Матан

Сергей Григорян

11 октября 2024 г.

Содержание

1	Лекция 11					
	1.1	Непрерывность ф-ции в точке				
	1.2	Непрерывность ф-ции на мн-ве	7			
2	Лекция 12					
	2.1	Счётные и несчётные мн-ва	12			

1 Лекция 11

1.1 Непрерывность ф-ции в точке

Определение 1.1. Пусть $E \subset \mathbb{R}, a \in E$ и $f: E \to \mathbb{R}$. Ф-ция f наз-ся непрерывной в точке a, если:

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in E(|x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon)$$

Иначе:

$$x \in B_{\delta}(a) \Rightarrow f(x) \in B_{\varepsilon}(f(a))$$

Замечание. Из опр-я следует, что ф-ция не меняет значение резко

Св-во (отделимость): если $f: E \to \mathbb{R}$ - непр-на в точке a и f(a) > 0 (< 0), то

$$\exists \delta > 0, \forall x \in B_{\delta}(a) \cap E(f(x) > \frac{f(a)}{2} (< \frac{f(a)}{2}))$$

Доказательство. Пусть f(a)>0. По непр-ти ф-ции в a, положим $\varepsilon=\frac{f(a)}{2}$. Тогда

$$\exists \delta > 0, \forall x \in B_{\delta}(a) \cap E(f(a) - \frac{f(a)}{2} < f(x) < f(a) + \frac{f(a)}{2}) \Rightarrow f(x) > \frac{f(a)}{2}$$

<u>Замечание</u>. В определении непр-ти ф-ции точка $a \in E$ - области определения, но **не обязана** быть предельной точкой E.

<u>Определение</u> **1.2.** Точка, принадлежащая мн-ву, но не явл-ся его предельной точкой наз-ся **изолированной**.

Пример.

$$E = (1, 2] \cup \{5\}$$

Tогда точка 5 - изолированная точка мн-ва E

Теорема 1.1. Пусть $f: E \to \mathbb{R}, a \in E$. Следующие утв-я эквив-ны:

- f непр-на в а
- 2) $\forall \{x_n\}, x_n \in E(x_n \to a \Rightarrow f(x_n) \to f(a))$

3) Либо a - изолированная точка мн-ва E, либо a - предельная точка мн-ва E и $\lim_{x\to a} f(x) = f(a)$

Доказательство.

 $1\Rightarrow 2$) Рассм. $\{x_n\}, x_n\in E, x_n\to a.$ Заф. $\varepsilon>0.$ По опр-ю непр-ти

$$\exists \delta > 0, \forall x \in B_{\delta}(a) \cap E(|f(x) - f(a)| < \varepsilon)$$

Т.к. $x_n \to a$, то $\exists N, \forall n \geq N (x_n \in B_\delta(a) \cap E)$, а значит,

$$|f(x_n) - f(a)| < \varepsilon, \forall n \ge N$$

Сл-но, $f(x_n) \to f(a)$

 $2\Rightarrow 3)$ Если a - предельная точка мн-ва E, то $\lim_{x\to a}f(x)=f(a)$, по опр-ю предела по Гейне.

В противном случае, a - изолированная точка области определения.

 $3 \Rightarrow 1$) Если a - изолированная точка мн-ва E, то $\exists \delta_0 > 0 \colon (B_{\delta_0}(a) \cap E = \{a\})$. Тогда опредение непр-ти выполняется для $\delta = \delta_0$.

Если a - предельная точка мн-ва E, то по опр-ю предела по Коши:

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in E(0 < |x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon)$$

При x=a, следствие выше выпол-ся (очевидно). Это означает, что f непр-на в a.

<u>Следствие</u>. Если $f,g\colon E\to\mathbb{R}$ - непр-ны g:E - непр-ны g:E то в этой точке непр-ны g:E

- 1) $f \pm g$
- 2) $f \cdot g$
- 3) При доп. усл-ии $g \neq 0$: $\frac{f}{g}$

Доказательство. Рассм. произвольную п-ть $\{x_n\}, x_n \in E, x_n \to a$. Т. к. f, g - непр-ны в a, то $f(x_n) \to f(a)$ и $g(x_n) \to g(a)$. Тогда по св-вам предела п-ти имеем:

- 1) $f(x_n) \pm g(x_n) \rightarrow f(a) \pm g(a)$
- 2) $f(x_n)g(x_n) \to f(a)g(a)$
- $3) \quad \frac{f(x_n)}{g(x_n)} \to \frac{f(a)}{g(a)}$

По Теореме (1.1), эти ф-ции непрерывны в a.

Пример.

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_0, (a_i \in \mathbb{R})$$

Эта ф-ция непр-на в каждой точке $a \in \mathbb{R}$

Доказательство.

$$x \mapsto x$$

$$x \mapsto c, c \in \mathbb{R}$$

 Φ -ции выше непрерывны. Тогда по сл-ию (1.1) в a непр-ны:

$$x \mapsto x^k, k \in \mathbb{N}$$

A значит P непр-на в a.

Теорема 1.2 (Непрерывность композиции). Если ф-ция $f: E \to \mathbb{R}$ неприа $g: E \to \mathbb{R}$ неп

Доказательство. Рассм. произвольную п-ть $\{x_n\}, x_n \in E, x_n \to a$. Тогда: $f(x_n) \to f(a)$ по непр-ти f в a. Кроме того:

$$g(f(x_n)) o g(f(a))$$
 - по непр-ти g в $f(a) \iff$

$$(g \circ f)(x_n) \to (g \circ f)(a)$$

По Теореме 1.1, ф-ция $g \circ f$ непр-на в т. a.

Определение 1.3. Пусть $f: E \to \mathbb{R}$ и $a \in E$. Если $f|_{[a,+\infty)}$ непр-но в a, то говорят, что f непр-на справа в т. a.

Аналогично: $f|_{(-\infty,a]}$ непр-на в a, то f непр-на слева в a.

<u>Замечание</u>. Если a - предел. точка мн-ва $[a, +\infty) \cap E$, то f непр. справа g m. $a \iff f(a+0) = f(a)$

Определение 1.4. Пусть $f: E \to \mathbb{R}$ и $a \in E$.

Если f не явл. непрерывной в т. a, то говорят, что f разрывна (имеет разрыв) в т. a, а саму т. a наз-ют точкой разрыва f.

Классифицируем точки разрыва:

- 1) Пусть ф-ция f определена в некот. проколотой окр-ти т. a. Если сущ-ют конечные односторонние пределы f(a-0), f(a+0) и среди трёх чисел f(a+0), f(a-0), f(a) не все равны, то т. a наз-ся точкой разрыва I рода ф-ции f
- 2) В противном случае т. a наз-ся точкой разрыва II рода ф-ции f

Если a - т. разрыва I рода и f(a+0)=f(a-0), то точка a наз-ся точкой устранимого разрыва.

Пример. 1) $f: \mathbb{R} \to \mathbb{R}$:

$$f(x) = sign(x) := \begin{cases} 1, x > 0 \\ 0, x = 0 \\ -1, x < 0 \end{cases}$$

$$f(0+0) = 1, f(0-0) = -1$$

 $T. \ x = 0$ - $m. \ pазрыва \ I \ poda.$

2) $f: \mathbb{R} \to \mathbb{R}$:

$$f(x) = sign^2(x)$$

Tог $\partial a \ x = 0$ - m. yсmранимого разрыва.

3) $f:\mathbb{R}\backslash\,\{\,0\,\}\to\mathbb{R}, f(x)=\frac{1}{x}$ $f(0+0)=+\infty, f(0-0)=-\infty\Rightarrow x=0\text{ - точка разрыва II рода.}$

4)

$$D(x) = \begin{cases} 1, x \in \mathbb{Q} \\ 0, x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Покажем, что D - разрывна в каждой точке.

Доказательство. a) $a \in \mathbb{Q}$:

$$x_n = a + \frac{1}{n} \to a, a_n > a, D(x_n) = 1 \to 1$$

$$x'_n = a + \frac{\sqrt{2}}{n} \to a, x'_n > a, D(x'_n) = 0 \to 0$$

Получаем, что правого предела в a не сущ-ет

b) $a \notin \mathbb{Q}$:

$$x_n = a + \frac{1}{n} \to a, x_n > a, D(x_n) = 0 \to 0$$

 $x'_n = \frac{[na] + 1}{n} \to a, x'_n > a, D(x'_n) = 1 \to 1$

Сл-но, не сущ-ет D(a+0).

Таким образом, a - т. разрыва II рода.

1.2 Непрерывность ф-ции на мн-ве

Определение 1.5. Ф-ция $f:E\to\mathbb{R}$ наз-ся непрерывной (на E), если f непр-на на каждой точке $a\in E$

Если $D \subset E$, то f непр-на на D, если $f|_D$ непр-на.

Пример. $x \mapsto \frac{P(x)}{Q(x)}$ - рациональная ф-ция. Она непр-на на $E = \{ s \colon Q(x) \neq 0 \}$. (по сл-ию 1.1)

Замечание. Чарльз. Лью курс по мат. анализу "Скелет мат. анализа"

<u>Лемма</u> 1.3. Если ф-ция f непр-на на [a,b], то f огр. на [a,b]

Доказательство. Предположим, что f не огр-на. Тогда:

$$\forall n \in \mathbb{N}, \exists x_n \in [a,b] \colon (|f(x_n)| > n)$$

По инд-ции опр-на $\{x_n\} \subset [a,b]$. По т. Больцано-Вейерштрасса $\{x_n\}$ имеет сх-ся подп-ть $\{x_{n_k}\}, x_{n_k} \to x_0$. Переходя к пределу при $k \to \infty$ в:

$$a \leq x_{n_k} \leq b$$

получаем, что $x_0 \in [a, b]$. По непр-ти $f(x_{n_k}) \to f(x_0)!!!$ Но ведь,

$$(|f(x_{n_k})| > n_k \ge k \to +\infty)$$

Теорема 1.4 (Теорема Вейерштрасса). *Если* f - *непр-на на* [a,b], *то* $\exists x_m, x_M \in [a,b]$, b *кот. вып-но:*

$$f(x_M) = \sup_{[a,b]} f(x), f(x_m) = \inf_{[a,b]} f(x)$$

Доказательство. По лемме (1.3) мн-во значений f([a,b]) ограничено, поэтому опр-ны числа $M=\sup_{[a,b]}f(x), m=\inf_{[a,b]}f(x).$

По опр-ю sup, $\forall n \in N, \exists x_n \in [a,b](M-\frac{1}{n} < f(x_n) \leq M)$. По инд-ции опр-на п-ть $\{x_n\} \subset [a,b]$, причём $f(x_n) \to M$.

По т. Больцано-Вейерштрасса $\{x_n\}$ имеет сх-ся подп-ть $\{x_{n_k}\}$:

$$x_{n_k} \to x_M \in [a, b]$$

Тогда по непр-ти:

$$f(x_{n_k}) \to f(x_M)$$

С другой стороны, $f(x_{n_k}) \to M \Rightarrow f(x_M) = M$ в силу ед-ти предела. Случай inf док-ся аналогично.

<u>Замечание</u>. Утв-я, аналогичные лемме (1.3) и теореме 1.4 неверны для интервалов.

<u>Пример.</u> f(x) = x. f непр-на на (0,1). f - огр-на, но $\not \exists$ минимального и максимального значения.

$$\sup_{(0,1)} f(x) = 1 \neq f(x) \forall x \in (0,1)$$

2 Лекция 12

<u>Лемма</u> 2.1. Если f - непр-на на [a,b] и f(a)f(b) < 0, то

$$\exists c \in [a, b] \colon f(c) = 0$$

Доказательство. Можно считать, что f(a) < 0 < f(b). В противном случае заменим f на (-f).

Построим п-ть отр-ов $\{[a_n,b_n]\}$ по индукции:

 $[a_1,b_1]\colon = [a,b]$ и если $[a_k,b_k]$ - построен, положим

$$[a_{k+1},b_{k+1}] = \begin{cases} [a_k,\frac{a_k+b_k}{2}], & \text{если } f(\frac{a_k+b_k}{2}) \ge 0\\ [\frac{a_k+b_k}{2},b_k], & \text{если } f(\frac{a_k+b_k}{2}) < 0 \end{cases}$$

По индукции будет построена стягивающаяся п-ть вложенных отр-ов $\{[a_n,b_n]\}$, т. ч.:

$$f(a_n) \le 0 f(b_n) > 0$$

По т. Кантора о вложенных отр-ах, сущ-ет $c\in \bigcap_{n=1}^\infty [a_n,b_n]$, причём $a_n\to c$ и $b_n\to c$. По непр-ти в точке c, переходя в нер-ве к пределу:

$$f(a_n) \le 0 < f(b_n) \Rightarrow f(c) \le 0 \le f(c) \Rightarrow f(c) = 0$$

Определение 2.1. Будем говорить, что число s лежит строго между числа α и β , если max(a,b) > s > min(a,b).

Теорема 2.2 (Больцано-Коши о промежуточных значениях). Если филя f непр-на на [a,b] и число s лежит строго между f(a) и f(b), то:

$$\exists c \in (a,b) \colon f(c) = s$$

Доказательство. Рассм. g=f-s. Тогда g непр-на на [a,b]. Сл-но, g(a)g(b)<0. Тогда по лемме (2.1)

$$\exists c \in (a,b) \colon g(c) = 0 \iff f(c) = s$$

Задача 2.1. Приведите пример разрывной ф-ции $f:[0,1] \to \mathbb{R}$, т. ч. $\forall [a,b] \subset [0,1], f$ принимает все значения между f(a) и f(b)

Напомним, что $I \subset \mathbb{R}$ - промежуток \iff

$$\forall x, y \in I([x, y] \subset I)$$

<u>Следствие</u>. Если ф-ция f непр-на на промеж. I, то f(I) - промежсуток.

Доказательство. Выберем $y_1, y_2 \in f(I)$ $(y_1 < y_2) \Rightarrow$

$$\exists x_1, x_2 \in I : (f(x_1) = y_1, f(x_2) = y_2)$$

Если $y_1 < y < y_2$, то, по теореме (2.2) $\exists x \in (x_1, x_2) \colon f(x) = y$. Т. к. I - промежуток, $x_1, x_2 \in I$, то $x \in I$, а значит $y \in f(I)$, т. е. f(I) - промежуток.

Задача 2.2. Док-те, что если f - непр-на на [a,b], то f([a,b]) - отрезок

<u>Лемма</u> **2.3.** Пусть f монотонна на пром-ке I. Если f(I) - это пром-к, то f - непр-на на I.

Доказательство.

Пусть f нестрого возрастает на I. Если f разрывна в точке $c \in I$. То $f(c-0) \le f(c) \le f(c+0)$ и хотя бы один из интервалов (f(c-0), f(c)) или (f(c), f(c+0)) непуст.

(Если c - концевая точка I, то сущ-ет только один из пределов, для кот. и проводим рассуждение.)

Пусть $Y = (f(c), f(c+0)) \neq \emptyset$. Тогда

$$\forall t \in I, t \leq c(f(t) \leq f(c))$$

Также

$$\forall t \in I, t > c(f(t) > \inf_{(c, \sup I)} f(x) \ge f(c+0))$$

Сл-но, f(I) не явл. пром-ом.

Теорема 2.4 (об обратной ф-ции). Пусть f непр-на и строго монотонна на пром. I, тогда:

1)
$$f(I)$$
 - $npoм-o\kappa$

- 2) $f: I \to f(I)$ биекция
- 3) $f^{-1}:f(I) o I$ непр-на и строго монотонна на f(I)

Доказательство. По следствию (2), Y = f(I) явл-ся пром-ом. Ф-ция f инъективна в силу строгой монотонности.

Сл-но, $f:I \to Y$ - биекция, и сущ-ют $f^{-1}:Y \to I$

Б. О. О. пусть f строго возрастает на I

Пусть
$$y_1, y_2 \in Y, y_1 < y_2 \Rightarrow \exists x_1, x_2 \in I : f(x_1) = y_1, f(x_2) = y_2$$

Если $x_1 \ge x_2 \Rightarrow f(x_1) \ge f(x_2)$ - в силу возрастания $f \Rightarrow y_1 \ge y_2!!!$

Таким образом, если $y_1,y_2 \in Y(y_1 < y_2 \Rightarrow f^{-1}(y_1) < f^{-1}(y_2))$ - т. е. f^{-1} строго возрастает на Y.

$$f^{-1}(Y) = I$$
 - пром-к $\Rightarrow f^{-1}$ - непр-на на Y

Пример. Для $\forall x \ge 0, n \in \mathbb{N} \exists ! y \ge 0 : y^n = x$. Пишут, что:

$$y = \sqrt[n]{x}$$

Кроме того, $f(x)\colon [0;+\infty)\to \mathbb{R}, f(x)=\sqrt[n]{x}$ - непр-на и строго монотонна.

Доказательство. Рассм. ф-цию $g:[0;+\infty)\to\mathbb{R}, g(y)=y^n$

Ф-ция g - непр-на и строго возрастает на $[0;+\infty)$, причём:

$$g(0) = 0$$
, $\lim_{y \to +\infty} g(y) = +\infty$

По теореме (2.4) $\exists f = g^{-1} \colon [0; +\infty) \to [0; +\infty)$:

$$f(x) = \sqrt[n]{x}$$

2.1 Счётные и несчётные мн-ва

Определение 2.2. Мн-во A наз-ся <u>счётным</u> если $\exists f: \mathbb{N} \to A$ - биекция.

Замечание.

$$A = \{ a_1, a_2, \dots \}$$

$$\forall i, j (i \neq j \Rightarrow a_i \neq a_j)$$

Пример.

$$\mathbb{Z}$$
 - счётно
$$\dots -2, -1, 0, 1, 2, \dots$$
 $h(n) = \begin{cases} rac{n-1}{2}, & n ext{ - нечётно} \ -rac{n}{2}, & n ext{ - чётно} \end{cases}$

Лемма 2.5. Всякое бесконечное мн-во $A \subset \mathbb{N}$ - счётно.

Доказательство. Пусть $n_1 = min(A)$. Если $n_1 \dots n_k$ - определена, то по инд-ции определим:

$$n_{k+1} = min(A \setminus \{ n_1 \dots n_k \})$$

Поскольку при переходе к подмн-ву минимум не уменьшается и $n_{k+1} \not\in \{n_1, \dots n_k\}$, то $n_{k+1} > n_k$

Предположим, что $\exists m \in A$ и $m \neq n_k, \forall k$. Тогда по инд-ции

$$n_k < m, \forall k \Rightarrow m > n_m \geq m!!!$$

Сл-но, $\sigma: \mathbb{N} \to A, \sigma(k) = n_k$ - строго возр. биекция.

<u>Определение</u> **2.3.** Мн-во <u>не более чем счётно</u>, если оно конечно или счётно.

Следствие. Всякое подмн-во счётного мн-ва не более чем счётно.

Доказательство. Рассм. конечное подмн-ва A счётного мн-ва $X.~g:X\to\mathbb{N}$ - биекция \Rightarrow

$$g\colon A\to g(A)$$
 - биекция мн-ва A и $g(A)\subset\mathbb{N}$

Теорема 2.6. $\mathbb{N} \times \mathbb{N}$ - счётно

Доказательство. Идея: Сделаем таблицу и рассматриваем её подиагонально, затем нумеруем эл-ты в диагоналях.

(k, m)	1	2	3	
1	(1, 1)	(1, 2)	(1,3)	
2	(2,1)	(2,2)	(2,3)	
3	(3,1)	(3, 2)	(3,3)	
4	(4,1)	(4, 2)	(4,3)	

$$\begin{aligned} p &\in \mathbb{N} \\ M_p &= \{ \, (k,m) \colon 1 \leq m \leq p, k = p+1-m \, \} \\ g(p) &= 1+2+\ldots+p-1 = \frac{p(p-1)}{2} \\ N_p &= \{ \, n \colon g(p)+1 \leq n \leq g(p)+p = g(p+1) \, \} \\ f &: \mathbb{N} \times \mathbb{N} \to \mathbb{N} \end{aligned}$$

f(k,m) = g(k+m-1) + m

Следствие. Mн-во $\mathbb Q$ - cчётно.

Доказательство. Любое рац. число можно записать в виде несокр. дроби $\frac{p}{q}$, т. е.:

$$f_1\colon r o (p,q)$$
 - инъекция $\mathbb{Q} o \mathbb{Z} imes \mathbb{N} o \mathbb{N} imes \mathbb{N} o \mathbb{N}$ $F:\mathbb{Q} o \mathbb{N}, F=f_3\circ f_2\circ f_1$ - инъекция $\Rightarrow F(\mathbb{Q})\subset \mathbb{N}\Rightarrow \mathbb{Q}$ - не более чем счётно и беск \Rightarrow счётно

Теорема 2.7. \mathbb{R} несчётно

Доказательство. Пред-м, что $\mathbb{R} = \{ x_n \mid n \in \mathbb{N} \}$

Рассм. $[a,b] \subset \mathbb{R}$. Разобъём [a,b] на три отр-ка и обозн. $[a_1,b_1]$ тот из ни, который не сод-т x_1 . По инд-ции построим п-ть влож. отр-ов $\{[a_k,b_k]\}$, не содержащую $x_k, \forall k$. Однако сущ-ет точка, общая для всех отр-ов $\Rightarrow \forall nx \in [a,b], x_n \not\in x_n \Rightarrow \forall n \colon x_n \neq x$