

Machine learning: lecture 18

Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu

Topics

- Observations and Markov properties
- Hidden Markov models (HMMs)
 - examples, problems
 - forward-backward probabilities

Tommi Jaakkola, MIT CSAIL

2

Markov properties: example

ullet Data generation: successive states x_1 , x_2 , x_3 , and x_4 come from different clusters (colored) in a counter-clockwise manner.

Tommi Jaakkola, MIT CSAIL

Markov properties: example

• Data generation: successive states x_1 , x_2 , x_3 , and x_4 come from different clusters (colored) in a counter-clockwise manner.

 we could try to define state transitions by partitioning the space into regions that contain the clusters

Tommi Jaakkola, MIT CSAIL 4

Markov properties: example

• Data generation: successive states x_1 , x_2 , x_3 , and x_4 come from different clusters (colored) in a counter-clockwise manner.

- we could try to define state transitions by partitioning the space into regions that contain the clusters
- problem: overlapping clusters lead to ambiguity

Markov properties: example

• Data generation: successive states x_1 , x_2 , x_3 , and x_4 come from different clusters (colored) in a counter-clockwise manner.

- we could try to define state transitions by partitioning the space into regions that contain the clusters
- problem: overlapping clusters lead to ambiguity
- we can resolve such ambiguities by looking at previous states (regions visited by the states)

Tommi Jaakkola, MIT CSAIL 5 Tommi Jaakkola, MIT CSAIL

Markov properties: example

 We can solve the problem more easily by modeling the observations as samples from distributions associated with discrete states

Tommi Jaakkola, MIT CSAIL

CSAIL

Hidden Markov Models (HMMs)

Hidden Markov models are Markov models with state dependent observations

$$P(x_1|s_1=i)=N(x_1;\mu_i,\Sigma_i)$$

Tommi Jaakkola, MIT CSAIL

HMM examples

• Two states 1 and 2; observations are tosses of unbiased coins

$$\begin{split} P_x(x = \mathsf{heads}|s=1) &= 0.5, \quad P_x(x = \mathsf{tails}|s=1) = 0.5 \\ P_x(x = \mathsf{heads}|s=2) &= 0.5, \quad P_x(x = \mathsf{tails}|s=2) = 0.5 \end{split}$$

ullet This model is *unidentifiable* from x-observations alone

Tommi Jaakkola, MIT CSAIL

CSAI

HMM examples: biased outputs

• Two states 1 and 2; outputs are tosses of biased coins

$$P_x(x = \text{heads}|s = 1) = 0.25, P_x(x = \text{tails}|s = 1) = 0.75$$

$$P_x(x = \text{heads}|s = 2) = 0.75, P_x(x = \text{tails}|s = 2) = 0.25$$

 What type of output sequences do we get from this HMM model?

Tommi Jaakkola, MIT CSAIL 10

HMM problems

- There are several problems we have to solve
- 1. How do we evaluate the probability of an observation sequence $\{\mathbf{x}_1,\ldots,\mathbf{x}_n\}$?
 - forward-backward algorithm
- 2. How do we adapt the parameters of the HMM to better account for the observations?
 - the EM-algorithm
- How do we uncover the most likely hidden state sequence corresponding to the observations?
 - dynamic programming (Viterbi algorithm)

Forward-backward probabilities

Tommi Jaakkola, MIT CSAIL

Tommi Jaakkola, MIT CSAIL

11

12

Forward-backward probabilities

• Forward (predictive) probabilities $\alpha_t(i)$:

$$\begin{aligned} \alpha_t(i) &= P(\mathbf{x}_1, \dots, \mathbf{x}_t, s_t = i) \\ \frac{\alpha_t(i)}{\sum_j \alpha_t(j)} &= P(s_t = i | \mathbf{x}_1, \dots, \mathbf{x}_t) \end{aligned}$$

• Backward (diagnostic) propabilities $\beta_t(i)$:

$$\beta_t(i) = P(\mathbf{x}_{t+1}, \dots, \mathbf{x}_n | s_t = i)$$

(evidence about the current state from future observations)

Tommi Jaakkola, MIT CSAIL

Forward probabilities

$$\alpha_1(1) = P(x_1, s_1 = 1)$$

$$\alpha_1(2) = P(x_1, s_1 = 2)$$

Tommi Jaakkola, MIT CSAIL 14

Forward probabilities

$$\alpha_1(1) = P(x_1, s_1 = 1)$$

$$\alpha_1(2) = P(x_1, s_1 = 2)$$

$$\alpha_1(1) = P(1)P_x(\mathbf{x}_1|1)$$

Tommi Jaakkola, MIT CSAIL

CSAIL

Forward probabilities

$$\alpha_1(1) = P(x_1, s_1 = 1)$$

$$\alpha_1(2) = P(x_1, s_1 = 2)$$

$$\alpha_1(1) = P(1)P_x(\mathbf{x}_1|1)$$

$$\alpha_1(2) = P(2)P_x(\mathbf{x}_1|2)$$

Tommi Jaakkola, MIT CSAIL

Forward probabilities

$$\alpha_2(1) = P(x_1, x_2, s_2 = 1)$$

$$\alpha_2(2) = P(x_1, x_2, s_2 = 2)$$

$$\alpha_2(1) = [\alpha_1(1)P_1(1|1) + \alpha_1(2)P_1(1|2)]P_x(\mathbf{x}_2|1)$$

CSAIL

15

17

Forward probabilities

$$\alpha_2(1) = P(x_1, x_2, s_2 = 1)$$

$$\alpha_2(2) = P(x_1, x_2, s_2 = 2)$$

$$\alpha_2(1) = \left[\alpha_1(1)P_1(1|1) + \alpha_1(2)P_1(1|2)\right]P_x(\mathbf{x}_2|1)$$

$$\alpha_2(2) = \left[\alpha_1(1)P_1(2|1) + \alpha_1(2)P_1(2|2)\right]P_x(\mathbf{x}_2|2)$$

Tommi Jaakkola, MIT CSAIL

18

Tommi Jaakkola, MIT CSAIL

Forward probabilities

• We get the following recursive equation for calculating the forward probabilities $\alpha_t(i) = P(\mathbf{x}_1, \dots, \mathbf{x}_t, s_t = i)$:

$$\begin{array}{lcl} \alpha_1(i) & = & P(i)P_x(\mathbf{x}_1|i) \\ \\ \alpha_t(i) & = & \left[\sum_j \alpha_{t-1}(j)P_1(i|j) \right] P_x(\mathbf{x}_t|i) \end{array}$$

Tommi Jaakkola, MIT CSAIL

Backward probabilities

• We can proceed analogously to derive a recursive equation for the backward probabilities $\beta_t(i) = P(\mathbf{x}_{t+1}, \dots, \mathbf{x}_n | s_t = i)$:

$$\begin{array}{lcl} \beta_n(i) & = & 1 \\ \beta_t(i) & = & \left[\sum_j P_1(j|i) P_x(\mathbf{x}_{t+1}|j) \beta_{t+1}(j) \right] \end{array}$$

Tommi Jaakkola, MIT CSAIL 20

Uses of forward/backward probabilities

• The complementary forward/backward probabilities

$$\alpha_t(i) = P(\mathbf{x}_1, \dots, \mathbf{x}_t, s_t = i)$$

$$\beta_t(i) = P(\mathbf{x}_{t+1}, \dots, \mathbf{x}_n | s_t = i)$$

permit us to evaluate various probabilities:

1.
$$P(\mathbf{x}_1,\ldots,\mathbf{x}_n)$$

2.
$$\gamma_t(i) = P(s_t = i | \mathbf{x}_1, \dots, \mathbf{x}_n)$$

3.
$$\xi_t(i,j) = P(s_t = i, s_{t+1} = j | \mathbf{x}_1, \dots, \mathbf{x}_n)$$

Tommi Jaakkola, MIT CSAIL

19

21

23

Uses of forward/backward probabilities

Probability of the observation sequence:

$$P(\mathbf{x}_1, \dots, \mathbf{x}_n) = \sum_{i} P(\mathbf{x}_1, \dots, \mathbf{x}_n, s_t = i)$$

$$= \sum_{i} P(\mathbf{x}_1, \dots, \mathbf{x}_t, s_t = i) P(\mathbf{x}_{t+1}, \dots, \mathbf{x}_n | s_t = i)$$

$$= \sum_{i} \alpha_t(i) \beta_t(i)$$

Tommi Jaakkola, MIT CSAIL 22

Forward/backward probabilities cont'd

ullet We can evaluate the posterior probability that the HMM was in a particular state i at time t

$$P(s_t = i | \mathbf{x}_1, \dots, \mathbf{x}_n) = \frac{P(\mathbf{x}_1, \dots, \mathbf{x}_n, s_t = i)}{P(\mathbf{x}_1, \dots, \mathbf{x}_n)}$$
$$= \frac{\alpha_t(i)\beta_t(i)}{\sum_j \alpha_t(j)\beta_t(j)} \stackrel{def}{=} \gamma_t(i)$$

Tommi Jaakkola, MIT CSAIL

Forward/backward probabilities cont'd

• We can also compute the posterior probability that the system was in state i at time t AND transitioned to state j at time t+1:

$$\begin{split} P(s_t = i, s_{t+1} = j | \mathbf{x}_1, \dots, \mathbf{x}_n) \\ & \xrightarrow{\text{fixed } i \to j \text{ transition, one observation}} \\ & = \frac{\alpha_t(i) \underbrace{P_1(s_{t+1} = j | s_t = i) P_x(\mathbf{x}_{t+1} | s_{t+1} = j)}_{\sum_j \alpha_t(j) \beta_t(j)} \beta_{t+1}(j)}{\sum_j \alpha_t(j) \beta_t(j)} \\ & \xrightarrow{\overset{def}{=}} \xi_t(i, j), \end{split}$$

Tommi Jaakkola, MIT CSAIL 24