Soit $\Sigma=\{a,b\}.$ On dit que $w\in\Sigma^*$ est *primitif* s'il n'existe pas de mot $u\in\Sigma^*$ et de p>1 tels que $w=u^p$

Un langage L est dit continuable si pour tout $u \in \Sigma^*$, il existe un $v \in \Sigma^*$ tel que $uv \in L$

- **Question 0** Pour chacun des cas suivants donner des exemples de langage sur $\Sigma = \{a, b\}$:
- Un langage infini régulier ne reconnaissant aucun mot primitif
- Un langage infini régulier ne reconnaissant que des mots primitifs
- Un langage infini régulier continuable
- Un langage infini algébrique continuable ne reconnaissant que des mots primitifs
- **Question 1** Proposer un algorithme pour tester si un mot est primitif en $O(|w|^{\frac{3}{2}})$. C'est possible de le faire en O(|w|)
- \nearrow Question 2 Étant donné un automate A, proposer un algorithme pour déterminer si le langage reconnu par A est continuable.
- **Question 3** Montrer que tout langage régulier continuable sur $\Sigma = \{a, b\}$ contient une infinité de mots primitifs. Quelle est la condition sur Σ pour que cela soit vrai ?
- **Unestion 4** Existe-t'il un langage infini rationnel continuable ne comportant que des mots primitifs?

Indication: Considérer l'ensemble des applications partielles $\{\delta^*(u, _) : u \in \Sigma^*\}$, et trouver un bon groupe pour la composition inclut dans cet ensemble.

 δ^* est définie par $\delta^*(ua,q)=\delta(a,\delta^*(u,q))$ et $\delta^*(\varepsilon,q)=q$ pour $(a,u,q)\in\Sigma\times\Sigma^*\times Q$