Zhengdong Zhang

Homework - Week 2 Exercises ID: 952091294

Term: Fall 2025

Due Date: Oct 15th, 2025

Email: zhengz@uoregon.edu Course: MATH 616 - Real Analysis Instructor: Professor Weiyong He

Exercise 1.0

Let $f_n(x) = (nx)^{-2}(1 - \cos(nx))$. Find the value of

$$\lim_{n\to\infty} \int_0^\infty f_n(x) \, dx$$

Solution:

Exercise 1.1

Does there exist an infinite σ -algebra which has only countably many members?

Solution: No, such σ -algebra does not exist. Assume a σ -algebra \mathfrak{M} has only countably many members on a set X. Write

$$\mathfrak{M} = \{X_1, X_2, \dots, X_n, \dots\}$$

For any $x \in X$, let $A_x := \bigcap_{x \in X_i} X_i$. A_x is not empty and $A_x \in \mathfrak{M}$ because it is the countable intersection of members in \mathfrak{M} . By definition, if $x \in X_i$ for any X_i , then we must have $A_x \subset X_i$. Suppose $y \in X$ and $y \neq x$. If $y \in A_x$, then $A_y = A_x$. Indeed, A_x is a member of \mathfrak{M} , so $A_y \subseteq A_x$. If $x \notin A_y$, then $x \in A_x \setminus A_y$ which is not contained in A_x . This contradicts that A_x is the intersection of all sets containing x. So $x \in A_y$, and this implies $A_x \subseteq A_y$, thus $A_x = A_y$.

Write $X = \bigcup_{x \in X} A_x$. From what we discuss above, for $x \neq y$, either $A_x = A_y$ or $A_x \cap A_y = \emptyset$. Thus, we can write $X = \bigcup_{i \in I} A_{x_i}$ where I is the index set and $A_{x_i} \cap A_{x_j} = \emptyset$ for $i \neq j$ in I.

Assume I is finite. For any $Y \in \mathfrak{M}$, we have $Y = \bigcup_{x \in Y} A_x$. So Y can be written in the form $\bigcup_{i \in J} A_{x_i}$ for some $J \subseteq I$. Since I is finite, this implies that \mathfrak{M} only has finitely many members. Assume I is countably infinite. Note that for $I_1, I_2 \subset I$,

$$\bigcup_{i \in I_1} A_{x_i} = \bigcup_{j \in I_2} A_{x_j}$$

if and only if $I_1 = I_2$. The cardinality of the power sets of I must be uncountably many, so \mathfrak{M} has at least uncountably many memebrs.

Assume I is uncountably infinite. Note that every A_{x_i} is a different member of \mathfrak{M} by our choice, so again \mathfrak{M} has uncountably many members.

This is a contradiction. Hence, we conclude that such σ -algebra \mathfrak{M} does not exist.

Exercise 1.3

Prove that if f is a real function on a measurable space X such that $\{x : f(x) \ge r\}$ is measurable for every rational r, then f is measurable.

Solution:

Exercise 1.4

Let $\{a_n\}$ and $\{b_n\}$ be sequences in $[-\infty, \infty]$, and prove the following assertions:

- (a) $\limsup_{n\to\infty} (-a_n) = -\liminf_{n\to\infty} a_n$.
- (b) $\limsup_{n\to\infty} (a_n + b_n) \le \limsup_{n\to\infty} a_n + \limsup_{n\to\infty} b_n$ provided none of the sums is of the form $\infty \infty$
- (c) If $a_n \leq b_n$ for all n, then

$$\liminf_{n \to \infty} a_n \le \liminf_{n \to \infty} b_n$$

Show by an example that strict inequality can hold in (b).

Solution:

Exercise 1.5

(a) Suppose $f: X \to [-\infty, \infty]$ and $g: X \to [-\infty, \infty]$ are measurable. Prove that the sets

$${x : f(x) < q(x)}, {x : f(x) = q(x)}$$

are measurable.

(b) Prove that the set of points at which a sequence of measurable real-valued functions converges (to a finite limit) is measurable.

Solution:

Exercise 1.6

Let X be an uncountable set, let \mathfrak{M} be the collection of all sets $E \subset X$ such that either E or E^c is at most countable, and define $\mu(E) = 0$ in the first case, $\mu(E) = 1$ in the second. Prove that \mathfrak{M} is a σ -algebra in X and that μ is a measure on \mathfrak{M} . Describe the corresponding measurable functions and their integrals.

Solution: