ยินดีต้อนรับ 2

<u>ยินดีต้อนรับ</u> ทุก ๆ คนเข้าสู้ CEDT MOCK EXAM โครงการดีย์ ๆ ที่จะพาทุกคนไปพบกับ "ข้อสอบ" ที่ออกแบบโดยนิสิต CEDT ที่มีวัตถุประสงค์ในการทบทวนเนื้อหาของรายวิชาต่าง ๆ ก่อนที่จะไปสอบในสนามจริง เริ่มต้นโครงการด้วยข้อสอบที่ออกจำลองมาจาก Computer Programming Midterm โดยมีเนื้อหาทั้งหมด 4 บทด้วยกัน คือ String / Expression, Selection, Repetition และ Array ซึ่งทุก ๆ คนได้จะทบทวนกันผ่านโจทย์แต่ละข้อของเราอย่างแน่นอน

ขอจบช่วงสาหร่าย ต่อไปเป็นสาระ(?)

เนื่องด้วยความแค้นที่มีต่อข้อสอบ Quiz 1 ของวิชา Computer Engineering Mathematics ที่เพิ่งสอบไปได้ไม่นาน (นับจากวันที่แต่งโจทย์) ผู้แต่งจึงขอแต่งโจทย์ข้อนี้ขึ้นเพื่อเป็นการระบายแรงแค้นให้ทุก ๆ คนได้ทบทวนเนื้อหา ComProg

จงเขียนโปรแกรม เพื่อรับเข้า matrix (คำอธิบายอยู่ด้านล่างสุด) ขนาด $m \times n$ ที่มี element เป็นจำนวนเต็มทั้งหมด โดยกำหนดให้เรียกแถว (Row) ที่อยู่ด้านบนสุดของ matrix ว่า แถวที่ 1 และ กำหนดให้เรียกหลัก (Column) ที่อยู่ด้านซ้ายสุดของ matrix ว่า หลักที่ 1 จากนั้นดำเนินการตามขั้นตอนที่ระบุไว้ภายในผังงาน (flowchart) ดังต่อไปนี้

โดยที่ SCALE, PIVOT และ SWAP เป็น "การดำเนินการแบบแถว" (Row Operation) ซึ่งแต่ละรูปแบบของ การดำเนินการ รับค่า parameter ที่ต่างกัน และให้ผลลัพธ์ที่ต่างกัน ดังนี้ 1. SCALE รับค่า parameter 2 ค่า คือ a และ k โดยที่ การกระทำแบบ SCALE จะคูณค่าใน แถวที่ a ด้วยค่าคงที่ k เช่น

SCALE:
$$a = 2, k = 3$$

$$\begin{bmatrix} c & d & e & f \\ p & q & r & s \\ w & x & y & z \end{bmatrix} \xrightarrow{\text{SCALE}} \begin{bmatrix} c & d & e & f \\ 3p & 3q & 3r & 3s \\ w & x & y & z \end{bmatrix}$$

2. PIVOT รับค่า parameter 3 ค่า คือ a, b และ k โดยที่ การกระทำแบบ PIVOT จะบวกค่าใน แถวที่ a ด้วยผลลัพธ์ จากการคูณค่าใน แถวที่ b ด้วยค่าคงที่ k เช่น

PIVOT:
$$a = 2, b = 3, k = 2$$

3. SWAP รับค่า parameter 2 ค่า คือ a และ b โดยที่ การกระทำแบบ SWAP จะสลับค่าใน แถวที่ a และแถวที่ b เช่น

SWAP:
$$a = 2, b = 3$$

ข้อมูลนำเข้า

บรรทัดแรก รับจำนวนเต็มบวก m และ n แทนจำนวนแถวและหลักของ matrix $(2 \le m, n \le 20)$

บรรทัดที่ 2 ถึง m+1 รับค่าจำนวนเต็ม n จำนวน $\epsilon_1,\epsilon_2,\epsilon_3,\cdots$, ϵ_n แทนค่าในแต่ละแถวของ matrix

 $(-100 \le \epsilon_i \le 100$ สำหรับทุก $i \in \{1, 2, 3, \cdots, n\})$

หลายบรรทัดต่อมา รับค่าตามเงื่อนไขที่ระบุในผังงาน ($1 \le a, b \le m$ และ $-20 \le k \le 20$)

ข้อมูลส่งออก

 $m{m}$ บรรทัด สำหรับบรรทัดที่ i แสดงผลจำนวนเต็ม n จำนวน แทนค่าในแถวที่ i ของ matrix โดยค่าในแถวเดียวกัน จะถูกคั่นด้วยช่องว่าง " " (1 whitespace)

ตัวอย่าง

3 2 \\ size: 3 rows 2 columns 10 12 \\ row 1 14 15 \\ row 2 17 18 \\ row 3 1 2 4 \\ SCALE: a = 2, k = 4 -1 \\ stop	10 12 56 60 17 18	คำอธิบาย สร้าง matrix ขนาด 3x2 แล้วทำ SCALE ในแถวที่ 2 ด้วยค่าคงที่ 4 $ \begin{bmatrix} 10 & 12 \\ 14 & 15 \\ 17 & 18 \end{bmatrix} $
3 2 \\ size: 3 rows 2 columns 10 12 \\ row 1 14 15 \\ row 2 17 18 \\ row 3 2 3 1 4 \\ PIVOT: a = 3, b = 1, k = 4 -1 \\ stop	10 12 14 15 57 66	คำอธิบายสร้าง matrix ขนาด 3x2แล้วทำ PIVOT ในแถวที่ 3 ด้วยแถวที่ 1, ค่าคงที่ 4
3 2 \\ size: 3 rows 2 columns 10 12 \\ row 1 14 15 \\ row 2 17 18 \\ row 3 3 1 3 \\ SWAP: a = 1, b = 3 -1 \\ stop	17 18 14 15 10 12	คำอธิบาย สร้าง matrix ขนาด 3x2 แล้วทำ SWAP ในแถวที่ 1 และแถวที่ 3
3 2 10 12 14 15 17 18 1 2 4 2 3 1 4 3 1 3 -1	57 66 56 60 10 12	ไม่มีการอธิบายเพิ่มเติมสำหรับตัวอย่างนี้

		T
3 2 10 12 14 15 17 18 3 1 3 2 3 1 4 1 2 3 -1	17 18 42 45 78 84	ไม่มีการอธิบายเพิ่มเติมสำหรับตัวอย่างนี้
3 4 2 3 2 0 5 2 5 0 1 5 6 2 2 1 3 -2 2 2 3 -5 1 1 -1 1 2 -1 3 1 3 2 2 3 -3 2 3 2 -3 2 3 2 3 1 3 -1 -1	1 5 6 2 0 1 25 10 0 0 55 22	ไม่มีการอธิบายเพิ่มเติมสำหรับตัวอย่างนี้

** คำอธิบายของ "matrix" **

matrix ในที่นี้ สามารถมองเป็น $\frac{2}{3}$ array $\frac{2}{3}$ ลิติ ได้ โดย*สำหรับบริบทของข้อน*ี้จะเป็น $\frac{2}{3}$ array $\frac{2}{3}$ ลิติที่เก็บค่าทุกค่าเป็น $\frac{2}{3}$ ลามารถมองเป็น $\frac{2}{3}$ ลามารถมองเป็น

matrix A

