

DEUTSCHLAND

® Offenlegungsschrift

PATENTAMT

P 41 02 071.5 (21) Aktenzeichen: 24. 1.91 Anmeldetag:

Offenlegungstag: 25. 7.91 (5) Int. Cl.5: C 04 B 35/50

C 04 B 35/90 H 01 L 39/24 H 01 F 10/00 H 01 F 1/08 B 28 B 3/00 // G01R 33/38,H01F

3 Unionspriorität: 24.01.90 US 469897

(71) Anmelder:

Department of Energy, Washington, D.C., US

Wagner, K., Dipl.-Ing.; Geyer, U., Dipl.-Phys. Dr.rer.nat., Pat.-Anwälte, 8000 München

@ Erfinder:

Nellis, William Joel, Berkeley, Calif., US; Maple, Merrill Brian, Prof., Del Mar, Calif., US

- (S) Mechanische Ausrichtung von Teilchen zur Verwendung bei der Herstellung von supraleitenden und permanentmagnetischen Materialien
- Ein Verfahren zur mechanischen Ausrichtung orientierter supraleitender oder permanentmagnetischer Materialien für die weitere Verarbeitung in Konstruktionskörpern. Diese Vorbehandlung optimiert die schließlich erreichte kristallographische Orientierung und auf diese Weise die Eigenschaften dieser Konstruktionskörper. Materialien, wie supraleitende Fasern, Nadeln und Plättchen werden verwendet.

45

Beschreibung

Die Erfindung bezieht sich auf die Herstellung von hochqualitativen mechanisch ausgerichteten supraleitenden Materialien unter Verwendung orientierter plättchenförmiger Pulverteilchen, Fasern, Kristalle und anderer orientierter Formen der kürzlich entdeckten Hoch-Tc-Klasse von supraleitenden Keramikmaterialien, wie auch anderen supraleitenden Materialien. Die orientierten Materialien bei der Herstellung von hochqualitativen Permanentmagnetmaterialien.

Derzeitige Verfahrensweisen

Historisch gesehen, wurden unterschiedliche wissenschaftliche Verfahren von Forschungsgruppen angewandt, um brauchbare supraleitende Produkte unter Verwendung starker Schockwellen zu synthetisieren oder herzustellen. Diese Bemühungen hatten unter- 20 schiedliche Erfolgsgrade. Ein Beispiel konventioneller supraleitender Materialien wurden durch Roy synthetisiert, und zwar unter Verwendung eines explosiven Kompaktierungsverfahrens (US-Patent 37 52 665). Ähnliche Bemühungen gab es hinsichtlich der Herstel- 25 lung von Permanentmagnetmaterialien unter Verwendung von Schocksyntheseverfahren.

Seit der Entwicklung der revolutionären Hoch-T_c-Supraleiter und der Verbesserungen bei Permanentmagnetmaterialien wurden neue Herstellungsverfahren 30 von der Forschung entwickelt, um die physikalischen Einschränkungen dieser Materialien zu berücksichtigen. Beispielsweise sind diese neuen Materialien außerordentlich spröde von Natur aus und sie sind leicht durch mierbar. Ferner verursachen viele konventionelle Verarbeitungsverfahren eine Verschlechterung oder Zerstörung der supraleitenden elektrischen und magnetischen Qualitäten der neuen Materialien. Es wurden Versuche unternommen, Verarbeitungsverfahren vorzusehen, welche die supraleitende Fähigkeit dieser Materialien wenig beeinflußt, wobei diese Versuche nur begrenzt erfolgreich waren.

Keramikverarbeitung

Keramikverarbeitungsverfahren wurden durch Forscher der AT&T Bell Laboratorien entwickelt, wobei versucht wurde, eine praktisch verarbeitbare Form für die neuen Hoch-Tc-Supraleiter vorzusehen. Ein Beispiel 50 dieser Lösung ist die Abstreichklingen-Bandgußtechnik. Keramikpulver wird mit einem Bindemittel, einem Plastiziermittel und einem Dispersionsmittel gemischt. Die sich ergebende Lösung wird mit einer gesteuerten Dikke auf einem Kunststoffilm abgeschieden. Das Lösungs- 55 mittel wird verdampft, um ein flexibles Band zu erzeugen. Wegen der nicht-leitenden organischen Komponenten in dem Band ist dieses YBa2Cu3O7-x-Band nicht elektrisch supraleitend. Die langsame Erhitzung solcher YBa₂Cu₃O_{7-x}-Bänder auf 300°C entfernt unerwünsch- 60 te Komponenten und bindet das Pulver schwach. Die Erwärmung auf 900 bis 1000°C erzeugt eine dichte, aber spröde supraleitende Struktur.

Keramische Verarbeitungsverfahren wurden auch von Forschern an den Argonne National Laboratorien 65 und anderen Instituten untersucht, und zwar in einem Bemühen Drahtextrusionsverfahren zu entwickeln, welche erfolgreich auf die neuen Hoch-Tc-Materialien an-

gewendet werden könnten. Bei diesem Versuch wird eine Aufschlämmung der Bandgießart teilweise getrocknet, um ein Material mit einer viskosen Konsistenz zu erzeugen. Dieses Material wird auf eine Drahtform extrudiert und sodann gewikkelt. Das Brennen dieser Konstruktion ergibt einen festen keramischen supraleitenden Draht.

Andere Keramikverarbeitungsmöglichkeiten zum Vorsehen verarbeitbarer Konstruktionen aus den neuen Erfindung bezieht sich auch auf die Verwendung dieser 10 Hoch-Tc-Materialien wurden ebenfalls untersucht. Feine Keramikoxidpulver in einem organischen Träger wurden auf ein Substrat aufgedruckt, und zwar durch einen Sieb, um Schaltungsmuster zu erzeugen. In einem damit in Verbindung stehenden Prozeß wurden Plasma-15 sprühverfahren benutzt, um beliebige Formen mit supraleitendem Material zu überziehen, um so supraleitende Kompositoberflächen zu erzeugen.

Metallurgische Verarbeitung

Eine Anzahl von Forschern verwendete das klassische Kaltziehverfahren zur Herstellung von supraleitendem Draht durch Packen von supraleitendem Pulver in ein Silberrohr mit darauffolgender Reduzierung des Rohrdurchmessers um das 10- bis 100fache. Das sich ergebende supraleitende Material mußte sodann in Sauerstoff angelassen werden, um die supraleitenden Qualitäten wieder herzustellen. Beispielsweise zeigte sich, daß mit Silber ummantelte Bi-Pb-Sr-Ca-Cu-O-Drähte eine bevorzugte Kristallausrichtung mit der Basal-Ebene-Hoch-J_c kristallographischen Richtung längs der Länge des Drahtes hatte (vgl. T. Hikata et al, "Ag-Sheat-hed Bi-Pb-Sr-Ca-Cu-O Superconducting Wires with High Critical Current Density" in Japan, J. Appl. Phys. die meisten üblichen Manipulationsverfahren defor- 35 28, L-82-L84, 1989). Das supraleitende Oxid mußte auf eine Dicke von nur 0,1 mm zur Erreichung von Ausrichtung herabgewalzt werden. Es ist zweckmäßig, kristallographische Oxidschichten mit größeren Dicken und auch mit höheren Dichten der kristallographischen Defekte zu erhalten, um höhere kritische Stromdichten sowohl in Null und endlichen Magnetfeldern als bislang beobachtet zu erhalten.

Schmelztemperatur-Wachstum

Bei diesem Verfahren werden gesinterte Stangen aus YBa2Cu3O7-x, die ungefähr 1 cm lang sind, geschmolzen und sodann richtungsmäßig verfestigt. Diese Lösung erzeugt vollständig dichte, lange, nadelförmige Körner aus supraleitenden Konstruktionen oder Gebilden. Die sich ergebende Nadelachse dieser Körner entspricht der a- oder b-Achse der orthorhombischen Struktur des Hoch-Te-Materials. Dies sind kristallographische Basal-Ebenen-Richtungen der höchsten kritischen Stromdichte. Es ist jedoch nicht praktikabel, beträchtliche Längen von supraleitendem Draht unter Vewendung dieser Verfahren herzustellen.

Die Schockkompaktierung

Die Verarbeitung von Supraleitern durch die Schockkompaktierung verspricht den größten Erfolg in der Supraleiterherstellung. Die US-Patente 47 17 627 und 47 62 754 der Anmelderin beschreiben erste praktische Verfahren der Schockkompaktierung der neuen supraleitenden Materialien einschließlich der neuen Hoch-Tc-Materialien. Die entsprechenden deutschen Druckschriften dieser Patente seien zum Gegenstand der vorliegenden Offenbarung gemacht.

Die extrem hohe Geschwindigkeit und die kurze Zeitdauer der Schockwelle, die in diesem Verfahren verwendet wird, gestattet, daß die Grenzen zwischen Teilchen sich erwärmen und verbinden, ohne in signifikanter Weise die Mittelteile der Teilchen zu erwärmen. In
einigen Fällen wird dieser Effekt dadurch erhöht, daß
man die supraleitenden Materialien mit Metallpulvern
mischt, um als ein ziehfähiges elektrisch leitendes Bindemittel zu wirken. Die Minimierung der Temperaturanstiege im Inneren der Teilchen wird angenommenermaßen durch die kurze (Mikrosekunden) Dauer des Kompressionsprozesses und die hohe thermische Kühlrate
an den Inter-Teilchengrenzen verursacht.

Dadurch, daß man eine relativ kühle Temperatur im Inneren der Teilchen aufrechterhält, werden Kristallstruktur und supraleitende Eigenschaften der Masse des Teilchenmaterials beibehalten. Andererseits gestattet die Oberflächenerwärmung die heterogene Verarbeitung der Inter-Teilchengrenzen. Auf diese Weise kann die Struktur der Inter-Teilchengrenzen abgestimmt werden, um die kritische Stromdichte zwischen den Teilchen zu optimieren. Dadurch, daß man dieses Teilchen als ein Einzelkristallit wählt, könnten sämtliche Korngrenzen für die krtische Stromdichte optimiert 25 werden.

Die durch die Schockkompaktierung verarbeiteten Materialien genießen eine Anzahl von Eigenschaften, die bei nicht-kompaktierten supraleitenden oder magnetisch ausgerichteten Materialien oder in durch andere Verfahren verarbeiteten Supraleitern nicht vorkommen. Die Schockkompaktierung schafft Modifikation in der Mikrostruktur der neuen Hoch-Tc-Materialien, welche die Funktionsweise der sich ergebenden Fabrikationsprodukte ändert. Beispielsweise entdeckten die Erfinder, daß schockinduzierte Defekte die supraleitenden Fluxoid-Pinning-Energien in YBa₂Cu₃O_{7-x} und die supraleitenden kritischen Stromdichten, Jc, in Bi₂Sr₂Ca-Cu₂O_x erhöhten.

Die Erfinder haben auch entdeckt, daß die erhöhte 40 Fluß-Pinning-Energie von geschocktem YBa₂Cu₃O_{7-x} in unerwarteter Weise nach dem Anlassen in Sauerstoff bei 890°C für 53 Stunden aufrechterhalten bleibt. Dies ist eine typische Verarbeitungstemperatur, verwendet zur Optimierung der supraleitenden Eigenschaften. Das Anlassen entfernt die ursprüngliche hohe Dichte der schockinduzierten Defekte, aber ersetzt diese mit einer Hochdichtigkeit eines anderen kristallinen Defekts, der nahezu ebenso effektiv bei der Erhöhung der Flux-Pinning-Energie ist.

Der Schochkompaktionsschritt erhöht die Leitfähigkeit einiger supraleitender Materialien. Er gestattet auch die Verwendung von effektiv niedrigeren Sinterzeiten und -temperaturen. Diese modifizierten Sintereigenschaften minimieren die Verringerung der supraleitenden Qualitäten der Ausgangsmaterialien, die während anderer Aspekte der Verarbeitung auftreten können und von denen angenommen wird, daß sie durch schockinduzierte Effekte hervorgerufen werden.

Verfahrenseinschränkungen

Die derzeit verfügbaren Verfahren zur Herstellung von Hoch-T_c-Materialien leiden an einer Anzahl von Beschränkungen. Ein konsistenter Stromfluß mit hoher 65 kritischer Stromdichte durch die hergestellten Materialien wie selbst einem kleinen Abstand konnte nicht zuverlässig erreicht werden. In Massen (im Gegensatz zu

Dünn-Schicht oder Dünn-Film) Materialien ist ein Schlüsselziel der Anordnung des Hoch-T_c-Oxids derart, daß die Richtung des höchsten J_c in der anisotropischen Kristallstruktur entlang der gewünschten Richtung des Stromflußes für jeden Kristalliten erfolgt. Die Erreichung dieses Ziels ist ein Aspekt der vorliegenden Erfindung.

Die relativ lange nach der Herstellung erforderliche Hochtemperatursinterung bei vielen konventionellen Herstellungsverfahren führt auch zu einer Erweichung oder zum Schmelzen der internen Struktur der supraleitenden Teilchen. Dies zerstört häufig ihre supraleitenden Eigenschaften.

, Orientierte Fasern, Nadeln und Plättchen

Kürzlich waren eine Anzahl von Laboratorien in der Lage, Fasern aus supraleitenden Materialien herzustellen. Beispielsweise stellte eine Forschungsgruppe an der Standford-Universität Fasern aus BizCaSrzCUzOx her, in denen die a-b-Ebene, die in der Hoch-Jc-Richtung liegt, parallel zur Achse der Faser verläuft (Fiegelson, Science, Band 240, Seiten 1642–1645, 1988). Supraleitende Fasern sind im allgemeinen länger als 1 mm und können potentiell Zentimeter oder sogar Meter in Länge sein.

Die frühere Forschung auf dem Gebiet der Faser-, Nadel- (weniger als 1 mm Länge) und Plättchenorientierung, war sehr beschränkt. Kürzlich wurde entdeckt, daß einige Chargen von supraleitenden Pudern, die in der Form von Plättchen vorliegen, mit der a-b-Ebene in der Ebene des Plättchens orientiert sind. Die plattenartige Morphologie von Hoch-Tc-Körnern wurde von einer Anzahl von Forschern erkannt (Arendt und andere, "Aligned sintered compact of RBa₂Cu₃O_{7-x}" in Materials Research Society Symposium Proceedings, Band 99, Seiten 203-208, 1987). Es wird erwartet, daß andere orientierte Materialien erkannt oder entwickelt werden.

Es wäre außerordentlich zweckmäßig, ein Hoch-Tcsupraleitendes Material herzustellen, bei dem die supraleitenden Teilchen mit ihren a-b-Ebenen parallel zur Richtung des Stromflusses orientiert sind. Diese Orientierung würde einen direkteren Stromflußpfad mit höchtem Jc durch die supraleitende Konstruktion gestatten. Der Effekt einer solchen Orientierung würde darin bestehen, daß die Stromdichte über bearbeitbare Materiallängen hinweg verbessert wird. Ein derartiger Durchbruch in der Technologie ist nötig, bevor die breite Anwendung von Supraleitern für praktisch elektrische Anwendungsfälle erreicht werden kann. Die Herstellung eines relativ flexiblen Materials, welches durch Automation in gewünschten Längen hergestellt werden könnte, wäre außerordentlich zweckmäßig für solche Anwendungsfälle.

Mit dem Auftreten orientierter supraleitender Hoch-Tc-Fasern als Ausgangsmaterialien besteht die Aussicht, praktikable supraleitende Konstruktionen vorzusehen. Vor dem Auftreten der vorliegenden Erfindung gab es jedoch eine Anzahl von Hindernissen hinsichtlich der Herstellung von supraleitenden Konstruktionsteilen für praktische Anwendungsfälle, die durch bislang bekannte Verfahren nicht überwunden werden könnten.

Die neuen Faser-, Nadel- und Plättchenformen der Hoch-Te supraleitenden Materialien haben viele Beschränkungen der Teilchenform dieser supraleitenden Verbindungen. Die spröde Keramiknatur der neuen supraleitenden Materialien bleibt eine die Verwendung einschränkende Begrenzung. Selbst geringe Beanspru-

chung kann die wichtige Orientierungqualität dieser supraleitenden Formen zerstören. Nach dem Bruch der orientierten Materialien werden die Strompfade kompromitiert oder zerstört. Ferner kann jedwede Deformation der umgebenden Tragmaterialien die Fragmente von ihrer ursprünglichen planaren Orientierung weg fehlausrichten, was auch dazu dient, die leitende Kapazität dieser Materialien zu kompromitieren oder zu zerstreuen.

Viele Einschränkungen der bekannten Herstellungs- 10 verfahren sind unglücklicherweise dann noch nachteiliger, wenn diese Verfahren auf die neuen orientierten Fasern, Plättchen oder anderen ausgerichteten Materialien angewandt werden. Die für die keramische Verarbeitung notwendige Herstellung von Aufschlämmungen 15 kann zur Disorientierung der Materialien führen. Ferner kann sich durch diesen Verarbeitungsschritt der Faser- oder Plättchen-Bruch oder die volle Zerschlagung ergeben. Kaltziehverfahren, welche in einigen Fällen den Vorteil der Erzeugung kristallographischer Orien- 20 tierung besitzen, haben auch die Tendenz die Faseroder Plättchen-Struktur zu deformieren und zu brechen. Diese Brüche und Deformationen können die supraleitenden Qualitäten der endgültigen supraleitenden Materialien innerhalb eines Konstruktionselementes stark 25 einschränken.

Zusammenfassung der Erfindung

Ein Ziel der vorliegenden Erfindung besteht darin, ein 30 hergestelltes supraleitendes oder permanentmagnetisches Konstruktionselement vorzusehen, und zwar supraleitende Fasern, Plättchen, Nadeln und/oder kristallographisch ausgerichtete supraleitende oder permantentmagnetische Materialien, insbesondere Hoch-Te- 35 Materialien enthaltend.

Ein weiteres Ziel der Erfindung besteht darin, mechanisch ausgerichte Teilchen vorzusehen, und zwar für die Verwendung beim isostatischen Heißpressen, Kaltpressen und Sintern, wobei Abstreichklingenverfahren oder 40 bei dynamischen Hochdruckverarbeitungsverfahren.

Ein weiteres Ziel der Erfindung besteht darin, ein supraleitendes filamentares (fadenartiges) oder planares Konstruktionselement vorzusehen, wobei leitende Mesupraleitenden Fasern, Nadeln und/oder Plättchen und daß die derart assoziierten Metallmaterialien eine mechanische Stützung, thermische Stabilisierung und elektrische Sicherheitspfade für die Fasern vorsehen.

Ein weiteres Ziel der Erfindung besteht darin, ein Ver- 50 fahren anzugeben für die Herstellung eines supraleitenden filamentären Konstruktionskörpers, der verwendet werden kann zur Herstellung von Kabeln und anderen geeigneten Formen unbegrenzter Länge.

fahren zur Herstellung eines supraleitenden filamentären Konstruktionskörpers anzugeben, wobei dieses Verfahren kontinuierlich und automatisch betreibbar

Ein weiteres Ziel der Erfindung besteht darin, fila- 60 mentäre, etwas ziehfähige supraleitende Drahtformen herzustellen, die in konventionellen elektrischen Anwendungsfällen einsetzbar sind.

Ein weiteres Ziel der Erfindung besteht darin, ein Fabrikationsverfahren anzugeben, welches die Sinterer- 65 fordernisse vermeidet und/oder minimiert.

Die vorliegende Erfindung sieht ein neues Verfahren zur Herstellung von mechanisch ausgerichteten Mate-

rialien vor, und zwar zur Verwendung bei der Herstellung eines filamentären oder planaren supraleitenden oder permanentmagnetischen Konstruktionskörpers oder Konstruktionselements durch irgendeines von mehreren bekannten Fabrikationsverfahren. Orientierte supraleitende Fasern, Plättchen und andere ausgerichtete supraleitende oder permanentmagnetische Formen sind das Ausgangsmaterial, das mechanisch ausgerichtet wird.

Bei dem erfindungsgemäßen Verfahren wird die planare oder nahezu planare Orientierung von supraleitenden oder permanentmagnetischen Fasern, Nadeln und/ oder Plättchen ausgenutzt zur Erzeugung eines linearen etwas ziehfähigen, stromleitenden Konstruktionselements oder eines etwas weniger ziehfähigen planaren Konstruktionselements. Wegen der vielen Vorteile des erfindungsgemäßen Verfahrens behält das supraleitende oder permanentmagnetische Material seine im ganzen polare Orientierung nach Anwendung des erfindungsgemäßen Herstellungsverfahrens. Verschiedene Verfahren der Orientierungskompaktierung und der Vereinigung, verwendet in Techniken, wie der Faseroptik und Keramikmatrixzusammensetzung, können bei der vorliegenden Erfindung eingesetzt werden. Das erfindungsgemäße Verfahren kann auch mit magnetischen Ausrichtverfahren in einigen Fällen kombiniert

Die supraleitenden Materialien für hohe Magnetfelder und hohen elektrischen Strom können durch das erfindungsgemäße Verfahren in einem Metallmedium eingebettet werden, um dünne, supraleitende Schichten vorzusehen. Ein Vorteil einer solchen Konstruktion besteht darin, daß diese erfindungsgemäßen Materialien eine hinreichende Festigkeit besitzen, um in großen elektromagnetischen Kräften zu widerstehen, die in einem supraleitenden Magnet mit hohem Feld vorhanden sind. Ferner sieht das Metallmedium einen gesteuerten nicht-destruktiven Strompfad vor, der dann zweckmä-Big ist, wenn das supraleitende Material einen Übergang erfährt von einem supraleitenden Zustand in einem Normalzustand. Wegen der Struktur und der Qualitäten der erfindungsgemäßen Konstruktionskörper wird die thermische und die mechanische Stabilität beibehalten.

Die Schockkompaktierungsherstellung nach der Austallpulver oder Folien wahlweise eng assoziiert sind mit 45 richtung hat den Vorteil der Erzeugung von Supraleitern mit überlegenen supraleitenden Eigenschaften infolge der schockinduzierten Defekte. Dieser Kompaktierungsschritt kann mit einer Schockwellenbelastung, Hochleistungsschock mit dynamisch hohem Druck oder gepulstem Amboßpressen sowie anderen Verfahren erreicht werden. Der Vorteil der Fluß-Pinning-Defekte kann in anderen Nach-Ausrichtungsherstellungverfahren durch die Vorbehandlung der Teilchen durch das Schockverfahren erreicht werden. Die Teilchen können Ein weiteres Ziel der Erfindung besteht darin, ein Ver- 55 sodann durch das erfindungsgemäße Verfahren ausgerichtet werden und verarbeitet werden durch das Nicht-Schockherstellungsverfahren.

Es wird angenommen, daß Hoch-Tc-Materialien ihre kritischen Stromdichten (Jc) durch das Kriechen der supraleitenden Fluxoide beschränkt haben. Es scheint ein zweifacher Grund für das Flußkriechen vorzuliegen. Die Energiebarrrieren, welche die supraleitenden Fluxoide in den Hoch-Tc-Materialien festlegen, sind ungefähr 50mal kleiner (bei 77°K, flüssiger N2-Temperatur) als in Niedrig-Tc-Materialien (bei 4,2,° K). Zudem liegen die Betriebstemperaturen ungefähr 20mal höher. Es wird somit angenommen, daß das Fluß- oder Fluxkriechen in Hoch-Tc-Materialien thermisch aktiviert wird.

Das Flußkriechen scheint die kritischen Stromdichten

Eine Möglichkeit zur Verminderung des Flußkriechens und zur Erhöhung der Fluß- oder Flux-Pinning-Energien ist die Einführung von Defekten, beispielsweise durch Schockkompaktieren. Die Erfinder haben entdeckt, daß die Fluß-Pinning-Energie von YBa₂Cu₃O_{7-x} bei 70°K und 10 kOe durch Schockkompaktieren signifikant vergrößert wird.

Das vorliegende Verfahren kann zweckmäßig ange- 10 wandt werden unter Verwendung eines großen Bereichs von konventionellen supraleitenden Materialien und Hoch-Tc-Materialien, entweder einzeln oder in Mischungen. Beispiele derartiger geeigneter Materialien sind die Keramikoxide der Gruppe XBa₂Cu₃O_{7-x}, wo- 15 bei x folgendes sein kann: Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb und Lu oder andere Seltenerdelemente, und O kann partiell ersetzt sein durch F, Br, oder Cl und ferner ist X eine kleine Zahl kleiner als 1, typischerweise 0,1.

Beispiele einiger neuerer Materialien Bi₂Sr₂Ca₁Cu₂O_x, Tl₂Ca₂Ba₂Cu₃O_y und andere damit in Verbindung stehende Verbindungen, welche TI und Bi Kupferoxide enthalten. Zudem werden auch neu entdeckte Verbindungen, die eine unterschiedliche Elektronenstruktur gegenüber Hoch-Te-Verbindungen besit- 25 zen und entwickelt werden von den erfindungsgemäßen Verarbeitungstechniken Vorteile ziehen. Diese Materialien besitzen Elektronenladungsträger, anstelle von Lochladungsträgern in den Hoch-Tc-Materialien. Dazu gehört Nd2-xCexCuO4.

Geeignete Kombinationen anderer supraleitender Materialien brauchbar bei den Herstellungsverfahren der vorliegenden Erfindung wären die folgenden, wobei darauf aber keine Einschränkung vorgenommen werden soll: Pb/Mo/S, Eu/Mo/S, Sn/Eu/Mo/S, Pb/Eu/Mo/ S, La/Eu/Mo/S, Sn/Al/Mo/S, Nb/N, Mo/N, V/Si, Nb/Si, Nb/Al/Ge, Nb/Al, Nb/Ga, Nb/Ti and Nb/Zr. Andere brauchbare Kombinationen von Permanentmagnetmaterialien umfassen die folgenden: Sm/Co, Fe/B/Nd, Fe/ B/Pr, Fe/B/Sm, Fe/B/Eu, Fe/B/Co, Fe/B/Ni, Fe/B/Nd/ 40 Pr, Fe/B/Nd/Sm, Fe/B/Nd/Eu, Fe/B/Nd/Co und Fe/B /Nd/Ni.

Die Schockkompaktierverfahren der vorliegenden Erfindung sind für die Massenproduktion und kontinuierliche Herstellungsverfahren gut geeignet. Die Kom- 45 paktierung kann mit irgendeiner Anzahl unterschiedlicher Mittel erreicht werden, und zwar einschließlich zwei-stufiger Licht-Gasgewehre, Schienengewehre, Luftgewehre, Explosivstoffe, magnetische Kompaktierung usw. Die Verwendung von Explosionsmitteln ge- 50 stattet die Herstellung von beliebig großen und/oder langen Konstruktionselementen. Ferner kann auch eine Anzahl von Proben gleichzeitig in einem Klub-Sandwichstyle (mehrlagiger Sandwich) kompaktiert werden. tenden Materialien sequentiell geschichtet oder mit nicht-anhaftendem Material mit Abstand angeordnet und werden sodann gleichzeitig kompaktiert.

Die Verwendung einer eleganten und sehr direkten Möglichkeit macht beim erfindungsgemäßen Verfahren 60 supraleitende Fasern erforderlich, die mechanisch ausgerichtet sind und abgeschieden sind auf einer Tragoberfläche einer Metallfolie und/oder Pulver. Die Metallfolie und/oder das Metallpulver ist über den Fasern geschichtet. Sodann erfolgt die Schockkompaktierung. 65 Die Schockkompaktierung hat mehrere vorteilhafte Effekte, zu denen auch der gehört, daß ein inniger Kontakt ermöglicht wird zwischen dem Metall und dem supralei-

tendem Material. Dieser Kontakt sieht mechanische Tragfähigkeit, Wärmekühlung und alternative elektrische Leitungsvorteile vor.

Wenn gewünscht, kann die Schockkompaktierung 5 ferner Brückenverbindungen zwischen den Fasern sowohl seitlich als auch horizontal erzeugen. Wegen dieses Merkmals können die Fasern zufällig in Ebenen senkrecht zur Richtung des Stromflusses positioniert werden und noch immer einen Elektronenflußpfad aufgebaut haben. Im Falle, daß ein solcher Pfad an einigen Punkten diskontinuierlich wäre, würde die Metallmatrix eine Verbindungsmöglichkeit vorsehen, welche gestatten würde, daß der Strom zu einer benachbarten, aber nicht angrenzenden Faser übertragen wird. Wahlweise kann eine Menge des Hoch-Te-supraleitenden Pulvers zugegeben werden, so daß die Schockkompaktierung einen kontinuierlichen supraleitenden Pfad für den elektrischen Strom vorsieht.

Unter Verwendung des erfindungsgemäßen Verfahsind 20 rens können supraleitende Fasern oder Plättchen abgeschieden und mechanisch orientiert (in einigen Fällen gleichzeitig) werden durch irgendeine Anzahl von Verfahren, von denen viele konventioneller Natur auf dem Gebiet der Materialverarbeitung sind. Beispielsweise kann das supraleitende Material durch ein sich bewegendes Rohr abgeschieden werden und nach unten zur Erzeugung einer Spur auf eine Oberfläche sinken. Bei dem anderen Verfahren bleibt das Abscheidungsrohr stationär, wobei sich die Oberfläche stetig unterhalb der aus dem Rohr fließenden Materialien bewegt. Geringe Vibrationen können dazu dienen, die Abscheidung der Fasern oder Plättchen vom Rohr auf der Oberfläche zu fördern. In einem alternativen System wird ein genutetes oder mehrfach genutetes Substrat verwendet. Zufällig aufgebrachte Fasern oder Plättchen werden vibriert, durch Luft geblasen oder in diese Nuten gebürstet, auf welche Weise die richtige Orientierung erreicht wird. Abwandlungen des Verfahrens sind möglich, um Phänomena statischer Elektrizität oder anderer störende Phänomena zu berücksichtigen.

> Ein effektives Verfahren, welches Pulverteilchen mit Plättchenform ausrichtet, ist ein Aspekt der Erfindung. Ein Pulver, bestehend aus Teilchen ähnlicher Größe wird abgestrichen, und zwar zur Erzeugung einer Vorformanordnung. Es wird angenommen, daß das Abstreichen die Pulverteilchen in der Weise ausrichtet, wie dies Tür Münzen in einem Stapel gilt, die von Natur aus mit ihren Ebenen vorzugsweise parallel oder nahezu parallel zur Oberfläche ausgerichtet sind, auf der sie ruhen. Das darauffolgende Sintern, Schockkompaktieren oder andere Verfahrensmethoden werden verwendet, um die Pulverteilchen zu verbinden und in der bevorzugten Orientierung einzufrieren.

Unter Verwendung des erfindungsgemäßen Verfah-Gemäß diesem Aspekt der Erfindung sind die supralei- 55 rens kann auf spröden Fasern und Plättchen basierender Draht unterschiedlicher Längen in verarbeitbare supraleitende Kabel verarbeitet werden, und zwar in einer mechanisch, elektrisch und wärmeverteilungsstutzenden Metallmatrix. Für große Kabellängen würden die Vorschockmaterialien zusammengebaut werden, Explosionspulver oder Explosionsflächenelemente würden auf der Oberseite der Anordnung angeordnet werden und in einer einzigen Explosion würde die gesamte Länge stoßkompaktiert. Dieses Einzelexplosionsverfahren würde bestrebt sein, die Bildung von störenden Grenzen zwischen unterschiedlichen Segmenten zu minimieren, was anderenfalls auftreten könnte.

Es ist auch möglich, das erfindungsgemäße Verfahren

zum elektrostatischen Laden einer Metallfolie zu verwenden und zum entgegengesetzten Laden der orientierten Fasern derart, daß diese an der Folie anhaften würden, bevor der Bindeprozeß erfolgt. Mit einem Verfahren ähnlich dem Photokopieren könnte eine vorkonstruierte Schaltung direkt am Platz verbunden werden. Ein physikalisch anhaftendes Material, wie beispielsweise ein Adhesions- oder Klebemittel könnte ebenfalls dazu verwendet werden, um ein lay out von der gewünschten Schaltung vorzusehen, und sodann könnte 10 die Inkontaktbringung mit ausgerichteten Fasern oder Plättchen vor dem Binden erfolgen.

Ein Filamentdraht oder Fäden enthaltender Draht, erzeugt durch das erfindungsgemäße Verfahren, könnte in einem gewissen Ausmaß in einer Anzahl gewünschter 15 Formen gebogen werden. Es ist jedoch möglich, den durch das erfindungsgemäße Verfahren hergestellten Artikel direkt in eine endgültige gewünschte Form zu bringen, wie beispielsweise die Konfiguration einer elektrischen Spule. Diese Lösungsmöglichkeit würde 20 die Möglichkeit des unerwünschten Reißens des Materials während des Wickelns vermeiden. Es würde ebenfalls eine attraktive Alternative sein, wenn das Sintern bevorzugt ist oder aber dann, wenn eine starrere Struktur erwünscht ist. Wenn beispielsweise eine Spule erfor- 25 derlich wäre, so würde eine Form mit spulenartigen (gewickelten) Rippen vorgesehen. Dies könnte einfach in der Form eines Gewinderohrs aus irgendeinem leitenden Material, wie beispielsweise Kupfer, erfolgen. Das Rohr könnte sodann elektrostatisch geladen wer- 30 den und mit den supraleitenden Fasern kontaktiert werden oder aber mit einer Mischung von supraleitenden Fasern und Metallpulver. Das Rohr würde von Fasern, die nicht in den Nuten untergekommen sind, sauber gewischt werden. Dieser Konstruktionskörper würde 35 sodann in ein etwas größeres Rohr oder einen Metallfolienzylinder eingesetzt und schockkompaktiert.

Bei einem anderen Verfahren zur Herstellung einer supraleitenden elektrischen Spule oder anderer gewünschter Formen könnte ein nicht-störendes Klebe- 40 mittel verwendet werden, um das orientierte Teilchen in der gewünschten Konfiguration zu befestigen. Alternativ könnte ein Klebemittel verwendet werden, welches während des Sinterns weggebrannt würde. Auf diese Weise könnte eine Spirale oder Schraubenlinie auf ei- 45 schen Kupfertest-Probenhalters; nem Zylinder vorgesehen werden und der Fluß der orientierten Fasern oder Plattchen angebracht werden in einem stetigen Strom darauf. Ein ascheloses Klebemittel würde die ideale Wahl für ein solches System sein. Wenn es die Natur des supraleitenden Materials gestat- 50 tet, so kann ein einfacher Flüssigkeitspray dazu dienen, die Teilchen mit dem Metallträgermaterial vor dem Verbinden zu binden, und zwar inbesondere wenn ein Feststopfen oder Stoßen vor dem Stoß- oder Schockereignis erreicht wird.

Erfindungsgemäß ist ferner ins Auge gefaßt, daß geeignete Nuten in der Aufnahmemetalloberfläche in einer X- oder Y-Richtung vorgesehen sein könnten. Dies könnte erreicht werden durch Stanzen eines gewünschten Musters auf eine Metallfolie und durch Vibration 60 der Fasern in ihrem Platz. Im Falle der Schockkompaktierung könnte das obere Folienniveau zurückgeschält werden, was die Oberfläche der supraleitenden Fasern enthüllt. Zu diesem Zeitpunkt könnten die Fasern in der verbleibenden Richtung angeordnet und verbunden 65 (verklebt) werden. Im Falle von Plättchenmaterial können beide Achsen gleichzeitig verbunden werden. Auf diese Weise könnte eine Schaltung irgendeiner gewünschten Konfiguration erreicht werden, wie dies beispielsweise in der Mikrochip-Herstellung erforderlich

Es ist ferner ins Auge gefaßt, daß dort, wo die Verbindung der hergestellten supraleitenden Kabel im Feld erforderlich ist, kleine Kits oder Sätze selbst-verbrennender oder selbst-sinternder Anbringvorrichtungen vorgesehen würden. Diese Sätze oder Sets würden nicht kompaktierte Fasern und eine kleine, umschlossene Explosivladung enthalten, die in einfacher Weise gezündet werden könnte, und zwar unter Verschmelzung von zwei benachbarten Enden eines langen Kabels. Im Falle der Sinterung sind heißbrennende Sicherungen vorgesehen. Zudem können große Längen supraleitenden Materials durch Verbinden sehr kleiner Abschnitte aus beispielsweise Cu verbunden werden.

Die durch das erfindungsgemäße Verfahren erzeugten supraleitenden Materialien könnten für eine Anzahl von Verwendungen außerordentlich zweckmäßig sein. Potentielle Anwendungsfälle der vorliegenden Erfindung sind lange Leistungsübertragungskabel, Anwendungen mit hohen Magnetfeldern, wie beispielsweise in induktiven Energiespeichern, Motoren und Generatoren sowie bei der magnetischen Fusion und anderen Anwendungsfällen. Auf dem Gebiet der Computertechnologie könnte die vorliegende Erfindung auf Gebieten wie den Josephson junction oder Sperrschichtvorrichtungen und supraleitenden Übertragungsleitungen verwendet werden. Von der vorliegenden Erfindung würden ferner Beschleuniger und freie Elektronenlaser profitieren. Auf diesen Gebieten können die erfindungsgemäßen Konstruktionskörper verwendet werden für ein hohes Q aufweisende Hochleistungs HF-Strukturen, Strahltransportmagnete, eine hohe Emission aufweisende Beschleunigungs-Kathodenstrukturen und Wriggler-Magnete, zusammen mit anderen Anwendungsfällen. Zudem werden weitere neue und nicht vorhersehbare Anwendungsfälle für die Erfindung im Laufe der Zeit entwickelt

Weitere Vorteile, Ziele und Einzelheiten der Erfindung ergeben sich aus der Beschreibung von Ausführungsbeispielen anhand der Zeichnung; in der Zeichnung zeigt:

Fig. 1(a) eine dreidimensionale Ansicht eines zylindri-

Fig. 1(b) einen Querschnitt des zylindrischen Kupfer-Test-Probenhalters und Stahlkolbens,

Fig. 1(c) eine dreidimensionale Ansicht des um die supraleitenden Fasern herum kompaktierten Silberpul-

Fig. 1(d) einen Seitenschnitt und eine Draufsicht auf das um die supraleitenden Fasern kompaktierte Silberpulver;

Fig. 1(e) eine Seitenschnittansicht verschiedener Stu-55 fen der Beschichtung des Silberpulvers und supraleitender Fasern:

Fig. 1(f) einen Seitenschnitt eines zylindrischen Kupfertest-Probenhalters in einer Stahlwiedergewinnungs-Befestigungsanordnung;

Fig 2(a) den elektrischen Widerstandswert einer nicht geschockten Bi₂Sr₂CaCu₂O₈-Faser;

Fig. 2(b) den elektrischen Widerstand der mit 30 kbar Bi₂Sr₂Ca-Silberpulver schockkompaktierten Cu₂O₈-Faser;

Fig. 3 Röntgenbeugungsabtastungen der gemäß Beispiel 4 erzeugten Proben;

Fig. 4 Röntgenstrahlenbeugungs-Abtastungen für unterschiedliche ausgerichtete Materialien gemäß Beispiel 4;

Fig. 5 die magnetischen Suszeptibilitäten der 100 kbar-Probe des Beispiels 4 schockkompaktiert mit 100 kbar und orientiert senkrecht und parallel zu dem angelegten 30 Oe-Magnetfeld;

Fig. 6 eine Darstellung des Verhältnisses des Siebemomentes in der Senkrechten zu demjenigen in der Parallelmagnetfeld-Konfiguration aus schockkompaktier-

ten Scheiben in Beispiel 4;

Fig. 7 zeigt die Null-Feld-gekühlten Siebmagnet-Sus- 10 zeptibilitäten in einem senkrechten Feld von 30 Oe, abhängig von der Temperatur für Proben des Beispiels 4;

Fig. 8 zeigt den normalisierten elektrischen Widerstandswert R(T)/R(T = 295°K), abhängig von der Temperatur für eine 100 kbar geschockte und angelassene 15

Fig. 9a und 9b zeigen Röntgenstrahlenbeugungs-Abtastungen für das Pellet wie gepreßt, bzw. das Pellet wie gesintert gemäß Beispiel 5.

Fig. 10 zeigt den elektrischen Widerstandswert des 20

gesinterten Pellets des Beispiels 5;

Fig. 11 zeigt die Magnetdaten Sieb- und Meissner-Signale für ein 20 Oe Magnetfeld, angelegt parallel und senkrecht zur Achse des scheibenförmigen gesinterten Pellets des Beispiels 5.

Beschreibung des bevorzugten Ausführungsbeispiels

Die vorliegende Erfindung faßt die Herstellung verbesserter, mechanisch ausgerichteter hochqualitativer 30 supraleitender Materialien ins Auge, und zwar für die Verwendung in zahlreichen Herstellungsverfahren, basierend auf den kürzlich entdeckten Klassen von supraleitenden Keramikoxidmaterialien: RBA2Cu3O7-x, wobei x ungefähr 0,1 ist, R ist Y oder irgend eine der 35 Lanthaniden mit Ausnahme von Ce, Pr, Pm (welches radioaktiv und instabil ist) und Tb, und Tc ist ungefähr 95° K; (La2-xSrx) CuO4 und (La2-xBax) CuOx mit x zwischen 0,05 und 0,25 und Tc beträgt ungefähr 40 K; und Verbindungen im Bi-Ca-Sr-Cu-O-System und Tl-Kup- 40 feroxid-Verbindungen mit T_c von 120°K oder weniger. Diese Materialien besitzen anisotrope Kristallstrukturen mit orthorhombischen oder tetragonaler Symmetrie. Infolge ihrer anisotropischen Kristallstrukturen sind die physikalischen Eigenschaften der Materialien 45

Die Whisker oder Faserform dieser Materialien sind verfügbar, wobei die Basal-Ebenen Hoch-Je-Richtung dieser Materialien parallel orientiert ist zur Achse der Faser. Die Fasern können eine Länge von 1 mm oder 50 mehr besitzen und 20 µm im Durchmesser sein, und zwar vorzugsweise 100 µm bis 300 µm im Durchmesser. Die Durchmesser können im Bereich bis ungefähr 1-2 mm liegen. Die Orientierung dieser Materialien wird erfindungsgemäß ausgenutzt, um faserartige oder 55 monolithische Produkte mit hoher Stromleitung zu erzeugen. Das erfindungsgemäße Verfahren erreicht die Herstellung von Materialien mit diesen Qualitäten durch die mechanische Ausrichtung der Fasern und durch die Schockkompaktierung oder in anderer Weise 60 erfolgende weitere Verarbeitung derselben, um sicherzustellen, daß deren fortgesetzte richtige Ausrichtung in einem fertigen hergestellten Produkt beibehalten bleibt.

Der innige Kontakt zwischen der Metallmatrix und dem supraleitenden Keramikmaterial, vorgesehen 65 durch den Kompaktierungsprozeß gestattet zahlreiche Vorteile für den sich ergebenden faserartigen Gegenstand während des elektrischen Stromflusses. In glei-

cher Weise brauchbare Nach-Ausrichtungsverfahren umfassen die Schockbelastung, das isostatische Heißpressen, Kaltpressen und Sintern, Abstreifklingenverfahren unter anderem Nach-Aufrichtungsverfahren.

Orientierte Konstruktionskörper treten auch als orientierte Plättchen auf. Offensichtlich tritt diese physikalische Qualität von Natur aus in bestimmten Chargen supraleitender Teilchen auf, wie beispielsweise denen, die aus glimmerartigen oder glimmerhaltigen Materialien bestehen. Die den Erfindern verfügbare Materialquelle war DuPont, wobei diese Firma Bi₂Sr₂CaCu₂O_x und YBa₂Cu₃O_{7-x}-Materialien lieferte.

Die im erfindungsgemäßen Verfahren verwendeten Plättchen waren im allgemeinen hinsichtlich ihrer Dicke regulär, was für die Zwecke der vorliegenden Anmeldung als die kleinste Dimension des Teilchens angesehen wird. In den anderen Dimensionen tendierten die Teilchen in ihrer Form irregulär zu sein. Bezugnahmen auf die Breiten der Teilchen in der vorliegenden Anmeldung beziehen sich daher auf die Teilchendimension, die durch einen Sieb mit Perforationen eines gegebenen Durchmessers gehen, aber nicht durch einen Sieb mit Perforationen eines kleineren Durchmessers. Bezugnahmen auf die Teilchenlängen in der vorliegenden Anmeldung beziehen sich auf die größte Dimension des Teilchens.

Wenn die Größe der Länge und die Breite der Teilchen weniger divergent wird, so gibt es weniger Toleranz hinsichtlich der niedrigsten durchschnittlichen Breitendimension der Teilchen, die für die vorliegende Erfindung brauchbar sind. Es würden jedoch spezielle Vorteile für ähnlich geformte Teilchen der gleichen allgemeinen Dimension beim erfindungsgemäßen Verfahren vorliegen, wie beispielsweise bei der nahezu kreisförmigen oder nahezu quadratischen Form. Mit Teilchen solcher Konfigurationen wäre es beispielsweise viel weniger wahrscheinlich, daß eine lange Granüle (Granulat) über einem leeren Raum durch zwei kleinere Granülen aufgehängt wäre. Teilchen mit solchen Dimensionen wären daher für die Erzeugung eines dichteren, leerstellenfreieren Produktes brauchbar.

Typischerweise sollten die anderen Dimensionen der Teilchen ungefähr 50% größer sein als die Dicke. Einige allgemein brauchbare Dimensionen sind 10 µm Dicke mit einem 30 – 100 μm Bereich für die Länge und Breite; 20 µm Dicke mit einem 60 - 200 µm Bereich für die Länge und Breite; und 60 µm Dicke mit einem 180 ~ 600 µm Bereich für die Länge und Breite. Eine 10 µm Dicke wäre die brauchbarste in einem gleichförmiger geformten Teilchen mit Längen- und Breitendimensionen im Bereich von 60 μ m \times 50 μ m.

Es wird angenommen, daß die mechanische Ausrichtung der supraleitenden Teilchen, erreicht in den Beispielen 1 - 5 der vorliegenden Beschreibung, erfolgreich waren wegen der Dimensionen der Breite und Länge der Teilchen, die größer waren als ihre Dicke. Ferner war die Hoch-Je-Basal-Ebenenrichtung in der Ebene der plättchenförmigen Teilchen. Dies ist eine bevorzugte Pulverform zur Verwendung bei der Erfindung, weil die Ausrichtung der Längen jedes Teilchens nicht erforderlich ist, um einen Hoch-Je-elektrischen Stromfluß zu erreichen.

Nadelförmige Teilchen haben oftmals eine Dicke und Breite, die vergleichbar miteinander sind und wesentlich kleiner als die Länge des Teilchens. Ferner ist die Hoch-Jc-Richtung im allgemeinen längs der Achse der Nadeln. Um in einem solchen Fall optimale Ergebnisse durch das erfindungsgemäße Verfahren zu erreichen, müssen die

Teilchen ausgerichtet sein mit ihren Längen, vorzugsweise orientiert in der gleichen Richtung. Eine solche Orientierung kann dadurch erreicht werden, daß man die Teilchen durch eine Düse oder einen Trichter leitet, dessen Öffnung in seiner Größe zwischen den Breiten und Längen der nadelförmigen Teilchen liegt.

Die anisotropen physikalischen Eigenschaften des supraleitenden Ausgangsmaterials umfassen den elektrischen Widerstandswert und die magnetische Suszeptibilität im Normalzustand, und das J_c des supraleitenden 10 Zustands. Für technische Anwendungsfälle, bei denen große Werte von J_c und/oder H_{c2} erforderlich sind, ist es zweckmäßig die Kristallite dieser Verbindungen in der Richtung zu orientieren, in der J_c und H_{c2} maximiert

Erfindungsgemäß werden die Ausgangsmaterialien zuerst in lange dünne Fasern von nahezu gleichförmiger Kristallstruktur und Orientierung geformt oder in Plättchen mit der Basal-Ebene der Kristallstruktur entlang der Länge der Faaser und in der Ebene des Plättchens. 20 Diese Teilchen werden sodann mechanisch in einer gewünschten Richtung ausgerichtet, um ein traditionell texturiertes Aggregat zu bilden. Die Orientierung kann 30° oder weniger gegenüber der Mitte sein, vorzugsweise 15° oder weniger gegenüber der Mitte, und am 25 bevorzugtesten 5° oder weniger von der Mitte.

Das Aggregat ausgerichteter Teilchen kann sodann kompaktiert werden, um einen monolithischen kompaktierten superaleitenden Körper zu bilden. Der Stoßoder Schockkompaktierungsdruck kann von 10 bis 30 200 kbar reichen und beträgt vorzugsweise 50 bis 150 kbar und am bevorzugtesten 60 bis 110 kbar. Die Kompaktierungszeit kann bis zu 10 Mikrosekunden betragen, wobei 0,5 bis 5 Mikrosekunden bevorzugt werden.

Das Aggregat kann auch vorverarbeitet werden in einem Monolithen durch Schockbelastung, isostatisches Heißpressen, Kaltpressen und Sintern, und durch Abstreichplattenverfahren unter anderen Nach-Ausrichtungs-Fabrikationsverfahren.

Die Oxid supraleitenden Teilchen können rein oder gemischt mit Metallpulver sein, um einen filamentären oder faserartigen Supraleiter zu bilden. Diese Metalle umfassen, sind aber nicht begrenzt auf Ag, Au, Al und Cu. Die Größe des Metallpulvers, welches verwendet werden kann gemäß der Erfindung reicht von 1 µm bis 40 µm, vorzugsweise von 2 µm bis 10 µm. In einigen Fällen sind Mischungen der Teilchengrößen vorteilhaft, wie beispielsweise dann, wenn Leerstellen zwischen eine größere Größe besitzenden supraleitenden Teilchen aufgefüllt werden durch den Einschluß von Metallpulver eines feineren Grades. Bei kugelförmigeren Pulvern hat eine sorgfältige Auswahl der Prozenzsätze der Teilchengrößen optimale Ergebnisse zur Folge.

Zu den Kompaktierungsverfahren gehören Gasgewehre, Explosivstoffe, Maschinengewehre oder elektromagnetische Abschußrampen und magnetische Kompressionssysteme, wobei aber eine Einschränkung darauf nicht vorgenommen wird. Die Aufbauten und die Maschinerie für explosive Verfahren sind bekannt und es wird beispielsweise auf die folgenden Literaturstellen hingewiesen: Shock Waves for Industrial Application (L.E. Murr, ed, Noyes Pub., Park Ridge NJ, 1988) und Nellis et al., High Temperature Superconducting Compounds (Whang et al, Eds. TMS Pbs., Warrendale, PA, 65 Seite 249, 1989). Viele ähnliche Konfigurationen wären auch geeignet. Bei der weiteren Entwicklung dieses Systems werden zahlreiche andere Verfahren vorgesehen

werden können.

Die Erfindung ist ebenfalls brauchbar zur Erzeugung von permanentmagnetischen Materialien aus orientierten magnetischen Plättchen und Kristallmaterialien mit anisotropen magnetischen Eigenschaften. Beispiele solcher Materialien sind Fe/B/X und Fe/B/X/Y, wobei X und/oder Y ausgewählt sind aus der aus folgendem bestehenden Gruppe: Nd. Pr. Sm. Eu, Co und Ni. Diese Materialien sind in der gewünschten Richtung ausgerichtet, und zwar durch irgendwelche der oben genannten Mittel. Sie werden sodann dynamisch kompaktiert, um einen koherenten Materialkörper zu erzeugen. Die dynamische Kompaktierung führt erwünschte Kristalldefekte in diese Materialien ein, wie dies auch in den 15 supraleitenden Materialien geschieht. Diese Defekte legen die Felder in den Kristalliten und Kristallen fest und erzeugen dadurch Magnetmaterialien mit erhöhten magnetischen Eigenschaften.

Beispiel 1

Schockkompaktierung von supraleitenden Fasern in Silberpulver

Supraleitende Bi₂Sr₂CaCu₂O₈-Fasern wurden den Erfindern durch Dr. R. Feigelson von dem Stanford Universität Centers für Materials Research übergeben. Diese Fasern bestanden aus wenigen langen Körnern aus dem supraleitenden Material mit der Basal-Ebene-hochkritischen Stromdichtenrichtung der Kristallstruktur, orientiert entlang der Faserlänge. Die Fasern wurden durch das Verfahren hergestellt, wie es in dem oben genannten Science-Artikel angegeben ist (Fiegelson, id). Diese Fasern hatten 260 μm Durchmeser und 7 mm Länge. Sie wurden in einem Trockner gehaltem, bevor ihr Zusammenbau in die unten beschriebene Testkapsel erfolgte.

Fig. 1 zeigt einen zylindrischen Kupfertest-Probenhalter 1, und zwar bearbeitet mit einem Durchmesser von 25 mm und einer Höhe von 6 mm. Ein zylindrisches Loch 3 wurde sodann in den Testproben-Halter 1 gebohrt, wobei dieses Loch mit dem Kreis der Testproben-Halterkappe 5 konzentrisch war. Das zylindrische Loch 3 erstreckte sich auf 2,3 mm zur Testproben-Halterbasis 4 hin.

Silberpulver (Aesar Inc.) mit Teilchen von 0,8-1,3 µm im Durchmesser wurde mit einer Spatula in das zylindrische Loch 3 auf einem Niveau von 0,5 mm, wie in Fig. 1e gezeigt, eingegeben. Silberpulver mit 10 µm Teilchen (zu dieser Zeit nicht verfügbar) wäre bevorzugt worden, um die Wärmeerzeugung an der Grenzschicht der Teilchen während der Kompaktierung zu erhöhen, was einen niedrigeren Druck zur Kompaktierung des Silbers und die Minimierung der Wahrscheinlichkeit des Bruchs der Faser gestattet hätte.

Die Silberpulverschicht 13 wurde sodann unter Verwendung eines elektromagnetischen Stampfgeräts mit einem Stahlkolben 7 (Fig. 1b) gestampft und an den Durchmesser des Hohlraums angepaßt, wobei dann die Testproben-Haltekappe 5 während des Stopfens ersetzt wurde. Die Silberpulverschicht 13 (Fig. 1e) wurde bis auf 50% der Silberkristalldichte gestopft. Das Stopfen oder Kompaktieren diente zur Erhöhung der Pulverdichte und minimierte somit die Materialbewegung und Wärmeerzeugung während der Schockkompaktierung.

Auf der Oberfläche der gestopften Silberpulverschicht 13 wurden drei Fasern 11 parallel zueinander gelegt, und zwar mit einem ungefähr 1 mm Abstand zwischen diesem, wie dies in Fig. 1e dargestellt ist. Zusätzliches Silberpulver wurde aufgebracht und nach unten gestopft, wie oben beschrieben. Hinreichend zusätzliches Silberpulver 15 wurde hinzugegeben, um das gesamte Silberpulverniveau auf eine Dicke von 1,2 mm zu bringen. Eine Draufsicht und eine Seitenansicht dieser Anordnung ist in Fig. 1d dargestellt. Eine dreidimensionale Ansicht zeigt die Fig. 1c. Nach der Kompaktierung wurde die hergestellte Schockkapsel in einem Trockner aufbewahrt.

Eine derart vor der Schockkompaktierung belastete Kapsel wurde visuell inspeziert. Die kompaktierte oder verdichtete Silberpulverschicht 13 über den Fasern 11 wurde sorgfältig weggeschabt, um die Fasern 11 zu betrachten. Es wurde festgestellt, daß kein Reißen der Fasern 11 auftrat, und zwar trotz des Verdichtens entgegen der flachen Stahlkolbenoberfläche der Silberpulverschicht 13.

Zwei der in der oben genannten Weise zusammengebauten Kapseln wurden unter Verwendung des in 20 Fig. 1f gezeigten Plastikprojektils 17 schockkompaktiert. Eine wurde mit 30 kbar schockbehandelt und die andere mit 58 kbar in der Stahlfassung 19 der Fig. 1f, und zwar für ungefähr 3 Mikrosekunden. Die für dieses Verfahren verwendete Maschine war eine zweistufige 25 Leichtgaskanone, die in der Technik wohl bekannt ist (A.H. Jones et al., J. Appl. Phys, Band 37, Seiten 3493-3499, 1966).

Nach-Schockanalysen dieser Proben zeigten engen mechanischen Kontakt der kompaktierten zusätzlichen 30 Silberpulverschicht 15 mit den supraleitenden Fasern 11. Dies wurde teilweise beobachtet durch den Eindruck der Formen der Fasern auf die Textur der Außenoberfläche des Silbers im Gehäusematerial. Die Fasern 11 verblieben im wesentlichen dort, wo wie ursprünglich 35 waren

Die obere Zugabe der Silberpulverschicht 15 wurde jedoch etwas gegenüber der Bodensilberpulverschicht 13 getrennt und wurde leicht abgeschält, was die drei Fasern 11 freilegte, die an verschiedenen Stellen gebro- 40 chen waren.

Die Trennung der zusätzlichen Silberpulverschicht 15 von der Silberpulverschicht 13 und den Fasern 11 hat mehrere Vorteile. Beispielsweise wird die Vor-Produktionstestung und Leitungsdrahtaufbringung erleichtert. 45 Der Punkt der vorliegenden Arbeit war jedoch der des Vorsehens eines einstückigen monolithischen filamentären oder faserartigen Produkts. Daher wurde bei dem nächsten Versuch der erste Verdichtungsschritt eliminiert.

Beispiel 2

Modifizierte Schockkompaktierung von supraleitenden Fasern

Die Probenherstellung und Materialien waren die gleichen wie beim Beispiel 1 mit den folgenden Ausnahmen: Es erfolgte keine Vorkompaktierung oder Vorverdichtung der Silberpulverschicht 13, vielmehr wurde 60 diese Schicht manuell horizontal geschüttelt, um das Silberpulver einfach auf Niveau zu bringen. 203 mg von 5-8 µm Durchmesser Silberpulver wurden in diesem Schritt aufgebracht. Zwei supraleitende Fasern wurden geordnet. Weitere 209 mg Silberpulver (5-8 μm) wurden auf der Oberseite der Fasern angeordnet. Sodann wurde die Anordnung mit einem Stahlkolben 7 (Fig. 1b)

auf 62% der Silberkristalldichte wie beim Beispiel 1

Die visuelle Inspektion der Vor-Schockkapsel zeigte nicht, daß die Fasern in dem Endverdichtungsverfahren gerissen waren. Das heißt, der Abdruck der Fasern auf der Textur der Oberfläche der zusätzlichen Silberpulverschicht 15 zeigte keine verstellbaren Risse in den Fasern.

Eine wie oben beschrieben hergestellte Testkapsel wurde bei 29 kbar ungefähr 3 Mikrosekunden lang schockkompoaktiert. Obwohl das Ergebnis im allgemeinen positiv war, wurde das teilweise Abblättern der zusätzlichen Silberpulverschicht 15 von einer der Fasern beobachtet. Das Silberpulver wurde schockkompaktkiert auf 96% der Silberkristalldichte. Die erste freigelegte Faser zeigte jedoch Brüche an mehreren Stellen. Die zweite Faser, eingeschlossen in Silber, wurde in ein SQUID-Magnetometer eingesetzt. Die magnetischen Suszeptibilitäsdaten zeigten einen supraleitenden Übergang bei T_c = 90°K, den gleichen wie für nicht-geschockte Fasern. Die Faserprobe zeigte somit Supraleitung in der Masse nach der Stoßkompaktierung.

Ein zweites Paar von supraleitenden Fasern wurde scheidung überzogen und in 5-8 µm Silberpulver bei 30 kbar in der gleichen Weise sieß- oder schockkompaktiert, wie das eben beschriebene verarbeitete Paar von Fasern. Es wurde ein schlechter elektrischer Kontakt zwischen dem Silber und der Faser erreicht. Um den elektrischen Transport in den Fasern in der Silberschicht zu testen oder eine Oberseite einer der Fasern wegpoliert, um die Faser freizulegen. Vier elektrische Leiter an der Faser angebracht, um Strom und Spannungsleiter vorzusehen und der Faserwiderstand wurde als eine Funktion der Temperatur gemessen. Ähnliche Messungen wurden an der nicht-schockbehandelten Faser zu Vergleichszwecken ausgeführt. Die Widerstandsdaten für beide sind in Fig. 2 gezeigt. Das schockkompektierte Muster zeigte einen supraleitenden Übergang bei 86°K, was auch für die nicht-geschockte Faser galt. Der Übergang war jedoch nicht vollständig und ein Teil der Probe wurde in eine halbleitende Phase nach dem Schockverarbeitungsschritt transformiert.

Beispiel 3

Schockkompaktierung von supraleitenden Plättchenteilchen + Ag-Pulver

Bei diesem Ausführungsbeispiel wurden Bi2Sr2Ca-Cu₂O₈-Pulver mit plättchenförmigen Teilchen gewählt. Diese Pulver hatten ungefähr 10 µm in Dicke und passierten Standardsiebe für 20-30 µm Teilchengröße. Dieses Pulver wurde mit 30 Vol.% Silber gemischt. Die 55 Pulvermischung wurde in zwei Cu-Kapseln der in den Beispielen 1 und 2 gezeigten Art eingehämmert. Der Zweck des Verfahrens des Hämmerns oder Einklopfens besteht darin, eine hohe Pulverdichte zu erreichen und die Plättchen abzusetzen, wobei ihre Ebenen vorzugsweise in der Ebene des Probenhohlraums orientiert sind.

Die Mischung wurde auf eine Dichte von 4,34 g/cm³ in Probe A und 4,38 g/cm³ in Probe B eingeklopft oder verdichtet. Die Materialien wurden in zwei Schichten in einem Probenhohlraum in den Cu-Kapseln eingeklopft, sodann auf dem Silber mit ungefähr 5 mm Abstand an- 65 und zwar waren diese Schichten 0,50 mm dick und hatten 10 mm Durchmesser. Die Basal-Ebene-Hochstromdichten-Richtung der Kristallstruktur lag in der Ebene der Plättchen. Durch die Schockkompaktierung mit 58 kbar und 87 kbar wurde das Pulver in einen Konstruktionskörper kompaktiert mit einer kristallographisch hochorientierten oder geordneten Textur.

Röntgenstrahlen-Beugungsanalysen dieser Konstruktionskörper zeigten starke Gitterreflexionen des Typs (002n) (Null, Null, gerade Zahl), und zwar indiziert zur Bi₂Sr₂CaCu₂O₈-Struktur plus Silber. Diese Reflexion, die dadurch beobachtet wurde, daß man den Röntgenstrahl senkrecht auf die Stirnfläche der schockkomc-Achse der Teilchen sehr dicht zur Senkrechten der Scheibenoberfläche lag.

Magnetische Daten zeigten eine große Anisotropie bei den Siebe (screening) und Meissner-Signalen, ablel zur Scheibenoberfläche angelegt wurde. Für die 58 kbar Verarbeitung war das Null-Feld-gekühlte Screeningsignal in der senkrechten Konfiguration -1.0×10^{-4} emu/g der supraleitenden Probe und in der Parallelrichtung war es -0,15 x 10⁻⁴ emu/g der supra- 20 leitenden Probe bei 10°K.

Sowohl die Röntgenstrahl- als auch die Magnetdaten zeigten, daß eine substantielle bevorzugte Orientierung der Basal-Ebene in der Ebene der Scheibe erreicht wurde. Die hergestellten supraleitenden Konstruktionskör- 25 per waren kristallographisch orientierte Kompaktkörper aus dem Hoch-Tc-Material Bi2Sr2Ca1Cu2Ox, gemischt mit Silber.

Elektrische Widerstandswertmessungen an diesen Proben zeigten nur einen monoton abnehmenden Wi- 30 derstandswert mit abnehmender Temperatur, selbest bei Temperaturen unterhalb des Tc der Kompaktkörper, und zwar magnetisch gemessen. Dies zeigte, daß der Widerstandswert des 30 Vol.% Silbers wesentlich kleiner war als der Kontaktwiderstand zwischen dem 35 supraleitendem Material und der Silbermatrix. Infolgedessen wurden die Experimente des Beispiels 4 bei weggelassenem Silber ausgeführt.

Beispiel 4

Schockkompaktierung orientierter supraleitender Plättchenpulver

Eine "Shot"-Serie von fünf Schockkompaktierexperi- 45 menten (BT01 - BT05) wurde ausgeführt unter Verwendung von Bi2Sr2CaCu2O8 (Bi2212) plattchenförmigen Teilchen von ungefähr 10 µm Dicke und gesiebt, um ein Pulver zu erhalten, mit einer 30-37 μm Teilchengröße zur Verwendung bei der weiteren Verarbeitung. 50 Schockdrücke wurden erzeugt durch 6 g, 20-mm-Durchmesser. Polyethylen-Plastik-Projektile, beschleunigt mit einer 6,5 m langen zweistufigen Lichtgaskanone oder einem Leichtgasgewehr. Aufschlaggeschwindigkeiten der Polycarbonat-Impakt- oder Schlagoberflächen waren 0,85, 1,2, 1,5, 1,9 und 2,4 km/s, was nominale Schlag- oder Impaktschockdrücke von 30, 50, 70, 100 und 140 kbar erzeugte. Die reinen Bi2212-Pulverproben wurden in einer Kupferkapsel wie in Fig. 1 angeordnet und darin verfestigt, gehämmert. Die Pulverproben hatten einen Durchmesser von 10 mm und waren anfangs ungefähr 0,5 mm dick. Die Anfangsdichten betrugen 4,37, 4,39, 4,27, 4,40 und 4,19 g/cm³. Die Kupferkapseln wurden in den Stahlwiedergewinnungs-Behältern der Fig. 1(f) angeordnet.

Die Daten der Röntgenstrahlbeugungs-Abtastungen normal zu den Stirnflächen der schockkompaktierten Scheiben sind in den Fig. 3a – d gezeigt, und zwar für die

Proben, die mit 30, bzw. 70 bzw. 100 bzw. 140 kbar verarbeitet wurden. Die starken Null-Null-gerade Zahl-Reflexionen demonstrierten eine starke Orientierung der kompaktierten Teilchen mit der c-Achse der Kristallstruktur, bevorzugt ausgerichtet senkrecht zur Stirnfläche der Scheibe und somit mit der Grund- oder Basal-Ebenen-Hoch-Jc-Richtung in der Ebene der Scheibe.

Fig. 4 veranschaulicht den Ausrichtprozeß. Die Daten der Röntgenstrahlenbeugungs-Abtastung des zufällig paktierten Scheibenoberflächen leitete, zeigte, daß die 10 auf eine Glasplatte gesprühten Pulvers ist in Fig. 4a gezeigt. Die plättchenförmigen Teilchen mit einer kontrollierten oder gesteuerten Teilchengröße von ungefähr 10 µm Dicke und 30-37 µm Breite (durch Sieben) wurden geklopst oder gehämmert. Das Hämmern erhängig davon, ob das Magnetfeld senkrecht oder paral- 15 zeugte die bevorzugte kristallographische Orientierung in der Kupferkapsel, wie dies in Fig. 4b für das "wie gehämmerte" Pulver gezeigt ist. Fig. 4c zeigt, daß die Schockkompaktierung die bevorzugte Ausrichtung des supraleitenden Ausgangsmaterials in dem monolithischen Kompaktkörper aufrechterhielt. Das Verfahren war ähnlich im Schütteln eines Ensembles von Münzen mit ähnlichen Durchmessern, wobei deren Durchmesser vorzugsweise parallel zur Oberfläche, auf der sie angeordnet werden, ausgerichtet sind. Fig. 4d zeigt das schockkompaktierte Muster, angelassen bei 800°C in O2 für 12 Stunden, wobei die bevorzugte Orientierung beibehalten wurde.

Das magnetische Moment einer Probe oder eines Musters von jeder schockkompaktierten Scheibe wurde mit einem 30 Oe Magnetfeld gemessen, und zwar ausgerichtet zur ersten senkrecht und sodann parallel zur Stirnfläche des Kompaktkörpers. Fig. 5 zeigt für die mit 100 kbar schockkompaktierte Probe die Ergebnisse, welche die große Orientierungsabhängigkeit in dem Null-Feld-gekühlten (screening) und Feld-gekühlten (Meissner) Daten zeigen. Das Verhältnis der Screening-Momente senkrecht zu denen in der Parallelkonfiguration sind in Fig. 6 dargestellt. Dieses Anisotropie-Verhältnis beträgt 6-7 für im wesentlichen sämtliche 40 Schockdrücke der Kompaktierung und für sämtliche Temperaturen der magnetischen Messungen. Dieses Ergebnis zeigte, daß die bevorzugte Ausrichtung ein Masseneffekt durch jeden Kompaktkörper hindurch darstellt, und daß geringer Teilchenbruch während der Schockkompaktierungen auftrat. Optische Mikrographien der polierten Proben jedes Kompaktkörpers zeigten eine stark texturierte Struktur mit keiner sichtbaren Rißbildung. Es kann jedoch etwas Rißbildung der Proben mit einem Maßstab auftreten, der zu klein ist, um bei Verwendung dieses Verfahrens beobachtet zu werden.

Fig. 7 zeigt die Null-Feld-gekühlte Screening (Messung) der magnetischen Suszeptibilitäten der Proben der Fig. 3 in einem senkrechten Feld von 30 Oe, aufgetragen abhängig von der Temperatur. Die supraleitende Übergangstemperatur T_c betrug ungefähr 90°K für sämtliche Proben und auch für das nicht-schockbehandelte Pulver (nicht gezeigt).

Fig. 8 zeigt die normalisierten elektrischen Wider-60 standswerte R(T)/R(T = 295 K), aufgetragen abhängig von der Temperatur T für die schockkompaktierte Probe bei 100 kbar und sodann angelassen bei 800°C in O2 für 12 Stunden. Der supraleitende Übergang (Transition) ist bei einer Einsetztemperatur von ungefähr 90° K 65 gezeigt. Diese Probe mit einem metallischen Widerstandswert, abhängig von der Temperatur wurde vorzugsweise kristallographisch ausgerichtet, wie dies in Fig. 4d gezeigt ist.

Beispiel 5

Sinterung orientierter supraleitender Plättchenpulver

Ein Pellet aus plättchenförmigen Bi₂Sr₂Ca-5 Cu₂O₈-Teilchen von ungefähr 10 μm Dicke und gesiebt auf 37 – 45 μm Teilchengröße wurde gehämmert, kaltgepreßt und sodann gesintert. Die Temperatur wurde über 1 Stunde hinweg auf 870°C in Luft erhöht, 2 Stunden lang in Luft aufrechterhalten, während 2 Stunden auf 600°C in Luft vermindert, auf 600°C in Ar 12 Stunden lang gehalten und sodann ofengekühlt in Ar.

Röntgenstrahl-Beugungsabtastungen für das sich ergebende Pellet "wie gepreßt" und "wie gesintert" sind in Fig. 9a bzw. 9b dargestellt. Die starken Null-Null-geratel Zahl-Reflexionen zeigen eine substantielle preferentielle kristallographische Ausrichtung mit der c-Achse entlang der Achse des schreibenförmigen gesinterten Pellets an.

Der elektrische Widerstandswert des gesinterten Pellets ist in Fig. 10 gezeigt. Der supraleitende Übergang war bei T_c = 90°C und die Breite betrug ungefähr 15°K wie für die schockkompaktierte und angelassene Probe in Fig. 8

Die magnetischen Daten, Screening und Meissner-Signale für ein 20 Oe-Magnetfeld, angelegt parallel und senkrecht zur Achse des scheibenförmigen Pellets sind in Fig. 11 gezeigt. Das Verhältnis der Screening-Magnetmomente in paralleler und senkrechter Orientierung beträgt ungefähr 6, was ungefähr so groß ist wie das bei den Schockkompaktierkörpern gemäß Fig. 6. Es sei bemerkt, daß die Magnetfeld-Orientierung parallel zur zylindrischen Achse des gesinterten Pellets äquivalent war zur Feldorientierung senkrecht zu Stirnfläche der schockkompaktierten Scheiben.

Ein zweites Pellet wurde hergestellt durch Klopfen von plättchenförmigen Teilchen, durch Kaltpressen und durch Sintern bei 800°C in Sauerstoff 12 Stunden lang, gefolgt von einer langsamen Abkühlung auf 600°C und sodann eine schnelle Abkühlung in He auf Raumtemperatur. Das Röntgenstrahl-Beugungsmuster zeigte, daß die kristallographische Orientierung aufrechterhalten wurde und die elektrischen Widerstandsdaten zeigten ein metallisches Verhälten oberhalb T_c, wie in Fig. 8 gezeigt. Der Widerstandswert dieser gesinterten Probe ging auf Null bei einer ungefähr 5°K höheren Temperatur als die geschockte und angelassene Probe der Fig. 8:

Zusammenfassend sieht die Erfindung folgendes vor: Ein Verfahren zur mechanischen Ausrichtung orientierter supraleitender oder permanentmagnetischer Materialien für die weitere Verarbxeitung in Konstruktionkörpern. Diese Vorbehandlung optimiert die schließlich erreichte kristallographische Orientierung und auf diese Weise die Eigenschaften dieser Konstruktionskörper. Materialien, wie supraleitende Fasern, Nadeln und 55 Plättchen werden verwendet.

Patentansprüche

- Verfahren zur Herstellung orientierter Kompaktkörper aus supraleitendem und/oder permanentmagnetischem Material, wobei folgendes vorgesehen ist:
 - a) Vorsehen einer Basisschicht aus Tragmaterial.
 - b) mechanische Orientierung, ausgerichteter supraleitender oder permanentmagnetischer Teilchen in die gewünschte Orientierung auf

der Basisschicht,

- c) wahlweise Abdeckung der Teilchen mit einem Tragmaterial,
- d) Verarbeitung des geschichteten Materials und
- e) Wiedergewennung des sich ergebenden hergestellten Materials.
- 2. Verfahren nach Anspruch 1, wobei die ausgerichteten Teilchen in einem begrenzten Größenbereich vorausgewählt sind.
- 3. Verfahren nach Anspruch 1, wobei die ausgerichteten Teilchen Granülen (Granalien, Körner) sind mit einer plättchenartigen oder nadelartigen Morphologie im allgemeinen orientiert mit der kristallographischen Basisflächen (Basal-Ebene)-Hoch-Jc-Richtung in der gewünschten Richtung des elektrischen Stromflusses.
- 4. Verfahren nach Anspruch 3, wobei die Granalien ungefähr 10 μm dick sind mit einer Länge und Breite, die im Bereich zwischen ungefähr 30 μm und 100 μm liegen können.
- 5. Verfahren nach Anspruch 4, wobei die Granalien ungefähr 30 40 μm breit sind, und zwar mit einer Länge, die im Bereich zwischen ungefähr 30 μm und 100 μm liegen kann.
- 6. Verfahren nach Anspruch 4, wobei die Granalien eine Länge und eine Breite besitzen, die im Bereich zwischen ungefähr 60 µm und 50 µm liegen kann.
- Verfahren nach Anspruch 3, wobei die Granalien ungefähr 20 μm dick sind mit einer Länge und Breite im Bereich zwischen ungefähr 60 μm und 200 μm.
- Verfahren nach Anspruch 3, wobei die Granalien ungefähr 60 μm dick sind mit einer Länge und Breite, die im Bereich liegen kann zwischen ungefähr 180 μm und 600 μm.
- 9. Verfahren nach Anspruch 3, wobei die Granalien ungefähr 1 µm dick sind und ungefähr 10 µm bis 80 µm Durchmesser aufweisen.
- 10. Verfahren nach Anspruch 1, wobei die ausgerichteten Teilchen in der Form orientierter Fasern vorliegen.
- 11. Verfahren nach Anspruch 10, wobei die orientierten Fasern derart orientiert sind, daß die Basal-Ebenen-Kristallographie-Hoch-Je-Richtung parallel oder nahe parallel der Achse der Faser ist.
- 12. Verfahren nach Anspruch 10, wobei die orientierten Fasern eine Länge von ungefähr 1 mm oder
 mehr besitzen und einen Durchmesser von 20 μm
 bis 300 μm.
- 13. Verfahren nach Anspruch 12, wobei die orientierten Fasern einen Durchmesser von ungefähr 50 µm bis 100 µm aufweisen.
- 14. Verfahren nach Ansprsuch 1, wobei die Teilchen aus Keramikoxiden der Gruppe XBa₂Cu₃O_{7-x} bestehen, wobei X sein kann Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb und Lu oder andere Seltenerdelemente und O kann partiell ersetzt sein durch F, Cl, Br oder andere Halogenide entweder einzeln oder in Kombination, wobei x eine Zahl ist, die kleiner als 1 ist.
- 15. Verfahren nach Anspruch 1, wobei die Teilchen bestehend aus Bi₂Sr₂Ca₁Cu₂O_x, Tl₂CaBa₂Cu₃O_x und anderer in Beziehung stehender Tl- und Bi-Kupferoxide.
- 16. Verfahren nach Anspruch 1, wobei die Teilchen aus Nd_{2-x}Ce_xCuO₄ und anderen damit in Beziehung stehender Verbindung bestehen.

17. Verfahren nach Anspruch 1, wobei die supraleitenden Teilchen folgendes aufweisen: Pb/Mo/S, Eu/Mo/S, Sn/Eu/Mo/S, Pb/Eu/Mo/S, La/Eu/Mo/S, Sn/Al/Mo/S, Nb/N, Mo/N, V/Si, Nb/Si, Nb/Si/Ge, NbAl, Nb/Ga, Nb/Ti und Nb/Zr und wobei die permanentmagnetischen Teilchen folgendes aufweisen: Sm/Co, Fe/B/Nd, Fe/B/Pr, Fe/B/Sm, Fe/B/Eu, Fe/B/Co, Fe/B/Ni, Fe/B/Nd/Pr, Fe/B/Nd/Sm, Fe/B/Nd/Eu, Fe/B/Nd/Co und Fe/B/Nd/Ni.

18. Verfahren nach Anspruch 1, wobei die mechanische Orientierung durch die Abscheidung eines
Mittels erreicht wird zur Übertragung oder die An-

lage eines genuteten Subtrats.

19. Verfahren nach Anspruch 1, wobei die Teilchen an dem Tragmaterial angebracht sind unter Veruendung statischer elektrischer Kräfte und/oder einer physikalisch anhaftenden Substanz.

20. Verfahren nach Anspruch 1, wobei die Teilchen Pulverteilchen von plättchenförmiger Gestalt sind, die auf der Oberfläche der Basisschicht abgeschie- 20 den sind und die selbstorientiert sind.

21. Verfahren nach Anspruch 20, wobei die Teilchen nach der Abscheidung hinreichend gehämmert werden, um eine weitere Ausrichtung und eine erhöhte Packungsdichte zu erlangen.

22. Verfahren nach Anspruch 1, wobei die orientierten Teilchen mechanisch ausgerichtet sind, die Hoch-Je-kristallographische Richtung innerhalb einer gewissen Gradtoleranz auf die gewünschte Richtung des Stromflusses, wobei die Gradtoleranz 30 ist.

a) zur Ebene der gewünschten Richtung des Stromflusses im Falle plättchenförmiger Teilchen und/oder

b) zum Linearvektor der gewünschten Richtung des Stromflusses im Falle von Faser oder nadelförmigem Materialien.

23. Verfahren nach Anspruch 22, wobei die orientierten Teilchen mechanisch ausgerichtet sind, um 30° oder weniger gegenüber der Mitte zu sein.

24. Verfahren nach Anspruch 23, wobei die orientierten Teilchen mechanisch auf 15° oder weniger gegenüber der Mitte ausgerichtet sind.

25. Verfahren nach Anspruch 24, wobei die orientierten Teilchen mechanisch ausgerichtet sind auf 45 5° oder weniger von der Mitte.

26: Verfahren nach Anspruch 1, wobei der Schritt d erreicht wird durch Schockkompaktierung mit Druck von ungefähr 10 bis 200 kbar.

27. Verfahren nach Anspruch 26, wobei die Schock- 50 kompaktierung bei Drücken von ungefähr 50 bis 150 kbar erfolgt.

28. Verfahren nach Anspruch 27, wobei die Schockkompaktierung bei Drücken von ungefähr 60 bis 110 kbar erfolgt.

29. Verfahren nach Anspruch 1, wobei der Schritt derreicht wird durch Schockkompaktierung von ungefähr 0,1 bis 10 Mikrosekunden.

30. Verfahren nach Anspruch 1, wobei der Schritt d erreicht wird durch ein zweistufiges Leichtgasgewehr, ein einstufiges Leichtgasgewehr, ein Pulvergewehr, ein Schienengewehr, ein Luftgewehr, Explosivstoffe, magnetisch getriebene Hochgeschwindigkeitskompression oder anderen ähnliche Vorrichtungen und Verfahren.

31. Verfahren nach Anspruch 1, wobei der Schritt d erreicht wird unter Verwendung einer hohen Beanspruchungsratendeformations-Vorrichtung, schnell angelegtem Gasdruck an eine konventionelle entgegengesetzte Amboßpresse oder eine ähnliche Vorrichtung und Verfahren.

32. Verfahren nach Anspruch 1, wobei der Schritt derreicht wird durch Sintern bis zu 1000°C, heißes isostatisches Pressen oder anderen ähnliche Verfahren.

33. Verfahren nach Anspruch 1, wobei das Metallpulver gemischt wird mit den supraleitenden oder permanentmagnetischen Teilchen vor dem Schritt b und/oder, wobei die Basisschicht und/oder das Tragmaterial eine Metallfolie und/oder Pulver ist. 34. Verfahren nach Anspruch 33, wobei die Metallfolie und/oder das Pulver Au, Ag, Al und/oder Cu aufweist

35. Verfahren nach Anspruch 33, wobei das Pulver eine Größe von 1 μm bis 40 μm besitzt.

36. Verfahren nach Anspruch 35, wobei das Pulver eine Größe von 2 μm bis 10 μm besitzt.

37. Verfahren nach Anspruch 33, wobei die Teilchengrößen der Pulver in ausgewählten Prozentsätzen zur Erzeugung eines optimalen Resultats gemischt sind.

38. Supraleitender Gegenstand, hergestellt durch das Verfahren nach Anspruch 1.

 Vorrichtung, die den supraleitenden Gegenstand nach Anspruch 38 enthält.

40. Vorrichtung nach Anspruch 39, wobei die Vorrichtung ein langes Leistungsübertragungskabel ist, eine Hochfeldmagnet-Vorrichtung, Computer und/ oder zugehörige Vorrichtung, eine Beschleunigungsvorrichtung, ein freier Elektronenlaser, eine magnetische Widerstandsvorrichtung, eine Rf-Struktur mit hoher Leistung und hohem Q, ein Strahltransportmagnet, eine hochemittierende Beschleunigungskathodenstruktur, Wriggler-Magnemagnetische Resonanz-Abbildausrüstung, SQUID-Diagnostikvorrichtungen, kleine Oxidmagnete, NbN-Technologie, NbN-Supracomputer, supraleitende Generatoren, magnetische Energiespeicher, Antriebsmittel unter Verwendung einer Gasturbine und Maglev-Transportationsmittel.

41. Verfahren nach Anspruch 1, wobei die Verarbeitung folgendes umfaßt: isostatisches Heißpressen, gepulstes isostatisches Heißpressen, Kalt- und Heißpressen, gefolgt von Sintern, Abstreichklingenverfahren oder andere ähnliche Verfahren.

42. Verfahren nach Anspruch 1, wobei die Verar-

42. Verfahren nach Anspruch 1, wobei die Verarbeitung die Schockvorverarbeitung der Ausgangsmaterialien umfaßt.

Hierzu 10 Seite(n) Zeichnungen

DE 41 02 071 A1 C 04 B 35/50 25. Juli 1991

FIG. 1A

FIG. 1C

FIG. 1B

DE 41 02 071 A C 04 B 35/50 25. Juli 1991

FIG. 1D

FIG. 1E

DE:41 02 071 A C 04 B 35/50 25. Juli 1991

FIG. 1F

Nummer: Int. Cl.5: Offenlegungstag: 25. Juli 1991

GESCHOCKTE FASER.

FIG. 2B

Nummer: Int. Cl.5:

Offenlegungsteg:

Nummer: Int. Cl.5:

Offenlegungstag:

25. Juli 1991

FIG.

4A

FIG.

4B

DE 41 02 071 A C 04 B 35/50 25. Juli 1991

FIG. 8

FIG. 5

Nummer: Int. Cl.5:

Offenlegungstag:

C 04 B 35/50

25. Juli 1991

Magnetische Anisotropic able un der Magnetic Anisotropy vs. Temperature

SCREENING-NULL-FELD-GEKUHLT SCREENING - ZERO - FIELD COOLFD

TEMPERATURE (K)

FIG. 7 108 030/533

I

Nummer: Int. Cl.⁵:

Offenlegungstag:

C 04 B 35/50 . 25. Juli 1991

FIG. 9A

FIG. 9B

Nummer: Int. Cl.5:

Offenlegungstag:

25. Juli 1991

FIG.10

