Troisième partie

Fonction numériques de variable réelle

1 Notions liées à l'ordre "≤"

1.1 Fonctions Lipschitzinnes

1.1.1 Fonction f "<Lipschitzienne de rapport k"> sur un intervalle U de $\mathbb R$

Une fonction est Lipschitzienne si $\forall (x,x') \in U^2, |f(x)-f(x')| \leq k, |x-x'|$

1.1.2 Contraction sur U

Une contraction sur U est une fonction Lipschitzienne sur U, de rapport k entre 0 et 1

1.1.3 Quatres formules de trigonométrie utiles

$$\begin{array}{ll} \cos(p) + \cos(q) = 2.\cos(\frac{p+q}{2}).\cos(\frac{p-q}{2}) & \cos(p) - \cos(q) = -2.\sin(\frac{p+q}{2}).\sin(\frac{p-q}{2}) \\ \sin(p) + \sin(q) = 2.\sin(\frac{p+q}{2}).\cos(\frac{p-q}{2}) & \sin(p) - \sin(q) = 2.\sin(\frac{p+q}{2}).\cos(\frac{p+q}{2}) \end{array}$$

1.2 Le sens de variation d'une fonction f sur un intervalle U dans D_f

```
Fonction f croissante sur \mathbf{U}: x < x' \Rightarrow f(x) \leq f(x')
Fonction f strictement croissante sur \mathbf{U}: x < x' \Rightarrow f(x) < f(x')
Fonction f décroissante sur \mathbf{U}: x < x' \Rightarrow f(x) \geq f(x')
Fonction f strictement décroissante sur \mathbf{U}: x < x' \Rightarrow f(x) > f(x')
```

1.3 Les bornes de l'ensemble image

Maximum local de f: $\forall x \in [a,b] \exists M, M \geq f(x)$ Minimum local de f: $\forall x \in [a,b] \exists M, M \leq f(x)$

Extrema locaux de f : Ce sont les maxima et minima locaux de f

Maximum absolu de f : C'est s'il existe, max f Mimimum absolu de f : C'est s'il existe, min f

2 Limites

2.1 Limite d'une fonction f en un réel a ou en un infini

On rappelle l'unicité de la limite : $l = lim_a f = lim_{x \longrightarrow a} f(x)$

$$\forall \epsilon \in \mathbb{R}_+^*, \forall x \in D_f, |x - a| < \eta \Rightarrow |f(x) - l| < \epsilon$$

Quelques remarques:

- Il n'est pas indispensable que f soit définie en a pour qu'elle y admette une limite
- Si f est définie en a et admet une limite en a, nécessairement $\lim_a f = f(a)$
- Il se peut que f soit définie en a sans admettre de limite en a
- Si f admet en a une limite l, cette limite (en a) est unique
- Toute fonction f définie au moins sur un intervalle ouvert U contenant a et continu en a

2.2 Limite à gauche, limite à droite

Limite à gauche : C'est la limite quand x est assez proche de a par valeurs inférieures

$$\forall \epsilon \in \mathbb{R}_{+}^{*}, \exists \eta \in (R)_{+}^{*}, \forall x \in D_{f}, 0 < a - x < \eta \Rightarrow |f(x) - l| < \epsilon$$

Limite à droite : C'est la limite quand x est assez proche de a par valeurs supérieures

$$\forall \epsilon \in \mathbb{R}_+^*, \exists \eta \in \mathbb{R}_+^*, \forall x \in D_f, 0 < x - a < \eta \Rightarrow |f(x) - l| < \epsilon$$

Remarque: Si $\lim_a f$ existe alors la limite a gauche et droite existent

2.3 Limite l de f en un infini

 $\mathbf{En} + \infty$ Définition classique

$$\forall \epsilon \in \mathbb{R}_+^*, \exists A \in \mathbb{R}_+^*, \forall x \in D_f, x > A \Rightarrow |f(x) - l| < \epsilon$$

 $\mathbf{En} - \infty$ Définition classique

$$\forall \epsilon \in \mathbb{R}_+^*, \exists A \in \mathbb{R}_+^*, \forall x \in D_f, x < -A \Rightarrow |f(x) - l| < \epsilon$$

2.4 Limites et opérations sur les fonctions

8 propriétés à connaitres

2.5 Comparaison de deux fonctions au voisinage d'un réel a ou d'un infini

Equivalence de fonctions : $\forall x \in U, f(x) = g(x).\beta(x) \land \lim_{x \to a} \beta(x) \stackrel{existe}{\to} 1$

On note $f \approx g$, qui est une relation d'équivalence

Quelques équivalences à savoir :

- Pour un polynome, en $+\infty$ c'est équivalent au terme de plus haut degrès, en $-\infty$ c'est équivalent au terme de plus faible degrès.
- $-sin(x), tan(x), ln(1+x), e^x 1$ sont équivalents à x quand $x \to 0$
- Une fonction est équivalente à sa limite $(l \neq 0)$

Domination d'une fonction : $f(x) = g(x) \cdot \gamma(x)$ avec $\gamma(x)$ une fonction bornée, on note f = O(g).

Si f est dominée au voisnage de a, par une fonction g qui a une limite 0 en a alors f admet également 0 pour limite en a.

Négligeabilité d'une fonction : $f(x) = g(x).\epsilon(x)$ avec $\epsilon(x)$ une fonction qui a pour limite 0, on note f = o(g).

Si f est négligeable au voisinage de a devant une fonction g bornée sur U alors f a pour limite 0 en a.

2.6 Propriétés des limites liées à l'ordre "<"

On se rapelle des différentes FI

2.6.1 Théorèmes de comparaison

- Si f < g alors si $f \stackrel{\rightarrow}{a} + \infty, g \stackrel{\rightarrow}{a} + \infty$
- Théorème des gendarmes

2.6.2 Limites pour des fonctions monotones

On prend la fonction f sur [a,b[

- Si f est croissante majorée alors f admet une limite à gauche en b
- Si f est croissante minorée alors f admet une limite à droite en a
- Si f est décroissante minorée alors f admet une limite à gauche en b
- Si f est décroissante majorée alors f admet une limite à droite en a

3 Continuité

3.1 Continuité d'une fonction en un point a ou sur un intervalle U

Continuïté à gauche et à droite

Il est indispensable de vérifier la limite à gauche qui doit être égale à f(a) et la limite à droite qui doit aussi être égale à f(a)

F est continue en a donc f est continue à gauche et à droite en a

3.1.1 Fonction continu sur un intervalle U

C'est à dire une fonction continue en tout réel a de U mais aussi continue sur les bornes de U, à droite pour la borne inf et à gauche pour la borne sup

On peut voir la continuïté d'une fonction si l'on peut tracer la courbe sans jamais lever le stylo.

3.1.2 Prolongement par continuïté d'une application

Si $\lim_{x\to a} \stackrel{existe}{=} l$, l'étant un réel, on dit que f'est "prolongeable par continuïté à $E \cup a$ " Le prolongement par continuïté de f'étant l'application $\tilde{f}: E \cup a \to \mathbb{R}$ et $x \to \tilde{f}(x) = f(x)$ si $x \in E$ et $\tilde{f}(a) = l$

3.2 Continuïté et suites numériques

3.2.1 Relation avec les suites

Si f est continue en l alors la suite v_n de terme général $v_n = f(u_n)$ converge vers f(l)

3.2.2 Le cas des fonctions Lipschitziennes

Toute fonction f définie et lipschitizienne sur un intervalle U est continue sur U

Toute fonction f définie et contractante sur un intervalle fermé [a,b] qu'elle stabilise, admet dans [a,b] un point fixe unique

3.3 Les théorèmes des valeurs intermédiaires et de la bijection

Ennoncé 1 (TVI) Si f est une fonction continue sur un intervalle [a,b] alors

$$\forall \gamma \in [f(a), f(b)], \exists \delta \in [a, b], \gamma = f(\delta)$$

Quelques propriétés

- si U est un intervalle fermé, alors f(U) est un intervalle fermé
- si U est un intervalle oouvert et si f est strictement monotone sur U alors f(U) est un intervalle ouvert

Ennoncé 1 (Théorème de la bijection) Si f est une fonction définie, continue et strictement monotone sur U définit une bijection sur f(U)

On notera que le sens de variation de g^{-1} est identique à celle de g

3.4 Fonctions obtenues par opérations sur des fonctions continues

Propriétés : f et g sont 2 fonctions simultanément continues sur un même intervalle U

- af + bg est continue sur U
- f.g et f^n est continue sur U
- $-\frac{1}{g}, \frac{f}{g}$ et g^n sont continues sur U

Propriétés:

- Si f est continue sur U et g sur V¹ alors gof est continue sur U
- Si f est continue sur U tel que U soit stable par f alors l'itéré de f est continue sur U

4 Dérivabilité

4.1 La dérivabilité en un point

4.1.1 Fonction f dérivable en x_0

Une fonction f est dérivable en x_0 si $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} = a_{x0} = f'(x_0)$, appelé nombre dérivé de f en x_0

4.1.2 Fonction f dérivable à gauche et à droite en x_0

Fonction f définie au moins sur un intervalle U et vérifiant pour tout réel h l'existance de la limite 4.1.1 avec $h \Rightarrow 0^+$ (à droite) et $h \Rightarrow 0^-$ (à gauche)

4.1.3 La non dérivabilité

- l'inexistance de l'une des limites unilatérales
- l'une des limites unilatérales est un infini
- les nombres dérivés de f à gauche et à droite sont distincts (On parle de point anguleux, là où les 2 demis tangentes sont distinctes)

4.1.4 Equation de la tangente à C_0 au point $M_0(x_0, f(x_0))$

Lorsque f est dérivable en x_0 de nombre dérivé a_{x0} , l'équation est

$$y = a_{x0}.x - a_{x0}.x_0 + f(x_0)$$

Lorsque la dérivabilité du côté et prouvé, la demi tangente correspondante a pour équation

$$y = a_{x0.d/q}.x - a_{a=x0.d/q}.x_0 + f(x_0)$$

4.1.5 Lien avec la continuïté

f est dérivable en $x_0 \Rightarrow$ f est continue en x_0

4.1.6 La différentiabilité en x_0

Une fonction est différentiable en x_0 si il existe une fonction $df_a(h)$ autrement dit

$$\Delta f_{x0}(h) = f(x_0 + h) - f(x_0) = f'(x_0) + o(h) = df_{x0}(h) + o(h)$$

avec $df_{x0}: h \to f'(x_0).h$

Equivalence dérivabilité \Leftrightarrow différentiabilité en un x_0

f est dérivable en x_0 de nombre dérivé a_{x0} de nombre dérivé $a_{x0} \Leftrightarrow f$ est différentiable en x_0

^{1.} $f(u) \subset V$

4.2 La dérivabilité sur un intervalle

4.2.1 Fonction dérivable sur un intervalle U

Fonction f définie sur U qui est

- dérivable en tout réel x de U autre qu'une borne de U
- dérivable du côté de l'intérieur de U en toute borne de U qui appartient à U

4.2.2 Recherche d'extrema locaux de f sur un intervalle [a,b[

Ces sont les solutions de f'(x)=0

4.2.3 Le théorème de ROLLE

Si f est continue sur [a,b], dérivable sur [a,b], telle que f(a)=f(b) alors $\exists \psi \in]a,b[,f'(\psi)=0$

4.2.4 le théorème des accroissement finis (TAF)

Si f est continue sur [a,b] et dérivable sur]a,b[alors, $\exists \psi \in]a,b[,f'(\psi)=\frac{f(b)-f(a)}{b-a}$ 2

Conséquences du TAF : $|f(b) - f(a)| \le M$. |b - a| alors f est M-lipschitzienne sur]a,b[

4.2.5 Le théorème de dérivabilité aux bornes

- Soit f une fonction dérivable sur $]x_0 \alpha, x_0[$ continue sur $]x_0 \alpha, x_0[$ et $\lim_{x \to x_0} f'(x) \stackrel{existe}{=} l$ alors f est dérivable à gauche en x_0 et $f'_0(x_0) = l$
- Même principe à droite avec l'intervalle $[x_0, x_0 + \alpha]$
- Si f est:
 - Prolongeable par continuité à $E \cup \{a\}$
 - Dérivable sur le ou les intervalles ouverts inclus dans E, dont a est une borne
 - Telle que $\lim_{x\to a} f'(x) \stackrel{existe}{=} l$

Alors le prolongement continu \tilde{f} de f est dérivable en a et $\tilde{f}'(a) = l^3$

^{2.} ROLLE étendu

^{3.} $(f^n)' = \prod_{k=0}^{n-1} f' \circ f^k$

4.3 Dérivations successives

Dérivée d'ordre n de fonctions obtenues par opérations sur des fonctions dérivables

Formule de Leibniz:

$$(f.g)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(k)}.g^{(n-k)}$$

Classe $C^k(U)$: C'est l'ensemble des fonctions k fois dérivables, telles que leur dérivée d'ordre k, $f^{(k)}$ soit

Classe $C^{\infty}(U)$: C'est l'ensemble des fonctions définies sur U, à valeurs réelles qui sont dérivables sur U à tout ordre

4.4 Règles de l'Hopital

$$\lim \frac{f}{g} = \lim \frac{f'}{g'} = \lim \frac{f''}{g''}$$

5 Développements limités

Construction du $DL_n(x_0)$ d'une fonction de classe C^n sur un voisinage de x_0

Formule de Taylor avec reste de Young : le $DL_n(x_0)$ de f s'exprime par :

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n)$$

f admet un $DL_n(x_0)$ si :

$$- \lim f(x) = a_0$$

— $\lim_{x \to x_0} f(x) = a_0$ — Si de plus f est dérivable en x_0 et vérifie $f'(x_0) = a_1$

$DL_n(0)$ d'une fonction paire ou impaire

Si f est impaire alors il ne reste que les puissances impaires de x.

S f est paire alors il ne reste que les puissances paires de x.

Les développements limités à connaitre

Base	$\frac{1}{1-x}$	$1 + x + x^2 + x^3 + x^n + o(x^n)$
-x remplace x	$\frac{1}{1+x}$	$1 - x + x^2 - x^3 + \dots + (-1)^n + o(n^n)$
Primitive du précédent	ln(1+x)	$x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n)$
x^2 remplace x dans $\frac{1}{1+x}$	$\frac{1}{1+x^2}$	$1 - x^2 + x^4 - \dots + (-1)^n x^{2n} + o(x^{2n})$
Primitive du précédent	Arctan(x)	$x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+1})$

Base	e^x	$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + o(x^n)$
Partie paire	ch(x)	$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + o(x^{2n})$
Partie Impaire	sh(x)	$1 + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$
= ch(ix)	cos(x)	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n})$
= sh(ix)	sin(x)	$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$

5.4 Applications

Calcul d'un équivalent de fonction en un point.

Calcul d'une limite en un point.

Approximation d'une fonction en une valeur.

Table des matières

11	1 1	Fonction numeriques de variable reelle		
1		ions liées à l'ordre "≤" Fonctions Lipschitzinnes		
	1.1	Fonctions Lipschitzinnes		
		1.1.2 Contraction sur U		
		1.1.3 Quatres formules de trigonométrie utiles		
	1.2	Le sens de variation d'une fonction f sur un intervalle U dans D_f		
	1.3	Les bornes de l'ensemble image		
2	Lim	nites 1		
_	2.1	Limite d'une fonction f en un réel a ou en un infini		
	2.2	Limite à gauche, limite à droite		
	2.3	Limite l de f en un infini		
	2.4	Limites et opérations sur les fonctions		
	2.5	Comparaison de deux fonctions au voisinage d'un réel a ou d'un infini		
	2.6	Propriétés des limites liées à l'ordre "≤"		
		2.6.1 Théorèmes de comparaison		
		2.6.2 Limites pour des fonctions monotones		
3	Con	ntinuité 3		
_	3.1	Continuité d'une fonction en un point a ou sur un intervalle U		
	_	3.1.1 Fonction continu sur un intervalle U		
		3.1.2 Prolongement par continuïté d'une application		
	3.2	Continuïté et suites numériques		
		3.2.1 Relation avec les suites		
		3.2.2 Le cas des fonctions Lipschitziennes		
	3.3	Les théorèmes des valeurs intermédiaires et de la bijection		
	3.4	Fonctions obtenues par opérations sur des fonctions continues		
4 Dériv		rivabilité		
	4.1	La dérivabilité en un point		
		4.1.1 Fonction f dérivable en x_0		
		4.1.2 Fonction f dérivable à gauche et à droite en x_0		
		4.1.3 La non dérivabilité		
		4.1.4 Equation de la tangente à C_0 au point $M_0(x_0, f(x_0))$		
		4.1.5 Lien avec la continuïté		
	4.0	4.1.6 La différentiabilité en x_0		
	4.2	La dérivabilité sur un intervalle		
		4.2.1 Fonction dérivable sur un intervalle U		
		4.2.3 Le théorème de ROLLE		
		4.2.4 le théorème des accroissement finis (TAF)		
		4.2.5 Le théorème de dérivabilité aux bornes		
	4.3	Dérivations successives		
	1.0	4.3.1 Dérivée d'ordre n de fonctions obtenues par opérations sur des fonctions dérivables		
	4.4	Règles de l'Hopital		
۲	D.	veloppements limités		
5	Dev 5.1	"(°)		
	$5.1 \\ 5.2$			
	5.2	$DL_n(0)$ d'une fonction paire ou impaire		
	5.4	Applications		
		* * · · · · · · · · · · · · · · · · · ·		