27. 复数矩阵和快速傅里叶变换

1. 复数矩阵

i. 求模长

假设一个复列向量为 $z=\begin{bmatrix}z_1&z_2&\cdots&z_n\end{bmatrix}^T$,其中每一个元素都可以表示为: $z_i=a_i+b_ii$ 。由前面两节的内容,我们知道利用简单的内积(z^Tz)是求不出复数向量的模长的。($a_i^2-b_i^2\neq ||z_i||^2$)

但是可以通过左乘复列向量的 共轭转置 来得到模长:

$$z = egin{bmatrix} a_1 + b_1 i \ a_2 + b_2 i \ dots \ a_n + b_n i \end{bmatrix}$$

其对应的共轭矩阵的转置为:

$$ar{z}^T = egin{bmatrix} a_1 - b_1 i & a_2 - b_2 i & \cdots & a_n - b_n i \end{bmatrix}$$

由此可以得到:

$$||z_i||^2 = ar{z}^T z = z^H z = \sum_{i=1}^n (a_i^2 + b_i^2)$$

(H 是一种记号,来自于艾尔米特的首字母)

ii. 其余一切性质

既然像第 26 节所讲的那样: 艾尔米特矩阵也拥有 n 个实特征值以及 n 个两两正交的特征向量,那么这些性质也可以表示为:

$$A^H = A$$

对于两两正交的向量 (q_1,q_2,\cdots,q_n) , 有:

$$q_i^H q_j = egin{cases} 0 & if \ i
eq j \ 1 & if \ i = j \end{cases}$$

两两正交 是以下结论的源头:

$$Q^HQ=I,\quad (Q=igl[q_1,q_2,\cdots,q_nigr])$$

因此艾尔米特矩阵可以被分解为:

$$A = Q^{-1}\Lambda Q = Q^H\Lambda Q$$

2. 傅里叶变换

i. 傅里叶矩阵

在傅里叶矩阵中,不使用首行序号为1的约定,首行序号为0。

$$F_n = egin{bmatrix} 1 & 1 & 1 & \cdots & 1 \ 1 & \omega & \omega^2 & \cdots & \omega^{(n-1)} \ dots & dots & \ddots & dots \ dots & dots & \ddots & dots \ 1 & \omega^{(n-1)} & \cdots & \cdots & \omega^{(n-1)^2} \end{bmatrix}$$

这个矩阵是通过对称阵性质得出的。

对于矩阵中元素: $(F_n)_{ij} = \omega^{ij}$ 。

矩阵中的 ω 不是一般的常数,有其特定的取值: $\omega_n^n=1$ 在复数域中:

$$\omega_n = e^{\displaystyle rac{2\pi i}{n}} = cos(rac{2\pi}{n}) + isin(rac{2\pi}{n})$$

(至于为什么 $\omega^n=1$ 在这个取值下成立,因为: $e^{\pi i}+1=0$ 这个谁都知道的式子,所以自然有: $\omega^n_n=e^{2\pi i}=1$) (像图中,就取了 $\frac{\pi}{4}$, $\omega_4=e^{\frac{\pi i}{4}}$,n=8)

如果不信,可以算一步来求证一下:

$$(e^{\frac{2\pi i}{n}})(e^{-\frac{2\pi i}{n}}) = (\cos(\frac{2\pi}{n}) + i\sin(\frac{2\pi}{n}))(\cos(\frac{2\pi}{n}) - i\sin(\frac{2\pi}{n}))$$
原式 = $\cos^2(\frac{2\pi}{n}) + \sin^2(\frac{2\pi}{n}) = 1$

(验证了一下原地 tp)

$$(e^{\frac{2\pi i}{n}})(e^{\frac{2\pi i}{n}}) = (\cos(\frac{2\pi}{n}) + i\sin(\frac{2\pi}{n}))(\cos(\frac{2\pi}{n}) + i\sin(\frac{2\pi}{n}))$$
原式 = $\cos^2(\frac{2\pi}{n}) - \sin^2(\frac{2\pi}{n}) + 2i\sin(\frac{2\pi}{n})\cos(\frac{2\pi}{n}) = \cos(\frac{4\pi}{n}) + i\sin(\frac{4\pi}{n})$

(这个是走了一步)

只要我们不停下脚步, 道路就会继续延伸, 直到再次回到起点:

(可以看到乘了一圈又乘回来了)

比较特别的, 我们关注 n=4,

$$\omega_4^4=1$$

解得: $\omega_4 = 1, i, -1, -i$ 。

对应的傅里叶矩阵为:

$$F_4 = egin{bmatrix} 1 & 1 & 1 & 1 \ 1 & i & -1 & -i \ 1 & -1 & 1 & -1 \ 1 & -i & -1 & i \end{bmatrix}$$

ii. 算法探索

无论是 4 阶的还是 n 阶的,傅里叶矩阵都是正交矩阵。

如果不相信的话,就应该对傅里叶矩阵求逆,比如上面的 F_4 ,其对应逆矩阵应该是:

$$F_4^{-1} = rac{1}{2} egin{bmatrix} 1 & 1 & 1 & 1 \ 1 & -i & -1 & i \ 1 & -1 & 1 & -1 \ 1 & i & -1 & -i \end{bmatrix}$$

(前面有系数的原因是:可以看到列向量模长不为 1) 但是也还能得出:

$$2F_4^{-1} = F_4^H$$

根据辐角和 ω (可以看成角速度来想)之间的关系,被分割的一份辐角越大, ω 越小。由计算 ω 的公式,可得:

$$(\omega_k)rac{k}{m}=\omega_m$$

比如 64 阶傅里叶矩阵和 32 阶傅里叶矩阵:

$$(\omega_{64})^2=\omega_{32}$$

但是,64 阶矩阵有64 行64 列,32 阶矩阵只有32 行32 列。 不能说把64 阶矩阵中的 ω 直接替换就完事儿了,需要进行变换:

$$\left[egin{array}{c} F_{64} \end{array}
ight] = \left[egin{array}{c} \left[F_{32} & O \ O & F_{32} \end{array}
ight] \left[egin{array}{c} \left[\end{array}
ight]
ight]$$

如果直接计算 F_{64} ,总共需要计算 64^2 个元素,但是转换过后,在知道变换矩阵的前提下,计算 2 个 F_{32} 只需要 2×32^2 个元素。

(当然,傅里叶变换和快速傅里叶变换我并没有任何了解。如果曾经学习过,那肯定换一个角度理解可以瞬间悟出。但可惜了。下面只是复述老爷子的话了。)

对于右边,注意要生成 F_{64} ,那也就是需要将 2 个 F_{32} 进行重新排列,奇偶要分开,再重新组合在一起:

不一定是这样的阶数,但意思到了就行。

左侧矩阵比较特别:

左侧
$$= \begin{bmatrix} I & D \\ I & -D \end{bmatrix}$$
 ,其中 $D = \begin{bmatrix} 1 & & & \\ & \omega & & \\ & & \ddots & \\ & & & \omega^n \end{bmatrix}$

以此类推,既然可以把64维矩阵降到32维矩阵,那么就可以继续降阶,直到把矩阵降到2维甚至1维。

以 64 维矩阵为例,需要计算的元素个数是:

$$a_{n+1} = 2a_n + 2^n, a_n = 1$$

利用初中就学过的数列知识,两边同乘 $\frac{1}{2^{n+1}}$ 就可以转化为等差数列计算:

$$a_n=2^{n-1}n$$

$$2(2(2(2(2(2(1)+2)+4)+8)+16)+32=192, (n=7)$$

所以时间复杂度从 $n^2 \rightarrow nlgn$ 。