
Sequence Listing could not be accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2011; month=6; day=23; hr=8; min=33; sec=51; ms=192;]

Reviewer Comments:

<210> 1

<211> 522

<212> PRT

<213> Saccharomyces cerevisiae protein disulphide isomerase precursor

The above "<213>" response is invalid, per 1.823 of the Sequence Rules. The only valid "<213>" responses are: the Genus species (just the Genus species) of the organism, "Artificial Sequence", or "Unknown". If either "Artificial Sequence" or if "Unknown", a mandatory explanation in a "<220>-<223>" section is required; please clearly indicate the source of the genetic material. This type of error also appears in subsequent sequences.

<210> 3

<211> 8

<212> PRT

<213> Saccharomyces cerevisiae alternative protein disulphide isomerase amino acids 506-513

<400> 3

Glu Ala Asp Ala Glu Ala Glu Ala

1 5

Regarding the above "<213>" response: not only is it invalid, but the line exceeds the Sequence Rules' required 72-character line limit. This error occurs throughout the sequence listing. Please ensure that all lines in the sequence listing do not exceed 72 characters.

To correct the sequence listing errors noted in this report - The

recommended method for correction of errors is to access the sequence listing working file using the software program in which the listing was originally prepared, e.g., the project file in PatentIn, make any necessary corrections within that program, then generate a new sequence listing file. Use of a word processing program to correct errors directly in the original sequence listing file is strongly discouraged, since such programs often introduce unintended changes to the sequence listing, rendering the listing unacceptable. When the working file or original program is not available for correction, then use of a common or plain text-only editor, such as NotePad, to edit the original sequence listing file may suffice.

Validated By CRFValidator v 1.0.3

Application No: 10584424 Version No: 1.0

Input Set:

Output Set:

Started: 2011-06-14 14:13:45.214

Finished: 2011-06-14 14:13:48.821

Elapsed: 0 hr(s) 0 min(s) 3 sec(s) 607 ms

Total Warnings: 79

Total Errors: 0

No. of SeqIDs Defined: 80

Actual SeqID Count: 80

Err	or code	Error Description
W	402	Undefined organism found in <213> in SEQ ID (1)
W	402	Undefined organism found in <213> in SEQ ID (2)
W	402	Undefined organism found in <213> in SEQ ID (3)
W	402	Undefined organism found in <213> in SEQ ID (4)
W	402	Undefined organism found in <213> in SEQ ID (5)
W	402	Undefined organism found in <213> in SEQ ID (6)
W	402	Undefined organism found in <213> in SEQ ID (7)
W	402	Undefined organism found in <213> in SEQ ID (8)
W	402	Undefined organism found in <213> in SEQ ID (9)
W	213	Artificial or Unknown found in <213> in SEQ ID (10)
W	213	Artificial or Unknown found in <213> in SEQ ID (11)
W	213	Artificial or Unknown found in <213> in SEQ ID (12)
W	213	Artificial or Unknown found in <213> in SEQ ID (13)
W	213	Artificial or Unknown found in <213> in SEQ ID (14)
W	213	Artificial or Unknown found in <213> in SEQ ID (15)
W	213	Artificial or Unknown found in <213> in SEQ ID (16)
W	213	Artificial or Unknown found in <213> in SEQ ID (17)
W	213	Artificial or Unknown found in <213> in SEQ ID (18)
W	213	Artificial or Unknown found in <213> in SEQ ID (19)
W	213	Artificial or Unknown found in <213> in SEQ ID (20)

Input Set:

Output Set:

Started: 2011-06-14 14:13:45.214 **Finished:** 2011-06-14 14:13:48.821

Elapsed: 0 hr(s) 0 min(s) 3 sec(s) 607 ms

Total Warnings: 79
Total Errors: 0
No. of SeqIDs Defined: 80

Actual SeqID Count: 80

Err	or code	Error Description
W	213	Artificial or Unknown found in <213> in SEQ ID (21)
W	213	Artificial or Unknown found in <213> in SEQ ID (22)
W	213	Artificial or Unknown found in <213> in SEQ ID (23)
W	213	Artificial or Unknown found in <213> in SEQ ID (24)
W	213	Artificial or Unknown found in <213> in SEQ ID (25)
W	213	Artificial or Unknown found in <213> in SEQ ID (26)
W	213	Artificial or Unknown found in <213> in SEQ ID (27)
W	213	Artificial or Unknown found in <213> in SEQ ID (28)
W	213	Artificial or Unknown found in <213> in SEQ ID (29) This error has occured more than 20 times, will not be displayed
W	402	Undefined organism found in <213> in SEQ ID (78)
W	402	Undefined organism found in <213> in SEQ ID (79)

SEQUENCE LISTING

<110> Delta Biotechnology Limited Sleep, Darrell Shuttleworth, Gillian Finnis, Christopher John Arthur <120> Gene Expression Technique <130> 11075.204-US <140> 10584424 <141> 2011-06-14 <150> PCT/GB2004/005462 <151> 2004-12-23 <150> GB 0329681.1 <151> 2003-12-23 <160> 80 <170> PatentIn version 3.5 <210> 1 <211> 522 <212> PRT <213> Saccharomyces cerevisiae protein disulphide isomerase precursor <400> 1 Met Lys Phe Ser Ala Gly Ala Val Leu Ser Trp Ser Ser Leu Leu Leu 10 Ala Ser Ser Val Phe Ala Gln Glu Ala Val Ala Pro Glu Asp Ser 25 20 30 Ala Val Val Lys Leu Ala Thr Asp Ser Phe Asn Glu Tyr Ile Gln Ser 35 40 45 His Asp Leu Val Leu Ala Glu Phe Phe Ala Pro Trp Cys Gly His Cys 50 55 Lys Asn Met Ala Pro Glu Tyr Val Lys Ala Ala Glu Thr Leu Val Glu 65 70 75 Lys Asn Ile Thr Leu Ala Gln Ile Asp Cys Thr Glu Asn Gln Asp Leu 85 90

Cys Met Glu His Asn Ile Pro Gly Phe Pro Ser Leu Lys Ile Phe Lys

105

110

100

Asn	Ser	Asp 115	Val	Asn	Asn	Ser	Ile 120	Asp	Tyr	Glu	Gly	Pro 125	Arg	Thr	Ala
Glu	Ala 130	Ile	Val	Gln	Phe	Met 135	Ile	Lys	Gln	Ser	Gln 140	Pro	Ala	Val	Ala
Val 145	Val	Ala	Asp	Leu	Pro 150	Ala	Tyr	Leu	Ala	Asn 155	Glu	Thr	Phe	Val	Thr 160
Pro	Val	Ile	Val	Gln 165	Ser	Gly	Lys	Ile	Asp 170	Ala	Asp	Phe	Asn	Ala 175	Thr
Phe	Tyr	Ser	Met 180	Ala	Asn	Lys	His	Phe 185	Asn	Asp	Tyr	Asp	Phe 190	Val	Ser
Ala	Glu	Asn 195	Ala	Asp	Asp	Asp	Phe 200	Lys	Leu	Ser	Ile	Tyr 205	Leu	Pro	Ser
Ala	Met 210	Asp	Glu	Pro	Val	Val 215	Tyr	Asn	Gly	Lys	Lys 220	Ala	Asp	Ile	Ala
Asp 225	Ala	Asp	Val	Phe	Glu 230	Lys	Trp	Leu	Gln	Val 235	Glu	Ala	Leu	Pro	Tyr 240
Phe	Gly	Glu	Ile	Asp 245	Gly	Ser	Val	Phe	Ala 250	Gln	Tyr	Val	Glu	Ser 255	Gly
Leu	Pro	Leu	Gly 260	Tyr	Leu	Phe	Tyr	Asn 265	Asp	Glu	Glu	Glu	Leu 270	Glu	Glu
Tyr	Lys	Pro 275	Leu	Phe	Thr	Glu	Leu 280	Ala	Lys	Lys	Asn	Arg 285	Gly	Leu	Met
Asn	Phe 290	Val	Ser	Ile	Asp	Ala 295	Arg	Lys	Phe	Gly	Arg 300	His	Ala	Gly	Asn
Leu 305	Asn	Met	Lys	Glu	Gln 310	Phe	Pro	Leu	Phe	Ala 315	Ile	His	Asp	Met	Thr 320
Glu	Asp	Leu	Lys	Tyr	Gly	Leu	Pro	Gln	Leu	Ser	Glu	Glu	Ala	Phe	Asp

Glu	Leu	Ser	Asp 340	Lys	Ile	Val	Leu	Glu 345	Ser	Lys	Ala	Ile	Glu 350	Ser	Leu
Val	Lys	Asp 355	Phe	Leu	Lys	Gly	Asp 360	Ala	Ser	Pro	Ile	Val 365	Lys	Ser	Gln
Glu	Ile 370	Phe	Glu	Asn	Gln	Asp 375	Ser	Ser	Val	Phe	Gln 380	Leu	Val	Gly	Lys
Asn 385	His	Asp	Glu	Ile	Val 390	Asn	Asp	Pro	Lys	Lys 395	Asp	Val	Leu	Val	Leu 400
Tyr	Tyr	Ala	Pro	Trp 405	Суз	Gly	His	Суз	Lys 410	Arg	Leu	Ala	Pro	Thr 415	Tyr
Gln	Glu	Leu	Ala 420	Asp	Thr	Tyr	Ala	Asn 425	Ala	Thr	Ser	Asp	Val 430	Leu	Ile
Ala	Lys	Leu 435	Asp	His	Thr	Glu	Asn 440	Asp	Val	Arg	Gly	Val 445	Val	Ile	Glu
Gly	Tyr 450	Pro	Thr	Ile	Val	Leu 455	Tyr	Pro	Gly	Gly	Lys 460	Lys	Ser	Glu	Ser
Val 465	Val	Tyr	Gln	Gly	Ser 470	Arg	Ser	Leu	Asp	Ser 475	Leu	Phe	Asp	Phe	Ile 480
Lys	Glu	Asn	Gly	His 485	Phe	Asp	Val	Asp	Gly 490	Lys	Ala	Leu	Tyr	Glu 495	Glu
Ala	Gln	Glu	Lys 500	Ala	Ala	Glu	Glu	Ala 505	Asp	Ala	Asp	Ala	Glu 510	Leu	Ala
Asp	Glu	Glu 515	Asp	Ala	Ile	His	Asp 520	Glu	Leu						
<210 <211 <212 <213	L> 5 2> E	2 530 PRT Saccl	naror	myce:	s ce:	revi:	siae	alte	ernat	cive	prot	cein	disı	ılph:	ide isomerase

Met Lys Phe Ser Ala Gly Ala Val Leu Ser Trp Ser Ser Leu Leu Leu

<400> 2

Ala Ser Ser Val Phe Ala Gln Gln Glu Ala Val Ala Pro Glu Asp Ser 20 25 30

Ala Val Val Lys Leu Ala Thr Asp Ser Phe Asn Glu Tyr Ile Gln Ser 35 40 45

His Asp Leu Val Leu Ala Glu Phe Phe Ala Pro Trp Cys Gly His Cys 50 55 60

Lys Asn Met Ala Pro Glu Tyr Val Lys Ala Ala Glu Thr Leu Val Glu 65 70 75 80

Lys Asn Ile Thr Leu Ala Gln Ile Asp Cys Thr Glu Asn Gln Asp Leu 85 90 95

Cys Met Glu His Asn Ile Pro Gly Phe Pro Ser Leu Lys Ile Phe Lys 100 105 110

Asn Arg Asp Val Asn Asn Ser Ile Asp Tyr Glu Gly Pro Arg Thr Ala 115 120 125

Glu Ala Ile Val Gln Phe Met Ile Lys Gln Ser Gln Pro Ala Val Ala 130 $$135\$

Val Val Ala Asp Leu Pro Ala Tyr Leu Ala Asn Glu Thr Phe Val Thr 145 150 155 160

Pro Val Ile Val Gln Ser Gly Lys Ile Asp Ala Asp Phe Asn Ala Thr 165 170 175

Phe Tyr Ser Met Ala Asn Lys His Phe Asn Asp Tyr Asp Phe Val Ser 180 185 190

Ala Glu Asn Ala Asp Asp Asp Phe Lys Leu Ser Ile Tyr Leu Pro Ser 195 200 205

Ala Met Asp Glu Pro Val Val Tyr Asn Gly Lys Lys Ala Asp Ile Ala 210 215 220

Asp Ala Asp Val Phe Glu Lys Trp Leu Gln Val Glu Ala Leu Pro Tyr 225 230 235 240

Phe	Gly	Glu	Ile	Asp 245	Gly	Ser	Val	Phe	Ala 250	Gln	Tyr	Val	Glu	Ser 255	Gly
Leu	Pro	Leu	Gly 260	Tyr	Leu	Phe	Tyr	Asn 265	Asp	Glu	Glu	Glu	Leu 270	Glu	Glu
Tyr	Lys	Pro 275	Leu	Phe	Thr	Glu	Leu 280	Ala	Lys	Lys	Asn	Arg 285	Gly	Leu	Met
Asn	Phe 290	Val	Ser	Ile	Asp	Ala 295	Arg	Lys	Phe	Gly	Arg 300	His	Ala	Gly	Asn
Leu 305	Asn	Met	Lys	Glu	Gln 310	Phe	Pro	Leu	Phe	Ala 315	Ile	His	Asp	Met	Thr 320
Glu	Asp	Leu	Lys	Tyr 325	Gly	Leu	Pro	Gln	Leu 330	Ser	Glu	Glu	Ala	Phe 335	Asp
Glu	Leu	Ser	Asp 340	Lys	Ile	Val	Leu	Glu 345	Ser	Lys	Ala	Ile	Glu 350	Ser	Leu
Val	Lys	Asp 355	Phe	Leu	Lys	Gly	Asp 360	Ala	Ser	Pro	Ile	Val 365	Lys	Ser	Gln
Glu	Ile 370	Phe	Glu	Asn	Gln	Asp 375	Ser	Ser	Val	Phe	Gln 380	Leu	Val	Gly	Lys
Asn 385	His	Asp	Glu	Ile	Val 390	Asn	Asp	Pro	Lys	Lys 395	Asp	Val	Leu	Val	Leu 400
Tyr	Tyr	Ala	Pro	Trp 405	Суз	Gly	His	Суз	Lys 410	Arg	Leu	Ala	Pro	Thr 415	Tyr
Gln	Glu	Leu	Ala 420	Asp	Thr	Tyr	Ala	Asn 425	Ala	Thr	Ser	Asp	Val 430	Leu	Ile
Ala	Lys	Leu 435	Asp	His	Thr	Glu	Asn 440	Asp	Val	Arg	Gly	Val 445	Val	Ile	Glu
Gly	Tyr 450	Pro	Thr	Ile	Val	Leu 455	Tyr	Pro	Gly	Gly	Lys 460	Lys	Ser	Glu	Ser

```
Val Val Tyr Gln Gly Ser Arg Ser Leu Asp Ser Leu Phe Asp Phe Ile
465
               470
                                      480
Lys Glu Asn Gly His Phe Asp Val Asp Gly Lys Ala Leu Tyr Glu Glu
           485 490 495
Ala Glu Glu Lys Ala Ala Glu Glu Ala Glu Ala Asp Ala Glu Ala Glu
        500 505 510
Ala Asp Ala Asp Ala Glu Leu Ala Asp Glu Glu Asp Ala Ile His Asp
          520 525
  515
Glu Leu
 530
<210> 3
<211> 8
<212> PRT
<213> Saccharomyces cerevisiae alternative protein disulphide isomerase amino acids 506-513
<400> 3
Glu Ala Asp Ala Glu Ala Glu Ala
<210> 4
<211> 642
<212> PRT
<213> Saccharomyces cerevisiae SSA1 protein
<400> 4
Met Ser Lys Ala Val Gly Ile Asp Leu Gly Thr Thr Tyr Ser Cys Val
1 5 10 15
Ala His Phe Ala Asn Asp Arg Val Asp Ile Ile Ala Asn Asp Gln Gly
       20
                      25
Asn Arg Thr Thr Pro Ser Phe Val Ala Phe Thr Asp Thr Glu Arg Leu
   35 40 45
Ile Gly Asp Ala Ala Lys Asn Gln Ala Ala Met Asn Pro Ser Asn Thr
   50
            55
```

Val Phe Asp Ala Lys Arg Leu Ile Gly Arg Asn Phe Asn Asp Pro Glu

75

70

65

Val Gln Ala	Asp Met 85	Lys His	Phe Pro	Phe Lys 90	Leu Ile	_	/al Asp 05
Gly Lys Pro	Gln Ile 100	Gln Val	Glu Phe		Glu Thr	Lys A	Asn Phe
Thr Pro Glu		Ser Ser	Met Val	Leu Gly	Lys Met	_	Glu Thr
Ala Glu Ser 130	Tyr Leu	Gly Ala 135	Lys Val	Asn Asp	Ala Val	Val T	Thr Val
Pro Ala Tyr 145	Phe Asn	Asp Ser 150	Gln Arg	Gln Ala 155	_	Asp A	Ala Gly 160
Thr Ile Ala	Gly Leu 165	Asn Val	Leu Arg	Ile Ile 170	Asn Glu		Thr Ala 175
Ala Ala Ile	Ala Tyr 180	Gly Leu	Asp Lys		Lys Glu	Glu F 190	His Val
Leu Ile Phe	=	Gly Gly	Gly Thr 200	Phe Asp	Val Ser 205		Leu Phe
Ile Glu Asp 210	Gly Ile	Phe Glu 215	Val Lys	Ala Thr	Ala Gly 220	Asp T	Thr His
Leu Gly Gly 225	Glu Asp	Phe Asp 230	Asn Arg	Leu Val 235		Phe I	Ile Gln 240
Glu Phe Lys	Arg Lys 245	Asn Lys	Lys Asp	Leu Ser 250	Thr Asn		Arg Ala 255
Leu Arg Arg	Leu Arg 260	Thr Ala	Cys Glu 265	=	Lys Arg	Thr I 270	Leu Ser
Ser Ser Ala 275		Ser Val	Glu Ile 280	Asp Ser	Leu Phe 285	Glu G	Sly Ile
Asp Phe Tyr 290	Thr Ser	Ile Thr 295	Arg Ala	Arg Phe	Glu Glu 300	Leu C	Cys Ala

Asp 305	Leu	Phe	Arg	Ser	Thr 310	Leu	Asp	Pro	Val	Glu 315	Lys	Val	Leu	Arg	Asp 320
Ala	Lys	Leu	Asp	Lys 325	Ser	Gln	Val	Asp	Glu 330	Ile	Val	Leu	Val	Gly 335	Gly
Ser	Thr	Arg	Ile 340	Pro	Lys	Val	Gln	Lys 345	Leu	Val	Thr	Asp	Tyr 350	Phe	Asn
Gly	Lys	Glu 355	Pro	Asn	Arg	Ser	Ile 360	Asn	Pro	Asp	Glu	Ala 365	Val	Ala	Tyr
Gly	Ala 370	Ala	Val	Gln	Ala	Ala 375	Ile	Leu	Thr	Gly	Asp	Glu	Ser	Ser	Lys
Thr 385	Gln	Asp	Leu	Leu	Leu 390	Leu	Asp	Val	Ala	Pro 395	Leu	Ser	Leu	Gly	Ile 400
Glu	Thr	Ala	Gly	Gly 405	Val	Met	Thr	Lys	Leu 410	Ile	Pro	Arg	Asn	Ser 415	Thr
Ile	Ser	Thr	Lys 420	Lys	Phe	Glu	Ile	Phe 425	Ser	Thr	Tyr	Ala	Asp 430	Asn	Gln
Pro	Gly	Val 435	Leu	Ile	Gln	Val	Phe 440	Glu	Gly	Glu	Arg	Ala 445	Lys	Thr	Lys
Asp	Asn 450	Asn	Leu	Leu	Gly	Lys 455	Phe	Glu	Leu	Ser	Gly 460	Ile	Pro	Pro	Ala
Pro 465	Arg	Gly	Val	Pro	Gln 470	Ile	Glu	Val	Thr	Phe 475	Asp	Val	Asp	Ser	Asn 480
Gly	Ile	Leu	Asn	Val 485	Ser	Ala	Val	Glu	Lys 490	Gly	Thr	Gly	Lys	Ser 495	Asn
Lys	Ile	Thr	Ile 500	Thr	Asn	Asp	Lys	Gly 505	Arg	Leu	Ser	Lys	Glu 510	Asp	Ile
Glu	Lys	Met 515	Val	Ala	Glu	Ala	Glu 520	Lys	Phe	Lys	Glu	Glu 525	Asp	Glu	Lys

Glu Ser Gln Arg Ile Ala Ser Lys Asn Gln Leu Glu Ser Ile Ala Tyr 530 535 540

Ser Leu Lys Asn Thr Ile Ser Glu Ala Gly Asp Lys Leu Glu Gln Ala 545 555 550

Asp Lys Asp Thr Val Thr Lys Lys Ala Glu Glu Thr Ile Ser Trp Leu 565 570

Asp Ser Asn Thr Thr Ala Ser Lys Glu Glu Phe Asp Asp Lys Leu Lys 585

Glu Leu Gln Asp Ile Ala Asn Pro Ile Met Ser Lys Leu Tyr Gln Ala 600

Gly Gly Ala Pro Gly Gly Ala Ala Gly Gly Ala Pro Gly Gly Phe Pro 610 615 620

Gly Gly Ala Pro Pro Ala Pro Glu Ala Glu Gly Pro Thr Val Glu Glu 625 630 635 640

Val Asp

<210> 5

<211> 1929

<212> DNA

<213> Saccharomyces cerevisiae SSA1 coding sequence

<400> 5

atgtcaaaag ctgtcggtat tgatttaggt acaacatact cgtgtgttgc tcactttgct 60 aatgategtg tggacattat tgccaacgat caaggtaaca gaaccactee atettttgte gctttcactg acactgaaag attgattggt gatgctgcta agaatcaagc tgctatgaat 180 ccttcgaata ccgttttcga cgctaagcgt ttgatcggta gaaacttcaa cgacccagaa 240 gtgcaggctg acatgaagca cttcccattc aagttgatcg atgttgacgg taagcctcaa 300 attcaagttg aatttaaggg tgaaaccaag aactttaccc cagaacaaat ctcctccatg 360 qtcttqqqta aqatqaaqqa aactqccqaa tcttacttqq qaqccaaqqt caatqacqct 420 gtcgtcactg tcccagctta cttcaacgat tctcaaagac aagctaccaa ggatgctggt 480 accattgctg gtttgaatgt cttgcgtatt attaacgaac ctaccgccgc tgccattgct 540 600

tacggtttgg acaagaaggg taaggaagaa cacgtcttga ttttcgactt gggtggtggt

actttcgatg tctct	ttgtt gttcattgaa	a gacggtatct	ttgaagttaa	ggccaccgct	660
ggtgacaccc atttg	gggtgg tgaagatttt	gacaacagat	tggtcaacca	cttcatccaa	720
gaattcaaga gaaag	gaacaa gaaggactto	g tctaccaacc	aaagagcttt	gagaagatta	780
agaaccgctt gtgaa	agagc caagagaact	ttgtcttcct	ccgctcaaac	ttccgttgaa	840
attgactctt tgttc	cgaagg tatcgattto	c tacacttcca	tcaccagagc	cagattcgaa	900
gaattgtgtg ctgac	cttgtt cagatctact	ttggacccag	ttgaaaaggt	cttgagagat	960
gctaaattgg acaaa	atctca agtcgatgaa	attgtcttgg	tcggtggttc	taccagaatt	1020
ccaaaggtcc aaaaa	attggt cactgactac	: ttcaacggta	aggaaccaaa	cagatctatc	1080
aacccagatg aagct	gttgc ttacggtgct	gctgttcaag	ctgctatttt	gactggtgac	1140
gaatcttcca agact	caaga tctattgtto	g ttggatgtcg	ctccattatc	cttgggtatt	1200
gaaactgctg gtggt	gtcat gaccaagtto	g attccaagaa	actctaccat	ttcaacaaag	1260
aagttcgaga tcttt	tccac ttatgctgat	aaccaaccag	gtgtcttgat	tcaagtcttt	1320
gaaggtgaaa gagcc	caagac taaggacaac	aacttgttgg	gtaagttcga	attgagtggt	1380
attccaccag ctcca	aagagg tgtcccacaa	a attgaagtca	ctttcgatgt	cgactctaac	1440
ggtattttga atgtt	tccgc cgtcgaaaaq	g ggtactggta	agtctaacaa	gatcactatt	1500
accaacgaca agggt	agatt gtccaaggaa	a gatatcgaaa	agatggttgc	tgaagccgaa	1560
aaattcaagg aagaa	agatga aaaggaatct	caaagaattg	cttccaagaa	ccaattggaa	1620
tccattgctt actct	ttgaa gaacaccatt	tctgaagctg	gtgacaaatt	ggaacaagct	1680
gacaaggaca ccgtc	caccaa gaaggctgaa	a gagactattt	cttggttaga	cagcaacacc	1740
actgccagca aggaa	agaatt cgatgacaac	g ttgaaggagt	tgcaagacat	tgccaaccca	1800
atc					