Lógica Computacional Aula Teórica 18: Resolução em Primeira Ordem

Ricardo Gonçalves

Departamento de Informática

16 de novembro de 2023

Resolução em Primeira Ordem

- Resolução em Lógica Proposicional
 - Permite verificar se uma fórmula é contraditória
 - ullet Cálculo de Res^* permite responder sim/não
- Em Lógica de Primeira Ordem podemos fazer o mesmo?
- Não! Na verdade ...

Teorema da indecidibilidade da LPO [Church e Turing, 1936]

Não existe um algoritmo para decidir se uma dada fórmula da Lógica de Primeira Ordem é válida.

Mas...

Lógica de Primeira Ordem é semi-decidível

Existe um existe um algoritmo que termina num número finito de passos e indica que uma fórmula é contraditória, mas que pode nunca terminar se a fórmula for possível.

Resolventes de Primeira Ordem

Seja:

- ullet C_1 e C_2 duas cláusulas sem variáveis em comum
- A_1 e A_2 duas fórmulas atómicas tal que $A_1 \in C_1$ e $\neg A_2 \in C_2$
- $\{A_1,A_2\}$ é unificável
- σ o unificador mais geral de $\{A_1, A_2\}$

Então, a cláusula

$$[(C_1 - \{A_1\}) \cup (C_2 - \{\neg A_2\})]^{\sigma}$$

é um resolvente de C_1 e C_2 .

E se duas cláusulas partilharem variáveis?

Aplicamos substituição a uma delas (ou às duas) mudando o nome das variáveis, de modo a não terem variáveis em comum.

Exemplo

$$C_1 = \{Q(x, y), P(f(x), y)\}$$
$$C_2 = \{R(x, c), \neg P(f(y), h(a))\}$$

Como encontrar um resolvente de C_1 e C_2 ?

- ① Como C_1 e C_2 têm variáveis em comum, começamos por trocar as suas variáveis. Basta trocar, por exemplo, as de C_1 : Seja $\sigma_1 = \{x/u, y/v\}$. Então $[C_1]^{\sigma_1} = \{Q(u, v), P(f(u), v)\}$.
- ② Note-se que $\mathcal{L}=\{P(f(u),v),P(f(y),h(a))\}$ é unificável. Seja $\sigma=umg(\mathcal{L})=\{u/y,v/h(a)\}.$

Um resolvente de $[C_1]^{\sigma_1}$ e C_2 é então

$$[([C_1]^{\sigma_1} \setminus \{P(f(u), v)\}) \cup (C_2 \setminus \{\neg P(f(y), h(a))\})]^{\sigma}$$

$$= [\{Q(u, v), R(x, c)\}]^{\sigma}$$

$$= \{Q(y, h(a)), R(x, c)\}$$

Resolução em primeira ordem

- Poderíamos matematicamente definir $Res^*(\varphi)$
- Definido tal como no caso proposicional
- Mas...
- ullet Em Lógica de Primeira Ordem $Res^*(arphi)$ pode ser infinito
- De qualquer forma:

Teorema

Seja φ tal que $FNS(\varphi)$.

Então, φ é contraditória se e só se $\emptyset \in Res^*(\varphi)$.

No entanto... no caso de φ ser possível não temos garantia de encontrar ponto fixo em um número finito de passos!

Vamos usar sistema dedutivo da Resolução para mostrar que fórmula é contraditória.

Resolução em primeira ordem

O sistema dedutivo da Resolução é semelhante ao caso proposicional.

Dada uma fórmula φ tal que $FNS(\varphi)$, uma refutação de φ é uma sequência $C_1 \dots C_n$ de cláusulas tal que:

• $C_n = \emptyset$

Cada C_i é:

- Uma das cláusulas de φ , ou
- obtida de cláusulas anteriores usando Resolução, ou
- ullet renomeação de variáveis de cláusulas anteriores ou de arphi

Teorema

Seja φ tal que $FNS(\varphi)$. Então:

 φ é contraditória se e só se existe refutação de φ .

Nota: há casos patológicos em que uma definição mais geral de resolvente é necessária, mas não vamos explorar aqui.

Resolução em primeira ordem

Uma fórmula de primeira ordem φ está na Forma de Horn se:

- $FNS(\varphi)$, e
- $\varphi = \forall_{x_1} \dots \forall_{x_n} \psi \in FH(\psi)$

As estratégias de resolução-N, resolução-L e resolução-SLD definem-se tal como no caso proposicional. Em particular:

Se φ é fórmula de Horn com pelo menos uma cláusula negativa, então φ é contraditória se e só se existe uma refutação usando resolução-SLD para φ .

Resolução e consequência semântica

Teorema

Dadas fórmulas $\varphi_1, \ldots, \varphi_n, \psi, \gamma \in F_{\Sigma}^X$ então:

$$\{\varphi_1,\ldots,\varphi_n\} \models \psi$$

se e só se

existe refutação de γ^S , com $\gamma = (\varphi_1 \wedge \ldots \wedge \varphi_n \wedge \neg \psi)$

Exemplo: resolução em primeira ordem

$$\varphi = \forall_{x_1} \forall_{x_2} ((\neg P(x_1) \lor Q(x_1)) \land (P(x_2)) \land (\neg Q(f(x_1, x_2))))$$

Temos que $FNS(\varphi)$ e $FH(\varphi)$, e corresponde às seguinte cláusulas:

$$C_1 = \{ \neg P(x_1), Q(x_1) \}$$

$$C_2 = \{ P(x_2) \}$$

$$C_3 = \{ \neg Q(f(x_1, x_2)) \}$$

Refutação por resolução-SLD com seletor à esquerda:

Passo	Dedução	Justificação
1	$\{\neg Q(f(x_3, x_4))\}$	$C_3 \{x_1/x_3, x_2/x_4\}$
2	$\{\overline{\neg P(x_1),Q(x_1)}\}$	C_1
3	$\{\neg P(f(x_3,x_4))\}$	Res(1,2) $\{x_1/f(x_3,x_4)\}$
4	${\overline{P(x_2)}}$	Cláusula C_2
5	Ø	Res(3,4) $\{x_2/f(x_3,x_4)\}$

Exemplo: resolução em primeira ordem

- "Um ascendente directo de uma pessoa é seu antepassado"
- "Um antepassado de um ascendente directo de uma pessoa é seu antepassado"
- "Pedro I é um ascendente directo de João I"
- "Joao I é um ascendente directo de Duarte I"
- Será que "Pedro I é um antepassado de Duarte I"?

Queremos verificar que (5) é consequência de (1)-(4). Modelando o problema em Lógica de Primeira Ordem:

- \bullet AD(joaoI, duarteI)
- \bullet AD(pedroI, joaoI)
- \bullet Ant(pedroI, duarteI)

Convertendo $(1) \wedge \ldots \wedge (4) \wedge \neg (5)$ para a FNS

```
C_1 = \{\neg AD(x_1, x_2), Ant(x_1, x_2)\}
C_2 = \{\neg Ant(x_3, x_4), \neg AD(x_3, x_5), Ant(x_3, x_5)\}
C_3 = \{AD(joaoI, duarteI)\}
C_4 = \{AD(pedroI, joaoI)\}
C_5 = \{\neg Ant(pedroI, duarteI)\}
```

É fórmula de Horn: usamos resolução-SLD com seletor à esquerda:

1	$\{\neg Ant(pedroI, duarteI)\}$	C_5
2	$\left\{ \neg Ant(x_3, x_4), \neg AD(x_4, x_5), Ant(x_3, x_5) \right\}$	C_2
3	$\{\neg Ant(pedroI, x_4), \neg AD(x_4, duarteI)\}$	Res(1,2) $\{x_3/pedroI, x_5/duarteI\}$
4	$\left\{ \neg AD(x_1, x_2), Ant(x_1, x_2) \right\}$	$\mid C_1 \mid$
5	$\{ \neg AD(x_4, duarteI), \neg AD(pedroI, x_4) \}$	Res(3,4) $\{x_1/pedroI, x_2/x_4\}$
6	AD(joaoI,duarteI)	$\mid C_3 \mid$
7	$\{\neg AD(pedroI, joaoI)\}$	Res(5,6) $\{x_4/joaoI\}$
8	$\{AD(pedroI, joaoI)\}$	C_4
9	Ø	Res(7,8)

Mais um exemplo

Prove, por resolução, a seguinte consequência semântica:

$$\{\exists_x P(f(x)), \exists_x P(x) \to (\forall_x S(x) \lor \forall_x Q(x)), \exists_x \neg S(x)\} \models Q(b)$$