Using NeuralODEs to predict the dynamics of gene-regulatory networks

Intekhab Hossain

Advisors: Prof. John Quackenbush & Dr. Rebekka Burkholz

August 24, 2020

 GRNs represent how multiple genes regulate (activate/repress) eachother to bring about observed levels of gene-expression.

 GRNs represent how multiple genes regulate (activate/repress) eachother to bring about observed levels of gene-expression.

 GRNs represent how multiple genes regulate (activate/repress) eachother to bring about observed levels of gene-expression.

■ Can study **long-term** behavior of networks (i.e. change in steady-state expression levels) upon perturbation (e.g. cancer).

 GRNs represent how multiple genes regulate (activate/repress) eachother to bring about observed levels of gene-expression.

- Can study **long-term** behavior of networks (i.e. change in steady-state expression levels) upon perturbation (e.g. cancer).
- Inverse problem:
 - $g_1(t=\infty), g_2(t=\infty), g_3(t=\infty) \rightarrow \text{predict } GRN(g_1, g_2, g_3)$

■ But often, **gene-expression dynamics** may also be of interest (gene-expression **trajectory** over time from t = 0 to $t = \infty$).

- But often, **gene-expression dynamics** may also be of interest (gene-expression **trajectory** over time from t = 0 to $t = \infty$).
- Inverse problem:
 - Given:
 - $g_1(t=t_0), g_1(t=t_1), \ldots, g_1(t=\infty)$
 - $g_2(t = t_0), g_2(t = t_1), \ldots, g_2(t = \infty)$
 - $g_3(t=t_0), g_3(t=t_1), \ldots, g_3(t=\infty)$
 - **E**stimate **dynamics functions** f_1, f_2, f_3 , where:
 - $dg_1/dt = f_1(g_1, g_2, g_3, t)$
 - $dg_2/dt = f_2(g_1, g_2, g_3, t)$
 - $dg_3/dt = f_3(g_1, g_2, g_3, t)$

- But often, **gene-expression dynamics** may also be of interest (gene-expression **trajectory** over time from t = 0 to $t = \infty$).
- Inverse problem:
 - Given:

```
■ g_1(t = t_0), g_1(t = t_1), \ldots, g_1(t = \infty)

■ g_2(t = t_0), g_2(t = t_1), \ldots, g_2(t = \infty)

■ g_3(t = t_0), g_3(t = t_1), \ldots, g_3(t = \infty)
```

Estimate **dynamics functions** f_1, f_2, f_3 , where:

```
dg_1/dt = f_1(g_1, g_2, g_3, t)
dg_2/dt = f_2(g_1, g_2, g_3, t)
dg_3/dt = f_3(g_1, g_2, g_3, t)
```

■ Any regression-based approach would mean restricting the functional forms of f_1 , f_2 , f_3 , and simply **parametrizing** them.

- But often, **gene-expression dynamics** may also be of interest (gene-expression **trajectory** over time from t = 0 to $t = \infty$).
- Inverse problem:
 - Given:

```
■ g_1(t = t_0), g_1(t = t_1), \ldots, g_1(t = \infty)

■ g_2(t = t_0), g_2(t = t_1), \ldots, g_2(t = \infty)

■ g_3(t = t_0), g_3(t = t_1), \ldots, g_3(t = \infty)
```

Estimate **dynamics functions** f_1 , f_2 , f_3 , where:

```
■ dg_1/dt = f_1(g_1, g_2, g_3, t)

■ dg_2/dt = f_2(g_1, g_2, g_3, t)

■ dg_3/dt = f_3(g_1, g_2, g_3, t)
```

- Any regression-based approach would mean restricting the functional forms of f_1 , f_2 , f_3 , and simply **parametrizing** them.
- **NeuralODEs**: a deep neural network estimates f_1 , f_2 , f_3 without any restrictions on functional form.

The NeuralODE framework

• Chen et al. (NeurIPS 2018, best paper).

The NeuralODE framework

Chen et al. (NeurIPS 2018, best paper).

- Builds $\widehat{d\mathbf{x}/dt}$ by locally estimating $\frac{d\mathbf{x}}{dt}(t_i)$ at each time-point t_i .
- Has advantages over traditional ML tools for time-series (RNNs).
- PyTorch implementation with GPU-capacity.

Ground-truth simulator

- Bhuva et al. (Genome Biology, BMC 2019) developed a simulator that uses the Hill equation to obtain steady-state gene levels.
- We modified their approach to generate time-series data.
- Toy example: $gene_A \xrightarrow{activates} gene_C \xleftarrow{represses} gene_B$

Ground-truth simulator

- Bhuva et al. (Genome Biology, BMC 2019) developed a simulator that uses the Hill equation to obtain steady-state gene levels.
- We modified their approach to generate time-series data.
- Toy example: $gene_A \xrightarrow{activates} gene_C \xleftarrow{represses} gene_B$

- $f_{act}(X, E, n) = \frac{\beta X^n}{\beta 1 + X^n}$, where $\beta = \frac{E^n 1}{2E^n 1}$

Ground-truth simulator

- Bhuva et al. (Genome Biology, BMC 2019) developed a simulator that uses the Hill equation to obtain steady-state gene levels.
- We modified their approach to generate time-series data.
- Toy example: $gene_A \xrightarrow{activates} gene_C \xleftarrow{represses} gene_B$

- $f_{act}(X, E, n) = \frac{\beta X^n}{\beta 1 + X^n}$, where $\beta = \frac{E^n 1}{2E^n 1}$
- Given a $GRN(g_1, g_2, ..., g_{150})$, our simulator can:
 - formulate $\frac{dg_1}{dt}$, $\frac{dg_2}{dt}$, ..., $\frac{dg_{150}}{dt}$.
 - \blacksquare generate $g_i(t=\tau), \forall i \in \{1,2,\ldots,150\}$ and $\forall \tau \geq 0$.

Experimental pipeline

- Sample 150 genes, relevant edges, and edge properties (activating vs repressive) from yeast GRN.
- Use ground-truth simulator (in R) to:
 - formulate the 150 ODEs $(\frac{dg_i}{dt}, \forall i \in \{1, 2, \dots, 150\})$.
 - generate time-series data for all 150 genes.
 (multiple samples varying initial conditions + Gaussian noise).

Experimental pipeline

- Sample 150 genes, relevant edges, and edge properties (activating vs repressive) from yeast GRN.
- Use ground-truth simulator (in R) to:
 - formulate the 150 ODEs $(\frac{dg_i}{dt}, \forall i \in \{1, 2, \dots, 150\})$.
 - generate time-series data for all 150 genes.
 (multiple samples varying initial conditions + Gaussian noise).
- Use NeuralODE framework (in PyTorch):
 - feed 90% of generated time-series samples for training.
 - learn $\{\frac{dg_i}{dt}\}_{i=1}^{150}$ using the deep NN of the framework.
 - lacksquare evaluate $\{rac{dg_i}{dt}\}_{i=1}^{150}$ predictive performance on other 10% of samples.

Experimental pipeline

- Sample 150 genes, relevant edges, and edge properties (activating vs repressive) from yeast GRN.
- Use ground-truth simulator (in R) to:
 - formulate the 150 ODEs $(\frac{dg_i}{dt}, \forall i \in \{1, 2, \dots, 150\})$.
 - generate time-series data for all 150 genes.
 (multiple samples varying initial conditions + Gaussian noise).
- Use NeuralODE framework (in PyTorch):
 - feed 90% of generated time-series samples for training.
 - learn $\{\frac{dg_i}{dt}\}_{i=1}^{150}$ using the deep NN of the framework.
 - lacksquare evaluate $\{rac{dg_i}{dt}\}_{i=1}^{150}$ predictive performance on other 10% of samples.
- **Extract** analytical expression for $\{\frac{dg_i}{dt}\}_{i=1}^{150}$ from well-performing deep NN, and compare to ground-truth $\{\frac{dg_i}{dt}\}_{i=1}^{150}$.

Results so far

- Still in the phase of training a good NeuralODE.
- Poor predictive performance on validation set so far.

■ Tuning NeuralODE hyperparameters to get better performance.

Next steps

- **Extract** analytical expressions for dynamics functions from well-performing NeuralODE, and compare to ground-truth.
- Deploy tool on new data to learn dynamics.
 - single-cell time-series data from mouse GRN.

Acknowledgements & References

Acknowledgements:

- Prof. John Quackenbush
- Dr. Rebekka Burkholz

References:

- Chen, Ricky TQ, et al. "Neural ordinary differential equations." Advances in neural information processing systems. 2018.
- Bhuva, Dharmesh D., et al. "Differential co-expression-based detection of conditional relationships in transcriptional data: comparative analysis and application to breast cancer." Genome biology 20.1 (2019): 1-21.
- Karlsson, Daniel, and Olle Svanström. Modelling Dynamical Systems Using Neural Ordinary Differential Equations. MS thesis, Chalmers University. 2019.

Questions?

PROCESS

- lacktriangle sample 150 genes from **yeast GRN** \longrightarrow
- \blacksquare formulate the 150 ODEs \longrightarrow
- $lue{}$ generate time-series data for all 150 genes \longrightarrow
- $lue{}$ training NeuralODE to learn dynamics (90% samples) \longrightarrow
- $lue{}$ test dynamics learned by NeuralODE (10% samples) \longrightarrow
- $lue{}$ extract analytical expressions for 150 dynamics functions from well-performing NeuralODE \longrightarrow
- compare to 150 ground-truth ODEs