ISTA 116 Lab: Week 5

Colin Dawson

Last Revised September 19, 2011

1 HW1 Scores

2 HW2

• Go over HW2

3 Bivariate Categorical Data

- What does bivariate mean?
- What's the difference between one bivariate data set and two univariate data sets?
- With a single categorical variable, we summarized it using counts for each category, creating a *table*. We also used *prop.table* to convert this to proportions.
- When *both* variables in a bivariate data set are categorical, we could just create two tables. But what do we lose by doing this?

3.1 Contingency Tables

- Tables that give counts for *combinations* of variables are called *contingency tables* (e.g. how often do children have brown eyes, *contingent* on their mother having brown eyes?).
- Create them with table(), just include more than one variable in the arguments.
 - Note: The variables should "line up" (the first element goes with the first element, etc.), or the table won't make sense. Why?

3.2 Interactive Experiment!

- Do you prefer coffee, tea or neither (c,t,n)?
- More often, do you prefer salsa that's red, green, or nonexistent (r,g,n)?

Use rbind to "bind" data together as rows:

Convert the result to a data frame:

> preferences <- as.data.frame(preferences)</pre>

Give it names and make a table:

- > names(preferences) <- c("beverage", "salsa")</pre>
- > (preferencesFreqTable <- with(preferences, table(beverage, salsa)))</pre>

Now that we have a table, we can ask questions easily:

- Are coffee drinkers more likely to go for red salsa than green?
 - How would we answer this?
- Is the overall preference for red salsa stronger among coffee drinkers?
 - What about this? Can we (easily) answer it just by looking at counts?
- Do salsa preferences differ across beverages?
- Do beverage preferences differ across salsas?

3.3 Joint and Marginal Frequencies and Proportions

- Joint Frequency: "How many people prefer coffee and red salsa?"
 - Just look at the frequency table
- Joint Proportion: "What proportion of people prefer coffee and red salsa?"
 - Divide a cell count by the sum of all counts
 - One value for each cell in the table
 - These sum to 1 across _____
 - In R, use prop.table(someFrequencyTable). Note: the argument is already a table.
- > (preferencesJointPropTable <- prop.table((preferencesFreqTable)))</pre>
 - Marginal Frequencies: "How many people prefer each salsa (regardless of beverage choice)?"
 - Sum down the columns (in this case) of the frequency table

- Use margin.table(someFrequencyTable, margin = 2)
- Set margin = 1 for questions about rows (e.g. about beverage preference totals)
- Rows always come before columns!
- > margin.table(preferencesFreqTable, margin = 2)
 - Marginal Proportions: "What proportion of people prefer each salsa (regardless of beverage choice)?"
 - How would you do this?
 - How would you calculate this without R?

3.4 Conditional Proportions

- Do salsa preferences differ across beverages?
- Do beverage preferences differ across salsas?

To answer these, we need *conditional proportions*.

- "Given people who prefer coffee, what proportion prefer red salsa?"
- In other words, "Conditioned on having a preference for coffee, what proportion prefer red salsa?"
- Conditioning means we are restricting our attention to a particular subset of the data (or section of the table).
 - This affects which total we care about.
- In R, we can do prop.table(someFrequencyTable, margin = 2) to get proportions conditioned on the column variable (set margin = 1 to condition on rows).
- If we condition on columns, the proportions should sum to 1 across each _____
- > (preferencesCondPropTable <- prop.table(preferencesFreqTable,
- + margin = 2))

3.5 Pre-summarized data

Sometimes our data comes in already summarized into counts, rather than individual observations, but not necessarily in the right format.

- Bring in the Simonoff07.csv data set, on causes of power plant failures in the U.S. and Canada.
- First column is the levels of one variable; remaining columns are counts at levels of the other variable.
- Not straightforward to create a contingency table from this format.
- Instead, tell R that the first column is special, by specifying row.names = "Nation" when you import the data. Now it will look like a table.
- We need to turn it into a proper table instead of a data frame, though, using as.matrix()

```
> pplants <- read.csv("Simonoff07.csv", header = TRUE, row.names = "Nation")
> pplantsTable <- as.matrix(pplants)
> (pplantsJointProbTable = prop.table(pplantsTable))
> sum(pplantsJointProbTable[1, ])
[1] 0.8016194
> sum(pplantsJointProbTable)
[1] 1
> (pplantsCondProbTable <- prop.table(pplantsTable, margin = 1))</pre>
> sum(pplantsCondProbTable)
[1] 2
> sum(pplantsCondProbTable[1, ])
[1] 1
> (pplantsCondProbTable <- prop.table(pplantsTable, margin = 2))
> sum(pplantsCondProbTable[1, ])
[1] 7.517581
> sum(pplantsCondProbTable[, 1])
[1] 1
```

Exercise: Find out whether a failure is more or less likely to be due to equipment failure in the U.S. vs. Canada.

3.6 Visualizing Bivariate Categorical Data

If there are more than 3 or 4 rows/columns, it's hard work to read through a contingency table and see easily what's going on. We'd like some sort of graphical depiction of the data.

3.6.1 Grouped and Stacked Bar Plots

Just as we used barplot() to create a bar plot of a univariate table of counts, we can use it on a two-way table.

- By default, barplot(myTable) will draw one bar for each *column*, whose height is the marginal frequency for that column.
- Each bar is subdivided into stacked pieces whose size corresponds to the cell counts in that column.

```
> par(bg = "cornsilk1")
> beverages <- c("Coffee", "Neither", "Tea")
> salsas <- c("Green", "Neither", "Red")
> beveragecolors <- c("saddlebrown", "skyblue", "sienna2")
> barplot(preferencesFreqTable, names.arg = salsas, xlab = "Salsa Preference",
+ ylab = "Number of Students", col = beveragecolors, legend.text = beverages)
```

If we want to draw the plot the other way around, the easiest thing to do is to *transpose* the table, using the t() function.

```
> salsacolors <- c("yellowgreen", "ivory", "firebrick")
> prefTable2 <- t(preferencesFreqTable)
> barplot(prefTable2, names.arg = beverages, xlab = "Beverage Preference",
+ ylab = "Number of Students", col = salsacolors, legend.text = salsas)
```

Another option, instead of stacking the bars, is to group the bars. To do this, just specify beside = TRUE.

```
> barplot(prefTable2, names.arg = beverages, xlab = "Beverage Preference",
+ ylab = "Number of Students", col = salsacolors, legend.text = salsas,
+ beside = TRUE)
```

By default, the table is created in alphabetical order along each axis. We might want to reorder it for plotting purposes:

```
> prefTable3 <- prefTable2[c("r", "g", "n"), c("c", "t", "n")]
> beverages <- c("Coffee", "Tea", "Neither")
> salsas <- c("Red", "Green", "Neither")
> salsacolors <- c("firebrick", "yellowgreen", "ivory")
> barplot(prefTable3, names.arg = beverages, xlab = "Beverage Preference",
+ ylab = "Number of Students", col = salsacolors, legend.text = salsas,
+ beside = TRUE)
```

Exercise: Show frequencies of power outages in the U.S. and Canada, grouped by cause.

We may not care about absolute numbers, but instead we want to focus on *conditional* proportions. Just plot the result of prop.table().

Condition and Group on Beverage:

```
> prefProps <- prop.table(prefTable3, margin = 2)
> barplot(prefProps, names.arg = beverages, xlab = "Beverage Preference",
+ ylab = "Number of Students", col = salsacolors, legend.text = salsas,
+ beside = TRUE)
```

Exercise: Show distributions of power outage cause, conditioned on country but grouped by cause.

4 Questions?