1 Motion on straight line

1.1 Chapter II

D' 1 .	Law		Formula		
Displacement	Displacement		$\Delta x = x_1 - x_2$		
		Law		Formula	
		Average S	Speed	$s_{avg} = \frac{total - distance}{\Delta t}$	
Speed and Velo	ocity	Average	Velocity	$v_{avg} = \frac{x_2 - x_1}{t_2 - t_1}$	
	Instantaneous Velocity			$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta}$	
	Law			Formula	
Acceleration	Average Acceleration			$a_{avg} = rac{\Delta v}{\Delta t}$	
	Instantaneous Acceleration			$a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$	
	Law Fo			rmula	
		Missir	$\log \Delta x$	$v = v_0 + at$	
		Missir	ng v	$x - x_0 = v_0 t + \frac{1}{2} a t^2$	

Constant Acceleration

wiissiiig v	$\frac{1}{2}$
Missing t	$v^2 = v_0^2 + 2a(x - x_0)$
Missing a	$x - x_0 = \frac{1}{2}(v_0 + v)t$
Missing v ₀	$x - x_0 = vt - \frac{1}{2}at^2$