Inverter-Based Integrator

Boris Murmann bmurmann@hawaii.edu

Comparator with Storage Latch

Next Steps

- Build integrator with inverter
 - Make sure circuit is practical (using VMID instead of GND, etc.)
 - Use reasonably large L for good initial gain
- Verify operation and see how much "effective gain" we can achieve
 - Compare response to idealized circuit without gain enhancement.
 Adjust VCVS gain until responses are equal → effective gain
 - Note that the improvement may be somewhat less than expected due to the inverter input capacitance
 - See Chae's paper for details

Inverter Gain in Our Technology

COMMANDS

```
.param temp=27
.param Wn=4u Wp={2*Wn} L=0.13u

.control
dc Vin 0.2 1 1m
alterparam L=1.5u
reset
dc Vin 0.2 1 1m
plot dc1.vout dc2.vout
plot deriv(dc1.vout) deriv(dc2.vout)
.endc
```

MODEL

.lib \$::SG13G2_MODELS/cornerMOSlv.lib mos_tt

Boris Murmann

/foss/designs/tb_inv_gain.sch

2024-02-07 21:43:41

Use channel lengths of at least 1.5 um to get gain close to 50

Inverter-Based Integrator

How Large Should the Inverter Be?

Circuit during p2:

$$r_{out} pprox rac{1}{\beta(g_{mn} + g_{mp})}$$

$$r_{out} \approx \frac{1}{\beta(g_{mn} + g_{mp})}$$
 $\beta \approx \frac{C_{int}}{C_{int} + C_s} = \frac{2}{2+1} = \frac{2}{3}$

Need to fit several $\tau = r_{out}C_L$ into half clock period

$$N\tau < \frac{T_s}{2}$$

Measure $g_{mn}+g_{mp}$

COMMANDS

.param temp=27 .param Wn=2.5u Wp={4*Wn} L=0.13u

.control
dc Vin 0.2 1 1m
alterparam L=1.5u
reset
dc Vin 0.2 1 1m
set color0 = white
*plot dc1.vout dc2.vout
*plot deriv(dc1.vout) deriv(dc2.vout)
plot i(Vout)
plot deriv(i(Vout))
.endc

MODEL

.lib \$::SG13G2_MODELS/cornerMOSlv.lib mos_tt

Boris Murmann

/foss/designs/tb_inv_gain.sch

00:10:18

2024-02-12

Result

Sizing Example

- The example design by Chae is clocked at 48 MHz
- One half clock cycle is 10.4 ns
- Allow settling for 7 time constants $\rightarrow \tau = 10.4 \text{ ns/7} = 1.5 \text{ ns}$
- If $C_L = 1pF$, we need $r_{out} < 1.5 \text{ ns/1 pF} = 1.5 \text{ k}\Omega$
- $g_{mn}+g_{mp} > 1/1.5 \text{ k}\Omega / \beta = 1 \text{ mS}$
- The transconductance of the simulated inverter is about 0.33 mS
- We need to make the inverter about three times bigger
 - -N = 7.5/1.5
 - P = 30/1.5
- We'll need to revisit this calculation once we know what C_L should be!