Derin Öğrenme

Derin Öğrenmeye Giriş

Emir Öztürk

WhoAmI TM

Titles are irrelevant

- Veri Sıkıştırma
- Bilgi Güvenliği
- Makine Öğrenmesi
- Derin Öğrenme

Çalışma konuları

Too old to begin the training

Görüntü sıkıştırma yöntemlerinin etkinliğini arttıran dönüşüm ve bölümlendirme işlemleri (2012)

Exam Scheduling With Genetic Algorithms (2012)

File size estimation in JPEG XR standard using machine learning (2016) Finding The Optimal Lossless Compression Method For Images Using Machine Learning Algorithms (2016)

Entropy Based Estimation Algorithm Using Split Images to Increase Compression Ratio (2017)

Derin Öğrenme Kullanılarak Optimum JPEG Kalite Faktörünün Belirlenmesi (2020)

Kısa Metinlerin Sıkıştırılması için BERT Tabanlı bir Yöntem (2021)

XCompress: LLM assisted Python-based text compression toolkit (2024) Comparison of Learned Image Compression Methods and JPEG (2024) A character based steganography using masked language modeling (2024)

Identifying Image Compression Methods Using Vision Transformers (2024)

Performance Analysis of Chroma, Qdrant And Faiss Databases (2024) Introduction to Retrieval Augmented Generation (RAG) - PyData Türkiye 2024 Resim Dosyalarında LSB Yöntemi ile Gizlenen Steganografik Verilerin Görsel Dil Modelleri Kullanarak Tespit Edilmesi (2024)

Zeka Nedir?

"Action is the real measure of intelligence." - Napoleon Hill

- Bir işi yapabilmek
- Bir işi çok iyi yapabilmek
- Bir çok işi yapabilmek
- Bir çok işi çok iyi yapabilmek
- Zekanın formal tanımı

$$\Upsilon(\pi) := \sum_{\substack{\text{Measure} \\ \text{of Intelligence}}} 2^{-K(\mu)} V_{\mu}^{\pi}$$

Yapay zeka nedir?

We must ask what it doez?

- Büyük veri
- Blokchain
- AI (Şimdilik)
 - Machine Learning
 - Deep Learning
- Zekanın simülasyonu

Makine öğrenmesi - Derin öğrenme

Subset but deeper

Makine öğrenmesi

Al... Machine Learning... Statistics... IF

- Makine öğrenmesi algoritmalarının girdi verisi
- Probleme göre seçilmesi gereken özellikler
- Özelliklerin belirlenme işleminin sübjektif olması
- Yapı hakkında bilgi sahibi olunamadığında özellik seçiminin tehlikesi
 - Birbirleri ile ilişkili özelliklerin seçimi

Derin öğrenme nedir?

How deep is your love

Makine öğrenmesinin bir alt dalıdır

Yapay sinir ağları

Büyük veri setleri

Derin öğrenme ne değildir?

Not sure about it though

Perceptron

Not ultron, not megatron but perceptron

Backpropagation

Feedback is important

- Geri besleme
- Kaybın girdi olarak kullanımı
- Ağırlık güncellemesi

Backpropagation

Deep Learning

Just shove all the data... or don't

- Özellik seçiminde daha az işlenmiş veri
- Yapının detayının tespitine gerek olmaması
- İhtiyaç duyulan temel yapı
 - Veri
 - Çıktı
 - Başarı hesabı Kayıp
 - Modelin yapısı

Deep Learning

Please, I'm fabulous

- Deep learning'in popülerleşme sebebi
 - GPU'lar TPU'lar
 - Verinin artması
 - Belirli benchmark ve geliştirme toollarının ortaya çıkması

Deep Learning

I'm strong but not that strong

- Modellerin geliştirilmesi hala sınırlı bir uzayda
- Çok büyük uzaya sahip sorunların belirli sadeleştirmelere ihtiyaç duyması
- Örneğin
 - Satranç
 - Go

Uzay Küçültme

They told me the sky was the limit

- Belirli problemler deep learning için hala fazla karmaşık
- Boyutun bağımsız küçültülebilmesi
- 3D 2D haritalama
- AlphaFold

Bilinen Algoritmalar

I know what you did last summer

Convolutional Neural Network (CNN) AlexNet, VGGNet, ResNet,

InceptionNet, DenseNet, EfficientNet,

YOLO, Faster R-CNN, Mask R-CNN

Deep Belief Network (DBN) Deep Boltzmann Machine (DBM) Stacked

Autoencoder

Recurrent Neural Network (RNN)

Vanilla RNN, LSTM, GRU,

Bidirectional RNN, Sequence-to-Sequence (Seq2Seq)

Transformer'lar

Transformer, BERT, GPT,

T5, RoBERTa, XLNet

Generative Modeller

Generative Adversarial Network (GAN), Variational Autoencoder (VAE)

Deep Boltzmann Machine (DBM), Restricted Boltzmann Machine (RBM)

Autoencoder

Variational Autoencoder (VAE), Denoising Autoencoder (DAE)

Sparse Autoencoder, Contractive Autoencoder

Yeni nesil konular

One man's old topic is another man's new

AutoML

Üretken Modeller

Etik Al

Etik Al

Otonom
Sistemler

One shot
Learning
Learning

Etik Al

Etik Al

Etik Al

Explainable Al

Al modellerinin eğitim aşamaları - Veri eldesi

Primary school, Middle school, College...

Ham veri

Crawling

Veriseti kaynakları

- •https://huggingface.co/datasets
- •https://www.kaggle.com/datasets/
- •https://research.google/resources/datasets/
- •https://www.datasetlist.com/
- •https://datasetsearch.research.google.com/
- •https://dumps.wikimedia.org/
- •https://paperswithcode.com/datasets

Al modellerinin eğitim aşamaları - Önişleme

Get in the queue

Veri Temizleme

- Eksik Verilerle İlgili İşlemler
- Aykırı Değerlerin Tespiti ve Kaldırılması
- Yinelenen Kayıtların Silinmesi

Veri Dönüşümü

- Normalizasyon
- Standartlaştırma
- Log Dönüşümü

Veri Kodlama

- Etiket Kodlama (Label Encoding)
- One-Hot Encoding
- Embedding

Özellik Mühendisliği

- Özellik Çıkartma
- Özellik Seçimi
- Boyut İndirgeme

Veri Artırma (Görüntü ve Metin Verisi İçin)

- Görüntü Artırma
- Metin Artırma

Al modellerinin eğitim aşamaları - Önişleme

Get in the queue

Veri Temizleme

- Eksik Verilerle İlgili İşlemler
- Aykırı Değerlerin Tespiti ve Kaldırılması
- Yinelenen Kayıtların Silinmesi

Veri Dönüşümü

- Normalizasyon
- Standartlaştırma
- Log Dönüşümü

Veri Kodlama

- Etiket Kodlama (Label Encoding)
- One-Hot Encoding
- Embedding

Özellik Mühendisliği

- Özellik Çıkartma
- Özellik Seçimi
- Boyut İndirgeme

Veri Artırma (Görüntü ve Metin Verisi İçin)

- Görüntü Artırma
- Metin Artırma

Al modellerinin eğitim aşamaları - Önişleme

You thought that it was the last slide right?

Veri Bölme

Eğitim ve Test Verisi Bölme Çapraz Doğrulama

Dengesiz Veriyle Baş Etme Yeniden Örnekleme Yöntemleri

- Aşırı Örnekleme
- Azaltma
- Sentetik Veri

Metin İşleme (NLP Görevleri İçin) Tokenizasyon
Stopword Temizleme
Kök Bulma /
Lemmatizasyon
Vektörlestirme

Al modellerinin eğitim aşamaları - Öğrenme

Make mistakes to learn from your mistakes

Supervised - Unsupervised Learning

A supervisor is important for a degree

- Denetimli öğrenme
 - İstenen veri ve elde etilmesi istenen sonuç
- Denetimsiz öğrenme
 - Veri etiketi ihtiyacının olmaması
 - Gruplandırma
- One shot learning
- Zero shot learning

Reinforcement Learning

Whenever someone asks me if RL works, I tell them It doesn't and 70% of the time, I'm right

- Agent
- Ortam durumu
- Karar
- Etkileşim
- Son durum
- Başarı ölçümü
- Deep Reinforcement Learning

Sıfırdan Eğitim - Finetuning

Zero to hero

- Sıfırdan eğitim
- Kaynak problemi
- Zaman
- Veri ihtiyacı
- Başarı oranı
- Finetuning
 - PEFT (Parameter efficient Fine Tuning)
 - LoRA (Low-Rank Adaptation)