

Introducción a la Inteligencia Artificial

RoboticsLab – Universidad Carlos III de Madrid

http://roboticslab.uc3m.es

Juan G Victores © 2021

Introducción a la Inteligencia Artificial en Robótica

- ☐ Una taxonomía de la IA
- ☐ Machine Learning

Supervised Learning; Unsupervised Learning; Reinforcement Learning; aún más vía Deep Learning (p.ej. Selfsupervised Learning, Style Transfer, GANs...)

- ☐ Robótica: Expert Rules hasta End-to-End Learning
- ☐ Conclusiones y Recursos

Artificial Intelligence

Artificial General Intelligence (AGI) Narrow Al

Optimization (Gradient Descent, Evol. Comput...)

Good Old-Fashioned AI (Cognitivist/Symbolical)

Machine Learning (Connectionist/Statistical)

Machine Learning (Tipos de Problemas)

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Aún más vía Deep Learning

(p.ej. Selfsupervised Learning, Style Transfer, GANs...)

Machine Learning (Tipos de Problemas)

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Aún más vía Deep Learning

(p.ej. Selfsupervised Learning, Style Transfer, GANs...)

Supervised Learning (Tipo de Problema)

Supuesto: Tenemos muchos datos en formato pares {entrada, salida}

```
{ "murciélago"}
{ \( \mathbb{M} \), "perro" \\ \\ \mathbb{M} \), "gato" \\ \\\ \\ \mathbb{M} \), "perro" \\
```

Consigue: Dada nueva entrada (p.ej. estima su correspondiente salida (p.ej. "perro")

Supervised Learning (Tipo de Problema)

Classification: salida = categoría(s)

Regression: salida = valor(es) numéricos

- 1) Subtipo NO depende de entrada (imagen, sonido, video, datos de sensores...)
- 2) Vía Deep Neural Networks (2013-): realización simultánea de ambos
- 3) Vía Deep Neural Networks (2014-): muchos más tipos de entrada/salida (p.ej. modelos seq2seq admiten secuencias de tokens de lenguaje natural)

Supervised Learning: Classification

Supervised Learning: Regression

entrada = tipo vivienda, precio y año compra...

salida = valor (precio vivienda actual)

Supervised Learning: Classif.+Regress.

entrada = imagen

2013: R-CNN 2015: SSD

2015: YOLO

https://github.com/roboticslab-uc3m/vision/issues/103: Robot object Detection

salida = categorías + valores (coordenadas)

Classification: Técnicas (Modelos+Algortmos)

Neural Networks (p.ej. Deep Learning)

Logistic Regression

Decision Trees

Support Vector Machines (SVM), GMM, K-NN, Naive Bayes, Algebraic Machine Learning...

Regression: Técnicas (Modelos+Algoritmos)

Neural Networks (p.ej. Deep Learning)

Linear Regression

Alternative versions for regression of Decision Trees, Random Forest, SVM, K-NN, Algebraic Machine Learning...

Supervised Learning: Classification Neural Networks (muy simplificado!)

, "gato"}

, "perro"}

, "gato"}

, "gato"}

{ murciélago"}

, "perro"}

1	9	1	1	1
4	8	w	2	1
6	8	80	8	1
8	9	7	7	1
6	5	6	1	1
4	9	7	8	1

Supervised Learning: Classification Neural Networks (muy simplificado!)

, "gato"}

{ ["perro" }

, "gato"}

, "gato"}

{ "murciélago"}

🐧, "perro"}

1	9	1	1	1
4	8	w	2	1
6	8	80	8	1
8	9	7	7	1
6	5	6	1	1
4	9	7	8	1

	_	
0	← "murciélago"	
1	← "gato"	
0	← "perro"	"one-hot"
0	← "vaca"	encoding
0	← "lechuga"	
0	+ "avaia"	

Supervised Learning: Classification Neural Networks (muy simplificado!)

{ "gato" }

, "gato"

{ murciélago"}

"perro"}

.7 .2 -.2 -.3

"trained weights" do not usually change during "INFERENCE"/ "PREDICTION"

Supervised Learning: Classification Neural Networks (muy simplificado!)

, "gato"}

, "gato"}

"gato"

{ murciélago"}

"perro"}

"trained weights" do not usually change during "INFERENCE"/ "PREDICTION"

Supervised Learning: Classification Deep Learning (Deep Neural Networks)

, "gato"}

, "gato"}

, "gato"}

{ murciélago"}

🐧, "perro"}

	1
0	← "murciélago"
1	← "gato"
0	← "perro"
0	← "vaca"
0	← "lechuga"

Supervised Learning: Classification Deep Learning (Deep Neural Networks)

{ "gato" }

, "gato"}

{ murciélago"}

🐧, "perro"}

"trained weights" do not usually change during "INFERENCE"/ "PREDICTION"

← "murciélago"

← "gato"

← "perro"

← "vaca"

← "lechuga"

← "oveja"

Supervised Learning: Classification Deep Learning (Deep Neural Networks)

, "gato"}

, "gato"}

{ murciélago"}

, "perro"}

"trained weights" do not usually change during "INFERENCE"/ "PREDICTION"

← "lechuga"

Machine Learning (Tipos de Problemas)

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Aún más vía Deep Learning

(p.ej. Selfsupervised Learning, Style Transfer, GANs...)

Machine Learning (Tipos de Problemas)

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Aún más vía Deep Learning

(p.ej. Selfsupervised Learning, Style Transfer, GANs...)

Unsupervised Learning (Tipo de Problema)

Supuesto: Tenemos muchos datos en un mismo formato {entrada}

Consigue: Variedad de subtipos de problemas, p.ej. clustering, dim. reduct, anomaly detect...

Machine Learning (Tipos de Problemas)

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Aún más vía Deep Learning

(p.ej. Selfsupervised Learning, Style Transfer, GANs...)

Machine Learning (Tipos de Problemas)

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Aún más vía Deep Learning

(p.ej. Selfsupervised Learning, Style Transfer, GANs...)

Reinforcement Learning (Tipo de Problema)

Supuesto: Un agente {observa estado del entorno, actúa, y obtiene un refuerzo} (bucle!)

Consigue: Dado nuevo estado (p.ej.) decide acción (p.ej. "huir"), obtiene refuerzo (1)

Reinforcement Learning (Tipo de Problema)

Toma de decisiones

Objetivo: ley de control

acción = π(estado)

Maximiza: f(refuerzo)

Supuestos:

Markov Assumption

Markov Decision Process

π directa o vía V/Q

Reinforcement Learning: Técnicas

```
\pi(s) / V(s) / Q(s,a) / Actor-Critic
Tabular / Function Approximator
f(reward): Average / Discounted / ...
On-policy / Off-policy
Model-free / Model-based
MDP / POMDP / ...
```


Deep Reinforcement Learning (Conjunto de técnicas)

Mnih (2015-): Deep Q-Network (DQN)

entrada = estado (imagen, pose...)

salida = $\pi/V/Q$ para acción = $\pi(state)$

Machine Learning (Tipos de Problemas)

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Aún más vía Deep Learning

(p.ej. Selfsupervised Learning, Style Transfer, GANs...)

Machine Learning (Tipos de Problemas)

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Aún más vía Deep Learning

(p.ej. Selfsupervised Learning, Style Transfer, GANs...)

Aún más vía Deep Learning

Selfsupervised Learning: Auto-Encoders, Variational Auto-Encoders (VAE)

Li, D., & Wang, J. (2018). Image Semantic Transformation: Faster, Lighter and Stronger. arXiv preprint arXiv:1803.09932.

Gago, J. J., Łukawski, B., <u>Victores, J. G.</u>, & Balaguer, C. (2020, November). Under-Actuation Modelling in Robotic Hands via Neural Networks for Sign Language Representation with End-User Validation. In *Int. Conf. Intelligent Data Engineering and Automated Learning (IDEAL)* (pp. 239-251).

Aún más vía Deep Learning

Style Transfer

Content

Generated

Raul Fernández Fernández (2021). Action Generalization in Humanoid Robots Through Artificial Intelligence With Learning From Demonstration. Advisors: Carlos Balaguer, <u>Juan G Victores</u>. PhD Thesis, UC3M.

Style

Aún más vía Deep Learning

Generative Adversarial Networks (GANs)

https://bytes860770954.wordpress.com/2020/08/22/what-are-generative-adversarial-networks-gans/

StyleGAN, Karras et al.

Introducción a la Inteligencia Artificial en Robótica

- ☐ Una taxonomía de la IA
- ☐ Machine Learning

Supervised Learning; Unsupervised Learning; Reinforcement Learning; aún más vía Deep Learning (p.ej. Selfsupervised Learning, Style Transfer, GANs...)

- ☐ Robótica: Expert Rules hasta End-to-End Learning
- ☐ Conclusiones y Recursos

Introducción a la Inteligencia Artificial en Robótica

- Una taxonomía de la IA
- ☐ Machine Learning

Supervised Learning; Unsupervised Learning; Reinforcement Learning; aún más vía Deep Learning (p.ej. Selfsupervised Learning, Style Transfer, GANs...)

- ☐ Robótica: Expert Rules hasta End-to-End Learning
- ☐ Conclusiones y Recursos

pjgvictore

Robótica: Expert Rules hasta End-to-End

Component Based Software Engineering (CBSE)

Sistemas Expertos (Rule-Based: IF-ELSE)

Planificación, Cinemática, Control

Learning w/hand-crafted Features

All Learned Features

End-to-End (p.ej. Via DRL)

Hyperparameters

Hand-crafted

Automated search

Expert (Coding)

"generic/ agnostic" Algorithms

Learning (Data+Model +Algorthms)

uc3m | Universidad Carlos III de Madrid

@jgvictores Robótica: CBSE (rules & generic & learning)

Robótica: End-to-End (p.ej. Via DRL 2015-)

entrada = estado (imagen, pose...)

Robótica: Expert Rules hasta End-to-End

Component Based Software Engineering (CBSE)

Sistemas Expertos (Rule-Based: IF-ELSE)

Planificación, Cinemática, Control

Learning w/hand-crafted Features

All Learned Features

End-to-End (p.ej. Via DRL)

Hyperparameters

Hand-crafted

Automated search

Expert (Coding)

"generic/ agnostic" Algorithms

Learning (Data+Model +Algorthms)

uc3m Universidad Carlos III de Madrid

@igvictores

Recursos (libros, cursos, proyectos)

Guili, "Deep Learning with TensorFlow 2 and Keras", 2019

https://www.coursera.org/specializations/deep-learning

Sutton, Barto, "Reinforcement Learning: An Introduction", 2018

https://www.coursera.org/specializations/reinforcement-learning

http://rail.eecs.berkeley.edu/deeprlcourse

Máster Universitario en Robótica y Automatización (UC3M) (p.ej. Planificación, Aprendizaje, Simuladores...)

ALMA: Human Centric Algebraic Machine Learning (H2020-EIC-FETPROACT-2019)

Introducción a la Inteligencia Artificial

RoboticsLab – Universidad Carlos III de Madrid

http://roboticslab.uc3m.es

Juan G Victores © 2021

