Claims

- 1. (Currently Amended) A thermoelectric power source comprising:
- a flexible substrate having an upper surface; and
- a thermoelectric couple comprising:
- (a) a sputter deposited thin film p-type thermoelement positioned on the upper surface of the flexible substrate;
- (b) a sputter deposited thin film n-type thermoelement positioned on the upper surface of the flexible substrate adjacent the p-type thermoelement; and
- (c) an electrically conductive member positioned on the flexible substrate, and electrically connecting the first end of the p-type thermoelement with the second end of the n-type thermoelement, wherein the p-type or the n-type thermoelements comprise Bi_xTe_y , Sb_xTe_y , or Bi_xSe_y wherein x is about 2 and y is about 3.
- 2. (Original) The thermoelectric power source of claim 1 wherein the p-type or the n-type thermoelements have L/A ratios greater than about 20 cm⁻¹.
- 3. (Original) The thermoelectric power source of claim 1 wherein the p-type or the n-type thermoelements have L/A ratios greater than about 100 cm⁻¹.
 - 4. (Canceled)
- 5. (Currently Amended) The thermoelectric power source of claim 1 wherein the p-type or the n-type thermoelements $\underline{\text{comprise Bi}_x\text{Te}_y}$ are selected from the group $\underline{\text{Bi}_x\text{Te}_y}$, $\underline{\text{Sb}_x\text{Te}_y}$, and $\underline{\text{Bi}_x\text{Se}_y}$ -alloys where x is about 2 and y is about 3.
- 6. (Currently Amended) The thermoelectric power source of claim 1 further comprising at least about 50 thermoelectric couples, wherein the thermoelectric power source has a power output of at least about 1 μ W with a voltage of at least about 0.25 volt.

Page 2 of 11

- 7. (Original) The thermoelectric power source of claim 6 wherein the p-type or the n-type thermoelements are at least about 1 mm in length and at least about 0.1 mm in width.
- 8. (Original) The thermoelectric power source of claim 6 wherein the p-type or the n-type thermoelements are at least about 20 angstroms in thickness.
- 9. (Original) The thermoelectric power source of claim 1 further comprising at least about 1000 thermoelectric couples, wherein the thermoelectric power source has a power output of about 1W with a voltage of at least about 1 volt.
- 10. (Currently Amended) The thermoelectric power source of claim 1 wherein the p-type thermoelements each have a first width, the n-type thermoelements each have a second width, and the first width is different from the second width. have different widths as compared to the n-type thermoelements.
- 11. (Original) The thermoelectric power source of claim 1 wherein two or more p-type thermoelements are positioned and electrically connected in parallel with one another and the parallel positioned p-type thermoelements are electrically connected in series to n-type thermoelements.
- 12. (Currently Amended) The thermoelectric power source of claim 1 further including multiple thermoelectric couples electrically connected in series on the upper surface of the flexible substrate and wherein the flexible substrate is in a coil configuration.
- 13. (Original) The thermoelectric power source of claim 1 wherein the volume of the thermoelectric power source is less than about 10 cm^3 and has a power output of from about 1 μ W to about 1 W.
- 14. (Original) The thermoelectric power source of claim 1 wherein the volume of the thermoelectric power source is less than about 10 cm³ and provides voltages of greater than about 1 volt.

Page 3 of 11

- 15. (Original) The thermoelectric power source of claim 14 wherein the thermoelectric power source produces power at temperature differences of about 20°C or less.
- 16. (Original) The thermoelectric power source of claim 1 wherein two or more n-type thermoelements are positioned and electrically connected in parallel with one another and the parallel positioned n-type thermoelements are electrically connected in series to p-type thermoelements.
- 17. (Original) The thermoelectric power source of claim 1 wherein the n-type thermoelements are substantially free of selenium.
- 18. (Original) The thermoelectric power source of claim 1 wherein the flexible substrate is a polyimide.
 - 19 22. (Canceled)
 - 23. (Currently Amended) A thermoelectric power source comprising:
 - a flexible substrate having an upper surface;

multiple thermocouples electrically connected to one another on the upper surface of the flexible substrate, the thermocouples comprising:

sputter deposited thin film p-type thermoelements;

sputter deposited thin film n-type thermoelements alternatingly positioned adjacent the p-type thermoelements; and

wherein the thermoelectric power source-has a volume of less than about 10 cm³ and has a power output of from about 1 μ W to about 1 W; and

wherein the p-type thermoelements or the n-type thermoelements comprise a Bi_xTe_y , Sb_xTe_y , or Bi_xSe_y alloy where x is about 2 and y is about 3.

24. (Currently Amended) The thermoelectric device of claim 23 wherein said multiple thermocouples electrically connected to one another <u>are in series or</u> in series-parallel.

Page 4 of 11

25. (Currently Amended) The thermoelectric power source of claim 23 wherein the p-type thermoelements have L/A ratios greater than about 20 cm⁻¹ have different widths as compared to the n-type thermoelements.

26-36. (Canceled)

- 37. (New) A thermoelectric power source comprising:
- a flexible substrate having an upper surface; and
- a thermoelectric couple comprising:
- (a) a sputter deposited thin film p-type thermoelement positioned on the upper surface of the flexible substrate;
- (b) a sputter deposited thin film n-type thermoelement positioned on the upper surface of the flexible substrate adjacent the p-type thermoelement; and
- (c) an electrically conductive member positioned on the flexible substrate, and electrically connecting the first end of the p-type thermoelement with the second end of the n-type thermoelement, wherein the p-type or the n-type thermoelements comprise Bi_xTe_y where x is about 2 and y is about 3; and
 - (d) wherein the flexible substrate is in a coil configuration.
- 38. (New) The thermoelectric power source of claim 37 wherein the p-type thermoelements or the n-type thermoelements are at least about 1 mm in length and at least about 0.1 mm in width.
- 39. (New) The thermoelectric power source of claim 37 wherein the volume of the thermoelectric power source is less than about 10 cm^3 and has a power output of from about $1\mu\text{W}$ to about 1W.