Complemento do Projeto Prático 01 Rafael L. Marinheiro, Ruanitto R. Docini

Problema A

1.

Precisão Simples	0.000000082980839977153664
Precisão Dupla	0.00000000000000022204460492503131

2. Pois o último valor no passo 2, faz com que ele saia do While, ou seja, somar "A" com "soma" na última passagem pelo While é menor do que 1, e a condição do eps é o último menor representado pela máquina que a soma seja maior do que 1.

3.

ω	eps estimado
10^-8	0
10^-1	0
100	0.00000000000014210854715202004
1000	0.0000000000011368683772161603
100000	0.00000000014551915228366852
1000000	0.0000000011641532182693481

4. O valor se altera pois como ele é um número base para achar o eps, quando ele é dividido sucessivamente até ser menor que 0, sendo assim, as divisões nunca chegaram num lugar igual pois a entrada é diferente para um mesmo procedimento.

Explicação: O exercício A foca no desenvolvimento de um programa que estima o eps da máquina através de um chute inicial fornecido, que quando variado, varia o valor do eps. A precisão é diferente dependendo do tipo de variável usada.

Problema B

Nós implementamos o algoritmo dado e depois fizemos uma função para cada gráfico pedido. Testamos algumas vezes com alguns numeros x1 e x2 e nosso programa acha a aproximação da raiz, e quanto mais próximos os x1 e x2 fornecidos, mais preciso são as raízes.

Alguns valores fornecidos:

Função A:

x1	x2	f(x)
-1	0	-0,5
-1	-0,5	-0,75
1	3	2
3	5	4
0	3	1,5

Função B:

x1	x2	f(x)
-4	-3	-3,125
0	1	0,25
2	4	2,75
2	3	2,75
-5	-2	-3,125