TAYLOR SPECTRUM

BILICH BORIS

- 1. Introduction
- 2. Preliminaries
- 2.1. **Notation.** In the article all algebras, including Lie algebras, are complex. For the rest of this section we will denote by $\mathfrak g$ an arbitary Lie algebra. We will denote by \mathfrak{g} -mod and mod- \mathfrak{g} the categories of left and right \mathfrak{g} -modules respectively. For \mathfrak{g} -module V defined the spaces

(1)
$$V^{\mathfrak{g}} = \{ v \in V \colon g \cdot v = 0 \ \forall g \in \mathfrak{g} \},$$

called invariants and

$$(2) V_{\mathfrak{a}} = V/gV,$$

called coinvariants. It is known, that $\Box^{\mathfrak{g}}$ and $\Box_{\mathfrak{g}}$ are actually functors from \mathfrak{g} -mod \Box (or \mathbf{mod} - \mathfrak{g}) to the category of vector spaces over \mathbb{C} .

2.2. Functors between categories of modules. We define two functors \square^* : $\mathfrak{g}\text{-}\mathbf{mod}^{op} \to \mathbf{mod}\text{-}\mathfrak{g}$ and \square° : $\mathfrak{g}\text{-}\mathbf{mod} \to \mathbf{mod}\text{-}\mathfrak{g}$ as follows. The first \square^{*} , called duality functor, sends g-module V to it's dual vector space, on which the right action of \mathfrak{g} is defined as

$$(f \cdot q)(v) = f(q \cdot v)$$
, for all $f \in V^*$, $v \in V$, $q \in \mathfrak{g}$.

The second \square° , called antipode functor, sends V to itself as a vector space with right action

$$v\cdot g=-g\cdot v,\ \text{ for all }v\in V,\ g\in \mathfrak{g}.$$

These two functors define equivalence of categories g-mod, mod-g, g-mod^{op} and $\operatorname{\mathbf{mod}}$ - \mathfrak{g}^{op} . We will also denote by \square^* and \square° functors from category of right \mathfrak{g} modules to left \mathfrak{g} -modules, defined the same way. It is easy to see, that $(\Box^*)^*$ and $(\Box^{\circ})^{\circ}$ are naturally isomorphic to the identity functor.

Another pair of very important functors are $\square \otimes_{\mathbb{C}} \square \colon \mathbf{mod} - \mathfrak{g} \times \mathfrak{g} - \mathbf{mod} \to \mathfrak{g} - \mathbf{mod}$ and $\operatorname{Hom}_{\mathbb{C}}(\square,\square)\colon \mathfrak{g}\operatorname{-mod}^{op}\times\mathfrak{g}\operatorname{-mod}\to\mathfrak{g}\operatorname{-mod}$. If $V\in\operatorname{\mathbf{mod}}\operatorname{-\mathfrak{g}}$ and $W\in\mathfrak{g}\operatorname{-\mathbf{mod}}$, then $V \otimes_{\mathbb{C}} W$ is the tensor product of V and W as vector space with action of \mathfrak{g} , fully determined by the formula

$$g \cdot v \otimes w = v \otimes (g \cdot w) - (v \cdot g) \otimes w$$
, for all $w \in W$, $v \in V$, $g \in \mathfrak{g}$

. The Hom functor is defined as

$$\operatorname{Hom}_{\mathbb{C}}(V,W) = V^* \otimes_{\mathbb{C}} W.$$

2.3. Homology and cohomology of Lie algebras. In this paragraph we recall the definitions of Lie algebra cohomology, which can be found in any related textbook .

ref weibel

Definition 1. For $V \in \mathfrak{g}\text{-}\mathbf{mod}$ and for all $i \in \mathbb{Z}_{\geq 0}$ the homology functors are defined as

(3)
$$H_i(\mathfrak{g}, V) = \operatorname{Tor}_i^{U\mathfrak{g}}(\mathbb{C}, V),$$

and, dually, the cohomology as

(4)
$$H^{i}(\mathfrak{g}, V) = \operatorname{Ext}_{U\mathfrak{g}}^{i}(\mathbb{C}, V).$$

3. Taylor spectrum of \mathfrak{g} -module

Let $\mathfrak g$ be an arbitary Lie algebra and E be a left $\mathfrak g$ -module. We will denote by $\hat{\mathfrak g}$ the set of isomorphism classes of simple finite dimensional $\mathfrak g$ -modules.

Definition 2. The Taylor spectrum of E is the set, defined as

$$\sigma(E) = \{ V \in \hat{\mathfrak{g}} \mid \exists k \colon \operatorname{Tor}_{k}^{U\mathfrak{g}}(V^*, E) \neq 0 \}.$$

prove it

From it follows, that the definition above coincides with the original Taylor's definition in case of abelian \mathfrak{g} .

- 4. Case of semisimple Lie algebra
- 5. Spectrum of one-dimensional extensions
 - 6. Case of solvable Lie algebra
 - 7. Case of nilpotent Lie algebra
- 8. Case of Borel Subalgebra of Semisimple Lie Algebra