Description of Scattering Object

A semiconductor sphere of radius D/2 and conductivity 10 S/m.

Length Scale and Frequency Range

The problems of interest cover a range of 256x in physical length scale and 1024x in frequency; the ranges are logarithmically sampled to yield 99 unique scattering problems. In these problems, the sphere sizes are in the range $0.01 \le D/\lambda_0 \le 2624$ and $6 \le D/\delta \le 4.75 \times 10^4$, where λ_0 is the free-space wavelength and δ is the penetration depth in the sphere.

Interesting Features

- 1. Highly accurate, Mie-series analytical solutions are available for Problem IB.
- 2. Bi-static rather than mono-static RCS is the quantity of interest.

Quantities of Interest

Radar cross section (RCS) definition

$$\sigma_{vu}\left(\theta^{s}, \phi^{s}, \theta^{i}, \phi^{i}\right) = \lim_{R \to \infty} 4\pi R^{2} \frac{\left|\hat{v}\left(\theta^{s}, \phi^{s}\right) \cdot \mathbf{E}^{\text{scat}}\left(\theta^{s}, \phi^{s}\right)\right|^{2}}{\left|\hat{u}\left(\theta^{i}, \phi^{i}\right) \cdot \mathbf{E}^{\text{inc}}\left(\theta^{i}, \phi^{i}\right)\right|^{2}} : RCS (m^{2})$$

$$\sigma_{vu,dB}\left(\theta^{s},\phi^{s},\theta^{i},\phi^{i}\right)=10\log_{10}\sigma_{vu}$$

$$\sigma_{vu,dB}^{TH}\left(\theta^{s},\phi^{s},\theta^{i},\phi^{i}\right) = \max(\sigma_{vu,dB},TH_{dB}) - TH_{vu,dB}$$

: Thresholded RCS

- 1. Set $\theta^i = 90^{\circ}$, $\phi^i = 0^{\circ}$, $\theta^s = 90^{\circ}$. Vary $0^{\circ} \le \phi^s \le 360^{\circ}$.
- 2. Compute both $\sigma_{\theta\theta,\mathrm{dB}}$ and $\sigma_{\phi\phi,\mathrm{dB}}$ (the VV and HH-RCS in dB) at $N_{\phi}=721$ scattering directions (every 0.5^{o} in the interval $0^{\mathrm{o}} \leq \phi^{\mathrm{s}} \leq 360^{\mathrm{o}}$).

Performance Measures

Error Measure: Simulation errors shall be quantified using

$$avg.err_{uu,\mathrm{dB}}^{\mathit{TH}} = \frac{1}{2\pi} \int_{0}^{2\pi} \left| \sigma_{uu,\mathrm{dB}}^{\mathit{TH}} \left(\phi^{\mathrm{s}} \right) - \sigma_{uu,\mathrm{dB}}^{\mathrm{ref},\mathit{TH}} \left(\phi^{\mathrm{s}} \right) \right| d\phi^{\mathrm{s}} \approx \frac{1}{N_{\phi}} \sum_{n=1}^{N_{\phi}} \left| \sigma_{uu,\mathrm{dB}}^{\mathit{TH}} \left(\phi^{\mathrm{s}} \right) - \sigma_{uu,\mathrm{dB}}^{\mathrm{ref},\mathit{TH}} \left(\phi^{\mathrm{s}} \right) \right| \ \, (\mathrm{dB}) \ \, \text{for} \, u \in \{\theta,\phi\}$$

where

$$TH_{\mathrm{dB}} = \max_{\phi^{s}} \sigma_{uu,\mathrm{dB}}^{\mathrm{ref}} - 80 \text{ (dB)}$$

This error measure discounts errors in RCS values below TH.

Cost Measure: Simulation costs shall be quantified using observed wall-clock time and peak memory/core

$$t_{
m main}^{
m wall}$$
 (s) $mem_{
m main}^{
m maxcore}$ (bytes)

as well as the "serialized" CPU time and total memory requirement

$$t_{
m main}^{
m total} = N_{
m proc} imes t_{
m main}^{
m wall}$$
 (s) $mem_{
m main}^{
m max} = N_{
m proc} imes mem_{
m main}^{
m maxcore}$ (bytes)

Here, $N_{\rm proc}$ denotes the number of processes used in a parallel simulation. It is expected that results will be reported for at least 2 runs: "Efficient" (small $N_{\rm proc}$) and "Fast" (large $N_{\rm proc}$).

Study 1: Error vs. Cost Sweep

Fix frequency and fix sphere diameter. Simulate many error levels (proxy: mesh densities) for 4 cases:

Case 1: f=10 MHz, D=0.6 m Case 2: f=320 MHz, D=0.6 m Case 3: f=10 MHz, D=19.2 m Case 4: f=320 MHz, D=19.2 m

It's recommended to simulate as many error levels (mesh densities) as possible. 3-5 error levels is typical. A typical error-vs.-cost study will consist of 4x3-5=12-20 simulations.

Study 2: Frequency Sweep

Fix sphere diameter and error level (proxy: mesh density). Simulate many frequencies for 4 cases:

Case 1: D=0.6 m, error level 1 (coarsest mesh) Case 2: D=19.2 m, error level 1 (coarsest mesh)

Case 3: D=0.6 m, error level 2 (finer mesh) Case 4: D=19.2 m, error level 2 (finer mesh)

Frequencies shall be chosen as $f \in \{10, 20, 40, ..., 5120, 10240\}$ MHz. It's recommended to simulate as many frequencies as possible. A full frequency-sweep study will consist of 4x11=44 simulations.

Study 3: Size Sweep

Fix frequency and error level (proxy: mesh density). Simulate many diameters for 4 cases:

Case 1: f=10 MHz, error level 1 (coarsest mesh) Case 2: f=320 MHz, error level 1 (coarsest mesh)

Case 3: f=10 MHz, error level 2 (finer mesh) Case 4: f=320 MHz, error level 2 (finer mesh)

Diameters shall be chosen as $D \in \{0.3, 0.6, 1.2, ..., 38.4, 76.8\}$ m. It's recommended to simulate as many diameters as possible. A full size-sweep study will consist of 4x9=36 simulations.

Reference Quantities of Interest

The following RCS data is made available in the benchmark to enable participants to calibrate their simulators:

4 RCS results corresponding to the cases in study 1 found by using COMPASS-EM code [1].

References

[1] G. Kaur (2015) COMPASS-EM: Comprehensive program for analytical scattering solutions for electromagnetics. [Online]. Available: http://web.corral.tacc.utexas.edu/BioEM-Benchmarks/COMPASS-EM/index.html