MATH 321: Mathematical Statistics

Lecture 15: Conditional Distributions

Chapter 4: Bivariate Distributions (4.3)

Introduction

- Oftentimes, two random variables (X, Y) are related. Knowing about the value of X gives us some information about the value of Y, even if it doesn't tell us the value Y exactly (can find $E(Y \mid X = x)$, but not the exact value of $Y \mid X = x$).
- \bullet Example: Study hours X and Test grade Y.

$$P(Y > 90 \mid X = 1 \text{ hrs})$$
 $P(Y > 90 \mid X = 5 \text{ hrs})$

 \bullet Sometimes, knowledge about X gives us no information about Y.

Discrete conditional distributions

Conditional pmf

- Recall the conditional probability of events: $P(B \mid A) = \frac{P()}{P()}$
- Events in a conditional distribution.
 - Suppose that X and Y are discrete random variables. The conditional event of Y=y given X=x is

where _____ is the conditioning event (i.e. the given event),
and _____ is the event of interest (i.e. the event whose probability we
want to know).

- Definition: Let (X,Y) be a discrete bivariate random vector with joint pmf f(x,y) and marginal pmfs $f_X(x)$ and $f_Y(y)$.
 - (a) For any x such that $P(X = x) = f_X(x) > 0$ $(x \in \mathcal{X})$, the **conditional pmf of** Y given that X = x is the function of y denoted by $f(y \mid x)$ and defined by

$$f(y \mid x) = P(Y = y \mid X = x) =$$

(b) For any y such that $P(Y = y) = f_Y(y) > 0$ $(y \in \mathcal{Y})$, the **conditional pmf of** X given that Y = y is the function of x denoted by $f(x \mid y)$ and defined by

$$f(x \mid y) = P(X = x \mid Y = y) =$$

Probabilities

• Once we have the conditional pmf, we can find probabilities as expected. For $A \subset \mathbb{R}^2$,

$$P(X \in A \mid Y = y) = \sum_{x \in A} P(X = x \mid Y = y) =$$

(just flip for $y \mid x$)

- We can also show that the conditional pmf is indeed a valid pmf.
 Proof, need to show:
 - 1. $f(x \mid y) \ge 0$ for all x.
 - 2. $\sum_{x} f(x \mid y) = 1$.

Examples

- 1. Interpreting distributions:
 - Let X = GPA and Y = study hours per day.
 If we are given the joint pmf f(x, y) = P(X = x, Y = y)
 then we can find the following:

i)
$$f_X(x) = \longrightarrow$$
 Probability student has

ii)
$$f_Y(y) = \longrightarrow \text{Probability student has}$$

iii)
$$f(x \mid y) = \longrightarrow$$
 Probability student has

iv)
$$f(y \mid x) = \longrightarrow \text{Probability student has}$$

2. Define the joint pmf of (X, Y) by:

$$f(0,10) = f(0,20) = 2/18,$$
 $f(1,10) = f(1,30) = 3/18,$ $f(1,20) = 4/18,$ and $f(2,30) = 4/18.$

(a) Compute the conditional pmf of Y given X for each of the possible values of X.

- (b) Find (X = 2, Y > 20) event
- (c) Find P(X < 1) event
- (d) Find $P(Y > 10 \mid X = 0)$ event

3. In a previous example, we had the joint pmf

$$f(x,y) = \frac{x+y}{21}$$
 for $x = 1, 2, 3$ and $y = 1, 2$.

And we found the marginal distributions:

$$f_X(x) = \frac{2x+3}{21}$$
 for $x = 1, 2, 3$

$$f_Y(y) = \frac{3y+6}{21} = \frac{y+2}{7}$$
 for $y = 1, 2$

Find $f(x \mid y)$ and $f(y \mid x)$.

Plots of ranges with corresponding probabilities for all distributions:

Conditional random variable

Understanding conditional random variables

- $Y \mid X = x$ is a random variable about Y having the conditional pmf of $f(y \mid x)$. The conditional random variables $Y \mid X = 0$ and $Y \mid X = 1$ have different pmfs.
- The conditional pmf $f(y \mid x)$ is determined by ____ and thus ____ behaves like a parameter (e.g. Geometric(p)),

Relationship between joint pmf and conditional pmfs

- The following theorem contains the relationship between the joint pmf of X and Y and the two conditional pmfs $f(y \mid x)$ and $f(x \mid y)$.
- Theorem: For bivariate random vector (X, Y) with joint pmf f(x, y) and x and y such that $f_X(x) > 0$ and $f_Y(y) > 0$,

$$f(x,y) = f_Y(y) \cdot f(x \mid y) = f_X(x) \cdot f(y \mid x)$$

Continuous conditional distributions

Conditional pdf

• If X and Y are continuous random variables, then P(X = x) =, for every value of $x \implies \text{Can't}$ use $\frac{f(x,y)}{P(X=x)}$ because it is undefined.

To define a conditional probability distribution for Y given X = x when X and Y are both continuous is analogous to the discrete case with pdfs replacing pmfs.

- Definition: Let (X, Y) be a continuous bivariate random vector with joint pdf f(x, y) and marginal pmfs $f_X(x)$ and $f_Y(y)$.
 - (a) Given x such that $f_X(x) > 0$, $f(y \mid x) = \frac{f(x,y)}{f_X(x)}$
 - (b) Given y such that $f_Y(y) > 0$, $f(x \mid y) = \frac{f(x,y)}{f_Y(y)}$

Example

• In a previous example, we had the joint pdf

$$f(x,y) = 1/2 \quad \text{ for } 0 \le x \le y \le 2.$$

And we found the marginal distributions:

$$f_X(x) = (2-x)/2$$
 for $0 \le x \le 2$ and $f_Y(y) = y/2$ for $0 \le y \le 2$

- (a) For $0 \le x < 2$, find the conditional pdf $f(y \mid x)$.
 - NOTE: The range of $Y \mid X = x$ often depends on x. To help, you should draw the range of X and Y just like when finding joint probabilities.
 - For $0 \le x < 2$,

$$f(y \mid x) =$$

Conditioned on X = x, we see that $Y \mid X = x \sim$

- (b) Find the distribution of $Y \mid X = 1$ (we have a specific "parameter" value now).
- (c) For $0 < y \le 2$, find the conditional pdf $f(x \mid y)$.

- For
$$0 < y \le 2$$
,

$$f(x \mid y) =$$

– Given
$$Y = y$$
, we see that $X \mid Y = y \sim$

- (d) Find the distribution of $X \mid Y = 1.5$
- (e) Find the conditional probability that $X \leq 1/2 \mid Y = 1.5$.

Expected value of a conditional random variable

Conditional expectations and when to use which density

- In addition to their usefulness for calculating probabilities, the conditional pmfs and pdfs can also be used to calculate expected values.
 - Just remember that $f(y \mid x)$ as a function of y is a pmf or pdf; so use it in the same way that we have previously used unconditional pmfs or pdfs.
- Suppose, we have f(x, y), $f_X(x)$, $f_Y(y)$, $f(y \mid x)$ and $f(x \mid y)$. What density function should we use to compute the following?
 - 1. E(X) =
 - 2. $E(Y^2) =$
 - 3. E(Y Y) =
 - 4. $E(X^2Y) =$
 - 5. $E(Y \mid X = 2) =$
 - 6. $E(Y^2 \mid X = 3) =$
 - 7. $E(X \mid X = 3) =$
 - 8. $E(X + Y^2 | Y = 3) =$
 - 9. $E(XY \mid X = 3) =$

Conditional expected values

• Definition: Let g(Y) be a function of Y, then the **conditional expected value of** g(Y) given that X = x is denoted by E[g(Y) | X = x] and is given by

$$E[g(Y)\mid x] = \sum g(y)f(y\mid x) \qquad \text{and} \qquad E[g(Y)\mid x] = \int_{-\infty}^{\infty} g(y)f(y\mid x)\,\mathrm{d}y$$

in the discrete and continuous cases, respectively.

- \bullet Conditional mean and variance definitions (assuming X and Y are discrete):
 - (i) If g(Y) = Y, then the conditional mean of Y given X = x is
 - (ii) If $g(Y) = (Y \mu_{Y|X})^2$, then the conditional variance of Y given X = x is

Examples

1. In a previous example, we had the joint pmf

$$f(x,y) = \frac{x+y}{21}$$
 for $x = 1, 2, 3$ and $y = 1, 2$.

And we found the conditional distribution:

$$f(x \mid y) = \frac{x+y}{3y+6}$$
 for $x = 1, 2, 3$ when $y = 1, 2$.

- (a) Find $\mu_{X|1}$.
- (b) Find $\sigma_{X|1}^2$.

 $2. \text{ For } 0 < x \leq 1 \text{, the conditional pdf of } Y \mid X = x \text{ is } \quad f(y \mid x) = \frac{2y}{x^2} \qquad 0 \leq y \leq x.$

Note: For this example, the range of $_$ depends on $_$. So the density as well as the range change when $_$ is given.

(a) Find $E(Y \mid X = x)$.

(b) Find the conditional variance $V(Y \mid X = 0.5)$.

Understanding conditional expectation

•	E(X),	E(Y), I	E(XY)	are \rightarrow	Center is
---	-------	---------	-------	-------------------	-----------

• How about $E(Y \mid X = x)$?

Let's compare the following two conditional expectations.

$$E(Y \mid X = 1/2) = \int_{-\infty}^{\infty} y \qquad dy$$
$$E(Y \mid X = 1) = \int_{-\infty}^{\infty} y \qquad dy$$

•	The conditional expectation depends only on the
	which is determined by the value of . Consequently, the conditional expected
	value, $E(Y \mid X = x)$, is determined by the value of
	In other words, as changes, $E(Y \mid X = x)$ changes. Thus, $E(Y \mid X = x)$ is a function of

- What if x is not specified like $E(Y \mid X)$? Then $E(Y \mid X)$ is a function of random variable of X, and thus it is a _____.

 When x is not specified, replace x by X. Then $E(Y \mid X) =$
- Why is conditional expectation important?
 - Regression Analysis. The main purpose of regression analysis is to identify , which explains the mean behavior of Y given X.
 - In regression analysis, we usually assume that Y and X have a linear relationship, that is $E(Y \mid X) = \beta_0 + \beta_1 X$.
 - We will study this more later.