D Y Patil College of Engineering Akurdi Pune Project Title Problem 4 Company Name

Group/Team Name DYPCOE Subtitle

Designer Mr.S.J.Payghan Job Number Problem 4

Limit State Design (No Earthquake Load) Date 05 /06 /2016 Method

Design Conclusion

Finplate Pass

Finplate

Connection Properties

Connection

Connection Title Single Finplate **Shear Connection** Connection Type

Connection Category

Connectivity Column flange-Beam web

Bolted Beam Connection Column Connection Welded

Loading (Factored Load)

Shear Force (kN) 200

Components

Column Section **ISSC 200** Material Fe 410 **Beam Section ISMB 400** Material Fe 410 Hole STD

Plate Section 250X100X18

Thickness (mm) 18 Width (mm) 100 250 Depth (mm) **STD** Hole

Weld

Type Double Fillet

Size (mm) 15

Bolts

Type **HSFG** Grade 8.8 Diameter (mm) 16 **Bolt Numbers** 4 Columns (Vertical Lines) 1 Bolts Per Column 4 Gauge (mm) 0 Pitch (mm) 63 30 End Distance (mm) 30 Edge Distance (mm)

Assembly

Column-Beam Clearance (mm) 20

Created with

Company Name D Y Patil College of Engineering Akurdi Pune Project Title Problem 4

Group/Team Name DYPCOE Subtitle

Designer Mr.S.J.Payghan Job Number Problem 4

Date 05 /06 /2016 Method Limit State Design (No Earthquake Load)

Design Check

Bolt shear capacity (kN)

Bolt bearing capacity (kN)

Check Provided Required Remark

 $V_{\rm dsb} = (800*0.6126*16*16)/(\sqrt{3}*1.25*1000) =$

[cl. 10.3.3]

58.012

 $V_{\rm dpb} = (2.5*0.491*16*8.9*410)/(1.25*1000) =$

57.333

[cl. 10.3.4]

Bolt capacity (kN) Min (58.012, 57.333) = 57.333

No. of bolts 200/57.333 = 3.5**Pass**

No.of column(s)	≤ 2	1	
No. of bolts per column		4	
Bolt pitch (mm)	$\geq 2.5* \ 16 = 40, \leq Min(32*8.9, 300) = 285$ [cl. 10.2.2]	63	Pass
Bolt gauge (mm)	$\geq 2.5*16 = 40, \leq Min(32*8.9, 300) = 285$ [cl. 10.2.2]	0	
End distance (mm)	$\geq 1.7*18 = 30.6, \leq 12*8.9 = 106.8$ [cl. 10.2.4]	30	Pass
Edge distance (mm)	$\geq 1.7*18 = 30.6, \leq 12*8.9 = 106.8$ [cl. 10.2.4]	30	Pass
Block shear capacity (kN)	\geq 200	$V_{\rm db} = 601$	Pass
Plate thickness (mm)	(5*200*1000)/(250*250) = 16.0 [Owens and Cheal, 1989]	18	Pass
Plate height (mm)	≥ 0.6*400=240.0, ≤ 400-16-14-10=330.0 [cl. 10.2.4, Insdag Detailing Manual, 2002]	250	Pass
Plate width (mm)		100	
Plate moment capacity (kNm)	$(2*58.012*63^2)/(63*1000) = 14.735$	$M_{\rm d} = (1.2*250*Z)/(1000*1.1) = 51.14$ [cl. 8.2.1.2]	Pass
Effective weld length (mm)		250-2*16 = 218	
Weld strength (kN/mm)	$\sqrt{[(14735*6)/(2*218^2)]^2 + [200/(2*218)]^2}$ = 1.037	$f_{\rm V} = (0.7*15*410)/(\sqrt{3}*1.25)$	
		= 2.121	Pass
	$M_{\rm ov}$ ((1.027*1000**/2* 1.25)/(0.7 * 410) 10* 0.9) =	[cl. 10.5.7]	
Weld thickness (mm)	Max($(1.037*1000*\sqrt{3}*1.25)/(0.7*410),18*0.8$) = 14.4 [cl. 10.5.7, Insdag Detailing Manual, 2002]	15	Pass

Created with

Company Name DY Patil College of Engineering Akurdi Pune Project Title Problem 4

Group/Team Name DYPCOE Subtitle

Designer Mr.S.J.Payghan Job Number Problem 4

Date 05 /06 /2016 Method Limit State Design (No Earthquake Load)

Views

Created with

Company Name DY Patil College of Engineering Akurdi Pune Project Title Problem 4

Group/Team Name DYPCOE Subtitle

Designer Mr.S.J.Payghan Job Number Problem 4

Date 05 /06 /2016 Method Limit State Design (No Earthquake Load)

Additional Comments