n désigne un entier $\geqslant 2$, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et E un \mathbb{K} -espace vectoriel de dimension n

Problème 1: Le polynôme caractéristique de AB et BA

Soient $A, B \in \mathcal{M}_n(\mathbb{C})$. On désire établir l'égalité des polynômes caractéristiques : $\chi_{AB} = \chi_{BA}$

- 1. Établir l'égalité quand $A \in GL_n(\mathbb{C})$.
- 2. On note $J_r = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$.
 - (a) Montrer que $\chi_{J_rB}=\chi_{BJ_r}$. <u>Indication : Écrire B par bloc</u>
 - (b) Déduire que $\chi_{AB} = \chi_{BA}$
- 3. On considère les matrices carrées d'ordre 2n définies comme suit

$$M = \begin{pmatrix} BA & -B \\ 0 & 0 \end{pmatrix}, N = \begin{pmatrix} 0 & -B \\ 0 & AB \end{pmatrix} \text{ et } P = \begin{pmatrix} I_n & 0 \\ A & I_n \end{pmatrix}$$

- (a) Montrer que P est inversible et vérifier que MP = PN
- (b) Déduire que $\chi_{AB} = \chi_{BA}$
- 4. **Application :** Soit $A \in \mathcal{M}_n(\mathbb{C})$. Montrer $\chi_{A\overline{A}} \in \mathbb{R}[X]$.

Problème 2: Diagonalisation simultanée

Soit u et v deux endomorphismes diagonalisables de E qui commutent.

- 1. Justifier que les sous-espaces propres de u sont stables par v
- 2. Montrer que l'endomorphisme induit v_{λ} par v sur chaque sous-espace propre $E_{\lambda}(u)$ de u est diagonalisable
- 3. En déduire que u et v sont diagonalisables dans une même base
- 4. **Application :** On donne les matrices suivantes $A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 2 & 1 & -1 \\ -2 & 5 & -1 \\ -4 & 2 & 2 \end{pmatrix}$.

Montrer que A et B sont diagonalisables au moyen d'une même matrice de passage et déterminer cette matrice de passage

5. **Généralisation :** Soit , u_1, \ldots, u_m une famille d'endomorphismes diagonalisables de E commutant deux à deux. Montrer qu'il existe une base de E diagonalisant tous les u_i .

Problème 3: Racines carrées d'une matrice

Soit $A \in M_n(\mathbb{R})$, on appelle une racine carrée de A toue matrice $R \in M_n(\mathbb{R})$ vérifiant $R^2 = A$. On suppose que la matrice $A \in M_n(\mathbb{R})$ admet n valeurs propres réelles $\lambda_1 < \lambda_2 < \cdots < \lambda_n$.

- 1. Justifier l'existence d'une matrice $P \in M_n(\mathbb{R})$ inversible telle que $A = PDP^{-1}$ où $D = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$, puis montrer que R est une racine carrée de A, si et seulement si la matrice $S = P^{-1}RP$ est une racine carrée de D.
- 2. Soit S une racine carrée de D.
 - (a) Montrer que DS = SD. En déduire que la matrice S est diagonale.
 - (b) On note alors $S = diag(s_1, \ldots, s_n)$. Que vaut s_i^2 lorsque $i \in \{1, \ldots, n\}$?
 - (c) Que peut-on dire de Rac(A) si A admet une valeur propre strictement négative?
 - (d) Si on suppose toutes les valeurs propres de A positives ou nulles, déterminer les racines carrées de la matrice D. On pourra poser $\varepsilon_i \in \{-1, +1\}$ pour $i \in \{1, \dots, n\}$.

- 3. Ecrire toutes les racines carrées de A à l'aide de la matrice P. Combien de racines carrées A admet-elle? (On discutera selon le signe des valeurs propres de A).
- 4. **Application :** Ecrire toutes les racines carrées de $A = \begin{pmatrix} 11 & -5 & 5 \\ -5 & 3 & -3 \\ 5 & -3 & 3 \end{pmatrix}$ à l'aide de la matrice P que l'on déterminera.

Extrait: CCP-Math2-MP-2005

Problème 4: Racines carrées de la matrice nulle

On cherche à déterminer les racines carrées de la matrice nulle.

Soit $R \in M_n(\mathbb{R})$, une matrice carrée de la matrice nulle. Soit f l'endomorphisme de \mathbb{R}^n dont R est la matrice dans la base canonique de \mathbb{R}^n . On note r le rang de f.

- 1. Comparer $\operatorname{Im}(f)$ et $\operatorname{Ker}(f)$ puis montrer que $r \leqslant \frac{n}{2}$.
- 2. On suppose f non nul, donc $r \ge 1$. Soit (e_1, \ldots, e_r) une base de $\operatorname{Im}(f)$ que l'on complète avec $(e_{r+1}, \ldots, e_{n-r})$ pour former une base de $\operatorname{Ker}(f)$. Pour $i \in \{1, \ldots, r\}$, on note u_i le vecteur tel que $f(u_i) = e_i$. Montrer que la famille $\mathcal{B} = (e_1, \ldots, e_{n-r}, u_1, \ldots, u_r)$ est une base de \mathbb{R}^n
- 3. Écrire la matrice de f dans la base \mathcal{B} . On notera M_r cette matrice.
- 4. Déterminer les racines carrées dans $M_n(\mathbb{R})$ de la matrice nulle.
- 5. **Application**: Déterminer dans $M_4(\mathbb{R})$, les racines carrées de la matrice nulle.

Extrait: CCP-Math2-MP-2005

Problème 5: Racines carrées de I_n

Soit R une racine carrée de l'unité I_n .

- 1. Vérifier que R est une matrice inversible.
- 2. Montrer que R est semblable à une matrice diagonale que l'on décrira.
- 3. Déterminer les racines carrées de l'unité I_n . On pourra poser $\varepsilon_i \in \{+1, -1\}$ pour $i \in \{1, \dots, n\}$.

Extrait: CCP-Math2-MP-2005

Problème 6: Le produit de Kronecker

Pour $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{C})$ et $B = (b_{i,j}) \in \mathcal{M}_n(\mathbb{C})$, on définit $A \otimes B \in \mathcal{M}_{n^2}(\mathbb{C})$ par

$$A \otimes B = \begin{pmatrix} a_{1,1}B & \cdots & a_{1,n}B \\ \vdots & & \vdots \\ a_{n,1}B & \cdots & a_{n,n}B \end{pmatrix}$$

- 1. Montrer que si $A, A', B, B' \in \mathcal{M}_n(\mathbb{C})$ alors $(A \otimes B)(A' \otimes B') = (AA') \otimes (BB')$.
- 2. En déduire que $A \otimes B$ est inversible si, et seulement si, A et B sont inversibles.
- 3. Déterminer le spectre de $A \otimes B$.
- 4. En déduire le polynôme caractéristique, la trace et le déterminant de $A \otimes B$.

Extrait: CCP-MP

Problème 7: Les matrices du rang 1

Soit $A \in M_n(\mathbb{K})$ telle que $\mathbf{rg}(A) = 1$

- 1. Montrer l'existence de deux vecteurs non nuls U et V de \mathbb{K}^n telles que $A = U^t V$
- 2. Montrer que $A^2 = tr(A)A$ et déduire π_A .
- 3. En déduire que A est diagonalisable si, et seulement si, $tr(A) \neq 0$
- 4. Montrer que si $tr(A) \neq 0$, alors A est semblable dans $M_n(\mathbb{R})$ à la matrice diagonale $diag(0,\ldots,0,tr(A))$
- 5. On suppose que $\operatorname{tr}(A) = 0$ et on désigne par f l'endomorphisme de $M_{n,1}(\mathbb{K})$ canoniquement associé à A.
 - (a) Montrer que $U \in \text{Ker}(f)$ et justifier l'existence d'une base de Ker(f) de la forme (E_1, \dots, E_{n-2}, U) .
 - (b) Soit $W = \frac{1}{{}^t V V} V$. Montrer que $(E_1, \dots, E_{n-2}, U, W)$ est une base de $M_{n,1}(\mathbb{K})$ et écrire la matrice de f dans cette base.
 - (c) En déduire que deux matrices de rang 1 et de trace nulle sont semblables dans $M_n(\mathbb{K})$.

Extrait: CNC-Maths2-TSI-2007

Problème 8: Matrice stochastique

On dit qu'une matrice $A=(a_{i,j})_{1\leqslant i,j\leqslant n}\in\mathcal{M}_n(\mathbb{R})$ est strictement stochastique lorsque

$$\forall (i,j) \in [|1,n|]^2, \ a_{i,j} > 0 \tag{1}$$

$$\forall i \in [|1, n|], \sum_{i=1}^{n} a_{i,j} = 1$$
 (2)

Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ est strictement stochastique

- 1. Soit $U = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R})$ le vecteur colonne dont tous les coefficients valent 1. Calculer AU et en déduire que 1 est valeur propre de A.
- 2. (a) Soient une matrice $B = (b_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{C})$ telle que $\det(B) = 0$ et un vecteur colonne $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{C}), X \ne 0$, tel que BX = 0. Soit $k \in [|1,n|]$ tel que $|x_k| = \max\{|x_i|, i \in [|1,n|]\}$. Justifier l'inégalité

$$|b_{k,k}| \leqslant \sum_{\substack{j=1\\j\neq k}}^{n} |b_{k,j}|$$

- (b) Soit $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$. En appliquant ?? à la matrice $B = A \lambda I_n$, montrer que $|a_{k,k} \lambda| \leq 1 a_{k,k}$, où k est l'entier défini en ??. En déduire $|\lambda| \leq 1$.
- (c) On suppose que $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$ vérifie $|\lambda| = 1$ et on note $\lambda = e^{i\theta}$ avec $\theta \in \mathbb{R}$. Déduire de l'inégalité $|a_{k,k} e^{i\theta}| \leq 1 a_{k,k}$ de ?? que $\cos(\theta) = 1$, puis en déduire λ .
- 3. (a) Montrer que $1 \in \operatorname{Sp}_{\mathbb{C}}({}^tA)$. En comparant le rang de $A I_n$ et celui de ${}^tA I_n$, montrer que les sous-espaces $E_1(A)$ et $E_1({}^tA)$ ont même dimension.

(b) Soit $V = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{C}), \ V \neq 0$, tel que ${}^tAV = V$. Montrer que pour tout $i \in [|1,n|]$, on a $|v_i| \leq \sum_{j=1}^n a_{j,i}|v_j|$. En calculant $\sum_{i=1}^n |v_i|$, montrer que toutes ces inégalités sont en fait des égalités.

On note $|V| = \begin{pmatrix} |v_1| \\ \vdots \\ |v_n| \end{pmatrix}$. Montrer que ${}^tA|V| = |V|$, puis que pour tout $i \in [|1, n|]$, on a $|v_i| > 0$.

(c) Soient $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ et $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ des matrices non nulles de $\mathcal{M}_{n,1}(\mathbb{C})$ qui appartiennent à $E_1({}^tA)$. En considérant la matrice $X - \frac{x_1}{y_1}Y$, déterminer la dimension de $E_1({}^tA)$. Justifier qu'il existe un vecteur unique $\Omega = \begin{pmatrix} \omega_1 \\ \vdots \\ \omega_n \end{pmatrix}$ qui engendre $E_1({}^tA)$, tel que pour tout $i \in [|1, n|]$, on ait $\omega_i > 0$ et $\sum_{i=1}^n \omega_i = 1$.

Montrer que, pour tout $i \in [|1, n|]$, on a $\sum_{j=1}^{n} a_{j,i}\omega_j = \omega_i$.

(d) Bilan des propriétés spectrales de A et de tA .

Citer les propriétés des vecteurs propres et des sous-espaces propres de A et de tA qui ont été démontrées dans les questions précédentes

4. A l'aide la matrice $\Omega = \begin{pmatrix} \omega_1 \\ \vdots \\ \omega_n \end{pmatrix}$ définie en ??, on considère l'application N définie de $\mathcal{M}_{n,1}(\mathbb{C})$ dans \mathbb{R} par

$$\forall X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \ N(X) = \sum_{i=1}^n \omega_i |x_i|$$

Montrer que N est une norme sur $\mathcal{M}_{n,1}(\mathbb{C})$. Montrer que pour tout $X \in \mathcal{M}_{n,1}(\mathbb{C})$ on a $N(AX) \leq N(X)$. Retrouver le résultat de ?? : pour tout $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$, $|\lambda| \leq 1$.

5. A l'aide la matrice colonne $\Omega = \begin{pmatrix} \omega_1 \\ \vdots \\ \omega_n \end{pmatrix}$, on considère la forme linéaire $\Phi : \mathcal{M}_{n,1}(\mathbb{C}) \to \mathbb{C}$ définie par

$$\forall X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \ \Phi(X) = \sum_{i=1}^n \omega_i x_i$$

On note $Ker(\Phi)$ le noyau de Φ .

- (a) Montrer que pour tout $X \in \mathcal{M}_{n,1}(\mathbb{C})$ on a $\Phi(AX) = \Phi(X)$.
- (b) Justifier que $\mathcal{M}_{n,1}(\mathbb{C}) = E_1(A) \oplus \operatorname{Ker}(\Phi)$.
- (c) Soit $X \in E_{\lambda}(A)$ avec $\lambda \neq 1$. Montrer que $X \in \text{Ker}(\Phi)$.
- (d) En utilisant les résultats précédents, déterminer l'ordre de multiplicité de la la valeur propre 1 de la matrice A.

Extrait: CCP-PSI-2012

PROBLÈME 9: Commutant

Ici $\mathbb{K} = \mathbb{C}$ des nombres complexes.

Soit $u \in \mathcal{L}(E)$. On appelle commutant de u l'ensemble $\mathcal{C}(u)$ des endomorphismes qui commutent avec u; on a :

$$C(u) = \{ v \in \mathcal{L}(E), u \circ v = v \circ u \}.$$

On suppose l'endomorphisme u diagonalisable.

Soient $p \in \mathbb{N}^*$ et $(\lambda_1, \lambda_2, \dots, \lambda_p) \in \mathbb{C}^p$ ses valeurs propres. On a :

$$E = \bigoplus_{1 \leqslant i \leqslant p} E_{\lambda_i}(u).$$

On pose $n_i = \dim E_{\lambda_i}(u)$ pour $1 \leq i \leq p$.

Soit \mathcal{B} une base de E. On rappelle que la base \mathcal{B} est dite adaptée à la somme directe $E = \bigoplus_{1 \leqslant i \leqslant p} E_{\lambda_i}(u)$ s'il existe pour chaque entier i compris entre 1 et p, une base $(e_1^i, \ldots, e_{n_i}^i)$ du sous-espace vectoriel $E_{\lambda_i}(u)$ telle que $\mathcal{B} = \left(e_1^1, \ldots, e_{n_1}^1, e_1^2, \ldots, e_{n_2}^2, \ldots, e_{n_p}^p, \ldots, e_{n_p}^p\right)$.

- 1. Montrer que si $v \in \mathcal{C}(u)$ alors les sous-espaces $E_{\lambda_i}(u)$ sont stables par v.
- 2. Pour tout entier i compris entre 1 et p, on note u_i l'endomorphisme de $E_{\lambda_i}(u)$ induit par u. Que peut-on dire de u_i ?
- 3. En déduire que $v \in \mathcal{C}(u)$ si et seulement si, sur une base \mathcal{B} adaptée à la somme directe $E = \bigoplus_{1 \leq i \leq p} E_{\lambda_i}(u)$:

$$Mat(v,\mathcal{B}) = \begin{pmatrix} V_1 & 0 & \cdots & \cdots & 0 \\ 0 & V_2 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & V_p \end{pmatrix}$$

avec $V_i \in \mathcal{M}_{n_i}(\mathbb{C})$ pour $1 \leq i \leq p$.

- 4. Montrer que $\dim \mathcal{C}(u) = \sum_{1 \leqslant i \leqslant p} n_i^2$.
- 5. Montrer que si u est diagonalisable, alors $\dim \mathcal{C}(u) \geq n$.
- 6. Montrer qu'il existe $u \in \mathcal{L}(E)$ diagonalisable tel que dim $\mathcal{C}(u) = n$.
- 7. Déterminons les matrices qui commutent avec $A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$

Extra<u>it: MATHS 3 de E3A - 2002 - Filière MP</u>

Problème 10: Crochet de Lie

Soit A est une matrice quelconque de $\mathcal{M}_n(\mathbb{R})$. On note ϕ_A l'application de $\mathcal{M}_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$ définie par :

$$\phi_A(M) = AM - MA$$

On note $\beta_c = (e_1, \dots, e_n)$ la base canonique de \mathbb{R}^n .

1. On suppose dans cette question que A est diagonalisable.

On note $\beta = (c_1, \ldots, c_n)$ une base de vecteurs propres de u (défini au début du problème) et, pour tout entier i tel que $1 \leq i \leq n$, λ_i la valeur propre associée au vecteur c_i . On note alors P la matrice de passage de la base

$$\beta_c \ \text{à la base} \ \beta \ \text{et} \ D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}.$$

Enfin, pour tout couple (i,j) d'entiers tels que $1 \le i \le n$ et $1 \le j \le n$, on pose :

$$B_{i,j} = PE_{i,j}P^{-1}$$

- (a) Exprimer, pour tout couple (i, j), la matrice $DE_{i,j} E_{i,j}D$ en fonction de la matrice $E_{i,j}$ et des réels λ_i et λ_j .
- (b) Démontrer que, pour tout couple (i, j), $B_{i,j}$ est un vecteur propre de ϕ_A .
- (c) En déduire que ϕ_A est diagonalisable.

On suppose dans la suite que ϕ_A est diagonalisable en tant qu'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ et on note $(P_{i,j})_{1\leqslant i\leqslant n}$ une base de vecteurs propres de ϕ_A et, pour tout couple (i,j), $\lambda_{i,j}$ la valeur propre associée à $P_{i,j}$.

- 2. Dans cette question, on considère A comme une matrice à coefficients complexes $(A \in \mathcal{M}_n(\mathbb{R}) \subset \mathcal{M}_n(\mathbb{C}))$ et ϕ_A comme un endomorphisme de $\mathcal{M}_n(\mathbb{C})$ (défini par $\phi_A(M) = AM MA$ pour tout $M \in \mathcal{M}_n(\mathbb{C})$).
 - (a) Justifier que toutes les valeurs propres de ϕ_A sont réelles.
 - (b) Soit $z \in \mathbb{C}$. Justifier que si z est une valeur propre de A, alors z est aussi une valeur propre de tA .
 - (c) Soit $z \in \mathbb{C}$. On suppose que z et \overline{z} sont deux valeurs propres de la matrice A. On considère alors $X \in \mathcal{M}_{n,1}(\mathbb{C})$ $(X \neq 0)$ et $Y \in \mathcal{M}_{n,1}(\mathbb{C})$ $(Y \neq 0)$ tels que AX = zX et ${}^tAY = \overline{z}Y$.
 - En calculant $\phi_A(X^tY)$, démontrer que $z-\overline{z}$ est une valeur propre de ϕ_A .
- 3. En déduire que la matrice A a au moins une valeur propre réelle. On note λ une valeur propre réelle de A et $X \in \mathcal{M}_{n,1}(\mathbb{R})$ $(X \neq 0)$ une matrice colonne telle que $AX = \lambda X$.
- 4. Démontrer que, pour tout couple (i,j), on a : $AP_{i,j}X = (\lambda + \lambda_{i,j}) P_{i,j}X$.
- 5. Montrer que pour $X \in M_{n,1}(\mathbb{R}) \setminus \{0\}$, l'application linéaire $M_n(\mathbb{R}) \longrightarrow M_{n,1}(\mathbb{R})$, $M \longmapsto MX$ est surjective
- 6. En déduire que A est diagonalisable.

Extrait: CCP-MP-2012

Problème 11: Translations

Soient A et B deux éléments de $M_n(\mathbb{K})$; on considère l'application, notée $\Phi_{A,B}$, suivante

$$\Phi_{A,B}: \left\{ \begin{array}{ccc} M_n\left(\mathbb{K}\right) & \longrightarrow & M_n\left(\mathbb{K}\right) \\ X & \longmapsto & AX + XB \end{array} \right.$$

- 1. Soit V un vecteur propre de A associé à la valeur propre a et W un vecteur propre de tB associé à la valeur propre b. Montrer que la matrice V^tW est un vecteur propre de $\Phi_{A,B}$; à quelle valeur propre est-il associé?
- 2. Soit λ une valeur propre de $\Phi_{A,B}$ et $Y \in M_n(\mathbb{K})$ un vecteur propre associé.
 - (a) Montrer que pour tout entier naturel k, $A^{k}Y = Y(\lambda I_{n} B)^{k}$
 - (b) En déduire que pour tout polynôme P, à coefficients dans \mathbb{K} , $P(A)Y = YP(\lambda I_n B)$.
 - (c) On suppose que le polynôme caractéristique χ_A de A est scindé sur $\mathbb K$ et s'écrit

$$\chi_A = \prod_{\mu \in \operatorname{Sp}_{\mathbb{K}}(A)} (X - \mu)^{m_{\mu}}$$

- i. Montrer que $Y\chi_A(\lambda I_n B) = 0$ et en déduire que la matrice $\chi_A(\lambda I_n B)$ n'est pas inversible.
- ii. En déduire qu'il existe $a \in \operatorname{Sp}_{\mathbb{K}}(A)$ tel que la matrice $(\lambda a) I_n B$ ne soit pas inversible.
- 3. Conclure que si le polynôme χ_A est scindé sur \mathbb{K} alors $\operatorname{Sp}_{\mathbb{K}}(\Phi_{A,B}) = \operatorname{Sp}_{\mathbb{K}}(A) + \operatorname{Sp}_{\mathbb{K}}(B)$
- 4. Soient (Y_1, \dots, Y_p) une famille libre de $M_{n,1}(\mathbb{K})$ et Z_1, \dots, Z_p des vecteurs arbitraires de $M_{n,1}(\mathbb{K})$. Montrer que l'égalité $\sum_{i=1}^p Y_i^t Z_i = 0$ a lieu si et seulement si les vecteurs Z_1, \dots, Z_p sont tous nuls.
- 5. On suppose ici que les matrices A et B sont diagonalisables dans $M_n(\mathbb{K})$ et on désigne par (U_1, \dots, U_n) et (W_1, \dots, W_n) des bases respectives de vecteurs propres de A et tB . En considérant la famille $(U_i{}^tW_j)_{1 \leq i,j \leq n}$, montrer que l'endomorphisme $\Phi_{A,B}$ est diagonalisable.

Extrait: CNC-Math II-2006

Problème 12: Matrices réelles d'ordre 3 vérifiant $A^3 + A = 0$

Soit A une matrice réelle d'ordre 3 telle que $A \neq 0$ et $A^3 + A = 0$. On note E le \mathbb{R} -espace vectoriel \mathbb{R}^3 , $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de E et u l'endomorphisme de E dont la matrice relativement à la base \mathcal{B} est A.

- 1. Vérifier que $u^3 + u = 0$ et que u n'est pas l'endomorphisme nul.
- 2. (a) On suppose que u est injectif; montrer que $u^2 = -id_E$ et trouver une contradiction.
 - (b) Justifier alors que dim $Ker u \in \{1, 2\}$.
- 3. Montrer que E est somme directe des sous-espaces vectoriels $\operatorname{Ker} u$ et $\operatorname{Ker} (u^2 + \operatorname{id}_E)$. Quelles sont alors les valeurs possibles de la dimension du sous-espace vectoriel $\operatorname{Ker} (u^2 + \operatorname{id}_E)$?
- 4. On pose $F = \text{Ker}(u^2 + \text{id}_E)$
 - (a) Vérifier que F est stable par u. On note v l'endomorphisme induit par u sur F.
 - (b) Vérifier que $v^2 = -id_F$.
 - (c) Préciser le déterminant de v^2 en fonction de la dimension de F et en déduire que dim F=2.
 - (d) Montrer que l'endomorphisme v n'a aucune valeur propre réelle.
- 5. On considère un vecteur e'_1 non nul de Keru, un vecteur e'_2 non nul de F et on pose $e'_3 = u(e'_2)$.
 - (a) Montrer que la famille (e'_2, e'_3) d'éléments de F est libre.
 - (b) Montrer que la famille $\mathcal{B}'=(e_1',e_2',e_3')$ est une base de E et écrire la matrice B de u dans cette base.
 - (c) Que peut-on alors dire des matrices A et B?

Extrait: CNC-PSI-2006

PROBLÈME 13: Sous-espace caractéristique

On considère une matrice A de $M_n(\mathbb{C})$ et on note f l'endomorphisme de \mathbb{C}^n canoniquement associé. Le polynôme caractéristique de A est noté P et les valeurs propres complexes distinctes de A sont notées $\lambda_1, \lambda_2, \dots, \lambda_r$. Pour tout $i \in [1, r]$, on note :

- m_i est l'ordre de multiplicité de la valeur propre λ_i , c'est à dire l'ordre de multiplicité de la racine λ_i du polynôme P.
- P_i le polynôme défini par $P_i(X) = (X \lambda_i)^{m_i}$.
- F_i le sous espace vectoriel de \mathbb{C}^n défini par $F_i = \text{Ker}((f \lambda_i \text{Id}_{\mathbb{C}^n})^{m_i})$.

*** *** ***

- 1. Montrer que les sous-espaces vectoriels F_i sont stables par f. On note f_i l'endomorphisme de F_i obtenu par restriction de f à F_i
- 2. Montrer que $\mathbb{C}^n = \bigoplus_{i=1}^r F_i$.
- 3. Exprimer le polynôme caractéristique de f à l'aide de ceux de f_i
- 4. Justifier que P_i est un polynôme annulateur de f_i et déduire le polynôme caractéristique de f_i à l'aide de $d_k = \dim F_k$
- 5. Montrer que P_i est le polynôme caractéristique de f_i , puis comparer dim F_i et la multiplicité m_i

Extrait: Naval-1989

Problème 14: Endomorphismes cyclique

Soit f un endomorphisme cyclique de E, c'est-à-dire il existe un vecteur x_0 de E tel que : $E = \text{Vect} \left(f^k(x_0) \mid k \in \mathbb{N} \right)$

1. Une base adaptée de E

On désigne par m le plus grand nombre entier naturel tel que : $(x_0, f(x_0), f^2(x_0), \dots, f^{m-1}(x_0))$ est libre et $(x_0, f(x_0), f^2(x_0), \dots, f^m(x_0))$ est liée.

- (a) Justifier l'existence d'un tel nombre entier naturel m, puis montrer par récurrence sur k que les vecteurs $f^{m+k}(x_0)$ appartiennent à $\mathbf{Vect}(x_0, f(x_0), f^2(x_0), \dots, f^{m-1}(x_0))$.
- (b) En déduire que la famille $(x_0, f(x_0), f^2(x_0), \dots, f^{m-1}(x_0))$ est une base de E, puis que m = n.

Dans toute la suite de ce problème, on convient de poser $f^n(x_0) = \sum_{k=1}^{n-1} p_k f^k(x_0)$ et on désigne alors par P

le polynôme de K[X] défini par $P(X) = X^n - \sum_{k=1}^{n-1} p_k X^k$

2. Matrice et polynôme annulateur de f

- (a) Écrire la matrice M de f dans la base $(x_0, f(x_0), f^2(x_0), \ldots, f^{n-1}(x_0))$.
- (b) Montrer que les n endomorphismes Id, f, f^2 , ..., f^{n-1} sont indépendants, puis en déduire qu'il n'existe aucun polynôme Q non nul de degré strictement inférieur à n tel que Q(f) = 0.
- (c) Déterminer l'image par l'endomorphisme $P(f) = f^n \sum_{k=0}^{n-1} p_k f^k$ des vecteurs de la base $(x_0, f(x_0), f^2(x_0), \dots, f^{n-1}(x_0))$ puis en déduire que P(f) = 0.

3. Caractérisation des endomorphismes cycliques diagonalisables

- (a) On considère une valeur propre λ de f et un vecteur propre associé x. Calculer $f^k(x)$ pour $k \in \mathbb{N}$ et en déduire que $P(\lambda) = 0$.
- (b) On considère une valeur propre λ de f. Déterminer le rang de l'endomorphisme $f \lambda \operatorname{Id}_{\mathbb{C}^n}$ à l'aide de sa matrice, puis en déduire la dimension du sous-espace propre associé à λ .
- (c) Établir que l'endomorphisme cyclique f est diagonalisable si et seulement s'il possède n valeurs propres distinctes.

4. Étude du commutant de f lorsque f est cyclique

- (a) Montrer que le commutant $C(f)=\{g\in L(\mathbb{C}^n)\mid g\circ f=f\circ g\}$ est une sous-algèbre de $L(\mathbb{C}^n)$.
- (b) Soient deux endomorphismes u et v appartenant à C(f). Montrer, si $u(x_0) = v(x_0)$, que u = v.
- (c) Soit g un endomorphisme pour lequel on pose $g(x_0) = \sum_{k=0}^{n-1} a_k f^k(x_0)$.

Montrer que si g appartient à C(f) alors $g = \sum_{k=0}^{n-1} a_k f^k$.

(d) En déduire que le commutant C(f) est de dimension n et démontrer qu'il admet pour base $(\mathrm{Id}_{\mathbb{C}^n}, f, f^2, \ldots, f^{n-1})$.

Extrait: Epreuve commun-EPITA

Problème 15: Polynôme minimal en un vecteur

- E désigne un \mathbb{K} -espace vectoriel de dimension finie $n \geq 2$, ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) et $f \in \mathcal{L}_{\mathbb{K}}(E)$
- π_f le polynôme minimal de f
- $--\mathbb{K}\left[f\right] = \left\{P\left(f\right) \middle| P \in \mathbb{K}\left[X\right]\right\}$
- Pour $x \in E$, on pose $I_x = \{P \in \mathbb{K}[X] / P(f)(x) = 0\}$ et $E_x = E_f(x) = \{P(f)(x) / \in \mathbb{K}[X]\}$

*** *** ***

- 1. Soit $x \in E$. Montrer qu'il existe un unique polynôme unitaire $\pi_x \in \mathbb{K}[X]$ tel que : $I_x = (\pi_x) = \pi_x \mathbb{K}[X]$
- 2. On pose $k = \deg(\pi_f)$ et $r = \deg(\pi_x)$
 - (a) Vérifier que $r \leq k$
 - (b) Montrer que E_x est un sous-espace vectoriel de E
 - (c) Montrer que dim $E_x = r$ et en donner une base
 - (d) Montrer que $\mathbb{K}\left[f\right]$ est une sous-algèbre de $\mathcal{L}\left(E\right)$ et en donner une base
- 3. Soient x_1 et x_2 de deux éléments de E
 - (a) On suppose que $E_{x_1} \cap E_{x_2} = \{0\}$, montrer que $\pi_{x_1+x_2} = ppcm(\pi_{x_1}, \pi_{x_2})$
 - (b) On suppose que π_{x_1} et π_{x_2} sont premiers entre eux . Montrer que $E_{x_1+x_2}=E_{x_1}\oplus E_{x_2}$
- 4. Soient $x_1, x_2, ..., x_p$ des vecteurs de E
 - (a) On suppose que E_{x_1}, E_{x_2} ,...., E_{x_p} sont en somme directe . Montrer que :

$$\pi_{x_1+x_2+...+x_p} = \mathbf{ppcm} \left(\pi_{x_1}, \pi_{x_2}, ..., \pi_{x_p} \right)$$

(b) On suppose que $\pi_{x_1}, \pi_{x_2},, \pi_{x_p}$ sont deux à deux premiers entre eux . Montrer que :

$$E_{x_1+x_2+\ldots+x_p} = E_{x_1} \oplus E_{x_2} \oplus \ldots \oplus E_{x_p}$$

- 5. Soit P un facteur irréductible de π_f de multiplicité α
 - (a) Soit $x \in \text{Ker}(P^{\alpha}(f))$. Montrer qu'il existe un entier $\alpha_x \leqslant \alpha$ tel que : $\pi_x = P^{\alpha_x}$
 - (b) En déduire qu'il existe $x \in \text{Ker}(P^{\alpha}(f))$ tel que $\pi_x = P^{\alpha}$

<u>Indication</u>: On pourra raisonner par l'absurde en supposant que $\forall x \in Ker\left(P^{\alpha}\left(f\right)\right)$, $\alpha_{x} < \alpha_{x}$

6. En déduire qu'il existe $x \in E$ tel que : $\pi_x = \pi_f$

Extrait: Concours Commun 1996-ENTPE, ENSG, ENTM, ENSTIMD

Problème 1: Le polynôme caractéristique de AB et BA

- 1. Les deux matrices $XI_n AB$ et $XI_n BA$ sont semblables
- 2. (a) On écrit $B = \begin{pmatrix} C & D \\ E & F \end{pmatrix}$ avec C matrice carrée d'ordre r. Alors, par un produit matriciel par blocs, on obtient

$$BJ_r = \begin{pmatrix} C & 0 \\ E & 0 \end{pmatrix}$$
 et $J_r B = \begin{pmatrix} C & D \\ 0 & 0 \end{pmatrix}$

Les matrices $XI_n - BJ_r$ et $XI_n - J_rB$ sont triangulaires par blocs, alors

$$\chi_{BJ_r}(X) = \det(XI_n - BJ_r)$$

$$= \begin{vmatrix} XI_r - C & 0 \\ -E & XI_{n-r} \end{vmatrix} = X^{n-r}\chi_C(X)$$

et

$$\chi_{J_rB}(X) = \det(XI_n - J_rB)$$

$$= \begin{vmatrix} XI_r - C & -D \\ 0 & XI_{n-r} \end{vmatrix} = X^{n-r}\chi_C(X)$$

D'où l'égalité

(b) Dans le cas général, on peut écrire $A = QJ_rP$ avec $r = \mathbf{rg}(A)$ et P, Q inversibles.

$$\chi_{AB}(X) = \chi_{Q^{-1}ABQ}(X) = \chi_{J_rPBQ}(X)$$

donc

$$\chi_{AB}(X) = \chi_{PBQJ_r}(X) = \chi_{BQJ_rP}(X) = X^p \chi_{BA}(X)$$

- 3. On note $M = \begin{pmatrix} BA & -B \\ 0 & 0 \end{pmatrix}$, $N = \begin{pmatrix} 0 & -B \\ 0 & AB \end{pmatrix}$ et $P = \begin{pmatrix} I_n & 0 \\ A & I_n \end{pmatrix}$
 - (a) On a $\det(P) = 1$, donc P est inversible. Par un produit matriciel par blocs

$$MP = \begin{pmatrix} BA & -B \\ 0 & 0 \end{pmatrix} \begin{pmatrix} I_n & 0 \\ A & I_n \end{pmatrix} = \begin{pmatrix} 0 & -B \\ 0 & 0 \end{pmatrix}$$

et

$$PN = \begin{pmatrix} I_n & 0 \\ A & I_n \end{pmatrix} \begin{pmatrix} 0 & -B \\ 0 & AB \end{pmatrix} = \begin{pmatrix} 0 & -B \\ 0 & 0 \end{pmatrix}$$

(b) M et N sont semblables, donc elles ont le même déterminant. Et puisque

$$\chi_M(X) = \det(XI_{2n} - M)$$

$$= \begin{vmatrix} XI_n - BA & B \\ 0 & XI_n \end{vmatrix} = X^n \chi_{BA}(X)$$

et

$$\chi_N(X) = \det(XI_{2n} - N)$$

$$= \begin{vmatrix} XI_n & B \\ 0 & XI_n - AB \end{vmatrix} = X^n \chi_{AB}(X)$$

Donc $X^n \chi_{AB}(X) = X^n \chi_{BA}(X)$, puis $\chi_{AB} = \chi_{BA}$

4. **Application :** On a $\chi_{A\overline{A}}(X) = \det (XI_n - A\overline{A})$, donc en conjuguant

$$\overline{\chi_{A\overline{A}}}(X) = \det\left(XI_n - \overline{A}A\right) = \chi_{\overline{A}A}(X)$$

Or pour $A, B \in M_n(\mathbb{C})$, $\chi_{AB} = \chi_{BA}$, on obtient donc $\overline{\chi_{A\overline{A}}} = \chi_{A\overline{A}}$ et par conséquent $\chi_{A\overline{A}} \in \mathbb{R}[X]$

Problème 2: Diagonalisation simultanée

- 1. u et v commutent, alors les sous-espaces propres de l'un sont stables par l'autre
- 2. L'endomorphisme induit d'un endomorphisme diagonalisable est diagonalisable
- 3. Posons Sp $(u) = \{\lambda_1, \dots, \lambda_p\}, m_i$ l'ordre de multiplicité de $\lambda_i, E_i = \operatorname{Ker}(u \lambda_i \operatorname{Id}_E), \mathcal{B}_i$ base de E_i et $\mathcal{B} = \bigcup_{i=1}^p \mathcal{B}_i$ base adaptée à la décomposition $E = \bigoplus_{i=1}^{P} E_i$. Alors

$$\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} \boxed{\lambda_1 I_{m_1}} & & & & & & \\ & \boxed{\lambda_2 I_{m_2}} & & & & \\ & & & \ddots & & \\ & & & \boxed{\lambda_p I_{m_p}} \end{pmatrix}$$

Or pour tout $i \in [1, p]$, l'endomorphisme v_{λ_i} est diagonalisable, donc il existe une base C_i de E_i pour laquelle $D_i = \operatorname{Mat}_{\mathcal{C}_i}(v_{\lambda_i})$ est diagonale. Soit finalement $\mathcal{C} = \bigcup_{i=1}^p \mathcal{C}_i$, alors $\operatorname{Mat}_{\mathcal{C}}(u) = \operatorname{Mat}_{\mathcal{B}}(u)$ et

$$\operatorname{Mat}_{\mathcal{C}}(v) = \begin{pmatrix} \boxed{D_1} & & & & (0) \\ & \boxed{D_2} & & & \\ & & \ddots & & \\ (0) & & & \boxed{D_p} \end{pmatrix}$$

ce qui montre que \mathcal{C} est une base de diagonalisation de u et v.

- 4. Soit u et v respectivement les endomorphismes de \mathbb{R}^3 canoniquement associés à A et B.
 - On a $AB = BA = \begin{pmatrix} 4 & 4 & -4 \\ 4 & 4 & -4 \\ -4 & -4 & 4 \end{pmatrix}$, donc uv = vu

 - $-\chi_A = X^2 (X-3)$ est scindé et dim $E_0(A) = 3 \mathbf{rg}(A) = 2 = m(0)$, donc u est diagonalisable $-\chi_B = (X-1)(X-4)^2$ est scindé et dim $E_4(B) = 3 \mathbf{rg}(B-4I_3) = 2 = m(4)$, donc v est diagonalisable

D'après ce qui précède u et v sont codiagonalisables

- On a $E_0(u) = \text{Vect}(c_1 = (-1, 1, 0), c_2 = (1, 0, 1))$ et $E_3(u) = \text{Vect}(c_3 = (-1, -1, 1))$
- $-v(c_1) = 7c_1 + 6c_2, v(c_2) = -3c_1 2c_2 \text{ et } v(c_3) = 4c_3, \text{ donc}$

$$\operatorname{Mat}_{\mathcal{C}}(v) = \begin{pmatrix} 7 & -3 & 0 \\ 6 & -2 & 0 \\ \hline 0 & 0 & 4 \end{pmatrix} \quad \text{où} \quad \mathcal{C} = (c_1, c_2, c_3)$$

On note v_0 la restriction de v sur $E_0(u)$, alors $\underset{(c_1,c_2)}{\operatorname{Mat}}(v_0) = \begin{pmatrix} 7 & -3 \\ 6 & -2 \end{pmatrix}$ de polynôme caractéristique $\chi_{v_0} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)$ $X^2 - 5X + 4 = (X - 1)(X - 4)$. Les sous-espaces propres de v_0 sont $E_1(v_0) = \mathbf{Vect}(c_1 + 2c_2 = (1, 1, 2))$ et $E_4(v_0) = \mathbf{Vect}(c_1 + c_2 = (0, 1, 1))$

— Soit $v_1 = (1, 1, 2), v_2 = (0, 1, 1)$ et $v_3 = (-1, -1, 1)$. On a bien (v_1, v_2, v_3) est une base et

$$\operatorname{Mat}_{(v_1, v_2, v_3)}(u) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix} \quad \text{et} \quad \operatorname{Mat}_{(v_1, v_2, v_3)}(v) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

En notant
$$P = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & -1 \\ 2 & 1 & 1 \end{pmatrix}$$
, alors $P^{-1}AP = \mathbf{diag}(0, 0, 3)$ et $P^{-1}BP = \mathbf{diag}(1, 4, 4)$

5. On procède par récurrence sur m. Précisément, on prouve pour $m \ge 1$ la propriété suivante :

 \mathcal{P}_m : Pour tout \mathbb{K} -espace vectoriel E de dimension finie, pour toute famille de m endomorphismes de E, u_1, \ldots, u_m , diagonalisables et commutant deux à deux, il existe une base diagonalisant tous les u_i .

La propriété est vraie pour m=1. Supposons qu'elle est vraie pour m-1, et prouvons-la au rang m. Soit λ une valeur propre de u_1 , et E_{λ} le sous-espace propre associé. Alors $E_{\lambda}=\operatorname{Ker}(u-\lambda I_E)$ est stable par chaque u_i , pour $i\geqslant 2$, puisque u_i commute avec u_1 . Notons $v_{i,\lambda}$ la restriction de u_i à E_{λ} . Alors on a une famille de m-1 endomorphismes de $E_{\lambda}, v_{2,\lambda}, \ldots, v_{m,\lambda}$ qui commutent, et qui sont diagonalisables (rappelons que la restriction d'un endomorphisme diagonalisable à un sous-espace stable reste diagonalisable). Par l'hypothèse de récurrence, il existe une base \mathcal{B}_{λ} de E_{λ} qui diagonalise chaque $v_{i,\lambda}$, pour $i\geqslant 2$. Elle diagonalise aussi $v_{1,\lambda}$ puisque $v_{1,\lambda}=\lambda I_{E_{\lambda}}$. Il suffit alors de réunir les bases \mathcal{B}_{λ} , pour λ décrivant l'ensemble des valeurs propres de u_1 , pour obtenir une base de E qui diagonalise tous les u_i .

Problème 3: Racines carrées d'une matrice

1. Les sous espaces propres $E_{\lambda_i}(A)$ sont de dimension $\geqslant 1$ et en somme directe. Leur somme a donc une dimension au moins égale à n. Comme elle est incluse dans \mathbb{R}^n , sa dimension est en réalité égale à n et chaque $E_{\lambda_i}(A)$ a une dimension égale à 1. Notons (f_i) une base de $E_{\lambda_i}(A)$. La famille (f_1, \ldots, f_n) est une base de \mathbb{R}^n . Si P est la matrice de la base canonique de \mathbb{R}^n aux f_i alors $P^{-1}AP$ est la matrice dans la base (f_i) de l'endomorphisme canoniquement associé à A. Par choix des f_i , cette matrice est $diag(\lambda_1, \ldots, \lambda_n)$ et on a donc

$$A = PDP^{-1}$$
 avec $D = diag(\lambda_1, \dots, \lambda_n)$

Soit $R \in M_n(\mathbb{R})$ et $S = P^{-1}RP$. On a $R^2 = A$ si et seulement si $P^{-1}R^2P = D$ (il y a équivalence car on revient en arrière en multipliant par P à gauche et P^{-1} à droite) c'est à dire $S^2 = D$. On peut donc écrire

$$Rac(A) = P.Rac(D).P^{-1}$$

2. (a) On a $SD = S^3 = DS$. On fait le produit matriciel pour obtenir

$$\forall i, j, \ S_{i,j}\lambda_j = \sum_{k=1}^n S_{i,k}D_{k,j} = \sum_{k=1}^n D_{i,k}S_{k,j} = \lambda_i S_{i,j}$$

Les λ_k étant deux à deux distincts, on a donc

$$\forall i \neq j, \ S_{i,j} = 0$$

et S est diagonale.

(b) On a alors $S^2 = diag(s_1^2, \dots, s_n^2)$. Comme $S^2 = D$, on a donc

$$\forall i, \ s_i^2 = \lambda_i$$

(c) Si il existe un i tel que $\lambda_i < 0$, les relations précédentes sont impossible et donc

$$Rac(A) = \emptyset$$

(d) Si tous les λ_i sont positifs, on vient de voir que

$$Rac(D) \subset \{diag(\varepsilon_1\sqrt{\lambda_1}, \dots, \varepsilon_n\sqrt{\lambda_n}) / \forall i, \ \varepsilon_i = \pm 1\}$$

Réciproquement, si $S = diag(\varepsilon_1\sqrt{\lambda_1}, \dots, \varepsilon_n\sqrt{\lambda_n})$ (où $\varepsilon_i = \pm 1$) alors $S^2 = D$. L'inclusion ci-dessus est une égalité.

- 3. L'application $M \mapsto P^{-1}MP$ est une bijection de Rac(A) dans Rac(D).
 - Si $\lambda_1 < 0$, on a vu en 2.d que $Rac(A) = \emptyset$. Il n'y a donc pas de racine carrée pour A.

— Si $\lambda_1 \ge 0$ alors une racine carrée de D est connue par le choix des ε_i et

$$Rac(A) = \{P.diag(\varepsilon_1\sqrt{\lambda_1}, \dots, \varepsilon_n\sqrt{\lambda_n}).P^{-1}/ \ \forall i, \ \varepsilon_i = \pm 1\}$$

Deux choix différents des ε_i donneront deux racines carrées distinctes de D sauf dans le cas où $\lambda_1 = 0$. On a donc

$$Card(Rac(A)) = 2^{n-1}$$
 si $\lambda_1 = 0$

$$Card(Rac(A)) = 2^n \text{ si } \lambda_1 > 0$$

4. (0,1,1) est vecteur propre associé à la valeur propre 0. (1,1,-1) est vecteur propre associé à la valeur propre 1. Avec la trace, on voit que la dernière valeur propre est 16. Une résolution de système montre que (2,-1,1) est vecteur propre associé. On pose donc

$$P = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$$

On a alors $P^{-1}AP = diag(0, 1, 16)$. A admet quatre racines carrées qui sont

$$P.diag(0,1,4).P^{-1}, P.diag(0,-1,4).P^{-1}, P.diag(0,1,-4).P^{-1}, P.diag(0,-1,-4).P^{-1}$$

ou encore

$$\left(\begin{array}{cccc} 3 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{array} \right), \ \left(\begin{array}{ccccc} 7/3 & -5/3 & 5/3 \\ -5/3 & 1/3 & -1/3 \\ 5/3 & -1/3 & 1/3 \end{array} \right), \ \left(\begin{array}{ccccc} -7/3 & 5/3 & -5/3 \\ 5/3 & -1/3 & 1/3 \\ -5/3 & 1/3 & -1/3 \end{array} \right), \left(\begin{array}{ccccc} -3 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & -1 \end{array} \right)$$

On remarque bien sûr que les matrices sont deux à deux opposées.

Problème 4: Racines carrées de la matrice nulle

1. L'hypothèse $R^2 = 0$ se traduit par $f \circ f = 0$ et donc par

$$\operatorname{Im}(f) \subset \operatorname{Ker}(f)$$

Or, le théorème du rang indique que r + dim(Ker(f)) = n. Comme $dim(\text{Ker}(f)) \ge r$, on a donc

$$r \leqslant \frac{n}{2}$$

2. La famille \mathcal{B} ayant n éléments, il suffit de montrer qu'elle est libre ou génératrice pour conclure que c'est une base de \mathbb{R}^n . Supposons donc que

$$(*) : \sum_{i=1}^{n-r} \alpha_i e_i + \sum_{i=1}^r \beta_i u_i = 0$$

Avec les notations de l'énoncé, ceci s'écrit

$$\sum_{i=1}^{r} \alpha_i f(u_i) + \sum_{i=r+1}^{n-r} e_i + \sum_{i=1}^{r} \beta_i u_i = 0$$

En composant par f, on obtient (avec $f^2 = 0$ et $f(e_i) = 0$ si $i \in \{r+1, \ldots, n-r\}$)

$$\sum_{i=1}^{r} \beta_i e_i = \sum_{i=1}^{r} \beta_i f(u_i) = 0$$

Comme (e_1, \ldots, e_r) est libre, les β_i sont nuls. En reportant dans (*) et comme (e_1, \ldots, e_{n-r}) est libre, les α_i sont aussi nuls. Ainsi, \mathcal{B} est libre et c'est une base de \mathbb{R}^n .

3. Par choix des vecteurs de \mathcal{B} , on a (définition par blocs)

$$M_r = \operatorname{Mat}(f) = \begin{pmatrix} 0 & I_r \\ 0 & 0 \end{pmatrix}$$

4. Si R est une racine carrée de 0 alors soit R=0 soit il existe une matrice inversible P et un entier $r \in \left[\left[1, E\left(\frac{n}{2}\right)\right]\right]$ telle que $R=PM_rP^{-1}$.

Réciproquement, la matrice nulle est une racine carrée de 0 et si $r \leq \frac{n}{2}$, un produit par blocs montre que $M_r^2 = 0$ et donc $(PM_rP^{-1})^2 = PM_r^2P^{-1} = 0$. Ainsi,

$$Rac(0) = \{PM_rP^{-1}/P \in GL_n(\mathbb{R}), r \in [1, E(n/2)]\} \cup \{0\}$$

5. Dans le cas n=4, les racines carrées de 0 sont 0 et les matrices semblables à l'une des deux matrices

Problème 5: Racines carrées de l'unité

- 1. L'hypothèse $R^2 = I_n$ montre que R est une involution, elle est donc inversible.
- 2. $X^2 1$ est un polynôme qui annule R. Comme il est scindé à racines simples, R est diagonalisable. En outre, les valeurs propres de R sont racines de $X^2 1$ et ne peuvent valoir que 1 ou -1. Ainsi, R est semblable à une matrice diagonale où les coefficients diagonaux valent 1 ou -1.
- 3. Ce qui précède montre que

$$Rac(I_n) \subset \{P.diag(\varepsilon_1, \dots, \varepsilon_n).P^{-1}/P \in GL_n(\mathbb{R}), \forall i, \varepsilon_i \in \{-1, +1\}\}$$

Réciproquement $D = diag(\varepsilon_1, \dots, \varepsilon_n)$ verifie $D^2 = I_n$ quand les ε_k valent 1 ou -1 et $(PDP^{-1})^2 = PD^2P^{-1} = I_n$. L'inclusion précédente est donc une égalité.

Problème 6: Le produit de Kronecker

1. Les deux matrices sont carrées d'ordre n^2 . Le bloc de position (i,j) dans $(A \otimes B)(A' \otimes B')$ vaut

$$\sum_{k=1}^{n} a_{ik} B a'_{kj} B' = \left(\sum_{k=1}^{n} a_{ik} a'_{kj}\right) B B'$$

En outre le bloc de position de (i,j) dans $(AA')\otimes (BB')$ vaut $\left(\sum_{k=1}^n a_{ik}a'_{kj}\right)BB'$. D'où l'égalité demandée

2. Si A et B sont inversibles alors $(A \otimes B) (A^{-1} \otimes B^{-1}) = I_n \otimes I_n = I_{n^2}$ donc $A \otimes B$ est inversible. Si A n'est pas inversible alors il existe A' tel que $AA' = O_n$ et alors $(A \otimes B)(A' \otimes I_n) = 0$ avec $A' \otimes I_n \neq 0$ donc $A \otimes B$ n'est pas inversible.

Un raisonnement semblable s'applique dans le cas où B n'est pas inversible.

3. Il existe P, Q matrices inversibles telles que

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & & \star \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} \quad \text{et} \quad Q^{-1}BQ = \begin{pmatrix} \mu_1 & & \star \\ & \ddots & \\ 0 & & \mu_n \end{pmatrix}$$

avec λ_i et μ_i les valeurs propres de A et B. On observe que que

$$(P^{-1} \otimes Q^{-1}) (A \otimes B) (P \otimes Q) = (P^{-1}AP) \otimes (Q^{-1}BQ)$$

qui est triangulaire supérieure de coefficients diagonaux $\lambda_i \mu_j$. Les valeurs propres de $A \otimes B$ sont les produits des valeurs propres de A et B

4. On note que $P^{-1} \otimes Q^{-1} = (P \otimes Q)^{-1}$ de sorte que $A \otimes B$ est semblable à la matrice triangulaire précédente et donc

$$\chi_{A\otimes B} = \prod_{i=1}^{n} \prod_{j=1}^{n} (X - \lambda_i \mu_j)$$

On en déduit $\det(A \otimes B) = (\det A \det B)^n$ et la relation $\operatorname{tr}(A \otimes B) = \operatorname{tr}(A) \operatorname{tr}(B)$

Problème 7: Les matrices du rang 1

1. $\operatorname{\mathbf{rg}} A \neq 0$, donc au moins une colonne $C_{i_0} \neq 0$. Or $\dim \operatorname{\mathbf{Vect}}(C_1, \cdots, C_n) = \operatorname{\mathbf{rg}} A = 1$, donc toutes les colonnes sont proportionnelles. Soit $U = C_{i_0} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, on a : $a_{i,j}$ est le *i*-ème coefficient de $C_j = \lambda_j X$, donc $a_{i,j} = \lambda_j x_i$,

d'où
$$A = U^t V$$
 avec $V = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$ non nul.

- 2. $A^2 = U({}^tVU)^tV = {}^tVU.U^tV = \operatorname{Tr}(A)U^tV = \operatorname{Tr}(A)A$. Le polynôme $X^2 - \operatorname{Tr}(A)X$ est un polynôme annulateur de A, donc π_A divise $X^2 - \operatorname{Tr}(A)X$. La matrice A n'est pas scalaire car $\operatorname{rg}(A) = 1$, donc $\pi_A = X^2 - \operatorname{Tr}(A)X = X(X - \operatorname{Tr}(A))$
- 3. A est diagonalisable si, et seulement si, π_A est scindé à racines simples. Or $\pi_A = X(X \text{Tr}(A))$ est scindé à racines simples si, et seulement, si $\text{Tr}(A) \neq 0$
- 4. Si $\operatorname{tr}(A) \neq 0$ les sous-espaces propres de A sont supplementaires dans $M_{n,1}(\mathbb{R})$, donc A est diagonalisable et donc semblable à la matrice $\operatorname{diag}(0, \dots, 0, \operatorname{tr}(A))$ car $\operatorname{dim} \operatorname{Ker} A = n 1$ et $\operatorname{dim} \operatorname{Ker}(A \operatorname{Tr}(A)I_n) = 1$.
- 5. (a) On a $AU = U^t V U = {}^t V U U = \operatorname{tr}(A) U = 0$, donc $U \in \operatorname{Ker} f$, qu'on complète par (E_1, \dots, E_{n-2}) pour avoir (E_1, \dots, E_{n-2}, U) base de $\operatorname{Ker}(f)$.
 - (b) Card (\mathcal{B}) où $\mathcal{B} = \{E_1, \dots, E_{n-2}, U, W\} = n = \dim M_{n,1}$ (\mathbb{K}), il suffit donc de montrer qu'elle est libre. Supposons que $\lambda_1 E_1 + \dots + \lambda_{n-2} E_{n-2} + \lambda_{n-1} U + \lambda_n W = 0$, on multiplie par A à gauche et on tient compte que $E_1, \dots, E_{n-2}, U \in \operatorname{Ker} f = \operatorname{Ker} A$, donc $0 = \lambda_n AW = \lambda_n U$, or $U \neq 0$, donc $\lambda_n = 0$, d'où $\lambda_1 E_1 + \dots + \lambda_{n-2} E_{n-2} + \lambda_{n-1} U = 0$, or la famille (E_1, \dots, E_{n-2}, U) est libre car base de $\operatorname{Ker} f$, donc $\lambda_1 = \dots = \lambda_n = 0$.

on a $f(E_1) = \cdots = f(E_{n-1}) = f(U) = 0$ car (E_1, \dots, E_{n-2}, W) base de Kerf, d'autre part f(W) = AW = U, donc

$$\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} 0 & \cdots & 0 & 0 & 0 \\ \vdots & & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & 0 & 0 \\ \hline 0 & \cdots & 0 & 0 & 1 \\ 0 & \cdots & 0 & 0 & 0 \end{pmatrix} = J$$

qui est semblable à $A=\operatorname*{Mat}_{\mathcal{B}_{0}}\left(f\right) ,$ où \mathcal{B}_{0} la base canonique de $M_{n,1}\left(\mathbb{K}\right)$

(c) D'aprés la question précédente toute matrice de rang 1 est de trace nulle est semblable à J, dont toutes ces matrices sont semblables entre elles.

Problème 8: Matrice stochastique

1. La *i*-ième coordonnée de AU est $\sum_{j=1}^n a_{i,j}u_j=\sum_{j=1}^n a_{i,j}=1$ d'après (2). On en déduit que

$$AU = U$$

c'est à dire que U est vecteur propre de A associé à la valeur propre 1 (U étant non nul).

2. (a) Comme BX = 0, sa k-ième coordonnée est nulle $\sum_{j=1}^{n} b_{k,j} x_j = 0$ ce qui donne

$$b_{k,k}x_k = -\sum_{\substack{j=1\\j\neq k}}^n b_{k,j}x_j$$

L'inégalité triangulaire donne (avec la définition de k)

$$|b_{k,k}||x_k| \leqslant \sum_{\substack{j=1\\j \neq k}}^n |b_{k,j}||x_j| \leqslant |x_k| \sum_{\substack{j=1\\j \neq k}}^n |b_{k,j}|$$

Comme $|x_k| > 0$ (X n'est pas nul), on en déduit l'inégalité demandée.

(b) $B = A - \lambda I_n$ est bien non inversible (puisque λ est valeur propre) et la question précédente donne (les coefficients non diagonaux de B étant ceux de A)

$$|a_{k,k} - \lambda| \leqslant \sum_{\substack{j=1\\j \neq k}}^{n} |a_{k,j}|$$

Avec la propriété (ST > 0) on a donc

$$|a_{k,k} - \lambda| \leqslant \sum_{\substack{j=1\\j \neq k}}^{n} a_{k,j} - a_{k,k} = 1 - a_{k,k}$$

Avec la seconde forme de l'inégalité triangulaire, on en déduit que $|\lambda| - a_{k,k} \le 1 - a_{k,k}$ et donc que

$$|\lambda| \leqslant 1$$

(c) Si $|\lambda|=1$, on a égalité ci-dessus et on doit donc avoir égalité dans l'inégalité triangulaire c'est à dire avoir $1-a_{k,k}=|\lambda|-a_{k,k}=|\lambda-a_{k,k}|=|e^{i\theta}-a_{k,k}|$. En élevant cette identité au caré, on obtient après simplification $-2a_{k,k}=-2\cos(\theta)a_{k,k}$. Comme $a_{k,k}\neq 0$, on a $\cos(\theta)=1$ et donc

$$\lambda = 1$$

3. (a) Le déterminant est invariant par transposition et donc A et tA ont mêmes valeurs propres (puisque même polynôme caractéristique). En particulier, $1 \in \operatorname{Sp}_{\mathbb{C}}({}^tA)$.

Le rang est aussi invariant par transposition (le rang d'une matrice est égal au rang de ses colonnes ou de ses lignes). Les images de $A - I_n$ et de ${}^tA - I_n$ ont donc même dimension. Par théorème du rang, on a alors

$$\dim(E_1(A)) = n - \operatorname{rg}(A - I_n) = n - \operatorname{rg}({}^t A - I_n) = \dim(E_1({}^t A))$$

(b) La *i*-ième coordonnée de tAV est $\sum_{j=1}^n a_{j,i}v_j$. Elle vaut aussi v_i (car ${}^tAV = V$). Par inégalité triangulaire, on en déduit que

$$|v_i| = \left| \sum_{j=1}^n a_{j,i} v_j \right| \le \sum_{j=1}^n |a_{j,i} v_j| = \sum_{j=1}^n a_{j,i} |v_j|$$

En sommant ces inégalités, on a donc

$$\sum_{i=1}^{n} |v_i| \leqslant \sum_{i=1}^{n} \sum_{j=1}^{n} a_{j,i} |v_j| = \sum_{j=1}^{n} \left(|v_j| \sum_{i=1}^{n} a_{j,i} \right)$$

Avec la propriété (2), cette ingéalité est une égalité. Toutes les inégalités intermédiaires sont donc aussi (par exemple par l'absurde) des égalité. On a donc

$$\forall i, |v_i| = \sum_{j=1}^n a_{j,i} |v_j|$$

Ceci signifie exactement que ${}^tA|V|=|V|$ (pour tout i, les deux vecteurs ont même i-ième coordonnée). Si, par l'absurde, il existait un i tel que $|v_i|=0$ alors on aurait $0=\sum_{j=1}^n a_{i,j}|v_j|$ ce qui donnerait la nullité pour

tout j de $a_{i,j}|v_j|$ (une somme de suantité positives n'est nulle que si toutes les quantités sont nulles) et donc de tous les v_j (propriété (1)). Ceci contredit $V \neq 0$. Ainsi

$$\forall i, |v_i| > 0$$

(c) Y étant un élément non nul de $E_1({}^tA)$, on a $\forall i, y_i \neq 0$. On peut en particulier poser $Z = X - \frac{x_1}{y_1}Y$. C'est un élément de $E_1({}^tA)$ dont la première coordonnée est nulle. Avec la question précédente (en contraposant), c'est donc le vecteur nul. X est donc multiple de Y et

$$\dim(E_1(^tA))=1$$

Soit V un vecteur non nul de $E_1({}^tA)$ et $\Omega = \frac{1}{\sum_{i=1}^n |v_i|} |V|$. Ω est un élément de $E_1({}^tA)$ (question ??) dont les coordonnées sont > 0 à somme égale à 1.

 Ω est le seul élément ayant ces propriétés car tout autre élément de $E_1({}^tA)$ est multiple de Ω (et la somme des coordonnées est multiple dans le même rapport).

Enfin, ${}^t A\Omega = \Omega$ s'écrit

$$\forall i, \ \sum_{j=1}^{n} a_{j,i} \omega_j = \omega_i$$

- (d) Les valeurs propres de A sont en module plus petites que 1 et la seule de module 1 est 1. De plus, $E_1(A)$ est de dimension 1 et une base en est $(1, \ldots, 1)$. Les valeurs propres de tA sont en module plus petites que 1 et la seule de module 1 est 1. De plus, $E_1({}^tA)$ est de dimension 1 et les coordonnées d'un vecteur propres sont toutes > 0 ou toutes < 0.
- 4. N est positive, vérifie l'axiome de séparation $(N(X) = 0 \Rightarrow X = 0 \text{ car les } \omega_i \text{ sont } > 0)$, est homogène $(N(\lambda X) = |\lambda|N(X))$ et vérifie l'inégalité triangulaire $(N(X+Y) \leqslant N(X)+N(Y))$ est conséquence de l'ingéalité triangulaire dans \mathbb{C}). N est donc une norme.

Posons Y = AX; on a $y_i = \sum_{j=1}^{n} a_{i,j} x_j$ et donc (avec la dernière égalité de ??)

$$N(AX) = \sum_{i=1}^{n} \omega_i \left| \sum_{j=1}^{n} a_{i,j} x_j \right| \leqslant \sum_{i=1}^{n} \sum_{j=1}^{n} \omega_i a_{i,j} |x_j| = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} a_{i,j} \omega_i \right) |x_j| = \sum_{j=1}^{n} \omega_j |x_j| = N(X)$$

Si λ est une valeur propre de A et X un vecteur propre associé, on a donc $|\lambda|N(X)=N(\lambda X)=N(AX)\leqslant N(X)$ et donc (puisque N(X)>0, X étant non nul) $|\lambda|\leqslant 1$. On retrouve

$$\operatorname{Sp}_{\mathbb{C}}(A) \subset \{z/|z| \leqslant 1\}$$

- 5. (a) Le même calcul que ci-dessus (mais sans les modules et donc avec des égalités) donne immédiatement $\Phi(AX) = \Phi(X)$.
 - (b) Si $X \in \text{Ker}(\Phi) \cap E_1(A)$ alors $X \in \text{Vect}(U)$ et $\Phi(X) = 0$. Il existe donc $\lambda \in \mathbb{C}$ tel que $X = \lambda U$ et $0 = \Phi(X) = \Phi(\lambda U) = \lambda \sum \omega_i = \lambda$. Donc X = 0. $E_1(A)$ et $\text{Ker}(\Phi)$ sont ainsi en somme directe. Par ailleurs, $\dim(E_1(A)) = 1$ et $\dim(\text{Ker}(\Phi)) = n 1$ (le noyau d'une forme linéaire non nulle est un hyperplan). La somme de ces dimensions est égale à la dimension de $\mathcal{M}_{n,1}(\mathbb{C})$. Des deux arguments précédents, on tire

$$\mathcal{M}_{n,1}(\mathbb{C}) = E_1(A) \bigoplus \operatorname{Ker}(\Phi)$$

- (c) On suppose $AX = \lambda X$ et $\lambda \neq 1$. On a alors $\Phi(X) = \Phi(AX) = \Phi(\lambda X) = \lambda \Phi(X)$. $\lambda \neq 1$ indique que $\Phi(X) = 0$ c'est à dire que $X \in \text{Ker}(\Phi)$.
- (d) Soit f l'endomrophisme de \mathbb{C}^n canoniquement associé à A. montre que $\operatorname{Ker}(\Phi)$ est stable par f (si $\Phi(X) = 0$ alors $\Phi(AX) = 0$). $E_1(A)$ est aussi stable par f. Dans une base adaptée à la décomposition de $\ref{eq:control}$, la matrice de f est bloc-diagonale du type $\operatorname{diag}(1,B)$. Si 1 était valeur propre de B alors $E_1(A)$ serait de dimension ≥ 2 (on aurait deux vecteurs propres de f indépendants, l'un étant dans $E_1(A)$ et l'autre dans $\operatorname{Ker}(\Phi)$) ce qui est exclus. 1 n'est donc pas racine de χ_B . Or $\chi_f = (1-X)\chi_B$ (déterminant diagonal par blocs) et 1 est donc racine simple de χ_f . Finalement, la valeur propre 1 est de multiplicité 1.

PROBLÈME 9: Commutant

1. Soit $v \in \mathcal{C}(u)$ et $x \in E_{\lambda_i}(u)$. Ainsi $u(x) = \lambda_i . x$.

D'une part, $v(u(x)) = v(\lambda_i x) = \lambda_i v(x)$, d'autre part, v(u(x)) = u(v(x)).

Donc $u(v(x)) = \lambda_i \cdot v(x)$, ce qui montre que $v(x) \in E_{\lambda_i}(u)$.

Donc tous les sous-espaces propres $E_{\lambda_i}(u)$ sont stables par v.

- 2. On sait d'autre part que chaque $E_{\lambda_i}(u)$ est stable par u, ce qui autorise à considérer l'endomorphisme u_i induit par u sur $E_{\lambda_i}(u)$. u_i n'est autre que l'homothétie de rapport λ_i de $E_{\lambda_i}(u)$.
- 3. Soit \mathcal{B} une base adaptée à la somme directe $E = \bigoplus_{i=1}^{p} E_{\lambda_i}(u)$.
 - Si $v \in \mathcal{C}(u)$, comme chaque $E_{\lambda_i}(u)$ est stable par v, on sait que $B = \text{Mat}_{\mathcal{B}}(v)$ est diagonale par blocs de la forme

$$B = \begin{pmatrix} V_1 & 0 & \dots & 0 \\ 0 & V_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & V_n \end{pmatrix} \quad \text{avec } V_i \in \mathcal{M}_{n_i}(\mathbb{C})$$

— Réciproquement, supposons que B = Mat(v) soit de la forme

$$B = \begin{pmatrix} V_1 & 0 & \dots & 0 \\ 0 & V_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & V_p \end{pmatrix} \quad \text{avec } V_i \in \mathcal{M}_{n_i}(\mathbb{C})$$

 \mathcal{B} étant en particulier une base de vecteurs propres de u, alors A = Mat u est diagonale et on peut la

décomposer en blocs sous la forme
$$A = \begin{pmatrix} D_1 & 0 & \dots & 0 \\ 0 & D_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & D_p \end{pmatrix}$$
 avec $D_i = \lambda_i.I_{n_i}$ (puisque u_i est une

homothétie).

Comme $\forall i \in [1; p]$, $D_i V_i = (\lambda_i . I_{n_i}) V_i = V_i (\lambda_i . I_{n_i}) = V_i D_i$, alors AB = BA, donc $u \circ v = v \circ u$, d'où $v \in \mathcal{C}(u)$.

4. Par l'isomorphisme $v \mapsto \operatorname{Mat} v$ de $\mathcal{L}(E)$ dans $M_n(\mathbb{C})$, on obtient que $\mathcal{C}(v)$ a la même dimension que le sous-espace vectoriel de $M_n(\mathbb{C})$ constitué des matrices ayant la forme de B.

Ces matrices dépendent de $\sum_{i=1}^{p} n_i^2$ coefficients arbitraires, donc peuvent s'écrire comme combinaison linéaire de

$$\sum_{i=1}^{p} n_i^2 \text{ matrices } E_{j,k} \text{ de la base canonique de } M_n\left(\mathbb{C}\right). \text{ Donc} \quad \dim \mathcal{C}(u) = \sum_{i=1}^{p} n_i^2.$$

- 5. Comme $\forall i \in [1; p]$, $n_i^2 \ge n_i$, alors $\dim \mathcal{C}(u) \ge \sum_{i=1}^p n_i = \dim E = n$ (en effet u étant diagonalisable, n est égal à la somme des dimensions des sous-espaces propres de u).
- 6. Soit \mathcal{B} une base quelconque de E. L'endomorphisme u de E représenté dans la base \mathbb{B} par la matrice M de la partie $\mathbf{0}$ est tel que $\dim \mathcal{C}(u) = \dim \mathcal{C}(M) = n$.
- 7. Soit u l'endomorphisme canoniquement associé à A. Pour $M \in M_3(\mathbb{R})$ on pose v l'endomorphisme canoniquement associé à M. Alors

$$v \in \mathcal{C}(u) \iff M \in (A)$$

On a
$$\chi_u = (1 - X)^2 (4 - X)$$
, donc Sp $(u) = \{1, 4\}$

-
$$E_u(4) = \mathbf{Vect}(\varepsilon_1)$$
, avec $\varepsilon_1 = (1, -1, 1)$

—
$$E_u(1) = \mathbf{Vect}(\varepsilon_2, \varepsilon_3)$$
, avec $\varepsilon_2 = (1, 1, 0)$ et $\varepsilon_3 = (0, 1, 1)$

La famille $\mathcal{B}' = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ est une base de \mathbb{R}^3 et

$$Mat_{\mathcal{B}'}(u) = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Donc V commute avec u, si et seulement si, $M' = \operatorname{Mat}_{\mathcal{B}'}(v) = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & a & b \\ 0 & c & d \end{pmatrix}$ où $\lambda, a, b, c, d \in \mathbb{R}$.

Notons $P = P_B^{\mathcal{B}'}$. Ainsi, les matrices commutant avec A sont

$$M = PM'P^{-1} = \frac{1}{3} \begin{pmatrix} \lambda + 2a - b & -\lambda + a + b & \lambda - a + 2b \\ -\lambda + 2a + 2c - b - d & \lambda + a + c + b + d & -\lambda - a - c + 2b + 2d \\ \lambda + 2c - d & -\lambda + c + d & \lambda - c + 2d \end{pmatrix}$$

Problème 10: Crochet de Lie

1. (a) On a
$$D = \sum_{k=1}^{n} \lambda_k E_{k,k}$$
, donc

$$DE_{i,j} - E_{i,j}D = \sum_{k=1}^{n} \lambda_k E_{k,k} E_{i,j} - \sum_{k=1}^{n} \lambda_k E_{i,j} E_{k,k} = \lambda_i E_{i,j} - \lambda_j E_{i,j} = (\lambda_i - \lambda_j) E_{i,j}$$

- (b) Comme $D = P^{-1}AP$, alors $DE_{i,j} E_{i,j}D = (\lambda_i \lambda_j) E_{i,j}$ s'écrit $P^{-1}APE_{i,j} E_{i,j}P^{-1}AP = (\lambda_i \lambda_j) E_{i,j}$ et en multipliant à gauche par P et à droite par P^{-1} , il vient $AB_{i,j} B_{i,j}A = (\lambda_i \lambda_j) B_{i,j}$. Pour tout couple (i,j) le vecteur $B_{i,j}$ est non nul, donc il est propre à ϕ_A associé à la valeur propre $\lambda_i \lambda_j$
- (c) La famille $(E_{i,j})_{1 \leq i,j \leq n}$ est une base de $M_n(\mathbb{R})$ et l'application $M \longmapsto P^{-1}MP$ est un automorphisme de $M_n(\mathbb{R})$, les n^2 matrices $B_{i,j}$ forment une base de $M_n(\mathbb{R})$. Ainsi il existe une base de vecteurs propres de ϕ_A , donc il est diagonalisable
- 2. (a) ϕ_A est diagonalisable en tant qu'endomorphisme réel, donc toutes ses valeurs propres sont réelles.
 - (b) Soit $z \in \mathbb{C}$. On a $\det(A zI_n) = \det({}^t(A zI_n)) = \det({}^tA zI_n)$, donc $\det(A zI_n) = 0$ si et seulement si $\det({}^tA zI_n) = 0$. Ainsi si z est une valeur propre de A, alors z est aussi une valeur propre de tA .
 - (c) On a:

$$\phi_A\left(X^tY\right) = AX^tY - X^tYA = zX^tY - \overline{z}X^tY = (z - \overline{z})X^tY$$

Le vecteur $X^tY \neq 0$, car $X^tY = 0 \Rightarrow {}^t\overline{X}XY = 0 \Rightarrow ||X||^2Y = 0$ mais $X \neq 0$, donc le réel positif $||X|| \neq 0$, en conséquence Y = 0, ce qui absurde, d'où $z - \overline{z}$ est une valeur propre de ϕ_A .

- 3. Tout polynôme non constant à coefficients complexes admet au moins une racine dans \mathbb{C} , donc χ_A admet au moins une racine z dans \mathbb{C} . De la question précédente on déduit que $z \overline{z} = 2i \text{Im}(z) \in \text{Sp}(\phi_A) \subset \mathbb{R}$, donc Im(z) = 0. On en déduit que la matrice A a au moins une valeur propre réelle.
- 4. Soit (i, j) un couple, alors

$$AP_{i,j}X = P_{i,j}AX + \lambda_{i,j}P_{i,j}X$$
$$= \lambda P_{i,j}X + \lambda_{i,j}P_{i,j}X$$
$$= \underbrace{(\lambda + \lambda_{i,j})}_{=\mu_{i,j}}P_{i,j}X$$

- 5. Soit $X \in M_{n,1}(\mathbb{C}) \setminus \{0\}$, l'application $E \longrightarrow M_{n,1}(\mathbb{R})$, $M \longmapsto MX$ est clairement linéaire. Soit $Y \in M_{n,1}(\mathbb{R})$, comme $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ est non nulle , alors il existe $i_0 \in [\![1,n]\!]$ tel que $x_{i_0} \neq 0$. Soit M la matrice dont la i_0 -ème colonne vaut $\frac{1}{x_{i_0}}Y$ et dont toutes les autres colonnes sont nulles , on a bien MX = Y
- 6. Soit X un vecteur propre de A et $(P_{i,j})_{1 \leqslant i,j \leqslant n}$ une base de diagonalisation de ϕ_A et posons $Y_{i,j} = P_{i,i}X$ pour tout $i,j \in [\![1,n]\!]$. D'après la surjection précédente $(P_{i,j}X)_{1 \leqslant i,j \leqslant n}$ est génératrice de $M_{n,1}(\mathbb{R})$ dont on peut y extraire une base β . Une telle base est constituée de vecteurs propres de A. Donc A est diagonalisable

Problème 11: Translations

- 1. On a $AV = aV,^t BW = bW$ donc $AV = av,^t WB = b^t W$ $\Phi_{A,B}(V^t W) = AV^t W + V^t WB = (a+b)V^t W$, or $V^t W \neq 0$ donc $V^t W$ est un vecteur propre de $\Phi_{A,B}$ associé à la valeur propre a+b.
- 2. (a) Raisonnons par récurrence sur $k \in \mathbb{N}$. Le résultat est évidemnt vrai pour k = 0. NB $M^0 = I_n \quad \forall M \in \mathcal{M}_n(\mathbb{K})$. Supposons maintenant $A^kY = Y(\lambda I_n - B)^k$ et montrons que $A^{k+1}Y = Y(\lambda I_n - B)^{k+1}$. On a d'abord $\Phi_{A,B} = \lambda Y$, donc $AY + YB = \lambda Y$ et on trouve $AY = Y(\lambda I_n - B)$. Donc $A^{k+1}Y = AA^kY = AY(\lambda I_n - B)^k = Y(\lambda I_n - B)^{k+1}$.
 - (b) Soit un polynôme P, à coefficients dans \mathbb{K} , et de degré d, donc $P(X) = \sum_{k=0}^{d} a_k X^k$, et donc $P(A)Y = \sum_{k=0}^{d} a_k A^k Y = \sum_{k=0}^{d} a_k Y (\lambda I_n B)^k = Y \sum_{k=0}^{d} a_k (\lambda I_n B)^k = Y P (\lambda I_n B)$.
 - (c) i. D'aprés le théorème de Cayley-Hamilton, $\chi_A(A) = 0$ donc $Y\chi_A(\lambda I_n B) = 0$ notons $S = \chi_A(\lambda I_n B)$). Si S était inversible $YS = 0 \Longrightarrow YSS^{-1} = Y = 0$ ce qui est impossible puisque Y est un vecteur propre, donc la matrice $\chi_A(\lambda I_n B)$ n'est pas inversible .
 - ii. Il est clair que si un produit de matrices n'est pas inversible alors l'une au moins des matrices intervenant dans ce produit n'est pas inversible. Or $\chi_A(\lambda I_n B) = \prod_{\mu \in Sp_{\mathbb{K}}(A)} ((\lambda \mu)I_n B)^{m_\mu}$ n'est pas inversible donc $\exists \mu \in Sp_{\mathbb{K}}(A)$ tel que $((\lambda \mu)I_n B)^{m_\mu}$ n'est pas inversible et donc $\exists \mu \in Sp_{\mathbb{K}}(A)$ tel que $(\lambda \mu)I_n B$ n'est pas inversible .En prenant $a = \mu$ on peut en déduire qu'il existe $a \in Sp_{\mathbb{K}}(A)$ tel que la matrice $(\lambda a)I_n B$ ne soit pas inversible .
- 3. Si le polynôme χ_A est scindé sur \mathbb{K} alors : $\lambda \in Sp_{\mathbb{K}}(\Phi_{A,B}) \Longrightarrow \exists a \in Sp_{\mathbb{K}}(A)$ tel que la matrice $(\lambda a)I_n B$ ne soit pas inversible c'est à dire $\det((\lambda a)I_n B) = 0$ et donc $\lambda a \in Sp_{\mathbb{K}}(B)$ donc $\exists b \in Sp_{\mathbb{K}}(B)$ tel que $\lambda a = b$ d'où $\lambda = a + b$ or $a \in Sp_{\mathbb{K}}(A)$ d'où $\lambda \in Sp_{\mathbb{K}}(A) + Sp_{\mathbb{K}}(B)$ et on conclut que $Sp_{\mathbb{K}}(\Phi_{A,B}) \subset Sp_{\mathbb{K}}(A) + Sp_{\mathbb{K}}(B)$. Inversement, d'aprés la question $\ref{eq:sp_{\mathbb{K}}(\Phi_{A,B})} \supset Sp_{\mathbb{K}}(A) + Sp_{\mathbb{K}}(B)$. D'où l'égalité.

4. Supposons que $\sum_{i=1}^{p} Y_i^t Z_i = 0$, on multiplie cette égalité à droite par un \overline{Z}_j où $1 \leqslant j \leqslant n$ fixe, mais quelconque

d'où $\sum_{i=1}^p a_i Y_i = 0$ où $a_i = {}^t Z_i \overline{Z} j$, or (Y_1, \dots, Y_p) une famille libre de $\mathcal{M}_{n,1}(\mathbb{K})$ donc les a_i sont tous nuls en particulier $a_j = {}^t Z_j \overline{Z}_j = ||Z_j||_2 = 0$ et donc $Z_j = 0 \quad \forall 1 \leqslant j \leqslant n$.

La réciproques est bien evidente.

5. La famille $(U_i^t W_j)_{1 \leq i,j \leq n}$ est formée par des vecteurs propres de $\Phi_{A,B}$, pour montrer que l'endomorphisme $\Phi_{A,B}$ est diagonalisable il suffit de montrer que c'est une base de $\mathcal{M}_n(\mathbb{K})$ or il est de cardinal n^2 égal à la dimension de $\mathcal{M}_n(\mathbb{K})$ il suffit donc de montrrer qu'elle est libre.

En effet $\sum_{1\leqslant i,j\leqslant n}a_{i,j}U_i^tW_j=0 \Longrightarrow \sum_{i=1}^nU_i^tZ_i=0$ où $Z_i=\sum_{j=1}^na_{i,j}W_j$ d'aprés la question précédente $Z_i=\sum_{j=1}^na_{i,j}W_j=0$ $\forall 1\leqslant i\leqslant n$ or $(W_j)_{1\leqslant j\leqslant n})$ est aussi libre donc

Problème 12: Matrices réelles d'ordre 3 vérifiant $A^3 + A = 0$

- 1. On a $A^3 + A = \text{Mat}_{R}(u^3 + u)$ et $A = \text{Mat}_{R}(u)$, donc $u^3 + u = 0$ et $u \neq 0$
- 2. (a) u injectif donc bijectif car endomorphisme en dimension finie, donc A inversible, en multipliant l'égalité $A^3 + A = 0$ par A^{-1} , on en déduit que $A^2 = -I_3$, d'où $u^2 = -id_E$. Donc $\det(u^2) = \det(-id_E)$, d'où $\det(u)^2 = -1$, impossible car $\det u \in \mathbb{R}$.
 - (b) u n'est pas injective et u non nul, donc $\{0\} \subsetneq \operatorname{Ker} u \subsetneq \mathbb{R}^3$, d'où dim $\operatorname{Ker} u \in \{1,2\}$.
- 3. Le polynôme $X^3 + X = X(X^2 + 1)$ est annulateur de u et $X \wedge (X^2 + 1) = 1$, donc, d'après le lemme des noyaux $E = \operatorname{Ker} u \bigoplus \operatorname{Ker} (u^2 + id_E)$. Comme dim E = 3 et dim $\operatorname{Ker} u \in \{1, 2\}$, alors dim $\operatorname{Ker} (u^2 + id_E) \in \{1, 2\}$.
- 4. (a) L'endomorphisme $u^2 + \mathrm{Id}_{\mathrm{E}}$ est un polynôme en u, donc $F = \mathrm{Ker}(u^2 + id_E)$ est stable par u
 - (b) Soit $x \in F = \text{Ker}(u^2 + id_E)$ on a $v^2(x) = u^2(x) = -x = -\text{Id}_F(x)$, donc $v^2 = -id_F$.
 - (c) Posons $r = \dim F$, donc $\det(v^2) = (-1)^r$, or $\det(v^2) = (\det v)^2 \ge 0$, d'où r est pair avec $r \in \{1, 2\}$, donc
 - (d) Le polynôme X^2+1 est annulateur de v, donc $\operatorname{Sp}_C(v)\subset\operatorname{Rac}(X^2+1)=\emptyset$, donc v n'admet pas de valeur
- 5. (a) $\mathbf{Card}\{e_2', e_3'\}=2=\dim F$, il suffit de montrer qu'elle est libre. Supposons que $\alpha e_2'+\beta e_3'=0$. Si $\alpha\neq 0$, $u(e_2') = -\frac{\beta}{\alpha}e_2'$, alors v admet une valeur propre. Absurde, donc on a forcément $\alpha = 0$, puis $\beta u(e_2') = 0$. De même si $\beta \neq 0$, alors $u(e'_2) = 0$, ce qui montre que $e'_2 \in \text{Ker} u \cap F = \{0\}$. Absurde, donc $\alpha = \beta = 0$.
 - (b) $\mathcal{B}' = (e'_1, e'_2, e'_3)$ base de E, car $E = \text{Ker} u \oplus F$. De plus $u(e'_1) = 0, u(e'_2) = e'_3, u(e'_3) = u^2(e'_2) = -e'_2$, d'où

$$Mat_{\mathcal{B}'}(u) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

(c) A et B sont semblables car elles représentent le même endomorphisme dans deux bases différentes.

Problème 13: Sous-espaces caractéristiques

1. L'endomorphisme $(f - \lambda_i \mathrm{Id}_{\mathbb{C}^n})^{\mathrm{m}_{\mathrm{I}}}$ est un polynôme en f, donc f et $(f - \lambda_i \mathrm{Id}_{\mathbb{C}^n})^{\mathrm{m}_{\mathrm{I}}}$ commutent, donc le noyau de l'un est stable par l'autre. En particulier $F_i = \text{Ker}(f - \lambda_i \text{Id}_{\mathbb{C}^n})^{m_i}$ est stable par f.

- 2. Les polynômes $(X \lambda_i)^{m_i}$, pour $i \in [1, r]$, sont deux à deux premiers entre eux; le théorème de décomposition des noyaux permet donc de conclure que $\operatorname{Ker}(\chi_f(f)) = \bigoplus_{i=1}^r F_i$, avec $\chi_f(f) = 0$ par le théorème de Cayley-Hamilton; donc $\mathbb{C}^n = \bigoplus_{i=1}^r F_i$
- 3. l'endomorphisme stabilise les sous-espaces F_i , donc la matrice de f, relativement à une base $\mathcal{B} = \bigcup_{i=1}^r B_i$ adaptée à la décomposition $\mathbb{C}^n = \bigoplus_{i=1}^r F_i$, est diagonale par blocs,

$$\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} A_1 & & & & (0) \\ & A_2 & & & \\ & & \ddots & & \\ & & & A_r \end{pmatrix}$$

Avec
$$A_i = \underset{\mathcal{B}_i}{\text{Mat}}(f_i)$$
. Alors, $\chi_f = \prod_{i=1}^r \chi_{f_i}$

- 4. Soit $x \in F_i = \text{Ker}((f \lambda_i \text{Id}_{\mathbb{C}^n})^{\text{m}_i})$, alors $(f_i \lambda_i \text{Id}_{F_i})^{\text{m}_i}(\mathbf{x}) = 0$, donc $(f_i \lambda_i \text{Id}_{F_i})^{\text{m}_i} = 0$, ceci montre que P_i est annulateur de f_i . En conséquence $\text{Sp}_{\mathbb{C}}(f_i) \subset \{\lambda_i\}$, avec $\text{Sp}_{\mathbb{C}}(f_i) \neq \emptyset$, il vient que $\text{Sp}_{\mathbb{C}}(f_i) = \{\lambda_i\}$, puis $\chi_{f_i} = (X - \lambda_i)^{d_i}$ où $d_i = \dim F_i$
- 5. D'après la question 3, on a bien $\chi_f = \prod_{i=1}^r \chi_{f_i} = \prod_{i=1}^r (X \lambda_i)^{d_i}$ et d'autre part $\chi_f = \prod_{i=1}^r (X \lambda_i)^{m_i}$. Par unicité de la décomposition, on a bien $d_i = \alpha_i$ et donc $P_i = \chi_{f_i}$

Problème 14: Endomorphisme cyclique

1. Une base adaptée de E

(a) On peut remarquer que $x_0 \neq 0$ car sinon $E = \mathbf{Vect}(f^k(0)) = \mathbf{Vect}(0) = \{0\}$, ce qui contredit l'hypothèse $\dim(E) \geq 2$.

La famille (x_0) est donc libre . Par contre pour $m \ge n$ la famille $(f^k(x_0))_{k=0}^m$ est de cardinal $\ge n+1$ en dimension n . Elle est donc liée.

Dans la suite $(f^k(x_0))_{k=0}^0$, $(f^k(x_0))_{k=0}^1 \cdots (f^k(x_0))_{k=0}^n$ on passe donc au moins une fois d'une famille libre à une famille liée.

L'ensemble des m tels que $(f^k(x_0))_{k=0}^{m-1}$ soit libre et $(f^k(x_0))_{k=0}^m$ soit lié, est un sous ensemble non vide de \mathbb{N} , majoré par n. Il admet un plus grand élément.

On montre alors par récurrence que pour $k \in \mathbb{N}$, $f^{m+k}(x_0) \in \mathbf{Vect}\left(f^i(x_0)\right)_{i=0}^{m-1}$:

— si k=0: On sait que $(f^i(x_0))_{i=0}^m$ est lié . Il existe une combinaison linéaire $\sum_{i=0}^m a_i f^i(x_0) = 0$ avec $(a_i)_{i=0}^m \neq (0)$

Si $a_m = 0$ on a comme $(f^i(x_0))_{i=0}^{m-1}$ est libre $\forall i \in 0m-1, \ a_i = 0$:ABSURDE

donc
$$a_m \neq 0$$
 et $f^m(x_0) = \sum_{i=0}^{m-1} -\frac{a_i}{a_m} f^i(x_0)$. Donc pour $k = 0$ $f^{m+0}(x_0) \in \mathbf{Vect} \left(f^i(x_0) \right)_{i=0}^{m-1}$

— On suppose $f^{m+k}(x_0) \in \mathbf{Vect}\left(f^i(x_0)\right)_{i=0}^{m-1}$, il existe donc des scalaires b_i tels que $f^{m+k}(x_0) =$

 $\sum_{i=0}^{m-1} b_i f^i(x_0)$ (les b_i dépendent aussi de k) . On a alors

$$f^{m+k+1}(x_0) = \sum_{i=0}^{m-1} b_i f^{i+1}(x_0) = \sum_{j=1}^{m-1} b_{j-1} f^j(x_0) + b_{m-1} f^m(x_0) = b_{m-1} \left(-\frac{a_0}{a_m} \right) f^0(x_0) + \sum_{j=1}^{m-1} \left(b_{j-1} - b_{m-1} \frac{a_{m-1}}{a_m} \right) f^j(x_0)$$

et donc $f^{m+k+1}(x_0) \in \mathbf{Vect} (f^i(x_0))_{i=0}^{m-1}$

- par récurrence : $\forall k \in \mathbb{N}$, $f^{m+k}(x_0) \in \mathbf{Vect} \left(f^i(x_0) \right)_{i=0}^{m-1}$
- (b) Par définition de m la famille est libre .

Elle est aussi génératrice car $E = \mathbf{Vect} \left(f^i(x_0) \right)_{i \in \mathbb{N}} = \mathbf{Vect} \left(f^i(x_0) \right)_{i=0}^{m-1}$ d'après le **a**) en effet :

$$--\left(f^{i}(x_{0})\right)_{i=0}^{m-1} \subset \left(f^{i}(x_{0})\right)_{i\in\mathbb{N}} \operatorname{donc} \operatorname{\mathbf{Vect}} \left(f^{i}(x_{0})\right)_{i=0}^{m-1} \subset \operatorname{\mathbf{Vect}} \left(f^{i}(x_{0})\right)_{i\in\mathbb{N}}$$

— Si $x \in \mathbf{Vect}\left(f^i(x_0)\right)_{i \in \mathbb{N}}$, il existe un entier p et des scalaires q_i tel que $x = \sum_{i=0}^p q_i f^i(x_0)$. On a donc une combinaison linéaire d'éléments de $\mathbf{Vect}\left(f^i(x_0)\right)_{i=0}^{m-1}$. Donc un élément de $\mathbf{Vect}\left(f^i(x_0)\right)_{i=0}^{m-1}$: $\mathbf{Vect}\left(f^i(x_0)\right)_{i \in \mathbb{N}} \subset \mathbf{Vect}\left(f^i(x_0)\right)_{i=0}^{m-1}$

La famille est libre et génératrice . C'est donc une base de E . elle est donc de cardinal n . Donc m=n

$$\left(f^i(x_0)\right)_{i=0}^{m-1}$$
 est une base de E et $m=n$

- 2. Matrice et polynôme annulateur de f
 - (a) pour i < n-1, l'image du i-ème vecteur de base est le (i+1)-ème . La i-ème colonne de M est donc une colonne de 0 sauf ligne i+1 où il y a un 1. L'image du dernier vecteur de base est $f^m(x_0) = \sum_{i=0}^{n-1} p_i f^i(x_0)$. On a donc :

$$M = \begin{pmatrix} 0 & 0 & \cdots & 0 & p_0 \\ 1 & 0 & \cdots & 0 & p_1 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & p_{n-2} \\ 0 & \cdots & 0 & 1 & p_{n-1} \end{pmatrix}, m_{i,j} = \begin{cases} 1 \text{ si } i = j+1 \\ p_{i-1} \text{ si } j = n \\ 0 \text{ sinon} \end{cases}$$

(b) On montre que $(f^k)_{k=0}^{n-1}$ est une famille libre de $\mathcal{L}(E)$:

Soit $\sum_{i=0}^{n-1} a_i f^i = O$ (en notant O le neutre de $\mathcal{L}(E)$). Si on prend l'image de x_0 par cette relation on trouve $\sum_{i=0}^{n-1} a_i f^i(x_0) = 0$. Mais $(f^i(x_0))_{i=0}^{n-1}$ est une base de $E: \forall i, a_i = 0$

$$(f^k)_{k=0}^{n-1}$$
 est une famille libre de $\mathcal{L}(E)$

S'il existe un polynôme $Q = \sum_{k=0}^{n-1} q_k X^k$ non nul de degré < n tel que Q(f) = 0. Alors $\sum_{k=0}^{n-1} q_k f^k = O$, donc la famille $\left(f^k\right)_{k=0}^{n-1}$ est liée

(c) On a par définition des notations $P(f)(x_0) = f^n(x_0) - \sum_{i=0}^{n-1} p_i f^i(x_0) = 0.$

Donc pour tous $k \in [0, n-1]$, on a

$$P(f)(f^k(x_0)) = f^{n+k}(x_0) - \sum_{i=0}^{n-1} p_i f^{i+k}(x_0) = f^k \left(f^n(x_0) - \sum_{i=0}^{n-1} p_i f^i(x_0) \right) = f^k(0) = 0$$

L'endomorphisme P(f) est nul sur une base, donc il est nul, donc P(f) = 0

3. Caractérisation des endomorphismes cycliques diagonalisables

- (a) Par une récurrence classique on a $f^k(x) = \lambda^k x$. Donc $P(f)(x) = \sum_{i=0}^{n-1} p_i f^i(x) = \sum_{i=0}^{n-1} p_i \lambda^i x = P(\lambda) x$. Avec $x \neq 0$ alors $P(\lambda) = 0$
- (b) La matrice de $f \lambda \mathrm{Id}_{\mathbb{C}^n}$ est $M \lambda \mathrm{I}_n$ soit

$$M = \begin{pmatrix} -\lambda & 0 & \cdots & 0 & p_0 \\ 1 & -\lambda & \cdots & 0 & p_1 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & -\lambda & p_{n-2} \\ 0 & \cdots & 0 & 1 & p_{n-1} - \lambda \end{pmatrix}$$

- λ est valeur propre donc le rang $M \lambda I_n$ est $\leq n 1$
- La sous-diagonale de $M-\lambda \mathbf{I_n}$ montre que le rang est $\geqslant n-1$
- Donc le rang de $M-\lambda I_n$ est n-1 et donc la dimension du noyau est 1 .

Le sous espace propre est de dimension 1

- (c) \Rightarrow) S'il existe n valeurs propres distinctes en dimension n, l'endomorphisme est toujours diagonalisable.
 - \Leftarrow) Soit f cyclique, diagonalisable, il existe donc une base de vecteurs propres. Supposons (par l'absurde) qu'il existe dans cette base deux vecteurs distincts b_i et b_j associés à la même valeur propre λ .On a alors $b_i \in \operatorname{Ker}(f \lambda \operatorname{Id}_{\mathbb{C}^n})$ et $b_j \in \operatorname{Ker}(f \lambda \operatorname{Id}_{\mathbb{C}^n})$, donc le plan $\operatorname{Vect}(b_i, b_j) \subset \operatorname{Ker}(f \lambda \operatorname{Id}_{\mathbb{C}^n})$. Ce qui contredit le résultat de ??. Donc il y a autant de valeurs propres distinctes que de vecteurs de base f admet f0 valeurs propres distinctes.

4. Étude du commutant de f lorsque f est cyclique

- (a) C(f) est un sous ensemble de $\mathcal{L}(\mathbb{C}^n)$
 - C(f) contient $\mathrm{Id}_{\mathbb{C}^n}$
 - C(f) est stable par combinaison linéaire : si $g \circ f = f \circ g$ et $h \circ f = f \circ h$ alors pour tous scalaires λ, μ :

$$(\lambda g + \mu h) \circ f = \lambda(g \circ f) + \mu(h \circ f) = \lambda(f \circ g) + \mu(f \circ h)$$
$$= f \circ (\lambda g) + f \circ (\mu h) = f \circ (\lambda g + \mu h)$$

— C(f) est stable par produit interne (\circ) :si $g \circ f = f \circ g$ et $h \circ f = f \circ h$:

$$(g \circ h) \circ f = g \circ (h \circ f) = g \circ (f \circ h) = (g \circ f) \circ h = (f \circ g) \circ h = f \circ (g \circ h)$$

Donc C(f) est une sous-algèbre de $\mathcal{L}(\mathbb{C}^n)$

- (b) On suppose $u \circ f = f \circ u$, $v \circ f = f \circ v$ et $u(x_0) = v(x_0)$. On montre par récurrence que u et v sont égaux sur la base $\left(f^k(x_0)\right)_{k=0}^{n-1}$, donc que u=v.
 - pour k = 0, rien à démontrer.
 - Soit $k \in [0, n-2]$. Supposons que $u(f^k(x_0)) = v(f^k(x_0))$, alors

$$u(f^{k+1}(x_0)) = (u \circ f) (f^k(x_0)) = (f \circ u) (f^k(x_0)) = f (u (f^k(x_0)))$$
$$= f (v (f^k(x_0))) = (f \circ v) (f^k(x_0)) = (v \circ f) (f^k(x_0)) = v (f^{k+1}(x_0))$$

Récurrence achevée

Les deux endomorphisme u et v coïncident sur une base, donc ils sont égaux

- (c) Remarquons que les $(a_i)_{i=0}^{n-1}$ existent car on décompose dans une base.
 - On prend alors u = g et $v = \sum_{k=0}^{n-1} a_k f^k$. Comme tout polynôme en f commute avec f alors $v \in C(f)$ et si

$$u=g\in C(f)$$
, on a $u(x_0)=v(x_0)$. On a donc d'après le **a**) $u=v$ donc $g=\sum_{k=0}^{n-1}a_kf^k$

(d) On vient de montrer que tout élément de C(f) est dan $\mathbf{Vect}(f^k)_{k=0}^{n-1}$, et on a déjà utilisé que tout élément de $\mathbf{Vect}(f^k)_{k=0}^{n-1}$ est dans C(f). Donc $C(f) = \mathbf{Vect}(f^k)_{k=0}^{n-1}$.

D'après la question $\ref{eq:continuous}$ cette famille est libre . C'est donc une base de C(f). Bref C(f) est un sous espace vectoriel de dimension n

Problème 15: Polynôme minimal en un vecteur

- 1. On va montrer que $I_x = \{P \in \mathbb{K}[X] / P(f)(x) = 0\}$ est un idéal de $\mathbb{K}[X]$.
 - On a $I_x \neq \emptyset$ (Car contient le polynôme nul)
 - Pour tout $(P,Q) \in I_x^2$, alors (P-Q)(f)(x) = P(f)(x) Q(f)(x) = 0 donc $P-Q \in I_x$.
 - Pour tout $P \in \mathbb{K}\left[X\right]$ et $Q \in I_x$, on a $\left(PQ\right)\left(f\right)\left(x\right) = P\left(f\right)\circ Q\left(f\right)\left(x\right) = P\left(f\right)\left(Q\left(f\right)\left(x\right)\right) = P\left(f\right)\left(0\right) = 0 \text{ donc } PQ \in I_x$

 I_x est un idéal non nul de $\mathbb{K}[X]$ car il contient π_f , donc il existe un unique polynôme unitaire $\pi_x \in \mathbb{K}[X]$ tel que :

$$I_x = (\pi_x) = \pi_x \mathbb{K}[X]$$

- 2. (a) On a $\pi_f(f) = 0$ donc $\pi_f(f)(x) = 0$ et, par suite, $\pi_f \in I_x = (\pi_x)$. Par définition de l'idéal π_x divise π_f , donc $r = \deg(\pi_x) \leqslant \deg(\pi_f) = k$
 - (b) Pour P = 0, on a P(f)(x) = 0 donc $0 \in E_x$
 - Si $y_1 = P_1(f)(x)$ et $y_2 = P_2(f)(x)$ sont deux éléments de E_x et $\lambda \in \mathbb{K}$ alors $\lambda y_1 + y_2 = (\lambda P_1 + P_2)(f)(x) \in E_x$.

Donc E_x est un sous-espace vectoriel de E

(c) Soit $y \in E_x$ alors il existe $P \in \mathbb{K}[X]$ tel que y = P(f)(x)A l'aide de la division euclidienne il existe $(Q, R) \in (\mathbb{K}[X])^2$ tel que

$$P = Q\pi_x + R$$
 avec $\deg(R) < \deg(\pi_x) = r$

Par suite $y = P(f)(x) = Q(f) \circ \pi_x(f)(x) + R(f)(x) = R(f)(x)$ (car $\pi_x(f)(x) = 0$)

Posons
$$R = \sum_{k=0}^{r-1} a_k X^k$$
, on a alors $y = R(f)(x) = \sum_{k=0}^{r-1} a_k f^k(x) \in Vect\{x, f(x), ..., f^{r-1}(x)\}$

Ainsi $\{x, f(x), ..., f^{r-1}(x)\}$ est génératrice de E_x . On va montrer qu'elle est libre

Soit
$$(\lambda_0, \lambda_1, ..., \lambda_{r-1}) \in \mathbb{K}^r$$
 tel que $\sum_{k=0}^{r-1} \lambda_k f^k(x) = 0$

Posons
$$P = \sum_{k=0}^{r-1} \lambda_k X^k$$
. On a $P(f)(x) = \sum_{k=0}^{r-1} \lambda_k f^k(x) = 0$ donc $P \in I_x$ par suite π_x divise P

Or $\deg(P) < \deg(\pi_x)$ donc P = 0. On en déduit que $\lambda_0 = \lambda_1 = \dots = \lambda_{r-1} = 0$.

Ainsi $\mathcal{B} = \{x, f(x), ..., f^{r-1}(x)\}$ est une base de E_x . Par suite dim $E_x = r$.

(d) $id_E \in \mathbb{K}[f]$ de plus si $h, g \in \mathbb{K}[f]$ et $\lambda \in \mathbb{K}$, h = P(f) et g = Q(f) alors

$$\lambda h + g = (\lambda P + Q)(f) \in \mathbb{K}[f] \text{ et } h \circ g = (PQ)(f) \in \mathbb{K}[f]$$

donc $\mathbb{K}[f]$ est une sous-algèbre de $\mathcal{L}(E)$.

La famille $(\mathrm{Id}_E, f, \ldots, f^{k-1})$ est libre car s'il existe des scalaires $a_0, \cdots, a_{k-1} \in \mathbb{K}$ tels que $\sum_{i=0}^{k-1} a_i f^i = 0$,

alors le polynôme $Q = \sum_{i=0}^{k-1} a_i X^i$ est annulateur de f, donc il est divisible par π_f . Or les polynômes non nuls

annulateurs de f sont de degré supérieur ou égal à k, donc Q=0, puis $a_0=\cdots=a_{k-1}=0$. Il est évident que $\mathbf{Vect}\left(\mathrm{Id}_E,f,\ldots,f^{k-1}\right)\subset\mathbb{K}[f]$. Inversement, soit $P\in\mathbb{K}[X]$, en effectuant la division euclidienne de P par π_f il existe $Q,R\in\mathbb{K}[X]$ tels que $\begin{cases} P=Q\pi_f+R\\ \deg(R)<\deg(\pi_f) \end{cases}$, alors P(f)=R(f) car $\pi_f(f)=0$ et $R(f)\in\mathbf{Vect}\left(\mathrm{Id}_E,f,\ldots,f^{k-1}\right)$, donc $\mathbb{K}[f]\subset\mathbf{Vect}\left(\mathrm{Id}_E,f,\ldots,f^{k-1}\right)$. Ceci montre que $\mathbb{K}[f]=\mathbf{Vect}\left(\mathrm{Id}_E,f,\ldots,f^{k-1}\right)$ et que $\left(\mathrm{Id}_E,f,\ldots,f^{k-1}\right)$ est une base de $\mathbb{K}[f]$ et $\dim\mathbb{K}[f]=k=\deg(\pi_f)$

- 3. Soient x_1 et x_2 de deux éléments de E
 - (a) Posons $P = \mathbf{ppcm}(\pi_{x_1}, \pi_{x_2})$, on a π_{x_1} et π_{x_2} divisent P donc $P(f)(x_1) = P(f)(x_1) = 0$ On a alors $P(f)(x_1 + x_2) = P(f)(x_1) + P(f)(x_2) = 0$ donc $\pi_{x_1 + x_2}$ divise P

D'autre part $\pi_{x_1+x_2}(f)(x_1+x_2) = 0$ donc

$$\underbrace{\pi_{x_1+x_2}(f)(x_1)}_{\in E_{x_1}} = \underbrace{-\pi_{x_1+x_2}(f)(x_2)}_{\in E_{x_2}} \in E_{x_1} \cap E_{x_2} = \{0\}$$

Donc $\pi_{x_1+x_2}(f)(x_1) = \pi_{x_1+x_2}(f)(x_2) = 0$ par suite π_{x_1} et π_{x_2} divisent $\pi_{x_1+x_2}$ On en déduit que $P = \mathbf{ppcm}(\pi_{x_1}, \pi_{x_2})$ divise $\pi_{x_1+x_2}$. Enfin les deux polynômes $\mathbf{ppcm}(\pi_{x_1}, \pi_{x_2})$ et $\pi_{x_1+x_2}$ sont associés et unitaires, donc ils sont égaux

- (b) Supposons que π_{x_1} et π_{x_2} sont premiers entre eux . D'après le théorème de Bezout , il existe $(P,Q) \in (\mathbb{K}[X])^2$ tel que $(*): P\pi_{x_1} + Q\pi_{x_2} = 1$ Donc $id_E = P(f) \circ \pi_{x_1}(f) + Q(f) \circ \pi_{x_2}(f)$.
 - − Vérifions d'abord que $E_{x_1} \subset E_{x_1+x_2}$. Soit $y \in E_{x_1}$, il existe $U_1 \in \mathbb{K}[X]$ tel que : $y = U_1(f)(x_1)$. Mais $U_1 = U_1 P \pi_{x_1} + U_1 Q \pi_{x_2}$, soit $U_1(f) = U_1(f) \circ P(f) \circ \pi_{x_1}(f) + U_1(f) \circ Q(f) \circ \pi_{x_2}(f)$

$$y = U_{1}(f)(x_{1})$$

$$= \underbrace{U_{1}(f) \circ P(f) \circ \pi_{x_{1}}(f)(x_{1})}_{=0} + U_{1}(f) \circ Q(f) \circ \pi_{x_{2}}(f)(x_{1})$$

$$= U_{1}(f) \circ Q(f) \circ \pi_{x_{2}}(f)(x_{1}) + \underbrace{U_{1}(f) \circ Q(f) \circ \pi_{x_{2}}(f)(x_{2})}_{=0}$$

$$= U_{1}(f) \circ Q(f) \circ \pi_{x_{2}}(f)(x_{1} + x_{2}) \in E_{x_{1} + x_{2}}$$

De même on montre que $E_{x_2} \subset E_{x_1+x_2}$

— Si $y \in E_{x_1} \cap E_{x_2}$ alors il existe $S_1, S_2 \in \mathbb{K}[X]$ tel que $y = S_1(f)(x_1) = S_2(f)(x_2)$. On a alors

$$y = P(f) \circ \pi_{x_{1}}(f)(y) + Q(f) \circ \pi_{x_{2}}(f)(y)$$

$$= P(f) \circ \pi_{x_{1}}(f) \circ S_{1}(f)(x_{1}) + Q(f) \circ \pi_{x_{2}}(f) \circ S_{2}(f)(x_{2})$$

$$= P(f) \circ S_{1}(f) \circ \pi_{x_{1}}(f)(x_{1}) + Q(f) \circ S_{2}(f) \circ \pi_{x_{2}}(f)(x_{2})$$

$$= 0$$

Donc $E_{x_1} \cap E_{x_2} = \{0\}$.

- Soit $y \in E_{x_1+x_2}$, il existe $P \in \mathbb{K}[X]$ tel que $y = P(f)(x_1 + x_2) = P(f)(x_1) + P(f)(x_2) \in E_{x_1} + E_{x_2}$ On en déduit que $E_{x_1+x_2} = E_{x_1} \bigoplus E_{x_2}$
- 4. Généralisation : Soient $x_1, x_2, ..., x_p$ des vecteurs de E
 - (a) Supposons que $E_{x_1}, E_{x_2},, E_{x_p}$ sont en somme directe . Posons $P = \mathbf{ppcm}(\pi_{x_1}, \pi_{x_2}, ..., \pi_{x_p})$ on a pour tout $i \in \{1, 2, ..., p\}$, $P(f)(x_i) = 0$ Donc $P(f)(x_1 + x_2 + ... + x_p) = P(f)(x_1) + ... + P(f)(x_p) = 0$ par suite $\pi_{x_1 + x_2 + ... + x_p}$ divise P.

D'autre part , on a
$$\pi_{x_1+x_2+...+x_p}(x_1+x_2+...+x_p) = 0$$
 donc $\sum_{i=1}^{p} \underbrace{\pi_{x_1+x_2+...+x_p}(f)(x_i)}_{\in E_{x_i}} = 0$

La somme $E_{x_1} + E_{x_2} + \ldots + E_{x_p}$ étant directe , donc

$$\pi_{x_1+x_2+...+x_p}(f)(x_1) = ... = \pi_{x_1+x_2+...+x_p}(f)(x_p) = 0$$

On en déduit que , pour tout $i \in \{1,2,...,p\}$, π_{x_i} divise $\pi_{x_1+x_2+...+x_p}$

Par conséquent $P = \mathbf{ppcm} (\pi_{x_1}, \pi_{x_2}, ..., \pi_{x_p})$ divise $\pi_{x_1+x_2+...+x_p}$.

- (b) Par récurrence sur p .
 - Pour p = 2 c'est déjà établi
 - Soit $p \leqslant 3$. Supposons la propriété vraie pour p-1.

 On a $E_{x_1}+E_{x_2}+\ldots+E_{x_{p-1}}=E_{x_1+x_2+\ldots+x_{p-1}}$ de plus $\pi_{x_1+x_2+\ldots+x_{p-1}}=\operatorname{\mathbf{ppcm}}\left(\pi_{x_1},\pi_{x_2},\ldots,\pi_{x_{p-1}}\right)$ Comme π_{x_p} est premier avec π_{x_i} pour $1\leqslant i\leqslant p-1$ donc π_{x_p} est premier avec $\pi_{x_1+x_2+\ldots+x_{p-1}}=\operatorname{\mathbf{ppcm}}\left(\pi_{x_1},\pi_{x_2},\ldots,\pi_{x_{p-1}}\right)$

Par suite la somme $(E_{x_1} + E_{x_2} + ... + E_{x_{p-1}}) + E_{x_p}$ est directe .

Et comme $E_{x_1} + E_{x_2} + ... + E_{x_{p-1}}$ est une somme directe (hypothèse de récurrence)

Donc

$$E_{x_1+x_2+\ldots+x_p} = \bigoplus_{i=1}^p E_{x_i}$$

- 5. Soit P un facteur irréductible de π_f de multiplicité α
 - (a) Soit $x \in \text{Ker}(P^{\alpha}(f))$. On a $P^{\alpha}(f)(x) = 0$ donc π_x divise P^{α} Comme P est irréductible, alors les diviseurs de P^{α} sont de la forme P^k avec $k \leqslant \alpha$. En particulier il existe un entier $\alpha_x \leqslant \alpha$ tel que: $\pi_x = P^{\alpha_x}$
 - (b) Supposons que $\forall x \in \operatorname{Ker}\left(P^{\alpha}\left(f\right)\right)$, $\alpha_{x} < \alpha$. Soit $\beta = \max\left\{\alpha_{x} \ / x \in \operatorname{Ker}\left(P^{\alpha}\left(f\right)\right)\right\}$ On a $\beta < \alpha$, pour tout $x \in \operatorname{Ker}\left(P^{\alpha}\left(f\right)\right)$, on a $P^{\beta}\left(f\right)\left(x\right) = P^{\beta-\alpha_{x}}\left(f\right) \circ P^{\alpha_{x}}\left(f\right)\left(x\right) = 0$ Donc $P^{\beta}\left(f\right)\left(x\right) = 0$ pour tout $x \in \operatorname{Ker}\left(P^{\alpha}\left(f\right)\right)$. On en déduit que $\operatorname{Ker}\left(P^{\alpha}\left(f\right)\right) = \operatorname{Ker}\left(P^{\beta}\left(f\right)\right)$ Posons $\pi_{f} = P^{\alpha}Q$ avec P et Q premiers entre eux . Soit $R = P^{\beta}Q$ On a

$$E = \operatorname{Ker}(P^{\alpha}(f)) \bigoplus \operatorname{Ker}(Q(f)) = \operatorname{Ker}(P^{\beta}(f)) \bigoplus \operatorname{Ker}(Q(f))$$

Pour $x \in E$, $x = x_1 + x_2$ avec $x_1 \in \text{Ker}P^{\beta}(f)$ et $x_2 \in \text{Ker}Q(f)$, donc

$$R(f)(x) = R(f)(x_1) + R(f)(x_2) = Q(f) \circ P^{\beta}(f)(x_1) + P^{\beta}(f) \circ Q(f)(x_2) = 0$$

Par suite R(f)(x) = 0 pour tout $x \in E$.

On en déduit que R(f) = 0 et donc π_f divise R ce qui est absurde .

6. Soit $\pi_f=P_1^{\alpha_1}P_2^{\alpha_2}...P_m^{\alpha_m}$ la décomposition en produit de facteurs irréductibles de π_f .

D'après la question précédente , on a pour tout $i \in \{1,2,...,m\}$, il existe $x_i \in \operatorname{Ker}\left(P_i^{\alpha_i}\left(f\right)\right)$ tel que : $P_i^{\alpha_i}\left(f\right) = \pi_{x_i}$

D'autre part $\pi_{x_1},\pi_{x_2},...,\pi_{x_m}$ sont deux à deux premiers entre eux , donc

$$\pi_{x_1 + x_2 + \dots + x_p} = \mathbf{ppcm} \left(\pi_{x_1}, \pi_{x_2}, \dots, \pi_{x_p} \right) = \pi_{x_1} \times \pi_{x_2} \times \dots \times \pi_{x_p} = P_1^{\alpha_1} P_2^{\alpha_2} \dots P_m^{\alpha_m} = \pi_f$$