Cryptography: Homework 4

(Deadline: 10am, 2022/10/21)

1. (20 points) Let F be a length-preserving PRF. Let $F': \{0,1\}^n \times \{0,1\}^{n-1} \to \{0,1\}^{2n}$ be a keyed function such that $F'_k(x) = F_k(0||x)||F_k(x||1)$, where || denotes the concatenation of two strings (e.g., 000||111 = 000111). Determine whether F' is a PRF. Show your proof or attack.

Hint: Since F' is not length-preserving, you need to slightly generalize the definition of PRF. More precisely, you need to determine if $\{F'_k\} \equiv_{\text{c.i.}} \{f\}$, where $k \leftarrow \{0,1\}^n$ and f is a random function from $\{0,1\}^{n-1}$ to $\{0,1\}^{2n}$.

- 2. (30 points) Let F be a length-preserving PRF. Let $P: \{0,1\}^n \times \{0,1\}^{2n} \to \{0,1\}^{2n}$ be a keyed function defined by a 3-round Feistel network:
 - key: $k \in \{0, 1\}^n$;
 - input: $x = (L_0, R_0) \in \{0, 1\}^n \times \{0, 1\}^n$;
 - output: $P_k(x) = (L_3, R_3)$, which is computed as follows
 - $-L_1 = R_0, R_1 = L_0 \oplus F_k(R_0);$
 - $-L_2 = R_1, R_2 = L_1 \oplus F_k(R_1);$
 - $-L_3 = R_2, R_3 = L_2 \oplus F_k(R_2).$

Show that P is not a PRP.