

Réseaux de neurone pour la vision par ordinateur

Deep learning lecture

Kevin Helvig, ONERA/DTIS / Aurélien Plyer, ONERA/DTIS kevin.helvig@onera.fr aurelien.plyer@onera.fr

retour sur innovation

Qu'est ce qui vous revient en tête ?

Loss/Perte : fonction qu'on va chercher à optimiser via notre réseau de neurones

Typiquement : une distance qu'on va chercher à minimiser

Est-ce que vous en avez en tête ?

Loss/Perte : fonction qu'on va chercher à optimiser via notre réseau de neurones

Typiquement : une distance qu'on va chercher à minimiser

- Est-ce que vous en avez en tête?

Cross-entropie

MSE/moindres carrés

L1/L2 (distances euclidiennes et variants)

Notion générale d'entraînement de modèle, backpropagation

Loss de classification : cross-entropie

Equivaut à chercher une frontière dont la distance entre tous les points est optimale

Loss de régression : norme L1

Equivaut à chercher la droite qui minimise l'écart entre tous les points

I - Les limites du MLP en vision

Première idée pour traiter des images : empiler les pixels en vecteurs 1D

I – Les limites du MLP en vision

Première idée pour traiter des images : empiler les pixels en vecteurs 1D

Petites matrices tabulaires, imagettes : ok

Images full HD = c'est non

I – Les limites du MLP en vision

Petites matrices tabulaires, imagettes : ok

Images full HD = c'est non

Autre problème : perte de cohérence spatiale de l'information

Comment capturer mieux l'information spatiale ? (données « 2-3D »)

La solution : un neurone qui capture un masque de l'image La convolution

La solution : un neurone qui capture un masque de l'image La convolution

a.

Convolution M*N (1 canal)

$$y_{i,j} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} x_{i+m,j+n} \cdot w_{m,n}$$

Convolution M*N (3 canal)

$$y_{k,i,j} = \sum_{c=1}^{C} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} x_{c,i+m,j+n} \cdot w_{k,c,m,n}$$

K noyaux appris = k neurones en //

L'invariance par translation des neurones de convolution : au tableau

Synthèse visuelle sur la convolution

Synthèse visuelle : intuition de la convolution comme « filtre appris »

Récapitulatif visuelle : convolution

Récapitulatif visuelle : convolution (formation de la sortie)

Les différents paramètres de la convolution neuronale : récap'

Compromis taille de sortie – champs observé par le masque

Les différents paramètres de la convolution neuronale : récap'

La taille de sortie

Output size =
$$\left\lfloor \frac{N + 2P - K}{S} \right\rfloor + 1$$

Les différents paramètres de la convolution neuronale

Convolution : noyau (k), stride (s), padding (p) $k=3\cdot s=1\cdot p=0$

Ces paramètres : intérêt technique = réduire le nombre de paramètres, cas d'images très hautes définition, jouer sur la talle de la sortie

- Maxpooling/average pooling : kesako ?

Ces paramètres : intérêt technique = réduire le nombre de paramètres, cas d'images très hautes définition, jouer sur la taille de la sortie

- Maxpooling/average pooling :
 - Maximiser/normaliser la réponse d'une convolution suivant le besoin (notion de filtrage de l'input)

Ces paramètres : intérêt technique = réduire le nombre de paramètres, cas d'images très hautes définition

- Batch-normalization : moyenner la réponse à l'échelle du minibatch

De la même manière qu'on forme le MLP en empilant des perceptrons...

Empiler des couches de convolution neuronale

Extraire des propriétés de plus en plus fines de l'image

Extraire des propriétés de plus en plus fines (et abstraites) de l'image

Structure de base d'architecture de vision : le convnet

- Une partie convolutionnelle : extrait des caractéristiques de l'image

Structure de base d'architecture de vision : le convnet

- Une partie convolutionnelle : extrait des caractéristiques de l'image
- Une tête (souvent : MLP) : sépare l'espace statistique des entrées à partir de ces propriétés (la frontière en classification)

Structure de base d'architecture de vision : le convnet

Backbone ϕ : extrait des features maps (CNN)

Head : réalisation de la tâche (fully-connected)

Structure de base d'architecture de vision : le convnet

Backbone ϕ : extrait des features maps (CNN)

A noter : on peut tout remplacer par l'attention aujourd'hui (teaser)

Head : réalisation de la tâche (fully-connected)

Récap' visuel : modèle de base de vision

LeNet : 1er **CNN ?** (entraîné par backpropagation en tout cas) [LeCun, 1989]

Couches de convolution « cousues mains »

Alexnet: premières architectures « profondes » (c'est relatif) [Krizhevsky et al., 2012]

Couches de convolution « cousues ma

Merci NVIDIA

III– Les convnets

VGG: on augmente la profondeur / on forme des blocs de convolution [Simonyan & Zisserman, 2014]

1^{er} architecture « modulaire et scalable » (empilable = gain de performance)

Intuition statistique : plus de couche = des propriétés de plus en plus spécifiques et abstraites

Intuition statistique : plus de couche = des propriétés de plus en plus spécifiques et abstraites

- Plus faciles à séparer par un MLP

Intuition statistique : plus de couche = des propriétés de plus en plus spécifiques et abstraites

- Plus faciles à séparer par un MLP
- Sur-paramètrisation (problème de convergence, surapprentissage)

Intuition statistique : plus de couche = des propriétés de plus en plus spécifiques et abstraites

- Plus faciles à séparer par un MLP
- Sur-paramètrisation (problème de convergence, surapprentissage)
- Epuisement du gradient (rends l'entraînement très long/impossible)

Resnet : ajouter des connexions identité

Resnet : ajouter des connexions identité, le résidu

Resnet : ajouter des connexions identité, le résidu

Permet un passage pour le gradient (backward)

Réseau « resnet » : « blocs convolution+résidu »

Réseau « resnet » : « blocs convolution+résidu »

- Propagation du gradient vers l'amont plus simple

THE FRENCH AEROSPACE LAB

Réseau « resnet » : « blocs convolution+résidu »

- Propagation du gradient vers l'amont plus simple
- Ramène les propriétés image moins abstraites : combiner niveaux d'abstraction

Combiner plusieurs extractions de propriété spatiales? (au tableau)

Combiner plusieurs extractions de propriété spatiales?

- Réseaux GoogleNet, Inception, Densenet ... Additionner des blocs de noyaux différents

Combiner plusieurs Combiner plusieurs extractions de propriété spatiales?

- Réseaux GoogleNet, Inception, Densenet ... Additionner des blocs de noyaux différents

Capturer de l'information à plusieurs échelles au même degré d'abstraction

Combiner plusieurs degrés d'abstraction ?

- Réseaux GoogleNet, Inception, Densenet ... Additionner des blocs de noyaux différents

Capturer de l'information à plusieurs échelles au même degré d'abstraction

Les CNN les plus avancés (2019-2020) : GoogleNet/Inception et le « vrai » Deep computer vision

Les CNN les plus avancés (2019-2020) : **GoogleNet/Inception et le « vrai » Deep computer vision**

Empilement assez terrifiant de filtres

La problématique : assez de gradient bien propagés

- Architecture : Resnet

La problématique : assez de gradient bien propagés

- Architecture : Resnet

- Données : augmentation

La problématique : assez de gradient bien propagés

- Architecture : Resnet
- Données : augmentation
- Transfert d'apprentissage (transfer learning) multi-task learning

Augmentation de données « classiques »

Augmentation de données « classiques »

 Statistiquement : ajouter des points bruités proches des points réels = mieux capturer la distribution si des données nous manquent

Comment altérer une image ?

Intérêts supplémentaires de l'augmentation : apprendre d'autres invariances

- Invariance par rotation apprise
- Robustesse au bruit

- ...

D'où systématisation des augmentations (même si volume de données importants)

Augmentation de données « classiques »

- Des pipelines assez variés ... mais ce n'est pas fini !!

Augmentation de données par génération d'images (teaser séance 5 : IA générative)

Transfer learning : apprendre sur une grande diversité de données

Si base de données suffisament variée (Imagenet) : filtres très génériques

Fournir des propriétés qui séparent « presque bien du premier coup » nos données

Transfer learning : apprendre sur une grande diversité de données

Transfer learning : apprendre sur une grande diversité de données

Si base de données suffisament variée (Imagenet) : filtres très génériques

Fournir des propriétés qui séparent « presque bien du premier coup » nos données

Reconstruction learning : transférer depuis une tâche moins couteuse en données, comme la synthèse d'images

Architectures modernes (Resnet...)

Pré-entraînement sur grands datasets

Augmentations de données – synthèse

Attention à toujours garder des volumes de validation suffisants : risque empirique et cie ...

V – Conclusion

Convolution : brique de base de l'IA de vision

- Masque/convolution : capture de l'information spatiale des images d'entrées,
 Invariance par translation
- Paramètres techniques: padding, stride, Batchnormalization ...

Architecture convolutionnelle:

- **Empiler des filtres de convolution** = extraire des informations de plus en plus abstraites de la distrbution d'images
- Resnets et cie ...: faciliter la prop. Du gradiend, caractéristiques multi-échelles, inter-corrélation propriétés amont (basse abstraction) – propriétés aval (haute abstraction

Entraîner les modèles de vision :

- Augmentation de données : ajouter des points « altérés » à la distribution originelle pour pouvoir mieux la capturer
- Transfer learning: apprendre sur une tâche « riche en données » et variée pour ensuite réadapter un faible nombre de paramètres sur tâche spécifique (finetuning)

V – Perspectives

Au-delà de juste « stacker » les propriétés multiéchelles (resnets et cie)

- Corréler, associer les informations : les transformers et l'attention (teaser séance 4)

Augmentation de données : employer la **synthèse d'images ?** (teaser séance 5)

Notion de modèle de fondation et SSL : architectures DINOv1-v3

