- **40.** Sean $A = \{1, 2\}$ y $B = \{a, b, c\}$ dos conjuntos, donde a, b y c son elementos que consideramos distintos.
 - (1) Determina el número de aplicaciones inyectivas de A en B.
 - (2) Determina el número de aplicaciones suprayectivas de B en A.
- **Solución.** (1) En primer lugar, la imagen de una aplicación inyectiva $f:A\to B$ ha de asignar a $1\in A$ un elemento de B, esto se hace de tres maneras posibles; una vez se ha asignado la imagen de $1\in A$, la asignación a $2\in A$ de un elemento de B solo se puede hacer de dos formas posibles, con lo que el número de aplicaciones inyectivas es $3\cdot 2=6$.
- (2) En cuanto al número de aplicaciones suprayectivas de B en A, los dos elementos $1, 2 \in A$ han de tener preimágenes no vacías, de forma que la preimagen de 1 puede ser un conjunto unipuntual, $\{a\}$, $\{b\}$ o $\{c\}$ —en cuyo caso el resto de elementos de B necesariamente se ve forzado a tener 2 como imagen—, o un conjunto con dos elementos, $\{a,b\}$, $\{a,c\}$ o $\{b,c\}$ —en cuyo caso el restante elemento de B se ve forzado a tener 2 como imagen—, de modo que no cabe otra posibilidad—la preimagen de $1 \in A$ no puede ser vacía ni el total B— y el número de aplicaciones suprayectivas es 3+3=6.
- 41. Encuentra una aplicación biyectiva entre N y el conjunto de todos los enteros impares mayores que 13.

Solución. Una aplicación biyectiva entre \mathbb{N} y el conjunto de números enteros impares es claramente $n \mapsto 2n-1$, de forma que para que la imagen conste de enteros impares mayores que trece basta considerar $n \mapsto 2n+13$.

42. Escribe una definición explícita de aplicación biyectiva de \mathbb{N} en \mathbb{Z} .

Solución. Una posibilidad es mandar los naturales impares a los enteros no positivos y los naturales pares a los enteros positivos, de forma que tendremos que f(2n-1)=1-n—con lo que si denotamos m=2n-1, esto es, n=(m+1)/2, la función viene definida por f(m)=1-(m+1)/2— y f(2n)=n—de la misma forma si denotamos m=2n, esto es, n=m/2, la función viene definida por f(m)=m/2— para cada $n\in\mathbb{N}$.

Reescrita, la aplicación $f: \mathbb{N} \to \mathbb{Z}$ dada por la expresión

$$f(m) = \begin{cases} \frac{m}{2} & \text{si } m \text{ es par,} \\ \frac{1-m}{2} & \text{si } m \text{ es impar,} \end{cases}$$

para cada $m \in \mathbb{N}$, es una aplicación biyectiva por construcción.

43. Encuentra una aplicación biyectiva entre N y un subconjunto propio de sí mismo.

Solución. Claramente, un subconjunto de los números naturales propio es el de los números pares, $2\mathbb{N} = \{2n : n \in \mathbb{N}\}$, de forma que una biyección $f : \mathbb{N} \to 2\mathbb{N}$ sería claramente la dada por la expresión f(n) = 2n para todo $n \in \mathbb{N}$.

44. Proporciona un ejemplo de colección numerable de conjuntos finitos cuya unión sea no finita.

Solución. Un ejemplo consiste en la colección numerable de conjuntos de la forma $A_n = \{n\}$, cualquiera que sea $n \in \mathbb{N}$. Claramente, $\bigcup \{A_n : n \in \mathbb{N}\} = \mathbb{N}$, que no es finito.

45. Sean A y B dos conjuntos numerables. Demuestra en detalle que $A \cup B$ es un conjunto numerable.

Solución. Supongamos sin pérdida de generalidad que ambos A y B son conjuntos no vacíos, pues en tal caso la afirmación es trivial ya que si B es vacío, por ejemplo, $A \cup B = A$, que es numerable por hipótesis.

Dado que A y B son conjuntos numerables, existen, por definición, dos aplicaciones inyectivas $f:A\to\mathbb{N}$ y $g:B\to\mathbb{N}$.

Sean ahora $\varphi : \mathbb{N} \to \mathbb{N}$ y $\psi : \mathbb{N} \to \mathbb{N}$ las aplicaciones dadas por $\varphi(n) = 2n$ y $\psi(n) = 2n - 1$ para todo $n \in \mathbb{N}$. Nótese que $\varphi \circ f : A \to \mathbb{N}$ y $\psi \circ g : B \to \mathbb{N}$ siguen siendo aplicaciones inyectivas, pero tienen imágenes disjuntas.

Con todo ello, la aplicación $h:A\cup B\to \mathbb{N}$ dada por la expresión

$$h(x) = \begin{cases} (\varphi \circ f)(x) = 2f(x) & \text{si } x \in A, \\ (\psi \circ g)(x) = 2g(x) - 1 & \text{si } x \in B \setminus A, \end{cases}$$

para todo $x \in A \cup B$ es claramente una aplicación inyectiva.

Esencialmente, lo que hacemos es mandar los elementos de A a números naturales pares como antes lo hacía f a los números naturales en general, y los elementos de $B \setminus A$ a los números naturales impares como antes Lo hacía $g \upharpoonright B \setminus A$ a los números naturales en general.

En efecto, si $x, y \in A \cup B$ son dos elementos distintos, solo pueden darse los siguientes casos:

- (1) ambos se encuentran en A, esto es, $x, y \in A$; en tal caso, dado que $\varphi \circ f$ es inyectiva, $h(x) = (\varphi \circ f)(x) \neq (\varphi \circ f)(y) = h(y)$;
- (2) ambos se encuentran en B pero no en A, esto es, $x, y \in B \setminus S$; se razona de manera análoga;
- (3) uno de ellos se encuentra en A y otro en $B \setminus A$, supongamos sin pérdida de generalidad que $x \in A$ mientras que $y \in B \setminus A$; entonces h(x) es par y h(y) es impar, por lo que $h(x) \neq h(y)$.

Esto concluye la solución del ejercicio. Hay infinidad de formas de construir dichas aplicaciones, aunque con una basta para concluir que la unión de dos conjuntos numerables es numerable. \Box

46. Determina el número de elementos en $\wp(A)$, la colección de todos los subconjuntos del conjunto A, para cada uno de los siguientes casos: (1) $A = \{1, 2\}$; (2) $A = \{1, 2, 3\}$; (3) $A = \{1, 2, 3, 4\}$.

Solución. Resulta sencillo observar que

$$\wp\{1,2\} = \{\emptyset,\{1\},\{2\},\{1,2\}\},\$$

de forma que el cardinal de $\wp(S)$, es decir, la cantidad de elementos de $\wp(A)$, es 4. De la misma forma, se concluye que

$$\wp\{1,2,3\} = \{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\},$$

de forma que el número de elementos en este caso es 8. De la misma forma se puede concluir que $\wp\{1,2,3,4\}$ tiene 16 elementos.

47. Empleando el principio de inducción matemática, demuestra que si un conjunto A tiene $n \in \mathbb{N}$ elementos, entonces su conjunto de partes, $\wp(A)$, tiene 2^n elementos.

Solución. Si A es un conjunto con un elemento, entonces $\wp(A) = \{\emptyset, A\}$, de forma que se verifica que el conjunto de partes posee $2^1 = 2$ elementos.

Supongamos ahora que A tiene n+1 elementos y consideremos como hipótesis de inducción que todo conjunto con n elementos verifica que su conjunto de partes tiene 2^n elementos.

Para más simplicidad, sea $a_0 \in A$ un elemento cualquiera y construyamos el nuevo conjunto $B = A \setminus \{a_0\}$, el cual tiene claramente n elementos, pues hemos eliminado simplemente un elemento de A, arbitrariamente.

Un subconjunto de A o bien contiene a a_0 o bien no lo contiene. En otras palabras,

$$\wp(A) = \{ S \subseteq A : a_0 \in A \} \sqcup \{ S \subseteq A : a_0 \notin A \}.$$

La hipótesis de inducción nos proporciona hay 2^n subconjuntos que no contienen a a_0 , pues son exactamente los subconjuntos de B.

Además, nos propociona igualmente que hay 2^n subconjuntos que contienen a a_0 , pues son exactamente la uniones de $\{a_0\}$ y un subconjunto de B.

O bien, observando que la función

$$\{S \subseteq A : a_0 \in A\} \to \{S \subseteq A : a_0 \notin A\}, \quad S \mapsto S \setminus \{a_0\}.$$

es una biyección, pues es una función inyectiva que posee inversa, la cual es claramente:

$${S \subseteq A : a_0 \notin A} \rightarrow {S \subseteq A : a_0 \in A}, \quad S \mapsto S \cup {a_0}.$$

Por tanto, hay un total de $2^n + 2^n = 2 \cdot 2^n = 2^{n+1}$ subconjuntos de A, como queríamos probar. \square

48. Demuestra que la colección $\wp_f(\mathbb{N})$, formada por todos los subconjuntos finitos de \mathbb{N} , es numerable.

Observación Suponemos sabido que la unión de una cantidad numerable de conjuntos numerables es numerable (¿por qué?).

Solución. Comprobamos rigurosamente en el Ejercicio 47 que, cualquiera que sea $m \in \mathbb{N}$, el conjunto $\wp(\mathbb{N}_m)$ de partes de $\mathbb{N}_m = \{1, ..., m\}$, es finito, más aún, de cardinal 2^m .

Todo subconjunto finito de \mathbb{N} es un subconjunto de cierto \mathbb{N}_m para cierto m lo suficientemente grande, más concretamente, para m el máximo del subconjunto considerado. Es decir, si $A \subset \mathbb{N}$ es finito, entonces $A \in \wp(\mathbb{N}_m)$ para cierto $m \in \mathbb{N}$.

Por tanto,

$$\wp_{\mathbf{f}}(\mathbb{N}) = \bigcup \{A \subseteq \mathbb{N} : A \text{ finito}\} \subseteq \bigcup_{m=1}^{\infty} \wp(\mathbb{N}_m)$$

el cual es numerable, pues está contenido en una unión numerable de conjuntos numerables. De hecho, se tiene la igualdad en la anterior expresión. \Box