

Общероссийский математический портал

А. Ю. Эвнин, Задачи по математическому анализу на студенческих олимпиадах, $Mamem.\ oбp.,\ 2020,\$ выпуск $2(94),\ 55-76$

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 213.87.161.170

6 июля 2022 г., 18:44:52

Задачи по математическому анализу на студенческих олимпиадах

А. Ю. Эвнин

В статье рассматриваются задачи по математическому анализу, предлагавшиеся в последние годы на различных студенческих олимпиадах, а также на вступительном экзамене в Школу анализа данных. Некоторые задачи — подготовительного характера.

Эта подборка задач продолжает серию аналогичных публикаций [3–5] в журнале «Математическое образование».

Условия задач

Последовательности. Пределы. Непрерывность

1. Последовательность (a_n) задаётся рекуррентным соотношением

$$a_{k+2} = \frac{a_{k+1} + 1}{a_k}$$

с начальными условиями $a_1 = 2$, $a_2 = 2013$. Найдите a_{2013} .

2. Найдите формулу общего члена последовательности, заданной соотношениями

$$a_0 = 1$$
, $a_{n+1} = \frac{a_n}{1 + na_n}$ $(n \in \mathbb{N}_0)$.

3. Постройте график функции

$$f(x) = \lim_{n \to +\infty} \sqrt[n]{1 + x^n + (x^2/2)^n}, \quad x \geqslant 0.$$

- **4.** Решите уравнение $\lim_{n\to\infty}\cos(nx)=1$.
- **5.** Вычислите $\lim_{n\to+\infty} \left(\frac{\sqrt[n]{2}+\sqrt[n]{50}}{2}\right)^n$.
- **6.** Последовательность (a_n) задана так:

$$a_0 = 2011, \quad \forall n \in \mathbb{N} \quad a_n = a_{n-1} \cdot \left(\frac{n}{n+1}\right)^2 + \frac{1}{(n+1)^2}.$$

Сходится ли эта последовательность? Если сходится, то найдите её предел.

- 7. Пусть $x_1 = a, x_2 = b, x_{n+2} = \frac{1}{2}(x_n + x_{n+1}) \ (n \in \mathbb{N})$. Найдите $\lim_{n \to \infty} x_n$.
- **8.** Пусть $a_1=-\frac{1}{2},\ a_{n+1}=\frac{a_n^2(a_n-3)}{4}\ (n\in\mathbb{N}).$ Найдите $\lim_{n\to\infty}a_n.$
- **9.** Пусть $a_0=0,\ a_1=1,\ a_{n+1}=\frac{a_n+na_{n-1}}{n+1}\ (n\in\mathbb{N}).$ Найдите $\lim_{n\to\infty}a_n.$

<u>56</u> А. Ю. Эвнин

- 10. Найдите $\lim_{n\to\infty}\left(\sum\limits_{k=1}^n\frac{1}{C_n^k}\right)^n$.
- **11.** Найдите предел последовательности (x_n) , заданной рекуррентно:

$$x_0 = 10$$
, $x_{n+1} = x_n + \sin x_n$ $n \in \mathbb{N}$.

- **12.** Пусть a_n произведение всех чисел в n-й строке треугольника Паскаля, т.е. $a_n = \prod_{k=0}^n C_n^k$. Вычислите предел $\lim_{n\to\infty} \frac{a_{n-1}a_{n+1}}{a_n^2}$.
- **13.** Последовательность задана так: $x_1 = a, x_{n+1} = x_n^2 x_n + 1, n \in \mathbb{N}$. Исследуйте её на сходимость в зависимости от a.
- **14.** Найдите предел последовательности (c_n) , определяемой рекуррентным соотношением $c_{n+1} = (1 \frac{1}{n})c_n + \beta_n$, где (β_n) любая последовательность со свойством $\lim_{n \to \infty} n^2 \beta_n = 0$.
- **15.** Последовательность (a_n) такова, что все $a_n \in (0;1)$ и $a_{n+1} < \frac{a_n + a_{n-1}}{2}$. Верно ли, что эта последовательность сходится? Найдите множество всех возможных пределов таких последовательностей.
- **16.** Пусть функция f определена, непрерывна и ограничена на промежутке $(x_0; +\infty)$. Докажите, что для любого числа T существует последовательность (x_n) такая, что

$$\lim_{n \to \infty} x_n = +\infty; \quad \lim_{n \to \infty} (f(x_n + T) - f(x_n)) = 0.$$

- **17.** Функция f непрерывна на положительной полуоси. Известно, что при любом x > 0 последовательность $f(x+n) \to 0$ при $n \to +\infty$. Следует ли отсюда, что $f(x) \to 0$ при $x \to +\infty$?
- **18.** Функция f(x) непрерывна на отрезке [0;2] и f(0) = f(2). Докажите, что для какого-то $x \in [1;2]$ выполняется равенство f(x) = f(x-1).
- **19.** Может ли непрерывная на всей числовой прямой функция принимать каждое своё значение 1) дважды; 2) трижды?
- **20.** Существует ли непрерывная функция y = f(x), для которой справедливо тождество $f(f(x)) = 1 x^3$?
 - **21.** Существуют ли такие непрерывные функции f(x) и g(x), что

$$f(g(x)) = \operatorname{arctg} x, \quad g(f(x)) = \operatorname{arcctg} x$$
?

Производная. Интегралы

- **22.** Пусть $f(x) = \frac{x^2 + 17}{x^4 5x^2 + 4}$. Вычислите $f^{(319)}(0)$.
- **23.** Пусть f(x) гладкая вещественная функция, f(0) = 0, f(1) = 1. Докажите, что найдутся различные $x_1, x_2 \in [0; 1]$, для которых

$$\frac{1}{f'(x_1)} + \frac{1}{f'(x_2)} = 2.$$

24. Пусть a < b. Докажите, что

$$\int_{a}^{b} (x^{2} + 1)e^{-x^{2}} dx \geqslant e^{-a^{2}} - e^{-b^{2}}.$$

- **25.** Определите знак числа $\int_{-1}^{1} \frac{3^x 1}{3^x + 1} dx$.
- **26.** Вычислите $\int_{1}^{e} \sqrt{\ln x} \, dx + \int_{0}^{1} e^{x^2} \, dx$.
- 27. Вычислите сумму интегралов

$$\int_{\sqrt{\pi/6}}^{\sqrt{\pi/3}} \sin(x^2) dx + \int_{1/2}^{\sqrt{3}/2} \sqrt{\arcsin x} dx.$$

- **28.** Вычислите интеграл $\int_{0}^{2\pi} \sin(\sin x + 2015x) \, dx$.
- **29.** Вычислите интеграл $\int_{0}^{\pi/2} (\sin^2(\sin x) + \cos^2(\cos x)) dx$.
- **30.** Вычислите интеграл $\int\limits_{-\pi/2}^{\pi/2} \frac{\sin^{2014}x}{\sin^{2014}x + \cos^{2014}x} \, dx.$
- **31.** Вычислите интеграл $I(a) = \int_{0}^{\pi/2} \frac{dx}{1 + \lg^a x}$.
- **32.** Вычислите интеграл $\int_{0}^{2\pi} \sin^8 x \, dx.$
- **33.** Вычислите интеграл $\int_{1/3}^{3} \frac{\arctan x}{x^2 x + 1} dx$.
- **34.** Пусть $I_m = \int\limits_0^{2\pi} \cos(x) \cos(2x) \ldots \cos(mx) \, dx$. Для каких m интеграл I_m не равен нулю?
- **35.** Вычислите $\lim_{n \to \infty} \int\limits_0^1 e^{\{nx\}} x^{2016} \, dx$, где $\{t\}$ дробная часть числа t.
- **36.** Известно, что $a_0 + \frac{a_1}{2} + \frac{a_2}{3} + \dots + \frac{a_n}{n+1} = 0$. Докажите, что многочлен $a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ имеет хотя бы один действительный корень.
 - **37.** Коэффициенты многочлена $P(x) = a_0 x^{2012} + a_1 x^{2011} + \dots + a_{2012}$ удовлетворяют соотношению

$$\frac{a_0}{2013} + \frac{a_2}{2011} + \frac{a_4}{2009} + \dots + \frac{a_{2010}}{3} + a_{2012} = 0.$$

Докажите, что многочлен P(x) имеет хотя бы один действительный корень.

<u>58</u> А. Ю. Эвнин

38. Пусть f(x) — положительная непрерывная функция, определённая на \mathbb{R} , причём $\int\limits_{-\infty}^{+\infty} f(x)\,dx = 1$. Пусть $\alpha\in(0;1)$, а отрезок [a;b] имеет минимальную длину из тех отрезков, по которым интеграл от функции f равен α . Покажите, что f(a)=f(b).

39. Определите, сколько корней на отрезке [0; 3] имеет уравнение

$$\int_{T}^{x+1/2} \cos\left(\frac{t^2}{3}\right) dt = 0.$$

40. Существует ли непрерывная на промежутке $(1; +\infty)$ функция f(x) такая, что

$$\forall x > 1 \quad \int_{x}^{x^3} f(t) \, dt = 1?$$

41. Пусть f(x) — дифференцируемая функция, причём f(0) = 0 и $0 < f'(x) \leqslant 1$ при всех x. Докажите, что при $x \geqslant 0$ справедливо неравенство

$$\int_{0}^{x} f^{3}(t) dt \leqslant \left(\int_{0}^{x} f(t) dt\right)^{2}.$$

42. Найдите все непрерывные на $\mathbb R$ функции f(x) такие, что для любых действительных чисел a и b выполняется равенство

$$(a+b) \int_{a}^{b} f(x) dx = 2 \int_{a}^{b} x f(x) dx.$$

- **43.** Вычислите $\lim_{x\to 1} \int_{x}^{x^2} \frac{dt}{\ln t}$.
- **44.** Пусть функции f и g определены и непрерывны на отрезке [0;1]. Докажите неравенство

$$\left(\int\limits_0^1 f(x)dx\right)^2 + \left(\int\limits_0^1 g(x)dx\right)^2 \leqslant \left(\int\limits_0^1 \sqrt{f^2(x) + g^2(x)}dx\right)^2.$$

45. Докажите, что для произвольного $a_0 \in (0; 2\pi)$ последовательность, заданная условием

$$a_{n+1} = \int_{0}^{a_n} (1 + \frac{1}{4}\cos^{2n+1}t) dt,$$

сходится, и найдите её предел.

46. Вычислите интеграл $\iint_{x^2+y^2\leqslant R^2} \sin(x^2)\cos(y^2)\,dx\,dy.$

47. Пусть фигура G задаётся неравенствами $x^2 + y^2 + z^2 \leqslant 1, \ x \geqslant 0, \ y \geqslant 0, \ z \geqslant 0.$ Вычислите интеграл

$$\iiint\limits_G \frac{x+y}{x+y+z} \, dx \, dy \, dz.$$

48. 1) Для непрерывной функции f(x) найдите

$$\frac{d}{da} \iint\limits_{-a \leqslant x, y \leqslant a} f\left(\frac{x+y}{2}\right) \, dx \, dy.$$

2) Опишите все непрерывные функции f(x), для которых $\forall a \in \mathbb{R}$

$$\iint_{-a \leqslant x, y \leqslant a} f\left(\frac{x+y}{2}\right) dx dy = \int_{-a}^{a} f(x) dx.$$

49. Пусть $\alpha > 0$. Вычислите $\frac{A(\alpha)}{B(\alpha)}$, если

$$A(\alpha) = \int_{0}^{+\infty} \frac{x^{\alpha}}{e^{x} + 1} dx, \quad B(\alpha) = \int_{0}^{+\infty} \frac{x^{\alpha}}{e^{x} - 1} dx.$$

50. Вычислите интеграл $\int_{0}^{1} dx_{1} \int_{0}^{1} dx_{2} \dots \int_{0}^{1} \min(x_{1}, x_{2}, \dots, x_{n}) dx_{n}$.

Ряды

51. Найдите сумму ряда $\sum\limits_{n=0}^{\infty} (-1)^n \frac{(n+1)^2}{n!}.$

52. Исследуйте на сходимость и абсолютную сходимость ряд $\sum_{n=1}^{\infty} \sin(\pi \sqrt{n^2 + 1})$.

53. Сходится ли ряд $\sum_{n=3}^{\infty} (\ln \ln n)^{-\ln n}$?

54. Последовательность a_n задана условиями $a_1=1,\ a_{n+1}=\sin(a_n)\ (n\in\mathbb{N}).$ Сходится ли ряд $\sum\limits_{n=1}^{\infty}a_n$?

55. Вычислите сумму ряда $\sum_{n=1}^{\infty} \frac{n+2}{n!+(n+1)!+(n+2)!}$.

56. Найдите сумму ряда

$$\frac{1}{2} + \frac{1}{2^2} + \frac{2}{2^3} + \frac{3}{2^4} + \frac{5}{2^5} + \frac{8}{2^6} + \frac{13}{2^7} + \frac{21}{2^8} + \frac{34}{2^9} + \dots$$

(в числителях дробей — числа Фибоначчи, а в знаменателях — степени двойки).

57. Вычислите сумму ряда

$$\frac{1}{2\cdot 3\cdot 4}-\frac{1}{4\cdot 5\cdot 6}+\frac{1}{6\cdot 7\cdot 8}-\ldots$$

<u>60</u> А. Ю. Эвнин

58. Найдите сумму ряда $\sum_{n=1}^{\infty} \frac{f(n)}{n(n+1)}$, где f(n) — количество единиц в двоичной записи числа n.

- **59.** Пусть $a \in \mathbb{R}$. Для каждого целого $n \geqslant 0$ обозначим через a_n расстояние от a до ближайшего числа вида $\frac{m}{2^n}$, где $m \in \mathbb{Z}$. Найдите наибольшую возможную сумму ряда $\sum_{n=0}^{\infty} a_n$.
- **60.** Существует ли последовательность (a_n) такая, что ряд с общим членом $(\sin(a_n))$ сходится, а ряд с общим членом $(\sin(2a_n))$ расходится?
- **61.** Докажите, что из любого множества положительных чисел мощности континуума можно выбрать счётное подмножество с бесконечной суммой.
- **62.** Для каждого натурального n у нас есть одна гиря массой $1/n^2$ г. Никаких других гирь у нас нет. Какие массы мы можем взвесить на чашечных весах с помощью этих гирь? Гири (их может быть и бесконечное число) помещаются на одну чашку, а груз на другую.
 - **63.** Существует ли биекция $\pi: \mathbb{N} \to \mathbb{N}$, для которой сходится ряд

$$\sum_{n=1}^{\infty} \frac{\pi(n)}{n^2}?$$

64. Пусть $\sum a_n$ и $\sum b_n$ — расходящиеся положительные ряды. Известно, что

$$a_1 \geqslant a_2 \geqslant \ldots \geqslant a_k \geqslant a_{k+1} \geqslant \ldots; \quad b_1 \geqslant b_2 \geqslant \ldots \geqslant b_k \geqslant b_{k+1} \geqslant \ldots$$

Может ли сходиться ряд $\sum \min(a_n, b_n)$?

65. Можно ли расставить все рациональные числа в клетки бесконечной клетчатой плоскости так, чтобы каждое число появлялось только один раз и при этом суммы по всем строкам были равны минус бесконечности, а по всем столбцам плюс бесконечности?

Ответы, указания и решения

1. 1007.

Решение. Обозначим $x = a_1$, $y = a_2$. Вычисления по рекуррентной формуле дают следующие выражения членов последовательности через x и y (проверьте!):

$$a_3 = \frac{y+1}{x}$$
; $a_4 = \frac{x+y+1}{xy}$; $a_5 = \frac{x+1}{y}$; $a_6 = x$; $a_7 = y$.

Отсюда понятно, что последовательность периодическая: $\forall n \ a_{n+5}=a_n.$ Поэтому $a_{2013}=a_3=\frac{y+1}{x}=1007.$

2.
$$a_n = \frac{2}{n^2 - n + 2}$$
.

Решение. Перепишем рекуррентное соотношение в виде

$$\frac{1}{a_{n+1}} = \frac{1 + na_n}{a_n} = \frac{1}{a_n} + n.$$

Теперь видно, что удобно перейти к последовательности с общим членом $b_n = \frac{1}{a_n}$. Для неё рекуррентное соотношение принимает вид $b_{n+1} = b_n + n$. Имеем

$$b_0 = b_1 = 1$$
, $b_2 = 1 + 1$, $b_3 = 1 + 1 + 2$, ..., $b_n = 1 + (1 + 2 + \dots + (n-1))$.

Значит, $b_n = 1 + \frac{n(n-1)}{2} = \frac{n^2 - n + 2}{2}$, a $a_n = \frac{2}{n^2 - n + 2}$.

3.
$$f(x) = \begin{cases} 1, & \text{если } 0 \leqslant x \leqslant 1, \\ x, & \text{если } 1 \leqslant x \leqslant 2, \\ \frac{x^2}{2}, & \text{если } x > 2. \end{cases}$$

4. $x = 2\pi k, k \in \mathbb{Z}$.

Решение. Если $\lim_{n \to \infty} \cos(nx) = 1$, то $\lim_{n \to \infty} \sin(nx) = 0$. Тогда

$$\lim_{n \to \infty} (\sin(n+2)x - \sin x) = 0.$$

Ho при $n \to +\infty$

$$\sin(n+2)x - \sin x = 2\sin x \cos(n+1)x \to 2\sin x.$$

Значит, $\sin x = 0$ и $x = \pi m$, $m \in \mathbb{Z}$. Подстановка в исходное уравнение показывает, что число m должно быть чётным.

5. 10.

Решение. Используя второй замечательный предел, имеем

$$a_n = \left(\frac{\sqrt[n]{2} + \sqrt[n]{50}}{2}\right)^n = 2\left(\frac{1 + \sqrt[n]{25}}{2}\right)^n = 2\left(1 + \frac{\sqrt[n]{25} - 1}{2}\right)^n =$$

$$= 2\left(1 + \frac{\sqrt[n]{25} - 1}{2}\right)^{\frac{2}{\sqrt[n]{25} - 1} \cdot \frac{n(\sqrt[n]{25} - 1)}{2}}.$$

Как известно, $a^{\alpha} - 1 \sim \alpha \ln a$ при $\alpha \to 0$. Поэтому

$$\lim_{n \to \infty} \frac{n(\sqrt[n]{25} - 1)}{2} = \lim_{n \to \infty} \frac{n \cdot \frac{1}{n} \ln 25}{2} = \frac{1}{2} \ln 25.$$

Значит,

$$\lim_{n \to \infty} a_n = 2e^{\frac{1}{2}\ln 25} = 2 \cdot 5 = 10.$$

Замечание. Точно так же доказывается, что предел среднего степенного двух положительных чисел равен их среднему геометрическому:

$$\lim_{\alpha \to 0} \left(\frac{a^{\alpha} + b^{\alpha}}{2} \right)^{\frac{1}{\alpha}} = \sqrt{ab}.$$

6. Последовательность сходится к нулю.

Решение. Умножим обе части рекуррентного соотношения на $(n+1)^2$:

$$(n+1)^2 a_n = n^2 a_{n-1} + 1.$$

Пусть $b_n = (n+1)^2 a_n$. Тогда для любого n имеем $b_n = b_{n-1} + 1$, откуда

$$b_n = b_0 + n = a_0 + n, \quad a_n = \frac{b_n}{(n+1)^2} = \frac{a_0 + n}{(n+1)^2}.$$

7.
$$\frac{a+2b}{3}$$
.

<u>62</u> А. Ю. Эвнин

Решение. Для решения линейного рекуррентного соотношения $x_{n+2} = \frac{1}{2}(x_{n+1} + x_n)$ составим характеристическое уравнение $\lambda^2 = \frac{1}{2}(\lambda + 1)$. Его корни 1 и $-\frac{1}{2}$. Общее решение рекуррентного соотношения $x_n = c_1 + c_2 \left(-\frac{1}{2}\right)^n$. Из начальных условий находим $c_1 = \frac{a+2b}{3}$, $c_2 = \frac{4(b-a)}{3}$.

8. 0.

Докажите, что последовательность возрастает и ограничена сверху нулём. По теореме Вейерштрасса, она имеет предел. Обозначим его через x. Теперь нужно перейти к пределу в рекуррентном соотношении, получив уравнение относительно x, и учесть, что $-\frac{1}{2} < x \leqslant 0$.

9. ln 2.

По индукции можно доказать, что $a_n = 1 - \frac{1}{2} + \frac{1}{3} - \dots + (-1)^{n-1} \frac{1}{n}$.

10. e^2

Решение. Докажем, что $\sum\limits_{k=1}^{n} \frac{1}{C_{n}^{k}} = 1 + \frac{2}{n} + O\left(\frac{1}{n^{2}}\right)$. Действительно,

$$\frac{1}{C_n^n} = 1; \quad \frac{1}{C_n^1} + \frac{1}{C_n^{n-1}} = \frac{2}{n}; \quad \frac{1}{C_n^2} + \frac{1}{C_n^{n-2}} = \frac{4}{n(n-1)} = O\left(\frac{1}{n^2}\right),$$

а каждое из остальных n-5 слагаемых не больше $\frac{1}{C_n^2}$, поэтому

$$\sum_{k=3}^{n-3} \frac{1}{C_n^k} \leqslant \frac{(n-5) \cdot 3!}{n(n-1)(n-2)} = O\left(\frac{1}{n^2}\right).$$

Далее, используя второй замечательный предел, получаем, что при $n \to \infty$

$$\left(1 + \frac{2}{n} + O\left(\frac{1}{n^2}\right)\right)^n \to e^2.$$

11. 3π .

Решение. Пусть (для каждого n) $y_n = x_n - 3\pi$. Тогда $y_0 = 10 - 3\pi$ и

$$y_{n+1} = y_n - \sin y_n. \tag{*}$$

По индукции легко доказывается, что для любого n выполнено двойное неравенство $0 < y_{n+1} < y_n$. Значит, последовательность (y_n) убывает и ограничена снизу нулём. По теореме Вейерштрасса, существует предел этой последовательности. Обозначим его a. Переход к пределу в рекуррентном соотношении (*) даёт $a = a - \sin a$, откуда $\sin a = 0$ и $a = \pi k$ для некоторого целого k. В то же время для любого n имеем $0 < y_n < y_0 = 10 - 3\pi$, и $a \in [0; 10 - 3\pi]$. Стало быть, a = 0, а

$$\lim_{n \to +\infty} x_n = \lim_{n \to +\infty} (y_n + 3\pi) = 3\pi.$$

12. *e*.

Решение. Выразим a_n через a_{n-1} :

$$a_n = \prod_{k=0}^n C_n^k = \prod_{k=1}^n C_n^k = \prod_{k=1}^n \frac{n}{k} C_{n-1}^{k-1} = \frac{n^n}{n!} \cdot \prod_{i=0}^{n-1} C_{n-1}^i = \frac{n^n}{n!} a_{n-1}.$$

Отсюда

$$a_{n-1} = \frac{n!}{n^n} a_n; \quad a_{n+1} = \frac{(n+1)^{n+1}}{(n+1)!} a_n;$$

$$\frac{a_{n-1}a_{n+1}}{a_n^2} = \frac{n! \cdot (n+1)^{n+1}}{n^n \cdot (n+1)!} = \left(\frac{n+1}{n}\right)^n \underset{n \to \infty}{\longrightarrow} e.$$

13. При $0 \le a \le 1$ последовательность сходится к 1; при остальных a последовательность расходится.

Решение. Поскольку $x_{n+1} - x_n = (x_n - 1)^2 \geqslant 0$, последовательность (x_n) неубывающая.

Если последовательность сходится, и её предел равен b, то, перейдя к пределу в рекуррентном соотношении, получим $b = b^2 - b + 1$, откуда b = 1. Если $x_1 = a > 1$, то предел неубывающей последовательности (x_n) не может быть равен единице. Значит, при a > 1 последовательность расходится. Если a < 0, то $x_2 > 1$, и делаем тот же вывод.

Пусть теперь $0 \leqslant a \leqslant 1$. Если $0 \leqslant x_n \leqslant 1$, то

$$x_{n+1} = x_n^2 - x_n + 1 = \left(x_n - \frac{1}{2}\right)^2 + \frac{3}{4} \le 1.$$

Стало быть, последовательность ограниченная (снизу нулём, сверху единицей). Из монотонности и ограниченности вытекает существование предела последовательности.

14. 0.

Решение. Поскольку $nc_{n+1}=(n-1)c_n+n\beta_n$, уместно рассмотреть последовательность с общим членом $a_n=(n-1)c_n$. Для неё выполняется соотношение $a_{n+1}=a_n+n\beta_n$. Кроме того, $a_2=c_2=\beta_1$. Отсюда легко получить, что $a_n=\sum\limits_{k=1}^{n-1}k\beta_k$. Значит, $c_n=\frac{1}{n-1}\sum\limits_{k=1}^{n-1}k\beta_k$. Из определения последовательности (β_k) следует, что для некоторого положительного числа A и для любого k выполнено неравенство $|\beta_k|\leqslant \frac{A}{k^2}$. Тогда $|c_n|\leqslant \frac{A}{n-1}\sum\limits_{k=1}^{n-1}\frac{1}{k}\sim A\cdot\frac{\ln(n-1)}{n-1}$ и $\lim c_n=0$.

15. Верно. Множество всех возможных значений предела [0; 1).

Решение. Элемент a_k назовём *красным*, если $a_k > a_{k-1}$. Остальные элементы последовательности назовём *синими*. Заметим, что за красным элементом всегда следует меньший элемент. Действительно, если $a_k > a_{k-1}$, то $a_{k+1} < \frac{a_{k-1} + a_k}{2} < a_k$. Если количество красных элементов конечно, то, начиная с какого-то места, последовательность невозрастающая, к тому же, по условию, она ограниченная, поэтому сходится.

Пусть теперь красных элементов бесконечно много. Докажем, что последовательность из красных элементов убывает. Действительно, если a_k и a_m — два соседних красных элемента, где k < m, то

$$a_k > a_{k+1} \geqslant \dots \geqslant a_{m-1} < a_m \tag{*}$$

И

$$a_m < \frac{a_{m-1} + a_{m-2}}{2} \leqslant \frac{a_k + a_{k+1}}{2} < a_k.$$

Следовательно, красная подпоследовательность сходится. Обозначим её предел через r. Покажем, что если два соседних красных элемента a_k и a_m попали в ε -окрестность точки r ($r < a_m < a_k < r + \varepsilon$), то синие элементы, расположенные между ними, также будут в этой окрестности (отсюда и будет вытекать сходимость исходной последовательности). Учитывая (*), имеем

$$a_m < \frac{a_{m-1} + a_{m-2}}{2} \le \frac{a_{m-1} + a_k}{2}, \quad a_{m-1} \ge 2a_m - a_k > 2a_m - (r + \varepsilon) > r - \varepsilon.$$

Итак, последовательность (a_n) сходится. Поскольку $0 < a_n < 1$ (для любого n), предел не может быть вне отрезка [0;1]. Пусть $\alpha \in [0;1)$. Выберем число q таким, что $\alpha + \frac{q}{2} < 1$. Тогда последовательность с общим членом $a_n = \alpha + \frac{q}{2n}$ удовлетворяет условию задачи, и её предел равен α . Докажем, наконец,

<u>64</u> А. Ю. Эвнин

что 1 не может быть значением предела. В этом легко убедиться, исходя из того наблюдения, что (при k > 2) $a_k < \max(a_1, a_2)$. Последнее следует из неравенств

$$a_k < \frac{a_{k-1} + a_{k-2}}{2} \le \max(a_{k-1}, a_{k-2}).$$

Если $a_k > 1 - \varepsilon$, то $\max(a_1, a_2) > 1 - \varepsilon$. В силу того, что положительное число ε может быть сколь угодно малым, $\max(a_1, a_2) = 1$, что противоречит условию задачи.

16. Без ограничения общности можно считать, что T>0. Рассмотрим функцию g(x)=f(x+T)-f(x). Она непрерывна и ограничена на $(x_0;+\infty)$. Если у данной функции бесконечное число нулей, то их можно взять в качестве искомой последовательности. В противном случае рассмотрим промежуток от последнего нуля до плюс бесконечности. На нём функция g(x) знакопостоянная. Для определённости, пусть g(x)>0 при x>a. Рассмотрим последовательность с общим членом $x_n=a+nT$. Последовательность $f(x_n)$ возрастающая и ограниченная. Поэтому у неё есть конечный предел. Но тогда

$$\lim_{n \to \infty} (f(x_{n+1}) - f(x_n)) = \lim_{n \to \infty} (f(x_n + T) - f(x_n)) = 0.$$

17. Нет, не следует.

Решение. Определим функцию f на отрезках [n; n+1], где $n \in \mathbb{N}_0$, так:

$$f(n) = f\left(n + \frac{1}{n+1}\right) = 0, \quad f\left(n + \frac{1}{2(n+1)}\right) = 1,$$

функция f линейна на отрезках $\left[n;n+\frac{1}{2(n+1)}\right]$ и $\left[n+\frac{1}{2(n+1)};n+\frac{1}{n+1}\right]$ и равна нулю на отрезке $\left[n+\frac{1}{n+1};n+1\right]$. График функции f — на рисунке.

Требование, предъявляемое к функции f, выполняется, так как в целых точках функция равна нулю, а для каждого нецелого x существует такое $N = \frac{1}{\{x\}} + 1$, что при натуральном n > N выполняется равенство f(x+n) = 0.

С другой стороны, функция f не стремится к 0, т. к. для любого числа $x_0 > 0$ существует такое число $x > x_0$, что f(x) = 1.

18. Положим A = f(0) = f(2). Рассмотрим функцию g(x) = f(x) - f(x-1). Заметим, что g(1) = f(1) - A, а g(2) = A - f(1). Значит, на концах отрезка [1;2] непрерывная функция g(x) принимает значения разных знаков. Следовательно, в некоторой точке этого отрезка функция g(x) равна нулю. Это и требовалось доказать.

19. а) Нет; б) да.

Решение. а) Пусть f(x) — непрерывная функция и f(a) = f(b) = q, где a < b. Тогда на интервале (a;b) значения f(x) либо всюду больше q, либо всюду меньше q, иначе значение q принимается функцией f(x) не менее чем в трёх точках. Рассмотрим первую альтернативу (для второй альтернативы рассуждения аналогичные).

Положим $Q = \max_{x} f(x)$. Очевидно, Q > q.

Если значение Q достигается в двух точках, скажем, f(c) = f(d) = Q, где a < c < d < b, то значение $m = \min f(x)$ достигается не менее чем в трёх точках.

Если же значение Q достигается только в одной точке интервала (a;b), скажем, f(c)=Q, то все значения из промежутка (q;Q) достигаются функцией f(x) хотя бы дважды. Но тогда f(x) < q < Qпри $x \notin [a;b]$ и значение Q принимается функцией f(x) только в одной точке.

б) См. рисунок.

20. Het.

Решение. Функция, удовлетворяющая условию задачи, должна быть обратимой. Действительно,

$$f(x_1) = f(x_2) \Rightarrow f(f(x_1)) = f(f(x_2)) \Rightarrow 1 - x_1^3 = 1 - x_2^3 \Rightarrow x_1 = x_2.$$

Обратимая непрерывная функция должна быть строго монотонной. Но тогда f(f(x)) — возрастающая функция.

21. Het.

22. 0.

Решение. Функция $\frac{\cos(\sin x)}{x^4 - 5x^2 + 4}$ — чётная и бесконечное число раз дифференцируемая в окрестности нуля. Как известно, производная чётной функции нечётна, а нечётной чётна. Отсюда следует, что производная нечётного порядка от чётной функции будет нечётной функцией. Поэтому $f^{(2019)}(0) = 0.$

- **23.** Рассмотрим функцию g(x) = f'(x). По условию, она непрерывная, а 1 её среднее значение на отрезке [0;1], поскольку $\int_0^1 g(x) \, dx = f(1) f(0) = 1$. Если g(x) = 1 всюду на отрезке [0;1], то доказывать нечего. Иначе множество значений этой функции на данном отрезке есть некоторый отрезок [a;b], причём a<1< b. Если зафиксировать $\alpha \neq -1$, то из условия $\frac{1}{1+\alpha}+\frac{1}{1+\beta}=1$ число β определится однозначно. Из соображений непрерывности получаем, что α можно выбрать столь близким к 1, что $a \leqslant \alpha < 1 < \beta \leqslant b$.
 - **24.** Поскольку $x^2 + 1 \ge 2x$, имеем

$$\int_{a}^{b} (x^{2} + 1)e^{-x^{2}} dx \geqslant \int_{a}^{b} 2xe^{-x^{2}} dx = -\int_{a}^{b} d\left(e^{-x^{2}}\right) = e^{-a^{2}} - e^{-b^{2}}.$$

25. Это число равно нулю. Подынтегральная функция является нечётной.

26. *e*.

Подынтегральные функции взаимно обратны. Поэтому два интеграла из условия выражают площади фигур ABC и ODCA (см. рисунок), образующих разбиение прямоугольника $[0;1] \times [0;e]$.

<u>66</u> А. Ю. Эвнин

27.
$$\frac{\sqrt{\pi}}{2} \left(1 - \frac{1}{\sqrt{6}} \right)$$
.

28. 0

Решение. Подынтегральная функция нечётная и имеет период 2π . Как известно, интеграл от периодической функции по промежутку, чья длина равна периоду этой функции, не зависит от расположения этого промежутка на числовой прямой. Интеграл $\int_{-\pi}^{\pi} f(x) \, dx$ равен нулю из-за нечётности функции f(x).

29. $\frac{\pi}{2}$.

Если f — непрерывная функция, то $\int\limits_0^{\pi/2} f(\sin x) dx = \int\limits_0^{\pi/2} f(\cos x) dx$.

30. $\frac{\pi}{2}$.

31. $I(a) = \frac{\pi}{4}$.

Решение.

$$I(a) = \int_{0}^{\pi/2} \frac{dx}{1 + \lg^{a} x} = \begin{bmatrix} x = \frac{\pi}{2} - t; & \lg x = \operatorname{ctg} t; \\ x = 0; & t = \frac{\pi}{2}; \\ x = \frac{\pi}{2}; & t = 0 \end{bmatrix} = \int_{0}^{\pi/2} \frac{dt}{1 + \operatorname{ctg}^{a} t}.$$

Отсюда

$$2I(a) = \int_{0}^{\pi/2} \left(\frac{1}{1 + \lg^a t} + \frac{1}{1 + \operatorname{ctg}^a t} \right) dt.$$

Поскольку

$$\frac{1}{1 + \lg^a t} + \frac{1}{1 + \lg^a t} = \frac{2 + \lg^a t + \lg^a t}{1 + 1 + \lg^a t + \lg^a t} = 1,$$

имеем $2I(a) = \int_{0}^{\pi/2} dt = \frac{\pi}{2}.$

32. $\frac{7!!}{8!!} \cdot 2\pi$.

Решение. Обозначим $I_n = \int_0^{2\pi} \sin^n x \, dx$. Несложно видеть, что при нечётном n интеграл I_n равен нулю. В дальнейшем считаем, что n = 2k, где $k \in \mathbb{N}$.

1-й способ. (Рекуррентное соотношение для I_n .)

$$I_n = \int_0^{2\pi} \sin^n x \, dx = -\int_0^{2\pi} \sin^{n-1} x \, d\cos x = -\sin^{n-1} x \cos x \Big|_0^{2\pi} + \int_0^{2\pi} \cos x \, d(\sin^{n-1} x) =$$

$$= (n-1) \int_0^{2\pi} \cos^2 x \sin^{n-2} x \, dx = (n-1) \int_0^{2\pi} (\sin^{n-2} x - \sin^n x) \, dx = (n-1)(I_{n-2} - I_n).$$

Из равенства $I_n=(n-1)(I_{n-2}-I_n)$ выражаем I_n через I_{n-2} : $I_n=\frac{n-1}{n}I_{n-2}$. Отсюда $I_{2k}=\frac{(2k-1)!!}{(2k)!!}\cdot 2\pi$. **2-й способ.** (Формула Эйлера и бином Ньютона.) Поскольку $\sin x=-\frac{1}{2}i(e^{ix}-e^{-ix})$, имеем

$$\sin^{2k} x = \frac{(-1)^k}{2^{2k}} \sum_{j=0}^{2k} C_{2k}^j e^{ixj} e^{-ix(2k-j)} (-1)^j = \frac{(-1)^k}{2^{2k}} \sum_{j=0}^{2k} C_{2k}^j (-1)^j e^{2(j-k)ix}.$$

Если $j \neq k$, то $\int\limits_0^{2\pi} e^{2(j-k)ix} \, dx = 0$. Поэтому

$$I_{2k} = \int_{0}^{2\pi} \sin^{2k} x \, dx = \frac{1}{2^{2k}} \int_{0}^{2\pi} C_{2k}^{k} \, dx = \frac{C_{2k}^{k}}{2^{2k}} \cdot 2\pi.$$

33. $\frac{\pi}{2\sqrt{3}} \arctan 4\sqrt{3}$.

Репление.

$$I = \int_{1/3}^{3} \frac{\arctan x}{x^2 - x + 1} dx = \left[x = \frac{1}{t} \right] = \int_{3}^{1/3} \frac{\arctan \frac{1}{t}}{\frac{1}{t^2} - \frac{1}{t} + 1} \frac{dt}{-t^2} =$$

$$= \int_{1/3}^{3} \frac{\arctan \frac{1}{t}}{t^2 - t + 1} dt = \int_{1/3}^{3} \frac{\frac{\pi}{2} - \arctan t}{t^2 - t + 1} dt = \frac{\pi}{2} \int_{1/3}^{3} \frac{dt}{t^2 - t + 1} dt - I. \quad (1)$$

В этих выкладках использовалось тождество $\arctan t + \arctan \frac{1}{t} = \frac{\pi}{2}$, имеющее место при t > 0. Его легко получить, рассмотрев прямоугольный треугольник с катетами длиной 1 и t. Острые углы этого треугольника равны $\arctan t$ и $\arctan t$

Из равенства (1) получаем

$$I = \frac{\pi}{4} \int_{1/3}^{3} \frac{dt}{t^2 - t + 1} = \frac{\pi}{2\sqrt{3}} \arctan 4\sqrt{3}.$$

34. Для m вида m = 4k и m = 4k + 3.

Решение. Обозначим $q=e^{ix}$. Тогда $\cos x=rac{q+q^{-1}}{2},\,\cos kx=rac{q^k+q^{-k}}{2}$

$$f(x) = \prod_{k=1}^{m} \cos kx = \frac{1}{2^m} (q + q^{-1})(q^2 + q^{-2}) \dots (q^m + q^{-m}).$$

<u>68</u> А. Ю. Эвнин

После раскрытия скобок получаются слагаемые вида $q^{\pm 1\pm 2\pm \cdots \pm m}$. Заметим, что при целом k

$$\int_{0}^{2\pi} q^{k} dx = \int_{0}^{2\pi} e^{ikx} dx = \begin{cases} 0, \text{ если } k \neq 0 ; \\ 2\pi, \text{ если } k = 0. \end{cases}$$

Поэтому $I_m \neq 0$ тогда и только тогда, когда можно так расставить знаки плюс и минус в выражении $g(m) = \pm 1 \pm 2 \pm \cdots \pm m$, чтобы оно стало равным нулю. Заметим, что количество нечётных слагаемых в указанной сумме будет нечётным, если m имеет вид m = 4k + 1 или m = 4k + 2; при этом g(m) нечётно и, значит, не равно нулю. Если же m = 4k или m = 4k + 3, то знаки можно расставить нужным образом. Например.

$$1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + \dots + (4k - 3) - (4k - 2) - (4k - 1) + 4k = 0;$$

$$1 + 2 - 3 + 4 - 5 - 6 + 7 + \dots + 4k - (4k + 1) - (4k + 2) + (4k - 3) = 0.$$

Замечание. Сам интеграл равен $\frac{2\pi}{2^m} \cdot a_m$, где a_m — количество способов расставить знаки в выражении g(m), чтобы оно стало равным нулю. Последовательность (a_m) в энциклопедии OEIS имеет номер A063865. Вот её начало:

$$0, 0, 2, 2, 0, 0, 8, 14, 0, 0, 70, 124, 0, 0, 722, 1314, 0, 0, 8220, 15272, 0, 0, 99820, 187692, \dots$$

- **35.** $\frac{e-1}{2017}$. Подробное решение см. в [10, 4.06.2016].
- **36.** Интеграл от многочлена по отрезку [0;1] равен нулю.
- **37.** Вычислите $\int_{-1}^{1} P(x) dx$.
- **38.** 1-й способ. Доказательство от противного. Пусть f(b) > f(a) (случай f(b) < f(a) вполне аналогичен данному). Сдвинем точки a и b вправо (т. е. заменим a на $a + \varepsilon_1$, а b на $b + \varepsilon_2$) так, чтобы интеграл от функции f по отрезку не изменился. Тогда $\int_a^{a+\varepsilon_1} f(x) \, dx = \int_b^{b+\varepsilon_2} f(x) \, dx$. Заметим, что ε_2 определяется по ε_1 однозначно. Выберем ε_1 столь малым, чтобы на отрезке $[b; b + \varepsilon_2]$ значения функции f(x) были больше, чем на отрезке $[a; a + \varepsilon_1]$. Тогда $\varepsilon_1 > \varepsilon_2$, и длина нового отрезка меньше исходного: $a b + \varepsilon_1 \varepsilon_2 < a b$. Противоречие!
- исходного: $a-b+\varepsilon_1-\varepsilon_2 < a-b$. Противоречие! **2-й способ.** Пусть $\int\limits_a^{+\infty} f(x)\,dx > \alpha$. Тогда однозначно определено число b, для которого $\int\limits_a^b f(x)\,dx = \alpha$. Тем самым задана функция b=g(a). Продифференцируем по a тождество

$$\int_{a}^{g(a)} f(x) \, dx = \alpha.$$

Получим $f(g(a)) \cdot g'(a) - f(a) = 0$. Если функция g(a) - a принимает наименьшее значение в некоторой точке, то в этой точке g'(a) = 1. Поэтому f(b) = f(g(a)) = f(a).

39. Один корень.

Решение. Рассмотрим функции $g(t) = \cos\left(\frac{t^2}{3}\right)$ и $I(x) = \int\limits_x^{x+1/2} g(t)\,dt$. Легко проверить, что на отрезке [0;1/2] функция g(t) положительна, а на отрезке $[3;3\frac{1}{2}]$ функция g(t) отрицательна. Поэтому

I(0) > 0, I(3) < 0. Kpome toro,

$$I'(x) = \cos\left(\frac{(x+1/2)^2}{3}\right) - \cos\left(\frac{x^2}{3}\right) = -2\sin\left(\frac{x+1/4}{6}\right)\sin\left(\frac{2x^2+x+1/4}{6}\right).$$

В полученном произведении синусов первый положителен на отрезке [0;3], а второй меняет знак с плюса на минус. Поэтому функция I(x) сначала убывает, а потом возрастает. Учитывая знаки I(x) на концах данного промежутка, получаем ответ.

40. Да.

Решение. Продифференцировав по переменной x интеграл с переменными пределами интегрирования, получим функциональное уравнение

$$3x^2f(x^3) - f(x) = 0,$$

откуда $3x^3f(x^3) = xf(x)$. Относительно функции g(x) = xf(x) возникает более простое уравнение

$$3g(x^3) = g(x),$$

к которому подбирается решение $g(x) = \frac{C}{\ln x}$. Найдём подходящее значение C:

$$\int_{x}^{x^{3}} \frac{Cdt}{t \ln t} = C \int_{x}^{x^{3}} \frac{d \ln t}{\ln t} = C \ln(\ln t) \Big|_{x}^{x^{3}} = C \ln 3 = 1 \Rightarrow C = \frac{1}{\ln 3}.$$

Итак, нашлась функция, удовлетворяющая условию задачи: $f(x) = \frac{1}{\ln 3 \cdot x \ln x}$.

41. Подробное решение см. в [10, 7.06.2015].

42. f = const.

Решение. Продифференцировав тождество из условия задачи по переменной a, получим

$$\int_{a}^{b} f(x) dx - (a+b)f(a) = -2af(a),$$

откуда

$$\int_{a}^{b} f(x) dx = (b - a)f(a).$$

Теперь дифференцируем по переменной b и получаем f(b) = f(a). Поскольку a и b произвольны, отсюда и следует, что f = const. С другой стороны, функция f(x) = c, где c = const, удовлетворяет условию задачи (это проверяется непосредственной подстановкой).

43. ln 2.

Решение. Разобъём интеграл на два интеграла, а затем ко второму из них применим обобщённую теорему о среднем:

$$A(x) = \int_{x}^{x^{2}} \frac{dt}{\ln t} = \int_{x}^{x^{2}} \frac{t \, d \ln t}{\ln t} = \int_{x}^{x^{2}} \frac{d \ln t}{\ln t} + \int_{x}^{x^{2}} \frac{(t-1)d \ln t}{\ln t} = \ln 2 + (\mu - 1) \int_{x}^{x^{2}} \frac{d \ln t}{\ln t} = \mu \ln 2,$$

где число μ лежит между x и x^2 . Отсюда $\lim_{x\to 1} A(x) = \ln 2$.

<u>70</u> А. Ю. Эвнин

44. 1-й способ. Введём функции $x(t)=\int\limits_{0}^{t}f(u)\,du$ и $y(t)=\int\limits_{0}^{t}g(u)\,du$. Из непрерывности функций f(u) и g(u) следует, что функции x(t) и g(t) непрерывно дифференцируемы, причём x'(t)=f(t), y'(t) = g(t). Рассмотрим на плоскости Oxy кривую L, заданную параметрически: x = x(t), y = y(t),где $0 \le t \le 1$. Концы этой кривой — точки A(0;0) и B(x(1);y(1)). Теперь в правой части неравенства можно увидеть квадрат длины кривой L, а в левой — квадрат длины отрезка, соединяющего её концы. Неравенство становится очевидным.

2-й способ. Пусть $a = \int_{0}^{1} f(x) dx$, $b = \int_{0}^{1} g(x) dx$. По неравенству Коши–Буняковского,

$$af(x) + bg(x) \le \sqrt{a^2 + b^2} \cdot \sqrt{f^2(x) + g^2(x)}$$

Проинтегрировав это неравенство по отрезку [0;1], получим

$$a^{2} + b^{2} \leq \sqrt{a^{2} + b^{2}} \cdot \int_{0}^{1} \sqrt{f^{2}(x) + g^{2}(x)} dx.$$

Отсюда

$$\sqrt{a^2 + b^2} \leqslant \int_{0}^{1} \sqrt{f^2(x) + g^2(x)} \, dx.$$

Если возвести последнее неравенство в квадрат, получится то неравенство, которое требовалось доказать.

45. π . Решение см. в [6, с. 81–86].

46.
$$\frac{1}{2}\pi(1-\cos(R^2))$$

46. $\frac{1}{2}\pi(1-\cos(R^2))$. Решение. Пусть D — круг $x^2+y^2\leqslant R^2, \ f(x,y)=\sin(x^2)\cos(y^2), \ {\rm a}\ I=\iint\limits_D f(x,y)dxdy.$

Заметим, что область интегрирования D не изменится, если поменять $\stackrel{-}{\text{местами}}$ x и y. Поэтому

$$2I = \iint_{D} (f(x,y) + f(y,x)) dx dy = \iint_{D} (\sin(x^{2})\cos(y^{2}) + \sin(y^{2})\cos(x^{2})) dx dy =$$

$$= \iint_{D} \sin(x^{2} + y^{2}) dx dy = \int_{0}^{2\pi} d\varphi \int_{0}^{R} r \sin(r^{2}) dr =$$

$$= \pi \int_{0}^{R} \sin(r^{2}) d(r^{2}) = \pi (1 - \cos(R^{2})).$$

Решение. В силу симметрии области интегрирования имеем

$$I = \iiint\limits_{G} \frac{x+y}{x+y+z} \, dx \, dy \, dz = \iiint\limits_{G} \frac{y+z}{x+y+z} \, dx \, dy \, dz = \iiint\limits_{G} \frac{z+x}{x+y+z} \, dx \, dy \, dz.$$

Отсюда
$$3I = \iiint_C 2 \, dx \, dy \, dz = 2 \cdot \frac{1}{8} \cdot \frac{4\pi}{3}$$
.

48. 1) $4\int\limits_{-a}^{a}f(u)\,du;$ 2) нечётные функции.

Решение. 1) Перейдём к новым переменным $u=\frac{x+y}{2},\ v=\frac{y-x}{2}.$ Тогда $x=u-v,\ y=u+v,$ $\frac{\partial(x,y)}{\partial(u,v)}=\left|\begin{array}{cc}1&-1\\1&1\end{array}\right|=2.$

$$I(a) = \iint_{-a \leqslant x, y \leqslant a} f\left(\frac{x+y}{2}\right) dx dy = 2 \iint_{D_{uv}} f(u) du dv =$$

$$= 2 \int_{-a}^{0} du \int_{-u-a}^{u+a} f(u) dv + 2 \int_{0}^{a} du \int_{u-a}^{a-u} f(u) dv = 4 \int_{-a}^{0} (u+a)f(u) du + 4 \int_{0}^{a} (a-u)f(u) du.$$

Отсюда

$$\frac{dI}{da} = 0 + 4 \int_{-a}^{0} f(u) \, du + 0 + 4 \int_{0}^{a} f(u) \, du = 4 \int_{-a}^{a} f(u) \, du.$$

2) Из 1) следует, что I'(a)=4I(a). Отсюда $I(a)=ce^{4a}$. Поскольку I(0)=0, имеем c=0 и I(a)=0. Значит,

$$\int_{-a}^{a} f(x) dx = 0. \tag{*}$$

Продифференцировав данное тождество по переменной a, получим, что для любого a верно равенство f(a)+f(-a)=0. Значит, функция f нечётная. С другой стороны, для любой нечётной непрерывной функции равенство (*) имеет место.

49.
$$1 - \frac{1}{2^{\alpha}}$$
.

Решение. В этой задаче отношение интегралов легко найти, если предварительно получить выражение для их разности. Имеем:

$$B(\alpha) - A(\alpha) = \int_{0}^{\infty} \left(\frac{x^{\alpha}}{e^{x} - 1} - \frac{x^{\alpha}}{e^{x} + 1} \right) dx = \int_{0}^{\infty} \frac{2x^{\alpha}}{e^{2x} - 1} dx = [t = 2x] = \frac{1}{2^{\alpha}} \int_{0}^{\infty} \frac{t^{\alpha} dt}{e^{t} - 1} = \frac{1}{2^{\alpha}} B(\alpha).$$

<u>72</u> А. Ю. Эвнин

Итак, $B(\alpha) - A(\alpha) = \frac{1}{2^{\alpha}}B(\alpha)$. Отсюда $\frac{A(\alpha)}{B(\alpha)} = 1 - \frac{1}{2^{\alpha}}$.

50.
$$\frac{1}{n+1}$$
.

Решение. Пусть D_i — та область n-мерного куба $[0;1]^n$, в которой $x_i = \min(x_1, x_2, \ldots, x_n)$. Пересечения этих областей имеют меру нуль, поэтому интеграл по всему кубу равен сумме интегралов по этим областям. Из соображений симметрии, интегралы по указанным n областям равны между собой. Интеграл по области D_1 равен

$$\int_{0}^{1} x_{1} dx_{1} \int_{x_{1}}^{1} dx_{2} \dots \int_{x_{1}}^{1} dx_{n} = \int_{0}^{1} x(1-x)^{n-1} dx = [t=1-x] = \int_{0}^{1} (1-t)t^{n} dt = \frac{1}{n(n+1)}.$$

После умножения на n (количество областей) получится ответ.

51.
$$-\frac{1}{e}$$
.

52. Ряд сходится условно.

$$\sin(\pi\sqrt{n^2+1}) = (-1)^n \sin(\pi\sqrt{n^2+1} - \pi n) = (-1)^n \sin\frac{\pi}{\sqrt{n^2+1} + n}.$$

53. Сходится.

Решение. Запишем общий член ряда в более удобном виде:

$$a_n = e^{\ln a_n} = e^{-\ln n \cdot \ln \ln \ln n} = \frac{1}{n^{\ln \ln \ln \ln n}}.$$

Показатель степени $\ln \ln \ln n$ с ростом n стремится (пусть и неторопливо!) к $+\infty$. Значит, для достаточно больших n этот показатель больше, например, числа 2. Из сравнения исходного ряда со сходящимся обобщённым гармоническим рядом $\sum \frac{1}{n^2}$ получаем сходимость нашего ряда.

54. Расходится. По индукции докажите, что $a_n \geqslant \frac{1}{n}$. Вам может пригодиться неравенство $\sin x \geqslant x - \frac{x^3}{6}$, справедливое для положительных x.

55. $\frac{1}{2}$

Решение. Преобразуем общий член ряда:

$$\frac{n+2}{n!+(n+1)!+(n+2)!} = \frac{n+2}{n!(1+(n+1)+(n+1)(n+2))} = \frac{n+2}{n!(n+2)^2} = \frac{1}{n!(n+2)} = \frac{n+1}{(n+2)!} = \frac{(n+2)-1}{(n+2)!} = \frac{1}{(n+1)!} - \frac{1}{(n+2)!}.$$

Частичную сумму ряда теперь найдём с помощью телескопического суммирования:

$$S_k = \sum_{n=1}^k \left(\frac{1}{(n+1)!} - \frac{1}{(n+2)!} \right) = \left(\frac{1}{2!} - \frac{1}{3!} \right) + \left(\frac{1}{3!} - \frac{1}{4!} \right) + \cdots + \left(\frac{1}{(k+1)!} - \frac{1}{(k+2)!} \right) = \frac{1}{2!} - \frac{1}{(k+2)!}.$$

Сумма ряда равна

$$\lim_{k \to \infty} S_k = \frac{1}{2}.$$

56. 2.

Решение. Пусть $f_k - k$ -е число Фибоначчи:

$$f_1 = f_2 = 1;$$
 $\forall n \in \mathbb{N} \ f_{n+2} = f_{n+1} + f_n$

Имеем:

$$S = \sum_{k=1}^{\infty} \frac{f_k}{2^k} = \frac{1}{2} + \frac{1}{4} + \sum_{k=3}^{\infty} \frac{f_{k-1} + f_{k-2}}{2^k} =$$

$$= \frac{3}{4} + \sum_{k=3}^{\infty} \frac{f_{k-1}}{2^k} + \sum_{k=3}^{\infty} \frac{f_{k-2}}{2^k} = \frac{3}{4} + \sum_{k=2}^{\infty} \frac{f_k}{2^{k+1}} + \sum_{k=1}^{\infty} \frac{f_k}{2^{k+2}} =$$

$$= \frac{3}{4} + \frac{1}{2} \sum_{k=2}^{\infty} \frac{f_k}{2^k} + \frac{1}{4} \sum_{k=1}^{\infty} \frac{f_k}{2^k} = \frac{3}{4} + \frac{1}{2} \left(S - \frac{1}{2}\right) + \frac{1}{4}S = \frac{1}{2} + \frac{3}{4}S.$$

Итак, $S = \frac{1}{2} + \frac{3}{4}S$. Отсюда S = 2.

Замечание. Другие решения можно получить, используя производящую функцию чисел Фибоначчи

$$F(x) = \sum_{n=1}^{\infty} f_n x^n = \frac{x}{1 - x - x^2},$$

которую нужно вычислить при $x=\frac{1}{2}$, и формулу Бинэ

$$f_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right),$$

которая позволяет представить суммируемый ряд в виде суммы двух геометрических прогрессий.

57. $\frac{\pi - 3}{4}$. Решение. Рассмотрим частичную сумму ряда

$$S_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{2k(2k+1)(2k+2)} = \frac{1}{2} \sum_{k=1}^n (-1)^{k-1} \left(\frac{1}{2k} - \frac{2}{2k+1} + \frac{1}{2k+2} \right).$$

Её несложно привести к виду $S_n = \sum_{k=1}^n \frac{(-1)^k}{2k+1} + \frac{1}{4} + \frac{(-1)^{n+1}}{4(n+1)}$. Как известно, при $|x| \leqslant 1$ имеет место разложение

$$\arctan x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1}.$$

Поэтому $\lim_{n\to\infty} \sum_{k=1}^n \frac{(-1)^k}{2k+1} = \frac{\pi}{4} - 1$. Отсюда $\lim_{n\to\infty} S_n = \frac{1}{4} + \frac{\pi}{4} - 1 = \frac{\pi-3}{4}$.

58. 2 ln 2. Решение см. в [10, 2.06.2013].

59. $\frac{2}{3}$. Решение можно найти здесь: https://habr.com/en/post/264941/.

60. Существует. Пример такой последовательности: $a_n = \pi n + \frac{1}{n}$.

Действительно, здесь $\sin(a_n) = (-1)^n \sin(\frac{1}{n})$, и соответствующий ряд сходится по признаку Лейбница. При этом $\sin(2a_n) = \sin(\frac{2}{n})$. Соответствующий ряд расходится по предельному признаку сравнения (сравниваем ряд с гармоническим рядом).

<u>74</u> А. Ю. Эвнин

61. Пусть A — исходное множество, а $A_n = A \cap \left[\frac{1}{n}; +\infty\right)$, где $n \in \mathbb{N}$. Хотя бы одно из множеств A_n континуально, иначе объединение этих множеств не будет иметь мощность континуума. Элементы этого множества ограничены снизу положительной константой. Поэтому подойдёт любое счётное подмножество указанного множества.

62. Можно взвесить m г, если $m \in \left(0; \frac{\pi^2}{6} - 1\right] \cup \left[1; \frac{\pi^2}{6}\right]$.

Решение. Ключевым соображением для решения задачи является следующее. Если гири упорядочить по убыванию веса, то каждая гиря, начиная со второй, весит меньше, чем все последующие, вместе взятые, т. е. при $n\geqslant 2$ выполняется неравенство $\frac{1}{n^2}<\sum_{k=n+1}^{\infty}\frac{1}{k^2}$.

Действительно, $\sum\limits_{k=n+1}^{\infty}\frac{1}{k^2}>\sum\limits_{k=n+1}^{\infty}\frac{1}{k(k+1)}=\sum\limits_{k=n+1}^{\infty}\left(\frac{1}{k}-\frac{1}{k+1}\right)=\frac{1}{n+1},$ а при $n\geqslant 2$ справедливо $n^2>n+1.$

Отдельно рассмотрим случаи, когда на чашке весов отсутствует или присутствует гирька в 1 г. Как известно, $\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$. Убрав гирьку в 1 г, с помощью всех остальных мы взвесим груз в $\frac{\pi^2}{6}-1$ г. Покажем, как взвесить любой меньший груз.

Пусть $m<\frac{\pi^2}{6}-1$ и число m не представимо конечной суммой различных величин, обратных квадратам натуральных чисел. Будем на чашку весов последовательно ставить гирьки весом в $\frac{1}{2^2}$ г, . . . до тех пор, пока общий их вес не превзойдёт m, после чего последнюю гирьку уберём. Мы найдём такое l, что

$$\sum_{k=2}^{l} \frac{1}{k^2} < m < \sum_{k=2}^{l+1} \frac{1}{k^2}.$$

Поскольку $\sum_{k=l+2}^{\infty} \frac{1}{k^2} > \frac{1}{(l+1)^2}$, без гирьки весом $\frac{1}{(l+1)^2}$ г можно обойтись, а задача свелась к аналогич-

ной: с помощью гирек весом в $\frac{1}{(l+2)^2}$ г, $\frac{1}{(l+3)^2}$ г,... взвесить груз в $m-\sum\limits_{k=2}^l\frac{1}{k^2}$ г.

Фактически, для взвешивания груза (в m г) мы применяем жадный алгоритм: каждый раз на чашку весов ставим гирьку наибольшего веса такую, чтобы общий вес гирь не превзошёл m.

Если же гирька в 1 г используется при взвешивании, то, рассуждая точно так же, можно взвесить любой груз от 1 до $\pi^2/6$ г.

63. Не существует.

Решение. Рассмотрим n-ю частичную сумму ряда $S_n = \sum_{k=1}^n \frac{\pi(k)}{k^2}$. При замене $\pi(k)$ на k, $k=1,2,\ldots,n$, данная сумма не увеличивается (по транснеравенству). Значит, $S_n \geqslant \sum_{k=1}^n \frac{k}{k^2} = \sum_{k=1}^n \frac{1}{k}$. Получилось, что S_n не меньше частичной суммы гармонического ряда. Отсюда и вытекает расходимость рассматриваемого ряда.

64. Может.

Решение. Выберем какое-нибудь число q, 0 < q < 1 и будем строить такие последовательности, что $\min(a_n, b_n) = q^n$. Этим будет обеспечена сходимость ряда $\sum \min(a_n, b_n)$.

Для обеспечения расходимости рядов $\sum a_n$ и $\sum b_n$, будем в каждом из них чередовать участки из возрастающих степеней q и стационарные участки:

n	1	2	 m_1	$m_1 + 1$	 $m_1 + m_2$
a_n	q	q	 q	q^{m_1+1}	 $q^{m_1+m_2}$
b_n	q	q^2	 q^{m_1}	q^{m_1}	 q^{m_1}

n	$m_1 + m_2 + 1$	 $m_1 + m_2 + m_3$	$m_1 + m_2 + m_3 + 1$	
a_n	$q^{m_1+m_2}$	 $q^{m_1+m_2}$	$q^{m_1+m_2+m_3+1}$	
b_n	$q^{m_1+m_2+1}$	 $q^{m_1+m_2+m_3}$	$q^{m_1+m_2+m_3}$	

Длины стационарных участков m_1, m_2, \dots можно брать сколь угодно большими, добиваясь этим расходимости рядов. Например, достаточно выполнения неравенств

$$m_1q > 1;$$
 $m_2q^{m_1} > 1;$ $m_3q^{m_1+m_2} > 1;$

65. Можно. Приведём пример требуемой расстановки чисел.

Две перпендикулярные друг другу клетчатые диагонали, выделенные цветом на рисунке, делят остальную клетчатую плоскость на 4 части: левую L, правую R, верхнюю U и нижнюю D.

Расставим в L и R все отрицательные целые числа, в U и D все положительные целые числа, а по диагоналям все остальные числа. Возможность такой расстановки обеспечивается счётностью соответствующих множеств.

Любая строка содержит бесконечное число отрицательных целых чисел и лишь конечное число других чисел (они расположены от одной диагонали до другой диагонали). Поэтому сумма по любой строке равна $-\infty$. В то же время любой столбец содержит бесконечное число натуральных чисел и лишь конечное число других чисел (они вновь расположены от одной диагонали до другой диагонали). Значит, сумма по любому столбцу равна $+\infty$.

Источники задач

Вступительные экзамены в Школу анализа данных Яндекса [10]: 2-4, 7-9, 14-16, 18-20, 22, 23, 27, 30, 33-36, 38, 39, 41, 45, 48, 51-54, 58, 61.

Олимпиады, проводящиеся в Южно-Уральском университете [6-9]: 1, 5, 6, 10-13, 24-26, 28, 29, 31, 37, 40, 42-44, 46, 47, 49, 50, 55-57, 60, 62-65.

Турнир математических боёв ФПМИ МФТИ: 10, 49, 60, 65.

Всероссийский студенческий турнир математических боёв (организатор Тульский педагогический университет им. Л. Н. Толстого [1, 2]: 21, 56.

Открытая международная студенческая Интернет-олимпиада (OHO — Open International Internet-Olympiad) по математике (Поволжский технический университет, Йошкар-Ола, Ариэльский университет, Израиль): 26, 31.

Литература

- [1] Игнатов Ю.А. Всероссийские студенческие турниры математических боёв. Тула, 2002-2015 В 2-х ч. Часть І / Ю.А. Игнатов, В.А. Шулюпов, И.Ю. Реброва и др. Тула: Изд-во ТГПУ им. Л.Н. Толстого, 2016.-148 с.
- [2] Игнатов Ю.А. Задачи студенческих математических боёв / Ю.А. Игнатов, В.А. Шулюпов, А.Ю. Эвнин. Челябинск: Изд-во ЮУрГУ, 2005. 43 с.
- [3] Эвнин А.Ю. Метод масс в задачах // Математическое образование. 2015. № 1(73). С. 27–47.
- [4] Эвнин А.Ю. Задачи по теории вероятностей на студенческих олимпиадах / А.Ю. Эвнин, Э.Ю. Лернер, Ю.А. Игнатов, И.С. Григорьева // Математическое образование. 2017. № 4(84). С. 45–62.
- [5] Эвнин А.Ю. Задачи по линейной алгебре на студенческих олимпиадах / А.Ю. Эвнин, Ю.А. Игнатов // Математическое образование. 2019. № 3(91). С. 26–48.
- [6] Эвнин А.Ю. Математический конкурс в $OVp\Gamma V$ 2017—2019 гг. / А.Ю. Эвнин. Челябинск: Издательский центр $OVp\Gamma V$, 2019. 108 с.
- [7] Эвнин А.Ю. Математические олимпиады в ${\it HOYp}\Gamma {\it Y}$ 2010–2015 гг. / А.Ю. Эвнин. Челябинск: Издательский центр ${\it HOYp}\Gamma {\it Y}$, 2016. 63 с.
- [8] Эвнин А.Ю. Сто пятьдесят красивых задач для будущих математиков / А.Ю. Эвнин. М.: ЛЕНАНД, 2018. 224 с.
- [9] Эвнин А.Ю. *Ещё 150 красивых задач для будущих математиков* / А.Ю. Эвнин. М.: ЛЕНАНД, 2018. 216 с.
- [10] Решения вступительных испытаний в ШАД URL: https://efiminem.github.io/supershad/

Эвнин Александр Юрьевич, доцент кафедры прикладной математики и программирования Южно-Уральского государственного университета, кандидат педагогических наук.

E-mail: graph98@yandex.ru