Решения

Задач заключительного тура олимпиады «Росатом» 2016-2017 учебного года Физика, 11 класс, комплект 2

- 1. Тело движется с постоянным ускорением a из некоторой точки. Известно, что начальная скорость тела не равна нулю, и когда тело прошло путь S после начала движения, его скорость увеличилась в 2 раза по величине по сравнению с начальной скоростью, но стала ей противоположной. Через какое время после этого скорость тела возрастет еще в 2 раза?
- **2.** Имеется два вертикальных цилиндрических сосуда с разной площадью сечения, которые в своих нижних частях соединены тонкой трубкой. Сосуды закрыты подвижными поршнями одинаковой массы m. Поршни находятся в равновесии на одинаковой высоте h от дна сосуда, но большем поршне лежит дополнительный груз массой m/2 (см. рисунок). В некоторый момент времени груз снимают с поршня. На какой высоте от дна сосуда окажется этот поршень

после установления равновесия? Атмосферным давлением пренебречь, температура газа не меняется.

3. Точечный заряд Q находится на расстоянии d от очень большой проводящей плоскости. В некоторый момент времени заряд перемещают на расстояние 2d вдоль плоскости (см. рисунок), причем так быстро, что за время перемещения заряда Q заряды на плоскости не успели сместиться от своих

первоначальных положений. Какое количество теплоты выделится в веществе плоскости в процессе установления равновесия?

4. Блок склеен из двух дисков с радиусами R и 2R, насаженных на одну и ту же горизонтальную ось, и подвешен к горизонтальному потолку. На блоки намотана невесомая нерастяжимая нить, к которой прикреплен груз массой m, как это показано на рисунке. Нить охватывает также нижний блок, размеры которого подобраны так, что все отрезки нити вертикальны. Второй груз массой 3m прикреплен к оси нижнего блока. Найти ускорение тел. Блоки невесомы.

5. Тело движется в некоторой среде. Известно, что сила сопротивления среды пропорциональна квадрату скорости тела. Известно, что скорость тела уменьшилась в 2 раза, через время T после начала движения. Через какое время после этого скорость тела уменьшится еще втрое? Всеми другими силами, кроме силы сопротивления среды, пренебречь.

Решения

1. Из законов равноускоренного движения имеем

$$4v_0^2 + v_0^2 = 2aS$$

где v_0 - начальная скорость тела. Отсюда

$$v_0 = \sqrt{\frac{2aS}{5}}$$

Применяя теперь к движению от этой точки до точки, в которой его скорость стала равна $4v_0$, получим

$$4v_0 = 2v_0 + a\Delta t$$

где Δt - искомое время. Отсюда

$$\Delta t = \sqrt{\frac{8S}{5a}}$$

2. Пусть давление газа в сосуде равно p . Тогда условия равновесия поршней дают

$$pS_1 = mg, \qquad pS_2 = \frac{3}{2}mg$$

где S_1 и S_2 - площади сечения более узкого и более широкого сосуда соответственно. Деля эти уравнения друг на друга, найдем отношения площадей сечения сосудов $S_1/S_2 = 2/3$. Когда с большого поршня мы снимаем груз, условия равновесия обоих поршней одновременно не могут удовлетворится при любом их положении. Это значит, что малый поршень должен опуститься на дно сосуда, а весь газ перейти в большой сосуд, причем из условия равновесия большого поршня имеем для давления газа в большом сосуде

$$p_1 = \frac{mg}{S_2}$$

Применяя теперь к газу в широком сосуде закон Клапейрона-Менделеева, получим

$$mgh_1 = \nu RT \tag{*}$$

где $h_{\!\scriptscriptstyle 1}$ - высота поршня над дном широкого сосуда после снятия груза и установления равновесия, ν - количество вещества газа во всем сосуде, T - температура газа. С дрогой стороны, закон Клапейрона-Менделеева для газа во всем сосуде до снятия груза дает

$$\frac{mg}{S_1} \left(S_1 h + S_2 h \right) = \nu RT \tag{**}$$

Деля уравнения (*) и (**) друг на друга и учитывая соотношение площадей сечения сосудов, получим

$$h_1 = \frac{5}{2}h$$

3. Как известно, со стороны проводящей плоскости на точечный заряд Q действует такая же сила, как со стороны точечного заряда -Q, расположенного за плоскостью на таком же расстоянии, как и точечный заряд. Или (другими словами), на плоскости индуцируются такие заряды, поле которых совпадает с полем точечного заряда, расположенного за плоскостью на таком же расстоянии от него. А поскольку по условию в процессе перемещения точечного заряда Q заряды на плоскости не успевают перераспределиться, то необходимо совершить такую же работу, как при перемещении точечного заряда Q в поле покоящегося точечного заряда -Q. А она, в свою очередь, равна изменению потенциальной энергии заряда Q, перемещающегося из точки на расстоянии 2d от покоящегося заряда -Q, в точку на расстоянии

$$\sqrt{\left(2d\right)^2 + \left(2d\right)^2} = \sqrt{8}d$$

покоящегося заряда -Q, в точку на рассии $\sqrt{(2d)^2 + (2d)^2} = \sqrt{8}d$ от этого заряда (см. рисунок). Поэтому необходимо совершить $\sqrt{8}d$

$$\sqrt{8}d$$
 Q $2d$ $-Q$

 $A = Q\left(\frac{kQ}{2d} - \frac{kQ}{\sqrt{8}d}\right) = \frac{kQ^2}{d} \frac{\sqrt{2} - 1}{2\sqrt{2}}$

(к - постоянная закона Кулона). После перераспределения зарядов на плоскости потенциальная энергия взаимодействия заряда и плоскости вернется к первоначальному значению. Поэтому вся совершенная работа выделится в виде теплоты. Поэтому

$$q = \frac{kQ^2}{d} \frac{\sqrt{2} - 1}{2\sqrt{2}}$$

4. Силы, действующие на тела, показаны на рисунке. Второй закон Ньютона для обоих тел дает

$$3m\vec{a}_1 = 3m\vec{g} + \vec{T}_1 + \vec{T}_2$$
$$m\vec{a}_2 = m\vec{g} + \vec{T}$$

где a_1 и \vec{a}_2 - ускорения тел с массами 3m и m соответственно (остальные обозначения очевидны из рисунка). Или в проекциях на ось x, направленную вертикально вниз

$$3ma_{1x} = 3mg + T_1 - T_2$$

 $ma_{2x} = mg - T$ (*)

Установим условия связи между неизвестными. Поскольку нижний блок не имеет

массы, а на него действуют две силы \vec{T}_1 , направленные вверх, и сила \vec{T} , направленная вниз, то $T=2T_1$. Верхний блок вращают силы T_2 с плечом R/2 и сила T_1 с плечом R. А поскольку он также не имеет массы, то его можно вращать практически нулевым моментом. Поэтому

$$T_1R = T_2R/2$$
 \Rightarrow $T_2 = 2T_1$

В результате система уравнений (*) принимает вид

$$3ma_{1x} = 3mg - T_1$$
 $ma_{2x} = mg - 2T_1$
(**)

Найдем теперь связь ускорений. Во-первых, ясно, что ускорения тел будут направлены противоположно. Действительно, если тело 3m опускается, то нить сматывается с маленького блока, но одновременно наматывается на большой блок. А поскольку блоки склеены, они поворачиваются на один и тот же угол, и на большой блок намотается больше веревки, и нижний блок поднимется. Поэтому если тело 3m спустилось на Δl , на большой блок намотается $2\Delta l$, веревка станет короче на Δl , нижний блок поднимется на $\Delta l/2$. Следовательно, если ускорение тела 3m равно a и направлено вниз, ускорение тела m равно a/2 и направлено вверх. И наоборот. Поэтому

$$a_{2x} = -a_{1x}/2$$

В результате система уравнений (**) примет вид

$$3ma_{1x} = 3mg - T_1 ma_{1x}/2 = 2T_1 - mg$$
 (***)

Умножая первое уравнение системы (***) на 2 и складывая уравнения, найдем, что ускорение тела с массой 3m направлено вниз и равно

$$a_1 = \frac{10}{13}g$$
,

а ускорение тела с массой т направлено вверх и равно

$$a_2 = \frac{5}{13}g$$

5. Обозначим силу сопротивления среды как $F = \alpha v^2$. Тогда второй закон Ньютона для рассматриваемого тела в проекциях на ось, направленную вдоль движения тела, дает

$$\Delta v = -kv^2 \Delta t$$

где $k = \alpha/m$ (m - масса тела). Или

$$-\frac{\Delta v}{v^2} = k\Delta t$$

Но величина в левой части есть приращение величины 1/v (вместе со знаком), величина в правой части – приращение величины kt. Поэтому приращение величины kt-1/v равно нулю

$$\Delta \left(kt - \frac{1}{v} \right) = 0$$

а, следовательно, сама величина в скобках есть постоянная

$$kt - \frac{1}{v} = C$$

Используя это соотношение для двукратного уменьшения скорости, получим

$$-\frac{1}{v} = kT - \frac{2}{v} \qquad \Rightarrow \qquad T = \frac{1}{kv}$$

Поэтому для шестикратного (по сравнению с начальной скоростью) уменьшения скорости имеем

$$kT - \frac{2}{v} = k(T + T_1) - \frac{6}{v}$$
 \Rightarrow $T_1 = \frac{4}{kv}$

где T_1 - искомое время, через которое скорость тела уменьшилась еще в три раза. Отсюда получаем

$$T_1 = 4T$$