Assignment 1

Naman Mishra

21 August, 2024

Problem 1. Let $n \geq 3$. Let r, s be the usual generators of D_{2n} . Prove that the map $\varphi \colon D_{2n} \to \mathrm{GL}_2(\mathbb{R})$ defined by

$$\varphi(r) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \qquad \varphi(s) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

where $\theta = \frac{2\pi}{n}$ extends to an injective homomorphism.

Problem 2. Show that $(\mathbb{Z}, +) \ncong (\mathbb{Q}, +)$, $S_m \ncong S_n$ for $m \neq n$ and $(\mathbb{R}, +) \ncong (\mathbb{Q}, +)$.

Solution. Let $\varphi \colon (\mathbb{Z}, +) \to (\mathbb{Q}, +)$ be a homomorphism. Let $\varphi(1) = a$. Then $\varphi(n) = na$ for $n \in \mathbb{N}$. φ cannot be surjective, as no integer multiple of a can equal a/2.

For $m \neq n$, S_m and S_n have different cardinalities. So do \mathbb{R} and \mathbb{Q} .

Problem 3. For a commutative ring A, let

$$A^{\times} = \{a \in A \mid ab = 1 \text{ for some } b \in A\}$$

be the unit group of A. Show that A^{\times} is a group (under multiplication).

Are $\mathbb{Z}[x]^{\times}$ and $\mathbb{Q}[x]^{\times}$ isomorphic? Are $(\mathbb{Z}[x], +)$ and $(\mathbb{Q}[x], +)$ isomorphic?

Solution. $1 \in A^{\times}$ is the identity. If $a_1, a_2 \in A^{\times}$, then $a_1 a_2 \in A^{\times}$, since there exist $b_1, b_2 \in A$ such that $(a_1 a_2)(b_2 b_1) = a_1 b_1 = 1$. Associativity is borrowed from A. Inverses exist by definition.

 $\mathbb{Z}[x]^{\times} = \{1, -1\}$, while $\mathbb{Q}[x]^{\times} = \mathbb{Q} \setminus \{0\}$. They are not isomorphic.

Assume $\varphi \colon \mathbb{Q}[x] \to \mathbb{Z}[x]$ is an homomorphism. Then $\varphi(p) \neq 0$ for each non-zero polynomial p.

Let $\varphi(1) = a_0 + a_1 x + \cdots + a_n x^n$, with $a_n \neq 0$. Now

$$\varphi(1) = \varphi\left(k \cdot \frac{1}{k}\right) = \varphi(k)\varphi\left(\frac{1}{k}\right) = k\varphi(1)\varphi\left(\frac{1}{k}\right)$$

for each $k \in \mathbb{Z}$. Thus a_n is a multiple of k for each $k \in \mathbb{Z}$. Absurd.

Problem 4. Prove that a finitely generated subgroup of $(\mathbb{Q}, +)$ is cyclic.

Solution. Let $H = \left\langle \frac{m_1}{n_1}, \dots, \frac{m_k}{n_k} \right\rangle$. Write this as $\left\langle \frac{m'_1}{N}, \dots, \frac{m'_k}{N} \right\rangle$, where $N = \text{lcm}(n_1, \dots, n_k)$. Then $H = \sum_{i=1}^k a_i \frac{m'_i}{N}$ for some $a_i \in \mathbb{Z}$. Thus

$$H = \frac{1}{N} \langle m'_1, \dots, m'_k \rangle = \frac{1}{N} \langle \gcd(m'_1, \dots, m'_k) \rangle.$$

Problem 5. Show that $(\mathbb{Z}^m, +) \ncong (\mathbb{Z}^n, +)$ for $m \neq n$.

Problem 6. If $\tau_1 = (a_1 \ b_1)$ and $\tau_2 = (a_2 \ b_2)$ are transpositions in S_n with $\{a_1, b_1\} \cap \{a_2, b_2\} = \emptyset$, show that $\tau_1 \tau_2 = \tau_2 \tau_1$.

Solution. We have

$$\tau_1(x) = \begin{cases}
b_1 & \text{if } x = a_1, \\
a_1 & \text{if } x = b_1, \\
x & \text{otherwise}
\end{cases} \text{ and } \tau_2(x) = \begin{cases}
b_2 & \text{if } x = a_2, \\
a_2 & \text{if } x = b_2, \\
x & \text{otherwise.}
\end{cases}$$

Now

$$\tau_1 \tau_2(x) = \begin{cases} b_2 & \text{if } x = a_2, \\ a_2 & \text{if } x = b_2, \\ b_1 & \text{if } x = a_1, \\ a_1 & \text{if } x = b_1, \\ x & \text{otherwise} \end{cases} \quad \text{and} \quad \tau_2 \tau_1(x) = \begin{cases} b_1 & \text{if } x = a_1, \\ a_1 & \text{if } x = b_1, \\ b_2 & \text{if } x = a_2, \\ a_2 & \text{if } x = b_2, \\ x & \text{otherwise.} \end{cases}$$

Thus $\tau_1 \tau_2 = \tau_2 \tau_1 = (a_1 \ b_1)(a_2 \ b_2)$.

Problem 7. Let $X_{2n} = \langle x, y \mid x^n = y^2 = 1, xy = yx^2 \rangle$. What is X_{2n} ? Solution.

$$x^4 = y^2 x^4 = y(yx^2)x^2 = yx(yx^2) = (yxx)y = xyy = x.$$

Thus $x^3 = 1$. If $3 \nmid n$, then x = 1 and $X_{2n} = \{1, y\} \cong (\mathbb{Z}_2, +)$.

If $3 \mid n$, then $X_{2n} = D_6$, since we can simplify the relations to

$$X_{2n} = \langle x, y \mid x^3 = y^2 = 1, xy = yx^{-1} \rangle.$$

This is the presentation of D_6 with $r \mapsto x$ and $s \mapsto y$.

Problem 8. Let $G = \left\{ \begin{pmatrix} \pm 1 & c \\ 0 & 1 \end{pmatrix} \mid c \in \mathbb{Z}/n\mathbb{Z} \right\}$. Show that $G \cong D_{2n}$ $(n \geq 3)$.

Solution. Put
$$R = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $S = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$. Then
$$\begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix} = R^c \quad \text{and} \quad \begin{pmatrix} -1 & c \\ 0 & 1 \end{pmatrix} = SR^c.$$

Note that $R^n = 1$, $S^2 = 1$ and

$$SRS = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = R^{-1}.$$

Thus $\varphi \colon D_{2n} \to G$ defined by

$$\varphi(r) = R$$
 and $\varphi(s) = S$

extends to an isomorphism.

Problem 9. Let $H_{\mathbb{R}} = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in \mathbb{R} \right\}$. Show that $H_{\mathbb{R}}$ is a group and that every non-identity element has infinite order.

Solution. Let
$$X_1 = \begin{pmatrix} 1 & a_1 & b_1 \\ 0 & 1 & c_1 \\ 0 & 0 & 1 \end{pmatrix}$$
 and $X_2 = \begin{pmatrix} 1 & a_2 & b_2 \\ 0 & 1 & c_2 \\ 0 & 0 & 1 \end{pmatrix}$ be elements of $H_{\mathbb{R}}$.

Then

$$X_1 X_2 = \begin{pmatrix} 1 & a_1 + a_2 & b_1 + b_2 + a_1 c_2 \\ 0 & 1 & c_1 + c_2 \\ 0 & 0 & 1 \end{pmatrix} \in H_{\mathbb{R}}.$$

Note that the identity matrix is in $H_{\mathbb{R}}$. Associativity is inherited from $M_3(\mathbb{R})$. $a_2=-a_1,\ c_2=-c_1$ and $b_2=-b_1-a_1c_2=a_1c_1-b_1$ gives $X_1X_2=I$.

Let $X = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$. It is easy to observe that

$$X^n = \begin{pmatrix} 1 & na & * \\ 0 & 1 & nc \\ 0 & 0 & 1 \end{pmatrix}$$

If either of a or c is non-zero, then X^n is not the identity matrix. If a = c = 0, then

$$X^n = \begin{pmatrix} 1 & 0 & nb \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Thus $X^n = I$ iff X = I.

Problem 10. Define the quaternion group $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ with the multiplication laws $i^2 = j^2 = k^2 = -1$, ij = (-j)i = k, jk = (-k)j = i and ki = (-i)k = j. Also assume that -1 commutes with and flips the sign of each element. Show that Q_8 is a group. Show that every subgroup of Q_8 is normal, yet it is not abelian.

Solution. I refuse to show it is a group. Let's show that every subgroup is normal. A subgroup $N \leq Q_8$ is normal iff $gng^{-1} \in N$ for all $g \in Q_8$ and $n \in N$.

1 and -1 commute with all elements, so we only need to check $n, g \in \{\pm i, \pm j, \pm k\}$.

WLOG let n=i. n commutes with $\pm i$, so $gng^{-1}=n\in N$ if $g=\pm i$. n anti-commutes with $\pm j$ and $\pm k$. So if $g\in \{\pm j, \pm k\}$, then $gng^{-1}=-ngg^{-1}=-n=n^{-1}\in N$.