2. (HW) Describe the domain and range of the function:

(a)
$$z = \frac{xy}{x-y}$$
; (b) $z = \sqrt{9-x^2-9y^2}$; (c) $z = \arcsin(y/x)$; (d) $z = \ln(xy-6)$.

a)
$$D(z)$$
: { $x \in \mathbb{R}$, $y \in \mathbb{R} \mid x - y \neq 0$ } ($\Rightarrow D_z = d(x, y) \mid x \neq y$ }

 $R_z = \mathbb{R}$, since $\forall z$, we fix $y = 1$;

 $Z = \frac{x}{x+1} \Rightarrow x = -\frac{z}{z-1}$, $\forall z \neq 1$

for $z = 1$: $x = -2$ $\Rightarrow y = 2$; $z = (-2, 2) = 1$

b)
$$Z = \sqrt{9 - x^2 - 9y^2}$$
, Since $\sqrt{70}$
 $9 - x^2 - 9y^2 = 70 \iff x^2 + 9y^2 \le 9$ is ellipse

$$-3 \le x \le 3 \implies -\frac{1}{3}\sqrt{9} - x^{2} \le y \le \frac{1}{3}\sqrt{9} - x^{2}$$

$$D_{2} = \left\{ (x_{1}y) \mid x^{2} + 9y^{2} \le 9 \right\} \qquad 0 \le \sqrt{9} - x^{2} - 9y^{2} \le 3$$
Since $x^{2} + 9y^{2} \ge 0$, $\max(-x^{2} - 9y^{2}) = 0$
Hence $R_{2} = [0,3] \quad \forall z \in [0,3] \quad \text{we can } f:x y = 0$

=> $X = \pm \sqrt{9-2^2}$

 $Z = avcsin(y/x), since vauge of aucsin is [-\frac{\pi}{2}; \frac{\pi}{2}]$ and we can fix x=1, then $R_2 = [-\frac{\pi}{2}; \frac{\pi}{2}]$ Since domain of avcsin(m) is [-1,1] $X \in \mathbb{R} \setminus \{0\} \Rightarrow -x \leq y \leq x$ $y \in \mathbb{R} \Rightarrow x \neq y \quad x \leq -y \Leftrightarrow x \in (-\infty; -y] \cup [y; \infty) \setminus \{0\}$ Thus $D_2 = \{(x,y) \mid \frac{y}{x} \mid \leq 1 \land x \neq 0\}$ or $D_2 = \{(x,y) \mid x \in (-\infty; -y] \cup [y; \infty) \setminus \{0\}\}$ or $D_2 = \{(x,y) \mid x \in (-\infty; -y] \cup [y; \infty) \setminus \{0\}\}$ or $D_2 = \{(x,y) \mid -x \leq y \leq x \land x \neq 0\}$

d) $Z = \ln(xy-6)$, since $\ln(k)$ is def. for k > 0: $xy-6 > 0 \iff xy > 6$, if we consider xy=6, we will obtain hyperbola: $D_z = \{(x,y) \mid xy > 6\}$ or $D_z = \{(x,y) \mid x \in R \setminus \{0\}, x \in S\}$ or $D_z = \{(x,y) \mid x \in R \setminus \{0\}, x \in S\}$

obr Rz=1R, since we can fix y=1,50

 $42: X = e^{2} + 6$ 2 = (u(x-6) = 2) = 2 = 2 + 6

- 4. (HW) Describe the level curves of the function. Sketch the level curves for the given C-values:

 - (a) $z = x^2 + 4y^2$, C = 0, 1, 2, 3, 4; (b) $z = \frac{x}{x^2 + y^2}$, $C = \pm \frac{1}{2}, \pm 1, \pm \frac{3}{2}, \pm 2$;
 - (c) $z = 3^{xy/2}$, $C = 1, \frac{1}{3}, 3, 9, \frac{1}{9}$; (d) $z = \ln(1 xy)$, $C = 0, \pm 1, \pm 2, \pm 3$.

a)
$$Z = x^2 + 4y^2 = \int x = \pm \sqrt{4y^2 - 2}$$

$$y = \pm \frac{1}{2} \sqrt{x^2 - 2}$$

in other words: it's ellipse with senter at (0,0) R = JZ

and coef 1/2

, if we fix y=0, then χ^2 is any non-negative num also note that $\chi^2 + 9y^2 > 0$ Hence $R_z = [0, \infty)$

So $D_z = \mathbb{R}^2$, since for $\forall (x,y) \in \mathbb{R}^2$, we can find such z:

Z=x2+492, just that.

$$C = 2$$

$$c = 3$$

$$C = 4$$

(a)
$$z = x^2 + 4y^2$$
, $C = 0, 1, 2, 3, 4$; (b) $z = \frac{x}{x^2 + y^2}$, $C = \pm \frac{1}{2}, \pm 1, \pm \frac{3}{2}, \pm 2$;

(c)
$$z = 3^{xy/2}$$
, $C = 1, \frac{1}{3}, 3, 9, \frac{1}{9}$; (d) $z = \ln(1 - xy)$, $C = 0, \pm 1, \pm 2, \pm 3$.

$$\frac{2}{2} = \frac{x}{1} \cdot x^{2} + y^{2} \neq 0 \iff (x, y) \neq (0, 0)$$

There are no more restr., so Dz = R2 \ \ \ 0,03

If we fix
$$y=0$$
, then $z=\frac{1}{x}$, so $\forall z\neq 0$ $x=\frac{1}{z}$

Thus we can obtain any $z \neq 0$, for z = 0: (x,y) = (0,1)Hence $R_z = |R|$

$$2 = \frac{x}{x^2 + y^2}$$
 (=) $x^2 + y^2 = 2x$

it's obv circle with $r = \frac{1}{2|z|}$, with center in $(0, \frac{1}{2|z|})$

(a)
$$z = x^2 + 4y^2$$
, $C = 0, 1, 2, 3, 4$; (b) $z = \frac{x}{x^2 + y^2}$, $C = \pm \frac{1}{2}, \pm 1, \pm \frac{3}{2}, \pm 2$;

(c)
$$z = 3^{xy/2}$$
, $C = 1, \frac{1}{3}, 3, 9, \frac{1}{9}$; (d) $z = \ln(1 - xy)$, $C = 0, \pm 1, \pm 2, \pm 3$.

c)
$$Z = 3^{\frac{\times y}{2}}$$
, since no restr. for x and $y: D_z = \mathbb{R}^2$

since $3^k > 0 \forall k \in \mathbb{R}$, $\mathbb{R}_2 = (0, \infty)$, to obtain any 2 > 0

we can fix y=2, then $z=3^{\times}=7 \times = \log_3(z)$.

$$Z = 3$$
 => $xy = 2 \log_3(z)$

So, we have a hyperbola: for Z<1:

$$\begin{array}{c|c}
 & 2\log_3(z) \\
\hline
-2\log_3(z) \\
\hline
2\log_3(z) \\
\hline
-2\log_3(z)
\end{array}$$

 $C = 0: \frac{}{(0,0)} \times C = \frac{1}{9}$

210g3(3)

210g3(1)

- 2log3(1)

-2log3(=)

 $\begin{array}{c}
 2\log_{3}(3) \\
 -2\log_{3}(3)
 \end{array}$ $\begin{array}{c}
 2\log_{3}(9) \\
 -2\log_{3}(9)
 \end{array}$ $\begin{array}{c}
 2\log_{3}(9) \\
 \end{array}$ $\begin{array}{c}
 2\log_{3}(9) \\
 \end{array}$

-2log3(9)

c=9:

(a)
$$z = x^2 + 4y^2$$
, $C = 0, 1, 2, 3, 4$;

(a)
$$z = x^2 + 4y^2$$
, $C = 0, 1, 2, 3, 4$; (b) $z = \frac{x}{x^2 + y^2}$, $C = \pm \frac{1}{2}, \pm 1, \pm \frac{3}{2}, \pm 2$;

(c)
$$z = 3^{xy/2}$$
, $C = 1, \frac{1}{3}, 3, 9, \frac{1}{9}$;

(c)
$$z = 3^{xy/2}$$
, $C = 1, \frac{1}{3}, 3, 9, \frac{1}{9}$; (d) $z = \ln(1 - xy)$, $C = 0, \pm 1, \pm 2, \pm 3$.

$$D_z = \{(x,y) \mid xy < 1\}$$

6. (HW) All of the level curves of the surface given by z = f(x, y) are concentric circles. Does this imply that the graph of f is a hemisphere? If it is true, explain why. If it is false, give a counterexample.

No, it isn't: Consider a function $Z=x^2+y^2$; so all level curves are circles with center at (0,0), so group of level curves constract a concentric circles, but at the other hand f(x,y) is shaped by expending cone not hemisphere.

7. (HW) Construct a function whose level curves are lines passing through the origin (with the exception of the origin itself).

If I understand task correctly: $Z = X - Y \mid R_z = R \mid D_z = R^2 \mid \text{for } c = 0 : 0 = X - Y = 7 \mid Y = X$ If you wanna for all level-curves:

It's doesn't work this way, since there is no intersection for different level curves!

Proof: suppose $\exists c \in \mathbb{R}$, then $\exists x_0 \exists y_0 \land \exists x' \exists y' \in \mathbb{R}$. $(x_0, y_0) \neq (x', y')$, then $f(x_0, y_0) = C \land f(x', y') = C$, then $f(x_0, y_0) = f(x', y') = C$ (since so f is not functional)

- **8.** (HW) Does a vertical line can intersect the graph of z = f(x, y) at most once? If it is true, explain why. If it is false, give a counterexample.
- 8) No, $Z=\chi^2 \pm y^2$, Vertical line will intersect 2 times, i.e. $\chi=0$: (-17,0) $\Lambda(12,0)$ Vert line $|\chi| \le \sqrt{2}$ will intersect graph twice, $\forall z \neq 0$. (also $R_z = [0,\infty)$, so $\forall z > 0$) If you wanna vertical on 3D, then 4 phere is a counterexample.