On the Subject of The Blue Button

This is a button. It is blue.

<u>Stage 1:</u> Note the cyclic sequence C of polyominoes and their colors. Place them on a toroidal 5×4 grid Z such that same-color polyominoes do not touch orthogonally. Tap the button.

Stage 2: Find three consecutive polyominoes J, K, L in C whose colors occur consecutively in this cyclic sequence of N colors. Translate the color Q after the one corresponding to L to a permutation of suits P (table 1). Tap when Q is highlighted.

Stage 3: The absolute differences between each equation's true result and the one shown are N, D, X, M (in that order). Tap the button M times.

Stage 4: Press the button four times, with time intervals R, A, B between presses, to perform an action (table 2). Swap the suits such that diamonds is at position D and the remaining suits are in order P. Then convert the fillings, left to right, to numbers E, F, G, H (table 3). Submit to proceed to the next stage.

Stage 5: Find S, the Xth tile in K in reading order, within Z, and T, U, V, W, the next 4 tiles going right-from S. Move S, T, U and V down by E, F, G and H, respectively. Translate S, T, U, V, W to letters by noting which of their edges are edges of a polyomino (table 4). Use the underlined letter if a tile is part of a pentomino². Enter the resulting word by tapping the button when the correct sections of the alphabet and individual letters are highlighted.

Hold the button to return to stage 1.

Q	P
blue	, 4 4 4
green	♦ ♣ ∀
cyan	744
red	7
magenta	♣ ♠♥
yellow	***

Table 1

	A < R	A > R
B < R	swap 1&2	swap 2 & 3
B > R	swap 3 & 4	submit

Table 2

•	\$		\Diamond
0	1	2	3

Table 3

<u>Z</u>	\underline{M} \underline{M}	X	
$\underline{\mathtt{D}}\mathtt{Y}$	\overline{N} Γ	<u>U</u> B	$\underline{K}J$
AR	\$.	<u>s</u> 0	<u>E</u> P
<u>C</u> F	IT	<u>H</u> G	$\underline{\mathbf{W}}$ Q

Table 4

¹ The grid wraps around both horizontally and vertically.

² A polyomino consisting of exactly 5 tiles.