Manhattan Rent Prices

Michelle Wang, Ella Wanner, Sofia Kolobaev

Background

- NYC known to be notoriously expensive
- % of people who rent instead of owning in NYC -> 67.2%
- Manhattan popular place with very high rent

Motivation/Broad Questions

- Explanatory modeling:
 - What factors impact the rent prices in Manhattan?
 - Out of these factors, which one(s) impact the price the most?
 - We explored other small questions along the way as well
- Predictive modeling:
 - Make models to predict rent prices given the factors
- Goal: help those who are looking for a place to rent in Manhattan

Techniques for Research and Findings

- Explanatory modeling
 - Excel
 - Correlation matrix
 - Multiple linear regression
 - Python
 - Multiple linear regression
 - Visualizations
 - Tableau
 - Visualizations
- Predictive modeling
 - Python
 - Random Forest
 - Feature importance graph
 - Multiple linear regression
 - K-nearest neighbors regression

Defining and Adjusting Dataset

rental id	rent	hedrooms	hathroom	size saft	min to suffe	oor	huilding an	o fee	has ro	ofdhas	wash has	doorthas	eleva has	dishu has	natio has øvm	neighhorh horough
rental_id	rent	bedrooms	bathroom	size_sqft	min_to_suf	loor	building_a	no_fee	has_r	oofd has	s_wash ha	s_doorr ha	s_eleva ha	s_dishw h	as_patio has_gym	neighborhood
1545	2550	0	1	480	9	2	17		1	1	0	0	1	1	0	1 Upper East Side
2472	11500	2	2	2000	4	1	96		0	0	0	0	0	0	0	0 Greenwich Village
2919	4500	1	1	916	2	51	29		0	1	0	1	1	1	0	0 Midtown
2790	4795	1	1	975	3	8	31		0	0	0	1	1	1	0	1 Greenwich Village
3946	17500	2	2	4800	3	4	136		0	0	0	1	1	1	0	1 Soho
10817	3800	3	2	1100	3	5	101		0	0	0	0	0	0	0	0 Central Harlem
9077	1995	0	0	600	6	1	115		0	0	0	0	0	0	0	0 Midtown East
5150	2995	0	1	579	6	21	33		0	0	0	0	0	0	0	0 Battery Park City
9507	15000	2	2	1715	0	30	2		0	0	0	0	0	0	0	0 Flatiron
1437	4650	1	1	915	5	5	106		0	0	0	0	0	0	0	0 Upper East Side
404	2950	1	1	550	43	17	14		1	1	0	1	1	0	0	0 Upper East Side
8293	6920	3	2	1439	7	9	39		1	0	0	0	0	0	0	0 Midtown East
6594	4875	1	1	900	1	14	52		1	0	1	1	1	1	0	1 East Village
2964	4850	1	1	789	2	40	11		0	0	0	0	0	0	0	0 Midtown West
5405	3700	1	1	947	5	5	85		1	0	1	0	1	0	1	0 Upper East Side
5635	4200	2	1	900	4	8	111		1	0	0	0	0	0	0	0 Upper West Side
5832	2195	1	1	500	3	3	106		1	0	0	0	0	0	0	0 Lower East Side
7050	4200	1	1	640	3	15	52		1	0	0	0	0	0	0	0 Tribeca
476	9000	2	2	1749	4	15	10		0	0	0	1	0	0	0	0 Midtown East

Explanation of the x and y variables

x-variables

- neighborhood neighborhood in Manhattan of the place
- bedrooms count of bedrooms of the place
- bathrooms count of bathrooms of the place
- o size_sqft square footage of the place
- min_to_subway minutes away from the subway
- floor count of floors of the place
- building_age_yrs age of the building
- o no_fee 0 for fee, 1 for no fee
- has_roofdeck 0 for no roof deck, 1 for has roof deck
- has_washer_dryer 0 for no washer dryer, 1 for has washer dryer
- has_doorman 0 for has no doorman, 1 for has doorman
- has_elevator 0 for has no elevator, 1 for has elevator
- has_dishwasher 0 for has no dishwasher, 1 for has dishwasher
- has_patio 0 for has no patio, 1 for has patio
- has_gym 0 for has no gym, 1 for has gym

y-variable

rent - rent price per month of the place

Explanatory Modeling - Excel

	rent	bedrooms	bathrooms	size_sqft	min_to_subwa	/floor	puilding_age_	yrs no_	fee h	as_roofdeck	has_washer_drye	rhas_doorman	nas_elevatorh	nas_dishwasher	has_patio	has_gym
rent	1														<u> </u>	
bedrooms	0.638336	, 1														
bathrooms	0.769474	4 0.720885	, 1	1												
size_sqft	0.857954	4 0.771263	0.803627	1												
min_to_subway	0.035164	0.076543	0.086932	0.039448	. 1											
floor	0.215867	0.043539	0.127969	0.107186	0.082445369	/ 1										
building_age_yrs	-0.12889	0.037228	-0.09542	0.014489	-0.18468244	-0.4	1	1								
no_fee	-0.1015	-0.10035	-0.06221	-0.14145	0.080087628	0.1	-0.2214285	48ر	1							
has_roofdeck	0.035165	0.002938	0.019556	0.024822	-0.020693437	0.1	-0.0413054	₊63 -0.C	J957	1						
has_washer_dryer	0.053873	0.008721	0.025752	0.038263	-0.001327204	1 0	-0.0300139	J52 -0.C	J703 /	0.31345903		1				
has_doorman	0.031302	-0.01733	0.014745	0.026098	-0.009011783	0.1	-0.0472650	J67 -0.1	1825	0.48983583	0.328291049	1 و				
has_elevator	0.05186	-0.00677	0.02115	0.040916	-0.000409704	0.1	-0.0606273	315 -0.1	1615	0.51653367	0.37999855	7 0.717929182	1			
has_dishwasher	0.052241	0.005467	0.038829	0.050364	-0.012243695	5 0	-0.0274201	.71 -0.C	J787	0.3319987	0.45516568	4 0.343158787	0.4198125	1		
has_patio	0.029302	0.003037	0.042304	0.021921	0.00149951	0.1	-0.0503213	.0.0 عود	J497	0.1225676	0.14097924	1 0.140967663	0.1345356	0.133127365	1	
has gym	0.040609	-0.00411	0.029739	0.029347	-0.004315481	0.1	-0.0631104	456 -0.1	1012	0.5616258	0.34843314	8 0.633628002	0.6420993	0.34258959	0.123524	. 1

SUMMARY OUTPUT	
Regression S	tatistics
Multiple R	0.882
R Square	0.779
Adjusted R Square	0.778
Standard Error	1488
Observations	

Multiple R	0.882783521	
R Square	0.779306745	
Adjusted R Square	0.778429984	
Standard Error	1488.780337	
Observations	3539	
	1	
ice F is less than 0.05 so th	e model is significant	ī

116.4290281 not significant because p-value >= 0.05 176.4047176 not significant because p-value >= 0.05

ANOVA						Observations		3	3539
	df	SS	MS	F	Significance F				
Regression	14	27581413781	1970100984	888.8474677	0) <mark>Significance (</mark>	is less than 0.05 so	the model is sign	nificant 💮
Residual	3524	7810829328	2216466.892						
Total	3538	35392243108							
	Coefficients S	Standard Error t Stat	at P-value	Lower 95	5% Upper 95%	Lower 95.0%	Upper 95.0%		

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%	
Intercept	-422.16058	96.09549458	4.393136035	1.15016E-05	-610.5689995	-233.7521606	-610.5689995	-233.7521606	أذ
bedrooms	-315.4939511	42.60401118	-7.40526402	1.62904E-13	-399.0249683	-231.9629339	-399.0249683	-231.9629339)
bathrooms	1181.064349	74.49751781	15.85374096	9.89612E-55	1035.001731	1327.126968	1035.001731	1327.126968	3
size_sqft	4.917379044	0.101254571	48.56451392	0	4.718855545	5.115902542	4.718855545	5.115902542	2
min_to_subway	-16.41727249	4.64929521	-3.53113144	0.000419086	-25.5328545	-7.301690473	-25.5328545	-7.301690473	3
floor	23.35722973	2.518139825	9.275588868	2.99721E-20	18.42007064	28.29438882	18.42007064	28.29438882	2
building_age_yrs	-7.480691272	0.724996415	-10.31824588	1.30104E-24	-8.902146349	-6.059236195	-8.902146349	-6.059236195	i
no_fee	-130.3259857	54.2076263	-2.404200195	0.016259198	-236.6074845	-24.0444869	-236.6074845	-24.0444869	j e e e e e e e e e e e e e e e e e e e
has_roofdeck	31.12172859	87.5360981	0.355530224	0.722213685	-140.5048181	202.7482753	-140.5048181	202.7482753	3 not significant because p-value >= 0.0
has washer dryer	152.6843884	79.76593857	1.914155228	0.055681232	-3.707693055	309.0764698	-3.707693055	309.0764698	8 not significant because p-value >= 0.0

bathrooms	1181.064349	74.49751781	15.85374096	9.89612E-55	1035.001731	1327.126968	1035.001731	1327.126968				
size_sqft	4.917379044	0.101254571	48.56451392	0	4.718855545	5.115902542	4.718855545	5.115902542				
min_to_subway	-16.41727249	4.64929521	-3.53113144	0.000419086	-25.5328545	-7.301690473	-25.5328545	-7.301690473				
floor	23.35722973	2.518139825	9.275588868	2.99721E-20	18.42007064	28.29438882	18.42007064	28.29438882				
building_age_yrs	-7.480691272	0.724996415	-10.31824588	1.30104E-24	-8.902146349	-6.059236195	-8.902146349	-6.059236195				
no_fee	-130.3259857	54.2076263	-2.404200195	0.016259198	-236.6074845	-24.0444869	-236.6074845	-24.0444869				
has_roofdeck	31.12172859	87.5360981	0.355530224	0.722213685	-140.5048181	202.7482753	-140.5048181	202.7482753	not significa	ant becaus	se p-value >	= 0.0
has_washer_dryer	152.6843884	79.76593857	1.914155228	0.055681232	-3.707693055	309.0764698	-3.707693055	309.0764698	not significa	ant becaus	se p-value >	= 0.0
has_doorman	-159.6798667	85.7650944	-1.861828146	0.062710503	-327.8341173	8.474383959	-327.8341173	8.474383959	not significa	ant becaus	se p-value >	= 0.0
has_elevator	87.30387301	87.58835155	0.996752096	0.318953291	-84.42512377	259.0328698	-84.42512377	259.0328698	not significa	ant becaus	se p-value >	= 0.0
has_dishwasher	-26.79488303	76.4687761	-0.350402928	0.726057272	-176.7224244	123.1326584	-176.7224244	123.1326584	not significa	ant becaus	se p-value >	= 0.0

-322.5651624

-200.0235096

116.4290281

176.4047176

-322.5651624

-200.0235096

111.9519074 -0.920645924 0.357298335

95.99639118 -0.123019166 0.902098936

has_patio

has_gym

-103.0680672

-11.80939601

	Regression Sta	tistics						
							Multiple R	0.882496
							R Square	0.778799
							Adjusted R Square	0.778361
							Standard Error	1489.014
A NIOV / A							Observations	3539
ANOVA	df	SS	MS	F	Significance F		-	
Regression		2.76E+10	3937634903	1775.979844	Significance i	0 Significance F is	less than 0.05 so the mod	del is significa
Residual	3531	7.83E+09	2217161.933					
Гotal	3538	3.54E+10						

SUMMARY OUTPUT

	CoefficientsStandard Error		t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-426.394	93.28174034	-4.571031261	5.01958E-06	-609.2852943	-243.502208	-609.2852943	-243.502208
bedrooms	-313.554	42.517932	-7.374630825	2.04304E-13	-396.9162422	-230.1918616	-396.9162422	-230.1918616
bathrooms	1175.333	74.40178763	15.79711038	2.27402E-54	1029.458424	1321.208079	1029.458424	1321.208079
size_sqft	4.92447	0.101081218	48.71795052	0	4.726286275	5.122653234	4.726286275	5.122653234
min_to_subway	-16.3554	4.647974751	-3.518828022	0.000438926	-25.46841066	-7.242436933	-25.46841066	-7.242436933
floor	23.02461	2.503595245	9.196619294	6.15322E-20	18.11597324	27.93325143	18.11597324	27.93325143
building_age_yrs	-7.48416	0.722757473	-10.35500995	8.95263E-25	-8.901225178	-6.067096462	-8.901225178	-6.067096462
no_fee	-120.383	53.00953852	-2.270972733	0.023208587	-224.3156289	-16.45080423	-224.3156289	-16.45080423

Rent price = -426.394 - 313.554(bedrooms) + 1175.333(bathrooms) + 4.92447(size_sqft) - 16.3554(min_to_subway) + 23.02461(floor) - 7.48416((building_age_yrs) - 120.383(no_fee)

Explanatory Modeling - Python

```
# EXPLANATORY MODELING
# multiple linear regression - find the equation model
import pandas as pd
from sklearn.linear model import LinearRegression
import numpy as np
df manhattan subset = pd.read excel('manhattansubset.xlsx')
def disp regress(df, x feat list, y feat, verbose=True):
    """ linear regression, displays model w/ coef
    Aras:
        df (pd.DataFrame): dataframe
        x feat list (list): list of all features in model
        y feat (list): target feature
        verbose (bool): toggles command line output
    Returns:
        reg (LinearRegression): model fit to data
    # initialize regression object
    reg = LinearRegression()
    # get target variable
    x = df.loc[:, x feat list].values
    y = df.loc[:, y feat].values
    # fit regression
    reg.fit(x, y)
```

rent = -501.41 + 4.76 size_sqft - 6.70 building_age_yrs + 23.84
floor - 14.98 min_to_subway + 1130.02 bathrooms - 1956.17
neighborhood_Washington Heights - 1639.82 neighborhood_Central
Harlem - 194.16 bedrooms + 1691.73 neighborhood_West Village +
1357.01 neighborhood_Soho + 809.88 neighborhood_Chelsea

Explanatory Modeling - Python

```
# square feet vs rent - scatterplot
plt.scatter(new_df_manhattan['size_sqft'], new_df_manhattan['rent'])
plt.xlabel('size in square feet')
plt.ylabel('rent price')
plt.title('Rent Price vs Size in Square Feet')
```


histogram of rent price
plt.hist(new_df_manhattan['rent'])
plt.xlabel('rent price')
plt.ylabel('count of places with that rent price')
plt.title('Count of Places in Manhattan Within Each Rent Price Range')

Explanatory Modeling - Tableau

Avg Rent Price vs Neighborhood

Average Rent vs Average Size Sqft

Average Rent per Sqft for Each Neighborhood

Manhattan Neighborhoods


```
# Random Forest - feature importance graph
# import necessary libraries
from sklearn.model selection import KFold
import numpy as np
from sklearn.metrics import r2 score
from sklearn.ensemble import RandomForestRegressor
x feat list = new df manhattan.columns[2:]
y feat = 'rent'
x = new df manhattan.loc[:, x feat list].values
y true = new df manhattan.loc[:, y feat].values
# initialize random forest
rf reg = RandomForestRegressor()
# initialize k fold
skfold = KFold(shuffle=True)
# initialize y pred, stores predictions of y
y_pred = np.empty_like(y_true)
```

```
for train_idx, test_idx in skfold.split(x, y_true):
    # get training data
    x_train = x[train_idx, :]
    y_train = y_true[train_idx]

# get test data
    x_test = x[test_idx, :]

# fit data
    rf_reg = rf_reg.fit(x_train, y_train)

# estimate on test data
    y_pred[test_idx] = rf_reg.predict(x_test)

r2 = r2_score(y_true, y_pred)
print(r2)
```

$$r2 = 0.84$$

```
# Feature importance graph
import matplotlib.pyplot as plt
def plot feat import(feat list, feat import, sort=True):
       plots feature importances in a horizontal bar chart
   Args:
       feat list (list): str names of features
       feat import (np.array): feature importances (MSE reduce)
       sort (bool): if True, sorts features in decreasing importance
           from top to bottom of plot
    if sort:
       # sort features in decreasing importance
       idx = np.argsort(feat import).astype(int)
       feat list = [feat list[ idx] for idx in idx]
       feat import = feat import[idx]
   # plot and label feature importance
   plt.barh(feat list, feat import)
   plt.gcf().set size inches(5, len(feat list) / 2)
   plt.xlabel('Feature importance\n(Mean decrease in r2 across all Decision Trees)')
         # import libraries
         import seaborn as sns
         # call seaborn to make the plot nicer
         sns.set()
         # fit on entire dataset
         rf reg.fit(x, y true)
         # call the plot feat import to plot the plot
```

plot feat import(x feat list, rf req.feature importances)

Predictive Modeling - Python

```
# Multiple linear regression - only using the significant x variables
# (based on feature importance graph findings!)
x = df manhattan subset[df manhattan subset.columns[1:]]
y = df manhattan subset['rent']
# split into training and testing
from sklearn.model selection import train test split
x train, x test, y train, y test = train test split(x, y, test size=0.3,
                                                    random state=1)
# implement the linear regression model
from sklearn.linear model import LinearRegression
lm = LinearRegression()
lm.fit(x train, y train)
# coefficients
lm.coef
lm.intercept
# evaluate the model: using the testing dataset
predictions = lm.predict(x test)
```

```
# to evaluate, we compare predictions with y_test (actual data)
from sklearn.metrics import mean_squared_error
mse = mean_squared_error(y_test, predictions)
rmse = mse ** 0.5
print(rmse)
# rmse = 1371.25

from sklearn.metrics import r2_score
r2 = r2_score(y_test, predictions)
print(r2)
```

r2 = 0.80

Predictive Modeling - Python

```
# k-nearest neighbors regressor
from sklearn.neighbors import KNeighborsRegressor
from copy import copy
from sklearn.model selection import KFold
from sklearn.metrics import r2 score
# Using x variables that are important based on feature importance graph
# x and y variables of interest
x feat list = df manhattan subset.columns[1:]
y feat = 'rent'
# scale normalization
for feat in x feat list:
    df manhattan subset[feat] = df manhattan subset[feat] / df manhattan subset[feat].std()
# get the x and y from the dataset
x = df manhattan subset.loc[:, x feat list].values
y true = df manhattan subset.loc[:, y feat].values
# initialize a knn regressor
knn regressor = KNeighborsRegressor()
# cross validation
kfold = KFold(shuffle=True)
# allocate an empty array to store predictions in
y pred = copy(y true)
```

```
for train_idx, test_idx in kfold.split(x, y_true):
    # build arrays which correspond to x, y train /test
    x_test = x[test_idx, :]
    x_train = x[train_idx, :]
    y_true_train = y_true[train_idx]

# fit on training data
knn_regressor.fit(x_train, y_true_train)
```

y_pred[test_idx] = knn_regressor.predict(x_test)

estimate rent

print(r2)
r2 = 0.80

r2 = r2 score(y true, y pred)

Conclusions

- Size in sq footage is the factor that is most important in predicting rent prices
- Multiple linear regression model based on only the most important x variables

```
rent = -501.41 + 4.76 size_sqft - 6.70 building_age_yrs + 23.84 floor - 14.98 min_to_subway + 1130.02 bathrooms - 1956.17 neighborhood_Washington Heights - 1639.82 neighborhood_Central Harlem - 194.16 bedrooms + 1691.73 neighborhood_West Village + 1357.01 neighborhood_Soho + 809.88 neighborhood_Chelsea
```

- Other smaller conclusions:
 - Upper West side has the most listings
 - Avg rent price is most expensive in SoHo
 - As age of building increase, so does rent price
 - Most common price category for Manhattan rent \$2500-\$5000 price category

Other Conclusions

- Strong predictive models can be made to predict rent price mostly focused on using most importance x-variables, as dictated by the feature importance graph
- Challenges
 - Only 3539 records from one source, one dataset
 - Not sure when the data was collected
 - May be other x-variables even more important in predicting rent prices in Manhattan

Resources Used

- https://www.kaggle.com/datasets/zohaib30/streeteasy-dataset?resource=download)
- https://www.valuepenguin.com/new-york-city-renters-statistics
- https://www.nyc.gov/site/planning/data-maps/open-data/census-download-metadata.page
- Some of the predictive modeling code used were functions from DS 2500.