MLaE: Whether WFH affect well-being

Boyu Chen, Yihuai Chang

2023-05-29

Research Motivation

- ▶ During the COVID-19 pandemic, there are a lot of workers were asked to work form home because of lock-down.
- The question we want to examine is: During the pandemic, is the well-being index of home workers lower?
- Our hypothesis is that working from home has negative impact on workers' well-being, since they might feel socially isolated.

Literature

Marco Bertoni, Danilo Cavapozzi et al.*(2022), "Remote Working and Mental Health During the First Wave of the COVID-19 Pandemic"

Data Source

IPUMS Time Use 2021, which is cross-sectional individual-level survey data.

- We dropped all the observations do not answer whether they are working from home or not, as well as excluded those observations with no job and no income.
- \triangleright Y_i represents an outcome of interest:
 - ▶ Well-being index: $0\sim10$, 0 for the worst life, 10 for the best life
- $ightharpoonup D_i$ represents a binary treatment of interest:
 - Distance working or not: 1 for distance worker, 0 for commuter
- \triangleright X_i represents the a set of control variables:
 - Occupation, marrital status,age, race, sex, have child or not, full-time or part-time, earning per week, State
- # of observations: 3,281, # of variables: 94

Assumptions

▶ We assume that unconfoundedness is satisfied, which is:

$$(Y_{i(0)}, Y_{i(1)}) \perp D_i | X_i$$

► The sparsity assumption holds

Model

Model

Poisson regression

Because our Y is a count data, we use poisson regression with double machine learning to specify our treatment effect.

Recall: Poisson

- poisson pdf:
 - ▶ If $Y \sim poisson(\lambda)$, then $f(y) = \frac{\lambda^y e^{-\lambda}}{y!}$
- **>** poisson regression: let $\lambda_i = E(y_i|X_i) = exp(X_i'\beta)$,
 - ▶ The conditional pdf is $f(y_i|X_i) = \frac{\exp(X_i'\beta)^{y_i}e^{-\exp(X_i'\beta)}}{y_i!}$
 - The log-likelihood is $\ell(\beta|y_i, X_i) = y_i(X_i'\beta) exp(-X'\beta) ln(y_i!)$
 - ► The poisson regression LASSO criterion is

$$min_{eta,\gamma}Q(eta,\gamma|X,Y)=-n^{-1}\sum_{i=1}^n\ell(eta|y_i,X_i)+\gamma\sum_{i=1}^p|eta_j|$$

XPOPOSSION

Cross-fit partialing-out lasso Poisson regression, the model is:

$$E(y_i|D,X) = exp(D_i\alpha + X_i'\beta)$$

where

- y_i is the dep. variable.
- \triangleright D_i is treatment, which is a scalar.
- \triangleright X_i is the control variable vector, which is a $p \times 1$ vector.
- \triangleright β is a $p \times 1$ vector.

Step 1

Randomly Partition the sample to ${\sf K}$ folds.

Step 2

Define two sets:

- \triangleright I_k : the obs. in fold k
- \triangleright IC_k : the obs. not in fold k

Step 3

Run Double Selection poisson lasso For k = 1, ..., K

1. Using all $i \in IC_k$, run poisson lasso for the following model

$$y_i = exp(D_i\alpha_k + X_i'\beta_k)$$

and we get the non-zero covariates, denoted by $\tilde{X}_{k,y}$.

2. Using all $i \in IC_k$, run poisson regression for the following model

$$y_i = exp(D_i\alpha_k + \tilde{X}'_{k,y,i}\beta_k)$$

and we get the estimated coefficients $\tilde{\alpha}_k$ and $\tilde{\delta}_k$.

3. For the obs. $i \in I_k$, fill in the prediction for the high-dimensional component using the out-of-sample estimate $\tilde{\delta}_k$.

$$\tilde{s}_i = \tilde{X}'_{k,y,i} \tilde{\delta}_k$$

4. Using the observations $i \in IC_k$, perform a linear lasso of D on X using observation-level weights, w_i .

$$w_i = \exp'(D_i \tilde{\alpha}_k + \tilde{s}_i)$$

Denote the selected controls by \tilde{X}_k .

- 5. Using the observations $i \in IC_k$, fit a linear regression of D on \tilde{X}_k , and denote the coefficient estimates by $\hat{\gamma}_k$.
- 6. For each observation $i \in I_k$, fill in the instrument

$$z_i = D_i - \tilde{X}_{k,i} \hat{\gamma}_k'$$

Step 4

Compute the point estimates $\hat{\alpha}$ by solving the following sample-moment equations.

$$\frac{1}{n}\sum_{i=1}^n\{y_i-\exp(D_i\alpha'+\tilde{s}_i)\}z_i=0$$

XPOLPR algorithm Step 5

Variance estimation is estimated by

$$\hat{Var}(\hat{\alpha}) = n^{-1}\hat{J}_0^{-1}\hat{\Psi}(\hat{J}_0^{-1})'$$

where

$$\hat{\Psi} = K^{-1} \sum_{k=1}^{K} \hat{\Psi}_{k}$$

$$\hat{\Psi}_{k} = n_{k}^{-1} \sum_{i \in I_{k}} \hat{\psi}_{i} \hat{\psi}'_{i}$$

$$\hat{\psi}_{i} = \{ y_{i} - \exp(d\hat{\alpha} + \hat{s}_{i}) \} z_{i}$$

$$\hat{J}_{0} = K^{-1} \sum_{k=1}^{K} (n_{k}^{-1} \sum_{i \in I_{k}} \hat{\psi}_{i}^{\alpha})$$

$$\hat{\psi}_{i}^{\alpha} = \frac{\partial \hat{\psi}_{i}}{\partial \hat{\alpha}}$$

Descriptive Statistics

	mean	standard deviation
well being	7.286	1.780
WFH	0.253	0.435
age	44.265	13.552
female	0.486	0.500
have child	0.437	0.496
married	0.527	0.499
earnings per week	1277.225	793.090
fulltime job	1.134	0.341
observations		3281

Main Result

```
Cross-fit fold 10 of 10 ...
Estimating lasso for wbladder using plugin
Estimating lasso for distance work using plugin
Cross-fit partialing-out
                                     Number of obs
                                                                         3,281
Poisson model
                                     Number of controls
                                                                            94
                                     Number of selected controls =
                                                                            20
                                     Number of folds in cross-fit =
                                                                            10
                                     Number of resamples
                                                                             1
                                     Wald chi2(1)
                                                                          3.80
                                     Prob > chi2
                                                                        0.0513
                             Robust
    wbladder
                       TRR
                             Std. Err.
                                                           [95% Conf. Interval]
                                            z
                                                 P>|z|
distance work
                  .9794901
                             .0104156
                                      -1.95
                                                 0.051
                                                           .9592871
                                                                       1.000119
```

Subgroup: gender

male:

```
Cross-fit fold 10 of 10 ...
Estimating lasso for wbladder using plugin note: female dropped because it is constant
Estimating lasso for distance_work using plugin note: female dropped because it is constant
```

Cross-fit partialing-out	Number of obs	=	1,686
Poisson model	Number of controls	=	94
	Number of selected controls	=	21
	Number of folds in cross-fit	=	10
	Number of resamples	=	1
	Wald chi2(1)	=	4.33
	Prob > chi2	=	0.0375

wbladder	IRR	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
distance_work	.9677906	.0152292	-2.08	0.037	.9383974	.9981044

Subgroup: gender

female:

Cross-fit fold 10 of 10 ... Estimating lasso for wbladder using plugin note: female dropped because it is constant Estimating lasso for distance_work using plugin note: female dropped because it is constant

Cross-fit partialing-out

Number of obs	=	1,595
Number of controls	=	94
Number of selected controls	=	17
Number of folds in cross-fit	=	10
Number of resamples	=	1
Wald chi2(1)	=	0.35
Prob > chi2	=	0.5548

wbladder	IRR	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
distance_work	.9914048	.0144921	-0.59	0.555	.9634039	1.02022

Subgroup: have children or not

have children:

```
Cross-fit fold 10 of 10 ...
Estimating lasso for wbladder using plugin
note: hh child dropped because it is constant
Estimating lasso for distance_work using plugin
note: hh_child dropped because it is constant
Cross-fit partialing-out
                                     Number of obs
                                                                         1.433
Poisson model
                                     Number of controls
                                                                            94
                                     Number of selected controls =
                                                                            13
                                     Number of folds in cross-fit =
                                                                            10
                                     Number of resamples
                                                                             1
                                     Wald chi2(1)
                                                                           0.33
                                     Prob > chi2
                                                                        0.5628
```

wbladder	IRR	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
distance_work	.9914021	.0147933	-0.58	0.563	.9628277	1.020825

Subgroup: have children or not

do not have any child:

```
Cross-fit fold 10 of 10 ...
```

Estimating lasso for wbladder using plugin note: hh_child dropped because it is constant Estimating lasso for distance_work using plugin note: hh child dropped because it is constant

Cross-fit partialing-out Poisson model

 Number of obs
 =
 1,848

 Number of controls
 =
 94

 Number of selected controls
 =
 18

 Number of folds in cross-fit
 =
 10

 Number of resamples
 =
 1

 Wald chi2(1)
 =
 4.24

 Prob > chi2
 =
 0.8396

wbladder	IRR	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
distance_work	.9700444	.0143347	-2.06	0.040	.9423518	.9985507

Subgroup: marital status

married:

```
Cross-fit fold 10 of 10 ...
Estimating lasso for wbladder using plugin
Estimating lasso for distance work using plugin
Cross-fit partialing-out
                                   Number of obs
                                                                       1,728
Poisson model
                                   Number of controls
                                                                          94
                                   Number of selected controls =
                                                                         18
                                    Number of folds in cross-fit =
                                                                         10
                                   Number of resamples
                                    Wald chi2(1)
                                                                       1.01
                                    Prob > chi2
                                                                      0.3161
                             Robust
    wbladder
                      IRR
                            Std. Err.
                                          z P>|z|
                                                         [95% Conf. Interval]
distance_work
                 .9880929
                            .0118057
                                       -1.00
                                               0.316
                                                         .9652229
                                                                     1.011505
```

Subgroup: marital status

not married:

Cross-fit fold 10 of 10 ... Estimating lasso for wbladder using plugin Estimating lasso for distance_work using plugin

Cross-fit partialing-out Number of obs 1.553 Poisson model Number of controls 94 Number of selected controls = 17 Number of folds in cross-fit = 10 Number of resamples 1 Wald chi2(1) 4.03 Prob > chi2 0.0447

wbladder	IRR	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
distance_work	.9644475	.0173882	-2.01	0.045	.9309622	.9991371

Subgroup: single and married men

single men:

```
Cross-fit fold 10 of 10 ...
Estimating lasso for wbladder using plugin
note: female dropped because it is constant
Estimating lasso for distance work using plugin
note: female dropped because it is constant
Cross-fit partialing-out
                                     Number of obs
                                                                            735
Poisson model
                                     Number of controls
                                                                             94
                                     Number of selected controls =
                                                                             18
                                     Number of folds in cross-fit =
                                                                             10
                                     Number of resamples
                                                                              1
                                     Wald chi2(1)
                                                                           8.06
                                     Prob > chi2
                                                                         0.0045
```

wbladder	IRR	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
distance_work	.9219021	.0264072	-2.84	0.005	.8715709	.9751398

Subgroup: single and married men

married men:

```
Cross-fit fold 10 of 10 ...
Estimating lasso for wbladder using plugin note: female dropped because it is constant Estimating lasso for distance_work using plugin note: female dropped because it is constant
```

Cross-fit partialing-out	Number of obs	=	951
Poisson model	Number of controls	=	94
	Number of selected controls	=	19
	Number of folds in cross-fit	=	10
	Number of resamples	=	1
	Wald chi2(1)	=	0.61
	Prob > chi2	=	0.4349

wbladder	IRR	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
distance_work	.9877181	.0156312	-0.78	0.435	. 9575519	1.018835

Robustness Check: PSM

Variable	Sample	Treated	Controls	Difference	S.E.	T-stat
wbladder				090296329 184178744		-1.26 -1.78

Note: S.E. does not take into account that the propensity score is estimated.

psmatch2: Treatment assignment	psmatch2: Common support On suppor	Total
Untreated Treated	2,425 828	2,425 828
Total	3,253	3,253

Robustness Check: DML

```
. qddml wbladder $D ($X), kfolds(2) model(partial) cmd(rlasso) reps(5)
minimum Python version required is 2.7
DDML estimation results:
spec r
         Y learner
                       D learner
                                     b
                                                SE
 opt 1
        Y2 rlasso
                          D1 reg
                                   -0.115 ( 0.081)
       Y2_rlasso
                      D1 reg
                                   -0.135 ( 0.081)
 opt 2
opt 3 Y2_rlasso
                     D1 reg -0.127 ( 0.081)
 opt 4 Y2 rlasso
                     D1 reg -0.095 (0.081)
opt 5 Y2 rlasso
                     D1 rea
                                   -0.110 (0.081)
opt = minimum MSE specification for that resample.
          Y learner
                       D learner
Mean/med.
                                       b
                                               SE
         [min-mse]
mse mn
                          [mse]
                                   -0.117 ( 0.082)
mse md
         [min-mse]
                          [mse]
                                   -0.115 ( 0.082)
Median over min-mse specifications
v-E[v|X] = Y2 rlasso
                                              Number of obs =
                                                                   3281
D-E[D|X,Z] = D1_reg
    wbladder
                   Coef.
                          Std. Err.
                                                     [95% Conf. Interval]
                                       z
                                            P> | z |
distance work
               -.1151211
                          .0822525
                                     -1.40
                                            0.162
                                                    -.2763332
                                                                .0460909
Summary over 5 resamples:
                                   p25
      D ean
                mean
                          min
                                            p50
                                                     p75
                                                              max
                                 -0.1274
                                          -0.1151
distance work
               -0.1166
                        -0.1352
                                                   -0.1098
                                                            -0.0953
```

Conclusion

- Our main finding indicates that working from home slightly decreases workers' well-being by 2.05%, but this decrease is not statistically significant at a 5% significance level. However, it is approaching statistical significance.
- Working from home has a negative impact on well-being for men, but not for women.
- Additionally, married individuals reported higher levels of well-being compared to unmarried individuals.
- Specifically, working from home decreases the well-being of single men by 7.81%.

Limitation

- Using survey data may cause some problems. All the data in this study was self-reported.
- ▶ Our sample size is rather small.