Lógica

Mauro Polenta Mora

CLASE 18 - 09/07/2025

Deducción natural en lógica proposicional

Introducción

- Definimos inductivamente el conjunto de las derivaciones DER_P de la lógica de predicados.
- Caso base: derivación trivial (idem PROP).
- Para los conectivos: las mismas reglas de introducción y eliminación de PROP.
- Para los cuantificadores: se agregan reglas de introducción y eliminación.

Reglas para \forall

Regla de introducción

- Hipótesis; $\delta_1, \dots, \delta_n, x$ es una variable fresca.
- Tesis: Para todo x vale α .
- Demostración: Probamos α usando $\delta_1, \dots, \delta_n$. Como x no aparece en $\delta_1, \dots, \delta_n$ la prueba es independiente de x. Luego, hemos probado α para cualquier x, usando $\delta_1, \dots, \delta_n$.

$$\delta_1, \ldots, \delta_n$$

$$\vdots$$

$$\frac{\dot{\alpha}}{(\forall x)\alpha} I_{\forall}(*)$$

Figure 1: Figura 1

 $(*)\quad x$ no ocurre libre en las hipótesis $\delta_1,\dots,\delta_n.$

Regla de eliminación

- Hipótesis: $\delta_1, \dots, \delta_n$ y t el nombre de un término.
- Tesis: El término t cumple la propiedad α .
- Demostración: Probamos $(\forall x)\alpha$ usando $\delta_1, \dots, \delta_n$. Luego, vale $\alpha[t/x]$.

Figure 2: Figure 2

(*) t debe estar libre para x en α .

Reglas para ∃

Regla de introducción

- Hipótesis: $\delta_1, \dots, \delta_n$.
- Tesis: Algún individuo cumple la propiedad α .
- Demostración: Pruebo que α vale para cierto t, usando δ_1,\dots,δ_n . Luego, existe un elemento para el cual vale α

$$\delta_1, \dots, \delta_n \\
\vdots \\
\frac{\alpha[t/x]}{(\exists x)\alpha} I_{\exists}(*)$$

Figure 3: Figura 3

(*) t debe estar libre para x en α .

Regla de eliminación

- Hipótesis: δ_1,\dots,δ_n , algún individuo cumple la propiedad α y $x\notin FV(\{\delta_1,\dots,\delta_n\})$
- Tesis: Se cumple β
- Demostración: Asumimos que x cumple α , probamos β usando δ_1,\dots,δ_n y α . Luego, hemos probado β , usando δ_1,\dots,δ_n y $(\exists x)\alpha$

Figure 4: Figura 4

(*) x no ocurre libre ni en β ni en las hipótesis $\delta_1, \dots, \delta_n$.

Observación importante

Una derivación para esta lógica, ya no es correcta solo si logramos encontrar un árbol en DER_P con la forma indicada. Ahora también tenemos que justificar el porque cada paso con las reglas de cuantificadores es correcto (lo visto con (*)). Más adelante veremos ejemplos como para entender como realizar esto correctamente.

Consecuencia sintáctica

Sea $\Gamma \subseteq FORM$ y $\varphi \in FORM$. Decimos que φ es consecuencia sintáctica de Γ o que φ se deriva de Γ sii existe $D \in DER_P$ tal que $C(D) = \varphi$ y $H(D) \subseteq \Gamma$.

Notación: - $\Gamma \vdash \varphi$ se lee φ se deriva de Γ . - $\vdash \varphi$ se lee φ es teorema.

Restricciones sobre las variables

Cuando introducimos las reglas de introducción y eliminación de \forall y \exists , estas vinieron con varias restricciones sobre variables.

Veamos algunos ejemplos de porque necesitamos estas restricciones:

Ejemplo 1

Figure 5: Figura 5

Figure 6: Figura 6

Figure 7: Figure 7

Es incorrecta porque x está libre en la conclusión de la eliminación de $(\exists x)P_1(x)$

Figure 8: Figura 8

Ejemplo 2

Ejemplo 3

Ejemplo 4

Restricciones y alcance

- Hay que recordar que las hipótesis canceladas, en realidad, son hipótesis normales de subderivaciones.
- Son hipótesis normales (abiertas, sin cancelar) desde donde aparecen hasta la regla que las cancela y por lo tanto, valen las restricciones en todos las reglas que se utilicen entre esos lugares.

Es incorrecto porque la hipótesis $P_1(x)$ está abierta desde donde aparece hasta la regla que la cancela.

Figure 9: Figura 9

Derivaciones de ejemplo

Ejemplo 1

Veamos que $\vdash (\forall x_1)(\forall x_2)\alpha \rightarrow (\forall x_2)(\forall x_1)\alpha$

$$\frac{\frac{[(\forall x_1)(\forall x_2)\alpha]^1}{(\forall x_2)\alpha} \stackrel{E\forall (****)}{=} \frac{(\forall x_2)\alpha}{\frac{\alpha}{(\forall x_1)\alpha} \stackrel{E\forall (****)}{I\forall (**)}}{\stackrel{I\forall (*)}{=} \frac{(\forall x_2)(\forall x_1)\alpha} I^{\forall (*)}}{= \frac{(\forall x_1)(\forall x_2)\alpha \rightarrow (\forall x_2)(\forall x_1)\alpha}{= \frac{(\forall x_1)(\forall x_2)\alpha \rightarrow (\forall x_2)(\forall x_1)\alpha} I^{\rightarrow (1)}}$$

Figure 10: Figura 10

Este es el primer paso. Ahora tenemos que demostrar que cada aplicación de las reglas de cuantificadores, está bien aplicado. Veámoslo:

- $(*)I\forall$: La regla está bien aplicada porque x_2 está libre en las hipótesis abiertas a este punto:
 - $-(\forall x_1)(\forall x_2)\alpha$
- $(**)I\forall$: La regla está bien aplicada porque x_1 está libre en las hipótesis abiertas a este punto:
 - $-(\forall x_1)(\forall x_2)\alpha$
- $(***)E\forall$: La regla está bien aplicada porque x_2 está libre para x_2 en α .
- (****) $E \forall$: La regla está bien aplicada porque x_1 está libre para x_1 en α .

Con esto, la derivación es válida.

Ejemplo 2

Veamos que $\vdash (\exists x_1)(\exists x_2)\alpha \rightarrow (\exists x_2)(\exists x_1)\alpha$

eamos que
$$\vdash (\exists x_1)(\exists x_2)\alpha \to (\exists x_2)(\exists x_1)\alpha$$

$$\frac{[\alpha]^3}{(\exists x_1)\alpha} I\exists (iv)$$

$$\frac{[(\exists x_2)\alpha]^2}{(\exists x_2)(\exists x_1)\alpha} I\exists (iii)$$

$$\frac{[(\exists x_2)(\exists x_2)(\exists x_1)\alpha}{(\exists x_2)(\exists x_1)\alpha} E\exists^{(3)}(ii)$$

$$\frac{(\exists x_2)(\exists x_1)\alpha}{(\exists x_1)(\exists x_2)\alpha \to (\exists x_2)(\exists x_1)\alpha} I\rightarrow^{(1)}$$
Figure 11: Figura 11

- $(i)E\exists$ Es correcto porque:
 - $-x_1 \notin FV(C(D))$ que es lo mismo que decir que x_1 no está libre en la conclusión $-x_1 \notin FV(H(D))$ porque no hay hipótesis abiertas en este punto.
- $(ii)E\exists$ Es correcto porque:

 - $x_2 \notin FV(C(D))$ $x_2 \notin FV(H(D))$ porque no hay hipótesis abiertas en este punto.
- $(iii)I\exists$ Es correcto porque x_2 está libre para x_2 en $(\exists x_1)\alpha$
- $(iv)I\exists$ Es correcto porque x_1 está libre para x_1 en α