AYUDANTÍA A*

Florencia Valdivia y Alex Medina

ALGORITMO

El algoritmo A* utiliza tanto la distancia y costo desde el punto de partida, como la distancia al punto de destino.

Mientras la heurística no sobrestime las distancias, A* encuentra un camino óptimo.

A* utiliza la heurística para reordenar los nodos de forma que sea más probable encontrar antes el nodo meta.

A* debe expandir todos los estados s que cumplan con

$$\delta(\text{start,s}) + h(s) < c^*$$

A* debe expandir todos los estados s que cumplan con

$$\delta(\text{start,s}) + h(s) < c*$$

¿ Qué pasa si no expande alguno de estos ?

VISUALIZACIÓN A*

REPASO WEIGHTED A*

$$f(s) = g(s) + wxh(s)$$

Se siguen cumpliendo las propiedades:

- f (s) ≤ w x c* (es w-subóptimo, teorema visto en clases)
- f (s_goal) ≤ w x c*
- g (s_goal) ≤ w x c*

Se puede demostrar que si uno usa un peso $1 \le w$ sobre la heurística, el algoritmo resultante esta acotado en su **suboptimalidad**. Por lo tanto, la solución puede ser a lo más $w \times c^*$ (costo óptimo).

VEAMOS COMO FUNCIONA...

¿QUÉ NOTAMOS?

Para los primeros 50 problemas:

Weight	Tiempo Total	Expansiones totales	Costo Total
1.5	842.86	3544962	2645
2	204.02	1349660	3019
3	54.14	346104	3645
5	42.27	271483	4487

Weighted A* en la práctica obtiene soluciones mucho mejores que las dada por la cota wc*. Resulta que una vez que Weighted A* termina de ejecutar encontrando una solución de costo c, se puede obtener una cota para la suboptimalidad de la solución encontrada.

¿COMO ENCONTRAMOS UNA MEJOR COTA?

Sea π una solución a un problema de búsqueda cuyo costo es $c(\pi)$, se define la suboptimalidad de π como $c(\pi)/c*$. Se pide demostrar que :

$$\frac{c(\pi)}{c^*} \le \frac{c(\pi)}{\min_{s \in Open} g(s) + h(s)}$$

si la heurística h utilizada es admisible.

$$\frac{c(\pi)}{c^*} \le \frac{c(\pi)}{\min_{s \in Open} g(s) + h(s)}$$

Sabemos que h es admisible entonces: $\forall s.h(s) \leq h^*(s)$

Suponga s es extraído de la Open. Sabemos que s es el nodo con menor f donde:

$$f(s) = g(s) + h(s)$$

PD: $\frac{c(\pi)}{c^*} \le \frac{c(\pi)}{\min_{s \in Open} g(s) + h(s)}$

Sabemos que h es admisible entonces: $\forall s.h(s) \leq h^*(s)$

Suponga s es extraído de la Open. Sabemos que s es el nodo con menor f donde:

$$f(s) = g(s) + h(s)$$

Por admisibilidad tenemos que:

$$f(s) \le f^*(s) = g^*(s) + h^*(s)$$

$$\frac{c(\pi)}{c^*} \le \frac{c(\pi)}{\min_{s \in Open} g(s) + h(s)}$$

Sabemos que h es admisible entonces: $\forall s.h(s) \leq h^*(s)$

Suponga s es extraído de la Open. Sabemos que s es el nodo con menor f donde:

$$f(s) = g(s) + h(s)$$

Por admisibilidad tenemos que:

$$f(s) \le f^*(s) = g^*(s) + h^*(s)$$

$$\le f^*(s) = dist(s.inicial, s^*) + h^*(s) \le dist(s.inicial, s^*) + dist(s^*, goal)$$

$$\frac{c(\pi)}{c^*} \le \frac{c(\pi)}{\min_{s \in Open} g(s) + h(s)}$$

Sabemos que h es admisible entonces: $\forall s.h(s) \leq h^*(s)$

Suponga s es extraído de la Open. Sabemos que s es el nodo con menor f donde:

$$f(s) = g(s) + h(s)$$

Por admisibilidad tenemos que:

$$f(s) \leq f^*(s) = g^*(s) + h^*(s)$$

$$\leq f^*(s) = dist(s.inicial, s^*) + h^*(s) \leq dist(s.inicial, s^*) + dist(s^*, goal)$$

$$\leq f^*(s) = dist(s.inicial, s^*) + h^*(s) \leq c^*$$

$$\frac{c(\pi)}{c^*} \le \frac{c(\pi)}{\min_{s \in Open} g(s) + h(s)}$$

Sabemos que h es admisible entonces: $\forall s.h(s) \leq h^*(s)$

Suponga s es extraído de la Open. Sabemos que s es el nodo con menor f donde:

$$f(s) = g(s) + h(s)$$

Concluyendo entonces que: $f(s) \leq c^*$

$$\frac{c(\pi)}{c^*} \le \frac{c(\pi)}{\min_{s \in Open} g(s) + h(s)}$$

Sabemos que h es admisible entonces: $\forall s.h(s) \leq h^*(s)$

Suponga s es extraído de la Open. Sabemos que s es el nodo con menor f donde:

$$f(s) = g(s) + h(s)$$

Concluyendo entonces que: $f(s) \leq c^*$

Por lo tanto si $c(\pi)$ es el costo de una solución al problema, tenemos que:

$$\frac{c(\pi)}{c^*} \le \frac{c(\pi)}{f(s)}$$

PD:
$$\frac{c(\pi)}{c^*} \le \frac{c(\pi)}{\min_{s \in Open} g(s) + h(s)}$$

Sabemos que h es admisible entonces: $\forall s.h(s) \leq h^*(s)$

Suponga s es extraído de la Open. Sabemos que s es el nodo con menor f donde:

$$f(s) = g(s) + h(s)$$

Concluyendo entonces que: $f(s) \leq c^*$

Por lo tanto si $c(\pi)$ es el costo de una solución al problema, tenemos que:

$$\frac{c(\pi)}{c^*} \le \frac{c(\pi)}{f(s)}$$

Finalmente, como s es el nodo extraído de la Open, sabemos que es el

Finalmente, como s es el nodo extraído de la Open, sabemos que es el
$$\min_{s \in Open} f(s) \ y \ f(s)$$
 , y f(s) = g(s) + h(s), entonces:
$$\frac{c(\pi)}{c^*} \leq \frac{c(\pi)}{\min_{s \in Open} g(s) + h(s)}$$

VEAMOS NUEVAMENTE COMO FUNCIONA...

ENCONTRAMOS UNA MEJOR COTA!

Lo interesante es que al terminar una búsqueda con peso w, la cantidad

$$\frac{c(\pi)}{\min_{s \in Open} g(s) + h(s)}$$

es menor que w y por lo tanto ofrece una mejor idea de la suboptimalidad de π .

GRACIASI