Department of Physics, IIT Madras

PH1010 Physics I Time: 8.00-8.50 am

Quiz I
Answer all questions

09.09.2014 Max. marks: 20

Name	Roll No.	Old Roll No.(if any)		
Instructions: You must write the and There are 15 boxes in all. Vectors must be	Exam Hall No.			
You may use the reverse side of all pag have their usual meaning unless stated	es for rough work. All symbols			
black or blue ink for writing the answers. internet connectable device must not be examination.	Calculators, cell phones or any	Total Marks		

1. In the boxes provided,	clearly	indicate	your	answers	to	each	of th	he	questions	below.
Each box is worth 1 ma	ırk.									

(a) Evaluate $\epsilon_{ijk}\epsilon_{ijk}$. (Note that the Einstein summation convention is implied here.) [1 mark]

6

(b) A particle with charge q and mass m, moving with a velocity \vec{v} , is subjected to an electric field \vec{E} and magnetic field \vec{B} . The force experienced by the particle is $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$. Give the expression for F_i , the i^{th} component of the force, using index notation.

Fi= V(Ei+Eijk ViBk)

- (c) A particle of unit mass moves in a potential given by $V(x) = -x^2 \exp(-x^2/2)$.
 - i. The points of stable equilibrium are

[1 mark]

1 + 52

ii. The points of unstable equilibrium are

[1 mark]

0

iii. The frequency of small oscillations around the points of stable equilibrium is given by [1 mark]

w= 0 2 or 14 or 22 22

In the box provided, indicate whether the following statements are True or False, (no explanations need to be provided).

 $[5 \times 1 = 5 \text{ marks}]$

(a) "Given two vectors \vec{u} , and \vec{v} with components (u_1, u_2, u_3) , and (v_1, v_2, v_3) respectively, the combination $u_i v_i$ also transforms like a vector."

- (b) "Under a parity transformation the Cartesian co-ordinates transform (x, y, z) to (x', y', z') = (-x, -y, -z). Under the same transformation the cylindrical polar co-ordinates (ρ, φ, z) transform into $(\rho', \varphi', z') = (\rho, -\varphi, -z)$."
- (c) "In the absence of external forces, the total angular momentum for a collection of many particles exerting mutually equal and opposite, but non-central, forces is constant."
- (d) "The work done by a magnetic force on a charged particle is always zero."
- (e) "The phase lag for a driven harmonic oscillator at zero damping (i.e., $\gamma = 0$) is given by $\varphi = 0$ or π when the system is not at resonance."

Part B

3. Consider an underdamped oscillator that is subject to a driving force, given by the

$$f(t) = \begin{cases} 0 & \text{for } t < 0 \\ at & \text{for } 0 < t < \infty. \end{cases}$$

so that it obeys the differential equation

$$\ddot{x} + 2\gamma \dot{x} + \omega^2 x = f(t).$$

The complete solution to the above equation has the form $x(t)=x_h(t)+x_p(t)$, where $x_h(t)$ is the general (transient) solution to the corresponding homogeneous equation (i.e., $\ddot{x}+2\gamma\dot{x}+\omega^2x=0$) and $x_p(t)$ is a particular solution to the complete equation.

(a) Write down the general homogeneous solution $x_h(t)$ (no need to show derivation) [1 mark]

$$\chi_{h}(t) = e^{-8t} \left(A e^{i \omega t} + B e^{-i \omega t} \right)$$

$$\chi_{h}(t) = e^{-8t} \left(A \cos \omega t + B \cos \omega t \right)$$

$$\chi_{h}(t) = e^{-8t} \left(A \cos \omega t + B \cos \omega t \right)$$

$$= e^{-8t} \cos \omega t + \varphi$$
Find the particular solution $\chi_{h}(t)$ for the short source $t = e^{-8t} \cos \omega t + \varphi$

- (b) Find the particular solution $x_p(t)$ for the above equation by initial guess and subsequent verification (hint: try a polynomial expression in t). [2 marks]
- (c) Write down the complete solution x(t) for the above problem, using the specific initial conditions x(0) = 0 and $\dot{x}(0) = 0$ and the known form for $x_h(t)$. [2 marks] Continue answers to parts (b) and (c) in the next page

Try a solution of the John

$$\chi_p(t) = A^t + B^t - (|mank|)$$
 $\chi_p(t) = A^t + B^t - (|mank|)$
 $\chi_p(t) = A^t + B^t - (|mank|)$

Q. 3 Continue your answer here 00 x(t) = a [27 e t (os ωt + en [282 - 1] sinwt Alternate formulation (c) x(t) = (at 2ra) = + A cos (wt+6) ert no (+) 210) - Awsd - 24 =0 => Awsb - 240 - ci) $\dot{x}(b) = \frac{\alpha}{\omega^2} - A(Y\cos\phi_+ \vec{w}\sin\phi) = 0 \Rightarrow A\sin\phi = \frac{\alpha}{2} \left[1 - \frac{2Y^2}{\omega^2}\right] - (2)$ ÷ (2) by (1)=> land = w [1 - 2rt] = w-2rt (either form or) 1 mark) A can be obtained by squaring and adding (1) and (2), or substituting for costs in (1). whole cosp = 24 w - 1 munk V(W-242) +41 W

A = a after completing the calculation

- 4. Consider a particle that feels an angular force only, of the form $F_{\theta} = 3m\dot{r}\dot{\theta}$.
 - (a) Show that $\dot{r} = \pm \sqrt{Ar^4 + B}$, where A and B are constants of integration, determined by the initial conditions. [3 marks]
 - (b) Assume that the particle starts its motion with initial conditions $\dot{\theta}(0) = \omega_0 \neq 0$, $r(0) = r_0 > 0$ and $\dot{r}(0) = v_0 > 0$. Derive an integral expression for T_{∞} , which is the time taken for the particle to reach $r = \infty$ (no need to evaluate the integral). [1 mark]
 - (c) Show that T_∞ is finite.

[1 mark]

Q. 4 Continue your answer here のの ホニナ (みで パナス C put A2 = A + 2C=B n=± (An4+B _ (1) [Give Imank in thes don is the stagnation in property Now, we are given that 200 $\int_{0}^{T} dt = \int_{0}^{T} \frac{dn'}{\sqrt{An^{14}+13}} = T$ $\int_{0}^{T} dt = \int_{0}^{T} \frac{dn'}{\sqrt{An^{14}+3}} = T$ $\int_{0}^{T} dt = \int_{0}^{T} \frac{dn'}{\sqrt{An^{14}+3}} = T$ $\int_{0}^{T} dt = \int_{0}^{T} \frac{dn'}{\sqrt{An^{14}+3}} = T$ FOR large or the above integral To < In Some mark don the angument