

OpenCourseWare

- 1. Открытый доступ.
- 2. Учебные материалы «как есть».
- 3. Без поддержки процесса обучения.

Зачем ОСW?

- 1. Пиар.
- 2. Натуральный трафик.
- 3. Помощь учащимся.
- 4. Подготовка преподавателей к МООС.
- 5. «Перевёрнутые классы».

Более того

- 1. Гораздо дешевле в производстве.
- 2. И быстрее.
- 3. Не требуют участия преподавателя.
- 4. Помощь студентов.

Компоненты

- 1. Компессор.
- 2. Хранилище.
- 3. Загрузчик.
- 4. Система подготовки описаний.
- 5. Лекторий.
- 6. SSO.
- 7. Мобильные приложения.

Реализации

- 1. Лекторий МФТИ mipt.lectoriy.ru
- 2. OTУC opus.lectoriy.ru

Описание

Список лекций

0	Все состояния ▼ Все катего	рии 🕶		Все лекторы ▼ Все курсы ▼	Все коллекц	µии ▼										
D ‡Į	GUID †		video	название 🏗	состояние	категория	описание	subtitle	скц‡	лкт ‡↓	кпт ‡	РЦЗ ‡↓	отз ‡	ист‡	событие 🏗	редактировано 🏗
1	Biology-AddChapters-L01-Rebrikov-120910.01		~	Введение. Строение прокариот и эукариот	Финал	Биология	×	~	7	1	1	0	1	0	10 сентября 2012	5 февраля 2016, 00:17:14
2	Biology-AddChapters-L02-Korostin-120917.01		~	Методы секвенирования	Финал	Биология	×	~	7	1	1	0	0	0	17 сентября 2012	5 февраля 2016, 00:17:14
3	Biology-AddChapters-L03-Rebrikov-120924.01		~	Органеллы клетки (часть 1)	Финал	Биология	×	~	6	1	1	0	0	0	24 сентября 2012	5 февраля 2016, 00:17:15
4	Biology-AddChapters-L04-Rebrikov-121001.01	<u></u>	~	Органеллы клетки (часть 2)	Финал	Биология	×	~	6	1	1	0	0	0	1 октября 2012	5 февраля 2016, 00:17:15
5	Biology-AddChapters-L05-Rebrikov-121008.01		~	Митоз. Мейоз	Финал	Биология	×	~	9	1	1	0	3	0	8 октября 2012	5 февраля 2016, 00:17:15
6	Biology-AddChapters-L06-Rebrikov-121022.01	141	~	Молекулярная организация клетки	Финал	Биология	×	~	7	1	1	0	0	0	22 октября 2012	5 февраля 2016, 00:17:15
7	Biology-AddChapters-L07-Yavorsky-121105.01	Ą	~	Синергетика	Финал	Биология	×	~	15	1	1	0	0	0	5 ноября 2012	5 февраля 2016, 00:17:15
8	Biology-AddChapters-L08-Rebrikov-121112.01	IEI	~	Популяционная генетика. Генотип и социальная структура	Финал	Биология	×	~	5	1	0	0	1	0	12 ноября 2012	5 февраля 2016, 00:17:15
9	Biology-AddChapters-L09-Rebrikov-121126.01	121	~	Обыкновенное чудо генетики (часть 1)	Финал	Биология	×	~	9	1	1	0	0	0	26 ноября 2012	5 февраля 2016, 00:17:15
10	Biology-AddChapters-L10-Rebrikov-121203.02	6.1	~	Обыкновенное чудо генетики (часть 2)	Финал	Биология	×	V	4	1	1	0	0	0	3 декабря 2012	19 февраля 2016, 02:28:39
11	Biology-Basics-L01-Okshtein-140908.03	2	~	Химический состав клетки	Финал	Биология	×	~	6	1	1	0	7	0	8 сентября 2014	19 февраля 2016, 02:22:12
12	Biology-Basics-L02-Okshtein-140915.03		~	Стереоизомерия, нуклеиновые кислоты, липиды, мембрана	Финал	Биология	×	~	8	1	1	0	2	0	15 сентября 2014	5 февраля 2016, 00:17:16
13	Biology-Basics-L03-Okshtein-140922.04	W.	~	Транскрипция, трансляция	Финал	Биология	×	~	6	1	0	0	0	0	22 сентября 2014	5 февраля 2016, 00:17:16
14	Biology-Basics-L04-Okshtein-140929.04		~	Репликация ДНК. Ошибки в ДНК. Дыхание	Финал	Биология	×	~	4	1	0	0	6	0	29 сентября 2014	5 февраля 2016, 00:17:16

Плеер и секции

Дистанционные графы

6-я лекция из курса: Дискретный анализ

Конспекты

Тождественность частиц. Периодическая система химических элементов

7-я лекция из курса: Квантовая физика

Закон сохранения четности

Следующая секция начнется через 5:44

00:21 / 1:18:25

Если величина F сохраняется, то

$$\frac{d < F >}{dt} = 0.$$

Теперь нужно понять, справедливы ли законы из макрофизики в квантовой физике. В квантовой физике эволюция системы определятся эволюцией ψ -функции. Как записать законы сохранения с помощью ψ -функции?

Величина F сохраняется, если, она коммутирует с гамильтонианом системы:

$$[\hat{H}\hat{F}] = 0 = \hat{H}\hat{F} - \hat{F}\hat{H}$$
 — скобки Пуассона.

Пример 1 (для энергии)

$$\hat{H}\hat{H} - \hat{H}\hat{H} = 0$$

Пример 2 (для импульса)

$$\hat{p} = -i\hbar\frac{\partial}{\partial x} \quad \Rightarrow \quad \hat{H}\hat{p} - \hat{p}\hat{H} = -i\hbar\hat{H}\frac{\partial}{\partial x} + i\hbar\frac{\partial}{\partial x}\hat{H} = 0$$

Для углового момента это тоже верно.

В квантовой физике есть еще другие законы. Описание системы не должно зависеть от того, какую систему координат мы выбрали — правую или левую. Говорят, что это операция — операция инверсии.

$$\vec{r} \rightarrow -\vec{r}$$
.

Операция инверсии эквивалентна зеркальному отражению (см. рис. 7.1). Можно ли на самом деле однозначно выбрать лево и право?

магнитном поле

8-я лекция из курса: <u>Квантовая</u> физика

Предыдущая лекция

Квантовые числа. Магнитный момент атома

6-я лекция из курса: <u>Квантовая</u> физика

Поиск

максвелл

Q

Q Секции 42 Лекции 6 Курсы 4 Коллекции 1

Демонстрация. Маятник Максвелла

Лекция Движение твердого тела

Демонстрация маятника Максвелла

Взаимодействие частицы с электромагнитным полем (продолжение). Первая пара уравнений Максвелла

Лекция Теоретический вывод уравнений Максвелла

Действие частицы в электромагнитном поле. Обобщенный импульс частицы в электромагнитном поле. Уравнения движения частицы в поле. Вектора напряженности электрического и магнитного полей. Сила Лоренца. Первая пара уравнения Максвелла

Вторая пара уравнений Максвелла

Лекция Теоретический вывод уравнений Максвелла

Полное действие частицы и поля. Уравнения движения поля. Вторая пара уравнений Максвелла

Единственность решений уравнений Максвелла

Лекция Импульс электромагнитного поля. Принцип наименьшего действия

Начальные и граничные условия. Единственность решений уравнений Максвелла

Теоремы, лежащие в основе системы уравнений Максвелла

Лекция Вывод уравнений Максвелла

Теоремы, лежащие в основе системы уравнений <mark>Максвелл</mark>а. Теоремы Гаусса и о циркуляции для нахождения магнитного и

Мобильные приложения

Атакже

- 1. Поддержка YouTube.
- 2. HTML-конспекты.
- 3. Мультихостинг.
- 4. Кастомизация шаблонов.
- 5. И многое другое.

Пути монетизации

- 1. Продажа вузам как white-label.
- 2. Kaк SaaS.
- 3. Продажа натурального трафика.
- 4. Частичная интеграция в МегаЛекторий.

Спасибочки

Анна Манаенкова

manaenkova@pulsarvp.ru

dev@lectoriy.ru

+7 916 597-27-76

lectoriy.ru pulsarvp.ru