CSC 226

Algorithms and Data Structures: II Sorting Revisited

Tianming Wei twei@uvic.ca
ECS 466

- Big-Oh
- Big-Omega
- Big-Theta
- Little-oh
- Little-omega

Which one is FALSE in the following?

A.
$$n^2 \in O(n \log^2 n)$$

B.
$$n \log n \in O(n^2)$$

C.
$$f(n) \in O(g(n)) \Rightarrow f(n) \in o(g(n))$$

D.
$$f(n) \in o(g(n)) \Rightarrow f(n) \in O(g(n))$$

Which one is FALSE in the following?

A.
$$n^2 \in O(n \log^2 n)$$
 FALSE

B.
$$n \log n \in O(n^2)$$
 True

C.
$$f(n) \in O(g(n)) \Rightarrow f(n) \in o(g(n))$$
 FALSE

D.
$$f(n) \in o(g(n)) \Rightarrow f(n) \in O(g(n))$$
 True

Big-O Notation	Comparison Notation	Limit Definition
$f \in o(g)$	f 🔇 g	$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$
$f \in O(g)$	f ⊜ g	$\lim_{x\to\infty} \frac{f(x)}{g(x)} < \infty$
$f \in \Theta(g)$	f 🔵 g	$\lim_{x \to \infty} \frac{f(x)}{g(x)} \in \mathbb{R}_{>0}$
$\mathbf{f}\in\Omega(g)$	f 🙋 g	$\lim_{x\to\infty} \frac{f(x)}{g(x)} > 0$
$f \in \omega(g)$	f 📎 g	$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty$

Sorting revisited

Overview of sorting algorithms

Different types of Sorting Algorithms

- Comparison Based Sorting
 - sorting algorithm that sorts based only on comparisons
 - elements to be sorted must satisfy total order properties
- Integer Sorting
 - sorting algorithm that sorts a collection of data values by numeric keys, each of which is an integer

Selection Sort

```
Algorithm selectionSort(A,n):
Input: Array A of size n
Output: Array A sorted
for k \leftarrow 0 to n-2 do
   \min \leftarrow k
   for j \leftarrow k+1 to n-1 do
      if A[j] < A[min] then
         min \leftarrow j
      end
   end
   swap(A[k], A[min])
end
end
```

Properties of Selection Sort

- Comparisons: Worst-case = best-case = average-case = $O(n^2)$
- exactly n-1 swaps
- Simple implementation
- *Not adaptive*: The input order has no effect on the efficiency of the algorithm
- *In-place*: only requires a constant amount of (additional) memory

Linear Insertion/Insertion Sort (Pseudocode)

```
Algorithm insertionSort(A,n):
  Input: Array A of size n
  Output: Array A sorted
  for k \leftarrow 1 to n-1 do
     val \leftarrow A[k]
    j \leftarrow k-1
     while j \ge 0 and A[j] > val do
        A[j+1] \leftarrow A[j]
        j \leftarrow j - 1
     end
     A[j+1] = val
  end
end
```

Complexity of Insertion Sort

- Comparisons:
 - Worst-case: $O(n^2)$
 - Best-case: O(n)
 - Average-case: $O(n^2)$
- O(n) space
- Swaps:
 - Worst-case: $O(n^2)$
 - Best-case: O(n)

Some Properties of Insertion Sort

- Simple implementation
- Efficient for
 - (quite) small data sets
 - data sets of already substantially sorted sequences: more efficient in practice than most other simple quadratic algorithms (*adaptive*)
- *In-place*: only requires a constant amount of (additional) memory
- Online: updates sort as elements are received
- *Natural*: people often use an insertion like sorting in practice

Quicksort

```
Algorithm quickSort(A, a, b)
   Input Array A, ranks a and b
   Output A with the elements ordered between a and b
    if a \ge b then return
   p \leftarrow A[b]
    1 \leftarrow a
    r \leftarrow b - 1
   while 7 \le r do
      while 1 \le r and A[1] \le p do
       1 \leftarrow 1 + 1
      while r \ge 1 and A[r] \ge p do
       r \leftarrow r - 1
      if 1 < r then
        swap(A[1], A[r])
   swap(A[1], A[b])
   quickSort(S, a, l - 1)
   quickSort(S, l + 1, b)
```

Properties of Quicksort

- Worst case time complexity: $O(n^2)$
- Expected: $O(n \log(n))$
 - since, when picked at random, the pivot is likely good and splits up the sequence pretty evenly ...
- Best-case: $O(n \log n)$
- Mergesort has $O(n \log(n))$ worst case time complexity, but quicksort is better in practice
- Usually the best choice unless the recursion gets too deep or stability is needed

Mergesort (Pseudocode)

```
Algorithm mergeSort (S):
  input: Sequence S
  ouput: Sequence S sorted
  if S.size() < 2 then
      return S
  S_1, S_2 \leftarrow \text{divide(S)}
  S_1 \leftarrow \text{mergeSort}(S_1)
  S_2 \leftarrow \text{mergeSort}(S_2)
  S \leftarrow \text{merge}(S_1, S_2)
  return S
```

Merge (Pseudocode)

```
Algorithm merge (S_1, S_2):
while not(S_1.isEmpty() or S_2.isEmpty()) do
  if S_1.first().key() < S_2.first().key() then
     S.insertLast(S_1.removeFirst())
  else
     S.insertLast (S_2.removeFirst()))
  end
end
while not(S_1.isEmpty()) do
  S.insertLast(S_1.removeFirst())
end
while not(S_2.isEmpty()) do
  S.insertLast(S_2.removeFirst())
end
                                             17
return S
```

Properties of Mergesort

- Worst-case = best-case = average case = $O(n \log n)$
- O(n) extra space

Heapsort (Pseudocode)

```
Algorithm heapSort(Array A, int n)
input: array A of size n
output: array A sorted

heapify(A, n) //make A a maxHeap
end ← n-1
while end > 0 do
   swap(A[end], A[0])
   end ← end - 1
   bubbleDown(A, 0, end)
```

Properties of Heapsort

- Worst-case = best-case = average case = $O(n \log n)$
- In-place (constant extra space)
- Quick sort still outperforms it in most cases, why?

Radixsort LSD

- Take the least significant digit (or group of bits) of each key.
- Group the keys based on that digit into <u>buckets</u>, but otherwise keep the original order of keys.
- Concatenate the buckets together in order.
- Repeat the grouping process with each more significant digit.

Radixsort MSD

- Take the most significant digit of each key.
- Sort the list of elements based on that digit, grouping elements with the same digit into one <u>bucket</u>.
- Recursively sort each bucket, starting with the next digit to the right.
- Concatenate the buckets together in order.

Properties of Radixsort

- Repeated sorting by means of Bucket Sort on n keys
 - For each component of the key perform one Bucket Sort
- Implement buckets (N of them) as queues
- Let the number of components per key be d

• Theorem. The time complexity of Radix Sort is O(d(n+N)) or O(dn) for large n.

Shellsort (Pseudocode)

```
Algorithm Shellsort (A, n)
   input: array A of size n
   output: A sorted
   h \leftarrow 1
   while h < n/3 do h \leftarrow 3h +1
   while h \ge 1 do
      for i = h to n-1 do
         j \leftarrow i
         while j \ge h and A[j] < A[j-h] do
            swap (A[j], A[j-h])
      h \leftarrow h/3
```

Shellsort (Animation)

Properties of Shellsort

- The analysis of Shellsort is dependent on the numeric properties of *n*, the size of *h* and the step size and in some cases is still an open question
- This algorithm decreases h by the sequence $(3^k 1)/2$ which has a worst-case time of $O(n^{3/2})$
- Is this better than $O(n \log n)$?

Bubble Sort (Pseudocode)

```
Algorithm bubbleSort (A, n):
  Input: Array A of size n
  Output: Array A sorted
 repeat
   swapped ← false
   for i = 1 to n-1 do
     if A[i-1] > A[i] then
      swap(A[i-1], A[i])
       swapped ← true
   n \leftarrow n-1
 until not swapped
```

Complexity of Bubble Sort

- Worst-case = average-case = $O(n^2)$
- Best-case = O(n)

Shakersort

- Variation of bubble sort: sorts in both directions instead of just one as in bubble sort
- slightly better performance than bubble sort
- worse than insertion sort in practice

Shakersort

	Type of Sorting Algorithm	Worst Case Time	Best Case Performance	Average Case Performance	Properties
Insertion Sort	Comparison Based Sorting	O(n²)	O(n)	O(n²)	adaptive, in place, stable, online
Bubblesort	Comparison Based Sorting	O(n²)	O(n)	O(n²)	in place
Selection Sort	Comparison Based Sorting	O(n²)	O(n²)	O(n²)	in place
Binary Insertion	Comparison Based Sorting	O(n²)	O(n)	O(n²)	adaptive, in place
Shakersort	Comparison Based Sorting	O(n²)	O(n)	O(n²)	stable, in place
Shellsort	Comparison Based Sorting	O(n²)	O(n log n)		in place
Quicksort	Comparison Based Sorting	O(n²)	O(n log n)	O(n log n)	in place
Heapsort	Comparison Based Sorting	O(n log n)	O(n log n)	O(n log n)	in place
Mergesort	Comparison Based Sorting	O(n log n)	O(n log n)	O(n log n)	not in place
Bucketsort	Integer Sorting	O(n+k)		O(n+k)	can be implemented such that stable
Radixsort	Integer Sorting	O(dn)			stable

Sorting out Sorting

- Visualization and Comparison of Sorting Algorithms
- https://www.youtube.com/watch?v=ZZuD6iUe3Pc