Arbori parțiali de cost minim

Construcția unui sistem de căi ferate a.î.:

- oricare două stații să fie conectate
- sistem economic

Construcția unui sistem de căi ferate a.î.:

- oricare două stații să fie conectate
- sistem economic

Proiectarea circuitelor electronice

conectarea pinilor cu cost minim

conectare cu cost minim ⇒ evităm ciclurile

conectare cu cost minim ⇒ evităm ciclurile

Deci trebuie să construim

graf conex + fără cicluri ⇒ arbore
cu suma costurilor muchiilor minimă

- $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ conex ponderat
 - w : $E \to \mathbb{R}_+$ funcție pondere (cost)

- $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ conex ponderat
 - w : $E \to \mathbb{R}_+$ funcție pondere (cost)
- ▶ Pentru A ⊂ E

$$\mathbf{w}(\mathbf{A}) = \sum_{\mathbf{e} \in \mathbf{A}} \mathbf{w}(\mathbf{e})$$

- $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ conex ponderat
 - w : $E \to \mathbb{R}_+$ funcție **pondere** (cost)
- ▶ Pentru A ⊆ E

$$\mathbf{w}(\mathbf{A}) = \sum_{\mathbf{e} \in \mathbf{A}} \mathbf{w}(\mathbf{e})$$

Pentru T subgraf al lui G

$$\mathbf{w}(\mathbf{T}) = \sum_{\mathbf{e} \in E(T)} \mathbf{w}(\mathbf{e})$$

• Arbore parțial de cost minim al lui G = un arbore parțial T_{min} al lui G cu

 $w(T_{min}) = min \{ w(T) | T \text{ arbore partial al lui } G \}$

Reprezentarea grafurilor ponderate

Reprezentarea grafurilor ponderate

Matrice de costuri (ponderi)

Reprezentarea grafurilor ponderate

- Matrice de costuri (ponderi)
- Liste de adiacență

Reprezentarea grafurilor ponderate

- Matrice de costuri (ponderi)
- Liste de adiacență
- Liste de muchii

Algoritmi de determinare a unui arbore parțial de cost minim

Arbori parțiali de cost minim

Cum determinăm un arbore parțial de cost minim al unui graf conex ponderat?

Algoritmul lui Kruskal

La un pas este selectată o muchie de cost minim care nu formează cicluri cu muchiile deja selectate (care unește două componente)

 Iniţial: cele n vârfuri sunt izolate, fiecare formând o componentă conexă

 Se unesc aceste componente prin muchii de cost minim

La un pas:

Muchiile selectate formează o **pădure**

La un pas:

Muchiile selectate formează o **pădure**

Este selectată o muchie de cost minim care unește doi arbori din pădurea curentă (două componente conexe)

O primă formă a algoritmului

Kruskal

- Iniţial T= (V; ∅)
- pentru i = 1, n-1
 - alege o muchie uv cu cost minim a.î. u,v sunt în componente conexe diferite (T+uv aciclic)
 - \triangleright E(T) = E(T) \cup uv

1. Cum reprezentăm graful în memorie?

- 1. Cum reprezentăm graful în memorie?
- 2. Cum selectăm ușor o muchie:
- de cost minim
- care unește două componente (nu formează cicluri cu muchiile deja selectate)

- 1. Reprezentarea grafului ponderat
 - Listă de muchii: memorăm pentru fiecare muchie extremitățile și costul

2. Pentru a selecta ușor o muchie de cost minim ordonăm crescător muchiile după cost

3. Pentru a verifica dacă o muchie unește două componente (nu formează cicluri cu muchiile deja selectate) asociem fiecărei componente un reprezentant (o culoare)

- 3. Pentru a verifica dacă o muchie unește două componente (nu formează cicluri cu muchiile deja selectate) asociem fiecărei componente un reprezentant (o culoare) Trebuie să
- putem determina uşor componenta căreia aparține un vârf
- reunim eficient două componente conexe

- Operații necesare:
 - Initializare(u) creează o componentă cu un singur vârf, u

- Operații necesare:
 - Initializare(u) creează o componentă cu un singur vârf, u
 - Reprez(u) returnează reprezentantul (culoarea) componentei care conține pe u

- Operații necesare:
 - Initializare(u) creează o componentă cu un singur vârf, u
 - Reprez(u) returnează reprezentantul (culoarea) componentei care conține pe u
 - Reuneste(u,v) unește componenta care conține u cu cea care conține v

O muchie uv unește două componente dacă

 $Reprez(u) \neq Reprez(v)$

```
sorteaza(E)
for(v=1;v<=n;v++)
    Initializare(v);</pre>
```

```
sorteaza(E)
for (v=1; v<=n; v++)
    Initializare(v);
nrmsel=0
for (uv \in E)
 if (Reprez (u) !=Reprez (v))
```

```
sorteaza(E)
for (v=1; v<=n; v++)
    Initializare(v);
nrmsel=0
for (uv \in E)
 if (Reprez (u) !=Reprez (v))
      scrie uv;
      Reuneste (u, v);
      nrmsel=nrmsel+1;
      if(nrmsel==n-1)
          STOP; //break;
```


Cum memorăm reprezentantul / culoarea componentei în care se află un vârf

Varianta 1 – memorăm într-un vector pentru fiecare vârf reprezentantul/culoarea componentei din care face parte r[u] = culoarea componentei care

r[u] = culoarea componentei care conține vârful u

```
sorteaza(E)
for (v=1; v<=n; v++)
    Initializare(v);
nrmsel=0
for (uv \in E)
 if (Reprez (u) !=Reprez (v))
      scrie uv;
      Reuneste (u, v);
      nrmsel=nrmsel+1;
      if(nrmsel==n-1)
            STOP //break;
```

```
void Initializare(int u) {
    r[u]=u;
```

```
sorteaza(E)
for (v=1; v<=n; v++)
    Initializare(v);
nrmsel=0
for (uv \in E)
 if (Reprez (u) !=Reprez (v))
      scrie uv;
      Reuneste (u, v);
      nrmsel=nrmsel+1;
      if(nrmsel==n-1)
           STOP //break;
```

```
void Initializare(int u) {
    r[u]=u;
int Reprez(int u) {
    return r[u];
```

```
void Initializare(int u) {
sorteaza(E)
for (v=1; v<=n; v++)
                                  r[u]=u;
    Initializare(v);
                              int Reprez(int u) {
nrmsel=0
for (uv \in E)
                                  return r[u];
                              }
 if (Reprez (u) !=Reprez (v))
                              void Reuneste(int u,int v)
      scrie uv;
                                r1=Reprez(u);//r1=r[u]
      Reuneste (u, v);
                                r2=Reprez(v);//r2=r[v]
      nrmsel=nrmsel+1;
      if(nrmsel==n-1)
                                for (k=1; k \le n; k++)
           STOP //break;
                                  if(r[k]==r2)
                                      r[k]=r1;
```


- (4,6)
- (2,4)
- (2,6)
- (3,5)
- (3,6)
- (2,5)
- (1,3)
- (1,2)
- (5,6)

r = [1,2,3,4,5,6]

(4,6)

(2,4)

(2,6)

(3,5)

(3,6)

(2,5)

(1,3)

(1,2)

(5,6)

$$r = [1,2,3,4,5,6]$$

(4,6)
$$r(4) \neq r(6)$$

- (2,4)
- (2,6)
- (3,5)
- (3,6)
- (2,5)
- (1,3)
- (1,2)
- (5,6)

$$r = [1,2,3,4,5,6]$$

(4,6) Reuneste(4,6)

$$r = [1,2,3,4,5,6]$$

$$(4,6) \quad r = [1,2,3,4,5,4]$$

Complexitate

```
sorteaza(E)
for (v=1; v<=n; v++)
    Initializare(v);
nrmsel=0
for (uv \in E)
 if (Reprez (u) !=Reprez (v))
      scrie uv;
      Reuneste (u, v);
      nrmsel=nrmsel+1;
      if(nrmsel==n-1)
           break;
```

Complexitate

- ▶ Sortare -> O(m log m) = O(m log n)
- n * Initializare
- 2m * Reprez
- ▶ (n-1) * Reuneste

- ► Sortare -> O(m log m) = O(m log n)
- ▶ n * Initializare ->
- 2m * Reprez ->
- ▶ (n-1) * Reuneste ->

- Sortare $-> O(m \log m) = O(m \log n)$
- ▶ n * Initializare -> O(n)
- 2m * Reprez ->
- ▶ (n-1) * Reuneste ->

- Sortare -> O(m log m) = O(m log n)
- ▶ n * Initializare -> O(n)
- ▶ 2m * Reprez -> O(m)
- ▶ (n-1) * Reuneste ->

- Sortare $-> O(m \log m) = O(m \log n)$
- ▶ n * Initializare -> O(n)
- ▶ 2m * Reprez -> O(m)
- (n-1) * Reuneste $-> O(n^2)$

Varianta 1- dacă folosim vector de reprezentanți

```
• Sortare -> O(m log m) = O(m log n)
```

- ▶ n * Initializare -> O(n)
- ▶ 2m * Reprez -> O(m)
- \rightarrow (n-1) * Reuneste -> O(n²)

 $O(m log n + n^2)$

Varianta 2 – memorăm componentele conexe ca arbori, folosind vectorul tata; reprezentantul componentei va fi rădăcina arborelui

Varianta 2 – memorăm componentele conexe ca arbori, folosind vectorul tata; reprezentantul componentei va fi rădăcina arborelui

Trebuie ca arborii să rămână cu o înălţime cât mai mică

Reținem în plus și înălțimea unui astfel de arbore - **vectorul h**

Reuniunea se va face în funcție de înălțimea arborilor (reuniune ponderată):

arborele cu înălțimea mai mică devine subarbore al rădăcinii celuilalt arbore

```
void Initializare(int u) {
    tata[u]=h[u]=0;
}
```

```
void Initializare(int u) {
    tata[u]=h[u]=0;
int Reprez(int u) {
    while(tata[u]!=0)
       u=tata[u];
    return u;
```

```
void Initializare(int u) {
                            void Reuneste(int u,int v)
    tata[u]=h[u]=0;
                             {
                                int ru,rv;
                                ru=Reprez(u);
int Reprez(int u) {
                                rv=Reprez(v);
    while(tata[u]!=0)
                                if (h[ru]>h[rv])
       u=tata[u];
                                  tata[rv]=ru;
    return u;
```

```
void Reuneste(int u,int v)
void Initializare(int u) {
    tata[u]=h[u]=0;
                             {
                                int ru, rv;
                                ru=Reprez(u);
int Reprez(int u) {
                                rv=Reprez(v);
    while(tata[u]!=0)
                                if (h[ru]>h[rv])
       u=tata[u];
                                   tata[rv]=ru;
                                else{
    return u;
                                   tata[ru]=rv;
                                   if(h[ru]==h[rv])
                                       h[rv]=h[rv]+1;
```

Complexitate – dacă folosim arbori

- Sortare $-> O(m \log m) = O(m \log n)$
- ▶ n * Initializare ->
- 2m * Reprez ->
- ▶ (n-1) * Reuneste ->

Complexitate – dacă folosim arbori

- Sortare $-> O(m \log m) = O(m \log n)$
- ▶ n * Initializare -> O(n)
- ▶ 2m * Reprez -> O(m log n)
- (n-1) * Reuneste -> O(n log n)

O(m log n)

Algoritmul lui Prim

 Inițial: cele n vârfuri sunt izolate, fiecare formând o componentă conexă

 Se încearcă unirea acestor componente prin muchii de cost minim

Prim

 Inițial: se pornește de la un vârf de start

1

 Se adăugă pe rând câte un vârf la arborele deja construit, folosind muchii de cost minim

La un pas:

Muchiile selectate formează o **pădure**

Prim

La un pas:

Muchiile selectate formează un **arbore**

La un pas:

Muchiile selectate formează o **pădure**

Este selectată o muchie de cost minim care unește doi arbori din pădurea curentă (două componente conexe)

Prim

La un pas:

Muchiile selectate formează un **arbore**

Este selectată o muchie de cost minim care unește un vârf din arbore cu unul care nu este în arbore(neselectat)

O primă formă a algoritmului

Kruskal

- Iniţial T= (V; ∅)
- pentru i = 1, n-1
 - alege o muchie uv cu cost minim a.î. u,v sunt în componente conexe diferite (T+uv aciclic)
 - \triangleright E(T) = E(T) \cup uv

Prim

- s- vârful de start
- Iniţial T= ({s}; ∅)
- pentru i = 1, n−1
 - ➤ alege o muchie uv cu cost minim a.î. u∈V(T) şi v∉V(T)
 - $\triangleright V(T) = V(T) \cup \{v\}$
 - \triangleright E(T) = E(T) \cup uv

$$s = 1$$

Implementare

Cum evităm să comparam de fiecare dată toate muchiile cu o extremitate în arbore și cealaltă nu.

Implementare

Cum evităm să comparam de fiecare dată toate muchiile cu o extremitate în arbore și cealaltă nu.

Exemplu:

După ce 1 și 5 au fost adăugate în arbore, muchiile **(2,1)** și **(2,5)** sunt comparate la fiecare pas, deși w(2,1)>w(2,5), deci (2,1) nu va fi selectată niciodată

Pentru un vârf (neselectat) memorăm doar muchia minimă care îl unește cu un vârf din arbore (selectat)

Asociem fiecărui vârf următoarele informații (etichete):

 d[u] = costul minim al unei muchii de la u la un vârf selectat deja în arbore

Asociem fiecărui vârf următoarele informații (etichete):

- d[u] = costul minim al unei muchii de la u la un vârf selectat deja în arbore
- tata[u] = acest vârf din arbore pentru care se realizează minimul

Avem

$$d[u] = w(u, tata[u])$$

Atunci algoritmul se modifică astfel:

- La un pas
- se alege **un vârf** u cu **eticheta d minimă** care nu este încă în arbore și se adaugă la arbore muchia (tata[u], u)

Atunci algoritmul se modifică astfel:

- La un pas
- se alege **un vârf** u cu **eticheta d minimă** care nu este încă în arbore şi se adaugă la arbore muchia (tata[u], u)
- se actualizează etichetele vârfurilor v vecine cu u astfel:

Muchiile arborelui vor fi în final (u, tata[u]), u≠ s

Prim(G, w, s)

inițializează mulțimea vârfurilor neselectate Q cu V

```
Prim(G, w, s)
```

```
inițializează mulțimea vârfurilor neselectate Q cu V pentru fiecare u \in V executa d[u] = \infty; tata[u] = 0
```

```
\begin{split} Prim(G,\,w,\,s) \\ & \text{inițializează mulțimea vârfurilor neselectate Q cu V} \\ & \text{pentru fiecare } u {\in} V \text{ executa} \\ & d[u] = \infty; \text{ tata}[u] {=} 0 \\ & d[s] = 0 \end{split}
```

```
Prim(G, w, s)

inițializează mulțimea vârfurilor neselectate Q cu V

pentru fiecare u \in V executa

d[u] = \infty; tata[u] = 0

d[s] = 0

cat timp Q \neq \emptyset executa
```

```
Prim(G, w, s)
  inițializează mulțimea vârfurilor neselectate Q cu V
  pentru fiecare u∈V executa
      d[u] = ∞; tata[u]=0
  d[s] = 0
  cat timp Q ≠ Ø executa
      u=extrage vârf cu eticheta d minimă din Q
```

```
\begin{array}{l} Prim(G,\,w,\,s) \\ \\ inițializează mulțimea vârfurilor neselectate Q cu V \\ \\ pentru fiecare u \in V executa \\ \\ d[u] = \infty; \ tata[u] = 0 \\ \\ d[s] = 0 \\ \\ cat timp Q \neq \varnothing \ executa \\ \\ u = extrage vârf cu eticheta d minimă din Q \end{array}
```

pentru fiecare v adiacent cu u executa

```
Prim(G, w, s)
  inițializează mulțimea vârfurilor neselectate Q cu V
   pentru fiecare u∈V executa
       d[u] = \infty; tata[u]=0
  d[s] = 0
  cat timp Q \neq \emptyset executa
         u=extrage vârf cu eticheta d minimă din Q
         pentru fiecare v adiacent cu u executa
                daca v \in Q si w(u,v) < d[v] atunci
                     d[v] = w(u,v)
                     tata[v] = u
```

```
Prim(G, w, s)
  inițializează mulțimea vârfurilor neselectate Q cu V
   pentru fiecare u∈V executa
       d[u] = \infty; tata[u]=0
  d[s] = 0
  cat timp Q \neq \emptyset executa
         u=extrage vârf cu eticheta d minimă din Q
         pentru fiecare v adiacent cu u executa
                daca v \in Q si w(u,v) < d[v] atunci
                     d[v] = w(u,v)
                     tata[v] = u
   scrie (u, tata[u]), pentru u≠ s
```

Q poate fi

Q poate fi

vector:

```
Q[u] = 1, dacă u este selectat
0, altfel
```

Q poate fi

vector:

```
Q[u] = 1, dacă u este selectat
0, altfel
```

min-ansamblu (heap)

1 d/tata= [0/0,	2 ∞/0,	$\infty/0$,	4 ∞/0,	5 ∞/0,	6 ∞/0]	

Sel. 6: 2/6, 5/6, Sel. 4: 3/4, Sel. 2:

Complexitate

- Iniţializare Q
- n * extragere vârf minim
- actualizare etichete vecini

```
Varianta 1 – reprezentarea lui Q ca vector Q[u] = 1, dacă u este selectat 0, altfel
```

- Iniţializare Q −>
- n * extragere vârf minim ->
- actualizare etichete vecini ->

```
Varianta 1 – reprezentarea lui Q ca vector Q[u] = 1, dacă u este selectat 0, altfel
```

- Iniţializare Q −> O(n)
- n * extragere vârf minim ->
- actualizare etichete vecini ->

Varianta 1 – reprezentarea lui Q ca vector Q[u] = 1, dacă u este selectat 0, altfel

- Iniţializare Q −> O(n)
- n * extragere vârf minim -> O(n²)
- actualizare etichete vecini ->

Varianta 1 - reprezentarea lui Q ca vector

- Iniţializare Q −> O(n)
- n * extragere vârf minim −> O(n²)
- actualizare etichete vecini -> O(m)

Varianta 1 – reprezentarea lui Q ca vector Q[u] = 1, dacă u este selectat 0, altfel

```
Iniţializare Q −> O(n)
```

- n * extragere vârf minim −> O(n²)
- actualizare etichete vecini -> O(m)
 O(n²)

Varianta 2 - reprezentarea lui Q ca min-heap

- Iniţializare Q −>
- n * extragere vârf minim ->
- actualizare etichete vecini ->

Varianta 2 - reprezentarea lui Q ca min-heap

- Iniţializare Q −> O(n)
- n * extragere vârf minim -> O(n log n)
- actualizare etichete vecini -> O(m log n)O(m log n)

Ideea algoritmilor de determinare a unui arbore parțial de cost minim este:

Se selectează succesiv muchii, astfel încât mulțimea de muchii selectate

» să aibă costul cât mai mic

Ideea algoritmilor de determinare a unui arbore parțial de cost minim este:

Se selectează succesiv muchii, astfel încât mulțimea de muchii selectate

- să aibă costul cât mai mic
- să fie submulțime a mulțimii muchiilor unui arbore parțial de cost minim

- Fie A ⊆ E o mulţime de muchii care este submulţime a mulţimii muchiilor unui apcm al lui G
- O muchie e ∈ E A s.n sigură pentru A dacă A ∪ {e} este de asemenea submulțime a mulțimii muchiilor unui apcm al lui G

Idee algoritmilor apcm este deci:

- pornim cu $A \leftarrow \emptyset$
- pentru i = 1, n−1
 - > se selectează o muchie sigură pentru A și se adaugă la A

Vom demonstra că, la fiecare pas, algoritmii Kruskal și Prim aleg muchii sigure (pentru mulțimea muchiilor deja selectate).

- Vom demonstra că, la fiecare pas, algoritmii Kruskal și Prim aleg muchii sigure (pentru mulțimea muchiilor deja selectate).
- Pentru aceasta, vom demonstra un criteriu pentru ca o muchie să fie sigură.

Propoziție. Fie G=(V, E, w) un graf conex ponderat și $A \subseteq E$ o submulțime a mulțimii muchiilor unui apcm al lui G.

▶ Propoziție. Fie G=(V, E, w) un graf conex ponderat și $A \subseteq E$ o submulțime a mulțimii muchiilor unui apcm al lui G.

Fie S ⊆ V a.î. orice muchie din A are ambele extremități în S sau ambele extremități în V-S .

Propoziție. Fie G=(V, E, w) un graf conex ponderat și $A \subseteq E$ o submulțime a mulțimii muchiilor unui apcm al lui G.

Fie S ⊆ V a.î. orice muchie din A are ambele extremități în S sau ambele extremități în V-S .

▶ Propoziție. Fie G=(V, E, w) un graf conex ponderat și $A \subseteq E$ o submulțime a mulțimii muchiilor unui apcm al lui G.

Fie S ⊆ V a.î. orice muchie din A are ambele extremități în S sau ambele extremități în V-S .

Fie e=uv o muchie de cost minim cu o extremitate în S și cealaltă în V-S.

Propoziție. Fie G=(V, E, w) un graf conex ponderat și $A \subseteq E$ o submulțime a mulțimii muchiilor unui apcm al lui G.

Fie S ⊆ V a.î. orice muchie din A are ambele extremități în S sau ambele extremități în V-S .

Fie e=uv o muchie de cost minim cu o extremitate în S și cealaltă în V-S.

Atunci e este muchie sigură pentru A.

Fie G=(V,E, w) un graf conex ponderat

- Propoziție. Algoritmul Kruskal determină un apcm
- Propoziție. Algoritmul Prim determină un apcm

