Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет безопасности информационных технологий

РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

«Компьютерное моделирование физических процессов с использованием MATLAB»

СОДЕРЖАНИЕ

Введе	ние	3
1	Компьютерное моделирование физических процессов с использованием MATL	AB4
1.1	Установка и настройка	4
1.2	Вводные данные	4
1.3	Примеры работы программы	4
1.4	Исходный текст программы	7
Авари	ийные ситуации	8
Источники, использованные при разработке		9

ВВЕДЕНИЕ

Этот проект посвящен компьютерному моделированию физических процессов с использованием MATLAB. Основная цель - создание визуальных представлений движения частиц, выполняющих случайные блуждания.

1 КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ФИЗИЧЕСКИХ ПРОЦЕССОВ С ИСПОЛЬЗОВАНИЕМ МАТLAB

1.1 Установка и настройка

Для работы с проектом вам потребуется MATLAB версии R2023a. Убедитесь, что у вас установлен этот пакет и все необходимые библиотеки.

1.2 Вводные данные

[из исходных кодов]

n =500; % Число частиц

dh =.02; % Параметр случайного распределения

steps = 1000; % Число шагов

1.3 Примеры работы программы

1. Запустить файл, например, task1.mlappinstall в папке Apps.

Установить программу.

Запустить нажатием на установленную "task1" во вкладке APPS.

Получаем начальное положение точек. Чтобы запустить распространение нужно нажать сочетание клавиш «Ctrl+C». Для того чтобы вывести конечную картинку «распространённых» точек следует выбрать Command Window и снова нажать «Ctrl+C».

(р.s. именно эта, первая программа работает именно таким, неудобным способом, т.к. я решил не изменять код, который дан в методичке)

«Ctrl+C» для запуска и остановки распространения.

3. Третье задание – достаточно просто запустить программу:

4. Запустить и подождать пока выполнится распространение и выведется график с гистограммой:

1.4 Исходный текст программы

Исходные коды программы находятся в файлах task1.m, task2.m, task3.m, task4.m.

АВАРИЙНЫЕ СИТУАЦИИ

Если же у вас нет возможности использовать MATLAB – я так же написал аналогичные программы на python и скомпилировал их в .exe файлы (python -> dist -> 1/2/3/4.exe).

=)

ИСТОЧНИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ РАЗРАБОТКЕ

1. Коткин Г. Л., Черкасский В. С. Компьютерное моделирование физических процессов с использованием MATLAB: Учеб. пособие / Новосиб. ун-т. Новосибирск, 2001. 173 с.