Physics 251b PROBLEM SET 1

Spring 2016 Due: Wednesday, Feb. 10

Reading: Sakurai/Napolitano (S/N), 3.1-3.3, 3.5-3.8, 3.11 (some of this was covered last semester)

1. Consider a tight binding Hamiltonian

$$H = \varepsilon_0 \sum_{i=1}^{4} |i > \langle i| - t \sum_{\langle i,j \rangle} (|i > \langle j| + |j > \langle i|)$$
 (1)

defined on the vertices of a regular tetrahedron, where $\langle i, j \rangle$ means a neighboring pair of sites i and j.

- (a) List the 12 symmetry operations of the tetrahedron which are continuously connected to the identity, i.e. exclude reflections and inversions.
- (b) Which of these 12 is the symmetry operation

$$g_{234}g_{123}$$
, (2)

where g_{123} is a counter-clockwise 120° rotation about the axis perpendicular to the face 123 and g_{243} is the same rotation about the face 243? Show explicitly that

$$g' = g_{123}g_{234} \neq g_{234}g_{123} = g,$$
 (3)

which shows that this group is non-Abelian, thus suggesting that the above Hamiltonian has degenerate eigenvalues. State the symmetry operation correspond to g'.

(c) Construct the 4×4 representation matrices corresponding to g_{123} and g_{234} .

(d) It is known that the tetrahedral point group discussed above has only 1- and 3-dimensional irreducible representations. These should be the degeneracies of the eigenvalues for <u>any</u> Hamiltonian with a tetrahedral symmetry. Verify this fact for the Hamiltonian *H* by finding its eigenvalues and an orthonormal set of eigenfunctions explicitly.

[You might try <u>guessing</u> eigenvectors by trial and error. One energy level is like the s-state of a hydrogen atom. The other is a three-fold degenerate.]

2. (a.) Using any technique you choose (MatLab, guesswork, Mathematica, brute force),

find the eigenvectors and eigenvalues the above eight-dimensional Hamiltonian connecting the vertices of a cube (it's functional form is similar to Eq. (1), problem 1) and identical nearest neighbor hopping matrix elements -t on each of the 12 cube edges. Assume for now that all next nearest neighbor <u>diagonal</u> hopping matrix elements -t' vanish.

- (b.) Discuss the eigenvalue degeneracies in light of the dimensionalities of irreducible representations A_1, A_2, E, T_1 and T_2 of the 24 element cubic point group T_d .
- (c.) Now allow in addition nonzero next-nearest neighbor hoppings -t' on the two diagonals of each of the six cube faces, where 0 < t' < t. Using Mathematica, MatLab or a similar program, plot the 8 eigenvalues $\lambda_j(\varepsilon_0,t,t')$ after first arguing that these must be expressible in the form $\lambda_j = \varepsilon_0 + t f_j(t'/t)$, i.e. determine numerically the eight functions $f_j(x)$, j = 1,...,8. Comment on any similarities or differences compared to the case t' = 0.
- 3. Because the angular momentum operators L_z and L^2 acting on the angular momentum $Y_{lm}(\theta,\phi)$ basis states satisfy (with $\ell = 0,1,2,...$; $-\ell < m < \ell$,)

$$L_{z}Y_{lm}(\theta,\phi) = \frac{\hbar}{i} \frac{\partial Y_{lm}}{\partial \phi} = \hbar m Y_{lm}(\theta,\phi), \quad L^{2}Y_{lm}(\theta,\phi) = \hbar^{2}\ell(\ell+1)Y_{lm}(\theta,\phi),$$

the squared eigenvalue of L_z must always be less than the eigenvalue of L^2 , except in the special case l=m=0. Comment on how this result constrains the "direction" of \vec{L} , if we regard \vec{L} as a classical vector. Show that this inequality is a consequence the uncertainty principle (S/N, Eq. (1.4.53) applied to angular momentum operators, and explain why the case l=m=0 is special.

- 4. (Rotation operators; reviewing S/N would be helpful)
 - (a) For any well-behaved periodic function $f(\phi)$ with period 2π , show that

$$f(\phi - \phi_0) = e^{-iL_z\phi_0/\hbar} f(\phi) \tag{4}$$

where ϕ_0 is any constant angle. For this reason, L_z/\hbar is called the generator of rotations about the z-axis. More generally, $L \cdot \hat{n}/\hbar$ is the generator of rotations about the direction \hat{n} , in the sense that $\exp(-iL \cdot \hat{n}\psi/\hbar)$ effects a rotation through angle ψ (in the counterclockwise sense) about the axis \hat{n} . In the case of spin, the generator of rotations is $\vec{S} \cdot \hat{n}/\hbar$. In particular, for spin 1/2, the transformation

$$\chi' = e^{i(\sigma \cdot \hat{n})\varphi/2} \chi , \qquad (5)$$

where $\vec{S} = (1/2)\hbar\vec{\sigma}$, tells us how at two-component *spinor* changes under a rotation.

(b) Using a Taylor series expansion and the properties of the Pauli matrices $\vec{\sigma}$, demonstrate that

$$e^{-i(\sigma \cdot \hat{n})\varphi/2} = \cos(\varphi/2) - i(\hat{n} \cdot \sigma)\sin(\varphi/2) . \tag{6}$$

- (c) Construct the 2×2 matrix representing a counterclockwise rotation of 180° about the *x*-axis, and show that it converts "spin up" $(\chi = \chi^{+} \equiv (1,0))$ into "spin down" $(\chi = \chi^{-} \equiv (0,1))$, as one might would expect. What happens if you instead rotate by 180° about the y-axis?
- (d) Now construct the matrix representing a counterclockwise rotation by 90° about the y-axis and determine what it does to χ +.
- (e) Construct the matrix representing rotation by 360° about the *z*-axis. If the answer is not quite what one might expect from classical physics, are there observable consequences.

5. (a) If the operators A and B both commute with [A, B], prove that

$$[A, B^n] = nB^{n-1}[A, B]; [A^n, B] = nA^{n-1}[A, B].$$
 (7)

Assume that the function f(x) has a power series expansion about the origin, and use this result to derive a compact expression for $[p_x, f(x)]$ of the form $[p_x, f(x)] = g(x)$. Determine the function g(x).

(b) Prove that for a particle in a potential $V(\vec{r})$ the rate of change of the expectation value of the orbital angular momentum operator \vec{L}_{op} is equal to the expectation value of the torque:

$$\frac{d}{dt} < \vec{L}_{op} > = < \vec{N}_{op} > \tag{7}$$

where the quantum operator corresponding to torque is

$$\vec{N}_{op} = \vec{r} \times (-\vec{\nabla}V(\vec{r})). \tag{8}$$

(This is the rotational analog to Ehrenfest's theorem*.)

(c) Use the quantum equation of motion for a possibly time-dependent operator $\hat{A}(t)$, $i\hbar \frac{d\hat{A}(t)}{dt} = i\hbar \frac{\partial \hat{A}(t)}{\partial t} + [\hat{A}(t), H]$, to show that $d < \vec{L}_{op} > /dt = 0$ for any spherically symmetric potential. (This is quantum statement of the conservation of angular momentum).

Hint: The result of part (a) might be useful.

*Ehrenfest's theorem states that $m\frac{d}{dt}\langle\vec{r}\rangle = \langle\vec{p}_{op}\rangle$ and $\frac{d<\vec{p}_{op}>}{dt} = -\langle\vec{\nabla}V(\vec{r})\rangle$ where \vec{p}_{op} is the momentum operator. The expectation values of these operators thus obey Newton's classical equations of motion.