Elimination of Left Recursion (LR)

Course Name: Compiler Design

Course Code: CSE331

Level:3, Term:3

Department of Computer Science and Engineering

Daffodil International University

Left and Right Recursive Grammars

In a context-free grammar G, if there is a production in the form $X \rightarrow Xa$ where X is a non-terminal and 'a' is a string of terminals, it is called a left recursive production. The grammar having a left recursive production is called a left recursive grammar.

And if in a context-free grammar G, if there is a production is in the form $X \rightarrow aX$ where X is a non-terminal and 'a' is a string of terminals, it is called a right recursive production. The grammar having a right recursive production is called a right recursive grammar.

Left Recursion (LR)

$$A \longrightarrow A \alpha \mid \beta$$

$$A \longrightarrow \alpha A \mid \beta$$

Left Recursion (LR)

$$A \longrightarrow A \alpha \mid \beta$$

$$A \longrightarrow \alpha A \mid \beta$$

$$A \longrightarrow \alpha A \mid \beta$$

Left Recursion (LR)

Left Recursion (LR) $A \longrightarrow A \alpha \mid \beta$

$$A \longrightarrow A \alpha \mid \beta$$

$$A \longrightarrow \beta A'$$

$$A' \longrightarrow \epsilon \mid \alpha A'$$

$$E \longrightarrow TE'$$

 $E' \longrightarrow \epsilon | + TE'$

$$A' \longrightarrow \epsilon \mid \alpha A'$$

Solve:
$$E \longrightarrow T E'$$
$$E' \longrightarrow \epsilon \mid + T E'$$

Exercise

Exercise 1:
$$T \rightarrow T * F \mid F$$

Exercise 2:
$$F \rightarrow (E) \mid id$$

Exercise 3:
$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid id$$

Elimination of Left Factoring (LF)

$$A \longrightarrow A \alpha \mid \beta$$
 $A \longrightarrow \alpha A \mid \alpha \beta$

As we can derive both $\alpha A \& \alpha \beta$ from the grammar, both have same prefix (α) , so, the grammar is non-deterministic.

As we can derive both $\alpha A \& \alpha \beta$ from the grammar, both have same prefix (α) , so, the grammar is non-deterministic.

To make this grammar deterministic, we can apply left factoring.

Deterministic Grammar

$$A \longrightarrow A \alpha \mid \beta$$

Non-Deterministic Grammar

$$\begin{array}{c|c} A \longrightarrow \alpha & A & \alpha & \beta \\ \hline & A \longrightarrow \alpha & A \\ & A \longrightarrow \alpha & \beta \end{array}$$

If I want to have " $\alpha \beta$ "

$$A \rightarrow \alpha \quad A'$$

$$A' \longrightarrow A \mid \beta$$

Exercise:
$$S \rightarrow i E t S$$

 $|i E t S e S|$
 $|a|$
 $E \rightarrow b$

Solution:
$$S \longrightarrow i E t S$$

 $| i E t S e S$
 $| a$
 $E \longrightarrow b$

$$A \longrightarrow \alpha A \mid \alpha \beta$$

$$A \longrightarrow \alpha A'$$

$$A' \longrightarrow A \mid \beta$$

Grammar is converted to deterministic.

Exercises for practice:

$$\begin{array}{ccc}
A \longrightarrow aAB \mid aA \\
B \longrightarrow bB \mid b
\end{array}$$

2
$$E \rightarrow T + E \mid T \in$$

THANK YOU