Какие два ограничения определяют оптимальное решение задачи?

1)
$$x_1 + x_2 \le 3$$
 , $3x_1 + 0x_2 \le 18$

2)
$$x_1 + x_2 \ge 6$$
 , $0x_1 + 7x_2 \le 21$

3)
$$3x_1 + 6x_2 \le 45$$
, $2x_1 - 7x_2 \le 3$

В плановом году в городе будут сооружаться дома m типов. Количество r-комнатных квартир в доме i-го типа равно q_{ri} . Стоимость строительства одного дома i-го типа составляет Ri тыс. руб. За год необходимо сдать в эксплуатацию не менее Qr r-комнатных квартир. Рассчитать план строительства жилых домов, обеспечивающий минимальные затраты на строительство. Какая из моделей верна?

$$\sum_{i=1}^{m} R_{i} * x_{i} o min$$
 $\sum_{i=1}^{m} \sum_{r=1}^{m} q_{ri} * x_{ri} o min$ $\sum_{i=1}^{m} R_{i} * x_{i} o min$ $\sum_{i=1}^{m} q_{ri} * x_{i} o Q_{r}$, $\forall r$ $\sum_{i=1}^{m} q_{ri} * x_{ri} o Q_{r}$,

Билет 9, вопрос 2

Укажите к исходной постановку двойственной ЗЛП

$$-2x_1 - x_2 \rightarrow \min$$

$$x_1 + x_2 \ge 2$$

$$x_1 - x_2 \le -1$$

$$x_1, x_2 \ge 0$$

Каким алгоритмом следует решать задачу?

$$-2x_1 - x_2 \rightarrow \min$$

$$x_1 + x_2 \ge 2$$

$$x_1 - x_2 \le -1$$

$$x_1, x_2 \ge 0$$

Дана оптимальная симплекс-таблица задачи линейного программирования, в которой x_1, x_2 -основные переменные, Z –целевая функция

Базис	В	X ₁	X ₂	X ₃	X ₄	X ₅	x ₆
Х ₃	14/3	0	0	1	2/3	⁻⁵ / ₃	0
X ₂	4/3	0	1	0	1/3	-1/3	0
X ₁	4	1	0	0	0	1	0
X ₆	2/3	0	0	0	-1/3	1/3	1
Z	28/3	0	0	0	1/3	5/3	0

Как сделать анализ на ресурс 4?

Дана транспортная задача линейного программирования в терминах полезности (возможности поставщиков и потребности потребителей заданы справа и вверху матрицы)

	b ₁ =	- 6	b ₂	= 5		b ₃	= 4
		1		3	3		5
$a_1 = 7$	6		1			•	-
		4		(5		2
$a_2 = 4$	-		4			0	
		5		3	3		1
$a_3 = 4$	•			-		4	

Проверить на оптимальность методом потенциалов

Сетевое планирование

Укажите значение параметра $t_{\mathrm{ph}}(3,5)$

	1	2	3	4	5
1		4	5		
2			2	7	
3				10	3
4					4
5					

Оценка игроков спортивной команды (альтернатив) производится на основании трех равнозначных критериев: К1 - морально-волевая подготовка; К2 — вес игрока; К3 — бег 100м.

Тренер отдает предпочтение игрокам с высокими оценками по всем критериям (для бега — оценки имеют обратное направление шкалы). По принципу взвешенной суммы равнозначных критериев определите лучшего (лучших) спортсменов.

Игроки	Мор- волевая (в баллах)	Вес (в кг)	Бег 100м (в сек.)	
X1	10	100	12	
X2	5	110	14	
Х3	8	90	13	

Задана матрица У исходов в терминах затрат .По критерию Вальда определите лучшую альтернативу

Альтернати	Ситуации Е				
вы Х	e_1	e_2	e_3	e_4	
x_1	6	4	3	2	
x_2	3	3	4	5	
x_3	3	4	4	2	

Пусть X— множество альтернатив, μ_R — заданное на нем нечеткое отношение предпочтения.

Нечеткое подмножество недоминируемых альтернатив множества (X, μ_R) описывается функцией принадлежности

$$\mu_Q^{H,\Pi}(x) = 1 - \sup_{y \in X} [\mu_R(y,x) - \mu_R(x,y)], \qquad x \in X$$

SUP —наибольшее положительное число (на сколько другие по максимуму доминируют x)

Пусть:

$$\mu_R(x_i,x_j) =$$

	x_1	x_2	x_3
x_1	ı	0,4	0,7
x_2	0	-	0,5
x_3	0	0	-

Определите функцию принадлежности недоминирования для x_3 : $\mu_Q^{{}^{\mathrm{H}\mathrm{D}}}(x_3)$

Билет 9, вопрос 10