Project Report

1. Introduction

Fraud detection in financial transactions is a critical challenge in the banking sector. This project aims to develop a predictive model for detecting fraudulent credit card transactions using machine learning (ML) and deep learning (DL) techniques.

2. Dataset Overview

Source: Credit card transaction dataset

Attributes: Time, transaction amount, anonymized features (V1-V28), class (fraud or non-fraud)

Imbalance: Fraud cases are significantly lower than non-fraud cases.

3. Data Preprocessing

Handling Missing Values: Checked and replaced missing values using median imputation.

Feature Scaling	: StandardScaler	and RobustScale	r were applied for	or normalization.

Handling Imbalanced Data: Used SMOTE (Synthetic Minority Over-sampling Technique) to balance the dataset.

Outlier Detection: Applied Z-score method to remove extreme values.

4. Model Implementation

Multiple ML and DL models were trained and evaluated:

Machine Learning Models:

Logistic Regression

Decision Tree Classifier

Random Forest Classifier

Gradient Boosting Classifier

XGBoost Classifier (Best ML Model)

Deep Learning Model:

LSTM-based Neural Network (Best DL Model) (Sequential model with Dense, LSTM, and Dropout layers)

5. Performance Evaluation

Models were assessed using:

Accuracy

7. Conclusion

This project successfully demonstrates the application of ML and DL techniques for fraud detection. Future work includes hyperparameter tuning, feature selection, and ensemble learning to enhance model accuracy.

Best Machine Learning Model: XGBoost

Reason: XGBoost provides the highest accuracy and ROC-AUC score among ML models. It effectively handles imbalanced data and captures complex patterns.

Best Deep Learning Model: LSTM-based Neural Network

Reason: LSTMs can identify sequential transaction patterns, making them highly effective for fraud detection in time-series data. However, proper hyperparameter tuning is necessary for optimal performance.