CENTRAL FAX CENTER

DEC 1 1 2007.

Application No.: 10/657,910

Docket No.: EISN-018CP

AMENDMENTS TO THE CLAIMS

(currently amended) A pharmaceutical composition for systemic administration 1. comprising a pharmaceutically suitable carrier or diluent and a compound having the structure:

or pharmaceutically acceptable salt or ester derivative thereof; wherein R₁ is hydrogen, C₁-C₂₀ alkyl, C₂-C₂₀ alkenyl, C₂-C₂₀ alkynyl, C₁-C₂₀ heteroalkyl, C₂-C₂₀ heteroalkenyl, C2-C20 heteroalkynyl, C3-C20 cycloalkyl, C3-C20 cycloalkenyl, C3-C20 cycloalkynyl, C3-C20 heterocycloalkyl, C3-C20 heterocycloalkenyl, C3-C20 heterocycloalkynyl, aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, C2-C14 aryl or C₃-C₁₄ heteroaryl;

R₂ is methyl;

R₃ is hydrogen, halogen, hydroxyl, protected hydroxyl, or a C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, C1-C20 heteroalkyl, C2-C20 heteroalkenyl, C2-C20 heteroalkynyl, C3-C20 cycloalkyl, C3-C20 cycloalkenyl, C3-C20 cycloalkynyl, C3-C20 heterocycloalkyl, C3-C20 heterocycloalkenyl, C3-C20 heterocycloalkynyl, an aliphatic, heteroaliphatic, alicyclic, heteroalieyelie, C_3 - C_{14} aryl or C_3 - C_{14} heteroaryl moiety; or

R₁ and R₃, when taken together, may form a substituted or unsubstituted, saturated or unsaturated cyclic ring of 3 to 8 carbon atoms;

R₄ is hydrogen or halogen;

R₅ is hydrogen or an oxygen protecting group;

R₆ is hydrogen, hydroxyl, or protected hydroxyl;

n is 0-2:

R₂, for each occurrence, is independently hydrogen, hydroxyl, or protected hydroxyl;

Docket No.: EISN-018CP

 R_8 is hydrogen, halogen, hydroxyl, protected hydroxyl, alkyloxy, or a C_1 - C_{20} alkyl, C_2 - C_{20} alkynyl an aliphatic-moiety optionally substituted with hydroxyl, protected hydroxyl, SR_{12} , or $NR_{12}R_{12}$;

 R_9 is hydrogen, halogen, hydroxyl, protected hydroxyl, OR_{12} , SR_{12} , $NR_{12}R_{13}$, $-X_1(CH_2)_pX_2-R_{14}$, or is lower alkyl optionally substituted with hydroxyl, protected hydroxyl, halogen, amino, protected amino, or $-X_1(CH_2)_pX_2-R_{14}$;

wherein R₁₂ and R₁₃ are, independently for each occurrence, hydrogen, C₁-C₂₀ alkyl, C₂-C₂₀ alkenyl, C₂-C₂₀ alkynyl, C₁-C₂₀ heteroalkyl, C₂-C₂₀ heteroalkynyl, C₂-C₂₀ alkynyl, C₃-C₂₀ cycloalkyl, C₃-C₂₀ cycloalkynyl, C₃-C₂₀ heterocycloalkyl, C₃-C₂₀ cycloalkynyl, C₃-C₂₀ heterocycloalkynyl, aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, C₃-C₁₄ aryl or C₃-C₁₄ heteroaryl; or a nitrogen or oxygen protecting group, or R₁₂ and R₁₃, taken together may form a saturated or unsaturated cyclic ring of containing-1 to 4 carbon atoms and 1 to 3 nitrogen or oxygen atoms, and each of R₁₂ and R₁₃ are optionally further substituted with one or more occurrences of hydroxyl, protected hydroxyl, alkyloxy, amino, protected amino, alkylamino, aminoalkyl, or halogen,

wherein X_1 and X_2 are each independently absent, or are oxygen, NH, or -N(alkyl), or wherein X_2 - R_{14} together are N_3 or are a saturated or unsaturated heterocyclic moiety,

p is 2-10, and

R₁₄ is hydrogen, or an C₃-C₁₄ aryl, C₃-C₁₄ heteroaryl, C₁-C₂₀alkyl(C₃-C₁₄)aryl, or C₁-C₂₀alkyl(C₃-C₁₄)heteroaryl moiety, or is -(C=O)NHR₁₅, -(C=O)OR₁₅, or - (C=O)R₁₅, wherein each occurrence of R₁₅ is independently hydrogen, C₁-C₂₀ alkyl, C₂-C₂₀ alkenyl, C₂-C₂₀ alkynyl, C₁-C₂₀ heteroalkyl, C₂-C₂₀ heteroalkenyl, C₂-C₂₀ heteroalkynyl, C₃-C₂₀ cycloalkyl, C₃-C₂₀ cycloalkynyl, C₃-C₂₀ heterocycloalkenyl, C₃-C₂₀ cycloalkynyl, aliphatic, heteroalicyelic, heterocycloalkenyl, C₃-C₂₀ heterocycloalkynyl, aliphatic, heteroalicyelic, C₃-C₁₄ aryl or C₃-C₁₄ heteroaryl; or R₁₄ is - SO₂(R₁₆), wherein R₁₆ is a C₁-C₂₀ alkyl, C₂-C₂₀ alkenyl or C₂-C₂₀ alkynyl an aliphatic moiety, wherein one or more of R₁₄, R₁₅, or R₁₆ are optionally substituted with one or more occurrences of hydroxyl, protected hydroxyl, alkyloxy, amino, protected amino, alkylamino, aminoalkyl, or halogen; or

Docket No.: EISN-018CP

R₈ and R₉ may, when taken together, form a saturated or unsaturated cyclic ring of eentaining 1 to 4 carbon atoms and 1 to 3 nitrogen or oxygen atoms and is optionally substituted with hydroxyl, protected hydroxyl, alkyloxy, amino, protected amino, alkylamino, aminoalkyl, or halogen;

R₁₀ is hydrogen, hydroxyl, protected hydroxyl, amino, or protected amino; R₁₁ is hydrogen, hydroxyl or protected hydroxyl;

X is O, NH, or CH2;

Y is CHR₁₇, Θ , C=O, or CR₁₇ or NR₁₇; and Z is CHR₁₈, Θ , C=O, or CR₁₈ or NR₁₈, wherein each occurrence of R₁₇ and R₁₈ is independently hydrogen, C₁-C₂₀ alkyl, C₂-C₂₀ alkynyl or aliphatic, or R₁₂ and R₁₈ taken together is Θ , CH₂ or NR₁₉, wherein R₁₉ is hydrogen or lower alkyl, and Y and Z may be connected by a single or double bond;

wherein oxygen protecting groups are selected from the group consisting of methyl ethers, substituted methyl ethers, methoxymethyl ether, methylthiomethyl ether, benzyloxymethyl ether, p-methoxybenzyloxymethyl ether, substituted ethyl ethers, substituted benzyl ethers, silvl ethers, trimethylsilvl ether, triethylsilylether, triisopropylsilvl ether, t-butyldimethylsilyl ether, tribenzyl silvl ether, t-butyldiphenyl silvl ether, esters, formate, acetate, benzoate, trifluoroacetate, dichloroacetate, carbonates, cyclic acetals and ketals and wherein nitrogen protecting groups are selected from the group consisting of carbamates, Troc, amides, cyclic imides, N-alkyl amines, N-aryl amines, imines, and enamines;

wherein the compound is present in an amount effective to inhibit production of a proinflammatory and/or immunologic cytokine.

(currently amended) The composition of claim 1, wherein:

 R_1 is hydrogen, straight or branched lower alkyl, straight or branched lower heteroalkyl, or C_3 - C_{14} aryl,

wherein the alkyl, heteroalkyl, and aryl groups may optionally be substituted with one or more occurrences of halogen, hydroxyl or protected hydroxyl;

 R_2 is methyl;

R₃ is hydrogen, halogen, hydroxyl, protected hydroxyl, straight or branched lower alkyl, straight or branched lower heteroalkyl, or C₃-C₁₄ aryl,

Docket No.: EISN-018CP

wherein the alkyl, heteroalkyl, and aryl groups may optionally be substituted with one or more occurrences of halogen, hydroxyl or protected hydroxyl; or

R₁ and R₃, when taken together, may form a saturated or unsaturated cyclic ring of 3 to 8 carbon atoms, optionally substituted with one or more occurrences of halogen;

R₄ is hydrogen or halogen;

Rs is hydrogen or a protecting group;

 R_6 is hydrogen, hydroxyl, or protected hydroxyl;

n is 0-2;

 R_7 , for each occurrence, is independently hydrogen, hydroxyl, or protected hydroxyl; R_8 is hydrogen, halogen, hydroxyl, protected hydroxyl, alkyloxy, or lower alkyl optionally substituted with hydroxyl, protected hydroxyl, SR_{12} , or $NR_{12}R_{13}$; R_9 is hydrogen, halogen, hydroxyl, protected hydroxyl, OR_{12} , SR_{12} , $NR_{12}R_{13}$, $-X_1(CH_2)_pX_2-R_{14}$, or is lower alkyl optionally substituted with hydroxyl, protected hydroxyl, halogen, amino, protected amino, or $-X_1(CH_2)_pX_2-R_{14}$;

wherein R_{12} and R_{13} are, independently for each occurrence, hydrogen, lower alkyl, C_3 - C_{14} aryl, C_3 - C_{14} heteroaryl, alkyl(C_3 - C_{14})aryl, or alkyl(C_3 - C_{14})heteroaryl, or a nitrogen or oxygen protecting group, or R_{12} and R_{13} , taken together may form a saturated or unsaturated cyclic ring of containing-1 to 4 carbon atoms and 1 to 3 nitrogen or oxygen atoms, and each of R_{12} and R_{13} are optionally further substituted with one or more occurrences of hydroxyl, protected hydroxyl, alkyloxy, amino, protected amino, alkylamino, aminoalkyl, or halogen,

wherein X_1 and X_2 are each independently absent, or are oxygen, NH, or -N(alkyl), or wherein X_2 - R_{14} together are N_3 or are a saturated or unsaturated heterocyclic moiety, p is 2-10, and

 R_{14} is hydrogen, or an \underline{a} $\underline{C_3}$ $\underline{C_{14}}$ aryl, $\underline{C_3}$ $\underline{C_{14}}$ heteroaryl, alkyl $\underline{(C_3}$ $\underline{C_{14}}$) aryl, or alkyl $\underline{(C_3}$ $\underline{C_{14}}$) heteroaryl moiety, or is $\underline{-(C=O)NHR_{15}}$, $\underline{-(C=O)OR_{15}}$, or $\underline{-(C=O)R_{15}}$, wherein each occurrence of R_{15} is independently hydrogen, alkyl, heteroalkyl, $\underline{C_3}$ $\underline{C_{14}}$ aryl, $\underline{C_3}$ $\underline{C_{14}}$ heteroaryl, alkyl $\underline{(C_3}$ $\underline{C_{14}}$) aryl, or alkyl $\underline{(C_3}$ $\underline{C_{14}}$) heteroaryl, or R_{14} is $\underline{-SO_2(R_{16})}$, wherein R_{16} is an alkyl moiety, wherein one or more of R_{14} , R_{15} , or R_{16} are optionally substituted with one or more occurrences of hydroxyl, protected hydroxyl, alkyloxy, amino, protected amino, alkylamino, aminoalkyl, or halogen; or

Docket No.: EISN-018CP

R₈ and R₉ may, when taken together, form a saturated or unsaturated cyclic ring of eentaining-1 to 4 carbon atoms and 1 to 3 nitrogen or oxygen atoms and is optionally substituted with hydroxyl, protected hydroxyl, alkyloxy, amino, protected amino, alkylamino, aminoalkyl, or halogen;

 R_{10} is hydrogen, hydroxyl, protected hydroxyl, amino, or protected amino; R_{11} is hydrogen, hydroxyl or protected hydroxyl;

X is O;

Y is CHR₁₇, Θ , C=O, or CR₁₇ or NR₁₂; and Z is CHR₁₈, Θ , C=O, or CR₁₈ or NR₁₈, wherein each occurrence of R₁₇ and R₁₈ is independently hydrogen or lower alkyl, or R₁₇ and R₁₈ taken together is Θ , CH₂ or NR₁₉, wherein R₁₉ is hydrogen or lower alkyl, and Y and Z may be connected by a single or double bond.

- 3. (previously presented) The composition of claim 2, where and n is 1.
- 4. (original) The composition of claim 2, where R₄ is halogen.
- 5. (original) The composition of claim 2, where R₄ is fluorine.
- 6. (original) The composition of claim 2, where Y and Z together represent-CH=CH-.
- 7. (original) The composition of claim 2, where Y and Z together represent trans -CH=CH-.
- 8. (previously presented) The composition of claim 2, wherein R_1 and R_2 are each methyl and R_3 is hydrogen and the compound has the structure:

wherein R4-R11, n, Y and Z are as defined in claim 2.

9. (previously presented) The composition of claim 8, wherein n is 1.

Application No.: 10/657,910 Docket No.: EISN-018CP

- 10. (original) The composition of claim 8, wherein R4 is halogen.
- 11. (original) The composition of claim 8, wherein Y and Z together represent -CH=CH-.
- 12. (previously presented) The composition of claim 8, wherein n is 1, R₄ is halogen and Y and Z together represent -CH=CH-.
- 13. (original) The composition of claim 11 or 12 wherein -CH=CH- is trans.
- 14. (currently amended) The composition of claim 2, wherein R₉ is NR₁₂R₁₃ and the compound has the structure:

wherein R1-R13, n, Y and Z are as defined in claim 2, or

R₁₃ and R₈ may, when taken together, form a cyclic ring of containing 1 to 4 carbon atoms and 1 to 3 nitrogen or oxygen atoms and is optionally substituted with hydrogen, alkyloxy, amino, alkylamino, aminoalkyl, and halogen.

- 15. (previously presented) The composition of claim 14, wherein n is 1.
- 16. (original) The composition of claim 14, wherein R₄ is halogen.
- 17. (original) The composition of claim 14, wherein Y and Z together represent -CH=CH-.
- 18. (original) The composition of claim 14, wherein R_1 and R_2 are each methyl and R_3 is hydrogen.
- 19. (previously presented) The composition of claim 14, wherein n is 1, R₁ and R₂ are each methyl, R₃ is hydrogen, R₄ is halogen, and Y and Z together represent -CH=CH-.

Docket No.: EISN-018CP

- 20. (original) The composition of claim 17 or 19, wherein -CH=CH- is trans.
- 21. (original) The composition of claim 1 wherein the compound has the structure:

or pharmaceutically acceptable salt or ester derivative thereof.

22. (original) The composition of claim 1 wherein the compound has the structure:

or pharmaceutically acceptable salt or ester derivative thereof.

23. (original) The composition of claim 1 wherein the compound has the structure:

or pharmaceutically acceptable salt or ester derivative thereof.

24. (original) The composition of claim 1 wherein the compound has the structure:

Docket No.: EISN-018CP

or pharmaceutically acceptable salt or ester derivative thereof.

25-26. (canceled)

27. (original) The composition of claim 1 wherein the compound has the structure:

or pharmaceutically acceptable salt or ester derivative thereof.

28. (original) The composition of claim 1 wherein the compound has the structure:

or pharmaceutically acceptable salt or ester derivative thereof.

29. (original) The composition of claim 1 wherein the compound has the structure:

or pharmaceutically acceptable salt or ester derivative-thereof.

30. (original) The composition of claim 1 wherein the compound has the structure:

or pharmaceutically acceptable salt or ester derivative thereof.

31. (original) The composition of claim 1 wherein the compound has the structure:

or pharmaceutically acceptable salt or ester derivative thereof.

- 32. (canceled)
- 33. The composition of claim 1 wherein the compound has the structure:

Application No.: 10/657,910 Docket No.: EISN-018CP

or pharmaceutically acceptable salt or ester derivative thereof.

34-35. (canceled)

- 36. (withdrawn) The pharmaceutical composition of claim 1, wherein the composition is for oral administration.
- 37. (canceled)
- 38. (withdrawn) The pharmnaceutical composition of claim 1, wherein the pro-inflammatory and/or immunologic cytokine is TNFα, IL-1, IL-6, IL-8 or IL-2.
- 39. (withdrawn) A method for treating rheumatoid arthritis, psoriasis, asthma, sepsis, inflammatory bowel disease, atopic dermatitis or Crohn's disease comprising the step of systemically administering to a subject in need thereof a therapeutically effective amount of a pharmaceutical composition of claim 1.
- 40. (withdrawn) The method of claim 39, wherein the compound is administered orally.
- 41. (canceled)
- 42. (withdrawn) The method of claim 39, wherein the method is for treating psoriasis.
- 43. (withdrawn, currently amended) The method of claim 39 41, wherein the compound has any one of the following structures:

Docket No.: EISN-018CP

or pharmaceutically acceptable salt or ester derivative thereof.

- 44. (canceled)
- 45. (withdrawn) The method of claim 39, wherein the pro-inflammatory and/or immunologic cytokine is TNFα, IL-1, IL-6, IL-8 or IL-2.
- 46. (withdrawn) The composition of claim 2, where R₁ is hydrogen or methyl.
- 47. (withdrawn) The composition of claim 2, where R₃ is hydrogen or halogen.
- 48. (withdrawn) The composition of claim 2, where R4 is hydrogen.
- 49. (withdrawn) The composition of claim 2, where R₅ is hydrogen.
- 50. (withdrawn) The composition of claim 2, where R_6 is hydroxyl.

Docket No.: EISN-018CP

Application No.: 10/657,910

- 51. (withdrawn) The composition of claim 2, where R₇ is hydrogen or hydroxyl.
- 52. (withdrawn) The composition of claim 2, where R₈ is hydrogen or halogen.
- 53. (withdrawn) The composition of claim 2, where R₉ is hydroxyl, protected hydroxyl, OR₁₂, -NR₁₂R₁₃, or -O(CH₂)_pX₂-R₁₄, wherein R₁₂, R₁₃, R₁₄ and X₂ are as defined in claim 2.
- (withdrawn) The composition of claim 53, where R₉ is -OR₁₂, wherein R₁₂ is methyl, ethyl, propyl, isopropyl, butyl, -CH₂COOMe, Bn, PMB (MPM), 3,4-CIBn, or R₉ is

 AcHN

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O

 T

 O
- 55. (withdrawn) The composition of claim 53, where R₉ is -NR₁₂R₁₃, or wherein R₁₂ is methyl, ethyl, propyl, isopropyl, or butyl, optionally substituted with one or more occurrences of hydroxyl or protected hydroxyl, and R₁₃ is hydrogen or lower alkyl, or NR₁₂R₁₃ together represents a 5- or 6- membered heterocyclic moiety.
- 56. (withdrawn) The composition of claim 53, where R₉ is -O(CH₂)_pX₂-R₁₄, wherein X₂-R₁₄ together represent N₃, NMe₂, NHAc, NHSO₂Me, NHCONHMe, NHCONHPh, morpholine, imidazole, aminopyridine, or any one of:

57. (withdrawn, currently amended) The composition of claim 2, where R₈ and R₉, taken together, form a saturated or unsaturated cyclic ring of containing 1 to 4 carbon atoms and 1 to 3 nitrogen or oxygen atoms and is optionally substituted with hydroxyl,

Docket No.: EISN-018CP

protected hydroxyl, alkyloxy, amino, protected amino, alkylamino, aminoalkyl, or halogen.

- 58. (withdrawn) The composition of claim 2, where R₁₀ is hydroxyl.
- 59. (withdrawn) The composition of claim 2, where R₁₁ is hydrogen.
- 60. (withdrawn) The composition of claim 2, where Y and Z together are cyclopropyl.
- 61. (canceled)
- 62. (previously presented) The composition of claim 1 wherein the compound has the structure:

or pharmaceutically acceptable salt or ester derivative thereof.

63. (previously presented) The composition of claim 1 wherein the compound has the structure:

or pharmaceutically acceptable salt or ester derivative thereof.

64. (canceled)

Application No.: 10/657,910 Docket No.: EISN-018CP

65. (previously presented) The composition of claim 1 wherein the compound has the structure:

or pharmaceutically acceptable salt or ester derivative thereof.

66. (previously presented) The composition of claim 1 wherein the compound has the structure:

or pharmaceutically acceptable salt or ester derivative thereof.