1179: Probability Lecture 6 — Combinatorics and Random Variables

Ping-Chun Hsieh (謝秉均)

October 1, 2021

Powerball Lottery and Fortune Cookies

- One day, in 2005, 110 lucky people in the US won the same Powerball lottery.
- Powerball: Pick 5 numbers from 1~69 + 1 number from 1~26
 - What is the probability of winning the lottery?

posterior

Like / had

Bayes' rule? (

P(B)) evidence

Why do we care about "counting"?

Diswete Uniform Brohalder Law

P(E) =

of elements in E

P(AL)

This Lecture

1. Review: Combinatorial Methods

2. Random Variables and Cumulative Distribution Function (CDF)

Reading material: Chapter 2 and 4.1~4.3

Basic Counting Principle

Example: Buy a sandwich at Subway

1. Bread: plain or oatmeal?

2. Size: 6-inch or 12-inch?

3. Meat: Chicken, meatball, beef, or tuna?

4. Vegetable: Lettuce or tomato?

5. Cheese: Mozzarella, Parmesan, or Cheddar?

Replacement

Example: Suppose we want to draw 3 cards from 52 poker cards. How many possible ways?

1. With replacement: (put back) 52x52 x 52

2. Without replacement: (not put but) 52 x 5/x 5/x 5

Permutation

Example: Count # of passwords that consist of 8 distinct English letters (case sensitive) 52

Password: ABcDeFgh

52 5 50 49 48 41 46 45 = 52! = 44!

Definition: Given n distinct objects, and let k be some positive integer with $k \le n$. Then, an ordered arrangement of k objects is called a k-element permutation from n objects. The number of k-element permutation from n objects is denoted by P_k^n , and

$$P_k^n = n \cdot (n-1) \cdots (n-k+1) = \frac{n!}{(n-k)!}$$

Combination

Example: Count # of possible collections that consist

of 8 distinct letters (case sensitive)

Definition: Given n distinct objects, and let k be some positive integer with $k \le n$. Then, an <u>unordered</u> arrangement of k objects is called a k-element combination from n objects. The number of k-element combination from n objects is denoted by C_k^n , and

$$C_k^n \neq \frac{P_k^n}{k!} \neq \frac{n!}{(n-k)!k!}$$

"leap month"

Example: Birthday Problems

What is the probability that at least 2 students of a class

of size N have the same birthday? General $N \le 365$

$$N=2=|S|=365\times365$$

$$E=\begin{cases} \text{the two students} \\ \text{have the same hirthday} \end{cases}$$

$$|E|=365$$

$$P(E)=\frac{365\times365}{365\times364}$$

$$P(E^{c})=\frac{365\times364}{365\times364}$$

What if N = 23? How about N = 60?

Example: Hash Collision

(= Birehday Problem)

Suppose there are K possible hash values

What is the probability of at least 1 hash collision of a random

group of N English words (keys)?

• What if $N \ll K$?

$$= \frac{1}{||-\frac{1}{|-\frac{1}{|-\frac{1}{||-\frac{1}{|-\frac{1}{|-\frac{1}{||-\frac{1}{||-\frac{1}{|-\frac{1}{|-\frac{1}{|-\frac{1}{|-\frac{1}{|-\frac{|$$

Binomial Expansion

Example:
$$(x + y)^3 = ?$$
 $(x+y)(x+y)(x+y)$

$$C_3^3 + C_2^3 + C_1^3 + C$$

• Example:
$$C_0^n + C_1^n + \cdots + C_n^n = ?$$

Multinomial Expansion

• Example: $(x + y + z)^3 = ?$

Theorem: In the expansion of $(x_1 + x_2 + \cdots + x_k)^n$, the coefficient of the term $x_1^{n_1}x_2^{n_2}\cdots x_k^{n_k}$ with

$$n_1 + n_2 + \dots + n_k = n$$
 is
$$\frac{(n_1 + n_2 + \dots + n_k)!}{n_1! n_2! \dots n_k!}$$

How to interpret this?

2. Random Variables

Why Do We Need Random Variables (r.v.)?

- Example: Our Probability class (12) students)
 - Suppose we are looking for the 3rd student leaving this Webex session
 - 1. How old is this student? 20
 - How tall is this student? (η) τ ση
 Whether this student wears glasses or not?

Sample space
$$\int$$
 $\langle \omega_s \rangle = 20$
 $\langle \omega_s \rangle = 10$
 $\langle \omega_s \rangle = 10$

Why Do We Need Random Variables?

- 1. We are too lazy:
 - A random variable offers a shorthand for events
- 2. We are too curious about the world:
 - Multiple properties of interest from the <u>same sample space</u> and experiment
- 3. Random variables are powerful:
 - One type of random variable can capture the <u>common</u> <u>features</u> of <u>different experiments</u>

What is a Random Variable (Formally)?

Random variable: a <u>function</u> that maps each <u>outcome</u> to a

real number

Example: Whether NCTU will merge with NYMU

Example: # of people waiting in line at Shinemood

Function of a Random Variable

- Example: Buy a waffle at Shinemood
 - If it is <u>sunny</u> today, then you spend \$50 to order a Matcha-red-bean waffle
 - Otherwise, you spend \$70 to order a Fried-chicken waffle
 - Question: Is the price of your waffle a r.v.?

Discrete and Continuous Random Variables

Example: # of people waiting in line at Shinemood

Example: Amount of time needed for finishing HW1

Cumulative Distribution Function (CDF)

 Random variables are used to calculate the probabilities of events.

Cumulative Distribution Function (CDF): For any random variable X, the CDF of X is defined as:

$$F_X(t) = P(X \le t)$$
, for all $t \in \mathbb{R}$

- What's the range of $F_X(t)$?
- How to use the CDF?
- Example: $P(a < X \le b) = ?$

CDF of a Discrete Random Variable

- Example: Roll a fair 4-sided die
 - ► P(X = 1) = P(X = 2) = P(X = 3) = P(X = 4) = 1/4
 - What is the CDF of X?

1.
$$P(X \le 3) =$$

2.
$$P(X < 3) =$$

3.
$$P(1 < X \le 3) =$$

4.
$$P(1 < X < 3) =$$

5.
$$P(X = 3) =$$

Use CDF to Find Probability of an Event (I)

$$F_X(t) = P(X \le t)$$
, for all $t \in \mathbb{R}$

Event	Probability of the event
$X \leq a$	
X > a	
X < a	
$X \ge a$	
X = a	

Use CDF to Find Probability of an Event (II)

$$F_X(t) = P(X \le t)$$
, for all $t \in \mathbb{R}$

Event	Probability of the event
$a < X \le b$	
a < X < b	
$a \le X \le b$	
$a \le X < b$	

1-Minute Summary

1. Review: Combinatorial Methods

Permutation / Combination / Binomial expansion

2. Random Variables and CDF

- Function from outcomes to real numbers
- Use CDF to find the probability of an event