Randomised Decision Forests for Regression

Tae-Kyun (T-K) Kim Senior Lecturer https://labicvl.github.io/

References:

A. Criminisi et al., Decision forests, an unified framework, Foundations and Trends in Computer Graphics and Vision, 7:2-3. Breiman L, Random Forests. Machine Learning, 45 (1), pp 5-32, 2001.

Regression forests

- We discuss the use of random decision forests for the probabilistic estimation of continuous variables.
- Regression forests are used for the nonlinear regression of dependent variables given independent input.
- Both input and output may be multi-dimensional.
- The output can be a point estimate or a full probability density function.
- Regression forests are less popular than their classification counterpart.
- The main difference is that the output label to be associated with an input data is continuous.
- Therefore, the training labels are continuous.
- Consequently the objective function has to be adapted appropriately.
- Regression forests share many of the advantages of classification forests such as <u>efficiency</u> and <u>flexibility</u>.

Nonlinear regression

- Given a set of noisy input data and associated continuous measurements, least squares techniques (closely related to principal component analysis) can be used to fit a linear regressor which minimizes some error computed over all training points.
- Under this model, given a new test input the corresponding output can be efficiently estimated.
- The limitation of this model is in its linear nature, when we know that most natural phenomena have nonlinear behaviour.
- Another well known issue with linear regression techniques is their sensitivity to input noise.
- In geometric computer vision, a popular technique for achieving robust regression via randomization is RANSAC. select few rehable in-layer does points for modelling.

split in recursions

Notations

```
Input data vector: \mathbf{v} = (x_1, \dots, x_d) \in \mathbb{R}^d
```

Output/label: $\mathbf{y} \in \mathcal{Y} \subset \mathbb{R}^n$

Subset of training points reaching node j: S_j

Subset of points going to the left child node: $\mathcal{S}_{i}^{\mathrm{L}}$

Subset of points going to the right child node: $\mathcal{S}_j^{\mathtt{R}}$, s.t. $\mathcal{S}_j = \mathcal{S}_j^{\mathtt{L}} \cup \mathcal{S}_j^{\mathtt{R}}$

Node test parameters: $\theta \in \mathcal{T}$

Node weak learner: $h(\mathbf{v}, \boldsymbol{\theta}_j) \in \{\text{true}, \text{false}\}\$

Node objective function: $I = I(S_j, \theta)$

Stopping criteria: e.g. max tree depth = D

Leaf predictor model: $p(y|\mathbf{v})$

Forest size i.e. number of trees: T

Ensemble model: $p(y|\mathbf{v}) = \frac{1}{T} \sum_{t}^{T} p_t(y|\mathbf{v})$

Decision forest model for regression

- The regression task: Given a labelled training set learn a general mapping which associates previously unseen independent test data with their correct continuous prediction.
- Like classification the regression task is inductive, with the main difference being the continuous nature of the output.
- In general, a training point is denoted as a labelled pair (v,y). A previously unseen test input (unavailable during training) is shown as a light gray circle on the x axis.

 Legression: Supervised (parring (given training sets)

Decision forest model for regression

- Formally, given a multi-variate input v we wish to associate a continuous multi-variate label $\mathbf{y} \in \mathcal{Y} \subset \mathbb{R}^n$
- More generally, we wish to estimate the probability density function p(y|v).
- As usual the input is represented as a multi-dimensional feature response vector $\mathbf{v}=(x_1,\cdots,x_d)\in\mathbb{R}^d$
- A regression forest is a collection of randomly trained regression trees.
- Like in classification it can be shown that a forest generalizes better than a single over-trained tree. Single tree: overfitting

Decision forest model for regression

 A regression tree splits a complex nonlinear regression problem into a set of smaller problems which can be more easily handled by simpler models (e.g., linear ones).

The prediction model

- The first job of a decision tree is to decide which branch to direct the incoming data to.
- When the data reaches a terminal node then that leaf needs to make a prediction.
- The actual form of the prediction depends on the prediction model.
- In classification we have used the pre-stored empirical class posterior as model.
- In regression forests we have a few alternatives.

The prediction model

- For instance we could use a polynomial function of a subspace of the input
 v.
- In the low dimensional example a generic polynomial model is given below.
- This simple model captures both the linear and constant models.

Examples of leaf (predictor) models

Predictor model: constant

$$y = const$$

Predictor model: polynomial (/ thear/modises)

$$y=\sum_{i=0}^n w_i x^i$$
 (note: linear for n=1, constant for n=0)

The prediction model

- In this we are interested in output confidence as well as its actual value.
- Thus for prediction we can use a probability density function over the continuous variable y.
- So, given the t-th tree in a forest and an input point v, the associated leaf output takes the form p_t(y/v).
- In the low-dimensional example, we assume an underlying linear model and each leaf yields the conditional p(y|x).

The ensemble model

Like in classification, the forest output is the average of all tree outputs

$$p(\mathbf{y}|\mathbf{v}) = \frac{1}{T} \sum_{\mathbf{var}}^{T} p_{\mathbf{v}}(\mathbf{y}|\mathbf{v}) \quad \text{input} \quad$$

- Randomness model:
 - As in classification here we use a randomized node optimization model.
 - Therefore, the amount of randomness is controlled during training by the parameter $\rho = |\mathcal{T}_i|$.
 - The random subsets of split parameters T_j can be generated on the fly when training the j-th node.

The training objective function

- Forest training happens by optimizing an energy over a training set S_0 of data and associated continuous labels.
- Training a split node j happens by optimizing the parameters of its weak learner:

$$oldsymbol{ heta}_j^* = rg \max_{oldsymbol{ heta}_j \in \mathcal{T}_j} I_j$$

- Now, the main difference between classification and regression forest is in the form of the objective function I.
- We employ a continuous formulation of information gain.

Imperial College

London Information gain on continuous distribution

- Entropy and information gain can also be defined for continuous-valued labels and distributions.
- The definition of the information gain remains the same but this time, instead of using the Shannon entropy, the differential entropy is used

$$H(S) = -\int_{y \in \mathcal{Y}} p(y) \log(p(y)) dy$$

Here *y* is a continuous label and *p* is the probability density function estimated from the training points in the set *S*.

- From a practical point of view, in the discrete case, the distribution p(c) was defined as the empirical distribution (i.e. class histogram) computed from the training set.
- Similarly in the continuous distribution p(y) can be defined either using parametric distributions or non-parametric methods.

Imperial College

London Information gain on continuous distribution

- One of the most popular choice in various applications is to use Gaussianbased models to approximate the density p(y) due to their simplicity.

where
$$\Lambda(S)$$
 is the data covariance matrix in differentiation: avoid high complexity in differentiations

- A toy example in the next slide illustrates the role of the continuous information gain in training.
- /->Information gain for discrete categorical distribution is for classification, continuous distribution of y for regression, continuous distribution of x for clustering.
- This time we wish to cluster similar points according to their features (again, depicted as the coordinates of a 2D space).
- Given an arbitrary input data point we wish the tree to predict its associated cluster.

Imperial College

London Atoy example, Information gain on continuous, parametric densities

Imperial College LorAltov example.

LorAlton example, Information gain on continuous, parametric densities

- Fitting a Gaussian to the entire initial set S produces the density shown in blue, which has a high differential entropy.
- Splitting the data horizontally produces two largely overlapping and slightly smaller Gaussians (in red and green).
- The large overlap indicates a suboptimal separation and is associated with a relatively low information gain (I = 1.08).
- Splitting the data points vertically yields better separation, with peakier Gaussians and a correspondingly higher value of information gain (I = 2.43).

The training objective function

The following definition of information gain is used:

$$I_j = \sum_{\mathbf{v} \in \mathcal{S}_j} \log(|\Lambda_{\mathbf{y}}(\mathbf{v})|) - \sum_{i \in \{\mathtt{L},\mathtt{R}\}} \left(\sum_{\mathbf{v} \in \mathcal{S}_j^i} \log(|\Lambda_{\mathbf{y}}(\mathbf{v})|) \right) \\ \text{Node test params} \\ \boldsymbol{\theta} \in \mathcal{T}_j \quad \mathcal{S}_j^\mathtt{L}$$

Where Λ_y the covariance matrix computed from probabilistic fitting.

The training objective function

The error or fit objective function for single-variate output y is:

$$I(\mathcal{S}_{j},\theta) = H(\mathcal{S}_{j}) - \sum_{i \in \{L,R\}} \frac{|\mathcal{S}_{j}^{i}|}{|\mathcal{S}_{j}|} H(\mathcal{S}_{j}^{i})$$

$$H(\mathcal{S}) = \frac{1}{|\mathcal{S}|} \sum_{x \in \mathcal{S}} \int_{y} p(y|x) \log p(y|x) \, dy \qquad p(y|x) \sim N\left(y; \overline{y}, \sigma_{y}^{2}(x)\right)$$

$$H(\mathcal{S}) = \frac{1}{|\mathcal{S}|} \sum_{x \in \mathcal{S}} \frac{1}{2} \log\left((2\pi e)^{2} \sigma_{y}^{2}(x)\right)$$

$$I = \sum_{(x,y) \in \mathcal{S}_{j}} \log \left(\sigma_{y}(x)\right) - \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x)\right)\right) + \sum_{i \in \{L,R\}} \left(\sum_{(x,y) \in \mathcal{S}_{j}^{i}} \log \left(\sigma_{y}(x$$

The weak learner model

 As usual, the data arriving at a split node j is separated into its left or right children according to a binary weak learner stored in an internal node, of the following general form:

$$h(\mathbf{v},\theta_i) = \{0 \text{ or } 1\}$$

where 0 and 1 can be interpreted as "false" and "true" respectively.

Like in classification here we consider three types of weak learners: (i) axis-aligned, (ii) oriented hyperplane, (iii) quadratic (for an illustration on 2D→1D regression).

Effect of the forest size

- A forest of shallow trees (D = 2) and varying size T is trained.
- We use axis-aligned weak learners, and probabilistic linear predictor models.
- As the number of trees increases both the prediction mean and its uncertainty become smoother.

Effect of the tree depth

- The effect of varying the maximum allowed tree depth D on the same training set is shown.
- A regression forest with D = 1 (top row in figure) corresponds to conventional linear regression (with additional confidence estimation).
- In this case the training data is more complex than a single line and thus such a degenerate forest under-fits.
- In contrast, a forest of depth D = 5 (bottom row in figure) yields over-fitting. This is highlighted in the figure by the high frequency variations in the prediction confidence and the mean of y(x).

EE462/EE9CS728/EE9SO25

Effect of the tree depth

