

MACHINE LEARNING

Disusun oleh:

Sindhu Wardhana

Ade Satya Wahan

Aris Budi Santoso

Leonard Yulianus

Setelah mengikuti program pembelajaran, peserta diharapkan dapat:

Standar Kompetensi:

Menerapkan metode dan teknik machine learning tingkat dasar, evaluasi kualitas, dan validasi keakuratan model machine learning.

Kompetensi Dasar:

- Menjelaskan konsep dasar machine learning;
- 2. Menerapkan pendekatan supervised learning algorithms;
- 3. Menerapkan unsupervised learning algorithms;
- 4. Menerapkan evaluasi/ pengukuran kinerja model yang telah disusun; dan
- 5. Menerapkan optimisasi kinerja model.

"Ability to learn without being explicitly programmed" --- Arthur Samuel, 1959

"Learn from **experience** (E) with respect to some **task** (T) and some **performance** measure (P)" --- Tom Mitchell, 1997

Machine learning is a field of computer science that aims to teach computers how to learn and act without being explicitly programmed

--- https://deepai.org/machine-learning-glossary-and-terms/machine-learning

Machine learning untuk memprediksi cuaca

Prediksi cuaca keuangan

umum.

data riwayat indikator kecepatan angin, kelembaban udara, suhu, pembentukan awan, tingkat curah hujan pada lokasi tertentu

persentase kondisi cuaca yang diprediksi dengan tepat (akurasi)

TRADITIONAL PROGRAMMING VS MACHINE LEARNING

Orang menulis rule dalam bentuk kode aplikasi

Machine Learning:

Model (komputer) dilatih menggunakan data

contoh ril sederhana : klik di sini

Mehra, Sidharth & Hasanuzzaman, Mohammed. (2020). Detection of Offensive Language in Social Media Posts

BUT WHY MACHINE LEARNING?

No Human Experience Yet

Can't explain the experience

Many solutions adaptation

Situation changes

Large amount of Data

Human are too expensive

You wouldn't want be this guy

Checking all data by eyes and hands

Jumlah makanan yang dengan benar diklasifikasikan sebagai seafood

Mengubah daftar menu menjadi matrix/angka

Mengklasifikasikan label makanan sebagai seafood atau bukan seafood

Download daftar makanan dari internet

Dataset berisi makanan yang telah dilabeli seafood dan bukan seafood

Aplikasi Machine Learning di restoran seafood

ARTIFICIAL INTELLIGENCE

Programs with the ability to learn and reason like humans

MACHINE LEARNING

Algorithms with the ability to learn without being explicitly programmed

DEEP LEARNING

in which artificial neural networks adapt and learn from vast amounts of data

MACHINE LEARNING TYPES

Supervised

Unsupervised

Semisupervised

Reinforced Learning

 Menggunakan dataset tanpa label (E) untuk melihat/mempelajari pola (T)

Menggunakan data dg label dan tanpa label
 (E) untuk memprediksi / mempelajari pola (T)

 Menggunakan data hasil simulasi secara iterative (E) untuk mencapai tujuan (T) (memperbesar reward / mengurangi error)

SUPERVISED LEARNING

Supervised Learning

Kemenkeu Corporate University "CATS"

MACHINE

STEP Different Types Based on Target Variable

2: Predicting

CLASSIFICATION Sorting items into categories

REGRESSION Identifying real values (dollars, weight, etc.)

"NOT CATS"

Let's go to math...

Simple Math Notation on Training Step

X

		5	
x_1	[color = \dots , shape = \dots , texture = \dots]	orange	y_1
x_2	[color = \dots , shape = \dots , texture = \dots]	banana	y_2
x_3	[color = \dots , shape = \dots , texture = \dots]	apple	y_3
X_4	[color = , shape =, texture =]	banana	y_4
X ₅	[color =, shape =, texture =]	apple	V_5

feature vector representation

finding best f(x)to predict new data

 X_5

Some Supervised Learning Models

Linear Model

$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_i X_i$

Training = Find the optimal β

Related models

Logistic

Add sigmoid function

Polynomial

Add polynomial transformation

Lasso / Ridge

Add regularization term

Deep Neural Network

Stacking multiple linear model with non linear activation function

Tree Based

Training = Find the optimal **split**

Related models

Decision Tree

Create one tree

Random Forest

Create multiple tree

Ada / Gradient Boost

Create multiple tree sequentially based on info of previous tree

Let's Coba

Buka notebook di google colab

EVALUATION

Model Evaluations

But, how good is it's performance?

Ok, so I have a machine learning model now

Choose the correct performance metric

Pick a preferred evaluation approach/method

Analyse the result

lassification

- Confussion Matrix
 - Accuracy
 - Precision
 - Recall
 - F1-Score
- Area Under the Curve (AUC)

Regression

- Root Mean
 Squared Error
 (RMSE) / MSE
- Mean Squared Error (MAE)
- Other:
 - MAPE
 - Adj R² / R²

Classification Model Evaluations

Classificatio	n Cases
Confusion	Matrix

Binary example (one class set as positive / target)

Predicted Values (from Model)

Negative

Actual Values (Correct answers)

Positive	Negative
----------	----------

True Positive (TP)

False Negative (FN)

Type II error

False Positive (FP)

Type I error

True Negative (TN)

Accuracy:

percentage of test data that are correctly classified Accuracy = (TP + TN)/All

Error rate: 1 – accuracy, or

Error rate = (FP + FN)/AII

Classification Model Evaluations

Accuracy will have an issue when is used on imbalance target variable Imbalance = one class may be rare, e.g., fraud, or Scam

So, we need to consider the prediction false cost and use other metric

Let's discuss:

in a case of predicting scam, Which false is more costly?

Classification Model Evaluations

- Precision = when the costs of false positives are high
- Recall = when the cost of false negatives is high

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

F1 / F-score is an overall measure of a model's accuracy that combines precision and recall

Regression Model Evaluations

Mean Squared Error (MSE)

• Error (true – prediction), squared, get average, rooted if RMSE

MAE

• Error (true – prediction), turn to positive value (absolute), get average

Caveat

- Value can be from 0 to ∞
- Minimized is better
- Minimal means predictions are near true values

Regression Model Evaluations

Mean Squared Error (MSE)

Mean Absolute Error (MAE)

Both don't show indication on how good is the model But they are useful to compare model The best practice is to make a benchmark score

Other metric:

- R² / Adj R²
- MAPE

Let's Coba

Buka notebook di google colab

Model Evaluations

Ok, I've picked the best machine learning model

But, will it perform as good as it's training performance

Evaluation Method

We need Evaluation Method

Measure the model performance when used on unseen data

Differentiate data for train and evaluate models

Hold Out

Bootstrap CV

K - Fold CV

Hold Out Method (Splitting)

- No golden rules for splitting ratio (75:25, 80:20, 90:10)
- Important to make sure test data represents unseen new data
- Good approach if we have limited data
- Only gives one performance score

RapidMiner: Splitting Validation Widget

Bootstrapping Cross Validation

Use sampling on creating Training and Testing data (random / stratified)

Repeating K times and final score is the average of all performance score

Out-of-Bag problem

RapidMiner:
Bootstrap Validation Widget

K-Fold Cross Validation

Need more time to finish training process

RapidMiner: Cross Validation Widget

Let's Coba

Buka notebook di google colab

PERFORMANCE TUNING

Model Tuning

Maximizing model's performance but with an acceptable generalization level

Model Complexity

Accuracy vs Interpretability

Model complexity can be defined by:

- 1. How many parameters learned by the model
- 2. How difficult for human to explain the model
- 3. How well the model learned training data

Bias is the difference between the average predicted results of our model and the actual value.

Variance is the variability of our model's prediction of the data points that show the distribution of the data.

How to Tune

Use more/less complex model

Tuning Hyperparameter

GridSearchCV RandomizedSearchCV

Add new rows (introduce more data to lower variance) Add new / reduce columns (change complexity)

Combine uncorrelated models to make an unified model

ML Algorithm Alternatives

SUPERVISED LEARNING ALGORITHMS

- 1. K Nearest Neighbor
- 2. Naïve Bayes
- 3. Support Vector Machine
- 4. Logistic Regression
- 5. Decision Tree
- 6. Bagging: Random Forest
- 7. Boosting: AdaBoost, XGBoost, LGBM
- 8. Stacking: Voting, Stacking
- 9. Linear Model Family
- 10.Artificial Neural Network

K NEAREST NEIGHBOR (K-NN)

- Klasifikasi berdasarkan jarak antara titik (Eucleadean distance)
- Menggunakan sejumlah titik terdekat (k) sebagai penentu

Classification: class mode of neighbours Regression: mean of neighbour's values

NAÏVE BAYES ALGORITHMS

- Classification berdasarkan conditional probability, Bayes Theorem
- Asumsi bahwa setiap predictor tidak saling terkait

- c = Kelas/ kategori yang menjadi target prediksi
- X = Data yang akan diprediksi kelasnya
- x1, x2, x3, xn = Feature dari data X yang diprediksi kelasnya

NAÏVE BAYESIAN ALGORITHMS

No.	Outlook (O)	Temperature (T)	Humidity (H)	Play Golf (PG)	
1	sunny	hot	high	N	
2	sunny	mild	high	N	
3	overcast	hot	high	Y	
4	rain	mild	high	Y	Training Data
5	sunny	cool	normal	Y	
6	rain	cool	normal	N	
7	overcast	cool	normal	Y	
8	sunny	mild	high	?	
	·	·			

We want to predict unlabeled instance #8

$$P(PG = Y|i_8) \propto P(O = sunny|PG = Y)P(T = mild|PG = Y)P(H = high|PG = Y)P(PG = Y)$$

$$\propto \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{4}{7} = \frac{1}{28}$$

$$P(PG = N|i_8) \propto P(O = sunny|PG = N)P(T = mild|PG = N)P(H = high|PG = N)P(PG = N)$$

 $\propto \frac{2}{3} \times \frac{1}{3} \times \frac{2}{3} \times \frac{3}{7} = \frac{4}{63}$

P(PG=Y|i8) > P(PN=Y|i8) Sehinga kemungkinan Play Golf dengan kondisi i8 adalah NO

SUPPORT VECTOR MACHINE

- Menemukan hyperplane yang optimal untuk membagi data ke dalam 2 atau lebih kelas
- Hyperplane dapat linear maupun non linear
- Kernel Trick

Classification : SVC Regression : SVR

DECISSION TREE

Classification menggunakan alur berupa pohon keputusan

- 1. Menentukan root node
- Menghitung Entropy dan Information Gain secara iterasi
- Memilih atribut dengan Entropy paling rendah dan Information Gain paling tinggi

Classification : class mode of predicted nodes Regression : mean of predicted nodes

ENSEMBLE - BAGGING

Classification: RandomForest (mode) Regression: RandomForest (mean)

ENSEMBLE - BOOSTING

Classification : AdaBoost, XGB (mode) Regression : AdaBoost, XGB (mean)

ENSEMBLE - STACKING

Algorithm 1

:

Classification : Any classification models Regression : Any regression models

Linear Model Family

Input Layer

perceptron-c418ba445095

Linear Logistic Polynomial SGD Perceptron Lasso |w| Ridge w² Elastic Net

Hidden Layer

Activation function

- Sigmoid
- Tanh
- Relu
- Softmax
- etc

Output Layer

https://towardsdatascience.com/power-of-a-single-neuron-

Classification : Softmax on output layer Regression : no actiovation on output layer

ARTIFICIAL NEURAL NETWORK

Multilayer Perceptron

https://towardsdatascience.com/power-of-a-single-neuron-perceptron-c418ba445095

CLASSIFICATION ALGORITHMS

https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

Let's Coba

Buka notebook di google colab

