

SEQUENCE LISTING

<110> HERING, THOMAS M.
JOHNSTONE, BRIAN

<120> PROBES FOR CHONDROGENESIS

<130> 27708/04065

<140> 10/623,914
<141> 2003-07-21

<150> 60/211,384
<151> 2000-06-14

<160> 7

<170> PatentIn Ver. 3.3

<210> 1
<211> 2666

<212> DNA

<213> *Homo sapiens*

<400> 1

aatggagcga agaccatggg gactgagttac acagatgaag acacagaagc atagagaggaa 60
taagtaatca ctagcaagtg gaagaaccgg gattcagatc cagaacaggc tgactccaga 120
gtcactggct gtcatgtagt ttccctcaact actgcctcg ctctacaatc ccagagtaaa 180
gctcttcctcc aaatgaagag ccaggaagag gtagaggtgg caggaattaa actttgtaaa 240
gccatgtcccc tgggttcaact gactttcaca gatgtggcca tagactttc ccaagatgaa 300
tgggagtgcc tgaatcttgc tcagagaagt ttgtacaaga aggtgatgtt agaaaaactac 360
aggaacctag tttcagttggg tctttgcatt tctaaaccag atgtgatctc cttactggag 420
caagagaaaag acccttgggt gataaaagga gggatgaaca gaggcctgtg cccagacttg 480
gagtgtgtgt gggtgaccaa atcattatct taaaaccagg atatttatga agaaaaattaa 540
cccccgccaa tcataatgga aagactaaa agctatgacc ttgaatgttc aacattaggg 600
aaaaacttgg aatgtgaaga ctgtttgag agggagctt gaaaccagaa gacacatttt 660
aggcaagaga ccatcactca tatagatact cttattgaaa aaagagatca ctctaacaaa 720
tctggacag ttttcatct gaatacatta tcttatataa aacagatttt tcccatggaa 780
gagagaatat ttaattttca tacagataag aaaagcttaa aaacacattc agttgtgaaa 840
aaacacaagc aagaccgtgg agaaaagaaa cttttaaat gtaatgactg tgagaaaata 900
ttcagcaaaa tctcaacccct tactcttac caaagaattc atacaggaga gaaaccctat 960
gaatgtattt aatgtggaaa ggcctttagc cagagtggccc accttgcctca acatcagaga 1020
atacacacag gagaaaaacc tttgaatgt actgaatgtg gggaaaggctt cagccagaat 1080
gctcatcttgc ttcaacacca gagagtcat actggagaga aaccttatac gtgtaaagcag 1140
tgtataaaag cattcagcc gcttgcacac cttgctcaac atcagagggt ccacactggaa 1200
gagaaaccct atgaatgtat tgaatgtggg aaggctttt gtgattgtc atccctactgt 1260
catcatcgaa ggattcacac tggggaaaaga ctttatgaat gtattgactg tggggaaagct 1320
ttcaggcaga atgtttctct tatacgtcat cggcgatatt atcatactgg agagaaacccc 1380
tttgactgtt ttgattgtgg gaaggcttc actgtatcaca taggacttat tcagcataag 1440
agaattcata ctggagagag accttacaaa tgaatgtgt gtgggaaggc ttttagccat 1500
ggctcatctc tgacagtaca tcagagaatt catacaggag agaaaccta tgaatgcaat 1560
atctgtgaga aaggcttcag ccatcggtgg tctttactc ttcatcagag agttcataact 1620
ggagagaaaac cctatgaatg taaagaatgt gggaaagctt tccggcagag cacgcacatcg 1680
gctcatcatc agagaattca tactggagag aaacctttag aatgtaaagg aatgcagcaaa 1740
accttcagcc agaatgcaca cctcgccag catcagaaaa tacacactgg ggagaaggct 1800
tatgaatgtt aggaacgtgg taaggcctt cgtcagattt cacacccctgt tcagcaccag 1860
agagttcata ctggtgagaa gccttacgaa ttttgcataat gtgggaaggc ctttagtgc 1920
ggctcatatc ttgttcaaca tccgagactc cacagtggca aaagaccgtt tgaatgtctt 1980

gaatgtggga aggcattcaag gcagagggca tccttgattt gtcatcagag atgtcatact 2040
 ggtgagaaac cttatgaatg taatgtttgt gggaaaggct ttagccatcg taaatccctt 2100
 actctgcatac agagaattca tacaggagag aaaccttatg agtgtaagga atgttagcaa 2160
 gccttcagcc aggttgccca tcttactcta cataagagaa ttcatactgg agaaaggccc 2220
 tatgagtgtta aagaatgtgg aaaagccctc aggccagatgt tacatcttgc tcatacatcg 2280
 cgaattcata ccggagagtc atcagttatt ctctcctctg ccctccata ccaccaagtc 2340
 ctatagattc aatctcgtaa atgctcttag catccatctg ctttttcca gcacatgtcc 2400
 catcatcata gtccaaagacg caaccatctc atctggattt ctgcagtagc ataactgttg 2460
 cccctttgc ttctatcaac tacatgtta acactgttag cagcctaacc ttttaaaaat 2520
 aaaaatacat aatttatgtt attttccat ttaaaaact tgatttgaaa aatatattaa 2580
 ctaatccatt tcaaggattt agcacacact ggcatatagt tattgctaaa taaatgctag 2640
 ccattaaaggtaaaaaaaaaaaaaaaa 2666

<210> 2
 <211> 717
 <212> PRT
 <213> Homo sapiens

<400> 2
 Met Lys Ser Gln Glu Glu Val Glu Val Ala Gly Ile Lys Leu Cys Lys
 1 5 10 15
 Ala Met Ser Leu Gly Ser Leu Thr Phe Thr Asp Val Ala Ile Asp Phe
 20 25 30
 Ser Gln Asp Glu Trp Glu Trp Leu Asn Leu Ala Gln Arg Ser Leu Tyr
 35 40 45
 Lys Lys Val Met Leu Glu Asn Tyr Arg Asn Leu Val Ser Val Gly Leu
 50 55 60
 Cys Ile Ser Lys Pro Asp Val Ile Ser Leu Leu Glu Gln Glu Lys Asp
 65 70 75 80
 Pro Trp Val Ile Lys Gly Gly Met Asn Arg Gly Leu Cys Pro Asp Leu
 85 90 95
 Glu Cys Val Trp Val Thr Lys Ser Leu Ser Leu Asn Gln Asp Ile Tyr
 100 105 110
 Glu Glu Lys Leu Pro Pro Ala Ile Ile Met Glu Arg Leu Lys Ser Tyr
 115 120 125
 Asp Leu Glu Cys Ser Thr Leu Gly Lys Asn Trp Lys Cys Glu Asp Leu
 130 135 140
 Phe Glu Arg Glu Leu Val Asn Gln Lys Thr His Phe Arg Gln Glu Thr
 145 150 155 160
 Ile Thr His Ile Asp Thr Leu Ile Glu Lys Arg Asp His Ser Asn Lys
 165 170 175
 Ser Gly Thr Val Phe His Leu Asn Thr Leu Ser Tyr Ile Lys Gln Ile
 180 185 190
 Phe Pro Met Glu Glu Arg Ile Phe Asn Phe His Thr Asp Lys Ser
 195 200 205

Leu Lys Thr His Ser Val Val Lys Lys His Lys Gln Asp Arg Gly Glu
 210 215 220
 Lys Lys Leu Leu Lys Cys Asn Asp Cys Glu Lys Ile Phe Ser Lys Ile
 225 230 235 240
 Ser Thr Leu Thr Leu His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr
 245 250 255
 Glu Cys Ile Glu Cys Gly Lys Ala Phe Ser Gln Ser Ala His Leu Ala
 260 265 270
 Gln His Gln Arg Ile His Thr Gly Glu Lys Pro Phe Glu Cys Thr Glu
 275 280 285
 Cys Gly Lys Ala Phe Ser Gln Asn Ala His Leu Val Gln His Gln Arg
 290 295 300
 Val His Thr Gly Glu Lys Pro Tyr Gln Cys Lys Gln Cys Asn Lys Ala
 305 310 315 320
 Phe Ser Gln Leu Ala His Leu Ala Gln His Gln Arg Val His Thr Gly
 325 330 335
 Glu Lys Pro Tyr Glu Cys Ile Glu Cys Gly Lys Ala Phe Ser Asp Cys
 340 345 350
 Ser Ser Leu Ala His His Arg Arg Ile His Thr Gly Lys Arg Pro Tyr
 355 360 365
 Glu Cys Ile Asp Cys Gly Lys Ala Phe Arg Gln Asn Ala Ser Leu Ile
 370 375 380
 Arg His Arg Arg Tyr Tyr His Thr Gly Glu Lys Pro Phe Asp Cys Ile
 385 390 395 400
 Asp Cys Gly Lys Ala Phe Thr Asp His Ile Gly Leu Ile Gln His Lys
 405 410 415
 Arg Ile His Thr Gly Glu Arg Pro Tyr Lys Cys Asn Val Cys Gly Lys
 420 425 430
 Ala Phe Ser His Gly Ser Ser Leu Thr Val His Gln Arg Ile His Thr
 435 440 445
 Gly Glu Lys Pro Tyr Glu Cys Asn Ile Cys Glu Lys Ala Phe Ser His
 450 455 460
 Arg Gly Ser Leu Thr Leu His Gln Arg Val His Thr Gly Glu Lys Pro
 465 470 475 480
 Tyr Glu Cys Lys Glu Cys Gly Lys Ala Phe Arg Gln Ser Thr His Leu
 485 490 495
 Ala His His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Glu Cys Lys
 500 505 510

Glu Cys Ser Lys Thr Phe Ser Gln Asn Ala His Leu Ala Gln His Gln
 515 520 525
 Lys Ile His Thr Gly Glu Lys Pro Tyr Glu Cys Lys Glu Arg Gly Lys
 530 535 540
 Ala Phe Ser Gln Ile Ala His Leu Val Gln His Gln Arg Val His Thr
 545 550 555 560
 Gly Glu Lys Pro Tyr Glu Cys Ile Glu Cys Gly Lys Ala Phe Ser Asp
 565 570 575
 Gly Ser Tyr Leu Val Gln His Pro Arg Leu His Ser Gly Lys Arg Pro
 580 585 590
 Tyr Glu Cys Leu Glu Cys Gly Lys Ala Phe Arg Gln Arg Ala Ser Leu
 595 600 605
 Ile Cys His Gln Arg Cys His Thr Gly Glu Lys Pro Tyr Glu Cys Asn
 610 615 620
 Val Cys Gly Lys Ala Phe Ser His Arg Lys Ser Leu Thr Leu His Gln
 625 630 635 640
 Arg Ile His Thr Gly Glu Lys Pro Tyr Glu Cys Lys Glu Cys Ser Lys
 645 650 655
 Ala Phe Ser Gln Val Ala His Leu Thr Leu His Lys Arg Ile His Thr
 660 665 670
 Gly Glu Arg Pro Tyr Glu Cys Lys Glu Cys Gly Lys Ala Phe Arg Gln
 675 680 685
 Ser Val His Leu Ala His His Gln Arg Ile His Thr Gly Glu Ser Ser
 690 695 700
 Val Ile Leu Ser Ser Ala Leu Pro Tyr His Gln Val Leu
 705 710 715

<210> 3
 <211> 2143
 <212> DNA
 <213> Homo sapiens

<400> 3
 gggagttctt gcaattccag aaccatgact gatgggttgg tgacattcag ggatgtggcc 60
 atcgacttct ctcaggagga gtggaaatgc ctggaccctg ctcagagggta cttgtacgtg 120
 gatgtaatgt tggagaacta tagtaacttg gtgtcactgg atttggagtc aaaaacgtat 180
 gagacaaaaa aatatttttc agaaaaatgtat atttttgaaa taaatttttc ccagtggag 240
 atgaaggaca aaagtaaaac ctttggcctt gaggcatcca tcttcagaaa taattggaaag 300
 tgcaaaaagca tattcgaggg actaaaagga catcaagagg gataacttcag tcaaataatgata 360
 atcagctatg aaaaaataacc ttcttacaga aaaagtaat ctcttactcc acatcaaaga 420
 attcataata cagagaaatc ctatgtttgt aaggaatgtg ggaaggcttg cagtcatggc 480
 tcaaaaacttg ttcaacatga gagaactcat acagctgaaa agcactttga atgtaaaagaa 540
 tggggaaaga attatthaag tgcttatcaa ctcaatgtgc atcagagatt tcataactgg 600
 gagaaaccct atgagtgtaa ggaatgtggg aagacctta gctggggatc aagccttg 660
 aaacatgaga gaattcacac tggtagaaaa ccctatgaat gtaaagaatg tgggaaggcc 720

tttagtcgtg gctatcacct tacccaaacat cagaaaattc atattgggtg gaaatcttat 780
 aaatgttaagg aatgtgggaa ggcctttttt tggggctcaa gccttgctaa acatgagata 840
 attcatacag gtgagaaaacc ttataaatgt aagaatgtg ggaaggcctt cagtcgtggc 900
 tatcaactta ctcagcatca gaaaatccat actggtaaga aaccttatga atgtaaaata 960
 tgtggaaagg cttttgttg gggctatcaa ctactcgac atcagatatt tcatactgg 1020
 gagaaaaccct atgaatgcaa ggaatgtggg aaggcttttta attgcggatc aagtcttatt 1080
 caacatgaaa gaattcatac tggtgagaaa ccttatgaat gtaaaaatg tggaaaggcc 1140
 tttagtcgtg getatcacct ttctcaacat cagaaaatcc atactggta gaaacctttt 1200
 gaatgttaagg aatgtgggaa ggccttagt tggggttcaa gcctgtttaa acatgagaga 1260
 gttcatactg gtgagaaaatc ccatgaatgt aaagaatgca gaaagacctt ttgttagtggg 1320
 tatcaactta ctcgacatca ggtattcac actggtgaga aacccttatga atgttaaggaa 1380
 tgtggaaagg ctttaattt tggatcaagc cttgttcaac atgaaagaat ccatacagg 1440
 gagaaaaccct atgaatgtaa agaatgtgga aggcttttag tcgtggctat caccttactc 1500
 aacatcagaa aattcatacc ggtgagaaac ctttcaaatt taaggaatgt gggaaaggcc 1560
 tcagttgggg ttcaagccta gttaagcatg agagagtcca tactaatgag aagtcttatt 1620
 aatgtaaaga ctgtggaaag gccttggta gtggctatca acttagtgtt catcagagat 1680
 ttcatactgg tgagaagctt tatcaacata aggaattcgg gaagaccttt actcgtggct 1740
 caaaaacttgt tcatgagaga actcatagta atgataaacc ctacaaatat aacgaatgt 1800
 gggaaaggcctt tctgtggaca acttactcaa atgagaaaat tgatactgat gaaaccttat 1860
 gattggaaagt tgtaaaagaa tattttgtgt gtgcgtatag acaacttattc ataataagaa 1920
 ctcttactct tgagaaacctt tgtgaatgta agggttgtgc aaaagccatt catttctgtt 1980
 tatggcaat tatcttgcta tccagcaatt catactagtg agaaatattt tgaatataat 2040
 taatatgaaa aggccctttag acttctgtac agtcttattt gatatcaatt tatactgtat 2100
 taaaatcatt taaatgaaaa aaaaaaaaaa aaaaaaaaaa aaa 2143

<210> 4
 <211> 518
 <212> PRT
 <213> Homo sapiens

<400> 4 Met Thr Asp Gly Leu Val Thr Phe Arg Asp Val Ala Ile Asp Phe Ser 1 5 10 15
Gln Glu Glu Trp Glu Cys Leu Asp Pro Ala Gln Arg Asp Leu Tyr Val 20 25 30
Asp Val Met Leu Glu Asn Tyr Ser Asn Leu Val Ser Leu Asp Leu Glu 35 40 45
Ser Lys Thr Tyr Glu Thr Lys Ile Phe Ser Glu Asn Asp Ile Phe 50 55 60
Glu Ile Asn Phe Ser Gln Trp Glu Met Lys Asp Lys Ser Lys Thr Leu 65 70 75 80
Gly Leu Glu Ala Ser Ile Phe Arg Asn Asn Trp Lys Cys Lys Ser Ile 85 90 95
Phe Glu Gly Leu Lys Gly His Gln Glu Gly Tyr Phe Ser Gln Met Ile 100 105 110
Ile Ser Tyr Glu Lys Ile Pro Ser Tyr Arg Lys Ser Lys Ser Leu Thr 115 120 125
Pro His Gln Arg Ile His Asn Thr Glu Lys Ser Tyr Val Cys Lys Glu 130 135 140

Cys Gly Lys Ala Cys Ser His Gly Ser Lys Leu Val Gln His Glu Arg
 145 150 155 160
 Thr His Thr Ala Glu Lys His Phe Glu Cys Lys Glu Cys Gly Lys Asn
 165 170 175
 Tyr Leu Ser Ala Tyr Gln Leu Asn Val His Gln Arg Phe His Thr Gly
 180 185 190
 Glu Lys Pro Tyr Glu Cys Lys Glu Cys Gly Lys Thr Phe Ser Trp Gly
 195 200 205
 Ser Ser Leu Val Lys His Glu Arg Ile His Thr Gly Glu Lys Pro Tyr
 210 215 220
 Glu Cys Lys Glu Cys Gly Lys Ala Phe Ser Arg Gly Tyr His Leu Thr
 225 230 235 240
 Gln His Gln Lys Ile His Ile Gly Val Lys Ser Tyr Lys Cys Lys Glu
 245 250 255
 Cys Gly Lys Ala Phe Phe Trp Gly Ser Ser Leu Ala Lys His Glu Ile
 260 265 270
 Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Lys Glu Cys Gly Lys Ala
 275 280 285
 Phe Ser Arg Gly Tyr Gln Leu Thr Gln His Gln Lys Ile His Thr Gly
 290 295 300
 Lys Lys Pro Tyr Glu Cys Lys Ile Cys Gly Lys Ala Phe Cys Trp Gly
 305 310 315 320
 Tyr Gln Leu Thr Arg His Gln Ile Phe His Thr Gly Glu Lys Pro Tyr
 325 330 335
 Glu Cys Lys Glu Cys Gly Lys Ala Phe Asn Cys Gly Ser Ser Leu Ile
 340 345 350
 Gln His Glu Arg Ile His Thr Gly Glu Lys Pro Tyr Glu Cys Lys Glu
 355 360 365
 Cys Gly Lys Ala Phe Ser Arg Gly Tyr His Leu Ser Gln His Gln Lys
 370 375 380
 Ile His Thr Gly Glu Lys Pro Phe Glu Cys Lys Glu Cys Gly Lys Ala
 385 390 395 400
 Phe Ser Trp Gly Ser Ser Leu Val Lys His Glu Arg Val His Thr Gly
 405 410 415
 Glu Lys Ser His Glu Cys Lys Glu Cys Gly Lys Thr Phe Cys Ser Gly
 420 425 430
 Tyr Gln Leu Thr Arg His Gln Val Phe His Thr Gly Glu Lys Pro Tyr
 435 440 445

Glu Cys Lys Glu Cys Gly Lys Ala Phe Asn Cys Gly Ser Ser Leu Val
 450 455 460
 Gln His Glu Arg Ile His Thr Gly Glu Lys Pro Tyr Glu Cys Lys Glu
 465 470 475 480
 Cys Gly Arg Leu Leu Val Val Ala Ile Thr Leu Leu Asn Ile Arg Lys
 485 490 495
 Phe Ile Pro Val Arg Asn Leu Ser Asn Val Arg Asn Val Gly Arg Pro
 500 505 510
 Ser Val Gly Val Gln Ala
 515

<210> 5
 <211> 18
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide)

<220>
 <221> modified_base
 <222> (6)
 <223> A, C, T or G

<220>
 <221> modified_base
 <222> (9)
 <223> A, T, C or G

<220>
 <221> modified_base
 <222> (18)
 <223> A, T, C or G

<400> 5
 cayacnggng araarcnn

18

<210> 6
 <211> 6
 <212> PRT
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic
 probe

<400> 6
 His Thr Gly Glu Lys Pro
 1 5

<210> 7
<211> 47
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<220>
<221> MOD_RES
<222> (1)
<223> Tyr or Phe

<220>
<221> MOD_RES
<222> (2)
<223> essential amino acid

<220>
<221> MOD_RES
<222> (4)..(27)
<223> essential amino acid

<220>
<221> MOD_RES
<222> (29)..(31)
<223> essential amino acid

<220>
<221> MOD_RES
<222> (33)..(37)
<223> essential amino acid

<220>
<221> MOD_RES
<222> (39)..(40)
<223> essential amino acid

<220>
<221> MOD_RES
<222> (42)..(46)
<223> region may encompass 3-5 essential amino acids

<400> 7
Xaa Xaa Cys Xaa
1 5 10 15

Xaa Cys Xaa Xaa Xaa Phe
20 25 30

Xaa Xaa Xaa Xaa Xaa Leu Xaa Xaa His Xaa Xaa Xaa Xaa His
35 40 45