1 Constants

Symbol	Name	value	unit
	Earth radius	6378.14	km
μ	Gravitational parameter	3.986×10^{14}	$\mathrm{m}^3/\mathrm{s}^2$

2 Newton's laws of motion

2.1 Newton's first law of motion

A body continues in its state of rest, or of uniform motion in a straight line, unless compelled to change that state by forces impressed upon it.

$$\vec{p} = m\vec{V}$$

 $\vec{p} = \text{linear momentum vector } (\text{kg} \cdot \text{m/s})$

m = mass (kg)

 \vec{V} = velocity vector (m/s)

$$\vec{H} = I\vec{\Omega}$$

 \vec{H} = angular momentum vector (kg·m²/s)

 $I = \text{moment of inertia } (\text{kg} \cdot \text{m}^2)$

 $\vec{\Omega}$ = angular velocity vector (rad/s)

 $\vec{H} = \vec{R} \times m \vec{V}$

 \vec{H} = angular momentum vector (kg·m²/s)

 $\vec{R} = \text{position (m)}$

m = mass (kg)

 \vec{V} = velocity vector (m/s)

2.2 Newton's second law of motion

The time rate of change of an object's momenutm equals the applied force.

$$\vec{F} = m\vec{a}$$

 $\vec{F} = \text{force vector } (\text{kgm/s}^2 = \text{N})$

m = mass (kg)

 $\vec{a} = \text{acceleration (m/s}^2)$

2.3 Newton's third law of motion

When body A exerts a force on body B, body B will exert an equal, but opposite, force on body A

3 Newton's laws of universal gravitation

$$F_g = \frac{Gm_1m_2}{R^2}$$

 $F_g =$ force due to gravity (N)

 $G = \text{universal gravitational constant} \approx 6.674 \times 10^{-11} \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{kg}^2$

 $m_1, m_2 = \text{masses of two bodies (kg)}$

R = distance between the two bodies (m)

$$a_g = \frac{\mu_{Earth}}{R^2}$$
 $a_g = \text{acceleration due to gravity (m/s}^2)$ $\mu_{Earth} \equiv G \, m_{Earth} \approx 3.986 \times 10^{14} \, \text{m}^3/\text{s}^2$ $R = \text{distance between the two bodies (m)}$

4 Laws of conservation

4.1 Conservation of momentum

In the absence of outside forces, linear and angular momentum are conserved.

4.2 Energy

$$\boxed{PE = m \, a_g h}$$

$$PE = -\frac{m\mu}{R}$$

$$E=$$
 total mech. energy $(kg m^2/s^2)$ $m=$ mass (kg) $m=$ spacecraft's mass (kg) $KE=$ kinetic energy $(kg m^2/s^2)$ $a_g=$ acceleration due to gravity (m/s^2) $\mu=$ gravitational parameter (km^3/s^2) $PE=$ potential energy $(kg m^2/s^2)$ $h=$ height above ref. point (m) $R=$ distance from Earth's center (km)

$$KE = \frac{1}{2}mV^2 - \frac{m\mu}{R}$$

$$KE = \text{kinetic energy } (\text{kg m}^2/\text{s}^2)$$

$$m = \text{mass } (\text{kg})$$

$$V = \text{velocity } (\text{km/s})$$

$$E = \text{total mech. energy } (\text{kg m}^2/\text{s}^2)$$

$$m = \text{mass } (\text{kg})$$

$$V = \text{velocity } (\text{km/s})$$

$$\mu = \text{gravitational parameter } (\text{km}^3/\text{s}^2)$$

$$R = \text{position } (\text{km})$$

5 The restricted two-body problem

5.1 Coordinate systems

A coordinate system (figure 2) is:

- an origin
- a fundamental plane, containing two axes, and the perpendicular to it
- a principal direction within the plane
- the third axis using the right-hand rule

FIGURE 1 – Geocentric equatorial coordinates. The origin is the centre of the Earth. The fundamental plane is the plane of the Earth's equator. The primary direction (the x axis) is the vernal equinox. A right-handed convention specifies a y axis 90° to the east in the fundamental plane; the z axis is the north polar axis. The reference frame does not rotate with the Earth, rather, the Earth rotates around the z axis.

5.2 Equation of motion

$$\vec{\ddot{R}} + \frac{\mu}{R^2} \frac{\vec{R}}{R} = 0$$

 $\ddot{\vec{R}} = \text{spacecraft's acceleration } (\text{km/s}^2)$

 $\mu = \text{gravitational parameter } (\text{km}^3/\text{s}^2)$

 $\vec{R} = \text{spacecraft's position vector (km)}$

R = magnitude of the spacecraft's position vector (km)

5.3 Orbital geometry

Figure 2 – Geometry of an elliptical orbit

 $\vec{R} = \text{spacecraft's position vector}$

 $\vec{V} = \text{spacecraft's velocity vector}$

FandF' =primary and vacant foci

 $R_p = \text{radius of perigee}$

 $R_a = \text{radius of apogee}$

2a = major axis

2b = minor axis

2c = distance between the foci

a = semimajor axis

b = semiminor axis

 $\nu = \text{true anomaly}$

 $\phi = \text{flight-path angle}$

$$e = \frac{2c}{2a} = \frac{R_a - R_p}{R_a + R_p}$$

$$e = eccentricity$$

$$R = \frac{a(1 - e^2)}{1 + e\cos\nu}$$

R = magnitude of the spacecraft's position vector (km)

a = semi-major axis (km)

e = eccentricity (unitless)

 $\nu = \text{true anomaly (deg or rad)}$

Conic section	a = semimajor axis	c = one half the distance between foci	e = eccentricity
circle	a > 0	c = 0	e = 0
ellipse	a > 0	0 < c < a	0 < e < 1
parabola	$a = \infty$	$c = \infty$	e = 1
hyperbola	a < 0	a < c > 0	e > 1

6 Constants of orbital motion

6.1 Specific mechanical energy

$$\varepsilon \equiv \frac{E}{m} = \frac{V^2}{2} - \frac{\mu}{R}$$

$$V = \sqrt{2(\frac{\mu}{R} + \varepsilon)}$$

 $\varepsilon = \text{spacecraft's specific mechanical energy } (\text{km}^2/\text{s}^2)$

V = spacecraft's velocity (km/sec)

 $\mu = \text{Gravitational parameter km}^3/\sec^2 \approx 3.986 \times 10^5 \text{km}^3/\text{s}^2 \text{ for Earth}$

R = spacecraft's distance from Earth's center (km)

$$\varepsilon = -\frac{\mu}{2a}$$

 $\varepsilon = \text{spacecraft's specific mechanical energy } (\text{km}^2/\text{s}^2)$

 $\mu = \text{Gravitational parameter km}^3/\sec^2 \approx 3.986 \times 10^5 \text{km}^3/\text{s}^2 \text{ for Earth}$

a = semimajor axis (km)

$$P = 2\pi \sqrt{\frac{a^3}{\mu}}$$

$$P = \text{period (seconds)}$$

$$\pi = 3.14159... \text{ (unitless)}$$

$$a = \text{semimajor axis (km)}$$

$$\mu = \text{Gravitational parameter km}^3/\sec^2 \approx 3.986 \times 10^5 \text{km}^3/\text{s}^2 \text{ for Earth}$$

6.2 Specific angular momentum