CE30 – Discussion 12

Deflection of Beams

Textbook: 15.1, 15.2, 15.3

Caglar Tamur

Spring 2024

Instructor: Shaofan Li

Announcements

HW12 Problems from the textbook:

13. 26, 15.5, 15.19, 15.26, 15.43, 15.52

MATLAB assignment

See Lecture 32 slides for details

Beam Bending

- In Chapter 12 under pure bending, we had $\frac{1}{\rho} = \frac{R}{E}$
- Internal moment (M) and material properties (EI) can be functions of distance (x)
- Usually, we have the same material and constant cross section, thus

$$\frac{1}{\rho} = \frac{M(x)}{EI}$$

Curvature of beam at point (x)

Deflection of Beams

- Deflection y(x) = Vertical Displacement of Beam
- Example:

Cantilever beam with end load

Beam moves down in the y-direction

y(x) is the deflection at point (x)

Deflection of Beams: Elastic Curve

- We want to find the deflection y(x), given loads and section properties.
- Using the curvature formula and some calculus...

$$\frac{d^2y}{dx^2} = \frac{M(x)}{EI}$$

y(x): Deflection at x

$$\frac{dy}{dx} = \theta$$
: Slope at x

The governing equation of the elastic curve

Elastic Curve

<u>Direct integration of this ODE would give us two integration constants:</u>

Governing ODE:
$$EI \frac{d^2y}{dx^2} = M(x)$$

ntegrate once:
$$EI\frac{dy}{dx} = \int M(x) dx + C_1$$

Integrate once:
$$EI\frac{dy}{dx} = \int M(x) dx + C_1$$

$$EI \theta(x) = \int M(x) dx + C_1$$

Integrate again:
$$EI \ y(x) = \int \int M(x) \ dx dx + C_1 x + C_2$$

Elastic Curve

$$EI y(x) = \int \int M(x) dx dx + C_1 x + C_2$$

- Constants C_1 and C_2 can be found using the *boundary conditions*
- Depends on support conditions:

Example: Cantilever Beam

$$\frac{d^2y}{dx^2} = \frac{M(x)}{EI}$$

$$y(x=L)=\mathbf{0}$$

$$\boldsymbol{\theta}(\boldsymbol{x}=\boldsymbol{L})=\boldsymbol{0}$$

$$y(x) = ?$$

Elastic Curve: Other considerations

• M(x) might have different expression along the length

Between D-B

Problem might be statically indeterminate

Practice – Similar to HW P15.19

For the beam and loading shown, determine the reaction at the roller support.

Method of Superposition

- Deflections/slopes can be computed for each individual load
- We can get their combined effect by the principle of superposition

Method of Superposition

• Deflection/slope formulas are given in **Appendix C** for typical loads and supports.

APPENDIX C Beam Deflections and Slopes

Beam and Loading	Elastic Curve	Maximum Deflection	Slope at End	Equation of Elastic Curve
1 P	$\begin{array}{c c} y \\ \hline \\ O \\ \hline \end{array} \begin{array}{c} L \\ \hline \\ \downarrow y_{\text{max}} \end{array}$	$-\frac{PL^3}{3EI}$	$-rac{PL^2}{2EI}$	$y = \frac{P}{6EI}(x^3 - 3Lx^2)$
2 w	y L x y	$-\frac{wL^4}{8EI}$	$-\frac{wL^3}{6EI}$	$y = -\frac{w}{24EI}(x^4 - 4Lx^3 + 6L^2x^2)$
3 $L \longrightarrow M$	$ \begin{array}{c c} y \\ C \\ \downarrow y_{\text{max}} \end{array} $	$-rac{ML^2}{2EI}$	$-\frac{ML}{EI}$	$y = -\frac{M}{2EI}x^2$

Method of Superposition: Indeterminate

- For indeterminate beams, choose redundant reactions and apply superposition
- Consider the indeterminate beam:

• The reaction at (B) is chosen as redundant:

$$y = y_{(Load\ 1)} + y_{(Load\ 2)}$$

Practice – Similar to HW P15.43

For the statically indeterminate beam below, find the reactions at B

