Spatiotemporal Graph Deep Learning

Traffic monitoring

Smart cities

Energy analitics

Physics

Stock markets

Outline

- 1) Spatiotemporal time series
- 2) Spatiotemporal GNNs
- 3) Dealing with missing data

Deep learning for time series forecasting

The standard deep learning approach to time series forecasting consists in training a single neural network on a collection of time series.

- Each time series is treated independently from the others.
- A single set of shared learnable parameters is used to predict each time series.
- Resulting models are effective and efficient.

Dependencies across time series are often discarded.

^[1] K. Benidis et al., "Deep Learning for Time Series Forecasting: Tutorial and Literature Survey", ACM CS 2022.

Relational inductive biases

One way out is to embed such relational structure as an architectural bias into the processing.

Graph neural networks provide appropriate neural operators.

- Message-passing blocks allow for localizing the predictions
 - $\,$ conditioning on observations at related time series (neighboring nodes).
- Parameters are shared and the model can operate on arbitrary sets of time series.

^[2] D. Bacciu et al., "A gentle introduction to deep learning for graphs", NN 2020.

^[3] M. M. Bronstein et al., "Geometric deep learning: Grids, groups, graphs, geodesics, and gauges" 2021.

Spatiotemporal time series

Collections of time series

We consider a set of N correlated time series, where each i-th time series is associated with:

- an observation vector $\boldsymbol{x}_t^i \in \mathbb{R}^{d_x}$ at each time step t;
- a vector of exogenous variable $u_t^i \in \mathbb{R}^{d_u}$ at each time step t;
- a vector of static (time-independent) attributes $oldsymbol{v}^i \in \mathbb{R}^{d_v}.$

Capital letters denote the stacked representations encompassing the N time series in the collection, e.g., $\mathbf{X}_t \in \mathbb{R}^{N \times d_x}$, $\mathbf{U}_t \in \mathbb{R}^{N \times d_u}$.

^[4] A. Cini et al., "Graph Deep Learning for Time Series Forecasting: A Comprehensive Methodological Framework" 2023.

Correlated time series

We assume a time-invariant stochastic process

$$oldsymbol{x}_t^i \sim p^i\left(oldsymbol{x}_t^i \middle| oldsymbol{X}_{< t}, oldsymbol{U}_{\leq t}, oldsymbol{V}\right)$$

generating the data $oldsymbol{x}_t^i$ for all $i=1\dots N$ and $t\in\mathbb{N}$.

Note that the time series:

- can be generated by different processes,
- can depend on others,
- are assumed homogenous, synchronous, regularly sampled.
- \rightarrow These assumptions can be relaxed

Notation:

$$m{X}_{t:t+T} = [m{X}_t, \cdots, m{X}_{t+T-1}] \ m{X}_{< t} = [m{X}_0, \cdots, m{X}_{t-2}, m{X}_{t-1}]$$

Relational information

We assume the existence of functional dependencies between the time series.

 \rightarrow e.g., forecasts for one time series can be improved by accounting for the past values of other time series.

We model pairwise relationships existing at time step t with adjacency matrix $\mathbf{A}_t \in \{0,1\}^{N \times N}$.

 $\,\rightarrow\,$ We call spatial the dimension spanning the time series collection.

8

Relational information with attributes

Optional edge attributes $e_t^{ij} \in \mathbb{R}^{d_e}$ can be associated to each non-zero entry of A_t .

The set of attributed edges encoding all the available relational information is denoted by

$$\mathcal{E}_t \doteq \{ \langle (i,j), \boldsymbol{e}_t^{ij} \rangle \mid \forall i,j : \boldsymbol{A}_t[i,j] \neq 0 \}.$$

ightarrow For many applications, A_t changes slowly over time and can be considered as constant within a short window of observations.

9

Spatiotemporal time series

We use the terms node and sensor to indicate the N entities generating the time series.

 \rightarrow We refer to the node set together with the relational information as sensor network.

The tuple $\mathcal{G}_t \doteq \langle X_t, U_t, \mathcal{E}_t, V \rangle$ contain all the available information associated with time step t.

Example: Traffic monitoring system

Consider a sensor network monitoring the speed of vehicles at crossroads.

- $oldsymbol{X}_{< t}$ collects past traffic speed measurements.
- $oldsymbol{U}_t$ stores identifiers for time-of-the-day and day-of-the-week.
- ullet Collects static sensor's features, e.g., type or number of lanes of the monitored road.
- \mathcal{E} can be obtained by considering the road network.
 - Road closures and traffic diversions can be accounted for with a dynamic topology \mathcal{E}_t .

Time series forecasting

Multi-step time-series forecasting

Given a window of $W \geq 1$ past observations

$$\boldsymbol{X}_{t-W:t} = [\boldsymbol{X}_{t-W}, \dots, \boldsymbol{X}_{t-1}],$$

predict $H \geq 1$ future observations

$$\boldsymbol{x}_{t+h}^{i}, \qquad i = 1 \cdots N, \ h = 1 \cdots H.$$

In particular, we are interested in learning a parametric model p_{θ} approximating the unknown data distribution p

$$p_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{t+h}^{i} \middle| X_{t-W:t}, U_{t-W:t+h}, V\right) \approx p^{i}\left(\boldsymbol{x}_{t+h}^{i} \middle| X_{\leq t}, U_{\leq t+h}, V\right).$$

• heta is the model parameter vector.

Time series forecasting + relational inductive biases

Condition the model on the relational information $\mathcal{E}_{t-W:t}$

The conditioning on the sequence of attributed graphs acts as a regularization to localize predictions w.r.t. the neighborhood of each node.

Point forecasts

For simplicity, we focus here on point forecasts, rather than the modeling of full data distributions p, and consider predictive model

$$\widehat{oldsymbol{x}}_{t+h}^i = \mathcal{F}\left(\mathcal{G}_{t-W:t}, oldsymbol{U}_{t:t+h}; oldsymbol{ heta}
ight)$$

where $\widehat{oldsymbol{x}}_{t+h}^i$ estimates $\mathbb{E}_p\left[oldsymbol{x}_{t+h}^i
ight]$

Parameters $m{ heta}$ can be learned by minimizing a cost function $\ell(\,\cdot\,,\,\cdot\,)$ (e.g., MSE) on a training set

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{NT} \sum_{t=1}^{T} \ell\left(\widehat{\boldsymbol{X}}_{t:t+H}, \boldsymbol{X}_{t:t+H}\right)$$
$$= \arg\min_{\boldsymbol{\theta}} \frac{1}{NT} \sum_{t=1}^{T} \left\| \boldsymbol{X}_{t:t+H} - \widehat{\boldsymbol{X}}_{t:t+H} \right\|_{2}^{2}.$$

Spatiotemporal

Graph Neural Networks

Spatiotemporal Graph Neural Networks

We call Spatiotemporal Graph Neural Network (STGNN) a neural network exploiting both temporal and spatial relations of the input spatiotemporal time series.

We focus on models based on message passing.

Message-passing neural networks

To process the spatial dimension, we rely on the message-passing (MP) framework

$$\boldsymbol{h}^{i,l+1} = \mathsf{UP}^l\Big(\boldsymbol{h}^{i,l}, \underset{j \in \mathcal{N}(i)}{\mathsf{AGGR}}\Big\{\mathsf{MSG}^l\big(\boldsymbol{h}^{i,l}, \boldsymbol{h}^{j,l}, \boldsymbol{e}^{ji}\big)\Big\}\Big), \tag{1}$$

Where:

- ${
 m Msg}^l(\,\cdot\,)$ is the **message function**, e.g., implemented by a MLP.
- AGGR $\{\cdot\}$ is the permutation invariant **aggregation function**.
- $UP^l(\cdot)$ is the **update function**, e.g., implemented by a MLP.

Aggregation is performed over $\mathcal{N}(i)$, i.e., the set of neighbors of node i.

^[5] J. Gilmer et al., "Neural message passing for quantum chemistry", ICML 2017.

Message passing in action

Spatiotemporal message passing

Starting from the MP framework, we can define a general scheme for spatiotemporal message-passing (STMP) networks:

$$\boldsymbol{h}_t^{i,l+1} = \mathsf{UP}^l\left(\boldsymbol{h}_{\leq t}^{i,l}, \mathop{\mathsf{AGGR}}_{j\in\mathcal{N}_t(i)}\left\{\mathsf{MSG}^l\big(\boldsymbol{h}_{\leq t}^{i,l}, \boldsymbol{h}_{\leq t}^{j,l}, \boldsymbol{e}_{\leq t}^{ji}\big)\right\}\right)$$

Rather than vectors, STMP blocks process **sequences**.

 \rightarrow STMP blocks must be implemented with operators that work on sequences!

We will look at different implementations of STMP blocks in the following.

^[4] A. Cini et al., "Graph Deep Learning for Time Series Forecasting: A Comprehensive Methodological Framework" 2023.

A general recipe

STGNNs can be expressed as a sequence of three operations:

$$oldsymbol{h}_{t-1}^{i,0} = \operatorname{Encoder}\left(oldsymbol{x}_{t-1}^{i}, oldsymbol{u}_{t-1}^{i}, oldsymbol{v}^{i}
ight),$$

$$\boldsymbol{H}_{t-1}^{l+1} = \mathsf{STMP}^{l} \left(\boldsymbol{H}_{\leq t-1}^{l}, \mathcal{E}_{\leq t-1} \right), \quad l = 0, \dots, L-1$$
 (3)

$$\hat{\boldsymbol{x}}_{t:t+H}^{i} = \mathsf{DECODER}\left(\boldsymbol{h}_{t-1}^{i,L}, \boldsymbol{u}_{t:t+H}^{i}\right). \tag{4}$$

Where:

- $\mathtt{ENCODER}(\,\cdot\,)$ is the encoding layer, e.g., implemented by a MLP.
- STMP is a stack of STMP layers.
- $\mathsf{DECODER}(\,\cdot\,)$ is the readout layer, e.g., implemented by a MLP.

Framework overview

Design paradigms for STGNNs

Depending on the implementation of the STMP blocks, we categorize STGNNs into:

- Time-and-Space (T&S)
 Temporal and spatial processing cannot be factorized in two separate steps.
- Time-then-Space (TTS)
 Embed each time series in a vector, which is then propagated over the graph.
- Space-then-Time (STT)
 Propagate nodes features at first and then process the resulting time series.

Time-and-Space

In T&S models, representations at every node and time step are the results of a joint temporal and spatial encoding

$$oldsymbol{H}_{t-1}^{l+1} = \mathsf{STMP}^l \Big(oldsymbol{H}_{\leq t-1}^l, \mathcal{E}_{\leq t-1} \Big)$$

Several options exist.

- Integrate MP into neural operators for sequential data.
 - Graph recurrent architectures, spatiotemporal convolutions, spatiotemporal attention, ...
- Use temporal operators to compute messages.
 - Temporal graph convolutions, spatiotemporal cross-attention, ...
- Product graph representations.

Example 1: From Recurrent Neural Networks...

Consider a standard GRU [6] cell.

$$r_t^i = \sigma\left(\mathbf{\Theta}_r\left[\mathbf{x}_t^i||h_{t-1}^i\right] + b_r\right)$$
 (5)

$$u_t^i = \sigma\left(\Theta_u\left[x_t^i||h_{t-1}^i\right] + b_u\right)$$
 (6)

$$c_t^i = \tanh\left(\Theta_c\left[x_t^i||r_t^i\odot h_{t-1}^i\right] + b_c\right)$$
 (7)

$$\boldsymbol{h}_t^i = (1 - \boldsymbol{u}_t^i) \odot \boldsymbol{c}_t^i + \boldsymbol{u}_t^i \odot \boldsymbol{h}_{t-1}^i$$
(8)

Time series can be processed **independently** for each node or as a **single multivariate** time series.

^[6] J. Chung et al., "Empirical evaluation of gated recurrent neural networks on sequence modeling" 2014.

...to Graph Convolutional Recurrent Neural Networks

We can obtain a T&S model by implementing the gates of the GRU with MP blocks:

$$\boldsymbol{Z}_t^l = \boldsymbol{H}_t^{l-1} \tag{9}$$

$$\mathbf{R}_{t}^{l} = \sigma\left(\mathsf{MP}_{r}^{l}\left(\left[\mathbf{Z}_{t}^{l}||\mathbf{H}_{t-1}^{l}\right], \mathcal{E}_{t}\right)\right),\tag{10}$$

$$\boldsymbol{O}_{t}^{l} = \sigma\left(\mathsf{MP}_{o}^{l}\left(\left[\boldsymbol{Z}_{t}^{l}||\boldsymbol{H}_{t-1}^{l}\right], \mathcal{E}_{t}\right)\right),\tag{11}$$

$$C_{t}^{l} = \operatorname{tanh}\left(\operatorname{MP}_{c}^{l}\left(\left[Z_{t}^{l}||R_{t}^{l}\odot H_{t-1}^{l}\right],\mathcal{E}_{t}\right)\right),$$
 (12)

$$\boldsymbol{H}_{t}^{l} = \boldsymbol{O}_{t}^{l} \odot \boldsymbol{H}_{t-1}^{l} + (1 - \boldsymbol{O}_{t}^{l}) \odot \boldsymbol{C}_{t}^{l}, \tag{13}$$

These T&S models are known as graph convolutional recurrent neural networks (GCRNNs) [7].

^[7] Y. Seo et al., "Structured sequence modeling with graph convolutional recurrent networks", ICONIP 2018.

Spatiotemporal Graph Neural Networks / Architectures

Popular GCRNNs

The first GCRNN has been introduced in [7], with MP blocks implemented as polynomial graph convolutional filters.

GCRNNs have become popular in the traffic forecasting context with the Diffusion Convolutional Recurrent Neural Network (DCRNN) architecture [8].

In DCRNN, MP is performed through bidirectional diffusion convolution:

$$H'_{t} = \sum_{k=0}^{K} \left(D_{t, \text{out}}^{-1} A_{t} \right)^{k} H_{t} \Theta_{1}^{(k)} + \left(D_{t, \text{in}}^{-1} A_{t}^{\top} \right)^{k} H_{t} \Theta_{2}^{(k)}$$
(14)

^[7] Y. Seo et al., "Structured sequence modeling with graph convolutional recurrent networks", ICONIP 2018.

^[8] Y. Li et al., "Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting", ICLR 2018.

Example 2: Spatiotemporal convolutional networks (i)

A completely different approach is that of spatiotemporal convolutional networks (STCNs), that alternate spatial and temporal convolutional filters:

Compute intermediate representations by using a node-wise temporal convolutional layer:

$$oldsymbol{z}_{t-W:t}^{i,l} = \mathsf{TCN}^l \left(oldsymbol{h}_{t-W:t}^{i,l-1}
ight) \qquad orall \, i$$

where TCN^l indicates a temporal convolutional network layer.

• Then, compute the updated representation by using a time-wise graph convolution:

$$oldsymbol{H}_t^l = \mathsf{MP}^l\left(oldsymbol{Z}_t^l, \mathcal{E}_t
ight) \qquad orall \, t$$

Spatiotemporal convolutional networks (ii)

The first example of such architecture is the STGCN by Yu et al. [9].

The model is obtained by stacking STMP blocks consisting of

- a (gated) temporal convolution;
- a polynomial graph convolution;
- a second (gated) temporal convolution.

^[9] B. Yu et al., "Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting", IJCAI 2018.

Example 3: Temporal Graph Convolution

A more integrated approach instead consists of using temporal operators to compute messages. For example, we can design STMP layers s.t.

$$\boldsymbol{h}_{t-W:t}^{i,l} = \mathsf{TCN}_1^l \left(\boldsymbol{h}_{t-W:t}^{i,l-1}, \underset{j \in \mathcal{N}_t(i)}{\mathsf{AGGR}} \left\{ \mathsf{TCN}_2^l \left(\boldsymbol{h}_{t-W:t}^{i,l-1}, \boldsymbol{h}_{t-W:t}^{j,l-1}, \boldsymbol{e}_{t-W:t}^{ji} \right) \right\} \right).$$

Analogous models can be built by exploiting attention-based operators [10], [11].

 $^{[10] \} I. \ Marisca \textit{et al.}, "Learning to Reconstruct Missing Data from Spatiotemporal Graphs with Sparse Observations", NeurIPS 2022.$

^[11] Z. Wu et al., "TraverseNet: Unifying Space and Time in Message Passing for Traffic Forecasting", TNNLS 2022.

Example 4: Product graph representations

Finally, an orthogonal option to those seen so far is to consider $\mathcal{G}_{t-W:t}$ as a single spatiotemporal graph \mathcal{S}_t .

Such **product graph** can be obtained by combining temporal and spatial graphs.

The resulting graph can be processed by any MP neural network.

^[12] M. Sabbaqi et al., "Graph-time convolutional neural networks: Architecture and theoretical analysis" 2022.

Building product graph representations

Cartesian product

Spatial graphs are kept and each node is connected to itself in the previous time instant.

Kronecker product

Each node is connected **only** to its neighbors in the previous time instant.

• ...

Time-then-Space models

The general recipe for a TTS model consists in:

- 1. Embedding each node-level time series in a vector.
- 2. Propagating obtained encodings throughout the graph with a stack of MP layers.

Full TTS model

Pros & Cons of TTS models

- **Pros:** © Easy to implement and computationally efficient.
 - We can reuse operators we already know.
- **Cons:** © The 2-step encoding might introduce information bottlenecks.
 - Accounting for changes in topology and dynamic edge attributes can be more problematic.

Space-then-Time

In STT approaches the two processing steps of TTS models are inverted:

- 1. Observations are propagated among nodes w.r.t. each time step using a stack of MP layers.
- 2. Each sequence of representations is processed by a sequence encoder.

② They do not have the same computational advantages of TTS models.

Full STT model

Model quality assessment

Questions to answer

Consider a predictor \mathcal{F} trained to solve a time-series forecasting problem.

- 1. Is the predictor optimal for the problem at hand?
- 2. Where does the predictor appear to be sub-optimal?
- 3. How can we improve the predictor?

Remark: Multiple optimality criteria can be considered.

Relational inductive biases can help us

Performance at task

Consider predictors \mathcal{F}_a , \mathcal{F}_b from a set \mathbb{F} of models and performance metric M (e.g., MAE, MSE).

- we consider \mathcal{F}_a better than \mathcal{F}_b if $M(\mathcal{F}_a)$ is statistically better than $M(\mathcal{F}_b)$.
- we consider \mathcal{F}_a optimal if there is no $\mathcal{F}_b \in \mathbb{F}$ better than \mathcal{F}_a .

Can we further improve over the best model so far \mathcal{F}_a ?

- \rightarrow Either we find a new model \mathcal{F}_* better than \mathcal{F}_a
- \rightarrow or we need prior knowledge about the modeled system.

Model	M
\mathcal{F}_a	$0.145_{\pm 0.002}$
\mathcal{F}_b	$0.176_{\pm 0.005}$
÷	
\mathcal{F}_n	$0.158_{\pm 0.004}$
\mathcal{F}_*	$0.139_{\pm 0.001}$

Residual correlation analysis

Studying the correlation between prediction residuals $r_t^{i} = x_{t:t+H}^i - \hat{x}_{t:t+H}^i$ allows us for testing model optimality.

If residuals are dependent

⇒ there is information that the model hasn't captured

 \implies model predictions can be improved.

Temporal correlation

Correlation between residuals at different time steps.

Spatial correlation

Correlation between residuals at different graph nodes.

Most of the research focused on either serial correlation [15]–[17] or spatial correlation [18], [19].

Statistical tests for residual correlation

Whiteness test

 H_0 : residuals are uncorrelated H_1 : some residuals correlate

Define a test statistic $C(\{r_t^i\}) = C(\mathcal{F}, \{x_t^i\})$ and a threshold γ such that

If
$$|C(\{r_t^i\})| > \gamma \implies \text{reject } H_0$$
.

Remarks: Residual correlation analysis

- © Is independent of specific performance measures.
- ② Does not quantify how much a model can improve w.r.t. a specific performance metric.
- Does not rely on comparisons with other models.

AZ-Whiteness test: a spatio-temporal test

The test is defined by statistic

$$C(\{\boldsymbol{r}\}) = \underbrace{\sum_{t} \sum_{(i,j) \in \mathcal{E}_t} w_{ijt} \operatorname{sgn}(\langle \boldsymbol{r}_t^i, \boldsymbol{r}_t^j \rangle)}_{\text{spatial edge}} + \underbrace{\sum_{t} \sum_{i} w_{it} \operatorname{sgn}(\langle \boldsymbol{r}_t^i, \boldsymbol{r}_{t+1}^i \rangle)}_{\text{temporal edge}}$$

- distribution-free and residuals can be non-identically distributed.
- computation is linear in the number of edges and time steps.

^[20] D. Zambon et al., "AZ-whiteness Test: A Test for Signal Uncorrelation on Spatio-Temporal Graphs", NeurIPS 2022.

Where can we improve?

Analyzing the AZ-whiteness test statistic computed on subgraphs of the spatio-temporal graph allows for discovering insightful correlation patterns.

Spatial (or temporal) edges

Edges related to a time step

Edges related to a node

Edges related to a node

Dealing with missing data

The problem of missing data

So far, we assumed to deal with **complete sequences**, i.e., to have valid observations associated with each node (sensor) and time step.

However, time series collected by real-world sensor networks often have missing data, due to:

- faults, of either transient or permanent nature;
- asynchronicity among the time series;
- · communication errors...

Most forecasting methods operate on complete sequences.

 \rightarrow We need a way to impute, i.e., reconstruct, missing data.

Time series imputation (i)

The problem of reconstructing missing values in a sequence of data is often referred to as time series imputation (TSI).

Time series imputation (ii)

We use a **mask** $m_t^i \in \{\mathbf{0},\mathbf{1}\}$ to distinguish between missing (0) and valid (1) observations.

Time series imputation

Given a window of $T\geq 1$ observations ${\pmb X}_{< T}$ with missing values, the **time series imputation** problem consists in estimating the missing observations in the sequence

$$m{x}_t^i \sim p(m{x}_t^i \,|\, \mathcal{X}_{< T}) \qquad orall \, i, t ext{ such that } m{m}_t^i = m{0}$$

with $\mathcal{X}_{\leq T} = \{ m{x}_t^i \mid m{x}_t^i \in m{X}_{\leq T} \text{ and } m{m}_t^i = m{1} \}$ being the observed set.

Deep learning for TSI

Besides standard statistical methods, deep learning approaches have become a popular alternative, in particular, **autoregressive models** (e.g., RNNs).

- © Effective in exploiting past (and future, with bidirectional models) **node** observations...
- ② ...but struggle in capturing **nonlinear space-time dependencies**.

Time series imputation + relational inductive biases

Again, we can use the available relational information to condition the model, i.e.,

$$oldsymbol{x}_t^i \sim p\left(oldsymbol{x}_t^i \,|\, \mathcal{X}_{\leq T}, oldsymbol{A}\right)$$

As done for the forecasting problem, we can use STGNNs to address the imputation task.

Graph Recurrent Imputation Network

Cini et al. [32] propose a GCRNN that builds upon the autoregressive approach for imputation:

 A (graph-based) RNN (i.e., a GCRNN cell) is used to encode the sequence of only valid observations:

$$oldsymbol{Z}_t = \operatorname{STMP}\left(oldsymbol{H}_{< t} \odot oldsymbol{M}_{< t}, \mathcal{E}_{< t}
ight).$$

 An additional MP layer is used as spatial decoder, to account for concurrent observations at neighbors:

$$\widehat{x}_t^i = \mathsf{DEC}\left(\boldsymbol{z}_t^i, \operatornamewithlimits{\mathsf{AGGR}}_{j \in \mathcal{N}(i) \setminus \{i\}} \left\{ \mathsf{MSG}(\boldsymbol{z}_t^j, \boldsymbol{x}_t^j) \right\} \right).$$

^[32] A. Cini et al., "Filling the G_ap_s: Multivariate Time Series Imputation by Graph Neural Networks", ICLR 2022.

Forecasting from Partial Observations

A different approach to the problem avoids the reconstruction step and considers forecasting architectures that **directly deal with irregular observations**.

The mechanisms used in imputation can be adapted to build forecasting architectures.

Such models can be used to jointly impute missing observations and forecast future values.

Beyond imputation

Graph-based imputation methods estimate missing values at an **existing node** by using available information at **neighboring nodes**.

Question:

Can we use the same approach to **infer** observations of virtual sensors, i.e., fictitious nodes **not** associated with an existing sensor?

Virtual sensing

Simulate the presence of a sensor by adding a node with **no data**, then let the model infer the corresponding time series.

Clearly, several assumptions are needed

- high degree of homogeneity of sensors,
- capability to reconstruct from observations at neighboring sensors,
- and many more...

Two virtual sensors for air quality. (from [32])

^[10] I. Marisca et al., "Learning to Reconstruct Missing Data from Spatiotemporal Graphs with Sparse Observations", NeurIPS 2022.

^[32] A. Cini et al., "Filling the G_ap_s: Multivariate Time Series Imputation by Graph Neural Networks", ICLR 2022.

^[33] Y. Wu et al., "Inductive Graph Neural Networks for Spatiotemporal Kriging", AAAI 2021.

tsl: PyTorch Spatiotemporal Library

tsl (Torch Spatiotemporal) is a python library built upon PyTorch and PyG to accelerate research on neural spatiotemporal data processing methods, with a focus on **Graph Neural Networks**.

Notebook

Spatiotemporal Graph Neural Networks with tsl

References i

- [1] K. Benidis, S. S. Rangapuram, V. Flunkert, et al., "Deep learning for time series forecasting: Tutorial and literature survey," ACM Comput. Surv., vol. 55, no. 6, 2022, ISSN: 0360-0300. DOI: 10.1145/3533382. [Online]. Available: https://doi.org/10.1145/3533382.
- [2] D. Bacciu, F. Errica, A. Micheli, and M. Podda, "A gentle introduction to deep learning for graphs," *Neural Networks*, vol. 129, pp. 203–221, 2020.
- [3] M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković, "Geometric deep learning: Grids, groups, graphs, geodesics, and gauges," arXiv preprint arXiv:2104.13478, 2021.
- [4] A. Cini, I. Marisca, D. Zambon, and C. Alippi, "Graph deep learning for time series forecasting: A comprehensive methodological framework," *arxiv*, 2023.
- [5] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, "Neural message passing for quantum chemistry," in *International conference on machine learning*, PMLR, 2017, pp. 1263–1272.
- [6] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, "Empirical evaluation of gated recurrent neural networks on sequence modeling," arXiv preprint arXiv:1412.3555, 2014.

i

References ii

- [7] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, "Structured sequence modeling with graph convolutional recurrent networks," in *International Conference on Neural Information Processing*, Springer, 2018, pp. 362–373.
- [8] Y. Li, R. Yu, C. Shahabi, and Y. Liu, "Diffusion convolutional recurrent neural network: Data-driven traffic forecasting," in *International Conference on Learning Representations*, 2018.
- [9] B. Yu, H. Yin, and Z. Zhu, "Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting," in *Proceedings of the 27th International Joint Conference on Artificial Intelligence*, 2018, pp. 3634–3640.
- [10] I. Marisca, A. Cini, and C. Alippi, "Learning to reconstruct missing data from spatiotemporal graphs with sparse observations," in Advances in Neural Information Processing Systems, 2022.
- [11] Z. Wu, D. Zheng, S. Pan, Q. Gan, G. Long, and G. Karypis, "Traversenet: Unifying space and time in message passing for traffic forecasting," *IEEE Transactions on Neural Networks and Learning Systems*, 2022.
- [12] M. Sabbaqi and E. Isufi, "Graph-time convolutional neural networks: Architecture and theoretical analysis," *arXiv preprint* arXiv:2206.15174, 2022.

References iii

- [13] P. Montero-Manso and R. J. Hyndman, "Principles and algorithms for forecasting groups of time series: Locality and globality," *International Journal of Forecasting*, vol. 37, no. 4, pp. 1632–1653, 2021.
- [14] A. Cini, I. Marisca, D. Zambon, and C. Alippi, "Taming local effects in graph-based spatiotemporal forecasting," *arXiv* preprint arXiv:2302.04071, 2023.
- [15] JRM Hosking, "Equivalent Forms of the Multivariate Portmanteau Statistic," *Journal of the Royal Statistical Society: Series B (Methodological)*, vol. 43, no. 2, pp. 261–262, 1981.
- [16] Z. Li, C. Lam, J. Yao, and Q. Yao, "On Testing for High-Dimensional White Noise," The Annals of Statistics, vol. 47, no. 6, pp. 3382–3412, 2019.
- [17] A. Bose and W. Hachem, "A Whiteness Test Based on the Spectral Measure of Large Non-Hermitian Random Matrices," in ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2020, pp. 8768–8771.
- [18] P. A. P. Moran, "Notes on Continuous Stochastic Phenomena," *Biometrika*, vol. 37, no. 1/2, pp. 17–23, 1950, ISSN: 0006-3444. DOI: 10.2307/2332142.

References iv

- [19] A. D. Cliff and K. Ord, "Spatial Autocorrelation: A Review of Existing and New Measures with Applications," Economic Geography, vol. 46, pp. 269–292, 1970, ISSN: 0013-0095. DOI: 10.2307/143144.
- [20] D. Zambon and C. Alippi, "AZ-whiteness test: A test for signal uncorrelation on spatio-temporal graphs," in *Advances in Neural Information Processing Systems*, A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, Eds., 2022.
- [21] D. Zambon and C. Alippi, "Where and how to improve graph-based spatio-temporal predictors," arXiv preprint arXiv:2302.01701, 2023.
- [22] A. Cini, D. Zambon, and C. Alippi, "Sparse graph learning from spatiotemporal time series," *Journal of Machine Learning Research*, vol. 24, no. 242, pp. 1–36, 2023.
- [23] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, "Graph wavenet for deep spatial-temporal graph modeling," in *Proceedings* of the 28th International Joint Conference on Artificial Intelligence, 2019, pp. 1907–1913.
- [24] T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel, "Neural relational inference for interacting systems," in International conference on machine learning, PMLR, 2018, pp. 2688–2697.

References v

- [25] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, "Learning in nonstationary environments: A survey," *IEEE Computational Intelligence Magazine*, vol. 10, no. 4, pp. 12–25, 2015.
- [26] G. Panagopoulos, G. Nikolentzos, and M. Vazirgiannis, "Transfer graph neural networks for pandemic forecasting," in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, 2021, pp. 4838–4845.
- [27] T. Mallick, P. Balaprakash, E. Rask, and J. Macfarlane, "Transfer learning with graph neural networks for short-term highway traffic forecasting," in 2020 25th International Conference on Pattern Recognition (ICPR), IEEE, 2021, pp. 10 367–10 374.
- [28] W. Hamilton, Z. Ying, and J. Leskovec, "Inductive representation learning on large graphs," *Advances in neural information processing systems*, vol. 30, 2017.
- [29] Y. Rong, W. Huang, T. Xu, and J. Huang, "Dropedge: Towards deep graph convolutional networks on node classification," in International Conference on Learning Representations, 2020.
- [30] F. Frasca, E. Rossi, D. Eynard, B. Chamberlain, M. Bronstein, and F. Monti, "SIGN: Scalable inception graph neural networks," arXiv preprint arXiv:2004.11198, 2020.

References vi

- [31] A. Cini, I. Marisca, F. M. Bianchi, and C. Alippi, "Scalable spatiotemporal graph neural networks," *Proceedings of the AAAI Conference on Artificial Intelligence*, vol. 37, no. 6, pp. 7218–7226, Jun. 2023. DOI: 10.1609/aaai.v37i6.25880.
- [32] A. Cini, I. Marisca, and C. Alippi, "Filling the g_ap_s: Multivariate time series imputation by graph neural networks," in International Conference on Learning Representations, 2022. [Online]. Available: https://openreview.net/forum?id=k0u3-S3wJ7.
- [33] Y. Wu, D. Zhuang, A. Labbe, and L. Sun, "Inductive Graph Neural Networks for Spatiotemporal Kriging," in *Proceedings of the AAAI Conference on Artificial Intelligence*, vol. 35, 2021, pp. 4478–4485.