

SQL-on-Hadoop在FreeWheel的实践

FreeWheel数据平台部 林明

整合全球最优质学习资源,帮助技术人和企业成长 Growing Technicians, Growing Companies

专注中高端技术人员的 技术媒体

高端技术人员 学习型社交网络

实践驱动的 IT职业学习和服务平台

一线专家驱动的 企业培训服务

旧金山 伦敦 北京 圣保罗 东京 纽约 上海 San Francisco London Beijing Sao Paulo Tokyo New York Shanghai

2016年4月21-23日 | 北京 : 国际会议中心

主办方 **Geekbang**》. **InfoQ**

优惠(截至12月27日) 现在报名,节省2040元/张,团购享受更多优惠

我们的业务

MRM

RPM

广告销售

- •库存预测
- •投放预测
- •广告预案管理
- •广告订单管理
- •销售流程管理

广告结算

- •广告创意管理
- •用户画像
- •受众定向
- •跨屏广告投放
- •广告投放优化

广告执行

- •广告测量
- •业务报表
- •广告结算
- •合作伙伴分成
- •商业智能分析

单日投放近10亿次广告, 生成2TB广告投放数据

Ad-hoc数据分析

- 应用场景
 - 咨询团队分析客户业务
 - 客户服务团队解决客户问题
 - 工程师团队分析线上问题
- 业务需求
 - 可以同时分析多个数据源
 - 获取多维度和多时间跨度的分析结果
 - 在几分钟甚至几秒内完成

SQL-on-Hadoop解决方案

查询接口(SQL)

MPP查询引擎

连接器 (Connector)

存储 (HDFS)

候选方案

- MPP查询引擎
 - Impala/Stinger/Drill/Hive/Presto等
- 存储格式
 - 列组/ORC/Parquet等

我们的选择

- MPP查询引擎: Presto
 - 非常快的查询速度
 - 支持对不同的数据源进行join操作
 - 方便二次开发
- 存储格式: Parquet
 - 支持复杂的嵌套数据结构
 - 高效的记录碎片化(shred)与装配(assembly)
 - 高效的压缩
 - 开发社区活跃

Ad-hoc数据分析系统

数据注入

广告请求与广告服务器交互示意图

数据注入

数据存储

• 查询Pattern

```
SELECT c1, ...
FROM transaction
WHERE event_date >= [start]
   and event_date < [end]
   and network_id = [id]</pre>
```

• 数据的目录组织结构

连接器

分块管理器 (Split Manager)

 将表分块由Presto协调节点(coordinator)分发到计算 节点(worker)进行处理

分块管理器 (Split Manager)

 将表分块由Presto协调节点(coordinator)分发到计算 节点(worker)进行处理

记录游标(Record Cursor)

- 读取parquet记录供Presto计算(worker)节点处理
 - 结合Predicate Pushdown及ParquetFilter避免反序列 化无关的records

查询接口

• 表 transaction

```
{
    "request" : {
        "user_id" : "string"
},
```

```
"acks" : [
{
        "event_type" : "string",
        "event_name" : "string"
}]
```

request.user_id acks

user_1 [{"i", "vv"}, {"i", "adlmp"}]

user_2 [{"i", "vv"}, {"i", "adlmp"}, {"l", "adlmp"}]

user_3 ["i", "vv"]

如何查询每个用户观看广告的次数?

• 找出每个transaction包含的满足如下条件的ack的个数

```
event_type = 'i' && event_name = 'adImp'
```

尝试?

```
SELECT request.user_id,
    count(1)
FROM transaction
WHERE acks.event_type = 'i'
    and acks.event_name = 'adImp'
GROUP BY request.user_id;
```

Hive方法

```
SELECT request.user_id,
    count(1)
FROM transaction
LATERAL VIEW explode(acks) acklist AS event
WHERE event.event_type = 'i'
    and event.event_name = 'adlmp'
GROUP BY request.user_id;
```

我们的方法

• 逻辑表到物理表的映射

- 物理表: transaction

– 逻辑表:transaction, ack

集群资源统一管理 (Presto on YARN)

• 日志查询服务作为长期运行服务部署在YARN上

Presto as a Service

- 通过REST API调用该服务
 - 动态提交周期性执行的"长" sql
 - 与MR/Spark作业竞争资源,提高集群资源利用率
 - 统一管理线下数据流水线内嵌的查询请求

集群资源统一管理 (Presto on YARN)

查询语句执行时间分布

Thanks!

