Mikro-elektromechanikai rendszerek

Szenzorok és aktuátorok alapjai.

Oktató: Kajdocsi László Iroda: Informatika Tanszék, A602 Email: kajdocsi.laszlo@sze.hu

Mik a beágyazott rendszerek?

- Adott feladatot ellátó kis számítógépek
- Cél-specifikus tervezés
- Néhány, előre meghatározott feladatot képes ellátni

Mi az a szenzor?

- A szenzorok olyan mérőegységek, vagy jelátalakítók, amelyek valamilyen – általában – nem villamos mennyiséget, villamos jellé alakítanak át (egyes esetekben pneumatikussá).
- A szenzorok lehetnek fizikailag jelenlévő mérési érték felvevők, vagy tisztán szoftver szenzorok (ún. figyelők).
- A szenzorok a bemeneti változókat az információ feldolgozóhoz továbbítják, amely azután meghatározza a szükséges aktuátor beavatkozásokat.

Metrológia

- A metrológia tudománya foglalkozik a mennyiségek és mértékegységek származtatásával, a mértékegységek fizikai megvalósításával, és mérések elvi megvalósításának problémáival.
- SI mértékrendszer (Le Système International d'Unités Nemzetközi Egységrendszer, 1960)

SI mértékegységrendszer

- Minden más csak származtatott mennyiség ill. egység!
- Pl.: Sebesség m/s
 Nyomás kg/m²

Szenzorok osztályozása

- Mérendő mennyiség alapján
- Jel természete alapján
- Jel kialakításban szereplő kölcsönhatások alapján
- Külső energiaforrás igény alapján

Szenzortípusok a mérendő mennyiség alapján

Tudományág	Alcsoport	Mérési jel
Mechanika	G eometria	Út, Távolság, Szög, Emelkedés
	Kinematika	Sebesség, Fordulatszám, Gyorsulás, Szög- gyorsulás, Lengés, Térfogat- és tömegáram
	Igénybevétel	Erő, Nyomás, Feszültség, Nyomaték, Nyúlás
	Anyagtulajdonság	Tömeg, Sűrűség, Viszkozitás
	Akusztika	Hangnyomás, Hangsebesség, Frekvencia
Termodinamika	Hőmérséklet	Érintkezési hő, Sugárzó hő
Villamos, Mágnes	Villamos állapot	Feszültség, Áram, Teljesítmény, Töltés
	Paraméter	Ellenállás, Impedancia, Kapacitás, Induktivitás
	Mező	Mágneses mező, Elektromos mező
Kémia és Fizika	Koncentráció	pH-érték, Nedvesség, Hővezetés
	Partikuláris jel	Lebegő anyagtartalom, Portartalom
	Molekulartiás	Gáz- Folyadék- Merev test molekulák
	Optika	Intenzitás, Hullámhossz, Szín

Szenzortípusok a jel természete alapján

- Elektromos jel
- Mágneses jel
- Sugárzási jel
- Kémiai jel
- Termikus jel
- Mechanikai jel

Szenzorok a jelek kölcsönhatásai alapján

- Fizikai szenzorok
- Kémiai szenzorok
- Bioszenzorok: A bioérzékelők olyan érzékelők, melyek működése az élő szervezetekre jellemző specifikus reakción alapul. Pl. a véroxigénérzékelő NEM bioszenzor, hanem egy orvosbiológiai célokra kialakított kémiai érzékelő.

Mire jók a szenzorok?

Hogy néz ki egy mérőrendszer?

Hogy néz ki egy szabályozórendszer?

Mérőrendszerek statikus karakterisztikái

- Pontosság
- Precizitás
- Felbontás
- Linearitás
- Érzékenység
- Stabilitás
- Ismételhetőség
- Hiszterézis

Pontosság

- A mérőeszköz pontossága a mérőeszköznek az a tulajdonsága, hogy a mérendő mennyiség valódi értékéhez közeli értékmutatást vagy választ szolgáltat.
- Általában a pontos értéket nem ismerjük, így konvencionális valódi, vagyis gyakran megegyezés alapján elfogadott értéket használjuk.

Precizitás

- A mérőeszköz precizitása a mérőeszköz azon tulajdonsága, hogy egymáshoz közeli értékeket mutasson.
- A precizitás legjobb mutatója a szórás.
- A szórás statisztikai mértékmutatója a mérés megismételhetőségének.

Pontosság és precizitás

Felbontás

- A felbontóképesség a mérőeszköz azon tulajdonsága, hogy meg tud egymáshoz közeli értékeket különböztetni.
- Analóg műszer esetén a legkisebb skálabeosztás a felbontóképesség.
- Digitális műszerek esetén ez a legkisebb tizedesjegyű érték.

Linearitás

A mérőműszer azon tulajdon-sága, hogy a válaszfüggvényt a bemeneti jel lineáris funkció-ját generálja.

Érzékenység

 A mérőeszköz kimenőjelének megváltozása osztva a bemenőjel megfelelő megváltozásával.

Stabilitás

- A mérőeszköznek az a képessége, hogy metrológiai jellemzőit időben folyamatosan megőrzi.
- A berendezés stabilitása definiálható különböző változások függvényében, de mindenek előtt az időbeni változásokra vonatkozik. Léteznek hosszútávú és rövidtávú stabilitási hibák.

Ismételhetőség

- A mérőeszköznek az a képessége, hogy azonos mérendő mennyiséget azonos feltételek között ismételten megmérve egymáshoz közeli értékmutatásokat ad.
- A megismételhetőségi hibát a válaszfüggvény maximális és minimális értéke közötti különbségként definiáljuk, ugyanannak a bemenőjelnek, legalább ötszöri, egymásutáni alkalmazásakor.

Hiszterézis

 A mérőeszköz hiszterézise olyan tulajdonság, hogy a bemenőjelre adott válaszfüggvény függ az előző bemenőjelek sorrendjétől.

Mérőrendszerek dinamikus karakterisztikái

- A dinamikus mérések esetében a kimenetet nem a bemenet függvényében, hanem az időtarto-mányban vizsgáljuk, hiszen éppen az a kérdés, hogy a szenzor milyen gyorsan reagál a bemenet változásaira.
- A műszer modellje, azaz a matematikai kifejezés, amely összeköti a bemenetet a kimenettel, közelíthető a bemenőjel differenciálhányadosainak lineáris kombinációjával.

$$\sum_{i=1}^{n} a_i \frac{d^i y}{dt^i} = b_0 x$$

Aktuátorok

- Az aktuátorok a vezérlőrendszerek végrehajtó vagy beavatkozó szervei.
- Feladatuk, hogy a vezérlő algoritmus kimenő jeleit konkrét tevékenységgé alakítsák át.
- Az információt, illetve a vezérlőrendszer döntését az aktuátor egy digitális kód alakjában kapja, amit fizikai jellé kell átalakítani.

Aktuátorok csoportosítása

- Mechanikai aktuátorok: fogaskerekek, szíjhajtások, orsók
- Fluid-mechanikai aktuátorok: szelepek, kompresszorok, pneumatikus motorok
- Villamos aktuátorok: szinkron, aszinkron, egyenáramú, léptető motorok

A mechanikus aktuátorok típusai

- Forgó-forgó
- Forgó-haladó
- Haladó-forgó
- · Haladó-haladó

Fluidmechanikai aktuátorok fajtái

- Pneumatikus: az 1 bar-ig terjedő nyomást vezérlési feladatokhoz, a 6-10 bar nyomást aktuátorok működtetésére használják. A pneumatikus körfolyamok nyitottak.
- Hidraulikus: az aktuátorokat kis (30-60 bar), közepes (160 bar-ig) és nagy (420 bar-ig) nyomással működtetik. A hidraulikus körfolyamokban a munkaközeg (a folyadék) zárt körforgást végez.

Villamos aktuátorok fajtái

Általában motorok:

- · Szinkron
- · Aszinkron
- Egyenáramú
- · Léptető, stb.

Villamos aktuátorok áramkörei

Az aktuátorokat tartalmazó áramkörök rendszerint a következő jellegzetes elemek csoportjaiból állnak:

- Betáplálóhálózat vagy áramforrás
- Biztosítékok
- Védőelemek
- Vezérlőelemek (ki-és bekapcsolás)
- Energiaátalakítók (feszültségváltók, frekveciaváltók)
- Különböző szűrő és fojtóelemek (zavarelhárítás)
- Végrehajtóelemek

Köszönöm a figyelmet!