Statistics 452: Statistical Learning and Prediction

Chapter 3, Part 3: Other Considerations in Multiple Linear Regression

Brad McNeney

2017-09-01

Topics

- ▶ Interaction and non-linear model terms
- Categorical variables as predictors
- Model diagnostics

Example Data: Credit Card Balances

 Understand which variables are associated with credit card balance.

```
uu <- url("http://www-bcf.usc.edu/~gareth/ISL/Credit.csv")
credit <- read.csv(uu,row.names=1)
head(credit)</pre>
```

```
##
     Income Limit Rating Cards Age Education Gender Student Married
     14.891
             3606
                    283
                               34
                                             Male
## 1
                            2
                                         11
                                                       Nο
                                                              Yes
## 2 106.025 6645
                    483
                                         15 Female
                            3 82
                                                      Yes
                                                              Yes
## 3 104.593 7075 514
                            4 71
                                        11
                                             Male
                                                       No
                                                              No
## 4 148.924 9504 681
                            3 36
                                         11 Female
                                                       No
                                                              Nο
## 5
    55.882 4897
                  357
                            2 68
                                         16
                                             Male
                                                       No
                                                              Yes
## 6
     80.180 8047
                    569
                            4 77
                                         10
                                             Male
                                                       No
                                                              No
##
    Ethnicity Balance
## 1 Caucasian
                 333
## 2
        Asian
                  903
        Asian
                 580
## 3
## 4
        Asian
                 964
## 5 Caucasian
                  331
## 6 Caucasian
                 1151
```

Software Note

▶ In R, categorical variables should be stored as **factors**.

Interaction and Non-Linear Model Terms

Interaction and Non-Linear Model Terms

- We have already seen non-linear model terms when we modelled the relationship between income and education as a polynomial.
- We now discuss interaction.

Statistical Interaction

- Start with two explanatory variables income (X_1) and student status (X_2)
 - StudentYes=1 if the person is a student and 0 otherwise.
- ▶ X_2 is said to modify the effect of X_1 on Y if the regression slope of the regression of Y on X_1 differs in the $X_2 = 0$ and $X_2 = 1$ sub-groups.
 - If we stratify the analysis by student status and find different effects of income in the two groups, there is statistical interaction between income and student status.

Model for Stratification by Student Status

- $f(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$ where
 - \triangleright X_1 is income
 - ► X₂ is student status (1 is student, 0 is not)
 - ▶ $X_1 \times X_2$ is the statistical interaction between income and student status.
 - ▶ β_1 , β_2 , and β_3 are the corresponding regression coefficients.
- ▶ This model allows separate lines for the two values of student status.
 - student status = 0 model: intercept β_0 and slope β_1
 - student status = 1 model: intercept $\beta_0 + \beta_2$ and slope $\beta_1 + \beta_3$
 - Interpret β_3 as the difference between slopes.
 - ▶ If $\beta_3 = 0$, then student status does not modify effect of income on balance.
 - ▶ In practice, we test the hypothesis H_0 : $\beta_3 = 0$.

Fitted Model

```
cfit <- lm(Balance ~ Income*Student,data=credit)
summary(cfit)$coefficients</pre>
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 200.623153 33.6983706 5.953497 5.789658e-09
## Income 6.218169 0.5920936 10.502003 6.340684e-23
## StudentYes 476.675843 104.3512235 4.567995 6.586095e-06
## Income:StudentYes -1.999151 1.7312511 -1.154743 2.488919e-01
```

- ▶ The *t*-test of the hypothesis H_0 : $\beta_3 = 0$ does not reject at any of the standard levels.
- ► That is, we retain the hypothesis that student status does not modify the effect of income on balance.

Statistical Interaction More Generally

Interaction terms are generally defined as products of two other model terms:

•
$$f(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$$

- ▶ In general we allow different lines for different values of X_2 .
 - $X_2 = 0$ model: intercept β_0 and slope β_1
 - $X_2 = x_2$ model: intercept $\beta_0 + \beta_2 x_2$ and slope $\beta_1 + \beta_3 x_2$
 - ▶ Interpret β_3 as the difference between slopes for a one-unit change in X_2 .
 - If $\beta_3 = 0$ then X_2 does not modify effect of X_1 on Y and *vice versa*.
 - ▶ In practice, test the hypothesis H_0 : $\beta_3 = 0$.

Interaction Between TV and Radio Advertising

```
afit <- lm(sales ~ TV*radio,data=advert)
summary(afit)$coefficients</pre>
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.750220203 0.2478713699 27.232755 1.541461e-68
## TV 0.019101074 0.0015041455 12.698953 2.363605e-27
## radio 0.028860340 0.0089052729 3.240815 1.400461e-03
## TV:radio 0.001086495 0.0000524204 20.726564 2.757681e-51
```

- ▶ There is statistical interaction between TV and radio ads.
 - TV modifies the effect of radio, or radio modifies the effect of TV

Categorical Variables as Predictors

Dummy Variables for Categorical Predictors

- We have seen dummy variables before.
 - ▶ A binary variable for student status, coded 0 or 1 to represent the two levels of a dichotomous variable.
- ▶ When the categorical variable has more than two values, or levels, we need more than one binary "dummy" variable.
 - Example: The Ethnicity variable from the credit data.

Regression Model for Balance

```
cfit <- lm(Balance ~ Income*Ethnicity,data=credit)
summary(cfit)$coefficients</pre>
```

```
##
                              Estimate Std. Error
                                                    t value
                                                                Pr(>|t|)
  (Intercept)
                            175.495201 65.192852
                                                  2.6919393 7.406626e-03
## Income
                                         1.062646 7.0161899 1.000371e-11
                              7.455728
## EthnicityAsian
                             57.347367
                                       91.784711 0.6248030 5.324620e-01
## EthnicityCaucasian
                         122.814867 81.198364 1.5125288 1.312011e-01
## Income:EthnicityAsian
                             -1.131111 1.559045 -0.7255149 4.685669e-01
## Income: Ethnicity Caucasian
                             -2.510135
                                        1.374387 -1.8263672 6.855154e-02
```

Model Details

Model requires too much notation to write out in detail; will explain in the context of this example.

```
coefficients(cfit)
                  (Intercept)
##
                                                    Income
                   175.495201
                                                 7.455728
##
               EthnicitvAsian
                                      EthnicityCaucasian
##
##
                    57.347367
                                               122.814867
       Income: Ethnicity Asian Income: Ethnicity Caucasian
##
##
                    -1.131111
                                                -2.510135
```

- ▶ The model uses African American as a "baseline".
 - ► The intercept=175 and slope Income=7.46 terms are the fitted model for mean Balance in African Americans.
- ► The model for mean Balance in another ethnic group is the baseline plus ethnic-group-specific intercept and slope
 - ► E.G., for the Asians, add 57.3 to the African American intercept and −1.13 to the African American slope

Dummy Variables for Ethnic Group

► Create a binary variable for each non-baseline ethnic group that takes value 1 if the person is from that ethnic group and 0 otherwise.

##		Ethnicity	Income	EthnicityAsian	EthnicityCaucasian
##	1	${\tt Caucasian}$	14.891	0	1
##	2	Asian	106.025	1	0
##	3	Asian	104.593	1	0
##	4	Asian	148.924	1	0
##	5	${\tt Caucasian}$	55.882	0	1
##	6	${\tt Caucasian}$	80.180	0	1

Model with separate lines for each continent

#	#		Ethnicity	Income	Ethr	nicityAsian	EthnicityCaucas	ian
#	#	1	${\tt Caucasian}$	14.891		0		1
#	#	2	Asian	106.025		1		0
#	#	3	Asian	104.593		1		0
#	#	4	Asian	148.924		1		0
#	#	5	${\tt Caucasian}$	55.882		0		1
#	#	6	${\tt Caucasian}$	80.180		0		1
#	#		Income.Eth	nicity A s	sian	Income.Ethr	nicityCaucasian	
#	#	1		0.	.000		14.891	
#	#	2		106	.025		0.000	
#	#	3		104	. 593		0.000	
#	#	4		148	.924		0.000	
#	#	5		0.	.000		55.882	
#	#	6		0	.000		80.180	

Model Diagnostics based on Residuals

Model Diagnostics based on Residuals

- Residuals are the primary tool for
 - checking model assumptions (correct linear model, constant error SD, and normal errors) and
 - identifying unusual observations.
- Residuals may also be useful for detecting correlation in the errors, but this is a more specialized topic not discussed.

Residuals versus fitted values

- Plot residuals vs fitted values to assess adequacy of the linear model and constant error SD.
 - ▶ A plot of ϵ_i vs $f(x_i)$ would show no pattern, because the ϵ_i 's are random noise.
 - ▶ If the linear model is adequate, we should not see any trends or patterns in the residuals vs fitted values $\hat{y}_i = \hat{f}(x_i)$.
 - Also, if the error SD is constant, the variation in residuals $vs \ \hat{y}_i$ should look roughly equal.
- We may also see outliers in the regression sense.

Residuals versus Fitted Values - Advertising

▶ Use the residual() and fitted() extractor functions.

```
adAug <- data.frame(advert,fitted=fitted(afit),residuals=residuals(afit))
ggplot(adAug,aes(x=fitted,y=residuals)) +
   geom_point() + geom_smooth()</pre>
```


Residual vs fitted – comments

- Horizontal line at zero is outside the error bands around smoother line.
 - Suggests we have missed a non-linear trend.
- Spread of residuals fairly constant over range of fitted values, so constand SD assumptions appears reasonable.

Q-Q Plots

- ► A quantile-quantile (Q-Q) plot is a plot of the quantiles of one distribution to another.
 - If the two distributions have the similar shape, the points should fall roughly on a straight line.
- Our interest is in comparing the quantiles of the distribution of residuals to the quantiles of the distribution they should have under normal errors.
 - One can argue that the residuals don't have the same distribution (those closer to the centre of the plot are slightly more variable).
- ▶ However, Studentized residuals do they have a t distribution with n k 2 degrees of freedom.
 - ▶ The Studentized residual for the *i*th case is

$$\frac{y_i-\hat{y}_i}{\hat{\sigma}_{-i}\sqrt{1-h_{ii}}}.$$

where h_{ii} is the leverage or hat value and $\hat{\sigma}_{-i}$ is the estimate of the error SD without case i

Q-Q plot of Studentized residuals

- ► The qqPlot() function from the car package plots Studentized residuals against quantiles of the appropriate *t* distribution.
 - ▶ Also adds error bands: If all points fit within bands, it is plausible that the sample is from the *t*.

```
library(car) # Use install.packages("car") to install
qqPlot(afit)
```

Studentized Residuals(afit)

Identifying unusual observations

- Studentized residuals can identify outliers
 - ▶ Rule-of-thumb: Residuals beyond ± 2 are moderate outliers and beyond ± 3 are serious outliers.
- Leverage (h_i) is a measure of how atypical an observation's X values are.
 - Rule-of-thumb: $h_i > 2(p+1)/n$ is somewhat high leverage and $h_i > 3(p+1)/n$ is very high leverage.
- Cook's distance measures the influence of an observation; i.e., how much the estimated regression coefficients change when the observation is removed.
 - ▶ Rule-of-thumb: Cook's distance > 0.5 is moderately influential, and > 1 is highly influential

Identify Unusual Observations in Advertising Data

- Augment the dataset and View() to identify cases that are unusual according to our rules-of-thumb.
 - ▶ Several "moderate" residuals, and two severe residuals of -4.5 and -7.9.
 - ▶ For leverage, p=2, n=200, 2(p+1)/n=0.03, 3(p+1)/n=0.045: 27 cases with moderate leverage, 12 with very high leverage!
 - One moderately influential case.

Correlated Predicters, or Collinearity

- ► The distribution of X's can affect stability of the least squares estimates.
 - ► For simple linear regression one can show that:

$$SE(\hat{\beta}_1) = \frac{\hat{\sigma}}{S_X \sqrt{n-1}}$$

where S_X is the SD of the X's in the dataset.

- ▶ Implies that the larger the S_X the smaller the SE (i.e., the more stable the fit).
- ▶ In general can think of the positioning of X's as a "foundation" that supports the least squares surface the broader the base, the more stable the estimates.
- ► Collinearity, or correlation between predictors, yields an unstable foundation and hence unstable estimates.

More on SEs

 \triangleright With two explanatory variables, X_1 and X_2 , can show that

$$SE(\hat{\beta}_1) = \frac{\hat{\sigma}}{S_{X_1}\sqrt{n-1}\sqrt{1-r_{12}^2}}$$

and

$$SE(\hat{\beta}_2) = \frac{\hat{\sigma}}{S_{X_2}\sqrt{n-1}\sqrt{1-r_{12}^2}}$$

where r_{12} is the correlation between X_1 and X_2 .

- ▶ In addition to S_{X_1} and S_{X_2} we must consider the correlation between X_1 and X_2 .
- ▶ The larger the squared correlation, the larger the SEs

Variance Inflation Factors (VIFs)

▶ In a multiple regression with $X_1, ..., X_p$,

$$SE(\hat{\beta}_j) = \frac{\hat{\sigma}}{S_{X_j}\sqrt{n-1}\sqrt{1-R_j^2}}$$

where R_j^2 is the R^2 from the regression of X_j on $X_{(-j)}$.

- ▶ The term $1/\sqrt{1-R_j^2}$, is the factor by which the SE of $\hat{\beta}_j$ is inflated over the SE from a simple linear regression by correlation between X_j and the other X's.
- ▶ The variance inflation factor for X_j , VIF_j , is defined to be $1/(1-R_j^2)$; i.e., the SE of $\hat{\beta}_i$ is inflated by $\sqrt{VIF_i}$.
- High VIFs indicate instability.
 - ▶ One rule of thumb is that a $VIF_j > 10$ is cause for concern.

VIFs and Other Diagnostics in the car Package

If you haven't already done so, install the R package car.

```
library(car)
vif(afit)
```

```
## TV radio TV:radio
## 3.727848 3.907651 6.937860
```

► The VIFs suggest the interaction is quite well predicted by TV and radio, but the VIF is less than our threshold so we are not concerned.

Collinearity with Polynomial Terms

```
uu <- url("http://www-bcf.usc.edu/~gareth/ISL/Income1.csv")
income <- read.csv(uu,row.names=1)
ifit<- lm(Income ~ Education + I(Education^2) + I(Education^3), data=income)
vif(ifit)</pre>
```

```
## Education I(Education^2) I(Education^3)
## 5612.306 23764.744 6449.139
```

Remedies for collinearity

▶ When the collinearity arrises from explanatory variables that are products of other variables, centering can help.

```
centre <- function(x) { x - mean(x)}
income <- data.frame(income, cEducation = centre(income$Education))
ifit<- lm(Income ~ cEducation + I(cEducation^2) + I(cEducation^3), data=income)
vif(ifit)</pre>
```

```
## cEducation I(cEducation^2) I(cEducation^3)
## 6.275936 1.000000 6.275936
```

Collinearity: If centering doesn't help

- May need to exclude a variable.
 - Sounds drastic, but high R_j^2 indicates X_j is very well predicted by $X_{(-j)}$, so nothing really lost.
- Which variable to exclude?
- First use common sense:
 - ▶ If one variable is a surrogate for another, drop the surrogate.
 - ► For example, if we are modeling house prices with (i) size of the house in square feet and (ii) the number of bedrooms, we may think bedrooms is just a surrogate for size.
- ▶ If no obvious candidate to drop, use model selection.