Software Development II Unit 5: Blackbox Testing Testing for Robustness

Markus Roggenbach

What happens with 'unexpected' inputs?

that concerns "robustness"

There are versions of testing for robustness for

- Boundary Value Analysis (BVA)
- Equivalence class testing

Testing for Robustness – Extending BVA

Recap: BVA – illustration with 2 inputs

Robustness Testing

Robustness Testing

Forces attention on exception handling.

add

- value slightly larger than maximum "max+"
- value slightly smaller than minimum "min-" and generate test cases as for BVA.

What happens if a physical quantity exceeds its maximum?

- load capacity of an elevator
- date, e.g. May 32
- temperature

Robustness Testing – illustration with 2 inputs

Testing for Robustness – Extending Equivalence Class Testing

Recap: Equivalence class testing with two inputs

F:

Input: x and y

Output: ...

Assume that

- [a,b),[b,c](c,d] is a useful partition for x.
- [e, f), [f, g] is a useful partition for y.

with $a \leq b \leq c \leq d$ and $e \leq f \leq g$.

Choice of representatives for Equivalence Class Testing

Weak Normal Equivalence Class Test Cases

www.softwaretestinggenius.com

Adding robustness to Equivalence Class Testing

Equivalence Class testing – classes only for the valid inputs

Robust Equivalence Class testing – classes for valid inputs & invalid inputs

Choice of Representatives for Robust Equivalence Class Testing, 1st version

Choice of Representatives for Robust Equivalence Class Testing, improved version

