- 1. Consider $\triangle ABC$ with $\overline{BC}, \overline{AC}, \overline{AB}$ denoted as a, b, c, respectively. If $\angle A = 45^\circ$ and $\angle B = 15^\circ$, find $\frac{a}{c}$. (1)
- 2. Prove that $cos(3x) = 4cos^3x 3cos x$. (2)
- 3. Find $\frac{\tan 15^{\circ} + \tan 45^{\circ}}{\cot 15^{\circ} + \cot 45^{\circ}}$. (2)
- 4. Find $\tan 0^{\circ} + \tan 1 + ... + \tan 179^{\circ}$. (2)
- 5. Given that $\sin^{-1} x = y$, find $\tan y$ in terms of x. (2)
- 6. Find $\csc 1^{\circ} \sec 1^{\circ} + \csc 2^{\circ} \sec 2^{\circ} + ... + \csc 359^{\circ} \sec 359^{\circ}$. (3)
- 7. If $\tan^{-1}x + \tan^{-1}y$ cannot be expressed as $\tan^{-1}z$ for some z, find xy. (3)
- 8. Given that $\tan x + \tan y = 7$ and $\tan(x+y) = -\frac{7}{9}$, find $\tan x \tan y$, provided that $\tan x > \tan y$. (4)
- 9. If $\cot x = 3$ and $\cot(x y) + \cot(x + y) = 6$, find $\tan y$. (4)
- 10. Find the minimum value of $\frac{9x^2\sin^2 x + 4}{x \sin x}$ for $0 < x < \pi$. (3)
- 11. If $0^{\circ} < x < 180^{\circ}$ and $\cos x + \sin x = \frac{1}{2}$, find $\tan x$. (4)
- **12.** Find $\tan x$ if $\frac{\sin^2 x}{3} + \frac{\cos^2 x}{7} = \frac{-\sin(2x)+1}{10}$. (4)
- 13. If θ is acute and $\sin \frac{1}{2}\theta = \sqrt{\frac{x-1}{2x}}$, then find $\tan \theta$ in terms of x. (\star 5)
- 14. Compute, in degrees, the minimum positive x such that $8 \sin x \cos^5 x 8 \sin^5 x \cos x = 1$. (\star 7)
- 15. Find $\frac{\tan 1}{1+\tan 1} + \frac{\tan 2}{1+\tan 2} + ... + \frac{\tan 89}{1+\tan 89}$. (** 6)