Práctica 7 de álgebra 1

Comunidad algebraica

last update: 25/06/2024

Definiciones y fórmulas útiles

• Operaciones:

+: Sean
$$f, g \in \mathbb{K}[X]$$
 con $f = \sum_{i=0}^{n} a_i X^i$ y $g = \sum_{i=0}^{n} b_i X^i$

$$\Rightarrow f + g = \sum_{i=0}^{n} (a_i + b_i) X^i \in \mathbb{K}[X]$$

$$\cdot : \text{ Sean } f, g \in \mathbb{K}[X] \text{ con } f = \sum_{i=0}^{n} a_i X^i \text{ y } g = \sum_{j=0}^{m} b_j X^j$$

$$\Rightarrow f \cdot g = \sum_{k=0}^{n+m} (\sum_{i+j=k} a_i \cdot b_j) X^k \in \mathbb{K}[X]$$

- $(\mathbb{K}[X], +, \cdot)$ es un anillo conmutativo $\to f \cdot (g+h) = f \cdot g + f \cdot h, \ \forall f, g, h \in \mathbb{K}[X]$
- Algoritmo de división: $f, g \in \mathbb{K}[X]$ no nulos, existen únicos q y $R \in \mathbb{K}[X]$ tal que $f = q \cdot g + R$ con gr(R) < gr(f) o R = 0
- α es raíz de $f \iff X \alpha \mid f \iff f = q \cdot (X \alpha)$
- $M\'{a}ximo\ com\'{u}n\ divisor$: Polinomio mónico de mayor grado que divide a ambos polinomios en $\mathbb{K}[X]$ y vale el algoritmo de Euclides.

$$-(f:g) | f y (f:g) | g$$

$$-f = (f:g) \cdot k_f y g = (f:g) \cdot k_g \operatorname{con} k_f y k_g \operatorname{en} \mathbb{K}[X]$$

- Dos polinomios son coprimos si $(f:g)=1 \iff f \neq g$
- Raíces múltiples: $f \in \mathbb{K}[x], \alpha \in \mathbb{K}$ es raíz de f de multiplicidad $m \in \mathbb{N}_0$ si $(X \alpha)^m \mid f$ y $(X \alpha)^{m+1} \not\mid f$. O sea, $f = (X \alpha)^m \cdot \underbrace{q(\alpha)}_{\neq 0}$
 - Una raíz simple de f cumplirá que $(x \alpha) \mid f$, pero $(x \alpha)^2 \not\mid f$
- Vale que α es raíz múltiple de $f\iff f(\alpha)=0$ y $f'(\alpha)=0\iff \alpha$ es raíz de $(f:f'),\,X-\alpha\,|\,(f:f')$

$$- \text{ mult}(\alpha, f) = m \iff f(\alpha) = 0 \text{ y mult}((\alpha, f')) = m - 1$$

$$- \operatorname{mult}(\alpha; f) = m \iff \begin{cases} \operatorname{mult}(\alpha; f) \ge m & \begin{cases} f(\alpha) = 0 \\ \vdots \\ f^{(m-1)(\alpha) = 0} \end{cases} \\ \operatorname{mult}(\alpha; f) = m & \begin{cases} f^{(m-1)(\alpha) = 0} \end{cases} \end{cases}$$

Ejercicios dados en clase:

Ejercicios de la guía:

Calcular el grado y el coeficiente principal de los siguientes polinomios en $\mathbb{Q}[X]$:

i)
$$(4X^6 - 2X^5 + 3X^2 - 2X + 7)^{77}$$
,

ii)
$$(-3X^7 + 5X^3 + X^2 - X + 5)^4 - (6X^4 + 2X^3 + X - 2)^7$$
,

iii)
$$(-3X^5 + X^4 - X + 5)^4 - 81X^{20} + 19X^{19}$$
,

- i) coeficiente principal: 4⁷⁷ $grado: 6 \cdot 77$
- ii) coeficiente principal: $(-3)^4 6^7 = -279.855$ grado: 28

coeficiente principal: $(\underbrace{-3X^5 + X^4 - X + 5}_f)^4 + \underbrace{-81X^{20} + 19X^{19}}_g$ Cuando sumo me queda: $\operatorname{cp}(f^4) - \operatorname{cp}(g) = (-3)^4 - 81 = 0 \Rightarrow gr(f^4 + g) < 20 \rightarrow \operatorname{Calculo} \operatorname{el} \operatorname{cp}(f^4 + g) \operatorname{con} \operatorname{gr}(f^4 + g) = 19.$

$$\begin{cases}
\frac{\text{para usar}}{\text{formula de } f \cdot g} (-3X^5 + X^4 - X + 5)^4 = (-3X^5 + 1X^4 - X + 5)^2 \cdot (-3X^5 + X^4 - X + 5)^2
\end{cases}$$

aburo $a \ f:$ $\frac{\text{para usar}}{\text{fórmula de } f \cdot g} (-3X^5 + X^4 - X + 5)^4 = (-3X^5 + 1X^4 - X + 5)^2 \cdot (-3X^5 + X^4 - X + 5)^2$ $f^2 \cdot f^2 = \sum_{k=0}^{20} \left(\sum_{i+j=k} a_i \cdot b_j \right) X^k \text{ con } a_i \text{ y } b_i \text{ los coeficientes de } f^2 \text{ y el otro } f^2 \text{ respectivamente}$ $\sum_{k=0}^{20} \left(\sum_{i+j=k} a_i \cdot b_j \right) X^k \xrightarrow{\text{me interesa solo}} \sum_{i+j=19} a_i b_j X^{19} \stackrel{\star}{=} a_9 \cdot b_{10} + a_{10} \cdot b_9 \stackrel{\star}{=} 2 \cdot a_9 \cdot b_{10}$

$$\sum_{k=0}^{20} \left(\sum_{i+j=k} a_i \cdot b_j \right) X^k \xrightarrow{\text{me interesa solo} \atop \text{el término con } k = 19} \sum_{i+j=19} a_i b_j X^{19} \stackrel{\bigstar^1}{=} a_9 \cdot b_{10} + a_{10} \cdot b_9 \stackrel{\bigstar^2}{=} 2 \cdot a_9 \cdot b_{10}$$

$$\int_{\text{cifrotre}}^{h=0} \frac{b_{10} \text{ sale a}}{\text{cifrotre}} b_{10} = (-3)^2 = 9$$

$$\begin{cases} \sum_{k=0}^{l} \left(\begin{array}{c} i+j=k \end{array} \right) & \text{el término con } k=19 \\ i+j=19 \end{array} \end{cases}$$

$$\begin{cases} \sum_{k=0}^{l} \left(\begin{array}{c} b_{10} \text{ sale a} \\ c_{10} \text{ sale a} \end{array} \right) b_{10} = (-3)^2 = 9 \\ \\ \sum_{k=0}^{l} \left(\begin{array}{c} a_{9} \text{ no tan fácil, volver} \\ a \text{ usar } \sum f \cdot g \text{ en } k = 9 \end{array} \right) f \cdot f = \sum_{k=0}^{l} \left(\sum_{i+j=k} c_{i} \cdot d_{j} \right) X^{k} \xrightarrow{k=9} \sum_{i+j=9} c_{i} \cdot d_{j} X^{9} \xrightarrow{*} c_{4} \cdot d_{5} + c_{5} \cdot d_{4} \stackrel{*}{=} 2 \cdot c_{4} \cdot d_{5} \\ \\ \left\{ \begin{array}{c} \frac{d_{5} \text{ sale a}}{\text{ ojímetro}} d_{5} = -3 \\ c_{4} \text{ sale a} \\ \text{ ojímetro} \end{array} \right\} \rightarrow a_{9} = -6 \\ \\ \left\{ \begin{array}{c} \text{cp}(f^{4}) = 2 \cdot (-6) \cdot (9) = -108 \\ \text{cp}(g) = 19 \end{array} \right\} \rightarrow \text{cp}(f^{4} + g) = -89 \end{cases} \checkmark$$

$$\left\{\begin{array}{c} \frac{d_5 \text{ sale a}}{\text{ojímetro}} d_5 = -3\\ \xrightarrow{c_4 \text{ sale a}} c_4 = 1 \end{array}\right\} \rightarrow a_9 = -6$$

* : Sabemos que el $gr(f^4) = 20 \Rightarrow gr(f^2) = 10$. Viendo las posibles combinaciones al multiplicar 2 polinomios de manera tal que los exponentes de las X sumen 19, es decir $X^i \cdot X^j = X^{19}$ con $i, j \leq 10$

solo puede ocurrir cuando los exponentes $\left\{ \begin{array}{l} i=10,\,j=9\\ \forall\\ i=9,\,\,i=10 \end{array} \right\}$

- *: porque estoy multiplicando el mismo polinomio, $a_i = b_i$. Pero lo dejo distinto para hacerlos visualmente más genérico.
- \star^3 : Idem \star^1 para el polinomio f

arado.	10
grado:	19

•	TT I
٠,	Hacer
4.	пасег

3.	Hacer
υ.	TIGOUT.

- 4. Hacer!
- 5. Hacer!
- 6. Hacer!
- 7. Hacer!
- 8. Hacer!

9. Calcular el máximo común divisor entre f y g en $\mathbb{Q}[X]$ y escribirlo como combinación polinomial de f y g siendo:

i)
$$f = X^5 + X^3 - 6X^2 + 2X + 2$$
, $q = X^4 - X^3 - X^2 + 1$,

ii)
$$f = X^6 + X^4 + X^2 + 1$$
, $q = X^3 + X$,

iii)
$$f = 2X^6 - 4X^5 + X^4 + 4X^3 - 6X^2 + 4X + 1, g = X^5 - 2X^4 + 2X^2 - 3X + 1,$$

$$X^{5} + X^{3} - 6X^{2} + 2X + 2 = \left(X^{4} - X^{3} - X^{2} + 1\right) \cdot \left(X + 1\right) + \left(3X^{3} - 5X^{2} + X + 1\right)$$

$$X^{4} - X^{3} - X^{2} + 1 = \left(3X^{3} - 5X^{2} + X + 1\right) \cdot \left(\frac{1}{3}X + \frac{2}{9}\right) + \left(-\frac{2}{9}X^{2} - \frac{5}{9}X + \frac{7}{9}\right)$$

$$3X^{3} - 5X^{2} + X + 1 = \left(-\frac{2}{9}X^{2} - \frac{5}{9}X + \frac{7}{9}\right) \cdot \left(-\frac{27}{2}X + \frac{225}{4}\right) + \left(\frac{171}{4}X - \frac{171}{4}\right)$$

$$-\frac{2}{9}X^{2} - \frac{5}{9}X + \frac{7}{9} = \left(\frac{171}{4}X - \frac{171}{4}\right) \cdot \left(-\frac{8}{1539}X - \frac{28}{1539}\right) + 0$$

El MCD será el último resto no nulo y mónico $\rightarrow (f:g) = X-1$

Y ahora tengo que escribir $X - 1 = F \cdot f + G \cdot q$? Algún truco para no lidiar con esas fracciones?

ii)
$$X^6 + X^4 + X^2 + 1 = (X^3 + X) \cdot X^3 + (X^2 + 1)$$

 $X^3 + X = (X^2 + 1) \cdot X + 0$

El MCD será el último resto no nulo y mónico $\rightarrow (f:g) = X^2 + 1$

El MCD escrito como combinación polinomial de f y $g \rightarrow X^2 + 1 = f \cdot 1 + g \cdot (-X^3)$

$$2X^{6} - 4X^{5} + X^{4} + 4X^{3} - 6X^{2} + 4X + 1 = \left(X^{5} - 2X^{4} + 2X^{2} - 3X + 1\right) \cdot 2X + \left(X^{4} + 2X + 1\right) \\ X^{5} - 2X^{4} + 2X^{2} - 3X + 1 = \left(X^{4} + 2X + 1\right) \cdot \left(X - 2\right) + 3 \\ X^{4} + 2X + 1 = 3 \cdot \left(\frac{1}{3}X^{4} + \frac{2}{3}X + \frac{1}{3}\right) + 0$$
 El MCD será el último resto no nulo y $m\'onico \rightarrow \boxed{(f:g) = 1}$ El MCD escrito como combinación polinomial de f y $g \rightarrow \boxed{1 = \frac{1}{3}g \cdot (2X^{2} - 4X + 1) - \frac{1}{3}f \cdot (X - 2)}$

10. Hacer!

11. Hacer!

12. Hacer!

13.	Hacer!			
14.	Hacer!			
 15.	Hacer!			
 16.	Hacer!			
 17.	Hacer!			
18.	Hacer!			
 19.	Hacer!			
20.	Hacer!			
21.	Hacer!			
22.	Hacer!			
23.	Hacer!			
24.	Hacer!			
 25.	Hacer!			
	Hacer!			
 27.	Hacer!			
	Hacer!			

29.	Hacer!			
30.	Hacer!			
31.	Hacer!			
32.	Hacer!			
33.	Hacer!			
34.	Hacer!			
 35.	Hacer!			
 36.	Hacer!			
 37.	Hacer!			
 38.	Hacer!			
39.	Hacer!			