Algorithm

December 2020

1 Initialization step

- 1) Check that:
- D is connected
- g(x) is continuous and differentiable everywhere in D
- h(x) = ln(g(x)) is concave everywhere in D
 - 2) Initialize T_k (vector with k elements):
- $T_k = \{xi; i = 1, ..., k\}$, where $x_1 \leq ... \leq x_k$ are the k abscissae in D where we will evaluate h(x) and h'(x)
- If D unbounded on the left, chose x_1 s.t. $h'(x_1) > 0$
- If D unbounded on the right, chose x_k s.t. $h'(x_k) < 0$
- 3) Evaluate h(x) and h'(x) on T_k and store these as two-length k vectors, say h_x and h_prime_x
 - 4) Calculate z (vector with k + 1 elements):
- z_0 = lower bound of D (or $-\infty$ if D is not bounded below)
- For j = 1, ... k 1,

$$z_j = \frac{h(x_{j+1}) - h(x_j) - x_{j+1}h'(x_{j+1}) + x_jh'(x_j)}{h'(x_j) - h'(x_{j+1})}$$

(these are the points at which the tangents to h(x) at x_i and x_{i+1} intersect)

- z_k = upper bound of D (or ∞ if D is not bounded above)
- 5) Find u_k (this is the piecewise linear upper hull formed by tangents to h(x) at T_k):
- $u_k(x) = h(xj) + (x x_j)h'(x_j)$, where $x \in [z_{j-1}, z_j]$ and j = 1, ..., k
- NB: $\exp(u_k(x))$ is the rejection envelope on T_k
 - 6) Find s_k :
 - $s_k(x) = \frac{exp(u_k(x))}{\int \exp(u_k(x))dx}$

- 7) Find l_k (this is the piecewise linear lower hull formed by connecting adjacent points on h(x) where T_k is evaluated)
- $l_k(x) = \frac{(x_{j+1}-x)h(x_j)+(x-x_j)h(x_{j+1})}{x_{j+1}-x_j}$ where $x \in [x_j, x_{j+1}]$ and j = 1, ..., k-1• For $x < x_1$ or $x > x_k$, define $l_k(x) = -\infty$
- NB: $\exp(l_k(x))$ is the squeezing function on T_k

2 Sampling step

```
1) Sample a value x^* from s_k(x)
```

- 2) Sample a value w independently from Unif(0, 1)
- 3) Perform the test:
- If $w \le \exp(l_k(x^*) u_k(x^*))$:
- Accept x*
- \bullet Else:
 - Evaluate $h(x^*)$ and $h'(x^*)$
 - If $w \le h(x^*) u_k(x^*)$:
 - -Accept x^*
 - Else:
 - -Reject x^*

3 **Updating Step**

If $h(x^*)$ and $h'(x^*)$ were evaluated in Sampling Step:

- Include x^* in T_k to form T_{k+1}
- Relabel the x_i in T_k in ascending order
- Construct new functions $u_{k+1}(x)$, $s_{k+1}(x)$, and $l_{k+1}(x)$
- Increment k
- Return to Sampling Step if n points have not been sampled yet

No update necessary, repeat Sampling Step if n points have not been sampled yet 2.