Projet de semestre

Bruteforce Password Attack on FPGAs

Kandiah Abivarman 17.04.2024

Table des matières :

- Objectif
- Bcrypt
- Implémentation existante
- Fonctionnement & Test
- Interface PC FPGA
- Conclusion

Objectif

Objectif - Elca Security

Objectif - Schéma

Objectif - FPGA vs CPU vs GPU

- Consommation
- Hashrate
- Coût

Bcrypt - Algorithme de hash

Bcrypt

Bcrypt - Format du hash

Implémentation existante

Implémentation existante

rub-hgi/highspeed_bcrypt

VHDL implementation and LaTeX source of "High-Speed Implementation of bcrypt Password Search using Special-Purpose Hardware", published at ReConFig'14

https://github.com/rub-hgi/high-speed_bcrypt

Implémentation existante - Schéma

Implémentation existante - Problèmes

- Documentations
- Versions Incohérences
- Testbenches incomplets
- Petites erreurs

Fonctionnement & Test

Bcrypt Core Interface

Bcrypt Core Timing

Bcrypt - Password Hashing

Password Generator

Bcrypt Cracker Timing

Bcrypt Cracker Test Board - Nexys Video

Bcrypt Cracker Test - Schéma

Bcrypt Cracker - Bilan Ressources

1 Quadcore => 3.56 %

25 Quadcore => 89 %

Bcrypt Cracker - Bilan Performances

	GTX Titan X	16'625 Hash/s
Cost 5	Nexys Video (100 MHz, 25 Quadcores)	15'400 Hash/s

https://gist.github.com/epixoip/63c2ad11baf7bbd57544

Interface PC - FPGA

Interface PCIe - Kintex Ultrascale +

Interface PCIe - Block Design

Interface PCIe - Config xdma

- Vendor ID: 0x10EE, Device ID: 0x9038
- Maximum Link Speed: 8 GT/s
- Lane Width: x8
- Region Size: 128 kB

Interface PCIe - Ispci

```
sudo lspci -vv -d 10e
Control: I/O- Mem+ BusMaster- SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR+ FastB2B-
Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR-
Interrupt: pin A routed to IRQ 16
Region 1: Memory at ef100000 (32-bit, non-prefetchable) [size=64K]
Capabilities: [40] Power Management version 3
    Flags: PMEClk- DSI- D1- D2- AuxCurrent=0mA PME(D0-,D1-,D2-,D3hot-,D3cold-)
    Status: D0 NoSoftRst+ PME-Enable- DSel=0 DScale=0 PME-
Capabilities: [48] MSI: Enable- Count=1/1 Maskable- 64bit+
    Address: 0000000000000000 Data: 0000
Capabilities: [70] Express (v2) Endpoint, MSI 00
    DevCap: MaxPayload 1024 bytes, PhantFunc 0, Latency LOs <64ns, L1 <1us
        ExtTag+ AttnBtn- AttnInd- PwrInd- RBE+ FLReset- SlotPowerLimit 75.000W
    DevCtl: CorrErr+ NonFatalErr+ FatalErr+ UnsupReg+
        RlxdOrd+ ExtTag+ PhantFunc- AuxPwr- NoSnoop+
        MaxPayload 256 bytes, MaxReadReg 512 bytes
    DevSta: CorrErr+ NonFatalErr- FatalErr- UnsupReg+ AuxPwr- TransPend-
        ClockPM- Surprise- LLActRep- BwNot- ASPMOptComp+
    LnkCtl: ASPM Disabled: RCB 64 bytes, Disabled- CommClk+
        ExtSynch- ClockPM- AutWidDis- BWInt- AutBWInt-
        TrErr- Train- SlotClk+ DLActive- BWMgmt- ABWMgmt-
    DevCap2: Completion Timeout: Range BC, TimeoutDis+ NROPrPrP- LTR-
         10BitTagComp- 10BitTagReg- 0BFF Not Supported, ExtFmt- EETLPPrefix-
         EmergencyPowerReduction Not Supported, EmergencyPowerReductionInit-
         FRS- TPHComp- ExtTPHComp-
         AtomicOpsCap: 32bit- 64bit- 128bitCAS-
```

Interface PCIe - sysfs

file	function	
class	PCI class (ascii, ro)	
config	PCI config space (binary, rw)	
device	PCI device (ascii, ro)	
enable	Whether the device is enabled (ascii, rw)	
irq	IRQ number (ascii, ro)	
local_cpus	nearby CPU mask (cpumask, ro)	
remove	remove device from kernel's list (ascii, wo)	
resource	PCI resource host addresses (ascii, ro)	
resource0N	PCI resource N, if present (binary, mmap, rw[l])	
re- source0_wcN_wc	PCI WC map resource N, if prefetchable (binary, mmap)	
revision	PCI revision (ascii, ro)	
rom	PCI ROM resource, if present (binary, ro)	
subsystem_device	PCI subsystem device (ascii, ro)	
subsystem_vendor	PCI subsystem vendor (ascii, ro)	
vendor	PCI vendor (ascii, ro)	

```
• • •
uint32_t* bar0;
int fd;
    perror("test");
    fprintf(stderr, "Failed to open bar0 file\n");
if (bar0 == MAP_FAILED)
    fprintf(stderr, "Failed map bar0\n");
printf("Etat interrupteurs : 0x%x\n", bar0[0]);
```

Conclusion:

- Optimisation de l'implémentation
- Interface PCIe avec driver linux
- Mesures et comparaison avec GPU