Intelligent Robots Practice Maps

Chungbuk National University, Korea Intelligent Robots Lab. (IRL)

Prof. Gon-Woo Kim

Contents

- Introduction of maps
- Grid based representation
- Topological Representation

Introduction of maps

Introduction of maps

- Navigation problems
 - Where am I? → Localization
 - Where am I going? & How should I get there? → Path planning, Obstacle avoidance
 - Final goal: to perform map building and localization simultaneously
 - → SLAM (Simultaneous Localization And Map building) or
 - Maps are used for environmental representation, localization, path planning.
 - Mapping and localization is a chicken-egg problem.

Introduction of maps

- Representation of Space
 - Types of maps
 - Grid maps: metric
 - Topological maps: non-metric
 - Feature maps: metric
 - The environment is modeled by a set of geometric primitives such as points, lines and arcs.

- Grid maps
 - Occupancy grid representation
 - Divides free space into a discrete 2D or 3D grid of cell
 - Each cell is assigned a single value between 0 and 1 to represent the probability that the cell is occupied, empty, and unknown.
 - (1: occupied, 0: empty, unknown: 0.5)
 - Bayesian probability model
 - The probability for each cell is updated as the new sensor data are available.

- Grid maps
 - Uniform grids versus quadtree
 - Uniform grids
 - Decompose space into cells with uniform sizes.
 - Degree of occupancy at the sample grid: empty, full (or occupied), partially full
 - Advantages
 - Generality: no strong assumptions
 - Disadvantages
 - The resolution is limited by the cell size.
 - The representation is storage intensive even if much of the environment is empty or occupied.

- Uniform grids versus quadtree
 - Uniform grids
 - Decompose space into cells with uniform sizes.
 - Degree of occupancy at the sample grid: empty, full (or occupied), partially full
 - Advantages
 - Generality: no strong assumptions
 - Disadvantages
 - The resolution is limited by the cell size.
 - The representation is storage intensive even if much of the environment is empty or occupied.

- Uniform grids versus quadtree
 - Quadtree
 - Cells that are not uniformly empty or full are subdivided into four equal subparts.
 - Subparts are subdivided in turn until either they are uniformly empty or full or the predetermined resolution limit is met.
 - Very suitable for the environments where most of space is free or occupied.

Sample environment

Uniform grids

Quadtree

- Occupancy Grid Map using Sensor Model
 - Gaussian Sensor Model

Occupancy Grid Map

- Occupancy Grid Map using Sensor Model
 - Occupancy Grid Map
 - The occupancy probability is updated from the current occupancy probability of a cell and a new range data.
 - Bayesian update formula:

$$P[s(C_i) = OCC \mid \{r\}_{t+1}] = \frac{p[r_{t+1} \mid s(C_i) = OCC] \cdot P[s(C_i) = OCC \mid \{r\}_t]}{\sum_{s(C_i)} p[r_{t+1} \mid s(C_i)] \cdot P[s(C_i) \mid \{r\}_t]}$$

- $\{r\}_t = \{r_1, r_2, ..., r_t\}$: range data up to time t
- r_{t+1}: new range data
- s(C_i) : state of cell C i

- Occupancy Grid Map using Sensor Model
 - Occupancy Grid Map
 - Building of grid maps from sonar data
 - Estimation procedure of occupancy grid from sensor data

CHUNGBUK NATIONAL UNIVERSITY space space

Room traverse by grid map from SONAR

- Occupancy Grid Map
 - Advantages/disadvantages of grid maps
 - Advantages
 - Easy to build, represent, and maintain.
 - Recognition of places is non-ambiguous and view point independent.
 - Facilitates computation of the shortest paths.
 - Disadvantages
 - Planning is inefficient, space-consuming (resolution does not depend on complexity of the environment).
 - Requires accurate determination of the robot's position.
 - Poor interface for most symbolic problem solvers.
 - Requires a large amount of memory for the global grid map (This problem may not be serious for the local grid map.)

Topological Representation

Topological Representation

- Topological representation
 - An abstraction of the environment in terms of discrete places (i.e., nodes or vertices) with edges connecting them
 - Graph based representation: G = (N, E)
 - G: graph
 - N: a set of nodes (or vertices)
 - E: a set of edges (or arcs)
 - Nodes correspond to known landmarks and edges to the paths between them.
 - Non-metric representation
 - Exception: Edges may have length and orientation information.
 - Advantages
 - Compact (not storage intensive)

