新型學習演算法心臟病健康預測

109306026 李慈琳109306073 莊詠婷

報告架構

資料集介紹

主題: 心臟疾病預測

X: 21個attributes (Numerical)

BMI, Smoker, Alcohol, Edcuation, Income...

Y: 1個attribute (Binary) 來源: KAGGLE

training data set	normal sample	80%	80%
	abnormal sample	20%	
testing data set	normal sample	80%	20%
	abnormal sample	20%	

模型初始參數(環境)

環境: Jupyter notebook

語言: Pytorch

模型初始設定:

- Sequentital model
- Two layer nenural, one hidden node
- Activation Funtion: Relu
- Optimizer: Adam
- Loss: BCELoss

MODULE(ISWAN)

The ISWAN algorithm

Why: k值很多個

Initializing_1_WT

Weight_Tuning_LG_UA

Isolating_Ri_ZG

Analogizing_Ri_LG1

Network_tuning_4

MODULE(ISWAN)

Weight_Tuning_LG_UA

重要參數:

epsilon(實驗設計)

learning rate(*1.05, *0.95)

MODULE(ISWAN)

A rule-based mechanism

The analogizing_Ri_LG1_SO_SU module

Step 1: Use the isolating_Ri_ZG module to obtain a small number ζ and an m-vector γ of length one such that $\gamma^T(\mathbf{x}^c - \mathbf{x}^\kappa) \neq 0 \ \forall \ c \in I - \{\kappa\} \ AND \ (\zeta + \gamma^T(\mathbf{x}^c - \mathbf{x}^\kappa))^* (\zeta - \gamma^T(\mathbf{x}^c - \mathbf{x}^\kappa)) < 0 \ \forall \ c \in I - \{\kappa\}.$

Step 2: Let $p+3 \rightarrow p$, add three new hidden nodes $p-2^{th}$, $p-1^{th}$ and p^{th} to the existing SLFN, and then assign their associated weights in the following way:

$$\square \mathbf{w}_{p-2}^{H} = \mathbf{w}_{p-2}^{H} = \mathbf{w}_{p-2}^{H} = \mathbf{\gamma}$$

$$\square w_{p-2}^o = w_p^o = \frac{y^{\kappa} - w_0^o - \sum_{i=1}^{p-3} w_i^o a_i^{\kappa}}{\zeta}; w_{p-1}^o = \frac{-2(y^{\kappa} - w_0^o - \sum_{i=1}^{p-3} w_i^o a_i^{\kappa})}{\zeta}$$

Isolating_Ri_ZG

新增:

Hidden node的數量限制

loss_criteria = 0.25, Hidden node限制50顆

路徑次數

Green = 0

Blue = 0

Red = 1978

Green - network

Blue

-Weight - analogizing-network

Red - Weight - network

loss_criteria = 0.14, Hidden node限制50顆

路徑次數

Green = 0

Blue = 1885

Red = 93

Green - network

Blue

-Weight - analogizing-network

Red - Weight - network

loss_criteria = 0.12, Hidden node限制50顆

Green = 0

Blue = 1429

Red = 549

Green - network

Blue

- Weight - analogizing - network

Red - Weight - network

Insight

- 超參數調整
- 資料複雜度
- 模型路徑分析

謝謝大家

loss_criterion = 0.12, Hidden node限制50顆

