Price
110
105
U 5
120
110
130
150
100
105

- Normalization
- Log transformation
- Robust sealer
- Max Assolute scaleTI

Normalization:

$$y_{\text{new}} = \frac{xi - min(x)}{max(x) - min(x)}$$

$$\frac{110 - 105}{150 - 105} = 0.11$$

- 150-105 20
- $\frac{150 105}{150 105} = 1$
- 01. 0, 11

- 03, 0,22

- 150-105 20,22
- $\frac{100 105}{150 105} = -0.11$
- 05.0.11

- 105-105 = 0
- 06, 0, 55 07. 1

120-105 150-105

08, -0,11

09.

 $\frac{110 - 105}{150 - 105} = 0.11$

Standardization:

2 116.11

$$50,6=\sqrt{\frac{2(xi-14)^2}{N}}$$

$$=\sqrt{\frac{1938.89}{9}}$$

= 14.678

Imean/10= 116.11

$$\frac{110-116.11}{14.678}=-0,416$$

$$\frac{14.678}{14.678} = -0.416$$

$$\frac{100 - 116.11}{14.678} = -1.097$$

$$\frac{100-116.11}{14.678} = -1.097$$

$$\frac{105-116.11}{14.678} = -0.756$$

$$\frac{105-116.11}{14.678} = -0.756$$

$$\frac{105-116.11}{14.678} = -0.756$$

Log Transformation!

01.
$$110$$
 = $\frac{\text{New.price}}{2.041}$

02. 105 = 2.021

03. 115 = 2.060 $\log_{10}(\text{price}) = ?$

04. 120 = 2.079

05. 110 = 2.041

06. 130 = 2.113

07. 150 = 2.176

08. 100 = 2

Max Absolute scalen

09, 105 = 2.021

$$\frac{110}{150} = 0.733 \qquad \frac{150}{150} = 1$$

$$\frac{105}{150} = 0.7 \qquad \frac{100}{150} = 0.667$$

$$\frac{115}{150} = 0.767 \qquad \frac{105}{150} = 0.7$$

$$\frac{120}{150} = 0.8$$

$$\frac{110}{150} = 0.733$$

$$\frac{130}{150} = 0.867$$

1			
New-price			
٥١,	0,733	97	
02.	0.7		
03,	0,767		
04,	0.8		
05.	0.733		
06,	0.867		
07	1		
08,	0.667		
09,	0.7		

#

In henerally, we use I vonmalization - standardization

- Att Standard scaler gives good performance MOST of the cases, then others.
 - If outlier exist in Data, then use log transformation/ Robust scaler.

Robust sealer:

Meale = Ni-Xmed X75-X25

×= 1252 -0.333

250 2 0,0

Robust sealer

$$\frac{110-110}{1} \approx 0$$

$$\frac{100 - 110}{1} = -10$$

$$\frac{105 - 110}{1} = -5$$

	New	- Prèce
	01.	0
	03,	5
	04,	0
•	08,	20
	07,	<u>-10</u>
	09,	-5