SYSTEM CONFIGURATION

Model SBE 16plusV2 **S/N 16-50484**

Instrument Type SBE 16plusV2 Seacat

Firmware Version 3.2

Communications 9600 baud, 8 data bits, no parity, one stop bit

Memory 64MB

Housing 600 meter (Acetron plastic)

Pressure Sensor Strain Gauge: 20 dBar, S/N 11999143

Zero Conductivity Raw Frequency 2565.40 Hz

Number of Voltages Sampled: 1

Serial RS-232C Sensor SBE63

Pump (SBE 5) 05-11175 Oxygen (SBE 63) 63-3227 CHL (ECO) FLS-7581

Common SBE Factory Default Values for Sensor Delays:

Common sensors with a 4 second delay include:

Wet Labs ECO sensors, Seapoint STM and SCF, PAR sensors, SBE38, SBE50, Cylcops-7, & OBS3+

Wet Labs C-Star.10 SecondsSBE43 (0.5 mil membrane)30 SecondsSBE43 (1.0 mil membrane)40 SecondsSBE63.40 SecondsSBE18 or SBE27.60 Seconds

Configured Overall Delay Setting for this CTD: 40 Seconds

Note: Overall Voltage Delay Setting is based on the longest time delay as needed. A list is provided above of common sensor delay values programmed into CTD when integrated and shipped from Sea-Bird Electronics. To recalculate this value when adding or removing sensors, please refer to CTD manual.

SEASOFT CONFIGURATION:

The settings for the configuration of your instrument as delivered are documented below:

Product Documentation

Table of Contents

16P-50484	1
101 -30404	

SBE16plusV2 SeaCAT Moored

Instrument Configuration

Instrument Serial Number:16-50484Instrument Firmware Version:3.2.0Zero Conductivity Frequency:2565.40Communications Format:RS232

Communications Settings: 9600 baud, 8 Data Bits, No Parity

Installed Devices/Sensors

Data Format	Measurement	Sensor Type	Serial Number	Rating
Count Temperature		Internal	N/A	N/A
Frequency	Conductivity	Internal	N/A	N/A
Count	Pressure Sensor	Druck	11999143	20m(30 dBar)
NONE	N/A	SBE 5	11175	600m
RS232	Oxygen	SBE 63	63-3227	600m

Maximum Depth: 20m

CAUTION - The maximum deployment depth will be limited by the measurement range of the pressure sensor, if installed, an attached sensor, if installed, or the housing.

+1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 50484 CALIBRATION DATE: 01-Jul-22 SBE 16plus V2 TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

COEFFICIENTS:

a0 = 1.279264e-003 a1 = 2.597615e-004 a2 = 1.108489e-006 a3 = 8.680217e-008

BATH TEMP	INSTRUMENT	INST TEMP	RESIDUAL
(° C)	OUTPUT (counts)	(° C)	(° C)
1.0000	555720.800	1.0000	0.0000
4.5000	490922.200	4.4999	-0.0001
15.0000	332592.300	15.0002	0.0002
18.4999	290664.545	18.4997	-0.0002
24.0000	234101.600	23.9999	-0.0001
28.9999	191315.400	29.0001	0.0002
32.5000	165580.600	32.4999	-0.0001

n = Instrument Output (counts)

MV = (n - 524288) / 1.6e + 007

R = (MV * 2.900e + 009 + 1.024e + 008) / (2.048e + 004 - MV * 2.0e + 005)

Temperature ITS-90 (°C) = $1/{a0 + a1[ln(R)] + a2[ln^2(R)] + a3[ln^3(R)]} - 273.15$

Residual ($^{\circ}$ C) = instrument temperature - bath temperature

+1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 50484 CALIBRATION DATE: 01-Jul-22 SBE 16plus V2 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

j = 5.430523e-005

BATH TEMP (° C)	BATH SAL (PSU)	BATH COND (S/m)	INSTRUMENT OUTPUT (Hz)	INSTRUMENT COND (S/m)	RESIDUAL (S/m)
22.0000	0.0000	0.00000	2565.40	0.0000	0.00000
1.0000	34.5617	2.95627	5089.02	2.9563	-0.00002
4.5000	34.5445	3.26160	5280.95	3.2616	0.00002
15.0000	34.5061	4.23757	5851.59	4.2376	0.00000
18.4999	34.4974	4.58060	6039.08	4.5806	-0.00002
24.0000	34.4876	5.13511	6330.15	5.1351	0.00001
28.9999	34.4820	5.65368	6590.39	5.6537	0.00000
32.5000	34.4778	6.02360	6769.72	6.0236	-0.00000

f = Instrument Output (Hz) / 1000.0

 $t = temperature \ (^{\circ}C); \quad p = pressure \ (decibars); \quad \delta = CTcor; \quad \epsilon = CPcor;$

Conductivity (S/m) = $(g + h * f^2 + i * f^3 + j * f^4) / (1 + \delta * t + \epsilon * p)$

Residual (Siemens/meter) = instrument conductivity - bath conductivity

+1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 50484 CALIBRATION DATE: 23-Jun-22

SBE 16plus V2 PRESSURE CALIBRATION DATA 44 psia S/N 11999143

COEFFICIENTS:

PA0 =	-2.000544e-002	PTCA0	=	5.264731e+005
PA1 =	1.329566e-004	PTCA1	=	-2.275874e+000
PA2 =	-1.483117e-012	PTCA2	=	-1.740508e-001
PTEMPA0 =	-6.164916e+001	PTCB0	=	2.518750e+001
PTEMPA1 =	4.999894e+001	PTCB1	=	-2.992519e-004
PTEMPA2 =	3.175169e-004	PTCB2	=	0.000000e+000

PRESSURE SPAN CALIBRATION

THERMAL CORRECTION

PRESSURE (PSIA)	INSTRUMENT OUTPUT (counts)	THERMISTOR OUTPUT (volts)	COMPUTED PRESSURE (PSIA)	RESIDUAL (%FSR)	TEMP (°C)	THERMISTOR OUTPUT (volts)	INSTRUMENT OUTPUT (counts)
14.58	636313.0	1.7	14.59	0.01	32.50	1.88	638459.60
24.61	711913.0	1.7	24.61	-0.01	29.00	1.81	638535.36
29.62	749758.0	1.7	29.62	-0.01	24.00	1.71	638570.30
34.64	787626.0	1.7	34.63	-0.01	18.50	1.60	638610.76
39.65	825598.0	1.7	39.65	-0.00	15.00	1.53	638656.57
44.66	863562.0	1.7	44.66	0.00	4.50	1.32	638732.10
39.65	825646.0	1.7	39.66	0.00	1.00	1.25	638713.29
34.64	787734.0	1.7	34.65	0.01			
29.63	749827.0	1.7	29.63	0.01	TEMPER	RATURE (°C)	SPAN
24.61	711929.0	1.7	24.61	0.01		-5.00	25.19
14.58	636186.0	1.7	14.57	-0.01		35.10	25.18

y = thermistor output (counts)

Ó

5

10

15

 $t = PTEMPA0 + PTEMPA1 * y + PTEMPA2 * y^{2}$

x = instrument output - PTCA0 - PTCA1 * t - PTCA2 * t²

 $n = x * PTCB0 / (PTCB0 + PTCB1 * t + PTCB2 * t^{2})$

30

35

45

40

25

Pressure (PSIA)

20

Pressure Test Certificate

Test Date: 2022-06-21 Description: SBE-16P SeaCat

Sensor Information:

Model Number: SBE-16P

Serial Number: 50484

Pressure Test Protocol:

Low Pressure Test: 40 PSI Held For: 15 Minutes

High Pressure Test: 40 PSI Held For: 15 Minutes

Passed Test: True

Pressure

Pressure

Typical Test Profile

High pressure is generally equal to the maximum depth rating of the instrument

Typical Test Profile

Pressure Test Certificate

Test Date: 2022-05-02 Description: SBE-5P Submersible Pump

Sensor Information:

Model Number: SBE-5P

Serial Number: 11175

Pressure Test Protocol:

Low Pressure Test: 40 PSI Held For: 15 Minutes

High Pressure Test: **870** PSI Held For: **15** Minutes

Passed Test: True

Pressure

Pressure

Typical Test Profile

High pressure is generally equal to the maximum depth rating of the instrument

Typical Test Profile

+1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 3227 SBE 63 OXYGEN TEMPERATURE CALIBRATION DATA CALIBRATION DATE: 21-May-22 ITS-90 TEMPERATURE SCALE

COEFFICIENTS:

TA0 = 7.050944e-004 TA2 = 7.282127e-007 TA1 = 2.508857e-004 TA3 = 9.671481e-008

INSTRUMENT OUTPUT(V)	INST TEMP (° C)	RESIDUAL (° C)
1.11716	1.9997	-0.00016
1.11715	2.0001	0.00015
1.11715	2.0001	0.00005
1.11715	2.0001	-0.00005
0.99273	5.9998	-0.00012
0.99272	6.0001	0.00012
0.99273	5.9998	-0.00022
0.99272	6.0001	0.00012
0.82668	12.0001	0.00010
0.82668	12.0001	0.00010
0.82668	12.0001	0.00010
0.82668	12.0001	0.00000
0.64299	19.9996	-0.00033
0.64299	19.9996	-0.00033
0.64298	20.0001	0.00006
0.64298	20.0001	-0.00004
0.53107	26.0001	0.00030
0.53107	26.0001	0.00020
0.53107	26.0001	0.00010
0.53107	26.0001	0.00010
0.46735	29.9999	0.00008
0.46735	29.9999	-0.00012
0.46735	29.9999	-0.00012
0.46735	29.9999	-0.00012
	OUTPUT(V) 1.11716 1.11715 1.11715 1.11715 0.99273 0.99272 0.99272 0.99272 0.82668 0.82668 0.82668 0.82668 0.82668 0.64299 0.64299 0.64298 0.64298 0.53107 0.53107 0.53107 0.53107 0.46735 0.46735	OUTPUT(V) 1.11716 1.9997 1.11715 2.0001 1.11715 2.0001 1.11715 2.0001 0.99273 5.9998 0.99272 6.0001 0.82668 12.0001 0.82668 12.0001 0.82668 12.0001 0.82668 12.0001 0.82668 12.0001 0.82668 12.0001 0.82668 12.0001 0.64299 19.9996 0.64299 19.9996 0.64298 20.0001 0.64298 20.0001 0.53107 26.0001 0.53107 26.0001 0.53107 26.0001 0.53107 26.0001 0.53107 26.0001 0.53107 26.0001 0.53107 26.0001 0.53107 26.0001 0.53107 26.0001 0.53107 26.0001 0.53107 26.0001 0.53107 26.0001 0.53107 26.0001 0.53107 26.0001 0.53107 26.0001

V = Instrument Output (Volts)

 $L = \ln (100000 * V / (3.3 - V))$

Temperature ITS-90 (°C) = $1 / (TA0 + (TA1 * L) + (TA2 * L^2) + (TA3 * L^3)) - 273.15$

+1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 3227 SBE 63 OXYGEN CALIBRATION DATA

CALIBRATION DATE: 21-May-22

COEFFICIENTS:

A0 = 1.0513e + 000 B0 = -2.5087e - 001 C0 = 1.0926e - 001 E = 1.1000e - 002

A1 = -1.5000e-003 B1 = 1.6229e+000 C1 = 4.6373e-003 A2 = 3.9019e-001 C2 = 6.5598e-005

BATH	BATH	BATH	INSTRUMENT	INSTRUMENT	RESIDUAL
OXYGEN (ml/l)	TEMPERATURE (° C)	SALINITY (PSU)	OUTPUT (µsec)	OXYGEN (ml/l)	(ml/l)
0.750	30.00	0.00	30.63	0.749	-0.000
0.780	26.00	0.00	31.29	0.780	0.000
0.837	20.00	0.00	32.27	0.837	0.001
0.923	12.00	0.00	33.70	0.924	0.000
1.031	6.00	0.00	34.65	1.031	-0.000
1.126	2.00	0.00	35.26	1.126	-0.000
2.304	30.00	0.00	22.18	2.302	-0.002
2.428	26.00	0.00	22.77	2.428	-0.000
2.581	20.00	0.00	23.92	2.580	-0.001
3.086	12.00	0.00	24.89	3.087	0.001
3.493	6.00	0.00	25.89	3.492	-0.000
3.812	30.00	0.00	18.31	3.809	-0.002
3.839	2.00	0.00	26.56	3.838	-0.001
4.080	26.00	0.00	18.72	4.082	0.001
4.488	20.00	0.00	19.51	4.489	0.001
5.238	12.00	0.00	20.57	5.242	0.004
5.487	30.00	0.00	15.77	5.489	0.003
5.837	26.00	0.00	16.18	5.836	-0.001
5.960	6.00	0.00	21.48	5.958	-0.002
6.468	20.00	0.00	16.82	6.467	-0.001
6.567	2.00	0.00	22.08	6.569	0.002
7.519	12.00	0.00	17.81	7.519	-0.000
8.532	6.00	0.00	18.64	8.531	-0.001
9.019	2.00	0.00	19.52	9.020	0.000

 $T = temperature (^{\circ}C)$, P = pressure (dbar), U = Instrument output (µsec)

 S_{corr} (salinity correction function) = 1.0 for calibration in DI water

See the user manual for more information on $\boldsymbol{S}_{\text{corr}}$ calculation

V = U / 39.457071

 $Oxygen \; (ml/l) = \{((A0 + A1*T + A2*V^2)/(B0 + B1*V) - 1.0)/(C0 + C1*T + C2*T^2)\} * S_{corr} * exp(E*P/(T+273.15)) + (C0 + C1*T + C2*T^2)\} * S_{corr} * exp(E*P/(T+273.15)) + (C0 + C1*T + C2*T^2)\} * S_{corr} * exp(E*P/(T+273.15)) + (C0 + C1*T + C2*T^2)\} * S_{corr} * exp(E*P/(T+273.15)) + (C0 + C1*T + C2*T^2)\} * S_{corr} * exp(E*P/(T+273.15)) + (C0 + C1*T + C2*T^2)\} * S_{corr} * exp(E*P/(T+273.15)) + (C0 + C1*T + C2*T^2)\} * S_{corr} * exp(E*P/(T+273.15)) + (C0 + C1*T + C2*T^2)\} * S_{corr} * exp(E*P/(T+273.15)) + (C0 + C1*T + C2*T^2)\} * S_{corr} * exp(E*P/(T+273.15)) + (C0 + C1*T + C2*T^2)\} * S_{corr} * exp(E*P/(T+273.15)) + (C0 + C1*T + C2*T^2)\} * S_{corr} * exp(E*P/(T+273.15)) + (C0 + C1*T + C2*T^2) + (C0 + C1*T^2) + (C0 +$

Pressure Test Certificate

Test Date: 2022-07-26 Description: SBE-63 Optical Oxygen Sensor

Sensor Information:

Model Number: SBE-63

Serial Number: 3227

Pressure Test Protocol:

Low Pressure Test: 40 PSI Held For: 15 Minutes

High Pressure Test: **870** PSI Held For: **15** Minutes

Passed Test: True

Pressure

Pressure

Typical Test Profile

High pressure is generally equal to the maximum depth rating of the instrument

Typical Test Profile