Assignment 3

Ai and ml

Name: Jasti Pavan

Registration Number: 21BDS0309

- 1. Penguine_size.csv is downloaded
- 1. Load the dataset into the tool.

```
import numpy as np
import pandas as pd
df=pd.read csv('/content/penguins size.csv')
df.head()
  species
              island culmen length mm culmen depth mm
flipper length mm \
O Adelie Torgersen
                                  39.1
                                                   18.7
181.0
1 Adelie Torgersen
                                  39.5
                                                   17.4
186.0
2 Adelie Torgersen
                                                   18.0
                                  40.3
195.0
3 Adelie Torgersen
                                   NaN
                                                    NaN
NaN
4 Adelie Torgersen
                                  36.7
                                                   19.3
193.0
   body mass g
                   sex
0
        3750.0
                  MALE
1
        3800.0
                FEMALE
2
        3250.0
                FEMALE
3
           NaN
                   NaN
4
        3450.0
                FEMALE
```

3.1. Perform Univariates Analysis

```
from matplotlib import rcParams
import seaborn as sns
sns.displot(df.body_mass_g)
<seaborn.axisgrid.FacetGrid at 0x7dd35d76c910>
```


3.2. Perform Bivariates Analysis

sns.jointplot(x='culmen_length_mm',y='culmen_depth_mm',data=df)
<seaborn.axisgrid.JointGrid at 0x7dd35d76c5e0>

3.3. Perform Multi-Variate Analysis

sns.pairplot(df)
<seaborn.axisgrid.PairGrid at 0x7dd35b1b8a60>

1. Perform descriptive statistics on the dataset.

<pre>df.describe()</pre>								
	en_length_mm	culmen_depth_mm	flipper_length_mm					
body_mass_g count	342.000000	342.000000	342.000000					
342.000000 mean	43.921930	17.151170	200.915205					
4201.754386 std	5.459584	1.974793	14.061714					
801.954536 min	32.100000	13.100000	172.000000					

39.225000	15.600000	190.000000	
44.450000	17.300000	197.000000	
48.500000	18.700000	213.000000	
59.600000	21.500000	231.000000	
	44.450000 48.500000	44.450000 17.300000 48.500000 18.700000	44.450000 17.300000 197.000000 48.500000 18.700000 213.000000

1. Check for Missing values and deal with them.

```
df.isnull().any() #Checking if there any null values in the dataset
                     False
species
island
                     False
culmen length mm
                      True
culmen depth mm
                      True
flipper length mm
                      True
                      True
body mass g
                      True
sex
dtype: bool
df.isnull().sum()
species
                      0
island
                      0
culmen length mm
                      2
                      2
culmen depth mm
                      2
flipper_length_mm
                      2
body_mass g
                     10
sex
dtype: int64
# Code to replace null values in numerical columns with MEDIAN
df['culmen length mm'].fillna(df['culmen length mm'].median(),inplace=
True)
df['culmen depth mm'].fillna(df['culmen depth mm'].median(),inplace=Tr
df['flipper_length_mm'].fillna(df['flipper_length_mm'].median(),inplac
e=True)
df['body mass g'].fillna(df['body mass g'].median(),inplace=True)
# Code to replace null values in categorical column with MODE
df['sex'].fillna(df['sex'].mode().iloc[0],inplace=True)
# Now all null values are replaced with median and mode and dealt
properly.
df.isnull().any()
```

```
species False
island False
culmen_length_mm False
culmen_depth_mm False
flipper_length_mm False
body_mass_g False
sex False
dtype: bool
```

1. Find the outliers and replace the outliers

```
sns.boxplot(df.culmen_length_mm)
<Axes: >
```



```
sns.boxplot(df.culmen_depth_mm)
<Axes: >
```


sns.boxplot(df.flipper_length_mm)

<Axes: >

sns.boxplot(df.body_mass_g)

<Axes: >

Hence there are no outliers in the dataset.

1. Check for Categorical columns and perform encoding.

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['sex'] = le.fit transform(df['sex'])
df['species'] = le.fit transform(df['species'])
df['island'] = le.fit transform(df['island'])
df.head()
   species island culmen_length_mm culmen_depth_mm
flipper_length_mm
                 2
                                39.10
                                                   18.7
         0
181.0
                                                   17.4
                                39.50
186.0
         0
                                                   18.0
                                40.30
195.0
3
         0
                                44.45
                                                   17.3
197.0
         0
                                36.70
                                                   19.3
193.0
   body mass g
                sex
0
        3750.0
                  2
1
        3800.0
```

```
2 3250.0 1
3 4050.0 2
4 3450.0 1
```

1. Check the correlation of independent variables with the target (TARGET IS SPECIES and remaining are independent)

```
df.corr().species.sort values(ascending=False)
                     1.000000
species
flipper_length_mm
                     0.850819
body_mass_g
                     0.747547
culmen_length_mm
                     0.728706
                     -0.003823
sex
                     -0.635659
island
culmen depth mm
                     -0.741282
Name: species, dtype: float64
```

1. Split the data into dependent and independent variables

```
X=df.drop(columns=['species'],axis=1)
X.head()
                              culmen_depth_mm flipper_length_mm
   island culmen_length_mm
body_mass_g
        2
                       39.10
                                           18.7
                                                              181.0
3750.0
                       39.50
                                           17.4
                                                              186.0
1
        2
3800.0
        2
                       40.30
                                           18.0
                                                              195.0
3250.0
        2
                       44.45
                                           17.3
                                                              197.0
4050.0
                       36.70
                                           19.3
                                                              193.0
        2
3450.0
   sex
0
     2
1
     1
2
     1
3
     2
     1
Y=df['species']
Y.head()
0
     0
     0
1
2
     0
3
     0
```

```
4 0
Name: species, dtype: int64
```

1. Scaling the independent data

```
from sklearn.preprocessing import MinMaxScaler
scale = MinMaxScaler()
X scaled = pd.DataFrame(scale.fit transform(X),columns=X.columns)
X scaled.head()
   island culmen_length_mm culmen_depth_mm flipper_length_mm
body_mass_g
                   0.254545
      1.0
                                     0.666667
                                                        0.152542
0.291667
                   0.269091
                                     0.511905
                                                        0.237288
1
      1.0
0.305556
                   0.298182
                                     0.583333
                                                        0.389831
      1.0
0.152778
                   0.449091
                                     0.500000
                                                        0.423729
      1.0
0.375000
                   0.167273
                                     0.738095
                                                        0.355932
      1.0
0.208333
   sex
  1.0
1
  0.5
2 0.5
  1.0
4 0.5
```

1. Split the data into training and testing.

```
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test =
train_test_split(X_scaled,Y,test_size=0.2,random_state=0)
```

1. Check the training and testing data shape.

```
X_train.shape
(275, 6)

X_test.shape
(69, 6)

Y_train.shape
(275,)

Y_test.shape
```

(69,)			
D	OONE		