Lecture 9: Quadratic Optimization KKT Optimality Conditions

Oct 20, 2025

Quick Announcements

- Regular class this Friday
- My office hours this week: Wednesday, 3:15-4:15pm (same Google cal link)
- Agenda for today
 - Duality in Quadratic Optimization
 - A tiny bit of Saddle Theory
 - KKT Optimality Conditions
 - Fenchel duality

Last Time: Convex Duality Framework

$$\begin{aligned} & \text{minimize}_{x \in X} \ f_0(x) \\ & \text{subject to} \ f_i(x) \leq 0, \quad i = 1, \dots, m, \\ & h_j(x) = 0, \quad j = 1, \dots, s \\ & \text{variable} \ x \in \mathbb{R}^n \end{aligned}$$

• With λ_i, ν_j denoting Lagrange multipliers for g_i , h_j , respectively, Lagrangian is:

$$\mathcal{L}(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{j=1}^s \nu_j h_j(x),$$

• With $g(\lambda, \nu) := \inf_{x \in X} \mathcal{L}(x, \lambda, \nu)$, the dual problem becomes:

maximize
$$g(\lambda, \nu)$$
 subject to $\lambda \geq 0$.

• For a **convex optimization problem** $(f_0, f_i \text{ convex}, h_j \text{ affine})$, strong duality holds if the **Slater condition** holds: $\exists x \in \text{rel int}(X)$ such that $f_i(x) < 0$ for i = 1, ..., m

QPs and QCQPs

Quadratic Programs

A Quadratic Program (QP) is an optimization problem of the form:

$$\min \frac{1}{2} x^{\mathsf{T}} Q x + c^{\mathsf{T}} x$$
$$A_1 x = b_1$$
$$A_2 x \le b_2$$

where $Q = Q^{T}$.

QPs and QCQPs

Quadratic Programs

A Quadratic Program (QP) is an optimization problem of the form:

$$\min \frac{1}{2} x^{\mathsf{T}} Q x + c^{\mathsf{T}} x$$
$$A_1 x = b_1$$
$$A_2 x \le b_2$$

where $Q = Q^{T}$.

Quadratically Constrained Quadratic Programs

A Quadratically Constrainted Quadratic Program (QCQP) is a problem:

$$\min \frac{1}{2} x^{\mathsf{T}} Q_0 x + c^{\mathsf{T}} x$$

$$x^{\mathsf{T}} Q_i x + q_i^{\mathsf{T}} x + b_i \le 0, i = 1, \dots, m$$

$$Ax = b$$

where Q_i , i = 0, ..., m are **symmetric** matrices.

Convex if $Q_0 \succeq 0$, $Q_i \succeq 0$. Gurobi can now handle **non-convex** QCQPs!

One Problem to Warm Up

Convex QCQP

minimize
$$\frac{1}{2}x^TQ_0x + q_0^Tx + r_0$$

subject to $\frac{1}{2}x^TQ_ix + q_i^Tx + r_i \le 0$, $i = 1, \dots, m$,

where $Q_0 \succ 0$ and $Q_i \succeq 0$

• What is the Lagrangian? What is the dual? Does Slater Condition hold?

Quadratic Programs - Preliminaries

Unconstrained Quadratic Program

For $Q = Q^{T}$, consider the following unconstrained problem:

$$\min f(x) := \frac{1}{2}x^{\mathsf{T}}Qx + q^{\mathsf{T}}x$$

What is the optimal value p*?

Quadratic Programs - Preliminaries

Unconstrained Quadratic Program

For $Q = Q^T$, consider the following unconstrained problem:

$$\min f(x) := \frac{1}{2}x^{\mathsf{T}}Qx + q^{\mathsf{T}}x$$

• What is the optimal value p^* ?

$$\nabla_x f(x) = 0 \Leftrightarrow Qx = -q$$

$$p^{\star} = egin{cases} -rac{1}{2}q^{\mathsf{T}}Q^{\dagger}q & ext{if } Q\succeq 0 ext{ and } q\in \mathcal{R}(Q) \ -\infty & ext{otherwise}. \end{cases}$$

• For Q with singular value decomposition $Q = U \Sigma V^{\mathsf{T}}, \ Q^{\dagger} := V \Sigma^{-1} U^{\mathsf{T}}$

Other Important Examples in the Notes

• A **non-convex** QCQP: for $Q = Q^{T}$ and $Q \succeq 0$, consider:

$$\begin{aligned} & \text{minimize } x^\mathsf{T} Q x + 2 c^\mathsf{T} x \\ & \text{subject to } x^\mathsf{T} x \leq 1 \end{aligned}$$

- Regularized Support Vector Machines (SVM)
- Entropy Maximization

Saddle Point Theory

• Optional reading in the notes, but very insightful

Saddle Point Theory

Optional reading in the notes, but very insightful

Alternative Formulation of Primal and Dual Problems

We can express the optimal values of the primal and dual as:

$$p^* = \inf_{x \in X} \sup_{\lambda \ge 0} \mathcal{L}(x, \lambda) \qquad \qquad d^* = \sup_{\lambda \ge 0} \inf_{x \in X} \mathcal{L}(x, \lambda)$$

Saddle Point Theory

Optional reading in the notes, but very insightful

Alternative Formulation of Primal and Dual Problems

We can express the optimal values of the primal and dual as:

$$p^* = \inf_{x \in X} \sup_{\lambda \ge 0} \mathcal{L}(x, \lambda)$$
 $d^* = \sup_{\lambda \ge 0} \inf_{x \in X} \mathcal{L}(x, \lambda)$

Weak duality restatement:

$$\sup_{\lambda \geq 0} \inf_{x \in X} \mathcal{L}(x, \lambda) \leq \inf_{x \in X} \sup_{\lambda \geq 0} \mathcal{L}(x, \lambda)$$

• **Strong duality** restatement:

$$\sup_{\lambda \geq 0} \inf_{x \in X} L(x, \lambda) = \inf_{x \in X} \sup_{\lambda \geq 0} \mathcal{L}(x, \lambda).$$

Strong duality holds exactly when we can interchange the order of min and max

Min-Max and Max-Min

Consider the pair of problems:

$$\max_{y \in Y} \min_{x \in X} f(x, y)$$

$$\min_{x \in X} \max_{y \in Y} f(x, y)$$

Min-Max and Max-Min

Consider the pair of problems:

$$\max_{y \in Y} \min_{x \in X} f(x, y) \qquad \qquad \min_{x \in X} \max_{y \in Y} f(x, y)$$

- Game theoretic interpretation : zero-sum game
- y player maximizes, x player minimizes. Difference is who moves first.

Min-Max and Max-Min

Consider the pair of problems:

$$\max_{y \in Y} \min_{x \in X} f(x, y) \qquad \qquad \min_{x \in X} \max_{y \in Y} f(x, y)$$

• For any f, X, Y, the **max-min inequality** (i.e., "weak duality") holds:

$$\max_{y \in Y} \min_{x \in X} f(x, y) \le \min_{x \in X} \max_{y \in Y} f(x, y)$$

Min-Max and Max-Min

Consider the pair of problems:

$$\max_{y \in Y} \min_{x \in X} f(x, y)$$

$$\min_{x \in X} \max_{y \in Y} f(x, y)$$

• When do f, X, Y satisfy the **saddle-point property**, i.e., equality holds:

$$\max_{y \in Y} \min_{x \in X} f(x, y) = \min_{x \in X} \max_{y \in Y} f(x, y)?$$

Min-Max and Max-Min

Consider the pair of problems:

$$\max_{y \in Y} \min_{x \in X} f(x, y)$$

$$\min_{x \in X} \max_{y \in Y} f(x, y)$$

Sion-Kakutani Theorem

Let $X\subseteq\mathbb{R}^n$ and $Y\subseteq\mathbb{R}^m$ be convex and compact subsets and let $f:X\times Y\to\mathbb{R}$ be a continuous function that is convex in $x\in X$ for any fixed $y\in Y$ and is concave in $y\in Y$ for any fixed $x\in X$. Then,

$$\min_{x \in X} \max_{y \in Y} f(x, y) = \max_{y \in Y} \min_{x \in X} f(x, y).$$

Generalizations possible: Y only needs to be convex (not compact); $f(\cdot, y)$ must be quasi-convex on X and with closed lower level sets (for any $y \in Y$); and $f(x, \cdot)$ must be quasi-concave on Y and with closed upper level sets (for any $x \in X$)

Basic Optimization Problem

We will be concerned with the following optimization problem:

(
$$\mathcal{P}$$
) minimize $f_0(x)$
 $f_i(x) \leq 0, \quad i = 1, ..., m$
 $h_j(x) = 0, \quad j = 1, ..., s$
 $x \in X$
variables $x \in \mathbb{R}^n$.

- Will **not** assume convexity unless explicitly stated...
- **Key Q:** "We have a feasible x. What are the conditions (necessary, sufficient, necessary and sufficient) for x to be optimal?"
- What to hope for?

Basic Optimization Problem

We will be concerned with the following optimization problem:

(
$$\mathcal{P}$$
) minimize $f_0(x)$
 $f_i(x) \le 0, \quad i = 1, ..., m$
 $h_j(x) = 0, \quad j = 1, ..., s$
 $x \in X$
variables $x \in \mathbb{R}^n$.

- Will **not** assume convexity unless explicitly stated...
- **Key Q:** "We have a feasible x. What are the conditions (necessary, sufficient, necessary and sufficient) for x to be optimal?"
- What to hope for?
 - **necessary** conditions for the optimality of x^*
 - sufficient conditions for the local optimality of x^*
- Cannot expect **global optimality** of x^* without some "global" requirement on f_i , h_i (e.g., convexity)

Basic Optimization Problem

We will be concerned with the following optimization problem:

$$\begin{array}{ll} (\mathcal{P}) \ \text{minimize} & f_0(x) \\ \hline \lambda_i \to & f_i(x) \leq 0, \quad i = 1, \dots, m \\ \nu_j \to & h_j(x) = 0, \quad j = 1, \dots, s \\ & x \in X \\ \text{variables} & x \in \mathbb{R}^n. \end{array}$$

• If we had strong duality and x^* optimal for (\mathcal{P}) and λ^*, ν^* optimal for (\mathcal{D}) :

$$f_0(x^*) = g(\lambda^*, \nu^*) = \inf_{x \in X} \left[f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{j=1}^s \nu_j^* h_j(x) \right]$$

Basic Optimization Problem

We will be concerned with the following optimization problem:

$$\begin{array}{ll} (\mathcal{P}) \ \text{minimize} & f_0(x) \\ & \lambda_i \to & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & \nu_j \to & h_j(x) = 0, \quad j = 1, \dots, s \\ & & x \in X \\ & \text{variables} & x \in \mathbb{R}^n. \end{array}$$

• If we had strong duality and x^* optimal for (\mathcal{P}) and λ^*, ν^* optimal for (\mathcal{D}) :

$$f_0(x^*) = g(\lambda^*, \nu^*) = \inf_{x \in X} \left[f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{j=1}^s \nu_j^* h_j(x) \right]$$

$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*)$$

Basic Optimization Problem

We will be concerned with the following optimization problem:

$$\begin{array}{lll} (\mathcal{P}) \ \text{minimize} & f_0(x) \\ & \lambda_i \to & f_i(x) \leq 0, & i = 1, \dots, m \\ & \nu_j \to & h_j(x) = 0, & j = 1, \dots, s \\ & & x \in X \\ & \text{variables} & x \in \mathbb{R}^n. \end{array}$$

• If we had strong duality and x^* optimal for (\mathcal{P}) and λ^*, ν^* optimal for (\mathcal{D}) :

$$f_0(x^*) = g(\lambda^*, \nu^*) = \inf_{x \in X} \left[f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{j=1}^s \nu_j^* h_j(x) \right]$$

$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*)$$

$$\leq f_0(x^*)$$

Basic Optimization Problem

We will be concerned with the following optimization problem:

$$\begin{array}{ll} (\mathcal{P}) \ \text{minimize} & f_0(x) \\ \hline \lambda_i \to & f_i(x) \leq 0, \quad i = 1, \dots, m \\ \nu_j \to & h_j(x) = 0, \quad j = 1, \dots, s \\ & x \in X \\ \text{variables} & x \in \mathbb{R}^n. \end{array}$$

• If we had strong duality and x^* optimal for (\mathcal{P}) and λ^*, ν^* optimal for (\mathcal{D}) :

$$f_0(x^*) = g(\lambda^*, \nu^*) = \inf_{x \in X} \left[f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{j=1}^s \nu_j^* h_j(x) \right]$$

$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*)$$

$$\leq f_0(x^*)$$

• This implies **complementary slackness**: $\lambda_i^* \cdot f_i(x^*) = 0$, or equivalently,

$$\lambda_i^{\star} > 0 \Rightarrow f_i(x^{\star}) = 0$$
 and $f_i(x^{\star}) < 0 \Rightarrow \lambda_i^{\star} = 0$

Basic Optimization Problem

We will be concerned with the following optimization problem:

$$(\mathcal{P}) \min_{x} \quad f_0(x)$$
 $(\lambda_i \to) \quad f_i(x) \le 0, \quad i = 1, \dots, m$
 $(\nu_j \to) \quad h_j(x) = 0, \quad j = 1, \dots, s$
 $x \in X.$

- $x^* \in X$, $\lambda^* \in \mathbb{R}^m$ and ν^* dual variables
- The Karush-Kuhn-Tucker (KKT) conditions at x^* are given by:

Basic Optimization Problem

We will be concerned with the following optimization problem:

$$\begin{array}{ll} (\mathcal{P}) \; \mathsf{min}_x & f_0(x) \\ (\lambda_i \to) & f_i(x) \leq 0, \quad i = 1, \dots, m \\ (\nu_j \to) & h_j(x) = 0, \quad j = 1, \dots, s \\ & x \in X. \end{array}$$

- $x^* \in X$, $\lambda^* \in \mathbb{R}^m$ and ν^* dual variables
- The Karush-Kuhn-Tucker (KKT) conditions at x^* are given by:

$$0 = \nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \cdot \nabla f_i(x^*) + \sum_{j=1}^p \nu_j^* \cdot \nabla h_j(x^*), \quad \text{("Stationarity")}$$

Basic Optimization Problem

We will be concerned with the following optimization problem:

$$\begin{array}{lll} (\mathcal{P}) \; \min_{x} & f_{0}(x) \\ (\lambda_{i} \rightarrow) & f_{i}(x) \leq 0, & i = 1, \ldots, m \\ (\nu_{j} \rightarrow) & h_{j}(x) = 0, & j = 1, \ldots, s \\ & x \in X. \end{array}$$

- $x^* \in X$, $\lambda^* \in \mathbb{R}^m$ and ν^* dual variables
- The Karush-Kuhn-Tucker (KKT) conditions at x^* are given by:

$$0 = \nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \cdot \nabla f_i(x^*) + \sum_{j=1}^p \nu_j^* \cdot \nabla h_j(x^*), \qquad \text{("Stationarity")}$$

$$f_i(x^*) \leq 0, \quad i = 1, \dots, m; \quad h_j(x^*) = 0, \quad j = 1, \dots, s, \quad \text{("Primal Feasibility")}$$

Basic Optimization Problem

We will be concerned with the following optimization problem:

$$\begin{array}{lll} (\mathcal{P}) \; \min_{x} & f_{0}(x) \\ (\lambda_{i} \rightarrow) & f_{i}(x) \leq 0, \quad i = 1, \ldots, m \\ (\nu_{j} \rightarrow) & h_{j}(x) = 0, \quad j = 1, \ldots, s \\ & x \in X. \end{array}$$

- $x^* \in X$, $\lambda^* \in \mathbb{R}^m$ and ν^* dual variables
- The **Karush-Kuhn-Tucker (KKT) conditions** at x^* are given by:

$$0 = \nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \cdot \nabla f_i(x^*) + \sum_{j=1}^p \nu_j^* \cdot \nabla h_j(x^*), \qquad \text{("Stationarity")}$$

$$f_i(x^*) \leq 0, \ i = 1, \dots, m; \quad h_j(x^*) = 0, \ j = 1, \dots, s, \quad \text{("Primal Feasibility")}$$

$$\lambda^* \geq 0 \qquad \qquad \text{("Dual Feasibility")}$$

Basic Optimization Problem

We will be concerned with the following optimization problem:

$$\begin{array}{lll} (\mathcal{P}) \; \min_{x} & f_{0}(x) \\ (\lambda_{i} \rightarrow) & f_{i}(x) \leq 0, \quad i = 1, \ldots, m \\ (\nu_{j} \rightarrow) & h_{j}(x) = 0, \quad j = 1, \ldots, s \\ & x \in X. \end{array}$$

- $x^* \in X$, $\lambda^* \in \mathbb{R}^m$ and ν^* dual variables
- The **Karush-Kuhn-Tucker (KKT) conditions** at x^* are given by:

$$\begin{split} 0 &= \nabla f_0(x^\star) + \sum_{i=1}^m \lambda_i^\star \cdot \nabla f_i(x^\star) + \sum_{j=1}^p \nu_j^\star \cdot \nabla h_j(x^\star), \qquad \text{("Stationarity")} \\ f_i(x^\star) &\leq 0, \ i=1,\ldots,m; \quad h_j(x^\star) = 0, \ j=1,\ldots,s, \quad \text{("Primal Feasibility")} \\ \lambda^\star &\geq 0 \qquad \qquad \text{("Dual Feasibility")} \\ \lambda^\star_i f_i(x^\star) &= 0, \quad i=1,\ldots,m \qquad \qquad \text{("Complementary Slackness")}. \end{split}$$

Geometry Behind KKT Conditions: Inequality Case

KKT Conditions For Case Without Equality Constraints

$$0 = \nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \cdot \nabla f_i(x^*) \qquad \qquad \text{("Stationarity")}$$

$$\lambda_i^* f_i(x^*) = 0, \quad i = 1, \dots, m \qquad \qquad \text{("Complementary Slackness")}.$$

Geometry Behind KKT Conditions: Inequality Case

KKT Conditions For Case Without Equality Constraints

$$0 = \nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \cdot \nabla f_i(x^*)$$
 ("Stationarity")

$$\lambda_i^{\star} f_i(x^{\star}) = 0, \quad i = 1, \dots, m$$

("Complementary Slackness").

- Consider all **active** constraints at x^* , i.e., $\{i : f_i(x^*) = 0\}$
- Stationarity: $-\nabla f_0(x^*)$ is conic combination of gradients $\nabla f_i(x^*)$ of active constraints
- (Complementary slackness: only **active** constraints have $\lambda_i > 0$)
- FYI: $\mathcal{N}_{\mathcal{C}}(x^*) := \{ \sum_{i=1}^m \lambda_i \nabla f_i(x^*) : \lambda \geq 0 \}$ is the **normal cone** at x^*

Failure of KKT Conditions

• In some cases, KKT conditions are not necessary at optimality

KKT Conditions Failing

$$\min_{x \in \mathbb{R}} x$$
$$x^3 \ge 0.$$

• Is this a convex optimization problem? What is p^* ? What is x^* ?

Failure of KKT Conditions

• In some cases, KKT conditions are not necessary at optimality

KKT Conditions Failing

$$\min_{x \in \mathbb{R}} x$$
$$x^3 \ge 0.$$

• Is this a convex optimization problem? What is p^* ? What is x^* ?

Failure of KKT Conditions - More Subtle

KKT Conditions Failing

$$\min_{x,y \in \mathbb{R}} -x$$

$$y - (1-x)^3 \le 0$$

$$x, y \ge 0$$

Failure of KKT Conditions - More Subtle

KKT Conditions Failing $\min_{\substack{x,y\in\mathbb{R}\\y-(1-x)^3\leq0\\x,y\geq0}}-x$

- $f_0(x,y) := -x$, $f_1(x,y) := y (1-x)^3$, $f_2(x,y) := -x$ and $f_3(x,y) := -y$.
- Gradients of objective and binding constraints f_1 and f_3 at $(x^*, y^*) := (1, 0)$:

$$\nabla f_0(x^*,y^*) = \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \quad \nabla f_1(x^*,y^*) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \nabla f_3(x^*,y^*) = \begin{pmatrix} 0 \\ -1 \end{pmatrix}.$$

- No $\lambda_1, \lambda_3 \geq 0$ satisfy $-\nabla f_0(x^\star, y^\star) = \lambda_1 \nabla f_1(x^\star, y^\star) + \lambda_3 \nabla f_3(x^\star, y^\star)$
- Reason for failing: the linearization of constraint $f_1 \le 0$ around (1,0) is $y \le 0$, which is parallel to the existing constraint $f_3(x,y) := -y \ge 0$

Constraint Qualification Conditions

Setup: x^* feasible. Active inequality constraints: $I(x^*) = \{i \in \{1, ..., m\} : f_i(x^*) = 0\}.$

Constraint Qualification Conditions

Setup: x^* feasible. Active inequality constraints: $I(x^*) = \{i \in \{1, ..., m\} : f_i(x^*) = 0\}$. If one of the following holds, KKT conditions are necessary for x^* to be optimal:

1. Affine Active Constraints

• all active constraints are affine functions

Constraint Qualification Conditions

Setup: x^* feasible. Active inequality constraints: $I(x^*) = \{i \in \{1, ..., m\} : f_i(x^*) = 0\}$. If one of the following holds, KKT conditions are necessary for x^* to be optimal:

1. Affine Active Constraints

• all active constraints are affine functions

2. Slater Conditions

- all functions $\{h_j\}_{j=1}^s$ in equality constraints are **affine**
- all functions $\{f_i : i \in I(x)\}$ in **active** inequality constraints are **convex**
- $\exists \bar{x} \in \operatorname{relint}(X) : f_i(\bar{x}) < 0 \text{ for all } i \in I(x^*)$

Constraint Qualification Conditions

Setup: x^* feasible. Active inequality constraints: $I(x^*) = \{i \in \{1, ..., m\} : f_i(x^*) = 0\}$. If one of the following holds, KKT conditions are necessary for x^* to be optimal:

1. Affine Active Constraints

• all active constraints are affine functions

2. Slater Conditions

- all functions $\{h_j\}_{j=1}^s$ in equality constraints are **affine**
- all functions $\{f_i : i \in I(x)\}$ in **active** inequality constraints are **convex**
- $\exists \bar{x} \in \operatorname{relint}(X) : f_i(\bar{x}) < 0 \text{ for all } i \in I(x^*)$

3. Regular Point (Linearly Independent Gradients)

• x^* is a **regular** point: gradients of all active constraints $\{\nabla f_i(x): i \in I(x^*)\} \cup \{\nabla h_i(x): j = 1, \dots, s\}$ are linearly independent

Constraint Qualification Conditions

Setup: x^* feasible. Active inequality constraints: $I(x^*) = \{i \in \{1, ..., m\} : f_i(x^*) = 0\}$. If one of the following holds, KKT conditions are necessary for x^* to be optimal:

1. Affine Active Constraints

• all active constraints are affine functions

2. Slater Conditions

- all functions $\{h_j\}_{j=1}^s$ in equality constraints are **affine**
- all functions $\{f_i : i \in I(x)\}$ in **active** inequality constraints are **convex**
- $\exists \bar{x} \in \operatorname{relint}(X) : f_i(\bar{x}) < 0 \text{ for all } i \in I(x^*)$

3. Regular Point (Linearly Independent Gradients)

• x^* is a **regular** point: gradients of all active constraints $\{\nabla f_i(x): i \in I(x^*)\} \cup \{\nabla h_i(x): j = 1, \dots, s\}$ are linearly independent

4. Mangasarian-Fromovitz

- the gradients of equality constraints are linearly independent
- $\exists v \in R^n : v^T \nabla f_i(x^*) < 0$ for $i \in I(x^*)$ and $v^T \nabla h_j(x^*) = 0, j = 1, \dots, s$

Second Order Necessary Optimality Conditions

 x^{\star} feasible for problem (\mathcal{P}) and **regular**, $\{f_i\}_{i=1}^m, \{h_j\}_{j=1}^s$ **twice** continuously differentiable in neighborhood of x^{\star} . Let $\mathcal{L}(x; \lambda, \nu)$ denote the Lagrangian function.

If x^* is locally optimal, then there exist unique $\lambda^* \geq 0$ and ν^* such that:

Second Order Necessary Optimality Conditions

 x^{\star} feasible for problem (\mathcal{P}) and **regular**, $\{f_i\}_{i=1}^m, \{h_j\}_{j=1}^s$ **twice** continuously differentiable in neighborhood of x^{\star} . Let $\mathcal{L}(x; \lambda, \nu)$ denote the Lagrangian function.

If x^* is locally optimal, then there exist unique $\lambda^* \geq 0$ and ν^* such that:

• (λ^*, ν^*) certify that x^* satisfies KKT conditions:

$$\lambda_i^* f_i(x^*) = 0, \quad i = 1, \dots, m$$

$$\nabla_x \mathcal{L}(x^*; \lambda^*, \nu^*) = \nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{j=1}^s \nu_j^* \nabla h_j(x^*) = 0.$$

Second Order Necessary Optimality Conditions

 x^* feasible for problem (\mathcal{P}) and **regular**, $\{f_i\}_{i=1}^m, \{h_j\}_{j=1}^s$ **twice** continuously differentiable in neighborhood of x^* . Let $\mathcal{L}(x; \lambda, \nu)$ denote the Lagrangian function.

If x^* is locally optimal, then there exist unique $\lambda^* \geq 0$ and ν^* such that:

• (λ^*, ν^*) certify that x^* satisfies KKT conditions:

$$\lambda_i^* f_i(x^*) = 0, \quad i = 1, \dots, m$$

$$\nabla_x \mathcal{L}(x^*; \lambda^*, \nu^*) = \nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{j=1}^s \nu_j^* \nabla h_j(x^*) = 0.$$

• The Hessian $\nabla_x^2 \mathcal{L}(x^*; \lambda^*, \nu^*)$ of \mathcal{L} in x is **positive semidefinite** on the orthogonal complement M^* to the set of gradients of active constraints at x^* :

$$d^T \, \nabla^2_x \mathcal{L}(x^\star; \lambda^\star, \nu^\star) \, d \geq 0 \text{ for any } d \in M^\star$$
 where $M^\star := \{d \mid d^T \nabla f_i(x^\star) = 0, \, \forall \, i \in I(x^\star), \, d^T \nabla h_j(x^\star) = 0, \, j = 1, \dots, s\}.$

Second Order Sufficient Local Optimality Conditions

 x^* feasible for problem (\mathcal{P}) and **regular**, $\{f_i\}_{i=1}^m, \{h_j\}_{j=1}^s$ **twice** continuously differentiable in neighborhood of x^* . Let $\mathcal{L}(x; \lambda, \nu)$ denote the Lagrangian function.

Assume there exist Lagrange multipliers $\lambda^{\star} \geq 0$ and ν^{\star} such that

Second Order **Sufficient** Local Optimality Conditions

 x^* feasible for problem (\mathcal{P}) and **regular**, $\{f_i\}_{i=1}^m, \{h_j\}_{j=1}^s$ **twice** continuously differentiable in neighborhood of x^* . Let $\mathcal{L}(x; \lambda, \nu)$ denote the Lagrangian function.

Assume there exist Lagrange multipliers $\lambda^{\star} \geq 0$ and ν^{\star} such that

• (λ^*, ν^*) certify that x^* satisfies KKT conditions;

Second Order Sufficient Local Optimality Conditions

 x^* feasible for problem (\mathcal{P}) and **regular**, $\{f_i\}_{i=1}^m, \{h_j\}_{j=1}^s$ **twice** continuously differentiable in neighborhood of x^* . Let $\mathcal{L}(x; \lambda, \nu)$ denote the Lagrangian function.

Assume there exist Lagrange multipliers $\lambda^{\star} \geq 0$ and ν^{\star} such that

- (λ^*, ν^*) certify that x^* satisfies KKT conditions;
- The Hessian $\nabla_x^2 \mathcal{L}(x^*; \lambda^*, \nu^*)$ of \mathcal{L} in x is **positive definite** on the orthogonal complement M^{**} to the set of gradients of **equality constraints** and **active** inequality constraints at x^* that have positive Lagrange multipliers λ_i^* :

Second Order Sufficient Local Optimality Conditions

 x^* feasible for problem (\mathcal{P}) and **regular**, $\{f_i\}_{i=1}^m, \{h_j\}_{j=1}^s$ **twice** continuously differentiable in neighborhood of x^* . Let $\mathcal{L}(x; \lambda, \nu)$ denote the Lagrangian function.

Assume there exist Lagrange multipliers $\lambda^{\star} \geq 0$ and ν^{\star} such that

- (λ^*, ν^*) certify that x^* satisfies KKT conditions;
- The Hessian $\nabla_x^2 \mathcal{L}(x^*; \lambda^*, \nu^*)$ of \mathcal{L} in x is **positive definite** on the orthogonal complement M^{**} to the set of gradients of **equality constraints** and **active** inequality constraints at x^* that have positive Lagrange multipliers λ_i^* :

$$\begin{split} d^{\mathsf{T}} \nabla^2_{\mathsf{x}} \mathcal{L}(\mathsf{x}^\star; \lambda^\star, \nu^\star) d &> 0 \text{ for any } d \in M^{\star\star} \\ \text{where } M^{\star\star} &:= \{ d \mid d^{\mathsf{T}} \nabla f_i(\mathsf{x}^\star) = 0, \, \forall \, i \in I(\mathsf{x}^\star) : \lambda_i^\star > 0 \text{ and } \\ d^{\mathsf{T}} \nabla h_j(\mathsf{x}^\star) &= 0, \, j = 1, \dots, s \}. \end{split}$$

Then x^* is locally optimal for (\mathcal{P}) .

A Consumer's Constrained Consumption Problem

Second Order Sufficient Local Optimality Conditions

Consider a consumer trying to maximize his utility function u(x) by choosing which bundle of goods $x \in \mathbb{R}_n^+$ to purchase. The utility u is component-wise increasing in x, $\frac{\partial u}{\partial x_i} \geq 0 \ \forall i=1,\ldots,n$. The goods have prices p>0 and the consumer has a budget B>0. The consumer's problem can be stated as:

maximize
$$u(x)$$

such that $p^{T}x \leq B$
 $x \geq 0$,

where u(x) is a concave utility function.

- Write down the first-order KKT conditions and try to interpret them.
- Are these conditions necessary for optimality?
- Are these conditions sufficient for optimality?

A Consumer's Constrained Consumption Problem

A Consumer's Constrained Consumption Problem

• Elegant and concise theory of optimization duality

Elegant and concise theory of optimization duality

Conjugate of a function

Let $f: \mathbb{R}^n \to \mathbb{R}$. The **conjugate** of f is the function $f^*: \mathbb{R}^n \to \mathbb{R}$ defined as:

$$f^*(y) = \sup_{x \in dom(f)} \left\{ y^{\mathsf{T}} x - f(x) \right\}$$

Elegant and concise theory of optimization duality

Conjugate of a function

Let $f: \mathbb{R}^n \to \mathbb{R}$. The **conjugate** of f is the function $f^*: \mathbb{R}^n \to \mathbb{R}$ defined as:

$$f^*(y) = \sup_{x \in dom(f)} \left\{ y^{\mathsf{T}} x - f(x) \right\}$$

• Elegant and concise theory of optimization duality

Conjugate of a function

Let $f: \mathbb{R}^n \to \mathbb{R}$. The **conjugate** of f is the function $f^*: \mathbb{R}^n \to \mathbb{R}$ defined as:

$$f^*(y) = \sup_{x \in dom(f)} \left\{ y^{\mathsf{T}} x - f(x) \right\}$$

Is f* convex or concave?

• Elegant and concise theory of optimization duality

Conjugate of a function

Let $f: \mathbb{R}^n \to \mathbb{R}$. The **conjugate** of f is the function $f^*: \mathbb{R}^n \to \mathbb{R}$ defined as:

$$f^*(y) = \sup_{x \in \mathsf{dom}(f)} \left\{ y^\mathsf{T} x - f(x) \right\}$$

• If f convex and epi(f) closed, f^* characterizes f in terms of supporting hyperplanes

$$f^*(y) = \sup_{x \in dom(f)} \left\{ y^{\mathsf{T}} x - f(x) \right\}$$

The zero function.

- If $f: \mathbb{R} \to \mathbb{R}$, then
- If $f: \mathbb{R}_+ \to \mathbb{R}$, then
- If $f:[-1,1] \to \mathbb{R}$, then
- If $f:[0,1]\to\mathbb{R}$, then

$$f^*(y) = \sup_{x \in \text{dom}(f)} \left\{ y^{\mathsf{T}} x - f(x) \right\}$$

The zero function.

- If $f: \mathbb{R} \to \mathbb{R}$, then $f^*: \{0\} \to \mathbb{R}$ and $f^*(y) = 0$.
- If $f: \mathbb{R}_+ \to \mathbb{R}$, then
- If $f:[-1,1]\to\mathbb{R}$, then
- If $f:[0,1]\to\mathbb{R}$, then

$$f^*(y) = \sup_{x \in \text{dom}(f)} \left\{ y^{\mathsf{T}} x - f(x) \right\}$$

The zero function.

- If $f: \mathbb{R} \to \mathbb{R}$, then $f^*: \{0\} \to \mathbb{R}$ and $f^*(y) = 0$.
- If $f: \mathbb{R}_+ \to \mathbb{R}$, then $f^*: (-\infty, 0] \to \mathbb{R}$ and $f^*(y) = 0$.
- If $f:[-1,1] \to \mathbb{R}$, then
- If $f:[0,1]\to\mathbb{R}$, then

$$f^*(y) = \sup_{x \in \text{dom}(f)} \left\{ y^{\mathsf{T}} x - f(x) \right\}$$

The zero function.

- If $f: \mathbb{R} \to \mathbb{R}$, then $f^*: \{0\} \to \mathbb{R}$ and $f^*(y) = 0$.
- If $f: \mathbb{R}_+ \to \mathbb{R}$, then $f^*: (-\infty, 0] \to \mathbb{R}$ and $f^*(y) = 0$.
- If $f:[-1,1] \to \mathbb{R}$, then $f^*: \mathbb{R} \to \mathbb{R}$ and $f^*(y) = |y|$.
- If $f:[0,1]\to\mathbb{R}$, then

$$f^*(y) = \sup_{x \in \text{dom}(f)} \left\{ y^{\mathsf{T}} x - f(x) \right\}$$

The zero function.

- If $f: \mathbb{R} \to \mathbb{R}$, then $f^*: \{0\} \to \mathbb{R}$ and $f^*(y) = 0$.
- If $f: \mathbb{R}_+ \to \mathbb{R}$, then $f^*: (-\infty, 0] \to \mathbb{R}$ and $f^*(y) = 0$.
- If $f:[-1,1] \to \mathbb{R}$, then $f^*: \mathbb{R} \to \mathbb{R}$ and $f^*(y) = |y|$.
- If $f:[0,1]\to\mathbb{R}$, then $f^*:\mathbb{R}\to\mathbb{R}$ and $f^*(y)=y^+$.

$$f^*(y) = \sup_{x \in \text{dom}(f)} \left\{ y^{\mathsf{T}} x - f(x) \right\}$$

The zero function.

For f(x) = 0, the conjugate will depend on the relevant domain:

- If $f: \mathbb{R} \to \mathbb{R}$, then $f^*: \{0\} \to \mathbb{R}$ and $f^*(y) = 0$.
- If $f: \mathbb{R}_+ \to \mathbb{R}$, then $f^*: (-\infty, 0] \to \mathbb{R}$ and $f^*(y) = 0$.
- If $f:[-1,1]\to\mathbb{R}$, then $f^*:\mathbb{R}\to\mathbb{R}$ and $f^*(y)=|y|$.
- If $f:[0,1]\to\mathbb{R}$, then $f^*:\mathbb{R}\to\mathbb{R}$ and $f^*(y)=y^+$.

Affine functions.

For $f: \mathbb{R} \to \mathbb{R}$ with $f(x) = a^{\mathsf{T}}x + b$, $f^*: \{a\} \to \mathbb{R}$ and $f^*(a) = -b$.

$$f^*(y) = \sup_{x \in dom(f)} \left\{ y^{\mathsf{T}} x - f(x) \right\}$$

The zero function.

For f(x) = 0, the conjugate will depend on the relevant domain:

- If $f: \mathbb{R} \to \mathbb{R}$, then $f^*: \{0\} \to \mathbb{R}$ and $f^*(y) = 0$.
- If $f: \mathbb{R}_+ \to \mathbb{R}$, then $f^*: (-\infty, 0] \to \mathbb{R}$ and $f^*(y) = 0$.
- If $f:[-1,1]\to\mathbb{R}$, then $f^*:\mathbb{R}\to\mathbb{R}$ and $f^*(y)=|y|$.
- If $f:[0,1]\to\mathbb{R}$, then $f^*:\mathbb{R}\to\mathbb{R}$ and $f^*(y)=y^+$.

Affine functions.

For $f: \mathbb{R} \to \mathbb{R}$ with $f(x) = a^{\mathsf{T}}x + b$, $f^*: \{a\} \to \mathbb{R}$ and $f^*(a) = -b$.

What are the conjugates of the following functions?

- $f:(0,\infty), f(x) = -\log x$
- $f: \mathbb{R} \to \mathbb{R}, f(x) = e^x$

Fenchel-Young Inequality

Consider the Fenchel conjugate f^* of a function f:

$$f^*(y) = \sup_{x \in \mathbb{R}^n} \{y^T x - f(x)\}, \quad y \in \mathbb{R}^n.$$

Fenchel-Young Inequality

Consider the Fenchel conjugate f^* of a function f:

$$f^*(y) = \sup_{x \in \mathbb{R}^n} \{y^T x - f(x)\}, \quad y \in \mathbb{R}^n.$$

Fenchel-Young Inequality

$$f^*(y) \ge y^\mathsf{T} x - f(x)$$

• Having access to f^* allows generating lower bounds on $f(x) \ge y^T x - f^*(y)$

Consider the conjugate of the conjugate, a.k.a. the double conjugate, f^{**} :

$$f^{**}(x) = \sup_{y \in \mathbb{R}^n} \{y^T x - f^*(y)\}, \quad x \in \mathbb{R}^n.$$

Consider the conjugate of the conjugate, a.k.a. the double conjugate, f^{**} :

$$f^{**}(x) = \sup_{y \in \mathbb{R}^n} \{y^T x - f^*(y)\}, \quad x \in \mathbb{R}^n.$$

Conjugacy Theorem.

Let $f : \mathbb{R}^n \to \mathbb{R}$ be such that epi(f) is closed. Then:

- a) $f(x) \ge f^{**}(x)$, forall $x \in \mathbb{R}^n$.
- b) If f is convex, $f(x) = f^{**}(x), \forall x \in \mathbb{R}^n$.
- c) $f^{**}(x)$ is the **convex envelope of** f, i.e., $epi(f^{**})$ is the smallest closed, convex set containing epi(f).

Consider the conjugate of the conjugate, a.k.a. the double conjugate, f^{**} :

$$f^{**}(x) = \sup_{y \in \mathbb{R}^n} \{y^T x - f^*(y)\}, \quad x \in \mathbb{R}^n.$$

Conjugacy Theorem.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be such that epi(f) is closed. Then:

- a) $f(x) \ge f^{**}(x)$, forall $x \in \mathbb{R}^n$.
- b) If f is convex, $f(x) = f^{**}(x)$, $\forall x \in \mathbb{R}^n$.
- c) $f^{**}(x)$ is the **convex envelope of** f, i.e., $epi(f^{**})$ is the smallest closed, convex set containing epi(f).

Consider the conjugate of the conjugate, a.k.a. the double conjugate, f^{**} :

$$f^{**}(x) = \sup_{y \in \mathbb{R}^n} \{ y^T x - f^*(y) \}, \quad x \in \mathbb{R}^n.$$

Conjugacy Theorem.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be such that epi(f) is closed. Then:

- a) $f(x) \ge f^{**}(x)$, forall $x \in \mathbb{R}^n$.
- b) If f is convex, $f(x) = f^{**}(x)$, $\forall x \in \mathbb{R}^n$.
- c) $f^{**}(x)$ is the **convex envelope of** f, i.e., $epi(f^{**})$ is the smallest closed, convex set containing epi(f).
- The optimal value when minimizing an **arbitrary** f if finite equals the optimal value when minimizing the convex envelope of f
- **IF** we had access to f^{**} , we could solve a convex optimization problem to determine the optimal value of any function f
- **Key caveat:** Gaining access to f^{**} is difficult for general f!

Starting Problem.

Consider $f_i : \mathbb{R}^n \to \mathbb{R}$ and $X_i \subseteq \mathbb{R}^n$ for i = 1, 2 and the problem:

minimize
$$f_1(x) + f_2(x)$$

subject to $x \in X_1 \cap X_2$

• Assume optimal value p^* is finite. Problem can be converted into:

Starting Problem.

Consider $f_i : \mathbb{R}^n \to \mathbb{R}$ and $X_i \subseteq \mathbb{R}^n$ for i = 1, 2 and the problem:

minimize
$$f_1(x) + f_2(x)$$

subject to $x \in X_1 \cap X_2$

• Assume optimal value p^* is finite. Problem can be converted into:

minimize
$$f_1(y) + f_2(z)$$

subject to $y = z, y \in X_1, z \in X_2$.

Starting Problem.

Consider $f_i : \mathbb{R}^n \to \mathbb{R}$ and $X_i \subseteq \mathbb{R}^n$ for i = 1, 2 and the problem:

minimize
$$f_1(x) + f_2(x)$$

subject to $x \in X_1 \cap X_2$

• Assume optimal value p^* is finite. Problem can be converted into:

minimize
$$f_1(y) + f_2(z)$$

subject to $y = z, y \in X_1, z \in X_2$.

• Can dualize the constraint y = z. For $\lambda \in \mathbb{R}^n$, define the following functions:

Starting Problem.

Consider $f_i : \mathbb{R}^n \to \mathbb{R}$ and $X_i \subseteq \mathbb{R}^n$ for i = 1, 2 and the problem:

minimize
$$f_1(x) + f_2(x)$$

subject to $x \in X_1 \cap X_2$

• Assume optimal value p^* is finite. Problem can be converted into:

minimize
$$f_1(y) + f_2(z)$$

subject to $y = z, y \in X_1, z \in X_2$.

• Can dualize the constraint y = z. For $\lambda \in \mathbb{R}^n$, define the following functions:

$$g(\lambda) = \inf_{y \in X_1, z \in X_2} \{f_1(y) + f_2(z) + (z - y)^T \lambda\}$$

= $-\sup_{y \in X_1} \{y^T \lambda - f_1(y)\} - \sup_{z \in X_2} \{-z^T \lambda - f_2(z)\}$
= $-g_1(\lambda) - g_2(-\lambda)$,

• What are $g_1(\lambda)$ and $g_2(\lambda)$ here?

Starting Problem.

Consider $f_i : \mathbb{R}^n \to \mathbb{R}$ and $X_i \subseteq \mathbb{R}^n$ for i = 1, 2 and the problem:

minimize
$$f_1(x) + f_2(x)$$

subject to $x \in X_1 \cap X_2$

- Dual objective is: $g(\lambda) = -g_1(\lambda) g_2(-\lambda)$
- The dual problem can be rewritten as:

$$\max_{\lambda \in \mathbb{R}^n} \{ -g_1(\lambda) - g_2(-\lambda) \} \qquad \Leftrightarrow \qquad \min_{\lambda \in \mathbb{R}^n} \{ g_1(\lambda) + g_2(-\lambda) \}.$$

Starting Problem.

Consider $f_i : \mathbb{R}^n \to \mathbb{R}$ and $X_i \subseteq \mathbb{R}^n$ for i = 1, 2 and the problem:

minimize
$$f_1(x) + f_2(x)$$

subject to $x \in X_1 \cap X_2$

- Dual objective is: $g(\lambda) = -g_1(\lambda) g_2(-\lambda)$
- The dual problem can be rewritten as:

$$\max_{\lambda \in \mathbb{R}^n} \{ -g_1(\lambda) - g_2(-\lambda) \} \qquad \Leftrightarrow \qquad \min_{\lambda \in \mathbb{R}^n} \{ g_1(\lambda) + g_2(-\lambda) \}.$$

Fenchel Duality

Suppose f_1 and f_2 are convex and **either**

(i) $\operatorname{relint}(\operatorname{\mathsf{dom}}(f_1)) \cap \operatorname{relint}(\operatorname{\mathsf{dom}}(f_2) \neq \emptyset$

or

(ii) dom(f_i) is polyhedral and f_i can be extended to \mathbb{R} -valued convex functions over \mathbb{R}^n for i = 1, 2.

Then, there exists $\lambda^* \in \mathbb{R}^n$ such that $p^* = g(\lambda^*)$ and strong duality holds.