

AON7407 20V P-Channel MOSFET

General Description

The AON7407 combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{\text{DS(ON)}}$. This device is ideal for load switch and battery protection applications.

Product Summary

 $\begin{array}{lll} V_{DS} & -20V \\ I_{D} \; (at \, V_{GS} \!\!=\!\! -4.5V) & -40A \\ R_{DS(ON)} \; (at \, V_{GS} = \!\!\!\! -4.5V) & < 9.5 m\Omega \\ R_{DS(ON)} \; (at \, V_{GS} = \!\!\!\! -2.5V) & < 12.5 m\Omega \\ R_{DS(ON)} \; (at \, V_{GS} = \!\!\!\! -1.8V) & < 18 m\Omega \end{array}$

100% UIS Tested 100% R_g Tested

W

W

 ${\mathfrak C}$

T_C=25℃

T_C=100℃

T_A=25℃

T_A=70℃

Junction and Storage Temperature Range

Power Dissipation ^B

Power Dissipation A

Absolute Maximum Ratings T_A=25℃ unless otherwise noted

29

12

3.1

2

-55 to 150

Parameter Symbol Maximum Units Drain-Source Voltage -20 V_{DS} $V_{\underline{GS}}$ Gate-Source Voltage ٧ ±8 T_C=25℃ -40 Continuous Drain I_D Current ^G T_C=100℃ -29 Α Pulsed Drain Current -100 I_{DM} T_A=25℃ -14.5 Continuous Drain Α I_{DSM} T₄=70℃ -11.5 Current Avalanche Current ^C -40 I_{AS} , I_{AR} Α Avalanche energy L=0.1mH C $\mathsf{E}_{\mathsf{AS}},\,\mathsf{E}_{\mathsf{AR}}$ 80 mJ

 P_D

 P_{DSM}

 T_J , T_{STG}

Thermal Characteristics								
Parameter Symbol Typ Max Units								
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\theta JA}$	30	40	€/W			
Maximum Junction-to-Ambient AD	Steady-State	IN _θ JA	60	75	.c\M			
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	3.5	4.2	.c\M			

Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC P	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-20			V
l	Zero Gate Voltage Drain Current	V _{DS} =-20V, V _{GS} =0V			-1	
I _{DSS}	Zero Gate Voltage Drain Current	T _J =55℃			-5	μΑ
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±8V			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=-250\mu A$	-0.3	-0.55	-0.9	V
I _{D(ON)}	On state drain current	V _{GS} =-4.5V, V _{DS} =-5V	-100			Α
		V _{GS} =-4.5V, I _D =-14A		7.6	9.5	mΩ
R _{DS(ON)}	Static Drain-Source On-Resistance	T _J =125℃		10.5	13.5	11122
DS(ON)	Static Dialii-Source Off-Nesistance	V _{GS} =-2.5V, I _D =-13A		9.3	12.5	mΩ
		V _{GS} =-1.8V, I _D =-11A		11.4	18	mΩ
g _{FS}	Forward Transconductance	V_{DS} =-5V, I_{D} =-14A		72		S
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V		-0.52	-1	V
Is	Maximum Body-Diode Continuous Curi			-35	Α	
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance		2795	3495	4195	pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =-10V, f=1MHz	365	528	690	pF
C _{rss}	Reverse Transfer Capacitance		255	425	595	pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		2.8	5.6	Ω
SWITCHII	NG PARAMETERS					
Q_g	Total Gate Charge		35	44	53	nC
Q_{gs}	Gate Source Charge	V_{GS} =-4.5V, V_{DS} =-10V, I_{D} =-14A		9		nC
Q_{gd}	Gate Drain Charge			11		nC
t _{D(on)}	Turn-On DelayTime			18		ns
t _r	Turn-On Rise Time	V _{GS} =-4.5V, V _{DS} =-10V,		32		ns
$t_{D(off)}$	Turn-Off DelayTime	$R_L=0.75\Omega$, $R_{GEN}=3\Omega$		136		ns
t _f	Turn-Off Fall Time			59		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-14A, dI/dt=500A/μs	26	33	40	ns
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =-14A, dI/dt=500A/μs	80	100	120	nC

A. The value of R_{BJA} is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The Power dissipation P_{DSM} is based on R_{BJA} t \leq 10s value and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design.

- D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to case $R_{\theta JC}$ and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300 μs pulses, duty cycle 0.5% max.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B. The power dissipation P_D is based on $T_{J(MAX)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}=150$ °C. Ratings are based on low frequency and duty cycles to keep initial $T_{J}=25$ °C.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =150°C. The SOA curve provides a single pulse ratin g.

G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25 $^{\circ}$ C.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Fig 1: On-Region Characteristics (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 6: Body-Diode Characteristics (Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Document No.	PD-01495	
Version A		
Title	AON7407 Marking Description	

DFN3X3 PACKAGE MARKING DESCRIPTION

Green product

NOTE:

LOGO - AOS Logo

7407 - Part number code

F - Fab code

A - Assembly location code

Y - Year code W - Week code L&T - Assembly lot code

PART NO.	DESCRIPTION	CODE
AON7407	Green product	7407
AON7407L	Green product	7407

Document No.	PO-00047
Version	G

DFN3x3A_8L_EP1_P PACKAGE OUTLINE

RECOMMENDED LAND PATTERN

NOTE

gya mor g	DIMENS	IONS IN MILLI	METERS	DIMENSIONS IN INCHES			
SYMBOLS	MIN	NOM	MAX	MIN	NOM	MAX	
A	0.70	0.80	0. 90	0.028	0.031	0.035	
A1	0.00	0.025	0.05	0.000	0.001	0.002	
b	0. 24	0.30	0.35	0.009	0.012	0.014	
С	0.10	0. 15	0. 25	0.004	0.006	0.010	
D	2. 90	3.00	3. 10	0. 114	0.118	0.122	
D1	2. 25	2. 35	2.45	0.089	0.093	0.097	
D2	0.30	0.40	0.50	0.012	0.016	0.020	
D3	2.50	2.60	2.70	0.098	0.102	0.106	
D4	3.00	3. 10	3. 20	0. 118	0.122	0.126	
Е	2. 90	3.00	3. 10	0.114	0. 118	0.122	
E1	3. 10	3. 20	3.30	0.122	0.126	0.130	
E2	1. 65	1. 75	1.85	0.065	0.069	0.073	
E3	0.48	0. 58	0.68	0.019	0.023	0.027	
E4	0. 23	0. 33	0.43	0.009	0.013	0.017	
E5	0. 20	0.30	0.40	0.008	0.012	0.016	
E6	0.075	0.125	0. 175	0.003	0.005	0.007	
e	0.60	0.65	0.70	0.024	0.026	0.028	
K	0.52	0.62	0.72	0.020	0.024	0.028	
L	0.30	0.40	0.50	0.012	0.016	0.020	
L1	0	0.05	0.10	0	0.002	0.004	
L2	0.33	0.43	0.53	0.013	0.017	0.021	
L3	0. 275	0.375	0.475	0.011	0.015	0.019	
θ1	0°	10°	12°	0°	10°	12°	

- 1. PACKAGE DIMENSION IS EXCLUSIVE OF MOLD GATE BURR
- 2. PACKAGE DIMENSION IS EXCLUSIVE OF MOLD FLASH AND CUTTING BURR
- 3. CONTROLLING DIMENSION IS MILLIMETER. CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.

DFN3x3_EP Tape and Reel Data

Unit Per Reel: 5000pcs

TRAILER TAPE

300mm MIN.

DFN3x3_EP Tape and Reel Data

LEADER TAPE

500mm MIN.

COMPONENTS TAPE

DRIENTATION IN POCKET

AOS Semiconductor Product Reliability Report

AON7407, rev A

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc www.aosmd.com

This AOS product reliability report summarizes the qualification result for AON7407. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AON7407 passes AOS quality and reliability requirements. The released product will be categorized by the process family and be monitored on a quarterly basis for continuously improving the product quality.

Table of Contents:

- Product Description
- II. Package and Die information
- III. Environmental Stress Test Summary and Result
- IV. Reliability Evaluation

I. Product Description:

The AON7407 combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{\text{DS(ON)}}$. This device is ideal for load switch and battery protection applications.

- -RoHS Compliant
- Halogen Free

Detailed information refers to datasheet.

II. Die / Package Information:

AON7407

Process Standard sub-micron

Low voltage P channel

Package Type DFN 3x3A

Lead FrameCuDie AttachAg epoxyBonding WireCu wire

Mold Material Epoxy resin with silica filler MSL (moisture sensitive level) Level 1 based on J-STD-020

Note * based on information provided by assembler and mold compound supplier

III. Result of Reliability Stress for AON7407

Test Item	Test Condition	Time Point	Lot Attribution	Total Sample size	Number of Failures	Standard
MSL Precondition	168hr 85℃ /85%RH +3 cycle reflow@260℃	-	11 lots	1815pcs	0	JESD22- A113
нтдв	Temp = 150 °c, Vgs=100% of Vgsmax	168hrs 500 hrs 1000 hrs	1 lot (Note A*)	77pcs / lot	0	JESD22- A108
HTRB	Temp = 150 °c, Vds=80% of Vdsmax	168hrs 500 hrs 1000 hrs	1 lot	77pcs	0	JESD22- A108
HAST	130 +/- 2°c, 85%RH, 33.3 psi, Vgs = 100% of Vgs max	100 hrs	(Note A*) 11 lots (Note A*)	77pcs / lot 605pcs 55pcs / lot	0	JESD22- A110
Pressure Pot	121°c, 29.7psi, RH=100%	96 hrs	11 lots	605pcs	0	JESD22- A102
Temperature	-65°c to 150°c,	250 / 500	(Note A*) 11 lots	55pcs / lot 605pcs	0	JESD22-
Cycle	air to air	cycles	(Note A*)	55pcs / lot		A104

Note A: The reliability data presents total of available generic data up to the published date.

IV. Reliability Evaluation

FIT rate (per billion): 137 MTTF = 833 years

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the selected product (AON7407). Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate = $\text{Chi}^2 \times 10^9 / [2 \text{ (N) (H) (Af)}] = 1.83 \times 10^9 / [2x 2x77x168 x258] = 137 \text{ MTTF} = <math>10^9 / \text{FIT} = 7.30 \times 10^6 \text{hrs} = 833 \text{ years}$

Chi² = Chi Squared Distribution, determined by the number of failures and confidence interval

N = Total Number of units from HTRB and HTGB tests

H = Duration of HTRB/HTGB testing

Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and Tuse = 55°C)

Acceleration Factor [Af] = Exp [Ea / k (1/Tj u - 1/Tj s)]

Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C
Af	258	87	32	13	5.64	2.59	1

Tj s = Stressed junction temperature in degree (Kelvin), K = C+273.16

Tj u = The use junction temperature in degree (Kelvin), K = C+273.16

 $\mathbf{K} = \text{Boltzmann's constant}, 8.617164 \text{ X } 10^{-5} \text{eV} / \text{K}$