Balanced Search Tree

Balanced + Binary Search Tree

Outline

- **□**2-3 tree
- **□**2-3-4 tree
- □AVL tree
 - [Adelson-Velskii & Landis, 1962]
- □Red-black tree
 - [Rudolf Bayer, 1972]... B-tree

2-3-4 Tree

- □2-3-4 trees have 2-nodes, 3-nodes, and 4-nodes
 - A 2-node has *one* data item and *two* children
 - A 3-node has two data items and three children
 - A 4-node has three data items and four children
- ☐ Are general trees, **not** binary trees
- ☐ Are never taller than a 2-3 tree
- □ Search and traversal algorithms for a 2-3-4 tree are simple *extensions* of the corresponding algorithms for a 2-3 tree

Placing Data Items in a 2-3-4 Tree

Search keys < S

Search keys > S and < M

Search keys > M and < L

Placing Data Items in a 2-3-4 Tree

Data Structures

□A leaf can contain either one, two, or three data items

Data Structures

☐ The insertion algorithm for a 2-3-4 tree

- Split a 4-node by moving the middle item up to its parent node
- Split 4-nodes as soon as its encounters them during a search from the root to a leaf (downward)

□ A 4-node that is split will eventually become

– the root, or the parent of a 2-node or 3-node

□ Impact

 When a 4-node is split, its parent cannot possibly be a 4-node (*recursion*), so it can accommodate the item moved up from the 4-node.

Data Structures

☐ If parent is 2-node

(a), (b) move the middle item up

- ☐ If parent is 2-node
 - (a), (b) move the middle item up
- ☐ If parent is 3-node
 - (c), (d), (e) move the middle item up

Data Structures

□Splits occur only at the path from the root to a leaf (downward)!

□No upward recursion is needed!

2-3-4 Tree: Insertion

Data Structures

Build 2-3-4 tree by insertion: 10, 20, 30, 40, 50, 90, 80, 70, 60, 100

Insert into a leaf:Split (4-nodes on the path)

Practice 3: Inserting into a 2-3-4 Tree

Data Structures

□ Input order: 10 12 30 8 60 40 70

Deleting from a 2-3-4 Tree

- 1. Locate the node *n* that contains the item *theItem*
- 2. Find the Item's inorder successor and swap it with the Item (deletion will always occur at a leaf)
- 3. If that leaf is a 3-node or a 4-node, remove the Item

Deleting from a 2-3-4 Tree

- ☐ To ensure that *theItem* does not occur in a 2-node
 - Transform each 2-node encountered into a 3-node or a 4-node
 - Apply the appropriate transformation for splitting nodes during insertions, but in reverse

Transform 2-nodes during Deletion

- ☐ If parent and sibling are 2-nodes
- ☐ If the parent is a 3-node

Transform 2-nodes during Deletion

Data Structures

- ☐ If parent and sibling are 2-nodes
- ☐ If the parent is a 3-node
- ☐ If the parent is a 4-node

b

(c)

d

Transform 2-nodes during Deletion

Data Structures

□Transformations occur only at the path from the root to a leaf (downward)!

■No upward recursion is needed!

Practice 4: Deleting from a 2-3-4 Tree

Data Structures

 \square After the deletions of 30, 10, 60

2-3-4 Tree: Summary

- ☐ Insertion/deletion algorithms for a 2-3-4 tree require fewer steps than those for a 2-3 tree
 - Only one pass from root to a leaf
- ☐ A 2-3-4 tree is always balanced
- ☐ A 2-3-4 tree requires more storage than a binary search tree
- □ Allowing nodes with more data and children is counterproductive, unless the tree is in *external* storage

Summary

- ☐ A 2-3 tree and a 2-3-4 tree are variants of a binary search tree in which nodes can contain more than one data item and have more than two children
- □ The *balance* of a 2-3 tree or a 2-3-4 tree is easily maintained
- ☐ The insertion and deletion algorithms for a 2-3-4 tree are more efficient than the corresponding algorithms for a 2-3 tree