|        |        | <b>课程名称:</b> 概率论与数理统计 B                      |                   |       |                                          |                   |            |  |  |  |
|--------|--------|----------------------------------------------|-------------------|-------|------------------------------------------|-------------------|------------|--|--|--|
| 姓 名:   |        | 考试时间:                                        | 2018 <sup>4</sup> | 羊 1   | 月                                        | 12 ⊨              | I (3       |  |  |  |
|        |        | 考试形式:闭卷(开闭卷)                                 |                   |       |                                          |                   |            |  |  |  |
| +8×    | ₩<br>○ | 题号                                           | 1 11              | [11]  | 四                                        | 五                 | 六          |  |  |  |
|        | 叙      | 评卷得分                                         |                   |       |                                          |                   |            |  |  |  |
|        |        | 评卷签名                                         |                   |       |                                          |                   |            |  |  |  |
|        |        | 复核得分                                         |                   |       |                                          |                   |            |  |  |  |
| ·<br>中 |        | 复核签名                                         |                   |       |                                          |                   |            |  |  |  |
| 惟      |        | 一. 选择题(20分, 每题 4分)                           |                   |       |                                          |                   |            |  |  |  |
| Î      | 订      | 1. 设一批产品共有 100 个,其中 5 个次品,从中随                |                   |       |                                          |                   |            |  |  |  |
|        |        | 示抽到次品的个数,则 P(X=3)=                           |                   |       |                                          |                   |            |  |  |  |
|        |        | (A) $\frac{C_5^3 C_{95}^{47}}{C_{100}^{50}}$ |                   |       |                                          |                   | (B) -      |  |  |  |
|        |        | (C) $C_{500}^3$                              | (                 | D)    |                                          |                   |            |  |  |  |
|        |        | 2. 设 A 与 B 互为对立事件且 P (A) >0, P (B) >         |                   |       |                                          |                   |            |  |  |  |
| <br>∰  |        | (A) P (A)                                    | =1-P(B)           |       |                                          | (B)               | ) P (      |  |  |  |
| #1     | 採      | $(C) P(\overline{AB})$                       |                   |       |                                          |                   | <b>P</b> ( |  |  |  |
|        |        | 3 设随机变量                                      | 的密度函数》            | hf(x) | $O = \begin{cases} \sqrt{1} \end{cases}$ | $\frac{A}{1-x^2}$ | (-1·<br>(事 |  |  |  |
| ,      |        | (A) $2\pi$                                   | (B) π             |       | (C) $\frac{1}{\pi}$                      | <u>-</u>          | (          |  |  |  |
| 小<br>究 |        | 4. 对于任意随机变量 $X,Y$ ,若 $E(XY) = E(X)E(X)$      |                   |       |                                          |                   |            |  |  |  |
| -,     |        | (A) $D(XY)$                                  | D(X) = D(X)D(X)   | O(Y)  |                                          | (B)               | D(         |  |  |  |
|        | į      | (C) X,Y-                                     | 一定独立              |       |                                          | (D)               | X          |  |  |  |
|        |        |                                              | 广左工业              | 十半十二  | <b>光田</b>                                | # 2               | 五 公        |  |  |  |

广东工业大学考试试卷 ( A )

\_\_试卷满分\_100\_\_\_\_分

19 周 星期五

| 题 | 5 号 | <br> | 三 | 四 | 五. | 六 | 七 | 八 | 九 | 十 | 总分 |
|---|-----|------|---|---|----|---|---|---|---|---|----|
| 评 | 卷得分 |      |   |   |    |   |   |   |   |   |    |
| 评 | 卷签名 |      |   |   |    |   |   |   |   |   |    |
| 复 | 核得分 |      |   |   |    |   |   |   |   |   |    |
| 复 | 核签名 |      |   |   |    |   |   |   |   |   |    |

值机地不放回地选取 50 个产品, X 表 )

$$(B)\ \frac{A_{50}^3A_{950}^{497}}{A_{1000}^{500}}$$

(D) 
$$\frac{3}{500}$$

>0则下列各式中错误的是(

$$(B) P (AB) = P (A) P (B)$$

(D) 
$$P(A \cup B) = 1$$

< x < 1), <sub>则 A</sub> 的值是 ( 其他).

(D)  $\frac{2}{\pi}$ 

**Y**),则

- (X+Y) = D(X) + D(Y)
- Y不独立

| 5. 设 $\xi \sim t(n)$ ,则 $\xi^2$ 服从的分布                      | i为                                           |                            | (                | ).                   |
|------------------------------------------------------------|----------------------------------------------|----------------------------|------------------|----------------------|
| $(A)  \chi^2(n)$                                           | (B) $t(n)$                                   | )                          |                  |                      |
| (C) $F(1, n)$                                              | (D) $N$                                      | (1, <i>n</i> )             |                  |                      |
| 二. 填空题(20分,每题4分) 1. 将3个球放置到4个盒子中去,每个盒子                     | 子里最多有一个球                                     | 的概率                        |                  |                      |
| 2. 设随机变量 X服从(-1,1)上的均匀分布                                   | j,则随机变量 $Y$                                  | $=X^2$ 的概率密                | ぎ 度函数プ           | Ą                    |
| 3. $\mbox{if } E(X) = 1, E(Y) = 2, D(X) = 1, D(Y)$         | $(1) = 4,  \rho_{XY} = 0.6$                  | ,设 <i>Z</i> = (2 <i>X</i>  | - Y + 2          | 2) <sup>2</sup> ,则其数 |
| 学期望 <i>E</i> ( <i>Z</i> ) =                                | ·                                            |                            |                  |                      |
| 4. 设随机变量 $X~B(100,0.9)$ , 应用中心极限 (已知 $\Phi(2)=0.9772$ )    | 定理可得 P{X≥96                                  | 5}=                        |                  | ·                    |
| 5. 从一大批零件中随机地抽取 100 件,测得                                   | 平均寿命为 1000                                   | 小时,已知零                     | 件的寿命             | 服从正态分                |
| $ \pi N(\mu, \sigma^2), \sigma^2 = 900, 则 \mu$ 的置信区间       | 为                                            | 。                          | $(\alpha = 0.03$ | 5)                   |
| 三. (10分)某车间生产了同规格的6箱个车床生产的,且三个车床的次品率分别为的一箱中任取一件发现是次品,求它是丙车 | 1/10、1/15、1/20                               |                            |                  |                      |
|                                                            | $f(x) = \begin{cases} Kx^3 \\ 0 \end{cases}$ | (0≤ <i>x</i> ≤2),<br>(其他). | 试求               |                      |
| (1) 系数 K; (3分)(2) 分布函数 F(x                                 | ); (4分)(3) 梅                                 | $\sum P(1 \le X \le 1)$    | 2). (3 ½         | })                   |
|                                                            |                                              |                            |                  |                      |
|                                                            |                                              |                            |                  |                      |
|                                                            |                                              |                            |                  |                      |
|                                                            |                                              |                            |                  |                      |
|                                                            |                                              |                            |                  |                      |

## (10 分) 设 $\xi$ 与 $\eta$ 的联合分布律为: 五.



- (1) 判断 $\xi$ 与 $\eta$ 是否独立; (5分)
- (2) 分别求 $\xi$ 与 $\eta$ 的方差。(5分)

## 六. (15 分) 设二维随机变量(X, Y)的联合密度函数为:

$$f(x, y) = \begin{cases} 2(x+y) & (0 \le y \le x \le 1), \\ 0 & (其他). \end{cases}$$

试求: (1)  $P(X+Y \le 1)$  (7分)

(2) 判断 X 与 Y 是否相互独立。 (8分)

## 七. (15 分) 已知随机变量 X 的密度函数为:

$$f(x) = \begin{cases} (\theta+1)(x-5)^{\theta} & 5 < x < 6 \\ 0 & 其他 \end{cases}$$
 ( $\theta > 0$ ), 其中 $\theta$ 为未知参数,

- (1) 求 $\theta$ 的矩估计量; (7 $\beta$ )
- (2) 求 $\theta$ 的最大似然估计量.(8分)