from google.colab import drive
drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to

•

Importing the Data

import pandas as pd
from sklearn.model_selection import train_test_split, cross
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from xgboost import XGBRegressor
from sklearn.metrics import mean_squared_error, mean_absolt
import shap
import numpy as np
from sklearn.decomposition import PCA
import seaborn as sns
import matplotlib.pyplot as plt

Load the dataset
ql = pd.read_csv("/content/drive/My Drive/Business Analytic
ql

ValueError ValueError •••

Please explain the error:

TypeError: unsupported operand typ

Hypothesis

The error message "TypeError: unsupported operand type(s) for -: 'NoneType' and 'int'" indicates that you're trying to subtract an integer (10 in this case) from a value that is None.

Looking at the traceback and your code, the error occurs in this line:

Use code with caution

This line is attempting to create a list of values for the <code>max_depth</code> parameter in your Grid Search. The problem is that <code>best_params["max_depth"]</code> might be <code>None</code> (as indicated by the error). This happens when the <code>RandomizedSearchCV</code> in the previous step determined that the best value for <code>max_depth</code> is <code>None</code> (which means unlimited depth for the Random Forest).

Suggested Changes

```
param_grid = {
    "n_estimators": [best_params
    "max_depth": [None, best_par
    "min_samples_split": [best_pa
    "min_samples_leaf": [best_pa
    "max_features": [best_params
```


		country	Purchasing Power Value	Purchasing Power Category	Safety Value	Safe Catego
	0	Afghanistan	32.15	'Very Low'	25.33	'L
	1	Aland Islands	125.01	'Very High'	71.81	'Hi
	2	Albania	42.82	'Low'	55.52	'Modera
	3	Alderney	0.00	NaN	83.79	'V Hi
	4	Algeria	27.60	'Very Low'	47.54	'Modera
	231	Wallis And Futuna	0.00	NaN	0.00	N
	232	Western Sahara	0.00	NaN	62.87	'Hi
	233	Yemen	20.74	'Very Low'	34.07	'L
	234	Zambia	22.32	'Very Low'	54.39	'Modera
	235	Zimbabwe	28.76	'Very Low'	39.31	'L
	236 rc	ows × 19 colum	nns			
	4					•
leyt						

Data Preprocessing

ql.info()

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 236 entries, 0 to 235
 Data columns (total 19 columns):
 # Column

#	Column	Non-Null Count
0	country	236 non-null
1	Purchasing Power Value	236 non-null
2	Purchasing Power Category	190 non-null
3	Safety Value	236 non-null
4	Safety Category	234 non-null

```
"bootstrap": [best_params["b
```

Use code with caution

}

Explanation of Changes:

- 1. Conditional Logic for max_depth:
 - We use an inline if statement to handle the

- o If
 best_params["max_depth"
 is None, the list will
 include None,
 best_params["max_depth"]
 None.
- If it's not None, it'll perform the addition (+
 10), ensuring the code doesn't try to subtract from None.

▶ Sources

Rate this answer


```
Health Care Value
                                      236 non-null
                                      221 non-null
    Health Care Category
7
    Climate Value
                                      236 non-null
8 Climate Category
                                      114 non-null
9 Cost of Living Value
                                      236 non-null
10 Cost of Living Category
                                      191 non-null
11 Property Price to Income Value
                                      236 non-null
12 Property Price to Income Category 215 non-null
13 Traffic Commute Time Value
                                      236 non-null
14 Traffic Commute Time Category
                                      207 non-null
15 Pollution Value
                                      236 non-null
16 Pollution Category
                                      226 non-null
17 Quality of Life Value
                                      236 non-null
18 Quality of Life Category
                                      114 non-null
dtypes: float64(7), object(12)
memory usage: 35.2+ KB
```


	country	Purchasing Power Value	Purchasing Power Category	Safety Value	Safe Catego	
0	Afghanistan	32.15	Very Low	25.33	L	
1	Aland Islands	125.01	Very High	71.81	Hi	
2	Albania	42.82	Low	55.52	Modera	
3	Alderney	0.00	NaN	83.79	Very Hi	
4	Algeria	27.60	Very Low	47.54	Modera	
231	Wallis And Futuna	0.00	NaN	0.00	N	
232	Western Sahara	0.00	NaN	62.87	Hi	
233	Yemen	20.74	Very Low	34.07	L	
234	Zambia	22.32	Very Low	54.39	Modera	
235	Zimbabwe	28.76	Very Low	39.31	L	
236 rows × 19 columns						

Generate code with q1

ql['Property Price to Income Value'] = pd.to_numeric(ql['Pr
ql['Quality of Life Value'] = pd.to_numeric(ql['Quality of

ql.info()

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 236 entries, 0 to 235
 Data columns (total 19 columns):

columns (total 19 columns):	
Column	Non-Null Count
country	236 non-null
Purchasing Power Value	236 non-null
Purchasing Power Category	190 non-null
Safety Value	236 non-null
Safety Category	234 non-null
Health Care Value	236 non-null
Health Care Category	221 non-null
Climate Value	236 non-null
Climate Category	114 non-null
Cost of Living Value	236 non-null
Cost of Living Category	191 non-null
Property Price to Income Value	233 non-null
	Column country Purchasing Power Value Purchasing Power Category Safety Value Safety Category Health Care Value Health Care Category Climate Value Climate Category Cost of Living Value Cost of Living Category

```
12 Property Price to Income Category 215 non-null 13 Traffic Commute Time Value 236 non-null 14 Traffic Commute Time Category 207 non-null 15 Pollution Value 236 non-null 16 Pollution Category 226 non-null 17 Quality of Life Value 236 non-null 18 Quality of Life Category 114 non-null dtypes: float64(9), object(10)
```

ql.head()

memory usage: 35.2+ KB

 \rightarrow

	country	Purchasing Power Value	Purchasing Power Category	Safety Value	Safety Category
0	Afghanistan	32.15	Very Low	25.33	Low
1	Aland Islands	125.01	Very High	71.81	High
2	Albania	42.82	Low	55.52	Moderate
3	Alderney	0.00	NaN	83.79	Very High
4	Algeria	27.60	Very Low	47.54	Moderate

Data Cleaning

ql.isnull().sum()

	0
country	0
Purchasing Power Value	0
Purchasing Power Category	46
Safety Value	0
Safety Category	2
Health Care Value	0
Health Care Category	15
Climate Value	0
Climate Category	122
Cost of Living Value	0
Cost of Living Category	45
Property Price to Income Value	3
Property Price to Income Category	21
Traffic Commute Time Value	0
Traffic Commute Time Category	29
Pollution Value	0
Pollution Category	10
Quality of Life Value	0
Quality of Life Category	122

Using KNN Imputer to handling missing value in numerical and categorical variable

```
# Using KNN Imputer to replace missing values in numeric cc
imputer_numeric = KNNImputer(n_neighbors=5) # Menggunakan
ql[numeric_columns] = imputer_numeric.fit_transform(ql[nume
```

Impute missing values in a categorical column with mode (
imputer_categorical = SimpleImputer(strategy='most_frequent
ql[categorical_columns] = imputer_categorical.fit_transform

After imputation, we return the numerical data to their c ql[numeric columns] = scaler.inverse transform(ql[numeric columns])

Checking the imputation results ql

 $\overline{2}$

country		Purchasing Power Value	Purchasing Power Category	Safety Value	Safe Catego			
0	Afghanistan	32.15	Very Low	25.33	L			
1	Aland Islands	125.01	Very High	71.81	Hi			
2	Albania	42.82	Low	55.52	Modera			
3	Alderney	0.00	Very Low	83.79	Very Hi			
4	Algeria	27.60	Very Low	47.54	Modera			
231	Wallis And Futuna	0.00	Very Low	0.00	Modera			
232	Western Sahara	0.00	Very Low	62.87	Hi			
233	Yemen	20.74	Very Low	34.07	L			
234	Zambia	22.32	Very Low	54.39	Modera			
235	Zimbabwe	28.76	Very Low	39.31	L			
236 rd	236 rows × 19 columns							

Feature Engineering

category_mapping = {'Very Low': 1, 'Low': 2, 'Moderate': 3,
columns_to_map = ['Purchasing Power Category', 'Safety Cate

'Climate Category', 'Cost of Living Categ 'Traffic Commute Time Category', 'Polluti

for col in columns_to_map:
 q1[col] = q1[col].map(category_mapping)
q1

 $\overline{\Rightarrow}$

	country	Purchasing Power Value	Purchasing Power Category	Safety Value	Safe Catego
0	Afghanistan	32.15	1	25.33	
1	Aland Islands	125.01	5	71.81	
2	Albania	42.82	2	55.52	
3	Alderney	0.00	1	83.79	
4	Algeria	27.60	1	47.54	
231	Wallis And Futuna	0.00	1	0.00	
232	Western Sahara	0.00	1	62.87	
233	Yemen	20.74	1	34.07	
234	Zambia	22.32	1	54.39	
235	Zimbabwe	28.76	1	39.31	
236 rc	ws × 19 colum	nns			

from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()

ql['country'] = label_encoder.fit_transform(ql['country'])
ql

	country	Purchasing Power Value	Purchasing Power Category	Safety Value	Safety Category
0	0	32.15	1	25.33	2
1	1	125.01	5	71.81	4
2	2	42.82	2	55.52	3
3	3	0.00	1	83.79	5
4	4	27.60	1	47.54	3
231	231	0.00	1	0.00	3
232	232	0.00	1	62.87	4
233	233	20.74	1	34.07	2
234	234	22.32	1	54.39	3
235	235	28.76	1	39.31	2
236 rc	owe x 10 cc	dumne			

236 rows × 19 columns

Next steps:

Generate code with q1

Adding additional features

ql['Income_to_Property_Ratio'] = ql['Purchasing Power Value ql['Safety_to_Pollution_Ratio'] = ql['Safety Value'] / (ql[ql['Health_Index_Score'] = (ql['Health Care Value'] + ql['(

ql.head()

	country	Purchasing Power Value	Purchasing Power Category	Safety Value	Safety Category	ŀ			
0	0	32.15	1	25.33	2				
1	1	125.01	5	71.81	4				
2	2	42.82	2	55.52	3				
3	3	0.00	1	83.79	5				
4	4	27.60	1	47.54	3				
5 rc	5 rows × 22 columns								

Scaling Numerical Data

```
scaler = StandardScaler()
ql[numeric_columns] = scaler.fit_transform(ql[numeric_colum
ql
```

 \rightarrow

	country	Purchasing Power Value		Safety Value	Safe [.] Catego
0	0	-0.451334	1	-1.774126	
1	1	1.337947	5	0.979686	
2	2	-0.245738	2	0.014548	
3	3	-1.070819	1	1.689468	
4	4	-0.539006	1	-0.458245	
231	231	-1.070819	1	-3.274858	
232	232	-1.070819	1	0.450015	
233	233	-0.671189	1	-1.256305	
234	234	-0.640744	1	-0.052401	
235	235	-0.516655	1	-0.945849	
236 rows × 22 columns					
4					

EDA (Exploratory Data Analysis)

Data Distribution

```
ql[numeric_columns].hist(figsize=(12, 8), bins=20)
plt.show()
```


100 -

75 -

Correlation

```
plt.figure(figsize=(10, 8))
sns.heatmap(ql[numeric_columns].corr(), annot=True, cmap="c
plt.title("Correlation Matrix")
plt.show()
```


Model Training and Machine Learning

```
# Using Quality of Life as a target for regression
X = ql.drop(columns=['Quality of Life Value', 'Quality of Li
y = ql['Quality of Life Value']

# PCA for Dimensionality Reduction
pca = PCA(n_components=5)
X_pca = pca.fit_transform(X)
# Split_the Data
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, te
# Model Evaluation Function
def evaluate model(model, X train, X test, y train, y test,
    y pred = model.predict(X test)
    rmse = mean_squared_error(y_test, y_pred) ** 0.5
    mae = mean_absolute_error(y_test, y_pred)
    r2 = r2 score(y test, y pred)
    cv_r2 = cross_val_score(model, X_train, y_train, cv=5, s
    print(f"{model name} Performance:")
    print(f"RMSE: {rmse:.4f}, MAE: {mae:.4f}, R<sup>2</sup>: {r2:.4f},
    return y_pred
# 1 Linear Regression
lr = LinearRegression()
lr.fit(X_train, y_train)
y_pred_lr = evaluate_model(lr, X_train, X_test, y_train, y_t
# 2 Random Forest Regressor with GridSearchCV
rf params = {
    'n estimators': [100, 200],
    'max depth': [None, 20, 30],
    'min_samples_split': [2, 5]
rf = GridSearchCV(RandomForestRegressor(random state=42), pa
rf.fit(X train, y train)
y pred rf = evaluate model(rf.best estimator , X train, X te
# 3 XGBoost Regressor with SHAP Feature Importance
xgb = XGBRegressor(objective="reg:squarederror", random_stat
xgb.fit(X train, y train)
y pred xgb = evaluate model(xgb, X train, X test, y train, y
# SHAP Analysis
explainer = shap.Explainer(xgb)
shap values = explainer(X test)
shap.summary_plot(shap_values, X_test)
```

→ Linear

Linear Regression Performance:

RMSE: 0.3180, MAE: 0.2272, R2: 0.8988, CV R2: -11072451

Random Forest Performance:

RMSE: 0.1479, MAE: 0.0927, R²: 0.9781, CV R²: 0.9483

XGBoost Performance:

RMSE: 0.1523, MAE: 0.0855, R²: 0.9768, CV R²: 0.9447

Clustering using K-Means with PCA-Reduced Data

```
from sklearn.cluster import KMeans
wcss = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters=i, random_state=42, n_init=1
    kmeans.fit(X pca)
    wcss.append(kmeans.inertia_)
plt.plot(range(1, 11), wcss, marker='o')
plt.xlabel('Total Cluster')
plt.ylabel('WCSS')
plt.title('Elbow Method for Determining K')
plt.show()
kmeans = KMeans(n_clusters=3, random_state=42, n_init=10)
ql['Cluster'] = kmeans.fit_predict(X_pca)
sns.scatterplot(x=ql['Purchasing Power Value'], y=ql['Quali
plt.title("Clustering K-Means Result")
plt.show()
```


Clustering K-Means Result

Hyperparameter Tuning

e e

from sklearn.model_selection import RandomizedSearchCV, Grid
import shap

```
# Hyperparameter Grid for Randomized Search
param_dist = {
    "n_estimators": [50, 100, 200, 300],
    "max_depth": [None, 10, 20, 30, 50],
    "min_samples_split": [2, 5, 10],
    "min_samples_leaf": [1, 2, 5, 10],
    "max_features": ["sqrt", "log2", None],
    "bootstrap": [True, False]
```

Enter a prompt here

0 / 2000