220525 复数 题目选解

Eason S.

Contents

- 14-34 Hz

1	填空题	1
2	解答题	5
3	附加题	7

Section 1 填空题

Problem 1.1

已知 $z \in \mathbb{C}$ 满足 (1+i)z = 2, 则 $\Im(z) = ?$.

Solution to Problem 1.1

-1. 复数的实部和虚部.

Problem 1.2

若复数 2+i 是 $\mathbb{R}[x]$ 上的多项式 x^2+px+q 的一个虚数根, 则 pq=?.

Solution to Problem 1.2

-20. $\mathbb{P}_2[x]$ 上的多项式的根; $\mathbb{P}[x]$ 上的多项式的根的 Vieta 定理.

220525 复数 题目选解 1 填空题

Problem 1.3

关于 x 的方程 $x^2 + 4x + k = 0$ 有一个根为 -2 + 3i, 则实数 k = ?.

Solution to Problem 1.3

13. $\mathbb{P}_2[x]$ 上的多项式的根.

Problem 1.4

复数 $z = (1 - \sqrt{3}i)^5$, 则 $\arg z = ?$.

Solution to Problem 1.4

 $\frac{\pi}{3}$ · 复数的辐角; 复数的指数表示.

$$z = \left(1 - \sqrt{3}i\right)^5\tag{1}$$

$$= \left[2\exp\left(5i \cdot \frac{\pi}{3}\right)\right]^5 \tag{2}$$

$$=32\exp\left(25i\cdot\frac{\pi}{3}\right)\tag{3}$$

$$=32\exp\left(i\cdot\frac{\pi}{3}\right).\tag{4}$$

于是有 $|z| = 32, \arg z = \frac{\pi}{3}$.

Problem 1.5

计算

$$\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) \div \left[4\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)\right].$$

Solution to Problem 1.5

 $\frac{\sqrt{2}}{8} + \frac{\sqrt{2}}{8}i$. 复数的指数表示.

$$\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) \div \left[4\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)\right] = \exp\left(i \cdot \frac{\pi}{3}\right) \div 4\exp\left(i \cdot \frac{\pi}{12}\right) \tag{5}$$

$$= \frac{1}{4} \exp\left(i \cdot \pi/4\right) \tag{6}$$

$$=\frac{\sqrt{2}}{8}+\frac{\sqrt{2}}{8}i. (7)$$

220525 复数 题目选解 1 填空题

Problem 1.6

若复数 $(1+ai)^2 \in \mathbb{I} \setminus \{0\}$, 则 |1+ai| = ?.

Solution to Problem 1.6

 $\sqrt{2}$. 复数的模.

Problem 1.7

设 $z \in \mathbb{C}$, $f(z) = z^n (n \in \mathbb{N}^*)$, f(1+i) 取最小正整数时, n = ?.

Solution to Problem 1.7

8. 复数的整数指数幂.

Problem 1.8

已知 $z \in \mathbb{C}$ 满足 $z \cdot \overline{z} + 2iz = 9 + 2i$, 则 z = ?.

Solution to Problem 1.8

1 - 2i or 1 + 4i. 复数的共轭关系.

Problem 1.9

下列命题中, 正确的是:

- (1) 任意两个确定的复数都不能比较大小;
- (2) 若 $|z| \le 1$, 则 $-1 \le z \le 1$;
- (3) 若 $z_1^2 + z_2^2 = 0$, 则 $z_1 = z_2 = 0$;
- (4) $z + \overline{z} = 0 \Leftrightarrow z \in \mathbb{I} \setminus \{0\};$
- (5) $z = \overline{z} \Leftrightarrow z \in \mathbb{R}$.

Solution to Problem 1.9

(5). 复数的模; 复数的共轭关系.

作者的话. 作者将原题中的"纯虚数"翻译为了 $\mathbb{I}\setminus\{0\}$. 但是, 有部分书籍定义**纯虚数 (pure imaginary / complex number)**为集合 $\mathbb{I}=\{z|\Re(z)=0\}$.[1]

220525 复数 题目选解 1 填空题

Problem 1.10

设关于 $z \in \mathbb{C}$ 满足 $\arg z \in \left(\frac{3}{4}\pi, \pi\right)$, 则 $\frac{2021}{\overline{z^2}}$ 对应复平面上的点位于第? 象限.

Solution to Problem 1.10

四. 复数的辐角; 复数的共轭关系; 复平面.

$$\arg z \in \left(\frac{3}{4}\pi, \pi\right) \Rightarrow \arg \overline{z} \in \left(-\pi, -\frac{3}{4}\pi\right)$$
 (8)

$$\Rightarrow \arg \overline{z} \in \left(\pi, \frac{5}{4}\pi\right) \tag{9}$$

$$\Rightarrow \arg \overline{z}^2 \in \left(2\pi, \frac{5}{2}\pi\right) \tag{10}$$

$$\Rightarrow \arg \overline{z}^2 \in \left(0, \frac{1}{2}\pi\right) \tag{11}$$

$$\Rightarrow \arg \overline{z}^{-2} \in \left(-\frac{1}{2}\pi, 0\right) \tag{12}$$

$$\Rightarrow \arg \frac{2021}{\overline{z^2}} \in \left(-\frac{1}{2}\pi, 0\right). \tag{13}$$

Problem 1.11

若在 $\mathbb{R}_2[x]$ 上的多项式 $x^2 - |z| \cdot x + 1, z \in \mathbb{C}$ 有实数根, 则 |z - 1 + i| 的最小值为?,

Solution to Problem 1.11

 $2-\sqrt{2}$. $\mathbb{P}_2[x]$ 上的多项式的根; 复数的模; 一元二次方程根的判别式; 三角不等式. 由题意有 $\Delta=|z|^2-4\geq 0$ 解得 $|z|\geq 2$.

再由 $|z-1+i| \ge |z| - |-1+i| = 2 - \sqrt{2}$ 可知最小值.

Problem 1.12

若关于 x 的方程 $2x^2 + 3ax + a^2 - a = 0$ 至少有一个根的模为 1, 则实数 a = ?.

Solution to Problem 1.12

 $2 \pm \sqrt{2}$ or -1. $\mathbb{P}_2[x]$ 上的多项式的根; 一元二次方程根的判别式; 复数的模.

考虑 $\Delta \geq 0$, 不妨设 $|x_1|=1$. 若 $x_1=1$, 则 $a^2+2a+2=0$, $a\notin \mathbb{R}$; 若 $x_1=-1$, 则 $a^2-4a+2=0$, $a=2\pm\sqrt{2}$.

考虑 $\Delta < 0$, 有 $x_1 = \overline{x_2}$, $x_1 \cdot x_2 = |x_1|^2 = 1$, 即 $\frac{a^2 - a}{2} = 1$, 有 a = 2 or a = -1, 又 $\Delta < 0$ 有 a = -1.

Section 2 解答题

Problem 2.1

已知 $z = bi, b \in \mathbb{R}, \frac{z-2}{1+i} \in \mathbb{R},$

- **(1)** 求 z;
- (2) 若 $(m+z)^2$ 在第一象限, 求 m.

Solution to Problem 2.1

 $z=-2i; m \in (-\infty, -2)$. 复数的实部和虚部; 复平面.

Problem 2.2

已知 α, β 是 $\mathbb{R}_2[x]$ 上的多项式 $x^2 + 2x + p$ 的两根,

- (1) 若 $|\alpha \beta| = 3$, 求 p;
- (2) 求 $|\alpha| + |\beta|$.

Solution to Problem 2.2

 $p=-rac{5}{4}$ or $rac{13}{4}$; 第二问见过程. 复数的实部和虚部; $\mathbb{P}_2[x]$ 上的多项式的根; $\mathbb{P}[x]$ 上的多项式的根的 Vieta 定理.

- (1) $\Delta = 4 4p$,
 - (1.1) $\Delta \ge 0, p \le 1$, 此时有

$$\sqrt{4-4p} = 3 \Rightarrow p = -\frac{5}{4}.$$

(1.2) $\Delta < 0, p > 1$, 此时有

$$\left|\sqrt{4p-4i}\right| = 3 \Rightarrow p = \frac{13}{4}.$$

- (2) $\Delta = 4 4p$,
 - (2.1) $\Delta \geq 0, p \leq 1$, 此时有

$$|\alpha| + |\beta| = \left| -1 + \sqrt{1-p} \right| + \left| -1 - \sqrt{1-p} \right|.$$

(2.1.1) $\sqrt{1-p} \in [0,1], p \in [0,1]$, 此时有

$$|\alpha| + |\beta| = 1 - \sqrt{1-p} + 1 + \sqrt{1-p} = 2;$$

(2.1.2) $\sqrt{1-p} \in (1,+\infty), p \in (-\infty,0)$, 此时有

$$|\alpha| + |\beta| = -1 + \sqrt{1-p} + 1 + \sqrt{1-p} = 2\sqrt{1-p}.$$

(2.2) $\Delta < 0, p > 1$, 此时设 $\alpha = x + yi, \beta = x - yi, x, y \in \mathbb{R}$, 于是有

$$|\alpha| + |\beta| = 2\sqrt{m^2 + n^2},$$

又有 $p = \alpha \cdot \beta = m^2 + n^2$, 有

$$|\alpha + \beta| = 2\sqrt{p}.$$

综上所述,

$$|\alpha| + |\beta| = \begin{cases} 2\sqrt{p} & \text{for } p \in (1, +\infty) \\ 2 & \text{for } p \in [0, 1] \\ 2\sqrt{1-p} & \text{for } p \in (-\infty, 0) \end{cases}$$

Problem 2.3

设虚数 z 满足 $|2z+3| = \sqrt{3}|\overline{z}+2|$,

- (1) 求证: |z| 是定值;
- (2) 是否存在实数 k, 使 $\frac{z}{k} + \frac{k}{z}$ 为实数?

Solution to Problem 2.3

略; **存在**, $k = \pm \sqrt{3}$. 复数的实部和虚部; 复数的共轭关系; 复数的模.

(1) 设 $z = x + yi, x, y \in \mathbb{R}, y \neq 0$, 于是有 $|(2x+3) + 2yi| = \sqrt{3} |(x+2) - yi|$, 故有 $x^2 + y^2 = 3$, 即 $|z| = \sqrt{3}$.

(2)

$$\frac{z}{k} + \frac{k}{z} = \frac{x+yi}{k} + \frac{k}{x+yi} \tag{14}$$

$$= \frac{x + yi}{k} + \frac{k(x - yi)}{(x + yi)(x - yi)}$$

$$= \frac{x + yi}{k} + \frac{k(x - yi)}{3}$$
(15)

$$=\frac{x+yi}{k} + \frac{k(x-yi)}{3} \tag{16}$$

$$= \left(\frac{x}{k} + \frac{kx}{3}\right) + \left(\frac{y}{k} - \frac{ky}{3}\right)i \in \mathbb{R},\tag{17}$$

故有

$$\frac{y}{k} - \frac{ky}{3} = 0,$$

于是有 $k = \pm \sqrt{3}$.

Section 3 附加题

Problem 3.1

设 $z\in\mathbb{C}, |z|=1, \frac{5}{2}z^2-2z+\frac{1}{z}\in\mathbb{R},$ 求 z.

Solution to Problem 3.1

 $z = \frac{3}{5} \pm \frac{4}{5}i$ or $z = \pm 1$. 复数的实部和虚部; 复数的模; 复数的整数指数幂. 设 $z = a + bi, a, b \in \mathbb{R}$, 显然有 $a^2 + b^2 = 1$, 于是有

$$5ab - 2b - \frac{b}{a^2 + b^2} = 0,$$

于是有

$$5ab - 3b = 0,$$

联立 $a^2 + b^2 = 1$, 解得 $(a,b) = \left(\frac{3}{5}, \frac{4}{5}\right)$ or $\left(\frac{3}{5}, -\frac{4}{5}\right)$ or (1,0) or (-1,0), 即 $z = \frac{3}{5} \pm \frac{4}{5}i$ or $z = \pm 1$.

References

[1] K.C.Sinha. A Text Book of Mathematics XI, volume 11.2. Rastogi Publications, 2018.