

Metrology Challenges in 450mm/10nm Era

Ron Naftali , CTO
PDC, Applied Material

8 October, 2015

M&I Challenges and Inflections

Smaller dimensions - Smaller killer Defects

- Capture defects of Interest – overwhelming % of nuisances
- Systematic defects more critical for yield control
- Optics sensitivity limitations vs e-beam throughput

Structures and New Materials

- 3D structures (FinFet, 3D-NAND) – emerging need for HAR and sidewall imaging
- New & sensitive material

Patterning

- Litho Qual & Control – tighter process window
- Advanced masks and multi patterning
- In-die overlay is a greater challenge
- EUV mask – new challenges need higher resolution

Imaging Machines – Technology Duo

Imaging

Processing

How hard can it be?

Detecting a 40nm defect on a wafer is like ...

...finding an ant
in Manhattan

How Hard Can It Be?

... and still be production worthy, we should be able to...

40*50nm defect

DATA RATE

...play a 50GB blu-ray movie
in few seconds

Evolving Challenges in Inspection

Are we heading into a brick wall ?

DR: 250nm

DR: 110nm

DR: 90nm

DR: 70nm

DR: 55nm

No Resolution

No resolution for $f > f_{\text{cut-off}} = 2\text{NA} / \lambda$

Fast Decline of
Scattering Signal from
small defects

Shrinking design-rule out-pace optical resolution and scattering limits

Inspection Cannot Follow Litho Progress Anymore

All Methods Beyond Dry 193nm are not useful

Optical proximity corrections (OPC)

Gupta et al; Performance-driven optical proximity correction for mask cost reduction. J. Micro/Nanolith.

Free form illumination

(SMO)

ADVANCED OPTICAL TECHNOLOGIES, DOI 10.1515/aot-2012-0124

ILT mask

Wafer

ArF imaging NA=1.3

http://www.nikonprecision.com/newsletter/fall_2008/article_05.html

EUV imaging NA=0.25

Optical Tricks – Scratching the Bottom

Using Non-Standard Optical Imaging Techniques

High resolution Dark Field, polarization, interference etc

Utilizing Every Possible Physical Property of Light to Improve Imaging

Mostly Never Used In High Speed Imaging !

Wafer Inspection @ High Noise Conditions

Defect signal decreasing faster than nuisance signal

→ Inspection needs to address high nuisance rate

Gaining Back the Resolution

e-Beam Inspection

Coulomb Interaction

Boersch Effect

Loeffler Effect

Fundamental Physical Difficulty:
electron interaction.

Solution requires massive
parallelism and is 'engineering
heavy'

- Electrons repel each other in the beam direction
- Causes energy spread among electrons
- Result in chromatic aberration

- Electrons repel/collide each other in the radial direction
- Causes trajectory change and energy spread among electrons
- Result in chromatic as well as spherical aberration

No 'Technology Wave' to Ride and Leverage

eBeam Parallelism #1: Multi Column

High-TPT E-Beam Inspection using novel architecture

5 Columns packed at
wafer width

5 Column Inspection

eBeam Parallelism #2: Multi Beam

Joint (old) AMAT-Zeiss program

CONF

Column control

Column electronics

Parallel detection

Fast image acquisition

High Throughput by Parallel Image Acquisition

mSEM Demonstrator

High Efficiency Detection of Secondary Electrons

Hybrid Solution: Optical and EBI

Combining the standard solutions with additional data CAD, hot-spot etc

Computation Challenges

- Inspection data rates grow X20 every 10 years
- Algorithm complexity grows as well. ~ 4X every 10 years
- Computing technology: single core performance improves at low pace
 - Clock speed increase stopped
 - Vector performance improves slowly
- Result: Exploding increase in number of compute nodes
- Problem:
 - Significant system complexity
 - Increased overheads
 - New bandwidth bottlenecks

Required Solutions

- Maintain cost-performance
- Enable flexible system design
- Leverage the progress in computing platforms
 - More cores
 - Larger vectors
- Easy migration between generations
- Infrastructure example:

Summary

- Inspection technologies encounter key technical difficulties
- A transition to high speed EBI technology is needed, combined with optical inspection and sampling
- Solution providers carry all the burden of the technology development. No ‘assistance’ from Litho anymore

- Computing platforms made significant progress with the aid of Moore’s law
- However, increased design complexity is in the heart of HW/SW design, and continue to increase

Turning innovations
into industries.TM

Computational Difficulty

Increased Parallelism

Processor Clock Speed had Stopped at ~3GHz

Performance Gained by Other Improvements

- Multi-Core
- Wider SIMD

Also in DSPs, Even Stronger Trend in GPUs

Ever Increasing data rates and algorithm

complexities require more processing

Massive parallelism is needed with its many issues

High speed communication

Parallelism overheads (data distribution, BW etc)

Flow

- Imaging: Historically – riding on litho technology
 - This has ended. No imerssion, no EUV
 - Needs to go to EBI
 - Challenges in speed
 - Needs MC or MB or both
- Computing
 - Exponential growth in data-rate and algo
 - Processor speed has reached limits
 - Spreads in cores and vector
 - Much more complex systems architecture – needs scalable architectures

The Lithography Challenge

$$R = k_1 \frac{\lambda}{n \cdot \sin\theta} = k_1 \frac{\lambda}{NA}$$

Gupta et al; Performance-driven optical proximity correction for mask cost reduction. J. Micro/Nanolith.

ADVANCED OPTICAL TECHNOLOGIES, DOI 10.1515/aot-2012-0124

http://www.nikonprecision.com/newsletter/fall_2008/article_05.html

The Cost Challenge

Complexity Increases Cost has to go down

Increasing wafer size while maintaining tools' CoO can reduce cost of chip

Inflection Point #1

No Shorter Wavelength for us

No shorter wavelength beyond 193nm for Litho (and Imaging)

The Result: No Resolution

DR: 250nm

DR: 110nm

DR: 90nm

DR: 70nm

No resolution for $f > f_{\text{cut-off}} = 2NA / \lambda$

DR: 55nm

No Resolution

Inflection Point #2

The Clock Had Stopped !

Processor Clock Speed had Stopped at ~3GHz
Performance Gained by Other Improvements

- Multi-Core
- Wider SIMD

Also in DSPs, Even Stronger Trend in GPUs

What to Do #1: Overcome Resolution Limits

Using Non-Standard Optical Imaging Techniques

SEM Image

40nm defect

Imaging

No Resolution

A grayscale image showing a bright central spot surrounded by a diffuse halo, circled with a white line.

SNR 25

Optical Contrast & Resolution Enhancement

Utilizing Every Possible Physical Property of Light to Improve Imaging

Mostly Never Used In High Speed Imaging !

The Scattering Problem – Rayleigh Limit

Scattered light falls very fast for small features

Making the Imaging Challenge Very Hard

Always the Next Generation: E-Beam Imaging

Gaining Back the Resolution

Optical

E-Beam

This technology is not fully developed for high-speed imaging

No ‘Wave’ to Ride and Leverage

Fundamental Physical Difficulty:
electron interaction.

Solution requires massive parallelism
and is ‘engineering heavy’

What to Do #2: Leverage Computing Trends

High Performance Computing Takes Many Directions

Cannot Predict Which Will Be the Best In Every Generation

Need to Create Flexible Environment

- Easy to change and mix different Technologies
- Hide the Complexity and drawback of each one

Need to Virtualize Stronger Processors

- Hide the split behind better connectivity
- Infrastructure to leverage the power

Conclusion

- No Straight-Forward ‘Pulling’ Technology
- New methodologies and concepts are needed
 - Imaging
 - New Techniques
 - SEM based
 - Computing
 - Creating Virtual Faster Processors
 - Establishing Infrastructure for Improved Flexibility

Need to Combine Joint Industrial Effort to Push Technology Forward

EVision™ E-Beam Inspection

High-TPT E-Beam Inspection (EBI) for 3D NAND

→ Core technology

- Revolutionary architecture – 5 parallel detection channels
- Fastest A/D channel with data rate up to 6000 MPPS
- High probe current

→ Benefits

- Electrical defects sensitivity
- Production TPT
- Production stability

5 Column Inspection

UHRIS – Joint AMAT-Zeiss Program

Technology Highlights

CONF

Column control

Column electronics

Parallel detection

Fast image acquisition

High Throughput by Parallel Image Acquisition

mSEM Demonstrator

High Efficiency Detection of Secondary Electrons

- Programs Started 2002
- Joined work stopped 2011
- Zeiss continue with the technology for life-science applications

Sub-Wavelength Lithography

Inspection follows the Lithography footsteps

End of Optical Resolution?

Straightforward BF imaging reaches its limits at sub-45nm design rules

Optical Inspection – End of Resolution

No inherent sensitivity limitation for Electron-Beam technology

Available solutions have limited throughput

Pixel 15nm

Multi-Column e-Beam Inspection:
Overcoming the CoO & sensitivity gaps on 2x nm and beyond

Brightfield Resolution Limits

Simulation

$$R \propto \frac{\lambda}{NA}$$

No brightfield resolution below 45nm for 266/193/157nm

Fundamental Technologies: Scanning Electron Microscopes

High resolution column (~1nm), High currents (10pA-100nA)

- Design, assembly, calibration

Support modules

- Detectors
- Scanning

CAD verification on SEM image

**High speed, high resolution e-beam
scanning and detection head**

