Mathematical Foundations of Computer Science

CS 499, Shanghai Jiaotong University, Dominik Scheder

- Homework assignment published on Monday, 2018-03-05.
- Work on it and submit a first solution or questions by Sunday, 2018-03-11, 12:00 by email to me and the TAs.
- You will receive feedback by Wednesday, 2018-03-14.
- Submit your final solution by Sunday, 2018-03-18 to me and the TAs.

2 Partial Orderings

2.1 Equivalence Relations as a Partial Ordering

An equivalence relation $R \subseteq V \times V$ is basically the same as a partition of V. A partition of V is a set $\{V_1, \ldots, V_k\}$ where (1) $V_1 \cup \cdots \cup V_k = V$ and (2) the V_i are pairwise disjoint, i.e., $V_i \cap V_j = \emptyset$ for $1 \le i < j \le k$. For example, $\{\{1\}, \{2,3\}, \{4\}\}$ is a partition of $\{1,2,3,4\}$ but $\{\{1\}, \{2,3\}, \{1,4\}\}$ is not.

Exercise 2.1. Let E_4 be the set of all equivalence relations on $\{1, 2, 3, 4\}$. Note that E_4 is ordered by set inclusion, i.e.,

$$(E_4, \{(R_1, R_2) \in E_4 \times E_4 \mid R_1 \subseteq R_2\})$$

is a partial ordering.

- 1. Draw the Hasse diagram of this partial ordering in a nice way.
- 2. What is the size of the largest chain?
- 3. What is the size of the largest antichain?

2.2 Chains and Antichains

Define the partially ordered set (\mathbb{N}_0^n, \leq) as follows: $x \leq y$ if $x_i \leq y_i$ for all $1 \leq i \leq n$. For example, $(2,5,4) \leq (2,6,6)$ but $(2,5,4) \not\leq (3,1,1)$.

Exercise 2.2. Consider the infinite partially ordered set (\mathbb{N}_0^n, \leq) .

- 1. Which elements are minimal? Which are maximal?
- 2. Is there a minimum? A maximum?
- 3. Does it have an infinite chain?
- 4. Does it have arbitrarily large antichains? That is, can you find an antichain A of size |A| = k for every $k \in \mathbb{N}$?

*Exercise 2.3. Does every infinite subset $S \subseteq \mathbb{N}_0^n$ contain an infinite chain?

Exercise 2.4. Show that (\mathbb{N}_0^n, \leq) has no infinite antichain. **Hint.** Use the previous exercise.

Consider the induced ordering on $\{0,1\}^n$. That is, for $x,y \in \{0,1\}^n$ we have $x \leq y$ if $x_i \leq y_i$ for every coordinate $i \in [n]$.

Exercise 2.5. Draw the Hasse diagrams of $(\{0,1\}^n, \leq)$ for n=2,3.

Exercise 2.6. Determine the maximum, minimum, maximal, and minimal elements of $\{0,1\}^n$.

Exercise 2.7. What is the longest chain of $\{0,1\}^n$?

**Exercise 2.8. What is the largest antichain of $\{0,1\}^n$?

2.3 Infinite Sets

In the lecture (and the lecture notes) we have showed that $\mathbb{N} \times \mathbb{N} \cong \mathbb{N}$, i.e., there is a bijection $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. From this, and by induction, it follows quite easily that $\mathbb{N}^k \cong \mathbb{N}$ for every k.

Exercise 2.9. Consider \mathbb{N}^* , the set of all finite sequences of natural numbers, that is, $\mathbb{N}^* = \{\epsilon\} \cup \mathbb{N} \cup \mathbb{N}^2 \cup \mathbb{N}^3 \cup \dots$ Here, ϵ is the empty sequence. Show that $\mathbb{N} \cong \mathbb{N}^*$ by defining a bijection $\mathbb{N} \to \mathbb{N}^*$.

Exercise 2.10. Show that $R \cong R \times R$. **Hint:** Use the fact that $R \cong \{0,1\}^{\mathbb{N}}$ and thus show that $\{0,1\}^{\mathbb{N}} \cong \{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}}$.

Proof. We can define f:

$$f: \{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}} \to \{0,1\}^{\mathbb{N}}$$
$$((a_{11}, a_{12}, a_{13}, \dots), (a_{21}, a_{22}, a_{23}, \dots)) \mapsto (a_{11}, a_{21}, a_{12}, a_{22}, \dots)$$

For any element $\mathbf{a} \in \{0,1\}^{\mathbb{N}}$, \mathbf{a} can be representated by a combination of unique ordered pair $(\mathbf{a_1}, \mathbf{a_2})$ where $\mathbf{a_1}, \mathbf{a_2} \in \{0,1\}^{\mathbb{N}}$. In this way, f is bijective. Then we can get $R \cong \{0,1\}^{\mathbb{N}} \cong \{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}} \cong R \times R$.

Exercise 2.11. Consider $\mathbb{R}^{\mathbb{N}}$, the set of all infinite sequences (r_1, r_2, r_3, \dots) of real numbers. Show that $\mathbb{R} \cong \mathbb{R}^{\mathbb{N}}$. **Hint:** Again, use the fact that $\mathbb{R} \cong \{0,1\}^{\mathbb{N}}$.

$$\square$$

Next, let us view $\{0,1\}^{\mathbb{N}}$ as a partial ordering: given two elements $\mathbf{a}, \mathbf{b} \in \{0,1\}^{\mathbb{N}}$, that is, sequences $\mathbf{a} = (a_1, a_2, \dots)$ and $\mathbf{b} = (b_1, b_2, \dots)$, we define $\mathbf{a} \leq \mathbf{b}$ if $a_i \leq b_i$ for all $i \in \mathbb{N}$. Clearly, $(0,0,\dots)$ is the minimum element in this ordering and $(1,1,\dots)$ the maximum.

Exercise 2.12. Give a countably infinite chain in $\{0,1\}^{\mathbb{N}}$. Remember that a set A is countably infinite if $A \cong \mathbb{N}$.

Solution. For set $A \subseteq \{0,1\}^{\mathbb{N}}$, let $A = \{\mathbf{a_i} \in \{0,1\}^{\mathbb{N}} | \text{ if } k < i, a_k = 1, else, a_k = 0\}$, any two elements in A are comparable We can define a function f:

$$f: N \to A, x \mapsto \mathbf{a_x}$$

which is obviously bijective. In this way, A is a countably infinite chain. \blacksquare

Exercise 2.13. Find a countably infinite antichain in $\{0,1\}^{\mathbb{N}}$.

Solution. For set $A \subseteq \{0,1\}^{\mathbb{N}}$, let $A = \{\mathbf{a_i} \in \{0,1\}^{\mathbb{N}} | a_i = 1 \text{ and other bits is } 0\}$. Any two elements in A is uncomparable since each has one bit larger than the other.

Also, we can define a function f:

$$f: N \to A, x \mapsto \mathbf{a_x}$$

which is bijective.

In this scense, A is a countably infinite antichain in $\{0,1\}^{\mathbb{N}}$.

Exercise 2.14. Find an uncountable antichain in $\{0,1\}^{\mathbb{N}}$. That is, an antichain A with $A \cong \mathbb{R}$.

Solution. Define a function f:

$$f: \{0,1\}^{\mathbb{N}} \to A, (a_1, a_2, a_3 \dots) \mapsto (a_1, 1 - a_1, a_2, 1 - a_2, \dots)$$

f is a bijective function, and $\{0,1\}^{\mathbb{N}} \cong A$

For $\mathbf{a}, \mathbf{b} \in A$, if $\mathbf{a} \neq \mathbf{b}$ and \mathbf{a}, \mathbf{b} are comparable, let $\mathbf{a} < \mathbf{b}$.

There must exist $a_i < b_i$, but $1 - a_i > 1 - b_i$, so **a** and **b** are uncomparable. Then we get a contradiction.

In this way, A is a uncountable antichain.

**Exercise 2.15. Find an uncountable chain in $\{0,1\}^{\mathbb{N}}$. That is, an antichain A with $A \cong \mathbb{R}$.