

2018 Specialist Mathematics Trial Exam 1 Solutions © 2018 itute

Q1a | $y = x^2$, $y = \pm x^2$

Q1b
$$y = \pm x^2$$
, $\frac{dy}{dx} = \pm 2x$

Q2
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \tan^3 x \, dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \tan x \left(\sec^2 x - 1 \right) dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \left(\tan x \sec^2 x - \tan x \right) dx$$
$$= \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \tan x \sec^2 x \, dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{-\sin x}{\cos x} \, dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \tan x \, d \left(\tan x \right) + \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{1}{\cos x} \, d \left(\cos x \right)$$
$$= \left[\frac{\tan^2 x}{2} \right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} + \left[\log_e \left(\cos x \right) \right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} = 1 - \frac{1}{2} \log_e 2$$

Q3a
$$\overrightarrow{PQ} = \widetilde{\mathbf{b}} - \widetilde{\mathbf{a}}$$
, $\overrightarrow{AR} = 2\widetilde{\mathbf{b}} - 2\widetilde{\mathbf{a}} = 2(\widetilde{\mathbf{b}} - \widetilde{\mathbf{a}})$, $\overrightarrow{AR} = 2\overrightarrow{PQ}$
 $\therefore AR // PQ$ and $AR = 2PQ$

Q3b From part a, PQ // SR, $\therefore \overrightarrow{PQ} = n\overrightarrow{SR}$. Since R is the midpoint of CQ, and $\overrightarrow{SR} = \widetilde{d} - \widetilde{c}$, $\therefore \overrightarrow{PQ} = 2(\widetilde{d} - \widetilde{c})$

Q3c From parts a and b, $\overrightarrow{AR} = 2\overrightarrow{PQ}$ and $\overrightarrow{PQ} = 2\overrightarrow{SR}$, .: $\overrightarrow{AR} = 4\overrightarrow{SR}$, AR = 4SR, .: AS = 3SR, hence $AS : SR = \frac{AS}{SR} = 3$

http://www.learning-with-meaning.com/

Q4a A vector dependent of \tilde{p} is $m \tilde{p} = m(\tilde{i} - 2\tilde{j} + 3\tilde{k})$ where $m \neq 0$. By choosing m = 1.5, a possible vector is $1.5\tilde{i} - 3\tilde{j} + 4.5\tilde{k}$.

Q4b Let $x\tilde{i} + y\tilde{j} + z\tilde{k}$ be a vector independent of \tilde{p} . :: $(x\tilde{i} + y\tilde{j} + z\tilde{k}) \cdot (\tilde{i} - 2\tilde{j} + 3\tilde{k}) = 0$, x - 2y + 3z = 0Choose y = 1 and z = 1, .: x = -1, and the vector is $-\tilde{i} + \tilde{j} + \tilde{k}$. :: a unit vector independent of \tilde{p} is $\frac{1}{\sqrt{3}}(-\tilde{i} + \tilde{j} + \tilde{k})$. There are infinitely many other possible unit vectors.

Q5a
$$x = 2t$$
, $y = -\frac{1}{t+1}$, eliminating t , $y = -\frac{2}{x+2}$ for $x \ge 0$

x-intercept (0, -1), asymptote y = 0

Q5b Length =
$$\int_{5}^{10} \sqrt{(x')^2 + (y')^2} dt = \int_{5}^{10} \sqrt{4 + \frac{1}{(t+1)^4}} dt \approx \int_{5}^{10} 2 dt = 10$$

Note: $\frac{1}{(t+1)^4} \ll 4$ for large t .

Q6a
$$\frac{d}{dx} \left(\frac{1}{2} v^2 \right) = \frac{4 + v^2}{2}$$
, $\frac{dx}{d(v^2)} = \frac{1}{4 + v^2}$, $x = \log_e \left(4 + v^2 \right) + c$
 $v = 0$ when $x = 0$, $x = \log_e \left(\frac{4 + v^2}{4} \right)$, $v = \pm 2\sqrt{e^x - 1}$, $|v| = 2\sqrt{e^x - 1}$

Q6b $e^x - 1 \ge 0$, i.e. $x \ge 0$. The UFO travels from x > 0 towards x = 0 with decreasing speed. It stops momentarily at x = 0, reverses its direction and travels away from x = 0 with increasing speed.

http://www.learning-with-meaning.com/

Q7a
$$f(z) = z^4 + z^2 + 1 = z^4 + 2z^2 + 1 - z^2 = (z^2 + 1)^2 - z^2$$

= $(z^2 + z + 1)(z^2 - z + 1) = 0$:: $z = \frac{1}{2} \pm \frac{\sqrt{3}}{2}i$, $z = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$

Q7b
$$|z|=1$$
, $\theta = \pm \frac{\pi}{3}$, $\pm \frac{2\pi}{3}$

Q8 Net force is zero at constant speed and direction.

Refer to the following diagrams, $\tan \theta^{\circ} = \frac{\sqrt{3}}{3}$, $\theta = 30$

Q9a
$$E(X + 2Y) = E(X + X - 1) = E(2X - 1) = 2E(X) - 1 = 1.5$$

Q9b
$$Var(X + 2Y) = Var(2X - 1) = 2^2 \times Var(X) = 2$$

Q10a
$$\mu = 32$$
, $\sigma = 15$, $E(\overline{X}) = \mu = 32$, $sd(\overline{X}) = \frac{\sigma}{\sqrt{n}} = \frac{15}{10} = 1.5$

Q10b The distribution of \overline{X} is approximately normal, and $(29, 35) = (E(\overline{X}) - 2sd(\overline{X}), E(\overline{X}) + 2sd(\overline{X}))$

.:
$$Pr(29 < \overline{X} < 35) \approx 0.95$$

Please inform mathline@itute.com re conceptual and/or mathematical errors