*** Applied Machine Learning Fundamentals *** Logistic Regression

Daniel Wehner, M.Sc.

SAPSE / DHBW Mannheim

Winter term 2020/2021

Lecture Overview

Unit I Machine Learning Introduction

Unit II Mathematical Foundations

Unit III Bayesian Decision Theory

Unit IV Probability Density Estimation

Unit V Regression

Unit VI Classification I

Unit VII Evaluation

Unit VIII Classification II

Unit IX Clustering

Unit X Dimensionality Reduction

Agenda for this Unit

1 Introduction
What is logistic Regression?

Why you should not use linear Regression

Model Architecture

Sigmoid Function Probabilistic Interpretation Model Training Decision Boundary

3 Non-linear Data Feature Mapping

Regularization

Multi-Class Classification

Multiple Classes One-vs-Rest (OVR) One-vs-One (OVO)

6 Wrap-Up

Summary
Self-Test Questions
Lecture Outlook
Recommended Literature and further Reading
Meme of the Day

Section: Introduction

What is logistic Regression?

- Learning algorithm for classification (despite the name...)
- In its standard form it's applicable to binary classification problems only, but you can use techniques like:
 - One-vs-One (OVO)
 - One-vs-Rest (OVR)
- Class labels:
 - ullet The 'positive class' is encoded as $oldsymbol{1}$ / \oplus
 - ullet The 'negative class' as $oldsymbol{0}$ / \ominus
- Probabilistic interpretation: The output of the algorithm is between 0 and 1 (probability of the instance belonging to the positive class)

Why you should not use linear Regression...

Why you should not use linear Regression...

Why you should not use linear Regression... (Ctd.)

- Linear regression: $h_{\theta}(x) = \theta^{\intercal} x$
- By putting a threshold at 0.5, we can turn linear regression into a classifier
 - If $h_{\theta}(\mathbf{x}) \geqslant 0.5$, predict y = 1
 - If $h_{\theta}(\mathbf{x}) < 0.5$, predict y = 0
- Outliers affect the decision boundary
- Furthermore, we only want $0 \leqslant h_{\theta}(x) \leqslant 1$
- Linear regression can output $h_{m{ heta}}(x) \ll 0$ or $h_{m{ heta}}(x) \gg 1$
- We need a better strategy!

Section: Model Architecture

Logistic Regression Model

- Remember that we want: $0 \leqslant h_{\theta}(x) \leqslant 1$
- Solution: Logistic / Sigmoid function:

$$g(z) = \frac{1}{1 + e^{-z}} \tag{1}$$

• We plug $\theta^{T}x$ into the sigmoid function:

$$h_{\theta}(\mathbf{x}) = g(\theta^{\mathsf{T}}\mathbf{x}) = \frac{1}{1 + e^{-(\theta^{\mathsf{T}}\mathbf{x})}} \tag{2}$$

Logistic/Sigmoid Function

- g(z) is symmetric around z = 0
- $0 \leqslant g(z) \leqslant 1$ holds true

Where does the Sigmoid come from?

$$p(\mathcal{C}_1|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x})} = \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{\sum_j p(\mathbf{x},\mathcal{C}_j)} = \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{\sum_j p(\mathbf{x}|\mathcal{C}_j)p(\mathcal{C}_j)}$$
(3)

$$= \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1) + p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)} \tag{4}$$

$$=\frac{1}{1+p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)/(p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1))}$$
(5)

$$= \frac{1}{1 + \exp\{-z\}} = g(z) \qquad \longrightarrow \text{logistic sigmoid} \qquad (6)$$

$$z = \log \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)} \longrightarrow \log \text{ odds}$$
 (7)

Interpretation of Hypothesis Output

- $h_{\theta}(x)$ is interpreted as the probability of instance x belonging to class y=1
- Example:

$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ tumorSize \end{bmatrix}$$
 (8)

- If $h_{\theta}(x) = 0.7$, we have to tell the patient that there is a **70** % chance of the tumor being malignant $\Rightarrow p(y = 1|x, \theta)$
- Binary case: $p(y = 0|x, \theta) = 1 p(y = 1|x, \theta)$

Training Setup

• We have a labeled training set (⇒ supervised learning):

$$\mathcal{D} = \left\{ (\boldsymbol{x}^{(1)}, \boldsymbol{y}^{(1)}), (\boldsymbol{x}^{(2)}, \boldsymbol{y}^{(2)}), \dots, (\boldsymbol{x}^{(n)}, \boldsymbol{y}^{(n)}) \right\} = \left\{ (\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}) \right\}_{i=1}^{n}$$
 (9)

Each x is a vector of features:

$$\mathbf{x} = \begin{bmatrix} x_0 \\ \vdots \\ x_m \end{bmatrix} \in \mathbb{R}^{m+1} \quad \text{and} \quad x_0 = 1 \quad \text{and} \quad y \in \{0, 1\}$$
 (10)

• How to choose the parameters θ ?

Logistic Regression Cost Function

- ullet Gradient descent is performed in order to find the parameters $oldsymbol{ heta}$
- To this end, a cost function is needed:

$$\mathcal{J}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \ell(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}), \boldsymbol{y}^{(i)})$$
 (11)

• The cost function $\ell(h_{\theta}(x), y)$ is defined as follows: (square loss would be **non-convex...**)

$$\ell(h_{\theta}(\mathbf{x}), y) = \begin{cases} -\log(h_{\theta}(\mathbf{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\mathbf{x})) & \text{if } y = 0 \end{cases}$$
 (12)

Logistic Regression Cost Function (Ctd.)

$$y = 1$$
:

y=0:

Logistic Regression Cost Function (Ctd.)

• $\ell(h_{\theta}(x), y)$ can be written in a more compact form:

$$\ell(h_{\theta}(x), y) = -y \log(h_{\theta}(x)) - (1 - y) \log(1 - h_{\theta}(x))$$
(13)

- If y = 1, we get: $-\log(h_{\theta}(x))$
- If y = 0, we get: $-\log(1 h_{\theta}(\mathbf{x}))$
- This gives the cross entropy cost function $\mathcal{J}(\boldsymbol{\theta})$:

$$\mathcal{J}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \left[-y^{(i)} \log(h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)})) - (1 - y^{(i)}) \log(1 - h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)})) \right]$$
(14)

Derivation of Cross Entropy

• The likelihood function can be written in the form:

$$\mathcal{L}(\boldsymbol{\theta}) = \prod_{i=1}^{n} h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)})^{\mathbf{y}^{(i)}} \cdot (1 - h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}))^{1 - \mathbf{y}^{(i)}}$$
(15)

• The cost function is then given by the **negative log-likelihood**:

$$\mathcal{J}(\boldsymbol{\theta}) = -\log \mathcal{L}(\boldsymbol{\theta}) \tag{16}$$

Gradient Descent

- The goal is to minimize $\mathcal{J}(\boldsymbol{\theta})$: $\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \mathcal{J}(\boldsymbol{\theta})$
- Repeat until convergence { $\boldsymbol{\theta}^{(t+1)} \longleftarrow \boldsymbol{\theta}^{(t)} \alpha \nabla_{\boldsymbol{\theta}} \mathcal{J}(\boldsymbol{\theta}^{(t)}) \quad // \textit{simultaneously update all } \boldsymbol{\theta}_j$ }
- The gradient $\nabla_{\boldsymbol{\theta}} \mathcal{J}(\boldsymbol{\theta})$ is given by:

$$\nabla_{\boldsymbol{\theta}} \mathcal{J}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)} \right) \mathbf{x}^{(i)}$$
(17)

Algorithm looks identical to linear regression, but $h_{\theta}(x)$ is different!

Decision Boundary

- For classification we have to set a threshold
- Suppose we predict y = 1, if $h_{\theta}(x) \geqslant 0.5$
 - This means $g(z) \ge 0.5$
 - This is equivalent to $z \ge 0$ and $\theta^{\mathsf{T}} \mathbf{x} \ge 0$
- Suppose we predict y = 0, if $h_{\theta}(x) < 0.5 \Rightarrow \theta^{\mathsf{T}} x < 0$

Decision Boundary (Ctd.)

• Suppose we have the following hypothesis:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

Using gradient descent we obtained the following coefficients:

$$\theta_0 = -3$$
 $\theta_1 = 1$ $\theta_2 = 1$

• Predict y = 1, if $-3 + x_1 + x_2 \ge 0$

Decision Boundary (Ctd.)

- Predict y = 1, if $-3 + x_1 + x_2 \ge 0$
- The decision boundary satisfies $-3 + x_1 + x_2 = 0$
- If $x_2 = 0$, then $x_1 = 3$ and vice versa

Logistic regression is not a maximum-margin classifier (although the cost function can be adjusted to get that ⇒ Hinge loss)

Example: Decision Boundary

Where is the sigmoid function?

Example: Logistic Function

Section: Non-linear Data

Non-Linear Decision Boundaries

- Feature mapping can be used to obtain non-linear decision boundaries
- Example:
 - Imagine a circular data set
 - Using the features...

$$h_{\theta}(\mathbf{x}) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$$

- ...the algorithm could e.g. choose: $\theta = \begin{bmatrix} -1, 0, 0, 1, 1 \end{bmatrix}^T$
- So we would get: $x_1^2 + x_2^2 = 1 \Rightarrow$ equation of a unit circle

Example: Non-Linear Decision Boundary

It is still linear!

Basis function classification

Logistic Regression Cost Function (Ctd.)

• We should apply regularization for non-linear decision boundaries:

$$\frac{1}{n} \sum_{i=1}^{n} \left[-y^{(i)} \log(h_{\theta}(\mathbf{x}^{(i)})) - (1 - y^{(i)}) \log(1 - h_{\theta}(\mathbf{x}^{(i)})) \right] + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_{j}^{2}$$
 (18)

- The last term prevents the parameters θ_i from becoming too large
- $\lambda \geqslant 0$ controls the degree of regularization
- This leads to smoother decision boundaries.

Section: Multi-Class Classification

Multi-Class Classification

- ullet Logistic regression can handle two classes only, namely $oldsymbol{0}$ and $oldsymbol{1}$
- What if there are more than two classes?
- Two common techniques:
 - One-vs-Rest (OVR) ⇒ One-against-All
 - One-vs-One (OVO) ⇒ Pairwise classification
- Several classifiers are trained
- During prediction the classifiers vote for the correct class
- Such techniques can be used for all binary classifiers

Multi-Class Classification: One-vs-Rest (OVR)

- Train one classifier per class (expert for that class)
- We get |C| classifiers
- The k-th classifier learns to distinguish the k-th class from all the others
- Set the labels of examples from class k to 1, all the others to 0

Multi-Class Classification: One-vs-One (OVO)

- Train one classifier for each pair of classes
- We get $\binom{|\mathcal{C}|}{2}$ classifiers
- Ignore all other examples that do not belong to either of the two classes
- Voting: Count how often each class wins; the class with the highest score is predicted

Section: Wrap-Up

Summary

- Logistic regression is used for classification (!!!)
- It is used for binary classification problems (generalizations exist)
- Output: Probability of instance belonging to positive class
- Apply a threshold to get the classification
- The algorithm minimizes the cross entropy cost function
- There is **no closed-form solution** (unlike for linear regression)
- Basis functions can be used for non-linear data
- Multi-class classification: One-vs-Rest, One-vs-One

Self-Test Questions

- 1 Why should you not use linear regression for classification?
- 2 State the formula for the logistic function.
- 3 Why do we use cross entropy instead of the squared error?
- Ooes logistic regression find the best-separating hyper-plane?
- 5 What techniques do you know for multi-class classification problems?

Summary Self-Test Questions Lecture Outlook Recommended Literature and further Readin Meme of the Day

What's next...?

Unit I Machine Learning Introduction

Unit II Mathematical Foundations

Unit III Bayesian Decision Theory

Unit IV Probability Density Estimation

Unit V Regression

Unit VI Classification I

Unit VII Evaluation

Unit VIII Classification II

Unit IX Clustering

Unit X Dimensionality Reduction

Recommended Literature and further Reading I

[1] Pattern Recognition and Machine Learning

Christopher Bishop. Springer. 2006.

 \rightarrow Link, cf. chapter 4.3.2

[2] Machine Learning: A Probabilistic Perspective

Kevin Murphy. MIT Press. 2012.

 \rightarrow <u>Link</u>, cf. chapter 8

Meme of the Day

Thank you very much for the attention!

Topic: *** Applied Machine Learning Fundamentals *** Logistic Regression

Term: Winter term 2020/2021

Contact:

Daniel Wehner, M.Sc.
SAPSE / DHBW Mannheim
daniel.wehner@sap.com

Do you have any questions?