1. Feature Transformation

Transform categorical values into numerical values (discrete)

2. Exploratory data analysis of different factors of the dataset.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9578 entries, 0 to 9577
Data columns (total 20 columns):
   Column
                              Non-Null Count Dtype
0
   credit.policy
                             9578 non-null int64
1
   int.rate
                             9578 non-null float64
    installment
                             9578 non-null float64
   log.annual.inc
                             9578 non-null float64
 4
   dti
                             9578 non-null
                                            float64
 5
    fico
                             9578 non-null
                                            int64
 6
   days.with.cr.line
                            9578 non-null
                                            float64
 7
   revol.bal
                            9578 non-null int64
 8
   revol.util
                            9578 non-null
                                            float64
9
   inq.last.6mths
                            9578 non-null int64
10 delinq.2yrs
                            9578 non-null int64
11 pub.rec
                            9578 non-null int64
12 not.fully.paid
                            9578 non-null
                                            int64
13purpose_all_other9578 non-null uint814purpose_credit_card9578 non-null uint8
15 purpose_debt_consolidation 9578 non-null uint8
16 purpose_educational
                         9578 non-null uint8
17 purpose_home_improvement 9578 non-null uint8
18 purpose_major_purchase 9578 non-null uint8
                              9578 non-null uint8
19 purpose_small_business
dtypes: float64(6), int64(7), uint8(7)
memory usage: 1.0 MB
```

```
df.shape
```

(9578, 20)

]: df.describe().T]: count mean std min 25% 50% 75% max

	count	mean	std	min	25%	50%	75%	max
credit.policy	9578.0	0.804970	0.396245	0.000000	1.000000	1.000000	1.000000	1.000000e+00
int.rate	9578.0	0.122640	0.026847	0.060000	0.103900	0.122100	0.140700	2.164000e-01
installment	9578.0	319.089413	207.071301	15.670000	163.770000	268.950000	432.762500	9.401400e+02
log.annual.inc	9578.0	10.932117	0.614813	7.547502	10.558414	10.928884	11.291293	1.452835e+01
dti	9578.0	12.606679	6.883970	0.000000	7.212500	12.665000	17.950000	2.996000e+01
fico	9578.0	710.846314	37.970537	612.000000	682.000000	707.000000	737.000000	8.270000e+02
days.with.cr.line	9578.0	4560.767197	2496.930377	178.958333	2820.000000	4139.958333	5730.000000	1.763996e+04
revol.bal	9578.0	16913.963876	33756.189557	0.000000	3187.000000	8596.000000	18249.500000	1.207359e+06
revol.util	9578.0	46.799236	29.014417	0.000000	22.600000	46.300000	70.900000	1.190000e+02
inq.last.6mths	9578.0	1.577469	2.200245	0.000000	0.000000	1.000000	2.000000	3.300000e+01
delinq.2yrs	9578.0	0.163708	0.546215	0.000000	0.000000	0.000000	0.000000	1.300000e+01
pub.rec	9578.0	0.062122	0.262126	0.000000	0.000000	0.000000	0.000000	5.000000e+00
not.fully.paid	9578.0	0.160054	0.366676	0.000000	0.000000	0.000000	0.000000	1.000000e+00
purpose_all_other	9578.0	0.243370	0.429139	0.000000	0.000000	0.000000	0.000000	1.000000e+00
purpose_credit_card	9578.0	0.131760	0.338248	0.000000	0.000000	0.000000	0.000000	1.000000e+00
purpose_debt_consolidation	9578.0	0.413134	0.492422	0.000000	0.000000	0.000000	1.000000	1.000000e+00

```
df['not.fully.paid'].value_counts()
```

80451533

Name: not.fully.paid, dtype: int64

```
: plt.figure(figsize=(5,3))
sns.countplot(x='not.fully.paid',data=df)
```

: <Axes: xlabel='not.fully.paid', ylabel='count'>


```
#handling imbalanced dataset - using resample

not_fully_paid_0 = df[df['not.fully.paid'] == 0]
not_fully_paid_1 = df[df['not.fully.paid'] == 1]

print('not_fully_paid_0', not_fully_paid_0.shape)
print('not_fully_paid_1', not_fully_paid_1.shape)
```

not_fully_paid_0 (8045, 20)
not_fully_paid_1 (1533, 20)

#imbalanced data handled
df['not.fully.paid'].value_counts()

9 8045 1 8045

Name: not.fully.paid, dtype: int64


```
Outlier caps for credit.policy
  --95p: 1.0 / 0 values exceed that
  --3sd: 2.1 / 0 values exceed that
  --99p: 1.0 / 0 values exceed that
Outlier caps for int.rate
  --95p: 0.2 / 805 values exceed that --3sd: 0.2 / 36 values exceed that
  --99p: 0.2 / 158 values exceed that
Outlier caps for installment
  --95p: 807.6 / 801 values exceed that
  --3sd: 983.4 / 0 values exceed that
  --99p: 878.9 / 157 values exceed that
Outlier caps for log.annual.inc
  --95p: 11.9 / 800 values exceed that
  --3sd: 12.8 / 168 values exceed that
  --99p: 12.6 / 156 values exceed that
Outlier caps for dti
  --95p: 23.8 / 800 values exceed that
  --3sd: 33.5 / 0 values exceed that
  --99p: 26.8 / 160 values exceed that
Outlier caps for fico
  --95p: 777.0 / 672 values exceed that
```


3. Additional Feature Engineering

 You will check the correlation between features and will drop those features which have a strong correlation

	credit.policy	int.rate	installment	log.annual.inc	dti	fico	days.with.cr.line	revol.bal	revol.util	inq.last.6mths	delin
credit.policy	1.000000	-0.282765	0.053693	0.019055	-0.072089	0.367873	0.086316	-0.096409	-0.084485	-0.584724	-0.0
int.rate	-0.282765	1.000000	0.259678	0.077954	0.197713	-0.702432	-0.111021	0.105973	0.427965	0.197232	0.1
installment	0.053693	0.259678	1.000000	0.477643	0.027296	0.112259	0.196378	0.327932	0.057627	-0.003825	0.0
log.annual.inc	0.019055	0.077954	0.477643	1.000000	-0.030829	0.105569	0.373146	0.496275	0.083805	0.031435	0.0
dti	-0.072089	0.197713	0.027296	-0.030829	1.000000	-0.208458	0.101486	0.294946	0.318520	0.017553	-0.0
fico	0.367873	-0.702432	0.112259	0.105569	-0.208458	1.000000	0.249862	-0.016108	-0.492924	-0.187073	-0.2
days.with.cr.line	0.086316	-0.111021	0.196378	0.373146	0.101486	0.249862	1.000000	0.342745	0.023656	-0.013847	0.0
revol.bal	-0.096409	0.105973	0.327932	0.496275	0.294946	-0.016108	0.342745	1.000000	0.346329	-0.005507	-0.0
revol.util	-0.084485	0.427965	0.057627	0.083805	0.318520	-0.492924	0.023656	0.346329	1.000000	-0.040142	-0.0
inq.last.6mths	-0.584724	0.197232	-0.003825	0.031435	0.017553	-0.187073	-0.013847	-0.005507	-0.040142	1.000000	-0.0
delinq.2yrs	-0.047963	0.164196	0.003193	0.015278	-0.021818	-0.229699	0.081987	-0.058498	-0.030781	-0.000095	1.0
pub.rec	-0.064586	0.102742	-0.028703	0.010706	0.030215	-0.162760	0.083195	-0.049377	0.080320	0.102095	-0.0
not.fully.paid	-0.193486	0.217160	0.078110	-0.044045	0.041874	-0.209217	-0.034872	0.054858	0.103689	0.190637	0.0
purpose_all_other	-0.025119	-0.120703	-0.205774	-0.084775	-0.124782	0.054284	-0.077735	-0.119198	-0.120135	0.009150	0.0
purpose_credit_card	0.012249	-0.043799	-0.000311	0.076602	0.078221	-0.007528	0.047579	0.115706	0.089308	-0.044536	-0.0
purpose_debt_consolidation	0.024277	0.089997	0.116552	-0.047857	0.181831	-0.140818	0.001324	0.047707	0.204263	-0.058960	-0.0

- 0.8 - 0.6 - 0.4 - 0.2 - 0.0 - -0.2 - -0.4

4. Modeling

- After applying EDA and feature engineering, you are now ready to build the predictive models
- In this part, you will create a deep learning model using Keras with Tensorflow backend

Model: "sequential_2"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 200)	4000
dropout (Dropout)	(None, 200)	0
dense_1 (Dense)	(None, 200)	40200
dropout_1 (Dropout)	(None, 200)	0
dense_2 (Dense)	(None, 200)	40200
dropout_2 (Dropout)	(None, 200)	0
dense_3 (Dense)	(None, 1)	201

Total params: 84601 (330.47 KB)
Trainable params: 84601 (330.47 KB)
Non-trainable params: 0 (0.00 Byte)

```
;2]: history = model.fit(X_train_scale,y_train,
      validation_data=(X_val_scale, y_val),epochs=100,verbose=1)
 Epoch 95/100
 Epoch 96/100
 385/385 [====
     0.8840
 Epoch 97/100
 0.8873
 Epoch 98/100
 385/385 [====
     0.8808
 Epoch 99/100
 0.8813
 Epoch 100/100
 385/385 [====
     0.8942
```



```
#training score
model.evaluate(X_train_scale,y_train)
[0.0628020241856575, 0.9881377816200256]
#validatn score
model.evaluate(X_val_scale,y_val)
68/68 [============] - 0s 2ms/step - loss: 0.3008 - accuracy: 0.8942
[0.3008177578449249, 0.8941555619239807]
#testing score
model.evaluate(X_test_scale,y_test)
51/51 [============= ] - 0s 2ms/step - loss: 0.3353 - accuracy: 0.8931
[0.33529841899871826, 0.8931013345718384]
predictions =(model.predict(X_test_scale)>0.5)
predictions2 =(model.predict(X_val_scale)>0.5)
51/51 [======== ] - 0s 2ms/step
68/68 [========= ] - 0s 2ms/step
accuracy_score(y_test, predictions)
0.8931013051584835
accuracy_score(y_val,predictions2)
0.8941555453290382
```

print(classification_report(y_test, predictions))

	precision	recall	f1-score	support
0	0.96	0.82	0.88	804
1	0.84	0.97	0.90	805
accuracy			0.89	1609
macro avg	0.90	0.89	0.89	1609
weighted avg	0.90	0.89	0.89	1609

print(classification_report(y_val, predictions2))

	precision	recall	f1-score	support
0	0.95	0.83	0.89	1087
1	0.85	0.96	0.90	1086
accuracy			0.89	2173
macro avg	0.90	0.89	0.89	2173
weighted avg	0.90	0.89	0.89	2173