COS210 - Theoretical Computer Science Finite Automata and Regular Languages (Part 3)

Nondeterministic Finite Automata (NFA) - Motivation

 $A = \{w \in \{0,1\}^* : w \text{ has a } 1 \text{ in the third postion from the right}\}$

Deterministic solution:

Nondeterministic Finite Automata (NFA) - Motivation

 $A = \{w \in \{0,1\}^* : w \text{ has a } 1 \text{ in the third postion from the right}\}$

Alternative solution?

Questions:

- What happens for input 1 in state q_1 ?
- What happens for any input in state q_4 ?
- Does M accept 1111 and reject 1000?

Alternative definitions of the **transition function** and of **acceptance** needed

 $L(M) = \{ w \in \{0,1\}^* : w \text{ contains the substring } 101 \text{ or } 11 \}$

Visual differences to a DFA:

- In state q_1 there are two **choices** for an input of 1
- Transition without an input symbol is possible $(q_2 \text{ to } q_3)$
- The automata can **hang** in state q_3 if input of 0 is read

Runs in an automaton:

- In a DFA there is **exactly one run** over an input string w
- In an NFA there may be **multiple runs** over a string w

- 2 runs end in the **accept** state q₄
- 2 runs end in a **non-accept** state
- 3 runs cannot complete and **hang**

An NFA accepts a string w if there exists at least one run over w that ends in an accept state

 $L(M) = \{ w \in \{0,1\}^* : w \text{ contains the substring } 101 \text{ or } 11 \}$

Let
$$w = 010110$$

Nondeterministic Finite Automata - Exercise

 $A = \{w \in \{0,1\}^* : w \text{ has a } 1 \text{ in the third postion from the right}\}.$

Draw the possible runs of M over the following input strings:

- w = 01100
- w' = 1000

Nondeterministic Finite Automata - Exercise

Nondeterministic Finite Automata - Exercise

Let
$$\Sigma = \{0\}$$
 and $0^k = \underbrace{0 \dots 0}_{k \text{ times}}$

 $A = \{0^k : k \text{ is divisible by 2 or divisible by 3}\}$

How to construct an NFA that accepts A:

Let
$$\Sigma = \{0\}$$
 and $0^k = \underbrace{0 \dots 0}_{k \text{ times}}$

$$A = \{0^k : k \text{ is divisible by 2 or divisible by 3}\}$$

How to construct an NFA that accepts A:

- A can be written as the **union** of the two languages
 - $A_1 = \{0^k : k \text{ is divisible by } 2\}$
 - $A_2 = \{0^k : k \text{ is divisible by 3} \}$
- NFA can be composed of two DFA's
 - ightharpoonup One that accepts A_1
 - ightharpoonup One that accepts A_2

 $A = A_1 \cup A_2 = \{0^k : k \text{ is divisible by } 2\} \cup \{0^k : k \text{ is divisible by } 3\}$

For every w of length divisible by 2 there exists an accepting run, for every w of length divisible by 3 there exists an accepting run as well

 $A = A_1 \cup A_2 = \{0^k : k \text{ is divisible by } 2\} \cup \{0^k : k \text{ is divisible by } 3\}$

For every w of length divisible by 2 there exists an accepting run, for every w of length divisible by 3 there exists an accepting run as well

Nondeterministic Finite Automata: Formal Definition

Definition

A nondeterministic finite automaton is a 5-tuple $M = (Q, \Sigma, \delta, q, F)$, where

- Q is a finite set of states
- \bullet Σ is an alphabet of symbols
- $\delta: Q \times \Sigma_{\epsilon} \to \mathcal{P}(Q)$ is a nondeterministic transition function
 - $\begin{array}{l} \mathbf{\Sigma}_{\epsilon} = \mathbf{\Sigma} \cup \{\epsilon\} \\ \epsilon \text{-transitions possible} \end{array}$
 - ▶ $P(Q) = \{R : R \subseteq Q\}$ a state may have multiple successor states for the same symbol
- $q \in Q$ is the initial state
- $F \subseteq Q$ is the set of accept states

	0	1	ϵ
q_1	$\{q_1\}$	$\{q_1,q_2\}$	Ø
q_2	$\{q_3\}$	Ø	$\{q_3\}$
q_3	Ø	$\{q_4\}$	Ø
q_4	$\{q_4\}$	$\{q_4\}$	Ø

	0	1	ϵ
q_1	$\{q_1\}$	$\{q_1,q_2\}$	Ø
q_2	$\{q_3\}$	Ø	$\{q_3\}$
q_3	Ø	$\{q_4\}$	Ø
q_4	$\{q_4\}$	$\{q_4\}$	Ø

	0	1	ϵ
q_1	$\{q_1\}$	$\{q_1,q_2\}$	Ø
q_2	{q ₃ }	Ø	$\{q_3\}$
q_3	Ø	$\{q_4\}$	Ø
q_4	$\{q_4\}$	$\{q_4\}$	Ø

	0	1	ϵ
q_1	$\{q_1\}$	$\{q_1,q_2\}$	Ø
q_2	$\{q_3\}$	Ø	$\{q_3\}$
<i>q</i> ₃	Ø	$\{q_4\}$	Ø
q_4	$\{q_4\}$	$\{q_4\}$	Ø

	0	1	ϵ
q_1	$\{q_1\}$	$\{q_1,q_2\}$	Ø
q_2	$\{q_3\}$	\emptyset	$\{q_3\}$
q_3	Ø	$\{q_4\}$	Ø
<i>q</i> ₄	$\{q_4\}$	$\{q_4\}$	Ø

Nondeterministic Finite Automata: Acceptance

Definition

Let $M = (Q, \Sigma, \delta, q, F)$ be an NFA and let w be a string over Σ . M accepts w, if w can be written as $w = y_1 y_2 \cdots y_m$, where $y_i \in \Sigma \cup \{\epsilon\}$ for all i with $1 \le i \le m$, and there exists a run q_0, \ldots, q_m such that

- $q_0 = q$,
- $q_{i+1} \in \delta(q_i, y_{i+1})$, for i < m
- $q_m \in F$

A run over w = 10011 may look as follows:

$$q_0 \xrightarrow{1} q_1 \xrightarrow{0} q_2 \xrightarrow{\epsilon} q_3 \xrightarrow{0} q_4 \xrightarrow{1} q_5 \xrightarrow{\epsilon} q_6 \xrightarrow{0} q_7$$

Nondeterministic Finite Automata: Acceptance Example

Is w = 01100 accepted by M?

Yes:

- rewrite w as $01\epsilon 100$
- the following run over $01\epsilon 100$ exists:

$$q_1 \xrightarrow{0} q_1 \xrightarrow{1} q_2 \xrightarrow{\epsilon} q_3 \xrightarrow{1} q_4 \xrightarrow{0} q_4 \xrightarrow{0} q_4$$

- run starts in initial state $q_1 = q$
- and ends in accept state $q_4 \in F$

Nondeterministic Finite Automata: Language

Definition

Let $M = (Q, \Sigma, \delta, q, F)$ be a nondeterministic finite automaton. The **language** L(M) of M is the set of all strings that are accepted by M:

 $L(M) = \{w : w \text{ is a string over } \Sigma \text{ and } M \text{ accepts } w\}$