第一章 计算机组成原理

1.1 选择题

1.	冯.诺依曼机的基本工	二作方式是()		
	A. 控制流驱动方式		B. 多指令多数据》	充方式
	C. 微程序控制器		D. 数据流驱动方式	\
2.	▲ 将高级语言源程序车	专换为机器级目标文 <i>《</i>	件的程序是()	
	A. 汇编程序	B. 链接程序	C. 编译程序	D. 解释程序
3.	在计算机中,CPU 的 C	PI 与下列 () 因素无法	关.	
	A. 时钟频率	B. 系统结构	C. 指令集	D. 计算机组织
4.		周期,20% 的指令执行		旨令, 其中,80% 的指令执 朗. 程序 P 的平均 CPI 和
	A. $2.8, 28 \mu s$	B. $28, 28 \mu s$	C. 2.8, 28ms	D. 28, 28ms
5.	若 X 为负数,则由 [X]]** 求 [-X]** 是将()		
	A. [X] _补 各值保持不	变		

B. $[X]_{\stackrel{}{\scriptscriptstyle h}}$ 符号位变反, 其他位不变

C. [X] 除符号位外, 其余位取反, 末尾加一

D. $[X]_{i}$ 连同符号位一起变反, 末尾加一

6.	对于相同位数 (设 N 位			制小数, 二进制小数能
	表示的数的个数/十进行	制小说所能表示的个数	为()	
	A. $(0.2)^N$	B. $(0.2)^{N-1}$	$\mathbf{C}. \ (0.02)^N$	D. $(0.02)^{N-1}$
7.	设 x 为真值,x* 为其绝	对值, 满足 $[-x^*]_{{\scriptscriptstyle{\lambda}}}=[-x^*]_{{\scriptscriptstyle{\lambda}}=[-x^*]_{{\scriptscriptstyle{\lambda}}}=[-x^*]_{{\scriptscriptstyle{\lambda}}=[-x^*]_{{\scriptscriptstyle{\lambda}}}=[-x^*]_{{\scriptscriptstyle{\lambda}}=[-x^*]_{{\scriptscriptstyle{\lambda}}}=[-x^*]_{{\scriptscriptstyle{\lambda}}=[-x^*]_{{\scriptscriptstyle{\lambda}}=[-x^*]_{$	$-x]_{{ ext{ iny }}}$ 当且仅当 \mathbf{x} 为()	
	A. 任意数	B. 正数	C. 负数	D. 以上均不正确
8.	ALU 作为运算器的核/	心部件, 其属于()		
	A. 时序逻辑电路	B. 组合逻辑电路	C. 控制器	D. 寄存器
9.	在串行进位的并行加法	长器中, 影响加法器运 算	草速度的关键因素是()	
	A. 门电路的级延迟		B. 元器件速度	
	C. 进位传递延迟		D. 各位加法器速度的	勺不同
10.	加法器中每位的进位信	言号由()组成		
	A. $X_i \oplus Y_i$	B. X_iY_i	C. $X_iY_iC_i$	D. $X_i + Y_i + C_i$
11.	一个8位寄存器内的数	女值为 <u>1100 1010</u> 进位材	示志位寄存器 C 为 0, 若	将此8位寄存器循环
	左移1位后,则该寄存	器和标志寄存器的值分	分别为()	
	A. 1001 0100, 1	B. 1001 0101, 0	C. 1001 0101, 1	D. 1001 0100, 0
12.	设机器数字长8位(含	一位符号位), 若机器数	效为 <i>BAH</i> 为原码, 算术	六左移1和算术右移1
	位分别得()			
	A. <i>F</i> 4 <i>H</i> , <i>EDH</i>	B. <i>B</i> 4 <i>H</i> ,6 <i>DH</i>	C. 74 <i>H</i> , <i>DDH</i>	D. <i>B</i> 5 <i>H</i> , <i>EDH</i>
13.	关于模4补码,下列说	法中正确的是()		
	A. 模 4 补码和模 2 剂	码不同, 它不容易检查	至乘除运算中的溢出问	题
	B. 每个模 4 补码存储	皆时只需要存储一位符	号位	
	C. 存储每个模 4 补码	3需要存储两个符号位		
	D. 模 4 补码, 在算术-	与逻辑部件中为一个符	守号位	

- 14. 在原码一位乘法中,()
 - A. 符号位参与运算
 - B. 符号位不参与运算
 - C. 符号位参与运算, 并根据运算结果改变结果中的符号位
 - D. 符号位不参与运算, 并根据运算结果改变结果中的符号位
- 15. ♦ 某计算机字长为 8 位, CPU 中有一个 8 位加法器. 已知无符号数 x = 69, y = 38,如果在 该加法器中计算 x-y, 则加法器的两个输入端入端信息和低位进位信息分别是()
 - **A.** 0100 0101,0010 0110, 0

B. 0100 0101,1101 1001, 1

C. 0100 0101,1101 1010, 0

- **D.** 0100 0101,1101 1010, 1
- 16. 某计算机中有一个 8 位加法器, 带符号整数 \mathbf{x} 和 \mathbf{y} 的机器数用补码表示, $[x]_{i} = F5H$ $[y]_{\uparrow \downarrow} = 7EH$ 如果在该加法器中计算 x - y, 则加法器的低位进位输入信息和运算后的溢 出标志 OF 分别是()
 - **A.** 1,1
- **B.** 1.0
- **C.** 0.1
- **D.** 0.0
- 17. ▲某计算机存储器按字节编制,采用小端方式存放数据. 假定编译器规定 int 型和 short 型 长度分别为 32 位和 16 位并且数据按边界对齐存储. 某 C 语言程序段如下

```
struct {
    int a;
    char b;
    short c;
}record;
record.a = 273;
```

若 record 变量的首地址为 0xC008 地址 0xC008 中的内容及 record.c 的地址分别是()

- **A.** 0x00, 0xC00D

18. ▲ 有如下 C 语言序段:

```
short si = -32767;
unsigned short usi = si;
```

1.1	选择题				4
	这执行上述两条语句	后,usi 的值是			
19.	某计算机字长为 32 位	I, 按字节编址, 采用	小端方	式存放数据, 假定不	有一个 double 型变量,
	其机器数表示为 1122	3344 5566 7788H, 存	字放在以	く0000 8040H 开始的	的连续存储单元中,则
	存储单元 0000 8046H	中存储的是()			
	A. 22H	В. 33Н	C.	77H	D. 66H
20.	在规格化浮点运算中,	若浮点数 2 ⁵ × 1.10)101, 其	中尾数为补码表示	,则该数()
	A. 不需要规格化		В.	需要右移规格化	
	C. 需将尾数左移一位	立规格化	D.	需将尾数左移二位	拉规格化
21.	某浮点机, 采用规格化	化浮点数表示, 阶码户	用移码表	表示 (最高位表示符	号位), 尾数用原码表
	示,下列()表示不是	观格化浮点数			
	A. 1111111, 1.10000.	000	В.	0011111, 1.01110	01
	C. 1000001, 0.11111.	111	D.	0111111, 0.100000	000
22.	下列关于对阶操作说	法正确的是()			
	A. 在浮点数加减运算	算对阶操作中, 若阶	码减少,	则尾数左移	
	B. 在浮点数加减运	算对阶操作中, 若阶	码增大,	则尾数右移; 若阶	码减少,则尾数左移
	C. 在浮点数加减运领	算对阶操作中, 若阶	码增大,	则尾数右移	
	D. 以上说法都不对				
23	在 <i>IEEE</i> 754 标准中.	它所能表示的最小	规格化	负数为()	
			7901616	XX// V ()	
<i>2</i> 4.	采用规格化的浮点数法	取土安定//)()			
	A. 增加数据的表示?	范围	В.	方便浮点运算	
	C. 防止运算时数据》	益出	D.	增加数据的表示精	青度
25.	设浮点数共12位,其	中阶码以4位补码表	長示 (1 亿	立符号), 尾数用 8 位	z补码表示 (1 为符号).
	则该规格化浮点数所	能表示的最大正数为	夕()		

26. 若浮点数的尾数用补码表示,则下列()中的尾数是规格化形式

1.1	选择题				5
	A. 1.11000	B. 0.01110	C. 0.01010	D. 1.00010	
27	'. 设浮点数的基数为 4	, 尾数用原码表示, 贝	以下()是规格化的数	, and the second	
	A. 1.001101	B. 0.001101	C. 1.011011	D. 0.000010	
28	. 下列关于舍入的说法	, 正确的是(多选)()			
	(1) 不仅仅只有浮点	点数需要舍入, 定点数	女在运算时也可能舍入		
	(2) 在浮点数舍入中	中,只有左规格化时可	「能舍入		
	(3) 在浮点数舍入中	中,只有右规格化时已	「能舍入		
	(4) 在浮点数舍入中	9, 左, 右规格化时都	可能舍入		
	(5) 舍入不一定能产	生误差			
29				码表示, 其余用 IEEE 75 2 位机器中执行下列关系	
	77 / / / / / / / / / / / / / / / / / /	100, 1	5, 4 1.02100, 11 12 0		,,

30. $\triangle flota$ 类型数据通常用 IEEE 754 单精度格式表示, 若编译器将 float 型变量 x 分配在一

C. BF07 0000H

D. C0E0 0000H

个 32 位浮点寄存器 FR1 中, 且 x = -8.25 则 FR1 中的内容是 ____

31. ▲ 下列关于浮点数加减运算中, 正确的是 (多选)()

(1) 对阶操作不会引起阶码上溢或下溢

(2) 右规和尾数舍入都可以引起阶码上溢

32. ♦-0.4375 的 *IEEE* 754 单精度浮点数表示为()

B. BF06 0000H

(3) 左规时可能引起阶码下溢

(4) 尾数溢出时结果不一定溢出

A. BEE0 0000H

表达式,则结果为真的是(多选)()

(1) i == (int)(float)i

(2) f == (float)(int)f

(4) (d+f) - d == f

(3) f == (float)(double)f

1.1 选择题 6 33. ▲ 假定用若干 $2K \times 4$ 的芯片组成一个 $8K \times 8$ 的存储器, 则地址 081FH 所在芯片的最小 地址是() **A.** 0000H **B.** 0600H **C.** 0700H **D.** 0800H 34. ▲ 某计算机存储器按字节编址, 主存地址空间大小为 64MB, 现用 $4M \times 8$ 位的 RAM 芯 片组成 32MB 的主存储器、则存储器地址寄存器 MAR 的位数至少是 35. ▲ 某磁盘的转速为 10000 转/分, 平均寻道时间是 6ms, 磁盘传输速率是 20MB/s 磁盘控 制器延迟为 0.2ms, 读取一个 4KB 的扇区所需要的平均时间约为 () **A.** 9ms **B.** 9.4ms **C.** 12ms **D.** 12.4ms 36. ▲ 假设主存地址为 32 位, 按字节编址, 主存和 Cache 之间采用直接映射方式, 主存块大小 为 4 个字, 每个字 32 位, 采用回写方式, 则能存放 4K 字数据的 Cache 总容量的位数至少 是() A 146K B.147K C.148K D.158K 37. ♦ 一个计算机系统采用 32 位单字长指令, 地址码 12 位, 若定义了 250 条二地址指令, 则 还可以有()单地址指令. B.8K C.16K A.4K D.24K 38. ▲ 下列选项中, 属于指令集体系结构 (ISA) 规定的内容是 (多选)() (1) 指令字格式和指令类型 (2) CPU 的时钟周期 (3) 同样寄存器个数和位数 (4) 加法器的进位方式 39. ▲ 设计某指令系统时, 假设采用 16 位定长指令格式, 操作码使用拓展编码方式, 地址码为 6位,包括零地址,一地址和二地址三种指令.若二地址指令有12条,一地址指令有254 条,则零地址指令的条数最多为() A.0 B.2 C.64 D.128 40. 指令系统中采用不同寻址方式的目的是() A. 提供拓展操作码的可能性并降低译码难度

B. 可缩短指令字长, 托大寻址空间, 提高编程的灵活性

1.1	选择题	7
	C. 实现程序控制	
	D. 三者都正确	
41	. 简化地址结构的基本方法是尽量采用()	

42. 在多道程序设计中, 最重要的寻址方式是()
A. 相对寻址 B. 间接寻址 C. 立即寻址 D. 按内容寻址

A. 寄存器寻址 B. 隐含寻址 C. 直接寻址 D. 间接寻址

- 43. 设相对寻址的转移指令占 3B, 第一字节为操作码, 第二、三字节为相对位移量 (补码表示), 而且数据在存储器中采用以低字节为字地址的存放方式。每当 CPU 从存储器取出一字节时, 即自动完成 (PC)+1→PC。若 PC 的当前值为 240 (十进制), 要求转移到 290 (十进制), 则转移指令的第二、三字节的机器代码是 (); 若 PC 的当前值为 240 (十进制), 要求转移到 200 (十进制), 则转移指令的第二、三字节的机器代码是 ().
- 44. 某计算机有 16 个通用寄存器, 采用 32 位定长指令字, 操作码字段 (含寻址方式位) 为 8 位,Store 指令的源操作数和目的操作数分别采用寄存器直接寻址和基址寻址方式。若基址寄存器可使用任意一个通用寄存器, 且偏移量用补码表示, 则 Store 指令中偏移量的取值范围是()

C. D5H,FFH

D. 2FH,00H

A. $-32768 \sim +32767$ **B.** $-32767 \sim +32768$ **C.** $-65536 \sim +65535$ **D.** $-65535 \sim +65536$

B. D5H,00H

45. 按字节编址的计算机中, 某 double 型数组 A 的首地址为 2000H, 使用变址寻址和循环结构访问数组 A, 保存数组下标的变址寄存器的初值为 0, 每次循环取一个数组元素, 其偏移地址为变址值乘以 sizeof(double), 取完后变址寄存器的内容自动加 1。若某次循环所取元素的地址为 2100H, 则进入该次循环时变址寄存器的内容是()

A. 25 **B.** 32 **C.** 64 **D.** 100

46. 计算机使用总线结构便于增减外设,同时()

A. 2FH,FFH

- **A.** 减少信息传输量 **B.** 提高信息的传输 **C.** 减少信息传输线 **D.** 提高信息传输的 速度 的条数 并行性
- 47. 间接寻址第一次访问内存所得到的信息经系统总线的 () 传送到 CPU

- **A.** 数据总线 **B.** 地址总线
- C. 控制总线
- D. 总线控制器
- 48. 在单机系统中, 三总线结构计算机的总线系统组成是()
 - A. 片内总线, 系统总线和通信总线
 - B. 数据总线, 地址总线和控制总线
 - C. DMA 总线, 主存总线和 I/O 总线
 - D. ISA 总线,VESA 总线和 PCI 总线
- 49. ♦ 假定一台计算机采用 3 通道存储器总线, 配套的内存条型号为 DDR3-1333, 即内存条 所接插的存储器总线的工作评率为 1333MHz, 总线宽度为 64 位, 则存储器总线的总线带 宽大约是()
- 50. 在不同速度的设备之间传输数据,()
 - A. 必须采用同步控制方式
 - B. 必须采用异步控制方式
 - C. 可以选用同步控制方式, 也可以选用异步控制方式
 - D. 必须采用应答方式
- 51. 在异步总线中, 传送操作()
 - A. 由设备控制器控制

B. 由 CPU 控制

C. 有统一时序信号控制

- D. 按需分配时间
- 52. ♦ 下列关于总线的叙述中, 错误的是()
 - A. 总线是在两个或多个部件间进行数据交换的传输介质
 - B. 同步总线由时钟信号定时, 时钟频率不一定等于工作频率
 - C. 异步总线由握手信号定时, 一次握手过程完成一位数据传送
 - D. 突发 (Burst) 传送总线事务可以在总线上连续传送多个数据
- 53. 下列关于 I/O 端口和接口的说法中, 正确的是()

- A. 按照不同的数据传送格式, 可将接口分为同步传送接口和异步传送接口
- **B.** 在统一编址方式下,存储单元和 I/O 设备是靠不同的地址线来区分的
- C. 在独立编址方式下,存储单元和 I/O 设备是靠不同的地址线来区分的
- D. 在独立编址方式下,CPU 需要设置专门的输入/输出指令的访问端口
- 54. 在统一编址情况下, 就 I/O 设备而言, 其对应的 I/O 地址说法错误的是()
 - A. 要求固定的地址高端

- B. 要求固定的地址地段
- C. 要求相对固定在地址的某部分 D. 可以任意在地址的任何地方
- 55. 磁盘驱动器向盘片磁道记录数据时采用()方式写入
- **A.** 并行 **B.** 串行 **C.** 并行-串行 **D.** 串行-并行

- 56. ♦I/O 指令实现的数据传送通常发生在 ()
 - **A.** I/O 设备和 I/O 端口之间
- B. 通用寄存器和 I/O 设备之间
- C. I/O 设备和 I/O 端口之间
- D. 通用寄存器和 I/O 端口之间
- 57. 下列选项中, 不属于 I/O 接口的是()
 - A. 磁盘驱动器

B. 打印机适配器

C. 网络控制器

D. 可编程中断控制器

- 58. 以下说法中,错误的是()
 - A. 中断服务程序一般是操作系统模块
 - B. 中断向量方法课提高中断源的识别速度
 - C. 中断向量地址是中断服务程序入口地址
 - D. 重叠处理中断现象称为中断嵌套
- 59. 关于程序中断和 DMA 方式叙述, 错误的是 ()
 - (1) DMA 的优先级比程序中断的优先级更高
 - (2) 程序中断方式需要保护现场,DMA 方式不需要包含现场

1.1	选择题			10
	(3) 程序中断方式	式的中断请求是为了报	告 CPU 数据的传输	结束,而 DMA 方式的中断请
	求完全是为了	了传送数据		
	A. 2	B. 2,3	C. 3	D. 1,3
60.	中断响应优先级由	ョ高到低次序应该使用	0	
	A. 访管,程序性,	机器故障	B. 访管,程序	性, 重新启动
	C. 外部, 访管, 程	是序性	D. 程序性,I/C), 访管
61.	在具有中断向量表	長的计算机中, 中断向量	量地址是()	
	A. 子程序入口地	5址	B. 中断服务和	呈序入口地址
	C. 中断服务程序	入口地址的地址	D. 中断服务图	新点
62.	在配有通道的计算	享机系统, 用户程序需要	输入/输出时, 引起	中断的是()
	A. 访管中断	B. I/O 中断	C. 程序性中的	D. 外中断
63.	在中断响应周期中	¬,CPU 主要完成的工作	是 ()	
	A. 关中断, 保护l	新点, 发中断响应信号 。	并形成向量地址	
	B. 开中断, 保护	新点, 发中断响应信号 。	并形成向量地址	
	C. 关中断, 执行	中断服务程序		
	D. 开中断, 执行	中断服务程序		
64.	设置中断屏蔽标到	效可以改变 ()		
	A. 多个中断源的	中断请求优先级	B. CPU 对多	个中断请求响应的优先次序
	C. 多个中断服务	, 程序开始执行的顺序	D. 多个中断周	
65.	下列叙述中,()时正	E确的		
	A. 程序中断方式	式和 DMA 方式中实现数	效据传送都需要中断	 行请求
	B. 程序中断方式	六中有中断请求,DMA ス	方式中没有中断请求	
	C. 程序中断方式	式和 DMA 方式都有中图	所请求, 但目的不同	
	D. DMA 要等指	令周期结束时才可以进		

- 66. 以下关于 DMA 方式进行 I/O 的描述中, 正确的是()
 - A. 一个完整的 DMA 过程, 不仅有 DMA 控制器控制, 部分有 CPU 控制
 - B. 一个完整的 DMA 过程, 完全有 CPU 控制
 - C. 一个完整的 DMA 过程, 完全由 DMA 控制器控制, CPU 不介入任何控制
 - **D.** 一个完整的 DMA 过程. 完全由 CPU 采用周期挪用法控制
- 67. 以下有关 DMA 方式的叙述中, 错误的是 ()
 - A. 在 DMA 方式下, DMA 控制器向 CPU 请求的是总线使用权
 - B. DMA 方式可用键盘和鼠标的数据输入
 - C. 在数据传输阶段,不需要 CPU 介入,完全由 DMA 控制器控制
 - D. DMA 方式要用中断处理
- 68. ◆某计算机有五级中断 $L_4 \sim L_0$,中断屏蔽字为 $M_4 M_3 M_2 M_1 M_0$, $M_i = 1 (0 \le i \le 4)$ 表示队 L_i 级中断进行屏蔽,若中断响应优先级从高到低的顺序是 L_4 , L_0 , L_2 , L_1 , L_3 则 L_1 的中断处理程序中设置的中断屏蔽字是
- 69. ◆ 下列关于中断 I/O 方式和 DMA 方式比较的叙述中, 错误的是 ()
 - A. 中断 I/O 方式请求的 CPU 控制时间,DMA 方式请求的总线控制权
 - B. 中断响应发生在一条指令执行结束后,DMA 响应发生在一条总线事务后
 - C. 中断 I/O 方式下数据传输通过软件完成,DMA 方式下的数据有硬件完成
 - D. 中断 I/O 方式适用于所有外部设备,DMA 方式适用于快速外部设备
- 70. ◆若某设备中断请求的响应和处理时间为 100ms, 每 400ns 发出一次中断请求, 中断响应 所允许的最长延迟的时间 50ns, 则在该设备持续工作过程中,CPU 用于该设备的 I/O 时间占 CPU 时间的百分比至少是 ()
 - **A.** 12.5%
- **B.** 25%
- **C.** 27.5%
- **D.** 50%

71. ◆若某设备以中断方式与 CPU 进行数据交换,CPU 主频为 1GHz,设备接口中的数据缓冲寄存器为 32 位,设备的数据传输率为 50kb/s. 若每次中断开销 (包含中断响应与中断处理) 为 1000 个时钟周期,则 CPU 用于该设备输入/输出的时间占整个 CPU 时间的百分比至多是()

1.2 综合题 12

- **A.** 1.25%
- **B.** 2.5%
- **C.** 5%
- **D.** 12.5%
- 72. ◆若设备采用周期挪用 DMA 方式进行输入和输出,每次 DMA 传送的数据块大小为 512 字节,响应的 I/O 接口中有一个 32 位数据缓冲寄存器. 对于数据输入过程,下列叙述中,错误的是()
 - A. 每准备好 32 位数据,DMA 控制器就发出一次总线请求
 - B. 相对于 CPU.DMA 控制器的总线使用权的优先级更高
 - C. 在整个数据块的传送过程中,CPU 不可以访问主存储器
 - D. 数据块传送结束后, 会产生"DMA 传送结束" 中断请求
- 73. ♦ 下列关于中断 I/O 方式的叙述中, 不正确的是 ()
 - A. 适用于键盘, 针式打印机等字符型设备
 - B. 外设和主机之间的数据传送通过软件完成
 - C. 外设准备数据的时间应小于中断处理时间
 - D. 外设为某进程准备数据时 CPU 可运行其他进程

1.2 综合题

1.3 选择题答案

1. 答案: A; 冯诺依曼体系结构的基本工作方式: 控制流驱动方式; 基本特点: 按地址访问并顺序执行(存储程序).

2. 答案: C:

程序编译过程	具体作用
预处理程序	展开程序中的宏定义和头文件
编译程序	将高级语言转换为编译语言文件 (.s) 或者直接转换为 (.o) 文件
汇编程序	将汇编语言程序转换为机器语言目标文件 (.o)
链接程序	将多个(.o) 文件链接形成二进制可执行文件
解释程序	它一边读取源代码(或字节码等中间表示一边立即将其翻译成机器
	能直接执行的指令序列并立即执行,而不生成单独的可执行文件

1.3 选择题答案

3. 答案: A

这道题有种高中的时候计算式和决定式的味道了.CPI(每条指令的平均时钟周期数)只与指令集、系统结构、计算机组织等"每拍做什么"有关; 时钟频率决定"每秒多少拍". 并不改变一条指令需要多少拍, 因此与 CPI 无关.

13

- 4. 答案: A
- 5. 答案: D
- 6. 答案: A
- 7. 答案: D
- 8. 答案: B
- 9. 答案: C
- 10. 答案: B
- 11. 答案: C
- 12. 答案: C
- 13. 答案: B
- 14. 答案: B
- 15. 答案: B
- 16. 答案: A
- 17. 答案: C
- 18. 答案: 32769
- 19. 答案: A
- 20. 答案: C
- 21. 答案: B
- 22. 答案: C
- 23. 答案: $-(2-2^{-52}) \times 2^{+1023}$
- 24. 答案: D

1.4 综合题答案 14

25. 答案: 2⁷ – 1

26. 答案: 1.00010

27. 答案: 1.011011

28. 答案: 5

29. 答案: 1,3

30. 答案: C104 0000H

31. 答案: 1,2,3,4

32. 答案: BEE0 0000H

1.4 综合题答案