Nearest Neighbor Machine Translation

(Khandelwal et al., ICLR 2021)

Hiroyuki Deguchi

■ deguchi.hiroyuki.db0@is.naist.jp

2021/05/12 NAIST MT study group

ම Links

Paper

https://openreview.net/pdf?id=7wCBOfJ8hJM

Introduction

Combining NMT and k-nearest-neighbors based EBMT models

Summary

- The decoder **retrieves** translation examples from training data **at test time**.
- Learned NMT models can be used w/o additional training.

Contributions

- The proposed method:
 - improves a **SOTA De-En translation model** by **1.5 BLEU**.
 - can adapt models to diverse domains by using a in-domain datastore, improving results by an average of 9.2 BLEU.
 - improves a **multilingual model** by **3 BLEU** on En-{De, Zh} translation.

k Nearest Neighbors (kNN) classification

Non-parametric classification method

■ The object is assigned to the class most common among its k nearest neighbors.

Example of k-NN classification:

■ green dot →

k = 3: red triangle

k = 5: blue square

https://en.wikipedia.org/wiki/ K-nearest_neighbors_algorithm (CC-BY-SA 3.0; by Antti Ajanki)

Proposed Method

Nearest Neighbor Machine Translation

Augmenting the decoder of a pre-trained NMT model with a nearest neighbor retrieval at each time step

Datastore: Datastore is constructed from parallel corpus by a single forward pass over each example.

 $q = f(x, \hat{y}_{1:i-1})$: an intermediate representation of the decoder

Nearest Neighbor Machine Translation

At test time

- **1.** Search k nearest neighbors from the datastore based on distances between q and each intermediate representation.
- **2.** Compute the distribution by applying a softmax with temperature to each k nearest neighbors.
- **3.** Aggregate the 2. results and obtain probability $p_{kNN}(y_i)$.
- 4. Interpolate the NMT and kNN distribution.

Datastore creation

Store the entire translation context, preliminarily

$$(\mathcal{K}, \mathcal{V}) = \{ (f(s, t_{1:i-1}), t_i), \forall t_i \in t \mid (s, t) \in (\mathcal{S}, \mathcal{T}) \}$$

- \blacksquare f: NMT model (returns the decoder's intermediate representations)
- \blacksquare (\mathcal{S}, \mathcal{T}): parallel corpus
- lacktriangle: intermediate representations, $\mathcal V$: target tokens t_i
 - Conditioning on the source is implicit via the keys
 - The values are only target language tokens

Generation

Compute distance-based probability distribution by applying a softmax with temperature

$$p_{kNN}(y_i|x,\hat{y}_{1:i-1}) \propto \sum_{(k_j,v_j)\in\mathcal{N}} \mathbb{1}_{y_i=v_j} \exp\left(\frac{-d(k_j,f(x,\hat{y}_{1:i-1}))}{T}\right)$$

- \blacksquare \hat{y} : generated tokens
- \blacksquare \mathcal{N} : k nearest neighbors according to squared- L^2 distance

Interpolate with the NMT output distribution

$$p(y_i|x, \hat{y}_{1:i-1}) = \lambda \left[p_{kNN}(y_i|x, \hat{y}_{1:i-1}) \right] + (1 - \lambda) \left[p_{MT}(y_i|x, \hat{y}_{1:i-1}) \right]$$
kNN distribution
NMT distribution

Experimental Setup

NMT Model

■ Transformer big (Fairseq)

Tasks

- WMT19 De-En news translation
- Multilingual MT
 - train: CCMatrix
 - test: newstest2018, newstest2019, TED Talks
- Domain adaptation:
 - Medical, Law, IT, Koran, Subtitles

Experimental Setup

Implementation of kNN-MT

- kNN: Faiss (a library for fast k nearest neighbors search)
- Key: 1024-dimensional input to the final decoder layer FFN (quantized to 64-bytes)
 - Multilingual MT: 131K clusters
 - Domain adaptation: 4K clusters
- Inference: Query the datastore for 64 neighbors while searching 32 clusters

Computational Cost

kNN-MT adds some computational overhead

Datastore creation

- A single forward pass over all examples
 - Same as one epoch

Inference

- Retrieving 64 keys from a datastore containing billions of items
- A generation speed that is two orders of magnitude slower than the base MT system

Experiments

WMT'19 De-En

Baseline	37.59
Baseline	37.59
Model	BLEU (%)

■ Improving by 1.5 BLEU % w/o additional training

Multilingual Machine Translation

Retrieving neighbors from same source language data

Test set sizes	de-en 2,000	ru-en 2,000	zh-en 2,000	ja-en 993	fi-en 1,996	lt-en 1,000	de-fr 1,701	de-cs 1,997	en-cs 2,000
Base MT +kNN-MT	34.45 35.74	36.42 37.83	24.23 27.51	12.79 13.14	25.92 26.55	29.59 29.98	32.75 33.68	21.15 21.62	22.78 23.76
Datastore Size	5.56B	3.80B	1.19B	360M	318M	168M	4.21B	696M	533M
Test set sizes	en-de 1,997	en-ru 1,997	en-zh 1,997	en-ja 1,000	en-fi 1,997	en-lt 998	fr-de 1,701	cs-de 1,997	Avg.
Test set sizes Base MT +kNN-MT				•					Avg. - 26.00 27.40

Multilingual Machine Translation

Retrieving neighbors using English as the source language

	Ted Talks					Newstest2019			Avg.
	de-ja	ru-ja	uk-ja	de-ru	de-zh	fr-de	cs-de	de-cs	
Test set sizes	4,442	5,090	3,560	4,288	4,349	1,701	1,997	1,997	-
Base MT	10.11	9.69	8.36	17.24	20.48	26.04	22.78	21.15	16.98
+kNN-MT (en-*)	11.08	10.42	9.64	18.02	21.22	27.85	23.71	21.74	17.96
Datastore Size	433M	433M	433M	4.23B	1.13B	6.50B	6.50B	533M	-

Domain Adaptation

Domain-specific, out-of-domain, and multi-domain datastores

	Newstest 2019	Medical	Law	IT	Koran	Subtitles	Avg.
Test set sizes	2,000	2,000	2,000	2,000	2,000	2,000	-
Aharoni & Goldberg (2020):							
one model per domain	-	56.5	59.0	43.0	15.9	27.3	40.34
one model for all domains	-	53.3	57.2	42.1	20.9	27.6	40.22
best data selection method	-	54.8	58.8	43.5	21.8	27.4	41.26
Base MT	37.59	39.91	45.71	37.98	16.30	29.21	33.82
+kNN-MT:							
in-domain datastore	39.08	54.35	61.78	45.82	19.45	31.73	42.63
WMT'19 datastore	39.08	40.22	46.74	40.27	17.99	29.23	34.89
all-domains datastore	38.88	54.54	61.11	48.63	19.22	31.70	43.04
Datastore Size (in-domain)	770M	5.70M	18.3M	3.10M	450K	159M	-

Tuning kNN-MT (on validation set)

of neighbors per query k

- k = 64 (the # of neighbors retrieved per query)
- "we find that performance does not improve when retrieving a larger number of neighbors, and in some cases, performance deteriorates."

(noise?)

Softmax temperature T

- T greater than 1 will
 - flatten the distribution
 - increase diversity

Tuning kNN-MT (on validation set)

Datastore size

Qualitative Analysis

Generate w/ only the kNN distribution ($\lambda=1$)

Training Set Translation Context (s	Training Set Target	Context Probability	
Dem charismatischen Minis- terpräsidenten Recep Tayvip Erdoğan, der drei aufeinanderfol- gende Wahlen für sich entscheiden komnte, ist es gelungen seine Autorität gegenüber den Militär geltend zu machen.	The charismatic prime minister, Re- cep Tayyip Erdoğan, having won three consecutive elections, has been able to exert his authority over the	military	0.132
Ein bemerkenswerter Fall war die Ermordung des gemäßigten Pre- mierministers Inukai Tsuyoshi im Jahre 1932, die das Ende jeder wirklichen zivilen Kontrolle des Militärs markiert.	One notable case was the assas- sination of moderate Prime Minis- ter Inukai Tsuyoshi in 1932, which marked the end of any real civilian control of the	military	0.130
Sie sind Teil eines Normal- isierungsprozesses und der Her- stellung der absoluten zivilen Kontrolle über das Militär und bestätigen das Prinzip, dass niemand über dem Gesetz steht.	They are part of a process of nor- malization, of the establishment of absolute civilian control of the	military	0.129
Diese hart formulierte Erklärung wurde als verschleierte, jedoch un- missverständliche Warnung ange- sehen, dass das Militär bereit wäre einzuschreiten	That toughly worded statement was seen as a veiled but unmistakable warning that the	military	0.123
***	***	***	***

Reference: In doing so, it seems as if Erdogan has tamed the military.

Related Work

Example-Based Machine Translation (EBMT)

A Framework of a mechanical translation between Japanese and English by analogy principle (Nagao, 1984)

■ e.g. English-to-Japanese bilingual corpus

English	Japanese
Chick Corea is a fantastic jazz pianist .	チックコリアは素晴らしい ジャズピアニスト です。
Chick Corea is a fantastic composer .	チックコリアは素晴らしい 作曲家 です。

EBMT system learns three units from the above example:

- **1.** "Chick Corea is a fantastic X." \rightarrow "チックコリアは素晴らしい X です。"
- **2.** "jazz pianist" → "ジャズピアニスト"
- **3.** "composer" → "作曲家"

Incorporating retrieval mechanisms into NMT

Guiding Neural Machine Translation with Retrieved Translation Pieces (Zhang et al., 2018)

- Retrieve translation pieces (n-gram) of word-aligned parallel corpus
- Add rewards for n-grams that occur in the collected translation pieces

Retrieving translation examples

Search Engine Guided Neural Machine Translation (Gu et al., 2018)

- Retrieve examples similar to the test source sentence
- Incorporate retrieved information w/ deep fusion / shallow fusion

Augumenting source sequences with retrieved translations

Neural Fuzzy Repair: Integrating Fuzzy Matches into Neural Machine Translation (Bulte et al., 2019)

- Retrieve from translation memories by using edit distance based fuzzy-matching
- Augment source sequences with retrieved translations
 - e.g. "こんにちは" → "こんにちは || hi || good evening || have a nice day"
 - ► ||: break token

Boosting Neural Machine Translation with Similar Translations (Xu et al., 2020)

- Improvement of "Neural Fuzzy Repair" (Bulte et al., 2019)
 - New score functions
 - ► N-gram matching score
 - ► Embedding-based score
 - Additional information
 - source tag, related target tag, un-related target tag, etc.

Learning to Remember Translation History with a Continuous Cache (Tu et al., 2018)

Saving and retrieving translation histories

Proposed model awares cross-sentence context in documents to prevent translation inconsistency.

Conclusion

Summary

- kNN-MT can apply to any NMT model w/o further training.
- Similar contexts in a model's embedding space are more likely to be followed by similar next words, allowing the model to be improved by interpolation w/ kNN classifier.
- kNN-MT improves a SOTA model in-domain, leads to large gains out-of-domain, and can specialize a multilingual model for specific language-pairs.

Future work

- Improving efficiency
 - e.g. Down-sampling frequent target words in the datastore