Hazırlayan: B 2 1712709999 Ali ŞENTÜRK

EEM202 Ödev (Örnek)

Soru 1: Şekil 1'de verilen devrede $i_g=60\cos(10000t)\,mA$ olarak belirtilmiştir. Bu devrede $100\,\Omega$ direnç üzerinde oluşan voltaj, v_o , sorulmaktadır.

Şekil 1: Soru 1 için verilen devre

Çözüm 1:

Çözüm için öncelikle devrenin fazör uzayındaki eşleniğinin elde edilmesi gerekmektedir. Bunun için 10mH bobin ve 2µF kapasitörün fazör uzayında empedansları bulunur. Bu işlemler Şekil 2 ve Şekil 3'te gösterilmiştir.

Şekil 2: Bobinin empedansının hesaplanması

Şekil 3: Kapasitörün empedansının hesaplanması

Devrenin fazör uzayındaki hali Şekil 4'te gösterilmektedir. Şekil 4'te akım kaynağının fazör uzayındaki değeri de yazılmıştır. Ayrıca 50 Ω direncin üzerindeki düğümdeki voltaj V_x olarak belirlenmiştir. Ayrıca sağ taraftaki koldan akan akım I ile ifade edilmiştir.

Şekil 4: Devrenin fazör uzayına taşınmış hali

Devrenin analiz edilmesi için öncelikle eşdeğer empedans hesaplaması elde edilecektir. Bobin direnç, kapasitör direnç çiftine paralel olmasından dolayı eşdeğer empedans hesabı Şekil 5'teki gibi yapılmıştır.

Şekil 5: Eşdeğer empedans hesabı

Eşdeğer empedans hesabı sonucunda Şekil 4'te gösterilen V_x geriliminin hesabı Şekil 6'da gösterildiği gibi yapılır.

Şekil 6: x düğümündeki voltajın hesaplanması

Şekil 6'da elde edilen V_x değeri kullanılarak en sağdaki koldan akan I akımı için Şekil 7'deki ifade yazılır. Böylece 100Ω direnç üzerindeki V fazör voltajı I akımının direnç değeri ile çarpılması sonucu bulunur. Bu durum Şekil 8'de gösterilmiştir.

$$I = \frac{V_{\times}}{100 - j50}$$

Şekil 7: I akımının hesaplanması

$$V = \int +100 = \frac{V+}{100 - j} + 100$$

$$= 3 + j3 = 4.24 L = V$$

Şekil 8: 100Ω direnç üzerindeki voltajın hesaplanması

Elde edilen V fazör voltajı zaman uzayına Şekil 9'daki gibi çevrilmiştir.

Şekil 9: V değerinin zaman uzayındaki karşılığı

Sonuç 1:

$$v(t) = 4.24\cos(1000t + 45^{\circ}) \text{ V}$$