Herbst 13 Themennummer 1 Aufgabe 5 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Lösen Sie das Anfangswertproblem

$$xyy' = x^2 + y^2, \quad y(1) = 1$$

auf dem ersten Quadranten $Q = \{(x,y) : x,y > 0\}$. Geben Sie auch den maximalen Definitionsbereich der Lösung an.

Lösungsvorschlag:

Wir formen die Gleichung um und bestimmen einen integrierenden Faktor F(x) > 0. Die Gleichung ist äquivalent zu $(x^2 + y^2)F(x) - xyF(x)y' = 0$; die Integrabilitätsbedingung liefert 2yF(x) = -yF(x) - xyF'(x). Eine Lösung der Differentialgleichung $F'(x) = \frac{-3F(x)}{x}$ würde diese Beziehung für alle x, y > 0 erfüllen, eine mögliche Wahl ist $F(x) = \frac{1}{x^3}$, was auch strikt positiv (wegen x > 0) ist. Die äquivalente Gleichung

$$\frac{1}{x} + \frac{y^2}{x^3} - \frac{y}{x^2}y' = 0, \quad y(1) = 1$$

ist exakt; wir bestimmen ein Erstes Integral Φ . Aus $\partial_y \Phi(x,y) = -\frac{y}{x^2}$ erhalten wir $\Phi(x,y) = \frac{-y^2}{2x^2} + c(x)$ mit $c \in C^1((0,\infty))$; aus $\partial_x \Phi(x,y) = \frac{1}{x} + \frac{y^2}{x^3}$ leiten wir $c(x) = \ln(x)$ als mögliche Wahl ab. Das heißt wir verwenden $\Phi(x, y) = \frac{-y^2}{2x^2} + \ln(x)$. Eine Lösung muss nun $\Phi(x,y) = \Phi(1,1) = -\frac{1}{2}$ erfüllen; dies lässt sich nach yauflösen, weswegen wir $y(x) = \sqrt{2x^2(\ln(x) + \frac{1}{2})}$ erhalten. Um die Anfangsbedingung zu erfüllen, wählen wir das positive Vorzeichen.

Solange der Radikand positiv ist, ist auch y positiv. Dies ist genau für $\ln(x) > -\frac{1}{2}$ der Fall, also für $x > \frac{1}{e^2}$. Der maximale Definitionsbereich ist demnach $(\frac{1}{e^2}, \infty)$, hierin ist 1 ein Element.

Die Anfangsbedingung ist wegen $y(1) = \sqrt{1^2} = 1$ erfüllt. Außerdem ist y(x) auf diesem Intervall differenzierbar mit

$$y'(x) = \frac{2x^2 \cdot \frac{1}{x} + 4x(\ln x + \frac{1}{2})}{2y(x)},$$

woraus wir $xyy' = 2x^2(1 + \ln x)$ erhalten. Dies stimmt mit

$$x^{2} + y^{2} = x^{2} + 2x^{2} \ln x + x^{2} = 2x^{2} (1 + \ln x)$$

überein. Also handelt es sich bei y um die Lösung.

Wir begründen noch kurz, dass es keine weitere Lösung gibt. Weil wir nur den ersten Quadranten betrachten, löst jede Lösung der ursprünglichen Gleichung auch das Anfangswertproblem

$$y' = \frac{x}{y} + \frac{y}{x}, \quad y(1) = 1.$$

Die Strukturfunktion dieser Gleichung ist auf Q stetig differenzierbar, also lokal lipschitzstetig. Die Eindeutigkeit der Lösung folgt damit aus dem Satz von Picard-Lindelöf.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$