Московский Авиационный Институт (Национальный Исследовательский Университет)

Факультет Информационных технологий и прикладной математики Кафедра Математической кибернетики №805

Лабораторная работа 2 по курсу «Исследование операций»

Тема: «Коалиционные игры и сведение их к системе матричных игр»

Работу выполнил студент группы 8О-404Б Сорокин Д. М.

Преподаватель: профессор Короткова Т.И.

Москва 2018

Цель работы

Научиться решать матричные игры в чистых стратегиях, матричные игры в смешанных стратегиях методом сведения к ЗЛП, матричные игры в смешанных стратегиях методом Брауна.

Теоретические сведения

Рассмотрим пример 3-х мерной матрицы.

Пусть каждый игрок имеет 2 стратегии. Выигрыши игроков заданы таблицей:

	I	II	III
$\alpha_1\beta_1\gamma_1$	1	0	-1
$\alpha_1\beta_1\gamma_2$	2	-1	-1
$\alpha_1\beta_2\gamma_1$	0	-1	1
α1β2γ2	2	2	-4
$\alpha_2\beta_1\gamma_1$	-3	1	2
$\alpha_2\beta_1\gamma_2$	2	5	-7
$\alpha_2\beta_2\gamma_1$	-2	1	1
α2β2γ2	0	2	-2

Гарантированные результаты для каждого из 3-х игроков очевидны:

- 1) $V_1 = 0$, α_1
- 2) $V_2 = -1$, β_1 , β_2
- 3) $V_3 = -1$, γ_1

В такой ситуации естественно возникают коалиции игроков. Рассмотрим возможные варианты улучшения полученных гарантированных результатов.

<u>Коалиция 1.</u> 2-й и 3-й против 1-го.

	$\beta_1 \gamma_1$	$\beta_1 \gamma_2$	$\beta_2 \gamma_1$	β2γ2
α_1	1	2	0	2
α_2	-3	2	-2	0

Оптимальная тройка стратегий: α_1 , β_2 , γ_1 .

Коалиция 2. 1-й и 3-й против 2-го.

	$\alpha_1 \gamma_1$	$\alpha_1 \gamma_2$	$\alpha_2 \gamma_1$	$\alpha_2 \gamma_2$
β1	0	-1	1	5
β ₂	-1	2	1	2

Решения в чистых стратегиях нет. Решение в смешанных стратегиях дает результат: v = -1/4; оптимальная стратегия 2-го игрока — $p^* = (3/4; 1/4)$; для коалиции — $q^* = (3/4; 1/4)$.

Коалиция 3. 1-й и 2-й против 3-го.

	$\alpha_1\beta_1$	$\alpha_1\beta_2$	$\alpha_2\beta_1$	$\alpha_2\beta_2$
γ_1	-1	1	2	1
γ ₂	-1	-4	-7	-2

Оптимальная тройка стратегий: α_1 , β_1 , γ_1 .

Ход работы

1. Установим параметры игры: количество игроков, число стратегий одного игрока, максимальный выигрыш:

2. Формирование матрицы одной из коалиционных игр первого уровня. Введём число строк (стратегий 1 игрока) и столбцов (стратегий коалиции остальных игроков).

Сформируем матрицу $2^{x}8$ коалиционной игры 1 уровня 1 игрока против остальных

3. Формирование матрицы одной из коалиционных игр второго уровня. Введём число строк (стратегий коалиции 1 и 2 игроков) и столбцов (стратегий коалиции остальных игроков). Заполняем матрицу 4^x4 коалиционной игры 2 уровня коалиции 1 и 2 игроков против остальных:

4. Формирование матрицы одной из коалиционных игр третьего уровня. Введём число строк (стратегий коалиции 1, 2 и 3 игроков) и столбцов (стратегий коалиции остальных игроков). Заполняем матрицу 8^x2 коалиционной игры 3 уровня коалиции 1, 2 и 3 игроков против остальных

5. Формулы для решения коалиционных игр в чистых стратегиях и нахождения гарантированных выигрышей. Составляем формулы для нахождения верхней, нижней цены игры и варьированного выигрыша матричной игры на примере коалиционной игры 1 уровня. После составления формулы система выводит матрицу дохода s-того игрока при его игре против остальных:

6. Решение одной из коалиционных игр первого уровня в чистых стратегиях. Рассмотрим коалиционную игру 1 уровня 1 игрока против остальных. Для нахождения верхней, нижней цен игры и гарантированного выигрыша, определим минимумы строк и максимумы столбцов, после чего найдем максимальный элемент из минимумов по строкам и минимальный элемент из максимумов по столбцам — это и будут нижняя и верхняя цены игры соответственно. Решения в чистых стратегиях нет, т.к. нижняя и верхняя цены игры не совпадают. Гарантированный выигрыш равен нижней цене игры.

7. Решение одной из коалиционных игр второго уровня в чистых стратегиях. Рассмотрим коалиционную игру 2 уровня 1 и 2 игроков против остальных. Для нахождения верхней, нижней цен игры и гарантированного выигрыша, определим минимумы строк и максимумы столбцов, после чего найдем максимальный элемент из минимумов по строкам и минимальный элемент из максимумов по столбцам — это и будут нижняя и верхняя цены игры соответственно. Решения в чистых стратегиях нет, т.к. нижняя и верхняя цены игры не совпадают. Гарантированный выигрыш равен нижней цене игры.

8. Решение одной из коалиционных игр третьего уровня в чистых стратегиях. Рассмотрим коалиционную игру 3 уровня 1, 2 и 3 игроков против остальных. Для нахождения верхней, нижней цен игры и гарантированного выигрыша, определим минимумы строк и максимумы столбцов, после чего найдем максимальный элемент из минимумов по строкам и минимальный элемент из максимумов по столбцам — это и будут нижняя и верхняя цены игры соответственно. Решения в чистых стратегиях нет, т.к. нижняя и верхняя цены игры не совпадают. Гарантированный выигрыш равен нижней цене игры.

- 9. Решение одной из коалиционных игр второго уровня в смешанных стратегиях методом сведения к системе из двух ЗЛП.
 - Найдём решение в смешанных стратегиях коалиционной игры 2 уровня 1 и 2 игроков против остальных (А коалиция 1 и 2 игроков, В коалиция остальных игроков). n=4 и m=4 так как размерность матрицы $4^{x}4$. Выполним переход к преобразованной игре, задав число $\alpha \geq 0$ (берём число 20, чтобы минимальный элемент матрицы стал положительным, $\neq 0$). Составим две задачи линейного программирования, к решению которых сводится решение преобразованной игры в смешанных стратегиях. По найденным решениям ЗЛП (X^{*} и Y^{*}) определим оптимальные смешанные стратегии игрока А р и игрока В q и цену игры v.
 - По предыдущему шагу система автоматически нашла решения ЗЛП. Нужно определить оптимальные смешанные стратегии игрока A-p, игрока B-q и цену игры v (с точностью до третьего знака после запятой). Для нахождения решений исходной задачи сначала находим сумму $XY = X_1^* + X_2^* + X_3^* + X_4^* = Y_1^* + Y_2^* + Y_3^* + + Y_4^*$. Воспользуемся формулами $p_i = \frac{X_i^*}{XY}$ и $q_i = \frac{Y_i^*}{XY}$ (i=1,2,3,4) для нахождения элементов строк p и q в решении исходной задачи. Округляем полученные значения до третьего знака после запятой. Цену игры находим по формуле $v = \frac{1}{XY} \alpha$. Полученное значение также округляем до третьего знака после запятой.

10. Решение одной из коалиционных игр второго уровня в смешанных стратегиях методом сведения к системе из двух Брауна.

Необходимо найти приближённое решение в смешанных стратегиях коалиционной игры 1 и 2 игроков против остальных. Задаём точность решения $\varepsilon=0.5$. Для заполнения таблицы вводим номер i или *j* выбираемой в данный момент стратегии игроков A или B по принципу: для стратегий B_1, B_2, B_3, B_4 выбираем тот номер стратегии, который имеет минимальное значение, а для стратегий A_1, A_2, A_3, A_4 выбираем тот номер стратегии, который имеет максимальное значение. Эти значения в таблице система подчеркивает. 3a 15 партий не была достигнута заданная точность, поэтому формирование таблицы Брауна завершается.

11. Решение одной из коалиционных игр второго уровня в смешанных стратегиях методом итераций Брауна.

После завершения формирования таблицы Брауна система создала выжимку из сформированной таблицы, содержащую данные, необходимые для вычисления стратегий игроков. Определим с помощью выданной выжимки оптимальные смешанные стратегии игрока A — р и B — q и цену игры v с точностью до третьего знака после запятой.

Результаты

Выводы

Мы научились решать матричные игры в чистых стратегиях, матричные игры в смешанных стратегиях методом сведения к ЗЛП, матричные игры в смешанных стратегиях методом Брауна.