Abstract

Notes on a formal semantics for GFX.

1. Judgements

In the rest of this paper we will assume give some fixed but unknown constraint system \mathcal{D} . We will assume that the program P is written using constraints from \mathcal{D} , and further that classes defined in P do not have a cyclic inheritance struture.

1.1 The Object constraint system, O

From P and \mathcal{D} we also generate a new constraint system O, the constraint system of *objects* over P and \mathcal{D} as follows. Let C, D range over names of classes in P, f over field names, m over method names, S, T over types, c over constraints in the underlying data constraint system \mathcal{D} . The constraints of O are given by:

(Const.) c,d ::= class(C) | S
$$\leq \overline{T}$$

| fields(x) = $\overline{f} : \overline{T}$
| mtype(x,m, \overline{x}) = (\overline{T} , c $\rightarrow T$))

The constraint system satisfies the following axioms and inference rules.

$$\frac{\text{class } C[\overline{X}](\overline{f}:\overline{T}) \text{ extends } D \dots \in P}{\vdash_{\mathcal{O}} C \unlhd D} \qquad (CLASS)$$

 $\overline{X}, \overline{f}: \overline{C\{e\}}$ type and value fields defined or inherited at class D

$$\overline{z}: D\{d\} \vdash_{O} \mathtt{fields}(z) = \overline{X}, \overline{f}: \overline{C\{e[z/\mathtt{this}], \mathtt{self} == z.f_1, d[z/\mathtt{self}]\}}$$
 (Fields)

$$\vdash_{\mathcal{O}} D[\overline{\mathsf{T}}](\overline{\mathsf{t}}).\mathsf{f}_{\mathbf{i}} = \mathsf{t}_{\mathbf{i}} \tag{Sel-V}$$

$$\vdash_{\mathcal{O}} D[\overline{\mathsf{T}}](\overline{\mathsf{t}}).\mathsf{X}_{i} = \mathsf{t}_{i} \tag{Sel-T}$$

$$\begin{split} & \text{m}(\overline{x}:\overline{E})\{c\}: F = \{\ldots\} \text{ defined or inherited at D} \\ & \frac{\theta = [z,\overline{z}/\text{this},\overline{x}]}{z: D\{d\} \vdash_{\mathcal{O}} \text{mtype}(z,m,\overline{z}) = (\overline{E},c \to F\{d[z/\text{self}]\})\theta} \text{ (MTYPE)} \end{split}$$

The constraint system \mathcal{C} is the (disjoint) conjunction \mathcal{D}, \mathcal{O} of the constraint systems \mathcal{D} and \mathcal{O} . (This requires the assumption that \mathcal{D} does not have any constraints in common with \mathcal{O} .)

Note: Figure out whether consistency checks need to be added.

2. Rules

2.1 Judgements

In the following Γ is a *well-typed context*, i.e. a (finite, possibly empty) sequence of formulas x : T, T type and constraints c satisfying:

- for any formula φ in the sequence all variables x (X) occuring in φ are defined by a declaration x : T (X type) in the sequence to the left of φ.
- 2. for any variable x (X), there is at most one formula x : T (X type) in Γ .

The judgements of interest are:

Type well-formedness $\Gamma \vdash T$ type

Subtyping $\Gamma \vdash S <: T$

Typing $\Gamma \vdash e : T$

Method ok $\Gamma \vdash M$ OK in C (method M is well-defined for the class C).

1

Field ok $\Gamma \vdash f : T$ OK in C (field f : T is well-defined for the class C).

Class ok $\Gamma \vdash \mathsf{Cl}\ \mathit{OK}$ (class definition $\mathsf{Cl}\ is\ ok$).

In defining these judgements we will use $\Gamma \vdash_{\mathcal{C}} c$, the judgement corresponding to the underlying constraint system. For simplicity, we define $\Gamma \vdash c$ to mean $\sigma(\Gamma) \vdash_{\mathcal{C}} c$, where the *constraint projection*, $\sigma(\Gamma)$ is defined thus:

 $\sigma(\varepsilon) = \text{true}$ $\sigma(x : C\{c\}, \Gamma) = c[x/\text{self}], \sigma(\Gamma)$ $\sigma(c, \Gamma) = c, \sigma(\Gamma)$

2.2 Well formedness rules

We posit a special type o (traditionally the type of propositions), and regard constraints as expressions of type o. See Figure ??.

3. Type inference rules

3.1 Expression typing judgement

Now we consider the rule for method invocation. Assume that in a type environment Γ the expressions \overline{e} have the types \overline{T} . Since the actual values of these expressions are not known, we shall assume that they take on some fixed but unknown values \bar{z} of type \bar{T} . Now for z as receiver, let us assume that the type $T \equiv C\{d\}$ has a method named m with signature $\overline{z}:\overline{Z},c\to U$. If there is no method named m for the class C then this method invocation cannot be type-checked. Without loss of generality we may assume that the parameters of this method are named \bar{z} , since we are free to choose variable names as we wish because of α-equivalence. Now in order for the method to be invocable, it must be the case that the types \overline{T} are subtypes of \overline{Z} . (Note that there are no occurrences of this in \overline{Z} : they have been replaced by z – see Section 1.1) Further, it must be the case that for these parameter values, the constraint c is entailed. Given all these assumptions it must be the case that the return type is U — with all the parameters \bar{z} existentially quantified.

2008/7/13

FX productions:

FX sub-typing and type-equivalence rules:

$$\frac{\Gamma, c \vdash S \unlhd T}{\Gamma \vdash S\{c\} \unlhd T} \quad (S\text{-Const-L}) \qquad \frac{\Gamma, self : S \vdash c \qquad \Gamma \vdash S \unlhd T}{\Gamma \vdash S \unlhd T\{c\}} \quad (S\text{-Const-R})$$

$$\frac{Gamma \vdash U \, type \qquad \Gamma \vdash S \unlhd T \qquad (x \, fresh)}{\Gamma \vdash x : U; S \unlhd T} \qquad \frac{Gamma \vdash t : U \qquad \Gamma \vdash S \unlhd T[t/x]}{\Gamma \vdash S \unlhd x; U : T} \quad (S\text{-Exists-R}) \qquad \qquad \frac{\Gamma \vdash S \unlhd T \qquad \Gamma \vdash T \unlhd S}{\Gamma \vdash S \equiv T} \quad (TYPE\text{-EQUIV})$$

Type judgement rules:

$$\Gamma, \mathbf{x} : \mathsf{T} \vdash \mathbf{x} : \mathsf{T} \{ \mathsf{self} == \mathbf{x} \} \ (\mathsf{T} \mathsf{-} \mathsf{VAR}) \quad \frac{\Gamma \vdash e : \mathsf{U} \quad \Gamma \vdash \mathsf{T} \ \mathsf{type}}{\Gamma \vdash e \ \mathsf{as} \ \mathsf{T} : \mathsf{T}} \ (\mathsf{T} \mathsf{-} \mathsf{CAST}) \qquad \frac{\Gamma \vdash e : \mathsf{S} \quad \Gamma, \mathbf{z} : \mathsf{S} \vdash \mathbf{z} \ \mathsf{has} \ \mathsf{f} : \mathsf{T} \quad (\mathbf{z} \ \mathsf{fresh})}{\Gamma \vdash e \ \mathsf{f} : (\mathbf{z} : \mathsf{S}; \mathsf{T})} \ (\mathsf{T} \mathsf{-} \mathsf{F} \mathsf{IELD})$$

$$\frac{\Gamma \vdash e : \mathsf{T} \quad \Gamma \vdash e : \mathsf{T}}{\Gamma \vdash \mathsf{e} : \mathsf{T}} \ \Gamma \vdash e : \mathsf{T} \quad \Gamma \vdash e : \mathsf{T} \quad \Gamma \vdash \mathsf{E} : \mathsf{T} \quad \mathsf{T} \vdash \mathsf{E} : \mathsf{T} \quad \mathsf{T} \vdash \mathsf{E} : \mathsf{T} \quad \mathsf{E} : \mathsf{T} \quad \mathsf{E} : \mathsf{T} \vdash \mathsf{E} : \mathsf{T} \quad \mathsf{E} : \mathsf{$$

Transition Rules:

$$\begin{split} \frac{\text{fields}(\mathsf{C}) = \overline{\mathsf{C}} \ \overline{\mathsf{f}}}{(\mathsf{new} \ \mathsf{C}(\overline{\mathsf{e}})).f_i \to \mathsf{e}_i} & (R\text{-}\mathsf{Field}) & \frac{\mathit{mbody}(\mathsf{new} \ \mathsf{C}(\overline{\mathsf{e}}),\mathsf{m},\overline{\mathsf{d}}) = \mathsf{e}}{(\mathsf{new} \ \mathsf{C}(\overline{\mathsf{e}})).\mathsf{m}(\overline{\mathsf{d}}) \to \mathsf{e}} & (R\text{-}\mathsf{Invk}) \\ \\ \frac{\mathsf{F} \ \mathsf{C} <: \mathsf{T}[\mathsf{new} \ \mathsf{C}(\overline{\mathsf{d}})/\mathsf{self}]}{(\mathsf{T})(\mathsf{new} \ \mathsf{C}(\overline{\mathsf{d}})) \to \mathsf{new} \ \mathit{C}(\overline{\mathsf{d}})} & (R\text{-}\mathsf{CAST}) & \frac{\mathsf{e} \to \mathsf{e}'}{\mathsf{e}.\mathsf{m}(\overline{\mathsf{e}}) \to \mathsf{e}'.\mathsf{m}(\overline{\mathsf{e}})} & (R\text{-}\mathsf{CInvk}\text{-}\mathsf{Recv}) \\ \\ \frac{\mathsf{e} \to \mathsf{e}'}{\mathsf{e}.f_i \to \mathsf{e}'.f_i} & (R\text{-}\mathsf{CInvk} \to \mathsf{e}, \dots) \to \mathsf{e}.\mathsf{m}(\dots,\mathsf{e}_i',\dots) & (R\text{-}\mathsf{Invk} \to \mathsf{Arg}) \\ \\ \frac{\mathsf{e} \to \mathsf{e}'}{(\mathsf{T})\mathsf{e} \to (\mathsf{T})\mathsf{e}'} & (R\text{-}\mathsf{CAST}) & \frac{\mathsf{e}_i \to \mathsf{e}_i'}{\mathsf{e}.\mathsf{m}(\dots,\mathsf{e}_i,\dots) \to \mathsf{e}.\mathsf{m}(\dots,\mathsf{e}_i',\dots)} & (R\text{-}\mathsf{CNew} \to \mathsf{Arg}) \\ \\ \end{array}$$

Figure 1. Semantics of FX

2 2008/7/13

Additional rules for FX(G): No additional rules for sub-typing, type-equivalence, expression typing or dynamic semantics.

FX(G)=FX + these productions:

```
\begin{array}{cccc} (Par\ Type) & V & ::= & type \\ (Type) & T & ::= & X \\ (Const.) & c & ::= & X \unlhd N \\ \textbf{Additional}\ FX(G) & \textbf{well-formedness rule:} \\ \end{array}
```

 $\Gamma, X : type \vdash X type (Type Var)$

Additional rules for FX(D(C)): Only the following rules are needed; no additional rules are needed for sub-typing, type-equivalence, expression typing or dynamic semantics.

FX(D(C))=FX + these productions:

C specifies predicates q and functions f.

$$\begin{array}{lll} & (Type) & T & ::= & \text{new base types, e.g. int, boolean} \\ & (Const.) & c & ::= & t == t \mid q(\overline{t}) \\ & (C \ Term) & t & ::= & x \mid f(\overline{t}) \mid t.f \mid \text{new } C(\overline{t}) \\ & \textbf{Additional FX} \big(D(\mathcal{C}) \big) & \textbf{well-formedness rule:} \\ \end{array}$$

$$\begin{split} & \text{I FX}(\mathsf{D}(\mathcal{C})) \text{ well-formedness rule:} \\ & \frac{p(\overline{T}) : \mathsf{o} \in \mathcal{C} \quad \Gamma \vdash \overline{\mathsf{t}} : \overline{\mathsf{T}}}{\Gamma \vdash p(\overline{T}) : \mathsf{o}} \qquad (P_{RED}) \\ & \frac{\mathbf{f}(\overline{T}) : \mathsf{T} \in \mathcal{C} \quad \Gamma \vdash \overline{\mathsf{t}} : \overline{\mathsf{T}}}{\Gamma \vdash \mathbf{f}(\overline{T}) : \mathsf{T}} \qquad (F_{UN}) \end{split}$$

(PRED)

$$\frac{ \begin{matrix} \Gamma \vdash \textbf{t}_0 : \textbf{T}_0 & \Gamma \vdash \textbf{t}_1 : \textbf{T}_1 \\ (\Gamma \vdash \textbf{T}_0 <: \textbf{T}_1 \lor \Gamma \vdash \textbf{T}_1 <: \textbf{T}_0) \end{matrix}}{ \Gamma \vdash \textbf{t}_0 = \textbf{t}_1 : \textbf{0} } \ (\text{EQUALS})$$

Additional rules for FX(G): None. Additional rules for $FX(G,D(\mathcal{C}),P)$: Only the following rules are needed; no additional rules are needed for sub-typing, type-equivalence, expression typing or dynamic semantics.

$$(Path)$$
 p $::=$ $x \mid p.f$ $(Type)$ T $::=$ p

$$\frac{\Gamma \vdash p : T \qquad \Gamma, x : T \vdash x \text{ has } X \colon \mathsf{type}}{\Gamma \vdash p. X \text{ type}} \tag{PATH}$$

Figure 2. Semantics for FX(G), FX(D(C)), FX(G,D(C)), FX(G,D(C),P)

2008/7/13 3