SUBJECT - PHYSICS

MM: 35

CLASS-XII

Time: 1:00 hours

[1]

[1]

[1]

[1]

[1]

Section A - MCQ

Q1. Coulomb force F versus $\frac{1}{r^2}$ graphs for two pairs of point charges $(q_1 \text{ and } q_2)$ and $(q_2 \text{ and } q_3)$ are shown in the fig. The ratio of charges $\left(\frac{q_1}{q_3}\right)$

Q2. The Coulomb force (F) versus $\left(\frac{1}{r^2}\right)$ graphs for two pairs of point charges $(q_1 \text{ and } q_2)$ $(q_2 \text{ and } q_3)$ are shown in the fig. The charge q_2 is positive and has least magnitude. Then

A. $q_1 > q_2 > q_3$

Q3. The magnitude of the electric field due to a point charge object at a distance of 4.0 m is 9 N/C. From the same charged object the electric field of magnitude, 16 N/C will be at a distance of

A. 1 m

B. 2 m

C. 3 m

D. 4 m

 $\mathbf{Q4.}$ An isolated point charge particle produces an electric field E at a point 3 m away from it. The distance of the point at which the field is $\frac{E}{4}$ will be

A. 2 m

B. 3 m

C. 4 m

D. 6 m

Q5. A point charge q_0 is moving along a circular path of radius a, with a point charge -Q at the [1] centre of the circle. The kinetic energy of q_0 is

A. $\frac{Qq_0}{4\pi\epsilon_0 a}$

B. $\frac{Qq_0}{8\pi\epsilon_0 a}$ C. $\frac{Qq_0}{4\pi\epsilon_0 a^2}$ D. $\frac{Qq_0}{8\pi\epsilon_0 a^2}$

Q6. An electron experiences a force $(1.6 \times 10^{-16} \ N)$ \hat{i} in an electric field \vec{E} . The electric field \vec{E} is:

A. $\left(1.0 \times 10^3 \frac{N}{C}\right) \hat{i}$

C.
$$\left(1.0 \times 10^{-3} \frac{N}{C}\right)\hat{i}$$

B.
$$-\left(1.0 \times 10^3 \frac{N}{C}\right)\hat{i}$$

D.
$$-\left(1.0 \times 10^{-3} \frac{N}{C}\right)\hat{i}$$

- Q7. A particle of mass m and charge -q is moving with a uniform speed v in a circle of radius r, [1] with another charge q at the centre of the circle. The value of r is :
 - A. $\frac{1}{4\pi\epsilon_0 m} \left(\frac{q}{v}\right)$

C. $\frac{m}{4\pi\epsilon_0} \left(\frac{q}{r}\right)^2$

B. $\frac{1}{4\pi\epsilon_0 m} \left(\frac{q}{n}\right)^2$

- D. $\frac{m}{4\pi\epsilon_0} \left(\frac{q}{v}\right)$
- **Q8.** The charge on a body is 8×10^{-12} C. It means that the body has:
 - A. lost 8×10^{-12} electrons C. gained 2×10^8 electrons
 - B. gained 4×10^{10} electrons
- D. lost 5×10^7 electrons
- ${\bf Q\,9.}\ 10^9$ electrons are transferred to a pith ball with charge 0.16 nC. Its charge now is :
 - A. Zero

C. -1.6×10^{-9} C

B. -3.2×10^{-10} C

- D. $3.2 \times 10^{-10} \text{ C}$
- **Q 10.** Two charged particles P and Q, having the same charge but different masses m_p and m_Q , start from rest and travel equal distances in a uniform electric field \vec{E} in time t_P and t_O respectively. Neglecting the effect of gravity, the ration $\left(\frac{t_P}{t_Q}\right)$ is:
 - A. $\frac{m_P}{m_O}$

- B. $\frac{m_Q}{m_P}$ C. $\sqrt{\frac{m_P}{m_O}}$ D. $\sqrt{\frac{m_Q}{m_P}}$

[1]

[1]

[1]

[1]

[1]

[2]

[2]

- $\mathbf{Q} \mathbf{11}$. Two identical small conducting balls B_1 and B_2 are given -7 pC and +4 pC charges respectively. They are brought in contact with a third identical ball B_3 and then separated. If the final charge on each ball is -2 pC, the initial charge on B_3 was
 - A. -2 pC
- B. -3 pC C. -5 pC
- Q12. When a glass rod is rubbed with a silk cloth, it acquires a positive charge of 4.8×10^{-17} C. In the process, the number of electrons and protons transferred are respectively:
 - A. 0, 300
- B. 0, 225
- C. 150, 150
- D. 300, 0

Section B - Short Answer Questions

- Q13. Consider two identical point charges located at points (0, 0) and (a, 0). Is there a point on the line joining them at which the electric field is zero? Justify your answer.
- Q14. Twelve negative charges of same magnitude are equally spaced and fixed on the circumference of a circle of radius R as shown in Fig. Find the electric field at the centre C of the circle.

Section C - Long Answer Questions

Q15. (a) Four point charges of 1 μ C, -2μ C, 1 μ C and -2μ C are placed at the corners A, B, C and D respectively, of a square of side 30 cm. Find the net force acting on a charge of 4 μ C placed at the centre of the square.

[3]

OR

(b) Three point charges, 1 pC each, are kept at the vertices of an equilateral triangle of side 10 cm. Find the net electric field at the centroid of triangle.

[3]

 \mathbf{Q} 16. A small sphere S_1 with charge -8q is 1.6 m away from another identical sphere S_2 with charge +2q. The two spheres are brought in contact with each other and then separated by a distance 1.6 m. Initially the force between the two spheres was 81×10^{-4} N. Based on the above facts, answer the following questions:

[3]

- (a) Which sphere will transfer the electrons to the other sphere after they were brought in contact?
- (b) How does the net electric field at the midpoint on the line joining the two spheres change after contact?
- (c) What is the charge on spheres S_1 and S_2 after contact?

[3]

Q17. Explain what is meant by quantization of charge and conservation of charge?

[5]

Q 18. (a) i. State Coulomb's law in electrostatics and write it in vector form, for two charges.

- ii. Two charges A (charge q) and B (charge 2q) are located at points (0, 0) and (a, a) respectively. Let \hat{i} and \hat{j} be the unit vectors along x-axis and y-axis respectively. Find the force exerted by A on B, in terms of \hat{i} and \hat{j} .
- iii. Four charges +q, -q, -q, and +q are placed at the corners of a square ABCD of side $\sqrt{2}$ m as shown in the figure. Obtain the magnitude and direction of the net electric field at the centre (O) of the square.

OR

(b) i. Why do we use a small test charge to measure an electric field? [5]

ii. A small stationary positively charged particle is free to move in an electric field. In which direction will it begin to move?

iii. Two point charges Q_1 (40 μ C) and Q_2 (-16 μ C) are placed along x-axis at 0 cm and 24 cm from the origin respectively. Calculate the net force on a third charge Q_3 (-2.5 μ C) placed at x = 36 cm from the origin.

HOMEWORK

Q19. What is the amount of charge possessed by 1 kg of electrons

[1]

- A. $1.76 \times 10^{11} \text{ C}$ B. $1.76 \times 10^{-9} \text{ C}$ C. $1.76 \times 10^{-7} \text{ C}$ D. $1.76 \times 10^{-5} \text{ C}$

Q20. Two equal point charges A and B are R distance apart. A third point charge placed on the perpendicular bisector at a distance 'd' from the centre will experience maximum electrostatic force when

A. $d = \frac{R}{2\sqrt{2}}$ B. $d = \frac{R}{\sqrt{2}}$ C. $d = R\sqrt{2}$ D. $d = 2\sqrt{2}R$

[1]

[1]

[1]

[1]

[1]

[1]

[1]

Q21. Two equal positive charges Q are fixed at points (a, 0) and (-a, 0) on the x-axis. An opposite charge -q at rest is released from point (0, a) on the y-axis. the charge -q will

A. Move to infinity

C. Undergo SHM about the origin

D. Execute oscillatory periodic motion but not SHM

B. Move to origin and rest there

Q 22. Four charges each equal to Q are placed at the four corners of a square and a charge q is placed at the centre of the square. If the system is in equilibrium then the value of q is

- A. $\frac{Q}{2}(1+2\sqrt{2})$ B. $\frac{-Q}{4}(1+2\sqrt{2})$ C. $\frac{Q}{4}(1+2\sqrt{2})$ D. $\frac{-Q}{2}(1+2\sqrt{2})$
- $\mathbf{Q}\,\mathbf{23}$. A point charge q_1 exerts an electric force on a second point charge q_2 . If third charge q_3 is brought near, the electric force of q_1 exerted on q_2

A. Decreases

C. Remains unchanged

B. Increases

- D. Increases if q_3 is of same sign as q_1 and decreases if q_3 is of opposite sign
- **Q24.** Three charge +4q, Q and q are placed in a straight line of length l at points 0, $\frac{l}{2}$ and l distance away from one end respectively. What should be Q in order to make the net force on q to be zero?

A. -q B. 4q

C. $-\frac{q}{2}$ D. -2q

- \mathbf{Q} 25. A particle of mass m are carrying charge $-q_1$ is moving around a charge $+q_2$ along a circular path of radius r. Find period of revolution of the charge $-q_1$

A. $\sqrt{\frac{16\pi^3\epsilon_0mr^3}{q_1q_2}}$ B. $\sqrt{\frac{8\pi^3\epsilon_0mr^3}{a_1a_2}}$ C. $\sqrt{\frac{q_1q_2}{16\pi^3\epsilon_0mr^3}}$ D. Zero

- **Q26.** A charge Q is placed at the centre of a square. If electric field intensity due to the charge at the corners of the square is E_1 and the at the mid point of the side of square is E_2 , then the ratio of $\frac{E_1}{E_2}$ will be

A. $\frac{1}{2\sqrt{2}}$

B. $\sqrt{2}$

C. $\frac{1}{2}$

D. 2