TỔNG HỢP KIẾN THỰC VỀ CÁC PHÉP BIẾN HÌNH CƠ BẢN TRONG MẶT PHẮNG.

GV. Vũ Hữu Viên.

* <u>Các ký hiệu chung</u>: P là tập hợp mọi điểm của mặt phẳng.

 $f: P \rightarrow P$ có nghĩa: f là phép biến hình của mặt phẳng, biến điểm M (bất kỳ thuộc P) thành điểm M (thuộc P). f^{-1} : phép biến hình ngược của f. $g \circ f$: hợp thành (tích) của f và g theo thứ tự $M \mapsto M$

thực hiện. M' = f(M): M' là ảnh của M qua f. (H) là một hình của mặt phẳng. (H') = f((H)): (H') là ảnh của (H) qua f. f(M) = M: M bắt động qua f.

	ÐĮNH NGHĨA	TÍNH CHẤT CHUNG	PHÂN LOẠI	MINH HOẠ	TÍNH CHẤT RIÊNG	HÌNH BẤT ĐỘNG	TOẠ ĐỘ ĂNH	QUAN HỆ – PHÉP HỢP THÀNH
	$f: P \rightarrow P$ là phép dời hình $\Leftrightarrow M'N' = MN;$ $\forall M, N \in P$	* f bảo toàn: độ dài	PHÉP ĐỒNG NHẮT $I_d: M \mapsto M$			Mọi hình	$M(x;y) \mapsto M'(x;y)$	
PHÉP DỜI HÌNH		doạn thẳng, quan hệ thẳng hàng và thứ tự của các điểm, quan hệ song song – vuông góc của đường thẳng, góc của hai đường thẳng – hai tia – hai véc tơ.	PHÉP ĐỔI XỨNG TÂM <i>I</i>	40	$I \notin d \mapsto d'$	$d' \equiv d \Leftrightarrow I \in d$	$M(x;y) \mapsto M'(x';y')$	$D_J \circ D_I = T_{2L\dot{I}}$
			$D_{I}:M\mapsto M^{\prime}\Leftrightarrow \overline{IM}=-\overline{IM^{\prime}}$	M (C) - (C')	$\Rightarrow d'//d$	$(C) \equiv (C')$ $\Leftrightarrow (C) tam I$	$\begin{cases} x' = 2a - x \\ y' = 2b - y \end{cases}; I(a;b)$	M.
			PHÉP ĐỔI XỨNG TRỰC Δ $D_{\Delta}:M\mapsto M'$	d= d Mr	$d \mapsto d'$ $d // \Delta \Rightarrow d' // d$	$d' \equiv d \Leftrightarrow \begin{bmatrix} d \equiv \Delta \\ d \perp \Delta \end{bmatrix}$	$\Delta : \alpha x + h y + c = 0$ $\begin{cases} h(x' - x) - a(y' - y) = 0 \end{cases}$	M 1 M 2 M at
			$\Leftrightarrow \begin{bmatrix} M' \equiv M; if \ M \in \Delta \\ \Delta \ la \ trung \ truc \ MN; if \ M \notin \Delta \end{bmatrix}$	(C) = (C)	$d \cap \Delta = I \Longrightarrow $ $(\Delta, d) = (\Delta, d')$	$(C) \equiv (C')$ $\Leftrightarrow tam(C) \in \Delta$	$\left\{ d\left(\frac{x'+x}{2}\right) + h\left(\frac{y'+y}{2}\right) + c = 0 \right\}$	$d_1//d_2 \Rightarrow D_{d_1} \circ D_{d_1} = T_{2,i}$
		* $(H) = (H')$ $\Leftrightarrow \exists \text{ phép dời hình}$ $f: (H) \mapsto (H')$.		ø∕ \d				$d_1 \cap d_2 = I \Rightarrow D_{d_2} \circ D_{d_1} = Q_{(I;2\varphi)}$
			PHÉP TỊNH TIẾN theo véc to \overrightarrow{v} $T_{\overrightarrow{v}}: M \mapsto M' \Leftrightarrow \overrightarrow{MM'} = \overrightarrow{v}$		$ \begin{array}{c} d \mapsto d' \\ \bar{d} \neq \bar{kv} \Rightarrow d' / / d \end{array} $	$d' \equiv d \Leftrightarrow \overline{d} = k\overline{v}$		M sto M M K
				d = d' My d'			(y' = b + y)	$\begin{split} T_{a}^{\cdot} \circ T_{-a}^{\cdot} &= I_{d}^{\cdot}; D_{I} \circ T_{v}^{\cdot} = D_{K} \\ T_{\dot{b}}^{\cdot} \circ T_{\dot{a}}^{\cdot} &= T_{\dot{a}}^{\cdot} \circ T_{\dot{b}}^{\cdot} = T_{a+\dot{b}} \end{split}$
		* Phép dời hình là hợp thành (tích) của một số hữu hạn phép đối xứng trục.	PHÉP QUAY tâm I , góc quay φ $Q_{(I;\varphi)}: M \mapsto M'$ $\lceil M' \equiv I; if M \equiv I$	M	$d \mapsto d'; 0 \le \varphi \le \frac{\pi}{2}$	$(C) \equiv (C')$ $\Leftrightarrow tam(C) \equiv I$	$I(a;b)$ $\begin{cases} x' = a + (x - a)\cos\varphi \end{cases}$	$\begin{aligned} & \underline{\mathcal{Q}}_{(I;\pi)} = D_I; \underline{\mathcal{Q}}_{(I;0)} = I_d \\ & \underline{\mathcal{Q}}_{(I;-\varphi)} \circ \underline{\mathcal{Q}}_{(I;\varphi)} = I_d \end{aligned}$
			$\Leftrightarrow \begin{cases} IM = I, U & M = I \\ IM = IM' \\ (IM, IM') = \varphi \end{cases}; if M \neq I.$	N d'	$\Rightarrow (d,d') = \varphi$		$\begin{cases} -(y-b)\sin\varphi \\ y'=b+(x-a)\sin\varphi \\ +(y-b)\cos\varphi \end{cases}$	
								$Q_{(J;\beta)} \circ Q_{(J;\alpha)} = Q_{(K;\alpha+\beta)}$ $2(JK, JJ) = \alpha; \ 2(JI, JK) = \beta$
	$g: P \rightarrow P$ là phép đồng dạng ti số k ($k > 0$) $\Leftrightarrow M'N' = kMN$; $\forall M, N \in P$	* g bảo toàn: tỉ số độ dài hai đoan, quan hệ	PHÉP VỊ TỰ tâm I , tỉ số $k \neq 0$	B]] d=d	$k \neq 1$ $I \notin d \mapsto d'$	$k \neq 1$ $d' \equiv d \Leftrightarrow I \in d$	I(a;b)	$V_I^1 = I_d; \ V_I^{-1} = D_I$
PHÉP ĐÔNG ĐẠNG		thẳng hàng, song song, vuông góc, góc của hai đường thẳng – hai tia – hai véc to * (H) ∐ (H') ⇔ ∃ phép đồng dạng	$V_I^k : M \mapsto M'$ $\Leftrightarrow \overline{IM'} = k\overline{IM}$		$\Rightarrow d' / / d$	u −u ⇔1∈u	$\begin{cases} x' = a + k(x - a) \\ y' = b + k(y - b) \end{cases}$	$V_I^{k'} \circ V_I^k = V_I^{kk'}$
			$(V_I^k$ là phép đồng dạng tỉ số $ k $)	d k<0 d	$(O;R) \mapsto (O';R')$ $\overrightarrow{IO'} = k\overrightarrow{IO};R' = k R$		() = 0 + k () = 0)	$V_J^l \circ V_I^k = V_O^{kl}$ $\overline{IO} = \frac{1 - l}{1 - kl} \overline{IJ}; (k, l, kl \neq 1)$
			PHÉP ĐÔNG DẠNG tỉ số $ k > 0$					1 101
		$g:(H)\mapsto (H')$	$g = f \circ V_I^k = V_I^k \circ f$ với f là phép dời hình.	2 di				
<u> </u>					<u> </u>			<u> </u>