G

July 10, 2022

Contents

1	Imp	proper Integrals	1
	1.1	Infinite Intervals	1
	1.2	convergent, divergent	1
	1.3	infinite discontinuities	2
	1.4	comparison test for convergence or divergence	2

1 Improper Integrals

1.1 Infinite Intervals

$$\int_{a}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{a}^{b} f(x)dx$$

$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx \tag{1}$$

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{\infty} f(x)dx$$

1.2 convergent, divergent

The integrals with infinite intervals can be convergent or divergent, they are convergent if the limit exists, or divergent if the limit does not exist.

$$\int_{1}^{\infty} \frac{1}{x^{n}} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x^{n}} dx$$

$$= \lim_{b \to \infty} \int_{1}^{b} x^{-n} dx$$

$$= \lim_{b \to \infty} \left[\frac{x^{-n+1}}{-n+1} \right]$$

$$= \lim_{b \to \infty} \left[\frac{b^{-n+1}}{1-n} - \frac{1^{-n+1}}{1-n} \right]$$

$$= \frac{1}{1-n} \lim_{b \to \infty} \left[\frac{1}{b^{n-1}} - 1 \right]$$
(2)

So, $\int_1^\infty \frac{1}{x^n} dx$ converges if n > 1, and diverges if $n \le 1$.

Example:

$$\int_{-\infty}^{\infty} \frac{e^x}{1 + e^{2x}} dx$$

$$\lim_{a\to -\infty} \int_a^0 \frac{e^x}{1+e^{2x}} dx + \lim_{b\to \infty} \int_0^b \frac{e^x}{1+e^{2x}} dx$$

$$\int \frac{1}{1+u^2} du$$

$$u = e^x = du = e^x dx$$

 $\tan^{-1} e^x$

$$\lim_{a \to -\infty} \int_{a}^{0} \frac{e^{x}}{1 + e^{2x}} dx + \lim_{b \to \infty} \int_{0}^{b} \frac{e^{x}}{1 + e^{2x}} dx \tag{3}$$

$$\lim_{a \to -\infty} [\tan^{-1} e^x]_a^0 + \lim_{b \to \infty} [\tan^{-1} e^x]_0^b$$

$$\tan^{-1} 1 - \tan^{-1} 0 + \tan^{-1} \infty - \tan^{-1} 1$$

$$\frac{\pi}{4} - 0 + \frac{\pi}{2} - \frac{\pi}{4}$$

$$\frac{\pi}{2}$$

1.3 infinite discontinuities

Example:

$$\int_0^9 \frac{1}{\sqrt{x}} dx$$

$$\lim_{c \to 0^+} \int_c^9 \frac{1}{\sqrt{x}} dx$$
(4)

- 1. for b: $\lim_{c\to b^-} \int_a^c f(x)dx$
- 2. for a: $\lim_{c\to a^+} \int_c^b f(x)dx$
- 3. for c: $\lim_{d\to c^+} \int_a^d f(x)dx + \lim_{e\to c^-} \int_e^b f(x)dx$

1.4 comparison test for convergence or divergence

If $f(x) \ge g(x)$ on $[a, \infty]$, then if $\int_a^\infty f(x) dx$ is convergent, $\int_a^\infty g(x) dx$ is convergent, and if $\int_a^\infty g(x) dx$ is divergent, $\int_a^\infty f(x) dx$ is divergent.

Example:

$$\begin{split} &\int_1^\infty \frac{1}{x+\sin^2 x} dx \text{ and } \int_1^\infty \frac{1}{1+x} dx \\ &\sin x \leq 1 \\ &\sin^2 x \leq 1 \\ &x+\sin^2 x \leq 1+x \\ &\frac{1}{x+\sin^2 x} \geq \frac{1}{1+x} \\ &\lim_{b \to \infty} \int_1^b \frac{1}{1+x} dx \\ &\lim_{b \to \infty} [\ln|1+x|]_1^b \\ &\lim_{b \to \infty} [\ln(1+b) - \ln 2] = \infty \end{split}$$

So both equations are divergent.