CS & IT ENGINEERING

TCP & UDP

Lecture No-01

By- Ankit Doyla Sir

TOPICS TO BE COVERED

An IP router with MTU of 1200 byte has received an IP packet of size 4408 byte with an IP Header of 20 byte. What is the total length value of the Last Fragment

1176 4388 ** 3528 3528

If a router receives an IP packet containing 300 data byte and has to forward the packet to the network with maximum transmission unit of 80 byte. Assume that IP header is 10 byte long. Find the total fragment, more Fragment, and offset values.

- A. 4, 1110 (0, 10, 20, 30)
- B. 5, 11110 (0, 8, 17, 26, 35)
- G, 111110 (0, 7.5, 15, 22.5, 30)
- 5, 11110 (0, 8, 16, 24, 32)

A packet has arrived in which the offset value is 100, the value of HLEN is 5 and the value of total length is 100. what is the number of last byte 879

3 fragment

2 fragments

4 fragments

None of the above

DF = 1 -> Datagram can't be Fragmented

Consider two hosts P and Q connected through a router R. The maximum transfer unit (MTU) value of the link between P and R is 1500 bytes, and between R and Q is 820 bytes.

A TCP segment of size 1400 bytes was transferred from P to Q through R, with IP identification value as 0x1234. Assume that the IP header size is 20 bytes. Further, the packet is allowed to be fragmented, i.e., Don't Fragment (DF) flag in the IP header is not set by P. MSQ

Which of the following statements is/are correct?

If the second fragment is lost, P is required to resend the whole TCP segment.

If the second fragment is lost, R will resend the fragment with the IP identification value 0x1234.

Two fragments are created at R and the IP datagram size carrying the second fragment is 620 bytes.

TCP destination port can be determined by analysing only the second fragment.

- Q.23 Consider the following statements about the functionality of an IP
 - based router. Router (an modify the IP Packet. TTL value is Decremented.

 (F) I. A router does not modify the IP packets during forwarding. by one at each
 - (T) II. It is not necessary for a router to implement any routing you protocol.
 - (F) III. A router should reassemble IP fragments if the MTU of the outgoing link is larger than the size of the incoming IP packet.

 Which of the above statements is/are TRUE?

 [GATE 2020]
 - A. I and II only

B. I only

C. II and III only

II only

An IPV₄ datagram is received by an IPv4 Router, Header length (HLEN) field contains value 10 and total length field contains value 2060, MTU of the link is 100 bytes. Calculate total number of IP fragments after fragmentation 36.

HLEN=10
Huder size =
$$10*4 = 40Bytc$$

Total length = 2060
D+H = 2060
D = $2060 - H$
Data = $2060 - 40 = 2020$

An IPv4 datagram has arrived in which the offset value is 800, the HLEN is 8, and the value of total length field is 500 and M bit is 0. What are the numbers of the 1st Byte and the last Byte and the position of the datagram?

A. 6400, 6887 and Last Fragment

Ankat sid PW

- B. 6400, 6867 and First Fragment
- 6400, 6867 and Last Fragment
- D. 801, 1268 and First Fragment

An IP router with MTU of 1200 Bytes has received an IP packet of size 4408 byte with an IP header of 20 byte. The value of the MF, offset, and total length of the 4th fragment

- A. MF = 1, Offset = 404, Total length = 880
- B. MF = 0, Offset = 294, Total length = 1196
- MF = 0, Offset = 441, Total length = 880
- D. MF = 0, Offset = 404, Total length = 1196

Consider three IP Networks A, B and C. Host HA in network each containing 180 bytes of application data to a host Hc in network C. The TCP layer prefixes 20 bytes header to the message.

This passes through an intermediate network B. The maximum packet size, including 20 bytes IP header, in each network is:

A: 1000 bytes

B: 100 bytes

C: 1000 bytes

(2M+2M=4M) Gate-2004

The network A and B arc connected through a 1 Mbps link, while B and C arc connected by a 512 Kbps link (bps = bits per second).

Pw 1

Assuming that the packets are correctly delivered, how many bytes, including headers, are delivered to the IP layer at the destination for one application message, in the best case? Consider only data packets.

Consider three IP networks A, B and C. Host HA in network A sends messages each containing 180 bytes of application data to a host HC in network C. The TCP layer prefixes 20 byte header to the message. This passes through an intermediate network B. The maximum packet size, including 20 byte IP header, in each network, is:

A: 1000 bytes

B: 100 bytes

C: 1000 bytes

The network A and B are connected through a 1 Mbps link, while B and C are connected by a 512 Kbps link (bps = bits per

Network A I Mbps Network B 512 Kbps Network

What is the rate at which application data is transtored to Host He 7 Ignore errors, acknowledgements and other OVenhead 8. M=UseFuldada = 180 total dada = 960

20 Pu

Suppose a TCP message that contains 2048 bytes of user data and 20 byte of TCP Header is passed to IP for delivery across two Networks of the Internet. The first Network uses MTU 1024 Byte and second Network uses MTU 512 byte. Each Network's MTU gives the size of Largest IP datagram that can be carried in a Link Layer Frame. Assume all IP Headers are 20 bytes. How many Fragments are received by destination and what is the offset value of 6th Fragments —

Host a send a TCP packet containing 8880 byte of user data to Host-B over an ethernet LAN. Ethernet LAN frames may carry data upto 1500 byte (i.e. MTU = 1500 Byte) size of TCP Header is 40 byte and size of IP Header is 20 byte. How many total no. of Fragment will be transmitted, what is offset value of last fragment and what is the total length of last fragment

fragment

A. 6, 925, 40 B. 7, 1110, 60

C. 7, 1110, 40

D. 6, 1110, 1480

ME 8920 20
$$\frac{1480}{1480}$$
 $\frac{1480}{1480}$ \frac

16 bits						16 bits	
Source Port						Destination Port	
	-	Е	Se	eque	nce n	umber	
To Palate		A	ckno	wled	gem	ent nur	nber
Reserved	U	A	Р	R	S	F	Window Size or (Advertisement
(6 bits)	R	C	S	S	Y	1	Window)
V 345	G	K	Н	T	N	N	STATE OF THE PARTY
Check Sum						Urgent Pointer	
	977	0-	Op	tions	(0-4	0 bytes	s)
֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	Reserved (6 bits)	Reserved U R G	Source Port Ac Reserved U A (6 bits) R C G K	Source Port Source Port Acknown Reserved U A P (6 bits) R C S G K H Check Sum	Source Port Sequer Acknowled Reserved U A P R (6 bits) R C S S G K H T Check Sum	Source Port Sequence n Acknowledgeme Reserved U A P R S (6 bits) R C S S Y G K H T N Check Sum	Source Port Sequence number Acknowledgement num Reserved U A P R S F (6 bits) R C S S Y I G K H T N N

Source Port Address

This is a 16 – bit field that defines the port number of the application program in the host that is sending the segment.

Destination Port Address

This is a 16 – bit field that defines the port number of the application program in the host that is receiving the segment.

Sequence Number

This is a 32-bit field defines the sequence number of the first data byte.

Acknowledgement Number

This is a 32-bit field defines the sequence number of the next expected byte. If receiver has successfully received byte number x from other party, it returns x+1 as the acknowledgement number.

