Exercise Solutions for Math 20

Factoring Polynomials and Simplifying Rational Expressions

Nile Jocson

November 8, 2024

Contents

L	Fac																																	
	1.1		16	x^4	_	1																												
	1.2	į	$8j^3$	3 _	- 1	25	k^6																											
	1.3																																	
	1.4		4n	2 -	- 1	2n	+	9																										
	1.5		x^3	_	x^2	_	x -	\vdash	1																									
	1.6		48	_	13	q -	$-q^{2}$	2																										
							1						-			•	·	•							•	•	•							
2	Red 2.1 2.2		$\frac{a^2}{a^3}$	$\frac{-b^2}{-b^3}$	-		olle) V	v i :	ng	g	ra	at	io	n	al	l e	xĮ	or	es:	sio	on	s :	to	lo	ow	es	st	t.	er	n	ns		
	2.1 2.2 Per	·fo	$\frac{a^2}{a^3}$ $\frac{x^3}{x^3}$	$\frac{-b^2}{-b^3}$ $\frac{-x^2}{a}$	$rac{d}{dx^6}$	+ <i>xy</i> + <i>y</i> ⁶	ollo 		vi:	ng · ·	g	ra	at		on	al	l e	xp	or	es:	sio	on	s :	to 	lo	• ·	·	st	t.	er	rn	ns		٠
	2.1 2.2	·fo	$\frac{a^2}{a^3}$ $\frac{x^3}{x}$ Ori	$\frac{-b^2}{-b^3}$ $\frac{-x^2}{x}$ $\frac{x}{x^2-1}$	$\frac{x^2y^2}{x^6}$	$ \begin{array}{c} +xy \\ +y^6 \end{array} $ $ \mathbf{e} \\ -\frac{\pi}{x} $	folion $\frac{3}{+1}$) -	vii	ng		ra	at		on ra	al	e io:	x	or	es: nc	sio	on sin	s †	to	lo			st		er	•n			

1 Factor the following completely.

1.1 $16x^4 - 1$

$\Rightarrow (4x^2 - 1)(4x^2 + 1)$	Factor using difference of two squares.
$\Rightarrow (2x-1)(2x+1)(4x^2+1)$	Factor using difference of two squares.
	•

1.2 $8j^3 - 125k^6$

$$\Rightarrow (2j-5k^2)(4j^2+10jk^2+25k^4)$$
 Factor using difference of two cubes.

1.3 $s^2 + 7s + 10$

$\Rightarrow (s+2)(s+5)$	Factor by grouping.
	•

1.4 $4n^2 - 12n + 9$

$\Rightarrow 4n^2 - 6n - 6n + 9$	Factor by grouping.
$\Rightarrow 2n(2n-3) - 3(2n-3)$	
$\Rightarrow (2n-3)^2$	

1.5 $x^3 - x^2 - x + 1$

1.6 $48 - 13q - q^2$

$\Rightarrow -q^2 - 13q + 48$	Rewrite in standard form.
$\Rightarrow -(q^2 + 13q - 48)$	
$\Rightarrow -(q-3)(q+16)$	Factor by grouping.
	•

2 Reduce the following rational expressions to lowest terms.

2.1 $\frac{a^2-b^2}{a^3-b^3}$

$\Rightarrow \frac{(a-b)(a+b)}{a^3-b^3}$	Factor using difference of two
	squares.
$\Rightarrow \frac{(a-b)(a+b)}{(a-b)(a^2+ab+b^2)}$	Factor using difference of two cubes.
$\Rightarrow \frac{a+b}{a^2+ab+b^2}$	
	-

2.2 $\frac{x^3-x^2y+xy^2-y^3}{x^6+y^6}$

$$\Rightarrow \frac{x^2(x-y)+y^2(x-y)}{x^6+y^6}$$
 Factor by grouping.
$$\Rightarrow \frac{(x^2+y^2)(x-y)}{x^6+y^6}$$

$$\Rightarrow \frac{(x^2+y^2)(x-y)}{(x^2+y^2)(x^4-x^2y^2+y^4)}$$
 Factor using difference of two cubes.
$$\Rightarrow \frac{x-y}{x^4-x^2y^2+y^4}$$

3 Perform the following operations and simplify.

3.1 $\left(\frac{x}{x^2-1} - \frac{3}{x+1}\right) \div \frac{2x^2-x-3}{x^3-1}$

$$\Rightarrow \left(\frac{x}{(x-1)(x+1)} - \frac{3}{x+1}\right) \div \frac{2x^2 - x - 3}{x^3 - 1} \qquad \text{Factor using difference of two squares.}$$

$$\Rightarrow \qquad \qquad \text{LCM} = (x-1)(x+1)$$

$$\Rightarrow \frac{x - 3(x-1)}{(x-1)(x+1)} \div \frac{2x^2 - x - 3}{x^3 - 1}$$

$$\Rightarrow \frac{x - 3x + 3}{(x-1)(x+1)} \div \frac{2x^2 - x - 3}{x^3 - 1}$$

$$\Rightarrow \frac{x - 3x + 3}{(x-1)(x+1)} \div \frac{2x^2 - x - 3}{x^3 - 1}$$

$$\Rightarrow \frac{-2x + 3}{(x-1)(x+1)} \div \frac{2x^2 - x - 3}{x^3 - 1}$$

$$\Rightarrow \frac{-2x + 3}{(x-1)(x+1)} \div \frac{2x^2 + 2x - 3x - 3}{x^3 - 1}$$
Factor by grouping.
$$\Rightarrow \frac{-2x + 3}{(x-1)(x+1)} \div \frac{2x(x+1) - 3(x+1)}{x^3 - 1}$$

$$\Rightarrow \frac{-2x + 3}{(x-1)(x+1)} \div \frac{(2x - 3)(x+1)}{x^3 - 1}$$

$$\Rightarrow \frac{-2x + 3}{(x-1)(x+1)} \div \frac{(2x - 3)(x+1)}{x^3 - 1}$$
Factor using difference of two cubes.
$$\Rightarrow \frac{-2x + 3}{(x-1)(x+1)} \div \frac{(2x - 3)(x+1)}{(x-1)(x^2 + x + 1)}$$

$$\Rightarrow \frac{-2x + 3}{(x-1)(x+1)} \div \frac{(x-1)(x^2 + x + 1)}{(2x-3)(x+1)}$$
Factor using difference of two cubes.
$$\Rightarrow \frac{-2x + 3}{(x-1)(x+1)} \div \frac{(x-1)(x^2 + x + 1)}{(2x-3)(x+1)}$$

$$\Rightarrow \frac{(-2x + 3)(x^2 + x + 1)}{(2x - 3)(x+1)^2}$$

$$\Rightarrow \frac{(-2x + 3)(x^2 + x + 1)}{(2x - 3)(x+1)^2}$$

$$\Rightarrow \frac{(-2x + 3)(x^2 + x + 1)}{(2x - 3)(x+1)^2}$$

$$\Rightarrow \frac{-2x + 3}{(2x - 3)(x^2 + x + 1)}$$

$$\Rightarrow \frac{(-2x + 3)(x^2 + x + 1)}{(2x - 3)(x+1)^2}$$

$$\Rightarrow \frac{(-2x + 3)(x^2 + x + 1)}{(2x - 3)(x+1)^2}$$

$$\Rightarrow \frac{(-2x + 3)(x^2 + x + 1)}{(2x - 3)(x+1)^2}$$

$$\Rightarrow \frac{(-2x + 3)(x^2 + x + 1)}{(2x - 3)(x+1)^2}$$

$$\Rightarrow \frac{(-2x + 3)(x^2 + x + 1)}{(2x - 3)(x+1)^2}$$

$$\Rightarrow \frac{(-2x + 3)(x^2 + x + 1)}{(2x - 3)(x+1)^2}$$

$$\Rightarrow \frac{(-2x + 3)(x^2 + x + 1)}{(2x - 3)(x+1)^2}$$

$$\Rightarrow \frac{(-2x + 3)(x^2 + x + 1)}{(2x - 3)(x+1)^2}$$

3.2
$$\left(\frac{x}{x+y} + \frac{y}{x-y}\right) \cdot \frac{x^2 - xy}{x^4 - y^4} \div \frac{x}{x^2 + 2xy + y^2}$$