NEDO 特別講座

「将来の電力システムの計画・運用を支える人材育成」 第1回ワークショップ 特別講演

> 進化する電力システム beyond Utility3.0を見据えて 人材に求められるタレント

> > 2025年3月7日

メタエンジニアリング研究所 鈴木浩 (認定心理士)

講師の略歴

- 2018 現在 メタエンジニアリング研究所 所長
- 2012 2018日本経済大学 大学院 教授 研究科長
- 2003 2012 ゼネラル・エレクトリック・エナジー Technology Executive
- 1974 2003
 - 三菱電機株式会社 中央研究所、重電技術部、電力システム エンジニアリングセンターを経て 役員技監

従来型エンジニアリングとメタエンジニアリング

メタエンジニアリング

- 1. 隠れた問題を見つける
- 2. 制約条件を無視し、俯瞰的にみる
- 3. 技術、社会科学、芸術を組み合わせる
- 4. 社会価値を生むように実装する

従来型エンジニアリング

- 1. 与えられた問題
- 2. 既存の制約条件を考慮
- 3. 技術を用いる
- 4. 最良の回答をデザインする

メタエンジニアリングのMECIプロセス

メタエンジニアリングのトレイツ

創造は進化と同じく、変異と適応の繰り返しによって生まれる

太刀川英輔著「進化思考」

変異のパターンで見たイノベーション

変量	トンネル効果発見	江崎玲於奈がトランジスタにリンを入れすぎた
擬態	ベルクロ	植物の種子をモデルとした
欠失	ダイソンの扇風機	羽根をやめる
増殖	ビッグデータ	量から質への転換
転移	スマートフォン	掌に会議室を移す
交換	Uber	タクシーの置き換え
分離	原子の発見	「ア」「トム」
逆転	孫正義	髪の毛の後退ではなく自分の前進
融合	イノベーション	再結合

進化における適応の4パターン

4つのなぜ ニコ・ディンバーゲン ノーベル生理学・医学賞 解剖生理学 発生学 系統学 行動生態学

電力事業のミッションの変化

Power

Quality

Resilience

Sustainable, Smart

1965

Utility 1.0

Utility 2.0

Utility 3.0

電力事業の進化

1,000 TWh/ 年

Digitalization

Data-utilization

De-carbonization

De-energization

De-centlization

Dispersification

Deregulation

Democratization

Depopulation

Diversification

2010 - 2020

2030 - 2050

800 TWh /年

新サービス

イノベーションの民主化

第1の波

Eric von Hippel 2005 「民主化するイノベーションの時代 メーカー主導からの脱皮」

第2の波

AI, Big data, クラウド、Drone, 宇宙旅行 IoT, SNS, RES, 3D Printer, Brock Chain, シェアリングなど誰でもが使える

Data-utilization

データ収集と販売事業 データ活用

De-energization

エネルギー不使用の社会構築エネルギー以外のビジネスへ

Dispersification

分散・融合(自律型マイクログリッド) カーボンニュートラル

Democratization

誰でもがアクセスできる技術 需要家中心のエネルギー

Diversification

国際化、多様化 個人の活躍の幅拡張

これからの人材に期待すること

- 1. これからの社会はWicked な課題が生まれてくる。
- 2. これまで単純、複雑な課題は対応できて来た。
- 3. 回答どころか、問題自身も明らかではない。
- 4. そのような課題に対処するには、固定的な、分析的な解決策は役に立たない。
- 5. スマートな対応が求められる。
- 6. 電力システムは進化する、あるいは進化させなければいけない。
- 7. スマートとは何かを理解する必要がある。
- 8. メタエンジニアリングの考え方を身に着けよう。

スマートの定義

力 = 磁束 X 電流

フレミングの法則

スマートを最大化する

■システムの定量化と最適化

システムの規模をQ, ハードウェアの大きさをH、ソフトウェアの大きさをS、システムから得られる利益をPとする。

① Q = H + S : システムの規模はハードウェアとソフトウェアの規模の和

② P ∞ H *S : スマートという利益は、ハードウェアとソフトウエアの積に比例

③ S ∝ Q² : ソフトウェアの必要な規模は、システムの規模の二乗に比例

利益(P)

利益Pは規模Qに対して4次のグラフ

最大値の条件は $S = H \times 3$

ここでソフトとは、計算機におけるソフトウエアのみではない。社会学的な解決策も含まれる。

グリッドの対応

発電 G

送変電T

配電D

需要C

資産管理システム N - F : Y - F = 1 : 3

グリッドマネジメント ハード:ソフト=1:2

計測制御機器 ハード:ソフト=1:1

送変電機器 ハード:ソフト=1:0 経営指標マネージャ G,T,D,C ネットワーク資産管理 T,D ネットワーク計画マネジャ T.D

エネルギーマネジメント G グリッド連系システムT

モニター診断 G 変電所自動化 T,D

変電機器 T,D

地理情報システム T.D 労務 停電復旧支援 D,C 管理システム D

FACTS T

配電系統マネジメントD

SCADA T.D 電圧無効電力制御 D

柱上変圧器 D

サージアレスタ T,D

スマートメータC

デマンドレスポンスC

AMI D

Digitalization Digitization

Data-Utilization

停電はどうして起きる

自然現象

人的要因

雷

火山噴火

地震と津波

台風

高温

山火事

磁気嵐

A 原子爆弾、航空機

B バイオテロ、船

C 化学的テロ、地球温暖化

D デジタル、ドローン

E 経済、電磁パルス

F 人的サボタージュ

NPO法人 次世代エンジニアリング・イニシアチブ

まとめ

- 新規事業の立ち上げにはメタエンジニアリング思考が必要
- 電力事業の進化を考える
- 適応のうち系統化を行い、P→Q→R→Sの進化に気が付く
- 新たな5つのDを見出す
- 進化では、ハードよりソフトのウエイトが増える
- 常にwhyを考えて、進化にそなえよう