Problem 2

$$\phi(1) = \square \qquad \phi(2) = \square \qquad \phi(3) = \square$$

$$\phi(4) = \square \qquad \phi(6) = \square \qquad \phi(12) = \square$$

$$\phi(1) + \phi(2) + \phi(3) + \phi(4) + \phi(6) + \phi(12)$$

$$= \square$$

Euler's Totient Function

$$\phi$$
 (N) = the number of $1 \le K \le N$ such that K and N are

relatively prime

$$(GCD(K,N) = 1)$$

Leonhard Euler (1707-1783)

Problem 2

N = 12 =
$$2 \times 2 \times 3$$

 ϕ (12) = # of 1 \leq K \leq 12 such that
K and 12 are relatively prime
= # of 1 \leq K \leq 12 such that
K is neither divisible by 2 nor 3

1 2 3 4 **5** 6 **7** 8 9 10 **11** 12
$$\Rightarrow \phi(12) = 4$$

Problem 2

Answer

1
$$\Rightarrow \phi(1) = 1$$

1 2 $\Rightarrow \phi(2) = 1$
1 2 3 $\Rightarrow \phi(3) = 2$
1 2 3 4 $\Rightarrow \phi(4) = 2$
1 2 3 4 5 6 $\Rightarrow \phi(6) = 2$
 $\phi(1) + \phi(2) + \phi(3) + \phi(4)$
 $+ \phi(6) + \phi(12)$
 $= 1 + 1 + 2 + 2 + 2 + 4 = 12$ Leonhard Euler

(1707-1783)

Problem 2

Theorem

The sum of ϕ (K), where K divides N, is equal to N.

Example

$$\phi$$
 (1)+ ϕ (2)+ ϕ (5)+ ϕ (10)=10

Leonhard Euler (1707-1783)

