Data Frames

load(url('http://www.stat.berkeley.edu/users/nolan/data/afamily.rda'))

> family

	firstName	sex	age	height	weight	bmi	overWt
1	Tom	m	77	70	175	25.16239	TRUE
2	Maya	f	33	64	124	21.50106	FALSE
3	Joe	m	79	73	185	24.45884	FALSE
4	Robert	m	47	67	156	24.48414	FALSE
5	Sue	f	27	61	98	18.51492	FALSE
6	Liz	f	33	68	190	28.94981	TRUE
7	Jon	m	67	68	185	28.18797	TRUE
8	Sally	f	52	65	124	20.67783	FALSE
9	Tim	m	59	68	175	26.66430	TRUE
10	Tom	m	27	71	215	30.04911	TRUE
11	Ann	f	55	67	166	26.05364	TRUE
12	Dan	m	24	66	140	22.64384	FALSE
13	Art	m	46	66	150	24.26126	FALSE
14	Zoe	f	48	62	125	22.91060	FALSE

The Family

- We have all sorts of information about our family, height, weight, first name, gender, ...
- The data frame gives us a way to collect all of these variables (vectors) into one object.

> data.frame(firstName = fnames,
sex = fsex, age = fage, height = fheight, weight =
fweight, bmi = fbmi, overWt = foverWt)

Data Frame

- 1. Ordered container of vectors
- 2. Vectors must all be the same length
- 3. Vectors can be different types

Access a vector: dataframe\$vector

```
> class(family)
[1] "data.frame"
> length(family) - number of vectors in family
[1] 7
> dim(family) - number of rows and columns
[1] 14 7
> names(family) - names of the vectors in family
[1] "firstName" "gender" "age" "height"
[5] "weight" "bmi" "overWt"
```

> family\$gender

 $[1]\ m\ f\ m\ m\ f\ f\ m\ f\ m\ m\ f\ m$

Levels: m f

> mean(family\$height)

[1] 67.07143

> class(family\$height)

[1] "numeric"

Subsetting Data frames

```
> family[ 10:13, -(3:14)]
    firstName sex

10    Tom    m

11    Ann    f

12    Dan    m

13    Art    m
```

We subset rows and columns of data frames
We subset by **position**, **exclusion**, **logical**, **name**,
and **all**

family[, c("sex", "firstName")]

S	ex 11	rstname	
1	m	Tom	Subset rows by all and
2	f	Maya	Subsections by all alla
3	m	Joe	columns by name
4	m	Robert	columns by manie
5	f	Sue	
6	f	Liz	
7	m	Jon	What's different about the
8	f	Sally	Wilat 3 different about the
9 10	m	Tim Tom	return value?
11	m f	Ann	return value:
12	m	Dan	The order of the columns is
13	m	Art	The order of the columns is
14	f	Zoe	different than the order in
			the data frame. It matches
			the order of the names

dataframe[]

<pre>> family[family\$weight > 180, c("height", "bmi")]</pre>				nily["height"]	<pre>> family[, "height"]</pre>	
	hadabt b	<u>.</u>	h	eight	[1] 70 64 73 67 61 68 68 65 68 71 67 66 66 62	
	height b	mi	1	70		
3	73 24.458	Q Δ	2	64		
J	75 24.450	04	3	73	What's the difference between	
6	68 28.949	81	4	67	these two expressions?	
			5	61		
7	68 28.187	97	6	68	<pre>> class(family["height"])</pre>	
			/	68	[1] "data.frame"	
10	71 30.049	11	8	65		
			9 10	68 71	<pre>> class(family[, "height"])</pre>	
			11	67	[1] "numeric"	
We subset the rows using a logical vector We subset the columns by name		12	66	One returns a data frame and the		
		13	66	other returns a vector		
		14	62	other returns a vector		
		•	14	02		

Traffic on I-80

Reading Data Tables into R

PEMS Data Clearinghouse

Characteristics of the Traffic file

- First line has column names
- Lines are different lengths depending on the number of digits for a value
- Values are separated by commas (CSV)
- Time stamp has blanks and slashes and colons

Plain Text Data

```
'Timestamp','Lane 1 Occ','Lane 1 Flow',\
'Lane 2 Occ','Lane 2 Flow','Lane 3 Occ',\
'Lane 3 Flow'
3/14/2003 00:00:00,.01,14,.0186,27,.0137,17
3/14/2003 00:05:00,.0133,18,.025,39,.0187,25
3/14/2003 00:10:00,.0088,12,.018,30,.0095,11
3/14/2003 00:15:00,.0115,16,.0203,33,.0217,19
3/14/2003 00:20:00,.0069,8,.0178,25,.0123,13
3/14/2003 00:25:00,.0077,11,.0151,24,.0092,13
```

What do you notice about the organization of the data?

Reading data into R

- Many data sets are stored in text files.
- An easy way to read these into R is to use the read_delim() function in the readr package.
- There are several arguments; 2 are required
 - file name or URL
 - delim specify the separator of elements in a row

```
require(readr)
traffic = read_delim(
   "flow-occ.txt", delim = ",")
```

head(traffic)

'Timestamp'		'Lane 1 Occ'	'Lane 1	
Flow'				
1 3/14/2003	00:00:00	0.0100		14
2 3/14/2003	00:05:00	0.0133		18
3 3/14/2003	00:10:00	0.0088		12
4 3/14/2003	00:15:00	0.0115		16
5 3/14/2003	00:20:00	0.0069		8
6 3/14/2003	00:25:00	0.0077		11

Exploration

- 1. What is the shape of the distribution of flow in the right lane?
- 2. Do you think this distribution is the same for all lanes?
- 3. How does flow vary with the time of day?
- 4. What does the relationship between flow and occupancy look like?

readr() determines variable classes

sapply(traffic, class)

```
'Timestamp' 'Lane 1 Occ' 'Lane 1 Flow' "character" "numeric" "integer"
```

```
'Lane 2 Occ''Lane 2 Flow' ...
"numeric" "integer" W
```

What's interesting about these variables?

1. Shape of Distribution of Flow

- A. Symmetric
- B. Skew right
- C. Skew left

Bimodal, skew right

2. Distribution same for all lanes?

3. Flow in time

4. Relationship Flow and Occupancy?

Implications

- Lane matters distributions but location of modes and spread are different
- Relationship between Flow and Occupancy
 - Linear relationship is not adequate
 - Traffic breaks down
 - Lane matters for slope and break down
- Distinct patterns over time of day and day of week

Get the Data Ready for Analysis

- Change variable names to something easier to work with
- Change time from strings to dates
- Stack the flow from all 3 lanes into one variable
- Ditto for occupancy
- Create a new vector indicating the lane

Special Data Type for Dates

- POSIX a standard format developed by the IEEE
- Recognized by many R functions

names() on the left

Stack flow for the 3 lanes

```
flow1 flow2 flow3
  14
         27
               17
                     head(flow)
               25
  18
         39
                     [1] 14 18 12 16 8 11
               11
3 12
         30
         33
               19
 16
                     tail(flow)
5
  8
        25
               13
                     [1] 18 9 18 13 8 12
1738 11
         20
               13
1739
         12
                8
1740
         11
               12
     9
flow = stack(
  traffic[ , c("flow1", "flow2", "flow3")]
  )$values
```

Create a vector for lanes

```
lane flow occ time

1 left 14 0.0100 2003-03-14 00:00:00

2 left 18 0.0133 2003-03-14 00:05:00

3 left 12 0.0088 2003-03-14 00:10:00

4 left 16 0.0115 2003-03-14 00:15:00

5 left 8 0.0069 2003-03-14 00:20:00

6 left 11 0.0077 2003-03-14 00:25:00
...

lane flow occ time

5215 right 18 0.0199 2003-03-20 00:30:00

5216 right 9 0.0059 2003-03-20 00:35:00

5217 right 18 0.0234 2003-03-20 00:40:00

5218 right 13 0.0206 2003-03-20 00:45:00

5219 right 8 0.0063 2003-03-20 00:50:00
```

5220 right 12 0.0105 2003-03-20 00:55:00