on fait un DFS

~~ G(n) on calcule les degrées et on donne les sommets de degrée 1: (0 6(2m)

(m) (d

(on peut aussi procéder à un tri à l'aide d'un bucket don) Q2. (a) Gn fait de la programmation dynamique:

mwore G: min { poids (x) + 2 mwoe [y] , = mwoc [y] }.

(b) On fait un 1er DFS pour trouver le sommet ele plus loin de bommet choixi arbitrairement. Ensuite, avec un 2<sup>md</sup> DFS, on pout ou x et on sugarde le sommet y le plus boin de x.

diam (T) = profondeur de y dans le 2<sup>nd</sup> porton

Q3. 6643633

On crée une file de priorilé seu [1, lwl+2] où les priocités bent les mb d'acc dans us, plus un.

Solution: Em barre des sommets. Sont que la file de prio n'est pas viole foire 6m lit le mot, à une lettre on la relie au plus petit qui n'est pas barrie et qui n'est pos dons la téquence restante; puis en boire la

Extraire le min x. Relin x à wi

Retiren 1 à la prio de Wi et 2. Si prio = 0 alous on le retire.

Q5.  $|\mathcal{I}_{m}| = n^{m-2}$ 



Q1. (a) Soient  $T_1$  et  $T_2$  deux avores convront de poids minimum. Supposons  $T_1 \neq T_2$  d'avi  $E(T_1) \triangleq E(T_2) \neq \emptyset$ . Soif  $e \in E(T_1) \triangleq E(T_2)$  de poids min.

Sans perdre en généralité, supposons ec  $E(T_1)$ . de graphe  $T_2$  + e a un cycle C.

Soit e'e( $C \cdot le$ ) n( $E(T_2) \cdot E(T_2)$ ).

 $Algo, T_2 + e^2 - e$  est un avore assurant de poids < poids de  $T_2$ .

Gm condut T1 = T2.

(b) Soit E = 7 e2, ..., en ? tels que w(e2) ≤ ... ≤ w(en).
Gov pose w'(ei) := i.

Comme les poids (w'(e)) sont tous différents, alors on peut appliquer l'algorithme et avoir T.

Et, comme l'ordre défini per w'est un reffinement de l'ordre défini par w, en a que T est un ACPM pour w.

Q2. Gn considère 6: (V, 8, (V), w) où w(v,v):=d(v,v).

Gn fait n-k étapes de Kruskal.

Complexité en G((n-k) d(n)).

Soit C le résultat d'expocemment E.

Soit () um autre k-clustering.

Il existe 11,10 dans 2 composantes différentes de c'et dans la même amprente de C

Cloutrons que d(11,10) & E (ce qui implique exportement (C') & E).

Soit it tel que d(s, t) = E.

Si  $d(s,t) = \varepsilon < d(u,v)$  et en suit que st me crée pas de cycle alors absorde on Kruskal await choisit st.

## Q3. Utibres mon enracines

- · Reflexivate: Φ = id
- · Symétice : φ' = φ-1
- Transikuité:  $\phi' = \phi' \circ \phi$   $V_1 \xrightarrow{\phi} V_2 \xrightarrow{\phi'} \circ V_3$

Mibre enracine:

- · Réflexivité : 0 = id
- Symétie :  $\phi' = \phi^{-1}$  Transitivité :  $\phi'' = \phi' \circ \phi$

Q4.

$$A \sim D$$
 are  $c$  l'isomorphisme

- aw fukr

Cop A,D con il existe un sommet de degré 4 relié à trois fauilles dons C mais pas dons A.

$$B \neq A, C, D$$
 can deg (2) = 2 et deg (·)  $\neq 2$  deg (·)  $\neq 2$ .

$$C(T-F) = \left\{ x \in V(T-F) \mid R_{T-F}(x) = R(T-F) \right\}$$

$$= \left\{ x \in V(T-F) \mid R_{\tau}(x) = R(T) \right\}$$

$$= C(T)$$

| Q6. ´         | Par récurrence          | forte su    | <b>#</b> 7.   | - Gomplexité en (                     | J(n), c.f. TD 5. |
|---------------|-------------------------|-------------|---------------|---------------------------------------|------------------|
| QЭ            | T~T' =                  | <b>⇒</b> ∃л | e CTT)        | غ نه و C(T') ,                        | (T,n)~ (T',n')   |
|               |                         |             |               |                                       |                  |
|               | ` <u>—</u> " <u>oui</u> |             |               |                                       |                  |
|               | =>" R(♦(±               |             | c 16 (-1)     | φ ( a c=\)                            |                  |
|               | d'où.                   | CL7 ) = C   | C Ψ ( ( ) ) : | <b>=</b> φ(c(τ)).                     |                  |
| Q. <b>%</b> . | Gn colcule              | CCT) et     | C(T')         | en G(a).                              |                  |
|               | Soit x e                |             |               |                                       |                  |
|               | Pour tout oc            | 'εC(T') ,   | Lester (      | $(\tau, \infty) \sim (\tau', \infty)$ | )                |
|               | Bemplexité e            | m G(a)      | 9 A(m) = (    | ο (((n)+ n)                           |                  |
|               | Complexio               | 4. O C k .  | - 4 - 13      |                                       |                  |
|               |                         |             |               |                                       |                  |
|               |                         |             |               |                                       |                  |
|               |                         |             |               |                                       |                  |
|               |                         |             |               |                                       |                  |
|               |                         |             |               |                                       |                  |
|               |                         |             |               |                                       |                  |
|               |                         |             |               |                                       |                  |
|               |                         |             |               |                                       |                  |
|               |                         |             |               |                                       |                  |
|               |                         |             |               |                                       |                  |
|               |                         |             |               |                                       |                  |
|               |                         |             |               |                                       |                  |
|               |                         |             |               |                                       |                  |
|               |                         |             |               |                                       |                  |
|               |                         |             |               |                                       |                  |
|               |                         |             |               |                                       |                  |
|               |                         |             |               |                                       |                  |
|               |                         |             |               |                                       |                  |
|               |                         |             |               |                                       |                  |
|               |                         |             |               |                                       |                  |
|               |                         |             |               |                                       |                  |