Zhaoguo Wang

#### **Adapted From:**

<< A Survey of Symbolic Execution Techniques>>

# Predicate Logic (谓词逻辑)

#### 1.1 Propositional Logic =

Step 0. Proof.

Step 1. Convert program into mathematical formula.

Step 2. Ask the computer to solve the formula.

#### **1.2 First Order Logic**

Step 1. Convert it into first order logic formula.

Step 2. Ask the computer to solve the formula.

#### - 1.3 Auto-active Proof

Step 1. Axiom system

Step 2. Ask the computer to check the invariants

### A Quick Recap

```
void swap(bool& a, bool& b)
{
    a = a ^ b;
    b = b ^ a;
    a = a ^ b;
}
```

we want to prove that the program really swaps the value of a and b.

### A Quick Recap

```
void swap(bool& a, bool& b)
{
    a = a ^ b;
    b = b ^ a;
    a = a ^ b;
}
```



$$(A1 \leftrightarrow (A0 \land \neg B0) \lor (\neg A0 \land B0)) \land$$

$$(B1 \leftrightarrow B0) \land$$

$$(A2 \leftrightarrow A1) \land$$

$$(B2 \leftrightarrow (A1 \land \neg B1) \lor (\neg A1 \land B1)) \land$$

$$(A3 \leftrightarrow (A2 \land \neg B2) \lor (\neg A2 \land B2)) \land$$

$$(B3 \leftrightarrow B2) \rightarrow$$

 $(A3 \leftrightarrow B0) \land (A0 \leftrightarrow B3)$ 

Prove it is a tautology

### A Quick Recap

```
void swap(bool& a, bool& b)
{
    a = a ^ b;
    b = b ^ a;
    a = a ^ b;
}
```



$$(A1 \leftrightarrow (A0 \land \neg B0) \lor (\neg A0 \land B0)) \land$$

$$(B1 \leftrightarrow B0) \land$$

$$(A2 \leftrightarrow A1) \land$$

$$(B2 \leftrightarrow (A1 \land \neg B1) \lor (\neg A1 \land B1)) \land$$

$$(A3 \leftrightarrow (A2 \land \neg B2) \lor (\neg A2 \land B2)) \land$$

$$(B3 \leftrightarrow B2) \land$$

Prove it is unsatisfiable with SAT solver

 $\neg((A3 \leftrightarrow B0) \land (A0 \leftrightarrow B3))$ 

### **Predicate Logic**

```
void swap(int& a, int& b)
{
    a = a ^ b;
    b = b ^ a;
    a = a ^ b;
}
```



We can generate predicate logic WFF similarly

```
(A1 = xor(A0, B0) \land
    B1 = B0 \wedge
    A2 = A1 \wedge
    B2 = xor(A1, B1)
    B3 = B2
    A3 = xor(A2, B2)
    \rightarrow
    ((A3 = B0) \land (B3 = A0))
```

#### **Predicate Logic**

```
void swap(int& a, int& b)
{
    a = a ^ b;
    b = b ^ a;
    a = a ^ b;
}
```



Prove it is unsat with SMT solver

```
(\exists A0)(\exists A1)(\exists A2)(\exists A3)(\exists B0)(\exists B1)(\exists B2)(\exists B3)(\exists B
                                                                                                                                                 (A1 = xor(A0, B0) \land
                                                                                                                                                 B1 = B0 \wedge
                                                                                                                                              A2 = A1 \wedge
                                                                                                                                              B2 = xor(A1, B1)
                                                                                                                                              B3 = B2
                                                                                                                                              A3 = xor(A2, B2)
                                                                                                                                                 \neg((A3 = B0) \land (B3 = A0))
```

# Symbolic Execution (符号执行)

```
void func(int a, int b) {
  if(a > 0)
    a = -b;
  else
    b = 2;
  assert(a + b < 1);
}</pre>
```

If the program has many "if", the WFF will be very long



```
void func(int a, int b) {
  if(a > 0)
    a = -b;
  else
    b = 2;
  assert(a + b < 1);
}</pre>
```

We can generate multiple WFFs for different execution paths.

```
void func(int a, int b) {
  if(a > 0)
    a = -b;
  else
    b = 2;
  assert(a + b < 1);
}</pre>
```



Symbolic execution represents value of variables with symbols. It maintains 3 things to generate WFF.

- Path constraints: the path condition
- Next code: the next instruction to be executed
- Symbolic store: the value (symbolic expression) for each variable

```
void func(int a, int b) {
  if(a > 0)
    a = -b;
  else
    b = 2;
  assert(a + b < 1);
}</pre>
```



```
void func(int a, int b) {
  if(a > 0)
    a = -b;
  else
    b = 2;
  assert(a + b < 1);
}</pre>
```



```
void func(int a, int b) {
  if(a > 0)
    a = -b;
  else
    b = 2;
  assert(a + b < 1);
}</pre>
```

```
context ctx;
expr A = ctx.int_const("A");
expr B = ctx.int_const("B");
solver s(ctx);
s.add(A > 0);
s.add(B - B >= 1);
std::cout << s.check();</pre>
```



```
void func(int a, int b) {
  if(a > 0)
    a = -b;
  else
    b = 2;
  assert(a + b < 1);
}</pre>
```



```
void func(int a, int b) {
  if(a > 0)
    a = -b;
  else
    b = 2;
  assert(a + b < 1);
}</pre>
```



```
void func(int a, int b) {
  if(a > 0)
    a = -b;
  else
    b = 2;
  assert(a + b < 1);
}</pre>
```

```
expr A = ctx.int_const("A");
expr B = ctx.int_const("B");
solver s(ctx);
s.add(A <= 0);
s.add(A+2 >=1);
std::cout << s.check();
std::cout << s.get_model();</pre>
```



```
void func(int a, int b) {
  if(a > 0)
    a = -b;
  else
    b = 2;
  assert(a + b < 1);
}</pre>
```

```
expr A = ctx.int_const("A");
expr B = ctx.int_const("B");
solver s(ctx);
s.add(A <= 0);
s.add(A+2 >=1);
std::cout << s.check();
std::cout << s.get_model();</pre>
```



# Example



void func(int a, int b) {

# Thanks & Questions