AOS Math 10 Conic Sections Test A

February 2, 2024

Name and block:

True / False

1. (1 point) _____ The major axis of a (non-circular) ellipse is always longer than the minor axis.

2. (1 point) _____ The transverse axis of a hyperbola is always longer than the conjugate axis.

3. (1 point) _____ The foci of an ellipse are on the minor axis.

4. (1 point) _____ The focus of the parabola $x^2 = 8y$ is the lowest point on the parabola.

5. (1 point) _____ The graph of $\frac{x^2}{16} + \frac{y^2}{25} = 1$ fits entirely inside the graph of $x^2 + y^2 = 30$

6. (1 point) _____ The directrix of a parabola is perpendicular to the axis of symmetry.

7. (1 point) _____ The distance between two foci of an ellipse is 2c.

8. (1 point) _____ The eccentricity of an ellipse can be e = 1.14.

9. (1 point) _____ A circle is an ellipse with a = b.

10. (1 point) _____ The graphs of $\frac{x^2}{2} - \frac{y^2}{3} = 1$ and $\frac{y^2}{2} - \frac{x^2}{3} = 1$ have the same asymptotes.

Multiple Choice

Work must be shown for credit

1. (3 points) Note the scale is 2 below. Which is the graph of $\frac{(x-3)^2}{9} - \frac{(y+4)^2}{4}$?

A.

D.

 \mathbf{E} .

В.

С.

F.

- 1. ____
- 2. (3 points) Note the scale is 2 below. Which is the graph of $\frac{(x-2)^2}{4} + \frac{(y+4)^2}{9}$?

A.

D.

E.

В.

F.

C.

2. _

A.

3. (3 points) Note the scale is 2 below. Which is the graph of $(y-4)^2 = 12(x-2)$?

- D.
- E.

В.

F.

C.

3. _

- 4. (3 points) What are the foci of the hyperbola $\frac{x^2}{16} \frac{y^2}{12} = 1$?
 - A. $(0, \pm 2)$
 - B. $(0, \pm 2\sqrt{7})$
 - C. $(\pm 2\sqrt{7}, 0)$
 - D. $(\pm 2, 0)$

- 5. (3 points) Which is **not** a vertex or co-vertex of the ellipse $\frac{x^2}{9} + \frac{(y-2)^2}{7} = 1$
 - A. $(0, 2 \sqrt{7})$
 - B. $(3, \sqrt{7})$
 - C. (-3,2)
 - D. (3,2)

5. _

- 6. (3 points) What is the equation of a parabola with
 - a vertex at (3, -2)
 - a vertical axis of symmetry
 - the parabola passes through the point (0,1)

A.
$$(x+3)^2 = 12(y+2)$$

B.
$$(x-3)^2 = 12(y-2)$$

C.
$$(x-3)^2 = 3(y+2)$$

D.
$$(x-3)^2 = \frac{4}{9}(y+2)$$

E.
$$(x-3)^2 = 4(y+2)$$

6. _____

7. (3 points) Write the equation of the ellipse that has a major axis 28 units long and is parallel to the y axis, a minor axis 26 units long, and a center at (11, 8).

A.
$$\frac{(x+11)^2}{196} + \frac{(y+8)^2}{169} = 1$$

B.
$$\frac{(x-11)^2}{196} + \frac{(y-8)^2}{169} = 1$$

C.
$$\frac{(x+11)^2}{169} + \frac{(y+8)^2}{196} = 1$$

D.
$$\frac{(x-11)^2}{169} + \frac{(y-8)^2}{196} = 1$$

7. _____

8. (3 points) Given the equation of a circle in standard form: $(x+3)^2 + (y-4)^2 = 49$. Write the equation in general form.

A.
$$x^2 + y^2 - 24 = 0$$

B.
$$x^2 + y^2 + 6x - 8y - 24 = 0$$

C.
$$x^2 + y^2 + 3x - 4y - 24 = 0$$

D.
$$x^2 + y^2 + 74 = 0$$

E.
$$x^2 + y^2 + 6x - 8y + 74 = 0$$

8. _____