Осенний коллоквиум курса «Теория вероятностей»

ФКН НИУ ВШЭ, 2-й курс ОП ПМИ, 2-й модуль, 2016 учебный год

Билет 4

Формула полной вероятности. Формула Байеса. Задача о сумасшедшей старушке.

Формула полной вероятности

Теорема 1. (Формула полной вероятности)

Пусть $\Omega=A_1\cup A_2\cup\ldots\cup A_n$ и $A_i\cap A_j=\varnothing$ для всех $i\neq j$). Тогда для всякого события B имеет место равенство

$$P(B) = \sum_{i} P(B|A_i)P(A_i).$$

Доказательство.

$$P(B) = P(B \cap A_1) + P(B \cap A_2) + \ldots + P(B \cap A_n) =$$
 Переписываем каждую $P(B \cap A_i)$ как $P(B|A_i) \cdot P(A_i)$ = $P(B|A_1) \cdot P(A_1) + P(B|A_2) \cdot P(A_2) + \ldots + P(B|A_n) \cdot P(A_n)$.

Формула Байеса

Теорема 2. (Формула Байеса) Пусть P(A) > 0 и P(B) > 0. Тогда имеет место равенство

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}.$$

Доказательство. Достаточно заметить, что

$$P(A|B)P(B) = P(A \cap B) = P(B|A)P(A).$$

Задача о сумасшедшей старушке

Задача 1. На посадку в самолет стоят $N \geqslant 2$ пассажиров, среди которых сумасшедшая старушка. Старушка расталкивает всех пассажиров и садится в самолет на произвольное место. Затем пассажиры, когда заходят в самолет, садятся на свое место, если оно свободно, и на произвольное свободное место в противном случае. Какова вероятность того, что последний пассажир сядет на свое место?

Решение.

Пусть эта вероятность равна P_N .

Докажем методом математической индукции, что верно следующее равенство:

$$P_N = \frac{1}{2}$$

База: Если N=2, то $P_N=\frac{1}{2}$.

Шаг индукции:

Предположим, что уже для всех $k\leqslant N$ доказано, что $P_k=\frac{1}{2}.$ Докажем равенство $P_{N+1}=\frac{1}{2}:$

Событие B состоит из тех исходов, когда последний пассажир садится на свое место. Событие A_m состоит из тех исходов, когда старушка села на место m-го пассажира. По формуле полной вероятности

$$P_{N+1} = P(B) = \sum_{m} P(B|A_m)P(A_m).$$
 (*)

Заметим, что $P(A_m)=\frac{1}{N+1}$ и все, кроме двух (когда старушка села на свое место (в этом случае $P(B|A_m)=1$) или на место последнего пассажира (в этом случае $P(B|A_m)=0$)), вероятности $P(B|A_m)=\frac{1}{2}$ (когда старушка садится на место m-го пассажира, m-ый пассажир фактически превращается в сумасшедшую старушку и мы получаем задачу для N пассажиров, а по предположению индукции $P_N=\frac{1}{2}$). Таких $P(B|A_m)$, что $P(B|A_m)=\frac{1}{2}$, будет ровно N-1, так как всего слагаемых в (*) N+1. Следовательно, имеем

$$P_{N+1} = \frac{N-1}{2(N+1)} + \frac{1}{N+1} = \frac{1}{2}.$$

Шаг индукции доказан. Значит, верно утверждение

$$P_N = \frac{1}{2}.$$