## Trabajo en Grupo sobre Restauración de Imágenes

## Objetivos:

- Comprender nociones básicas de restauración de imágenes
- Restaurar imágenes degradadas por movimiento horizontal uniforme

Para restaurar una imagen G de N columnas que haya tenido un proceso de degradación fila por fila, como por ejemplo, el movimiento horizontal uniforme de n pixeles, se puede plantear la siguiente ecuación. Esta ecuación modela el proceso de degradación de una fila f de la imagen original F de M columnas. La fila degradada g (de la imagen G) es la convolución de f con la máscara h de n elementos:

## [ RELLENAR TODOS LOS ESPACIOS VACIOS ]



Esta ecuación puede escribirse matricialmente como:

|         |                                            | (1)   |          |     |                                       |
|---------|--------------------------------------------|-------|----------|-----|---------------------------------------|
| 0,      | máscara h, vemos q<br>incógnitas. Como M e |       |          |     | · · · · · · · · · · · · · · · · · · · |
| existen | _ soluciones.<br>minados/superdetermi      | Estos | sistemas | . , |                                       |

Para resolver (1), es necesario imponer una restricción para f. Esta restricción puede ser planteada como:

$$||\mathbf{Wf}||^2 \to \min$$
 (2)

Donde  $\mathbf{Wf}$  es una señal por ejemplo que deja pasar las frecuencias altas de  $\mathbf{f}$ . De esta manera la solución que andamos buscando es una función  $\mathbf{f}$  que cumpla (1) y que tenga un rizado mínimo. La solución será llamada  $\hat{\mathbf{f}}$ .

La solución para f debe ser tal que se cumplan (1) y (2) simultáneamente. La ecuación (1) puede replantearse de la siguiente forma:

$$|| ||^2 = 0$$
 (3)

Las ecuaciones (2) y (3) tienen la estructura de un problema de optimización que puede resolverse usando el multiplicador de Lagrange  $\lambda$  (en este caso un número múy grande como  $10^6$ ). Usando el multiplicador de Lagrange, la función objetivo  $V(\mathbf{f})$  a minimzar puede plantearse como:

$$V(\mathbf{f}) = \lambda || ||^2 + || ||^2 \to \min$$
término que debe ser cero término a minimizar (4)

¿Por qué al minimizar esta función objetivo se cumplen simultáneamente las ecuaciones (1) y (2)?

Para encontrar f, podermos derivar V(f) con respecto a f e igualar a cero.

Utilizando la siguiente expresión:

$$\frac{\partial}{\partial \mathbf{f}} ||\mathbf{X}\mathbf{f} + \mathbf{z}||^2 = 2\mathbf{X}^\mathsf{T} (\mathbf{X}\mathbf{f} + \mathbf{z})$$
(5)

donde X es una matriz y z un vector, encuentre:

$$\frac{\partial}{\partial \mathbf{f}} ||\mathbf{H}\mathbf{f} - \mathbf{g}||^2 = \tag{6}$$

$$\frac{\partial}{\partial \mathbf{f}} ||\mathbf{W}\mathbf{f}||^2 = \tag{7}$$

Usando (6) y (7), encuentre:

$$\frac{\partial V(\mathbf{f})}{\partial \mathbf{f}} = \tag{8}$$

Igualando a cero la ecuación anterior, encuentre f:

$$\hat{\mathbf{f}} = \mathbf{f} =$$

Buenos resultados en imágenes se obtienen con  $\lambda=10^6$  .

## **Ejercicios:**

|                                                        |  |  |  |  |  | la | imagen | restaurada | Ê |
|--------------------------------------------------------|--|--|--|--|--|----|--------|------------|---|
| conociendo G, H, W y $\lambda$ . (aquí H es mayúscula) |  |  |  |  |  |    |        |            |   |

2) Escriba un programa en Matlab o Python que restaure una imagen G que tenga como parámetros de entrada G, h y W. (aquí h es mayúscula)

3) Un criterio simple para minimizar el rizado de la fila restaurada es que la solución encontrada para f tenga mínima norma

| a) | ¿Por qué?, |  |  |  |
|----|------------|--|--|--|
|    |            |  |  |  |
|    |            |  |  |  |

b) Encuentre cómo sería W en la ecuación (2) para este criterio.

\_\_\_\_\_

c) ¿Cómo quedaría (4) en este caso?

\_\_\_\_\_

4) En clase vimos que un criterio que puede ser utilizado para minimizar el rizado de la solución f, es minimizando la diferencia entre g y un vector conformado por los primeros N elementos de f, que llamamos  $f_N$ . En este caso la restricción f0 puede ser escrita como

$$||\mathbf{f}_N - \mathbf{g}|| \to \min$$
 (10)

donde  $f_N$  puede ser escrito en forma matricial como

$$\mathbf{f}_N = \mathbf{P}\mathbf{f} \tag{11}$$

con P una matriz de N x M elementos con una diagonal de "unos":

Usando las ecuaciones (10), (11) y (1),

a) Encuentre cómo sería W en la ecuación (2) para este criterio.

|    | b)  | ) ¿Cómo quedaría (4) en este caso?                                                                                                                                                                  |             |
|----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 5) | fre | In criterio muy intuitivo para reducir el rizado de la solución es mi<br>recuencias altas de f (usando transformada de Fourier).<br>) Encuentre cómo sería W en la ecuación (2) para este criterio. | nimizar las |
|    | b)  | ) ¿Cómo quedaría (4) en este caso?                                                                                                                                                                  |             |

[TIP] La expresión Wf en (2) deberían ser las frecuencias altas de f solamente, es decir, si X es la transformada discreta de Fourier de f, donde X es un vector de M elementos (el mismo número de elementos de f), podríamos multiplicar por cero los elementos de X correspondientes a las bajas frecuencias, esto se realiza multiplicando X por una matriz Q de MxM elementos con algunos "unos" en la diagonal y "ceros" en el resto. De esta manera Wf puede ser reemplazado por QX. Sabemos que la transformada discreta de Fourier de f puede ser computada como una multiplicación de f con una matriz B de MxM elementos con las funciones base de Fourier, es decir X es Bf. En este ejercicio debe definir las matrices Q y B, y con ellos encontrar W en la ecuación (2).

6) Encuentre n a partir de G sabiendo que el movimiento fue horizontal y uniforme.

[TIP] Estudie el promedio de las filas de la Transformada de Fourier de G para distintos valores de n. Pruebe con estos comandos y obtenga conclusiones.

```
F = imread('cameraman.tif'); % imagen original

n = 15; h = ones(1,n)/n; % mascara de degradacion

G = conv2(F,h,'valid'); % imagen degradada

X = fftshift(fft2(G)); % transformada de fourier de G centrada

K = log(abs(X)+1); % transformada en escala logaritmica

plot(mean(K)) % promedio de todas las filas de K
```

Se recomienda ver el Artículo de referencia disponible en la página web del curso: Imágenes > Material > "Introducción a la Restauración de Imágenes (Mery, 2003)".