Bloch Sphere Representation

MohamadAli Khajeian*

Faculty of Engineering Sciences, University of Tehran, Iran

November 27, 2024

Proof

The density matrix for a two-dimensional system can be expressed in terms of the Pauli matrices

$$\rho = \frac{1}{2} \left(\mathbf{I} + \vec{r}.\vec{\sigma} \right) \tag{1}$$

where

$$\vec{r} = r_x \vec{i} + r_y \vec{j} + r_z \vec{k}$$
$$\vec{\sigma} = \sigma_x \vec{i} + \sigma_y \vec{j} + \sigma_z \vec{k}$$

since

$$I = |0\rangle\langle 0| + |1\rangle\langle 1| \tag{2}$$

$$\sigma_x = |0\rangle\langle 1| + |1\rangle\langle 0| \tag{3}$$

$$\sigma_y = -i|0\rangle\langle 1| + i|1\rangle\langle 0| \tag{4}$$

$$\sigma_z = |0\rangle\langle 0| - |1\rangle\langle 1| \tag{5}$$

to get r_x , using eqs. (1) to (5) we have

$$\begin{split} \rho.\sigma_x &= \frac{1}{2} \Big(\mathbf{I}.\sigma_x + r_x.\sigma_x.\sigma_x + r_y.\sigma_y.\sigma_x + r_z.\sigma_z.\sigma_x \Big) \\ &= \frac{1}{2} \left(\left(|0\rangle\langle 0| + |1\rangle\langle 1| \right) \left(|0\rangle\langle 1| + |1\rangle\langle 0| \right) \\ &+ r_x \left(|0\rangle\langle 1| + |1\rangle\langle 0| \right) \left(|0\rangle\langle 1| + |1\rangle\langle 0| \right) + r_y \left(-i|0\rangle\langle 1| + i|1\rangle\langle 0| \right) \left(|0\rangle\langle 1| + |1\rangle\langle 0| \right) \\ &+ r_z \left(|0\rangle\langle 0| - |1\rangle\langle 1| \right) \left(|0\rangle\langle 1| + |1\rangle\langle 0| \right) \right) \\ &= \frac{1}{2} \left(\left(|0\rangle\langle 1| + |1\rangle\langle 0| \right) + r_x \left(|0\rangle\langle 0| + |1\rangle\langle 1| \right) + r_y \left(-i|0\rangle\langle 0| + i|1\rangle\langle 1| \right) + r_z \left(|0\rangle\langle 1| - |1\rangle\langle 0| \right) \right) \\ &= \frac{1}{2} \left(|0\rangle\langle 1| + |1\rangle\langle 0| + r_x |0\rangle\langle 0| + r_x |1\rangle\langle 1| - r_y.i|0\rangle\langle 0| + r_y.i|1\rangle\langle 1| + r_z |0\rangle\langle 1| - r_z |1\rangle\langle 0| \right) \\ &= \frac{1}{2} \left(\left(r_x - r_y.i \right) |0\rangle\langle 0| + (1 + r_z) |0\rangle\langle 1| + (1 - r_z) |1\rangle\langle 0| + \left(r_x + r_y.i \right) |1\rangle\langle 1| \right) \end{split}$$

now we get the trace

$$\operatorname{Tr}(\rho.\sigma_x) = \frac{1}{2}\operatorname{Tr}\left(\left(r_x - r_y.i\right)|0\rangle\langle 0| + (1+r_z)|0\rangle\langle 1| + (1-r_z)|1\rangle\langle 0| + \left(r_x + r_y.i\right)|1\rangle\langle 1|\right)$$
$$= \frac{1}{2}\left(\left(r_x - r_y.i\right) + \left(r_x + r_y.i\right)\right) = \frac{1}{2}\left(2r_x\right) = r_x$$

^{*}khajeian@ut.ac.ir

thus

$$\operatorname{Tr}(\rho.\sigma_x) = r_x$$

to get r_y , using eqs. (1) to (5) we have

$$\begin{split} \rho.\sigma_y &= \frac{1}{2} \Big(\mathbf{I}.\sigma_y + r_x.\sigma_x.\sigma_y + r_y.\sigma_y.\sigma_y + r_z.\sigma_z.\sigma_y \Big) \\ &= \frac{1}{2} \Big(\Big(|0\rangle\langle 0| + |1\rangle\langle 1| \Big) \Big(-i|0\rangle\langle 1| + i|1\rangle\langle 0| \Big) \\ &+ r_x \Big(|0\rangle\langle 1| + |1\rangle\langle 0| \Big) \Big(-i|0\rangle\langle 1| + i|1\rangle\langle 0| \Big) + r_y \Big(-i|0\rangle\langle 1| + i|1\rangle\langle 0| \Big) \Big(-i|0\rangle\langle 1| + i|1\rangle\langle 0| \Big) \\ &+ r_z \Big(|0\rangle\langle 0| - |1\rangle\langle 1| \Big) \Big(-i|0\rangle\langle 1| + i|1\rangle\langle 0| \Big) \Big) \\ &= \frac{1}{2} \Big(\Big(-i|0\rangle\langle 1| + i|1\rangle\langle 0| \Big) + r_x \Big(i|0\rangle\langle 0| - i|1\rangle\langle 1| \Big) + r_y \Big(|0\rangle\langle 0| + |1\rangle\langle 1| \Big) + r_z \Big(-i|0\rangle\langle 1| - i|1\rangle\langle 0| \Big) \Big) \\ &= \frac{1}{2} \Big(-i|0\rangle\langle 1| + i|1\rangle\langle 0| + r_x.i|0\rangle\langle 0| - r_x.i|1\rangle\langle 1| + r_y|0\rangle\langle 0| + r_y|1\rangle\langle 1| - r_z.i|0\rangle\langle 1| - r_z.i|1\rangle\langle 0| \Big) \\ &= \frac{1}{2} \Big((r_y + r_x.i)|0\rangle\langle 0| + (-i - r_z.i)|0\rangle\langle 1| + (i - r_z.i)|1\rangle\langle 0| + (r_y - r_x.i)|1\rangle\langle 1| \Big) \end{split}$$

now we get the trace

$$Tr(\rho.\sigma_y) = \frac{1}{2}Tr\Big((r_y + r_x.i)|0\rangle\langle 0| + (-i - r_z.i)|0\rangle\langle 1| + (i - r_z.i)|1\rangle\langle 0| + (r_y - r_x.i)|1\rangle\langle 1|\Big)$$
$$= \frac{1}{2}\Big((r_y - r_x.i) + (r_y + r_x.i)\Big) = \frac{1}{2}(2r_y) = r_y$$

thus

$$\boxed{\mathrm{Tr}(\rho.\sigma_y) = r_y}$$

to get r_z , using eqs. (1) to (5) we have

$$\begin{split} \rho.\sigma_z &= \frac{1}{2} \Big(\mathbf{I}.\sigma_z + r_x.\sigma_x.\sigma_z + r_y.\sigma_y.\sigma_z + r_z.\sigma_z.\sigma_z \Big) \\ &= \frac{1}{2} \Bigg(\Big(|0\rangle\langle 0| + |1\rangle\langle 1| \Big) \Big(|0\rangle\langle 0| - |1\rangle\langle 1| \Big) \\ &+ r_x \Big(|0\rangle\langle 1| + |1\rangle\langle 0| \Big) \Big(|0\rangle\langle 0| - |1\rangle\langle 1| \Big) + r_y \Big(-i|0\rangle\langle 1| + i|1\rangle\langle 0| \Big) \Big(|0\rangle\langle 0| - |1\rangle\langle 1| \Big) \\ &+ r_z \Big(|0\rangle\langle 0| - |1\rangle\langle 1| \Big) \Big(|0\rangle\langle 0| - |1\rangle\langle 1| \Big) \Bigg) \\ &= \frac{1}{2} \Bigg(\Big(|0\rangle\langle 0| - |1\rangle\langle 1| \Big) + r_x \Big(-|0\rangle\langle 1| + |1\rangle\langle 0| \Big) + r_y \Big(i|0\rangle\langle 1| + i|1\rangle\langle 0| \Big) + r_z \Big(|0\rangle\langle 0| + |1\rangle\langle 1| \Big) \Big) \\ &= \frac{1}{2} \Bigg(|0\rangle\langle 0| - |1\rangle\langle 1| - r_x|0\rangle\langle 1| + r_x|1\rangle\langle 0| + r_y.i|0\rangle\langle 1| + r_y.i|1\rangle\langle 0| + r_z|0\rangle\langle 0| + r_z|1\rangle\langle 1| \Big) \\ &= \frac{1}{2} \Bigg((r_z + 1)|0\rangle\langle 0| + (r_y.i - r_x)|0\rangle\langle 1| + (r_y.i + r_x)|1\rangle\langle 0| + (r_z - 1)|1\rangle\langle 1| \Bigg) \end{split}$$

now we get the trace

$$Tr(\rho.\sigma_z) = \frac{1}{2}Tr\Big((r_z + 1)|0\rangle\langle 0| + (r_y.i - r_x)|0\rangle\langle 1| + (r_y.i + r_x)|1\rangle\langle 0| + (r_z - 1)|1\rangle\langle 1|\Big)$$
$$= \frac{1}{2}\Big((r_z + 1) + (r_z - 1)\Big) = \frac{1}{2}(2r_z) = r_z$$

thus

$$Tr(\rho.\sigma_z) = r_z$$