

## Clustering

**Machine Learning** 

Norman Juchler





#### Recap: k-nearest neighbors (kNN)

- The kNN method is an intuitive method to assign a class to a new data point based on the majority class of its k nearest neighbors.
- It can be used for classification (supervised) and clustering (unsupervised) and even regression.
- It can be used for supervised (classification, regression) and even unsupervised tasks (anomaly detection, dimensionality reduction, ...)







#### **Today**

- Clustering
- Methods:
  - k-means
  - DBSCAN
  - and many more...
- Evaluation
  - What is the best clustering?

## zh

#### **Unsupervised learning**

- In unsupervised learning the training data does <u>not</u> contain corresponding output values but only the input features  $X \in \mathbb{R}^{n \times m}$ 
  - n: Number of samples
  - m: Number of features
- Goal: Model the underlying distribution of the data to
  - Discover hidden patterns that explain the data
  - Apply the model to new data

#### Challenges:

- Problem statement more open than in the supervised setting
- The model evaluation is more difficult without expected output values







#### **Unsupervised learning**

- Common tasks in unsupervised learning
  - Clustering: Grouping of similar data points based on features
  - Dimensionality reduction: Reducing the number of features
  - Anomaly detection: Identifying samples that deviate significantly







#### Clustering

- Goal: Find subgroups of data points that are similar based on their features
- Problem: Given N data points, separate them into K
   (K ≪ N) clusters

#### Variants:

- Hard clustering: Each data point is assigned a unique cluster (belongs to only one cluster)
- Soft clustering: Each data point  $x_i$  is assigned a probability  $p_{ki}$  that it belongs to cluster k such that  $\sum_k p_{ki} = 1$  (typically associated with probabilistic model like Gaussian Mixture Models-GMMs)

#### K-Means









#### Clustering: Why?

Why would we want to cluster the data?

- Data understanding: find "natural" clusters and describe their properties
- Data class identification: find useful and suitable groupings
- Data reduction: find representatives for homogenous groups
- Outlier / anomaly detection: find unusual data objects



#### **Clustering: Examples**

- Text analysis: Group the articles in a large corpus based on similar topics
- Disease bioinformatics: Cluster patients based on gene expression or protein markers to identify genes related to certain diseases or to discover drug targets
- Sports science: Find players with similar behavior based on characteristics of their play



#### **Clustering: Method overview**



## **Distance metrics**

Recap



#### How to quantify similarity / proximity?

- Euclidean  $\sqrt{\sum_{i=1}^{n} (x_i y_i)^2}$
- Manhattan  $\sum_{i=1}^{n} |p_i q_i|$
- Minkowski  $\left(\sum_{i=1}^n |x_i-y_i|^p\right)^{\frac{1}{p}}$
- Cosine
- Hamming
- . . .
- and any application specific distances...





#### Similarity vs. distance

#### Similarity:

- Measure how alike two objects are.
- A higher similarity value indicates that the objects share more common features.
- Values often range between [0, 1], or [-1, 1]

#### Distance (or dissimilarity):

- Measure how different or far apart two objects are.
- A higher distance indicates that the objects are more dissimilar or farther apart.
- Values often range between [0, ∞]

#### Conversion:

To convert a similarity metric S to a dissimilarity metric D, the following conversion rule is often applied: D = 1 - S



#### **Euclidian distance**

• Between two points  $\mathbf{p}=(p_1, p_2)$  and  $\mathbf{q}=(q_1, q_2)$ :



Between two n-dimensional points:

$$\mathbf{p} = (p_1, p_2,..., p_n)$$
  $\mathbf{q} = (q_1, q_2,..., q_n)$ 

$$egin{split} d(\mathbf{p},\mathbf{q}) &= d(\mathbf{q},\mathbf{p}) = \sqrt{(q_1-p_1)^2 + (q_2-p_2)^2 + \dots + (q_n-p_n)^2} \ &= \sqrt{\sum_{i=1}^n (q_i-p_i)^2}. \end{split}$$

$$\|\mathbf{q} - \mathbf{p}\| = \sqrt{(\mathbf{q} - \mathbf{p}) \cdot (\mathbf{q} - \mathbf{p})}.$$



#### **Manhattan distance**

Between two n-dimensional points:

$$\mathbf{p} = (p_1, p_2,..., p_n)$$
  $\mathbf{q} = (q_1, q_2,..., q_n)$ 

$$d_1({f p},{f q}) = \|{f p} - {f q}\|_1 = \sum_{i=1}^n |p_i - q_i|,$$



Euclidean distance

Manhattan distance



#### **Cosine similarity**

• Given two vectors  $A = [a_1, a_2, ..., a_n]$  and  $B = [b_1, b_2, ..., b_n]$  with n attributes each, the cosine similarity,  $cos(\theta)$  is represented as

$$\cos(\theta) = \frac{\sum_{i=1}^{n} a_i b_i}{\sqrt{\sum_{i=1}^{n} a_i^2} \times \sqrt{\sum_{i=1}^{n} b_i^2}} = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|}$$

It ONLY considers the angle between the two vectors, but NOT their lengths



#### Interpretation:

- Similar points have a value close to 1
- Points with no similarity have a value close to 0
- Samples with an opposite meaning have a value close to -1

#### Note:

■ To yield a distance / dissimilarity metric: Cosine Distance = 1 - Cosine Similarity



#### **Jaccard similarity index**

A similarity metric often used for categorical or binary data



- Interpretation:
  - J=1: The two datasets are identical, meaning they have the same elements.
  - J=0: The two datasets are completely dissimilar, meaning they have no common elements.

## k-means clustering



#### k-means clustering: Overview

- A popular unsupervised learning algorithm
- Used for clustering data into distinct groups or clusters

#### Steps:



1. K initial "means" (in this case K = 3) are randomly generated within the data domain (shown in color)



2. K clusters are created by associating every observation with the nearest mean. The partitions here represent the Voronoi diagram generated by the means



3. The centroid of each of the K clusters becomes the new mean



4. Steps 2 and 3 are repeated until a stop-criterion is met



#### **Initialization**



1. K initial "means" (in this case K = 3) are randomly generated within the data domain (shown in color)



2. K clusters are created by associating every observation with the nearest mean. The partitions here represent the Voronoi diagram generated by the means



3. The centroid of each of the K clusters becomes the new mean



4. Steps 2 and 3 are repeated until a stop-criterion is met

#### **Selection of initial centroids**: Three alternatives

- Random points: K points from  $\mathbb{R}^N$
- Forgy method: Randomly chosen K points from the training set
- Random partition: Randomly assign a cluster to each point and go to step 3



#### **Stopping criteria**



1. K initial "means" (in this case K=3) are randomly generated within the data domain (shown in color)



2. K clusters are created by associating every observation with the nearest mean. The partitions here represent the Voronoi diagram generated by the means



3. The centroid of each of the K clusters becomes the new mean



4. Steps 2 and 3 are repeated until a stop-criterion is met

#### Stopping criteria: (Alternatives can be used simultaneously)

- Stop when the coordinates of the centroids change only very little from one iteration to the next
- Stop when only very few data points are re-assigned to a different centroid in a new iteration
- Stop after a fixed number of iterations (e.g. after 20-50 iterations)
- Stop after a certain time for the entire computation has elapsed (e.g. after 1 minute)



22

#### k-means in action



Source: WikiMedia k-means



#### k-means in action

Go to:

https://educlust.dbvis.de/

- Select "k-means" algorithm, "Three Equal Circles" data and k=3:
  - How many iterations does it take
  - Play with initial conditions. Does it always converge to the same solution?
- Select "k-means", "Outlier", k=4
  - Does it always converge to the same solution?
  - Play with initial conditions. Can you manage to create a stable solution with a centroid in a small cluster?
- Select "k-means", "Small Eyebrow", k=2
  - Explain the solutions and the shortcoming of k-means





#### Multiple runs of k-means

- Assume you run K-means several times, each time with a different set of initial centroids.
- Will the different runs always stop with the same clustering?





#### **Quality of k-means clustering**

- Because of the random initialization, the clusters found by k-means can vary from one run to another and different initial centroids might yield very different clustering results
- An optimal value of the hyperparameter k also needs to be selected
- Potential function (within-cluster inertia) measures the squared distance between each data point and its closest centroid and can be used to quantify the clustering quality

$$\Phi(C,X) = \sum_{m=1}^{M} min_{c \in C}(d(x^{(m)},c)^2)$$



#### Choosing k with the elbow method

#### The elbow method:

- Run k-means with different values of k and plot the value of the potential function for each k
- Select the k at the point where the slope of the curve significantly decreases (at the elbow)







#### **Summary**

- Method: Choose k initial centroids, and successively improve positions of these centroids
- Runtime of k-means: O(L\*K\*N\*M)
  - L: number of iterations
  - K: number of clusters
  - N: number of samples
  - M: number of features
- Advanced methods exist:
  - k-Means++ tries to find better initial centroids to reduce the runtime

# Density-based clustering: DBSCAN



#### **Definitions**

- minPts: minimum number of points (a threshold) clustered together for a region to be considered dense. (Will be a hyperparameter of DBSCAN)
- ε: distance measure (to define the neighborhood of any point)
- Point x is reachable from point y if and only if distance(x,y) < ε</p>
- Core point: has at least minPts points within distance ε from itself (e.g. point A)
- Border point (B,C): has at least one core point within distance ε (e.g. point B, C)
- Noise point: a point that is neither a core nor a border point (e.g. point N)

 DBSCAN: Density-based Spatial Clustering of Applications with Noise



DBSCAN



#### **DBSCAN** algorithm

- 1. Select an unprocessed point P
- 2. If P is not a Core Point (i.e. there are less than minPts points within range  $\epsilon$ ), then classify P as noise and go back to Step 1
- 3. Otherwise, if P is a core point, a new cluster is formed as follows:
- Assign all neighbors of P (i.e. all points within distance  $\epsilon$  from P) to the new cluster
- Repeat previous assignment step for all newly-assigned neighbors that are core points
- 4. Go back to Step 1
- 5. Continue algorithm until all data points have been processed.

DBSCAN



### **DBSCAN** algorithm: Step by step



31



### Example





DBSCAN 32



#### **DBSCAN** in action

Go to:

https://educlust.dbvis.de/

- Select "DBSCAN", "Hierarchical Data"
  - Which eps/MinPts do you need to choose to get upper visualization?
  - Which eps/MinPts do you need to choose to get lower visualization?





#### **Properties of DBSCAN**

#### Complexity (running time):

- $\bullet$  O(N<sup>2</sup>), with N being the number of samples
- With more efficient indexing data structure and for non-degenerated data: O(M \* log M)



- no need to specify the number of clusters in advance
- able to find arbitrarily shaped clusters
- able to detect noise

#### Disadvantages

cannot cluster data sets well with large differences in densities (solved with OPTICS, https://de.wikipedia.org/wiki/OPTICS)





#### **Summary**

- Based on density, i.e. closeness of datapoints
- Parameters ε and minPts determine neighborhood of points
- Can handle arbitrary shapes of clusters
- Running time O(M \* log M) with smart data structures

DBSCAN

## **Clustering evaluation**



#### **Observation**

 Different clustering algorithms yield very different clusterings! Which clustering is "the best"?





#### **Evaluation method: Silhouette score**

Given K clusters, M data points, and given any data point  $x^{(m)}$ , let:

- $a_m$  be the average distance of  $x^{(m)}$  with all other points in the *same* cluster.  $a_m$  measures how well  $x^{(m)}$  fits *into its own* cluster.
- $b_m$  is the smallest average distance of  $x^{(m)}$  to all points in any other cluster,  $x^{(m)}$  is not a member of.

The **Silhouette Score**  $s_m \in [-1,1]$  is then defined as:

$$s_m = \frac{b_m - a_m}{\max(b_m, a_m)}$$

The **Average Silhouette Score** is given by:

$$\frac{1}{M} \sum_{m=1}^{M} s_m$$





#### Interpreation of the silhouette score

- Value near +1: the sample is far away from the neighboring clusters
- Value close to 0: the sample is on or very close to the decision boundary between two neighboring clusters
- Negative value: the sample might have been assigned to the wrong cluster





#### Silhouette score for 4 datasets





#### Silhouette method for selecting best k

- Compute the average silhouette scores for different values of k (e.g. vary k from 1 to 10 clusters)
- Select the k corresponding to the maximum Average Silhouette Score





## Summary



## Comparison

| Algorithm     | K-Means                                                                                                                                                      | DBSCAN                                                                                                                                                      |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advantages    | <ul> <li>relatively easy and efficient to implement</li> <li>works for very large datasets</li> <li>computationally faster then other clusterings</li> </ul> | <ul> <li>no need to define number of clusters</li> <li>can discover arbitrarily shaped clusters</li> <li>robust to outliers and noise</li> </ul>            |
| Disadvantages | <ul> <li>sensitive to initialization</li> <li>number of clusters is hard to choose</li> <li>unable to handle outliers or noisy data</li> </ul>               | <ul> <li>not partitionable for multiprocesses</li> <li>datasets with different densities are tricky</li> <li>can depend on the order of the data</li> </ul> |



#### Further reading watching

•StatQuest: K-means clustering (8 min)

•StatQuest: <u>hierarchical clustering</u> (11 min)

•StatQuest: <u>clustering with DBSCAN</u> (9 min)

Don't confuse kNN with k-means clustering!