Восстановление человеком исходной позы после толчка Reversion of initial posture by a person after a push

Романов Андрей Владимирович

МГУ им. М.В. Ломоносова Механико-математический факультет Кафедра прикладной механики и управления Научный руководитель: Кручинин П.А.

18 ноября 2022 г.

Описание задачи

Рис.: Схематическое изображение толкателя и положения испытуемого на стабилоплатформе

Рис.: Отклонение сагиттальной координаты при различных по силе толчках (данные предоставлены сотрудниками ИМБП РАН)

Задача быстродействия

Рис.: Характерный вид сагиттальной стабилограммы при выполнении теста со ступенчатым воздействием

В работе рассматриваются возможные алгоритмы управления изменением позы человека, основанные на решении задачи оптимального быстродействия, которые можно было бы использовать для возвращения человека в исходную вертикальную позу. В качестве математической модели используется модель «перевернутого маятника». Это решение предлагается использовать для оценки эффективности управления человеком при возвращении в вертикальную позу, путем сравнения времени реального процесса с полученным эталонным решением оптимальной задачи.

Математическая модель

$$J\ddot{\varphi} = m_T g I \varphi + M$$
 $\varphi(0) = \varphi_0, \ \dot{\varphi}(0) = \omega_0$
 $\varphi(t) = \varphi_k, \ \dot{\varphi}(t_k) = 0$
 $M(0) = M(t_k) = -m_T g I \varphi_k$
 $U^- \le \dot{M} \le U^+$

Рис.: Модель перевернутого маятника

Решение задачи быстродействия

В прошлом году решалась задача быстродействия Система разбивается на 3 этапа, на каждом из которых управление меняет знак

В результате получилось численное решение для нахождения времени возвращения в вертикальную позицию.

Связь центра масс и центра дваления

Рис.: Силы действующие на модель стержня, имитирующего тело человека

Рис.: Силы действующие на на систему «стопы ног – платформа стабилоанализатора»

Связь центра масс и центра давления

$$\begin{cases}
mI\ddot{\theta} = -R_{y} - F, \\
0 = R_{z} - mg, \\
J\ddot{\theta} = mIg\theta - FI\cos\theta + M_{x}.
\end{cases} (1)$$

$$\begin{cases}
M_{x} = Ny + F_{y}h, \\
F_{y} = R_{y}, \\
N \approx mg.
\end{cases} (2)$$

$$M_x = mgy - h(F + ml\ddot{\theta})$$

 $(J + hml)\ddot{\theta} = mgl\theta + mgy - Fl - Fh$

$$\frac{(J+hml)l\ddot{\theta}}{mgl} = l\theta + y - \frac{F}{mg}(l+h); \eta = -l\theta; T^2 = \frac{J+hml}{mgl};$$
$$-T^2\ddot{\eta} = -\eta + y - \frac{F}{mg}(l+h)$$

Моделирование движения человека

Рис.: Модель силы толчка

Рис.: Модель изменения угла отклонения

Моделирование движения человека

Рис.: Модель изменения саггитальной координаты центра масс

Дальнейшие шаги

- Провести моделирование с использованием реальных данных и построить оценку траектории центра масс
- Сравнить реальное время возвращения в вертикальную позу с полученными при решении задачи быстродействия
- Построить траекторию центра масс при управленнии, полученном при решении задачи быстродействия