1. CRYSTAL STRUCTURE

Solid Materials		
Crystalline Materials Non-Crystalline Materials (Amorphous)		
Eg. All metals, Some Ceramics, Quartz.	Eg. Plastic, Rubber, Glass (Ceramics)	
High Strength	Low Strength	
Anisotropic/ Un-isotropic	Isotropic	
Sharp & High melting point	Low & Range of melting point.	

Bravis Lattice System (Types of Unit cells):

Total Number of Lattice System = 14	Basic or Primary Lattice System = 7
Cubic System	Triclinic System
$a = b = c$, And $\alpha = \beta = \gamma = 90$,	$a \neq b \neq c$, And $\alpha \neq \beta \neq \gamma \neq 90$,
Number of parmeter required to describe system	Number of parmeter required to describe system
(n) = 1	(n) = 6, Most Complex Structure

(1) Number of Atoms Required to form Cell (N):	(6) % of Empty Space in Cell:
(2) Number of Atoms Inside the unit Cell (n):	(7) Coordination Number: the number of atoms or
(3) Side length given by parameters (a, b, c) :	ions immediately surrounding a central atom in a
(4) Bond Length: Minimum Distance between two atoms.	complex or crystal.
(5) Atomic Packing Factor (Packing Density): Total	
Volume of atom / Volume of Unit cell	

	Simple Cubic	Body Centred	Face Centred	Diamond Cubic Structure/	Hexagonal Closed
	Structure	Structure	Cubic Structure	Face centred Tetrahedral	Packed Structure (HCP)
1	8	9	14	18	17
2	1 Atom	2 Atoms	4 Atoms	8 Atoms	6 Atoms
3	a = 2R	$\sqrt{3}a = 4R$	$\sqrt{2}a = 4R$	$\sqrt{3}a = 8R$	$\frac{c}{a} = 1.634 \& a = 2R$
4	2 <i>R</i>	2R	$a/\sqrt{2}$	8R/√3 <i>a</i>	$\frac{2R}{a}/\frac{c}{1.634}$
5	0.52	0.68	0.74	0.34	0.74
6	48 %	32 %	26 %	66 %	26 &
7	6	8	12	4	12
Eg.	Plutonium	W, Iron (α-Fe), Cr, Na	Ni, Al, Au, Ag	Diamond, Si, Ge	Zn, Co, Mg, Ti, Be, Zr

Crystallographic Directions: Line Drawn within unit-cells (Simple Vector	r). Single Direction = $[x, y, z]$	
Miller Indices: Integer denotation of Reciprocal of Plane Fraction.	Family of Direction = $\langle x, y, z \rangle$	
Crystallographic Plane:	Single Plane = [miller indices]	
Procedure: 1) Locate Origin in 3d, 2) Find plane fraction, 3) Reciprocal And	d Family of Direction =	
convert in to integer number by multiplication.	{miller indices}	
Mass No. of Atoms in a Direction		
$Linear\ Density = \frac{Mass}{Volume} = \frac{No.\ of\ Atoms\ th}{Length\ of\ a}$	lirection	
Mass No. of Atoms in a Plane		
$Planner\ Density = \frac{1}{Volume} = \frac{1}{Area\ of}$	Plane	
	$V_{here}(h, k, l) = Miller Indices,$	
Inter Planer Distance (d) = $\frac{1}{\sqrt{\left(\frac{h}{a}\right)^2 + \left(\frac{k}{b}\right)^2 + \left(\frac{l}{c}\right)^2}}$,b,c = Lattice Parameter.	

X-ray Diffraction Method (Brag's Method 1912):

$$E \propto \frac{1}{\lambda}$$

$$AB + BC = n\lambda$$

n = Order of reflection EG. 1,2, ...

 λ = Wave Length of X-ray,

 θ = Brag's Angle,

 2θ = Deflection Angle,

d = Inter Planer Distance.

IMPERFECTIONS IN SOLIDS/ DEFECTS					
Poi	Point Defect (0 D) Line Defect (1 D) Surface Defect (2 D)				
Intrinsic Defect	Extrinsic Defect	1. Edge Dislocation	1. Grain Boundary		
1. Vacancy	1. Substitutional	2. Screw Dislocation	2. Tile Boundary		
2. Frenkel	2. Interstitial		3. Twin Boundary		
3. Schottky			4. Stacking Fault		

Point Defect: Missing or Miss Placing of Atom.				
Intrinsic Defect: At high Temperature. Extrinsic Defect: Adding Impurity.				
Intrinsic Defect				
Vacancy Defect: Missing Atom	Frenkel Defect: Misplacing of ion (Mostly observed in Ionic Crystal NaCl)		Schottky Defect: Missing of pair of atoms Atom. Electrically balanced effect	
			balanced effect	
	Extrinsic Defect			
Substitutional Defects Interstitinal defect				
Adding foreign Atom in place of host material atom	 Adding Impu intersitional p 			
• Size of Foragn atom is similar to Host atom.	• Size of Forag atom.	n atom <<< Host		
• Strenght is not changing And other properties changes.	• Strenght And changes.	other properties	Substitutional	Interstitial
• Eg, Cr + Steel (Corrosion Resistance increase)	• Eg. C + Fe (S	Strength Increases)	foreign atom	foreign atom

Defects Are not bad

Line Defect (1 D)		Burger vector
Edge Dislocation:	Screw Dislocation:	(b)
 Dislocated atoms move parallel to F. Only Translatory direction. Burger vector is parallel to F and perpendicular to dislocation 	 Dislocated atoms move perpendicular to F. Initial is translatory direction and followed by rotational/ Screw motion) 	Edge dislocation line
Burger's Vector: Gives direction and m	,	

Hall Petch Equation:	σ = Strength of material,
Relation Between Strength and Grain Size.	d = Grain Size,
$\sigma = \sigma_0 + K/\sqrt{d}$	σ_0 , $K = \text{Constants for material}$.

GRAIN AND TYPES OF GRAIN MATERIAL:

Atoms are arranged in periodic order And separated by Grain Boundary.

At the grain Boundary:

More Bond Length => Low Bond Energy => Weak Region (Other Atom comes and shows effects Eg. Corrosion)

TYPES OF GRAIN MATERIAL		
FINE GRAIN MATERIAL COARSE GRAIN MATERIA		
Smaller Grain Size	Larger Grain Size	
More Grain Boundaries	Less Grain Boundaries	
Obtained by Fast Cooling	Obtained by Slow Cooling	
At room Temp (27° C): High Strength (Eg. Deformation	At room Temp (27° C): Low Strength	
decreases at each grain boundary)		
At High Temp: Low Strength	At High Temp: High Strength	

ASTM Grain Number (n): The number of grains per unit area is	No. of grains	2^{n-1}
measured by ASTM Grain Size number (n) at Magnification (M) of 100X.	$\frac{-in^2}{in^2}(N_{\chi})$	$= \frac{1}{(M/100)^2}$

SLIP SYSTEM

SLIP: It's Dislocation moment in a easy manner that requires low energy. Closely packed Direction.

SLIP SYSTEM: It's a combination of slip direction and slip plane. Eg. $\{<1,1,0>,\{1,1,1\}\}$ Closely packed Plane.

Ductility ∝ No. of Slip System	Structure	No. of Slip System
Note:	HCP	3
FCC is more ductile than BCC Because Active number of slip system are more.	FCC	12
HCP Are brittle because it has less slip system.	BCC	48

2. MATERIAL PROPERTIES AND

TESTING

Theoretical Density: It's measured by considering unit cell of a
material.n = No. of Atoms inside unitcell
AW = Atomic Weight (g/ mol)
AN = Avogadro's No. (1mol = 6.023*10^{23})
VUC = Volume of unit cell

Elasticity	
Line Elastic Materia	Non- Linear Elastic Material
Hook's Law Valid up to proportionality limit. By considering slop of Stress Strain curve we can find (Y).	

Engineering Stress $\sigma_E = Load\ Applied/Initial\ Area$ True Stress $\sigma_T = Load\ Applied/Instantaneous\ Area$ $\sigma_T = \frac{F}{A_f} = \sigma_E \frac{A_i}{A_f} = \sigma_E \frac{d_i^2}{d_f^2} = \sigma_E \frac{l_f}{l_i} = \sigma_E (1 + \varepsilon_E) \left(\because \ \sigma_E = \frac{F}{A_i}, A_i l_i = A_f l_f \right)$

POWER LAW OF STRAIN HARDENING

STRAIN HARDENING: It's one of the strengthening mechanisms, in			
this process, strength and hardness is increased by arresting dislocation			
motion. Strain hardened material is more brittle due to accumulation of			
dislocations at grain boundary.			
Strength of Rolled Component > Strength of Input Component			
The power law gives the relationship between true stress and true strain			
prior to the necking. It's valid up to ultimate point (Necking).			
$\sigma_T = K \varepsilon_T^n$			
Where, σ_T = True Stress, ε_T = True Strain, K = Constant of Material,			
n = Strain/ Work Hardening Exponent. $0 < n < 1$			
For Some materials at necking point,	Structure	n	
$\varepsilon_T = n \ hence, \sigma_T = K \varepsilon_T^{\varepsilon_T}$	HCP	0.05	
Cold Workability ∝ Strain hardaning Component	BCC	0.25	
$(CW)_{FCC} > (CW)_{BCC} > (CW)_{HCP}$	FCC	0.5	

DUCTILITY AND MALLEABILITY

DUCTILITY: It's Ability of material, that deform	MALLEABILITY: It's Ability of material, that deform
plastically up to the failure point by applying tensile	plastically in lateral direction by applying compressive
load. Making wires.	load up to the failure point. Making Thin Sheets.

Measure of Ductility/ Malleability:

- 1. % Increase/Decrease in Length = $\pm \left(\frac{l_f l_i}{l_f}\right) * 100 = \epsilon * 100$
- 2. % Increase/Decrease in C/S Area = $\pm \left(\frac{A_i A_f}{A_i}\right) * 100 = \left(1 \frac{d_f^2}{d_i^2}\right) * 100$

FCC MATEIALS DO NOT DISPLAY DUCTILE TO
BRITTLE TRANSFORMATION PHENOMENON. AND
HENCE THESE METALS ARE HAVING TOUGHNESS
AT LOW TEMPERATURE AND HENCE MATERIALS
ARE PREFERABLE FOR LOW TEMPERATURE FOR
SUDDEN LOAD APPLICATION.

TOUGHNESS:

It's ability of material that can absorb impact energy or energy up to the **failure point**.

Toughness is **an extrinsic** property of material (Depending on dimensions).

Modulus of toughness is an intrinsic property of material (In-Dependent of dimensions).

 $Modulus\ of\ Toughness = Area\ of\ Stress\ Strain\ Curve\ Up\ to\ failure\ point = rac{Toughness}{Volume}$

	Votante	
Toughness of Brittle materials are measurement		
Izod Impact test (Cantilever Beam Method)	Charpy Test (Simply Supported Beam Method)	
Uniformly Varying Load	Uniformly Distributed Load	

Notch is provided to initiate crack (Stress Concentration).

Charpy test is more accurate in comparison with Izod Impact test because of SSB hence UDL is applied.

NOTE: The Toughness of a ductile materials are measured by are method and toughness of brittle material are measured by impact test.

RESILIENCE:

It's ability of material that can absorb energy or energy up to the **Elastic Limit**.

Modulus of Resilience = Area of Stress Strain Curve Up to Elastic Limit = $\frac{Resilience}{Volume}$

volume – volume		
HARDNESS	STRENGTH	STIFFNESS
 It's the ability of material that can resist scratch or indentation or penetration on the surface of the material. Hardness is Surface property. 	 It's the ability of material that can resist failure. It's Volumetric property of material. (Eg. σ = 3.5BHN) 	 It's the ability of material that can resist elastic deformation. It's an extrinsic property of the material.
	Strength ∝ Hardness	Stiffness ∝ Young's Modulus

HARDNESS MEASUREMENT				
TEST	BRINAL HARDNESS	VIECKER'S HARDNESS	ROCKW	ELL HARDNESS
	TEST	TEST		TEST
APPLICABILITY	Low & Medium hardness	Very High hardness materials.	All (Low,	Medium, High)
	material. Eg. Al, Cu, Brass,	Eg. SiC, WC, Cubic Boron	Eg. L-CS,	M-CS, H-CS,
	Mild Steel.	Nitride (CBN), Si ₃ N ₄ , HCP	Alloy Stee	el, Etc
INDENTATION	Hardened steel ball	Pyramid Shape Diamond Tool.	Conical S	hape Diamond
TOOL	Hardened steel ball	$Angle = 120^{\circ}$	tool. Cone angle = 136°	
EQUATION	Area of penetration	$D_{avg} = \frac{D_1 + D_2}{2}$	DIIN of 1	
	$A_p = \frac{\pi}{2} D \left[D - \sqrt{D^2 - d^2} \right]$	$D_{avg} = \frac{1}{2}$	$RHN \propto \frac{1}{D_p}$	
		$_{VHN} = \frac{1.854P}{1}$		P
	$BHN = \frac{P}{A_p}$	$VHN = \frac{1.854P}{D_{avg}^2}$		
	A_p	arg		
Where,	D = Indenter tool Diameter	D_1 , D_2 = Indentation Diagonals	D_p = Depth of Penetration.	
	d = Indentation Diameter	P = Applied Force		
	P = Applied Force			
TEST	SHORE TEST	BARCOL TEST		KNOOP TEST
APPLICABILITY	Thermoplastic materials. Soft	Thermosetting Materials. Hard Polymer. Micro material.		Micro material.
	Polymer. Eg. PVC, Nylon	Eg. Bakelite (Switch board)		

CREEP FAILURE: It's the deformation of a material with respect to time at constant load and at high temperature (mainly). It's Also known as progressive deformation.

Creep Rate initially decreases and steady state and finally increasing (Transient) (Due to Neck formation)		
It's Bad and Creep resistance is increased by,		
1. Using high Strength and Young's Modulus material.		
2. Using Fine/Corse grain materials at room/High temperature.		
3. Adding Allowing element. Eg. Refractory Materials (High		
Melting point) (W, Mo, Nb, $Ta > 2500^{\circ}C$).		

FATIGUE: It's a type of failure due to **dynamic** load or **cyclic** loads. And Failure are Catastrophic/ Sudden in nature. Eg. Bridge Failure, Aeroplane Wings

Types of Dynamic loading: 1) Completely Reversible Loading, 2) Alternative Loads, 3) Repeated load, 4) Fluctuation Load

FRACTURE: Simple Fracture is separation of boy or component in to two or more pieces by Appling constant load (Static Load) at lower temperature (< Melting point).

Erocture Machanism	1. Crack Initiation or formation
Fracture Mechanism	2. Crack Propagation

TYPES OF FRACTURE:

- 1. BRITTLE FRACTURE
 - It takes place without appreciable deformation in the material.
 - Brittle Fracture is nearly perpendicular to applied load.
 - Brittle Fracture is amorphous material (like ceramics & glass) is shiny and smooth.
- 2. INTER-GRANULAR FRACTURE
 - The Crack propagates along the grain boundary.
- 3. TRANS-GRANULAR FRACTURE
 - The crack propagation is passing through the grain in a specific crystallographic direction.

GRIFFITH THEORY:

Based on this theory, the crack will propagate, when a decrease in elastic strain energy is at least equal to the critical energy required to propagate crack.

	o propagate crack.	
2 Ear	Where,	
$\sigma_c = \frac{2E\gamma_s}{\pi}$	σ_c = Critical Stress required to propagate	
$\sqrt{\pi a}$	crack,	
	E = Young's Modulus,	
	γ_s = Specific surface Energy,	
	a = Half Crack Length.	