DEPARTMENT OF COMPUTER SCIENCE CMPT 429,3

		CMPT 4-29,3		
TIME:	75 Minutes	MIDTERM EXAM	CLOSED BOOK	Nov- 1931990
MARKS	· · · · · · · · · · · · · · · · · · ·			
1. G	TIVE PRECISE DE	FINITIONS TO THE F	ollowing:	
. \	a \			
9	a) SENTENTIAL F	erm		
	E	ENERATED BY A GI	RAMMAR G	<u>.</u>
	_ \ _	NSITIUE GRAMMAR		
	d) VALID PRE	FIX PROPERTY		

- (15) 2. FROM A PROGRAMMING LANGUAGE DESIGN PERSPECTIVE, GIVE A BRIEF EVALUATION OF A PROGRAMMING LANGUAGE WITH WHICH YOU ARE FAMILIAR.
- (15) 3. a) why are scanners used in compilers?

 b) Construct a finite-state acceptor that accepts benary

 Strings that have values devestble by 3. A Transition

 DIAGRAM WILL DO.
- (20) 4. 4) SHOW THAT THE GRAMMAR WITH PRODUCTIONS

S' → S# S → aa S bb | a 1 €

00000 5 9000

is LL(2).

HANDLE

b) WHAT LANGUAGE IS CHEVERATED BY THE GRAMMAR?

CMPT 429.3 MIDTERM

- C) FIND AN EQUIVALENT LL(1) GRAMMAR FOR THE LANGUAGE GENERATED BY THE GRAMMAR IN PART(a).
- d) CONSTRUCT AN LL(1) PARSING TABLE FOR YOUR GRAMMAR OF PART(C).
- (15) 5. OBTAIN A GRAMMAR FOR THE LANGUAGE:

$$L = \{0^n 1^n 2^n | n > 0\}$$