la forma

$$a(S) = \int_a^b |g(x) - f(x)| dx$$

**LEMA 1.1 (Área de un disco circular)** Demostrar que  $A(r) = r^2 A(1)$ . Esto es, el área de un disco de radio r es igual al producto del área de un disco unidad (disco de radio 1) por  $r^2$ .

Demostración.- Ya que g(x) - f(x) = 2g(x), el teorema 2.1 nos da

$$A(r) = \int_{-r}^{r} g(x) \ dx = 2 \int_{-r}^{r} \sqrt{r^2 - x^2} \ dx$$

En particular, cuando r = 1, se tiene la fórmula

$$A(1) = 2 \int_{-1}^{1} \sqrt{1 - x^2} \, dx$$

Cambiando la escala en el eje x, y utilizando el teorema 1.19 con k = 1/r, se obtiene

$$A(r) = 2 \int_{-r}^{r} g(x) \ dx = 2r \int_{-1}^{1} g(rx) \ dx = 2r \int_{-1}^{1} \sqrt{r^2 - (rx)^2} \ dx = 2r^2 \int_{-1}^{1} \sqrt{1 - x^2} \ dx = r^2 A(1)$$

Esto demuestra que  $A(r) = r^2 A(1)$ , como se afirmó.

**Definición 1.1** Se define el número  $\pi$  como el área de un disco unidad.

$$\pi = 2 \int_{-1}^{1} \sqrt{1 - x^2} \, dx$$

La formula que se acaba de demostrar establece que  $A(r) = \pi r^2$ 

Generalizando el anterior lema se tiene

$$a(kS) = \int_{ka}^{kb} g(x) dx = k \int_{ka}^{kb} f(x/k) dx = k^2 \int_{a}^{b} f(x) dx$$

**TEOREMA 1.2** Para a > 0, b > 0 y n entero positivo, se tiene

$$\int_{a}^{b} x^{\frac{1}{n}} dx = \frac{b^{1-1/n} - a^{1-\frac{1}{n}}}{1 + \frac{1}{n}}$$

Demostración.- Sea  $\int_0^a x^{\frac{1}{n}}$ . El rectángulo de base a y altura  $a^{\frac{1}{n}}$  consta de dos componentes: el conjuntos de ordenadas de  $f(x) = x^{\frac{1}{n}}$  a a y el conjuntos de ordenadas  $g(y) = y^n$  a  $a^{\frac{1}{n}}$ . Por lo tanto,

$$a \cdot a^{\frac{1}{n}} = a^{1 + \frac{1}{n}} = \int_0^a x^{\frac{1}{n}} dx + \int_0^{a^{\frac{1}{n}}} y^n dy \implies \int_0^a x^{\frac{1}{n}} dx = a^{1 + \frac{1}{n}} - \frac{y^{n+1}}{n+1} \Big|_0^{a^{\frac{1}{n}}} = a^{1 + \frac{1}{n}} - \frac{a^{1 + \frac{1}{n}}}{n+1} = \frac{a^{1 + \frac{1}{n}}}{1 + 1/n}$$

Análogamente se tiene

$$\int_0^b x^{\frac{1}{n}} dx = \frac{b^{1+\frac{1}{n}}}{1+1/n}$$

Luego notemos que

$$\int_a^b x^{\frac{1}{n}} \ dx = \int_0^b x^{\frac{1}{n}} \ dx - \int_0^a x^{\frac{1}{n}} \ dx$$

por lo tanto

$$\int_a^b x^{\frac{1}{n}} \ dx = \frac{b^{1+\frac{1}{n}} - b^{1+\frac{1}{n}}}{1 + 1/n}$$

## 1.4. Ejercicios

En los ejercicios del 1 al 14, calcular el área de la región S entre las gráficas de f y g para el intervalo [a,b] que en cada caso se especifica. Hacer un dibujo de las dos gráficas y sombrear S.

**1.** 
$$f(x) = 4 - x^2$$
,  $g(x) = 0$ ,  $a = -2$ ,  $b = 2$ 

Respuesta.-

$$\int_{-2}^{2} \left[4 - x^2 - 0\right] dx = 4x \Big|_{-2}^{2} - \frac{x^3}{3} \Big|_{-2}^{2} = 4(2 - (-2)) - \left(\frac{2^3 - (-2)^3}{3}\right) = \frac{32}{3}$$

**2.** 
$$f(x) = 4 - x^2$$
,  $g(x) = 8 - 2x^2$ ,  $a = -2$ ,  $b = 2$ .

Respuesta.-

$$\int_{-2}^{2} \left[8 - 2x^2 - (4 - x^2)\right] dx = \int_{-2}^{2} 4 - x^2 dx = \frac{32}{3} \text{ (por ejercicio 1)}$$

**3.** 
$$f(x) = x^3 + x^2$$
,  $g(x) = x^3 + 1$ ,  $a = -1$ ,  $b = 1$ .

Respuesta.-

$$\int_{-1}^{1} x^3 + 1 - (x^3 + x^2) \, dx = \int_{-1}^{1} 1 - x^2 \, dx = x \Big|_{-1}^{1} - \frac{x^3}{3} \Big|_{-1}^{1} = 2 - \frac{1 - (-1)}{3} = \frac{4}{3}$$

**4.** 
$$f(x) = x - x^2$$
,  $g(x) = -x$ ,  $a = 0$ ,  $b = 2$ 

Respuesta.-

$$\int_0^2 x - x^2 - (-x) \, dx = \int_0^2 2x - x^2 = 2\frac{x^2}{2} \Big|_0^2 - \frac{x^3}{3} \Big|_0^2 = 2\frac{2^2}{2} - \frac{2^3}{3} = \frac{4}{2}$$

**5.** 
$$f(x) = x^{1/3}$$
,  $g(x) = x^{1/2}$ ,  $a = 0$ ,  $b = 1$ 

Respuesta.-

$$\int_0^1 x^{1/3} - x^{1/2} \, dx = \frac{x^{1+1/3}}{1+1/3} \Big|_0^1 - \frac{x^{1+1/2}}{1+1/2} \Big|_0^1 = \frac{3}{4} - \frac{2}{3} = \frac{1}{12}$$

**6.** 
$$f(x) = x^{1/3}$$
,  $g(x) = x^{1/2}$ ,  $a = 1$ ,  $b = 2$ .

Respuesta.-

$$\int_{1}^{2} x^{1/2} - x^{1/3} \ dx = \frac{x^{1/2+1}}{1+1/2} \bigg|_{1}^{2} - \frac{x^{1/3}+1}{1+1/3} \bigg|_{1}^{2} = \frac{2^{1/2+1}-1}{1+1/2} - \frac{2^{1/3+1}}{1+1/3} = \frac{4\sqrt{2}}{3} - \frac{3\sqrt[3]{2}}{2} + \frac{1}{12}$$

**7.** 
$$f(x) = x^{1/3}$$
,  $g(x) = x^{1/2}$ ,  $a = 0$ ,  $b = 2$ 

Respuesta.- Sea

$$\int_0^1 |x^{1/3} - x^{1/2}| \ dx + \int_1^2 |x^{1/3} - x^{1/2}| \ dx$$

por los problemas 5 y 6 se tiene

$$\frac{1}{12} + \frac{4\sqrt{2}}{3} - \frac{3\sqrt[3]{2}}{2} + \frac{1}{12} = \frac{4\sqrt{2}}{3} - \frac{3\sqrt[3]{2}}{2} + \frac{1}{6}$$

**8.** 
$$f(x) = x^{1/2}$$
,  $g(x) = x^2$ ,  $a = 0$ ,  $b = 2$ 

Respuesta.-

$$\int_0^1 x^{1/2} - x^2 \, dx + \int_1^2 x^2 - x^{1/2} \, dx = \left( \frac{x^{1+1/2}}{1+1/2} \Big|_0^1 - \frac{x^3}{3} \Big|_0^1 \right) + \left( \frac{x^3}{3} \Big|_1^2 - \frac{x^{1+1/2}}{1+1/2} \Big|_1^2 \right)$$

$$= \left( \frac{1}{1+1/2} - \frac{1}{3} \right) + \left( \frac{2^3 - 1}{3} - \frac{2^{1+1/2} - 1}{1+1/2} \right)$$

$$= \frac{2}{3} - \frac{1}{3} + \frac{7}{3} - \frac{4\sqrt{2} - 2}{3}$$

$$= \frac{10}{3} - \frac{4\sqrt{2}}{3}$$

**9.** 
$$f(x) = x^2$$
,  $g(x) = x + 1$ ,  $a = -1$ ,  $b = (1 + \sqrt{5})/2$ 

Respuesta.

$$\int_{-1}^{(1-\sqrt{5})/2} x^2 - (x+1) dx + \int_{(1-\sqrt{5})/2}^{(1+\sqrt{5})/2} (x+1) - x^2 dx - =$$

$$= \int_{-1}^{(1-\sqrt{5})/2} x^2 - x - 1 \, dx + \int_{(1-\sqrt{5})/2}^{(1+\sqrt{5})/2} x + 1 - x^2 \, dx$$

$$= \left( \frac{x^3}{3} - \frac{x^2}{2} - x \right) \Big|_{-1}^{(1-\sqrt{5})/2} + \left( \frac{x^2}{2} + x - \frac{x^3}{3} \right) \Big|_{(1-\sqrt{5})/2}^{(1+\sqrt{5})/2}$$

$$= -\frac{3}{4} + \frac{5\sqrt{5}}{12} + \frac{5\sqrt{5}}{6}$$

$$= \frac{5\sqrt{5} - 3}{4}$$

**10.** 
$$f(x) = x(x^2 - 1), \quad g(x) = x, \quad a = -1, \quad b = \sqrt{2}$$

Respuesta.-

$$\int_{-1}^{0} x(x^{2} - 1) - x \, dx + \int_{0}^{\sqrt{2}} x - [x(x^{2} - 1)] \, dx = \int_{-1}^{0} x^{3} - 2x \, dx + \int_{0}^{\sqrt{2}} -x^{3} + 2x \, dx =$$

$$= \left(\frac{x^{4}}{4} - x^{2}\right) \Big|_{-1}^{0} + \left(-\frac{x^{4}}{4} + x^{2}\right) \Big|_{0}^{\sqrt{2}} = -\frac{1}{4} + 1 + (-1 + 2) = \frac{7}{4}$$

**11.** 
$$f(x) = |x|, \quad g(x) = x^2 - 1, \quad a = -1, \quad b = 1$$

Respuesta.- Definimos f de la siguiente manera:

$$f(x) = |x| = \begin{cases} -x & si & x \in [-1, 0) \\ x & si & x \in [0, 1] \end{cases}$$

Luego,

$$\int_{-1}^{1} f(x) - g(x) dx = \int_{-1}^{0} -x - x^{2} + 1 dx + \int_{0}^{1} x - x^{2} + 1 dx$$

$$= \left( -\frac{x^{2}}{2} - \frac{x^{3}}{3} + x \right) \Big|_{-1}^{0} + \left( \frac{x^{2}}{2} - \frac{x^{3}}{3} + x \right) \Big|_{0}^{1}$$

$$= \left( \frac{1}{2} - \frac{1}{3} + 1 \right) + \left( \frac{1}{2} - \frac{1}{3} + 1 \right)$$

$$= \frac{7}{3}$$

**12.** 
$$f(x) = |x+1|$$
,  $g(x) = x^2 - 2x$ ,  $a = 0$ ,  $b = 2$ 

Respuesta.- Definamos f de la siguiente manera:

$$f(x) = |x - 1| = \begin{cases} -(x + 1) & si \quad x \in [0, 1) \\ x + 1 & si \quad x \in [1, 2] \end{cases}$$

Entonces,

$$\int_{0}^{2} f(x) - g(x) dx = \int_{0}^{1} -(x - 1) - x^{2} + 2x dx + \int_{1}^{2} x - 1 - x^{2} + 2x dx$$

$$= \int_{0}^{1} -x^{2} + x + 1 dx + \int_{1}^{2} -x^{2} + 3x - 1 dx$$

$$= \left( -\frac{x^{3}}{3} + \frac{x^{2}}{2} + x \right) \Big|_{0}^{1} + \left( -\frac{x^{3}}{3} + \frac{3x^{2}}{2} - x \right) \Big|_{1}^{2}$$

$$= \left( -\frac{1}{3} + \frac{1}{2} + 1 \right) + \left( -\frac{8}{3} + 6 - 2 + \frac{1}{3} - \frac{3}{2} + 1 \right)$$

$$= \frac{7}{3}$$

**13.** 
$$f(x) = 2|x|$$
,  $g(x) = 1 - 3x^3$ ,  $a = -\sqrt{3}/3$ ,  $b = \frac{1}{3}$ 

Respuesta.- Definimos f de la siguiente manera:

$$f(x) = |x| = \begin{cases} -x & si & x \in [-\sqrt{3}/3, 0) \\ x & si & x \in [0, 1/3] \end{cases}$$

de donde se tiene,

$$\int_{-\frac{\sqrt{3}}{3}}^{\frac{1}{3}} g(x) - f(x) \, dx = \int_{-\frac{-\sqrt{3}}{3}}^{\frac{1}{3}} g(x) \, dx - \int_{-\frac{\sqrt{3}}{3}}^{\frac{1}{3}} f(x) \, dx$$

$$= \int_{-\frac{\sqrt{3}}{3}}^{\frac{1}{3}} 1 - 3x^3 \, dx - \int_{-\frac{\sqrt{3}}{3}}^{0} -2x \, dx - \int_{0}^{\frac{1}{3}} 2x \, dx$$

$$= \left(x - \frac{3}{4}x^4\right) \Big|_{-\frac{\sqrt{3}}{3}}^{\frac{1}{3}} + x^2 \Big|_{-\frac{\sqrt{3}}{3}}^{0} - x^2 \Big|_{0}^{\frac{1}{3}}$$

$$= \left(\frac{1}{3} - \frac{1}{108} + \frac{\sqrt{3}}{3} + \frac{1}{12}\right) + \left(-\frac{1}{3}\right) - \frac{1}{9}$$

$$= \frac{9\sqrt{3} - 1}{27}$$

**14.** 
$$f(x) = |x| + |x - 1|$$
,  $g(x) = 0$ ,  $a = -1$ ,  $b = 2$ 

Respuesta.- En este problema  $f(x) \ge g(x)$  en el intervalo [-1,2], por lo tanto

$$\int_{-1}^{2} f(x) - g(x) \, dx = \int_{-1}^{2} |x| + |x + 1| \, dx = \int_{-1}^{2} |x| \, dx + \int_{-1}^{2} |x - 1| \, dx$$

Definimos cada función por separado,

$$|x| = \begin{cases} -x & si & x \in [-1, 0) \\ x & si & x \in [0, 2] \end{cases}$$
$$|x - 1| = \begin{cases} -(x - 1) & si & x \in [-1, 1) \\ x - 1 & si & x \in [1, 2] \end{cases}$$

por lo tanto

$$\int_{-1}^{2} |x| \, dx + \int_{-1}^{2} |x - 1| \, dx = \int_{-1}^{0} -x \, dx + \int_{0}^{2} x \, dx + \int_{-1}^{1} -(x - 1) \, dx + \int_{1}^{2} x - 1 \, dx$$

$$= \left( -\frac{x^{2}}{2} \right) \Big|_{-1}^{0} + \left( \frac{x^{2}}{2} \right) \Big|_{0}^{2} + \left( -\frac{x^{2}}{2} \right) \Big|_{-1}^{1} + (x) \Big|_{-1}^{1} + \left( \frac{x^{2}}{2} \right) \Big|_{1}^{2} + (-x) \Big|_{1}^{2}$$

$$= \frac{1}{2} + 2 - \frac{1}{2} + \frac{1}{2} + 1 + 1 + 2 - \frac{1}{2} - 2 + 1$$

$$= 5$$

**15.** Las gráficas de  $f(x) = x^2$  y  $g(x) = cx^3$ , siendo c > 0, se cortan en los puntos (0,0) y  $(1/c, 1/c^2)$ . Determinar c de modo que la región limitada entre esas gráficas y sobre el intervalo [0,1/c] tengan área  $\frac{2}{3}$ .

Respuesta.- Tenemos que  $f \ge g$  en el intervalo [0, 1/c] de donde,

$$\int_0^{1/c} x^2 - cx^3 dx = \int_0^{1/c} x^2 dx - c \int_0^{1/c} x^3 dx = \frac{1}{12c^3}$$

luego  $\frac{1}{12c^3} = \frac{2}{3}$  por lo tanto  $c = \frac{1}{2}$ .

**16.** Sea  $f(x) = x - x^2$ , g(x) = ax. Determinar a para que la región situada por encima de la gráfica de g y por debajo de f tenga área frac92.

Respuesta.- Tomaremos los casos cuando a = 0, a > 0 y a < 0. Veamos primero que si  $g(x) \le f(x)$  entonces

$$f(x) - g(x) \ge 0 \Longrightarrow x - x^2 - ax \ge 0 \Longrightarrow (1 - a)x \ge x^2$$

de donde si x=0 se tiene una igualdad. Luego si  $x\neq 0$  entonces  $x\leq (1-a)$ . Ahora sea a<0 por suposición se tendrá 1-a>0, que nos muestra que el intervalo estará dado por [0,1-a]. Análogamente se tiene el intervalo [1-a,0] para a>0.

**C** 1. Si a = 0, esto no es posible ya que si a = 0 entonces g(x) = ax = 0 y entonces el área arriba del gráfico de g y debajo del gráfico de f es igual a

$$\int_0^1 x - x^2 \, dx = \left(\frac{x^2}{2} - \frac{x^3}{3}\right) \Big|_0^1 = \frac{1}{6} \neq \frac{9}{2}$$

C 2. Si a < 0,  $f(x) \ge g(x)$  para [0, 1-a], por lo que tenemos la zona, a(S) de la región entre las dos gráficas dadas por

$$\int_0^{1-a} x - x^2 - ax \, dx = (1-a) \int_0^{1-a} x \, dx - \int_0^{1-a} x^2 \, dx$$
$$= (1-a) \left(\frac{(1-a)^2}{2}\right) - \frac{(1-a)^3}{3}$$
$$= -\frac{(1-a)^3}{6}$$

así nos queda que

$$-\frac{(1-a)^3}{6} = \frac{9}{2} \Longrightarrow (1-a)^3 = -27 \Longrightarrow a = a$$

C 3. Sea a > 0 y  $f(x) \ge g(x)$  entonces [1 - a, 0] lo que

$$\int_{1-a}^{0} x - x^2 - ax \, dx = (1-a) \int_{1-a}^{0} x \, dx - \int_{1-a}^{0} x^2 \, dx$$
$$= (1-a) \left( -\frac{(1-a)^2}{2} - \frac{(1-a)^3}{2} \right)$$
$$= -\frac{(1-a)^3}{6}$$

Así igualando por  $\frac{9}{2}$  tenemos

$$-\frac{(1-a)^3}{6} = \frac{9}{2} \Longrightarrow (1-a)^3 = -27 \Longrightarrow a = 4$$

Por lo tanto los valores posibles para a son -2 y 4.

17. Hemos definido  $\pi$  como el área de un disco circular unidad. En el ejemplo 3 de la Sección 2.3, se ha demostrado que  $\pi = 2 \int_{-1}^{1} \sqrt{1-x^2} \ dx$ . Hacer uso de las propiedades de la integral para calcular la siguiente en función de  $\pi$ .

(a) 
$$\int_{-3}^{3} \sqrt{9-x^2} \, dx$$
.

Respuesta.- Por el teorema 19 de dilatación,  $\frac{1}{\frac{1}{3}} \int_{-3\frac{1}{3}}^{3\frac{1}{3}} \sqrt{9 - \left(\frac{x}{\frac{1}{3}}\right)^2} dx$ , de donde nos queda  $9 \int_{-1}^{1} \sqrt{1 - x^2} dx$ , por lo tanto y en función de  $\pi$  se tiene  $\frac{9}{2}\pi$ .

**(b)** 
$$\int_0^2 \sqrt{1 - \frac{1}{4}x^2} \ dx$$
.

Respuesta.- Similar al anterior ejercicio se tiene

$$\int_0^2 \sqrt{1 - \frac{1}{4}x^2} \, dx = 2 \int_0^1 \sqrt{1 - x^2} \, dx = \int_{-1}^1 \sqrt{1 - x^2} \, dx = \frac{\pi}{2}$$

(c) 
$$\int_{-2}^{2} (x-3)\sqrt{4-x^2} dx$$
.

Respuesta.- Comencemos usando la linealidad respecto al integrando de donde tenemos  $\int_{-2}^{2} x \sqrt{4-x^2} \ dx - 3 \int_{-2}^{2} \sqrt{4-x^2} \ dx$ . Luego por el problema 25 de la sección 1.26,  $\int_{-2}^{2} x \sqrt{4-x^2} \ dx = 0$ , de donde

$$-6\int_{-1}^{1} \sqrt{4 - 4x^2} \, dx = -12\int_{-1}^{1} \sqrt{1 - x^2} \, dx = -6\pi$$

18. Calcular las áreas de los dodecágonos regulares inscrito y circunscrito en un disco circular unidad y deducir del resultado las desigualdades  $3 < \pi < 12(2 - \sqrt{3})$ .

Respuesta.- Como estos son dodecágonos, el ángulo en el origen del círculo de cada sector triangular es  $2\pi/12 = \pi/6$ , y el ángulo de los triángulos rectángulos formado al dividir cada uno de estos sectores por la mitad es entonces  $\pi/12$ . Luego usamos el hecho de que,

$$\tan\left(\frac{\pi}{12}\right) = 2 - \sqrt{2}, \qquad \sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{3} - 1}{2\sqrt{2}}, \qquad \cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{3} + 1}{2\sqrt{2}}$$

Ahora, para el dodecágono circunscrito tenemos el área del triángulo rectángulo T con base 1 dado por,

$$a(T) = \frac{1}{2}bh = \frac{1}{2} \cdot 1 \cdot (2 - \sqrt{3}) = 1 - \frac{\sqrt{3}}{2}.$$

Como hay 24 triángulos de este tipo en el dodecaedro, tenemos el área del dodecaedro circunscrito  $D_c$  dada por

$$a(D_c) = 24\left(\frac{1-\sqrt{3}}{2}\right) = 12(2-\sqrt{3})$$

Por otro lado para el dodecágono inscrito, consideramos el triángulo rectángulo T con hipotenusa 1 en el diagrama. La longitud de uno de los catetos viene dada por sen $\left(\frac{\pi}{12}\right) = \frac{\sqrt{3}-1}{2}$  y la otra por cos $\left(\frac{\pi}{12}\right)$ . Entonces el área del triángulo es,

$$a(T) = \frac{1}{2}bh = \frac{1}{2} \cdot \frac{\sqrt{3} - 1}{2\sqrt{2}} \cdot \frac{\sqrt{3} + 1}{2\sqrt{2}} = \frac{2}{16} = \frac{1}{8}.$$

Dado que hay 24 triángulos de este tipo en el dodecaedro inscrito,  $D_i$  tenemos,

$$a(D_i) = 24 \cdot \frac{1}{8} = 3$$

Por lo tanto, en vista de que el área del círculo unitario es, por definición  $\pi$  y se encuentra entre estos dos dodecaedros, tenemos,

$$3<\pi<12(2-\sqrt{3})$$

- **19.** Sea C la circunferencia unidad, cuya ecuación cartesiana es  $x^2 + y^2 = 1$ . Sea E el conjunto de puntos obtenido multiplicando la coordenada x de cada punto (x, y) de C por un factor constante a > 0 y la coordenada y por un factor constante b > 0. El conjunto E se denomina elipse. (Cuando a = b, la elipse es otra circunferencia.).
  - a) Demostrar que cada punto (x,y) de E satisface la ecuación cartesiana  $(x/a)^2 + (y/b)^2 = 1$ .

Demostración.- Sea  $E = \{(ax,by)/(x,y) \in C, a > 0, b > 0\}$ . Si (x,y) es un punto en E entonces  $\left(\frac{x}{a},\frac{y}{b}\right)$  es un punto es C, ya que todos los puntos de E se obtienen tomando un punto de C y multiplicando la coordenada x por a y la coordenada y por b. Por definición de C, se tiene

$$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$$

b) Utilizar las propiedades de la integral para demostrar que la región limitada por esa elipse es medible y que su área es  $\pi ab$ .

Demostración.- De la parte (a) sabemos que E es el conjunto de puntos (x,y) tales que  $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$ . Esto implica,

$$g(x) = b\sqrt{1 - ()^2}, \quad o \quad f(x) = -b\sqrt{1 - \left(\frac{x}{a}\right)^2}$$

Por lo tanto, el área de E es el área cerrada de -a, a.

Para demostrar que esta región es medible y tiene área  $\pi ab$ , comenzamos por mencionar

$$\pi = 2 \int_{-1}^{1} \sqrt{1 - x^2}$$

y por lo tanto

$$\pi b = 2 \int_{-1}^{1} b \sqrt{1 - x^2} \, dx$$

$$\pi ab = 2a \int_{-1}^{1} b \sqrt{1 - x^2} \, dx$$

$$\pi ab = 2 \int_{-a}^{a} \sqrt{1 - \left(\frac{1}{a}\right)^2} \, dx$$

$$\pi ab = \int_{-a}^{a} b \sqrt{1 - \frac{x}{a}} - \left(-b \sqrt{1 - \left(\frac{x}{a}\right)^2}\right) \, dx$$

Por lo tanto, sabemos que la integral de -a, a de g(x) - f(x) existe y tiene valor  $\pi ab$ , concluyendo que E es medible y  $a(E) = \pi ab$ .

**20.** El ejercicio 19 es una generalización del ejemplo 3 de la sección 2.3. Establecer y demostrar una generalización correspondiente al ejemplo 4 de la sección 2.3.

Demostración.- Para generalizar esto, procedemos de la siguiente manera. Sea f una función integrable no negativa en [a,b], y S sea el conjunto de ordenadas de f. Si aplicamos una transformación bajo la cual multiplicamos la coordinada x de cada punto (x,y) en la gráfica de f por una constante k>0 y cada coordinada y por una constante j>0, entonces obtenemos una nueva función g donde un punto (x,y) está en g si y sólo si  $\left(\frac{x}{k},\frac{y}{j}\right)$  está en f. Luego,

$$\frac{y}{j} = f\left(\frac{x}{k}\right) \Longrightarrow y = j \cdot f\left(\frac{x}{k}\right) \Longrightarrow g(x) = j \cdot j\left(\frac{x}{k}\right)$$

Sea jkS y denotamos el conjunto ordenado de g.

$$a(S) = \int_{a}^{b} f(x) \ dx$$

entonces

$$a(jsS) = \int_{ka}^{kb} g(x) dx$$
$$= j \cdot \int_{ka}^{kb} f\left(\frac{x}{k}\right) dx$$
$$= jk \cdot \int_{a}^{b} f(x) dx$$
$$= \int_{ka}^{kb} jk \cdot a(S) dx$$

 ${f 21.}$  Con un razonamiento parecido al del ejemplo 5 de la sección 2.3 demostrar el teorema 2.2.

Demostración.- Esta demostración ya fue dada junto a la definición del teorema 2.2.

## 1.5. Las funciones trigonométricas