

Digital Signal Processing

Logistics of the course Discrete Time Fourier Transform DTFT

DR TANIA STATHAKI

READER (ASSOCIATE PROFESSOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Logistics of the course Welcome to the DSP Class

☐ **Teacher**'s coordinates:

Name: Tania Stathaki

Office: 812

Email: t.stathaki@imperial.ac.uk

- https://scholar.google.com/citations?user=sAB5gl8AAAAJ&hl=en
- Assessment: 100% exam
- Class material is available on TEAMS
- ☐ Textbook

Digital Signal Processing, A computer-Based Approach, Sanjit K. Mitra, McGraw Hill.

Digital Signal Processing in general

- □ **Digital signal processing** (**DSP**) is the use of digital processing, such as processing by computers or more specialized digital processors, to perform a wide variety of signal processing operations.
- The digital signals processed in this manner are a sequence of numbers that represent samples of a continuous variable in a domain such as time, space, or frequency.
- Digital signal processing and analog signal processing are subfields of signal processing.
- DSP applications include:
 - audio and speech processing,
 - sonar, radar and other sensor array processing
 - spectral density estimation
 - statistical signal processing
 - digital image processing,
 - biomedical engineering
 - seismology, among others.

- What philosophy drives the field of signal processing?
- How does it work behind the scenes?
- What language is used when we talk about signal processing?

Digital Signal Processing: This course

- ☐ Some of the topics that we will tackle in this course:
 - Expansion on previous topics such as Discrete Time Fourier Transform (DTFT), Discrete Fourier Transform and others.
 - FILTER DESIGN
 - MULTIRATE DSP
 - **-**

Transition from Signals and Systems to DSP

- ☐ In this lecture we will extend our knowledge on the so-called Discrete Time Fourier Transform (DTFT). ☐ This is not the Fourier Transform (FT). It is not the Discrete Fourier Transform (DFT) either. ☐ If you are not familiar with the term DTFT that is not a problem. ☐ The DTFT is the frequency representation of a sampled signal. DTFT is still a continuous transform. ■ More specifically, we will introduce an alternative form of DTFT in which the time and frequency variables are scaled.
 - Note that the DTFT is different from the Discrete Fourier Transform (DFT)
 - The DFT is discrete both in time and frequency
 The DTFT is the transition between FT and DFT
 - The DTFT is the transition between FT and DFT (FT: Fourier Transform)

Transition from Signals and Systems to DSP

- ☐ In Years 1 and 2 you emphasized in the Fourier Transform and the Discrete Fourier Transform.
- ☐ The Fourier Transform is a continuous-frequency transform of continuous-time signals.
 - The Fourier transform is the building block of all subsequent frequency transforms.
- ☐ In Year 3 DSP we will emphasize in discrete signals and systems, since, in most research areas in modern EEE, researchers work with digital computers.
- \square Many authors denote the Fourier Transform of a signal x(t) with the function $X(\omega)$, with ω the so-called **real angular frequency**.
- \Box In DSP I will introduce the subscript a for analogue and the symbol Ω instead of ω for the frequency of a continuous signal.
 - Therefore, the Fourier Transform of a signal x(t) will be denoted with the function $X_a(\Omega)$.

Recall the Fourier Transform of a sampled signal (SAS)

- \square Consider an **analogue** signal bandlimited to B Hz with Fourier transform $X_a(\Omega)$. Let's agree that $2B < f_s$ for correct sampling.
- ☐ The sampled version of the signal x(t) at a rate f_s Hz can be expressed as the multiplication of the original signal with an impulse train as follows:

(1)
$$\bar{x}(t) = x(t)\delta_{T_S}(t) = \sum_n x(nT_S)\delta(t - nT_S), T_S = 1/f_S \quad \uparrow \uparrow \uparrow \uparrow$$

☐ We can express a periodic impulse train using Fourier Series as follows:

$$(2)\delta_{T_S}(t) = \frac{1}{T_S} [1 + 2\cos\Omega_S t + 2\cos2\Omega_S t + 2\cos3\Omega_S t + \cdots], \ \Omega_S = \frac{2\pi}{T_S} = 2\pi f_S$$

Please refer to the Appendix of this presentation

☐ Therefore, from (1) and (2)

$$\bar{x}(t) = x(t)\delta_{T_s}(t) = \{x(nT_s)\}$$
 We denote the FT of $\bar{x}(t)$ with $\bar{X}(\omega)$
$$= \frac{1}{T_s} [x(t) + 2x(t)\cos\Omega_s t + 2x(t)\cos2\Omega_s t + 2x(t)\cos3\Omega_s t + \cdots]$$
 (3)

Since the following holds: $x(t)\cos\Omega_S t \Leftrightarrow \frac{1}{2}\left[X_a(\Omega+\Omega_S)+X_a(\Omega-\Omega_S)\right]$ (4) we have $\bar{X}(\Omega)=\frac{1}{T_c}\sum_{n=-\infty}^{\infty}X_a(\Omega-n\Omega_S)$. (Take the FT in both sides of (3) and use (4).)

Time and frequency scaling

- ☐ If we replace $x(nT_s)$ with x[n] and then ignore T_s , it is like we divide the independent variable nT_s with T_s .
 - In other words, we "normalise" (or "scale") the variable of time.
- \square We know from the properties of the Fourier Transform that if $x(t) \Leftrightarrow X(\Omega)$, then for any real constant a the following property holds.

$$x(at) \Leftrightarrow \frac{1}{|a|} X\left(\frac{\Omega}{a}\right)$$
(1) $\bar{x}(t) = x(nT_s)$

- ☐ Therefore, the Fourier Transform of x[n] is $\frac{-\text{Combine the last equation of the previous slide}}{\text{with property (1)}}$

$$T_{S}\overline{X}(\Omega \cdot T_{S}) = T_{S} \cdot \frac{1}{T_{S}} \sum_{n=-\infty}^{\infty} X_{a}(\Omega \cdot T_{S} - n\Omega_{S} \cdot T_{S})$$

$$= \sum_{n=-\infty}^{\infty} X_{a}(\Omega \cdot T_{S} - 2\pi n) = \sum_{n=-\infty}^{\infty} X_{a}(\Omega/f_{S} - 2\pi n)$$

[Note that $\Omega_S \cdot T_S = 2\pi f_S \cdot T_S = 2\pi$]

For more detailed analysis look at the appendix

Time and frequency scaling cont.

 \Box The Fourier Transform of x[n] is

$$T_S \bar{X}(\Omega \cdot T_S) = \sum_{n=-\infty}^{\infty} X_a(\Omega/f_S - 2\pi n)$$

- - This time, we "normalise" (or "scale") the variable of frequency.
- \square We denote $X(\omega) = T_S \overline{X}(\Omega \cdot T_S)$.
- \square Therefore, $X(\omega) = \sum_{n=-\infty}^{\infty} X_a(\omega 2\pi n)$.
- \square We divide all real angular frequencies Ω with f_s and we divide all real times by T_s .
 - To scale back to real-world values we must multiply all times by T_S and all frequencies and angular frequencies by $f_S = 1/T_S$.

Fourier Transform of a sampled signal and Discrete Time Fourier Transform

The Fourier transform of the **normalised** sampled signal is given by

$$X(\omega) = \sum_{n=-\infty}^{\infty} X_a(\omega - 2\pi n)$$

 \square $X(\omega)$ is periodic with fundamental period $T_0 = 2\pi$ and fundamental frequency $\Omega_0 = \frac{2\pi}{T_0} = 1$; it can be represented using Fourier Series.

$$X(\omega) = \sum_{n=-\infty}^{\infty} D_n e^{jn \frac{1}{\Omega_0} \omega} = \sum_{n=-\infty}^{\infty} D_n e^{jn\omega}$$

Look at the Appendix
$$D_n = \frac{1}{2\pi} \int_{2\pi} X(\omega) \, e^{-jn\omega} d\omega$$
 What makes the integral on the left to not look exactly like an inverse Fourier is the range of integration. In inverse Fourier it goes from -oo to +oo. This mystery is solved in the Appendix.

We prove that $D_n = x[-n]$, i.e., the Inverse FT of $X(\omega)$ evaluated at -n.

- Many authors use $X(e^{j\omega})$ instead of $X(\omega)$. We will use $X(e^{j\omega})$ too!
- Therefore, $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[-n] e^{jn\omega} \Rightarrow X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-jn\omega}$.
- The above relationship is the **Discrete Time Fourier Transform (DTFT)**.
 - As mentioned, it is periodic with period 2π .
 - It is the continuous frequency representation of a discrete signal.
 - Note that we have **discrete time continuous frequency**.

The two continuous-frequency transforms

To summarize, there are two useful representations of signals in continuous frequency domain.

- Continuous-Time Fourier Transform (CTFT) or Fourier Transform (FT)
 - For continuous aperiodic signals. Continuous time and continuous frequency.
- Discrete Time Fourier Transform (DTFT)
 - For discrete aperiodic signals. Discrete time and continuous frequency.

	Forward Transform	Inverse Transform
CTFT	$X(j\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$ Ω : "real" frequency	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega) e^{j\Omega t} d\Omega$
DTFT	$X(e^{j\omega})=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}$ $\omega=\Omega T_s$: "normalised" angular frequency	$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$

Discrete Time Fourier Transform (DTFT): expression

□ The discrete-time Fourier transform (DTFT) $X(e^{j\omega})$ of a sequence x[n] is given by

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

 \Box In general $X(e^{j\omega})$ is a complex function of the real variable ω and can be written as

$$X(e^{j\omega}) = X_{\rm re}(e^{j\omega}) + jX_{\rm im}(e^{j\omega})$$

where $X_{\rm re}(e^{j\omega})$ and $X_{\rm im}(e^{j\omega})$ are the real and imaginary parts of $X(e^{j\omega})$ and are real functions of ω .

 \square $X(e^{j\omega})$ can alternatively be expressed with polar coordinates as $X(e^{j\omega}) = |X(e^{j\omega})|e^{j\theta(\omega)}$

where $|X(e^{j\omega})|$ and $\theta(\omega)$ are the **amplitude** and **phase** of $X(e^{j\omega})$ and are also real functions of ω .

Discrete Time Fourier Transform (DTFT): phase

- □ For a real sequence x[n], $|X(e^{j\omega})|$ and $X_{re}(e^{j\omega})$ are even functions of ω, whereas, θ(ω) and $X_{im}(e^{j\omega})$ are odd functions of ω.
- Note that for any integer k

$$X(e^{j\omega}) = |X(e^{j\omega})|e^{j(\theta(\omega) + 2\pi k)} = |X(e^{j\omega})|e^{j\theta(\omega)}$$

- □ The above property indicates that the phase function $\theta(\omega)$ cannot be uniquely specified for the DTFT.
- \Box Unless otherwise stated, we shall assume that the phase function $\theta(\omega)$ is restricted to the following range of values:

$$-\pi \le \theta(\omega) < \pi$$

called the **principal values**.

Discrete Time Fourier Transform (DTFT): phase unwrapping

- \Box The DTFTs of some sequences exhibit discontinuities of 2π in their phase responses.
- \Box An alternate type of phase function that is a continuous function of ω is often used.
- \Box It is derived from the original phase function by removing the discontinuities of 2π .
- ☐ The process of removing the discontinuities is called **phase** unwrapping.
- \square Sometimes the continuous phase function generated by unwrapping is denoted as $\theta_c(\omega)$.
- \Box The DTFT is the z -transform evaluated at the point $e^{j\omega}$.
 - Recall that $X(z) = \sum_{-\infty}^{\infty} x[n] z^{-n}$.
 - The DTFT converges if the ROC of the related z —transform includes |z| = 1.

Does DTFT exist (converge)?

- When we say that the Discrete-Time Fourier Transform (DTFT) of a sequence converges, we are referring to the mathematical condition where the infinite summation that defines the DTFT yields a finite and well-defined result for all angular frequencies.
- An infinite series of the form $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$ may or may not converge.
- A sequence x[n] is **absolutely summable** if $\sum_{n=-\infty}^{\infty} |x[n]| < \infty$. We observe that: $|X(e^{j\omega})| = |\sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}| \le \sum_{n=-\infty}^{\infty} |x[n]| |e^{-j\omega n}| \le \sum_{n=-\infty}^{\infty} |x[n]| < \infty$. Therefore, we can say that in the case of **absolute summability** the DTF

Therefore, we can say that in the case of **absolute summability** the DTFT **always** converges!

Convergence of the DTFT

- Let $X_K(e^{j\omega}) = \sum_{n=-K}^{n=K} x[n] e^{-j\omega n}$ be a truncated version of DTFT. This is an approximation of the DTFT with a finite number of terms.
- When we refer to the "type of convergence" of the DTFT, we are specifically discussing how the finite sum that defines the approximation $X_K(e^{j\omega})$ of the DTFT approaches a finite value as the number of terms in the approximation increases, and whether this convergence occurs in a consistent manner across different frequencies.
- □ There are several types of convergence in mathematics. In relation to the DTFT I will mention briefly, in the next two slides, two types: uniform and mean square convergence.
- ☐ In general, there are more types such as Pointwise, Absolute, Almost Everywhere (a.e.), L^p , Cesàro Summability, Distributional, Weak and others.

Uniform Convergence of the DTFT

- \Box Let $X_K(e^{j\omega}) = \sum_{n=-K}^{n=K} x[n] e^{-j\omega n}$ be a truncated version of DTFT.
- \Box For the so-called **uniform convergence** of $X(e^{j\omega})$ we require:

$$\lim_{K\to\infty} \left| X(e^{j\omega}) - X_K(e^{j\omega}) \right| = 0$$

- □ We observe that the absolute error $|X(e^{j\omega}) X_K(e^{j\omega})|$ in the DTFT approximation gradually decreases toward zero as the number of terms used in the approximation increases.
- Uniform convergence implies that the sequence of functions $X_K(e^{j\omega})$ converges to the limiting function $X(e^{j\omega})$ at the same rate across all frequencies. In other words, $|X(e^{j\omega}) X_K(e^{j\omega})|$ depends on K and not ω .
- □ **Observation:** When a sequence is absolutely summable, the DTFT converges; however, the convergence is not necessarily uniform.

Mean Square Convergence of the DTFT

□ A square-summable sequence satisfies the condition:

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 < \infty$$

In this case, the so-called **mean square convergence** of $X(e^{j\omega})$ holds:

$$\lim_{K\to\infty}\int_{-\pi}^{\pi} |X(e^{j\omega}) - X_K(e^{j\omega})|^2 d\omega = 0$$

- We observe that the energy (integral/sum absolute value square) of the error function in the DTFT approximation gradually decreases toward zero as the number of terms used in the approximation increases.
- ☐ Uniform convergence is a stronger condition than mean square convergence.

 Therefore, unifrm convergence implies mean square convergence.

Common DTFT pairs

x[n]	$X(e^{j\omega})$
$\delta[n]$	1
x[n] = 1	$\sum_{k=-\infty}^{\infty} 2\pi\delta(\omega + 2\pi k)$
u[n]	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{\infty} \pi \delta(\omega + 2\pi k)$
$e^{j\omega_o n}$	$\sum_{k=-\infty}^{\infty} 2\pi\delta(\omega - \omega_o + 2\pi k)$
$\alpha^n u[n], (\alpha < 1)$	$\frac{1}{1 - \alpha e^{-j\omega}}$

DTFT properties (listed without proof)

Type of Property	Sequence	Discrete-Time Fourier Transform	
	g[n] $h[n]$	$G(e^{j\omega}) \ H(e^{j\omega})$	
Linearity	$\alpha g[n] + \beta h[n]$	$\alpha G(e^{j\omega}) + \beta H(e^{j\omega})$	
Time-shifting	$g[n-n_o]$	$e^{-j\omega n_o}G(e^{j\omega})$	
Frequency-shifting	$e^{j\omega_o n}g[n]$	$G\left(e^{j(\omega-\omega_o)}\right)$	
Differentiation in frequency	ng[n]	$j\frac{dG(e^{j\omega})}{d\omega}$	
Convolution	$g[n] \circledast h[n]$	$G(e^{j\omega})H(e^{j\omega})$	
Modulation	g[n]h[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} G(e^{j\theta}) H(e^{j(\omega-\theta)}) d\theta$	
Parseval's relation	$\sum_{n=-\infty}^{\infty} g[n]h^*[$	$[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} G(e^{j\omega}) H^*(e^{j\omega}) d\omega$	

DTFT properties (listed without proof)

Sequence	Discrete-Time Fourier Transform	
x[n]	$X(e^{j\omega})$ $x[n]: A$	– complex sequence
x[-n]	$X(e^{-j\omega})$	
$x^*[-n]$	$X^*(e^{j\omega})$	
$Re\{x[n]\}$	$X_{\rm cs}(e^{j\omega}) = \frac{1}{2} \{ X(e^{j\omega}) + X^*(e^{-j\omega}) \}$	
$j\operatorname{Im}\{x[n]\}$	$X_{\mathrm{ca}}(e^{j\omega}) = \frac{1}{2} \{ X(e^{j\omega}) - X^*(e^{-j\omega}) \}$	
$x_{cs}[n]$	$X_{\mathrm{re}}(e^{j\omega})$	
$x_{ca}[n]$	$jX_{\mathrm{im}}(e^{j\omega})$	

Note: $X_{cs}(e^{j\omega})$ and $X_{ca}(e^{j\omega})$ are the conjugate-symmetric and conjugate-antisymmetric parts of $X(e^{j\omega})$, respectively. Likewise, $x_{cs}[n]$ and $x_{ca}[n]$ are the conjugate-symmetric and conjugate-antisymmetric parts of x[n], respectively.

DTFT properties (listed without proof)

	-	
Sequence	Discrete-Time Fourier Transform	
x[n]	$X(e^{j\omega}) = X_{\text{re}}(e^{j\omega}) + jX_{\text{im}}(e^{j\omega})$	x[n]: A real sequence
$x_{\text{ev}}[n]$ $x_{\text{od}}[n]$	$X_{ m re}(e^{j\omega}) \ j X_{ m im}(e^{j\omega})$	
Symmetry relations	$X(e^{j\omega}) = X^*(e^{-j\omega})$ $X_{\text{re}}(e^{j\omega}) = X_{\text{re}}(e^{-j\omega})$ $X_{\text{im}}(e^{j\omega}) = -X_{\text{im}}(e^{-j\omega})$	
	$ X(e^{j\omega}) = X(e^{-j\omega}) $ $\arg\{X(e^{j\omega})\} = -\arg\{X(e^{-j\omega})\}$	

Note: $x_{ev}[n]$ and $x_{od}[n]$ denote the even and odd parts of x[n], respectively.

APPENDIX: Fourier Series of a Train of Impulses (Slide 7)

- We construct the periodic signal $\delta_{T_s}(t) = \sum_n \delta(t nT_s)$
- The periodic signal $\delta_{T_s}(t)$ is called an impulse train.
- This periodic signal can be expressed using Fourier series.

$$\begin{split} &\delta_{T_S}(t) = \sum_{n=-\infty}^{n=\infty} c_n e^{jn\Omega_S t}, \, \Omega_S = 2\pi f_S = \frac{2\pi}{T_S} \\ &c_n = \frac{1}{T_S} \int_{T_S} \delta_{T_S}(t) \, e^{-jn\Omega_S t} dt = \frac{1}{T_S} \, e^{-jn\Omega_S 0} = \frac{1}{T_S} \\ &\delta_{T_S}(t) = \frac{1}{T_S} \sum_{n=-\infty}^{n=\infty} e^{jn\Omega_S t} = \frac{1}{T_S} \sum_{n=-\infty}^{n=-1} e^{jn\Omega_S t} + \frac{1}{T_S} \sum_{n=+1}^{n=\infty} e^{jn\Omega_S t} + \frac{1}{T_S} e^{j0\Omega_S t} \\ &= \frac{1}{T_S} \sum_{n=+1}^{n=\infty} e^{-jn\Omega_S t} + \frac{1}{T_S} \sum_{n=+1}^{n=\infty} e^{jn\Omega_S t} + \frac{1}{T_S} e^{j0\Omega_S t} \\ &= \frac{1}{T_S} \sum_{n=1}^{n=\infty} 2 \cos(n\Omega_S t) + \frac{1}{T_S} = \frac{1}{T_S} (1 + 2 \cos(\Omega_S t) + 2 \cos(2\Omega_S t) + \cdots) \end{split}$$

APPENDIX: Transition from $\overline{x}(t)$ to x[n] (Slide 8)

- $\bar{x}(t) = x(t) \delta_{T_s}(t)$
- $\bar{x}(t)$ is a continuous-time (CT) signal. It only has non-zero values at multiples of T_s . Therefore, we can denote it as a sequence $\{x(nT_s)\}$ having in mind that in times which are not multiples of T_s the signal is zero.

(A continuous-time (CT) signal is a function, that is defined for all time *t* contained in some interval on the real line. For historical reasons, CT signals are often called analog signals.) The following time-frequency pairs hold:

$$\bar{x}(t) \Leftrightarrow \bar{X}(\Omega) \text{ or } \{x(nT_s)\} \Leftrightarrow \bar{X}(\Omega)$$

We know the property $x(at) \Leftrightarrow \frac{1}{|a|} X(\frac{\Omega}{a})$. We apply above and we get:

$$\left\{x(\frac{1}{T_s}nT_s)\right\} \Leftrightarrow \frac{1}{\frac{1}{T_s}} \bar{X}\left(\frac{\Omega}{\frac{1}{T_s}}\right)$$
$$\left\{x(n)\right\} \Leftrightarrow T_s \bar{X}(\Omega T_s)$$

APPENDIX: Elaborate on Slide 10

☐ The Fourier transform of the normalised sampled signal is given by

$$X(\omega) = \sum_{n=-\infty}^{n=\infty} X_a(\omega - 2\pi n)$$

• $X(\omega)$ is periodic with fundamental period $T_0=2\pi$ and fundamental frequency $\Omega_0=\frac{2\pi}{T_0}=\frac{2\pi}{2\pi}=1$; it can be represented with Fourier Series as

$$X(\omega) = \sum_{n=-\infty}^{n=\infty} D_n e^{jn\Omega_0 \omega} = \sum_{n=-\infty}^{n=\infty} D_n e^{jn\omega}, D_n = \frac{1}{2\pi} \int_{2\pi} X(\omega) e^{-jn\omega} d\omega$$

We can choose the area of integration as: $D_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{-jn\omega} d\omega$.

□ From $X(\omega) = \sum_{n=-\infty}^{n=\infty} X_a(\omega - 2\pi n)$ we see that if we restrict $X(\omega)$ within the interval $[-\pi, \pi]$ we are left with the term $X_a(\omega)$ only as follows:

$$D_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{-jn\omega} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_a(\omega) e^{-jn\omega} d\omega$$

 \square Since $\omega = \frac{\Omega}{f_c}$ we can write

$$D_n = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_a(\frac{\Omega}{f_s}) e^{-jn\frac{\Omega}{f_s}} d\left(\frac{\Omega}{f_s}\right) = \frac{1}{f_s} \frac{1}{2\pi} \int_{-\infty}^{\infty} X_a(\frac{\Omega}{f_s}) e^{-jn\frac{\Omega}{f_s}} d\Omega$$

APPENDIX: Elaborate on Slide 10 cont.

☐ We see that the Fourier Series coefficients

$$D_{n} = \frac{1}{f_{s}} \frac{1}{2\pi} \int_{-\infty}^{\infty} X_{a}(\frac{\Omega}{f_{s}}) e^{-jn\frac{\Omega}{f_{s}}} d\Omega$$

look like the inverse Fourier transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_a(\Omega) e^{j\Omega t} d\Omega$$

More specifically, if we use the property

$$x(at) \Leftrightarrow \frac{1}{|a|} X\left(\frac{\Omega}{a}\right)$$
 we can write $x(f_s t) = \frac{1}{f_s} \frac{1}{2\pi} \int_{-\infty}^{\infty} X_a(\frac{\Omega}{f_s}) e^{j\Omega t} d\Omega$

we see that D_n is the same function as $x(f_s t)$ evaluated at $-\frac{n}{f_s}$. Therefore,

$$D_n = x \left(-\frac{f_s}{f_s} \frac{n}{f_s} \right) = x(-n) = x[-n]$$