Chapter Twenty-Four

Monopoly

Pure Monopoly

A monopolized market has a single seller.

The monopolist's demand curve is the (downward sloping) market demand curve.

So the monopolist can alter the market price by adjusting its output level.

Pure Monopoly

Output Level, y

What causes monopolies?

-a legal fiat; e.g. US Postal Service

- -a legal fiat; e.g. US Postal Service
- -a patent; e.g. a new drug

- -a legal fiat; e.g. US Postal Service
- -a patent; e.g. a new drug
- -sole ownership of a resource; e.g. a toll highway

- -a legal fiat; e.g. US Postal Service
- -a patent; e.g. a new drug
- –sole ownership of a resource; e.g. a toll highway
- -formation of a cartel; e.g. OPEC

- -a legal fiat; e.g. US Postal Service
- -a patent; e.g. a new drug
- –sole ownership of a resource; e.g. a toll highway
- -formation of a cartel; e.g. OPEC
- large economies of scale; e.g. local utility companies.

Pure Monopoly

Suppose that the monopolist seeks to maximize its economic profit,

$$\Pi(y) = p(y)y - c(y).$$

What output level y* maximizes profit?

$$\Pi(y) = p(y)y - c(y).$$

At the profit-maximizing output level y*

$$\frac{d\Pi(y)}{dy} = \frac{d}{dy}(p(y)y) - \frac{dc(y)}{dy} = 0$$
so, for $y = y^*$,
$$\frac{d}{dy}(p(y)y) = \frac{dc(y)}{dy}.$$

Marginal revenue is the rate-of-change of revenue as the output level y increases;

$$MR(y) = \frac{d}{dy}(p(y)y) = p(y) + y\frac{dp(y)}{dy}.$$

Marginal revenue is the rate-of-change of revenue as the output level y increases;

$$MR(y) = \frac{d}{dy}(p(y)y) = p(y) + y\frac{dp(y)}{dy}.$$

dp(y)/dy is the slope of the market inverse demand function so dp(y)/dy < 0. Therefore

$$MR(y) = p(y) + y \frac{dp(y)}{dy} < p(y)$$
for y > 0.

E.g. if
$$p(y) = a - by$$
 then
 $R(y) = p(y)y = ay - by^2$
and so
 $MR(y) = a - 2by < a - by = p(y)$ for $y > 0$.

E.g. if
$$p(y) = a - by$$
 then
$$R(y) = p(y)y = ay - by^{2}$$
and so
$$MR(y) = a - 2by < a - by = p(y) \text{ for } y > 0.$$

$$a p(y) = a - by$$

$$a/2b a/b y$$

Marginal Cost

Marginal cost is the rate-of-change of total cost as the output level y increases;

$$MC(y) = \frac{dc(y)}{dy}.$$

E.g. if
$$c(y) = F + \alpha y + \beta y^2$$
 then
$$MC(y) = \alpha + 2\beta y.$$

Marginal Cost $c(y) = F + \alpha y + \beta y^2$ \$/output unit $MC(y) = \alpha + 2\beta y$ α

```
At the profit-maximizing output level y*, MR(y^*) = MC(y^*). So if p(y) = a - by and c(y) = F + \alpha y + \beta y^2 then MR(y^*) = a - 2by^* = \alpha + 2\beta y^* = MC(y^*)
```

At the profit-maximizing output level y^* , $MR(y^*) = MC(y^*)$. So if p(y) = a - by and if $c(y) = F + \alpha y + \beta y^2$ then

$$MR(y^*) = a - 2by^* = \alpha + 2\beta y^* = MC(y^*)$$

and the profit-maximizing output level is

$$y^* = \frac{\mathbf{a} - \alpha}{2(\mathbf{b} + \beta)}$$

At the profit-maximizing output level y*, $MR(y^*) = MC(y^*)$. So if p(y) = a - by and if $c(y) = F + \alpha y + \beta y^2$ then

$$MR(y^*) = a - 2by^* = \alpha + 2\beta y^* = MC(y^*)$$

and the profit-maximizing output level is

$$\mathbf{y}^* = \frac{\mathbf{a} - \alpha}{2(\mathbf{b} + \beta)}$$

causing the market price to be

$$p(y^*) = a - by^* = a - b \frac{a - \alpha}{2(b + \beta)}$$
.

\$/output unit

\$/output unit

Suppose that market demand becomes less sensitive to changes in price (*i.e.* the own-price elasticity of demand becomes less negative). Does the monopolist exploit this by causing the market price to rise?

$$MR(y) = \frac{d}{dy}(p(y)y) = p(y) + y\frac{dp(y)}{dy}$$

$$= p(y) \left[1 + \frac{y}{p(y)} \frac{dp(y)}{dy} \right].$$

$$MR(y) = \frac{d}{dy}(p(y)y) = p(y) + y\frac{dp(y)}{dy}$$

$$= p(y) \left[1 + \frac{y}{p(y)} \frac{dp(y)}{dy} \right].$$

Own-price elasticity of demand is

$$\epsilon = \frac{p(y)}{y} \frac{dy}{dp(y)}$$

$$MR(y) = \frac{d}{dy}(p(y)y) = p(y) + y\frac{dp(y)}{dy}$$

$$= p(y) \left[1 + \frac{y}{p(y)} \frac{dp(y)}{dy} \right].$$

Own-price elasticity of demand is

$$\varepsilon = \frac{p(y)}{y} \frac{dy}{dp(y)}$$
 so $MR(y) = p(y) \left[1 + \frac{1}{\varepsilon} \right]$.

$$MR(y) = p(y) \left[1 + \frac{1}{\varepsilon} \right].$$

Suppose the monopolist's marginal cost of production is constant, at \$k/output unit. For a profit-maximum

For a profit-maximum
$$MR(y^*) = p(y^*) \begin{bmatrix} 1 + \frac{1}{\epsilon} \end{bmatrix} = k \text{ which is } p(y^*) = \frac{k}{1 + \frac{1}{\epsilon}}.$$

$$p(y^*) = \frac{k}{1 + \frac{1}{\epsilon}}.$$

E.g. if ε = -3 then p(y*) = 3k/2, and if ε = -2 then p(y*) = 2k. So as ε rises towards -1 the monopolist alters its output level to make the market price of its product to rise.

Notice that, since MR(y*) = p(y*)
$$\left[1 + \frac{1}{\epsilon}\right] = k$$
,
p(y*) $\left[1 + \frac{1}{\epsilon}\right] > 0$

Notice that, since MR(y*) = p(y*)
$$\left[1 + \frac{1}{\epsilon}\right] = k$$
,

$$p(y*) \left[1 + \frac{1}{\epsilon}\right] > 0 \implies 1 + \frac{1}{\epsilon} > 0$$

Notice that, since MR(y*) = p(y*)
$$\left[1 + \frac{1}{\epsilon}\right]$$
 = k,
 $p(y*) \left[1 + \frac{1}{\epsilon}\right] > 0 \implies 1 + \frac{1}{\epsilon} > 0$
That is, $\frac{1}{\epsilon} > -1$

Notice that, since
$$MR(y^*) = p(y^*) \left[1 + \frac{1}{\epsilon} \right] = k$$
,
$$p(y^*) \left[1 + \frac{1}{\epsilon} \right] > 0 \implies 1 + \frac{1}{\epsilon} > 0$$
That is, $\frac{1}{\epsilon} > -1 \implies \epsilon < -1$.

Notice that, since
$$MR(y^*) = p(y^*) \left[1 + \frac{1}{\epsilon} \right] = k$$
,
$$p(y^*) \left[1 + \frac{1}{\epsilon} \right] > 0 \implies 1 + \frac{1}{\epsilon} > 0$$

That is,
$$\frac{1}{\epsilon} > -1 \implies \epsilon < -1$$
.

So a profit-maximizing monopolist always selects an output level for which market demand is own-price elastic.

Markup pricing: Output price is the marginal cost of production plus a "markup."

How big is a monopolist's markup and how does it change with the own-price elasticity of demand?

$$p(y^*)\left[1+\frac{1}{\varepsilon}\right] = k \implies p(y^*) = \frac{k}{1+\frac{1}{\varepsilon}} = \frac{k\varepsilon}{1+\varepsilon}$$

is the monopolist's price.

$$p(y^*)\left[1+\frac{1}{\varepsilon}\right] = k \implies p(y^*) = \frac{k}{1+\frac{1}{\varepsilon}} = \frac{k\varepsilon}{1+\varepsilon}$$

is the monopolist's price. The markup is

$$p(y^*) - k = \frac{k\epsilon}{1+\epsilon} - k = -\frac{k}{1+\epsilon}.$$

$$p(y^*)\left[1+\frac{1}{\epsilon}\right] = k \implies p(y^*) = \frac{k}{1+\frac{1}{\epsilon}} = \frac{k\epsilon}{1+\epsilon}$$

is the monopolist's price. The markup is

$$p(y^*) - k = \frac{k\epsilon}{1+\epsilon} - k = -\frac{k}{1+\epsilon}.$$

E.g. if ε = -3 then the markup is k/2, and if ε = -2 then the markup is k. The markup rises as the own-price elasticity of demand rises towards -1.

A Profits Tax Levied on a Monopoly

A profits tax levied at rate t reduces profit from $\Pi(y^*)$ to $(1-t)\Pi(y^*)$.

Q: How is after-tax profit, $(1-t)\Pi(y^*)$, maximized?

A Profits Tax Levied on a Monopoly

A profits tax levied at rate t reduces profit from $\Pi(y^*)$ to $(1-t)\Pi(y^*)$.

Q: How is after-tax profit, $(1-t)\Pi(y^*)$, maximized?

A: By maximizing before-tax profit, $\Pi(y^*)$.

A Profits Tax Levied on a Monopoly

A profits tax levied at rate t reduces profit from $\Pi(y^*)$ to $(1-t)\Pi(y^*)$.

Q: How is after-tax profit, $(1-t)\Pi(y^*)$, maximized?

A: By maximizing before-tax profit, $\Pi(y^*)$. So a profits tax has no effect on the monopolist's choices of output level, output price, or demands for inputs. I.e. the profits tax is a neutral tax.

A quantity tax of \$t/output unit raises the marginal cost of production by \$t. So the tax reduces the profitmaximizing output level, causes the market price to rise, and input demands to fall.

The quantity tax is distortionary.

Can a monopolist "pass" all of a \$t quantity tax to the consumers? Suppose the marginal cost of production is constant at \$k/output unit.

With no tax, the monopolist's price is

$$p(y^*) = \frac{k\epsilon}{1+\epsilon}.$$

The tax increases marginal cost to \$(k+t)/output unit, changing the profit-maximizing price to

$$p(y^{t}) = \frac{(k+t)\varepsilon}{1+\varepsilon}.$$

The amount of the tax paid by buyers is

$$p(y^{t}) - p(y^{*}).$$

$$p(y^t) - p(y^*) = \frac{(k+t)\epsilon}{1+\epsilon} - \frac{k\epsilon}{1+\epsilon} = \frac{t\epsilon}{1+\epsilon}$$

is the amount of the tax passed on to buyers. E.g. if $\varepsilon = -2$, the amount of the tax passed on is 2t.

Because ε < -1, ε /(1+ ε) > 1 and so the monopolist passes on to consumers more than the tax!

A market is Pareto efficient if it achieves the maximum possible total gains-to-trade.

Otherwise a market is Pareto inefficient.

Natural Monopoly

A natural monopoly arises when the firm's technology has economies-of-scale large enough for it to supply the whole market at a lower average total production cost than is possible with more than one firm in the market.

Natural Monopoly

\$/output unit

Natural Monopoly

Entry Deterrence by a Natural Monopoly

A natural monopoly deters entry by threatening predatory pricing against an entrant.

A predatory price is a low price set by the incumbent firm when an entrant appears, causing the entrant's economic profits to be negative and inducing its exit.

Entry Deterrence by a Natural Monopoly

E.g. suppose an entrant initially captures one-quarter of the market, leaving the incumbent firm the other three-quarters.

Entry Deterrence by a Natural Monopoly

Entry Deterrence by a Natural

Entry Deterrence by a Natural

Inefficiency of a Natural Monopolist

Like any profit-maximizing monopolist, the natural monopolist causes a deadweight loss.

Inefficiency of a Natural Monopoly

Inefficiency of a Natural Monopoly

Inefficiency of a Natural Monopoly

Why not command that a natural monopoly produce the efficient amount of output?

Then the deadweight loss will be zero, won't it?

So a natural monopoly cannot be forced to use marginal cost pricing. Doing so makes the firm exit, destroying both the market and any gains-to-trade.

Regulatory schemes can induce the natural monopolist to produce the efficient output level without exiting.