Recitation 9: Speech

ASR and Beyond

Abby Bertics & Wei Fang

MIT 6.806-6.864 Spring 2021

Overview

Acoustic Features

ASR

Some ASR Applications (think: voice assistants)

- Speech Recognition
- +Translation
- +Intent classification (eg. buy ticket)
- +Slot filling (eg. fill info for buying ticket)

Conventional ASR Pipeline

- Weighted FST for composing the components
- DNN Acoustic models: replace GMM (hybrid) or as inputs (Tandem)

ASR (End-to-end) - Listen, Attend and Spell (LAS)

Summary: typical seq2seq with attention

Seq2seq + Attention

- Encoder
 - Here pyramid BLSTM (can also use RNN/CNN/self-attention combinations)
 - downsampling: pyramid, pooling over time, time-delay DNN, dilated CNN, truncated self-attention
- Attention: many variations
- · Decoder:
 - Training: teacher forcing, scheduled sampling
 - · Decoding: beam search, LM rescoring

ASR (End-to-end) - Connectionist Temporal Classification (CTC)

Summary: can be viewed as seq2seq with linear decoder

CTC

- Encoder: uni-directional RNN
- · Classifier: linear, at each time step
- · Training loss: not at each time step, but sum over all alignments (DP)
- · Decoding: beam search

RNN-T

Adds output dependencies with extra RNNLM

Comparisons

	LAS	СТС	RNN-T
Decoder	dependent	independent	dependent
Alignment	not explicit (soft alignment)	Yes	Yes
Training	just train it	sum over alignment	sum over alignment
On-line	No	Yes	Yes

(some) Recent Advances

- · Low-resource settings
 - unsupervised/semi-supervised/transfer learning
- Self-supervised learning / pre-training
 - speech representation learning (eg. CPC¹, APC², wave2vec³, ...)
- · SOTA: Huge data/models⁴⁵

¹https://arxiv.org/pdf/1807.03748.pdf ²https://arxiv.org/pdf/1904.03240.pdf

³https://arxiv.org/pdf/2006.11477.pdf

⁴https://arxiv.org/pdf/2104.03416.pdf

⁵https://arxiv.org/pdf/2104.02133.pdf

Text-to-Speech (TTS) Synthesis

Concatenative From database of recordings

Parametric

End-to-end Neural

E2E Neural Speech Synthesis

- NN model (Enc-Dec): seq2seq + attn (Tacotron2⁶)
 - · Attention: modeling duration
- Vocoder (Waveform generation)
 - · Rule-based: Griffin-Lim
 - · Neural Network: WaveNet⁷
- Evaluation:
 - · Metrics that correlate with voice quality and prosody. eg. mean cepstral distortion (MCD)
 - · (much more important) Human evaluation: Mean opinion scores (MOS)

⁶https://arxiv.org/pdf/1712.05884.pdf ⁷https://arxiv.org/pdf/1609.03499.pdf

Beyond Tacotron

- · Improvements on attention
- · Richer information for encoder8
- Mispronunciation⁹
- · Controllable generation¹⁰
- ٠ ..

⁸https://www.isca-speech.org/archive/Interspeech_2019/pdfs/3177.pdf

⁹https://www.isca-speech.org/archive/Interspeech 2019/pdfs/2830.pdf

¹⁰https://ai.googleblog.com/2018/03/expressive-speech-synthesis-with.html

Applications:

(pls type in chat)

"Naive" approach: Cascading ASR + TTS

Different possible models:

feature conversion

waveform generation

Evaluation:

Listening tests: naturalness and similarity

Speech Classification

- · Language/Dialect Identification
- Speaker Verification / ID / Diarization
- · Emotion Classification

Speech Classification – Language ID

i.e.: for use in call centers, or for Siri models:

- HMMs (using i-vectors)
- Convolutional RNNs (CNN to extract spatial features, RNN/LSTM handle time and predict language)
- + attention

Speech Classification – Psychiatric Disorders

speech production is *complex* – slight physiological and cognitive changes potentially can produce noticeable acoustic changes

acoustic features linked to symptoms

- major depressive disorder: decrease in f0 and f0 range; also jitter, shimmer, f0 variablilty
- ptsd: slower, flatter; also reduced tonality in vowel space and f0 variability
- · schizophrenia: total time talking, speech rate, mean pause duration, flat affect
- and more (see references)

Speech Classification – Psychiatric Disorder Detection

- · SVMs or Gaussian Mixture models
- CNN on spectrograms

The End

Questions?

References

- Deep Learning for Human Language Processing course by Lee (2020), Lec. 2-7
- Expressive Speech Synthesis with Tacotron by Google AI (2018)
- Voice Conversion Challenge 2020
- · Spoken Language Identification using ConvNets by Sarthak et al. (2019)
- Automated assessment of psychiatric disorders using speech: A systematic review by Low et al. (2020)