Neural Processes

ICML 2018, ICML 2018 workshop

Introduction

Introduction

A neural network (NN) is a parameterized function that approximates a dataset with high accuracy, but **can't easily switch to an unknown function**.

Gaussian process (GP) has the flexibility to infer the shape of new functions at test time based on **prior knowledge**, but GP is **computationally intensive**.

Introduction

Therefore, this study proposes a new meta learning method called Neural Process, which combines the advantages of both.

This method is not only as **computationally efficient** as NNs during training and evaluation, but also as GPs can **effectively utilize prior knowledge** to quickly adapt to newly observed functions.

Conditional/Latent Neural Processes

Observation and Target Dataset

Supervised Learning

VS.

Neural Processes

CNP Forward Pass

Conditional Neural Processes

Conditional Neural Processes

Conditional Neural Processes

 $log \ p_{ heta}(Y_T|\{X_O,Y_O\},X_T)$

$$\mu_{O}, \sigma_{O} \leftarrow (MLP \circ mean \circ Enc)(X_{O}, Y_{O})$$

$$z_{T} \sim \mathcal{N}(\mu_{O}, \sigma_{O})$$

 $log \int p_{ heta}(Y_T|z,X_T)q_{\omega}(z|\{X_O,Y_O\})dz$

$$-log \ p_{ heta}(Y_T|z,X_T) + log rac{q_{\omega}(z)}{q_{\omega}(z|\{X_O,Y_O\})}$$

$$-\log p_{\theta}(Y_T|z,X_T) + \log \frac{q_{\omega}(z)}{q_{\omega}(z|\{X_O,Y_O\})}$$

$$\mathcal{L} = -\log p_{\theta}(Y_T | z, X_T) \\ + KLD(\mathcal{N}(\mu_T, \sigma_T), \mathcal{N}(\mu_O, \sigma_O))$$

Experiments

	Random Context			Ordered Context			
#	10	100	1000	10	100	1000	
kNN	0.215	0.052	0.007	0.370	0.273	0.007	
GP	0.247	0.137	0.001	0.257	0.220	0.002	
CNP	0.039	0.052 0.137 0.016	0.009	0.057	0.047	0.021	

Pixel-wise mean squared error of CNP on the CelebA.

	5-way Acc		20-way Acc		Runtime
	1-shot	5-shot	1-shot	5-shot	
MANN	82.8%	94.9%	-	-	$\mathcal{O}(nm)$
MN	98.1%	98.9 %	93.8%	98.5%	$\mathcal{O}(nm)$
CNP	95.3%	98.5%	89.9%	96.8%	$\mathcal{O}(n+m)$

Classification results of CNP on Omniglot.

The wheel bandit problem. Optimal action for yellow, red, black and green regions, are actions 2, 3, 4 and 5, respectively.

δ	0.5	0.7	0.9	0.95	0.99
Cumulative regret					
**	100.00	100.00	100.00	100.00	100.00
Uniform	100.00 ± 0.08	100.00 ± 0.09	100.00 ± 0.25	100.00 ± 0.37	100.00 ± 0.78
LinGreedy ($\epsilon = 0.0$)	65.89 ± 4.90	71.71 ± 4.31	108.86 ± 3.10	102.80 ± 3.06	104.80 ± 0.91
Dropout	7.89 ± 1.51	9.03 ± 2.58	36.58 ± 3.62	63.12 ± 4.26	98.68 ± 1.59
LinGreedy ($\epsilon = 0.05$)	7.86 ± 0.27	9.58 ± 0.35	19.42 ± 0.78	33.06 ± 2.06	74.17 ± 1.63
Bayes by Backprob (Blundell et al., 2015)	1.37 ± 0.07	3.32 ± 0.80	34.42 ± 5.50	59.04 ± 5.59	97.38 ± 2.66
NeuralLinear	0.95 ± 0.02	1.60 ± 0.03	4.65 ± 0.18	9.56 ± 0.36	49.63 ± 2.41
MAML (Finn et al., 2017)	2.95 ± 0.12	3.11 ± 0.16	4.84 ± 0.22	7.01 ± 0.33	22.93 ± 1.57
Neural Processes	1.60 ± 0.06	1.75 ± 0.05	3.31 ± 0.10	5.71 ± 0.24	22.13 ± 1.23
Simple regret					
7 0					
Uniform	100.00 ± 0.45	100.00 ± 0.78	100.00 ± 1.18	100.00 ± 2.21	100.00 ± 4.21
LinGreedy ($\epsilon = 0.0$)	66.59 ± 5.02	73.06 ± 4.55	108.56 ± 3.65	105.01 ± 3.59	105.19 ± 4.14
Dropout	6.57 ± 1.48	6.37 ± 2.53	35.02 ± 3.94	59.45 ± 4.74	102.12 ± 4.76
LinGreedy ($\epsilon = 0.05$)	5.53 ± 0.19	6.07 ± 0.24	8.49 ± 0.47	12.65 ± 1.12	57.62 ± 3.57
Bayes by Backprob (Blundell et al., 2015)	0.60 ± 0.09	1.45 ± 0.61	27.03 ± 6.19	56.64 ± 6.36	102.96 ± 5.93
NeuralLinear	0.33 ± 0.04	0.79 ± 0.07	2.17 ± 0.14	4.08 ± 0.20	35.89 ± 2.98
MAML (Finn et al., 2017)	2.49 ± 0.12	3.00 ± 0.35	$4.75\pm{\scriptstyle 0.48}$	7.10 ± 0.77	22.89 ± 1.41
Neural Processes	1.04 ± 0.06	1.26 ± 0.21	2.90 ± 0.35	5.45 ± 0.47	21.45 ± 1.3

Results of LNP on the wheel bandit problem.

Conclusion

Neural Processes combines the computational efficiency of neural networks with the flexibility of stochastic processes.

- Efficiently extract prior knowledge from $\{X_O, Y_O\}$ (neural networks)
- Change strategies based on prior knowledge (stochastic processes)

Thanks for your attention.

Q&A