Programmierung

Abgabe: 4. Mai 2017

Autor Eins 1701 Autor Zwei 74656

Inhaltsverzeichnis

Aufgabe I																		Ī
I.1																		-
I.2																		4
Aufgabe III																		•
III.1																		;
III.2																		;
III.3																		4

Aufgabe I

I.1

A)

	S_2
$S_2 \to A.S_2$	$A.S_2$
$A \rightarrow B$	$B.S_2$
$B \rightarrow p$	$p.S_2$
$S_2 \to A.S_2$	$p.A.S_2$
$A \rightarrow B$	$p.B.S_2$
$B \rightarrow q$	$p.q.S_2$
$S_2 \to A$.	p.q.A.
$A \rightarrow B : -B$	p.q.B:-B.
$B \rightarrow r$	p.q.r:-B.
$B \rightarrow q$	p.q.r:-q.

Der Ausdruck wird akzeptiert.

$$\mathcal{W}(p.q.r:-q) = \mathcal{W}(p.q.) \cup \{r\}$$
$$= \mathcal{W}(p.) \cup q \cup \{r\}$$
$$= \{p\} \cup \{q\} \cup \{r\}$$
$$= \{p,q,r\}$$

B)

Der Ausdruck wird akzeptiert.

$$\mathcal{W}(q:-p.p:-q.) = \mathcal{W}(q:-p.)$$
$$= \emptyset$$

C)

$$S_{2} \\ S_{2} \rightarrow A.S_{2} \\ A \rightarrow B: -B \\ B \rightarrow q \\ B \rightarrow p \\ S_{2} \rightarrow A. \\ A \rightarrow B \\ B \rightarrow p \\ q: -p.S_{2} \\ q: -p.A. \\ q: -p.B. \\ q: -p.B. \\ B \rightarrow p \\ q: -p.p.$$

Der Ausdruck wird Akzeptiert.

$$\mathcal{W}(q:-p.p.) = \mathcal{W}(q:-p.) \cup \{p\}$$
$$= \emptyset \cup \{p\}$$
$$= \{p\}$$

D)

Der Ausdruck wird nicht Akzeptiert, da »t« kein Symbol des Alphabetes ist.

I.2

Sei \mathcal{S} eine Sprache und \mathcal{P} ein Programm.

Zu zeigen:

$$\mathcal{P}$$
 ist semantisch korrekt bzgl. $\mathcal{S} \Rightarrow \mathcal{P}$ ist syntaktisch korrekt

$$\Leftrightarrow \qquad \mathcal{P} \text{ ist syntaktisch Falsch} \Rightarrow \mathcal{P} \text{ ist semantisch falsch} \qquad \text{(entspricht Def.)}$$

$$qed$$

c)

Seien \mathcal{A}_1 und \mathcal{A}_2 zwei Ausdrcke in einer Sprache und es gelte:

$$\mathcal{W}(\mathcal{A}_1) \neq \mathcal{W}(\mathcal{A}_2) \Rightarrow \mathcal{A}_1 \neq \mathcal{A}_2$$

 $\mathcal{A}_1 = \mathcal{A}_2 \Rightarrow \mathcal{W}(\mathcal{A}_1) = \mathcal{W}(\mathcal{A}_2)$

qed

Aufgabe III

dann gilt auch:

III.1

 $G = (\{S, A, B\}, \{a, b\}, P, S\}$ mit den Produktionsregeln P:

$$S \rightarrow A$$

$$S \rightarrow B$$

$$A \to\!\! aAb$$

$$A \rightarrow AA$$

$$B\to\!\!\varepsilon$$

$$B \to\!\! Bb$$

III.2

$$S_1 = (\{b\}|S_2)$$

$$S_2 = [[S_2]a[S_2]b[S_2]]$$

III.3

Abbildung 1: Regel S_1

Abbildung 2: Regel \mathcal{S}_2