BPLC Simulation (1)

BPLC pixel circuit (IEEE/OSA JDT 2015)

$$V_A = V_{LC} = \frac{1}{2} \left(V_{DATA} + V_{MIX} \right)$$

* Simulate three conditions and save your waveforms of node A and node B. Please explain the voltage change of node A and B.

=> Enlarge V_{LC} from ±15 V to ±20 V

Simulated parameter:

$$C_{LC} = 6 pF$$

$$C_{ST} = 6 pF$$

$$M_{T1,T2} = 100$$

$$M_{T3} = 300$$

$$VCOM = 0 V$$

Initial
$$V_A = V_B = 0 V$$

Simulated condition:

$$V_{DATA} = 0 V$$

$$(2) For MIX = 10 V$$

$$V_{DATA} = 7.5 V$$

$$(3) For MIX = 25 V$$

$$V_{DATA} = 15 \text{ V}$$

BPLC Simulation (2)

BPLC pixel circuit (IDW 2013)

\Rightarrow Enlarge V_{LC} from $\pm 15 \text{ V}$ to $\pm 20 \text{ V}$

* Simulate normal mode and coupling mode under positive polarity, and save your waveforms of node A and node B. Please explain the voltage change of node A and B.

Simulated parameter:

$$C_{LC} = 6 pF$$

$$C_{ST} = 6 pF$$

$$M_{T1,T2,T3,T4} = 100$$

$$Vpre = 7.5 V$$

Initial
$$V_A = V_B = 0 V$$

$$V_{DATA} = 15 V$$

(2) For
$$VCOM = 0 V$$

 $VSWING = -10 V$

$$V_{DATA} = 15 \text{ V}$$

BPLC Simulation (3)

BPLC pixel circuit (IEEE EDL 2015 & SID 2015 distinguished paper)

Simulated parameter:

$$C_{LC} = 6 pF$$

$$C_{SL}$$
, $C_{SR} = 6 pF$

$$M_{T1}$$
, $M_{T2} = 300$

Initial
$$V_A = V_B = 0 V$$

BPLC Simulation (3)

- i. Please design the value of V_C to achieve the maximum V_{LC} $(A_{[N]} B_{[N]})$ of 25 V and -25 V.
- ii. If the pulse-width of $G_{[N]}$ is shortened from 7.6 μ s to 3.3 μ s, please explain what you observe from the waveforms of V_A and V_B .