Pràctica 2: Zeros de funcions

Cristina Rosell Blanco: 1457235

Oriol Ventosa Altimira: 1457285

11 de març de 2018

A: Tant en precisió simple com en precisió doble, obtenim un error fitat per 0.002 i conseqüentment, l'aproximació de l'arrel és només de 2 xifres significatives.

B: Fent el mètode de Newton amb precisió simple veiem que amb 5 iteracions ja obtenim l'arrel amb 8 xifres significatives, ja que l'error absolut és menor que $\frac{1}{2}10^{-9}$. En canvi, amb precisió doble són necessàries 7 iteracions per obtenir l'arrel amb 15 xifres significatives, és a dir, amb un error absolut menor de $\frac{1}{2}10^{-16}$.

C: Per veure que l'arrel β és entre 2 i 8, avaluem la funció $f(x) = x^3 - x - 400$ a 2 i a 8. Veiem que f(2) < 0 i que f(8) > 0. Així doncs, per Bolzano, com que f(x) és contínua, veiem que hi ha una arrel en (2,8).

Utilitzant la fórmula de Cardano per discriminants positius, obtenim com a arrel real 7.413133144378662 amb un error absolut de 0.0278. Per tant, té 1 xifra significativa.

Aproximant l'arrel a 12 xifres, ja que amb més és produeixen problemes a nivell de precisió de variables.

- c1: Per el mètode de la bisecció necessitem 43 iteracions.
- **c2:** Per el mètode de la secant necessitem 6 iteracions.
- **c3:** Per el mètode de Newton necessitem 10 iteracions.

COMPARAR ORDRE DE CONVERGENCIA

Mètode de bisecció: dona un decimal correcte cada dos o tres iteracions Mètode secant: dona dos o tres decimals correctes cada iteració Mètode de Newton: quan és proper a l'arrel dona entre 4 i 5 decimals correctes a cada iteració

A: Calculant 10 iteracions de la successió amb el valor inicial de 5.7, mirem els quocients $\frac{e_k}{(e_{k-1})^i}$ per cada iteració i obtenim els següents resultats:

Iteració	Ordre 1	Ordre 2	Ordre 3
1	0.01248918081925201	0.005463913951181786	0.002390417441942918
2	1.842692755025232	64.54890401705153	2261.126277530449
3	1.702255038608466	32.35993528700995	615.1636435369242
4	1.46280082950094	16.33591953962786	182.4324007911864
5	1.104668372244713	8.433446801228495	64.3840511199098
6	0.6698905392401661	4.629617534898694	31.99531455355764
7	0.2824962810940362	2.914406725843755	30.06682612156564
8	0.06405272718457172	2.339172858148314	85.42539718146021
9	0.00431413316935736	2.459691339153118	1402.3863535038
10	2.15632745224664E-05	2.849759631796303	376618.5859459582

I observem que l'únic valor que s'estabilitza és el d'ordre 2.

B: Per veure que l'ordre de convergència de la successió és 3 utilitzarem el mateix mètode que el problema anterior, en aquest cas observant com evolucionen els quocients dels ordres 2, 3 i 4.

Iteració	Ordre 2	Ordre 3	Ordre 4
1	0.001428556504355381	4.081604093779827E-06	1.166176621475511E-08
2	0.002856913665404192	1.632550413993405E-05	9.329021336922217E-08
3	0.005710795230583281	6.527373165221887E-05	7.460712338254702E-07
4	0.01137455278196829	0.0002602084821147401	5.952625607557341E-06
5	0.02203434390101422	0.001013771390866927	4.664229793077517E-05
6	0.0353760743095244	0.003398516082247287	0.0003264893515384728
7	0.02787719417111068	0.007272752467876818	0.001897354810328137
8	0.004662467037722478	0.01138324824668134	0.0277917976893345
9	9.631885813428722E-06	0.01231392250244575	15.74278291223454
10	0	0	0

Observem així que l'únic ordre que no tendeix a 0 o infinit és 3.