PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-298985

(43)Date of publication of application: 29.10.1999

(51)Int.Cl.

H04R 1/28 HO4R 1/02 HO4R 1/26 H04R 5/02

(21)Application number: 10-102937 (22)Date of filing:

14.04.1998

(71)Applicant : SONY CORP

(72)Inventor: FUJIHIRA MASAO

YAMAGISHI AKIRA SHINOHARA IKUO AKIYAMA AKIHIRO

(54) LOUDSPEAKER SYSTEM

(57)Abstract

PROBLEM TO BE SOLVED: To configure a loudspeaker system in which a low-frequency sound is extended and strong radiation is attained by incorporating a woofer in one enclosure, for configuring a 3D speaker system. SOLUTION: Left and right loudspeakers 3L, 3R are placed in an enclosure 1, a woofer or an ultra-low frequency sound speaker 3SW is placed on a rear plate 1D a baffle plate 2F, or a left/right side plate 1L or 1R of the enclosure 1 and a duct 18R (or 18L) is placed to the left or right side plate 1L or 1R in this speaker system. In this speaker system, a very high sound radiation force is obtained in a small enclosure for a device such as a radio cassette player and since the speaker system is hard to move in every direction, the sound quality of even a small-sized light weight speaker system is improved.

特開平11-298985 (43)公開日 平成11年(1999)10月29日

(51) Int.Cl.*		微別配号	F 1					
H04R	1/28	3 1 0	H 0 4 R	1/28	310	Z		
	1/02	101		1/02	101	В		
	1/26			1/26				
	5/02			5/02	Z			
			審查請求	未請求	請求項の数4	OL	(全	6 A)
(21) 出職番号	•	特顧平10-102937	(71)出顧人	000002185				
(22) 出顧日		平成10年(1998) 4月14日		東京都品川区北品川6丁目7番35号				
			(72)発明者	₩平 1	E#J			
				東京都區	別区北島川6	『目7 書	#35#J	ソニ

一株式会社内 (72)発明者 篠原 幾夫 東京都島川区北島川6丁目7番35号 ソニ 一株式会社内 (74)代理人 弁理士 松隈 秀盛 最終質に続く

(54) 【発明の名称】 スピーカ装置

(57) 【要約】

【課題】 1個のエンクロージャ内にスーパーウーファ を内臓させて、3D方式のスピーカ装置を構成させて、 低域の拡大及び強力な放射が可能なスピーカ装置を構成

【解決手段】 1つのエンクロージャ1内に左右スピー カ3L及び3Rを配すると共に低音又は超低音用スピー カ3SWをエンクロージャ1の背面板1D、パッフル板 2F或は左右側面板1L又は1Rのいずれかに設けると 共に左又は右側板1 L又は1 Rに少なくとも1 つのダク ト18尺(又は18L)を設ける様に成したスピーカ装 置を提供する。

一株式会社内 (72)発明者 山岸 亮

東京都品川区北品川6丁目7番35号 ソニ

【特許請求の範囲】

714 /2 abo

【請求項1】 1つのエンクロージャの前面左右に左右 信号用の第1及び第2のスピーカを配設すると共に該エ ンクロージャのパッフル板又は背面板或は左又は右側板 に超低音用の第3のスピーカを配設し、該左又は/及び 右側板にダクトを配設して成ることを特徴とするスピー 力場僧。

【請求項2】 前記エンクロージャの前面のバッフル板 の第1及び第2のスピーカの間に前記第3のスピーカを 配設すると共に前記エンクロージャの左右側板に対向す 10 る様に第1及び第2のダクトを配設して成ることを特徴 とする請求項1記載のスピーカ装置。

【請求項3】 前記エンクロージャの背面板の略中央位 置に前記第3のスピーカを配設すると共に前記エンクロ ージャの左右側板に対向する様に第1及び第2のダクト を配設して成ることを特徴とする請求項1記載のスピー カ装置。

【請求項4】 前記エンクロージャの左又は右側面に前 記第3のスピーカを配設すると共に該エンクロージャの 右又は左側面に前記第1のダクトを配設して成ることを 20 特徴とする請求項1犯数のスピーカ装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】 本発明は小型軽量のスピーカ 装置に係わり、特に超低音用スピーカを1つのエンクロ ージャに内蔵させて低城の拡大を図った3D (スリーデ メーショナル)方式のスピーカ装置の改良に関する。

[0002]

『従来の技術』従来からスピーカ装置の低城再生限界を 伸ばすための有効な手段として例えば、スピーカを設け 30 たバッフル板に開口及びダクトを設け、スピーカの振動 板の背面から出た脊の位相を反転して、ダクトを介して 開口から外部に放射させて、スピーカの振動板から前面 に出る音波を強め、低音域を歪まない様になしたパスレ フレックス型(位相反転型)スピーカ装置は良く知られ ている。

【0003】この様な位相反転型スピーカ装置は図4に 示す様に構成される。即ちエンクロージャ1の前面に設 けたパッフル板2Fに穿ったスピーカ放音孔2aに対向 してスピーカ3を固定する。

【0004】このスピーカ3は例えば、図4に示す如 く、リング状マグネット4と、このリング状マグネット 4を挟むように取付けられたプレート5及びヨーク6と を設け、プレート5の内間側とヨーク6のセンターポー ル6 a との間に磁気空隙 7 を形成する。またプレート5 にはスピーカ3のフレーム8が取付けられ、フレーム8 の外周部にエッジ9が設けられ、このエッジ9によって コーン型の振動板 10の外周部が保持されている。

【0005】一方、振動板10の内周部にポイスコイル ボビン11が取付けられており、このボイスコイルボビ 50 反作用力方向に加援する様に背面を互に対向させて配設

ン11にはポイスコイル12が巻装され、ポイスコイル 12はプレート5及びヨーク6のセンターポール6 a に よって形成された磁気空隙?内に排入する機になされて いる。17はこのポイスコイル12をこの磁気空隙7内 に保持するためのダンパである。

【0006】またエンクロージャ1の外部の所定位置に 設けられた入力端子13aよりの音響信号を接続線14 aを介してスピーカ3の端子15に供給し、端子15よ りの音響信号を錦糸線16を介してポイスコイル12に 供給している。

【0007】また、パッフル板2Fのスピーカ取付孔2 aと問一面に開口18aを有するダクト18を設け、ス ピーカ3の振動板10の背面から出た音の位相を反転し て、このダクト18からエンクロージャ1の外に放射 し、この振動板10の前面からでる音の低音域を広げて いる。

【0008】又、上述の様なスピーカ3と間一構造の図 5に示す様な左右のスピーカ3L及び3Rを内蔵する小 型の左右エンクロージャ1しし及び1尺尺をリスナ19 の左右に配し、この左右スピーカ3L及び3Rに左右音 響信号L及びRを供給し、左右信号を左右スピーカ3L 及び3尺から放音させると共に中央に配設したエンクロ ージャ1 Cに超低音用のスーパーウーファ3 Cを内蔵さ せて、このスーパーウーファ3Cに左右音響信号の加算 信号L+Rを供給して3個のスピーカを用いて超低資域 或は低音域を拡大させる機に成した3D方式のステレオ システムはよく知られている。

[00009] 【発明が解決しようとする課題】 上述の様に位相反転型 のスピーカ装置とすることで、密閉型に比べて低音再生 限界を低くすることが出来て、スピーカ3の低音共振器 波数 1。 の約80%程度まで低域再生範囲を拡げること が出来るとされている。

【0010】しかし、上記した従来の図4のスピーカ装 置では、ABS樹脂等で小型軽量にエンクロージャ1を 成型するため次のような問題があった。この様なスピー 力装置は小型軽量であるという特徴があるが、スピーカ 3の振動板10が音を放射するために振動すれば、その 振動の放射力下、はスピーカ3の振動系の等価質量M。 40 とこの振動系の動く加速度αの積 (F=M_εα) とな

【0011】従って、スピーカ3の音の放射力の反作用 カーF、をエンクロージャ1が受けるが、スピーカ装置 が小型軽量で重量Wが小さいのでこの反作用カード、に よってスピーカボックス1を揺動させ、スピーカ3より 放射される力が弱まり、音質を劣化させる問題があっ

る。

【0012】この様な問題を解決するために、例えば特 開昭63-212000号公報にはスピーカの振動板の した加振器或は**電**気・振動トランスデューサによって、 反作用力をキャンセルさせる様に成したスピーカ装置も 揺塞されている。

【0014】更に、加振器をスピーカに付加し、図4に 説明したと同様の位相反転型スピーカ装置とした場合で も図4に示す様なダクトの隣日を介しての放射力F₁に 対する反作用カーF₁、が働き、スピーカボックス1を極 動させる原因を除去することが出来ない問題が生ずる。

【0015】未発明は数との問題点を解消する様に成し たちのでラジカを修のエンクロージャドにカセントテー プレコーゲやCDプレー・を推載すると共にスピーカを 20 内職するスピーカ製産を3D方式で振動する場合に好適 なもので、第1の発明が解除とうとすを課題にエンク ロージャの前後方面の揺動をネーパーラーファを用いて 相談させて、指体学までの再ともの。

[0016] 本発明の第2の発明が解決しようとする脚 制はエンクロージャのダクトにとって生ずる空気放射力 の反作用力をエンクロージャの左右側板に設けた2つの ダクト間志、成は左又は右側板に設けた2・フージャン メクラトによって相談させ、無量なエンクロージャの 横方向の揺動も吸収して磁低域の再生拡大及び音質の向 10017] 10017]

【麒
観を解決するための手段】本発用のスピーカ装置は 1つのユンクロージャの前面左右に左右衛号用の第1分 近第2のスピーカを起数する上地エンクロージャのバ ッフル仮又は背面板成は左叉は右側板に超延音用の第3 のスピーカを起散し、左又は/女び右側板に超延音用の第3 のスピーカを記載し、左又は/女び右側板にが近き月を記 数して成るものできる。

[0018] 所ら構成のスピー力装御に入ればスーパー ウーファをエンクロージャの増加高収益に高度性に増 40 合には前面のパッフル板の左右に配数した左右チャンネ ル用の2個のスピーカスとを流のスーパーウー ファの反作用力を接近の工みの場合と 設させ、ス、一方の側面にメーパーウーファを設けた場 合には反列側に対けたダクトとエンクロージャの自動と でエンクロージャの模方向の揺動が相談される。更にパ ッフルを側にスーパーウーファを配設させた場合にはニ リフィを側にスーパーファの終力の反信用力を左右地域に対 向して記数した一対のダクトとエンタロージャの自動で 変える場ではことで小さなメンタロージャの自動で結婚 のレーズにサーファの終力のが使用力を左右地域に対 向して記数した一対のダクトとエンタロージャの自動で に近い帯域まで、低域を拡大出来、育賞を大幅に向上さ せたスピーカ装置を得ることが出来る。

[0019]

【発明の実施の彫態】以下、本発明のスピーカ度型の形態側を図1万差図3を用いて説明する。図11仕末年明のスピーカ実質の呼価に合う動画図。図21は末期のスピーカ実質の他の単価に合う動画図。図21は末期のスピーカ実質のUVであらず細にあるが画図である。高 上記を図に於いて、図4及び図5との対応部分には同一再号を付してWenter

【0020】図)のスピーカ装置はラジカセ等に適用した場合で模長の直方体状でABS樹脂等で成型されたエンクロージャ1内には、図示しないが例えばCDプレーヤ、MD(ミニディスク)プレーヤ、カセットプレーヤ等が内覆されている。

【0021】エンクロージャ I は限1で統領方向の下側 に長力療状の能験 I Dと、上側に天政 I Dを後間に脅助 は 1 B、左右に転力済状かる右側 W I 入 及び I R よの 成り、複数の衛型に成型され、背面仮と対向して長方形 状のパクフル板 2 F が設けられ全体として直方体状に成 されている。

【0022】バッフル板2Fの及手方向の左右側板1L 及び1F塊近傍には、複数の関1では2種のメビーカ放 を2aL及び2aRが穿たれ、左右チャンネル用の左 スピーカ3L及び右スピーカ3Rがバッフル板2Fの内 側に取り付けられる。

【0023】更にエンクロージャ1の背面板1Dの中央 位置にスーパーウーファ3SWを取付け、後方に放音させる為にスピーカ放音孔20が穿たれる。

【0024】所、上述の3個の左右スピーカ3L及び名 産並びにスーパーウーファ3SWの構造は図4で打乱し たと同様の動態型スピーカ構造と成され、左右スピーカ 3L及び3Rは好ましくは全帯破型のスピーカとし、ス ーパーウーファ3SWとしては250日ェ以下50日ェ 近傍を再生するものでよい。

【0025】エンクロージャ1の左右側板1L及び1R の略中心位置に相対向してダクト18L及び18Rが左 右側板と一体に形成されている。ダクト18L及び18 Rにはダクトの開口18aL及び18aRが穿たれてい

【0028】上述のエンクロージャ1は略直方体形状として観明したが、横方向に長いシリンドリカル状の左右 両側標準に円盤状の左右側套1 L 及び1 R を固定し、こ の左右側板の中央部にダクト1 8 L 及び1 8 R を設ける 様にしてもよい、勿論、後述する図2 及び3 の間域に がまります。 は、これに構成してもよく、その形状は特成してもよく、その形状は特成してもよく。

のスーパーウーファの放射力の配性用力を左右側板に対 【0027】図1に示したスピーカ発電ではエンクロー 向して記載した一対のダクトとエンクロージャの自重で ジャ1内のスーパーウーファ 3 SWは青面坂 1 Dの勢士 支える際にすることで小さなエンクロージャ中で組低音 50 央位置にあるため小音像のエンクロージャ 1 であってり 左右スピーカ3L及び3Rに比べて空気の容積を略倍で 利用出来るため低域拡大及び忠実な再生に有利となる。 【0028】図1で左右スピーカ3L及び3Rの振動板 10の駆動時の音放射力をF,及びF,、スーパーウー ファ35Wの音放射力を下、、ダクト18R及び18L の空気の放射力をF。、及びF。」とし、夫々の反作用力を -F. , -F. , -F. , F. , -F. とするとエンク ロージャ1のパッフル板2下に取り付けられた左右スピ ーカ3 L 及び3 R の反作用力- (F、+F+) とスーパ ーウーファの反作用カーF。とで相殺される様にすれば 10 【0035】図3は本例の更に他のスピーカ装置の構成 tv.

【0029】即ち、各スピーカ3L、3R、3SWの振 動板10の等価質量をM。, M。, M。、接敷板10の 動く加速度を a、, a。, a。とすれば、音放射力 F 及 びその反作用力 -- Fは $F_1 = M_1 \cdot \alpha_1$, $F_2 = M_1 \cdot$ α_s , $F_s = M_{ss} \cdot \alpha_{ss}$ $\sigma_s = \sigma_s \cdot \sigma_s$ 前後に揺動しない為の釣合式は次の (1) 式に選択すれ ばよい。

$F_1 + F_2 \Rightarrow F_2 \cdots (1)$

【0030】同様にエンクロージャ1の左右側板1 L及 20 拡大出来るものが得られる。 び1尺は一対のダクト18L及び18尺でその反作用力 - F,,及び-F,,を相殺成は減衰させる様にすればよ い。今、ダクト181及び18尺の空気の放射時の等価 質量をMax及びMax、ダクト1L及び1R中を動く空気 の加速度をない及びないとすればダクト181及び18 Rの加速度α»,及びα»,は次の(2)式で表される。 $\alpha_{**} = \alpha_{**} = SP/S, \quad \alpha_{*} \quad \cdots \quad (2)$

ここで、SPはスピーカ3L、3R、3SWの有効振動 面積、S。はダクト18L及び18Rの夫々の断面積、 α。 は各スピーカ31、3R、3SWの振動板の加速度 30 である。

【0031】又、ダクト1L及び1Rの空気放射時の等 価質量Ma. 及びMa. は次の(3)式で表される。 $M_{t_1} = M_{t_1} = \rho \times SP \times L \times SP / SD \cdots$ (3)

ここで p はエンクロージャ 1 内の空気の密度、 L はダク ト181.及び181の失々の長さである。

【0032】従って、図1のエンクロージャ1が左右方

向に揺動しない為の釣合式は次の(4)式を選択すれば よい。

$F_{\bullet,i} = F_{\bullet,i} \cdots (4)$

【0033】次に本発明の他の構成を図2で説明する。 図2ではエンクロージャ1の左側板11にスピーカ放音 孔20を穿つと共に右側板1尺にダクト開口18a尺が 穿たれ、スーパーウーファ3SWの背面とダクト18R の他方の隣口端18aR'とが対向する様に成されてい る。又、左右スピーカ3L及び3Rはバッフル板2Fの 左右端に固定されている。

【0034】図2の構成ではエンクロージャ1の底板1 Dとスピーカ装置の載置部F, との間の摩擦抵抗をR、* *スピーカ装置の自重をW(図4参照)とするとエンクロ ージャ1が前後に揺動する場合左右スピーカ31及び3 Rの反作用力は次の (5) 式が支え合う条件式となる $F_1 + F_2 = R + W \cdot \cdot \cdot \cdot \cdot (5)$

更に、エンクロージャ1の左右方向はスーパーウーファ 3 SWの反作用カード, とダクト18Rの放射力の反作 用力-F., とが互に相殺或は減衰される様に(6)式を 満足させればよい。

F, #F. ... (6)

を示すもので図1に示した構成で、スーパーウーファ3 SWをパップル板2Fの中央部分に穿ったスピーカ协会 R20と対向する位置に固定させたものである。この場 合は左右のダクト間志の支え合いは(4)式を適足させ ればよいが前後方向の反作用力~ (F, +F, +F,) はスピーカの自重Wとエンクロージャ1と載置部間の摩 擦抵抗Rで支えることになるが、いずれにしても揺動が 支えられ、小さな容積の1つのエンクロージャを3D方 式として利用可能で低音域或は郵低音域まで再生帯域が

【0036】尚、図2の構成ではスーパーウーファ35 Wを実機に向けたが背面板1B方向或はバッフル板2F 方向の斜め方向にスーパーウーファ3 SWを放音させる

様にしてもよい。 [0037]

【発明の効果】本発明のスピーカ装置によればラジカセ 等の小さなエンクロージャ内で音放射力を非常に大きく することが出来ると共に前後左右に動きにくいので小型 軽量なスピーカ装置でも音質が向上し、スーパーウーフ アによって低域或は超低域の再生が拡大出来且つスピー カの音放射の反作用力をダクト間志、又はダクトとスー パーウーファ、或はスーパーウーファと左右スピーカで

互に支え合って小型軽量なエンクロージャを揺動させる ことなく、低音を強力に再生可能なものが得られる。 【図面の簡単な説明】 【図1】本発明のスピーカ装置の平面に沿う断面図であ

【図2】本発明のスピーカ装置の他の平面に沿う断面図

40 【図3】本発明のスピーカ装置の更に他の平面に沿う断 面倒である。

【図4】従来のスピーカ装置の側断術図である。

【図5】従来の3D方式のスピーカ装置の説明図であ 5.

【符号の説明】

1……エンクロージャ、31、3R 左右スピーカ、 3 SW - スーパーウーファ、18L 18R - ダク

[2]2]

[図3]

フロントページの続き

(72)発明者 秋山 閉広 東京都品川区北品川6丁目7番35号 ソニ 一株式会社内