TRABALHO DE DIFERENÇAS FINITAS

Dada a equação de transporte advectivo-difusivo:

$$\frac{\partial \phi}{\partial t} + u \frac{\partial \phi}{\partial x} - D \frac{\partial^2 \phi}{\partial x^2} = 0 \tag{1}$$

Sujeita as seguintes condições de contorno e iniciais:

$$\phi(x,0) = A \cdot \text{sen}(2\pi kx) \tag{2}$$

$$\phi(0,t) = \phi(L,t) = 0 \tag{3}$$

E solução analítica:

$$\phi(x,t) = e^{-Dk^2t} \sin[2\pi k(x - ut)]$$
 (4)

com:
$$u = 1$$
; $D = 0.05$; $k = 1$; $L = 2$

Desenvolva:

- a). Uma aproximação de diferenças finitas, implícita no tempo, para a equação (1).
- b). Um script (programa) na linguagem Python que permita realizar:
 - 1. Dependência do erro com o passo do tempo mantendo o espaçamento (n) fixo

Δt	n
0,05	21
0,025	21
0,0125	21

2. Dependência do erro com o espaçamento mantendo o Δt fixo (estudo de convergência de malha)

Δt	n
5x10 ⁻⁴	11
5x10 ⁻⁴	21
5x10 ⁻⁴	41
5x10 ⁻⁴	61
5x10 ⁻⁴	81
5x10 ⁻⁴	101
5x10 ⁻⁴	121
5x10 ⁻⁴	161

A normal L2 do erro em função do espaçamento h da malha pode ser obtido pela expressão: $E = h \sqrt{\sum_{i=1}^{n} (\phi_i - \phi_{exato})^2}$

Observações:

Data de entrega: 19 de Agosto

O aluno deverá entregar impresso e digital (email para rnelias@gmail.com):

- a) Um relatório contendo gráficos da solução e das análises de erro e com suas conclusões
- b). O script/programa em Python utilizado nos cálculos

O trabalho é individual e o aluno será questionado acerca dos procedimentos adotados na solução.