Chapter 13-Wired LANs Ethernet

Figure 13.1 IEEE standard for LANs

LLC: Logical link control
MAC: Media access control

Upper layers			layers		
	LLC				
Data link layer	Ethernet MAC	Token Ring MAC	Token Bus MAC	•••	
Physical layer	Ethernet physical layers (several)	Token Ring physical layer	Token Bus physical layer	•••	

Figure 13.2 HDLC frame compared with LLC and MAC frames

Figure 13.3 Ethernet evolution through four generations

Figure 13.4 802.3 MAC frame

Preamble: 56 bits of alternating 1s and 0s.

SFD: Start frame delimiter, flag (10101011)

Figure 13.5 Minimum and maximum lengths

Figure 13.6 Example of an Ethernet address in hexadecimal notation

6 bytes = 12 hex digits = 48 bits

Figure 13.7 Unicast and multicast addresses

Example 13.1

Define the type of the following destination addresses:

- a. 4A:30:10:21:10:1A
- b. 47:20:1B:2E:08:EE
- c. FF:FF:FF:FF:FF

Solution

To find the type of the address, we need to look at the second hexadecimal digit from the left. If it is even, the address is unicast. If it is odd, the address is multicast. If all digits are F's, the address is broadcast. Therefore, we have the following:

- a. This is a unicast address because A in binary is 1010 (even).
- b. This is a multicast address because 7 in binary is 0111 (odd).
- c. This is a broadcast address because all digits are F's.

The way the addresses are sent out on line is different from the way they are written in hexadecimal notation. The transmission is left-to-right, byte by byte; however, for each byte, the least significant bit is sent first and the most significant bit is sent last. This means that the bit that defines an address as unicast or multicast arrives first at the receiver.

Example 13.2

Show how the address 47:20:1B:2E:08:EE is sent out on line.

Solution

The address is sent left-to-right, byte by byte; for each byte, it is sent right-to-left, bit by bit, as shown below:

— 11100010 00000100 11011000 01110100 00010000 01110111

Access Method: CSMA/CD

Standard Ethernet uses 1-persistent CSMA/CD (see Chapter 12).

Slot Time In an Ethernet network, the round-trip time required for a frame to travel from one end of a maximum-length network to the other plus the time needed to send the jam sequence is called the slot time.

Slot time = round-trip time + time required to send the jam sequence

Example 13.2

Show how the address 47:20:1B:2E:08:EE is sent out on line.

Solution

The address is sent left-to-right, byte by byte; for each byte, it is sent right-to-left, bit by bit, as shown below:

Figure 13.8 Categories of Standard Ethernet

Figure 13.9 Encoding in a Standard Ethernet implementation

Figure 13.10 10Base5 implementation

Figure 13.11 10Base2 implementation

Figure 13.12 10Base-T implementation

Figure 13.13 10Base-F implementation

 Table 13.1
 Summary of Standard Ethernet implementations

Characteristics	10Base5	10Base2	10Base-T	10Base-F	
Media	Thick coaxial cable	Thin coaxial cable	2 UTP	2 Fiber	
Maximum length	500 m	185 m	100 m	2000 m	
Line encoding	Manchester	Manchester	Manchester	Manchester	

Figure 13.14 Sharing bandwidth

b. Second station

a. Without bridging

b. With bridging

Figure 13.16 Collision domains in an unbridged network and a bridged network

a. Without bridging

b. With bridging

Figure 13.17 Switched Ethernet

Figure 13.18 Full-duplex switched Ethernet

Figure 13.19 Fast Ethernet topology

Figure 13.20 Fast Ethernet implementations

Figure 13.21 Encoding for Fast Ethernet implementation

 Table 13.2
 Summary of Fast Ethernet implementations

Characteristics	100Base-TX	100Base-FX	100Base-T4
Media	Cat 5 UTP or STP	Fiber	Cat 4 UTP
Number of wires	2	2	4
Maximum length	100 m	100 m	100 m
Block encoding	4B/5B	4B/5B	
Line encoding	MLT-3	NRZ-I	8B/6T

Figure 13.22 Topologies of Gigabit Ethernet

c. Two stars

d. Hierarchy of stars

Figure 13.23 Gigabit Ethernet implementations

Figure 13.24 Encoding in Gigabit Ethernet implementations

