ΑΝΑΦΟΡΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Ι

ΑΣΚΗΣΗ 3 : ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΚΑΙ ΠΟΛΩΣΗ ΤΩΝ ΔΙΠΟΛΙΚΩΝ TRANSISTOR

ΟΜΑΔΑ

Γιώργος Βιριράκης **2016030035** Χρήστος Μπεχτσούδης **2016030005** Μιχάλης Γαλάνης **2016030036**

Ερώτημα 3.1.1

Παρακάτω, παρατίθεται ο πίνακας τιμών των μετρήσεων V_{RB} , I_{B} , V_{CE} , V_{RC} , V_{BE} καθώς και των θεωρητικών τιμών I_{C} , I_{E} , α , β , χρησιμοποιώντας τις σχέσεις: $I_{C} = V_{RC}$ / I_{C} , $I_{E} = I_{C} + I_{B}$, $\alpha = I_{C} / I_{E}$, $\beta = I_{C} / I_{B}$

ПЕ	ΘΕΩΡΗΤΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ							
V _{RB} (V)	$I_B(\mu A)$	$V_{CE}(V)$	$V_{RC}(V)$	$V_{BE}V$)	lc	IE	α	β
3.3	10	2	3,545	0,683	1,611	1,612	0,99937	161,1
3.3	10	4	3,583	0,682	1,628	1,629	0,99938	162,8
3.3	10	6	3,623	0,682	1,646	1,647	0,99939	164,6
3.3	10	8	3,654	0,682	1,660	1,661	0,999397	166
3.3	10	10	3,687	0,679	1,675	1,676	0,9994	167,5
3.3	10	12	3,719	0,678	1,690	1,691	0,999408	169,04
3.3	10	14	3,751	0,677	1,705	1,706	0,99941	170,5
3.3	10	16	3,780	0,676	1,718	1,719	0,999418	171,8
6.6	20	2	7,316	0,699	3,243	3,245	0,99938	162,15
6.6	20	4	7,246	0,696	3,293	3,295	0,99939	164,65
6.6	20	6	7,338	0,695	3,335	3,337	0,9994	166,75
6.6	20	8	7,427	0,693	3,375	3,377	0,9994	168,88
6.6	20	10	7,500	0,692	3,409	3,411	0,99941	170,45
6.6	20	10,64	7,581	0,690	3,445	3,447	0,99942	172,25
6.6	20	14	-	-	-	-	-	-
9.9	30	2	10,692	0,711	4,860	4,863	0,99938	162
9.9	30	4	10,875	0,709	4,943	4,946	0,99939	164,7
9.9	30	6	11,043	0,706	5,019	5,022	0,9994	167,3
9.9	30	6,72	11,237	0,703	5,107	5,110	0,99946	170,2
9.9	30	10	-	-	-	-	-	-
13.2	40	2	14,393	0,714	6,542	6,546	0,9993	163,5

1	3.2	40	4	-	-	-	-	-	-
1	3.2	40	6	-	-	-	-	-	-
1	3.2	40	8	-	-	-	-	-	-
1	6.5	50	0,5	17,886	0,722	8,130	8,135	0,99938	162,6
1	6.5	50	4	-	-	-	-	-	-
1	6.5	50	6	-	-	-	-	-	-

Ερώτημα 3.1.2

• Για I_B= 10 mA:

• Για **I**_B= **20 mA:**

• Για **I**_B= **30 mA**:

• Για **I**_B = **40 mA** και **I**_B = **50 mA** τα όργανα του εργαστηρίου δεν μπορούσαν να ανταποκριθούν στις απαιτούμενες τάσεις, συνεπώς δεν μπορέσαμε να σχεδιάσουμε τις χαρακτηριστικές.

Ερώτημα 3.1.3

Ερώτημα 3.1.4

Η μεταβολή του β οφείλεται στο ρεύμα και στη θερμοκρασία που αναπτύσσεται στο τρανζίστορ.

Ερώτημα 3.1.5

Αν το $\boldsymbol{\beta}$ ήταν σταθερό τότε το ρεύμα $\boldsymbol{I_c}$ θα αύξανε γραμμικά σε σχέση με την τάση $\boldsymbol{V_{CE}}$ ενώ αν μεταβάλλεται το $\boldsymbol{\beta}$ τότε η σχέση δεν είναι τελείως γραμμική.

Ερώτημα 3.2.1(Πειραματικοί υπολογισμοί)

$V_B =$	7,66V / V c	= $12,52V/V_E$ = $6,92V/V_{cc}$	= 20V
$V_{BE} =$	$V_B - V_E$	= 7,66 – 6,92	= 0,74V
$V_{CE} =$	$V_C - V_E$	= 12,52 - 6,92	= 5,6V
$I_B =$	$V_{CC} - V_B / (R_B + R_C)$	= $(20 - 7,66V) / 393K\Omega$	$= 18,051 \mathrm{mA}$
$I_C =$	$(V_{cc} - V_c) / R_c$	= $(20 - 12,52)V / 3K\Omega$	= 15,827 mA
$I_E =$	V_E / R_E	$= 6,92V / 2,4K\Omega$	= 2,883 mA
β =	I_C / I_B	$= 15,827 \text{ mA} / 18,051 \mu\text{A}$	= 81,51

Ερώτημα 3.2.2 (Θεωρητικοί υπολογισμοί)

Από τις σχέσεις:

KVL: 1)
$$V_{CC} = V_{RC} + V_{RB} + V_{BE}$$
,
2) $V_{CC} = V_{RC} + V_{CE} + V_{RE}$

KCL: 3)
$$I_S = I_C + I_B$$

4) $\mathbf{I_B} + \mathbf{I_C} = \mathbf{I_E}$ παράγονται τα παρακάτω:

Από την (1):
$$V_{CC} = R_C * I_S + I_B * R_B + I_E * R_E = R_C * (I_C + I_B) + R_B * I_B + R_E * (I_C + I_B)$$
Όμως, $I_C = \beta * I_B$, επομένως $V_{CC} = R_C * (\beta+1) * I_B + R_B * I_B + R_E * (\beta+1) I_B = \{ (R_C + R_E) * (\beta+1) + R_B \} * I_B \}$
Για $\beta = 81,51$ έχουμε:
$$I_B = 20 / (5,4 \text{K}\Omega * 82,51 + 390 \text{K}\Omega) = 20 \text{V} / 835,554 \text{K}\Omega = 23,94 \text{ μA}$$

$$I_C = \beta * I_B = 1,951 \text{ mA}$$

$$I_E = I_B + I_C = 1,975 \text{ mA}$$

$$V_B = V_{CC} - I_B * R_B = 10,66 \text{ V}$$

$$V_C = V_{CC} - I_C * R_C = 14,15 \text{V}$$

$$V_E = I_E * R_E = 4,74 \text{V}$$

Οι αποκλίσεις οφείλονται στις ανοχές των αντιστάσεων, στις αντιστάσεις των οργάνων, στην μη ιδανικότητα του τρανζίστορ (το **β** αλλάζει με τη θερμοκρασία) και στα σφάλματα της μέτρησης.

Ερώτημα 3.2.3

$$\mathbf{F}_{(\beta)} = \mathbf{I}_{C} = \mathbf{I}_{B} * \beta$$

$$(\mathbf{I}_{C})' = \mathbf{F'}_{(\beta)} = (\beta * \mathbf{I}_{B})' = \mathbf{I}_{B} = 23,94 * 10-6 = 1,23\% * (1,591*10-3)$$

Η ποσότητα 1,23% είναι χρήσιμη διότι το β μεταβάλλεται με τη θερμοκρασία και επηρεάζεται το Ι.

Ερώτημα 3.3.3.1 (Πειραματικοί υπολογισμοί)

```
V_C = 8,919 \text{ V } / V_E = 1,515 \text{ V } / V_B = 2,217 \text{ V}
V_{CE} = V_C - V_E = 8,919 - 1,515V = 7,334V
V_{BE} = V_B - V_E = 2,217V - 1,515V = 0,702V
V_{RB1} = V_{CC} * R_{B1} / (R_{B1} + R_{B2})
                                            = 12,5V
V_{RB2} = V_{CC} * R_{B2} / (R_{B1} + R_{B2})
                                              = 2,5 V
I_1 = V_{RB1} / R_{B1} = 12,5 \text{V} / 54 \text{K}\Omega
                                              = 0.232 \, \text{mA}
I_2 = V_{RB2} / R_{B2} = 2.5 \text{V} / 10.8 \text{K}\Omega = 0.232 \text{ mA}
I_B = I_C / \beta = 7.32 \text{mA} / 150
                                              =48,78 \mu A
I_{c} = V_{c} / R_{c} = 8,78 \text{V} / 1,2 \text{ K}\Omega
                                               = 7,316mA
                                               = 149,98
B = I_C / I_B
I_E = I_B + I_C
                                               = 7,365 \, \text{mA}
```

Ερώτημα 3.3.3.2

Ερώτημα 3.3.3.3 (Θεωρητικοί υπολογισμοί)

Από KVL στο ισοδύναμο Thevenin έχουμε:

$$I_c = (ETH - 0.7) / (R_B / \beta + R_E)$$
 = 6mA
 $I_B = IC / \beta$ = 40 μ A
 $V_{CE} = V_{CC} - I_C * (R_C + R_E)$ = 6V

$$V_E = I_E * R_E$$
 = 1,8V
 $V_C = V_{CE} + V_E = 6,0 + 1,8$ = 7,8V
 $V_B = V_{BE} + V_E = 0,7 + 1,8$ = 2,5V

Οι αποκλίσεις οφείλονται σε ανοχες των αντιστάσεων και αποκλίσεις του β.

Ερώτημα 3.3.3.4

Το $\boldsymbol{\beta}$ πειραματικά είναι **149,97** και θεωρητικά **100**. Η απόκλιση οφείλεται στο γεγονός ότι το $\boldsymbol{\beta}$ επηρεάζεται από το ρεύμα $\mathbf{I}_{\mathbf{c}}$ και την θερμοκρασία.

Ερώτημα 3.3.3.5

$$\textbf{F}_{(\beta)} = \textbf{I}_{\text{C}} = \textbf{I}_{\text{B}} * \beta$$

$$(I_C)' = F'_{(\beta)} = (\beta * I_B)' = I_B = 40 \mu A$$

Ερώτημα 3.3.3.6

Παρατηρούμε ότι, αύξηση του λόγου $R_B/(\beta*R_E)$ μειώνει το I_C και μείωση του I_C προκαλεί αύξηση του V_{CE} .