SI231 - Matrix Computations, 2021 Fall

Homework Set #1

Prof. Yue Qiu

Acknowledgements:

- 1) Deadline: 2021-10-12 23:59:59
- 2) Late Policy details can be found on piazza.
- 3) Submit your homework in **Homework 1** on **Gradscope**. Entry Code: **2RY68R**. Make sure that you have correctly select pages for each problem. If not, you probably will get 0 point.
- 4) No handwritten homework is accepted. You need to write LATEX. (If you have difficulties in using LATEX, you are allowed to use **MS Word or Pages** for the first and the second homework to accommodate yourself.)
- 5) Use the given template and give your solution in English. Solution in Chinese is not allowed.
- 6) Your homework should be uploaded in the PDF format, and the naming format of the file is not specified.

I. VECTOR SPACE AND SUBSPACE

Problem 1. (6 points \times 3)

- 1) Let $\mathcal X$ and $\mathcal Y$ be two subspaces of a vector space $\mathcal V$:
 - a) Prove that the intersection $\mathcal{X} \cap \mathcal{Y}$ is also a subspace of \mathcal{V} .
 - b) Show that the union of $\mathcal{X} \cup \mathcal{Y}$ need not to be a subspace of \mathcal{V} .
- 2) Prove or give a counterexample:
 - a) If \mathcal{U}_1 , \mathcal{U}_2 , and \mathcal{W} are subspaces of \mathcal{V} such that $\mathcal{U}_1 + \mathcal{W} = \mathcal{U}_2 + \mathcal{W}$, then $\mathcal{U}_1 = \mathcal{U}_2$.
 - b) If \mathcal{U}_1 , \mathcal{U}_2 , and \mathcal{W} are subspaces of \mathcal{V} such that $\mathcal{V} = \mathcal{U}_1 \oplus \mathcal{W}$ and $\mathcal{V} = \mathcal{U}_2 \oplus \mathcal{W}$, then $\mathcal{U}_1 = \mathcal{U}_2$.
- 3) Let $\mathbf{U} = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_r\}$ and $\mathbf{V} = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_r, \mathbf{v}\}$ be two sets of vectors from the same vector space, prove that $span(\mathbf{U}) = span(\mathbf{V})$ if and only if $\mathbf{v} \in span(\mathbf{U})$.

Solution:

¹Let S_1 and S_2 be two subspaces of \mathbb{R}^n , if $S_1 \cap S_2 = \{0\}$ and $S_1 + S_2 = \mathbb{R}^n$, we define the **direct sum** $\mathbb{R}^n = S_1 \oplus S_2$.

1

	uey.vey - utvey
	. Cutv e KNY
Ø ∀oeF,	LEXNY, VEX : OVEX
	veg:-avey
	." Ove XNY Q.E.D.
6). Counter ex	ample: $V = R^2, \chi = \{(\alpha, \alpha \alpha \in R\}, \mathcal{Y} = \{(\alpha, b) b \in R\}$
	X, Yare subspace of V
	but let u=crojex, v=conjey. u,vexvy, u+v=crij&xvy Q.E.D.
2)(a) Counter es	ample: $V=W=IR^2$, $U_1=IR^2$, $U_2=\{Co.4 a.6 R\}$
	U+W=U2+W=122, but U+U2
(b) bunter exc	mple: $V= R^2,W^- $ (Ca,O) α eir $U_0=\{(0,b) $ beir $U_0=\{(0,2c) $ ceir\
	W+U=V, WA U=501 => V=UOW
	W+U2=V, W/U2=101 =>V=U2@W
	hut U+U2 eg (01)EU, (01)EU2 Q.E.D.
) "=>" -: span.{U{	= spansvi
.: VE Spar	ful-spon ful
E" V6 spons	/s , let v= Fdilli . die F.ie[r]
Sihie US	:V
: Spanslus	⊆span{v1 0
V we span	YVI. W= \(\frac{1}{2}\) BiW+ βraVi , βi∈Fii€[ra]
	= Espilat Epardilli
	= E (Git findi)lui e span SV)
.: spansvs:	= coanful (2)

II. BASIS, DIMENSION AND RANK

Problem 1. (5 points \times 2) For matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, we have $\mathcal{V} = \{\mathbf{X} \in \mathbb{R}^{n \times n} | \mathbf{A}\mathbf{X} = \mathbf{X}\mathbf{A} \}$,

1) Prove that V is a linear subspace of the linear space $\mathbb{R}^{n \times n}$;

2) If
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}$$
, please give a basis and the dimension of \mathcal{V} .

II I. (1) YX, YEV={XEIR M AX=XA}		
AX=XA, AY=YA		
A(X+Y)=(X+Y)A		
··-XtYev		
2° YXEV, CEF, ACCX)= CAX=CXIA		
:- cXEV		
1°2°=7V is a linear subspace of V		
(2). $V = \{X \in \mathbb{R}^{2\times 2} (\frac{1}{2}, \frac{1}{4})X = X (\frac{1}{2}, \frac{1}{4}) \}$		
let X=(ab), (21)(ab)=(ab)(11)		
∫ α+C= α+2b => C=2b		
$\begin{array}{c} a+c=a+2b\Rightarrow c=b\\ b+d=a-b\\ 2a-c=c+2d\Rightarrow a=c+d\\ 2b-d=c-d\Rightarrow 2b=d \end{array}$	=7 a=2c=2d=4b	. · _ X= (46 b 26 16)
2a-C = C+2d => a=C+d		
2b-d= C-d => 2b=d		
$:=B=\{\begin{pmatrix}4\\22\end{pmatrix}\}$ is a basis of V , $dimV=1$		

Problem 2. (5 points) The linear space S contains the following polynomials: $f_1(t) = 1 + 4t - 2t^2 + t^3$, $f_2(t) = -1 + 9t - 3t^2 + 2t^3$, $f_3(t) = -5 + 6t + t^3$, $f_4(t) = 5 + 7t - 5t^2 + 2t^3$. Please give the rank of the quadruple $(f_1(t), f_2(t), f_3(t), f_4(t))$ and its maximal linearly independent set.

Problem 3. (5 points \times 2) For any matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\mathcal{S}_1 = \{\mathbf{A} \in \mathbb{R}^{n \times n} | \mathbf{A}^T = \mathbf{A}\}$ and $\mathcal{S}_2 = \{\mathbf{A} \in \mathbb{R}^{n \times n} | \mathbf{A}^T = -\mathbf{A}\}$ are two subspaces of $\mathbb{R}^{n \times n}$,

- 1) Prove that $\mathbb{R}^{n \times n} = \mathcal{S}_1 \oplus \mathcal{S}_2$.
- 2) If n = 3, please give a basis of S_1 and the dimension of S_2 .

3. (1) VAEIR MAN, A= = (A+AT) + = (A-AT)
Let U=Z(A+AT), V=Z(A-AT), A=U+V
UT===(A+AT)T===CAT+A)=U :-UES1
V==2(A-AT=2(A-A)=-V:-VES2
. '- A=U4V E SitS
.: IR nan E SttS2
-: Sits SIR ^{ron}
.:- IR 1 = Sits
2° Y AE SINS : AT-A =-A
A= 0 , S1/NS2501
.'. 1R ^{nxa} =51@52
Q1: A ^T =A
Bassof Si: B= { \(\begin{array}{c} 100 \\ 000 \
-: 9= clim(12 ⁸⁸³)= clim(5,10 5)= clim S1+ clim S2= 6+ clim S2
.: dim 52 = 3

III. FOUR FUNDAMENTAL SUBSPACES

Problem 1. (2 points + 5 points) For an $n \times m$ real matrix **A**.

- 1) Determine the relationship of $dim(\mathcal{R}(\mathbf{A}))$, $dim(\mathcal{N}(\mathbf{A}))$, and $rank(\mathbf{A})$.
- 2) Prove that $\mathcal{N}(\mathbf{A}) \oplus \mathcal{R}(\mathbf{A}^T) = \mathbb{R}^m$.

Problem 2. (3 points + 5 points \times 3) Given matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times m}$ and $rank([\mathbf{A}, \mathbf{B}]) = n$.

- 1) Determine the relationship between $dim(\mathcal{N}(\mathbf{A}^T))$ and $dim(\mathcal{R}(\mathbf{B}))$.
- 2) If $\mathbf{A}^T \mathbf{B} = 0$, determine the relationship between $\mathcal{N}(\mathbf{A}^T)$ and $\mathcal{R}(\mathbf{B})$.
- 3) Please determine the rank of $\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix}$.
- 4) Please determine the **Supremacy** and **Infimum** of the rank of $\begin{pmatrix} \mathbf{A} \\ \mathbf{B} \end{pmatrix}$ using m or n. (All Matrix **A**'s, and **B**'s that satisfy the mentioned condition)

Proof: -: R([AB]) = R(A)+R(B)	
: rank[A,B]=n => dim(R(A)+D(B))=n	
n=dim(MAT)+dim(R(AT))=dim(N(AT))+dim($(R(A))=d_{1}m(R(B)+R(B))\leq d_{1}m(R(A))+d_{1}m(R(B))$
: dim(N(AT)) < dim(R(B))	
(2) M(AT)=R(B)	
Proof: Yye R(B), 3Xe/R ^M : Y=BX	
ATU=ATBX=0	
.:- BE NCAT)	
.: RCB)⊆MCAT)	
-: dim(N(AT)) { dim(R(B))	
$MA^{T})=R(B)$	
(3) rank((AO))=n	
ank((ao))=vank(AHvank(B)	
= dim(R(A))+dim(R(B))	
= din(R(d)) + din(Ma ^{T)})	
= 1	
(4) infrank(B) = minsmus, sup rank(B) = n	when mzn, let A=(IO), B=0, then rank([AB]=n&A]B=0
rank (B)=dim(R(BT)+R(BT))	When m <n, a="(eem)," b="(em)," bn,0),="" let="" rank(cbs)="N&AB=0</td" then=""></n,>
= $dim(R(A^T))+dim(R(B^T))-dim(R(A^T))\wedge R(B^T))$: min don(par) \range (par) \ra
= $dm(R(A^{(1)})+dm(MA^{(1)})-dm(R(A^{(1)})\wedge R(B^{(1)})$	when man,: A™B=D⇒Vijj=1:-m: a™bj=0 =>rank(A)=n
	When man, let rank(R(A))=m, rank(R(B)=n-m,

IV. VECTOR NORM AND MATRIX NORM

Problem 1. (5 points \times 3) The Frobenius norm of a $\mathbb{R}^{n \times m}$ matrix **A** defined as the square root of the sum of the absolute squares of its elements,

$$\|\mathbf{A}\|_F \equiv \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2},$$

it also equal to the square root of the matrix trace of A^TA , where A^T is the transpose of A,

$$\|\mathbf{A}\|_F = \sqrt{\mathbf{Tr}(\mathbf{A}^T \mathbf{A})}.$$

1) Show that Frobenius norm is a matrix norm.

Hint: You may use the Cauchy-Schwarz inequality

$$\|\mathbf{A}\mathbf{B}\|_F \le \|\mathbf{A}\|_F \|\mathbf{B}\|_F$$

2) The spectral norm of a matrix A is the largest singular value of A (the square root of the largest eigenvalue of the matrix AA^T ,

$$\|\mathbf{A}\|_2 = \sqrt{\lambda_{max}(\mathbf{A}\mathbf{A}^T)}.$$

Show that $\|{\bf A}\|_2 \le \|{\bf A}\|_F \le \sqrt{n} \|{\bf A}\|_2$

3) Suppose $\mathbf{A} = \mathbf{x}\mathbf{y}^T$, where $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, show that

$$\|\mathbf{A}\|_F^2 = \|\mathbf{x}\|_2^2 \|\mathbf{y}\|_2^2$$

V . (1)	A= (010m) mm
Proof: 11All= J嘉嘉成 20	
All==067 Vij: dij=067 A=0	
2° YCEIR: CAI = C A _F	
Proof: ICAH = JEECaij?	
= c][[2][ati	
= c A _F	
3° YABER POWN: AHBILE E ATETIBILE	
Proof: 11A+B1/2= Tr((A+B)(A+B))	
= TrcATA)+TrcBTB)+2TrcATB,	ı
= A c+1 B c+2==00000000000000000000000000000000000	let a= (a1,, a1m, a1, asm,, anm), b=(b11, b1m, b2, b2m, b2m)
= A _E ² + B _E ² +201 ^T	
< 1/A1/2+1181/2+21/01/21/16/12	it's clear that 11811=1101b, 11811=1161b
=11A11=2+11B11=+211A11=11B11=	
= ([Alle+118]e)2	
: - 118181/F < 1181/F + 1181/F	

(2). A ₂ = sup A ₂
$ \nabla x \in \mathbb{R}^n$: $ Ax _2^2 = \sum_{i=1}^n (a_i^T x)^2 A_i = \begin{pmatrix} a_{iT} \\ \vdots \\ a_{in} \end{pmatrix}$
1 x b=1 (aim) < \(\frac{\infty}{2} \ \lambda _2\ ^2
= 11A11 ²
:- 11A1b = sup Ax1 2 < A1 F
$2^{\circ} \forall x \in \mathbb{R}^{m}$: $ x _{2} = (x) \cdot x = \begin{pmatrix} x_{1} \\ x_{m} \end{pmatrix}, x_{j} \leq 1, j = 1, \dots, m$
$ A _F^2 = \sum_{j=1}^m Ae_j _2^2 e_j = \left(\frac{e_j}{e_j}\right)_j$
< = A ²
$= m A _2^2$
Jm A E A 2
(°2°=> A 至 A E A
(3) A=Xy ^T , X,YelR [^]
A _F = MA _F
$= \left \left \left(\frac{x_1 y_1 - x_1 y_1}{x_1 y_1 - x_1 y_1} \right) \right _{F}^{2}$
スペイン
- N N N N N N N N N N N N N N N N N N N
$= \alpha _{b}^{2} \beta _{b}^{2} Q.E.D.$

V. PROJECTOR AND PROJECTION

Problem 1. (2 points+5 points \times 3) A rotation matrix $\mathbf{R} \in \mathbb{R}^{n \times n}$ is an orthogonal matrix $(\mathbf{R}\mathbf{R}^T = \mathbf{I_n})$.

- 1) According to the above definition, find all rotation matrices in $\mathbb{R}^{2\times 2}$.
- 2) Let \mathbf{R}_1 and \mathbf{R}_2 be the rotation matrices in $\mathbb{R}^{2\times 2}$, if \mathbf{R}_1 is rotation through α_1 and \mathbf{R}_2 is rotation through α_2 . Consider: is $\mathbf{R}_1\mathbf{R}_2$ the rotation matrix. If the answer is "yes", what is the angle of rotation, or else explain why the answer is "no".
- 3) For arbitrarily rotation matrix $\mathbf{R} \in \mathbb{R}^{n \times n}$, if $\mathbf{S} = (\mathbf{R} \mathbf{I_n})(\mathbf{R} + \mathbf{I_n})^{-1}$, show that \mathbf{S} is a skew symmetric matrix ($\mathbf{S}^T = -\mathbf{S}$)
- 4) If $S \in \mathbb{R}^{n \times n}$ is a skew symmetric matrix, show that $R = (I_n S)^{-1}(I_n + S)$ is a rotation matrix.

1 xx R = (cost sixt), DelR 16.5
(2). Yes and d=dital
(3). S= (R-In(RHIn) , RR-In=) R-R
(Rfh)s=R-In
R(S-In)=-In(S+In)
S-In = - R (S+In)
5 ⁷ -In=-(5tIn) ⁷ (B ⁺) ⁷
$S^{7}=-(STM)^{T}RtIn$
$S^{7} = -S^{7}R - R + In$
s ⁷ (IntR)=-RtIn
$S^{T} = -(R-In)(IntR)^{T} = -S \ O.E.D.$
(4) R=(In-S)(Ints)
R7=[(In-S)][(Ints)]
R ^T = (2n-5)(2n+5) ⁻¹
RRT = (In-5) (Ints) (In-5) (Ints)
=(In-s) (In-s2)(Ints) -1
=(2ns) ⁺ (2n-s)(2nts)(2nts) ¹
= In
Risarotatun Q.E.D.

 $^{^2\}mathbf{I_n}$ is the identity matrix of size $n \times n$