

Bruce M. Boghosian

Binomial data: Testing $H_0: p_X = p_Y$

Confidence intervals for two-sample problem

Summar

Binomial data: Testing $H_0: p_X = p_Y$ Confidence Intervals for the two-sample problem

Bruce M. Boghosian

Department of Mathematics

Tufts University

Outline

Bruce M Boghosia

 $\mathsf{Binomial}$ data $\mathsf{Testing}$ $H_0: p_X = p_Y$

Confidence ntervals for two-sample problem

Summary

1 Binomial data: Testing $H_0: p_X = p_Y$

2 Confidence intervals for two-sample problem

Statement of the problem

Bruce M. Boghosian

Binomial data: Testing $H_0: p_X = p_Y$

intervals for two-sample problem

- The two-sample analysis that we did last time was valid only for pairs of normally distributed data.
- We can do the same thing with other distributions, including discrete distributions.
- We analyze next the situation with n Bernoulli trials.
- Suppose that n independent Bernoulli trials related to treatment X have resulted in x successes.
- And that m independent Bernoulli trials related to treatment Y resulted in y successes.
- We want to know if p_X and p_Y , the true probability of success for the two treatments, are equal.

Tuffs Applying the GLR criterion

Binomial data: Testing

- Null hypothesis $H_0: p_X = p_Y (= p)$
- Alternative hypothesis $H_1: p_X \neq p_Y$
- Two parameter spaces for GLRT:

$$\omega = \{ (p_X, p_Y) \mid 0 \le p_X = p_Y \le 1 \}$$

$$\Omega = \{ (p_X, p_Y) \mid 0 \le p_X \le 1, 0 \le p_Y \le 1 \}$$

Likelihood function

$$L(p_X,p_Y)=p_X^x(1-p_X)^{n-x}\cdot p_Y^y(1-p_Y)^{m-y},$$
 where $n=\sum_j^n x_j$ and $m=\sum_j^n y_j.$

Maximum likelihood

Bruce M. Boghosian

Binomial data: Testing $H_0: p_X = p_Y$

Confidence intervals for two-sample problem

Summary

Likelihood function

$$L(p_X, p_Y) = p_X^x (1 - p_X)^{n-x} \cdot p_Y^y (1 - p_Y)^{m-y},$$

where $n = \sum_{j=1}^{n} x_j$ and $m = \sum_{j=1}^{n} y_j$.

■ For ω , take derivative with respect to $p = p_X = p_Y$ and set to zero to obtain pooled success proportion

$$p_e = \frac{x+y}{n+m}$$

■ For Ω , take derivatives separately with respect to p_X and p_Y , to obtain

$$p_{Xe} = \frac{x}{n}$$
 and $p_{Ye} = \frac{y}{m}$

Generalized likelihood ratio

Bruce M. Boghosian

Binomial data: Testing $H_0: p_X = p_Y$

Confidence intervals for two-sample problem

Summary

■ We have

$$\lambda = \frac{\max_{p} L(p, p)}{\max_{p_X, p_Y} L(p_X, p_Y)} = \frac{L(p_e, p_e)}{L(p_{Xe}, p_{Ye})}$$

Result is

$$\lambda = \frac{\left(\frac{x+y}{m+n}\right)^{x+y} \left(1 - \frac{x+y}{m+n}\right)^{n+m-x-y}}{\left(\frac{x}{n}\right)^{x} \left(1 - \frac{x}{n}\right)^{n-x} \left(\frac{y}{m}\right)^{y} \left(1 - \frac{y}{m}\right)^{m-y}}$$

■ Approximations to the above exist, e.g., $-2 \ln \lambda$ has an asymptotic χ^2 distribution with one df. So approximate two-sided $\alpha = 0.05$ test is to reject H_0 if $-2 \ln \lambda \geq \chi^2_{0.05.1} = 3.84$.

Tufts Approximation to GLR

Binomial data:

Observe that, by the CLT, the following is normally distributed

$$\frac{\frac{X}{n} - \frac{Y}{m} - E\left(\frac{X}{n} - \frac{Y}{m}\right)}{\sqrt{\operatorname{Var}\left(\frac{X}{n} - \frac{Y}{m}\right)}}$$

■ Under H_0 we have $E\left(\frac{X}{R} - \frac{Y}{R}\right) = 0$ and

$$\operatorname{Var}\left(\frac{X}{n}-\frac{Y}{m}\right)=\frac{p(1-p)}{n}+\frac{p(1-p)}{m}.$$

Replace p by $p_e = \frac{x+y}{p+m}$ to obtain a Z statistic.

Tufts Two-sample Bernoulli trial test

Binomial data:

- Let x and y be the number of successes in two independent Bernoulli trials of n and m flips, respectively.
- Let p_X and p_Y denote the true success probabilities, let $p_e = \frac{x+y}{n+m}$ and define

$$z = \frac{\frac{X}{n} - \frac{Y}{m}}{\sqrt{\frac{p_e(1-p_e)}{n} + \frac{p_e(1-p_e)}{m}}}$$

- Tests are as follows
 - To test $H_0: p_X = p_Y$ versus $H_1: p_X > p_Y$ at α level of significance, reject H_0 if $z \geq +z_{\alpha}$.
 - To test $H_0: p_X = p_Y$ versus $H_1: p_X < p_Y$ at α level of significance, reject H_0 if $z \leq -z_{\alpha}$.
 - To test $H_0: p_X = p_Y$ versus $H_1: p_X \neq p_Y$ at α level of significance, reject H_0 if either $z \leq -z_{\alpha/2}$ or $z \geq +z_{\alpha/2}$.

Comment

Bruce M. Boghosia

Binomial data: Testing $H_0: p_X = p_Y$

Confidence intervals fo two-sample problem

- This test is more general than it seems.
- Any continuous variable can be dichotomized into a Bernoulli random variable.
- For example, blood pressure can be dichotomized into "normal" and "abnormal."

Two-sample hypothesis testing with normal r.v.s

Bruce M. Boghosian

Binomial data Testing $H_0: p_X = p_Y$

Confidence intervals for two-sample problem

- \blacksquare Meaningful H_0 can always be defined for two-sample tests
- Let x_1, \ldots, x_n and y_1, \ldots, y_m be independent random samples drawn from normal distributions with means μ_X and μ_Y , respectively, and with the same standard deviation σ .
- Let s_p denote the pooled standard deviation.
- A $100(1-\alpha)$ % confidence interval for $\mu_X \mu_Y$ is given by

$$\left(\overline{x}-\overline{y}-t_{\alpha/2,n+m-2}s_{p}\sqrt{\frac{1}{n}+\frac{1}{m}},\overline{x}-\overline{y}+t_{\alpha/2,n+m-2}s_{p}\sqrt{\frac{1}{n}+\frac{1}{m}}\right)$$

Two-sample hypothesis testing with normal r.v.s

Bruce M. Boghosian

Binomial data: Testing $H_0: p_X = p_Y$

Confidence intervals for two-sample problem

Summar

■ Pf.:

■ We know $\frac{\overline{X}-\overline{Y}-(\mu_X-\mu_Y)}{S_p\sqrt{\frac{1}{p}+\frac{1}{m}}}$ is Student T distributed with n+m-2 df, so

$$P\left(-t_{\alpha/2,n+m-2} \leq \frac{\overline{X} - \overline{Y} - (\mu_{x} - \mu_{Y})}{S_{p}\sqrt{\frac{1}{n} + \frac{1}{m}}} \leq +t_{\alpha/2,n+m-2}\right) = 1 - \alpha$$

■ Rearrange inequality to isolate $\mu_X - \mu_Y$ to obtain confidence interval.

Confidence intervals for the variance ratio

Bruce M. Boghosian

Binomial data Testing $H_0: p_X = p_Y$

Confidence intervals for two-sample problem

Summar

Let x_1, \ldots, x_n and y_1, \ldots, y_m be independent random samples drawn from normal distributions with standard deviations σ_X and σ_Y , respectively. A $100(1-\alpha)\%$ confidence interval for the variance ratio σ_X^2/σ_Y^2 is

$$\left(\frac{s_X^2}{s_Y^2} F_{\alpha/2, m-1, n-1}, \frac{s_X^2}{s_Y^2} F_{1-\alpha/2, m-1, n-1}\right)$$

- Pf.:
 - Note that $\frac{S_Y^2/\sigma_Y^2}{S_Y^2/\sigma_X^2}$ is F distributed with m-1 and n-1 df.
 - Same strategy: Write probability

$$P\left(f_{1-\alpha/2,m-1,n-1} \leq \frac{S_Y^2/\sigma_Y^2}{S_X^2/\sigma_X^2} \leq f_{\alpha/2,m-1,n-1}\right) = 1 - \alpha.$$

■ Isolate σ_X^2/σ_Y^2 in inequality.

Confidence intervals for two-sample Bernoulli trials

Bruce M. Boghosian

Binomial data $\mathsf{Testing}\ \mathsf{H}_0: \mathsf{p}_X = \mathsf{p}_Y$

Confidence intervals for two-sample problem

Summary

■ Let *x* and *y* denote the number of successes in two independent sets of *n* and *m* Bernoulli trials, respectively.

If p_X and p_Y denote the true success probabilities, an approximate $100(1-\alpha)\%$ confidence interval for p_X-p_Y is given by

$$\left(\frac{x}{n} - \frac{y}{m} - z_{\alpha/2}\sqrt{\frac{\frac{x}{n}\left(1 - \frac{x}{n}\right)}{n} + \frac{\frac{y}{m}\left(1 - \frac{y}{m}\right)}{m}}, \frac{x}{n} - \frac{y}{m} + z_{\alpha/2}\sqrt{\frac{\frac{x}{n}\left(1 - \frac{x}{n}\right)}{n} + \frac{\frac{y}{m}\left(1 - \frac{y}{m}\right)}{m}}\right)$$

Comment

Bruce M. Boghosian

 $\mathsf{Binomial}$ data $\mathsf{Testing}$ $H_0: p_X = p_Y$

Confidence intervals fo two-sample problem

- We have studied confidence intervals for the two-sample problem.
- We have studied them for both Bernoulli trials and normally distributed data.
- We have studied them for both $\mu_X \mu_Y$ and σ_X^2/σ_Y^2 .