WHAT IS CLAIMED IS:

 A surface acoustic wave device using second leaky surface acoustic waves having a dominant component which is a longitudinal wave component, the device comprising:

a LiTaO₃ substrate; and
a conductive film disposed on the LiTaO₃ substrate,
wherein the density ρ of the conductive film is in the range of about 2,699 kg/m³ to about 19,300 kg/m³.

- 2. The device according to claim 1, wherein the normalized thickness H/ λ of the conductive film is within the range of about 5.3023 $\times \rho^{-0.4172}$ to about 80161 $\times \rho^{-1.781}$ wherein λ represents the wavelength of the second leaky surface acoustic waves and H represents the thickness of the conductive film.
- 3. The device according to claim 1, wherein the Euler angle of the LiTaO₃ substrate is in regions B1 to B4 shown in Figs. 8 to 11.
- 4. The device according to claim 1, wherein the conductive film comprises at least one of copper and silver.
- 5. A surface acoustic wave device using second leaky surface acoustic waves the dominant component of which is a longitudinal wave component, the device comprising:

a LiTaO3 substrate having an Euler angle within regions A1 to A10 defined by connecting the coordinates shown in Tables 1 and 2; and

a conductive film disposed on the LiTaO3 substrate,

wherein the density ρ of the conductive film is greater than about 2,699 kg/m³ and the normalized thickness H/ λ of the conductive film is within the range of about 5.3023 × $\rho^{-0.4172}$ to about 80161 × $\rho^{-1.781}$ wherein λ represents the wavelength of

the second leaky surface acoustic waves and H represents the thickness of the conductive film:

Region	Coordinates	θ	ab
Region		<u> </u>	ψ
A1	P1	16.2	63.7
	P2	69.9	63.7
	P3	69.9	116.3
	P4	16.2	116.3
	P 5	16.2	63.7
A2	P1	106.2	118.7
	P 2	143.6	118.7
	P3	143.6	151.4
	P4	106.2	151.4
	P 5	106.2	118.7
	P1	106.2	28.6
А3	P 2	143.6	28.6
	P3	143.6	61.3
	P4	106.2	61.3
	P5	106.2	28.6
A4	P1	16.5	55.9
	P2	72.3	55.9
	Р3	72.3	108.0
	P4	16.5	108.0
	P5	16.5	55.9
A5	P1	106.2	131.3
	P 2	124.0	131.3
	P3	124.0	148.0
	P4	106.2	148.0
	P5	106.2	131.3

Table 1

Table 2

Region	Coordinates	θ	ψ
A6	P1	106.3	30.8
	P2	153.1	30.8
	Р3	153.1	71.7
	P4	106.3	71.7
	P5	106.3	30.8
А7	P1	17.4	48.5
	P2	76.8	48.5
	Р3	76.8	99.4
	P4	17.4	99.4
	P5	17.4	48.5
A8	P1	104.6	35.6
	P 2	158.0	35.6
	P3	158.0	81.3
	P4	104.6	81.3
	P5	104.6	35.6
А9	P1	19.1	41.7
	P2	78.3	41.7
	P3	78. 3	90.4
	P4	19.1	90.4
	P5	19.1	41.7
A10	P1	101.7	41.7
	P2	161.0	41.7
	P3	161.0	90.4
	P4	101.7	90.4
	P5	101.7	41.7

- 6. The device according to claim 5, wherein the conductive film comprises at least one of copper, silver, and gold.
- 7. A surface acoustic wave device according to claim 1, wherein the conductive film defines at least one of an interdigital transducer and a grating reflector.