

Lecture 03

Social & Information Networks

김 민 경 AI소프트웨어학과

Outline – Last Lecture

Introduction to Networks

- Historical Background
- Definition of a Network
- Categories of Networks
- Applications

Outline – This Lecture

Basic Mathematics of Networks

- Representing Networks
- Describing Networks Overview

Mathematics of Networks – Why?

- Basic theoretical tools
 - Quantify network structures
 - Analyze networks
 - Reveal remarkable patterns in the real-world networks

Outline

- Basic Mathematics of Networks
 - Representing Networks
 - Describing Networks Overview

Mathematical Representation

Network Components

→ Mathematical literature

- A Network (Graph)
 - [Object]: node (vertex)
 N
 - [Interaction]: link (edge)
 - [Complex System]: network (graph) G(N, E)

Examples of Network Components

Network	Node	Edge
Internet	Computer or router	Cable or wireless data connection
World Wide Web	Web page	Hyperlink
Citation network	Article, patent, or legal case	Citation
Power grid	Generating station or substation	Transmission line
Friendship network	Person	Friendship
Metabolic network	Metabolite	Metabolic reaction
Neural network	Neuron	Synapse
Food web	Species	Predation

[Table 6.1] in Chap 6.

Representing Networks

- Network Data Representation
 - Adjacency Matrix: the fundamental mathematical representation of a network
 - The adjacency matrix ${\bf A}$ of a network is defined to be the $n \times n$ matrix with elements A_{ij} such that

$$A_{ij} = \begin{cases} 1 & \text{if there is an edge between nodes } i \text{ and } j, \\ 0 & \text{otherwise.} \end{cases}$$

Real-word networks are sparse

Ex) Adjacency matrix of a real network

Representing Networks

- Network Data Representation
 - Adjacency Matrix

- **(2,3), (2,4)**
- **(3,2), (3,4)**
- **4**,5)
- **(5,2), (5,1)**

Representing Networks

Adjacency list:

- Easier to work with if network is
 - Large
 - Sparse
- Allows us to quickly access all connected nodes of a given node
 - **1**:
 - **2**: 3, 4
 - **3**: 2, 4
 - **4**: 5
 - **5**: 1, 2

Representing Networks – a simple network

Undirected

Unweighted

No self-loop

Representing Networks – a simple network

adjacency matrix

A	1	2	3 0 1 0 1 1 1	4	5	6
1	0	1	0	0	1	0
2	1	0	1	1	0	0
3	0	1	0	1	1	1
4	0	1	1	0	0	0
5	1	0	1	0	0	0
6	0	0	1	0	0	0

Can you find some characteristics here?

adjacency list

$$\begin{array}{c}
A \\
\hline
1 \to \{2, 5\} \\
2 \to \{1, 3, 4\} \\
3 \to \{2, 4, 5, 6\} \\
4 \to \{2, 3\} \\
5 \to \{1, 3\} \\
6 \to \{3\}
\end{array}$$

Representing Networks – a less simple network

Representing Networks – a less simple network

adjacency matrix {weight}

\boldsymbol{A}	1	2	3	4	5	6
1	0	0	0	0	$\{1, 1, 2\}$	0
2	1	$\frac{1}{2}$	$\{2, 1\}$	1	0	0
3	0	$\{2, 1\}$	0	2	4	4
4	0	1	2	0	0	0
5	$\{1, 1, 2\}$	0	4	0	0	0
6	0	0	4	0	0	2

adjacency list {(node, weight)}

Representing Networks – directed networks

A Directed Network as A Matrix

Citation networks

Foodwebs

Epidemiological

•••

Directed acyclic graph

Directed graph

Examples in the real world

Authors vs Papers

Actors vs Movies

Musicians vs Albums

Customers vs Products

People vs Online Communities

People vs Visiting Locations

Words vs Documents

:

What does a bipartite network reflect?

What does a bipartite network reflect?

Projections into each population (layer)

- What does a bipartite network reflect?
 - Reveals hidden(invisible) connectivity within each population

Projections into each population (layer)

Example)

$$X = \begin{bmatrix} 1 & 2 & 3 \\ A & 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ D & 0 & 1 & 1 \\ E & 0 & 0 & 1 \end{bmatrix}$$

$$XX^{\mathsf{T}} = \begin{bmatrix} A & 2 & 1 & 2 & 1 & 1 & 0 \\ B & 1 & 1 & 1 & 0 & 0 & 0 \\ 2 & 1 & 2 & 1 & 1 & 0 \\ D & 1 & 0 & 1 & 2 & 2 & 1 \\ E & 1 & 0 & 1 & 2 & 2 & 1 \\ F & 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Example)

$$X = \begin{bmatrix} 1 & 2 & 3 \\ A & 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ D & 0 & 1 & 1 \\ E & 0 & 0 & 1 \end{bmatrix}$$

$$XX^{\mathsf{T}} = \begin{bmatrix} A & B & C & B & C \\ 2 & 1 & 2 & 1 & 1 & 0 \\ B & 1 & 1 & 1 & 0 & 0 & 0 \\ 2 & 1 & 2 & 1 & 1 & 0 \\ D & 1 & 0 & 1 & 2 & 2 & 1 \\ E & 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$X^{T} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & & & & \\ & 1 & 3 & 2 & 0 & & \\ & 2 & 4 & 2 & & \\ & 3 & 0 & 2 & 3 & & \end{bmatrix}$$

Representing Networks – temporal networks

Any network over time

Edges

Discrete time (snapshots)

Continuous time

(i, j, t)

 $(i, j, t_s, \Delta t)$

Outline

- Basic Mathematics of Networks
 - Representing Networks
 - Describing Networks Overview

Describing Networks

- What do networks look like?
 - How are the edges organized?
 - Do nodes have different characteristics?
 - Are there patterns?

In this course

Pattern Recognition

What processes lead to form networks?

Modeling & Simulation

Graduate Level

Describing Networks

Fundamental Step: describing network features

Quantifying Structural Properties:

What does local-level structure look like?

Microscopic View

What does large-scale structure look like?

Macroscopic View

How does **structure constrain** network **functionality**?

Holistic View

degree:

number of connections $\,k\,$

$$k_i = \sum_j A_{ij}$$

the number of edges adjacent to node i

number of edges
$$m = \frac{1}{2} \sum_{i=1}^{n} k_i = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}$$

mean degree
$$\langle k \rangle = \frac{1}{n} \sum_{i=1}^{n} k_i = \frac{2m}{n}$$

degree:

number of connections k

$$k_i = \sum_j A_{ij}$$

the number of edges adjacent to node i

degree sequence [1, 2, 2, 2, 3, 4]

degree distribution
$$\Pr(k) = \left[\left(1, \frac{1}{6} \right), \left(2, \frac{3}{6} \right), \left(3, \frac{1}{6} \right), \left(4, \frac{1}{6} \right) \right]$$

- Computing Metrics
 - Outdegree the number of outgoing links

Ex) outdegree for node 3 = ?

- Computing Metrics
 - Outdegree the number of outgoing links

Ex) outdegree for node 3 is 2, which we obtain by summing the number of non-zero entries in the 3rd *row*:

$$\sum_{j=1}^n A_{3j} = 2$$

- Computing Metrics
 - Indegree the number of incoming links

Ex) indegree for node 3 = ?

- Computing Metrics
 - Indegree the number of incoming links

$$\sum_{i=1}^{n} A_{ij}$$
 Indegree = 3

Ex) indegree for node 3 is 1, which we obtain by summing the number of non-zero entries in the 3^{rd} column:

$$\sum_{i=1}^{n} A_{i3} = 1$$

- Computing Metrics
 - (Total) degree = Indegree + Outdegree

$$k_i = k_i^{\text{in}} + k_i^{\text{out}}$$

$$\langle k \rangle = \frac{1}{n} \sum_{i=1}^{n} k_i = \frac{m}{n}$$

Ex) degree for node 3:

$$k_3 = \sum_{i=1}^n A_{i3} + \sum_{j=1}^n A_{3j} = 1 + 2 = 3$$

