Chapter 6 Pushdown Automata

(Solution/Hint)

6.1 Design a PDA accepting the following languages by null store.

$$L_{1} = \{a^{m}cb^{m} \mid m \ge 0\}$$

$$L_{2} = \{a^{m}b^{m}c \mid m \ge 0\}$$

$$L_{3} = \{ca^{m}b^{m} \mid m \ge 0\}$$

 $\delta(q_1, b, a) \vdash (q_2, \epsilon) \\
\delta(q_2, b, a) \vdash (q_2, \epsilon) \\
\delta(q_2, \epsilon, Z_0) \vdash (q_6, \epsilon)$

Sol. PDA for L_1 $\delta(q_0, a, Z_0) \models (q_0, aZ_0)$

6.2 Design a PDA accepting the following languages by null store.

$$L_7 = \{a^n c b^m \mid n, m \ge 0\}$$

$$L_8 = \{a^n b^m c \mid n, m \ge 0\}$$

$$L_9 = \{c a^n b^m \mid n, m \ge 0\}$$
Here, and more upper

Here, n and m are unrelated.

Sol.

$$\begin{array}{c|c} PDA \ for \ L_7 \\ \delta(q_0,a,Z_0) \ \ \begin{matrix} \vdash & (q_0,Z_0) \\ \delta(q_0,c,Z_0) \ \ \begin{matrix} \vdash & (q_1,Z_0) \\ \delta(q_1,b,Z_0) \ \ \end{matrix} \\ \end{array}$$

$$\begin{array}{lll} \delta(q_{l},\varepsilon\,,Z_{0}) & \vdash (q_{f\!s}\,\varepsilon) \\ \\ PDA \ for \ L_{8} \\ \delta(q_{0},a,Z_{0}) & \vdash (q_{0},Z_{0}) \\ \delta(q_{0},b,Z_{0}) & \vdash (q_{0},Z_{0}) \\ \delta(q_{0},c\,,Z_{0}) & \vdash (q_{f\!s}\,\varepsilon) \\ \\ PDA \ for \ L_{9} \\ \delta(q_{0},c\,,Z_{0}) & \vdash (q_{1},Z_{0}) \\ \delta(q_{1},a,Z_{0}) & \vdash (q_{1},Z_{0}) \\ \delta(q_{1},b,Z_{0}) & \vdash (q_{2},Z_{0}) \\ \delta(q_{2},b,Z_{0}) & \vdash (q_{5},Z_{0}) \\ \delta(q_{2},\varepsilon\,,Z_{0}) & \vdash (q_{6},\varepsilon) \\ \end{array}$$

6.3 Design a PDA accepting the following languages by null store.

$$L_{10} = \{a^n c b^m \mid n, m \ge 1\}$$

$$L_{11} = \{a^n b^m c \mid n, m \ge 1\}$$

$$L_{12} = \{c a^n b^m \mid n, m \ge 1\}$$

Here, n and m are unrelated.

Sol. PDA for
$$L_{10}$$

 $\delta(q_0, a, Z_0) \vdash (q_1, Z_0)$
 $\delta(q_1, a, Z_0) \vdash (q_2, Z_0)$
 $\delta(q_1, c, Z_0) \vdash (q_2, Z_0)$
 $\delta(q_2, b, Z_0) \vdash (q_2, Z_0)$
 $\delta(q_2, \epsilon, Z_0) \vdash (q_6, \epsilon)$
PDA for L_{11}
 $\delta(q_0, a, Z_0) \vdash (q_1, Z_0)$
 $\delta(q_1, b, Z_0) \vdash (q_2, Z_0)$
 $\delta(q_2, b, Z_0) \vdash (q_2, Z_0)$
 $\delta(q_2, b, Z_0) \vdash (q_2, Z_0)$
 $\delta(q_2, b, Z_0) \vdash (q_3, \epsilon)$
PDA for L_{12}
 $\delta(q_0, c, Z_0) \vdash (q_1, Z_0)$
 $\delta(q_1, a, Z_0) \vdash (q_2, Z_0)$
 $\delta(q_2, a, Z_0) \vdash (q_3, Z_0)$
 $\delta(q_3, b, Z_0) \vdash (q_4, Z_0)$
 $\delta(q_4, b, Z_0) \vdash (q_4, Z_0)$
 $\delta(q_4, b, Z_0) \vdash (q_6, \epsilon)$

6.4 The languages L_7 to L_{12} given in 6.2 and 6.3 can also be implemented on finite automaton as n and m are unrelated. Design finite automata for each of these languages.

Sol.

Finite Automat on for L₇

Finite Automaton for L₈

Finite Automaton for L₉

Finite Automaton for L_{10}

Finite Automaton for L_{11}

Finite Automaton for L_{12}

6.5 Design a PDA to accept the language L over $\Sigma = \{a, b\}$ consisting of all the strings with equal number of a's and b's.

Sol. $\delta(q_0, a, Z_0) \vdash (q_1, aZ_0)$ $\delta(q_0, b, Z_0) \vdash (q_1, bZ_0)$ $\delta(q_1, a, a) \vdash (q_1, aa)$ $\delta(q_1, a, b) \vdash (q_1, \epsilon)$ $\delta(q_1, b, b) \vdash (q_1, bb)$ $\delta(q_1, b, a) \vdash (q_1, \epsilon)$ $\delta(q_1, \epsilon, Z_0) \vdash (q_6, \epsilon)$

6.6 Design a PDA corresponding to the following CFGs:

(a)
$$S \rightarrow 0S0 \mid 1S1 \mid A \mid A \rightarrow 2B3 \mid B \rightarrow 23 \mid 31$$

(b)
$$S \rightarrow bX \mid aY \mid A \rightarrow bXX \mid aS \mid aY \rightarrow aYY \mid bS \mid b$$

$$(c) S \rightarrow 0Y \mid 1X \mid X \rightarrow 0S \mid 1XX \mid 0 \mid Y \rightarrow 1S \mid 0YY \mid 1$$

Classify these PDA into deterministic and nondeterministic categories.

$$\begin{array}{lll} \textbf{Sol.} \ (a) \\ \delta(q_0, \varepsilon, S) & \vdash \ (q_0, 0S0) \\ \delta(q_0, \varepsilon, S) & \vdash \ (q_0, A) \\ \delta(q_0, \varepsilon, A) & \vdash \ (q_0, 2B3) \\ \delta(q_0, \varepsilon, B) & \vdash \ (q_0, 23) \\ \delta(q_0, 0, 0) & \vdash \ (q_0, \varepsilon) \\ \delta(q_0, 2, 2) & \vdash \ (q_0, \varepsilon) \\ \end{array} \quad \begin{array}{ll} \delta(q_0, \varepsilon, A) & \vdash \ (q_0, 2B3) \\ \delta(q_0, \varepsilon, B) & \vdash \ (q_0, 31) \\ \delta(q_0, 1, 1) & \vdash \ (q_0, \varepsilon) \\ \delta(q_0, 2, 3, 3) & \vdash \ (q_0, \varepsilon) \end{array}$$
 Nondeterministic PDA

6.7 Why cannot the following language be implemented on PDA?

$$L = \{a^m b^m \mid m \ge 1\} \cup \{ a^m b^{2m} \mid m \ge 1\}$$

Sol. PDA can be designed to

- remove one b with one a or
- to remove bb with one a

but not both simultaneously.

6.8 Design a top-down parser to implement the following CFG and parse the string 0102313010.

$$S \rightarrow 0S0 \mid 1S1 \mid A \mid A \rightarrow 2B3 \quad B \rightarrow 23 \mid 31$$

Sol.

P1:
$$S \rightarrow 0S0$$
 P2: $S \rightarrow 1S1$ P3: $S \rightarrow A$ P4: $A \rightarrow 2B3$ P5: $B \rightarrow 23$ P6: $B \rightarrow 31$

It is a LL(1) grammar and can be straight forwarded implemented.

$$\begin{array}{llll} R1: \delta(q,\varepsilon,Z_0) & & & R2: \delta(q,0,\varepsilon) & & \\ R3: \delta(q,1,\varepsilon) & & & R4: \delta(q,2,\varepsilon) & & \\ R5: \delta(q,3,\varepsilon) & & & R6: \delta(q_0,\varepsilon,S) & & \\ R7: \delta(q_1,\varepsilon,S) & & & R6: \delta(q_0,\varepsilon,S) & & \\ R9: \delta(q_2,\varepsilon,A) & & & R8: \delta(q_2,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R6: \delta(q_0,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R8: \delta(q_2,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R1: \delta(q_0,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R1: \delta(q_0,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R1: \delta(q_0,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R1: \delta(q_0,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R1: \delta(q_0,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R1: \delta(q_0,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R1: \delta(q_0,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R1: \delta(q_0,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R1: \delta(q_0,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R1: \delta(q_0,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R1: \delta(q_0,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R1: \delta(q_0,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R1: \delta(q_0,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R1: \delta(q_0,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R1: \delta(q_0,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R1: \delta(q_0,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R1: \delta(q_0,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R1: \delta(q_0,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R1: \delta(q_0,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R1: \delta(q_0,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R1: \delta(q_0,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R1: \delta(q_0,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R1: \delta(q_0,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R1: \delta(q_0,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R1: \delta(q_0,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & R1: \delta(q_0,\varepsilon,S) & & \\ R1: \delta(q_0,\varepsilon,S) & & & & \\ R1: \delta(q_0,\varepsilon,S) & & & \\ R1: \delta(q_0,\varepsilon,$$

Current State	Unread input	Pushdown Store Contents	Rule used
Q	0102313010\$	Z_0	
Q	0102313010\$	SZ_0	R1
q ₀	102313010\$	SZ ₀	R2
q_0	102313010\$	$0S0Z_0$	R6
Q	102313010\$	$S0Z_0$	R12
q_1	02313010\$	S0Z ₀	R3
q_1	02313010\$	1S10Z ₀	R7
Q	02313010\$	S10Z ₀	R13
q ₀	2313010\$	S10Z ₀	R2
q_0	2313010\$	0S010Z ₀	R6

Q	2313010\$	S010Z ₀	R12
q_2	313010\$	S010Z ₀	R4
q_2	313010\$	$A010Z_0$	R8
q ₂	313010\$	2B3010Z ₀	R9
Q	313010\$	B3010Z ₀	R14
q_3	13010\$	B3010Z ₀	R5
q ₃	13010\$	313010Z ₀	R11
Q	13010\$	13010Z ₀	R15
q_1	3010\$	13010Z ₀	R3
Q	3010\$	3010Z ₀	R13
q ₃	010\$	3010Z ₀	R5
Q	010\$	$010Z_0$	R15
q_0	10\$	$010Z_0$	R2
Q	10\$	$10Z_0$	R12
q_1	0\$	$10Z_0$	R3
Q	0\$	$0Z_0$	R13
qo	\$	0Z ₀	R2
Q	\$	Z_0	R12
Q			R16

6.9 Convert the following grammar to LL(1) type: $S \rightarrow S + A$ $S \rightarrow A$ $A \rightarrow A/B$ $A \rightarrow B$ $B \rightarrow a1 \mid a2 \mid a3$ where $\{a, 1, 2, 3, +, /\}$ is the set of terminals.

Sol. $S \rightarrow S + A$ involves left factoring. This can be removed as follows.

 $S \rightarrow AS'$

S'→+AS' | **ϵ**

Since null productions are not allowed. Hence we modify the production $S' \rightarrow +AS' \mid +A$

 $A \rightarrow A/B$ involves left factoring. This can be removed as follows. $A \rightarrow BA'$

A'→/BA'| /B

 $B\rightarrow a1|a2|a3$ can be converted to:

 $B\rightarrow aN$ $N\rightarrow 1$

 $N\rightarrow 2$

 $N\rightarrow 3$

6.10 Design a PDA to accept the language $L = \{a^n b a^n \mid n, m \ge 1\}$ by null store. Construct the corresponding CFG.

Sol. PDA corresponding to CFL L= $\{a^nba^n | n \ge 1\}$

$$\begin{array}{lll} \delta(q_0,a\ ,Z_0) \ \ | \ \ (q_1,aZ_0) \\ \delta(q_1,b,a) \ \ | \ \ (q_2,a) \\ \delta(q_2,\varepsilon\ ,Z_0) \ \ | \ \ (q_f,\varepsilon) \end{array} \qquad \begin{array}{ll} \delta(q_1,a\ ,a) \ \ | \ \ (q_1,aa) \\ \delta(q_2,a\ ,a) \ \ | \ \ (q_2,\varepsilon) \end{array}$$

Corresponding CFG:

S Productions

 $S \rightarrow [q_0, Z_0, q_0]$

 $S \rightarrow [q_0, Z_0, q_1]$

 $S \rightarrow [q_0, Z_0, q_2]$

 $S \rightarrow [q_0, Z_0, q_f]$

Productions corresponding to $\delta(q_0, a_1, Z_0) \vdash (q_1, aZ_0)$

 $[q_0, a, q_0] \rightarrow a[q_0, a, q_0] [q_0, Z_0, q_0]$

 $[q_0, a, q_0] \rightarrow a[q_0, a, q_1] [q_1, Z_0, q_0]$

 $[q_0, a, q_0] \rightarrow a[q_0, a, q_2] [q_2, Z_0, q_0]$

 $[q_0, a, q_0] \rightarrow a[q_0, a, q_f] [q_f, Z_0, q_0]$

$$[q_0, a, q_1] \rightarrow a[q_0, a, q_0][q_0, Z_0, q_1]$$

 $[q_0, a, q_1] \rightarrow a[q_0, a, q_1] [q_1, Z_0, q_1]$

 $[q_0, a, q_1] \rightarrow a[q_0, a, q_2] [q_2, Z_0, q_1]$

 $[q_0, a, q_1] \rightarrow a[q_0, a, q_f] [q_f, Z_0, q_1]$

$$[q_0, a, q_2] \rightarrow a[q_0, a, q_0] [q_0, Z_0, q_2]$$

$$[q_0, a, q_2] \rightarrow a[q_0, a, q_1][q_1, Z_0, q_2]$$

$$[q_0, a, q_2] \rightarrow a[q_0, a, q_2] [q_2, Z_0, q_2]$$

 $[q_0, a, q_2] \rightarrow a[q_0, a, q_f] [q_f, Z_0, q_2]$

$$[q_0, a, q_f] \rightarrow a[q_0, a, q_0] [q_0, Z_0, q_f]$$

$$[q_0, a, q_f] \rightarrow a[q_0, a, q_1] [q_1, Z_0, q_f]$$

$$[q_0, a, q_f] \rightarrow a[q_0, a, q_2] [q_2, Z_0, q_f]$$

$$[q_0, a, q_f] \rightarrow a[q_0, a, q_f] [q_f, Z_0, q_f]$$

Productions corresponding to $\delta(q_1, a, a) \vdash (q_1, aa)$

$$[q_1, a, q_0] \rightarrow a[q_1, a, q_0] [q_0, Z_0, q_0]$$

$$[q_1, a, q_0] \rightarrow a[q_1, a, q_1] [q_1, Z_0, q_0]$$

$$[q_1, a, q_0] \rightarrow a[q_1, a, q_2] [q_2, Z_0, q_0]$$

$$[q_1, a, q_0] \rightarrow a[q_1, a, q_f] [q_f, Z_0, q_0]$$

$$[q_1, a, q_1] \rightarrow a[q_1, a, q_0] [q_0, Z_0, q_1]$$

$$[q_1, a, q_1] \rightarrow a[q_1, a, q_1] [q_1, Z_0, q_1] [q_1, a, q_1] \rightarrow a[q_1, a, q_2] [q_2, Z_0, q_1] [q_1, a, q_2] [q_2, Z_0, q_2]$$

$$[q_1, a, q_1] \rightarrow a[q_1, a, q_f] [q_f, Z_0, q_1]$$

$$[q_1, a, q_2] \rightarrow a[q_1, a, q_0] [q_0, Z_0, q_2]$$

$$[q_1, a, q_2] \rightarrow a[q_1, a, q_1] [q_1, Z_0, q_2]$$

$$[q_1, a, q_2] \rightarrow a[q_1, a, q_2][q_2, Z_0, q_2]$$

$$[q_1, a, q_2] \rightarrow a[q_1, a, q_f] [q_f, Z_0, q_2]$$

$$[q_1, a, q_f] \rightarrow a[q_1, a, q_0] [q_0, Z_0, q_f]$$

$$[q_1, a, q_f] \rightarrow a[q_1, a, q_1] [q_1, Z_0, q_f]$$

$$[q_1,a,q_f] \rightarrow a[q_1,a,q_2] [q_2,Z_0,q_f]$$

$$[q_1, a, q_f] \rightarrow a[q_1, a, q_f] [q_f, Z_0, q_f]$$

Productions corresponding to $\delta(q_1, b, a) \vdash (q_2, a)$

$$[q_1, a, q_1] \rightarrow b[q_2, a, q_1]$$

$$[q_1, a, q_2] \rightarrow b[q_2, b, q_2]$$

Productions corresponding to $\delta(q_2,a$,a) $\not\models (q_2,\pmb{\varepsilon})$

$$[q_2, a, q_2] \rightarrow \epsilon$$

Productions corresponding to $\delta\!\left(q_{2},\varepsilon\right.,Z_{0}\left.\right)$ |- $\left(q_{f\!s},\varepsilon\right)$

$$[q_2,Z_0,q_f] \to \varepsilon$$