CSS 422 Hardware and Computer Organization

Introduction to computer architecture

Professor: Yang Peng

The slides are re-produced by the courtesy of Dr. Arnie Berger and Dr. Wooyoung Kim

Topic

- Introduction to computer hardware and architecture
 - Chapter 1 by Berger (Available online)
 - Chapter 1 by Null (NOT available online)
- Number system
 - Chapter 1 by Berger (Available online)
 - Chapter 2.1 by Null (NOT available online)

Computer Architecture Computer Organization

- Attributes of a system visible to the programmer
- Have a direct impact on the logical execution of a program

Computer Architecture

Architectural attributes include:

 Instruction set, number of bits used to represent various data types, I/O mechanisms, techniques for addressing memory, etc.

 Control signals, interfaces between computer and peripherals, memory technology used, etc.

Organization al attributes include:

Computer Organization

- Hardware details transparent to the programmer
- The operational units and their interconnections that realize the architecture

Generations

- First generation
 - Abacus (analog computing machine), punch cards for textile machines
- Second generation (1940 1960)
 - Whirlwind Project at MIT
 - 2K magnetic core memory (popular for 30 years, NASA)
 - 16-bit words
 - Vacuum tubes
 - 100 times larger than today's machines
 - 1/10,000 speed of today's machines
 - Programmed in machine code (1's and 0's)

Generations

- Third generation (1960 -1968)
 - Microprogramming was introduced
 - IBM 360 family
 - Early work with windows, pointing devices, networking (XEROX PARC)
 - Programming in FORTRAN, COBOL, Basic
- Fourth generation (1969 -1977)
 - Minicomputers (Data General Nova, DEC PDP-11)
 - First microprocessors(4004, 8008, 8080, 8085, 6800, 6502, Z80)
 - UNIX, CP/M (DOS Predecessor)
 - Assembler, C, Pascal, Modula, Smalltalk, Microsoft Basic

Generations (Continued)

- Fifth generation (1978 ?)
 - VLSI (Very Large Scale Integration)
 - DOS, CPM, MacOS, Windows NT, OS/2, Linux
 - ADA, C++, Java, HTML
 - Graphical design languages

- Living Computer Museum
 - http://www.livingcomputermuseum.org/
 - 2245 1st Ave S, Seattle, WA 98134
 - Have Fun!

von Neumann Architecture (first / second generation)

Harvard Architecture

Software Designer's View of Today's Computer

Hardware Designer's View of Today's Computer

The Digital Computer

- Machine to carry out instructions
 - A program
- Instructions are simple
 - Add numbers (no subtraction actually)
 - Check if a number is zero
 - Copy data between memory locations
- Primitive instructions in machine language

Data Representation in Computers

Question:

How can we quickly, cost effectively and accurately transmit, receive, store and manipulate numbers in a computer?

Possible Approach #1

 Represent the data value as a voltage or current along a single electrical conductor (signal trace) or wire

- Problems:
 - Measuring large numbers is difficult, slow and expensive!
 - How do you represent +/- 32,673,102,093?

Possible Approach #2

- Represent the data value as a voltage or current along multiple electrical conductors
- Let each wire represent one decade of the number
- Only need to divide up the voltage on each wire into 10 steps
 - 0 V to 9 volts

Comments on Approach #2

- This is better than the first approach
 - Only need to worry about 10 discrete signal levels
- However, modern electronics are still not sufficiently fast enough to make this a viable solution
- It can have considerable "slop" between values before it causes problems
 - What if the second wire gives 4.2 V, or 4.5 V?
- Better approach?
- Hint: Electronics are really good at switching things on and off very fast
 - Modern transistors (electronic switches and amplifiers) can switch a signal on or off in 10's of picoseconds (trillionths of a second)

Possible Approach #3

- Represent the data value as a voltage or current along multiple, parallel, electrical conductors
- Let each wire represent one power of 2 of the number ($2^0 \sim 2^N$)
- Only need to divide the voltage on each wire into 2 possible steps
 - 0 V "no volts" or "some volts" greater than zero (on or off)
- Can have lots of "slop" between values

Comments on Approach #3

- Using transistors as electronic, high-speed on/off switches is a very efficient way to accurately send signals at high speed
- Each signal on a wire is either "on" or "off"
 - An "on" signal means that some voltage is present (~3 volts or greater)
 - An "off" signal means that the voltage is mostly absent (< 0.4 volts)
- Each wire or signal trace represents either the number 0 (no voltage) or the number 1 (some voltage)
- Imagine that each electronic device is like a mechanical switch that can quickly switch the voltage on a wire between 0 volts and 3 volts

Binary Number System

- Since we are switching between two voltage levels, our number system has only 2 digits, 1 or 0: a *binary* number system
- The arithmetic and logical operations on a set of binary number is called Boolean Algebra
- From approach #3, what is the number:

 - -01111000111001
 - Answer: 30949
- How did I get this?

$$-0 \times 2^{15} = 0$$

$$-0 \times 2^{15} = 0$$
 $1 \times 2^{14} = 16,384$ $1 \times 2^{13} = 8,192$

$$1 \times 2^{13} = 8,192$$

$$-1 \times 2^{12} = 4,096$$
 $1 \times 2^{11} = 2,048$ $0 \times 2^{10} = 0$

$$1 \times 2^{11} = 2,048$$

$$0 \times 2^{10} = 0$$

$$-0 \times 2^9 = 0$$

$$0 \times 2^8 = 0$$

$$-0 \times 2^9 = 0$$
 $0 \times 2^8 = 0$ $1 \times 2^7 = 128$

$$-1 \times 2^{6} = 64$$
 $1 \times 2^{5} = 32$ $0 \times 2^{4} = 0$

$$1 \times 2^5 = 32$$

$$0 \times 2^4 = 0$$

$$-0 \times 2^{3} = 0$$
 $1 \times 2^{2} = 4$ $0 \times 2^{1} = 0$

$$1 \times 2^2 = 4$$

$$0 \times 2^1 = 0$$

$$-1 \times 2^0 = 1$$

16,384 + 8,192 + 4,096 + 2,048 + 128 + 64 + 32 + 4 + 1 = 30949

Number Systems

- We count in the decimal system because we have 10 fingers
 - There is nothing unique about counting in decimal
 - We would count in octal (base 8) if we had 8 fingers
- The BASE (Radix) of a number system is just the number of distinct digits in that system
 - Computer systems are naturally binary (base 2)
 - Common number systems used with computational devices:

Base 2: 0,1 : Binary

- Base 8: 0,1,2,3,4,5,6,7 : Octal

Base 10: 0,1,2,3,4,5,6,7,8,9Decimal

- Base 16: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F: Hexadecimal

Binary, Octal and Hexadecimal

- We use the binary number system to represent numbers and logical operations in a computer
- Reading and writing binary numbers is tedious and error-prone because the numbers can be very long
- Octal and hexadecimal are ways to simplify the representation of numbers to make them easier to understand and manipulate
- For example:

```
- 0 1 1 1 1 0 0 0 1 1 1 0 0 1 0 1 = 30,949 in decimal
```

- 0 111 100 011 100 101 = 074345 in octal
- 0111 1000 1110 0101 = 78E5 in hexadecimal
- Notice how hexadecimal is the most compact way to represent the number
- Notice how the binary numbers are grouped together in octal (by 3) and hexadecimal (by 4)
- As you'll see, we convert between binary, octal and hexadecimal be changing how the binary numbers are grouped together

Converting from Decimal to Other Bases

• Algorithm:

Example: Convert 73,503 to base 17

quotient

remainder

Therefore, the answer is $EG5C_{17}$.

Why this algorithm?

EG5C = { E *
$$17^2 + G * 17 + 5$$
}* $17 + C$
= {{ E * $17 + G$ } * $17 + 5$ } * $17 + C$

Converting from Decimal to Other Bases

Algorithm:

Example: Convert EG5C₁₇ To Decimal

```
EG5C = E * 17^3 + G * 17^2 + 5 * 17^1 + C *17^0

= {{ E * 17 + G} * 17 + 5} * 17 + C

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
```


Let's do a 16-bit number

Binary: 0101111111010111

Octal: 0 101 111 111 010 111 = 057727 (group by threes)

• Hex: 0101 1111 1101 0111 = 5FD7 (group by fours)

Decimal: ???

Exercise: Convert 5DE37A05₁₆ to Octal

Bits, Bytes, Nibbles, Words, etc.

Size of Numbers and C++

Binary Digits	Architectural	C++	Possible unsigned number range
1	bit	Boolean	0, 1
4	nibble	N/A	0 ~ 15
8	byte	char	0 ~ 255
16	word	short	?
32	long	int	?
64	double	double	?

Engineering Notation

- In order to represent very large or very small numbers, we usually resort to scientific notation:
 - For example: $Avogadro's Number = 6.022 \times 10^{-23}$
 - Mantissa = 6.022, exponent = 23
- It is common in engineering to use a shorthand version of scientific notation
- Replacement values

TERA = 10 ¹² (T)	PICO = 10 ⁻¹² (p)	
GIGA = 10 ⁹ (G)	NANO = 10 ⁻⁹ (n)	
MEGA = 10 ⁶ (M)	MICRO = 10^{-6} (μ)	
KILO = 10 ³ (K)	MILLI = 10 ⁻³ (m)	

Computers and Numbers

- In the digital world
 - 1K means 1,024, or 2¹⁰
 - 1M means 1,048576, or 2²⁰
 - 1G means 1,073,741,824, or 2³⁰
- Example
 - 512 megabytes of memory really means 512 x (2²⁰) bytes, or 2²⁹ bytes of memory
- In general, anything to do with the size in bytes uses computer-speak K,M,G
 - Anything else, such as clock speed or time, use standard units