Convolutional Neural Network

Introduction

Why AI in Computer Vision?

- one picture worth a thousand words
- 2 large video and image collections

How many images and videos are there on the internet?

Social media statistics

- The internet has 4.2 billion users
- 3.03 billion active social media users
- Youtube: 300 hours of video are uploaded every minute
- Instagram: Over 95 million photos are uploaded to each day;
 More than 40 billion photos have been shared so far

Object Recognition

• identify objects and scenes

Error Rate

ImageNet Challenge

- 1,000 object classes (categories).
- Images:

 1.2 M train
 100k test.

VISION ERROR RATE

Real-Time Object Detection

YOLO 9000: Can detect over 9000 object categories

(video)

Example: Self-Driving Trucks

One of 10 Breakthrough Technologies in 2017

(video)

Face Recognition

Example: Paying with Your Face

One of 10 Breakthrough Technologies in 2017

(link)

More Generally, Biometrics

(link)

Key AI technology: Convolutional neural network (CNN)

Handwritten Digit Recognition

MNIST: 10 classes (digits 0to 9)

Convolutional neural network

Image Processing Basics: 2D Convolution

image I(i,j); kernel (mask) K

Image Processing Basics: 2D Convolution...

Smoothing (Averaging) Filter

window size

original

n=15 (nxn mask)

n=5 (n×n mask)

n=25 (n×n mask)

Convolutional Neural Network

Other Arrangements

1	1	1
1	2	1
1	1	1

1	1	1	1	1
1	2	3	2	1.
1	3	4	3	1
1	2	3	2	1
1	1	1	1	1

center pixel: 1 vs 5

Sharpening Filters

Averaging pixels

- blur
- analogous to integration, related to sum of pixel intensity values

Differentiation

- has the opposite effect of blurring
- sharpens an image, related to difference between intensity values

First derivative

$$\frac{\partial f}{\partial x} \leftrightarrow f(x+1) - f(x)$$

Edge Detector

-1	0	1
-1	0	1
-1	0	1

-1	-1	-1
0	0	0
1	1	1

CNN

Convolutional neural network

Sparse Connectivity

Feature Hierarchy

 hidden units are connected to a local subset of units in the previous layer

Growing Receptive Field

Feature Hierarchy...

• another early model: Neocognitron [Fukushima 1980]

Shared Weights

• each local receptive field is replicated across the entire image

 weights of the same color are shared (constrained to be identical)

Parameter Sharing

- allows for features to be detected regardless of their position in the image
 - robustness to shifts of the input
- greatly reduces the number of free parameters to learn

Convolutional Layer

multiple feature maps look at the same region of the input

 stack the activation maps for all filters along the depth dimension

Efficiency of Convolution

Input size: 320 by 280

Kernel size: 2 by 1

Output size: 319 by 280

	Convolution	Dense matrix	Sparse matrix
Stored floats	2	319*280*320*280 > 8e9	2*319*280 = 178,640

Nonlinearity

- Convolution is a linear operation
- need nonlinearity
 - otherwise 2 convolution layers would be no more powerful than 1
- common to apply a rectified linear unit (ReLU): y = max(z, 0)

Zero-Padding

- representation shrink at each layer
- limits the number of layers

Zero-padding

- adding zeros to each layer
- allows the use of an arbitrarily deep convolutional network

Pooling Layer

motivation

once a feature has been detected, only its approximate position relative to other features is relevant

Example

the input image contains

- the endpoint of a roughly horizontal segment in the upper left area
- 2 a corner in the upper right area
- 3 the endpoint of a roughly vertical segment in the lower portion the input image is a seven
 - positions are likely to vary for different instances of the character
 - spatial invariance

Max-Pooling

• for each such sub-region (e.g., over a 2×2 area in the previous layer), outputs the maximum value

shift the input to the right by one pixel

- every value in the bottom row has changed
- but only half of the values in the top row have changed

Example

Pooling with Downsampling

- stride of two
- reduces the representation size by a factor of two
- reduces the computational and statistical burden on the next layer

Convolutional Network Components

Example Classification Architecture

Example

- lower-layers: alternating convolution and max-pooling layers
- fully-connected (traditional MLP)
- classification error

Application: Face Recognition

