

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NASIONALE SENIOR SERTIFIKAAT

GRAAD 12

FISIESE WETENSKAPPE: CHEMIE (V2)

FEBRUARIE/MAART 2017

PUNTE: 150

TYD: 3 uur

Hierdie vraestel bestaan uit 16 bladsye en 4 gegewensblaaie.

INSTRUKSIES EN INLIGTING

- 1. Skryf jou eksamennommer en sentrumnommer in die toepaslike ruimtes op die ANTWOORDEBOEK neer.
- Hierdie vraestel bestaan uit TIEN vrae. Beantwoord AL die vrae in die ANTWOORDEBOEK.
- 3. Begin ELKE vraag op 'n NUWE bladsy in die ANTWOORDEBOEK.
- 4. Nommer die antwoorde korrek volgens die nommeringstelsel wat in hierdie vraestel gebruik is.
- 5. Laat EEN reël oop tussen twee subvrae, byvoorbeeld tussen VRAAG 2.1 en VRAAG 2.2.
- 6. Jy mag 'n nieprogrammeerbare sakrekenaar gebruik.
- 7. Jy mag toepaslike wiskundige instrumente gebruik.
- 8. Jy word aangeraai om die aangehegte GEGEWENSBLAAIE te gebruik.
- 9. Toon ALLE formules en substitusies in ALLE berekeninge.
- 10. Rond jou finale numeriese antwoorde tot 'n minimum van TWEE desimale plekke af.
- 11. Gee kort (bondige) motiverings, besprekings, ensovoorts waar nodig.
- 12. Skryf netjies en leesbaar.

1.11

VRAAG 1: MEERVOUDIGEKEUSE-VRAE

В

Verskeie opsies word as moontlike antwoorde op die volgende vrae gegee. Skryf die vraagnommer (1.1–1.10) neer, kies die antwoord en maak 'n kruisie (X) oor die letter (A–D) van jou keuse in die ANTWOORDEBOEK.

VOORBEELD:

C

- 1.1 Watter EEN van die volgende is die produk wat in die Haberproses gevorm word?
 - A Stikstof
 - B Ammoniak
 - C Salpetersuur
 - D Swawelsuur (2)
- 1.2 'n Karbonielgroep is die funksionele groep van ...
 - A alkohole.
 - B ketone.
 - C haloalkane.
 - D karboksielsure. (2)
- 1.3 Beskou die struktuur van 'n organiese verbinding hieronder.

Die IUPAC-naam van hierdie verbinding is ...

- A 2,3-dimetielbut-2-een.
- B 2,2-dimetielbut-2-een.
- C 1,1,2-trimetielprop-1-een.
- D 1,1,2,2-tetrametieleteen. (2)

1.4 Beskou die reaksie wat hieronder voorgestel word.

Watter EEN van die volgende dui die tipe reaksie wat plaasvind en die IUPAC-naam van produk **X** KORREK aan?

	Tipe reaksie	Produk X
Α	Eliminasie	Etaan
В	Eliminasie	Eteen
С	Addisie	Etaan
D	Addisie	Eteen

(2)

1.5 Beskou die volgende gebalanseerde vergelyking van 'n chemiese reaksie:

$$2NaCl + 2H_2O \rightarrow Cl_2 + H_2 + 2NaOH$$

Watter EEN van die volgende stellings oor die reaksie is korrek?

Die reaksie vind plaas in 'n ...

- A galvaniese sel en absorbeer energie.
- B galvaniese sel en stel energie vry.
- C elektrolitiese sel en absorbeer energie.
- D elektrolitiese sel en stel energie vry.

(2)

1.6 Die volgende vergelyking stel die reaksie voor wat in 'n elektrochemiese sel plaasvind:

$$Ni(s) + Pb^{2+}(aq) \rightarrow Ni^{2+}(aq) + Pb(s)$$

Die vloei van elektrone deur die eksterne stroombaan van hierdie sel is van ...

- A Pb by die anode na Ni by die katode.
- B Pb by die katode na Ni by die anode.
- C Ni by die katode na Pb by die anode.
- D Ni by die anode na Pb by die katode.

(2)

- 1.7 'n Oplossing het 'n pH = 1. Hierdie oplossing ...
 - A bevat geen OH⁻-ione nie.
 - B neutraliseer 'n soutsuuroplossing met pH = 1.
 - C bevat 'n hoër konsentrasie H₃O⁺-ione as OH⁻-ione.
 - D bevat 'n hoër konsentrasie OH⁻-ione as H₃O⁺-ione.
- 1.8 'n Potensiële-energiediagram kan gebruik word om die aktiveringsenergie (E_A) en die reaksiewarmte (ΔH) van 'n reaksie te toon.

Watter EEN van die volgende kombinasies van waardes van E_A en ΔH kan NIE vir enige reaksie verkry word NIE?

	E _A (kJ·mol ⁻¹)	∆H (kJ·mol ⁻¹)
Α	50	-100
В	50	+100
С	100	+50
D	100	-50

(2)

(2)

1.9 2 mol CO(g) en 2 mol H₂(g) word aanvanklik in 'n houer verseël. Die reaksie bereik ewewig volgens die volgende gebalanseerde vergelyking:

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

By ewewig sal die hoeveelheid CH₃OH(g) in die mengsel ... wees.

- A 1 mol
- B 2 mol
- C kleiner as 1 mol
- D groter as 1 mol

(2)

(2) **[20]**

1.10 Die grafiek hieronder stel die verandering in konsentrasie van 'n reaktans teenoor tyd vir 'n chemiese reaksie voor.

In watter EEN van die volgende grafieke toon die stippellyn die invloed van 'n katalisator op hierdie reaktans?

VRAAG 2 (Begin op 'n nuwe bladsy.)

Die letters A tot F in die tabel hieronder stel ses organiese verbindings voor.

A	CH₃CH₂CH2CHO	В	H CH ₃ CH ₃
С	C ₄ H ₈ O	D	C ₃ H ₈ O
E	H—C—H H—C—H H—C—I	F	O CH ₃ CH ₂ CH ₂ —C—O—CH ₂ CH ₂ CH ₃

2.1 Skryf die letter neer wat ELK van die volgende voorstel:

2.2 Skryf die IUPAC-naam neer van:

2.3 Verbinding **C** is 'n funksionele isomeer van verbinding **A**. Skryf die struktuurformule van verbinding **C** neer. (2)

2.4 Verbinding **D** word as een van die reaktanse gebruik om verbinding **F** te berei. Skryf neer die:

2.4.3 Struktuurformule van die ander organiese reaktans wat gebruik word (2)

Kopiereg voorbehou

VRAAG 3 (Begin op 'n nuwe bladsy.)

Leerders ondersoek faktore wat die kookpunte van alkohole beïnvloed.

Hulle gebruik gelyke volumes van elk van die alkohole en verhit hulle apart in 'n waterbad. Die temperatuur waarby elkeen kook, word gemeet. Die resultate wat verkry is, word in die tabel hieronder getoon.

8

NSS

ALKOHOLE	KOOKPUNTE VAN ALKOHOLE (°C)
Butan-1-ol	117,7
Pentan-1-ol	138,5
Heksan-1-ol	157,0

3.1	Definieer die term kookpunt.		(2)	
3.2	Watter eienskap van alkohole maak dit noodsaaklik dat hulle in 'n waterbad verhit moet word?			
3.3	Die kookpunte van die alkohole word met mekaar vergelyk.			
	3.3.1	Aan watter strukturele vereistes moet die alkohole voldoen om dit 'n regverdige vergelyking te maak?	(2)	
	3.3.2	Verduidelik die neiging in die kookpunte volledig.	(3)	
3.4	heksan-1	die kookpunt van heksan-1-ol beïnvloed word indien die volume -ol wat gebruik word, verdubbel word? Kies uit VERHOOG, G of BLY DIESELFDE.	(1)	
3.5	In 'n ande heksanaa	er ondersoek vergelyk die leerders die kookpunte van heksan-1-ol en al.		
	3.5.1	Skryf die onafhanklike veranderlike vir hierdie vergelyking neer.	(1)	
	3.5.2	Hulle vind dat die kookpunt van heksan-1-ol hoër as dié van heksanaal is.		
		Verduidelik hierdie waarneming volledig.	(4) [14]	

VRAAG 4 (Begin op 'n nuwe bladsy.)

4.1 Beskou die reaksies wat in die vloeidiagram hieronder voorgestel word.

Skryf neer die:

- 4.1.1 Soort reaksie voorgestel deur **reaksie 1** (1)
- 4.1.2 NAAM of FORMULE van die anorganiese reaktans benodig vir reaksie 1 (1)
- 4.1.3 Soort alkohol (PRIMÊR, SEKONDÊR of TERSIÊR) waarvan alkohol **A** 'n voorbeeld is (1)
- 4.1.4 Soort reaksie wat deur **reaksie 2** voorgestel word (1)
- 4.1.5 IUPAC-naam van verbinding **B** (2)
- 4.1.6 Soort addisiereaksie wat deur **reaksie 3** voorgestel word (1)
- 4.1.7 Gebalanseerde vergelyking vir **reaksie 3** deur struktuurformules te gebruik (4)

4.2 'n Wye reeks sintetiese polimere word berei deur die samevoeging van groot getalle gelyksoortige klein organiese molekule wat in 'n herhalende patroon aan mekaar verbind word.

Polimeer **C** hieronder is 'n voorbeeld van so 'n polimeer.

Skryf neer:

- 4.2.1 EEN woord vir die onderstreepte frase (1)
- 4.2.2 Die homoloë reeks waaraan die 'klein, organiese molekule' behoort wat gebruik word om polimeer **C** te produseer (1)
- 4.2.3 Die soort polimerisasie wat plaasvind om polimeer **C** te produseer (1) [14]

VRAAG 5 (Begin op 'n nuwe bladsy.)

Die reaksie van koper(II)karbonaat met oormaat verdunde soutsuur word gebruik om die reaksietempo te ondersoek. Die gebalanseerde vergelyking vir die reaksie is:

$$CuCO_3(s) + 2HC\ell(aq) \rightarrow CuC\ell_2(aq) + H_2O(\ell) + CO_2(q)$$

Die apparaat wat gebruik word, word hieronder geillustreer.

5.1 Noem TWEE maniere waarop die tempo van die reaksie hierbo verhoog kan word. (2)

[15]

Monsters van beide SUIWER en ONSUIWER koper(II)karbonaat van GELYKE massa word in die ondersoek gebruik. Die grafieke hieronder is uit die resultate verkry.

5.2 Skryf die reaksietyd neer vir die reaksie van die suiwer CuCO₃ met HCl. (1)

5.3 Aanvaar dat al die gas wat gedurende die twee reaksies gevorm het, uit die fles ontsnap en dat die onsuiwerhede nie reageer nie.

Bereken die:

- 5.3.1 Gemiddelde reaksietempo van die suiwer monster in die eerste 20 s (3)
- 5.3.2 Persentasie suiwerheid van die onsuiwer monster (4)
- 5.3.3 Maksimum volume CO₂(g) wat tydens die reaksie van die suiwer monster CuCO₃ geproduseer word indien die reaksie by STANDAARDTOESTANDE plaasvind (3)
- Skets 'n grafiek van die volume gas geproduseer teenoor tyd vir die reaksie van die suiwer CuCO₃. Dui die reaksietyd op die x-as aan.

VRAAG 6 (Begin op 'n nuwe bladsy.)

Waterstof en jodium word in 'n 2 dm³-houer verseël. Die reaksie word toegelaat om ewewig te bereik by 700 K volgens die volgende gebalanseerde vergelyking:

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

- 6.1 Gee 'n rede waarom veranderinge in druk geen invloed op die ewewigsposisie sal hê nie. (1)
- By ewewig is 0,028 mol $H_2(g)$ en 0,017 mol $I_2(g)$ in die houer teenwoordig.

Bereken die aanvanklike massa $I_2(g)$, in gram, wat in die houer verseël is, indien K_c vir die reaksie 55,3 by 700 K is. (9)

Die reaksietempo-teenoor-tydgrafiek hieronder stel verskillende veranderinge voor wat aan die ewewigsmengsel gemaak is.

- 6.3 Wat dui die parallelle lyne in die eerste twee minute aan? (1)
- 6.4 Noem TWEE moontlike veranderinge wat by t = 2 minute aan die reaksietoestande gemaak kan word. (2)
- 6.5 Die temperatuur van die ewewigsmengsel is by t = 4 minute verander.
 - 6.5.1 Is die voorwaartse reaksie EKSOTERMIES of ENDOTERMIES?

 Verduidelik die antwoord volledig. (3)
 - 6.5.2 Hoe sal hierdie verandering die K_c-waarde beïnvloed? Kies uit VERHOOG, VERLAAG of BLY DIESELFDE. (1)
- 6.6 Watter verandering is by t = 8 minute aan die ewewigsmengsel gemaak? (1) [18]

VRAAG 7 (Begin op 'n nuwe bladsy.)

Die K_a-waardes vir twee swak sure, oksaalsuur en koolsuur, is soos volg:

NAAM	FORMULE	Ka
Oksaalsuur	(COOH) ₂	5,6 x 10 ⁻²
Koolsuur	H ₂ CO ₃	4,3 x 10 ⁻⁷

7.1 Definieer die term swak suur.

(2)

7.2 Watter suur, OKSAALSUUR of KOOLSUUR, is die sterkste? Gee 'n rede vir die antwoord.

(2)

7.3 Oksaalsuur ioniseer in water volgens die volgende gebalanseerde vergelyking:

$$(COOH)_2(s) + 2H_2O(\ell) \rightleftharpoons (COO)_2^{2-}(aq) + 2H_3O^+(aq)$$

Skryf die FORMULES van die TWEE basisse in hierdie vergelyking neer.

(2)

7.4 Leerders berei 2 dm³ van 'n natriumhidroksiedoplossing met 'n konsentrasie van 0,1 mol·dm⁻³.

Bereken die pH van die oplossing.

(4)

7.5 Tydens die titrasie van die natriumhidroksiedoplossing in VRAAG 7.4 met verdunde oksaalsuur vind die leerders dat 25,1 cm³ van die NaOH(aq) presies 14,2 cm³ van die (COOH)₂(aq) neutraliseer.

Die gebalanseerde vergelyking vir die reaksie is soos volg:

$$2NaOH(aq) + (COOH)_2(aq) \rightarrow (COO)_2Na_2(aq) + 2H_2O(\ell)$$

7.5.1 Bereken die konsentrasie van die oksaalsuuroplossing.

(5)

Die volgende indikators is vir die titrasie beskikbaar:

INDIKATOR	pH-GEBIED	
А	3,1-4,4	
В	6,0-7,6	
С	8,3-10,0	

7.5.2 Watter EEN van die indikators hierbo is die geskikste vir hierdie titrasie? Gee 'n rede vir die antwoord.

(2) **[17]**

VRAAG 8 (Begin op 'n nuwe bladsy.)

In die elektrochemiese sel wat hieronder getoon word, word 'n aluminium-elektrode en 'n ander metaal-elektrode, **Y**, gebruik.

8.1 Skryf neer die:

Daar word gevind dat die massa van die aluminium-elektrode toeneem terwyl die sel in werking is.

8.2 Hoe sal ELK van die volgende verander terwyl die sel in werking is? Kies uit VERHOOG, VERLAAG of BLY DIESELFDE.

8.2.1 Die konsentrasie van
$$A\ell^{3+}(aq)$$
 (1)

8.2.2 Die konsentrasie van
$$Y^{2+}(aq)$$
 (1)

8.3 Skryf neer die:

8.4 Die aanvanklike emk van hierdie sel wat onder standaardtoestande gemeet is, is 0,7 V.

Identifiseer metaal **Y** met behulp van 'n berekening. (5) [14]

[8]

VRAAG 9 (Begin op 'n nuwe bladsy.)

Die vereenvoudigde diagram hieronder toon 'n elektrolitiese sel wat in die industriële ekstrahering van aluminium (Al) uit aluminiumoksied by temperature so hoog as 1 000 °C gebruik word. Elektrode **X** is 'n koolstofstaaf.

Die selreaksie wat plaasvind, is soos volg:

$$2A\ell_2O_3(\ell) \to 4A\ell(\ell) + 3O_2(g)$$

- 9.1 Skryf die naam van die erts neer wat as bron van aluminiumoksied gebruik word. (1)
- 9.2 Watter halfreaksie (OKSIDASIE of REDUKSIE) vind by elektrode **X** plaas? (1)
- 9.3 Wat is die funksie van die krioliet? (1)
- 9.4 Skryf die reduksiehalfreaksie neer. (2)
- 9.5 Skryf 'n gebalanseerde vergelyking neer wat toon waarom die koolstofstaaf, X, gereeld vervang moet word. (3)

VRAAG 10 (Begin op 'n nuwe bladsy.)

10.1 Die reaksies wat hieronder voorgestel word, vind plaas tydens een van die industriële prosesse wat in die kunsmisbedryf gebruik word.

I:
$$4NH_3(g) + 5O_2(g) \stackrel{Pt}{\rightleftharpoons} 4NO(g) + 6H_2O(g)$$
 $\Delta H < 0$

II:
$$NO(g) + O_2(g) \rightleftharpoons X$$

III:
$$NO_2 + H_2O(\ell) \rightleftharpoons HNO_3(aq) +$$

Skryf neer:

- 10.1.5 TWEE maniere waarop die opbrengs van die NO(g) wat in reaksie I verkry word, verhoog kan word sonder om die hoeveelheid reaktanse en produkte te verander (2)
- 10.2 NPK-kunsmisstowwe bevat NH₄NO₃, (NH₄)₃PO₄ en KCℓ in verskillende verhoudings.

10.2.2 Beskou die kunsmis wat hieronder geillustreer is.

Bereken die massa, in kg, van KCl benodig om hierdie kunsmis te berei.

(6) **[14]**

TOTAAL: 150

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	p ^θ	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	V _m	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	Τ ^θ	273 K
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	N _A	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

n_{-} m	$n-\frac{N}{n}$			
$n = \frac{m}{M}$	$n = \frac{N}{N_A}$			
n m	V			
$c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$	$n = \frac{V}{V_m}$			
$\frac{c_a v_a}{c_a v_a} = \frac{n_a}{c_a c_a}$	pH = -log[H3O+]			
$c_b v_b n_b$				
$K_w = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at/by } 298$	3 K			
$E_{cell}^{\theta} = E_{cathode}^{\theta} - E_{anode}^{\theta} / E_{sel}^{\theta} = E_{katode}^{\theta} - E_{anode}^{\theta}$				
or/of				
$E_{cell}^{\theta} = E_{reduction}^{\theta} - E_{oxidation}^{\theta} / E_{sel}^{\theta} = E_{reduksie}^{\theta} - E_{oksidasie}^{\theta}$				
or/of				
$E^{\theta}_{cell} = E^{\theta}_{oxidising agent} - E^{\theta}_{reducing agent} / E^{\theta}_{sel} = E^{\theta}_{oksideermiddel} - E^{\theta}_{reduseermiddel}$				
— ceil — oxidising agent — reducing agent / — sel	- oksideermiddel - reduseermiddel			

TABLE 3: THE PERIODIC TABLE OF ELEMENTS TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARDREDUKSIEPOTENSIALE

BEL 4A: STANDAARDREDUKSIEPOTENSIA				
Half-reactions/ <i>Halfreaksie</i> s E [⊄] (V)				
F ₂ (g) + 2e ⁻	=	2F ⁻	+ 2,87	
Co ³⁺ + e ⁻	\Rightarrow	Co ²⁺	+ 1,81	
$H_2O_2 + 2H^+ + 2e^-$	\Rightarrow	2H ₂ O	+1,77	
$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	=	$Mn^{2+} + 4H_2O$	+ 1,51	
Cl₂(g) + 2e ⁻	=	2C{-	+ 1,36	
Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6e ⁻	=	2Cr ³⁺ + 7H ₂ O	+ 1,33	
$O_2(g) + 4H^+ + 4e^-$	=	2H ₂ O	+ 1,23	
$MnO_2 + 4H^+ + 2e^-$	=	$Mn^{2+} + 2H_2O$	+ 1,23	
Pt ²⁺ + 2e ⁻	=	Pt	+ 1,20	
$Br_2(\ell) + 2e^-$	\Rightarrow	2Br ⁻	+ 1,07	
$NO_3^- + 4H^+ + 3e^-$	=	$NO(g) + 2H_2O$	+ 0,96	
Hg ²⁺ + 2e ⁻	\rightleftharpoons	Hg(ℓ)	+ 0,85	
$Ag^+ + e^-$	\Rightarrow	Ag	+ 0,80	
NO ⁻ ₃ + 2H ⁺ + e ⁻	=	$NO_2(g) + H_2O$	+ 0,80	
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77	
$O_2(g) + 2H^+ + 2e^-$	=	H ₂ O ₂	+ 0,68	
l ₂ + 2e ⁻	\Rightarrow	2I ⁻	+ 0,54	
Cu⁺+ e⁻	=	Cu	+ 0,52	
$SO_2 + 4H^+ + 4e^-$	=	S + 2H ₂ O	+ 0,45	
$2H_2O + O_2 + 4e^-$	\rightleftharpoons	40H ⁻	+ 0,40	
Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+ 0,34	
$SO_4^{2-} + 4H^+ + 2e^-$	=	$SO_2(g) + 2H_2O$	+ 0,17	
Cu ²⁺ + e ⁻	=	Cu⁺	+ 0,16	
Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+ 0,15	
S + 2H ⁺ + 2e ⁻	\rightleftharpoons	$H_2S(g)$	+ 0,14	
2H ⁺ + 2e [−]	=	H ₂ (g)	0,00	
Fe ³⁺ + 3e ⁻	\Rightarrow	Fe	- 0,06	
Pb ²⁺ + 2e ⁻	\rightleftharpoons	Pb	- 0,13	
Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	- 0,14	
Ni ²⁺ + 2e ⁻	\Rightarrow	Ni	- 0,27	
Co ²⁺ + 2e ⁻	\Rightarrow	Со	- 0,28	
Cd ²⁺ + 2e ⁻	=	Cd	- 0,40	
Cr ³⁺ + e ⁻	\Rightarrow	Cr ²⁺	- 0,41	
Fe ²⁺ + 2e ⁻	\Rightarrow	Fe	- 0,44	
Cr ³⁺ + 3e ⁻	=	Cr	- 0,74	
Zn ²⁺ + 2e ⁻	=	Zn	- 0,76	
2H ₂ O + 2e ⁻ Cr ²⁺ + 2e ⁻	=	H ₂ (g) + 2OH ⁻	- 0,83	
	=	Cr Ma	- 0,91	
Mn ²⁺ + 2e ⁻ Al ³⁺ + 3e ⁻	\Rightarrow	Mn	- 1,18	
	=	Al Ma	- 1,66	
Mg ²⁺ + 2e ⁻ Na ⁺ + e ⁻	=	Mg Na	- 2,36	
Na + e Ca ²⁺ + 2e ⁻	=	Na Ca	- 2,71	
Sr ²⁺ + 2e ⁻	=	Sr	- 2,87 - 2,89	
Ba ²⁺ + 2e ⁻	=	Ba	- 2,89 - 2,90	
Cs ⁺ +e ⁻	#	Cs	- 2,90 - 2,92	
K ⁺ + e ⁻	=	K	- 2,93	
	=		2,00	

 $Li^+ + e^-$

Li

Increasing reducing ability/Toenemende reduserende vermoë

Kopiereg voorbehou

Increasing oxidising ability/Toenemende oksiderende vermoë

Blaai om asseblief

-3,05

Increasing oxidising ability/Toenemende oksiderende vermoë

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARDREDUKSIEPOTENSIALE

Half-reactions/Halfreaksies			
	i i i i i		E [©] (V)
Li ⁺ + e ⁻	=	Li	- 3,05
K ⁺ + e ⁻	=	K	- 2,93
Cs ⁺ + e ⁻ Ba ²⁺ +2e ⁻	=	Cs	- 2,92
Sr ²⁺ + 2e ⁻	=	Ba	- 2,90 2,00
Sr + 2e Ca ²⁺ + 2e ⁻	=	Sr	- 2,89
Na ⁺ + e ⁻	=	Ca Na	- 2,87 - 2,71
Mg ²⁺ + 2e ⁻	=	Mg	- 2,7 1 - 2,36
At ³⁺ + 3e ⁻	#	Al	- 2,36 - 1,66
Mn ²⁺ + 2e ⁻	=	Mn	– 1,18
Cr ²⁺ + 2e ⁻	=	Cr	- 0,91
2H ₂ O + 2e ⁻	=	H ₂ (g) + 2OH ⁻	- 0,83
Zn ²⁺ + 2e ⁻	=	Zn	- 0,76
Cr ³⁺ + 3e ⁻	· =	Cr	- 0,74
Fe ²⁺ + 2e ⁻	÷	Fe	- 0,44
Cr ³⁺ + e ⁻	=	Cr ²⁺	- 0,41
Cd ²⁺ + 2e ⁻	=	Cd	- 0,40
Co ²⁺ + 2e ⁻	=	Co	- 0,28
Ni ²⁺ + 2e ⁻	=	Ni	- 0,27
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14
$Pb^{2+} + 2e^{-}$	=	Pb	- 0,13
Fe ³⁺ + 3e ⁻	=	Fe	- 0,06
2H ⁺ + 2e ⁻	=	H ₂ (g)	0,00
S + 2H ⁺ + 2e ⁻	\Rightarrow	$H_2S(g)$	+ 0,14
Sn ⁴⁺ + 2e ⁻	\Rightarrow	Sn ²⁺	+ 0,15
Cu ²⁺ + e ⁻	=	Cu⁺	+ 0,16
$SO_4^{2-} + 4H^+ + 2e^-$	=	$SO_2(g) + 2H_2O$	+ 0,17
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34
$2H_2O + O_2 + 4e^-$	=	40H ⁻	+ 0,40
$SO_2 + 4H^+ + 4e^-$	=	S + 2H ₂ O	+ 0,45
Cu ⁺ + e ⁻	=	Cu	+ 0,52
$I_2 + 2e^-$	=	2I ⁻	+ 0,54
$O_2(g) + 2H^+ + 2e^-$	=	H_2O_2	+ 0,68
Fe ³⁺ + e ⁻	\Rightarrow	Fe ²⁺	+ 0,77
$NO_3^- + 2H^+ + e^-$	=	$NO_2(g) + H_2O$	+ 0,80
$Ag^+ + e^-$	=	Ag	+ 0,80
Hg ²⁺ + 2e ⁻	=	Hg(ℓ)	+ 0,85
NO ⁻ ₃ + 4H ⁺ + 3e ⁻	=	NO(g) + 2H ₂ O	+ 0,96
Br ₂ (<i>l</i>) + 2e ⁻	=	2Br ⁻	+ 1,07
$Pt^{2+} + 2e^{-}$	=	Pt	+ 1,20
MnO ₂ + 4H ⁺ + 2e ⁻	=	$Mn^{2+} + 2H_2O$	+ 1,23
$O_2(g) + 4H^+ + 4e^-$	=	2H ₂ O	+ 1,23
$Cr_2O_7^{2-} + 14H^+ + 6e^-$		2Cr ³⁺ + 7H ₂ O	+ 1,33
,	=		+ 1,36
$C\ell_2(g) + 2e^-$	=	2Cl ⁻	
$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	=	$Mn^{2+} + 4H_2O$	+ 1,51
$H_2O_2 + 2H^+ + 2e^-$	=	2H ₂ O	+1,77
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81
F ₂ (g) + 2e ⁻	=	2F ⁻	+ 2,87

Increasing reducing ability/Toenemende reduserende vermoë