О группах точек на абелевых многообразиях над конечными полями

Юля Котельникова

ниу вшэ, иппи ран

24 августа 2018 г.

Постановка задачи

 \mathbb{F}_q – поле из $q=p^r$ элементов

 X/\mathbb{F}_q – абелево многообразие размерности g

= проективное многообразие + абелева группа

Конечная абелева группа $X(\mathbb{F}_a)$ – ?

XX век

- Эллиптические кривые: Цфасман 85, Rück 87, Schoof 87, Voloch 88
- Простая суперсингулярная поверхность: Xing 96

Пример: эллиптические кривые

Теорема

(Цфасман 1985) Группа G порядка N=1+q-m тогда и только тогда является группой точек некоторой эллиптической кривой, когда выполнено одно из следующих условий:

- $1\ (q,m)=1$, $|m|<2\sqrt{q}$, и $G\cong \mathbb{Z}/n_1\oplus \mathbb{Z}/n_2$, где $n_2|n_1$ и $n_2|m-2$;
- 2 $q=\square$, $|m|=2\sqrt{q}$ и $G\cong (\mathbb{Z}/n_1)^2$, где $n_1=\sqrt{q}\mp 1$;
- $3\ q=\square$, $p\not\equiv 1\,\mathrm{mod}\,3$, $|m|=\sqrt{q}$ и G циклическая;
- 4 $q \neq \square$, p=2 или 3, $|m|=\sqrt{pq}$ и G циклическая;
- 5а $q=\square$, $p\not\equiv 1$ mod 4 или $q\not\equiv \square$, $p\not\equiv 3$ mod 4, m=0 и G циклическая;
- 5b $q
 eq \square$, $p \equiv 3 \mod 4$, m=0 и G циклическая или $G=\mathbb{Z}/n_1\oplus \mathbb{Z}/2$ и $n_1=rac{q+1}{2}$.

Фробениус и модуль Тейта

Морфизм Фробениуса

$$X \stackrel{\mathsf{Fr}_{X,q}}{\longrightarrow} X$$

действует тривиально на |X| и $a\mapsto a^q$ для $a\in\mathcal{O}_X$.

Степень изогении $\cdot n:X\to X$ равна 2g, где $g=\dim X$. Поэтому, если (n,p)=1, то $\#\ker(\cdot n)(\overline{\mathbb F}_q)\cong (\mathbb Z/n)^{2g}$ Пусть $I\ne p$ простое. Модуль Тейта — это

$$\mathsf{T}_I(X) := \varprojlim \ker \left(X \overset{\cdot I}{ o} X\right) \left(\overline{\mathbb{F}}_q\right) \cong \mathbb{Z}_I^{2g}$$

$$X(\mathbb{F}_q)_I = \operatorname{coker} \left(1 - \operatorname{Fr}_{X,q}|_{\mathsf{T}_1(\mathsf{X})}\right)$$

Полиномы Вейля

Полином Вейля — это унитарный многочлен с целыми коэффициентами, все комплексные корни которого по абсолютной величине равны \sqrt{q} , причем те из ни, которые вещественны, имеют четные кратности.

 Fr_X действует на $\operatorname{T}_I(X)$ полупросто.

Харакеристический многочлен f_X Фробениуса — это полином Вейля.

(Honda 1967, Tate 1968)

 $\{\mathsf{K}$ лассы изогении простых абелевых многообразий $\}$

{Неприводимые полиномы Вейля}

Группы точек очень широкого класса многообразий

Теорема 1 (Рыбаков 2010)

Многоугольник Ньютона характеристического многочлена $f_X(1-t)$ оператора $1-\operatorname{Fr}_{X,q}$ на $T_I(X)$ лежит не ниже многоугольника Ходжа группы $X(\mathbb{F}_q)_I$.

Теорема (Рыбаков 2010)

Пусть f(t) — многочлен Вейля. Если многоугольник Ньютона многочлена f(1-t) лежит не ниже многоугольника Ходжа группы G и при этом f(1-t) неприводим, то найдется абелево многообразие X для которого f(t) и G будут, соответственно, характеристическим многочленом Фробениуса и группой точек.

И одного неширокого класса поверхностей

Теорема (Рыбаков 2012)

Пусть $f(t) = P^2(t)$, где P(t) — сепарабельный многочлен Вейля степени 2. Группа G тогда и только тогда является группой точек какого-то многообразия в классе изогении многочлена f(t) когда $G = G_1 \oplus G_2$ и многоугольник Ньютона P(t) лежит не ниже многоугольников Ходжа групп G_1 и G_2 .

Вообще ясно, что в классе изогении многочлена $P_1(t)\cdot P_2(t)$ лежат группы типа $G=G_1\oplus G_2$, для которых пары (g_1,P_1) и (g_2,P_2) удовлетворяют Теореме 1.

Пусть имеется последовательность абелевых многообразий

$$0 \longrightarrow Y \longrightarrow X \longrightarrow Z \longrightarrow 0$$
,

и пусть характеристические многочлены Фробениусов f_Y и f_z взаимно просты.

Тогда имеются точная последовательность $\mathbb{Z}_l[Fr]$ -модулей

$$0 \longrightarrow \mathsf{T}_I(Y) \longrightarrow \mathsf{T}_I(X) \longrightarrow \mathsf{T}_I(Z) \longrightarrow 0$$

и точная последовательность коядер

$$0 \longrightarrow \operatorname{coker}(Fr_Y) \longrightarrow \operatorname{coker}(Fr_X) \longrightarrow \operatorname{coker}(Fr_Z) \longrightarrow 0.$$

Экспоненты этих групп называются инвариантами Смита оператора Fr действующего на соответствющем модуле.

Пусть вообще имеется последовательность $\mathbb{Z}_I(S)$ -модулей

$$0 \longrightarrow A \longrightarrow C \longrightarrow B \longrightarrow 0.$$

Что можно сказать об инвариантах Смита модуля C, зная таковые для модулей B и A?

Teopeмa (Green? Klein? Thompson? Santana-Queró-Marques de Sá?)

Тройка $((a_1,\ldots,a_m),(b_1,\ldots,b_m),(c_1,\ldots,c_m))$ тогда и только тогда является тройкой инвариантов Смита $\mathbb{Z}_l(S)$ -модулей A, B и C, таких что

$$0 \longrightarrow A \longrightarrow C \longrightarrow B \longrightarrow 0$$
,

когда это тройка Литтлвуда-Ричардсона.

Тройки Литтлвуда-Ричардсона

На наборы $((a_1,\ldots,a_m),(b_1,\ldots,b_m),(c_1,\ldots,c_m))$ ищем условия типа

$$(*_{IJK}). \qquad \sum_{i \in I} a_i + \sum_{j \in J} b_j \ge \sum_{k \in K} c_k$$

$$M_n = \{1, 2, ..., n\};
 \Lambda_p^{\leq n} = \{ (i_1 < i_2 < ... < i_p) \in (\mathbb{Z}_{\geq 0})^p \mid 1 \leq i_1; i_p \leq n \};
 U_p^n = \{ (I, J, K) \in (\Lambda_p^{\leq n})^3 \mid \sum_{i \in I} i + \sum_{j \in J} j = \sum_{k \in K} k + \frac{p(p+1)}{2} \}.$$

Положим $T_1^n=U_1^n$. Множества T_p^n определяются рекурсивно

$$T_p^n = \left\{ (I, J, K) \in U_p^n \mid \forall 1 \le r
$$\sum_{f \in F} i_f + \sum_{g \in G} j_g \ge \sum_{h \in H} k_h + \frac{r(r+1)}{2} \right\}.$$$$

Теорема (Green? Klein? Thompson? Santana-Queró-Marques de Sá?) Тройка $((a_1, \ldots, a_m), (b_1, \ldots, b_m), (c_1, \ldots, c_m))$ тогда и только тогда

является тройкой инвариантов Смита $\mathbb{Z}_l(S)$ -модулей A, B и C, таких что $0 \longrightarrow A \longrightarrow C \longrightarrow B \longrightarrow 0.$

когда для $((a_1,\ldots,a_m),(b_1,\ldots,b_m),(c_1,\ldots,c_m))$ выполнены неравенства $(*_{IJK})$ для всех $(I,J,K)\in T_p^n$ при всех $p\in\{1,\ldots,n\}$.

Если $\dim X = 3$, то в тройке

$$0\longrightarrow Y\longrightarrow X\longrightarrow Z\longrightarrow 0,$$

 $\dim Y, \dim Z \leq 2$. Для таких многообразий имеется классификация групп точек.

Лемма

Пусть $T\subset T_l(X)$, такой что $\operatorname{Fr}_X T\subset T$ и $T\otimes_{\mathbb{Z}_l}\mathbb{Q}_l=T_l(X)\otimes_{\mathbb{Z}_l}\mathbb{Q}_l$, то найдется многообразие \tilde{X} и l-изогения $arphi \tilde{X} o X$, такая что $arphi: T_l(X) o T$ — это изоморфизм $_1$ 1

Теорема

Группа

$$\tilde{X}(\mathbb{F}_q)_I = \mathbb{Z}/I^{c_1}\mathbb{Z}/I^{c_2}\dots\mathbb{Z}/I^{c_6}$$

тогда и только тогда является группой точек многообрзия \tilde{X} в классе изогении с характеристическим многочленом Фробениуса $f_X(t)=P^2(t)Q(t)$, $\deg P=\deg Q=2$, PQ сепарабельный, где $(m_1\geq m_2)$ и $(n_1\geq n_2)$ суть абсолютные значения в \mathbb{Z}_l нулей P(1-t) и Q(1-t) соответственно, когда существуют наборы неотрицательных чисел $\mathfrak{a}=(a_1,a_2,a_3,a_4)$, $\mathfrak{b}=(b_1,b_2)$ такие что

2
$$a_2 \le a_1 \le m_1$$

 $a_1 + a_4 = a_2 + a_3 = m_1 + m_2$
 $n_2 \le b_2 \le b_1 \le n_1$
 $b_1 + b_2 = n_1 + n_2$

и выполнены следующие неравенства

[11]

[1] [2] [3] [4] [5]	$egin{array}{c} b_1 \ b_2 \ a_i \ b_1 \ b_2 \end{array}$	> > <	c_6 c_{i+2} , c_1	$1 \le i \le 4$
[3] [6] [7] [8] [9]	$\sum_{i \in I} a_i + b_2$ $a_i + b_1$	< > < < > < < > < < > < < < < > < < < < < < < < < < < < < < < < < < < <	$c_i,$ $\sum_{i \in I} c_{i+1} + c_6$ $c_i + c_6,$ $c_{i+1} + c_5,$	$1 \le i \le 4$ $I \subset M_4$ $1 \le i \le 4$ $1 \le i \le 3$ $1 \le i \le 4$

 $a_i + b_2 \leq c_2 + c_{i+1},$

 $1 \le i \le 3$

$$[12] \quad a_1 + a_2 + b_1 \geq c_1 + c_3 + c_6$$

$$[13] \quad a_1 + a_2 + b_1 \geq c_2 + c_3 + c_5$$

$$[14] \quad a_1 + a_3 + b_1 \geq c_2 + c_3 + c_6$$

$$[15] \quad a_1 + a_3 + b_1 \geq c_2 + c_4 + c_5$$

$$[16] \quad a_1 + a_4 + b_1 \geq c_1 + c_5 + c_6$$

$$[17] \quad a_1 + a_4 + b_1 \geq c_2 + c_4 + c_6$$

$$[18] \quad a_2 + a_3 + b_1 \geq c_2 + c_4 + c_6$$

$$[19] \quad a_2 + a_3 + b_1 \geq c_3 + c_4 + c_5$$

$$[20] \quad a_2 + a_4 + b_1 \geq c_3 + c_4 + c_5$$

$$[21] \quad a_2 + a_4 + b_1 \geq c_3 + c_4 + c_5$$

[22]

 $a_3 + a_4 + b_1 > c_3 + c_5 + c_6$

Theorem

Для многочлена $f_X(t) = P(t)(t \pm \sqrt{q})^2$, $P(t) \cdot (t \pm \sqrt{q})$ сепарабельный, $(m_1 \ge m_2 \ge m_3 \ge m_4)$ абсолютные значения нулей P(1-t) и $v_l(1\pm\sqrt{q})=b$ подходит группа

 $\tilde{X}(\mathbb{F}_a)_I = \mathbb{Z}/I^{c_1}\mathbb{Z}/I^{c_2}\dots\mathbb{Z}/I^{c_6}$

1 < i < 4

occur in todil ko occur cyllioctrivot upper
$$a = (a_1, a_2, a_3)$$
 . Takož utc

- если и только если существует набор $\mathfrak{a}=(a_1,a_2,a_3,a_4)$, такой что

 - $0 c_1 + \ldots + c_6 = m_1 + \ldots + m_4 + 2b$
 - **2** $a_1 \leq m_1$ $a_1 + a_2 < m_1 + m_2$
 - $a_1 + a_2 + a_3 < m_1 + m_2 + m_3$ $a_1 + a_2 + a_3 + a_4 = m_1 + m_2 + m_3 + m_4$
 - выполнены следующие неравенства

$$[5] \qquad a_i + b \geq c_i + c_6, \qquad 1 \leq i \leq 4$$

$$[6] \qquad a_i + b \geq c_{i+1} + c_5, \qquad 1 \leq i \leq 3$$

$$[7] \qquad a_i + b \leq c_1 + c_{i+2}, \qquad 1 \leq i \leq 4$$

$$[8] \qquad a_i + b \leq c_2 + c_{i+1}, \qquad 1 \leq i \leq 3$$

$$[9] \qquad a_1 + a_2 + b \geq c_1 + c_3 + c_6$$

$$[10] \qquad a_1 + a_2 + b \geq c_2 + c_3 + c_5$$

$$[11] \qquad a_1 + a_3 + b \geq c_1 + c_4 + c_6$$

$$[12] \qquad a_1 + a_3 + b \geq c_2 + c_3 + c_6$$

$$[13] \qquad a_1 + a_3 + b \geq c_2 + c_4 + c_5$$

$$[14] \qquad a_1 + a_4 + b \geq c_1 + c_5 + c_6$$

$$[15] \qquad a_1 + a_4 + b \geq c_2 + c_4 + c_6$$

$$[16] \qquad a_2 + a_3 + b \geq c_2 + c_4 + c_6$$

$$[17] \qquad a_2 + a_3 + b \geq c_3 + c_4 + c_5$$

$$[18] \qquad a_2 + a_4 + b \geq c_3 + c_4 + c_5$$

$$[19] \qquad a_2 + a_4 + b \geq c_3 + c_4 + c_5$$

$$[20] \qquad a_3 + a_4 + b \geq c_3 + c_5 + c_6$$

Theorem

Для многочлена $f_X(t) = P^2(t)(t\pm\sqrt{q})^2$, $P(t)\cdot(t\pm\sqrt{q})$ сепарабельный, $(m_1\geq m_2)$ абсолютные значения нулей P(1-t) и $v_l(1\pm\sqrt{q})=b$. подходит группа

$$\tilde{X}(\mathbb{F}_q)_I = \mathbb{Z}/I^{c_1}\mathbb{Z}/I^{c_2}\dots\mathbb{Z}/I^{c_6}$$

если и только если существует набор $\mathfrak{a}=(a_1,a_2,a_3,a_4)$, такой что

- 2 $a_2 \le a_1 \le m_1$ $a_1 + a_4 = a_2 + a_3 = m_1 + m_2$
- выполнены следующие неравенства

[1]
$$b \ge c_5$$

[2] $a_i \ge c_{i+2}$, $1 \le i \le 4$
[3] $b \le c_2$
[4] $a_i \le c_i$, $1 \le i \le 4$

$$[5] \qquad a_i + b \geq c_i + c_6, \qquad 1 \leq i \leq 4$$

$$[6] \qquad a_i + b \geq c_{i+1} + c_5, \qquad 1 \leq i \leq 3$$

$$[7] \qquad a_i + b \leq c_1 + c_{i+2}, \qquad 1 \leq i \leq 4$$

$$[8] \qquad a_i + b \leq c_2 + c_{i+1}, \qquad 1 \leq i \leq 3$$

$$[9] \qquad a_1 + a_2 + b \geq c_1 + c_3 + c_6$$

$$[10] \qquad a_1 + a_2 + b \geq c_2 + c_3 + c_5$$

$$[11] \qquad a_1 + a_3 + b \geq c_2 + c_3 + c_6$$

$$[12] \qquad a_1 + a_3 + b \geq c_2 + c_4 + c_5$$

$$[13] \qquad a_1 + a_4 + b \geq c_1 + c_5 + c_6$$

$$[14] \qquad a_1 + a_4 + b \geq c_2 + c_4 + c_6$$

$$[15] \qquad a_2 + a_3 + b \geq c_2 + c_4 + c_6$$

$$[16] \qquad a_2 + a_3 + b \geq c_3 + c_4 + c_5$$

$$[17] \qquad a_2 + a_4 + b \geq c_3 + c_4 + c_5$$

$$[18] \qquad a_2 + a_4 + b \geq c_3 + c_4 + c_5$$

$$[19] \qquad a_3 + a_4 + b \geq c_3 + c_5 + c_6$$

Спасибо!