Task: Determine the eligibility for granting Home loan.

Objective of this notebook is:

- 1. To understand the patterns in the data.
- 2. How to Handle the categorical features.
- 3. How to deal with missing data.
- 4. Feature Engineering
- 5. Finding the most important features while taking the decision of granting a loan application.
- 6. Understanding the Normalization and standardisation of the data.

Load data and libraries

```
[ ] → 11 cells hidden
```

▶ Basic Data Exploration

```
[ ] → 9 cells hidden
```

Basic Data visualization: Univariate

```
[ ] → 11 cells hidden
```

Simple Feature Engineering

```
# Feature binning: income
bins=[0,2500,4000,6000, 8000, 10000, 20000, 40000, 81000]
group=['Low','Average','medium', 'H1', 'h2', 'h3', 'h4', 'Very high']
data['Income_bin']= pd.cut(data['ApplicantIncome'],bins,labels=group)
data.head()
```

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coap
0	Male	No	0	Graduate	No	5849	
1	Male	Yes	1	Graduate	No	4583	
2	Male	Yes	0	Graduate	Yes	3000	

Incomes

```
[ ] → 11 cells hidden
```

Loan Amount and Loan Term

```
[ ] →11 cells hidden
```

Dependents and Loan approval

```
[ ] → 6 cells hidden
```

Credit Score vs Loan Approval

```
[ ] →3 cells hidden
```

Missing Values & Data Cleaning

data.isna().sum()

Gender	13
Married	3
Dependents	15
Education	0
Self_Employed	32
ApplicantIncome	0
CoapplicantIncome	0
LoanAmount	22
Loan_Amount_Term	14
Credit_History	50
Property_Area	0
Loan_Status	0
TotalIncome	0
Loan_Amount_per_year	36
EMI	36
Able_to_pay_EMI	0
dtype: int64	

[#] Function to create a data frame with number and percentage of missing data in a d

```
def missing to df(df):
```

#Number and percentage of missing data in training data set for each column
total_missing_df = df.isnull().sum().sort_values(ascending =False)
percent_missing_df = (df.isnull().sum()/df.isnull().count()*100).sort_values(as
missing_data_df = pd.concat([total_missing_df, percent_missing_df], axis=1, key
return missing data df

missing_df = missing_to_df(data)
missing_df[missing_df['Total'] > 0]

Total	Percent
50	8.143322
36	5.863192
36	5.863192
32	5.211726
22	3.583062
15	2.442997
14	2.280130
13	2.117264
3	0.488599
	50 36 36 32 22 15 14

```
# Credit History=2 for nan/missing values.
data['Credit_History'] = data['Credit_History'].fillna(2)

# Self_Employed = 'Other' for nan
data.Self_Employed.unique()
    array(['No', 'Yes', nan], dtype=object)

data['Self_Employed'] = data['Self_Employed'].fillna('Other')

# median imputation for numerical columns.
from sklearn.impute import SimpleImputer

num_missing = ['EMI', 'Loan_Amount_per_year', 'LoanAmount', 'Loan_Amount_Term']

median_imputer = SimpleImputer(strategy = 'median')
for col in num_missing:
    data[col] = pd.DataFrame(median_imputer.fit_transform(pd.DataFrame(data[col])))

# Highest Freq imputation for some categorical columns.
cat missing = ['Gender', 'Married', 'Dependents']
```

Categorical to Numerical encoding

Nominal vs Ordinal variables

- 1. One Hot Encoding
- 2. Label encoding
- 3. Target Encoding

Appropriate encoding depends on what our task is (and) what we do next?

Task: Compute Correlation (PCC and SRCC) between each feature and the Loan-Status

```
s = (data.dtypes == 'object')
object_cols = list(s[s].index)
object_cols

['Gender',
    'Married',
    'Education',
    'Self_Employed',
    'Property_Area',
    'Loan_Status']
```

Loan Status

```
[ ] →3 cells hidden
```

▼ Gender

```
#Gender
data['Gender'].value_counts()

Male 502
Female 112
Name: Gender, dtype: int64
```

```
from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()
col='Gender'
data[col] = label_encoder.fit_transform(data[col])
data[col].value_counts()

1    502
0    112
Name: Gender, dtype: int64
```

Married

```
[ ] →2 cells hidden
```

Property Area

```
# col='Property_Area'
col='Property_Area'
data[col].value_counts()

Semiurban 233
Urban 202
Rural 179
Name: Property_Area, dtype: int64
!pip install category_encoders
```

Looking in indexes: https://us-python.pkg.dev/colab-w
Requirement already satisfied: category_encoders in /usr/local/lib/python3.7/c
Requirement already satisfied: scikit-learn>=0.20.0 in /usr/local/lib/python3.7/dist-p
Requirement already satisfied: patsy>=0.5.1 in /usr/local/lib/python3.7/dist-p
Requirement already satisfied: pandas>=0.21.1 in /usr/local/lib/python3.7/dist-p
Requirement already satisfied: scipy>=1.0.0 in /usr/local/lib/python3.7/dist-p
Requirement already satisfied: statsmodels>=0.9.0 in /usr/local/lib/python3.7/dist-p
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-p
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python
Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (
Requirement already satisfied: bython-dateutil>=2.0.0 in /usr/local/lib/python3.
Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-p

```
from category_encoders import TargetEncoder
te = TargetEncoder()
```

```
data[col] = te.fit_transform(data[col], data['Loan_Status'])

col='Property_Area'
data[col].value_counts()

0.768240    233
    0.658416    202
    0.614525    179
Name: Property_Area, dtype: int64
```

▼ Education

Self Employed

```
[ ] → 4 cells hidden
```

▼ Correlation Coefficients

```
#PCC
plt.figure(figsize=(15, 15))
sns.heatmap(data.corr(method='pearson'), square=True,annot=True)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f3e2ed98f50>

Gender -	- 1	0.36	0.17	0.045	-0.04	0.059	0.083	0.11	-0.074	-0.01	-0.11	0.018	0.0
Married -	0.36	1	0.33	0.012	-0.044	0.052	0.076	0.15	-0.1	0.032	0.0068	0.091	0.0
Dependents -	0.17	0.33	1	0.056	-0.021	0.12	0.03	0.16	-0.1	-0.044	0.0018	0.01	0.
Education -	0.045	0.012	0.056	1	-0.016	-0.14	-0.062	-0.17	-0.074	-0.038	-0.056	-0.086	-0.
Self_Employed -	-0.04	-0.044	-0.021	-0.016	1	-0.00059	0.076	0.0034	-0.013	0.11	-0.029	0.016	0.0
ApplicantIncome -	0.059	0.052	0.12	-0.14	-0.00059	1	-0.12	0.57	-0.047	-0.034	-0.016	-0.0047	0.
CoapplicantIncome -	0.083	0.076	0.03	-0.062	0.076	-0.12	1	0.19	-0.059	0.069	-0.024	-0.059	0.
LoanAmount -	0.11	0.15	0.16	-0.17	0.0034	0.57	0.19	1	0.037	0.03	-0.018	-0.033	0.
Loan_Amount_Term -	-0.074	-0.1	-0.1	-0.074	-0.013	-0.047	-0.059	0.037	1	-0.0091	0.038	-0.023	-0.0
Credit_History -	-0.01	0.032	-0.044	-0.038	0.11	-0.034	0.069	0.03	-0.0091	1	0.011	0.42	-0.0(
Property_Area -	-0.11	0.0068	0.0018	-0.056	-0.029	-0.016	-0.024	-0.018	0.038	0.011	1	0.14	-0.0
Loan_Status -	0.018	0.091	0.01	-0.086	0.016	-0.0047	-0.059	-0.033	-0.023	0.42	0.14	1	-0.0
TotalIncome -	0.093	0.083	0.13	-0.16	0.034	0.89	0.34	0.62	-0.071	-0.00098	-0.026	-0.031	
Loan Amount per vear	0.058	0.091	0.1	-0.079	0.01	0.32	0.14	0.49	-0.49	0.074	-0.015	-0.01	0.

#SRCC

plt.figure(figsize=(15, 15))

sns.heatmap(data.corr(method='spearman'), square=True,annot=True)

<matplotlib.axes. subplots.AxesSubplot at 0x7f3e2f27f950>

plt.scatter(data['Credit_History'], data['Loan_Status'])
plt.show()

#sometimes scatter plots can be misleading do to catgeorical nature of the data

sns.countplot(data =data, x = 'Credit_History', hue = 'Loan_Status')

Column Standarization and Normalization

- Mean centering and Variance scaling (Stndard Scaling)
- MinMax Scaling

from sklearn.preprocessing import StandardScaler, MinMaxScaler

```
scaler = StandardScaler()
std_data = scaler.fit_transform(data)
std_data = pd.DataFrame(std_data, columns=data.columns)
std_data.head()
```

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Co
0	0.472343	-1.372089	-0.737806	-0.528362	-0.174052	0.072991	
1	0.472343	0.728816	0.253470	-0.528362	-0.174052	-0.134412	
2	0.472343	0.728816	-0.737806	-0.528362	-0.586643	-0.393747	
3	0.472343	0.728816	-0.737806	1.892641	-0.174052	-0.462062	
4	0.472343	-1.372089	-0.737806	-0.528362	-0.174052	0.097728	

✓ 0s completed at 19:08

×