

Test report No. : 11920654S-A-R2
Page : 1 of 32
Issued date : April 27, 2018
FCC ID : 2ADKK-DTG108

RADIO TEST REPORT

Test Report No.: 11920654S-A-R2

Applicant : Ueda Japan Radio Co., Ltd.

Type of Equipment : UWB Transceiver

Model No. : DTG-108

FCC ID : 2ADKK-DTG108

Test regulation : FCC Part 15 Subpart F: 2018

Test Result : Complied

1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.

- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- 6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. This report is a revised version of 11920654S-A-R1. 11920654S-A-R1 is replaced with this report.

Consumer Technology Division

Pate of test:

Representative test engineer:

Kenichi Adachi
Engineer
Consumer Technology Division

Approved by:

Toyokazu Imamura
Leader

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes	n UL Japar

There is no testing item of "Non-accreditation".

 Test report No.
 : 11920654S-A-R2

 Page
 : 2 of 32

 Issued date
 : April 27, 2018

 FCC ID
 : 2ADKK-DTG108

REVISION HISTORY

Original Test Report No.: 11920654S-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	11920654S-A	March 15, 2018	-	-
1	11920654S-A-R1	April 25, 2018	p.4, 6, 9, 15, 16, 17, 25, 32	Correction of mistakes and addition of missing information, added data.
2	11920654S-A-R2	April 27, 2018	p.25	Corrected error.
				<u> </u>

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No.
Page
Issued date
FCC ID

: 11920654S-A-R2 : 3 of 32 : April 27, 2018 : 2ADKK-DTG108

CONTENTS	PAGE
SECTION 1: Customer information	4
SECTION 2: Equipment under test (E.U.T.)	4
SECTION 3: Test specification, procedures & results	
SECTION 4: Operation of E.U.T. during testing	9
SECTION 5: Conducted Emission	
SECTION 6: Radiated Spurious Emission	
SECTION 7: UWB bandwidth and 99 % occupied bandwidth	12
SECTION 8: Antenna terminal conducted tests	
APPENDIX 1: Test data	14
Conducted Emission	14
Data of Radiation Test (Regulation: FCC 15.517 (c))	15
Data of Radiation Test (Regulation: FCC 15.517 (d))	
Data of Radiation Test (Regulation: FCC 15.517 (e))	25
Data of Antenna terminal conducted Test (Regulation: FCC 15.517 (c))	26
Bandwidth (Regulation: FCC 15.503(d), FCC 15.517 (b))	27
APPENDIX 2: Test instruments	
APPENDIX 3: Photographs of test setup	
Conducted Emission	
Radiated Spurious Emission	
Pre-check of Worst Case Position	

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 11920654S-A-R2

 Page
 : 4 of 32

 Issued date
 : April 27, 2018

 FCC ID
 : 2ADKK-DTG108

SECTION 1: Customer information

Company Name : Ueda Japan Radio Co., Ltd.

Address : 2-10-19, Fumiiri, Ueda City, Nagano Prefecture 386-8608, Japan

Telephone Number : +81-268-26-2146 Facsimile Number : +81-268-26-2072 Contact Person : Mitsugu Suzuki

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : UWB Transceiver

Model No. : DTG-108

Serial No. : Refer to Section 4, Clause 4.2

Rating : DC 5 V typical (DC 4.85 V to 5.25 V)

Receipt Date of Sample : December 5, 2017

Country of Mass-production : Japan

Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model: DTG-108 (referred to as the EUT in this report) is a UWB Transceiver.

General Specification

Clock frequency(ies) in the system : 44 MHz (RF part), 20 MHz (baseband), 24 MHz (USB)

Radio Specification

Equipment type : Transceiver

Frequency of operation : 7392 MHz - 8976 MHz

Type of modulation : OFDM
Antenna type : Chip
Antenna connector type : None

Antenna gain : +2.6 dBi max

Operating temperature +5 deg.C to +35 deg.C
Subclass of UWB Indoor communications device

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 11920654S-A-R2

 Page
 : 5 of 32

 Issued date
 : April 27, 2018

 FCC ID
 : 2ADKK-DTG108

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart F

FCC Part 15 final revised on March 12, 2018 and effective April 11, 2018

* The revisions made after testing date do not affect the test specification applied to the EUT.

Title : FCC 47CFR Part15 Radio Frequency Device

Section 15.207 Conducted limits Subpart F Ultra-Wideband Operation

Section 15.517 Technical requirements for indoor UWB systems.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*} Also the EUT complies with FCC Part 15 Subpart B.

Test report No. : 11920654S-A-R2
Page : 6 of 32
Issued date : April 27, 2018
FCC ID : 2ADKK-DTG108

3.2 Procedures and results

< Requirements for indoor UWB systems >

Item	Test Procedure		cification	Worst margin	Results	Remarks
Conducted emission	FCC: ANSI C63.10:2013 6 Standard test methods IC: RSS-Gen 8.8		Section 15.207 Section 15.505(a) RSS-220 5.2.1(b)	5.7 dB 0.15000 MHz L1, QP	Complied	-
UWB Bandwidth	FCC: Section 15.503(a) ANSI C63.10:2013 6 Standard test methods, 10 Procedures for measuring ultra-wideband devices	FCC:	Section 15.503(d) Section 15.517(b)	-	Complied	Radiated
	IC: RSS-220 Annex 2	IC:	RSS-220 2 RSS-220 5.1			
Radiated emission	FCC: Section 15.521(d) ANSI C63.10:2013 6 Standard test methods, 10 Procedures for measuring ultra-wideband devices	FCC:	Section 15.209 Section 15.517 (c), (d)	4.2 dB 1231.389 MHz AV, Vertical	Complied	Radiated (above 30 MHz) / Conducted (below 30 MHz)
	IC: RSS-Gen 6.5 RSS-220 Annex 4	IC:	RSS-220 5.2.1(c),(d),(e)			*1)
Peak level of the Emission	FCC: Section 15.521(e)(g) ANSI C63.10:2013 6 Standard test methods, 10 Procedures for measuring ultra-wideband devices IC: RSS-220 Annex 4		Section 15.517 (e) RSS-220 5.2.1(g)	8.7 dB 8532.893 MHz PK, Vertical	Complied	Radiated

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

FCC Part 15.31 (e)

This EUT provides stable voltage (DC 1.2 V, DC 2.4 V) constantly to RF part (except base band part) regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*1)} In the frequency range of less than 30 MHz, only measurement of antenna terminal conduction measurement was carried out and the radiated emission measurement was omitted, since it nothing was detected at the antenna terminal.

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

: 11920654S-A-R2 Test report No. Page : 7 of 32 **Issued date** : April 27, 2018 FCC ID : 2ADKK-DTG108

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99 % Occupied	IC: RSS-Gen 6.6	IC: -	N/A	-	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2.

Item	Frequency range	Uncertainty (+/-)				
		No. 1 SAC / SR	No. 2 SAC / SR	No. 3 SAC / SR	No. 4 SAC / SR	No. 5,6,8 SR
Conducted emission (AC Mains) LISN	150 kHz-30 MHz	2.5 dB	2.5 dB	2.6 dB	2.6 dB	2.6 dB
Radiated emission	9 kHz-30 MHz	3.2 dB	3.2 dB	3.3 dB	-	-
(Measurement distance: 3 m)	30 MHz-200 MHz	4.3 dB	4.3 dB	4.3 dB	-	-
Ι Γ	200 MHz-1 GHz	5.9 dB	5.9 dB	5.9 dB	-	-
	1 GHz-6 GHz	4.7 dB	4.7 dB	4.7 dB	-	-
	6 GHz-18 GHz	5.3 dB	5.3 dB	5.3 dB	-	-
Ι Γ	18 GHz-40 GHz	5.6 dB	5.6 dB	5.6 dB	-	-
Radiated emission	1 GHz-18 GHz	5.6 dB	5.6 dB	5.6 dB	-	-
(Measurement distance: 1 m)	18 GHz-40 GHz	5.9 dB	5.9 dB	5.9 dB	-	-
Radiated emission	30 MHz-200 MHz	4.8 dB	4.8 dB	4.8 dB	-	-
(Substitution measurement;3m)	200 MHz-1 GHz	3.6 dB	3.6 dB	3.6 dB	-	-
(EUT height 1.5m)	1 GHz-13 GHz	4.4 dB	4.4 dB	4.4 dB	-	-
Radiated emission	1 GHz-13 GHz	5.0 dB	5.0 dB	5.0 dB	-	-
(Substitution measurement;1m)	13 GHz-18 GHz	5.7 dB	5.7 dB	5.7 dB	-	-
(EUT height 1.5m)	18 GHz-26.5 GHz	4.3 dB	4.3 dB	4.3 dB	-	-
Ι Γ	26.5 GHz-40 GHz	4.5 dB	4.5 dB	4.5 dB	-	-
Radiated emission	1 GHz-13 GHz	5.0 dB	5.0 dB	5.0 dB	-	-
(Substitution measurement;0.5m)	13 GHz-18 GHz	5.6 dB	5.6 dB	5.6 dB	-	-
(EUT height 1.5m)	18 GHz-26.5 GHz	4.2 dB	4.2 dB	4.2 dB	-	-
Ι Γ	26.5 GHz-40 GHz	4.4 dB	4.4 dB	4.4 dB	-	-
Radiated emission	1 GHz-13 GHz	5.1 dB	5.1 dB	5.1 dB	-	-
(Substitution measurement;0.3m)	13 GHz-18 GHz	5.6 dB	5.6 dB	5.6 dB	-	-
(EUT height 1.5m)	18 GHz-26.5 GHz	4.2 dB	4.2 dB	4.2 dB	-	-
Ι Γ	26.5 GHz-40 GHz	4.4 dB	4.4 dB	4.4 dB	-	-
Radiated emission	1 GHz-13 GHz	5.8 dB	5.8 dB	5.8 dB	-	-
(Substitution measurement;0.1m)	13 GHz-18 GHz	5.9 dB	5.9 dB	5.9 dB	-	-
(EUT height 1.5m)	18 GHz-26.5 GHz	4.6 dB	4.6 dB	4.6 dB	-	-
	26.5 GHz-40 GHz	4.8 dB	4.8 dB	4.8 dB	-	-

SAC=Semi-Anechoic Chamber

SR= Shielded Room is applied besides radiated emission

Antenna terminal test	Uncertainty (+/-)
Power Measurement above 1 GHz (Average Detector)_SPM-06	0.48 dB
Power Measurement above 1 GHz (Peak Detector)_SPM-06	0.66 dB
Power Measurement above 1 GHz (Average Detector)_SPM-07	0.47 dB
Power Measurement above 1 GHz (Peak Detector)_SPM-07	0.64 dB
Spurious emission (Conducted) below 1GHz	1.8 dB
Spurious emission (Conducted) 1 GHz-3 GHz	1.7 dB
Spurious emission (Conducted) 3 GHz-18 GHz	2.5 dB
Spurious emission (Conducted) 18 GHz-26.5 GHz	2.5 dB
Spurious emission (Conducted) 26.5 GHz-40 GHz	2.7 dB
Bandwidth Measurement	1.01 %
Duty cycle and Time Measurement	0.012 %

Conducted Emission test

The data listed in this test report has enough margin, more than the site margin.

Radiated emission test
The data listed in this report meets the limits unless the uncertainty is taken into consideration.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 11920654S-A-R2

 Page
 : 8 of 32

 Issued date
 : April 27, 2018

 FCC ID
 : 2ADKK-DTG108

3.5 Test Location

UL Japan, Inc. Shonan EMC Lab.

1-22-3, Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN

Telephone: +81 463 50 6400, Facsimile: +81 463 50 6401

JAB Accreditation No. RTL02610

FCC Test Firm Registration Number: 839876

Tee Test I iiii Registi	land and an	1		M aximum
Test site	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	measurement distance
No.1 Semi-anechoic chamber	2973D-1	20.6 x 11.3 x 7.65	20.6 x 11.3	10 m
No.2 Semi-anechoic chamber	2973D-2	20.6 x 11.3 x 7.65	20.6 x 11.3	10 m
No.3 Semi-anechoic chamber	2973D-3	12.7 x 7.7 x 5.35	12.7 x 7.7	5 m
No.4 Semi-anechoic chamber	-	8.1 x 5.1 x 3.55	8.1 x 5.1	-
No.1 Shielded room	-	6.8 x 4.1 x 2.7	6.8 x 4.1	-
No.2 Shielded room	-	6.8 x 4.1 x 2.7	6.8 x 4.1	-
No.3 Shielded room	1-	6.3 x 4.7 x 2.7	6.3 x 4.7	-
No.4 Shielded room	-	4.4 x 4.7 x 2.7	4.4 x 4.7	-
No.5 Shielded room	-	7.8 x 6.4 x 2.7	7.8 x 6.4	-
No.6 Shielded room	-	7.8 x 6.4 x 2.7	7.8 x 6.4	-
No.8 shielded room	-	3.45 x 5.5 x 2.4	3.45 x 5.5	-
No.1 Measurement room	-	2.55 x 4.1 x 2.5	-	-

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11920654S-A-R2
Page : 9 of 32
Issued date : April 27, 2018
FCC ID : 2ADKK-DTG108

SECTION 4: Operation of E.U.T. during testing

4.1 **Operating Mode(s)**

The EUT exercise program used during testing was designed to exercise the various system components in a manner similar to typical use.

Test Item	Mode
All items	Transmitting
	Software: RET Tool, ver.8.14.8
	Power setting: Fixed
	*This setting of software is the worst case.
	Any conditions under the normal use do not exceed the condition of setting.
	In addition, end users cannot change the settings of the output power of the product.
	*1) We tested with the operation mode in three channel simultaneous transmission and with the worst case of the modulation operation mode used in actual radio operation.
	Pre-check was by customer in test of this job while being seen by customers.
	(This EUT is In a normal communication operation, a transmission operation is always performed in which
	three channels are transmitted.)

Justification:

The system was configured in typical fashion (as customer would normally use it) for testing.

4.2 Configuration and peripherals

- A 1 B 2 C 3 AC 120 V / 60 Hz
- * Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.
- * The ferrite core attached to DC cable is not used to reduce the noise from the EUT. Therefore, that does not affect the emission level of the EUT.

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	UWB Transceiver	DTG-108	9990016	Ueda Japan Radio Co., Ltd.	EUT
В	Personal Computer	Latitude E5500	33406843389	Dell	-
С	AC adapter	HA90PE0-00	0W529	Dell	_

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	USB	3.0	Shielded	Shielded	-
2	DC	1.8	Unshielded	Unshielded	-
3	AC	0.8	Unshielded	Unshielded	-

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11920654S-A-R2
Page : 10 of 32
Issued date : April 27, 2018
FCC ID : 2ADKK-DTG108

SECTION 5: Conducted Emission

Test Procedure and conditions

EUT was placed on a platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The table is made of expanded polystyrol and expanded polypropylene and the table top is covered with polycarbonate. That has very low permittivity.

The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80 cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 50 ohm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT via AC adapter in a Shielded room.

The EUT via AC adapter was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector : QP and CISPR AV
Measurement range : 0.15 MHz - 30 MHz

Test data : APPENDIX

Test result : Pass

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11920654S-A-R2
Page : 11 of 32
Issued date : April 27, 2018
FCC ID : 2ADKK-DTG108

SECTION 6: Radiated Spurious Emission

Test Procedure

[For below 960 MHz]

EUT was placed on a platform of nominal size, 0.15 m by 0.05 m, raised 0.8 m above the conducting ground plane. The table is made of expanded polystyrol and expanded polypropylene and the table top is covered with polycarbonate. That has very low permittivity.

[For above 960 MHz]

EUT was placed on a platform of nominal size, 0.15 m by 0.05 m, raised 1.5 m above the conducting ground plane. The table is made of expanded polystyrol and expanded polypropylene and the table top is covered with polycarbonate. That has very low permittivity.

(UWB emissions and other emissions)

1) The height of the measuring antenna varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

(UWB emissions only)

2) Exchanged the EUT to the Substitution Antenna, the measurement was set for the same height 1.5m as the EUT. The frequency below 1GHz of the Substitution Antenna was used the Half wave dipole Antenna, which was tuned the measured frequency in 1).

The frequency above 1GHz of the Substitution Antenna was used Horn Antenna.

The Substitution Antenna was connected to the Signal Generator, and the polarized electromagnetic radiation of the Substitution Antenna was matched with the one of the measuring Antenna, which was set with the Signal Generator to the measured frequency in 1). Then, we set with the Output power (CW) of the Signal Generator where the measuring electromagnetic field strength is equal to the measured value in 1) by means of varying the measuring antenna height between 1 to 4m to obtain maximum receiving level.

Its Output power of Signal Generator was recorded.

3) Effective radiated power was calculated by subtracting the cable loss and the attenuator loss connected between the Signal Generator and the Substitution Antenna from the Output power of the Signal Generator recorded in 2).

For the usage of the antenna (horn Antenna) except for the half wave dipole antenna (2.15dBi) for the substitution antenna, the equivalent isotropic radiated power was calculated by compensating not the finite difference in the antenna gain of the half wave dipole antenna, and substitution antenna.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 11920654S-A-R2

 Page
 : 12 of 32

 Issued date
 : April 27, 2018

 FCC ID
 : 2ADKK-DTG108

Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

Frequency	Below 960 MHz	Above 960 MHz	
Instrument used	Test Receiver	Spectrum Analyzer	
Detector	Quasi-Peak (QP)	Peak (PK)	RMS (AV)
IF Bandwidth	BW 120 kHz	(for UWB spurious emission):	(for UWB spurious emission):
		RBW: 1 MHz	RBW: 1 MHz
		VBW: 3 MHz	VBW: 3 MHz
		(for carrier's emission):	(for Peak level of the emission)
		RBW: 3 MHz	RBW: 1 kHz
		VBW: 3 MHz	VBW: 3 kHz
Test Distance	3 m	0.5 m *1) (960 MHz – 10.6 G	Hz),
		0.3 m *2) (10.6 GHz – 17 GHz	z),
		0.1 m *3) (above 17 GHz)	

*1) Distance Factor: $20 \times \log (0.5 \text{ m} / 3.0 \text{ m}) = -15.56 \text{ dB}$ *2) Distance Factor: $20 \times \log (0.3 \text{ m} / 3.0 \text{ m}) = -20.00 \text{ dB}$ *3) Distance Factor: $20 \times \log (0.1 \text{ m} / 3.0 \text{ m}) = -29.54 \text{ dB}$

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

Polarity			-	Frequ	ency [GHz]			
	0.03-0.96	0.96-1	1-4.8	4.8-10.6	10.6-17	17-18	18-26.5	26.5-40
Hor.	X	X	Y	X	Z	Z	Z	Y
Ver.	Z	Z	Z	Y	Y	Y	Z	Z

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 30 MHz - 40 GHz
Test data : APPENDIX
Test result : Pass

SECTION 7: UWB bandwidth and 99 % occupied bandwidth

Test Procedure

The tests were made with below setting by a radiated electric field in semi-anechoic chamber.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
UWB Bandwidth,	2 GHz	1 MHz	1 MHz	Auto	Peak	Max Hold	Spectrum Analyzer
99 % Occupied							-
Bandwidth							

Test data : APPENDIX
Test result : Pass

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11920654S-A-R2
Page : 13 of 32
Issued date : April 27, 2018
FCC ID : 2ADKK-DTG108

SECTION 8: Antenna terminal conducted tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument used
Conducted	9 kHz to 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Spurious	150 kHz to 30 MHz	10 kHz	30 kHz				
Emission *1)							

^{*1)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart.

The test results and limit are rounded off to two decimals place, so some differences might be observed.

Test data : APPENDIX

Test result : Pass

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 $^{(9 \}text{ kHz} - 150 \text{ kHz}: RBW = 200 \text{ Hz}, 150 \text{ kHz} - 30 \text{ MHz}: RBW = 10 \text{ kHz})$

: 11920654S-A-R2 Test report No. Page : 14 of 32 Issued date : April 27, 2018 : 2ADKK-DTG108 FCC ID

APPENDIX 1: Test data

Conducted Emission DATA OF CONDUCTED EMISSION TEST

UL Japan,Inc. Shonan EMC Lab. No.3 Shielded Room

Date : 2018/01/30

Mode : Trasmittig UWB

: AC 120 V / 60 Hz (PC's AC adapter in) : 23 deg.C / 23 %RH Power Temp./Humi

Remarks : with AC adapter of personal computer

Limit1: FCC 15C (15.207) QP Limit2: FCC 15C (15.207) AV : Kenichi Adachi Engineer

						1						+
1	Freq.	Rea		C.Fac	Res		Lin		Mar			
No.		<qp></qp>	<av></av>		<qp></qp>	<av></av>	<qp></qp>	<av></av>	<qp></qp>	<av></av>	Pha se	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
1	0.15000	47.16	28.43	12.52	59.68	40.95	66.00	56.00	6.3	15.0	N	
2	0.24578	35.69	17.44	12.52	48.21	29.96	61.90	51.90	13.6	21.9	N	
3	0.63453	17.43	12.78	12.57	30.00	25.35	56.00	46.00	26.0	20.6	N	
4	2.51291	4.95	-3.02	12.77	17.72	9.75	56.00	46.00	38.2	36.2	N	
5	10.57687	15.44	7.48	13.88	29.32	21.36	60.00	50.00	30.6	28.6	N	
6	18.36416	15.08	8.89	14.71	29.79	23.60	60.00	50.00	30.2	26.4	N	
7	0.15000	47.78	29.18	12.52	60.30	41.70	66.00	56.00	5.7	14.3	L1	
8	0.24787	36,28	17.94	12.52	48.80	30.46	61.83	51.83	13.0	21.3	L1	
9	0.63418	24.49	19.78	12.57	37.06	32.35	56.00	46.00	18.9	13.6	L1	
10	2.54501	11.96	0.54	12.77	24.73	13.31	56.00	46.00	31.2	32.6	L1	
11	10.36437	15.56	7.34	13.86		21.20	60.00	50.00		28.8	L1	
12	16.56846	9.34	2.93	14.58	23.92	17.51	60.00	50.00		32.4	Li	
'-							*****					
			i									
			ŀ				1					
			ı				1					
							-					
			ŀ				-					
						-						

 $\begin{tabular}{ll} Calculation: Result [dBuV] = Reading [dBuV] + C.Fac (LISN (AMN) + Cable + ATT) & [dB] \\ LISN: SLS-02 & \end{tabular}$

Except for the above table: adequate margin data below the limits.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 11920654S-A-R2

 Page
 : 15 of 32

 Issued date
 : April 27, 2018

 FCC ID
 : 2ADKK-DTG108

: Kenichi Adachi

Data of Radiation Test (Regulation: FCC 15.517 (c))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11920654S-A-R2
Date January 24, 2018
Temperature / Humidity 23 deg. C / 28 % RH
Engineer Kenichi Adachi
Mode Transmitting

(UWB emission, RBW 1 MHz)

Limit: FCC15.517 (c), Substitution limit

Engineer

<< EIRP DATA >>

	, , ,	LIII DAIA	• •											
Γ		_	Reading		TY	TX	EIR	P						
-	No.	Freq.	<av></av>	SG Level	TX Ant.Gain	Loss	Result	Limit	Margin	Pola.	Height	Angle	TX	Comment
-	110.	[MHz]	[dBuV]	[dBm]	[dBi]	[dB]	[dBm]	[dBm]	[dB]	i oia.	[cm]	[deg]	Ant.Type	Comment
ŀ														
-	1	5280.044	52.76	-70.38	12.74	9.63	-67.27	-41.30	25.9	Hori.	138		Horn	Av:RMS
1	2	6336.058	51.42	-61.57	12.98	10.64	-59.23	-41.30	17.9	Hori.	153	270	Horn	Av:RMS
-	3	7637.872	56.07	-53.59	11.60	11.51	-53.50	-41.30	12.2	Hori.	149	0	Horn	Av:RMS
-	4		56.24	-55.39	11.59	12.39	-56.19	-41.30	14.8	Hori.	149		Horn	Av:RMS
-	5			-51.25	12.00		-51.88	-41.30	10.5	Hori.	149			AvRMS
-			58.26											
-	6		52.49	-66.57	12.74	9.63	-63.46	-41.30	22.1	Vert	138		Horn	Av:RMS
-	7		53.88	-56.36	12.98	10.64	-54.02	-41.30	12.7	Vert.	158		Horn	Av:RMS
	8	7637.872	59.34	-49.24	11.60	11.51	-49.15	-41.30	7.8	Vert.	151	38	Horn	Av:RMS
	9	8206.764	59.96	-49.99	11.59	12.39	-50.79	-41.30	9.4	Vert.	151	38	Horn	Av:RMS
-	10			-48.97	12.00		-49.60	-41.30	8.3	Vert.	151	38	Horn	Av:RMS
-		0002.000	00.00	10.01	12.00	12.00	10.00	41.00	0.0				110111	APITAL
-														
-														
-														
- [
- [
- [
-														
-														
-														
-														
-														
-														
-														
-														
-														
-														
-														
-														
-														
-														
-														
-														
-														
-														
-														
-														
- [
							İ							
											1			
- [
- [
							İ							
- [İ							
- [
- [
- [
- [l l			
- 1														

Calculation:Result [dBm] =SG level [dB] +Tx Ant Gain [dBi] -Tx Loss (Cable) [dB] Tx Antenna: Horn (1G-40G) / Rx-Antenna: Horn (1G-40G)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*} There were no detect UWB emissions in the range that below 5000 MHz, 9000 MHz to 17000 MHz and above 18000 MHz.

Test report No. : 11920654S-A-R2
Page : 16 of 32
Issued date : April 27, 2018
FCC ID : 2ADKK-DTG108

Data of Radiation Test (Regulation: FCC 15.517 (c))

Engineer

: Kenichi Adachi

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11920654S-A-R2
Date January 25, 2018
Temperature / Humidity 23 deg. C / 25 % RH
Engineer Kenichi Adachi
Mode Transmitting

(UWB emission, RBW 1 MHz)

Limit: FCC15.517 (c), Substitution limit

CC FIRD DATA SS

\ \ I	EIRP DATA		-										T
No.	Freq.	Reading <av></av>	SG Level	TX Ant.Gain	TX Loss	EIR Result	Limit	Margin	Pola.	Height		TX Ant.Type	Comment
_	[MHz]	[dBuV]	[dBm]	[dBi]	[dB]	[dBm]	[dBm]	[dB]		[c m]	[deg]		
1	17424.082	47.95	-60.46	11.42	18.08	-67.12	-51.30	15.8	Hori.	155	189	Horn	Av:RMS
2	17424.082	50.67	-54.49	11.42	18.08	-61.15	-51.30	9.8	Vert.	154	34	Horn	Av:RMS
- 1													
- 1													
-													
- 1													
- 1													
- 1													
- 1													
ı													
ı													
ı													
- 1													
-1													
- 1													
- 1													
1													
- 1													
1													
- 1													
1													
H													
H													
H													
- 1													
- 1													
- 1													
- 1													
- 1													
-													
-													
- 1													
- [
- 1													
- [
- [
١													
ı													
- 1													
- 1													
- 1													
- 1													
- 1													
- 1													
- 1													
- 1													
- 1										l			
- 1													
- 1										l .			

Calculation:Result [dBm] =SG level [dB] +Tx Ant Gain [dBi] -Tx Loss (Cable) [dB] Tx Antenna: Horn (1G-40G) / Rx-Antenna: Horn (1G-40G)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*} There were no detect UWB emissions in the range that below 5000 MHz, 9000 MHz to 17000 MHz and above 18000 MHz.

Test report No. : 11920654S-A-R2 Page : 17 of 32 **Issued date** : April 27, 2018 FCC ID : 2ADKK-DTG108

Data of Radiation Test (Regulation: FCC 15.517 (c))

(Reference data)

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11920654S-A-R2 Date January 24, 2018 23 deg. C / 28 % RH Temperature / Humidity Engineer Kenichi Adachi Mode Transmitting

(UWB emission, RBW 1 MHz, 3 m distance result)

Limit 1: FCC15.209 3m, below 1GHz:QP, above 1GHz:AV Limit 2: FCC15.209 3m, below 1GHz:QP, above 1GHz:PK

Engineer : Kenichi Adachi

<< AV/PK DATA >>

lo	Freq.	Rea	dina															
		<av></av>	<pk></pk>	Ant.Fac	Loss	Gain	D.Fac	<av></av>	sult <pk></pk>	Lir <va>></va>	nit <pk></pk>	Mar <av></av>	gin <pk></pk>	Pola.	Height	Angle	Ant	Comment
4	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]			[dBuV/m]		[dB]	[dB]	[H/V]	[c m]	[deg]	Туре	Comment
	5280.044	52.76	57.86	32.06	6.07		-15.56	30.60	35.70	53.90	73.90	23.3	38.2	Hori.	138	63	SHA03	Av:RMS
2	6336.058	51.42	54.98				-15.56	32.05		53.90		21.8	38.2	Hori.	153		SHA03	Av:RMS
3	7637.872	56.07	70.98				-15.56	41.07	55.98	53.90	73.90	12.8	17.9	Hori.	149	0		Av:RMS
4	8206.764	56.24	71.28				-15.56	41.84		53.90	73.90	12.0	17.0	Hori.	149	ا ة		Av:RMS
5	8532.893	58.26	72.33				-15.56	43.85		53.90	73.90	10.0	15.9	Hori.	149	l o		Av:RMS
6	5280.044	52.49	55.68				-15.56	30,33	33.52	53.90	73.90	23.5	40.3	Vert.	138	63	SHA03	Av:RMS
7	6336.058	53.88	55.96	34.27	6.63	44.71	-15.56	34.51	36.59	53.90	73.90	19.3	37.3	Vert.	158	269	SHA03	Av:RMS
8	7637.872	59.34	73.21	37.25	7.35	44.04	-15.56	44.34	58.21	53.90	73.90	9.5	15.6	Vert.	151	38	SHA03	Av:RMS
9	8206.764	59.96	73.56	37.79	7.48	44.11	-15.56	45.56	59.16	53.90	73.90	8.3	14.7	Vert.	151	38	SHA03	Av:RMS
10	8532.893	60.08	75.06	37.91	7.60	44.36	-15.56	45.67	60.65	53.90	73.90	8.2	13.2	Vert.	151	38	SHA03	Av:RMS

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*} PK was measured setting was RBW 3 MHz, VBW 50 MHz, peak value, in the frequency range from 7000 MHz to 9000 MHz.

^{*} AV was measured setting was RBW1 MHz, VBW 3 MHz, RMS value, in the frequency range from 7000 MHz to 9000 MHz.

^{*} There were no detect UWB emissions in the range that below 5000 MHz, 9000 MHz to 17000 MHz and above 18000 MHz.

Test report No. : 11920654S-A-R2
Page : 18 of 32
Issued date : April 27, 2018
FCC ID : 2ADKK-DTG108

Data of Radiation Test (Regulation: FCC 15.517 (c))

Engineer

: Yosuke Ishikawa

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11920654S-A-R2
Date January 29, 2018
Temperature / Humidity 20 deg. C / 25 % RH
Engineer Yosuke Ishikawa
Mode Transmitting

(Other emission)

Limit1: FCC15.209 3m, below 1GHz:QP, above 1GHz:AV

CC OD DATA SS

<<	QP DATA >	·>											
No.	Freq.	Reading <qp></qp>	AntFac		Gain	Result <qp></qp>	Limit <qp></qp>	Margin <qp></qp>	Pola.	Height		Ant. Type	Comment
	[MHz]	[dBuV]			[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[c m]	[deg]	1,00	
1	609.638	35.30	19.01	10.05	31.82	32.54	46.00	13.4	Hori.	100	145	LP	
2	711.246	34.60	19.69	10.42	31.72	32.99	46.00	13.0	Hori.	191	126	LP	
3	959.992			11.23				5.4	Hori.	118	359	LP	
4	59.999				32.11	22.75	40.00	17.2	Vert.	100	359	BC	
5	71.998			7 20	32.10	24.81	40.00	15.1	Vert.	100	173	BC	
6	86.054				32.09	22.53		17.4		100	196		
7	140.002											BC	
					32.04			17.7	Vert.	100	208		
8	220.032				31.97	28.91			Vert.	293	189	LP	
9	959.990	33.30	22.12	11.23	30.40	36.25	46.00	9.7	Vert.	116	72	LP	
		1											
										1 1			
		İ	İ							i i			
		İ								i i			
		l								1 1			
		ŀ											
		ŀ											
		1											
		l	1							1 1			
		İ								1 1			
		İ								i i			
		i	1							i i			
		l								i i			
		ł								1			
		ŀ								1			
		1											
		l								l l			
		İ			İ								
		l											
		1											
		l											
		l											
		l											
		l											
		1	1			l				ıl			

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

: 11920654S-A-R2 Test report No. Page : 19 of 32 **Issued date** : April 27, 2018 FCC ID : 2ADKK-DTG108

Data of Radiation Test (Regulation: FCC 15.517 (c))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11920654S-A-R2

Date January 24, 2018 January 25, 2018 23 deg. C / 28 % RH 23 deg. C / 25 % RH Temperature / Humidity Engineer Kenichi Adachi Kenichi Adachi

Mode Transmitting

(Other emission)

Limit1: FCC15.209 3m, below 1GHz:QP, above 1GHz:AV Limit2: FCC15.209 3m, below 1GHz:QP, above 1GHz:PK

Engineer : Kenichi Adachi

<< AV/PK DATA >>

$\stackrel{\sim}{}$	AV/FR DA					_									_			
 .	Freq.	Rea		AntFac	Loss	Gain	D.Fac	Res		Lir		Mai		Pola.	Height	Angle	Ant.	0
No.	[MHz]	<av> [dBuV]</av>	<pk> [dBuV]</pk>	[dB/m]	[dB]	[dB]	[dB]	<av> [dBuV/m]</av>	<pk> [dBuV/m]</pk>	<av></av>	<pk></pk>	<av> [dB]</av>	<pk></pk>	[H/V]	[c m]	[deg]	Type	Comment
1		65.84	68.17	24.94	3.21	43.79	-15.56	34.64	36.97	53.90	73.90	19.2	36.9	Hori.	158	271	SHA03	Av:RMS (other)
2		48.43	55.52	25.17	3.35		-15.56	17.56	24.65	53.90	73.90	36.3	49.2	Hori.	153		SHA03	Av:RMS (other)
3		54.76	59.87	25.87			-15.56	24.76	29.87	53.90	73.90	29.1	44.0	Hori.	155		SHA03	Av:RMS (other)
4	l .	61.43	63.21	26.39	3.87		-15.56	32.06	33.84	53.90	73.90	21.8	40.0	Hori.	148	215		Av:RMS (other)
5		50.97	53.88	28.76			-15.56	24.68	27.59	53.90	73.90	29.2	46.3	Hori.	152		SHA03	Av:RMS (other)
6		56.24	59.07	30.11			-15.56	31.94	34.77	53.90	73.90	21.9	39.1	Hori.	154		SHA03	Av:RMS (other)
7		66.62	68.54	24.94			-15.56	35.42	37.34	53.90	73.90	18.4	36.5	Vert.	146		SHA03	Av:RMS (other)
8		47.94	54.65	25.17			-15.56	17.07	23.78	53.90	73.90	36.8	50.1	Vert.	149		SHA03	Av:RMS (other)
9		53.90	52.68	25.87			-15.56	23.90	22.68	53.90	73.90	30.0	51.2		150		SHA03	Av:RMS (other)
10	2112.006	60.76	62.63	26.39	3.87	44.07	-15.56	31.39	33.26	53.90	73.90	22.5	40.6	Vert.	151	174	SHA03	Av:RMS (other)
11	3168.011	51.58	54.69	28.76	4.79	44.28	-15.56	25.29	28.40	53.90	73.90	28.6	45.5	Vert.	147	179	SHA03	Av:RMS (other)
12	4224.018	56.36	59.34	30.11	5.39	44.24	-15.56	32.06	35.04	53.90	73.90	21.8	38.8	Vert.	138	218	SHA03	Av:RMS (other)
1	1												1		l l	1	l	

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

: 11920654S-A-R2 Test report No. Page : 20 of 32 **Issued date** : April 27, 2018 FCC ID : 2ADKK-DTG108

Data of Radiation Test (Regulation: FCC 15.517 (c))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11920654S-A-R2 Date January 25, 2018 23 deg. C / 25 % RH Temperature / Humidity Engineer Kenichi Adachi Mode Transmitting

(Other emission)

Limit1: FCC15.209 3m, below 1GHz:QP, above 1GHz:AV Limit2: FCC15.209 3m, below 1GHz:QP, above 1GHz:PK

Engineer : Kenichi Adachi

<< AV/PK DATA >>

	Freq.	Rea <av></av>	ding <pk></pk>	AntFac	Loss	Gain	D.Fac	<av></av>	sult <pk></pk>	Lir <av></av>	nit <pk></pk>	Mai	rgin <pk></pk>	Pola.	Height	Angle	Ant.	C
). -	[MHz]	<av> [dBuV]</av>	(dBuV)		[dB]	[dB]	[dB]			<av> [dBuV/m]</av>		<av> [dB]</av>	(dB)	[H/V]	[cm]	[deg]	Ant. Type	Comment
1	16896.061	54.18	55.47				-20.00	43.79	45.08	53.90		10.1	28.8	Hori.	153		SHA03	Av:RMS(Other
2	16896.061	52.69	54.61	39.96	11.35	41.70	-20.00	42.30	44.22	53.90					149			Av:RMS (Othe
7			•							00.00	,							
- 1	1														İ		İ	İ
- 1		1													İ			İ
- 1		1													i			İ
1															İ		İ	İ
1	1	1													i		i	İ
İ	1	1																İ
١															l			t
ł																		t
ł															l		l	t
ı		1													ł			ł
ı	•	1																
ı															1			
۱	1	- 1													1	1	l	ł
ı	-	- 1													1	1	l	ł
l															ŀ			1
l		-													-			1
l															ŀ			1
l		-													-			
l	-															1		
l															ŀ			
l		- 1																
l																		
l															l			l
ı																		
l																		
ı																		1
ı																		
l																		
ı																		
ı																		
ı																		
ı																		
l																		
l																		
l	i														1	1		İ
١															ĺ	1	l	1
١															l	1	l	l
1	İ														İ	l	l	İ
1	İ														İ	l	l	İ
1	1														İ	1		İ
١		1													İ	l	l	İ
١															1		l	i
١	ł	- 1													1		l	l
1	-	- 1													1	1	l	ł
١																		ŀ
1															I	l	I	I

Calculation:Result [dBuV/m] =Reading [dBuV] +Ant.Fac [dB/m] +Loss (Cable) [dB] +D.Fac [dB] -Gain (AMP) [dB] Ant.Type=BC:Biconical Antenna LP:Logperiodic Antenna SHA**: Horn Antenna

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

: 11920654S-A-R2 Test report No. Page : 21 of 32 **Issued date** : April 27, 2018 FCC ID : 2ADKK-DTG108

Data of Radiation Test (Regulation: FCC 15.517 (c))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11920654S-A-R2 Date January 25, 2018 23 deg. C / 25 % RH Temperature / Humidity Engineer Kenichi Adachi Mode Transmitting

(Other emission)

Limit1: FCC15.209 3m, below 1GHz:QP, above 1GHz:AV Limit2: FCC15.209 3m, below 1GHz:QP, above 1GHz:PK

Engineer : Kenichi Adachi

<< AV/PK DATA >>

<u> </u>	AV/PR DAI																	
No.	Freq.	<av></av>	ding <pk></pk>	Ant.Fa c	Loss	Gain	D.Fac	<av></av>	sult <pk></pk>	<av></av>	mit <pk></pk>	Mai <av></av>	rgin <pk></pk>	Pola.	Height	Angle	Ant.	Comment
140.	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]			[dBuV/m]	[dBuV/m]	[dB]	[dB]	[H/V]	[c m]	[deg]	Type	Comment
1	21120.121	41.45	42.85				-29.54	18.71	20.11	53.90		35.1	53.7	Hori.	155	332	SHA04	Av:RMS (other)
2	25344.148	39.78	40.97				-29.54	19.24	20.43	53.90		34.6	53.4	Hori.	154	113	SHA04	AvRMS (other)
3	21120.121	37.30	39.28				-29.54	14.56	16.54	53.90		39.3	57.3	Vert.	156	32		Av:RMS (other)
4	25344.148	39.11	40.34	39.99	16.29	47.28	-29.54	18.57	19.80	53.90	73.90	35.3	54.1	Vert.	155	33	SHA04	Av:RMS (other)
																	ŀ	
																	l	
															ĺ			
																	ŀ	
															l			
															İ		İ	
																	ŀ	
																	ŀ	
																	l	
																	ŀ	
																	l	
																	l	
																	ŀ	
																	ŀ	
															l			
															l			
																	1	
															1			
															1		1	
																	1	
										l	l				l		l	

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

: 11920654S-A-R2 Test report No. Page : 22 of 32 **Issued date** : April 27, 2018 FCC ID : 2ADKK-DTG108

Data of Radiation Test (Regulation: FCC 15.517 (c))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11920654S-A-R2 Date January 25, 2018 23 deg. C / 25 % RH Temperature / Humidity Engineer Kenichi Adachi Mode Transmitting

(Other emission)

Limit1: FCC15.209 3m, below 1GHz:QP, above 1GHz:AV Limit2: FCC15.209 3m, below 1GHz:QP, above 1GHz:PK

Engineer : Kenichi Adachi

<< AV/PK DATA >>

Τ	Freq.	Rea	ding <pk></pk>	Ant.Fa c	Loss	Gain	D.Fac	Re:	sult		nit		gin <pk></pk>	Pola.	Height	Angle	Ant.	0
No.	[MHz]	<av> [dBuV]</av>	(dBuV)	[dB/m]	[dB]	[dB]	[dB]		<pk></pk>	<av> [dBuV/m]</av>	<pk></pk>	<av> [dB]</av>	(dB)	[H/V]	[cm]	[deg]	Туре	Comment
1	33792.145	71.34	73.37	43.37			-29.54	36.72	38.75	53.90	73.90	17.1	35.1	Hori.	155		SHA06	Av:RMS (othe
2	33792.145			43.37	18.05	66.50	-29.54	39.30	40.62		73.90			Vert.	154	35	SHA06	Av:RMS (other
	l															İ		
-																ļ		
-																ŀ		
ł																ŀ		
l																ŀ	ŀ	
١																ŀ		
١	İ																	
l	İ																l	
	İ	j															l	
ĺ																ĺ	l	
l																		
ı																ļ		
l																ŀ		
																ŀ		
l																ŀ		
l																ŀ		
l																l		
I	i															İ		
١	l															İ		
ı																		
ı																		
l																		
l																		
۱																ļ		
ı																		
l																ŀ	1	
l																ŀ	l	
ĺ																ŀ		
1																		
1	l																	
١	İ															1	l	
1	İ																1	
1																	l	
1	ĺ	j															1	
J	ļ																	
J	ļ																	
1															1	l	I	1

Calculation:Result [dBuV/m] =Reading [dBuV] +Ant.Fac [dB/m] +Loss (Cable) [dB] +D.Fac [dB] -Gain (AMP) [dB] Ant.Type=BC:Biconical Antenna LP:Logperiodic Antenna SHA**: Horn Antenna

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

: 11920654S-A-R2 Test report No. Page : 23 of 32 **Issued date** : April 27, 2018 : 2ADKK-DTG108 FCC ID

Data of Radiation Test (Regulation: FCC 15.517 (d))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11920654S-A-R2 Date January 24, 2018 23 deg. C / 28 % RH Temperature / Humidity Engineer Kenichi Adachi Mode Transmitting

Limit : FCC15.517 (d) , Substitution limit (1164-1240 MHz, 1559-1610 MHz) Engineer : Kenichi Adachi

<< EIRP DATA >>

<u>```</u>	LIIII DAIA					FID	_						
No.	Freq.	Reading <av></av>	SG Level	TX Ant.Gain	TX Loss	EIR Result	Limit	Margin	Pola.	Height	Angle	тх	0
NO.	[MHz]	[dBuV]	[dBm]	[dBi]	[dB]	[dBm]	[dBm]	[dB]	Pola.	[c m]	[deg]	TX Ant.Type	Comment
1	1231.389	36.09	-95.67	6.23	4.55	-93.99			Hori.	139	92	Horn	AvRMS, RBW 1 kHz
2			-91.26							153	0		AvRMS, RBW 1 kHz
_	. 201.000	20.01	31.20	0.20	1.00	30.00	20.00		. 51 6	100			

Calculation:Result [dBm] =SG level [dB] +Tx Ant Gain [dBi] -Tx Loss (Cable) [dB] Tx Antenna: Horn (1G-40G) / Rx-Antenna: Horn (1G-40G)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

: 11920654S-A-R2 Test report No. Page : 24 of 32 **Issued date** : April 27, 2018 FCC ID : 2ADKK-DTG108

Data of Radiation Test (Regulation: FCC 15.517 (d))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11920654S-A-R2 Date January 24, 2018 23 deg. C / 28 % RH Temperature / Humidity Engineer Kenichi Adachi Mode Transmitting

Limit : FCC15.517 (d) , Substitution limit (1164-1240 MHz, 1559-1610 MHz) Engineer : Kenichi Adachi

<< EIRP DATA >>

Freq. Reading Sq Level Anti-Gah TX Loss Result Limit Margin Pola. Height Angle Cml Jems Jem
1 1607.983 30.95 -96.78 8.33 5.23 -93.68 -85.30 8.3 Hori. 148 271 Horn AvRMS.RBW 1 kHz
2 1007,903 52.43 -97.07 8.33 5.23 -94.57 -88.30 9.2 Vert. 147 182 HOFF AVYMS/HBW 1 KHZ

Calculation:Result [dBm] =SG level [dB] +Tx Ant Gain [dBi] -Tx Loss (Cable) [dB] Tx Antenna: Horn (1G-40G) / Rx-Antenna: Horn (1G-40G)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11920654S-A-R2
Page : 25 of 32
Issued date : April 27, 2018
FCC ID : 2ADKK-DTG108

Data of Radiation Test (Regulation: FCC 15.517 (e))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11920654S-A-R2
Date January 24, 2018
Temperature / Humidity 23 deg. C / 28 % RH
Engineer Kenichi Adachi
Mode Transmitting

Limit : FCC15.517 (e) , (RBW 50 MHz value) Substitution limit Engineer

Engineer : Kenichi Adachi

<< EIRP DATA >>

\rightarrow	LIIII DAIA		<u> </u>	- 1		FID	<u> </u>						
No.	Freq.	Reading <pk></pk>	SG Level	TX Ant.Gain	TX Loss	EIR Result	Limit	Margin	Pola.	Height	Angle	TX Ant.Type	Comment
	[MHz]	[dBuV]	[dBm]	[dBi]	[dB]	[dBm]	[dBm]	[dB]		[c m]	[deg]	AllLiype	
	7637.872	70.98	-34.98	11.60	-12.89	-10.49	0.00	10.4	Hori.	149	0	Horn	Peak RBW 3 MHz
2	8206.764	71.28	-38.13	11.59	-12.01	-14.53	0.00	14.5	Hori.	149	0	Horn	Peak RBW 3 MHz
	8532.893	72.33	-35.24	12.00	-11.77	-11.47	0.00	11.4	Hori.	149	0	Horn	Peak RBW 3 MHz
4	7637.872	73.21	-33.55	11.60	-12.89	-9.06	0.00	9.0	Vert.	151	38	Horn	Peak RBW 3 MHz
5	8206.764	73.56	-35.59	11.59	-12.01	-11.99	0.00	11.9	Vert.	151	38	Horn	Peak RBW 3 MHz
6	8532.893	75.06	-32.54	12.00	-11.77	-8.77	0.00	8.7	Vert.	151	38	Horn	Peak RBW 3 MHz

Calculation: Result [dBm] = SG level [dB] + Tx Ant Gain [dBi] - Tx Loss (Cable [dB] + RBW converted factor (-24.44 = 20 x log (3 / 50))[dB]) Tx Antenna: Horn (1G-40G) / Rx-Antenna: Horn (1G-40G)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11920654S-A-R2
Page : 26 of 32
Issued date : April 27, 2018
FCC ID : 2ADKK-DTG108

Data of Antenna terminal conducted Test (Regulation: FCC 15.517 (c))

Test place Shonan EMC Lab. No.1 Measurement Room

Report No. 11920654S-A-R2
Date January 23, 2018
Temperature / Humidity 22 deg. C / 42 % RH
Engineer Kenichi Adachi
Mode Transmitting

^{*} No detect signal

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 11920654S-A-R2

 Page
 : 27 of 32

 Issued date
 : April 27, 2018

 FCC ID
 : 2ADKK-DTG108

Bandwidth (Regulation: FCC 15.503(d), FCC 15.517 (b))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11920654S-A-R2
Date January 24, 2018
Temperature / 23 deg. C / 28 % RH

Humidity

Engineer Kenichi Adachi Mode Transmitting

10 dB Bandwidth: 1556.615 MHz (= fH - fL) (Limit: >= 500 MHz)

99 % Occupied Bandwidth: 1553.882 MHz fL = 7405.426 MHz Center Frequency 8183.734 MHz (= (fH + fL) / 2) fH = 8962.041 MHz

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11920654S-A-R2
Page : 28 of 32
Issued date : April 27, 2018
FCC ID : 2ADKK-DTG108

APPENDIX 2: Test instruments

Test Instruments (1/2)

Fest Instrument Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)	
SAEC-03(SVSWR)	Semi-Anechoic Chamber	TDK	SAEC-03(SVSWR)	3	RE	2017/07/17 * 12	
SHA-03	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-739	RE	2017/08/23 * 12	
SAJ-01	Antenna Tilt Jig	Intelligent System Engineering Co., Ltd	Antenna Tilt Jig	T-S001	RE	Pre Check	
SCC-G41	Coaxial Cable	Junkosha	MWX221-01000NFS NMS/B	1612S006	RE	2017/01/08 * 12	
SCC-G07	Coaxial Cable	Junkosha	J12J103316-00-R	OCT-12-17-054	RE	2017/10/23 * 12	
SAF-06	Pre Amplifier	TOYO Corporation	TPA0118-36	2046104	RE	2017/09/22 * 12	
SCC-G43	Coaxial Cable	HUBER+SUHNER	SUCOFLEX_104_E	SN MY 13406/4E	RE	2017/07/10 * 12	
STR-08	Test Receiver	Rohde & Schwarz	ESW44	101581	RE, CE	2017/11/24 * 12	
COTS-SEMI-1	EMI Software	TSJ	TEPTO-DV(RE,CE,R FI,MF)	-	RE, CE		
SOS-05	Humidity Indicator	A&D	AD-5681	4062518	RE	2017/10/30 * 12	
SJM-02	Measure	KOMELON	KMC-36	-	RE, CE	-	
STS-03	Digital Hitester	Hioki	3805-50	080997823	RE, CE	2017/10/16 * 12	
SSG-02	Signal Generator	Agilent	E8257D-540	MY48051404	RE	2017/03/09 * 12	
SCC-G16	Coaxial Cable	Suhner	SUCOFLEX 102	32704/2	RE	2017/03/23 * 12	
KHA-02	Horn Antenna	Schwarzbeck	BBHA9120D	230	RE	2017/06/29 * 12	
SHA-04	Horn Antenna	ETS LINDGREN	3160-09	LM9861	RE	2017/07/11 * 12	
SAF-08	Pre Amplifier	TOYO Corporation	HAP18-26W	00000019	RE	2017/03/17 * 12	
SCC-G33	Coaxial Cable	Junkosha	MWX241-01000KMS KMS	-	RE	2017/04/20 * 12	
SCC-G15	Coaxial Cable	Suhner	SUCOFLEX 102	32703/2	RE	2017/03/23 * 12	
SHA-06	Horn Antenna	ETS LINDGREN	3160-10	LM3459	RE	2017/03/15 * 12	
SAF-10	Pre Amplifier	TOYO Corporation	HAP26-40W	00000010	RE	2017/03/17 * 12	
SCC-G19	Coaxial Cable	Suhner	SUCOFLEX 102A	1188/2A	RE	2017/03/23 * 12	
SAEC-03(NSA)	Semi-Anechoic Chamber	TDK	SAEC-03(NSA)	3	RE	2017/06/11 * 12	
SBA-03	Biconical Antenna	Schwarzbeck	BBA9106	91032666	RE	2017/10/02 * 12	
SLA-07	Logperiodic Antenna	Schwarzbeck	VUSLP9111B	196	RE	2017/01/26 * 12	
SAT6-08	Attenuator	HIROSE ELECTRIC CO.,LTD.	AT-406(40)	-	RE	2017/08/24 * 12	
SCC-C1/C2/C3/C4/ C5/C10/SRSE-03	Coaxial Cable&RF Selector	Fujikura/Fujikura/Suhne r/Suhner/Suhner/ TOYO	8D2W/12DSFA/141P E/141PE/141PE/141P E/NS4906	-/0901-271(RF Selector)	RE	2017/04/07 * 12	
SAF-03	Pre Amplifier	SONOMA	310N	290213	RE	2017/02/09 * 12	

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test item: CE: Conducted Emission test

RE: Radiated Emission test

AT: Antenna Terminal Conducted test

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11920654S-A-R2
Page : 29 of 32
Issued date : April 27, 2018
FCC ID : 2ADKK-DTG108

Test Instruments (2/2)

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
SCC-C9/C10/SRSE -03	Coaxial Cable&RF Selector	Suhner/Suhner/TOYO	RG223U/141PE/NS49 06	-/0901-271(RF Selector)	CE	2017/04/07 * 12
SLS-02	LISN	Rohde & Schwarz	ENV216	100512	CE	2017/02/10 * 12
SAT3-07	Attenuator	JFW	50HF-003N	-	CE	2017/09/08 * 12
SOS-06	Humidity Indicator	A&D	AD-5681	4062118	CE	2017/12/21 * 12
SRENT-09	Spectrum Analyzer	Agilent	E4440A	MY46186392	AT	2017/11/08 * 12
SCC-G31	Coaxial Cable	Junkosha	MWX241-01000KMS KMS	OCT-08-13-046	AT	2017/04/20 * 12
SOS-13	Humidity Indicator	Custom	CTH-202	Q.C.17	AT	2017/12/21 * 12
KTS-08	Digital Tester	SANWA	PC500	7019224	AT	2017/03/08 * 12

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test item: CE: Conducted Emission test

RE: Radiated Emission test

AT: Antenna Terminal Conducted test

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN