MAF 105 - Iniciação à Estatística

Prof. Fernando de Souza Bastos

Instituto de Ciências Exatas e Tecnológicas Universidade Federal de Viçosa Campus UFV - Florestal

Sumário

Variáveis Aleatórias Bidimensionais

Distribuição Conjunta de duas variáveis aleatórias

Distribuição Marginal

Variáveis Aleatórias Independentes

No estudo de variáveis aleatórias, até este ponto, considerou-se que o resultado do experimento em questão seria registrado como um único valor x. Todavia, existem casos em que há interesse por dois resultados simultâneos, como por exemplo observar o peso e altura de uma pessoa, o sexo e peso de um recém-nascido, etc. Para tanto, faz-se necessário a seguinte definição:

Sejam E um experimento aleatório, e Ω o espaço amostral associado a E. Sejam X e Y duas variáveis aleatórias. Então (X,Y) define uma variável aleatória bidimensional, que pode ser discreta, contínua ou mista.

Se (X, Y) é uma variével aleatória bidimensional discreta, sua função de probabilidade, representada por $P(X = x_i, Y = y_j)$ que associa um valor $p(x_i, y_j)$ a cada valor do par (X, Y) deve satisfazer as seguintes condições:

1.
$$P(x_i, y_j) \geq 0, \forall (x_i, y_j);$$

2.
$$\sum_{i} \sum_{j} P(x_i, y_j) = 1.$$

Exemplo

1. Seja o experimento de se lançar simultaneamente um dado e uma moeda, observando o resultado da face superior de ambos. Teremos então a seguinte função de probabilidade, onde:

X = face superior do dado, e Y = face superior da moeda

$X \setminus Y$	cara	coroa
1	1/12	1/12
2	1/12	1/12
3	1/12	1/12
4	1/12	1/12
5	1/12	1/12
6	1/12	1/12

Se (X, Y) for uma variável aleatória bidimensional contínua, diz-se que f(x, y) é uma função densidade de probabilidade conjunta se:

1.
$$f(x,y) \geq 0, \forall (x_i; y_j) \in \mathbb{R};$$

$$2. \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1.$$

Exemplo

1. Sejam X e Y v.a.c. com f.d.p. conjunta dada por:

$$f(x,y) = \begin{cases} k(2x+y), & \text{se } 2 \le x \le 6, & 0 \le y \le 5; \\ 0, & \text{para outros valores de } X \in Y. \end{cases}$$

Pede-se:

- a) O valor de k;
- b) $P(X \le 3, 2 \le Y \le 4)$;
- c) P(Y < 2);
- d) P(X > 4);

Distribuição Marginal

Dada uma variável aleatória bidimensional, e sua distribuição de probabilidade conjunta, pode-se obter a distribuição da variável X, sem considerar Y ou vice-versa, que são denominadas distribuições marginais de X e Y, respectivamente.

Distribuição marginal de X, caso em que X é v.a.d.:

$$P(X = x_i) = \sum_i p(x_i, y_j)$$

▶ Distribuição marginal de X, caso em que X é v.a.c.:

$$g(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

Distribuição marginal de X, caso em que X é v.a.c.:

$$g(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

Distribuição marginal de Y, caso em que Y é v.a.d.:

$$P(Y = y_j) = \sum_i p(x_i, y_j)$$

 \triangleright Distribuição marginal de X, caso em que X é v.a.c.:

$$g(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

Distribuição marginal de Y, caso em que Y é v.a.d.:

$$P(Y = y_j) = \sum_i p(x_i, y_j)$$

▶ Distribuição marginal de Y, caso em que Y é v.a.c.:

$$h(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

Exemplo

No exemplo do lançamento simultâneo de um dado e uma moeda teremos:

X = face superior do dado, e Y = face superior da moeda

$X \backslash Y$	cara	coroa	$P(X=x_i)$
1	1/12	1/12	1/6
2	1/12	1/12	1/6
3	1/12	1/12	1/6
4	1/12	1/12	1/6
5	1/12	1/12	1/6
6	1/12	1/12	1/6
$P(Y = y_j)$	1/2	1/2	1

Variáveis Aleatórias Independentes

Seja (X, Y) uma variável aleatória bidimendional, então as variáveis X e Y são independentes se, e somente se,

$$P(x_i, y_j) = P(x_i).P(y_j), \quad \forall i, j,$$

para variáveis aleatórias discretas, ou

$$f(x,y) = g(x).h(y), \quad \forall i,j,$$

para variáveis aleatórias contínuas.

O exemplo anterior é um caso de v.a. independentes, basta notar que $P(x_i, y_j) = \frac{1}{12} = \frac{11}{62} = P(x_i).P(y_j), \forall i, j,$

As v.a. X e Y admitem a seguinte distribuição conjunta de probabilidade.

$Y \setminus X$	1	2	3	P(y)
4	0,2	0,15	b	
5	а	0,15	0,15	
P(x)				

Encontre a e b para que as v.a. X e Y sejam independentes.