Vehicle Insurance Fraud

By Tham Xiang Cong

5 September 2022

Problem Statement

- An insurance company notices that it is losing money due to fraudulent claims.
- This insurance company that I am working with, has assigned me a task to create a predictive model to detect fraud cases among vehicle insurance claims.

Dataset given to me

- 15420 entries in total.
- 33 variables.

RangeIndex: 15420 entries, 0 to 15419 Data columns (total 33 columns):

#	Column (cotal 33 column		ull Count	Dtype
0	Month	15420	non-null	object
1	WeekOfMonth	15420		int64
2	DayOfWeek	15420		object
3	Make	15420	non-null	object
4	AccidentArea	15420	non-null	object
5	DayOfWeekClaimed	15420	non-null	object
6	MonthClaimed	15420	non-null	object
7	WeekOfMonthClaimed	15420	non-null	int64
8	Sex	15420	non-null	object
9	MaritalStatus	15420	non-null	object
10	Age	15420	non-null	int64
11	Fault	15420	non-null	object
12	PolicyType	15420	non-null	object
13	VehicleCategory	15420	non-null	object
14	VehiclePrice	15420	non-null	object
15	PolicyNumber	15420	non-null	int64
16	RepNumber	15420	non-null	int64
17	Deductible	15420	non-null	int64
18	DriverRating	15420	non-null	int64
19	Days:Policy-Accident	15420	non-null	object
20	Days:Policy-Claim	15420	non-null	object
21	PastNumberOfClaims	15420	non-null	object
22	AgeOfVehicle	15420	non-null	object
23	AgeOfPolicyHolder	15420	non-null	object
24	PoliceReportFiled	15420	non-null	object
25	WitnessPresent	15420	non-null	object
26	AgentType	15420	non-null	object
27	NumberOfSuppliments	15420	non-null	object
28	AddressChange-Claim	15420	non-null	object
29	NumberOfCars	15420	non-null	object
30	Year	15420	non-null	int64
31	BasePolicy	15420	non-null	object
32	FraudFound	15420	non-null	object

Proportion of fraud cases

- Only 6% of all claims were fraud cases.
- There is an imbalance in the data (there are very much more nofraud cases compared to fraud cases).

Checking of relationships between variables

AgeOfVehicle	AgeOfPolicyHolder	0.743915
AgeOfPolicyHolder	AgeOfVehicle	0.743915
BasePolicy	PolicyType	0.785248
PolicyType	BasePolicy	0.785248
Month	MonthClaimed	0.833637
MonthClaimed	Month	0.833637
AgeOfPolicyHolder	Age	0.848918
Age	AgeOfPolicyHolder	0.848918

- The above variables have strong relationships with each other (r value > 0.7).
- There are no variables that have strong inverse relationship (r value less than -0.7).

3 classification models used

	Accuracy	Precision	Recall	F1 score
Logistic Regression	0.94	0.00	0.00	0.00
K Nearest Neighbors	0.94	0.14	0.02	0.04
Decision Trees	0.89	0.17	0.27	0.21

- The accuracy of the three models are very close to 0.9, which indicates perfect models.
- Logistic regression has a value of zero for precision, recall and F1 score.
- For other two models, the values are very close to zero.
- It is very likely due to the imbalance of data as mentioned earlier.

- Area under curve score is:
- Logistic Regression: 0.77
- K Nearest Neighbors: 0.67
- Decision Trees: 0.60

• From the ROC curve, Logistic Regression is the best model.

Due to imbalance of data, I resampled the data

```
original dataset shape: Counter({0: 14496, 1: 923})
Resample dataset shape Counter({0: 923, 1: 923})
1841
1842
1843
1844
1845
Name: FraudFound, Length: 1846, dtype: int64
```

- After resampling (undersampling), there are equal number of fraud cases and nofraud cases.
- 0 \rightarrow No fraud cases (n=923)
- 1 \rightarrow Fraud cases (n=923)

3 classification models refitted

	Accuracy	Precision	Recall	F1 score
Logistic Regression	0.71	0.66	0.80	0.72
K Nearest Neighbors	0.70	0.68	0.73	0.70
Decision Trees	0.73	0.73	0.71	0.72

- The accuracy of the three models is very close to 0.7.
- Decision Trees model has the highest precision score.
- Logistic Regression model has the highest recall score.
- The F1 scores of the three models are very close to 0.7.
- False negatives in this case, have high cost to the company. Hence, we will look at 'recall'.

- Area under curve score is:
- Logistic Regression: 0.78
- K Nearest Neighbors: 0.76
- Decision Trees: 0.68

• From the ROC curve, Logistic Regression is still the best model.

Hyperparameters Tuning of Logistic Regression

- Parameters used: parameters = {'penalty':['l1', 'l2'], 'C' : np.logspace(-3,3,7), 'solver':['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga']}
- Grid Search Technique is used for hypertuning
- Best parameters = {'C': 1.0, 'penalty': 'l1', 'solver': 'liblinear'}
- Best estimators = {penalty='l1', solver='liblinear'

Comparison of hypertuned and pre-hypertuned models

	Accuracy	Recall	AUC
Hypertuned	0.73	0.86	0.80
Pre-hypertuned	0.71	0.80	0.78

• Overall, not much difference between the two models. Prehypertuned model can still be used as a predictive model.

Implementation of the model

	Coef.	Std.Err.	Z	P> z	[0.025	0.975]
0	0.1533	0.3327	0.4609	0.6449	-0.4988	0.8055
1	-0.2160	0.1765	-1.2241	0.2209	-0.5620	0.1299
2	0.2169	0.1659	1.3073	0.1911	-0.1083	0.5421
3	0.0139	0.4772	0.0292	0.9767	-0.9213	0.9492
4	0.0462	0.1656	0.2791	0.7801	-0.2783	0.3708
5	0.2329	0.2315	1.0062	0.3143	-0.2208	0.6866
6	-0.0160	0.3377	-0.0473	0.9622	-0.6778	0.6458
7	0.0762	0.1828	0.4167	0.6769	-0.2821	0.4344
8	-0.4205	0.1635	-2.5709	0.0101	-0.7410	-0.0999
9	-0.3363	0.3926	-0.8566	0.3917	-1.1057	0.4332
10	-3.0194	0.2096	-14.4070	0.0000	-3.4301	-2.6086
11	9.3987	0.9747	9.6424	0.0000	7.4883	11.3092
12	-4.3588	0.2996	-14.5491	0.0000	-4.9460	-3.7716
13	0.4692	0.2346	2.0001	0.0455	0.0094	0.9289
14	0.6032	0.4842	1.2457	0.2129	-0.3459	1.5522
15	0.0189	0.1515	0.1247	0.9007	-0.2780	0.3158
16	-2.4042	1.0723	-2.2420	0.0250	-4.5059	-0.3024
17	2.8724	1.1016	2.6076	0.0091	0.7134	5.0314
18	-0.1530	0.1778	-0.8606	0.3894	-0.5014	0.1954
19	-0.1969	0.4298	-0.4580	0.6470	-1.0393	0.6456
20	-0.3206	0.4845	-0.6618	0.5081	-1.2701	0.6289
21	-0.3247	0.4011	-0.8096	0.4182	-1.1108	0.4614
22	-0.0217	1.0182	-0.0213	0.9830	-2.0173	1.9740
23	-0.6514	0.6334	-1.0284	0.3038	-1.8927	0.5900
24	-0.0608	0.1424	-0.4268	0.6695	-0.3398	0.2183
25	1.1338	0.2727	4.1572	0.0000	0.5993	1.6684
26	-0.8403	0.5805	-1.4476	0.1477	-1.9781	0.2974
27	-0.1669	0.1421	-1.1744	0.2402	-0.4454	0.1116
28	-1.5922	0.2597	-6.1319	0.0000	-2.1011	-1.0833
====						

'Sex', 'Fault', 'PolicyType',
 'VehicleCategory', 'VehiclePrice',
 'Days:Policy-Accident',
 'Days:Policy-Claim',
 'AddressChange-Claim',
 'BasePolicy' are predictive
 variables in the model. (*P-value* < 0.05)

Limitations

- The logistic regression model is built on all X-variables.
- However, from the logit table, it is noted that the majority of the variables are not predictive variables based on *P-value* > 0.05.
- Unnecessary variables in the model can increase complexity, resulting in suboptimal performances.
- Suggested solution: Use backward elimination method-removal of variables which are P-value > 0.05 from the model.

Conclusion

- Logistic Regression Model is the best predictive model.
- It has the highest recall score and highest AUC score.
- Hyperparameters tuning makes no significant difference to the model.
- 'Sex', 'Fault', 'PolicyType', 'VehicleCategory', 'VehiclePrice', 'Days:Policy-Accident', 'Days:Policy-Claim', 'AddressChange-Claim', 'BasePolicy' are predictive variables in the model.