```
In [1]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

In [2]: data=pd.read_csv('/home/placement/Downloads/fiat500.csv')

In [3]: data.head(10)

Out[3]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	pop	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	pop	73	3074	106880	1	41.903221	12.495650	5700
5	6	pop	74	3623	70225	1	45.000702	7.682270	7900
6	7	lounge	51	731	11600	1	44.907242	8.611560	10750
7	8	lounge	51	1521	49076	1	41.903221	12.495650	9190
8	9	sport	73	4049	76000	1	45.548000	11.549470	5600
9	10	sport	51	3653	89000	1	45.438301	10.991700	6000

```
In [4]: data.isnull().sum()
Out[4]: ID
                                   0
          model
                                   0
          engine power
          age in days
           km
          previous owners
                                   0
          lat
          lon
          price
          dtype: int64
          data.describe()
In [5]:
Out[5]:
                           ID engine_power
                                            age_in_days
                                                                       previous owners
                                                                                                 lat
                                                                                                             lon
                                                                                                                         price
            count 1538.000000
                                             1538.000000
                                                                            1538.000000 1538.000000
                                                                                                                  1538.000000
                                1538.000000
                                                           1538.000000
                                                                                                     1538.000000
            mean
                   769.500000
                                  51.904421
                                             1650.980494
                                                           53396.011704
                                                                               1.123537
                                                                                           43.541361
                                                                                                       11.563428
                                                                                                                  8576.003901
                   444.126671
                                   3.988023
                                             1289.522278
                                                           40046.830723
                                                                               0.416423
                                                                                            2.133518
                                                                                                        2.328190
                                                                                                                  1939.958641
              std
                     1.000000
                                  51.000000
                                              366.000000
                                                                               1.000000
                                                                                           36.855839
                                                                                                        7.245400
                                                           1232.000000
                                                                                                                  2500.000000
             min
                                                                                                        9.505090
             25%
                   385.250000
                                  51.000000
                                              670.000000
                                                           20006.250000
                                                                               1.000000
                                                                                           41.802990
                                                                                                                  7122.500000
             50%
                   769.500000
                                  51.000000
                                             1035.000000
                                                           39031.000000
                                                                               1.000000
                                                                                           44.394096
                                                                                                       11.869260
                                                                                                                  9000.000000
             75%
                  1153.750000
                                  51.000000
                                             2616.000000
                                                           79667.750000
                                                                               1.000000
                                                                                           45.467960
                                                                                                       12.769040 10000.000000
             max 1538.000000
                                  77.000000
                                             4658.000000 235000.000000
                                                                               4.000000
                                                                                           46.795612
                                                                                                       18.365520 11100.000000
In [6]: data=data.drop(['lat','ID','lon'],axis=1)
```

In [7]: data.describe()

Out[7]:

	engine_power	age_in_days	km	previous_owners	price
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	51.904421	1650.980494	53396.011704	1.123537	8576.003901
std	3.988023	1289.522278	40046.830723	0.416423	1939.958641
min	51.000000	366.000000	1232.000000	1.000000	2500.000000
25%	51.000000	670.000000	20006.250000	1.000000	7122.500000
50%	51.000000	1035.000000	39031.000000	1.000000	9000.000000
75%	51.000000	2616.000000	79667.750000	1.000000	10000.000000
max	77.000000	4658.000000	235000.000000	4.000000	11100.000000

In [8]: data=pd.get_dummies(data)

In [9]: data

Out[9]:

	engine_power	age_in_days	km	previous_owners	price	model_lounge	model_pop	model_sport
0	51	882	25000	1	8900	1	0	0
1	51	1186	32500	1	8800	0	1	0
2	74	4658	142228	1	4200	0	0	1
3	51	2739	160000	1	6000	1	0	0
4	73	3074	106880	1	5700	0	1	0
1533	51	3712	115280	1	5200	0	0	1
1534	74	3835	112000	1	4600	1	0	0
1535	51	2223	60457	1	7500	0	1	0
1536	51	2557	80750	1	5990	1	0	0
1537	51	1766	54276	1	7900	0	1	0

1538 rows × 8 columns

In [10]: !pip3 install scikit-learn

Requirement already satisfied: scikit-learn in ./anaconda3/lib/python3.10/site-packages (1.2.1)
Requirement already satisfied: numpy>=1.17.3 in ./anaconda3/lib/python3.10/site-packages (from scikit-lear n) (1.23.5)
Requirement already satisfied: joblib>=1.1.1 in ./anaconda3/lib/python3.10/site-packages (from scikit-lear n) (1.1.1)
Requirement already satisfied: scipy>=1.3.2 in ./anaconda3/lib/python3.10/site-packages (from scikit-learn) (1.10.0)

Requirement already satisfied: threadpoolctl>=2.0.0 in ./anaconda3/lib/python3.10/site-packages (from sciki t-learn) (2.2.0)

```
In [11]: data.shape
Out[11]: (1538, 8)
In [12]: v=data['price']
          x=data.drop(['price'],axis=1)
In [13]: y
Out[13]: 0
                  8900
                  8800
          2
                  4200
          3
                  6000
                  5700
                   . . .
          1533
                  5200
          1534
                  4600
          1535
                  7500
          1536
                  5990
          1537
                  7900
          Name: price, Length: 1538, dtype: int64
In [14]: from sklearn.model_selection import train_test_split
          x train,x test,y train,y test=train test split(x,y,test size=0.33,random state=42)
In [15]: x_test.head(5)
Out[15]:
                                         km previous_owners model_lounge model_pop model_sport
                engine_power age_in_days
                                 3197 120000
                                                         2
                                                                     0
                                                                               1
                                                                                          0
            481
                        51
            76
                        62
                                  2101 103000
                                                         1
                                                                     0
                                                                               1
                                                                                          0
           1502
                        51
                                  670
                                       32473
                                                         1
                                                                     1
                                                                               0
                                                                                          0
           669
                        51
                                  913
                                       29000
                                                         1
                                                                     1
                                                                               0
                                                                                          0
                                                                               0
                                                                                          0
           1409
                        51
                                  762
                                       18800
                                                         1
                                                                     1
```

```
In [16]: x test.shape
Out[16]: (508, 7)
In [17]: y_test.head(5)
Out[17]: 481
                 7900
         76
                 7900
         1502
                 9400
         669
                 8500
         1409
                 9700
         Name: price, dtype: int64
         Linear Regression
In [18]: from sklearn.linear model import LinearRegression
         reg=LinearRegression()
         reg.fit(x_train,y_train)
Out[18]:
          ▼ LinearRegression
         LinearRegression()
In [19]: ypred=reg.predict(x_test)
```

```
In [20]: | ypred
Out[20]: arrav([ 5867.6503378 .
                                  7133.70142341.
                                                   9866.35776216.
                                                                   9723.28874535.
                                  9654.07582608,
                                                   9673.14563045, 10118.70728123,
                 10039.59101162,
                  9903.85952664,
                                  9351.55828437, 10434.34963575,
                                                                   7732.26255693,
                                  6565.95240435,
                                                   9662.90103518, 10373.20344286,
                  7698.67240131,
                  9599.94844451,
                                  7699.34400418,
                                                   4941.33017994, 10455.2719478 ,
                                                                   9952.37340054,
                 10370.51555682, 10391.60424404,
                                                   7529.06622456,
                                                                   6953.10376491.
                  7006.13845729,
                                  9000.1780961 .
                                                   4798.36770637,
                                  9623.80497535,
                 7810.39767825,
                                                  7333.52158317,
                                                                   5229.18705519,
                  5398.21541073,
                                  5157.65652129,
                                                   8948.63632836,
                                                                   5666.62365159,
                 9822.1231461 ,
                                                                   8457.38443276,
                                  8258.46551788,
                                                   6279.2040404 ,
                                  6767.04074749.
                  9773.86444066,
                                                   9182.99904787, 10210.05195479,
                  8694.90545226, 10328.43369248,
                                                   9069.05761443,
                                                                   8866.7826029 ,
                  7058.39787506,
                                  9073.33877162,
                                                   9412.68162121, 10293.69451263,
                 10072.49011135,
                                  6748.5794244 ,
                                                   9785.95841801,
                                                                   9354.09969973,
                 9507.9444386 , 10443.01608254,
                                                  9795.31884316,
                                                                   7197.84932877,
                 10108.31707235,
                                  7009.6597206 ,
                                                   9853.90699412,
                                                                   7146.87414965,
                                                                   8515.83255277,
                  6417.69133992,
                                  9996.97382441,
                                                   9781.18795953,
                  8456.30006203,
                                  6499.76668237,
                                                  7768.57829985,
                                                                   6832.86406122,
                  8347.96113362, 10439.02404036,
                                                   7356.43463051,
                                                                   8562.56562053,
In [21]: from sklearn.metrics import r2 score
         r2_score(y test,ypred)
Out[21]: 0.8415526986865394
In [22]: from sklearn.metrics import mean squared error
         b=mean squared error(ypred,y test)
In [23]:
         srt=b**(1/2)
         srt
Out[23]: 762.8156575420782
In [24]: Results=pd.DataFrame(columns=['price'])
```

```
In [25]: Results=pd.DataFrame(columns=['price','predicted'])
    Results['price']=y_test
    Results['predicted']=ypred
    #result=results.reset_index()
    #results['Id']=results.index()
    Results.head(15)
```

Out[25]:

	price	predicted
481	7900	5867.650338
76	7900	7133.701423
1502	9400	9866.357762
669	8500	9723.288745
1409	9700	10039.591012
1414	9900	9654.075826
1089	9900	9673.145630
1507	9950	10118.707281
970	10700	9903.859527
1198	8999	9351.558284
1088	9890	10434.349636
576	7990	7732.262557
965	7380	7698.672401
1488	6800	6565.952404
1432	8900	9662.901035

```
In [ ]: [
In [ ]: [
```