CONJUNTO DE EJERCICIOS

- 1. Sea $f(x) = -x^3 \cos x$ y $p_0 = -1$. Use el método de Newton y de la Secante para encontrar p_2 . ¿Se podría
- 2. Encuentre soluciones precisas dentro de 10^{-4} para los siguientes problemas.

a.
$$x^3 - 2x^2 - 5 = 0$$
, [1,4]

b.
$$x^3 + 3x^2 - 1 = 0$$
, $[-3, -2]$

c.
$$x - \cos x = 0$$
, $[0, \pi/2]$

a.
$$x^3 - 2x^2 - 5 = 0$$
, [1,4]
b. $x^3 + 3x^2 - 1 = 0$, [-3, -2]
c. $x - \cos x = 0$, $[0, \frac{\pi}{2}]$
d. $x - 0.8 - 0.2 \sin x = 0$, $[0, \frac{\pi}{2}]$

3. Use los 2 métodos en esta sección para encontrar las soluciones dentro de 10^{-5} para los siguientes problemas.

a.
$$3x - e^x = 0$$
 para $1 \le x \le 2$

b.
$$2x + 3\cos x - e^x = 0$$
 para $1 \le x \le 2$

4. El polinomio de cuarto grado

$$f(x) = 230x^4 + 18x^3 + 9x^2 - 221x - 9$$

tiene dos ceros reales, uno en [-1,0] y el otro en [0,]. Intente aproximar estos ceros dentro de 10^{-6} con

- a. El método de la secante (use los extremos como las estimaciones iniciales)
- b. El método de Newton (use el punto medio como estimación inicial)
- 5. La función $f(x) = \tan \pi x 6$ tiene cero en $\binom{1}{\pi}$ arcotangente $6 \approx 0.447431543$. Sea $p_0 = 0$ y $p_1 = 0.48$ y use 10 iteraciones en cada uno de los siguientes métodos para aproximar esta raíz. ¿Cuál método es más eficaz y por qué?
 - a. método de bisección
 - b. método de Newton
 - c. método de la secante
- 6. La función descrita por $f(x) = \ln(x^2 + 1) e^{0.4x} \cos \pi x$ tiene un número infinito de ceros. a. Determine, dentro de 10^{-6} , el único cero negativo.

 - b. Determine, dentro de 10^{-6} , los cuatro ceros positivos más pequeños.
 - c. Determine una aproximación inicial razonable para encontrar el enésimo cero positivo más pequeño de f. [Sugerencia: Dibuje una gráfica aproximada de f.]
 - d. Use la parte c) para determinar, dentro de 10^{-6} , el vigesimoquinto cero positivo más pequeño de f.
- 7. La función $f(x) = x^{\left(\frac{1}{3}\right)}$ tiene raíz en x = 0. Usando el punto de inicio de x = 1 y $p_0 = 5$, $p_1 = 0.5$ para el método de secante, compare los resultados de los métodos de la secante y de Newton.