Modeling the Cell Proliferation using Compound Non-homogeneous Poisson Distribution

The Author

From the differential equations,

$$\frac{dS(t)}{dt} = r[p_1(t) - p_3(t)]S(t)
\frac{dF(t)}{dt} = r[p_2(t) + 2p_3(t)]S(t),$$
(1)

we obtained the average cell counts of the active stem cell S(t) and differentiated cells F(t)

$$S(t) = S_0 \exp \left\{ rP(t) \right\}$$

$$F(t) = \int_0^t r[p_2(v) + 2p_3(v)]S(v)dv$$

$$= S_0 \cdot r \cdot \int_0^t [p_2(v) + 2p_3(v)] \exp \left\{ rP(v) \right\} dv,$$
(2)

with $P(t) = \int_0^t [p_1(v) - p_3(v)] dv$.

We can model the stem cells and differentiated cells using the compound nonhomogeneous Poisson process as follows. Let N(t) denote the number of divisions at time t. N(t) is a nonhomogeneous Poisson process with rate $\lambda(t) = rS(t)$. Let X_s and Y_s be random variables such that

$$X_{s} = \begin{cases} +1 & p_{1}(s) \\ -1 & p_{3}(s) \\ 0 & 1 - p_{1}(s) - p_{3}(s), \end{cases}$$

$$(3)$$

and

$$Y_s = \begin{cases} +1 & p_2(s) \\ +2 & p_3(s) \\ 0 & 1 - p_2(s) - p_3(s) \end{cases}$$

$$\tag{4}$$

We define processes X(t) and Y(t) as follows

$$X(t) = \sum_{k=1}^{N(t)} X_k$$
, and $Y(t) = \sum_{k=1}^{N(t)} Y_k$. (5)

X(t) and Y(t) are compound nonhomogeneous Poisson processes. From Theorem 2.1 and Corollary of Chen and Savits (1993) (cite), the characteristic functions, expected values, and variances of X(t) and Y(t) are

$$E[e^{iuX(t)}] = \exp\left\{ \int_0^t \left[e^{iu} p_2(v) - p_2(v) + e^{-iu} p_3(v) - p_3(v) \right] r S(v) dv \right\},$$

$$E[X(t)] = \int_0^t [p_1(v) - p_3(v)] r S(v) dv,$$

$$Var(X(t)) = \int_0^t [p_1(v) + p_3(v)] r S(v) dv,$$

$$E[e^{iuY(t)}] = \exp\left\{ \int_0^t \left[e^{iu} p_2(v) - p_2(v) + e^{2iu} p_3(v) - p_3(v) \right] r S(v) dv \right\},$$

$$E[Y(t)] = \int_0^t [p_2(v) + 2p_3(v)] r S(v) dv,$$

$$Var(Y(t)) = \int_0^t [p_2(v) + 4p_3(v)] r S(v) dv.$$

$$(6)$$

From the expressions of E[Y(t)] and F(t), it is straightforward to see that E[Y(t)] = F(t).

$$E[X(t)] = \int_0^t [p_1(v) - p_3(v)] \cdot r \cdot S_0 \exp\left\{rP(v)\right\} dv \tag{7}$$

Using substitution with $q = P(v) = \int_0^v [p_1(u) - p_3(u)] du$ and $dq/dv = [p_1(v) - p_3(v)]$,

$$E[X(t)] = S_0 r \int_{P(0)}^{P(t)} \exp\{rq\} dq = S_0 \exp\{rq\} \Big|_{P(0)}^{P(t)} = S_0 \exp\{rP(t)\} - S_0, \tag{8}$$

since $P(0) = \int_0^0 [p_1(u) - p_3(u)] du = 0$. Thus $E[X(t) + S_0] = S(t)$.

Proposition 1. For a fixed t, $X(t)/S(t) \stackrel{p}{\to} 1$ and $Y(t)/F(t) \stackrel{p}{\to} 1$ as $S_0 \to \infty$.

Proof. Let $\mu_{x_t} = S(t)$ and $\mu_{y_t} = F(t)$. Using Taylor's expansion,

$$E\left[e^{iu\frac{X(t)}{S(t)}}\right] = \exp\left\{\int_{0}^{t} \left[e^{i\frac{u}{\mu_{x_{t}}}} p_{1}(v) - p_{1}(v) + e^{-i\frac{u}{\mu_{x_{t}}}} p_{3}(v) - p_{3}(v)\right] r S(v) dv\right\}$$

$$= \exp\left\{\int_{0}^{t} \left[\left(1 + \frac{iu}{\mu_{x_{t}}} + o(\mu_{x_{t}}^{-1})\right) p_{1}(v) - p_{1}(v) + \left(1 - \frac{iu}{\mu_{x_{t}}} + o(\mu_{x_{t}}^{-1})\right) p_{3}(v) - p_{3}(v)\right] r S(v) dv\right\}$$

$$= \exp\left\{\frac{iu}{\mu_{x_{t}}} \int_{0}^{t} [p_{1}(v) - p_{3}(v)] r S(v) dv + o(\mu_{x_{t}}^{-1}) \int_{0}^{t} [p_{1}(v) + p_{3}(v)] r S(v) dv\right\}$$

$$\to \exp\left\{iu\right\},$$
(9)

2

$$\begin{split} E\Big[e^{iu\frac{Y(t)}{F(t)}}\Big] &= \exp\Big\{\int_0^t \Big[e^{i\frac{u}{\mu y_t}}p_2(v) - p_2(v) + e^{2i\frac{u}{\mu y_t}}p_3(v) - p_3(v)\Big]rS(v)dv\Big\} \\ &= \exp\Big\{\int_0^t \Big[\Big(1 + \frac{iu}{\mu y_t} + o(\mu_{y_t}^{-1})\Big)p_2(v) - p_2(v) + \Big(1 + \frac{2iu}{\mu y_t} + o(\mu_{y_t}^{-1})\Big)p_3(v) - p_3(v)\Big]rS(v)dv\Big\} \\ &= \exp\Big\{\frac{iu}{\mu y_t}\int_0^t [p_2(v) + 2p_3(v)]rS(v)dv + o(\mu_{y_t}^{-1})\int_0^t [p_2(v) + 2p_3(v)]rS(v)dv\Big\} \\ &\to \exp\Big\{iu\Big\}. \end{split}$$

Proposition 2. For a fixed t, as $S_0 \to \infty$,

$$\frac{X(t) - S(t)}{\sqrt{Var(X(t))}} \xrightarrow{D} N(0, 1), \tag{11}$$

(10)

and

$$\frac{Y(t) - F(t)}{\sqrt{Var(Y(t))}} \stackrel{D}{\to} N(0, 1). \tag{12}$$

Proof. Let $\sigma_{x_t} = \sqrt{Var(X(t))}$ and $\sigma_{y_t} = \sqrt{Var(Y(t))}$. Using Taylor's expansion,

$$E\left[e^{iu\frac{X(t)}{\sigma_{x_{t}}}}\right] = \exp\left\{\int_{0}^{t} \left[e^{i\frac{u}{\sigma_{x_{t}}}}p_{1}(v) - p_{1}(v) + e^{-i\frac{u}{\sigma_{x_{t}}}}p_{3}(v) - p_{3}(v)\right]rS(v)dv\right\}$$

$$= \exp\left\{\int_{0}^{t} \left[\left(1 + \frac{iu}{\sigma_{x_{t}}} + \frac{i^{2}u^{2}}{2\sigma_{x_{t}}^{2}} + o(\sigma_{x_{t}}^{-2})\right)p_{1}(v) - p_{1}(v) + \left(1 - \frac{iu}{\sigma_{x_{t}}} + \frac{i^{2}u^{2}}{2\sigma_{x_{t}}^{2}} + o(\sigma_{x_{t}}^{-2})\right)p_{3}(v) - p_{3}(v)\right]rS(v)dv\right\}$$

$$= \exp\left\{\frac{iu}{\sigma_{x_{t}}}\int_{0}^{t} [p_{1}(v) - p_{3}(v)]rS(v)dv + \frac{i^{2}u^{2}}{2\sigma_{x_{t}}^{2}}\int_{0}^{t} [p_{1}(v) + p_{3}(v)]rS(v)dv + o(\sigma_{x_{t}}^{-2})\int_{0}^{t} [p_{1}(v) + p_{3}(v)]rS(v)dv\right\}$$

$$+ o(\sigma_{x_{t}}^{-2})\int_{0}^{t} [p_{1}(v) + p_{3}(v)]rS(v)dv$$

$$+ \exp\left\{\frac{iu}{\sigma_{x_{t}}}S(t) - \frac{u^{2}}{2}\right\}$$

$$E\left[e^{iu\frac{X(t)-S(t)}{\sigma_{x_{t}}}}\right] = E\left[e^{iu\frac{X(t)}{\sigma_{x_{t}}}}\right] \cdot e^{-iu\frac{S(t)}{\sigma_{x_{t}}}} \to e^{-\frac{u^{2}}{2}}.$$
(13)

$$E\left[e^{iu\frac{Y(t)}{\sigma_{y_{t}}}}\right] = \exp\left\{\int_{0}^{t} \left[e^{i\frac{u}{\sigma_{y_{t}}}}p_{2}(v) - p_{2}(v) + e^{i\frac{2u}{\sigma_{y_{t}}}}p_{3}(v) - p_{3}(v)\right]rS(v)dv\right\}$$

$$= \exp\left\{\int_{0}^{t} \left[\left(1 + \frac{iu}{\sigma_{y_{t}}} + \frac{i^{2}u^{2}}{2\sigma_{y_{t}}^{2}} + o(\sigma_{y_{t}}^{-2})\right)p_{2}(v) - p_{2}(v) + \left(1 + \frac{2iu}{\sigma_{y_{t}}} + \frac{4i^{2}u^{2}}{2\sigma_{y_{t}}^{2}} + o(\sigma_{y_{t}}^{-2})\right)p_{3}(v) - p_{3}(v)\right]rS(v)dv\right\}$$

$$= \exp\left\{\frac{iu}{\sigma_{y_{t}}}\int_{0}^{t} [p_{2}(v) + 2p_{3}(v)]rS(v)dv + \frac{i^{2}u^{2}}{2\sigma_{x_{t}}^{2}}\int_{0}^{t} [p_{1}(v) + 4p_{3}(v)]rS(v)dv + o(\sigma_{x_{t}}^{-2})\int_{0}^{t} [p_{1}(v) + p_{3}(v)]rS(v)dv\right\}$$

$$\to \exp\left\{\frac{iu}{\sigma_{y_{t}}}F(t) - \frac{u^{2}}{2}\right\}$$

$$E\left[e^{iu\frac{Y(t)-F(t)}{\sigma_{y_{t}}}}\right] = E\left[e^{iu\frac{Y(t)}{\sigma_{y_{t}}}}\right] \cdot e^{-iu\frac{F(t)}{\sigma_{y_{t}}}} \to e^{-\frac{u^{2}}{2}}.$$
(14)

Covariance of X(t) and Y(t) when $p_4(t) = 0$

When $p_4(t) = 0 \forall t$, i.e all the stem cells can undergo further division and there is no inactive stem cell, the number of divisions equal to the sum of stem cells and differentiated cells N(t) = X(t) + Y(t). For each division occurrence, the sum of stem cells and ependymal cells increases by 1 (Table 1). Then,

	$p_1(t)$	$p_2(t)$	$p_3(t)$
X(t)	+1	+0	-1
Y(t)	+0	+1	+2
X(t) + Y(t)	+1	+1	+1

Table 1: Change of total cell counts with each division occurrence when $p_4(t) = 0$.

 $E[(N(t))^2] = E[(X(t))^2] + E[X(t)Y(t)] + E[(Y(t))^2]$. Since N(t) is an nonhomogeneous Poisson process with rate $\lambda(t) = rS(t)$, N(t) is a Poisson random variable with mean and variance

$$E[N(t)] = Var(N(t)) = \int_0^t rS(v)dv.$$

We obtain the covariance of X(t) and Y(t) when $p_4(t) = 0$

$$Cov(X(t), Y(t)) = E[X(t)Y(t)] - E[X(t)]E[Y(t)]$$

$$= E[(N(t))^{2}] - E[(X(t))^{2}] - E[(Y(t))^{2}] - E[X(t)]E[Y(t)]$$

$$= (E[N(t)])^{2} + Var(N(t)) - (E[X(t)])^{2} - Var(X(t)) - (E[Y(t)])^{2} - Var(Y(t))$$

$$- E[X(t)]E[Y(t)]$$

$$= \left[\int_{0}^{t} rS(v)dv\right]^{2} - \left[\int_{0}^{t} [p_{1}(v) - p_{3}(v)]rS(v)dv\right]^{2} - \left[\int_{0}^{t} [p_{2}(v) + 2p_{3}(v)]rS(v)dv\right]^{2}$$

$$- \int_{0}^{t} 4p_{3}(v)rS(v)dv - \int_{0}^{t} [p_{1}(v) - p_{3}(v)]rS(v)dv \cdot \int_{0}^{t} [p_{2}(v) + 2p_{3}(v)]rS(v)dv.$$

$$(15)$$

Limit of the X(t) and Y(t)

Show the variance of X(t) and of Y(t) converge as t is large.

$$Var(X(t)) = \int_0^t [p_1(v) + p_3(v)]rS(v)dv,$$
$$Var(Y(t)) = \int_0^t [p_2(v) + 4p_3(v)]rS(v)dv.$$

Since $p_1(v) + p_3(v) \le 1$ for any $v \in (0, \infty)$, then $[p_1(v) + p_3(v)]rS(v) \le rS(v)$. Then using the comparison test if $\int_0^\infty rS(v)dv$ converges then $\int_0^\infty [p_1(v) + p_3(v)]rS(v)dv$ converges

(Note that in the compound nonhomogeneous Poisson process, $E[N(t)] = Var(N(t)) = \int_0^t rS(v)dv$).

$$\int_0^\infty r S(v) dv = r \int_0^\infty S_0 \exp\left\{r \int_0^v [p_1(u) - p_3(u)] du\right\} dv$$
 (16)

Assume that $p_1(u) - p_3(u)$ is a continuous function on $(0, \infty)$ and there exists $u_0 \in (0, \infty)$ such that $\forall u > u_0, p_1(u) - p_3(u) \le -q < 0$,

$$\int_{0}^{v} [p_{1}(u) - p_{3}(u)] du = \int_{0}^{u_{0}} [p_{1}(u) - p_{3}(u)] du + \int_{u_{0}}^{v} [p_{1}(u) - p_{3}(u)] du
\leq \int_{0}^{u_{0}} 1 du + \int_{u_{0}}^{v} (-q) du \text{ since } p_{1}(u) - p_{3}(u) \leq 1 \forall u
= u_{0} - rq(v - u_{0}).$$
(17)

Then,

$$\int_{0}^{\infty} rS(v)dv = r \int_{0}^{\infty} S_{0} \exp\left\{r \int_{0}^{v} [p_{1}(u) - p_{3}(u)]du\right\}dv$$

$$\leq r \int_{0}^{\infty} S_{0} \exp\{r(u_{0} - rq(v - u_{0}))\}dv$$

$$= r \int_{0}^{\infty} S_{0} \exp\{u_{0}(1 + rq)\} \exp\{-rqv\}dv$$

$$= S_{0} \cdot r \cdot \exp\{u_{0}(1 + rq)\} \int_{0}^{\infty} \exp\{-rqv\}dv$$

$$= \frac{S_{0} \exp\{u_{0}(1 + rq)\}}{q} < \infty.$$
(18)

Similarly for Var(Y(t)), since $[p_2(v) + 4p_3(v)] \le 4$ for any $v \in (0, \infty)$,

$$\int_0^\infty [p_2(v) + 4p_3(v)]rS(v)dv \le \int_0^\infty 4rS(v)dv \le \frac{4S_0 \exp\{u_0(1+rq)\}}{q} < \infty.$$