

Overview of NASA White Sands Test Facility Composite Overwrapped Pressure Vessel Testing

Nathanael Greene NASA-WSTF

Coauthors:

Regor Saulsberry NASA-WSTF

John Thesken, PhD. OAI-GRC

Leigh Phoenix, PhD. Cornell University

Duane Revilock NASA-GRC

Overview

- Special Thanks
- Introduction
- History of COPV Testing
- NASA-WSTF COPV Test Program
- NASA-WSTF Test Facilities
- Review of Kevlar® Testing
- Review of Carbon Testing
- General Observations

Special Thanks

Co-Authors	Affiliation	Contribution	
Regor Saulsberry	NASA-WSTF	Project Manager	
John Thesken, PhD.	OAI-GRC	Structural Analysis	
Leigh Phoenix, PhD.	Cornell University	Modeling and Statistics	
Duane Revilock	NASA-GRC	Digital Image Correlation	
Reviewers	Affiliation	Contribution	
Harold Beeson, PhD.	NASA-WSTF	Laboratories Office Chief	
Kirk Sneddon	ARDÉ	Manufacturer Review	
Special Thanks	Affiliation	Contribution	
Tommy Yoder	HTSI-WSTF	Project Leader	
Brad Forsyth	HTSI-WSTF	Data Analyst	
Marlene Carrillo	HTSI-WSTF	Test Conductor	
Steve Berko	ARDÉ	Test Consultant	
COPV Team Members	Agency Wide	Test and Instrumentation Support	

Introduction

- Composite overwrapped pressure vessel (COPV)
 - Typically a metallic liner overwrapped with a fiber epoxy matrix
- Weight advantage over a traditional all-metal design

History of COPV Testing

- NASA-GRC¹ Kevlar® COPV development (early 1970s)
- LLNL² Kevlar Testing of Subscale COPVs (mid 1970s)
- NASA-JSC³ Kevlar Shuttle Transportation System (STS) Fleet Leader Program (late 1970s)
- NASA-WSTF Kevlar COPV Fluids Compatibility Testing (1990s)
- NASA-WSTF Carbon Impact Study (1990s)
- NASA-WSTF Carbon Fluids Compatibility Study (1990s)
- NASA-WSTF Subscale Carbon COPV Stress Rupture Program (1990s-current)
- NASA-WSTF STS Kevlar COPV Testing (current)
- NASA-WSTF PBO COPV Testing (1990s-current)
- NASA-WSTF Carbon COPV Shelf Life, Humidity & Vacuum Testing (buildup)

NASA-WSTF COPV Test Program

NASA

Stress Rupture Facilities

- New Stress Rupture Test Facility (Test Cell 862)
 - Thermally controlled
 - Backup power for data acquisition and thermal control
 - Will house 15 blast enclosures for testing up to 26-in. COPVs and one blast enclosure to house up to a 40-in. COPV

wstf1005e08437

Stress Rupture Facilities

- Subscale COPV testing (Test Cell 270A)
- Carbon fiber and PBO COPVs currently in test

wstf0403-0559

Stress Rupture Facilities

- Fleet leaders for ISS (Test Cell 275)
- Various flight-qualified configurations
- Eight impact-damaged COPVs on test
- Test started ~ 8 years ago

Burst Test Facility

Burst up to 26-in. COPVs (upgrading to burst up to

40-in. COPVs at 50 psi/s)

Thermally controlled enclosure

Remote data acquisition

wstf1005e08445

wstf0604e4120

Vacuum Test Facility

- Vacuum Stress Rupture Testing of COPVs
 - Thermally controlled
 - Facility in preparation for test
 - Controlled gas and humidity environment

wstf0206e01036

wstf0206e01035

Fluids Compatibility

- Fluids Compatibility Testing
 - Expose COPV to fluid and burst test
 - Cryogenic fluids
 - MMH, NTO, LN₂, hydrazine, and unsymmetrical dimethylhydrazine

wstf0396-0453

wstf0496-1111

wstf0496-1109

wstf0596-1318

Pneumatic COPV Test Facility

- Pneumatic burst after mechanical impact
- 250-ft drop tower
- COPV drop testing

Current WSTF COPV Test and Analysis Objectives

- Evaluate safe operating life remaining for Kevlar® COPVs on the Space Shuttle
 - Kevlar stress rupture life prediction model is being prepared using COPV stress rupture and strand data (Phoenix Model II)
 - Flight qualified COPV testing required to adjust parameters of the model
- Provide fleet leader data for ISS and evaluate remaining safe operating life on carbon COPVs
- Provide test data and design of future COPV applications (Constellation Program)

Kevlar Test and Analysis Objectives

- Provide flight qualified COPV test data to feed into life model
- Evaluate conservatism in current lifing numbers
 - Relate fiber strain condition with stress rupture life
 - Evaluate transverse COPV stiffness
 - Assess fiber creep with time (liner pre-stress)
 - Measure liner pre-stress
 - Record fiber strain with pressure and volume expansion
- Provide a data-validated FEA model for damage assessment

Kevlar COPV Testing

- Strain gauges
- Fiber Bragg gratings
- Acoustic emission
- Eddy current
- Volume measurement
- Girth measurement
- Digital image correlation
- Load cell
- X-ray
- Temperature, pressure

New Measurement Development

- Volumetric strain measurement
 - Fluid input and output measurements
- Strain measurement
 - Fiber-optic Bragg gratings
- Composite thickness measurement
 - Eddie current
- Digital image correlation
 - Full field strain measurement

Kevlar Test Data

- Volumetric expansion with pressure
- Through-the-thickness stress gradient
- Liner pre-stress
- Evaluation of fiber creep with time
- Behavior beyond yield
- Burst volume
- Burst fiber strain

Digital Image Correlation Results

wstf1205e09445

Pressure Cycle Captured for DIC			
Stage Number	Pressure (PSI)		
0	Reference		
1	250		
2	1000		
3	5000		
4	6000		
5	6450		
6	6450 2 Minutes		
7	6450 4 Minutes		
8	4000		
9	2000		
10	Ambient		
11	Ambient 5 Minutes		
12	Ambient 25 Minutes		
13	Reference		
14	Reference		

Kevlar Test Data Analysis

- Comparison of data for flight rationale
 - Scale to fiber strength
- Variables that affect fiber strength include:
 - Fiber denier, volume fraction, COPV geometry, fiber strain at autofrettage (pre-strain), UV exposure, time at pressure and temperature
- Approach for comparison
 - Evaluate differences: liner load carrying effect,
 volume fraction, fiber differences, time at temperature and pressure, UV exposure, impact damage, etc.

Kevlar® Test Data Analysis

- Statistical approach based on comparison of distribution of test data
 - Assume data follow a Weibull distribution
 - Comparison of data sets shown on one plot
- Small sample statistics are used
 - Small data set

Sample Kevlar® Stress Rupture Life Chart

SAMPLE: Stress Rupture Chart for Kevlar

Carbon Test and Analysis Objectives

- Provide fleet leader COPVs for ISS
- Evaluate lower-than-expected burst results for carbon subscale COPVs
- Provide stress rupture data for construction of carbon stress rupture life prediction model

Carbon Results to Date

- No new failure mode found for failures at lower-thanexpected burst pressures
- Shelf life is being evaluated
 - Burst testing COPVs of different unpressurized shelf lives resulted in no significant difference in the Student's t-test
- Stress ratio calculation methods are in review
- Subscale COPVS are not flight-like
 - Minimized wrap (limit of what would be considered a COPV)
 - Less rigorous quality control than for flight COPVs
- Impact damage is a concern—was observed to reduce burst pressure

NASA

General Observations

- Understanding how stress ratios are calculated is important in evaluating remaining reliable stress rupture life
- Carbon COPVs are impact-damage sensitive and can burst before leak
- Kevlar® COPVs are more susceptible to stress rupture than carbon fiber COPVs (reflected in AIAA S-081*)

AIAA S-081-2000 Stress Rupture Requirements

Carbon Fiber	Aramid Fiber	Glass
1.5	1.65	2.25

Numbers represent the lowest fiber reinforcement stress ratio at MEOP

7/18/2008 25

^{*} ANSI/AIAA S-081-2000, Space Systems—Composite Overwrapped Pressure Vessels (COPVs). American Institute of Aeronautics and Astronautics, Reston, Virginia.