

Vector Valued Functions & Space Curves

Vector Calculus (MATH-243)
Instructor: Dr. Naila Amir

A curve C in three-dimensions represents by a vector-valued function $\mathbf{r(t)}$, where sample values t=-1, t=0, t=1, and t=2 are arbitrarily plotted.

13

Vectors And The Geometry Of Space

Book: Thomas' Calculus Early Transcendentals (14th Edition) By George B. Thomas, Jr.,

Joel Hass, Christopher Heil, Maurice D. Weir.

Chapter: 13, Section: 13.1

Book: Calculus Early Transcendentals (6th Edition) By James Stewart.

Chapter: 13, Section: 13.1

Vector Function

- In general, a function is a rule that assigns to each element in the domain an element in the range.
- A **vector-valued function**, or **vector function**, is simply a function whose:
 - Domain is a set of real numbers.
 - Range is a set of vectors.
- We are most interested in vector functions r whose values are three-dimensional (3-D) vectors.
- This means that, for every number t in the domain of ${\bf r}$, there is a unique vector in V_3 denoted by ${\bf r}(t)$.

Component Functions

If f(t), g(t), and h(t) are the components of the vector $\mathbf{r}(t)$, then f, g, and h which are real-valued functions, are called the component functions of \mathbf{r} . We can write:

$$\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}.$$

We usually use the letter t to denote the independent variable because it represents time in most applications of vector functions.

lf

$$\mathbf{r}(t) = \langle t^3, \ln(3-t), \sqrt{t} \rangle$$

then the component functions are:

$$f(t) = t^3$$
, $g(t) = \ln(3 - t)$, $h(t) = \sqrt{t}$.

By our usual convention, the domain of \mathbf{r} consists of all values of t for which the expression for $\mathbf{r}(t)$ is defined. The expressions t^3 , $\ln(3-t)$, and \sqrt{t} are all defined when 3-t>0 and $t\geq 0$. Therefore, the domain of \mathbf{r} is the interval [0,3).

Limit of a Vector Function

The limit of a vector function \mathbf{r} is defined by taking the limits of its component functions as follows:

Definition:

If
$$\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$$
, then

$$\lim_{t \to a} \mathbf{r}(t) = \langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \rangle$$

provided the limits of the component functions exist.

Note: Limits of vector functions obey the same rules as limits of real-valued functions.

Find $\lim_{t\to 0} \mathbf{r}(t)$, where

$$\mathbf{r}(t) = (1+t^3)\mathbf{i} + te^{-t}\mathbf{j} + \frac{\sin t}{t}\mathbf{k}.$$

$\lim_{t\to0} (1+t^3) = 1$ $t\to0$ $\lim_{t\to0} (te^{-t}) = 0$ $t\to0$ $\lim_{t\to0} (\frac{\sin t}{t}) = 1$

Solution:

We know that: $\lim_{t\to a} \mathbf{r}(t) = \langle \lim_{t\to a} f(t), \lim_{t\to a} g(t), \lim_{t\to a} h(t) \rangle$. Thus,

$$\lim_{t\to 0} \mathbf{r}(t) = \left[\lim_{t\to 0} (1+t^3)\right] \mathbf{i} + \left[\lim_{t\to 0} (te^{-t})\right] \mathbf{j} + \left[\lim_{t\to 0} \frac{\sin t}{t}\right] \mathbf{k}.$$

$$\Rightarrow \lim_{t\to 0} \mathbf{r}(t) = \mathbf{i} + \mathbf{k}. = \langle 4, 0, 4 \rangle$$

Continuity Criteria: A ftn f: R _ R vi continuous at a spoint "a", in:

(i) f(a) is defined,

(ii) lim f(x) exists,

(iii) $\lim_{\alpha \to 0} f(\alpha) = f(\alpha)$

2(t)= $\langle 1+t^2g te^{-t}g \frac{dit}{t} \rangle$ $\stackrel{?}{\gtrsim}(0)=\langle foo), g(o), h(o) \rangle$ $\Rightarrow f(o)$ is defined $\Rightarrow g(o)$ is defined $\Rightarrow h(o)$ is not defined $\Rightarrow \stackrel{?}{\gtrsim}(t)$ is not continuous at t=0.

Continuous Vector Functions

A vector function $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$ is **continuous** at a point a if:

$$\lim_{t\to a}\mathbf{r}\left(t\right)=\mathbf{r}(a).$$

In view of above definition, we see that $\mathbf{r}(t)$ is continuous at a if and only if its component functions f(t), g(t), and h(t) are continuous at a, i.e.,

$$\lim_{t \to a} f(t) = f(a),$$

$$\lim_{t \to a} g(t) = g(a),$$

$$\lim_{t \to a} h(t) = h(a).$$

The function is **continuous** if it is continuous at every point in its domain.

Continuous Vector Functions & Space Curves

There is a close connection between continuous vector functions and space curves.

Suppose that f, g, and h are continuous real-valued functions on an interval I. Then, the set C of all points (x, y, z) in space, where:

$$x = f(t); y = g(t); z = h(t)$$
 (*)

and t varies throughout the interval I is called a **space curve**. Equations (*) are called **parametric equations** of C, and "t" is called a **parameter**. We can think of C as being traced out by a moving particle whose position at time t is:

Space Curves

Let us consider the vector function $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$, then $\mathbf{r}(t)$ is the position vector of the point P(f(t), g(t), h(t)) on C. Thus, any continuous vector function \mathbf{r} defines a space curve C that is traced out by the tip of the moving vector $\mathbf{r}(t)$.

Describe the curve defined by the vector function:

$$\mathbf{r}(t) = \langle 1 + t, 2 + 5t, -1 + 6t \rangle.$$

Solution:

The corresponding parametric equations are:

$$x = 1 + t$$
; $y = 2 + 5t$; $z = -1 + 6t$

We recognize these as parametric equations of a line passing through the point (1, 2, -1) and parallel to the vector (1, 5, 6). Alternatively, we could observe that the function can be written as:

$$\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$$

where: $\mathbf{r}_0 = \langle 1, 2, -1 \rangle$ and $\mathbf{v} = \langle 1, 5, 6 \rangle$. This is the vector equation of a line.

Plane Curves

Plane curves can also be represented in vector notation. For instance, the curve given by the parametric equations:

$$x = t^2 - 2t$$
 and $y = t + 1$,

could also be described by the vector equation:

$$\mathbf{r}(t) = \langle t^2 - 2t, t + 1 \rangle = (t^2 - 2t)\mathbf{i} + (t + 1)\mathbf{j},$$

where $\mathbf{i} = \langle 1, 0 \rangle$ and $\mathbf{j} = \langle 0, 1 \rangle$.

Sketch the curve whose vector equation is:

$$\mathbf{r}(t) = \cos t \,\mathbf{i} \, + \sin t \,\mathbf{j} \, + \, t \,\mathbf{k}.$$

Solution:

The parametric equations for this curve are:

$$x = \cos t$$
; $y = \sin t$; $z = t$.

Since $x^2 + y^2 = \cos^2 t + \sin^2 t = 1$, the curve traced by $\bf r$ must lie on the circular cylinder given by:

$$x^2 + y^2 = 1$$
.

Since z=t, the curve spirals upward around the circular cylinder as t increases. Each time t increases by 2π , the curve completes one turn counterclockwise around the

curve completes one turn counterclockwise around the circular cylinder. The curve is called a **helix**. The domain is the largest set of points t for which all three equations are defined, i.e., $t \in (-\infty, \infty)$.

Equation of a Line Segment

In general, we know that the vector equation of a line through the (tip of the) vector \mathbf{r}_0 in the direction of a vector \mathbf{v} is:

$$\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$$
.

If the line also passes through (the tip of) ${f r}_1$, then we can take ${f v}={f r}_1-{f r}_0$ and the vector equation takes the form:

$$\mathbf{r} = \mathbf{r}_0 + t(\mathbf{r}_1 - \mathbf{r}_0) = (1 - t)\mathbf{r}_0 + t\mathbf{r}_1.$$

The line segment from \mathbf{r}_0 to \mathbf{r}_1 is given by the parameter interval $0 \le t \le 1$.

Find a vector equation and parametric equations for the line segment that joins the point P(1, 3, -2) to the point Q(2, -1, 3).

Solution:

We know that the vector equation for the line segment is given as:

$$\mathbf{r}(t) = (1 - t)\mathbf{r}_0 + t\mathbf{r}_1; \quad 0 \le t \le 1.$$

Using $\mathbf{r}_0 = \langle 1, 3, -2 \rangle$ and $\mathbf{r}_1 = \langle 2, -1, 3 \rangle$ in above equation we get:

$$\mathbf{r}(t) = (1-t)\langle 1, 3, -2 \rangle + t\langle 2, -1, 3 \rangle = \langle 1+t, 3-4t, -2+5t \rangle; \quad 0 \le t \le 1.$$

The corresponding parametric equations are:

$$x = 1 + t$$
; $y = 3 - 4t$; $z = -2 + 5t$,

where $0 \le t \le 1$.

Find a vector function that represents the curve of intersection of the circular cylinder $x^2 + y^2 = 1$ and the plane y + z = 2.

Solution:

Figure (a) shows how the plane and the cylinder intersect. Figure (b) shows the curve of intersection C, which is an ellipse.

Solution:

The projection of C onto the xy —plane is the circle:

$$x^2 + y^2 = 1; \quad z = 0.$$

So, we can write:

$$x = \cos t$$
, $y = \sin t$,

where $0 \le t \le 2\pi$. From the equation of the plane, we have:

$$z = 2 - y = 2 - \sin t.$$

So, we can write parametric equations for C as:

$$x = \cos t$$
; $y = \sin t$; $z = 2 - \sin t$,

where $0 \le t \le 2\pi$. The corresponding vector equation is:

$$\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + (2 - \sin t)\mathbf{k},$$

where $0 \le t \le 2\pi$. This equation is called a parametrization of the curve C. The arrows indicate the direction in which C is traced as the parameter t increases.

Practice Questions

Book: Calculus Early Transcendentals (6th Edition) By James Stewart.

Chapter: 13

Exercise-13.1: Q – 1 to 28.

Derivatives of Vector Functions

13

Vectors And The Geometry Of Space

Book: Thomas' Calculus Early Transcendentals (14th Edition) By George B. Thomas, Jr.,

Joel Hass, Christopher Heil, Maurice D. Weir.

Chapter: 13, Section: 13.1

Book: Calculus Early Transcendentals (6th Edition) By James Stewart.

Chapter: 13, Section: 13.2

Derivatives

The derivative of a vector function $\mathbf{r}(t)$ is defined in much the same way as for real-valued functions.

Definition:

If
$$\mathbf{r}(t)$$
 is a vector function, then derivative $\mathbf{r}'(t)$ is given as:
$$\frac{d\mathbf{r}}{dt} = \mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}, \quad \text{fix} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

provided this limit exists.

Derivative Geometric Significance

The geometric significance of this definition is shown as follows. If the points P and Q have position vectors $\mathbf{r}(t)$ and $\mathbf{r}(t+h)$, then \overline{PQ} represents the vector:

$$\mathbf{r}(t + h) - \mathbf{r}(t)$$
.

This can therefore be regarded as a secant vector. If h > 0, then the scalar multiple $(1/h)(\mathbf{r}(t+h)-\mathbf{r}(t))$ has the same direction as $\mathbf{r}(t+h)-\mathbf{r}(t)$. As $h \to 0$, it appears that this vector approaches a vector that lies on the tangent line.

$$\frac{7}{2}(t)$$
 —) position vector of the particle at time to $\frac{7}{2}(t)$ —) velocity of the particle at to $\frac{7}{2}(t)$ — $\frac{7}{2}(t)$ = $\frac{7}{2}(t)$ = $\frac{7}{2}(t+h)$ — $\frac{7}{2}(t)$ $\frac{7}{2}(t+h)$ — $\frac{7}{2}(t+$

Derivative Geometric Significance

For this reason, the vector: $\mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}$ is called the **tangent vector** to the curve defined by $\mathbf{r}(t)$ at the point P, provided:

- $\mathbf{r}'(t)$ exits
- $\mathbf{r}'(t) \neq 0$.

The **tangent line** to C at P is defined to be the line through P parallel to the tangent

vector $\mathbf{r}'(t)$. The **unit tangent vector** is defined as:

$$T(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}.$$

The tangent vector