### 1 Общие замечания

#### 1.1 О тексте

Данный текст представляет из себя краткий конспект лекций по курсу «Математическая логика», рассказанных студентам ИТМО (группы M3234-M3239) в 2017-2018 учебном году.

#### 1.2 Общие определения и обозначения

Прежде чем приступить к изложению содержательного материала, введём несколько базовых определений и обозначений, которые должны быть уже знакомы читателю.

- 1. Множество всех подмножеств обозначим как  $\mathcal{P}$ :  $\mathcal{P}(X) = \{C \mid C \subseteq X\}$
- 2. Упорядоченную пару каких-либо значений a и b будем обозначать как  $\langle a,b \rangle$
- 3. Пусть дано некоторое частично-упорядоченное отношением  $\sqsubseteq$  множество S. Hau-меньшим (наибольшим) элементом множества назовём такой элемент  $t \in S$ , что для любого  $s \in S$  выполнено  $t \sqsubseteq s$  ( $s \sqsubseteq t$ ).
- 4. Пусть дано некоторое частично-упорядоченное отношением  $\sqsubseteq$  множество S. Mини-мальным (максимальным) элементом множества назовём такой элемент  $t \in S$ , что не существует большего (меньшего)  $s \in S$ . Иными словами, нет такого s, что  $s \sqsubseteq t$  ( $t \sqsubseteq s$ ) и  $s \neq t$ .

Заметим, что наименьшее (наибольшее) значение всегда единственное, а минимальных (максимальных) значений может быть много.

# 2 Общая топология

Мы начинаем курс немного издалека: от некоторых базовых тем общей топологии. С одной стороны, эти знания пригодятся нам дальше в курсе, с другой — есть надежда, что они настроят слушателей курса на правильный лад.

**Определение 2.1.** Топологическим пространством мы назовём упорядоченную пару множеств  $\langle X, \Omega \rangle$ , где  $\Omega \subseteq \mathcal{P}(X)$ , отвечающую следующим трём свойствам:

- 1. Какое бы ни было семейство множеств  $\{A_{\alpha}\}$ , где  $A_{\alpha}\in\Omega$ , выполнено  $\cup_{\alpha}\{A_{\alpha}\}\in\Omega$
- 2. Какое бы ни было конечное семейство множеств  $\{A_1, \dots, A_n\}$ , где  $A_i \in \Omega$ , выполнено  $A_1 \cap A_2 \cap \dots \cap A_n \in \Omega$
- 3.  $\varnothing \in \Omega, X \in \Omega$

**Определение 2.2.** Пусть дано топологическое пространство  $\langle X, \Omega \rangle$ . Тогда любое множество  $A \in \Omega$  назовём *открытым*. Если же  $X \setminus A \in \Omega$ , то такое множество назовём *замкнутым*.

Теорема 2.1. Следующие объекты являются топологическими пространствами:

- 1. Топология стрелки:  $\langle \mathbb{R}, \{(x, +\infty) | x \in \{-\infty\} \cup \mathbb{R} \cup \{+\infty\}\} \rangle$
- 2. Дискретная топология на множестве  $X: \langle X, \mathcal{P}(X) \rangle$
- 3. Топология Зарисского на множестве  $X: \langle X, \{A \in \mathcal{P}(X) | (X \setminus A) \text{конечно } \} \rangle$

**Определение 2.3.** Внутренностью множества X (обозначается как  $\operatorname{int} X$ ) мы назовём наибольшее по включению окрытое подмножество X. Замыканием множества X (обозначается как  $\operatorname{cl} X$ ) мы назовём наименьшее по включению замкнутое надмножество X.

**Определение 2.4.** *Базой* топологического пространства  $\langle X, \Omega \rangle$  назовём любое такое семейство множеств  $\mathcal{B}$ , что каждое открытое множество представляется объединением некоторого подмножества  $\mathcal{B}$ . Или, в формальной записи,  $\Omega = \{ \cup S | S \subseteq B \}$ . Также будем говорить, что данная база  $\mathcal{B}$  задаёт топологическое пространство  $\langle X, \Omega \rangle$ .

Теорема 2.2. Классическая топология Евклидова пространства ℝ: Множество

$$\mathcal{B} = \{(a, b) | a, b \in \mathbb{R}\}\$$

является базой Евклидова пространства.

**Определение 2.5.** Топологическое пространство  $\langle X, \Omega \rangle$  назовём связным, если единственные одновременно открытые и замкнутые множества в нём —  $\varnothing$  и X.

**Теорема 2.3.** Топологическое пространство  $\langle X, \Omega \rangle$  связно тогда и только тогда, когда в нём нет двух непустых открытых множеств A и B, что  $A \cup B = X$  и  $A \cap B = \emptyset$ .

**Определение 2.6.** Назовём частичным порядком ( $\sqsubseteq$ ) на множестве X любое рефлексивное, транзитивное и антисимметричное отношение на нём.

Определение 2.7. Рассмотрим множество X с заданным на нём частичным порядком  $\sqsubseteq$ . Рассмотрим множество  $\mathcal{B}_{\sqsubseteq} = \{\{t \in X | x \sqsubseteq t\} | x \in X\}$ . Тогда топологическое пространство  $X_{\sqsubseteq}$ , задаваемое базой топологии  $\mathcal{B}_{\sqsubseteq}$ , мы назовём топологией частичного порядка ( $\sqsubseteq$ ) на X.

**Теорема 2.4.** При любом выборе X и ( $\sqsubseteq$ )  $X_{\sqsubseteq}$  является топологическим пространством.

**Определение 2.8.** Пусть задано топологическое пространство  $\langle X, \Omega \rangle$ , и пусть задано множество  $A \subseteq X$ . Тогда рассмотрим  $\Omega_A = \{S \cap A | S \in \Omega\}$ . Будем называть топологическое пространство  $\langle A, \Omega_A \rangle$  пространством с топологией, индуцированной пространством  $\langle X, \Omega \rangle$ .

**Теорема 2.5.** При любом выборе топологического пространства  $\langle X, \Omega \rangle$  и A (подмножества X) пространство с индуцированной топологией  $\langle A, \Omega_A \rangle$  является топологическим пространством.

**Определение 2.9.** Пусть задано топологическое пространство  $\langle X, \Omega \rangle$ , и пусть  $A \subseteq X$ . Тогда множество A называется связным, если оно связно как пространство с индуцированной пространством  $\langle X, \Omega \rangle$  топологией.

**Теорема 2.6.** Рассмотрим ациклический граф G с множеством вершин V. Построим по нему отношение: положим, что  $x \sqsubseteq y$ , если имеется путь из x в y (в частности, будем считать, что всегда есть путь из x в x). Тогда граф слабо связен тогда и только тогда, когда связно соответствующее топологическое пространство частичного порядка.

#### 3 Исчисление высказываний

Матлогика — это наука о правильных математических рассуждениях, а поскольку рассуждения обычно ведутся на каком-то языке, то она неразрывна связана с идеей двух языков: языка исследователя (или иначе его называют метаязыком), и предметного языка. Как следует из названий, языком исследователя пользуемся мы, формулируя утверждения или доказывая теоремы о разных способах математических рассуждений, или просто их обсуждая. Сами же математические рассуждения, собственно и составляющие предмет исследования, формализованы в некотором предметном языке.

Мы начнём с очень простого предметного языка — языка исчисления высказываний. Элементами (строками) данного языка являются некоторые выражения (формулы), по структуре очень похожие на арифметические, которые называются высказываниями.

Каждое высказывание — это либо *пропозициональная переменная* — большая буква латинского алфавита, возможно, с цифровым индексом, либо оно составлено из одного или двух высказываний меньшего размера, соединённых логической связкой.

Связок в языке мы определим 4 (хотя при необходимости этот список может быть в любой момент изменен).

- ullet отрицание: если lpha высказывание, то  $\neg lpha$  тоже высказывание.
- конъюнкция: если  $\alpha$  и  $\beta$  высказывания, то  $\alpha \& \beta$  тоже высказывание.
- ullet дизъюнкция: если  $\alpha$  и  $\beta$  высказывания, то  $\alpha \lor \beta$  тоже высказывание.
- импликация: если  $\alpha$  и  $\beta$  высказывания, то  $\alpha \to \beta$  тоже высказывание.

Также в языке можно использовать скобки вокруг выражений: если  $\alpha$  — высказывание, то  $(\alpha)$  — тоже высказывание. Если из расстановки скобок не следует иное, мы будем учитывать приоритет связок (связки в перечислении выше указаны в порядке убывания приоритета). Также, конъюнкцию и дизъюнкцию мы будем считать левоассоциативной (скобки в цепочке одинаковых связок расставляются слева направо:  $(A \lor B) \lor C$ ), а импликацию — правоассоциативной:  $A \to (B \to C)$ ).

Высказывания, подробности которых нас не интересуют, мы будем обозначать начальными буквами греческого алфавита ( $\alpha$ ,  $\beta$ ,  $\gamma$  и т.п.). Ещё мы будем называть такие высказывания *метапеременными*. Одинаковым буквам всегда соответствуют одинаковые высказывания, однако, разным буквам не обязаны соответствовать разные высказывания. При подстановке выражений вместо метапеременных мы всегда предполагаем, что эти выражения взяты в скобки.

Покажем эти правила на примере. Выражение

$$\alpha \to \neg \beta \& \gamma \lor \delta \lor \epsilon \to \zeta \lor \iota$$

нужно воспринимать так:

$$(\alpha) \to (((((\neg(\beta))\&(\gamma)) \lor (\delta)) \lor (\epsilon)) \to ((\zeta) \lor (\iota)))$$

#### 3.1 Оценка высказываний

Процесс «вычисления» значения высказываний имеет совершенно естественное определение. Мы фиксируем некоторое множество ucmunhocmhux значений V, для начала мы в качестве такого множества возьмем множество  $\{V, J\}$ , здесь V0 означает истину, а V1 — ложь. Всем пропозициональным переменным мы приписываем некоторое значение, а затем рекурсивно вычисляем значение выражения естественным для указанных связок образом.

Пусть P — множество пропозициональных переменных языка. Тогда функцию M: P o V, приписывающую истинностное значение пропозициональным переменным, мы назовём моделью (иначе: интерпретацией или оценкой переменных).

 $\Phi$ ункцию, сопоставляющую высказыванию  $\alpha$  и модели M истинностное значение, мы назовём *оценкой* высказывания и будем это записывать так:  $[\![\alpha]\!]^M$ . Обычно для указания модели M мы будем перечислять значения пропозициональных переменных, входящих в формулу:  $\llbracket P \to Q \rrbracket^{P:=\mathrm{II},Q:=\mathrm{II}} = \mathrm{II}$ . Если конкретная модель ясна из контекста или несущественна для изложения, мы можем указание на модель опустить:  $[\![P \to P]\!] = M$ 

Если  $[\![\alpha]\!]^M = \emptyset$ , то мы будем говорить, что высказывание  $\alpha$  истинно в модели M, или, иными словами, M-модель высказывания  $\alpha$ .

Тавтологией или общезначимым высказыванием мы назовём высказывание, истинное в любой модели. На языке исследователя общезначимость высказывания  $\alpha$  можно кратко записать как  $\models \alpha$ .

Указанный способ оценки высказываний мы будем называть классическим. В дальнейшем мы будем брать необычные множества истинностных значений и будем давать неожиданный смысл связкам, однако, классический способ будет всегда подразумеваться, если не указано иного. Если же мы захотим сделать на этом акцент, мы будем говорить о классических моделях исчисления высказываний, подразумевая, что если мы приписываем переменным классические значения истина и ложь, то и высказывание целиком мы оцениваем тоже по классическим правилам.

#### 3.2 Доказательства

В любой теории есть некоторые утверждения (аксиомы), которые принимаются без доказательства. В исчислении высказываний мы должны явно определить список всех возможных аксиом. Например, мы можем взять утверждение  $A\&B \to A$  в качестве аксиомы. Однако, есть множество аналогичных утверждений, например,  $B\&A \to B$ , которые не отличаясь по сути, отличаются по записи, и формально говоря, являются другими утверждениями.

Для решения вопроса мы введём понятие *схемы аксиом* — некоторого обобщённого шаблона, подставляя значения в который, мы получаем различные, но схожие аксиомы. Например, схема аксиом  $\alpha \& \beta \to \alpha$  позволяет получить как аксиому  $A\& B \to A$  (при подстановке  $\alpha := A, \beta := B$ ), так и аксиому  $B \& A \to B$ .

Возьмем следующие схемы аксиом для исчисления высказываний.

- $\alpha \to \beta \to \alpha$ (1)
- $(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$ (2)
- $\alpha \to \beta \to \alpha \& \beta$ (3)
- $\alpha \& \beta \to \alpha$ (4)
- $\alpha \& \beta \to \beta$ (5)
- (6) $\alpha \to \alpha \vee \beta$
- $\beta \to \alpha \vee \beta$ (7)
- $(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$  $(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$ (8)
- (9)
- (10)  $\neg \neg \alpha \rightarrow \alpha$

Напомним, что импликация — правоассоциативная операция, поэтому скобки в схеме аксиом 1, например, расставляются так:  $(\alpha) \to ((\beta) \to (\alpha))$ 

Помимо аксиом, нам требуется каким-то образом научиться преобразовывать одни верные утверждения в другие. Сделаем это с помощью правил вывода. У нас пока будет одно правило вывода — Modus Ponens. Это также схема, она позволяет при доказанности двух формул  $\psi$  и  $\psi \to \phi$  считать доказанной формулу  $\phi$ .

Определение 3.1. Доказательство в исчислении высказываний — это некоторая конечная последовательность выражений  $\alpha_1, \alpha_2 \dots \alpha_n$  из языка L, такая, что каждое из утверждений  $\alpha_i (1 \le i \le n)$  либо является аксиомой, либо получается из других утверждений  $\alpha_{P_1}, \alpha_{P_2} \dots \alpha_{P_k} \ (P_1 \dots P_k < i)$  по правилу вывода.

**Определение 3.2.** Высказывание  $\alpha$  называется доказуемым, если существует доказательство  $\alpha_1, \alpha_2 \dots \alpha_k$ , и в нем  $\alpha_k$  совпадает с  $\alpha$ .

Вообще, схемы аксиом и правила вывода существуют для удобства задания исчисления. В дальнейшем будет очень неудобно возиться с этими объектами. Поэтому мы считаем, что в исчислении имеется бесконечно много аксиом и правил вывода, которые порождаются подстановкой всех возможных формул вместо параметров в схемы.

В качестве сокращения записи в языке исследователя мы будем писать  $\vdash \alpha$ , чтобы сказать, что  $\alpha$  доказуемо.

Традиционно правило вывода Modus Ponens записывают так:

$$\frac{\alpha \quad \alpha \to \beta}{\beta}$$

# 4 Теорема о дедукции

Соглашение об обозначениях. Будем обозначать буквами  $\Gamma, \Delta, \Sigma, \Pi$  списки формул (возможно, пустые).

Определение 4.1. Вывод из допущений. Пусть  $\Gamma$  – некоторый список высказываний, а  $\alpha$  — некоторое высказывание. Тогда мы будем говорить, что высказывание  $\alpha$  выводимо из  $\Gamma$  (и записывать это как  $\Gamma \vdash \alpha$ ), если существует такая последовательность высказываний  $\alpha_1, \alpha_2, \dots \alpha_{n-1}, \alpha$  (называемая выводом  $\alpha$  из  $\Gamma$ ), что каждое из высказываний  $\alpha_i$  — это

- либо аксиома,
- либо получается по правилу Modus Ponens из предыдущих высказываний,
- либо высказывание из списка Г.

Элементы  $\Gamma$  мы будем называть *допущениями*. Также эти элементы называют предположениями или гипотезами.

В свете данного определения можно заметить, что доказательство — это вывод из пустого списка допущений.

**Теорема 4.1.** Теорема о дедукции. Утверждение  $\Gamma \vdash \alpha \to \beta$  справедливо тогда и только тогда, когда справедливо, что  $\Gamma, \alpha \vdash \beta$ .

Для доказательства рассмотрим следующую лемму:

**Лемма 4.2.**  $\vdash \alpha \rightarrow \alpha$ 

Доказательство.

$$\begin{array}{lll} (1) & \alpha \rightarrow (\alpha \rightarrow \alpha) & \text{Cx. akc. 1} \\ (2) & (\alpha \rightarrow (\alpha \rightarrow \alpha)) \rightarrow (\alpha \rightarrow ((\alpha \rightarrow \alpha) \rightarrow \alpha)) \rightarrow (\alpha \rightarrow \alpha) & \text{Cx. akc. 2} \\ (3) & (\alpha \rightarrow ((\alpha \rightarrow \alpha) \rightarrow \alpha)) \rightarrow (\alpha \rightarrow \alpha) & \text{M.P. 1,2} \\ (4) & (\alpha \rightarrow ((\alpha \rightarrow \alpha) \rightarrow \alpha)) & \text{Cx. akc. 1} \\ (5) & \alpha \rightarrow \alpha & \text{M.P. 4,3} \end{array}$$

Доказательство теоремы 4.1. Сперва докажем прямое следствие. Для этого нам достаточно научиться по любому выводу  $\alpha \to \beta$  из  $\Gamma$  строить вывод  $\beta$  из  $\Gamma, \alpha$ . Возьмем вывод формулы  $\alpha \to \beta$ , то есть некоторую последовательность формул  $\delta_1 \dots \delta_{m-1}$ ;  $\alpha \to \beta$ . Добавив к выводу 2 формулы, получаем требуемый вывод:

П

(1) 
$$\delta_1$$
 ....  $(m-1)$   $\delta_{m-1}$   $(m)$   $\alpha \to \beta$   $(m+1)$   $\alpha$  «Свежедобавленная» аксиома  $(m+2)$   $\beta$  М.Р.  $m, m+1$ 

Теперь докажем обратное. Нам необходимо построить вывод утверждения  $\Gamma \vdash \alpha \to \beta$  по имеющемуся выводу  $\delta_1 \dots \delta_{m-1}, \beta$ . Мы поступим так: сперва набросаем план вывода – разместим по тексту «ключевые» формулы, которые потом дополним до полноценного вывода промежуточными формулами.

План вывода будет такой:

(1) 
$$\Gamma \vdash \alpha \rightarrow \delta_1$$
  
...  $(m-1)$   $\Gamma \vdash \alpha \rightarrow \delta_{m-1}$   
 $(m)$   $\Gamma \vdash \alpha \rightarrow \beta$ 

Теперь надо дополнить его до полноценного вывода. Будем рассматривать формулы подряд и перед каждой формулой добавлять некоторое количество формул, обосновывающих соответствующий шаг доказательства. Рассмотрим формулу номер i. Возможны следующие варианты:

- 1.  $\delta_i$  это аксиома или предположение, входящее в  $\Gamma$ . Тогда перед этой формулой вставим формулы  $\delta_i$  и  $\delta_i \to (\alpha \to \delta_i)$ , и окажется, что i-я формула выводится из предыдущих двух формул путем применения правила Modus Ponens.
- 2.  $\delta_i$  совпадает с  $\alpha$ . Тогда мы вставим перед ней 4 первые формулы из леммы, и  $\delta_i \to \alpha$  будет получаться по правилу Modus Ponens.
- 3.  $\delta_i$  выводится по правилу Modus Ponens из каких-то других утверждений  $\delta_j$  и  $\delta_k$  (при этом  $\delta_k \equiv \delta_j \to \delta_i$ ), где j < i и k < i. Покажем, что  $\alpha \to \delta_i$  тоже может быть выведена из утверждений  $\alpha \to \delta_i$  и  $\alpha \to (\delta_i \to \delta_i)$ .

Для этого добавим два высказывания:

$$\begin{array}{ll} (\alpha \to \delta_j) \to ((\alpha \to (\delta_j \to \delta_i)) \to (\alpha \to \delta_i)) & \text{Cx. akc. 2} \\ ((\alpha \to (\delta_j \to \delta_i)) \to (\alpha \to \delta_i)) & \text{M.P. из } j \text{ и } i - 6 \end{array}$$

По аналогии мы можем рассмотреть отношение *следования*. Будем говорить, что высказывание  $\alpha$  следует из высказываний  $\Gamma$ , если при любой оценке пропозициональных переменных, входящих в высказывания  $\Gamma$  и  $\alpha$ , на которых все высказывания из  $\Gamma$  истинны,  $\alpha$  также истинно. Записывать, что  $\alpha$  следует из  $\Gamma$ , будем так:  $\Gamma \models \alpha$ .

# 5 Теорема о полноте исчисления высказываний

Определение 5.1. Введем обозначение. Пусть  $\alpha$  — это некоторое высказывание, а x — некоторое истинностное значение. Тогда обозначим за  $_{[x]}\alpha$  высказывание  $\alpha$ , если x — истина, и  $\neg(\alpha)$ , если x — ложь. Также, если формула  $\alpha$  — это формула с n пропозициональными переменными  $P_1 \dots P_n$ , и  $x_1 \dots x_n$  — некоторые истинностные значения, то за  $[\![\alpha]\!]^{P_1:=x_1,\dots P_n:=x_n}$  обозначим значение формулы  $\alpha$  при подстановке значений  $x_1 \dots x_n$  вместо переменных  $P_1 \dots P_n$ .

**Лемма 5.1.** Если  $\Gamma, \Sigma \vdash \alpha$ , то  $\Gamma, \Delta, \Sigma \vdash \alpha$ . Если  $\Gamma, \Delta, \Sigma, \Pi \vdash \alpha$ , то  $\Gamma, \Sigma, \Delta, \Pi \vdash \alpha$ .

Доказательство. Упражнение

**Лемма 5.2.** Если справедливы 3 утверждения:  $\Gamma \vdash \gamma$ ,  $\Delta \vdash \delta$  и  $\gamma$ ,  $\delta \vdash \alpha$ , то справедливо и  $\Gamma$ ,  $\Delta \vdash \alpha$ 

Доказательство. Упражнение

Возьмем некоторую связку исчисления высказываний, например конъюнкцию: A&B. Построим для нее таблицу истинности. По каждой строчке построим утверждение, в котором отрицания появляются там, где в таблице истинности находится  $\mathcal{I}$ :

| A | B | A&B | утверждение                           |
|---|---|-----|---------------------------------------|
| Л | Л | Л   | $\neg A, \neg B \vdash \neg (A \& B)$ |
| Л | И | Л   | $\neg A, B \vdash \neg (A \& B)$      |
| И | Л | Л   | $A, \neg B \vdash \neg (A \& B)$      |
| И | И | И   | $A, B \vdash A \& B$                  |

Лемма 5.3. Каждое из построенных по таблицам истинности утверждений доказуемо.

Доказательство. Упражнение.

**Лемма 5.4** (Правило контрапозиции). Каковы бы ни были формулы  $\alpha$  и  $\beta$ , справедливо, что  $\vdash (\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$ 

Доказательство. Сперва докажем, что  $\alpha \to \beta$ ,  $\neg \beta \vdash \neg \alpha$ .

- (1)  $(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$  Cx. akc. 9
- (2)  $\alpha \to \beta$  Допущение
- (3)  $(\alpha \to \neg \beta) \to \neg \alpha$  M.P. 2,1
- (4)  $\neg \beta \rightarrow (\alpha \rightarrow \neg \beta)$  Cx. akc. 1
- (5)  $\neg \beta$  Допущение
- (6)  $\alpha \rightarrow \neg \beta$  M.P. 5,4
- (7)  $\neg \alpha$  M.P. 6,3

Тогда, применив 2 раза Теорему о дедукции, получим вывод требуемого утверждения.

**Лемма 5.5.** Правило исключенного третьего. Какова бы ни была формула  $\alpha, \vdash \alpha \lor \neg \alpha$  Доказательство. Доказательство проведем в 3 этапа.

- 1. Для начала покажем  $\vdash \neg(\alpha \lor \neg \alpha) \to \neg \alpha$ :
  - (1)  $\alpha \to \alpha \vee \neg \alpha$  Cx. akc. 6
  - $(2)\dots(n+1)$   $\gamma_1,\dots\gamma_{n-1},(\alpha\to\alpha\vee\neg\alpha)\to(\neg(\alpha\vee\neg\alpha)\to\neg\alpha)$  Д-во из леммы 5.4 (n+2)  $\neg(\alpha\vee\neg\alpha)\to\neg\alpha$  М.Р. 1,n+1
- 2. Затем докажем  $\vdash \neg(\alpha \lor \neg \alpha) \rightarrow \neg \neg \alpha$ :
  - (1)  $\neg \alpha \rightarrow \alpha \vee \neg \alpha$  Cx. akc. 7
  - $\begin{array}{ll} (2)\dots(k+1) & \delta_1,\dots\delta_{k-1}, (\neg\alpha\to\alpha\vee\neg\alpha)\to (\neg(\alpha\vee\neg\alpha)\to\neg\neg\alpha) & \text{Д-во из леммы 5.4} \\ (k+2) & \neg(\alpha\vee\neg\alpha)\to\neg\neg\alpha & \text{M.P. } 1.k+1 \end{array}$
- 3. Теперь докажем все вместе:
  - (1)  $\neg(\alpha \lor \neg \alpha) \to \neg \alpha$  по пункту 1
  - (2)  $\neg(\alpha \lor \neg \alpha) \to \neg \neg \alpha$  по пункту 2
  - (3)  $(\neg(\alpha \lor \neg \alpha) \to \neg \alpha) \to (\neg(\alpha \lor \neg \alpha) \to \neg \neg \alpha) \to (\neg \neg(\alpha \lor \neg \alpha))$  Cx. akc. 9
  - (4)  $(\neg(\alpha \lor \neg \alpha) \to \neg\neg(\alpha) \to \neg\neg(\alpha \lor \neg\alpha)$  M.P. 1,3
  - (5)  $\neg \neg (\alpha \lor \neg \alpha)$  M.P. 2,4
  - (6)  $\neg \neg (\alpha \lor \neg \alpha) \to (\alpha \lor \neg \alpha)$  Cx. akc. 10
  - (7)  $\alpha \vee \neg \alpha$  M.P. 5,6

**Лемма 5.6.** Об исключении допущения. Пусть справедливо  $\Gamma, \rho \vdash \alpha$  и  $\Gamma, \neg \rho \vdash \alpha$ . Тогда также справедливо  $\Gamma \vdash \alpha$ .

Доказательство. Упражнение

**Теорема 5.7.** О полноте исчисления высказываний. Пусть справедливо  $\models \alpha$ . Тогда также справедливо, что  $\vdash \alpha$ .

Доказательство. Для доказательства теоремы мы докажем чуть более сильное утверждение — что для любого k от 0 до n и любой оценки переменных  $x_1, \ldots x_k$  справедливо  $[x_1]P_1, \ldots [x_k]P_k \vdash \alpha$ . Нетрудно заметить, что утверждение теоремы непосредственно следует из данного утверждения для k=0. Доказательство будет вестись индукцией по n-k.

База. Пусть n-k=0, то есть k=n.  $\models \alpha$  означает, что при любой оценке  $x_1,\ldots x_n$  пропозициональных переменных  $P_1,\ldots P_n$  справедливо  $\alpha[P_1:=x_1,\ldots P_n:=x_n]=$  И. Возьмем некоторую оценку переменных  $x_1,\ldots x_n$ . Тогда, по лемме 5,  $[x_1]P_1,\ldots [x_n]P_n \vdash \alpha[P_1:=x_1,\ldots P_n:=x_n]\alpha$  то есть  $[x_1]P_1,\ldots [x_n]P_n \vdash \alpha$ .

Переход. Пусть утверждение уже доказано для некоторого n-k>0, покажем его для n-k+1 (то есть доказано для k< n, покажем его для k-1). Возьмем некоторую оценку переменных  $x_1, \ldots x_{k-1}$ . По предположению,  $[x_1]P_1, \ldots [x_k]P_k \vdash \alpha$ , то есть

Тогда по лемме об исключении допущения, справедливо  $[x_1]P_1, \ldots [x_{k-1}]P_{k-1} \vdash \alpha$ .

**Теорема 5.8.** О корректности исчисления высказываний. Пусть справедливо  $\vdash \alpha$ . Тогда также справедливо, что  $\models \alpha$ .

Доказательство. По условию теоремы, у нас есть доказательство высказывания  $\alpha$ , то есть последовательность высказываний  $\alpha_1, \dots \alpha_m$ . Каждое высказывание — это либо аксиома, либо применение правила Modus Ponens. Докажем, что для каждого k все высказывания  $\alpha_l$  при  $l \leq k$  — тавтологии. Доказательство будем вести индукцией по k.

База. Пусть k=0, тогда нет ни одного высказывания, про которое нужно доказать, что оно — тавтология, то есть утверждение автоматически верно.

Переход. Пусть для некоторого k утверждение справедливо, докажем его для k+1. Выберем некоторую оценку  $x_1, \ldots x_n$  пропозициональных переменных  $P_1, \ldots P_n$ , использованных в высказываниях  $\alpha_1 \ldots \alpha_{k+1}$ . Рассмотрим случаи.

Пусть  $\alpha_{k+1}$  — аксиома. В данную аксиому входят одна, две или три формулы  $\beta_1, \beta_2, \beta_3$ . Подставив всех возможных истинностных значений вместо данных формул можно проверить, что все аксиомы являются тавтологиями, значит, они будут истинны и на тех конкретных значениях, которые примут данные формулы после подстановки значений  $x_1, \dots x_n$ .

Пусть  $\alpha_{k+1}$  получается по правилу Modus Ponens из  $\alpha_p$  и  $\alpha_q$ , причем  $\alpha_q \equiv \alpha_p \to \alpha_{k+1}$ . Тогда  $[\![\alpha_p]\!]^{P_1:=x_1,\dots P_n:=x_n}=$  И и  $[\![\alpha_p]\!]^{P_1:=x_1,\dots P_n:=x_n}=$  И. Из таблицы истинности импликации следует, что неизбежно  $[\![\alpha_{k+1}]\!]^{P_1:=x_1,\dots P_n:=x_n}=$  И.

Заметим, что вместе из этих двух теорем следует, что если неверно, что  $\vdash \alpha$ , то неизбежно найдется контрпример.

# 6 Интуиционистское исчисление высказываний

Одна из главных причин возникновения математической логики — кризис в математике начала XX века. Классический пример такого — парадокс Рассела, утверждающий, что понятие «множества всех не принадлежащих себе множеств» противоречиво. В самом деле, пусть  $X = \{t \mid t \notin t\}$ . Рассмотрим  $X \in X$ . Обе возможных альтернативы —  $X \in X$  и  $X \notin X$  — вступают в противоречие с определением множества X. Значит, мы можем сделать вывод, множества X не существует.

С одной стороны, в этом нет проблемы: мы не переживаем, если не найдём числа  $t \in \mathbb{N}$ , такого, что t = t и  $t \neq t$  одновременно. Но, с другой стороны, в формальном определении множества X на первый взгляд нет никаких проблем. Единственная, по-видимому, для современного читателя непривычная деталь в данном определении — множество, принадлежащее самому себе, но если вспомнить язык Java, то это возражение не должно вызывать никаких серьёзных сомнений. Просто рассмотрите следующее определение:

```
class IntList {
    IntList next;
    int value;
}
```

Парадокс Рассела был получен не сразу, а через несколько лет после появления теории множеств и построения значительного количества математических теорий на её основе. Из этого возникает сомнение, нет ли таких же противоречий и в определении, например, вещественных чисел, просто глубже скрытых. Вдруг через несколько лет какой-то математик найдёт противоречия в математическом анализе — и значительную часть теории придётся пересмотреть или вообще признать ошибочной.

Было предложено много подходов к решению этой проблемы. Современный (классический) подход состоит в том, чтобы так формализовать теорию множеств, чтобы в ней не возникало парадоксов. Была сформулирована программа, предполагавшая своей целью доказательство непротиворечивости такой формальной теории. Однако, в 30-е годы Куртом Гёделем было показано, что такое доказательство минимально удовлетворительной надёжности построить невозможно. Конечно, самая распространённая формализация теории множеств — аксиоматика Цермело-Френкеля — оформилась в современном виде в 1925 году, почти 100 лет назад, и пока никаких противоречий в ней не было найдено. Но здесь всегда остаётся место для сомнений.

Поэтому интерес представляют альтернативные подходы к проблеме. Данный раздел посвящён интуиционистской логике. Математики, стоявшие у истоков данной логики, видели решение в том, чтобы исключить из рассмотрения «неконструктивные» объекты — объекты, метода построения которых не предложено. В частности, множество X из примера выше является примером неконструктивного объекта. Мы слишком легко приняли на веру возможность его существования и получили противоречие.

Столь резкие результаты получаются не всегда, но в целом в математике имеет место довольно много утверждений, пусть и не противоречивых, но выглядящих совершенно антиинтуитивно. Например, широко известна теорема Банаха-Тарского, утверждающая, что трёхмерный шар можно разрезать на конечное число попарно непересекающихся частей, из которых потом можно составить два шара того же размера.

# ВНК-интерпретация

ВНК-интерпретация логики названа по именам математиков, её предложивших (Л. Брауэр, А. Гейтинг и А. Колмогоров). Они решили изменить сам подход к математическому рассуждению, предположив, что математик не думает в стиле классической логики, и что правильно, поэтому, попробовать формализовать «интуитивный» стиль.

Попробуем сформулировать эти соображения применительно к логическим связкам исчисления высказываний. Будем определять интерпретацию индуктивно. Пусть даны высказывания P и Q, тогда:

- мы считаем P&Q доказанным, если у нас есть доказательство высказывания P и доказательство высказывания Q;
- мы считаем  $P \lor Q$  доказанным, если у нас есть доказательство P или есть доказательство Q (т.е. мы знаем, какая из двух альтернатив выполнена);
- мы считаем  $P \to Q$  доказанным, если мы умеем перестраивать любое доказательство высказывания P в доказательство высказывания Q;
- мы считаем  $\bot$  утверждением, не имеющим доказательства.
- $\neg P$  есть сокращение для  $P \to \bot$ . Иными словами, мы считаем  $\neg P$  доказанным, если мы умеем из доказательства P получить противоречие.

Проиллюстрировать подход можно на примере следующей теоремы.

**Теорема 6.1.** Существуют два таких вещественных иррациональных числа p и q, что  $p^q \in \mathbb{O}$ .

Доказательство. Рассмотрим два случая:

- 1. если  $\sqrt{2}^{\sqrt{2}} \in \mathbb{Q}$ , то мы нашли требуемые числа:  $p = q = \sqrt{2}$ ;
- 2. если же  $\sqrt{2}^{\sqrt{2}} \notin \mathbb{Q}$ , то рассмотрим  $p = \sqrt{2}^{\sqrt{2}}$  и  $q = \sqrt{2}$ , тогда  $p^q = \sqrt{2}^{\sqrt{2}\sqrt{2}} = 2 \in \mathbb{Q}$ .

Данная теорема, хоть и доказывает факт существования таких чисел, ничего не говорит по поводу того, какой из двух случаев имеет место — то есть, она неконструктивна. В самом деле, обозначим факт того, что  $\sqrt{2}^{\sqrt{2}} \in \mathbb{Q}$  за P, а итоговое утверждение теоремы — за S. Мы показываем, что  $P \to S$ , и что  $\neg P \to S$ . Однако, чтобы перейти к просто S, нам нужно показать  $P \vee \neg P$ . Несложно видеть, что в ВНК-интерпретации нет простого способа это сделать: чтобы считать дизъюнкцию доказанной, мы должны знать, какой из случаев имеет место. Поэтому, данное рассуждение не является доказательством в ВНК-интерпретации.

Для программистов же здесь важным является следующее соображение: эта теорема не позволяет написать программу, ищущую эти два числа. Скажем, теорема о дедукции не такова: её доказательство позволяет построить такую программу, предъявляющую объект, существование которого утверждает теорема.

#### Формализация интуиционистской логики

Исходный постулат интуиционистской логики состоит в том, что никакая формализация не является первичной. Мы выбираем те или иные правила только потому, что они соответствуют заявленным целям. Мы также вольны в любой момент правила поменять, если на то будут серьёзные основания.

У интуиционистской логики есть несколько формализаций, рассмотрим наиболее распространённую. Заменим аксиому устранения двойного отрицания (10-ю) на  $\alpha \to \neg \alpha \to \beta$ . Полученную систему назовём аксиоматикой интуиционистского исчисления высказываний.

В у данной аксиоматики есть интересные свойства, отсутствующие в классическом исчислении высказываний. Например, если  $\vdash_{\tt N} \alpha \lor \beta$ , то  $\vdash_{\tt N} \alpha$ , либо  $\vdash_{\tt N} \beta$  — сравните с ВНК-интерпретацией дизъюнкции. Данное следствие поясняет обоснованность замены аксиомы, в дальнейшем оно будет доказано формально.

# 6.1 Булева алгебра и Топологическая интерпретация интуиционистского исчисления высказываний

Мы построим две параллельные интерпретации для классической и интуиционистской логики.

#### Определение 6.1.

Пусть дано некоторое исчисление высказываний, для которого нам нужно построить модель — предложить способ оценки истинности выражений. Начинаем мы с множества истинностных значений. Возьмем в качестве этого множества все открытые множества некоторого заранее выбранного топологического пространства. Определим оценку для связок интуиционистского исчисления высказываний следующим образом:

$$[A\&B]] = [A] \cap [B] 
[A \lor B]] = [A] \cup [B] 
[A \to B]] = (c[A]] \cup [B])^{\circ} 
[\neg A]] = (c[A])^{\circ}$$

Будем считать, что формула истинна в данной модели, если её значение оказалось равно всему пространству.

Например, возьмем в качестве пространства  $\mathbb{R}$ , и вычислим значение формулы  $A \vee \neg A$  при A равном (0,1):  $[\![A \vee \neg A]\!] = (0,1) \cup [\![\neg A]\!] = (0,1) \cup (c(0,1))^\circ = (0,1) \cup ((-\infty,0) \cup (1,\infty)) = (-\infty,0) \cup (0,1) \cup (1,\infty)$ . Нетрудно видеть, что данная формула оказалась не общезначимой в данной интерпретации.

# 7 Литература

# Список литературы

[1] Виро О.Я., Иванов А.О., Нецветаев Н.Ю., Харламов В.М. Элементарная топология — М.: МЦНМО, 2012