

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 816 496 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 07.01.1998 Patentblatt 1998/02

(21) Anmeldenummer: 97110231.4

- (22) Anmeldetag: 23.06.1997

(51) Int. Cl.⁶: **C12N 15/12**, C07K 14/725, G01N 33/68, C12N 5/08, A61K 31/70, A61K 38/17, C07K 16/30, C07K 19/00, A01K 67/027

(84) Benannte Vertragsstaaten:
AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
NL PT SE

(30) Priorität: 24.06.1996 DE 19625191

(71) Anmelder:
BOEHRINGER MANNHEIM GMBH
68305 Mannheim (DE)

(72) Erfinder: Schendel, Dolores J., Prof. Dr. 80469 München (DE)

(74) Vertreter:
Weiss, Wolfgang, Dipl.-Chem. Dr. et al
Patentanwälte
Weickmann & Partner,
Kopernikusstrasse 9
81679 München (DE)

(54) Nierenkarzinom-spezifische-T-Zellen

(57) Die vorliegende Erfindung betrifft neue Nucleinsäure- und Aminosäuresequenzen des humanen T-Zellrezeptors und deren Verwendung für die Diagnostik und Therapie von Karzinomen, insbesondere Nierenzellkarzinomen.

Beschreibung

10

Die vorliegende Erfindung betrifft neue Nucleinsäure- und Aminosäuresequenzen des humanen T-Zellrezeptors und deren Verwendung für die Diagnostik und Therapie von Karzinomen, insbesondere Nierenzellkarzinomen.

Die T-Lymphozyten des Immunsystems sind für die zelluläre Immunantwort verantwortlich. Sie sind zur Erkennung und Beseitigung von erkrankten Körperzellen in der Lage, z.B. von Zellen, die fremde Proteine enthalten, oder von Tumorzellen. Die Erkennung erkrankter Körperzellen erfolgt durch den sogenannten T-Zellrezeptor (TCR), der ein für die erkrankte Zelle spezifisches Antigen in Form von kurzen Peptidfragmenten bindet. Diese Peptidfragmente werden von MHC-Molekülen an der Zelloberfläche präsentiert.

T-Zellrezeptoren bestehen aus zwei verschiedenen Polypeptiduntereinheiten, üblicherweise den sogenannten T-Zellrezeptor α - oder β -Ketten, die miteinander durch eine Disulfidbrücke verbunden sind. Die α - und β -Ketten sind wiederum aus variablen und konstanten Regionen zusammengesetzt. Die variablen Regionen der α -Kette umfassen V- und J-Gensegmente und die variablen Regionen der β -Kette umfassen V-, D- und J-Gensegmente.

Das $TCR-\alpha$ -Kettengen besteht aus über 100 variablen Segmenten, von denen jedes ein Exon für eine V-Region enthält, dem ein anderes Exon voransteht, das für eine Leadersequenz kodiert, die einen Transport des Proteins an die Zelloberfläche ermöglicht. Eine Gruppe von 61 J-Segmenten liegt in beträchtlicher Entfernung von den V-Segmenten. Den J-Segmenten folgt ein einzelnes C-Segment für den konstanten Bereich, das wiederum getrennte Exons für die konstante Region und die Hinge-Region sowie ein Exon für die Transmembran- und Cytoplasmaregionen enthält.

Das TCR-β-Kettengen enthält eine Gruppe von ungefähr 30 V-Gensegmenten, die in einiger Entfernung von 2 getrennten Clustern liegen, die jeweils ein einzelnes D-Segment und 6 bzw. 7 J-Segmente sowie ein einzelnes C-Segment enthalten. Jedes konstante Segment der β-Kette besitzt separate Exons für die konstante, die Hinge-, die Transmembran- und die Cytoplasmaregion.

Während der Entwicklung der T-Zelle werden die getrennten Segmente durch somatische Rekombination verknüpft. Für die α -Kette gelangt ein $V\alpha$ -Gensegment neben ein $J\alpha$ -Gensegment und damit entsteht ein funktionelles Exon. Durch Transkription und Splicing des $VJ\alpha$ -Exon an die konstante Region wird die mRNA gebildet, die zur TCR- α -Kette translatiert wird. Die Umordnung der für die variable Domäne der β -Kette kodierenden Gensegmente $V\beta$, $D\beta$ und $J\beta$ schafft ein funktionelles Exon, das transkribiert und durch Splicing an $C\beta$ angefügt wird. Die entstandene mRNA wird zur TCR- β -Kette translatiert. Die α - und β -Ketten verbinden sich nach ihrer Biosynthese zum α : β TCR-Heterodimer. Der für die Spezifität der Antigenerkennung verantwortliche hochvariable Bereich des TCR, der im Bereich der Verknüpfung von V-, (D-) und J-Gensegmenten liegt, wird als CDR3-Region bezeichnet.

Aufgrund der hohen Variabilität von T-Zellrezeptoren ist die Identifizierung spezifischer Nucleotid- und Aminosäuresequenzen insbesondere im Bereich der CDR3-Antigenerkennungsregion nur mit sehr hohem Aufwand möglich. Es besteht daher ein großes Bedürfnis, Nucleinsäure- und Aminosäuresequenzen von T-Zellrezeptoren bereitzustellen, die spezifisch zur Erkennung von klinisch relevanten Peptidantigenen, insbesondere von tumorspezifischen Peptidantigenen in der Lage sind.

Erfindungsgemäß konnten Tumor-infiltrierende Lymphozyten (TIL) aus einem Nierenkarzinom gewonnen werden, die eine hohe Spezifität für Tumorgewebe aus Patienten mit dem HLA-A+0201-Allel besitzen. Mit gesundem Nierengewebe aus dem gleichen Patienten zeigen diese TIL keine Reaktion.

Es wurde eine Analyse der Nucleotid- und Aminosäuresequenzen der von diesen TIL exprimierten T-Zellrezeptoren durchgeführt. Dabei wurde zunächst nach Kultivierung und periodischer Restimulierung der TIL über eine Dauer von 62 bzw. 74 Tagen ein einheitlicher CD8 $^+$ T-Zellklon erhalten. Die für die α - bzw. β -Kette des T-Zellrezeptors kodierende cDNA wurde sequenziert. Die Nucleotid- und Aminosäuresequenz der α -Kette sind in den Sequenzprotokollen SEQ ID No. 1 und SEQ ID No. 2 angegeben. Die CDR3 α -Region in SEQ ID No. 1 reicht von bp 313 bis 348 entsprechend den Aminosäuren 87-98 in SEQ ID No. 2. Die Nucleotid- und Aminosäuresequenz der β -Kette sind in den Sequenzprotokollen SEQ ID No. 3 und SEQ ID No. 4 angegeben. Die CDR3 β -Region in SEQ ID No. 3 reicht von bp 331 bis 369 in SEQ ID No. 3 entsprechend den Aminosäuren 90-102.

Bei der α -Kette wurde in der variablen Region eine Kombination von V α 20 mit J α 22 und bei der β -Kette eine Kombination von V β 22, D β 2 und J β 2.7 gefunden.

Anschließend wurde eine Sequenzanalyse der tumorspezifischen T-Zellrezeptoren bei einer nur 24-tägigen Kultivierung durchgeführt. Dabei wurde kein einheitlicher T-Zellklon, sondern ein Gemisch aus mehreren T-Zellspezies gefunden. Für die α-Kette konnten die in SEQ ID No. 2 angegebene Aminosäuresequenz sowie insgesamt zwei weitere Aminosäuresequenzen identifiziert werden. 11 von 56 untersuchten T-Zellspezies kodierten dabei für die in SEQ ID No. 2 von Position 87 bis 98 angegebene Aminosäuresequenz der CDR3α-Region. Die Nucleotidsequenz der α-Ketten in diesen T-Zellen unterschied sich von der in SEQ ID No. 1 angegebenen Sequenz nur durch einen Austausch T gegen G an Position 324.

Die Nucleotid- und Aminosäuresequenz der CDR3-Region einer weiteren α -Kette, die in 38 der 56 untersuchten T-Zellen identifiziert wurde, ist in den Sequenzprotokollen SEQ ID No. 5 und 6 angegeben. Darüber hinaus wurden zwei weitere T-Zellspezies identifiziert, die eine CDR3 α -Region mit derselben Aminosäuresequenz wie in SEQ ID No. 6

gezeigt enthalten, die sich aber jeweils durch einen Basenaustausch in der Nucleotidsequenz (C an Position 9 durch G bzw. T an Position 12 durch C) unterscheiden.

Die Nucleotid- und Aminosäuresequenz der CDR3 α -Region aus einer dritten T-Zellvariante, die in einer Häufigkeit von 5 von 56 untersuchten T-Zellspezies auftrat, ist in den Sequenzprotokollen SEQ ID No. 7 und 8 angegeben.

Die entsprechende Sequenzierung der β -Ketten ergab insgesamt 6 unterschiedliche Aminosäuresequenzen für die CDR3-Region. Eine CDR3 β -Sequenz, die bei 15 von 50 untersuchten T-Zellen gefunden wurde, ist in den Sequenzprotokollen SEQ ID No. 9 und 10 angegeben. Eine weitere T-Zellspezies enthielt die gleiche Aminosäuresequenz, aber eine unterschiedliche Nucleotidsequenz (Austausch von A an Position 15 durch T).

Jeweils eine T-Zellspezies enthielt die in den Sequenzprotokollen SEQ ID No. 11 und 12, 13 und 14 bzw. 15 und 16 angegebenen Nucleotid- bzw. Aminosauresequenzen in der CDR3β-Region.

27 von 50 Klonen enthielten die in den Sequenzprotokollen 17 und 18 gezeigten Nucleotid- und Aminosäuresequenzen in der CDR3β-Region. 4 von 50 untersuchten Klonen enthielten die in den Sequenzprotokollen SEQ ID. No. 19 und 20 angegebenen Nucleotid- bzw. Aminosäuresequenzen in der CDR3β-Region.

Weiterhin wurde eine in situ-Sequenzierung von TIL, d.h. eine Sequenzierung ohne vorherige Kultivierung, durchgeführt. Hierzu wurde die Gesamt-RNA aus dem Tumor isoliert, mit einem TCRα- bzw. TCRβ-spezifischen Primer und reverser Transkriptase eine TCR-spezifische cDNA hergestellt und diese cDNA unter Verwendung familienspezifischer Primer (Vα20 bzw. Vβ22) selektiv durch PCR amplifiziert. Die Amplifikationsprodukte wurden in E.coli kloniert und sequenziert. Dabei wurde eine Reihe von Einzelsequenzen erhalten.

Circa 60 % aller Sequenzen der α -Kette entsprechen den in den Sequenzprotokollen SEQ ID No. 2, 6 und 8 angegebenen Aminosäuresequenzen. Weitere 20 % hatten sehr ähnliche Sequenzen, die ebenfalls aus einer Kombination von V α 20 und J α 22 bestehen. Eine Übersicht der bei dieser in situ-Sequenzierung von T-Zellen des Patienten 26 identifizierten CDR3 α -Regionen ist in Abb. 1 gezeigt.

Weiterhin wurde bei der in situ-Sequenzierung gefunden, daß ca. 70 % aller Sequenzen der β-Kette den in den Sequenzprotokollen 4, 10, 12, 14, 16, 18 und 20 angegebenen Aminosäuresequenzen entsprechen. Eine Übersicht der bei der in situ-Sequenzierung identifizierten CDR3-Sequenzen der β-Kette ist in Abb. 2 gezeigt.

In einem Kontrollexperiment wurden TIL aus einem anderen Patienten mit dem HLA-A*0201-Allel durch in situ-Sequenzierung analysiert. Dabei wurde festgestellt, daß die CDR3-α-Regionen von 15 bzw. 4 der insgesamt untersuchten 34 T-Zellspezies die in SEQ ID No. 2 bzw. SEQ ID No. 6 dargestellte Aminosäuresequenzen enthielten. Eine Übersicht der relevanten CDR3α-Sequenzen und ihre Häufigkeit ist in Abb. 3 gezeigt. Eine Übersicht der Ergebnisse, die bei der Sequenzierung von CDR3-Regionen der β-Kette erhalten wurden, ist in Abb. 4 dargestellt.

In einem ersten Aspekt betrifft die vorliegende Erfindung somit eine Nucleinsäure, die für die α -Kette eines humanen T-Zellrezeptors, ein funktionelles Derivat oder ein Fragment davon kodiert und eine CDR3-Region, gebildet aus der Kombination eines V α 20-Gensegments mit einem J α 22-Gensegment umfaßt.

Die Länge des von dieser CDR3-Region kodierten Aminosäureabschnitts ist 11-14 Aminosäuren, vorzugsweise 12 oder 13 Aminosäuren. Besonders bevorzugt kodiert die CDR3-Region für eine der in den Sequenzprotokollen SEQ ID No. 2, 6 und 8 angegebene Aminosäuresequenz, eine damit mindestens 80 % und insbesondere mindestens 90 % identische Sequenz oder eine Sequenz, die für eine Aminosäuresequenz mit einer äquivalenten Erkennungsspezifität für die Peptidkomponente des T-Zellrezeptorliganden kodiert.

Ein weiterer Aspekt der vorliegenden Erfindung ist eine Nucleinsäure, die für die α -Kette eines humanen T-Zellrezeptors, ein funktionelles Derivat oder ein Fragment davon kodiert, und eine CDR3-Region umfaßt, ausgewählt aus:

(a) einer für die Aminosäuresequenz

 $YCL(X_1...X_n)SARQLTF$ (I)

kodierenden Nucleotidsequenz,

45

50

5

wobei X₁ ... X_n eine Sequenz von 3-5 Aminosäuren darstellt,

- (b) einer Nucleotidsequenz, die für eine Aminosäuresequenz mit einer Identität von mindestens 80 % und insbesondere mindestens 90 % zur Aminosäuresequenz aus (a) kodiert, oder
- (c) einer Nucleotidsequenz, die für eine Aminosäuresequenz mit einer äquivalenten Erkennungsspezifität für die Peptidkomponente des T-Zellrezeptor-Liganden kodiert.

Vorzugsweise ist die Aminosäuresequenz X_1 ... X_n ausgewählt aus der Gruppe, bestehend aus den Aminosäuresequenzen VGG, VLSG, ATG, VSG, DSG, VVSG, ALAG, APSG und VGR. Besonders bevorzugt wird die Aminosäuresequenz X_1 ... X_n ausgewählt aus den Aminosäuresequenzen VGG, VLSG und ATG.

Auffällig ist bei den erfindungsgemäßen tumorspezifischen CDR3 α -Regionen insbesondere eine Länge von 12-13 Aminosäuren sowie ein gemeinsames Sequenzmotiv. So ist bei einer Länge der Sequenz X_1 ... X_n von 3 Aminosäuren vorzugsweise X_1 = V oder A , X_2 = T, G oder S und X_3 = G . Bei einer Länge der Sequenz X_1 ... X_n von 4 Aminosäuren ist vorzugsweise X_1 = V oder A , mindestens einer von X_2 oder X_3 T oder S und X_4 = G .

Eine Sequenzierung der β-Ketten aus beiden untersuchten Patienten ergab eine Kombination der Genseqmente

Vβ22, Dβ1 bzw. Dβ2 und Jβ2.7 für den ersten Patienten und eine Kombination der Genseqmente von Vβ22, Dβ1 bzw. Dβ2 und Jβ2.1, Jβ2.3 bzw. Jβ2.7 für den zweiten Patienten.

Ein weiterer Aspekt der vorliegenden Erfindung ist somit eine Nucleinsäure, die für die β -Kette eines humanen T-Zellrezeptors, ein funktionelles Derivat oder ein Fragment davon kodiert und eine CDR3-Region gebildet aus der Kombination eines V β 22- Gensegments eines D β 1- oder D β 2-Gensegments und eines J β -Gensegments, insbesondere eines J β 2.1-, J β 2.3 oder J β 2.7-Gensegments umfa β t.

Die Länge des von dieser CDR3β-Region kodierten Aminosäureabschnitts ist 12-14 Aminosäuren, vorzugsweise 13 Aminosäuren. Weiterhin enthält diese CDR3β-Region bevorzugt ein gemeinsames Sequenzmotiv, nämlich X-T oder S-X-S, wobei X für eine beliebige Aminosäure steht und T oder S besonders bevorzugt T bedeutet. Insgesamt 70 % der untersuchten T-Zellrezeptoren weisen ein derartiges Sequenzmuster auf.

Noch ein weiterer Aspekt der vorliegenden Erfindung ist eine Nucleinsäure, die für die β-Kette eines humanen T-Zellrezeptors, ein funktionelles Derivat oder ein Fragment davon kodiert und eine CDR3-Region umfaßt, ausgewählt ist:

(a) einer für die Aminosäuresequenz

$$CA(X'_1 ... X'_n) Y/DEQYF$$
 (II)

kodierenden Nucleotidsequenz,

wobei X'₁ ... X'_n eine Sequenz von 5-7 Aminosäuren darstellt,

(b) einer für die Aminosäuresequenz

$$CA(X''_1 ... X''_n) NEQFF$$
 (III)

kodierenden Nucleotidsequenz,

wobei X"₁ ... X"_n eine Sequenz von 5-7 Aminosäuren darstellt,

(c) einer für die Aminosäuresequenz

$$CA(X'''_1 ... X'''_n) DTQYF$$
 (IV)

kodierenden Nucleotidsequenz,

wobei X"₁ ... X"_n eine Sequenz von 5-7 Aminosäuren darstellt,

- (d) einer Nucleotidsequenz, die für eine Aminosäuresequenz mit einer Identität von minestens 80 % und insbesondere von mindestens 90 % zu einer Aminosäuresequenz aus (a), (b) oder/und (c) kodiert, oder
- (e) einer Nucleotidsequenz, die für eine Aminosäuresequenz mit einer äquivalenten Erkennungsspezifität für die Peptidkomponente des T-Zellrezeptorliganden kodiert.

Die Aminosäuresequenz X'₁ ... X'_n ist vorzugsweise aus der Gruppe ausgewählt, bestehend aus SSETNS, SSETSS, TSGTAS, RSGTGS, SSGTDS, SSGTRS, SSGSDS, SSSTGS, SSSTVS, SSSTLS, SSSTLF, SSSTAS, SSHTDS, SSDTLS UND SRWDSE. Besonders bevorzugt stellt die Aminosäuresequenz X'₁ ... X'_n SSETNS, SSGTDS, TSGTAS oder RSGTGS dar. Die Aminosäuresequenz X"₁ ... X"_n bedeutet vorzugsweise SSGTSSY oder SSDQGM. Die Aminosäuresequenz X"'₁ ... X'''_n bedeutet vorzugsweise SADSFK.

Unter dem Begriff "funktionelles Derivat einer Kette eines humanen T-Zellrezeptors" im Sinne der vorliegenden Erfindung ist ein Polypeptid zu verstehen, das mindestens eine CDR3 α - oder/und CDR3 β -Region wie vorstehend definiert umfaßt und zusammen mit der jeweiligen komplementären Kette des humanen T-Zellrezeptors (oder einem Derivat einer solchen Kette) ein T-Zellrezeptor-Derivat bilden kann, das eine äquivalente Erkennungsspezifität für einen von einem MHC-Molekül präsentierten Peptidliganden wie der nicht-derivatisierte T-Zellrezeptor besitzt. Vorzugsweise weist ein derartiges T-Zellrezeptor-Derivat eine Bindungskonstante von mindestens 10^{-4} I/mol, vorzugsweise 10^{-4} bis 10^{-5} I/mol für den präsentierten Peptidliganden auf.

Die Herstellung funktioneller Derivate von Ketten eines humanen T-Zellrezeptors kann beispielsweise durch Deletion, Substitution oder/und Insertion von Abschnitten des für das jeweilige Polypeptid kodierenden Gens durch rekombinante DNA-Techniken erfolgen. Die Herstellung von rekombinanten T-Zellrezeptorketten ist beispielsweise bei Blank et al. (1993), Eur. J. Immunol. 23, 3057-3065; Lin et al. (1990) Sience 249: 677, Gregoire et al. (1991), Proc. Natl. Acad. Sci. USA, 88: 8077; Kappes und Tonegawa (1991), Proc. Natl. Acad. Sci. USA 88: 10619 und Ward (1991), Scand. J. Immunol. 34: 215, beschrieben. Auf diese Literaturstellen wird hiermit ausdrücklich Bezug genommen.

Besonders bevorzugte funktionelle Derivate von T-Zellrezeptorketten oder T-Zellrezeptoren sind Einzelketten-T-Zellrezeptoren, die beispielsweise aus den variablen Domänen der α - und β -Kette und einer konstanten Domäne zusammengesetzt sein können. Die Herstellung solcher Konstrukte ist bei Chung et al. (1994), Proc. Natl. Acad. Sci. USA 91: 12654-12658, beschrieben. Ein weiteres bevorzugtes Beispiel für funktionelle Derivate sind lösliche TCR-Fragmente, die als getrennte Polypeptide oder als Einzelketten-Polypeptide hergestellt werden können, vgl. z.B. Hilyard et al. (1994), Proc. Natl. Acad. Sci. USA 91: 9057-9061. Auch auf die Offenbarung in diesen Literaturstellen wird ausdrücklich Bezug genommen.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Vektor, der mindestens eine Kopie einer erfindungsgemäßen Nucleinsäure enthält. Dieser Vektor kann ein prokaryontischer Vektor oder ein eukaryontischer Vektor sein. Beispiele für prokaryontische Vektoren sind Plasmide, Cosmide und Bakteriophagen. Derartige Vektoren sind bei

30

25

15

Sambrook et al., Molecular Cloning. A Laboratory Manual, 2nd Edition (1989), Cold Spring Harbor Laboratory Press, in den Kapiteln 1-4 ausführlich beschrieben. Vorzugsweise ist der prokaryontische Vektor ein Plasmid.

Andererseits kann der Vektor auch ein eukaryontischer Vektor sein, z.B. ein Hefevektor, ein Pflanzenvektor (Bacolovirus) oder ein Säugervektor (ein Plasmidvektor oder ein viraler Vektor). Beispiele für eukaryontische Vektoren sind bei Sambrook et al, Supra, Kapitel 16 und Winnacker, Gene und Klone, Eine Einführung in die Gentechnologie (1985), VCH Verlagsgesellschaft, insbesondere in den Kapiteln 5, 8 und 10, beschrieben.

Noch ein weiterer Gegenstand der vorliegenden Erfindung ist eine Zelle, die eine erfindungsgemäße Nucleinsäure exprimiert oder eine Zelle, die mit einer erfindungsgemäßen Nucleinsäure oder mit einem erfindungsgemäßen Vektor transformiert ist. Die Zelle kann eine prokaryontische Zelle (z.B. eine gram-negative Bakterienzelle, insbesondere E.coli) oder eine eukaryontische Zelle (z.B. eine Hefe-, Pflanzen- oder Säugerzelle) sein. Beispiele für geeignete Zellen und Verfahren zum Einführen der erfindungsgemäßen Nucleinsäure in derartige Zellen finden sich in den obigen Literaturstellen.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Polypeptid, das von einer erfindungsgemäßen Nucleinsäure kodiert ist. Besonders bevorzugt enthält das Polypeptid die variable Domäne der α - oder/und β -Kette eines humanen T-Zellrezeptors.

15

20

Besonders bevorzugt ist ein Polypeptid, das T-Zellrezeptor-Eigenschaften aufweist und aus einer TCR- α -Kette oder einem funktionellen Derivat davon sowie einer TCR- β -Kette oder einem funktionellen Derivat davon als Untereinheiten aufgebaut ist. Das Polypeptid kann aus zwei separaten Ketten zusammengesetzt sein oder als Einzelketten-Polypeptid vorliegen. Außerdem kann das Polypeptid auch in oligomerisierter Form vorliegen, wobei mindestens 2 und vorzugsweise 2-10 TCR α - und TCR β -Ketten miteinander verknüpft vorliegen. Die Verknüpfung kann z.B. mittels bifuktioneller chemischer Linker erfolgen.

Noch ein weiterer Gegenstand der vorliegenden Erfindung ist ein Antikörper gegen ein erfindungsgemäßes Polypeptid, der gegen eine für die Erkennung des Peptidliganden verantwortliche Region des Polypeptids gerichtet ist. Dieser Antikörper kann ein polyklonales Antiserum, ein monoklonaler Antikörper oder ein Fragment eines polyklonalen oder monoklonalen Antikörpers (z.B. ein Fab-, F(ab)₂-, Fab'- oder F(ab')₂-Fragment) sein. Vorzugsweise ist der Antikörper gegen eine CDR3-Region des Polypeptids oder einen Bereich davon gerichtet. Derartige Antikörper können nach an sich bekannten Methoden durch Immunisierung eines Versuchstiers mit einem Peptid oder Polypeptid, welches eine erfindungsgemäße CDR3-Region enthält, und Gewinnung der resultierenden Antikörper aus dem Versuchstier erhalten werden. Monoklonale Antikörper können durch Fusion einer Antikörper-produzierenden B-Zelle des Versuchstiers mit einer Leukämiezelle nach der Methode von Köhler und Milstein oder eine Weiterentwicklung davon erhalten werden. Spezifische Beispiele für die Herstellung solcher Antikörper finden sich bei Choi et al. (1991), Proc. Natl. Acad. Sci. USA 88: 8357-8361 und Zumla et al. (1992), Hum. Immunol. 35: 141.

Noch ein weiterer Gegenstand der vorliegenden Erfindung ist eine T-Zelle, die einen erfindungsgemäßen T-Zellrezeptor enthält. Derartige T-Zellen können aus Patienten mit Nierenzellkarzinom isoliert und dann in vitro expandiert werden. Hierzu können beispielsweise die peripheren mononucleären Blutzellen eines Patienten durch Stimulation mit geeigneten Antigenen und anschließender Restimulation z.B. durch eine bestrahlte autologe Lymphoblastoid-Zellinie, Tumorzellen, Lymphoblastoidzellen plus Antigen oder autologe periphere Blutlymphozyten plus Antigen, erzeugt werden. Weitere Verfahren zur Gewinnung erfindungsgemäßer T-Zellen sind weiter unten beschrieben.

Die Erfindung betrifft auch eine pharmazeutische Zusammensetzung, die eine Nucleinsäure, ein Polypeptid, einen an das Polypeptid bindefähigen Peptidliganden, gegebenenfalls in Assoziation mit einem entsprechenden MHC-Molekül, einen Antikörper oder eine Zelle wie zuvor angegeben, als aktive Komponente, gegebenenfalls zusammen mit anderen aktiven Komponenten sowie pharmazeutisch üblichen Hilfs-, Zusatz-, oder Trägerstoffen enthält. Beispiele für weitere aktive Komponenten sind akzessorische stimulierende Komponenten, z.B. Cytokine, wie IL-2 und IL-4.

Die pharmazeutische Zusammensetzung kann zur Herstellung eines diagnostischen oder therapeutischen Mittels eingesetzt werden. Beispiele für diagnostische Anwendungen sind die Diagnose von Tumorerkrankungen oder einer Prädisposition für Tumorerkrankungen. Eine weitere bevorzugte diagnostische Anwendung ist die Überwachung des Krankheitsverlaufs bei einer Tumorerkrankung, z.B. nach einer Chemotherapie oder einem chirurgischen Eingriff.

Der Einsatz der pharmazeutischen Zusammensetzung als diagnostisches Mittel umfaßt vorzugsweise den Nachweis einer T-Zellsubpopulation, welche ein erfindungsgemäßes Polypeptid als T-Zellrezeptor exprimiert. Der Nachweis dieses T-Zellrezeptors kann beispielsweise auf Nucleinsäureebene, z.B. durch einen Nucleinsäure-Hybridisierungsassay, gegebenenfalls mit vorgeschalteter Amplifikation erfolgen. Andererseits kann der Nachweis auch auf Proteinebene durch einen Immunoassay unter Verwendung von spezifisch mit dem T-Zellrezeptor reagierenden Antikörpern erfolgen. Außerdem ist der Nachweis der T-Zellen beispielsweise auch über einen Test auf Bindung an spezifische Peptidliganden oder in einem Aktivitätstest, bei dem die spezifische cytotoxische Wirkung der T-Zellen oder die Freisetzung von Cytokinen wie TNF oder IFN_Y bestimmt wird, möglich.

Weiterhin kann die erfindungsgemäße pharmazeutische Zusammensetzung auch auf therapeutischem Gebiet angewandt werden, insbesondere zur Prävention oder Therapie einer Tumorerkrankung, z.B. eines Nierenzellkarzinoms. Diese therapeutische Anwendung kann beispielsweise darauf beruhen, daß eine Stimulation des Wachstums

von T-Zellen, die den tumorspezifischen T-Zellenrezeptor exprimieren, in vitro oder in vivo erfolgt. Die Wachstumsstimulierung in vivo kann beispielsweise durch Verabreichung des Peptidliganden des T-Zellrezeptors oder/und des gesamten Moleküls, aus dem der Peptidligand stammt, oder eines Fragments davon erfolgen. Weiterhin kann die Wachstumsstimulierung in vivo auch durch Verabreichung eines spezifisch den T-Zellrezeptor durch Bindung aktivierenden Antikörpers, z.B. eines monoklonalen Antikörpers oder eines monoklonalen Antikörperfragments bewirkt werden.

Andererseits kann die Wachstumsstimulierung der T-Zellen auch in vitro durchgeführt werden, beispielsweise durch Gewinnung spezifischer T-Zellen aus dem Patienten, in vitro-Expansion und anschließende Verabreichung der expandierten T-Zellen als Tumorvakzine. Die Gewinnung von T-Zellen aus einem Patienten, die einen tumorspezifischen T-Zellrezeptor exprimieren, erfolgt vorzugsweise derart, daß man eine T-Zellen enthaltende Probe aus dem Patienten, z.B. eine Blutprobe und vorzugsweise eine aus dem Tumorgewebe stammende Probe mit einem spezifisch an die CDR3-Region des T-Zellrezeptors bindenden Mittel in Kontakt bringt, die mit dem Mittel reagierenden T-Zellen identifiziert und gegebenenfalls von anderen T-Zellen abtrennt. Das an die CDR3-Region des T-Zellrezeptors bindende Mittel wird vorzugsweise ausgewählt aus dem Peptidliganden der T-Zellen, einem Peptidligand-MHC-Komplex oder/und einem Anti-TCR-Antikörper. Gegebenenfalls kann die in vitro-Expansion zusätzlich in Gegenwart costimulatorischer Faktoren durchgeführt werden, z.B. Anti-CD28-Antikörpern. Vorzugsweise wird zur Erleichterung der Abtrennung der gewünschten T-Zellsubpopulation das Mittel in einer immobilisierten oder immobilisierbaren Form verwendet.

Die Gewinnung von T-Zellen, die einen tumorspezifischen T-Zellrezeptor exprimiert, kann jedoch auch auf andere Weise erfolgen, z.B. durch Einführen von Nucleinsauresequenzen, die für den T-Zellrezeptor kodieren, in eine T-Zellinie, vorzugsweise eine cytotoxische T-Zellinie. In dieser transfizierten T-Zellinie erfolgt dann eine Expression des T-Zellrezeptors. Auf diese Weise sind T-Zellen, welche einen tumorspezifischen T-Zellrezeptor exprimieren, in größeren Mengen erhältlich.

Noch eine andere Möglichkeit zur Gewinnung von T-Zellen, die einen tumorspezifischen T-Zellrezeptor exprimieren, besteht darin, daß man Nucleinsäuresequenzen, die für den T-Zellrezeptor kodieren, in die Keimbahn eines Tieres einführt und die T-Zellen aus dem resultierenden transgenen Tier oder Nachkommen davon gewinnt. Vorzugsweise werden transgene Mäuse hergestellt. Weiterhin ist bevorzugt, daß die transgenen Mäuse neben dem T-Zellrezeptor auch das humane CD8-Molekül oder/und dar humane HLA-A*0201-Molekül exprimieren.

Ein weiterer Gegenstand der vorliegenden Erfindung ist somit auch ein transgenes Tier, welche T-Zellen besitzt, die einen tumorspezifischen T-Zellrezeptor exprimieren. Vorzugsweise ist dieses transgene Tier ein Nagetier, insbesondere eine Maus.

Schließlich betrifft die Erfindung auch ein Verfahren zur Identifizierung von Peptidliganden eines erfindungsgemäßen T-Zellrezeptors. Dieses Verfahren umfaßt vorzugsweise die Schritte:

(a) Gewinnen von RNA aus Tumorgewebe,

5

35

40

50

55

- (b) Überführen der RNA in doppelsträngige cDNA-Moleküle,
- (c) Einbringen der cDNA-Moleküle in Wirtszellen, wobei eine cDNA-Bahk erhalten wird,
- (d) Transfizieren von eukaryontischen Empfängerzellen mit Aliquots der cDNA-Bank, wobei (i) eine Cotransfektion mit HLA-A*0201-DNA erfolgt oder (ii) HLA-A*0201 positive Empfängerzellen verwendet werden,
- (e) Testen der transfizierten Empfängerzellen auf Fähigkeit zur Stimulation von T-Zellen, beispielsweise zur Proliferation oder zur Sekretion von Cytokinen wie etwa TNF, wobei z.B. die Lyse von TNF-sensitiven Zellen untersucht werden kann,
- (f) Identifizieren einer cDNA-Sequenz, die für das Antigen, welches den Peptidliganden enthält, kodiert und
- (g) Identifizieren der Sequenz des Peptidliganden.

Weiterhin wird die Erfindung durch nachfolgende Beispiele, Abbildungen und Sequenzprotokolle erläutert. Es zeigen

SEQ ID No. 1:	Die Nucleotidsequenz der TCR-α-Kette eines erfindungsgemäßen T-Zellrezeptors, wobei bp
	55-324/325 für das TCR-Vα20-Gensegment kodieren, bp 325/326 für das TCR Jα22-Genseg-
	ment kodieren, bp 381-804 für das TCR-Cα-Gensegment kodieren und bp 805-1341 einen 3'-
	untranslatierten Bereich darstellen,

SEQ ID No. 2:	Die Aminosäuresequenz zu der in SEQ ID. No. 1 dargestellten Nucleotidsequenz,
SEQ ID No. 3:	Die Nucleotidsequenz der TCR-β-Kette eines erfindungsgemäßen T-Zellrezeptors, wobei
	1-63 für das Leadernentid kodieren, hn 64-341 für das TCR-V622-Gensegment kodieren.

1-63 für das Leaderpeptid kodieren, bp 64-341 für das TCR-Vβ22-Gensegment kodieren, bp 342-345 N-Nucleotide sind, bp 346-349 für das TCR-Dβ2 Gensegment kodieren, bp 350 ein N-Nucleotid ist, bp 351-398 für das TCR-Jβ2.7-Gensegmentkodieren und bp 399-936 für das TCR-Cβ-Gensegment kodieren,

SEQ ID No. 4: Die Aminosäuresequenz zu der in SEQ ID No. 3 angegebenen Nucleotidsequenz,

	SEQ ID No. 5 und 6:	Nucleotid- und Aminosäuresequenzen der CDR3 α -Region eines erfindungsgemäßen T-Zellrezeptors,
	SEQ ID No. 7 und 8:	Nucleotid- und Aminosäuresequenzen der CDR3 α -Region eines erfindungsgemäßen T-Zell-rezeptors,
5	SEQ ID No. 9 und 10:	Nucleotid- und Aminosäuresequenzen der CDR3β-Region eines erfindungsgemäßen T-Zell-rezeptors,
	SEQ ID No. 11 und 12:	Nucleotid- und Aminosäuresequenzen der CDR3β-Region eines erfindungsgemäßen T-Zell-rezeptors,
10	SEQ ID No. 13 und 14:	Nucleotid- und Aminosäuresequenzen der CDR3β-Region eines erfindungsgemäßen T-Zell-rezeptors,
	SEQ ID No. 15 und 16:	Nucleotid- und Aminosäuresequenzen der CDR3β-Region eines erfindungsgemäßen T-Zell-rezeptors,
	SEQ ID No. 17 und 18:	Nucleotid- und Aminosäuresequenzen der CDR3β-Region eines erfindungsgemäßen T-Zell-rezeptors,
15	SEQ ID No. 19 und 20:	Nucleotid- und Aminosäuresequenzen der CDR3β-Region eines erfindungsgemäßen T-Zell- rezeptors,
	SEQ ID No. 21	die Nucleotidsequenz des TCRα-spezifischen Primers P-CαST,
	SEQ ID No. 22	die Nucleotidsequenz des TCRβ-spezifischen Primers P-CβST,
	Abb. 1	Nucleotid- und Aminosäuresequenzen von CDR3α-Regionen aus tumorspezifischen TCR, die
20		durch in situ-Sequenzierung von T-Zellen des Patienten 26 bestimmt wurden,
	Abb. 2	Nucleotid- und Aminosäuresequenzen von CDR3β-Regionen aus tumorspezifischen TCR, die durch in situ-Sequenzierung von T-Zellen des Patienten 26 bestimmt wurden,
	Abb. 3	Nucleotid- und Aminosäuresequenzen von CDR3 α -Regionen aus tumorspezifischen TCR, die durch in situ-Sequenzierung von T-Zellen des Patienten 22 bestimmt wurden und
25	Abb. 4	Nucleotid- und Aminosäuresequenzen von CDR3β-Regionen aus tumorspezifischen TCR, die
20	AUU. T	durch in situ-Sequenzierung von T-Zellen des Patienten 22 bestimmt wurden.

Beispiel 1

45

Analyse von T-Zellrezeptoren in HLA-A2-Patienten mit Nierenzellkarzinom

Im Nierenzellpatienten 26 wurden cytotoxische CD8⁺-T-Zellen identifiziert, die autologe Tumorzellen in einem HLA-A2-restringierten Mechanismus lysieren. Die T-Zellen besitzen eine hohe Tumorspezifität, da Kurzzeitkulturen von normalen Nierenzellen nicht erkannt werden. Die von den TlL des Patienten 26 erkannte Determinante wurde auch auf anderen Tumoren von Patienten gefunden, welche das HLA-A2-Gen, insbesondere das weit verbreitete HLA-A*0201-Allel, tragen. Normale Nierenzellen dieser Patienten wurden nicht lysiert. Diese Ergebnisse zeigen, daß die Nierenkarzinomzellen des Patienten 26 eine Tumordeterminante exprimieren, d.h. einen Tumor-assoziierten Peptid/HLA-A2-Komplex, der auch auf Tumoren anderer Patienten vorliegt.

Zur Identifizierung und Sequenzierung von tumorspezifischen TCR wird aus T-Zellen Gesamt-RNA isoliert. Hierzu werden die Zellen in Suspension mit PBS gewaschen und das Zellpellet mit 0,2 ml RNazol-B pro 1 x 10⁶ Zellen resuspendiert. Für die RNA-Extraktion aus Gewebe werden 2 ml RNazol-B pro 100 mg Gewebe eingesetzt. Nach mehrfachem mechanischen Resuspendieren der Lysate und gegebenenfalls Zugabe von Hefe tRNA als Trägermatrix erfolgt die RNA-Extraktion durch Zugabe von 0,2 ml Chloroform pro 2 ml Homogenisat, nachfolgendem Mischen für 15 sek. und 5-minütiger Lagerung auf Eis.

Nach einem Zentrifugationsschritt von 12000 g für 15 min. bei 4 °C wird die wässrige Phase abgenommen und in ein neues Reaktionsgefäß überführt. Die erste Präzipitation der RNA erfolgt durch Zugabe eines identischen Volumens Isopropanol und anschließender Lagerung für mindestens 15 min. bei 4 °C. Nach Zentrifugation für 15 min. bei 12000 g und 4 °C wird die RNA als weißes Pellet am Grund des Gefäßes erhalten.

Nach Verwerfen des Überstandes wird das RNA-Pellet durch kurzes Mischen in 75 % Ethanol von Salzen gereinigt. Nach Zentrifugation (7500 g, 4 °C, 8 min.) wird das Pellet in 175 μ l mit Diethylpyrocarbonat (DEPC) behandeltem Wasser gelöst und mit 500 μ l Ethanol und 75 μ l 2 M Nacl für mindestens 1 h bei - 20 °C erneut präzipitiert. Die Zentrifugations- und Waschschritte nach der zweiten Präzipitation erfolgen wie bei der ersten Fällung beschrieben. Nach Lufttrocknung des Pellets wird die RNA in H₂O-DEPC oder 0,5 % SDS, pH 6,5 bis 7,0 oder 1 mM EDTA, pH 7,0 resuspendiert.

Anschließend wird aus der RNA durch reverse Transkription cDNA synthetisiert. Hierzu werden 3 μg Gesamt-RNA mit 30 ng P-CαST (ein für die TCR-α-Kette spezifischer Primer mit der in SEQ ID No. 21 gezeigten Sequenz 5'-CAC TGA AGA TCC ATC TG-3') und 30 ng P-CβST (ein für die TCR-β-Kette spezifischer Primer mit der in SEQ ID No. 22 gezeigten Sequenz 5'-TAG AGG ATG GTG GCA GAC AG-3') in einem Reaktionsvolumen von 10 μl für 10 min bei

55 °C inkubiert. Anschließend werden 38 μ l RAV-2-RT-Puffer (100 mM Tris-HCl pH 8,3; 140 mM KCl; 10 mM MgCl₂; 2 mM Dithiothreitol, jeweils 0,1 mM dNTP), 1 μ l (0,75 U) rRNasin und 1 μ l (18 U) reverse Transkriptase zupipettiert. Die reverse Transkription erfolgt für 1 h bei 42 °C, gefolgt von einem Denaturierungsschritt bei 68 °C für 5 min. Die Lagerung bis zum Verbrauch erfolgt bei - 20 °C.

Anschließend wird eine Polymerase-Kettenreaktion durchgeführt. Die Primer können biotinyliert sein, um eine nachfolgende Aufreinigung der PCR-Produkte durch Kopplung an eine magnetische partikuläre Festphase (Streptavidin-beschichtete Beads) zu ermöglichen.

Die PCR wird unter Verwendung einer thermostabilen DNA-Polymerase mit folgendem Reaktionsschema durchgeführt:

10

15

5

95 °C 5 min. Prädenaturierung (nur am Anfang)

95 °C 30 sek. DNA-Denaturierung

56 °C 1 min. Annealing

72 °C 1 min. Extension

72 °C 10 min. Auffüllen aller Einzelstränge in der Reaktionslösung (nur am Ende).

Die Anzahl von Reaktionszyklen bei der PCR ist in der Regel 30.

Die auf diese Weise erhaltenen PCR-Fragmente werden sequenziert.

Bei Kultivierung und periodischer Restimulierung der cytotoxischen T-Zellen aus dem Patienten 26 über eine Dauer von 62 bzw. 74 Tagen wird ein einheitlicher CD8 $^+$ T-Zellklon erhalten. Die Nucleotid- und Aminosäuresequenz der TCR- α -Kette dieses T-Zellklons aus dem Patienten 26 sind in SEQ ID No. 1 und 2 angegeben. Die Nucleotid- und Aminosäuresequenz der TCR- β -Kette sind in SEQ ID No. 3 und 4 angegeben.

Bei einer nur 24-tägigen Kultivierung der tumorinfiltrierenden Lymphozyten aus dem Patienten 26 wurde kein einheitlicher T-Zellklon, sondern ein Gemisch aus mehreren T-Zellspezies gefunden. Die CDRα-Regionen dieser T-Zellspezies enthielten neben der in SEQ ID No. 2 gezeigten Aminosäuresequenz insgesamt 2 weitere Sequenzen (SEQ ID No. 5 und 6 bzw. 7 und 8) Die CDR3β-Regionen enthielten neben der in SEQ ID No. 4 gezeigten Aminosäuresequenz weitere nah verwandte Sequenzen (SEQ ID No. 9 und 10, 11 und 12, 13 und 14, 15 und 16, 17 und 18 bzw. 19 und 20).

Weiterhin wurde eine in situ-Sequenzierung von T-Zellen des Patienten 26, d.h. eine Sequenzierung ohne vorherige Kultivierung durchgeführt. Dabei wurde für die CDR3 α -Region eine Reihe von Einzelsequenzen erhalten, die in Abb. 1 angegeben ist. Circa 60 % aller Sequenzen der α -Kette entsprechen den bereits zuvor angegebenen Sequenzen. Weitere 20 % entsprechen sehr ähnlichen Sequenzen.

Auch für die CDR3-Regionen der β-Kette wurde festgestellt, daß insgesamt 70 % der untersuchten T-Zellen des Patienten 26 ein sehr ähnliches Sequenzmuster aufwiesen (Abb. 2).

Eine Analyse von peripheren Blutproben aus dem Patienten 26 auf T-Zellrezeptoren, welche die Merkmale der tumorspezifischen T-Zellrezeptoren aufweisen, wurde über insgesamt 4 Jahre durchgeführt. Dabei wurde festgestellt, daß solche Sequenzen mit einer Häufigkeit von nur etwa 1/150 000 T-Zellen vorkommen.

Durch Cytotoxizitätsuntersuchungen wurde festgestellt, daß die aus dem Patienten 26 gewonnenen tumorspezifischen T-Zellen auch Tumorzellen des ebenfalls das HLA-A*0201-Allel tragenden Patienten 22 lysieren konnten. Tumorinfiltrierende T-Zellen aus dem Patienten 22 konnten wiederum Tumorzellen aus dem Patienten 26 lysieren. Eine Sequenzierung der T-Zellrezeptoren aus dem Patienten 22 ergab die für die CDR3α-Region die in Abb. 3 und für die CDR3β-Region die in Abb. 4 dargestellten Ergebnisse.

Beispiel 2

45

50

55

Expression von T-Zellrezeptoren

2.1 Expression tumorspezifischer T-Zellrezeptoren in humanen oder murinen T-Zellinien

Die in Beispiel 1 identifizierten Nucleinsäuresequenzen, die für tumorspezifische $TCR-\alpha$ - und β -Ketten kodieren, werden in eukaryontische humane und murine Expressionsvektoren kloniert. Der humane Expressionsvektor ist bei Chung et al. (Proc. Natl. Acad. Sci. USA 92 (1995): 3712-3716) beschrieben. Die murinen Vektoren sind bei Gabert et al. (Cell 50 (1987: 545-554) und Gregoire et al. (Proc. Natl. Acad. Sci. USA 88 (1991): 8077-8081) beschrieben.

Die Klonierung der TCR-DNA kann entweder aus rearrangierter genomischer oder aus cDNA durchgeführt werden. Prinzipiell stehen zwei Klonierungsstrategien zur Verfügung: Erstens die Isolation von sehr langen TCR- α - und β -DNA-Fragmenten aus dem Genom reifer T-Zellen, die mehrere Kb-lange 5'-flankierende Sequenzen mit allen zur Expression benötigten regulatorischen Elementen enthalten. Alternativ können Vektoren gewählt werden, die bereits die natürlichen 5'-regulatorischen Elemente enthalten, und in die nur kurze, für die variablen Regionen

kodierende Fragmente einkloniert werden müssen (Kouskoff et al. J. Immunol. Methods 180 (1995): 273-280). Bei der letztgenannten Methode wird die Sequenz der variablen Region (einschließlich der Leadersequenz) nach Amplifikation mittels spezifischer PCR durch Sequenzierung auf Fehler hin untersucht und anschließend nach Verdauung mit den entsprechenden Restriktionsendonucleasen in den Vektor eingebracht.

Die PCR- α - und β -Ketten können entweder in einen gemeinsamen oder in zwei verschiedene Vektoren kloniert werden. Jeder der verwendeten Vektoren enthält einen Selektionsmarker, der nach Transfektion der Empfängerzellen mit dem rekombinanten Plasmid die positive Selektion von erfolgreich transfizierten Zellen erlaubt. Bevorzugte Selektionsmarker sind z.B. das Gen für die Neomycin-Resistenz (Neo) oder das Gen für die Xanthin-Guanin-Phosphoribosyl-Transferase (GPT).

2.2 Expression funktioneller T-Zellrezeptoren als Einzelkettenkonstrukte

Analog zu Antikörpern können TCR als Einzelkettenkonstrukte in eukaryontischen Zellen zur Expression gebracht werden (Chung et al., Proc. Natl. Acad. Sci. USA 91 (1994): 12654-12658). Hierbei wird ein Konstrukt hergestellt, das neben den variablen Domänen der TCR-α- und β-Kette ebenfalls die konstante Domäne der β-Kette enthält. Die einzelnen Domänen werden wie in Beispiel 1 beschrieben nach Isolation der entsprechenden RNA und reverser Transkription mittels PCR amplifiziert. Dabei werden an den Enden der Amplifikationsprodukte geeignete Restriktionsschnittstellen eingefügt. Die einzelnen Fragmente werden dann in einen eukaryontischen Expressionsvektor (z.B. pBJ-Neo), der einen positiven Selektionsmarker trägt, wie folgt aneinandergefügt: Die variablen TCR-α- und β-Domänen, bestehend aus Leader-, V-(D-) und J-Exon werden durch eine Linkersequenz, z.B. ein für die Aminosäuresequenz (GGGGS)₃ kodierendes DNA-Fragment, getrennt. Das Exon für die konstante TCR-β-Domäne wird direkt an die variable β-Domäne ligiert. An das 3'-Ende dieses Konstrukts können alternativ kodierende Sequenzen für einen GPI-Anker (Lin et al., Science 249 (1990): 677-679) oder z.B. den Transmembranteil und die Intrazellulärdomäne der CD3ζ-Kette (Engel et al., Science 256 (1992): 1318-1321) ligiert werden. Nach Transfektion dieser Konstrukte in eukaryontische Zellen ermöglicht ersteres die Herstellung löslicher TCR-Moleküle, die als Immunogen zur Herstellung von Antikörpern verwendet werden können. Letzteres erlaubt die funktionelle Analyse des Konstrukts in biologischen Systemen.

2.3 Herstellung von löslichen humanen TCR-Fragmenten in E.coli

Größere Mengen löslicher TCR-Fragmente können in E.coli als Einzelketten-Polypeptide hergestellt werden (Hilyard et al., Proc. Natl. Acad. Sci. USA 91 (1994): 9057-9061).

Dazu werden verschiedene Gene bzw. Genfragmente in einen induzierbaren prokaryontischen Vektor, z.B. pUC19 kloniert. Die zu ligierenden Fragmente werden mittels spezifischer PCR reamplifiziert, wobei geeignete Restriktionsschnittstellen angefügt werden.

Folgende Fragmente werden in der aufgeführten Reihenfolge in den Vektor kloniert:

- 1. eine prokaryontische Signalsequenz, z.B. die pelB-Leadersequenz aus dem Pektat-Lyasegen von Erwinia carolovora (Ward et al., Nature 341 (1989): 8646-8650), die eine Sekretion des Polypeptids in das Periplasma des Wirtsbakteriums bewirkt.
- 2. Die variablen PCR- α und β -Kettenfragmente aus einem tumorspezifischen TCR. Diese Fragmente werden vorzugsweise durch einen Linker, z.B. den in Beispiel 2.2 angegebenen Linker getrennt, wodurch eine bessere Löslichkeit und höhere Flexibilität des synthetisierten Moleküls erreicht wird.
- 3. Eine für einen Schwanz aus mehreren, z.B. 6 Histidinresten kodierende Nucleotidsequenz, wodurch die Isolierung des rekombinanten Polypeptids durch Affinitäts-Chromatographie, z.B. durch Nickel-Chelat-Chromatographie ermöglicht wird.

Beispiel 3

Herstellung von Antikörpern gegen tumorspezifische T-Zellrezeptoren

Zur Herstellung von Antiseren bzw. monoklonalen Antikörpern gegen tumorspezifische TCR werden Mäuse mit dem entsprechenden Antigen immunisiert. Die Immunisierung erfolgt nach den bei Harlow, E. und David, C., Antibodies. A Laboratory Manual, Cold Spring Harbor Laboratory, 1988, angegebenen Protokollen. Als Antigene können beispielsweise TCR-exprimierende Zellen (Beispiel 2.1) oder lösliche TCR (Beispiel 2.2 oder Beispiel 2.3) gewählt werden.

Alternativ können die zur Immunisierung verwendeten löslichen TCR auch als chimäre Proteine hergestellt werden, die aus einer variablen TCR-Region, einer verkürzten konstanten TCR-Region und aus einer konstanten Immunglobinregion bestehen (vgl. z.B. Gregoire et al. (1991), Supra). Dazu werden die spezifischen variablen TCR-α- und β-Regionen in jeweils ein Plasmid kloniert, das bereits das erste Exon die entsprechenden C-Region und eine IgGk-Domäne enthält. Beide Plasmide enthalten zusätzlich einen positiven Selektionsmarker und die zur korrekten Expression benötigten regulatorischen Elemente. Beide Plasmide werden dann zur Transfektion einer Mausmyelomzellinie

25

30

5

10

15

20

35

45

verwendet, die keine endogenen schweren und leichten Ig-Ketten exprimiert. Nach erfolgreicher Transfektion werden beiden chimären Ketten synthetisiert und präferentiell als Heterodimer sezerniert.

Alternativ kann ein TCR-Protein-Antigen zur Immunisierung von Mäusen auch wie folgt konstruiert werden: An ein TCR-Gensegment, bestehend aus (D-), J- und C-Gensegmenten aus einem Maus-T-Zellhybridom wird ein humanes V-Gensegment fusioniert, d.h. die Gensegmente werden in dieser Reihenfolge in einen eukaryontischen Expressionsvektor kloniert (Choi et al., Proc. Natl. Acad. Sci. USA 88 (1991): 8357-8361). Die humane Sequenz wird durch Amplifikation der V-Region aus der entsprechenden cDNA mittels PCR gewonnen. Solche Konstrukte werden dann zur Transfektion von Maus-T-Zellhybridomen verwendet, die alle Bestandteile außer den entsprechend transfizierten Ketten zur Verfügung stellen. Da die Plasmide ebenfalls für Selektionsmarker kodieren, können Transfektanten durch das entsprechende Medium positiv selektioniert werden. Da diese Transfektanten Maus T-Zellen darstellen, die eine humane V-Region exprimieren, erfolgt bei Immunisierung von Mäusen mit solchen Zellen nur eine Antikörperbildung gegen diese "fremde" humane Sequenz.

Beispiel 4

15

35

40

Identifizierung der Peptidliganden von tumorspezifischen T-Zellen

Poly-A*-mRNA wird aus einer Nierenzellkarzinomlinie unter Verwendung eines kommerziellen Kit (Fastrack/Invitrogen) isoliert und unter Verwendung des Superscript Choice System Kit (Gibco) unter Verwendung eines Notl/Oligo-dT-Primer für die Erststrangsynthese in Doppelstrang-cDNA überführt. Die cDNA wird mit BstXI-Adaptoren ligiert und mit Notl gespalten. Hochmolekulare, größenfraktionierte cDNA wird selektioniert und in den mit BstXI und Notl gespaltenen Vektor pcDNAl/Amp (Invitrogen) kloniert.

E.coli DH5- α -Zellen werden mit den rekombinanten Plasmiden durch Elektroporation transformiert und mit Ampicillin selektioniert. Die auf diese Weise erhaltene c-DNA-Bank wird in 1500 Pools aus jeweils ungefähr 100 Klonen unterteilt. Jeder Pool wird bis zur Sättigung amplifiziert und die Plasmid-DNA daraus durch alkalische Lyse ohne Phenolextraktion gewonnen.

Ungefähr jeweils 100 ng Plasmid-DNA eines Pools werden zusammen mit 50 ng Plasmid-DNA des gleichen Vektors, welcher die HLA-A*0201-cDNA (Genbank, ACC-Nr.: M32322, K02883, M84379, X02457) trägt, in 15000 COS7-Zellen nach der DEAE-DextranChloroquin-Methode transfiziert. Alternativ können die COS7-Zellen auch mit der HLA-A*0201-DNA transfiziert und die auf diese Weise erhaltenen stabilen Transfektanten als Empfängerzellen verwendet werden.

24-48 Stunden nach der Transfektion werden die COS7-Zellen auf ihre Fähigkeit zur Stimulierung der Freisetzung von TNF durch tumorspezifische cytotoxische T-Zellen (CTL) getestet. Ein Test wird jeweils mit 200 Pools, d.h. 200 unabhängigen Transfektionen von COS7-Zellen durchgeführt.

Hierzu werden 3000 CTL in die COS7-Transfektanten enthaltenden Vertiefungen von Mikrotiterplatten gegeben. Nach 18 Stunden wird der Überstand des Mediums gesammelt und dessen TNF-Gehalt unter Verwendung eines Aktivitätstests bestimmt, bei dem TNF-sensitive Zellinien, wie etwa die Maus-Fibroblasten-Zellinien WEHI 164 oder L929 durch TNF lysiert werden. Lebensfähige Kulturen können von lysierten Zellen durch einen colorimetrischen Test unter Verwendung von 3-(4,5-Dimethylthiazol-2-yl)2,5-diphenyltetrazoliumbromid (MTT) unterschieden werden.

Für jede positive Mikrokultur wird eine neue Runde der COS7-Transfektion durchgeführt, wobei jeweils kleinere Pools von Bakterien aus dem Ursprungspool mit insgesamt 100 Klonen verwendet wurden. Diese Prozedur wird wiederholt, bis ein einziges Plasmid identifiziert wird, welches die TNF-Freisetzung aus den spezifischen TCL nach Coexpression mit der HLA-A*0201-cDNA in COS7-Zellen induzieren kann.

Die Sequenz der Plasmidinsertion wird durch Standardmethoden bestimmt. Die Bestätigung, daß diese Sequenz für das Tumorpeptid kodiert, erfolgt durch Transfektion normaler humaner HLA-A*0201-Zellen, die nicht durch die tumorspezifischen CTL lysiert werden. Diese Zellen werden nach Transfektion mit der entsprechenden cDNA für eine Lyse sensitiv. Weiterhin wird die tumorspezifische Expression der identifizierten cDNA durch Northern Blot unter Verwendung der cDNA als Sonde bestimmt. Diese Sonde wird zur Hybridisierung an mRNA aus verschiedenen Tumor-Zellinien normalen Gewebeproben verwendet.

Das tumorspezifische Peptid kann durch unterschiedliche Methoden identifiziert werden. Die korrespondierende Proteinsequenz wird aus der cDNA-Sequenz abgeleitet und nach Bindemotiven durchmustert, die in anderen an HLA-A*0201 bindenden Peptiden identifiziert worden sind. Synthetische Peptide, die mit potentiellen HLA-A*0201-Binderegionen überlappen, werden dann auf ihre Fähigkeit zur Aktivierung von CTL nach Inkubation mit HLA-A*0201-Zellen getestet. Alternativ können überlappende Peptide von 8-9 Aminosäuren Länge durch Synthese erzeugt und auf ähnliche Weise getestet werden.

Beispiel 5

5

Herstellung transgener Mäuse

Gesamt-RNA wird aus einem spezifischen T-Zellklon isoliert, und cDNA wird durch reverse Transkription synthetisiert (vgl. Beispiel 1). Unter Verwendung von für die V-Region spezifischen Primern wird TCR-cDNA für die $V\alpha$ - und $V\beta$ -Regionen amplifiziert und in TCR-Genkassetten kloniert, die konstante Regionen und die für die Expression notwendigen Regulationselemente enthalten. Es sind separate Kassetten für TCR- α - und TCR- β -Sequenzen bekannt, die jeweils einen verschiedenen Selektionsmarker tragen (Kouskoff et al. (1995), Supra).

Fertilisierte Mausoocyten werden gleichzeitig mit DNA sowohl aus den TCR- α - als auch TCR- β -Kassetten mikroinjiziert. Die injizierten Oocyten werden in weibliche Mäuse rückübertragen (Mellor, A.L., Transgenesis and the T cell receptor. in: T cell receptors (1995), J. I. Bell, M. J. Owen, und E. Simpson, eds, pp194-223, Oxford University Press, Oxford, New York, Tokyo).

Die Einführung produktiv umgelagerter TCR-Gene in die Maus hat einen großen Einfluß auf das TCR-Repertoir, da umgelagerte TCR-Fremdgene die weitere Umlagerung von endogenen TCR-Genen verhindern. Folglich exprimieren nahezu alle Thymocyten und T-Zellen den heterologen TCR-Klonotyp, so daß das TCR-Repertoir in solchen Mäusen im wesentlichen monoklonal ist.

Transgene Mäuse werden durch Genotypanalyse unter Verwendung von Sonden identifiziert, die spezifisch für die im Fremdgen enthaltene DNA sind, welche im Mausgenom nicht vorkommt. Dies kann entweder durch Southern Blot-Hybridisierung oder vorzugsweise durch PCR erfolgen.

Transgene Nachkommen der Mäuse werden durch Kreuzung mit nicht-transgenen Mäusen eines geeigneten Stammes, Typisierung der Nachkommenschaft und Verwendung zur Weiterkreuzung erhalten.

25

30

35

40

45

SEQUENZPROTOKOLL

5	(1) ALLGEMEINE ANGABEN:
10	 (i) ANMELDER: (A) NAME: Boehringer Mannheim GmbH (B) STRASSE: Sandhofer Str. 112-132 (C) ORT: Mannheim (E) LAND: Deutschland (F) POSTLEITZAHL: 68305
	(ii) BEZEICHNUNG DER ERFINDUNG: Nierenkarzinom-spezifische T-Zellen
	(iii) ANZAHL DER SEQUENZEN: 22
15	 (iv) COMPUTER-LESBARE FASSUNG: (A) DATENTRÄGER: Floppy disk (B) COMPUTER: IBM PC compatible (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPA)
20	(2) ANGABEN ZU SEQ ID NO: 1:
25	(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 1341 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: beides
23	(D) TOPOLOGIE: linear
30	(ix) MERKMAL: (A) NAME/SCHLÜSSEL: CDS (B) LAGE:1801
	<pre>(ix) MERKMAL: (A) NAME/SCHLÜSSEL: sig_peptide (B) LAGE:154</pre>
35	(ix) MERKMAL: (A) NAME/SCHLÜSSEL: mat_peptide (B) LAGE:55801
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1: ·
40	ATG AGG CAA GTG GCG AGA GTG ATC GTG TTC CTG ACC CTG AGT ACT TTG Met Arg Gln Val Ala Arg Val Ile Val Phe Leu Thr Leu Ser Thr Leu -18 -15 -10 -5
45	AGC CTT GCT AAG ACC ACC CAG CCC ATC TCC ATG GAC TCA TAT GAA GGA Ser Leu Ala Lys Thr Thr Gln Pro Ile Ser Met Asp Ser Tyr Glu Gly 1 5 10
	CAA GAA GTG AAC ATA ACC TGT AGC CAC AAC AAC ATT GCT ACA AAT GAT Gln Glu Val Asn Ile Thr Cys Ser His Asn Asn Ile Ala Thr Asn Asp 15 20 25 30
50	TAT ATC ACG TGG TAC CAA CAG TTT CCC AGC CAA GGA CCA CGA TTT ATT Tyr Ile Thr Trp Tyr Gln Gln Phe Pro Ser Gln Gly Pro Arg Phe Ile 35 40 45

	ATT Ile	CAA Gln	GGA Gly	TAC Tyr 50	AAG Lys	ACA Thr	AAA Lys	GTT Val	ACA Thr 55	AAC Asn	GAA Glu	GTG Val	GCC Ala	TCC Ser 60	CTG Leu	TTT Phe	240
5		CCT Pro															288
10		AGC Ser 80															336
		CTG Leu															384
15		AAC Asn															432
20		AAG Lys															480
		CAA Gln															528
25		ATG Met 160	Arg														576
20		AAA Lys															624
30		GAA Glu															672
35		GTC Val															720
		TCA Ser															768
40		CTG Leu 240	Leu										GATC'	TGC	AAGA:	TTGTAA	821
	GAC	AGCC	TGT (GCTC	CCTC	GC T	CCTT	CCTC'	r GC	ATTG	cccc	TCT'	TCTC	CCT	CTCC	AAACAG	881
45	AGG	GAAC	TCT	ССТА	cccc	CA A	GGAG	GTGA.	A AG	CTGC'	TACC	ACC'	TCTG	TGC	cccc	CCGGCA	941
	ATG	CCAC	CAA	CTGG	ATCC'	TA C	CCGA	ATTT.	A TG	ATTA	AGAT	TGC	TGAA	GAG	CTGC	CAAACA	1001
	CTG	CTGC	CAC	cccc	TCTG'	TT C	CCŤT.	ATTG	C TG	CTTG	TCAC	TGC	CTGA	CAT	TCAC	GGCAGA	1061
50	GGC	AAGG	CTG	CTGC	AGCC	TC C	CCTG	GCTG	T GC.	ACAT'	TCCC	TCC	TGCT	ccc	CAGA	GACTGC	1121
	CTC	CGCC	ATC	CCAC	AGAT	GA T	GGAT	CTTC	A GT	GGGT	TCTC	TTG	GGCT	CTA	GGTC	CTGGAG	1181

	AATG	TTGT	GA G	GG G T'	TAT'	r tr	TTTT	TAAT	AGT	GTTC	ATA	AAGA.	AATA	СА Т	AGTA	TTCTT	1241
	CTTC	TCAA	GA C	GTGG	GGGG.	A AA	TAT	CTCA	TTA	TCGA	GGC	CCTG	CTAT	GC T	GTGT	GTCTG	1301
5	GGCG	TGTT	GT A	TGTC	CTGC	T GC	CGAT	GCCT	TCA	TTAA	AAT						1341
•	(2)				EQ I												
10		·	(A (B (D) LA) AR) TO	NZKE NGE: T: A POLO	267 mino GIE:	Ami säur lin	nosä e ear									
		(ii) (xi)	ART SEQ	DES UENZ	MOL BESC	EKÜL HREI	S: P BUNG	rote: : SE	in Q ID	NO:	2:						
15	Met -18	Arg	Gln	Val -15	Ala	Arg	Val	Ile	Val -10	Phe	Leu	Thr	Leu	Ser -5	Thr	Leu	
	Ser	Leu	Ala 1	Lys	Thr	Thr	Gln 5	Pro	Ile	Ser	Met	Asp 10	Ser	Tyr	Glu	Gly	
20	Gln 15	Glu	Val	Asn	Ile	Thr 20	Cys	Ser	His	Asn	Asn 25	Ile	Ala	Thr	Asn	Asp 30	
	Tyr	Ile	Thr	Trp	Tyr 35	Gln	Gln	Phe	Pro	Ser 40	Gln	Gly	Pro	Arg	Phe 45	Ile	
25	Ile	Gln	Gly	Tyr 50	Lys	Thr	Lys	Val	Thr 55	Asn	Glu	Val	Ala	Ser 60	Leu	Phe	
	Ile	Pro	Ala 65	Asp	Arg	Lys	Ser	Ser 70	Thr	Leu	Ser	Leu	Pro 75	Arg	Val	Ser	
30	Leu	Ser 80	Asp	Thr	Ala	Val	Tyr 85	Tyr	Cys	Leu	Val	Gly 90	Gly	Ser	Ala	Arg	
	Gln 95		Thr	Phe	Gly	Ser 100	Gly	Thr	Gln	Leu	Thr 105	Val	Leu	Pro	Asp	Ile 110	
35	Gln	Asn	Pro	Asp	Pro 115	Ala	Val	Tyr	Gln	Leu 120	Arg	Asp	Ser	Lys	Ser 125	Ser	
	Asp	Lys	Ser	Val 130	Cys	Leu	Phe	Thr	Asp 135	Phe	Asp	Ser	Gln	Thr 140	Asn	Val	
40	Ser	Gln	Ser 145		Asp	Ser	Asp	Val 150	Tyr	Ile	Thr	Asp	Lys 155	Thr	Val	Leu	
	Asp	Met 160		Ser	Met	Asp	Phe 165		Ser	Asn	Ser	Ala 170		Ala	Trp	Ser	
45	Asn 175	_	Ser	Asp	Phe	Ala 180		Ala	Asn	Ala	Phe 185		Asn	Ser	Ile	Ile 190	
	Pro	Glu	Asp	Thr	Phe 195		Pro	Ser	Pro	Glu 200		Ser	Cys	Asp	Val 205	Lys	
50	Leu	Val	Glu	Lys 210		Phe	Glu	Thr	Asp 215		Asn	Leu	Asn	Phe 220	Gln	Asn	
	Leu	Ser	Val 225		Gly	Phe	Arg	11e 230		Leu	Leu	Lys	Val 235	Ala	Gly	Phe	

	Asn	Leu 240	Leu	Met	Thr		Arg 245	Leu	Trp	Ser	Ser							
5	(2)	ANGA	BEN	zu s	EQ I	D NO	: 3:											
10		(i)	(A (B (C	.) LÄ !) AR !) ST	KENN NGE: T: N RANG POLO	936 ucle FORM	Bas otid : be	ides										
15		. ,	(A	3) LA	ME/S GE:1			.: CE	s									
		(1X)	(P					.: si	.g_pe	ptid	e							
20		(ix)	(Z	•				.: ma	ıt_pe	ptid	le							
		(xi)	SEC	QUENZ	BESC	HRE	BUNC	: SI	EQ II	NO:	3:							
25	Met	GAT Asp -20	ACC Thr	TGG Trp	CTC Leu	GTA Val	TGC Cys -15	TGG Trp	GCA Ala	ATT Ile	TTT Phe	AGT Ser -10	CTC Leu	TTG Leu	AAA Lys	GCA Ala		48
30	GGA Gly -5	CTC Leu	ACA Thr	GAA Glu	CCT Pro	GAA Glu 1	GTC Val	ACC Thr	CAG Gln	ACT Thr 5	CCC Pro	AGC Ser	CAT His	CAG Gln	GTC Val 10	ACA Thr		96
	CAG Gln	ATG Met	GGA Gly	CAG Gln 15	GAA Glu	GTG Val	ATC Ile	TTG Leu	CGC Arg 20	TGT Cys	GTC Val	CCC Pro	ATC Ile	TCT Ser 25	AAT Asn	CAC His	;	144
35	TTA Leu	TAC Tyr	TTC Phe 30	TAT Tyr	TGG Trp	TAC Tyr	AGA Arg	CAA Gln 35	ATC Ile	TTG Leu	GGG Gly	CAG Gln	AAA Lys 40	GTC Val	GAG Glu	TTT Phe		192
40	CTG Leu	GTT Val 45	TCC Ser	TTT Phe	TAT Tyr	AAT Asn	AAT Asn 50	GAA Glu	ATC Ile	TCA Ser	GAG Glu	AAG Lys 55	TCT Ser	GAA Glu	ATA Ile	TTC Phe		240
40	GAT Asp 60	Asp	CAA Gln	TTC Phe	TCA Ser	GTT Val 65	GAA Glu	AGG Arg	CCT Pro	GAT Asp	GGA Gly 70	TCA Ser	AAT Asn	TTC Phe	ACT Thr	CTG Leu 75		288
4 5	AAG Lys	ATC Ile	CGG Arg	TCC Ser	ACA Thr 80	AAG Lys	CTG Leu	GAG Glu	GAC Asp	TCA Ser 85	GCC Ala	ATG Met	TAC Tyr	TTC Phe	TGT Cys 90	GCC Ala		336
	AGC Ser	AGC Ser	GAA Glu	ACT Thr 95	AAC Asn	TCC Ser	TAC Tyr	GAG Glu	CAG Gln 100	TAC Tyr	TTC Phe	GGG Gly	CCG Pro	GGC Gly 105	ACC Thr	AGG Arg		384
50	CTC Leu	ACG Thr	GTC Val 110	Thr	GAG Glu	GAC Asp	CTG Leu	AAA Lys 115	AAC Asn	GTG Val	TTC Phe	CCA Pro	CCC Pro 120	GAG Glu	GTC Val	GCT Ala		432

	GTG Val	TTT Phe 125	GAG Glu	CCA Pro	TCA Ser	GAA Glu	GCA Ala 130	GAG Glu	ATC Ile	TCC Ser	CAC His	ACC Thr 135	CAA Gln	AAG Lys	GCC Ala	ACA Thr	480
5	CTG Leu 140	GTG Val	TGC Cys	CTG Leu	GCC Ala	ACA Thr 145	GGC Gly	TTC Phe	TAC Tyr	CCC Pro	GAC Asp 150	CAC His	GTG Val	GAG Glu	CTG Leu	AGC Ser 155	528
10	TGG Trp	TGG Trp	GTG Val	AAT Asn	GGG Gly 160	AAG Lys	GAG Glu	GTG Val	CAC His	AGT Ser 165	GGG Gly	GTC Val	AGC Ser	ACA Thr	GAC Asp 170	CCG Pro	576
	CAG Gln	ccc Pro	CTC Leu	AAG Lys 175	GAG Glu	CAG Gln	CCC Pro	GCC Ala	CTC Leu 180	AAT Asn	GAC Asp	TCC Ser	AGA Arg	TAC Tyr 185	TGC Cys	CTG Leu	624
15	AGC Ser	AGC Ser	CGC Arg 190	CTG Leu	AGG Arg	GTC Val	TCG Ser	GCC Ala 195	ACC Thr	TTC Phe	TGG Trp	CAG Gln	AAC Asn 200	CCC Pro	CGC Arg	AAC Asn	672
20	CAC His	TTC Phe 205	CGC Arg	TGT Cys	CAA Gln	GTC Val	CAG Gln 210	TTC Phe	TAC Tyr	GGG Gly	CTC Leu	TCG Ser 215	GAG Glu	AAT Asn	GAC Asp	GAG Glu	720
	TGG Trp 220	ACC Thr	CAG Gln	GAT Asp	AGG Arg	GCC Ala 225	AAA Lys	CCT Pro	GTC Val	ACC Thr	CAG Gln 230	ATC Ile	GTC Val	AGC Ser	GCC Ala	GAG Glu 235	768
25	GCC Ala	TGG Trp	GGT Gly	AGA Arg	GCA Ala 240	GAC Asp	TGT Cys	GGC Gly	TTC Phe	ACC Thr 245	TCC Ser	GAG Glu	TCT Ser	TAC Tyr	CAG Gln 250	CAA Gln	816
30	GGG Gly	GTC Val	CTG Leu	TCT Ser 255	GCC Ala	ACC Thr	ATC Ile	CTC Leu	TAT Tyr 260	GAG Glu	ATC Ile	TTG Leu	CTA Leu	GGG Gly 265	AAG Lys	GCC Ala	864
	ACC Thr	TTG Leu	TAT Tyr 270	Ala	GTG Val	CTG Leu	GTC Val	AGT Ser 275	GCC Ala	CTC Leu	GTG Val	CTG Leu	ATG Met 280	GCC Ala	ATG Met	GTC Val	912
35		AGA Arg 285	Lys														936
	(2)	ANG	ABEN	ZU	SEQ	ID N	0: 4	:									
40			(SEQU A) L B) A D) T	ÄNGE RT:	: 31 Amin	1 Am osäu	inos re		n							
45		(ii (xi) AR) SE	T DE	S MO	LEKÜ CHRE	LS: IBUN	Prot G: S	ein EQ I	р ио	: 4:						
		Asp -20		Trp	Leu	Val	Cys -15		Ala	Ile	Phe	Ser -10		Leu	Lys	Ala	
50	Gly -5		Thr	Glu	Pro	Glu 1		Thr	Gln	Thr 5	Pro	Ser	His	Gln	Val	Thr	
	Glr	n Met	Gly	Gln 15		val	Ile	Leu	Arg 20		Val	Pro	Ile	Ser 25		His	

	Leu	Tyr	Phe 30	Tyr	Trp	Tyr	Arg	Gln 35	Ile	Leu	Gly	Gln	Lys 40	Val	Glu	Phe
5	Leu	Val 45	Ser	Phe	Tyr	Asn	Asn 50	Glu	Ile	Ser	Glu	Lys 55	Ser	Glu	Ile	Phe
	Asp 60	Asp	Gln	Phe	Ser	Val 65	Glu	Arg	Pro	Asp	Gly 70	Ser	Asn	Phe	Thr	Leu 75
10	Lys	Ile	Arg	Ser	Thr 80	Lys	Leu	Glu	Asp	Ser 85	Ala	Met	Tyr	Phe	Cys 90	Ala
	Ser	Ser	Glu	Thr 95	Asn	Ser	Tyr	Glu	Gln 100	Tyr	Phe	Gly	Pro	Gly 105	Thr	Arg
15	Leu	Thr	Val 110	Thr	Glu	Asp	Leu	Lys 115	Asn	Val	Phe	Pro	Pro 120	Glu	Val	Ala
	Val	Phe 125	Glu	Pro	Ser	Glu	Ala 130	Glu	Ile	Ser	His	Thr 135	Gln	Lys	Ala	Thr
20	Leu 140	Val	Cys	Leu	λla	Thr 145	Gly	Phe	Tyr	Pro	Asp 150	His	Val	Glu	Leu	Ser 155
	Trp	Trp	Val	Asn	Gly 160	Lys	Glu	Val	His	Ser 165	Gly	Val	Ser	Thr	Asp 170	Pro
25	Gln	Pro	Leu	Lys 175	Glu	Gln	Pro	Ala	Leu 180	Asn	Asp	Ser	Arg	Tyr 185	Cys	Leu
	Ser	Ser	Arg 190	Leu	Arg	Val	Ser	Ala 195	Thr	Phe	Trp	Gln	Asn 200	Pro	Arg	Asn
30	His	Phe 205	Arg	Cys	Gln	Val	Gln 210	Phe	Tyr	Gly	Leu	Ser 215	Glu	Asn	Asp	Glu
	Trp 220	Thr	Gln	Asp	Arg	Ala 225	Lys	Pro	Val	Thr	Gln 230	Ile	Val	Ser	Ala	Glu 235
35	Ala	Trp	Gly	Arg	Ala 240	Asp	Cys	Gly	Phe	Thr 245	Ser	Glu	Ser	Tyr	Gln 250	Gln
	Gly	Val	Leu	Ser 255	Ala	Thr	Ile	Leu	Tyr 260	Glu	Ile	Leu	Leu	Gly 265	Lys	Ala
40	Thr	Leu	Tyr 270	Ala	Val	Leu		Ser 275	Ala	Leu	Val	Leu	Met 280	Ala	Met	Val
	Lys	Arg 285	Lys	Asp	Ser	Arg	Gly 290									
	(2)	ANG	ABEN	ZU S	SEQ I	D NO): 5:	:								
45		(i)	() ()	A) Li B) AF C) S1	KENN NGE: RT: N RANC	39 Nucle	Base otic 1: be	enpaa l eides								
50																
		(ix)	MEI ()		L: ME/S	CHL	SSEI	i: C	os							

	(B) LAGE:139	
5	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:	
•	TGC CTC GTC CTT TCT GGT TCT GCA AGG CAA CTG ACC TTT Cys Leu Val Leu Ser Gly Ser Ala Arg Gln Leu Thr Phe 295 300	9
10	(2) ANGABEN ZU SEQ ID NO: 6:	
15	 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 13 Aminosäuren (B) ART: Aminosäure (D) TOPOLOGIE: linear 	
15	(ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:	
	Cys Leu Val Leu Ser Gly Ser Ala Arg Gln Leu Thr Phe 1 5 10	
20	(2) ANGABEN ZU SEQ ID NO: 7:	
25	(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 36 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: beides (D) TOPOLOGIE: linear	
30	(ix) MERKMAL: (A) NAME/SCHLÜSSEL: CDS (B) LAGE:136	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 7:	
35	TGC CTC GCT ACT GGT TCT GCA AGG CAA CTG ACC TTT Cys Leu Ala Thr Gly Ser Ala Arg Gln Leu Thr Phe 15 20 25	36
	(2) ANGABEN ZU SEQ ID NO: 8:	
40	(i) SEQUENZKENNZEICHEN:(A) LÄNGE: 12 Aminosäuren(B) ART: Aminosäure(D) TOPOLOGIE: linear	
	(ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 8:	
45	Cys Leu Ala Thr Gly Ser Ala Arg Gln Leu Thr Phe 1 5 10	
	(2) ANGABEN ZU SEQ ID NO: 9:	
50	(i) SEQUENZKENNZEICHEN:(A) LÄNGE: 39 Basenpaare(B) ART: Nucleotid(C) STRANGFORM: beides	

(D) TOPOLOGIE: linear

5	(ix) MERKMAL: (A) NAME/SCHLÜSSEL: CDS (B) LAGE:139	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 9:	
10	TGT GCC AGC AGT GGA ACA GAT TCC TAC GAG CAG TAC TTC Cys Ala Ser Ser Gly Thr Asp Ser Tyr Glu Gln Tyr Phe 15 20 25	39
15	(2) ANGABEN ZU SEQ ID NO: 10:	
	(i) SEQUENZKENNZEICHEN:(A) LÄNGE: 13 Aminosäuren(B) ART: Aminosäure(D) TOPOLOGIE: linear	
20	(ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 10:	
	Cys Ala Ser Ser Gly Thr Asp Ser Tyr Glu Gln Tyr Phe 1 5 10	
25	(2) ANGABEN ZU SEQ ID NO: 11:	
. 30	(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 39 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: beides (D) TOPOLOGIE: linear	
	(ix) MERKMAL: (A) NAME/SCHLÜSSEL: CDS (B) LAGE:139	
35	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:	
40	TGT GCC AGC AGT GAA ACA GAT TCC TAC GAG CAG TAC TTC Cys Ala Ser Ser Glu Thr Asp Ser Tyr Glu Gln Tyr Phe 15 20 25	39
	(2) ANGABEN ZU SEQ ID NO: 12:	
4 5	(i) SEQUENZKENNZEICHEN:(A) LÄNGE: 13 Aminosäuren(B) ART: Aminosäure(D) TOPOLOGIE: linear	
	(ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 12:	
50	Cys Ala Ser Ser Glu Thr Asp Ser Tyr Glu Gln Tyr Phe 1 5 10	

	(2) ANGABEN ZU SEQ ID NO: 13:	
5 ,	(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 39 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: beides (D) TOPOLOGIE: linear	
10	(ix) MERKMAL: (A) NAME/SCHLÜSSEL: CDS (B) LAGE:139	
15	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 13:	
	TGT GCC AGC AGT GGA ACA GCT TCC TAC GAG CAG TAC TTC Cys Ala Ser Ser Gly Thr Ala Ser Tyr Glu Gln Tyr Phe 15 20 25	39
20	(2) ANGABEN ZU SEQ ID NO: 14:	
	(i) SEQUENZKENNZEICHEN:(A) LÄNGE: 13 Aminosäuren(B) ART: Aminosäure(D) TOPOLOGIE: linear	
25	(ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 14:	
	Cys Ala Ser Ser Gly Thr Ala Ser Tyr Glu Gln Tyr Phe 1 5 10	
30	(2) ANGABEN ZU SEQ ID NO: 15:	
35	(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 39 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: beides (D) TOPOLOGIE: linear	
40	(ix) MERKMAL: (A) NAME/SCHLÜSSEL: CDS (B) LAGE:139	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 15:	
45	TGT GCC AGC AGT GGT ACA AAC TCC TAC GAG CAG TAC TTT Cys Ala Ser Ser Gly Thr Asn Ser Tyr Glu Gln Tyr Phe 15 20 25	31
	(2) ANGABEN ZU SEQ ID NO: 16:	
50	(i) SEQUENZKENNZEICHEN:(A) LÄNGE: 13 Aminosäuren(B) ART: Aminosäure(D) TOPOLOGIE: linear	

		(11) ART DES MOLEKULS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 16:	
5	Cys 1	Ala Ser Ser Gly Thr Asn Ser Tyr Glu Gln Tyr Phe 5 10	
	(2)	ANGABEN ZU SEQ ID NO: 17:	
10		(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 39 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: beides (D) TOPOLOGIE: linear	
15		(ix) MERKMAL: (A) NAME/SCHLÜSSEL: CDS (B) LAGE:139	
		(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17:	
20		GCC ACC TCC GGG ACA GCT TCC TAC GAG CAG TAC TTC Ala Thr Ser Gly Thr Ala Ser Tyr Glu Gln Tyr Phe 15 20 25	39
25	(2)	ANGABEN ZU SEQ ID NO: 18:	
25		(i) SEQUENZKENNZEICHEN:(A) LÄNGE: 13 Aminosäuren(B) ART: Aminosäure(D) TOPOLOGIE: linear	
30		(ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 18:	
	Cys 1	Ala Thr Ser Gly Thr Ala Ser Tyr Glu Gln Tyr Phe 5 10	
35	(2)	ANGABEN ZU SEQ ID NO: 19:	
33		 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 39 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: beides (D) TOPOLOGIE: linear 	
40			
		(ix) MERKMAL: (A) NAME/SCHLÜSSEL: CDS (B) LAGE:139	
45		(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 19:	
50		GCC AGA TCC GGG ACA GGC TCC TAC GAG CAG TAC TTC Ala Arg Ser Gly Thr Gly Ser Tyr Glu Gln Tyr Phe 15 20 25	39
50	(2)	ANGABEN ZU SEQ ID NO: 20:	

(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 13 Aminosäuren (B) ART: Aminosäure (D) TOPOLOGIE: linear 5 (ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 20: Cys Ala Arg Ser Gly Thr Gly Ser Tyr Glu Gln Tyr Phe 10 (2) ANGABEN ZU SEQ ID NO: 21: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 20 Basenpaare (B) ART: Nucleotid 15 (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 20 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 21: 20 CACTGAAGAT CCATCATCTG (2) ANGABEN ZU SEQ ID NO: 22: 25 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 20 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 30 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 22: 35 20 TAGAGGATGG TGGCAGACAG 40 Patentansprüche Nucleinsäure, die für die α -Kette eines humanen T-Zellrezeptors, ein funktionelles Derivat oder ein Fragment davon kodiert und eine CDR3-Region gebildet aus der Kombination eines Va20-und eines Ja22-Gensegments umfaßt. 45 2. Nucleinsäure, die für die α -Kette eines humanen T-Zellrezeptors, ein funktionelles Derivat oder ein Fragment davon kodiert, und eine CDR3-Region umfaßt, ausgewählt aus: (a) einer für die Aminosäuresequenz 50 YCL(X₁ ... X_n) SARQLTF (1) kodierenden Nucleotidsequenz, wobei $X_1 \, ... \, X_n$ eine Sequenz von 3-5 Aminosäuren darstellt, (b) einer Nucleotidsequenz, die für eine Aminosäuresequenz mit einer Identität von mindestens 80 % zur Aminosäureseguenz aus (a) kodiert, oder 55 (c) einer Nucleotidsequenz, die für eine Aminosäuresequenz mit einer äquivalenten Erkennungsspezifität für

die Peptidkomponente der T-Zellrezeptor-Liganden kodiert.

3. Nucleinsäure nach Anspruch 2,

dadurch gekennzeichnet,

daß die Aminosäuresequenz X₁ ... X_n ausgewählt ist aus der Gruppe, bestehend aus den Aminosäuresequenzen VGG, VLSG, ATG, VSG, DSG, VVSG, ALAG, APSG und VGR.

4. Vektor.

5

15

20

25

30

40

45

50

dadurch gekennzeichnet,

daß er mindestens eine Kopie einer Nucleinsäure nach einem der Ansprüche 1 bis 3 enthält.

10 5. Zelle.

dadurch gekennzeichnet,

daß sie eine Nucleinsäure nach einem der Ansprüche 1 bis 3 exprimiert.

6. Polypeptid,

dadurch gekennzeichnet,

daß es von einer Nucleinsäure nach einem der Ansprüche 1 bis 3 kodiert ist.

- 7. Nucleinsäure, die für die β-Kette eines humanen T-Zellrezeptors, ein funktionelles Derivat oder ein Fragment davon kodiert und eine CDR3-Region gebildet aus der Kombination eines Vβ22-Gensegments, eines Dβ1- oder Dβ2-Gensegments und eines Jβ-Gensegments, insbesondere eines Jβ2.1-, Jβ2.3 oder Jβ2.7-Gensegments umfaßt.
- 8. Nucleinsäure, die für die β-Kette eines humanen T-Zellrezeptors, ein funktionelles Derivat oder ein Fragment davon kodiert und eine CDR3-Region umfaßt, ausgewählt aus:

(III)

(a) einer für die Aminosäuresequenz

$$CA(X'_1...X'_n)Y/DEQYF$$
 (II)

kodierenden Nucleotidsequenz,

wobei X'₁ ... X'_n eine Sequenz von 5-7 Aminosäuren darstellt,

(b) einer für die Aminosäuresequenz

kodierenden Nucleotidsequenz,

wobei X", ... X", eine Sequenz von 5-7 Aminosäuren darstellt,

(c) einer für die Aminosäuresequenz

$$CA(X'''_1 ... X'''_n) DTQYF$$
 (IV)

35 kodierenden Nucleotidsequenz,

wobei X"1 ... X"n eine Sequenz von 5-7 Aminosäuren darstellt,

- (d) einer Nucleotidsequenz, die für eine Aminosäuresequenz mit einer Identität von mindestens 80 % zu einer Aminosäuresequenz aus (a), (b) oder/und (c) kodiert, oder
- (e) einer Nucleotidsequenz, die für eine Aminosäuresequenz mit einer äquivalenten Erkennungsspezifität für die Peptidkomponente des T-Zellrezeptor-Liganden kodiert.
- 9. Nucleinsäure nach Anspruch 8,

dadurch gekennzeichnet,

daß die Aminosäuresequenz X'₁ ... X'_n ausgewählt ist aus der Gruppe, bestehend aus SSETNS, SSETSS, TSGTAS, RSGTGS, SSGTDS, SSGTRS, SSGSDS, SSSTGS, SSSTVS, SSSTLS, SSSTLF, SSSTAS, SSHTDS, SSDTLS und SRWDSE.

10. Vektor,

dadurch gekennzeichnet,

daß er mindestens eine Kopie einer Nucleinsäure nach einem der Ansprüche 7 bis 9 enthält.

11. Zelle,

dadurch gekennzeichnet,

daß sie eine Nucleinsäure nach einem der Ansprüche 7 bis 9 exprimiert.

Polypeptid,

dadurch gekennzeichnet,

daß es von einer Nucleinsäure nach einem der Ansprüche 7 bis 9 kodiert ist.

13. Polypeptid,

5

15

20

25

35

50

55

dadurch gekennzeichnet,

daß es T-Zellrezeptor-Eigenschaften aufweist und aus einem Polypeptid nach Anspruch 6 sowie einem Polypeptid nach Anspruch 12 als Untereinheiten aufgebaut ist.

14. Polypeptid nach einem der Ansprüche 6, 12 oder 13,

dadurch gekennzeichnet,

daß es mit einer Markierungsgruppe oder einem Toxin gekoppelt ist.

- 15. Antikörper gegen ein Polypeptid nach einem der Ansprüche 6, 12, 13 oder 14, der gegen eine für die Erkennung des Peptidliganden verantwortliche Region gerichtet ist.
 - 16. T-Zelle,

dadurch gekennzeichnet,

daß sie einen T-Zellrezeptor nach Anspruch 13 enthält.

- 17. Pharmazeutische Zusammensetzung, die als aktive Komponente eine Nucleinsäure nach einem der Ansprüche 1 bis 3 oder 7 bis 9, ein Polypeptid nach einem der Ansprüche 6, 12, 13 oder 14, einen Peptidliganden gegen das Polypeptid, einen Antikörper nach Anspruch 15 oder eine Zelle nach Anspruch 5, 11 oder 16 gegebenenfalls zusammen mit anderen aktiven Komponenten, sowie pharmazeutisch üblichen Hilfs-, Zusatz- oder Trägerstoffen enthält.
- 18. Verwendung einer pharmazeutischen Zusammensetzung nach Anspruch 17 zur Herstellung eines Mittels für die Diagnose einer Tumorerkrankung oder einer Prädisposition für eine Tumorerkrankung.
- 19. Verwendung einer pharmazeutischen Zusammensetzung nach Anspruch 17 zur Herstellung eines Mittels für die Überwachung des Krankheitsverlaufs bei einer Tumorerkrankung.
- 20. Verwendung einer pharmazeutischen Zusammensetzung nach Anspruch 17 zur Herstellung eines Mittels für die Prävention oder Therapie einer Tumorerkrankung.
 - 21. Verfahren zur Gewinnung von T-Zellen, die ein Polypeptid nach Anspruch 13 als T-Zellrezeptor exprimieren, dadurch gekennzeichnet,

daß man eine T-Zellen enthaltende Probe mit einem spezifisch an die CDR3-Region des T-Zellrezeptors bindenden Mittel in Kontakt bringt, die mit dem Mittel reagierenden T-Zellen identifiziert und gegebenenfalls von anderen T-Zellen abtrennt.

- 22. Verfahren zur Gewinnung von T-Zellen, die ein Polypeptid nach Anspruch 13 als T-Zellrezeptor exprimieren, dadurch gekennzeichnet,
- daß man Nucleinsäuresequenzen, die für den T-Zellrezeptor kodieren, in eine T-Zellinie einführt, und dort zur Expression bringt.
 - 23. Verfahren zur Gewinnung von T-Zellen, die ein Polypeptid nach Anspruch 13 als T-Zellrezeptor exprimieren, dadurch gekennzeichnet,
- daß man Nucleinsäuresequenzen, die für den T-Zellrezeptor kodieren, in die Keimbahn eines Tieres einführt und die T-Zellen aus dem resultierenden transgenen Tier oder Nachkommen davon gewinnt.
 - 24. Transgenes Tier,

dadurch gekennzeichnet,

daß es ein Polypeptid nach Anspruch 13 als T-Zellrezeptor exprimiert.

- 25. Verfahren zur Identifizierung von Peptidliganden eines T-Zellrezeptors nach Anspruch 13, umfassend die Schritte:
 - (a) Gewinnen von RNA aus Tumorgewebe,
 - (b) Überführen der RNA in doppelsträngige cDNA-Moleküle,
 - (c) Einbringen der cDNA-Moleküle in Wirtszellen, wobei eine cDNA-Bank erhalten wird,
 - (d) Transfizieren von eukaryontischen Empfängerzellen mit Aliquots der cDNA-Bank, wobei (i) eine Cotransfektion mit HLA-A*0201-DNA erfolgt oder (ii) HLA-A*0201 positive Empfängerzellen verwendet werden,

- (e) Testen der transfizierten Empfängerzellen auf Fähigkeit zur Stimulation von T-Zellen,
- (f) Identifizieren einer cDNA-Sequenz, die für das Antigen, welches den Peptidliganden enthält, kodiert und
- (g) Identifizieren der Sequenz des Peptidliganden.

Abb. 1/1

Ergebnisse #26 Tumor i.s.

 $CDR3\alpha$ -Region

Fracment	TCRAV2051	N-Region		TCRLJ
<u>Klone</u> (14/54)	C L V G TGCCTCGTGGG Va20- o	TG der J&22-codi	G S A R Q GTTCTGCAAGGCAX ert	L T F ACTGACCTT TCRAJ22
<u>Klone</u> (1/54)	C L V G TGCCTCGTGGG	А	G S A R Q GGTTCTGCAAGGCA	L T F ACTGACCTT TCRAJ22
<u>Klone</u> (11/54)	C L V TGCCTCGT		S G S A R Q TTCTGGTTCTGCAAGGCAA	
<u>Flone</u> (5/54)	C L V TGCCTCGTG	L CT	S G S A R Q TTCTGGTTCTGCAAGGCA	L T F ACTGACCTT TCRAJ22
<u>Klone</u> (2/54)	C L TGCCTCG		T G S A R Q CTGGTTCTTGCAAGGCA	
	C L TGCCTCG	V T	S G S A R Q TTCTGGTTCTGCAAGGCA	L T F ACTGACCTT TCRAJ22
<u>Klone</u> (1/54)			G S A R Q GGTTCTGCAAGGCA/	
<u>Elone</u> (1/54)	c L TeccTCG		G S A R Q GGTTCTGC.~AGGC.~	
<u>Klone</u> (1/54)	C L TGCCTCG	D AC	S G S A R Q TCTGĠTTCTGCAAGGCAJ	
Klone (2/54)		A L A CCCTGGGG	G S A R Q GGTTCTGCAAGGCAA	L T F ACTGACCTT TCRAJ22

Abb. 1/2

Klone	(1/54)	C L TGCCTCG	A L			a GCA	_			
								TC	RAJ	22
Klone	(1/54)	C L TGCCTCG	A P			A GCA		CTG		TT
Klone	(2/54)	C L TGCCT	TC			a GCA	_	CTG.	T ACC RAJ	TT

Abb. 2/1

Ergebnisse #26 Tumor i.s.

 $CDR3\beta$ -Region

Fragment	TCRBV2251	N-TCRBD-N	TCRSJ
Klone (8/62)	C A S S TGTGCCAGCAG	E T N CGAAACTAA TCRBD2	S Y E Q Y F CTCCTACGAGCAGTACTT TCRBJ257
Klone (2/62)	C A S S TGTGCCAGCAGT	E T N GARACTART TORBD2	S Y E Q Y F TCCTACGAGCAGTACTT TCRBJ257
Klon (1/62)	C A S S TGTGCCAGCAGT	E T S GAAACTTCT TCRBD2	S Y E Q Y F TCCTACGAGCAGTACTT TCRBJ2S7
Klon (1/62)	C A S S TGTGCCAGCAGT	E T S GAAACAAG TCRBD1	S Y E Q Y F CTCCTACGAGCAGTACTT TCRBJ2S7
Klone (2/62)	C A TGTGCCA	T S G T A CCTCCGGGACAGCT TCRBD1	S Y E Q Y F TCCTACGAGCAGTACTT TCRBJ257
Klone (2/62)	C A R TGTGCCAG	S G T G ATCC <u>GGGACAG</u> G TCRED1	S Y E Q Y F CTCCTACGAGCAGTACTT TCRBJ2S7
Klone (2/62)	C A S S TGTGCCAGCAGT	GGGACGGA	S Y E Q Y F CTCCTACGAGCAGTACTT TCRBJ2S7
Kion (1/62)	C A S S TGTGCCAGCAGT	G T D GGC <u>ACAG</u> A TCRBD1	S Y E Q Y F CTCCTACGAGCAGTACTT TCRBJ2S7
Klon (1/62)	C A S S TGTGCCAGCAG	G T D C <u>GGGACAG</u> AT TCRBD1	S Y E Q Y F TCCTACGAGCAGTACTT TCRBJ2S7

Abb. 2/2

			S Y E Q Y F TCCTACGAGCAGTACTT TCRBJ2S7
			S Y E Q Y F TCCTACGAGCAGTACTT TCRBJ2S7
Klone (2/62)	C A S S TGTGCCAGCAGT	G T S S GGAACTAGCTCTT TCRBD2 (TCR	Y N E Q F F ACAATGAGCAGTTCTT TCRBJ2S1 BJ2S7 sehr ähnlich)
Klon (1/62)	C A S S TGTGCCAGCAGT	G S D GGGTCCGA TCRBD1/2	S Y E Q Y F CTCCTACGAGCAGTACTT TCRBJ2S7
Klone (5/62)	C A S S TGTGCCAGCAGT	S T G TCGACAGGG TCRBD1	S Y E Q Y F TCCTACGAGCAGTACTT TCRBJ2S7
Klone (2/52)	C A S S TGTGCCAGCAG	S T V CTCGACGGT TCRBD1/2	S Y E Q Y F CTCCTACGAGCAGTACTT TCRBJ2S7
Klon (1/62)	C A S S TGTGCCAGCAGT	S T L TCAACATTA TCRED2	S Y E Q Y F TCCTACGAGCAGTACTT TCRBJ2S7
Klon (1/62)	C A S S TGTGCCAGCAGT	S T L F TCAACATTATT TCRBD2	Y E Q Y F CTACGAGCAGTACTT TCRBJ2S7
Klon (1/62)	C A S S TGTGCCAGCAGT		S Y E Q Y F CTCCTACGAGCAGTACTT TCRBJ2S7
Klone (2/62)	C A S S TGTGCCAGCAG	H T D CC <u>ACA</u> CCGA TCRBD1	S Y E Q Y F CTCCTACGAGCAGTACTT TCRBJ2S7
Klone (2/62)	C A S S TGTGCCAGCAGT	D T L GACACCCT TCRED1	S Y E Q Y F CTCCTACGAGCAGTACTT TCRBJ2S7

Abb. 3

Ergebnisse	#22 Tumor i.s.	CDR3 α -Region	
<u>Klone</u> (13/34)	Y C L V G TACTGCCTCGTGGG Val6-	G S A R TG GTTCTGCAAGG oder JaC-codiert	-
<u>Klone</u> (2/34)	Y C L V G TACTGCCTCGTGGG	G S A R G GGTTCTGCAAGG	-
<u>Klon</u> (1/34)	Y C L V G TACTGCCTCGTGGG		Q L T F GCAACTGACCȚT TCRAJ42
<u>Klone</u> (4/34)	Y C L V TACTGCCTCGT	L S G S A R CCT TTCTGGTTCTGCAAG	
<u>Klone</u> (2/34)	Y C L TACTGCCTCG	A T G S A R CTA CTGGTTCTGCAAG	Q L T F GCAACTGACCTT TCRAJ22

ار

Abb. 4

Ergebnisse	滞22 Tumor i.s.	CDR3 β -Region	 L
Klone (10/28)	C A S TGTGCCAG	A D S F K TGCCGATTCTTTTAA TCRBD2	D T Q Y F AGATACGCAGTATTT TCRBJ2S3
Klone (4/28)	C A S S TGTGCCAGCAG		S Y E Q Y F CTCCTACGAGCAGTACTT Jb2.7
Klone (1/28)	C A S S TGTGCCAGCAGT	D Q G M GATCAGGGGATG TCREDZ	N E Q F F AATGAGCAGTTCTT TCRBJ2S1
Klone (1/28)	C A S R TGTGCCAGCAG	W D S E GTGGGACTCCGAGG TCR5D2	D E Q Y F ACGAGCAGTACTT TCRBJ2S7