

The University of Manchester

Baysian Classifier:

It is statistical classifier. It can predict class membership probabilities, such as the probability that a given tuple belongs to a particular class. This is based on Baye's (18th-century British mathematician Thomas Bayes) theorem. It shows high accuracy and speed when it is applied to a large database.

The University of Manchester

Example

Example: Play Tennis

PlayTennis: training examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Example

Learning Phase

Outlook	Play=Yes	Play=No
Sunny	2/9	3/5
Overcast	4/9	0/5
Rain	3/9	2/5

Temperature	Play=Yes	Play=No
Hot	2/9	2/5
Mild	4/9	2/5
Cool	3/9	1/5

Humidity	Play=Yes	Play=No
High	3/9	4/5
Normal	6/9	1/5

Wind	Play=Yes	Play=No
Strong	3/9	3/5
Weak	6/9	2/5

$$P(\text{Play=Yes}) = 9/14$$
 $P(\text{Play=No}) = 5/14$

$$P(\text{Play}=No) = 5/14$$

The University of Manchester

Example

Test Phase

Given a new instance,

x'=(Outlook=*Sunny*, Temperature=*Cool*, Humidity=*High*, Wind=*Strong*)

Look up tables

P(Outlook=Sunny | Play=Yes) = 2/9

P(Temperature=Cool | Play=Yes) = 3/9

P(Huminity=High | Play=Yes) = 3/9

P(Wind=Strong | Play=Yes) = 3/9

P(Play=Yes) = 9/14

P(Outlook=Sunny | Play=No) = 3/5

P(Temperature=Cool | Play==No) = 1/5

P(Huminity=High | Play=No) = 4/5

P(Wind=Strong | Play=No) = 3/5

P(Play=No) = 5/14

MAP rule

 $P(Yes \mid X')$: $[P(Sunny \mid Yes)P(Cool \mid Yes)P(High \mid Yes)P(Strong \mid Yes)]P(Play=Yes) = 0.0053$

 $P(No \mid \mathbf{X}'): [P(Sunny \mid No) P(Cool \mid No) P(High \mid No) P(Strong \mid No)] P(Play=No) = 0.0206$

Given the fact $P(Yes \mid \mathbf{x}') < P(No \mid \mathbf{x}')$, we label \mathbf{x}' to be "No".

Confusion Matrix

It is a table that is often used to **describe the performance of a classification model** (or "classifier") on a set of test data for which the true values are known. The confusion matrix itself is relatively simple to understand, but the related terminology can be confusing.

Let's start with an **example confusion matrix for a binary classifier** (though it can easily be extended to the case of more than two classes):

	Predicted:	Predicted:
n=165	NO	YES
Actual:		
NO	50	10
Actual:		
YES	5	100

What can we learn from this matrix?

- There are two possible predicted classes: "yes" and "no". If we were predicting the presence of a disease, for example, "yes" would mean they have the disease, and "no" would mean they don't have the disease.
- The classifier made a total of 165 predictions (e.g., 165 patients were being tested for the presence of that disease).
- Out of those 165 cases, the classifier predicted "yes" 110 times, and "no" 55 times.
- In reality, 105 patients in the sample have the disease, and 60 patients do not.
- Let's now define the most basic terms, which are whole numbers (not rates):

	Predicted:	Predicted:
n=165	NO	YES
Actual:		
NO	50	10
Actual:		
YES	5	100

- **true positives (TP):** These are cases in which we predicted yes (they have the disease), and they do have the disease.
- true negatives (TN): We predicted no, and they don't have the disease.
- **false positives (FP):** We predicted yes, but they don't actually have the disease. (Also known as a "Type I error.")
- **false negatives (FN):** We predicted no, but they actually do have the disease. (Also known as a "Type II error.")

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

• Accuracy: Overall, how often is the classifier correct?

Accuracy =
$$(TP+TN)/total = (100+50)/165 = 0.91$$

• Misclassification Rate: Overall, how often is it wrong?

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

- True Positive Rate: When it's actually yes, how often does it predict yes?
 TP/actual yes = 100/105 = 0.95
 also known as "Sensitivity" or "Recall"
- False Positive Rate: When it's actually no, how often does it predict yes?
- FP/actual no = 10/60 = 0.17
- True Negative Rate: When it's actually no, how often does it predict no?
 TN/actual no = 50/60 = 0.83
 equivalent to 1 minus False Positive Rate
 also known as "Specificity"

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

- **Precision:** When it predicts yes, how often is it correct? TP/predicted yes = 100/110 = 0.91
- **Prevalence:** How often does the yes condition actually occur in our sample? actual yes/total = 105/165 = 0.64

ROC(Receiver Operating Characteristics) curve plots TPR (on the y-axis) against FPR (on the x-axis)

(True + ve rate)
$$TPR = \frac{TP}{TP + FN}$$

(False + ve rate)
$$FPR = \frac{FP}{FP + TN}$$

Problem 1

Confusion Matrix for Multi clssification:

	A	В	С
A	25	5	2
В	3	32	4
С	1	0	15

Accuracy =
$$(25+32+15)/(25+5+2+3+32+4+1+0+15)$$

$$P_A = 25/(25+3+1)$$

$$R_A = 25/(25+5+2)$$