NAME:

MA	RK BOX	
PROBLEM	POINTS	
1	10	
2	10	
3	10	
4	10	
Bonus Credits	5	
%	100	

|--|

please check the box of your section below

Section C (MW 3:30 pm

or

INSTRUCTIONS:

- (1) To receive credits you must:
 - (a) work in a logical fashion, show all your work and indicate your reasoning to support your answer
 - (b) when applicable put your answer on/in the line/box; use the back of the paper if needed
- (2) This exam covers (from *Elementary Linear Algebra* by Larson and Falvo 6^{th} ed.): Section 3.1 3.4, 4.1 4.6, 5.1, 5.2, 5.3^* .

Problem Inspiration:

- homework problem $\S 3.4 \# 5$ and 11
- \bullet homework problem § 4.1 # 21 and 23
- homework problem § 4.4 # 43
- homework problem $\S 4.5 \# 49$
- the other type of problems in this exam are either discussed in class or appear in the examples in the text or the exercises
- (1) Compute the determinant.

$$\left|\begin{array}{ccc|c} 1 & 1 & -2 \\ 0 & 15 & 0 \\ 2 & 2 & -4 \end{array}\right|$$

- (2) [§3.4 #5, #11] Find (i) the characteristic equation, (ii) the eigenvalues, and (iii) the corresponding eigenvectors of the matrix.
 - (a)

$$\left|\begin{array}{cc} 4 & -5 \\ 2 & -3 \end{array}\right|$$

$$\begin{array}{c|cccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & 1 & -1
\end{array}$$

- (3) $[\S4.1 \#21, \#23]$ Let $\mathbf{u} = \langle 1 \ 2 \ 3 \rangle$, $\mathbf{v} = \langle 2 \ 2 \ -1 \rangle$ and $\mathbf{w} = \langle 4 \ 0 \ -4 \rangle$.
 - a) Find $2\mathbf{u} 4\mathbf{v} \mathbf{w}$, b) Find \mathbf{z} such that $2\mathbf{z} 3\mathbf{u} = \mathbf{w}$.
- (4) Find the adjoint $\mathbf{ad}(\mathbf{M})$ of the matrix $M = \begin{pmatrix} -1 & 0 & 2 \\ 0 & 3 & 2 \\ 3 & 0 & -1 \end{pmatrix}$.

Verify that $Mad(M) = ad(M)M = det(M)I_3$.

- (5) (i) Which of the following sets of vectors $x = [x_1, x_2, x_3]^T$ are subspace of \mathbf{R}^3 ?
 - a) All x such that $x_1 + x_2 = 7x_3$
 - b) All x such that $x_2 = 0$
 - c) All x such that $x_1 + x_3 = 10$
 - (ii) We know that $P_2 = \{f : f \text{ is a polynomial of degree} \leq 2\}$ is a vector space. Which set of functions satisfying the following properties constitutes a subspace of P_2 ?
 - a) f(-x) = -f(x) b) f(0) + f(1) = 5 c) f'(0) = 0
- (6) Which of the following vectors, if any, is in the null space of $A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 2 & 1 & 1 & 3 \\ 1 & 0 & 2 & 2 \end{pmatrix}$?
 - a) $[-1 \ 0 \ 1 \ 0]^T$ b) $[0 \ 2 \ 1 \ -1]^T$ c) $[0 \ 4 \ 2 \ -2]^T$
- (7) Determine which of the following statements are equivalent to the fact that a matrix A of size $n \times n$ is invertible?
 - a) A is nonsingular
 - b) The row space of A has dimension n
 - c) The column space of A has dimension n
 - d) The determinant of A is nonzero
 - e) The system $A\mathbf{x} = \mathbf{b}$ has a unique solution for any given \mathbf{b} in \mathbf{R}^n
 - f) The system $A\mathbf{x} = \mathbf{0}$ has nonzero solution
 - g) The dimension of the null space of ${\cal A}$ is zero
 - h) The rows of A are linear independent
 - i) The columns of A are linear independent
 - j) The rank of A is n
 - k) A is row-equivalent to an identity matrix
 - l) All eigenvalues of A are nonzero
 - m) A can be written as the product of elementary matrices.
- (8) The matrix $A = \begin{pmatrix} 2 & 1 & 3 & 1 \\ 1 & -1 & 0 & 1 \\ 1 & 1 & 2 & 1 \end{pmatrix}$ row reduces to $C = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.
 - a) Find the rank and nullity of A.
 - b) Find a basis of the row space and the column space of A respectively.
 - c) Find a basis of the null space of A

- d) Does the system $A\mathbf{x} = \begin{pmatrix} 109 \\ -217 \\ 66 \end{pmatrix}$ have a solution? (Hint: You can draw a conclusion from the fact that dimension of column space is 3, without having to solve the system. Recall that rank(A) = dim(Col(A)) = dim(Row(A)))
- e) What is the relation between rank, dim(null(A))?(Hint: The theorem states that rank(A) + dim(null(A)) = n, the number of columns)
- (9) Find all the eigenvalues of the given matrix.

a)
$$\begin{pmatrix} 1 & -2 & 0 \\ -3 & 1 & 0 \\ -4 & -5 & 1 \end{pmatrix}$$

b) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

(10) $[\S4.4 \# 43]$ Determine whether each set in P_2 is linear independent.

$$S = \{2 - x, 2x - x^2, 6 - 5x + x^2\}$$

(11) [§4.5 # 49] Determine whether S is a basis for \mathbb{R}^3 . If it is, write $\mathbf{u} = [8\ 3\ 8]^T$ as a linear combination of the vectors in S.

$$S = \{ [4 \ 3 \ 2]^T, [0 \ 3 \ 2]^T, [0 \ 0 \ 2]^T \}$$

(12) [Bonus §5.3, #22] Find the coordinate of x relative to the orthonormal basis B in \mathbb{R}^2 .

$$B = \{ (\frac{\sqrt{5}}{5}, \frac{2\sqrt{5}}{5}), (\frac{-2\sqrt{5}}{5}, \frac{\sqrt{5}}{5}) \}, \quad \mathbf{x} = (-3, 4)$$

(Hint: If $B = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ is an orthonormal basis in V, then any vector \mathbf{w} in V can be written as $\mathbf{w} = \langle \mathbf{w}, \mathbf{u}_1 \rangle \mathbf{u}_1 + \dots + \langle \mathbf{w}, \mathbf{u}_k \rangle \mathbf{u}_k$, where $\langle \mathbf{w}, \mathbf{u} \rangle$ means the inner product which agrees with $\mathbf{Proj}_{\mathbf{u}}\mathbf{w} = \frac{\langle \mathbf{w}, \mathbf{u} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle}\mathbf{u}$, the projection of \mathbf{w} onto \mathbf{u})

Solutions (4)
$$ad(M) = transpose of \begin{pmatrix} -4 & 3 & -9 \\ 3 & -5 & 4 \\ -5 & 1 & -3 \end{pmatrix}$$

A straight forward computation shows $Mad(M) = -11I_3$.

- (8) a) rank(A) = 3 (number of leading 1's in C), nullity of A = 1
- b) A basis of Row(A) consists of $\begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}$, $\begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}$, $\begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$.

 A basis of Col(A) consists of $\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\-1\\1 \end{pmatrix}$, $\begin{pmatrix} 2\\1\\1\\1 \end{pmatrix}$ c) $\begin{pmatrix} 1\\1\\-1\\0 \end{pmatrix}$ d) Yes.

$$c) \begin{pmatrix} 1 \\ 1 \\ -1 \\ 0 \end{pmatrix}$$