JEE MAIN

MODERN PHYSICS - PART 2 FORMULAE

PHOTOELECTRIC EFFECT

Now that's how you REVISE

-Mohit Goenka, IIT Kharagpur

List of Content on Eduniti YouTube Channel:

- 1. PYQs Video Solution Topic Wise:
 - (a) JEE Main 2018/2020/2021 Feb & March
- 2. Rank Booster Problems for JEE Main
- 3. Part Test Series for JEE Main
- 4. JEE Advanced Problem Solving Series
- 5. Short Concept Videos
- 6. Tips and Tricks Videos
- 7. JEE Advanced PYQs

.....and many more to come

(EN) EDUNITI

1 ELECTRON EMISSION

Nork function, ϕ (Mininum Energy required to eject efrom metal surface)

2. PHOTOELECTRIC EMISSION

Incident Energy

Photon

metal

plate

(a) Threshold frequency (Vth), Threshold Wavelength (Ath) $\phi = h v_{th} = \frac{hc}{\lambda_{th}}$ Vth: minimum freg. to start photoelectric (b) If $\nu > \nu_{th} (E > \phi)$ e- comes out with Vmax, ImVmax = E-0 => Kmax = hv-hvth NOTE: et may come out with V < Vmax if it collides with other et.

3. EFFECT OF INTENSITY and TEMP ON PHOTOELECTRIC EFFECT

NOTE: 1 I does nt 1 K.E of e- with which it comes out.

$$[K = h\nu - \phi]$$

K depends on ν of incident energy.

Grounded to Keep Plate neutral.

4. STOPPING POTENTIAL

- (a) e with Vmax moves to B
- (b) Battery does ve Work
- (C) so energy at B = Kmax-eV

(d)
$$V_0 = \frac{K_{max}}{e} = \frac{E - \phi}{e} = \frac{h\nu - h\nu_{tl}}{e}$$

$$V_0 = \frac{h}{e} \nu - \frac{h}{e} \nu_{th}$$

Einstein Photoelectric Equation

Eduniti for Physics

