Le modèle ABM dans la modélisation d'une ville

GAUTHIER Silvère – LAMEIRA Yannick

Problématique

Dans le monde d'aujourd'hui, les villes sont en expansion permanente, ce qui pose problème lors de la modélisation de celles-ci. En effet, les modèles doivent pouvoir s'adapter aux nouvelles conditions (dimensions, configurations...). Il sera donc intéressant de voir comment un système multi-agent peut permettre une adaptation à ces modifications de l'environnement.

Différentes approches

La modélisation sans multi-agents

- Vue globale / omnisciente du « monde »
- Déterministe : les interactions entre les éléments sont décidés à l'avance
- Aucune évolution car un scénario unique
- Possibilités limitées

La modélisation avec multi-agents

- Vue locale
- Indéterministe : les interactions sont décidées par les agents
- Evolution constante car chaque lancement donne naissance à un nouveau scénario
- Possibilités presque illimitées

Dans la réalité

On ne peut pas tout prévoir car on ne peut maîtriser le comportement de chaque individu, ce qui est assez proche du modèle ABM où chaque agent a un pouvoir de décision. La réalité est quand même relativement plus complexe qu'un modèle multi-agents, cela dû à la complexité encore trop peu connue du cerveau humain et de la diversité d'interactions possible entre les êtres humains.

Techniques existantes

Processus spatiaux

- Théorie des graphes
- Géométrie fractale
- Modèles d'interactions spatiales

•••

Processus de décision

- Approche probabiliste
- Théorie des sous-ensembles flous
- Notion d'utilité

...

Conclusion

Même avec un manque de précision quasiment inévitable dans un modèle, l'approche multi-agents permet de se rapprocher grandement de la réalité dans le cas de l'animation d'une ville.

Bibliographie

Art-mobilites-ville-et-transports