Evaluating HypothesesPart II

Recap on Evaluation

Sample error

error_S(h)
$$\equiv 1/n$$
 . $\Sigma_{x \in S} \delta(c(x) \neq h(x))$
where $\delta(c(x) \neq h(x)) = 1$ if $c(x) \neq h(x)$; 0 otherwise

Generalisation error

$$\operatorname{error}_{D}(h) \equiv \operatorname{Pr}_{x \in D} [c(x) \neq h(x)]$$

- Approximate error_D(h) using error_S(h)
 - Use S independent from generation of h (in any way)
 - Ensure S drawn from D if reporting predictive ability of h on D
 - When wrapper-based model selection is necessary, avoid using S for such purposes (use parts of the training data)
- \square error_S(h) is a random variable following a Binomial Distribution
 - Can be approximated via Normal Distribution (when n large and p not close to 0 or 1

Holdout Testing

- Most straightforward approach to hypothesis evaluation
 - Given data S*
 - ▶ Reserve $S \subset S^*$ for evaluating error_S(h) i.e., test/validation set
 - ◆ Utilise $S^* \setminus S = S'$ for training h i.e., training set
- S is now independent of the data used to train h
 - error_S(h) not an optimistic approximation of error_D(h)
 - Representative of unobserved instances drawn from D

Problems with Holdout Testing

- Data is limited
 - Collecting data can be expensive
 - Labelling is expensive
 - Supervised learning datasets typically not large

□ When measuring error_S(h), we must account for the various sources of variance

Interval size for error_S(h) inversely related to n

Using Data More Efficiently

- Reducing variance
 - Increase sample sizes
 - Aggregating results over repeated experiments ((re)using limited data)

- Repeated Holdout
- Cross-validation
- Bootstrapping

Repeated Holdout Testing

- Simply repeat holdout testing
 - Each iteration, randomly selection new sample to train h
 - Use remaining data to evaluate h
 - Average the error rates
- Not optimal use of the data
 - Overlap between data from test/validation samples
- How can we prevent this overlap?

k-Fold Cross-Validation

- Divide the dataset S^* into k mutually exclusive subsets
 - fold₁, ..., fold_k
 - Given
 - \bullet $|S^*| = n$; $m = \lfloor n / k \rfloor$
 - p = n % k; q = k p
 - There are
 - p folds with m + 1 instances
 - ◆ q folds with m instances
- □ k hypotheses $(h_1, ..., h_k)$ are trained and evaluated
 - Each h_i $(1 \le i \le k)$
 - ◆ Trained using S* \ fold_i
 - ◆ Evaluated using fold_i
 - Report average across the k results
 - Every instance evaluated once

- Example
 - ◆ Given a dataset S* such that
 - n = 134
 - k = 10
- We have
 - $m = \lfloor 134 / 10 \rfloor = 13$
 - ◆ p = 134 % 10 = 4
 - q = 10 4 = 6
- Thus
 - ◆ 4 folds with 14 instances
 - ◆ 6 folds with 13 instances

Issues with k-Fold Cross-Validation

1. How many splits are possible?

$$\left[\prod_{i=1}^{p} {n-(m+1)(i-1) \choose m+1}\right] \times \left[\prod_{j=1}^{q} {n-(m+1)p-m(j-1) \choose m}\right] / [(p!)(q!)]$$

- Still many possible permutations of k-folds
- 2. What is the class distribution across the folds?
 - Example
 - S* contains 100 instances
 - 20 with label 1; 80 with label 0
 - Assume 10-fold cross-validation
 - What is the greatest class imbalance possible with this example?

Stratified k-fold Cross-Validation

- Ensures that each fold approximately has the same class distribution as the given dataset
- Does not randomly assigning each instance in S* to a fold
- Separate S* into label-specific subsets
 - S_{y_i} : all instance from S^* with label y_i
 - Divide S_{y_i} into the k folds (similar to how we did it over S^*)
 - Repeat for all classes ensuring all folds differ in size by at most 1
- Variance can further be decreased by running cross-validation or stratified cross-validation repeatedly (*m* times)
 - i.e., $m \times k$ -fold cross-validation or $m \times k$ -fold stratified cross-validation

leave-one-out Cross-Validation

- \Box Let k = n
 - Each fold contains exactly 1 instance
- Train h using all data except 1 instance
- Evaluate h on left out instance
- How many possible sets of folds here?
 - One; it is deterministic
- Issues
 - Have to train n hypotheses; computational cost may be high
 - Strictly, each fold cannot follow class distribution in S*

leave-one-out Cross-Validation

Example

- Random dataset split equally into 2 classes
- 100 instances
- 50 with label 1; 50 with label 0
- Evaluate mode / majority-class h
 - Always classifies instances based on most-frequent class in training set
- With leave-one-out cross-validation
 - Each training fold contains 50 instances of one label (y) and 49 of the other (y')
 - Instance left out for testing has label y'
 - Evaluation gives 100% error across the n folds!
 - ◆ Expected error should be 50%

The 0.632 Bootstrap

- □ Randomly sample (with replacement) *n* instances from *S**
 - Let this sample be S'
 - Use S' to train h
- □ Use $S = S^* \setminus S'$ to evaluate h
- □ When sampling without replacement, the probability of picking each $x \in S^*$ is not uniform
 - Sample drawn not iid
 - Bootstrapping always samples each instance with the same probability

The 0.632 Bootstrap

- \Box Chance of picking a particular instance is 1/n
- □ Chance of not picking a particular instance is 1 1/n
- Probability that an instance is not chosen in the sample of size n is

$$(1 - 1/n)^n = e^{-1} = 0.368$$

- Recall that we are sampling with replacement so each draw is independent
- \square This where the name comes from: 1 0.368 = 0.632
 - The probability that an instance is chosen to train h

The 0.632 Bootstrap

- □ h is only trained with about 63.2% of the original data
- Error estimate can be quite pessimistic
- Recommendation is to combine it with error on the data used in training

$$0.632 \cdot \text{error}_{S}(h) + 0.368 \cdot \text{error}_{S'}(h)$$

- Repeat the process several times and take the average
- 0.632 Bootstrap is especially good with very small datasets

Issues with 0.632 Bootstrap

- Same example as before
 - Random dataset split equally into 2 classes
 - 100 instances
 - 50 with label 1; 50 with label 0
- Evaluate non-pruned decision tree h
 - h is consistent with training data, so error over data used in training is 0
 - Assume that true error rate of h is 0.5
- With 0.632 bootstrap evaluation
 - Bootstrap estimate is

$$0.632 * 0.5 + 0.368 * 0 = 0.316$$

- True error is 0.5, but the bootstrap error is 0.316
- Just under 20% difference!

Revisiting Wrapper-Methods

- Recall that when measuring some error_S(h) we must avoid using S for any part of the training/selection of h
 - Feature selection
 - Hyperparameter tuning
- To facilitate this, we use 3 independent samples
 - **Training set** trains various h_1 , ..., h_m (e.g., each with different features, hyperparameters, etc.)
 - Validation set evaluates each h with the purpose of choosing between them
 - Test set evaluates the chosen h
- Once evaluation is done, use all data on chosen learning scheme
- How can we do this with cross-validation?

Nested Cross-Validation

- "Outer" k-fold cross-validation to estimate quality of entire learning process
- With each of the k iterations
 - Consider training data as a new dataset and perform an "inner" p-fold cross-validation
 - Results of "inner" p-fold cross-validation guide model choice
 - "Inner" cross-validation is part of the learning scheme!
- Suppose you have a dataset with 100 instances
 - Assume 10-fold outer and inner cross-validation
 - What is the size of each sample?
 - ◆ Test set: 10 instances (100 / 10)
 - Validation set: 9 instances (90 / 10)
 - Training set: 81 instances (90 9)

Performance & Benchmarks

- Suppose you observe 10% error on h
 - Is this a good result?
- Application considerations
 - Needs analysis can inform us about the necessary accuracy required
 - Evaluation provides evidence for h
- Comparing against simple hypotheses (baselines)
 - Mode classifier are you at least doing better than always guessing the most frequent class
 - 10% error when the mode classifier gets 89.5% error means your hypothesis isn't looking too good
 - Landmarkers is h better than simple models?
 - Decision stump (decision tree with only 1 attribute split)
 - 1-nearest neighbour (a very simple instance-based learner)
 - Naive bayes

Performance & Benchmarks

- Versus state of the art (SOTA)
 - Show that your learning scheme (that produced h) is the best
 - Requires good evidence to convince people
- Comparing learning schemes
 - Want to show that Scheme X is better than Scheme Y for a particular problem domain
 - For a given amount of training data
 - On average, across all possible training sets from that domain
 - Simple approach assuming infinite data from domain available
 - Sample infinitely many samples of specified size
 - ◆ Use a method of evaluation e.g., cross-validation
 - Compare mean error of Scheme X against mean error for Scheme Y

Paired t-test

- Data is limited
 - Limited estimates to compute means over
- Student's t-test helps determine if the mean of two samples are significantly different
 - The two sample means are computed over the k cross-validation estimates
 - One set for Scheme X and the other for Scheme Y
 - Data used to evaluate each scheme is the same (i.e., same training-validation-test sets)
 - i.e., the samples are paired

Example

- Given Scheme X and Y
- Divide the dataset into k folds
- Each iteration we use the same fold to test Scheme X and Scheme Y while the rest is used by both schemes to train h
- here are thus k paired values under each scheme

Distribution of Means

- Given two samples of values:
 - Over Scheme X: err_{x,1}; err_{x,2}; ...; err_{x,k}
 - Over Scheme Y: err_{y,1}; err_{y,2}; ...; err_{y,k}
- Assume that each err_{x,i} and err_{y,i} pair is measured with
 - Same training data
 - Same test data
 - Only the scheme differs
- m_x and m_y are the respective means for Scheme X and Scheme Y
- From the Central Limit Theorem
 - With large k, m_x and m_y are normally distributed
 - Variances are $\sigma_{\rm x}^2/{\rm k}$ and $\sigma_{\rm v}^2/{\rm k}$
 - If μ_x and μ_y are the true means, then the following are approximately normally distributed with mean 0 and variance 1

$$\frac{m_x - \mu_x}{\sqrt{\sigma_x^2/k}} \frac{m_y - \mu_y}{\sqrt{\sigma_y^2/k}}$$

Student's Distribution

With small sample sizes (k < 100) the mean follows Student's distribution with k - 1 degrees of freedom

9 degrees of freedom

Assuming
we have
10 estimates

Z
4.30
3.25
2.82
1.83

1.38

0.88

10%

20%

 $D_{\nu}\Gamma T \setminus -1$

normal distribution

$Pr[T \geq z]$	Z
0.1%	3.09
0.5%	2.58
1%	2.33
5%	1.65
10%	1.28
20%	0.84

Distribution of the Differences

- $\Box \quad \text{Let } m_d = m_x m_y$
- The difference of the means (m_d) also has a Student's distribution with k-1 degrees of freedom
- Let σ_d^2 be the variance of the differences
- The standardised version of m_d is called the t-statistic

$$t = \frac{m_d}{\sqrt{\sigma_d^2/k}}$$

We use t to perform the paired t-test

Performing the Test

- Fix a significance level
 - If a difference is significant at the α % level, there is a (100 α)% chance that the true means differ
- Divide the significance level by two because the test is two-tailed
 - i.e., the true difference can be +ve or ve
 - There are thus k paired values under each scheme
- Look up the value for z that corresponds to α/2
- Compute the value of t based on the observed performance estimates for the schemes being compared
- □ If $t \le -z$ or $t \ge z$ then the difference is significant
 - i.e., the null hypothesis (that the difference is zero) can be rejected

Confusion Matrix

Important to analysis the kinds of errors made by h

Truth	Pred	icted
	Positive	Negative
Positive	True Positive	False Negative (Type II Error)
Negative	False Positive (Type I Error)	True Negative

- Many domains have their own specific measures, which are based on the values in the confusion matrix
 - Find out the ones used in your domain, and why they are used

Questions?