Komutativna algebra - 3. domača naloga

Benjamin Benčina, 27192018

31. marec 2020

<u>Nal. 1:</u>

(a) Naj bosta R,S komutativna kolobarja in M,N R-modula. S homomorfizmom $\phi\colon R\to S$ razširimo skalarje. Pokazali bomo

$$M_S \otimes_S N_S \cong (M \otimes_R N)_S.$$

Najprej si oglejmo, kako razširitev skalarjev sploh deluje. Kolobar S opremimo s strukturo Rmodula s pomočjo homomorfizma ϕ na naslednji način:

$$r \cdot s := \phi(r)s$$
.

Nato definiramo S-modul M_S s pomočjo tenzorskega produkta $M_S = S \otimes_R M$ z operacijo na enostavnih tenzorjih $s \cdot (s' \otimes m) := (ss') \otimes m$. Enako definiramo S-modul N_S . Opazimo, da velja

$$s \otimes m = s \cdot (1 \otimes m).$$

S-modul $(M \otimes_R N)_S$ je torej definiran kot $(M \otimes_R N)_S := S \otimes_R M \otimes_R N$ z operacijo na enostavnih tenzorjih $s \cdot (s' \otimes m \otimes n) := (ss') \otimes m \otimes n$. Z zgornjo opazko v mislih zato definiramo homomorfizem modulov

$$\varphi \colon M_S \otimes_S N_S \to (M \otimes_R N)_S$$

s predpisom na enostavnih tenzorjih

$$(s_1 \otimes m) \otimes (s_2 \otimes n) \mapsto s_1 s_2 \otimes m \otimes n.$$

Po opazki je predpis dobro definiran, saj

$$(s_1 \otimes m) \otimes (s_2 \otimes n) = (s_1 \otimes m) \otimes s_2 \cdot (1 \otimes n) = s_2 \cdot (s_1 \otimes m) \otimes (1 \otimes n) = (s_1 s_2 \otimes m) \otimes (1 \otimes n).$$

Inverz je sedaj očiten

$$s \otimes m \otimes n \mapsto (s \otimes m) \otimes (1 \otimes n)$$

in dobro definiran po zgornji opazki.

(b) Ali lahko kaj podobnega povemo o omejitvi skalarjev?

Naj bosta M, N tokrat S-modula in $\phi: R \to S$ omejitev skalarjev. R-modul $M^R = M$ je definiran z operacijo $r \cdot m := \phi(r) \cdot m$, enako naredimo za N^R . Ali velja

$$M^R \otimes^R N^R \cong (M \otimes_S N)^R$$
?

R-modul $(M \otimes_S N)^R = M \otimes_S N$ je definiran z operacijo $r \cdot (m \otimes n) := \phi(r)(m \otimes n)$. Sumimo, da se bo težava pojavila pri dobri definiranosti izomorfizma. Res, naj bo preslikava

$$\varphi \colon M^R \otimes^R N^R \to (M \otimes_S N)^R$$

kandidat za izomorfizem modulov podan s predpisom na enostavnih tenzorjih

$$m \otimes n \mapsto m' \otimes n'$$
.

Brez škode za splošnost lahko privzamemo, da se enostavni tenzorji slikajo v enostavne, sicer upoštevamo zahtevo linearnosti. Preverimo, ali je to res homomorfizem modulov:

$$\varphi(r \cdot (m \otimes n)) = \varphi(\phi(r)m \otimes n) = \phi(r)m' \otimes n',$$

tukaj pa se pojavi težava. Za preslikavo ϕ namreč nimamo vsaj lokalnega inverza in zato ne moremo izpostaviti skalarja r. Vidimo, da mora biti homomorfizem ϕ injektiven. Res, če je homomorfizem ϕ injektiven, je preslikava φ , definirana s $m \otimes n \to m \otimes n$, izomorfizem modulov.

- <u>Nal. 2:</u> Naj bo $I \triangleleft R$ nilpotenten ideal komutativnega kolobarja R in naj bo n_0 njegova stopnja nilpotentnosti, torej najmanjše naravno število, da je $I^{n_0} = (0)$. Naj bosta M in N poljubna R-modula.
 - (a) Pokazali bomo, da iz IM = M sledi M = 0. To enostavno sledi, če privzeto formulo uporabimo n_0 -krat:

$$0 = I^{n_0}M = I^{n_0-1}(IM) = I^{n_0-1}M = \dots = IM = M.$$

(b) Pokažimo, da je homomorfizem $\phi \colon N \to M$ surjektiven natanko tedaj, ko je inducirani kvocientni homomorfizem $\overline{\phi} \colon N/IN \to M/IM$ surjektiven.

Implikacija iz leve v desno sledi neposredno iz definicije induciranega homomorfizma (izreki o izomorfizmih).

Obratno, naj bo $\overline{\phi} \colon N/IN \to M/IM$ surjektiven homomorfizem, tj. za vsak $\overline{b} \in M/IM$ obstaja $a \in N$, da je

$$\overline{b} = \overline{\phi}(\overline{a}),$$

kjer je $\overline{a} = a + IN$ in $\overline{b} = b + IM$ za neki $b \in M$. Po definiciji inducirane preslikave je

$$\overline{\phi}(\overline{a}) = \overline{\phi(a)} = \phi(a) + IM.$$

Iz obeh enačb sledi $b + IM = \phi(a) + IM$, oziroma ekvivalentno $b - \phi(a) \in IM$. Od tod sledi, da je $b \in \phi(N) + IM$ za vsak $b \in M$, saj je kvocientna projekcija surjektivna.

Sedaj bi radi videli, da lahko I v formuli nadomestimo s katerokoli njegovo potenco, torej da $b \in \phi(N) + I^n M$ za vsako naravno število n. Trditev bomo dokazali z indukcijo. Osnovni primer, kjer n=1 je ravno prejšnji argument, zato dokažimo indukcijski korak. Naj bo $b \in \phi(N) + I^n M$. Potem je

$$b = \phi(a) + \sum_{i} \alpha_i c_i,$$

kjer $\alpha_i \in I^n$, $c_i \in M$, vsota pa je končna. Ker je $c_i \in M$, po primeru n=1 sledi

$$c_i = \phi(a_i) + \sum_{j_i} \beta_{j_i} d_{j_i},$$

kjer $a_i \in N$, $\beta_{j_i} \in I$, $d_{j_i} \in M$, vsota pa je končna. Torej

$$b = \phi(a) + \Sigma_i \alpha_i c_i = \phi(a) + \Sigma_i \alpha_i \Sigma_{j_i} \beta_{j_i} d_{j_i} = \phi(a) + \Sigma_i \alpha_i \phi(a_i) + \Sigma_i \Sigma_{j_i} \alpha_i \beta_{j_i} d_{j_i}$$
$$= \phi(a) + \Sigma_i \phi(\alpha_i a_i) + \Sigma_i \Sigma_{j_i} (\alpha_i \beta_{j_i}) d_{j_i} = \phi(a + \Sigma_i \alpha_i a_i) + \Sigma_i \Sigma_{j_i} (\alpha_i \beta_{j_i}) d_{j_i}.$$

Ker $\alpha_i \in I^n$ in $\beta_{j_i} \in I$, je $\alpha_i \beta_{j_i} \in I^{n+1}$ in posledično $b \in \phi(N) + I^{n+1}M$.

Ker je I nilpotenten, vstavimo $n=n_0$ in dobimo $b\in\phi(N)$ za vsak $b\in M$, torej je ϕ surjektivna preslikava.

(c) Za konec pokažimo še, da množica $\{m_{\lambda}; \lambda \in \Lambda\}$ generira M kot R-modul natanko tedaj, ko množica $\{\overline{m_{\lambda}}; \lambda \in \Lambda\}$ generira M/IM kot R/I-modul.

Implikacija iz leve v desno sledi direktno iz lastnosti kvocientne preslikave. Vsak element $a \in M$ lahko zapišemo kot končno vsoto $a = \Sigma_{\lambda} \alpha_{\lambda} m_{\lambda}$. Upoštevamo dejstvo, da je kvocientna preslikava surjektivna in vsak element $\bar{a} \in M/IM$ zapišemo kot končno vsoto

$$\overline{a} = a + IM = \Sigma_{\lambda} \alpha_{\lambda} m_{\lambda} + IM = \Sigma_{\lambda} (\alpha_{\lambda} m_{\lambda} + IM) = \Sigma_{\lambda} (\alpha_{\lambda} + I) (m_{\lambda} + IM) = \Sigma_{\lambda} \overline{\alpha_{\lambda} m_{\lambda}}.$$

Dokaz obratne implikacije bo zelo podoben dokazu točke (b). Naj množica $\{\overline{m_{\lambda}}; \lambda \in \Lambda\}$ generira M/IM kot R/I-modul, torej se da vsak $\overline{a} \in M/IM$ zapisati kot končno vsoto $\overline{a} = \Sigma_{\lambda} \overline{\alpha_{\lambda} m_{\lambda}}$. Upoštevamo definicijo kvocientnega prostora in dobimo

$$a + IM = \sum_{\lambda} \alpha_{\lambda} m_{\lambda} + IM \implies a - \sum_{\lambda} \alpha_{\lambda} m_{\lambda} \implies a \in \text{Lin}(\{m_{\lambda}; \lambda \in \Lambda\}) + IM,$$

kjer smo z Lin($\{m_{\lambda}; \lambda \in \Lambda\}$) označili prost modul, generiran z množico $\{m_{\lambda}; \lambda \in \Lambda\}$. Ker je kvocientna preslikava surjektivna, to velja za vsak $a \in M$.

Z indukcijo dokažimo, da $a \in \text{Lin}(\{m_{\lambda}; \lambda \in \Lambda\}) + I^n M$ za vsak $a \in M$ in $n \in \mathbb{N}$. Primer n = 1 je zgoraj, zato nam preostane le še dokaz indukcijskega koraka. Naj bo torej $a \in \text{Lin}(\{m_{\lambda}; \lambda \in \Lambda\}) + I^n M$. Potem se da a zapisati kot

$$a = \sum_{\lambda} \alpha_{\lambda} m_{\lambda} + \sum_{i} \beta_{i} c_{i},$$

kjer $\beta_i \in I^n$ in $c_i \in M$. Potem se po primeru n = 1 vsak c_i da zapisati kot končno vsoto

$$c_i = \sum_{\lambda_i} c_{\lambda_i} m_{\lambda_i} + \sum_{j_i} \gamma_{j_i} d_{j_i}.$$

To vstavimo v zgornjo enačbo in dobimo (z združivijo delov z m_{λ})

$$a = \sum_{\lambda} \delta_{\lambda} m_{\lambda} + \sum_{i} \sum_{j_{i}} \beta_{i} \gamma_{j_{i}} d_{j_{i}}.$$

Ker je $\beta_i \in I^n$ in $\gamma_{j_i} \in I$, je njun produkt v I^{n+1} . Trditev smo z indukcijo dokazali.

Ker je I nilpotenten ideal, vstavimo $n=n_0$ in dobimo $a\in \text{Lin}(\{m_\lambda;\ \lambda\in\Lambda\})$. Z drugimi besedami, množica $\{m_\lambda;\ \lambda\in\Lambda\}$ generira modul M.