Lesson 2.1: Application Layer

CSC450 - COMPUTER NETWORKS | WINTER 2019-20

DR. ANDREY TIMOFEYEV

OUTLINE

- Foundation.
 - Architectures.
 - Processes.
 - Services.
 - Protocols.
- ·World Wide Web.
 - HTTP protocol.
 - Connection types.
 - HTTP message format.
 - Cookies.
 - Caching.

FOUNDATION: INTRO

•Communication for a network application takes place between end systems at the

application layer.

FOUNDATION: ARCHITECTURES

- •Network application architectures:
 - Client-server architecture.

• Peer-to-peer (P2P) architecture.

FOUNDATION: PROCESSES (1)

- •Application layer provides process-to-process communication by allowing messages exchange.
 - Process part of a program that is running within the end system.
- Network application consists of pairs of processes that send messages to each other.
 - Client process that initiates the communication.
 - **Server** process that **wait** to be contacted.
- •Two pieces of information needed to identify a process:
 - IP address of the host.
 - Port number of the process.
 - Identifier that specifies the process on the host.

FOUNDATION: PROCESSES (2)

- •Message sent from one process to another must go through underlying network.
- •Socket software interface that is used by process to send message into and receive message from the network.
 - Application Programming Interface (API) between the application and the network.

FOUNDATION: SERVICES

- •Two transport-layer protocols provide services to applications:
 - Transmission Control Protocol (TCP).
 - Connection-oriented.
 - Reliable data transfer.
 - Flow control.
 - Congestion control.
 - User Datagram Protocol (UDP).
 - Lightweight.
 - Connectionless.
 - Unreliable data transfer.

Application	Application-Layer Protocol	Underlying Transport Protocol
Electronic mail	SMTP [RFC 5321]	TCP
Remote terminal access	Telnet [RFC 854]	TCP
Web	HTTP [RFC 2616]	TCP
File transfer	FTP [RFC 959]	TCP
Streaming multimedia	HTTP (e.g., YouTube)	TCP
Internet telephony	SIP [RFC 3261], RTP [RFC 3550], or proprietary (e.g., Skype)	UDP or TCP

Internet applications and transport protocols

FOUNDATION: PROTOCOLS

- •Application-layer protocols define:
 - Type of messages exchanged.
 - Request messages / response messages.
 - Syntax of various messages.
 - Fields in messages and how they are delineated.
 - Semantics of the message fields.
 - Meaning of the information in the fields.
 - Rules on how process sends messages and responds to messages.
- Network application ≠ Application-layer protocol.
 - World Wide Web application vs. HTTP protocol.

WEB: OVERVIEW

- •Overview of Web components:
 - Web page (document) consists of objects.
 - Objects are files (e.g. HTML file, JPEG image, Java applet, video).
 - Web pages consist of base HTML-file, which includes several referenced objects.
 - Objects are addressable by single URL.
 - www.someschool.edu/someDept/pic.gif
 - Host name / file path.
 - Web browsers.
 - Request, receive and interpret Web objects.
 - Wed servers.
 - Store and send Web objects.

WEB: HTTP PROTOCOL (1)

•HyperText Transfer Protocol (HTTP) — Web's application-layer protocol.

• Defines how Web clients request Web pages from Web servers and how Web servers

transfer Web pages to clients.

Web browser – client side of HTTP.

• Web servers – server side of HTTP.

WEB: HTTP PROTOCOL (2)

- •HTTP runs on TCP transport-layer protocol.
 - Client initiates TCP connection to the server through socket.
 - Port number 80.
 - Server accepts TCP connection from client.
 - HTTP messages exchanged between browser and Web server.
 - TCP connection closed.
- •HTTP is **stateless** protocol.
 - Server maintains no information about past client requests.

WEB: HTTP CONNECTIONS (1)

- •HTTP provides two types of connections:
 - Non-persistent connection.
 - At most one object sent over TCP connection.
 - Connection then closed.
 - Requesting multiple objects requires multiple
 TCP connections.

- Persistent connection.
 - Multiple objects can be sent over single TCP connection between client and server.
 - **Default** HTTP mode.

WEB: HTTP CONNECTIONS (2)

- •Non-persistent connection.
 - User enters URL: www.someSchool.edu/someDepartment/home.index
 - Contains references for 10 objects.

- **1a.** HTTP client initiates TCP connection to HTTP server at www.someSchool.edu on port 80
- 2. HTTP client sends HTTP request message (containing URL) into TCP connection socket. Message indicates that client wants object someDepartment/home.index

- **5.** HTTP client receives response message containing html file, displays html. Parsing html file, finds 10 referenced jpeg objects
- **6.** Steps 1-5 repeated for each of 10 jpeg objects

- **1b.** HTTP server at host www.someSchool.edu waiting for TCP connection at port 80 "accepts" connection, notifying client.
- **3.** HTTP server receives request message, forms *response message* containing requested object, and sends message into its socket
- **4.** HTTP server closes TCP connection.

WEB: HTTP CONNECTIONS (3)

•Non-persistent connection.

- User enters URL: www.someSchool.edu/someDepartment/home.index
 - Contains references for 10 objects.
- HTTP response time:
 - 2 RTT to establish TCP connection.
 - "Three-way handshake" process.
 - File transmission time.
 - Repeated for all 11 objects.

WEB: HTTP CONNECTIONS (4)

- Persistent connection.
 - Server leaves connection open after sending response.
 - Subsequent HTTP messages between same client/server sent over open connection.
 - Client sends requests as soon as it encounters a referenced object.
 - Requests for objects are made back-to-back (pipelining).
 - Server closes a connection after a configurable timeout interval.

WEB: HTTP MESSAGE FORMAT (1)

•Two types of HTTP messages:

- Request messages.
 - Request line.
 - Header line.
- Example:

GET /somedir/page.html HTTP/1.1

Host: www.someschool.edu

Connection: close

User-agent: Mozilla/5.0

Accept-language: en

- Response messages.
 - Status line.
 - Header line.
 - Entity body (data).
- Example:

HTTP/1.1 200 OK

Connection: close

Date: Tue, 09 Aug 2011 15:44:04 GMT

Server: Apache/2.2.3 (CentOS)

Last-Modified: Tue, 09 Aug 2011 15:11:03 GMT

Content-Length: 6821

Content-Type: text/html

(data)

WEB: HTTP MESSAGE FORMAT (2)

- •Two types of HTTP messages:
 - Request messages.

General format of HTTP request message

Response messages.

General format of HTTP response message

WEB: HTTP MESSAGE FORMAT (3)

- •HTTP response message status codes:
 - 200 OK.
 - Request succeeded, requested object is later in this message.
 - 301 Moved Permanently.
 - Requested object moved, new location specified later in this message (Location:)
 - 400 Bad Request.
 - Request message is not understood by server.
 - 404 Not Found.
 - Requested document does not exist on this server.
 - 505 HTTP Version Not Supported.

WEB: COOKIES

- Cookies are used by Web sites to keep track of users.
- •Four main components:
 - Cookie header line in response message.
 - Cookie header line in request message.
 - Cookie file on client, managed by browser.
 - Back-end database at Web site.
- •Cookies are **controversial**, since they can potentially invade of **privacy**.

WEB: CACHING (1)

- •Web cache (proxy server) network entity that satisfies HTTP requests on the behalf of an origin Web server.
 - Cache is a server and a client at the same time.
- •Advantages of Web cache:
 - Reduces the response time for a client request.
 - Reduces traffic on access link to the Internet.
 - Web caches reduce traffic in Internet as a whole, improving performance for all applications.

Clients requesting objects through a Web cache

WEB: CACHING (2)

•Example:

- Link between network router and Internet = 15 Mbps.
- Average object size = 1 *Mbit*.
- Average request rate = 15 r/sec.

WEB: CONDITIONAL GET

- •Cache introduces the problem of stale objects.
 - Object housed in Web server might have been modified since the last copy was cached.
- Conditional GET HTTP request mitigates this issue.
 - Cache includes "If-Modified-Since:" header line into request message.
 - Equal to "Last-Modified:" header line of requested object.
 - If the object has **not been modified**, server sends an **empty response** message with "304 **Not Modified**" response status code.

SUMMARY

- •Client-server & peer-to-peer architectures.
- Process.
- Port number.
- Socket.
- Network application vs. Application-layer protocol.
- •HTTP protocol.
 - Connection types.
 - HTTP messages.
 - Request.
 - Reply.
 - Cookies.
 - Caching.
 - Conditional GET.