$P\check{r}iklad$ (7. Finite speed of propagation of WS to linear hyperbolic equation of 2nd order) Let $\Omega \subset \mathbb{R}^d$ be an open set fulfilling $B_1(0) \subset \Omega$. Assume that $A \in L^{\infty}(\Omega) \in L^{\infty}(\Omega; \mathbb{R}^{d \times d}_{sym})$ be elliptic and that u is weak solution to

$$\partial_{tt}u - \operatorname{div}(\mathbb{A}\nabla u) = 0$$
 in $Q := (0, T) \times \Omega$,

i. e.,

$$u \in L^{2}\left(0, T; W^{1,2}(\Omega)\right) \cap W^{1,2}\left(0, T; L^{2}(\Omega)\right) \cap W^{2,2}\left(0, T; \left(W_{0}^{1,2}(\Omega)\right)^{*}\right)$$

satisfies for almost all $t \in (0,T)$ and all $w \in W_0^{1,2}(\Omega)$

$$\langle \partial_{tt} u, w \rangle + \int_{\Omega} \mathbb{A} \nabla u \cdot \nabla w = 0.$$

Find proper/optimal relation between $\Omega_0 \subset B_1(0)$ and $Q_0 \subset Q$ such that the following implication holds true

$$u(0) = \partial_t u(0) = 0 \text{ in } \Omega_0 \qquad \Longrightarrow \qquad u = 0 \text{ in } Q_0.$$

Subgoal1: Show the result for constant matrix A.

Subgoal2 : Show it for general \mathbb{A} .

Řešení (První odhad)

Z rovnosti $\partial_{tt}u - \operatorname{div}(\mathbb{A}\nabla u) = 0$ můžeme vynásobením $\partial_t u$ a za pomoci

$$\operatorname{div}(\mathbb{A}\nabla u\partial_t u) = \operatorname{div}(\mathbb{A}\nabla u)\partial_t u + (\mathbb{A}\nabla u)\nabla(\partial_t u)$$

 $\operatorname{dostat} \partial_{tt} u \cdot \partial_t u - \operatorname{div}(\mathbb{A} \nabla u \partial_t u) + (\mathbb{A} \nabla u) \nabla (\partial_t u) = 0.$

Můžeme použít derivaci druhé mocniny a $\partial_t(\mathbb{A}\nabla u\cdot\nabla u)=0+2\cdot\mathbb{A}\nabla u\cdot\nabla(\partial_t u)$

$$\frac{1}{2}\partial_t \left((\partial_t u)^2 + \mathbb{A}\nabla u \cdot \nabla u \right) - \operatorname{div}(\mathbb{A}\nabla u \partial_t u) = 0.$$

Integrujeme přes "nějaké dobře zvolené" Q_0 a zapíšeme ve formě d+1 divergence (a použijeme divergence theorem):

$$\int_{Q_0} \operatorname{div}_{d+1} \begin{pmatrix} \frac{1}{2} (\partial_t u)^2 + \frac{1}{2} \mathbb{A} \nabla u \cdot \nabla u \\ -\mathbb{A} \nabla u \partial_t u \end{pmatrix} = \int_{\partial Q_0} \begin{pmatrix} \frac{1}{2} (\partial_t u)^2 + \frac{1}{2} \mathbb{A} \nabla u \cdot \nabla u \\ -\mathbb{A} \nabla u \partial_t u \end{pmatrix} \cdot \nu_{d+1} = \int_{\partial Q_0 \setminus \Omega_0} \dots$$

Zřejmě můžeme počítat s $(Q_0 \cap \{t=0\}) \setminus \Omega_0$ je nulová. Nyní předpokládejme, že $\nu_t > 0$, neboť $\nu_t = 0$ znamená, že se vlny nešíří, což je nesmysl pro eliptické \implies nenulové A. Při $\nu_t < 0$ by dokonce vlny zanikali. Tudíž můžeme rovnost zapsat jako

$$\int_{\partial Q_0 \backslash \Omega_0} \frac{1}{2} (\partial_t u)^2 + \frac{1}{2} \mathbb{A} \nabla u \cdot \nabla u = \int_{\partial Q_0 \backslash \Omega_0} \mathbb{A} \nabla u \partial_t u \frac{\nu_d}{\nu_t} \leqslant$$

$$\leq \int_{\partial O_0 \setminus O_0} \left| \mathbb{A} \nabla u \cdot \frac{\nu_d}{\nu_t} \right| \cdot \left| \partial_t u \right| \stackrel{\text{Young }}{\leq} \frac{1}{2} \int_{\partial O_0 \setminus O_0} \frac{\left| \mathbb{A} \nabla u \cdot \frac{\nu_d}{\nu_t} \right|^2}{(1 - \varepsilon)^2} + (\partial_t u)^2 \cdot (1 - \varepsilon)^2.$$

Tím se dokážeme zbavit $(\partial_t u)^2$ na pravé straně. Nyní potřebujeme

$$\frac{1}{(1-\varepsilon)^2} \left| \mathbb{A} \nabla u \cdot \frac{\nu_d}{\nu_t} \right|^2 < |\mathbb{A} \nabla u \cdot \nabla u|, \qquad \forall \nabla u \neq 0,$$

abychom se zbavili i druhého členu na pravé straně. Na ε můžeme zapomenout (prostě ho zvolíme správně velké). Zároveň můžeme znormovat ∇u , jelikož na obou stranách vystupuje v druhé mocnině: $|\mathbb{A}(\nabla u)_{norm}(\nu_d/\nu_t)|^2 < |\mathbb{A}(\nabla u)_{norm} \cdot (\nabla u)_{norm}|$.

To potřebujeme pro libovolné nenulové ∇u , tedy levou stranu můžeme nahradit minimem (c_1 z elipticity \mathbb{A}) a na levé straně můžeme naopak potkat tu největší hodnotu (c_2 z omezenosti \mathbb{A}). Tedy $\|\nu_d/\nu_t\| < \sqrt{c_1}/c_2$ nám implikuje že (pro kladná K_1, K_2) $\int_{\partial Q_0 \setminus \partial \Omega} K_1 \cdot (\partial_t u)^2 + K_2 \cdot \|\nabla u\|^2 \le 0$, tj. $\partial_t u = 0$ a $\nabla u = \mathbf{o}$ skoro všude na $\partial Q_0 \setminus \Omega_0$. To je to, co potřebujeme, neboť zvýšením sklonu ∂Q_0 budeme tím spíše dodržovat tuhle rovnost, tedy uvnitř "kuželu" určeném rovností v předchozí nerovností budou všechny derivace u nulové a tedy u bude konstantně 0 ($u = 0 = \partial_t u$ na Ω_0).

Jestliže místo předchozí nerovnosti budeme mít rovnost, pak takové Q_0 je sjednocením kuželů $(1-\varepsilon)\cdot \|x-x_0\|+\frac{c_2}{\sqrt{c_1}}\cdot t-r\leqslant 0$, kde x_0 jsou postupně všechny body Ω_0 a r je takové, že $B_{\Omega}(x_0,r)\backslash\Omega_0$ je nulová množina (a vrchol kužele je nejvýše v T) a $1>\varepsilon>0$ je libovolně malé.

Řešení (Rigorózní důkaz)

Zvolme libovolný takový kužel Q_1 a označme $g := \min \left(0, (1-\varepsilon) \cdot \|x-x_0\| + \frac{c_2}{\sqrt{c_1}} \cdot t - r\right)$. g je zřejmě lipschitzovská funkce, která je pro každý vnitřní bod Q_1 nenulová, a jinde nulová, na Q_1 má časovou derivaci $\frac{c^2}{\sqrt{c_1}}$ a prostorové derivace splňující $\|\nabla g\| = (1-\varepsilon)$ (samozřejmě ve vnitřních bodech kužele, jinde jsou derivace 0).

Začneme zintegrováním rovnosti ze zadání podle času sw nezávislým na t (a použitím IBP pro Gelfandovu trojici):

$$\int_0^\tau \langle \partial_{tt} u, w \rangle + \int_0^T \int_{\Omega_0} \mathbb{A} \nabla u \cdot \nabla w = 0,$$
$$(\partial_t u(\tau), w)_2 - (\partial_t u(0), w)_2 + \int_0^T \int_{\Omega_0} \mathbb{A} \nabla u \cdot \nabla w = 0.$$

Nyní za w zvolíme $u(\tau) \cdot g(\tau)$, což víme, že je $W_0^{1,2}(\Omega)$ (neboť je to součin $W^{1,2}(\Omega)$ funkce a $g(\tau)$ je na $\partial\Omega$ nulová). Nyní je v 0 nulová buď u nebo g (tj. i w), tedy člen s mínus odpadá. První rozepíšeme z definice a derivace druhé mocniny. Třetí přes Fubiniovu větu prohodíme integrály, z linearity integrálu i $\mathbb A$ (a konstantnosti $\mathbb A$ v čase) dáme integrál dovnitř, nakonec ještě použijeme derivaci součinu.

$$\frac{1}{2} \int_{\Omega} (\partial_t u^2)(\tau) \cdot g(\tau) - 0 + \int_{\Omega} \mathbb{A} \left(\int_0^{\tau} \nabla u \right) \cdot (g \cdot \nabla u + u \cdot \nabla g).$$

Následně použijeme (první IBP, druhé z derivace součinu, derivace integrálu podle horní meze a symetrie A):

$$\int_{0}^{T} \int_{\Omega} (\partial_{t} u^{2})(\tau) \cdot g(\tau) = \int_{\Omega} (\partial_{t} u^{2})(T) \cdot \underbrace{g(T)}_{=0} - \int_{\Omega} \underbrace{(\partial_{t} u^{2})(0) \cdot g(0)}_{=0} - \int_{0}^{T} \int_{\Omega} u^{2}(\tau)(\partial_{t} g)(\tau),$$

$$\partial_{\tau} \left(\mathbb{A} \left(\int_{0}^{\tau} \nabla u \right) \cdot \left(\int_{0}^{\tau} \nabla u \right) \cdot g(\tau) \right) =$$

$$= 2 \cdot \mathbb{A} \left(\int_{0}^{\tau} \nabla u \right) \cdot (\nabla u(\tau)) \cdot g(\tau) + \mathbb{A} \left(\int_{0}^{\tau} \nabla u \right) \cdot \left(\int_{0}^{\tau} \nabla u \right) \cdot (\partial_{t} g)(\tau).$$

Zároveň využijeme, že g a derivace g jsou nulové na doplňku Q_1

$$\frac{1}{2} \int_{Q_1} u^2(\tau) (\partial_t g)(\tau) = \int_{Q_1} \mathbb{A} \left(\int_0^\tau \nabla u \right) \cdot \nabla g \cdot u + \frac{1}{2} \int_{\Omega} \int_0^T \partial_\tau \left(\mathbb{A} \left(\int_0^\tau \nabla u \right) \cdot \left(\int_0^\tau \nabla u \right) g(\tau) \right) - \\
- \frac{1}{2} \int_{Q_1} \mathbb{A} \left(\int_0^\tau \nabla u \right) \cdot \left(\int_0^\tau \nabla u \right) \cdot (\partial_t g)(\tau), \\
\int_{Q_1} \left(u^2(\tau) + \mathbb{A} \left(\int_0^\tau \nabla u \right) \cdot \left(\int_0^\tau \nabla u \right) \right) \cdot (\partial_t g)(\tau) = \\
= 2 \cdot \int_{Q_1} \mathbb{A} \left(\int_0^\tau \nabla u \right) \cdot \nabla g \cdot u + \int_{\Omega} \dots \cdot g(T) - \dots \int_0^0.$$

Řešení

Z Youngovy nerovnosti (a $z \leq |z|$)

$$\int_{Q_1} 2 \cdot \mathbb{A} \left(\sqrt[4]{c_1} \cdot \int_0^\tau \nabla u \right) \cdot \nabla g \cdot \frac{u}{\sqrt[4]{c_1}} \leqslant \int_{Q_1} c_2 \cdot \left(\sqrt{c_1} \cdot \left| \int_0^\tau \nabla u \right|^2 + \frac{|u|^2}{\sqrt{c_1}} \right) \cdot \|\nabla g\|, \text{ navíc } \right)$$

$$\int_{Q_1} \left(u^2(\tau) + \mathbb{A} \left(\int_0^\tau \nabla u \right) \cdot \left(\int_0^\tau \nabla u \right) \right) \cdot \frac{c_2}{\sqrt{c_1}} \geqslant \int_{Q_1} \left(\frac{u^2(\tau)}{\sqrt{c_1}} + \sqrt{c_1} \left| \int_0^\tau \nabla u \right|^2 \right) \cdot c_2$$

Tedy $\int_{Q_1}(\ldots)\leqslant \int_{Q_1}(\ldots)\cdot (1-\varepsilon)$. Tudíž $\ldots\leqslant 0$, ale zároveň víme, že $\ldots\geqslant 0$, tedy $\ldots=0$ a u=0 skoro všude na Q_1 .