Homework 5 Advanced Algebra I

Homework 5

ALECK ZHAO

October 6, 2016

Section 2.4: Cyclic Groups and the Order of an Element

- 4. In each case determine whether G is cyclic.
 - (a) $G = \mathbb{Z}_7^*$
 - (b) $G = \mathbb{Z}_{12}^*$
 - (c) $G = \mathbb{Z}_{16}^*$
 - (d) $G = \mathbb{Z}_{11}^*$
- 20. (a) Find three elements of $C_6 \times C_{15}$ of maximum order.
 - (b) Find one element of maximum order in $C_m \times C_n$.
- 28. Let H be a subgroup of a group G and let $a \in G$, o(a) = n. If m is the smallest positive integer such that $a^m \in H$, show that m|n.

Section 2.5: Homomorphisms and Isomorphisms

- 3. If G is any group, define $\alpha: G \to G$ by $\alpha(g) = g^{-1}$. Show that G is abelian if and only if α is a homomorphism.
- 6. Show that there are exactly two homomorphisms $\alpha: C_6 \to C_4$.
- 13. Show that $G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$ is a subgroup of $GL_2(\mathbb{Z})$ isomorphic to $\{1, -1, i, -i\}$.
- 25. Are the additive groups $\mathbb Z$ and $\mathbb Q$ isomorphic?
- 33. If $Z(G) = \{1\}$, show that $G \cong \text{inn}G$.

Section 2.6: Cosets and Lagrange's Theorem

- 1. In each case find the right and left cosets in G of the subgroups H and K of G.
 - (e) $G = D_4 = \{1, a, a^2, a^3, b, ba, ba^2, ba^3\}, o(a) = 4, o(b) = 2, \text{ and } aba = b; H = \langle a^2 \rangle, K = \langle b \rangle.$
 - (f) G = any group; H is any subgroup of index 2.
- 17. Let $|G| = p^2$, where p is a prime. Show that every proper subgroup of G is cyclic.