

Schletter, Inc.		20° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

	30.00 psf	Ground Snow Load, $P_g =$
(ASCE 7-05, Eq. 7-2	20.62 psf	Sloped Roof Snow Load, $P_s =$
	1.00	I _s =
	0.91	$C_s =$
	0.90	$C_e =$

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	130 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 26.53 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Ct+ _{TOP}	=	1.050	
Cf+ BOTTOM	=	1.050 1.650 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.400	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.840 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applica analy hem are canace.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S $_{\rm s}$ of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
$T_a =$	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

Strength Design, LRFD

1.2D + 1.6S + 0.8W

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E ^O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>1522.71</u>	7323.81	k
Compressive Load =	4568.37	5424.69	k
Lateral Load =	<u>8.14</u>	3301.78	k
Moment (Weak Axis) =	0.02	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (3) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 184606.2 in-lbs Resisting Force Required = 2797.06 lbs A minimum 132in long x 40in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4661.77 lbs to resist overturning. Minimum Width = <u>40 in</u> in Weight Provided = 7975.00 lbs Sliding Force = 793.70 lbs Use a 132in long x 40in wide x 18in tall Friction = 0.4 Weight Required = 1984.24 lbs ballast foundation to resist sliding. Resisting Weight = 7975.00 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion 793.70 lbs Sliding Force = Cohesion = 130 psf Use a 132in long x 40in wide x 18in tall 36.67 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3987.50 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. f'c = 2500 psi Length = 8 in

ASD LC		1.0D ·	+ 1.0S			1.0D+	+ 1.0W		1	.0D + 0.75L +	0.75W + 0.75	S		0.6D +	+ 1.0W	
Width	40 in	41 in	42 in	43 in	40 in	41 in	42 in	43 in	40 in	41 in	42 in	43 in	40 in	41 in	42 in	43 in
FA	1281 lbs	1281 lbs	1281 lbs	1281 lbs	1917 lbs	1917 lbs	1917 lbs	1917 lbs	2291 lbs	2291 lbs	2291 lbs	2291 lbs	-727 lbs	-727 lbs	-727 lbs	-727 lbs
F _B	1299 lbs	1299 lbs	1299 lbs	1299 lbs	2323 lbs	2323 lbs	2323 lbs	2323 lbs	2609 lbs	2609 lbs	2609 lbs	2609 lbs	-3517 lbs	-3517 lbs	-3517 lbs	-3517 lbs
F _V	137 lbs	137 lbs	137 lbs	137 lbs	1401 lbs	1401 lbs	1401 lbs	1401 lbs	1143 lbs	1143 lbs	1143 lbs	1143 lbs	-1587 lbs	-1587 lbs	-1587 lbs	-1587 lbs
P _{total}	10555 lbs	10755 lbs	10954 lbs	11153 lbs	12215 lbs	12415 lbs	12614 lbs	12813 lbs	12875 lbs	13074 lbs	13273 lbs	13473 lbs	541 lbs	661 lbs	781 lbs	900 lbs
M	3244 lbs-ft	3244 lbs-ft	3244 lbs-ft	3244 lbs-ft	5728 lbs-ft	5728 lbs-ft	5728 lbs-ft	5728 lbs-ft	6456 lbs-ft	6456 lbs-ft	6456 lbs-ft	6456 lbs-ft	2666 lbs-ft	2666 lbs-ft	2666 lbs-ft	2666 lbs-ft
е	0.31 ft	0.30 ft	0.30 ft	0.29 ft	0.47 ft	0.46 ft	0.45 ft	0.45 ft	0.50 ft	0.49 ft	0.49 ft	0.48 ft	4.92 ft	4.03 ft	3.41 ft	2.96 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft									
f _{min}	239.6 psf	239.1 psf	238.6 psf	238.1 psf	247.9 psf	247.2 psf	246.5 psf	245.8 psf	255.1 psf	254.2 psf	253.3 psf	252.5 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	336.1 psf	333.2 psf	330.5 psf	327.8 psf	418.4 psf	413.5 psf	408.8 psf	404.3 psf	447.2 psf	441.6 psf	436.2 psf	431.1 psf	188.0 psf	87.9 psf	71.3 psf	66.0 psf

41 in

40 in

Ballast Width

7975 lbs 8174 lbs 8374 lbs 8573 lbs

42 in

43 in

Maximum Bearing Pressure = 447 psf Allowable Bearing Pressure = 1500 psf

 $P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(3.33 \text{ ft}) =$

Use a 132in long x 40in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_O = 1206.5 \text{ ft-lbs}$

Resisting Force Required = 723.91 lbs S.F. = 1.67

Weight Required = 1206.52 lbs Minimum Width = 40 in in Weight Provided = 7975.00 lbs A minimum 132in long x 40in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		40 in			40 in		40 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	209 lbs	534 lbs	209 lbs	730 lbs	2120 lbs	730 lbs	61 lbs	156 lbs	61 lbs	
F _V	1 lbs	0 lbs	1 lbs	3 lbs	0 lbs	3 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	10082 lbs	7975 lbs	10082 lbs	10129 lbs	7975 lbs	10129 lbs	2948 lbs	7975 lbs	2948 lbs	
М	3 lbs-ft	0 lbs-ft	3 lbs-ft	11 lbs-ft	0 lbs-ft	11 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.56 ft	0.56 ft	0.56 ft	0.56 ft	0.56 ft	0.56 ft	0.56 ft	0.56 ft	0.56 ft	
f _{min}	274.8 psf	217.5 psf	274.8 psf	275.7 psf	217.5 psf	275.7 psf	80.4 psf	217.5 psf	80.4 psf	
f _{max}	275.1 psf	217.5 psf	275.1 psf	276.8 psf	217.5 psf	276.8 psf	80.4 psf	217.5 psf	80.4 psf	

Maximum Bearing Pressure = 277 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 40in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 40in wide x 18in tall ballast foundation and fiber reinforcing with (3) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	3.514 k	Maximum Axial Load =	5.033 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity =	12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity =	7.421 k
Utilization =	<u>47%</u>	Utilization =	<u>68%</u>
Diagonal Strut			
Maximum Axial Load =	2.280 k		
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for	or double she
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)	
Utilization =	<u>31%</u>		
	• •		

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, $h_{sx} =$ 40.12 in

Allowable Story Drift for All Other Structures, Δ = {

Max Drift, $\Delta_{MAX} =$ 0.021 in

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **<u>\$1.5</u>**

Strong Axis:

3.4.14

$$L_{b} = 99 \text{ in}$$

$$J = 0.432$$

$$273.88$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$

$\phi F_L = 28.0 \text{ ksi}$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16.1

 $\begin{aligned} \text{Rb/t} &= \\ S1 &= \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2 \\ \text{S1} &= & 1.1 \\ S2 &= & C_t \\ \text{S2} &= & 141.0 \\ \phi \text{F}_{\text{L}} &= & 1.17 \phi \text{yFcy} \\ \phi \text{F}_{\text{L}} &= & 38.9 \text{ ksi} \end{aligned}$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 99 \\ \mathsf{J} &= & 0.432 \\ &= & 174.171 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi b [\mathsf{Bc-1.6Dc*} \sqrt{(\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))}] \\ \varphi \mathsf{F_L} &= & 29.1 \end{split}$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$k = 897074 \text{ mm}^4$$

2.155 in⁴

41.015 mm

1.335 in³

2.788 k-ft

3.4.18

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 446476 \text{ mm}^4$$

$$V = 45.5 \text{ mm}$$

$$V = 0.599 \text{ in}^3$$

1.152 k-ft

 $M_{max}Wk =$

 $M_{max}St =$

Sx=

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 = 29.2$

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2 S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{12.2}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.1 \text{ ksi}$$

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = \frac{1}{mDbr}$$

$$S2 = 73.8$$

$$\varphi F_L = 1.3 \varphi y F_C y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 29.4 \text{ ksi} \\ Ix = & 984962 \text{ mm}^4 \\ & 2.366 \text{ in}^4 \\ y = & 43.717 \text{ mm} \\ Sx = & 1.375 \text{ in}^3 \\ M_{max} St = & 3.363 \text{ k-ft} \end{array}$$

3.4.16.1

N/A for Weak Direction

3.4.18

S1=
$$\frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$
S1 = 36.9
m = 0.65
C₀ = 40
Cc = 40
S2 = $\frac{k_1Bbr}{mDbr}$
S2 = 77.3
 ϕ F_L= 1.3 ϕ yFcy
 ϕ F_L= 43.2 ksi

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

3.4.9

$$\begin{array}{lll} b/t = & 16.2 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 31.6 \text{ ksi} \\ \\ b/t = & 7.4 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \end{array}$$

33.3 ksi

3.4.10

 $\phi F_L =$

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_{y}}{\theta_{h}}Fcy}{Dt}\right)^{2}$$
S1 = 6.87
S2 = 131.3
 $\phi F_{L} = \phi c[Bt-Dt^{*}\sqrt{(Rb/t)}]$
 $\phi F_{L} = 31.09 \text{ ksi}$
 $\phi F_{L} = 31.09 \text{ ksi}$
 $\phi F_{L} = 1215.13 \text{ mm}^{2}$
1.88 in²

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ & 38.7028 \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*}\sqrt{(\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))} \end{array}$$

$$\phi F_L = 31.4 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

24.5

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L St = 28.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$

$$y = 0.672 \text{ in}^4$$

 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$

$$M_{max}St = 1.460 \text{ k-ft}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 24.8 \\ \mathsf{J} &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi \mathsf{b}[\mathsf{Bc-1.6Dc*}\sqrt{(\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))}] \\ \varphi \mathsf{F_L} &= & 31.4 \end{split}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

m =

$$\begin{array}{cccc} C_0 = & 27.5 \\ Cc = & 27.5 \\ S2 = & \frac{k_1 Bbr}{mDbr} \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L Wk = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ \\ M_{\text{max}} Wk = & 1.460 \text{ k-ft} \\ \end{array}$$

24.5

0.65

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$ mDbr

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 28.03 \text{ ksi}$
A = 663.99 mm²
1.03 in²

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.6 ksi $\phi F_1 =$ 29.6

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

 $S1 = 1.1$
 $S2 = C_t$
 $S2 = 141.0$
 $\phi F_L = 1.17 \phi y Fcy$
 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

Solution h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.86047$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.50396 \text{ ksi}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

1.03 in²

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 55.91 \text{ in}$$

$$J = 0.942 \\ 87.2529$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.4 \text{ ksi}$$

Weak Axis:

$$L_b = 55.91$$

 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 1.6Dp$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = C_t$$

 $S2 = 141.0$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = \begin{array}{c} mDbr \\ 36.9 \end{array}$$

$$m = 0.65$$

$$C_0 = 27.5$$

 $Cc = 27.5$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

0.672 in⁴

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

$$M_{max}St = 1.460 \text{ k-ft}$$

Compression

3.4.7

$$\lambda = 1.29339$$
 $r = 0.81 \text{ in}$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.76107$$

$$\phi F_L = (\phi ccFcy)/(\lambda^2)$$

$$\phi F_L = 15.9235 \text{ ksi}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_1 Wk = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

0.672 in⁴

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_{y}}{\theta_{b}} Fcy}{Dt} \right)^{2} \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{\phiF}_{\text{L}} &= & \text{\phiyFcy} \\ \text{\phiF}_{\text{L}} &= & 33.25 \text{ ksi} \\ \text{\phiF}_{\text{L}} &= & 15.92 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^{2} \\ & & 1.03 \text{ in}^{2} \\ \text{P}_{\text{max}} &= & 16.39 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-54.031	-54.031	0	0
2	M14	Υ	-54.031	-54.031	0	0
3	M15	Υ	-54.031	-54.031	0	0
4	M16	V	-54 031	-54 031	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-77.697	-77.697	0	0
2	M14	٧	-77.697	-77.697	0	0
3	M15	V	-122.096	-122.096	0	0
4	M16	V	-122.096	-122.096	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	177.594	177.594	0	0
2	M14	V	136.155	136.155	0	0
3	M15	V	73.997	73.997	0	0
4	M16	V	73 997	73 997	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	Fa	В	Fa	. B	Fa	В	. Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E				1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	658.979	2	1312.781	2	.585	1	.003	1	Ö	1	Ö	1
2		min	-814.142	3	-1751.425	3	.025	15	0	15	0	1	0	1
3	N7	max	.024	9	1165.237	1	239	15	0	15	0	1	0	1
4		min	218	2	-343.877	3	-6.264	1	013	1	0	1	0	1
5	N15	max	.021	9	3514.133	2	0	1	0	1	0	1	0	1
6		min	-2.4	2	-1171.318	3	0	3	0	3	0	1	0	1
7	N16	max	2292.871	2	4172.842	2	0	11	0	11	0	1	0	1
8		min	-2539.827	3	-5633.701	3	0	3	0	3	0	1	0	1
9	N23	max	.024	9	1165.237	1	6.264	1	.013	1	0	1	0	1
10		min	218	2	-343.877	3	.239	15	0	15	0	1	0	1
11	N24	max	658.979	2	1312.781	2	025	15	0	15	0	1	0	1
12		min	-814.142	3	-1751.425	3	585	1	003	1	0	1	0	1
13	Totals:	max	3607.995	2	12618.38	2	0	1						
14		min	-4169.231	3	-10995.623	3	0	3						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC		LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
1	M13	1	max	65.069	1_	487.934	2	-4.82	15	0	15	.155	1_	0	2
2			min	2.407	15	-864.405	3	-131.898	1	016	2	.006	15	0	3
3		2	max	65.069	1	340.505	2	-3.7	15	0	15	.048	1	.675	3
4			min	2.407	15	-608.55	3	-101.082	1	016	2	.002	15	38	2
5		3	max	65.069	1	193.077	2	-2.579	15	0	15	.002	3	1.116	3
6			min	2.407	15	-352.695	3	-70.265	1	016	2	031	1	624	2
7		4	max	65.069	1	45.648	2	-1.459	15	0	15	002	12	1.322	3
8			min	2.407	15	-96.839	3	-39.448	1	016	2	081	1	734	2
9		5	max	65.069	1	159.016	3	072	10	0	15	003	12	1.293	3
10			min	2.407	15	-101.781	2	-8.631	1	016	2	103	1	708	2
11		6	max	65.069	1	414.871	3	22.186	1	0	15	004	15	1.03	3
12			min	2.407	15	-249.21	2	74	3	016	2	097	1	547	2
13		7	max	65.069	1	670.726	3	53.003	1	0	15	002	15	.533	3
14			min	2.407	15	-396.638	2	.705	12	016	2	062	1	251	2
15		8	max	65.069	1	926.582	3	83.82	1	0	15	.003	2	.18	2
16			min	2.407	15	-544.067	2	1.825	12	016	2	005	3	199	3
17		9	max	65.069	1	1182.437	3	114.637	1	0	15	.091	1	.746	2
18			min	2.407	15	-691.496	2	2.945	12	016	2	002	3	-1.166	3
19		10	max	65.069	1	838.925	2	-4.065	12	.016	2	.21	1	1.448	2
20			min	2.407	15	-1438.292	3	-145.454	1	0	3	.002	12	-2.367	3
21		11	max	65.069	1	691.496	2	-2.945	12	.016	2	.091	1	.746	2
22			min	2.407	15	-1182.437	3	-114.637	1	0	15	002	3	-1.166	3
23		12	max	65.069	1	544.067	2	-1.825	12	.016	2	.003	2	.18	2
24			min	2.407	15	-926.582	3	-83.82	1	0	15	005	3	199	3
25		13	max	65.069	1	396.638	2	705	12	.016	2	002	15	.533	3
26			min	2.407	15	-670.726	3	-53.003	1	0	15	062	1	251	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
27		14	max	65.069	1_	249.21	2	.74	3	.016	2	004	15	1.03	3
28			min	2.407	15	-414.871	3	-22.186	1	0	15	097	1	547	2
29		15	max	65.069	1	101.781	2	8.631	1	.016	2	003	12	1.293	3
30			min	2.407	15	-159.016	3	.072	10	0	15	103	1	708	2
31		16	max	65.069	1	96.839	3	39.448	1	.016	2	002	12	1.322	3
32			min	2.407	15	-45.648	2	1.459	15	0	15	081	1	734	2
33		17	max	65.069	1	352.695	3	70.265	1	.016	2	.002	3	1.116	3
34			min	2.407	15	-193.077	2	2.579	15	0	15	031	1	624	2
35		18	max	65.069	1	608.55	3	101.082	1	.016	2	.048	1	.675	3
36			min	2.407	15	-340.505	2	3.7	15	0	15	.002	15	38	2
37		19	max	65.069	1	864.405	3	131.898	1	.016	2	.155	1	0	2
38		1.0	min	2.407	15	-487.934	2	4.82	15	0	15	.006	15	0	3
39	M14	1	max	34.132	1	540.176	2	-4.994	15	.012	3	.181	1	0	1
40	IVIIT	<u> </u>	min	1.261	15	-690.556	3	-136.672	1	014	2	.007	15	0	3
41		2	max	34.132	1	392.747	2	-3.874	15	.012	3	.07	1	.544	3
42			min	1.261	15	-495.478	3	-105.855	1	014	2	.003	15	428	2
43		3				245.319			15	.012	3	.003			3
		3	max	34.132	1		2	-2.754			2		3	.908	
44		1	min	1.261	15	-300.4	3	-75.038	1_	014		013	1	72	2
45		4	max	34.132	1	97.89	2	-1.633	15	.012	3	0	12	1.094	3
46		-	min	1.261	15	-105.322	3	-44.221	1_	014	2	068	1	877	2
47		5	max	34.132	1_	89.756	3	513	15	.012	3	003	12	1.101	3
48		_	min	1.261	15	-50.685	1	-13.404	1	014	2	094	1	899	2
49		6	max	34.132	1_	284.834	3	17.413	1	.012	3	003	15	.93	3
50			min	1.261	15	-196.968	2	-1.012	3	014	2	093	1	787	2
51		7	max	34.132	1	479.912	3	48.229	1	.012	3	002	15	.579	3
52			min	1.261	15	-344.396	2	.524	12	014	2	063	1	538	2
53		8	max	34.132	1	674.99	3	79.046	1	.012	3	.001	10	.05	3
54			min	1.261	15	-491.825	2	1.644	12	014	2	005	3	155	2
55		9	max	34.132	1	870.069	3	109.863	1	.012	3	.082	1	.372	1
56			min	1.261	15	-639.254	2	2.764	12	014	2	002	3	658	3
57		10	max	34.132	1	786.683	2	-3.884	12	.014	2	.197	1	1.017	2
58			min	1.261	15	-1065.147	3	-140.68	1	012	3	.002	12	-1.545	3
59		11	max	34.132	1	639.254	2	-2.764	12	.014	2	.082	1	.372	1
60			min	1.261	15	-870.069	3	-109.863		012	3	002	3	658	3
61		12	max	34.132	1	491.825	2	-1.644	12	.014	2	.001	10	.05	3
62		<u> </u>	min	1.261	15	-674.99	3	-79.046	1	012	3	005	3	155	2
63		13	max	34.132	1	344.396	2	524	12	.014	2	002	15	.579	3
64		''	min	1.261	15	-479.912	3	-48.229	1	012	3	063	1	538	2
65		14	max	34.132	1	196.968	2	1.012	3	.014	2	003	15	.93	3
66		17	min	1.261	15	-284.834	3	-17.413	1	012	3	093	1	787	2
67		15			1	50.685	1	13.404	1	.014	2	003	12	1.101	3
68		13	max min	1.261	15	-89.756	3	.513	15	012	3	003	1	899	2
69		16	max	34.132	1	105.322	3	44.221	1	.014	2	0	12	1.094	3
70		10		1.261		-97.89			15	012	3	068	1	877	2
71		17	min	34.132	15	300.4	3	1.633			2	.004	3		
		17	max		1			75.038	1	.014				.908	3
72		4.0	min	1.261	15	-245.319	2	2.754	15	012	3	013	1	72	2
73		18	max	34.132	1_	495.478	3	105.855	1	.014	2	.07	1_	.544	3
74		4.0	min	1.261	15	-392.747	2	3.874	15	012	3	.003	15	428	2
75		19	max	34.132	1	690.556	3	136.672	1	.014	2	.181	1	0	1
<u>76</u>			min	1.261	15	-540.176	2	4.994	15	012	3	.007	15	0	3
77	M15	1	max	-1.317	15	760.058	2	-4.993	15	.014	2	.181	1	0	2
78			min	-35.486	1	-383.386	3	-136.679		01	3	.007	15	0	3
79		2	max	-1.317	15	547.511	2	-3.873	15	.014	2	.07	1	.304	3
80			min	-35.486	1	-279.473	3	-105.862	1	01	3	.003	15	599	2
81		3	max	-1.317	15	334.964	2	-2.752	15	.014	2	.003	3	.512	3
82			min	-35.486	1	-175.56	3	-75.045	1	01	3	013	1	-1.004	2
83		4	max	-1.317	15	122.416	2	-1.632	15	.014	2	0	12	.626	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]					LC
84			min	-35.486	1	-71.647	3	-44.228	1	01	3	068	1_	-1.213	2
85		5	max	-1.317	15	32.266	3	512	15	.014	2	003	12	.644	3
86			min	-35.486	1	-90.131	2	-13.411	1	01	3	094	1	-1.228	2
87		6	max	-1.317	15	136.179	3	17.406	1	.014	2	003	15	.567	3
88			min	-35.486	1	-302.678	2	864	3	01	3	093	1	-1.048	2
89		7	max	-1.317	15	240.092	3	48.223	1	.014	2	002	15	.394	3
90			min	-35.486	1	-515.225	2	.617	12	01	3	063	1	673	2
91		8	max	-1.317	15	344.005	3	79.04	1	.014	2	.001	10	.126	3
92			min	-35.486	1	-727.773	2	1.737	12	01	3	004	3	104	2
93		9	max	-1.317	15	447.918	3	109.857	1	.014	2	.082	1	.661	2
94			min	-35.486	1	-940.32	2	2.857	12	01	3	001	3	237	3
95		10	max	-1.317	15	1152.867	2	-3.977	12	.01	3	.197	1	1.62	2
96			min	-35.486	1	-551.832	3	-140.674	1	014	2	.002	12	695	3
97		11	max	-1.317	15	940.32	2	-2.857	12	.01	3	.082	1	.661	2
98			min	-35.486	1	-447.918	3	-109.857	1	014	2	001	3	237	3
99		12	max	-1.317	15	727.773	2	-1.737	12	.01	3	.001	10	.126	3
100		12	min	-35.486	1	-344.005	3	-79.04	1	014	2	004	3	104	2
		13		-1.317	15	515.225	2	617	12	.01	3	002	15	.394	3
101		13	max					-48.223	1		2		1	673	2
		4.4	min	-35.486	1	-240.092	3			014		063			
103		14	max	-1.317	15	302.678	2	.864	3	.01	3	003	15	.567	3
104		4.5	min	-35.486	1	-136.179	3	-17.406	1	014	2	093	1	-1.048	2
105		15	max	<u>-1.317</u>	15	90.131	2	13.411	1	.01	3	003	12	.644	3
106			min	-35.486	1	-32.266	3	.512	15	014	2	094	1_	-1.228	2
107		16	max	-1.317	15	71.647	3	44.228	1	.01	3	0	12	.626	3
108			min	-35.486	1	-122.416	2	1.632	15	014	2	068	1	-1.213	2
109		17	max	-1.317	15	175.56	3	75.045	1	.01	3	.003	3	.512	3
110			min	-35.486	1	-334.964	2	2.752	15	014	2	013	1	-1.004	2
111		18	max	-1.317	15	279.473	3	105.862	1	.01	3	.07	1	.304	3
112			min	-35.486	1	-547.511	2	3.873	15	014	2	.003	15	599	2
113		19	max	-1.317	15	383.386	3	136.679	1	.01	3	.181	1	0	2
114			min	-35.486	1	-760.058	2	4.993	15	014	2	.007	15	0	3
115	M16	1	max	-2.565	15	710.047	2	-4.826	15	.011	2	.156	1	0	2
116			min	-69.393	1	-342.148	3	-132.195	1	014	3	.006	15	0	3
117		2	max	-2.565	15	497.5	2	-3.705	15	.011	2	.049	1	.266	3
118			min	-69.393	1	-238.235	3	-101.378	1	014	3	.002	15	553	2
119		3	max	-2.565	15	284.952	2	-2.585	15	.011	2	.001	3	.437	3
120			min	-69.393	1	-134.322	3	-70.561	1	014	3	03	1	912	2
121		4	max	-2.565	15	72.405	2	-1.465	15	.011	2	002	12	.512	3
122			min	-69.393	1	-30.409	3	-39.745	1	014	3	081	1	-1.076	2
123		5	max	-2.565	15	73.504	3	26	10	.011	2	004	12	.493	3
124			min		1	-140.142	2	-8.928	1	014	3	103	1	-1.045	2
125		6	max	-2.565	15	177.417	3	21.889	1	.011	2	004	15	.378	3
126			min	-69.393	1	-352.69	2	239	3	014	3	004	1	819	2
127		7	max	-09.393 -2.565	15	281.33	3	52.706	1	.011	2	002	15	.167	3
128		-	min	-69.393	1	-565.237	2	1.018	12	014	3	063	1	398	2
129		0			_	385.243	3	83.523	1	.011	2	.002	2	.217	2
		8	max	<u>-2.565</u>	15										
130		0	min	<u>-69.393</u>	1 1 5	-777.784	2	2.138	12	014	3	004	3	138 1.029	3
131		9	max	-2.565	15	489.156	3	114.34	1	.011	2	.09	1	1.028	2
132		40	min	-69.393	1	-990.331	2	3.258	12	014	3	0	3	539	3
133		10	max	-2.565	15	1202.879	2	-4.378	12	.014	3	.209	1	2.033	2
134		4.4	min	-69.393	1_	-593.069	3	-145.157		011	2	.004	12	-1.035	3
135		11	max	<u>-2.565</u>	15	990.331	2	-3.258	12	.014	3	.09	1	1.028	2
136			min	-69.393	1	-489.156	3	-114.34	1	011	2	0	3	539	3
137		12	max	-2.565	15	777.784	2	-2.138	12	.014	3	.002	2	.217	2
138			min	-69.393	1	-385.243	3	-83.523	1_	011	2	004	3	138	3
139		13	max	-2.565	15	565.237	2	-1.018	12	.014	3	002	15	.167	3
140			min	-69.393	1	-281.33	3	-52.706	1	011	2	063	1	398	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]			LC		LC	Torque[k-ft]	LC	y-y Mome		z-z Mome	LC_
141		14	max	-2.565	15	352.69	2	.239	3	.014	3	004	15	.378	3
142			min	-69.393	1_	-177.417	3	-21.889	1	011	2	097	1_	819	2
143		15	max	-2.565	15	140.142	2	8.928	1	.014	3	004	12	.493	3
144			min	-69.393	1	-73.504	3	.26	10	011	2	103	1	-1.045	2
145		16	max	-2.565	15	30.409	3	39.745	1	.014	3	002	12	.512	3
146			min	-69.393	1	-72.405	2	1.465	15	011	2	081	1	-1.076	2
147		17	max	-2.565	15	134.322	3	70.561	1	.014	3	.001	3	.437	3
148			min	-69.393	1	-284.952	2	2.585	15	011	2	03	1	912	2
149		18	max	-2.565	15	238.235	3	101.378	1	.014	3	.049	1	.266	3
150			min	-69.393	1	-497.5	2	3.705	15	011	2	.002	15	553	2
151		19	max	-2.565	15	342.148	3	132.195	1	.014	3	.156	1	0	2
152			min	-69.393	1	-710.047	2	4.826	15	011	2	.006	15	0	3
153	M2	1	max	1137.58	2	2.029	4	.61	1	0	3	0	3	0	1
154			min	-1563.892	3	.478	15	.022	15	0	1	0	2	0	1
155		2	max	1137.96	2	1.996	4	.61	1	0	3	0	1	0	15
156			min	-1563.608	3	.47	15	.022	15	0	1	0	15	0	4
157		3	max		2	1.962	4	.61	1	0	3	0	1	0	15
158			min	-1563.323	3	.462	15	.022	15	0	1	0	15	001	4
159		4		1138.718		1.929	4	.61	1	0	3	0	1	0	15
		4		-1563.039	2		15				1		15		
160		E	min		3	.454		.022	15	0	_	0		002	4
161		5	max		2	1.895	4	.61	1	0	3	0	1_	0	15
162			min	-1562.754	3	.446	15	.022	15	0	1	0	15	002	4
163		6		1139.477	2	1.862	4	.61	1	0	3	0	1_	0	15
164			min	-1562.47	3	.438	15	.022	15	0	1	0	15	002	4
165		7		1139.856	2	1.829	4	.61	1	0	3	0	_1_	0	15
166			min	-1562.185	3	.431	15	.022	15	0	1	0	15	003	4
167		8	max		2	1.795	4	.61	1	0	3	.001	_1_	0	15
168			min	-1561.901	3	.419	12	.022	15	0	1	0	15	003	4
169		9		1140.615	2	1.762	4	.61	1	0	3	.001	_1_	0	15
170			min	-1561.617	3	.406	12	.022	15	0	1	0	15	004	4
171		10	max		2	1.728	4	.61	1	0	3	.001	_1_	001	15
172			min	-1561.332	3	.393	12	.022	15	0	1	0	15	004	4
173		11	max	1141.373	2	1.695	4	.61	1	0	3	.002	_1_	001	15
174			min	-1561.048	3	.38	12	.022	15	0	1	0	15	005	4
175		12	max	1141.752	2	1.662	4	.61	1	0	3	.002	1	001	15
176			min	-1560.763	3	.367	12	.022	15	0	1	0	15	005	4
177		13	max	1142.132	2	1.628	4	.61	1	0	3	.002	1	001	15
178			min	-1560.479	3	.354	12	.022	15	0	1	0	15	006	4
179		14	max	1142.511	2	1.595	4	.61	1	0	3	.002	1	001	12
180			min	-1560.194	3	.341	12	.022	15	0	1	0	15	006	4
181		15		1142.89	2	1.561	4	.61	1	0	3	.002	1	002	12
182			min		3	.328	12	.022	15	0	1	0	15	006	4
183		16		1143.269	2	1.528	4	.61	1	0	3	.002	1	002	12
184			min		3	.315	12	.022	15	0	1	0	15	007	4
185		17		1143.649	2	1.497	2	.61	1	0	3	.002	1	002	12
186			min	-1559.341	3	.302	12	.022	15	0	1	0	15	007	4
187		18		1144.028	2	1.471	2	.61	1	0	3	.003	1	002	12
188		10	min	-1559.057	3	.289	12	.022	15	0	1	0	15	002	4
189		19		1144.407	2	1.445	2	.61	1	0	3	.003	1	002	12
190		13	min	-1558.772	3	.276	12	.022	15	0	1	0	15	002	4
	M3	1		604.052		7.983		.022	1		3		<u>15</u> 1		4
191	IVIO				2		4		_	0		0		.008	-
192		0	min		3	1.877	15	.002	15	0	1	0	<u>15</u>	.002	12
193		2	max		2	7.213	4 1E	.064	1	0	3	0	1_	.005	2
194		0	min		3	1.696	15	.002	15	0	1	0	15	0	12
195		3	max		2	6.443	4	.064	1	0	3	0	1_	.003	2
196		4	min		3	1.515	15	.002	15	0	1	0	15	0	3
197		4	max	603.541	2	5.673	4	.064	_1_	0	3	0	_1_	0	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
198			min	-734.627	3	1.334	15	.002	15	0	1	0	15	002	3
199		5	max	603.371	2	4.903	4	.064	1	0	3	0	1	0	15
200			min	-734.755	3	1.153	15	.002	15	0	1	0	15	003	3
201		6	max		2	4.133	4	.064	1	0	3	0	1	001	15
202			min	-734.883	3	.972	15	.002	15	0	1	0	15	005	4
203		7	max	603.03	2	3.363	4	.064	1	0	3	0	1	001	15
204			min	-735.011	3	.791	15	.002	15	0	1	0	15	006	4
205		8	max	602.86	2	2.593	4	.064	1	0	3	0	1	002	15
206			min	-735.138	3	.61	15	.002	15	0	1	0	15	008	4
207		9	max	602.69	2	1.823	4	.064	1	0	3	0	1	002	15
208			min	-735.266	3	.429	15	.002	15	0	1	0	15	009	4
209		10	max		2	1.053	4	.064	1	0	3	0	1	002	15
210			min	-735.394	3	.239	12	.002	15	0	1	0	15	009	4
211		11	max	602.349	2	.423	2	.064	1	0	3	0	1	002	15
212			min	-735.522	3	108	3	.002	15	0	1	0	15	009	4
213		12	max	602.178	2	114	15	.064	1	0	3	0	1	002	15
214			min	-735.649	3	558	3	.002	15	0	1	0	15	009	4
215		13	max	602.008	2	295	15	.064	1	0	3	0	1	002	15
216			min	-735.777	3	-1.257	4	.002	15	0	1	0	15	009	4
217		14	max	601.838	2	476	15	.064	1	0	3	0	1	002	15
218			min	-735.905	3	-2.027	4	.002	15	0	1	0	15	008	4
219		15	max	601.667	2	657	15	.064	1	0	3	0	1	002	15
220			min	-736.033	3	-2.796	4	.002	15	0	1	0	15	007	4
221		16	max	601.497	2	838	15	.064	1	0	3	0	1	001	15
222			min	-736.16	3	-3.566	4	.002	15	0	1	0	15	006	4
223		17	max	601.327	2	-1.019	15	.064	1	0	3	0	1	001	15
224			min	-736.288	3	-4.336	4	.002	15	0	1	0	15	004	4
225		18	max	601.156	2	-1.2	15	.064	1	0	3	0	1	0	15
226			min	-736.416	3	-5.106	4	.002	15	0	1	0	15	002	4
227		19	max	600.986	2	-1.381	15	.064	1	0	3	0	1	0	1
228			min	-736.544	3	-5.876	4	.002	15	0	1	0	15	0	1
229	M4	1	max	1162.171	1	0	1	239	15	0	1	0	1	0	1
230			min	-346.177	3	0	1	-6.491	1	0	1	0	15	0	1
231		2	max	1162.341	1	0	1	239	15	0	1	0	12	0	1
232			min	-346.049	3	0	1	-6.491	1	0	1	0	1	0	1
233		3	max	1162.512	1	0	1	239	15	0	1	0	15	0	1
234			min	-345.921	3	0	1	-6.491	1	0	1	001	1	0	1
235		4	max	1162.682	1	0	1	239	15	0	1	0	15	0	1
236			min	-345.793	3	0	1	-6.491	1	0	1	002	1	0	1
237		5	max	1162.852	1	0	1	239	15	0	1	0	15	0	1
238			min	-345.666	3	0	1	-6.491	1	0	1	003	1	0	1
239		6	max	1163.023	1	0	1	239	15	0	1	0	15	0	1
240			min	-345.538	3	0	1	-6.491	1	0	1	003	1	0	1
241		7	max	1163.193	1	0	1	239	15	0	1	0	15	0	1
242			min	-345.41	3	0	1	-6.491	1	0	1	004	1	0	1
243		8	max	1163.364	1	0	1	239	15	0	1	0	15	0	1
244			min	-345.282	3	0	1	-6.491	1	0	1	005	1	0	1
245		9	max	1163.534	1	0	1	239	15	0	1	0	15	0	1
246				-345.155	3	0	1	-6.491	1	0	1	006	1	0	1
247		10		1163.704	1	0	1	239	15	0	1	0	15	0	1
248				-345.027	3	0	1	-6.491	1	0	1	006	1	0	1
249		11		1163.875	1	0	1	239	15	0	1	0	15	0	1
250			min		3	0	1	-6.491	1	0	1	007	1	0	1
251		12		1164.045	1	0	1	239	15	0	1	0	15	0	1
252			min		3	0	1	-6.491	1	0	1	008	1	0	1
253		13		1164.215	1	0	1	239	15	0	1	0	15	0	1
254				-344.643		0	1	-6.491	1	0	1	009	1	0	1

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

055	Member	Sec	T	Axial[lb]								y-y Mome			
255 256		14		1164.386 -344.516	<u>1</u> 3	0	1	239 -6.491	<u>15</u> 1	0	<u>1</u> 1	009	<u>15</u> 1	0	1
257		15		1164.556	<u> </u>	0	1	239	15	0	1	009	15	0	1
258		13		-344.388	3	0	1	-6.491	1	0	1	01	1	0	1
259		16		1164.726	1	0	1	239	15	0	1	0	15	0	1
260			min		3	0	1	-6.491	1	0	1	011	1	0	1
261		17		1164.897	1	0	1	239	15	0	1	0	15	0	1
262				-344.132	3	0	1	-6.491	1	0	1	012	1	0	1
263		18	max	1165.067	1	0	1	239	15	0	1	0	15	0	1
264			min	-344.005	3	0	1	-6.491	1	0	1	012	1	0	1
265		19	max	1165.237	1	0	1	239	15	0	1	0	15	0	1
266			min	-343.877	3	0	1	-6.491	1	0	1	013	1	0	1
267	<u>M6</u>	1	max		2	2.714	2	0	_1_	0	_1_	0	1	0	1
268			min	-5032.512	3	232	3	0	1_	0	1	0	1	0	1
269		2	max		2	2.688	2	0	_1_	0	_1_	0	1	0	3
270			min	-5032.228	3	251	3	0	1_	0	1	0	1	0	2
271		3		3587.229	2	2.662	2	0	1	0		0	1	0	3
272		4	min	-5031.943	3	271	3	0	1_	0	1_	0	1	001	2
273		4		3587.608	2	2.636	2	0	1_	0	1_1	0	1	0	3
274		E	min	-5031.659	3	29	3	0	<u>1</u> 1	0	<u>1</u> 1	0	1	002	2
275 276		5	min	3587.987 -5031.374	3	2.61 31	3	0	1	0	1	0	1	003	2
277		6		3588.367	2	2.584	2	0	1	0	1	0	1	003 0	3
278		0		-5031.09	3	329	3	0	1	0	1	0	1	003	2
279		7		3588.746	2	2.558	2	0	1	0	1	0	1	0	3
280				-5030.806	3	349	3	0	1	0	1	0	1	004	2
281		8		3589.125	2	2.532	2	0	1	0	1	0	1	0	3
282		Ŭ		-5030.521	3	369	3	0	1	0	1	0	1	005	2
283		9		3589.504	2	2.506	2	0	1	0	1	0	1	0	3
284			min	-5030.237	3	388	3	0	1	0	1	0	1	005	2
285		10	max	3589.884	2	2.48	2	0	1	0	1	0	1	0	3
286			min	-5029.952	3	408	3	0	1	0	1	0	1	006	2
287		11	max	3590.263	2	2.454	2	0	1	0	1	0	1	0	3
288			min		3	427	3	0	1_	0	1	0	1	007	2
289		12	max	3590.642	2	2.428	2	0	_1_	0	1	0	1	0	3
290			min		3	447	3	0	1	0	1	0	1	007	2
291		13		3591.021	2	2.402	2	0	1	0	1	0	1	.001	3
292			min	-5029.099	3_	466	3	0	_1_	0	1_	0	1	008	2
293		14	_	3591.401	2	2.376	2	0	1_	0	1	0	1	.001	3
294		4.5		-5028.814	3	486	3	0	1_	0	1_	0	1	008	2
295		15		3591.78	2	2.35	2	0	1	0	1	0	1	.001	3
296 297		16		-5028.53 3592.159	<u>3</u> 2	505 2.324	2	0	<u>1</u> 1	0	<u>1</u> 1	0	1	009 .001	3
298		10		-5028.246	3	525	3	0	1	0	1	0	1	01	2
299		17		3592.538	2	2.298	2	0	1	0	1	0	1	.002	3
300		17	min		3	544	3	0	1	0	1	0	1	01	2
301		18		3592.918	2	2.272	2	0	1	0	1	0	1	.002	3
302		l . J		-5027.677	3	564	3	0	1	0	1	0	1	011	2
303		19		3593.297	2	2.246	2	0	1	0	1	0	1	.002	3
304				-5027.392	3	583	3	0	1	0	1	0	1	011	2
305	M7	1		2128.953	2	8.014	4	0	1	0	1	0	1	.011	2
306			min	-2277.662	3	1.881	15	0	1	0	1	0	1	002	3
307		2	max	2128.783	2	7.244	4	0	1	0	1	0	1	.009	2
308				-2277.79	3	1.7	15	0	1	0	1	0	1	003	3
309		3		2128.612	2	6.474	4	0	1_	0	1	0	1	.006	2
310				-2277.917	3	1.519	15	0	1_	0	1	0	1	005	3
311		4	max	2128.442	2	5.704	4	0	1_	0	1_	0	1	.004	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]				z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC		LC
312			min	-2278.045	3	1.338	15	0	1	0	1	0	1	006	3
313		5		2128.272	2	4.934	4	0	1_	0	1	0	1_	.002	2
314			min	-2278.173	3	1.157	15	0	1	0	1	0	1	007	3
315		6		2128.101	2	4.164	4	0	1	0	1	0	1	0	2
316			min	-2278.301	3	.976	15	0	1	0	1	0	1	008	3
317		7		2127.931	2	3.394	4	0	1	0	1	0	1	001	2
318			min	-2278.428	3	.77	12	0	1	0	1	0	1	008	3
319		8		2127.761	2	2.711	2	0	1_	0	1	0	1	002	15
320			min	-2278.556	3	.47	12	0	1	0	1	0	1	008	3
321		9	max	2127.59	2	2.111	2	0	1_	0	1	0	1	002	15
322			min	-2278.684	3	.17	12	0	1	0	1	0	1	009	3
323		10	max		2	1.511	2	0	1	0	1	0	1	002	15
324			min	-2278.812	3	248	3	0	1	0	1	0	1	009	4
325		11	max	2127.249	2	.911	2	0	1	0	1	0	1	002	15
326			min	-2278.939	3	698	3	0	1	0	1	0	1	009	4
327		12	max	2127.079	2	.311	2	0	1	0	1	0	1	002	15
328			min	-2279.067	3	-1.148	3	0	1	0	1	0	1	009	4
329		13	max	2126.909	2	289	2	0	1	0	1	0	1	002	15
330			min	-2279.195	3	-1.598	3	0	1	0	1	0	1	009	4
331		14	max	2126.738	2	472	15	0	1	0	1	0	1	002	15
332			min	-2279.323	3	-2.048	3	0	1	0	1	0	1	008	4
333		15	max	2126.568	2	653	15	0	1	0	1	0	1	002	15
334			min	-2279.451	3	-2.766	4	0	1	0	1	0	1	007	4
335		16	max	2126.398	2	834	15	0	1	0	1	0	1	001	15
336			min	-2279.578	3	-3.536	4	0	1	0	1	0	1	006	4
337		17		2126.227	2	-1.015	15	0	1	0	1	0	1	001	15
338			min	-2279.706	3	-4.306	4	0	1	0	1	0	1	004	4
339		18		2126.057	2	-1.196	15	0	1	0	1	0	1	0	15
340		1	min	-2279.834	3	-5.076	4	0	1	0	1	0	1	002	4
341		19		2125.887	2	-1.377	15	0	1	0	1	0	1	0	1
342		1.0	min	-2279.962	3	-5.846	4	0	1	0	1	Ö	1	Ö	1
343	M8	1		3511.067	2	0	1	0	1	0	1	0	1	0	1
344			min	-1173.618	3	0	1	0	1	0	1	0	1	0	1
345		2		3511.238	2	0	1	0	1	0	1	0	1	0	1
346		_	min	-1173.49	3	0	1	0	1	0	1	0	1	0	1
347		3		3511.408	2	0	1	0	1	0	1	0	1	0	1
348			min	-1173.362	3	0	1	0	1	0	1	0	1	0	1
349		4	max		2	0	1	0	1	0	1	0	1	0	1
350			min	-1173.235	3	0	1	0	1	0	1	0	1	0	1
351		5		3511.749	2	0	1	0	1	0	1	0	1	0	1
352				-1173.107	3	0	1	0	1	0	1	0	1	0	1
353		6		3511.919	2	0	1	0	1	0	1	0	1	0	1
354			min		3	0	1	0	1	0	1	0	1	0	1
355		7		3512.089	2	0	1	0	1	0	1	0	1	0	1
356			min	-1172.851	3	0	1	0	1	0	1	0	1	0	1
357		8		3512.26	2	0	1	0	1	0	1	0	1	0	1
358		0	min	-1172.724	3	0	1	0	1	0	1	0	1	0	1
359		9		3512.43	2	0	1	0	1	0	1	0	1	0	1
360		9	min		3	0	1	0	1	0	1	0	1	0	1
		10		3512.6			1		1		1		1		
361		10			2	0	1	0	1	0	1	0	1	0	1
362		4.4	min		3	0		0	_	0		0		0	
363		11		3512.771	2	0	1	0	1	0	1	0	1	0	1
364		40	min		3	0	1	0	1	0	1	0	1	0	1
365		12		3512.941	2	0	1	0	1	0	1	0	1	0	1
366		40	min		3	0	1	0	1	0	1	0	1	0	1
367		13		3513.111	2	0	1	0	1	0	1	0	1	0	1
368			min	-1172.085	3	0	1	0	1	0	1	0	1	0	1

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

000	Member	Sec		Axial[lb]						Torque[k-ft]	LC	11 1	LC	_	LC
369		14		3513.282 -1171.957	2	0	1	0	1	0	1	0	1	0	1
370 371		15	min	3513.452	2	0	1	0	1	0	<u>1</u> 1	0	1	0	1
372		13	min	-1171.829	3	0	1	0	1	0	1	0	1	0	1
373		16		3513.622	2	0	1	0	1	0	1	0	1	0	1
374		10	min		3	0	1	0	1	0	1	0	1	0	1
375		17		3513.793	2	0	1	0	1	0	1	0	1	0	1
376			min		3	0	1	0	1	0	1	0	1	0	1
377		18	max	3513.963	2	0	1	0	1	0	1	0	1	0	1
378			min	-1171.446	3	0	1	0	1	0	1	0	1	0	1
379		19	max	3514.133	2	0	1	0	1	0	1	0	1	0	1
380			min	-1171.318	3	0	1	0	1	0	1	0	1	0	1
381	M10	1	max	1137.58	2	2.029	4	022	15	0	_1_	0	2	0	1
382			min	-1563.892	3	.478	15	61	1	0	3	0	3	0	1
383		2	max	1137.96	2	1.996	4	022	<u>15</u>	0	1	0	15	0	15
384			min	-1563.608	3	.47	15	61	1_	0	3	0	1	0	4
385		3		1138.339	2	1.962	4	022	15	0	1	0	15	0	15
386			min	-1563.323	3_	.462	15	61	_1_	0	3	0	1_	001	4
387		4		1138.718	2	1.929	4	022	<u>15</u>	0	1	0	15	0	15
388		_	min	-1563.039	3	.454	15	61	1_	0	3	0	1_	002	4
389		5		1139.098	2	1.895	4	022	<u>15</u>	0	1	0	15	0	15
390		_	min	-1562.754	3	.446	15	61	1_	0	3	0	1_	002	4
391		6		1139.477	2	1.862	4	022	<u>15</u>	0	1	0	15	0	15
392		7		-1562.47 1139.856	3	.438	15	61	1_	0	<u>3</u>	0	1	002 0	4
393 394			min		<u>2</u> 3	1.829 .431	4 15	022 61	<u>15</u> 1	0	3	0	1 <u>5</u>	003	1 <u>5</u>
395		8		1140.235	2	1.795	4	022	15	0	<u> </u>	0	15	003 0	15
396		0	min		3	.419	12	61	1	0	3	001	1	003	4
397		9		1140.615	2	1.762	4	022	15	0	<u> </u>	0	15	0	15
398		9	min	-1561.617	3	.406	12	61	1	0	3	001	1	004	4
399		10		1140.994	2	1.728	4	022	15	0	1	0	15	001	15
400			min	-1561.332	3	.393	12	61	1	0	3	001	1	004	4
401		11		1141.373	2	1.695	4	022	15	0	1	0	15	001	15
402				-1561.048	3	.38	12	61	1	0	3	002	1	005	4
403		12	max	1141.752	2	1.662	4	022	15	0	1	0	15	001	15
404			min	-1560.763	3	.367	12	61	1	0	3	002	1	005	4
405		13	max	1142.132	2	1.628	4	022	15	0	1	0	15	001	15
406			min		3	.354	12	61	1	0	3	002	1	006	4
407		14		1142.511	2	1.595	4	022	15	0	1	0	15	001	12
408				-1560.194	3	.341	12	61	1_	0	3	002	1	006	4
409		15		1142.89	2	1.561	4	022	<u>15</u>	0	1_	0	15	002	12
410				-1559.91	3	.328	12	61	1_	0	3	002	1_	006	4
411		16		1143.269	2	1.528	4	022	<u>15</u>	0	1	0	15	002	12
412		47		-1559.625	3	.315	12	61	1_	0	3	002	1_	007	4
413		17		1143.649	2	1.497	2	022	<u>15</u>	0	1	0	15	002	12
414		40		-1559.341	3	.302	12	61	1_	0	3	002	1_	007	4
415		18		1144.028	2	1.471	2	022	<u>15</u>	0	1	0	15	002	12
416		10		-1559.057 1144.407	3	.289	12	61 022	<u>1</u> 15	0	<u>3</u>	003 0	1 15	008 002	12
417		19	max	-1558.772	3	1.445 .276	2 12	022 61	15	0	3	003	15	002 008	4
419	M11	1		604.052	2	7.983	4	002	15	0	<u> </u>	003	15	.008	4
420	IVI I I			-734.244	3	1.877	15	064	1	0	3	0	1	.002	12
421		2		603.882	2	7.213	4	004	15	0	<u> </u>	0	15	.002	2
422				-734.372	3	1.696	15	064	1	0	3	0	1	.005	12
423		3	max		2	6.443	4	004	15	0	<u> </u>	0	15	.003	2
424				-734.499	3	1.515	15	064	1	0	3	0	1	0	3
425		4		603.541	2	5.673	4	002	15	0	1	0	15	0	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	<u>LC</u>
426			min	-734.627	3	1.334	15	064	1	0	3	0	1	002	3
427		5	max	603.371	2	4.903	4	002	15	0	1	0	15	0	15
428			min	-734.755	3	1.153	15	064	1	0	3	0	1	003	3
429		6	max	603.201	2	4.133	4	002	15	0	1	0	15	001	15
430			min	-734.883	3	.972	15	064	1	0	3	0	1	005	4
431		7	max	603.03	2	3.363	4	002	15	0	1	0	15	001	15
432			min	-735.011	3	.791	15	064	1	0	3	0	1	006	4
433		8	max	602.86	2	2.593	4	002	15	0	1	0	15	002	15
434			min	-735.138	3	.61	15	064	1	0	3	0	1	008	4
435		9	max	602.69	2	1.823	4	002	15	0	1	0	15	002	15
436			min	-735.266	3	.429	15	064	1	0	3	0	1	009	4
437		10	max	602.519	2	1.053	4	002	15	0	1	0	15	002	15
438			min	-735.394	3	.239	12	064	1	0	3	0	1	009	4
439		11	max	602.349	2	.423	2	002	15	0	1	0	15	002	15
440			min	-735.522	3	108	3	064	1	0	3	0	1	009	4
441		12	max	602.178	2	114	15	002	15	0	1	0	15	002	15
442			min	-735.649	3	558	3	064	1	0	3	0	1	009	4
443		13	max	602.008	2	295	15	002	15	0	1	0	15	002	15
444			min	-735.777	3	-1.257	4	064	1	0	3	0	1	009	4
445		14	max	601.838	2	476	15	002	15	0	1	0	15	002	15
446			min	-735.905	3	-2.027	4	064	1	0	3	0	1	008	4
447		15	max	601.667	2	657	15	002	15	0	1	0	15	002	15
448			min	-736.033	3	-2.796	4	064	1	0	3	0	1	007	4
449		16	max		2	838	15	002	15	0	1	0	15	001	15
450			min	-736.16	3	-3.566	4	064	1	0	3	0	1	006	4
451		17	max		2	-1.019	15	002	15	0	1	0	15	001	15
452			min	-736.288	3	-4.336	4	064	1	0	3	0	1	004	4
453		18	max		2	-1.2	15	002	15	0	1	0	15	0	15
454			min	-736.416	3	-5.106	4	064	1	0	3	0	1	002	4
455		19	max		2	-1.381	15	002	15	0	1	0	15	0	1
456			min	-736.544	3	-5.876	4	064	1	0	3	0	1	0	1
457	M12	1	max	1162.171	1	0	1	6.491	1	0	1	0	15	0	1
458			min	-346.177	3	0	1	.239	15	0	1	0	1	0	1
459		2	max	1162.341	1	0	1	6.491	1	0	1	0	1	0	1
460			min	-346.049	3	0	1	.239	15	0	1	0	12	0	1
461		3		1162.512	1	0	1	6.491	1	0	1	.001	1	0	1
462			min	-345.921	3	0	1	.239	15	0	1	0	15	0	1
463		4	max	1162.682	1	0	1	6.491	1	0	1	.002	1	0	1
464			min	-345.793	3	0	1	.239	15	0	1	0	15	0	1
465		5	max	1162.852	1	0	1	6.491	1	0	1	.003	1	0	1
466				-345.666	3	0	1	.239	15		1	0	15		1
467		6		1163.023	1	0	1	6.491	1	0	1	.003	1	0	1
468			min		3	0	1	.239	15	0	1	0	15	0	1
469		7	max	1163.193		0	1	6.491	1	0	1	.004	1	0	1
470			min	-345.41	3	0	1	.239	15	0	1	0	15	0	1
471		8		1163.364	1	0	1	6.491	1	0	1	.005	1	0	1
472			min		3	0	1	.239	15	0	1	0	15	0	1
473		9		1163.534	1	0	1	6.491	1	0	1	.006	1	0	1
474				-345.155		0	1	.239	15	0	1	0	15	0	1
475		10		1163.704	1	0	1	6.491	1	0	1	.006	1	0	1
476			min		3	0	1	.239	15	0	1	0	15	0	1
477		11		1163.875	1	0	1	6.491	1	0	1	.007	1	0	1
478				-344.899		0	1	.239	15	0	1	0	15	0	1
479		12		1164.045	1	0	1	6.491	1	0	1	.008	1	0	1
480			min	-344.771	3	0	1	.239	15	0	1	0	15	0	1
481		13		1164.215	1	0	1	6.491	1	0	1	.009	1	0	1
482				-344.643	3	0	1	.239	15	0	1	0	15	0	1
.02				0 1 110 10				00							

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC		LC	z-z Mome	LC
483		14	max	1164.386	_1_	0	1	6.491	1	0	1	.009	_1_	0	1
484			min	-344.516	3	0	1	.239	15	0	1	0	15	0	1
485		15	max	1164.556	1	0	1	6.491	1	0	1	.01	1	0	1
486			min	-344.388	3	0	1	.239	15	0	1	0	15	0	1
487		16	max	1164.726	1	0	1	6.491	1	0	1	.011	1	0	1
488			min	-344.26	3	0	1	.239	15	0	1	0	15	0	1
489		17	max	1164.897	1	0	1	6.491	1	0	1	.012	1	0	1
490			min	-344.132	3	0	1	.239	15	0	1	0	15	0	1
491		18	max	1165.067	1	0	1	6.491	1	0	1	.012	1	0	1
492			min	-344.005	3	0	1	.239	15	0	1	0	15	0	1
493		19	max		1	0	1	6.491	1	0	1	.013	1	0	1
494			min	-343.877	3	0	1	.239	15	0	1	0	15	0	1
495	M1	1	max	131.903	1	864.372	3	-2.407	15	0	2	.155	1	0	15
496			min	4.82	15	-487.382	2	-65.01	1	0	3	.006	15	016	2
497		2	max	132.393	1	863.363	3	-2.407	15	0	2	.12	1	.241	2
498			min	4.968	15	-488.728	2	-65.01	1	0	3	.004	15	457	3
499		3	max	443.33	3	599.837	2	-2.385	15	0	3	.086	1	.486	2
500			min	-261.263	2	-643.769	3	-64.532	1	0	2	.003	15	894	3
501		4	max		3	598.491	2	-2.385	15	0	3	.052	1	.18	1
502		 	min	-260.773	2	-644.779	3	-64.532	1	0	2	.002	15	554	3
503		5	max	444.065	3	597.145	2	-2.385	15	0	3	.018	1	004	15
504		<u> </u>	min	-260.283	2	-645.788	3	-64.532	1	0	2	0	15	213	3
505		6	max	444.433	3	595.799	2	-2.385	15	0	3	0	15	.128	3
506		<u> </u>	min	-259.793	2	-646.798	3	-64.532	1	0	2	016	1	46	2
507		7	max	444.8	3	594.453	2	-2.385	15	0	3	002	15	.469	3
508			min	-259.303	2	-647.807	3	-64.532	1	0	2	05	1	774	2
509		8	max	445.167	3	593.107	2	-2.385	15	0	3	003	15	.811	3
510		- 0	min	-258.813	2	-648.817	3	-64.532	1	0	2	084	1	-1.087	2
511		9	max		3	54.768	2	-3.646	15	0	9	.052	1	.946	3
512		-	min	-205.439	2	.409	15	-98.69	1	0	3	.002	15	-1.244	2
513		10	max		3	53.422	2	-3.646	15	0	9	0	10	.923	3
514		10	min	-204.949	2	.003	15	-98.69	1	0	3	0	1	-1.272	2
515		11	max	455.682	3	52.076	2	-3.646	15	0	9	002	15	.901	3
516			min	-204.459	2	-1.67	4	-98.69	1	0	3	053	1	-1.3	2
517		12	max	465.314	3	428.522	3	-2.329	15	0	2	.083	1	.787	3
518		12	min	-151.021	2	-707.62	2	-63.22	1	0	3	.003	15	-1.153	2
519		13	max		3	427.512	3	-2.329	15	0	2	.05	1	.561	3
520		15	min	-150.531	2	-708.966	2	-63.22	1	0	3	.002	15	779	2
521		14	max		3	426.503	3	-2.329	15	0	2	.017	1	.336	3
522		17	min	-150.041	2	-710.312	2	-63.22	1	0	3	0	15	405	2
523		15		466.416	3	425.493	3	-2.329	15	0	2	0	15	.111	3
524		15	min		2	-711.659		-63.22	1	0	3	017	1	051	1
525		16	max		3	424.483	3	-2.329	15	0	2	002	15	.346	2
526		10		-149.061	2	-713.005		-63.22	1	0	3	002	1	113	3
527		17	max		3	423.474	3	-2.329	15	0	2	003	15	.723	2
528		17			2	-714.351	2	-63.22	1	0	3	083	1	337	3
529		18	max		15	711.873	2	-2.565	15	0	3	004	15	.364	2
530		10	min		1	-341.203	3	-69.45	1	0	2	119	1	167	3
531		19			15	710.527	2	-09.45 -2.565	15	0	3	006	15	.014	3
532		19	max		1	-342.212	3	-69.45	1	0	2	156	1	011	2
533	M5	1	min			2876.527	3	_	1				_		2
534	CIVI		max	290.899 8.131	12	-1674.896	2	0	1	0	1	0	<u>1</u> 1	.033	15
535		2	min		<u>12</u> 1	2875.517	3	0	1		1	0	1	.917	2
			max min		12	-1676.242	2	0	1	0	1	0	1	-1.516	3
536 537		3	1	1403.071	3	1740.15	2	0	1		1		1	1.76	2
538		3	min		2	-1991.63		0	1	0	1	0	1	-2.975	3
539		4		1403.439	3	1738.804		0	1	0	1	0	1	.843	2
USS		4	шах	1403.439	<u>ა</u>	11/30.004		U		U		U		.043	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
540			min	-873.2	2	-1992.64	3	0	1	0	1	0	1	-1.923	3
541		5	max	1403.806	3	1737.458	2	0	1	0	1	0	1	.021	9
542			min	-872.71	2	-1993.649	3	0	1	0	1	0	1	872	3
543		6	max	1404.173	3	1736.112	2	0	1	0	1	0	1	.181	3
544			min	-872.22	2	-1994.659	3	0	1	0	1	0	1	991	2
545		7	max	1404.541	3	1734.765	2	0	1	0	1	0	1	1.233	3
546			min	-871.73	2	-1995.668	3	0	1	0	1	0	1	-1.907	2
547		8	max	1404.908	3	1733.419	2	0	1	0	1	0	1	2.287	3
548			min	-871.24	2	-1996.678	3	0	1	0	1	0	1	-2.822	2
549		9	max	1416.693	3	184.529	2	0	1	0	1	0	1	2.631	3
550			min	-757.221	2	.405	15	0	1	0	1	0	1	-3.217	2
551		10	max	1417.06	3	183.183	2	0	1	0	1	0	1	2.547	3
552			min	-756.731	2	001	15	0	1	0	1	0	1	-3.314	2
553		11	max	1417.427	3	181.837	2	0	1	0	1	0	1	2.463	3
554			min	-756.241	2	-1.601	4	0	1	0	1	0	1	-3.411	2
555		12	max	1429.506	3	1294.632	3	0	1	0	1	0	1	2.16	3
556			min	-642.35	2	-2105.825	2	0	1	0	1	0	1	-3.054	2
557		13	max	1429.874	3	1293.622	3	0	1	0	1	0	1	1.477	3
558			min	-641.86	2	-2107.171	2	0	1	0	1	0	1	-1.942	2
559		14	max	1430.241	3	1292.613	3	0	1	0	1	0	1	.795	3
560			min	-641.37	2	-2108.517	2	0	1	0	1	0	1	83	2
561		15	max	1430.609	3	1291.603	3	0	1	0	1	0	1	.283	2
562			min	-640.88	2	-2109.863	2	0	1	0	1	0	1	002	13
563		16	max	1430.976	3	1290.594	3	0	1	0	1	0	1	1.396	2
564			min	-640.39	2	-2111.209	2	0	1	0	1	0	1	568	3
565		17		1431.344	3	1289.584	3	0	1	0	1	0	1	2.511	2
566			min	-639.9	2	-2112.555	2	0	1	0	1	0	1	-1.249	3
567		18	max	-9	12	2409.463	2	0	1	0	1	0	1	1.293	2
568			min	-290.811	1	-1185.398	3	0	1	0	1	0	1	653	3
569		19	max	-8.755	12	2408.117	2	0	1	0	1	0	1	.022	2
570			min	-290.321	1	-1186.408	3	0	1	0	1	0	1	027	3
571	M9	1	max	131.903	1	864.372	3	65.01	1	0	3	006	15	0	15
572			min	4.82	15	-487.382	2	2.407	15	0	2	155	1	016	2
573		2	max	132.393	1	863.363	3	65.01	1	0	3	004	15	.241	2
574			min	4.968	15	-488.728	2	2.407	15	0	2	12	1	457	3
575		3	max	443.33	3	599.837	2	64.532	1	0	2	003	15	.486	2
576			min	-261.263	2	-643.769	3	2.385	15	0	3	086	1	894	3
577		4	max	443.698	3	598.491	2	64.532	1	0	2	002	15	.18	1
578			min	-260.773	2	-644.779	3	2.385	15	0	3	052	1	554	3
579		5	max	444.065	3	597.145	2	64.532	1	0	2	0	15	004	15
580			min	-260.283		-645.788		2.385	15		3	018	1	213	3
581		6		444.433	3	595.799	2	64.532	1	0	2	.016	1	.128	3
582			min		2	-646.798		2.385	15	0	3	0	15	46	2
583		7	max		3	594.453	2	64.532	1	0	2	.05	1	.469	3
584			min	-259.303	2	-647.807	3	2.385	15	0	3	.002	15	774	2
585		8		445.167	3	593.107	2	64.532	1	0	2	.084	1	.811	3
586			min	-258.813	2	-648.817	3	2.385	15	0	3	.003	15	-1.087	2
587		9		454.947	3	54.768	2	98.69	1	0	3	002	15	.946	3
588				-205.439	2	.409	15	3.646	15	0	9	052	1	-1.244	2
589		10	max		3	53.422	2	98.69	1	0	3	0	1	.923	3
590			min		2	.003	15	3.646	15	0	9	0	10	-1.272	2
591		11		455.682	3	52.076	2	98.69	1	0	3	.053	1	.901	3
592			min		2	-1.67	4	3.646	15	0	9	.002	15	-1.3	2
593		12		465.314	3	428.522	3	63.22	1	0	3	003	15	.787	3
594			min	-151.021	2	-707.62	2	2.329	15	0	2	083	1	-1.153	2
595		13		465.682	3	427.512	3	63.22	1	0	3	002	15	.561	3
596				-150.531	2	-708.966	2	2.329	15	0	2	05	1	779	2
				100.001	_		_	2.020			_				

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	466.049	3	426.503	3	63.22	1	0	3	0	15	.336	3
598			min	-150.041	2	-710.312	2	2.329	15	0	2	017	1	405	2
599		15	max	466.416	3	425.493	3	63.22	1	0	3	.017	1	.111	3
600			min	-149.551	2	-711.659	2	2.329	15	0	2	0	15	051	1
601		16	max	466.784	3	424.483	3	63.22	1	0	3	.05	1	.346	2
602			min	-149.061	2	-713.005	2	2.329	15	0	2	.002	15	113	3
603		17	max	467.151	3	423.474	3	63.22	1	0	3	.083	1	.723	2
604			min	-148.571	2	-714.351	2	2.329	15	0	2	.003	15	337	3
605		18	max	-4.973	15	711.873	2	69.45	1	0	2	.119	1	.364	2
606			min	-132.682	1	-341.203	3	2.565	15	0	3	.004	15	167	3
607		19	max	-4.826	15	710.527	2	69.45	1	0	2	.156	1	.014	3
608		, and the second	min	-132.192	1	-342.212	3	2.565	15	0	3	.006	15	011	2

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC		LC		LC
1	M13	1_	max	0	1	.135	2	.008	3 1.099e-2	2	NC	_1_	NC	1
2			min	0	15	032	3	004	2 -2.596e-3		NC	1_	NC	1
3		2	max	0	1	.199	3	.018	1 1.231e-2	2	NC	4	NC	1
4			min	0	15	002	9	002	10 -2.534e-3	3	857.519	3	NC	1
_ 5		3	max	0	1	.386	3	.042	1 1.362e-2	2	NC	5	NC	2
6			min	0	15	072	1	0	10 -2.472e-3	3	473.588	3	4715.094	1
7		4	max	0	1	.5	3	.063	1 1.493e-2	2	NC	5_	NC	3
8			min	0	15	116	1	.001	10 -2.411e-3	3	372.053	3	3165.862	1
9		5	max	0	1	.528	3	.073	1 1.625e-2	2	NC	5	NC	3
10			min	0	15	113	1	.001	10 -2.349e-3	3	353.918	3	2729.19	1
11		6	max	0	1	.47	3	.069	1 1.756e-2	2	NC	5	NC	3
12			min	0	15	065	1	0	10 -2.287e-3	3	394.584	3	2867.04	1
13		7	max	0	1	.345	3	.053	1 1.887e-2	2	NC	4	NC	2
14			min	0	15	004	9	003	10 -2.225e-3	3	525.551	3	3742.208	1
15		8	max	0	1	.186	3	.029	1 2.019e-2	2	NC	1	NC	2
16			min	0	15	.003	15	006	10 -2.163e-3	3	910.385	3	6895.663	1
17		9	max	0	1	.242	2	.024	3 2.15e-2	2	NC	4	NC	1
18			min	0	15	.004	15	012	2 -2.101e-3	3	1862.214	2	NC	1
19		10	max	0	1	.282	2	.024	3 2.281e-2	2	NC	3	NC	1
20			min	0	1	025	3	017	2 -2.039e-3	3	1348.476	2	NC	1
21		11	max	0	15	.242	2	.024	3 2.15e-2	2	NC	4	NC	1
22			min	0	1	.004	15	012	2 -2.101e-3	3	1862.214	2	NC	1
23		12	max	0	15	.186	3	.029	1 2.019e-2	2	NC	1	NC	2
24			min	0	1	.003	15	006	10 -2.163e-3	3	910.385	3	6895.663	1
25		13	max	0	15	.345	3	.053	1 1.887e-2	2	NC	4	NC	2
26			min	0	1	004	9	003	10 -2.225e-3	3	525.551	3	3742.208	1
27		14	max	0	15	.47	3	.069	1 1.756e-2	2	NC	5	NC	3
28			min	0	1	065	1	0	10 -2.287e-3	3	394.584	3	2867.04	1
29		15	max	0	15	.528	3	.073	1 1.625e-2	2	NC	5	NC	3
30			min	0	1	113	1	.001	10 -2.349e-3	3	353.918	3	2729.19	1
31		16	max	0	15	.5	3	.063	1 1.493e-2	2	NC	5	NC	3
32			min	0	1	116	1	.001	10 -2.411e-3	3	372.053	3	3165.862	1
33		17	max	0	15	.386	3	.042	1 1.362e-2	2	NC	5	NC	2
34			min	0	1	072	1	0	10 -2.472e-3	3	473.588	3	4715.094	1
35		18	max	0	15	.199	3	.018	1 1.231e-2	2	NC	4	NC	1
36			min	0	1	002	9	002	10 -2.534e-3	3	857.519	3	NC	1
37		19	max	0	15	.135	2	.008	3 1.099e-2	2	NC	1	NC	1
38			min	0	1	032	3	004	2 -2.596e-3		NC	1	NC	1
39	M14	1	max	0	1	.284	3	.007	3 6.307e-3	2	NC	1	NC	1
40			min	0	15	416	2	004	2 -5.036e-3	3	NC	1	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotat	e [r LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
41		2	max	0	1	.538	3	.012	1 7.431	e-3 2	NC	5	NC	1
42			min	0	15	653	2	002	10 -6.02	le-3 3	780.304	3	NC	1
43		3	max	0	1	.756	3	.033	1 8.555	ie-3 2	NC	5	NC	2
44			min	0	15	862	2	0	10 -7.006	Se-3 3	419.277	3	6055.204	1
45		4	max	0	1	.915	3	.053	1 9.679		NC	5	NC	2
46			min	0	15	-1.024	2	0	10 -7.99	le-3 3	313.709	3	3779.483	1
47		5	max	0	1	1.002	3	.064	1 1.08	e-2 2	NC	15	NC	3
48			min	0	15	-1.129	2	0	10 -8.976	Se-3 3	275.727	3	3129.096	1
49		6	max	0	1	1.016	3	.062	1 1.193	e-2 2	NC	15	NC	2
50			min	0	15	-1.173	2	0	10 -9.96	le-3 3	261.558	2	3202.471	1
51		7	max	0	1	.97	3	.049	1 1.305		NC	15	NC	2
52			min	0	15	-1.167	2	003	10 -1.098		263.922	2	4100.664	1
53		8	max	0	1	.886	3	.027	1 1.417		NC	15	NC	2
54			min	0	15	-1.125	2	006	10 -1.193		279.547	2	7421.056	
55		9	max	0	1	.799	3	.022	3 1.53		NC	5	NC	1
56			min	0	15	-1.073	2	011	2 -1.292		301.477	2	NC	1
57		10	max	0	1	.758	3	.022	3 1.642		NC	5	NC	1
58			min	0	1	-1.047	2	015	2 -1.39		314.177	2	NC	1
59		11	max	0	15	.799	3	.022	3 1.53		NC	5	NC	1
60			min	0	1	-1.073	2	011	2 -1.292		301.477	2	NC	1
61		12	max	0	15	.886	3	.027	1 1.417		NC	15	NC	2
62			min	0	1	-1.125	2	006	10 -1.193		279.547	2	7421.056	
63		13	max	0	15	.97	3	.049	1 1.305		NC	15	NC	2
64		''	min	0	1	-1.167	2	003	10 -1.095		263.922	2	4100.664	
65		14	max	0	15	1.016	3	.062	1 1.193		NC	15	NC	2
66		17	min	0	1	-1.173	2	0	10 -9.96		261.558	2	3202.471	1
67		15	max	0	15	1.002	3	.064	1 1.086		NC	15	NC	3
68		13	min	0	1	-1.129	2	0	10 -8.976		275.727	3	3129.096	
69		16	max	0	15	.915	3	.053	1 9.679		NC	5	NC	2
70		10		0	1	-1.024	2	0	10 -7.99		313.709	3	3779.483	
71		17	min max	0	15	.756	3	.033	1 8.555		NC	5	NC	2
72		17	min	0	1	862	2	<u>.033</u>	10 -7.006		419.277	3	6055.204	
73		18			15	.538		.012	1 7.431		NC	5	NC	1
74		10	max	0	1		3				780.304	3	NC NC	1
		40	min	0		653		002	10 -6.02					-
75		19	max	0	15	.284	3	.007	3 6.307		NC NC	1	NC NC	1
76	NA C	1	min	0		416	2	004	2 -5.036		NC NC		NC NC	•
77	M15	1	max	0	15	.29	3	.007	3 4.29		NC NC	1	NC NC	1
78			min	0	1	416	2	004	2 -6.538		NC NC	1	NC NC	1
79		2	max	0	15	.464	3	.012	1 5.127		NC 070,000	5	NC NC	1
80			min	0	1	711	2	002	10 -7.707	7e-3 2	670.323	2	NC NC	1
81		3	max		15	.617	3	.033	1 5.964			5	NC 2004 0	2
82		-	min	0	1	<u>968</u>	2	0	10 -8.875			2	6031.8	1
83		4	max	0	15	.738	3	.053	1 6.802		NC OCC CE 4	5	NC 2700 200	2
84		-	min	0	1	<u>-1.158</u>	2	0	10 -1.004		266.654	2	3766.363	
85		5	max	0	15	.817	3	.064	1 7.639		NC 200,000	15	NC 0447.075	3
86		_	min	0	1	<u>-1.269</u>	2	.001	10 -1.12		232.023		3117.675	
87		6	max	0	15	.853	3	.062	1 8.476		NC OCA 4.4	15	NC 0400 040	2
88		-	min	0	1	<u>-1.299</u>	2	0	10 -1.238		224.14	2	3188.342	
89		7	max	0	15	.852	3	.049	1 9.313		NC NC	15	NC	2
90			min	0	1	<u>-1.26</u>	2	002	10 -1.35		234.436	2	4074.654	
91		8	max	0	15	.826	3	.027	1 1.015		NC	5	NC	2
92			min	0	1	-1.178	2	005	10 -1.472		259.852	2	7329.388	
93		9	max	0	15	.792	3	.02	3 1.099		NC	5	NC	1
94			min	0	1	-1.089	2	01	2 -1.588		293.968	2	NC	1
95		10	max	0	1	.774	3	.02	3 1.183		NC	5	NC	1
96			min	0	1	-1.046	2	014	2 -1.70		314.152	2	NC	1
97		11	max	0	1	.792	3	.02	3 1.099	e-2 3	NC	5	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	_LC	x Rotate [r			LC		LC
98			min	0	15	-1.089	2	01	2	-1.588e-2	2	293.968	2	NC	1
99		12	max	0	1	.826	3	.027	1_	1.015e-2	3	NC	5_	NC	2
100			min	0	15	-1.178	2	005	10		2	259.852	2	7329.388	1
101		13	max	0	1	.852	3	.049	1	9.313e-3	3	NC	15	NC	2
102			min	0	15	-1.26	2	002	10	-1.355e-2	2	234.436	2	4074.654	1
103		14	max	0	1	.853	3	.062	1	8.476e-3	3	NC	15	NC	2
104			min	0	15	-1.299	2	0	10	-1.238e-2	2	224.14	2	3188.342	1
105		15	max	0	1	.817	3	.064	1	7.639e-3	3	NC	15	NC	3
106			min	0	15	-1.269	2	.001	10	-1.121e-2	2	232.023	2	3117.675	1
107		16	max	0	1	.738	3	.053	1	6.802e-3	3	NC	5	NC	2
108			min	0	15	-1.158	2	0	10	-1.004e-2	2	266.654	2	3766.363	1
109		17	max	0	1	.617	3	.033	1	5.964e-3	3	NC	5	NC	2
110			min	0	15	968	2	0	10	-8.875e-3	2	358.772	2	6031.8	1
111		18	max	0	1	.464	3	.012	1	5.127e-3	3	NC	5	NC	1
112			min	0	15	711	2	002	10	-7.707e-3	2	670.323	2	NC	1
113		19	max	0	1	.29	3	.007	3	4.29e-3	3	NC	1	NC	1
114			min	0	15	416	2	004	2	-6.538e-3	2	NC	1	NC	1
115	M16	1	max	0	15	.119	2	.006	3	7.814e-3	3	NC	1	NC	1
116			min	0	1	098	3	003	2	-9.2e-3	2	NC	1	NC	1
117		2	max	0	15	.003	4	.018	1	8.92e-3	3	NC	4	NC	1
118			min	0	1	053	2	001	10	-1.01e-2	2	1151.368	2	NC	1
119		3	max	0	15	.028	3	.042	1	1.003e-2	3	NC	5	NC	2
120			min	0	1	189	2	0	10		2	642.613	2	4713.013	1
121		4	max	0	15	.054	3	.063	1	1.113e-2	3	NC	5	NC	3
122			min	0	1	266	2	.002	10	-1.191e-2	2	514.914	2	3155.401	1
123		5	max	0	15	.046	3	.073	1	1.224e-2	3	NC	5	NC	3
124			min	0	1	271	2	.002		-1.281e-2	2	507.318	2	2711.725	
125		6	max	0	15	.006	12	.07	1	1.334e-2	3	NC	5	NC	3
126			min	0	1	208	2	.001	10		2	604.655	2	2835.76	1
127		7	max	0	15	.003	4	.054	1	1.445e-2	3	NC	4	NC	2
128			min	0	1	092	2	001	10		2	937.912	2	3669.086	
129		8	max	0	15	.071	1	.03	1	1.556e-2	3	NC	4	NC	2
130		T .	min	0	1	134	3	004	10	-1.552e-2	2	2857.788	2	6595.043	
131		9	max	0	15	.176	2	.018	3	1.666e-2	3	NC	4	NC	1
132		-	min	0	1	199	3	008	2	-1.642e-2	2	1965.696	3	NC	1
133		10	max	0	1	.233	2	.018	3	1.777e-2	3	NC	4	NC	1
134		10	min	0	1	228	3	013	2	-1.732e-2	2	1526.007	3	NC	1
135		11	max	0	1	.176	2	.018	3	1.666e-2	3	NC	4	NC	1
136			min	0	15	199	3	008	2	-1.642e-2	2	1965.696	3	NC	1
137		12	max	0	1	.071	1	.03	1	1.556e-2	3	NC	4	NC	2
138		12	min	0	15	134	3	004		-1.552e-2		2857.788		6595.043	
139		13	max	0	1	.003	4	.054	1	1.445e-2	3	NC	4	NC	2
140		13	min	0	15	092	2	001	10		2	937.912	2	3669.086	
141		14		0	1	.006	12	<u>001</u> .07	1	1.334e-2	3	NC	5	NC	3
141		14	max min	0	15	208	2	.001		-1.371e-2	2	604.655	2	2835.76	1
143		15		0	1	<u>208</u> .046	3	.001	1	1.224e-2	3	NC	5	NC	3
		10	max		15	271	2	.002			2	507.318	2	2711.725	
144		10	min	0					10						
145		16	max	0	1	.054	3	.063	1	1.113e-2	3	NC F14 014	5	NC	3
146		47	min	0	15	266	2	.002	10	-1.191e-2	2	514.914	2	3155.401	1
147		17	max	0	1	.028	3	.042	1	1.003e-2	3	NC	5	NC	2
148		40	min	0	15	189	2	0	10	-1.101e-2	2	642.613	2	4713.013	
149		18	max	0	1	.003	4	.018	1	8.92e-3	3	NC	4_	NC NC	1
150		40	min	0	15	053	2	001	10	-1.01e-2	2	1151.368	2	NC NC	1
151		19	max	0	1	.119	2	.006	3	7.814e-3	3_	NC		NC NC	1
152	140		min	0	15	098	3	003	2	-9.2e-3	2	NC	1_	NC	1
153	<u>M2</u>	1	max	.006	2	.006	2	.005	1	-4.763e-6	<u>15</u>	NC	1_	NC NC	1
154			min	008	3	011	3	0	15	-1.288e-4	<u> 1</u>	8703.53	2	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
155		2	max	.006	2	.006	2	.005	1	-4.447e-6	<u>15</u>	NC	1_	NC	1
156			min	008	3	01	3	0	15	-1.202e-4	1_	9900.208	2	NC	1
157		3	max	.005	2	.005	2	.004	1	-4.13e-6	<u>15</u>	NC	_1_	NC	1
158			min	007	3	01	3	0		-1.116e-4	1_	NC	1_	NC	1
159		4	max	.005	2	.004	2	.004	1	-3.813e-6	<u>15</u>	NC	1_	NC	1
160			min	007	3	009	3	0	15	-1.03e-4	_1_	NC	1_	NC	1
161		5	max	.005	2	.003	2	.003	1	-3.497e-6	15	NC	_1_	NC	1_
162			min	006	3	009	3	0	15	-9.445e-5	1_	NC	1_	NC	1
163		6	max	.004	2	.003	2	.003	1	-3.18e-6	15	NC	_1_	NC	1
164			min	006	3	008	3	0	15	-8.588e-5	1_	NC	1_	NC	1
165		7	max	.004	2	.002	2	.003	1	-2.863e-6	<u>15</u>	NC	_1_	NC	1_
166			min	006	3	008	3	0	15	-7.73e-5	1_	NC	1_	NC	1
167		8	max	.004	2	.001	2	.002	1	-2.547e-6	15	NC	_1_	NC	1
168			min	005	3	007	3	0	15	-6.872e-5	1_	NC	1_	NC	1
169		9	max	.003	2	0	2	.002	1	-2.23e-6	<u>15</u>	NC	1_	NC	1_
170			min	005	3	007	3	0	15	-6.015e-5	1	NC	1	NC	1
171		10	max	.003	2	0	2	.002	1	-1.914e-6	<u>15</u>	NC	_1_	NC	1
172			min	004	3	006	3	0	15	-5.157e-5	1	NC	1	NC	1
173		11	max	.003	2	0	2	.001	1	-1.597e-6	15	NC	1	NC	1
174			min	004	3	006	3	0	15	-4.299e-5	1	NC	1	NC	1
175		12	max	.002	2	0	2	0	1	-1.28e-6	15	NC	1	NC	1
176			min	003	3	005	3	0	15	-3.442e-5	1	NC	1	NC	1
177		13	max	.002	2	0	2	0	1	-9.637e-7	15	NC	1	NC	1
178			min	003	3	005	3	0	15		1	NC	1	NC	1
179		14	max	.002	2	0	15	0	1	-6.471e-7	15	NC	1	NC	1
180			min	002	3	004	3	0	15	-1.726e-5	1	NC	1	NC	1
181		15	max	.001	2	0	15	0	1	-3.305e-7	15	NC	1	NC	1
182			min	002	3	003	3	0	15	-8.686e-6	1	NC	1	NC	1
183		16	max	.001	2	0	15	0	1	3.127e-7	2	NC	1	NC	1
184			min	001	3	002	3	0	15	-8.525e-7	3	NC	1	NC	1
185		17	max	0	2	0	15	0	1	8.467e-6	1	NC	1	NC	1
186			min	0	3	002	3	0	15	5.323e-8	12	NC	1	NC	1
187		18	max	0	2	0	15	0	1	1.704e-5	1	NC	1	NC	1
188			min	0	3	0	3	0	15	6.194e-7	15	NC	1	NC	1
189		19	max	0	1	0	1	0	1	2.562e-5	1	NC	1	NC	1
190		-10	min	0	1	0	1	0	1	9.36e-7	15	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-2.99e-7	15	NC	1	NC	1
192	1710		min	0	1	0	1	0	1	-8.171e-6	1	NC	1	NC	1
193		2	max	0	3	0	15	0	1	7.109e-6	1	NC	1	NC	1
194			min	0	2	002	4	0	15	2.624e-7	15	NC	1	NC	1
195		3	max	0	3	0	15	0	1	2.239e-5	1	NC	1	NC	1
196			min	0	2	003	4	0	15	8.238e-7	15	NC	1	NC	1
197		4	max	.001	3	00 <u>3</u> 001	15	0	1	3.767e-5	1	NC	1	NC	1
198		_	min	0	2	005	4	0		1.385e-6	15	NC	1	NC	1
199		5	max	.001	3	002	15	0	1	5.295e-5	1	NC	1	NC	1
200			min	001	2	002 007	4	0	15	1.947e-6	15	NC	1	NC	1
201		6	max	.002	3	007	15	0	1	6.823e-5	1	NC	1	NC	1
202		U	min	001	2	002 009	4	0	15	2.508e-6	15	NC NC	1	NC NC	1
203		7		.002	3	009 002	15	0	1	8.351e-5	<u>15</u> 1	NC NC	1	NC NC	1
		/	max					0	15			8935.945	4		1
204		0	min	002	2	01	15			3.069e-6	-			NC NC	_
205		8	max	.002	3	003	15	.001	1	9.879e-5	1_	NC 7004 F39	1_4	NC NC	1
206		_	min	002	2	012	4	0	15	3.631e-6	<u>15</u>	7994.528	4_	NC NC	1
207		9	max	.003	3	003	15	.001	1	1.141e-4	1_	NC 7424 740	1_4	NC NC	1
208		40	min	002	2	013	4	0	15			7434.749	4_	NC NC	1
209		10	max	.003	3	003	15	.002	1	1.293e-4	1_	NC	2	NC NC	1
210			min	003	2	013	4	0	15			7158.197	4	NC	1
211		11	max	.004	3	003	15	.002	1	1.446e-4	_1_	NC	2	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		LC
212			min	003	2	013	4	0	15	5.315e-6	15	7123.811	4	NC	1
213		12	max	.004	3	003	15	.002	1	1.599e-4	_1_	NC	2	NC	1
214			min	003	2	013	4	0	15	5.876e-6	15	7332.087	4	NC	1
215		13	max	.004	3	003	15	.002	1	1.752e-4	_1_	NC	_1_	NC	1
216			min	004	2	012	4	0	15	6.438e-6	15	7827.256	4_	NC	1
217		14	max	.005	3	003	15	.003	1	1.905e-4	1_	NC 0700 F47	1	NC NC	1
218		45	min	004	2	011	4	0	15	6.999e-6		8720.517	4	NC NC	1
219		15	max	.005	3	002	15	.003	1	2.057e-4	1_	NC NC	1_	NC	1
220		4.0	min	004	2	009	4	0	15	7.561e-6	<u>15</u>	NC NC	1_	NC NC	1
221		16	max	.005	3	002 008	15	004	15	2.21e-4 8.122e-6	1_	NC NC	<u>1</u> 1	NC NC	1
223		17	min	004 .006	3	008 001	15	<u> </u>			<u>15</u>	NC NC	1	NC NC	1
224		17	max	005	2	001 006	1	004 0	15	2.363e-4 8.683e-6	<u>1</u> 15	NC NC	1	NC NC	1
225		18	min	.006	3	<u>006</u> 0	15	.004	1	2.516e-4	1 1	NC NC	1	NC NC	1
226		10	max	005	2	004	1	004 0	15	9.245e-6	15	NC NC	1	NC NC	1
227		19	max	.006	3	004 0	15	.005	1	2.669e-4	1 <u>5</u>	NC	1	NC	1
228		13	min	005	2	002	1	0	15	9.806e-6	15	NC	1	NC	1
229	M4	1	max	.003	1	.002	2	0	15		1	NC	1	NC	2
230	IVIT	<u> </u>	min	0	3	006	3	005	1	7.018e-7	15	NC	1	5124.983	1
231		2	max	.003	1	.004	2	0	15	1.879e-5	1	NC	1	NC	2
232			min	0	3	006	3	004	1	7.018e-7	15	NC	1	5576.906	
233		3	max	.002	1	.004	2	0	15	1.879e-5	1	NC	1	NC	2
234			min	0	3	006	3	004	1	7.018e-7	15	NC	1	6114.545	1
235		4	max	.002	1	.004	2	0	15	1.879e-5	1	NC	1	NC	2
236			min	0	3	005	3	004	1	7.018e-7	15	NC	1	6760.206	1
237		5	max	.002	1	.004	2	0	15	1.879e-5	1	NC	1	NC	2
238			min	0	3	005	3	003	1	7.018e-7	15	NC	1	7544.202	1
239		6	max	.002	1	.003	2	0	15	1.879e-5	1	NC	1	NC	2
240			min	0	3	005	3	003	1	7.018e-7	15	NC	1	8508.569	1
241		7	max	.002	1	.003	2	0	15	1.879e-5	1_	NC	1_	NC	2
242			min	0	3	004	3	003	1	7.018e-7	15	NC	1	9712.979	1
243		8	max	.002	1	.003	2	0	15	1.879e-5	_1_	NC	_1_	NC	1
244			min	0	3	004	3	002	1	7.018e-7	15	NC	1_	NC	1
245		9	max	.002	1	.003	2	0	15	1.879e-5	_1_	NC	_1_	NC	1
246			min	0	3	004	3	002	1	7.018e-7	15	NC	_1_	NC	1
247		10	max	.001	1	.002	2	0	15	1.879e-5	_1_	NC	_1_	NC	1
248			min	0	3	003	3	002	1	7.018e-7	<u>15</u>	NC	1_	NC	1
249		11	max	.001	1	.002	2	0	15	1.879e-5	_1_	NC	1_	NC NC	1
250		40	min	0	3	003	3	001	1_	7.018e-7	15	NC	_1_	NC NC	1
251		12	max	.001	1	.002	2	0	15	1.879e-5	1_	NC NC	1_	NC NC	1
252		40	min		3	003	3	001		7.018e-7			1	NC NC	1
253		13	max	0	1	.002	2	0		1.879e-5	1_	NC NC	1	NC	1
254		1.1	min	0	3	002	2	0	1 1 1 5	7.018e-7	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
255		14	max	0	3	.001	3	0	1	1.879e-5	1_		1	NC NC	1
256 257		15	min max	0	1	002 .001	2	<u> </u>	15	7.018e-7 1.879e-5	<u>15</u> 1	NC NC	1	NC NC	1
258		15	min	0	3	001	3	0	1	7.018e-7	15	NC	1	NC	1
259		16		0	1	<u>001</u> 0	2	0	15		1	NC	1	NC	1
260		10	max	0	3	001	3	0	1	7.018e-7	15	NC	1	NC	1
261		17	max	0	1	0	2	0	15	1.879e-5	1	NC	1	NC	1
262		17	min	0	3	0	3	0	1	7.018e-7	15	NC NC	1	NC NC	1
263		18	max	0	1	0	2	0	15	1.879e-5	1	NC	1	NC	1
264		10	min	0	3	0	3	0	1	7.018e-7	15	NC	1	NC	1
265		19	max	0	1	0	1	0	1	1.879e-5	1	NC	1	NC	1
266		1.5	min	0	1	0	1	0	1	7.018e-7	15	NC	1	NC	1
267	M6	1	max	.019	2	.023	2	0	1	0	1	NC	4	NC	1
268	Ť		min	027	3	033	3	0	1	0	1	1672.927	3	NC	1
					_		_			_	_		_		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
269		2	max	.018	2	.021	2	0	1	0	1	NC	4	NC	1
270			min	025	3	031	3	0	1	0	1	1775.541	3	NC	1
271		3	max	.017	2	.019	2	0	1	0	1	NC	4	NC	1
272			min	024	3	029	3	0	1	0	1	1891.497	3	NC	1
273		4	max	.016	2	.017	2	0	1	0	1	NC	4	NC	1
274			min	022	3	027	3	0	1	0	1	2023.497	3	NC	1
275		5	max	.015	2	.015	2	0	1	0	1	NC	4	NC	1
276			min	021	3	025	3	0	1	0	1	2175.014	3	NC	1
277		6	max	.014	2	.014	2	0	1	0	1_	NC	4	NC	1
278			min	019	3	024	3	0	1	0	1	2350.592	3	NC	1
279		7	max	.013	2	.012	2	0	1	0	1	NC	1_	NC	1
280			min	018	3	022	3	0	1	0	1_	2556.295	3	NC	1
281		8	max	.012	2	.01	2	00	1	0	_1_	NC	1_	NC	1
282			min	016	3	02	3	0	1	0	1	2800.39	3	NC	1
283		9	max	.011	2	.009	2	00	1_	0	_1_	NC	1_	NC	1_
284			min	015	3	018	3	0	1	0	1	3094.458	3	NC	1
285		10	max	.01	2	.007	2	0	1	0	1	NC	1_	NC	1
286			min	013	3	016	3	0	1	0	1_	3455.232	3	NC	1
287		11	max	.008	2	.006	2	0	1	0	1	NC	1_	NC	1
288			min	012	3	<u>014</u>	3	0	1	0	1	3907.815	3	NC	1
289		12	max	.007	2	.005	2	0	1	0	1	NC	1	NC	1
290		4.0	min	01	3	012	3	0	1	0	1	4491.662	3	NC	1
291		13	max	.006	2	.004	2	0	1	0	1	NC	1	NC NC	1
292			min	009	3	01	3	0	1	0	1_	5272.544	3	NC	1
293		14	max	.005	2	.003	2	0	1	0	1	NC	1_	NC NC	1
294		4.5	min	007	3	009	3	0	1	0	1	6368.857	3	NC NC	1
295		15	max	.004	2	.002	2	0	1	0	1	NC	1_	NC NC	1
296		4.0	min	006	3	007	3	0	1	0	1_	8017.413	3	NC NC	1
297		16	max	.003	2	.001	2	0	1	0	1	NC NC	1	NC NC	1
298 299		17	min	004 .002	2	<u>005</u> 0	2	0	1	0	<u>1</u> 1	NC NC	<u>1</u> 1	NC NC	1
		17	max		3			0	1	0	1	NC NC	1		1
300		18	min	<u>003</u> .001	2	003 0	2	0	1	0	1	NC NC	 	NC NC	1
301		10	max min	001	3	002	3	0	1	0	1	NC NC	1	NC NC	1
303		19	max	<u>001</u> 0	1	002 0	1	0	1	0	1	NC NC	+	NC NC	1
304		19	min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306	IVII	-	min	0	1	0	1	0	1	0	1	NC	1	NC	1
307		2	max	.001	3	0	2	0	1	0	1	NC	1	NC	1
308		_	min	001	2	003	3	0	1	0	1	NC	1	NC	1
309		3	max	.002	3	0	2	0	1	0	1	NC	1	NC	1
310			min	002	2	005	3	0	1	0	1	NC	1	NC	1
311		4	max	.003	3	001	15	0	1	0	1	NC	1	NC	1
312			min	003	2	008	3	0	1	0	1	NC	1	NC	1
313		5	max	.004	3	002	15	0	1	0	1	NC	1	NC	1
314			min	004	2	01	3	0	1	0	1	NC	1	NC	1
315		6	max	.006	3	002	15	0	1	0	1	NC	1	NC	1
316			min	005	2	011	3	0	1	0	1	8583.185	3	NC	1
317		7	max	.007	3	002	15	0	1	0	1	NC	1	NC	1
318			min	006	2	013	3	0	1	0	1		3	NC	1
319		8	max	.008	3	003	15	0	1	0	1	NC	1	NC	1
320			min	007	2	014	3	0	1	0	1	7127.379	3	NC	1
321		9	max	.009	3	003	15	0	1	0	1	NC	1	NC	1
322			min	008	2	014	3	0	1	0	1	6848.438	3	NC	1
323		10	max	.01	3	003	15	0	1	0	1	NC	1_	NC	1
324			min	009	2	015	3	0	1	0	1	6781.474	3	NC	1
325		11	max	.011	3	003	15	0	1	0	1	NC	1	NC	1_

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
326			min	01	2	015	3	0	1	0	1	6913.98	3	NC	1
327		12	max	.012	3	003	15	0	1	0	1_	NC	_1_	NC	1
328			min	011	2	014	3	0	1	0	1	7265.361	3	NC	1
329		13	max	.013	3	003	15	0	1	0	1	NC	_1_	NC	1
330			min	012	2	013	3	0	1	0	1	7894.635	3	NC	1
331		14	max	.014	3	003	15	0	1	0	1	NC	1	NC	1
332			min	013	2	012	3	0	1	0	1	8841.199	4	NC	1
333		15	max	.015	3	002	15	0	1	0	1	NC	1_	NC	1
334			min	014	2	011	3	0	1	0	1	NC	1	NC	1
335		16	max	.017	3	002	15	0	1	0	1	NC	1	NC	1
336			min	015	2	009	3	0	1	0	1	NC	1	NC	1
337		17	max	.018	3	001	15	0	1	0	1	NC	1	NC	1
338			min	017	2	008	1	0	1	0	1	NC	1	NC	1
339		18	max	.019	3	0	15	0	1	0	1	NC	1	NC	1
340			min	018	2	007	1	0	1	0	1	NC	1	NC	1
341		19	max	.02	3	0	15	0	1	0	1	NC	1	NC	1
342			min	019	2	005	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.008	2	.017	2	0	1	0	1	NC	1	NC	1
344	0		min	003	3	02	3	0	1	0	1	NC	1	NC	1
345		2	max	.008	2	.016	2	0	1	0	1	NC	1	NC	1
346			min	003	3	019	3	0	1	0	1	NC	1	NC	1
347		3	max	.007	2	.015	2	0	1	0	1	NC	1	NC	1
348			min	002	3	018	3	0	1	0	1	NC	1	NC	1
349		4	max	.002	2	.014	2	0	1	0	1	NC	1	NC	1
350			min	002	3	017	3	0	1	0	1	NC	1	NC	1
351		5	max	.002	2	.013	2	0	1	0	1	NC	1	NC	1
352		<u> </u>	min	002	3	015	3	0	1	0	1	NC	1	NC	1
353		6	max	.002	2	.012	2	0	1	0	1	NC	1	NC	1
354		0	min	002	3	014	3	0	1	0	1	NC	1	NC NC	1
355		7		.002	2	.014	2	0	1	0	1	NC	1	NC	1
356			max	002	3	013	3	0	1	0	1	NC NC	1	NC NC	1
357		8		.005	2	.013 .01	2	0	1	0	1	NC	1	NC	1
358		-	max	002	3	012	3	0	1	0	1	NC NC	1	NC NC	1
		9	min		2		2	0	1	0	1	NC NC	1	NC NC	1
359		9	max	.005	3	.009			1		1		1		1
360		10	min	002		011	3	0	1	0		NC NC		NC NC	
361		10	max	.004	2	.008	2	0		0	1	NC	1	NC NC	1
362		4.4	min	001	3	01	3	0	1	0	1_4	NC NC	1_	NC NC	1
363		11	max	.004	2	.008	2	0	1	0	1	NC NC	1	NC NC	1
364		4.0	min	001	3	009	3	0	1	0	1_	NC NC	1_	NC NC	1
365		12	max	.003	2	.007	2	0	1	0	1	NC	1	NC NC	1
366		10	min	001	3	008	3	0	1	0	1_	NC NC	1_	NC NC	1
367		13	max	.003	2	.006	2	0	1	0	1	NC	1	NC NC	1
368			min	0	3	007	3	0	1	0	1_	NC	1_	NC	1
369		14	max	.002	2	.005	2	0	1	0	1	NC	1_	NC	1
370			min	0	3	006	3	0	1	0	1_	NC	1_	NC	1
371		15	max	.002	2	.004	2	0	1	0	1	NC	1	NC	1
372			min	0	3	004	3	0	1	0	1	NC	1	NC	1
373		16	max	.001	2	.003	2	0	1	0	1	NC	1_	NC	1
374			min	0	3	003	3	0	1	0	1	NC	1	NC	1
375		17	max	0	2	.002	2	0	1	0	1	NC	1_	NC	1
376			min	0	3	002	3	0	1	0	1	NC	1	NC	1
377		18	max	0	2	0	2	0	1	0	1	NC	1	NC	1
378			min	0	3	001	3	0	1	0	1	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380			min	0	1	0	1	0	1	0	1	NC	1	NC	1
381	M10	1	max	.006	2	.006	2	0	15	1.288e-4	1	NC	1	NC	1
382			min	008	3	011	3	005	1	4.763e-6	15		2	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC				
383		2	max	.006	2	.006	2	0	15	1.202e-4	_1_	NC	1_	NC	1
384			min	008	3	01	3	005	1	4.447e-6		9900.208	2	NC	1
385		3	max	.005	2	.005	2	0	15	1.116e-4	_1_	NC	_1_	NC	1
386			min	007	3	01	3	004	1	4.13e-6	15	NC	1_	NC	1
387		4	max	.005	2	.004	2	0	15	1.03e-4	_1_	NC	_1_	NC	1
388		_	min	007	3	009	3	004	1	3.813e-6	15	NC	1_	NC	1
389		5	max	.005	2	.003	2	0	15	9.445e-5	1_	NC	1	NC	1
390			min	006	3	009	3	003	1	3.497e-6	15	NC	1_	NC	1
391		6	max	.004	2	.003	2	0	15	8.588e-5	1_	NC	1_	NC	1
392			min	006	3	008	3	003	1	3.18e-6	<u>15</u>	NC	1_	NC	1
393		7	max	.004	2	.002	2	0	15	7.73e-5	1_	NC	1	NC NC	1
394			min	006	3	008	3	003	1	2.863e-6	15	NC	1_	NC	1
395		8	max	.004	2	.001	2	0	15	6.872e-5	1_	NC	1	NC	1
396			min	005	3	007	3	002	1	2.547e-6	15	NC	1_	NC	1
397		9	max	.003	2	0	2	0	15	6.015e-5	_1_	NC	1	NC	1
398		40	min	005	3	007	3	002	1_	2.23e-6	15	NC	1_	NC	1
399		10	max	.003	2	0	2	0	15	5.157e-5	1_	NC	1	NC NC	1
400			min	004	3	006	3	002	1_	1.914e-6	<u>15</u>	NC NC	1_	NC NC	1
401		11	max	.003	2	0	2	0	15	4.299e-5	1_	NC	1_	NC NC	1
402		40	min	004	3	006	3	001	1_	1.597e-6	15	NC NC	1_	NC NC	1
403		12	max	.002	2	0	2	0	15	3.442e-5	1_	NC	1	NC NC	1
404		40	min	003	3	005	3	0	1_	1.28e-6	15	NC	1_	NC NC	1
405		13	max	.002	2	0	2	0	15	2.584e-5	1_	NC	1	NC NC	1
406		4.4	min	003	3	005	3	0	1_	9.637e-7	15	NC	1_	NC	1
407		14	max	.002	2	0	15	0	15	1.726e-5	1_	NC	1	NC	1
408			min	002	3	004	3	0	1	6.471e-7	15	NC	1_	NC	1
409		15	max	.001	2	0	15	0	15	8.686e-6	1_	NC	1	NC NC	1
410		40	min	002	3	003	3	0	1_	3.305e-7	15	NC	1_	NC NC	1
411		16	max	.001	2	0	15	0	15	8.525e-7	3	NC	1	NC NC	1
412		47	min	001	3	002	3	0	1_	-3.127e-7	2	NC NC	1_	NC NC	1
413		17	max	0	2	0	15	0	15	-5.323e-8	12	NC NC	1	NC NC	1
414		40	min	0	3	002	3	0	1_	-8.467e-6	1_	NC NC	1_	NC NC	1
415		18	max	0	2	0	15	0	15	-6.194e-7	<u>15</u>	NC NC	1	NC NC	1
416		40	min	0	3	0	3	0	1	-1.704e-5	1_	NC NC	1_	NC NC	1
417		19	max	0	1	0	1	0	1	-9.36e-7	<u>15</u>	NC	1	NC NC	1
418	N444	4	min	0	1	0	1	0	1	-2.562e-5	1_	NC NC	1_	NC NC	1
419	<u>M11</u>	1_	max	0	1	0	1	0	1	8.171e-6	1_	NC	1	NC NC	1
420			min	0	1	0	1	0	1_	2.99e-7	15	NC NC	1_	NC NC	1
421		2	max	0	3	0	15	0	15	-2.624e-7	<u>15</u>	NC NC	1	NC NC	1
422		_	min	0	2	002	4	0	1_1_	-7.109e-6	1_	NC NC	1_	NC NC	1
423		3	max	0	3	0	15	0		-8.238e-7		NC NC	4	NC NC	1
424		4	min	0	2	003	4	0	1 1 5	-2.239e-5	1_	NC NC	1	NC NC	1
425		4	max	.001	3	001	15	0	15			NC NC	1	NC NC	1
426			min	0	2	005	4	0	1	-3.767e-5	1_	NC NC	1	NC NC	1
427		5	max	.001	3	002	15	0		-1.947e-6		NC NC	1	NC NC	1
428		_	min	001	2	007	4	0	1 1 1 5	-5.295e-5	1_	NC NC	1	NC NC	1
429		6	max	.002	3	002	15	0	15			NC NC	1	NC NC	1
430		7	min	001	2	009	4	0	1 1 1 5	-6.823e-5	1_	NC NC	1	NC NC	1
431		7	max	.002	3	002	15	0		-3.069e-6		NC POSE 04E	1_4	NC NC	1
432		0	min	002	2	01	4	0	1 1 5	-8.351e-5	1_	8935.945	4	NC NC	1
433		8	max	.002	3	003	15	0		-3.631e-6	15	NC 7004 F29	1_4	NC NC	1
434		0	min	002	2	012	4	<u>001</u>	1 1 1 5	-9.879e-5	1.5	7994.528	4_	NC NC	1
435		9	max	.003	3	003	15	0	15			NC 7424 740	1_4	NC NC	1
436		10	min	002	2	013	4	001	1	-1.141e-4	1_	7434.749	4	NC NC	1
437		10	max	.003	3	003	15	0		-4.754e-6		NC 7159 107	2	NC NC	1
438		4.4	min	003	2	013	15	002	1 1 5	-1.293e-4	1_	7158.197	4	NC NC	1
439		11	max	.004	3	003	15	0	15	-5.315e-6	15	NC	2	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
440			min	003	2	013	4	002	1	-1.446e-4	1	7123.811	4	NC	1
441		12	max	.004	3	003	15	0	15	-5.876e-6	15	NC	2	NC	1
442			min	003	2	013	4	002	1	-1.599e-4	1_	7332.087	4	NC	1
443		13	max	.004	3	003	15	0	15	-6.438e-6	15	NC	1	NC	1
444			min	004	2	012	4	002	1	-1.752e-4	1	7827.256	4	NC	1
445		14	max	.005	3	003	15	0	15	-6.999e-6	15	NC	1	NC	1
446			min	004	2	011	4	003	1	-1.905e-4	1	8720.517	4	NC	1
447		15	max	.005	3	002	15	0	15	-7.561e-6	15	NC	1	NC	1
448			min	004	2	009	4	003	1	-2.057e-4	1	NC	1	NC	1
449		16	max	.005	3	002	15	0	15	-8.122e-6	15	NC	1	NC	1
450			min	004	2	008	4	004	1	-2.21e-4	1	NC	1	NC	1
451		17	max	.006	3	001	15	0	15	-8.683e-6	15	NC	1	NC	1
452			min	005	2	006	1	004	1	-2.363e-4	1	NC	1	NC	1
453		18	max	.006	3	0	15	0	15	-9.245e-6	15	NC	1	NC	1
454			min	005	2	004	1	004	1	-2.516e-4	1	NC	1	NC	1
455		19	max	.006	3	0	15	0	15	-9.806e-6	15	NC	1	NC	1
456			min	005	2	002	1	005	1	-2.669e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.005	2	.005	1	-7.018e-7	15	NC	1	NC	2
458			min	0	3	006	3	0	15	-1.879e-5	1	NC	1	5124.983	1
459		2	max	.003	1	.004	2	.004	1	-7.018e-7	15	NC	1	NC	2
460			min	0	3	006	3	0	15	-1.879e-5	1	NC	1	5576.906	1
461		3	max	.002	1	.004	2	.004	1	-7.018e-7	15	NC	1	NC	2
462			min	0	3	006	3	0	15	-1.879e-5	1	NC	1	6114.545	1
463		4	max	.002	1	.004	2	.004	1	-7.018e-7	15	NC	1	NC	2
464			min	0	3	005	3	0	15	-1.879e-5	1	NC	1	6760.206	1
465		5	max	.002	1	.004	2	.003	1	-7.018e-7	15	NC	1	NC	2
466			min	0	3	005	3	0	15	-1.879e-5	1	NC	1	7544.202	1
467		6	max	.002	1	.003	2	.003	1	-7.018e-7	15	NC	1	NC	2
468			min	0	3	005	3	0	15		1	NC	1	8508.569	1
469		7	max	.002	1	.003	2	.003	1	-7.018e-7	15	NC	1	NC	2
470			min	0	3	004	3	0	15	-1.879e-5	1	NC	1	9712.979	1
471		8	max	.002	1	.003	2	.002	1	-7.018e-7	15	NC	1	NC	1
472			min	0	3	004	3	0	15	-1.879e-5	1	NC	1	NC	1
473		9	max	.002	1	.003	2	.002	1	-7.018e-7	15	NC	1	NC	1
474			min	0	3	004	3	0	15	-1.879e-5	1	NC	1	NC	1
475		10	max	.001	1	.002	2	.002	1	-7.018e-7	15	NC	1	NC	1
476			min	0	3	003	3	0	15	-1.879e-5	1	NC	1	NC	1
477		11	max	.001	1	.002	2	.001	1	-7.018e-7	15	NC	1	NC	1
478			min	0	3	003	3	0	15		1	NC	1	NC	1
479		12	max	.001	1	.002	2	.001	1	-7.018e-7	15	NC	1	NC	1
480			min		3	003	3	0	15	-1.879e-5	1	NC	1	NC	1
481		13	max	0	1	.002	2	0	1	-7.018e-7		NC	1	NC	1
482			min	0	3	002	3	0	15	-1.879e-5	1	NC	1	NC	1
483		14	max	0	1	.001	2	0	1	-7.018e-7	15	NC	1	NC	1
484			min	0	3	002	3	0	15	-1.879e-5	1	NC	1	NC	1
485		15	max	0	1	.001	2	0	1	-7.018e-7	15	NC	1	NC	1
486		1.0	min	0	3	001	3	0		-1.879e-5	1	NC	1	NC	1
487		16	max	0	1	0	2	0	1	-7.018e-7		NC	1	NC	1
488		1.0	min	0	3	001	3	0		-1.879e-5	1	NC	1	NC	1
489		17	max	0	1	0	2	0	1	-7.018e-7	15	NC	1	NC	1
490			min	0	3	0	3	0	_	-1.879e-5	1	NC	1	NC	1
491		18	max	0	1	0	2	0	1	-7.018e-7	15	NC	1	NC	1
492		10	min	0	3	0	3	0	15		1	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-7.018e-7		NC	1	NC	1
494		13	min	0	1	0	1	0	1	-1.879e-5	1	NC	1	NC	1
495	M1	1	max	.008	3	.135	2	0	1	1.027e-2	2	NC	1	NC	1
496	IVII		min	004	2	032	3	0		-2.179e-2	3	NC	1	NC	1
430			11/111	004		032	J	U	IU	-Z.1796-Z	J	INC		INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
497		2	max	.008	3	.065	2	0	15	5.046e-3	2	NC	4	NC	1
498			min	004	2	01 <u>5</u>	3	004	1	-1.078e-2	3	1652.422	2	NC	1
499		3	max	.008	3	.012	3	0	15	3.792e-5	10	NC	5	NC	1
500			min	004	2	009	2	005	1	-1.18e-4	3	798.176	2	NC	1
501		4	max	.008	3	.055	3	0	15	4.107e-3	2	NC FOE 404	5	NC NC	1
502		_	min	004	2	093	2	005	1_	-4.486e-3	3	505.484	2	NC NC	1
503		5	max	.008	3	.109	3	0	15	8.181e-3	2	NC 005.047	5	NC NC	1
504			min	004	2	18	2	003	1_1_	-8.854e-3	3	365.817	2	NC NC	1
505		6	max	.007	3	.167	3	0	15	1.226e-2	2		15	NC NC	1
506		7	min	004	2	264 .223	3	001	1	-1.322e-2 1.633e-2	3	288.727 NC	2 15	NC NC	1
507 508		1	max	.007	3	339		0 0	3	-1.759e-2	3	243.147		NC NC	1
509		8	min	004 .007	3	<u>339</u> .269	3	0	1	2.04e-2	2		2 15	NC NC	1
510		0	max	004	2	398	2	0	15	-2.196e-2	3	216.152	2	NC	1
511		9	max	.007	3	<u>396</u> .3	3	0	15	2.307e-2	2		15	NC	1
512		-	min	004	2	436	2	0	1	-2.228e-2	3	202.087	2	NC	1
513		10	max	.007	3	.311	3	0	1	2.479e-2	2		15	NC	1
514		10	min	004	2	449	2	0	15	-1.991e-2	3	197.963	2	NC	1
515		11	max	.007	3	.303	3	0	1	2.651e-2	2		15	NC	1
516			min	004	2	436	2	0	15	-1.755e-2	3	202.775	2	NC	1
517		12	max	.007	3	.278	3	0	15	2.553e-2	2		15	NC	1
518			min	004	2	397	2	0	1	-1.494e-2	3	218.224	2	NC	1
519		13	max	.006	3	.236	3	0	15	2.047e-2	2		15	NC	1
520			min	004	2	335	2	0	1	-1.196e-2	3	248.146	2	NC	1
521		14	max	.006	3	.184	3	.001	1	1.54e-2	2		15	NC	1
522			min	004	2	257	2	0	15	-8.979e-3	3	299.333	2	NC	1
523		15	max	.006	3	.125	3	.003	1	1.034e-2	2	NC	5	NC	1
524			min	004	2	172	2	0	15	-6.001e-3	3	387.487	2	NC	1
525		16	max	.006	3	.063	3	.004	1	5.28e-3	2	NC	5	NC	1
526			min	004	2	085	2	0	15	-3.022e-3	3	550.809	2	NC	1
527		17	max	.006	3	.004	3	.005	1	3.686e-4	1	NC	5	NC	1
528			min	003	2	006	2	0	15	-4.393e-5	3	900.055	2	NC	1
529		18	max	.006	3	.06	2	.003	1	8.105e-3	2	NC	4	NC	1
530			min	003	2	049	3	0	15	-3.37e-3	3	1910.346	2	NC	1
531		19	max	.006	3	.119	2	0	15	1.629e-2	2	NC	1	NC	1
532			min	003	2	098	3	0	1	-6.843e-3	3	NC	1	NC	1
533	<u>M5</u>	1_	max	.024	3	.282	2	0	1	0	1	NC	1	NC NC	1
534			min	017	2	025	3	0	1	0	1	NC NC	1	NC NC	1
535		2	max	.024	3	.136	2	0	1	0	1	NC TO LO L	5	NC NC	1
536			min	017	2	009	3	0	1	0	1_	794.34	2	NC NC	1
537		3	max	.024	3	.037	3	0	1	0	1	NC	5	NC NC	1
538		1	min	017	2	029	2	0	1	0	1	373.248	2	NC NC	1
539		4	max	.024	3	.138	2	<u> </u>	1	0	<u>1</u> 1	NC 228.073	15 2	NC NC	1
540 541		5	min	016 .023	3	226 .278	3	0	1	0	1		<u></u>	NC NC	1
542		- 5	max min	016	2	<u>.276</u> 44	2	0	1	0	1	160.315	2	NC	1
543		6	max	.023	3	.435	3	0	1	0	+		15	NC	1
544		- 0	min	016	2	652	2	0	1	0	1	123.797	2	NC	1
545		7	max	.022	3	.589	3	0	1	0	1		15	NC	1
546			min	015	2	845	2	0	1	0	1	102.626	2	NC	1
547		8	max	.022	3	.718	3	0	1	0	1		15	NC NC	1
548			min	015	2	-1	2	0	1	0	1	90.282	2	NC	1
549		9	max	.022	3	.801	3	0	1	0	1		15	NC	1
550			min	015	2	-1.098	2	0	1	0	1	83.941	2	NC	1
551		10	max	.021	3	.831	3	0	1	0	1		15	NC	1
552		1,0	min	015	2	-1.131	2	0	1	0	1	82.087	2	NC	1
553		11	max	.021	3	.81	3	0	1	0	1		15	NC	1
											_		. •		

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio		(n) L/z Rati	o LC
554			min	014	2	-1.098	2	0	1	0	1	84.243	2	NC	1
555		12	max	.02	3	.74	3	0	1	0	1_	4663.01	15	NC	1
556			min	014	2	997	2	0	1	0	1	91.278	2	NC	1
557		13	max	.02	3	.626	3	0	1	0	1_	5310.367	15	NC	1
558			min	014	2	834	2	0	1	0	1	105.223	2	NC	1
559		14	max	.019	3	.483	3	0	1	0	1		15	NC_	1
560			min	014	2	633	2	0	1	0	1_	129.682	2	<u>NC</u>	1
561		15	max	.019	3	.324	3	0	1	0	_1_		15	<u>NC</u>	1
562			min	013	2	414	2	0	1	0	1_	173.211	2	NC	1
563		16	max	.018	3	.163	3	0	1	0	_1_		15	NC_	1
564			min	013	2	202	2	0	1	0	1	257.407	2	NC	1
565		17	max	.018	3	.013	3	0	1	0	_1_	NC	5	NC_	1
566			min	013	2	017	2	0	1	0	1_	446.152	2	NC	1
567		18	max	.018	3	.121	2	0	1_	0	_1_	NC	5	NC	1
568			min	013	2	114	3	0	1	0	1_	993.17	2	NC	1
569		19	max	.018	3	.233	2	00	1	0	_1_	NC	1	NC	1
570			min	013	2	228	3	0	1	0	1_	NC	1	NC	1
571	<u>M9</u>	1_	max	.008	3	.135	2	00	15	2.179e-2	3_	NC	1	NC	1
572			min	004	2	032	3	0	1	-1.027e-2	2	NC	1	NC	1
573		2	max	.008	3	.065	2	.004	1	1.078e-2	3	NC	4	NC_	1
574			min	004	2	015	3	0	15	-5.046e-3	2	1652.422	2	NC	1
575		3	max	.008	3	.012	3	.005	1	1.18e-4	3	NC	5	NC_	1
576			min	004	2	009	2	0	15	-3.792e-5	10	798.176	2	NC	1
577		4	max	.008	3	.055	3	.005	1	4.486e-3	3	NC	5	NC_	1
578			min	004	2	093	2	0	15	-4.107e-3	2	505.484	2	NC NC	1
579		5	max	.008	3	.109	3	.003	1	8.854e-3	3	NC	5	NC_	1
580			min	004	2	18	2	0	15	-8.181e-3	2	365.817	2	NC NC	1
581		6	max	.007	3	<u>.167</u>	3	.001	1	1.322e-2	3		15	NC_	1
582			min	004	2	264	2	0	15	-1.226e-2	2	288.727	2	NC NC	1
583		7	max	.007	3	.223	3	0	3	1.759e-2	3_		15	NC NC	1
584			min	004	2	339	2	0	1_	-1.633e-2	2	243.147	2	NC NC	1
585		8	max	.007	3	.269	3	0	15	2.196e-2	3		15	NC NC	1
586			min	004	2	398	2	0	1	-2.04e-2	2	216.152	2	NC NC	1
587		9	max	.007	3	.3	3	0	1	2.228e-2	3_		15	NC NC	1
588		40	min	004	2	436	2	0	15	-2.307e-2	2	202.087	2	NC NC	1
589		10	max	.007	3	.311	3	0	15	1.991e-2	3		15	NC NC	1
590		44	min	004		449	2	0	1_	-2.479e-2	2	197.963	2	NC NC	1
591		11	max	.007	3	.303	3	0	15	1.755e-2	3		15	NC NC	1
592		12	min	004	2	436	2	0	1	-2.651e-2	2	202.775	2	NC NC	1
593 594		12	max min	.007 004	3	.278 397	3	0	1	1.494e-2 -2.553e-2	3	9856.289 218.224	1 <u>5</u>	NC NC	1
		12													
595		13	max	.006	3	.236	3	0	1 1 5	1.196e-2	3	NC 248.146	15	NC NC	1
596 597		14	min	004 .006	3	<u>335</u> .184	3	<u> </u>		-2.047e-2 8.979e-3	2		2 15	NC NC	1 1
598		14	max	004	2	257	2	001	15	-1.54e-2	2	299.333	2	NC NC	1
599		15		.006	3	.125	3	<u>001</u> 0	15	6.001e-3	3	NC	5	NC NC	1
		13	max	004	2	172	2	003	1	-1.034e-2	2	387.487	2	NC NC	1
600		16	max	004 .006	3	.063	3	003 0	15	3.022e-3	3	NC	5	NC NC	1
602		10	min	00 6	2	085	2	004	1	-5.28e-3	2	550.809	2	NC NC	1
		17		.004	3	085 .004	3	004 0	15	-5.28e-3 4.393e-5	3	NC	5	NC NC	1
603		17	max min	003	2	006	2	005	1	-3.686e-4	<u> </u>	900.055	2	NC NC	1
605		18	max	.006	3	.06	2	005 0	15	3.37e-3	3	NC	4	NC NC	1
606		10	min	003	2	049	3	003	1	-8.105e-3		1910.346	2	NC NC	1
607		19		003 .006	3	049 .119	2		1	6.843e-3	3	NC	1	NC NC	1
608		19	max	003	2	098	3	<u> </u>		-1.629e-2		NC NC	1	NC NC	1
000			1111111	003		080	J	U	LIO	-1.0296-2		INC		INC	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015			
Engineer:	HCV	Page:	4/5			
Project:	Standard PVMax - Worst Case, 14-42 Inch Width					
Address:						
Phone:						
E-mail:						

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015			
Engineer:	HCV	Page:	1/5			
Project:	Standard PVMax - Worst Case, 37-42 Inch Width					
Address:						
Phone:						
E-mail:						

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	2/5					
Project:	Standard PVMax - Worst Case, 37	Standard PVMax - Worst Case, 37-42 Inch Width						
Address:								
Phone:								
E-mail:								

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 37	-42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2915.5	1524.0	0.0	1524.0
2	2915.5	1524.0	0.0	1524.0
Sum	5831.0	3048.0	0.0	3048.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5831 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	lc / A _{Nco}) Ψ _{ec,N} Ψ _{ea}	$_{I,N}\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408 24	324 00	1 000	1 000	1.00	1 000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{\sf ed,Na}$ $\Psi_{\sf g}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 37-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}}c_{a1}^{1.5}$	° (Eq. D-24)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Vc / Avco) Yec, v Ye	$_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	դ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
666.00	648.00	1.000	0.969	1.000	1.000	15593	0.70	10875

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}\lambda}\sqrt{f'_{c}c_{a1}}^{1.}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	16.16	24369		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
872.64	1175.16	1.000	1.000	1.000	24369	0.70	25334

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n kcpNag; kcpN	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / A Nco) Ψ ec,N Ψ	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\varPsi_{ ho,Na}$	N _{a0} (lb)	N _a (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2916	6071	0.48	Pass
Concrete breakout	5831	10231	0.57	Pass
Adhesive	5831	8093	0.72	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1524	3156	0.48	Pass (Governs)
T Concrete breakout x+	3048	10875	0.28	Pass
Concrete breakout y-	1524	25334	0.06	Pass
Pryout	3048	20601	0.15	Pass
Interaction check Nua	/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 37-42 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.72 0.48 120.3 % 1.2 Pa	3C. D.7.3	0.72	0.48	120.3 %	1.2	Pas
-------------------------------------	-----------	------	------	---------	-----	-----

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.