Advanced Networking on Cloud

René Serral < rene.serral@upc.edu>

Agenda

- Introduction
- Evolution of network topologies
- AWS VPN
- VPC Peering
- Transit Gateway

Agenda

- Introduction
- Evolution of network topologies
- > AWS VPN
- VPC Peering
- Transit Gateway

Introduction

- Company networks are complex
 - They many involve hybrid scenarios
 - Employees working from home
 - \triangleleft
- The network needs to adapt to diverse business needs
- Often networks have complex routing policies

Introduction

- Public cloud providers offer predefined networking solutions to ease adoption
- Configuration automation
- With ease of use
- Simple yet powerful to guarantee easy transition to cloud

Agenda

- Introduction
- Evolution of network topologies
- > AWS VPN
- VPC Peering
- Transit Gateway

Legacy Topologies

- 2-Tier topology
- 3-Tier topology
- Spine-Leaf topology

2-Tier Topology

- Easy and cheap topology
- Single point of failure on the distribution layer
- Good for in/out traffic on the data-center

3-Tier Topology

- More complex and expensive
- Better reliability through redundancy
- Uses spanning tree protocol

North-South Traffic

Core Layer

Layer

Layer

Spine-Leaf Topology

- Good Scalability
- Good compromise
- Uses SBP or TRILL and ECMP
- Normally Speed Ratio of 3:1

Cloud Topologies

Which is the goal of topologies in the cloud?

Cloud Topologies

Which is the goal of topologies in the cloud?

- Interconnect various VPC
- Interconnect various Regions
- Allow hybrid deployments
- \triangleleft

Cloud Topologies

- Full-Mesh
- Partial-Mesh
- Hub-Spoke

Full-Mesh Topology

- Allows the interconnection among all VPC
- Consistent number of hops to get to the destination
- Costly to maintain (n − 1)
- Security policies are tricky

Partial-Mesh Topology

- Easier to maintain
- Variable number of hops to get to the destination
- Complicated routing tables
- Security policies are tricky

Hub and Spoke (Star) Topology

- Easier to maintain
- Variable number of hops to get to the destination
- Simplified routing tables
- Easier Security policies

Agenda

- Introduction
- Evolution of network topologies
- **AWS VPN**
- VPC Peering
- Transit Gateway

- Secure (encrypted) communications
- Overlay network that allows the "direct" interconnection between two Internet locations
- Traffic encapsulation

- Secure (encrypted)communications
- Different topologies
 - From Host to Host
 - From Host to Site
 - From Site to Site

- Secure (encrypted)communications
- Different topologies
 - From Host to Host
 - From Host to Site
 - From Site to Site

- Secure (encrypted)communications
- Different topologies
 - From Host to Host
 - From Host to Site
 - From Site to Site

VPN - Protocols

- IPSec Oldest reliable solution supported everywhere
- OpenVPN Poor man's VPN but well supported
- Wireguard New kid on the block

Managed AWS

VPN on AWS¹

- Allow easy connectivity on hybrid deployments
- Uses OpenVPN by default
- Severe bandwidth limits

Client CIDR range: 10.0.0.0/22

¹ https://docs.aws.amazon.com/vpn/latest/clientvpn-admin/scenario.html

Agenda

- Introduction
- Evolution of network topologies
- > AWS VPN
- VPC Peering
- Transit Gateway

VPC Peering¹

Point-to-Point internal AWS connection

- Interconnects two different VPC
- Building stone for more complex topologies

AWS VPC Peering Connections¹

- Private connections within AWS regions
- All services can interact with each other (with exceptions)
- There is no need of using a gateway, VPN connection, or network appliance
- It uses exclusively the private IP space
- All inter-Region traffic is encrypted with no single point of failure, or bandwidth bottleneck
- Traffic always stays on the global AWS backbone

¹ https://docs.aws.amazon.com/vpc/latest/peering/vpc-peering-basics.html

VPC Peering: Limitations

- Max. 1 Peering between the two same VPC
- No access to the DNS of the peer VPC
- No overlaping CIDR blocks
- No transitive peering
- It is not possible to create security group rules referencing the peer's security rules

VPC Peering

- Why do you think it is not massively used in AWS?
 - Scalability problems
 - Routing problems
 - Manual configuration
 - All of the above

Lab 1

Interconnect two AWS regions using an AWS VPC Peering connection

Agenda

- Introduction
- Evolution of network topologies
- > AWS VPN
- VPC Peering
- Transit Gateway

What's the problem with Peering?

- Hard to configure for large networks
- It is not easy to route traffic among the peers – needs to be done manually
- Security becomes a nightmare

Transit Gateway¹

- Ubiquitous interconnection
- From company premises
- From other AWS regions
- From Direct Connect

Customer gateway

VPN connection

Create virtual private network (VPN) connections between your AWS Transit Gateway and on-premises gateways

Amazon VPC

Traffic is encrypted on the AWS global private network

AWS Transit Gateway

Route all traffic to and from each VPN or thousands of VPCs, with one place to manage and monitor it all

¹ https://aws.amazon.com/transit-gateway/

Transit Gateway

- Deliver applications around the world
- Rapidly move to global scale
- Smoothly respond to spikes in demand
- Host multicast applications on AWS

Customer gateway

VPN connection

Create virtual private network (VPN) connections between your AWS Transit Gateway and on-premises gateways

AWS Transit Gateway

Route all traffic to and from each VPN or thousands of VPCs, with one place to manage and monitor it all

Transit Gateway

- Manage growth
- Highly scalable cloud router
- Better visibility across virtual private clouds or edge connections
- Internal AWS private connections and encryption

Amazon VPC

Traffic is encrypted on the AWS global private network

Customer gateway

VPN connection

Create virtual private network (VPN) connections between your AWS Transit Gateway and on-premises gateways

AWS Transit Gateway

Route all traffic to and from each VPN or thousands of VPCs, with one place to manage and monitor it all

TG on Azure¹

- It is called Virtual WAN
- Global Transit infrastructure
- Hub and spoke architecture

TG on GCP¹

- It's called NetworkConnectivity Center
- Yet another implementation of Hubn-Spoke topology

https://googlecloudarchitect.us/transit-gateway-equivalent-in-gcp/

Lab 2

- Similar to Lab 1
- Create three different VPC:
 - Oregon
 - N. Virginia
 - N. Virginia
- Connect the three of them through a Transit Gateway
- Setup all the traffic to go to the Internet through the Transit Gateway¹

https://docs.aws.amazon.com/vpc/latest/tgw/transit-gateway-nat-igw.html