

Association Rule Mining

Data Mining for Business Intelligence

AGENDA

- Motivating examples and main approach
- Set basics and important metrics
 - Support, confidence and lift
- Apriori property and Apriori algorithm
- Data preparation decisions
- Extension of association rules

SET AND NOTATION

Set is a collection of objects

E.g., set $A = \{3,5\}$ and set $B = \{1,3,5\}$

Elements of a set are the objects belonging to (∈) it.

E.g., $3 \in \{3,5\}$, $3 \in \{1,3,5\}$, $3 \in A$ and $3 \in B$

Set X is a subset of set Y if every element in X belongs to Y, denoted as $X \subseteq Y$.

E.g., $A \subseteq B$ or $\{3,5\} \subseteq \{1,3,5\}$

SET PROPERTIES, UNION AND SIZE

Two properties of set

Uniqueness of elements

E.g., set
$$A = \{3,5\}$$
 and set $B = \{1,3,5\}$

{3,3,5} reduced to A {1,3,3,5} reduced to B

Order of elements

Apriori algorithm uses ordered sets

E.g., $\{3,1,5\} = \{1,3,5\}$

Set union: X U Y includes unique elements of X and Y

E.g.,
$$\{3,5,7\}$$
 U $\{1,3,5\}$ = $\{1,3,5,7\}$

Size of a set

The number of elements in a set.

E.g., size of $\{1,3,5\} = 3$

DEFINITIONS AND FIRST METRIC: SUPPORT

Itemset X: A set of items.

E.g., {eggs, milk}

K-itemset: An itemset of size K.

First Metric: Support support(X) = freq(X)/D

Support (X): The ratio of the # of transactions purchasing X to (\div) the total # of transactions in the DB (also probability (X))

EXAMPLE: SUPPORT

An example in the "single" or "long" file format

TID	CID	ltem	Price	Date
101	201	Computer	1500	1/4/99
101	201	MS Office	300	1/4/99
101	201	MCSE Book	100	1/4/99
102	201	Hard disk	500	1/8/99
102	201	MCSE Book	100	1/8/99
103	202	Computer	1500	1/21/99
103	202	Hard disk	500	1/2199
103	202	MCSE Book	100	1/2199

support ({Computer}) = 2/3 support ({Hard disk}) = 2/3 support ({MS Office}) = 1/3 support ({MCSE Book}) = 3/3 support ({Computer, Hard disk}) = 1/3 support ({Computer, MS Office}) = 1/3 support ({Hard disk, MS Office}) = 0

EXAMPLE: SUPPORT

An example in the "wide" file format

Date	TID	CID	Cor	mputer MS (Office MCSE	Book Hard	disk
1/4/19	99	101	201	1	1	1	0
1/8/19	99	102	201	0	0	1	1
1/21/19	99	103	202	1	0	1	1

support ({Computer}) = 2/3 support ({Hard disk}) = 2/3 support ({MS Office}) = 1/3 support ({MCSE Book}) = 3/3 support ({Computer, Hard disk}) = 1/3 support ({Computer, MS Office}) = 1/3 support ({Hard disk}, MS Office}) = 0

ANOTHER EXAMPLE

An example in the "transaction" or "wide" file format

date	trans	cust id	egg	milk	bread	soda
11/1/2010	1	1	1	1	0	0
11/1/2010	2	2	1	1	1	0
11/1/2010	3	3	0	0	1	0
11/2/2010	4	3	1	0	1	1
11/2/2010	5	4	0	1	1	0

1-itemset

trans id		egg	milk	bread	soda
	1	1	1	0	0
	2	1	1	1	0
	3	0	0	1	0
	4	1	0	1	1
	5	0	1	1	0
Support		0.6	0.6	0.8	0.2

3 out of 5 transactions contain egg or milk

2-itemset

trans id					bread soda
1	0	0	0	0	0
2	1	0	1	0	0
3	0	0	0	0	0
4	1	1	0	0	1
5	0	0	1	0	0
Support	0.4	0.2	0.4	0	0.2

3-itemset								
	milk	milk	bread	bread	egg milk bread soda	Set		
1	0	0	0	0	0			
2	1	0	0	0	0			
3	0	0	0	0	0			
4	0	0	1	0	0			
5	0	0	0	0	0			
Support	0.2	0	0.2	0	0			

1-itemset 2-itemset 3-itemset

															<u> </u>
															egg
											egg	egg	egg	milk	milk
					egg	egg	egg	milk	milk	bread	milk	milk	bread	bread	bread
trans id	egg	milk	bread	soda	milk	bread	soda	bread	soda	soda	bread	soda	soda	soda	soda
1	1	1	0	0	1	0	0	O	0	0	0	O	O	O	0
2	1	1	1	. 0	1	1	0	1	. 0	0	1	. 0	O	O	0
3	0	0	1	0	0	0	0	0	0	0	0	O	0	O	0
4	1	0	1	1	0	1	1	0	0	1	0	O	1	. 0	0
5	0	1	1	. 0	0	0	0	1	. 0	0	0	0	0	0	0
Support	0.6	0.6	0.8	0.2	0.4	0.4	0.2	0.4	0	0.2	0.2	0	0.2	O	0

3 out of 5 transactions contain egg or milk

2ND METRIC - CONFIDENCE

If two itemsets X and Y co-exist in a transaction DB, For association rule (R):

Support (R):

The ratio of the # of transactions purchasing Both X and Y to (\div) the total # of transactions in the DB (also probability (R))

Confidence (R):

The ratio of the support of transactions purchasing both X and Y to (\div) the support of transactions purchasing X only. Hence confidence($X \rightarrow Y$) = support($X \cup Y$) /support(X). (also P(Y|X))

2ND METRIC - CONFIDENCE

If two itemsets X and Y co-exist in a transaction DB, For association rule (R):

Confidence (R):

The ratio of the support of transactions purchasing both X and Y to (\div) the support of transactions purchasing X only. Hence confidence($X \rightarrow Y$) = support($X \cup Y$) /support(X). (also P(Y|X))

Example: Every transaction that has X also has Y.

Assume the support(X) = .6

support(X U Y) = .6

.6/.6 = 1.0

The probability of observing Y given we saw X is 1.0.

2ND METRIC - CONFIDENCE

If two itemsets X and Y co-exist in a transaction DB, For association rule (R):

Confidence (R):

The ratio of the support of transactions purchasing both X and Y to (\div) the support of transactions purchasing X only. Hence confidence($X \rightarrow Y$) = support($X \cup Y$) /support(X). (also P(Y|X))

Example: No transaction that has X also has Y. Assume the support(X) = .6 support(X U Y) = .0 .0/.6 = 0.0

The probability of observing Y given we saw X is 0.

CONFIDENCE FOR ASSOCIATION RULES

	•	
egg -> milk	conf(egg->milk) = supp(egg U milk)/supp(egg)	.4/.6 = .67
milk -> egg	conf(milk->egg) = supp(milk U egg)/supp(milk)	.4/.6 = .67
egg -> bread	conf(egg->bread) = supp(egg U bread)/supp(egg)	.4/.6 = .67
bread -> egg	conf(bread->egg) = supp(bread U egg)/supp(bread)	.4/.8 = .5
egg -> soda	conf(egg->soda) = supp(egg U soda)/supp(egg)	.2/.6 = .33
milk-> bread	conf(milk->bread) = supp(milk U bread)/supp(milk)	.4/.6 = .67
bread -> soda	conf(bread->soda) = supp(bread U soda)/supp(bread)	.2/.8 = .25
egg -> milk, bread	conf(egg->milk,bread) = supp(egg U milk, bread) /supp(egg)	.2/.6 = .33
egg -> bread, soda	conf(egg->bread,soda) = supp(egg U bread,soda)/supp(egg)	.2/.6 = .33

INTERESTINGNESS LEVELS AND PATTERNS

- Minimum Support (S)
 - Large (frequent) itemsets:
 - Support(large itemsets) >= S
- Minimum Confidence (C)
 - Association rule R: X -> Y
 - X U Y is a large itemset
 - Confidence(R) >= C
- S and C: Decided by an analyst and vary by application

THE THIRD METRIC: LIFT

- Lift $(X \rightarrow Y)$ =confidence $(X \rightarrow Y)$ /support(Y)= P(Y|X)/P(Y)= $P(X \cup Y)/P(X)/P(Y)$ = $P(X \cup Y)/[P(X)*P(Y)]$
- Lift is the ratio of the probability of X and Y occurring together to the probability that X and Y occurring independently.
 - If Lift $(X \rightarrow Y)=1$ then X and Y are independent
 - If Lift $(X \rightarrow Y) < 1$, then X and Y are negatively correlated
 - If Lift $(X \rightarrow Y)>1$, then X and Y are positively correlated
- Interesting association rules tend to have lift greater than 1 (or less than 1 in some cases).

LIFT EXAMPLES: A-> B Independence.

Lift $(X \rightarrow Y)$ =confid	lence(X → Y)/support(`	Y)
= P(Y X)/P(Y)=P(X	(UY)/P(X)/P(Y) = P(XU)	J Y)/[P(X)*P(Y)]

Also if A and B are independent P(A and B) = P(A)*P(B)

Lift (A
$$\rightarrow$$
 B)=confidence(A \rightarrow B)/support(B)
= P(A U B)/[P(A)*P(B)]
= .4/.4 = 1.0

LIFT EXAMPLES: A-> B Negative Correlation.

A and B are	A and B are negatively correlated								
Event =>	A	В	A and B						
1	1	1	1						
2	1	1	1						
3	1	1	1						
4		1							
5	1								
6		1							
7		1							
8		1							
9		1							
10	1								
P(Event)	0.5	8.0	0.3						
Lift(A -> B)	P(B A)	P(A B)	P(A)*P(B)						
0.75	0.6	0.375	0.4						

Lift
$$(X \rightarrow Y)$$
=confidence $(X \rightarrow Y)$ /support (Y)

= P(Y|X)/P(Y)=P(X U Y)/P(X)/P(Y) = P(X U Y)/[P(X)*P(Y)]

Also if A and B are independent P(A and B) = P(A)*P(B)

Lift
$$(A \rightarrow B)$$
=confidence $(A \rightarrow B)$ /support (B)
= $P(A \cup B)/[P(A)*P(B)]$

$$=.3/.4 = 0.75$$

LIFT EXAMPLES: A-> B Positive Correlation.

A and B are positively correlated							
Event =>	A	В	A and B				
1	1	1	1				
2	1	1	1				
3	1	1	1				
4	1	1	1				
5							
6							
7		1					
8		1					
9		1					
10	1	1	1				
P(Event)	0.5	0.8	0.5				
Lift(A -> B)	P(B A)	P(A B)	P(A)*P(B)				

1.25

1 0.625

Lift
$$(X \rightarrow Y)$$
=confidence $(X \rightarrow Y)$ /support (Y)

$$= P(Y|X)/P(Y)=P(X U Y)/P(X)/P(Y) = P(X U Y)/[P(X)*P(Y)]$$

Also if A and B are independent P(A and B) = P(A)*P(B)

Lift
$$(A \rightarrow B)$$
=confidence $(A \rightarrow B)$ /support (B)

$$= P(A \cup B)/[P(A)*P(B)]$$

$$=.5/.4 = 1.25$$

