ENSEMBLE LEARNING

The science of combining models

Wisdom of the Crowd

Wisdom of the Crowd (of machines)

- The wisdom of the crowd
 - A diverse set of models are likely to make better decisions as compared to single models
- Combining decisions from multiple models to improve the overall performance.

What is ensemble learning?

- An ensemble is a group of predictors
- An ensemble can be a *strong learner* even if each predictor is a weak learner
 - Provided there are a sufficient number of weak learners and they are sufficiently diverse

How will combining leads to a strong learner?

- Think of a slightly biased coin with 51% chance of heads and 49% of tails.
- Law of large numbers: as you keep tossing the coin, assuming every toss is independent of others, the ratio of heads gets closer and closer to the probability of heads 51%.

How will combining leads to a strong learner?

- Tossing the coin 1000 times, we will end with more or less than 510 heads and 490 tails.
- For an ensemble of 1000 classifiers, each correct 51% of the time, the probability of getting the majority of heads is up 75%

Ensemble Learning

- Different types of ensembles
 - Use the same/different learning algorithms
 - Homogeneous vs heterogeneous ensembles
 - Use the same dataset/ random subsets of data
 - Use the same/different sets of features

Voting Classifier

• Train diverse predictors on the same data

Voting Classifier

 Use voting for predictions Ensemble's prediction (e.g., majority vote) **Predictions** Diverse predictors **New instance**

Hard voting:

The ensemble prediction is the prediction of the majority

Example

Predictor 1	Predictor 2	Predictor 3	Predictor 4	Predictor 5	Ensemble's prediction
5	4	5	4	4	4

Voting Classifier

Use voting for predictions

Soft voting:

averaged

Final prediction: Class 2

Bagging and Pasting

- Use different random subset of samples
 - Usually predictors of the same type are used
- Bagging: sampling with replacement
 - For a given predictor, a training instance may be sampled several times
- Pasting: sampling without replacement
 - Training instances may be sampled several times across predictors
- Training and predictions can be performed in parallel

Example of Bagging

Example of Pasting

Random Subspaces and Random patches

Dandana	Databas
Random	Patches

										_	
1	21	44	15	1	10	30	44	1	10	21	30
2	20	40	20	2	12	35	40	2	12	20	35
3	24	43	14	3	10	34	43	3	10	24	34
4	22	41	12	4	15	31	41	4	15	22	31
5	25	42	19	5	19	35	42	5	19	25	35
6	29	45	11	6	12	30	45	6	12	29	30

Random Subspaces

1	10	21	30	44	15	2	12	20	35	40	20	1	10	21	30	44	15
3	10	24	34	43	14	3	10	24	34	43	14	4	15	22	31	41	12
4	15	22	31	41	12	4	15	22	31	41	12	5	19	25	35	42	19
5	19	25	35	42	19	6	12	29	30	45	11	6	12	29	30	45	11

Sampling both instances and Features

Keep all instances and sample Features

Boosting

• Unlike bagging, individual predictors are trained sequentially, each trying to correct its predecessor.

Adaboost (Adaptive boosting)

- Instead of sampling, re-weigh samples
 - Samples are given weights.
 - Start with uniform weighting
- At each iteration, a model is learned and the samples are re-weighted so the next classifiers focus on samples that were wrongly predicted by previous classifier
 - Weights of correctly predicted samples are decreased
 - Weights of incorrectly predicted samples are increased
- Final prediction is a combination of model predictions weighted by their respective error measures

Adaboost

Adaboost algorithm

- Each sample weight w_i in the training set is initialized to $\frac{1}{m'}$, where m is the number of samples in training set.
- For each trained predictor j, compute its weighted error r_i and its weight α_i

$$r_j = rac{\sum\limits_{i=1,\,\hat{y}_j^{(i)}
eq y^{(i)}}^{m} w^{(i)}}{\sum\limits_{i=1}^{m} w^{(i)}}$$
 , $lpha_j = \eta \cdot \log rac{1-r_j}{r_j}$

• Update sample weights

$$w^{(i)} \leftarrow \begin{cases} w^{(i)} & \text{if } \hat{y}_j^{(i)} = y^{(i)} \\ w^{(i)} \cdot exp(\alpha_j) & \text{if } \hat{y}_j^{(i)} \neq y^{(i)} \end{cases}$$

• For final predictions

$$\hat{y}(\mathbf{x}) = \arg\max_{k} \sum_{j=1, \hat{y}_j(\mathbf{x})=k}^{N} \alpha_j$$

Gradient Boosting

• Unlike AdaBoost, Gradient Boosting tries to fit the new predictor to the *residual errors* made by the previous predictor.

Gradient Boosting

- Training data : square footage data on five apartments and their rent prices in dollars per month
- We use the mean (average) of the rent prices as our initial model Fo

$\mathbf{sq}\mathbf{feet}$	rent	F_0	$\mathbf{y} - F_0$
750	1160	1418	-258
800	1200	1418	-218
850	1280	1418	-138
900	1450	1418	32
950	2000	1418	582

• Next, we train weak models Δ_i to predict residuals for all i observations

Δ_1	F_1	\mathbf{y} - F_1	Δ_2	F_2	\mathbf{y} - F_2	Δ_3	F_3
-145.5	1272.5	-112.5	-92.5	1180	-20	15.4	1195.4
-145.5	1272.5	-72.5	-92.5	1180	20	15.4	1195.4
-145.5	1272.5	7.5	61.7	1334.2	-54.2	15.4	1349.6
-145.5	1272.5	177.5	61.7	1334.2	115.8	15.4	1349.6
582	2000	0	61.7	2061.7	-61.7	-61.7	2000

• Next, we train weak models Δ_i to predict residuals for all i observations

• The residuals (blue dots) get smaller as we add more learners

Summing the three learners

Stacking (Stacked generalization)

- Basic idea:
 - Train a separate model to perform aggregation of the predictions of the individual classifiers
 - Predictions from the train set are used as features for level 1 model.
 - Level 1 model is used to make a prediction on the test set

Stacking (Stacked generalization)

• Stacking with a hold-out set → Blending

Stacking

• Training level 0 models

Training set

Training Subset 1

Model 1

train

Model 2

Model 3

Training Subset 2

X1 X2 X3 X4 C
$$X_{1,i+1}$$
 $X_{2,i+1}$ $X_{3,i+1}$ $X_{4,i+1}$ True
 $X_{1,i+2}$ $X_{2,i+2}$ $X_{3,i+2}$ $X_{4,i+2}$ False
 $X_{1,i}$ $X_{2,i}$ $X_{2,i}$ $X_{3,i}$ $X_{4,i}$ True

Stacking

Multilayer stacking

initial dataset

L weak learners (that can be non-homogeneous)

M meta-models (trained to output predictions based on previous layer predictions) final meta-model (trained to output predictions based on previous layer predictions)

Conclusions

- Ensemble learning is about training multiple base models and combined them to obtain a strong model with better performance
 - Ideally low bias, low variance
- In *bagging ensembles*, instances of the same base model are trained <u>in parallel</u> on random subsets of data and then aggregated
 - Using random sampling reduce variance
- In **boosting ensembles**, instances of the same base model are trained <u>iteratively</u>, such that, each model attempts to correct the predictions of the previous model.
- **Stacking ensembles** use multi-stage training. Different types of base models are trained at the very first stage on top of which a meta-model is trained to make predictions based on based model predictions

Ensemble learning on diabetes data

- Load the diabetes data and split it into training set, a validation set, and a test set
 - 30% of data for test, 30% of training for validation
- Train various classifiers individually: Decision tree, KNN and SVM
- Voting ensemble: Combine the classifiers into an ensemble using hard or soft voting.
 - Use the validation set to find the best ensemble (it must outperforms the individual classifiers)
 - Evaluate the best model found on the test set and compare the results
- Stacking ensemble: using the previous classifiers
 - Create a new training set (for the meta learner) using the predictions on the validation set
 - Train a classifier (e.g, random forest) on the new training set
 - Evaluate the model on the test set and compare the results