In [1]: import pandas as pd

Out[2]:

	User ID	Age	Gender	Location	Phone Brand	os	Data Usage (GB/month)	Calls Duration (mins/day)
0	U00001	53	Male	Mumbai	Vivo	Android	23.9	37.9
1	U00002	60	Other	Delhi	Realme	iOS	28.1	13.7
2	U00003	37	Female	Ahmedabad	Nokia	Android	12.3	66.8
3	U00004	32	Male	Pune	Samsung	Android	25.6	156.2
4	U00005	16	Male	Mumbai	Xiaomi	iOS	2.5	236.2
•••								
17681	U17682	27	Other	Mumbai	Apple	iOS	36.6	90.4
17682	U17683	40	Female	Chennai	Орро	iOS	12.9	243.0
17683	U17684	34	Female	Ahmedabad	Realme	Android	48.9	74.7
17684	U17685	22	Male	Hyderabad	Vivo	Android	25.6	105.6
17685	U17686	43	Other	Kolkata	Орро	iOS	22.5	215.2

17686 rows × 15 columns

In [3]: data.isna()

	User ID	Age	Gender	Location	Phone Brand	os	Data Usage (GB/month)	Duration (mins/day)	of Apps Installed
0	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False
•••									
17681	False	False	False	False	False	False	False	False	False
17682	False	False	False	False	False	False	False	False	False
17683	False	False	False	False	False	False	False	False	False
17684	False	False	False	False	False	False	False	False	False
17685	False	False	False	False	False	False	False	False	False

Calls Number

17686 rows × 15 columns

dtype='object')

In [6]: data.describe()

```
In [4]: data.isna().sum()
Out[4]: User ID
                                         0
                                         0
        Age
        Gender
                                         0
        Location
                                         0
        Phone Brand
                                         0
        0S
                                         0
        Data Usage (GB/month)
                                         0
        Calls Duration (mins/day)
        Number of Apps Installed
                                         0
        Social Media Time (hrs/day)
        E-commerce Spend (INR/month)
                                         0
        Streaming Time (hrs/day)
                                         0
        Gaming Time (hrs/day)
                                         0
        Monthly Recharge Cost (INR)
                                         0
        Primary Use
                                         0
        dtype: int64
In [5]: data.columns
Out[5]: Index(['User ID', 'Age', 'Gender', 'Location', 'Phone Brand', 'OS',
                'Data Usage (GB/month)', 'Calls Duration (mins/day)',
                'Number of Apps Installed', 'Social Media Time (hrs/day)',
                'E-commerce Spend (INR/month)', 'Streaming Time (hrs/day)',
```

'Gaming Time (hrs/day)', 'Monthly Recharge Cost (INR)', 'Primary Use'],

\cap		-	Г	6	٦.	۰
U	u	L	Ľ	U	J	0

	Age	Data Usage (GB/month)	Calls Duration (mins/day)	Number of Apps Installed	Social Media Time (hrs/day)	E-comme Sp (INR/moi
count	17686.000000	17686.000000	17686.000000	17686.000000	17686.000000	17686.000
mean	37.584247	25.411257	151.405846	104.584869	3.252369	5075.707
std	13.338252	14.122167	84.923353	55.217097	1.590223	2871.604
min	15.000000	1.000000	5.000000	10.000000	0.500000	100.000
25%	26.000000	13.200000	77.325000	57.000000	1.900000	2587.500
50%	38.000000	25.300000	150.600000	104.000000	3.200000	5052.000
75%	49.000000	37.600000	223.900000	152.000000	4.600000	7606.000
max	60.000000	50.000000	300.000000	200.000000	6.000000	10000.000

In [7]: data.duplicated()

```
Out[7]: 0
                False
        1
                False
        2
                False
        3
                False
        4
                False
                . . .
        17681 False
        17682 False
              False
        17683
        17684 False
        17685 False
        Length: 17686, dtype: bool
```

In [8]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 17686 entries, 0 to 17685
Data columns (total 15 columns):

Data	cordinis (cocar 13 cordinis).		
#	Column	Non-Null Count	Dtype
0	User ID	17686 non-null	object
1	Age	17686 non-null	int64
2	Gender	17686 non-null	object
3	Location	17686 non-null	object
4	Phone Brand	17686 non-null	object
5	OS	17686 non-null	object
6	Data Usage (GB/month)	17686 non-null	float64
7	Calls Duration (mins/day)	17686 non-null	float64
8	Number of Apps Installed	17686 non-null	int64
9	Social Media Time (hrs/day)	17686 non-null	float64
10	E-commerce Spend (INR/month)	17686 non-null	int64
11	Streaming Time (hrs/day)	17686 non-null	float64
12	Gaming Time (hrs/day)	17686 non-null	float64
13	Monthly Recharge Cost (INR)	17686 non-null	int64
14	Primary Use	17686 non-null	object

dtypes: float64(5), int64(4), object(6)

memory usage: 2.0+ MB

```
In [9]:
         data.shape
 Out[9]: (17686, 15)
In [10]: data.dtypes
                                           object
Out[10]: User ID
                                            int64
          Age
          Gender
                                           object
          Location
                                           object
          Phone Brand
                                           object
          ΩS
                                           object
          Data Usage (GB/month)
                                          float64
          Calls Duration (mins/day)
                                          float64
          Number of Apps Installed
                                            int64
          Social Media Time (hrs/day)
                                          float64
          E-commerce Spend (INR/month)
                                            int64
          Streaming Time (hrs/day)
                                          float64
          Gaming Time (hrs/day)
                                          float64
          Monthly Recharge Cost (INR)
                                            int64
          Primary Use
                                           object
          dtype: object
In [11]: # Identify object-type columns
         object_columns = data.select_dtypes(include=['object']).columns
         object_columns
Out[11]: Index(['User ID', 'Gender', 'Location', 'Phone Brand', 'OS', 'Primary Use'], dt
          ype='object')
In [12]: # Identify int-type columns
         int_columns = data.select_dtypes(include=['int64']).columns
         int_columns
Out[12]: Index(['Age', 'Number of Apps Installed', 'E-commerce Spend (INR/month)',
                 'Monthly Recharge Cost (INR)'],
                dtype='object')
In [13]: # Identify float-type columns
         float_columns = data.select_dtypes(include=['float64']).columns
         float_columns
Out[13]: Index(['Data Usage (GB/month)', 'Calls Duration (mins/day)',
                 'Social Media Time (hrs/day)', 'Streaming Time (hrs/day)',
                 'Gaming Time (hrs/day)'],
                dtype='object')
In [14]: data['Gender'].value_counts()
Out[14]: Gender
          Female
                    5969
          0ther
                    5892
          Male
                    5825
          Name: count, dtype: int64
In [15]: data['Location'].value_counts()
```

```
Out[15]: Location
         Jaipur
                    1824
         Pune
                     1815
                   1790
         Chennai
         Kolkata
                    1789
         Bangalore 1786
         Ahmedabad 1785
                    1775
         Delhi
         Mumbai
                    1722
                    1700
         Lucknow
                   1700
         Hyderabad
         Name: count, dtype: int64
In [16]: data['Phone Brand'].value_counts()
Out[16]: Phone Brand
         Nokia
                        1816
         OnePlus
                       1807
                       1803
         Xiaomi
         Vivo
                       1797
                       1775
         Apple
         Samsung
                       1764
                       1762
         Realme
         Google Pixel 1729
                        1717
         Motorola
         0ppo
                        1716
         Name: count, dtype: int64
In [17]:
        data['OS'].value_counts()
Out[17]: OS
         Android
                   8851
         iOS
                   8835
         Name: count, dtype: int64
In [18]:
        data['Primary Use'].value_counts()
Out[18]:
         Primary Use
         Education
                         3601
         Gaming
                         3576
         Work
                         3557
         Social Media
                         3501
         Entertainment
                         3451
         Name: count, dtype: int64
 In [ ]:
```

Data Understanding

- Given dataset having no missing values
- Given dataset having no duplicate values
- Given dataset (17686, 15) shape which means data represent 16 attribute and 17686 rows of data
- 16 Attribute divide three datatypes

- 2. Float
- 3. Object
- Int datatype having columns:- 'Age', 'Number of Apps Installed', 'E-commerce Spend (INR/month)', 'Monthly Recharge Cost (INR)'
- float datatype having columns:- 'Data Usage (GB/month)', 'Calls Duration (mins/day)', 'Social Media Time (hrs/day)', 'Streaming Time (hrs/day)', 'Gaming Time (hrs/day)'
- Object datatype having columns:- 'User ID', 'Gender', 'Location', 'Phone Brand', 'OS', 'Primary Use'], dtype='object'
- data tells Female are mostly phones users in india
- Jaipure is the highest phones users city in india and Lucknow and Hyderabad comes last in the list
- Nokia & OnePlus most trusted brands by indias.
- Most of the indians utilize there phone because of Education Purpose

Utill now we understand the basic information from then, Now PowerBI Dashboard to Visualiy representage the data.

PowerBI Dashbord Steps & Responsibilities

Responsibilities

- Developed interactive Power BI dashboards to visualize data to better understanding.
- 2. **Transformed raw data into meaningful insights** using DAX calculations and data modeling.
- 3. **Integrated multiple data sources** Python Jupyter Notebook for real-time and automated reporting.
- 4. **Optimized dashboard performance** by implementing filters, slicers, and efficient data queries.
- 5. **Collaborated with stakeholders** to design user-friendly dashboards for data-driven decision-making.

Steps

- 1. Crete a Time Base Analysis Dashboard to understand time spent history by individual
 - Create a Total time spent column to get a better idea of how much each individual spends on their mobile
 - Created Age_group column using the conditional column to divide ages by teen, adult, and old

- Created graphs to understand each time spent zone based on Age, gender, Location, Game, Social media, streaming, and calls
- Through Graphs Understand the hidden meaning of data
- 2. Crete an Amount Base Analysis Dashboard to understand the amount spent history by individual
 - Create a Total amount spent column to get a better idea of how much each individual spent on their mobile
 - Created graphs to understand each time spent zone based on Age, gender, Location, E-commerce and Recharge
 - Through Graphs Understand the hidden meaning of data.
- 3. Crete an Individual Base Analysis Dashboard to understand the each person spent time and money history.
 - Create duplicate columns of fe
 - Created graphs to understand each time spent zone based on Age, gender, Location, E-commerce and Recharge
 - Through Graphs Understand the hidden meaning of data.

