CSCE 411: Design and Analysis of Algorithms

Lecture 6: Greedy Algorithms

Date: February 5, 2025 Nate Veldt, updated by Samson Zhou

Course Logistics

- Greedy algorithms and amortized analysis this week: Chapter 16
- Homework 3 is posted, due this Friday

1 Binary Codes

- • An _____ is a set of characters, e.g., $C = \{a, b, c, d, e, f\}$
- A binary code for C is

Consider three possible codes for $C = \{a, b, c, d, e, f\}$.

Character:	a	b	С	d	е	f	
example code 1:	000	001	010	011	100	101	
example code 2:	0	101	100	111	1101	1100	
example code 3:	0	1	10	01	11	00	

Types of codes:

- Fixed length code:
- Variable-length code:
- **Prefix code**: the codeword for every $c \in C$ is

Question 1. Which of the codes in Table 1 is a prefix code?

- A Example code 1
- **B** Example code 2
- Example code 3
- D Example codes 1 and 2
- Example codes 1, 2, and 3

1.1 Encoding and Decoding

Consider a string of characters from the alphabet $C = \{a, b, c, d, e, f\}$ where the frequency of each character is given in the following table and we have two codes.

Character:	a	b	С	d	е	f
Frequency	0.45	0.13	0.12	0.16	0.09	0.05
FLC:	000	001	010	011	100	101
VLC:	0	101	100	111	1101	1100

1.2 The Optimal Prefix Code Problem

The optimal prefix code problem Given an alphabet C and a frequency c.freq for each $c \in C$ in a given string s,

Representing a prefix code as a tree Every prefix code for a string s can be represented as a binary tree T where

- Left branches are associated with
- Right branches are associated with
- Each leaf corresponds to a character $c \in C$, whose binary code is given by
- Each node is associated with the frequency of characters in its subtree

	Character:	a	b	С	d	е	f
Example	Frequency	0.45	0.13	0.12	0.16	0.09	0.05
	VLC:	0	101	100	111	1101	1100

The cost of the tree is give by

$$B(T) = \sum_{c \in C}$$

where $d_T(c)$ is the depth of c in the tree T.

Question 2. True or false: every binary tree (with ℓ leaves) gives a valid prefix code (for an alphabet with ℓ characters).

- A True
- **B** False

Theorem 1.1.	
Proof.	
Optimal prefix code problem:	
Nice properties about the optimal tree \bullet	In the optimal tree representation,

1.3 Huffman Codes

Huffman Code: a prefix code obtained by greedily building a tree representation for C

Huffman Code Tree Process

- \bullet Associate each character in C with a node, labeled by its frequency
- ullet Identify two nodes x and y in C with the _____
- ullet Create new node z with frequency _____
- Make z.left = x, and z.right = y.
- Repeat the above procedure on the alphabet obtained by _____

Observe: x and y will be siblings in T at

Activity Create a Huffman code for: $\frac{\text{Character: a b c d e f}}{\text{Frequency } 0.45 \ 0.13 \ 0.12 \ 0.16 \ 0.09 \ 0.05}$

```
\begin{aligned} &H \text{UFFMANCODE}(C) \\ &n = |C| \\ &T \leftarrow \text{empty graph} \\ &Q \leftarrow \emptyset \\ &\text{for } c \text{ in } C \text{ do} \\ &\text{Insert } c \text{ with value } c.freq \text{ into } T \text{ and } Q \\ &\text{end for} \\ &\text{for } i = 1 \text{ to } n-1 \text{ do} \\ &x = \\ &y = \\ &\text{create node } z \end{aligned}
```

1.4 Code and Illustration

1.5 Runtime Analysis

Given a set of objects C, with values c.val for $c \in C$ and n = |C|, a binary min-heap for C is a binary tree such that

- All levels
- The value of a node is

It has the following operations:

- BuildBinMinHeap(C):
- EXTRACTMIN(Q):
- Insert(Q, z, z.freq):

Question 3. Assume we use a binary min heap to store and update Q in the pseudocode above. Then what is the overall runtime of creating a Huffman code, in terms of n = |C|?

- $O(\log n)$
- O(n)
- $O(n \log n)$
- $O(n^2)$

1.6 Optimality

It turns out that a Huffman code optimally solves the prefix code problem. The argument hinges on the following lemma.

Lemma 1.2. Let C be an alphabet where c freq is the frequency of $c \in C$. Let x and y be the two characters in C that have the lowest frequencies.

Then, there exists an optimal prefix code for C in which x and y have the same length code words and only differ in the last bit.

Equivalently:

Why does this imply optimality? Consider a slightly different (but equivalent) approach to defining a Huffman code:

- 1. Associate each character with a node, labeled by its frequency
- 2. Identify the two nodes x and y with the smallest frequencies
- 3. Create new node z with frequency z.freq = x.freq + y.freq.

4.

5. Create tree T from T' by making z.left = x, and z.right = y.

Claim This produces an optimal tree T.

Proof. Note that the cost of the tree T is

$$B(T) = B(T') + x.freq + y.freq$$
(3)

We prove the result by contradiction: suppose that T is not optimal. Then

We can assume that x and y are at maximum depth in R.

Let R' be the tree obtained by taking R and

Similar to (3) we have that:

We then get an impossible sequence of inequalities:

$$B(R') = B(R) - x.freq - y.freq$$

$$< B(T) - x.freq - y.freq$$

$$= B(T')$$