

(19) Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) Veröffentlichungsnummer:

0 318 893

A2

(2)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 88119798.2

(51) Int.-Cl.4: C07F 17/00 , C08F 2/50 ,

(22) Anmeldetag: 28.11.88

G03C 1/68 , C07F 7/10 ,
C07C 87/60 , C07C 103/375 ,
C07C 103/76

Claims for the following Contracting States: ES.

(23) Priorität: 01.12.87 CH 4682/87

(21) Anmelder: CIBA-GEIGY AG
Klybeckstrasse 141
CH-4002 Basel(CH)

(24) Veröffentlichungstag der Anmeldung:
07.06.89 Patentblatt 89/23

(22) Erfinder: Riediker, Martin, Dr.
Gstaatenrainweg 75
CH-4125 Riehen(CH)
Erfinder: Steiner, Eginhard, Dr.
Obere Hofackerstrasse 3
CH-4414 Füllinsdorf(CH)
Erfinder: Beyeler, Harry
Marignanostrasse 35
CH-4059 Basel(CH)
Erfinder: Sitek, Franciszek, Dr.
Grossmattweg 11
CH-4106 Therwil(CH)
Erfinder: Hüsler, Rinaldo, Dr.
Route du Confin 52
CH-1723 Marly(CH)

(25) Benannte Vertragsstaaten:
AT BE CH DE ES FR GB IT LI NL SE

(26) Vertreter: Zumstein, Fritz, Dr. et al
Bräuhausstrasse 4
D-8000 München 2(DE)

(27) Titanocene, deren Verwendung und N-substituierte Fluoraniline.

(28) Titanocene mit zwei 5-gliedrigen Cyclohexenylgruppen, z.B. Cyclopentadienyl, und ein oder zwei 6-gliedrigen carbocyclischen oder 5- oder 6-gliedrigen heterocyclischen aromatischen Ringen, die in mindestens einer der beiden Orthostellungen zur Titankohlenstoffbindung mit einem Fluoratom substituiert sind und als weiteren Substituenten einen substituierten Aminorest enthalten, eignen sich als Photoinitiatoren für die strahlungsinduzierte Polymerisation von ethylenisch ungesättigten Verbindungen.

EP 0 318 893 A2

Interference 105,362

Dow Exhibit
1032

Titanocene, deren Verwendung und N-substituierte Fluoraniline

Die vorliegende Erfindung betrifft Titanocene mit N-substituierten fluorhaltigen aromatischen Resten, eine photopolymerisierbare Zusammensetzung aus ethylenisch ungesättigten Verbindungen, die diese Titanocene als Photoinitiatoren enthalten, ein mit dieser Zusammensetzung beschichtetes Substrat, ein Verfahren zur Herstellung photographischer Reliefabbildungen unter Verwendung dieses beschichteten Substrates und N-substituierte Fluoraniline.

Aus der EP-A-0 122 223 ist es bekannt, dass Titanocene mit Fluoraryligranden ausgezeichnete Photoinitiatoren sind. Die Fluoraryligranden dieser Titanocene können zum Beispiel mit primären oder sekundären Aminogruppen substituiert sein. Die Substitution mit Acylaminogruppen ist nicht erwähnt.

Ein Gegenstand der Erfindung sind Titanocene der Formel I

worin beide R¹ unabhängig voneinander unsubstituiertes oder durch C₁-C₁₈-Alkyl oder -Alkoxy, C₂-C₁₈-Alkenyl, C₅-C₈-Cycloalkyl, C₆-C₁₆-Aryl, C₇-C₁₆-Aralkyl, SiR⁴₃, GeR⁴₂, Cyano oder Halogen substituiertes Cyclopentadienyl[⊖], Indenyl[⊖] oder 4,5,6,7-Tetrahydro-indenyl[⊖] bedeuten oder beide R¹ zusammen für einen unsubstituierten oder wie zuvor substituierten Rest der Formel II

stehen, worin X {CH₂}_n mit n = 1, 2 oder 3, gegebenenfalls durch Phenyl substituiertes Alkylen mit 2 bis 12 C-Atomen, Cycloalkylen mit 5 bis 7 Ringkohlenstoffatomen, SiR⁴₂, SiR⁴₂-O-SiR⁴₂, GeR⁴₂ oder SnR⁴₂ ist, und R⁴ C₁-C₁₂-Alkyl, C₅-C₁₂-Cycloalkyl, C₆-C₁₆-Aryl oder C₇-C₁₆-Aralkyl bedeutet, R² einen 6-gliedrigen carbocyclischen oder 5- oder 6-gliedrigen heterocyclischen aromatischen Rest bedeutet, der in mindestens einer der beiden ortho-Stellungen zur Titankohlenstoffbindung mit Fluoratomen substituiert ist und wobei der aromatische Rest weitere Substituenten enthalten kann.

35 R³ eine der für R² gegebenen Bedeutungen hat oder R² und R³ zusammen einen Rest der Formel III bedeuten,

in dem Q für einen carbocyclischen aromatischen Rest steht, wobei die beiden Bindungen jeweils in Orthostellung zur Y-Gruppe stehen und die zweite Orthostellung zur Titankohlenstoffbindung jeweils durch ein Fluoratom substituiert ist und wobei Q weitere Substituenten enthalten kann, und Y CH₂, Alkylen mit 2 bis 12 C-Atomen, Cycloalkylen mit 5 bis 7 Ringkohlenstoffatomen, NR⁴, O, S, SO, SO₂, CO, SiR⁴₂, GeR⁴₂ oder SnR⁴₂ bedeutet und R⁴ die zuvor angegebene Bedeutung hat, wobei die Titanocene dadurch gekennzeichnet sind, dass R² und R³ oder der Rest der Formel III durch einen Rest der Formel IV, IVa oder IVb substituiert sind,

45

worin R⁵ Wasserstoff, lineares oder verzweigtes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₃-C₈-Cycloalkyl, C₄-C₂₀-Cycloalkylalkyl oder -Alkylcycloalkyl, C₅-C₂₀-Alkylcycloalkylalkyl, C₆-C₂₀-Cycloalkenyl alkyl, C₆-C₁₄-Aryl, C₇-C₂₀-Aralkyl oder -Alkaryl, C₈-C₂₀-Alkaralkyl oder C₃-C₂-Trialkylsilyl darstellt, wobei diese Reste unsub-

stituiert oder durch C₁-C₁₈-Alkoxy, C₁-C₁₈-Alkylthio, C₁-C₁₈-Alkylsulfonyl, C₆-C₁₀-Arylsulfonyl, C₇-C₂₀-Alkarylsulfonyl, 2-Tetrahydrofuryl oder Cyano substituiert sind,

- 5 R⁶ eine der für R⁵ gegebenen Bedeutungen hat oder C₁-C₂₀-Halogenalkyl, durch -CO- unterbrochenes C₂-C₂₀-Alkyl oder durch -COOH oder -COOR⁴ substituiertes C₁-C₁₂-Alkyl ist und im Falle, dass Y¹ -CO-, -CS- oder -SO₂- ist, auch -NR⁷R⁸ bedeuten kann, worin R⁷ und R⁸ unabhängig voneinander eine der für R⁵ gegebenen Bedeutungen haben oder R⁷ und R⁸ zusammen C₃-C₇-Alkylen bedeuten, das durch -O-, -S- oder -N(R⁹)- unterbrochen werden kann, worin R⁹ Wasserstoff, C₁-C₁₂-Alkyl, C₃-C₁₂-Alkenyl, C₇-C₁₂-Aralkyl oder C₂-C₂₀-Alkanoyl bedeutet,
- 10 oder R⁵ und R⁶ zusammen lineares oder verzweigtes C₂-C₈-Alkylen oder durch Halogen, C₁-C₄-Alkoxy, Allyloxy oder -NR⁷R⁸ substituiertes C₂-C₈-Alkylen oder einen zweiwertigen Rest der Formel

bedeuten,

- Y¹ eine Gruppe -CO-, -CS-, -COO-, -SO₂- oder -SIR⁴₂- bedeutet, worin R⁴ die zuvor gegebene Bedeutung hat,

- 20 R¹⁰ eine der für R⁶ gegebenen Bedeutungen hat oder R¹⁰ und R⁶ zusammen C₁-C₈-Alkandiyl, C₂-C₈-Alkendiyl, C₆-C₁₄-Arendiyl, C₄-C₁₂-Cycloalkandiyl, C₅-C₁₂-Cycloalkendiyl, C₆-C₁₄-Cycloalkadienyliyl, C₇-C₂₀-Bicycloalkandiyl, C₇-C₂₀-Bicycloalkendiyl oder durch -O-, -S- oder -N(R⁹)-unterbrochenes C₂-C₄-Alkandiyl bedeuten, wobei diese Reste unsubstituiert oder durch einen oder mehrere der Substituenten Halogen, C₁-C₁₀-Alkoxy, C₁-C₂₀-Alkyl, C₃-C₂₀-Alkenyl oder C₆-C₁₄-Aryl substituiert sind.

- 25 Bei den Gruppen R¹ handelt es sich bevorzugt um gleiche Reste. Als Substituenten kommen für R¹ in Frage: lineares oder verzweigtes Alkyl oder Alkoxy mit 1 bis 18, besonders 1 bis 12 und insbesondere 1 bis 6 C-Atomen, und Alkenyl mit 2 bis 18, besonders 2 bis 12, und insbesondere 2 bis 6 C-Atomen, wie z.B. Methyl, Ethyl, Propyl, Isopropyl, n-Butyl, tert.-Butyl, Pentyl, Hexyl, Octyl, Decyl, Dodecyl, Tetradecyl, Hexadecyl, Octadecyl und entsprechende Alkenyl- und Alkoxygruppen; Cycloalkyl mit 5 bis 8 Ringkohlenstoffatomen wie z.B. Cyclopentyl, Cyclohexyl, Cycloheptyl, Methylcyclopentyl und Methylcyclohexyl; Aryl mit 6 bis 16 C-Atomen und Aralkyl mit 7 bis 16 C-Atomen wie z.B. Phenyl, Naphthyl, Benzyl und Phenylethyl; Cyano und Halogen, besonders F, Cl und Br; SiR⁴₃ oder GeR⁴₃, worin R⁴ bevorzugt C₁-C₈-Alkyl, Cyclohexyl, Phenyl oder Benzyl ist. Beispiele für R⁴ in der Bedeutung von Alkyl sind Methyl, Ethyl, n- und t-Propyl, n-, i- und t-Butyl, Pentyl, Hexyl, Heptyl und Octyl.

30 Die Reste R¹ können bis zu 5, besonders aber bis zu 3 Substituenten enthalten. Bevorzugt sind beide R¹ Cyclopentadienyli^θ- oder Methylcyclopentadienyli^θ-Reste, insbesondere Cyclopentadienyli^θ-Reste.

- X in Formel II enthält in seiner Bedeutung als Alkyldien bevorzugt 2 bis 6 C-Atome. Beispiele für Alkyldien, das gegebenenfalls durch Phenyl substituiert sein kann, und Cycloalkyldien sind Ethyldien, Propyldien, Butyldien, Hexyldien, Phenylmethylen, Diphenylmethylen, Cyclopentyldien und Cyclohexyldien. R⁴ in der Gruppe X in seiner Bedeutung als Alkyl enthält bevorzugt 1 bis 6 C-Atome, und ist z.B. Methyl, Ethyl, Propyl, Butyl oder Hexyl, und ist in seiner Bedeutung als Cycloalkyl bevorzugt Cyclopentyl oder Cyclohexyl, in seiner Bedeutung als Aryl bevorzugt Phenyl und in seiner Bedeutung als Aralkyl bevorzugt Benzyl. X in der Bedeutung von $(\text{CH}_2)_n$ ist bevorzugt Methylen.

- 35 Bei R² in seiner Bedeutung als 6-gliedriger carbocyclischer aromatischer und fluorsubstituierter Rest kann es sich um fluorsubstituiertes Indenyl, Indanyl, Fluorenyl, Naphthyl und besonders Phenyl handeln. R² als heterocyclischer aromatischer und 5-gliedriger Rest enthält bevorzugt ein Heteroatom und als 6-gliedriger Rest bevorzugt 1 oder 2 Heteroatome. Bevorzugt sind beide Orthostellungen mit Fluor substituiert. Beispiele sind 4,6-Difluorinden-5-yl, 5,7-Difluorindan-6-yl, 2,4-Difluorfluoren-3-yl, 1,3-Difluornaphth-2-yl, 2,6-Difluorphen-1-yl, 2,4-Difluorpyrr-3-yl, 2,4-Difluorfur-3-yl, 2,4-Difluorthien-3-yl, 2,4-Difluorpyrid-3-yl, 4,6-Difluorpyrimidin-5-yl, 3,5-Difluorpyridazin-4-yl.

40 R² und R³ zusammen als Rest der Formel III können z.B. die Gruppe

sein. Y in Formel III und in obiger Formel ist bevorzugt Methylen, Ethylen, Propylen, S oder O.

R³ hat bevorzugt die Bedeutung von R². In einer bevorzugten Ausführungsform ist der Rest R² in beiden Orthostellungen durch Fluor substituiert.

- 5 Eine bevorzugte Ausführungsform ist dadurch gekennzeichnet, dass R² und R³ für 2,6-Difluorphen-1-yl stehen, an das ein Rest der Formel IV, IVa oder IVb gebunden ist, und das weitere 1 oder 2 gleiche oder verschiedene Substituenten enthalten kann.

Eine bevorzugte Gruppe von Titanocenen der Formel I sind solche, worin beide R¹ Cyclopentadieny¹ und R² und R³ Reste der Formel V

10

15

V

sind, worin A eine Gruppe der Formel IV, IVa oder IVb bedeutet, insbesondere solche, worin A eine Gruppe der Formel IV ist.

- In Formel V ist die Gruppe A bevorzugt in Orthostellung zu einem F-Atom gebunden.
- 20 R⁵ kann substituiert sein durch C₁-C₁₂-Alkoxy, C₁-C₁₂-Alkylthio und C₁-C₁₂-Alkylsulfonyl, die vorzugsweise 1 bis 12, besonders 1 bis 6 und insbesondere 1 bis 4 C-Atome enthalten. Beispiele für Alkygruppen in diesen Substituenten sind Methyl, Ethyl und die Isomeren von Propyl, Butyl, Pentyl, Hexyl, Heptyl, Octyl, Nonyl, Decyl, Undecyl, Dodecyl, Tetradecyl, Hexadecyl und Octadecyl. Weitere Substituenten für R⁵ sind Arylsulfonyl und Alkarylsulfonyl, wie z.B. Phenylsulfonyl, Toluylsulfonyl oder p-Dodecylphenylsulfonyl.
- 25 Bei R⁵ kann es sich um lineares oder verzweigtes C₁-C₂₀-, bevorzugt C₁-C₁₂- und besonders C₁-C₆-Alkyl handeln. Beispiele sind Methyl, Ethyl und die Isomeren von Propyl, Butyl, Pentyl, Hexyl, Heptyl, Octyl, Nonyl, Decyl, Undecyl, Dodecyl, Tetradecyl, Hexadecyl und Octadecyl. R⁵ kann C₃-C₈-, bevorzugt C₅ bis C₇- und besonders C₅-oder C₆-Cycloalkyl sein, z.B. Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl und Cyclooctyl. R⁵ kann C₄-C₂₀-, bevorzugt C₅-C₁₅- Cycloalkylalkyl oder -Alkylcycloalkyl sein, wobei das Cycloalkyl vorzugsweise Cyclopentyl oder Cyclohexyl ist. Beispiele sind Cyclopentyl- oder Cyclohexylmethyl, Cyclopentyl- oder Cyclohexylethyl, Cyclopentyl- oder Cyclohexylpropyl, Cyclopentyl- oder Cyclohexylbutyl, Methyl-, Dimethyl-, Ethyl-, n-Propyl-, i-Propyl-, n-Butyl-, i-Butyl-, t-Butylcyclopentyl oder -cyclohexyl. R⁵ kann C₅-C₂₀-, bevorzugt C₇-C₁₆-Alkylcycloalkylalkyl bedeuten, z.B. (Methylcyclopentyl)methyl oder -ethyl, (Methylcyclohexyl)methyl oder -ethyl.
- 30 Bei R⁵ kann es sich auch um C₆-C₁₄-, bevorzugt C₆-C₁₀-Aryl handeln, z.B. Naphthyl und besonders Phenyl. R⁵ kann auch C₇-C₂₀-, bevorzugt C₇-C₁₆-Aralkyl oder -Alkaryl sein. Das Aryl ist hierbei bevorzugt ein Phenylrest. Beispiele sind Benzyl, Phenylethyl, Phenylpropyl, Phenylbutyl, Methylphenyl, Ethylphenyl, Propylphenyl und Butylphenyl. Bei R⁵ kann es sich auch um C₈-C₂₀-, bevorzugt C₈-C₁₅-Alkaralkyl handeln, worin das Aryl bevorzugt Phenyl ist. Beispiele sind Methylbenzyl, (Methylphenyl)ethyl, (Methylphenyl)-propyl, (Methylphenyl)butyl, Ethylbenzyl und Propylbenzyl.
- 35 R⁶ kann eine der für R⁵ gegebenen Bedeutungen haben, einschließlich der Bevorzugungen für R⁵. Bei R⁶ kann es sich um C₁-C₂₀-, bevorzugt C₁-C₁₂- und besonders C₁-C₆-Halogenalkyl handeln, wobei die Alkygruppe teilweise oder ganz mit Halogen, bevorzugt Cl und/oder F substituiert sein kann. Beispiele sind Chloromethyl, Dichlormethyl, Trichlormethyl, Fluordichlormethyl, Difluorchlormethyl, Trifluormethyl, 2,2-
- 40 Dichlor- oder -2,2-Difluorethyl, 1,1,1-Trichlor- oder -Trifluorethyl, Pentafluorethyl, Chlorpropyl, Fluorpropyl, Perfluorpropyl, Chlorbutyl, Fluorbutyl, Perfluorbutyl, Chlorpentyl, Perfluorpentyl und Perfluorhexyl.
- 45 Bei R⁶ und R⁵ kann es sich um lineares oder verzweigtes C₂-C₂₀-, bevorzugt C₂-C₁₂- und besonders C₂-C₆-Alkenyl handeln. Beispiele sind Vinyl, Crotonyl, Allyl, But-1-en-1-yl, But-1-en-4-yl, Pent-1-en-1-yl, Pent-2-en-2-yl, Hex-1-en-1-yl, Hex-3-en-3-yl und Hex-1-en-6-yl. R⁶ kann auch mit -CO- unterbrochenes C₂-C₂₀-, bevorzugt C₂-C₁₂- und besonders C₂-C₆-Alkyl sein, z.B. Acetyl methyl, Propionyl methyl, Acetyl ethyl und Propionylethyl.

- 50 R⁶ kann auch die Gruppe NR⁷R⁸ bedeuten, wenn Y¹ -SO₂-, -CO- oder -CS- ist, worin R⁷ und R⁸ unabhängig voneinander eine der für R⁵ gegebenen Bedeutungen haben, einschließlich bevorzugter Ausführungsformen. Bevorzugt stehen R⁷ und R⁸ für ein Wasserstoffatom oder C₁-C₁₂-, besonders C₁-C₆-Alkyl, z.B. Hexyl, Pentyl, Butyl, Propyl und besonders Ethyl oder Methyl.
- 55 R⁵ und R⁶ zusammen können gegebenenfalls mit Halogen substituiertes C₂-C₈-Alkylen sein, z.B. 1,2-Ethylen, 1,3-Propylen, 1,4-Butylen, 1-Dimethylethylen, 1-Methyl-1-chlormethylethylen oder 1-Diethylethylen. Y¹ ist bevorzugt -CO-, -COO- oder -SO₂-. R⁴ in der Gruppe -SiR⁴₂ bedeutet besonders Methyl.

Eine bevorzugte Ausführungsform ist dadurch gekennzeichnet, dass R² und R³ durch eine Gruppe der Formel IV substituiert sind, worin R⁵ Wasserstoff, unsubstituiertes oder durch C₁-C₁₂-Alkoxy oder Tetrahydrofuryl substituiertes C₁-C₁₂-Alkyl, C₂-C₅-Alkenyl, C₆-C₇-Cycloalkyl, C₆-C₁₈-Cycloalkylalkyl oder -Alkylcycloalkyl, C₇-C₁₈-Alkylcycloalkylalkyl, C₇-C₁₈-Aralkyl oder C₈-C₁₈-Alkaralkyl bedeutet, R⁶ eine der für

- 6 R⁵ gegebenen Bedeutungen hat oder C₆-C₁₀-Aryl, C₇-C₁₈-Alkaryl, C₁-C₁₂-Halogenalkyl, oder -NR⁷R⁸ darstellt, worin R⁷ und R⁸ unabhängig voneinander Wasserstoff, C₁-C₁₂-Alkyl, Phenyl, Benzyl oder Cyclohexyl bedeuten oder R⁷ und R⁸ zusammen C₄-C₅-Alkylen oder 3-Oxapentamethylen bedeuten oder R⁵ und R⁶ zusammen C₂-C₅-Alkylen bedeuten und Y¹ -CO-, -CS-, -COO- oder -SO₂- bedeutet.

Eine weitere bevorzugte Klasse von Titanocenen sind die Verbindungen der Formel I, worin R² und R³ durch eine Gruppe der Formel IV substituiert sind, worin R⁵ Wasserstoff, C₁-C₁₂-Alkyl, Cyclohexyl, Cyclohexylmethyl, 2-Tetrahydrofurylmethyl, C₂-C₈-Alkoxyalkyl, Allyl oder C₇-C₉-Aralkyl ist, R⁶ C₁-C₁₂-Alkyl, C₁-C₄-Halogenalkyl, Cyclohexyl, C₆-C₁₀-Aryl oder -Halogenaryl oder C₇-C₁₈-Alkaryl bedeutet oder R⁵ und R⁶ zusammen C₂-C₅-Alkylen bedeuten und Y¹ -CO-, -COO- oder -SO₂- ist oder der Rest -Y¹-R⁶ eine Gruppe -CO-NHR⁷, -CS-NHR⁷, -CO-NR⁷R⁸ oder -SO₂-NR⁷R⁸ bedeutet, worin R⁷ C₁-C₁₂-Alkyl oder Phenyl ist, R⁸ C₁-C₁₂-Alkyl ist oder R⁷ und R⁸ zusammen C₄-C₅-Alkylen oder 3-Oxapentamethylen bedeuten, insbesondere solche Verbindungen der Formel I mit der Gruppe der Formel IV, worin R⁵ Wasserstoff, C₁-C₈-Alkyl oder C₇-C₉-Aralkyl ist, R⁶ C₁-C₁₈-Alkyl, Trifluormethyl, Phenyl oder durch Halogen oder C₁-C₁₂-Alkyl substituiertes Phenyl bedeutet oder R⁵ und R⁶ zusammen C₂-C₅-Alkylen bedeuten und Y¹ -CO- oder -SO₂- ist.

- 20 Eine weitere bevorzugte Klasse von Titanocenen sind die Verbindungen der Formel I, worin R² und R³ durch eine Gruppe der Formel IVa substituiert sind, worin R⁶ und R¹⁰ zusammen C₂-C₅-Alkandiyyl, C₂-C₈-Alkendiyyl, C₆-C₁₄-Arendiyyl oder C₇-C₁₂-Bicycloalkendiyyl bedeuten und Y¹ -CO- ist.

Beispiele für einzelne Verbindungen der Formel I sind:

- Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-ethyl-pivaloylamino)phenyl]-titan,
 25 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-butyl-pivaloylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-ethyl-acetylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-methyl-acetylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-ethyl-propionylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-ethyl-(2,2-dimethylbutanoyl)-amino)phenyl]-titan,
 30 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-butyl-(2,2-dimethylbutanoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-pentyl-(2,2-dimethylbutanoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-hexyl-(2,2-dimethylbutanoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-methyl-butrylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-methyl-pentanoylamino)phenyl]-titan,
 35 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-methyl-cyclohexylcarboxylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-ethyl-isobutyrylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-4-(N-ethyl-acetylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(2,2,5,5-tetramethyl-1,2,5-azadisilolidin-1-yl)-phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(methylsulfonamido)phenyl]-titan,
 40 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(octylsulfonamido)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(4-tolylsulfonamido)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(4-dodecylphenylsulfonylamido)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(4-(1-pentylheptyl)phenylsulfonylamido)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(ethylsulfonylamido)phenyl]-titan,
 45 Bis(cyclopentadienyl)-bis[2,6-difluor-3-((4-bromophenyl)sulfonylamido)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(2-naphthylsulfonylamido)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(hexadecylsulfonylamido)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-methyl-(4-dodecylphenyl)sulfonylamido)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-methyl-(4-(1-pentylheptyl)phenyl)sulfonylamido)phenyl]-titan,
 50 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-hexyl-(4-tolyl)sulfonylamido)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(pyrrolidin-2,5-dion-1-yl)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(3,4-dimethyl-3-pyrrolin-2,5-dion-1-yl)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-phthalimidio)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(isobutoxycarbonylamino)phenyl]-titan,
 55 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(ethoxycarbonylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-((2-chlorethoxy)carbonylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(phenoxy carbonylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(3-phenylthioureido)phenyl]-titan.

- Bis(cyclopentadienyl)-bis[2,6-difluor-3-(3-butylthioureido)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(3-phenylureido)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(3-butylureido)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N,N-diacylamino)phenyl]-titan,
 5 Bis(cyclopentadienyl)-bis[2,6-difluor-3(3,3-dimethylureido)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(acetylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(butyrylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(decanoyleamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(octadecanoylamino)phenyl]-titan,
 10 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(isobutyrylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(2-ethylhexanoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(2-methylbutanoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(pivaloylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(2,2-dimethylbutanoylamino)phenyl]-titan,
 15 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(2-ethyl-2-methylheptanoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(cyclohexylcarbonylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(2,2-dimethyl-3-chlorpropanoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(3-phenylpropanoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(2-chlormethyl-2-methyl-3-chlorpropanoylamino)phenyl]-titan,
 20 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(3,4-xyloylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(4-ethylbenzoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(2,4,6-mesitylcarbonylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(benzoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(3-phenylpropyl)-benzoylamino)phenyl]-titan,
 25 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(3-ethylheptyl)-2,2-dimethylpentanoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-isobutyl-(4-toluyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-isobutyl-benzoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-cyclohexylmethyl-pivaloylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(oxolan-2-ylmethyl)-benzoylamino)phenyl]-titan,
 30 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(3-ethylheptyl)-2,2-dimethylbutanoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(3-phenylpropyl)-(4-toluyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(oxolan-2-ylmethyl)-(4-toluyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(4-tolylmethyl)-benzoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(4-tolylmethyl)-(4-toluyl)amino)phenyl]-titan,
 35 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-butyl-benzoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-butyl-(4-toluyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-hexyl-(4-toluyl)-amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(2,4-dimethylpentyl)-2,2-dimethylbutanoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(2,4-dimethylpentyl)-2,2-dimethylpentanoylamino)phenyl]-titan,
 40 Bis(cyclopentadienyl)-bis[2,6-difluor-3-((4-toluyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(2,2-dimethylpentanoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(2,2-dimethyl-3-ethoxypropanoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(2,2-dimethyl-3-allyloxypropanoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-allyl-acetylamino)phenyl]-titan,
 45 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(2-ethylbutanoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-cyclohexylmethyl-benzoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-(N-cyclohexylmethyl-(4-toluyl)-amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(2-ethylhexyl)-benzoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-isopropyl-benzoylamino)phenyl]-titan,
 50 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(3-phenylpropyl)-2,2-dimethylpentanoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-hexyl-benzoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-cyclohexylmethyl-2,2-dimethylpentanoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-butyl-benzoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(2-ethylhexyl)-2,2-dimethylpentanoyl)amino)phenyl]-titan,
 55 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-hexyl-2,2-dimethylpentanoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-isopropyl-2,2-dimethylpentanoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(3-phenylpropyl)-pivaloylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-butyl-2,2-dimethylpentanoyl)amino)phenyl]-titan,

- Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(2-methoxyethyl)benzoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-benzyl-benzoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-benzyl-(4-toluyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(2-methoxyethyl)-(4-toluyl)amino)phenyl]-titan,
 5 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(4-methylphenyl)methyl)-2,2-dimethylpentanoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(2-methoxyethyl)-2,2-dimethylpentanoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-cyclohexylmethyl)-(2-ethyl-2-methylheptanoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-butyl-(4-chlorbenzoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-hexyl-(2-ethyl-2-methylbutanoyl)amino)phenyl]-titan,
 10 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-cyclohexyl-2,2-dimethylpentanoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(oxolan-2-ylmethyl)-2,2-dimethylpentanoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-cyclohexyl-(4-chlorbenzoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-cyclohexyl-(2-chlorbenzoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(3,3-dimethyl-2-azetidinon-1-yl)phenyl]-titan,
 15 Bis(cyclopentadienyl)-bis[2,6-difluor-3-isocyanatophenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-ethyl-(4-tolylsulfonyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-hexyl-(4-tolylsulfonyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-butyl-(4-tolylsulfonyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-isobutyl-(4-tolylsulfonyl)amino)phenyl]-titan,
 20 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-butyl-(2,2-dimethyl-3-chlorpropanoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(3-phenylpropyl)-(2,2-dimethyl-3-chlorpropanoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-cyclohexylmethyl-(2,2-dimethyl-3-chlorpropanoyl)amino)phenyl]-titan,
 25 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-isobutyl-(2,2-dimethyl-3-chlorpropanoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-butyl-(2-chlormethyl-2-methyl-3-chlorpropanoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(butylthiocarbonylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(phenylthiocarbonylamino)phenyl]-titan,
 30 Bis(methylcyclopentadienyl)-bis[2,6-difluor-3-(N-hexyl-2,2-dimethylbutanoyl)amino)phenyl]-titan,
 Bis(methylcyclopentadienyl)-bis[2,6-difluor-3-(N-hexyl-2,2-dimethylpentanoylamino)phenyl]-titan,
 Bis(methylcyclopentadienyl)-bis[2,6-difluor-3-(N-ethyl-acetyl)amino)phenyl]-titan,
 Bis(methylcyclopentadienyl)-bis[2,6-difluor-3-(N-ethyl(propionyl)amino)phenyl]-titan,
 Bis(trimethylsilylpentadienyl)-bis[2,6-difluor-3-(N-butyl-2,2-dimethylpropanoylamino)phenyl]-titan,
 35 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(2-methoxyethyl)-trimethylsilylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-butyl-hexyldimethylsilylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-ethyl-(1,1,2-trimethylpropyl)dimethylsilylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(3-ethoxymethyl)-3-methyl-2-azetidinon-1-yl)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(3-allyloxymethyl)-3-methyl-2-azetidinon-1-yl)phenyl]-titan,
 40 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(3-chlormethyl-3-methyl-2-azetidinon-1-yl)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-benzyl-2,2-dimethylpropanoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(5-dimethyl-2-pyrrolidinon-1-yl)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(6,6-diphenyl-2-piperidinon-1-yl)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(2,3-dihydro-1,2-benzisothiazol-3-on-1,1-dioxid-2-yl)phenyl]-titan,
 45 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-hexyl-(4-chlorbenzoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-hexyl-(2-chlorbenzoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-isopropyl-(4-chlorbenzoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(4-methylphenyl)methyl)-(4-chlorbenzoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(4-methylphenyl)methyl)-(2-chlorbenzoyl)amino)phenyl]-titan,
 50 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-butyl-(4-chlorbenzoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-benzyl-2,2-dimethylpentanoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(2-ethylhexyl)-(4-tolylsulfonyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(3-oxahexyl)-benzoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(3,6-dioxadecyl)-benzoylamino)phenyl]-titan,
 55 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(trifluormethylsulfonyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(trifluoracetyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-((2-chlorbenzoyl)amino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-((4-chlorbenzoyl)amino)phenyl]-titan,

Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(3,6-dioxadecyl)-2,2-dimethylpentanoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-(3,7-dimethyl-7-methoxyoctyl)-benzoylamino)phenyl]-titan,
 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-cyclohexyl-benzoylamino)phenyl]-titan.

Die Herstellung der Titanocene der Formel I kann nach bekannten oder analogen Verfahren erfolgen,
 5 indem man 1 Mol einer Verbindung der Formel VI

worin R¹ die angegebene Bedeutung hat und Z für Halogen, besonders Chlor, steht, entweder mit einem
 10 Mol LiR² oder LiR³ und danach mit einem Mol LiR³ bzw. LiR² umsetzt; oder mit 2 Mol LiR² oder mit 1 Mol
 Li₂QYQ umsetzt, wobei R², R³ und QYQ die zuvor angegebenen Bedeutungen haben, und danach die
 15 Verbindung der Formel I in an sich bekannter Weise isoliert.

Die bekannten Verfahren sind z.B. in J. Organometal. Chem., 2 (1964) 206-212, J. Organometal. Chem.,
 4 (1965) 445-446 und in der EP-A-0 122 223 beschrieben.

Die Ausgangsverbindungen der Formel VI, in denen Z besonders für Chlor steht, sind bekannt oder
 20 können nach analogen Verfahren durch die Umsetzung von TiCl₄ mit 2 Mol einer Natriumverbindung NaR¹
 erhalten werden.

Die Lithiumverbindungen LiR², LiR³ und Li₂QYQ sind neu. Sie können nach an sich bekannten
 25 Verfahren durch die Umsetzung von z.B. Lithiumbutyl mit Verbindungen der Formel VII oder VIII hergestellt
 werden.

Ein weiterer Gegenstand der Erfindung sind die Zwischenprodukte der Formel VII

worin Ar einen 6-gliedrigen carbocyclischen oder 5- oder 6-gliedrigen heterocyclischen aromatischen Rest,
 30 der mindestens ein Fluoratom, in Orthostellung hierzu ein Wasserstoffatom oder ein Halogenatom und
 gegebenenfalls weitere Substituenten enthält, oder Ar einen Rest der Formel

35 bedeutet, worin D für ein in Orthostellung zu Y gebundenes Wasserstoffatom oder Halogenatom steht, Q
 einen carbocyclischen aromatischen Rest bedeutet, der in Orthostellung zur D-Gruppe jeweils durch ein
 Fluoratom substituiert ist und Q weitere Substituenten enthalten kann, und Y, Y¹, R⁵ und R⁶ die zuvor
 angegebenen Bedeutungen haben.

40 Für Ar, Y¹, R⁵, R⁶, Q und Y gelten sinngemäss die gleichen Ausführungsformen und Bevorzugungen
 wie sie zuvor für R² bzw. R² und R³ zusammen und für den Rest der Formel IV beschrieben sind.

Der Rest Ar in der Bedeutung eines 6-gliedrigen carbocyclischen oder 5- oder 6-gliedrigen heterocyclischen
 45 aromatischen Restes enthält vorzugsweise in Orthostellung zum Wasserstoff- bzw. Halogenatom ein
 weiteres Fluoratom. Das Halogenatom ist bevorzugt aus F, Cl oder Br ausgewählt. Beim aromatischen Rest
 handelt es sich vorzugsweise um einen substituierten Phenylrest. In Orthostellung zum Fluoratom bzw. zu Y
 50 ist insbesondere ein Wasserstoffatom gebunden. Die Gruppe -N(R⁵)-Y¹R⁶ ist vorzugsweise in Orthostellung
 zu einem der F-Atome gebunden. Es wurde gefunden, dass überraschend bei solchen Verbindungen das
 zu den F-Atomen benachbarte H-Atom direkt durch Lithium ersetzt werden kann. Eine bevorzugte Gruppe
 von Verbindungen sind solche der Formel VIIa

worin R^5 , R^6 und Y^1 die zuvor angegebenen Bedeutungen haben. Die Gruppe $-N(R^5)-Y^1R^6$ ist vorzugsweise in Orthostellung zum Fluoratom gebunden.

Die Herstellung der Verbindungen der Formel VII kann durch N-Acylierung nach an sich bekannten Verfahren erfolgen. Man kann z.B. von den entsprechenden primären oder sekundären Fluorarylaminen ausgehen, die teilweise kommerziell erhältlich sind oder nach an sich bekannten Verfahren hergestellt werden können. Sekundäre Amine können auch durch Alkylierung und Aryalkylierung von primären Aminen nach bekannten Methoden erhalten werden. Beispielsweise kann man ein primäres Amin mit einem Aldehyd umsetzen und das gebildete Azomethin hydrieren. Man kann auch von einem fluorierten Nitrobenzol ausgehen und durch Hydrierung in Gegenwart eines Aldehydes das monoalkylierte Anilin herstellen.

Die Acylierung ($Y^1 = -CO-$, $-CS-$ oder $-SO_2-$) kann nach bekannten Verfahren durch die Umsetzung der Amine mit Säurehalogeniden, Säureanhydrien oder Säureestern erfolgen. Urethane ($Y^1 = -COO-$) können durch die Umsetzung der Amine mit Chlorkohlsäureestern erhalten werden. Harnstoffe ($Y^1 = -CO-$ oder $-CS-$ und $R^6 = -NR^7R^8$) können z.B. durch die Umsetzung der Amine mit Isocyanaten, Iso thiocyanaten oder Carbamoylhalogeniden hergestellt werden. Silylamine können z.B. durch die Umsetzung eines Amins mit einem entsprechenden Silylhalogenid, $R^6Si(R^4)_2Cl$ erhalten werden.

Gleichzeitige Alkylierung und Acylierung der primären Amine kann durch Reaktion mit Orthocarbonsäureestern geschehen.

Verbindungen der Formel VII, worin R^5 und R^6 zusammen lineares oder verzweigtes C_2-C_8 -Alkylen oder durch Halogen substituiertes C_2-C_8 -Alkylen oder einen zweiwertigen Rest der Formel

35 bedeuten, können z.B. aus den primären Fluoranilinen durch Umsetzung mit einem entsprechenden Halogencarbonsäurehalogenid oder Halogensulfonsäurehalogenid hergestellt werden. Beispiele hierfür sind β -Chlorpropionsäurechlorid, β -Chlorvalinsäurechlorid, γ -Brombutyrylbromid, δ -Bromvalerylbromid, o-Chlor-methylbenzoylchlorid oder 2-(Chlormethyl)-cyclohexancarbonylchlorid. Eine weitere Methode ist die Umsetzung der primären Amine mit Lactonen.

40 Weitere Zwischenprodukte sind die Verbindungen der Formel VIII

worin Ar, Y^1 , R^6 und R^{10} die vorhin gegebenen Bedeutungen haben.

Bevorzugt ist Ar ein 1,3-Difluorphenylrest, was den Verbindungen der Formel VIIIa entspricht:

Die Gruppe $-N(Y^1R^{10})-Y^1R^6$ befindet sich bevorzugt in Orthostellung zum Fluoratom.

Bevorzugt sind Verbindungen der Formel VIIa, worin Y¹ die Gruppe -CO- ist und R⁶ und R¹⁰ zusammen C₂-C₈-Alkandiyyl, C₂-C₈-Alkendiyl, C₆-C₁₀-Arendiyyl, C₆-C₁₂-Cycloalkandiyyl, C₆-C₁₂-Cycloalkendiyl, C₇-C₁₂-Bicycloalkandiyyl oder C₇-C₁₂-Bicycloalkendiyl bedeuten.

- Die Verbindungen der Formel VIII können durch zweifache Acylierung der entsprechenden primären Amine hergestellt werden. Verbindungen der Formel VIII, worin Y¹ die Gruppe -CO- ist und R⁶ und R¹⁰ zusammen einen zweiwertigen Rest bilden, können durch Umsetzung der primären Amine mit cyclischen 1,2-Dicarbonsäureanhydriden hergestellt werden. Beispiele hierfür sind Bernsteinsäure-, Maleinsäure-, Phthalsäure-, Hexahydrophthalsäure- oder Cyclohexen-4,5-dicarbonsäureanhydrid.

Eine spezielle Type von Verbindungen der Formel VIII bzw. VIIia sind solche der Formel VIIib:

10

15

- Diese können z.B. aus den entsprechenden primären Aminen durch Umsetzung mit X¹-Si(R⁴)₂-CH₂-CH₂-Si-(R⁴)₂-X¹, worin X¹ Chlor oder Dimethylamino ist, hergestellt werden. Die Verbindungen der Formel VIIib stellen eine maskierte Form der primären Amine dar. Nach ihrer Umsetzung zu den entsprechenden Titanocenen kann die Schutzgruppe -Si(R⁴)₂-CH₂-CH₂-Si(R⁴)₂- hydrolytisch abgespalten werden unter Zurückbildung der NH₂-Gruppe.

- Die Herstellung der Titanocene der Formel I erfolgt im allgemeinen in Gegenwart inerter Lösungsmittel wie z.B. Kohlenwasserstoffen oder Ethern, bei Temperaturen von -30 bis -100 °C, vorzugsweise -60 bis -90 °C und unter Schutzgasatmosphäre. In einer Ausführungsform des Verfahrens wird zunächst LiR² bzw. LiR³ durch Umsetzung der Verbindungen der Formel VII oder VIII in einem Ether als Lösungsmittel, z.B. Tetrahydrofuran, mit Lithiumbutyl bei Temperaturen um -78 °C hergestellt. Zu der gekühlten Reaktionsmischung gibt man dann das entsprechende Titanocendihalogenid, entfernt die Kühlung und lässt auf Raumtemperatur erwärmen. Die Reaktionsmischung wird dann, gegebenenfalls nach Zugabe von Lösungsmitteln, filtriert und aus der Lösung durch Ausfällen oder Verdampfen des Lösungsmittels das erfindungsgemäße Titanocen isoliert.

- Verwendet man für die Umsetzung mit Lithiumbutyl und Titanocendichlorid ein maskiertes primäres Amin, beispielsweise eine Verbindung der Formel VIIib, so kann durch Hydrolyse des gebildeten Titanocens eine Verbindung der Formel I hergestellt werden, in der R² und R³ durch eine NH₂-Gruppe substituiert sind. Diese NH₂-Gruppe kann anschliessend durch entsprechende N-Substitution in die Gruppe -N(R⁵)-Y¹R⁶ oder -N(Y¹R¹⁰)-Y¹R⁶ übergeführt werden. Hierfür kommen dieselben Verfahren in Frage wie für die Herstellung von VII und VIII. Die NH₂-Gruppe kann auch durch Umsetzung mit Phosgen oder Triphosgen in eine Isocyanatgruppe -NCO übergeführt werden, wodurch man zu Verbindungen der Formel I gelangt, in denen R² und R³ durch einen Rest der Formel IVb substituiert sind.

- Bei den Verbindungen der Formel I handelt es sich im allgemeinen um kristalline, meist orangefärbte, Verbindungen, die sich durch eine hohe thermische Stabilität auszeichnen und sich erst bei hohen Temperaturen zersetzen. Auch unter Lufteinwirkung sowie unter Einwirkung von Wasser wird keine Zersetzung beobachtet. Viele dieser Verbindungen können in härtbaren Zusammensetzungen auch in höheren Mengen gelöst werden, und bieten daher wertvolle anwendungstechnische Eigenschaften. Die Verbindungen sind auch in Lösungsmitteln gut löslich, und können in Form von Lösungen in härtbare Zusammensetzungen eingearbeitet werden, wonach das Lösungsmittel gegebenenfalls entfernt wird.

- Die Verbindungen sind dunkellagerstabil und können ohne Schutzgas gehandhabt werden. Sie eignen sich alleine hervorragend als sehr wirksame Photoinitiatoren für die lichtinduzierte Polymerisation ethylenisch ungesättigter Verbindungen. Sie zeichnen sich hierbei durch eine hohe Lichtempfindlichkeit und Wirksamkeit über einen grossen Wellenlängenbereich von ca. 200 nm (UV-Licht) bis etwa 600 nm aus. Ferner vermögen die Titanocene auch wirksam die Polymerisation unter dem Einfluss von Wärme zu initiieren, wobei ein Erwärmung auf 170 °C bis 240 °C zweckmässig ist. Selbstverständlich kann auch Lichteinwirkung in Kombination mit Erwärmung zur Polymerisation benutzt werden, wobei eine Erwärmung nach der Belichtung tiefere Temperaturen, z.B. 80-150 °C, zur Polymerisation erlaubt. Die Lichtempfindlichkeit ist überraschend höher als bei den entsprechenden Dialkylaminderivaten.

Ein weiterer Gegenstand vorliegender Erfindung ist eine durch Strahlung polymerisierbare Zusammensetzung, enthaltend (a) mindestens eine nichtflüchtige, monomere, oligomere oder polymere Verbindung

mit mindestens einer polymerisierbaren ethylenisch ungesättigten Doppelbindung und (b) mindestens ein Titanocen der Formel I als Photoinitator.

Die Zusammensetzungen können weitere von (b) verschiedene Photoinitiatoren (c), z.B. solche vom Typ der Benzophenone, Benzoinalkylether, Benzilketale, 4-Aroyl-1,3-dioxolane, Dialkoxyacetophenone, α -Hydroxy- oder α -Aminoacetophenone, α -Hydroxycycloalkylphenylketone oder Mischungen davon enthalten. Der Vorteil besteht darin, dass man geringere Mengen der erfundungsgemäßen Titanocene verwenden kann und trotzdem gleiche oder verbesserte Lichtempfindlichkeiten erzielen kann. Das Gewichtsverhältnis dieser Komponenten (c):(b) kann z.B. von 1:1 bis 30:1, bevorzugt 5:1 bis 15:1 betragen.

Die Zusatzmenge der erfundungsgemäßen Titanocene richtet sich im wesentlichen nach wirtschaftlichen Gesichtspunkten, deren Löslichkeit und nach der gewünschten Empfindlichkeit. Im allgemeinen werden 0,01 bis 20, vorzugsweise 0,05-10 und besonders 0,1 bis 5 Gew.% verwendet, bezogen auf die Komponente (a).

Als Komponente (a) kommen solche ethylenisch ungesättigten monomeren, oligomeren und polymeren Verbindungen in Frage, die durch Photopolymerisation zu höhermolekularen Produkten reagieren und hierbei ihre Löslichkeit verändern.

Besonders geeignet sind z.B. Ester von ethylenisch ungesättigten Carbonsäuren und Polyolen oder Polyepoxiden, und Polymere mit ethylenisch ungesättigten Gruppen in der Kette oder in Seitengruppen, wie z.B. ungesättigte Polyester, Polyamide und Polyurethane und Copolymere hiervon, Polybutadien und Butadien-Copolymere, Polyisopren und Isopren-Copolymere, Polymere und Copolymere mit (Meth)-Acrylgruppen in Seitenketten, sowie Mischungen von einem oder mehreren solcher Polymere.

Beispiele für ungesättigte Carbonsäuren sind Acrylsäure, Methacrylsäure, Crotonsäure, Itaconsäure, Zimtsäure, ungesättigte Fettsäuren wie Linolensäure oder Oelsäure. Bevorzugt sind Acryl- und Methacrylsäure.

Als Polyole sind aromatische und besonders aliphatische und cycloaliphatische Polyole geeignet. Beispiele für aromatische Polyole sind Hydrochinon, 4,4'-Dihydroxydiphenyl, 2,2-Di(4-hydroxyphenyl)-propan, sowie Novolake und Resole. Beispiele für Polyepoxide sind solche auf der Basis der genannten Polyole, besonders der aromatischen Polyole und Epichlorhydrin. Ferner sind auch Polymere oder Copolymere, die Hydroxylgruppen in der Polymerkette oder in Seitengruppen enthalten, wie z.B. Polyvinylalkohol und Copolymere davon oder Polymethacrylsäurehydroxyalkylether oder Copolymere davon, als Polyole geeignet. Weitere geeignete Polyole sind Oligoester mit Hydroxylendgruppen.

Beispiele für aliphatische und cycloaliphatische Polyole sind Alkylendiole mit bevorzugt 12 bis 12 C-Atomen, wie Ethylenglykol, 1,2- oder 1,3-Propandiol, 1,2-, 1,3 oder 1,4-Butandiol, Pentandiol, Hexandiol, Octandiol, Dodecandiol, Diethylenglykol, Triethylenglykol, Polyethylenglykole mit Molekulargewichten von bevorzugt 200 bis 1500, 1,3-Cyclopentandiol, 1,2-, 1,3- oder 1,4-Cyclohexandiol, 1,4-Dihydroxymethylcyclohexan, Glycerin, Tris-(β -hydroxyethyl)amin, Trimethylolethan, Trimethylolpropan, Pentaerythrit, Dipentaerythritol und Sorbit.

Die Polyole können teilweise oder vollständig mit einer oder verschiedenen ungesättigten Carbonsäuren verestert sein, wobei in Teilestern die freien Hydroxylgruppen modifiziert, z.B. verethert oder mit anderen Carbonsäuren verestert sein können.

Beispiele für Ester sind:
 Trimethylolpropantriacrylat, Trimethylolethantriacrylat, Trimethylolpropantrimethacrylat, Trimethylolethantrimethacrylat, Tetramethylenglykoldimethacrylat, Triethylenglykoldimethacrylat, Tetraethylenglykoldiacrylat, Pentaerythritdiacrylat, Pentaerythritriacrylat, Pentaerythrittetraacrylat, Dipentaerythritdiacrylat, Dipentaerythrittriacrylat, Dipentaerythrittetraacrylat, Dipentaerythritpentaacrylat, Dipentaerythrithexaacrylat, Tripentaerythritoctaacrylat, Pentaerythritdimethacrylat, Pentaerythrittrimethacrylat, Dipentaerythritdimethacrylat, Dipentaerythrittetramethacrylat, Tripentaerythritoctamethacrylat, Pentaerythritdiitaconat, Dipentaerythritrisitaconate, Dipentaerythritpentaconat, Dipentaerythrithexitaconat, Ethylenglykoldimethacrylat, 1,3-Butandioldiacrylat, 1,3-Butandioldimethacrylat, 1,4-Butandiolditaconat, Sorbitriacrylat, Sorbittetraacrylat, Sorbittetramethacrylat, Sorbipentaacrylat, Sorbithexaacrylat, Oligoesteracrylate und -methacrylate, Glyzerindi- und -triacrylat, 1,4-Cyclohexandiacyrat, Bisacrylate und Bismethacrylate von Polyethylenglykol mit Molekulargewicht von 200-1500, oder Gemische davon.

Als Komponente (a) sind auch die Amide gleicher oder verschiedener ungesättigter Carbonsäuren von aromatischen, cycloaliphatischen und aliphatischen Polyaminen mit bevorzugt 2 bis 6, besonders 2 bis 4 Aminogruppen geeignet. Beispiele für solche Polyamine sind Ethylendiamin, 1,2- oder 1,3-Propyldiamin, 1,2-, 1,3- oder 1,4-Butyldiamin, 1,5-Pentylendiamin, 1,6-Hexylendiamin, Octylendiamin, Dodecylendiamin, 1,4-Diaminocyclohexan, Isophorondiamin, Phenylendiamin, Bisphenylendiamin, Di- β -aminoethyllether, Diethylentriamin, Triethylentetramin, Di-(β -aminoethoxy)- oder Di(β -aminopropoxy)ethan. Weitere geeignete Polyamine sind Polymere und Copolymere mit Aminogruppen in der Seitenkette und Oligoamide mit

Aminoendgruppen.

Beispiele für solche ungesättigten Amide sind: Methylen-bis-acrylamid, 1,6-Hexamethylen-bis-acrylamid, Diethylentriamin-tris-methacrylamid, Bis(methacrylamidopropoxy)-ethan, β -Methacrylamidoethylmethacrylat, N[$(\beta$ -Hydroxyethoxy)ethyl]-acrylamid.

- 5 Geeignete ungesättigte Polyester und Polyamide leiten sich z.B. von Maleinsäure und Diolen oder Diaminen ab. Die Maleinsäure kann teilweise durch andere Dicarbonsäuren ersetzt sein. Sie können zusammen mit ethylenisch ungesättigten Comonomeren, z.B. Styrol, eingesetzt werden. Die Polyester und Polyamide können sich auch von Dicarbonsäuren und ethylenisch ungesättigten Diolen oder Diaminen ableiten, besonders von längerkettigen mit z.B. 6 bis 20 C-Atomen. Beispiele für Polyurethane sind solche, die aus gesättigten oder ungesättigten Dilisocyanaten und ungesättigten bzw. gesättigten Diolen aufgebaut sind.
- 10

Polybutadien und Polylsopren und Copolymeren davon sind bekannt. Geeignete Comonomere sind z.B. Polyolefine wie Ethylen, Propen, Buten, Hexen, (Meth)Acrylate, Acrylnitril, Styrol oder Vinylchlorid. Polymere mit (Meth)Acrylatgruppen in der Seitenkette sind ebenfalls bekannt. Es kann sich z.B. um Umsetzungsprodukte von Epoxidharzen auf Novolakbasis mit (Meth)Acrylsäure handeln, um Homo- oder Copolymeren des Polyvinylalkohols oder deren Hydroxyalkylderivaten, die mit (Meth)Acrylsäure verestert sind, oder um Homo- und Copolymeren von (Meth)Acrylaten, die mit Hydroxyalkyl(meth)acrylaten verestert sind.

Die photopolymerisierbaren Verbindungen können alleine oder in beliebigen Mischungen eingesetzt werden. Bevorzugt werden Gemische von Polyol-(Meth)Acrylaten verwendet.

- 20 Den erfindungsgemässen Zusammensetzungen können auch Bindemittel zugesetzt werden, was besonders zweckmässig ist, wenn es sich bei den photopolymerisierbaren Verbindungen um flüssige oder viskose Substanzen handelt. Die Menge des Bindemittels kann z.B. 5-85, vorzugsweise 10-90 und besondere 50-90 Gew.% betragen, bezogen auf die gesamte Zusammensetzung. Die Wahl des Bindemittels erfolgt je nach dem Anwendungsgebiet und hierfür geforderter Eigenschaften wie Entwickelbarkeit in wässrigen und organischen Lösungsmittelsystemen. Adhäsion auf Substraten und Sauerstoffempfindlichkeit.
- 25

Geeignete Bindemittel sind z.B. Polymere mit einem Molekulargewicht von etwa 5000-2 000 000, bevorzugt 10 000 bis 1 000 000. Beispiele sind: Homo- und copolymeres Acrylate und Methacrylate, z.B. Copolymeren aus Methylmethacrylat/Ethylacrylat/Methacrylsäure, Poly(methacrylsäurealkylester), Poly(acrylsäurealkylester); Celluloseester und -ether wie Celluloseacetat, Celluloseacetaibutyrat, Methylcellulose, Ethylcellulose; Polyvinylbutyral, Polyvinylformal, cyclisierter Kautschuk, Polyether wie Polyethylenoxid, Polypropylenoxid, Polytetrahydrofuran; Polystyrol, Polycarbonat, Polyurethan, chlorierte Polyolefine, Polyvinylchlorid, Copolymeren aus Vinylchlorid/Vinylidenchlorid, Copolymeren von Vinylidenchlorid mit Acrylnitril, Methylmethacrylat und Vinylacetat, Polyvinylacetat, Copoly(ethylen/vinylacetat), Polyamide wie Polycaprolactam und Poly(hexamethylenadipamid), Polyester wie Poly(äthylenglykolterephthalat) und Poly(hexamethyleneglycolsuccinat).

- 30
 - 35
 - 40
- Die erfindungsgemässen Zusammensetzungen eignen sich als Beschichtungsmittel für Substrate aller Art, z.B. Holz, Papier, Keramik, Kunststoffe, wie Polyester und Celluloseacetatfilme, und Metalle, wie Kupfer und Aluminium, bei denen durch Photopolymerisation eine Schutzschicht oder eine photographische Abbildung aufgebracht werden soll. Ein weiterer Gegenstand vorliegender Erfindung sind die beschichteten Substrate und ein Verfahren zum Aufbringen photographischer Abbildungen auf den Substraten. Die beschichteten Substrate können auch als Aufzeichnungsmaterial für Hologramme (Volumen-Phasen-Diagramm) verwendet werden, wobei vorteilhaft ist, dass für diesen Zweck keine Nassentwicklung notwendig ist.

- 45
 - 50
- Die Beschichtung der Substrate kann erfolgen, indem man eine flüssige Zusammensetzung, eine Lösung oder Suspension auf das Substrat aufträgt. Flüssige Zusammensetzungen ohne Lösungsmittel sind bevorzugt. Hierbei kann es zweckmässig sein, die erfindungsgemässen Titanocene in Form eines flüssigen Photoinitiatorengemisches, enthaltend andere Photoinitiatoren, z.B. ein Benzilketal, ein 4-Aroyl-1,3-dioxolan, ein Dialkoxyacetophenon, ein α -Hydroxy-oder α -Aminoacetophenon, ein α -Hydroxycycloalkylphenylketon oder Mischungen hiervon einzusetzen. Besonders vorteilhaft sind flüssige Mischungen aus flüssigen bis festen Photoinitiatoren und flüssigen Titanocenen oder flüssigen Photoinitiatoren und sirupösen bis festen Titanocenen. Diese Gemische bieten anwendungstechnische Vorteile und zeichnen sich durch eine hohe Dunkellagerstabilität aus.

Beispiele für Benzilketale sind solche der Formel

5 R¹³ = R¹⁴ = -CH₃

-CH₂CH₃

-(CH₂)₂CH₃

-(CH₂)₃CH₃

10 -CH₂CH₂CH(CH₃)₂

-CH₂-CH(C₂H₅)₂

-(CH₂)₉CH₃

15 -C₁₀H₂₁-iso

-C₁₂H₂₅-n

-C₉H₁₉ bis -C₁₁H₂₃-Gemisch

20 -C₁₂-H₂₅-bis-C₁₅H₃₁-Gemisch

-CH₂CH=CH₂

-CH(CH₃)CH=CH₂

25 -CH₂CH₂OC₃H₇-iso

-CH₂CH₂OC₄H₉

-CH₂CH₂OCH₂CH=CH₂

30 -CH(CH₃)-CH₂OC₄H₉

-CH₂COOCH₃

-CH₂COOC₄H₉

-CH(CH₃)COOCH₃

35 -CH₂CH₂COOC₂H₅

-CH(CH₃)CH₂COOCH₃

-CH₂CH₂CH(CH₃)OCH₃

40 -CH₂-

-CH₂(CH₂O)₂CH₃

45 -(CH₂CH₂O)₂C₂H₅

-(CH₂CH₂O)₂C₄H₉

-(CH₂CH₂O)₃CH₃

-(CH₂CH₂O)₃C₂H₅

50 -(CH₂CH₂O)₃C₁₂H₂₅

$-(CH_2CH_2O)_5C_{10}H_{21}$
 $-(CH_2CH_2O)_8C_9H_{19}-\text{bis}-C_{11}H_{23}$ (Gemisch)

10 $-CH_2CH_2N(C_2H_5)_2$

R¹⁴ = CH₃, R¹³ = C₆H₁₃

R¹⁴ = CH₃, R¹³ = C₁₀H₂₁

25 R¹⁴ = CH₃, R¹³ = $\{CH_2CH_2O\}_3-C_{12}H_{25}$ bis-C₁₅H₃₁ (Gemisch)

R¹⁴ = CH₃, R¹³ = $\{CH_2CH_2O\}_5-C_9H_{19}$ bis -C₁₁H₂₃ (Gemisch)

R¹⁴ = CH₃, R¹³ = $\{CH_2CH_2O\}_8-C_{11}H_{23}$.

30 Beispiele für 4-Aroyl-1,3-dioxolane sind:

4-Benzoyl-2,2,4-trimethyl-1,3-dioxolan

4-Benzoyl-4-methyl-2,2-tetramethylen-1,3-dioxolan

4-Benzoyl-4-methyl-2,2-pentamethylen-1,3-dioxolan

35 cis-trans 4-Benzoyl-2,4-dimethyl-2-methoxymethyl-1,3-dioxolan

cis-trans 4-Benzoyl-4-methyl-2-phenyl-1,3-dioxolan

4-(4-Methoxybenzoyl)-2,2,4-trimethyl-1,3-dioxolan

4-(4-Methoxybenzoyl)-4-methyl-2,2-pentamethylen-1,3-dioxolan

4-(4-Methylbenzoyl)-2,2,4-trimethyl-1,3-dioxolan

40 cis-trans 4-Benzoyl-2-methyl-4-phenyl-1,3-dioxolan

4-Benzoyl-2,2,4,5,5-pentamethyl-1,3-dioxolan

cis-trans 4-Benzoyl-2,2,4,5-tetramethyl-1,3-dioxolan

cis-trans 4-Benzoyl-4-methyl-2-pentyl-1,3-dioxolan

cis-trans 4-Benzoyl-2-benzyl-2,4-dimethyl-1,3-dioxolan

45 cis-trans 4-Benzoyl-2-(2-furyl)-4-methyl-1,3-dioxolan

cis-trans 4-Benzoyl-5-phenyl-2,2,4-trimethyl-1,3-dioxolan.

Beispiele für Dialkoxyacetophenone sind:

α,α -Dimethoxyacetophenon

50 α,α -Diethoxyacetophenon

α,α -Di-isopropoxyacetophenon

α,α -Di-(2-methoxyethoxy)acetophenon

α -Butoxy- α -ethoxyacetophenon

α,α -Dibutoxy-4-chloracetophenon

55 α,α -Diethoxy-4-fluoroacetophenon

α,α -Dimethoxy-4-methylacetophenon

α,α -Diethoxy-4-methylacetophenon

α,α -Dimethoxypropiophenon

α,α -Diethoxypropiophenon

α,α -Diethoxybutyrophenon
 α,α -Dimethoxyisovalerophenon
 α,α -Diethoxy- α -cyclohexylacetophenon
 α,α -Dipropoxy-4-chlorpropiophenon.

- 5 Beispiele für α -Hydroxy- und α -Aminoacetophenone sind:
 2-Hydroxy-2-methyl-1-phenylpropanon-1
 2-Hydroxy-2-ethyl-1-phenylhexanon-1
 1-(4-Dodecylophenyl)-2-hydroxy-2-methylpropanon-1
 1-(2,4-Dimethylphenyl)-2-hydroxy-2-methylpropanol-1
 10 2-Hydroxy-1-(4-methoxyphenyl)-2-methylpropanon-1
 2-Hydroxy-2-methyl-1-phenylbutanon-1
 2-Hydroxy-1-[4-(2-hydroxyethoxy)phenyl]-2-methylpropanon-1
 2-Dimethylamino-2-methyl-1-phenylpropanon-1
 2-Dibutylamino-2-methyl-1-phenylpropanol-1
 15 1-(4-Fluorphenyl)-2-methyl-2-morpholinopentanone-1
 2-Methyl-1-(4-methylthiophenyl)-2-morpholinopropanone-1
 2-Dimethylamino-1-(4-methoxyphenyl)-2-methylpropanone-1
 2-Diethylamino-1-(4-diethylaminophenyl)-2-methylpropanone-1.
 2-Dimethylamino-2-(4-methylbenzyl)-1-(4-morpholinophenyl)-butanon-1
 20 2-Benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanon-1

Beispiele für α -Hydroxycycloalkylphenylketone sind:
 α -Hydroxycyclohexylphenylketon
 α -Hydroxycyclopentylphenylketon

Das Photoinitiatorengemisch (b) + (c) kann in Mengen von 0,5-20, vorzugsweise 1 bis 10 Gew.-%, zugegeben werden, bezogen auf die Komponente (a).

Die Wahl des Lösungsmittels und die Konzentration richtet sich hauptsächlich nach der Art der Zusammensetzung und nach dem Beschichtungsverfahren. Die Zusammensetzung wird mittels bekannter Beschichtungsverfahren auf ein Substrat gleichförmig aufgebracht, z.B. durch Tauchen, Rakelbeschichtung, Vorhanggiessverfahren, Elektrophorese, Aufpinseln, Sprayen oder Reverseroll-Beschichtung. Die Auftragsmenge (Schichtdicke) und Art des Substrates (Schichtträger) sind abhängig vom gewünschten Applikationsgebiet. Als Schichtträger für photographische Informationsaufzeichnung dienen z.B. Folien aus Polyester, Celluloseacetat oder mit Kunststoff beschichtete Papiere; für Offsetdruckformen speziell behandeltes Aluminium und für die Herstellung gedruckter Schaltungen kupferkaschierte Lamine. Die Schichtdicken für photographische Materialien und Offsetdruckformen betragen im allgemeinen ca. 0,5 bis ca. 10 μm ; für gedruckte Schaltungen im allgemeinen 1 bis ca. 100 μm . Bei Mitverwendung von Lösungsmitteln werden diese nach dem Beschichten entfernt.

Photohärtbare Zusammensetzungen, wie sie für die verschiedenen Zwecke verwendet werden, enthalten meist ausser den photopolymerisierbaren Verbindungen und den Photoinitiatoren eine Reihe sonstiger Zusätze. So ist es vielfach üblich, thermische Inhibitoren zuzusetzen, die vor allem während der Herstellung der Zusammensetzungen durch Mischen der Komponenten vor einer vorzeitigen Polymerisation schützen sollen. Hierzu werden beispielsweise Hydrochinon, Hydrochinonderivate, p-Methoxyphenol, β -Naphthole oder sterisch gehinderte Phenole wie z.B. 2,6-Di(tert-butyl)-p-kresol verwendet. Weiter können geringe Mengen von UV-Absorbern zugesetzt werden, wie z.B. solche vom Benztriazol-, Benzophenon- oder Oxalanilid-Typ. Ebenso lassen sich Lichtschutzmittel vom Typus sterisch gehinderter Amine (HALS) zusetzen.

Zur Erhöhung der Dunkellagerstabilität können Kupferverbindungen, wie Kupfernaphthenat, -stearat, oder -octoat, Phosphorverbindungen, wie Triphenylphosphin, Tributylphosphin, Triethylphosphit, Triphenylphosphit oder Tribenzylphosphit, quaternäre Ammoniumverbindungen, wie Tetramethylammoniumchlorid oder Trimethyl-benzylammoniumchlorid oder Hydroxylaminderivate, wie z.B. N-Diethylhydroxylamin, zugesetzt werden.

Um die inhibierende Wirkung des Luftsauerstoffs auszuschliessen setzt man photohärtbaren Gemischen häufig Paraffin oder ähnliche wachsartige Stoffe zu. Diese schwimmen bei Beginn der Polymerisation wegen mangelnder Löslichkeit im Polymeren aus und bilden eine transparente Oberflächenschicht, die den Zutritt von Luft verhindert.

56 Weitere übliche Zusätze sind Photosensibilisatoren, welche in bestimmten Wellenlängen absorbieren und die absorbierte Energie an den Initiatoren weitergeben oder selbst als zusätzlicher Initiator fungieren. Beispiele hierfür sind vor allem Thioxanthon-, Anthracen-, Anthrachinon- und Cumarinderivate.

Weitere übliche Zusätze sind Beschleuniger vom Amin-Typ, die vor allem in pigmentierten Zubereitun-

gen von Bedeutung sind, da sie als Kettenüberträger wirken. Beispiele hierfür sind N-Methyldiethanolamin, Triethylamin, p-Dimethylaminobenzoesäureethylester oder Michler's Keton. Die Wirkung der Amine kann verstärkt werden durch den Zusatz von aromatischen Ketonen vom Benzophenontyp. Weitere Beschleuniger sind Thiadiazolderivate, wie z.B. 2-Mercapto-2-methylthio-1,3,4-thiadiazol.

- 5 Weitere übliche Zusätze sind z.B. Füllstoffe, Pigmente, Farbstoffe, Haft-, Netz- und Verlaufsmittel.
 Grosse Bedeutung hat die Photohärtung für Druckfarben, da die Trocknungszeit des Bindemittels ein massgeblicher Faktor für die Produktionsgeschwindigkeit graphischer Erzeugnisse ist und in der Größenordnung von Bruchteilen von Sekunden liegen soll. Insbesondere für den Siebdruck sind UV-härtbare Druckfarben von Bedeutung.
- 10 Gut geeignet sind die erfindungsgemäßen photohärtbaren Zusammensetzungen auch zur Herstellung von Druckplatten, insbesondere Flexodruckplatten. Hierbei werden z.B. Gemische von löslichen linearen Polyamiden oder von Styrol-Butadien-Kautschuk mit photopolymerisierbaren Monomeren, beispielsweise Acrylamiden oder Acrylaten, und einem Photoinitiator verwendet. Filme und Platten aus diesen Systemen werden über das Negativ (oder Positiv) der Druckvorlage belichtet und die ungehärteten Anteile anschließend mit einem Lösungsmittel eluiert.

15 Ein weiteres Einsatzgebiet der Photohärtung ist die Metallbeschichtung, beispielsweise bei der Lackierung von Blechen für Tuben, Dosen oder Flaschenverschlüssen, sowie die Photohärtung von Kunststoffbeschichtungen, beispielsweise von Fußboden- oder Wandbelägen auf PVC-Basis.

- 20 Beispiele für die Photohärtung von Papierbeschichtungen sind die farblose Lackierung von Etiketten, Schallplatten-Hüllen oder Buchumschlägen.
 Wichtig ist auch die Verwendung der photohärtbaren Zusammensetzungen für Abbildungsverfahren und zur optischen Herstellung von Informationsträgern. Hierbei wird die auf dem Träger aufgebrachte Schicht (nass oder trocken) durch eine Photomasken mit kurzwelligem Licht bestrahlt und die unbelichteten Stellen der Schicht durch Behandlung mit einem Lösungsmittel (= Entwickler) entfernt. Die belichteten Stellen sind vernetzt-polymer und dadurch unlöslich und bleiben auf dem Träger stehen. Bei entsprechender Anfärbung entstehen sichtbare Bilder. Ist der Träger eine metallisierte Schicht, so kann das Metall nach dem Belichten und Entwickeln an den unbelichteten Stellen weggeätzt oder durch Galvanisieren verstärkt werden. Auf diese Weise lassen sich gedruckte Schaltungen und Photoresists herstellen.
 Zur Belichtung eignen sich Lichtquellen mit hohem Anteil an kurzwelligem Licht. Hierfür stehen heute entsprechende technische Vorrichtungen und verschiedene Lamparten zur Verfügung. Beispiele sind Kohlelichtbogenlampen, Xenonlichtbogenlampen, Quecksilberdampflampen, Metall-Halogenlampen, Fluoreszenzlampen, Argonlampen oder photographische Flutlichtlampen. Neuerdings werden auch Laserlichtquellen verwendet. Diese haben den Vorteil, dass keine Photomasken notwendig sind; der gesteuerte Laserstrahl schreibt direkt auf die photohärtbare Schicht.
- 25 30 35 40 45 Die erfindungsgemäßen Titanocene sind mit den Komponenten der photohärtbaren Zusammensetzungen gut vermischbar bzw. in der Zusammensetzung gut löslich, wodurch eine hohe Lichtempfindlichkeit erzielt werden kann. Sie sind auch gut zugänglich, da die Lithiumfluorarylamine als Ausgangsprodukte durch einen Lithium/Wasserstoffaustausch erhältlich sind. Eine vorherige Einführung von Halogenen in das Fluorarylamin erübrigts sich daher.
 Die nachfolgenden Beispiele erläutern die Erfindung näher. Darin bedeuten Teile und % Gewichtsteile und Gewichts-%, soweit nicht anders angegeben. Die Temperaturen sind in °C angegeben.

A) Herstellung der sekundären 2,4-Difluoraniline

45

a) aus 2,4-Difluoranilin

50

55

1 Mol 2,4-Difluoranilin wird mit 2 Mol des entsprechenden Aldehyds in 1 l Tetrahydrofuran gelöst. Nach Zusatz von 19 g Raney-Nickel und 2 g Essigsäure wird bei 60° und 60 bar H₂ hydriert. Der Endpunkt der Reaktion kann dünnenschicht- oder gas-chromatographisch bestimmt werden. Die Aufarbeitung erfolgt durch

Abdestillieren des Lösungsmittels am Rotationsverdampfer und Rektifikation des Rückstandes.

Tabelle 1

	R	Kp
10	CH ₃	86-88°/20 mbar
	n-C ₃ H ₇	108-110°/20 mbar
	iso-C ₃ H ₇	100-101°/20 mbar
	n-C ₄ H ₉	58-62°/0,6 mbar
	n-C ₅ H ₁₁	115°/2 mbar
	n-C ₇ H ₁₅	81-83°/0,15 mbar
15	-CH ₂ C ₂ H ₅	70-80°/1,5 mbar
	-CH ₂ C ₄ H ₉	124-25°/23 mbar
	-CH ₂ OCH ₃	98-104°/0,04 mbar
	-CH ₂ O(CH ₂) ₂ OCH ₃	84-87°/0,04 mbar
20		79°/2 mbar
		119°/0,04 mbar
		106-9°/2 mbar
25		74-78°/2 mbar

Ebenso werden mit 2 Mol des entsprechenden Ketons erhalten:

35		Kp. 79-81°/20 mbar
40		Kp. 70-72°/0,04 mbar
45		Kp. 120-125°/14 mbar

b) aus 2,4-Difluornitrobenzol

55 159,1 g 2,4-Difluor-nitrobenzol und 150 g 4-Methyl-pentanon-2 werden in 1,2 l Methanol mit 3 g H₂SO₄ konz. und 5 g Pt/C 5 % gemischt und während 3 Stunden bei 30 - 35° unter konstant 5 bar H₂ katalytisch hydriert. Der Fortgang der Hydrierung wird dünnenschichtchromatographisch an Kieselgel mit dem Gemisch Petroether/Dioxan 4:1 als Laufmittel verfolgt. Nach beendeter Reaktion wird der Katalysator abfiltriert und das Lösungsmittel am Rotationsverdampfer abdestilliert. Es bleibt ein braunes Öl zurück, das nach der

Entfernung von etwas harzigem Nebenprodukt im Vakuum rektifiziert wird. Die Fraktion von Kp. 120 - 125° bei 14 mbar wird aufgefangen. Man erhält 173,4 g N-(1,3-Dimethylbutyl)-2,4-difluoranilin als farbloses Öl.

5 B) Herstellung der Zwischenprodukte der Formel VII und VIII

10 Beispiel 1: N-Ethyl-N-pivaloyl-2,4-difluoranilin

15 15,7 g N-Ethyl-2,4-difluoranilin und 11,0 g Triethylamin werden in 40 ml Toluol gelöst. Unter Kühlung werden 12,1 g Pivalinsäurechlorid zugetropft und das Gemisch hierauf während 1 Stunde zum Sieden erhitzt. Nach dem Aufgiessen auf 100 ml Eiswasser wird die Toluolphase abgetrennt, mit 1N-HCl und darauf mit H₂O gewaschen und im Vakuum eingedampft. Man erhält 23,7 g eines gelblichen Öls das beim Stehen kristallisiert. Schmelzpunkt: 69 - 71° (aus verdünntem Ethanol umkristallisiert).

16

Elementaranalyse:	ber.	C	64,7	H	7,1	F	15,8	N	5,8 %
	gef.	C	65,0	H	7,1	F	15,9	N	5,8 %

20

Beispiele 2 - 43:

25 In Analogie zu Beispiel 1 werden weitere N-Acyl-2,4-difluoraniline hergestellt. Diese Verbindungen sind in der tabelle 2 aufgeführt.

30

35

40

45

50

55

Tabelle 2

5	Produkte der Formel				
10	Beispiel Nr.	R5	R6	Physikal. Eigenschaften	Analyse % 'N ber. gef.
	2	H	CH ₃	Fp. 116-120°	8,2 8,1
	3	H	-CH(CH ₃) ₂	Fp. 99-101°	7,0 6,9
	4	H		Fp. 88-93°	5,7 5,3
15	5	H	-C(CH ₃)(CH ₂ Cl) ₂	Fp. 83-86°	4,9 4,6
	6	H	-C(CH ₃) ₃	Fp. 67°	6,6 6,6
	7	CH ₃	n-C ₃ H ₇	Kp ₉ 100-103°	6,6 6,6
	8	CH ₃	n-C ₄ H ₉	Kp ₉ 115-117°	6,2 6,2
20	9	C ₂ H ₅	CH ₃	Kp ₂₀ 92-95°	7,0 7,1
	10	C ₂ H ₅	C ₂ H ₅	Kp ₄₄ 120-125°	6,6 6,7
	11	C ₂ H ₅		Fp. 47-50°	5,5 5,6
25	12	C ₂ H ₅		Fp. 67-68°	5,5 5,4
	13	C ₂ H ₅	-CH(CH ₃) ₂	Fp. 46-47°	6,2 6,3
	14	iso-C ₃ H ₇	Phenyl	Fp. 110-112°	5,1 5,0
30	15	iso-C ₃ H ₇	p-Tolyl	Fp. 90-94°	4,8 4,9
	16	n-C ₄ H ₉	CH ₃	Kp. 0,5 80-83°	6,2 6,3
	16a	n-C ₄ H ₉	CF ₃	Kp. 10 ² 102-10°	5,0 5,0
	17	n-C ₄ H ₉	-C(CH ₃) ₃	Kp. 5 143°	5,2 5,3
35	18	n-C ₄ H ₉		Kp. 0,4 92-95°	5,0 5,2
	18a	n-C ₄ H ₉		Oel	4,7 4,4
40	19	n-C ₄ H ₉		Kp. 0,6 95-100°	4,6 4,8
	20	n-C ₄ H ₉	Phenyl	Oel	4,8 5,0
	21	n-C ₄ H ₉	p-Tolyl	Oel	4,6 4,4
45	22	n-C ₄ H ₉	o-Chlorphenyl	Fp. 60-67°	4,3 4,1
	23	iso-C ₄ H ₉	Phenyl	Fp. 69-73°	4,8 4,6
	23a	iso-C ₄ H ₉	p-Chlorphenyl	Fp. 82-84°	4,3 4,2
	24	iso-C ₄ H ₉	p-Tolyl	Fp. 70-75°	4,6 4,5
50	25	iso-C ₄ H ₉		Oel	4,7 4,1

Beispiel		R ⁵	R ⁶	Physikal. Eigenschaften	Analyse % N ber.	Analyse % N gef.
Nr.						
5	26	iso-C ₄ H ₉		Fp. 65-70°	4,6	4,5
10	27	n-C ₅ H ₁₁		Kp _{0,5} 95-100°	4,7	4,5
15	28	n-C ₆ H ₁₃		Kp _{0,5} 94-98°	5,5	5,7
20	29	n-C ₆ H ₁₃		Kp _{0,2} 122-124°	4,5	4,4
25	30	n-C ₆ H ₁₃	Phenyl	Oel	4,4	4,4
	31	n-C ₆ H ₁₃	p-Tolyl	Oel	4,2	3,9
	32	n-C ₆ H ₁₃		Oel	4,3	4,2
30	33	n-C ₆ H ₁₃	p-Chlorphenyl	Oel	4,0	3,7
	34	n-C ₆ H ₁₃	a-Chlorphenyl	Oel	4,0	3,8
	35	n-C ₈ H ₁₇	CH ₃	Kp _{0,5} 115-118°	5,0	5,3
	36	2-Ethylhexyl	Phenyl	Oel	4,1	4,1
	37	2-Ethylhexyl	p-Tolyl	Oel	3,9	3,9
	38	2-Ethylhexyl		Oel	4,0	3,9
	39	-CH ₂ CH ₂ OCH ₃	Phenyl	Oel	4,8	5,0
	40	-CH ₂ CH ₂ OCH ₃	p-Tolyl	Oel	4,6	4,5
	41	-CH ₂ CH ₂ OCH ₃		Oel	4,7	4,3
	42	-CH ₂ CH ₂ OC ₄ H ₉	Phenyl	Oel	4,4	4,4
	43	-CH ₂ CH ₂ OC ₄ H ₉		Oel	3,9	4,0
	44	-CH ₂ CH ₂ O(CH ₂) ₂ OCH ₃	Phenyl	Fp. 70°	4,0	4,3
	45	-CH ₂ CH ₂ O(CH ₂) ₂ OCH ₃		Oel	4,1	4,0
	46		Phenyl	Fp. 60-63°	4,4	4,0
	47		Phenyl	Fp. 75-80°	4,2	4,0
	48		p-Tolyl	Fp. 87-91°	4,1	4,3
	49		p-Chlorphenyl	Fp. 87-90°	3,9	3,7

	Beispiel Nr.	R ⁵	R ⁶	Physikal. Eigenschaften	Analyse % N ber.	Analyse % N gef.
5	50			Oel	4,1	4,0
10	51			Fp. 74-78°	4,5	4,5
15	52			Fp. 52-54°	4,2	4,0
20	53			Oel	4,2	4,0
25	54		Phenyl	Fp. 128-34°	4,3	4,2
30	55		p-Tolyl	Fp. 87-93°	3,99	3,7
35	56		Phenyl	Fp. 85-90°	4,15	4,0
40	56a		p-Chlorphenyl	Fp. 107-10°	3,8	3,7
45	57		p-Tolyl	Fp. 87-93°	4,0	3,8
50	58		Phenyl	Oel	4,0	4,0
55	59		p-Tolyl	Oel	3,8	3,7
60	60			Oel	4,3	4,1
65	61			Oel	3,8	3,5
70	62			Oel	3,9	3,7
75	63			Fp. 76-77°	4,1	4,0
80	64		Phenyl	Oel	4,4	4,3
85	65		p-Tolyl	Oel	4,2	4,0

5	Beispiel	R ⁵	R ⁶	Physikal. Eigenschaften	Analyse % N	
	Nr.				ber.	gef.
10	66		CH ₃ -C-C ₃ H ₇	Oel	4,3	4,3

Beispiel 67: Acylierung mit Carbonsäureanhydrid

15 15,7 g N-Ethyl-2,4-difluoranilin werden in 40 ml Toluol gelöst und mit 23,2 g Pivalinsäureanhydrid versetzt. Es wird zum Sieden erhitzt und das Reaktionsgemisch während 8 Stunden am Sieden gehalten. Nach dem Aufgiessen auf Eiswasser wird die Toluolphase mit 1N-HCl, Wasser, Bicarbonatlösung und nochmals mit Wasser gewaschen. Man erhält 21,0 g eines gelblichen Oels, das beim Stehen kristallisiert. Das Produkt ist mit der nach Beispiel 1 hergestellten Verbindung identisch.

20

Beispiel 68: Alkylierung einer N-Acylverbindung

25 Eine Mischung von 60,8 g n-Butyl-methansulfonat und 22,5 g Trifluoracetyl-2,4-difluoranilin werden in 50 ml Aceton bei 40 °C gelöst und mit 22,4 g KOH-Pulver versetzt. Die Reaktionsmischung wird 30 Minuten am Rückfluss gehalten, filtriert und am Rotationsverdampfer eingedampft. Der ölige Rückstand wird rektifiziert. Man erhält 15 g N-Butyl-trifluoracetyl-2,4-difluoranilin als bei 106 - 110 °/11,7 mbar destillierendes gelbliches Öl.

30

Analyse:	ber.	C	51,25	H	4,30	F	33,78	N	4,98 %
	gef.	C	51,3	H	4,4	F	33,4	N	5,0 %

35

Beispiele 69 - 73: N-Sulfonylierung

40 Eine Lösung von 14,8 g N-Butyl-2,4-difluoranilin, 16,2 g Triethylamin und 0,5 g Dimethylaminopyridin in 150 ml Toluol wird bei 0 - 5 °C tropfenweise mit einer Lösung von 15,2 g p-Toluolsulfonsäurechlorid in 80 ml Toluol versetzt. Dann wird das Reaktionsgemisch auf 90 °C erwärmt und 48 h bei dieser Temperatur gerührt. Nach dem Abkühlen wird mit 5%iger HCl und mit Wasser gewaschen, die Toluol-Lösung wird über Na₂SO₄ getrocknet und eingedampft. Der Rückstand wird bei 0,01 mbar destilliert. Bei 150 - 160 ° erhält man 18,5 g N-Butyl-N-(2,4-difluorphenyl)-p-toluolsulfonamid als farbloses Öl.

45

Nach dieser Methode wurden die in Tabelle 3 aufgeführten Sulfonamide hergestellt.

50

55

Tabelle 3:

Verbindungen der Formel

Beispiel Nr.	R ⁵	R ⁶	Physik. Eigensch.	Analyse % N ber.	Analyse % N gef.
69	n-C ₆ H ₅	p-Tolyl	Oel	4,1	4,0
70	iso-C ₆ H ₅	p-Tolyl	Fp. 68 - 70°	4,1	4,1
71	n-C ₆ H ₁₁	p-Tolyl	Fp. 45 - 49°	3,8	3,8
72	2-Ethylhexyl	p-Tolyl	Oel	3,5	3,5
73	C ₂ H ₅	p-Tolyl	Fp. 100°	4,5	4,6

Beispiele 74 - 80: Cyclische Imide

18,1 g 2,4-Difluoranilin und 14 g Bernsteinsäureanhydrid werden in 300 ml Toluol gelöst und die Lösung mit 0,5 g 4-(Dimethylamino)pyridin versetzt. Danach wird zum Rückfluss erhitzt, bis gemäss DC-Analyse kein 2,4-Difluoranilin mehr nachgewiesen werden kann (16 Std). Nach dem Abkühlen wird auf 2N HCl ausgegossen, die organische Phase mit Wasser gewaschen und nach Trocknen über Magnesiumsulfat eingegangen. Man erhält 23,4 g Rohprodukt, das nach Umkristallisation aus Isopropanol bei 140 - 143 °C schmilzt.

Nach dieser Methode werden die in Tabelle 4 aufgeführten Verbindungen hergestellt.

Tabelle 4:

Verbindungen der Formel

Beispiel Nr.	R	Fp	Analyse % N ber.	Analyse % N gef.
74	-CH ₂ -CH ₂ -	140-143°	6,63	6,61
75	-CH ₂ -CH(CH ₃)-	83-87°	6,22	6,12
76	-CH=CH-	79-82°	6,70	6,75
77	-CH=C(CH ₃)-	80-84°	6,28	6,15
78	-C(CH ₃)=C(CH ₃)-	76-80°	5,91	5,74
79		166-170°	5,40	5,36
80		150-53°	5,09	4,89

Beispiel 81: Gleichzeitige Alkylierung und Acylierung

Eine Mischung von 12,9 g 2,4-Difluoranilin und 24,3 g Orthoessigsäure-triethylester wird mit einem Tropfen H₂SO₄ versetzt und am absteigenden Kühler erwärmt bis die Innentemperatur 120 °C erreicht hat. Das Reaktionsgemisch wird im Vakuum destilliert und man erhält bei 86 - 87 °/8 mbar 16,9 g N-Ethyl-N-acetyl-2,4-difluoranilin.

6

Beispiel 82: Cycliche Anilide (Lactame)

Zu einer Lösung von 11,4 g N-(3-Chlormaloyl)-2,4-difluoranilin (Beispiel 4) in 30 ml Methyl-ethyl-keton werden 10,4 g K₂CO₃ zugegeben. Die Suspension wird 24 h bei 50 °C gerührt, dann mit 50 ml Wasser versetzt und zweimal mit 50 ml Toluol extrahiert. Die Toluol-Lösung wird über MgSO₄ getrocknet und im Vakuum eingedampft. Man erhält 9,3 g rohes 1-(2,4-Difluorphenyl)-3,3-dimethyl-2-azetidinon, das nach Umkristallisation aus Hexan bei 86 - 87 °C schmilzt.

15

20

25

Analyse:	ber. C 62,5	H 5,3	N 6,6 %
	gef. C 62,3	H 5,2	N 6,5 %

30

In analoger Weise wird hergestellt die Verbindung 82a

35

35

40

40

Analyse: ber. C 53,8	H 4,1	N 5,7	Cl 14,4 %
gef. C 53,7	H 4,1	N 5,6	Cl 14,4 %

45

Beispiel 83: 1-(2,4-Difluorphenyl)-2,2,5,5-tetramethyl-1,2,5-azadisilolidin

50

55

15 Eine Mischung von 12,9 g 2,4-Difluoranilin und 23,2 g 1,1,4,4-Tetramethyl-1,4-bis(dimethylamino)-disilethylen wird mit 0,5 g Zinkiodid versetzt und unter Stickstoff auf 140 °C erwärmt bis kein Dimethylamin mehr entweicht. Das Reaktionsgemisch wird im Vakuum destilliert. Man erhält die Titelverbindung als farblose Flüssigkeit, die bei 119 - 122 °/16 mbar destilliert.

20 Beispiel 84: Alkylierung eines N-Acylanilins

Zu einer Lösung von 3,4 g N-Acetyl-2,4-difluoranilin (Beispiel 2) in 60 ml Toluol werden 0,9 g Triethylbenzylammoniumchlorid, 6,9 g Butylbromid und eine Lösung von 5,7 g KOH in 6 ml Wasser unter Rühren zugegeben. Die entstehende Emulsion wird auf 97 °C (Rückfluss) erwärmt. Nach 1 h wird die Emulsion auf Raumtemperatur gekühlt und mit 20 ml Wasser verdünnt. Die beiden Phasen werden getrennt und die organische Phase wird über MgSO₄ getrocknet und im Vakuum eingedampft. Das flüssige Rohprodukt wird durch Mitteldruck-Chromatographie gereinigt. Man erhält 3,1 g N-Butyl-N-acetyl-2,4-difluoranilin als bräunliches Öl.

30

Analyse:	ber.	C	63,42	H	6,65	N	6,16 %
	gef.	C	63,72	H	6,80	N	5,99 %

36 Beispiel 85: Umsetzung mit Lactonen

Ein Gemisch aus 64,6 g 2,4-Difluoranilin, 51,7 g Butyrolacton, 2 g p-Toluolsulfonsäure und einigen Tropfen Wasser wird unter Rühren zum Rückfluss (100 °C) erwärmt. Das sich bildende Wasser wird durch einen starken Stickstoffstrom abdestilliert. Dabei steigt die Innentemperatur innerhalb von 15 h auf 162 °C. Nach Abkühlen auf Raumtemperatur wird mit 100 ml Diethylether verdünnt. Die Etherlösung wird erst mit 5 %iger HCl und dann mit 10 %iger NaOH gewaschen, getrocknet und eingedampft. Der kristalline Rückstand wird aus Ethanol umkristallisiert. Das so erhaltene 1-(2,4-Difluorphenyl)-pyrrolidon-2 schmilzt bei 95 - 97 °C.

45

Analyse:	ber.	C	60,9	H	4,6	N	7,1 %
	gef.	C	60,8	H	4,7	N	7,2 %

50 Beispiel 86: N-Ethyl-N-acetyl-3,5-difluoranilin

5

Diese Verbindung wird analog Beispiel 1 durch Acetylierung von N-Ethyl-3,5-difluoranilin hergestellt. Sie siedet bis 10 mbar bei 92 - 93°.

10

C) Herstellung der Titanocene der Formel I

16 Beispiel 87: Bis(cyclopentadienyl)-bis-[2,6-difluor-3-(N-ethyl(pivaloylamino)phenyl]-titan

48,2 g N-Ethyl-N-pivaloyl-2,4-difluoranilin (0,2 Mol) (Beispiel 1) werden in der Mischung von 100 ml Tetrahydrofuran und 300 ml Diethylether unter Argon-Schutzgas bei -75° vorgelegt. Nach dem Zutropfen von 138 ml einer 1,6-molaren Lithiumbutyl-Hexan-Lösung wird noch 30 Minuten bei -75° gerührt. Hierauf setzt man 24,9 g Biscyclopentadienyltitanchlorid (0,1 Mol) als Pulver zu und entfernt die Kühlung. Die Mischung erwärmt sich innerst 3 Stunden auf Raumtemperatur. Das Reaktionsgemisch wird 1 l Wasser gegossen und in Portionen mit total 800 ml Ethylacetat extrahiert. Die organische Phase wird mit Na₂SO₄ getrocknet und im Vakuum eingedampft. Der Rückstand besteht aus 57 g eines zähflüssigen orangefarbenen Oels. Durch Behandeln mit n-Hexan kann dieses Öl zur Kristallisation gebracht werden. Man erhält 32,3 g orangefarbene Kristalle vom Schmelzpunkt 215° (aus Ethanol umkristallisiert).

30

Analyse:	ber.	C	65,6	H	6,4	F	11,5	N	4,2 %
	gef.	C	65,2	H	6,5	F	11,4	N	4,2 %

35

Beispiele 88 - 142:

35 In analoger Weise werden die in Tabelle 5 aufgeführten Titanocene hergestellt.

Tabelle 5:

40

Verbindungen der Formel (Cp)₂Ti

45

Cp = Cyclopentadienyl

50

55

	Beispiel Nr.	Anilinderivat aus Beispiel	R	Fp	Analyse % N ber. gef.	
5	88	7		0el	4,7	4,6
10	89	8		0el	4,4	4,5
15	90	9		131-33°	4,9	5,0
20	91	10		125-27°	4,7	4,8
25	92	11		177-78°	4,1	4,1
30	93	12		0el	3,9	4,1
35	94	13		185-86°	4,4	4,4
40	95	14		120-30°	3,9	3,5
45	96	17		85-88°	3,9	3,7
50	97	18		143-45°	3,8	3,8
	98	18a		135-41°	3,7	3,4
	99	20		180-85°	3,7	3,4
	100	21		Glas	3,6	3,3

	<u>Beispiel Nr.</u>	<u>Anilinderivat aus Beispiel</u>	<u>R</u>	<u>Fp</u>	<u>Analyse % N ber. gef.</u>	
5	101	22		205-09°	3,4	3,1
10	102	23		Glas	3,7	3,5
15	103	24		Glas	3,6	3,0
20	104	26		95-100°	3,6	3,2
25	105	27		119-21°	3,6	3,7
30	106	29		102-04°	3,5	3,6
35	107	30		78-88°	3,5	3,2
40	108	31		Glas	3,3	3,1
45	109	32		Glas	3,4	3,2
50	110	33		208-09°	3,2	2,9
	111	34		Glas	3,2	3,1
	112	36		80-86°	3,2	3,1

	Beispiel Nr.	Anilinderivat aus Beispiel	R	Fp	Analyse % N ber. gef.	
5	113	38		Glas	3,2	2,6
10	114	39		204-09°	3,7	3,5
15	115	40		183-89°	3,6	3,4
20	116	41		55-60°	3,6	3,4
25	117	42		Glas	3,3	3,1
30	117a	43		Glas	3,3	2,6
35	118	44		Glas	3,2	3,1
40	118a	46		Glas	3,5	3,0
45	119	47		125-35°	3,4	3,2
50	120	48		130-40°	3,3	2,9
	121	49		133-35°	3,1	2,7

	<u>Beispiel Nr.</u>	<u>Anilinderivat aus Beispiel</u>	<u>R</u>	<u>Fp</u>	<u>Analyse % N ber. gef.</u>	
5	122	50		195-202°	3,2	3,0
10	123	51		Glas	3,5	3,1
15	124	52		90-100°	3,3	3,0
20	124a	53		Glas	3,5	3,1
25	125	54		105-08°	3,4	2,9
30	126	55		110-20°	3,3	2,8
35	127	56		Glas	3,3	3,1
40	128	57		Glas	3,2	2,9
45	129	58		Glas	3,2	2,8
50	130	59		Glas	3,1	2,9

Beispiel Nr.	Anilinderivat aus Beispiel	R	Fp	Analyse % N ber. gef.	
5	131	60		165-70°	3,3 2,9
10	132	61		80-85°	3,1 2,9
15	133	62		70-80°	3,2 2,9
20	134	64		Glas	3,5 3,1
25	135	65		Glas	3,3 3,0
30	136	66		75-80°	3,4 3,2
35	137	69		165-70°	3,3 3,0
40	138	70		227-31°	3,3 2,9
45	139	71		76-80°	3,1 2,8
50	140	72		Glas	2,9 2,7

	<u>Beispiel</u> <u>Nr.</u>	<u>Anilinderivat</u> <u>aus Beispiel</u>	<u>R</u>	<u>Fp</u>	<u>Analyse % N</u> <u>ber.</u> <u>gef.</u>
--	-------------------------------	---	----------	-----------	---

15

Beispiel 143:

In analoger Weise wird aus N-Ethyl-N-acetyl-3,5-difluoranilin (Beispiel 86) die Verbindung
20

hergestellt, die bei 168-169° schmilzt.

30	<u>Analyse</u>	<u>ber.</u>	<u>C</u>	<u>62,7</u>	<u>H</u>	<u>5,3</u>	<u>N</u>	<u>4,9 %</u>
	<u>gef.</u>	<u>C</u>	<u>62,6</u>	<u>H</u>	<u>5,4</u>	<u>N</u>	<u>5,0 %</u>	

35

Beispiele 144-146:Methylcyclopentadienyltitanocene

Verwendet man anstelle von Bis(cyclopentadienyl)titandichlorid das Bis(methylcyclopentadienyl)-titandichlorid zur Umsetzung mit den entsprechenden Anilinderivaten in Analogie zu Beispiel 87, so erhält
40 man die folgenden Verbindungen der Formel

50	<u>Beispiel</u> <u>Nr.</u>	<u>Anilinderivat</u> <u>aus Beispiel</u>	<u>R</u>	<u>Fp</u>	<u>Analyse % N</u> <u>ber.</u> <u>gef.</u>
----	-------------------------------	---	----------	-----------	---

Beispiel Nr.	Anilinderivat aus Beispiel	R	Fp	Analyse % N ber. gef.
-----------------	-------------------------------	---	----	--------------------------

5	145	10		139-41°	4,4	4,5
10	146	29		50-60°	3,4	3,2

15 Beispiel 147: Bis(cyclopentadienyl)-bis(2,6-difluor-3-aminophenyl)-titani

a) 87 g (0,32 Mol) 1-(2,4-Difluorphenyl)-2,2,5,5-tetramethyl-1,2,5-azadisilolidin werden (Beispiel 83) in einer Mischung von 160 ml Tetrahydrofuran und 480 ml Diethylether gelöst und unter Stickstoff als Schutzgas und Lichtausschluss auf -75° gekühlt. Dann werden unter Kühlung 218 ml 1,6 molare Lithiumbutyl-Hexan-Lösung zugetropft und 30 Minuten nachgerührt bei -75°. Anschließend setzt man 39,5 g (0,16 Mol) Bis(cyclopentadienyl)-titandichlorid als Pulver zu. Die Temperatur des Reaktionsgemisches lässt man hierauf innerhalb von 12 Stunden auf Raumtemperatur ansteigen. Die Suspension wird filtriert und der Rückstand mit 100 ml Diethylether gewaschen. Das Filtrat wird am Rotationsverdampfer vollständig eingedampft. Man erhält 139 g eines orangen Oels. Dieses Öl wird mit 150 ml Acetonitril digeriert, wobei Kristallisation eintritt. Nach der Filtration des kristallisierten Produktes erhält man 71,6 g gelborange Kristalle vom Smp. 207-211°.

35

40	Analyse:	ber.	C	56,8	H	6,4	N	3,9	F	10,6	Si	15,6 %
	gef.	C	56,0	H	6,4	N	3,9	F	10,5	Si	15,6 %	

b) 30 g des unter a) beschriebenen Titanocens werden unter Lichtausschluss in einer Mischung von 250 ml Dioxan und 10 ml Methanol gelöst. Nach Zusatz von 0,6 g p-Toluolsulfosäure wird 3 h bei 40°C gerührt. Die Reaktionslösung wird auf 0° gekühlt und unter Rühren zu 250 ml Eiswasser zugetropft, wobei das Rohprodukt in Form von orangefarbenen Kristallen ausfällt, die über 200°C unter Zersetzung schmelzen.

55

Analysen:	ber.	C	60,9	H	4,2	F	17,5	N	6,5 %
	gef.	C	61,3	H	4,2	F	17,5	N	6,4 %

Beispiele 148 - 168: Bis(cyclopentadienyl)-bis[2,6-difluor-3-(acetylamino)phenyl]-titan

In einem Sulfierkolben werden 4,3 g (0,01 Mol) Bis(cyclopentadienyl)-bis(2,6-difluor-3-aminophenyl)-titan (Beispiel 147) und 4,4 g (0,044 Mol) Triethylamin in 30 ml Dimethylformamid gelöst. Dann werden unter 5 Rühren bei 0 - 5° innerhalb 20 Minuten 1,6 g (0,02 Mol) Acetylchlorid zugetropft. Es bildet sich eine rote Suspension, die noch 5 Stunden, bis zum Verschwinden des Eduktes im DC, bei Raumtemperatur nachgerührt wird. Die Suspension wird mit 50 ml Wasser verdünnt und dann zweimal mit 100 ml Ethylacetat extrahiert. Die organischen Phasen werden abgetrennt, mit $MgSO_4$ getrocknet und im Vakuum eingeeengt. Das erhaltene braune Oel wird in 50 ml Diethylether erwärmt und die Lösung dann langsam mit 10 400 ml Hexan verdünnt. Anschliessend wird auf Raumtemperatur gekühlt und filtriert. Man erhält 4,3 g orange Kristalle mit einem Schmelzpunkt von 85°.

In analoger Weise werden die in Tabelle 6 aufgeführten Verbindungen hergestellt.

75

20

25

30

35

40

45

50

55

Tabelle 6:

5	Beispiel Nr.	R ⁶	Fp	Analyse % N ber. gef.
10	148	CH ₃	85°	5,4 5,8
15	149	CF ₃	146-48°	4,5 4,3
150	150	C ₃ H ₇ -n	170-75°	4,9 5,1
151	151	-CH(CH ₃) ₂	195-200°	4,9 5,1
152	152	-CH(CH ₃)C ₂ H ₅	120-30°	4,7 4,6
153	153	-C(CH ₃) ₃	ca. 150°	4,7 5,5
154	154	-C(CH ₃) ₂ -CH ₂ Cl	125-45°	4,2 3,3
155	155	-C(CH ₂ Cl) ₂ -CH ₃	108-15°	3,8 3,4
156	156	-CH(C ₂ H ₅) ₂	ca. 180°	4,4 4,7
157	157	-C(CH ₃) ₂ -C ₂ H ₅	Sirup	4,4 3,9
158	158	-C(CH ₃) ₂ -C ₃ H ₇	50-70°	4,3 3,7
159	159	-CH(C ₂ H ₅)-C ₄ H ₉	155°	4,1 4,8
160	160	-C ₆ H ₁₁ -n	60-65°	3,9 3,8
161	161	-C ₁₇ H ₃₅ -n	67-69°	2,9 3,3
162	162		150-60°	4,3 4,3
30	163		204-06°	4,2 4,1
164	164		233-36°	3,9 3,8
35	165		225-30°	3,9 3,8
40	166		160-70°	4,0 3,6
45	167		80-90°	4,0 3,3
168	168		70-80°	4,0 5,3

50

Beispiel 169: N-Allylierung

55 In eine Emulsion von 4,1 g Bis(cyclopentadienyl)-bis(2,6-difluor-3-acetylaminophenyl)-titani (Beispiel 148) in 120 ml CH₂Cl₂ und 53,2 g 30 %ige Natronlauge werden 0,8 g Triethylbenzylammoniumchlorid und 4,8 g Allylbromid unter Rühren zugegeben. Nach 5 h ist die Reaktion beendet. Die Emulsion wird mit 50 ml Wasser verdünnt und mit 100 ml CH₂Cl₂ extrahiert. Die organische Phase wird abgetrennt, über MgSO₄ getrocknet und im Vakuum eingedampft. Das hinterbleibende Öl wird in wenig Ethylacetat gelöst und

durch Zusatz von Hexan zur Kristallisation gebracht. Man erhält 3,6 g Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-allyl-acetylarnino)-phenyl]-titan in Form von orangen Kristallen, die bei 168 - 172° schmelzen.

5	Analyse:	ber.	C	64,2	H	5,0	N	4,7 %
		gef.	C	63,6	H	5,2	N	4,4 %

10 Beispiel 170: Bis(cyclopentadienyl)-bis(2,6-difluor-3-diacylaminophenyl)-titan

8,7 g Bis(cyclopentadienyl)-bis(2,6-difluor-3-aminophenyl)-titan (Beispiel 147) werden in 100 ml Pyridin gelöst und bei 20 - 30° mit 9,4 g Acetylchlorid versetzt. Das Reaktionsgemisch wird 2 h bei Raumtemperatur und danach 5 Tage bei 60° gerührt. Dann werden weitere 9,4 g Acetylchlorid zugegeben und nochmals 5 Tage auf 60° erwärmt. Nach Erkalten wird die Reaktionslösung mit Wasser verdünnt und mit Ethylacetat extrahiert. Die organische Phase wird mit 1 N HCl und Wasser gewaschen, über $MgSO_4$ getrocknet und eingedampft. Der ölige Rückstand wird durch Chromatographie über einer SiO_2 -Säule gereinigt. Man erhält die Titelverbindung als orange Kristalle, die bei 211° unter Zersetzung schmelzen.

20

25

30

30	Analyse:	ber.	C	59,8	H	4,4	N	4,6 %
		gef.	C	58,9	H	4,4	N	4,4 %

35

Beispiele 171 - 174: Carbamate

4,3 g Bis(cyclopentadienyl)-bis-(2,6-difluor-3-aminophenyl)titan (Verbindung aus Bsp. 147) und 2,4 g Triethylamin werden in 100 ml DMF gelöst und die Lösung auf 0° gekühlt. Die Lösung wird tropfenweise mit 3,0 g Chlorameisensäureisobutylester versetzt und 7 Std. bei 0° gerührt. Nach dieser Zeit werden nochmals 2,4 g Triethylamin und 3,0 g Chlorameisensäureisobutylester zugegeben und über Nacht bei 0° C gerührt. Anschliessend wird mit 100 ml Essigester und 100 ml Wasser versetzt, die Phasen getrennt und die organische Phase über $MgSO_4$ getrocknet. Nach dem Einengen wird ein orange-braunes Öl erhalten, das durch Chromatographie an Kieselgel (Elutionsmittel: Hexan/Essigester 3:1) weiter gereinigt wird. Die das Produkt enthaltende Fraktion wird aus Ether/Hexan umkristallisiert. Fp 90° (Zersetzung).

40

45 In analoger Weise werden die in Tabelle 7 aufgeführten Verbindungen hergestellt.

50

55

Tabelle 7:

5 Verbindungen der Formel

10

Beispiel Nr.	R	Fp	Analyse % N ber. gef.
171	C ₄ H ₉ -i	90° (Zers.)	4,4 4,2
172	C ₂ H ₅	90° (Zers.)	4,8 4,8
173	-CH ₂ CH ₂ Cl	90° (Zers.)	4,3 3,9
174		110° (Zers.)	4,2 4,2

15

20

Beispiel 175: Bis(cyclopentadienyl)-bis[2,6-difluor-3-(3,3-dimethylureido)-phenyl]-titan

25 8,7 g Bis(cyclopentadienyl)-bis-(2,6-difluor-3-aminophenyl)titan (Beispiel 147) und 3,8 g Pyridin werden in 150 ml DMF gelöst und auf 0 °C gekühlt. Die Lösung wird tropfenweise mit 5,2 g Dimethylcarbamoylchlorid versetzt und während 6 Std. bei 0 °C gerührt. Anschliessend wird 10 Std. bei Raumtemperatur gerührt. Danach werden nochmals 5,2 g Dimethylcarbamoylchlorid zugegeben und auf 40 °C erwärmt. Nach 7 Stunden wird auf Wasser ausgegossen, mit Toluol aufgenommen und über MgSO₄ getrocknet. Nach dem 30 Einengen wird der Rückstand durch Chromatographie an Kieselgel [Elutionsmittel: Hexan/Essigester (Methanol 2:7:1) gereinigt. Man erhält die Titelverbindung als glasigen Feststoff, der sich bei 110 °C zersetzt.

35

Analyse	ber.	C	58,34	H	4,90	N	9,72 %
	gef.	C	57,29	H	5,37	N	8,83 %

40

Beispiele 176 - 179: Harnstoff- und Thioharnstoffderivate

45

Zu einer Suspension von 8,7 g Bis(cyclopentadienyl)-bis(2,6-difluor-3-aminophenyl)-titan (Beispiel 147) in 50 ml Tetrahydrofuran werden 0,1 g Triethylamin zugegeben und bei 0 - 5 °C unter Röhren 0,04 Mol des jeweiligen Isocyanates oder Isothiocyanates zugetropft. Dann lässt man die Temperatur langsam auf 25 °C steigen und röhrt bei dieser Temperatur 10 Stunden. Die resultierende Lösung wird im Vakuum eingedampft und der ölige Rückstand mit einem Gemisch Ethylacetat/Ethanol 1:1 zur Kristallisation gebracht. Nach dieser Methode werden die in Tabelle 8 aufgeführten Verbindungen hergestellt.

50

Tabelle 8

55

Verbindungen der Formel

	<u>Beispiel Nr.</u>	R	Fp	Analyse % N ber. gef.	
5	176	-CO-NH-C ₆ H ₅	210° (Zers.)	8,9	8,7
10	177	-CO-NH-		> 250° (Zers.)	8,3
15	178	-CS-NH-C ₆ H ₅	182 - 84°	8,4	8,3
20	179	-CS-NH-		210° (Zers.)	8,0
					7,7

15 Beispiele 180 - 182: Cyclische Imidderivate

Eine Suspension von 4,3 g Bis(cyclopentadienyl)-bis(2,6-difluor-3-aminophenyl)-titan (Beispiel 147) und 2,4 g Bernsteinsäureanhydrid in 100 ml Toluol wird unter Zusatz von 0,2 g 4-Dimethylaminopyridin während 24 h am Wasserabscheider zum Rückfluss erwärmt. Die Reaktionslösung wird im Vakuum eingedampft. Der ölige Rückstand kristallisiert beim Stehen und wird aus Ethanol umkristallisiert. Das erhaltene Bis(cyclopentadienyl)-bis[2,6-difluor-3-(pyrrolidin-2,5-dion-1-yl)-phenyl]-titan schmilzt bei 251 - 253° unter Zersetzung.

In analoger Weise werden die folgenden Verbindungen hergestellt.

25 Tabelle 9:

30 Verbindungen der Formel $(Cp)_2Ti \left(\begin{array}{c} F \\ | \\ -C=C-C=C- \\ | \\ F \end{array} \right)_2$

	<u>Beispiel Nr.</u>	R	Fp	Analyse % N ber. gef.	
35	180		251 - 53° (z)	4,5	4,3
40	181		208 - 10° (z)	4,3	4,1

Beispiel Nr.	R	Fp.	Analyse % N ber. gef.
-----------------	---	-----	--------------------------

5	182		191 - 93° (Z)	4,0	3,7
---	-----	--	---------------	-----	-----

10

Beispiele 183 - 189: N-Sulfonylierung

15 8,7 g Bis(cyclopentadienyl)-bis(2,6-difluor-3-aminophenyl)-titani (Beispiel 147) werden in einem Gemisch von 50 ml Toluol und 50 ml Dimethylformamid suspendiert. Nach Zusatz von 3,8 g Pyridin wird die Suspension auf 0° gekühlt und bei dieser Temperatur eine Lösung von 5,5 g Methansulfochlorid in 50 ml Toluol zugetropft. Die Suspension wird 5 h bei 0° gerührt und dann auf Wasser gegossen. Das Produkt wird mit Ethylacetat extrahiert, die organische Phase mit 1 N HCl und Wasser gewaschen, über MgSO₄ getrocknet und eingedampft. Der feste Rückstand wird mit Ethanol digeriert, filtriert und getrocknet. Man erhält 7,1 g Bis(cyclopentadienyl)-bis(2,6-difluor-3-methylsulfonamidophenyl)-titani als gelbes Pulver, das bei 209 - 11° schmilzt.

20 In analoger Weise werden die in Tabelle 10 aufgeführten Verbindungen hergestellt.

25

Tabelle 10:

30	Verbindungen der Formel $(Cp)_2Ti\left(\begin{array}{c} F \\ \\ -C=C-C=C- \\ \\ F \end{array}\right)_2NH-SO_2-R$
----	--

Beispiel Nr.	R	Fp.	Analyse % N ber. gef.	
183	-CH ₃	209 - 11°	4,7 4,3	
184	-C ₂ H ₅	Glas	4,5 4,2	
185	-C ₈ H ₁₇ -n	Glas	3,6 3,4	
40	186		208 - 10°	3,8 3,4

45

Beispiel Nr.	R	Fp.	Analyse % N ber. gef.
-----------------	---	-----	--------------------------

50	187		Glas	2,7 2,6
	188		172 - 76° (Z)	3,2 2,8
55	189		190 - 92° (Z)	3,4 3,1

Beispiel 190: Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-methyl-p-dodecylphenylsulfonamido)-phenyl]-titantitan

5,3 g Bis(cyclopentadienyl)-bis[2,6-difluor-3-(4-dodecylphenylsulfonamido)-phenyl]-titantitan (Beispiel 187) und 2,8 g trockenes K₂CO₃ werden in 50 ml Aceton gerührt und mit 1,7 g Methyljodid versetzt. Nach 2 h bei Raumtemperatur wird das Reaktionsgemisch filtriert und das Filtrat eingedampft. Man erhält 4,6 g eines glasigen Rückstandes.

10	Analyse:	ber.	C	66,7	H	7,3	N	2,6	S	5,9 %
		gef.	C	66,1	H	7,3	N	2,4	S	6,0 %

Beispiel 191: Bis(cyclopentadienyl)-bis[2,6-difluor-3-(N-hexyl-p-methylphenylsulfonamido)-phenyl]-titantitan

Analog Beispiel 190 wird das Produkt von Beispiel 186 mit 1-Jodhexan bei 50° umgesetzt. Das Produkt ist ein orangefarbener Harz.
Analyse: N ber. 3,1 % get. 2,8 %

Beispiel 192: Bis(cyclopentadienyl)-bis(2,6-difluor-3-isocyanatophenyl)-titantitan

4,3 g Bis(cyclopentadienyl)-bis(2,6-difluor-3-aminophenyl)-titantitan (Beispiel 147) wird in 50 ml Dichlorbenzol suspendiert. Dazu gibt man 2,0 g Bis(trichlormethyl)carbonat und tropft 4,0 g Triethylamin zu. Die Reaktion ist schwach exotherm. Anschliessend wird 2 h auf 70° erwärmt. Nach dem Abkühlen wird das Reaktionsgemisch filtriert und im Vakuum eingedampft.

Der teilkristalline Rückstand wird mit Diethylether digeriert. Die Kristalle werden verworfen und die Lösung eingedampft. Der Rückstand wird in CH₂Cl₂ gelöst und durch Zugabe von Hexan das Isocyanat ausgefällt. Das abfiltrierte und getrocknete Produkt ist ein orangefarbener Pulver, das bis 224° unter Zersetzung schmilzt.

40	Analyse:	ber.	C	59,3	H	2,9	N	5,8 %
		gef.	C	58,6	H	3,5	N	5,4 %

Beispiel 193: Bis(cyclopentadienyl)-bis[2,6-difluor-3-(dimethylaminosulfonylamino)phenyl]-titantitan

55 In eine Lösung von 8,7 g der Aminoverbindung von Beispiel 147 und 3,5 g Pyridin in 100 ml Dimethylformamid werden bei 0° 6,3 g Dimethylsulfamoylchlorid zugetropft. Das Reaktionsgemisch wird 4 h bei 0° und anschliessend 10 h bei Raumtemperatur gerührt. Dann werden 200 ml Wasser und 200 ml

Ethylacetat zugegeben. Die organische Phase wird abgetrennt, mit 1 N HCl und Wasser gewaschen, über MgSO₄ getrocknet und im Vakuum eingedampft. Der viskose Rückstand wird mit 20 ml Ethylacetat kurz erwärmt. In der Kälte fällt ein gelbes Pulver aus, das nach Trocknung bei 185-86° schmilzt.

5

Analyse:	ber.	N	8,6	S	9,9 %
	gef.	N	8,4	S	9,7 %

10

D) Anwendungsbeispiele

15

Beispiel 194: Photohärtung eines Acrylat-Gemisches

16

Es wird eine photohärtbare Zusammensetzung hergestellt durch Mischen der folgenden Komponenten:

20

		Feststoffgehalt
	150,30 g Scriptet 540 ¹⁾ (30 %-ige Lsg. in Aceton)	45,1 g
	48,30 g Trimethylolpropantriacyrat	48,3 g
	6,60 g Polyethylenglykoldiacrylat	6,6 g
	0,08 g Kristallviolett	
25	205,28 g	100,0 g

¹⁾ Polystyrol-Maleinsäureanhydrid-Copolymer (Monsanto)

30

Portionen dieser Zusammensetzung werden mit jeweils 0,3 % (bezogen auf den Feststoffgehalt) an Photoinitiator vermischt. Alle Operationen werden unter Rotlicht oder Gelblicht ausgeführt.

35

Die mit Initiator versetzten Proben werden in einer Stärke von 150 µm auf 200 µm Aluminiumfolie (10 x 15 cm) aufgetragen. Das Lösungsmittel wird durch Erwärmung auf 60° C während 15 Minuten im Umluftofen entfernt. Auf die flüssige Schicht wird eine 76 µm dicke Polyesterfolie gelegt und auf diese ein standardisiertes Testnegativ mit 21 Stufen verschiedener optischer Dichte (Stouffer-Keil) gelegt. Darüber wird eine zweite Polyesterfolie gelegt und das so erhaltene Laminat auf einer Metallplatte fixiert. Die Probe wird dann mit einer 5 KW-Metalthalogenid-Lampe im Abstand von 30 cm belichtet und zwar in einer ersten Testreihe 10 Sekunden, einer zweiten Testreihe 20 Sekunden und einer dritten Testreihe 40 Sekunden. Nach der Belichtung werden die Folien und die Maske entfernt, die belichtete Schicht in einem Ultraschallbad 120 Sekunden mit Entwickler A entwickelt und anschließend bei 60° 15 Minuten im Umluftofen getrocknet. Die Empfindlichkeit des verwendeten Initiatorsystems wird durch die Angabe der letzten klebefreien abgebildeten Keilstufe charakterisiert. Je höher die Zahl der Stufen ist, desto empfindlicher ist das System. Eine Erhöhung um zwei Stufen bedeutet dabei etwa eine Verdopplung der Härtungsgeschwindigkeit. Die Ergebnisse sind in Tabelle 11 angegeben. Entwickler A enthält 15 g Natriummetasilikat·9 H₂O; 0,16 g KOH; 3 g Polyethylenglykol 6000; 0,5 g Lävulinsäure und 1000 g deionisiertes Wasser.

40

45

50

55

Tabelle 11:

Titanocen Beispiel	Zahl der abgebildeten Stufen nach			Belichtung
	10s	20s	40s	
5 87	12	14	17	
90	10	12	15	
91	9	11	13	
92	12	14	16	
94	10	12	15	
10 95	9	12	15	
96	11	13	16	
97	12	14	16	
100	8	12	14	
101	7	10	13	
15 103	6	11	13	
106	11	13	16	
108	8	11	13	
109	9	13	15	
110	8	11	14	
20 111	9	13	15	
112	8	11	14	
113	8	12	14	
114	8	11	15	
115	8	10	12	
25 116	7	11	13	
117	8	11	12	
117a	9	11	13	
118	7	10	13	
118a	7	9	11	
30 119	8	12	14	
121	7	11	13	
124	8	11	15	
124a	9	12	15	
126	7	9	11	
35 127	8	11	13	
128	6	10	13	
130	8	10	13	
131	7	12	14	
135	8	11	13	
40 136	7	11	13	
137	9	12	14	
138	6	8	12	

45

50

55

Titanocen Beispiel	Zahl der abgebildeten Stufen nach Belichtung		
	10s	20s	40s
5 140	8	11	13
141	8	12	15
142	10	14	16
144	7	10	12
145	7	10	12
146	7	10	13
10 147	8	10	12
148	11	13	16
149	9	12	14
150	10	14	17
15 151	10	13	15
153	10	14	16
154	10	11	13
156	9	14	17
157	10	13	16
20 158	11	13	15
159	10	13	16
160	11	14	16
161	8	12	15
162	10	13	16
25 164	8	11	13
165	6	9	12
166	9	13	15
167	7	10	13
168	10	14	16
30 170	9	12	15
171	11	13	16
174	10	14	16
176	9	12	14
177	9	12	14
35 178	10	13	16
179	8	11	13
180	11	14	16
181	12	15	17
182	12	14	17
40 183	11	13	16
184	10	12	15
185	10	14	16
186	9	13	15
187	10	12	15
45 188	9	12	13
189	7	12	14
190	8	12	15
191	9	11	13
192	9	12	15
193	12	15	17
50			

Beispiel 195: Photohärtung eines Monomer-Polymer-Gemisches

55 Es wird eine photohärtbare Zusammensetzung hergestellt durch Mischen der folgenden Komponenten:

	37,64 g	Sartomer SR 444 (Pentaerythritol-triacrylat) (Sartomer Company, Westchester)
	10,76 g	Cymel 301 Hexamethoxymethylmelamin (Cyanamid)
5	47,30 g	Carboset 525 (Thermoplastisches Polyacrylat mit Carboxylgruppen B.F. Goodrich)
	4,30 g	Polyvinylpyrrolidon PVP (GAF)
	100,00 g	der obigen Mischung
	0,50 g	Irgalitgrün GLN
	319,00 g	Methylenchlorid
	30,00 g	Methanol
10	450,00 g	

Portionen dieser Zusammensetzung werden mit jeweils 0,3 % (bezogen auf Feststoff) der in der folgenden Tabelle angegebenen Titanocene vermischt. Alle Operationen werden unter Rotlicht oder Gelblicht ausgeführt.

- 15 Die mit Initiator versetzten Proben werden in einer Stärke von 200 µm auf 200 µm Aluminiumfolie (10 x 15 cm) aufgetragen. Das Lösungsmittel wird durch Erwärmung auf 60 °C während 15 Minuten im Umluftofen entfernt. Auf die flüssige Schicht wird eine 76 µm dicke Polyesterfolie gelegt und auf diese ein standardisiertes Testnegativ mit 21 Stufen verschiedener optischer Dichte (Stouffer-Keil) gelegt. Darüber wird eine zweite Polyesterfolie gelegt und das so erhaltene Laminat auf einer Metallplatte fixiert. Die Probe wird dann mit einer 5 KW-Metallhalogenid-Lampe im Abstand von 30 cm belichtet und zwar in einer ersten Testreihe 10 Sekunden, in einer zweiten Testreihe 20 Sekunden und in einer dritten Testreihe 40 Sekunden. Nach der Belichtung werden die Folien und die Maske entfernt, die belichtete Schicht in einem Ultraschallbad 240 Sekunden mit Entwickler A entwickelt und anschließend bei 60 °C 15 Min. im Umluftofen getrocknet. Die Empfindlichkeit des verwendeten Initiatorsystems wird durch die Angabe der letzten kiebefrei abgebildeten Keilstufe charakterisiert. Je höher die Zahl der Stufen ist, desto empfindlicher ist das System. Eine Erhöhung um zwei Stufen bedeutet dabei etwa eine Verdopplung der Härtungsgeschwindigkeit. Die Ergebnisse sind in Tabelle 12 angegeben.

30

35

40

45

50

55

Tabelle 12:

	Titanocen Beispiel	Zahl der abgebildeten Stufen nach		
		10s	20s	40s
5	87	12	14	17
	90	8	10	13
	91	7	10	12
10	92	12	14	16
	94	12	14	17
	95	9	12	15
	96	11	13	15
	97	11	13	16
15	100	9	12	15
	101	9	12	14
	103	9	12	14
	106	11	13	15
	108	8	11	13
20	109	10	13	15
	110	8	10	13
	111	8	10	13
	112	9	12	14
	113	8	12	14
	114	9	12	14
25	115	8	12	14
	116	9	12	15
	117	9	12	14
	117a	9	11	14
	118	7	11	14
30	118a	7	10	12
	119	9	12	14
	121	7	10	13
	124	8	11	13
	124a	10	12	14
35	126	6	9	12
	127	7	11	13
	128	7	10	13
	130	8	10	12
	131	8	11	14
40	134	7	11	13
	135	9	12	13

Titanocen Beispiel	Zahl der abgebildeten Stufen nach Belichtung			
	10s	20s	40s	
5 136	9	12	14	
137	8	11	13	
138	9	11	13	
140	8	10	13	
141	9	12	15	
10 142	11	14	17	
144	9	12	14	
145	9	12	14	
146	8	10	13	
148	10	13	16	
15 149	10	13	15	
150	11	13	16	
151	12	14	18	
153	9	12	14	
154	10	14	16	
20 156	11	14	16	
157	11	14	17	
158	12	15	17	
159	10	13	16	
160	10	12	15	
25 161	9	12	14	
162	10	13	16	
164	9	12	14	
165	9	12	15	
166	10	13	15	
30 167	9	11	13	
168	10	13	16	
170	10	13	15	
171	10	13	16	
174	11	14	16	
35 176	11	14	16	
177	9	12	14	
178	11	13	15	
179	9	11	13	
180	11	14	16	
40 181	10	13	15	
182	10	13	15	
183	12	13	16	
184	9	13	16	
185	10	13	15	
45 186	9	12	15	
187	8	10	12	
188	8	10	12	
189	8	11	13	
190	8	11	14	
50 191	8	10	12	
192	9	12	14	
193	11	14	16	

55

Beispiel 196:

Es wird die Prozedur von Beispiel 195 wiederholt, jedoch wird das jeweilige Titanocen in einem 1:1-

Gemisch von Benzophenon und 1-Hydroxycyclohexyl-phenyl-keton vorgelöst. Verwendet werden jeweils (bezogen auf Feststoffgehalt) 0,3 % Titanocen, 0,85 % Benzophenon und 0,85 % 1-Hydroxycyclohexyl-phenyl-keton. Tabelle 13 gibt die dabei erreichte Anzahl der Abbildungsstufen an.

5

Tabelle 13

10	Titancen Beispiel	Zahl der abgebildeten Stufen nach Belichtung		
		10s	20s	40s
	87	12	14	17
	90	11	13	15
	91	11	13	15
15	92	11	13	15
	96	11	13	15
	97	11	13	16
	105	10	12	14
	106	11	13	16

20

Ansprüche

25

1. Titanocene der Formel I

30

35

worin beide R¹ unabhängig voneinander unsubstituiertes oder durch C₁-C₁₈-Alkyl oder -Alkoxy, C₂-C₁₈-Alkenyl, C₅-C₈-Cycloalkyl, C₆-C₁₆-Aryl, C₇-C₁₆-Araalkyl, SiR₃⁴, GeR₂⁴, Cyano oder Halogen substituiertes Cyclopentadienyl[⊖], Indenyl[⊖] oder 4,5,6,7-Tetrahydroindenyl[⊖] bedeuten oder beide R¹ zusammen für einen unsubstituierten wie zuvor substituierten Rest der Formel II

40

45

stehen, worin X {CH₂}_n mit n = 1, 2 oder 3, unsubstituiertes oder durch Phenyl substituiertes Alkylen mit 2 bis 12 C-Atomen, Cycloalkylen mit 5 bis 7 Ringkohlenstoffatomen, SiR₂⁴, SiR₂⁴-O-SiR₂⁴, GeR₂⁴ oder SnR₂⁴ ist, und R⁴ C₁-C₁₂-Alkyl, C₅-C₁₂-Cycloalkyl, C₆-C₁₆-Aryl oder C₇-C₁₆-Araalkyl bedeutet,

R² einen 6-gliedrigen carbocyclischen oder 5- oder 6-gliedrigen heterocyclischen aromatischen Rest bedeutet, der in mindestens einer der beiden ortho-Stellungen zur Titankohlenstoffbindung mit Fluoratomen substituiert ist und wobei der aromatische Rest weitere Substituenten enthalten kann,

50

R³ eine der für R² gegebenen Bedeutungen hat oder R² und R³ zusammen einen Rest der Formel III bedeuten,

in dem Q für einen carbocyclischen aromatischen Rest steht, wobei die beiden Bindungen jeweils in Orthostellung zur Y-Gruppe stehen und die zweite Orthostellung zur Titankohlenstoffbindung jeweils durch ein Fluoratom substituiert ist und wobei Q weitere Substituenten enthalten kann, und Y CH₂, Alkylen mit 2 bis 12 C-Atomen, Cycloalkylen mit 5 bis 7 Ringkohlenstoffatomen, NR⁴, O, S, SO₂, CO, SiR₂⁴, GeR₂⁴ oder SnR₂⁴ bedeutet und R⁴ die zuvor angegebene Bedeutung hat,

wobei die Titanocene dadurch gekennzeichnet sind, dass R² und R³ oder der Rest der Formel III durch einen Rest der Formel IV, IVa oder IVb substituiert sind,

5

worin R^5 Wasserstoff, lineares oder verzweigtes C_1 - C_{20} -Alkyl, C_2 - C_{20} -Alkenyl, C_3 - C_8 -Cycloalkyl, C_4 - C_{20} -Cycloalkylalkyl oder -Alkylcycloalkyl, C_5 - C_{20} -Alkylcycloalkylalkyl, C_6 - C_{20} -Cycloalkenylalkyl, C_6 - C_{14} -Aryl, C_7 - C_{20} -Aralkyl oder -Alkaryl, C_8 - C_{20} -Alkaralkyl oder C_3 - C_{12} -Trialkylsilyl darstellt, wobei diese Reste unsubstituiert oder durch C_1 - C_{18} -Alkoxy, C_1 - C_{18} -Alkylthio, C_1 - C_{18} -Alkylsulfonyl, C_6 - C_{10} -Arylsulfonyl, C_7 - C_{20} -Alkylsulfonyl, 2-Tetrahydrofuranyl oder Cyano substituiert sind,

R^6 eine der für R^5 gegebenen Bedeutungen hat oder C_1 - C_{20} -Halogenalkyl, durch -CO- unterbrochenes C_2 - C_{20} -Alkyl oder durch -COOH oder -COOR⁴ substituiertes C_1 - C_{12} -Alkyl ist und im Falle, dass Y^1 -CO-, -CS- oder -SO₂- ist, auch -NR⁷R⁸ bedeuten kann, worin R⁷ und R⁸ unabhängig voneinander eine der für R^5

15 gegebenen Bedeutungen haben oder R⁷ und R⁸ zusammen C_3 - C_7 -Alkylen bedeuten, das durch -O-, -S- oder -N(R⁹)- unterbrochen werden kann, worin R⁹ Wasserstoff, C_1 - C_{12} -Alkyl, C_3 - C_{12} -Alkenyl, C_7 - C_{12} -Aralkyl oder C_2 - C_{20} -Alkanoyl bedeutet,

oder R⁵ und R⁶ zusammen lineares oder verzweigtes C_2 - C_8 -Alkylen oder durch Halogen, C_1 - C_4 -Alkoxy, Allyloxy oder -NR⁷R⁸ substituiertes C_2 - C_8 -Alkylen oder einen zweiwertigen Rest der Formel

20

25

bedeuten,

Y^1 eine Gruppe -CO-, -CS-, -COO-, -SO₂- oder -SIR⁴₂- bedeutet, worin R⁴ die zuvor gegebene Bedeutung hat,

30 R^{10} eine der für R^5 gegebenen Bedeutungen hat oder R¹⁰ und R⁶ zusammen C_1 - C_8 -Alkandiyyl, C_2 - C_8 -Alkendiyl, C_6 - C_{14} -Arendiyyl, C_4 - C_{12} -Cycloalkandiyyl, C_5 - C_{12} -Cycloalkendiyl, C_6 - C_{14} -Cycloalkadienyyl, C_7 - C_{20} -Bicycloalkandiyyl, C_7 - C_{20} -Bicycloalkendiyl oder durch -O-, -S- oder -N(R⁹)- unterbrochenes C_2 - C_4 -Alkandiyyl bedeuten, wobei diese Reste unsubstituiert oder durch einen oder mehrere der Substituenten Halogen, C_1 - C_{10} -Alkoxy, C_1 - C_{20} -Alkyl, C_3 - C_{20} -Alkenyl oder C_6 - C_{14} -Aryl substituiert sind.

35 2. Titanocene gemäss Anspruch 1, dadurch gekennzeichnet, dass R¹ Cyclopentadieny[⊖] oder Methyl-cyclopentadieny[⊖] ist.

3. Titanocene gemäss Anspruch 1, dadurch gekennzeichnet, dass R¹ Cyclopentadieny[⊖] ist.

4. Titanocene gemäss Anspruch 1, dadurch gekennzeichnet, dass R² und R³ die gleiche Bedeutung haben.

40 5. Titanocene gemäss Anspruch 1, dadurch gekennzeichnet, dass der Rest R² in beiden Orthostellungen mit Fluor substituiert ist.

6. Titanocene gemäss Anspruch 1, dadurch gekennzeichnet, dass R² und R³ für 2,6-Difluorphen-1-yl stehen, an das ein Rest der Formel IV, IVa oder IVb gebunden ist, und das weitere 1 oder 2 gleiche oder verschiedene Substituenten enthalten kann.

45 7. Titanocene gemäss Anspruch 6, dadurch gekennzeichnet, dass in Formel I beide R¹ Cyclopentadieny[⊖] und R² und R³ Reste der Formel V

50

bedeuten, worin A eine Gruppe der Formel IV, IVa oder IVb bedeutet.

55 8. Titanocene gemäss Anspruch 7, dadurch gekennzeichnet, dass in Formel V die Gruppe A in Orthostellung zu einem F-Atom gebunden ist.

9. Titanocene gemäss Anspruch 7, dadurch gekennzeichnet, dass A eine Gruppe der Formel IV ist.

10. Titanocene gemäss Anspruch 1, dadurch gekennzeichnet, dass R² und R³ durch eine Gruppe der Formel IV substituiert sind, worin R⁵ Wasserstoff, unsubstituiertes oder durch C₁-C₁₂-Alkoxy oder Tetrahydrofuryl substituiertes C₁-C₁₂-Alkyl, C₂-C₅-Alkenyl, C₅-C₇-Cycloalkyl, C₆-C₁₈-Cycloalkylalkyl oder -Alkylcycloalkyl, C₇-C₁₈-Alkylcycloalkylalkyl, C₇-C₁₈-Aralkyl oder C₈-C₁₆-Alkaralkyl bedeutet, R⁶ eine der für 5 R⁵ gegebenen Bedeutungen hat oder C₆-C₁₀-Aryl, C₇-C₁₈-Alkaryl, C₁-C₁₂-Halogenalkyl oder -NR⁷R⁸ darstellt, worin R⁷ und R⁸ unabhängig voneinander Wasserstoff, C₁-C₁₂-Alkyl, Phenyl, Benzyl oder Cyclohexyl bedeuten oder R⁷ und R⁸ zusammen C₄-C₅-Alkylen oder 3-Oxapentamethylen bedeuten, oder R⁵ und R⁶ zusammen C₂-C₈-Alkylen bedeuten und Y¹ -CO-, -CS-, -COO- oder -SO₂- bedeutet.
11. Titanocene gemäss Anspruch 1, dadurch gekennzeichnet, dass R² und R³ durch eine Gruppe der 10 Formel IV substituiert sind, worin R⁵ Wasserstoff, C₁-C₁₂-Alkyl, Cyclohexyl, Cyclohexylmethyl, 2-Tetrahydrofurylmethyl, C₂-C₈-Alkoxyalkyl, Allyl oder C₇-C₉-Aralkyl ist, R⁶ C₁-C₁₈-Alkyl, C₁-C₄-Halogenalkyl, Cyclohexyl, C₆-C₁₀-Aryl oder -Halogenaryl oder C₇-C₁₈-Alkaryl bedeutet oder R⁵ und R⁶ zusammen C₂-C₆-Alkylen bedeuten und Y¹ -CO-, -COO- oder -SO₂- ist oder der Rest -Y¹-R⁶ eine Gruppe -CO-NHR⁷, -CS-NHR⁷, -CO-NR⁷R⁸ oder -SO₂-N⁺R⁸ bedeutet, worin R⁷ C₁-C₁₂-Alkyl oder Phenyl ist; R⁸ C₁-C₁₂-Alkyl ist 15 oder R⁷ und R⁸ zusammen C₄-C₅-Alkylen oder 3-Oxapentamethylen bedeuten.
12. Titanocene gemäss Anspruch 11, worin R⁵ Wasserstoff, C₁-C₈-Alkyl oder C₇-C₉-Aralkyl ist, R⁶ C₁-C₁₈-Alkyl, Trifluormethyl, Phenyl, oder durch Halogen oder C₁-C₁₂-Alkyl substituiertes Phenyl bedeutet oder R⁵ und R⁶ zusammen C₂-C₈-Alkylen bedeuten und Y¹ -CO- oder -SO₂- ist.
13. Titanocene gemäss Anspruch 1, dadurch gekennzeichnet, dass R² und R³ durch eine Gruppe der 20 Formel IVa substituiert sind, worin R⁶ und R¹⁰ zusammen C₂-C₈-Alkandiylyl, C₂-C₈-Alkendiylyl, C₆-C₁₄-Arendiylyl oder C₇-C₁₂-Bicycloalkendiylyl bedeuten und Y¹ -CO- ist.
14. Verfahren zur Herstellung von Titanocenen der Formel I gemäss Anspruch 1, dadurch gekennzeichnet, dass man 1 Mol einer Verbindung der Formel VI

25

30

worin R¹ die in Anspruch 1 angegebene Bedeutung hat und Z für Halogen, besonders Chlor, steht, entweder mit einem Mol LiR² oder LiR³ und danach mit einem Mol LiR³ bzw. LiR² umgesetzt, oder mit 2 Mol LiR² oder mit 1 Mol Li₂QYQ umgesetzt, wobei R², R³ und QYQ die in Anspruch 1 angegebenen Bedeutungen haben und danach die Verbindung der Formel I in an sich bekannter Weise isoliert.

35

15. Durch Strahlung polymerisierbare Zusammensetzung, enthaltend (a) mindestens eine nichtflüchtige, monomere, oligomere oder polymere Verbindung mit mindestens einer polymerisierbaren ethylenisch ungesättigten Doppelbindung und (b) mindestens ein Titanocen der Formel I nach Anspruch 1 als Photoinitiator.

40

16. Zusammensetzung gemäss Anspruch 15, dadurch gekennzeichnet, dass zusätzlich mindestens ein von (b) verschiedener Photoinitiator (c) enthalten ist.

17. Zusammensetzung gemäss Anspruch 16, enthaltend als Photoinitiator (c) ein Benzophenon, einen Benzoinalkylether, ein Benzilketal, ein 4-Aroyl-1,3-dioxolan, ein Dialkoxyacetophenon, ein α -Hydroxy- oder α -Aminoacetophenon oder ein α -Hydroxycycloalkylphenylketon oder Mischungen davon als zusätzlichen Photoinitiator.

45

18. Verwendung einer Zusammensetzung gemäss Anspruch 15 zur Herstellung von Lacken, Druckfarben, Druckplatten, Resistmaterialien sowie als Bildaufzeichnungsmaterial.

19. Beschichtetes Substrat, das auf mindestens einer Oberfläche mit einer Zusammensetzung gemäss Anspruch 15 beschichtet ist.

50

20. Verfahren zur photographischen Herstellung von Reliefabbildungen, dadurch gekennzeichnet, dass man ein beschichtetes Substrat gemäss Anspruch 19 bildmäßig belichtet und die unbelichteten Anteile danach mit einem Lösungsmittel entfernt.

21. Verwendung von Titanocenen der Formel I gemäss Anspruch 1 alleine oder zusammen mit anderen Initiatoren als Photoinitiatoren für die Photopolymerisation von nichtflüchtigen monomeren, oligomeren oder polymeren Verbindungen mit mindestens einer polymerisierbaren ethylenisch ungesättigten Doppelbindung.

55

22. Photoinitiatorengemisch, enthaltend einen Photoinitiator vom Typ der Benzophenone, Benzoinalkylether, Benzilketale, 4-Aroyl-1,3-dioxolane, Dialkoxyacetophenone, α -Hydroxyacetophenone, α -Hydroxycycloalkylphenylketone, α -Aminoacetophenone oder Mischungen hiervon und ein Titanocen der Formel I gemäss Anspruch 1.

23. Verbindungen der Formel VII

5

worin Ar einen 6-gliedrigen carbocyclischen oder 5- oder 6-gliedrigen heterocyclischen aromatischen Rest, der mindestens ein Fluoratom, in Orthostellung hierzu ein Wasserstoffatom oder ein Halogenatomen und gegebenenfalls weitere Substituenten enthält, oder Ar einen Rest der Formel

18

20

bedeutet, worin D für ein in Orthostellung zu Y gebundenes Wasserstoffatom oder Halogenatomen steht, Q einen carbocyclischen aromatischen Rest bedeutet, der in Orthostellung zur D-Gruppe jeweils durch ein Fluoratom substituiert ist und Q weitere Substituenten enthalten kann, und Y, Y¹, R⁵ und R⁶ die in Anspruch 1 angegebenen Bedeutungen haben.

24. Verbindungen gemäß Anspruch 23, worin Ar als aromatischer Rest ein substituierter Phenylring ist.

25. Verbindungen gemäß Anspruch 23, dadurch gekennzeichnet, dass sie der Formel VIIa

25

30

entsprechen, worin R⁵, R⁶, und Y¹ die in Anspruch 1 angegebenen Bedeutungen haben.

35

26. Verbindungen gemäß Anspruch 25 der Formel VIIa, worin die Gruppe -N(R⁵)-Y¹R⁶ in Orthostellung zum Fluoratom gebunden ist.

36

27. Verbindungen der Formel VIII

40

worin Ar die in Anspruch 23 gegebene Bedeutung hat und Y¹, R⁶ und R¹⁰ die in Anspruch 1 gegebene Bedeutungen haben.

45

28. Verbindungen gemäß Anspruch 27 der Formel VIIa

50

55

worin Y¹, R⁶ und R¹⁰ die in Anspruch 1 gegebenen Bedeutungen haben.

29. Verbindungen gemäß Anspruch 28 der Formel VIIa, worin die Gruppe -N(Y¹R¹⁰)-Y¹R⁶ in Orthostellung zum Fluoratom gebunden ist.

30. Verbindungen gemäss Anspruch 28 der Formel VIIIa, worin Y¹ die Gruppe -CO- ist und R⁶ und R¹⁰ zusammen C₂-C₈-Alkandiyl, C₂-C₈-Alkendiyl, C₅-C₁₀-Arendiyl, C₆-C₁₂-Cycloalkandiyl, C₆-C₁₂-Cycloalkendiyl, C₇-C₁₂-Bicycloalkandiyl oder C₇-C₁₂-Bicycloalkendiyl bedeuten.

5

Patentansprüche für folgende Vertragsstaaten: AT, ES

1. Verfahren zur Herstellung von Titanocenen der Formel I

10

15

worin beide R¹ unabhängig voneinander unsubstituiertes oder durch C₁-C₁₈-Alkyl oder -Alkoxy, C₂-C₁₈-Alkenyl, C₅-C₈-Cycloalkyl, C₆-C₁₆-Aryl, C₇-C₁₆-Aralkyl, SiR₃⁴, GeR₃⁴, Cyano oder Halogen substituiertes Cyclopentadienyl^Θ, Indenyl^Θ oder 4,5,6,7-Tetrahydroindenyl^Θ bedeuten oder beide R¹ zusammen für einen unsubstituierten wie zuvor substituierten Rest der Formel II

20

25

stehen, worin X {CH₂}_n mit n = 1, 2 oder 3, unsubstituiertes oder durch Phenyl substituiertes Alkylen mit 2 bis 12 C-Atomen, Cycloalkylen mit 5 bis 7 Ringkohlenstoffatomen, SiR₂⁴, SiR₂⁴-O-SiR₂⁴, GeR₂⁴ oder SnR₂⁴ ist, und R⁴ C₁-C₁₂-Alkyl, C₅-C₁₂-Cycloalkyl, C₆-C₁₆-Aryl oder C₇-C₁₆-Aralkyl bedeutet, R² einen 6-gliedrigen carbocyclischen oder 5- oder 6-gliedrigen heterocyclischen aromatischen Rest bedeutet, der in mindestens einer der beiden ortho-Stellungen zur Titankohlenstoffbindung mit Fluoratomen substituiert ist und wobei der aromatische Rest weitere Substituenten enthalten kann,

30

R³ eine der für R² gegebenen Bedeutungen hat oder R² und R³ zusammen einen Rest der Formel III bedeuten,

35

in dem Q für einen carbocyclischen aromatischen Rest steht, wobei die beiden Bindungen jeweils in Orthostellung zur Y-Gruppe stehen und die zweite Orthostellung zur Titankohlenstoffbindung jeweils durch ein Fluoratom substituiert ist und wobei Q weitere Substituenten enthalten kann, und Y CH₂, Alkylen mit 2 bis 12 C-Atomen, Cycloalkylen mit 5 bis 7 Ringkohlenstoffatomen, NR⁴, O, S, SO, SO₂, CO, SiR₂⁴, GeR₂⁴ oder SnR₂⁴ bedeutet und R⁴ die zuvor angegebene Bedeutung hat,

40

wobei die Titanocene dadurch gekennzeichnet sind, dass R² und R³ oder der Rest der Formel III durch einen Rest der Formel IV, IVa oder IVb substituiert sind,

45

50

worin R⁵ Wasserstoff, lineares oder verzweigtes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₃-C₈-Cycloalkyl, C₄-C₂₀-Cycloalkylalkyl oder -Alkylcycloalkyl, C₅-C₂₀-Alkylcycloalkylalkyl, C₆-C₂₀-Cycloalkenylalkyl, C₆-C₁₄-Aryl, C₇-C₂₀-Aralkyl oder -Alkaryl, C₈-C₂₀-Alkaralkyl oder C₉-C₁₂-Trialkylsilyl darstellt, wobei diese Reste unsubstituiert oder durch C₁-C₁₈-Alkoxy, C₁-C₁₈-Alkylthio, C₁-C₁₈-Alkylsulfonyl, C₆-C₁₀-Arylsulfonyl, C₇-C₂₀-Alkarylsulfonyl, 2-Tetrahydrofuranyl oder Cyano substituiert sind,

55

R⁶ eine der für R⁵ gegebenen Bedeutungen hat oder C₁-C₂₀-Halogenalkyl, durch -CO- unterbrochenes C₂-C₂₀-Alkyl oder durch -COOH oder -COOR⁴ substituiertes C₁-C₁₂-Alkyl ist und im Falle, dass Y¹ -CO-, -CS- oder -SO₂- ist, auch -NR⁷R⁸ bedeuten kann, worin R⁷ und R⁸ unabhängig voneinander eine der für R⁵ gegebenen Bedeutungen haben oder R⁷ und R⁸ zusammen C₃-C₇-Alkylen bedeuten, das durch -O-, -S- oder -N(R⁹)- unterbrochen werden kann, worin R⁹ Wasserstoff, C₁-C₁₂-Alkyl, C₃-C₁₂-Alkenyl, C₇-C₁₂-Aralkyl oder C₂-C₂₀-Alkanoyl bedeutet,

oder R⁵ und R⁶ zusammen lineares oder verzweigtes C₂-C₈-Alkylen oder durch Halogen, C₁-C₄-Alkoxy, Allyloxy oder -NR⁷R⁸ substituiertes C₂-C₈-Alkylen oder einen zweiwertigen Rest der Formel

- 10 bedeuten,
 Y¹ eine Gruppe -CO-, -CS-, -COO-, -SO₂- oder -SiR⁴₂- bedeutet, worin R⁴ die zuvor gegebene Bedeutung hat,
 R¹⁰ eine der für R⁶ gegebenen Bedeutungen hat oder R¹⁰ und R⁶ zusammen C₁-C₈-Alkandiyl, C₂-C₈-Alkendiyl, C₆-C₁₄-Arendiyl, C₄-C₁₂-Cycloalkandiyl, C₅-C₁₂-Cycloalkendiyl, C₆-C₁₄-Cycloalkadienyli, C₇-C₂₀-Bicyclicalkandiyl, C₇-C₂₀-Bicyclicalkendiyl oder durch -O-, -S- oder -N(R³)-unterbrochenes C₂-C₈-Alkandiyl bedeuten, wobei diese Reste unsubstituiert oder durch einen oder mehrere der Substituenten Halogen, C₁-C₁₀-Alkoxy, C₁-C₂₀-Alkyl, C₃-C₂₀-Alkenyl oder C₆-C₁₄-Aryl substituiert sind, dadurch gekennzeichnet, dass man 1 Mol einer Verbindung der Formel VI

- 25 worin R¹ die in Anspruch 1 angegebene Bedeutung hat und Z für Halogen, besonders Chlor, steht, entweder mit einem Mol LiR² oder LiR³ und danach mit einem Mol LiR³ bzw. LiR² umsetzt, oder mit 2 Mol LiR² oder mit 1 Mol Li₂QYQ umsetzt, wobei R², R³ und QYQ die in Anspruch 1 angegebenen Bedeutungen haben und danach die Verbindung der Formel I in an sich bekannter Weise isoliert.
 2. Durch Strahlung polymerisierbare Zusammensetzung, enthaltend (a) mindestens eine nichtflüchtige, monomere, oligomere oder polymere Verbindung mit mindestens einer polymerisierbaren ethylenisch ungesättigten Doppelbindung und (b) mindestens ein Titanocen der Formel I nach Anspruch 1 als Photoinitator.
 3. Zusammensetzung gemäß Anspruch 15, dadurch gekennzeichnet, dass zusätzlich mindestens ein von (b) verschiedener Photoinitator (c) enthalten ist.
 35 4. Zusammensetzung gemäß Anspruch 16, enthaltend als Photoinitator (c) ein Benzophenon, einen Benzoinalkylether, ein Benzilketal, ein 4-Aroyl-1,3-dioxolan, ein Dialkoxyacetophenon, ein α -Hydroxy- oder α -Aminoacetophenon oder ein α -Hydroxycycloalkylphenylketon oder Mischungen davon als zusätzlichen Photoinitator.
 40 5. Verwendung von Titanocenen der Formel I gemäß Anspruch 1 alleine oder zusammen mit anderen Initiatoren als Photoinitiatoren für die Photopolymerisation von nichtflüchtigen monomeren, oligomeren oder polymeren Verbindungen mit mindestens einer polymerisierbaren ethylenisch ungesättigten Doppelbindung.

45

50.

55