HEART DISEASE PREDICTION USING MACHINE LEARNING

CAPSTONE PROJECT - PREDICTIVE ANALYTICS
PRESENTED BY JANE FOO
DATE 29 AUG 2023

AGENDA

BUSINESS PROBLEM

DATA PREPROCESSING

DATA MODELING

MODEL PERFORMANCE EVALUATION

CONCLUSION

BUSINESS PROBLEM

Background

Heart disease is a leading cause of mortality globally.

Based on <u>World Heart Federation</u>, this disease has caused over 18.6 million deaths per year worldwide

51k death per day

Objective

The goal is to develop a machine learning model that can effectively predict the presence or absence of heart disease

This would allow the medical team to perform early intervention to prevent cardiac arrest and death

DATA PREPROCESSING

DATA UNDERSTANDING
CORRELATION
ANALYSIS
DATA PREPARATION

DATA UNDERSTANDING

Dataset provided was a subset of Parkway Pantai's patient biodata (2018 - 2023)

• Consists of patients from India, Indonesia, Malaysia and Singapore

Raw data consists of 70k rows and 16 columns

- Include presence or absence of heart disease (target)
- Contains dirty data
 - Data cleaning using Microsoft Excel
 - Blood pressure (bp)
 - Systolic bp within 60 to 200
 - Diastolic bp within 40 to 100
 - Systolic bp > Diastolic bp
 - Weight within 40 kg to 200 kg
- No duplicates, no null and no missing data

DATA UNDERSTANDING

- Custom columns were created to fine-tune the dataset (boxed in red below)
 - age_yr to convert patients' age from days to years
 - validate_bp to ensure that systolic bp (ap_hi) > diastolic bp (ap_lo)
 - bmi to calculate the body mass index to determine overweight patients
- Performed 2.4% of data cleaning with a balance of 68k rows

	date	country	id	active	age	age_yr	alco	ap_hi	ap_lo	validate_bp	cholesterol	gender	gluc	height	occupation	smoke	weight	bmi	disease
0	3/5/2021	Indonesia	0	1	18393	50	0	110	80	ОК	1	2	1	168	Architect	0	62	22	0
1	5/8/2021	Malaysia	1	1	20228	55	0	140	90	ОК	3	1	1	156	Accountant	0	85	35	1
2	13/11/2022	Indonesia	2	0	18857	52	0	130	70	ОК	3	1	1	165	Chef	0	64	24	1
3	31/10/2018	Singapore	3	1	17623	48	0	150	100	ОК	1	2	1	169	Lawyer	0	82	29	1
4	25/9/2020	Singapore	4	0	17474	48	0	100	60	OK	1	1	1	156	Architect	0	56	23	0

CATEGORICAL VARIABLES

(Target) Balanced Distribution of patients with heart disease and no heart disease

(Predictors)

- Imbalanced distributions of inputs
- Risk factors
 - High cholesterol or glucose level
 - Physically inactive
 - Likely to affect male than female
- Not related to heavy drinker or smoker

Smoking - 0:No 1:Yes

Alcohol Intake - 0:No 1:Yes

NUMERICAL VARIABLES

- Heart disease risks
 - Systolic bp 130 and above (boxed in red)
 - Diastolic bp 70 and above (boxed in red)
 - Obese patients especially those with bmi 50 and above (red arrow)

CORRELATION ANALYSIS

- Predictors with positive correlation with heart disease (boxed in red)
- Predictors with negative correlation with heart disease
 - Patient identification
 - Physically active
 - Alcohol drinker
 - Patient height
 - Smoker

-1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

DATA PREPARATION

- Feature Selection
 - Predictors that had a 0.08 and above correlation with heart disease
- Feature Scaling
 - Normalised all features to a standard scale to prevent feature with larger magnitude from dominating the learning process
- Feature Engineering
 - Age in year format
 - BMI

DATA MODELING AND EVALUATION

MODEL SELECTION

PREDICTION PERFORMANCE

CONFUSION MATRIX AND

CLASSIFICATION REPORT

MODEL SELECTION

SUPERVISED MACHINE LEARNING - CLASSIFIER MODEL	PREDICTION PERFORMANCE	SETTING DATA SPLIT: 20% TEST, 80% TRAIN
Support Vector Machine	73.08%	Linear kernel, Regularisation strength 1.0
K-Nearest Neighbour	73.21%	Used 27 nearest neighbours for prediction, Manhattan distance metric
Logistic Regression	73.03%	Used grid searching key for other hyperparameter setting same accuracy
Decision Tree	68.07%	Default

CONFUSION MATRIX AND CLASSIFICATION REPORT

CONCLUSION

K-Nearest Neighbour (KNN) is the right model

Accurately predicted the highest number of heart disease patients

Lowest misclassification score as compared to the other two models

THANK YOU