Assertion- Reason

Some questions (Assertion–Reason type) are given below. Each question contains **Statement – 1** (**Assertion**) and **Statement – 2** (**Reason**). Each question has 4 choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct. So select the correct choice :*Choices are*:

- (A)Statement 1 is True, Statement 2 is True; Statement 2 is a correct explanation for Statement 1.
- (B)Statement 1 is True, Statement 2 is True; Statement 2 is NOT a correct explanation for Statement 1.
- (C) **Statement 1** is True, **Statement 2** is False.
- (D) Statement -1 is False, Statement -2 is True.
- **452.** Let $\overline{a}, \overline{b}, \overline{c}$ be three non-coplanar vectors then $(\overline{b} \overline{c}).[(\overline{c} \overline{a}) \times (\overline{a} \overline{b})] = 0$

Statement 1: $\overline{b} - \overline{c}$ can be expressed as linear combination of $\overline{c} - \overline{a}$ and $\overline{a} - \overline{b}$.

Statement 2: Given non-coplanar vectors one vector can be expressed as a linear combination of other two.

453. A vector has components p and 1 with respect to a rectangular cartesian system. If the axes are rotated through an angle α about the origin in the anticlockwise sense.

Statement-1: If the vector has component p + 2 and 1 with respect to the new system then p = -1

Statement-2: Magnitude of vector original and new system remains same

454. Let $|\vec{a}| = 4$, $|\vec{b}| = 2$ and angle between \vec{a} and \vec{b} is $\pi/6$

Statement-1: $(\vec{a} \times \vec{b})^2 = 4$

Statement-2: $(\vec{a} \times \vec{b})^2 = |\vec{a}|^2$

455. Statement-1 : $[\vec{b} \times \vec{c} \ \vec{c} \times \vec{a} \ \vec{a} \times \vec{b}] = 0$

Statement-2: If \vec{a} , \vec{b} , \vec{r} are linearly dependent vectors then they are coplanar.

456. Statement-1: If $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$ then \vec{a} is parallel to \vec{b} .

Statement-2: If $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$ then $\vec{a} \cdot \vec{b} = 0$.

457. Let \vec{r} be a non-zero vector satisfying $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = 0$ for given non-zero vectors \vec{a} , \vec{b} and \vec{c} .

Statement-1: \vec{a} , \vec{b} and \vec{c} are coplanar vectors.

Statement-2 : \vec{r} is perpendicular to the vectors \vec{a} , \vec{b} and \vec{c} .

458. Let \vec{a} and \vec{r} be two non-collinear vectors.

Statement-1: vector $\vec{a} \times (\vec{a} \times \vec{r})$ is a vector in the plane of \vec{a} and \vec{r} , perpendicular to \vec{a} .

Statement-2 : $\vec{a} \times (\vec{a} \times \vec{b}) = \vec{0}$, for any vector \vec{b} .

- **459. Statement–1**: If three points P, Q, R have position vectors \vec{a} , \vec{b} , \vec{c} respectively and $2\vec{a} + 3\vec{b} 5\vec{c} = 0$, then the points P, Q, R must be collinear. **Statement–2**: If for three points A, B, C; $\overrightarrow{AB} = \lambda \overrightarrow{AC}$, then the points A, B, C must be collinear.
- **460.** Statement-1: Let \vec{a} and \vec{b} be two non collinear unit vectors. If $\vec{u} = \vec{a} (\vec{a} \cdot \vec{b})\vec{b}$ and $\vec{v} = \vec{a} \times \vec{b}$ then $|\vec{v}| = |\vec{u}|$.

Statement–2: The vector $\frac{1}{3}(2\hat{i}-2\hat{j}+\hat{k})$ is makes an angle of $\frac{\pi}{3}$ with the vector $(5\hat{i}-4\hat{j}+3\hat{k})$.

461. Statement-1: If $\vec{u} \& \vec{v}$ are unit vectors inclined at an angle α and \vec{x} is a unit vector bisecting the angle between $\vec{u} + \vec{v}$

them, then $\vec{x} = \frac{\vec{u} + \vec{v}}{2\cos\frac{\alpha}{2}}$

Statement-2: If $\triangle ABC$ is an isosceles triangle with AB = AC = 1, then vector representing bisector of angle A is given by $\overrightarrow{AD} = \frac{\overrightarrow{AB} + \overrightarrow{AC}}{2}$

462. Statement-1: The direction ratios of line joining origin and point (x, y, z) must be x, y, z.

Statement-2: If P is a point (x, y, z) in space and OP = r, then direction cosines of OP are $\frac{x}{r}, \frac{y}{r}, \frac{z}{r}$.

463. Statement-1: If the vectors $2\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 3\hat{\mathbf{k}}$ and $3\hat{\mathbf{i}} - \lambda\hat{\mathbf{j}} + 5\hat{\mathbf{k}}$ are coplanar, then $|\lambda|^2$ is equal to 16.

Statement-2: The vectors \vec{a} , \vec{b} and \vec{c} are coplanar iff \vec{a} , $(\vec{b} \times \vec{c}) = 0$

464. Statement-1: A line L is perpendicular to the plane 3x - 4y + 5z = 10

Statement-2: Direction co-sines of L be $<\frac{3}{5\sqrt{2}}, -\frac{4}{5\sqrt{2}}, \frac{1}{\sqrt{2}}>$

465. Statement-1: The points with position vectors $\vec{a} - 2\vec{b} + 3\vec{c}$, $-2\vec{a} + 3\vec{b} - \vec{c}$, $4\vec{a} - 7\vec{b} + 7\vec{c}$ are collinear.

Statement-2: The position vectors $\vec{a} - 2\vec{b} + 3\vec{c}$, $-2\vec{a} + 3\vec{b} - \vec{c}$, $4\vec{a} - 7\vec{b} + 7\vec{c}$ are linearly dependent vectors.

466. Statement-1: If $\vec{a}, \vec{b}, \vec{c}$ are three unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1}{2}\vec{b}$ then the angle between $\vec{a} \& \vec{b}$ is $\pi/2$

Statement-2: If $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1}{2}\vec{b}$, then $\vec{a} \cdot \vec{b} = 0$.

467. Statement-1: If $\cos\alpha$, $\cos\beta$, $\cos\gamma$ are the direction cosine of any line segment, $\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$.

Statement-2: If $\cos \alpha$, $\cos \beta$, $\cos \gamma$ are the direction cosine of line segment, $\cos 2\alpha + \cos 2\beta + \cos 2\gamma = -1$.

468. Statement-1: The direction cosines of one of the angular bisector of two intersecting lines having direction cosines as l_1 , m_1 , n_1 , & l_2 , m_2 , n_2 is proportional to $l_1 + l_2$, $m_1 + m_2$, $n_1 + n_2$

Statement-2: The angle between the two intersecting lines having direction cosines as l_1 , m_1 , n_1 & l_2 , m_2 , n_2 is given by $\cos\theta = l_1 l_2 + m_1 m_2 + n_1 n_2$.

469. Statement-1: If $\vec{a} \cdot \vec{b} = 0 \Rightarrow \vec{a} \perp \vec{b}$ Statem

Statement-2: $\vec{a} \cdot \vec{b} = 0 \Rightarrow \text{ either } \vec{a} = 0 \text{ or } \vec{b} = 0 \text{ or } \vec{a} \perp \vec{b}$

470. Statement-1: $\vec{A} \times \vec{B} = \vec{B} \times \vec{A}$

Statement-2: $\vec{A} \times \vec{B} = |\vec{A}| |\vec{B}| \sin \theta \hat{n}$, when θ is angle, when your fingers curls from A to B

471. Statement-1: A vector \perp^r the plane of (1, -1, 0), (2, 1, -1) & (-1, 1, 2) is $6\hat{i} + 6\hat{k}$

Statement-2: $\vec{A} \times \vec{B}$ always gives a vector perpendicular to plane of $\vec{A} \& \vec{B}$

472. Statement-1: Angle between planes $\vec{r} \cdot \vec{n}_1 = \vec{q}_1 \& \vec{r} \cdot \vec{n}_2 = \vec{q}_2$.

(acute angle) is given by $\cos \theta = \vec{n}_1 \cdot \vec{n}_2$

Statement-2: Angle between the planes in same as acute angle formed by their normals.

473. Statement-1: In $\triangle ABC$, $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0$

Statement-2: If $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$ then $\overrightarrow{AB} = \vec{a} + \vec{b}$

474. Statement-1: $\vec{a} = 3\vec{i} + p\vec{j} + 3\vec{k}$ and $\vec{b} = 2\vec{i} + 3\vec{j} + q\vec{k}$ are parallel vectors it p = 9/2 and q = 2.

Statement-2: If $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$ and $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$ are parallel $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$

475. Statement-1: The direction ratios of line joining origin and point (x, y, z) must be x, y, z

Statement-2: If P is a point (x,y, z) in space and OP = r then directions cosines of OP are $\frac{x}{r}$, $\frac{y}{r}$, $\frac{z}{r}$

476. Statement-1: The shortest distance between the skew lines $\vec{r} = \vec{a} + \alpha \vec{b}$ and $\vec{r} = \vec{c} + \beta \vec{d}$ is $\frac{|\vec{a} - \vec{c} \cdot \vec{b} \cdot \vec{d}|}{|\vec{b} \times \vec{d}|}$

Statement-2: Two lines are skew lines if three axist no plane passing through them.

477. Statement-1: $\vec{a} = \hat{i} + p\hat{j} + 2\hat{k}$, $\vec{b} = 2\hat{i} + 3\hat{j} + q\hat{k}$ are parallel vectors of p = 3/2 and q = 4.

Statement-2: $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ are parallel if $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$.

478. Statement-1: If $\vec{a} = 2\hat{i} + \hat{k}$, $\vec{b} = 3\hat{j} + 4\hat{k}$ and $\vec{c} = 8\hat{i} - 3\hat{j}$ are coplanar then $\vec{c} = 4\vec{a} - \vec{b}$. **Statement-2:** A set of vectors $\vec{a}_1, \vec{a}_2 ... \vec{a}_n$ is said to be linearly independent if every relation of the form $l_1 \vec{a}_1 + l_2$

 $\vec{\mathbf{a}}_2 + \dots + l_n \ \vec{\mathbf{a}}_n = 0$ implies that $l_1 = l_2 = \dots = l_n = 0$ (scalars).

479. Statement-1: The shortest distance between the skew lines $\vec{r} = \vec{a} + \alpha \vec{b}$ and $\vec{r} = \vec{c} + \beta \vec{d}$ is $\left| \frac{(\vec{a} - \vec{c}) \cdot (\vec{b} \times \vec{d})}{|\vec{b} \times \vec{d}|} \right|$

Statement-2: Two lines are skew lines if there exists no plane passing through them.

480. Statement-1: The curve which is tangent to a sphere at a given point is the equation of a plane.

Statement-2: Infinite number of lines touch the sphere at a given point.

- 481. Statement-1: In $\triangle ABC$ $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{O}$ Statement-2: If $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$, then $\overrightarrow{AB} = \overrightarrow{a} + \overrightarrow{b}$ (\triangle law of addition).
- **482. Statement-1:** $\vec{a} = \hat{i} + p\hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} + 3\hat{j} + q\hat{k}$ are parallel vectors if $P = \frac{3}{2}$, q = 4**Statement-2:** If $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ are parallel then $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$.
- **483. Statement-1:** If $\vec{a} = 2\hat{i} + \hat{k} \vec{a}_1, \vec{a}_3, \vec{a}_3, ..., \vec{b} = 3\hat{j} + 4\hat{k}$ and $\vec{c} = 8\hat{i} 3\hat{j}$ are coplanar then $\vec{c} = 4\vec{a} \vec{b}$ **Statement-2:** A set of vectors is said to be linearly independent if every relation of the form $l_1\vec{a} + l_2\vec{a}_2 + + l_n\vec{a}_n = 0 \Rightarrow l_1 = l_2 = = l_n = 0$.
- **484. Statement-1:** The shortest distance between the skew lines $\vec{r} = \vec{a}_1 + \alpha \vec{b}_1$ and $\vec{r} = \vec{a}_2 + \beta \vec{b}_2$ is $\frac{\left| \vec{b}_1 \vec{b}_2 (\vec{a}_2 \vec{a}_1) \right|}{(\vec{b}_1 \times \vec{b}_2)}$ **Statement-2:** Two lines are skew lines if there exists no plane passing through them.
- 485. Statement-1: The value of expression $\hat{\mathbf{i}}(\hat{\mathbf{j}} \times \hat{\mathbf{k}}) + \hat{\mathbf{j}}(\hat{\mathbf{k}} \times \hat{\mathbf{i}}) + \hat{\mathbf{k}}(\hat{\mathbf{i}} \times \hat{\mathbf{j}}) = 3$ Statement-2: $\hat{\mathbf{i}}(\hat{\mathbf{j}} \times \hat{\mathbf{k}}) = [\hat{\mathbf{i}}.\hat{\mathbf{j}}.\hat{\mathbf{k}}] = 1$
- **486.** Statement-1: A relation between the vectors \vec{r} , \vec{a} and \vec{b} is $\vec{r} \times \vec{a} = \vec{b} \Rightarrow \vec{r} = \frac{\vec{a} \times \vec{b}}{\vec{a} \cdot \vec{a}}$ Statement-2: $\vec{r} \cdot \vec{a} = 0$

3-Dimension

487. The equation of two straight line are $\frac{x-1}{2} = \frac{y+3}{1} = \frac{z-2}{-3}$ and $\frac{x-2}{1} = \frac{y-1}{-3} = \frac{z+3}{2}$

Statement–1: The given lines are coplanar

Statement-2: The equation $2x_1 - y_1 = 1$, $x_1 + 3y_1 = 4$, $3x_1 + 2y_1 = 5$ are consistent.

488. Statement-1: The distance between the planes 4x - 5y + 3z = 5 and 4x - 5y + 3z + 2 = 0 is $\frac{3}{z\sqrt{z}}$. Statement-2 The distance between $ax + by + cz + d_1 = 0$ and $ax + by + cz + d_2$

$$= 0 \text{ is } \left| \frac{d_1 - d_2}{\sqrt{a^2 + b^2 + c^2}} \right|.$$

489. Given the line $\frac{x-1}{3} = \frac{y+1}{2} = \frac{z-3}{-1}$ and the plane $\pi : x - 2y - z = 0$

Statement-1: L lies in π

Statement-2: L is parallel to π

490. The image of the point (1, b, 3) in the **Statement-1:** Line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ will be (1, 0, 7)

VECTORS & 3D PART 6 OF 6

Statement-2: Length of the perpendicular from the point $A(\overline{\alpha})$ on the line $\vec{r} = \vec{a} + t\vec{b}$, is given by $d = t\vec{b}$

1(2	$\overline{a} - \overline{\alpha}) \times \overline{b}$
	۱ l

Answer

452. C	453. A	454. D	455. D	456. D	457. A	458. C
459. A	460. C	461. A	462. A	463. A	464. A	465. A
466. A	467. B	468. B	469. D	470. D	471. A	472. A
473. C	474. A	475. A	476. B	477. A	478. B	479. B
480. A	481. C	482. A	483. B	484. B	485. A	486. A
487. A	488. D	489. C	490. B	•	•	_

459.	A 460. C	461. A	462. A	463. A	464. A 465. A	
466.	A 467. B	468. B	469. D	470. D	471. A 472. A	
473.	C 474. A	475. A	476. B	477. A	478. B 479. B	
480.	A 481. C	482. A	483. B	484. B	485. A 486. A	
487.	A 488. D	489. C	490. B			
	O	. C		4 TZ		
	Qu	e from	ı Com	pt. Ex	ams	
			Geometry of Thr	■.		
1.	The direction cosines of a line				$\sqrt{17}$ and the co-ordinates of A are	: (3, –
	6, 10), then the co-ordinates of	=	, ,	• •	•	
	(a) $(1, -2, 4)$	(b) (2, 5, 8)	(c)	(-1, 3, -8)	(d) $(1, -3, 8)$	
2.	The projection of any line on co		pectively 3, 4, 5 then	-	[MP PET 1995; RPET 2001]	
_	(a) 12	(b) 50	G	(c) $5\sqrt{2}$	(d) None of these	1)
3.	If centroid of the tetrahedron		C are given by (a, a)	(2, 3), (1, b, 2) and (2, 3)	(1, c) respectively be $(1, 2)$	2, –1),
	then distance of $P(a,b,c)$ from			T		
	(a) $\sqrt{107}$	(b) √14	(c)	$\sqrt{107/14}$	(d) None of these	
4.	If $P = (0, 1, 0), Q = (0, 0, 1)$, th	= -	on the plane $x + y$	_	[EAMCET 2002]	
	(a) $\sqrt{3}$	(b) 3	(c)	$\sqrt{2}$ (d)	2	
5∙	The points $A(4,5,1), B(0,-1,-1)$	-1), $C(3, 9, 4)$ and $D(-1)$	-4, 4, 4) are		TV 114 OPP	20021
	(a) Collinear	(b) Coplanar	(c)	Non- coplanar	[Kurukshetra CEE	2002]
	(d) Non-Collinear and non-c	oplanar		•		
6.	The angle between two diagon					
	(a) $\sin^{-1} 1/3$	(b) $\cos^{-1} 1/3$	(c)	Variable (d)	None of these	
7•	The equations of the line pass	sing through the poi	nt (1,2,–4) and pe	rpendicular to the tv	wo lines $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$	- and
	$\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{5}$, wi	ill he		[AI CBS	F 19831	
	3 6 -3			_	-	
	(a) $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z+4}{6}$	(b) $\frac{x-1}{-2} = \frac{y-2}{3}$	$-=\frac{z+4}{8} (c)$	$\frac{x-1}{3} = \frac{y-2}{2} = \frac{y-2}{2}$	$\frac{z+4}{8}$ (d) None of thes	e
8.	If three mutually perpendicula	r lines have direction	cosines (l_1, m_1, n_1)	(l_2, m_2, n_2) and (l_3)	(m_3, n_3) , then the line having dire	ection
	cosines $l_1 + l_2 + l_3$, $m_1 + m_2$	$_{2} + m_{3} \text{ and } n_{1} + n_{2}$	$+n_3$ make an angle	e of with each of	her	
	(a) 0°	(b) 30°	(c)	60° (d)	90°	
9.	The straight lines whose direct					
	(a) $\frac{f}{a} + \frac{g}{b} + \frac{h}{c} = 0$	(b) $\sqrt{\frac{a}{f}} + \sqrt{\frac{b}{g}} + \sqrt{\frac{b}{g}}$	$\sqrt{\frac{c}{h}} = 0$ (c) $\sqrt{af} = \sqrt{a}$	$\sqrt{bg} = \sqrt{ch}$ (d) $\sqrt{\frac{a}{f}}$	$=\sqrt{\frac{b}{g}}=\sqrt{\frac{c}{h}}$	
10.		$y = -3 - \lambda s, z = 1$	$1 + \lambda s$ and $x = t/2$	2, y = 1 + t, z = 2 - t,	with parameters s and t respecti	ively,
	are co-planar, then λ equals	[AIEEE 2004]			_	
11	(a) 0 The second instance of the feet of	(b) -1	(c)	-1/2 (d)	-2 to $A(4.7.1)$ and $B(2.5.2)$ is IDDE	т 011
11.	The co-ordinates of the foot of				ts $A(4,7,1)$ and $B(3,5,3)$ is [RPE	1 VI]
	(a) (5, 7, 1)	(b) $\left(\frac{5}{3}, \frac{7}{3}, \frac{17}{3}\right)$	(c)	$\left(\frac{2}{3},\frac{5}{3},\frac{7}{3}\right)$	$(d) \qquad \left(\frac{5}{3}, \frac{2}{3}, \frac{7}{3}\right)$	
12.	If the lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z}{3}$	$\frac{-1}{4}$ and $\frac{x-3}{1} = \frac{y}{1}$	$\frac{-k}{1} = \frac{z}{1}$ intersect, t	hen k =	[IIT Screening 2004]	

	(a) $\frac{2}{9}$	(b) $\frac{9}{2}$	(c)	0 (d)	None of these	
13.	A square ABCD of diagona	al $2a$ is folded alo		so that the plan	nes DAC and BAC are at right angle.	The
	shortest distance between DC (a) $\sqrt{2}a$	(b) $2a/\sqrt{3}$	(c)	$2a1\sqrt{5}$ (d)	$(\sqrt{3}/2)a$	
14.	• •		* *		a = z and $x + a = 2y = 2z$. The co-ordin	ates
	of each of the points of interse (a) $(2a, a, 3a), (2a, a, a)$	ection are given b			[AIEEE 2004] (d) (3a, 3a, 3a), (a, a, a)	
15.					3x - y - 4z = 0 and $x + 3y + 6 = 0$ wh	iose
Ü	distance from the origin is 1,	are				
	(a) $x - 2y - 2z - 3 = 0$, 2.				$-3 = 0, \ 2x + y + 2z + 3 = 0$	
	(c) $x + 2y - 2z - 3 = 0$, 22					
16.	constant, then the locus of P is	3			P moves so that $PA^2 - PB^2 = k$ where k	is a
17.	(a) A line The equation of the plane	(b) A plane e passing through	(c) (c) gh the points $(1,-3)$	A sphere (d)	None of these endicular to planes $x + 2y + 2z = 5$	and
-/-	3x + 3y + 2z = 8, is	- F	[AISSE 1987]	, _, pp		
	(a) $2x - 4y + 3z - 8 = 0$	(b) $2x - 4y -$		2x + 4y + 3	z + 8 = 0 (d) None of these	
18.	A variable plane at a constant	nt distance p from	n origin meets the co	ordinates axes i	in A, B, C . Through these points planes	are
	drawn parallel to co-ordinate					
	(a) $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{1}{p^2}$	(b) $x^2 + y^2 - $	$+z^2 = p^2 \text{(c) } x + y$	+z=p (d)	$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = p$	
19.	P is a fixed point (a, a, a) on	a line through the	e origin equally incline	ed to the axes, th	en any plane through P perpendicular to	OP,
	makes intercepts on the axes,	_		_		
	(a) <i>a</i>	24	(c)	2		
20.				2y + 3z - 4 = 0	, $4x + 3y + 2z + 1 = 0$ and passing thro	ugh
	the origin will be (a) $x + y + z = 0$	[MP PET	1998]	7x + 4y + 5	= 0 (d) 17 x + 14 y + z = 0	
				-		
21.	The d.r's of normal to the pla	ne through (1, 0, 0	(0,1,0) which mak	tes an angle $\frac{\pi}{4}$ v	with plane $x + y = 3$, are [AIEEE 2002]	
	(a) $1, \sqrt{2}, 1$	(b) $1,1, \sqrt{2}$	(c)	1, 1, 2 (d)	$\sqrt{2}, 1, 1$	
22.	Two systems of rectangular a	xes have the same	e origin. If a plane cuts	s them at distance	e a, b, c and a', b', c' from the origin, then	
	(a) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{a^{2}} + \frac{1}{a^2}$	$\frac{1}{b'^2} + \frac{1}{c'^2} = 0$	(b)	$\frac{1}{a^2} + \frac{1}{b^2} - \cdots$	$\frac{1}{c^2} + \frac{1}{{a'}^2} + \frac{1}{{b'}^2} - \frac{1}{{c'}^2} = 0$	
	(c) $\frac{1}{a^2} - \frac{1}{h^2} - \frac{1}{c^2} + \frac{1}{a^{2}} - \frac{1}{a^{2}}$	$\frac{1}{{b'}^2} - \frac{1}{{c'}^2} = 0$	(d)	$\frac{1}{a^2} + \frac{1}{h^2} + \cdots$	$\frac{1}{c^2} - \frac{1}{{a'}^2} - \frac{1}{{b'}^2} - \frac{1}{{c'}^2} = 0 \text{ [AIEEE 2003]}$	
23.	If $4x + 4y - kz = 0$ is the eq	uation of the plan	ne through the origin t	hat contains the l	ine $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z}{4}$, then $k =$	
Ü			(c)			
	(a) 1	(b) 3	1.			
24.	The distance of the point (1, -	-2, 3) from the pla	ane $x - y + z = 5$ mean	asured parallel to	- 5 0	
	(a) 1	(b) 6/7	(c)	7/6 (d)		
25.	The distance of the point of i	intersection of the	e line $\frac{x-3}{1} = \frac{y-4}{2} = \frac{y-4}{2}$	$=\frac{z-5}{2}$ and the p	plane $x + y + z = 17$ from the point (3, 4)	1, 5)
	is given by		1 2	2		
	(a) 3	(b) 3/2	(c)	$\sqrt{3}$ (d)	None of these	
26.	The lines $\frac{x-a+d}{a} = \frac{y-a}{a}$	$=\frac{z-a-d}{a}$ and	$\frac{x-b+c}{c} = \frac{y-b}{c} = \frac{y-b}{c}$	$\frac{z-b-c}{}$ are cop	planar and then equation to the plane in	
		$\alpha + \delta$	$\beta - \gamma$ β	$\beta + \gamma$	•	
	which they lie, is (a) $x + y + z = 0$	(b) $x - y + z$	= 0 (c)	x - 2y + 7 =	= 0 (d) $x + y - 2z = 0$	
27.	The line $\frac{x-3}{2} = \frac{y-4}{3} = \frac{z}{3}$					
-	(a) 4, 8	4 (b) -5, -3		5,3 (d)		
28.	The value of k such that $\frac{x-1}{1}$					
	1	1 2	piune 23	, , , , ,		

DC	OWNLOAD FREE FRO MATHS H.O.D.: S	M www.tekocla UHAG R.KARIYA ,				00, 0 9893 PART 6 OF	
	(a) 7	(b) -7	(c)	No real va	` '	4	
T	he shortest distance from th	e plane $12x + 4y + 3z =$	= 327 to the spher	$e x^2 + y^2 + z$	$z^2 + 4x - 2y$	-6z = 155 is	[AIEEE 2003]
	(a) 26	(b) $11\frac{4}{13}$	(c)	13	(d) 39		
29.	The radius of the circle in	which the sphere $x^2 + y$	$y^2 + z^2 + 2x - 2y$	-4z - 19 = 0	0 is cut by the	plane $x + 2y +$	2z + 7 = 0 is
	(a) 1	(b) 2	(c)			IEEE 2003]	
30.	The equation of motion or moving point in kilometer in 10 seconds	s. What is the path of the	e rocket? At what	distance will b	be the rocket b	e from the startin	ng point 0(0, 0, 0)
31.	(a) Straight line, 60 km The plane $lx + my = 0$ is its new position is	(b) Straight line, 3 rotated an angle α about		Parabola, ection with the	` /	Ellipse, 60 , then the equation	
	(a) $lx + my \pm z\sqrt{(l^2 + m^2)}$	$\overline{(2)}$ tan $\alpha = 0$					
	(b) $lx - my \pm z\sqrt{(l^2 + m^2)}$	$\overline{(2)}$ tan $\alpha = 0$					
	(c) $lx + my \pm z\sqrt{(l^2 + m^2)^2}$	$\frac{1}{2}$) cos $\alpha = 0$					
	(d) $lx - my \pm z\sqrt{(l^2 + m^2)^2}$	(2) $\cos \alpha = 0$					
32.	The distance between two	points P and Q is d and	the length of the	ir projections	of PQ on the	co-ordinate plan	es are d_1, d_2, d_3 .
	Then $d_1^2 + d_2^2 + d_3^2 = kd^2$	where 'k' is					
	(a) 1	(b) 5 (d) 2					
00	(c) 3 If P_1 and P_2 are the		digulars from th	a nainta (2 '	2.4) and (1.1	4) magnactivaly	from the plane
33.	3x - 6y + 2z + 11 = 0, th				5,4) and (1,1)	,4) respectively	nom the plane
	(a) $P^2 - 23P + 7 = 0$						
	(c) $P^2 - 17P + 16 = 0$	(d) $P^2 - 16P + 7$	= 0				
34.	The edge of a cube is of le	ength 'a' then the shortes	t distance between	the diagonal	of a cube and	an edge skew to	it is
	(a) $a\sqrt{2}$	(b) <i>a</i>					
	(c) $\sqrt{2}/a$	(d) $a/\sqrt{2}$					
		Que from	n Com	_			

1	d	2	С	3	а	4	С	5	b
6	b	7	а	8	а	9	а	10	d
11	b	12	b	13	b	14	b	15	а
16	b	17	а	18	а	19	d	20	b
21	b	22	d	23	С	24	а	25	а
26	С	27	С	28	а	29	С	30	С
31	а	32	а	33	d	34	b	35	d

Que from Compt. Exams

1.	Three forces of magnitudes	s 1, 2, 3 dynes meet in a po	int and act	along dia	igonals o	f three ad	ljacent faces of a cube	e. The
	resultant force is	[MNR 1	987]					
		(b) 6 dyne		5 dyne		None of		
2.	The vectors \mathbf{b} and \mathbf{c} are in	the direction of north-east	and north-	west resp	ectively	and b =	$ \mathbf{c} $ = 4. The magnitud	e and
	direction of the vector $\mathbf{d} = \mathbf{c}$			-	•			
	(a) $4\sqrt{2}$, towards north	(b) $4\sqrt{2}$, towards west	(c)	4, towar	rds east	(d)	4, towards south	
3∙	If a , b and c are unit vector	rs, then $ \mathbf{a} - \mathbf{b} ^2 + \mathbf{b} - \mathbf{c} ^2$	$+ \mathbf{c} - \mathbf{a} ^2$	does not	exceed[1	IT Screen	ning 2001]	
	(a) 4	(b) 9	(c)	8	(d)	6		
4.	The vectors $\overrightarrow{AB} = 3\mathbf{i} + 5\mathbf{j} + 4\mathbf{j}$	$4\mathbf{k}$ and $\overrightarrow{AC} = 5\mathbf{i} - 5\mathbf{j} + 2\mathbf{k}$	are the side	es of a tria	angle <i>AB</i>	C. The len	igth of the median thi	ough
	A is	[UPSEAT 2004]						
	(a) $\sqrt{13}$ unit	(b) $2\sqrt{5}$ unit	(c)	5 unit	(d)	10 unit		
5.	Let the value of $\mathbf{p} = (x + 4)$	(y) a + $(2x + y + 1)$ b and q =	= (y - 2x + 2)	$(2)\mathbf{a} + (2x - 2)\mathbf{a}$	-3y-1)	, where	a and b are non-coll	linear
	vectors. If $3\mathbf{p} = 2\mathbf{q}$, then the	he value of x and y will be			[RPET	1984; MN	R 1984]	

6.	(a) -1 , 2 The points D , E , F divide BC K divides AB in the ratio 1:		le <i>ABC</i> in th	ne ratio 1 : 4	4, 3 : 2 a	2, 1\ nd 3 : 7 ! [MNR 19		ely and the point
7•	(a) 1:1 If two vertices of a triangle a			ex can be	d)	None of	these [Roorke	e 1995]
	(e) All the above	(b) $\mathbf{i} - 2\mathbf{j} - \mathbf{k}$				2 i – j		
8.	If a of magnitude 50 is codirection of <i>z</i> -axis, then the		$\mathbf{o} = 6\mathbf{i} - 8\mathbf{j} -$	$\frac{15 \mathbf{k}}{2}$, and	l makes	an acut	e angle	with the positive
	(a) $24 i - 32 j + 30 k$	(b) $-24 \mathbf{i} + 32 \mathbf{j} + 30 \mathbf{k}$						
9.	If three non-zero vectors a						_	
	perpendicular to the vectors	s a and b and the angle be	tween a and	b is $\frac{\pi}{6}$, th	ien	$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$	$\begin{vmatrix} a_3 \\ b_3 \\ c_3 \end{vmatrix}$ is	equal to
	(a) o	(b) $\frac{3(\Sigma a_1^2)(\Sigma b_1^2)(\Sigma c_1^2)}{4}$	(c)	1 (d)	$\frac{(\Sigma a_1^2)(\Sigma b)}{4}$	² / ₁)	
10.	Let the unit vectors a and $\mathbf{c} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma (\mathbf{a} \times \mathbf{b})$, then			ctor c be in	nclined a	at an an	gle θ to	both a and b . If
	(a) $\alpha = \beta = \cos \theta$, $\gamma^2 = \cos \theta$	2θ	(b)	$\alpha = \beta = cc$	os θ , γ^2	$=-\cos 2$	θ	
	(c) $\alpha = \cos \theta$, $\beta = \sin \theta$, γ^2		(d)	None of th	iese			
11.	The vector $\mathbf{a} + \mathbf{b}$ bisects the (a) $ \mathbf{a} = \mathbf{b} $	e angle between the vector (b) a = b or angl (d) None of t	e between a		ro			
	(c) $ \mathbf{a} = m \mathbf{b} $			2 . 21		21	TC I	
12.	The points O, A, B, C, D are angle between \overrightarrow{BD} and \overrightarrow{AC}	is						: 31 b 1, then the
	(a) $\frac{\pi}{3}$	·		-				
13.	If $\overrightarrow{A} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, $\overrightarrow{B} = -\mathbf{i} + 2$	$\mathbf{j} + \mathbf{k}$ and $\overrightarrow{C} = 3\mathbf{i} + \mathbf{j}$, then	the value of				nt angle t	o vector \overrightarrow{C} , is [RPET 2002]
14.	(a) 2 Let $\mathbf{b} = 4\mathbf{i} + 3\mathbf{j}$ and \mathbf{c} be two projections 1 and 2 along \mathbf{b} ?			in the xy-p	olane. Al	6 l vectors	in the sa	nme plane having
	(a) $2\mathbf{i} - \mathbf{j}, \frac{2}{5}\mathbf{i} + \frac{11}{5}\mathbf{j}$					(d)	2 i – j , –	$\frac{2}{5}\mathbf{i} + \frac{11}{5}\mathbf{j}$
15.	Let $\mathbf{a} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}$, $\mathbf{b} = \mathbf{i} + 2\mathbf{j}$		e three vecto	ors. A vecto	r in the	plane of	b and c	whose projection
	on a is of magnitude $\sqrt{2/3}$	is					[IIT 199;	3; Pb. CET 2004]
_	(a) $2i + 3j - 3k$	(b) $2i + 3j + 3k$	(c)	$-2\mathbf{i} - \mathbf{j} + 5$		(d)	$2\mathbf{i} + \mathbf{j} + 3$	
16.	A vector a has components certain angle about the original system, then	gin in the anti-clockwise [IIT 1	sense. If a 984]	has compo	onents p			
	(a) $p = 0$	(b) $p = 1$ or $-\frac{1}{3}$	(c)	p = -1 or	$\frac{1}{3}$	(d)	p = 1 or	· -1
17.	If $\mathbf{u} = 2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and $\mathbf{v} = 6$	$\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$, then a unit ve	ector perper	idicular to l	ooth u ai	$\operatorname{ad}\mathbf{v}$ is		[MP PET 1987]
	(a) $\mathbf{i} - 10 \mathbf{j} - 18 \mathbf{k}$	(b) $\frac{1}{\sqrt{17}} \left(\frac{1}{5} \mathbf{i} - 2\mathbf{j} - \frac{18}{5} \mathbf{k} \right)$	(c)	$\frac{1}{\sqrt{473}}(7\mathbf{i} -$	-10 j -18	3 k)	(d)	None of these
18.	If $\mathbf{a} = 2\mathbf{i} + \mathbf{k}$, $\mathbf{b} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ and						[IIT 199	
10	(a) $\mathbf{i} + 8\mathbf{j} + 2\mathbf{k}$	(b) $\mathbf{i} - 8\mathbf{j} + 2\mathbf{k}$	(c)	$-\mathbf{i} + 8\mathbf{j} - \mathbf{k}$		(d)	-i - 8 j +	- 2 k
19.	If $\mathbf{a} \times \mathbf{r} = \mathbf{b} + \lambda \mathbf{a}$ and $\mathbf{a} \cdot \mathbf{r} = \mathbf{a}$						1a1 to	
	(a) $\mathbf{r} = \frac{7}{6}\mathbf{i} + \frac{2}{3}\mathbf{j}, \ \lambda = \frac{6}{5}$	(b) $\mathbf{r} = \frac{7}{6}\mathbf{i} + \frac{2}{3}\mathbf{j}, \ \lambda = \frac{5}{6}$	(c)	$\mathbf{r} = \frac{\mathbf{o}}{7}\mathbf{i} + \frac{2}{3}$	$\frac{2}{3}$ j , $\lambda = \frac{6}{5}$	5	(d)	None of these

20.	Let the vectors a , b , c and c b and c , d respectively. The						
	(a) 0°	(b) $\frac{\pi}{4}$	(c)	$\frac{\pi}{3}$	(d)	$\frac{\pi}{2}$	
21.	If $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{a} \cdot \mathbf{b} = 1$ and			5	eening 2	_	
	(a) i	(b) $\mathbf{i} - \mathbf{j} + \mathbf{k}$	(c)	2 j – k		2 i	
22.	The position vectors of the	vertices of a quadrilatera	l <i>ABCD</i> are	a, b, c	and d res	spectively	. Area of the quadrilateral
	formed by joining the midd	le points of its sides is		[Roork	ee 2000]		
	(a) $\frac{1}{4} \mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{d} + \mathbf{d} \times \mathbf{a} $		(b)	$\frac{1}{4} \mathbf{b}\times\mathbf{c}$	$+ \mathbf{c} \times \mathbf{d} +$	$\mathbf{a} \times \mathbf{d} + \mathbf{b}$	$\times \mathbf{a}$
	(c) $\frac{1}{4} \mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{d} +$	$\mathbf{d} \times \mathbf{a}$	(d)	$\frac{1}{4} \mathbf{b}\times\mathbf{c}$	$+ \mathbf{c} \times \mathbf{d} +$	$\mathbf{d} \times \mathbf{b}$	
23.	The moment about the poin	at $M(-2,4,-6)$ of the force	e represente	ed in mag	gnitude a	nd positio	on by \overrightarrow{AB} where the points
	\boldsymbol{A} and \boldsymbol{B} have the co-ordinat						[MP PET 2000]
	· =	(b) $2i - 6j + 5k$			j – 3 k		$-5\mathbf{i} + 8\mathbf{j} - 8\mathbf{k}$
24.	If the vectors $a\mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{i} +$	$b\mathbf{j} + \mathbf{k}$ and $\mathbf{i} + \mathbf{j} + c\mathbf{k}$ ($a \neq$	$b \neq c \neq 1$) a	are copla	nar, then	the valu	e of $\frac{1}{1 + \frac{1}{1 + \frac{1}{$
	[BIT Ranchi 1988; RPET 1987;]						1-a $1-b$ $1-c$
	(a) -1					1	
		(b) $-\frac{1}{2}$		_			
25.	If $\alpha(\mathbf{a} \times \mathbf{b}) + \beta(\mathbf{b} \times \mathbf{c}) + \gamma(\mathbf{c})$	$(\mathbf{a}) = 0$ and at least one of	f the numbe	ers α , β	and γ is	non-zero	o, then the vectors a , b and
26.	c are(a) PerpendicularThe volume of the tetrahed	(b) Parallel ron, whose vertices are giv	(c) ven by the v	Coplana ectors –		(d) i – j + k a	None of these and $\mathbf{i} + \mathbf{j} - \mathbf{k}$ with reference
	to the fourth vertex as origin		•		•	Ü	v
	(a) $\frac{5}{3}$ cubic unit	(b) $\frac{2}{3}$ cubic unit					
2 7.	Let $\mathbf{a} = \mathbf{i} - \mathbf{j}$, $\mathbf{b} = \mathbf{j} - \mathbf{k}$, $\mathbf{c} = \mathbf{k}$	$\mathbf{c} - \mathbf{i}$. If $\hat{\mathbf{d}}$ is a unit vector s	uch that ${f a}$.	$\hat{\mathbf{d}} = 0 = [\mathbf{l}$	b c d], tl	nen d is	equal to [IIT 1995]
	(a) $\pm \frac{\mathbf{i} + \mathbf{j} - \mathbf{k}}{\sqrt{3}}$	(b) $\pm \frac{\mathbf{i} + \mathbf{j} + \mathbf{k}}{\sqrt{3}}$	(c)	$\pm \frac{\mathbf{i} + \mathbf{j} - \mathbf{j}}{\sqrt{6}}$	- 2 k	(d)	± k
28.	The value of 'a' so that the v	olume of parallelopiped fo	ormed by i	+ a j + k , j	+ a k and	ai + k	becomes minimum is [IIT Screening 2003]
	(a) -3	(p) 3	(c)	$\frac{1}{\sqrt{3}}$	(d)	$\sqrt{3}$	
29.	If ${\bf b}$ and ${\bf c}$ are any two non-o	collinear unit vectors and a	is any vect	or, then	(a.b)b+	(a.c)c+	1 B A C I
	(a) a	(b) b	(c)	c	(d)	0	[IIT 1996]
00					` '		o and his furressal
30.	If \mathbf{a} , \mathbf{b} , \mathbf{c} are non-coplanar \mathbf{c}		·	_		between	a and b is [111 1995]
	(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{2}$	(c)	$\frac{3\pi}{4}$	(d)	π	
31.	$[(\mathbf{a} \times \mathbf{b}) \times (\mathbf{b} \times \mathbf{c})(\mathbf{b} \times \mathbf{c}) \times (\mathbf{c} \times \mathbf{c})]$	$\mathbf{a})(\mathbf{c} \times \mathbf{a}) \times (\mathbf{a} \times \mathbf{b})] =$					
	(a) $[{\bf a} \ {\bf b} \ {\bf c}]^2$	(b) $[{\bf a} \ {\bf b} \ {\bf c}]^3$	(c)	[a b c]	⁴ (d)	None of	fthese
32.	Unit vectors \mathbf{a} , \mathbf{b} and \mathbf{c} are	coplanar. A unit vector d	is perpend	icular to	them. If	$(\mathbf{a} \times \mathbf{b}) \times (\mathbf{a} \times \mathbf{b})$	$(\mathbf{c} \times \mathbf{d}) = \frac{1}{6}\mathbf{i} - \frac{1}{3}\mathbf{j} + \frac{1}{3}\mathbf{k}$ and
	the angle between a and b is				ee Qualif		
	(a) $\frac{(\mathbf{i}-2\mathbf{j}+2\mathbf{k})}{3}$	(b) $\frac{(2\mathbf{i} + \mathbf{j} - \mathbf{k})}{3}$	(c)	$\frac{(-\mathbf{i} + 2\mathbf{j})}{3}$	$(-2\mathbf{k})$	(d)	$\frac{(-\mathbf{i}+2\mathbf{j}+\mathbf{k})}{3}$
33.	The radius of the circular se	ection of the sphere $ \mathbf{r} = 5$	by the plan	e r.(i+j	$+\mathbf{k}) = 3$	$\sqrt{3}$ is	[DCE 1999]
	(a) 1	(b) 2	(c)	3	(d)	4	
34.	If x is parallel to y and z (a) $\pm \sqrt{5}$	where $\mathbf{x} = 2\mathbf{i} + \mathbf{j} + \alpha \mathbf{k}$, $\mathbf{y} = (\mathbf{b}) \pm \sqrt{6}$		$\mathbf{z} = 5\mathbf{i} - \mathbf{z}$ $\pm \sqrt{7}$		is equal None o	
	_ 🕶	V=7 = V ♥	(-)	- v ·	()		

- The vector **c** directed along the internal bisector of the angle between the vectors $\mathbf{a} = 7\mathbf{i} 4\mathbf{j} 4\mathbf{k}$ and $\mathbf{b} = -2\mathbf{i} \mathbf{j} + 2\mathbf{k}$ with $|\mathbf{c}| = 5\sqrt{6}$, is
 - (a) $\frac{5}{3}$ (i 7j + 2k)
- (b) $\frac{5}{3}(5\mathbf{i} + 5\mathbf{j} + 2\mathbf{k})$
- (c) $\frac{5}{3}(\mathbf{i} + 7\mathbf{j} + 2\mathbf{k})$ (d) $\frac{5}{3}(-5\mathbf{i} + 5\mathbf{j} + 2\mathbf{k})$
- **36.** The distance of the point $B(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$ from the line which is passing through $A(4\mathbf{i} + 2\mathbf{j} + 2\mathbf{k})$ and which is parallel to the vector $\vec{C} = 2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}$ is [Roorkee 1993]

- (b) √10
- 100
- (d) None of these

37. Let **a**, **b**, **c** are three non-coplanar vectors such that $r_1 = a - b + c, r_2 = b + c - a, r_3 = c + a + b,$

 $\mathbf{r} = 2\mathbf{a} - 3\mathbf{b} + 4\mathbf{c}$. If $\mathbf{r} = \lambda_1 \mathbf{r}_1 + \lambda_2 \mathbf{r}_2 + \lambda_3 \mathbf{r}_3$, then

- (b) $\lambda_1 + \lambda_3 = 3$
- (c)
- $\lambda_1 + \lambda_2 + \lambda_3 = 4 \quad (d)$
- **38.** Let $\mathbf{a} = 2\mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{b} = \mathbf{i} + 2\mathbf{j} \mathbf{k}$ and a unit vector \mathbf{c} be coplanar. If \mathbf{c} is perpendicular to \mathbf{a} , then $\mathbf{c} = \mathbf{i}$

[IIT 1999; Pb. CET 2003; DCE 2005]

- (a) $\frac{1}{\sqrt{2}}(-\mathbf{j}+\mathbf{k})$
- (b) $\frac{1}{\sqrt{3}}(-\mathbf{i} \mathbf{j} \mathbf{k})$
- $\frac{1}{\sqrt{5}}(\mathbf{i}-2\mathbf{j})$ (c)
- 39. Let p, q, r be three mutually perpendicular vectors of the same magnitude. If a vector x satisfies equation $\mathbf{p} \times \{(\mathbf{x} - \mathbf{q}) \times \mathbf{p}\} + \mathbf{q} \times \{(\mathbf{x} - \mathbf{r}) \times \mathbf{q}\} + \mathbf{r} \times \{(\mathbf{x} - \mathbf{p}) \times \mathbf{r}\} = 0$, then \mathbf{x} is given by [IIT 1997 Cancelled]
 - (a) $\frac{1}{2}(\mathbf{p} + \mathbf{q} 2\mathbf{r})$

- (b) $\frac{1}{2}(\mathbf{p} + \mathbf{q} + \mathbf{r})$ (c) $\frac{1}{3}(\mathbf{p} + \mathbf{q} + \mathbf{r})$ (d) $\frac{1}{3}(2\mathbf{p} + \mathbf{q} \mathbf{r})$
- **40.** The point of intersection of $\mathbf{r} \times \mathbf{a} = \mathbf{b} \times \mathbf{a}$ and $\mathbf{r} \times \mathbf{b} = \mathbf{a} \times \mathbf{b}$, where $\mathbf{a} = \mathbf{i} + \mathbf{j}$ and $\mathbf{b} = 2\mathbf{i} \mathbf{k}$ is [Orissa JEE 2004]
 - (a) 3i + j k
- (b) 3i k
- $3\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ (c)
- (d) None of these

Que from Compt. Exams

Vector Algebra

1	С	2	b	3	b	4	С	5	b
6	b	7	е	8	b	9	d	10	b
11	b	12	d	13	С	14	d	15	a,c
16	b	17	b	18	d	19	b	20	а
21	а	22	С	23	а	24	d	25	С
26	b	27	С	28	С	29	а	30	С
31	С	32	a,c	33	d	34	С	35	а
36	b	37	b,c	38	а	39	b	40	а

for 31 Yrs. Que. of IIT-JEE

7 Yrs. Que. of AIEEE we have distributed already a book