Basic Graph Theory

Birgit Vogtenhuber

Graphs?

Why Graphs?

- Graphs are a versatile data structure
- Graph-related algorithms are rather important in algorithm theory and applications
- Many computational problems can be formulated efficiently in terms of graphs, see for example optimization problems.

Overview

- Basic graph terminology
- Different ways to store graphs
- Some simple graph algorithms
- Planar graphs and plane drawings

• Directed graph G = (V, E):

V is the set of vertices and E is the set of edges: $E \subseteq V \times V$ edge (u,v): ordered pair of vertices, u= startpoint, v= endpoint

- A **loop** at a vertex $v \in V$ is an edge (v, v)
- A directed Graph is called simple if it has no loops

• Undirected graph: like a simple directed graph where E is symmetric, that is, $(v,w) \in E \Leftrightarrow (w,v) \in E$

- \Leftrightarrow E is a set of unordered pairs (v,w) with $v \neq w \in V$
 - A (directed or undirected) weighted graph is a triple G = (V, E, g) where g assigns a weight to each edge

• A path in G = (V, E) from v to w is a sequence of vertices $v = v_0, v_1, \ldots, v_k = w \in V$ with edges $(v_i, v_{i+1}) \in E$ for all $0 \le i < k$

- ullet Simple path: contains every vertex in V at most once
- **Length** of a path: number of its edges (v_i, v_{i+1}) length in *weighted graphs*: sum of the edge weights
- **Distance** $d_G(v, w)$ from v to w: length of the *shortest* path from v to w in G (or ∞ if no such path exists)

Birgit Vogtenhuber Basic Graph Theory

6 x

• A cycle in G = (V, E) is a path v_0, v_1, \ldots, v_k with $v_0 = v_k$

- Simple cycle: contains every vertex in V at most once, except for $v_0=v_k$
- **Length** of a cycle: number of its edges (v_i, v_{i+1}) length in *weighted graphs*: sum of the edge weights
- Trivial cycle: contains only one vertex: ○
 or two for undirected graphs: ○

• A subgraph G' = (E', V') of G = (E, V) is a graph with $V' \subseteq V$ and $E' \subseteq E$. Note that for every edge $(u', v') \in E'$ we must have $u', v' \in V'$.

Example:

Graph G

Subgraph G'

 A graph is acyclic if does not contain any subgraph that is a non-trivial simple cycle

not acyclic:

• A graph is **connected** if it contains a path from v to w for every pair $v, w \in V$ (not necessarily an edge (v, w))

connected:

disconnected:

An undirected graph is a forest if it is acyclic

 An undirected graph is a tree if it is acyclic and connected

Birgit Vogtenhuber Basic Graph Theory

9 ii

Degrees of vertices in a graph G = (V, E):

• The in-degree (out-degree) of a vertex $v \in V$ is the number of edges ending (starting) in v:

in-degree
$$(v) := |\{w \mid (w, v) \in E\}|$$

out-degree $(v) := |\{w \mid (v, w) \in E\}|$

For undirected graphs we have

10 iii

$$in-degree(v) = out-degree(v) \quad \forall \ v \in V.$$

In this case it is called the **degree** of the vertex v.

Birgit Vogtenhuber Basic Graph Theory

Degrees of vertices in an undirected graph G = (V, E):

- degree (v) = 0: v is called an **isolated vertex** of G
- degree (v) = 1: v is called a **leaf** (end vertex) of G
- degree $(v) = r \quad \forall \ v \in V$: The graph G is called a regular graph of degree r

Example: regular graph(s) of degree 3

Degrees of vertices in an undirected graph G = (V, E):

• An undirected **complete graph** on n vertices contains all $\binom{n}{2}$ possible edges (regular of degree n-1)

An empty graph has no edges (regular of degree 0)

How to Store a Graph?

- Size of a graph G = (V, E):
 - \circ Number of vertices: n = |V|
 - Number of edges: $m = |E|, 0 \le m \le n^2$
 - \Rightarrow In total: size $\Theta(n+m)$
 - → Analysis needs two parameters !
- We distinguish between
 - dense graphs: $m \approx n^2$, for example complete graphs
 - **sparse** graphs: $m \ll n^2$, for ex. trees (m = n 1) or hypercubes $(m = \frac{d}{2} \cdot n = O(n \log n)$, where d is the dimension of the hypercube)

How to Store a Graph?

Adjacency-matrix: Matrix $A[1 \dots n, 1 \dots n]$ with

$$A[i,j] = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{else} \end{cases}$$

- Memory: $\Theta(n^2)$
- convenient for dense graphs
- test for existence of an edge in $\Theta(1)$ time

Adjacency-List: Array $F[1 \dots n]$ with pointers, F[i] points to a linear list with all vertices that are incident to the i^{th} vertex

- Memory: $\Theta(n+m)$
- test for existence of an edge in $\Omega(1), O(n)$ time

How to Store a Graph?

A small example:

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 4 & 0 & 1 & 1 & 0 \end{bmatrix}$$

↑ symmetric if graph is undirected

 $\leftarrow \text{1 Entry for every node,} \\ \Theta(n+m) \text{ memory for all edges.} \\ \text{The } k \text{ neighbours of a node can be obtained in } \Theta(k) \text{ time.}$

Searching in Graphs

- Known from Data Structures and Algorithms 1:
 - Searching in binary trees
 - "Walking" through a binary tree:
 - in-order (symmetrische Reihenfolge)
 - pre-order (Hauptreihenfolge)
 - post-order (Nebenreihenfolge)
- Searching in general graphs:
 - Breadth-first search (BFS):
 search closeby vertices first
 - Depth-first search (DFS)
 search one branch first

16 ii

Birgit Vogtenhuber Basic Graph Theory

Breadth First Search - BFS

Given: connected graph G = (V, E), startnode $s \in V$ **Idea**: Starting from s, search in all directions uniformly

- visit vertices u with distance $d_G(s, u) = 1$, then with $d_G(s, u) = 2$, and so on.
- traverse a BFS-tree T with root s: branches of T consist of shortest paths to s.
- ullet to build T, assign the following values to each vertex u:

```
pre(u) predecessor of u in the BFS-Tree T state(u) new (unvisited), labelled (visited), saturated (all neighbours visited)
```

- ullet store visited unsaturated vertices in a **queue** Q
- initially: Q empty, pre(u) not set, state(u) = new

17 vi Birgit Vogtenhuber

BFS Algorithm: Pseudo-Code

```
\mathsf{BFS}(G,s) /* G given as adjacency list F */
for all u \in V
     state(u)=new
state(s) = labelled
\operatorname{num}(s)=1; i=2; \operatorname{pre}(s)=\operatorname{nil}
PUT(Q, s)
while Q \neq 0
     \mathsf{GET}(Q,u)
     for all v \in F[u] /* testing all neighbors of u */
           if state(v) = =new
                 state(v) = labelled; num(v) = i
                 pre(v)=u; PUT(Q,v); i=i+1
     state(u) = saturated
```

BFS Algorithm: Analysis

Runtime:

- Each vertex is inserted into Q exactly once: $\Rightarrow \Theta(n)$ for all vertices $\Theta(1)$ time per vertex
- After removal of a vertex u from Q, the algorithm goes through the adjacency-list of u:

 $\Theta(\mathsf{degree}(u))$ time for $u \Rightarrow \mathsf{How}$ much for all vertices?

Every edge contributes to exactly two lists

$$\Rightarrow \sum_{u \in V} \mathsf{degree}(u) = 2m \qquad \Rightarrow \Theta(m)$$
 for all vertices

 $\Theta(n+m)$ time in total \Rightarrow The whole algorithm:

Memory: $\Theta(n)$ for Q, +graph $\Rightarrow \Theta(n+m)$ space in total

 \Rightarrow Runtime and memory **linear in the size of** G

All Distances in an Unweighted Graph

Question: How can one compute all distances between pairs of vertices in an unweighted graph G?

- ullet All the shortest paths from some vertex u to s are coded in the BFS-tree T via the pre-pointers.
- distances to s can be easily computed during BFS:
 - $\circ d_G(s,s) = 0$
 - $\circ d_G(s, u) = d_G(s, pre(u)) + 1$
- \Rightarrow Running BFS for n times (once for each vertex), one can compute the distances between any $u, v \in V$
- \Rightarrow The distance-matrix of G can be computed in $\Theta(n \cdot m)$ time and $\Theta(n^2)$ space if G is connected.
 - ? What if G is disconnected?

Bipartite Graphs

A graph G(V, E) is called **bipartite**, if there exists a partition of V into V_1, V_2 such that all $(u, v) \in E$ have one endpoint in V_1 and the other one in V_2 .

In other words:

G contains no edges within V_1 or V_2

21 iv Birgit Vogtenhuber Basic Graph Theory

k-Colorability of a Graph

A graph G(V, E) is called **k-colorable** if its nodes can be colored with $\leq k$ colors, so that no nodes of the same color share an edge.

Example: How many colors are needed?

k=3 colors are enough

The **chromatic number** $\chi(G)$ (spoken 'Chi of G') of a graph G is the minimum k such that G is k-colorable.

$$\chi(\text{cycle}) = \begin{cases} 2, & n \text{ even} \\ 3, & n \text{ odd} \end{cases}$$

Recognizing Bipartite Graphs

Question: How to determine whether a graph is bipartite?

Observation: A graph G is 2-colorable $\Leftrightarrow G$ is bipartite

Algorithm:

- ullet Choose arbitrary vertex s and color it blue
- Traverse G in BFS-Order, starting from s
- For each vertex u that is removed from the queue Q:
 - \circ u is colored, w.l.o.g. say red
 - \circ check for all colored neighbors of u that they are blue. If no: return false
 - \circ color all uncolored neighbors of u in blue
- After processing all vertices: return true.

Questions: Correctness? Runtime & Memory?

23 iv Birgit Vogtenhuber Basic Graph Theory

Depth First Search - DFS

• Idea:

DFS explores the graph, starting at the last visited vertex having unvisited neighbors.

• **Special case**: G is a tree \Rightarrow DFS-Order = pre-order

- Maintain Stack ST that contains all visited but not yet saturated nodes.
- Rest similar to BFS

Question: What is the pre-order for this tree? a b d e c f i j g h

DFS Algorithm: Pseudo-Code

```
\mathsf{DFS}(G) /* G given as adjacency list F */
for all u \in V
     state(u) = new
     pre(u)=nil
for all u \in V /* loop not necessary for connected graphs */
     if state(u)==new
           DEPTH(u)
DEPTH(u)
state(u) = visited; write(u)
for all v \in F[u] /* test all neighbors of u */
     \underline{if} state(v)==new
           pre(v)=u
           \mathsf{DEPTH}(v) \leftarrow \mathsf{recursion} \ \mathsf{can} \ \mathsf{be} \ \mathsf{replaced} \ \mathsf{by} \ \mathsf{stack}
state(u)=saturated
```

DFS Algorithm: Example

Example:

arrows point to predecessors

26 x Birgit Vogtenhuber Basic Graph Theory

DFS Algorithm: Example

Further Observations:

- The pre-pointers form a set of trees (DFS-forest);
- every call of DEPTH in the main programm (not in the recursion) results in a new root and tree.
- For connected graphs there is only one root and tree.

26 xi Birgit Vogtenhuber

DFS Algorithm: Analysis

Runtime Analysis:

- DEPTH ist called exactly once per node (only for new nodes, that are immediately marked as "visited").
- A call of DEPTH(v) takes O(degree(v)) time
- $\Rightarrow \Theta(n+m)$ time in total

Space: $\Theta(n+m)$ space in total

Correctness:

- vertex that is set to visited:
 - put on stack
 - when removed from stack, all neighbors are considered
- ⇒ every vertex set to visited exactly once

Next

Planar and Plane Graphs:

Definition, Recognition, Properties

28

Isomorphic Graphs

Two graphs G=(V,E) and G'=(V',E') are called **isomorphic** if there exists a bijection $\phi:V\to V'$, so that $(v,w)\in E\Leftrightarrow (\phi(v),\phi(w))\in E'$

Example:

Planar Graphs

Definition 1:

A graph G=(V,E) is called **planar** if there exists an injective mapping of V to n=|V| distinct points in the Euclidian plane and a mapping of E to pairwise disjoint open curves in the Euclidian plane, so that:

- 1. $e = (x_i, x_j) \Rightarrow \text{curve } (e) \text{ connects point } (x_i) \text{ with point } (x_j)$
- 2. $e = (x_i, x_j) \Rightarrow \text{curve } (e) \text{ does not contain any other point } (x_k), k \neq i, j$

Definition 2:

30 ii

A graph is called **planar** if it can be drawn in the plane without intersections between its edges (except in endpoints).

Birgit Vogtenhuber Basic Graph Theory

Plane & Embeddable Drawings

A drawing of a graph is called **plane** if it is free of intersections.

A non-plane drawing of a graph is called **embeddable** if it is isomorphic to a planar graph.

A plane graph is a plane drawing of a planar graph.

Example of an embeddable / plane drawing:

Recognizing Planar Graphs

Examples of non-embeddable drawings:

 $K_{3,3}$

 K_5

Non-embeddable drawing ⇔ drawing of a non-planar graph

 $K_{3,3}$

 K_5

Recognizing Planar Graphs

Examples of non-embeddable drawings:

 $K_{3,3}$

 K_5

Embeddable drawing ⇔ drawing of a planar graph

 $K_{3,3}$

 K_5

Recognizing Planar Graphs

embeddability is invariant under subdivision of edges

 $K_{3,3}$

additional vertices: degree 2

Kuratowski's Theorem: A graph G is planar if and only if it does not contain a subgraph G' that is isomorphic to a subdivision of $K_{3,3}$ or K_5 , respectively. [without proof]

Subdivision of a graph G: some vertices are added "on edges" of G (some edges of G replaced by paths)

32 ix Birgit Vogtenhuber Basic Graph Theory

Planar Graphs: Examples

Vertices: n = 14

Edges: m = 13

Faces: f = 1

 $14 + 1 = 13 + 2 \checkmark$

34 iv Birgit Vogtenhuber Basic Graph Theory

Planar Graphs: Examples

Vertices: n = 18

Edges: m = 21

Faces: f = 5

 $18 + 5 = 21 + 2 \checkmark$

Note: All plane drawings of the same graph have the same number of faces

Plane Graphs: Examples

What is a **Truncated icosahedron**?

36 ii

Birgit Vogtenhuber Basic Graph Theory

Plane Graphs: Examples

What is a **Truncated icosahedron**?

36 v

vertices: n=60

edges: m=90

faces: f=32

Birgit Vogtenhuber Basic Graph Theory

Plane Graphs: Examples

What is a **Truncated icosahedron**?

vertices: n=60

edges: m=90

faces: f=32

Euler's Formula:

$$60 + 32 = 90 + 2 \checkmark$$

Planar Graphs

Theorem: For a planar connected graph G = (V, E) with $|V|=n\geq 3$ and |E|=m it holds that $m\leq 3\cdot n-6$

Proof: Consider a plane drawing of G with f faces. Let $e_i, i = 1, \ldots, f$ be the number of edges which bound face i.

- $\sum_{i=1}^{f} e_i \ge \sum_{i=1}^{f} 3 = 3 \cdot f$ (since $e_i \ge 3$)
- (since each edge is counted twice – once from each side)
- \Rightarrow Combine the two results: $3 \cdot f \leq 2 \cdot m$
- \Rightarrow Combine with Euler's Formula (multiplied by 3):

$$3 \cdot m + 6 = 3 \cdot n + 3 \cdot f \le 3 \cdot n + 2 \cdot m$$

$$\Leftrightarrow \qquad m < 3 \cdot n - 6$$

Non-Planarity of K_5

Claim: K_5 is not planar.

Proof:

- K_5 has n=5 vertices and $m=\binom{5}{2}=10$ edges
- Assume K_5 is planar
 - \Rightarrow We can apply the previous theorem

$$m \le 3 \cdot n - 6$$
, with $n = 5, m = 10$

$$10 \le 3 \cdot 5 - 6 = 9$$
 contradiction!

 $\Rightarrow K_5$ cannot be planar.

Non-Planarity of K_5

Claim: K_5 is not planar.

Proof:

- K_5 has n=5 vertices and $m=\binom{5}{2}=10$ edges
- Assume K_5 is planar
 - \Rightarrow We can apply the previous theorem

$$m \le 3 \cdot n - 6$$
, with $n = 5, m = 10$

$$10 \le 3 \cdot 5 - 6 = 9$$
 contradiction!

 $\Rightarrow K_5$ cannot be planar.

\checkmark

Question:

Can we show in the same way that $K_{3,3}$ is not planar?

Non-Planarity of $K_{3,3}$

Theorem: For a bipartite planar connected graph G=(V,E) with $|V|=n\geq 3$ and |E|=m it holds that $m\leq 2\cdot n-4$

Proof: Consider a plane drawing of G with f faces. Let $e_i, i = 1, ..., f$ be the number of edges which bound face i.

- G bipartite \Rightarrow every face is 2-colorable $\Rightarrow e_i \geq 4$
- $\sum_{i=1}^{f} e_i \ge \sum_{i=1}^{f} 4 = 4 \cdot f$, $\sum_{i=1}^{f} e_i = 2 \cdot m$
- \Rightarrow Combine the two results: $4 \cdot f \leq 2 \cdot m \Leftrightarrow 2 \cdot f \leq m$
- ⇒ Combine with Euler's Formula (multiplied by 2):

$$2 \cdot m + 4 = 2 \cdot n + 2 \cdot f \le 2 \cdot n + m$$

$$\Leftrightarrow \qquad m \le 2 \cdot n - 4$$

/

Non-Planarity of $K_{3,3}$

Claim: $K_{3,3}$ is not planar.

Proof:

- $K_{3,3}$ has n=6 vertices and $m=3\cdot 3=9$ edges
- Assume $K_{3,3}$ is planar
 - \Rightarrow We can apply the previous theorem

$$m \leq 2 \cdot n - 4$$
, with $n = 6, m = 9$

$$9 \le 2 \cdot 6 - 4 = 8$$
 contradiction!

 $\Rightarrow K_{3,3}$ cannot be planar.

Summary

- Basic graph terminology
- Different ways to store graphs:
 - Adjacency matrix
 - Adjacency list
- Some simple graph algorithms:
 - Breadth first search (BFS), depth first search (DFS)
 - Distances in (unweighted) graphs
 - Recognizing bipartite graphs
- Planar graphs and plane drawings:
 - Kuratowski's Theorem
 - Euler's Formula
 - Non-planarity of $K_{3,3}$ and K_5

Graphs - Final

