Introduction aux différents modèles de streaming dans les graphes.

Ugo Giocanti

Université Grenoble Alpes, Laboratoire G-SCOP, France

Journées Calamar 2024

Références

- Andrew McGregor. Graph Stream Algorithms: A Survey (2014).
- Sepehr Assadi lecture's notes about Graph Streaming Algorithms and Lower Bounds (2020).

Algorithmes de streaming (flot)

Motivation: Internet, réseaux neurones.

Algorithmes de streaming (flot)

Motivation: Internet, réseaux neurones.

Entrée: Séquence d'objets S d'un domaine D (flot de données/data stream).

Sortie: Calculer une valeur/statistique/propriété sur la séquence globale S.

Algorithmes de streaming (flot)

Motivation: Internet, réseaux neurones.

Entrée: Séquence d'objets S d'un domaine D (flot de données/data stream).

Sortie: Calculer une valeur/statistique/propriété sur la séquence globale S.

But: Minimiser l'espace mémoire utilisé.

$$V = \{v_1, \dots, v_n\}$$
 fixé.

```
V = \{v_1, \dots, v_n\} fixé. Stream graph/(graphe flux?): Séquence S = \langle e_1, \dots, e_m \rangle d'arêtes, décrivant un graphe G = (V, \{e_1, \dots, e_m\}).
```

d'arête). Décrit un graphe G.

```
V = \{v_1, \ldots, v_n\} fixé. Stream graph/(graphe flux?): Séquence S = \langle e_1, \ldots, e_m \rangle d'arêtes, décrivant un graphe G = (V, \{e_1, \ldots, e_m\}). Dynamic stream graph/(graphe dynamique flux?): Séquence S = \langle (e_1, c_1), \ldots, (e_d, c_d) \rangle où: e_i \in \binom{n}{2} et c_i \in \{\pm 1\} (ajout/déletion
```

```
V = \{v_1, \dots, v_n\} \text{ fixé.} Stream graph/(graphe flux?): Séquence S = \langle e_1, \dots, e_m \rangle d'arêtes, décrivant un graphe G = (V, \{e_1, \dots, e_m\}). Dynamic stream graph/(graphe dynamique flux?): Séquence S = \langle (e_1, c_1), \dots, (e_d, c_d) \rangle où: e_i \in \binom{n}{2} et c_i \in \{\pm 1\} (ajout/déletion d'arête). Décrit un graphe G. Sliding window /fenêtre coulissante: Séquence infinie S = \langle e_1, e_2, \dots \rangle + \log w \rangle n décrivant une séquence de graphes (G_t)_{t \geqslant 0} où: G_t = (V, \{e_{t-w+1}, \dots, e_t\}).
```

Algorithmes

Definition

Un algorithme de semi-streaming est un algorithme prenant en entrée un graphe flux et fonctionnant en espace $\widetilde{O}(n) = O(n \cdot \operatorname{polylog}(n))$.

Algorithmes

Definition

Un algorithme de semi-streaming est un algorithme prenant en entrée un graphe flux et fonctionnant en espace $\widetilde{O}(n) = O(n \cdot \operatorname{polylog}(n))$.

Variantes d'algorithmes considérés:

- 1 ou *O*(1) passes.
- Déterministes ou randomisés.
- Exacts ou approx.
- Complexités spatiales polylog(n) ou $o(n^2)$.
- ...

- 4. 5. 6.
- 1 2 3 •

Algorithme semi-streaming pour tester connexité d'un graphe?

Remark

On sait maintenir une forêt couvrante dans un stream graph en utilisant au plus $2(n-1)\log(n)$ bits de mémoire.

Algorithme semi-streaming pour tester connexité d'un graphe?

Remark

On sait maintenir une forêt couvrante dans un stream graph en utilisant au plus $2(n-1)\log(n)$ bits de mémoire.

Exercice: Algorithme semi-streaming pour tester la k-arête connexité (espace $O(nk \log(n))$)?

(k-)Connexité pour les stream graphs

Algorithme semi-streaming pour tester connexité d'un graphe?

Remark

On sait maintenir une forêt couvrante dans un stream graph en utilisant au plus $2(n-1)\log(n)$ bits de mémoire.

Exercice: Algorithme semi-streaming pour tester la k-arête connexité (espace $O(nk \log(n))$)? Pour biparti?

Theorem (Sun, Woodruff (2015))

 $\Omega(nlogn)$ bits de mémoire nécessaires pour tester la connexité.

Theorem (Sun, Woodruff (2015))

 $\Omega(nk \log n)$ bits de mémoire nécessaires pour tester la k-connexité.

Theorem (Sun, Woodruff (2015))

 $\Omega(nk \log n)$ bits de mémoire nécessaires pour tester la k-connexité.

Pour k = 1: Vrai même pour algos randomisés avec proba de succès constante.

Theorem (Sun, Woodruff (2015))

 $\Omega(nk \log n)$ bits de mémoire nécessaires pour tester la k-connexité.

Pour k = 1: Vrai même pour algos randomisés avec proba de succès constante.

Bornes inf viennent généralement des bornes inf pour des problèmes de protocoles de communication:

"Tout algorithme de streaming utilisant s bits de mémoire et p passes permet d'obtenir un protocole de communication faisant intervenir O(mp) bits de communication."

Theorem (Sun, Woodruff (2015))

 $\Omega(nk \log n)$ bits de mémoire nécessaires pour tester la k-connexité.

Pour k = 1: Vrai même pour algos randomisés avec proba de succès constante.

Bornes inf viennent généralement des bornes inf pour des problèmes de protocoles de communication:

"Tout algorithme de streaming utilisant s bits de mémoire et p passes permet d'obtenir un protocole de communication faisant intervenir O(mp) bits de communication."

lci: $\Omega(n)$ pour la connexité seulement.

$$f: \{0,1\}^{A} \times \{0,1\}^{B} \to \{0,1\}$$

$$f(x_{A}, x_{B})?$$
Alice
$$x_{A} \in \{0,1\}^{A}$$

$$x_{B} \in \{0,1\}^{B}$$

But: minimiser nombre de bits total transmis. D(f) := coût du meilleur protocole calculant f.

Index

→ N bits de communication nécessaires (tiroirs!).

Lemma

Lemma

Lemma

Lemma

Lemma

Suppression d'arête autorisée.

Suppression d'arête autorisée.

Entrée:
$$S = \langle (e_1, \Delta_1), (e_2, \Delta_2), \ldots \rangle, \ e_i \in {V \choose 2} \ \text{et} \ \Delta_i \in \{\pm 1\}.$$

Graphe considéré:
$$G=(V,E)$$
 où $e\in E(G)$ lorsque $\sum_{e_i=e}\Delta_i=1$.

Suppression d'arête autorisée.

Entrée:
$$S = \langle (e_1, \Delta_1), (e_2, \Delta_2), \ldots \rangle, \ e_i \in {V \choose 2} \ \text{et} \ \Delta_i \in \{\pm 1\}.$$

Graphe considéré:
$$G=(V,E)$$
 où $e\in E(\tilde{G})$ lorsque $\sum_{e_i=e}\Delta_i=1$.

En déterministe, on ne peut plus faire grand chose.

Suppression d'arête autorisée.

 $\mathsf{Entr\acute{e}e}\colon\thinspace S=\langle (e_1,\Delta_1),(e_2,\Delta_2),\ldots\rangle,\ e_i\in {V\choose 2}\ \mathsf{et}\ \Delta_i\in\{\pm 1\}.$

Graphe considéré: G=(V,E) où $e\in E(\tilde{G})$ lorsque $\sum_{e_i=e}\Delta_i=1$.

En déterministe, on ne peut plus faire grand chose.

Lemma (folklore)

Tout algo déterministe prenant en entrée un stream graph dynamique G et renvoyant une arête $e \in E(G)$ utilise au moins $\binom{n}{2}$ bits de mémoire.

Suppression d'arête autorisée.

 $\text{Entr\'ee: } S = \langle (e_1, \Delta_1), (e_2, \Delta_2), \ldots \rangle, \ e_i \in {V \choose 2} \ \text{et} \ \Delta_i \in \{\pm 1\}.$

Graphe considéré: G=(V,E) où $e\in E(G)$ lorsque $\sum_{e_i=e}\Delta_i=1$.

En déterministe, on ne peut plus faire grand chose.

Lemma (folklore)

Tout algo déterministe prenant en entrée un stream graph dynamique G et renvoyant une arête $e \in E(G)$ utilise au moins $\binom{n}{2}$ bits de mémoire.

<u>Preuve:</u> Exercice: Réduction à $Ind_{\binom{n}{2}}$.

Approache vecteur: $\mathbf{x} \in D^{\mathbf{N}}$, $D \subseteq \mathbb{R}$.

Approache vecteur: $\mathbf{x} \in D^{\mathbf{N}}$, $D \subseteq \mathbb{R}$. Initialement $\mathbf{x} = (0, \dots, 0)$.

```
Approche vecteur: \mathbf{x} \in D^{\mathbf{N}}, D \subseteq \mathbb{R}.

Initialement \mathbf{x} = (0, \dots, 0).

Flot de mises à jour S = \langle (i_1, \Delta_1), (i_2, \Delta_2), \dots, (i_d, \Delta_d) \rangle où (i_k, \Delta_k) correspond à l'action: x_{i_k} \leftarrow x_{i_k} + \Delta_k.

Supp(\mathbf{x}) := \{i \in [N], x_i \neq 0\}.
```

Approche vecteur: $\mathbf{x} \in D^{\mathbf{N}}$, $D \subseteq \mathbb{R}$. Initialement $\mathbf{x} = (0, \dots, 0)$. Flot de mises à jour $S = \langle (i_1, \Delta_1), (i_2, \Delta_2), \dots, (i_d, \Delta_d) \rangle$ où (i_k, Δ_k) correspond à l'action: $x_{i_k} \leftarrow x_{i_k} + \Delta_k$. $\operatorname{Supp}(\mathbf{x}) := \{i \in [N], x_i \neq 0\}$.

Remark

graphe $G \leftrightarrow \mathbf{x} \in \{0, 1\}^{\binom{n}{2}}$.

Approache vecteur: $\mathbf{x} \in D^{\mathbf{N}}$, $D \subseteq \mathbb{R}$.

Initialement $\mathbf{x} = (0, \dots, 0)$.

Flot de mises à jour $S=\langle (i_1,\Delta_1),(i_2,\Delta_2),\dots,(i_d,\Delta_d)\rangle$ où (i_k,Δ_k)

correspond à l'action: $x_{i_k} \leftarrow x_{i_k} + \Delta_k$.

 $Supp(\mathbf{x}) := \{i \in [N], x_i \neq 0\}.$

Remark

graphe $G \leftrightarrow \mathbf{x} \in \{0, 1\}^{\binom{n}{2}}$.

Problem (l_0 -sampling)

Entrée: flot S de mises à jour de $\mathbf{x} \in \mathbb{R}^N$.

Sortie: Simuler un tirage $i \in Supp(\mathbf{x})$ avec probabilité $\frac{1}{|Supp(\mathbf{x})|}$.

(0, 0, 0, 0, 0)

$$S = \langle (2, +1)$$

$$(0, 1, 0, 1, 0)$$

$$S = \langle (2, +1), (4, +1)$$

$$(-1, 1, 0, 1, 0)$$

$$S = \langle (2, +1), (4, +1), (1, -1)$$

$$(-1,1,0,1,1)$$

$$S = \langle (2,+1), (4,+1), (1,-1), (5,+1)$$

$$(-1,0,0,1,1)$$

$$S = \langle (2,+1), (4,+1), (1,-1), (5,+1), (2,-1)$$

$$(-1,0,2,1,1)$$

$$S = \langle (2,+1), (4,+1), (1,-1), (5,+1), (2,-1), (3,+2)$$

$$(-1, 0, 2, 1, 1)$$

$$S = \langle (2, +1), (4, +1), (1, -1), (5, +1), (2, -1), (3, +2) \rangle$$

 l_0 -sampling sur x: simuler $\mathcal{U}(\{1,3,4,5\})$.

l_0 -sampling, esquisses linéaires

"En s'autorisant un peu d'erreur, on peut simuler un l_0 -sampling."

Theorem (Jowhari, Salgam, Tardos (2011))

Pour tout $\delta > 0$, il existe un algorithme randomisé effectuant du sampling l_0 sur un vecteur $\mathbf{x} \in \mathbb{R}^N$ prenant en entrée un flot S de mises à jour, utilisant $O(\log^2(N)\log(1/\delta))$ bits d'espace et avec probabilité d'erreur $\leq \delta$.

l_0 -sampling, esquisses linéaires

"En s'autorisant un peu d'erreur, on peut simuler un l_0 -sampling."

Theorem (Jowhari, Salgam, Tardos (2011))

Pour tout $\delta > 0$, il existe un algorithme randomisé effectuant du sampling l_0 sur un vecteur $\mathbf{x} \in \mathbb{R}^N$ prenant en entrée un flot S de mises à jour, utilisant $O(\log^2(N)\log(1/\delta))$ bits d'espace et avec probabilité d'erreur $\leq \delta$.

Si r: graine aléatoire de l'algo, ce qui est renvoyé est une projection linéaire $M_r \cdot \mathbf{x} \in \mathbb{R}^d$ où $M_r \in \mathbb{R}^{d \times N}$ et $d = O(\log(N))$ (M_r pas calculée intégralement durant l'exécution).

l_0 -sampling, esquisses linéaires

"En s'autorisant un peu d'erreur, on peut simuler un l_0 -sampling."

Theorem (Jowhari, Salgam, Tardos (2011))

Pour tout $\delta > 0$, il existe un algorithme randomisé effectuant du sampling l_0 sur un vecteur $\mathbf{x} \in \mathbb{R}^N$ prenant en entrée un flot S de mises à jour, utilisant $O(\log^2(N)\log(1/\delta))$ bits d'espace et avec probabilité d'erreur $\leqslant \delta$.

Si r: graine aléatoire de l'algo, ce qui est renvoyé est une projection linéaire $M_r \cdot \mathbf{x} \in \mathbb{R}^d$ où $M_r \in \mathbb{R}^{d \times N}$ et $d = O(\log(N))$ (M_r pas calculée intégralement durant l'exécution).

Linéarité \Rightarrow si $M_r \cdot \mathbf{x}, M_r \cdot \mathbf{y} \in \mathbb{R}^d$ ont été renvoyés, alors on peut en déduire $M_r \cdot (\mathbf{x} + \mathbf{y}) = M_r \cdot \mathbf{x} + M_r \cdot \mathbf{y}$ et faire du l_0 -sampling sur $\mathbf{x} + \mathbf{y}$.

l_0 -sampling dans des coupes

Une coupe de G est une paire $(S, V \setminus S)$ pour $S \subseteq V$. $\delta(S) := E(G[S, V \setminus S])$.

l_0 -sampling dans des coupes

Une coupe de G est une paire $(S, V \setminus S)$ pour $S \subseteq V$.

$$\delta(S) := E(G[S, V \setminus S]).$$

Pour chaque $v_k \in V$, on définit $\mathbf{a}^k \in \{-1, 0, 1\}^{\binom{r}{2}}$:

$$\mathbf{a}_{i,j}^k := \begin{cases} -1 & \text{si } k = i \leqslant j \text{ et } v_i v_j \in E(G) \\ 1 & \text{si } k = j \geqslant i \text{ et } v_i v_j \in E(G) \\ 0 & \text{sinon.} \end{cases}$$

l_0 -sampling dans des coupes

Une coupe de G est une paire $(S, V \setminus S)$ pour $S \subseteq V$.

$$\delta(S) := E(G[S, V \setminus S]).$$

Pour chaque $v_k \in V$, on définit $\mathbf{a}^k \in \{-1, 0, 1\}^{\binom{r}{2}}$:

$$\mathbf{a}_{i,j}^k := \begin{cases} -1 & \text{si } k = i \leqslant j \text{ et } v_i v_j \in E(G) \\ 1 & \text{si } k = j \geqslant i \text{ et } v_i v_j \in E(G) \\ 0 & \text{sinon.} \end{cases}$$

Si
$$S \subseteq V$$
, $\mathbf{a}^S := \sum_{v_k \in S} a^k \in \{-1, 0, 1\}^{\binom{n}{2}}$.

Remark

$$\delta(S) \leftrightarrow \operatorname{Supp}(a^S)$$

Ce que l'on va simuler:

Si on sait faire du l_0 -sampling sur les a^S à chaque étape: $\log(n)$ étapes suffisent.

Ce que l'on va simuler:

Si on sait faire du l_0 -sampling avec erreur $\leqslant \delta$ sur les a^S à chaque étape: $O_\delta(\log(n))$ étapes suffisent pour terminer avec proba d'erreur $\leqslant \delta$.

Algo R:

Phase 1: On lit le flot S en entrée, et pour chaque $v_k \in V$, on fait du l_0 -sampling $t = O_\delta(\log(n))$ fois sur $\mathbf{a}^k \in \{-1,0,1\}^{\binom{n}{2}}$. Soient $M_1 \cdot \mathbf{a}^k, \ldots, M_t \cdot \mathbf{a}^k \in \mathbb{R}^d$ les t vecteurs obtenus, $d = O_\delta(\log^2(n))$. \to On stocke $n \cdot t = O_\delta(n \log(n))$ esquisses de taille $O_\delta(\log^2(n))$.

Algo R:

Phase 1: On lit le flot S en entrée, et pour chaque $v_k \in V$, on fait du l_0 -sampling $t = O_s(\log(n))$ fois sur $\mathbf{a}^k \in \{-1,0,1\}^{\binom{n}{2}}$. Soient $M_1 \cdot \mathbf{a}^k, \dots, M_t \cdot \mathbf{a}^k \in \mathbb{R}^d$ les t vecteurs obtenus, $d = O_{\delta}(\log^2(n))$. \rightarrow On stocke $n \cdot t = O_{\delta}(n \log(n))$ esquisses de taille $O_{\delta}(\log^2(n))$.

Phase 2: "Post processing": $\hat{V} := V$.

Pour i = 1 à t: Pour $S \in \hat{V}$, tirer une arête dans $\delta(S)$ si possible avec $M_i \cdot \mathbf{a}^S := \sum_i M_i \cdot \mathbf{a}^v \in \mathbb{R}^d$.

Si SS' tirée: remplacer S et S' par $S \cup S'$ dans \hat{V} et les sketchs $M_i \cdot \mathbf{a}^S, M_i \cdot \mathbf{a}^{S'}$ par $M_i \cdot (\mathbf{a}^S + \mathbf{a}^{S'}) \cdot \mathbf{a}^S M_i \cdot \mathbf{a}^S + M_i \cdot \mathbf{a}^{S'}$ dans la mémoire (pour tout $j \ge i$).

Algo R:

Phase 1: On lit le flot S en entrée, et pour chaque $v_k \in V$, on fait du l_0 -sampling $t = O_\delta(\log(n))$ fois sur $\mathbf{a}^k \in \{-1,0,1\}^{\binom{n}{2}}$. Soient $M_1 \cdot \mathbf{a}^k, \ldots, M_t \cdot \mathbf{a}^k \in \mathbb{R}^d$ les t vecteurs obtenus, $d = O_\delta(\log^2(n))$. \to On stocke $n \cdot t = O_\delta(n\log(n))$ esquisses de taille $O_\delta(\log^2(n))$.

Phase 2: "Post processing": $\hat{V} := V$.

Pour i=1 à t: Pour $S\in \hat{V}$, tirer une arête dans $\delta(S)$ si possible avec $M_i\cdot \mathbf{a}^S:=\sum_{v\in S}M_i\cdot \mathbf{a}^v\in \mathbb{R}^d$.

Si SS' tirée: remplacer S et S' par $S \cup S'$ dans \hat{V} et les sketchs $M_j \cdot \mathbf{a}^S, M_j \cdot \mathbf{a}^{S'}$ par $M_j \cdot (\mathbf{a}^S + \mathbf{a}^{S'}) \cdot \mathbf{a}^S M_j \cdot \mathbf{a}^S + M_j \cdot \mathbf{a}^{S'}$ dans la mémoire (pour tout $j \geqslant i$).

Theorem (Ahn, Guha, McGregor (2012))

Algo R utlise $O_{\delta}(n \cdot \log^2(n))$ bits de mémoire et répond correctement au problème de connexité avec probabilité d'erreur $\leq \delta$.

Merci!