Monte Carlo comparisons VBSCAN Cost Action

Mathieu Pellen, Marco Zaro, Alexander Karlberg, Michael Rauch, Jürgen Reuter

May 23, 2017

Part I Introduction

Part II $pp \to \mu^+ \nu_{\mu} e^+ \nu_{e} jj$

0.1 Input parameters

- Centre-of-mass energy of 13 TeV at the LHC.
- Parton distribution function (PDF): NNPDF-3.0 at NLO with $\alpha_{\rm s}\,(M_{\rm Z})=0.118$ (we use it at both LO and NLO). The LHAPDF ID for this set is 260000.
- Flavour scheme: fixed $N_{\rm F}=5$ flavour scheme (no bottom quark appear in the final or initial state). This means that the bottom quark is considered massless.
- Renormalisation scheme: complex-mass scheme if possible. If other schemes are used, we have to estimate the possible differences. Factorisation scheme: $\overline{\rm MS}$ as for NNPDF.
- Scales: factorisation and renormalisation scale, $\mu_R = \mu_F = M_W$.
- α : G_{μ} scheme with:

$$\alpha = \frac{\sqrt{2}}{\pi} G_{\mu} M_{\rm W}^2 \left(1 - \frac{M_{\rm W}^2}{M_{\rm Z}^2} \right)$$
 with $G_{\mu} = 1.16637 \times 10^{-5} \,\text{GeV}.$ (1)

The numerical value is: $\alpha = 7.555310522369 \times 10^{-3}$.

- Mass and width of the massive particles:

$$m_{\rm t} = 173.21 \, {\rm GeV},$$
 $\Gamma_{\rm t} = 0 \, {\rm GeV},$ $M_{\rm Z}^{\rm OS} = 91.1876 \, {\rm GeV},$ $\Gamma_{\rm Z}^{\rm OS} = 2.4952 \, {\rm GeV},$ $M_{\rm W}^{\rm OS} = 80.385 \, {\rm GeV},$ $\Gamma_{\rm W}^{\rm OS} = 2.085 \, {\rm GeV},$ $\Gamma_{\rm H} = 125.0 \, {\rm GeV},$ $\Gamma_{\rm H} = 4.07 \times 10^{-3} \, {\rm GeV}.$ (2)

The pole masses and widths entering the calculation are expressed in terms of the measured on-shell (OS) values for the W and Z bosons according to

$$M_V = M_V^{\rm OS} / \sqrt{1 + (\Gamma_V^{\rm OS} / M_V^{\rm OS})^2}, \qquad \Gamma_V = \Gamma_V^{\rm OS} / \sqrt{1 + (\Gamma_V^{\rm OS} / M_V^{\rm OS})^2}.$$
 (3)

Hence the numerical values are

$$\begin{split} M_{\rm Z} &= 91.1534806191827\,{\rm GeV}, & \Gamma_{\rm Z} &= 2.494266378772824\,{\rm GeV}, \\ M_{\rm W} &= 80.3579736098775\,{\rm GeV}, & \Gamma_{\rm W} &= 2.084298998278219\,{\rm GeV}. \end{split} \tag{4}$$

- Experimental signature: two equally charged leptons, missing transverse energy and at least two jets.
- Clustering: QCD partons are clustered into jets using the anti- $k_{\rm T}$ algorithm with jet-resolution parameter R=0.4. Photons from real radiation are recombined with the final-state quarks into jets or with the charged leptons into dressed leptons, in both cases via the anti- $k_{\rm T}$ algorithm and a resolution parameter R=0.1 (this applies only when computing the EW corrections).
- Rapidity definition: $y = \frac{1}{2} \ln \frac{E + p_z}{E p_z}$ where E is the energy of the parton and p_z the component of its momentum along the beam axis.
- Distance definition:

$$\Delta R_{ij} = \sqrt{(\Delta \phi_{ij})^2 + (\Delta y_{ij})^2},\tag{5}$$

with $\Delta \phi_{ij} = \phi_i - \phi_j$ being the azimuthal-angle difference and $\Delta y_{ij} = y_i - y_j$ being the rapidity difference.

- Definition of the missing transverse energy: transverse momentum of the sum

of the two neutrinos momenta.

- Cuts on the leptons:

$$p_{T,\ell} > 20 \text{ GeV}, \qquad |y_{\ell}| < 2.5, \qquad \Delta R_{\ell\ell} > 0.3.$$
 (6)

- Missing energy cut:

$$E_{\rm T,miss} = p_{\rm T,miss} > 40 \,\text{GeV}$$
 (7)

- Jet definition:

$$p_{\rm T,j} > 30 \,\text{GeV}, \qquad |y_{\rm j}| < 4.5, \qquad \Delta R_{\rm j\ell} > 0.3.$$
 (8)

- Out of these 2/3 jets, the two hardest in pT (tagged jets) are required to have:

$$m_{\rm ij} > 500 \,\text{GeV}, \qquad |\Delta y_{\rm ii}| > 2.5.$$
 (9)

0.2 Codes

0.2.1 POWHEG: Alexander Karlberg

VBF approximation?

0.2.2 VBFNLO: Michael Rauch

VBF approximation

0.2.3 WHIZARD: Jürgen Reuter

Full matrix element

0.2.4 RECOLA: Mathieu Pellen

Full matrix element

0.2.5 Madgraph5 amc@nlo: Marco Zaro

To be checked what is possible

0.3 Observables

- Cross section within cuts.
- Distribution in the number of jets.
- Invariant mass of the two hardest jets (two tagged jets). $[0; 4\,\mathrm{TeV}]$ with bins of size $100\,\mathrm{GeV}$ (40 bins).
- $p_{\mathrm{T,j_1,j_2}}$ and $y_{\mathrm{j_1,j_2}}$ of the two tagged jets (not their sum)

 $\begin{array}{l} p_{\mathrm{T,j_1,j_2}} \colon [0; 1 \, \mathrm{TeV}] \text{ with bins of size } 25 \, \mathrm{GeV} \ (40 \, \mathrm{bins}). \\ y_{\mathrm{j_1,j_2}} \colon [-5; 5] \text{ with bins of size } 0.5 \ (20 \, \mathrm{bins}). \\ \text{- Invariant mass of the two charged leptons.} \\ [0; 4 \, \mathrm{TeV}] \text{ with bins of size } 100 \, \mathrm{GeV} \ (40 \, \mathrm{bins}). \\ \text{- Zeppenfeld variable for } \mu^+ \, \mathrm{and} \, \mathrm{e}^+ \colon \\ z_\ell^* = |y_\ell - \left(y_{\mathrm{j_1}} + y_{\mathrm{j_2}}\right)/2|/|\Delta y_{\mathrm{jj}}| \\ [0; 1.5] \text{ with bins of size } 0.05 \ (30 \, \mathrm{bins}). \end{array}$

0.4 Numerical results

- **0.4.1 LO** $\mathcal{O}(\alpha^6)$
- **0.4.2** NLO $\mathcal{O}\left(\alpha^6\alpha_{\mathrm{s}}\right)$

Part III Conclusion

Part IV Acknowledgments

Karlsruhe for hosting the documents used for the comparison.