

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1952

Stress concentrations around reinforced circular cutouts in metalite panels in tension.

Lieber, James C.

University of Minnesota

http://hdl.handle.net/10945/14613

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

Lieber

Stress concentrations around reinforced circular cutouts in Matalite panels in tension.

Library U. S. Naval Postgraduate School Monterey, California

١

STATISS CURCUMTRATIONS

ARCUMD

ELIPOLORD CILCULAR OUTCOURS

IN

ASTALITA FATTLES IN TOFFICH

A Thesis
Submitted to the Oraduate Faculty
of the
University of Winnesota

by James C. Lieber

In Partial Fulfillment of the Requirements

for the
Regree of Rester of Science in Aeronautical Engineering
New, 1952

TABLE OF CONTINUES

Section	2000
J. WAX	. 1
I PROPERTION	. 3
TURORETICAL AMALTSIS	. 4
JIFF TE AND I DONINGER	. 9
MATERIA OF MEDIES	. 13
C. OLUBION	. 16
BIBLIOGRAFHT	. 17
FINANCE	. 18
TALES	. 38
AP. TIX	
A. Stress formules as derived in	
Reference (b)	. 51
B. Calculations	. 55

SUMMANY

this investigation is concerned with the problem of obtaining a means for designing reinforcing doublers for circular cutouts in tension panels. Tension panels include sendwich type material on which the doublers may be riveted or bonded.

The enalysis was limited to a plane short of infinite width. All tests were performed on Metalite with .000 in. faces and .5 in. balse cores.

From previously determined formulas, a chart was developed which expresses the maximum stress concentration at a cutout as a function of the ratios of doubler radius to outout radius and of sheet thickness to doubler thickness. The results of the tests on non-infinite Metalite verified this chart and also demonstrated that bending is superior to riveting as a means of attachment of doublers to Metalite.

I FRE LIETIN

The modern already has become factor, heavier, and more dependent on a large outly of fact. The structures are complex and have more outcute for accessory holes, doors, windows, etc. It is necessary, therefore, that these cutouts be reinforced in such a manner as to provide maximum stress reduction at a minimum weight. At the present time this is more or less a "out and try" process.

Sandwich type material is one of the new developments for aircraft. It consists of two thin sheets of metal with a relatively thick, non-homogeneous, core of low density naturally bended together. Seinforcing doublers may be intermally bended or externally riveted.

This investigation was undertaken with two thoughts in sind: First, to derive a means for determination of the proper size of doubler to be used for a given cutous, and: second, to compare the honded doublers with the riveted doublers as to their effectiveness in the reduction of stress comparation.

The analysis was limited to the condition of uniform tension replied to a plane sheet of infinite width having a centrally located circular output with concentric doubler.

The tests were made on retalite panels fabricated by Chance Yought Division of United Aircraft Corp. The panels 2nd .032 in. faces of 7237-6 Alchad and a .5 in. core of 7-9 lb/ft; density and grain balsa. They were bonded with ledux. Internal doublers of .032 in. and .066 in. and an external riveted doubler of .064 in. were used. Cutouts varied from 3 in. to 5 in. while the doublers were 9 in. in dissector. A uniform condition of tension was attempted but not achieved for the tents.

The author wishes to express his appreciation to Irofessor Joseph A. Wise for his valuable advice and assistance on all phases of the investigation, and to Wr. E. F. MccConough and Wr. W. C. Broding of Chance Vought Aircraft Division for their assistance in helping formulate the problem and for furnishing the Metalite test panels.

This project was carried out during the academic year 1981-1982 at the University of Minnesota under the supervision of Professor Joseph 4. Wise, thesis adviser.

-

THE FIGAL AND LYTIS

If a plane sheet of infinite width has a centrally located hole and is subjected to a uniform tensile local, it will be found that a maximum atrees concentration occurs at the border of the hole at an engle of 90° from the direction of the applied tension. From St. Venant's principle, it can be concluded that the stress increase diminishes rapidly away from the mole.

Figure 1

Considering Fig. (1); as given in Ref. (a), if b is large in comparison to a (five times or more), it can be assumed that stresses at radius b are essentially the same as in a plate with no hole and are given as;

$$(\sigma_{Y})_{Y=b} = \frac{1}{2}S + \frac{1}{2}S \cos 2\theta$$

 $(J_{Y\theta})_{Y=b} = -\frac{1}{2}S \sin 2\theta$

These forces acting on a ring of radii a and b have been a come to give the stress distribution within the ring expressed by

Benefit - - Link

.....

the equations:

$$G_{\gamma} = \frac{1}{2} S \left(1 - \frac{Q^{2}}{\gamma^{2}} \right) + \frac{1}{2} S \left(1 + \frac{3Q^{4}}{\gamma^{4}} - \frac{4Q^{2}}{\gamma^{2}} \right) \cos 2\theta$$

$$G_{\theta} = \frac{1}{2} S \left(1 + \frac{Q^{2}}{\gamma^{2}} \right) - \frac{1}{2} S \left(1 + \frac{3Q^{4}}{\gamma^{4}} \right) \cos 2\theta$$

$$J_{1\theta} = -\frac{1}{2} S \left(1 - \frac{3Q^{4}}{\gamma^{4}} + \frac{2Q^{2}}{\gamma^{2}} \right) \sin 2\theta$$

It can be found that when r=a and $\Theta: \frac{\pi}{2}$, $\frac{5\pi}{2}$ that $\sigma_r = J_{1\Theta}=0$ and that $\sigma_{\Theta} = \sigma_{\Theta} = a = 3$.

It is this stress concentration of 28 that must be reduced by a reinforcing doubler. As shown in lef.(b), the above formulas were further developed for a plate with a doubler. These formulas with their constants are contained in Appendix A.

Examination of the formulas in App. A shows them to be quite lengthy and difficult to use. Further examination reveals that dimensionless coefficients may be employed in the formulas and their complexity may be reduced.

Because the point at the hole border at $\theta = \frac{\pi}{Z}$ is the principle point in question, the formula for $\sigma_{\Theta^{\perp}}$, as given in App. A, was the one selected for further development.

_

mente de la composition della composition della

water with the same of the same of

The second secon

The following symbols were used;

Figure 2

a = radius of outout

b = radius of doubler

to " thickness of sheet

ti = thickness of sheet and doubler

E = b

g = 50

s = applied stress

Ga stress at hole due to \$6 component of radial stress

" total stress at hole in terms of S

u = Poisson's ratio

1 = (3 = n) $1 = (1 + n)^2$ $1 = (n - n)^2$

 $R = (1 + \mu)$ $I = (3 + 2\mu + \mu)$ $R = (3 + \mu)$

 $0 = (1 - \mu^2)$ $J = (5 - 2\mu + \mu^2)$

If the above dimensionless ratios, q and k, ere substituted in the $\nabla \Theta_i$ formulas for $\Theta : \frac{\pi}{2}$ and r = a, the following formulas are the result.

$$G_{\alpha} = \frac{-2S}{F\left[\frac{1}{R} \left(\frac{1}{R} - 1\right) - \left(\frac{1}{R} + \frac{G}{H}\right)\right]}$$

$$\sigma_{\widetilde{\Theta}_{b}} = \frac{-8\left[\left(\frac{3F}{2^{4}} - \frac{2F}{2^{6}}(\frac{1}{6} - 1) - \left(\frac{F}{6} + E\right)\right]S}{\frac{4}{2^{4}}\left(\frac{2G}{5} - \frac{1}{5} + M\right) - \left(\frac{G}{6^{4}} - \frac{2G}{6^{4}}(\frac{2G}{5} - \frac{1}{5} + M) + \frac{1}{2^{4}}\left(\frac{T}{3^{4}} - \frac{2T}{5} + T\right), \left(\frac{2J}{5} + \frac{1}{5^{4}} + T\right)}$$

A plot was constructed for 6, vs. It for verious values of q. It is illustrated as Fig. (1). This chart provides a convenient means for obtaining maximum stress at a hole for given dimensions of the sheet and doubler.

The formulas of App. A, were considered further for stresses in the sheet outside of the doubler. It was found that, even for very narrow doublers, if the stress at the hole is not reduced below 5, the stress at the minimum section will never be greater than the stress at the hole. The stress at the hole is then the maximum and need be the only one to consider. Fig. (3), therefore, is the only plot that need be made from the stress formulas.

District Major

where a beginning to an end detail.

principal and

One of the prime considerations in the design of a doubler is the question of weight saving. Fig. (3) can be used to calculate the weights of doublers that provide the same stress reduction. The below formula can be used for calculating the weight of a doubler.

weight = (density) (volume)
$$w = \rho (\pi)(b^2 - a^2)(ti - to)$$

$$w = (\pi a^2 to(k^2 - 1)(\frac{1}{2} - 1)$$

Using Fig. (3) typical cases can be evaluated. It will be found that the thicker doubler with the smaller radius will be the lightest. In the region of small k, however, the danger of inadequate stress reduction would be prevalent.

- 100, 21

1-1-1

THE PARTY OF THE

The test specimens consisted of four Metalite panels fabricated by Chance Yought Aircraft Division of United Aircraft Corporation. The faces of the panels were .CS2 in. 755T-6 Alclad. The core was made of 7 - 9 lbs/ft3 end grain below. All panels were bonded with Medux. As received each panel measured to in. x 27 in. with a 1½ in. x 18 in. 755T aluminum insert at each end. One panel contained no reinforcements; two panels had 9 in. diameter, centrally positioned, internally bonded, doublers of .CS2 in. and .C64 in. 755T-6 Alclad. The remaining panel had a 9 in. diameter, .C64 in. sluminum external riveted doubler on each face. The riveta used were Hugh Brasier Read Blind Rivet, HER-S4D, 1/8 in. diameter.

To prepare the panels for testing, a central hole of 2 in. diameter was cut in each. For attaching to the supporting apperatus, 35 bolt holes of 3/16 in. were drilled in each end. Baldwin SR-4 electric strain gages were comented to the panels at various locations. The types of gages were, 3-7, 4-11, 4-8, and 4-19. The very small gage lengths of most of those gages made them very adaptable for placement near the cut-out boundary.

Figs. (4),(5),(6),(7), and (8) are sketches and photocrepts of the test specimens giving pertinent dimensions and strain the locations. ___

The principle testing experatus was a southern many testing machine with Tate-Enery load indicator manufactured by the Beldvin Southwark Division of Midwin Locomotive force.

Thiledelphie, Fa. The strain indicating device was the Amberson 24 point Strainmeter, Model 301, menufactured by Arthur M. Anderson, Springdele, Conn. A standard galvanometer and two 13 voit dry cells completed the menuring apparatus. Model strain mages, of the types used on the panel, were mounted on a small piece of Betalite and were used for temperature compansating stages.

A penel was mounted in the testing machine and the strain made leads from the test and componenting contactor connected to the strainmeter. The load was run up to 20,000 lbs.

and down to zero to set all games. A load of 100 lbs. was then put on the penel and all strain readings were adjusted to zero.

The machine was run up to 6,100 lbs. and reading from the top six cases were taken. It was desired to make these mans read equally in order to produce a state of uniform tension across the plate. Since they were never equal, the load was run down again and shims were placed under the bolt supports of the various 2 in. loading bars. The strainmeter would be re-zeroed at 100 lbs. and a load of 6,100 lbs. would be impressed again. This process would be repeated as many as 20 times until the best possible loading was obtained. The uniform tension condition, however, was never attained.

re-zeroed for 100 lbs. and the first load of 6,100 lbs. was set on the machine. At this loading all gages were read. The loadings were then increased to 10,000, 15,000, 20,000, 35,000, and 30,000 lbs. and a reading of all gages made for each load. The loading was then reduced to 100 lbs. and the zero reading checked. It was found that for the riveted panel the zero readings were off a considerable amount. This was due to the fact that the doubler was not fabricated from 75TT-6 cheled as were all of the other doublers. This run was repeated using a maximum load of 25,000 lbs. For this loading the zero readings were satisfactory. The penel with no doubler was limited to a 20,000 lb.load in order to stay below the yield point.

Then each of the four panels had been tested once, the

cutoute were enlarged to a 4 in. dismeter. If any string were destroyed in the process, new ones were installed. After the tests at 4 in. dismeter, the holes were increased to 8 in. and the final tests were made.

Since all gages were on an axis of symmetry in a tencential orientation, with the exception of a few on the riveted doubler, the strain readings were converted to stresses by the formula:

The case factor correction, (2.05)/(0.F.), was necessary because the inderson Strainmeter is constructed with a built in more factor ellowance of 2.05. The stresses thus obtained from the tests are recorded in Tables I to XII.

An additional correction was necessary for some of the gages on the rivoted doubler. Because of interfering rivots, some gages had to be located off of axis of symmetry. The method of correction for this offset is ometained in appendix 3.

....

ALALYSIS OF TELES

As brought out in the previous section, it was ispossible to obtain a condition of uniform tension in the panels.
Fince all gages on the front sheet of the panel were not duplicated on the rear, it was necessary to consider the pres or,
the front panel only. As indicated by gages 1 to 6, the front
panel took from 48.4 to 53 percent of the total load. Table AIII
gives the values of load taken by the front face for each run.

The results of all experimental runs were plotted and are illustrated as Fig.(11) to (22). The curves represent temperated stress, Go, at the minimum section of the plate vy. radius from the center of the hole.

For the theoretical results, it was assumed that the balsa core took no part of the load. This amounts to an error of less than 1.5 percent; see App. B. The theory, as given in lef.(c), for plates of non-infinite width was used for comparison with the panels having no doublers. The theoretical stress distributions as given in that reference, were plotted on Figs. (11), (15), and (19). Examination of these plots show excellent agreement in the area of the cutout. The theoretical stress becomes higher than the measured stress for positions away from the cutout. This could be due to the non-uniform

.....

condition of applied stress in the panel. All test curves are consistent in chape with the theoretical curves.

For the panels with doublers, the theory of Tef.(b) was used for comparison. The theoretical stress curves are shown on the remaining Figs. (11) to (22).

cellent correlation with the theory of Ref.(b). The most noticeable departure from the theory is for the .032 in. doubler
with 5 in. cutout where the measured maximum stresses are higher
than the predicted stresses; see Fig.(20). This is most probebly due to the condition of non-infinite width of the test
panels. As shown on Fig.(10), the stress for a 5 in. hole with
no reinforcing is 3.245 instead of 33 for an infinite plate.
The other departure from the theoretical curves occurs at the
outer boundary of the doubler. This was expected, since the
theory requires a discontinuity in the stress curve which could
not possibly exist.

The maximum stresses at the cutout for the bonded doublers were taken from the respective plots and divided by the applied stress for all loadings. The values thus obtained were averaged and recorded in Table XIV. These same values were plotted on Fig.(3) which was developed in a previous section. The experimental points show excellent correlation with the theory developed for Fig.(3) when it is remembered that the theoretical curves are for a plate of infinite width.

It should also be mentioned that while the stresses at the heles were taken almost to the yield point of the material, which is 60,000 pci., no loss in transmission of stress
by the Redux bonding was apparent.

The results obtained from the riveted external doubler are not consistent with the theory. It first appeared that the stress obtained at the cutout was less than the theory predicted. Since this was suspected to be false, an A-12 gage was installed on the inside plate for the run with the S in. hole. As shown on Fig. (32), the stress in the plate is considerably higher than the stress on the doubler and higher than the theoretical stress. It is obvious that the rivets were not effectively transmitting the load to the doubler. This may have been due to too few rivets, especially in the case of the S in. cutout, or due to the type rivets used. In that case the rivets were much Blind Rivets. The maximum seasured stresses at the cutout boundary for the riveted panel are also recorded in Table XIV for comparison with the theoretical and bonded doubler stresses.

CLAULUSIONS

From the experimental results obtained in this test, it can be concluded that the chart, Fig. (3), developed for doubler plates for circular cutouts in an infinitely wide plane sheet may be useful in future design of doubler rings.

It can be further concluded that internal bonded doublers are superior to external riveted doublers in reducing stress concentration around a circular cutout in Metalite.

BIBLIOGRAPHY

- (a). Timouhenko, & Theory of Mlasticity, 1934, 1st. ed., BeGraw-Mill Book Co. Inc., New York and London.
- (b). Squires, L.W.: A Theoretical Design of Meinforcing Rings for Circular Outcuts in Flat Flates in Tension, Master's Thesis, University of Minnesote, August 1950.
- (c). Bowland, R.S.J.: On the Streemes in the Weighbourhood of a Circular Eole in a Strip Under Renaion, Phil. Trans. of the Royal Society of London, Vol. 239, December 1930.
- (d). Reissner, R., and Murduchow, M.: Reinforced Gircular Outcuts in Flanc Sheets, MAGA T.M. No. 1852, April 1949.
- (e). Chance Vought Aircraft Division: Metalite Panels in End Compression with Reinforced Rectangular Cutouts, Leport No. 7445, United Aircraft Corp., Dallas, Texas, 1951.

METALITE PANEL
.032 in FACES, 75576 ALCLAD
.5 in. CORE, 7-9 1/63 BALSA
NO DOUBLER

FIGURE 4

METALITE PANEL

.032 in FACES, 75576 ALCLAD .5 in CORE, 7-9"7H BALSA .032 in DOUBLER, 1557-6 ALCLAD

FIGURE 5

METALITE PANEL

.032in. FACES, 75 ST 6 ALCLAD .5in. CORE, 7-9"/ft BALSA .064in.DOUBLER, 75576 ALCLAD

FIGURE 6

METALITE PANEL

032 in FACES, 75576 ALCLAD

5 in CORE, 7-9 1/12 BALSA

064 in RIVETID DOUBLER

FIGURE 7

RIVETED DOUBLER HUCK BRAZIER HEAD BLIND RIVETS 1/8" DIAMETER

FIGURE 7a

Metalite Test Panels

Figure 8

Test Setup

Figure 9

Test Panel With Attaching Apparatus
Figure 10

TABLE I

STRESSES FROM STRAIN GAGE READINGS

METALITE PANEL - NO DOUBLER - 31m. CUTOUT

Gage	Type	Gage Fact	Load, 1bs.	100	6100	10100	15100	20100
1	A-11	2,08		0	ps1 5990	psi 10050	psi 14850	psi 19550
2					5270	9620	14650	19600
3					5020	9620	13000	17250
4					5720	8620	13300	17800
5					5990	9510	13850	18250
6					6090	10150	14950	19650
7	A-19	1.63			13880	23000	34200	45400
8	*	Ť			14920	25300	37200	49200
9	47	1.91			15380	25700	38900	48900
10	Y	*			8230	13800	20650	28200
11	A-8	1.70			9190	16150	23750	32000
12	A-7	1.91			6300	10650	15900	22050
13	A- 8	1.70			6700	11950	17900	23900
14	A-7	1.91			5090	8670	13000	17550
15	A-8	1.70			5590	10000	14800	19850
16	A-7	1.91			4640	7840	11700	15900
17					4200	7130	10700	14500
18					-5090	-8950	-13300	_17550
19	7	1			-1328	-2430	-3535	-4760
20	A-8	1.70			-1105	-1990	-2930	-4350
21	1	*		1	-884	-1490	-2210	-3290

TABLE II
STRESSES FROM STRAIN GAGE READINGS

METALITE PANEL - . 032 in. DOUBLER - 3 in. CUTOUT

		Gage .				Load.			
Gage	Type	Fact.	100	6100	10100	15100	20100	25100	30100
1	A-11	2.08	o	psi 6290	psi 10100	psi 14500	psi 18550	22500	26000
2				5240	9040	13900	18550	23500	28100
3				6440	9950	14550	18790	23300	27900
4				5880	9950	15210	20400	25900	31000
5				5450	8120	12490	17150	21600	26400
6 .	Y	1		5940	8920	14100	19600	25100	30750
7	A-19	1.63		9050	14380	21200	28500	35900	43200
8	1	1		9500	16250	24100	31800	40700	48600
9 .	A-7	1.91		9600	15700	23200	31300	39800	48500
10				5470	8730	12950	17580	22100	26750
11				5640	9600	14450	19320	24300	29300
12				4200	6740	9940	13500	17110	20450
13				4420	7730	11700	15500	19600	23200
14				3240	5200	7620	10200	12920	15530
15				3650	5750	8400	11400	14350	17130
16				3870	6420	9500	12800	12800	19000
17				4860	7620	11300	15480	19300	23350
18				5260	8510	12760	17150	21400	25850
19				-3760	-6070	-8900	-11800	-1 4350	-17700
20				-1048	-1765	-2540	-3310	- 4080	-4860
21				-940	-1655	=2430	-3310	-4140	-5080
22	1		1	-552	-906	-1545	-1880	-2320	-2870

TABLE III

STRESSES FROM STRAIN GAGE READINGS

METALITE PANEL - .064 in. DOUBLER - 3 in. CUTOUT

		Gage				Load	lbs.		
Gage	Type	Fact.	100	6100	10100	15100	20100	25100	30100
1	A-11	2.08	0	ps1 6450	psi 9940	psi 14600	psi 19300	psi 24200	psi 28650
3				6240	10050	15150	20190	25350	30400
4				5120	8710	13550	18250	23250	28300
5				5270	9230	14400	19280	24450	29450
6	1	1		5020	8160	13000	17450	22500	27200
7	A-19	1.63		6020	10180	15500	20950	26550	32100
8	1	1		7180	11720	17620	22950	28750	34400
9	A-7	1.91		6180	10450	16100	21550	27450	33300
10				3420	5850	9060	12100	15450	18680
11				4320	6940	10100	13400	16650	19900
12				2650	4475	6960	9440	12050	14500
13				3430	5640	8280	10910	13700	16180
14				1768	3200	4860	6460	8060	9600
15				2210	3755	5690	7780	9600	11500
16				2780	4580	6630	8840	10850	12900
17				3860	6520	10000	13480	16950	20500
19				4640	7900	12050	16450	20700	25350
20				-2210	-3750	-5910	-8060	-10280	-12350
21				-663	-992	-1490	-1985	-2485	-3040
22	1	Y	1	-442	-607	-994	-1150	-1435	-6070

TABLE IV
STRESSES FROM STRAIN GAGE READINGS

METALITE PANEL - .064 in. RIVETED DOUBLER - 3 in. CUTOUT

	Gage Load, 1bs.											
Gage	Type	Fact.	100	6100	10100	15100	20100	25100				
1	A-11	2.08	o	psi 4160	psi 6800	psi 10050	psi 13600	psi 17000				
2				4470	7610	11900	16450	20700				
3				5520	8520	12340	16450	22000				
4				4820	7820	12900	17250	22450				
5				5130	8260	12090	16200	19900				
6	1	1		4260	7560	12400	17200	22200				
7	A-19	1.63		4140	6600	9700	13850	18400				
8	7			3495	5570	9040	13270	18200				
9	A-7	1.91		4750	7240	10390	14350	18690				
10				1600	2710	4150	6080	8020				
11				1270	2210	3650	5520	7680				
12				1050	1660	2710	4090	5530				
13				884	1440	2375	3780	5310				
14				-498	-775	-1085	-1105	-1105				
15				5820	9520	13950	18150	21950				
16				4970	8560	12850	16850	20750				
17				6090	9800	14400	18800	23150				
18				6090	9400	13950	18350	22450				
19				-2710	-4360	- 6580	-8950	-11480				
20				-445	-608	-940	-1380	-1660				
21				-165	0	221	331	387				
22				. 0	0	442	718	829				
23	A_8 1.79			648	943	1415	2065	2770				

TABLE V

STRESSES FROM STRAIN GAGE READINGS

METALITE PANEL - NO DOUBLER - 4 1n. CUTOUT

	1	Gage			Load.	lbs.	
Gage	Type	Fact.	0	6100	10100	15100	20100
i	A-11	2.08	0	p si 5420	psi 9080	psi 13850	psi 18560
2				6350	10100	14610	19230
3				4320	7610	12970	16380
4				5270	8520	12630	16720
5				5020	8830	13440	18160
6	1	1		5480	9130	13540	18050
10	A-7	1.91		14150	24250	37200	49600
11	A-8	1.79		16250	26100	38300	51300
12	A-7	1,91		8790	15260	23200	31620
13	A-8	1.79		10250	16640	23700	32700
14	A-7	1.91		5530	9780	14930	20250
15	A_8	1.79		6950	11080	16300	21500
16	A-7	1.91		4760	8350	13000	17700
17	1	1		4320	7575	10830	15490
20	A-8	1.79		-44 80	-7615	-11320	-15100
21				-1711	-2950	-4370	-5725

TABLE VI

STRESSES FROM STRAIN GAGE READINGS

METALITE PAREL = .032 in, DOUBLER = 4 in, CUTOUT

		Gage				Load.	lbs.		
Gage	Type	Fact.	100	6100	10100	15100	20100	25100	30100
1	A-11	2.08	0	ps1 5500	psi 9350	ps1 13860	psi 18350	psi 22850	ps1 27500
2				5840	9850	14520	19200	23950	28850
3				5130	8700	13200	17720	22250	27100
4				5640	9550	14320	19250	23750	28 835
5				5790	9300	13860	18500	23350	28050
6	1	1		5930	9700	14720	19700	24500	28150
10	A-7	1.91		9550	16300	25000	34000	42900	52700
11				11400	18600	27600	37200	46300	56200
12				5750	9550	14910	20450	14870	31500
13				7300	11820	17310	23200	27850	35150
14				2985	5250	7960	10920	13850	16800
15				3315	5640	8620	11750	14920	18000
16				4420	6950	10100	13420	16520	19650
17				4420	7520	11500	15750	19800	23900
18				4750	8120	12500	17010	21400	25800
20				-3210	-5530	-8180	-10720	-13600	-16400
21				-3210	-5360	-8280	-11100	-13800	-16750
22	1	1	1	-1380	-2320	_3430	-4420	-5530	-6580

TABLE VII

STRESSES FROM STRAIN GAGE READINGS

METALITE PANEL - .064 in. DOUBLER - 4 in. CUTOUT

		Gage				Load,	lbs.		
Gage	Type	Fact.	100	6100	10100	15100	20100	25100	30100
1	A-11	2.08	P	psi 5580	ps1 9590	psi 14710	psi 19640	psi 24850	psi 29500
3				5220	8830	13700	18500	23550	28400
4				4670	7920	12400	17150	22100	26800
5				6590	10650	15820	20300	25850	30850
6	Ĭ	Ţ		5220	8620	13200	17730	21800	26100
10	A-7	1.91		6740	11450	17600	23900	30200	36650
11				7960	13160	19250	24900	27500	39150
12				4200	7080	10750	14700	18680	22750
13				5200	8300	12380	16480	20450	24800
14				1770	2990	4700	6190	7740	9400
15				2100	3540	5310	7190	9060	10920
16				2765	4530	6410	8520	10380	12430
17				3930	6520	10000	13600	16750	19900
18				4640	7630	11600	15500	19350	23200
20				-2710	-4 580	-7190 CD40	-9840	-12600	-15480
21				-2700	-4 530	-6740	-8950	-11380	-13820
22	-	<u>'</u>	L'-	-995	_1715	_2355	-3320	-4150	_5090

TABLE VIII
STRESSES FROM STRAIN GAGE READINGS

METALITE PANEL - .064 in. RIVETED DOUBLER - 4 in. CUTOUT

		Gage				Load, 1bs.				
Gage	Type	Fact.	100	6100	10100	15100	20100	25100		
1	A-11	2.08	0	psi 4460	7100	psi 10750	psi 14450	psi 18000		
2		-		4730	8120	12700	17250	21800		
3				6190	9660	14000	18450	22500		
4				5630	9340	14320	18950	23850		
5				5020	8020	12190	16150	20300		
6	1	1		4480	8020	12750	17150	21700		
10	A-7	1.91		3870	6420	10320	14600	19000		
11				3870	5860	9000	12650	17800		
12				2655	4090	6520	9280	16050		
13				2655	4150	6640	6640	13380		
14				-884	-1382	_1980	-2320	-2765		
15				5970	9890	14380	18620	22850		
16				4860	8560	12820	17010	21100		
17				6080	9840	14640	18950	23600		
18				5750	9280	13700	17900	22200		
20				-2210	-3540	-5470	-7410	-9620		
22	1	1		-775	-775	-885	-1490	-2360		
23	A_8	1.79	1	825	1300	2005	2950	4720		

TABLE IX

STRESSES FROM STRAIN GAGE READINGS

METALITE PANEL - NO DOUBLER - 5 in. CUTOUT

		Gage			Load.	lbs.	
Gaze	Type	Fact.	100	6100	10100	15100	18100
1	A-11	2.08	0	psi 5420	psi 9120	psi 13800	psi 16540
2				5830	9520	14300	17100
3				5120	8660	13195	15780
4				5320	8970	13395	15930
5				5830	9730	14700	17430
6	Y	1		5840	9730	14600	17430
12	A-7	1.91		15350	26300	39800	48200
13	A-8	1.79		16750	27500	41500	49500
14	A-7	1.91		7170	12360	18760	22800
15	A-8	1.79		8300	13740	20100	24150
16	A-7	1.91		5575	9660	14850	18000
17	A-7	1.91		4690	8540	13030	15800
21	A_8	1.79	1	-5300	-8720	-12950	-15730

TABLE X

STRESSES FROM STRAIN GAGE READINGS

METALITE PANEL - .032 in. DOUBLER - 5 in. CUTOUT

		Gage			L	oad. 1bs		
Gage	Type	Fact.	100	6100	10100	15100	20100	25100
1	A-11	2.08	0	psi 6200	psi 10000	psi 14630	psi 19100	psi 23750
2				6 0 50	10050	14950	19650	24650
3				5030	8130	12300	16450	20750
4				4780	8240	12600	16870	21350
5				4780	8390	13000	17620	22500
6	1	1		4880	8640	13500	18400	23200
12	A-7	1.91		10150	17480	26550	35800	45300
13				12500	20550	30400	40500	50600
14				3870	6360	9720	13150	16650
15				3760	6300	9770	13150	16500
16				4750	7740	11150	14910	18300
17				4640	8010	12050	16400	20550
18				4640	8180	12380	16800	21050
22	1	1		5250	8860	13300	17950	22500
23	A-8	3 1.81		-4420	-7010	-10480	-14140	-17690

TABLE XI

STRESSES FROM STRAIN GAGE READINGS

METALITE PANEL = .064 in. DOUBLER = 5 in. CUTOUT

	m	Gage	1.00	C100	10100	Load.		05100	504.00
Gage	Type	Fact.	100	6100	10100	15100	20100	25100	30100
1	A-11	2.08	0	ps1 5230	psi 9200	psi 14320	psi 19100	psi 24150	28750
3				4920	8530	13500	17930	22600	27100
4				5380	8950	13500	18050	23500	27300
5				6100	10050	14940	19550	24500	28900
6	1	1		5690	9200	13560	17880	22200	26700
12	A-7	1.91		8000	13600	20550	28100	35300	43000
13				9380	15475	11600	30200	37900	45700
14				1935	3370	5250	7010	8830	10750
15				2100	3650	5640	7510	9440	11450
16				2875	4590	6740	8610	10820	12850
17				3645	6300	9550	12930	16350	19700
18				4080	7130	10870	14650	18400	22200
22		1.81		_3650 3500	-6075 6060	-9060 9210	-11950 12360	-15200 15730	18900
23	A-8	1.81		3500	6060	9210	12300	15750	10900

TABLE XII STRESSES FROM STRAIN GAGE READINGS

METALITE PANEL - . 064 in. RIVETED DOUBLER - 5 in. CUTOUT

		Gage			Load	lbs.	
Gage	Type	Fact.	100	6100	10100	15100	20100
1	A-11	2.08	0	psi 4270	psi 7110	psi 10580	psi 14520
2				4675	8030	12200	16550
3				5180	8220	12300	16350
4				4970	8120	12300	16550
5				4570	7760	11700	15950
6	1	İ		4370	7820	12100	16450
12p	A-19	1.63		11420	18900	26850	34400
12	A-7	1.91		5300	8770	13950	20200
13				5135	7840	12480	18050
14				-992	-1990	-2595	-2980
15				6960	11050	16150	20600
16				5575	9830	14400	18950
17				6570	11050	15630	20150
18	Ť	1		6290	10000	14240	18550
22	A-8	1.81		-2450	-4370	-7110	-10310
23	1	1		1400	2450	3970	6240

TABLE XIII

PERCENT OF APPLIED LOAD

TAKEN BY FRONT FACE OF TEST PANELS

	Percent of load taken by front face						
Panel	3 in. hole	4 in.hole	5 in. hole				
No Doubler	49.90	47.80	49.20				
.032 Doubler	49.02	48.60	49.60				
.064 Doubler	52.60	53.00	50.50				
Rivet Doubler	49.10	48.40	49.10				

TABLE XIV
MAXIMUM STRESS AT CUTOUT

Panel	3 in, Hole		4 in. Hole		5 in. Hole	
	Test	Theor.	Test	Theor.	Test	Theor.
No Doubler	3.170	3.200	3.215	3.105	3.31	3.237
.032 Doubler	1.975	1.950	2.11	2.06	2.33	2.15
.064 Doubler	1.433	1.480	1.575	1.600	1.75	1.730
Rivet Doubler	.90	1.480	1.02	1.600	1.19	1.730
Rivet Do. (face)					2.14	1.730

APPENDIX A

STRESS FORMULAS AS DERIVED IN REF. (b).

The following symbols were used in Ref.(b):

- S applied stress.
- A angle measured from the direction of the load.
- a radius of cutout.
- b external radius of reinforcing ring.
- ti thickness of ring and sheet.
- to thickness of sheet.
- M Poisson's ratio.
- E modulus of elasticity.
- σα tangential stress inside of the ring.
- 00 tangential stress outside of the ring.
- Ti- radial stress inside of the ring.
- Or radial stress outside of the ring.

The solution, as developed in Ref.(b), for a circular hole with a reinforcement ring considers the stresses in the area of the cutout as being created by two forces existing at a radius far away from the cutout; the radial force $\frac{1}{3}$ S, and the combination of the radial force, $\frac{1}{3}$ S Cos 20, and the shearing force, $-\frac{1}{3}$ S Sin 20.

Stresses due to the radial component (28):

$$\begin{split} & \nabla_{\gamma i} = E\left[(\imath \star u)A_{i} - (\imath \star u)\frac{B_{i}}{r^{2}}\right]; \quad & \nabla_{B_{i}} = E\left[(\imath \star u)A_{i} + (\imath \star u)\frac{B_{i}}{r^{2}}\right] \\ & \nabla_{\gamma o} = 6\left[(\imath \star u)A_{o} - (\imath \star u)\frac{B_{o}}{r^{2}}\right]; \quad & \nabla_{\Theta_{o}} = E\left[(\imath \star u)A_{o} + (\imath \star u)\frac{B_{o}}{r^{2}}\right] \end{split}$$

Where

$$A_{i} = -\frac{b^{2}t_{0}S}{E(1+u)} \left[\frac{1}{a^{2}(1+u)(t_{i}-t_{0})-b^{2}t_{i}(1+u)-b^{2}t_{0}(1-u)} \right]$$

$$B_{i} = -\frac{a^{2}b^{2}t_{0}S}{E(1-u)} \left[\frac{1}{a^{2}(1+u)(t_{i}-t_{0})-b^{2}t_{i}(1+u)-b^{2}t_{0}(1-u)} \right]$$

$$A_{0} = \frac{S}{2E(1+u)}$$

$$B_{0} = \frac{b^{2}S}{2E(1-u)} \left[\frac{b^{2}(1-u)(t_{i}-t_{0})-a^{2}t_{i}(1-u)-a^{2}t_{0}(1+u)}{a^{2}(1+u)(t_{i}-t_{0})-b^{2}t_{0}(1+u)-b^{2}t_{0}(1-u)} \right]$$

Stresses due to radial component ($\frac{1}{2}S$ Cos 20) and shearing component ($-\frac{1}{2}S$ Sin 20):

$$\sigma_{r\dot{i}} = -\left(2A\dot{i} + \frac{6}{14}C\dot{i} + \frac{4}{1^2}D\dot{i}\right)\cos z\theta$$

$$\sigma_{ro} = -\left(2A_o + \frac{6}{1^4}C_o + \frac{4}{1^2}D_o\right)\cos z\theta$$

$$\sigma_{\theta\dot{i}} = \left(2A\dot{i} + 12B\dot{i}r^2 + \frac{6}{1^4}C\dot{i}\right)\cos z\theta$$

$$\sigma_{\theta\phi} = \left(2A_o + 12B_or^2 + \frac{6}{1^4}C_o\right)\cos z\theta$$

The constants are given on the following pages.

NUM.
$$A\dot{a} = -\frac{5}{4} \left\{ \frac{3\omega}{a^6 b^4} \left[t_o^2(3-\omega) + t_i t_o(1+\omega) \right] - \frac{108}{a^2 b^8} \left[t_o^2(1+\omega) - t_i t_o(1+\omega) \right] + \frac{144}{b^{10}} \left[t_o^2(1+\omega) - t_i t_o(1+\omega) \right] \right\}$$

NUM. $B\dot{a} = -\frac{5}{4} \left\{ -\frac{72}{a^2 b^8} \left[t_o^2(1+\omega) - t_o^2(1+\omega) \right] + 72\omega \left[t_o^2(1+\omega) - t_o^2(1+\omega) \right] \right\}$

Num. Bi =
$$-\frac{5}{4}\left\{\frac{72}{a^{9}b^{8}}\left[tit_{0}(1+\iota\iota\iota)-t_{0}^{*}(1+\iota\iota\iota)\right]+\frac{7k}{a^{2}b^{\prime 0}}\left[tit_{0}(1+\iota\iota\iota)-t_{0}^{2}(1+\iota\iota\iota)\right]\right\}$$

Num. Di= -
$$\frac{5}{4}\left\{\frac{-72}{a^4b^4}\left[tit_0(1+u)+to^2(3+u)\right]+\frac{72a^2}{b^{1/6}}\left[tit_0(1+u)-t_0^2(1+u)\right]\right\}$$

NUM. Bo = 0

NUM.
$$C_0 = -\frac{S}{4} \left\{ -\frac{Q}{a^6} \left[2 \text{ th to } (1-\omega^2) + \text{th}^2 (1+\omega)^2 - \text{to}^2 (3-\omega)(1+\omega) \right] \right.$$

$$\left. -\frac{36}{a^4 b^4} \left[2 \text{ th to } (2+\omega+\omega^2) - \text{th}^2 (4\omega)^2 - \text{to}^2 (3+\omega^2) \right] \right.$$

$$\left. + \frac{18}{a^2 b^4} \left[2 \text{ th to } (7+6\omega+3\omega^2) - 3 \text{th}^2 (1+\omega)^2 - 3 \text{ to}^2 (1+\omega)^2 \right] \right.$$

$$\left. -\frac{36}{b^6} \left[2 \text{ th to } (1+\omega)^2 - \text{th}^2 (1+\omega)^2 - \text{to}^2 (1+\omega)^2 \right] \right.$$

$$\left. -\frac{Qa^4}{b^6} \left[2 \text{ th to } (1-\omega^2) + \text{th}^2 (1+\omega)^2 - \text{to}^2 (3+\omega)(1+\omega) \right] \right\}$$

Num
$$D_0 = -\frac{S}{4} \left\{ \frac{18}{a^6 b^2} \left[2 ti t_0 (1-M^2) + ti^2 (1+M)^2 - t_0^2 (3-M) (1+M) \right] \right\}$$

$$\frac{12}{a^4 b^4} \left[2 ti t_0 (1+M) - ti^2 (1+M)^2 + t_0^2 (3+M^2) \right]$$

$$-\frac{108}{a^2 b^6} \left[2 ti t_0 (1+M)^2 - ti^2 (1+M)^2 - t_0^2 (1+M)^2 \right]$$

$$+ \frac{12}{b^8} \left[2 ti t_0 (1+M)^2 - ti^2 (1+M)^2 - t_0^2 (1+M)^2 \right]$$

$$+ \frac{18a^2}{b^{10}} \left[2 ti t_0 (1-M)^2 + ti^2 (1+M)^2 - t_0^2 (3-M) (1+M) \right]$$

DENOMINATOR =
$$\frac{9}{a^{4}b^{4}} \left[2 ti to (5-2u+u^{2}) + ti^{2}(3-u)(1+u) + to^{2}(3-u)(1+u) \right]$$

$$+ \frac{36}{a^{4}b^{6}} \left[2 ti to k(1-u) - ti^{2}(3-u)(1+u) + to^{2}(3+u^{2}) \right]$$

$$- \frac{54}{a^{2}b^{6}} \left[2 ti to (1-u^{2}) - ti^{2}(3-u)(1+u) + to^{2}(1+u)^{2} \right]$$

$$+ \frac{36}{b^{10}} \left[2 ti to (1-u^{2}) - ti^{2}(3-u)(1+u) + to^{2}(1+u)^{2} \right]$$

$$+ \frac{9a^{2}}{b^{12}} \left[(ti-to)^{2} (3-u)(1+u) \right]$$

APPENDIX B

CALCULATIONS

Symbols:

- A area, in?
- E modulus of elasticity, psi.
- o stress, psi.
- strain, in/in.
- Ld load, lbs.
- G.F. gage factor.
- S applied stress, psi.
- angle measured from the direction of loading
- a radius of cutout, in.
- b radius of doubler, in.
- tc thickness of core, in.
- to thickness of sheet, in.
- ti thickness of sheet and doubler, in.
- k ratio of radii, b/a.
- q ratio of thicknesses, to/ti.
- $\sigma_{\Theta_{G_i}}$ tangential stress at hole due to $(\frac{1}{3}S)$ component of radial stress, psi.
- σ_{eb} tangential stress at hole due to (½SCos 20) component of radial stress and (-½S Sin 20) component of shear stress, psi.
- $\mathcal{O}_\Theta = \mathcal{O}_{\Theta_0} + \mathcal{O}_{\Theta_0} \text{total tangential stress at hole in terms}$ of applied stress, S.

APPENDIX B

CALCULATIONS

Symbols:

- A area, in?
- E modulus of elasticity, psi.
- o stress, psi.
- e strain, in/in.
- Ld load, lbs.
- G.F. gage factor.
- S applied stress, psi.
- a angle measured from the direction of loading
- a radius of cutout, in.
- b radius of doubler, in.
- tc thickness of core, in.
- to thickness of sheet, in.
- ti thickness of sheet and doubler, in.
- k ratio of radii, b/a.
- q ratio of thicknesses, to/ti.
- $\sigma_{\Theta_{G_{i_0}}}$ tangential stress at hole due to $(\frac{1}{3}S)$ component of radial stress, psi.
- G_{Θ_D} tangential stress at hole due to $(\frac{1}{3}SCos\ 2\Theta)$ component of radial stress and $(-\frac{1}{3}S\ Sin\ 2\Theta)$ component of shear stress, psi.
- The a Can + Cob total tangential stress at hole in terms
 of applied stress, S.

E' =
$$(3 - 2)$$

F = $(1 + 2)$
G = $(1 - 2)$
H = $(1 + 2)$
I = $(3 + 2)$ - (2)
J = $(5 - 2)$ + (2)

$$L - (\mu - \mu^2)$$

$$M = (3 + 42)$$

PERCENT OF LOAD TAKEN BY METALITE FACES:

Faces take 98.7 percent of the impressed load.

THEORETICAL APPLIED STRESS:

zero loading = 100 lbs. first loading =
$$\frac{6100 \text{ lbs.}}{6000 \text{ lbs.}}$$
 · $A_f = 1.152 \text{ in}^2$ stress = $\frac{\Delta \text{Ld}}{A_f}$ = $\frac{6000}{1.152}$ = 5220 psi.

STRESS OBTAINED FROM STRAIN METER READINGS:

Metalite - No Doubler 3 in. cutout Gage No. 7; SR-4, A-19 Gage Factor = 1.63 E = 10.3 x 10⁶ psi.

$$\xi = (\triangle \operatorname{read})(2.05)(10^{-6})$$

$$\xi = (1070)(2.05)(10^{-6}) = 1346 \times 10^{-6} \text{ in./in.}$$

$$\zeta = \xi = (1346)(10.3) = 13880 \text{ psi.}$$

CORRECTION FOR STRAIN GAGES NOT ON THE AXIS OF SYMMETRY:

Riveted Doubler 3 in. cutout

$$\varphi = \sin^{-1} \frac{.6}{2.15} = 16^{\circ}15^{\circ}$$

$$\theta = 90 - \varphi = 73^{\circ}45^{\circ}$$

$$\mathcal{C}_{\Theta} = \frac{S}{2} \left(1 + \frac{a^2}{r^2} \right) - \frac{S}{2} \left(1 + \frac{3a^4}{r^4} \right) \cos 2\theta$$

$$\mathcal{Q}_{A} = \frac{S}{2} \left(1 + \frac{(1.5)^{2}}{(2.15)^{2}} \right) - \frac{S}{2} \left(1 + \frac{3(1.5)^{4}}{(2.15)^{4}} \right) \cos 2(73^{\circ}45^{\circ})$$

$$\sigma_{\delta_{A}} = S(.7435) - S(.855)(-.844) = 1.4655S$$

$$\sigma_{\delta_{B}} = S(.7435) - S(.855)(-1.0) = 1.5985S$$

$$G_{\Theta_{B}} = \frac{(1.5985)}{(1.4655)} G_{\Theta_{A}} = 1.09 G_{\Theta_{A}}$$

PERCENT OF LOAD TAKEN BY THE FRONT FACE:

ħ.	leter Read	lings
Gage	Front	Rear
1	990	
-	200	0.50
2		950
3	840	
4		850
		000
5	940	
6		1000
-	0.000	
SU	um 2770	2800

Metalite - no doubler 3 in. cutout Geges - SR-4,A-11 Gage Factor = 2.08 Load = 10100 lbs. E = 10.3 x 106 psi.

Avg.
$$\sigma$$
 front = $(\frac{2770}{3})(\frac{2.05}{2.08})$ (10.3) = 9100 psi.

Avg.
$$\sigma$$
 rear = (2800)(2.05)(10.3) = 9200 psi. $(\frac{2.08}{2.08})$

Avg.
$$Ld_f = \sigma_f A_f = 9100A_f$$

Avg.
$$Ld_r = \sigma_r A_r = 9200A_r$$
 $A_f = A_r$

$$Ld_t = Ld_f + Ld_r = 18300A$$

$$\frac{\text{Ld}_{f}}{\text{Ld}_{t}} = \frac{9100\text{A}}{18300\text{A}} = .4975$$

The front face takes 49.75 percent of the load.

THEORETICAL MAXIMUM STRESS AT CUTOUT:

$$k = \frac{b}{a} = \frac{4.5}{1.5} = 3$$

$$k^{2} = 9$$

$$k^{4} = 81$$

$$k^{6} = 729$$

$$k^{8} = 6561$$

$$k = \frac{1}{q} = 2; \frac{1}{q^{2}} = 4$$

$$E^{\dagger} = (3 - 24) = 2.7;$$
 $F = (1 + 24) = 1.3;$ $G = (1 - 24) = .91$
 $H = (1 + 24)^2 = 1.69;$ $I = (3 + 224 - 24)^2 = 3.51$
 $J = (5 - 224 + 24)^2 = 4.49;$ $L = (24 - 24)^2 = .21$
 $M = (3 + 24)^2 = 3.09$

$$\begin{aligned} & \overset{-2S}{\overline{F}} \left[\frac{1}{k^2} \left(\frac{1}{q} - \frac{1}{1} \right) - \left(\frac{1}{q} + \frac{3}{E} \right) \right] \\ & \overset{-8}{\overline{F}} \left[\frac{1}{k^2} \left(\frac{1}{q} - \frac{1}{1} \right) - \left(\frac{1}{q} + \frac{3}{E} \right) \right] S \\ & \overset{-8}{\Theta}_b = & \frac{-8 \left[\left(\frac{3F}{K^a} - \frac{2F}{K^b} \right) \left(\frac{1}{q} - \frac{1}{1} \right) - \left(\frac{F}{q} + \frac{E}{B} \right) \right] S}{\frac{4}{K^a} \left(\frac{2L}{q} - \frac{I}{q} + \frac{M}{2} \right) - \left(\frac{6}{K^a} - \frac{4}{K^b} \right) \left(\frac{20}{q} - \frac{I}{q} + \frac{H}{B} \right) + \frac{1}{k^b} \left(\frac{I}{q^3} - \frac{2I}{q} + \frac{I}{B} \right) \end{aligned}$$

$$\frac{\left(+\frac{2J}{q}+\frac{1}{q^2}+1\right)}{\left(+\frac{2J}{q}+\frac{1}{q^2}+1\right)}.$$

Substitution of the above constants in the formulas yield:

$$\sigma_{\theta} = .634S + 1.341S = 1.975S$$

Thesis 17331 L63 Lieber Stress concentrations around reinforced circular cutouts in metalite panels in tension. 31 ons ar Thesis 17331 L63 Lieber

Stress concentrations around reinforced circular cutouts in metalite panels in tension. Stress concentrations around reinforced

3 2768 002 11762 4

DUDLEY KNOX LIBRARY