2019——2020 学年度第一学期期末学习质量抽测

九年级数学

注意事项:

- 1. 请准备好必要的答题工具在答题卡上作答,在试卷上作答无效.
- 2. 本试卷共五大题, 26 小题, 满分 150 分, 考试时间 120 分钟.
- 一、选择题(本题共 10 小题,每小题 3 分,共 30 分,每小题只有一个选项正确)
- 1. 在美术字中,有些汉字是中心对称图形.下面的汉字不是中心对称图形的是

2. 如图,一个可以自由转动的转盘被平均分成7个大小相同的扇形, 每个扇形上分别写有"中"、"国"、"梦"三个字.指针的位置固定, 转动转盘停止后,指针指向"中"字所在扇形的概率是

B. $\frac{3}{7}$ C. $\frac{1}{7}$

3. 若 x_1 , x_2 是一元二次方程 $5x^2 + x - 5 = 0$ 的两根,则 $x_1 + x_2$ 的值是

B. $-\frac{1}{5}$ C. 1 D. -1

4. 如图, 四边形 ABCD 内接于 $\bigcirc O$, E 为 CD 延长线上一点.

若∠ADE =110°,则∠B=

 $A.80^{\circ}$

B. 100°

 $C.~110^{\circ}$

- D. 120°
- 5. 如图,在 $Rt\triangle ABC$ 中, $\angle C$ =90°,AC=2,BC=3,则tan A=

A.
$$\frac{2}{3}$$
 B. $\frac{3}{2}$

B.
$$\frac{3}{2}$$

C.
$$\frac{2\sqrt{13}}{13}$$

C.
$$\frac{2\sqrt{13}}{13}$$
 D. $\frac{3\sqrt{13}}{13}$

6. 某射击运动员在同一条件下的射击成绩记录如下:

射击次数	100	200	400	1000
"射中 9 环以上"的次数	78	158	321	801
"射中 9 环以上"的频率	0.78	0.79	0.8025	0.801

根据表中数据,估计这位射击运动员射击一次时"射中9环以上"的概率为

A. 0.78

B. 0.79

C. 0.85

D. 0.80

7. 如图,已知 AE 与 BD 相交于点 C,连接 AB、DE,下列所给的条件 不能证明 $\triangle ABC \hookrightarrow \triangle EDC$ 的是

A. $\angle A = \angle E$ B. $\frac{AC}{FC} = \frac{BC}{DC}$ C. $AB \parallel DE$ D. $\frac{AC}{DE} = \frac{BC}{DC}$

8. 150° 的圆心角所对的弧长是 5π cm,则此弧所在圆的半径是

C. 6cm

- 9. 如图, 厂房屋顶人字架 (等腰三角形) 的跨度 $BC=10 \, m$, $\angle B=36^{\circ}$, D 为底边 BC 的中点,则上弦 AB 的长约为(结果保留小数点后一位 $\sin 36^{\circ} \approx 0.59$, $\cos 36^{\circ} \approx 0.81$, $\tan 36^{\circ} \approx 0.73$) Ď A. 3.6m B. 6.2m C. 8.5m D. 12.4m(第9题)
- 10. 已知二次函数 $y = -2x^2 4x + 1$, 当 $-3 \le x \le 2$ 时,则函数值 y 的最小值为
 - A. -15 B. -5 C. 1 D. 3

二、填空题(本题共6小题,每小题3分,共18分)

- 11. 计算: sin 30°= ...
- 12. 关于 x 的一元二次方程 $x^2 + nx 12 = 0$ 的一个解为 x = 3 ,则 n = 3 .
- 13. 如图, $\bigcirc O$ 中, $OA \perp BC$, $\angle AOB = 50^{\circ}$,则 $\angle ADC =$ $^{\circ}$.
- 14. 一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸取一个小 球然后放回,再随机摸出一个小球,则两次取出的小球标号相同的概率是
- 15. 已知抛物线的对称轴是 y 轴, 且经过点 (1, 3)、(2, 6), 则该抛物线的解析式
- 16. 如图, $\triangle ABC$ 中, AB=6, BC=9.如果动点 D 以每秒 2 个单位长度的速度, 从点 B 出发沿 边 BA 向点 A 运动, 此时直线 $DE \parallel BC$, 交 AC 于点 E.记 x 秒时 DE 的长度为 y ,写出 y 关 于 x 的函数解析式 . (不用写自变量取值范围)

三. 解答题(本题共 4 小题, 其中 17、18、19 各 9 分, 20 题 12 分, 共 39 分)

17. 如图,在 $Rt\triangle ABC$ 中, $\angle C=90^{\circ}$,BC=5,AC=12,求 $\angle A$ 的正弦值、余弦值和正切值.

18. 如图, 在 \odot O中, AB, AC为互相垂直且相等的两条弦, OD \bot AB, OE \bot AC, 垂足分别为 D, E.求证: 四边形 ADOE 是正方形.

(第18题)

- 19. 如图,在平面直角坐标系中, $\triangle ABC$ 的顶点坐标分别为A(-2,-4)、B(0,-4)、 C(1, -2).
 - (1) $\triangle ABC$ 关于原点 O 对称的图形是 $\triangle A_1B_1C_1$,不 用画图,请直接写出 $\triangle A_1B_1C_1$ 的顶点坐标:

 A_1 _____, B_1 _____,

(2) 在图中画出△ABC 关于原点 O 逆时针旋转 90° 后的图形 $\triangle A_2B_2C_2$,请直接写出 $\triangle A_2B_2C_2$ 的 顶点坐标: A₂_____,

(建议: 先用铅笔画图, 确定无误后用黑色水性 笔画在答题卡上)

(第19题)

- 20. 如图, △ABC中, DE || BC, EF || AB.
 - (1) 求证: $\triangle ADE \hookrightarrow \triangle EFC$;
 - (2) 若 AD=4, DE=6, $\frac{AE}{EC}=2$, 求 EF 和 FC 的值.

四. 解答题(本题共 3 小题, 其中 21、22 题各 9 分, 23 题 10 分, 共 28 分)

21. 如图,要设计一幅宽为 20 cm,长 30 cm 的矩形图案,其中有两横两竖的彩条,横、竖彩条宽度相等,如果要使余下的图案面积为 $504 cm^2$,彩条的宽应是多少cm?

(第21题)

- 22. 如图,已知二次函数 $y = x^2 4x + 3$ 图象与 x 轴分别交于点 $B \times D$,与 y 轴交于点 C,顶 点为 A,分别连接 AB, BC, CD, DA.
 - (1) 求四边形 ABCD 的面积;
 - (2) 当 y > 0 时,自变量 x 的取值范围是

- 23. 如图,点 A、B、C、D 是 $\odot O$ 上的四个点,AD 是 $\odot O$ 的直径,过点 C 的切线与 AB 的延长线垂直于点 E,连接 AC、BD 相交于点 F.
 - (1) 求证: AC 平分∠BAD;
 - (2) 若 $\odot O$ 的半径为 $\frac{7}{2}$, AC=6, 求 DF 的长.

五. 解答题 (本题共 3 小题, 其中 24 小题 11 分, 25、26 小题各 12 分, 共 35 分)

- 24. 如图,在矩形 ABCD 中, AB=6, BC=13, BE=4,点 F 从点 B 出发,在折线段 BA-AD 上运动,连接 EF,当 $EF \perp BC$ 时停止运动,过点 E 作 $EG \perp EF$,交矩形的边于点 G,连接 FG.设点 F 运动的路程为 X, $\triangle EFG$ 的面积为 S.
 - (1) 当点 F 与点 A 重合时,点 G 恰好到达点 D,此时 $x = ______$,当 $EF \perp BC$ 时, $x = ______$;
 - (2) 求S关于x的函数解析式,并直接写出自变量x的取值范围;
 - (3) 当 S=15 时,求此时x 的值.

- 25. 在△ABC中, ∠ACB=90°, BC=kAC, 点 D 在 AC 上, 连接 BD.
 - (1) 如图 1, 当 k = 1 时, BD 的延长线垂直于 AE, 垂足为 E, 延长 $BC \setminus AE$ 交于点 F. 求证: CD = CF;
 - (2) 过点 C 作 $CG \perp BD$, 垂足为 G, 连接 AG 并延长交 BC 于点 H.
 - ①如图 2,若 $CH = \frac{2}{5}CD$,探究线段 AG = GH 的数量关系 (用含 k 的代数式表示),并证明;
 - ②如图 3, 若点 $D \neq AC$ 的中点, 直接写出 $\cos \angle CGH$ 的值 (用含 k 的代数式表示).

(第25题)

- 26. 已知抛物线 $y = ax^2 + 2x \frac{3}{2}$ $(a \neq 0)$ 与 y 轴交于点 A,与 x 轴的一个交点为 B.
 - (1) ①请直接写出点 A 的坐标______; ②当抛物线的对称轴为直线 *x* = -4 时,请直接写出 *a* = ______;
 - (2) 若点 B 为 (3, 0),当 $m^2+2m+3 \le x \le m^2+2m+5$,且 am<0 时,抛物线最低点的纵坐标为 $-\frac{15}{2}$,求m 的值;
 - (3) 已知点 C (-5, -3) 和点 D (5, 1), 若抛物线与线段 CD 有两个不同的交点, 求 a 的取值范围.

2019——2020 学年度第一学期期末学习质量抽测

九年级数学参考答案

- 一. 选择题(本题共10小题,每小题3分,共30分)
- 1. A. 2. B. 3. B. 4. C. 5. B. 6. D. 7. D. 8. C. 9. B. 10. A.
- 二.填空题(本题共6小题,每小题3分,共18分)

11.
$$\frac{1}{2}$$
. 12. 1. 13. 25. 14. $\frac{1}{3}$. 15. $y = x^2 + 2$. 16. $y = -3x + 9$.

- 三. 解答题 (本题共 4 小题, 其中 17、 18、19 各 9 分, 20 题 12 分, 共 39 分)
- 17. 解: : 在 $Rt \triangle ABC$ 中, $\angle C=90^{\circ}$, BC=5 , AC=12 ,

∴
$$AB = \sqrt{BC^2 + AC^2} = 13$$
. -----1 $\frac{1}{2}$

$$\therefore \sin A = \frac{BC}{4R} = \frac{5}{13}, \quad ----3$$

$$\cos A = \frac{AC}{AB} = \frac{12}{13}$$
, -----6 \(\frac{1}{2}\)

- 18. 证明: $::AB \perp AC$, $OD \perp AB$, $OE \perp AC$,
 - ∴ ∠BAC=∠ODA=∠OEA=90° . -----3 分
 - :. 四边形 ADOE 是矩形. -----4 分
 - $:: OD \perp AB$, $OE \perp AC$, AB=AC,

$$\therefore OD = OE = \frac{1}{2}AB = \frac{1}{2}AC.$$

- :. 四边形 ADOE 是正方形. -----9 分
- 19. 解: (1) A_1 : (2, 4), B_1 : (0, 4), C_1 : (-1, 2); ------3 分
 - (2) A_2 : (4, -2), B_2 : (4, 0), C_2 : (2, 1); ------6 \Re

画出 △ *A*, *B*, *C*, .----9 分

$$\therefore \angle ADE = \angle B$$
, $\angle AED = \angle C$, $\angle EFC = \angle B$. ----3 \Rightarrow

(2) ::
$$\triangle ADE \hookrightarrow \triangle EFC$$
.

$$\therefore \frac{AD}{EF} = \frac{DE}{FC} = \frac{AE}{EC} = \frac{AE}{EC}$$

$$\therefore AD=4$$
, $DE=6$, $\frac{AE}{EC}=2$,

四. 解答题(本题共3小题, 其中21、22 题各9分, 23 题 10分, 共28分)

依题意得:
$$(30-2x)(20-2x) = 504$$
 ------5 分

整理得
$$x^2 - 25x + 24 = 0$$

解得
$$x_1 = 1$$
, $x_2 = 24$ ------7分

22.
$$\mathbf{M}$$
: (1) \mathbf{H} $\mathbf{y} = 0$ \mathbf{H} , $x^2 - 4x + 3 = 0$

解得
$$x_1 = 1$$
, $x_2 = 3$ ------2 分

当
$$x = 0$$
 时, $y = 0 - 0 + 3 = 3$

∴点
$$B$$
为 (3, 0), C 为 (0, 3), D 为 (1, 0) .

过点 A 作 $AE \perp x$ 轴, 垂足为 E,

$$y = \frac{4ac - b^2}{4a} = \frac{4 \times 1 \times 3 - (-4)^2}{4 \times 1} = -1$$

$$\therefore S_{\text{四边形}ABCD} = S_{\Delta ABD} + S_{\Delta BCD}$$
,
$$= \frac{1}{2}BD \bullet AE + \frac{1}{2}BD \bullet OC$$

$$=\frac{1}{2}BD(AE+OC)$$

$$=\frac{1}{2}\times2\times(1+3)$$

∴四边形 ABCD 的面积为 4.

(2)
$$x < 1$$
或 $x > 3$.-----9分

九年级数学 第2页共7页

23. 证明: (1) 连接 OC,

- :: CE 为⊙O 切线,
- ∴ ∠ OCE=90°. -----1 分
- $:: CE \perp AE$.
- $\therefore \angle E=90^{\circ}$.
- $\therefore /OCE + /E = 180^{\circ}$.
- $\therefore OC \parallel AE$.

:: OA = OC.

- \therefore / CAE= / OAC.
- ∴AC 平分 ∠BAD. -----4 分

(2) 连接 CD,

 $:: AD \ \mathbb{E} \odot O$ 的直径,

$$\therefore AD=2r=7$$
, $AC=6$,

∴
$$CD = \sqrt{AD^2 - AC^2} = \sqrt{13}$$
.----6 分

$$\therefore \angle CDF = \angle CAB, \angle CAD = \angle CAB,$$

$$\therefore \angle DCF = \angle ACD = 90^{\circ}$$
,

$$\therefore \frac{CD}{CA} = \frac{DF}{AD}, \qquad 9 \text{ }$$

$$\therefore DF = \frac{7}{6}\sqrt{13} . - 10 \, \text{ } \text{?}$$

五. 解答题 (本题共 3 小题, 其中 24 小题 11 分, 25、26 小题各 12 分, 共 35 分)

(2) ①如图 1, 当 $0 \le x \le 6$ 时,

过点 G 作 $GH \perp BC$, 垂足为 H,

- ∵在矩形 ABCD 中, AB=6, BC=13, BE=4, EG \(\text{LEF} \),
- $\therefore \angle A = \angle B = \angle 1 = \angle 2 = 90^{\circ}$, AD = BC = 13.
- 二四边形 ABHG 是矩形.
- $\therefore GH = AB = 6$.

$$\therefore \angle B=90^{\circ}$$
, $BF=x$, $BE=4$,

∴
$$EF = \sqrt{BF^2 + BE^2} = \sqrt{x^2 + 16}$$
.----3 \$\frac{1}{2}\$

$$\therefore \angle 3 + \angle 4 = 90^{\circ}$$
, $\angle 4 + \angle 5 = 90^{\circ}$,

(第23题)

$$\therefore / 3 = / 5.$$

 $\therefore \triangle BEF \hookrightarrow \triangle HGE$.

$$\therefore \frac{BE}{HG} = \frac{EF}{GE} \cdot \mathbb{R}P \frac{4}{6} = \frac{\sqrt{x^2 + 16}}{GE}.$$

$$\therefore GE = \frac{3\sqrt{x^2 + 16}}{2}.$$

$$\therefore S = \frac{1}{2}EF \cdot GE = \frac{1}{2} \cdot \sqrt{x^2 + 16} \cdot \frac{3\sqrt{x^2 + 16}}{2} = \frac{3}{4}x^2 + 12 \dots 5$$

②如图 2, 当 $6 < x \le 10$ 时,

过点 F 作 $FK \perp BC$, 垂足为 K,

$$\therefore \angle A = \angle B = \angle C = \angle FKB = \angle 1 = \angle 2 = 90^{\circ}$$
, $AD = BC = 13$.

$$\therefore FK = AB = 6$$
, $AF = BK = x - 6$.

$$\therefore KE=10-x$$
.

$$\therefore$$
 ∠ FKE=90°, FK=6, KE=10-x, -------6 $\cancel{\pi}$

∴
$$EF = \sqrt{FK^2 + KE^2} = \sqrt{36 + (10 - x)^2}$$
.----7 ½

$$\therefore \angle 3 + \angle 4 = 90^{\circ}$$
, $\angle 4 + \angle 5 = 90^{\circ}$,

$$\therefore \angle 3 = \angle 5$$
.

$$\therefore \triangle KEF \hookrightarrow \triangle CGE$$
.

$$\therefore \frac{FK}{EC} = \frac{EF}{GE} \cdot \mathbb{R} p \frac{6}{13-4} = \frac{\sqrt{36 + (10-x)^2}}{GE}.$$

∴
$$GE = \frac{3\sqrt{36 + (10 - x)^2}}{2}$$
.....8 分

$$\therefore S = \frac{1}{2}EF \cdot GE$$

$$= \frac{1}{2} \cdot \sqrt{36 + (10 - x)^{2}} \cdot \frac{3\sqrt{36 + (10 - x)^{2}}}{2} = \frac{3}{4}x^{2} - 15x + 102.$$

$$\therefore S = \begin{cases} \frac{3}{4}x^{2} + 12(0 < x \le 6) \\ \frac{3}{4}x^{2} - 15x + 102(6 < x \le 10) \end{cases}$$

(2) ①当
$$0 \le x \le 6$$
时, $\frac{3}{4}x^2 + 12 = 15$,

$$\therefore x_1 = 2$$
, $x_2 = -2$ (舍) . -----10 分

②当
$$6 < x \le 10$$
 时, $\frac{3}{4}x^2 - 15x + 102 = 15$,

九年级数学 第 4 页 共 7 页

$$\therefore x^2 - 20x + 116 = 0$$
.

$$\Delta = 400 - 464 = -64 < 0$$

二此时方程无解.

∴ 当
$$x = 2$$
 时, $S=15$. -----11 分

$$\therefore \angle ACB = \angle ACF = \angle AEB = 90^{\circ}$$
.

$$\therefore \angle ADE + \angle EAD = \angle BDC + \angle DBC = 90^{\circ}$$
, $\angle ADE = \angle BDC$,

BC=AC,

$$(2) AG = \frac{5}{k} GH.$$

过点 A 作 $AM \parallel BC$, 交 CG 延长线于点 M,

$$\therefore \angle ACB = 90^{\circ}$$
, $CG \perp BD$,

∴
$$\angle CAM = \angle ACB = 90^{\circ}$$
, $\angle CGB = 90^{\circ}$. --4 \oiint

$$\therefore \angle 1 + \angle BCG = \angle 2 + \angle BCG = 90^{\circ}$$
,

$$\therefore \frac{AM}{CD} = \frac{AC}{CB} = \frac{1}{k} \dots 7 \text{ f}$$

$$\therefore CH = \frac{2}{5}CD,$$

∴设
$$CD = 2a$$
,则 $CH = \frac{4}{5}a$.

$$\therefore AM = \frac{2a}{k} \dots 8 \,$$

 $\therefore AM \parallel BC$,

$$\therefore \frac{AM}{CH} = \frac{AG}{GH} = \frac{\frac{2a}{k}}{\frac{4}{5}a} = \frac{5}{2k}.$$

即
$$AG = \frac{5}{2k}$$
 GH. -----9 分

(3)
$$\cos \angle CGH = \frac{k\sqrt{1+k^2}}{1+k^2}$$
.....12 $\frac{1}{2}$

(第25题图1)

$$\therefore -\frac{15}{2} = -\frac{1}{2}(x-2)^2 + \frac{1}{2}$$

解得 $x_1 = -2$ (舍), $x_2 = 6$.-----5 分

$$\mathbb{P} \qquad m^2 + 2m + 5 = 6.$$

解得 $m_1 = -1 - \sqrt{2}$, $m_2 = -1 + \sqrt{2}$.-----6分

$$\therefore am < 0$$
, $a = -\frac{1}{2}$

$$\therefore m_1 = -1 - \sqrt{2}$$
 舍去

即
$$m = -1 + \sqrt{2}$$
 .-----7 分

(3) 设过点 C (-5, -3)、点 D (5, 1) 的直线解析式为 y = kx + b,

$$\therefore \begin{cases} -5k+b=-3\\ 5k+b=1 \end{cases}.$$

解得
$$\begin{cases} k = \frac{2}{5} \\ b = -1 \end{cases}$$

∴直线
$$CD$$
 为 $y = \frac{2}{5}x - 1$.----8 分

①当a < 0,点D在图象的上方时,抛物线与线段CD有两个不同的交点,

$$\therefore 25a + 10 - \frac{3}{2} \le 1$$

解得
$$a \le -\frac{3}{10}$$
 -----9 分

::直线 CD 与抛物线有两个不同交点,

②当 a < 0,点 D 在图象的上方时,抛物线与线段 CD 有两个不同的交点,

$$25a - 10 - \frac{3}{2} \ge -3$$

解得 $a \ge \frac{17}{50}$11 分

:: 抛物线
$$y = ax^2 + 2x - \frac{3}{2}$$
 $(a \neq 0)$ 与 y 轴交于点 A $(0, -\frac{3}{2})$,

直线
$$CDy = \frac{2}{5}x - 1$$
 与 y 轴交于点 (0, -1),

∴此时
$$a \ge \frac{17}{50}$$
.

综上,
$$-\frac{32}{25} < a \le -\frac{3}{10}$$
 或 $a \ge \frac{17}{50}$.------12 分

(解答题学生用其他方法解答,请参考评分标准酌情给分,题长统一意见即可.)