$\overline{\mathrm{mol}^{-1}}$ 6.02214×10^{23} $N_{\rm Av}$: 1.6605×10^{-27} 1 amu: kg 1.38065×10^{-23} $\rm J~K^{-1}$ 8.61734×10^{-5} ${
m eV~K^{-1}}$ $k_{\rm B}$: $J K^{-1} mol^{-1}$ 8.2057×10^{-2} l atm mol⁻¹ K⁻¹ R: 8.314472 ${
m J}~{
m s}^{-1}~{
m m}^{-2}~{
m K}^{-4}$ 5.6704×10^{-8} σ_{SB} : $\rm m\ s^{-1}$ 2.99792458×10^{8} c: 6.62607×10^{-34} 4.13566×10^{-15} J seV s h: 1.05457×10^{-34} 6.58212×10^{-16} eV sJ s \hbar : hc: 1239.8eV nm 1.60218×10^{-19} \mathbf{C} e: $9.10938215\times 10^{-31}$ $MeV c^{-2}$ kg 1: 0.5109989 m_e : $C^2 J^{-1} m^{-1}$ $e^2 \text{ Å}^{-1} \text{ eV}^{-1}$ 8.85419×10^{-12} 5.52635×10^{-3} $e^2/4\pi\epsilon_0$: eV Å 2.30708×10^{-28} J m 14.39964 0.529177×10^{-10} 0.529177Å \mathbf{m} a_0 : 27.212 E_{H} : Ha eV

Table 1: Key units in Physical Chemistry

1 The Classical Foundations

1.1 Lecture 0: Introduction

- 1. Burning lighter
- 2. Foundations of Physical Chemistry
 - (a) Quantum mechanics
 - (b) Statistical mechanics
 - (c) Thermodynamics, kinetics, spectroscopy
 - (d) Physical and chemical properties of matter

1.2 Lecture 1: Basic statistics

1.2.1 Discrete probability distributions—Coin flip

- 1. Example of Bernoulli trial, 2^n possible outcomes from n flips
- 2. Number of ways to get i heads in n flips, ${}_{n}C_{i}=n!/i!(n-i)!$
- 3. Probability of i heads $P_i \propto {}_n C_i$
- 4. Normalized probability, $\tilde{P}_i = P_i / \sum_i P_i = {}_{n}C_i / 2^n$
- 5. Expectation value $\langle i \rangle = \sum_i i \tilde{P}_i$

1.2.2 Continuous distributions—temperature

- 1. Probability density P(x) has units 1/x
- 2. Normalized $\tilde{P}(x) = P(x) / \int P(x) dx$
- 3. (Unitless) probability $a < x < b = \int_a^b \tilde{P}(x) dx$
- 4. Expectation value $\langle f(x) \rangle = \int f(x) \tilde{P}(x) dx$
- 5. Mean = $\langle x \rangle$
- 6. Mean squared = $\langle x^2 \rangle$
- 7. Variance $\sigma^2 = \langle x^2 \rangle \langle x \rangle^2$
- 8. Standard deviation $\Delta x = \sigma$

1.2.3 Boltzmann distribution

- 1. $P(E) \propto e^{-E/k_BT}$, in some sense the definition of temperature (Figure 1)
- 2. Energy and its units
- 3. Absolute temperature and its units
- 4. k_BT as an energy scale, 0.026 eV at 298 K
- 5. Equipartition energy freely exchanged within and between all degrees of freedom

1.2.4 Boltzmann distribution: Gravity example

- 1. E(h) = mgh, linear, continuous energy spectrum
- 2. Exponential distribution

$$P(h) = \frac{1}{\int_0^\infty \exp\left(-mgh/k_BT\right)dh} \exp\left(\frac{-mgh}{k_BT}\right) = \frac{mg}{k_BT} \exp\left(\frac{-mgh}{k_BT}\right)$$

- 3. molecule vs car in a gravitational field (Table 2)
- 4. Implies exponential decrease in gas density with altitude
- 5. Barometric law for gases, $P = P_0 e^{-mgh/k_BT}$

1.2.5 Boltzmann distribution: Kinetic energy in 1-D example

- 1. $KE = \frac{1}{2}mv_x^2$, $P(v_x) \propto \exp(-mv_x^2/2k_BT)$
- 2. Standard Normalized Gaussian distribution of mean μ and variance σ^2

$$G(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

3. By inspection, $\mu = \langle v_x \rangle = 0$, $\sigma^2 = \langle v_x^2 \rangle = k_B T/m$

4. Normalized velocity distribution

$$P_{1D}(v_x) = \left(\frac{m}{2\pi k_B T}\right)^{1/2} \exp\left(-\frac{m|v_x|^2}{2k_B T}\right)$$

5. Molecule vs car again (Table 2)

Table 2: Car vs gas molecule at the earth's surface

	car	gas molecule
\overline{m}	$1000\mathrm{kg}$	$1 \times 10^{-26} \mathrm{kg}$
h	$1\mathrm{m}$	$1\mathrm{m}$
mgh	$9800\mathrm{J}$	$9.8 \times 10^{-26} \mathrm{J}$
	$6.1 \times 10^{22} \mathrm{eV}$	$6.1 \times 10^{-7} \mathrm{eV}$
T	$298\mathrm{K}$	$298\mathrm{K}$
k_BT	$0.026\mathrm{eV}$	$0.026\mathrm{eV}$
mgh/k_BT	2.4×10^{24}	2.3×10^{-5}
P(1 m)/P(0)	$e^{-2.4 \times 10^{-24}}$	0.99998
$\langle h \rangle$	$0\mathrm{m}$	$42\mathrm{km}$
$\langle v_x \rangle^{1/2}$	$2 \times 10^{-12} \mathrm{m/s}$	$640\mathrm{m/s}$

1.3 Lecture 2: Kinetic theory of gases

- 1. Postulates
 - (a) Gas is composed of molecules in constant random, thermal motion
 - (b) Molecules only interact by perfectly elastic collisions
 - (c) Volume of molecules is << total volume
- 2. Maxwell-Boltzmann distribution of molecular speeds (Figure 3)
 - (a) Speed $v = \sqrt{v_x^2 + v_y^2 + v_z^2}$, spherical coordinates

$$P_{\text{MB}}(v) = \int \int P_{1D}(v_x) P_{1D}(v_y) P_{1D}(v_z) v^2 \sin(\theta) d\theta d\phi$$
$$= 4\pi v^2 \left(\frac{m}{2\pi k_B T}\right)^{3/2} \exp\left(-\frac{mv^2}{2k_B T}\right)$$

Table 3: Energy conversions and correspondences

	J	eV	Hartree	$kJ \text{ mol}^{-1}$	$ m cm^{-1}$
1 J =	1	6.2415×10^{18}	2.2937×10^{17}	6.0221×10^{20}	5.0340×10^{22}
1 eV =	1.6022×10^{-19}	1	0.036748	96.485	8065.5
1 Ha =	4.3598×10^{-18}	27.212	1	2625.6	219474.6
$1 \text{ kJ mol}^{-1} =$	1.6605×10^{-21}	0.010364	3.8087×10^{-4}	1	83.5935
$1 \text{ cm}^{-1} =$	1.986410^{-23}	1.23984×10^{-4}	4.55623×10^{-6}	0.011963	1

Figure 1: Boltzmann distribution at various temperatures

Figure 2: One-dimensional (Gaussian) velocities of N₂ gas

Figure 3: Maxwell-Boltzmann speed distribution of N_2 gas

- (b) mean speeds $\langle v \rangle = \int_0^\infty v P_{MB}(v) dv \propto \sqrt{T}$
- (c) mean kinetic energy $\langle U \rangle = \frac{1}{2} m \langle v^2 \rangle = \frac{3}{2} RT$
- (d) heat capacity $C_v = dU/dT = \frac{3}{2}R$
- 3. Flux and pressure
 - (a) Velocity flux $j(v_x)dv_x=v_x\frac{N}{V}P(v_x)dv_x$, molecules /area /time / v_x
 - (b) Wall collisions, $J_w = \int j(v_x) dv_x$, total collisions /area /time
 - (c) Momentum change with wall collisions (Δ momentum/area/time):

$$P = \int_0^\infty 2mv_x j_x(v_x) dv_x = m(N/V)v_x^2 \rangle = Nk_B T/V$$

- 4. Collisions and mean free path
 - (a) Collision cross section $\sigma = \pi d^2$, area swept by molecule
 - (b) Molecular collisions per molecule = volume swept * density of targets = $z = \sigma \langle v \rangle (N/V) \sqrt{2}$
 - (c) Total collisions per volume = $z_{AA} = z(N/V)(1/2)$
 - (d) Mean free path, $\lambda = \langle v \rangle / z$, mean distance between collisions

Table 4: N_2 at 298 K and $25 \, L \, \text{mol}^{-1}$

$\overline{\langle v \rangle}$	$475\mathrm{ms^{-1}} = 1060\mathrm{h^{-1}}$
J_W	$0.48\mathrm{molcm^{-2}s^{-1}}$
P	1 bar
σ	$0.43\mathrm{nm}^2$
z	$7 \times 10^9 \mathrm{s}^{-1}$
$Z_{ m AA}$	$8 \times 10^{28} \mathrm{s}^{-1} \mathrm{cm}^{-3}$
λ	$68\mathrm{nm} = 183\sigma$
D_{11}	$1.1 \times 10^{-5} \mathrm{m}^2 \mathrm{s}^{-1}$

1.4 Lecture 3: Transport

- 1. Transport of energy, momentum, mass across a gradient.
- 2. Infinite gradient: effusion and Graham's law, effusion rate $\propto MW^{-1/2}$
- 3. Finite gradient: Fick's first law
 - (a) net flux proportional to concentration gradient
 - (b) $j_x = -D\frac{dc}{dx}$
 - (c) Self-diffusion constant, $D = \frac{1}{3}\lambda \langle v \rangle$
- 4. Fick's second law: time evolution of concentration gradient
 - (a) Continuity with no advection: $\frac{\partial c}{\partial t} = -\nabla \cdot \vec{j} + \text{gen}$
 - (b) One-dimension, point source: $\frac{dc}{dt}=D\frac{d^2c}{dx^2},\,c(x,t=0)=c_0$

Table 5: Kinetic theory of gases key equations

Boltzmann distribution $(g(E))$: degeneracy of E)	$P(E) = g(E)e^{-E/k_BT}$
Maxwell-Boltzmann distribution	$P_{\text{MB}}(v) = 4\pi v^2 \left(\frac{m}{2\pi k_B T}\right)^{3/2} \exp\left(-\frac{mv^2}{2k_B T}\right)$
Mean and RMS speeds	$\langle v \rangle = \left(\frac{8k_BT}{\pi m}\right)^{1/2} \qquad \langle v^2 \rangle^{1/2} = \left(\frac{3k_BT}{m}\right)^{1/2}$
Pressure	$\langle P \rangle = \frac{\Delta p}{\Delta t} = m \frac{N}{V} \frac{1}{3} \langle v^2 \rangle = \frac{N k_B T}{V} = \frac{nRT}{V}$
Wall collision frequency	$J_W = \frac{1}{4} \frac{N}{V} \langle v \rangle = \frac{P}{(2\pi m k_B T)^{1/2}}$
Molecular collision frequency	$z = \sqrt{2}\sigma \langle v \rangle \frac{N}{V} = \frac{4\sigma P}{(\pi m k_B T)^{1/2}}$
Total collisions	$z_{AA}=rac{1}{2}rac{N}{V}z$
Mean free path	$\lambda = \frac{\langle v \rangle}{z} = \frac{V}{\sqrt{2}\sigma N}$
Graham's effusion law	$\frac{dN}{dt} = \text{Area} \cdot J_w \propto 1/m^{1/2}$
Effusion from a vessel	$P = P_0 e^{-t/\tau}, \tau = \frac{V}{A} \left(\frac{2\pi m}{k_B T}\right)^{1/2}$
Self-diffusion constant	$D_{11} = \frac{1}{3} \langle v \rangle \lambda$
Diffusion rate	$\langle x^2 \rangle^{1/2} = \sqrt{2Dt} \langle r^2 \rangle^{1/2} = \sqrt{6Dt}$
Einstein-Smoluchowski equation	$D_{11} = \frac{\delta^2}{2\tau}$
Stokes-Einstein equation for liquids	$D_{11} = \frac{k_B T}{4\pi \eta r}$ "Slip" boundary
	$D_{\text{Brownian}} = \frac{k_B T}{6\pi \eta r}$ "Stick" boundary

- (c) Separate variables c(x,t) = X(x)t(t)
- (d) Diffusion has Gaussian probability distribution: $c(x,t)/c_0 = [2\sqrt{\pi Dt}]^{-1} \exp(-x^2/4Dt)$
- 5. Random walk model of diffusion
 - (a) N steps, $n = n_r n_l$ net to the right, $P(n) = \binom{N}{n_r} 2^{-N}$
 - (b) Large N and Stirling approximation, $N! \approx (2\pi N)^{1/2} N^N e^{-N}$
 - (c) Let $x = \delta(n_r n_l)$, $N = t/\tau$, Gaussian reappears!

$$P(x,t) = \left(\frac{2\tau}{\pi t}\right)^{1/2} e^{-x^2\tau/2t\delta^2}$$

- (d) Einstein-Smoluchowski relation $D=\delta^2/2\tau$
- 6. Knudsen diffusion, $\delta=(3/2)l,\,\delta/\tau=\langle v\rangle,\,D=\frac{1}{3}l\langle v\rangle$
- 7. Seeing is believing—Brownian motion
 - (a) Seemingly random motion of large particles ("dust") due to "kicks" from invisible molecules
 - (b) Einstein in one of his four 1905 Annus Mirabilis papers shows
 - i. Motion of particles suspened in a fluid of molecules must follow same Gaussian diffusion behavior
 - ii. From steady-state arguments in a field, diffusion constant is Boltzmann energy, k_BT , times mobility
 - iii. Mobility inversely related to viscosity
 - (c) Stokes-Einstein equation
 - (d) Allows measurement of Avogadro's number, final proof of kinetic theory of matter
 - (e) Similar model for diffusion of liquid molecules, slip boundary

Figure 4: Diffusional spreading, $\sqrt{\langle x^2 \rangle} = \sqrt{2Dt}$

Table 6: Classical waves

The free wave equation	$\frac{\partial^2 \Psi(x,t)}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \Psi(x,t)}{\partial t^2}$		
General solution	$\Psi(x,t) = A\sin(kx - \omega t)$		
Wavelength (distance)	$\lambda = 2\pi/k$		
Frequency (/time)	$\nu = \omega/2\pi$		
Speed	$v = \lambda \nu$		
Amplitude (distance)	A		
Energy	$E \propto A^2$		
Standing wave	$\Psi(x,t) = A\sin(kx)\cos(\omega t), k = n\pi/a$		

2 Quantum Mechanics: Blurred Lines Between Particles and Waves

2.1 Lecture 4: Duality and demise of classical physics

2.1.1 Properties of waves

- 1. Characterized by frequency, wavelength, amplitude, ...
- 2. Traveling waves, standing waves
- 3. Interference, diffraction
- 4. Characteristic of light, among other thing
- 5. Expected energy of a classical wave, $\langle \epsilon \rangle_{\nu} = k_B T$ for all ν

2.1.2 Blackbody radiation - light emitted by all bodies due to their temperature

- 1. Blackbody/Hohlraum spectrum (like the sun)
 - (a) Stefan-Boltzmann law, total irradiance $I(\lambda, T)$
 - (b) Wien's displacement law, $\lambda_{\text{text}}T = \text{constant}$
- 2. Rayleigh-Jeans predicts spectrum using classical physics
 - (a) standing waves + classical wave energy \rightarrow ultraviolet catastrophe
 - (b) $I(\lambda, T) = (8\pi/\lambda^4) \cdot k_B T \cdot c$
- 3. Planck model, 1900
 - (a) Energy spectrum of waves are quantized, $\epsilon_{\nu} = nh\nu$, n = 0, 1, 2, ...
 - (b) Expected energy of a quantized wave:

$$\langle \epsilon \rangle_{\nu} = \sum_{n=0}^{\infty} e^{-nh\nu/k_B T} = h\nu/\left(e^{h\nu/k_B T} - 1\right)$$

(c) Intensity:

$$I(\lambda, T) = \frac{8\pi}{\lambda^4} \cdot \langle \epsilon \rangle_{\nu} \cdot c$$

(d) Correctly reproduces Stefan-Boltzmann and Wien Laws!

2.1.3 Heat capacities of solids

- 1. Law of DuLong and Pettite, $C_v = 3R$, fails at low T
- 2. Einstein model
 - (a) Energy of atomic vibrations ν are quantized, $\epsilon_{\nu} = nh\nu$, n = 0, 1, 2, ...
 - (b) Expected energy of vibration exactly same as Planck's quantized waves
 - (c) Heat capacity = derivative of energy wrt temperature goes to zero at low T

2.1.4 Photoelectric effect - electrons emitted when light shined on a metal

- 1. Energy of most weakly bound electrons to a material defined as work function, W
- 2. Shine light on metal, observe kinetic energy of electrons $E_{\text{kinetic}} = h\nu W$
- 3. Kinetic energy varies with light frequency, number of electrons varies with light intensity
- 4. Einstein model, 1905 (Nobel prize)
 - (a) Light is both wave-like and composed of particle-like "photons"
 - (b) Photon energy related to frequency: $\epsilon = h\nu = hc/\lambda$
 - (c) Light intensity related to number of photons

2.1.5 Special theory of relative (Einstein, 1905)

- 1. speed of light c in a vacuum is a constant for all observes, independent of
- 2. photons carry momentum $p = h/\lambda$
- 3. demonstrated by Compton effect, light scattering off electrons changes λ

2.1.6 Rutherford, planetary model of atom

1. Inconsistent with Maxwell's equations

2.1.7 Bohr model of H atom

- 1. Bohr model (the old quantum mechanics)
 - (a) Stable electron "orbits," quantized angular momentum
 - (b) Light emission corresponds to orbital jumps, $\nu = \Delta E/h$
 - (c) Bohr equations
 - (d) Comparison with Rydberg formula
 - (e) Failure for larger atoms
- 2. Explains discrete H energy spectrum and Rydberg formala

2.1.8 de Broglie relation

- 1. $\lambda = h/p$ universally
- 2. Relation to Bohr orbits
- 3. Davison and Germer experiment, e^- diffraction off Ni
- 4. Basis of modern electron diffraction to observe structure of materials

2.1.9 Wave-particle duality

Figure 5: Blackbody irradiance

Figure 6: Average energy of a Planck quantized oscillator

2.2 Lecture 5: Postulates of quantum mechanics

2.2.1 Schrödinger equation describes wave-like properties of matter

1. Attempt to mathematically elaborate de'Broglie idea

Table 7: The new physics

Stefan-Boltzmann Law	$\int I(\lambda, T) d\lambda = \sigma_{\rm SB} T^4$
Wien's Law	$\lambda_{\rm max}T=2897768~{\rm nm~K}$
Rayleigh-Jeans eq	$I(\lambda, T) = \frac{8\pi}{\lambda^4} k_B T c$
Blackbody irradiance	$I(\lambda, T) = \frac{8\pi}{\lambda^5} \frac{hc^2}{e^{hc/\lambda k_B T} - 1}$
Einstein crystal	$C_v = 3R \left(\frac{h\nu}{k_B T}\right)^2 \frac{e^{h\nu/k_B T}}{\left(e^{h\nu/k_B T} - 1\right)^2}$
Photon energy	$\epsilon = h\nu = hc/\lambda$
Rydberg equation	$\nu = R_H c \left(1/n^2 - 1/k^2 \right)$
Bohr equations $n = 1, 2, \dots$	$l_n = n\hbar$ $r_n = n^2 \left(\frac{4\pi\epsilon_0 \hbar^2}{e^2 m_e}\right) = n^2 a_0$ $E_n = -\frac{m_e e^4}{8\epsilon_0^2 h^2} \frac{1}{n^2} = -\frac{E_H}{2} \frac{1}{n^2}$ $p_n = \frac{e^2}{4\pi\epsilon_0} \frac{m_e}{\hbar} \frac{1}{n} = p_0 \frac{1}{n}$
de Broglie equation	$\lambda = \frac{h}{p}$

- 2. Statement of conservation of energy, kinetic + potential = total
- 3. One-dimensional, time-independent, single particle Schrödinger equation:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2}+V(x)\psi(x)=E\psi(x)$$

- 4. Second-order differential equation, solutions are steady-states of the system, discrete eigenvalues E and eigenvectors $\psi(x)$
- 5. Applied to H atom by Schrödinger to recover Bohr energies

2.2.2 Born interpretation

- 1. wavefunction $\psi(x)$ is a probability amplitude
- 2. wavefunction squared $|\psi(x)|^2$ is probability density

2.2.3 Postulates

- 1. Wavefunction contains all information about a system
- 2. Operators used to extract that information
 - (a) QM operators are Hermitian
 - (b) Have eigenvectors and real eigenvalues, $\hat{O}\psi_i = o\psi_i$
 - (c) Are orthogonal, $\langle \psi_i | \psi_j \rangle = \delta_{ij}$
 - (d) Always observe an eigenvalue when making an observation
- 3. Expectation values
- 4. Energy-invariant wavefunctions given by Schrödinger equation
- 5. Uncertainty principle

2.2.4 Particle in a box illustrations

2.3 Lecture 6: Particle in a box model

2.3.1 Particle between infinite walls, electron confined in a wire

1. Classical solution, either stationary or uniform bouncing back and forth

2.3.2 One-dimensional QM solutions

- 1. Schrödinder equation and boundary conditions
- 2. discrete, quantized solutions
- 3. standing waves, $\lambda = 2L/n$, n-1 nodes, non-uniform probability
- 4. Ho paper, STM of Pd wire
- 5. zero point energy and uncertainty
- 6. correspondence principle
- 7. superpositions

Table 8: Postulates of Non-relativistic Quantum Mechanics

Postulate 1: The physical state of a system is completely described by its wavefunction Ψ . In general, Ψ is a complex function of the spatial coordinates and time. Ψ is required to be:

- I. Single-valued
- II. continuous and twice differentiable
- III. square-integrable $(\int \Psi^* \Psi d\tau)$ is defined over all finite domains)
- IV. For bound systems, Ψ can always be normalized such that $\int \Psi^* \Psi d\tau = 1$

Postulate 2: To every physical observable quantity M there corresponds a Hermitian operator \hat{M} . The only observable values of M are the eignevalues of \hat{M} .

Physical quantity	Operator	Expression
Position x, y, z	\hat{x},\hat{y},\hat{z}	$x\cdot,y\cdot,z\cdot$
		a
Linear momentum p_x, \dots	\hat{p}_x, \dots	$-i\hbar \frac{\partial}{\partial x}, \dots$
Angular momentum l_x, \dots	\hat{p}_x,\dots	$-i\hbar \frac{\partial}{\partial x}, \dots$ $-i\hbar \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right), \dots$
Angular momentum t_x, \dots	p_x, \dots	$-in\left(y\overline{\partial z}-z\overline{\partial y}\right),\cdots$
Kinetic energy T	\hat{T}	$-\frac{\hbar^2}{2m}\nabla^2$
Potential energy V	\hat{V}	1/ (r +)
Total energy E	\hat{H}	$-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r},t)$
rotal energy L	11	$-2m^{\mathbf{V}}+\mathbf{V}(\mathbf{I},t)$

Postulate 3: If a particular observable M is measured many times on many identical systems is a state Ψ , the average resuts with be the expectation value of the operator \hat{M} :

$$\langle M \rangle = \int \Psi^*(\hat{M}\Psi) d\tau$$

Postulate 4: The energy-invariant states of a system are solutions of the equation

$$\hat{H}\Psi(\mathbf{r},t) = i\hbar \frac{\partial}{\partial t}\Psi(\mathbf{r},t)$$

$$\hat{H} = \hat{T} + \hat{V}$$

The time-independent, stationary states of the system are solutions to the equation

$$\hat{H}\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$$

Postulate 5: (The uncertainty principle.) Operators that do not commute $(\hat{A}(\hat{B}\Psi) \neq \hat{B}(\hat{A}\Psi))$ are called *conjugate*. Conjugate observables cannot be determined simultaneously to arbitrary accuracy. For example, the standard deviation in the measured positions and momenta of particles all described by the same Ψ must satisfy $\Delta x \Delta p_x \geq \hbar/2$.

Table 9: Particle-in-a-box model

$$V(x) = \begin{cases} 0 & 0 < x < L \\ \infty & x \le 0 \text{ or } x \ge L \end{cases}$$

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$$

$$E_n = \frac{n^2\pi^2\hbar^2}{2mL^2}, n = 1, 2, \dots$$
 Energies and wavefunctions of an electron confined to a 1 nm box
$$\begin{bmatrix} 0 & 0 < x < L \\ \frac{\pi}{L} & 0 & 0 < x \le L \end{bmatrix}$$

2.3.3 Finite walls and tunneling

- 1. Potential well of finite depth V_0
- 2. Finite number of bound states
- 3. Classical region, $\psi(x) e^{ikx} + e^{-ikx}, k = \sqrt{2mE}/\hbar$
- 4. "Forbidden" region, $\psi(x)$ $e^{\kappa x} + e^{-\kappa x}$, $\kappa = \sqrt{2m(V_0 E)}/\hbar$
- 5. Non-zero probability to "tunnel" into forbidden region
- 6. Tunneling between two adjacent wells: chemical bonding, STM, nanoelectronics
- 7. H atom tunneling: NH₃ inversion, H transfer, kinetic isotope effect

2.3.4 Multiple dimensions

1. separation of variables, one quantum number for each dimension

2.3.5 Introduce Pauli principle for fermions?

2.4 Lecture 7: Harmonic oscillator

2.4.1 Classical harmonic oscillator

- 1. Hooke's law, $F = -k(x x_0)$, k spring constant
- 2. Continuous sinusoidal motion
- 3. $x(t) = A \sin(\frac{k}{\mu})^{1/2} t, \nu = \frac{1}{2\pi} (\frac{k}{\mu})^{1/2}, E = \frac{1}{2} k A^2$
- 4. Exchanging kinetic and potential energies

2.4.2 Quantum harmonic oscillator

- 1. Schrödinger equation and boundary conditions
- 2. Solutions like P-I-A-B + tunneling at boundaries (see Table 10)
- 3. Zero-point energy and uniform energy ladder
- 4. Parity operator and even/odd symmetry: $\langle x \rangle = 0$
- 5. Recursion relations: $\langle x^2 \rangle = \alpha^2(v+1/2), \langle V(x) \rangle = \frac{1}{2}h\nu(v+\frac{1}{2})$
- 6. Virial theorem: $V(x) \propto x^n \to \langle T \rangle = \frac{n}{2} \langle V \rangle$
- 7. Classical turning point and tunneling
- 8. Classical limiting behavior: large

2.4.3 HCl example

- 1. Reduced mass, $\frac{1}{\mu} = \frac{1}{m_A} + \frac{1}{m_B}$
- 2. ZPE, energy spacing in IR, Boltzmann probabilities

2.5 Lecture 8: Rigid Rotor

2.5.1 Classical rigid rotor

- 1. Compare rotation about an axis vs linear motion
- 2. Moment of intertia $I = \mu r^2$
- 3. Angular momentum, $\mathbf{l}=I\omega=\mathbf{r}\times\mathbf{p},\,T=l^2/2I$
 - (a) Angular momentum and energy continuous variables

Table 10: Harmonic oscillator model

$$V(x) = \frac{1}{2}kx^2, -\infty < x < \infty$$

$$\psi_v(x) = N_v H_v(x/\alpha) e^{-x^2/2\alpha^2}, v = 0, 1, 2, \dots$$

$$\alpha = (\hbar^2/\mu k)^{1/4}, N_v = (2^v v! \alpha \sqrt{\pi})^{-1/2}$$

$$\frac{\text{Hermite polynomials}}{H_0(y) = 1}$$

$$H_1(y) = 2y$$

$$H_2(y) = 4y^2 - 2$$

$$H_{n+1}(y) = 2yH_n(y) - 2nH_{n-1}(y)$$

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$

$$E_v = (v + \frac{1}{2})h\nu, v = 0, 1, 2, \dots$$
Harmonic oscillator functions

Harmonic oscillator functions

Harmonic oscillator functions

2.5.2 Quantum rotor in a plane

- 1. Angular momentum and kinetic energy operators in polar coordinates, $\hat{l}_z = -i\hbar \frac{d}{d\phi}$
- 2. Eigenfunctions degenerate, cw and ccw rotation
- 3. No zero point energy
- 4. Angular momentum eignefunctions, $l_z = m_l \hbar$
- 5. Energy superpositions and localization

Table 11: 2-D rigid rotor model

$$V(\phi) = 0, 0 \le \phi \le 2\pi$$

$$\hat{H} = -\frac{\hbar^2}{2I} \frac{\partial^2}{\partial \phi^2}, \qquad I = \mu R^2$$

$$\psi_{m_l}(\phi) = \frac{1}{\sqrt{2\pi}} e^{-im_l \phi}, m_l = 0, \pm 1, \pm 2, \dots$$

$$E_{m_l} = \frac{\hbar^2}{2I} m_l^2$$

$$L_z = m_l \hbar$$

$$L_z = m_l \hbar$$

$$U_{20} = \frac{1}{20} \frac{120}{20} \frac{100}{200} \frac{$$

2.5.3 Quantum rotor in 3-D

1. Angular momentum and kinetic energy operators in spherical coordinates

Table 12: 3-D rigid rotor model

$$V(\theta, \phi) = 0, 0 \le \phi \le 2\pi, 0 \le \theta < \pi$$

$$\hat{L}^2 = -\hbar^2 \left[\frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) \right]$$

$$\hat{H}_{rot} = \frac{1}{2I} \hat{L}^2$$

$$Y_{lm_l}(\theta, \phi) = N_l^{|m|} P_l^{|m|} (\cos(\theta)) e^{im_l \phi}$$

$$l = 0, 1, 2, \dots, \qquad m_l = 0, \pm 1, \dots, \pm l$$

$$E_l = \frac{\hbar^2}{2I} l(l+1)$$

$$|L| = \hbar \sqrt{l(l+1)}, L_z = m_l \hbar$$

- 2. Spherical harmonic solutions, Y_{lm_l}
- 3. Azimuthal QN $l = 0, 1, \dots$
- 4. Magnetic QN $m_l = -l, -l + 1, ..., l$
- 5. Energy spectrum, 2l + 1 degeneracy
- 6. Vector model can only know total total |L| and L_z
- 7. Wavefunctions look like atomic orbitals, l nodes

Figure 7: Pythonic s (l = 0), p (l = 1), and d (l = 2) spherical harmonics. Color scale from red to white to blue corresponds to positive to zero to negative sign of wavefunction.

2.5.4 Particle angular momentum

- 1. Fermions, mass, half-integer spin
 - (a) Electron, $s = 1/2, m_s = \pm 1/2$
- 2. Bosons, force-carrying, integer spin

2.6 Lecture 9: Spectroscopy

2.6.1 Spectroscopy is quantitative measurement of interaction of light with matter

- 1. Observed $I(\nu)/I(\nu_0)$
- 2. Bohr condition, $|E_f E_i|/h = \nu = c\tilde{\nu} = c/\lambda$
- 3. Intensities determined by populations of initial and final states (from Boltzmann distribution) and transition probabilities

2.6.2 Einstein coefficients

- 1. Stimulated absorption, $dn_1/dt = -n_1B\rho(\nu)$
- 2. Stimulated emission, $dn_2/dt = -n_2B\rho(\nu)$
- 3. Spontaneous emission, $dn_2/dt = -n_2A$, $A = \left(\frac{8\pi h \nu^3}{c^3}\right)B$
- 4. 1/A = lifetime

2.6.3 Transition probability

- 1. Einstein coefficient $B_{if} = \frac{|\mu_{if}|^2}{6\epsilon_0 \hbar^2}$
- 2. Classical electric dipole, $\overrightarrow{\mu}=q\cdot\overrightarrow{l}$, quantum dipole operator $\hat{\mu}=e\cdot\overrightarrow{r}$
- 3. Transition dipole moment, $\mu_{if} = \left(\frac{d\mu}{dx}\right) \langle \psi_i | \hat{\mu} | \psi_f \rangle$
- 4. Selection rules—conditions that make μ_{if} non-zero, "allowed" vs "forbidden" transitions

2.7 Lecture 10: Vibrational and rotational spectroscopy

2.7.1 Diatomic rotational spectroscopy

- 1. Apply rigid rotor model
- 2. Rotational constant $\tilde{B}=(\hbar^2/2I)/hc=\hbar/4\pi Ic~{\rm cm}^{-1},~I=\mu R_{\rm eq}^2$
- 3. Gross selection rule: dynamic dipole moment non-zero (heteronuclear, not homonuclear)
- 4. Specific selection rule: $\Delta l = \pm 1, \ \Delta m_l = 0, \pm 1$
- 5. $\Delta \tilde{E}_l = 2\tilde{B}(l+1) \text{ cm}^{-1}$
- 6. Rotational state populations

2.7.2 Polyatomic rotational spectroscopy

- 1. Three distinct moments of intertia (I_x, I_y, I_z)
- 2. Spectra more complex

2.7.3 Diatomic vibrational spectroscopy

- 1. Apply harmonic oscillator model
- 2. Vibrational constant $\tilde{\nu} = (\sqrt{k/\mu}/2\pi)/hc \text{ cm}^{-1}$
- 3. Gross selection rule: dynamic dipole $d\mu/dx$ non-zero (heteronuclear, non homonuclear)
- 4. Specific selection rule: dipole integral $\langle \psi_v | \hat{\mu} | \psi_{v'} \rangle = 0$ unless $\Delta v = \pm 1$
- 5. Allowed $\Delta \tilde{E}_v = \tilde{\nu} \text{ cm}^{-1}$
- 6. Boltzmann distribution implies v = 0 states dominate at normal T

2.7.4 Raman spectroscopy

- 1. Shine in light of arbitrary frequency $\tilde{\nu_0}$, mostly get out the same
- 2. Some light comes out at $\tilde{\nu_0} \tilde{\nu}$ (Stoke's line)
- 3. Some light comes out at $\tilde{\nu_0} + \tilde{\nu}$ (anti-Stoke's line)
- 4. Gross selection rule: dynamic polarizability non-zero (homonuclear, not heteronuclear)

2.7.5 Anharmonicity, Morse potential

2.7.6 Vibration-rotation spectroscopy

- 1. Harmonic oscillator + rigid rotor
- 2. Selection rules: $\Delta v = \pm 1, \Delta l = \pm 1$
- 3. R branch: $\Delta \tilde{E} = \tilde{\nu} + 2B(l+1), \Delta l = 1$
- 4. P branch: $\Delta \tilde{E} = \tilde{\nu} 2B(l), \Delta l = -1$

2.7.7 Polyatomic vibrational spectroscopy

- 1. Polyatomics, 3n-6 (3n-5 for linear polyatomic) vibrational modes
- 2. Selection rules and degeneracies affect number of observed features
- 3. CO_2 example

Figure 8: Rovibrational spectrum of carbon monoxide

2.8 Lecture 11: Hydrogen atom

2.8.1 Schrödinger equation

- 1. Spherical coordinates and separation of variables
- 2. Coulomb potential $v_{\text{Coulomb}}(r) = -\frac{e^2}{4\pi\epsilon_0} \frac{1}{r}$
- 3. Centripetal potential $v = \hbar^2 \frac{l(l+1)}{2\mu r^2}$

2.8.2 Solutions

- 1. $\psi(r, \theta, \phi) = R_{nl}(r)Y_{lm}(\theta, \phi)$
- 2. Principle quantum number n = 1, 2, ...
 - (a) K, L, M, N, \ldots shells
 - (b) n-1 radial nodes
- 3. Azimuthal quantum number l = 0, 1, ..., n 1
 - (a) s, p, d, \ldots orbital sub-shells
 - (b) l angular nodes
- 4. Magnetic quantum number $m_l = -l, -l+1, ..., l$
- 5. Spin quantum number $m_s = \pm 1/2$
- 6. Energy spectrum and populations
- 7. Electronic selection rules
 - (a) $\Delta l = \pm 1$ $\Delta m_s = 0$ $\Delta m_l = 0, \pm 1$
- 8. Wavefunctions = "orbitals"

Table 13: Hydrogen atom

$$V(r) = -\frac{e^2}{4\pi\epsilon_0} \frac{1}{r}, 0 < r < \infty$$

$$\hat{H} = -\frac{\hbar^2}{2m_e} \frac{1}{r^2} \left[\frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} + \hat{L}^2 \right] + V(r)$$

$$\psi(r, \theta, \phi) = R(r) Y_{l,m_l}(\theta, \phi)$$

$$\left\{ -\frac{\hbar^2}{2m_e} \frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d}{dr} \right) + \frac{\hbar^2 l(l+1)}{2m_e r^2} - \frac{e^2}{4\pi\epsilon_0} \frac{1}{r} \right\} R(r) = ER(r)$$

$$R_{nl}(r) = N_{nl} e^{-x/2} x^l L_{nl}(x), \quad x = \frac{2r}{na_0}$$

$$P_{nl}(r) = r^2 R_{nl}^2$$

$$n = 1, 2, \dots, \quad l = 0, \dots, n-1 \quad m_l = 0, \pm 1, \dots, \pm l$$

$$N_{nl} = \sqrt{\left(\frac{2}{na_0}\right)^3 \frac{(n-l-1)!}{2n(n+l)!}}$$

$$L_{10} = L_{21} = L_{32} = \dots = 1 \quad L_{20} = 2 - x \quad L_{31} = 4 - x$$

$$E_n = -\frac{1}{2} \frac{\hbar^2}{m_e a_0^2} \frac{1}{n^2} = -\frac{E_H}{2} \frac{1}{n^2}$$

$$|L| = \hbar \sqrt{l(l+1)}, L_z = m_l \hbar$$

$$\langle r \rangle = \left\{ \frac{3}{2} n^2 - \frac{1}{2} l(l+1) \right\} \frac{a_0}{Z}$$

9. Integrate out angular components to get radial probability function $P_{nl}(r) = r^2 R_{nl}^2(r)$

(a)
$$\langle r \rangle = \int r P_{nl}(r) dr = \left(\frac{3}{2}n^2 - l(l+1)\right) a_0$$

Figure 9: H atom wavefunctions

Figure 10: H atom radial probability

2.8.3 Variational principle

- 1. Solutions of Schrödinger equation always form a complete set
- 2. True wavefunction energy is therefore lower bound on energy of any trial wavefunction

$$\langle \psi_{\text{trial}}^{\lambda} | \hat{H} | \psi_{\text{trial}}^{\lambda} \rangle = E_{\text{trial}}^{\lambda} \ge E_0$$

1. Optimize wavefunction with respect to variational parameter

$$\left(\frac{\partial \langle \psi_{\rm trial}^{\lambda} | \hat{H} | \psi_{\rm trial}^{\lambda} \rangle}{\partial \lambda}\right) = 0 \to \lambda_{\rm opt}$$

2.9 Lecture 12: Many-electron atoms

2.9.1 Many-electron problem, Schrödinger equation not exactly solvable (Sad!)

- 1. $e^- e^-$ interaction terms prevent separation of variables
- 2. Independent electron model basis of all solutions, describes each electron by its own wavefunction, or "orbital," ψ_i

2.9.2 Qualitative solutions

- 1. ψ_i look like H atom orbitals, labeled by same quantum numbers
- 2. Aufbau principle: "Build-up" electron configuration by adding electrons into H-atom-like orbitals, from bottom up
- 3. Pauli exclusion principle: Every electron in atom must have a unique set of quantum numbers, so only two per orbital (with opposite spin)
- 4. Pauli exclusion principle (formally): The wavefunction of a multi-particle system must be anti-symmetric to coordinate exchange if the particles are fermions, and symmetric to coordinate exchange if the particles are bosons
- 5. *Hund's rule*: Electrons in degenerate orbitals prefer to be spin-aligned. Configuration with highest *spin multiplicity* is the most preferred

S	2S + 1	multiplicity
0	1	singlet
1/2	2	doublet
1	3	triplet
3/2	4	quartet

2.9.3 Structure of the periodic table

- 1. Electrons in different subshells experience different effective nuclear charge $Z_{\rm eff} = Z \sigma_{nl}$
- 2. Inner ("core") shells not shielded well at
- 3. Inner shell electrons "shield" outer electrons well
- 4. Within a shell, s shielded less than p less than d ..., causes degeneracy to break down
- 5. Electrons in same subshell shield each other poorly, causing ionization energy to increase across the subshell

2.9.4 Quantitative solutions

1. Schrödinger equation

$$\hat{H}\Psi(\mathbf{r}_1, \mathbf{r}_2, \dots) = E\Psi(\mathbf{r}_1, \mathbf{r}_2, \dots)$$

$$\hat{H} = \sum_i \hat{h}_i + \frac{e^2}{4\pi\epsilon_0} \sum_i \sum_{j>i} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}$$

$$\hat{h}_i = -\frac{\hbar^2}{2m_e} \nabla_i^2 - \frac{Ze^2}{4\pi\epsilon_0} \frac{1}{|\mathbf{r}_i|}$$

2. Construct candidate many-electron wavefunction Ψ from one electron wavefunctions (mathematical details vary with exact approach)

$$\Psi(\mathbf{r}_1, \mathbf{r}_2, ...) \approx \psi_1(\mathbf{r}_1)\psi_2(\mathbf{r}_2)...\psi_n(\mathbf{r}_n)$$

3. Calculate expectation value of E of approximate model and apply variational principle to find equations that describe "best" (lowest total energy) set of ψ_i

$$\begin{split} \frac{\partial E}{\partial \psi_i} &= 0 \quad \forall i \\ \hat{f}\psi &= \left\{ \hat{h} + \hat{v}_{\text{Coul}}[\psi_i] + \hat{v}_{\text{ex}}[\psi_i] + \hat{v}_{\text{corr}}[\psi_i] \right\} \psi = \epsilon \psi \\ E &= \sum_i \epsilon_i - \frac{1}{2} \langle \Psi | \hat{v}_{\text{Coul}}[\psi_i] + \hat{v}_{\text{ex}}[\psi_i] + \hat{v}_{\text{corr}}[\psi_i] | \Psi \rangle \end{split}$$

4. Motivate as equation for an electron moving in a "field" of other electrons, adding an electron to a known set of ψ_i

2.9.5 Electron-electron interactions

- 1. Coulomb (\hat{v}_{Coul}): classical repulsion between distinguishable electron "clouds"
- 2. Exchange (\hat{v}_{ex}) : accounts for electron indistinguishability (Pauli principle for fermions). Decreases Coulomb repulsion because electrons of like spin intrinsically avoid one another
- 3. Correlation (\hat{v}_{corr}): decrease in Coulomb repulsion due to dynamic ability of electrons to avoid one another; "fixes" orbital approximation
- 4. General form of exchange potential is expensive to calculate; general form of correlation potential is unknown

2.9.6 Popular models

- 1. Hartree model: Include only classical Coulomb repulsion \hat{v}_{Coul}
- 2. Hartree-Fock model: Include Coulomb and exchange
- 3. Density-functional theory (DFT): Include Coulomb and approximate expressions for exchange and correlation

2.9.7 Numerical solution

- 1. All potential terms \hat{v} depend on the solutions, so equations must be solved *iteratively* to self-consistency
- 2. Solved numerically on a grid or by expanding solutions in a basis set

2.9.8 DFT calculations on atoms

1. See http://www.chemsoft.ch/qc/fda.htm

Table 14: Numerical DFT Solutions for Atoms

2.10 Lecture 13: Molecular orbital theory of molecules

2.10.1 Clamped nucleus ("Born-Oppenheimer") approximation

1. Write one-electron equations parametrically in terms of positions of all atoms

$$\hat{h} = -\frac{\hbar^2}{2m_e} \nabla^2 - \sum_{\alpha} \frac{Z_{\alpha} e^2}{4\pi\epsilon_0} \frac{1}{|\mathbf{r} - \mathbf{R}_{\alpha}|}$$
 (1)

$$\hat{f}\psi = \left\{\hat{h} + \hat{v}_{\text{Coul}}[\psi_i] + \hat{v}_{\text{ex}}[\psi_i] + \hat{v}_{\text{corr}}[\psi_i]\right\}\psi = \epsilon\psi$$
(2)

- 2. Solve as for atoms, using some model for electron-electron interactions
- 3. Potential energy surface (PES)

$$E(\mathbf{R}_{\alpha}, \mathbf{R}_{\beta}, ...) = E_{\text{elec}} + \frac{e^2}{4\pi\epsilon_0} \sum_{\alpha} \sum_{\beta>\alpha} \frac{Z_{\alpha}Z_{\beta}}{|\mathbf{R}_{\alpha} - \mathbf{R}_{\beta}|}$$

2.10.2 H₂ molecule as perturbation on two H atoms brought from infinite distance

- 1. "Bonding" orbital, $\sigma_g(\mathbf{r}) = 1s_A + 1s_B$
- 2. "Anti-bonding" orbital, $\sigma_u(\mathbf{r}) = 1s_A 1s_B$
- 3. Interaction scales with "overlap" $S = \langle 1s_A | 1s_B \rangle$
- 4. Normalize

$$\sigma_g = \frac{1}{\sqrt{2(1-S)}} (1s_A + 1s_B)$$
 $\sigma_u = \frac{1}{\sqrt{2(1+S)}} (1s_A - 1s_B)$

5. Energy expectation value

$$\epsilon_{g} = \langle \sigma_{g} | \hat{f} | \sigma_{g} \rangle = \frac{1}{2(1+S)} \left\{ \langle 1s_{A} | \hat{f} | 1s_{A} \rangle + \langle 1s_{B} | \hat{f} | 1s_{B} \rangle + 2 \langle 1s_{A} | \hat{f} | 1s_{B} \rangle \right\}$$

$$= \frac{1}{1+S} \left(F_{AA} + F_{AB} \right)$$

$$\epsilon_{u} = \langle \sigma_{u} | \hat{f} | \sigma_{u} \rangle = \frac{1}{2(1+S)} \left\{ \langle 1s_{A} | \hat{f} | 1s_{A} \rangle + \langle 1s_{B} | \hat{f} | 1s_{B} \rangle - 2 \langle 1s_{A} | \hat{f} | 1s_{B} \rangle \right\}$$

$$= \frac{1}{1-S} \left(F_{AA} - F_{AB} \right)$$

6. Matrix elements

$$F_{\rm AA} = F_{\rm BB} \approx \epsilon_{\rm 1s} = \alpha$$

 $F_{\rm AB} = F_{\rm BA} = \beta$
 $\alpha < \beta < 0$ typically

7. From Taylor expansion get picture of atomic orbitals destabilized by electron repulsion βS and split by interaction β

$$\epsilon_{+} \approx \alpha - \beta S + \beta$$
 $\epsilon_{-} \approx \alpha - \beta S - \beta$

- 8. Makes clear that bonding stabilization < anti-bonding destabilization
- 9. Ground configuration = σ_q^2
- 10. Bond order = $\frac{1}{2}(n n^*)$

2.10.3 Secular equations

1. Expand molecular orbitals in "basis" of atomic-like orbitals

$$\psi_{\text{MO}} = \sum_{a} c_a \phi_a(\mathbf{r}) \tag{3}$$

- 2. Problem reduces to finding set of c_a that give best molecular orbitals (MOs)
- 3. Substituting into Fock equation and integrating yields set of linear equations for the c_a for each MO

$$\begin{pmatrix} F_{11} - \epsilon S_{11} & F_{12} - \epsilon S_{12} & \dots \\ F_{21} - \epsilon S_{21} & F_{22} - \epsilon S_{22} & \dots \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \end{pmatrix} = 0$$

- (a) $F_{ij} = F_{ji} = \langle \phi_i | \hat{f} | \phi_j \rangle$ are Fock "matrix elements"
- (b) $S_{ij} = S_{ji} = \langle \phi_i | \phi_j \rangle$ are overlaps
- (c) Typically basis functions normalized such that $S_{ii} = 1$
- (d) ϵ are molecular orbital energies (to be solved for, as many as there are equations)
- 4. From linear algebra, only possible solutions are those that make the determinant vanish

$$\begin{vmatrix} F_{11} - \epsilon S_{11} & F_{12} - \epsilon S_{12} & \dots \\ F_{21} - \epsilon S_{21} & F_{22} - \epsilon S_{22} & \dots \\ \vdots & \vdots & \vdots \end{vmatrix} = 0$$

5. Solve for ϵ s and back-substitute to find correspond c_i s

2.10.4 H_2 example, again

1. Set-up and solve secular matrix

$$\begin{vmatrix} \alpha - \epsilon & \beta - \epsilon S \\ \beta - \epsilon S & \alpha - \epsilon \end{vmatrix} = 0$$

$$\epsilon_{+} = \frac{\alpha + \beta}{1 + S}, \quad c_{1} = c_{2} = \frac{1}{\sqrt{2(1 + S)}}$$

$$\epsilon_{-} = \frac{\alpha - \beta}{1 - S}, \quad c_{1} = -c_{2} = \frac{1}{\sqrt{2(1 - S)}}$$

2.10.5 Qualitative solutions of secular equations

- 1. Lot's of insight into chemical bonding can be obtained from approximate solutions to secular equations, basis of "molecular orbital theory"
- 2. Two general assumptions
 - (a) Diagonal Fock elements are approximately equal to energies of corresponding atomic orbitals: $F_{ii} \approx \epsilon_{i,ao}$
 - (b) Off-diagonal elements proportional to overlap and inversely proportional to energy difference:

 $F_{ij} \propto \frac{S_{ij}}{\epsilon_{i,ao} - \epsilon_{j,ao}}$

(c) (Often) set differential overlap $S_{ij} = 0$

2.10.6 Heteronuclear diatomic: LiH, HF, BH example

1. Only AOs of appropriate symmetry, overlap, and energy match can combine to form MOs

$$\epsilon_{+} \approx \alpha_{1} - \beta S - \beta^{2}/|\alpha_{1} - \alpha_{2}|$$

 $\epsilon_{-} \approx \alpha_{2} - \beta S + \beta^{2}/|\alpha_{1} - \alpha_{2}|$

- 2. LiH: H 1s + Li 2s, bond polarized towards H
- 3. HF: H 1s + F 2p, bond polarized towards F, lots of non-bonding orbitals
- 4. BH: H 1s, B 2s and $2p_z \rightarrow$ bonding, non-bonding, anti-bonding orbitals

2.10.7 Homonuclear diatomic: O_2

- 1. Assign aos, 1s, 2s, 2p for each atom (10 total)
- 2. In principle, solve 10×10 secular matrix
- 3. In practice, matrix elements rules mean only a few off-diagonal elements survive
 - (a) 1s + 1s do nothing
 - (b) 2s + 2s form σ bond and anti-bond
 - (c) $2p_z + 2p_z$ form second bond and anti-bond
 - (d) $2p_{x,y} + 2p_{x,y}$ form degenerate π bonds and anti-bonds
 - (e) O_2 is a triplet, consistent with experiment!

2.10.8 The Hückel/tight binding model: Roberts, Notes on Molecular Orbital Theory

- 1. $F_{ii} = \alpha, S_{ij} = \delta_{ij}, F_{ij} = \beta$ iff i adjacent to j
- 2. Ethylene example
- 3. Butadiene example
- 4. Benzene example
- 5. Infinite chain example

```
from sympy import *
    initprinting(useunicode=True)
    print(6. Cyclobutadiene examplen)
    alpha,beta = symbols(alpha beta)
    M = Matrix([[alpha, beta, 0, beta],[beta, alpha, beta, 0],[0,beta,alpha,beta],[beta,0,beta,alpha]])
9
    print(M)
10
     M = Matrix([[alpha,beta],[beta,alpha]])
11
^{12}
    eigs = M.eigenvects()
13
    print(nEnergy state, degeneracyn)
14
15
    for state in [0, 1, 2]:
                    1n.format(eigs[state][0],eigs[state][1]))
        print(0
16
17
    print(nEigenvectors)
18
    for state in [0, 1, 2]:
19
        print(eigs[state][2])
20
```

1. Cyclobutadiene example

Matrix([[alpha, beta, 0, beta], [beta, alpha, beta, 0], [0, beta, alpha, beta], [beta, 0, beta, alpha]])

```
Energy state, degeneracy
alpha 2
alpha - 2*beta 1
alpha + 2*beta 1
```

2.10.9 Band structure of solids

- 1. Discrete molecular orbitals transform into continuous bands
- 2. Results in rich range of physical and chemical properties

Discrete energy states

Continuous energy bands: insulators, conductors, semiconductors, ...

2.11 Lecture 14: Computational chemistry

2.11.1 Numerical solvers of Schrödinger equation for molecules readily available today

2.11.2 Have to specify:

- 1. Identity of atoms
- 2. Positions of atoms (distances, angles, ...)
- 3. (spin multiplicity)
- 4. exact theoretical model (how are Coulomb, exchange, and correlation described?)
 - (a) Hartree, Hartree-Fock, DFT (various flavors), ...
- 5. basis set to express wavefunctions in terms of
- 6. initial guess of wavefunction coefficients (often guessed for you)

2.11.3 Secular equations solved iteratively until input coefficients = output coefficients

- 1. "self-consistent field"
- 2. Output
 - (a) energies of molecular orbitals
 - (b) occupancies of molecular orbitals
 - (c) coefficients describing molecular orbitals
 - (d) total electron wavefunction, total electron density, dipole moment, ...
 - (e) total molecular energy
 - (f) derivatives ("gradients") of total energy w.r.t. atom positions
- 3. Plot total energy vs internal coordinates: potential energy surface (PES)
- 4. Search iteratively for minimum point on PES (by hand or using gradient-driven search): equilibrium geometry
- 5. Find second derivative of energy at minimum point on PES: harmonic vibrational frequency
- 6. Find energy at minimum relative to atoms (or other molecules): reaction energy

2.11.4 H_2 example

H2 - 2 H DFT Energy (B3LYP/6-31G)

y = 17.6813x² - 26.3703x + 5.0710

-4.3

y = 17.6813x² - 26.3703x + 5.0710

-4.4

-4.7

-4.7

-4.8

0.5

0.6

0.7

B3LYP/6-31G

---Quadratic fit

-4.8

0.5

0.6

0.7

Bond Distance (Ang)

0.9

1

	Bond length			
	H-H exp't: 0.742Å			
	B3LYP opt:	0.743		
_	i		7	

Bond energy			
H-H exp't	= 4.478 eV		
2 H: 2(-0.4969) au H ₂ : -1.1687 au	u = -27.041 eV u = <u>-31.803</u> eV		
Dissociation E	= 4.762 eV		
ZPE corrected	= 4.484 eV		

Vibrational frequencies			
Experiment: 4401 cm ⁻¹			
B3LYP harmonic:	4487 cm ⁻¹		
ZPE:	0.278 eV		

2.11.5 Polyatomic molecules

- 1. Gradient-driven optimizations, 3n-6 degrees of freedom
- 2. Hessian matrix for frequencies
- 2.12 Lecture 15: Electronic spectroscopy
- 2.13 Lecture 16: Electronic and magnetic properties
- 3 Statistical Mechanics: The Bridge from the Tiny to the Many
- 3.1 Lecture 17: Statistical mechanics
- 3.1.1 Need machinary to average QM information over macroscopic systems
- 3.1.2 Equal a priori probabilities
- 3.1.3 Two-state model
 - 1. Box of particles, each of which can have energy 0 or ϵ
 - 2. Thermodynamic state defined by number of elements N, and number of quanta $q, U = q\epsilon$
 - 3. Degeneracy of given N and q given by binomial distribution:

$$\Omega = \frac{N!}{q!(N-q)!}$$

- 4. Allow energy to flow between two such systems
 - (a) Energy of a closed system is conserved (first law!)
 - (b) Degeneracy of total system is always \geq degeneracy of the starting parts!
 - (c) Boltzmann's tombstone, $S = k_B \ln \Omega$
 - (d) Clausius: entropy of the universe seeks a maximum! Second Law...

3.1.4 Energy flow/thermal equilibrium between two large systems

- 1. Each subsystem has energy U_i and degeneracy $\Omega_i(U_i)$
- 2. Bring in thermal contact, $U = U_1 + U_2$, $\Omega = \Omega_1(U_1)\Omega_2(U_2)$
- 3. If systems are very large, one combination of U_1 , U_2 and Ω will be much more probably than all others
- 4. What value of U_1 and $U_2 = U U_1$ maximizes Ω ?

$$\left(\frac{\partial \ln \Omega_1}{\partial U_1}\right)_N = \left(\frac{\partial \ln \Omega_2}{\partial U_2}\right)_N$$

$$(\partial S_1) \qquad (\partial S_2)$$

$$\left(\frac{\partial S_1}{\partial U_1}\right)_N = \left(\frac{\partial S_2}{\partial U_2}\right)_N$$

5. Thermal equilibrium is determined by equal temperature!

$$\frac{1}{T} = \left(\frac{\partial S}{\partial U}\right)_N$$

- 6. When the temperatures of the two subsystems are equal, the entropy of the combined system is maximized!
- 7. (Same arguments lead to requirement that equal pressures (P_i) and equal chemical potentials (μ_i) maximize entropy when volumes or particles are exchanged)

3.1.5 Two-state model in limit of large N

- 1. Large N and Stirling's approximation
- 2. Fundamental thermodynamic equation of two-state system:

$$S(U) = -k_B (x \ln x + (1-x) \ln(1-x))$$
, where $x = q/N = U/N\epsilon$

3. Temperature is derivative of entropy wrt energy yields

$$U(T) = \frac{N\epsilon}{1 + e^{\epsilon/k_B T}}$$

- 4. $T \to 0, U \to 0, S \to 0$, minimum disorder
- 5. $T \to \infty, U \to N\epsilon/2, S \to k_B \ln 2$, maximum disorder
- 6. Differentiate again to get heat capacity

3.1.6 Example of microcanonical ("NVE") ensemble

1. Direct evaluation of S(U) is generally intractable, so seek simpler approach

Lecture 18: Canonical (NVT) ensemble

3.2.1 Partition function

- 1. Imagine a system brought into thermal equilibrium with a much larger "reservoir" of constant T, such that the aggregate has a total energy U
- 2. Degeneracy of a given system microstate j with energy U_i is $\Omega_{res}(U-U_i)$

$$T = \frac{dU_{res}}{k_B d \ln \Omega_{res}}$$
$$\Omega_{res}(U - U_j) \propto e^{-U_j/k_B T}$$

3. Probability for system to be in a microstate with energy U_j given by Boltzmann distribution!

$$P(U_i) \propto e^{-U_j/k_B T} = e^{-U_j \beta}$$

- 4. Partition function "normalizes" distribution, $Q(T,V) = \sum_j e^{-U_j\beta}$
- 1. Partition function counts the number of states accessible to a system at a given T and V

Energy factoring (sidebar)

- 1. If system is large, how to determine it's energy states U_i ? There would be many, many of them!
- 2. One simplification is if we can write energy as sum of energies of individual elements (atoms, molecules) of system:

$$U_j = \epsilon_j(1) + \epsilon_j(2) + \dots + \epsilon_j(N) \tag{4}$$

$$U_{j} = \epsilon_{j}(1) + \epsilon_{j}(2) + \dots + \epsilon_{j}(N)$$

$$Q(N, V, T) = \sum_{j} e^{-U_{j}\beta}$$

$$= \sum_{j} e^{-(\epsilon_{j}(1) + \epsilon_{j}(2) + \dots + \epsilon_{j}(N))\beta}$$

$$(6)$$

$$= \sum_{j} e^{-(\epsilon_j(1) + \epsilon_j(2) + \dots + \epsilon_j(N))\beta} \tag{6}$$

3. If molecules/elements of system can be distinguished from each other (like atoms in a fixed lattice), expression can be factored:

$$Q(N, V, T) = \left(\sum_{j} e^{-\epsilon_{j}(1)\beta}\right) \cdots \left(\sum_{j} e^{-\epsilon_{j}(N)\beta}\right)$$
 (7)

$$= q(1) \cdots q(N) \tag{8}$$

Assuming all the elements are the same: (9)

$$=q^{N} \tag{10}$$

$$q = \sum_{j} e^{-\epsilon_{j}\beta}$$
: molecular partition function (11)

- 4. If not distinguishable (like molecules in a liquid or gas, or electrons in a solid), problem is difficult, because identical arrangements of energy amongst elements should only be counted once.
- 5. Approximate solution, good almost all the time:

$$Q(N, V, T) = q^N / N! \tag{12}$$

6. Sidebar: "Correct" factoring depends on whether individual elements are fermions or bosons, leads to funny things like superconductivity and superfluidity.

3.2.3 Distinguishable vs. indistinguishable particles

- 1. q(V,T) counts states available to a single element of a system, like a molecule in a gas or in a solid
- 2. Distinguishable (e.g., in a solid): $Q(N, V, T) = q(V, T)^N$
- 3. Indistinguishable (e.g., a gas): $Q(N, V, T) \approx q(V, T)^N/N!$

3.2.4 Two-state system again

- 1. Partition function, $q(T) = 1 + e^{-\epsilon \beta}$
- 2. State probabilities
- 3. Internal energy U(T)

$$U(T) = -N\left(\frac{\partial \ln(1 + e^{-\epsilon\beta})}{\partial \beta}\right) = \frac{N\epsilon e^{-\epsilon\beta}}{1 + e^{-\epsilon\beta}}$$
(13)

- 4. Heat capacity C_v
 - (a) Minimum when change in states with T is small
 - (b) Maximize when chagne in states with T is large
- 5. Helmholtz energy, $A = -\ln q/\beta$, decreasing function of T
- 6. Entropy

3.2.5 Thermodynamic functions in canonical ensemble

3.3 Lecture 19: Molecular Partition Functions

3.3.1 Ideal gas of molecules

$$Q_{ig}(N, V, T) = \frac{(q_{\text{trans}}q_{\text{rot}}q_{\text{vib}})^{N}}{N!}$$

Table 15: Two-state system thermodynamics

Table 16: Equations of the Canoncial (NVT) Ensemble

$\beta = 1/k_B T$	Full Ensemble	Distinguishable particles	Indistinguishable particles (e.g. molecules in a fluid)
Single particle partition function		(e.g. atoms in a lattice) $q(V,T) = \sum_{i} e^{-\epsilon_{i}\beta}$	$q(V,T) = \sum_{i} e^{-\epsilon_{i}\beta}$
Full partition function	$Q(N, V, T) = \sum_{j} e^{-U_{j}\beta}$ $\ln Q$	$Q = q(V, T)^N$	$Q = q(V,T)^N/N!$
Log partition function	$\ln Q^{-J}$	$N\log q$	$N \ln q - \ln N!$ $\approx N(\ln Q - \ln N + 1)$
Helmholtz energy $(A = U - TS)$	$-\frac{\ln Q}{\beta}$	$-\frac{N\ln q}{\beta}$	$-\frac{N}{\beta} \left(\ln \frac{q}{N} + 1 \right)$
Internal energy (U)	$-\left(\frac{\partial \ln Q}{\partial \beta}\right)_{NV}$	$-N\left(\frac{\partial \ln q}{\partial \beta}\right)_V$	$-N\left(\frac{\partial \ln q}{\partial \beta}\right)_V$
Pressure (P)	$\frac{1}{\beta} \left(\frac{\partial \ln Q}{\partial V} \right)_{N\beta}$	$\frac{N}{\beta} \left(\frac{\partial \ln q}{\partial V} \right)_{\beta}$	$\frac{N}{\beta} \left(\frac{\partial \ln q}{\partial V} \right)_{\beta}$
Entropy (S/k_B)	$\beta U + \ln Q$	$eta U + N \ln q$	$\beta U + N\left(\ln(q/N) + 1\right)$
Chemical potential (μ)	$-\frac{1}{\beta} \left(\frac{\partial \ln Q}{\partial N} \right)_{VT}$	$-rac{\ln q}{eta}$	$-\frac{\ln(q/N)}{\beta}$

NOTE! All energies are referenced to their values at 0 K. Enthalpy H = U + PV, Gibb's Energy G = A + PV.

3.3.2 Particle-in-a-box (translational states of a gas)

- 1. Energy states $\epsilon_n = n^2 \epsilon_0, n = 1, 2, ..., \epsilon_0$ tiny for macroscopic V
- 2. $\Theta_{\text{trans}} = \epsilon_0/k_B$ translational temperature
- 3. $\Theta_{\rm trans} \ll T \to {\rm many\ states\ contribute\ to\ } q_{\rm trans} \to {\rm integral\ approximation}$

$$q_{\mathrm{trans,1D}} pprox \int_0^\infty e^{-x^2 \beta \epsilon_0} dx = L/\Lambda$$

$$\Lambda = \left(\frac{h^2 \beta}{2\pi m}\right)^{1/2}$$
 thermal wavelength
$$q_{\rm trans,3D} = V/\Lambda^3$$

$$q_{\rm trans,3D} = V/\Lambda^3$$

- 4. Internal energy
- 5. Heat capacity
- 6. Equation of state (!)
- 7. Entropy: Sackur-Tetrode equation

3.3.3 Rigid rotor (rotational states of a gas)

- 1. recall energy states and degeneracies of rigid rotor
- 2. $\Theta_{\rm rot} = \hbar^2/2Ik_B$
- 3. "High" T $q_{\rm rot}(T) \approx \sigma \Theta_{\rm rot}/T$

Harmonic oscillator (vibrational states of a gas)

- 1. $\Theta_{\rm vib} = h\nu/k_B$
- Electronic partition functions \rightarrow spin multiplicity 3.3.5

Many-particle molecule 3.3.6

1. partition function is a product of all degrees of freedom

$$q(T, V) = q_{\text{trans}} \left(\prod_{i=1}^{3} q_{\text{rot}}^{(i)} \right) \left(\prod_{i=1}^{3N-6} q_{\text{vib}}^{(i)} \right) q_{\text{elec}}$$

2. thermodynamic quantities are sums of all degrees of freedom

3.3.7Non-ideality

- 1. Real molecules interact through vdW interactions
- 2. Particle-in-a-box model breaks down, have to work harder but can still get at same ideas
- 3. See Hill, J. Chem. Ed. 1948, 25, p. 347 http://dx.doi.org/10.1021/ed025p347

Table 17: Statistical Thermodynamics of an Ideal Gas

Translational DOFs 3-D particle in a box model

$$\theta_{\text{trans}} = \frac{\pi^2 \hbar^2}{2mL^2 k_B}, \ \Lambda = h \left(\frac{\beta}{2\pi m}\right)^{1/2}$$
For $T >> \Theta_{\text{trans}}, \ \Lambda << L, \ q_{\text{trans}} = V/\Lambda^3 \text{ (essentially always true)}$

$$U_{\rm trans} = \frac{3}{2}RT \quad C_{\rm v,trans} = \frac{3}{2}R \quad S_{\rm trans}^{\circ} = R \ln \left(\frac{e^{5/2}V^{\circ}}{N^{\circ}\Lambda^{3}}\right) = R \ln \left(\frac{e^{5/2}k_{B}T}{P^{\circ}\Lambda^{3}}\right)$$

Rotational DOFs Rigid rotor model

Linear molecule $\theta_{\rm rot} = hcB/k_B$

$$q_{\rm rot} = \frac{1}{\sigma} \sum_{l=0}^{\infty} (2l+1)e^{-l(l+1)\theta_{\rm rot}/T}, \approx \frac{1}{\sigma} \frac{T}{\theta_{\rm rot}}, \quad T >> \theta_{\rm rot} \quad \sigma = \begin{cases} 1, & \text{unsymmetric} \\ 2, & \text{symmetric} \end{cases}$$

$$U_{\text{rot}} = RT$$
 $C_{\text{v,rot}} = R$ $S_{\text{rot}}^{\circ} = R(1 - \ln(\sigma\theta_{\text{rot}}/T))$

Non-linear molecule $\theta_{\text{rot},\alpha} = hcB_{\alpha}/k_B$

$$q_{\rm rot} \approx \frac{1}{\sigma} \left(\frac{\pi T^3}{\theta_{{
m rot},\alpha} \theta_{{
m rot},\beta} \theta_{{
m rot},\gamma}} \right)^{1/2}, \quad T >> \theta_{{
m rot},\alpha,\beta,\gamma} \quad \sigma = {
m rotational \ symmetry \ number}$$

$$U_{\rm rot} = \frac{3}{2}RT \quad C_{\rm v,rot} = \frac{3}{2}R \quad S_{\rm rot}^{\circ} = \frac{R}{2}\left(3 - \ln\frac{\sigma\theta_{\rm rot,\alpha}\theta_{\rm rot,\beta}\theta_{\rm rot,\gamma}}{\pi T^3}\right)$$

Vibrational DOFs Harmonic oscillator model

Single harmonic mode $\theta_{\rm vib} = h\nu/k_B$

$$q_{\mathrm{vib}} = \frac{1}{1 - e^{-\theta_{\mathrm{vib}}/T}} \approx \frac{T}{\theta_{\mathrm{vib}}}, \quad T >> \theta_{\mathrm{vib}}$$

$$U_{\text{vib}} = C_{\text{v,vib}} = S_{\text{vib},i}^{\circ} = R \frac{\theta_{\text{vib}}}{e^{\theta_{\text{vib}}/T} - 1} R \left(\frac{\theta_{\text{vib}}}{T} \frac{e^{\theta_{\text{vib}}/2T}}{e^{\theta_{\text{vib}}/T} - 1} \right)^{2} R \left(\frac{\theta_{\text{vib}}/T}{e^{\theta_{\text{vib}}/T} - 1} - \ln(1 - e^{-\theta_{\text{vib}}/T}) \right)$$

Multiple harmonic modes $\theta_{\text{vib},i} = h\nu_i/k_B$

$$q_{\rm vib} = \prod_{i} \frac{1}{1 - e^{-\theta_{\rm vib}, i/T}}$$

$$U_{\text{vib}} = C_{\text{v,vib}} = S_{\text{vib},i}^{\circ} = R \sum_{i} \frac{\theta_{\text{vib},i}}{e^{\theta_{\text{vib},i}/T} - 1} R \sum_{i} \left(\frac{\theta_{\text{vib},i}}{T} \frac{e^{\theta_{\text{vib},i}/2T}}{e^{\theta_{\text{vib},i}/T} - 1} \right)^{2} R \left(\frac{\theta_{\text{vib},i}/T}{e^{\theta_{\text{vib},i}/T} - 1} - \ln(1 - e^{-\theta_{\text{vib},i}/T}) \right)$$

Electronic DOFs $q_{\text{elec}} = \text{spin multiplicity}$

	Characteristic	Characteristic	States @ RT	
	Energy (cm^{-1})	Temperature (K)		
translational	$h^2/2 \text{ m L}^2 \approx 10^{-21}$	10^{-21}	10^{30}	classical limit
rotational	≈ 1	≈ 1	100's	semi-classical
vibrational	≈ 1000	≈ 1000	1	non-classical
electronic	$\approx 10,000$	$\approx 10,000$	1	non-classical

Table 18: Contributions to ideal gas thermodynamics

3.4 Lecture 20: Chemical reactions and equilibria

3.4.1 Standard states

- 1. Translational partition function depends on concentration N/V
- 2. "Standard state" corresponds to some standard choice, $(N/V)^{\circ} = c^{\circ}$
- 3. Permits functions to be easily computed at other concentrations, e.g.

$$A(T, N/V) = A^{\circ}(T) + kT \ln ((N/V)/(N/V)^{\circ}) = A^{\circ}(T) + kT \ln (c/c^{\circ})$$

4. For ideal gas, related to pressure by $P^{\circ} = c^{\circ} k_B T$

3.4.2 Chemical reaction $A \rightarrow B$

- 1. Reaction entropy $\Delta S^{\circ}(T) = S_{\rm B}^{\circ}(T) S_{\rm A}^{\circ}(T)$
- 2. Reaction energy must capture difference in 0 K electronic energy

$$\Delta U^{\circ}(T) = U_{\rm B}^{\circ}(T) - U_{\rm A}^{\circ}(T) + \Delta E(0)$$

3. Equilibrium condition—equate chemical potentials

$$\mu_A(N, V, T) = \mu_B(N, V, T)$$

$$E_A(0) - kT \ln(q_A/N_A) = E_B(0) - kT \ln(q_B/N_B)$$

$$\frac{N_B}{N_A} = \frac{N_B/V}{N_A/V} = \frac{q_B(T, V)/V}{q_A(T, V)/V} e^{-\Delta E(0)/kT}$$

4. Equilibrium constant—specify standard state to eliminate volume dependence

$$q_A^{\circ}(T) = q_A(T, V)/(Vc^{\circ})$$

$$K_c(T) = \frac{q_B^{\circ}(T)}{q_A^{\circ}(T)}e^{-\Delta E(0)/kT}$$

3.4.3 Le'Chatlier's principle

- 1. Response to temperature: Boltzmann distribution favors higher energy things as T increases
- 2. Response to volume chance: particle-in-a-box states increasingly favor side with more molecules as volume increases

3.5 Lecture 21: Chemical kinetics

3.5.1 Kinetics and reaction rates

1. Rate: number per unit time per unit something

3.5.2 Empirical chemical kinetics

- 1. Rate laws, rate orders, and rate constants
- 2. Functions of T, P, composition C_i
- 3. differential vs integrated rate laws
- 4. Arrhenius expression, $k = Ae^{-E_a/k_BT}$

3.5.3 Reaction mechanisms

- 1. Elementary steps and molecularity
- 2. Collision theory
 - (a) $\{A + B \rightarrow \text{products}\}\$
 - (b) rate proportional to A/B collision frequency z_{AB} weighted by fraction of collisions with energy $> E_a$

$$r = kC_A C_B, k = \left(\frac{8k_B T}{\pi \mu}\right) \sigma_{AB} N_{av} e^{-E_a/k_B T}$$

(a) upper bound on real rates

3.5.4 Transition state theory (TST)

- 1. Assumptions
 - (a) Existence of reaction coordinate (PES)
 - (b) Existence of dividing surface
 - (c) Equilibrium between reactants and "transition state"
 - (d) Harmonic approximation for transition state
- 2. rate proportional to concentration of "activated complex" over reactants times crossing frequency

$$r = kC_A C_B, k = \frac{k_B T}{h} f rac q^{\dagger} q_A q_B e^{-\Delta E(0)/k_B T}$$

3.5.5 Locating transition states computationally

3.5.6 Thermodynamic connection

3.5.7 Diffusion-controlled reactions

- $1. \ \, {\rm Intermediate \ complex}$
- 2. Steady-state approximation
- 3. Diffusion-controlled limit $(k_D = 4\pi(r_A + r_B)D_{AB})$
- 4. Reaction-controlled limit $(k_{app} = (k_D/k_{-D})k_r)$

3.6 Lecture 22: Conclusion

1. Do you think about the burning lighter any differently now?

Table 19: Equilibrium and Rate Constants

Equilibrium Constants $a A + b B \rightleftharpoons c C + d D$

$$K_{eq}(T) = e^{\Delta S^{\circ}(T,V)/k_{B}} e^{-\Delta H^{\circ}(T,V)/k_{B}T}$$

$$K_{c}(T) = \left(\frac{1}{c^{\circ}}\right)^{\nu_{c}+\nu_{d}-\nu_{a}-\nu_{b}} \frac{(q_{c}/V)^{\nu_{c}}(q_{d}/V)^{\nu_{d}}}{(q_{a}/V)^{\nu_{a}}(q_{b}/V)^{\nu_{b}}} e^{-\Delta E(0)\beta}$$

$$K_{p}(T) = \left(\frac{k_{B}T}{P^{\circ}}\right)^{\nu_{c}+\nu_{d}-\nu_{a}-\nu_{b}} \frac{(q_{c}/V)^{\nu_{c}}(q_{d}/V)^{\nu_{d}}}{(q_{a}/V)^{\nu_{a}}(q_{b}/V)^{\nu_{b}}} e^{-\Delta E(0)\beta}$$

Unimolecular Reaction $[A] \rightleftharpoons [A]^{\ddagger} \rightarrow C$

$$k(T) = \nu^{\ddagger} \bar{K}^{\ddagger} = \frac{k_B T}{h} \frac{\bar{q}_{\ddagger}(T)/V}{q_A(T)/V} e^{-\Delta E^{\ddagger}(0)\beta}$$

$$E_a = \Delta H^{\circ \ddagger} + k_B T$$
 $A = e^1 \frac{k_B T}{h} e^{\Delta S^{\circ \ddagger}}$

Bimolecular Reaction $A + B \rightleftharpoons [AB]^{\ddagger} \rightarrow C$

$$k(T) = \nu^{\ddagger} \bar{K}^{\ddagger} = \frac{k_B T}{h} \frac{q_{\ddagger}(T)/V}{(q_A(T)/V)(q_B(T)/V)} \left(\frac{1}{c^{\circ}}\right)^{-1} e^{-\Delta E^{\ddagger}(0)\beta}$$

$$E_a = \Delta H^{\circ \ddagger} + 2k_B T$$
 $A = e^2 \frac{k_B T}{h} e^{\Delta S^{\circ \ddagger}}$