Nama : Muhamad Reski Mufiani

NIM : G.231.22.0081

Mata Kuliah : Struktur Data

PRAK 8. UAS PRAKTIKUM ALGORITMA C. DIJKSTRA SHORTEST PATH 2

1. Soal:

2. Hasil Visualisasi coding.

3. Algoritma Dijkstra shortest 0-6

> Membuat table untuk menentukan lintasan / jalur terpendek.

V	'0'	'1'	'2'	' 3'	'4'	' 5'	'6'

➤ Melihat node (v) 0 terhubung ke 2 node: 1 dan 2 kemudian mengisikan di kolom '0' = 0, '1' = 2, '2'=6.

	V	' 0'	' 1'	' 2'	' 3'	'4'	' 5'	' 6'
Ī	' 0'	0	2	6	8	∞	∞	∞
			(0-1)	(0-2)				
Ī								

Antara node '1' dan '2' lebih pendek '1' maka akan ditulis '1' dibawahnya. Dan diisi dengan jarak 0-1 = 2, 0-2 = 6, dan 0-1-3 = 7.

V	' 0'	'1'	'2'	'3'	' 4'	' 5'	'6'
'0'	0	2	6	∞	∞	∞	∞
		(0-1)	(0-2)				
'1'	0	2	6	7	∞	∞	∞
		(0-1)	(0-2)	(0-1-3)			

Kemudian dituliskan node 3 dan menuliskan jarak lintasannya seperti table dibawah ini :

V	'0'	'1'	'2'	' 3'	'4'	' 5'	'6'
' 0'	0	2	6	∞	∞	∞	8
		(0-1)	(0-2)				
'1'	0	2	6	7	∞	∞	8
		(0-1)	(0-2)	(0-1-3)			
'3'	0	2	6	7	17	22	∞
		(0-1)	(0-2)	(0-1-3)	(0-1-3-4)	(0-1-3-5)	

Kemudian lihat table diatas, node 4 dan node 5 lebih kecil nilai di node 4 maka node 4 akan dituliskan dibawahnya. Lalu tuliskan jarak node seperti table dibawah ini:

V	'0'	'1'	' 2'	' 3'	'4'	' 5'	'6'
' 0'	0	2	6	8	∞	∞	8
		(0-1)	(0-2)				
'1'	0	2	6	7	∞	∞	8
		(0-1)	(0-2)	(0-1-3)			
' 3'	0	2	6	7	17	22	∞
		(0-1)	(0-2)	(0-1-3)	(0-1-3-4)	(0-1-3-5)	
'4'	0	2	6	7	17	23	19
		(0-1)	(0-2)	(0-1-3)	(0-1-3-4)	(0-1-3-5)	(0-1-3-4-6)

➤ Dari table diatas dapat diambil kesimpulan Jarak terpendek lintasan dari 0-6 yaitu melewati lintasan: 0-1-3-4-6 dengan panjang lintasan 19.

4. Coding dan Hasil Coding

```
def get path weight(path):
 path weight = 0
 for index, value in enumerate(path):
   try:
     for j in graph[value]:
       if j['v'] == path[index + 1]:
           path weight += j['w']
  return path weight
def findShortpath(graph, start, end, path =[]):
 path = path + [start]
 shortest = None
 weights = None
 if start == end: return path
  for node in graph[start]:
      if node['v'] not in path:
         newpath = findShortpath(graph, node['v'], end, path)
```

```
#jika ada lintasan baru akan disimpan di new weight
    if newpath:
        new_weight = get_path_weight (newpath)

    #jika tdk ada weight / new weight lebiH kecil dari weights
maka lintasan terpendek (shortest) akan diganti ke newpath dan beban
(weights) akan diganti ke new_weight.
    if not weights or new_weight < weights:
        shortest = newpath
        weights = new_weight
    return shortest

#memanggil fungsi findShortpath dari titik 0 ke 6 dan mencari panjang
lintasan.
lintasan_terpendek = findShortpath(graph, '0', '6')
panjang_lintasan = get_path_weight(lintasan_terpendek)

print('Lintasan Terpendek :', lintasan_terpendek )
print('Panjang lintasan :', panjang_lintasan)</pre>
```

Hasil:

```
Lintasan Terpendek : ['0', '1', '3', '4', '6']
Panjang lintasan : 19
```