1 序列

1.1 Problem Statement

小D正在研究序列。

小 D 定义一些序列的**并集**是指一个序列,满足每个数字在新序列中的出现次数为在每个序列中出现次数之和,且新序列单调不降。容易发现,满足这两个条件的序列是唯一的。

小 D 正在研究一类特殊的序列。这类特殊的序列的长度都是无限的,且存在参数 a_0, a_1, \cdots, a_k ,使得序列的第 n 项的值均为 $\sum\limits_{i=0}^k a_i \cdot n^i$,其中 a_0, a_1, \cdots, a_k 均为非负 整数。

小 D 写出了 m 个这样的序列。小 D 想要知道这些序列的并集中,第 n 个元素是多少。

但是他并不会,请你帮帮他。

1.2 Input Format

从标准输入读入数据。

第一行三个正整数 n, m, k 表示询问的元素编号,写出的序列个数,以及参数的个数。

接下来m行,每行k+1个整数 a_0,a_1,\cdots,a_k ,表示一个序列的参数。

1.3 Output Format

向标准输出输出答案。

输出一行一个整数表示答案,保证答案不超过 1018。

1.4 Sample 1

1.4.1 Input

9 3 3

0 0 2 1

6 10 0 0

1 25 0 0

1.4.2 Output

51

1.4.3 Explanation

第一个序列为 3,16,45,96,175,···, 第二个序列为 16,26,36,46,56,···, 第三个序列为 26,51,76,101,126,···, 故他们的并集为 3,16,16,26,26,36,45,46,51,56,···。

1.5 Sample 2

见下发文件 seq/seq2.in 与 seq/seq2.ans。

1.6 Sample 3

见下发文件 seq/seq3.in 与 seq/seq3.ans。

1.7 Constraints

对于所有测试数据, $1 \le m \le 3 \times 10^4$, $1 \le k \le 7$, $1 \le n \le 10^5$, $0 \le a_i \le 1000$,保证 a_1, a_2, \dots, a_k 中至少有一个数非 0。

- 子任务 1 (30 分): n ≤ 100;
- 子任务 2 (30 分): m ≤ 300;
- 子任务 3 (20 分): k = 1;
- 子任务 4 (20 分): 无特殊限制。

2 积木

2.1 Problem Statement

小D正在搭积木。

小 D 搭的积木全部由 1×2 的积木组成,且可以被看成一个无限大的竖直网格。我们用 (i,j) 表示第 i 行第 j 列的网格,其中行是自下而上编号的,而列是自左向右编号的。

在这个网格的第 i 行,若 i 为奇数,则 (i,2j-1) 以及 (i,2j) 同属于一块积木;若 i 为偶数,则 (i,2j) 以及 (i,2j+1) 同属于一块积木,其中 $j \in \mathbb{Z}$ 。

小 D 从中抽走了 n 块积木使它们掉落, 其中第 i 块的位于 $(x_i, y_i), (x_i, y_i + 1)$ 。

小 D 发现这可能导致一些其他的积木掉落: 具体而言, 对于积木 (x,y), (x,y+1), 若 (x-1,y) 以及 (x-1,y+1) 所属的积木都掉落了,则它也会掉落。

小 D 想要知道,在所有积木都无法掉落时,一共有多少积木掉落了。 但是他并不会,请你帮帮他。

2.2 Input Format

从标准输入读入数据。

第一行一个正整数 n, m, k 表示小 D 抽走的积木个数。

接下来 n 行,每行两个整数 x_i, y_i ,表示小 D 抽走了一个位于 $(x_i, y_i), (x_i, y_i + 1)$ 的积木。

2.3 Output Format

向标准输出输出答案。

输出一行一个整数表示掉落的积木个数。

2.4 Sample 1

2.4.1 Input

7

0 0

0 2

0 6

1 3

2 0

3 1

3 5

2.4.2 Output

9

2.4.3 Explanation

掉落的积木如下图所示,其中紫色的两个格子为新掉落的积木:

		(3,1)				(3,5)					
	(2,0)		(2,2)								
		(1, 1)		(1,3)						ok	
	(0, 0)		(0, 2)				(0,	6)			

2.5 Sample 2

见下发文件 brick/brick2.in 与 brick/brick2.ans。

2.6 Sample 3

见下发文件 brick/brick3.in 与 brick/brick3.ans。

2.7 Constraints

对于所有测试数据, $1 \le n \le 3 \times 10^5$, $-10^9 \le x_i, y_i \le 10^9$,保证 x_i, y_i 奇偶性相同,对于任意 $1 \le i < j \le n$, $(x_i, y_i) \ne (x_j, y_j)$ 。

- 子任务 1 (25 分): n ≤ 500;
- 子任务 2 (15 分): n ≤ 5000;
- 子任务 3 (20 分): $1 \le x_i, y_i \le 5000$;
- 子任务 4 (25 分): $n \le 10^5$;
- 子任务 5 (15 分): 无特殊限制。

3 保镖

3.1 Problem Statement

小D正在雇佣保镖。

一共有 n 人应聘保镖,其中第 i 个保镖提出的要求是:每次保护任务最多持续 a_i 小时,且相邻两次保护任务之间必须间隔至少 b_i 小时。

同时,任意一个保镖都不希望自己的工作次数比别人多,因此保镖们要求在任意其他保镖的任意相邻两次保护任务之间,自己至多只会执行一次保护任务。

小 D 希望雇佣尽可能少的保镖, 使得存在一种满足所有保镖要求的排班方式, 且任意时刻都有至少一名保镖在保护小 D。

但是他并不会,请你帮帮他。

3.2 Input Format

从标准输入读入数据。

第一行一个正整数 n,表示应聘保镖的人数。

接下来 n 行,每行两个整数 a_i,b_i ,表示第 i 个保镖的要求。

3.3 Output Format

向标准输出输出答案。

输出一行一个整数表示最少雇佣的保镖个数。特别地,如果无法满足小 D 的要求,那么输出一行一个整数 -1。

3.4 Sample 1

3.4.1 Input

5

1 5

2 4

3 4

2 3

4 4

3.4.2 Output

3

3.5 Sample 2

见下发文件 guard/guard2.in 与 guard/guard2.ans。

3.6 Sample 3

见下发文件 guard/guard3.in 与 guard/guard3.ans。

3.7 Constraints

对于所有测试数据, $1 \le n \le 5 \times 10^5$, $1 \le a_i, b_i \le 10^{12}$ 。

- 子任务 1 (20 分): n ≤ 500;
- 子任务 2 (20 分): n ≤ 2000;
- 子任务 3 (15 分): n ≤ 5000;
- 子任务 4 (16 分): $n \le 5 \times 10^4$;
- 子任务 5 (17 分): $n \le 2 \times 10^5$;
- 子任务 6 (12 分): 无特殊限制。