Discovering Bellwether for Defect Prediction using Hoeffding Races

Akshay Nalwaya (200159155) Sanjana Kacholia (200263479)

Shantanu Sharma (200255931)

Overview

- Why: Identifying the Bellwether project among a group of projects
- What: Making the identification of this Bellwether project faster than the current $O(N^2)$ approach
- <u>How</u>: Use Hoeffding races to reduce the dataset required for training and/or testing for Bellwether identification

Why Bellwethers?

- Bellwethers just uses one dataset to construct prediction model
- Predicting defects for the new projects using data from the Bellwether project

Baseline Approach

Training

- Model Random Forest Classifier
- Train on data of one project

Testing

- Test on all the other projects
- Compute G-score for each project

Bellwethers

- Get median G-score
- Project with best median G-score is declared as "Bellwether"

Determining Hoeffding Bounds helps to reduce the training set

Research Questions

RQ1: Can we predict which dataset will be the bellwether?

RQ2: Can we reduce the time to find bellwether by reducing the size of data?

Results

	Projects	Baseline G-score	New G-score
	ant	0.16	0.16
<u>رئ</u>	camel	0.23	0.24
	ivy	0.08	0.10
	jedit	0.02	0.02
	log4j	0.32	0.32
	lucene	0.53	0.53
	poi	0.59	0.59
	velocity	0.49	0.47
	xalan	0.56	0.57
	xerces	0.42	0.42

Projects	Training Data
ant	8.5%
camel	8.5%
ivy	8.5%
jedit	8.0%
log4j	8.5%
lucene	8.5%
poi	8.5%
velocity	8.0%
xalan	8.3%
xerces	8.0%

New approach resulted in increased G-score for ivy and xalan while the other remained nearly similar

- 'poi' is the bellwether dataset for the baseline method as well as after the implementation of Hoeffding races.
- Training data of around ~8.5% for each dataset gives similar results, reducing the time and data required for training effectively.

Other experiments for Bellwether identification

In addition to sampling just the training set we performed the following experiments for finding Bellwethers:

- Reducing only the testing dataset
- Reducing both the training and testing dataset

Future Work

- Using different racing algorithms and compare their performance with Hoeffding races
- Extending this work to different target domains like code smells, issue lifetime estimation and effort estimation

Questions?

References

- Bellwethers: A Baseline Method For Transfer Learning by Rahul Krishna et al (<u>link</u>)
- The Racing Algorithm: Model Selection for Lazy Learners by Maron et al (<u>link</u>)