Feuille d'exercice n° 22 : Intégration

Exercice 1 () Montrer que la composée de deux fonctions uniformément continues est uniformément continue.

Exercice 2 (\bigcirc) Montrer que $x \mapsto \ln x$ n'est pas uniformément continue sur \mathbb{R}_+^* .

Exercice 3 Montrer que $\sqrt{.}$ est uniformément continue sur \mathbb{R}_{+} .

Exercice 4 () Soit $f: \mathbb{R} \to \mathbb{R}$ uniformément continue telle que $f(n) \underset{\substack{n \to +\infty \\ n \in \mathbb{N}}}{\longrightarrow} +\infty$.

Montrer que $f(x) \underset{x \to +\infty}{\longrightarrow} +\infty$.

Exercice 5 Soit $a, b \in \mathbb{R}$, avec a < b. Soit $f, g \in \mathscr{C}([a, b], \mathbb{R})$, avec g positive ou nulle. Montrer qu'il existe $c \in [a, b]$ tel que $: \int_a^b fg = f(c) \int_a^b g$.

Exercice 6 Soit $f \in \mathcal{C}^0([0,1], \mathbb{R})$ telle que $\int_0^1 f(t) dt = \frac{1}{2}$. Montrer qu'il existe $a \in]0,1[$ telle que f(a) = a.

Exercice 7 Soit f continue de [0,1] dans \mathbb{R} , soit $n \in \mathbb{N}$ tels que $: \forall k \in \{0,...,n\}, \int_0^1 f(u)u^k du = 0$. Montrer que f admet au moins n+1 zéros distincts dans]0,1[.

Exercice 8 Soit $a, b \in \mathbb{R}$, avec a < b. Soit f une fonction continue sur [a; b]. Montrer que

$$\left(\left| \int_a^b f(x) \, \mathrm{d}x \right| = \int_a^b |f(x)| \, \mathrm{d}x \right) \Leftrightarrow [(f \text{ est positive}) \text{ ou } (f \text{ est négative})].$$

Exercice 9 ()

- 1) Démontrer que, pour tout $n \in \mathbb{N}^*$, $\sqrt{2} \leqslant \sqrt{1+x^n} \leqslant \sqrt{1+\left(1+\frac{1}{n}\right)^n}$ sur $\left[1;1+\frac{1}{n}\right]$.
- 2) Étudier la convergence de la suite de terme général $u_n = \int_1^{1+1/n} \sqrt{1+x^n} \, \mathrm{d}x$.

Exercice 10 ($\stackrel{\triangleright}{\triangleright}$) Soit $f:[0,1]\to\mathbb{R}$ une application continue strictement croissante telle que $f(0)=0,\ f(1)=1.$ Étudier la limite de la suite de terme général $\int_0^1 f^n(t) \, \mathrm{d}t.$

Exercice 11 ($(a,b) \in \mathbb{R}^2$ (avec a < b), soit f continue et positive de [a,b] dans \mathbb{R} . Montrer

$$\left(\int_a^b f^n(t) \, \mathrm{d}t\right)^{\frac{1}{n}} \xrightarrow[n \to +\infty]{} \sup \left\{ f(t) \mid t \in [a, b] \right\}$$

Indication: commencer par traiter le cas où f est constante.

Déterminer les limites des expression suivantes lorsque $x \to +\infty$, sans pour autant Exercice 12 calculer les intégrales correspondantes.

$$1) \int_{x}^{2x} \frac{\cos(1/t)}{t} dt$$

$$2) \int_{x}^{2x} \frac{\sin t}{t} \, \mathrm{d}t$$

$$3) \int_{x}^{2x} \frac{\mathrm{e}^{1/t}}{t} \, \mathrm{d}t$$

Exercice 13 Calculer les intégrales suivantes.

1)
$$\int_0^1 (e^x + \frac{x^2}{2} - \ln(1+x)) dx$$
 3) $\int_0^1 \frac{x-2}{(2x-3)^2} dx$

$$\mathbf{3)} \ \int_0^1 \frac{x-2}{(2x-3)^2} \, \mathrm{d}x$$

$$5) \int_1^2 \frac{x^3}{(1+x^4)^2} \, \mathrm{d}x$$

2)
$$\int_0^1 x(x+2-e)e^x dx$$
 4) $\int_0^{\pi/4} \cos^4 x \sin^2 x dx$

4)
$$\int_0^{\pi/4} \cos^4 x \sin^2 x \, dx$$

6)
$$\int_0^1 \frac{\mathrm{d}x}{(1+x^2)^2}$$

Calculer les intégrales et primitives suivantes.

1)
$$\int_{-\infty}^{\infty} \frac{t}{\sqrt{1-t^2}} e^{\operatorname{Arcsin} t} dt$$

$$4) \int^x \frac{t \, \mathrm{d}t}{\sqrt{t+1}\sqrt{t+3}}$$

$$7) \int_1^2 \frac{\mathrm{d}t}{t\sqrt{1+t^2}}$$

2)
$$\int_0^1 \ln(1+t^2) dt$$

5)
$$\int_0^1 \frac{t}{1+\sqrt{1+t}} \, \mathrm{d}t$$

$$8) \int_1^t \sqrt{\frac{1-\sqrt{t}}{t}} \, \mathrm{d}t$$

3)
$$\int_{1}^{2} \frac{t}{\sqrt{1+t}} dt$$

6)
$$\int_{1}^{5} \frac{\sqrt{t-1}}{t} dt$$

9)
$$\int_0^{\pi/2} t^2 \sin t \, dt$$

Exercice 15 () Déterminer les primitives suivantes.

1)
$$\int_{-\infty}^{x} t \ln t dt$$

3)
$$\int_{-\infty}^{\infty} (t^2 - t + 1)e^{-t} dt$$
 5) $\int_{-\infty}^{\infty} (t + 1)cht dt$

$$5) \int_{-\infty}^{x} (t+1) \operatorname{ch} t \, \mathrm{d}t$$

$$2) \int^x t \operatorname{Arctan} t \, \mathrm{d}t$$

$$4) \int_{-\infty}^{\infty} (t-1)\sin t \, \mathrm{d}t$$

$$6) \int^x t \sin^3 t \, \mathrm{d}t$$

On définit, pour tout $n \in \mathbb{N}$, $I_n = \int_0^1 \frac{x^n}{1+x^n} dx$. Exercice 16

- 1) Après avoir majoré $\frac{x^n}{1+x^n}$ pour $x \in [0,1]$ par une fonction simple, montrer que la suite (I_n) converge
- 2) Montrer que $\int_0^1 \ln(1+x^n) dx \xrightarrow[n \to +\infty]{} 0.$
- 3) À l'aide d'une intégration par parties, donner un équivalent de I_n .

Pour chaque $n \in \mathbb{N}$, on pose $I_n = \int_1^e (\ln x)^n dx$.

- 1) Calculer I_0 et I_1 .
- 2) Établir une relation liant I_n et I_{n+1} .
- 3) En déduire que $\forall n \in \mathbb{N}, \ 0 < I_n < \frac{\mathrm{e}}{n+1}$
- 4) Déterminer la limite puis un équivalent de I_n .
- **5)** Soit $a \in \mathbb{R}$, soit (u_n) la suite réelle définie par $u_0 = a$ et $\forall n \in \mathbb{N}, \ u_{n+1} = e (n+1)u_n$ On suppose que $a \neq I_0$, montrer, en étudiant $D_n = |u_n - I_n|$, que $|u_n| \xrightarrow[n \to +\infty]{} +\infty$.

2

Exercice 18 ($^{\circ}$) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue. Justifier que les fonctions suivantes sont de classe \mathscr{C}^1 sur \mathbb{R} et exprimer leurs dérivées.

1)
$$\varphi: x \mapsto \int_{2x}^{x^2} f(t) dt$$
 2) $\chi: x \mapsto \int_0^x x f(t) dt$ 3) $\psi: x \mapsto \int_0^x f(t+x) dt$

Exercice 19 () On définit la fonction F de \mathbb{R}_+ dans \mathbb{R} par $\forall x \in \mathbb{R}_+$, $F(x) = \int_0^{\pi} \frac{|\sin(tx)|}{t} dt$.

- 1) Justifier proprement la définition de F.
- 2) Montrer que F est dérivable sur \mathbb{R}_+ et calculer sa dérivée.
- 3) Nous étudions à présent le comportement asymptotique de F.

$$\mathbf{a)} \text{ Montrer que } \forall x > 1, \ F(x) = \sum_{k=0}^{\lfloor x \rfloor - 1} \left(\int_{k\pi}^{(k+1)\pi} \frac{|\sin t|}{t} \, \mathrm{d}t \right) + \int_{\pi \lfloor x \rfloor}^{\pi x} \frac{|\sin t|}{t} \, \mathrm{d}t.$$

b) On rappelle que
$$\sum_{k=1}^{n} \frac{1}{k} \underset{n \to +\infty}{\sim} \ln n$$
. En déduire que $F(x) \underset{x \to +\infty}{\sim} \frac{2}{\pi} \ln x$.

Exercice 20 (Soit $f: \mathbb{R}^+ \to \mathbb{R}, \ x \mapsto \int_0^{\pi/2} (\sin t)^x dt$.

- 1) Montrer que f est décroissante.
- 2) Montrer que pour tout $x \in [1, +\infty[, (x+1)f(x+1) = xf(x-1).$
- 3) Soit $\varphi(x)=xf(x)f(x-1)$. Montrer que φ est périodique de période 1.
- 4) Calculer $\varphi(x)$ pour tout $x \in \mathbb{N}^*$
- **5)** En déduire que $f(x) \underset{x \to +\infty}{\sim} \sqrt{\frac{\pi}{2x}}$, puis que $\forall x \in [1, +\infty[, \varphi(x) = \frac{\pi}{2}]$.

Exercice 21 Soit $a, b \in \mathbb{R}_+^*$, avec a < b. Soit f une fonction continue sur \mathbb{R}^+ .

- 1) Montrer que si f(0) = 0 alors $\int_{ax}^{bx} \frac{f(t)}{t} dt \xrightarrow[x \to 0^+]{} 0$.
- 2) Montrer que, dans le cas général, $\int_{ax}^{bx} \frac{f(t)}{t} dt \xrightarrow[x \to 0^+]{} f(0) \ln\left(\frac{b}{a}\right)$

Exercice 22 (\bigcirc \bigcirc \bigcirc En appliquant l'inégalité de Taylor-Lagrange à la fonction $x \mapsto \ln(1+x)$, déterminer la limite de la suite de terme général $u_n = 1 - \frac{1}{2} + \frac{1}{3} + \dots + \frac{(-1)^{n+1}}{n}$.

Exercice 23 () Déterminer les primitives suivantes.

1)
$$\int_{-\infty}^{x} \frac{dt}{it+1}$$
 2)
$$\int_{-\infty}^{x} e^{t} \cos t \, dt$$
 3)
$$\int_{-\infty}^{x} t e^{t} \sin t \, dt$$

Exercice 24 Soit $\lambda \in \mathbb{C} \setminus \mathbb{R}$, notons $a = \text{Re}(\lambda)$ et $b = \text{Im}(\lambda)$. Établir

$$\int^{x} \frac{dt}{t - \lambda} = \ln|x - \lambda| + i \operatorname{Arctan}\left(\frac{x - a}{b}\right).$$

Exercice 25 () Calculer la limite de la suite de terme général

$$S_n = \sum_{k=1}^n \frac{k^2}{8k^3 + n^3}.$$

3

Exercice 26 () Calculer la limite de la suite de terme général

$$S_n = \sum_{k=1}^n \frac{1}{\sqrt{n^2 + 2kn}}.$$

Exercice 27 Donner un équivalent de la suite de terme général

$$S_n = \sum_{k=1}^n \sin\left(\frac{2k\pi}{n}\right).$$

Exercice 28 Calculer la limite puis un équivalent de la suite de terme général

$$P_n = \prod_{k=n+1}^{2n} k^{\frac{1}{k}}.$$

Exercice 29 Calculer la limite de la suite de terme général

$$P_n = \frac{1}{n} \sqrt[n]{\prod_{p=1}^{n} (n+p)}.$$

Exercice 30 Soit $\alpha \in \mathbb{R}$. Déterminer la nature de la série de terme général

$$u_n = \frac{\sqrt{1} + \sqrt{2} + \dots + \sqrt{n}}{n^{\alpha}}.$$

Rappel : c'est la suite $\left(\sum_{n=1}^{N} u_n\right)_{N \in \mathbb{N}}$.

