

SEM 1-2

Duration: 3 Hours Total Marks: 100

Instruction: Attempt any four questions, at least one from each Module.

SECTION – I (Physics) Module – I

		of density 2.82 g/cc and Young State (No. 10.1 dyne/cm ² . What sh	
1.	a)	Derive $\alpha = \frac{\lambda}{2\mu w}$ for a wedge shaped film, where α is wedge angle and w is	
		fringe width. 11 Previous contemporary to record the record was evil 2 (d	5
	b)	Find the conductivity of intrinsic silicon at 300 K. algorithm and allowed to	5
		Given : $n_i = 1.5 \times 10^{16} / m^3$, $\mu_n = 0.13 \ m^2 v^{-1} s^{-1}$ and $\mu_p = 0.05 \ m^2 v^{-1} s^{-1}$.	
		Also calculate the conductivity if donor type impurity is added to the extent of one impurity atom in 10^8 silicon atoms. Density of silicon atoms is $5 \times 10^{28} / \text{m}^3$.	
	c)	Why antireflection film is needed for a good camera lens? Briefly explain the phase requirement in such films. Why multilayer coatings is preferred over a single layer coating?	5
	(b	What is continuity equation? Derive expression for one dimensional continuity equation for electrons as well as for holes.	10
2.	a)	What is Hall effect ? Derive expression for Hall voltage.	5
	b)	White light falls at an angle of 50° on a parallel soap film of R.I. 1.33. At what	
		minimum thickness of the film will it appear bright yellow of wavelength 5800 $\mathring{\text{A}}$	
		in reflected light.	5
	c)	The Hall coefficient of a certain specimen of silicon was found to be $-7.35 \times 10^{-5} \text{ m}^3\text{c}^{-1}$. Is this semiconductor n-type or p-type. Electrical	
		conductivity at room temperature was found to be $200\Omega^{-1}$ m ⁻¹ . Calculate the density and mobility of charge carriers at room temperature.	5
	d)	i) Write briefly on use of interference in checking flatness of a surface.	10
	tial	ii) What is the necessity of extended source for the interference based on division of amplitude.	

(Given: E°Mg = -2.37 V, E°Cu = 0.34 V, E°AI = -1.66 V).

Module - II

3.	a)	Describe the working of an ionisation chamber. Mention its use.	5
	,	Draw the block diagram of a CRO. Briefly explain the use of CRO to determine	
		frequency of ac mains.	5
	c)	Explain the principle and working of magnetic lens.	5
	d)	Draw the circuit diagram of piezoelectric oscillator and explain its working. If 1.5 MHz frequency is to be generated in above circuit using tourmaline crystal of density 2.82 g/cc and Young's modulus 7.9×10^{11} dyne/cm². What should be the thickness of the crystal ?	10
4.	a)	What is cavitation? Give atleast two applications of it.	5
	b)	Give any two methods of detection of ultrasonic waves.	5
	c)	Explain the principle and working of electrostatic lens. Jubno ent brill (d	5
	d)	Explain the working of GM counter. In what way it differs from ionization chamber.	5
	e)	Describe acoustic diffraction method to find velocity of ultrasonic waves in liquid.	5
		why antireflection film is needed for according to the Principle explain phase requirement in such II – NOITOBS (aper coatings is preferred over coating 2 (Chemistry) Single layer coating 2 (III – Bloom)	
5.	a)	Outline the construction of a glass electrode and illustrate how it can be used	7
		to find the pH of an unknown solution. a) What is Hall effect? Derive expression for Hall voltage.	s 7
	terly	Describe the functioning of solid polymer electrolyte fuel cell.	6
	c)	i) Voltage	6
	ed,	ii) Capacity. Derive the equation to express the electrode potential for the following	
	(bal	system Cu ²⁺ (0.01 M)/Cu and calculate its electrode potential at 25°C (Given E°Cu = 0.34 V).	6
		density and mobility of charge carriers at room temperature.	
6.	a) no l	The following metals are provided Mg, Al and Cu and their metal salt solutions in concentrations of 0.1, 0.01 and 0.001 M are available. Using the above materials construct voltaic type cell that would give the highest cell potential and calculate the cell potential at 25°C.	
		(Given: $E^{\circ}Mg = -2.37 \text{ V}$, $E^{\circ}Cu = 0.34 \text{ V}$, $E^{\circ}Al = -1.66 \text{ V}$).	7