HOCHSCHULE LUZERN

Technik & Architektur

Mehrfach-Integrale - Übung III

Prof. Dr. Josef F. Bürgler

Semesterwoche 3

Alle Aufgaben sind zusammen mit dem Lösungweg in möglichst einfacher Form darzustellen. Numerische Resultate sind mit einer Genauigkeit von 4 Stellen anzugeben. Skizzen müssen qualitativ und quantitativ richtig sein. **Abgabetermin: Am Ende der Semesterwoche 4 (z.B. in meinen Briefkasten).**

Aufgabe 1: Kugelkoordinaten

Berechnen Sie das Dreifachintegral

$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} \rho(x,y,z) \, dz \, dy \, dx$$

falls $\rho(x,y,z) = (1+x^2+y^2+z^2)^{-1}$. Skizzieren Sie das Integrationsgebiet. Was stellt das Resultat dar, wenn ρ die Dichte ist?

Aufgabe 2: Kugelkoordinaten

Verwenden Sie sphärische Koordinaten um das Dreifachintegral

$$\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{0}^{\sqrt{4-x^2-y^2}} z^2 \sqrt{x^2+y^2+z^2} \, dz \, dy \, dx$$

zu berechnen. Beschreiben und skizzieren Sie zuerst das Integrationsgebiet. Überlegen Sie sich dann, wie man die Integration in sphärischen Koordinaten (Kugelkoordinaten) durchführen kann. Schätzen Sie am Schluss das Resultat mit einer *Kopfrechnung* ab.

Lösung: $64/9\pi$

Aufgabe 3: Schwerpunkt

Bestimme den Schwerpunkt des Körpers G beschränkt durch $y=x^2, y=4, z=0$ und y+z=4. Skizzieren Sie zuerst den Körpers und verwenden Sie dann geeignete Koordinaten.

Lösung: $(x_S, y_S, z_S) = (0, 12/7, 8/7)$

Aufgabe 4: Trägheitsmoment

Ein Körper ist durch die Ungleichungen $x^2+y^2 \le a, x+y+z \le \sqrt{2}a, x, y, z \ge 0$ bestimmt. Skizzieren Sie diesen Körper. Berechnen Sie das Trägheitsmoment des Körpers bezüglich der z-Achse unter der Annahme $\rho=1$. Tipp: verwenden Sie Zylinderkoordinaten.

Lösung:

Aufgabe 5: Trägheitstensor

Berechnen Sie den Trägheitstensor eines Quaders mit den Kantenlängen a (in x-Richtung), b (in y-Richtung) und c (in z-Richtung) und zwar bezüglich des Schwerpunktes (bei konstanter Dichte ρ).

Lösung: ... (steht im Formelbuch).

Viel Spass!