Statistical Modelling with Python

Nickolas Stello

Project Flow Structure

- Connected to the Citybikes API
- Connected to Foursquare API and Yelp API
- Analyzed the results from both APIs
- Decided to use just the Yelp data for the analysis.
- Joined the data from Citybikes with the data from Yelp
- Explore the data
- Created a SQLite database to store the data collected
- Built a Multivariate Linear Regression
- Interpreted results and derived insights from the model.

Multivariate Linear Regression Model

Multivariate Linear Regression was selected as the method to illustrate a potential relationship between the number of bikes in a specific location and the characteristics of points of interest in that location, including review_count, rating, and price.

However, the outcomes from the model did not yield significant insights. This could be attributed to the dataset's nature, suggesting a lack of correlation among the numerical variables.

Model Output

OLS Regression Results						
Dep. Variable:		free_bikes R-squared:			0.027	
Model:		OLS	Adj. R-squared:			0.006
Method:	L	east Squares	F-statistic:			1.309
Date: V		06 Dec 2023	Prob (F-statistic):			0.274
Time:		10:53:52		Log-Likelihood:		-388.18
No. Observations:		145 AIC:			784.4	
Df Residuals:		141	BIC:			796.3
Df Model:		3				
Covariance Typ	e:	nonrobust				
	coef	std err	t	P> t	[0.025	0.975
const	3.6021	2.332	1.545	0.125	-1.007	8.21
review_count	-0.0606	0.032	-1.901	0.059	-0.124	0.00
rating	-0.0524	0.593	-0.088	0.930	-1.225	1.12
price	3.4168	1.733	1.972	0.051	-0.009	6.84
Omnibus: 60.031		 Durbin-Watson:			1.705	
Prob(Omnibus): 0.000		Jarque-Bera (JB):			187.630	
Skew: 1.605		Prob(JB):			1.81e-41	
Kurtosis: 7.555		Cond. No.			379.	

Model Output

- Adj. R-squared: The multivariate model explains only 0.6% of the variance in the data, suggesting it is not a good fit.
- **Prob (F-statistic):** The p-value for the hypothesis test is greater than 0, indicating that the independent variables do not significantly impact the dependent variable.
- **coef:** The average POI price has the strongest positive impact on the number of bikes per station, while review_count has the largest negative impact.
- **P>|t|:** All p-values are >0.05, indicating that the review_count, rating, and price attributes of a point of interest do not significantly affect the number of bikes in a bike station.

Challenges

Interpreting and deriving insights from the model proved challenging due to the lack of interconnectedness within the data.

Thank you!

github.com/nickolas-s

in linkedin.com/in/nickstello