# Processing short nanopore reads with dada2

# Marko Suokas

# Preprocess Ion Torrent adapter reads

Trim forward reads with Adapter A and trP1(rc) sequences

cutadapt -g "CCATCTCATCCCTGCGTGTCTCCGACTCAG;o=30...ATCACCGACTGCCCATAGA-GAGG;o=23"-trimmed-only -e 0.05 -o ev\_forward.fastq.gz ev\_reads\_hq.fastq.gz

Trim reverse reads with trP1 and Adapter A(rc) sequences

cutadapt -g "CCTCTCTATGGGCAGTCGGTGAT;o=23...CTGAGTCGGAGACACGCAGGGATGA-GATGG;o=30" -trimmed-only -e 0.05 -o ev\_reverse.fastq.gz ev\_reads\_hq.fastq.gz

Reverse-complement reverse reads

seqkit seq -rp -t DNA -o ev\_rcomp.fasta.gz ev\_reverce.fasta.gz

Merge with forward reads

cat ev\_forward.fasta.gz ev\_rcomp.fasta.gz > raw\_005.fasta.gz

Import data to giime

qiime tools import –type MultiplexedSingleEndBarcodeInSequence –input-path raw\_005.fasta.gz –output-path raw\_005.qza

### Demultiplex

qiime cutadapt demux-single –i-seqs raw\_005.qza –m-barcodes-file jt\_meta.tsv –m-barcodes-column Barcode\_seq –output-dir demuxed –p-error-rate 0 –p-anchor-barcode

Trim pcr primers (519F and 926R)

qiime cutadapt trim-single –i-demultiplexed-sequences per\_sample\_sequences.qza –p-overlap 15 –p-discard-untrimmed –p-front ACAGCMGCCGCGGTAATWC –o-trimmed-sequences trim1.qza

qiime cutadapt trim-single –i-demultiplexed-sequences trim1.qza –p-adapter AAACTCAAAK-GAATTGACGG –o-trimmed-sequences trimmed-sequences.qza

Decompress read files

unzip trimmed-sequences.qza

**Note.** Parameters allow one error in sequencing adapters, no errors in barcode sequence and 1 and 2 errors in pcr primers, respectively.

**Note.** Some options in commands require double dash and are not displayed correctly in rendered documents.

# **Load libraries**

| library(dada2);packageVersion("dada2")                  |
|---------------------------------------------------------|
| [1]   1 70 Q                                            |
| [1] '1.30.0'                                            |
| library(knitr);packageVersion("knitr")                  |
|                                                         |
| [1] '1.45'                                              |
| library(Biostrings);packageVersion("Biostrings")        |
|                                                         |
| [1] '2.70.2'                                            |
| library(DECIPHER);packageVersion("DECIPHER")            |
|                                                         |
| [1] '2.30.0'                                            |
| <pre>library(phyloseq);packageVersion("phyloseq")</pre> |
|                                                         |
| [1] '1.46.0'                                            |
| library(tidyverse);packageVersion("tidyverse")          |
|                                                         |
| [1] '2.0.0'                                             |
| library(kableExtra);packageVersion("kableExtra")        |
|                                                         |
| [1] '1.4.0'                                             |
| library(mia);packageVersion("mia")                      |
|                                                         |
| [1] '1.10.0'                                            |

# Set parameters

```
# Path variables
path <- "data/reads/"
training <- "-/feature_classifiers/SILVA_SSU_r138_2019.RData"
meta_file <- "data/jt_meta.tsv"
exportloc <- "results/"
# Variables: truncation length, phix (Illumina)
truncation <- 350
#Creates results directory
dir.create(exportloc)
#metadata
metadata <- data.frame(read_tsv(meta_file))
#set knitr cache path
knitr::opts_chunk$set(cache.path = "cache/")</pre>
```

# Import reads

nr072 was removed from dataset (0 reads causing error in denoising step).

```
# Forward fastq filenames have format: SAMPLENAME_R1_001.fastq
fnFs <- sort(list.files(path, pattern="L001_R1_001.fastq.gz", full.names = TRUE))
# Extract sample names, assuming filenames have format: SAMPLENAME_XXX.fastq.gz
sample.names <- sapply(strsplit(basename(fnFs), "_"), `[`, 1)</pre>
```

# Checking quality of first reads

```
# Base quality plot
p <- plotQualityProfile(fnFs[1:4], n = 50000)
p</pre>
```



### Filter and trim reads

# Learn and plot error profile

```
# Forward read error rate
errF <- learnErrors(filtFs, multithread = TRUE)</pre>
```

142675400 total bases in 407644 reads from 4 samples will be used for learning the error rates.

```
saveRDS(errF, file = "rds/errF.rds")
```

### Plot error profile

```
# Plotting error rate profile for forward reads
plotErrors(errF, nominalQ = TRUE)
```



# Denoise sequences

```
dadaFs <- dada(filtFs, err = errF, multithread = TRUE, verbose = FALSE)
saveRDS(dadaFs, file = "rds/dadaFs.rds")</pre>
```

# **Build ASV table**

```
seqtab <- makeSequenceTable(dadaFs)
# Dimensions of ASV table
dim(seqtab)</pre>
```

[1] 131 8404

### Remove chimeric variants

[1] 131 7634

# Amount of data remaining after chimera removal

sum(seqtab.nochim)/sum(seqtab)

[1] 0.9959133

# Summary table

Table 1: Summary table

|       | Input  | Filtered | DenoisedF | Nonchimeric | N:o of variants |
|-------|--------|----------|-----------|-------------|-----------------|
| nr001 | 4558   | 3737     | 3589      | 3589        | 96              |
| nr002 | 101469 | 82272    | 82017     | 82017       | 449             |
| nr003 | 139054 | 113872   | 113654    | 113612      | 359             |
| nr004 | 256204 | 207763   | 207374    | 207160      | 361             |
| nr005 | 104757 | 85575    | 85340     | 85153       | 413             |
| nr006 | 125276 | 101867   | 101438    | 101135      | 407             |
| nr007 | 16776  | 13466    | 13352     | 13352       | 179             |
| nr008 | 60779  | 50372    | 50261     | 50261       | 259             |
| nr009 | 57496  | 46090    | 45844     | 45777       | 250             |
| nr010 | 58884  | 48417    | 48302     | 48287       | 239             |
| nr011 | 57804  | 46828    | 46648     | 46648       | 315             |
| nr012 | 63184  | 51624    | 51355     | 51279       | 291             |
| nr013 | 184184 | 151003   | 150506    | 150337      | 305             |
| nr014 | 37034  | 30255    | 30059     | 30059       | 167             |
| nr015 | 52921  | 42498    | 42295     | 42214       | 256             |
| nr016 | 57780  | 47377    | 47221     | 47198       | 184             |
| nr017 | 32249  | 27015    | 26761     | 26761       | 223             |
| nr018 | 32343  | 26457    | 26235     | 26204       | 238             |
| nr019 | 211    | 182      | 152       | 152         | 8               |
| nr020 | 17466  | 14548    | 14312     | 14309       | 271             |
| nr021 | 13454  | 10843    | 10407     | 10368       | 298             |
| nr022 | 36958  | 30203    | 29950     | 29916       | 330             |
| nr023 | 5863   | 4939     | 4760      | 4760        | 169             |
| nr024 | 39062  | 32944    | 32682     | 32675       | 287             |
| nr025 | 18358  | 15039    | 14839     | 14839       | 234             |
| nr026 | 54181  | 45020    | 44705     | 44689       | 461             |
| nr027 | 57462  | 46962    | 46734     | 46734       | 281             |
| nr028 | 6385   | 5190     | 4976      | 4976        | 135             |

Table 1: Summary table (continued)

|       | Input | Filtered | DenoisedF | Nonchimeric | N:o of variants |
|-------|-------|----------|-----------|-------------|-----------------|
| nr029 | 1149  | 915      | 809       | 809         | 57              |
| nr030 | 2978  | 2463     | 2280      | 2280        | 72              |
| nr031 | 55110 | 44610    | 44399     | 44191       | 303             |
| nr032 | 53814 | 42979    | 42625     | 42284       | 219             |
| nr033 | 41001 | 32923    | 32685     | 32664       | 287             |
| nr034 | 25124 | 20580    | 20298     | 20296       | 288             |
| nr035 | 1028  | 835      | 761       | 761         | 34              |
| nr036 | 55738 | 45478    | 45334     | 45302       | 332             |
| nr037 | 52126 | 42022    | 41630     | 41550       | 325             |
| nr038 | 63365 | 52054    | 51762     | 51391       | 404             |
| nr039 | 62495 | 50482    | 50215     | 50090       | 428             |
| nr040 | 66486 | 54623    | 54394     | 54325       | 364             |
| nr041 | 50049 | 41199    | 41048     | 41028       | 288             |
| nr042 | 56406 | 47601    | 47412     | 47302       | 201             |
| nr043 | 62973 | 52026    | 51849     | 51794       | 248             |
| nr044 | 51860 | 42460    | 42297     | 42212       | 259             |
| nr045 | 62931 | 51359    | 50996     | 50953       | 410             |
| nr046 | 57953 | 47598    | 47331     | 46941       | 259             |
| nr047 | 59138 | 49654    | 49488     | 49442       | 260             |
| nr048 | 55998 | 46407    | 46245     | 46231       | 284             |
| nr049 | 59015 | 49029    | 48942     | 48940       | 252             |
| nr050 | 58770 | 48128    | 47929     | 47881       | 367             |
| nr051 | 58199 | 48129    | 48011     | 47938       | 241             |
| nr052 | 59722 | 48648    | 48421     | 48387       | 456             |
| nr053 | 52295 | 42909    | 42812     | 42810       | 206             |
| nr054 | 54222 | 44000    | 43814     | 43761       | 255             |
| nr055 | 44896 | 36482    | 36250     | 36211       | 327             |
| nr056 | 56564 | 46213    | 46048     | 46037       | 340             |
| nr057 | 57220 | 44611    | 44384     | 44384       | 340             |
| nr058 | 29071 | 21680    | 21628     | 21628       | 101             |
| nr059 | 49673 | 37678    | 37585     | 37585       | 184             |
| nr060 | 56441 | 44838    | 44765     | 44720       | 204             |
| nr061 | 39464 | 31746    | 31592     | 31558       | 203             |
| nr062 | 57638 | 47417    | 47311     | 47311       | 121             |
| nr063 | 41622 | 34042    | 33991     | 33847       | 116             |
| nr064 | 57665 | 45751    | 45672     | 45672       | 151             |
| nr065 | 31057 | 24009    | 23923     | 23923       | 115             |
| nr066 | 46974 | 36323    | 36192     | 36192       | 160             |
| nr067 | 28068 | 23098    | 22969     | 22967       | 116             |
| nr068 | 29823 | 24238    | 24203     | 24203       | 86              |
| nr069 | 30168 | 24183    | 24129     | 24127       | 128             |

Table 1: Summary table (continued)

|       | Input  | Filtered | DenoisedF | Nonchimeric | N:o of variants |
|-------|--------|----------|-----------|-------------|-----------------|
| nr070 | 60493  | 50010    | 49839     | 49598       | 200             |
| nr071 | 53242  | 41175    | 41058     | 40969       | 179             |
| nr073 | 49981  | 40478    | 40360     | 40357       | 179             |
| nr074 | 57395  | 46109    | 46003     | 46003       | 153             |
| nr075 | 56378  | 46525    | 46362     | 46362       | 181             |
| nr076 | 50105  | 39042    | 38965     | 38965       | 198             |
| nr077 | 53839  | 45055    | 44930     | 44903       | 272             |
| nr078 | 49264  | 40522    | 40432     | 40428       | 324             |
| nr079 | 1023   | 865      | 775       | 775         | 25              |
| nr080 | 76644  | 64132    | 63928     | 63928       | 348             |
| nr081 | 77967  | 62167    | 61521     | 61008       | 1391            |
| nr082 | 39055  | 32857    | 32731     | 32731       | 161             |
| nr083 | 33607  | 27830    | 27742     | 27719       | 227             |
| nr084 | 6891   | 5655     | 5515      | 5515        | 88              |
| nr085 | 63220  | 52028    | 51855     | 51853       | 218             |
| nr086 | 28118  | 21641    | 21539     | 21515       | 165             |
| nr087 | 1547   | 1240     | 1214      | 1214        | 44              |
| nr088 | 355    | 291      | 248       | 248         | 19              |
| nr089 | 94933  | 75244    | 74715     | 73698       | 62              |
| nr090 | 49193  | 39043    | 38697     | 38660       | 56              |
| nr091 | 43492  | 34421    | 34160     | 34137       | 35              |
| nr092 | 87487  | 69403    | 69153     | 69153       | 64              |
| nr093 | 170090 | 138581   | 137950    | 137467      | 90              |
| nr094 | 183908 | 136075   | 135427    | 135250      | 92              |
| nr095 | 187778 | 149971   | 149441    | 149364      | 86              |
| nr096 | 152388 | 120640   | 120247    | 120041      | 86              |
| nr097 | 151106 | 122605   | 122173    | 122018      | 69              |
| nr098 | 61905  | 49312    | 49062     | 49001       | 50              |
| nr099 | 6228   | 5126     | 5003      | 5003        | 32              |
| nr100 | 181    | 137      | 91        | 91          | 11              |
| nr101 | 118    | 86       | 47        | 47          | 7               |
| nr102 | 65     | 48       | 23        | 23          | 4               |
| nr103 | 196    | 145      | 78        | 78          | 9               |
| nr104 | 198    | 153      | 100       | 100         | 13              |
| nr105 | 179    | 145      | 82        | 82          | 11              |
| nr106 | 107    | 83       | 42        | 42          | 5               |
| nr107 | 176    | 144      | 68        | 68          | 7               |
| nr108 | 92     | 71       | 29        | 29          | 5               |
| nr109 | 139    | 113      | 67        | 67          | 9               |
| nr110 | 447    | 360      | 269       | 269         | 32              |
| nr111 | 122    | 96       | 52        | 52          | 4               |

Table 1: Summary table (continued)

|       | Input  | Filtered | DenoisedF | Nonchimeric | N:o of variants |
|-------|--------|----------|-----------|-------------|-----------------|
|       |        |          |           |             |                 |
| nr112 | 212    | 174      | 114       | 114         | 11              |
| nr113 | 144    | 116      | 74        | 74          | 5               |
| nr114 | 127    | 103      | 57        | 57          | 7               |
| nr115 | 502    | 393      | 378       | 378         | 11              |
| nr116 | 73     | 52       | 16        | 16          | 2               |
| nr117 | 127    | 103      | 46        | 46          | 6               |
| nr118 | 120    | 94       | 47        | 47          | 5               |
| nr119 | 170311 | 133480   | 132659    | 129636      | 87              |
| nr120 | 157    | 126      | 64        | 64          | 8               |
| nr121 | 161    | 131      | 72        | 72          | 11              |
| nr122 | 199    | 161      | 117       | 117         | 14              |
| nr123 | 60     | 48       | 14        | 14          | 2               |
| nr124 | 100    | 83       | 47        | 47          | 10              |
| nr125 | 84     | 66       | 35        | 35          | 6               |
| nr126 | 81     | 63       | 25        | 25          | 2               |
| nr127 | 208327 | 163285   | 162177    | 159439      | 112             |
| nr128 | 72407  | 59091    | 58754     | 58652       | 56              |
| nr129 | 45752  | 37244    | 37008     | 36922       | 44              |
| nr130 | 192968 | 154678   | 153444    | 145777      | 122             |
| nr131 | 19     | 17       | 13        | 13          | 2               |
| nr132 | 14     | 11       | 1         | 1           | 1               |

# **Assign taxonomy**

# **Build phyloseq object**

### Remove non-bacterial variants

#### Write results to files

Abundance table is transponed and written as tsv file

```
#variant names in rows
ASV_names <- taxa_names(pseq)
#sample names will be columns
ASV_counts <- t(otu_table(pseq))
ASVdf <- (data.frame(ASV_names, ASV_counts))
#write
write_tsv(ASVdf, paste0(exportloc,"asvs.tsv"))</pre>
```

### Likewise taxonomy table is saved as tsv

```
#variant names in rows
ASV_names <- taxa_names(pseq)
#taxonomy ranks in columns
taxonomy <- (data.frame(ASV_names, tax_table(pseq)))
#write
write_tsv(taxonomy,paste0(exportloc,"taxonomy.tsv"))</pre>
```

### Variant sequences are saved into fasta file

# Compatible metadata file as tsv

```
sampleid <- sample_names(pseq)
metafile <- sample_data(pseq)
metaff <- data.frame(sampleid,metafile)
write_tsv(metadf, paste0(exportloc,"metadata.tsv"))</pre>
```

# **Observations**

Customised sup basecalling of nanopore sequences produce quality matching Illumina ja Ion Torrent

Error profiles of short amplicon (truncated to 350 bp) follow expected frequency

Proportion of unique reads is smaller when compared to long amplicons

Thus, denoising works on shorter read lengths in contrast to 1,5 kbp full-length 16S rRNA gene. This is expected as algorithm relies on error-free reads that are used to build variant clusters. In long reads, even 99,5 % accuracy is not enough.

# Advantages of nanopore

Read length is not limiting factor while designing amplicon targets

Base quality doesn't decrease as a function of read length

Low diversity libraries are not problem in sequencing

Libraries prepared for other platforms can be conveniently converted to nanopore

Live basecalling allows controlling sequencing throughput and in some cases flow-cell can be reused

Cost per bp in amplicon sequencing is great compared to MiSeq

# Disadvantages of nanopore

Homopolymer region accuracy is not quite as good as in Illumina

High accuracy basecalling is computationally intensive (requires modern gpu with lot of ram)

Software tools are not at the same level as in other platforms and require some knowledge

Consistency of flow-cells (number of functional pores) and repeatibility of sequencing is so far unclear

Pores might die if library preparation contains contaminants originating from sample preparation (concerns mainly genomic sequencing)