Sensitivity Analysis and Revised Simplex

nesko25

1 - Mathematical Formulation

Given the data, the factory-planning problem model will look like this:

$$\begin{aligned} \max \ &19x_1 + 13x_2 + 12x_3 + 17x_4\\ s.t. \ &3x_1 + 2x_2 + x_3 + 2x_4 \leq 225\\ &x_1 + x_2 + x_3 + x_4 \leq 117\\ &4x_1 + 3x_2 + 3x_3 + 4x_4 \leq 420\\ &x_1, x_2, x_3, x_4 \geq 0 \end{aligned}$$

We can implement it in python and bring to the equational standard form to get the initial tableau:

```
import numpy as np
from fractions import Fraction
from util import tableau

n = 4
m = 3

# model in standard form
A = np.array([
       [3, 2, 1, 2],
       [1, 1, 1],
       [4, 3, 3, 4]
])
b = np.array([225, 117, 420])
c = np.array([19, 13, 12, 17])

# equational standard form
```

١		+	+		+	+	+	+	++
									b
İ	3	1 2	1	2	1	I 0	0	I 0	225
									117 420
į	19	13	12	17	0	0	0	1	++ 0
- 1		+	+		+	+	+	+	++

2 - Optimal Tableau

Using Original Simplex

Choose variable to bring to the basis

```
def ratio_test():
    enter = np.argmax(T[-1][:n + m])
    if T[-1][enter] <= 0:</pre>
        return [None, None] # optimal
    ratios = [
        T[j][-1] / T[j][enter]
        if T[j][enter] > 0
        else float('inf')
        for j in range(m)
    ]
    leave = np.argmin(ratios)
    if ratios[leave] == float('inf'):
        return [None, None] # unbounded
    return [enter, leave]
enter, leave = ratio_test()
print(f"pivot: ({enter}, {leave})")
```

pivot: (0, 0)

So according to the ratio_test x_1 should enter and x_5 should leave

```
def update_tableau(enter, leave):
    T[leave] /= T[leave] [enter]
    for j in range(m + 1):
        if j != leave:
            T[j] -= T[leave] * T[j] [enter]

update_tableau(enter, leave)
tableau(T)
```

- [+	+	+	-+		+-		 -		+		+-	+
İ	x1	x	2	x3	x4	1	x5	l	x6		x7	I	-z	I	ъ
			+	+	+	-+		+-		 -		+		+-	+
1	1	2/	3	1/3	2/3	-	1/3	l	0		0		0	١	75
	0	1/	3	2/3	1/3		-1/3		1		0		0		42
I				5/3						l	_	•		•	'
į	0	1/	3	17/3	13/3	١	-19/3	I	0		0		1		-1425
- 1				+	+	-+		+-				+		+-	+

And we repeat:

```
def pivot():
    enter, leave = ratio_test()
    update_tableau(enter, leave)
    tableau(T)

pivot()
```

ı		+	+	+	+	+	+	+	++
									b
İ		1/2	0	1/2	1/2	-1/2	0	I 0	++ 54 63
ĺ	0	-1/2	0	1/2	-1/2	-5/2	1	0	15 +
	0	-5/2	0	3/2	-7/2	-17/2	0	1	-1782 ++

pivot()

- 1		+	+	+	+	+	+		++
									b
•									++ 39
	0	1	1	l 0	0	4	l -1	0	48
			0						
İ	0	l -1	I 0	0	l -2	l –1	J –3	1	++ -1827
١		+	+	+	+	+	+	·	++

And we've reached optimality as there are no more positive reduced costs. The solution agrees with the statement in the exercise that in the optimal solution x_1 , x_3 and x_4 will be in basis.

Using Revised Simplex

```
B = [0, 2, 3] # final basis
N = [1, 4, 5, 6]
A_Binv = np.linalg.inv(A[:, B])
# A and c - basic
T[:m, B] = np.identity(m)
T[-1, B] = np.zeros(m)
# A and c - nonbasic
T[:m, N] = A_Binv @ A[:, N]
T[-1, N] = c[N] - c[B] @ T[:m, N]
# b and d
T[:m, -1] = A_Binv @ b
T[-1, -1] = -c[B] @ (T[:m, -1])
# make it pretty again
T = np.array(T, dtype = object)
for j in range(m + 1):
    for i in range(n + m + 2):
        T[j][i] = Fraction(round(T[j][i]))
tableau(T)
```

İ	x1	x2	x3	x4	l x5	x6	x7	-z	+ b +
 	1 0	1 1		0 0	l 1 l 0	2 4	-1	0 0	39
İ	0	-1	0	0	l –2	-1	-3	1	+ -1827 +

We achieved the exact same tableau with non-positive reduced cost therefore we found the optimal solution - again.

3 - Sensitivity Analysis

TODO:

- 3) at least 1
- 4) 2, 1, 3
- 5) yes, bc all dual vars are non-zero (no slack)
- 6) there is slack in dual constraint