

PROBLEMA A RESOLVER

 La inseguridad es un problema que en los últimos años ha afectado a Bucaramanga, la percepción de inseguridad llegó hasta el 79,2%, es decir, 8 de cada 10 ciudadanos se sienten inseguros en Bucaramanga y su área metropolitana, según el periódico Vanguardia

SOLUCIÓN PROPUESTA

 Implementar una herramienta web basada en inteligencia artificial que permita clasificar las zonas más peligrosas de la ciudad para poder implementar políticas públicas basadas en datos y lograr que la tranquilidad vuelva a la capital de Santander

METODOLOGÍA

- A través de una búsqueda en los datasets disponibles en Datos abiertos de Colombia(https://www.datos.gov.co/), se encontró un historial que consolida los delitos reportados desde Enero de 2010 hasta diciembre de 2021
- Se notó que los datos se actualizaron hasta el 10 octubre de 2023
- A través de técnicas aprendidas y guiadas por el docente Gustavo Garzón de análisis de datos se implementaron acciones de limpieza de datos, visualización y algoritmos de clasificación para lograr el objetivo planteado previamente

colum	columns and shape Index(['ORDEN', 'ARMAS_MEDIOS', 'BARRIOS_HECHO', 'LATITUD', 'LONGITUD', 'ZONA',																		
•	ORDEN	ARMAS_MEDIOS	BARRIOS_HECHO	LATITUD	LONGITUD	ZONA	NOM_COMUNA	ANO MI	ES DIA	DIA_SEMANA	DESCRIPCION_CONDUCTA	CONDUCTA	CLASIFICACIONES DELITO	EDAD	CURSO_DE_VIDA	ESTADO_CIVIL_PERSONA	GENERO	MOVIL_AGRESOR	MOVIL_VICTIMA
0	1	ARMA BLANCA / CORTOPUNZANTE	BUENOS AIRES	7.170557	-73.135108	URBANA	14. Morrorico	010 Ene	1. 1 ro	05. Viernes	ARTÍCULO 111. LESIONES PERSONALES	LESIONES PERSONALES	Lesiones no fatales	30	05. Adultez	UNION LIBRE	MASCULINO	A PIE	A PIE
1	2	ARMA BLANCA / CORTOPUNZANTE	CAMPO HERMOSO	7.120645	-73.12605	URBANA	05. García Rovira	010 Ene	1. ro	05. Viernes	ARTÍCULO 111. LESIONES PERSONALES	LESIONES PERSONALES	Lesiones no fatales	21	04. Jovenes	SOLTERO	MASCULINO	A PIE	A PIE
2	3	ARMA BLANCA / CORTOPUNZANTE	CAMPO HERMOSO	7.120645	-73.12605	URBANA	05. García Rovira	010 Ene	1. ro	05. Viernes	ARTÍCULO 111. LESIONES PERSONALES	LESIONES PERSONALES	Lesiones no fatales	23	04. Jovenes	SOLTERO	MASCULINO	A PIE	A PIE
3	4	ARMA BLANCA / CORTOPUNZANTE	COMUNEROS	7.151359	-73.145705	URBANA	03. San Francisco	010 Ene	1. ro 1	05. Viernes	ARTÍCULO 111. LESIONES PERSONALES	LESIONES PERSONALES	Lesiones no fatales	36	05. Adultez	CASADO	MASCULINO	A PIE	A PIE
4	5	ARMA BLANCA / CORTOPUNZANTE	GIRARDOT	7.170557	-73.135108	URBANA	04. Occidental	010 Ene	1. ro	05. Viernes	ARTÍCULO 111. LESIONES PERSONALES	LESIONES PERSONALES	Lesiones no fatales	20	04. Jovenes	UNION LIBRE	MASCULINO	A PIE	A PIE
5	6	ARMA BLANCA / CORTOPUNZANTE	GIRARDOT	7.170557	-73.135108	URBANA	04. Occidental	010 Ene	1. ro 1	05. Viernes	ARTÍCULO 111. LESIONES PERSONALES	LESIONES PERSONALES	Lesiones no fatales	20	04. Jovenes	UNION LIBRE	MASCULINO	A PIE	A PIE
6	7	ARMA BLANCA /	LOS ANGELES	7 187455	-73 131727	URBANA	02. Nor	010	1. 1	05 Viernes	ARTÍCULO 111. LESIONES	LESIONES	Lesiones no fatales	28	04 Jovenes	CASADO	MASCULINO	A PIF	A PIF

Exploración del dataset: 20 columnas, 135.076 registros(delitos reportados)

```
→ <class 'pandas.core.frame.DataFrame'>
   RangeIndex: 135076 entries, 0 to 135075
   Data columns (total 20 columns):
                              Non-Null Count Dtype
                              135076 non-null object
                              135076 non-null object
                              128713 non-null object
                              128713 non-null object
   4 LONGITUD
                              135076 non-null object
                              135076 non-null object
   7 ANO
   9 DIA
    10 DIA_SEMANA
                              135076 non-null object
    11 DESCRIPCION_CONDUCTA
                              135076 non-null object
                              135076 non-null object
    13 CLASIFICACIONES DELITO 135076 non-null object
    14 EDAD
                              135076 non-null object
    15 CURSO_DE_VIDA
                              135076 non-null object
    16 ESTADO_CIVIL_PERSONA 135076 non-null object
    17 GENERO
                              135076 non-null object
                              135076 non-null object
    18 MOVIL_AGRESOR
    19 MOVIL_VICTIMA
                              135076 non-null object
   dtypes: int64(3), object(17)
```

 La mayoría de tipos de datos categóricos, implicaba etiquetado para transformar a numéricos y poder realizar un análisis interesante

Con los datos numéricos iniciales se lograron obtener algunas conclusiones interesantes: Los años en dónde más hubo delitos, los días del mes en donde más se cometen delitos(inicio y fin de mes) ¿Coincide con los días de pago?

```
1 import pandas as pd
2 import seaborn as sns
3 import matplotlib.pyplot as plt
6 top_barrios = a['BARRIOS_HECHO'].value_counts().head(10).index
7 top_armas = a['ARMAS_MEDIOS'].value_counts().head(10).index
9 # Filtramos el DataFrame para incluir solo los datos más comunes.

10 filtered_data = a[a['BARRIOS_HECHO'].isin(top_barrios) & a['ARMAS_MEDIOS'].isin(top_armas)]
12 # Calcular la frecuencia de cada combinación de arma y barrio.
13 conteo_armas_barrios = filtered_data.groupby(['BARRIOS_HECHO', 'ARMAS_MEDIOS']).size().reset_index(name='conteo')
16 pivot_table = conteo_armas_barrios.pivot(index='BARRIOS_HECHO', columns='ARMAS_MEDIOS', values='conteo').fillna(0).astype(int)
18 # Crear un heatmap para visualizar la frecuencia de las armas usadas en cada barrio.
19 plt.figure(figsize=(12, 8)) # Ajusta el tamaño si es necesario
20 sns.heatmap(pivot_table, annot=True, fmt="d", linewidths=.5, cmap='viridis')
21 plt.title('Frecuencia de armas usadas en los 10 barrios con más crímenes')
22 plt.ylabel('Barrio')
23 plt.xlabel('Arma/Medio')
24 plt.show()
                          Frecuencia de armas usadas en los 10 barrios con más crímenes
```


 Se determina con precisión el tipo de arma que más se usa en los delitos cometidos por zona

```
DELITOS MAS COMUNES POR BARRIO

1 #@title DELITOS MAS COMUNES POR BARRIO

3 # Agrupamos por barrio y por conducta del delito y contamos las ocurrencias.
4 delitos_por_barrio = a.groupby(['BARRIOS_HECHO', 'CONDUCTA']).size().reset_index

6 # Ordenamos los resultados para obtener los delitos más comunes en cada barrio.
7 delitos_mas_comunes_por_barrio = delitos_por_barrio.sort_values(by=['BARRIOS_HECHO', 'conteo'], ascending=[True, False])

8 
9 # Ahora queremos tener solo el delito más común por barrio, por lo que agrupamos y tomamos el primero.
10 delito_mas_comun_por_barrio = delitos_mas_comunes_por_barrio.groupby('BARRIOS_HECHO').head(1)

11 
12 # Finalmente, mostramos los resultados.
13 print(delito_mas_comun_por_barrio)

14
```

```
BARRIOS_HECHO
                                      CONDUCTA conteo
13
       12 DE OCTUBRE VIOLENCIA INTRAFAMILIAR
                                                    85
                                                    13
18
          13 DE JUNIO
                              HURTO A PERSONAS
                                                    13
28
         20 DE JULIO
                           LESIONES PERSONALES
          23 DE JUNIO VIOLENCIA INTRAFAMILIAR
                                                    30
                           LESIONES PERSONALES
          5 DE ENERO
                                                    • • •
4178
     nuevo sotomayor
                              HURTO A PERSONAS
4179
             pablo VI VIOLENCIA INTRAFAMILIAR
                                                    13
4183
                           LESIONES PERSONALES
             provenza
4185
                                                     1
           san rafael VIOLENCIA INTRAFAMILIAR
     sin informacion
                                     EXTORSIÓN
                                                    22
[494 rows x 3 columns]
```

Se determinan los delitos más comunes por barrio

Los delitos más comunes por género

 Se obtiene un primer acercamiento al objetivo deseado, determinar las zonas más peligrosas en Bucaramanga

Se discriminan los delitos por edades de víctima usando boxplot

SE APLICA UN PRIMER MODELO DE CLASIFICACIÓN RANDOM FOREST

```
APLICANDO MODELOS DE CLASIFICACIÓN
[] 1#librerias
    2 from sklearn.model_selection import train_test_split
    3 from sklearn.ensemble import RandomForestClassifier
    4 from sklearn.metrics import classification_report
    5 from sklearn.model_selection import cross_val_score
    6 from sklearn.preprocessing import LabelEncoder
1# Preprocesamiento: Convertir categorías a números
    2 le_barrios = LabelEncoder()
    3 a['BARRIOS_HECHO'] = le_barrios.fit_transform(a['BARRIOS_HECHO'])
    5 le_armas = LabelEncoder()
    6 a['ARMAS_MEDIOS'] = le_armas.fit_transform(a['ARMAS_MEDIOS'])
    8 le_conducta = LabelEncoder()
    9 a ['CONDUCTA'] = le_conducta.fit_transform(a['CONDUCTA'])
   11 # División del conjunto de datos
   12 X = a[['BARRIOS_HECHO', 'ARMAS_MEDIOS']] # Características
   13 y = a['CONDUCTA'] # Variable objetivo
   15 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=21)
   17 # Construcción del modelo de clasificación
   18 clf = RandomForestClassifier(n_estimators=100, random_state=21)
   19 clf.fit(X_train, y_train)
   20
   21 # Predicciones
   22 y_pred = clf.predict(X_test)
   24 # Evaluación del modelo
   25 print(classification_report(y_test, y_pred))
   27 # Validación cruzada
   28 scores = cross_val_score(clf, X, y, cv=5)
   29 print("Precisión promedio de validación cruzada: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
   30
```

Implementación de RF

smenings sa	rn/				
warnings.wa	precision	cocall.	fl-score	suppost	
	precision	recare	11-Score	support	
8	0.15	0.02	8.04	189	
ī	0.80	8.00	8.00	3	
2	0.87	8.02	8.03	45	
3	0.80	8.00	8.00	24	
4	0.11	8.01	8.02	87	
5	0.80	8.00	8.00	1	
6	0.84	8.02	8.03	43	
7	0.80	8.00	8.60	88	
8	0.80	8.00	8.00	1	
9	0.29	8.17	0.21	312	
18	0.80	8.60	8.00	2	
11	0.25	8.02	0.03	55	
12	0.80	8.00	8.00	2	
13	0.80	8.00	8.00	5	
14	0.80	8.00	8.00	1	
15	0.91	0.83	8.87	93	
16	0.80	8.00	8.00	7	
17	0.35	0.02	0.05	241	
18	0.80	8.00	8.00	128	
19	0.80	8.00	8.00	3	
20	0.80	8.00	8.00	33	
21	0.50	8.02	8.04	215	
22	0.86	0.61	8.71	641	
23	0.71	8.84	8.77	9559	
24	0.80	8.00	8.00	2	
25	0.69	0.12	8.21	929	
27	0.25	0.11	8.15	9	
28	0.80	8.66	8.00	1	
29	0.80	8.00	8.00	4100	
38 31	0.97 0.48	0.98 0.61	8.97 8.54	4198 4849	
32	0.80	8.66	8.00	1	
33	0.50	8.05	8.08		
33	0.80	8.00	8.00	22 15	
38	0.46	8.32	8.38	3218	
30	0.40	0132	0.35	32.10	
accuracy			8.67	25015	
macro avg	0.22	8.14	8.15	25015	
weighted avg	0.65	8.67	8.64	25015	
acagnica ary	0.00	0.07	0.00		
Precisión pro	medio de val	idación c	ruzada: 0.	66 (+/- 8.8)	2)

38	0.46	0.32	0.38	3218
accuracy macro avg weighted avg	0.22 0.65	8.14 8.67	8.67 8.15 8.64	25015 25015 25015
Precisión promedio	de valida	ción cruza	da: 0.66	(+/- 8.82)

SE APLICA UN SEGUNDO MODELO DE CLASIFICACIÓN SUPPORT VECTOR MACHINE (SVM)

```
0 1999
                                                          # División del conjunto de datos
    2 from sklearn.svm import SVC
    3 from sklearn.preprocessing import StandardScaler
    4 from sklearn.pipeline import make_pipeline
    5 X = a[['BARRIOS_HECHO', 'ARMAS_MEDIOS']] # Características
    6 y = a['CONDUCTA'] # Variable objetivo
    8 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
   10 # Para cada kernel, crea un pipeline con un StandardScaler y un SVC con el kernel correspondiente.
    11 # Entrena y evalúa el modelo.
   12 kernels = ['linear', 'poly', 'rbf']
   13 for kernel in kernels:
          clf = make_pipeline(StandardScaler(), SVC(kernel=kernel))
   14
          clf.fit(X_train, y_train)
          y_pred = clf.predict(X_test)
   17
          print(f"Resultados para kernel {kernel}:")
    18
          print(classification_report(y_test, y_pred))
```

LINEAR

Decultudes o	are barrel 3	1						
mesuccados p	ara kernel l		43					
	precision	recall	fl-score	support				
е	0.80	8.00	8.00	174				
1		8.00	8.60	1				
2		8.00	8.00	43				
3		8.00	8.00	15				
4		8.00	8.00	92				
6		8.00	8.00	53				
7		8.00	8.00	82				
8		8.00	8.60	2				
9		8.00	8.00	278				
18		8.00	8.00	3				
11		8.00	8.00	48				
12		8.00	8.00	2				
13		8.00	8.00	ī				
14		8.00	8.00	2				
15		8.00	8.00	79				
16		8.00	8.00	8				
17		8.00	8.00	257				
18		8.00	8.00	127				
19		8.00	8.00	3				
28	0.80	8.00	8.00	32				
21		8.00	8.00	226				
22	0.80	8.00	8.00	628				
23	0.39	1.00	8.56	9701				
25	0.80	8.00	8.00	926				
27	0.80	8.00	8.00	5				
28	0.80	8.00	8.00	2				
29	0.80	8.00	8.00	1				
38	0.80	8.00	8.00	4205				
31		8.00	8.00	4736				
32		8.00	8.00	1				
33		8.00	8.00	12				
34		8.00	8.00	1				
35		8.00	8.00	1				
37		8.00	8.00	7				
38	0.80	8.00	8.00	3261				
accuracy			8.39	25015				
macro avg		0.03	8.02	25015				
weighted avg	0.15	0.39	8.22	25015				

		.,.,	,,		,,		
Resultado		kernel poi					
	pr	ecision	recall	fl-score	support		
		0.00	0.00		174		
	8	0.80	8.00	8.00	174		
	1	0.80	8.00	8.00	1		
	2	0.80	8.00	8.00	43		
	3	0.80	8.00	8.00	15		
	4 6	0.80	8.00	8.00	92		
	7	0.80	8.00	8.00	53		
		0.80	8.00	8.00	82		
	8 9	0.80 0.80	8.00	8.00	2 278		
			8.00	8.00			
	18	0.80	8.00	8.00	3		
	11 12	0.80 0.80	8.00	8.00 8.00	48 2		
			8.00				
	13	0.80	8.00	8.00	1		
	14	0.80	8.00	8.00	2		
	15	0.80	8.00	8.00	79		
	16	0.80	8.00	8.00	. 8		
	17	0.80	8.66	8.00	257		
	18	0.80	8.00	8.00	127		
	19	0.80	8.00	8.00	3		
	28	0.80	8.00	8.00	32		
	21	0.80	8.00	8.00	226		
	22	0.80	8.00	8.00	628		
	23	0.39	1.00	8.56	9701		
	25	0.80	8.00	8.00	926		
	27	0.80	8.00	8.00	5		
	28	0.80	8.00	8.00	2		
	29	0.80	8.00	8.00	1		
	38	0.80	8.00	8.00	4205		
	31	0.80	8.00	8.00	4736		
	32	0.80	8.00	8.00	1		
	33	0.80	8.00	8.00	12		
	34	0.80	8.00	8.00	1		
	35	0.80	8.00	8.00	1		
	37	0.80	8.66	8.00	7		
	38	0.80	8.00	8.00	3261		
accur				8.39	25015		
macro		0.81	8.83	8.02	25015		
weighted	avg	0.15	0.39	0.22	25015		

RBF

	uverage, so				
	para kernel				
	precision		f1-score	support	
	8 0.80	8.00	8.00	174	
	1 0.80	8.00	8.00	1	
	2 0.80	8.00	8.00	43	
	3 0.80	8.00	8.00	15	
	4 0.80	8.00	8.00	92	
	6 0.80	8.00	8.00	53	
	7 0.80	8.00	8.00	82	
	B 0.80	8.00	8.00	2	
1	9 0.80	8.00	8.00	278	
10	8 0.80	8.00	8.00	3	
1			8.00	48	
1		8.00	8.00	2	
1	3 0.80	8.00	8.00	1	
1	4 0.80	8.00	8.00	2	
1	5 0.05	8.08	8.05	79	
1	6 0.80	8.00	8.00	8	
1			8.00	257	
1	B 0.00		8.00	127	
1	9 0.80	8.00	8.00	3	
2		8.00	8.00	32	
2	1 0.80	8.00	8.00	226	
2		0.64	8.71	628	
2			8.77	9701	
2			8.21	926	
2			8.00	5	
2		8.00	8.00	2	
2		8.00	8.00	1	
3			0.93	4205	
3		0.66	0.53	4736	
3		8.00	8.00	1	
3.		8.00	8.00	12	
3		8.00	8.00	1	
3		8.00	8.00	1	
3		8.00	8.00	7	
3	B 0.80	8.00	8.00	3261	
accurac			8.65	25015	
macro av			8.09	25015	
weighted av	g 0.54	8.65	0.58	25015	

VISUALIZANDO LOS 20 BARRIOS MÁS PELIGROSOS Y LOS DELITOS QUE MÁS SE COMETEN

CENTRO - 28 0 11 SAN FRANCISCO - 13 1 7 CABECERA DEL LLANO - 5 0 7 LA CONCORDIA - 13 0 10 SAN ALONSO - 5 0 5 PROVENZA - 12 0 6 CAMPO HERMOSO - 26 0 3 GARCIA ROVIRA - 12 0 5 O SOTOMAYOR - 2 0 5 GIRARDOT - 15 0 5 GIRARDOT - 15 0 5 CIUDADELA REAL DE MINAS - 11 1 4 DISTRICT ANTONIA SANTOS SUR - 12 0 7 CAFE MADRID - 28 1 9 LA AURORA - 2 1 3 ALARCON - 11 1 9 LA UNIVERSIDAD - 3 0 2 ALFONSO LOPEZ - 9 0 4 MEJORAS PUBLICAS - 1 0 3 MUTIS - 10 0 2	10 37 0 17 13 0 44 0 17 0 3 3 13 0 12 5 0 40 0 5 0 6 9 12 0 10 16 0 11 0 5 0 0 6 5 12 0 5 13 1 19 0 7 0 1 2 6 0 6 8 0 20 0 6 0 1 0 1 2 0 0 6 0 0 1 2 0 0 0 1 2 0 </th <th>3</th> <th>0 91 0 0 0 1238 1949 0 1 1 0 0 2 2 508 0 226 0 0 0 0 1280 728 0 0 2 1 0 0 1 420 0 156 0 2 0 1 696 713 0 1 2 0 0 0 2 150 0 90 0 1 0 0 963 616 0 0 0 0 0 0 199 0 180 0 0 0 420 490 0 1 0 0 0 3 230 0 180 0 0 0 441 0 0 4 0 1 0 0 3 230 0 42 0 0 0 503 837 0 0 0 0 0 0 0 1 1311 0 0</th>	3	0 91 0 0 0 1238 1949 0 1 1 0 0 2 2 508 0 226 0 0 0 0 1280 728 0 0 2 1 0 0 1 420 0 156 0 2 0 1 696 713 0 1 2 0 0 0 2 150 0 90 0 1 0 0 963 616 0 0 0 0 0 0 199 0 180 0 0 0 420 490 0 1 0 0 0 3 230 0 180 0 0 0 441 0 0 4 0 1 0 0 3 230 0 42 0 0 0 503 837 0 0 0 0 0 0 0 1 1311 0 0
ACCESO CARMAL ABUSINO COM MEMOR DE LA AMOS ECHALIA EMPERSOMA PUESTA EM MICLARAL VIOLENTO COM MEMORAL ABUSINO COM MEMORAL ABUSI	Experience Production of Secretary Colonia Constitution of Secretary Colonia Constitution of the Secretary Colonia Colon	LABORICO CUTOGO LEW & CORDER DE RABERTO A RESERVE O A RITTORO COMPRES HARREST REPORTS OF A REPORT OF A	ESIDENCIAS TRUETOR DE TILICION SELECTOR SELECTO CHARGES DE RENESTO DE REPORTA DE REPORTA DE EL PROSTITUCION DE ESIONES EL ESIONES CULPOSAS DE RENES DE REPORTA DE REPORTA DE EL PROSTITUCION DE ESIONES CULPOSAS DE RENES DE REPORTA DE REPORTA DE EL PROSTITUCION DE REPORTA DE LA PROSTITUCION DE ESIONES CULPOSAS DE RENES DE REPORTA DE REPORTA DE EL PROSTITUCION DE LA PROSTITUCION DE SECUESTRO SINDE EL PROPERTO DE RENES DE REPORTA DE RENES DE RESONALES DE RENES DE

Top 20 Neighborhoods with the Highest Number of Crimes in Bucaramanga

Type of Crime

- 5000

- 2000

- 1000

PROBANDO MODELOS, COMPARÁNDOLOS Y HACIENDO PREDICCIONES

```
o from skiearn.compose import columniransformer
10 # Preparando los datos para la clasificación
11
12 # Selecciono las columnas que necesito y elimino filas vacías
13 classification_data = clean_data[['BARRIOS_HECHO', 'DIA_SEMANA', 'GENERO', 'CONDUCTA']].dropna()
15 # Transformando datos categóricos a numéricos
16 label_encoder = LabelEncoder()
17 onehot_encoder = ColumnTransformer(transformers=[('onehot', OneHotEncoder(), ['BARRIOS_HECHO', 'DIA_SEMANA', 'GENERO'])],
                                       remainder='passthrough')
18
19
20 X = onehot_encoder.fit_transform(classification_data[['BARRIOS_HECHO', 'DIA_SEMANA', 'GENERO']])
21 y = label_encoder.fit_transform(classification_data['CONDUCTA'])
23 # Dividiendo datos de entrenamiento y prueba
24 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
26 # Se inicializan modelos
27 dt_classifier = DecisionTreeClassifier(random_state=42)
28 rf_classifier = RandomForestClassifier(random_state=42)
29 svm_classifier = SVC(random_state=42)
30 mlp_classifier = MLPClassifier(random_state=42)
31
32 # Entrenando modelos
33 dt_classifier.fit(X_train, y_train)
34 rf_classifier.fit(X_train, y_train)
35 svm_classifier.fit(X_train, y_train)
36 mlp_classifier.fit(X_train, y_train)
37
38 # Haciendo predicciones
39 dt_pred = dt_classifier.predict(X_test)
40 rf_pred = rf_classifier.predict(X_test)
41 svm_pred = svm_classifier.predict(X_test)
42 mlp_pred = mlp_classifier.predict(X_test)
44 # Evaluando los modelos
45 models = {'Decision Tree': dt_pred, 'Random Forest': rf_pred, 'SVM': svm_pred, 'Neural Network': mlp_pred}
46 performance = {model: accuracy_score(y_test, prediction) for model, prediction in models.items()}
48 performance
```

```
{'Decision Tree': 0.44160961931947357,
                    'Random Forest': 0.4441357011140021,
                    'SVM': 0.4528759441230707,
80 mlp_classifier = MLPClassi:
                    'Neural Network': 0.4445146133831813}
```

APLICANDO KMEANS, PCAYT-SNE

```
1 def get_similar_records(row, model, train_data, le_conducta, le_barrios):
      # Predecir el cluster para el registro dado
       conducta_encoded = le_conducta.transform([row['CONDUCTA']])[0]
       barrios_hecho_encoded = le_barrios.transform([row['BARRIOS_HECHO']])[0]
       cluster = model.predict([[conducta_encoded, barrios_hecho_encoded]])[0]
       # Obtener registros del mismo cluster
       same_cluster_data = train_data[train_data_kmeans.apply(lambda x: model.predict([x])[0], axis=1) == cluster]
      # Seleccionar tres registros aleatorios del mismo cluster
      if len(same_cluster_data) > 3:
           return same_cluster_data.sample(3)
12
13
      else:
           return same_cluster_data
14
16 # Eliminar registros con valores desconocidos en 'BARRIOS_HECHO'
17 known_barrios = set(le_barrios.classes_)
18 test_data = test_data[test_data['BARRIOS_HECHO'].isin(known_barrios)]
19
20 # Aplicar LabelEncoder al conjunto de prueba corregido
21 test_data['BARRIOS_HECHO_encoded'] = le_barrios.transform(test_data['BARRIOS_HECHO'])
22
23 # Probar la función con un registro de prueba
24 example = test_data.iloc[0]
25 similar_records = get_similar_records(example, kmeans_with_categorical, train_data, le_conducta, le_barrios)
```

- Inicialmente apliqué k means para los valores numéricos solamente, pero no eran muy significativos para un análisis interesante(orden, año y dia)
- Decidí encontrar relaciones entre tipo de delito y ubicación del delito para eso tomé las columnas correspondientes y apliqué todo el procesamiento en estas columnas categóricas convirtiéndolas en numéricas con label encoding.
- Finalmente creo que se pudo encontrar casos similares o representativos dentro de un conjunto de datos grande. Esto podrá ser útil en aplicaciones como análisis criminal donde encontrar incidentes similares puede ayudar a entender mejor un caso específico.(de acuerdo a análisis previos coincide con los delitos más comunes y las ubicaciones más peligrosas)

CONCLUSIONES

- Se logró extraer información relevante para la toma de decisiones futura
- La visualización de datos aporta en gran medida a la comprensión del dataset y el contexto de la situación

- La limpieza es fundamental para aumentar la confiabilidad de los análisis y resultados
- Se logró identificar las zonas acorde al objetivo del proyecto. Sin embargo se desea implementar un mapa interactivo a nivel web a futuro.

