Solution to APMO 2020 Problems

Anzo Teh

Problem 1. Let Γ be the circumcircle of $\triangle ABC$. Let D be a point on the side BC. The tangent to Γ at A intersects the parallel line to BA through D at point E. The segment CE intersects Γ again at F. Suppose B, D, F, E are concyclic. Prove that AC, BF, DE are concurrent.

Solution. Now A, B, C, F all lie on circle ω , and let the circle passing through B, D, F, E be ω_1 . Then BF is the radical axis of ω and ω_1 . Given that DE parallel to AB and AE tangent to ω , we have $\angle EAC = \angle ABD = \angle EDC$, so E, A, D, C are also concyclic, and let the circumcircle be ω_2 . Thus, ω_1 and ω_2 has radical axis DE, and ω and ω_2 has radical axis AC. Therefore AC, BF, DE concur at the radical center of $\omega, \omega_1, \omega_2$.

Problem 2. Show that r = 2 is the largest real number r which satisfies the following condition: If a sequence a_1, a_2, \ldots of positive integers fulfills the inequalities

$$a_n \le a_{n+2} \le \sqrt{a_n^2 + ra_{n+1}}$$

for every positive integer n, then there exists a positive integer M such that $a_{n+2} = a_n$ for every $n \ge M$.

Solution. First, let r > 2. We show that, if a is sufficiently large that $2 + \frac{1}{a} < r$ and the sequence $a, a, a+1, a+1, a+2, a+2, \cdots$ fulfills the condition. For each $n \ge 1$, $a_{n+2} = a_n + 1$ so the left inequality is satisfied. Now, for a_{n+1} is either a_n or $a_n + 1 = a_{n+2}$ for each n. We now have

$$a_n^2 + ra_{n+1} \ge a_n^2 + ra_n > a_n^2 + (2 + \frac{1}{a})a_n \ge a_n^2 + (2 + \frac{1}{a_n})a_n = (a_n + 1)^2 = a_{n+2}^2$$

so the right inequality is also satisfied by this sequence.

Now suppose that $r \leq 2$. If $a_n = a_{n+2}$ for all n then we're done. Now consider any n with $a_{n+2} > a_n$. Claim: $a_{n+1} \geq a_{n+2}$.

Proof: $a_{n+2}^2 \le a_n^2 + ra_{n+1} \le a_n^2 + 2a_{n+1}$, i.e. $a_{n+1} \ge \frac{a_{n+2}^2 - a_n^2}{2}$. If $a_{n+1} < a_{n+2}$, then $\frac{a_{n+2}^2 - a_n^2}{2} \le a_{n+1} \le a_{n+2} - 1$, or $a_n^2 \ge a_{n+2}^2 - 2a_{n+2} + 2 > (a_{n+2} - 1)^2$. This gives $a_n \ge a_{n+2}$, contradiction. In other words, if $a_{n+1} \le a_n$ we have $a_{n+2} = a_n$.

Now let a_n be any number with $a_n < a_{n+2}$. Then $a_{n+1} \ge a_{n+2}$. If $a_{n+3} > a_{n+1}$ then $a_{n+2} \ge a_{n+3} > a_{n+1}$, contradiction, so $a_{n+3} = a_{n+1}$. If $a_{n+2k} \le a_{n+1}$ for all $k \ge 1$, then the indices $a_n, a_{n+2}, a_{n+4}, \cdots$ become constant, and by the previous argument we also have $a_{n+1} = a_{n+3} = a_{n+5} = \cdots$, and we're done. Otherwise, let k be the minimal index with $a_{n+2k} > a_{n+1}$. Then from $a_{n+2k-2} \le a_{n+1}$ and we $a_{n+2k-1} = a_{n+1}$ by the similar argument. Using a similar argument, we have $a_{n+2k-2} = a_{n+2k}$ instead and the sequence a_{n+2k} will never exceed a_{n+1} (hence staying eventually constant), and so does the sequence a_{n+2k+1} .

Problem 3. Determine all positive integers k for which there exist a positive integer m and a set S of positive integers such that any integer n > m can be written as a sum of distinct elements of S in exactly k ways.

Answer. $k = 2^a$ for any nonnegative integer a.

Solution. The case k=1 can be achieved by the set $S=\{2^a:a\geq 0\}$. If this statement works for $k=2^a$ for some $a\geq 0$ with corresponding threshold m_a and set S_a , then consider the set $S_{a+1}=4S_a\cup\{1,2,3\}$ where $4S_a=\{4x:x\in S_a\}$. Then for all $n\geq 4(m+2)$ we have:

- If n = 4b, $b \ge m + 2$ then n = 4(b-1) + 1 + 3 and n = 4b where b-1, b each has 2^a ways to be represented as sum in S_a .
- If n = 4b + 1, $b \ge m + 2$ then n = 4(b 1) + 2 + 3, and n = 4b + 1.
- If n = 4b + 2, then n = 4(b-1) + 1 + 2 + 3 and n = 4b + 2.
- If n = 4b + 3, n = 4b + 3 = 4b + (1 + 2).

The above shows that there are 2^a ways to determine the appropriate sum coming from $4S_a$, and 2 ways coming from $\{1, 2, 3\}$, completing the proof.

Problem 4.