Misura della caratteristica in uscita di un transistor BJT P-N-P in configurazione ad emettitore comune

Cristina Caprioglio, Luca Morelli

Primo turno, tavolo 3

1 Scopo della prova

La prova consisteva nella misura delle caratteristiche in uscita di un transistor BJT Silicio P-N-P in configurazione ad emettitore comune, prima con una corrente di base a $-200\,\mu A$ e poi a $-100\,\mu A$. Abbiamo realizzato una serie di fit con ROOT in modo da ricavare i parametri caratteristici del transistor: la tensione di Early V_A , il rapporto $\frac{\Delta V_{CE}}{\Delta I_{CE}}$ (ovvero la resistenza in uscita per una determinata corrente di base) e il suo inverso, che corrisponde alla conduttanza. Abbiamo anche ricavato il guadagno di corrente $\beta = \frac{\Delta I_{CE}}{\Delta I_B}$ per diversi valori fissati di V_{CE} .

2 Procedura

Figura 1: Schema del circuito realizzato

Prima di tutto abbiamo cortocircuitato i punti A e C, poi abbiamo fissato il puntale rosso del multimetro al punto D, mentre quello nero al punto B, dopodichè abbiamo agito sul potenziometro R_B da $100\,k\Omega$

per fissare una corrente di base $I_B = -200 \,\mu A$. Abbiamo quindi cortocircuitato i punti B e D e fissato il multimetro tra A e C, collegando il puntale rosso al primo, il nero al secondo e l'oscilloscopio a C. Abbiamo infine ottenuto la caratteristica in uscita misurando con il multimetro la corrente di collettore I_C in funzione della tensione tra emettitore e collettore V_{CE} , facendola variare tra i -4V e i -0.05V agendo sul potenziometro R_A da $1k\Omega$. In particolare, abbiamo eseguito 32 misure, di cui 21 per valori di tensioni maggiori o uguali ad 1V, ripetendo poi la procedura per una corrente di base di $-100\mu A$.

3 Materiali utilizzati

• Potenziometri da 1 $k\Omega$ e da 100 $k\Omega$

• Transistor BJT: 2N3906(BU) Silicio P-N-P

• Cavetti

Cacciavite

• Cavi a doppia banana

• Breadboard

4 Strumentazione

- Alimentatore a bassa tensione
- Oscilloscopio ISO-TECH, ISR 622 20MHz
- Multimetro digitale ISO-TECH, IDM 105

5 Misurazioni

La tabella (5) di seguito riportiamo i valori relativi a fondo scala, risoluzione e precisione dei vari strumenti:

	Fondo scala	Risoluzione	Precisione
Oscilloscopio (mV)	10	2	3%
	50	10	3%
	200	40	3%
	500	100	3%
	1000	200	3%
Multimetro (mA)	4 - 400	10^{-3}	0.4% + 2d

Tabella 1: Dati forniti dai data sheet della strumentazione utilizzata

Per il calcolo degli errori relativi alle misure effettuate con l'oscilloscopio abbiamo utilizzato la seguente formula:

$$\sigma = \sqrt{(\sigma_L)^2 + (\sigma_Z)^2 + (\sigma_C)^2} \tag{1}$$

dove $\sigma_C = (misura \cdot 0.03)$ è l'errore del costruttore.

$$\sigma_L = \sigma_Z = \frac{fondo\ scala}{5} \cdot \#tacchette\ apprezzabili$$

 σ_Z è l'errore sullo zero, in tal caso il fondo scala vale 10 mV/div.

Invece σ_L è l'errore sulla lettura e in questo caso il fondo scala varia in base alla misura, mentre abbiamo considerato "#tacchette apprezzabili" pari a 0.5 per tutte le misure. Per gli errori relativi al multimetro abbiamo preso la misura e moltiplicata rispettivamente per 0.3%, 0.1% o 0.4% in base al fondo scala usato, arrotondando poi all'ordine di grandezza della risoluzione ed aggiunto due digit, secondo le istruzioni del data sheet.

5.1 Corrente a $-200 \,\mu A$

Nella seguente tabella (2) abbiamo riportato i punti sperimentali acquisiti per la caratteristica in uscita del transistor con corrente di base $I_B = -200 \,\mu A$. Per ogni misura abbiamo indicato il fondo scala utilizzato poichè, come si può vedere in tabella (5), questo influenza la stima dell'errore.

Tensione oscilloscopio (mV)	Fondo scala (mV/div)	Corrente multimetro (mA)	Fondo scala (mA)
-4000 ± 160	1000	-38.29 ± 0.16	40
-3800 ± 150	1000	-38.15 ± 0.15	40
-3600 ± 150	1000	-37.63 ± 0.15	40
-3400 ± 140	1000	-37.30 ± 0.15	40
-3200 ± 140	1000	-36.74 ± 0.15	40
-3000 ± 140	1000	-36.33 ± 0.15	40
-2800 ± 130	1000	-35.93 ± 0.15	40
-2600 ± 130	1000	-35.37 ± 0.14	40
-2400 ± 120	1000	-34.89 ± 0.14	40
-2200 ± 120	1000	-34.45 ± 0.14	40
-2000 ± 120	1000	-34.00 ± 0.14	40
-2000 ± 78	500	-33.95 ± 0.14	40
-1900 ± 76	500	-33.74 ± 0.14	40
-1800 ± 74	500	-33.54 ± 0.14	40
-1700 ± 71	500	-33.18 ± 0.13	40
-1600 ± 69	500	-32.80 ± 0.13	40
-1500 ± 67	500	-32.77 ± 0.13	40
-1400 ± 65	500	-32.47 ± 0.13	40
-1200 ± 62	500	-31.90 ± 0.13	40
-1100 ± 60	500	-31.58 ± 0.13	40
-1000 ± 58	500	-30.98 ± 0.13	40
-700 ± 54	500	-29.76 ± 0.12	40
-500 ± 52	500	-27.03 ± 0.11	40
-400 ± 23	200	-25.91 ± 0.11	40
-320 ± 22	200	-23.28 ± 0.10	40
-280 ± 22	200	-21.900 ± 0.089	40
-200 ± 21	200	-17.460 ± 0.071	40
-150 ± 6.8	50	-13.080 ± 0.055	40
-120 ± 6.2	50	-8.490 ± 0.035	40
-100 ± 5.9	50	-5.580 ± 0.025	40
-70 ± 5.5	50	-2.390 ± 0.011	4
-60 ± 5.4	50	-1.650 ± 0.008	4

Tabella 2: Punti acquisiti per la caratteristica in uscita con corrente di base $I_B = -200\,\mu A$

5.2 Corrente a $-100 \,\mu A$

Nella tabella (3), sotto riportata, abbiamo elencato i punti sperimentali acquisiti per la caratteristica in uscita del transistor con corrente di base $I_B = -100 \,\mu A$. Per ogni misura abbiamo riportato il fondo scala utilizzato poichè, come si può vedere in tabella (5), questo influenza la stima dell'errore.

Tensione oscilloscopio (mV)	Fondo scala (mV/div)	Corrente multimetro (mA)	Fondo scala (mA)
-4000 ± 160	1000	-20.30 ± 0.002	40
-3800 ± 150	1000	-20.20 ± 0.002	40
-3600 ± 150	1000	-20.04 ± 0.002	40
-3400 ± 140	1000	-19.81 ± 0.002	40
-3200 ± 140	1000	-19.62 ± 0.002	40
-3000 ± 140	1000	-19.46 ± 0.003	40
-2800 ± 130	1000	-19.27 ± 0.003	40
-2600 ± 130	1000	-19.06 ± 0.003	40
-2400 ± 120	1000	-18.85 ± 0.003	40
-2200 ± 120	1000	-18.65 ± 0.004	40
-2000 ± 120	1000	-18.43 ± 0.004	40
-2000 ± 78	500	-18.39 ± 0.005	40
-1900 ± 76	500	-18.28 ± 0.007	40
-1800 ± 74	500	-18.19 ± 0.01	40
-1700 ± 71	500	-18.09 ± 0.01	40
-1600 ± 69	500	-18.00 ± 0.02	40
-1500 ± 67	500	-17.89 ± 0.02	40
-1400 ± 65	500	-17.80 ± 0.02	40
-1200 ± 62	500	-17.60 ± 0.02	40
-1100 ± 60	500	-17.47 ± 0.02	40
-1000 ± 58	500	-17.33 ± 0.02	40
-700 ± 54	500	-16.86 ± 0.02	40
-500 ± 52	500	-16.38 ± 0.02	40
-400 ± 23	200	-16.00 ± 0.02	40
-320 ± 22	200	-15.63 ± 0.02	40
-280 ± 22	200	-15.32 ± 0.02	40
-200 ± 21	200	-10.81 ± 0.02	40
-150 ± 6.8	50	-8.27 ± 0.02	40
-120 ± 6.2	50	-4.95 ± 0.02	40
-100 ± 5.9	50	-2.82 ± 0.02	4
-70 ± 5.5	50	-1.00 ± 0.02	4
-60 ± 5.4	50	-0.77 ± 0.02	4

Tabella 3: Punti acquisiti per la caratteristica in uscita con corrente di base $I_B = -100\,\mu A$

6 Elaborazione dati e risultati

Abbiamo fittato i dati ricavati dalle tabelle (2) e (3), eseguendo un fit lineare pesato secondo la formula:

$$V_{CE} = a + bI_C$$
 con $a \equiv tensione \, di \, Early \, V_A, \, b \equiv \frac{\Delta V_{CE}}{\Delta I_C}$ (2)

Dai fit abbiamo ottenuto i parametri caratteristici del transistor alle diverse correnti riportando quindi i risultati su due grafici, che abbiamo poi unito in uno unico, insieme ai punti sperimentali in modo da

costruire le due curve I-V per i due valori di corrente analizzati. Per quanto riguarda gli errori associati ai parametri li abbiamo ottenuti tramite somma in quadratura. Si deve tenr presente che i grafici sono stati rappresentati nel primo quadrante, quindi con valori di tensioni e di correnti positivi, nonostante i valori di entrambe fossero negativi secondo le consuete convenzioni.

6.1 Corrente a $-200 \,\mu A$

Dal fit dei dati in tabella (2), riportato nel grafico in figura (2), abbiamo ottenuto come tensione di Early $V_A = -12020 \pm 390 \ mV$, mentre la resistenza in uscita è risultata $\frac{\Delta V_{CE}}{\Delta I_C} = 414 \pm 12 \ \Omega$. Per il suo inverso, ovvero la conduttanza, abbiamo ottenuto $g = (241.8 \pm 6.8) \cdot 10^{-5} S$. Si può chiaramente vedere sia l'andamento lineare, con inclinazione dovuto all'effetto Early, che il gomito della curva quando la corrente inizia a variare esponenzialmente.

Caratteristica I-V Transistor emettitore comune e I_□=200µA

Figura 2: Caratteristiche in uscita del transistor con corrente di base a -200 μA

6.2 Corrente a $-100 \,\mu A$

Dal fit dei dati in tabella (3), riportato nel grafico in figura (3), abbiamo ottenuto come tensione di Early $V_A = -16130 \pm 510 \ mV$, mentre la resistenza in uscita è risultata $\frac{\Delta V_{CE}}{\Delta I_C} = 985 \pm 28 \ \Omega$. Per il suo inverso, ovvero la conduttanza, abbiamo ottenuto $g = (101.5 \pm 2.9) \cdot 10^{-5} S$. Si può chiaramente vedere sia l'andamento lineare, con inclinazione dovuto all'effetto Early, che il gomito della curva quando la corrente inizia a variare esponenzialmente.

Figura 3: Caratteristiche in uscita del transistor con corrente di base a -100 μA

6.3 Confonto delle curve I-V e parametro β

Di seguito abbiamo riportato in figura un grafico (4) contenente entrambe le curve I-V. Da quest'ultimo abbiamo ricavato una stima del guadagno di corrente misurando per ogni valore di tensione preso la differenza di corrente tra i punti e diviso per la differenza delle correnti di base secondo la formula:

$$\beta = \frac{\Delta I_C}{\Delta I_B} \tag{3}$$

Figura 4: Caratteristiche in uscita del transistor. In rosso per la corrente di base a -200 μA e in blu per la corrente di base a -100 μA

Da una media di 20 misure, prese nella zona con andamento lineare, abbiamo ottenuto $\beta=159\pm13$, dove per l'errore abbiamo usato la deviazione standard.

Conclusioni

Le misure delle caratteristiche in uscita del transistor si sono rivelate qualitativamente in accordo con la teoria riproducendo l'andamento prima lineare nella regione attiva e poi esponenziale in quella di saturazione. Evidente è l'inclinazione delle due rette dovuto all'effetto Early, il cui valore di tensione è risultato in entrambe le curve dell'ordine di grandezza previsto: $V_A = -12020 \pm 390~mV$ con corrente di base a $-200\mu A$ e $V_A = -16130 \pm 510~mV$ per quella a $-100\mu A$. Anche il parametro b, ovvero la resistenza in uscita, e di conseguenza il suo inverso g sono risultati dell'ordine di grandezza atteso per entrambe le due curve, con $b = 414 \pm 12~\Omega$ e $g = (241.8 \pm 6.8) \cdot 10^{-5}S$ per $I_B = -200\mu A$, mentre per quella a $-100\mu A$ abbiamo ottenuto $b = 985 \pm 28~\Omega$ e $g = (101.5 \pm 2.9) \cdot 10^{-5}S$. Infine, il valore stimato di $\beta = 159 \pm 13$ è risultato anch'esso compatibile con i valori di aspettazione.