ชื่อหัวข้อ License Plate Recognition โปรแกรมอ่านป้ายทะเบียนรถยนต์

สมาชิก

นายคุณากร กัลยาวุฒิพงศ์ รหัสนิสิต 6621600143นางสาวอัสวาณี อารง รหัสนิสิต 6621604700

วัตถุประสงค์

- 1. เรียนรู้การพัฒนาโปรแกรมเพื่อการตรวจจับป้ายทะเบียนรถยนต์
- 2. เป็นการฝึกออกแบบกระบวนการแปลงภาพเป็นข้อความตัวอักษร
- 3. เป็นการฝึกการเขียนโปรแกรมด้วยภาษา Python

อธิบายขั้นตอนวิธีการดำเนินงานโดยละเอียด

- 1. แปลงภาพเป็น binary ด้วยฟังก์ชั่น binarize_image
 - แปลงภาพเป็นสีเทา ใช้ grayscale_image = image.convert('L') (L หมายถึงโหมด Grayscale)
 - เบลอภาพด้วย Gaussian Blur ทำให้ภาพเนียนขึ้น ลด noise ที่ภาพ Gaussian Blur blurred_image = cv2.GaussianBlur(gray_array, (5, 5), 0)
 - แปลงเป็นภาพไบนารี binary_image = Image.fromarray(binary_array.astype(np.uint8) * 255) โดยการคูณ 255 จะมีแค่ภาพสีขาวดำเท่านั้นในภาพ
- 2. ทำ vertical_projection ด้วยฟังก์ชั่น vertical_projection
 - แปลงภาพไบนารีเป็น Array ทำให้ไปคำนวณได้ง่ายขึ้นและเร็วด้วย numpy img_array = np.array(binary_image)
 - คำนวณผลรวมของพิกเซลสีดำในแต่ละคอลัมน์ใช้เงื่อนไข img_array == 0 เอาสีดำ และรวมค่าของ แต่ละคอลัมน์ใช้ np.sum(..., axis=0) จะได้ array ที่เก็บ pixel สีดำในแต่ละคอลัมน์ของภาพ
 - ผลลัพธ์ของ Vertical Projection เป็น Array แสดงจำนวน pixel สีดำในแต่ละ คอลัมน์ คอลัมน์ที่มีค่า พิกเซลสีดำเป็น 0 อาจจะเป็นช่องว่างระหว่างตัวอักษร ข้อมูลนี้สามารถนำไปใช้ในการบอกขอบเขตตัว อักษรในภาพได้
- 3. แยกตัวอักษรแต่ละตัวจากการทำ vertical projection ด้วยฟังก์ชั่น segment characters modified
 - function segment_characters_modified สร้าง list เพื่อเก็บตัวอักษร
 - เดินดูทุกคอลัมน์ เริ่มต้นให้เป็น false ถ้าเจอ pixel สีดำ ถือว่าเจอขอบตัวอักษรแล้ว ให้เก็บไว้เป็น start_index ให้เป็น true เพื่อบอกว่าอยู่ในช่วงตัวอักษรแล้ว ถ้าค่า pixel ต่ำกว่าค่า T ให้เป็น end_index ไปเป็น false แล้วนำ start กับ end ไปเก็บไว้ใน list

- 4. ตัดตัวอักษรออกมาทีละตัว ด้วยช้ฟังก์ชั่น extract_characters โดยฟังก์ชั่นมีการทำงานดังนี้ binary image คือ ภาพขาว-ดำ segments คือ ตำแหน่งเริ่มต้นและสิ้นสุดของแต่ละตัวอักษร
 - ตัดแยกตัวอักษรแต่ละตัวโดย การวนลูปผ่านแต่ละ segment
 - ตัดเฉพาะส่วนของภาพตามความกว้างที่กำหนด ครอบตัดให้เหลือแค่ pixel ที่มีสีดำอยู่ return เป็นตัว อักษรแต่ละตัว
- 5. สร้าง pattern ตัวอักษร ด้วยฟังก์ชั่น get_character_pattern และ load_character_patterns get character pattern คือ การสร้าง pattern ของตัวอักษร โดยฟังก์ชั่นมีการทำงานดังนี้
 - แปลงภาพเป็น grayscale ปรับขนาดให้เท่ากัน และ แปลงเป็นภาพขาว-ดำ
 - คำนวณ vertical projection รวมค่าพิกเซลตามแนวตั้งของภาพ เพราะทำการครปตัดเฉพาะส่วนที่มีสี ดำแล้ว พร้อม normalize ค่า projection

load_character_patterns คือ สร้างฐานข้อมูลรูปแบบของตัวอักษรแต่ละตัว

- กำหนด dictionary ของตัวอักษรและ path ของไฟล์รูปภาพ สร้าง pattern สำหรับทุกตัวอักษร วน ลูปผ่านทุกตัวอักษร ใช้ get_character_pattern เพื่อสร้าง pattern
- 6. เทียบตัวอักษร ด้วยฟังก์ชั่น recognize_characters
 - วนลูปผ่านแต่ละ segment ตัดเอาเฉพาะส่วน projection ของตัวอักษรนั้นๆ normalize ค่าให้อยู่ใน ช่วง 0-1
 - เปรียบเทียบ projection กับ pattern ของทุกตัวอักษร คำนวณค่าความแตกต่าง (ยิ่งน้อยยิ่งเหมือน) np.abs(normalized_projection pattern)
 - ตรวจสอบความเหมือน ถ้าค่าความแตกต่างน้อยกว่า threshold (0.5) ถือว่าเป็นตัวอักษรที่ถูกต้อง ส่ง คืนรายการของตัวอักษรที่เหมือนที่สุด