Assignment 1 CS2253 Fall 2021

Due Date: September 23, 2021 - 8:30 am

Purpose: practice working with representations and operations on binary and hexadecimal numbers (textbook, Chapter 2).

Problem 1.

- a) Assume that 453 scientists have been invited to attend a conference. If every scientist is to be assigned a unique bit pattern, what is the minimum number of bits required to do this?
- b) How many more scientists can be invited to the conference, without requiring additional bits for each person's unique id?

Problem 2.

- a) What is the largest positive number one can represent in an 10-bit 2's complement code? Write your result in binary and decimal.
- b) What is the greatest magnitude negative number one can represent in an 10-bit 2's complement code? Write your result in binary and decimal.
- c) What is the largest positive number one can represent in n-bit 2's complement code?
- d) What is the greatest magnitude negative number one can represent in n-bit 2's complement code?

Problem 3. Convert the following 2's complement binary numbers to decimal.

- a) 11010
- b) 01100110011
- c) 111111111010
- d) 01110000010000

Problem 4. Perform the specified arithmetic operation for the following 2's complement binary numbers (Don't forget to sign-extend when required!). Show the results in 8-bit numbers. Verify your result by performing the operations with decimal numbers.

- a) 11011 111
- b) 111 11011

Problem 5. The following binary numbers are 5-bit 2's complement binary numbers. Which of the following operations generate overflow? Justify your answers by translating the operands and results into decimal.

- a) 00111 + 00110
- b) 10111 11110
- c) 11000 00011
- d) 10110 + 10011

Problem 6. Perform the following operation in 2's complement arithmetic, where both 8-bit operands are in hexadecimal: F6 + 49. First convert the numbers to binary, then add them. Does this operation cause overflow? Why or why not?

Problem 7. Perform the following logical operations. Express your answer in hexadecimal notation.

- a) x5478 AND xFDEA
- b) xABCD OR x1234
- c) NOT((NOT(xDEFA)) AND (NOT(xFFFF)))
- d) x00FF X0R x3232

Problem 8. Write the decimal equivalents for the following IEEE floating point numbers.

Problem 9. Write the IEEE floating point representation of the decimal number 10.75.

Problem 10. Define a mathematical expression to convert the base ten digits 0-9 from their binary value to their ASCII value.

To pass in the assignment: Create a single pdf document and submit it via D2L. Name your document LastName_FirstName A1.pdf (LastName and FirstName are of course substituted with your last and first name).