UC Berkeley

Department of Electrical Engineering and Computer Science Department of Statistics

EECS 281A / STAT 241A STATISTICAL LEARNING THEORY

Problem Set 3

Fall 2011

Issued: Monday, October 10, 2011 Due: Monday, October 24, 2011

Reading: For this problem set: Chapters 8, 9.

Problem 3.1

For each of the following problems, write out the maximum likelihood problem based on n i.i.d. samples X_1, \ldots, X_n , and compute the maximum likelihood estimate $\widehat{\theta}$.

- (a) Let $p(x;\mu) = \mu^x (1-\mu)^{1-x}$ be a Bernoulli distribution, and consider estimating μ .
- (b) Let $X \sim \text{Poi}(\lambda)$, and consider estimating the intensity parameter λ .
- (c) Let $X \in \mathbb{R}^d$ be a zero-mean multivariate Gaussian, parameterized in canonical form in terms of a symmetric positive definite matrix $\Gamma \succ 0$ as $p(x;\Gamma) = \frac{1}{\sqrt{(2\pi)^d \det(\Gamma)^{-1}}} \exp\left(-\frac{1}{2}x^T \Gamma x\right)$, and consider estimating the matrix Γ .

Problem 3.2

Maximum a posteriori (MAP) and MLE: Suppose that we adopt a Bayesian perspective, and view the parameter $\theta \in \mathbb{R}^d$ as a random variable, say distributed according to the prior distribution $\theta \sim \pi(\cdot)$. Given n i.i.d. samples $\{X_1, \ldots, X_n\}$, the MAP estimate is defined as the maximizer of the (rescaled) posterior likelihood $\frac{1}{n} \log p(\theta \mid X_1, X_2, \ldots, X_n)$.

- (a) Suppose that $(X_i \mid \theta)$ is Gaussian with mean θ and fixed (known) variance $\sigma^2 > 0$, and let the prior $\pi(\cdot)$ distribution of θ be normal $N(\theta_0, \tau^2)$, where $\theta_0 \in \mathbb{R}$ and $\tau^2 > 0$ are fixed, known parameters. Compute the MAP estimate of θ .
- (b) Compute the maximum likelihood estimate of θ .
- (c) What happens to the MAP estimate as the number of samples n goes to infinity?

Problem 3.3

Recall that a probability distribution in the exponential family takes the form

$$p(x; \eta) = h(x) \exp\{\eta^T T(x) - A(\eta)\}\$$

for a parameter vector η , often referred to as the *natural parameter*, and for given functions T, A, and h.

- (a) Determine which of the following distributions are in the exponential family, exhibiting the T, A, and h functions for those that are.
 - (a) $N(\mu, I)$ —multivariate Gaussian with mean vector μ and identity covariance matrix.
 - (b) $Dir(\alpha)$ —Dirichlet with parameter vector $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_K)$.

- (c) $\operatorname{Mult}(\theta)$ —multinomial with parameter vector $\theta = (\theta_1, \theta_2, \dots, \theta_K)$. Use the fact that $\theta_K = 1 \sum_{k=1}^{K-1} \theta_k$ and express the distribution using a (K-1)-dimensional parameter n.
- (d) the log normal distribution: the distribution of $Y = \exp(X)$, where $X \sim N(0, \sigma^2)$.
- (e) the Ising model: an undirected graphical model G = (V, E) involving a binary random vector X taking values in $\{0, 1\}^n$ with distribution $p(x; \theta) \propto \exp \{\sum_{s \in V} \theta_s x_s + \sum_{(s,t) \in E} \theta_{st} x_s x_t \}$.
- (b) Recall that the function $A(\eta)$ has moment-generating properties—in particular, $\nabla_{\eta} A(\eta) = \mathbb{E}[T(X)]$. Demonstrate that this relationship holds for those examples that are in the exponential family in part (a).

Problem 3.4

The course homepage has a data set named "lms.dat" that contains twenty rows of three columns of numbers. The first two columns are the components of an input vector x and the last column is an output y value. (We will not use a constant term for this problem; thus the input vector and the parameter vector are both two dimensional.)

- (a) Solve the normal equations for these data to find the optimal value of the parameter vector. (I recommend using MATLAB or R.)
- (b) Find the eigenvectors and eigenvalues of the covariance matrix of the input vectors and plot contours of the cost function *J* in the parameter space. These contours should of course be centered around the optimal value from part (a).
- (c) Initializing the LMS algorithm at $\theta = 0$ plot the path taken in the parameter space by the algorithm for three different values of the step size ρ . In particular let ρ equal the inverse of the maximum eigenvalue of the covariance matrix, one-half of that value, and one-quarter of that value.

Problem 3.5

(Properties of Kullback-Leibler divergence:) Given two probability distributions p and q (where the random variables take values in $\{0,1,\ldots,k-1\}$), the Kullback-Leibler divergence is defined as $D(p||q) = \sum_{x=0}^{k-1} p(x) \log \frac{p(x)}{q(x)}$.

- (a) Show that $D(p || q) \ge 0$ for all p, q, with equality if and only if p = q.
- (b) Use part (a) to show that the $H(p) = -\sum_{x} p(x) \log p(x)$ satisfies $H(p) \leq \log k$ for all distributions p. When does equality hold?