Grundlagen Lineare Algebra für Informatiker

Nikita Emanuel John Fehér, 3793479

29. April 2024 Montag 09:15-11:15 Valerie Christiana Sabrina Freund

Aufgabe 1 Sei $\mathbb{R}_+ = \{x \in \mathbb{R} : x > 0\}$. Für $x, y \in \mathbb{R}_+$ und $\lambda \in \mathbb{R}$ setzen wir:

$$x \diamond y = xy$$
 und $\lambda \odot x = x^{\lambda}$

Zeigen Sie, dass $(\mathbb{R}_+, \diamond, \odot)$ einen Vektorraum über \mathbb{R} bildet.

- 1) (\mathbb{R}_+, \diamond) ist eine kommutative Gruppe.
 - 1.1) $\mathbb{R}_+ \neq \{\emptyset\}$
 - 1.2) $(a \diamond b) \diamond c = a \diamond (b \diamond c)$ für alle $a, b, c \in \mathbb{R}_+$
 - 1.3) Es existiert $e \in \mathbb{R}_+$ so das $e \diamond a = a = a \diamond e$ für alle $a \in \mathbb{R}_+$
 - 1.4) $\forall a \in \mathbb{R}_+ \exists b \in \mathbb{R}_+$: $a \diamond b = e = b \diamond a$ wobei e neutrales Element
 - 1.5) $a \diamond b = b \diamond a$ für alle $a, b \in \mathbb{R}_+$
- 2) $\lambda \odot (\mu \odot v) = (\lambda \odot \mu) \odot v$ für alle $\lambda, \mu \in \mathbb{R}$ und alle $v \in \mathbb{R}_+$
- 3) $(\lambda + \mu) \odot v = (\lambda \odot v) \diamond (\mu \odot v)$ für alle $\lambda, \mu \in \mathbb{R}$ und alle $v \in \mathbb{R}_+$.
- 4) $\lambda \odot (v \diamond w) = (\lambda \odot v) \diamond (\lambda \odot w)$ für alle $\lambda \in \mathbb{R}$ und alle $v, w \in \mathbb{R}_+$.
- 5) $1 \odot v = v$ für alle $v \in \mathbb{R}_+$.

Beweis:

1)

1.1)

 $1 \in \mathbb{R}_+$

1.2)

$$(a \diamond b) \diamond c = a \diamond (b \diamond c)$$

$$\implies (ab)c = a(bc)$$

$$\implies abc = abc$$

1.3)

$$\begin{aligned} e &:= 1 \\ e \diamond a = a \diamond e \\ \Longrightarrow ea = ae \\ \Longrightarrow 1a = a = a1 \end{aligned}$$

1.4)

$$b := a^{-1}$$

$$\implies b = \frac{1}{a}$$

$$da \ a > 0 \implies \frac{1}{a} > 0$$

$$a \frac{1}{a} = 1 = \frac{1}{a}a$$

1.5) trivial

2)

$$\lambda \odot (\mu \odot v) = (\lambda \odot \mu) \odot v$$
$$(\mu \odot v)^{\lambda} = v^{(\lambda \odot \mu)}$$
$$(v^{\mu})^{\lambda} = v^{\mu^{\lambda}}$$
$$v^{\mu^{\lambda}} = v^{\mu^{\lambda}}$$

3)

$$(\lambda + \mu) \odot v = (\lambda \odot v) \diamond (\mu \odot v)$$
$$v^{(\lambda + \mu)} = v^{\lambda} v^{\mu}$$
$$v^{\lambda + \mu} = v^{\lambda + \mu}$$

$$\lambda \odot (v \diamond w) = (\lambda \odot v) \diamond (\lambda \odot w)$$
$$(v \diamond w)^{\lambda} = v^{\lambda} \diamond w^{\lambda}$$
$$v^{\lambda} w^{\lambda} = v^{\lambda} w^{\lambda}$$

$$1 \odot v = v$$
$$v^1 = v$$

- **Aufgabe 2** Entscheiden Sie jeweils, ob es sich bei den folgenden Mengen um Unterräume des \mathbb{R}_2 bzw. des \mathbb{R}_3 handelt (und begründen Sie Ihre Antworten).
 - (i) $U_1 = \left\{ \begin{pmatrix} 2x \\ x^2 \end{pmatrix} : x \in \mathbb{R} \right\}$
 - (ii) $U_2 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : 6x y = z \right\}$
 - (iii) $U_3 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : xy = 3z \right\}$
 - 1) $U \neq \emptyset$
 - 2) $\forall \vec{u}, \vec{v} \in U : \vec{u} + \vec{v} \in U$
 - 3) $\forall \vec{u} \in U \forall a \in \mathbb{R} : a \cdot \vec{u} \in U$

Beweis:

(i) U_1 ist kein Unterraum von \mathbb{R}^2

$$a = \begin{pmatrix} 2 \cdot 1 \\ 1^2 \end{pmatrix} \in U_1$$

$$a = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$a + a = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$

$$2x = 4 \implies x = 2$$

$$x^2 = 2 \implies x = \pm \sqrt{2} \implies 2 \neq \pm \sqrt{2}$$

(ii) U_2 ist ein Unterraum des \mathbb{R}^3

1)

$$\begin{pmatrix} 1 \\ 6 \\ 0 \end{pmatrix}$$

2)

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix}$$

$$\implies 6(2x) - 2y = 2z$$

$$\implies 12x - 2y = 2z$$

$$\implies 6x - y = z$$

3)

$$a \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} ax \\ ay \\ az \end{pmatrix}$$
$$\implies 6ax - ay = ay$$
$$\implies 6x - y = z$$

(iii) U_3 ist kein Unterraum von \mathbb{R}^3

$$a = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} \implies 3 \cdot 2 = 3 \cdot 2 \implies a \in U_3$$
$$a + a = \begin{pmatrix} 6 \\ 4 \\ 4 \end{pmatrix} \implies 6 \cdot 4 \neq 3 \cdot 4$$
$$24 \neq 12 \implies a + a \notin U_3$$

Aufgabe 3 Es sei V ein Vektorraum über einem Körper K und es seien $U_1, U_2 \subseteq V$ Unterräume V. Zeigen Sie: $U_1 \cup U_2$ ist ein Unterraum von V genau dann, wenn $U_1 \subseteq U_2$ oder $U_2 \subseteq U_1$ gilt.