

Engenharias: Comp, Mecan. E Mecatr.

Retificadores e Filtragem Capacitiva

Prof. Msc. Alexsandro M. Carneiro

www.ucdb.br/docentes/alexsandro Eng. De Computação

2012

Objetivos

- Desenvolver circuitos com Diodos para:
 - Criar retiticadores de ondas
 - Com os retificadores armazenar energia (V) com um capacitor em paralelo.

Circuitos com Semicondutor

Informação:

- Circuitos com semicondutores precisam ser alimentados com DC para obter a devida polarização;
- Para aproveitar a rede CA, é preciso convertêla em DC;
- A conversão CA-DC é feita com Retificadores;
- Retificadores com Filtros Capacitivos geram saída em DC, ou seja, Fonte Contínua.

Circuitos com Semicondutor

Esquema

Circuitos com Semicondutor

- Passo 01:
 - Um transformador para reduzir a tensão de entrada;
- Passo 02:
 - Aplicação de circuitos retificadores;
- Passo 03:
 - Transformação do sinal AC em DC.

- Classificação:
 - Meia Onda;
 - Onda Completa.
- Opções
 - Sem Filtro Capacitivo;
 - Com filtro Capacitivo.

- Classificação:
 - Meia Onda;
 - Onda Completa.
- Opções
 - Sem filtro Capacitivo.
 - Com Filtro Capacitivo;

 Retificador Meia Onda Sem Filtro 10 to 1 र) (र 120V/60Hz/0Deg $2.2k\Omega$ Oscilloscope T 1 5.76000e-01 T2-T1 1.43667e-01 7.19667e-01 -6.24728e+01 1.53554e+02 2.16027e+02 VA2 UA2-UA1 7.00781e+00 -9.04524e-11 7.00781e+00 REDUCE \$ 5 V/Div REVERSE AC 0 DC SAVE

Meia Onda

- Tensão de Entrada:
 - Semiciclo Positivo-
 - Diodo Diretamente Polarizado (conduz)
 - I(A) Circula pela Carga (RL)
 - Saída: O Próprio Semiciclo positivo

Entrada

Saída

10_to_1 120V/60Hz/0Deg \$ 2.2kΩ U

Meia Onda

Meia Onda

- Tensão de Entrada:
 - Semiciclo Negativo-
 - Diodo Reversamente Polarizado (não conduz)
 - I(A) não Circula pela Carga (RL)
 - Saída: NULA
 - No Diodo:
 - Em condução Vd = ZERO
 - Não condução = Entrada (Negativa)

- Classificação:
 - Meia Onda;
 - Onda Completa.
- Opções
 - Sem Filtro Capacitivo;
 - Com filtro Capacitivo.

Meia Onda com Filtro

Justificativa:

- Aumentar o nível de tensão;
- No caso, Tensão DC na saída;

Atuação do Capacitor:

- O mesmo vai carregar V(v)
- Carrega V da entrada no intervalo semiciclo positivo, até atingir Vmax
- Potencial do Capacitor > Ve, o Diodo corta o capacitor(processo de descarga) em RL
- O processo acima se renova:
 - Ao chegar um novo Semiciclo positivo;
 - A tensão do Anodo é >, reinicia o processo de carga

V_{máx} V

Meia Onda com Filtro

Tensão de Rippler:

- Ondulação Remanescente (C descarrega em Rl);
- Esta tensão pode avaliar a eficácia do circuito:
 - AC para DC considerando uma carga específica

Capacitor descarrega Em RL

O que vimos

• Ret. De Meia Onda:

- Com Filtro

- Classificação:
 - Meia Onda;
 - Onda Completa.
- Opções
 - Sem filtro Capacitivo.
 - Com Filtro Capacitivo;

Onda Completa

- Justificativa:
 - Permite usar o sinal de entrada (V) considerando os dois Semiciclo (+/-)
- Duas opções:
 - Usando 02 diodos e Trafo com derivação central
 - Trafo sem derivação e 04 diodos ligados em ponte

Opções

Trafo sem derivação e Ponte de Diodo

02 Diodos e Trafo com Derivação

- Derivação Central:
 - Defasa as Tensões Ve1 e Ve2 em 180º;
- Ciclos:
 - Semiciclo + de Ve1 e Semiciclo de Ve2
 - D1 conduz e D2 não conduz
 - D1 circula I(A) que passa por RL: Aparece na saída Semiciclo +

02 Diodos e Trafo com Derivação

Ciclos:

- Semiciclo + de Ve2 e Semiciclo de Ve1
 - D2 conduz e D1 não conduz
 - D2 circula I(A) que passa por RL: Aparece na saída Semiciclo +

Agora com Ponto de Diodo

Agora com Ponte de Diodo

- Semiciclo + D1 e D3 Conduz
 - I(A) que passa por RL
 - Saída: O próprio Semiciclo +
- Semiciclo D2 e D4 Conduz
 - I(A) que passa por RL no mesmo sentido do anterior
 - Saída: Tensão igualmente positiva!

 $\rm V_{m\acute{a}x}$

- Classificação:
 - Meia Onda;
 - Onda Completa.
- Opções
 - Sem Filtro Capacitivo;
 - Com filtro Capacitivo.

Ponte de Diodo Com Filtro

Equações

Para Meia Onda

Para Onda Completa

$$Vdc = (2*Vmáx) / \pi$$