Маятник Уилберфорса

Секция фундаментальной и теоретической физики

Авторы:

Наркевич Григорий Эдуардович, лицей БНТУ, 11"А" класс, ул. Жудро, д.21, кв.25, +375-29-614-38-93

Шишко Тимофей Александрович, лицей БНТУ, 11"А" класс, ул. Тимошенко, д.10, кв.116, +375-29-394-54-99

Научные руководители:

Очеретняя Ольга Павловна, лицей БНТУ, учитель математики, тел. моб. +375-29-620-82-58

Соколова Светлана Николаевна, лицей БНТУ, учитель физики высшей квалификационной категории, тел. моб. +375-29-392-64-66

Содержание

Аннотация	3
Введение	3
Цель работы	3
Задачи работы	3
Актуальность	3
Основные методы исследования	4
Постановка исследования	4
Основные определения и обозначения, используемые в исследовании	5
Основная часть	6
I. Качественное описание	6
II. Теоретическое описание	6
III. Экспериментальная часть	9
IV. Сравнение теории с практикой	9
Основные результаты	12
Заключение	12
Библиографический список	12
Приложение №1	13
Приложение №2	15
Приложение №3	17

Аннотация:

Маятник Уилберфорса, изобретенный британским физиком Лайонелом Робертом Уилберфорсом около 1896 года, состоит из груза, подвешенного на длинной винтовой пружине и свободно вращающейся вокруг своей вертикальной оси, закручивая пружину. Маятник является связным мехническим осцилятором: груз может совершать как вертикальные (продольные) колебаний вверх и вниз на пружине, так и вращательные (крутильные) колебания вокруг своей вертикальной. При правильной настройке и приведении в движение маятник демонстрирует любопытное движение, в ходе которого периоды чисто вращательных колебаний постепенно чередуются с периодами чисто восходящих и нисходящих колебаний, а также при резком увеличении амплитуды тех или иных колебаний наблюдается явление резонанса. В данном исследовании мы приводим теоретическую модель, описывающую движения маятника в зависимости от времени и его параметров, а также сопоставляем теоретические результаты с полученными экспериментально.

Введение:

Цель работы.

Получить уравнения, описывающие движение маятника Уилберфорса в зависимости от времени и его параметров.

Задачи работы:

- 1. Построение целостного качественного описания исследуемого явления, где с точки зрения законов физики объясняется природа явления.
- 2. Создание теоретической модели, математически описывающей поведение реального маятника в зависимости от влияющих параметров.
- 3. Построить экспериментальную часть, в ходе которой рассматривается поведение реального маятника Уилберфорса.
- 4. Сравнение практических данных с данными, полученными с помощью построенного теоретического описания поведения маятника Уилберфорса.

Актуальность работы:

Как известно, с момента первых научных исследований маятником Галилеем около 1602 года, являение колебаний маятников различных видов использовалось в хронометрии. Маятниковые устройства долгое время (до 1930-х) оставались самыми точными хронометрическими приспособлениями. Маятники также используются в научных приборах, таких как акселерометры и сейсмометры. Исторически они также применялись в качестве гравиметров для измерения ускорения силы тяжести в рамках геофизических исследований. Результаты, полученные в данной работе, могут найти свое применение в перечисленных отраслях человеческой деятельности. Более того, учитывая факт того, что в поведении маятника Уилберфорса наблюдаются как вращательные, так и продольные колебания, обусловленные перераспределением энергии в системе, применение маятника Уилберфорса для создания измерительных приборов будет отличаться большей точностью и надежностью.

Основные методы исследования:

В исследовании использованы основные методы лагранжевой механики и математического анализа.

Постановка исследования:

Маятник Уилберфорса представляет собой пружину с подвешенным на ней грузом. Груз на пружине может как качаться вверх-вниз, так и вращаться вокруг вертикальной оси. Исследуйте поведение такого маятника и как оно зависит от существенных параметров.

Основные определения и обозначения, используемые в исследовании:

- $L \Phi$ ункция Лагранжа (Лагранжиана) динамической системы, описывающий ее развитие.
- К Кинетическая энергия динамической системы.
- U Потенциальная энергия динамической системы.
- m масса груза.x продольная деформация пружины.
- φ вращательная деформация пружины (угловое смещение).
- I момент инерции груза.
- к коэффициент продольной деформации пружины.
- δ коэффициент вращательной (крутильной) деформации пружины.
- ϵ коэффициент связной деформации пружины.
- \vec{r} радиус-вектор материальной точки (груза).
- ω циклическая частота колебаний системы.
- ω_{x} циклическая частота продольных колебаний.
- ω_{φ} циклическая частота вращательных колебаний.
- A_{x} амплитуда продольных колебаний.
- A_{φ} амплитуда вращательных колебаний.
- ϕ фаза колебаний системы.
- ϕ_{x} фаза продольных колебаний.
- ϕ_{φ} фаза вращательных колебаний.
- d толщина проволоки пружины.
- n число витков пружины.
- R радиус пружины.
- $G = 8.1 \cdot 10^{10}$ модуль сдвига.
- $\sigma = 0,23$ коэффициент Пуассона материала пружины пружины.
- $\angle \alpha$ угол поворота деформированной пружины.
- h шаг пружины.

Основная часть:

І. Качественное описание.

В начальный момент времени груз, подвешенный на пружине, находится в состоянии равновесия. Действие внешней силы на систему влечет за собой появление одновременно продольной и крутильной деформации пружины.

При вертикальном движении груза пружина попеременно то растягивается и раскручивается, то сжимается и закручивается. И наоборот, при растяжении или раскручивании пружины груз поворачивается, а значит длина пружины снова будет меняться. За счет этого происходит постепенное перераспределение энергии в системе, чередующийся переход энергии вращательных колебаний в энергию продольных колебаний и наоборот. При таком перераспределении происходит резкое увеличение амплитуды продольных или же крутильных колебаний следом достижение максимального ее значения. Такая ситуация называется резонансом системы (Приложение №1, рис. №1,2). В нашем случае колебательный спектр системы состоит из двух собственных спиральных частот колебаний системы, в свою очередь содержит в себе как вертикальное, так и вращательное движение.

II. Теоретическое описание.

Для описания поведения маятника Уилберфорса воспользуемся элементами лагранжевой механики. Рассмотрим Лагранжиан системы:

$$L = K - U = \frac{m\dot{x}^2}{2} + \frac{I\dot{\varphi}^2}{2} - \frac{kx^2}{2} - \frac{\delta\varphi^2}{2} - \frac{\epsilon x\varphi}{2}$$
 (1)

где

 $\frac{m\dot{x}^2}{2}$ – кинетическая энергия продольного движения.

 $\frac{I\dot{arphi}^2}{2}$ — кинетическая энергия вращательного движения.

 $\frac{kx^2}{2}$ — потенциальная энергия продольного движения (энергия упругой деформации).

 $\frac{\delta \varphi^2}{2}$ — потенциальная энергия вращательного движения (энергия вращательной деформации).

$$\frac{\epsilon x \varphi}{2}$$
 – потенциальная энергия связной деформации.

В выражении (1) за счет взаимодействия крутильной и продольной деформации из-за спиралевидной формы пружины, а также изменения радиуса пружины при растяжении и сжатии, появляется пятый член – потенциальная энергия связной деформации. Этот член связи объясняет тот факт, что энергия в вертикальном направлении зависит от энергии во вращательном направлении и наоборот, где величина этого эффекта является зависит от свойств пружины.

Рассмотрим общий вид уравнения Лагранжа:

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{r}} - \frac{\partial L}{\partial \dot{r}} = 0 \tag{2}$$

В проекциях относительно двух степеней свободы уравнение (2) принимает вид:

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} = 0\\ \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{\varphi}} - \frac{\partial L}{\partial \varphi} = 0 \end{cases}$$
(3)

Продифференцируем по частным производным Лагранжиана по угловой и линейной скоростям:

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{x}} = \frac{\mathrm{d}(m\dot{x})}{\mathrm{d}t} = m\ddot{x} \\ \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{\varphi}} = I\ddot{\varphi} \end{cases}$$
(4)

Далее продифференцируем по уголовому и продольному смещениям:

$$\begin{cases} \frac{\partial L}{\partial x} = -kx - \frac{\epsilon \varphi}{2} \\ \frac{\partial L}{\partial \varphi} = -\delta \varphi - \frac{\epsilon x}{2} \end{cases}$$
 (5)

Преобразуем с учетом выражений (4) и (5) уравнения системы (3). Полученные два неоднородных дифференциальных уравнения второго порядка описывают полное движение системы.

$$\begin{cases} m\ddot{x} + kx + \frac{\epsilon\varphi}{2} = 0\\ I\ddot{\varphi} + \delta\varphi + \frac{\epsilon x}{2} = 0 \end{cases}$$
 (6)

Как известно, решениями дифференциальных уравнений системы (6) являются следующие функции зависимости продольного и углового смещений от времени:

$$\begin{cases} x(t) = A_x \cos(\omega t + \phi) \\ \varphi(t) = A_\varphi \cos(\omega t + \phi) \end{cases}$$
 (7)

Заметим при этом, что система может колебаться с разными амплитудами A_x и A_{φ} в продольном и вращательном напрявлении соответственно. Вычислим вторые производные фунций системы (7):

$$\begin{cases} \ddot{x}(t) = \frac{d^2}{dt^2} (A_x \cos(\omega t + \phi)) = -A_x \omega^2 \cos(\omega t + \phi) \\ \ddot{\varphi}(t) = \frac{d^2}{dt^2} (A_{\varphi} \cos(\omega t + \phi)) = -A_{\varphi} \omega^2 \cos(\omega t + \phi) \end{cases}$$
(8)

Подставив в уравнения системы (6) уравнения системы (8), имеем:

$$\begin{cases} m(-A_x\omega^2\cos{(\omega t + \phi)}) + kA_x\cos{(\omega t + \phi)} + \frac{1}{2}\epsilon A_\varphi\cos{(\omega t + \phi)} = 0\\ I(-A_\varphi\omega^2\cos{(\omega t + \phi)}) + \delta A_\varphi\cos{(\omega t + \phi)} + \frac{1}{2}\epsilon A_x\cos{(\omega t + \phi)} = 0 \end{cases}$$
(9)

Преобразуем уравнения системы (9), учитывая уравнения циклических частот продольных и вращательных колебаний системы:

$$\begin{cases} \frac{\epsilon}{2I}A_x + (\omega_{\varphi}^2 - \omega^2)A_{\varphi} = 0\\ (\omega_x^2 - \omega^2)A_x + \frac{\epsilon}{2m}A_{\varphi} = 0 \end{cases}$$
(10)

Тривиальным решением системы (10) являются следующие значения амплитуд:

$$\begin{cases} A_x = 0 \\ A_{\varphi} = 0 \end{cases}, \mathbf{A} = \begin{bmatrix} A_x \\ A_{\varphi} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Поскольку данное решение описывает лишь неподвижную систему, далее найдем нетривиальные решения системы (10), приравняв определитель матрицы коэффициентов при неизвестных в данно системе нулю:

$$\begin{vmatrix} \frac{\epsilon}{2I} & \omega_{\varphi}^2 - \omega^2 \\ \omega_{x}^2 - \omega^2 & \frac{\epsilon}{2m} \end{vmatrix} = 0 \implies \frac{\epsilon^2}{2mI} + \omega^2(\omega_{x}^2 + \omega_{\varphi}^2) - \omega_{x}^2 \omega_{\varphi}^2 - \omega^4 = 0$$
 (11)

Решая уравнение (11) относительно ω^2 , получаем:

$$\omega_1^2 = \frac{1}{2}(\omega_x^2 + \omega_\varphi^2 + \sqrt{(\omega_\varphi^2 - \omega_x^2)^2 + \frac{\epsilon^2}{mI}})$$
(12)

$$\omega_2^2 = \frac{1}{2}(\omega_x^2 + \omega_\varphi^2 - \sqrt{(\omega_\varphi^2 - \omega_x^2)^2 + \frac{\epsilon^2}{mI}})$$
(13)

В резонансных условиях собственные частоты системы (в продольном и вращательном направлениях) равны. Тогда, воспользовавшись свойством $\omega_x = \omega_\varphi = \omega$, уравнения (12) и (13) можно свести к следующим:

$$\omega_1 = \frac{\epsilon}{2\sqrt{mI}} + \omega^2 \tag{14}$$

$$\omega_2 = \omega^2 - \frac{\epsilon}{2\sqrt{mI}} \tag{15}$$

Далее, из системы (10) получаем соотношения амплитуд:

$$\begin{cases} \frac{A_{\varphi}}{A_x} = \sqrt{\frac{m}{I}} = r_1\\ \frac{A_{\varphi}}{A_x} = -\sqrt{\frac{m}{I}} = r_2 \end{cases}$$
 (16)

Таким образом, ветора амплитуд могут быть записаны следующим образом:

$$\mathbf{A}^{(1)} = \begin{bmatrix} A_x^{(1)} \\ A_{\varphi}^{(1)} \end{bmatrix} = \begin{bmatrix} A_x^{(1)} \\ r_1 A_x^{(1)} \end{bmatrix} \tag{17}$$

$$\mathbf{A}^{(2)} = \begin{bmatrix} A_x^{(2)} \\ A_{\varphi}^{(2)} \end{bmatrix} = \begin{bmatrix} A_x^{(2)} \\ r_2 A_x^{(2)} \end{bmatrix}$$
(18)

где

 $A_x^{(1)}, A_x^{(2)}$ – амплитуды вертикальных колебаний на 1-ой и 2-ой нормальных частотах.

 $A_{\varphi}^{(1)}=r_{1}A_{x}^{(1)},A_{\varphi}^{(2)}=r_{2}A_{x}^{(2)}$ – амплитуды вращательных колебаний на 1-ой и 2-ой нормальных частотах.

Решения уравнений движения можно записать в векторном виде:

$$\mathbf{x}^{(1)} = \begin{bmatrix} x^{(1)}(t) \\ \varphi^{(1)}(t) \end{bmatrix} = \begin{bmatrix} A_x^{(1)} \cos(\omega_1 t + \phi_1) \\ r_1 A_x^{(1)} \cos(\omega_1 t + \phi_1) \end{bmatrix}$$
(19)

$$\mathbf{x}^{(2)} = \begin{bmatrix} x^{(2)}(t) \\ \varphi^{(2)}(t) \end{bmatrix} = \begin{bmatrix} A_x^{(2)} \cos(\omega_2 t + \phi_2) \\ r_2 A_x^{(2)} \cos(\omega_2 t + \phi_2) \end{bmatrix}$$
(20)

С другой стороны, уравнения движения маятника можно записать в виде линейной комбинации нормальных режимов колебаний системы:

$$\begin{cases} x(t) = A_x^{(1)} \cos(\omega_1 t + \phi_1) + A_x^{(2)} \cos(\omega_2 t + \phi_2) \\ \varphi(t) = r_1 A_x^{(1)} \cos(\omega_1 t + \phi_1) + r_2 A_x^{(2)} \cos(\omega_2 t + \phi_2) \end{cases}$$
(21)

Выразим амплитуды колебаний, решив систему уравнений движения в начальный момент времени:

$$\begin{cases} \dot{x}(0) = 0 = -\omega_x A_x^{(1)} \sin \phi_1 - \omega_\varphi A_x^{(1)} \sin \phi_2 \\ \dot{\varphi}(0) = 0 = -r_1 \omega_x A_x^{(1)} \sin \phi_1 - r_2 \omega_\varphi A_x^{(2)} \sin \phi_2 \end{cases} \implies \begin{cases} A_x^{(1)} = \frac{r_1 \varphi_0 + x_0}{r_1 - r_2} \\ A_x^{(2)} = \frac{r_1 \varphi_0 - x_0}{r_1 - r_2} \end{cases}, \phi_1 = \phi_2 = 0$$
 (22)

Теперь, подставив уравнения амплитуд из системы (22) в уравнения движения системы (21), получаем полные уравнения движения маятника:

$$\begin{cases} x(t) = \frac{\left(\sqrt{\frac{m}{I}}\varphi_0 + x_0\right)\cos\omega_1 t + \left(\sqrt{\frac{m}{I}}\varphi_0 - x_0\right)\cos\omega_2 t}{2\sqrt{\frac{m}{I}}} \\ \varphi(t) = \frac{\left(\sqrt{\frac{m}{I}}\varphi_0 + x_0\right)\cos\omega_1 t - \left(\sqrt{\frac{m}{I}}\varphi_0 - x_0\right)\cos\omega_2 t}{2} \end{cases}$$
(23)

Таким образом, параметрами, влияющими на поведение маятника, являются масса груза, продольная и крутильная жесткости пружины, а также начальные условия запуска маятника.

III. Экспериментальная часть.

Наша экспериментальная установка представляла собой груз, подвешенный на пружине, которая, в свою очередь, крепилась к штативу(Π риложение №1, рис. №3). Для уменьшения погрешности, появляющейся при запуске установке от руки, было использовано специальное пусковое устройство, состоящее из электромагнита. При замыкании цепи электромагнита устройство притягивает груз, при размыкании происходит запуск системы (Π риложение №1, рис. №4). Характеристики использованной установки приводятся в Π риложении №3.

IV. Сравнение теории с практикой.

Теперь перейдем к сравнению полученных на практике данных с данными, полученными с помощью построенного теоретического описания поведения маятника Уилберфорса. Для этого прибегнем к использованию графиков зависимости величин. Все экспериментальные значения величин были получены с помощью компьютерной программы Logger Pro, где проводились снятия данных с видеозаписей экспериментов.

Зависимость продольного смещения от времени, $m = 432.5 \ r = const.$

- x продольное смещение;
- t время колебаний;
- — теоретическая кривая;
- • экспериментальные точки.

Зависимость крутильного смещения от времени, $m = 432.5 \ r = const.$

- φ крутильное смещение;
- t время колебаний;
- — теоретическая кривая;
- • экспериментальные точки.

Таким образом, пользуясь построенными графиками зависимостей и полученными экспериментальными данными (Π риложение 2, рис. 1-4), мы показали, что представленная нами теоретическая модель подтверждается эмпирически.

Основные результаты:

При исследовании данной задачи получены следующие основные результаты:

- 1. Было проведено качественное описание явления, где с точки зрения законов физики объясняется его природа.
- 2. При создании теоретической модели были выведены уравнения, описывающие поведение маятника Уилберфорса в заданный момент времени в зависимости от параметров маятника.
- 3. Изготовлена экспериментальная установка, с помощью которой был проеден рад экспериментов.
- 4. Проведено сравнение практических результатов с данными, полученными с помощью построенного теоретического описания поведения маятника Уилберфорса.

Заключение:

В нашей работе было проведено исследование поведения маятника Уилберорса, а также создание теоретического описания его поведения в зависимости от параметров маятника. В работе была построена теоретическая модель, основанная на элементах лагранжевой механики. В исследовании были получены уравнения, которые определяют вращательную и вертикальную координаты маятника в искомый момент времени после запуска. Также были перечислены параметры маятника, влияющие на его поведение.

В ходе исследования была изготовлена экспериментальная установка, представляющая собой груз, подвешенный на пружине, которая, в свою очередь, крепилась к штативу. Для уменьшения погрешности, появляющейся при запуске установке от руки, было использовано специальное пусковое устройство, состоящее из электромагнита. При замыкании цепи электромагнита устройство притягивает груз, при размыкании происходит запуск системы.

Также в исследовании было проведено сравнение теоретических результатов и экспериментальными, которые были получены при помощи изготовленной экспериментальной установки. В работе были представлены графики зависимостей крутильного и продольного смещения от времени, а также циклической частоты продольных и крутильных колебаний от массы грузов и жесткостей пружин. В итоге было получено экспериментальное подтверждение представленного теоретического описания.

Библиографический список.

- [1] Зорич В. А. Математический анализ. Часть I. Изд. 10-е, испр. М.: МЦНМО, 2019.
- [2] Ландау Л. Д., Лифшиц Е. М. Механика. Издание 5-е, стереотипное. М.: Физматлит, 2004. 224 с. («Теоретическая физика», том I).
- [3] Basic Coupled Oscillator Theory Applied to the Wilberforce Pendulum, Misay A. Partnof and Steven C. Richards, May 4, 2004.

Приложение №1. Иллюстративная часть.

Рис. №1. Схема достижения резонанса системы при максимальном значении амплитуды крутильных колебаний.

Рис. №2. Схема достижения резонанса системы при максимальном значении амплитуды продольных колебаний.

Рис. №3. Экспериментальная установка и ее элементы

Рис. №4. Маятник, находящийся в состоянии покоя и готовый к запуску

Приложение №2. Графики зависимостей величин.

Рис. №1. Зависимость циклической частоты продольных колебаний от массы грузиков.

- *m* масса грузиков;
- ω_x циклическая частота продольных колебаний.

Рис. №2. Зависимость циклической частоты продольных колебаний от жесткости прижины.

- k продольная жесткость пружины;
- ω_{x} циклическая частота продольных колебаний.

Рис. №3. Зависимость циклической частоты вращательных колебаний от массы грузиков.

- *m* масса груза;
- ω_{φ} циклическая частота вращательных колебаний.

Рис. №4. Зависимость циклической частоты вращательных колебаний от крутильной жесткости пружины.

- δ крутильная жесткость пружины;
- ω_{arphi} циклическая частота вращательных колебаний.

Приложение №3. Характеристические данные использованных пружин и рассчет погрешностей.

Таблица №1. Характеристики использованных пружин.

	Пружина 1	Пружина 2	Пружина 3	Пружина 4
<i>R</i> , м	0.0111	0.01175	0.0096	0.0105
<i>l</i> , м	0.1064	0.107	0.0979	101
<i>d</i> , м	$1 \cdot 10^{-3}$	$1 \cdot 10^{-3}$	$1.2 \cdot 10^{-3}$	$1 \cdot 10^{-3}$
n	106	107	82	94
<i>h</i> , м	$3 \cdot 10^{-3}$	$3 \cdot 10^{-3}$	$3.5 \cdot 10^{-3}$	$3.2 \cdot 10^{-3}$
$\sin \alpha$	$4.30148 \cdot 10^{-2}$	$4.30148 \cdot 10^{-2}$	$5.80252 \cdot 10^{-2}$	$5.24807 \cdot 10^{-2}$
δ , Н · м/рад ²	$8.287181 \cdot 10^{-4}$	$7.755576 \cdot 10^{-4}$	$1.976294 \cdot 10^{-3}$	$1.264578 \cdot 10^{-3}$
ϵ , Н/рад 2	$1.9157 \cdot 10^{-3}$	$1.6936 \cdot 10^{-3}$	$4.4626 \cdot 10^{-3}$	$3.1857 \cdot 10^{-3}$
<i>k</i> , Н/м	8.7303	7.2913	17.4452	12.7248

Таблица №2. Рассчет погрешностей величин.

	$\Delta_{\scriptscriptstyle m M}$	$\Delta_{ m o}$	$\Delta = \Delta_{\rm\scriptscriptstyle M} + \Delta_{\rm\scriptscriptstyle O}$
Вертикальное смещение, мм	0.5	0.25	0.75
Крутильное смещение, рад	0.095	0.0174	0.1124
Циклическая частота, рад/с	0.045	0.005	0.05
Вребя колебаний, с	0.05	0.05	0.1
Масса груза, кг	0.008	0.05	0.058
Жесткость пружины, Н/м	1.55	0.5	2.05