Title of the Challenge

NeuroViz Challenge: 3D Visualization of Neuroimaging Data in VR

Overview & Objective

The goal of NeuroViz track is for participants to create innovative 3D visualizations of neuroimaging data within a virtual reality environment. This track is designed to explore the potential of VR as a tool for enhancing our understanding and interpretation of complex neurological datasets.

Deliverables

This track is a concept design track. You are not required to make a real implementation in VR, but real implementation is always welcomed and will be awarded bonus points.

Required submission:

- Submission on Devpost
 - background information and significance on the concept
 - A detailed description of your design
 - o Include pictures and/or videos of your design
- Presentation Slides
 - A 5-10 min presentation that explains your concept design includes but not limited to:
 - § The background and significance of your design
 - § the details of your design
 - § (optional) demo of your design

Submission Format: Submit your deliverables digitally via the hackathon submission portal before Sunday 9:00 pm. The demos and presentations are happening at Monday 9:00am.

Judging Criteria

Criteria		
Orginality and Innovation (40points)	Novelty of Visualization	the originality and innovation of the visualization techniques used in the

	Technique (20 points)	project, compared against exising visualization methods.
	Creative Use of VR (20 points)	how well the project leverages the unique features and capabilities of virtual reality (3D interface) to enhance the visualization
Neural Signal Visualization	Aesthetic quality (10 points)	This includes the overall visual appeal, use of color, composition, and graphical elements that make the visualizations engaging and interesting.
	Clear representation of signals (10 points)	The accuracy with which the neuroimaging data is represented, ensuring that signals are discernible and correctly mapped in the visualization.
VR-enabled 3D user interface	Intuitiveness of Interaction (5 points)	How easy it is for users to interact with the visualization. This could cover aspects like navigation, manipulation, and exploration within the VR environment.
	User empowerment	The overall experience of the user when interacting with the visualization, including ease of use, understanding, and the ability to gain insights from the visualization.
Presentation (30 points)	Content and Structure (15 points)	Clarity and coherence of presentation structure
	Completion of the project (15 points)	Completency of the project
(Bonus) VR Implementation (15 points)		

Recommended Skills

- UI/UX design
- Signal processing
- Unity
- VR

Recommended Hardware/Software

If you would like to implement it in VR, we recommend using Unity.

Resources

- Data:
- fMRI dataset: https://andysbrainbook.readthedocs.io/en/latest/
- HCP Data:

https://db.humanconnectome.org/app/template/Login.vm;jsessionid=A7 A680533F4EA3F2D72FC426132F4080

- EEG: https://openneuro.org/datasets/ds003061/versions/1.1.0
- Tutorials:

Team Composition

Teams of any size is welcomed. The maxium number of team cannot exceed 5.

Mentorship and Support

Mentors will be avaliable during the hackathon. Check with mentor channel on slack and request mentorship if in need.

Timeline

See the detailed schedule on website

Prizes

Best team in this track recieves Giftcards

FAQ Section

Q: Are there any constraints on the neuroimaging data formats?

A: The challenge will provide specific datasets, but participants are welcome to use additional data in standard formats (e.g., NIfTI).Contact Information

A: No, you are welcome to just make conceptual designs.