1 Section 2.3, Problem 16

Using the Secant method, we will find solutions accurate to within 10^{-4} for the equations

$$x + y = 20$$

and

$$(x + \sqrt{x})(y + \sqrt{y}) = 155.55$$

To simplify things, we can substitute 20 - x for y, thus

$$(x + \sqrt{x})(20 - x + \sqrt{20 - x}) = 155.55$$

2 Source Code

The following C code can be used to find accurate values:

```
#include <stdlib.h>
#include <math.h>
double f(double x);
void secant_method(double a, double b);
int main()
   secant_method(0, 20);
   return 0;
}
double f(double x)
   return (x + sqrt(x)) * (20 - x + sqrt(20 - x)) - 155.55;
}
void secant_method(double a, double b)
   double x[100];
   unsigned int k = 1;
   x[0] = a;
   x[1] = b;
   printf("%d \t %5.20f \t %5.20f \n", 0, x[0], 20 - x[0]);
```

```
printf("%d \t %5.20f \t %5.20f \n", 1, x[1], 20 - x[1] );

while(f(x[k+1]) < 155.55 )
{
    while (x[k] >= 20)
        x[k] -= 19.9;
    if (x[k] <= 0)
        x[k] = .1;
    x[k+1] = x[k] - (f(x[k]) * (x[k] - x[k-1]) ) / (f(x[k]) - f(x[k-1]) );
    printf("%d \t %5.20f \t %5.20f \n", k+1, x[k+1], 20 - x[k+1] );
    k++;
}
printf("\n");
}</pre>
```

3 Results

	x	у
0	0.00000000000000000000	20.00000000000000000000
1	20.00000000000000000000	0.00000000000000000000
2	1.53406900958186542816	18.46593099041813346162
3	4.03640189425092010822	15.96359810574907989178
4	5.55341928389035555114	14.44658071610964356069
5	6.27190439576033220703	13.72809560423966779297
6	6.48350168476557353614	13.51649831523442557568
7	6.51184131418104517053	13.48815868581895571765
8	6.51284437534541726933	13.48715562465458361885
9	6.51284872546051918363	13.48715127453948170455
10	6.51284872610814069560	13.48715127389185930440

4 Summary

It is clearly shown that x converges to approximately 6.51284872610814069560 and y, which is defined as 20 - x, converges to 13.48715127389185930440.