(1) Text, §34, Exercise 12. Use the reflection principle (§28) to show that for all z, (a) $\overline{\sin z} = \sin \overline{z}$; (b) $\overline{\cos z} = \cos \overline{z}$.

Theorem[Reflection Principle] Suppose that a function f is analytic in some domain D which contains a segment of the x-axis and is symmetric with respect to this segment. Then

$$\overline{f(z)} = f(\overline{z})$$

for each point $z \in D$ if and only if f(x) is real for each point x on the segment.

Solution:

(a) We know that $\sin z$ is entire and the complex plane is symmetric with respect to the x-axis. Since

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$
$$= \frac{2i \sin x}{2i} \in \mathbb{R}$$

by the reflection principle $\overline{\sin z} = \sin \overline{z}$.

Note this can be shown computationally by §34 equation (13) as follows, let z = x + iy, then

$$\begin{split} \sin(\overline{z}) &= \sin(x - iy) = \sin x \cosh(-y) + i \cos(x) \sinh(-y) \\ &= \sin x \cosh y - i \cos x \sinh y \\ &= \text{Re}(\sin(x + iy)) - i \text{Im}(\sin(x + iy)) \\ &= \overline{\sin(z)} \end{split}$$

(b) Similarly, we know that $\cos z$ is entire and the complex plane is symmetric with respect to the x-axis. Since

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$
$$= \frac{2\cos x}{2} \in \mathbb{R}$$

by the reflection principle, $\overline{\cos z} = \cos \overline{z}$.

(2) Text, §36, Exercise 3. Solve the equation $\cos z = \sqrt{2}$ for z.

Solution: Since

$$\cos z = \sqrt{2} \Longleftrightarrow \cos^{-1} \sqrt{2} = z$$

we must solve
$$\cos^{-1} \sqrt{2} = z$$
. We have $z = \cos^{-1} \sqrt{2} = -i \log[\sqrt{2} + i(1 - (\sqrt{2})^2)^{1/2}]$ (by §36 equation (3)) $= -i \log[\sqrt{2} + i(-1)^{1/2}]$ $= -i \log[\sqrt{2} \pm 1]$ $= -i \left(\ln(\sqrt{2} \pm 1) + 2n\pi i\right)$ (since $\log z = \text{Log}z + 2n\pi i$ for $n \in \mathbb{Z}$) $= -i \ln(\sqrt{2} \pm 1) + 2n\pi$ for $n \in \mathbb{Z}$)

(3) Exercise J. Directly from the defining equations, verify that $\cos(z) = \cosh(iz)$ and $\sin(z) = -i \sinh(iz)$. Explain why this means that \cos is obtained by the composition of a rotation with \cosh . Now explain how to write the sine function as a composition of several functions.

Solution: By equation (1) in §35 and equation (1) in §34 we have

$$\sinh(iz) = \frac{e^{iz} - e^{-iz}}{2}$$
$$= i\left(\frac{e^{iz} - e^{-iz}}{2i}\right)$$
$$= i\sin(z).$$

Hence $\sin(z) = -i \sinh(iz)$. Similarly,

$$\cosh(iz) = \frac{e^{iz} + e^{-iz}}{2}$$
$$= \cos(z).$$

Recalling that multiplication by i means rotation by $\frac{\pi}{2}$, the relation $\cos(z)=\cosh(iz)$ implies that $\cos(z)$ is obtained by first rotating z by $\frac{\pi}{2}$ and then applying \cosh , hence it is a composition of this rotation and \cosh . Similarly, the relation $\sin(z)=-i\sinh(iz)$ implies that $\sin(z)$ is a composition of a rotation by $\frac{\pi}{2}$ with \sinh and finally rotation by $-\frac{\pi}{2}$.