MATHEMATICAL ANALYSIS

Yaohui Wu

October 19, 2024

1 Real Numbers

1.1 The Set of Real Numbers

We define

- The set of natural numbers is $\mathbb{N} = \{1, 2, 3, \dots\}$.
- The set of integers is $\mathbb{Z} = \{0, 1, -1, 2, -2, \dots\}.$
- The set of rational numbers is $\mathbb{Q} = \left\{ \frac{m}{n} \mid m, n \in \mathbb{Z}, n \neq 0 \right\}$.
- The set of real numbers is \mathbb{R} .

Note that $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.

Definition 1.1.1 (Well Ordering Property of \mathbb{N}). Every nonempty subset of \mathbb{N} has a least element.

Definition 1.1.2. An ordered set is a set S with a relation < such that

- 1. (*Trichtomy*) If $x, y \in S$, then one and only one of the statements x < y, x = y, y < x is true.
- 2. (Transitivity) If $x, y, z \in S$, x < y, and y < z, then x < z.

Definition 1.1.3. Suppose S is an ordered set and $E \subset S$. If there exists a $b \in S$ such that $x \leq b$ for all $x \in E$, then E is bounded above and b is an upper bound of E. If there exists an upper bound a such that $a \leq b$ for all upper bounds b of E, then a is the least upper bound or the supremum of E denoted by E.

Similar definition applies for a set that is bounded below and lower bound. The greatest lower bound or the infimum of E is denoted by E. A set is bounded if it is bounded above and below.

Definition 1.1.4 (Dedekind Completeness). An ordered set S has the *least-upper-bound* property if every nonempty subset $E \subset S$ that is bounded above has a least upper bound, that is, $\sup E$ exists in S.

Theorem 1.1.1. There exists a unique ordered field \mathbb{R} with the least-upper-bound property such that $\mathbb{Q} \subset \mathbb{R}$.

1.2 Archimedian Property

Theorem 1.2.1. If $x, \varepsilon \in \mathbb{R}$ and $x \leq \varepsilon$ for all $\varepsilon > 0$, then $x \leq 0$.

Theorem 1.2.2. Suppose $x, y \in \mathbb{R}$.

- 1. (Archimedian property) If x > 0, then there exists an $n \in \mathbb{N}$ such that nx > y.
- 2. (\mathbb{Q} is dense in \mathbb{R}) If x < y, then there exists an $r \in \mathbb{Q}$ such that x < r < y.

If $A \subset \mathbb{R}$ and $\sup A \in A$, then the supremum is the *maximum* of A denoted by $\max A$. Similarly, the infimum is the *minimum* of A denoted by $\min A$.

Theorem 1.2.3 (Triangle Inequality). *If* $x, y \in \mathbb{R}$, then $|x + y| \le |x| + |y|$.

2 Sequences and Series

2.1 Sequences

Definition 2.1.1. A sequence $\{x_n\}$ is a function with domain \mathbb{N} and range \mathbb{R} .

Definition 2.1.2. A sequence $\{x_n\}$ is bounded if there exists a $B \in \mathbb{R}$ such that $|x_n| \leq B$ for all $n \in \mathbb{N}$.

Definition 2.1.3. A sequence is *convergent* and has the unique limit L and we write

$$\lim_{n \to \infty} \{x_n\} = L$$

if for every $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that $|x_n - L| < \varepsilon$ for all $n \ge N$.

If a sequence is not convergent, then it is *divergent*.

Theorem 2.1.1. If a sequence is convergent, then it is bounded.

Theorem 2.1.2 (Squeeze Theorem). If $a_n \leq b_n \leq c_n$ for all $n \geq N$, and $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$, then

$$\lim_{n\to\infty}b_n=L$$

2.2 Monotonic Sequences

Definition 2.2.1. A sequence $\{x_n\}$ is increasing if $x_n \leq x_{n+1}$ or decreasing if $x_n \geq x_{n+1}$ for all $n \in \mathbb{N}$. A sequence is monotonic if it is increasing or decreasing.

Theorem 2.2.1 (Monotone Convergence Theorem). A monotonic sequence is convergent if and only if it is bounded.

If $\{x_n\}$ is increasing and bounded above, then

$$\lim_{n\to\infty} x_n = \sup x_n$$

If $\{x_n\}$ is decreasing and bounded below, then

$$\lim_{n \to \infty} x_n = \inf x_n$$

2.3 Subsequences

Definition 2.3.1. Let n_i be a sequence that satisfies $n_i < n_{i+1}$ for all $i \in \mathbb{N}$. The sequence $\{x_{n_i}\}$ is a *subsequence* of $\{x_n\}$.

Theorem 2.3.1. If $\{x_n\}$ is convergent, then every subsequence $\{x_{n_i}\}$ is convergent, and

$$\lim_{n\to\infty} x_n = \lim_{i\to\infty} x_{n_i}$$

2.4 Bolzano-Weierstrass Theorem

Theorem 2.4.1 (Bolzano-Weierstrass Theorem). Every bounded sequence has a convergent subsequence.

2.5 Cauchy Sequences

Definition 2.5.1. A sequence $\{x_n\}$ is a *Cauchy sequence* if for every $\varepsilon > 0$ there exists an $N \in \mathbb{N}$ such that $|x_m - x_n| < \varepsilon$ for all $m, n \ge \mathbb{N}$.

Theorem 2.5.1. If a sequence is a Cauchy sequence, then it is bounded.

Theorem 2.5.2 (Cauchy Completeness). A sequence is convergent if and only if it is a Cauchy sequence.