Name: Thien Tran ID#: 1222245570

CSE 571: Artificial Intelligence Assignment Week 1: Derivation of Logic Proofs Assignment Oct-17-2021

1. $p \rightarrow (q \ V \ r), \neg q, \neg r \vdash \neg p$ using MT rule

1
$$P \rightarrow (Q \lor R)$$

2 $\neg Q$
3 $\neg R$
4 $Q \lor R$
5 Q
6 \bot
8 \bot
9 \bot
10 $\neg (Q \lor R)$
11 $\neg P$
MT 1, 10

2. \vdash (p \rightarrow q) \lor (q \rightarrow r) without using LEM

Since ((p \rightarrow q) V (q \rightarrow r)) is valid with all p, q,r {p,q,r} belonging to {0,1}, \vdash (p \rightarrow q) V (q \rightarrow r) is valid.

			$((p \rightarrow q) \lor (q \rightarrow q))$
р	q	r	r))
F	F	F	Т
F	F	Т	Т
F	Т	F	Т
F	Т	Т	Т

Т	F	F	Т
Т	F	Т	Т
Т	Т	F	Т
Т	Т	Т	Т

3.
$$(p \rightarrow q) \land (q \rightarrow r) \vdash (p \rightarrow r)$$

1
$$(P \rightarrow Q) \land (Q \rightarrow R)$$

2 $(P \rightarrow Q)$ $\land E 1$
3 $(Q \rightarrow R)$ $\land E 1$
4 P
Q $\rightarrow E 2, 4$
6 R $\rightarrow E 3, 5$
7 $(P \rightarrow R)$ $\rightarrow I 4-6$

4.
$$(p \rightarrow r) \land (q \rightarrow \neg r) \vdash (q \rightarrow \neg p)$$

1
$$(P \rightarrow R) \land (Q \rightarrow \neg R)$$

2 $P \rightarrow R$ $\land E 1$
3 $(Q \rightarrow \neg R)$ $\land E 1$
4 Q
5 $\neg R$ $\rightarrow E 3, 4$
6 P
7 R $\rightarrow E 2, 6$
8 \bot $\neg P$ $\neg I 6-8$
10 $Q \rightarrow \neg P$ $\rightarrow I 4-9$

5.
$$(p \rightarrow r) \lor (q \rightarrow r) \vdash (p \land q) \rightarrow r$$

1
$$(P \rightarrow R) \lor (Q \rightarrow R)$$

2 $P \land Q$
3 $P \land Q$
4 $Q \land E 2$
5 $P \rightarrow R$
6 $R \rightarrow E 3, 5$
7 $Q \rightarrow R$
8 $Q \rightarrow R$
9 $R \rightarrow E 4, 7$
 $VE 1, 5-6, 7-8$
10 $(P \land Q) \rightarrow R \rightarrow I 2-9$

6. $\neg (p \lor q)$ is equivalent to $(\neg p \land \neg q)$ (prove \rightarrow in both directions)

Proof $\neg(p \lor q)$ derives $(\neg p \land \neg q)$

1
$$\neg (P \lor Q)$$

2 P
3 $(P \lor Q)$ \lor I 2
4 \bot \neg E 1, 3
5 $\neg P$ \neg I 2-4
6 Q
7 $(P \lor Q)$ \lor I 6
8 \bot \neg E 1, 7
9 $\neg Q$ \neg I 6-8
10 $\neg P \land \neg Q$ \land I 5, 9

Proof ($\neg p \land \neg q$) derives $\neg (p \lor q)$

1
$$\neg P \land \neg Q$$

2 $\neg P$ $\land E 1$
3 $\neg Q$ $\land E 1$
4 $(P \lor Q)$
5 P
6 \bot $\neg E 2, 5$
7 Q
8 \bot \bot $\neg E 3, 7$
9 \bot $\lor E 4, 5-6, 7-8$
10 $\neg (P \lor Q)$ $\neg I 4-9$

7. $(p \rightarrow \neg q)$ is equivalent to $\neg (p \land q)$

Proof (p \rightarrow ¬q) derives ¬(p \land q)

1
$$P \rightarrow \neg Q$$

2 $P \wedge Q$
3 P $\wedge E 2$
4 Q $\wedge E 2$
5 $\neg Q$ $\rightarrow E 1, 3$
6 \bot $\neg E 4, 5$
7 $\neg (P \wedge Q)$ $\neg I 2-6$

Proof $\neg(p \land q)$ derives $(p \rightarrow \neg q)$

1
$$\neg (P \land Q)$$

2 P
3 Q
4 $P \land Q$ $\land I 2, 3$
5 \bot $\neg E 1, 4$
6 $\neg Q$ $\neg I 3-5$
7 $P \rightarrow \neg Q$ $\rightarrow I 2-6$

Part 2: Determining the Validity of Sequents, Proofs, and Truth Tables

Assuming binding priority $(\neg, \land, \lor, \rightarrow)$, are these sequents valid or not? If they are valid, how do you prove it? If they are not valid, what would the truth table be?

1.
$$A \rightarrow B$$
, $C \rightarrow D \vdash A \lor C \rightarrow B \land D$

1 is not valid. Proof by a counterexample:

Consider an instance {A, B, C, D} == {false, false, true, true}

 $(A \rightarrow B) \ \land \ (C \rightarrow D)$ is true, whereas A $\ \lor \ C \rightarrow \ B \ \land \ D$ is false

We conclude that this is not valid.

A	В	С	D	$((A \to B) \ \land \ (C \to D))$	$((A \lor C) \to (B \land D))$
F	F	F	F	Т	Т
F	F	F	Т	Т	Т

	F	Т	F	F	F
F	F	Т	Т	Т	F
F	Т	F	F	Т	Т
F	Т	F	Т	Т	Т
F	Т	Т	F	F	F
F	Т	Т	Т	Т	Т
Т	F	F	F	F	F
Т	F	F	Т	F	F
Т	F	Т	F	F	F
Т	F	Т	Т	F	F
Т	Т	F	F	Т	F
Т	Т	F	Т	Т	Т
Т	Т	Т	F	F	F
Т	Т	Т	Т	Т	Т

2. A
$$\land \neg A \vdash \neg (B \rightarrow C) \land (B \rightarrow C)$$

1
$$A \land \neg A$$

2 A $\land E 1$
3 $\neg A$ $\land E 1$
4 \bot $\neg E 2, 3$
5 $\neg (B \rightarrow C) \land (B \rightarrow C) \bot E 4$

3. (A
$$\wedge$$
 B) \rightarrow C, C \rightarrow D, B \wedge \neg D \vdash \neg A

1
$$(A \land B) \rightarrow C$$

2 $C \rightarrow D$
3 $B \land \neg D$
4 A
5 B
6 $\neg D$
7 $A \land B$
8 C
9 D
 $\rightarrow E 1, 7$
9 D
 $\rightarrow E 2, 8$
10 \bot
 $\neg A$
 $\neg A$

Part 3: Drawing Parse Trees

Assuming binding priority $(\neg, \land, \lor, \rightarrow)$, what are **all** the possible parse trees for each formula? Draw the trees for each formula.

1.
$$(p \rightarrow r) \ \lor \ (q \rightarrow r) \rightarrow (p \ \land \ q) \rightarrow r$$

Parse tree 1: ((p \rightarrow r) V (q \rightarrow r) \rightarrow (p \wedge q)) \rightarrow (r)

Parse tree 2: ((p \rightarrow r) V (q \rightarrow r)) \rightarrow ((p \wedge q) \rightarrow r)

Parse tree 2: ((p \rightarrow r) V (q \rightarrow r)) \rightarrow ((p \wedge q) \rightarrow r)

2.
$$(p \rightarrow r) \land (q \rightarrow \neg r) \land (q \rightarrow \neg p)$$

Parse tree 1: ((p
$$\rightarrow$$
 r) \land (q \rightarrow \neg r)) \land (q \rightarrow \neg p)

Parse tree 2:
$$(p \rightarrow r) \ \land ((q \rightarrow \neg r) \ \land (q \rightarrow \neg p))$$

Parse tree 2: (p \rightarrow r) $\,$ $\!\Lambda$ ((q \rightarrow ¬r) $\,$ $\!\Lambda$ (q \rightarrow ¬p))

