

COMP0130 Robot Vision and Navigation

1A: Introduction to Positioning

Dr Paul D Groves

Lecture 1A Objectives

- Introduce the types and methods of positioning
- Explain the structure for Topic 1 of the module

Contents

- 1. Types and Methods of Positioning
- 2. Introduction to Topic 1

What is Positioning?

Positioning is the determination of the position of a body

Applications include

Navigation of people, vehicles and robots

- Location-based services
- Machine control
- Vehicle testing
- Tracking and surveillance
- Intelligent transport systems
- Surveying and mapping
- Construction and Structure monitoring
- Dynamic positioning of offshore platforms
- Earth sciences (geodesy, seismology, atmospheric science)

Types of Positioning

Static

The object to be positioned is fixed

Dynamic

The object to be positioned is moving

Real-time

Position solution is required immediately

Post-processed

Position is required hours or days after measurements are made

Self

Position solution is calculated at the object to be positioned

Remote

Position solution is away from the object to be positioned

Positioning in Robotics

Static

The object to be positioned is fixed

Dynamic

The object to be positioned is moving

Real-time

Position solution is required immediately

Post-processed

Position is required hours or days after measurements are made

Self

Position solution is calculated at the object to be positioned

Remote

Position solution is away from the object to be positioned

Proximity Positioning: Basic

Radio

- Mobile user receives base station signal
- User position assumed equal to the base station position
- Best suited to very-short-range
- Example: Phone Cell ID

Environmental Feature

- Mobile observer sees a landmark
- User position assumed equal to the landmark position
- Best suited to very-short-range
- Example: Features on a map

Proximity Positioning: Advanced

Averaging basic proximity fixes

Containment intersection method

Ranging in Two Dimensions

Ranging in Three Dimensions

Ranging Measurement (1)

1. Physical Measurement 2. Bounce a signal off the target and time it

Ranging Measurement (2)

- 3. Transmit a signal
 - From a known position to an unknown position a.
 - b. From an unknown position to a known position
 - Between two unknown positions C.
 - In both directions

Range is determined from the difference in times of transmission and arrival

Signals can be

Radio

Acoustic

Optical/ infra red

Angular Positioning in Two Dimensions

- Also known as triangulation
- Position determined from directions of line of sight
- Obtained from bearings with respect to north
- If north is unknown relative bearings (and an additional landmark) may be used

Angular Positioning in the Third Dimension

Angle Measurement

Camera

Radio direction finding

Theodolite

Pattern Matching (1)

- Measures some features of the environment
- Compare them with a database
- The best match gives the position

Example 1: Image features

Captured image

Patternmatching algorithm

Image database

Pattern Matching (2)

Example 2: Radio Signal Strength

y position

Measured RSS

RSS Database (Best match highlighted)

x position

Dead Reckoning

Key benefit

No external transmitters or landmarks needed

Key drawback

Position error grows with time

- Measures change in position
- Measurements made in sensor body frame
- Need attitude to determine direction of motion with respect to the Earth

Examples

Car odometer

Doppler radar

Inertial navigation

Contents

- 1. Types and Methods of Positioning
- 2. Introduction to Topic 1

2. Introduction to Topic 1

Positioning and Navigation Technologies

Global Navigation Satellite Systems (GNSS)

GPS, GLONASS, Galileo, Beidou

Wheel-Speed Odometry

Magnetic Heading

Inertial Navigation

2. Introduction to Topic 1

Robotics Applications

GNSS works best **outdoors**. Adding the other sensors improves resilience

Autonomous cars

This Photo by Unknown Author is licensed under CC BY

Precision agriculture

Construction

Source: Wikipedia

Bomb disposal

Source: Wikipedia

Lawnmowing

Can anyone think of other outdoor robotics applications?

This Photo by Unknown Author is RVN Lecture 1A Introduction to Positioning 21 licensed under CC BY-NC

Measurements

2. Introduction to Topic 1

Estimation Techniques

Least-Squares Estimation

Used to estimate position from measurements made simultaneously

Extended Kalman Filter

Used to estimate position and velocity from measurements over multiple time epochs and integrate multiple sensors

2. Introduction to Topic 1 **Topic Structure**

Week 1: GNSS and Least-Squares

Week 2: GNSS and the

Kalman Filter

Week 3: Integrated **Navigation**

Tuesday to Friday

Watch the week's recorded Lectures (3h in week 1; 2h in weeks 2 & 3)

Friday

Attend the Seminar & ask questions

Friday to Monday

Look at the workshop problems and start work

Monday

Attend the workshop where we will help you with the problems

2. Introduction to Topic 1

Topic Dependencies

Further Reading

Groves, P. D., Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, Artech House, 2nd edition, 2013

Link on Moodle

