Yesh Patel Arqum Ahmed Project 4 report

Questions

Answers to the following questions, using complete sentences.

Is there a noticeable difference in the performance of the two algorithms? Which is faster, and by how much? Does this surprise you?

There is a noticeable difference between the performance of two algorithms. Dynamic algorithm is faster because it is Quadratic growth while exhaustive is exponential. It is not a surprise at all.

is Exhaustive is faster because it goes exponentially while dynamic runs in a linear manner. It is not a surprise at all.

Are your empirical analyses consistent with your mathematical analyses? Justify your answer.

The empirical analysis is consistent with mathematical analysis because empirical analysis shows that the Dynamic algorithm is faster with number of inputs and big-oh representation compared to the Exhaustive algorithms.

Is this evidence consistent or inconsistent with hypothesis 1? Justify your answer.

The evidence is consistent with hypothesis 1 because they provide the optimal solution for the problem by permuting over each set and finding the one that is the best for the scenario making it a feasible algorithm.

Is this evidence consistent or inconsistent with hypothesis 2? Justify your answer.

The evidence is consistent with hypothesis 2 because with increasing number of input size the algorithm takes more time meaning if the input size is big enough it will be slow enough to provide results in any kind of reasonable time making it unreasonable to use it for practical use.

	Psuedo code and Mathematical Analysis
Greedy	Algorithm
, , , , , , , , , , , , , , , , , , ,	positive "dollar amount" budget C Cinteges number
Containing	coins), and a vector V of a "ride" Objects,
	in minutes t>=0
	A vector 1 of ride objects drawn from V, such
the Presc	Sum of costs of the side items from Is is within sided dollar budget (and the Sum of the sides aximized.
	Vone / I
result - co	
time_co	st = 0'
index = 0	
	> 0) / n times
	=0 to n-1 do / (n-1+1) = n
4,	((V[i]>t/V[i]>c) > time-cost) / 4+4=8
	time_cost = a[i] >t /a[i] >c /3/4
	îndex = è
end	4; 4

	0	١.														
١.		dfo.		_ 1)	,									
\ \	l Me	- L	ost	- (<i>)</i>	/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	۸. ،	7	2 (-)	,	()			
ıt														13	3+3	<u> </u>
			ult-					_				/	/] 3		
		Ges	ult.	_ (0	Sł ·	t =	VC	inde	e× J	→	C	/	2.			
0	,d;	F														
			se C	\	, a C1'	()	L >	١>	.\		2					
				V . C	eyia	163	7 10	nded	ر ,							
end																
Ret	ЦØ	ا م	\													
S.C =	4	+ ^	\cdot (4n	+1	+6	+ 7	()								
-	. \	410	. (80	+9)										
			8,2													
			+0													
	_	<i>V</i> ()	, - 1		_											
0	C	<i>C</i>	9.	0												
P500	7	- 4	ה"	7 7	+4											
,					,			,								
lim			2 +00		_	つ	lin	, (+9)					
6-28-	,	(^²)	,			V-3(ቃ	[2	n)						
lim		16			. 4	, >	()	the	o fo f	070	82	+90	+4	6) (n	2)
<i>γ</i> -) <i>ω</i>	۵	7			<u> </u>	19										
					• •	10	gen	u 🔾 0								

٤×١	naus	tive	2 ,	Algo	, _{જે} (t	hm											
—											Λ	_					
			•									_			e gez		
0f	9011	ar	Coin	rs),	, 0	lnd	0)	vec	08	V	of	Λ,	્રાવ	c "	ObJe	cts	,
Con	taic	ing) (Jae	06	Μ	σσe	3	de	063	Tect:	٤ ١	whe	೮ ೬	Pacl	n di	łе
067	sect	, (λ=	٠, ٤)	t)	ha	s a	ุก	n te	ger	cos	t	f	don	uzs	<i>C</i> >	0
and	tì	me	in	Min	nte.	s t	>=	0									
Out	put		А	ve	tor)(of	vi	de 1	bJe	ıts	do	gwo	foo	m l	1,5	1ch
	l .														k is		
															t th		
	•			imi			•										
hos	:t:	Nlaa	e	/													
					n _	l	/	(20	-14	()	ے '	2^					
				ے ان ملا					•								
	^							2 - [L I) =	0						
												+ ma	~ (0):	ч	
		ודנט													7 -	,	
		a \		Or Q.O.	ve .	rus	n -	vac	\ L 8	ides	L1 J	J /	/				
	٠ ،	end															
	end	for		L a	C	L -	Δ										
				ate_					l								
				te_		e = C)	/									
				osk			l	, 1									
		bes	t_ 1	tine	- 0		/	/ l									

Sum vid	e-Vect	or Coand	idate,	, Candi	date.a	ost, Co	andidate-t	ine)/)
Sun_vid	e vect	or Cbes	t,be:	st_cost	e, bes	t-time) / 1	
if CC	andi dat	e_cost	7 4=	total	_ Cos	t) 1+	Max (4,0)=5
ìf				1 Can	ndidat	ie-tim	e > 3+	max(1)=4
		st. time		/ .				
		. candi	date	. /				
en	dit							
endif								
Return 1	est							
1.00400								
S.c= 1+ 2	0 (+ 1	11+4+	2+5))	`			
z 1 + 2 ⁿ	(473	12)						
= 20404	- 2 12	+ 1						

Pynanic max time
Riderector result /1
Vector T
for i=0 to 1 / (1-0+1) = 1+1
T. Push_back (vector double) / 2 for J=0 to n / (n-0+1) = n+1
T. at(i). Push_back (0.0) / 2 endfor
endfor
for j=1 to n (n-1+1) = n for j=1 to w (n-1+1) = n
if C3>= vides (i-1]-7 cost ()) /3+max (15,2)=18
if (T[:-1][]) = T[:-1][]-vides[:-1] = (ost()] + vides[:-1]-> time()) /8 + max(2,7)=15
else Trijrj = Tri-Jrj /2
T[i][J]: T[i-1][J-vides[i-1]->cost[)]+
endif
21se TE: 3[5] = TE: 17[5] / 2

endif
en) for
endfor
Col-Shift = total-cost
for (1-0 +1) - n
if [T[i] [(o) shift] != T[i-1] [(o) shift]) / 2 +max(s)
result -> Push back (rides [i-1]) /2 =>
(a) = Shift -= vides [i-1] -7 (ustc) /3
endif
endfo 6
seturn result
S_C= 2+ (0+1)(20+2) + 0(180)+1+70
$= 2 + 2n^2 + 2n + 2n + 2 + 18n^2 + 1 + 7n$
$= 200^2 + 110 + 5$
Proof: 2002+111+5 6 02
(2, 3)4(1, 2)(6)
$\frac{1}{0.200}$ $\frac{(200^{3}+4110^{4}6)^{2}}{(200^{2}+411)^{2}}$
-> lin 40 = 2030 Therefore, exist in n2
-> lin 40 = 2030 Therefore, exist in n2