## **Amendments to the Claims**

The following listing of claims will replace all prior versions and listings of the claims in the application:

1. (Currently amended) A dynamic interphase-loading apparatus (DILA) for testing the mechanical properties of an interphase region of a fiber/matrix composite under quasi-static to dynamic loading conditions, the apparatus comprising:

means for providing a quasi-static to dynamic load to the fiber/matrix interphase;

means for continuously monitoring the load applied to the fiber/matrix composite and

providing a signal representative thereof;

means for continuously monitoring the displacement of the interphase of the fiber/matrix composite and providing a signal representative thereof;

means for forming various input signals to activate the load providing means and to generate various displacement rates; and

a computing means for receiving the load signal from the load monitoring means, for receiving the displacement signal from the displacement monitoring means, and for providing an input signal to the load providing means, the computing means having a memory means connected to a processing means, wherein the processing means stores the load signal in the memory means, generates the input signal supplied to the load providing means, and generates information representing the mechanical properties of the interphase of the fiber/matrix composite.

2. (Original) The dynamic interphase-loading apparatus as recited in claim 1, wherein the information representing the mechanical properties generated by the computing means comprises

Application No. 09/528,379

Amendment dated December 22, 2003

Reply to Office Action of August 22, 2003

the interfacial shear strength, frictional sliding stress, energy absorbing capability, and stress-strain

response of the interphase of the fiber/matrix composite.

3. (Original) The dynamic interphase-loading apparatus as recited in claim 1, wherein

the computing means generates information representing the durability of the interphase of the

fiber/matrix composite.

4. (Original) The dynamic interphase-loading apparatus as recited in claim 3, wherein

the information representing the durability of the interphase of the fiber/matrix composite comprises

the fatigue life and the residual strength after fatigue loading or exposure to a hygrothermal

environment of the interphase of the fiber/matrix composite.

5. (Original) The dynamic interphase-loading apparatus as recited in claim 1, wherein

the load providing means comprises a piezoelectric actuator.

6. (Original) The dynamic interphase-loading apparatus as recited in claim 1, wherein

the displacement monitoring means comprises a strain gauge bridge.

7. (Original) The dynamic interphase-loading apparatus as recited in claim 1, wherein

the load monitoring means comprises a load cell.

8. (Original) The dynamic interphase-loading apparatus as recited in claim 1, wherein

305236\_1.DOC

Page 4 of 13

the means for forming various input signals comprises a waveform generator.

9. (Currently amended) A method for testing the mechanical properties of an interphase region of a fiber/matrix composite under quasi-static to dynamic loading conditions, the method comprising the steps of:

using a diamond tip as a probe to load the interphase;

providing a quasi-static to dynamic load with a load mechanism to the fiber/matrix interphase;

debonding the fiber from the matrix at the interphase region and eventually pushing the fiber out from the matrix;

continuously monitoring the load applied to the fiber/matrix composite and providing a signal representative thereof;

continuously monitoring the displacement of the interphase of the fiber/matrix composite and providing a signal representative thereof;

receiving the load signal and the displacement signals in a computing means having a memory means connected to a processing means;

providing a control signal to the load mechanism, via the computing means; and using the processing means of the computing means to store the load signal in the memory means, generate the control signal supplied to the load mechanism, and generate information representing the mechanical properties of the interphase of the fiber/matrix composite.

10. (Original) The method for testing the mechanical properties of an interphase region of

Application No. 09/528,379

Amendment dated December 22, 2003

Reply to Office Action of August 22, 2003

a fiber/matrix composite as recited in claim 9, wherein the information representing the mechanical

properties generated by the computing means comprises the interfacial shear strength, frictional

sliding stress, energy absorbing capability, and stress-strain response of the interphase of the

fiber/matrix composite.

11. (Original) The method for testing the mechanical properties of an interphase region of

a fiber/matrix composite as recited in claim 9, further comprising the step of using the processing

means of the computing means to generate information representing the durability of the interphase

of the fiber/matrix composite.

12. (Original) The method for testing the mechanical properties of an interphase region of

a fiber/matrix composite as recited in claim 11, wherein the information representing the durability

of the interphase of the fiber/matrix composite comprises the fatigue life and the residual strength

after fatigue loading or exposure to a hygrothermal environment of the interphase of the fiber/matrix

composite.

13. (Previously amended) The method for testing the mechanical properties of an

interphase region of a fiber/matrix composite as recited in claim 9, wherein the load mechanism

comprises a piezoelectric actuator.

14. (Original) The method for testing the mechanical properties of an interphase region of

a fiber/matrix composite as recited in claim 9, wherein the displacement of the interphase is

305236\_1.DOC

Page 6 of 13

Application No. 09/528,379 Amendment dated December 22, 2003 Reply to Office Action of August 22, 2003

monitored with a strain gauge bridge.

15. (Original) The method for testing the mechanical properties of an interphase region of a fiber/matrix composite as recited in claim 9, wherein the load applied to the interphase is monitored with a load cell.