Algoritmos Probabilísticos Algoritmo RSA de criptografía

Algoritmos Probabilísticos

Algoritmos no deterministas

 Cuando en un problema hay que tomar una decisión, puede ser mejor tomarla de forma aleatoria en vez de calcular cuál de las alternativas es mejor.

- Esto se puede hacer cuando:
 - El tiempo de cálculo de la decisión óptima es mucho mayor que el requerido en el caso medio al tomar la decisión en forma aleatoria.
 - Problemas con múltiples soluciones correctas.

Algoritmos no deterministas

- Un algoritmo probabilista puede comportarse de manera distinta al aplicarlo dos veces a un mismo caso.
 - Tanto el tiempo de ejecución como el resultado pueden variar.
- A un algoritmo determinista no se le permite que calcule una solución incorrecta para ningún dato de entrada.
 - Un algoritmo probabilista puede equivocarse siempre que esto ocurra con una probabilidad razonablemente pequeña para cada dato de entrada.
 - Repitiendo la ejecución un número suficiente de veces para el mismo dato, puede aumentarse tanto como se quiera el grado de confianza en obtener la solución correcta.

Algoritmos no deterministas

- Una respuesta incierta dada por un algoritmo probabilista no sólo se obtiene más deprisa, sino que además podemos confiar en ella.
- El tiempo promedio de un algoritmo determinista se define como el tiempo promedio requerido por el algoritmo cuando se consideran igualmente probables todos los ejemplares posibles de un tamaño dado.
- El tiempo esperado de un algoritmo probabilista se refiere al tiempo promedio que se necesitaría para resolver un ejemplar una vez.

- Una serie de números es aleatoria cuando no se descubre en ella ninguna propiedad de: generación, repetición, etc.
- Propiedades que deben cumplir las series de números aleatorios:
 - Han de estar uniformemente distribuidos.
 - Han de ser estadísticamente independientes.
 - Que requieran poco espacio en memoria.
 - Que se obtengan rápidamente.

Sean a y b dos números reales tales que a < b.

- Una llamada a uniforme(a,b) devuelve un número real x seleccionado aleatoriamente en el intervalo a ≤ x < b.
- La distribución de *x es uniforme en el intervalo, y las sucesivas* llamadas al generador son independientes de las anteriores.

Ì			Versión 1.0	
		uniforme (Real a		
	{pre: a < b, existe la función uniforme(0,1)		atorio entre 0 y 1}	
	que	genera un número aleatorio entre 0 y 1}		
	1	x = a + (b-a) * uniforme(0,1)	-x: Real: almacena un número aleatorio	
	2	regrese x	entre a y b.	

- Debido a que generadores aleatorios no suelen estar disponibles, se emplean generadores pseudoaleatorios.
- Generalmente cada lenguaje tiene un generador de números pseudoaleatorios entre 0 y 1, partiendo de una semilla determinada por el lenguaje o introducida por el programador.
- Los métodos de generación de números pseudoaleatorios más comunes son los llamados *métodos congruenciales*.
- El más famoso es el de Lehmer que depende de tres datos:

$$X(n+1) = (a * X(n) + c) \mod m$$

- Propiedades:
 - Fácilmente reproducible (comenzando por la misma semilla).
 - Se obtiene rápidamente.
 - Ocupa poco espacio de memoria.

Clasificación de los algoritmos probabilistas

Los algoritmos numéricos:

- Otorgan una solución aproximada.
- Otorgan un intervalo de confianza.
- A mayor tiempo de ejecución, mejor es la aproximación.

Los algoritmos de Monte Carlo:

- Otorgan la respuesta exacta con elevada probabilidad.
- En algunas ocasiones arrojan una respuesta incorrecta.
- No se puede saber si la respuesta es correcta, pero se puede reducir la probabilidad del error dando más tiempo al algoritmo.

Los algoritmos de Las Vegas:

- Toman decisiones al azar.
- Si no encuentran las solución correcta lo admiten.
- Es posible volver a intentarlo con los mismos datos hasta obtener la solución correcta.

Clasificación de los algoritmos probabilistas

Si preguntáramos ¿Cuándo descubrió América Cristóbal Colón?

- Las respuestas según el algoritmo serían:
- Algoritmo numérico:
 - Entre 1490 y 1500
 - Entre 1485 y 1495
 - Entre 1492 y 1592
 - Entre 1481 y 1491
 - Entre 1489 y 1499
- Algoritmo de Monte Carlo:
 - 1492, 1492, 1492, 1491, 1492, 1492, 357 a.C., 1492, 1492, 1492.
- Algoritmo de Las Vegas:
 - 1492, 1492, ¡Perdón!, 1492, 1492, 1492, 1492, 1492, ¡Perdón!,

Algoritmos Probabilistas Numéricos

- La aleatoriedad se utilizó por primera vez en algoritmia para resolver aproximadamente problemas numéricos
- En algunos problemas de la vida real el cálculo de la solución exacta no es posible (incertidumbre de los datos, limitaciones de los ordenadores digitales).
- En otros existe una respuesta precisa pero se tardaría demasiado tiempo en obtenerla.
- La respuesta de un algoritmo probabilista numérico es siempre aproximada, pero su precisión esperada mejora a medida que crece el tiempo disponible para el algoritmo.

Algoritmos Probabilistas Numéricos

 Un algoritmo numérico muy conocido es la integración de Monte Carlo, aunque no es un algoritmo de Monte Carlo.

• Calcular: $I = \int f(x) dx donde f : R \rightarrow R \ge 0$ es continua y $a \le b$

 Consideremos el rectángulo de la figura de anchura b-a y altura I/(b-a) (la altura media de f entre a y b)

El área del rectángulo es el cálculo a hacer

		Versión 1.0			
intDET (función f, Entero n, Real a, Real b): Real					
{pre	: a < b}	{pos: I es el valor de la integral}			
1	suma = 0	-suma: Real: almacena sumas parciales de			
2	delta = (b-a)/n	la función evaluada en diferentes puntos.			
3	x = a + delta/2	-delta: Real: almacena el tamaño de los			
4	(suma = suma + f(x))	tramos de integración.			
_	x = x + delta)j = 1, n	-x: Real: almacena el valor de los puntos de			
5	regrese I = suma * delta	integración.			
		-n: Entero: número de intervalos de			
		integración.			
		-I: Real: Valor de la integral aproximado.			
		-j: Entero: variable auxiliar para la			
		estructura de repetición.			

		Versión 1.0		
	intMC (función f, Entero n, Real a, Real b): Real			
{pre	: a < b}	{pos: I es el valor de la integral}		
1	suma = 0	-suma: Real: almacena sumas parciales de		
2	(x = uniforme(a,b)	la función evaluada en diferentes puntos.		
	suma = suma + $f(x)$) $j = 1$, n	-x: Real: almacena el valor de los puntos de		
3	regrese I = (b-a) * (suma/n)	integración.		
		-n: Entero: número de intervalos de		
		integración.		
		-I: Real: Valor de la integral aproximado.		
		-j: Entero: variable auxiliar para la		
		estructura de repetición		

Algoritmos Probabilistas Numéricos

- El uso de los algoritmos probabilistas para integrar se justifica con las integrales múltiples.
- En un algoritmo determinista en ese caso el número de puntos de muestra necesario para lograr una precisión dada, crece de manera exponencial con la dimensión de la integral.
 - Ejemplo: 100 puntos en una integral simple, se convertirían en 100 x
 100 puntos para alcanzar la misma precisión en una integral doble,
 1000 x 1000 en una triple, ...
- En el algoritmo probabilista la dimensión de la integral no tiene mucho efecto sobre la precisión de la integral.
 - El algoritmo probabilista se utiliza en integrales de 4 o más dimensiones,

Conteo Probabilista

- Empleando la notación binaria ordinaria, se puede contar desde 0 hasta 2ⁿ – 1.
- Sea c un registro de n bits, podríamos implementar tres funciones:
 - iniciar(c): coloca el contador en cero.
 - pulsar(c): le suma 1.
 - contar(c): pide su valor actual.
- Dado que *c sólo puede admitir 2ⁿ valores distintos, el contador* se ve obligado a tomar un valor que ya haya tenido anteriormente

Conteo Probabilista

- Si relajamos cualquier requisito que le exija a contar regresar el número exacto de llamadas a pulsar desde el último iniciar, con una estrategia probabilista podríamos contar el doble.
- Cada vez que se llame a *pulsar, lanzamos al aire una moneda* imparcial. Si sale *cara, sumamos 1 al registro; si sale cruz, no* hacemos nada.
- De esta forma, se puede llegar a contar 2^{n+1} 2 veces con un registro de n bits.
- Bastan sólo 8 bits para contar más de 5*1076 sucesos.
- La idea consiste en mantener en el registro una estimación del logaritmo del número de llamadas a pulsar, lo que implica que contar(c) devuelve 2^c1.
- Supongamos que 2^c -1 es una buena aproximación del número de llamadas a pulsar, desde la última inicialización. Luego decimos que el número de llamadas a pulsar pasa a ser 2^{c+1} -1 una probabilidad p y permanece igual con una probabilidad 1-p; siendo el valor esperado 2^c + 2^c p -1.

			Versión 1.0	
		pulsar (registro c)		
{pre: existe el registro c}		{pos: v es el conteo del r	{pos: v es el conteo del registro c }	
1	(si (tiramoneda = cara)	-i: Entero: variable auxilia	ar para la	
	entonces c = c +1	estructura de repetición.		
3) i = 1, n	-n: Entero: número de bi	-n: Entero: número de bits del registro c.	

contar(c): regresa 2^c - 1

ALGORITMOS DE LAS VEGAS

- Utilizan "azar" para alcanzar una solución correcta más rápido que un algoritmo determinista.
- Siempre alcanzan una solución correcta o reconocen una solución errónea.
- El problema de selección,
 - Tiene un algoritmo determinista con un tiempo logarítmico en el caso promedio,
 - Puede llegar a ser cuadrático en el peor caso


```
Versión 1.0
                  particionar(Arreglo de Enteros[1..n]: T, Entero: i, j, m, u, v)
\{pre: n > 0\}
                                              \{pos: n > 0\}
    u, v = i,i
                                                   Auxiliar Entero: i, j. Almacenan los limites
    [ele = T[k]]
                                                   del arreglo que se esta evaluando.
      si( ele < m ) entonces
        T[k] = T[v]
                                                    Las variables u y v debe ser pasadas como
       T[v] = T[u]
                                                   referencia, es necesario que conserven su
       T[u] = ele
                                                   valor luego de terminar la Corrida
       u, v = u+1, v+1
      sino si(ele = m)
       T[k] = T[v]
        T[v] = ele
        v = v + 1
      f si
     ]k = i, k <= n
     v = v1
```



```
Versión 1.0
                    seleccion(Arreglo de Enteros[1..n]: T, Entero: k): Entero
                                         {pos: n > 0, 0 < k < n+1}
{pre: n > 0, 0 < k < n+1}
   |i, j = 1, n|
                                                   Auxiliar Entero: i, j, m, u, v. Almacenan los
     (i < j)[
                                                   limites del arreglo.
      m = T[1]
                                                   particionar: función que particiona un
      particionar(T, i, j, m, u, v)
      si ( k < u ) entonces
                                                   arreglo, coloca los elementos menores a
                                                   "m" antes de "m" y los mayores que "m"
        i = u1
      sino si(k > v) entonces
                                                   despues de "m"
        i = v + 1
      sino entonces
        i, j= k, k
      f si
    Regresar T[i]
```



```
Versión 1.0
                  particionar(Arreglo de Enteros[1..n]: T, Entero: i, j, m, u, v)
                                                 \{pos: n > 0\}
\{pre: n > 0\}
    |i, j = 1, n|
                                                   Auxiliar Entero: i, j, m, u, v. Almacenan los
    ( i < j )[
                                                   limites del arreglo.
      m = T[uniforme(i, j)]
      particionar(T, i, j, m, u, v)
                                                   particionar: función que particiona un
      si ( k < u ) entonces
                                                   arreglo, colocando los elementos menores
                                                   a "m" antes de "m" y los mayores que "m"
        i = u1
      sino si(k > v) entonces
                                                   despues de "m"
        i = v + 1
                                                   uniforme: función que regresa un valor
      sino entonces
        i, j= k, k
                                                   aleatorio entero, perteneciente al rango
                                                   [i,j]..
      f si
    Regresar T[i].
```

Algoritmo RSA de criptografía

Cifrado

- Un mensaje puede cifrarse mediante la aplicación de una regla que transforme el texto en claro del mensaje a un texto cifrado.
- Para esto el receptor debe conocer la regla inversa para transformar el texto cifrado en el texto original.

Cifrado

La criptografía es el uso de la transformación de datos para hacerlos incomprensibles a todos, excepto a los usuarios a quienes están destinados.

- El problema de la <u>intimidad</u> trata de cómo evitar la obtención no autorizada de información de un canal de comunicaciones.
- El problema de la <u>autentificación</u> trata sobre cómo proporcionar al receptor de un mensaje prueba de la identidad del remitente, que serían el equivalente electrónico de una firma escrita.

AUTENTIFICACION

- Message Authentication Code (MAC):
 - Jose y Maria escogen f(m) para colocar a cada mensaje de texto m un numero a=f(m).
 - f(m) debe evitar colisiones o manejarse como una hash para mapear diferentes mensajes en diferentes números.
 - Jose envía m con un numero a=f(m).
 - a es el autenticador.
 - Maria recibe m, computa b=f(m) y se asegura a=b.

Sistema de Intimidad Criptográfica

- El remitente desea transmitir cierto mensaje no cifrado (texto simple) a un receptor legítimo
- La transmisión se producirá a través de un canal inseguro
- El remitente pasa el texto simple a una unidad de codificación que lo transforma en un texto cifrado o criptograma:

No es comprensible para el *espía*.

- Se transmite en forma segura por un canal inseguro.
- El receptor pasa el texto cifrado por una *unidad de descifrado* para regenerar el texto simple.

Criptoanálisis Es el proceso de *intentar regenerar el texto* simple a partir del texto cifrado, pero desconociendo la clave de ciframiento

Es la tarea del espía!!!

Cifrado

- Criptografía convencional.
 - Por sustitución: remplaza cada letra del mensaje original por otra.
 - Con clave de un solo uso
 - Por transposición: cambiar el orden los caracteres en el mensaje.

Cifrado simétrico

P = e(k,M); M = d(k,P)

- Usa una misma clave para cifrar y para descifrar. Las dos partes que se comunican mediante el cifrado simétrico deben estar de acuerdo en la clave a usar de antemano. Una vez de acuerdo, el remitente cifra un mensaje usando la clave, lo envía al destinatario, y éste lo descifra usando la misma clave. Ejemplos: DES, AES, Etc
- Ejemplo
 - A y B comparten la clave K (011100)
 - A cifra un mensaje m y lo envía a B
 - E(M)=m XOR k
 - k = 011100 m = 010110
 - E(m) = 001010 = c
 - B recibe el mensaje y calcula D(c)=c XOR k
 - D(E(m)) = D(m XOR k) = (m XOR k) XOR k = m

Cifrado asimétrico o de Clave Publica

• Las funciones de cifrado y descifrado están separadas y utilizan distintas claves.

- No es computacionalmente posible (en un tiempo "razonable") determinar la clave de desciframiento "d" a partir de la clave de ciframiento "e".
- "e" puede hacerse pública sin comprometer la seguridad de "d", que permanece privada:
 - Se simplifica el problema de la distribución de claves.

Ejemplos: RSA, DH, DSA, Curvas Elípticas

Cifrado asimétrico o de Clave Publica

1 Se necesita $K_B^{\dagger}()$ y $K_B^{\dagger}()$ tral que:

$$K_B^-(K_B^+(m)) = m$$

Dada la clave pública K_B^{\dagger} , debería ser imposible computar una clave privada \bar{K}_B

Cifrado asimétrico

- Cada entidad debe poseer una llave publica y una privada y se denotan como:
 - Pa llave publica de A
 - Sa llave privada de A
 - Pb llave publica de B
 - Sb llave privada de B
- La funciones de clave publica y la privada para un ente x son funciones inversas entre si:
 - M=Sa(Pa(M))
 - M=Pa(Sa(M))

Los sistemas de clave publica se basan en que todos conocen las claves publicas de los entes con los cuales se van a comunicar. Estas llaves pueden se obtenidas de un directorio publico o del ente con el cual se va ha establecer la comunicación

Cifrado y Firma Digital

Cifrado (secreto):

- Texto sin cifrar
- Algoritmo de Cifrado (Ej. RSA), usando clave publica del receptor
- transmisión
- Algoritmo de descifrado (inverso de cifrado) usando clave privada del receptor
- Texto sin cifrar

Cifrado: P = e (Kpub, M)

Descifrado: M = d (Kprv, P)

Firma digital (autenticidad):

- Texto sin cifrar
- Algoritmo de Cifrado (Ej. RSA), usando clave privada del emisor
- transmisión
- Algoritmo de descifrado (inverso de cifrado) usando clave publica del emisor
- Texto sin cifrar P = e(Kprv,M)M = d(Kpub,P)

Cifrado y Firma Digital

Autenticidad y secreto:

- Texto sin cifrar
- Algoritmo de Cifrado (Ej. RSA), usando clave privada del emisor
- Algoritmo de Cifrado (Ej. RSA), usando clave publica del receptor
- transmisión
- Algoritmo de descifrado (inverso de cifrado) usando clave privada del receptor
- Algoritmo de descifrado (inverso de cifrado) usando clave publica del emisor
- Texto sin cifrar

RSA

El sistema RSA crea sus claves de la siguiente forma:

- Se buscan dos números primos lo suficientemente grandes: p y q con p≠q (de entre 100 y 300 dígitos).
- Se obtienen los números n = p*q y Ø = (p-1)*(q-1).
- Se busca un número e (impar) tal que no tenga múltiplos comunes con \emptyset . (Seleccione un entero de forma aleatoria e tal que $1 < e < \emptyset$, $MCD(\emptyset, e) = 1$).
- El numero e es llamado exponente publico RSA
- El sistema RSA crea sus claves de la siguiente forma
 - Se calcula el exponente privado de RSA $d = e-1 \pmod{\emptyset}$, (Sea d un numero tal que (e*d)-1 sea divisible entre \emptyset).
 - Publique la llave publica (e,n) y guarde la llave privada (d,n)

RSA: encriptación, desencriptación

- 0. Dados (n,e) y (n,d) calculados anteriormente.
- 1. Para encriptar patrón de bit, *m*, calcular:

$$c = m^e \mod n$$
 (es decir, el resto cuando m se divide por n).

2. Para desencriptar el patrón de bit recibidos, c, calcular:

$$m = c \, d_{\text{mod } n}$$
 (es decir, el resto cuando $c \, d_{\text{se}}$ divide por n).

$$m = (m^e \mod n) \stackrel{d}{\mod n}$$

Ejemplo RSA

Receptor elige p=5, q=7. Entonces n=35, z=24.

e=5 (entonces e, \varnothing primo relativo). d=29 (entonces ed-1 es divisible de forma exacta entre \varnothing)

RSA

Ejemplo

- Generación de llaves
 - p=11, q=23
 - m = p * q = 253 ; (p-1)*(q-1) = (11-1)*(23-1) = 220
 - e = 3
 - d = 147
- Cifrado
 - Mensaje = "adios" -> 0 3 8 14 18
 - -0^3 , 3^3 , 8^3 , 14^3 , 18^3 , 18^3 , 18^3 , 18^3
- Descifrado (0 27 6 214 13)
 - 0^147, 27^147, 6^147, 214^147, 13^147, mod 253 = 0 3 8 14 18
 - 0 3 8 14 18 -> " adios

Este algoritmo se basa en la exponenciación modular, el cual es un algoritmo que se puede implementar en tiempo polinomial de la longitud de la entrada

$$O(\log^3 n) \approx O(k^3),$$

donde n es la entrada y k es su longitud.

Tiempos de búsqueda sistemática a un millón de tentativas por segundo

Largo Clave	4 bytes	6 bytes	8 bytes
Letras minúsculas (26)	0.5 s.	5 mín.	2.4 días
Caracteres alfanuméricos (62)	15 s.	16 h	6.9 años
Caracteres ASCII (256)	1.2 h	8.9 años	580000 años

EXPONENCIACIÓN MODULAR

El problema radica en calcular $m^n \mod z$, para n, m enteros suficientemente grandes. La solución se obtiene desarrollando un algoritmo divide y vencerás junto con las siguientes propiedades de aritmética modular

 $mn \mod z = [(m \mod z)(n \mod z)] \mod z$ $m^n \mod z = (m \mod z)^n \mod z$

EXPONENCIACIÓN MODULAR

- Luego el algoritmo divide y vencerás será
- Si n es par, hacemos $n = 2k_1$, donde $k_1 \in \mathbb{N}$. Así $m^n \mod z = m^{2k_1} \mod z = \left(m^2 \mod z\right)^{k_1} \mod z$
- Si n es impar, hacemos n = 2k+1, donde $k \in \mathbb{N}$. Así

$$m^n \mod z = m^{2k+1} \mod z = (m^{2k} m \mod z)$$

= $[(m^{2k} \mod z)(m \mod z)] \mod z$