- Создать проект lab5_z1
- Микросхема: xa7a12tcsg325-1q
- Для всех решений задать: clock period 20; clock_uncertainty не задавать (по умолчанию будет 12.5%)

• Создать на языке C++ функцию (N=512, din_type – short, dout_type - short),

```
#include "lab5_z1.h"
2@ void lab5_z1 (din_type d_in[N], dout_type d_out[N/4]){
   int i;
   int temp, temp_4, temp_24, temp_34;
   foo_label0:for( i = 0; i< N/4; i++){
       temp = d_in[i];
       temp_4 = d_in[i+N/4];
       temp_24 = d_in[i+N/2];
       temp_34 = d_in[i+3*N/4];
   d_out[i] = (temp + temp_4) + (temp_24 + temp_34);
}
</pre>
```

• Создать тест lab5_z1_test.cpp для проверки функции (не менее трех запусков функции) . Осуществить моделирование (с выводом результатов в консоль)

Исследование:

- Solution1
 - о установите
 - RAM_1Р для входного массива
 - Выключите конвейеризацию для цикла

- о осуществите синтез.
- Осуществите cosim. Приведите временную диаграмму (диаграмма должна быть похожа на приведенную ниже). Приведите ее анализ (что бы быть готовым ее пояснить).

Вопрос: Как убрать «пустой» такт (отмечены желтыми стрелками)? Создайте решение solution1_1, в котором не будет этого такта – см. рисунок ниже.

Solution2

- установите: RAM_2P для входного массива
- Выключите конвейеризацию для цикла

- о осуществите синтез.
- Сравните результаты (schedule viewer, II, аппаратные затраты, реализацию памяти) с Solution1 и поясните отличия.
- Ocyществите cosim. Приведите временную диаграмму (диаграмма должна быть похожа на приведенную ниже). Приведите ее анализ (что бы быть готовым ее пояснить).

Вопрос: Как убрать «пустой» такт (отмечены желтыми стрелками)? Создайте решение solution2_1, в котором не будет этого такта – см. рисунок ниже.

- Solution_3
 - Установите RAM_1P;
 - O Установите array partition block, factor =4 для входного массива
 - о Выключите конвейеризацию для цикла

- о осуществите синтез.
- O Сравните результаты (schedule viewer, II, аппаратные затраты, реализацию памяти) с Solution1, 2 и поясните отличия.
- Осуществите cosim. Приведите временную диаграмму (диаграмма должна быть похожа на приведенную ниже). Приведите ее анализ (что бы быть готовым ее пояснить).

Вопрос: Как сделать так, чтобы данные считывались на каждом такте и результат формировался на каждом такте (см. рисунок ниже)? Создайте решение solution3_1, в котором будет реализована приведенная ниже временная диаграмма.

- Solution_4
 - Установите RAM_1P;
 - o Установите array reshape, block, factor =4 для входного массива
 - Выключите конвейеризацию для цикла

- о осуществите синтез.
- Сравните результаты (schedule viewer, II, аппаратные затраты, реализацию памяти) с Solution1, 2, 3 и поясните отличия.
- Осуществите cosim. Приведите временную диаграмму (диаграмма должна быть похожа на приведенную ниже). Приведите ее анализ (что бы быть готовым ее пояснить) и сравнение с решением solution3.

Вопрос: Как сделать так, чтобы данные считывались на каждом такте и результат формировался на каждом такте (см. рисунок ниже)? Создайте решение solution4_1, в котором будет реализована приведенная ниже временная диаграмма.

- Solution_5
 - Установите RAM_2P; block,
 - O Установите array partition block factor = 2 для входного массива
 - о Выключите конвейеризацию для цикла

- о осуществите синтез.
- Сравните результаты (schedule viewer, II, аппаратные затраты, реализацию памяти) с Solution3, поясните отличия.
- Осуществите cosim. Приведите временную диаграмму (диаграмма должна быть похожа на приведенную ниже). Приведите ее анализ (что бы быть готовым ее пояснить) и сравнение с решением solution3.

Вопрос: Как сделать так, чтобы данные считывались на каждом такте и результат формировался на каждом такте (см. рисунок ниже)? Создайте решение solution5_1, в котором будет реализована приведенная ниже временная диаграмма.

Вопрос: если увеличить block до 4 изменится ли производительность? Объясните почему (при необходимости сделайте solution5_2).

Solution6

- Установите RAM 2P;
- Установите array reshape block factor = 2 для входного массива
- Выключите конвейеризацию для цикла

- о осуществите синтез.
- o Сравните результаты (schedule viewer, II, аппаратные затраты, реализацию памяти) с Solution2,4.
- Осуществите cosim. Приведите временную диаграмму (диаграмма должна быть похожа на приведенную ниже). Приведите ее анализ (что бы быть готовым ее пояснить) и сравнение с решением Solution2, 4.

Вопрос: Как сделать так, чтобы данные считывались на каждом такте и результат формировался на каждом такте (см. рисунок ниже)? Создайте решение solution6_1, в котором будет реализована приведенная ниже временная диаграмма.

Вопрос: если увеличить block до 4 изменится ли производительность? Объясните почему (при необходимости сделайте solution4_2).

Solution7

- Установите RAM 2P;
- Установите array partition, block factor =4 для входного массива
- Установите unroll, factor=2 для цикла.
- о Выключите конвейеризацию для цикла

- о осуществите синтез.
- о Сравните результаты (schedule viewer, II, аппаратные затраты, реализацию памяти) с Solution4.
- Осуществите cosim. Приведите временную диаграмму (диаграмма должна быть похожа на приведенную ниже). Приведите ее анализ (что бы быть готовым ее пояснить) и сравнение с решением solution4.

Вопрос: Как сделать так, чтобы данные считывались на каждом такте и результат формировался на каждом такте (см. рисунок ниже)? Создайте решение solution7_1, в котором будет реализована приведенная ниже временная диаграмма.

- Сравните все решения между собой Solution1, 1_1, 2, 2_1, 7, 7_1
- Занесите данные в xls файл и постройте зависимости.
- Выберите лучшее на Ваш взгляд решение. Объясните выбор.

Измерение времени выполнения на ПК

- Используются исходные коды функции lab5_z1.cpp (лучшее по быстродействию решение)
- На базе теста lab5_z1_test.cpp следует создать отдельный, модернизированный, тест lab5_z1_testSW.cpp (сохранить в папке C:\Xilinx_trn\HLS2023\lab5_z1\source) для проверки времени выполнения функции lab5_z1 на ПК
- Следует осуществить компиляцию модернизированного теста и запускать его как отдельное приложение
- Следует провести измерение времени выполнения синтезируемой функции на Вашем ПК **для каждого** из случаев
 - o N = 4096
 - o N = 8192
 - o N = 16384
- среди 32 запусков необходимо найти и зафиксировать максимальное, минимальное значения времени выполнения и медиану.

Измерение времени выполнения на аппаратной реализации

- Используются исходные коды функции lab5_z1.cpp (**лучшее по быстродействию решение**)
- следует осуществить синтез для случаев
 - \circ N = 4096
 - o N = 8192
 - o N = 16384

и для каждого случая зафиксировать: II, Estimated period, время выполнения = II * Estimated period

Сравнительный анализ

- Составить xls таблицу и построить два графика (
 - о по оси X случаи
 - N = 4096
 - N = 8192
 - N = 16384
 - о по У время выполнения функции на ПК и аппаратной реализации
- Оформить отчет, который должен включать
 - о Задание
 - о Раздел с описанием исходного кода функции
 - о Раздел с описанием теста
 - о Раздел с описание созданного командного файла
 - Раздел с описанием результатов сравнения решений (со снимками экрана)
 - Раздел с анализом результатов
 - Анализ и выбор оптимального (критерий максимальная производительность) решения
 - о Раздел с описанием модернизированного теста
 - Следует указать компилятор, используемый для компиляции.
 - Результаты измерения времени выполнения на ПК
 - Следует указать: тип процессора, базовую частоту работы, максимальную частоту работы, объем ОЗУ.

- о Результаты измерения времени выполнения на аппаратной реализации
- о Раздел с анализом результатов
- о Выводы

Архив должен включать всю рабочую папку проекта (включая модернизированный тест и **скомпилированные приложения – папка ..\source**), отчет