Operating System: Virtual Memory

Alex Chi

Update: April 13, 2020

Contents

1	Bacl	kground	2
2	Virt	ual Memory	2
3	B Demand Paging		2
	3.1	Q&A	2
4	Page	e Management	2
	4.1	Page Table Entry	2
	4.2	Page Replacement Algorithm	3
	4.3	FIFO Page Replacement	3
	4.4	Optimal Page Replacement	3
	4.5	Least Recently Used	3
	4.6	LRU Approximation	3
	4.7	Counting Algorithms	3
	4.8	Demanding Paging	3

1 Background

- not all data need to be loaded into memory
- use virtual memory

2 Virtual Memory

• separation of user logical memory from physical memory

3 Demand Paging

don't bring page into memory until access

3.1 Q&A

- 1. Why less I/O?
 - We just need to load part of the code into memory.
- 2. Is it possible that module for handling page fault isn't in memory?
 - Nope. It will always stay in memory.

4 Page Management

4.1 Page Table Entry

- what does a page table entry look like?
 - example: RISC-V Sv39, physical page + valid, user, write, read, execute, reserved bits
- handle page fault
 - trap
 - OS handle
 - bring page to physical memory
 - reset page table
 - restart instruction

4.2 Page Replacement Algorithm

• use dirty bit

4.3 FIFO Page Replacement

• worst case: 0 1 2 3 0 1 2 3 (with 3 cache)

4.4 Optimal Page Replacement

- replace page that won't be used for longest time
- must know reference string in advance

4.5 Least Recently Used

- use past knowledge rather than future
- replace page that has not been used in most amount of time
- implementation: linked list

4.6 LRU Approximation

- reference bit (do not specify order)
- second-change algorithm

4.7 Counting Algorithms

- least frequently used
- most frequently used

4.8 Demanding Paging

• refer to example in slides