2020 Digital IC Design Lab 5: Image Display Control

1. Introduction

請完成一影像顯示控制(Image Display Control)電路設計,其架構如圖一。此控制電路,可依指定之操控指令,使顯示端的影像進行影像平均(Average)、X軸及Y軸鏡像(Mirror)與水平及垂直方向的平移(Shift)功能。本控制電路有 5 只信號輸入(cmd,cmd_valid,IROM_Q,clk,reset)及 7 只信號輸出(IROM_EN,IROM_A,IRB_RW,IRB_D,IRB_A,busy,done),關於各輸入輸出信號的功能說明,請參考表一。

2. Design Specifications

2.1 Block diagram

圖一、系統方塊圖

信號名稱	輸出/入	位元寬度	說明	
reset	input	1	高位準非同步(active high asynchronous)之系統重置信號。 說明:本信號應於系統啟動時送出。	
clk	input	1	時脈信號。 說明:此系統為同步於時脈正緣(posedge)之同步設計。	
cmd	input	4	指令輸入信號。 說明:本控制器共有八種指令輸入,相關指令說明請參考表 二。指令輸入只有在 cmd_valid 為 high 及 busy 為 low 時為 有效指令	
cmd_valid	input	1	讀寫控制訊號。 說明:當本信號為 high 時表示 emd 指令為有效指令輸入。	
IROM_Q	input	8	Image ROM 八位元資料輸出埠。	
IROM_A	output	6	IROM六位元位址信號。	
IROM_EN	output	1	IROM 致能控制訊號。 說明:當本信號為 low 時,表示是將啟動 IROM 進行讀取; 信號為 high 時,表示將關閉 IROM。	
busy	output	1	系統忙碌訊號。 說明:當本信號為 high 時,表示此控制器正在執行現行指令 (current),而無法接受其他新的指令輸入;當本信號為 low 時,系統會開始輸入指令。reset 時,default 設定為 high。	
done	output	1	當控制器完成寫入 IRB 時,將 done 設為 high 表示完成。	
IRB_A	output	6	IRB六位元位址信號。	
IRB_D	output	8	IRB八位元資料輸入埠。	
IRB_RW	output	1	IRB讀寫控制訊號。(本試題只有使用寫入功能) 說明:當本信號為 low 時,表示是將啟動 IRB 進行寫入	

表一、各輸入輸出信號功能

2.2 Image ROM(IROM)與Image Register Bank(IRB)規格描述

本題使用到兩個記憶體模組,一為唯讀記憶體(ROM)格式另一為單埠 Register file格式。Image ROM(IROM)模組的記憶體寬度為8位元,而記憶體深度 為64個word。 Image Register Bank(IRB)模組的記憶體寬度為8位元,而記憶體深 度也為64個word。如下圖二所示。

圖 二、系統功能圖

2.3 系統功能描述

當 reset 結束後,影像顯示控制器之輸入端從 IROM 讀取一張 8x8 大小的影像。資料影像顯示控制器必須處理使用者輸入之指令,取得顯示相關之座標(origin)及資料參數,使得顯示端達到平均、平移以及鏡像功能,並將經過指令處理完的影像資料寫入 IRB,如圖三所示。

圖 三、系統功能圖

2.3.1 輸入與輸出端之影像及參數規範

[影像輸入]

提供輸入端影像資料存至IROM。此影像為8x8共64筆測試樣本,每筆樣本為8位元資料,並且依左而右;由上而下,同學必須由IROM讀取影像資料,並且依左而右;由上而下存至影像控制電路中。(如圖三所示資料,輸入的順序為 0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f,10,……,3d,3e,3f)

註:以下僅為圖例示範,詳細輸入影像值未必如下圖四所示。

圖 四、輸入端影像

[影像輸出]

輸出端影像為8x8共64筆樣本輸出,每筆樣本為8位元資料。並且依由左而右;由 上而下,且以序列(Serial)的方式循序寫入IRB內。(如圖五所示資料)。

註: 以下僅為圖例示範,詳細輸入影像值未必如下圖五所示。

圖 五、輸出端影像資料

[操作點]

操作點(operation point)指的是在影像資料的座標點,在操作點的上下左右四格為操作影像資料,控制器將使用操作影像資料來運算。本試題已定義輸入端影像之座標軸。輸入端影像之水平方向為 X軸,垂直方向為 Y軸。此外, X軸與 Y軸座標範圍為0~+8。(如圖六所示,為確保操作影像資料不超過對應輸入影像邊界,因此限制原點之X軸與Y軸範圍最大為+1~+7)。同學須根據此座標軸,進行顯示端的畫面,進行顯示端的畫面平移(Shift)功能設計。

註:本試題規定讀入控制器後影像資料初始操作點座標為(4,4),如下圖六所示。

圖 六、輸入端影像操作點

2.3.2 影像顯示控制器功能規範

[指令定義]

影像控制器電路控制指令。輸入指令(cmd)所對應之功能如表二所示。

cmd編號	控制指令說明	
0	Write	
1	Shift Up	
2	Shift Down	
3	Shift Left	
4	Shift Right	
5	Average	
6	Mirror X	
7	Mirror Y	
8	Reset_XY	

9	Enhance	
A	Decrease	
В	Threshold	
С	Inverse Threshold	

表 二、輸入指令功能表

■ 寫入(Write)

▶ 當執行寫入(Write)指令時,控制器會依由左而右;由上而下將影像資料寫入 IRB。

■ 畫面上移(Shift Up)

- ▶ 上移顯示區塊。執行此Shift Up模式,將使操作點的Y減少1,但Y軸座標最小不可低於1。
- ▶ 當Y座標等於1時,倘若再收到上移指令,則Y軸座標將仍維持為1,操作點維持不變。

■ 畫面下移(Shift Down)

- ▶ 下移顯示區塊。執行此Shift Down模式,將使操作點的Y軸增加1,但Y軸座標最大不可大於7。
- ▶ 當Y座標等於7時,倘若再收到下移指令,則Y軸座標將仍維持為7,操作點維持不變。

■ 畫面左移(Shift Left)

- ▶ 左移顯示區塊。執行此Shift Left模式,將使操作點的X軸刪減1,但X軸座標最小不可低於1。
- ▶ 當X座標等於1時,倘若再收到左移指令,則X軸座標將仍維持為1,操作點維持不變。

■ 畫面右移(Shift Right)

- ► 右移顯示區塊。執行此Shift Right模式,將使操作點的X軸增加1,但X軸座標最小不可大於7。
- ▶ 當X座標等於7時,倘若再收到右移指令,則X軸座標將仍維持為7,操作點維持不變。

■ 影像資料平均(Average)

➤ 本題定義,當執行平均(Average)指令時,將執行目前操作點座標之影像資料 取近似平均數之計算,即將目前座標所對應的4筆影像資料相加之後再除以4,當 有小數點時則以無條件捨去法處理(例如(a+b+12+13)/4=14.5,即輸出14),輸出影 像資料4筆皆輸出計算後之近似平均數,並改變原始影像資料。如圖七所示。

圖 七、取近似平均數影像輸出

■ 影像資料X軸鏡像(Mirror X)

▶ 本題定義,當執行X軸鏡像(Mirror X)指令時,將輸出目前操作點座標之影 像資料皆以目前座標對X軸翻轉,並改變原始影像資料。如圖八所示。

圖八、X軸鏡像資料影像輸出

■ 影像資料Y軸鏡像(Mirror Y)

➤ 本試題定義,當執行Y軸鏡像(Mirror Y)指令時,將輸出目前操作點座標之影 像資料皆以目前座標對Y軸翻轉,並改變原始影像資料。如圖九所示。

圖九、Y軸映像資料影像輸出

■ 畫面回到中央(Reset_XY)

▶ 操作點的X座標、Y座標回到(4,4)。

■ 增強(Enhance)

》 對操作點旁邊 4 個影像資料同時加 64_{10} 。注意,如果超過 255_{10} ,以 255_{10} 為最終結果。

50	60
70	80

•		
114	124	
134	144	

■ 減少(Decrease)

》 對操作點旁邊 4 個影像資料同時減 64_{10} 。注意,如果低於 0_{10} ,以 0_{10} 為最終結果。

70	80
90	100

	•		
6		16	
2	6	36	

■ 二值化(Threshold)

▶ 對操作點旁邊 4 個影像資料同時做判斷如果大於12810設為25510,否則設 0

200	200
50	20

255	255		
0	0		

■ 反向二值化(Inverse Threshold)

ightharpoonup 對操作點旁邊 4 個影像資料同時做判斷如果小於 128_{10} 設為 255_{10} ,否則設 0

200	200
50	20

0		0		
	255		255	

2.4 時序規格圖

- 重置(Reset)後之時序規格圖,如圖十所示。
- ▶ 在電路重置(Reset)之後,控制器將會由IROM讀取64筆影像資料。
- ► 當IROM_EN為low時,表示啟動IROM,即可輸入位址信號讀取IROM內的影像資料。
- ► 在整個處理過程中,busy皆維持為high。並在讀取完成後,將busy設回low以接受新指令輸入。

- 其他控制指令(average、shift up、shift down、shift left、shift right)之時序規格 圖,如下圖十一所示。
- ► 在整個處理過程中,busy皆維持為high。並在輸出完成後,將busy設回low以接受新指令輸入。

圖十一、其他控制指令之時序規格圖

- 寫入指令(write)之時序規格圖,如下圖十二所示。
- ▶ 執行寫入指令時控制器會將處理完的影像資料寫入IRB。
- ▶ 當IRB_RW為Low時,表示對IRB寫入,即可輸入位址信號將影像資料寫入 IRB。
- ▶ 在整個處理過程中,busy皆維持為high。並在輸出完成後,將busy設回low以接受新指令輸入。
- ► 寫入完成後,並將done信號設為high,表示寫入完成,此時testfixture會拿寫入 IRB 的資料與golden pattern比對。

2.5 IROM與IRB之時序規格

IROM 讀取動作主要是以IROM_EN 啟動IROM 後,輸入address 讀取資料,其資料讀取之波形時序圖,如下圖十三所示。特別注意若沒有要進行讀取時,請將IROM_EN 保持為high。最後,時序數值整理於表三。

圖十三、IROM 讀取之時序規格圖

表三、IROM 時序參數表

Symbol	Description	Min	Unit
t _A	Access time	1.16	ns
t _{cs}	Chip Enable setup time	0.34	ns
t _{ch}	Chip Enable hold time	0	ns
t _{as}	Address setup time	0.29	ns
t _{ah}	Address hold time	0	ns

IRB 讀取動作主要是以IRB_RW 這個信號來控制,其資料讀取之波形時序圖,如下圖十四所示。特別注意若沒有要進行寫入時,請將IROM_RW 保持為low。最後,時序數值整理於表四。

圖十四、寫入指令之時序規格圖

表四、IRB 時序參數表

Symbol	Description	Min	Unit
tws	Write Enable setup time	0.24	ns
$t_{ m wh}$	Write Enable hold time	0	ns
t _{as}	Address setup time	0.19	ns
t _{ah}	Address hold time	0.05	ns
t _{ds}	Data setup time	0.11	ns
t _{dh}	Data hold time	0	ns

設計檔案說明

1. 以下表六為提供的設計檔案

檔名	說明					
testfixture .v	測試樣本檔(testbench)。此測試樣本檔定義了時脈週期與測試樣本之輸入信號,module名稱為test					
lcd_ctrl.v (lcd_ctrl.vhd)	參賽者影像顯示控制器lcd_ctrl的設計檔範本,已包含系統輸/出入埠之宣告注意!!!設計者繳交之檔案,包含檔名、top module name、port name皆不能更改,在評分時因為檔名或是top module name及port name不同之問題而無法模擬,將視為設計錯誤					
ROM.v	ROM模擬檔 (simulation model)					
IRB.v	Register Bank模擬檔 (simulation model)					
cmd1.dat	第一組測試樣本之指令					
cmd2.dat	第二組測試樣本之指令					
cmd3.dat	第三組測試樣本之指令					
image1.dat	第一組測試樣本輸入檔案					
tb1_goal.dat	第一組測試樣本之IRB比對檔					
image2.dat	第二組測試樣本輸入檔案					
tb2_goal.dat	第二組測試樣本之IRB比對檔					
image3.dat	第三組測試樣本輸入檔案					
tb3_goal.dat	第三組測試樣本之IRB比對檔					

測試樣本

共提供三組測試樣本,為方便同學除錯之用,將測試樣本之影像資料及指令輸入詳列如下:

● 測試樣本一(tb1)

■ 相關資料: image1.dat, cmd1.dat, tb1_goal.dat

■ 影像資料

0	1	2	3	4	5	6	7
8	9	a	b	c	d	e	f
10	11	12	13	14	15	16	17
18	19	1a	1b	1c	1d	1e	1f
20	21	22	23	24	25	26	27
28	29	2a	2b	2c	2d	2e	2f
30	31	32	33	34	35	36	37
38	39	3a	3b	3c	3d	3e	3f

■ 指令輸入順序:

shift up, average, shift left, mirror x, shift down, shift right, mirror y, write

● 測試樣本二(tb2)

■ 相關資料: image2.dat, cmd2.dat, tb2_goal.dat

■ 影像資料:

ff	36	e7	f0	55	32	75	42
18	20	57	30	eb	af	ec	11
61	49	93	22	67	a0	05	c5
28	44	62	66	cc	76	97	79
56	28	09	ff	40	18	80	33
e6	f0	e9	ea	87	dd	ed	95
78	d4	d3	bb	f4	77	52	c 3
c4	aa	b5	92	98	ee	00	a9

■ 指令輸入順序:

shift up ,shift up ,mirror y ,shift up ,mirror x ,shift up ,shift left ,shift down ,shift

left ,average ,shift left ,mirror y ,shift down ,mirror x ,shift right ,average ,shift down ,mirror x ,shift right ,average ,shift right ,mirror x ,shift right ,mirror x ,shift right ,mirror x ,shift down ,average ,shift right ,mirror x ,shift right ,mirror y ,shift up ,shift up ,shift up ,shift left ,mirror x ,shift up ,average ,mirror y ,shift right ,mirror y ,write

● 測試樣本三(tb3)

■ 相關資料: image3.dat, cmd3.dat, tb3_goal.dat

■ 影像資料

96	32	0	0	0	0	96	32
C8	40	0	0	0	0	C8	40
0	0	37	37	0	0	0	0
0	0	37	9B	9B	0	0	0
0	0	0	9B	9B	C8	0	0
0	0	0	0	0	0	0F	0
0	0	0	0	0	64	C8	0
0	0	0	0	0	0	0	0

■ 指令輸入順序:

reset_xy ,shift right ,shift down ,enhance ,shift right ,shift down ,decrease ,reset ,shift right ,shift right ,shift up ,shift up ,shift up ,threshold , reset_xy , shift left , shift left , shift up ,shift up ,inverse threshold ,write

使用 modelsim 模擬,在 compile完後,使用下面指令來選擇要跑哪個測試pattern:

vlog testfixture.v +define+tb1