

Mariusz Wójcik

14 czerwca 2019

1 Początki

Jakiś czas temu miałem okazję obejrzeć film, który zrobił na mnie ogromne wrażenie. "Arrival - Nowy Początek" w reżyserii Denisa Villeneuve'a - to obraz niezwykły. Porusza on problematykę szerokopojętej, wielopłaszczyznowej komunikacji (a czasem skutków jej braku). W niesamowicie sugestywny i obrazowy sposób pokazuje mechanizm kształtowania się podstaw wspólnego języka i nawiązywania kontaktu. Proces stopniowego budowania uwspólnionych modeli pojęciowych prowadzący do porozumiewania się tym samym językiem wydał mi się tak logiczny i uporządkowany, że sprawiał wrażenie niemal algorytmicznego... Pamiętam swoją myśl, że skoro możliwe jest tak precyzyjne określenie reguł stojących u podstaw nawiązania skutecznej komunikacji, to droga do zbudowania inteligentnych maszyn porozumiewających się z nami "ludzkim" językiem wydaje się już bardzo krótka.

Do niedawna wydawało mi się, że porozumiewanie się językiem naturalnym jest domeną przynależną wyłącznie człowiekowi. Miałem poczucie, że prace nad komputerowym przetwarzaniem języka naturalnego mają wymiar wyłącznie akademicki. Okazało się jednak, że dynamiczny rozwój algorytmów sztucznej inteligencji i przetwarzania maszynowego dotknął również tej dziedziny. Gdzieś na styku matematyki, informatyki i lingwistyki wykształciła się dziedzina, która funkcjonuje jako NLP (ang. natural language processing).

Techniki NLP koncentrują się na analizie, przekształcaniu i generowaniu języka naturalnego. Dzięki nim komputery nabywają umiejętności nie tylko analizy tekstu, ale również nauki i wyciągania wniosków. Dają one możliwość analizy nie tylko składni zdań, ale również doszukiwania się ich znaczeń i ukrytych pomiędzy słowami intencji. Czasami uświadamiam sobie że to wszystko razem brzmi jak czysta fantastyka. Bo jak niby sens, znaczenie i intencje można przeliczyć na liczby i twardo zakotwiczyć w dziedzinie algebry liniowej?

Tajemnicy tej uchyla jedna z najciekawszych książek, jaką miałem przyjemność ostatnio czytać, mianowicie "Natural Language Processing in Action". Jest to bardzo przystępnie napisany przewodnik, dzięki któremu łatwiej oswoić się z podstawowymi prawami rządzącymi światem NLP. Pozycja nie traktuje o rzeczach najłatwiejszych, a mimo to czyta się ją z dużą przyjemnością.

Z teorią często jest tak, że w którymś momencie chciałoby się ją zobaczyć w praktyce. Z tej potrzeby zrodził się pomysł na aplikację, którą możnaby zrealizować przy użyciu technik i algorytmów NLP. Przyszedł mi do głowy generator kodu aplikacji, który byłby w stanie przekształcić tekst napisany językiem zbliżonym do naturalnego bezpośrednio do kodu wykonywalnego. Oczywiście zakładam że tego typu rozwiązanie miałoby zastosowanie do jakiegoś ściśle określonego aspektu działającej aplikacji, np. walidacji dokumentu, czy sprawdzania reguł poprawności modelu dziedziny.

I tak właśnie powstał mój miniprojekt, którego celem jest zobaczenie o co tak naprawdę chodzi z tym NLP . :) . Zapraszam do zapoznania się z założeniami i otrzymanymi wynikami.

Mam świadomość, że jeśli chodzi o NLP, jestem na początku drogi. Nie mogę powiedzieć nawet tego, że udało mi się zrobić jeden krok, ale wiem jedno... podróż zapowiada się naprawdę imponująco...

2 Realizacja

Do realizacji moich założeń wybrałem napisaną w Javia bibliotekę *Apache OpenNLP*. Dostarcza ona narzędzi realizujących wiele aspektów przetwarzania języka naturalnego. W moim projekcie skupię się technice nazywanej *Named Entity Recognition (NER)*.

Polega ona na rozpoznawaniu w tekście określonych bytów nazwanych. Najczęściej są to imiona, nazwiska, nazwy własne itp. W moim przypadku chciałbym stworzyć własny model, który zostanie przyuczony do rozpoznawania poszczególnych elementów konstrukcji reguły walidacyjnej (takich jak słowa kluczowe rozpoczynające i kończące bloki, operatory, akcje i ich parametry).

Żeby to osiągnąć konieczne jest przygotowanie odpowiednio opisanej próbki uczącej, a następnie wykorzystanie jej do treningu modelu.

3 Abstrakcyjny model reguły

Przygotowanie próbki rozpocznę od opracowania schematu reguły.

Na początek wypiszę sobie kilka przykładowych reguł walidacyjnych.

- 1. Jeśli wiek_ pacjenta jest większy od 18 wtedy zgłoś błąd "Pacjent jest osobą dorosłą.", w przeciwnym wypadku wyświetl komunikat "Pacjent został zakwalifikowany do leczenia pediatrycznego.".
- 2. Jeśli data_kwalifikacji jest jest mniejsza od '01-01-2019' wtedy zgłoś wyjątek "Data sprzed roku 2019.", w przeciwnym wypadku sprawdź regułę RS-001.
- 3. Gdy saldo_rachunku jest większe od 100 oraz saldo_rachunku jest mniejsze niż 1000 wtedy wyświetl komunikat "Saldo rachunku jest prawidłowe.", w przeciwnym razie zgłoś błąd "Nieprawidłowe saldo rachunku".
- 4. Jeśli data_teraz jest niewiększa niż data_ważności wyświetl komunikat "Wniosek jest aktualny." w przeciwnym wypadku zgłaszaj błąd "Wniosek utracił ważność".

Przyjmuję uproszczenie, że każda rozpoznawana reguła składała się będzie z trzech wyróżnialnych bloków:

Poszczególne bloki oddzielone będą od siebie słowami kluczowymi oznaczającymi rozpoczęcie i zakończenie bloku.

W celu ich wyróżnienia wprowadzam następujące oznaczenia:

- 1. SK_SW Start sekcji warunku
- 2. SK KW Koniec sekcji warunku
- 3. SK SAN Start sekcji akcji wykonywanej przy niespełnionym warunku

Schemat reguly przyjmuje następującą postać:

Rzut oka na przykład:

Ponieważ kluczowe jest właściwe rozpoznanie sekcji warunku, chciałbym wyłączyć go przed nawias i przez chwilę skupić się wyłącznie na nim.

Na początek trzeba zauważyć, że powyższa sekcja składa się z dwóch niezależnych wyrażeń warunkowych połączonych operatorem logicznym *lub* . Każdy z pojedynczych warunków składa się z kolei z operatora relacyjnego (jest mniejsza, jest większa), oraz z dwóch operandów (lewego i prawego). Wprowadzam więc następujące oznaczenia:

- 1. OP L Operand lewy
- 2. OPR REL Operator relacyjny
- 3. OP_P Operand prawy
- 4. OPR LOG Operator logiczny

Po podstawieniu, przykładowy warunek można

Zatem zapis symboliczny sekcji warunkowej będzie wyglądał następująco:

Po dokonaniu podstawienia w sekcji WARUNKI abstrakcyjny model reguły przyjmie następującą postać:

Jeśli chodzi o akcje, to sprawa wydaje się prostsza, bo każda z nich składa się z części mówiącej o tym co ma być zrobione (AKCJA), oraz z jakim parametrem ma być wykonane (AKCJA_PARAMETR). Ostatecznie więc, po wykonaniu podstawienia nasz model przyjmie następującą, ostateczną formę:

I jeszcze spojrzenie na przykład:

4 Przygotowanie próbki uczącej

Mechanizmy NER wchodzące w skład *OpenNLP* pozwalają na stworzenie własnego modelu i przyuczenie go do rozpoznawania specyficznych bytów domenowych. Próbka ucząca jest dosyć obszernym zbiorem przykładów (dokumentacja OpenNLP mówi o minimum 15 tyś. zdań), w których w specjalny sposób otagowane zostały kluczowe frazy.

```
< START:SK\_SW> jeśli < END> < START:OP\_L> xxx < END> < START:OPR\_REL> jest większy niż < END> < START:OP\_P> xxx < END> < START:SK\_KW> wtedy < END> < START:AKCJA> zgłoś błąd < END> < START:AKCJA\_PARAMETR> xxx < END> .
```

Byty nazwane, które ma rozpoznawać model należy umieścić pomiędzy tagami $<START:NAZWA_BYTU>$ i <END>. Każda reguła moich danych uczących jest zbudowana według schematu omawianego wcześniej abstrakcyjnego modelu reguły. Zgodne z nim są również nazwy encji. W przypadku tych części reguły, które są zmienne i specyficzne dla każdej instancji (takie jak komentarze, nazwy operandów, wszelkie parametry) użyłem frazy xxx, która oznacza że będzie tu coś, o czym na tym etapie nie możemy nic powiedzieć (znamy tylko pozycję tego tokena względem innych encji).

Wygenerowanie próbki uczącej okazało się zagadnieniem samym w sobie. Do tego celu napisałem aplikację pythonową, która przetwarza zdefiniowane wektory poprawnych wartości poszczególnych encji, następnie tworzy ich iloczyny kartezjańskie i losuje do próbki zadaną ilość wygenerowanych, otagowanych reguł.

Poniżej zamieściłem wartości użyte przeze mnie do konstrukcji przykładów.

$$SK_SW = \begin{bmatrix} jeśli \\ gdy \\ jeżeli \end{bmatrix}$$
 (1)

- 5 Trening modelu
- 6 Prezentacja wyników
- 7 Ocena wyników