

시계열자료분석팀

5팀

김지원 권남택 최수진 최순일 홍서영

INDEX

- 1. 정상시계열 모형 AR, MA
- 2. ACF와 PACF
- 3. 정상시계열 모형 ARMA
- 4. 모형 식별 및 진단

1

정상시계열 모형 - AR /MA

1 정상 시계열 모형

- **오차항** Y_t의 공분산 행렬 (약정상성을 띤다고 가정)
 - i. 백색잡음인 경우

$$\Gamma = \begin{pmatrix} \operatorname{Cov}(Y_1, Y_1) & \operatorname{Cov}(Y_1, Y_2) & \dots & \operatorname{Cov}(Y_1, Y_n) \\ \operatorname{Cov}(Y_2, Y_1) & \operatorname{Cov}(Y_2, Y_2) & \dots & \operatorname{Cov}(Y_2, Y_n) \\ \vdots & \vdots & \vdots & \vdots \\ \operatorname{Cov}(Y_n, Y_1) & \operatorname{Cov}(Y_n, Y_2) & \dots & \operatorname{Cov}(Y_n, Y_n) \end{pmatrix}$$

$$= \begin{pmatrix} \gamma(0) & \gamma(1) & \dots & \gamma(n-1) \\ \gamma(1) & \gamma(0) & \dots & \gamma(n-2) \\ \vdots & \vdots & \vdots & \vdots \\ \gamma(n-1) & \gamma(n-2) & \dots & \gamma(0) \end{pmatrix}$$

다른 시점과 독립이라 모두 0

분산($\gamma(0) = \delta^2$)만 알면 끝!

∴ 모델링 끝!

1 정상 시계열 모형

• 정상 시계열 모형의 종류

AR 모형 (Auto-Regressive)

MA 모형 (Moving Average)

> ARMA 모형 (AR + MA)

"AR모형"

: 현 시점의 상태(관측치)를 과거 시점 상태들의 선형결합으로 나타내는 모형 $X_{t-1}, X_{t-2}, \dots, X_{t-n},$ X_t

AR(1): $X_t = \phi_1 X_{t-1} + Z_t$

→ 1 시점 전의 관측치로 현재 관측치를 표현

AR(p): $X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \dots + \phi_p X_{t-p} + Z_t$

→ p 시점 전의 관측치들로 현재 관측치를 표현

 $\{Z_t\}\sim WN(0,\sigma^2)$, Ø_p:자기회귀계수

"AR모형"

: 현 시점의 상태(관측치)를 **과거 시점 상태들**의 선형결합으로 나타내는 모형

E.g.) 순일이의 시험성적은 이전 두 시험 성적에 영향을 받는다면?

AR(2):
$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + Z_t$$

 X_t : 순일이의 이번 시험 성적

 X_{t-1}, X_{t-2} : 순일이의 이전 시험 성적들

 ϕ_1, ϕ_2 : 이전 순일이의 시험 성적에 대한 가중치

 Z_t : 우리가 예측하지 못한 정도(오차)

"MA모형"

: 현 시점의 상태(관측치)를 과거 시점 오차들의 선형결합으로 나타내는 모형 $Z_{t-1}, Z_{t-2}, ..., Z_{t-a}$ X_t

MA(1): $X_t = Z_t - \theta_1 Z_{t-1}$

→ 1 시점 전의 오차항으로 현재 관측치를 표현

MA(q): $X_t = Z_t - \theta_1 Z_{t-1} - \theta_2 Z_{t-2} - \dots - \theta_q Z_{t-q}$

→ **q 시점 전**의 오차항로 현재 관측치를 표현

 $\{Z_t\}\sim WN(0,\sigma^2)$, θ_p : MA 매개변수

"MA모형"

< MA 모형의 가역성 만족 조건 >

$$X_t = (1 - B\theta_1 - B^2\theta_2 - \dots - B^q\theta_q)Z_t$$
 특성함수 $\theta(B) = 0$ 의 근의 절대값이 1보다 커야한다 $\theta(B) : 1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q$

ex) MA(1)일때,
$$(1 - \theta B) = 0$$
 의 근은 $\frac{1}{\theta}$ | >1 이면, **가역성**이 만족된다!

AR 모형? Or MA 모형?

우리가 가지고 있는 시계열에 어떤 모형이 적절한지는 어떻게 알지?

$$\mathsf{AR}(\mathsf{p})$$
: $X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \cdots + \phi_p X_{t-p} + Z_t$
 $\to \mathsf{p}$ 시점 전의 관측치들로 현재 관측치를 표현
 $\mathsf{MA}(\mathsf{q})$: $X_t = Z_t - \theta_1 Z_{t-1} - \theta_2 Z_{t-2} - \cdots - \theta_q Z_{t-q}$
 $\to \mathsf{q}$ 시점 전의 오차항로 현재 관측치를 표현

2 ACF와 PACF

• AR과 MA의 3가지 쌍대성

	AR	MA
조건	정상성 조건, 인과성 조건 필요	가역성 조건 필요
ACF	지수적으로 감소하는 ACF	절단된 ACF
PACF	절단된 PACF	지수적으로 감소하는 PACF

시계열자료분석팀

조건① + 조건②

AR(p) 모형에서의 인과성, 정상성 조건 MA(q) 모형에서의 가역성 조건

 $AR(n) \Leftrightarrow MA(\infty)$

유한차수의 AR을 무한차수의 MA과정으로,

MA(n) ⇔ AR(∞)

유한차수의 MA을 무한차수의 AR과정으로!

나타낼 수 있는 성질

※ 해당 수식은 부록 참조!

$^{\prime\prime}ARMA(p,q)^{\prime\prime}$

: 자기 회귀 이동 평균 과정, AR과 MA를 동시에 사용해 모수의 개수를 줄임

AR(p)MA(q)

 $X_{t} = \frac{\phi_{1}X_{t-1} + \phi_{2}X_{t-2} + \dots + \phi_{p}X_{t-p}}{\phi_{1}Z_{t-1} - \theta_{2}Z_{t-2} - \dots - \theta_{q}Z_{t-q} + Z_{t}}$

→ p 시점 전의 관측치와 a 시점 전의 오차항으로 현재 관측치를 표현

 $\{Z_t\}\sim WN(0,\sigma^2)$, Ø $_p:$ 자기회귀계수 $\theta_p:$ MA 매개변수

$^{\prime\prime}ARMA(p,q)^{\prime\prime}$

: 자기 회귀 이동 평균 과정, AR과 MA를 동시에 사용해 모수의 개수를 줄임

후향연산자를 사용한 표현

$$X_{t} = \phi_{1}BX_{t} + \phi_{2}B^{2}X_{t} + \dots + \phi_{p}B^{p}X_{t} - \theta_{1}BZ_{t} - \theta_{2}B^{2}Z_{t} - \dots - \theta_{q}B^{q}Z_{t} + Z_{t}$$

$$= (\phi_{1}B + \phi_{2}B^{2} + \dots + \phi_{p}B^{p})X_{t} + (1 - \theta_{1}BZ_{t} - \theta_{2}B^{2} - \dots - \theta_{q}B^{q})Z_{t}$$

 $\phi(B)X_t = \theta(B)Z_t$ 로 나타낼 수 있다.