M1 - Statistiques bayésiennes

Mini-test 2, le 3/03/2017

Durée 30mn. Les documents ne sont pas autorisés.

I. On pose $\mathcal{P} = \{P_{\sigma^2} = \mathcal{N}(0, \sigma^2), \ \sigma^2 > 0\}$. On dispose de n observations $X = (X_1, \ldots, X_n)$ avec

$$(X_1,\ldots,X_n) \mid \sigma^2 \sim P_{\sigma^2}^{\otimes n}.$$

On rappelle que la loi Gamma(a, b) a pour densité

$$x \to \frac{b^a}{\Gamma(a)} x^{a-1} e^{-bx} 1_{x>0}.$$

On prend pour loi a priori sur σ^2 la loi inverse gamma $\mathrm{IG}(a,b)$ de densité

$$x \to \frac{b^a}{\Gamma(a)} x^{-a-1} e^{-\frac{b}{x}} 1_{x>0}.$$

- 1. Justifier mathématiquement l'appellation inverse gamma.
- 2. Déterminer la loi a posteriori $\mathcal{L}(\sigma^2 | X_1, \dots, X_n)$.
- II. Soit $\Theta = \mathbb{R}$ et $\ell : \Theta \times \Theta \to \mathbb{R}^+$ une fonction de perte. Soit $\mathcal{P} = \{P_{\theta}, \ \theta \in \Theta\}$ un modèle statistique et Π une loi a priori sur Θ . On note E_{θ} l'espérance sous la loi P_{θ} . [Pour chacune des questions 1 à 5 ci-dessous, répondre en une ligne]
 - 1. Pour un estimateur T(X) de θ , comment s'appelle la quantité $E_{\theta}\ell(\theta, T(X))$?
 - 2. Définir pour l'estimateur T(X)
 - (a) son risque de Bayes $R_B(\Pi,T)$ pour Π
 - (b) son risque maximal
 - 3. Citer trois critères d'optimalité d'estimateurs.
 - 4. Définir le risque de Bayes $R_B(\Pi)$ pour Π ainsi que le risque minimax R_M .
 - 5. Donner une formule permettant de construire un estimateur de Bayes.
 - 6. On se place dans le modèle $P_{\theta} = \mathcal{N}(\theta, 1)$ avec $\Theta = \mathbb{R}$. On dispose d'une seule observation X_1 , on considère la fonction de perte $\ell(\theta, T) = (\theta T)^2$ et on pose $\Pi_{\sigma^2} = \mathcal{N}(0, \sigma^2)$. Enfin, soit R_M est le risque minimax pour ℓ .
 - (a) Montrer qu'un estimateur de Bayes pour Π_{σ^2} et la fonction de perte ℓ est

$$T_1(X_1) = \frac{X_1}{1 + \sigma^{-2}}.$$

Cet estimateur est-il de Bayes pour $\ell(\theta, T) = |\theta - T|$?

- (b) Montrer que $R(\theta, T) = (1 + \sigma^{-2})^{-2}(1 + \sigma^{-4}\theta^2)$ pour tout θ réel. En déduire que $R_B(\Pi_{\sigma^2}, T_1) = (1 + \sigma^{-2})^{-1}$.
- (c) Que vaut $R_{max}(T_1)$? Calculer $R_{max}(X_1)$.
- (d) Vérifier que $\lim_{\sigma^2 \to \infty} R_B(\Pi_{\sigma^2}, T_1) = 1$ et en déduire $1 \le R_M$.
- (e) Montrer que X_1 est minimax.