[問題] III-B (1)

 $f(x) = 2 - e^x$ が与えられた時、 $x \in [0,1]$ の範囲にある f(x) の根を 2 分法を用いて求める場合を考える。解の存在する範囲を 10^{-8} 以下に限定するには 2 分法の繰り返し操作を最低何回行えば良いか答えよ。

[問題] III-B (2)

2分法により f(x) の根を求めるプログラムを作成して 問1で求めた回数繰り返し、繰り返し操作後の解の存 在する x の区間の両端の値を有効数字 10 進 11 桁以降 を切り捨てて求めよ。またその区間の両端の値の平均 値を求め根の近似値として有効数字10進11桁以降を 切り捨てて求めよ。

作成したプログラムも提出すること。プログラミング言語は問わない。

[略解] Ⅲ-B (1)

$$\inf \left\{ n \in \mathbb{N} \mid \frac{1}{2^n} \le 10^{-8} \right\}$$
$$= \inf \left\{ n \in \mathbb{N} \mid n \ge 8 \log_2 10 \right\}$$
$$= \left\lceil 8 \log_2 10 \right\rceil = 27$$

従って27回。

[略解] **Ⅲ**-B (2)

解の存在する区間幅 [0.6931471750, 0.6931471824]

根の近似値 0.6931471787

[数値解析 第4回]

求根アルゴリズム (2)

式の根っこを速く旨く求める

反復法

反復法 (Iterative method)

式 f(x) の1つの根が α としたとき、初期近似根 x_0 を与え反復式 $x_{k+1}=\varphi(x_k)$ $(k=0,1,\dots)$ によって近似根 x_k を α に近づけて行く求根法を**反復法**という。

- ニュートン法は $\varphi(x) = x f(x)/f'(x)$ とおいた場合の反復法
- 反復法が縮小写像になっていれば不動点としての根 lpha に収束
 する

反復法で根を求めるための条件

縮小写像 (Contraction mapping)

ある区間 $I \subset \mathbb{R}$ の任意の x, y に対して $\varphi(x)$ が

 $|\varphi(x)-\varphi(y)| \leq L|x-y|$ を満たし、 $0 \leq L < 1$ であるとき $\varphi(x)$ は

区間 I において縮小写像であるという。L を縮小率 という。

- ullet $\varphi(x)$ が縮小写像であるとき、 $\varphi(x)$ は区間 I 内に唯一の**不動点**を持つ (不動点は $\alpha=\varphi(\alpha)$ を満たす点)
- ullet 区間 I 内の任意の x_0 に対して x_k は不動点 lpha に収束する

[問題] Ⅳ-A

ニュートン法により x の多項式 $f(x)=x^6-7x^4+11x^3-10$ の根を求めるプログラムを初期値を x=1 として作成し、根の真値を有効数字 10 進 16 桁まで示した

 $\alpha = 1.357271472605337$ と比べて絶対誤差が 10^{-8} 以下となる 最低の反復回数 n を求めよ。また n 回反復した時の根の近 似値と絶対誤差も求めよ。近似値は有効数字10進11桁以降 を切り捨てて求め、絶対誤差は有効数字10進4桁以降を切り 捨ててよ。

[略解] Ⅳ-A

プログラムを実行することにより n=4 であることがわかる。

また根の近似値は 1.357271481

[手法] 式の根っこを速く旨く求める

ニュートン法 (Newton's method)

```
Input: f(x), f'(x), x_0, \delta, k_{\text{max}}
Output: x_k
  1: for k = 1, 2, ..., k_{max}:
  f_0 \leftarrow f(x_{k-1})
  if |f_0| \le \delta:
              break
         else
             f_1 \leftarrow f'(x_{k-1})
             x_k \leftarrow x_{k-1} - f_0/f_1
  7:
```

[解説] ニュートン法の幾何的導出

• f(x) の $x = x_k$ での接線 $y = f'(x_k)(x - x_k) + f(x_k)$ が x 軸と交わる点 (y=0となる点) を $x = x_{k+1}$ と すると $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$ となる。

[解説] ニュートン法の解析的導出

- f(x) の求めたい根の真値を α とする。 $x_k \approx \alpha$ のとき f(x) の $x = x_k$ でのテイラーの定理を考えると $f(x) = f(x_k) + f'(x_k)(x x_k) + \frac{f''(\xi_k)}{2!}(x x_k)^2$ となる。
- ・ $x=x_{k+1}$ とし、 $f(x_{k+1})<< f(x_k)$, $\frac{f''(\xi_k)}{2!}(x_{k+1}-x_k)^2<< f(x_k)$ が成り立つと仮定して左辺と右 辺第3項を0と置くと $0=f(x_k)+f'(x_k)(x_{k+1}-x_k)$ より $x_{k+1}=x_k-\frac{f(x_k)}{f'(x_k)}$ となる。

[解説] 収束の速さ

収束の次数 (Order of convergence for sequences)

 x_k が α に収束し $\lim_{k\to\infty} \frac{\alpha-x_{k+1}}{(\alpha-x_k)^p} = A$ を満たすような非零で有限な定数 A を持つとき、p を x_k の**収束の次数**という。

• ニュートン法では p=2 であり、**2次収束**と呼ぶ

[解説] 2次収束の証明

ニュートンの誤差公式 (Newton error formula)

ある区間 $I\subset\mathbb{R}$ で $f\in C^2(I)$ が根 α を持ち、 $x_k\in I$ に対して $x_{k+1}=x_k-\frac{f(x_k)}{f'(x_k)}$ $(f'(x_k)\neq 0)$ という数列を考える。このとき α と x_k の間に ξ_k が存在して $\alpha-x_{k+1}=-\frac{1}{2}(\alpha-x_k)^2\frac{f''(\xi_k)}{f'(x_k)}$ が成り立つ。

ullet ここから $\lim_{k o\infty}rac{lpha-x_{k+1}}{(lpha-x_k)^2}=-rac{f''(lpha)}{2f'(lpha)}$ (2 次収束) が示せる。

[問題] **Ⅳ**-B

ニュートン法により $f(x) = 2 - e^x$ の根を求めるプログラム を初期値を x=1 として作成し、根の真値を有効数字 10 進 16 桁まで示した $\alpha = 0.6931471805599453$ と比べて絶対誤差 が 10^{-8} 以下となる最低の反復回数 n を求めよ。また n 回 反復した時の根の近似値と絶対誤差も求めよ。近似値は有効 数字10進11桁以降を切り捨てて求め、絶対誤差は有効数字 10進4桁以降を切り捨ててよ。

作成したプログラムも提出すること。プログラミング言語は問わない。15 / 15