Bases de Dados

Módulo 4: Modelo Relacional – Álgebra relacional

Prof. André Bruno de Oliveira

18/07/24 23:34

Álgebra Relacional

- Tópicos
- Operações que Casam Tuplas de Duas Relações
 - Produto Cartesiano
 - Junção Natural
 - Junção Theta
- Combinando Junção, Projeção e Seleção
- Operação de Renomeação
- Resolução em Sequência de Operações

Álgebra Relacional - Introdução

Sobre as relações Continente e Pais definidas abaixo:

- Regiao (cod_reg , nome_reg)
- *Uf* (<u>sigla uf</u>, nome_uf, cod_reg)
- Nota-se que *Uf* está associada à *Regiao* através do atributo em comum "cod_reg".

Regiao

cod_reg	nome_cont
1	Norte
2	Nordeste
3	Sudeste
4	Sul
5	Centro Oeste

Uf

sigla_uf	nome_uf	cod_reg
RJ	Rio de Janeiro	3
SP	São Paulo	3
DF	Distrito Federal	5
- PI	Piauí	2
		•••
GO	Goiás	5
Pará	Zimbabwe	4

Álgebra Relacional - Introdução

Considere que o usuário do BD deseja fazer a seguinte query.

Qual o nome da região do estado com o nome de São Paulo?

• Como resolver, se o nome da região está em *Regiao*, mas o nome do estado em *Uf*?

Regiao

cod_reg	nome_cont	
1	Norte	
2	Nordeste	
3	Sudeste	
4	Sul	
5	Centro Oeste	

Uf

sigla_uf	nome_uf	cod_reg
RJ	Rio de Janeiro	3
SP	São Paulo	3
DF	Distrito Federal	5
- PI	Piauí	2
		•••
GO	Goiás	5
Pará	Zimbabwe	4

Álgebra Relacional – Casamentos de Tuplas

- Para permitir a resolução de problemas deste tipo, é preciso utilizar uma operação que realize o "casamento" (match) de tuplas de uma relação com as tuplas de outra relação.
- Existem dois tipos:

- **Produto Cartesiano**: casa as tuplas de duas relações de todas as formas possíveis.
- **Junções**: casam de forma seletiva as tuplas de duas relações.

- Combina todas as tuplas de uma relação R com todas de outra relação S.
- Denotados por: $R \times S$

A	R.B	S.B	C	D
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

RxS

Relação S

• Denotados por: $R \times S$

Relação S

• A primeira tupla de *A* combina com todas as tuplas de *B*.

A	В							
1	2	_	7	A	R.B	S.B	C	
3	4			1	2	2	5	
ela	ação R		/	1	2	4	7	
				1	2	9	10	
	C	D		3	4	2	5	
	5	6	Y	3	4	4	7	
	7	8		3	4	9	10	
	10	11			Rx	S		

- Denotados por: $R \times S$
- A segunda tupla de *A* combina com todas as tuplas de *B*.

A	R.B	S.B	C	D
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

 $R \times S$

Relação S

- Definição Formal de Produto cartesiano (*cartesian product*) de duas relações *R* e *S*.
- Conjunto dos pares formados pela escolha do 1º elemento do par como sendo qualquer tupla de *R* e o segundo qualquer tupla de *S*. É a combinação das tupla de *R* com *S*.
- Também chamado de produto cruzado (*cross product*) ou simplesmente produto.

A	В
1	2
3	4

Relação R

В	C	D
2	5	6
4	7	8
9	10	11

Relação S

A	R.B	S.B	C	D
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

RxS

- O resultado de combinar uma tupla de R com uma de S é uma tupla " mais comprida" (com mais atributos). O total de atributos de $R \times S$ é igual ao **número de atributos** de R mais o número de atributos de S. Neste exemplo, o total de atributos é S (2 + 3= 5).
- Por convenção, os componentes de R(operando à esquerda) precedem os componentes de S na ordem do resultado de $R \times S$.
- O **número de tuplas resultante** de $R \times S$ é igula ao total de tuplas de R multiplicado pelo total de tuplas de S. Neste exemplo, **o total de tuplas** é 6 $(2 \times 3 = 6)$.

A	В
1	2
3	4

Relação R

В	C	D
2	5	6
4	7	8
9	10	11

Relação S

A	R.B	S.B	C	D
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

RxS

- O esquema da relação resultante é a união dos esquemas de R e S.
- Entretanto, caso *R* e *S* possuam algum <u>atributo com o mesmo nome</u>, a operação de produto cartesiano realiza, **automaticamente**, a **desambiguação** no resultado.
- Isto é feito da seguinte forma: acrescentando se, como prefixo do nome do atributo, o nome da relação de onde ele é originário.
- Neste exemplo: como B é um atributo comum a ambos os esquemas, utiliza se R.B e S.B no esquema de $R \times S$.

A	В
1	2
3	4

Relação R

В	C	D
2	5	6
4	7	8
9	10	11

Relação S

A	R.B	S.B	C	D
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

RxS

11

- Combina apenas as tuplas de *R* e *S* que coincidem em quaisquer atributos que são comuns aos esquemas de *R* e *S*.
- Denotado por: $R \bowtie S$

Relação S

- O único atributo comum entre *R* e *S* é B.
- Neste tipo de operação, para uma tupla de *R* poder casar com uma tupla de *S*, é necessário haver algum atributo com nome comum as duas relações e com mesmo valor. Neste caso o atributo de mesmo nome entre *R* e *S* é o B.

Relação S

Álgebra Relacional – Junção Natural (continuação)

- A primeira tupla de R casa com a primeira tupla de S.
- Elas compartilham o mesmo valor (valor 2) para seu atributo em comum B.
- Esse casamento gera a primeira tupla do resultado: (1,2,5,6).

Álgebra Relacional – Junção Natural (continuação)

- A primeira tupla de R casa com a primeira tupla de S.
- Elas compartilham o mesmo valor (valor 4) para seu atributo em comum B.
- Esse casamento gera a primeira tupla do resultado: (3,4,7,8).

 $R \bowtie S$

Álgebra Relacional – Junção Natural (continuação)

- Observe que a terceira tupla de S não casa com nenhuma tupla de R.
- Não há nenhuma tupla em R com o valor 9 para o atributo em comum B.
- Desta forma, a terceira tupla de *S* não tem nenhum efeito no resultado final da operação de junção natural.

A	В
1	2
3	4

Relação R

В	C	D
2	5	6
4	7	8
9	10	11

Relação S

A	В	C	D
1	2	5	6
3	4	7	8

 $R \bowtie S$

- Se uma tupla r de R e uma tupla s de S são combinadas de forma bem sucedida em $R\bowtie S$, a tupla combinada resultante é chamada de *joined tuple* (Tupla Unida).
- A *joined tuple* terá um componente para cada atributo da união dos esquemas de *R* e *S*.
- Esquemas: R(A,B) e S(B,C,D)

• União dos Esquemas: $\{A,B\}$ U $\{B,C,D\}$ = $\{A,B,C,D\}$

Veja que no resultado final, o atributo $\vec{\mathbf{B}}$ (o único atributo comum aos dois

esquemas) aparece apenas uma vez.

A	В
1	2
3	4

Relação R

В	C	D
2	5	6
4	7	8
9	10	11

Relação S

•			
A	В	C	D
1	2	5	6
3	4	7	8

 $R \bowtie S$

- Definição Formal Junção Natural (natural join)
- Sejam duas relações *R* e *S*.
- Sejam A_1 , A_2 , ..., A_n todos os atributos que fazem parte do esquema de R e do esquema de S (atributos comuns aos dois esquemas).
- Na operação de junção natural, uma tupla r de R e uma tupla s de S serão combinadas de forma bem sucedida se e somente se r e s possuam componentes (valores) iguais para **cada um** dos atributos em comum A_1 , A_2 , ..., A_n .

• Exemplo 2 : junção natural de relações com dois atributos em comum.

Relação V

A	В	C	D
1	2	3	4
1	2	3	5
6	7	8	10
9	7	8	10

 $U \bowtie V$

- A primeira tupla de U casa com as duas primeiras de V.
- A segunda e a terceira tuplas de U casam com a última de V.

- **IMPORTANTE**: Na junção natural, para um atributo ser considerado **comum** a *R* e *S* ele precisa ter o <u>mesmo nome nas duas relações</u>.
- Caso um atributo represente um mesmo conceito, mas possua nomes diferentes em R e S, será necessário renomeá-lo em uma das duas relações.
- Vejamos o exemplo abaixo: O id de *Regiao* (*PK*) corresponde ao atributo cod_reg de *Uf* (*FK*). Os dois atributos correspondem ao código de região.
- Nesta situação para que seja possível aplicar a junção natural entre *Regiao* e *Uf* é preciso usar o operador de ronomeação em um dos atributos para que os nomes fiquem iguais. *Uf*

Regiao

id	nome_reg
1	Norte
2	Nordeste
3	Sudeste
4	Sul
5	Centro Oeste

sigla_uf	nome_uf	cod_reg
RJ	Rio de Janeiro	3
SP	São Paulo	3
DF	Distrito Federal	5
PI	Piauí	2
•••	•••	•••
GO	Goiás	5
PA	Pará	4

- A junção natural faz o casamento de tuplas usando uma condição específica: <u>A</u> igualdade de valores dos atributos que são comuns de duas relações.
 - Na prática, <u>essa é realmente condição mais frequente</u> pela qual duas relações são combinadas.
 - Isto porque, normalmente, testamos se o valor de um atributo chave estrangeira (FK Foreign Key) em uma relação é igual ao de um atributo chave primária da outra relação (PK Primary Key).

- A **junção natural** faz o casamento de tuplas usando uma condição **específica**: A igualdade de valores dos atributos que são comuns de duas relações.
 - Na prática, <u>essa é realmente condição mais frequente</u> pela qual duas relações são combinadas.
 - Isto porque, normalmente, testamos se o valor de um atributo chave estrangeira (FK Foreign Key) em uma relação é igual ao de um atributo chave primária da outra relação (PK Primary Key).
 - Todavia, há situações que seja necessário combinar tuplas de duas relações usando algum outro critério.
 - Para esta propósito, existe a operação de **junção theta**.
 - Historicamente, "theta", refere se a uma condição arbitrária.
 - Segundo a notação de (Garcia Molina et al., 2008), vamos usar a representação desta condição por C ao invés de θ .

- Definição Formal Junção Theta (*theta join*)
- A notação para a junção theta de duas relações R e S baseada em uma condição C é $R\bowtie_{C} S$.
- O resultado desta operação é construído da seguinte forma:
 - I. Realizar o **produto cartesiano** entre *R* e *S*.
 - II. Selecionar, deste produto, <u>apenas as tuplas que satisfaçam a condição C</u>.

IMPORTANTE:

- I. Note que, diferente do que ocorre com a junção natural, a junção theta realiza um produto cartesiano internamente.
- II. Na prática, o produto cartesiano uma operação indesejada pelos SGBDs, pois frequentemente leva ao *estouro de buffer* (memória de trabalho para armazenar resultados intermediários).
 - I. De modo geral computadores com SGBD devem possuir uma configuração muito boa (vários núcleos de processamento e muita memória) para atender altas demandas de dados.

• Exemplo : Computar $U \bowtie_{A < D} V$.

A	В	C
1	2	3
6	7	8
9	7	8

Relação U

В	C	D
2	3	4
2	3	5
7	8	10

Relação V

- Numa simulação das etapas que ocorrem internamente para resolver esta junção:
- Primeiro, faz-se o produto cartesiano $U \times V$.

Passo 1

A	U.B	U.C	V.B	V.C	D
1	2	3	2	3	4
1	2	3	2	3	5
1	2	3	7	8	10
6	7	8	2	3	4
6	7	8	2	3	5
6	7	8	7	8	10
9	7	8	2	3	4
9	7	8	2	3	5
9	7	8	7	8	10

• Exemplo : Computar $U \bowtie_{A < D} V$.

A	В	C
1	2	3
6	7	8
9	7	8

Relação U

В	C	D
2	3	4
2	3	5
7	8	10

Relação V

- Numa simulação das etapas que ocorrem internamente para resolver esta junção:
- Segundo passo, aplicar a condição A < D para selecionar a instância (tuplas) desejada.

Passo 2

A	U.B	U.C	V.B	V.C	D
1	2	3	2	3	4
1	2	3	2	3	5
1	2	3	7	8	10
6	7	8	2	3	4
6	7	8	2	3	5
6	7	8	7	8	10
9	7	8	2	3	4
9	7	8	2	3	5
9	7	8	7	8	10

- Exemplo : Computar $U \bowtie_{A < D} V$.
- Numa simulação das etapas que ocorrem internamente para resolver esta junção:
- Segundo passo, aplicar a condição A < D para selecionar a instância (tuplas) desejada.

A	В	C
1	2	3
6	7	8
9	7	8

Relação U

В	C	D
2	3	4
2	3	5
7	8	10

Relação V

Resultado final

A	U.B	U.C	V.B	V.C	D
1	2	3	2	3	4
1	2	3	2	3	5
1	2	3	7	8	10
6	7	8	7	8	10
9	7	8	7	8	10

$$U\bowtie_{\mathsf{A}<\mathsf{D}}V$$

- Assim como ocorre no **produto cartesiano**, o esquema resultante da operação de junção theta entre duas relações U e V é uma espécie de concatenação dos esquemas de U e V.
- Veja que há situações que faz-se necessário usar o nome da relação como prefixo para diferenciar a origem de cada coluna: i) *U.B, U.C*; ii) *V.B, V.C.* Quando o nome das colunas de *U* e *V* são iguais aplica-se esta nomenclatura no resultado final.
- Pode-se notar que a **junção theta** não elimina os atributos das relações *U* e *V*, *diferindo da junção natural que só casa tuplas com valores iguais nos atributos*. O número de colunas da **junção theta** usa a mesma lógica do produto cartesiano.

A	U.B	U.C	V.B	V.C	D
1	2	3	2	3	4
1	2	3	2	3	5
1	2	3	7	8	10
6	7	8	7	8	10
9	7	8	7	8	10

$$U\bowtie_{\mathbf{A}<\mathbf{D}}V$$

• Exemplo : Computar $U \bowtie_{A < D \text{ AND } U.B \neq V.B} V$.

A	В	C
1	2	3
6	7	8
9	7	8

Relação U

В	C	D
2	3	4
2	3	5
7	8	10

Relação V

• Neste exemplo, a junção theta usa uma condição mais complexa.

Resultado final

A	U.B	U.C	V.B	V.C	D
1	2	3	7	8	10

- Há dois testes:
- I. A < D
- II. $U.B \neq V.B$
- Além disso o operador AND exige que os dois testes sejam verdadeiros.
- A condição aplicada é mais refinada, resultando apenas em uma tupla.

- A junção natural, a junção theta e o produto cartesiano podem ser combinados com outras operações da Álgebra Relacional (AR), como seleção e projeção.
- Para exemplificar, vamos usar o exemplo das relações *Uf* e *Regiao*.
 - *Regiao* (cod_reg , nome_reg,)
 - *Uf* (sigla_uf , nome_uf, cod_reg)

- Vamos buscar a expressão AR que resolva a consulta (*query*) desejada:
 - Qual o **nome da região** do **estado brasileiro** Maranhão ?

- Query: Qual o **nome da região** do **estado brasileiro chamado** Maranhão ?
 - Regiao (cod_reg, nome_reg,)
 - *Uf* (sigla_uf , nome_uf, cod_reg)
 - Para construir a expressão AR capaz de resolver a query é necessário identificar as informações:
 - O nome da região está contido no atributo nome_reg de Regiao.
 - O nome do estado encontra-se no atributo nome_uf da relação *Uf*.
 - Como os atributos envolvidos na consulta estão em relações diferentes, tudo indica que seja necessário utilizar uma operação que faça concatenação:
 - Junção
 - Ou Produto Cartesiano

- Query: Qual o **nome da região** do **estado brasileiro chamado** Maranhão ?
 - Regiao (cod_reg, nome_reg,)
 - *Uf* (sigla_uf , nome_uf, cod_reg)
- De modo geral, costuma-se utilizar muito mais **junção natural** do que o produto cartesiano ou a junção theta.
 - Na maioria das vezes, deseja-se realizar **junção de tuplas** que possam ser "casadas" através de um *critério*.
 - Neste exemplo, *Regiao* e *Uf* estão vinculados por uma chave estrangeira (FK).
 - **cod_reg** é o atributo comum entre *Regiao* e *Uf*.

- Query: Qual o **nome da região** do **estado brasileiro chamado** Maranhão ?
 - Regiao (cod_reg, nome_reg,)
 - *Uf* (sigla_uf , nome_uf, cod_reg)
- Etapas para resolver a consulta:
 - I. A é igual realizar a junção natural entre Regiao e Uf.
 - II. *B* é igual a SELECIONAR a tupla com nome_uf= 'Maranhão '.
 - III.C é igual PROJETAR (B) em função do atributo **nome_reg**.
 - A expressão regular correspondente é:

$$\pi_{\text{nome_reg}}(\sigma_{\text{nome_uf='Maranhão'}}(Regiao \bowtie Uf))$$

- Execução passo-a-passo.
- A etapa interna para encontrar a expressão regular $\pi_{\text{nome_reg}}(\sigma_{\text{nome_uf='Maranhão'}}(Regiao \bowtie Uf))$ começa com:

Regiao

cod_reg	nome_reg
1	Norte
2	Nordeste
3	Sudeste
4	Sul
5	Centro Oeste

Uf

sigla_uf	nome_uf	cod_reg
RJ	Rio de Janeiro	3
SP	São Paulo	3
DF	Distrito Federal	5
- PI	Piauí	2
•••		•••
GO	Goiás	5
PA	Pará	4

- Execução passo-a-passo.
- Imagine que o SGBD possui um buffer (memória de trabalho) que comporta um número enorme informações.
- Este Buffer é usado para armazenar
 resultados temporários obtidos por cada
 operação contida na expressão regular.
- O resultado final da query corresponderá ao resultado da última operação armazenada no Buffer.

Execução passo-a-passo.

Regiao

cod_reg	nome_cont
1	Norte
2	Nordeste
3	Sudeste
4	Sul
5	Centro Oeste

Uf

sigla_uf	nome_uf	cod_reg
RJ	Rio de Janeiro	3
SP	São Paulo	3
MA	Maranhão	1
RO	Rondônia	1
AC	Acre	1

 $\pi_{\mathsf{nome_reg}}(\sigma_{\mathsf{nome_uf=`Maranh\~{a}o'}}(\mathit{Regiao}\bowtie Uf))$

Buffer		

Execução passo-a-passo.

Regiao

cod_reg	nome_reg
1	Norte
2	Nordeste
3	Sudeste
4	Sul
5	Centro Oeste

Uf

$\mathcal{I}_{\mathcal{I}}$		
sigla_uf	nome_uf	cod
		_reg
RJ	Rio de	3
	Janeiro	
SP	São Paulo	3
MA	Maranhão	1
RO	Rondônia	1
AC	Acre	1

$\pi_{\mathsf{nome_reg}}(\sigma_{\mathsf{nome_uf=`Maranh\~{a}o'}}(\mathit{Regiao}\bowtie Uf))$

Passo 1: resolver ($Regiao \bowtie Uf$)

Buffer

Result_temp1

cod_reg	nome_reg	sigla_uf	nome_uf
1	Norte	MA	Maranhão
1	Norte	RO	Rondônia
1	Norte	AC	Acre
3	Sudeste	RJ	Rio de Janeiro
3	Sudeste	SP	São Paulo

Álgebra Relacional – Combinando operações

Execução passo-a-passo.

Regiao

cod_reg	nome_reg
1	Norte
2	Nordeste
3	Sudeste
4	Sul
5	Centro Oeste

Uf

sigla_uf	nome_uf	cod_r eg
RJ	Rio de Janeiro	3
SP	São Paulo	3
MA	Maranhão	1
RO	Rondônia	1
AC	Acre	1

 $\pi_{\mathsf{nome_reg}}(\sigma_{\mathsf{nome_uf=`Maranh\~{a}o'}}(\mathit{Regiao}\bowtie U\!f))$

Passo 2: resolver $(\sigma_{\text{nome uf}=\text{`Maranhão'}}(Result_temp1))$

Buffer

Result_temp1

cod_re	nome_reg	sigla_uf	nome_uf
1	Norte	MA	Maranhão
1	Norte	RO	Rondônia
1	Norte	AC	Acre
3	Sudeste	RJ	Rio de Janeiro
3	Sudeste	SP	São Paulo

Result_temp2

Resposta

nome_reg

Norte

Álgebra Relacional – Renomeação

- O operador de renomeação (renaming), denotado por ρ , é utilizado para renomear relações e atributos.
 - Exemplo 1: Renomear a relação e os atributos:
 - $\rho_{s(A1,A2,...,An)}(R)$
 - Nesta expressão, *R* é o nome da relação original.
 - *S* é a relação resultante após a troca de nome. *S* contém as mesmas tuplas de *R*.
 - Além disso, a expressão troca os nomes dos atributos de R para $A_1,A_2,...,A_n$. Assim, a relação resultante S tem os nomes diferentes da relação original.
 - Exemplo 2: Renomear apenas a relação.
 - $\rho_{\rm s}(R)$
 - Neste caso, o nome da relação muda para *S* e os nomes dos atributos ficam inalterados.

Álgebra Relacional – Renomeação

- Vejamos um exemplo de renomeação combinado com um produto cartesiano.
 - Ambas as relações de $R \times S$, contém o atributo B.
 - Considere a seguinte expressão: $R \times \rho_{s(K,C,D)}(S)$.
 - É efetuado um produto cartesiano comum, só que desta vez o atributo *S*.B muda de nome para K.

Relação S

- Muito frequentemente, a resolução de uma consulta envolve a combinação de diversas operações.
- Para facilitar a resolução, nós intuitivamente costumamos elaborar uma sequência de passos capaz de solucionar a consulta.
- Ex.: Qual o **nome da região** do **estado brasileiro** Maranhão ?
 - *Regiao* (cod_reg , nome_reg,)
 - *Uf* (sigla_uf , nome_uf, cod_reg)
- Etapas para resolver a consulta:
 - A é igual realizar a junção natural entre Regiao e Uf.
 - B é igual a SELECIONAR a tupla com nome_uf= 'Maranhão '.
 - C é igual PROJETAR (B) em função do atributo **nome_reg**.

- A Álgebra Relacional permite com que expressemos cada passo como um comando de atribuição.
 - Essencialmente, a resolução de uma consulta pode ser expressa como uma sequência de comandos de atribuição.
 - Cada comando gera uma nova relação no buffer, na forma de um resultado temporário, conforme visto anteriormente.
 - Um comando de atribuição tem o seguinte formato:
 - nome := operação
 - Onde **nome** representa o nome da relação produzida pela operação indica à direita do símbolo de atribuição ":=".
 - Conforme visto nos slides anteriores, a relação gerada pelo último comando corresponderá ao resultado final da consulta.
 - Para padronizar, a chamaremos sempre de **Resposta** em nossos exemplos.

- A Álgebra Relacional permite com que expressemos cada passo como um comando de atribuição.
 - Essencialmente, a resolução de uma consulta pode ser expressa como uma sequência de comandos de atribuição.
 - Cada comando gera uma nova relação no buffer, na forma de um resultado temporário, conforme visto anteriormente.
 - Um comando de atribuição tem o seguinte formato:
 - nome := operação
 - Onde **nome** representa o nome da relação produzida pela operação indica à direita do símbolo de atribuição ":=".
 - Conforme visto nos slides anteriores, a relação gerada pelo último comando corresponderá ao resultado final da consulta.
 - Para padronizar, podemos chamar o resultado de final sempre de Resposta em nossos exemplos.

- Exemplo 1: Qual o **nome da região** do **estado brasileiro** Maranhão ?
 - Regiao (cod_reg, nome_reg,)
 - *Uf* (sigla_uf , nome_uf, cod_reg)
 - RT1 := $Regiao \bowtie Uf$
 - $RT2 := \sigma_{nome_uf=`Maranhão} \cdot (RT1)$
 - Resposta := $\pi_{\text{nome}_\text{reg}}(RT2)$
 - Representação como expressão única (Notação in-Line)

$$\pi_{\text{nome_reg}}(\sigma_{\text{nome uf='Maranhão'}}, (Regiao \bowtie Uf))$$

- Exemplo 2: Quais são os <u>carros nacionais</u> e seus respectivos <u>anos</u> de fabricação com pelos menos 100.000 de km rodados?
 - Carro (carro , ano, cor, pais, km, avaliacao)
 Resolução em sequência de operações
 - Temp := $\sigma_{\text{km} \ge 100.000 \text{ AND pais}='BR'}(Carro)$
 - Resposta := π_{carro} (Temp)
 - Representação como expressão única (Notação in-Line)

$$\pi_{carro,ano}(\sigma_{km\geq 100.000 \text{ AND pais='BR'}}(Carro))$$

- Exemplo 3: Quais são os <u>nomes dos países</u> que lançaram carro antes de 1980?
 - Carro_lançado (carro, ano, modelo, cor, pais)
 - *Pais* (<u>sigla</u>, nome)
 - Dado que o atributo pais da relação *Carro_lançado* contem a sigla do pais de lançamento do carro.

Resolução em sequência de operações

```
T1985 := \sigma_{ano<1980}(Carro\_lançado)
```

Temp1 ($\underline{\text{carro}}$, $\underline{\text{ano}}$, $\underline{\text{modelo}}$, $\underline{\text{cor}}$, $\underline{\text{sigla}}$) := T1985

(aqui T1985 é atribuído a Temp1. Temp1 é uma relação temporária obtida previamente pela renomeação do atributo **pais** para a **sigla** na relação *Carro_lançado*)

```
Temp2 := Pais \bowtie Temp1
```

Resposta := $\pi_{\text{nome}}(\text{Temp2})$

• Representação como expressão única (Notação in-Line)

$$\pi_{\text{nome}} (Pais \bowtie (\rho_{s(carro,ano,modelo,\ cor,\ sigla)}(\sigma_{\text{ano}<1980}(Carro_lançado))))$$

Álgebra Relacional – Quadro resumo

Operação	Finalidade	Notação
União	Produz uma relação que inclui todas as tuplas que estão em R e S . As tuplas duplicadas são eliminadas. É uma operação comutativa.	$R \cup S$
Interseção	Produz uma relação que inclui todas as tuplas que comuns entre R e S . É uma operação comutativa.	$R \cap S$
Diferença	Produz uma relação com todas as tuplas contidas em <i>R</i> e não em <i>S</i> . Não é uma operação comutativa.	R - S
Seleção	Seleciona todas as tuplas que satisfazem a condição de seleção de uma relação <i>R</i> .	$\sigma_{\rm C}(R)$
Projeção	Produz uma nova relação com apenas alguns dos atributos de R, e remove tuplas duplicadas.	$\pi_{\mathrm{C}}(R)$
Junção Natural	Produz todas as combinações de tuplas de R e S que satisfazem uma condição de junção apenas com comparações de igualdade. Os atributos de S usados na comparação não são incluídos.	$R\bowtie S$
Junção Theta	Produz todas as combinações de tuplas de R1 e R2 que satisfazem a condição de junção.	$R\bowtie_{\mathbf{C}} S$
Produto cartesiano	Produz uma relação que tem os atributos de R e S com todas as possíveis combinações de tuplas. É uma operação comutativa.	$R \times S$
Renomeação	Produz uma relação contendo todas as tuplas de R trocando o nome da relação e ou de cada atributo.	$\rho_{s(a_1,\ldots,a_n)}(S)$

Álgebra Relacional – Exercício proposto

• Considere uma parte das instâncias das relações *Projeto* e *Funcionario* apresentadas a seguir. Em *Funcionario*, o atributo "ID" é chave estrangeira referenciando o campo "ID" de Projeto.

Projeto

id	siglaProjeto
1	MUNIC
2	ESTADIC
3	PNAD
4	PNSB

Funcionario

matricula	nomeFunc	id
10	Arlekina	4
20	Eva	2
30	Brad	1
40	Drake	3
50	Vin	1
60	Nina	2
••••	•••	••••

- Elabore as expressões de Álgebra Relacional para responder as seguintes perguntas:
- a) Recuperar a sigla dos projetos em que os funcionários de matrícula 50 e 90 estão alocados.
- b) Recuperar a sigla do projeto, as matrículas e os nomes dos funcionários alocados ao projeto de id igual a 4.
- c) Listar o ID de todos os projetos que possua somente 1 empregado alocado.
- d) Desenhar a query tree referente a solução (b).

Gabarito Aula 8 – Parte 2

a) Recuperar as **siglas dos projetos** em que os <u>funcionários de matrícula 50 e 90</u> estão alocados.

```
Projeto (<u>id</u>, siglaprojeto)

Funcionario (matricula, nomeFunc, id)

Temp1 := \sigma_{\text{matricula}=50 \text{ OR matricula}=90}(Funcionario)

Temp2 := Projeto \bowtie Temp1
```

Temp3 := $\pi_{\text{siglaProjeto}}(Temp2)$

 $\pi_{\text{siglaProjeto}}(Projeto \bowtie (\sigma_{\text{matricula=50 OR matricula=90}}(Funcionario)))$

b) Recuperar a sigla do projeto, as matrículas e os nomes dos funcionários alocados ao projeto de id igual a 4.

Projeto (id, siglaprojeto)

Funcionario (matricula, nomeFunc, id)

Temp1 := $\sigma_{id=4}(Projeto)$

Temp2 := $Funcionario \bowtie Temp1$

Temp3 := $\pi_{\text{siglaProjeto,matricula,nomeFunc}}$ (*Temp2*)

 $\pi_{\text{siglaProjeto,matricula,nomeFunc}}(Funcionario \bowtie (\sigma_{\text{id=4}}(Projeto)))$

c) Listar o ID de todos os projetos que possuam menos de 2 empregados alocados.

Projeto (id, siglaprojeto)

Funcionario (matricula, nomeFunc, id)

 $A1 := \pi_{\text{matricula}, \text{id}}(Funcionario)$

 $A2 := \pi_{\text{matricula,id}}(Funcionario)$

 $A3 := A1 \times A2$

(agora vamos selecionar as tuplas que ocorrem mais de uma vez)

A4 := $\sigma_{A1.id=A2.id \text{ AND } A1.matricula \neq A2.matricula}(A3)$

Raciocínio detalhando no próximo slide

Raciocínio

 $A1 \times A2$

A1

matricula	id
10	4
20	2
30	1
40	3
50	1
60	2
••••	••••

A2

matricula	id
10	4
20	2
30	1
40	3
50	1
60	2
••••	••••

Raciocínio

 $A1 \times A2$

AI

matricula	id
10	4
20	2
30	1
40	3
50	1
60	2
••••	••••

A2

A1.matricula	A1.id	A2.matricula	A2.id
	•••	•••	•••
20	2	10	4
20	2	20	2
		20	
20	2	30	1
20	2	40	3
20	2	50	1
20	2	60	2
••••	••••	••••	••••

- matricula
 id

 10
 4

 20
 2

 30
 1

 40
 3

 50
 1

 60
 2
- Como exemplo, vamos usar o projeto de **id** igual 2. De acordo com a condição, somente é selecionada a tupla do mesmo projeto com matrícula diferente. Assim, restam somente as tuplas com matrículas diferentes para este mesmo **id**.

A3

• Os casos em que o id contém somente uma matrícula ficam de fora do resultado temporário de A3. Digamos que o projeto de id igual 3 tivesse somente um funcionário. Aplicando o mesmo raciocínio, este projeto ficaria de fora.

$$\sigma_{A1.id=A2.id \text{ AND } A1.matricula} \neq A2.matricula}(A3)$$

c) Listar o ID de todos os projetos que possuam menos de 2 empregados alocados.

Projeto (id, siglaprojeto)

Funcionario (matricula, nomeFunc, id)

 $A1 := \pi_{\text{matricula,id}} Funcionario$

 $A2 := \pi_{\text{matricula.id}} Funcionario$

 $A3 := A1 \times A2$

Temp4 := $\sigma_{A1.id=A2.id \text{ AND } A1.matricula \neq A2.matricula}(A3)$

Temp5 := Resultado := π_{id} (funcionário) - π_{id} (Temp4)

d) Desenhar a query tree referente a solução (b).

 $\pi_{siglaProjeto,matricula,nomeFunc}\left(\textit{Funcionario}\bowtie(\sigma_{id=4}(\textit{Projeto}))\right)$

Obrigado