Compte Rendu de fin de séance Thomas Faucherre

09/12/24:

C'est une séance sur une journée complète. Nous voulions faire valider notre schéma. Pour cela j'ai réalisé le schéma complet avec les composants des libraries disponibles sous Easy EDA :

Après soumission, il nous faut apporter quelques modifications à notre projet. Dans un premier temps nous allons devoir supprimer notre convertisseur buck pour réduire le cout et le nombre de composant. Nous allons chercher des composants capable de fonctionner en étant alimenté par le panneau solaire directement. Le panneau solaire fournit au maximum 26V, on prendra une tension max de 28V par sécurité.

J'ai commencé par réaliser un tableau récapitulatif des différents circuit integres de charge existant.

Tableau réc	Tableau récapitulatif des Composants de charge					
Ref	price	package	battery type	max	numbe	supply
				charge	r of	voltage
				current	cells	
LT3650-	\$11.647	DFN-12(3x3)	Lithium-	2A	1 cell	4.75V
4.2	2		ion/Polymer			to 32V
MAX2009	\$5.0333	TQFN-28(5x5)	Lithium-	1A	1 cell	3.5V to
4			ion/Polymer			36V
LTC4089	\$4.9546	DFN-22-	Lithium-	1.2A	1 cell	6V to
		EP(3x6)	ion/Polymer			36V
ISL6293	\$0.8284	DFN-10(3x3)	Lithium-	1A	1 cell	4.3V to
			ion/Polymer			28V
bq25050	1,48€	WSON (10)	Lithium-	1A	1 cell	3.55V
			ion/Polymer			to 28V
BQ2404x	1,05€	WSON (10)	Lithium-	1A	1 cell	3.5V to
			ion/Polymer			28V

bq246xx:

	bq2460 0	bq2461 0	bq2461 6	bq2461 7	bq2461 8	bq2465 0
Cell chemistry	Li- lon/Li-	Li- lon/Li-	Li- lon/Li-	Li- lon/Li-	Li- lon/Li-	Li- lon/Li-
Number of cells in series (minimum to maximum, 4.2 V/cell)	Polymer 1 to 6					
Charge voltage (minimum to maximum) (V)	2.1 to 26	2.1 to 26	2.1 to 26	2.1 to 22	2.1 to 26	2.1 to 26
Input voltage range (minimum to maximum) (V)	5 to 28	5 to 28	5 to 28	5 to 24	4.7 to 28	5 to 28
Input overvoltage (V)	32	32	32	26	32	32
Maximum battery charging current (A)	10	10	10	10	10	10
Switching frequency (kHz)	1200	600	600	600	600	600
JEITA charging temperature profile	No	No	Yes	No	No	No
DPM	No	lin DPM	lin DPM	lin DPM	lin DPM	Vin DPM

Nous allons aussi ajouter deux composants qui nous ont été suggérés :

- le CN3761
- le DS6521

Ces composants devraient répondre à notre cahier des charges, mais je préfère quand même essayer d'en trouver un par moi-même						
essayer d'en trouver un par moi-meme						