CO ASSIGMENT

Name: Venkatesh G Dhongadi Division: C

USN: 2GI19CS175 Date: 02-10-2020

 Write assembly language program for the following D = A / B * C

→ For 3 address

DIV R1, A, B ; R1 \leftarrow M[A] / M[B] MUL D, R1, C ; M[D] \leftarrow R1 * M[C]

→ For 2 address

LOAD R1, A ; R1 \leftarrow M[A] DIV R1, B ; R1 \leftarrow R1/M[B] MUL R1, C ; R1 \leftarrow R1 * M[C] LOAD D, R1 ; M[D] \leftarrow R1

→ For 1 address

LOAD A ; $AC \leftarrow M[A]$ DIV D ; $AC \leftarrow AC/M[D]$ MUL C ; $AC \leftarrow AC*M[C]$ LOAD D ; $M[D] \leftarrow AC$

→ For zero address

PUSH D ; TOS \leftarrow D PUSH B ; TOS \leftarrow B PUSH A ; TOS \leftarrow A DIV ; TOS \leftarrow (A/B) PUSH C ; TOS \leftarrow C MUL ; TOS \leftarrow C*(A/B) POP D ; M[D] \leftarrow TOS

- 2) A program consists of 100 instructions out of which 40 are the read instructions , 30 are computation instructions and remaining 30 are the write instructions. Assume total no of basic steps for each read , write and compute is 4 , 5 and 6 respectively and a processor clock rate is 2 GHz , calculate the time taken by the program to execute
 - → We have ,

$$T = (N X S)/R$$

Given: time taken to read 40 instructions

T1 = $(40 \times 4)/2 \times 10^9$ T1 = 80×10^{-9} seconds Time taken for computation instructions

T2 =
$$(30 \times 5) / 2 \times 10^9$$

T2 = 75×10^9 seconds

Time taken for writing instructons

T3 =
$$(30 \times 6) / 2 \times 10^9$$

T3 = 90×10^{-9} seconds

Total time taken by the processor to execute all the 100 instructions is

T = T1 + T2 + T3
T =
$$80 \times 10^{-9} + 75 \times 10^{-9} + 90 \times 10^{-9}$$

T = 245×10^{-9} seconds

- 3) Assume that there are 5 bits to be used for the representation of the numbers. Perform the following operation and check whether overflow occurs or not
 - a) 11 14

Overflow does not occur

c)
$$-16 + 8$$

Overflow does not occur

d)
$$7 + 8$$

Overflow does not occur

- 4) Name the machines which use Big endian and little endian assigments
 - → IBM's 370 mainframes , most RISC based computers , TCP/IP , and Motorola microprocessors use the Big endian approach

Intel processors (CPU's) and DEC alphas and atleast some programs that run on them are little endian

5) Write the addressing mode for the following instructions:

 $\begin{array}{lll} \text{i.} & \text{Add R1,R2} & \text{; register addressing mode} \\ \text{ii.} & \text{Move $\#\%$1011001,R1} & \text{; immediate addressing mode} \\ \end{array}$

iii. SUB A, B ; absolute (direct) addressing mode

iv. ADD 8 (R2), R1; index addressing mode