

<u>Course</u> > <u>Unit 2:</u> ... > <u>4 Eigen</u>... > 15. Exa...

15. Examples of diagonalization

Steps to diagonalize an $n \times n$ matrix **A**:

Step 1. Find the eigenvalues and eigenvectors of $\bf A$.

Step 2. Check that there are enough linearly independent eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ to form a basis of \mathbb{R}^n (or \mathbb{C}^n).

If yes, set

Important: The eigenvectors must be listed in the same order as their eigenvalues. If any of the eigenspaces is deficient, there will not be enough linearly independent eigenvectors, and $\bf A$ is **not** diagonalizable.

Step 3. Write $\mathbf{A} = \mathbf{SDS}^{-1}$.

Example 15.1 Let us diagonalize the matrix $\mathbf{A} = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$.

Step 1. The eigenvalues and eigenvectors of **A**:

Eigenvectors (basis of eigenspace)

$$\lambda=0$$
 ; $\begin{pmatrix}1\\1\end{pmatrix}$

$$\lambda=-2 \quad ; \quad egin{pmatrix} -1 \ 1 \end{pmatrix}$$

Step 2. The eigenvalues are of multiplicity 1, so the matrix is complete. Indeed, the two eigenvectors $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ form a basis of \mathbb{R}^2 . Set

$$\mathbf{D} = \begin{pmatrix} 0 & 0 \\ 0 & -2 \end{pmatrix}$$

$$\mathbf{S} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix},$$

where the first column of $\bf S$ is the eigenvector of the eigenvalue $\bf 0$, listed in the first diagonal entry of $\bf D$, and the second column of $\bf S$ is the eigenvector of $\bf -2$, listed in the second diagonal entry in $\bf D$.

Step 3. Write $\mathbf{A} = \mathbf{SDS}^{-1}$. If desired, compute $\mathbf{S}^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$ to get the explicit formula:

$$\begin{array}{rcl} \mathbf{A} & = & \mathbf{SDS}^{-1} \\ \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} & = & \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{pmatrix}. \end{array}$$

Problem 15.2 Diagonalize
$$\mathbf{A}=egin{pmatrix} -2 & 1 & 1 \ 1 & -2 & 1 \ 1 & 1 & -2 \end{pmatrix}$$
 .

Solution

Show

Concept Check 1

1/1 point (graded)

Suppose that $\bf S$ is a matrix each one of whose columns is an eigenvector of a square matrix $\bf A$. Assume also that $\bf S$ is square. Now, if the columns of $\bf S$ are linearly independent, then:

■ A is invertible
✓ S is invertible ✓
□ S is diagonalizatble
✓
Solution:
If the columns of $\bf S$ are independent, then it has full rank, hence it is invertible. Also, if $\bf S$ is invertible, then the matrix $\bf A$ has a diagonalization.

• Answers are displayed within the problem

You have used 1 of 3 attempts

Concept Check 2

0/1 point (graded)

Submit

If the eigenvalues of ${\bf A}$ are ${\bf 2, 2,}$ and ${\bf 5,}$ then ${\bf A}$ is:

□ invertible ✓□ diagonalizable

✓ not diagonalizable

×

Solution:

The determinant of \mathbf{A} is the product of the eigenvalues, which is not equal to zero. Thus \mathbf{A} is invertible. However, we do not know if \mathbf{A} is diagonalizable or not because there is a repeated eigenvalue. If the eigenspace is 2 dimensional, then \mathbf{A} is diagonalizable; otherwise \mathbf{A} is not.

Submit

You have used 3 of 3 attempts

• Answers are displayed within the problem

Concept Check 3

1/1 point (graded)

If the only eigenvector of \mathbf{A} is $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$, then \mathbf{A} has:

- no inverse
- a repeated eigenvalue
- no diagonalization

Solution:

The matrix $\bf A$ must have a repeated eigenvalue, and a deficient eigenspace. This implies that there is no diagonalization.

Submit

You have used 2 of 3 attempts

1 Answers are displayed within the problem

15. Examples of diagonalization

Topic: Unit 2: Linear Algebra, Part 2 / 15. Examples of diagonalization

Hide Discussion

Add a Post

Show all posts ▼		by recent activity $ lacktriangledown$
There are no posts in this top	ic yet.	
×		
	Learn About Verified Certificates	