Team Number:	apmcm2300201
Problem Chosen:	С

2023 APMCM summary sheet

TODO: C题1问数据确定

factors:

- 1、品牌: 若同时有新能源车和燃油车, 分析新能源车/燃油车
- 2、居民收入
- 3、油价
- 4、品牌: 研发投入
- 5、
- 6、

development: 中国新能源汽车的总的销量/产量

Keywords: Keywords1 Keywords2 Keywords3

Contents

1.	Introduction	1
	1.1	1
	1.2	1
	1.3	1
2.	The Description of the Problem	1
	2.1 How do we approximate the whole course of ?	1
	2.2 How do we define the optimal configuration?	1
	2.3 The local optimization and the overall optimization	1
	2.4 The differences in weights and sizes of	2
	2.5 What if there is no data available?	2
3.	Models	2
	3.1 Basic Model	2
	3.1.1 Terms, Definitions and Symbols	2
	3.1.2 Assumptions	2
	3.1.3 The Foundation of Model	2
	3.1.4 Solution and Result	3
	3.1.5 Analysis of the Result	3
	3.1.6 Strength and Weakness	3
4.	Conclusions	3
	4.1 Conclusions of the problem	3
	4.2 Methods used in our models	3
	4.3 Applications of our models	4
5.	Future Work	4
	5.1 Another model	4
	5.1.1 The limitations of queuing theory	4
	5.1.2	4
	5.1.3	4
	5.1.4	4
6.	References	4
7.	Appendix	5

I. Introduction

2.4 The differences in weights and sizes of

2.5 What if there is no data available?

III. Models

3.1 Basic Model

3.1.1 Terms, Definitions and Symbols

The signs and definitions are mostly generated from queuing theory.

3.1.2 Assumptions

3.1.3 The Foundation of Model

- 1) The utility function
 - The cost of:
 - The loss of:
 - The weight of each aspect:
 - Compromise:

Figure 1 关注我们公众号,学习更多知识

- 3) The overall optimization and the local optimization
- The overall optimization:
- The local optimization:
- The optimal number of:

3.1.4 Solution and Result

1) The solution of the integer programming: 2) Results:

3.1.5 Analysis of the Result

- Local optimization and overall optimization:
- Sensitivity: The result is quite sensitive to the change of the three parameters

•

- Trend:
- Comparison:

3.1.6 Strength and Weakness

Strength: The Improved Model aims to make up for the neglect of . The result seems to declare that this model is more reasonable than the Basic Model and much more effective than the existing design.

Weakness: Thus the model is still an approximate on a large scale. This has doomed to limit the applications of it.

IV. Conclusions

4.1 Conclusions of the problem

•

•

•

•

4.2 Methods used in our models

•

•

•

•

4.3 Applications of our models

•

•

•

•

V. Future Work

5.1 Another model

- 5.1.1 The limitations of queuing theory
- 5.1.2
- 5.1.3
- 5.1.4

VI. References

- [1] Author, Title, Place of Publication: Press, Year of publication.
- [2] author, paper name, magazine name, volume number: starting and ending page number, year of publication.
- [3] author, resource title, web site, visit time (year, month, day).
- [4] IATEX资源和技巧学习 https://www.latexstudio.net
- [5] IATEX问题交流网站 https://wenda.latexstudio.net
- [6] 模板库维护 https://github.com/latexstudio/APMCMThesis

VII. Appendix

Listing 1: The matlab Source code of Algorithm

```
kk=2; [mdd, ndd]=size(dd);
while ~isempty(V)
[tmpd, j] = min(W(i, V)); tmpj = V(j);
for k=2:ndd
[tmp1, jj] = min(dd(1,k) + W(dd(2,k),V));
tmp2=V(jj);tt(k-1,:)=[tmp1,tmp2,jj];
end
tmp=[tmpd,tmpj,j;tt];[tmp3,tmp4]=min(tmp(:,1));
if tmp3==tmpd, ss(1:2,kk)=[i;tmp(tmp4,2)];
else,tmp5=find(ss(:,tmp4)~=0);tmp6=length(tmp5);
if dd(2,tmp4)==ss(tmp6,tmp4)
ss(1:tmp6+1,kk)=[ss(tmp5,tmp4);tmp(tmp4,2)];
else, ss(1:3,kk)=[i;dd(2,tmp4);tmp(tmp4,2)];
end; end
dd=[dd,[tmp3;tmp(tmp4,2)]];V(tmp(tmp4,3))=[];
[mdd,ndd]=size(dd);kk=kk+1;
end; S=ss; D=dd(1,:);
```

Listing 2: Data source

1. The brands of new energy electric vehicles that hold the largest market share.

http://cpcaauto.com/newslist.php?types=csjd&id=3273