Data Sheet, Doc. No. 5SYA 1467-01 11-2018

5SJA 3000L520300 StakPak BIGT Module

 $V_{CE} = 5200 \text{ V}$ $I_c = 3000 A$

Low-loss, rugged BIGT chip Optimized for low switching frequency Smooth switching for good EMC High tolerance to uneven mounting pressure Explosion resistant package Remains in low impedance state for up to 1 minute after failure*

Maximum rated values 1)

Parameter	Symbol	Conditions	min	max	Unit
Collector-emitter voltage	V_{CES}	V_{GE} = 0 V, T_{vj} \geq 25 $^{\circ}$ C		5200	٧
DC collector current	lc	T _C = 108 °C, T _{vj} = 125 °C		3000	A
Peak collector current	I _{CM}	t _p = 1 ms		6000	A
Gate-emitter voltage	V_{GES}		-20	20	٧
Total power dissipation	P _{tot}	T _C = 25 °C, T _{vj} = 125 °C		55500	W
DC forward current	l _F			3000	Α
Peak forward current	I _{FRM}	t _p = 1 ms		6000	A
Peak diode recovery power	P _{prec}	$V_{CC} \leq 3400 \text{ V, } V_{CEM \text{ CHIP}} \leq 5200 \text{ V, } T_{vj} = 125 \text{ °C,}$ $di/dt = 7.5 \text{ kA/µs, } L_{\sigma} = 150 \text{ nH, inductive load}$		7.5	MW
Surge current	IFSM	$V_R = 0$ V, $T_{vj} = 125$ °C, $V_{GE} = 0$ V, $t_p = 10$ ms, half-sinewave, 3 times during lifetime		42000	A
BIGT turn off SOA (IGBT mode)	RBSOA	$\label{eq:Vcc} \begin{array}{l} \text{Vcc} \leq 3400 \text{ V, Vcem chip} \leq 5200 \text{ V, T}_{vj} = 125 \text{ °C,} \\ \text{V}_{GE} = 15 \text{ V, R}_{G} = 1.2 \ \Omega, \ \text{C}_{GE} = 330 \text{ nF, L}_{\sigma} = 150 \text{ nH,} \\ \text{inductive load} \end{array}$		6000	А
BIGT turn off SOA (IGBT mode)	RBSOA	$\label{eq:Vcc} \begin{array}{l} \mbox{Vcc} \leq 3800 \mbox{ V, Vcem chip} \leq 5200 \mbox{ V, T}_{vj} = 125 \mbox{ °C,} \\ \mbox{V}_{GE} = 15 \mbox{ V, R}_{G} = 1.2 \Omega, \mbox{ C}_{GE} = 330 \mbox{ nF, L}_{\sigma} = 150 \mbox{ nH,} \\ \mbox{inductive load} \end{array}$		3000	А
BIGT short circuit SOA	t _{psc}	$\begin{aligned} &\text{Vcc} = 3400 \text{ V, Vcem chip} \leq 5200 \text{ V} \\ &\text{Vge} \leq 15 \text{ V, T}_{vj} \leq 125 \text{ °C} \end{aligned}$		10	μs
Junction temperature	T_{vj}		5	150	°C
Junction operating temperature	$T_{vj(op)}$		5	125	°C
Case temperature	Tc		5	70	°C
Storage temperature	T_{stg}		-40	70	°C
Mounting force ^{2) 3)}	F _M		60	90	kN

 $^{^{1)}}$ Maximum rated values indicate limits beyond which damage to the device may occur per IEC 60747 $^{2)}$ For detailed mounting instructions refer to ABB document no. 5SYA 2037-02

³⁾ All electrical characteristics are valid only when the module is clamped

^{*} Functionality is load profile dependent and needs to be agreed upon

IGBT characteristic values 4)

Parameter	Symbol	Conditions		min	typ	max	Unit
Collector (-emitter) breakdown voltage	V _(BR) CES	V_{GE} = 0 V, Ic = 10 mA, T_{vj} = 25 °C		5200			٧
Collector-emitter 5)	V	I _C = 3000 A, V _{GE} = 15 V	T _{vj} = 25 °C		2.73		٧
saturation voltage	VCE sat	IC = 3000 A, VGE = 13 V	T _{vj} = 125 °C		3.13		٧
			T _{vj} = 25 °C			1	mA
Collector cut-off current	Ices	V _{CE} = 5200 V, V _{GE} = 0 V	T _{vj} = 125 °C		60	120	mA
Gate leakage current	I _{GES}	V _{CE} = 0 V, V _{GE} = \pm 20 V, T _{vj} = 25 °	С	-750		750	nA
Gate-emitter threshold voltage	$V_{GE(th)}$	Ic = 480 mA, V _{CE} = V _{GE} , T _{vj} = 25 °C	2	5.2		7.2	٧
Gate charge	Q G	Ic = 3000 A, VcE = 2800 V, VGE = -	15 V15 V		25.5		μC
Input capacitance	C _{ies}				439		nF
Output capacitance	C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}, T_{vj} = 25 ^{\circ}\text{C}$			19.9		nF
Reverse transfer capacitance	C _{res}				30.0		nF
Internal gate resistor	R _{Gint}				0.104		Ω
Turn-on delay time	t _{d(on)}	V _{CC} = 2800 V, I _C = 3000 A, R _G = 1.2 Ω, C _{GE} = 330 nF,	T _{vj} = 25 °C		760		ns
			T _{vj} = 125 °C		880		ns
Di Min		$V_{GE} = \pm 15 \text{ V},$	T _{vj} = 25 °C		420		ns
Rise time	t _r	L_{σ} = 150 nH, inductive load	T _{vj} = 125 °C		420		ns
- C.I.	_	V 2000 V I 2000 A	T _{vj} = 25 °C		2760		ns
Turn-off delay time	t _{d(off)}	$V_{CC} = 2800 \text{ V}, I_{C} = 3000 \text{ A},$ $R_{G} = 1.2 \Omega, C_{GE} = 330 \text{ nF},$	T _{vj} = 125 °C		3040		ns
	_	$V_{GE} = \pm 15 \text{ V},$	T _{vj} = 25 °C		860		ns
Fall time	t _f	L_{σ} = 150 nH, inductive load	T _{vj} = 125 °C		980		ns
		Vcc = 2800 V, Ic = 3000 A,	T _{vj} = 25 °C		11100		mJ
Turn-on switching energy	Eon	R _G = 1.2 Ω , C _{GE} = 330 nF, V _{GE} = ±15 V, L _G = 150 nH, inductive load	T _{vj} = 125 °C		14200		mJ
		V _{CC} = 2800 V, I _C = 3000 A,	Tvj = 25 °C		14100		mJ
Turn-off switching energy	E _{off}	R _G = 1.2 Ω , C _{GE} = 330 nF, V _{GE} = ± 15 V, L _{σ} = 150 nH, inductive load	Tvj = 125 °C		18500		mJ
Short circuit current	Isc	$\begin{array}{l} t_{psc} \leq 10~\mu s,~V_{GE} = 15~V,\\ V_{CC} = 3400~V,\\ V_{CEM~CHIP} \leq 5200~V \end{array}$	Tvj = 125 °C		18000		A

⁴⁾ Characteristic values according to IEC 60747 - 9 ⁵⁾ Collector-emitter saturation voltage is given at chip level

Diode characteristic values 6)

Parameter	Symbol	Conditions		min	typ	max	Unit
		I _F = 3000 A, V _{GE} = 0 V	T _{vj} = 25 °C		2.29		٧
			T _{vj} = 125 °C		2.52		٧
Forward voltage ⁷⁾	V _F		T _{vj} = 25 °C		3.47		٧
		I _F = 3000 A, V _{GE} = 15 V	T _{vj} = 125 °C		3.63		٧
Peak reverse recovery current	I _{RM}	V _{CC} = 2800 V, I _F = 3000 A, V _{GE} = ±15 V,	T _{vj} = 25 °C		3800		Α
			T _{vj} = 125 °C		4500		Α
	Qr		T _{vj} = 25 °C		5100		μC
Recovered charge			T _{vj} = 125 °C		7600		μC
Doverno monover time	t _{rr}	R _G = 1.2 Ω , C _{GE} = 330 nF, di/dt = 6.9 kA/ μ s	T _{vj} = 25 °C		2680		ns
Reverse recovery time Reverse recovery energy		L_{σ} = 150 nH, inductive load	T _{vj} = 125 °C		2840		ns
	_		T _{vj} = 25 °C		9500		mJ
	E _{rec}		T _{vj} = 125 °C		14500		mJ

 $^{^{\}rm 6)}$ Characteristic values according to IEC 60747 - 2 $^{\rm 7)}$ Forward voltage is given at chip level

Package properties

Parameter	Symbol	Conditions	min	typ	max	Unit
BIGT thermal resistance junction to case	R _{th(j-c)} IGBT				2.10	K/kW
BIGT thermal resistance ²⁾ case to heatsink	R _{th(c-h)} IGBT	Heatsink flatness : Complete module area < 100 μm Each submodule area < 20 μm Roughness : < 1.6 μm		0.55		K/kW
Comparative tracking index	СТІ		600			

 $^{^{\}rm 2)}$ for detailed mounting instructions refer to ABB Document No. 5SYA 2037-02

Mechanical properties

Parameter	Symbol	Conditions		min	typ	max	Unit
Dimonoione	LxWxH	Typical	device clamped	23	7 x 250 x 31.5		
Dimensions			device unclamped	23	7 x 250 x 3	3.2	mm
Clearance distance in air	da	according to IEC 60664-1 and EN 50124-1		23			mm
Surface creepage distance	ds	according to IEC 60664-1 and EN 50124-1		30			mm
Mass	m				4030		g

Electrical configuration

Outline drawing 2)

This is an electrostatic sensitive device; please observe the international standard IEC 60747-1, chap. VIII. This product has been designed and qualified for Industrial Level.

Note: all dimensions are shown in millimeters $^{2)}$ For detailed mounting instructions refer to ABB Document No. 5SYA 2039

Fig. 1 Typical on-state characteristics, chip level

Fig. 3 Typical output characteristics, chip level

Fig. 2 Typical transfer characteristics, chip level

Fig. 4 Typical output characteristics, chip level

Fig. 5 Typical switching energies per pulse vs. collector current

Fig. 6 Typical switching energies per pulse vs. gate resistor

Fig. 7 Typical switching times vs. collector current

Fig. 8 Typical switching times vs. gate resistor

Fig. 9 Typical capacitances vs. collector-emitter voltage

Fig. 11 Turn-off safe operating area (RBSOA)

Fig. 10 Typical gate charge characteristics

Typical reverse recovery characteristics vs. forward current

Fig. 14 Typical diode forward characteristics chip level

Fig. 15 Safe operating area diode (SOA)

Fig. 16 Thermal impedance vs. time

Analytical function for transient thermal impedance:

$$Z_{\text{th (j-c)}}(t) = \sum_{i=1}^{n} R_{i} (1 - e^{-t/\tau_{i}})$$

	i	1	2	3	4
BIGT	R _i in K/kW	0.265	0.546	1.393	0.299
	τ _i in s	0.0004	0.0168	0.2862	6.0189

Related documents:

5SYA 2045 Thermal runaway during blocking 5SYA 2053 Applying IGBT 5SYA 2093 Thermal design of IGBT modules

ABB Switzerland Ltd. Semiconductors Fabrikstrasse 3 CH-5600 Lenzburg Switzerland

Phone: +41 58 586 1419
Fax: +41 58 586 1306
E-Mail: abbsem@ch.abb.com

Internet: www.abb.com/semiconductors

We reserve the right to make technical changes or to modify the contents of this document without prior notice.

We reserve all rights in this document and the information contained therein. Any reproduction or utilization of this document or parts thereof for commercial purposes without our prior written consent is forbidden.

Any liability for use of our products contrary to the instructions in this document is excluded.