Regle de la chaine (3pt)

1. Derivee directionnelle

On pose $\phi: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $\phi(x,y) = (x+2y,y)$. Sachant que la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ est différentiable en p = (3,1) et que l'on a $\frac{\partial f}{\partial x}(p) = 2$ et $\frac{\partial f}{\partial y}(p) = 1$. Calculer $D_v(f \circ \phi)(1,1)$ où v = (1,-1).

-3 √

2. Derivee directionnelle

On pose $\phi: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $\phi(x,y) = (2x,2x+y)$. Sachant que la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ est différentiable en p = (2,3) et que l'on a $\frac{\partial f}{\partial x}(p) = 1.5$ et $\frac{\partial f}{\partial y}(p) = 1$. Calculer $D_v(f \circ \phi)(1,1)$ où v = (1,-1).

4 √

3. Derivee directionnelle

On pose $\phi: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $\phi(x,y) = (x+2,2y)$. Sachant que la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ est différentiable en p = (3,2) et que l'on a $\frac{\partial f}{\partial x}(p) = 2$ et $\frac{\partial f}{\partial y}(p) = 1$. Calculer $D_v(f \circ \phi)(1,1)$ où v = (1,-1).

0 ✓

4. Derivee directionnelle

On pose $\phi : \mathbb{R}^2 \to \mathbb{R}^2$ définie par $\phi(x,y) = (x+y,x-y)$. Sachant que la fonction $f : \mathbb{R}^2 \to \mathbb{R}$ est différentiable en p = (2,0) et que l'on a $\frac{\partial f}{\partial x}(p) = 2$ et $\frac{\partial f}{\partial y}(p) = 1$. Calculer $D_v(f \circ \phi)(1,1)$ où v = (1,-1).

2 √