数据模型

示例数据

timestamp	cpu_1m_avg	free_mem	temperature	location_id	dev_ty
2017-01-01 01:02:00	80	500MB	72	335	field
2017-01-01 01:02:23	90	400MB	64	335	roof
2017-01-01 01:02:30	120	ОМВ	56	77	roof
2017-01-01 01:03:12	80	500MB	72	335	field
2017-01-01 01:03:35	95	350MB	64	335	roof
2017-01-01 01:03:42	100	100MB	56	77	roof
4)			

窄表模型

- 每个指标作为一个单独的实体类来表示(例:cpu_lm_avg和free_mem表示成两种不同的实体类)
- 指标存储用"时间","值"的键值对来存储
- 将元数据值表示为与该指标/标签集组合相关联的"标签集"

```
1 1. {name: "cpu_1m_avg", device_id: abc123, location_id: 335, dev_type
ield}
2 2. {name: "cpu_1m_avg", device_id: def456, location_id: 335, dev_type
oof}
3 3. {name: "cpu_1m_avg", device_id: ghi789, location_id: 77, dev_type
oof}
              "free_mem", device_id: abc123, location_id: 335, dev_type
4 4. {name:
ield}
5 5. {name:
              "free_mem", device_id: def456, location_id: 335, dev_type
oof}
            "free_mem", device_id: ghi789, location_id: 77, dev_type
6 6. {name:
oof}
7 7. {name: "temperature", device_id: abc123, location_id: 335, dev_type
ield}
8 8. {name: "temperature", device id: def456, location id: 335, dev type
oof}
```

```
9 9. {name: "temperature", device_id: ghi789, location_id: 77, dev_type
oof}
```

优点:如果单独收集每个指标,那么窄表模型就有意义。它允许您通过添加新标记来添加新指标,而无需进行正式的架构更改。

缺点:如果要收集具有相同时间戳的很多度量标准,则窄表模型就不具有高效性,因为它需要为每个度量标准写入时间戳。这最终会导致更高的存储和获取要求。

宽表模型

timestamp	cpu_1m_avg	free_mem	temperature	location_id	dev_ty
2017-01-01 01:02:00	80	500MB	72	335	field
2017-01-01 01:02:23	90	400MB	64	335	roof
2017-01-01 01:02:30	120	ОМВ	56	77	roof
2017-01-01 01:03:12	80	500MB	72	335	field
2017-01-01 01:03:35	95	350MB	64	335	roof
2017-01-01 01:03:42	100	100MB	56	77	roof
4		•			