Trayectorias y curvas Una trayectoria en \mathbb{R}^n es una aplicación $\mathbf{c}: [a,b] \to \mathbb{R}^n$; es una trayectoria en el plano si n=2 y una trayectoria en el espacio si n=3. La colección C de puntos $\mathbf{c}(t)$ cuando t varía en [a,b] se llama curva, y $\mathbf{c}(a)$ y $\mathbf{c}(b)$ son sus extremos. Se dice que la trayectoria \mathbf{c} parametriza la curva C. También decimos que $\mathbf{c}(t)$ traza C cuando t varía.

Si \mathbf{c} es una trayectoria en \mathbb{R}^3 , podemos escribir $\mathbf{c}(t) = (x(t), y(t), z(t))$ y llamamos a x(t), y(t) y z(t) funciones componentes de \mathbf{c} . Las funciones componentes en \mathbb{R}^2 o, en general, en \mathbb{R}^n se forman de modo similar. También vamos a considerar las trayectorias cuyo dominio es la recta real completa, como se puede ver en el siguiente ejemplo.

Ejemplo 3

La trayectoria $\mathbf{c}(t) = (t, t^2)$ traza un arco de parábola. Esta curva coincide con la gráfica de $f(x) = x^2$ (véase la Figura 2.4.4).

Figura 2.4.4 La imagen de $\mathbf{c}(t) = (t, t^2)$ es la parábola $y = x^2$.

Ejemplo 4

Un disco de radio R rueda hacia la derecha sobre una recta a velocidad v. Utilizar métodos vectoriales para hallar la trayectoria $\mathbf{c}(t)$ de un punto del disco que inicialmente se encuentra a una distancia r debajo del centro.

Solución

Colocamos el disco en el plano xy con su centro inicialmente en (0, R), de modo que la posición del centro en el instante t está dada por la trayectoria $\mathbf{C}(t) = (vt, R)$. (Véase la Figura 2.4.5.)

La posición del punto $\mathbf{c}(t)$ respecto del centro está dada por el vector $\mathbf{d}(t) = \mathbf{c}(t) - \mathbf{C}(t)$ que tiene el valor inicial $-r\mathbf{j}$ y gira en el sentido horario. La velocidad de rotación es tal que el disco da una vuelta completa cuando el centro se ha desplazado una distancia $2\pi R$ (igual a la longitud de la circunferencia del disco). Esto tarda un tiempo de $2\pi R/v$, de forma que la velocidad angular $d\theta/dt$ del disco es v/R. Puesto que la rotación es en el sentido horario, la función vectorial $\mathbf{d}(t)$ es de la forma

$$\mathbf{d}(t) = r \left(\cos \left[-\frac{v}{R} t + \theta \right] \mathbf{i} + \sin \left[-\frac{v}{R} t + \theta \right] \mathbf{j} \right)$$