Lista de Exercícios

Disciplina de Redes Complexas - PESC - COPPE - UFRJ

Vinícius W. Salazar, Prof. Daniel R. Figueiredo

Novembro de 2019

Questão 1

1.1) $q_k = (\frac{1-q}{n})^k$, pois as combinações de palavras com k letras é dada por n^k , e a chance de teclar alguma tecla que não seja o espaço é de $\frac{1-q}{n}$, se substituirmos n por $\frac{1-q}{n}$ temos q_k . Esse valor descresce monotonicamente em k pois $0 \le \frac{1-q}{n} \le 1$, logo se elevarmos esse valor a k, temos que $q_k \to 0 \mid k \to \infty$

1.2) (n^k) , pois esse é o número de combinações possíveis de uma palavra de k letras em um alfabeto de tamanho n. Por exemplo, se temos k = 1, a chance é de $n^1 = n$ pois temos n possíveis palavras. Para k = 2, teremos $n \times n$, k = 3, $n \times n \times n$, e assim por diante.

1.3) Tomemos k=1. O nosso ranqueamento terá n^1 palavras, e o valor do ranqueamento de k=2 será de n^1+1 . Para k=3, esse valor será n^1+n^2+1 . Logo o valor a primeira palavra com k letras será $n^1+\ldots+n^k+1$, podemos anota-lo como

$$R_k = (\sum_{k=1}^k \prod_{k=1}^k n) + 1$$

.

1.4) k

1.5) Esse valor seria igual a q_k .

Questão 2

Dada a seguinte função de densidade para uma distribuição de Pareto:

$$f_X(x) = \frac{\alpha x_0^{\alpha}}{x^{\alpha - 1}}, \ a > 0, \ x_0 > 0$$

A função de likelihood da distribuição de Pareto para uma amostra $X = (x_1, ..., x_n)$ é dada por:

$$L(x_1, ..., x_n \mid \alpha) = \prod_{i=1}^n f_X(x_i) = \prod_{i=1}^n \frac{\alpha x_0^{\alpha}}{x_i^{\alpha+1}}$$

que ainda pode ser simplificada para:

$$\alpha^n x^{n\alpha} \prod_{i=1}^n \frac{1}{x_i^{\alpha+1}}$$

Sendo sua função log:

$$\ell(x_1, ..., x_n \mid \alpha) = n \ln(\alpha) + n\alpha \ln(x) - (\alpha + 1) \sum_{i=1}^{n} \ln(\alpha)$$

Para um dado α , fazemos a derivada de ℓ em função de α igual a 0:

$$\frac{\partial \ell(\alpha)}{\partial \alpha} = \frac{n}{\alpha} + n \ln(x) - \sum_{i=1}^{n} \ln(x_i) = 0$$

Encontrando a raíz, temos $\hat{\alpha}$ como uma v.a. condicionada em nossas amostras, temos o seu valor como:

$$\hat{\alpha} = \frac{n}{\sum_{i=1}^{n} \ln(x_i) - n \ln(\hat{x})}$$

.

Questão 3

O coeficiente de clusterização de um vértice v_i é dado por

$$C_i = \frac{2e_i}{d_i(d_i - 1)}$$

, aonde e_i é o número de arestas entre os vizinhos de v_i e d_i é o grau de v_i . Se no modelo G(n, p) as arestas aparecem com probabilidade p, temos

$$e_i = p \times \frac{d_i(d_i - 1)}{2}$$

, aonde p é a probabilidade de um par acontecer e o segundo termo é o número de vizinhos do vértice i com grau d_i .

Se substituirmos e_i na equação do coeficiente de clusterização, temos:

$$C = p \times \frac{d_i(d_i - 1)}{d_i(d_i - 1)} = p$$

Questão 8

8.1) Em um grafo do modelo Watts-Strogatz, o coeficiente de clusterização $C(0) \mid p = 0$ não depende de N, somente de K. Sendo que $C_i = \frac{E_i}{\binom{d_i}{2}}$, $C(0) = \frac{3(K-1)}{2(2K-1)} \approx \frac{3}{4}$.

A distância média $\ell(0)$ depende de N e de K:

$$\ell = \frac{\sum_{u,v \in V} d(u,v)}{\binom{N}{2}}$$

quanto mais o grafo cresce, se não houverem "atalhos", a distância média vai crescer também. Para um K genérico,

$$\ell(0) \approx \frac{N}{4K}$$

(exibe um crescimento linear com N).

8.2) O modelo WS é similar ao modelo G(n,p) e possui propriedades estruturais equivalentes. No entanto, difere quanto a clusterização local e distância. Enquanto no G(n,p) estas são dadas, respectivamente, por C=p e $\ell \approx \frac{\log(n)}{\log(d)}$. Enquanto no G(n,p) teremos um valor esperado de grau E[D]=(n-1)p, no modelo WS esse valor esperado será E[D]=2K. Logo dado N e K, m=NK e a densidade p será de $p=\frac{2K}{N-1}\approx \frac{2K}{N}$, logo $C(1)\approx \frac{2K}{N}$, decrescendo linearmente com N, e $\ell(1)=\frac{\log(N)}{\log(2K)}$, crescendo logaritmicamente com N.

Com isso, a distância média decresce rapidamente a medida que $p \to 1$, enquanto a clusterização decresce mais devagar. Quando $p=0,\ \ell(0)\approx \frac{N}{2K}$ e para $p=1,\ \ell(1)=\frac{\log(N)}{\log(2K)}$.

Como os valores de E[D], C e ℓ serão parecidos no G(n,p) e no WS(N,K) onde p=1, o G(n,p) serve como uma boa aproximação. Além disso, o modelo G(n,p) vai possuir distribuição de graus em cauda pesada, enquanto o WS vai ter uma distribuição mais aproximada da binomial.