Predicting Real-time Service-level Metrics from Device Statistics

Rerngvit Yanggratoke⁽¹⁾

In collaboration with Jawwad Ahmed⁽²⁾, John Ardelius⁽³⁾, Christofer Flinta⁽²⁾, Andreas Johnsson⁽²⁾, Zuoying Jiang⁽¹⁾, Daniel Gillblad⁽³⁾, Rolf Stadler⁽¹⁾

(1) KTH Royal Institute of Technology, Sweden(2) Ericsson Research, Sweden(3) Swedish Institute of Computer Science (SICS), Sweden

Machine Learning meetup at Spotify

Stockholm, Oct 21, 2015

About Me

- Currently, PhD student at KTH
- "Real-time analytics for network management"
 - Apply machine learning on system-generated data to better manage networked services and systems
- Favorite data science tools
 - R for data analysis and visualization
 - SparkR for large-scale batch processing
- Free time
 - Playing foosball and badminton
 - Developing and playing mobile games
 - Contributing to Opensource projects: Flink and SparkR

Overview

Real-time service metrics Y

Services

••••

Operating System

Hardware

Predict

Device statistics X

- CPU load, memory load, #netwo active sockets, #context switching, #processes, etc..
- We read raw data from /proc provided by Linux kernel

Outline

- Problem / motivation
- Device statistics X
- Service-level metrics Y
- Testbed setup
- X-Y traces
- Data cleaning and preprocessing
- Evaluation results
- Real-time analytics engine
- Demo
- Recap

Problem / motivation

Y: service-level metrics

- Video frame rate, audio buffer rate,
 RTP packet rate
- We select Video streaming (VLC) as an example service

X: device statistics

- CPU load, memory load, #network active sockets, #context switching, #processes, etc..

Problem: M: $X \rightarrow \hat{Y}$ predicts Y in real-time

[Supervised-learning regression problem]

Motivation:

Building block for real-time service assurance for a service operator or infrastructure provider

Device statistics X_{proc} and X_{sar}

- Linux kernel statistics X_{proc}
 - Features extracted from /proc directory
 - CPU core jiffies, current memory usage, virtual memory statistics,
 #processes, #blocked processes, ...
 - About 4,000 metrics
- System Activity Report (SAR) X_{sar}
 - SAR computes metrics from /proc over time interval
 - CPU core utilization, memory and swap space utilization, disk I/O statistics, ...
 - About 840 metrics
- X_{proc} contains many OS counters, while X_{sar} does not
- For model predictions, include numerical features

Service-level metrics Y

- Video streaming service based on VLC media player
- Measured metrics
 - Video frame rate (frames/sec)
 - Audio buffer rate (buffers/sec)
 - RTP packet rate (packets/sec)
 - **—** ...
- We instrumented the VLC software to capture underlying events to compute the metrics.

X-Y traces for evaluation

We collect the following traces

 Periodic-load trace, flashcrowd-load trace, constant-load trace, poisson-load trace, linearly-increasing-load trace

We published the traces use in our works http://mldata.org/repository/data/viewslug/realm-cnsm2015-vod-traces/

Data cleaning and preprocessing

Cleaning

- Removal of non-numeric features
- Removal of highly correlated features
- Removal of constant features
- **...**

Preprocessing options

- Principal component analysis
 - Dimensionality reduction
- Incorporate historical data $(X = [X_t, X_{t-1}, ..., X_{t-k}])$
- *Automatic feature selection

–

Model training and evaluation

Video frame rate

Method	NMAE (%)		
Linear regression	12		
Regression tree	11		

- Y bimodal distribution
- Both methods provide similar prediction errors

Audio buffer rate

Method	NMAE (%)		
Linear regression	41		
Regression tree	19		

- Y bimodal distribution
- Regression tree outperforms least-square linear regression

RTP packet rate

Method	NMAE (%)		
Linear regression	15		
Regression tree	19		

- Y wider spread distribution
- Least-square linear regression outperforms regression tree

Evaluation results - periodic-load trace

Device statistics	Regression method	NMAE (%)		
		Video	Audio	RTP
X_proc	Linear regression	26	59	39
	Lasso regression	23	63	35
	Regression tree	23	61	36
	Random forest	22	60	34
X_sar	Linear regression	12	41	15
	Lasso regression	16	51	17
	Regression tree	11	19	19
	Random forest	6	0.94	15

Lessons learned

- Appropriate models depend on the service metrics
- It is feasible to accurately predict client-side metrics based on low-level device statistics
 - NMAE below 15% across service-level metrics and traces
- Preprocessing of X is critical
 - X_sar outperforms X_proc
 - Significant improvement of prediction accuracy
- There is a trade-off between computational resources vs. prediction accuracy
 - Random forest vs. linear regression

Automatic feature selection

- Exhaustive search is infeasible
 - Requires $O(2^p)$ training executions (p = ~5000)
- Forward stepwise feature selection
 - Heuristic method O(p²) training executions
 - Start with an empty set
 - Incrementally grows the feature set with one feature at a time that minimizes a specific evaluation metric
 - Selected metric is the cross-validation error

Random forest on different feature sets

Trace	Feature set	Video		Audio	
		NMAE (%)	Training (secs)	NMAE(%)	Training (secs)
	Full	12	> 50000	32	> 70000
Periodic-load	Automatically optimized feature set	6	862	22	1600
	Full	8	> 55000	21	> 75000
Flash-load	Automatically optimized feature set	4	778	15	1750

^{*} Learning with the optimized feature set significantly improve prediction accuracy and reduce training time

Real-time Analytics Engine

Recorded Demo

Real-time Predictions of Service Metrics from Device Statistics

Recap

- Design and develop experimental testbeds
- Run experiments with various load patterns
- Collected and published traces
- Machine learning model assessment
 - Batch learning on traces
 - Online learning on traces
 - Real-time learning on live statistics
- Design and develop real-time analytics engine
- Implement a prototype for real-time learning on live statistics

Key-value store (Voldemort)

Questions?