MS Thesis Defense: Extension of the Sequential K Nearest Neighbors Algorithm with Predictive Mean Matching (PMMSKNN)

Chong H. Kim

Committee Members:

Dr. Kathryn Colborn Dr. Anna Baròn Dr. Andrew Kittelson

2020

Overview

- Background & Rationale
- 2 Specific Aims
- Method
- 4 Results
- **6** Conclusion & Discussion

Overview

- Background & Rationale
- 2 Specific Aims
- 3 Method
- 4 Results
- **(5)** Conclusion & Discussion

Total Knee Arthroplasty (TKA)

Gap in Clinical Practice

- Consensus?
 - None! One-size-fits-all protocol
- Models?
 - Sort of! Not great
- Clinical Decision Support?
 - None! No reference charts

Previous Efforts

- Sanchez-Santos et al. 2018:
 - General Linear Model, Multiple Imputation, Boostrap CV

Figure 1. Calibration plot with R². (a) Calibration plot of the imputed development dataset (n = 1,649), (b) Calibration plot of the external dataset also imputed (n = 595). Internal and external samples used for validation were divided in 10 deciles, according to their predicted risk. For each decile, the mean predicted risk and the mean observed cases are shown on the X and Y axes, respectively. Bars indicate 95% Poisson confidence intervals.

Background & Rationale

- Why?: Personalized Medicine
 - **Health Outcomes**: Optimizing Health
 - Economic Outcomes: Optimizing Resource Allocation
- What and How?: Prediction using matching algorithms
 - Sequential K Nearest Neighbors (SKNN):
 Unsupervised Learning
 - Predictive Mean Matching (PMM): Supervised Learning

Better Information is Better Care

Overview

- Background & Rationale
- 2 Specific Aims
- Method
- 4 Results
- 6 Conclusion & Discussion

Specific Aims

- **Aim 1.** Develop an algorithm for obtaining neighbors-based prediction by extending the Sequential K Nearest Neighbours algorithm with Predictive Mean Matching
- **Aim 2.** Compare the performance of algorithms (i.e. LMM vs. SKNN vs. PMMSKNN) through simulation
- **Aim 3.** Compare the performance of algorithms (i.e. LMM vs. SKNN vs. PMMSKNN) in case study
- **Aim 4.** Develop software that implements the above algorithm

Overview

- Background & Rationale
- 2 Specific Aims
- Method
 - Aim 1: Algorithms
 - Aim 2: Simulation Study
 - Aim 3: Case Study
 - Aim 4: Software Development
- 4 Results
- **(5)** Conclusion & Discussion

Aim 1: SKNN Algorithm

Algorithm 1 SKNN Algorithm

```
1: procedure SKNN
```

```
2:
         for m = 1 to M do
                                          \triangleright let M be the max No. matches specified via d_{l}^*
3:
             for n = 1 to N do
                                                          \triangleright let N be the No. of subjects in data
 4:
                                                                      \triangleright Fit model to n-th person<sup>†</sup>
                  \hat{y}_n = GAMLSS
5:
                  Calculate \lambda
                                                          \triangleright \lambda can be bias, precision or coverage
6:
             end for
 7:
             s = \operatorname{avg}(\lambda)
                                                               ▶ Aggregate performance measure
8:
         end for
9:
         Return: \hat{\boldsymbol{y}}_n with min s or max s
10: end procedure
```

^{*} d_k refers to euclidean (covariates) distance of k-th and n-th person

[†] GAMLSS model fit with $(Y_1 \dots Y_m, X_1 \dots X_m), m = 1, \dots, M$

Aim 1: PMMSKNN Algorithm

Algorithm 2 PMMSKNN Algorithm

```
1: procedure PMMSKNN
```

```
2:
          \bar{\boldsymbol{u}} = \text{brokenstick}(\boldsymbol{x})
                                                                    \triangleright Brokenstick prediction at time t
3:
          \tilde{\boldsymbol{y}} = f(x_1, x_2, x_3, \dots, x_p) \triangleright \text{PMM using GLM}; x_i's are matching variables*
4:
          for m = 1 to M do
                                            \triangleright let M be the max No. matches specified via d_k^{**}
5:
               for n = 1 to N do
                                                               \triangleright let N be the No. of subjects in data
6:
                                                                            \triangleright Fit model to n-th person<sup>†</sup>
                   \hat{y}_n = GAMLSS
 7:
                   Calculate \lambda
                                                                \triangleright \lambda can be bias, precision or coverage
8:
               end for
9:
               s = \operatorname{avg}(\lambda)

→ Aggregate performance measure

10:
          end for
11:
           Return: \hat{\boldsymbol{y}}_n with min s or max s
12: end procedure
```

^{*} The estimated $\tilde{m{y}}$ is based on a clinically relevant time point

^{**} $d_k = \tilde{y}_k - \tilde{y}_n$ (difference in the predicted means for k-th and n-th person)

[†] GAMLSS model fit with $(Y_1 \dots Y_m, X_1 \dots X_m), m = 1, \dots, M$

PMMSKNN Tabular Description

Steps	Description	Details
1	Temporal Train-Test Split	Splitting of training and testing data for validation
2	Brokenstick prediction of training set outcome	Fitting of model to predict clinically relevant outcome (e.g. 90 day post-operative TUG)
3	Predictive Mean Matching: Generalized Linear Model	Fitting of model based on variables that contribute significantly to the (brokenstick) predicted outcome
4	Predictive Mean Matching: Match nearest m patients	Matching of patients based on the fitted value generated from generalized linear model
5	GAMLSS fitting of using m matched patients and evaluation of predictions	Optimize number of matches (m) based on performance measures
6	Test set Validation	Test set assessment of bias, coverage, and precision

Step 1: Temporal Train-Test Split

Train Data					
ID	Age	Time (since surg)	TUG		
1	43	-2	20		
1	43	3	18		
1	43	7	14		
2	56	-7	34		
2	56	5	20		
2	56	7	17		
:	:	<u>:</u>	:		

Test Data					
Age	Time (since surg)	TUG			
44	-2	21			
44	3	18.5			
44	7	14.5			
55	-7	36			
55	5	21			
55	7	18.3			
	44 44 44 55 55	44 -2 44 3 44 7 55 -7 55 5			

Step 2: Brokenstick

Brokenstick: Model Formulation

Follow notation of Fitzmaurice, Laird and Ware (2011)

$$Y_{ij} = \begin{pmatrix} Y_{i1} \\ Y_{i2} \\ \vdots \\ Y_{in_i} \end{pmatrix}, X_{ijk} = \begin{pmatrix} X_{i11} & X_{i12} & \cdots & X_{i1p} \\ X_{i21} & X_{i22} & \cdots & X_{i2p} \\ \vdots & \vdots & \ddots & \vdots \\ X_{in_i1} & X_{in_i2} & \cdots & X_{in_ip} \end{pmatrix}, \quad i = 1, \dots, N$$

Time points t_{ij} transformed into knots x_{is} where $s=1,\cdots,k+1$ using 2nd order B-spline (De Boor 1978, 32)

$$H_s(t) = \begin{cases} (t - \kappa_{s-1})/(\kappa_s - \kappa_{s-1}) & \kappa_{s-1} < t \le \kappa_s, \\ (\kappa_{s+1} - t)/(\kappa_{s+1} - \kappa_s) & \kappa_s \le t < \kappa_{s+1}, \\ 0 & \text{otherwise,} \end{cases}$$

$$X_i = (x_{i1}, \cdots, x_{ik}, x_{i(k+1)})$$
$$Y_i = X_i \beta + X_i b + \epsilon_i$$

Brokenstick: Knot Specification

Figure: 3 knots Figure: 10 knots

Step 3: PMM - Linear Model Fitting

$$\tilde{y} = \hat{\beta}_0 + \hat{\beta}_1 \text{Age} + \hat{\beta}_2 \text{Gender} + \hat{\beta}_3 \text{BMI} + \hat{\beta}_4 \text{bTUG}$$

ID	Age	$ ilde{y}^\dagger$
2	56	10
13	56	9.34
24	53	9.23
55	54	9.12
66	56	9.10
17	57	9.08
58	58	9.04
39	55	9.01
:	:	:

[†] \tilde{y} may be predicted TUG at day 90

Step 4: PMM - Nearest m Matches

	Age	Time (since surg)	TUG
13	56	3	23
13	56	6	20
13	56	8	19
13	53	10	18
24	53	3	24
24	53	6	18
24	53	10	14
:	:	:	<u>:</u>
	13 13 13 13 24 24	13 56 13 56 13 56 13 56 13 53 24 53 24 53	13 56 3 13 56 6 13 56 8 13 53 10 24 53 3 24 53 6

	ID	Age	Time (since surg)	TUG
	2	56	5	26
	2	56	7	23
Matches for Patient 13	24	53	3	24
	24	53	6	18
	24	53	10	14
	:	:		★

Step 5: GAMLSS Fitting

Within each of the N folds of the CV (in LOOCV), fit a GAMLSS model to the data (using m neighbors' data). (For the case study [with TUG outcome] we specified a Box-Cox-Cole-Green distribution with cubic spline smoother with df=3 for location parameter and df=1 for scale and shape parameters.)

LOOCV is used here to determine the optimal m matches with regard to bias, precision, and coverage.

Step 5: LOOCV in Training set

ID	Age	Time (since surg)	Observed TUG	Predicted TUG
2	56	5	20	18.5
2	56	7	17	16.5
:	:	<u>:</u>	<u>:</u>	<u>:</u>

Each subject has a prediction based on the model fit by nearest m matches

\overline{m}	Bias	Coverage	Precision	Dropped Cases
10	0.30	0.20	0.5	5
15	0.23	0.10	0.6	3
20	0.19	0.08	0.7	1
:	:	:	:	<u>:</u>

Step 6: Test Set Validation

Train ID	Test ID	Time (since surg)	Observed TUG	Predicted TUG
2	401	3	18	19.5
2	401	7	14	16.5
<u>:</u>	:	<u>:</u>	<u>:</u>	<u>:</u>

ID 401 in Test matched to ID 2 in Train therefore predicted TUG based on the model for ID 2 $\,$

Performance Measures

Note: These 3 metrics combine to give a complete picture of PRC performance. This is preferable to a single summary metric such as Mean Squared Error (MSE).

Aim 2: Simulation Study

1. Compare the performance of algorithms (LMM, SKNN, & PMMSKNN) when increasing random noise for LMM generated y_{ij}

$$\begin{aligned} y_{ij} &= \beta_0 + b_{0i} + \beta_1 \text{time} + \beta_2 \text{age}_i + \beta_3 \text{bmi}_i + \beta_4 \text{BaselineTUG}_i + \epsilon_{ij} \\ e_{ij} &\sim N(0,\sigma) \\ \sigma &= 1 \end{aligned}$$

2. Compare the performance of algorithms (LMM, SKNN, & PMMSKNN) when increasing random noise for BCCG generated y_{ij}

$$\begin{split} f(y|\mu,\sigma,\nu) &= \frac{1}{\sqrt{2\pi}\sigma} \frac{y^{\nu-1}}{\mu^{\nu}} \exp(-\frac{z^2}{2}) \\ \mu_{ij} &= (\beta_0 + b_{0i} + \beta_1 \text{time} + \beta_2 \text{age}_i + \beta_3 \text{bmi}_i + \beta_4 \text{BaselineTUG}_i + \epsilon_{ij}) \times 1.2^{\beta_1 \text{time}} \\ \sigma &= 0.3 \\ \nu_{ij} &= (\beta_0 + b_{0i} + \beta_1 \text{time} + \beta_2 \text{age}_i + \beta_3 \text{bmi}_i + \beta_4 \text{BaselineTUG}_i + \epsilon_{ij}) \times 1.2^{\beta_1 \text{time}} \end{split}$$

Simulation 1

```
\begin{aligned} y_{ij} &= \beta_0 + b_{0i} + \beta_1 \text{time}_{ij} + \beta_2 \text{age}_i + \beta_3 \text{bmi}_i + \beta_4 \text{BaselineTUG}_i + \epsilon_{ij} \\ e_{ij} &\sim N(0,\sigma) \\ \sigma &= 1 \end{aligned}
```

- y_{ij} generated from a random-intercept LMM model
- σ value varied from 2, 5, 10
- m-matches selected based on LOOCV (for SKNN & PMMSKNN) prioritizing in order of coverage, bias, then precision
- Choice of $m: m \in [10, 13, ..., 40]$

Simulation 2

$$\begin{split} f(y|\mu,\sigma,\nu) &= \frac{1}{\sqrt{2\pi}\sigma} \frac{y^{\nu-1}}{\mu^{\nu}} \exp(-\frac{z^2}{2}) \\ \mu_{ij} &= (\beta_0 + b_{0i} + \beta_1 \mathrm{time}_{ij} + \beta_2 \mathrm{age}_i + \beta_3 \mathrm{bmi}_i + \beta_4 \mathrm{BaselineTUG}_i + \epsilon_{ij}) \times 1.2^{\beta_1 \mathrm{time}_{ij}} \\ \sigma &= 0.3 \\ \nu_{ij} &= (\beta_0 + b_{0i} + \beta_1 \mathrm{time}_{ij} + \beta_2 \mathrm{age}_i + \beta_3 \mathrm{bmi}_i + \beta_4 \mathrm{BaselineTUG}_i + \epsilon_{ij}) \times 1.2^{\beta_1 \mathrm{time}_{ij}} \end{split}$$

- y_{ij} generated from a flexible GAMLSS-model with Box-Cox-Cole-Green distribution
- σ value varied from 0.3, 0.75, 1.5
- m-matches selected based on LOOCV (for SKNN & PMMSKNN) prioritizing in order of coverage, bias, then precision
- Choice of $m: m \in [10, 13, ..., 40]$

Aim 3: Case Study - Prediction of TUG trajectory

1. Data Source

- Data from routine clinical practice & previously published longitudinal studies (surgery dates: Jan '13 -June '17)
- Patients with pre- & post-operative Timed Up & Go were utilized

2. Measurement

- **Primary outcome:** Timed Up & Go (TUG); a brief test of mobility
- Explanatory variables: Age, gender, BMI, and TUG at time of surgery

3. Assess Performance

• RMSE, 50% Coverage, & Precision (width of IQR)

Aim 4: Software Development

- R Package In Active Development
- Contains Procedures to fit and plot (the performance of) SKNN and PMMSKNN (via LOOCV)

Overview

- Background & Rationale
- 2 Specific Aims
- Method
- 4 Results
 - Aim 2: Simulation
 - Aim 3: Case Study
 - Aim 4: Software Development
- 6 Conclusion & Discussion

Baseline Covariates for Simulation 1 & 2

Aim 2. \hat{y} over time for LMM & BCCG

Simulation 1 Results - Graphical

Simulation 1 Results - Tabular

Table: Performance Results for Simulation Study 1. Performance of LMM, SKNN, & PMMSKNN over 1,000 simulations for $\sigma = 2, 5, 10$ using \hat{y} generated from LMM.

Performance	σ	LMM	SKNN	PMMSKNN
RMSE				
	2	1.836 (1.674-1.95)	2.236 (2.099-2.382)	2.22 (2.079-2.362)
	5	4.799 (4.413-5.117)	4.994 (4.747-5.254)	4.986 (4.728-5.247)
	10	9.704 (8.896-10.283)	9.797 (9.33-10.274)	9.791 (9.317-10.306)
50% Coverag	ge			
	2	0.561 (0.532-0.595)	0.494 (0.466-0.52)	0.493 (0.466-0.519)
	5	0.524 (0.491-0.557)	0.494 (0.467-0.519)	0.493 (0.467-0.52)
	10	0.513 (0.483-0.546)	0.494 (0.468-0.519)	0.494 (0.467-0.519)
$Precision^*$				
	2	2.845 (2.706-2.981)	3 (2.806-3.194)	2.963 (2.769-3.156)
	5	6.838 (6.542-7.135)	6.684 (6.34-7.038)	6.675 (6.313-7.035)
	10	13.509 (12.926-14.075)	13.118 (12.435-13.799)	13.114 (12.451-13.802)

Note:

Performance values are represented as: mean (95% CI)

^{*} Width of the 50% prediction interval for LMM; Width of the Inter Quartile Range for SKNN and PMMSKNN

Simulation 2 Results - Graphical

Simulation 2 Results - Tabular

Table: Performance Results for Simulation Study 2. Performance of LMM, SKNN, & PMMSKNN over 1,000 simulations for $\sigma = 0.3, 0.75, 1.50$ using \hat{y} generated from LMM.

Performance	σ	LMM	SKNN	PMMSKNN
RMSE				
	0.30	2.855 (2.616-3.075)	3.022 (2.817-3.225)	3.006 (2.822-3.21)
	0.75	6.294 (5.785-6.955)	6.033 (5.597-6.539)	6.041 (5.596-6.56)
	1.50	14.764 (12.467-19.003)	11.485 (10.016-13.95)	11.503 (10.026-13.878)
50% Covera	ge			
	0.30	0.553 (0.523-0.589)	0.496 (0.466-0.519)	0.497 (0.467-0.52)
	0.75	0.59 (0.552-0.633)	0.48 (0.452-0.509)	0.48 (0.452-0.505)
	1.50	0.747 (0.681-0.836)	0.479 (0.449-0.51)	0.479 (0.446-0.509)
Precision*				
	0.30	4.241 (3.994-4.487)	4.016 (3.75-4.29)	3.993 (3.753-4.266)
	0.75	9.549 (8.793-10.533)	7.753 (7.244-8.325)	7.766 (7.244-8.337)
	1.50	23.199 (19.545-30.475)	13.509 (12.329-14.886)	13.519 (12.377-14.893)

Note:

Performance values are represented as: mean (95% CI)

^{*} Width of the 50% prediction interval for LMM; Width of the Inter Quartile Range for SKNN and PMMSKNN

Aim 3: Case Study Patient Characteristics

Table: Baseline Characteristics of Training and Testing Set

	$\begin{array}{c} \text{Train} \\ \text{(N = 398, \# TUG Obs = 1325)} \end{array}$		p^a
Age (years) (mean (SD))	64.04 (8.43)	65.90 (8.84)	0.012
Gender = Male (%)	185 (46.6)	84 (41.6)	0.280
BMI (kg/m ²) (mean (SD))	31.33 (5.82)	31.98 (6.20)	0.208
Baseline TUG (sec) (mean (SD))	9.98 (4.95)	11.00 (5.04)	0.018

 $[^]a$ Continuous variables tested with one-way analysis of variance; Categorical variables tested with χ^2 test

Aim 3: LOOCV Result

Aim 3: LMM Calibration

Figure: Decile-decile calibration plot for LMM predictions. Left: Training data. Right: Testing data.

Aim 3: SKNN Calibration

Figure: Decile-decile calibration plot for SKNN predictions. Left: Training data. Right: Testing data.

Aim 3: PMMSKNN-GAMLSS Calibration

Figure: Decile-decile calibration plot for PMMSKNN-GAMLSS predictions. Left: Training data. Right: Testing data.

Aim 3: Summary of Performance

Table: Overall Performance for LMM vs. SKNN vs. PMMSKNN

	LMM	SKNN	PMMSKNN
Train			
RMSE	2.032	3.115	2.952
50% Coverage	0.78	0.50	0.50
Precision*	3.426	2.644	2.484
Test			
RMSE	6.254	4.621	4.327
50% Coverage	0.404	0.455	0.430
Precision*	3.119	3.171	3.160

Note:

Performance values are represented as: mean

^{*} Width of the 50% prediction interval for LMM; Width of the Inter Quartile Range for SKNN and PMMSKNN

Aim 3: Trajectory Visualization

Figure: Personalized TÛG trajectory based on nearest 15 matches using PMMSKNN-GAMLSS. **A**: 1st, 50th and 99th percentile person's predictions. **B**: TŨG values of 15 matched observations for each of the individuals in plot **A**.

Figure: PMMSKNN Package on Private Github repository

Predictive Mean Matched Sequential K-Nearest Neighbor Introduction The purpose of the this repository is to provide a method for determining the trajectory of any longitudinal outcomes based on obtaining predictions using a extension of a nearest neighbors algorithm described by Dr. Alemi (a.k.a. sequential k-nearest neighbor (SKNN)). We extend the SKNN approach by matching similar patients using the predictive mean matching. We illustrate the use the PMMSKNN pacakge below briefly using the chickweight data. Data The following illustration uses the chickweight data that exists within base R. Algorithms Employed The main prediction method is using the R package brokenstick, along with predictive mean matching and gamlss. Currently the code is under development to work within the caret and mlr packages. Installation/Compilation Tip · Download the github folder through devtools::install_github('ck2136/PWMSKNN') If not available then git clone then R CMD Install git clone https://github.com/ck2136/PWMSKNN.git R CMD Install PMMSKNN . There will be dependencies that should be resolved if installation isn't done through the standard R method (in R): devtools::install_github("stefvanbuuren/brokenstick") devtools::install deps('.') devtools::install_local('.')

Figure: PMMSKNN Package on Private Github repository: Readme

```
LOOCV: loocv_function() calculates performance measure
  res <- loocy function(
   # specify number or vector of numbers from {1,....total number of patients in training data}
   nearest n = c(35:37).
   # enter training and testing post operative and fitted y90 dataset
   train post = test proc$train post.
   ord data = test proc$train o.
   test_post = test_proc$test_post,
   test o = test proc$test o,
   # Specify outcome variable and time variable name
   outcome = "weight".
   time elapsed = "time".
   # Specify number of cores for parallel processing
   parallel=3.
   # Specify use of cubic spline or not
   cs=TRUE,
   # specify degrees of freedom use or not
   dfspec=TRUE.
   # specify degree of freedom for location, scale and shape (d f * where * = {m, s} for location and scale default ·
   # specify power transformation of location (ptr m)
   d f m=3, ptr m=0.5.
   d_f_s=1,
   # Specify distribution for location, scale and shape
   dist fam = gamlss.dist::NO)
Plots: plot cal() returns a plot of the performance measures from the LOOCV
  plot cal(plotob1 = res. test proc = test proc.
          obs dist = "median")
```

Figure: PMMSKNN Package on Private Github repository: Functions ↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥Q♡

Matches (N)

Plots: plot_cal() returns a plot of the performance measures from the LOOCV

Matches (N)

Matches (N)

Figure: PMMSKNN Package on Private Github repository: LOOCV Result Using ChickWeight Data

Overview

- Background & Rationale
- 2 Specific Aims
- 3 Method
- 4 Results
- 6 Conclusion & Discussion
 - Discussion of Results
 - Questions & Acknowledgement

Simulation Results

- With \hat{y} simulated from LMM:
 - * The difference in the bias (for SKNN & PMMSKNN vs. LMM) becomes smaller as σ increases.
 - * The coverage for SKNN & PMMSKNN vs. LMM is consistent even as σ increases.
 - * The precision of SKNN & PMMSKNN predictions outperforms that of the LMM predictions as σ increases.
- With \hat{y} simulated from GAMLSS-BCCG:
 - * The bias for SKNN & PMMSKNN vs. LMM is smaller as σ increases.
 - * The coverage of SKNN & PMMSKNN outperforms LMM as σ increases.
 - * The precision of SKNN & PMMSKNN predictions outperforms that of the LMM predictions as σ increases.

Case Study Results

- LMM has the lowest bias in the training set but highest bias in the test set.
- PMMSKNN & SKNN both exhibit similar performance in the training and test set. Specifically:
 - * In terms of the bias, PMMSKNN outperformes LMM & SKNN.
 - * In terms of the coverage, SKNN outperforms both PMMSKNN-GAMLSS & LMM.
 - * In terms of the precision, all three algorithms have similar performance.

Discussion

- When the distribution of outcome over time doesn't follow a simple LMM, SKNN & PMMSKNN should be considered as it may provide better predictions.
- The SKNN & PMMSKNN approach employs a flexible matching strategy that allows users to specify the characteristics of patients to match on, the time point of interest to match patients, and the distribution to fit the outcome of interest over time.
- This flexibility introduces subjectivity and therefore warrants clear documentation of procedure utilized during analysis.

Discussion

- Differences in the SKNN & PMMSKNN approach is minimal if the variation in the matching characteristics in the sample is small; If there are limited number of patients with different characteristics that have the same outcome value, predictive mean matching would match patients with similar characteristics therefore predictions from PMMSKNN would be similar to that of SKNN.
- Visualization of the trajectory of outcomes allows stakeholders to better understand the patients' current outcome status & become more engaged in the recovery process that may lead to efficient use of resources & faster recovery for patients.

Computational Note

- The SKNN & PMMSKNN approaches take much longer than the LMM if personalized estimates are obtained from N number of model fitting exercises via m = 1, ..., N, cross-validated hyperparameter (m = number of matches) tuning exercise ($O(n^2)$).
- The SKNN & PMMSKNN approaches can be flexible in the model/distribution used to fit the observations from m matches. This can be optimized as a hyperparameter as well (at the cost of speed: the time complexity of the algorithm may approach $O(n^3)$ or beyond with the number of hyperparameters to optimize).

Next Steps

- Tweak the PMMSKNN package so that parts of the computation can run faster (i.e. profiling)
- Finish implementing the PMMSKNN-BS (BrokenStick)
- Improve the documentation & example section to enhance the ease of use for others
- Compare algorithms on other known longitudinal datasets (e.g. growth datasets)

 ${\bf Questions?}$

Thank You