Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

1. (Currently Amended) A compound of the formula (I)

$$\begin{array}{c|c} G & C_2H_5 \\ \hline B & C_2H_5 \\ \hline CH_3 & (I) \\ \hline \end{array}$$

in which

G represents hydrogen (a),

$$R^{1}$$
 (b), R^{2} (c), R^{3} (d), R^{6} R^{6} R^{7} (g),

in which

E represents a metal ion equivalent or an ammonium ion,

L represents oxygen or sulphur,

M represents oxygen or sulphur,

R¹ represents in each case optionally substituted alkyl, alkenyl, alkoxyalkyl, alkylthioalkyl or polyalkoxyalkyl, or in each case optionally halogen-, alkyl-, or alkoxy-

Fischer *et al.* Appl. No. 10/579,099

substituted cycloalkyl or heterocyclyl, or in each case optionally substituted phenyl, phenylalkyl, phenylalkenyl or heteroaryl,

R² represents in each case optionally halogen substituted alkyl, alkenyl, alkoxyalkyl or polyalkoxyalkyl or in each case optionally substituted cycloalkyl, phenyl or benzyl,

R³, R⁴ and R⁵ independently of one another represent optionally halogen substituted alkyl, alkoxy, alkylamino, dialkylamino, alkylthio, alkenylthio or cycloalkylthio or in each case optionally substituted phenyl, benzyl, phenoxy or phenylthio,

R⁶ and R⁷ independently of one another represent hydrogen, in each case optionally halogen substituted alkyl, cycloalkyl, alkenyl, alkoxy, or alkoxyalkyl, in each case optionally substituted phenyl or benzyl or R⁶ and R⁷ together with the N atom to which they are attached form an optionally substituted cycle which optionally contains oxygen or sulphur,

A represents hydrogen, in each case optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl or alkylthioalkyl or optionally substituted cycloalkyl,

B represents hydrogen, alkyl or alkoxyalkyl,

D represents hydrogen or an optionally substituted radical selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxyalkyl, alkylthioalkyl, and cycloalkyl, or

A and D together with the atoms to which they are attached form a saturated or unsaturated cycle which optionally contains at least one heteroatom in the A,D moiety and which is unsubstituted or substituted in the A,D moiety[[,]]

provided that when

G represents hydrogen (a), then

A represents hydrogen or alkyl,

Fischer *et al.* Appl. No. 10/579,099

B represents hydrogen or alkyl,

D represents an optionally substituted radical selected from the group consisting of alkyl, alkenyl, alkoxyalkyl, alkylthioalkyl, and cycloalkyl, or

A and D together with the atoms to which they are attached form a saturated or unsaturated cycle which optionally contains at least one heteroatom in the A,D moiety and which is unsubstituted or substituted in the A,D moiety.

2. (Currently Amended) The compound according to Claim 1, wherein provided that when

G represents hydrogen (a), then

A represents hydrogen or C₁-C₂-alkyl,

B represents hydrogen or C₁-C₆-alkyl,

D represents C₁-C₈-alkyl, C₁-C₈-alkenyl, C₁-C₆-alkoxy-C₂-C₄-alkyl or C₁-C₆-alkyl-thio C₂-C₄-alkyl, each of which is optionally monoto pentasubstituted by halogen, or C₃-C₈-cycloalkyl optionally substituted with one, two or three substituents selected from the group consisting of halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy and C₁-C₂-haloalkyl, or

A and D together represent a C₃-C₆-alkanediyl or C₃-C₆-alkenediyl group, wherein optionally one methylene group is replaced by oxygen or sulphur and wherein said C₃-C₆-alkanediyl or C₃-C₆-alkenediyl group is optionally substituted with one or two substituents selected from the group consisting of halogen, hydroxyl, C₁-C₄-alkyl and C₁-C₄-alkoxy, or wherein a C₃-C₆-alkanediyl, C₃-C₆-alkenediyl or C₄-C₆-alkanediyl group is optionally attached to two adjacent carbon atoms of said C₃-C₆-alkanediyl or C₃-C₆-alkenediyl group forming a fused ring system, or

provided that when

G represents one of the groups

E represents a metal ion equivalent or an ammonium ion,

L represents oxygen or sulphur,

M represents oxygen or sulphur,

 R^1 represents C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, C_1 - C_6 -alkyl or poly- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, each of which is optionally mono- to heptasubstituted by halogen, mono- or disubstituted by cyano, monosubstituted

by
$$COR^{13}$$
, $C=N-OR^{13}$, CO_2R^{13} or $CO-N$

$$R^{13}$$
, C_3-C_8 -cycloalkyl optionally substituted

with one, two or three substituents selected from the group consisting of halogen, C_1 - C_4 -alkyl and C_1 - C_4 -alkoxy, wherein one or two not directly adjacent methylene groups of said C_3 - C_8 -cycloalkyl are optionally replaced by oxygen or sulphur,

phenyl, phenyl- C_1 - C_2 -alkyl or phenyl- C_2 -alkenyl, each of which is optionally substituted with one, two or three substituents selected from the group consisting of halogen, cyano, nitro, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkyl, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkyl-thio, C_1 - C_6 -alkylsulfinyl and C_1 - C_6 -alkyl-sulfonyl, or

5- or 6-membered heteroaryl optionally substituted with one or two substituents selected from the group consisting of halogen and C₁-C₆-alkyl and contains one or two heteroatoms selected from the group consisting of oxygen, sulphur and nitrogen,

R²-represents C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₁-C₆-alkoxy-C₂-C₆-alkyl-or-poly-C₁-C₆-alkoxy-C₂-C₆-alkyl, each of which is optionally mono- to trisubstituted by halogen,

 C_3 - C_8 -cycloalkyl optionally substituted with one or two substituents selected from the group consisting of halogen, C_1 - C_6 -alkyl and C_1 - C_6 -alkoxy, or

phenyl or benzyl, each of which is optionally substituted with one, two or three substituents selected from the group consisting of halogen, cyano, nitro, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl and C_1 - C_6 -haloalkoxy,

 R^3 represents C_1 - C_8 -alkyl which is optionally mono- or polysubstituted by halogen, or phenyl or benzyl, each of which is optionally substituted with one or two substituents selected from the group consisting of halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, eyano and nitro,

R⁴ and R⁵ independently of one another represent C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₈-alkylamino, di(C₁-C₈-alkyl)amino, C₁-C₈-alkylthio or C₂-C₈-alkenylthio, each of which is optionally monoto trisubstituted by halogen, or phenyl, phenoxy or phenylthio, each of which is optionally substituted with one, two or three substituents selected from the group consisting of halogen, nitro, cyano, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkylthio, C₁-C₄-alkyl and C₁-C₄-haloalkyl,

R⁶ and R⁷ independently of one another represent hydrogen, C₁-C₈ alkyl, C₃-C₈ eyeloalkyl, C₁-C₈ alkoxy, C₃-C₈ alkenyl or C₁-C₈ alkoxy C₂-C₈ alkyl, wherein said C₁-C₈ alkyl, C₃-C₈ eyeloalkyl, C₁-C₈ alkoxy, C₃-C₈ alkenyl or C₁-C₈ alkoxy C₂-C₈ alkyl is optionally monoto trisubstituted by halogen, or phenyl or benzyl, each of which is optionally substituted with one, two or three substituents selected from the group consisting of halogen, C₁-C₈ alkyl, C₁-C₈ haloalkyl and C₁-C₈ alkoxy or R⁶ and R⁷ together represent a C₃-C₆ alkylene radical which is optionally monotor disubstituted by C₁-C₄ alkyl and in which optionally one methylene group is replaced by oxygen or sulphur,

 R^{13} represents C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl or C_1 - C_4 -alkoxy- C_2 - C_4 -alkyl, each of which is optionally mono- to trisubstituted by halogen, or C_3 - C_6 -cycloalkyl which is optionally substituted with one or two substituents selected from the group consisting of halogen, C_1 - C_2 -alkyl and C_1 - C_2 -alkoxy and in which one or two not directly adjacent methylene groups are optionally replaced by oxygen, and

R^{13'} represents hydrogen, C₁-C₆-alkyl or C₃-C₆-alkenyl, then

A represents hydrogen, C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl, C_1 - C_6 -alkoxy- C_1 - C_4 -alkyl or C_1 - C_6 -alkylthio- C_1 - C_4 -alkyl, wherein said C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl, C_1 - C_6 -alkoxy- C_1 - C_4 -alkyl or C_1 - C_6 -alkylthio- C_1 - C_4 -alkyl is optionally mono- to trisubstituted by halogen, or C_3 - C_8 -cycloalkyl optionally substituted with one, two or three substituents selected from the group consisting of halogen, C_1 - C_6 -alkyl and C_1 - C_6 -alkoxy,

B represents hydrogen, C₁-C₆-alkyl or C₁-C₄-alkoxy-C₁-C₂-alkyl,

D represents hydrogen, C_1 - C_8 -alkyl, C_1 - C_8 -alkenyl, C_1 - C_6 -alkoxy- C_2 - C_4 -alkyl or C_1 - C_6 -alkylthio- C_2 - C_4 -alkyl, wherein said C_1 - C_8 -alkyl, C_1 - C_8 -alkenyl, C_1 - C_6 -alkoxy- C_2 - C_4 -alkyl or C_1 - C_6 -alkylthio- C_2 - C_4 -alkyl is optionally mono- to trisubstituted by halogen, or C_3 - C_8 -cycloalkyl optionally substituted with one, two or three substituents selected from the group consisting of halogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy and C_1 - C_2 -haloalkyl, or

A and D together represent a C₃-C₆-alkanediyl or C₃-C₆-alkenediyl group, wherein optionally one methylene group is replaced by oxygen or sulphur and wherein said C₃-C₆-alkanediyl or C₃-C₆-alkenediyl group is optionally substituted with one or two substituents selected from the group consisting of halogen, hydroxyl, C₁-C₄-alkyl and C₁-C₄-alkoxy or wherein a C₃-C₆-alkanediyl, C₃-C₆-alkenediyl or C₄-C₆-alkanedienediyl group is optionally attached to two adjacent carbon atoms of said C₃-C₆-alkanediyl or C₃-C₆-alkenediyl group forming a fused ring system.

3. (Currently Amended) The compound according to Claim 1, wherein provided that when

G represents hydrogen (a), then

A represents hydrogen or C_{\downarrow} - C_{ϵ} -alkyl,

B represents hydrogen or C₁-C₄-alkyl,

D-represents C_1 C_6 -alkyl, C_3 C_6 -alkenyl, C_1 C_4 -alkoxy C_2 C_3 -alkyl or C_1 C_4 -alkylthio C_2 C_3 -alkyl, each of which is optionally substituted with one, two or three substituents selected from the group consisting of fluorine and chlorine, or C_3 C_6 -eycloalkyl optionally substituted with one or two substituents selected from the group consisting of fluorine, chlorine, C_1 - C_2 -alkyl, C_1 - C_2 -alkoxy and trifluoromethyl, or

A and D together represent a C₃-C₅-alkanediyl-group optionally substituted with one or two substituents selected from the group consisting of C₁-C₂-alkyl and C₁-C₂-alkoxy, and wherein one methylene group is optionally replaced by oxygen or sulphur,

or A and D together with the atoms to which they are attached represent form one of the groups AD-1 to AD-10

AD-10

or provided that when

G represents one of the groups

$$R^{1}$$
 (b), R^{2} (c), R^{3} (d), R^{6} R^{7} (g),

in which

E represents a metal ion equivalent or an ammonium ion,

L represents oxygen or sulphur,

M represents oxygen or sulphur,

 R^1 represents C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl, C_1 - C_4 -alkoxy- C_1 - C_2 -alkyl, poly- C_1 - C_3 -alkoxy- C_1 - C_2 -alkyl or C_1 - C_4 -alkylthio- C_1 - C_2 -alkyl, each of which is optionally substituted with one to five substituents selected from the group consisting of fluorine and chlorine, monosubstituted by cyano or monosubstituted by CO- R^{13} , C=N- OR^{13} or

 CO_2R^{13} , or C_3 - C_6 -cycloalkyl optionally substituted with one or two substituents selected from the group consisting of fluorine, chlorine, C_1 - C_2 -alkyl and C_1 - C_2 -alkoxy, wherein one or two not directly adjacent methylene groups of said C_3 - C_6 -cycloalkyl are optionally replaced by oxygen,

phenyl or benzyl, each of which is optionally substituted with one or two substituents selected from the group consisting of fluorine, chlorine, bromine, cyano, nitro, C_1 - C_4 -alkyl, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -alkoxy, C_1 - C_2 -haloalkyl and C_1 - C_2 -haloalkoxy, or

pyrazolyl, thiazolyl, pyridyl, pyrimidyl, furanyl or thienyl, each of which is optionally substituted with one or two substituents selected from the group consisting of fluorine, chlorine, bromine and C_1 - C_2 -alkyl,

R² represents C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₁-C₄-alkoxy-C₂-C₄-alkyl or poly C₁-C₄-alkoxy-C₂-C₄-alkyl, each of which is optionally substituted with one, two or three substituents selected from the group consisting of fluorine and chlorine,

 C_3 - C_7 -cycloalkyl which is optionally monosubstituted by C_1 - C_2 -alkyl or C_1 - C_2 -alkoxy or

phenyl or benzyl, each of which is optionally substituted with one or two substituents selected from the group consisting of fluorine, chlorine, bromine, cyano, nitro, C₁-C₄-alkyl, methoxy, trifluoromethyl and trifluoromethoxy,

R³ represents C₁-C₄ alkyl which is optionally substituted with one, two or three substituents selected from the group consisting of fluorine and chlorine or phenyl or benzyl, each of which is optionally monosubstituted by fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, trifluoromethyl, trifluoromethoxy, cyano or nitro,

 R^4 and R^5 independently of one another represent C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylamino, $di(C_1$ - C_6 -alkyl)amino, C_1 - C_6 -alkylthio or C_3 - C_4 -alkenylthio, each of which is optionally substituted with one, two or three substituents selected from the

group consisting of fluorine and chlorine, or phenyl, phenoxy or phenylthio, each of which is optionally substituted with one or two substituents selected from the group consisting of fluorine, chlorine, bromine, nitro, cyano, C₁-C₃-alkoxy, trifluoromethoxy, C₁-C₃-alkylthio, C₁-C₃-alkyl and trifluoromethyl,

R⁶ and R⁷-independently of one another represent hydrogen, C₁-C₆-alkyl, C₃-C₆-eycloalkyl, C₁-C₄-alkoxy, C₃-C₆-alkenyl or C₁-C₆-alkoxy C₂-C₆-alkyl, wherein said C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₁-C₄-alkoxy, C₃-C₆-alkenyl or C₁-C₆-alkoxy C₂-C₆-alkyl is optionally substituted with one, two or three substituents selected from the group consisting of fluorine and chlorine, phenyl optionally substituted with one or two substituents selected from the group consisting of fluorine, chlorine, bromine, trifluoromethyl, C₁-C₄-alkyl and C₁-C₄-alkoxy or R⁶ and R⁷ together represent a C₅-C₆-alkylene radical which is optionally mono or disubstituted by methyl and in which optionally one methylene group is replaced by oxygen,

 R^{13} represents C_1 - C_4 -alkyl, C_3 - C_4 -alkenyl, C_3 - C_4 -alkynyl, C_1 - C_4 -alkoxy- C_2 - C_3 -alkyl, or C_3 - C_6 -cycloalkyl wherein optionally one methylene group of said C_3 - C_6 -cycloalkyl is replaced by oxygen, then

A represents hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_1 - C_4 -alkoxy- C_1 - C_3 -alkyl or C_1 - C_4 -alkylthio- C_1 - C_3 -alkyl, wherein said C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_1 - C_4 -alkoxy- C_1 - C_3 -alkyl or C_1 - C_4 -alkylthio- C_1 - C_3 -alkyl is optionally substituted with one, two or three substituents selected from the group consisting of fluorine and chlorine, or C_3 - C_6 -cycloalkyl which is optionally substituted with one or two substituents selected from the group consisting of fluorine, chlorine, C_1 - C_2 -alkyl and C_1 - C_2 -alkoxy,

B represents hydrogen, C₁-C₄-alkyl or C₁-C₄-alkoxy-C₁-C₂-alkyl,

D represents hydrogen or

D represents C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_1 - C_4 -alkoxy- C_2 - C_3 -alkyl or C_1 - C_4 -alkylthio- C_2 - C_3 -alkyl, wherein said C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_1 - C_4 -alkoxy- C_2 - C_3 -

alkyl or C₁-C₄-alkylthio-C₂-C₃-alkyl is optionally substituted with one, two or three substituents selected from the group consisting of fluorine and chlorine, or C₃-C₆-cycloalkyl optionally substituted with one or two substituents selected from the group consisting of fluorine, chlorine, C₁-C₂-alkyl, C₁-C₂-alkoxy and trifluoromethyl, provided that

A represents hydrogen or C₁-C₃-alkyl, or

A and D together represent a C_3 - C_5 -alkanediyl group in which optionally one methylene group is replaced by oxygen or sulphur and which is optionally substituted with one or two substituents selected from the group consisting of C_1 - C_2 -alkyl and C_1 - C_2 -alkoxy,

or A and D together with the atoms to which they are attached form one of the groups AD-1 to AD-10 $\,$

Atty. Dkt. No. 2400.0400000/JMC/THN/OAL

AD-10.

4. (Currently Amended) The compound according to Claim 1, wherein provided that when

G represents hydrogen (a), then

A represents hydrogen, methyl or ethyl,

B-represents hydrogen,

D represents methyl, ethyl, n propyl, isopropyl, n-butyl, sec butyl, isobutyl, eyclopropyl, cyclopentyl or cyclohexyl, or

A and D together represent a C₃-C₄-alkanediyl group in which optionally one methylene group is replaced by oxygen or sulphur and which is optionally mono- or disubstituted by methyl,

or Λ and D together with the atoms to which they are attached form the following group:

AD-1

or provided that when

G represents one of the groups

in which

L represent oxygen, and

M represents oxygen or sulphur,

 R^1 represents C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_1 - C_2 -alkoxy- C_1 - C_2 -alkyl, C_1 - C_2 -alkylthio- C_1 - C_2 -alkyl or poly- C_1 - C_2 -alkoxy- C_1 - C_2 -alkyl, each of which is optionally substituted with one, two or three substituents selected from the group consisting of fluorine and chlorine, or cyclopropyl, cyclopentyl or cyclohexyl, each of which is optionally monosubstituted by fluorine, chlorine, methyl, ethyl or methoxy,

phenyl optionally monosubstituted by fluorine, chlorine, bromine, cyano, nitro, methyl, ethyl, n-propyl, isopropyl, methoxy, ethoxy, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, ethylsulfonyl, trifluoromethyl or trifluoromethoxy, or

furanyl, thienyl or pyridyl, each of which is optionally monosubstituted by chlorine, bromine or methyl,

 R^2 -represents C_1 - C_8 -alkyl, C_2 - C_6 -alkenyl, C_1 - C_3 -alkoxy- C_2 - C_3 -alkyl, cyclopentyl, eyclohexyl,

or phenyl or benzyl, wherein said phenyl or benzyl is optionally monosubstituted by fluorine, chlorine, bromine, cyano, nitro, methyl, methoxy, trifluoromethyl or trifluoromethoxy,

R³ represents C₁-C₄-alkyl which is optionally substituted with one, two or three substituents selected from the group consisting of fluorine and chlorine, or phenyl or

benzyl, each of which is optionally monosubstituted by fluorine, chlorine, bromine, C₁-C ₄-alkyl, C₁-C₄-alkoxy, trifluoromethyl, trifluoromethoxy, cyano or nitro,

R⁶ represents hydrogen, C₁-C₄-alkyl, C₃-C₆-cycloalkyl, allyl, or phenyl, wherein said phenyl is optionally monosubstituted by fluorine, chlorine, bromine, methyl, methoxy or trifluoromethyl,

R⁷ represents methyl, ethyl, n-propyl, isopropyl or allyl, or

 R^6 -and R^7 -together represent a C_5 - C_6 -alkylene radical in which optionally one methylene group is replaced by oxygen, then

A represents hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, trifluoromethyl, cyclopropyl, cyclopentyl or cyclohexyl,

B represents hydrogen, methyl or ethyl,

D represents hydrogen or

D represents methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, cyclopropyl, cyclopentyl or cyclohexyl, provided that

A represents hydrogen, methyl or ethyl, or

A and D together represent a C₃-C₄-alkanediyl group in which optionally one methylene group is replaced by oxygen or sulphur and which is optionally mono- or disubstituted by methyl, or

A and D together with the atoms to which they are attached form the group below:

5. (Currently Amended) The compound according to Claim 1, wherein provided that when

G represents hydrogen (a), then

A represents hydrogen, methyl or ethyl,

B represents hydrogen,

D represents methyl, ethyl or cyclopropyl, or

A and D together with the atoms to which they are attached form the group below:

AD-1

or provided that when

G represents one of the groups

in which

L-represents oxygen,

M represents oxygen,

 R^1 represents C_1 - C_6 -alkyl or C_1 - C_2 -alkoxy- C_1 - C_2 -alkyl,

R² represents C₁-C₈-alkyl,

 R^3 -represents C_1 - C_4 -alkyl,

then

A represents hydrogen, methyl, ethyl, n-propyl, isopropyl or isobutyl,

B represents hydrogen, methyl or ethyl,

D represents hydrogen or

D represents methyl, ethyl or cyclopropyl, provided that

A represents hydrogen, methyl or ethyl, or

A and D together with the atoms to which they are attached form the group below:

6. (Withdrawn) A process for preparing a compound of formula (I) according to Claim 1, comprising

(A)

condensing intramolecularly a compound of the formula (II),

A, B and D are as defined in Claim 1,

and

R⁸ represents alkyl,

in the presence of a diluent and in the presence of a base, to obtain a compound of the formula (I-a),

wherein A, B and D are as defined in Claim 1,

(B)

reacting a compound of the formula (I-a)

$$B \xrightarrow{A} N O C_2H_5$$
 $CH_3 (I-a) \text{ or } CH_3$

a compound of the formula (I-a')

$$G$$
 C_2H_5
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

wherein A, B, and D are as defined in Claim 1 and G is hydrogen,

α) with an acid halide of the formula (III),

$$\mathsf{Hal} \bigvee_{\mathsf{O}} \mathsf{R}^{\mathsf{1}}$$

in which

R1 is as defined in Claim 1 and

Hal represents halogen,

or

 β) with a carboxylic anhydride of the formula (IV),

R¹ is as defined in Claim 1,

optionally in the presence of a diluent and optionally in the presence of an acid binder, to obtain a compound of the formula (I-b)

$$B \xrightarrow{A} N \xrightarrow{D} O$$
 C_2H_5
 $CH_3 \xrightarrow{CH_3} (I-b)$

wherein A, B, D, and R¹ are as defined in Claim 1,

(C)

reacting a compound of the formula (I-a)

$$B \xrightarrow{A} N O C_2H_5$$
 $CH_3 CH_3$
(I-a) or

a compound of the formula (I-a')

$$\begin{array}{c|c} G & C_2H_5 \\ \hline A & C_2H_5 \\ \hline CH_3 & (I-a') \\ \end{array}$$

wherein A, B, and D are as defined in Claim 1 and G is hydrogen,

with a chloroformic ester or a chloroformic thioester of the formula (V),

$$R^2$$
-M-CO-Cl (V)

in which

R² and M are as defined in Claim 1,

optionally in the presence of a diluent and optionally in the presence of an acid binder, to obtain a compound of the formula (I-c)

$$B \xrightarrow{A} D$$
 C_2H_5
 $CH_3 \xrightarrow{CH_3} (I-c)$

wherein A, B, D, R² and M are as defined in Claim 1, and L is oxygen,

(D)

reacting a compound of the formula (I-a)

$$B \xrightarrow{A} N O C_2H_5$$
 $CH_3 CH_3$
 $(I-a) \text{ or }$

a compound of the formula (I-a')

$$\begin{array}{c|c} G & C_2H_5 \\ \hline A & C_2H_5 \\ \hline CH_3 & (I-a') \end{array}$$

wherein A, B, and D are as defined in Claim 1 and G is hydrogen,

 α) with a chloromonothioformic ester or a chlorodithioformic ester of the formula (VI),

$$CI \longrightarrow M-R^2$$
 $S \longrightarrow (VI)$

in which

M and R² are as defined in Claim 1,

optionally in the presence of a diluent and optionally in the presence of an acid binder,

or

β) with carbon disulphide and then with a compound of the formula (VII),

R² is as defined in Claim 1 and

Hal represents chlorine, bromine or iodine,

optionally in the presence of a diluent and optionally in the presence of a base, to obtain a compound of the formula (I-c)

$$B \xrightarrow{A} D$$
 C_2H_5
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

wherein A, B, D, R² and M are as defined in Claim 1, and L is sulphur,

(E)

reacting a compound of the formula (I-a)

$$B \xrightarrow{A} N O C_2H_5$$
 $CH_3 CH_3$
(I-a) or

a compound of the formula (I-a')

$$G$$
 C_2H_5
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

wherein A, B, and D are as defined in Claim 1 and G is hydrogen,

with a sulfonyl chloride of the formula (VIII),

in which

R³ is as defined in Claim 1,

optionally in the presence of a diluent and optionally in the presence of an acid binder, to obtain a compound of the formula (I-d)

$$B \xrightarrow{A} N D$$
 C_2H_5
 CH_3
 CH_3

wherein A, B, D, and R³ are as defined in Claim 1,

(F)

reacting a compound of the formula (I-a)

$$B \xrightarrow{A} N \xrightarrow{D} O C_2H_5$$
 $CH_3 (I-a) \text{ or } O$

a compound of the formula (I-a')

$$G$$
 C_2H_5
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

wherein A, B, and D are as defined in Claim 1 and G is hydrogen,

with a phosphorus compound of the formula (IX),

$$Hal - P$$

$$L R5 (IX)$$

in which

L, R^4 and R^5 are as defined in Claim 1 and

Hal represents halogen,

optionally in the presence of a diluent and optionally in the presence of an acid binder, to obtain a compound of the formula (I-e)

wherein A, B, D, L, R⁴, and R⁵ are as defined in Claim 1,

(G)

reacting a compound of the formula (I-a)

$$B \xrightarrow{A} N O C_2H_5$$
 CH_3
 CH_3
 $(I-a)$ or

a compound of the formula (I-a')

$$\begin{array}{c|c} G & C_2H_5 \\ \hline A & C_2H_5 \\ \hline CH_3 & (I-a') \\ \end{array}$$

wherein A, B, and D are as defined in Claim 1 and G is hydrogen,

with a metal compound or an amine of the formulae (X) or (XI), respectively,

$$R^{10} \searrow R^{11}$$

$$N^{10} \swarrow R^{11}$$

$$R^{10} \swarrow R^{11}$$

$$R^{10} \swarrow R^{11}$$

$$(XI)$$

Me represents a mono- or divalent metal,

t represents the number 1 or 2 and

R¹⁰, R¹¹, and R¹² independently of one another represent hydrogen or alkyl, optionally in the presence of a diluent, to obtain a compound of the formula (I-f)

wherein A, B, D, and E are as defined in Claim 1, or

(H)

reacting a compound of the formula (I-a)

$$B \xrightarrow{A} N \xrightarrow{D} C_2H_5$$
 $CH_3 \qquad (I-a) \text{ or }$

a compound of the formula (I-a')

$$G$$
 C_2H_5
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

wherein A, B, and D are as defined in Claim 1 and G is hydrogen,

α) with an isocyanate or an isothiocyanate of the formula (XII),

$$R^6$$
-N=C=L (XII)

in which

R⁶ and L are as defined in Claim 1,

optionally in the presence of a diluent and optionally in the presence of a catalyst,

or

β) with a carbamoyl chloride or a thiocarbamoyl chloride of the formula (XIII),

$$R^6$$
 N CI $(XIII)$

L, R⁶ and R⁷ are as defined in Claim 1,

optionally in the presence of a diluent and optionally in the presence of an acid binder, to obtain a compound of the formula (I-g)

$$B \xrightarrow{A} D$$
 C_2H_5
 C_2H_5
 C_1
 C_2H_3
 C_1
 C_2
 C_2
 C_3
 C_4
 C_1
 C_2
 C_3
 C_4
 C_1
 C_2
 C_3
 C_4
 C_1
 C_2
 C_3
 C_4
 C_4
 C_4
 C_5
 C_5
 C_7
 C_8
 C_8

wherein A, B, D, L, R⁶, and R⁷ are as defined in Claim 1.

- 7. (Cancelled)
- 8. (Previously Presented) A pesticide or a herbicide preparation, comprising at least one compound of the formula (I) according to Claim 1.
- 9. (Withdrawn) A method for controlling animal pests or unwanted vegetation, comprising contacting a compound of the formula (I) according to Claim 1 with pests or their habitat or unwanted vegetation.
 - 10. (Cancelled)
- 11. (Withdrawn) A process for preparing a pesticide or a herbicide preparation, comprising mixing a compound of the formula (I) according to Claim 1 with one or more extenders or surfactants, or combinations thereof.

- 12. (Withdrawn) A composition comprising an effective amount of a combination of active compounds comprising
 - a') at least one compound of the formula (I) according to Claim 1,

or

b') at least one compound of the formula (I-a)

$$\begin{array}{c|c} OH & C_2H_5 \\ \hline A & \\ B & \\ O & CH_3 \end{array} \qquad (I-a)$$

in which

A and B are as defined in Claim 1 and

c') at least one crop plant compatibility-improving compound selected from the group consisting of:

4-dichloroacetyl-1-oxa-4-azaspiro[4.5]decane (AD-67, MON-4660). 1dichloroacetylhexahydro-3,3,8a-trimethylpyrrolo[1,2-a]pyrimidin-6(2H)-one (dicyclonon, BAS-145138), 4-dichloroacetyl-3,4-dihydro-3-methyl-2H-1,4-benzoxazine (benoxacor), 1-methylhexyl 5-chloroquinoline-8-oxyacetate (cloquintocet-mexyl), 3-(2chlorobenzyl)-1-(1-methyl-1-phenylethyl)urea (cumyluron), α-(cyanomethoximino)phenylacetonitrile (cyometrinil), 2,4-dichlorophenoxyacetic acid (2,4-D), 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB), 1-(1-methyl-1-phenylethyl)-3-(4methylphenyl)urea (daimuron, dymron), 3,6-dichloro-2-methoxybenzoic acid (dicamba), S-1-methyl 1-phenylethyl piperidine-1-thiocarboxylate (dimepiperate), 2,2-dichloro-N-(2-oxo-2-(2-propenylamino)ethyl)-N-(2-propenyl)-acetamide (DKA-24), 2,2-dichloro-N,N-di-2-propenylacetamide (dichlormid), 4,6-dichloro-2-phenylpyrimidine (fenclorim), 1-(2,4-dichlorophenyl)-5-trichloro-methyl-1H-1,2,4-triazole-3-carboxylate ethyl

(fenchlorazole-ethyl), phenylmethyl 2-chloro-4-trifluoromethylthiazole-5-carboxylate (flurazole), 4-chloro-N-(1,3-dioxolan-2-ylmethoxy)-α-trifluoroaceto-phenone oxime (fluxofenim), 3-dichloroacetyl-5-(2-furanyl)-2,2-dimethyloxazolidine (furilazole, MON-13900), ethyl 4,5-dihydro-5,5-diphenyl-3-isoxazolecarboxylate (isoxadifen-ethyl), 1-(ethoxycarbonyl)-ethyl 3,6-dichloro-2-methoxybenzoate (lactidichlor), (4-chloro-otolyloxy)acetic acid (MCPA), 2-(4-chloro-o-tolyloxy)propionic acid (mecoprop), diethyl 1-(2,4-dichoro-phenyl)-4,5-dihydro-5-methyl-1H-pyrazole-3,5-dicarboxylate (mefenpyrdiethyl), 2-dichloromethyl-2-methyl-1,3-dioxolane (MG-191), 2-propenyl 1-oxa-4azaspiro[4.5]decane-4-carbodithioate (MG-838), 1,8-naphthalic anhydride, α-(1,3dioxolan-2-ylmethoximino)phenylacetonitrile (oxabetrinil), 2,2-dichloro-N-(1,3dioxolan-2-ylmethyl)-N-(2-propenyl)acetamide (PPG-1292), 3-dichloroacetyl-2,2dimethyloxazolidine (R-28725), 3-dichloroacetyl-2,2,5-trimethyloxazolidine (R-29148), 4-(4-chloro-o-tolyl)butyric acid, 4-(4-chloro-phenoxy)butyric acid, diphenylmethoxyacetic acid, methyl diphenylmethoxyacetate, ethyl diphenylmethoxyacetate, methyl 1-(2-chlorophenyl)-5-phenyl-1H-pyrazole-3carboxylate, ethyl 1-(2,4-dichlorophenyl)-5-methyl-1H-pyrazole-3-carboxylate, ethyl 1-(2,4-dichloro-phenyl)-5-isopropyl-1H-pyrazole-3-carboxylate, ethyl 1-(2,4dichlorophenyl)-5-(1,1-di-methylethyl)-1H-pyrazole-3-carboxylate, ethyl 1-(2,4dichlorophenyl)-5-phenyl-1H-pyrazole-3-carboxylate, ethyl 5-(2,4-dichlorobenzyl)-2isoxazoline-3-carboxylate, ethyl 5-phenyl-2-isoxazoline-3-carboxylate, ethyl 5-(4fluorophenyl)-5-phenyl-2-isoxazoline-3-carboxylate, 1,3-dimethylbut-1-yl 5chloroquinoline-8-oxyacetate, 4-allyloxybutyl 5-chloroquinoline-8-oxyacetate. 1allyloxyprop-2-yl 5-chloroquinoline-8-oxyacetate, methyl 5-chloroquinoxaline-8-oxyacetate, ethyl 5-chloroquinoline-8-oxyacetate, allyl 5-chloroquinoxaline-8-oxyacetate, 2oxoprop-1-yl 5-chloroquinoline-8-oxyacetate, diethyl 5-chloroquinoline-8-oxymalonate, diallyl 5-chloroquinoxaline-8-oxymalonate, diethyl 5-chloroquinoline-8-oxymalonate, 4carboxychroman-4-ylacetic acid (AC-304415, 4-chlorophenoxyacetic acid, 3,3'dimethyl-4-methoxybenzophenone, 1-bromo-4-chloromethylsulphonylbenzene, 1-[4-(N-2-methoxybenzoylsulphamoyl)phenyl]-3-methylurea (also known N-(2as methoxybenzoyl)-4-[(methylaminocarbonyl)-amino]benzenesulphonamide), 1-[4-(N-2methoxybenzoylsulphamoyl)phenyl]-3,3-di-methylurea, 1-[4-(N-4,5-dimethylbenzoylsulphamoyl)phenyl]-3-methylurea, 1-[4-(N-naphthylsulphamoyl)phenyl]-3,3-dimethylurea, and N-(2-methoxy-5-methylbenzoyl)-4-(cyclopropyl-aminocarbonyl)benzene-sulphonamide,

or selected from a group consisting of a compound of the general formula (IIa)

$$(X^1)_n$$
 A^1
 R^{14}

a compound of the general formula (IIb)

$$X^3$$
 A^2
 A^{15} , and

a compound of the formula (IIc)

where

n represents a number from 0 to 5,

A¹ represents one of the following divalent heterocyclic groups

wherein n is as defined above,

 A^2 represents alkanediyl having 1 or 2 carbon atoms optionally substituted with one or more substituents selected from the group consisting of C_1 - C_4 -alkyl and C_1 - C_4 -alkoxycarbonyl,

 R^{14} represents hydroxy, mercapto, amino, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylamino or di- $(C_1$ - C_4 -alkyl)amino,

 R^{15} represents hydroxy, mercapto, amino, C_1 - C_7 -alkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylamino or di- $(C_1$ - C_4 -alkyl)-amino,

R¹⁶ represents C₁-C₄-alkyl optionally substituted with one or more substituents selected from the group consisting of fluorine, chlorine and bromine,

R¹⁷ represents hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl or C₂-C₆-alkynyl optionally substituted with one or more substituents selected from the group consisting of fluorine, chlorine and bromine, C₁-C₄-alkoxy-C₁-C₄-alkyl, dioxolanyl-C₁-C₄-alkyl, furyl, furyl-C₁-C₄-alkyl, thienyl, thiazolyl, piperidinyl, phenyl optionally substituted with one or more substituents selected from the group consisting of fluorine, chlorine and bromine, or C₁-C₄-alkyl-substituted phenyl,

 R^{18} represents hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl or C_2 - C_6 -alkynyl in each case optionally substituted with one or more substituents selected from the group consisting of fluorine, chlorine, and bromine, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, dioxolanyl- C_1 - C_4 -alkyl, furyl, furyl- C_1 - C_4 -alkyl, thienyl, thiazolyl, piperidinyl, or phenyl optionally substituted with one or more substituents selected from the group consisting of fluorine, chlorine and bromine, or C_1 - C_4 -alkyl-substituted phenyl, or R^{18} together with R^{17} represents C_3 - C_6 -alkanediyl or C_2 - C_5 -oxaalkanediyl, each of which is optionally substituted by C_1 - C_4 -alkyl, phenyl, furyl, a fused

benzene ring or by two substituents which, together with the C atom to which they are attached, form a 5- or 6-membered carbocycle,

 R^{19} represents hydrogen, cyano, or halogen, or C_1 - C_4 -alkyl, C_3 - C_6 -cycloalkyl or phenyl in each case optionally substituted with one or more substituents selected from the group consisting of fluorine, chlorine and bromine,

 R^{20} represents hydrogen, or optionally hydroxy-, cyano-, halogen- or C_1 - C_4 -alkoxy-substituted C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl or tri(C_1 - C_4 -alkyl)silyl,

R²¹ represents hydrogen, cyano, or halogen, or C₁-C₄-alkyl, C₃-C₆-cycloalkyl or phenyl in each case optionally substituted with one or more substituents selected from the group consisting of fluorine, chlorine and bromine,

 X^1 represents nitro, cyano, halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy,

 X^2 represents hydrogen, cyano, nitro, halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy,

 X^3 represents hydrogen, cyano, nitro, halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy,

or selected from the group consisting of a compound of the general formula (IId)

$$O = \begin{pmatrix} R^{23} & (X^5)_n & R^{22} & (X^4)_n \\ SO_2 & O & O \end{pmatrix}$$

and a compound of the general formula (IIe)

$$R^{25}$$
 R^{26}
 R^{22}
 R^{22}
 R^{24}
 R^{25}
 R^{22}
 R^{24}

where

n represents a number from 0 to 5,

 R^{22} represents hydrogen or C_1 - C_4 -alkyl,

R²³ represents hydrogen or C₁-C₄-alkyl,

 R^{24} represents hydrogen, in each case optionally cyano-, halogen- or C_1 - C_4 -alkoxy-substituted C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylamino or di- $(C_1$ - C_4 -alkyl)amino, or in each case optionally cyano-, halogen- or C_1 - C_4 -alkyl-substituted C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkyloxy, C_3 - C_6 -cycloalkylthio or C_3 - C_6 -cycloalkylamino,

 R^{25} represents hydrogen, optionally cyano-, hydroxy-, halogen- or C_1 - C_4 -alkoxy-substituted C_1 - C_6 -alkyl, in each case optionally cyano- or halogen-substituted C_3 - C_6 -alkenyl or C_3 - C_6 -alkynyl, or optionally cyano-, halogen- or C_1 - C_4 -alkyl-substituted C_3 - C_6 -cycloalkyl,

 R^{26} represents hydrogen, optionally cyano-, hydroxy-, halogen- or C_1 - C_4 -alkoxy-substituted C_1 - C_6 -alkyl, in each case optionally cyano- or halogen-substituted C_3 - C_6 -alkenyl or C_3 - C_6 -alkynyl, optionally cyano-, halogen- or C_1 - C_4 -alkyl-substituted C_3 - C_6 -cycloalkyl, or

optionally nitro-, cyano-, halogen-, C_1 - C_4 -alkyl-, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy- or C_1 - C_4 -haloalkoxy-substituted phenyl, or R^{26} together with R^{25} in each case represent optionally C_1 - C_4 -alkyl-substituted C_2 - C_6 -alkanediyl or C_2 - C_5 -oxaalkanediyl,

 X^4 represents nitro, cyano, carboxyl, carbamoyl, formyl, sulphamoyl, hydroxy, amino, halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy, and

X⁵ represents nitro, cyano, carboxyl, carbamoyl, formyl, sulphamoyl, hydroxy, amino, halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy.

13. (Withdrawn) The composition according to Claim 12, where the crop plant compatibility-improving compound is selected from the group consisting of

cloquintocet-mexyl, fenchlorazole-ethyl, isoxadifen-ethyl, mefenpyr-diethyl, furilazole, fenclorim, cumyluron, dymron,

and

14. (Withdrawn) The composition according to Claim 12 or 13 where the crop plant compatibility-improving compound is cloquintocet-mexyl or mefenpyr-diethyl.

- 15. (Withdrawn) A method for controlling unwanted vegetation, comprising contacting a composition according to Claim 12 with the unwanted vegetation.
 - 16. (Cancelled)
 - 17. (Withdrawn) A compound of the formula (II)

$$A \xrightarrow{CO_2R^8} B$$

$$D \xrightarrow{N} O$$

$$C_2H_5$$

$$CH_3$$

$$CH_3$$

$$(II)$$

A represents hydrogen, in each case optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl or alkylthioalkyl or optionally substituted cycloalkyl,

B represents hydrogen, alkyl or alkoxyalkyl,

D represents in each case an optionally substituted radical selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxyalkyl, alkylthioalkyl, and cycloalkyl, or

A and D together with the atoms to which they are attached form a saturated or unsaturated cycle which optionally contains at least one heteroatom in the A, D moiety and which is unsubstituted or substituted in the A, D moiety, and

R⁸ represents alkyl.

18. (Withdrawn) A compound of the formula (XVI)

A represents hydrogen, in each case optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl or alkylthioalkyl or optionally substituted cycloalkyl,

B represents hydrogen, alkyl or alkoxyalkyl,

D represents in each case an optionally substituted radical selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxyalkyl, alkylthioalkyl, and cycloalkyl, or

A and D together with the atoms to which they are attached form a saturated or unsaturated cycle which optionally contains at least one heteroatom in the A, D moiety and which is unsubstituted or substituted in the A, D moiety.

19. (Withdrawn) A process for preparing 2-ethyl-4,6-dimethylphenylacetic acid, comprising reacting 2-ethyl-4,6-dimethylbromobenzene with tert-butyl acetate optionally in the presence of a base, a phosphine ligand, a palladium compound and a diluent, and subsequently contacting with an acid.