This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19) 日本国特許庁 (JP)

31.特許出願公開

12 公開特許公報(A)

昭58—119346

συInt. Cl.3

識別記号

'庁内整理番号

養養。43公開 昭和58年(1983)7月15日

B 01 J 23/88 // C 07 C 45/35 47/22

6674-4G 7824-4H

発明の数 公審查請求 未請求

(全 6 頁)

50プロピレン酸化用触媒

如特

願 昭57-406

22出

昭57(1982)1月6日 願

72発 明

者 高田昌博

竜野市揖西町中垣内甲1471の38

79発 明 者 青木龍次

発明の名称

プロピレン酸化用触媒

- 特許請求の範囲
 - 3.0~10.0 = の外径で長さが外径の0.5 ~ 2.0 倍の外形を有しかつ内径が外径の 0.1 ~ 0.7 倍となるように長さ方向に開孔を有す るリング状腔媒であり、触媒組成物か下記一 般式で示されるととを特徴とするプロピレン **放化用腔做。**

MoaWbBieFedAeBfCgDbOx

(ととで、Mo はモリブデン、W はタングス テン、B」はピスマス、F·は鉄、Oは敏条、 A はニッケルまたはコパルトの中から選ば れた少なくとも1個の元米、Bはアルカリ 金属、アルカリ土類金属およびタリウムの 中から過ばれた少なくとも1種の元素、C はリン、ヒ栗、ホウ条むよびニオブの中か ら当ばれた少なくとも1種で元素、Dは酢

姫路市全部区下全部317-2

72発《明詩者》佐藤高久

姫路市南車崎2丁目1番12-81

夏日本触媒化学工業株式会社

大阪市東区高麗橋5丁目1番地 人。山口剛男

ウムおよびチタニウムの中か 選ばれた少なくとも1種の元素を表わす。 た旅字の:.b.e.d.・・f・g・b・xは thth Mo.W.Bi.F..A.B.C.Dbl 12 としたとき、C-0.1~ 3.0, g=0~4, b=0.5~15, z t 各人の元素の原子価によつて定まる数値をとる。)

*集職者。 本発明はプロピレンを空気またロ分子状体 ガスとともに接触気相関化せしめ、ア クロレインを高い選択性と高い収率でえるた めの触味に関する。

発明の詳細な説明

プロピレンを接触気相触化してアクロレイ ンを製造するための触媒はすでに多数提案さ れ、そのうちのいくつかは工業的にも使用さ れている。たとえは、梅公昭 47-42241号、 4 公时 47-42242号、44 公时 47-42813 号、 私公的 47-27490号、 私公的 47-

持開昭58-119346 (2)

41329号、4公昭 48-4762号、特公昭 48-4763号、4公昭 48-4764号、4公昭 48-4764号、4公昭 48-4764号、4公昭 47-32050号、4公昭 47-30251号、4公昭 47-32050号、4公昭 47-30251号、4公昭 47-21081号、4時昭 50-13308号、4時昭 49-32308号、4時昭 47-17711号各公報がある。 これらの公報明細書に開示された触媒はいずれる これらの公報明細書に開示された触媒はいずれる これらの公報明細書に開示された触媒はいずれる これらの公報明細書に開示された触媒はいずれる これらの公報明細書に開示された触媒はいずれる これらの公報明細書に開示された触媒はいずれる。

1 他の元本、 D はシリコン、 アルミニウムか よびチタニウムの中から選ばれた少なくとも 1 他の元本を殺わす。また数字の a . b . c . d . e . f . g . b . x はそれぞれ M e . W . B l . P e . A . B . C . D かよび O の原子数を認わ a - 2 ~ 1 2、b - 0 ~ 1 0 で a + b - 1 2 としたとき、 e - 0 . 1 ~ 1 0 . 0、好主 しくば 0 . 5 ~ 5 . 0、 d = 0 . 1 ~ 1 0 . 0 分 主 しくば 0 . 5 ~ 5 . 0、 e - 2 ~ 2 0 好 主 しくば 3 ~ 1 5、 f = 0 . 0 0 5 ~ 元の 好主 しくば 0 . 0 1 ~ 2 . 5、 g = 0 ~ 4 好 主 しくば 0 ~ 2 . b . 0 . 5 ~ 1 5 升ま しくば 1 ~ 1 0、 x は各元 素 のと る原子価によつて定まる数値をとる。)

本発明か知定する上記触録は、プロピレンからアクロレインを製造するのに利利であるばかりでなく、アクロレインとアクリル的の合計収率の回でもきわめて高水準であり、したかつてアクリル 毎製造プロセスにおける前段触費としても有利に 使用されることか明らかにされた。

本発りによるすぐれた触媒性能は、以下の実施例で具体的に示されるか、その要する効果を具体

に理想的な反応からかけ照れているためであろう。 本発明者らはかかる不福台を排除し、アクロレインを高い選択性でかつ高い収塞でえるための種 盤を探求した結果、球状ないし円柱状の形状の態 好よりもすぐれた本発い無疑の形状を見出したも のである。

- すたわち、本発師は以下の頭く無定される。

11 3.0~1 n.0 mの外径で長さか外往の 0.5~
2.0 倍の外形を有しかつ内住か外往の 0.1~0.7
倍となるように長さ万向に開孔をおするリング
状紀母であり、触母組成物か下記一般式で示されることを集後とするプロピレン動化用触媒。

Moa Wb Bie Fed Ae Bf Cg Dh Oz

(ここで、Mo Nモリプデン、Wロタングステン、Bindにスマス、Fo は鉄、OはB集、 Aはニッケルまたはコバルトの中から選ばれた少なくとも1他の元条、Bはアルカリ金属、アルカリ土類金属およびタリウムの中から選ばれた少なくとも1他の元条、Cはリン、ヒ集、ホウ素およびニオブの中から選ばれた少なくとも

的に挙げれば、以下の如き娶件となる。

- (i) 触媒の形状を上配特定になるリング状にしたことにより、触媒の幾何学的表面積が増大し、それにつれてプロピレンの転化率が増加し、かつ触媒細孔内で生成したアクロレインの細孔内拡散が脱凝、拡散時の通路の短縮とあいまつて、円柱状のものに比べてすみやかになり、遂次反応であるアクロレインからアクリル酸、酢酸、二酸化炭素、一酸化炭素への反応が低下する。
- (ii) リング状般なにすることで当然予想されるのであるが、触媒性中での圧力損失が放放して、工業生産におけるプロワーの電力費を低き結合。これは、 改造の実施の 8 および比較例 1 からも明らかなことであるが、外往 6.0 mm、 長さ 6.6 mm の円柱状態を 用いた場合と外径 5.0 mm、 長さ 5.5 mm、 開発 2.0 mm のリング状態な を用いた場合と外径 5.0 mm を かいた場合と外径 5.0 mm を かいた場合と外径 5.0 mm を かいた場合と外径 5.0 mm を かいた場合とりにより触数の 20 mm の 3 mm の 4 mm の 4 mm の 5 mm の 6 mm の 7 mm の 6 mm の 7 mm の

特際昭58-119346 (3)

製面板が増大しその分だけ高活性、高得率を 目的とする工夫が可能となるという利点をも たらすことになる。

本発明にかかる触媒は公知の方法により調製される。たとえば、触媒組成物を沈殿法、混練法などにより粉体もしくは粘土状にまで固形化し、これに必要に応じてカーボンブラック、ステアリント、デンブン、ポリアクリルト、鉱油または植物油さらに水などを少量加えて袋剤機や押出成型機

きわめて良好な触抜性能を発揮することかわかつた。 肉厚は薄くしすぎると触媒の強度低下を招く ので、 1.0 =以上であることが好ましい。

本発明による接触気相像化反応は原料ガス組成として1~10谷量多のプロピンン、5~18谷量多の分子状態素、0~60容量多の水蒸気及び20~70容量多の不活性ガス、たとえば登案、炭膨ガスなどからなる混合ガスを前配のようにして調製された触族上に250~450℃の温度範囲及び常圧~10気圧の圧力下、0.5~10.0秒の接触時間で導入するととによって遂行される。

次に実施例及び比較例によつて本発明をさら詳細に説明するが本発明はこれら実施例に限定されるものではない。本明細書における転化率、選択率および単流収率はそれぞれ次の通り定義される。

生成した不飽和カルボニ ルのモル数 反応したオレフインのモル数 などでリング状に成型し、150~450℃の創度 下辺気気流中ないし診象気流中焼成し触媒動化物 としての触媒をえる。

本発明にかかる触媒体化物の原料は、上述の如き調製工程においては化物の形に分解されるの化合物が推奨される。たとえば硝酸塩、アンモニウム塩、水酸化物、砂化物、金属医アンモニウム塩などである。アルカリウム、カーウム、カーシウム、カーシウム、カーシウム、カーシウム、カーシウム、パリウム、パリウム、パリウムが好ましい。

本発明特定になる元素組成の触媒も化物であっても、上記特定になる形状を外れると、工業的な使用に際しては、所期の性能を選成しえないことは、 依述の比較例に見る如くであるが、 さらに針ましい形状としては、 リング形成の肉厚部の平均 浮さか 1.0 ~ 4.0 m となるように成型されるとき、

生成した不台和カルボニルの モル紋 供給したオレフインのモル紋

尖脑的 1

蒸留水 3000 ml を加熱投撑しつつモリプデント アンモニウム 21249、パラタングステン取アン モニウム 6489 を各解してこれをA 液とした。

別に硝酸コパルト14009を400配の蒸留水化、 網配分二級4869を400配の蒸留水化、硝酸ビス マス5849を機舶数120配を加えて数性とした蒸 留水600配に治療させ、この三種の硝酸塩的液の 混合液を上記A液に流下した。引き枕き、20重 動象シリカ含有のシリカゾル4889及び水酸化カ リウム4049を300配の蒸留水に治解した液を加 えた。かくして生じた懸陶液を加熱物拌蒸発・ せしめたのち砂砕し、外径6.0 m、長さ6.6 m、 穴径1.0 mに放散し、空気流通下456でで6時 間短放した。この触吸係化物の参案を除く元素組 放は原子比で

 $\begin{smallmatrix}\mathbf{C}&\mathbf{0}&\mathbf{4}&\mathbf{B}&\mathbf{i}&\mathbf{1}&\mathbf{F}&\mathbf{0}&\mathbf{1}&\mathbf{W}&\mathbf{2}&\mathbf{M}&\mathbf{0}&\mathbf{10}&\mathbf{S}&\mathbf{i}&\mathbf{1.3b}&\mathbf{K}&\mathbf{0.06}\end{smallmatrix}$

こである。

米施例1の場合の開孔内性を2.0 mにした以外は実施例1と同様の歴度を調製し、同様の反応を行なつた。反応中の正力損失、△T及び収率を表1に示す。

実施例 1 の場合の開孔内径を 3.0 = にした以外は実施例 1 と同様の触数を調製し、同様の反応を行なつた。反応中の圧力損失、 △ T 及び収率を表1 に示す。

セシウムを加えること、および 2 0 重量 ガシリカ ソルと同時に二色化チタンを加えること以外は全 く実施例』と同様に調製し元素組成

比黎例 3

実施例 5. の触媒を外径 8.0 m、長さ 8.8 mの円柱状に放型し、実施例 1 と全く同様に反応を行かった。反応中の圧力損失、ムT及び収率を表 1 に示す。

比如例

実施例1の解離で外径 6.0 m、長さ 6.6 mの円柱状化放射し、展施例1と全く同様に反応を行かった。反応中の圧力損失、△T及び収率を表1に示す。 実施例 4

実施例」において、水色化カリウムにかえて、 硝酸タリウムと硝酸バリウムを用い、実施例」と 同様に調製して加速を除く元素組成

Mo₁₀ Bi₁ Fe_{1.6} Co₄ Si_{1.56} W₂ Ti_{0.04} Ba_{0.08} なる船鉄敏化物を外径 4.0 mm、長さ 4.4 mm、穴径 1.0 mm に成型し失施例」と全く同様に反応を行なった。反応中の圧力損失、 △T及び収率を表 1 に示す。

比較例:

実施例4の触媒を外注4.0 m、長さ4.4 mの円柱状に放型し、実施例1と全く同様に反応を行なった。反応中の圧力損失、ムT及び収率を表1に示す。

実施例 5

実派例」において、硝酸カリウムに代えて硝酸

		ノロどレン	被	110	畢	以第	4	压力損失
	馬鹿斯	11年	TOOMY	アクロイン アクリス数 アクロイン アクリスを	TOOMY	721 MB		
		(448)	(モル谷) (モル島) (モル島) (モル島) (モル島)	(*∿*)	(€ル等)	(£ 12 %)	(2)	(en H 9)
	6.0 as 4 × 6.6 mL		0 0			c	ď	-
1 克里米	(開孔内∉1■)	7.06	0.0	1 0.6	0 3.5	0.0	9 9	3
0 10	6.0 m 4 × 6.6 mL	0 9 0	9 0 0	8 9	0 7 0	3	ď	0
7 14 28 W	(開孔内後2=)	0.00		0.0	0 1 0	2	3	<i>y</i>
	6.0me × 6.6meL			4		v		6
で記述が	(開孔均後3=)	o 0	, , , , , , , , , , , , , , , , , , ,	3.6	0 0 0	0.6		2
开8/4911	6.0 = 4 × 6.6 = L	95.5	8 3.9	1 2.8	8 0.1	1 2.2	7.5	1 4 0
果加例4	4.0m+×4.4mL (用孔内径1m)	98.0	88.7	8.1	8 6.9	7.9	7.6	170
比數學2	4.0me×4.4mL	8.96	8 4.6	7 1.5	8 1.9	11.1	9 88	210
* 25 EX	8.0m4×8.8mL (財孔内径3m)	9 1.5	9.06	9.9	8 2.7	0.9	0 7	6 5
元 學年3		9 0.3	8 5.6	1 0.2	77.3	9.2	53	0.8

11)

特開昭58-119346 (5)

尖热例 (

実施例1 にかいて研事カリウムにかえて研事ストロンチウムを用いること以外は全く実施例1と同様に関動し、事業を除く元素組成が原子比でで、Blil Pol MoloWa Bliss Brook
たる Jak b 化 物を外径 6.0 m、 長さ 6.6 m、 別孔
内径 2.0 m に成型し、実施例1と全く同様に反応を行えつた。反応中の圧力損失、 △T及び収率を要216元寸。

を行なった。反応中の圧力損失、△T及び収率を は続けません。

製物例に (に) いて、水取化カリウムにかえて硝酸カルシウムを用いることと、シリカソル及び 領取カルシウムを加えた後に五取化ニオブを添加する以外は全く実施例 1 と同様に調製し、動業を除く元素組成が原子比で

		1	こうしょう こうしょう こうしょう こうしゅう かんしゅう かんしゅう かんしゅう かんしゅう かんしゅう はんない はんない はんない かんしゅう しょうしょう しょうしょう しょうしゅう しょうしゅう しゅうしゅう しゅう	Contract Contract	and the state of t			
	Ţ,	よれて、プログンとを連続を使用を含い、単名の教育の教育をプログー 田力相失	· · · · · · · · · · · · · · · · · · ·	A PARTY	を開発を開発	取利其前	T	圧力損失
	東京 多、大、南石路 1700人では2017年 1700人と1700人	后化器	アンロイン	7211.0	720イン	70 II W		(4 (3) (1)
	10 20 20 20	(***) (***)	(Eng)	(Ex.6)	(***) (***)	(£7.5)	છ	(C) (BH)
0.10	6.0=r×6.6=L		200	, P. S.) o	6.2		1 1 0
N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(開孔內径2=)		_			18625	.,	
光 电电子	6.0 m d X 6.6 m L	8.4.8	8 4.2	8. 1. 1.5	7 9.8	1 1.2	2.0	140
				. 13		: : :		
	6.0 max 6.6 mL	0 2 0	8 0.9	8.0.9 - 7.8	5,00	7.5	9	1 1 0
Z S K	(開孔内後2章)					Table And Table	9.1 2.1	
H 1899 16	6.0 m 4 × 6.6 m L	9 5.2	8 2.8	13.3	7 8.8	12.7	. 7.5	140
				16.6		*		
			•	ģ.,		:		

Co 4 Bi 1 Fe 1 Me 10 W 2 8 i 1.3 b Ce 0.0 d N 1 0. b なる触媒は化物を外径 6.0 m、 長さ 6.6 m、 開孔内径 2.0 m に成型し、実施例 1 と同様に反応を行なった。反応中の圧力強失、 ムT及び収率を奨 2 に示す。

比妙例 5

実施例7の触媒取化物を外径 6.0 m、長さ 6.6 mの円柱状に放型し、実施例1と同様に反応を行なった。反応中の圧力損失、△T及び収率を設2に示す。

実施例 8

実施例1 にかけると同じ触媒も化物を外在 5.0 m、 長さ 5.5 m、開孔内在 2.0 mに成型し、実施例1 と同様の条件で反応させた。反応中の圧力損失は比め例1 と同じ値となつた。反応中の△T及び収率を表 3 に示す。

科問昭58-119346 (6)

失版例 9

硝丸コパルトと同時に硝酸ニッケルを添加する こと、硝酸カリウムにかえて硝酸ルビジウムを用いること、およびパラタングステン酸アンモニウムの代りにリン酸を添加すること以外は全く実施物にと同じ方法で元素組成

Mo 12 Bi 1 Fe 2 Ni 1 Co 3 Si 4.7 P 1.0 Pb 0.1 なる 歴 数 比 物 を 外 任 6.0 m 、 長 さ 6.6 m 、 開 孔 内 任 2.0 m に 成 型 し 、 空 気 流 迪 下 5 0 0 ℃ で 6 時 間 矩 放 し た 。 こ う し て 得 ら れ た 触 以 を 実 施 例 」 と 同 味 に 反 応 を 行 な つ た 。 反 応 中 の 圧 力 損 失 、 ム T 及 ひ 収 率 を 表 4 に 示 す 。

比較例 6

実施例 6 の触線を外径 6.0 m 6 、長さ 6.6 m の 円柱状に放型し、実施例 1 と同様に反応を行なつた。反応中の圧力損失、 △ T 及び収率を表 4 に示す。

明トコパルトと同時に硝酸ニッケル及び硝酸アルミニウムを添加すること、パラタンクステン酸

		グロゲレン	プロピンソ 第一次 第一次 第一次 1年 1 第二次 1 年 1 第二次 1 年 1 年 1 年 1 年 1 年 1 年 1 年 1 年 1 年 1		e 🖷 rigo	知。我		4
	西 傑 莎 状 阮代郑		# 号 ■VII 61 ペトコログエ ■VII 61 ペトコログエ	12 11 MB	720M2	7211A	±a 4₽	
		(≉∿≉)	(+ng) (+ng) (+ng) (+ng) (+ng) (+ng) (C)	(£2.8)	(₹ル≸)	(F.X.8)	(*v*)	(5
4 4 4	5.0 = # × 5.5 = L							
を記れる	(開孔内径2=)	97.2 8 9.0	O. 66	e.	8.3	8.1	8.1 94.6 70	7 0
1985	6.0md×6.6mL	95.5 8 3.9	8 3.9	1 2.6	8 0.1	1 2.6 8 0.1 1 2.0 9 2.1 7 5	9 2.1	ر. در

アンモニウムの代りに硼酸を用いること以外は全 く実施例1と间じ方法で、動業を除く元業組成

Me₁₂ Bi₁ Fe₂ Ni₁ Co₃ Si_{4.7} B_{2.0} K_{0.2} Al_{1.0} なる触体を化物を外径 6.0 m、長さ 6.6 m、開孔内径 2.0 mに成型し、空気流通下 5 0 0 Cで 6 時間焼成した。こうして得られた腱体を実施例 1 と同様に反応を行なった。反応中の圧力損失、 ム T 及び収率を表 4 に示す。

比較例 : 7

			S. C. C. C.	3	Total Table	であることできることではない	*	
		ブロどレン	プロピレン 選 一代 第		起	事 統 収 · 署	4	△ T 圧力損失
	南新市大	流化瓶	アクロレイン	70042 7011 AB 70042 7011AB	T2011/2	Tollan		
		(€v€)	(*n\$)	(Erg)	(*v*)	(モル名) (モル名) (モル名) (モル名) (モル名) (C) (■Hタ)	3	(#H)
6 (24)	6.0m/×6.6mL (開孔內往 2.0m)	9 4.5	8 4.7	1 0.1	8 0.0	9.5 76	9,4	110
794J 6	6.0 to 4 X 6.6 to L	9 4.0	7 8.9	1 3.3	7 4.2	1 2.5	6 7	0 7 0
18110	6.0≡1¢×6.6≡L (開孔内往2.0≡)	93.4	8 0.0	1 0.8	7.4.7	7 4.7 10.1 70	7.0	110
7 (9)	6.0 mr# X 6.6 mL	9.2.8	7 6.1	1 3.7	7 0.6	1 2.7	35 80	0,

H