Introductory Real Analyis Exercises

A.Kolmogorov & S.Fomin

Max Suica

Chaper 1.1 Exercises

Problem 1

Prove that if $A \cup B = A$ and $A \cap B = A$ then A = B.

To show this we observe that $A \cup B = A$ implies $B \subset A$, while $A \cap B = A$ implies $A \subset B$. But then we have the definition of equality of two sets and A = B.

Problem 2

Show that in general $(A - B) \cup B \neq B$.

Suppose that A is not a subset of B. Then (A-B) contains at least one element contained in A alone. Thus the expression $(A-B) \cup B \neq B$ is valid in the general case.

Problem 3

Let $A = \{2, 4, ..., 2n, ...\}$ and $B = \{3, 6, ..., 3n, ...\}$. Find $A \cap B$ and A - B.

$$A \cap B = \{ a \in \mathbb{N} \mid (2 \mid a \land 3 \mid a) \} = \{ 6, 12, ..., 6n, ... \}$$
$$A - B = \{ a \in \mathbb{N} \mid (2 \mid a \land 3 \nmid a) \} = \{ 2, 4, 8, 10, ..., 6n - 4, 6n - 2 \}$$

Problem 4

Prove that

a) a)
$$(A - B) \cap C = (A \cap C) - (B \cap C)$$
)

b)
$$A \triangle B = (A \cup B) - (A \cap B)$$

a) We use the notation AB to denote intersections and A+B to denote unions, and A^c to denote the complement of A relative to some set Ω which is a superset of the sets in our discourse. Then the difference between two sets may be written as an intersection, $A-B=AB^c$. Then

$$(A-B) \cap C = AB^{c}C = AB^{c}C + \emptyset = ACB^{c} + ACC^{c} = AC(B^{c} + C^{c}) = AC(BC)^{c} = (A \cap C) - (B \cap C)$$

b) To show this we state the definition $A \triangle B = AB^c + A^cB$. Then

$$(A \cup B) - (A \cap B) = (A + B)(AB)^c = (A + B)(A^c + B^c) = AA^c + AB^c + A^cB + BB^c = AB^c + A^cB = A \triangle B$$

Problem 5

Prove that

$$\bigcup_{\alpha} A_{\alpha} - \bigcup_{\alpha} B_{\alpha} \subset \bigcup_{\alpha} (A_{\alpha} - B_{\alpha})$$

First we rewrite the problem as

$$\left(\bigcup_{\alpha} A_{\alpha}\right) \cap \left(\bigcup_{\alpha} B_{\alpha}\right)^{c} \subset \bigcup_{\alpha} \left(A_{\alpha} \cap B_{\alpha}^{c}\right)$$

Through deMorgan's law and the distributive property we see that

$$\left(\bigcup_{\alpha} A_{\alpha}\right) \cap \left(\bigcup_{\alpha} B_{\alpha}\right)^{c} = \bigcup_{\alpha} \left(A_{\alpha} \cap \bigcap_{\alpha} B_{\alpha}^{c}\right).$$

Here it's clear that $\bigcap_{\alpha} B_{\alpha}^c \subset B_{\alpha}^c$ for each, α . But then $A_{\alpha} \cap (\bigcap_{\alpha} B_{\alpha}^c)$ is a subset of $A_{\alpha} \cap B_{\alpha}^c$ for each α , proving the formula.

Problem 6

Let A_n be the set of all positive integers divisible by n. Find the sets

- a) $\bigcup_{n=2}^{\infty} A_n$
- b) $\bigcap_{n=2}^{\infty} A_n.$
- a) Our set here is the set of positive integers which are divisible by any integer $n \geq 2$, which is $\mathbb{N} \setminus \{1\}$.
- b) Here the set contains positive integers which must be divisible by every integer $n \geq 2$. Such integers would be divisible by an infinite number of primes, which is absurd, so the answer is \emptyset .

Problem 7

Find the sets

a)
$$\bigcup_{n=1}^{\infty} \left[a + \frac{1}{n}, b - \frac{1}{n} \right]$$

b)
$$\bigcap_{n=1}^{\infty} \left(a - \frac{1}{n}, b + \frac{1}{n} \right)$$

a) Since $\left[a+\frac{1}{n},b-\frac{1}{n}\right]\subset \left[a+\frac{1}{m},b-\frac{1}{m}\right]$ if $n\leq m$, it suffices to consider

$$\bigcup_{n=1}^{\infty} \left[a + \frac{1}{n}, b - \frac{1}{n} \right] = \lim_{n \to \infty} \left[a + \frac{1}{n}, b - \frac{1}{n} \right] = (a, b)$$

b) Similarly, here $\left(a-\frac{1}{n},b+\frac{1}{n}\right)\supset \left(a-\frac{1}{m},b+\frac{1}{m}\right)$ if $n\leq m,$ so

$$\bigcap_{n=1}^{\infty} \left(a - \frac{1}{n}, b + \frac{1}{n} \right) = \lim_{n \to \infty} \left(a - \frac{1}{n}, b + \frac{1}{n} \right) = [a, b]$$

Problem 8

Let A_{α} be the set of points lying on the curve

$$y = \frac{1}{x^{\alpha}} \quad (0 < x < \infty).$$

What is

$$\bigcap_{\alpha>1} A_{\alpha} ?$$

We consider any two curves A_{α} and A_{β} , where, $\alpha \neq \beta$, and $\alpha, \beta \geq 1$. A point $(a, a^{-\alpha}) \in A_{\alpha}$ is a member of A_{β} only if $a^{-\alpha} = a^{-\beta}$. But then we must have a = 1, and so our result is

$$\bigcap_{\alpha \ge 1} A_{\alpha} = (1, 1).$$

Problem 9

Let $y = f(x) = \langle x \rangle$ for all real x, where $\langle x \rangle$ is the fractional part of x. Prove that every closed interval of length 1 has the same image under f. What is this image? If f one-to-one? What is the pre-image of the interval $\frac{1}{4} \leq y \leq \frac{3}{4}$? Partition the real line into classes of points with the same image.

We choose an interval I = [a, a+1] and partition I into two intervals, $I = L \cup R$, where

$$L = [a, a + 1 - \langle a \rangle)$$

$$R = [a+1 - \langle a \rangle, a+1].$$

We observe that $f(L) = [\langle a \rangle, 1)$ and $f(R) = [0, \langle a \rangle]$. In other words the image of the unit interval is

$$f(I) = f(L \cup R) = f(L) \cup f(R) = [0, 1).$$

Since every unit interval maps to [0,1), $f:\mathbb{R}\to[0,1)$ is not one-to-one. We have that

$$f^{-1}\left[\frac{1}{4}, \frac{3}{4}\right] = \bigcup_{n \in \mathbb{Z}} \left[\frac{1}{4}, \frac{3}{4}\right].$$

In general we can partition the real line into a family of sets A_{α} , where $\alpha \in [0,1)$, such that

$$A_{\alpha} = \{ a \mid a = \alpha + n, \ n \in \mathbb{Z} \}$$

Problem 10

Max Suica

Given a set M, let \mathcal{R} be the set of all ordered pairs of the form (a, a) where $a \in M$, and let aRb if and only if $(a, b) \in \mathcal{R}$. Interpret the relation R.

An interpretation of R is simple, since it is just the equality relation restricted to the elements of the set M. To see this we note that $(a, b) \in \mathcal{R}$ if and only if a = b.

Problem 11

Give and example of a binary relation which is

- a) Reflexive and symmetric, but not transitive;
- b) Reflexive, but neither symmetric nor transitive;
- c) Symmetric, but neither reflexive nor transitive;
- d) Transitive, but neither reflexive nor symmetric.

a) $aRb \Leftrightarrow \gcd(\mathbf{a}, \mathbf{b}) \neq 1$

R is reflexive; $gcd(a, a) = a \neq 1$. The rule gdc(a, b) = gdc(b, a) implies that we have symmetry. Finally, for the transitive property we see that for example 20R6 and 6R21 together do not imply 20R21.

b) $aRb \Leftrightarrow a \le b \lor a = 0 \lor b = 0$

R is reflexive and non symmetric by definition. R is not transitive since we have that aR0 and 0Rb for any a > b > 0, while aRb does not hold.

c) $aRb \Leftrightarrow \gcd(\mathbf{a}, \mathbf{b}) = 1$

This relation is the complement of a) so it is not reflexive, while preserving symmetry. Consider numbers a, b such that gcd(a, b) = 1. Since aRb we have bRa, but aRa is false, so R is not transitive.

d) The relation is > on the real numbers. It's only transitive and neither reflexive nor symmetric.