MA4002 Midterm Exam Solutions 2001

- **1.(a)** Evaluate the indefinite integral $\int \frac{3x+1}{\sqrt{x}} dx$. Answer: $2x^{\frac{3}{2}} + 2x^{\frac{1}{2}} + C$.
- (b) Calculate the area between $y = e^{3x}$ and the x-axis for $0 \le x \le 1$. Answer: $\int_0^1 e^{3x} dx = \frac{1}{3}(e^3 - 1)$.
- (c) Express as a definite integral (but do not evaluate) the limit of the Riemann sum $\lim_{n\to\infty} \sum_{i=1}^n \sin(c_i^2 + 1) \Delta x_i$, where P is the partition with $x_i = \frac{i\pi}{n}$, for $i = 0, 1, \ldots, n$, $\Delta x_i \equiv x_i x_{i-1}$ and $c_i \in [x_{i-1}, x_i]$. Answer: When i = 0, $a = x_0 = 0$ and when i = n, $b = x_n = \pi$. So using FTC2, we get $\int_0^{\pi} \sin(x^2 + 1) dx$.
- (d) Evaluate $\frac{d}{dx} \int_0^x \ln(\cos(\sqrt{t})) dt$. Answer: $\ln(\cos(\sqrt{x}))$, using FTC1.
- (e) Find an upper bound for the error E_S in the Simpson's Rule approximation of the definite integral $\int_0^2 f(x) dx$, using 200 subintervals, given that $M_4 \equiv \max_{x \in [0,2]} \left| \frac{d^4}{dx^4} f(x) \right| < 360$. Answer: h = 2/200 = 0.01, b - a = 2, so $E_S < (0.01)^4(2)(360)/180 = 4 \times 10^{-8}$.
- **2.** Evaluate the indefinite integral $\int \frac{(\ln t)^2}{t} dt$. Answer: Substitute $u = \ln t$ to get answer $\frac{(\ln t)^3}{3} + C$.
- **3.** Find the average value of $x \cos x$ on the interval $[0, \pi]$.

Answer: $\bar{f} = \frac{1}{\pi} \int_0^{\pi} x \cos x \, dx = -\frac{2}{\pi}$, after using integration by parts with u = x and $dv = \cos x \, dx$.

4. Evaluate the definite integral $\int_2^3 \frac{x}{x^2 - 4x + 5} dx$.

Answer: Completing the square gives $x^2 - 4x + 5 = (x - 2)^2 + 1$, so we substitute u = x - 2 to get $\int_0^1 \frac{u + 2}{u^2 + 1} du = \left(\frac{1}{2} \ln(u^2 + 1) + 2 \tan^{-1} u\right) \Big|_0^1 = \frac{1}{2} \ln 2 + \frac{\pi}{2}.$

5. Perform a partial fraction expansion of $\frac{4x-4}{x^2(x-2)}$.

Answer: Put this equal to $\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-2}$. Multiply through both sides by the denominator $x^2(x-2)$ and compare to get answer $\frac{-1}{x} + \frac{2}{x^2} + \frac{1}{x-2}$.