Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Московский институт электронной техники».

Институт микроприборов и систем управления им. Л. Н. Преснухина

Отчёт по лабораторной работе №1

по курсу «Преобразователи информации и датчики физических величин»

на тему

«Моделирование интегрального тензомоста»

Вариант №6

Выполнила бригада студентов группы ИВТ – 32:

Голев Андрей Дмитриевич Жигалов Даниил Владиславович Лазарева Мария Викторовна

Преподаватель:

Страчилов Максим Васильевич

І. Расчёт параметров принципиальной схемы модели

Таблица 1. Исходные данные для моделирования

Вариант	$\gamma(\%C^{-1})$	$\alpha(\%C^{-1})$	±Δ T (°C)	R ₀ (кОм)	$\pm x_{max}$ (%)	$g(\frac{\kappa O M}{B})$	E (B)	R_k
6	0,21	-0,92	±45	1,0	0,32	0,82	9	1,1

Таблица 2. Что-то

a_1	a_2	a_3	a_4	a_5
1	1	1	1	0,25

1. Устанавливаем номинальные сопротивления плеч моста R_0 :

$$U_0 = -\frac{R_0}{g \cdot a_1} = -\frac{10^3}{0.82 \cdot 10^3 \cdot 1} \approx -1.22 \text{ B}$$

2. Вычисляем амплитуду входного воздействия $U_{\rm д}$ по рассчитанному U_0 и выбранным значениям a_1 и a_2 :

$$U_{\mathrm{A}} = \pm x_{max} \cdot U_0 \cdot \frac{a_2}{a_1} = \mp 0,32 \cdot 10^{-2} \cdot 1,22 \cdot \frac{1}{1} = \mp 3,9 \ \mathrm{MB}$$

3. Вычисляем синфазную (температурную) составляющую в сигнале управления:

$$E_c = \frac{\gamma \cdot R_0 \cdot \Delta T}{a_4 \cdot g} = \frac{0.21 \cdot 10^{-2} \cdot 10^3 \cdot (\pm 45)}{1 \cdot 0.82 \cdot 10^3} = \pm 0.115 \text{ B}$$

4. Вычисляем номинальное сопротивление терморезистора при заданном α :

$$R_{T_0} = -rac{\gamma \cdot R_0}{lpha} = -rac{0.21 \cdot 10^{-2} \cdot 10^3}{-0.92 \, \cdot 10^{-2}} pprox 228 \, \mathrm{Om}$$

5. Устанавливаем номинальное сопротивление терморезистора R_{T_0} :

$$U_{\text{cm}} = \frac{R_{T_0}}{g \cdot a_5} = \frac{228}{0.82 \cdot 10^3 \cdot 0.25} \approx 1.11 \text{ B}$$

Таблица 3. Расчётные параметры модели

U_0 , B	$U_{\mathrm{д}}(x)$, мВ	$U_{\scriptscriptstyle exttt{CM}}$, B	E_c , B
-1,22	∓3,9	1,11	±0,115

II. Корректировка параметров базовой схемы тензомоста

Рисунок 1. Схема моделирования тензомоста с изменёнными параметрами

Рисунок 2. Что-то

III. Моделирование тензомоста при разных температурных условиях

Таблица 4. Результаты моделирования тензомоста

Вариал	Вариант Результаты моделирования							Оценка результатов моделирования					
								оденки розунатичев меденировины					
6		$T=T_0$,		$T = T_1$		$T = T_2$		(мВ)			· ·	-5 (o)	
		(<i>Ec(T)</i> =0 мВ)		(T_{\min})		(T_{\max})		/ _{вых} 0	$U_{ m Bbix2}$ - $U_{ m Bbix0}$	ствит икВС ⁻¹⁾ .	ствит : (мкВС ⁻¹	мос-	
					(<i>Ec(T)</i> =-115 мВ)		(Ec(T)=+115 mB)					Tb. $T_{ heta}$ (1	
		$U_{ m Bbix}(0)$	$U_{\mathrm{T}}\left(\mathrm{MB}\right)$	$U_{ m Bbix}$ 1 (MB)	$U_{\mathrm{T}}\left(\mathrm{_{MB}}\right)$	$U_{ m Bbix2}$ (MB)	$U_{ m T} \left({ m {\tiny MB}} ight)$	$\Delta U_1 = U_{ ext{Bbix}1}$ - $U_{ ext{Bbix}0}$ (MB)	$\Delta U_2 = C$	Термочувствит средняя (мкВС ⁻¹⁾ .	Термочувствит расчетная (мкВС ⁻¹).	Чувствит-ть. моста при $T=T_0$ (мВ/%)	
ации	x= 0,32%	285,0	278	310,0		260,5	163	25,0	-24,5	55		89,1	
Без компенсации	x=- 0,32%	-285,0		-312,0	393	-261,0		-27,0	24,0	-57		89,1	
Я	x = 0,32%	134,3		140,6		128,4		6,3	-5,9	14		42,0	
Компенсация R _K =1,1кОм	x=- 0,32%	-134,8		-141,2		-128,9		-6,4	5,9	-14		42,1	
Я	x = 0,32%	88,1		90,9		85,5		2,8	-2,6	6		27,5	
Компенсация R _K =2кОм	x=- 0,32%	-88,5		-91,2		-85,9		-2,7	2,6	-6		27,6	
13	x = 0,32%	229,5		229,7		229,4		0,2	-0,1	≈0		71,7	
Компенсация R _T =228Ом	x=- 0,32%	-230,3		-230,3		-230,2		0	0,1	≈0		71,9	