VIDYAVARDHAKA COLLEGE OF ENGINEERING

GOKULAM III STAGE, MYSURU-570 002

Accredited by NAAC with A 'Grade', Autonomous institution affiliated to

Visvesvaraya Technological University, Belagavi

Subject: Research Methodology & Intellectual Property Subject Code: BRIPK608

"Latex Document"

BACHELOR OF ENGINEERING
In
INFORMATION SCIENCE & ENGINEERING
By

Anusha Ponnamma KS [4VV22IS009]

Faculty:

Prof. Chandini S B Associate professor, ISE Department

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING Accredited by NBA, New Delhi 2024-25

Recurrent Neural Networks (RNN)

Anusha Ponnamma K S

OVERVIEW

Recurrent Neural Networks (RNNs) are designed for sequential data processing, enabling learning from previous states. Unlike feedforward neural networks, RNNs maintain an internal memory.

ARCHITECTURE

For each timestep t, activation $a^{< t>}$ and output $y^{< t>}$ are computed as:

$$a < t > = g_1(W_{aa}a < t-1 > + W_{ax}x < t > + b_a)$$

$$y < t > = g_2(W_{ya}a < t > + b_y)$$

where:

- W_{ax} , W_{aa} , W_{ya} , b_a , b_y are shared weights and biases.
- g_{1} , g_{2} are activation functions.

ADVANTAGES AND DRAWBACKS

- Advantages:
 - Process sequences of any length.
 - Share weights across timesteps.

Figure 1: Basic RNN Architecture

Figure 2: Different Variants of RNNs

- Maintain context through time dependencies.

• Drawbacks:

- High computational cost.
- Struggles with long-term dependencies.
- Cannot directly consider future inputs.

Types of RNNs

- One-to-One: Standard feedforward network.
- One-to-Many: Music generation.
- Many-to-One: Sentiment classification.
- Many-to-Many (Equal Length): Named entity recognition.
- Many-to-Many (Different Length): Machine translation.

LOSS FUNCTION

The total loss L across all time steps is:

$$L(y,y^{\hat{}}) = \underset{t=1}{\overset{T_y}{\times}} L(y^{\hat{}} \stackrel{< t>}{\to} y^{< t>})$$

BACKPROPAGATION THROUGH TIME (BPTT)

Gradient computation at timestep *T*:

$$\frac{\partial \mathcal{L}^{(T)}}{\partial W} = \sum_{t=1}^{T} \left. \frac{\partial \mathcal{L}^{(T)}}{\partial W} \right|_{(t)}$$

Figure 3: Illustration of Backpropagation Through Time (BPTT)

Figure 4: Vanishing and Exploding Gradients in RNNs

HANDLING LONG-TERM DEPENDENCIES

- Vanishing Gradient: Gradients diminish exponentially, making learning difficult.
- Exploding Gradient: Gradients grow exponentially, causing instability.

COMMON ACTIVATION FUNCTIONS

• Sigmoid: $g(z) = \frac{1}{1+e^{-z}}$

 $_{\bullet}$ Tanh: $g(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$

Figure 5: Comparison of Common Activation Functions

• **ReLU**: g(z) = max(0,z)

CNN vs RNN

Feature	CNN (Convolutional Neural Network)	RNN (Recurrent Neural Network)
Input Type	Grid-like data (e.g., images)	Sequential data (e.g., text, time series)
Architecture	Convolutional layers with filters	Loops with memory through hidden states
Data Processing	Processes entire input spatially in parallel	Processes input step-by-step over time
Memory of Past Inputs	No memory of previous inputs	Maintains memory of previous inputs via hidden state
Parallelism	High parallelism possible during training	Limited parallelism due to sequential dependencies
Parameter Sharing	Shared across space (filters)	Shared across time (weights)
Common Use Cases	Image classification, object detection	Language modeling, speech recognition, sequence prediction

Table 1: Comparison of CNN and RNN Architectures

REFERENCES

• Stanford CS 230 Recurrent Neural Networks Cheatsheet: https://stanford.edu/shervine/teaching/cs230/cheatsheet-recurrent-neural-networks