

From Regression to Deep Learning Practice LESS Deep Learning Learn - Experiment - Share - Seek

Barathi Ganesh HB

Centre for Excellence in Computational Engineering and Networking (CEN)
Amrita School of Engineering, Coimbatore
Amrita Vishwa Vidyapeetham, India
email: barathiganesh.hb@gmail.com

Outline

ML Introduction

Regression to Deep Learning

Need of Deep Learning

Matrix Representation

Machine Learning Introduction

About 31,00,00,000 results (0.50 seconds)

Machine learning - Wikipedia

https://en.wikipedia.org/wiki/Machine_learning ▼

Machine learning is a field of computer science that gives computers the ability to learn without being explicitly programmed. Arthur Samuel, an American pioneer in the field of computer gaming and artificial intelligence, coined the term "Machine Learning" in 1959 while at IBM.

Machine learning · Machine Learning (journal) · Timeline of machine learning · H2O

- Reducing human/machine efforts required to perform a task (time optimization).
- Increasing the performance of a task (efficiency optimization).

Steps in Machine Learning

- Collecting data
- Preparing the data
- Training a model
- Evaluating the model
- Improving the performance

Supervised Learning

source: www.allprogrammingtutorials.com/tutorials/introduction-to-machine-learning.php

source: https://medium.com/@ali_88273/regression-vs-classification-87c224350d69

Common Supervised Learning Algorithms

- Linear Regression
- Logistic Regression
- Support Vector Machines
- Support Vector Regression
- Decision Trees
- Random Forest Tree
- Naive Bayes

Unsupervised Learning

source: www.allprogrammingtutorials.com/tutorials/introduction-to-machine-learning.php

Clustering

source: https://towardsdatascience.com/clustering-unsupervised-learning-788b215b074b

Dimensionality Reduction

source: http:

//spie.org/newsroom/3560-dimensionality-reduction-of-multidimensional-satellite-imagery?SSO=1

Common Unsupervised Learning Algorithms

- K-means
- Affinity Propagation
- Singluar Value Decomposition
- Non-negative matrix factorization

?

$$2x = 6 \tag{1}$$

$$(2x - 6) = 0 (2)$$

$$x = ? (3)$$

$$2x = 6 \tag{4}$$

$$(2x - 6) = 0 (5)$$

$$x = ? (6)$$

$$x = 6/2 = 3 \tag{7}$$

$$2(3) - 6 = 0 \tag{8}$$

$$2a + b + c = 4 \tag{9}$$

$$a + 3b + 2c = 5 (10)$$

$$a = 6 \tag{11}$$

$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$
 (12)

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 0 & 0 \end{bmatrix}, x = \begin{bmatrix} a \\ b \\ c \end{bmatrix}, b = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$
 (13)

$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$
 (14)

$$Ax = b \tag{15}$$

$$(Ax - b) = ? \tag{16}$$

$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$
 (17)

$$Ax = b \tag{18}$$

$$(Ax - b) = 0 (19)$$

$$x = \begin{bmatrix} a \\ b \\ c \end{bmatrix} = ? \tag{20}$$

What is Regression

Regression?

What is Regression

$$x + y = z$$

Solving Ax=b

$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$
 (21)

$$X W = Y \tag{22}$$

$$(X W - Y) = 0 \tag{23}$$

$$W = \begin{bmatrix} a \\ b \\ c \end{bmatrix} = ? \tag{24}$$

$$X^{\dagger} X W = X^{\dagger} Y \tag{25}$$

$$I W = X^{\dagger} Y \tag{26}$$

$$W = X^{\dagger} Y \tag{27}$$

Decimal Value Prediction

ID	digit1	digit2	digit3	value
1	0	0	0	0
2	0	0	1	1
3	0	1	0	2
4	0	1	1	3
5	1	0	0	4
6	1	0	1	5
7	1	1	0	6
8	1	1	1	7

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} w1 \\ w2 \\ w3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{bmatrix}$$
(28)

$$X \mathbf{w} = \mathbf{y} \tag{29}$$

$$X^{\dagger} X \mathbf{w} = X^{\dagger} \mathbf{y} \tag{30}$$

$$\mathbf{w} = X^{\dagger} \mathbf{y} \tag{31}$$

$$\mathbf{w} = X^{\dagger} \ \mathbf{y} = X^{\dagger} \begin{vmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{vmatrix} = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} w1 \\ w2 \\ w3 \end{bmatrix}$$
(32)

$$X \mathbf{w} = \mathbf{y} \tag{33}$$

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{bmatrix}$$

$$(34)$$

$$X \mathbf{w} = \mathbf{y}^{pre} \tag{35}$$

training error =
$$abs(\mathbf{y} - \mathbf{y}^{pre})$$
 (36)

training error =
$$sum(abs(y - y^{pre}))$$
 (37)

$$\mathbf{y} - \mathbf{y}^{pre} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{bmatrix} = sum \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = 0$$
 (38)

$$\begin{bmatrix} digit1 & digit2 & digit1 \end{bmatrix} \begin{bmatrix} w1 \\ w2 \\ w3 \end{bmatrix} = \begin{bmatrix} value \end{bmatrix}$$
 (39)

$$digit1 * w1 + digit2 * w2 + digit3 * w3 = value$$
 (40)

$$\begin{bmatrix} digit1 & digit2 & digit1 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} = [value]$$
 (41)

$$digit1 * 4 + digit2 * 2 + digit3 * 1 = value$$
 (42)

Linear Regression

source: solutions4statistics.com

Decimal Value Prediction

ID	digit1	digit2	digit3	value	decision
1	0	0	0	0	0
2	0	0	1	1	0
3	0	1	0	2	0
4	0	1	1	3	0
5	1	0	0	4	1
6	1	0	1	5	1
7	1	1	0	6	1
8	1	1	1	7	1

$$\begin{bmatrix} digit1 & digit2 & digit3 \end{bmatrix} \begin{bmatrix} w1 \\ w2 \\ w3 \end{bmatrix} = [value]$$
 (43)

$$digit1 * w1 + digit2 * w2 + digit3 * w3 = value$$
 (44)

$$Prediction = \begin{cases} 1 & \text{if } 4 \geqslant \text{value} \\ 0 & \text{else} \end{cases} \tag{45}$$

Logistic Regression

source: solutions4statistics.com

Logistic - Sigmoid Function

https://sebastianraschka.com/images/faq/logisticregr-neuralnet/sigmoid.png

Logistic - Sigmoid

$$\Phi(z) = \frac{1}{1 + \exp^{-z}} \tag{46}$$

$$\Phi(-6) = \frac{1}{1 + \exp^{-(-6)}} = \frac{1}{1 + 403.42} = 0.0024 \tag{47}$$

$$\Phi(0) = \frac{1}{1 + exp^0} = \frac{1}{1+1} = 0.5 \tag{48}$$

$$\Phi(6) = \frac{1}{1 + exp^{-(6)}} = \frac{1}{1 + 0.0024} = 0.997 \tag{49}$$

Logistic Regression

$$\Phi(z) = \frac{1}{1 + exp^{-z}} \tag{50}$$

$$\mathbf{y} = \Phi(X \ \mathbf{w}) = \frac{1}{1 + exp^{-(X \ \mathbf{w})}}$$
 (51)

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} w1 \\ w2 \\ w3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
 (52)

$$X \mathbf{w} = \mathbf{y} \tag{53}$$

$$X^{\dagger} X \mathbf{w} = X^{\dagger} \mathbf{y} \tag{54}$$

$$\mathbf{w} = X^{\dagger} \mathbf{y} \tag{55}$$

$$\mathbf{w} = X^{\dagger} \ \mathbf{y} = X^{\dagger} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1.24054754 \\ -0.11269202 \\ -0.11269202 \end{bmatrix} = \begin{bmatrix} w1 \\ w2 \\ w3 \end{bmatrix}$$
(56)

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1.24054754 \\ -0.11269202 \\ -0.11269202 \end{bmatrix} = sigmoid \begin{pmatrix} 0.0 \\ -0.11269202 \\ -0.22538404 \\ 1.24054754 \\ 1.12785552 \\ 1.0151635 \end{bmatrix}$$
(57)

 $X \mathbf{w} = sigmoid(\mathbf{y}^{pre})$

(58)

$$sigmoid \begin{pmatrix} \begin{bmatrix} 0.0 \\ -0.11269202 \\ -0.11269202 \\ -0.22538404 \\ 1.24054754 \\ 1.12785552 \\ 1.12785552 \\ 1.0151635 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 0.47185 \\ 0.47185 \\ 0.44389 \\ 0.77565 \\ 0.75544 \\ 0.75544 \\ 0.73402 \end{bmatrix}$$
 (59)

$$X \mathbf{w} = sigmoid(\mathbf{y}^{pre}) \tag{60}$$

training error =
$$sum(abs(\mathbf{y} - sigmoid(\mathbf{y}^{pre})))$$
 (61)

training error =
$$sum(abs(\mathbf{y} - sigmoid(\mathbf{y}^{pre}))$$
 (62)

training
$$error = 0$$
 (64)

$$\begin{bmatrix} 0.5\\ 0.47185\\ 0.47185\\ 0.44389\\ 0.77565\\ 0.75544\\ 0.75544\\ 0.73402 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 1\\ 1\\ 1\\ 0\\ 1 \end{bmatrix}$$

$$(65)$$

$$Prediction = \begin{cases} 1 & \text{if } sigmoid(\mathbf{y}^{pre}) \ge 0.5 \\ 0 & \text{else} \end{cases}$$
 (66)

$$\begin{bmatrix} digit1 & digit2 & digit3 \end{bmatrix} \begin{bmatrix} 1.24054754 \\ -0.11269202 \\ -0.11269202 \end{bmatrix} = [value]$$
 (67)

$$digit1 * w1 + digit2 * w2 + digit3 * w3 = value$$
 (68)

$$sigmoid(\mathbf{y}^{pre}) = \frac{1}{1 + \exp^{-(\operatorname{digit1} * w1 + \operatorname{digit2} * w2 + \operatorname{digit3} * w3)}}$$
 (69)

$$Prediction = \begin{cases} 1 & \text{if } sigmoid(\mathbf{y}^{pre}) \ge 0.5 \\ 0 & \text{else} \end{cases}$$
 (70)

Support Vector Machine

 $source: \ https://www.linkedin.com/pulse/support-vector-machine-srinivas-kulkarni/support-vector-machine-srinivas-srinivas-kulkarni/support-vector-machine-srinivas-kulkarni/support-vector-machine-srinivas-srinivas-kulkarni/support-vector-ma$

source: https://www.researchgate.net/figure/ Figure-3-SVM-classification-scheme-H-is-the-classification-hyperplane-W-is-the-normal_ 286268964

source: https://www.researchgate.net/figure/267510750_ Figure-4-An-example-of-support-vector-machine-with-confident-level-of-tumour-label-assign

source: https://www.researchgate.net/figure/ Figure-2-Illustration-of-the-SVM-principle-and-of-the-one-versus-one-multiclass-classification_ 220098164_fig2

Decision Trees

source: https://dzone.com/articles/machine-learning-with-decision-trees

Random Forest Tree

source: https://dimensionless.in/introduction-to-random-forest/

K-Means

source: https://www.re-work.co/blog/top-10-machine-learning-algorithms-for-beginners

Affinity Propagation

source: http://madhukaudantha.blogspot.in/2015/04/affinitypropagation-clustering-algorithm.html

Singluar Value Decomposition

$$A_k = U_k \times S_k \times V_k^T$$

 $source: \ \ \, \texttt{http://xieyan87.com/2015/06/} \\ stochastic-gradient-descent-sgd-singular-value-decomposition-svd-algorithms-notes/$

Non-negative matrix factorization

source: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028898

Evaluating the model

Accuracy

$$Accuracy = \frac{\# \ correctly \ classified \ instances}{total\# \ instances}$$
 (71)

Evaluating the model

(72)

Accuracy =
$$6 / 8 * 100 = 75 \%$$

Evaluating the model

Source: www.quora.com/Whats-the-difference-between-overfitting-and-underfitting

Improving the performance

10 - fold 10-cross validation

Source: wikipedia

Logistic Regression as a Neuron

 $\verb|www.techmaru.com/technology/artificial-neural-networks/neural-network-elements| \\$

Neuron to Neurons

Amrita Vishwa Vidyapeetham

Single Layer Network

www.extremetech.com/extreme/

 ${\tt 215170-artificial-neural-networks-are-changing-the-world-what-are-they}$

Multi Layer Network

Why Deep Learning?

Source: https:

 $/\!/ leonardoaraujos antos. gitbooks.io/artificial-inteligence/content/linear_classification. html inteligence/content/linear_classification. html inteligence/content/linear$

Why Deep Learning?

BIG DATA & DEEP LEARNING

Source: https://qph.ec.quoracdn.net/main-qimg-bf69c291005e68620a1bef39ae8f029e-c

Why now Deep Learning?

Common Deep Learning Algorithms

- Convolutional Neural Network
- Recurrent Neural Network
- Long-Short Term Memory Network
- Deep Neural Network
- Auto Encoders

Neuron

www.learnopencv.com

Activation Functions

Hane	Plot	Equation	Derivative
Identity	/	f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TarH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) [2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

cdn-images-1.medium.com/

Logistic Regression as Neuron

Convolutional Neural Network

colah.github.io

Convolutional Neural Network

Recurrent Neural Network

Recurrent Neural Network

Recurrent Neural Network

Bi-directional Recurrent Neural Network

colah.github.io

Long-Short Term Memory Network

Deep Neural Network

Auto Encoder

Matrix Representation

Linear Equations to Matrix

$$2a + b + c = 4 (73)$$

$$a + 3b + 2c = 5 (74)$$

$$a = 6 \tag{75}$$

Linear Equations to Matrix

$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$
 (76)

Linear Equations to Matrix

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 0 & 0 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$
 (77)

Term - Document Matrix

S1: we are in cen

S2: cen is in amrita

Vocabulary : {amrita, are, cen, in, is, we}

	amrita	are	cen	in	is	we
S1	0	1	1	1	0	1
S2	1	0	1	1	1	0

Term Frequency and Inverse Document Frequency

S1 : we are in cen

S2: cen is in amrita

Vocabulary : {amrita, are, cen, in, is, we}

	amrita	are	cen	in	is	we
S1	0/1	1/1	1/2	1/2	0/1	1/1
S2	1/1	0/1	1/2	1/2	1/1	0/1

	amrita	are	cen	in	is	we	
S1	0	1	0.5	0.5	0	1	1
S2	1	0	0.5	0.5	1	0	1

N-grams in BOT

- uni-gram : {amrita, are, cen, in, is, we}
- bi-gram : uni-gram ∪ {we are, are in, in cen}
- tri-gram : uni-gram \cup bi-gram \cup {we are in, are in cen}
- ullet n-gram : uni-gram \cup . . . \cup n-gram

Feature - Term Matrix : Co-occurrence Matrix

	amrita	are	cen	in	is	we
amrita	0	0	0	1	0	0
are	0	0	0	1	0	1
cen	0	0	0	0	1	0
in	1	0	0	0	1	0
is	0	0	1	1	0	0
we	0	1	0	0	0	0

Symmetric - Counts in both side of the terms (bi-directional) Asymmetric - Counts in one side of the terms (uni-directional) Window Size - Reflects the context : Number of words to be included for count

Distributional Representation

	amrita	are	cen	in	is	we
S1	0	1	1	1	0	1
S2	1	0	1	1	1	0

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$
$$U\Sigma V^{T} = svd(A)$$

$$WH^T = nmf(AA^T)$$
 for document representation $WH^T = nmf(A^TA)$ for word representation

Co-occurrence Matrix for Documents Representation (U)

$$AA^{T} = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} S_{1}S_{1} & S_{1}S_{2} \\ S_{2}S_{1} & S_{2}S_{2} \end{bmatrix}$$

Co-occurrence Matrix for Words Representation (V)

$$A^{T}A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} W_1W_1 & W_1W_2 & W_1W_3 & W_1W_4 & W_1W_5 & W_1W_6 \\ W_2W_1 & W_2W_2 & W_2W_3 & W_2W_4 & W_2W_5 & W_2W_6 \\ W_3W_1 & W_3W_2 & W_3W_3 & W_3W_4 & W_3W_5 & W_3W_6 \\ W_4W_1 & W_4W_2 & W_4W_3 & W_4W_4 & W_4W_5 & W_4W_6 \\ W_5W_1 & W_5W_2 & W_5W_3 & W_5W_5 & W_5W_5 & W_5W_6 \\ W_6W_1 & W_6W_2 & W_6W_3 & W_6W_5 & W_6W_5 & W_6W_6 \end{bmatrix}$$

Figure: Continuous Bag Of Words Model

Figure: Skip-Gram Model

[we are in cen]
$$\approx \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

[we are in cen]
$$\approx \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \times W1_{V \times N} \times W2_{N \times V} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

we are in cen = matrix factorization
$$\left(\begin{bmatrix} | & | & | & | & | \\ we & + & are & + & in & + & cen \\ | & | & | & | & | \end{bmatrix}\right)$$

matrix factorization ϵ {svd, nmf}

Figure: Distributed Memory Model

Figure: Distributed Bag Of Words Model

Source: blog.kleinproject.org/?p=588

Source: www.cbc.ca/news/trending

Source: http://slideplayer.com/slide/8752313/

Amrita Vishwa Vidyapeetham

Image to Matrix

88	82	84	88	85	83	80	93	102
88	80	78	80	80	78	73	94	100
85	79	8	78	77	74	65	91	99
38	35	40	35	39	74	77	70	65
20	25	23	28	37	69	64	60	57
22	26	22	28	40	65	64	59	34
24	28	24	30	37	60	58	56	66
21	22	23	27	38	60	67	65	67
23	22	22	25	38	59	64	67	66

 $Source: \verb| www1.adept.com/main/KE/DATA/ACE/AdeptSight_User/Vision_Basics_Mode.html| \\$

Value of circled element = k

Source: slideplayer.com/slide/8752313/

Thank You.

you can follow me through:

www.linkedin.com/in/barathiganesh-hb https://barathiganesh-hb.github.io/ https://github.com/BarathiGanesh-HB/