

Algorithmique et Structures de Données

Année universitaire 2020-2021

Dr. Marwa CHAIEB

Chapitre 5 Les tableaux

Plan

Partie 1: Introduction

Partie 2: Les tableaux monodimensionnels

Partie 3: Les tableaux à deux dimensions

Partie 4: De l'algorithmique au langage C

Plan

Partie 1: Introduction

Partie 2: Les tableaux monodimensionnels

Partie 3: Les tableaux à deux dimensions

Partie 4: De l'algorithmique au langage C

Introduction

Problème

Ecrire un algorithme qui permet de lire les notes de 100 étudiants et d'afficher les notes des 10 premiers d'entre eux.

Introduction

ALGORITHME étudiant

```
Var n1, n2, ....., n100 : réel;
```

```
Début
           Lire (n1);
           Lire (n2);
           Lire (n100);
           Ecrire ('Voici les notes des dix premiers étudiants');
           Ecrire (n1);
           Ecrire (n2);
            . . . . . . . . . . . .
           Ecrire (n10);
Fin
```

Introduction

Nécessité d'utiliser <u>100</u> variables de même type pour saisir les notes de tous les étudiants,

ce qui augmente la taille de l'algorithme

Une nouvelle structure permettant de ranger les notes des étudiants.

Plan

Partie 1: Introduction

Partie 2: Les tableaux monodimensionnels

Partie 3: Les tableaux à deux dimensions

Partie 4: De l'algorithmique au langage C

Lorsque les données sont nombreuses et de même type, afin d'éviter de multiplier le nombre des variables, on les regroupe dans un <u>tableau</u>

Définition

Un tableau mono-dimensionnel ou vecteur est une manière de ranger des éléments ou des valeurs de <u>même type</u>, il regroupe ces éléments dans une <u>structure fixe</u> et permet d'accéder à chaque élément par l'intermédiaire de <u>son rang ou indice</u>.

Déclaration d'un tableau mono-dimensionnel

Syntaxe

Nom_Tableau: tableau [1..N] de Type

Avec Type est le type des éléments du tableau

Exemple

Tab: Tableau [1..100] de réel

Exemple :

- Chacun des dix nombres du tableau est repéré par son rang, appelé indice
- Déclaration : Tab : tableau [1..10] de entier
- Pour accéder à un élément du tableau, il suffit de préciser entre crochets l'indice de la case contenant cet élément.
- Exemple :

Pour accéder au 5ème élément (22), on écrit : Tab [5]

Les instructions de lecture, écriture et affectation s'appliquent aux tableaux comme aux variables.

La variable x prend la valeur du premier élément du tableau, c'est à dire : 45

$$Tab[6] \leftarrow 43$$

Cette instruction a modifiée le contenu du tableau

Lecture et affichage

```
Procédure Lecture(S: tab: tableau [1..N]: Entier)
Var i : Entier
Début
    Pour i de 1 à N Faire
    écrire("Entrez la valeur" , i, "du tableau")
    lire(tab[i]) ;
    Fin Pour
FinProcédure
```

```
Procédure Affichage (E: tab: tableau [1..N]: Entier)
Var i : Entier
Début
    Pour i de 1 à N Faire
    écrire("tab[",i,"]=", tab[i]);
    Fin Pour
FinProcédure
```

Recherche d'un élément dans un tableau

On veut déterminer s'il existe un indice i allant de 1 à N tel que val =T[i]

■ Tableau non Ordonné

```
Algorithme Recherche1
Var i, val : Entier, T: tableau [1,N]: Entier, Trouve: Booléen
Début

Trouve ← Faux
Pour i de 1 à N Faire
Si ( T[i]=val ) alors
Trouve ← Vrai
Fin Si
Fin Pour
Fin
```

Recherche dichotomique dans un tableau trié

```
ALGORITHME RechercheDicho
Var
        T: tableau [1..N] de entier
        elem ,Binf, bsup : entier
        Trouve : booléen
Début.
        binf←1; bsup ← N; Trouve ←faux
        Répeter
           mil←(binf+bsup) div 2
           si (elem =T[mil]) alors
                trouve ← vrai
           sinon Si (elem<T[mil]) alors</pre>
                bsup \( \text{mil-1} \)
                      sinon binf ← mil+1
                      finsi
           finsi
        Jusqu'à ((Trouve=vrai) ou (binf>bsup))
Fin
```

Insertion d'un élément dans un tableau trié

Un tableau T de dimension N+1 contient N valeurs entières triées par ordre croissant; La (N+1)ième valeur est indéfinie.

Insérer une valeur VAL donnée au clavier dans le tableau T de manière à obtenir un tableau de N+1 valeurs triées.

Insertion d'un élément dans un tableau trié

Insérer une valeur dans un tableau trié

- 1. Lecture des éléments du tableau dans un ordre croissant
- 2. Lecture de la valeur a insérer VAL
- 3. Déplacer les éléments plus grands que VAL d'une position vers l'arrière.
- 4. VAL est copiée a la position du dernier élément déplacé
- 5. Afficher le nouveau tableau

Insertion d'un élément dans un tableau trié

```
Algorithme Insertion
Var i, val : Entier, T: tableau [1,N+1]: Entier,
Début
   Pour i de 1 à N Faire
   écrire ("Entrez la valeur", i, "du tableau")
   lire(tab[i]);
   FinPour
   écrire ("Entrez la valeur à insérer")
   lire(val) ;
   i ← N
   Tantque (i>0) ET (T[i]>val) Faire
       T[i+1] ← T[i]
       i ← i-1
   FinTantQue
   T[i+1] \leftarrow val
Fin
```

Plan

Partie 1: Introduction

Partie 2: Les tableaux monodimensionnels

Partie 3: Les tableaux à deux dimensions

Partie 4: De l'algorithmique au langage C

Problème

Comment sauvegarder et manipuler les notes des étudiants d'une classe, dans 6 matières ?

Déclaration d'un tableau à deux dimensions

Var

Nom_Tableau: tableau [1..N, 1..M] de Type

19

Appel:

 $X \leftarrow Tab[2,3]$

Tab [2,3] permet d'accéder à l'élément de la matrice qui se trouve à l'intersection de la ligne 2 et de la colonne 3

```
Algorithme InitTableau

Var

i,j: entier

Tab: tableau [1..100,1..50] de entier

Début

Pour i de 1 à 100 faire

pour jde 1 à 50 faire

Tab[i,j]←0

Fin pour

Fin pour
```

Plan

Partie 1: Introduction

Partie 2: Les tableaux monodimensionnels

Partie 3: Les tableaux à deux dimensions

Partie 4: De l'algorithmique au langage C

- Un tableau est un ensemble fini d'éléments de même type, stockés en mémoire à des adresses contiguës
- nombre_elements: est une constante entière positive

- □ Exemple: float Moy[20];
- L'indice du premier élément est toujours <u>0</u>.
- L'indice du dernier élément est alors <u>nombre element-1</u>

□ Accès aux éléments : Syntaxe: nom_tableau [indice] **Exemples:** //affecter la moyenne 17 au 2ème élément Moy[1] = 17; //Saisie de la moyenne du 5ème élément scanf("%f", &Moy[4]);//Affichage de la moyenne du 5ème élément Printf("%f", Moy[4]);

- □ Le nom du tableau est une adresse constante du premier élément

 Tab=&tab[0]
- Un tableau ne peut pas figurer à gauche d'un opérateur d'affectation

 Tab1=tab2;
- □ Pour copier un tableau dans un autre:

```
void main() {
  const int N=10;
  int tab1[N], tab2[N];
  int i;
  ...
  for (i = 0; i < N; i++)
  tab1[i] = tab2[i];
}</pre>
```

 On peut initialiser un tableau lors de sa déclaration par une liste de constantes de la façon suivante:

```
type nom_tableau[] = {constante_1,constante_2,...,constante_N};
```

□ Exemple:

```
main()
{
int tab[] = {1, 2, 3, 4};
}
```

- □ Exercice:
- □ Écrire un programme C qui permet de :
- Lire et d'afficher un tableau T de 10 éléments.
- Calculer la somme des éléments de T.
- Chercher le maximum et le minimum de T.

```
#include<stdio.h>
void main()
{
int T[10];
int i, Som, Max, Min;
```

```
//Saisie de T
for(i=0;i<10;i++)
         printf ("Donner l'élément d'indice %d", i)
         scanf ("%d", &T[i]);
// Affichage de T
for(i=0;i<10;i++)
         printf ("T[%d]=%d", i, T[i]);
// Somme de T
Som = 0;
for(i=0;i<10;i++)
         Som=Som+T[i];
printf("La somme de T = %d", Som);
```

```
\label{eq:max} \begin{subarray}{ll} \begin{subarr
```

- □ Déclaration :
- □ Syntaxe:

Type Nom [Dim1][Dim2];

Avec

- Type : Type des éléments du tableau.
- Nom : Nom du tableau
- Dim1 : Nombre de lignes
- Dim2 : Nombre de colonnes
- □ Exemple:

float M[3][4];

- □ Accès aux éléments :
- □ Syntaxe:

```
Nom [Ind_Ligne][ind_Colonne]
```

- Exemples:
- //Affecter 22 à l'élément de la ligne 2 et de la colonne 3
- \square M[1][2] = 22
- //Saisie de l'élément de la ligne 3 et de la colonne 1
- Scanf("%f", &M[2][0]);
- //Affichage de l'élément de la ligne 3 et de la colonne 1
- printf("%f", M[2][0]);

□ Exercice:

Écrire un programme C qui permet de :

- Lire et d'afficher une Matrice M de 7 lignes et 5 colonnes.
- Calculer la somme des éléments de M.
- Chercher le maximum et le minimum de M.

```
#include<stdio.h>
void main()
{
  int M[7][5];
  int i, j, Som, Max, Min;
```

```
//Saisie de M
for (i=0;i<7; i++)
         for (j=0;j<5;j++)
                   printf ("Donner un élément ");
                   scanf("%d", &M[i][j]);
// Affichage de M
for (i=0;i<7; i++)
         for (j=0;j<5;j++)
                   printf("%d", M[i][j]);
// Somme de M
Som =0;
for (i=0;i<7; i++)
         for (j=0;j<5;j++)
                   Som = Som + M[i][j];
         printf ("La somme de M = %d", Som);
```

```
// Max et Min de M
Max = M[0][0];
Min = M[0][0];
for (i=0;i<7; i++)
         for (j=0;j<5; j++)
                   if (M[i][j]>Max)
                            Max = M[i][j];
                   else if(M[i][j]< Min)
                            Min = M[i][j];
printf("Le max de M = %d et le min de M = %d", Max, Min);
```

Allocation dynamique d'un tableau à une dimension

- Pour allouer dynamiquement un tableau à une dimension on utilise la fonction malloc.
- □ Rappel de la syntaxe de malloc
 - (type *) malloc (taille à allouer)
- □ Nous voulons allouer un tableau d'entier de taille 10.

```
int*t = (int*) malloc (10 * sizeof(int));
```

Allocation dynamique d'un tableau de deux dimensions

- Un tableau de deux dimensions est un tableau de tableaux
- Chaque case du premier tableau contient un pointeur sur un tableau.
- t=(int**) malloc(n*sizeof(int*));

Remplissage et Affichage

```
#include<stdio.h>
#include<stdlib.h>
void remplirTab(int* t, int n){
          for(int i=0;i< n;i++){
                    scanf("%d",t+i);
int** remplirTab2D(int n){
          int i;
          int** t:
          t=(int**) malloc(n*sizeof(int*));
          for (i=0;i< n;i++)
                    t[i]=(int*) malloc(n*sizeof(int));
          for(i=0;i< n;i++){
                    printf("Donner la ligne %d : ",i+1);
                    remplirTab(t[i],n);
          return t.
```

```
void showTab(int* t, int n){
          for(int i=0;i< n;i++){
                    printf("%d ",*(t+i));
void showTab2D(int** t, int n){
          for(int i=0;i< n;i++){
                    printf("Ligne %d \n",i+1);
                    showTab(t[i],n);
                    printf("\n");
int main() {
          int i,n;
          int** t= NULL:
       printf("donner la taille de la matrice carrée : ");
          scanf("%d",&n);
          t = remplirTab2D(n);
          showTab2D(t,n);
```