(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 7. Oktober 2004 (07.10.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/086432 A1

(51) Internationale Patentklassifikation⁷: H01G 4/30, H01C 1/144, 7/112, H01G 4/232

(21) Internationales Aktenzeichen: PCT/DE2004/000423

(22) Internationales Anmeldedatum:

4. März 2004 (04.03.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 103 13 891.9 27. März 2003 (27.03.2003) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): EPCOS AG [DE/DE]; St.-Martin-Strasse 53, 81669 München (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): FEICHTINGER, Thomas [AT/AT]; Tummelplatz 5, 8010 Graz (AT). PUD-MICH, Günter [AT/AT]; Grubweg 17 b, 8580 Köflach (AT). BRUNNER, Sebastian [AT/AT]; Autaler Str. 17 a,

8042 Graz (AT). KLEEWEIN, Alois [AT/AT]; Autaler Str. 23 B, 8042 Graz (AT). KRUMPHALS, Robert [AT/AT]; Karl-Hubmann Str. 1, 8530 Deutschlandsberg (AT).

- (74) Anwalt: EPPING HERMANN FISCHER PATENTAN-WALTSGESELLSCHAFT MBH; Ridlerstr. 55, 80339 München (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW,

[Fortsetzung auf der nächsten Seite]

- (54) Title: ELECTRIC MULTILAYER COMPONENT
- (54) Bezeichnung: ELEKTRISCHES VIELSCHICHTBAUELEMENT

- (57) Abstract: The invention relates to an electric multilayer component (1) comprising a base body (5) consisting of superimposed dielectric layers. Electroconductive electrode surfaces, in which electrodes (10A, 15A) are formed, are arranged at a distance between the dielectric layers. Said electrodes (10A, 15A) are brought into contact in an electroconductive manner by at least two solder globules (10, 15) for the electrical contact of the component. One such component has an especially high integration density of passive components and can be especially easily mounted on a substrate by means of a flip-chip mounting method.
- (57) Zusammenfassung: Es wird ein elektrisches Vielschichtbauelement (1) vorgeschlagen, das einen aus übereinandergestapelten Dielektrikumsschichten aufgebauten Grundkörper (5) aufweist. Zwischen den Dielektrikumsschichten sind elektrisch leitende Elektrodenflächen mit Abstand angeordnet in denen Elektroden (10A, 15A) ausgebildet sind. Diese Elektroden (10A, 15A) werden von zumindest zwei Lotkugeln (10, 15) zur elektrischen Kontaktierung des Bauelements elektrisch leitend kontaktiert. Ein derartiges Bauelement zeigt eine besonders hohe Integrationsdichte von passiven Bauelementen und läßt sich besonders einfach mittels

004/0864

GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— mit internationalem Recherchenbericht

vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen. 1

Elektrisches Vielschichtbauelement

Beschreibung

Die Erfindung betrifft ein elektrisches Vielschichtbauelement dessen Grundkörper aus übereinandergestapelten Dielektrikumsschichten aufgebaut ist, zwischen denen Elektrodenflächen angeordnet sind.

Derartige Vielschichtbauelemente können je nach Beschaffen-10 heit der Dielektrikumsschichten und der Elektrodenschichten als Kondensatoren, Varistoren oder temperaturabhängige Widerstände (Thermistoren) eingesetzt werden. Der Grundkörper von Varistoren ist häufig aus einer Mischung verschiedener Me-15 talloxide, zum Beispiel auf der Basis von Zinkoxid hergestellt. Varistoren weisen eine nicht-lineare spannungsabhängige Widerstandsänderung auf, die zum Schutz eines elektrischen Schaltkreises vor Überspannung benutzt wird. Der Widerstandswert von Varistoren sinkt dabei mit steigender anlie-20 gender Spannung. Vielschichtbauelemente, die als Kondensatoren ausgebildet sind können Rauschen bei hohen wie bei niedrigen Spannungen absorbieren.

Aus der Druckschrift DE 199 31 056 A1 ist ein Vielschichtvaristor bekannt, bei dem zur Senkung des Widerstandes nicht 25 überlappende Innenelektroden im Inneren des Grundkörpers angeordnet sind. Die Innenelektroden werden dabei auf den beiden Stirnseiten des Bauelements von großflächigen Kontaktschichten kontaktiert, die eine SMD-Montierung des Bauele-30 ments erlauben. Der Nachteil dieses herkömmlichen Bauelements besteht darin, daß aufgrund der großflächigen Kontaktschichten parasitäre Kapazitäten und Induktivitäten aufgebaut werden, die eine genaue Einstellung der elektrischen Charakteristika des Bauelements schwierig macht. Weiterhin benötigt 35 ein derartiges Bauelement aufgrund der großen Kontaktschichten entsprechend viel Platz bei der Montage auf zum Beispiel Platinen. Weiterhin sind vor allem auch Module in dieser Bau-

2

weise, in die mehrere dieser Bauelemente integriert sind, besonders groß und weisen damit eine besonders niedrige Integrationsdichte auf.

Aufgabe der vorliegenden Erfindung ist es, ein elektrisches Vielschichtbauelement mit hoher Integrationsdichte anzugeben, das zum einen deutlich reduzierte parasitäre Kapazitäten und Induktivitäten aufweist und zum anderen eine besonders einfache und platzsparende Montage auf zum Beispiel einer Platine erlaubt.

Diese Aufgabe wird erfindungsgemäß durch ein elektrisches Vielschichtbauelement nach Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen des Vielschichtbauelements sind Gegenstand von Unteransprüchen.

15

20

25

30

35

Die Erfindung beschreibt ein elektrisches Vielschichtbauelement, dessen Funktion ausgewählt ist aus Kondensator, temperaturabhängigen Widerstand und Varistor. Das Vielschichtbauelement weist einen aus übereinandergestapelten Dielektrikumsschichten aufgebauten Grundkörper auf, wobei im Grundkörper mehrere mit Abstand zwischen den Dielektrikumsschichten angeordnete elektrisch leitende Elektrodenflächen angeordnet sind, in denen Elektroden ausgebildet sind. Weiterhin sind zumindest zwei Lotkugeln (Bumps) zur elektrischen Kontaktierung des Bauelements auf der Oberfläche des Grundkörpers angeordnet, wobei eine Lotkugel jeweils über im Grundkörper angeordnete Durchkontaktierungen elektrisch leitend mit zumindest einer Elektrode verbunden ist, so daß ein erster und ein zweiter Elektrodenstapel ausgebildet ist. Elektrodenstapel im Sinne der Erfindung können dabei nicht nur mehrere Elektroden, sondern im Grenzfall auch nur eine Elektrode umfassen. Die elektrisch leitenden Durchkontaktierungen, die die Elektroden mit den Lotkugeln verbinden werden auch als Vias bezeichnet. Aufgrund der besonderen Kontaktierung der Elektroden ist es besonders einfach möglich mehrere passive Bauelemente, Varistoren, Thermistoren oder Kondensatoren in ein er-

3

findungsgemäßes elektrisches Vielschichtbauelement zu integrieren.

Ein weiterer Vorteil des erfindungsgemäßen elektrischen Bauelements gegenüber herkömmlichen Bauelementen, die beispielsweise in SMD-Bauweise ausgeführt sind, besteht darin, daß aufgrund der Lotkugeln, die zur elektrischen Kontaktierung der im Grundkörper angeordneten Elektroden dienen, eine wesentlich einfachere Kontaktierung des Bauelements im Vergleich zu herkömmlichen Bauelementen möglich ist. Die Lotkugeln beanspruchen in der Regel wesentlich weniger Platz auf der Oberfläche des Grundkörpers als großflächige Kontaktschichten, die bei herkömmlichen SMD-Kontaktierungen verwendet werden. Aufgrund der geringen Größe der Lotkugeln werden darüber hinaus die parasitären Kapazitäten und Induktivitäten im erfindungsgemäßen Bauelement erheblich reduziert. Aufgrund der geringen Größe der Lotkugeln und der Durchkontaktierungen ist es weiterhin möglich eine Vielzahl von Einzelbauelementen mit hoher Integrationsdichte in dem elektrischen Vielschichtbauelement zu integrieren, so daß besonders einfach Vielschichtbauelementmodule mit mehreren passiven Bauelementen aufgebaut werden können.

Ein Elektrodenstapel eines erfindungsgemäßen Vielschichtbauelements kann mehrere, in unterschiedlichen Elektrodenflächen angeordnete Elektroden umfassen, wobei diese Elektroden mittels der im Grundkörper angeordneten Durchkontaktierungen untereinander elektrisch leitend verbunden sind (siehe z.B. Figur 2B).

30

35

25

5

10

15

20

In einer vorteilhaften Ausgestaltung des erfindungsgemäßen Vielschichtbauelements stehen sich die zumindest zwei Elektrodenstapel im Grundkörper gegenüber, wobei zwischen den beiden Elektrodenstapeln ein Bereich des Grundkörpers vorhanden ist, der keine Elektrodenschichten aufweist. Dies bedeutet, daß die Elektroden des ersten und zweiten Elektrodenstapels nicht miteinander überlappen. Eine derartige Ausgestaltung

4

der Elektroden im Grundkörper ist besonders vorteilhaft dazu geeignet, den Widerstand des Bauelements je nach genauer Ausführung der Elektroden zu variieren.

In einer weiteren vorteilhaften Ausführungsform sind die Elektroden im Grundkörper überlappend angeordnet. Wenn Elektroden von dem unterschiedlichen ersten und zweiten Elektrodenstapel überlappen, kann im Überlappungsbereich der Elektroden von unterschiedlichen Elektrodenstapeln besonders einfach ein Kondensatoreffekt erzielt werden, wenn sie mit unterschiedlichen Potentialen beaufschlagt werden.

Weiterhin ist es möglich, zusätzliche, elektrisch leitende Elektroden im Grundkörper anzuordnen, die keine der Lotkugeln und keinen der Elektrodenstapel kontaktieren. Auf diese Weise können zwei getrennte überlappende Elektrodenstrukturen intern seriell verschaltet werden. Derart ausgestaltete Elektroden, vor allen Dingen wenn sie mit Elektroden des ersten oder zweiten Elektrodenstapels überlappen, sorgen für eine größere Gleichförmigkeit der elektrischen Charakteristika eines erfindungsgemäßen Vielschichtbauelements. Mittels dieser Elektroden lassen sich also erfindungsgemäße Vielschichtbauelemente herstellen, die ein besonders homogenes elektrisches Verhalten zeigen.

25

30

35

20

15

Vorteilhafterweise kann weiterhin ein dritter Elektrodenstapel, der zumindest eine zusätzlich vorhandene elektrisch leitende Elektrode umfaßt, im Grundkörper vorhanden sein und über Durchkontaktierungen elektrisch leitend mit einer dritten Lotkugel auf der Oberfläche des Grundkörpers verbunden sein. Die Elektrode des dritten Elektrodenstapels kann dann mit einer Elektrode des ersten und des zweiten Elektrodenstapels überlappen. Eine derartige Ausführungsform erlaubt die interne Verschaltung von mehreren passiven Bauelementen. Dadurch reduziert sich besonders vorteilhaft der Verschaltungs- und Verdrahtungsaufwand, wenn das Vielschichtbauelement auf einer Platine montiert wird, wobei auch Platz auf der Platine ein-

5

gespart wird. Der dritte Elektrodenstapel kann dabei z.B. als gemeinsame Massekontaktierung dienen.

In einer Ausführung der Erfindung überlappen die Elektroden des ersten und zweiten Elektrodenstapels nicht, wobei diese Elektroden dann vorteilhafterweise in erster Linie zur Variierung des Widerstandes des Vielschichtbauelements dienen. Diese Ausführung kann weiterhin vorteilhaft für den Aufbau von Bauelementen mit sehr kleinen Kapazitäten sein.

10

15

20

25

30

35

5

In einer weiteren Ausführungsform können der erste, zweite und dritte Elektrodenstapel jeweils eine Elektrode umfassen. Dabei überlappt dann nur die Elektrode des dritten Elektrodenstapels mit den Elektroden des ersten und zweiten Elektrodenstapels. Die Elektroden des ersten und zweiten Elektrodenstapels überlappen dabei nicht. Diese Ausführungsform erlaubt besonders einfach die Integration von Vielschichtkondensatoren im erfindungsgemäßen Vielschichtbauelement, wobei im Falle einer Verschaltung die Elektrode des dritten Elektrodenstapels jeweils das gleiche Potential hat und die Elektroden des zweiten und dritten Elektrodenstapels davon unterschiedliche Potentiale aufweisen können. Dabei können abgesehen vom zweiten und ersten Elektrodenstapel mit jeweils einer Elektrode noch weitere Elektrodenstapel mit jeweils einer Elektrode vorhanden sein, die mit der Elektrode des dritten Elektrodenstapels überlappen (siehe zum Beispiel Figur 9).

In einer weiteren, vorteilhaften Variante sind die Überlappungsflächen zwischen den Elektroden der unterschiedlichen Elektrodenstapel unterschiedlich groß. Wie bereits oben genannt kommt aufgrund der Überlappung von Elektroden unterschiedlicher Elektrodenstapel, die im Falle einer Verschaltung unterschiedliches Potential haben ein Kondensatoreffekt zustande. Dabei resultieren aufgrund der unterschiedlich großen Überlappungsflächen unterschiedliche Kapazitäten (siehe beispielsweise Figuren 3A und 3B). Dadurch läßt sich vorteilhafterweise eine weitere Variation der elektrischen Eigen-

6

schaften der einzelnen passiven Bauelemente in dem erfindungsgemäßen elektrischen Vielschichtbauelement erreichen. Dabei ist es möglich, daß die Überlappungsflächen zwischen den Elektroden des dritten Elektrodenstapels und den Elektroden des zweiten und ersten Elektrodenstapels ungleich groß sind (siehe beispielsweise Figuren 3A und 3B).

5

10

15

In erfindungsgemäßen Vielschichtbauelementen können weiterhin ein vierter und ein fünfter Elektrodenstapel aus elektrisch leitenden Elektroden vorhanden sein, die über Durchkontaktierungen mit einer vierten und fünften Lotkugel auf der Oberfläche des Grundkörpers vorhanden sind. Dabei überlappen die Elektroden des vierten Elektrodenstapels mit den Elektroden des zweiten und des fünften Elektrodenstapels (siehe beispielsweise Figuren 4A und 4B). Mittels dieser Ausführungsform lassen sich weitere besonders einfache interne Verschaltungen realisieren.

Ferner können weitere Elektrodenstapel, die mit Lotkugeln über Durchkontaktierungen verbunden sind, im Grundkörper vorhanden sein. Dadurch können weitere passive Bauelemente, beispielsweise die oben genannten Kondensatoren, Varistoren oder
Termistoren im erfindungsgemäßen Vielschichtbauelement angeordnet werden, so daß besonders viele Bauelemente bei hoher
Integrationsdichte auf besonders kleinem Volumen vorhanden
sind.

Im erfindungsgemäßen Vielschichtbauelement können dabei günstigerweise einige der Elektroden, die unterschiedlichen Elektrodenstapel angehören, elektrisch leitend miteinander verbunden sein (siehe beispielsweise Figur 8). Mittels dieser elektrischen Verbindungen lassen sich weitere besonders einfache und vorteilhafte, auf den jeweiligen Verwendungszweck angepaßte, interne Verschaltungen im erfindungsgemäßen Vielschichtbauelement realisieren.

7

Weiterhin ist es besonders vorteilhaft wenn alle Lotkugeln auf derselben Hauptoberfläche des Grundkörpers eines erfindungsgemäßen Vielschichtbauelements angeordnet sind. Dann ist es besonders einfach möglich, beispielsweise mittels Flip-Chip-Anordnung das Bauelement über die Lotkugeln mit einem Trägersubstrat zu verbinden. Die Flip-Chip-Bauweise erlaubt dabei ein besonders platzsparendes und einfaches Montieren eines erfindungsgemäßen Vielschichtbauelements auf einem Trägersubstrat.

10

15

20

25

5

Ferner können die Dielektrikumsschichten vorteilhafterweise ein keramisches Material umfassen, da Elektrokeramiken besonders geeignet sind. Das keramische Material kann damit eine Varistorkeramik auf der Basis von ZnO-Bi oder ZnO-Pr umfassen. Das keramische Material kann weiterhin eine Kondensatorkeramik umfassen, die ausgewählt ist aus sogenannten NPO-Keramiken, z.B. (Sm, Pa) NiCdO3. Diese Keramiken weisen temperaturabhängige ε_r-Werte auf und sind nicht ferroelektrische Keramiken. Weiterhin können auch ferroelektrische Keramiken mit hohen Dielektrizitätskonstanten, sowie dotiertes BaTiO3 und sog. Sperrschichtkeramiken verwendet werden. Diese dielektrischen Keramiken werden im Buch "Keramik" von H. Schaumburg (Hrsg.), B.G. Teubner-Verlag Stuttgart 1994 auf den Seiten 351 bis 352 und 363 beschrieben, wobei auf diese Seiten vollinhaltlich Bezug genommen wird. Darüber hinaus kann das keramische Material aus Thermistorkeramiken, NTC-Keramiken, z.B. Nickel Mangan Spinelle und Perowskite ausgewählt sein. Es können aber auch dielektrische nichtkeramische Materialien, z.B. Gläser verwendet werden.

30

35

Bei einer Ausführungsform eines erfindungsgemäßen Bauelements sind mindestens fünf Elektrodenstapel im Grundkörper vorhanden, wobei der Grundkörper eine Grundfläche aufweist, die kleiner als 2,5 mm² ist. Die fünf Lotkugeln zur Kontaktierung der Elektrodenstapel sind dabei auf derselben Hauptoberfläche angeordnet. Bei erfindungsgemäßen Vielschichtbauelementen mit mehr passiven integrierten Bauelementen können beispielsweise

8

mindestens neun Elektrodenstapel im Grundkörper vorhanden sein, wobei der Grundkörper eine Grundfläche aufweist die kleiner als 5 mm² ist. Zur elektrischen Kontaktierung der neun Elektrodenstapel sind neun Lotkugeln auf derselben Hauptoberfläche des Grundkörpers zur besonders einfachen Flip-Chip-Kontaktierung vorhanden. Wenn elf Elektrodenstapel im Grundkörper vorhanden sind, weist der Grundkörper in der Regel eine Grundfläche auf, die kleiner als 8 mm² ist, wobei die elf Lotkugeln zur Kontaktierung der Elektrodenstapel ebenfalls auf der selben Hauptoberfläche zur Flip-Chip-Kontaktierung angeordnet sind.

10

15

30

35

Weiterhin sind bei dem erfindungsgemäßen Bauelement vorteilhafterweise alle Dielektrikumschichten entweder eine Varistor-, Thermistor- oder Kondensatorkeramik, so daß keine Dielektrikumsschichten im Grundkörper vorhanden sind, die nicht eine dieser elektrischen Eigenschaften aufweisen.

Im folgenden soll das erfindungsgemäße Vielschichtbauelement anhand von schematischen Figuren und Ausführungsbeispielen noch näher erläutert werden.

Figur 1 zeigt ein herkömmliches Bauelement im Querschnitt.

Die Figuren 2A bis 9 zeigen verschiedene Ausführungsformen von erfindungsgemäßen Vielschichtbauelementen in der Aufsicht und im Querschnitt.

Figur 10 zeigt ein erfindungsgemäßes Vielschichtbauelement, das auf einem Trägersubstrat montiert ist.

Figur 1 zeigt ein herkömmliches keramisches Vielschichtbauelement, beispielsweise einem Varistor 4 im Querschnitt. Auf
sich gegenüberliegenden Stirnflächen des Bauelements sind
großflächige Kontaktschichten 2A und 2B angeordnet die im Inneren des Grundkörpers befindliche Elektroden 3 kontaktieren,
wobei zwei Elektrodenstapel gebildet werden, die jeweils nur

9

eine Kontaktschicht kontaktieren. Aufgrund der besonders großen Kontaktflächen 2A und 2B sind im erheblichen Umfang parasitäre Kapazitäten und Induktivitäten in diesem herkömmlichen Bauelement vorhanden. Weiterhin wird zur Montage dieses Bauelements auf einem Träger aufgrund der großen Kontaktflächen relativ viel Platz benötigt.

Figur 2A zeigt in der Aufsicht zwei verschiedene Ausführungsformen eines erfindungsgemäßen elektrischen Vielschichtbauelements. Dabei sind in der Aufsicht die Lotkugeln 10, 15 und 20 sowie weitere Lotkugeln zu erkennen. Weiterhin sind gestrichelt die Durchkontaktierungen 6 angedeutet, die sich unterhalb der Lotkugeln 10, 15 und 20 im keramischen Grundkörper befinden. Weiterhin sind jeweils die obersten Elektroden eingezeichnet, die in der Aufsicht zu sehen sind. Dabei ist eine erste Lotkugel 10 vorhanden, die eine erste Elektrode 10A kontaktiert. Dieser steht im Bauelement eine zweite Lotkugel 15 gegenüber, die eine zweite Elektrode 15A kontaktiert. Weiterhin ist eine dritte Lotkugel 20 vorhanden, die eine dritte Elektrode 20A elektrisch leitend kontaktiert. Darüber hinaus sind zwei weitere Elektroden 12 und 13 mit zwei weiteren Lotkugeln 12A und 13A zu erkennen, die relativ zur dritten Elektrode 20A die gleiche Position einnehmen, wie die erste und zweite Elektrode. Die Überlappungsbereiche zwischen den Elektrodenschichten, die unterschiedliche Lotkugeln kontaktieren, stellen Kondensatoren dar, so daß in der linken Aufsicht vier Kondensatoren im Bauelement vorhanden sind, während in der rechten Aufsicht dementsprechend acht Kondensatoren im Bauelement vorhanden sind.

30

35

25

5

10

15

20

Figur 2B zeigt einen Querschnitt durch die in Figur 2A in Aufsicht gezeigten Bauelemente entlang der mit A gekennzeichneten Linien. Dabei ist ein erster Elektrodenstapel 10B aus ersten Elektroden 10A zu erkennen, der über die Durchkontaktierungen, die Vias 6A, 6B elektrisch leitend mit der ersten Lotkugel 10 verbunden ist. Zwischen den Lotkugeln und den Durchkontaktierungen sind Under-bump-Metallisierungen (UBM) 7

10

angeordnet. Diese Under-bump-Metallisierungen müssen aber nicht vorhanden sein. Beispielsweise ist es möglich, daß die Lotkugeln auch auf den Durchkontaktierungen angeordnet sind. Weiterhin ist ein zweiter Elektrodenstapel 15B aus den zweiten Elektroden 15A vorhanden, der elektrisch leitend mit der zweiten Lotkugel 15 verbunden ist. Der erste Elektrodenstapel 10B und der zweite Elektrodenstapel 15B überlappen jeweils mit den Elektroden 20A des dritten Elektrodenstapels 20B, der über eine dritte Lotkugel 20 kontaktiert wird. Wenn an den unterschiedlichen Lotkugeln unterschiedliche Potentiale angelegt werden, kommt es in den Überlappungsbereichen zwischen Elektroden unterschiedlichen Potentials zu einem Kondensatoreffekt. Wenn darüber hinaus als Material für den Grundkörper 5 eine Varistorkeramik, beispielsweise auf der Basis von Zinkoxid verwendet wird, so läßt sich mittels dieses Bauele-15 ments eine interne Anordnung eines Varistors mit einem Kondensator realisieren. Vorteilhafterweise sind die Lotkugeln 10, 15, 20 auf einer Hauptoberfläche 300 des Grundkörpers angeordnet, wobei Durchkontaktierungen 6A, die näher an den Lotkugeln 10, 15, 20 sind, weiter entfernt von benachbarten 20 Stirnflächen 500, 600 sind, als Durchkontaktierungen 6B, die weiter von den Lotkugeln 10, 15, 20 entfernt sind. Dies kann unter anderem den Vorteil haben, daß auf diese Weise die zu den Stirnflächen benachbarten Lotkugeln 10, 15 weiter von den Stirnflächen entfernt sind, als sie es wären, wenn alle 25 Durchkontaktierungen 6A, 6B übereinander angeordnet wären. Dadurch wird unter anderem die Erzeugung der Lotkugeln und das Übereinanderstapeln der dielektrischen Schichten vereinfacht.

30

5

10

Figur 2C zeigt dabei ein Schaltbild des in Figur 2B mit einem Kreis versehenen Bereichs des Bauelements. Zu sehen ist, daß in diesem Bereich eine Parallelschaltung zwischen einem Varistor 50 und einem Kondensator 40 realisiert wird.

35

Figur 3A zeigt eine weitere vorteilhafte Ausführungsform eines erfindungsgemäßen Bauelements in der Aufsicht. Dabei ist

11

analog zu Figur 2A eine Anordnung aus einer ersten 10A, einer zweiten 15A und dritten Elektrode 20A zu sehen, die jeweils unterschiedliche Lotkugeln 10, 15 und 20 kontaktieren und überlappen. Im Unterschied zu Figur 2A werden allerdings unterschiedlich große Überlappungsflächen zwischen der ersten Elektrode 10A und der dritten Elektrode 20A auf der einen Seite und zwischen der zweiten Elektrode 15A und der dritten Elektrode 20A auf der anderen Seite realisiert. Diese unterschiedlich großen Überlappungsflächen sind in der Figur mit 21 und 22 gekennzeichnet. Aufgrund der unterschiedlich großen Überlappungsflächen lassen sich damit besonders einfach unterschiedlich große Kapazitäten realisieren. In dieser Aufsicht sind insgesamt zwölf Vielschichtkondensatoren im Bauelementgrundkörper angeordnet, wobei jeweils 4 Vielschichtkondensatoren über eine gemeinsame dritte Elektrode intern miteinander verschaltet sind.

10

15

20

Figur 3B zeigt einen Querschnitt durch die in Figur 3A mit B bezeichneten Linie. Dabei sind die unterschiedlich großen Überlappungsbereiche 21 und 22 zwischen den ersten Elektroden 10A und den dritten Elektroden 20A und zwischen den zweiten Elektroden 15A und den dritten Elektroden 20A deutlich zu sehen.

25 Figur 4A zeigt in der Aufsicht eine weitere Ausführungsform eines erfindungsgemäßen Vielschichtbauelements. Im Gegensatz zu den bisher gezeigten Ausführungsformen kontaktiert hier die zweite Elektrode 15A abgesehen von der dritten Elektrode 20A auch noch die mit einer vierten Lotkugel 25 verbundene vierte Elektrode 25A. Weiterhin ist eine fünfte Lotkugel 30 30 vorhanden, die elektrisch leitend mit einer fünften Elektrode 30A verbunden ist und nur mit der vierten Elektrode 25A überlappt. Die vierte zusätzliche Elektrode überlappt also sowohl mit der zweiten, als auch mit der fünften Elektrode. Mit Hilfe dieser Anordnung lassen sich besonders einfach weitere in-35 terne Verschaltungen in erfindungsgemäßen Vielschichtbauelementen realisieren. In der Aufsicht dieses Bauelements sind

12

insgesamt sechzehn Vielschichtkondensatoren zu erkennen, die jeweils an den Überlappungsbereichen zwischen den Elektroden unterschiedlicher Elektrodenstapel gebildet werden, wobei jeweils acht Vielschichtkondensatoren intern miteinander verschaltet sind.

5

10

15

20

25

30

35

Figur 4B zeigt einen Querschnitt durch das in Figur 4A in der Aufsicht gezeigte Bauelement entlang der mit C gekennzeichneten Linie. Die dritten Elektroden 20A können über die dritte Lotkugel 20, und die vierten Elektroden 25A über die vierte Lotkugel 25 an die Masse kontaktiert werden.

Figur 5A zeigt eine Aufsicht einer Ausführungsform eines erfindungsgemäßen Vielschichtbauelements, in dem zwei Vielschichtkondensatoren realisiert sind, die intern nicht miteinander verschaltet sind.

Figur 5B zeigt einen Querschnitt durch die in Figur 5A mit D gekennzeichnete Linie. Zu sehen sind erste Elektroden 10A, die mit zweiten Elektroden 15A überlappen und jeweils mit den Lotkugeln 10 und 15 elektrisch leitend verbunden sind.

Figur 6A zeigt eine Aufsicht auf eine Ausführungsform des Vielschichtbauelements, bei der sich insgesamt acht Elektroden gegenüber stehen ohne sich zu überlappen, so daß ein Bereich 11 zwischen den Elektroden im Grundkörper vorhanden ist, der keine Elektroden aufweist. Derartige Anordnungen können beispielsweise dazu dienen, den Bauelement-Widerstand, die Varistor-Spannung oder die Kapazität beliebig zu verändern.

Figur 6B zeigt dabei einen Querschnitt durch die in Figur 6A mit E gekennzeichnete Linie. Die beiden Elektrodenstapel 10B und 15B stehen sich im Grundkörper 5 gegenüber, wobei zwischen beiden Elektrodenstapeln der Bereich 11 ohne Elektroden vorhanden ist.

13

Figur 7A zeigt in der Aufsicht eine Anordnung aus mit Lotkugeln 10 und 15 verbundenen Elektroden 10A und 15A und sogenannten schwebenden Elektroden 60, die von keiner Lotkugel kontaktiert werden. Diese zusätzlichen Elektrodenschichten können besonders vorteilhaft für eine größere Gleichförmigkeit der elektrischen Charakteristika des Bauelements sorgen.

Figur 7B zeigt einen Querschnitt durch die in Figur 7A mit F gekennzeichnete Linie. Dabei ist zu erkennen, daß die zusätzlichen, schwebenden Elektroden 60 mit den ersten Elektroden 10A und den zweiten Elektroden 15A überlappen.

Figur 8 zeigt eine weitere, günstige Variante eines erfindungsgemäßen Vielschichtbauelements, bei der Elektroden 20A und 80A die von unterschiedlichen Lotkugeln 20 und 80 kontaktiert werden elektrisch leitend über eine Verbindung 70 miteinander verbunden sind. Dadurch lassen sich besonders vorteilhaft weitere interne Verschaltungen in erfindungsgemäßen Bauelementen realisieren.

20

25

30

35

10

15

Figur 9 zeigt im Querschnitt eine weitere Variante eines erfindungsgemäßen Vielschichtbauelements, bei dem Elektroden 10A und 15A, die untereinander nicht überlappen, mit einer einzigen großen Elektrode 20A überlappen, die von einer Lotkugel 20 kontaktiert wird und beispielsweise an die Masse kontaktiert sein kann.

Figur 10 zeigt im Querschnitt eine Anordnung aus einem erfindungsgemäßen Bauelement 1, das über die Lotkugeln 10, 15, 20 über Anschlußflächen 90 im lichten Abstand mittels Flip-Chip-Bauweise auf ein Trägersubstrat 100 montiert ist. Die Flip-Chip-Bauweise ermöglicht eine besonders einfache, schnelle und kostengünstige Montage der erfindungsgemäßen Bauelemente, wobei diese Bauelemente direkt nebeneinander ohne größere Abstände auf dem Substrat 100 montiert werden können.

14

Die Durchkontaktierungen können bei allen gezeigten Ausführungsformen z.B. durch Erzeugen von Durchbohrungen, z.B. mittels eines Stanzwerkzeugs im Grundkörper erzeugt werden, wobei dann ein elektrisch leitfähiges Material, das ausgewählt ist aus: Ag, AgPd, AgPdPt, AgPt, Pd, Pt und Cu in den Durchbohrungen angeordnet wird. Die Durchkontaktierungen in Form von Durchbohrungen weisen dabei vorteilhafterweise einen abgerundeten Querschnitt, wie z.B. in Fig. 2A gezeigt auf, können aber auch eckige Querschnitte aufweisen. Die Durchbohrungen können vorteilhafterweise in den Dielektrikumsschichten 10 erzeugt werden, wobei dann das elektrisch leitfähige Material in die Durchbohrungen gefüllt wird. Die Durchkontaktierungen bilden im Grundkörper, wie z.B. in den Fig. 2A und 2B gezeigt Kanäle, die quer, bevorzugt senkrecht zu den Hauptoberflächen des keramischen Grundkörpers verlaufen. Auf den Hauptoberflä-15 chen bzw. nur auf einer Hauptoberfläche sind die Lotkugeln angeordnet. Anschließend können vorteilhafterweise die übereinandergestapelten Dielektrikumsschichten, z. B. keramische Grünfolien mit dem in den Durchbohrungen angeordneten elektrisch leitfähigen Material gemeinsam in einem Verfahrens-20 schritt gesintert werden, wobei der fertig gesinterte Grundkörper mit den Durchkontaktierungen gebildet wird. Die Sintertemperatur wird dabei abhängig von der Beschaffenheit der Dielektrikumsschichten gewählt, z.B. 1000°C bis 1300°C bei Varistorkeramiken und bei anderen Keramiken etwa Temperaturen 25 von 850°C bis 1100°C, z.B. bei Kondensatorkeramiken. Anschließend werden optional die Under-bump-Metallisierungen und die Lotkugeln erzeugt. Beispielsweise kann Lotpaste mittels Druckverfahren, z.B. im Siebdruckverfahren aufgebracht und dann aufgeschmolzen werden. Bei anderen Ausführungsformen 30 der Erfindung können die Lotkugeln auch aufgesetzt und dann aufgeschmolzen werden oder z.B. mittels Tauchbenetzung im heißen Lot (immersion solder bumping) erzeugt werden. Möglich ist auch das sog. stud bumping, bei dem ein Lotdraht aufgeschmolzen und dann abgeschnitten wird, wobei die Lotkugeln 35 erzeugt werden.

15

Die Erfindung beschränkt sich nicht auf die hier dargelegten Ausführungsbeispiele. Weitere Variationen sind vor allem bezüglich der Anzahl der im Grundkörper angeordneten passiven Bauelemente und ihrer internen Verschaltungen möglich.

16

Patentansprüche

- 1. Elektrisches Vielschichtbauelement (1),
- dessen Funktion ausgewählt ist aus:
- 5 Kondensator, temperaturabhängigem Widerstand und Varistor,
 - mit einem aus übereinandergestapelten, Dielektrikumsschichten aufgebauten Grundkörper (5),
 - mit mehreren im Grundkörper mit Abstand zwischen den Dielektrikumsschichten angeordneten elektrisch leitenden E-
- lektrodenflächen, in denen Elektroden (10A, 15A) ausgebildet sind,
 - mit zumindest zwei Lotkugeln (10, 15) zur elektrischen Kontaktierung des Bauelements, die auf der Oberfläche des Grundkörpers (5) angeordnet sind,
- wobei die Lotkugeln (10, 15) über im Grundkörper angeordnete Durchkontaktierungen (6) elektrisch leitend mit zumindest einer Elektrode (10A, 15A) verbunden sind, so daß ein erster und ein zweiter Elektrodenstapel (10B, 15B) ausgebildet sind, die jeweils nur eine Lotkugel (10,15) kontaktieren.
 - 2. Vielschichtbauelement nach dem vorhergehenden Anspruch,
 - bei dem mehrere, in unterschiedlichen Elektrodenflächen angeordnete Elektroden (10A) in einem Elektrodenstapel (10B) vorhanden sind,
 - wobei diese Elektroden (10A) mittels der im Grundkörper angeordneten Durchkontaktierungen (6) untereinander elektrisch leitend verbunden sind.
- 30 3. Vielschichtbauelement (1) nach einem der vorhergehenden Ansprüche,
 - bei dem sich die zumindest zwei Elektrodenstapel (10B, 15B) im Grundkörper (5) gegenüberstehen, wobei zwischen den beiden Elektrodenstapeln ein Bereich (11) des Grund-
- körpers (5) vorhanden ist, der keine Elektroden aufweist.
 - 4. Vielschichtbauelement nach einem der Ansprüche 1 oder 2,

17

- bei dem die Elektroden (10A, 15A) überlappend angeordnet sind.
- 5. Vielschichtbauelement (1) nach einem der vorhergehenden Ansprüche,
 - bei dem zusätzliche, elektrisch leitende Elektroden (60) im Grundkörper (5) vorhanden sind, die keine der Lotkugeln (10,15) kontaktieren.
- 10 6. Vielschichtbauelement nach dem vorhergehenden Anspruch,
 - bei dem die zusätzlichen Elektroden (60) mit den Elektroden den (10A, 15A) des ersten (10B) und zweiten Elektrodenstapels (15B) überlappen.
- 7. Vielschichtbauelement (1) nach einem der vorherigen Ansprüche,
 - bei dem zumindest ein dritter Elektrodenstapel (20B) der zumindest eine zusätzlich vorhandene elektrisch leitende Elektrode (20A) umfaßt im Grundkörper (5) angeordnet ist,
- und über Durchkontaktierungen (6) elektrisch leitend mit einer dritten Lotkugel (20) auf der Oberfläche des Grund-körpers verbunden ist,
 - wobei die zumindest eine Elektrode (20A) des dritten Elektrodenstapels (20B) mit einer Elektrode (10A, 15A) des ersten (10B) und des zweiten Elektrodenstapels (15B) über-
- lappt.

25

- 8. Vielschichtbauelement nach dem vorhergehenden Anspruch,
- wobei die Elektroden (10A, 15A) des ersten (10B) und des zweiten Elektrodenstapels (15B) nicht überlappen.
 - 9. Vielschichtbauelement nach einem der vorhergehenden Ansprüche 7 oder 8,
- bei dem der erste (10B), zweite (15B) und dritte Elektrodenstapel (20B) jeweils eine Elektrode (10A, 15A, 20A) umfassen.

18

- 10. Vielschichtbauelement nach einem der Ansprüche 7 bis 9,
- bei dem die Überlappungsflächen (21, 22) zwischen den Elektroden von unterschiedlichen Paaren von Elektrodenstapeln (10B, 15B, 20B) unterschiedlich groß sind.

5

- 11. Vielschichtbauelement nach dem vorhergehenden Anspruch,
- bei dem die Überlappungsflächen (21, 22) zwischen dem dritten Elektrodenstapel (20B) und dem zweiten (15B) und ersten Elektrodenstapel (10B) ungleich groß sind.

10

15

- 12. Vielschichtbauelement nach einem der Ansprüche 7 bis 11,
- bei dem ein vierter (25B) und ein fünfter Elektrodenstapel (30B) mit elektrisch leitenden Elektroden (25A, 30A) vorhanden sind, die über Durchkontaktierungen (6) jeweils mit einer vierten (25) und fünften Lotkugel (30) auf der Oberfläche des Grundkörpers (5) verbunden sind,
- wobei die Elektroden (25A) des vierten Elektrodenstapels (25B) mit den Elektroden (15A) des zweiten Elektroden-stapels (15B) und den Elektroden (30A) des fünften Elektrodenstapels (30B) überlappen.
- 13. Vielschichtbauelement nach einem der vorhergehenden Ansprüche,
- bei dem weitere Elektrodenstapel, die mit Lotkugeln verbunden sind im Grundkörper vorhanden sind.
 - 14. Vielschichtbauelement nach dem vorhergehenden Anspruch,
- bei dem zumindest einige der Elektroden (20A, 80A) von unterschiedlichen Elektrodenstapeln (20B, 80B) elektrisch leitend miteinander verbunden sind.
 - 15. Vielschichtbauelement nach einem der vorhergehenden Ansprüche,
- bei dem alle Lotkugeln auf derselben Grundfläche des Grundkörpers angeordnet sind.

19

- 16. Vielschichtbauelement nach einem der vorhergehenden Ansprüche,
- bei dem die Dielektrikumsschichten ein keramisches Material umfassen.

- 17. Vielschichtbauelement nach dem vorhergehenden Anspruch,
- bei dem das keramische Material eine Varistorkeramik auf der Basis von ZnO-Bi oder ZNO-Pr umfaßt.
- 10 18. Vielschichtbauelement nach Anspruch 16,
 - bei dem das keramische Material eine Kondensatorkeramik umfaßt, die aus folgenden Materialien ausgewählt ist:
 - NPO-Keramiken und dotiertes BaTiO3.
- 15 19. Vielschichtbauelement nach Anspruch 16,
 - bei dem das keramische Material aus folgenden NTC-Keramiken ausgewählt ist:
 - Nickel Mangan Spinelle und Perowskite.
- 20 20. Vielschichtbauelement nach einem der vorhergehenden Ansprüche,
 - bei dem die Dielektrikumsschichten nichtkeramisches Material umfassen, das Glas ist.
- 25 21. Vielschichtbauelement nach einem der vorhergehenden Ansprüche,
 - bei dem mindestens 5 Elektrodenstapel im Grundkörper vorhanden sind,
- bei dem der Grundkörper eine Grundfläche aufweist, die kleiner als 2,5 mm² ist,
 - wobei fünf Lotkugeln zur Kontaktierung der Elektrodenstapel auf derselben Hauptoberfläche angeordnet sind.
- 22. Vielschichtbauelement nach einem der vorhergehenden Ansprüche 1 bis 20,
 - bei dem mindestens 9 Elektrodenstapel im Grundkörper vorhanden sind,

20

- bei dem der Grundkörper eine Grundfläche aufweist, die kleiner als 5,12 mm² ist,
- wobei 9 Lotkugeln zur Kontaktierung der Elektrodenstapel auf derselben Hauptoberfläche angeordnet sind.

5

- 23. Vielschichtbauelement nach einem der vorhergehenden Ansprüche 1 bis 20,
- bei dem mindestens 11 Elektrodenstapel im Grundkörper vorhanden sind,
- bei dem der Grundkörper eine Grundfläche aufweist, die kleiner als 8 mm² ist,
 - wobei die 11 Lotkugeln zur Kontaktierung der Elektrodenstapel auf derselben Hauptoberfläche angeordnet sind.
- 15 24. Vielschichtbauelement nach einem der vorhergehenden Ansprüche,
 - bei dem die Durchkontaktierungen (6A, 6B) in Form von Kanälen im Grundkörper vorliegen, in denen ein elektrisch leitfähiges Material angeordnet ist.

20

- 25. Vielschichtbauelement nach dem vorhergehenden Anspruch,
- bei dem die Durchbohrungen einen runden oder rechteckigen Querschnitt aufweisen.
- 25 26. Vielschichtbauelement nach einem der Ansprüche 24 oder 25,
 - bei dem bei die Elektroden eines Elektrodenstapels durch mehrere in verschiedenen Dielektrikumsschichten angeordnete, gegeneinander versetzte Durchkontaktierungen elektrisch leitend verbunden sind.

30

- 27. Vielschichtbauelement nach dem vorhergehenden Anspruch,
- bei dem der Grundkörper zwei gegenüberliegende Hauptoberflächen (300, 400) und zwei Stirnflächen (500, 600) aufweist, wobei die Lotkugeln (10, 15) auf den Hauptoberflächen (300, 400) angeordnet sind,
- bei dem diejenigen Durchkontaktierungen (6A), die den Lotkugeln (10, 15) am nächsten sind, einen größeren Abstand

21

zu benachbarten Stirnflächen (500, 600) des Bauelements aufweisen, als die Durchkontaktierungen (6B), die weiter von den Lotkugeln (10, 15) entfernt sind.

- 5 28. Vielschichtbauelement nach Anspruch 24,
 - bei dem das elektrisch leitfähige Material aus folgenden Komponenten ausgewählt ist: Ag, AgPd, AgPt, AgPdPt, Pd, Pt und Cu.
- 10 29. Anordnung, ein Vielschichtbauelement (1) nach einem der vorhergehenden Ansprüche enthaltend,
 - mit einem Trägersubstrat (100), welches auf seiner Oberfläche Anschlußflächen (90) zur Kontaktierung des Bauelements aufweist,
- wobei das Vielschichtbauelement mittels der Lotkugeln 10, 15, 20) über die Anschlußflächen (90) im lichten Abstand zum Trägersubstrat (100) in Flip-Chip-Anordnung elektrisch leitend auf dem Trägersubstrat montiert ist.
- 30. Verfahren zur Herstellung eines Vielschichtbauelements mit den Verfahrensschritten:
 - A) ein Grundkörper (5) mit im Inneren angeordneten Elektroden (10A, 15A) und Durchkontaktierungen (6A, 6B) wird dadurch gebildet, daß ein Schichtstapel aus Dielektrikumsschichten mit Durchbohrungen und dazwischen angeordneten Elektroden (10A, 15A) erzeugt wird, wobei in den Durchbohrungen ein elektrisch leitfähiges Material angeordnet wird,
- B) auf den Durchkontaktierungen werden Lotkugeln (10, 15) erzeugt.
 - 31. Verfahren nach dem vorherigen Anspruch,

25

- bei dem im Verfahrensschritt A) ein Grundkörper mit zwei Hauptoberflächen (300, 400) und zumindest zwei Stirnflächen (500, 600) gebildet wird, wobei die Durchkontaktierungen (6A, 6B) in Form von quer zu den Hauptoberflächen

22

verlaufenden Kanälen im Inneren des Grundkörpers (5) erzeugt werden,

- bei dem im Verfahrensschritt B) die Lotkugeln auf den Hauptoberflächen erzeugt werden.

5

- 32. Verfahren nach einem der Ansprüche 30 oder 31,
- bei dem im Verfahrensschritt A) die Durchkontaktierungen (6A, 6B) in verschiedenen Dielektrikumsschichten erzeugt werden, wobei Durchkontaktierungen (6A, 6B) in benachbarten Dielektrikumsschichten gegeneinander versetzt erzeugt werden.
- 33. Verfahren nach einem der Ansprüche 30 bis 32,
- bei dem im Verfahrensschritt A) die Durchkontaktierungen (6A), die den Lotkugeln (10, 15) an nächsten sind, einen größeren Abstand zu benachbarten Stirnflächen (500, 600) aufweisen, als Durchkontaktierungen (6B), die weiter entfernt sind von den Lotkugeln (10, 15).

1/6

FIG 1 Stand der Technik

FIG 2A

PCT/DE2004/000423

2/6

FIG 2C

FIG 3A

FIG 3B

3/6

FIG 4A

FIG 4B

5/6

FIG 7A

PCT/DE2004/000423

FIG 9

FIG 10

INTERNATIONAL SEARCH REPORT

PCT/DE2004/000423 A. CLASSIFICATION OF SUBJECT MATTER IPC 7 H01G4/30 H01C H01G4/232 H01C1/144 H01C7/112 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) H01G H01C IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category ° 1,2,4-9, US 2002/071258 A1 (MOSLEY LARRY EUGENE) X 12,13, 13 June 2002 (2002-06-13) 15,16, 18,21-33 page 1, paragraph 16 - page 3, paragraph 26; figures 1a,2,3,5 10,11, 14,17,19 -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. ° Special categories of cited documents: "T" later document published after the International filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not cited to understand the principle or theory underlying the considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means in the art. "P" document published prior to the international filing date but "&" document member of the same patent family later than the priority date claimed Date of mailing of the international search report Date of the actual completion of the international search 15 September 2004 Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Frias Rebelo, A

Fax: (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

International Application No
PCT/DE2004/000423

A /A		C1/DE2004/000423		
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT			
Category °	Citation of document, with Indication, where appropriate, of the relevant passages	Relevant to claim No.		
X	US 6 351 369 B1 (TANIGUCHI MASAAKI ET AL) 26 February 2002 (2002-02-26)	1,2,4, 6-9,12, 13,15, 16, 24-26, 29-33		
A	column 5, line 49 - column 9, line 65; figures 1-8,17,18	5 10 11		
,		5,10,11, 14, 17-23,27		
X	US 6 370 010 B1 (TANIGUCHI MASAAKI ET AL) 9 April 2002 (2002-04-09)	1,2, 4-16, 24-26, 29-33		
A	column 5, line 57 - column 7, line 57; figures 1-4	3 17-23, 26-28		
Υ	DE 199 31 056 A (EPCOS AG) 25 January 2001 (2001-01-25) cited in the application	3		
Α	the whole document	1,2,4-33		
A	US 6 496 355 B1 (BROWN THOMAS ET AL) 17 December 2002 (2002-12-17) column 4, line 20 - column 5, line 65; figures 2A,2B,3A,3B,5	1-33		
A	US 5 369 390 A (LIN JUN-NUN ET AL) 29 November 1994 (1994-11-29) column 3, line 17 - line 23; table 2	17		
A	DE 101 20 253 A (EPCOS AG) 29 November 2001 (2001-11-29) page 3, line 32 - line 46	19		
A	US 2002/064669 A1 (KODA YASUNORI ET AL) 30 May 2002 (2002-05-30) column 2, paragraphs 30,31; figure 4	1-33		

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internationar Application No PCT/DE2004/000423

Patent document cited in search report		Publication date			ent family Publication ember(s) date	
US 2002071258	A1	13-06-2002	US	2002067587 A	1 06-06-2	002
US 6351369	B1	26-02-2002	JP JP DE TW	3337018 B 2001148324 A 10019838 A 470983 B	29-05-2 1 13-06-2	001 001
US 6370010	B1	09-04-2002	JP JP DE TW US US	3489728 B 2001118746 A 10019840 A 473751 B 2002071238 A 2003198006 A 6327134 B	27-04-2 1 10-05-2 21-01-2 1 13-06-2 1 23-10-2	001 001 002 002 003
DE 19931056	Α	25-01-2001	DE WO EP JP US	19931056 A 0103148 A 1200970 A 2004507069 T 6608547 B	2 11-01-2 2 02-05-2 04-03-2	001 002 004
US 6496355	B1	17-12-2002	CN DE GB JP	1412796 A 10240662 A 2382925 A 2003124062 A	1 10-04-2 11-06-2	003
US 5369390	A	29-11-1994	NONE			
DE 10120253	A	29-11-2001	DE AU CN WO EP JP	10120253 A: 6205001 A 1426588 T 0182314 A: 1277215 A: 2003532284 T	07-11-2 25-06-2 1 01-11-2	001 003 001 003
US 2002064669	A1	30-05-2002	JP DE DE EP US	11243034 A 69908445 D 69908445 T 0939061 A 6376085 B	2 06-05-2 1 01-09-1	003 004 999

INTERNATIONALER RECHERCHENBERICHT

onmos partenzoichem Pur/DE2004/000423

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 H01G4/30 H01C1/144

H01C7/112

H01G4/232

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 H01G H01C

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US 2002/071258 A1 (MOSLEY LARRY EUGENE) 13. Juni 2002 (2002-06-13)	1,2,4-9, 12,13, 15,16, 18,21-33
Υ	Seite 1, Absatz 16 - Seite 3, Absatz 26; Abbildungen 1a,2,3,5	3
A	Abbitaingen 14,2,5,5	10,11, 14,17,19
	 -/	

X	Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definlert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung,
- eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

15. September 2004

Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2

> NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Frias Rebelo, A

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/DE2004/000423

ALS WESENTLICH ANGESEHENE UNTERLAGEN (ategorie* Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr				
		Betr. Anspruch Nr.		
	US 6 351 369 B1 (TANIGUCHI MASAAKI ET AL) 26. Februar 2002 (2002-02-26)	1,2,4, 6-9,12, 13,15, 16, 24-26,		
į	Spalte 5, Zeile 49 - Spalte 9, Zeile 65; Abbildungen 1-8,17,18	29-33 3		
		5,10,11, 14, 17-23,27		
	US 6 370 010 B1 (TANIGUCHI MASAAKI ET AL) 9. April 2002 (2002-04-09)	1,2, 4-16, 24-26, 29-33		
	Spalte 5, Zeile 57 - Spalte 7, Zeile 57; Abbildungen 1-4	3 17-23, 26-28		
,	DE 199 31 056 A (EPCOS AG) 25. Januar 2001 (2001-01-25)	3		
	in der Anmeldung erwähnt das ganze Dokument 	1,2,4-33		
	US 6 496 355 B1 (BROWN THOMAS ET AL) 17. Dezember 2002 (2002-12-17) Spalte 4, Zeile 20 - Spalte 5, Zeile 65; Abbildungen 2A,2B,3A,3B,5	1-33		
	US 5 369 390 A (LIN JUN-NUN ET AL) 29. November 1994 (1994-11-29) Spalte 3, Zeile 17 - Zeile 23; Tabelle 2	17		
	DE 101 20 253 A (EPCOS AG) 29. November 2001 (2001-11-29) Seite 3, Zeile 32 - Zeile 46	19		
	US 2002/064669 A1 (KODA YASUNORI ET AL) 30. Mai 2002 (2002-05-30) Spalte 2, Absätze 30,31; Abbildung 4	1-33		

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen PCT/DE2004/000423

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US 2002071258	A1	13-06-2002	US	2002067587 A1	06-06-2002
US 6351369	B1	26-02-2002	JP JP DE TW	3337018 B2 2001148324 A 10019838 A1 470983 B	21-10-2002 29-05-2001 13-06-2001 01-01-2002
US 6370010	B1	09-04-2002	JP JP DE TW US US	3489728 B2 2001118746 A 10019840 A1 473751 B 2002071238 A1 2003198006 A1 6327134 B1	26-01-2004 27-04-2001 10-05-2001 21-01-2002 13-06-2002 23-10-2003 04-12-2001
DE 19931056	A	25-01-2001	DE WO EP JP US	19931056 A1 0103148 A2 1200970 A2 2004507069 T 6608547 B1	25-01-2001 11-01-2001 02-05-2002 04-03-2004 19-08-2003
US 6496355	B1	17-12-2002	CN DE GB JP	1412796 A 10240662 A1 2382925 A 2003124062 A	23-04-2003 10-04-2003 11-06-2003 25-04-2003
US 5369390	A	29-11-1994	KEI	NE	— — — — — — — — — — — — — — — — — — —
DE 10120253	A	29-11-2001	DE AU CN WO EP JP	10120253 A1 6205001 A 1426588 T 0182314 A1 1277215 A1 2003532284 T	29-11-2001 07-11-2001 25-06-2003 01-11-2001 22-01-2003 28-10-2003
US 2002064669	A1	30-05-2002	JP DE DE EP US	11243034 A 69908445 D1 69908445 T2 0939061 A1 6376085 B1	07-09-1999 10-07-2003 06-05-2004 01-09-1999 23-04-2002