

RIGA TECHNICAL UNIVERSITY

FACULTY OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

INSTITUTE OF APPLIED COMPUTER SYSTEMS

Introduction to Operations Research Assignment 6 Linear Programming

Name: Emir

Surname: Oguz

Student Number: 230ADB011

> Task

Data input:

- User stories code names (R.01, R.02, etc.)
- Sprints names (Sprint 1, Sprint 2, etc.)
- User story profitability
- User story points
- Sprint capacity
- User story interdependencies

Decision variables:

 What user stories can we fit in each sprint, by also taking into account their interdependencies?

Objective function:

• Maximize user story profitability.

Constraints:

- The total amount of user stories' points cannot exceed the sprint capacity.
- One user story can only be associated to one sprint (one sprint can have multiple user stories).
- If a user story (US_1) depends on an user story (US_2), then US_2 should be included in a sprint before or in the same sprint as US_1.

Example:

- Sprint 3: US 2 or Sprint 3: US 2, US 1
- Sprint 4: US 1
- The interdependencies file is update to eliminate symmetry.
- You consider only interdependecies among user stories included in your variant.
- User stories are defined in Latvian. If you want to understand these then use Google Translate.
- LinearProgramingHomeWork_variants.xlsx contains variant number for each student.
- Sprint capacity and user story sizes are in the OperationsResearch.zip file.
- Please take the Word document corresponding to you variant number.

> Answer

• My Variants (13)

Sprinta Nr.	1	2	3	4	5	6
Kapacitāte Pi ^{max}	30	20	15	15	20	20

User Story	Rentabilitāte U _j (10-100)	Story point P _j (1-10)
R.01	100	8
R.02	100	7
R.06	60	2
R.07	60	6
R.08	30	6
R.09	40	4
R.10	35	4
R.12	80	7
R.13	80	10
R.14	75	6
R.15	70	7
R.16	60	8
R.17	20	3
R.18	20	5
R.19	30	6
R.20	15	6
R.31	75	8
R.32	40	6

• Code in CPLEX Model File

```
{string} story = ...;
{string} sprint = ...;
float Sprint_Capacity[sprint] = ...;
float Profitability[story] = ...;
float User_Story_Points[story] = ...;
float Interdependencies[story][story] = ...;
dvar int+ matrix[sprint][story];
maximize
  sum(i in sprint, j in story)
Profitability[j] * matrix[i][j];
subject to {
  forall(i in sprint)
    sum(j in story)
      User_Story_Points[j] * matrix[i][j] <= Sprint_Capacity[i];</pre>
  forall(i in story)
  sum(j in sprint)
      matrix[j][i] <= 1;
  forall(i in sprint)
    forall(j in story)
      forall(k in story: k < j)</pre>
         matrix[i][j] + Interdependencies[j][k] - matrix[i][k] <= 1;</pre>
```

Code in CPLEX Data File

```
SheetConnection Sheet("CourseWork_Interdependences.xlsx");
story from SheetRead(Sheet, "'Sheet1'!A2:A19");
sprint from SheetRead(Sheet, "'Sheet1'!C20:H20");
Sprint_Capacity from SheetRead(Sheet, "'Sheet1'!C21:H21");
Profitability from SheetRead(Sheet, "'Sheet1'!C22:T22");
User_Story_Points from SheetRead(Sheet, "'Sheet1'!C23:T23");
Interdependencies from SheetRead(Sheet, "'Sheet1'!C2:T19");
```

Screenshots

CPLEX Model

```
{string} story = ...;
   {string} sprint = ...;
10 float Sprint_Capacity[sprint] = ...;
11 float Profitability[story] = ...;
12 float User_Story_Points[story] = ...;
13 float Interdependencies[story][story] = ...;
15 dvar int+ matrix[sprint][story];
16
17⊖ maximize
18
     sum(i in sprint, j in story)
       Profitability[j] * matrix[i][j];
21⊖ subject to {
22• forall(i in sprint)
       sum(j in story)
         User_Story_Points[j] * matrix[i][j] <= Sprint_Capacity[i];</pre>
     forall(i in story)
26●
       sum(j in sprint)
         matrix[j][i] <= 1;
     forall(i in sprint)
31●
       forall(j in story)
  forall(k in story: k < j)</pre>
           matrix[i][j] + Interdependencies[j][k] - matrix[i][k] <= 1;</pre>
```

CPLEX Data

```
1/*******************************
2 * OPL 22.1.1.0 Data
3 * Author: Emir
4 * Creation Date: 1 Apr 2023 at 02:02:59
5 ******************************
6
7 SheetConnection Sheet("CourseWork_Interdependences.xlsx");
8 story from SheetRead(Sheet, "'Sheet1'!A2:A19");
9 sprint from SheetRead(Sheet, "'Sheet1'!C20:H20");
10 Sprint_Capacity from SheetRead(Sheet, "'Sheet1'!C21:H21");
11 Profitability from SheetRead(Sheet, "'Sheet1'!C22:T22");
12 User_Story_Points from SheetRead(Sheet, "'Sheet1'!C23:T23");
13 Interdependencies from SheetRead(Sheet, "'Sheet1'!C2:T19");
```

- Output

• Results

User Stories

R.01, R.02, R.06, R.07, R.08, R.09, R.10, R.12, R.13, R.14, R.15, R.16, R.17, R.18, R.19, R.20, R.31, R.32

- Sprints

Sprint1, Sprint2, Sprint3, Sprint4, Sprint5, Sprint6

- Matrix

- Profit

	R.01	R.02	R.06	R.07	R.08	R.09	R.10	R.12	R.13	R.14	R.15	R.16	R.17	R.18	R.19	R.20	R.31	R.32
Sprint1	100	100				40	35								30			
Sprint2			60		30							60						
Sprint3																		
Sprint4								80					20	20				
Sprint5				60					80									
Sprint6										75	70							

Capacity

	R.01	R.02	R.06	R.07	R.08	R.09	R.10	R.12	R.13	R.14	R.15	R.16	R.17	R.18	R.19	R.20	R.31	R.32
Sprint1	8	7				4	4								6			
Sprint2			2		6							8						
Sprint3																		
Sprint4								7					3	5				
Sprint5				6					10									
Sprint6										6	7							

Annotation

Because of the error below, I deleted one of the user stories (R33) given in the variant file and did the homework in this way. So, I just deleted one column and thus got rid of the following error.

• Conclusion

In this assignment, I first combined the user stories into an Excel file based on the variant number (13) assigned to me. I have also added the "Sprint Number, Sprint Capacity, Sprint Profitability and User Story Scores" attributes to this Excel file. I created a CPLEX data file by writing the necessary codes to use the data in this Excel file. Then I wrote a code where I could use this data and created the CPLEX model file. I added the Excel file to the CPLEX project folder I created and ran the code. I got the data and decision variables that I used in the output and showed them in the assignment as well. I created the profitability and capacity tables according to the output matrix created under the name of decision variables and completed the

As a result, in this assignment, I found the most optimized way by using sample files with project management decisions, I learned where OPL is used and how to use CPLEX.