June 2006 6678 Mechanics M2 Mark Scheme

Question Number	Scheme		
1.	$a = 5 - 2t \implies v = 5t - t^2, +6$	M1 A1, A	
	$v = 0 \implies t^2 - 5t - 6 = 0$	indep M1	
	(t-6)(t+1)=0	dep M1	
		A1	
	$t = \underline{6} \underline{s}$		
2. (a)	$\frac{P}{24} = 600 \text{ or } \frac{1000P}{24} = 600 \implies P = 14.4kW$	M1 A1	
(b)	$\frac{30000}{20} - 1200 \times 9.8 \times \sin \alpha - 600 = 1200a$	M1 A2,1,0	
	$\Rightarrow a = \underline{0.4 \mathrm{m s^{-2}}}$	A1	
3. (a)	7 (0.5(1.5) + 20) (20))	M1	
	$I = \pm 0.5(16\mathbf{i} + 20\mathbf{j} - (-30\mathbf{i}))$ $= \pm (23\mathbf{i} + 10\mathbf{i})$	M1	
	$= \pm (23i + 10j)$ $magn = \sqrt{(23^2 + 10^2)} \approx 25.1 \text{ Ns}$	Indep M1 Indep M1	
	$magn - \sqrt{23 + 10} \approx 23.1 \text{ ins}$	mucp wir	
(b)	$\mathbf{v} = 16\mathbf{i} + (20 - 10t)\mathbf{j}$	M1	
	$t = 3 \implies \mathbf{v} = 16\mathbf{i} - 10\mathbf{j}$	indep M1	
	$v = \sqrt{(16^2 + 10^2)} \approx 18.9 \mathrm{m s^{-1}}$	indep M1	
,			

4. (a)	Total mass = $12m$ (used)	M1 indep M1
	(i) $M(AB)$: $m.3a/2 + m.3a/2 + m.3a + 6m.3a + 2m.3a = 12m.x$	macp wit
	$\Rightarrow x = \frac{5}{2}a$	
	(ii) $M(AD)$: $m.a + m.a + m.2a + 6m.2a = 12m.y$	indep M1
	$\Rightarrow y = \frac{4}{3}a$	A1
(b)	$\tan \alpha = \frac{2a - 4a/3}{5a/2}$	M1 A1 f.t
	$\Rightarrow \alpha \approx 14.9^{\circ}$	A1 cao
5. (a)	$x_A = 28t x_B = 35 \cos \alpha t$	B1 B1
	Meet \Rightarrow 28t = 35 cos α t \Rightarrow cos α = 28/35 = 4/5 *	M1 A1
(b)		
	$y_A = 73.5 - \frac{1}{2} gt^2$ $y_B = 21t - \frac{1}{2} gt^2$	B1 B1
	Meet \Rightarrow 73.5 = 21 $t \Rightarrow t = 3.5 \text{ s}$	M1 A1
6. (a)	M(A):	
	$S.3a = 4mg.2a\cos\alpha + mg.4a\cos\alpha$	M1 A1
	$= \frac{48}{5} mga \implies S = \frac{16}{5} mg *$	A1
(b)	$R(\uparrow)$: $R + S \cos \alpha = 5mg$	
` ´	$R(\rightarrow)$: $F = S$ since	M1 A1
		M1 A1
	$F \le \mu R \implies \mu \ge \frac{48}{61} *$	dep on bot previous M M1 A1
(c)	Direction of S is perpendicular to plank or No friction at the peg	B1

7. (a)	$R = 4g \cos \alpha = 16g/5 \Rightarrow F = 2/7 \times 16g/5$ $Work done = F \times 2.5 = \underline{22.4 \text{ J}} \text{ or } 22 \text{ J}$	M1 .
(b)	$\frac{1}{2} \times 4 \times u^2 = 22.4 + 4g \times 2.5 \times 3/5$ $\Rightarrow u \approx 6.37 \text{ m s}^{-1} \qquad \text{or } 6.4 \text{ ms}^{-1}$	M1 A2,1,0 A1cao
(c)	$ \frac{1}{2} \times 4 \times v^{2} = \frac{1}{2} \times 4 \times u^{2} - 44.8 $ [OR \frac{1}{2} \times 4 \times v^{2} = 0 + 4g \times 2.5 \times 3/5 - 22.4] $ \Rightarrow v \approx 4.27 \text{ m s}^{-1} \qquad \text{or } 4.3 \text{ ms}^{-1} $	M1 A2,1,0
8. (a)	$u \xrightarrow{m} \bigcirc 4m$	
	$w = 4mw - mv$ $eu = w + v$ $\Rightarrow w = (\frac{1+e}{5})u, v = (\frac{4e-1}{5})u$	M1 A1 M1 A1 Indep M1
(b)	$w' = \left(\frac{4+4e}{25}\right)u$ Second collision $\Rightarrow w' > v$ $\Rightarrow \frac{4+4e}{25} > \frac{4e-1}{5}$	B1 f.t. M1
	\Rightarrow $e < 9/16$	dep M1 A
	Also $v > 0 \implies e > 1/4$ Hence result (*)	

(c)			
	KE lost = $\frac{1}{2}mu^2 - \left[\frac{1}{2}.4m\{(u/5)(1+e)\}^2 + \frac{1}{2}m\{(u/5)(4e-1)\}^2\right]$	M1 A1 f.t.	
	$=\frac{3}{2}mu^2$		M1 A1 f.t
	$= \frac{3}{10}mu^2$		A1 cao