

### 2A POSITIVE VOLTAGE REGULATORS

- OUTPUT CURRENT TO 2A
- OUTPUT VOLTAGES OF 5; 7.5; 9; 10; 12; 15; 18; 24V
- THERMAL OVERLOAD PROTECTION
- SHORT CIRCUIT PROTECTION
- OUTPUT TRANSITION SOA PROTECTION

#### **DESCRIPTION**

The L78S00 series of three-terminal positive regulators is available in TO-220 and TO-3 packages and with several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 2A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.



#### **SCHEMATIC DIAGRAM**



February 2003 1/24

#### **ABSOLUTE MAXIMUM RATINGS**

| Symbol           | Parar                          | Parameter <sup>2</sup>         |                    | Unit |
|------------------|--------------------------------|--------------------------------|--------------------|------|
| VI               | DC Input Voltage               | for V <sub>O</sub> = 5 to 18 V | 35                 | V    |
| ٧١               |                                | for V <sub>O</sub> = 24 V      | 40                 |      |
| Io               | Output Current                 |                                | Internally Limited |      |
| P <sub>tot</sub> | Power Dissipation              |                                | Internally Limited |      |
| T <sub>stg</sub> | Storage Temperature Range      |                                | -65 to 150         | °C   |
| T <sub>op</sub>  | Operating Junction Temperature | for L78S00                     | -55 to 150         | °C   |
| 'op              | Range                          | for L78S00C                    | 0 to 150           |      |

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

#### THERMAL DATA

| Symbol                | Parameter                               | TO-220 | TO-3 | Unit |
|-----------------------|-----------------------------------------|--------|------|------|
| R <sub>thj-case</sub> | Thermal Resistance Junction-case Max    | 5      | 4    | °C/W |
| R <sub>thj-amb</sub>  | Thermal Resistance Junction-ambient Max | 50     | 35   | °C/W |

#### **SHEMATIC DIAGRAM**



### **CONNECTION DIAGRAM** (top view)



#### **ORDERING CODES**

| TYPE    | TO-220   | TO-3     | OUTPUT VOLTAGE |
|---------|----------|----------|----------------|
| L78S05  |          | L78S05T  | 5 V            |
| L78S05C | L78S05CV | L78S05CT | 5 V            |
| L78S75  |          | L78S75T  | 7.5 V          |
| L78S75C | L78S75CV | L78S75CT | 7.5 V          |
| L78S09  |          | L78S09T  | 9 V            |
| L78S09C | L78S09CV | L78S09CT | 9 V            |
| L78S10  |          | L78S10T  | 10 V           |
| L78S10C | L78S10CV | L78S10CT | 10 V           |
| L78S12  |          | L78S12T  | 12 V           |
| L78S12C | L78S12CV | L78S12CT | 12 V           |
| L78S15  |          | L78S15T  | 15 V           |
| L78S15C | L78S15CV | L78S15CT | 15 V           |
| L78S18  |          | L78S18T  | 18 V           |
| L78S18C | L78S18CV | L78S18CT | 18 V           |
| L78S24  |          | L78S24T  | 24 V           |
| L78S24C | L78S24CV | L78S24CT | 24 V           |

### **APPLICATION CIRCUIT**



#### **TEST CIRCUITS**

Figure 1 : DC Parameters



Figure 2: Load Regulation



Figure 3: Ripple Rejection



## **ELECTRICAL CHARACTERISTICS OF L78S05** (refer to the test circuits, $T_J$ = 25°C, $V_I$ = 10 V, $I_O$ = 500 mA, unless otherwise specified).

| Symbol                  | Parameter                  | Test Conditions                                                      | Min. | Тур. | Max. | Unit  |
|-------------------------|----------------------------|----------------------------------------------------------------------|------|------|------|-------|
| Vo                      | Output Voltage             |                                                                      | 4.8  | 5    | 5.2  | V     |
| Vo                      | Output Voltage             | I <sub>O</sub> = 1 A V <sub>I</sub> = 7 V                            | 4.75 | 5    | 5.25 | V     |
| $\Delta V_{O}$          | Line Regulation            | V <sub>I</sub> = 7 to 25 V                                           |      |      | 100  | mV    |
|                         |                            | V <sub>I</sub> = 8 to 25 V                                           |      |      | 50   |       |
| $\Delta V_{O}$          | Load Regulation            | I <sub>O</sub> = 20 mA to 2 A                                        |      |      | 100  | mV    |
| I <sub>d</sub>          | Quiescent Current          |                                                                      |      |      | 8    | mA    |
| $\Delta I_d$            | Quiescent Current Change   | I <sub>O</sub> = 20 mA to 1 A                                        |      |      | 0.5  | mA    |
|                         |                            | $I_O = 20 \text{ mA}$ $V_I = 7 \text{ to } 25 \text{ V}$             |      |      | 1.3  |       |
| $\Delta V_{O}/\Delta T$ | Output Voltage Drift       | $I_{O} = 5 \text{ mA}$ $T_{J} = -55 \text{ to } 150^{\circ}\text{C}$ |      | -1.1 |      | mV/°C |
| eN                      | Output Noise Voltage       | B = 10 Hz to 100 KHz                                                 |      | 40   |      | μV    |
| SVR                     | Supply Voltage Rejection   | f = 120Hz                                                            | 60   |      |      | dB    |
| $V_{I}$                 | Dropout Voltage            | I <sub>O</sub> ≤ 1 A                                                 | 8    |      |      | V     |
| R <sub>O</sub>          | Output Resistance          | f = 1 KHz                                                            |      | 17   |      | mΩ    |
| I <sub>sc</sub>         | Short Circuit Current      | V <sub>I</sub> = 27 V                                                |      | 500  |      | mA    |
| I <sub>scp</sub>        | Short Circuit Peak Current |                                                                      |      | 3    |      | Α     |

# **ELECTRICAL CHARACTERISTICS OF L78S75** (refer to the test circuits, $T_J$ = 25°C, $V_I$ = 12.5 V, $I_O$ = 500 mA, unless otherwise specified).

| Symbol                  | Parameter                  | Test Conditions                                                      | Min. | Тур. | Max. | Unit  |
|-------------------------|----------------------------|----------------------------------------------------------------------|------|------|------|-------|
| Vo                      | Output Voltage             |                                                                      | 7.15 | 7.5  | 7.9  | V     |
| Vo                      | Output Voltage             | I <sub>O</sub> = 1 A V <sub>I</sub> = 9.5 V                          | 7.1  | 7.5  | 7.95 | V     |
| $\Delta V_{O}$          | Line Regulation            | V <sub>I</sub> = 9.5 to 25 V                                         |      |      | 120  | mV    |
|                         |                            | V <sub>I</sub> = 10.5 to 20 V                                        |      |      | 60   |       |
| $\Delta V_{O}$          | Load Regulation            | I <sub>O</sub> = 20 mA to 2 A                                        |      |      | 120  | mV    |
| I <sub>d</sub>          | Quiescent Current          |                                                                      |      |      | 8    | mA    |
| $\Delta I_d$            | Quiescent Current Change   | I <sub>O</sub> = 20 mA to 1 A                                        |      |      | 0.5  | mA    |
|                         |                            | $I_O = 20 \text{ mA}$ $V_I = 9.5 \text{ to } 25 \text{ V}$           |      |      | 1.3  |       |
| $\Delta V_{O}/\Delta T$ | Output Voltage Drift       | $I_{O} = 5 \text{ mA}$ $T_{J} = -55 \text{ to } 150^{\circ}\text{C}$ |      | -0.8 |      | mV/°C |
| eN                      | Output Noise Voltage       | B = 10 Hz to 100 KHz                                                 |      | 52   |      | μV    |
| SVR                     | Supply Voltage Rejection   | f = 120Hz                                                            | 54   |      |      | dB    |
| VI                      | Dropout Voltage            | I <sub>O</sub> ≤ 1.5 A                                               | 10.5 |      |      | V     |
| R <sub>O</sub>          | Output Resistance          | f = 1 KHz                                                            |      | 16   |      | mΩ    |
| I <sub>sc</sub>         | Short Circuit Current      | V <sub>I</sub> = 27 V                                                |      | 500  |      | mA    |
| I <sub>scp</sub>        | Short Circuit Peak Current |                                                                      |      | 3    |      | А     |

# **ELECTRICAL CHARACTERISTICS OF L78S09** (refer to the test circuits, $T_J$ = 25°C, $V_I$ = 14 V, $I_O$ = 500 mA, unless otherwise specified).

| Symbol                  | Parameter                  | Test Conditions                                                      | Min. | Тур. | Max. | Unit  |
|-------------------------|----------------------------|----------------------------------------------------------------------|------|------|------|-------|
| Vo                      | Output Voltage             |                                                                      | 8.65 | 9    | 9.35 | V     |
| Vo                      | Output Voltage             | I <sub>O</sub> = 1 A V <sub>I</sub> = 11 V                           | 8.6  | 9    | 9.4  | V     |
| $\Delta V_{O}$          | Line Regulation            | V <sub>I</sub> = 11 to 25 V                                          |      |      | 130  | mV    |
|                         |                            | V <sub>I</sub> = 11 to 20 V                                          |      |      | 65   |       |
| $\Delta V_{O}$          | Load Regulation            | I <sub>O</sub> = 20 mA to 2 A                                        |      |      | 130  | mV    |
| I <sub>d</sub>          | Quiescent Current          |                                                                      |      |      | 8    | mA    |
| $\Delta I_d$            | Quiescent Current Change   | I <sub>O</sub> = 20 mA to 1 A                                        |      |      | 0.5  | mA    |
|                         |                            | I <sub>O</sub> = 20 mA V <sub>I</sub> = 11 to 25 V                   |      |      | 1.3  |       |
| $\Delta V_{O}/\Delta T$ | Output Voltage Drift       | $I_{O} = 5 \text{ mA}$ $T_{J} = -55 \text{ to } 150^{\circ}\text{C}$ |      | -1   |      | mV/°C |
| eN                      | Output Noise Voltage       | B = 10 Hz to 100 KHz                                                 |      | 60   |      | μV    |
| SVR                     | Supply Voltage Rejection   | f = 120Hz                                                            | 53   |      |      | dB    |
| V <sub>I</sub>          | Dropout Voltage            | I <sub>O</sub> ≤ 1.5 A                                               | 12   |      |      | V     |
| R <sub>O</sub>          | Output Resistance          | f = 1 KHz                                                            |      | 17   |      | mΩ    |
| I <sub>sc</sub>         | Short Circuit Current      | V <sub>I</sub> = 27 V                                                |      | 500  |      | mA    |
| I <sub>scp</sub>        | Short Circuit Peak Current |                                                                      |      | 3    |      | Α     |

## **ELECTRICAL CHARACTERISTICS OF L78S10** (refer to the test circuits, $T_J$ = 25°C, $V_I$ = 15 V, $I_O$ = 500 mA, unless otherwise specified).

| Symbol                  | Parameter                  | Test Conditions                                                      | Min. | Тур. | Max. | Unit  |
|-------------------------|----------------------------|----------------------------------------------------------------------|------|------|------|-------|
| Vo                      | Output Voltage             |                                                                      | 9.5  | 10   | 10.5 | V     |
| Vo                      | Output Voltage             | I <sub>O</sub> = 1 A V <sub>I</sub> = 12.5 V                         | 9.4  | 10   | 10.6 | V     |
| $\Delta V_{O}$          | Line Regulation            | V <sub>I</sub> = 12.5 to 30 V                                        |      |      | 200  | mV    |
|                         |                            | V <sub>I</sub> = 14 to 22 V                                          |      |      | 100  |       |
| $\Delta V_{O}$          | Load Regulation            | I <sub>O</sub> = 20 mA to 2 A                                        |      |      | 150  | mV    |
| I <sub>d</sub>          | Quiescent Current          |                                                                      |      |      | 8    | mA    |
| $\Delta I_d$            | Quiescent Current Change   | I <sub>O</sub> = 20 mA to 1 A                                        |      |      | 0.5  | mA    |
|                         |                            | $I_O = 20 \text{ mA}$ $V_I = 12.5 \text{ to } 30 \text{ V}$          |      |      | 1    |       |
| $\Delta V_{O}/\Delta T$ | Output Voltage Drift       | $I_{O} = 5 \text{ mA}$ $T_{J} = -55 \text{ to } 150^{\circ}\text{C}$ |      | -1   |      | mV/°C |
| eN                      | Output Noise Voltage       | B = 10 Hz to 100 KHz                                                 |      | 65   |      | μV    |
| SVR                     | Supply Voltage Rejection   | f = 120Hz                                                            | 53   |      |      | dB    |
| $V_{I}$                 | Dropout Voltage            | I <sub>O</sub> ≤ 1.5 A                                               | 13   |      |      | V     |
| R <sub>O</sub>          | Output Resistance          | f = 1 KHz                                                            |      | 17   |      | mΩ    |
| I <sub>sc</sub>         | Short Circuit Current      | V <sub>I</sub> = 27 V                                                |      | 500  |      | mA    |
| I <sub>scp</sub>        | Short Circuit Peak Current |                                                                      |      | 3    |      | Α     |

# **ELECTRICAL CHARACTERISTICS OF L78S12** (refer to the test circuits, $T_J$ = 25°C, $V_I$ = 19 V, $I_O$ = 500 mA, unless otherwise specified).

| Symbol                  | Parameter                  | Test Conditions                                                      | Min. | Тур. | Max. | Unit  |
|-------------------------|----------------------------|----------------------------------------------------------------------|------|------|------|-------|
| Vo                      | Output Voltage             |                                                                      | 11.5 | 12   | 12.5 | V     |
| Vo                      | Output Voltage             | I <sub>O</sub> = 1 A V <sub>I</sub> = 14.5 V                         | 11.4 | 12   | 12.6 | V     |
| $\Delta V_{O}$          | Line Regulation            | V <sub>I</sub> = 14.5 to 30 V                                        |      |      | 240  | mV    |
|                         |                            | V <sub>I</sub> = 16 to 22 V                                          |      |      | 120  |       |
| $\Delta V_{O}$          | Load Regulation            | I <sub>O</sub> = 20 mA to 2 A                                        |      |      | 160  | mV    |
| I <sub>d</sub>          | Quiescent Current          |                                                                      |      |      | 8    | mA    |
| $\Delta I_d$            | Quiescent Current Change   | I <sub>O</sub> = 20 mA to 1 A                                        |      |      | 0.5  | mA    |
|                         |                            | I <sub>O</sub> = 20 mA V <sub>I</sub> = 14.5 to 30 V                 |      |      | 1    |       |
| $\Delta V_{O}/\Delta T$ | Output Voltage Drift       | $I_{O} = 5 \text{ mA}$ $T_{J} = -55 \text{ to } 150^{\circ}\text{C}$ |      | -1   |      | mV/°C |
| eN                      | Output Noise Voltage       | B = 10 Hz to 100 KHz                                                 |      | 75   |      | μV    |
| SVR                     | Supply Voltage Rejection   | f = 120Hz                                                            | 53   |      |      | dB    |
| V <sub>I</sub>          | Dropout Voltage            | I <sub>O</sub> ≤ 1.5 A                                               | 15   |      |      | ٧     |
| R <sub>O</sub>          | Output Resistance          | f = 1 KHz                                                            |      | 18   |      | mΩ    |
| I <sub>sc</sub>         | Short Circuit Current      | V <sub>I</sub> = 27 V                                                |      | 500  |      | mA    |
| I <sub>scp</sub>        | Short Circuit Peak Current |                                                                      |      | 3    |      | Α     |

## **ELECTRICAL CHARACTERISTICS OF L78S15** (refer to the test circuits, $T_J = 25$ °C, $V_I = 23$ V, $I_O = 500$ mA, unless otherwise specified).

| Symbol                  | Parameter                  | Test Conditions                                                      | Min.  | Тур. | Max.  | Unit  |
|-------------------------|----------------------------|----------------------------------------------------------------------|-------|------|-------|-------|
| Vo                      | Output Voltage             |                                                                      | 14.4  | 15   | 15.6  | V     |
| Vo                      | Output Voltage             | I <sub>O</sub> = 1 A V <sub>I</sub> = 17.5 V                         | 14.25 | 15   | 15.75 | V     |
| $\Delta V_{O}$          | Line Regulation            | V <sub>I</sub> = 17.5 to 30 V                                        |       |      | 300   | mV    |
|                         |                            | V <sub>I</sub> = 20 to 26 V                                          |       |      | 150   |       |
| $\Delta V_{O}$          | Load Regulation            | I <sub>O</sub> = 20 mA to 2 A                                        |       |      | 180   | mV    |
| I <sub>d</sub>          | Quiescent Current          |                                                                      |       |      | 8     | mA    |
| $\Delta I_d$            | Quiescent Current Change   | I <sub>O</sub> = 20 mA to 1 A                                        |       |      | 0.5   | mA    |
|                         |                            | $I_O = 20 \text{ mA}$ $V_I = 17.5 \text{ to } 30 \text{ V}$          |       |      | 1     |       |
| $\Delta V_{O}/\Delta T$ | Output Voltage Drift       | $I_{O} = 5 \text{ mA}$ $T_{J} = -55 \text{ to } 150^{\circ}\text{C}$ |       | -1   |       | mV/°C |
| eN                      | Output Noise Voltage       | B = 10 Hz to 100 KHz                                                 |       | 90   |       | μV    |
| SVR                     | Supply Voltage Rejection   | f = 120Hz                                                            | 52    |      |       | dB    |
| $V_{I}$                 | Dropout Voltage            | I <sub>O</sub> ≤ 1.5 A                                               | 18    |      |       | ٧     |
| R <sub>O</sub>          | Output Resistance          | f = 1 KHz                                                            |       | 19   |       | mΩ    |
| I <sub>sc</sub>         | Short Circuit Current      | V <sub>I</sub> = 27 V                                                |       | 500  |       | mA    |
| I <sub>scp</sub>        | Short Circuit Peak Current |                                                                      |       | 3    |       | Α     |

# **ELECTRICAL CHARACTERISTICS OF L78S18** (refer to the test circuits, $T_J$ = 25°C, $V_I$ = 26 V, $I_O$ = 500 mA, unless otherwise specified).

| Symbol                  | Parameter                  | Test Conditions                                                      | Min. | Тур. | Max. | Unit  |
|-------------------------|----------------------------|----------------------------------------------------------------------|------|------|------|-------|
| Vo                      | Output Voltage             |                                                                      | 17.1 | 18   | 18.9 | V     |
| Vo                      | Output Voltage             | I <sub>O</sub> = 1 A V <sub>I</sub> = 20.5 V                         | 17   | 18   | 19   | V     |
| $\Delta V_{O}$          | Line Regulation            | V <sub>I</sub> = 20.5 to 30 V                                        |      |      | 360  | mV    |
|                         |                            | V <sub>I</sub> = 22 to 28 V                                          |      |      | 180  |       |
| $\Delta V_{O}$          | Load Regulation            | I <sub>O</sub> = 20 mA to 2 A                                        |      |      | 200  | mV    |
| I <sub>d</sub>          | Quiescent Current          |                                                                      |      |      | 8    | mA    |
| $\Delta I_d$            | Quiescent Current Change   | I <sub>O</sub> = 20 mA to 1 A                                        |      |      | 0.5  | mA    |
|                         |                            | I <sub>O</sub> = 20 mA V <sub>I</sub> = 20.5 to 30 V                 |      |      | 1    |       |
| $\Delta V_{O}/\Delta T$ | Output Voltage Drift       | $I_{O} = 5 \text{ mA}$ $T_{J} = -55 \text{ to } 150^{\circ}\text{C}$ |      | -1   |      | mV/°C |
| eN                      | Output Noise Voltage       | B = 10 Hz to 100 KHz                                                 |      | 110  |      | μV    |
| SVR                     | Supply Voltage Rejection   | f = 120Hz                                                            | 49   |      |      | dB    |
| V <sub>I</sub>          | Dropout Voltage            | I <sub>O</sub> ≤ 1.5 A                                               | 21   |      |      | V     |
| R <sub>O</sub>          | Output Resistance          | f = 1 KHz                                                            |      | 22   |      | mΩ    |
| I <sub>sc</sub>         | Short Circuit Current      | V <sub>I</sub> = 27 V                                                |      | 500  |      | mA    |
| I <sub>scp</sub>        | Short Circuit Peak Current |                                                                      |      | 3    |      | Α     |

## **ELECTRICAL CHARACTERISTICS OF L78S24** (refer to the test circuits, $T_J = 25$ °C, $V_I = 33$ V, $I_O = 500$ mA, unless otherwise specified).

| Symbol                  | Parameter                  | Test Conditions                                                      | Min. | Тур. | Max. | Unit  |
|-------------------------|----------------------------|----------------------------------------------------------------------|------|------|------|-------|
| Vo                      | Output Voltage             |                                                                      | 23   | 24   | 25   | V     |
| Vo                      | Output Voltage             | I <sub>O</sub> = 1 A V <sub>I</sub> = 27 V                           | 22.8 | 24   | 25.2 | V     |
| $\Delta V_{O}$          | Line Regulation            | V <sub>I</sub> = 27 to 38 V                                          |      |      | 480  | mV    |
|                         |                            | V <sub>I</sub> = 30 to 36 V                                          |      |      | 240  |       |
| $\Delta V_{O}$          | Load Regulation            | I <sub>O</sub> = 20 mA to 2 A                                        |      |      | 250  | mV    |
| I <sub>d</sub>          | Quiescent Current          |                                                                      |      |      | 8    | mA    |
| $\Delta I_{d}$          | Quiescent Current Change   | I <sub>O</sub> = 20 mA to 1 A                                        |      |      | 0.5  | mA    |
|                         |                            | $I_{O} = 20 \text{ mA}$ $V_{I} = 27 \text{ to } 38 \text{ V}$        |      |      | 1    |       |
| $\Delta V_{O}/\Delta T$ | Output Voltage Drift       | $I_{O} = 5 \text{ mA}$ $T_{J} = -55 \text{ to } 150^{\circ}\text{C}$ |      | -1.5 |      | mV/°C |
| eN                      | Output Noise Voltage       | B = 10 Hz to 100 KHz                                                 |      | 170  |      | μV    |
| SVR                     | Supply Voltage Rejection   | f = 120Hz                                                            | 48   |      |      | dB    |
| $V_{I}$                 | Dropout Voltage            | I <sub>O</sub> ≤ 1.5 A                                               | 27   |      |      | V     |
| R <sub>O</sub>          | Output Resistance          | f = 1 KHz                                                            |      | 23   |      | mΩ    |
| I <sub>sc</sub>         | Short Circuit Current      | V <sub>I</sub> = 27 V                                                |      | 500  |      | mA    |
| I <sub>scp</sub>        | Short Circuit Peak Current |                                                                      |      | 3    |      | Α     |

## **ELECTRICAL CHARACTERISTICS OF L78S05C** (refer to the test circuits, $T_J = 25$ °C, $V_I = 10$ V, $I_O = 500$ mA, unless otherwise specified).

| Symbol                | Parameter                  | Test Conditions                                               | Min. | Тур. | Max. | Unit  |
|-----------------------|----------------------------|---------------------------------------------------------------|------|------|------|-------|
| Vo                    | Output Voltage             |                                                               | 4.8  | 5    | 5.2  | V     |
| Vo                    | Output Voltage             | I <sub>O</sub> = 1 A V <sub>I</sub> = 7 V                     | 4.75 | 5    | 5.25 | V     |
| ΔV <sub>O</sub>       | Line Regulation            | V <sub>I</sub> = 7 to 25 V                                    |      |      | 100  | mV    |
|                       |                            | V <sub>I</sub> = 8 to 25 V                                    |      |      | 50   |       |
| $\Delta V_{O}$        | Line Regulation            | I <sub>O</sub> = 20 mA to 1.5 A                               |      |      | 100  | mV    |
|                       |                            | I <sub>O</sub> = 2 A                                          |      | 80   |      |       |
| I <sub>d</sub>        | Quiescent Current          |                                                               |      |      | 8    | mA    |
| $\Delta I_d$          | Quiescent Current Change   | I <sub>O</sub> = 20 mA to 1 A                                 |      |      | 0.5  | mA    |
|                       |                            | $I_{O} = 20 \text{ mA}$ $V_{I} = 7 \text{ to } 25 \text{ V}$  |      |      | 1.3  |       |
| $\Delta V_O/\Delta T$ | Output Voltage Drift       | $I_O = 5 \text{ mA}$ $T_J = 0 \text{ to } 70^{\circ}\text{C}$ |      | -1.1 |      | mV/°C |
| eN                    | Output Noise Voltage       | B = 10 Hz to 100 KHz                                          |      | 40   |      | μV    |
| SVR                   | Supply Voltage Rejection   | f = 120Hz                                                     | 54   |      |      | dB    |
| VI                    | Dropout Voltage            | $I_0 \le 1 A$                                                 | 8    |      |      | V     |
| R <sub>O</sub>        | Output Resistance          | f = 1 KHz                                                     |      | 17   |      | mΩ    |
| I <sub>sc</sub>       | Short Circuit Current      | V <sub>I</sub> = 27 V                                         |      | 500  |      | mA    |
| I <sub>scp</sub>      | Short Circuit Peak Current |                                                               |      | 3    |      | Α     |

## **ELECTRICAL CHARACTERISTICS OF L78S75C** (refer to the test circuits, $T_J$ = 25°C, $V_I$ = 12.5 V, $I_O$ = 500 mA, unless otherwise specified).

| Symbol                  | Parameter                  | Test Conditions                                               | Min. | Тур. | Max. | Unit  |
|-------------------------|----------------------------|---------------------------------------------------------------|------|------|------|-------|
| Vo                      | Output Voltage             |                                                               | 7.15 | 7.5  | 7.9  | V     |
| Vo                      | Output Voltage             | I <sub>O</sub> = 1 A V <sub>I</sub> = 9.5 V                   | 7.1  | 7.5  | 7.95 | V     |
| $\Delta V_{O}$          | Line Regulation            | V <sub>I</sub> = 9.5 to 25 V                                  |      |      | 120  | mV    |
|                         |                            | V <sub>I</sub> = 10.5 to 20 V                                 |      |      | 60   |       |
| $\Delta V_{O}$          | Line Regulation            | I <sub>O</sub> = 20 mA to 1.5 A                               |      |      | 140  | mV    |
|                         |                            | I <sub>O</sub> = 2 A                                          |      | 100  |      |       |
| I <sub>d</sub>          | Quiescent Current          |                                                               |      |      | 8    | mA    |
| $\Delta I_d$            | Quiescent Current Change   | I <sub>O</sub> = 20 mA to 1 A                                 |      |      | 0.5  | mA    |
|                         |                            | $I_O = 20 \text{ mA}$ $V_I = 9.5 \text{ to } 25 \text{ V}$    |      |      | 1.3  |       |
| $\Delta V_{O}/\Delta T$ | Output Voltage Drift       | $I_O = 5 \text{ mA}$ $T_J = 0 \text{ to } 70^{\circ}\text{C}$ |      | -0.8 |      | mV/°C |
| eN                      | Output Noise Voltage       | B = 10 Hz to 100 KHz                                          |      | 52   |      | μV    |
| SVR                     | Supply Voltage Rejection   | f = 120Hz                                                     | 48   |      |      | dB    |
| V <sub>I</sub>          | Dropout Voltage            | I <sub>O</sub> ≤ 1.5 A                                        | 10.5 |      |      | V     |
| R <sub>O</sub>          | Output Resistance          | f = 1 KHz                                                     |      | 16   |      | mΩ    |
| I <sub>sc</sub>         | Short Circuit Current      | V <sub>I</sub> = 27 V                                         |      | 500  |      | mA    |
| I <sub>scp</sub>        | Short Circuit Peak Current |                                                               |      | 3    |      | Α     |

# **ELECTRICAL CHARACTERISTICS OF L78S09C** (refer to the test circuits, $T_J$ = 25°C, $V_I$ = 14 V, $I_O$ = 500 mA, unless otherwise specified).

| Symbol                  | Parameter                  | Test Conditions                                               | Min. | Тур. | Max. | Unit  |
|-------------------------|----------------------------|---------------------------------------------------------------|------|------|------|-------|
| Vo                      | Output Voltage             |                                                               | 8.65 | 9    | 9.35 | V     |
| Vo                      | Output Voltage             | I <sub>O</sub> = 1 A V <sub>I</sub> = 11 V                    | 8.6  | 9    | 9.4  | V     |
| $\Delta V_{O}$          | Line Regulation            | V <sub>I</sub> = 11 to 25 V                                   |      |      | 130  | mV    |
|                         |                            | V <sub>I</sub> = 11 to 20 V                                   |      |      | 65   |       |
| $\Delta V_{O}$          | Line Regulation            | I <sub>O</sub> = 20 mA to 1.5 A                               |      |      | 170  | mV    |
|                         |                            | I <sub>O</sub> = 2 A                                          |      | 100  |      |       |
| I <sub>d</sub>          | Quiescent Current          |                                                               |      |      | 8    | mA    |
| $\Delta I_d$            | Quiescent Current Change   | I <sub>O</sub> = 20 mA to 1 A                                 |      |      | 0.5  | mA    |
|                         |                            | $I_O = 20 \text{ mA}$ $V_I = 11 \text{ to } 25 \text{ V}$     |      |      | 1.3  |       |
| $\Delta V_{O}/\Delta T$ | Output Voltage Drift       | $I_O = 5 \text{ mA}$ $T_J = 0 \text{ to } 70^{\circ}\text{C}$ |      | -1   |      | mV/°C |
| eN                      | Output Noise Voltage       | B = 10 Hz to 100 KHz                                          |      | 60   |      | μV    |
| SVR                     | Supply Voltage Rejection   | f = 120Hz                                                     | 47   |      |      | dB    |
| VI                      | Dropout Voltage            | I <sub>O</sub> ≤ 1.5 A                                        | 12   |      |      | V     |
| R <sub>O</sub>          | Output Resistance          | f = 1 KHz                                                     |      | 17   |      | mΩ    |
| I <sub>sc</sub>         | Short Circuit Current      | V <sub>I</sub> = 27 V                                         |      | 500  |      | mA    |
| I <sub>scp</sub>        | Short Circuit Peak Current |                                                               |      | 3    |      | Α     |

## **ELECTRICAL CHARACTERISTICS OF L78S10C** (refer to the test circuits, $T_J$ = 25°C, $V_I$ = 15 V, $I_O$ = 500 mA, unless otherwise specified).

| Symbol                  | Parameter                  | Test Conditions                                               | Min. | Тур. | Max. | Unit  |
|-------------------------|----------------------------|---------------------------------------------------------------|------|------|------|-------|
| Vo                      | Output Voltage             |                                                               | 9.5  | 10   | 10.5 | V     |
| Vo                      | Output Voltage             | I <sub>O</sub> = 1 A V <sub>I</sub> = 12.5 V                  | 9.4  | 10   | 10.6 | V     |
| $\Delta V_{O}$          | Line Regulation            | V <sub>I</sub> = 12.5 to 30 V                                 |      |      | 200  | mV    |
|                         |                            | V <sub>I</sub> = 14 to 22 V                                   |      |      | 100  |       |
| $\Delta V_{O}$          | Line Regulation            | I <sub>O</sub> = 20 mA to 1.5 A                               |      |      | 240  | mV    |
|                         |                            | I <sub>O</sub> = 2 A                                          |      | 150  |      |       |
| I <sub>d</sub>          | Quiescent Current          |                                                               |      |      | 8    | mA    |
| $\Delta I_d$            | Quiescent Current Change   | I <sub>O</sub> = 20 mA to 1 A                                 |      |      | 0.5  | mA    |
|                         |                            | I <sub>O</sub> = 20 mA V <sub>I</sub> = 12.5 to 30 V          |      |      | 1    |       |
| $\Delta V_{O}/\Delta T$ | Output Voltage Drift       | $I_O = 5 \text{ mA}$ $T_J = 0 \text{ to } 70^{\circ}\text{C}$ |      | -1   |      | mV/°C |
| eN                      | Output Noise Voltage       | B = 10 Hz to 100 KHz                                          |      | 65   |      | μV    |
| SVR                     | Supply Voltage Rejection   | f = 120Hz                                                     | 47   |      |      | dB    |
| VI                      | Dropout Voltage            | I <sub>O</sub> ≤ 1.5 A                                        | 13   |      |      | V     |
| R <sub>O</sub>          | Output Resistance          | f = 1 KHz                                                     |      | 17   |      | mΩ    |
| I <sub>sc</sub>         | Short Circuit Current      | V <sub>I</sub> = 27 V                                         |      | 500  |      | mA    |
| I <sub>scp</sub>        | Short Circuit Peak Current |                                                               |      | 3    |      | Α     |

## **ELECTRICAL CHARACTERISTICS OF L78S12C** (refer to the test circuits, $T_J$ = 25°C, $V_I$ = 19 V, $I_O$ = 500 mA, unless otherwise specified).

| Symbol                  | Parameter                  | Test Conditions                                               | Min. | Тур. | Max. | Unit  |
|-------------------------|----------------------------|---------------------------------------------------------------|------|------|------|-------|
| Vo                      | Output Voltage             |                                                               | 11.5 | 12   | 12.5 | V     |
| Vo                      | Output Voltage             | I <sub>O</sub> = 1 A V <sub>I</sub> = 14.5 V                  | 11.4 | 12   | 12.6 | V     |
| $\Delta V_{O}$          | Line Regulation            | V <sub>I</sub> = 14.5 to 30 V                                 |      |      | 240  | mV    |
|                         |                            | V <sub>I</sub> = 16 to 22 V                                   |      |      | 120  |       |
| $\Delta V_{O}$          | Line Regulation            | I <sub>O</sub> = 20 mA to 1.5 A                               |      |      | 240  | mV    |
|                         |                            | I <sub>O</sub> = 2 A                                          |      | 150  |      |       |
| I <sub>d</sub>          | Quiescent Current          |                                                               |      |      | 8    | mA    |
| $\Delta I_d$            | Quiescent Current Change   | I <sub>O</sub> = 20 mA to 1 A                                 |      |      | 0.5  | mA    |
|                         |                            | I <sub>O</sub> = 20 mA V <sub>I</sub> = 14.5 to 30 V          |      |      | 1    |       |
| $\Delta V_{O}/\Delta T$ | Output Voltage Drift       | $I_O = 5 \text{ mA}$ $T_J = 0 \text{ to } 70^{\circ}\text{C}$ |      | -1   |      | mV/°C |
| eN                      | Output Noise Voltage       | B = 10 Hz to 100 KHz                                          |      | 75   |      | μV    |
| SVR                     | Supply Voltage Rejection   | f = 120Hz                                                     | 47   |      |      | dB    |
| VI                      | Dropout Voltage            | I <sub>O</sub> ≤ 1.5 A                                        | 15   |      |      | V     |
| R <sub>O</sub>          | Output Resistance          | f = 1 KHz                                                     |      | 18   |      | mΩ    |
| I <sub>sc</sub>         | Short Circuit Current      | V <sub>I</sub> = 27 V                                         |      | 500  |      | mA    |
| I <sub>scp</sub>        | Short Circuit Peak Current |                                                               |      | 3    |      | Α     |

# **ELECTRICAL CHARACTERISTICS OF L78S15C** (refer to the test circuits, $T_J$ = 25°C, $V_I$ = 23 V, $I_O$ = 500 mA, unless otherwise specified).

| Symbol                | Parameter                  | Test Conditions                                               | Min.  | Тур. | Max.  | Unit  |
|-----------------------|----------------------------|---------------------------------------------------------------|-------|------|-------|-------|
| Vo                    | Output Voltage             |                                                               | 14.4  | 15   | 15.6  | V     |
| Vo                    | Output Voltage             | I <sub>O</sub> = 1 A V <sub>I</sub> = 17.5 V                  | 14.25 | 15   | 15.75 | V     |
| $\Delta V_{O}$        | Line Regulation            | V <sub>I</sub> = 17.5 to 30 V                                 |       |      | 300   | mV    |
|                       |                            | V <sub>I</sub> = 20 to 26 V                                   |       |      | 150   |       |
| $\Delta V_{O}$        | Line Regulation            | I <sub>O</sub> = 20 mA to 1.5 A                               |       |      | 300   | mV    |
|                       |                            | I <sub>O</sub> = 2 A                                          |       | 150  |       |       |
| I <sub>d</sub>        | Quiescent Current          |                                                               |       |      | 8     | mA    |
| $\Delta I_d$          | Quiescent Current Change   | I <sub>O</sub> = 20 mA to 1 A                                 |       |      | 0.5   | mA    |
|                       |                            | $I_O = 20 \text{ mA}$ $V_I = 17.5 \text{ to } 30 \text{ V}$   |       |      | 1     |       |
| $\Delta V_O/\Delta T$ | Output Voltage Drift       | $I_O = 5 \text{ mA}$ $T_J = 0 \text{ to } 70^{\circ}\text{C}$ |       | -1   |       | mV/°C |
| eN                    | Output Noise Voltage       | B = 10 Hz to 100 KHz                                          |       | 90   |       | μV    |
| SVR                   | Supply Voltage Rejection   | f = 120Hz                                                     | 46    |      |       | dB    |
| V <sub>I</sub>        | Dropout Voltage            | I <sub>O</sub> ≤ 1.5 A                                        | 18    |      |       | ٧     |
| R <sub>O</sub>        | Output Resistance          | f = 1 KHz                                                     |       | 19   |       | mΩ    |
| I <sub>sc</sub>       | Short Circuit Current      | V <sub>I</sub> = 27 V                                         |       | 500  |       | mA    |
| I <sub>scp</sub>      | Short Circuit Peak Current |                                                               |       | 3    |       | Α     |

# **ELECTRICAL CHARACTERISTICS OF L78S18C** (refer to the test circuits, $T_J$ = 25°C, $V_I$ = 26 V, $I_O$ = 500 mA, unless otherwise specified).

| Symbol                  | Parameter                  | Test Conditions                                               | Min. | Тур. | Max. | Unit  |
|-------------------------|----------------------------|---------------------------------------------------------------|------|------|------|-------|
| Vo                      | Output Voltage             |                                                               | 17.1 | 18   | 18.9 | V     |
| Vo                      | Output Voltage             | I <sub>O</sub> = 1 A V <sub>I</sub> = 20.5 V                  | 17   | 18   | 19   | V     |
| $\Delta V_{O}$          | Line Regulation            | V <sub>I</sub> = 20.5 to 30 V                                 |      |      | 360  | mV    |
|                         |                            | V <sub>I</sub> = 22 to 28 V                                   |      |      | 180  |       |
| $\Delta V_{O}$          | Line Regulation            | I <sub>O</sub> = 20 mA to 1.5 A                               |      |      | 360  | mV    |
|                         |                            | I <sub>O</sub> = 2 A                                          |      | 200  |      |       |
| I <sub>d</sub>          | Quiescent Current          |                                                               |      |      | 8    | mA    |
| $\Delta I_d$            | Quiescent Current Change   | I <sub>O</sub> = 20 mA to 1 A                                 |      |      | 0.5  | mA    |
|                         |                            | $I_O = 20 \text{ mA}$ $V_I = 20.5 \text{ to } 30 \text{ V}$   |      |      | 1    |       |
| $\Delta V_{O}/\Delta T$ | Output Voltage Drift       | $I_O = 5 \text{ mA}$ $T_J = 0 \text{ to } 70^{\circ}\text{C}$ |      | -1   |      | mV/°C |
| eN                      | Output Noise Voltage       | B = 10 Hz to 100 KHz                                          |      | 110  |      | μV    |
| SVR                     | Supply Voltage Rejection   | f = 120Hz                                                     | 43   |      |      | dB    |
| VI                      | Dropout Voltage            | I <sub>O</sub> ≤ 1.5 A                                        | 21   |      |      | V     |
| R <sub>O</sub>          | Output Resistance          | f = 1 KHz                                                     |      | 22   |      | mΩ    |
| I <sub>sc</sub>         | Short Circuit Current      | V <sub>I</sub> = 27 V                                         |      | 500  |      | mA    |
| I <sub>scp</sub>        | Short Circuit Peak Current |                                                               |      | 3    |      | Α     |

### **ELECTRICAL CHARACTERISTICS OF L78S24C** (refer to the test circuits, $T_J$ = 25°C, $V_I$ = 33 V, $I_O$ = 500 mA, unless otherwise specified).

| Symbol                | Parameter                  | Test Conditions                                               | Min. | Тур. | Max. | Unit  |
|-----------------------|----------------------------|---------------------------------------------------------------|------|------|------|-------|
| Vo                    | Output Voltage             |                                                               | 23   | 24   | 25   | V     |
| Vo                    | Output Voltage             | I <sub>O</sub> = 1 A V <sub>I</sub> = 27 V                    | 22.8 | 24   | 25.2 | V     |
| $\Delta V_{O}$        | Line Regulation            | V <sub>I</sub> = 27 to 38 V                                   |      |      | 480  | mV    |
|                       |                            | V <sub>I</sub> = 30 to 36 V                                   |      |      | 240  |       |
| $\Delta V_{O}$        | Line Regulation            | I <sub>O</sub> = 20 mA to 1.5 A                               |      |      | 480  | mV    |
|                       |                            | I <sub>O</sub> = 2 A                                          |      | 300  |      |       |
| I <sub>d</sub>        | Quiescent Current          |                                                               |      |      | 8    | mA    |
| $\Delta I_d$          | Quiescent Current Change   | I <sub>O</sub> = 20 mA to 1 A                                 |      |      | 0.5  | mA    |
|                       |                            | $I_O = 20 \text{ mA}$ $V_I = 27 \text{ to } 38 \text{ V}$     |      |      | 1    |       |
| $\Delta V_O/\Delta T$ | Output Voltage Drift       | $I_O = 5 \text{ mA}$ $T_J = 0 \text{ to } 70^{\circ}\text{C}$ |      | -1.5 |      | mV/°C |
| eN                    | Output Noise Voltage       | B = 10 Hz to 100 KHz                                          |      | 170  |      | μV    |
| SVR                   | Supply Voltage Rejection   | f = 120Hz                                                     | 42   |      |      | dB    |
| VI                    | Dropout Voltage            | I <sub>O</sub> ≤ 1.5 A                                        | 27   |      |      | ٧     |
| R <sub>O</sub>        | Output Resistance          | f = 1 KHz                                                     |      | 28   |      | mΩ    |
| I <sub>sc</sub>       | Short Circuit Current      | V <sub>I</sub> = 27 V                                         |      | 500  |      | mA    |
| I <sub>scp</sub>      | Short Circuit Peak Current |                                                               |      | 3    |      | Α     |

**Figure 4 :** Dropout Voltage vs Junction Temperature



**Figure 5 :** Peak Output Current vs Input/Output Differential Voltage



**Figure 6 :** Supply Voltage Rejection vs Frequency



**Figure 7 :** Output Voltage vs Junction Temperature



Figure 8 : Output Impedance vs Frequency



**Figure 9 :** Quiescent Current vs Junction Temperature



Figure 10 : Load Transient Response



Figure 11: Line Transient Response



Figure 12 : Quiescent Current vs Input Voltage



Figure 13: Fixed Output Regulator



#### NOTE:

- To specify an output voltage, substitute voltage value for "XX".
  Although no output capacitor is need for stability, it does improve transient response.
  Required if regulator is locate an appreciable distance from power supply filter.

Figure 14: Constant Current Regulator



Figure 15: Circuit for Increasing Output Voltage



Figure 16: Adjustable Output Regulator (7 to 30V)



Figure 17: 0.5 to 10V Regulator



Figure 18: High Current Voltage Regulator



Figure 19: High Output Current with Short Circuit Protection



Figure 20 : Tracking Voltage Regulator



Figure 21: Positive and Negative Regulator



 $<sup>^{\</sup>ast}$  D  $_{1}$  and D  $_{2}$  are necessary if the load is connected between + V  $_{O}$  and - V  $_{O}.$ 

Figure 22 : Negative Output Voltage Circuit



Figure 23 : Switching Regulator



Figure 24 : High Input Voltage Circuit



Figure 25 : High Input Voltage Circuit



Figure 26 : High Output Voltage Regulator



Figure 27: High Input and Output Voltage



Figure 28 : Reducing Power Dissipation with Dropping Resistor



Figure 29 : Remote Shutdown



Figure 30 : Power AM Modulator (unity voltage gain,  $I_O \le 1A$ )



NOTE: The circuit performs well up to 100 KHz.

Figure 31 : Adjustable Output Voltage with Temperature Compensation



NOTE:  $Q_2$  is connected as a diode in order to compensate the variation of the  $Q_1$   $V_{BE}$  with the temperature. C allows a slow rise time of the  $V_O$ .

Figure 32 : Light Controllers ( $V_{Omin} = V_{XX} + V_{BE}$ )





Figure 33 : Protection against Input Short-Circuit with High Capacitance Loads

Application with high capacitance loads and an output voltage greater than 6 volts need an external diode (see fig. 33) to protect the device against input short circuit. In this case the input voltage falls rapidly while the output voltage decrease slowly. The capacitance discharges by means of the Base-Emitter junction of the series pass transistor in the regulator. If the energy is sufficiently high, the transistor may be destroyed. The external diode by-passes the current from the IC to ground.

### **TO-220 MECHANICAL DATA**

| DIM  | mm.   |      |       | inch  |       |       |  |
|------|-------|------|-------|-------|-------|-------|--|
| DIM. | MIN.  | TYP  | MAX.  | MIN.  | TYP.  | MAX.  |  |
| А    | 4.40  |      | 4.60  | 0.173 |       | 0.181 |  |
| С    | 1.23  |      | 1.32  | 0.048 |       | 0.051 |  |
| D    | 2.40  |      | 2.72  | 0.094 |       | 0.107 |  |
| D1   |       | 1.27 |       |       | 0.050 |       |  |
| Е    | 0.49  |      | 0.70  | 0.019 |       | 0.027 |  |
| F    | 0.61  |      | 0.88  | 0.024 |       | 0.034 |  |
| F1   | 1.14  |      | 1.70  | 0.044 |       | 0.067 |  |
| F2   | 1.14  |      | 1.70  | 0.044 |       | 0.067 |  |
| G    | 4.95  |      | 5.15  | 0.194 |       | 0.203 |  |
| G1   | 2.4   |      | 2.7   | 0.094 |       | 0.106 |  |
| H2   | 10.0  |      | 10.40 | 0.393 |       | 0.409 |  |
| L2   |       | 16.4 |       |       | 0.645 |       |  |
| L4   | 13.0  |      | 14.0  | 0.511 |       | 0.551 |  |
| L5   | 2.65  |      | 2.95  | 0.104 |       | 0.116 |  |
| L6   | 15.25 |      | 15.75 | 0.600 |       | 0.620 |  |
| L7   | 6.2   |      | 6.6   | 0.244 |       | 0.260 |  |
| L9   | 3.5   |      | 3.93  | 0.137 |       | 0.154 |  |
| DIA. | 3.75  |      | 3.85  | 0.147 |       | 0.151 |  |



### **TO-3 MECHANICAL DATA**

| DIM  | mm.  |       |      |       |       |       |
|------|------|-------|------|-------|-------|-------|
| DIM. | MIN. | TYP   | MAX. | MIN.  | TYP.  | MAX.  |
| А    |      | 11.85 |      |       | 0.466 |       |
| В    | 0.96 | 1.05  | 1.10 | 0.037 | 0.041 | 0.043 |
| С    |      |       | 1.70 |       |       | 0.066 |
| D    |      |       | 8.7  |       |       | 0.342 |
| Е    |      |       | 20.0 |       |       | 0.787 |
| G    |      | 10.9  |      |       | 0.429 |       |
| N    |      | 16.9  |      |       | 0.665 |       |
| Р    |      |       | 26.2 |       |       | 1.031 |
| R    | 3.88 |       | 4.09 | 0.152 |       | 0.161 |
| U    |      |       | 39.5 |       |       | 1.555 |
| V    |      | 30.10 |      |       | 1.185 |       |



Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.