

MENTOR TALKS

Ngobrol topik santai tentang Al bareng mentor dan member di telegram

Tentang Komunitas Indonesia Al

Bertumbuh Bersama Komunitas

Mari bergabung bersama ribuan lebih para pembelajar dan praktisi Al lainnya di komunitas Indonesia Al!

We are a community

Komunitas Indonesia AI berkomitmen untuk mengadakan program-program menarik dan tanpa biaya yang mengangkat ragam topik di dunia AI. Kamu juga bisa bertemu dengan para mentor kami di komunitas ini. Dari komunitas untuk komunitas.

We are a community, together we can!

Benefits

Networking

Berkenalan dengan para member lainnya melalui ragam program hingga event rutin yang diadakan.

Troubleshooting

Merasa sulit ketika coba buat Al sendiri? Kamu bisa coba konsultasikan masalah yang kamu hadapi ke para mentor kami atau member lainnya.

Collaboration

Kamu akan memiliki kesempatan untuk berkolaborasi bersama untuk mengadakan event yang mengundang para ahli Al di Indonesia.

Inspiration

Kami percaya kalau kamu bergerak bersama kamu bisa mendapatkan banyak inspirasi untuk hal yang tengah kamu lakukan dengan teknologi Al, termasuk informasi karir.

Tim Pengurus

Registered members

Komunitas Indonesia AI terdiri dari pengurus inti dan para anggota yang teregistrasi sebanyak lebih dari 1000 members termasuk kamu!

Open Recruitment

Kedepan kami akan buka program <u>Open</u>
<u>Recruitment</u> Pengurus Komunitas Indonesia Al
2021/2022, stay tuned terus yah!

Muhammad Angga Muttaqien

Lead dan Mentor

Minat: Computer Vision, Natural
Language Processing, Reinforcement
Learning, Robotics

Domisili: Tokvo, Jepana

Tim Pengurus

Muhammad Vikri

Vice Lead dan Mentor

Minat: Python Programming, Data
Analytics

Domisili: Depok, Jawa Barat

Faris Dzaudan Qadri

Data Scientist dan Mentor

Minat: Data Science, Machine Learning

Domisili: Bremen, Jerman

Muhammad Iqbal

Software Engineer dan Mentor

Minat: Python Programming, Javascript
Programming

Domisili: Kairo, Mesir

Muhammad Hendrawan Hidayat

Mentor Minat: Python Programming, Computer Vision Domisili: Surabaya, Jawa Timur

Hari Purnomo Sidik

Mentor

Minat: Deep Learning, Computer Vision, Natural Language Processing Domisili: Makassar, Sulawesi Selatan

Sesi networking (10 menit)

Yuk silahkan para member bisa memperkenalkan dirinya dulu :)

Mentor Talks Catboost Classifier Algorithm

Catboost

What is Catboost?

- A boosting method that focuses on processing categorical features and boosting trees some "ordering principle".
- The main take-away is to apply ordering principle in:
 - 1. Target encoding categorical features
 - 2. Boosting trees

- An efficient way to deal with categorical variables is to substitute them with numerical values (usually some target statistics).
- Mean Target Encoding: Replace categoricals with mean target value for them.

Example

Color	Target
blue	0
red	1
blue	1
blue	1
green	0
red	0

Color	Mean_Target		
blue	(0+1+1)/3 = 0.67		
red	(1+0)/2 = 0.5		
green	0/1 = 0		

Color	enc_color	Target
blue	0.67	0
red	0.5	1
blue	0.67	1
blue	0.67	1
green	0	0
red	0.5	0

Target Encoding with Smoothing

- We usually apply some smoothing in the calculation with a **prior term.**
- avg_target = (count inclass + prior) / (total count + 1)

• Example: Assume prior = 0.05

Color	Target
blue	0
red	1
blue	1
blue	1
green	0
red	0

Color	Mean_Target
blue	(2+0.05)/4 = 0.51
red	(1+0.05)/3 = 0.35
green	(0+0.05/2 = 0.025

Color	enc_color	Target
blue	0.51	0
red	0.35	1
blue	0.51	1
blue	0.51	1
green	0.025	0
red	0.35	0

Ordered Target Encoding

- Why use "ordered" encoding? It helps prevent overfitting due to "target leakage".
- Target statistics rely on the observed history.

• Example: Assume prior = 0.05

Color	Target
blue	0
red	1
blue	1
blue	1
green	0
red	0

Color	Mean_Target	
blue	(0+0.05)/(0+1) = 0.05	
red	(0+0.05)/(0+1) = 0.05	
/	Still no red 1 before	
Still no red = 1 before		

Ordered Target Encoding

- Why use "ordered" encoding? It helps prevent overfitting due to "target leakage".
- Target statistics rely on the observed history.

• Example: Assume prior = 0.05

Color	Target
blue	0
red	1
blue	1
blue	1
green	0
red	0

Color	Mean_Target	
blue	(0+0.05)/(0+1) = 0.05	
red	(0+0.05)/(0+1) = 0.05	
blue	(0+0.05)/(1+1) = 0.025	
Now one blue before		
Still no blue = 1 before		

Ordered Target Encoding

- Why use "ordered" encoding? It helps prevent overfitting due to "target leakage".
- Target statistics rely on the observed history.

• Example: Assume prior = 0.05

Color	Target
blue	0
red	1
blue	1
blue	1
green	0
red	0

Now	one	red	= 1
		oefo	ore

Color	Mean_Target
blue	(0+0.05)/(0+1) = 0.05
red	(0+0.05)/(0+1) = 0.05
blue	(0+0.05)/(1+1) = 0.025
blue	(1+0.05)/(2+1) = 0.35
green	(0+0.05)/(0+1) = 0.05
red	→(1+0.05)/(1+ ⁴ 1) = 0.05

Now one **red** before

Classical Boosting

In classical boosting, we fit multiple trees using the **whole dataset** (x_n) . This can be lead to **overfitting**.

Ordered Boosting

- Assume model Mi was trained on the first i data points.
- We compute residuals at each data point i using model Mi-1 (use a tree that didn't see that data point before)

 Data points

Our Channel

Find us on **Youtube**

