Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 074 618 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 07.02.2001 Bulletin 2001/06

(51) Int. Cl.⁷: **C12N 15/12**, C07K 14/705, C07K 16/28

(21) Application number: 00118520.6

(22) Date of filing: 19.04.1993

(84) Designated Contracting States:

AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL
PT SE

(30) Priority: 17.04.1992 US 872643

(83) Declaration under Rule 28(4) EPC (expert solution)

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 93910658.9 / 0 604 603

(71) Applicant: DOHENY EYE INSTITUTE Los Angeles, CA 90033 (US)

(72) Inventor: SUZUKI, Shintaro Torrance, CA 90505 (US)

(74) Representative:
Brown, John David
FORRESTER & BOEHMERT
Franz-Joseph-Strasse 38
80801 München (DE)

Remarks:

This application was filed on 25 - 08 - 2000 as a divisional application to the application mentioned under INID code 62.

(54) Cadherin materials and methods

(57) DNA sequences encoding novel cadherins, designated cadherins-4 through -12, are disclosed along with methods and materials for the recombinant production of the same. Antibody substances specific for the novel cadherins and cadherin peptides are disclosed as useful for modulating the natural binding and/or regulatory activities of the cadherins.

Description

5

[0001] This application is a continuation-in-part of U.S. Patent Application Serial No. 07/872,643 filed on April 17, 1992.

FIELD OF THE INVENTION

[0002] The present invention relates, in general, to materials and methods relevant to cell-cell adhesion. More particularly, the invention relates to novel Ca²⁺-dependent cell adhesion proteins, referred to as cadherins, and to polynucleotide sequences encoding the cadherins. The invention also relates to methods for inhibiting binding of the cadherins to their natural ligands/antiligands.

BACKGROUND

[0003] In vivo, cell-cell adhesion plays an important role in a wide range of events including morphogenesis and organ formation, leukocyte extravasion, tumor metastasis and invasion, and the formation of cell junctions. Additionally, cell-cell adhesion is crucial for the maintenance of tissue integrity, e.g., of the intestinal epithelial barrier, of the blood brain barrier and of cardiac muscle.

[0004] Intercellular adhesion is mediated by specific cell adhesion molecules. Cell adhesion molecules have been classified into at least three superfamilies including the immunoglobulin (Ig) superfamily, the integrin superfamily and the cadherin superfamily. All cell types that form solid tissues express some members of the cadherin superfamily suggesting that cadherins are involved in selective adhesion of most cell types.

[0005] Cadherins have been generally described as glycosylated integral membrane proteins that have an N-terminal extracellular domain that determines binding specificity (the N-terminal 113 amino acids appear to be directly involved in binding), a hydrophobic membrane-spanning domain and a C-terminal cytoplasmic domain (highly conserved among the members of the superfamily) that interacts with the cytoskeleton through catenins and other cytoskeleton-associated proteins. Some cadherins lack a cytoplasmic domain, however, and appear to function in cell-cell adhesion by a different mechanism than cadherins that have a cytoplasmic domain. The cytoplasmic domain is required for the binding function of the extracellular domain in cadherins that do have a cytoplasmic domain. Binding between members of the cadherin family expressed on different cells is mainly homophilic (i.e., a member of the cadherin family binds to cadhering of its own or a closely related subclass) and Ca²⁺-dependent. For recent reviews on cadherins, see Takeichi, *Annu. Rev. Biochem., 59*:237-252 (1990) and Takeichi, *Science, 251*, 1451-1455 (1991).

[0006] The first cadherins to be described (E-cadherin in mouse epithelial cells, L-CAM in avian liver, uvomorulin in the mouse blastocyst, and CAM 120/80 in human epithelial cells) were identified by their involvement in Ca²⁺-dependent cell adhesion and by their unique immunological characteristics and tissue localization. With the later immunological identification of N-cadherin, which was found to have a different tissue distribution from E-cadherin, it became apparent that a new family of Ca²⁺-dependent cell-cell adhesion molecules had been discovered.

[0007] The molecular cloning of the genes encoding mouse E- [see Nagafuchi et al., Nature, 329: 341-343 (1987)], chicken N- [Hatta et al., J.Cell Biol., 106: 873-881 (1988)], and mouse P-[Nose et al., EMBO J. 6; 3655-3661 (1987)] cadherins provided structural evidence that the cadherins comprised a family of cell adhesion molecules. Cloning of chicken L-CAM [Gallin et al., Proc. Natl. Acad. Sci. USA, 84: 2808-2812 (1987)] and mouse uvomorulin [Ringwald et al., EMBO I., 6; 3647-3653 (1987)] revealed that they were identical to E-cadherin. Comparisons of the amino acid sequences of E-, N-, and P-cadherins showed a level of amino similarity of about 45%-58% among the three subclasses. Liaw et al., EMBO J., 9: 2701-2708 (1990) describes the use of PCR with degenerate oligonucleotides based on one conserved region of E-, N-and P-cadherins to isolate N- and P-cadherin from a bovine microvascular endotthelial cell cDNA. The Liaw et al., supra, results implied that there were only E-, N-, and P-cadherins because no new cadherins were identified. Also in 1990, it was imported in Heimark et al., J. Cell Biol., 110: 1745-1756 (1990) that an antibody generated to bovine aortic endothelial cells recognized an intercellular junctional molecule designated V-cadherin which had a similar molecular weight to known cadherins and was able to inhibit Ca²⁺-dependent cell endothelial cell adhesion. The article did not disclose any sequence information for the protein recognized by the antibody.

[0008] No further cadherin genes were described until the identification of eight of the novel cadherins claimed herein was reported in Suzuki et al., Cell Regulation, 2: 261-270 (1991). Subsequently, several other cadherins were described including chicken R-cadherin [Inuzuka et al., Neuron, 7: 69-79 (1991)], mouse M-cadherin [Donalies et al., Proc. Natl. Acad. Sci. USA, 88: 8024-8028 (1991)], chicken B-cadherin [Napolitano et al., J. Cell. Biol., 113: 893-905 (1991)], and T-cadherin [chicken in Ranscht et al., Neuron, 7: 391-402 (1991) and chicken and human in Patent Cooperation Treaty (PCT) International Publication No. WO 92/08731 published on May 29, 1992].

[0009] The determination of the tissue expression of the various cadherins reveals that each subclass of cadherins has a unique tissue distribution pattern. For example, E-cadherin is found in epithelial tissues while N-cadherin is found

in nonepithelial tissues such as neural and muscle tissue. The unique expression pattern of the different cadherins is particularly significant when the role each subclass of cadherins may play *in vivo* in normal events (e.g., the maintenance of the intestinal epithelial barrier) and in abnormal events (e.g., tumor metastatis or inflammation) is considered. Supression of cadherin function has been implicated in the progression of various cancers. See Shimoyama *et al.*, *Cancer Res.*, *52*: 5770-5774 (1992). Different subclasses or combinations of subclasses of cadherins are likely to be responsible for different cell-cell adhesion events in which therapeutic detection and/or intervention may be desirable. Studies have also suggested that cadherins may have some regulatory activity in addition to adhesive activity. Matsunaga *et al.*, *Nature*, *334*, 62-64 (1988) reports that N-cadherin has neurite outgrowth promoting activity and Mahoney *et al.*, *Cell*, *67*, 853-868 (1991) reports that the Drosophila *fat* tumor supressor gene, another member of the cadherin superfamily, appear to regulate cell growth. Expression of the cytoplasmic domain of N-cadherin without its extracellular domain has been shown in Kintner *et al.*, *Cell*, *69*: 229-236 (1992) to disrupt embryonic cell adhesion and in Fugimori *et al.*, *Mol. Biol. Cell*, *4*: 37-47 (1993) to disrupt epithial cell adhesion. Thus, therapeutic intervention in the regulatory activities of cadherins expressed in specific tissues may also be desirable.

[0010] There thus continues to exist a need in the art for the identification and characterization of additional cadherins participating in cell-cell adhesion and/or regulatory events. Moreover, to the extent that cadherins might form the basis for the development of therapeutic and diagnostic agents, it is essential that the genes encoding the proteins be cloned. Information about the DNA sequences and amino acid sequences encoding the cadherins would provide for the large scale production of the proteins and for the identification of the cells/tissues naturally producing the proteins, and would permit the preparation of antibody substances or other novel binding molecules specifically reactive with the cadherins that may be useful in modulating the natural ligand/antiligand binding reactions in which the cadherins are involved.

SUMMARY OF THE INVENTION

[0011] The present invention provides materials and methods that are relevant to cell-cell adhesion. In one of its aspects, the present invention provides purified and isolated polynucleotide sequences (e.g., DNA and RNA, both sense and antisense strands) encoding novel cadherins, cadherin-4 through -12. Preferred polynucleotide sequences of the invention include genomic and cDNA sequences as well as wholly or partially synthesized DNA sequences, and biological replicas thereof (i.e., copies of purified and isolated DNA sequences made *in vivo* or *in vitro* using biological reagents). Biologically active vectors comprising the polynucleotide sequences are also contemplated.

[0012] The scientific value of the information contributed through the disclosures of the DNA and amino acid sequences of the present invention is manifest. For example, knowledge of the sequence of a cDNA encoding a cadherin makes possible the isolation by DNA/DNA hybridization of genomic DNA sequences that encode the protein and that specify cadherin-specific expression regulating sequences such as promoters, enhancers and the like. DNA/DNA hybridization procedures utilizing the DNA sequences of the present invention also allow the isolation of DNAs encoding heterologous species proteins homologous to the rat and human cadherins specifically illustrated herein.

[0013] According to another aspect of the invention, host cells, especially eucaryotic and procaryotic cells, are stably transformed or transfected with the polynucleotide sequences of the invention in a manner allowing the expression of cadherin polypeptides in the cells. Host cells expressing cadherin polypeptide products, when grown in a suitable culture medium, are particularly useful for the large scale production of cadherin polypeptides, fragments and variants; thereby enabling the isolation of the desired polypeptide products from the cells or from the medium in which the cells are grown.

[0014] The novel cadherin proteins, fragments and variants of the invention may be obtained as isolates from natural tissue sources, but are preferably produced by recombinant procedures involving the host cells of the invention. The products may be obtained in fully or partially glycosylated, partially or wholly de-glycosylated or non-glycosylated forms, depending on the host cell selected or recombinant production and/or post-isolation processing.

[0015] Cadherin variants according to the invention may comprise polypeptide analogs wherein one or more of the specified (i.e., naturally encoded) amino acids is deleted or replaced or wherein one or more nonspecified amino acids are added: (1) without loss, and preferably with enhancement, of one or more of the biological activities or immunological characteristics specific for a cadherin; or (2) with specific disablement of a particular ligand/antiligand binding function of a cadherin.

[0016] Also contemplated by the present invention are antibody substances [e.g., monoclonal and polyclonal antibodies, chimeric and humanized antibodies, and antibody domains including Fab, Fab' and F(ab')₂, single chain antibodies, and Fv or single variable domains} and other binding proteins or peptides specifically react with cadherins of the invention. Antibody substances can be developed using isolated natural, recombinant or synthetic cadherin polypeptide products or host cells expressing such products on their surfaces. The antibody substances may be utilized for purifying polypeptides of the invention, for determining the tissue expression of the polypeptides and as antagonists of the ligand/antiligand binding activities of the cadherins. Specifically illustrating antibody substances of the invention

are the monoclonal antibodies produced by the hybridomas designated 30Q8A, 30Q4H, 45A5G, 30S2F and 45C6A which were all deposited with the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockvilie, Maryland 20852 on April 6, 1993 and were respectively assigned ATCC Deposit Nos. HB11316, HB11317, HB11318, HB11319 and HB11320. Also illustrating antibody substances of the invention is the monoclonal antibody produced by the hybridoma designated 30T11G which was deposited with the ATCC on April 8, 1993 and was assigned ATCC Deposit No. HB11324.

[0017] The DNA and amino acid sequence information provided by the present invention makes possible the systematic analysis of the structure and function of the cadherins described herein and definition of those molecules with which the cadherins will interact on extracellular and intracellular levels. The idiotypes of anti-cadherin monoclonal anti-bodies of the invention are representative of such molecules and may mimic natural binding proteins (peptides and polypeptides) through which the intercellular and intracellular activities of cadherins are modulated. Alternately, they may represent new classes of modulators of cadherin activities. Anti-idiotypic antibodies, in turn, may represent new classes of biologically active cadherin equivalents.

[0018] Methods for modulating cadherin activity may involve contacting a cadherin with an antibody (or antibody fragment), another polypeptide or peptide ligand (including peptides derived from cadherins or other proteins, or a novel peptide), or a small molecule ligand that specifically binds to a portion (extracellular or cytoplasmic) of the cadherin.

[0019] Numerous aspects and advantages of the present invention will be apparent upon consideration of the fol-

[UU19] Numerous aspects and advantages of the present invention will be apparent upon consideration of the lowing detailed description thereof, reference being made to the drawing wherein:

FIGURE 1 is a bar graph illustrating the binding of polymorphonuclear neutrophils and T cells to fusion proteins comprising extracellular subdomains of cadherin-5.

DETAILED DESCRIPTION

20

The present invention is illustrated by the following examples wherein Example 1 describes the isolation of [0020] cDNA sequences encoding rat cadherins-4 through -11 and -13; Example 2 describes the isolation of cDNA sequences encoding the human homologs of rat cadherins-4, -5, -6, -8, -10, -11 and -13 and the isolation of a human cadherin not identified in rat, cadherin-12; Example 3 characterizes the relationship of cadherins of the invention to previously identified cadherins in terms of amino acid sequence and structure. The generation of polyclonal and monoclonal antibodies specific for cadherins of the invention is described in Example 4. Example 5 describes the construction of expression constructs comprising cadherin-4, -5 and -8 sequences, transfection of mammalian cells with the constructs and results of cell-cell adhesion assays performed with the transfected cells. Example 6 presents the results of assays for cadherin mRNA and protein expression in various mammalian tissues, cells and cell lines. The results of in vitro transendothelial migration assays involving cadherin-5 and assays of neutrophil and T-cell binding to cadherin-5 fusion protein are described in Example 7. Example 8 describes expression of cadherin-5 in the blood-brain barrier and Example 9 describes cadherin-5 peptides that are capable of increasing endothelim permeability. Example 10 describes the association of the cytoplasmic domain of cadherin-5 with plakoglobin. The disclosures of Suzuki et al., Cell Regulation, supra; Suzuki et al., J. Cell. Biol., 115, Abstract 72a (1991); Suzuki et al., Cell. Struc. Funct., 16, 605 (1991); and Tanihara et al., Invest. Ophthalmol. Vis. Sci., 32, 1013 (1991) are incorporated by reference herein for purposes of illustrating the background of the invention.

Example 1

50

[0021] Partial cDNA clones encoding nine novel cadherins were isolated from rat brain and retina by PCR. Eight of the novel rat cadherin cDNAs were isolated using degenerate PCR primers based on highly conserved regions of the cytoplasmic domain of known cadherins and one was isolated using degenerate PCR primers based on moderately conserved regions of the extracellular domain of known cadherins.

A. Preparation of Rat cDNA

[0022] Total RNAs were prepared from rat brain by the guanidium isothiocyanate/cesium chloride method described in Maniatis et al., pp. 196 in Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory (1982). Brain poly(A)⁺ RNAs were then isolated using an Invitrogen (San Diego, CA) Fast-Track kit. Rat retina poly(A)⁺ RNA was purchased from Clonetech (Palo Alto, CA). cDNA was synthesized from the poly(A)⁺ RNA of both rat brain and retina using a cDNA synthesis kit (Boehringer Mannheim Corporation, Indianopolis, IN).

B. <u>Design and Synthesis of PCR Primers</u> <u>Corresponding to Cadherin Cytoplasmic Domain</u>

[0023] A first pair of degenerate oligonucleotide primers, listed below in IUPAC nomenclature, was designed to correspond to highly conserved sequences in the cytoplasmic domain of mouse N-, E-, and P-cadherins. Underlined sequences at the end of each oligonucleotide indicate an *Eco*R1 site added to the primers to facilitate cloning of the fragments generated by PCR.

Degenerate Primer 1

10

TAPPYD (SEQ ID NO: 1)
5' GAATTCACNGCNCCNCCNTAYGA 3' (SEQ ID NO: 2)

Degenerate Primer 2

15

35

40

FKKLAD (SEQ ID NO: 3) 3' AARTTYTTYRANCGNCT<u>CTTAAG</u> 5' (SEQ ID NO: 4)

The degenerate oligonucleotides were synthesized using the Applied Biosystems model 380B DNA synthesizer (Foster o City, CA).

C. <u>Design and Synthesis of PCR Primers</u>

<u>Corresponding to Cadherin Extracellular Domain</u>

25 [0024] A second pair of degenerate oligonucleotide primers, listed below in IUPAC nomenclature, was designed to correspond to moderately conserved sequences in the third subdomain of the extracellular domain of mouse N-, E-, and P-cadherins. The extracellullar domains of the mouse N-, E- and P-cadherins have been characterized as having five internal subdomains, some of which may be involved in cadherin interaction with Ca²⁺. Underlined sequences at the end of each oligonucleotide indicate an *Eco*R1 site added to the primers, to facilitate cloning of the fragments generated by PCR.

Degenerate Primer 3

K(P/G)(L/I/V)D(F/Y)E (SEQ ID NO: 5) 5' GAATTCAARSSNNTNGAYTWYGA 3' (SEQ ID NO: 6)

Degerenate Primer 4

(N/D)E(A/P)PXF (SEQ ID NO: 7) 3' TRCTYSGNGGNNNNAAR<u>CTTAAG</u> 5' (SEQ ID NO: 8)

D. Cloning of cDNA Encoding Eight Novel Rat Cadherins

[0025] PCR amplification reactions of rat brain and retina cDNA were carried out either with degenerate primers 1 and 2 or with degenerate primers 3 and 4 under conditions essentially the same as those described in Saiki *et al., Science, 239*, 487-491 (1988). Briefly, 100 ng of brain or retina first strand cDNA was used as template for amplification by Taq DNA polymerase (International Bioltechnology, New Haven, CT) using 10 μg of each primer set per reaction. PCR reactions were initiated by adding 2 units of Taq DNA polymerase to the reaction solution, after which 35 PCR reaction cycles were carried out. Reaction cycles consisted of denaturation performed at 94°C for 1.5 minutes, oligonucleotide annealing at 45°C for 2 minutes, and elongation at 72°C for 3 minutes. The resulting PCR fragments were separated by agarose gel electrophoresis, and DNA bands of the expected size were extracted from the gel and digested with *Eco*R1. The fragments were then cloned into the M13 vector (Boehringer Mannheim Corp., Indianapolis, IN) and *E. coli* JM101 cells were transformed with the resulting constructs. Individual clones were then isolated and sequenced. Sequencing of the DNAs was carried out using a sequences kit (United States Biochemicals, Cleveland, OH) and the resulting DNA and deduced amino acid, sequences of the clones were compared to sequences of known cadherins using the Microgenie program (Beckman, Fullerton, CA).

[0026] Ten representative cDNA clones encoding cadherins were identified from the PCR reaction based on degenerate primers 1 and 2. Two clones corresponded to rat N-, and E-cadherins, but eight clones encoded previously

undescribed cadherins, and were designated cadherins-4 through -11. The DNA and deduced amino acid sequences of the eight rat cytoplasmic domain cDNA clones are respectively set out in SEQ ID NOs: 9 and 10 (cadherin-4), SEQ ID NOs: 11 and 12 (cadherin-5), SEQ ID NOs: 13 and 14 (cadherin-6), SEQ ID NOs: 15 and 16 (cadherin-7), SEQ ID NOs: 17 and 18 (cadherin-8), SEQ ID NOs: 19 and 20 (cadherin-9), SEQ ID NOs: 21 and 22 (cadherin-10) and SEQ ID NOs: 23 and 24 (cadherin-11).

[0027] An additional novel cadherin was identified from the PCR reaction based on degenerate primers 3 and 4, and it was designated cadherin-13. The DNA and deduced amino acid sequences of the rat cadherin-13 fragment are respectively set out in SEQ ID NOs: 25 and 26.

The PCR reaction based on degenerate primers 3 and 4 also amplified sequences which were later determined to be fragments of the extracellular domains of rat cadherins-4, -5, -6, -8, -9, -10, -11 and -13. The DNA and amino acid sequences of these extracellular fragments are respectively set out in SEQ ID NOs: 27 and 28 (cadherin-4), SEQ ID NOs: 29 and 30 (cadherin-6), SEQ ID NOs: 31 and 32 (cadherin-8), SEQ ID NOs: 33 and 34 (cadherin-9), SEQ ID NOs: 35 and 36 (cadherin-10), SEQ ID NOs: 37 and 38 (cadherin-11), SEQ ID NOs: 39 and 40 (cadherin-13). Larger cadherin-8 and -10 cDNAs were isolated from a rat brain cDNA library made in Uni-ZAP vector (Stratagene, La Jolla, CA) using labelled cadherin-8 extracellular domain PCR fragment (SEQ ID NO: 17) or cadherin-10 extracellular domain fragment (SEQ ID NO: 21) as probes. Two types of cadherin-8 cDNA clones were isolated. The first type encodes a full length cadherin, but the second type encodes a truncated protein the sequence of which diverges from the first type of cadherin-8 clone near the N-terminus of the fifth extracellular subdomain (EC5). The truncated clone contains a short stretch of unique sequence in the N-terminus of EC5 but lacks the remainder of EC5, the transmembrane domain and the cytoplasmic domain. DNA and deduced amino acid sequences of the full length clone are respectively set out in SEQ ID NOs: 41 and 42 and the DNA and deducted amino acid sequences of the truncated cadherin-8 clone are set out in SEQ ID NOs: 43 and 44. The cadherin-10 cDNA clone that was isolated has an open reading frame which begins at a region corrsponding to the middle of the first extracellular domain (EC1) of previously identified cadherins. The DNA and deduced amino acid sequences of the cadherin-10 clone are set out in SEQ ID NOs: 45 and 46.

Example 2

[0030] Full length cDNAs encoding human homologs of rat cadherins-4, -8, -11 and -13 and partial cDNAs encoding human homologs of rat cadherins-6 and -10 were isolated from a human fetal brain cDNA library (λZapll vector, Stratagene). A full length cDNA encoding a human homolog of rat cadherin-5 was isolated from a human placental cDNA library (λgt11 vector, Dr. Millan, La Jolla Cancer Research Foundation, La Jolla, CA).

[0031] Probes for screening the human fetal brain and placental cDNA libraries were amplified by PCR from human brain cDNA (Dr. Taketani, Kansain Medical University, Moriguchi, Osaka, Japan) using the primers described in Example 1B-C. Probes consisting of human cadherin-4, -5, -6, -8, -10 and -11 sequences were generated using degenerate primers 1 and 2 and probes consisting of human cadherin-13 sequence were generated using degenerate primers 3 and 4. Amplification of the human fetal brain cDNA with degenerate primers 3 and 4 also generated a PCR fragment encoding a cadherin not isolated from rat, designated cadherin-12.

[0032] PCR fragments encoding human cadherins-4, -5, -6, -8, -10, -11, -12 and -13 were labeled with ³²P and used to probe the human fetal brain and placental cDNA libraries according to the plaque hybridization method described in Ausubel et al., Eds., *Current Protocols in Molecular Biology*, Sections 6.1.1 to 6.1.4 and 6.2.1 to 6.2.3, John Wiley & Sons, New York (1987). Positives were plaque-purified and inserts were cut out using an *in vivo* excision method. The inserts were then subcloned into the M13 vector (Boehringer Mannheim) for sequencing.

[0033] Inserts consisting of full length cDNAs encoding human homologs of rat cadherins-4, -8, -11, -12 (putative) and -13 and partial cDNAs encoding human homologs of rat cadherins-6 and -10 were identified in clones from the human fetal brain cDNA library and a full length cDNA encoding a human homolog of rat cadherin-5 was identified in a clone from the human placental cDNA library. The DNA and deduced amino acid sequences of the human homologs are respectively set out in SEQ ID NOs: 47 and 48 (cadherin-4), SEQ ID NOs: 49 and 50 (cadherin-5), SEQ ID NOs: 51 and 52 (cadherin-6), SEQ ID NOs: 53 and 54 (cadherin-8), SEQ ID NOs: 55 and 56 (cadherin-10), SEQ ID NOs: 57 and 58 (cadherin-11), SEQ ID NOs: 59 and 60 (cadherin-12), and SEQ ID NOs: 61 and 62 (cadherin-13).

Example 3

[0034] Comparison of the full-length sequences of the novel human cadherins described in Examples 1 and 2 with sequences of previously described cadherins and cadherin-related proteins provides support for the proposal that cadherins can be divided into at least three subgroups based on amino acid sequence identity and/or domain structure. Identity values for one possible alignment of the sequences of the extracellular domains of selected human cadherins are presented in Table 1 below.

Table 1

10

15

	N	E	Р	4	5	8	11	12	13
N	100	45	45	68	30	34	35	33	46
E	45	100	53	41	29	30	29	31	37
Р	45	53	100	29	30	29	31	31	38
4	68	41	41	100	29	33	34	33	44
5	30	29	30	29	100	40	41	39	32
8	34	30	29	33	40	100	66	58	32
11	35	29	31	34	41	66	100	58	31
12	33	31	31	33	39	58	58	100	33
13	46	37	38	44	32	32	31	33	100

20 [0035] Based on such sequence alignments and on the fact that certain combinations of cadherin sequences seem to have conserved stretches of amino acids when aligned, one subgroup of cadherins may include E-cadherin, N-cadherin, P-cadherin and cadherin-4, while a second subgroup may include cadherin-5, cadherin-8, cadherin-11 and cadherin-12. Cadherins-6, -7, -9 and -10 may also be included with the second subgroup based on their partial amino acid sequences disclosed herein. The amino acid sequence of cadherin-4 exhibits especially high amino acid sequence identity with that of R-cadherin (92%), indicating that cadherin-4 may be the human homolog of chicken R-cadherin. All cadherins in these two subgroups have a similar structure. Following an initiation codon, each has a signal sequence, prosequence, proteolytic cleavage site of precursor protein, an extracellular domain (which comprises five subdomains EC1-5), a transmembrane sequence and a cytoplasmic domain. For cadherin-5, these sequences/domains appear to correspond to about the following amino acid positions of SEQ ID NO: 50: 1-24 (signal sequence), 25-43 (prosequence), 44-147 (EC1), 148-254 (EC2), 255-368 (EC3), 369-475(EC4), 476-589 (EC5), 590-616 (transmembrane sequence) and 617-780 (cytoplasmic domain).

[0036] Cadherin-13, T-cadherin and V-cadherin may be representative of a third subgroup of cadherins. Cadherin-13 consists of a cadherin-like extracellular domain, but has no domains that would correspond to the typical transmembrane or cytoplasmic domains of other cadherins. Even though about 10% of the clones obtained by PCR using degenerate primers 3 and 4 were cadherin-13 clones, none of the clones included sequences corresponding to a cytoplasmic domain. An attempt to isolate a cDNA that contained this region by PCR using a primer corresponding to the most C-terminal region of cadherin-13 available and a mixed oligonucleotide primer corresponding to a well-conserved amino acid sequence of the cytoplasmic domain of cadherins failed to generate any product with the anticipated molecular weight. A similar protein, T-cadherin, has been identified in chicken which also lacks the typical cadherin cytoplasmic domain. The amino acid sequence identity between the two molecules is about 80%. Cadherin-13 may be the human homologue of chicken T-cadherin or may be a closely related molecule. Human cadherin-13 and avian T-cadherin may also both be closely related to V-cadherin. A 29-amino acid amino terminal sequence of bovine V-cadherin is similar to the start of the precursor region of cadherin-13 (93%) and T-cadherin (79%). V-cadherin is a 135 KD protein which appears to be restricted in tissue distribution to endothelium. In constrast, mature T-cadherin has a molecular weight of 95 KD and shows a wide tissue distribution. Both V-cadherin and T-cadherin are linked to the cell membrane through phosphoinositiol.

Example 4

50 [0037] Polyclonal and/or monoclonal antibodies specific for cadherins of the invention were generated.

A. Generation of Polyclonal Antibodies

[0038] Bacterial fusion proteins consisting of maltose binding protein fused to portions of cadherin extracellular subdomains (either human cadherin-4, -5 or -11, or rat cadherin-8) were generated and subsequently used for the generation of polyclonal antibodies.

[0039] A cDNA fragment corresponding to a 40 KD portion of the extracellular domain of human cadherin-5 (nucleotides 535 to 1527 of SEQ ID NO: 49) was synthesized by PCR from the full-length human cadherin-5 cDNA described

in Example 2. The fragment was subcloned into the multicloning site (EcoR1-XbaI) of the pMAL-RI plasmid vector [New England Biolabs Inc. (NEB), Beverly, MA]. The resulting construct encodes maltose binding protein fused to the extracellular domain of cadherin-5. Constructs encoding maltose binding protein fused to the three N-terminal subdomains of human cadherin-4, rat cadherin-8 and human cadherin-11 were generated by similar methods.

[0040] E. coli NM522 cells (Stratagene) were then transformed with one of the fusion protein constructs and grown in quantity. After disruption of E. coli cells, the individual fusion proteins were purified by affinity column chromatography using amylose resin (NEB) according to the instructions of the manufacturer. When subjected to SDS-PAGE, the purified fusion proteins each showed essentially one band of the expected size.

[0041] A total of five hundred μg of a fusion protein in Freund's complete adjuvant was injected into rabbits at four subcutaneous sites. Subsequent injections were carried out at three week intervals using 100 μg of the fusion protein in Freund's incomplete adjuvant also at four subcutaneous sites. The resulting polyclonal sera generated from immunization of rabbits with cadherin-4, -5 or -8 fusion protein were collected and tested for specificity on L cells transfected with the appropriate cadherin sequence (see Example 5). Polyclonal serum generated from immunization of rabbits with cadherin-11 was also collected.

[0042] Immunoblotting of various cell types showed that the The anti-cadherin-4 polyclonal serum reacts with protein of about 130 KD in L cells transfected with full length cadherin-4 cDNA and in rat brain. Cadherin-5-specific serum reacts with a protein of about 135 KD in L cells transfected with a full length cadherin-5 DNA and with a protein of about 135 KD in human umbilical vein endothelial cells (HUVEcs). The serum does not react with MDCK cells that expressed high levels of E-cadherin. In bovine aortic endothelial cells, the anti-cadherin-5 serum reacts with a protein of about 120 KD. Additionally, the anti-cadherin-5 serum reacts with a protein which has the same molecular weight in rat brain enclothelial cells in culture. The cadherin-8 polyclonal antibody detected a strong band of about 90 KD and a weak band of about 130 KD in rat brain.

B. Generation of Monoclonal Antibodies Specific for Human Cadherin-5

25

[0043] Monoclonal antibodies to cadherin-5 were prepared using bacterial fusion proteins containing subdomains of the extracellular domain of human cadherin-5 as immunogens. The fusion proteins prepared included maltose binding protein and the extracellular subdomains 1-2 (EC1-2) or extracellular subdomains 2-4 (EC2-4) of cadherin-5 in the bacterial expression vector pMAL (NEB). The two fusion proteins were expressed in bacteria and purified on amylose-sepharose as described in foregoing section on generation of polyclonal antibodies. The purified fusion proteins were used separately to immunize mice at two subcutaneous sites (100 µg of fusion protein per mouse in Freund's complete adjuvant). The mice then were subcutaneously immunized with Freund's incomplete adjuvant.

[0044] The spleen from each mouse was removed sterility and treated in the same manner. Briefly, a single-cell suspension was formed by grinding the spleen between the frosted ends of two glass microscope slides submerged in serum free RPMI 1640 supplemented with 2 mM L-glutamine, 1 mM sodium pyruvate, 100 units/ml penicillin and 100 mg/ml streptomycin (RPMI) (Gibco, Canada). The cell suspension was filtered through a sterile 70-mesh cell strainer, and washed twice by centrifuging at 200 g for 5 minutes and resuspending the pellet in 20 ml serum free RPMI. Thymocytes taken from 3 naive Balb/c mice were prepared in a similar manner. NS-1 myeloma cells, kept in log phase in RPMI with 11% fetal bovine serum (FBS) (Hyclone Laboratories, Inc., Logan, UT) for three days prior to fusion, were centrifuged at 200 g for 5 minutes, and the pellet was washed twice as described for the mouse spleen cells.

[0045] After washing, the spleen cells and myeloma cells were brought to a final volume of 10 ml in serum free RPMI, and 10 μ l of that final volume was diluted 1:100 in serum free RPMI. Twenty μ l of each dilution was removed, mixed with 20 μ l 0.4% trypan blue stain in 0.85% saline, loaded onto a hemacytometer and counted. Two x 10⁸ spleen cells were combined with 4 x 10⁷ NS-1 cells, centrifuged and the supernatant was aspirated. The cell pellets were dislodged by tapping the tube and 2 ml of 37°C PEG 1500 (50% in 75 mM Hepes, pH 8.0) (Boehringer Mannheim) was added with stirring over the course of 1 minute, followed by adding 14 ml of serum free RPMI over 7 minutes. An additional 16 ml RPMI was added and the cells were centrifuged at 200 g for 10 minutes. After discarding the supernatant, the pellet was resuspended in 200 ml RPMI containing 15% FBS, 100 mM sodium hypoxanthine, 0.4 mM aminopterin, 16 mM thymidine (HAT) (Gibco), 25 units/ml IL-6 (Boehringer Mannheim) and 1.5 x 10⁶ thymocytes/ml (plating medium). The suspension was dispensed into ten 96-well flat bottom tissue culture plates at 200 ml/well. Cells in plates were fed on days 2, 4, and 6 days post-fusion by aspirating approximately 100 ml from each well with an 18 G needle, and adding 100 ml/well plating medium described above except containing 10 units/ml IL-6 and lacking thymocytes.

Fusions 30 (from a mouse immunized with EC2-4) and 45 (from a mouse immunized with EC1-2) were screened initially by antibody capture ELISA, testing for presence of mouse IgG. Secondary screening of fusions 30 and 45 consisted of assays using plates coated with a monolayer of fixed endothelial cells for ELISAs. HUVEcs, Lewis rat brain endothelial cells (LeBCE), and bovine aortic endothelial cells (BAE) were allowed to grow in 96-well flat bottom tissue culture microtiter plates until the bottom of well was completely covered with a monolayer of cells. Plates were washed twice with 100 μ l/well of Ca²⁺/Mg²⁺ free PBS (CMF-PBS) and aspirated completely. Cells were then fixed with

100 μ l/well of 3% ρ -Formaldehyde, 1% Sucrose in CMF-PBS at room temperature for 30 minutes. Cells were then permeablized with approximately 250 μ l/well of CSK buffer (0.5% Triton 100, 100mM NaCl, 10mM PIPES, 2mM MgCl) and incubated at room temperature for 30 minutes. Plates were blocked with 250 μ l/well of 2% BSA in 1X CMF-PBS (blocking solution) and incubated at 37°C for 60 minutes. Blocking solution was aspirated and 50 to 100 μ l/well of supernatant from fusion plates was added. Plates were incubated at room temperature for 60 minutes and then were washed one time with 250 μ l/well of 0.5% BSA in CMF-PBS (wash solution 1) and two times with 250 μ l/well of CMF-PBS (wash solution 2). One hundred fifty μ l of horseradish peroxidase conjugated goat anti-mouse IgG(fc) (Jackson ImmunoResearch, West Grove, PA) diluted 1:3500 in PBST was added and plates were incubated at room temperature for 60 minutes. Plates were washed as before and 150 μ l substrate consisting of 1mg/ml o-phenylene diamine (Sigma) and 0.1 ml/ml 30% H₂O₂ in 100mM Citrate, pH 4.5 was added. The color reaction was stopped after 30 minutes with the addition of 50 μ l of 15% H₂SO₄. A₄₉₀ was read on a plate reader (Dynatech). About 20 positive wells were identified for each fusion and were subsequently cloned.

[0047] Hybridomas were screened in cloning steps in an ELISA assay by testing for reactivity of monoclonals to the cadherin-5 EC2-4 fusion protein and excluding maltose binding protein reactive monoclonals. Immulon 4 plates (Dynatech, Cambridge, MA) were coated at 4°C with 50 μ I/well fusion protein diluted to 0.1 μ g/well (for fusion protein) and to 0.2 μ g/well (for maltose binding protein alone) in 50mM carbonate buffer, pH 9.6. Plates were washed 3 times with PBS, 0.05% Tween 20 (PBST) and 50 μ I hybridoma culture supernatant was added. After incubation at 37°C for 30 minutes, and washing as above, 50 μ I of horseradish peroxidase conjugated goat anti-mouse IgG(fc) (Jackson ImmunoReseach, West Grove, PA) diluted 1:3500 in PBST was added. Plates were incubated at 37°C for 30 minutes and washed 4 times with PBST. One hundred μ I substrate consisting of 1 mg/mI o-phenylene diamine (Sigma Chemical Co., St. Louis, MO) and 0.1 μ I 30% H₂O₂ in 100 mM citrate, pH 4.5 was added. The color reaction was stopped after 5 minutes with the addition of 50 μ I of 15% H₂SO₄. Absorbance at 490 nm was determined using a plate reader.

[0048] The hybridomas designated 30Q8A (ATCC HB11316), 30Q4H (ATCC HB11317), 45A5G (HB11318), 30S2F (HB11319), 45C6A (HB11320), 30T11G (ATCC HB11324), 30M8G, 30O6E and 30R1A] were identified as reactive with endothelial cells and with the cadherin-5 EC2-4 fusion protein. The hybridomas were cloned twice by limiting dilution and grown in ascites. The monoclonal antibodies produced by the hybridomas were isotyped in an ELISA assay. The results of the assay are presented in Table 2 below.

C. Subdomain Specificity of C5 Specific Monoclonal Antibodies

To determine if the hybridomas produced monoclonal antibodies reactive with unique epitopes of the extracellular domain of C5, the monoclonal antibodies were purified, biotinylaled, and tested in a cross competition ELISA. Immulon IV 96-well plates were coated with either EC1-2 or EC2-4 cadherin-5 fusion protein at 0.2 μ g/ml in 50 μ l 50mM NaCO3, pH 9.6 overnight at 4°C. The wells were aspirated and washed three times with PBS/0.05% Tween 20. The plate was then blocked with 50 μ l/well PBS, 2% BSA (Sigma) for 30 minutes at 37°C. Monoclonal antibodies were purified from hybridoma supernatants over a protein A-Sepharose column and the eluted antibody was dialyzed against 0.1M NaCO3 pH 8.2. One mg/ml of antibody was reacted with 60 μ l of a 1 mg/ml stock solution in DMSO of NHS-biotin (Pierce Chemical Co., Rockford, IL) for 1 hour at room temperature and the reaction was stopped by dialysis overnight at 4°C against CMF/PBS. The biotinylated antibodies in PBS/0.05% Tween 20 were then added as primary antibody (50 μ l/well) to a plate coated with fusion protein and incubated for 30 minutes at 37°C. The plate was then aspirated and washed three times with PBS/0.05% Tween 20. Peroxidase-conjugated strepavidin in PBS/Tween was added 50 μ l/well and incubated for 30 minutes at 37°C. The plate was aspirated and washed three times in PBS/0.05% Tween 20, and o-phenylenediamine in 100mM citrate buffer and hydrogen peroxide was added at 100 μ l/well. The plate was developed at room temperature for 5-15 minutes. The reaction was stopped with 50 μ l/well 15% sulfuric acid and the plate was read on a plate reader. Results of the assay are presented in Table 2 below.

[0050] To confirm subdomain specificity, the cadherin-5 fusion proteins EC1-2 and EC2-4 were run on SDS-PAGE (10%) and immunoblotted with the cadherin-5 specific monoclonal antibodies.

[0051] Table 2 below set outs the domain specificity and isotype of the cadherin-5 specific monoclonal antibodies.

Table 2

Monoclonal Antibody	C5 Subdomain	Isotype
30Q4H	2	IgG _{2b}
45A5G	2	lgG₁
45C6A	2	lgG₁

55

50

Table 2 (continued)

Monoclonal Antibody	C5 Subdomain	Isotype
30S2F	3-4	lgG ₁
30Q8A	3-4	lgG _{2b}
30T11G	3-4	lgG₁

[0052] Competition assays were carried out as described above for assays for binding to cadherin-5 EC2-4 fusion protein except that unlabelled primary cadherin-5 specific monoclonal antibodies (or mouse IgG) were added 30 minutes prior to addition of biotinylated cadherin-5 specific monoclonal antibodies. Monoclonal antibodies produced by the hybridomas 30M8G, 30O6E and 30RIA compete for a site that is near or identical to the binding site of the antibody produced by hybridoma 30Q4H.

15 Example 5

5

[0053] Human cadherins-4 and -5 and rat cadherin -8 were expressed in mouse fibroblast L cells (ATCC CCL1.3) which do not normally express cadherins.

20 A. Construction of Expression Vectors

[0054] The cDNA sequences encoding human cadherins-4 and -5 which are described in Example 2 and the cDNA sequence encoding rat cadherin-8 which is described in Example 1 were subcloned into the multicloning site of expression vector pRC/RSV (Invitrogen).

[0055] Cadherin-4 DNA sequences were isolated by an *in vivo* excision procedure from the λZapII clone (described in Example 2) containing the entire coding sequence of cadherin-4. Using a helper virus, the sequences were excised from λZapII in the form of Bluescript plasmid. The plasmid was then cut with *Hind*III and blunt-ended with T4 polymerase. The resulting DNA fragment was redigested with *Spe*I to generate a cadherin-4 cDNA fragment having a blunt end and a *Spe*I sticky end. The fragment was purified by agarose gel electrophoresis and subcloned into the pRC/RSV expression vector that had been previously digested with *Spe*I and *Xba*I (the *Xba*I end was blunt-ended with T4 polymerase).

[0056] The λgt11 clone containing the entire coding sequence of cadherin-5 (described in Example 2) was cut with *Eco*RI and the resulting fragment containing the cadherin-5 sequences was purified by agarose gel electrophoresis. The purified fragment was then subcloned into the *Eco*RI site of the Bluescript plasmid. Cadherin-5 sequences were cut from the resulting construct with *Hinc*II and *Xba*I and subcloned into the *NotI-Xba*I site of the pRC/RSV vector.

[0057] The full length cDNA encoding rat cadherin-8 was excised from the Uni-ZAP clone described in Example 1 by digestion with *Kpn*I, followed by blunt-ending and re-digestion with *Spe*I. The cadherin-8 encoding fragment was purified by agarose gel electrophoresis and was subcloned into the pRC/RSV vector which had been digested with *Xba*I, blunt-ended and redigested with *Spe*I.

B. Transfection of L Cells

40

[0058] Mouse fibroblast L cells were transfected with the human cadherin-4 and -5 and rat cadherin-8 expression constructs by a Ca²⁺ phosphate precipitation method and stable transfectants were obtained by G418 selection. Cadherin-4 and -8 transfectant cells showed a morphology similar to that of parental L cells (fibroblastic), but cadherin-5 transfectant cells exhibited a flattened morphology. Neuro 2a cells (ATCC CCL131) were also transfected by a Ca²⁺ phosphate precipitation procedure with the cadherin-4 and cadherin-8 expression constructs. Cadherin-4 transfectants showed epithelial structure, suggesting that cadherin-4 has activity in epithelial structure formation and may be involved in the neural tissue development.

C. Northern and Western Blot Assays of Cadherin mRNA and Protein Expression in Transfected Cells

[0059] Both cadherin-4, -5 and -8 transfectants showed mRNA of the expected size of 3.5 kb, 3.2 kb and 3 kb, respectively, in Northern blot analysis using the appropriate full length human cDNAs as a probe. (See Example 6A for a description of the Northern blot assay.)

[0060] For Western blots, cadherin-4, -5 and -8 transfectants were washed with PBS and SDS-PAGE sample buffer was added directly to the cells. SDS-PAGE (Laemmli) was carried out and gels were blotted electrophoretically

onto PVDF membrane. The membranes were incubated in TBS containing 5% skim milk for 2 hours at room temperature and then were incubated with the appropriate polyclonal antibody in TBS containing 0.05% Tween 20 for 1 hour at room temperature. After four washes (of 5 minutes each) with TBS containing 0.05% Tween 20, the membranes were incubated with alkaline phosphatase conjugated anti-rabbit IgG antibody (Promega Corp., Madison, WI) in TBS containing 0.05% Tween 20 for 1 hour at room temperature. The membranes were then washed again four times with TBS containing 0.05% Tween 20 at room temperature and developed by using Promega Western blue. Cadherin-4, -5 and -8 polyclonal antibodies each reacted with a band of about 130 KD.

D. Calcium Protection from Trypsin Digestion

10

[0061] Since cadherins have been shown to be protected from trypsin digestion by Ca²⁺, the effect of Ca²⁺ on trypsin treatment (0.01 % soybean trypsin for 30 minutes at 37°C) of human cadherin-4 and -5 and rat cadherin-8 expressed on the surface of transfected L cells was examined. Two mM Ca²⁺ protected the cadherin-4 from the trypsin digestion, but cadherin-5 and cadherin-8 were digested easily even in the presence of 1-5 mM of Ca²⁺.

E. Cell-Cell Adhesion Assay

The cell-cell adhesion activity of the transfected cells was assayed by a re-aggregation assay as described in Yoshida-Noro *et al.*, *Devel. Biol.*, *101*, 19-27 (1984). Briefly, transfectants were grown to near confluency and then dispersed into single cells with mild trypsin treatment (0.01 % for 15 minutes) in the presence of 2mM Ca²⁺. After washing, the trypsinized cells were incubated in Hepes buffered saline (HBS) containing 2mM CaCl₂, 1% BSA and 20 μg/ml deoxynuclease on a rotary shaker at 50 rpm for 30 to 60 minutes and then cell aggregation was monitored. Cadherin-4 transfectant cells aggregated within 30 minutes and formed relatively large aggregates, whereas cadherin-5 transfectant cells did not aggregate under the same conditions. However, cadherin-5 transfectants gradually re-aggregated and formed relatively small aggregate after prolonged incubation (4-5 hours or more). Similarly, cadherin-8 transfectants did not show significant cell adhesion activity. Parental L cells did not show cell adhesion under the same conditions. The sensitivity of cadherin-5 and cadherin-8 to trypsin digestion may account for the reduced cell adhesion seen in the reaggregation assay because the transfected L cells are initially dispersed with trypsin in the assay.

30 Example 6

35

[0063] The expression of mRNAs encoding cadherins of the invention was examined in rat brain, kidney, liver, lung and skin and in various human cells by Northern blot analysis. The expression of cadherin protein was also examined in endothelial cells and leukocytes by immunofluorescence or immunoblotting.

A. Northern Blot Assays of Rat Tissue and Human Cells

[0064] Poly(A)⁺ RNA from rat brain, kidney, liver, lung and skin was prepared as described in Example 1 for rat

brain. The RNA preparations were then electrophoresed in an 0.8% agarose gel under denaturing conditions and transferred onto a nitrocellulose filter. Northern blot analyses were carried out according to a method described in Thomas, *Proc. Natl. Acad. Sci. USA, 77*, 5201-5202 (1980). Filters were hybridized with rat cadherin PCR fragments (described in Example 1) labeled with ³²P, including fragments corresponding to cadherins-4 through -11. The final hybridization wash was in 0.2X standard saline citrate containing 0.1% sodium dodecyl sulfate at 65°C for 10 minutes.

[0065] Cadherin-4 and cadherin-8 through -10 mRNAs were detected only in rat brain. The cadherin-8 PCR fragment hybridized to a major band of about 3.5 kb and a minor band of about 4.5 kb in rat brain. The mRNAs detected may be alternative splicing products and may correspond to the truncated and full length cadherin-8 clones described in Example 1. Cadherin-6 and -7 probes gave weak, signals on rat brain mRNA even after prolonged exposure. Cadherins-5, -6 and -11 mRNAs were detected in rat brain and other rat tissues including cadherin-5 mRNA in lung and kidney, cadherin-6 mRNA in kidney, and cadherin-11 mRNA in liver.

[0066] The expression of cadherin-8 and -11 in cultured human SK-N-SH neuroblastoma cells (ATCC HTB11), U251MG glioma cells and Y79 retinoblastoma cells (ATCC HTB18) was also assayed by Northern blot. Human cDNAs encoding cadherins-8 and -11 (described in Example 2) were labelled with ³²P and used as probes of poly(A)⁺ RNA prepared from the cells using an Invitrogen FastTrack kit.

[0067] The Northern blot procedure detected cadherin-8 RNA in the neuroblastoma and retinoblastoma cell lines, while cadherin-11 RNA was detected only in neuroblastoma cells. These results indicate that at least some of the cadherins of the invention are expressed in neurons and glial cells and/or their precursor cells.

[0068] Cadherin-5 RNA was detected by Northern blot assay of HUVECs (Clonetics), but was not detected in A431 human epidermoid carcinoma cells (ATCC CRL1555) or IMR90 human fibroblast cells (ATCC CCL186).

B. Immunoflourescence of Endothelial Cells and Immunoblotting of Leukocytes

[0069] Cultured endothelial cells isolated from bovine aorta, bovine brain microvasculature and human umbilical vein were subjected to immunofluorescence microscopy using anti-C5 polyclonal antibodies. Cadherin-5 protein at the cell junctions which was in close association with the peripheral actin microfilaments was labelled.

[0070] In contrast, when freshly isolated leukocytes (human PMN, lymphocytes and monocytes) or the monocyte-like cell line U937 were analyzed for the expression of cadherin-5 by immunoblotting using polycional antibodies and a monoclonal antibody (3006E) to cadherin-5, no cadherin-5 was detected. Furthermore, using a pan-cadherin antibody [Geiger et al., J. Cell Science, 97: 607-614 (1990)] specific for the cytoplasmic tail, no other cadherins were detected in these cell populations.

Example 7

45

55

[0071] Three in vitro transendothelial migration assays were utilized to show that cadherin-5 may participate in the movement of leukocytes across the intercellular junctions of endothelium.

A. Transmigration Assays

[0072] The migration of leukocytes (either human polymorphonuclear neutrophils or rat T cells) was followed for specific periods of time (15 minutes for PMNs and 2 hours for T cells). Immunofluorescent labeling of leukocytes using antibodies to specific cellular markers was used distinguish between leukocytes and endothelium. The polyclonal antibodies described in Example 4 were used to measure changes in the distribution of cadherin-5. An antibody (Novocastra Laboratories Ltd., United Kingdom) to PE-CAM1 (CD31) which is an intercellular junction molecule in endothelium was used as a control.

[0073] The role of cadherin-5 in the transmigration of polymorphonuclear neutrophils (PMNs) across HUVEcs was analyzed. The system utilized, which is described in Furie *et al.*, *J. Immunol*, *143*: 3309-3317 (1989), has been characterized with regard to electrical resistance of the endothelium and the adhesion molecules used in transmigration. HUVEcs were isolated in the absence of growth factor and cultured on human amniotic connective tissue in a two-chamber system. PMN migration on IL1 β -treated HUVEcs has previously been shown to involve E-selectin and β_2 integrins (CD11/CD18). See Furie *et al. J. Immunol.*, *148*: 2395-2484 (1992).

[0074] In the first assay, transmigration of PMNs was followed as an 11 minute time course on HUVEcs pretreated for four hours with IL1 β (1.5 U/ml) (Collaborative Research Inc., Beford, MA). Prior to addition of neutrophils, antibodies to cadherin-5 heavily labelled the cell junctions of the HUVEcs in a continuous pattern. Pretreatment of the endothelial monolayer with IL1 β had no effect on the distribution of cadherin-5 in the HUVEc monolayer compared to a control untreated culture. In the second assay, chemotaxis of PMNs across HUVEcs was stimulated by leukotriene B₄ (LTB₄) (Sigma) which was placed in the bottom chamber at 10⁻⁷M while neutrophils were added to the upper chamber. Chemotaxis of PMNs to LTB₄ across the endothelial monolayer was previously shown to be blocked by antibodies to CD11a, CD11b and ICAM-1. [See Furie *et al.*, *Blood*, *78*: 2089-2097 (1991)] In both assays, PMNs were identified with anti-CD45 antibody (Becton Dickinson, San Jose, CA).

[0075] In both assays during the 11-minute time course, the majority of the PMNs that adhered also transmigrated. Addition of neutrophils caused a rapid redistribution and regional loss of cadherin-5 even at the earliest time point (3 minutes). CD31 was also lost at sites of disruption of the monolayer, but in general appeared to be more stable during the transmigration process. The loss of cadherin-5 is probably the result of proteases released from the neutrophils during transmigration.

[0076] In a third assay, CD4 antigen activated rat T cells were utilized instead of PMNs (for a two-hour time course). Rat brain microvascular endothelium was grown on Transwell 5 micron polycarbonate membranes (Costar, Cambridge, MA). T cells were identified using an anti-CD4 antibody (Serotec, Indianapolis, IN). In this assay, the loss of cadherin-5 immunolabeling did not occur during transendothelial migration even though 10% of the T cells had crossed the endothelium after two hours. These results demonstrate differential effects of PMN versus T cells on intercellular junctions during tranendothelial migration. Analysis by confocal microscopy suggests that CD4 antigen-activated T cells and PMNs have a ligand that is able to interact with cadherin-5 on the endothelium during transmigration. Photomicrographs from confocal analysis show that during leukocyte transendothelial migration leukocytes can be found spanning the intercellular junction. The leukocyte separates the cell junction and cadherin-5 remains on adjacent cells even though the endothelial cells are not in contact.

B. Adhesion of PMNs and T Cells to Cadherin-5

[0077] To quantitate the binding of PMNs and activated T-cells to cadherin-5, a cell-substrate adhesion assay was

developed. This assay utilized plate-bound fusion proteins containing various extracellular subdomains of cadherin-5 (EC1-2 or EC2-4, see Example 4) and measured the binding of dye-labelled leukocytes to cadherin-5 protein using a cytofluor 2300 (Millipore, Bedford, MA).

[0078] The purified fusion proteins were absorbed to styrene plates and the binding of dye-labeled leukocytes to the fusion proteins was compared to binding to maltose binding protein and heat denatured bovine serum albumin (BSA) which was used to block nonspecific binding. The fusion proteins were dissolved in PBS containing Ca²⁺ and Mg²⁺, diluted into coating buffer and incubated overnight at 4°C. The plates were blocked with heat denatured BSA and then incubated with calcien (Molecular Probes, Eugene, OR)-labelled cells for 1 hour at 37°C. Results of the assay are presented in FIGURE 1 wherein the relative fluorescence values reported are the mean value of three samples.

[0079] PMNs bound to fusion proteins comprising the EC2-4 of cadherin-5, but preferentially bound to fusion proteins comprising EC1-2. These results are consistent with presence of cadherin subdomain 2 sequences in both fusion proteins. CD4 antigen activated T cells bound EC2-4 fusion protein. All these results, which indicate that PMNs interact with a more terminal or exposed subdomain of cadherin-5, are consistent with the rate that these cell types cross the endothelium, PMNs transmigrate in a few minutes and T cells require 30-60 minutes. The binding of U937 cells could be blocked in a dose dependent manner by polyclonal antisera made to the cadherin-5 EC2-4 subdomains.

[0080] The results presented in the foregoing paragraph in combination with the results presented in Example 6B that leukocytes do not express cadherins suggests that the counter ligand to which cadherin-5 binds on leukocytes is a distantly related cadherin or is not a cadherin. Cadherin binding has previously been thought to be homotypic.

20 Example 8

30

45

[0081] Expression of cadherin-5 in the blood-brain barrier in the endothelium of the cerebral cortex was assayed by Western blot and immunocytochemistry.

[0082] A SDS lysate was prepared by boiling bovine or macaque capillaries in SDS sample buffer for 2 minutes and then drawing the extract through a 25 G syringe needle. The extract was centrifuged in a microfuge for 15 minutes at 4°C. Protein concentration in the supernatant was determined by the BCA method (Pierce) using bovine serum albumin as a standard. Samples of the supernatent (75µg) were separated by SDS-PAGE (Laemmli) and electrophoretically transferred to nitrocellulose. The nitrocellulose was blocked with 5% milk and 10% FBS in Tris-buffered saline, pH 8.0, containing 0.05% Tween 20. Cadherin-5 specific monoclonal antibodies (30Q4H and 45C6A) were added. After washing to remove unbound antibody, the filters were incubated with alkaline phosphatase-conjugated anti-mouse IgG (Promega, Madison, WI). Reactive bands were visualized by addition of NBT/BCIP (Sigma, St. Louis, MO). Expression of cadherin-5 was detected in the freshly isolated bovine and macaque capillaries.

[0083] The Western blot results were confirmed by immunocytochemistry using the cadherin-5 antibodies 30Q4H and 45C6A. Macaque cerebral cortex was incubated in 15% sucrose in PBS for 30 minutes at 4°C and embedded in OCT compound (Tissue-Tek, Elkhart, IN) in cryomolds and quickly frozen. Six micron sections were cut and placed on glass slides. The slides were washed with PBS and fixed in 3% p-formaldehyde for 5 minutes. To permeabilize the tissue sections the slides were immersed in -20°C acetone for 10 minutes and air dried. The sections were blocked with 2% goat serum and 1 % BSA in PBS for 30 minutes and then incubated with the primary antisera for 1 hour at room temperature. The sections were rinsed 3 times in PBS containing 0.1% BSA and incubated with biotinylated anti-rabbit or anti-mouse IgG (Vector Laboratories, Burlingame, CA) in 1 % BSA in PBS for 30 minutes. After rinsing 3 times, strepavidin-conjugated with horseradish peroxidase (Vector Laboratories) was added for 30 minutes and washed 3 times. Immunolabeling was detected by reaction with diaminobenzoic acid in the presence of NiCl₂. The monoclonal antibody 45C6A only appeared to label larger vessels and the monoclonal antibody 30Q4H labeled both large and microvessels. The cell junctions of cerebral capillaries were labelled with the anti-cadherin-5 antibodies in a localized site.

[0084] These results and the results presented in Example 7 suggest cadherin-5 is involved in maintenance of the blood-brain barrier and that cadherin-5 peptides or cadherin-5 specific monoclonal antibodies may be able to open the blood-brain barrier.

50 Example 9

[0085] Patent Cooperation Treaty (PCT) International Publication No. WO 91/04745 discusses fragments of cell adhesion molecules and antibodies to cell adhesion molecules which are purported to disrupt-microvascular and endothelial cell tight junctions.

[0086] Three cadherin-5 peptides corresponding to the cell binding domain [HAV region, Blaschuk et al., Devel. Biol., 139: 227-229 (1990)], the calcium binding region A1 and the calcium binding region B1 of E-cadherin [Ringwald et al., EMBO J., 6: 3647-3653 (1987)] were tested for the ability to affect the permeability of brain endothelium. The peptides utilized had the following sequences:

Peptide 1 (Amino acids 114 to 128 of SEQ ID NO: 50)

LTAVIVDKDTGENLE.

Peptide 2 (Amino acids 132 to 145 of SEQ ID NO: 50)

SFTIKVHDVNDNWP, and

Peptide 3 (Amino acids 168 to 178 of SEQ ID NO: 50)

SVTAVDADDPT, respectively.

[0087] Permeability was measured using a two-chamber culture system (Costar). Rat brain microvascular endothelium was grown on 12 mm Transwell filters with 3 micron pores (Costar) in the culture system. When the monolayers were confluent, two weeks after plating, ³H-inulin (201 mCi/g) (New England Nuclear, Boston, MA) was added to the upper chamber. Cadherin-5 peptide at 100 µg/ml was added to both the upper and lower chambers. Radioactivity appearing in the bottom chamber was measured at 15 minute intervals over a two hour time course carried out at 37°C and was compared to the radioactivity appearing in the bottom chamber of cultures where no peptide was added or where no endothelial cells were present.

[0088] Both peptides 1 and 3 increased endothelium permeability in comparison to control cultures. The increase in permeability obtained with peptide 3 was 2.5-fold and the increase with peptide 1 was 1.5-fold over the controls. Peptide 2 had no effect on permeability.

Example 10

25

5

10

[0089] The functional properties of cadherins involve not only specific intercellular interactions, but also involve intracellular interactions with the cytoskeleton. Immunoprecipitation experiments utilizing the cadherin-5-specific rabbit polyclonal antibodies and the monoclonal antibody 30Q8A (see Example 4) were performed to determine with which proteins cadherin-5 interacts on an intracellular level.

[0090] Endothelial cells were metabolically labeled overnight with 50 μCi/ml of [³⁵S]-methionine and were then extracted with 0.5% Triton X-100 in 10mM HEPES pH 7.4, 0.15M NaCl, 2mM EDTA, 2mM EGTA, 1mM phenanthroline and protease inhibitors. The inhibitors included 1mM PMSF, 10 μg/ml aprotinin, leupeptin, pepstatin A, antipain, soybean trypsin inhibitor, 100 μg/ml chymostatin and TPCK, 40 μg/ml of TPCK and bestatin, 50 μg/ml of benzamidine, 1mM o-vanidate and 20mM NaF. After 20 minutes on ice, the cells were scraped and centrifuged in a microfuge for 30 minutes at 4°C. The supernatant was precleared and either polyclonal anti-cadherin-5 or normal rabbit serum was added and incubated overnight at 4°C. Protein A-sepharose (Pharmacia, Piscataway, NJ) was added for 2 hours at 4°C and centrifuged. A first low stringency wash with 10mM HEPES pH 7.4, 0.15M NaCl, 2mM EDTA and 2mM EGTA containing 1% Triton X-100, 0.5%. DOC and 0.2% SDS was performed. A second high stringency wash was performed with the same buffer containing 2% SDS. A final wash was then performed with Tris-buffered saline, and the samples were boiled and analyzed on SDS/PAGE (7%). Three bands with molecular weights of 104 KD, 95 KD, and 82 KD were identified as associated with cadherin-5.

[0091] Three intracellular proteins, termed catenins, have previously been identified by their ability to bind to the cytoplasmic domain of E-cadherin. These proteins have been designated α , β , and γ catenins and have molecular weights of 102 KD, 88 KD and 80 KD, respectively [Ozawa *et al.*, *EMBO J. 8*: 1711-1717 (1989)]. The association of catenins with E-cadherin seem to be required for E-cadherin function because deletion of the cytoplasmic domain of E-cadherin results in loss of cell adhesion function and catenin binding. The molecular cloning of α -catenin has shown it to be a vinculin-like protein [Nagafuki *et al.*, *Cell*, *65*: 849-857 (1991); Herrenkenecht *et al.*, *Proc. Natl. Acad. Sci. USA*, *88*: 9156-9160 (1991)]. The amino acid sequence of the *Xenopus* β -catenin [McCrea *et al.*, *Science*, *254*: 1359-1361 (1991)] exhibits 63% similarity to the human protein plakoglobin [Franke *et al.*, *Proc. Natl. Acad. Sci. USA*, *86*: 4027-4031 (1989)]. Plakoglobin has been localized to both the cytoplasmic region of desmosome and adherens junctions in epithelial cells. The desmonsomal component desmoglein I interacts with plakoglobin and is a member of the cadherin superfamily [Koch *et al.*, Eur. *J. Cell. Biol.*, *53*: 1-12 (1990)]. Plakoglobin has a molecular weight of 82 KD and may be the γ-catenin [Peifer *et al.*, *J. Cell Biol.*, *118*: 681-691 (1992)]. Even though endothelial cells lack desmosome, they have been shown to contain plakoglobin-associated with intercellular junctions [Franke *et al.*, *Biol. of the Cell*, *59*: 205-218 (1987)]. Other cytoskeletal elements associated with cadherins are ankyrin and fodrin [Nelson *et al.*, *J. Cell Biol.*, *110*: 349-357 (1990)].

[0092] To identify whether plakoglobin was one of the proteins complexed to cadherin-5, an unlabeled lysate of bovine aortic endothelial cells was made and immunoprecipitation was carried out as described above using anti-cad-

herin-5 antibody. The unlabelled immunoprecipitates were separated by SDS/PAGE and then electrophoretically transferred to nitrocellulose. The membrane was blocked with 5% milk in Tris-buffered saline, pH 8.0, containing 0.05% Tween 20 (TBST) and then was incubated with the murine monoclonal antibody PG5.1 (IBI Research Products, Cambridge, MA) to plakoglobin in blocking solution (1:20) for 1 hour at room temperature. The membrane was washed with TBST and then incubated with goat anti-mouse IgG conjugated to alkaline phosphatase. An 82 KD protein was identified using NBT/BCIP under both low and high stringency wash conditions. These results demonstrate that plakoglobin is tightly associated with the cytoplasmic domain of cadherin-5 in endothelium. Immunofluorescence studies of regenerated endothelium show that cadherin-5 and plakoglobin are localized to the cell junctions and are coordinately regulated.

[0093] The interation of cadherin-5 with plakoglobin may be a target for modulation of cadherin-5 activity.
[0094] While the present invention has been described in terms of preferred embodiments, it is understood that variations and improvements will occur to those skilled in the art. Thus, only such limitations as appear in the appended claims should be placed on the scope of the invention.

SEQUENCE LISTING

	(1) GENERAL INFORMATION:
5	(i) APPLICANT: Suzuki, Shintaro
	(11) TITLE OF INVENTION: CADHERIN MATERIALS AND METHODS
	(iii) NUMBER OF SEQUENCES: 62
10	(iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Harshall, O'Toole, Gerstein, Murray & Borun (B) STREET: 6300 Sears Tower, 233 S. Wacker Drive (C) CITY: Chicago (D) STATE: Illinois (E) COUNTRY: USA
15	(F) ZIP: 60606
20	 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: Patentin Release #1.0, Version #1.25
	(vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE: (C) CLASSIFICATION:
25	(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 07/872,643 (B) FILING DATE: 17 APR 1992
30	(viii) ATTORNEY/AGENT INFORMATION: (A) NAME: Noland, Greta E. (B) REGISTRATION NUMBER: 35,302 (C) REFERENCE/DOCKET NUMBER: 31340
	(ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (312) 474-6300 (B) TELEFAX: (312) 474-0448 (C) TELEX: 25-3856
35	(2) INFORMATION FOR SEQ ID NO:1:
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: peptide
	(x1) SEQUENCE DESCRIPTION: SEQ ID NO:1:
4 5	Thr Ala Pro Pro Tyr Asp 1 5
	(2) INFORMATION FOR SEQ ID NO:2:
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

55

(ii) MOLECULE TYPE: DNA

55

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
	GAATTCACNG CNCCNCCNTA YGA	23
	(2) INFORMATION FOR SEQ ID NO:3:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: peptide	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
	Phe Lys Lys Leu Ala Asp 1 5	•
20	(2) INFORMATION FOR SEQ ID NO:4:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
	GAATTCTCNG CNARYTTYTT RAA	2
	(2) INFORMATION FOR SEQ ID NO:5:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: peptide	
40	<pre>(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 2 (D) OTHER INFORMATION: /note= "The amino acid at this position is a proline or a glycine."</pre>	
45	(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 3 (D) OTHER INFORMATION: /note= "The amino acid at this position is a leucine, an isoleucine or a valine."	
50	<pre>(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 5 (D) OTHER INFORMATION: /note= "The amino acid at this position is a phenylalanine or a tyrosine."</pre>	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

i	Lys Xaa Xaa Asp Xaa Glu 1 5	
	(2) INFORMATION FOR SEQ ID NO:6:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
	GAATTCAARS SNNTNGAYTW YGA	23
	(2) INFORMATION FOR SEQ ID NO:7:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: peptide	
30	<pre>(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /note= "The amino acid at this position is an asparagine or an aspartic acid."</pre>	
35	<pre>(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 3 (D) OTHER INFORMATION: /note= "The amino acid at this position is an alanine or a proline."</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
40	Xaa Glu Xaa Pro Xaa Phe 1 5	
	(2) INFORMATION FOR SEQ ID NO:8:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
50		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	23
	GAATTCRAAN NNNGCNGSYT CRT	2.5
55		

	(2) INFORMATION FOR SEQ ID NO:9:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 117 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
10		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
	TOCCTGCTGG TOTTOGACTA CGAAGGCAGC GGTTCTACTG CAGGCTCTGT CAGCTCCCTG	60
15	AACTCCTCCA GCTCCGGGGA TCAAGATTAC GACTACTTGA ATGACTGGGG GCCCCGG	117
	(2) INFORMATION FOR SEQ ID NO:10:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
	Ser Leu Leu Val Phe Asp Tyr Glu Gly Ser Gly Ser Thr Ala Gly Ser 1 10 15	
	Val Ser Ser Leu Asn Ser Ser Ser Ser Gly Asp Gln Asp Tyr Asp Tyr 20 25 30	
30	Leu Asn Asp Trp Gly Pro Arg 35	
	(2) INFORMATION FOR SEQ ID NO:11:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 120 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: CDNA	
40		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
	ACACTGCACA TCTACGGCTA CGAGGGCACA GAGTCCATCG CAGAGTCCCT CAGCTCCCTG	60
45	AGCACCAATT CCTCCGACTC TGACATCGAC TATGACTTCC TCAATGACTG GGGACCCAGG	120
	(2) INFORMATION FOR SEQ ID NO:12:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
5	Thr Leu His Ile Tyr Gly Tyr Glu Gly Thr Glu Ser Ile Ala Glu Ser 1 5 10 15
	Leu Ser Ser Leu Ser Thr Asn Ser Ser Asp Ser Asp Ile Asp Tyr Asp 20 25 30
10	Phe Leu Asn Asp Trp Gly Pro Arg 35 40
	(2) INFORMATION FOR SEQ ID NO:13:
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 120 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: cDNA
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:
	TCCTTGGCCA CCTATGCCTA CGAAGGAACT GGCTCGGTGG CCGACTCCCT GAGCTCACTA 60
	GARTCAGTGA CCACAGATGG AGACCAAGAT TATGACTATT TGAGTGACTG GGGCCCTCGA 120
25	(2) INFORMATION FOR SEQ ID NO:14:
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: protein
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
	Ser Leu Ala Thr Tyr Ala Tyr Glu Gly Thr Gly Ser Val Ala Asp Ser 10 15
40	Leu Ser Ser Leu Glu Ser Val Thr Thr Asp Gly Asp Gln Asp Tyr Asp 20 25 30
	Tyr Leu Ser Asp Trp Gly Pro Arg 35 40
	(2) INFORMATION FOR SEQ ID NO:15:
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 120 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
50	(11) MOLECULE TYPE: cDNA

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
	TOGOTTCAGA CTTATGCATT TGAAGGAAAT GGCTCAGTAG CTGAATCTCT CAGTTCTTTA	60
5	GATTCTARCA GCTCGARCTC TGATCAGART TATGACTACC TTAGTGACTG GGGTCCTCTC	120
	(2) INFORMATION FOR SEQ ID NO:16:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
	Ser Leu Gln Thr Tyr Ala Phe Glu Gly Asn Gly Ser Val Ala Glu Ser 1 5 10 15	
20	Leu Ser Ser Leu Asp Ser Asn Ser Ser Asn Ser Asp Gln Asn Tyr Asp 20 25 30	
	Tyr Leu Ser Asp Trp Gly Pro Arg 35 40	
25	(2) INFORMATION FOR SEQ ID NO:17:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 120 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
35	TOCATTCAGA TITATGGCTA TGAAGGCCCGA GGGTCTGTGG CTGGCTCTCT CAGCTCGTTG	60
	GAGTOCACCA CATCAGACTC AGACCAGAAT TITGACTACC TCAGTGACTG GGGTCCCCGC	120
	(2) INFORMATION FOR SEQ ID NO:18:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
45	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
50	Ser Ile Glm Ile Tyr Gly Tyr Glu Gly Arg Gly Ser Val Ala Gly Ser 1 15	
	Leu Ser Ser Leu Glu Ser Thr Thr Ser Asp Ser Asp Gln Asn Phe Asp 20 25 30	

	Tyr Leu Ser Asp Trp Gly Pro Arg 35 40	
5	(2) INFORMATION FOR SEQ ID NO:19:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 120 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
70	(ii) HOLECULE TYPE: cDNA	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
13	TCCTTGGCCA CTTACGCCTA TGAAGGGAAT GATTCTGTAG CCAATTCTCT CAGCTCCTTA	60
	GAATCTCTCA CAGCTGATTG TACCCAGGAT TATGACTACC TTAGTGACTG GGGGCCACGC	120
20	(2) INFORMATION FOR SEQ ID NO:20:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
30	Ser Leu Ala Thr Tyr Ala Tyr Glu Gly Asn Asp Ser Val Ala Asn Ser 1 5 10 15	
	Leu Ser Ser Leu Glu Ser Leu Thr Ala Asp Cys Asn Gln Asp Tyr Asp 20 25 30	
35	Tyr Leu Ser Asp Trp Gly Pro Arg 35 40	
	(2) INFORMATION FOR SEQ ID NO:21:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 120 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
	TOGOTGGCTA COTATGCCTA TGAAGGAAAC GACTOTGTTG CTGAATCTCT GAGCTCCTTA	60
50	GAATCACCTA CCACTGAAGG AGACCAAAAC TACGATTACC TTCGAGAATG GGGGCCTCGG	120

	(2) INFORMATION FOR SEQ ID NO:22:
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: protein
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:
	Ser Leu Ala Thr Tyr Ala Tyr Glu Gly Asn Asp Ser Val Ala Glu Ser 1 5 10 15
15	Leu Ser Ser Leu Glu Ser Gly Thr Thr Glu Gly Asp Gln Asn Tyr Asp 20 25 30
	Tyr Leu Arg Glu Trp Gly Pro Arg 35 40
20	(2) INFORMATION FOR SEQ ID NO:23:
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 120 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: cDNA
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:
	TCCATCCAAA TCTATGGTTA TGAGGGCAGG GGTTCCGTGG CTGGGTCCCT GAGCTCCTTG 60
	GAGTETGECA CCACAGATTC GGACCTGGAC TACGACTATC TACAGAACTG GGGACCTCGG 120
35	(2) INFORMATION FOR SEQ ID NO:24:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
40	(ii) HOLECULE TYPE: protein
	(x1) SEQUENCE DESCRIPTION: SEQ ID NO:24:
45	Ser Ile Gln Ile Tyr Gly Tyr Glu Gly Arg Gly Ser Val Ala Gly Ser 1 10 15
	Leu Ser Ser Leu Glu Ser Ala Thr Thr Asp Ser Asp Leu Asp Tyr Asp 20 25 30
50	Tyr Leu Gln Asn Trp Gly Pro Arg 35 40

	(2) INFORMATION FOR SEQ 15 NOTES	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 150 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
10		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
	ARGCGGTTTG ATTACGAGAT CTCTGCCTTT CACACCCTGC TGATCAAAGT GGAGAATGAG	60
15	GACCCATTGG TACCCGACGT CTCCTATGGC CCCAGCTCCA CGGCCACTGT CCACATCACG	120
	GTCTTGGATG TCAACGAGGG ACCAGTCTTC	150
	(2) INFORMATION FOR SEQ ID NO:26:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 50 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
	(ii) HOLECULE TYPE: protein	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
	Lys Arg Phe Asp Tyr Glu Ile Ser Ala Phe His Thr Leu Leu Ile Lys 1 5 10 15	
30	Val Glu Asn Glu Asp Pro Leu Val Pro Asp Val Ser Tyr Gly Pro Ser 20 25 30	
	Ser Thr Ala Thr Val His Ile Thr Val Leu Asp Val Asn Glu Gly Pro 35 40 45	
35	Val Phe 50	
	(2) INFORMATION FOR SEQ ID NO:27:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 150 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
45		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
	AAGGGTATGG ATTATGAGGT GAACCGTGCC TCCATGCTGA CCATAATGGT GTCCAACCAG	.60
50	GCGCCCCTGG CCAGCGGGAT CCAGATGTCC TTCCAGTCCA CAGTGGGGGT AACCATCTCT	120
	GTCACCGATG TCAACGAAGC CCCCTACTTC	150

	(2)	INFO	RMATI	ON E	FOR 5	EQ 1	ID NO):28:	•									
5		(i)	(A)	LEN TYI	CTH:	50 ming	reris amir aci linea	no ac Ld								2		
		(ii)	HOLI	CULE	TYI	PE: I	prote	ein								•		
10																		
		(xī)	_						_									
		Lys 1	Gly	Het	ysb	Tyr 5	Glu	Leu	Asn	Мg	Ala 10	Ser	Met	Leu	Thr	Ile 15	Met	
15		Val	Ser	λsn	Gln 20	Ala	Pro	Leu	λla	Ser 25	CJÅ	Ile	Gln	Met	Ser 30	Phe	Gln	
		Ser	Thr	Val 35	Gly	Val	Thr	Ile	Ser 40	Val	Thr	увЪ	Val	Asn 45	Glu	Ala	Pro	
20		Tyr	Phe 50															
	(2)	INFO	RMAT:	ION 1	FOR S	SEQ :	ID N	0:29:	:									
25		` (i)	(A (B (C	LEI TYI STI	NGTH: PE: 1 RAND	: 15: nucle EDNE:	TERI: 3 ba: eic : SS: :	se pa scid sing	airs									
		(ii)	MOL	ECULI	e TY	PE: (CDNA					•						
30		(xī)	SEQ	UENCI	E DE	SCRI	PTIO	N: S	EQ I	D NO	:29:						,	
	AAA	ogact	GG A	TTTT	GAAC	T CA	TCCA	GCAG	TAC	NOCT	rcc ;	ACAT	CGAG	GC C	ACAG:	vccc	C	60
	ACT	ATCAG	AC T	CGGA!	TACC	T GA	GCAG	CACT	CCC	GGCA	AAA I	ACAA	AGCC	AA G	ATCA	TCAT	С	120
35	AAT	GTCCT	AG A	TGTG	gatg.	A GO	cccc	TGTT	TTC	.*								153
	(2)	INFO	RMAT	ION !	FOR :	SEQ	ID N	0:30	:	•			•					
40		(T)	(Ä (B) LE	ngth Pe:	: 51 amin	TERI ami o ac line	no a										
		(ii)	HOL	ECUL	E TY	PE:	prot	ein						:				
45		(xi)	SEQ	UENC	E DE	SCRI	PTIO	n: S	EQ I	D NO	: 30:							
		Lys 1	Arg	Leu	увр	Phe 5	Glu	Leu	Ile	Gln	Gln 10	Tyr	Thi	Phe	His	11e	Glu	
50		λla	Thr	увр	Pro 20	Thr	Ile	hrg	Leu	Gly 25	Tyr	Leu	Sei	Ser	Thr 30	: Als	Gly	
		Lys	Asn	Lys 35	Ala	Lys	Ile	Ile	11e	. As n	Val	Lev	A As	Va) 45		Glu	ı Pro	

	Pro Val Phe 50	
-	(2) INFORMATION FOR SEQ ID NO:31:	
•	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 153 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(ii) HOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
15	AAGGGTTTGG ATTTTGAAAA GAAGAAAGTG TATACCCTTA AAGTGGAAGC CTCCAATCCT	60
	TATGTTGAGC CACGATTTCT CTACTTGGGG CCTTTCAAAG ATTCAGCCAC GGTTAGAATT	120
	GTGGTGGAGG ATGTAGATGA ACCTCCTGCC TTC	153
20	(2) INFORMATION FOR SEQ ID NO:32:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 51 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
30	Lyr Gly Leu Asp Phe Glu Lys Lys Lys Val Tyr Thr Leu Lys Val Glu 1 5 10	
	Ala Ser Asn Pro Tyr Val Glu Pro Arg Phe Leu Tyr Leu Gly Pro Phe 20 25 30	
35	Lys Asp Ser Ala Thr Val Arg Ile Val Val Glu Asp Val Asp Glu Pro 35 40 45	
	Pro Ala Phe 50	
	(2) INFORMATION FOR SEQ ID NO:33:	•
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 153 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
45	(ii) MOLECULE TYPE: cDNA	
	(x1) SEQUENCE DESCRIPTION: SEQ ID NO:33:	•
	ANGESTICISC ACTITISAGNS CANADANTES TATACTETISA NGGTEGNEGE AGESANTATE	. 60
50	CACATOGACC CACGTTTCAG TGGCAGGGGA CCCTTTAAAG ATACAGCAAC AGTCAAAATT	120
	GTTGTAGAGG ATGCTGATGA GCCTCCGGTC TTC	153

	(2) INFORMATION FOR SEQ ID NO:34:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 51 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:	
	Asp Ala Leu Asp Phe Glu Thr Lys Lys Ser Tyr Thr Leu Lys Val Glu	
	1 5 10 15 Ala Ala Asn Ile His Ile Asp Pro Arg Phe Ser Gly Arg Gly Pro Phe	
15	20 25 30	
	Lys Asp Thr Ala Thr Val Lys Ile Val Val Glu Asp Ala Asp Glu Pro 35 40 45	
20	Pro Val Phe 50	
	(2) INFORMATION FOR SEQ ID NO:35:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 152 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) HOLECULE TYPE: CDNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:	
	AAGGGGGTGG ACTATGAAGC CAAAACAAGT TATACCCTGC GCATAGAAGC TGCAAATCGA 6	0
	GATGCTGATC CCCGGTTTCT GAGCTTGGGT CCATTCAGTG ACACAACAAC AGTTAAGATA 12	Q
35	ATTGTGGAAG ACCTCGATGA ACCCCCGTACT C 15	2
	(2) INFORMATION FOR SEQ ID NO:36:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 51 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:	
	Lys Gly Val Asp Tyr Glu Ala Lys Thr Ser Tyr Thr Leu Arg Ile Glu 1 5 10 15	
50	Ala Ala Asn Arg Asp Ala Asp Pro Arg Phe Leu Ser Leu Gly Pro Phe 20 25 30	
50	Ser Asp Thr Thr Thr Val Lys Ile Ile Val Glu Asp Val Asp Glu Pro 35 40 45	

	Pro Tyr Ser 50	
5	(2) INFORMATION FOR SEQ ID NO:37:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 153 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: CDNA	
	(x1) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
15	NAGCCACTTG ACTATGAGAA CCGAAGACTA TATACACTGA AGGTGGAGGC AGAAAATACC	60
	CATGTGGATC CACGTTTTTA CTATTTAGGG CCATTCAAAG ATACAACAAT TGTAAAAATC	120
	TCCATAGAAG ACGTGGATGA GCCACCCCCC TTT	153
20	(2) INFORMATION FOR SEQ ID NO:38:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 51 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
25	(ii) HOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:	
30	Lys Pro Leu Asp Tyr Glu Asn Arg Arg Leu Tyr Thr Leu Lys Val Glu 1 5 15	
	Ala Glu Asn Thr His Val Asp Pro Arg Phe Tyr Tyr Leu Gly Pro Phe 20 25 30	
35	Lys Asp Thr Thr Ile Val Lys Ile Ser Ile Glu Asp Val Asp Glu Pro 35 40 45	
	Pro Pro Phe 50	
	(2) INFORMATION FOR SEQ ID NO:39:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 153 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: Bingle (D) TOPOLOGY: linear	-
45	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:	
	AGGGGTGTGG ATTATGARAC CARAAGAGCA TATAGCTTGA AGGTAGAGGC GGCCAATGTA	60
50	CACATTGATE CGAAGTTCAT CAGCAATGGA CCTTTCAAGG ACACAGTGAC TGTCAAGATT	120
	GCAGTAGAAG ATGCCAATGA GCCCCTCCC TTC	153

(2) INFORMATION FOR SEQ ID NO:40:

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 51 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:	
	Arg Gly Val Asp Tyr Glu Thr Lys Arg Ala Tyr Ser Leu Lys Val Glu 1 5 10 15	
15	Ala Ala Asn Val His Ile Asp Pro Lys Phe Ile Ser Asn Gly Pro Phe 20 25 30	
	Lys Asp Thr Val Thr Val Lys Ile Ala Val Glu Asp Ala Asn Glu Pro 35 40 45	
20	Pro Pro Phe 50	
	(2) INFORMATION FOR SEQ ID NO:41:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3136 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: CDNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	
	GGCACGAGCG CAAGCCCGGG AGCGCTCGGC CCAGAATTAG TGGATGGATT TGGAATCTCC	60
	CTGCCTCCTC CAAGCTCCCC CACTGCCACT TTAGGCAGAG ACCTGAGCGT CAACACGCGA	120
35	GCCGTACTTT TAGGCTGCGG ACACTGAGCC CAGCGCCCCA GCTTCGCATC TCCGCACCAG	180
	GCTCCACAGC TCGGAGAGGC ATGAACGCGA TCCGGAGGAG ACTACCCTGC GCGCGGGGAT	240
	CCGTGGACAT TAGCCCCTCT CCGGAACTGA CCCCCAGCTC CTTCAGCCAT TTATGAATCC	300
40	AGAGGCTTGA GATTTTTTTC CGCATCCCGG AGCCCGACCT GAGAAATTTC AATGAAAAGG	360
	AAAGTCAATG GATCGTCGTC TTGGAAAAGC TGCTTAGACA TGTCTGTTTC CCGGCTCTCT	420
	GAACCCGTGG CAGAGCTGTA AGTAAGCGCT TCACAGTGCG TGATGAATTG GATGGCTTCG	480
45	GACCOGAGGC AAAAAAAAA ATTGTCTCAT TTTCGTGCTG ATTTGCTTAA CTGGTGGGAC	540
.5	CHIGCCAGAN AGGCTAGCTG AGACCCTTTT GGACCTCTGG ACTCCATTAN TANTATTATG	600
	GATTACTCTT CCCTCTTTTG TGTACATGGC TCCGATGAAT CAGGCTCACG TTTTAACTAC	660
	TGGATCCCCT TTGGAACTAA GCAGGCAGAG TGAAGAAATG CGGATTTTGA ACCGCTCCAA	720
50	***************************************	

55

AAGAGGTTGG GTTTGGAATC AAATGTTTGT TCTGGAAGAA TTTTCTGGAC CTGAACCGAT

TCTCGTTGGC_CGGTTACACA CAGATCTGGA TCCTGGGAGC AAAAAAATCA AGTATATCCT 840

	ATCGGGTGAT GGAGCCGGCA CAATCTTTCA AATAAACGAT ATAACTGGAG ACATCCATGC	900
	ATCGGGTGAT GGAGCCGGCA CARTCITTON INNIHITATION THATCAGCTC AGGCAGTGGA TATCAAAAGA CTTGACCGAG AGGAAAAGGC TGAGTATACG TTAACAGCTC AGGCAGTGGA	960
-	TATCAAAAGA CTTGACCGAG AGGAAAAGGC TOADTAAAGC TITATTAAGG TTCAAGACAT CTGGGAGACA AACAAACCTC TCGAGCCTCC TTCTGAATTT ATTATTAAGG TTCAAGACAT	1020
5		1080
	CAACGACAAT GCCCCCCGAGT TTCTCAATGG ACCTTACCAT GCTACTGTTC CAGAGATGTC	1140
	CATCTTGGGT ACATCTGTCA CTAATGTAAC GGCCACTGAT GCTGACGATC CAGTTTATGG	1200
10	ARACAGIGCA AAGITGGITT ACAGITATCIT GGAGGGACAG CCGTATTITT CCATTGAGCC	1260
	TGANACAGCT ATTATAAAAA CTGCCCTTCC TAACATGGAC AGAGAGGCCA AGGAGGAATA	1320
	CCTGGTTGTA ATTCARGCCA AAGATATGGG TGGGCATTCC GGTGGTCTGT CTGGAACCAC	1380
15	GACACTCACA GTGACGCTTA CCGATGTGAA TGACAATCCT CCAAAATTTG CTCAAAGTTT	1440
	GTATCACTTC TCAGTACCAG AAGATGTGGT CCTTGGCACT GCAATAGGAA GGGTTAAAGC	1500
	CARTGACCAG GATATTGGTG ARARTGCACA ATCTTCCTAT GACATCATTG ATGGAGATGG	1560
	GACAGCACTA TTTGAAATCA CTTCTGATGC CCAGGCACAG GATGGTGTTA TAAGACTAAG	
20	ANAGECTETG GACTITGAGA CCAAAAAATC CTATACTCTG AAGGTGGAGG CAGCCAATAT	1620
	CCACATOGAC CCACGTTTCA GTGGCAGGGG ACCCTTTAAA GATACAGCAA CAGTCAAAAT	1680
	TGTTGTAGAG GATGCTGATG AGCCTCCGGT CTTCTCTTCA CCGACTTACC TCCTTGAAGT	1740
25	TCATGAAAAT GCTGCCTTGA ACTCTGTGAT TGGCCAAGTG ACAGCTCGTG ACCCTGATAT	1800
	CACTTCCAGC CCAATAAGGT TTTCCATTGA CCGCCACACT GACTTCGAGA GACAGTTCAA	1860
	CATCANTECA GATGATGGGA AGATANCACT GGCGACCCCA CTGGACAGAG AACTANGTGT	1920
	GTGGCHCAAC ATCTCCATCA TTGCTACTGA GATCAGGAAC CACAGTCAGA TATCGCGAGT	1980
30	GCCTGTTGCT ATTANAGTGC TGGATGTCAA TGACAACGCC CCTGAATTCG CGTCCGAATA	2040
	TGAGGCATTT TTATGTGAAA ATGGAAAACC CGGCCAAGTC ATTCAAACAG TAAGCGCCCAT	2100
	GGACAAAGAC GATCCCAAAA ATGGACATTT TITCTTGTAC AGTCTTCTTC CAGAAATGGT	2160
35	CARCARCOCA ARTITCACCA ICARGARARA CGARGAIRAT TCCCTGAGCA ITCTGGCARA	2220
	ACRITATICGA TICARCOGCO AGRAGORAGA AGIOTACOTI CIGCOTATOS IGATORGIGA	2280
	CAGTGGGAAC CCCCCTCTGA GTAGCACCAG TACCCTGACC ATCCGCGTCT GTGGCTGTAG	2340
40	CANTGACGGC GIGGITCAGT CGIGCANIGI CGAAGCIINI GICCITCCIN ITGGGCICAG	2400
	TATEGGEGG TTANTIGCTA TATTAGECTG CATCATTITG CTGCTCGTCA TTGTGGTTCT	2460
	GITCGITACC CTCAGGCGGC ATANANATGA ACCACTAATA ATCANAGATG ATGAAGACGT	2520
	TOGAGAAAAC ATCATTOGCT ACGACGACGA ACGAGGCEGG GAGGAGGACA CAGAGGCTTT	2580
45	TGACATTGCA ACTITGCAAA ACCCAGATGG AATTAATGGA TITTTACCCC GTAAGGATAT	2640
	TARACCAGAT TIGCAGTITA TGOCKAGGCA AGGGCTTGCT CCAGTTCCAA ATGGTGTTGA	2700
	TGTCGATGAA TTTATAAATG TAAGGCTTCA TGAGGCAGAT AATGACCCCA CGGCCCCACC	2760
50	ATATGACTOC ATTCAGATTT ATGGCTATGA AGGCCGAGGG TCTGTGGCTG GCTCTCTCAG	2820
	CTCGTTGGAG TCCACCACAT CAGACTCAGA CCAGAATTIT GACTACCTCA GTGACTGGGG	2880

				CTTG 2940											
ACAGTGGATT ACATAAAT	AA TCAATGGAAC	TGAGCATTCT G	TAATATTCT AGGGTC	CACTC 3000											
5 CCCTTAGATG CAACAAAT	ET GGCTATTTGT	TTTAGAGGCA A	GTTTAGCAC CAATC	ATCTA 3060											
TARACTCRAC CACATTTT	AA TGTTGAACCA	AAAAAAATAA T	LTDEAG GATGGGGGG	AȚATG 3120											
TTAGGAGGTG AAAAAA				3136											
10 (2) INFORMATION FOR	SEQ ID NO: 42	:													
(A) LE (B) TY (D) TO	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 799 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein														
(ii) MOLECULE	TYPE: protein	n													
(xi) SEQUENCE	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:														
Met Pro Glu Arg Leu 1 5	Ala Glu Thr	Leu Leu Asp L 10	eu Trp Thr Pro 1	Leu											
Ile Ile Leu Trp Ile 20	Thr Leu Pro	Ser Phe Val T 25	yr Met Ala Pro 1 30	Ket											
Asn Gln Ala His Val	Leu Thr Thr	Gly Ser Pro L	eu Glu Leu Ser (45	λrg											
25 Gln Ser Glu Glu Met 50	Arg Ile Leu : 55	Asn Arg Ser L	ys Arg Gly Trp 60	Val											
Trp Asn Cln Not Phe 65	Val Leu Glu 70	Glu Phe Ser G 75	Sly Pro Glu Pro	Ile 80											
30 Leu Val Gly Arg Leu 85	His Thr Asp	Leu Asp Pro G 90	Cly Ser Lys Lys 95	Ile											
Lys Tyr Ile Leu Ser 100		Ala Gly Thr I 105	lle Phe Gln Ile 110	Asn											
35 Asp Ile Thr Gly Asp 115	Ile His Ala 120	lle Lys Arg I	Leu Asp Arg Glu 125	Glu											
Lys Ala Glu Tyr Thr 130	Leu Thr Ala 135		Asp Trp Glu Thr 140	Asn											
Lys Pro Leu Glu Pro 145	Pro Ser Glu 150	Phe Ile Ile I 155	Lys Val Gln Asp	Ile 160											
Asn Asp Asn Ala Pro 169		Asn Gly Pro : 170	Tyr His Ala Thr 175	Val											
Pro Glu Het Ser Ile 45 180	Leu Gly Thr	Ser Val Thr 1 185	Asn Val Thr Ala 190	Thr											
Asp Ala Asp Asp Pro 195	Val Tyr Gly 200	Asn Ser Ala 1	Lys Leu Val Tyr 205	Ser											
50 Ile Leu Glu Gly Glr	Pro Tyr Phe 215		Pro Glu Thr Ala 220	Ile											
Ile Lys Thr Ala Len 225	Pro Asn Het 230	Asp Arg Glu 235	Ala Lys Glu Glu	Tyr 240											

	Leu	Val	Val	Ile	Gln 245	Ala	Lys	Asp	Het	Gly 250	Gly	His :	Ser	Gly	Gly 255	Leu
5	Ser	Gly	Thr	Thr. 260	Thr	Leu	Thr	Val	Thr 265	Leu	Thr	yeb	Val	λσn 270	Авр	λsn ,
	Pro	Pro	Lув 275	Phe	Ala	Gln	Ser	Leu 280	Tyr	Hie	Phe	Ser	Val 285	Pro	Glu	Х́вр
10	Val	Val 290	Leu	Gly	Thr	Ala	Ile 295	Gly	Arg	Val	Lys	Ala 300	As n	Asp	Gln	Хвр
	11e 305	Gly	Glu	Asn	Ala	Gln 310	Ser	Ser	Tyr	As p	Ile 315	Ile	As p	Gly	yab	Gly 320
15			Leu		325					330						
			Leu	340					345					330		
20			355					360	'				303			Gly
20		370)				375					360		•		увь
	385	•				390)				393					Val 400
25					405	i				410	,				44.	
				420)				42	>				43	•	g His
30			439	•				44	U				77	,		s Ile
		45	0				45	5				401	,			n Ile
35	46	5				47	0				47	•				9 Val 480
					48	5				45	0				٦.	
40				50	0				50	J 5				5.		ly Gln
			51	5				52	20				3,	23		sn Gly
45		53	30				53	15				24	.0			ro Asn
	54	15				59	50		_		5:	22				1a Lys 560
50					56	5 .				3	70				Ī	ro Ile
	V	al I	le S		вр Se ВО	er G	ly A	sn P	ro P 5	ro I 85	eu S	er S	er T	hr S	er 1 90	hr Leu

	Thr	Ile	Arg 595	Val	Сув	Gly	Сув	ser 600	Asn	Asp	Gly	Val	Val 605	Gln	Ser	Cys	
5	yeu	Val 610	Glu	Ala	Tyr	Val	Leu 615	Pro	Ile	Gly	Leu	Ser 620	Het	Gly	Ala	Leu	
	11e 625	Ala	Ile	Leu	Ala	Сув 630	Ile	Ile	Leu	Leu	Leu 635	Val	Ile	Val	Val	Ļeu 640	
10	Phe	Val	Thr	Leu	Arg 645	λ rg	His	Lys	Asn	Glu 650	Pro	Leu	Ile	Ile	Lys 65 5	Yeb	
	Авр	Glu	yab	Val 660	Arg	Glu	A sn	Ile	11e 665	Arg	Tyr	Двр	yab	Glu 670	Gly	GJA	
15	Gly	Glu	Glu 675	Хsр	Thr	Glu	Ala	Phe 680	qaA	Ile	Ala	Thr	Leu 685	Gln	Asn	Pro	
	Авр	Gly 690	lle	Yeu	Gly	Phe	Leu 695	Pro	Arg	Lув	Авр	Ile 700	Lys	Pro	увр	Leu	
	Gln 705	Phe	Met	Pro	Arg	Gln 710	Gly	Leu	Ala	Pro	Val 715	Pro	Asn	Gly	Val	Asp 720	
20	Val	ysb	Glu	Phe	Ile 725	Asn	Val	Arg	Leu	His 730	Glu	Ala	Asp	Asn	Asp 735	Pro	
	Thr	Ala	Pro	Pro 740	Tyr	Asp	Ser	Iļe	Gln 745	Ile	Tyr	Gly	Tyr	Glu 750		Arg	
?5	Gly	Ser	Val 755		Gly	Ser	Leu	Ser 760		Leu	Glu	Ser	Thr 765		Ser	увр	
	Ser	Asp 770		Asn	Phe	ysb	Tyr 775	Leu	Ser	Хsр	Trp	Gly 780		Arg	Phe	Lys	
30	Arg 785		Gly	Glu	Leu	Туг 790	Ser	Val	Gly	Glu	Ser 795		Lys	Glu	Thr		
	(2)					_	ID										
35		(1	· (A) L B) T C) S	engt Ype: Tran	nuc DEDN	CTER 043 leic ESS: lin	base aci sin	d d	rs							
		(ii) MO	LECU	LE T	YPE:	CDN	Α.									
10		. (xi	.) SE	QUEN	CE D	ESCR	IPTI	on:	SEQ	ID N	io: 43	1:					
	GGC	ACGA	ccc	CAAG	cccc	GG A	cccc	TCGG	c cc	AGAA	TTAG	TGC	ATG	ATT	TGG	AATCTCC	60
15	CIG	CCTC	CTC	CAAG	CTCC	c c	ACTG	CCAC	T TI	AGGC	AGAG	, ACC	TGA	CCT	CAA	CACGCGA	120
.5	GCC	STAC	TIT	TAGG	CTGC	CG A	CACI	GAGO	c ca	coco	xcc)	, eca	TOG	CATC	TCC	CACCAG	180
	GCI	CCAC	AGC	TCCC	AGAG	GC 7	TGAN	œœ	A TO	XXGG3	IGGA) AC	LÝCC	CTCC	GCG	CGGGGAT	240
	COG	TGG	CAT	TAGO	XXXX	CI C	XGGG3	ACTO	en co	CCCZ	GCT	CI	CAG	CCAT	TTA	IGAATCC	30
50	AGP	recc1	TCA	GATI	1111	TC C	XCA1	rece	G AG	cccc	ACC	C GAG	KAAS	TTTC	TAA	Gaaaagg	36
	AAZ	GTC	ATG	GATY	X:TCC	TC 7	TCC:		C 70	CTT	AGAC	A Tree	rcre	TTTC	CCC	CCTCTCT	42

	GAACCCGTGG CAGAGCTGTA AGTAAGCGCT TCACAGTGCG TGATGAATTG GATGGCTTCG	480
	GACCOGAGGC AAAAAAAATA ATTGTCTCAT TTTCGTGCTG ATTTGCTTAA CTGGTGGGAC	540
5	CATGCCAGAA AGGCTAGCTG AGACGCTTTT GGACCTCTGG ACTCCATTAA TAATATTATG	600
	GATTACTCTT CCCTCTTTTG TGTACATGGC TCCGATGAAT CAGGCTCACG TTTTAACTAC	660
	TGGATCCCCT TTGGAACTAA GCAGGCAGAG TGAAGAAATG CGGATTTTGA ACCGCTCCAA	720
10	AAGAGGTTGG GTTTGGAATC AAATGTTTGT TCTGGAAGAA TTTTCTGGAC CTGAACCGAT	780
	TCTCCTTGGC CGGTTACACA CAGATCTGGA TCCTGGGAGC AAAAAAATCA AGTATATCCT	840
	ATCGCCTCAT CCACCCCCCA CAATCTTTCA AATAAACGAT ATAACTCCAG ACATCCATCC	900
	TATCANANGA CTTGACCGAG AGGANANGGC TGAGTATACG TTANCAGCTC AGGCAGTGGA	960
15	CTGGGAGACA AACAAACCTC TCGAGCCTCC TTCTGAATTT ATTATTAAGG TTCAAGACAT	1020
	CAACGACAAT GCCCCCGAGT TTCTCAATGG ACCTTACCAT GCTACTGTTC CAGAGATGTC	1080
	CATCTIGGGT ACATCTGTCA CTAATGTAAC GGCCACTGAT GCTGACGATC CAGTTTATGG	1140
20	AAACAGTGCA AAGTTGGTTT ACAGTATCTT GGAGGGACAG CCGTATTTTT CCATTGAGCC	1200
	TGARACAGCT ATTATARARA CTGCCCTTCC TAACATGGAC AGAGAGGCCA AGGAGGAATA	1260
	CCTGGTTGTA ATTCAAGCCA AAGATATGGG TGGGCATTCC GGTGGTCTGT CTGGAACCAC	1320
25	GACACTCACA GTGACGCTTA CCGATGTGAA TGACAATCCT CCAAAATTTG CTCAAAGTTT	1380
	GTATCACTTC TCAGTACCAG AAGATGTGGT CCTTGGCACT GCAATAGGAA GGGTTAAAGC	1440
	CARTGACCAG GATATTGGTG AMANTGCACA ATCTTCCTAT GACATCATTG ATGGAGATGG	1500
	GACAGCACTA TITGAAATCA CITCTGATGC CCAGGCACAG GATGGTGTTA TAAGACTAAG	1560
30	ANAGOCTOTG GACTITGAGA CCANANANTC CTATACTOTG ANGGTGGAGG CAGCCANTAT	1620
	CCACATCGAC CCACGTTTCA GTGGCAGGGG ACCCTTTANA GATACAGCAA CAGTCAAAAT	1680
	TOTTGTAGAG GATGCTGATG AGCCTCCCGT CTTCTCTTCA CCGACTTACC TCCTTGAAGT	1740
35	TCATGAAAAT GCTGCCTTGA ACTCTGTGAT TGGCCAAGTG ACAGCTCGTG ACCCTGATAT	1800
	CACTTCCAGC CCAATAAGGT TTTCCATTGA CCGCCACACT GACTTGGAGA GACAGTTCAA	1860
	CATCAATGCA GATGATGGGA AGATAACACT GGCGACCCCA CTGGACAGAG AACTAAGTGT	1920
40	GTGGCACAAC ATCTCCATCA TTGCTACTGA GATCAGGAAC CACAGTCAGA TATCGCGAGT	1980
	GCCTGTTGCT ATTANAGTGC TGGATGTCAA TGACAACGCC CCTGAATTCG CGTCCGAATA	2040
	TGAGGCATTT TTATGTGAAA ATGGAAAACC CGGCCAAGTA AATATCTCCA TGTTGTTAAT	2100
45	ACIGANTATE TITETATACA ACIGITICCI ACITANITAA CCIGCATTAC TICCIGATIT	2160
45	TGCATTGGTT GGATTTACAA AGTCACAGGC AGGAAACTCC TCCAAGCGGT AACAGAAGGG	2220
	ANTATTIGIC TITCICAGAT GITAATICIC TICIAACITA GGAACCAATI GGCTCAGAAA	2280
	GTGTGATGAT CTGCTCTGCT CTGACCCCAG CCAAATCACT GTCTTAAAAT ACATCACATA	2340
50	TOGGTGATGG CTGGGGACAG TCTTACAGTG CAGAAGGTTG AAATCGCCAT CAATTGGCAA	2400
	GARTCHANG RATAGCTCAT GGGARGCATG CATTITIGIT TIATGTTGAR ANGANGATTA	2460

	ATGCACAAAT GTGGAATGCA AAAAAACACA GTAGTTTATA GAAAGCTCTA TGTAGTGGTA	2520
	CTTATGTCTG TACACATATT TGCAAGTTTA GTAAACATAA TGTAGACATC AAATTGTTAG	2580
5	ATATGCCCCT AAGGCATTTC AATATGTAGA GGTAAGACTC CTAAGGCATA GATGGGGATA	2640
	ATGAAGACAA AAATAAAGGG CAGAAAAATG TATAAAATAG AACAGACAGA AATACACTAA	2700
	AGATCTAAAG ATAGAAGCAG GAAAGAGGGG AGGGAGGGAG GGAGACAGGG CTGGAAGAAG	2760
10	ATAGGGTGGG AGGGAGGGAA GGAGAGTCAA GGCTCAGGGT GTGGGGGGGA AGGTAAAATG	2820
	CANANCANAN TCTACAGANA CCACTATACT CTGAATGTCA ANATGCAACT ARCCTATGTA	2880
	ARATCACCCA ACCACATGTG TANTAGATTT ATTTARCGA GGTGCCGGAG TACTGTATGT	2940
15	TTANGARATT TATCATTTTT CARCITCCTA ATTATTTCT GGATGGTGAC ATTTTAATTT	3000
	ARATARACAG CAGCTGACAG CATGARARAR ARAAAAAAAA ARA	3043
	(2) INFORMATION FOR SEQ ID NO:44:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 532 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:	
23	Met Pro Glu Arg Leu Ala Glu Thr Leu Leu Asp Leu Trp Thr Pro Leu 1 5 10 15	
	Ile Ile Leu Trp Ile Thr Leu Pro Ser Phe Val Tyr Het Ala Pro Met 20 25 30	
30	Asn Gln Ala His Val Leu Thr Thr Gly Ser Pro Leu Glu Leu Ser Arg 35 40 45	
	Gln Ser Glu Glu Met Arg Ile Leu Asn Arg Ser Lys Arg Gly Trp Val 50 55 60	
35	Trp Asn Gln Het Phe Val Leu Glu Glu Phe Ser Gly Pro Glu Pro Ile 65 70 75 80	-
	Leu Val Cly Arg Leu His Thr Asp Leu Asp Pro Cly Ser Lys Lys Ile 85 90 95	
40	Lys Tyr Ile Leu Ser Gly Asp Gly Ala Gly Thr Ile Phe Gln Ile Asn 100 105 110	
	Asp Ile Thr Gly Asp Ile His Ala Ile Lys Arg Leu Asp Arg Glu Glu 115 120 125	
45	Lys Ala Glu Tyr Thr Leu Thr Ala Gln Ala Val Asp Trp Glu Thr Asn 130 135 140	
	Lys Pro Leu Glu Pro Pro Ser Glu Phe Ile Ile Lys Val Gln Asp Ile 145 150 155 160	
50	Asn Asp Asn Ala Pro Glu Phe Leu Asn Gly Pro Tyr His Ala Thr Val 165 170 175	
	Pro Glu Het Ser Ile Leu Gly Thr Ser Val Thr Asn Val Thr Ala Thr 180 185 190	

	двр	λla	λв р 195	yab	Pro	Val	Tyr	Gly 200	ABD	Ser	Ala	Lys	Leu 205	Val	Tyr	Ser
5	Ile	Leu 210	Glu	Gly	Gln	Pro	Tyr 215	Phe	Ser	Ile	Glu	Pro 220	Glu	Thr	Ala	Ile
	11e 225	Lys	Thr	Ala	Leu	Pro 230	λsn	Met	yab	Arg	Glu 235	λla	Lys	Glu	Glu	Týr 240
10	Leu	Val	Val	Ile	Gln 245	Ala	Lys	Авр	Het	Gly 250	Gly	His	Ser	Gly	Gly 255	Leu
	Ser	Gly	Thr	Thr 260	Thr	Leu	Thr	Val	Thr 265	Leu	Thr	Двр	Val	Asn 270	ysb	λsn
15	Pro	Pro	Lys 275	Phe	λla	Gln	Ser	Leu 280	Tyr	His	Phe	Ser	Val 285	Pro	Glu	As p
	Val	Val 290	Leu	Gly	Thr	Ala	11e 295	Gly	Arg	Val	Lys	Ala 300	yau	Asp	Gln	Авр
20	11e 305		Glu	λsn	Ala	Gln 310	Ser	Ser	Tyr	Asp	11e 315	Ile	Asp	Gly	увр	Gly 320
20	Thr	Ala	Leu	Phe	Glu 325	Ile	Thr	Ser	увр	Ala 330	Gln	Ala	Gln	увЪ	Gly 335	Val
	Ile	Arg	Leu	Arg 340	Lys	Pro	Leu	λвр	Phe 345	Glu	Thr	Lys	Lys	Ser 350	Tyr	Thr
25	Leu	Lys	Val 355	Glu	Ala	Ala	Asn	Ile 360	His	Ile	Хsр	Pro	Arç 365	Phe	Ser	Gly
	Arg	Gly 370		Phe	Lys	yeb	Thr 375		Thr	Val	Lys	11e 380	Val	Val	Glu	yeb
30	Ala 385		Glu	Pro	Pro	Val 390		Ser	Ser	Pro	395	Tyr	Leu	Leu	Glu	Val 400
	His	Glu	Asn	Ala	Ala 405		Asn	Ser	Val	11e	Gly	Gln	Val	Thr	Ala 415	Arg
35	Asţ	Pro) Asp	11e 420		Ser	Ser	Pro	11e		Phe	Sei	Ile	430))	His
	Thi	. Asi	Leu 435		Arg	g Glr	h Phe	440		A A S	a Ala	yel	A81	613	, Lyı	Ile
40	Thi	Let 450	a Ala	Thr	Pro	Let	1 Asp 455	Arg	, Glu	ı Le	ı Ser	Va.	Tr _l	H1	B Asi	n Ile
	Se:		9 Ile	e Ala	. Thi	Gl: 470		Arç) Asi	n Hi	8 Sei 47!	G1:	n Ile	e Se	r Ar	g Val 480
45	Pr	D Va	l Ala	110	48!		l Le	1) 81	P Va	1 As 49	n As j O	p As	n Al	a Pr	o G1 49	u Phe 5
	N 1	a Se	r Gl	1 Ty:		u Al	a Pho	e Le	и Су 50		u As	n G1	y Ly	s Pr 51	o Gl O	y Gln
50	Va	l As	n Ile 51		r Me	t Le	u Le	11. 52		u As	n Me	t Ph	e Va 52	1 T y 5	r As	n Cys
	Ph	e Le 53		l As	n .											

(2) INFORMATION FOR SEQ ID NO:45:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2490 base pairs (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: CDNA

10

15

20

25

30

35

40

45

50

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

GGCACGAGGG CCAGTTGAGC CAGAGTCAGA ATTTGTGATC AAAATTCACG ATATCAACGA 60 CAATGAGCCT ACATTCCCAG AAGAAATTTA TACAGCCAGC GTTCCTGAAA TGTCTGTTGT 120 AGGTACTTCT GTGGTGCAAG TCACAGCTAC AGATGCCGAT GACCCTTCAT ATGGAAACAG 180 CGCCAGAGTC ATTTACAGCA TACTTCAAGG GCAGCCTTAT TTCTCTGTGG AACCAGAAAC 240 AGGTATCATA AGGACAGCTC TACCAAACAT GAACAGGAGG AACAAGGAAC AGTACCAGGT 300 GGTTATTCAA GCCAAGGACA TGGGCGGTCA GATGGGGGGT CTGTCTGGAA CCACCACAGT 360 GAACATCACT CTCACAGATG TCAACGACAA TCCTCCTCGC TTCCCCCAAA ACACCATCCA 420 TCTGCGAGTT CTTGAATCCT CTCCAGTTGG CACAGCTGTG GGAAGTGTAA AAGCCACCGA 480 TOCTGACACG GGGAAAAATG CCGAAGTGGA ITACCGCATT ATTGATGGAG ATGGCACAGA 540 TATGTTTGAC ATTATAACTG AGAAGGACAC ACAGGAAGGC ATCATCACTG TGAAAAAGCC 600 ACTIGACIAT GAGAACCGAA GACTATATAC TCTGAAGGTG GAGGCAGAAA ATACCCATGT 660 GGATCCACGT TTTTACTATT TAGGGCCATT CAAAGATACA ACAATTGTAA AAATCTCCAT 720 AGAAGACGTC GATGAGCCTC CAGTTTTCAG TCGATCCTCC TATCTGTTTG AGGTTCATGA 780 GGATATTGAA GTGGGCACAA TCATCGGTAC TGTAATGGCA AGAGACCCAG ATTCTACTTC 840 CAGTCCCATC AGATTACTT TAGATCGCCA TACTGATCTT GACAGGATCT TTAACATTCA 900 TTCTGGAAAC GGATCACTTT ATACATCAAA GCCACTTGAT CGTGAACTAT CTCAATGGCA 960 CANCETTACE GTCATAGETG CCGAGATCAA TAATCCTAAA GAAACAACTC GTGTGTCTGT 1020 TTTTGTGAGG ATTTTGGATG TTAATGACAA CGCTCCACAA TTTGCTGTGT TTTATGACAC 1080 ATTTGTATGT GAARATGCCA GACCAGGACA GCTGATACAG ACAATAAGTG CAGTTGACAA 1140 AGATGACCCC TTAGGTGGAC AGAAGTTCTT CTTCAGTTTG GCTGCTGTGA ATCCTAACTT 1200 CACAGTGCAA GACAATGAAG ACAACACTGC CAGAATTTTA ACCAGAAAGA ATGGCTTCAA 1260 COGTCATGAA ATAAGCACCT ACCTACTGCC GGTAGTGATA TCTGATAATG ACTACCCCAT 1320 TCAGAGCAGC ACTGGCACCC TGACGATCCC TGTTTGCCCC TGTGACAGCC AGGGCAACAT 1380 GCAGTCCTGC AGTGCCGAAG CCCTGCTCCT TCCTGCTGGC CTCAGCACTG GCGCCTTGAT 1440 OGCCATTCTT CTCTGCATCA TCATTCTGCT GGTTATAGTA GTCCTCTTTG CAGCCCTGAA 1500 AAGGCAACGG AAGAAAGAGC CTCTGATTTT ATCCAAAGAA GACATCAGAG ACAACATTGT 1560 GAGCTATARC GACGARGETG GCGGAGAGGA GGACACCCAA CCCTTTGATA TTGGAACCCT

	GAGGAATCCT GCAGCTATCG AGGAGAAAAA GCTGCGGCGA GATATCATTC CTGAAACGTT	1680
	ATTTATACCG CGGCGGACTC CTACGGCCCC GGATAACACG GATGTCCGGG ATTTCATTAA	1740
5	TGAGCGCCTC AAAGAGCACG ACTTGGACCC CACTGCGCCT CCCTACGACT CGCTGGCTAC	1800
	CTATGCCTAT GAAGGAAACG ACTCTGTTGC TGAATCTCTG AGCTCCTTAG AATCAGGTAC	1860
	CACTGAAGGA GACCAAAACT ACGATTACCT TCGAGAATGG GGGCCTCGGT TTAATAAACT	1920
10	ACCAGARATE TACCETEGTE GTGAGAGCCA CAAAGACECT TAGCCTEGCC CCTGAGCTCT	1980
	GTTCANCGAG ATACGTANCT TTGCAGACAT TGTCTCCACT TCACAATATT TGATATTCAG	2040
	GAGAAAAAT TCCTGCCACT CAGCACAAGT TTCCCACCTA TTTCTTAATT TGTTCATTAA	2100
	TTATATTAAT TOOTTOOTGT AGAATGTOTC ATGGGATATA TACGACATTT TATTTAATCA	2160
15	CITCCANGNG CCANAGCINI GGANATICAN IGTIGCCCNI CITNGIANAT ANNAGANACC	2220
	CGAGCAGGAT AGTTCTCCCT TAAGCAACCT CACGAACAAG TCGCTTCTGT TAGATACACG	2280
	TCTTGCCCTT GCAAATGAAG CTTTGAAAAG ACGAAGAAAA CATTTAAGAT GTATCCTGTT	2340
20	CTGTACATTA AGTTTARARA ARARAGTCCA TGTGGTGTTA GTAGGTGTGA TATGCAGCCT	2400
	GGTATACGAG CATTCGTGCA ATTTCATTTC ATCAAATTCT ATCTGCTAAT GTTTTATATT	246
	TATATTITIG TATITATTIT TTAAAAAAAA	249
25	(2) INFORMATION FOR SEQ ID NO:46:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 653 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
30	(ii) HOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:	
	Ala Arg Gly Pro Val Glu Pro Glu Ser Glu Phe Val Ile Lys Ile His 1 5 10 15	
35	Asp Ile Asn Asp Asn Glu Pro Thr Phe Pro Glu Glu Ile Tyr Thr Ala 20 25 30	
	Ser Val Pro Glu Het Ser Val Val Gly Thr Ser Val Val Gln Val Thr 35 40 45	
40	Ala Thr Asp Ala Asp Asp Pro Ser Tyr Gly Asn Ser Ala Arg Val Ile 50 55 60 :	
	Tyr Ser Ile Leu Gln Gly Gln Pro Tyr Phe Ser Val Glu Pro Glu Thr	

Gly Ile Ile Arg Thr Ala Leu Pro Asn Met Asn Arg Glu Asn Lys Glu 85 90 95

Gln Tyr Gln Val Val Ile Gln Ala Lys Asp Het Gly Gln Het Gly 100 105 110

Gly Leu Ser Gly Thr Thr Thr Val Asn Ile Thr Leu Thr Asp Val Asn 115 120 125

Asp Asn Pro Pro Arg Phe Pro Gln Asn Thr Ile His Leu Arg Val Leu 130 135 140

55

50

	Glu 145	Ser	Ser	Pro	Val	Gly 150	Thr	Ala	Val	Gly	Ser 155	Val	Lys	Ala	Thr	160
5	Ala	Asp	Thr	Gly	Lyв 165	yeu	Ala	Glu	Val	Авр 170	Tyr	Arg	Ile.	Ile	Авр 175	Gly
	Авр	Gly	Thr	Asp 180	Het	Phe	Asp	Ile	Ile 185	Thr	Glu	Lys	yab	Thr 190	Gln	Gļu
10	Gly	Ile	Ile 195	Thr	Val	Lys	Lys	Pro 200	Leu	Asp	Tyr	Glu	λe n 205	λrg	Arg	Leu
	Tyr	Thr 210	Leu	Lys	Val	Glu	Ala 215	Glu	Asn	Thr	His	Val 220	увь	Pro	λ rg	Phe
15	Tyr 225	Tyr	Leu	Gly	Pro	Phe 230	Lys	увр	Thr	Thr	11e 235	Val	Lys	Ile	Ser	11e 240
	Glu	увр	Val	Дар	Glu 245	Pro	Pro	Val	Phe	Ser 250	Arg	Ser	Ser	Tyr	Leu 255	Phe
20	Glu	Val	His	Glu 260	увь	lle	Glu	Val	Gly 265	Thr	Ile	lle	Gly	Thr 270	Val	Xet
20	Ala	Arg	Авр 275	Pro	увъ	Ser	Thr	Ser 280	Ser	Pro	lle	Arg	Phe 285	Thr	Leu	Хвр
	Arg	His 290	Thr	увь	Leu	Asp	Arg 295	Ile	Phe	yau	Ile	His 300	Ser	Gly	Хвп	Gly
25	Ser 305	Leu	Tyr	Thr	Ser	Lys 310	Pro	Leu	ysb	Arg	Glu 315	Leu	Ser	Gln	Trp	His 320
	λsn	Leu	Thr	Val	11e 325	Ala	Ala	Glu	Ile	Asn 330	Asn	Pro	Lys	Glu	Thr 335	Thr
30	Arg	Val	Ser	Val 340	Phe	Val	Arg	Ile	Leu 345	Asp	Val	yau	увр) 8n 350	Ala	Pro
	Gln	Phe	Ala 355	Val	Phe	Tyr	Asp	Thr 360	Phe	Val	Сув	Glu	Asn 365	Ala	Arg	Pro
35	Gly	Gln 370	Leu	Ile	G ln	Thr	Ile 375		Ala	Val	Asp	Lys 380	увр	Хвр	Pro	Leu
	Gly 385		Gln	Lys	Phe	Phe 390		Ser	Leu	Ala	Ala 395	Val	Asn	Pro	Хвп	Phe 400
40	Thr	Val	Gln	Хвр	Asn 405		Хsр	Asn	Thr	Ala 410		Ile	Leu		Arg 415	Lys
	λsn	Gly	Phe	Asn 420	Arg	His	Glu	Ile	Ser 425		Tyr	Leu	Leu	Pro 430		Val
45	Ile	Ser	Авр 435		Л вр	Tyr	Pro	11e 440		Ser	Ser	Thr	Gly 445		Leu	Thr
	Ile	Arg 450		Сув	λla	Сув	Asp		Gln	Gly	Asn	Met 460		Ser	Сув	Ser
50	Ala 465		Ala	Leu	Leu	Leu 470		Ala	Gly	Leu	Ser 475		Gly	Ala	Leu	1le 480
	λla	Ile	Leu	Leu	Сув 485		: Ile	lle	Leu	Leu 490		Ile	Val	l Val	Let 495	Phe

	Ala	Ala	Leu	Lys 500	λrg	Gln	Arg	Lys	Lys 505	Glu	Pro	Leu	lle	Leu 510	Ser	Lys
5	Glu	Хвр	Ile 515	Arg	ysb	λsn	Ile	Val 520	Ser	Tyr	Asn	yeb	Glu 525	Gly	Cly	Cly
	Glu	Glu 530	Д вр	Thr	Gln	Pro	Phe 535	Asp	Ile	Gly	Thr	Leu 540	λrg	Asn	Pro	λla
10	Ala 545	Ile	Glu	Glu	Lys	L ув 550	Leu	Arg	Arg	ysb	11e 555	Ile	Pro	Glu	Thr	Leu 560
	Phe	Ile	Pro	Arg	A rg 565	Thr	Pro	Thr	Ala	Pro 570	Asp	Asn	Thr	увь	Val 575	λrg
	Asp	Phe	Ile	Asn 580	Glu	Arg	Leu	Lys	Glu 585	His	Asp	Leu	yab	Pro 590	Thr	Ala
15	Pro	Pro	Tyr 595	увр	Ser	Leu	Ala	Thr 600	Tyr	Ala	Tyr	Glu	Gly 605	Asn	Asp	Ser
	Val	Ala 610		Ser	Leu	ser	Ser 615	Leu	Glu	Ser	Gly	Thr 620	Thr	Glu	Gly	yab
20 .	Gln 625		Tyr	ysb	Tyr	Leu 630	Arg	Glu	Trp	Gly	Pro 635	Arg	Phe	λsn	Lys	Leu 640
	Ala	Glu	Met	Tyr	Gly 645		Gly	Glu	Ser	ABP 650	Lys)	Asp	Ala			
25	(2)	Inf	ORMA	TION	FOR	SEQ	ID	NO : 4	7:							
		i)	· (QUEN A) L B) T C) S D) T	engt Ype : Tran	H: 3 nuc DEDN	048 leic ESS:	base aci sin	pai d	.rs	•					
30		(11	.) HC	LECU	LE I	YPE:	CDN	i A								
		(xi	L) SE	QUEN	ice i	ESCF	(IPT	ON:	SEQ	ID I	NO:4	7:				
35	CGC	2000	SSSS	GAAG	ATGI	vec o	ccc	ccc	C G	∝r G	CICC	r TC	CCI	CTC	TCG	CTCTCCC
	GCC	ecc:	rccg	GGCC	CAT	AT C	BAGG	ATCT	ra c	nact	AGAG	A GA	CCTG	CAAG	GCT	GGGTTCT
	CI	BAAG	atga	TTAC	PACCO	CA 1	taa:	rctc	C A	AAAT	ATTC	T AG	AAGG	GGAA	AAG	CTACTTC
40	AAG	STCA	AGTT	CAGO	ZAGC:	CT (TGG	GAC	CA A	CCCC	ACAC	A AT	ATGA	GACC	AAC	agcatgg

ACTICANAGI IGGGGCAGAI GGGACAGICI TCGCCACCCG GGAGCIGCAG GICCCCICCG

AGCAGGTGGC GTTCACGGTG ACTGCATGGG ACAGCCAGAC AGCAGAGAAA TGGGACGCCG

TEGTECEGTT GETEGTEGCE CAGACCTEGT CECCECACTE TEGACACAAG CEGCAGAAAG

CANAGAAGGT COTCCCTCTC GACCCCTCTC CCCCTCCGAA GGACACCCTG CTGCCGTGGC

CCCAGCACCA GAACGCCAAC GGGCTGAGGC GGCCCAAACG GGACTGGGTC ATCCCACCCA

TCAACCTGCC CGAGAACTCG CGCGGGCCCT TCCCGCAGCA GCTCGTGAGG ATCCGGTCCG

ACHANGACAA TGACATCCCC ATCCGGTACA GCATCACGGG AGTGGGTGCC GACCAGCCCC

CCATGGAGGT CTTCAGCATT AACTCCATGT CCGGCCGGAT GTACGTCACA AGGCCCCATGG

	ACCGGGAGGA	GCACGCCTCT	TACCACCTCC	GAGCCCACGC	TGTGGACATG	AATGGCAACA	780
	AGGTGGAGAA	CCCCATCGAC	CTGTACATCT	ACGTCATCGA	CATGAATGAC	AACCACCCTG	840
5	AGTTCATCAA	CCAGGTCTAC	AACTGCTCCG	TGGACGAGGG	CTCCAAGCCA	GGCACCTACG	900
	TGATGACCAT	CACGGCCAAC	GATGCTGACG	ACAGCACCAC	GGCCAACGGG	ATGGTGCGGT	960
	ACCGGATCGT	GACCCAGACC	CCACAGAGCC	CGTCCCAGAA	TATGTTCACC	ATCAACAGCG	1020
10	AGACTGGAGA	TATCGTCACA	GTGGCGGCTG	GCTGGGACCG	AGAGAAAGTT	CAGCAGTACA	1080
	CAGTCATCGT	TCAGGCCACA	GATATGGAAG	GAAATCTCAA	CTATGGCCTC	TCARACACAG	1140
	CCACAGCCAT	CATCACGGTG	ACAGATGTGA	ATGACAACCC	GTCAGAATTT	ACCGCCAGCA	1200
15	CCTTTCCACC	GGAGGTCCCC	GAAAACAGCG	TGGAGACCGT	GGTCGCAAAC	CTCACGGTGA	1260
,,	TGGACCGAGA	TCAGCCCCAC	TCTCCAAACT	GGAATGCCGT	TTACCGCATC	ATCAGTGGGG	1320
	ATCCATCCGG	GCACTTCAGC	GTCCGCACAG	ACCCCGTAAC	CAACGAGGGC	ATGGTCACCG	1380
	TGGTGAAGGC	AGTCGACTAC	GAGCTCAACA	GAGCTTTCAT	GCTGACAGTG	ATGGTGTCCA	1440
20	ACCAGGCGCC	CCTGGCCAGC	GGAATCCAGA	TGTCCTTCCA	GTCCACGGCA	GGGGTGACCA	1500
	.TCTCCATCAT	GGACATCAAC	GAGGCTCCCT	ACTTCCCCTC	AAACCACAAG	CTGATCCGCC	1560
	TGGAGGAGGG	CGTGCCCCCC	GGCACCGTGC	TGACCACGTT	TTCAGCTGTG	GACCCTGACC	1620
25	GGTTCATGCA	GCAGGCTGTG	AGATACTCAA	AGCTGTCAGA	CCCAGCGAGC	TEGETECACA	1680
	TCAATGCCAC	CAACGGCCAG	ATCACCACGG	TCCCACTCCT	GGACCGTGAG	TCCCTCTACA	1740
	ССУУУУУСУУ	CCTCTACGAG	GCCACCTTCC	TEGCACCTEA	CANTGGGATA	CCCCCGGCCA	1800
30	GCCCCACCCC	GACCCTCCAG	ATCTATCTCA	TTGACATCAA	CGACAACGCC	CCTGAGCTGC	1860
	TGCCCAAGGA	GGCGCAGATC	TGCGAGAGGC	CCAACCTGAA	CGCCATCAAC	ATCACGGGG	1920
	CCGACGCTGA	CCTCCACCCC	AACATOGGCC	CCTACGTCTT	CGAGCTGCCC	TTTGTCCCGG	1980
	CGCCCGTGCG	GAAGAACTGG	ACCATCACCC	GCCTGAACGG	TGACTATGCC	CAACTCAGCT	2040
35	TGCGCATCCT	GTACCTGGAG	GCCGGGATGT	ATGACGTCCC	CATCATCGTC	ACAGACTCTG	2100
	GAAACCCTCC	CCTGTCCAAC	ACGTCCATCA	TCARAGTCAR	GGTGTGCCCA	TGTGATGACA	2160
	ACGGGGACTG	CACCACCATT	GGCGCAGTGG	CACCGCTGG	TCTGGGCACC	GGTGCCATCG	2220
40	TGGCCATCCT	CATCTGCATC	CTCATCCTGC	TGACCATGGT	CCTGCTGTTT	GTCATGTGGA	2280
	TGAAGCGGCG	AGAGAAGGAG	CCCCACACGA	AGCAGCTGCT	CATTGACCCC	GAGGACGACG	2340
	TCCGCGAAAA	GATCCTCAAG	TATGACGAGG	AAGGCGGTGG	CGAGGAGGA	CAGGACTACG	2400
45	ACCTCAGCCA	GCTGCAGCAG	CCGGAAGCCA	TGGGGCACGT	GCCAAGCAAI	CCCCTGGCG	2460
	TGCGTCGCGT	GGATGAGCGG	CCCCTCCCCC	CTGAGCCCCA	GTACCCGAT	AGGCCCATGG	2520
	TGCCGCACCC	AGGEGACATO	GGTGACTTCA	TCAATGAGGG	ACTCCCCC	C GCTGACAACG	· 2580
50	ACCCCACGG	ACCCCCTAT	GACTCCCTGC	TGGTCTTCGA	CTACGAGGG	AGCGGCTCCA	2640
50	COGCAGGCTC	CGTCAGCTCC	CTGAACTCAT	CCAGTTCCCC	GGACCAAGA	C TACGATTACC	270
	TCAACGACTG	GGGCCCCAGA	TTCARGARGO	TGGCGGACAT	GTATGGAGG	T GGTGAAGAGG	276

	ATTGACTGA	C CT	CGCA:	TCTT	CGG	ACCG/	AAG 1	rgaga	ccc	T GC	TCG	ACGC	CGG	AGG!	AGCA	;	2820
	GGACTGAGC																2880
5	GGAGGCCCC																2940
	TGCACCOGG														•		3000
	TGTCTTCAC																3048
	(2) INFOR																
10	• •	SEQU (A) (B)	ence Len Typ	CHA GTH: E: a	RACT 916 mino		TICS no a d										
15	· (II)	MÖLE	CULE	TYP	E: p	rote	in										
	(xi)	SEQU	ENCE	DES	CRIF	TION	: SE	Q ID	NO:	48:							
20	Met 1	Thr	Ala	Gly	Ala 5	Gly	Val	Leu :		Leu : 10	Leu	Leu :	Ser	Leu	Ser 15	Gly	
	Ala	Leu	Arg	Ala 20	His	Asn	Glu		Leu 25	Thr	Thr	Arg (Glu	Thr 30	Сув	Lys	
25	Ala	Gly	Phe 35	Ser	Glu	Asp	yeb	Tyr 40	Thr	λla	Leu	Ile	Ser 45	Gln	naƙ	Ile	
	Leu	Glu 50	CJA	Glu	Lys	Leu	Leu 55	Gln	Val	Lys	Phe	Ser 60	Ser	Cys	Val	Gly	
20	Thr 65	Lys	Ġly	Thr	Gln	Tyr 70	Glu	Thr	Asn	Ser	Met 75	Хвр	Phe	Leu	Val	80 80	
30	Ala	yab	Gly	Thr	Val 85	Phe	Ala	Thr	Arg	Glu 90	Leu	Gln	Val	Pro	Ser 95	Glu	
	Gln	Val	Ala	Phe 100	Thr	Val	Thr	Ala	Trp 105	Asp	Ser	Gln	Thr	Ala 110	Glu	Lys	
35	Trp	ysb	Ala 115	Val	Val	Arg	Leu	Leu 120	Val	Ala	Gln	Thr	Ser 125	Ser	Pro	Ris	
	Ser	Gly 130		Lys	Pro	Gln	Lys 135	GJĀ	Lув	Lys	Val	Val 140	Ala	Leu	. Авр	Pro	•
40	Ser 145		Pro	Pro	Lys	Asp 150		Leu	Leu	Pro	Trp 155	Pro	Gln :	His	Gln	160)
	λla	Asn	Gly	Leu	Arg 165		Arg	Lys	Arg	Asp 170	Trp	Val	Ile	Pro	175	Ile	•
45	Asc	Val	Pro	Glu 180		Ser	Arg	Gly	Pro 185	Phe	Pro	Gln	Gln	190	Val	Arq	9
			195			•		200	ı			Arg	205	.			•
50		210)				219	•				. Phe 220)				
	Me: 22:		: Gly	Arg	, Met	: Tyr 230		Thr	. Arg	Pro	Het 235	. Asp	yr	Gl	ı Gl	u Hi 24	s 0

	Ala	Ser	Tyr	His	Leu 245	Arg	λla	His	Ala	Val 250	Asp	Het	A sn	Gly	A sn 255	Lys
5	Val	Glu	Aen	Pro 260	Ile	Asp	Leu	Tyr	11e 265	Tyr	Val	Ile	Asp	Met 270	λsn	Asp
	λsn	His	Pro 275	Glu	Phe	Ile	Asn	Gln 280	Val	Tyr	λsn	Сув	Ser 285	Val	ДВР	Glu
10	Gly	Ser 290	Lys	Pro	Gly	Thr	Tyr 295	Val	Ket	Thr	Ile	Thr 300	Ala	Asn	λвр	Ala
	Asp 305	Asp	Ser	Thr	Thr	Ala 310	Aen	Cly	Ket	Val	Arg 315	Tyr	Arg	Ile	Val	Thr 320
15	Gln	Thr	Pro	Gln	Ser 325	Pro	Ser	Gln	Asn	Met 330	Phe	Thr	Ile	Asn	Ser 335	Glu
	Thr	Gly	Asp	11e 340	Val	Thr	Val	Ala	Ala 345	Gly	Trp	Хвр	λ rg	Glu 350	Lys	Val
20	Gln	Gln	Tyr 355	Thr	Val	Ile	Val	Gln 360	Ala	Thr	увь	Met	Glu 365	Gly	Asn	Leu
	Asn	Tyr 370	Gly	Leu	Ser	Asn	Thr 375	Ala	Thr	Ala	Ile	11e 380	Thr	Val	Thr	Хвр
	Val 385	Asn	Авр	Aen	Pro	Ser 390	Glu	Phe	Thr	λla	Ser 395	Thr	Phe	Ala	Gly	Glu 400
25	Val	Pro	Glu	λsn	ser 405	Val	Glu	Thr	Val	Val 410	Ala	λBN	Leu	Thr	Val 415	Met
	Дв р	Arg	Asp	Gln 420	Pro	His	Ser	Pro	Asn 425	Trp	Asn	Ala	Val	Tyr 430	Arg	Ile
30	Ile	Ser	Gly 435	ХВ Р	Pro	Ser	Gly	His 440	Phe	Ser	Val	Arg	Thr 445	Asp	Pro	Val
	Thr	As n 450	Glu	Gly	Met	Val	Thr 455	Val	Val	Lys	Ala	Val 460	Хsр	Tyr	Glu	Leu
35	Asn 465	Arg	Ala	Phe	Met	Leu 470	Thr	Val	Met	Val	Ser 475	Asn	Gln	Ala	Pro	Leu 480
	Ala	Ser	Gly	Ile	Gln 485	Met	Ser	Phe	Gln	Ser 490	Thr	Ala	Gly	Val	Thr 495	Ile
40	Ser	Ile	Met	As p 500	Ile	Asn	Glu	Ala	Pro 505	Tyr	Phe	Pro	Ser	As n 510		Lys
	Leu	Ile	Arg 515		Glu	Glu	Gly	Val 520		Pro	Gly	Thr	Val 525		Thr	Thr
45	Phe	Ser 530		Val	увр	Pro	Asp 535	Arg	Phe	Met	Gln	G1n 540		Val	Arg	Tyr
	Ser 545		Leu	Ser	Хsр	Pro 550		Ser	Trp	Leu	His 555		. Asn	Ala	Thr	Asn 560
50	Gly	Gln	Ile	Thr	Thr 565		Ala	Val	Leu	As p 570		Glu	6er	Leu	Tyr 575	Thr
	Lys	Asn	Asn	Val 580		Glu	Ala	Thr	Phe 585		Ala	Ala	ysi	As 1		Ile

	Pro		Ala 595	Ser	GJA ,	Thr	Gly	Thr :	Leu '	Gln	Ile '	Tyr	Leu 605	Ile i	Asp	Ile
5	λsn	Asp 610	A sn	Ala	Pro	G1u	Leu 615	Leu	Pro	Lys	Glu .	Ala 620	Gln	Ile (Cye	Glu
	Arg 625	Pro	ABD	Leu		Ala 630	Ile	yeu	Ile	Thr	Ala 635	Ala	yeb	Ala	Kep	Val 640
10	His	Pro	A 8n		Gly 645	Pro	Tyr	Val	Phe	Glu 650	Leu	Pro	Phe	Val	Pro 655	Ala
	YJa	Val	Arg	Lys 660	A6 n	Trp	Thr	Ile	Thr 665	Arg	Leu	Asn	Gly	Asp 670	Tyr	Ala
15	Gln	Leu	Ser 675	Leu	Arg	Ile	Leu	Tyr 680	Leu	Glu	λla	Gly	Met 685	Tyr	yab	Val
	Pro	11e 690	Ile	Val	Thr	Asp	Ser 695	Gly	A sn	Pro	Pro	Leu 700	Ser	yeu	Thr	Ser
20	Ile 705	Ile	Lys	Val	Lys	Val 710	Сув	Pro	Cys	Asp	A sp 715	Yeu	Gly	yab	Cys	Thr 720
	Thr	Ile	Gly	Ala	Val 725	Ala	Ala	Ala	Gly	Leu 730	Gly	Thr	Gly	Ala	Ile 735	Val
25	Ala	Ile	Leu	11e 740	Сув	Ile	Leu	Ile	Leu 745	Leu	Thr	Met	Val	Leu 750	Leu	Phe
	Val	Met	Trp 755		Lys	Arg	Arg	Glu 760	Lys	Glu	Arg	His	Thr 765	Lys	Gln	Leu
30	Leu	770		Pro	Glu	Asp	775	Val	Ъrg	Glu	Lys	11e 780	Leu	Lys	Tyr	увр
	Glu 785		Gly	Gly	Gly	Glu 790	Glu	Asp	Gl n	Asp	Tyr 795	Авр	Leu	Ser	Gln	Leu 800
35	Gln	Gln	Pro	Glu	Ala 805	Мet	: Gly	Hie	Val	810	Ser	Lys	Ala	Pro	Gly 815	Val
	Arq) Arg	, Val	Asp 820		Arç	g Pro	Val	Gly 825	Pro	Glu	Pro	Gln	830	Pro	Ile
40	λrg	Pro	835		Pro	His	s Pro	61 ₃ 840	, yei	Ile	e Gly	/ Asi	9 Phe 845	e Ile	a yei	Glu
	Gly	850		, Al=	Ala	Asj	855	ı Ası	Pro	Thi	r Ala	860	Pro) Tyr	. Ası	Ser
45	Le :		ı Val	l Phe) Asp	870	r Glu	ı Gl	y Se	r Gl	87	r Thi	r Aļi	a Gly	y Se:	r Val 880
	Se:	r Se	r Lev	л уег	889 888		r Se	r Se	r Gl	9 AB	p G1 :	n As	р Ту:	r As	P Ty 89	r Leu 5
50	λв	n As	p Tr	900) Ar	g Ph	e Ly	в L y 90	s Le 5	u Al	a As	p Me	t Ty. 91	r Gl O	y G13
	. Gl	y Gl	u G1 91	u As) 5	P	•	•			•						٠

(2) INFORMATION FOR SEQ ID NO:49:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3164 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(11) MOLECULE TYPE: cDNA

10

15

20

25

30

35

40

45

50

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

CTCCACTCAC GCTCAGCCCT GGACGGACAG GCAGTCCAAC GGAACAGAAA CATCCCTCAG 60 CCCACAGGCA CGATCTGTTC CTCCTGGGAA GATGCAGAGG CTATGATGCT CCTCGCCACA 120 TEGGGEGET GETGGGET GETGGEAGTG GEAGCAGTGG CAGCAGCAGC TGETAACCCT 180 GCCCAACGG ACACCCACAG CCTGCTGCCC ACCCACCGC GCCAAAAGAG AGATTGGATT 240 TGGAACCAGA TGCACATTGA TGAAGAGAAA AACACCTCAC TTCCCCATCA TGTAGGCAAG 300 ATCAAGTCAA GCGTGAGTCG CRAGAATGCC AAGTACCTGC TCAAAGGAGA ATATGTGGGC 360 AAGGTCTTCC GGGTCGATGC AGAGACAGGA GACGTGTTCG CCATTGAGAG GCTGGACCGG 420 GAGAATATCT CAGAGTACCA CCTCACTGCT GTCATTGTGG ACAAGGACAC TGGCGAAAAC 480 CTGGAGACTC CTTCCAGCTT CACCATCAAA GTTCATGACG TGAACGACAA CTGGCCTGTG 540 TTCACGCATC GGTTGTTCAA TGCGTCCGTG CCTGAGTCGT CGGCTGTGGG GACCTCAGTC 600 ATCTCTGTGA CAGCAGTGGA TGCAGACGAC CCCACTGTGG GAGACCACGC CTCTGTCATG 660 TACCANATCC TGANGGGGAA AGAGTATTTT GCCATCGATA ATTCTGGACG TATTATCACA 720 ATAACGAAAA GCTTGGACCG AGAGAAGCAG GCCAGGTATG AGATCGTGGT GGAAGCGCGA 780 GATGCCCAGG GCCTCCGGGG GGACTCGGGC ACGGCCACCG TGCTGGTCAC TCTGCAAGAC 840 ATCANTGACA ACTTCCCCTT CTTCACCCAG ACCAACTACA CATTTGTCGT GCCTGAAGAC 900 ACCOUNTED GCACCTCTGT GGGCTCTCTG TITGTTGAGG ACCCAGATGA GCCCCAGAAC 960 CGGATGACCA AGTACAGCAT CTTGCCGGGC GACTACCAGG ACGCTTTCAC CATTGAGACA 1020 ARCCCCCCC ACARCGAGGG CATCATCANG CCCATGAAGC CTCTGGATTA TGAATACATC 1080 CAGCANTACA GCTTCATAGT CGAGGCCACA GACCCCACCA TCGACCTCCG ATACATGAGC 1140 CCTCCCCCG GAAACAGAGC CCAGGTCATT ATCAACATCA CAGATGTGGA: CGAGCCCCCC 1200 ATTITOCAGO AGCOTITOTA COACTITOCAG CIGAAGGAAA ACCAGAAGAA GOOTOTGATI 1260 GGCACAGTGC TGGCCATGGA CCCTGATGCG GCTAGGCATA GCATTGGATA CTCCATCCGC 1320 AGGACCAGTG ACAAGGGCCA GTTCTTCCGA GTCACAAAAA AGGGGGACAT TTACAATGAG 1380 ARREADED ACRESCANCE CTROCOCTEC TRIRACCIOR CIGIGGRESC CRARGARCIC 1440 GATTCCACTG GAACCCCCAC AGGAAAAGAA TCCATTGTGC AAGTCCACAT TGAAGTTTTG 1500 GATGAGAATG ACAATGCCCC GGAGTTTGCC AAGCCCTACC AGCCCAAAGT GTGTGAGAAC 1560 GCTGTCCATG GCCRGCTGGT CCTGCAGATC TCCGCAATAG ACAAGGACAT ARCACCACGA 1620

AACGTGAAGT	TCAAATTCAT	CTTGAATACT	GAGAACAACT	TTACCCTCAC	GGATAATCAC	1680
GATAACACGG	CCAACATCAC	AGTCAAGTAT	GGGCAGTTTG	ACCGGGAGCA	TACCAAGGTC	1740
CACTTCCTAC	CCGTGGTCAT	CTCAGACAAT	GGGATGCCAA	GTCGCACGGG	CACCAGCACG	1800
CTGACCGTGG	CCGTGTGCAA	GTGCAACGAG	CAGGGCGAGT	TCACCTTCTG	CGAGGATATG	1860
GCCGCCCAGG	TGGGCGTGAG	CATCCAGGCA	GTGGTAGCCA	TCTTACTCTG	CATCCTCACC	1920
ATCACAGTGA	TCACCCTGCT	CATCTTCCTG	ccccccccc	TCCGGAAGCA	GCCCCCCCC	1980
CACGGCAAGA	GCGTGCCGGA	GATCCACGAG	CAGCTGGTCA	CCTACGACGA	GCAGGGCGGC	2040
GGCGAGATGG	ACACCACCAG	CTACGATGTG	TOGGTGCTCA	ACTCCGTGCG	COCCGCGCGGG	2100
GCCAAGCCCC	CCCCCCCC	GCTGGACGCC	CCCCTTCCC	TCTATGCGCA	GGTGCAGAAG	2160
CCACCGAGGC	ACGCCCTCC	GGCACACGGA	GCCCCCCCC	AGAŢGGCAGC	CATGATCGAG	2220
GTGAAGAAGG	ACGAGGCGGA	CCACGACGGC	GACGGCCCCC	CCTACGACAC	GCTGCACATC	2280
TACGGCTACG	AGGGCTCCGA	GTCCATAGCC	GAGTCCCTCA	GCTCCCTGGG	CACCGACTCA	2340
TCCGACTCTG	ACGTGGATTA	CGACTTCCTT	AACGACTGGG	GACCCAGGTT	TAAGATGCTG	2400
GCTGAGCTGT	ACGGCTCGGA	CCCCCGGGAG	GAGCTGCTGT	ATTAGGCGGC	CGAGGTCACT	2460
CTGGGCCTGG	GGACCCAAAC	CCCCTGCAGC	CCAGGCCAGT	CAGACTCCAG	GCACCACAGC	2520
CTCCAAAAAT	GGCAGTGACT	CCCCAGCCCA	GCACCCCTTC	CTCGTGGGTC	CCAGAGACCT	2580
CATCAGCCTT	GGGATAGCAA	ACTCCAGGTT	CCTGAAATAT	CCAGGAATAT	ATCTCACTGA	2640
TGACTATTCT	CAAATGCTGG	CANATOCAGG	CIGGIGITCI	CTCTCCCCTC	·AGACATOCAC	2700
ATAACCCTGT	CACCCACAGA	COGCOGTOTA	ACTCAAAGAC	TTCCTCTGG	TCCCCAAGGC	2760
TGCAAAGCAA	AACAGACTGT	GTTTAACTGC	TGCAGGGTCT	TITTCTAGG	G TCCCTGAACG	2820
CCCTGGTAAG	GCTGGTGAGG	TCCTGGTGCC	TATCTGCCTG	GAGGCAAAGG	CCTGGACAGC	2880
TTGACTTGTG	GGGCAGGATT	CTCTGCAGOO	CATTCCCAAG	GGAGACTGA	C CATCATGCCC	2940
TCTCTCGGGA	GCCTAGCCC	TGCTCCAACT	CCATACTCC	CTCCAAGTG	C CCCACCACTC	3000
CCCAACCCCT	CTCCAGGCCT	CTCAAGAGGG	AGGAAGGGG	CCCATGGCA	G CTCCTGACCT	3060
TGGGTCCTG/	AGTGACCTCI	CTGGCCTGCC	ATGCCAGTAI	CTGTGCTGT	A CTGAGCACTG	3120
AACCACATTO	AGGGAAATGG	CTTATTAAA	TTTGAAGCA	CTCT		3164

(2) INFORMATION FOR SEQ ID NO:50:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 780 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

Het Met Leu Leu Ala Thr Ser Gly Ala Cys Leu Gly Leu Leu Ala Val

	Ala	Ala	Val	Ala 20	Ala	Ala	Gly	Ala	As n 2 5	Pro	Ala	Gln	Arg	ДВР	Thr	His
5	Ser	Leu	Leu 35	Pro	Thr	His	Arg	Arg 40	Gln	Lys	Arg	Asp	Trp 45	Ile	Trp	Asn
	Gln	Het 50	His	Ile	Asp	Glu	Glu 55	Lys	Asn	Thr	Ser	Leu 60	Pro	His	His	Val
10	Gly 65	Lye	Ile	Ļув	ser	Ser 70	Val	Ser	Arg	Lys	Asn 75	Ala	Lys	Tyr	Leu	Leu 80
	Lys	Gly	Glu	Tyr	Val 85	Gly	Lys	Val	Phe	Arg 90	Val	Asp	Ala	Glu	Thr 95	Gly
15	Авр	Val	Phe	Ala 100	Ile	Glu	Arg	Leu	Авр 105	Arg	Glu	Asn	Ile	Ser 110	Glu	Tyr
	His	Leu	Thr 115	Ala	Val	Ile	Val	Авр 120	Lys	Asp	Thr	Gly	Glu 125	Asn	Leu	Glu
20	Thr	Pro 130	Ser	Ser	Phe	Thr	Ile 135	Lys	Val	His	Yeb	Val 140	Asn	Asp	Asn	Trp
	Pro 145	Val	Phe	Thr	His	Arg 150	Leu	Phe	Asn	Ala	Ser 155	Val	Pro	Glu	Ser	Ser 160
-	Ala	Val	Gly	Thr	Ser 165	Val	Ile	Ser	Val	Thr 170	Ala	Val	Asp	Ala	Asp 175	Авр
25	Pro	Thr	Val	Gly 180	увь	His	Ala	Ser	V al 185	Met	Tyr	Gln	Ile	Leu 190	Lys	Gly
	Lys	Glu	Tyr 195	Phe	Ala	Ile	Asp	Asn 200	Ser	Gly	Arg	Ile	Ile 205	Thr	Ile	Thr
30	Lys	Ser 210	Leu	Asp	Arg	Glu	Lys 215	Gln	Ala	Arg	Tyr	Glu 220	Ile	Val	Val	Glu
	Ala 225	Arg	ysb	Ala	Gln	Gly 230	Leu	λrg	Gly	ysb	Ser 235	Gly	Thr	Ala	Thr	Val 240
35	Leu	Val	Thr	Leu	Gln 245	yeb	Ile	Asn	Asp	Asn 250	Phe	Pro	Phe	Phe	Thr 255	Gln
	Thr	Lys	Tyr	Thr 260	Phe	Val	Val	Pro	Glu 265	ysb	Thr	λrg	Val	Gly 270		Ser
40	Val	Gly	Ser 275	Leu	Phe	Val	Glu	Asp 280	Pro	Asp	Glu	Pro	Gln 285		Arg	Het
	Thr	Lys 290		Ser	Ile	Leu	Arg 295	Gly	Asp	Tyr	Gln	Asp		Phe	Thr	Ile
45	Glu 305	Thr	Asn	Pro	Ala	His 310		Glu	Gly	Ile	Ile 315		Pro	Het	Lys	Pro 320
	Leu	Asp	Tyr	Glu	Tyr 325		Gln	Gln	Tyr	Ser 330		Ile	· Val	Glu	Ala 335	Thr
50	Asp	Pro	Thr	Ile 340		Leu	Arg	Tyr	Met 345		Pro	Pro	Ala	61 ₃ 350		Arg
	λla	Gln	Val 355		Ile	. Asn	Ile	Thr 360		Val	Asp	Glu	Pro 369		Ile	? Phe

	Gln	Gln 370	Pro	Phe	Tyr	His	Phe 375	Gln	Leu	Lys	Glu	Лв п 380	Gln :	Lys	Lye	Pro
5	Leu 385	Ile	Gly	Thr	Val	Leu 390	Ala	M et	yab	Pro	Авр 395	Ala .	Ala	Arg	His	Ser 400
	Ile	Gly	Tyr	Ser	11e 405	Arg	Arg	Thr	Ser	Asp 410	Lys	Gly	Gln	Phe	Phe 415	Arg
10	Val	Thr	Lys	Lys 420	Gly	Хsр	Ile	Tyr	Asn 425	Glu	Lys	Glu	Leu	Asp 430	Arg	Glu
	Val	Tyr	Pro 435	Trp	Tyr	yeu	Leu	Thr 440	Val	Glu	Ala	Lys	Glu 445	Leu	ysb	Ser
15	Thr	Gly 450	Thr	Pro	Thr	Gly	Lys 455	Glu	Ser	Ile	Val	Gln 460	Val	His	Ile	Glu
	Val 465	Leu	Asp	Glu	Asn	А вр 470	Asn	Ala	Pro	Glu	Phe 475	Ala	Lys	Pro	Tyr	Gln 480
00	Pro	Lys	Val	Cys	Glu 485	Asn	Ala	Val	His	Gly 490	Gln	Leu	Val	Leu	Gln 495	Ile
20	Ser	Ala	Ile	Авр 500	Lys	Двр	Ile	Thr	Pro 505	Arg	Asn	Val	Lys	Phe 510	Lys	Phe
	Ile	Leu	Asn 515	Thr	Glu	Asn	Asn	Phe 520	Thr	Leu	Thr	Авр	Asn 525	Hįs	Asp	Asn
25	Thr	Ala 530		Ile	Thr	Val	Lys 535	Tyr	Gly	Gln	Phe	л зр 540	Arg	Glu	His	Thr
	Lys 545		His	Phe	Leu	Pro 550		Val	Ile	Ser	Asp 555	Asn	Gly	Het	Pro	Ser 560
30	Arg	Thr	Gly	Thr	Ser 565	Thr	Leu	Thr	Val	Ala 570	Val	Сув	Lys	Cys	Asn 575	Glu
	Gln	Gly	Glu	Phe 580		Phe	Сув	Glu	Asp 585		Ala	. Ala	Gln	Val 590	Gly	Val
35	Ser	: Ile	Gln 595		Val	Val	. Ala	11e 600		Leu	Сув	Ile	Leu 605	Thr	Ile	Thr
	Val	l lle		Leu	Leu	Ile	Phe 615		Arç) Arg) Arg	620		Lev	Glr	n Ala
40	Ar 62		Hie	Gly	Lys	Sex 630		. Pro	Glu	ılle	639	Glu G	Glr	Let	Va.	640
	Ty	c Asp	Glu	Glu	645		y Gly	, Glu	ı Ket	650		Thi	S e z	Ty	65:	p Val
45	Se	r Val	l Lev	As r 660		Va.	l Arç	g Arg	66:		y Ala	Ly:	Pro	67))	g Pro
	Al	a Lei	Asp 679		Arq	g Pro	o Sei	680		r Ala	a Gl	n Va	68:	n Ly 5	B Pr	o Pro
50	Ar	g Hi:		Pro	G)	y Al	69:		y Gl	y Pr	o Gl	y Gl	u Me	t Al	a Al	a Met
	70		u Va	L Ly	B Ly	71		u Al	a As	p Hi	s As 71		y As	b er	y Pr	720

	Tyr Asp Thr Leu His Ile Tyr Gly Tyr Glu Gly Ser Glu Ser Ile Ala 725 730 735	
5	Glu Ser Leu Ser Ser Leu Gly Thr Amp Ser Ser Amp Ser Amp Val Amp 740 745 750	
	Tyr Asp Phe Leu Asn Asp Trp Gly Pro Arg Phe Lys Met Leu Ala Glu 755 760 765	
10	Leu Tyr Gly Ser Asp Pro Arg Glu Glu Leu Leu Tyr 770 775 780	
	(2) INFORMATION FOR SEQ ID NO:51:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1369 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
20	(x1) SEQUENCE DESCRIPTION: SEQ ID NO:51:	
	TOTAGATGAG OCACCTGTCT TCAGCAAACT GGCCTACATC TTACAAATAA GAGAAGATGC	60
	TCAGATARAC ACCACARTAG GCTCCGTCAC AGCCCAAGAT CCAGATGCTG CCAGGARTCC	120
25	TGTCAAGTAC TCTATAGATC GACACACAGA TATGGACAGA ATATTCAACA TTGATTCTGG	180
	ARATGGTTCG ATTTTTACAT CGARACTTCT TGACCGAGAA ACACTGCTAT GGCACARCAT	240
	TACAGTGATA GCAACAGAGA TCAATAATCC AAAGCAAAGT AGTCGAGTAC CTCTATATAT	300
20	TANASTICTA GAIGICANIC ACANCGOCCC AGANITICCI GAGITCINIG ANACTITICI	360
30	CTGTGAAAAA GCAAAGGCAG ATCAGTTGAT TCAGACCTTG CATGCTGTTA GCAAGGATGA	420
	CCCTTATAGT GGGCACCAAT TTTCGTTTTC CTTGGCCCCT GAAGCAGCCA GTGGCTCAAA	480
	CTTTACCATT CAAGACAACA AAGACAACAC GGCGGGAATC TTAACTCGGA AAAATGGCTA	540
35	TANTAGACAC GAGATGAGCA CCTATCTCTT GCCTGTGGTC ATTTCAGACA ACGACTACCC	600
	AGTTCAAAGC AGCACTGGGA CAGTGACTGT CCGGGTCTGT GCATGTGACC ACCACGGGAA	660
	CATGCAATCC TGCCATGCGG AGGCGGTCAT CCACCCCACG GGACTGAGGA CGGGGGGTCT	720
40	GGTTGCCATC CTTCTGTGCA TCGTGATCCT ACTAGTGACA GTGGTGCTGT TTGCAGCTCT	780
	GAGGCCGCAG CGAAAAAAAA AGCCTTTGAT CATTTCCAAA GAGGACATCA GAGATAACAT	840
	TETERETTAE ARCERCEARE GTGGTGGAGA GGAGGACACE CAGGETTTTG ATATOGGCAC	900
45	CCTGAGGAAT CCTGAAGCCA TAGAGGACAA CAAATTACGA AGGGACATTG TGCCCGAAGC	960
45	CCTTTTCCTA CCCCGACGGA CTCCAACAGC TCGCGACAAC ACCGATGTCA GAGATTTCAT	1020
	TAACCAAAGG TTAAAGGAAA ATGACACGGA CCCCACTGCC CCGCCATACG ACTCCCTGGC	1080
	CACITACGCC TATGAAGGCA CIGGCICCGI GGCGGAITCC CIGAGCICGC IGGAGICAGI	1140
50	CACCACGGAT GCAGATCAAG ACTATGATTA CCTTTAGTGA CTGGGACCTC GATTCAAAAA	1200
	GCTTGCAGAT ATGTATGGAG GAGTGGACAG TGACAAAGAC TCCTAATCTG TTGCCTTTTT	1260

	CATTITCCAA TACGACACTG AA	ATATGTGA AGTGG	CTATT TCTTTATATT	TATCCACTAC 13
	TCCGTGAAGG CTTCTCTGTT CT	ACCOGTTC CAAAA	GCCAA TGGCTGCAG	13
5	(2) INFORMATION FOR SEQ	ID NO:52:		
	(i) SEQUENCE CHARAC (A) LENGTH: 41 (B) TYPE: amin (D) TOPOLOGY:	4 amino acids o acid		,
10	(ii) MOLECULE TYPE:	protein		
	(xi) SEQUENCE DESCRI	PTION: SEQ ID	NO:52:	
15	Val Asp Glu Pro Pro 1 5		10	15
	Arg Glu Asp Ala Gln 20	;	25	30
20	Asp Pro Asp Ala Ala 35	Arg Asn Pro	Val Lys Tyr Ser	Ile Lys Arg His 45
	Thr Asp Met Asp Arg	55 .	60	
25	Phe Thr Ser Lys Lev 65	70	75	80
	Thr Val Ile Ala The 85	r Glu Ile Asn	Asn Pro Lys Gln 90	Ser Ser Arg Val 95
30	Pro Leu Tyr Ile Lyd 100	s Val Leu Asp	Val Asn Asp Asn 105	Ala Pro Glu Phe 110
30	Ala Glu Phe Tyr Gl	. 120		125
	Leu Ile Gln Thr Le 130	- 135	140	
35	His Gln Phe Ser Ph 145	150	155	160
	Phe Thr Ile Gln As	55	170	1/3
40	Lys Asn Gly Tyr As 180		185	. 130
	Val Ile Ser Asp As 195	200		205
45	Thr Val Arg Val Cy 210	215	220	1
	His Ala Glu Ala Le 225	230-	235	· 240
50		45	250	255
	Phe Ala Ala Leu A 260	rg Arg Gln Ar	g Lys Lys Glu Pro 265	Leu Ile Ile Ser 270

	Lys	Glu	Авр 275	Ile	Arg	Asp	neA	11e 280	Val	Ser	Tyr	Asn	Asp 285	Glu	Gly	Gly	
5	Gly	Glu 290	Glu	yab	Thr	Gln	Ala 295		Asp	Ile	Gly	Thr 300	Leu	Arg	Asn	Pro	
	Glu 305	Ala	Ile	Glu	Авр	Asn 310	Lys	Leu	Arg	Arg	Asp 315	Ile	Val	Pro	Ģlu	Ala 320	
10	Leu	Phe	Leu	Pro	Arg 325	Arg	Thr	Pro	Thr	Ala 330	Arg	Asp	λsn	Thr	Авр 335	Val	
	Arg	Хвр	Phe	Ile 340	As n	Gln	Arg	Leu	Lys 345	G lu	Asn	yab	Thr	Asp 350	Pro	Thr	
15	Ala	Pro	Pro 355	Tyr	увр	Ser	Leu	Ala 360	Thr	Tyr	Ala	Tyr	Glu 365	Gly	Thr	Gly	
	Ser	Val 370	Ala	Авр	Ser	Leu	Ser 375	Ser	Leu	Glu	Ser	Val 380	Thr	Thr	Хвр	Ala	
	Хар 385	Gln	Авр	Tyr	увь	Tyr 390	Leu	Ser	двр	Trp	Gly 395	Pro	Arg	Phe	Lys	Lув 400	
20	Leu	Ala	Asp	Met	Tyr 405	Gly	Gly	Val	Лsp	Ser 410	qeA	Lys	Asp	Ser			
	(2) INFO	RMAT	ION :	POR :	SEQ :	ID N	0:53	:									
25	(1)	(B (C) LE) TY:) ST	ngth Pe: Rand	: 25 nucle EDNE	TERI 50 b elc SS: line	ase ; acid sing	pair	В								
30	(ii)	HOL	ECUL.	E TY	PE:	cDNA											
	(xi)	SEQ	UENC	e de	SCRI	PTIO	N: S	EQ I	D NO	: 53 :							
	CAGGAAAT	GC I	CTTG	GATC	T CT	GGAC	TCCA	TTA	ATAA	TAT	TATG	GATI	ac 1	CTT	cccc	T	60
35	TGCATTTA	CA I	GGCT	CCGA	T GA	atca	GTCT	CAA	GTTT	TAA	TGAG	TGG?	TC C	CCT	TGGA	NA.	120
	CTAAACAG	TC I	GGGT	GAAG	A AC	AGCG	AATT	TIG	AACC	CCT	CCAP	AAGI	GG (TGG	TTTC	eG .	180
	AATCAAAT	GT I	TGTC	CIGG	A AG	AGTI	TTCI	GGA	CCTG	AAC	CGAT	TCT	KT 1	rece	CGC7	ra	240
40	CACACAGE	ACC I	CGAT	CCIG	G GA	GCAA	AAAA	ATC	aagt	XTX	TCCI	TATC	AGG :	CAT	GAG(: T	300
	GGGACCAT	TAT I	TCAA	ATAA	A TG	ATGI	AACI	GGA	G a ta	TCC	ATG	TAT	AAA I	AAGA	CTTG	AC .	360
	CCCCACC!	XXX X	GGCI	GAGT	A TA	CCC1	:NACA	GCI	CAAG	CAG	TGG	ACTG	GGÄ (GACA	ngcai	MA	420
45	CCTCTGG	NGC C	TCCI	TCTC	IA A	TTAT	TATI	' AA?	GTTC	AAG	ACA?	rcan:	rga (CANT	GCAC	CA	480
45	GAGTTTC	PTA A	TGGA	cccı	TA TO	ATG	TACI	GTO	CCAC	AAA	TGT	CCAT	TTT (GGGT.	ACAT	CT	540
	GTCACTA	ACC 1	CACI	rgcc3	c œ	ACG	TGAT	GA(CCAC	TTT	ATG	AAA	CAG	TGCA	aagt:	TG.	600
	GTTTATA	GTA 1	ATTC	GAA	G GC	AGC	TATE	TI	TCC	TTC	AGC	CTGA	AAC .	AGCT	ATTA'	TA	660
50	AAAACTG	CCC 1	TCC	CARCI	AT GO	ACAC	: A GAJ	CCC	CAAGO	AGG	AGT	ACCT	GGT	TGTT	ATCC	AA	720
	GCCAAAG	ATA 7	rggg:	regae	CA C	CTG	TGGG	CT	TCT	GGA	CCA	CGAC	ACT	TACA	GTGA	CT .	78

	CTTACTGATG TTAATGACAA TCCTCCAAAA TTTGCACAGA GCCTGTATCA CTTCTCAGTA	840
	CCGGAAGATG TGGTTCTTGG CACTGCAATA GGAAGGGTGA AGGCCAATGA TCAGGATATT	900
5	GGTGARARIG CACAGTCATC ATATGATATC ATCCATGGAG ATGGAACAGC ACTTTTTGAA	960
	ATCACTTCTG ATGCCCAGGC CCAGGATGGC ATTATAAGGC TAAGAAAACC TCTGGACTTT	1020
	GAGACCAAAA AATCCTATAC GCTAAAGGAT GAGGCAGCCA ATGTCCATAT TGACCCACGC	1080
10	TTCAGTGGCA GGGGGCCCTT TAAAGACACG GCGACAGTCA AAATCGTGGT TGAAGATGCT	1140
	GATGAGGCTC CGGTCTTCTC TTCACCGACT TACCTACTTG AAGITCATGA AAATGCTGCT	1200
	CTARACTECG TGATTGGGCA AGTGACTGCT CGTGACCCTG ATATCACTTC CAGTCCTATA	1260
4-	AGGTTTTCCA TCGACCGGCA CACTGACCTG GAGAGGCAGT TCAACATTAA TGCAGACGAT	1320
15	GGGAAGATAA CGCTGGCAAC ACCACTTGAC AGAGAATTAA GTGTATGGCA CAACATAACA	1380
	ATCATTGCTA CTGAAATTAG GAACCACAGT CAGATATCAC GAGTACCTGT TGCTATTAAA	1440
	GTGCTGGATG TCAATGACAA CGCCCCTGAA TTCGCATCCG AATATGAGGC ATTTTTATGT	1500
20	GARARTGGAN ARCCCGGCCA AGTCATTCAN ACTGTTAGCG CCATGGACAN AGATGATCCC	1560
	AAAAACGGAC ATTATTTCTT ATACAGTCTC CTTCCAGAAA TGGTCAACAA TCCGAATTTC	1620
	ACCATCAAGA AAAATGAAGA TAATTCCCTC AGTATTTTGG CAAAGCATAA TGGATTCAAC	1680
25	CGCCAGAAGC AAGAAGTCTA TCTTTTACCA ATCATAATCA GTGATAGTGG AAATCCTCCA	1740
	CTGAGCAGCA CTAGCACCTT GACAATCAGG GTCTGTGGCT GCAGCAATGA CGGTGTCGTC	1800
	CAGTOTTGCA ATGTCGAAGC TTATGTCCTT CCAATTGGAC TCAGTATGGG CGCCTTAATT	1860
30	GCCATATTAG CATGCATCAT TITGCTGTTA GTCATCGTGG TGCTGTTTGT AACTCTACGG	1920
	COGCATCARA ARRATGRACC ATTRATTATC ARRESTGATG RAGROGITCG AGRARACATC	1980
	ATTCGCTACG ATGATGAAGG AGGAGGGGGAG GAGGACACAG AGGCTTTTGA CATTGCAACT	2040
35	TTACAAAATC CAGATGGAAT TAATGGATTT TTACCCCGTA AGGATATTAA ACCAGATTTG	2100
00	CAGTITATEC CAAGGCAAGG GCTTGCTCCA GTTCCAAATG GTGTTGATGT CGATGAATTT	2160
	ATARATGTAN GGCTGCATGN GGCAGNTNAT GATCCCACAG CCCCGCCATA TGACTCCATT	2220
	CARATATATE GETATGRAGE COGREGATION GREGOTEGET COCTORGETE CTTEGRETCE	2280
40	ACCACATCAG ACTCAGACCA GAATTTTGAC TACCTCAGTG ACTGGGGTCC CCGCTTTAAG	2340
	AGACTGGGCG AACTCTACTC TGTTGGTGAA AGTGACAAAG AAACTTGACA GTGGATTATA	2400
	ARTANATCRC TEGRACTERE CATTCTETAX TATTCTREEG TCACTCCCCT TAGATACAAC	2460
45	CANTGTGGCT ATTTGTTTAG AGGCAAGTTT AGCACCAGTC ATCTATAACT CAACCACATT	252
	TANTGTTGAC AAAAAGATAA TAAATAAAA	255

(2) INFORMATION FOR SEQ ID NO:54:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 793 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

55

(ii) MOLECULE TYPE: protein

5	(xi)	SEQU	ENCE	E DES	CRI	PTION	l: SI	Q II	NO:	54:						
	Met 1	Leu	Leu	Asp	Leu 5	Trp	Thr	Pro	Leu	Ile 10	Ile	Leu	Trp	Ile	Thr 15	Leu
10	Pro 1	Pro	Cys	Ile 20	Tyr	Met	Ala	Pro	Het 25	Asn	Gln	Ser	Gln	Val 30	Leu	Met
	Ser	Gly	Ser 35	Pro	Leu	Gln	Leu	Asn 40	Ser	Leu	Gly	Glu	Glu 45	Gln	Arg	Ile
15	Leu	As n 50	Arg	Ser	Lys	Arg	G1y 55	Trp	Val	Trp	Asn	Gln 60	Met	Phe	Val	Leu
	Glu (65	Glu	Phe	Ser	Gly	Pro 70	Glu	Pro	Ile	Leu	Val 75	Gly	Arg	Leu	His	Thr 80
20	Авр ;	Leu	Asp	Pro	Gly 85	Ser	Lys	Lys	Ile	Lув 90	Tyr	Ile	Leu	Ser	Gly 95	Asp
	Gly :	Ala	Gly	Thr 100	Ile	Phe	Gln	Ile	Aen 105	Asp	Val	Thr	Gly	Asp 110	Ile	His
25	Ala	Ile	Lys 115	Arg	Leu	Asp	Arg	Glu 120	Glu	Lys	Ala	Glu	Tyr 125	Thr	Leu	Thr
	Ala	Gln 130	Ala	Val	yab	Trp	Glu 135	Thr	Ser	Lys	Pro	Leu 140	Glu	Pro	Pro	Ser
	Glu : 145	Phe	Ile	Ile	Lys	Val 150	Gln	Asp	Ile	Asn	Asp 155	Asn	Ala	Pro	Glu	Phe 160
30	Leu .	Asn	Gly	Pro	Tyr 165	His	Ala	Thr	Val	Pro 170	Glu	Met	Ser	Ile	Leu 175	Gly
	Thr	Ser	Val	Thr 180	Asn	Val	Thr	Ala	Thr 185	Asp	Ala	Asp	Asp	Pro 190	Val	Tyr
35	Gly	Asn	Ser 195	Ala	Lys	Leu	Val	Tyr 200	Ser	Ile	Leu	Glu	Gly 205	G1n	Pro	Tyr
	Phe	Ser 210	Ile	Glu	Pro	Glu	Thr 215	Ala	Ile	Ile	Lys	Thr 220	Ala	Leu	Pro	Asn
40	Met 225	yab	Arg	Glu	Ala	L ув 230	Glu	Glu	Tyr	Leu	Val 235	Val	Ile	Gln	Ala	Lys 240
	Asp	Met	Gly	Gly	His 245	Ser	Gly	Gly	Leu	Ser 250	Gly	Thr	Thr	Thr	Leu 255	Thr
45	Val			260					265			-		270	•	
	Leu	Tyr	H18 275	Phe	Ser	Val	Pro	Glu 280		Val	Val	Leu	Gly 285		Ala	Ile
50		290	,			Asn	295					300)			
	305	Tyr	Asp	Ile	Ile	310		Asp	Gly	Thr	Ala 315		Phe	Glu	Ile	320

	Ser	Asp	Ala	Gln	Ala 325	Gln	Asp	Gly	Ile	Ile 330	Arg	Leu	Arg	Lys	Pro 335	Leu
5	Авр	Phe	Glu	Thr 340	Lys	Lys	Ser	Tyr	Thr 345	Leu	Lys	Asp	Gl u	Ala 350	Ala ,	Asn
	Val	His	Ile 355	Ąsp	Pro	Arg	Phe	Ser 360	Gly	Arg	Gly	Pro	Phe 365	Lys	Хвр	Thr
10	Ala	Thr 370	Val	Lys	Ile	Val	Val 375	Glu	Авр	Ala	Asp	Glu 380	Pro	Pro	Val	Phe
	Ser 385	Ser	Pro	Thr	Tyr	Leu 390	Leu	Glu	Val	His	Glu 395	λen	Ala	Ala	Leu	Asn 400
15	Ser	Val	Ile	Gly	Gln 405	Val	Thr	Ala	Arg	Asp	Pro	Хвр	Ile	Thr	Ser 415	Ser
				420					425	•	. yab			430		
			435					440				•	443			
20	_	450	ı				455				lle	460	,			
	465	•				470	'				Val 475	'				400
25	_				485	•				49	U				47.	
				500	•				50	5				311	•	Ala
30			519	•				520	U				52	3		Leu
		53	0				53	5				54	U			n Glu
35	54	5				\$50	D .				50	•			·	g Gln 560
	•				56	5				57	70				51	
40				58	0				51	35				33	•	у Сув
			59	5				60	00				0(Jə		l Leu
45		61	ro				61	15				0.	20			s Ile
	62	25				63	10				٥.	35				rg His 640
50				·	. 64	15				•	150				•	rg Glu 55
	A	en I	le I		rg 17	yr Ai	sp y	sp G	1u 6	1y 0	ly G	ly G	lu G	lu A	вр Т 70	hr Glu

		YIS	Phe	Asp 675	Ile	Ala	Thr	Leu	680		Pro	Дsp	Gly	11e 685	Asn	Gly	Phe	
5		Leu	Pro 690		Lys	Asp	Ile	Lув 695	Pro	Хвр	Leu	Gln	Phe 700	Met	Pro	λrg	Gln	
		Gly 705		Ala	Pro	Val	Pro 710	naK	Gly	Val	Asp	Val 715	Asp	Glu	Phe	Île	Asn 720	
10		Val	Arg	Leu	Hie	Glu 725	Ala	Asp	yau	ж	Pro 730		Ala	Pro	Pro	Tyr 735	Asp	
		Ser	Ile	Gln	11e 740	Tyr	Gly	Tyr	Glu	Gly 745		Gly	Ser	Val	Ala 750	Gly	Ser	
15		Leu	Ser	Ser 755		Glu	Ser	Thr	Thr 760		Asp	Ser	Авр	Gln 765	Asn	Phe	Asp	
		Tyr	Leu 770		Asp	Trp	Gly	Pro 775	_	Phe	Lys	Arg	Leu 780	Gly	Glu	Leu	Tyr	
20	-	Ser 785		Gly	Glu	Ser	A sp 790	_	Glu	Thr								
	(2)	INPO	RMAT	ION	FOR	SEQ	ID N	0:55	:									
25	·	(i)	(Ä (B (C) LE) TY) ST	ngth Pe: Rand	: 73 nucl EDNE	TERI 0 ba eic SS: line	se p acid sing	airs									
		(11)	HOL	ECUL	E TY	PE:	CDNA											
30		(ix)) NA	ME/K		CDS 27	30						•				
		(xi)	SEQ	UENC	E DE	SCRI	PTIC	N: S	eq i	D NO	:55:	ē						
35	_	AT TO Sn Se 1	•							o Le					s Se			46
40		GAA Glu																94
		ATC Ile																142
45		GCT Ala																190
		GAT Asp 65											Glu					238
5 0		GAG Glu																286

	GCC A	ATT [le	G) u	GAA Glu	AAA Lys 100	AAG Lys	CTC Leu	CGG Arg	Arg	GAT Asp 105	ATT Ile	ATT Ile	CCA Pro	GAA Glu	ACG Thr 110	TTA Leu	334	
5	TTT Phe	ATT Ile	CCT Pro	CGG Arg 115	AGG Arg	ACT Thr	CCT Pro	ACA Thr	GCT Ala 120	CCA Pro	GAT Asp	AAC Asn	ACG Thr	GAC Asp 125	GTC Val	CGG Arg	382	
10	GAT (TTC Phe	ATT Ile 130	AAT Asn	GAA Glu	AGG Arg	CTA Leu	AAA Lys 135	GAG Glu	CAT His	GAT Asp	CTT Leu	GAC Asp 140	CCC Pro	ACC Thr	GCA Ala	430	
	Pro	CCC Pro 145	TAC Tyr	ABP GAC	TCA Ser	CTT Leu	GCA Ala 150	ACC Thr	TAT Tyr	GCC Ala	TAT Tyr	GAA Glu 155	GGA Gly	AAT Asn	Asp Asp	TCC Ser	478	
15	ATT ILE I	Ala	Glu	Ser	Leu	Ser 165	Ser	Leu	Glu	Ser	Gly 170	Thr	Thr	Glu	Gly	175	526	
20	CAA Gln	AAC ABn	TAC Tyr	GAT Asp	TAC Tyr 180	Leu	CGA Arg	GAA Glu	TGG Trp	GGC Gly 185	CCT Pro	CGG Arg	TTT Phe	AAT Asn	AAG Lys 190	Leu	574	
	GCA Ala	Glu	Met	Tyr 195	Gly	Gly	Gly	Glu	Ser 200	ysb	Lys	Asp	Ser	205	Arg	Arg	622	
25	Ile	Tyr	Val 210	Leu	Phe	Lys	Gln	Glu 215	Lys	Val	Thr	Leu	220	Het	. Leu	Ser	670	
	CCA Pro	CTT Leu 225	His	AAT Asn	λΤΤ Ile	TGA	TAT Tyr 230	Ser	GGA	GCA Ala	TTT	Pro 235) Ala	GTC Val	Sez	ACA Thr		
30	ATT Ile 240																730)
	(2)	Inf	ORMA	TION	FOR	SEQ	ID	NO: 5	6:									
35			(T)	() (E	() LE	ngte Pe:	RACI I: 24 amin GY:	l an	ino id		ls							
							E: I											
40		•					CRIE											
	Asn 1		: Se	r Se		l Pro	Gly	ABI	p Pr	o Let	u Gl	u Se	r Th	r Cy	s Se	r Ala	1	
45	Glu	Ala	l Le	u Le	u Lei O	u Pro	o Ala	a Gl	y Le		r Th	r Gl	y Al	a Le	u I1	e Al	a	
	Ile	Le	ı Le	_ :	s Il	e Il	e Ile	Le Le		u Va	1 11	e Va		1 Le	u Pl	e Al	a.	
50		5	0			٠.	5	5				•	.0			/B Gl		
	Л вр 65		e Ar	g As	p As	n Il 7		l Se	r Ty	r As	n As	p G1	lu Gl	y G	ly G	ly G1	u 0	

	Glu	yab	Thr	Gln	Ala 85	Phe	Asp	Ile	Gly	Thr 90	Leu	Arg	Asn	Pro	Ala 95	Ala
5	lle	Glu	Glu	Lys 100	Lys	Leu	Arg	Arg	Asp 105	Ile	ļle	Pro	Glu	Thr 110	Leu	Phe
	Ile	Pro	Arg 115	Arg	Thr	Pro	Thr	Ala 120	Pro	Авр	Asn	Thr	Asp 125	Val	Arg	увь
10	Phe	Ile 130	Asn	Glu	A rg	Leu	Lув 135	Glu	His	Asp	Leu	Авр 140	Pro	Thr	Ala	Pro
	Pro 145	Tyr	Двр	Ser	Leu	Ala 150	Thr	Tyr	Ala	Tyr	Glu 155	Gly	Asn	Хвр	Ser	Ile 160
15	Ala	Glu	Ser	Leu	Ser 165	Ser	Leu	Glu	Ser	Gly 170	Thr	Thr	Glu	Gly	Хв р 175	Gln
15	Asn	Tyr	Asp	Tyr 180	Leu	Arg	Glu	Trp	Gly 185	Pro	Arg	Phe	Asn	Lys 190	Leu	Ala
	Glu	Met	Tyr 195	Gly	Gly	Gly	Glu	Ser 200	Asp	Lys	Asp	Ser	Arg 205	Arg	Ile	Tyr
20	Val	Leu 210	Phe	Lув	Gln	Glu	Lys 215	Val	Thr	Leu	Pro	Met 220	Leu	Ser	Pro	Leu
	His 225	Aвn	Ile	Tyr	Ser	Gly 230	Ala	Phe	Pro	Ala	Val 235	Ser	Thr	Ile	Phe	Phe 240
25	Ser	·														
	(2)	INF	ORMA	TION	FOR	SEQ	ID I	NO:5	7 :							
		(Ţ					CTER 625			rs						
30			į	B) T C) S	ype : Tran	DEDN.	leic ESS:	aci	ď							•
			(D) T	OPOL	OGY:	lin	ear							٠	
		(II) HO	LECU	LE T	YPE:	CDN	λ								
35																

40

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

CCCCACCCCT	GACCTGATGA	GCTCAACCAG	CAGAGACATT	CCATCCCAAG	AGAGGTCTGC	60
GTGACGCCTC	CGGGAGGCCA	CCCTCAGCAA	GACCACCGTA	CACTTGGTGG	AAGGGGTGAC	120
AGCTGCATT C	TCCTGTGCCT	ACCACGTAAC	CAAAAATGAA	GGAGAACTAC	TGTTTACAAG	180
CCCCCTGGT	CTCCCTGGGC	ATGCTGTGCC	ACAGCCATGC	CTTTGCCCCA	GAGCGGCGGG	240
GGCACCTGCG	GCCCTCCTTC	CATGGGCACC	ATGAGAAGGG	CAAGGAGGGG	CAGGTGCTAC	300
A GC GCTC CAA	COCTGGCTGG	GTCTGGAACC	AGTTCTTCGT	GATAGAGGAG	TACACCGGC	360
CTGACCCCGT	GCTTGTGGGC	AGGCTTCATT	CAGATATTGA	CTCTGGTGAT	GGGAACATTA	420
aatacattct	CTCAGGGGAA	GGAGCTGGAA	CCATTTTTGT	GATTGATGAC	AAATCAGGGA	480
ACATTCATGC	CACCAAGACG	TTGGATCGAG	AAGAGAGAGC	CCAGTACACG	TTGATGGCTC	540
AGGCGGTGGA	CAGGGACACC	AATCGGCCAC	TGGAGCCACC	GTCGGRATTC	ATTGTCAAGG	. 600

	TOURGGROAT TANTGROARC COTCOGGRGT TOUTGCROGR GROOTRICAT GCCRROGTGC	660
	CTGAGAGGTC CAATGTGGGA ACGTCAGTAA TCCAGGTGAC AGCTTCAGAT GCAGATGACC	720
5	CCACTTATGG AAATAGCGCC AAGTTAGTGT ACAGTATCCT CGAAGGACAA CCCTATTTTT	780
	CGGTGGAAGC ACAGACAGGT ATCATCAGAA CAGCCCTACC CAACATGGAC AGGGAGGCCA	840
	AGGAGGAGTA CCACGTGGTG ATCCAGGCCA AGGACATGGG TGGACATATG GGCGGACTCT	900
10	CAGGGACAAC CAAAGTGACG ATCACACTGA CCGATGTCAA TGACAACCCA CCAAAGTTTC	960
70	CGCAGAGGCT ATACCAGATG TCTGTGTCAG AAGCAGCCGT CCCTGGGGAG GAAGTAGGAA	1020
	GAGTGAAAGC TAAAGATCCA GACATTGGAG AAAATGGCTT AGTCACATAC AATATTGTTG	1080
	ATGGAGATGG TATGGAATCG TITGAAATCA CAACGGACTA TGAAACACAG GAGGGGGTGA	1140
15	TARACCTGAN ANACCCTGTN GATTITGANA CCGNANGAGC CTNTNGCTTG NAGGTAGAGG	1200
	CAGCCAACGT GCACATCGAC COGAAGTTTA TCAGCAATGG CCCTTTCAAG GACACTGTGA	1260
	COGTCAAGAT CTCAGTAGAA GATGCTGATG AGCCCCCTAT GTTCTTGGCC CCAAGTTACA	1320
20	TOCACGAAGT CCAAGAAAAT GCAGCTGCTG GCACCGTGGT TGGGAGAGTG CATGCCAAAG	1380
	ACCCTGATGC TGCCAACAGC CCGATAAGGT ATTCCATCGA TCGTCACACT GACCTCGACA	1440
	GATTITICAC TATTAATCCA GAGGATGGTT TTATTAAAAC TACAAAACCT CTGGATAGAG	1500
25	AGGAAACAGC CTGGCTCAAC ATCACTGTCT TTGCAGCAGA AATCCACAAT CGGCATCAGG	1560
	ANGECCANGT CCCAGTGGCC ATTAGGGTCC TTGATGTCAA CGATAATGCT CCCAAGTTTG	1620
	CTGCCCCTTA TGAAGGTTTC ATCTGTGAGA GTGATCAGAC CAAGCCACTT TCCAACCAGC	1680
	CANTIGITAC ANTINGIGCA CATGACANGG ATGACACGGC CANTGGACCA AGAITTATCI	1740
30	TCAGCCTACC CCCTGAAATC ATTCACAATC CAAATTTCAC AGTCAGAGAC AACCGAGATA	1800
	ACACAGCAGG CGTGTACGCC CGGCGTGGAG GGTTCAGTCG GCAGAAGCAG GACTTGTACC	1860
	TTCTGCCCAT AGTGATCAGC GATGGCGGCA TCCCGCCCAT GAGTAGCACC AACACCCTCA	1920
35	CCATCAAAGT CTGCGGGTGC GACGTGAACG GGGCACTGCT CTCCTGCAAC GCAGAGGCCT	1980
	ACATTCTGAA CGCCGGCCTG AGCACAGGCG CCCTGATCGC CATCCTCGCC TGCATCGTCA	2040
	TTCTCCTCGT CATTGTAGTA TTGTTTGTGA CCCTGAGAAG GCAAAAGAAA GAACCACTCA	2100
40	TIGTCTITGA GGAAGAAGAT GTCCGTGAGA ACATCATTAC TTATGATGAT GAAGGGGGTG	2160
	GGGAAGAAGA CACAGAAGCC TITGATATTG CCACCCTCCA GAATCCTGAT GGTATCAATG	2220
	GATTTATCCC CCGCAAAGAC ATCAAACCTG AGTATCAGTA CATGCCTAGA CCTGGGCTCC	2280
45	GGCCAGCGCC CAACAGCGTG GATGTCGATG ACTTCATCAA CACGAGAATA CAGGAGGCAG	2340
45	ACANTGACCC CACGGCTCCT CCTTATGACT CCATTCAAAT CTACGGTTAT GAAGGCAGGG	2400
	GCTCAGTGGC CGGGTCCCTG ACCTCCCTAG ACTCGCCCAC CACAGATTCA GACTTGGACT	2460
	ATGATTATCT ACAGAACTGG GGACCTCGTT TTAAGAAACT AGCAGATTTG TATGGTTCCA	2520
50	ANGACACTIT TGATGACGAT TCTTAACAAT AACGATACAA ATTTGGCCTT AAGAACTGTG	2580
	TETEGEGITE TEAAGANTET AGAAGATGTG TAACAGGTAT TITTT	2625

(2)	INFORMATION	FOR	SEQ	ID	NO:58:
-----	-------------	-----	-----	----	--------

/il	SECUENCE	CHARACTERISTICS:

- (A) LENGTH: 796 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

		()	ci) S	EQUE	ENCE	DESC	RIPI	: NOI	SEC	OI S	No:	8:				
10	Met 1	Lys	Glu	Asn	Tyr 5	Cys	Leu	Gln	Ala	Ala 10	Leu	Val	Сув	Leu	Gly 15	Het
	Leu	Сув	His	Ser 20	His	Ala	Phe	Ala	Pro 25	Glu	Arg	Arg	Gly	His 30	Leu	Arg
15	Pro	Ser	Phe 35	His	Gly	His	His	Glu 40	Lys	Gly	Lys	Glu	Gly 45	Gln	Val	Leu
	Gln	Arg 50	Ser	Lys	Arg	Gly	Trp 55	Val	Trp	Asn	Gln	Phe 60	Phe	Val	Ile	Glu
20	Glu 65	Tyr	Thr	Gly	Pro	Авр 70	Pro	Val	Leu	Val	Gly 75	Arg	Leu	His	Ser	Asp 08
	Ile	Хвр	Ser	Gly	Asp 85	Gly	Asn	Ile	Lys	Tyr 90	Ile	Leu	Ser	Gly	Glu 95	Gly
25	Ala	Gly	Thr	Ile 100	Phe	Val	Ile	Asp	Asp 105	Lys	Ser	Gly	Asn	Ile 110	His	Ala
	Thr	Lys	Thr 115	Leu	двр	Arg	Glu	Glu 120	Arg	Ala	Gln	Tyr	Thr 125	Leu	Met	Ala
30	Gln	Ala 130		увр	Arg	Авр	Thr 135	Asn	Arg	Pro	Leu	Glu 140	Pro	Pro	Ser	Glu
	Phe 145		Val	Lys	Val	Gln 150	yab	Ile	yeu	yab	Asn 155	Pro	Pro	Glu	Phe	Leu 160
	His	Glu	Thr	Tyr	His 165		X an	Val	Pro	Glu 170		Ser	Asn	Val	Gly 175	Thr
35	Ser	Val	Ile	Gln 180	Val	Thr	Ala	Ser	А вр 185	Ala	yeb	Авр	Pro	Thr 190		Gly
	Asn	Ser	195		Leu	Val	Tyr	Ser 200	Ile	Leu	Glu	Gly	Gln 205		Tyr	Phe
40	Ser	Val 210		Ala	Gln	Thr	Gly 215		Ile	Arg	Thr	Ala 220		Pro	Asn	Xet
	λsp 225	Arg	Glu	Ala	Lys	Glu 230		Tyr	His	Val	Val 235		Gln	Ala	Lys	А вр 240
45	Het	Gly	Gly	His	Het 245		Gly	Leu	Ser	Gly 250		Thr	Lye	Va)	Thr 255	Ile
	Thr	Leu	Thr	Х вр 260		. Asn	Авр		Pro 265		Lys	Phe	Pro	Glr 270		Leu
50	Tyr	Gln	Het 275		Val	Ser	Glu	Ala 280		Val	Pro	Gly	G1u 285		ı Val	Gly
	Arg	Val 290	Lys)	Ala	Lys	Asp		Asp			Glu	Asr 300		Le	ı Val	Thr

55

	Tyr 305	Asn	Ile	Val	yab	Gly 310	Asp	Gly	Met	Glu	Ser 1 315	Phe	Glu	Ile	Thr	Thr 320
5	Asp	Tyr	Glu	Thr	Gln 325	Glu	Gly	Val	Ile	Lys 330	Leu	Lys	Lys	Pro	Val 335	увр
	Phe	Glu	Thr	Glu 340	Arg	Ala	Tyr	Ser	Leu 345	Lys	Val	G1u	Ala	Ala 350	Asn	Val
10	His	Ile	Хвр 355	Pro	Lув	Phe	Ile	ser 360	Asn	Gly	Pro	Phe	Lys 365	yab	Thr	Val
	Thr	Val 370	Lys	Ile	Ser	Val	Glu 375	Asp	Ala	Asp	Glu	Pro 380	Pro	Het	Phe	Leu
15	Ala 385	Pro	ser	Tyr	Ile	His 390	Glu	Val	Gln	Glu	Asn 395	Ala	Ala	Ala	Gly	Thr 400
	Val	Val	Gly	Arg	Val 405	His	Ala	Lys	Авр	Pro 410	Авр	Ala	Ala	Asn	Ser 415	Pro
00	Ile	λrg	Tyr	ser 420	Ile	увъ	Arg	His	Thr 425	Двр	Leu	λвр	Arg	Phe 430	Phe	Thr
20	Ile	Asn	Pro 435	Glu	Asp	Gly	Phe	11e 440	Lys	Thr	Thr	Lys	Pro 445	Leu	Asp	Arg
	Glu	Glu 450		Ala	Trp	Leu	Asn 455	Ile	Thr	Val	Phe	Ala 460	Ala	Glu	Ile	His
25	Авп 465	λrg	His	Gln	Glu	Ala 470	Gln	Val	Pro	Val	Ala 475	Ile	Ar g	Val	Leu	Asp 480
	Val	As n	Asp	Asn	Ala 485		Lys	Phe	λla	Ala 490	Pro	Tyr	Glu	Gly	Phe 495	Ile
30	Сув	Glu	Ser	Aer 500		Thr	Lys	Pro	Leu 505	Ser	. As n	Gln	Pro	Ile 510	Val	Thr
	Ile	Ser	Ala 515			Lys	a Asp	Asp 520	Thr	: Ala	A BN	Gly	Pro 525	Arg	Phe	Ile
35	Phe	530		Pro	Pro	G1	1 le 535		Hie	a Asr	Pro	A sn 540	Phe	Thr	Val	Arg
	A8 p 549) Arg) Ası) Ası	550	r Ala O	Gly	Va]	Т уз	Ala 555	Arg	Arg	Gly	Gly	Phe 560
40	Ser	. Arg	g Gli	n Lyi	56		p Leu	Туз	Lei	570	Pro	Ile	Val	Ile	57!	Asp
	Gl	, Gl	y Ile	8 Pro		o Me	t Ser	: Se	58:		n Thi	Lev	1 Thi	590	e Lyi	s Val
45	Cy	5 G1	y Cyr 59		p Va	l As	n Gly	600	a Le	u Le	u Sei	Cy	60:	n Ala	a Gl	u Ala
	Ty:	r 11		u As	n Al	a Gl	y Lei 61		r Th	r Gl	y Ala	62	n 11	e Al	a Il	e Leu
50	A1 62		e Il	e Va	1 11	e Le 63		ya.	1 11	e Va	1 Va	l Le	u Ph	e Va	1 Th	r Leu 640
	λr	g Ar	g Gl	n Ly	's Ly 64		u Pr	o Le	u Il	e Va 65	1 Ph	e Gl	u Gl	u Gl	u As 65	p Val

	Arg Glu Asn Ile Ile Thr Tyr Asp Asp Glu Gly Gly Glu Glu Asp 660 665 670	
5	Thr Glu Ala Phe Asp Ile Ala Thr Leu Gln Asn Pro Asp Gly Ile Asn 675 680 685	
	Gly Phe Ile Pro Arg Lys Asp Ile Lys Pro Glu Tyr Gln Tyr Het Pro 690 695 700	
10	Arg Pro Gly Leu Arg Pro Ala Pro Asn Ser Val Asp Val Asp Asp Phe 705 710 715 720	
	Ile Asn Thr Arg Ile Gln Glu Ala Asp Asn Asp Pro Thr Ala Pro Pro 725 730 735	
15	Tyr Asp Ser Ile Gln Ile Tyr Gly Tyr Glu Gly Arg Gly Ser Val Ala 740 745 750	
	Gly Ser Leu Ser Ser Leu Glu Ser Ala Thr Thr Asp Ser Asp Leu Asp 755 760 765	
	Tyr Asp Tyr Leu Gln Asn Trp Gly Pro Arg Phe Lys Lys Leu Ala Asp 770 775 780	
20	Leu Tyr Gly Ser Lys Asp Thr Phe Asp Asp Ser 785 790 795	
	(2) INFORMATION FOR SEQ ID NO:59:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2521 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
30	(11) MOLECULE TYPE: CDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:	
	CGGTGGAGGC CACAGACACC TCAAACCTGG ATTCCACAAT TCTACGTTAA GTGTTGGAGT	60
35	TTTTATTACT CTGCTGTAGG AAAGCCTTTG CCAATGCTTA CAAGGAACTG TTTATCCCTG	120
	CTTCTCTGGG TTCTGTTTGA TGGAGGTCTC CTAACACCAC TACAACCACA GCCACAGCAG	180
	ACTITAGECA CAGAGECAAG AGAAAATGIT ATECATETGE CAGGACAACG GICACATITE	240
40	CAACCICITA AACCIGGCIG GGIAIGGAAI CAAIIIIIIG IGCIGGAAGA AIACGIGGGC	300
	TCCCAGCCTC AGTATGTCGG AAAGCTCCAT TCCGACTTAG ACAAGGGAGA GGGCACTGTG	360
	ARATACACCC TCTCAGGAGA TGGCGCTGGC ACCGTTTTA CCATTGATGA AACCACAGGG	420
45	GACATTCATG CAATAAGGAG CCTAGATAGA GAAGAGAAAC CTTTCTACAC TCTTCGTGCT	480
	CAGGCTGTGG ACATAGAAAC CAGAAAGCCC CTGGAGCCTG AATCAGAATT CATCATCAAA	540
	GTGCAGGATA TTAATGATAA TGAGCCAAAG TTTTTGGATG GACCTTATGT TGCTACTGTT	600
50	CCAGAAATGT CTCCTGTGGG TGCATATGTA CTCCAGGTCA AGGCCACAGA TGCAGATGAC	66
	COGACCTATE GAAACAGTEC CAGAGTCGTT TACAGCATTC TTCAGGGACA ACCTTATTTC	72
	TCTATTGATC CCAAGACAGG TGTTATTAGA ACAGCTTTGC CAAACATGGA CAGAGAAGTC	78

	AAAGAACAAT ATCAAGTACT CATCCAAGCC AAGGATATGG GAGGACAGCT TGGAGGATTA	840
	GCCGGAACAA CAATAGTCAA CATCACTCTC ACCGATGTCA ATGACAATCC ACCTCGATTC	900
5	CCCARAGCA TOTTCCACTT GARAGTTCCT GAGTCTTCCC CTATTGGTTC AGCTATTGGA	960
	AGAATAAGAG CTGTGGATCC TGATTTTGGA CAAAATGCAG AAATTGAATA CAATATTGTT	1020
	CCAGGAGATG GGGGAAATTT GTTTGACATC GTCACAGATG AGGATACACA AGAGGGAGTC	1080
10	ATCARATTGA ANANGCCTTT AGATTTTGAN ACANAGANGG CATACACTTT CANAGTTGAG	1140
	GCTTCCAACC TTCACCTTGA CCACCGGTTT CACTCGGCGG GCCCTTTCAA AGACACAGCT	1200
	ACCCTGAAGA TCAGCCTGCT GGACGTAGAT GAGCCACCGG TTTTCAGCAA GCCGCTCTAC	1260
15	ACCATGGAGG TTTATGAAGA CACTCCGGTA GGGACCATCA TTGGCGCTGT CACTGCTCAA	1320
15	GACCTGGATG TAGGCAGCGG TGCTGTTAGG TACTTCATAG ATTGGAAGAG TGATGGGGAC	1380
	AGCTACTTTA CAATAGATGG ARATGAAGGA ACCATCGCCA CTAATGAATT ACTAGACAGA	1440
	GARAGCACTG CGCAGTATAA TITCTCCATA ATTGCGAGTA AAGTTAGTAA CCCTTTATTG	1500
20	ACCAGCARAG TCARTATACT GATTARTGTC TTAGATGTAR ATGRATTTCC TCCAGRARTA	1560
	TOTGTGCCAT ATGAGACAGC CGTGTGTGAA AATGCCAAGC CAGGACAGAT AATTCAGATA	1620
	GTCAGTGCTG CAGACCGAGA TCTTTCACCT GCTGGGCAAC AATTCTCCTT TAGATTATCA	1680
25	CCTGAGGCTG CTATCAAACC AAATTTTACA GTTCGTGACT TCAGAAACAA CACAGCGGGG	1740
	ATTGARACCE GARGARATGG ATACAGCEGC AGGEAGCAAG AGTTGTATTT CETECETGTT	1800
	GTANTAGANG ACAGCAGCTA CCCTGTCCNG NGCNGCNCNA ACACANTGNC TRITCGNGTC	1860
30	TGTAGATGTG ACTOTGATGG CACCATCCTG TCTTGTAATG TGGAAGCAAT TTTTCTACCT	1920
	GTAGGACTTA GCACTGGGGC GTTGATTGCA ATTCTACTAT GCATTGTTAT ACTCTTAGCC	1980
	ATAGTTGTAC TGTATGTAGC ACTGCGAAGG CAGAAGAAAA AGCACACCCT GATGACCTCT	2040
	ANAGANGACA TCAGAGACAA CGTCATCCAT TACGATGATG AAGGAGGTGG GGAGGAAGAT	2100
35	ACCCAGGCTT TCGACATCGG GGCTCTGAGA AACCCAAAAG TGATTGAGGA GAACAAAATT	2160
	COCAGGGATA TAAAACCAGA CTCTCTCTGT TTACCTCGTC AGAGACCACC CATGGAAGAT	2220
	ARCACAGACA TAAGGGATTT CATTCATCAA AGGCTACAGG AAAATGATGT AGATCCAACT	2280
40	GCCCCACCAA TCGATTCACT CGCCACATAT GCCTACGAAG GGAGTGGGTC CGTGGCAGAG	2346
	TCCCTCAGCT CTATAGACTC TCTCACCACA GAAGCCGACC AGGACTATGA CTATCTGACA	240
	GACTGGGGAC CCGGCTTTAN AGTCTTGGCA GACATGTTTG GCGAAGAAGA GAGTTATAAC	246
45	CCTGATAAAG TCACTTAAGG GAGTCGTGGA GGCTAAAATA CAACCGAGAG GGGAGATTTT	252
	T	252

(2) INFORMATION FOR SEQ ID NO:60:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 794 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

55

(ii) MOLECULE TYPE: protein

5	(xi)	SEQU	JENCI	E DES	CRIE	TIO	1: SI	11 gc	NO:	60:						
	Met 1	Leu	Thr	Arg	Asn 5	Сув	Leu	Ser	Leu	Leu 10	Leu	Trp	Val	Leu	Phe 15	Asp
10	GJĀ	Gly	Leu	Leu 20	Thr	Pro	Leu	Gln	Pro 25	Gln	Pro	Gln	Gln	Thr 30	Leu	Ala
	Thr	Glu	Pro 35	Arg	Glu	Asn	Val	Ile 40	His	Leu	Pro	Gly	Gln 45	Arg	Ser	His
15	Phe	Gln 50	Arg	Val	Lys	Arg	Gly 55	Trp	Val	Trp	Asn	Gln 60	Phe	Phe	Val	Leu
	Glu 65	Glu	Tyr	Val	Gly	Ser 70	Glu	Pro	Gln	Tyr	Val 75	Gly	Lys	Leu	His	Ser 80
20	Asp	Leu	Asp	Lys	Gly 85	Glu	Gly	Thr	Val	Lys 90	Tyr	Thr	Leu	Ser	Gly 95	Asp
	Gly	Ala	Gly	Thr 100	Val	Phe	Thr	Ile	Asp 105	Glu	Thr	Thr	Gly	Asp 110	Ile	His
ar.	Ala	Ile	Arg 115	Ser	Leu	Хsр	Arg	Glu 120	Glu	Lув	Pro	Phe	Tyr 125	Thr	Leu	Arg
25	Ala	Gln 130	Ala	Val	Авр	Ile	Glu 135	Thr	Arg	Lys	Pro	Leu 140	Glu	Pro	Glu	Ser
	Glu 145		Ile	Ile	Lys	Val 150	Gln	Asp	Ile	Asn	Авр 155	Хвп	Glu	Pro	Lys	Phe 160
30	Leu	увр	Gly	Pro	Tyr 165	Val	λla	Thr	Val	Pro 170	Glu	Met	Ser	Pro	Val 175	Gly
	Ala	Tyr	Val	Leu 180	Gln	Val	Lys	Ala	Thr 185	qaA	Ala	Asp	Хsр	Pro 190		Tyr
35	Gly	Asn	Ser 195	Ala	Arg	Val	Val	Tyr 200		Ile	Leu	Gln	Gly 205		Pro	Tyr
	Phe	Ser 210		yeb	Pro	Lys	Thr 215	Gly	Val	Ile	Arg	Thr 220		Leu	Pro	Asn
40	Het 225		Arg	Glu	Val	Lys 230		Gln	Tyr	Gln	Val 235		Ile	G1n	Ala	Lys 240
	Хвр	Het	Gly	Gly	Gln 245	-	Gly	Gly	Leu	Ala 250	-	Thr	Thir	Ile	Val 255	A sn
45	Ile	Thr	Leu	Thr 260	_	Val	A en	Asp	Asn 265		Pro	Arg	Phe	270		Ser
	Ile	Phe	His 275		Lys	Val	Pro	Glu 280		Ser	Pro	Ile	Gly 28:		: Gly	, Ile
50	Gly	Arg 290		Arg	Ala	Val	. Asp 295		yst	Phe	Gly	Glr 300		n Ala	a Glu	ılle
	305		. ysu	Ile	Val	Pro 310		ysþ	Gly	Gly	7 Asr 319		ı Phe	e Asj	p Ile	320

	Thr	Asp	Glu		Thr 325	Gln	Glu	Gly	Val	11e 330	Lув	Leu	Lys	Lys :	Pro 335	Leu
5	Авр	Phe	Glu	Thr 340	Lys	Lys	Ala	Tyr	Thr 345	Phe	Lys	Val	Glu	Ala 350	ser	Двл
	Leu	His	Leu 355	Asp	His	Arg	Phe	His 360	Ser	Ala	Gly	Pro	Phe 365	Lys	Хвр	Thr
10	Ala	Thr 370	Val	Lys	lle	Ser	Val 375	Leu	Asp	Val	Asp	Glu 380	Pro	Pro	Val	Phe
	Ser 385		Pro	Leu	Tyr	Thr 390	Met	Glu	Val	Tyr	Glu 395	yeb	Thr	Pro	Val	Gly 400
15	Thr	Ile	Ile	Gly	Ala 405	Val	Thr	Ala	Gln	Asp 410	Leu	Авр	Val	Gly	Ser 415	Gly
	Ala	Val	Arg	Tyr 420	Phe	Ile	Asp	Trp	Lys 425	Ser	Asp	Gly	узр	Ser 430	Tyr	Phe
	Thr	Ile	Asp 435	Gly	yau	Glu	Gly	Thr 440	Ile	Ala	Thr	ABN	G1u 445	Leu	Leu	Asp
20	λrg	Glu 450		Thr	Ala	Gln	Tyr 455	Asn	Phe	Ser	Ile	Ile 460	Ala	Ser	Lув	Val
	Ser 465		Pro	Leu	Leu	Thr 470	Ser	Lys	Val	yeu	11e 475	Leu	Ile	Asn	Val	Leu 480
25	yal	Val	Asn	Glu	Phe 485	Pro	Pro	Glu	Ile	ser 490	Val	Pro	Tyr	Glu	Thr 495	Ala
	Val	Сув	Glu	Asn 500		Lys	Pro	Gly	G1: 50:		Ile	Gln	Ile	Val 510	Ser	Ala
30	Ala	yeb	Arg 515		Leu	Ser	Pro	λla 520		Gln	Gln	Phe	Ser 525	Phe	Хrg	Leu
	Sei	530		Ala	Ala	lle	Lys 535		A Br	Phe	Thr	Val 540		увр	Phe	Arg
35	A8 1 545		Thr	Ala	Gly	550		The	. Ar	, Arg	λεπ 555	Gly	Tyr	Ser	Arg	560
	Gl	n Gli	n Glu	Lev	Ty:		Lev	ı Pro	Va:	1' Va) 570		Glu	yel	Ser	575	Tyr
40	Pr	o Va	l Glr	580		r Thr	Ası	n Th	58:		Ile	e Arg	y Val	590)	Cys
	λs	p Se	59!		Th	r Ile	Le	60		B) (8)	n Val	l Gl	Ala 60	ı Ile	e Pho	e Leu
45	Pr	0 Va 61		y Le	ı Se	r Thi	61		a Le	u Il	B YI	620	e Le	u Le	и Су	■ Ile
	Va 62		e Le	ı Le	u Al	a Ile 630		l Va	l Le	u Ty	63		a Le	u Ar	g Ar	g Gln 640
50	Ly	s Ly	s Ly	s Hi	8 Th 64		u He	t Th	r Se	r Ly 65		и ув	p Il	e Ar	g As 65	p Asn 5
	Va	1 11	e Hi	в Ту 66		p As	p Gl	u Gl	y 61		y Gl	u Gl	u As	p Th 67		n Ala

		Phe	yeb	Ile 675	Gly	Ala	Leu	Arg	089	Pro	Lys	Val	Ile	Glu 685	Glu	Asn	Lys
5		Ile	Arg 690	Arg	Авр	Ile	Lys	Pro 695	λвр	Ser	Leu	Сув	Leu 700	Pro	Arg	Gln	Arg
		Pro 705	Pro	Het	Glu	Двр	Asn 710	Thr	Авр	Ile	Arg	Asp 715	Phe	Ile	His	Gĺn	Arg 720
10		Leu	Gln	Glu	λsn	Asp 725	Val	увр	Pro	Thr	Ala 730	Pro	Pro	Ile	увр	Ser 735	Leu
		Ala	Thr	Tyr	Ala 740	Tyr	Glu	Gly	Ser	Gly 745	Ser	Val	Ala	Glu	Ser 750	Leu	Ser
		Ser		Авр 755	Ser	Leu	Thr	Thr	Glu 760	Ala	Asp	Gln	Asp	Tyr 765	yeb	Tyr	Leu
15		Thr	Д вр 770		Gly	Pro	Arg	Phe 775	Lys	Val	Val	Ala	Asp 780	Het	Phe	ĊĴĄ	Glu
		Glu 785	Glu	Ser	Tyr	Asn	Pro 790	Хвр	Lys	Val	Thr						
20	(2)	INFO	RMAT	ION :	FOR :	SEQ	ID N	0:61	:								
25	·	(±)	(A (B (C) LE) TY) ST	ngth Pe: Rand	: 26 nucl EDNE	TERI 90 b eic SS: line	ase acid sing	pair	8							
		(ii)	MOL	ECUL	E TY	PE:	CDNA										

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

CTTCAAGGTT	TTGCTGACTC	agtetegtag	TCAGAGTCTG	CAGGAGAAGA	CAGTTCAAGG	60
CAGGGCCTGG	AGGATTGGAT	CAGTTTAGGG	ACAGGTCAAA	GCCTGGCTTA	GAGACCTTAG	120
AGGCAGGTTG	CTTGGGTCGT	TGAATGCTAG	TCTCCTCCTC	AGAGCCCTTT	TCTCTGGCAA	180
CTGTGGACTC	AGAGCTAACC	AATTGTAGTT	GCCACTGGGG	CTGAAGGGTG	ATCCAGAGGC	240
CTGAGCTGCA	GAGGGCACAA	GAGAGAAAAG	ATGTCTTAGA	AAGAGCTTTG	AGAACATGCC	300
TTGGCTGCTG	GCAGGGACCT	TGGATGGGGT	AGTCTACACC	CGGAAGTGCC	TGCCTGCCAT	360
CCTCTAGTGG	CTGCCTTGCA	AAATATGCTC	AGTGCAGCCG	CGTGCATGAA	TGAAAACGCC	420
GCCGGGGGGT	TCTAGTCGGA	CANANTGCAG	COGAGAACTC	CCCTCCTTCT	GTGCGTTCTC	480
CTGTCCCAGG	TGCTGCTGCT	AACATCTGCA	GAAGATTTGG	ACTGCACTCC	TGGATTTCAG	540
CAGRAAGTGT	TCCATATCAA	TCAGCCAGCT	GAATTCATTG	AGGACCAGTC	AATTCTAAAC	600
TTGACCTTCA	GTGACTGTAA	GGGAAACGAC	AAGCTACGCT	ATGAGGTCTC	GAGCCCATAC	660
TTCAAGGTGA	ACAGCGATGG	CGGCTTAGTT	GCTCTGAGAA	ACATAACTGC	AGTGGGCAAA	720
ACTCTGTTCG	TCCATGCACG	GACCCCCCAT	GCGGAAGATA	TGGCAGAACT	CGTGATTGTC	780
GGGGGGAAAG	ACATCCAGGG	CTCCTTGCAG	GATATATTTA	AATTTGCAAG	AACTTCTCCT	840
GTCCCAAGAC	: AAAAGAGGTC	CATTGTGGTA	TCTCCCATTI	TAATTCCAGA	GAATCAGAGA	. 900

5

	CAGCCTTTCC CAAGAGATGT TGGCAAGGTA GTCGATAGTG ACAGGCCAGA AAGGTCCAAG	960
	TTCCGGCTCA CTGGAAAGGG AGTGGATCAA GAGCCTAAAG GAATTTTCAG AATCAATGAG	1020
5	AACACAGGGA GCGTCTCCGT GACACGGACC TTGGACAGAG AAGTAATCGC TGTTTATCAA	1080
	CTATTTGTGG AGACCACTGA TGTCAATGGC AAAACTCTCG AGGGGCCGGT GCCTCTGGAA	1140
	GTCATTGTGA TTGATCAGAA TGACAACCGA CCGATCTTTC GGGAAGGCCC CTACATCGGC	1200
10	CACGTCATGG AAGGGTCACC CACAGGCACC ACAGTGATGC GGATGACAGC CTTTGATGCA	1260
	GATGACCCAG CCACCGATAA TGCCCTCCTG CGGTATAATA TCCGTCAACA GACGCCTGAC	1320
	AAGCCATCTC CCAACATGTT CTACATCGAT CCTGAGAAAG GAGACATTGT CACTGTTGTG	1380
15	TCACCTGCGC TGCTGGACCG AGAGACTCTG GAAAATCCCA AGTATGAACT GATCATCGAG	1440
15	GCTCAAGATA TGGCTGGACT GGATGTTGGA TTAACAGGCA CGGCCACAGC CACGATCATG	1500
	ATCGATGACA AAAATGATCA CTCACCAAAA TTCACCAAGA AAGAGTTTCA AGCCACAGTC	1560
	CAGGRAGGAG CTGTGGGAGT TATTGTCAAT TTGACAGTTG AAGATAAGGA TGACCCCACC	1620
20	ACAGGTGCAT GGAGGGCTGC CTACACCATC ATCAACGGAA ACCCCGGGCA GAGCTTTGAA	1680
	ATCCACACCA ACCCTCARAC CARCGARGGG ATGCTTTCTG TTGTCARACC ATTGGACTAT	1740
	GARATTTCTG CCTTCCACAC CCTGCTGATC ARAGTGGARA ATGARGACCC ACTCGTACCC	1800
25	GACGTCTCCT ACGGCCCCAG CTCCACAGCC ACCGTCCACA TCACTGTCCT GGATGTCAAC	1860
	GAGGGCCCAG TCTTCTACCC AGACCCCATG ATGGTGACCA GGCAGGAGGA CCTCTCTGTG	1920
	GGCAGCGTGC TGCTGACAGT GAATGCCACG GACCCCGACT CCCTGCAGCA TCAAACCATC	1980
30	AGGTATICTG TITACAAGGA CCCAGCAGGT TGGCTGAATA TTAACCCCAT CAATGGGACT	2040
	GTTGACACCA CAGCTGTGCT GGACCGTGAG TCCCCATTTG TCGACAACAG CGTGTACACT	2100
	GCTCTCTTCC TGGCANTTGA CAGTGGCANC CCTCCCGCTA CGGGCACTGG GACTTTGCTG	2160
35	ATAACCCIGG AGGACGIGAA IGACAAIGCC CCGITCATIT ACCCCACAGI AGCTGAAGIC	2220
	TGTGATGATG CCAAAAACCT CAGTGTAGTC ATTTTGGGAG CATCAGATAA GGATCTTCAC	2280
	COGARTACAG ATCCTTTCAA ATTTGAAATC CACAAACAAG CTGTTCCTGA TAAAGTCTGG	2340
	ARGATOTOCA AGATOAACAA TACACACGCC CTGGTAAGCC TTCTTCAAAA TCTGAACAAA	2400
40	GCAAACTACA ACCTGCCCAT CATGGTGACA GATTCAGGGA AACCACCCAT GACGAATATC	2460
	ACAGATETCA GGGTACAAGT GTGCTCCTGC AGGAATTCCA AAGTGGACTG CAACGCGGCG	2520
	GGGGCCCTGC GCTTCAGCCT GCCCTCAGTC CTGCTCCTCA GCCTCTTCAG CTTAGCTTGT	2580
45	CTGTGAGAAC TCCTGACGTC TGAAGCTTGA CTCCCAAGTT TCCATAGCAA CAGGAAAAAA	2640
	AAAAAATCTA TCCAAATCTG AAGATTGCGG TTTACAGCTA TCGAACTTCG	269

(2) INFORMATION FOR SEQ ID NO:62:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 713 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

55

50

(ii) MOLECULE TYPE: protein

5	(xi)	SEQU	JENCE	DE:	CRIE	TION	ł: SI	Q II) NO:	62:						
	Met 1	Gln	Pro	Arg	Thr 5	Pro	Leu	Val	Leu	Сув 10	Val	Leu	Leu	Ser	Gln 15	Val
10	Leu	Leu	Leu	Thr 20	Ser	Ala	Glu	Asp	Leu 25	Asp	Сув	Thr	Pro	30 Gly	Phe	Gln
	Gln	Lys	Val 35	Phe	His	Ile	yeu	Gln 40	Pro	Ala	Glu	Phe	Ile 45	Glu	yab	Gln
15	Ser	Ile 50	Leu	λsn	Leu	Thr	Phe 55	Ser	увр	Сув	Lys	Gly 60	Asn	Авр	Lys	Leu
	A rg 65	Tyr	Glu	Val	Ser	Ser 70	Pro	Tyr	Phe	Lys	Val 75	yeu	Ser	Asp	Gly	Gly 80
20	Leu	Val	Ala	Leu	Arg 85	ysu	Ile	Thr	Ala	Val 90	Gly	Lys	Thr	Leu	Phe 95	Val
	His	Ala	Arg	Thr 100	Pro	His	Ala	Glu	Asp 105	Met	YJS	Glu	Leu	Val 110	Ile	Val
25	Gly	Gly	Lys 115	yeb	Ile	Gln	Gly	Ser 120	Leu	Gln	увр	Ile	Phe 125	Lys	Phe	Ala
	Arg	Thr 130	Ser	Pro	Val	Pro	A rg 135	Gln	Lys	Arg	Ser	11e 140	Val	Val	Ser	Pro
	Ile 145		Ile	Pro	Glu	Asn 150	Gln	Arg	Gln	Pro	Phe 155	Pro	Arg	Asp	Val	Gly 160
30	Lys	Val	Val	Авр	Ser 165	Asp	Arg	Pro	Glu	Arg 170	Ser	Lys	Phe	Arg	Leu 175	Thr
	Gly	Lys	Gly	Val 180	Авр	Gln	Glu	Pro	Lys 185	Gly	Ile	Phe	Arg	Ile 190	ysu	Glu
35	Хвп	Thr	Gly 195		Val	Ser	Val	Thr 200	λrg	Thr	Leu	Asp	Arg 205	Glu	Val	Ile
	Ala	Val 210		Gln	Leu	Phe	Val 215	Glu	Thr	Thr	yeb	Val 220		Gly	Lys	Thr
40	Leu 225		Gly	Pro	Val	Pro 230		Glu	Val	Ile	Val 235		Asp	Gln	λsn	А вр 240
	Asn	Arg	Pro	Ile	Phe 245		Glu	Gly	Pro	Tyr 250		Gly	His	Val	Met 255	
45	Gly	Ser	Pro	Thr 260		Thr	Thr	Val	Met 265		Het	Thr	Ala	270) Asp	Ala
	yab	yeb	275		Thr	Yeb) Asn	Ala 280		Leu	Arg	Tyr	285		Arg	Gln
50	Gln	Thr 290	Pró	Asp	Lys	Pro	Ser 295	Pro	Asn	. Ket	Phe	Tyr 300		. yel	Pro	Glu
	Lye 305	Gly	Asp	Ile	Val	310		Val	Ser	Pro	Ala 315		Leu	ysI	Arç	320

	Thr	Leu	Glu		Pro 325	Lys	Tyr	Glu	Leu	11e 330	lle (Glu i	Ala (Gln i	Asp 3	Met
5	Ala	Gly	Leu	Asp 340	Val	Gly	Leu	Thr	Gly 345	Thr	Ala '	Thr .	Ala '	Thr :	Ile i	Met
	Ile	Asp	Авр 355	Lys	Asn	yab	His	Ser 360	Pro	Lys	Phe	Thr :	Lys 365	Lys (Glu	Phe
10	Gln	Ala 370	Thr	Val	Glu	Glu	Gly 375	Ala	Val	Gly	Val	11e 380	Val	Asn .	Leu	Thr
	Val 385	Glu	Авр	Lys	Asp	Авр 390	Pro	Thr	Thr	Gly	Ala 395	Trp	Arg	Ala	Ala	Tyr 400
15	Thr	Ile	Ile	Asn	Gly 405	ysu	Pro	Gly	Gln	Ser 410	Phe	Glu	Ile	His	Thr 415	A sn
	Pro	Gln	Thr	Asn 420	Glu	Gly	Met	Leu	Ser 425	Val	Val	Lys	Pro	Leu 430	Asp	Tyr
20	Glu	Ile	Ser 435	Ala	Phe	His	Thr	Leu 440	Leu	Ile	Lys	Val	Glu 445	Хsп	Glu	yab
20	Pro	Leu 450	Val	Pro	yab	Val	Ser 455	Tyr	Gly	Pro	Ser	Ser 460	Thr	Ala	Thr	Val
	His 465		Thr	Val	Leu	Авр 470	Val	Aen	Glu	Gly	Pro 475	Val	Phe	Tyr	Pro	Asp 480
25	Pro	Met	Met		Thr 485	λrg	Gln	Glu	Авр	Leu 490	Ser	Val	Gly	Ser	Val 495	Leu
	Leu	Thr	Val	Asn 500		Thr	λs p	Pro	λ ap 505	Ser	Leu	Gln	His	Gln 510	Thr	Ile
30	Arg	Tyr	Ser 515	Val	Tyr	Lys	увр	Pro 520	Ala	Gly	Trp	Leu	Asn 525	Ile	Aøn	Pro
		530					535	i				540				
35	Phe 545		, Asp	yan	Ser	Val 550		Thr	yja	Leu	Phe 555	Leu	Ala	Ile	ysb	Ser 560
	Gly	/ Asr	Pro	Pro) Ala 565		Gly	Thr	Gl ₃	7 Thr 570		Leu	Ile	Thr	575	Glu
40	λs	y Val	L Asn	AB 2		Ala	Pro	Phe	589		Pro	Thr	Val	. Ala 590	Glu	Val
	Cy	s As _l	N8 1		Lys	yat	1 Lev	600		l Val	Ile	Lev	605 605		Sei	. увь
45	Ly	8 A 8]		Hi:	Pro) Ası	61:		p Pro	o Phe	Lys	Phe 620	Glu	ı Ile	Hi:	s Lys
	G1 62		a Val	l Pro) Asj	630		l Tr	p Ly	s Ile	639		3 Ile	e yei	a Asi	n Thr 640
50	Hi	s Al	a Lei	r Va	1 Se:		u Le	u Gl	n As	n Lei 650		ı Lyı	s Ala	n Asi	65	r Asn 5
	Le	u Pr	o Il	e Me		l Th	r As	p Se	r G1 66		B Pro) Pr	o Ke	t Th 67	r A8	n Ile

Thr Asp Leu Arg Val Gln Val Cys Ser Cys Arg Asn Ser Lys Val Asp 680

Cys Asn Ala Ala Gly Ala Leu Arg Phe Ser Leu Pro Ser Val Ile Leu 690

Leu Ser Leu Phe Ser Leu Ala Cys Leu 705

10

Claims

15

- A purified and isolated polynucleotide encoding a cadherin selected from the group consisting of cadherin-6, cadherin-7, cadherin-9 and cadherin-10.
- 2. The polynucleotide of claim 1 which is a DNA sequence.

20

- 3. The polynucleotide of claim 2 which is a cDNA sequence or biological replica thereof.
- 4. The polynucleotide of claim 3 which is SEQ ID NO: 51.
- 25 5. The polynucleotide of claim 3 which is SEQ ID NO: 15.
 - 6. The polynucleotide of claim 3 which is SEQ ID NO: 19 or SEQ ID NO: 33.
 - 7. The polynucleotide of claim 3 which is SEQ ID NO: 55.

30

- 8. The polynucleotide of claim 2 which is a genomic DNA or a biological replica thereof.
- 9. The DNA of claim 2 which is a wholly or partially chemically synthesized DNA or a biological replica thereof.
- 35 10. A biologically functional DNA vector comprising a DNA according to claim 2.
 - 11. The vector of claim 10 wherein said DNA is operatively linked to an expression control DNA sequence.
- 12. A host cell stably transformed or transfected with a DNA according to claim 2 in a manner allowing the expression in said host cell of the cadherin polypeptide encoded thereby.
 - 13. A method for producing a cadherin polypeptide comprising the steps of growing a host cell according to claim 12 in a suitable nutrient medium and isolating the cadherin from said cell or from the medium of its growth.
- 45 14. A purified and isolated full length cadherin polypeptide selected from the group consisting of cadherin-6 polypeptide (SEQ ID NO: 52), cadherin-7 polypeptide (SEQ ID NO: 16), cadherin-9 polypeptide (SEQ ID NO: 20 or 34) and cadherin-10 polypeptide (SEQ ID NO: 56).
- 15. A hybridoma cell line producing a monoclonal antibody specific for a cadherin selected from the group consisting of cadherin-6, cadherin-7, cadherin-9 and cadherin-10.
 - 16. A hybridoma cell line producing a monoclonal antibody specific for cadherin-5 selected from the group consisting of 30Q8A (ATCC HB11316), 30Q4H (ATCC HB11317), 45A5G (ATCC HB11318), 30S2F (ATCC HB11319), 45C6A (ATCC HB11320) and 30T11G (ATCC 11324).

- 17. A monoclonal antibody produced by the hybridoma cell line of claim 16.
- 18. An antibody substance specific for a cadherin selected from the group consisting of cadherin-6, cadherin-7, cad-

herin-9 and cadherin-10.

- 19. A method for modulating the binding capability of a cadherin selected from the group consisting of cadherin-6, cadherin-7, cadherin-9 and cadherin-10 comprising contacting the cadherin with an antibody substance specific for said cadherin according to claim 18.
- 20. A method for modulating the binding capability of a cadherin selected from the group consisting of cadherin-6, cadherin-7, cadherin-9 and cadherin-10 comprising contacting the cadherin with a polypeptide or peptide ligand of the cadherin.
- 21. A method for modulating the binding capability of a cadherin selected from the group consisting of cadherin-6, cadherin-7, cadherin-9 and cadherin-10 comprising contacting the cadherin with a peptide of said cadherin.

FIGURE 1

THIS PAGE BLANK (USPTO)