

n [17]•	<pre>dot_data = tree.export_graphviz(classifier_entropy,</pre>	
n [17]•	True BareNuclei $<= 2.5$ entropy = 0.193 samples = 337 value = [327, 10] class = benign entropy = 0.961 samples = 311 value = [311, 0] entropy = 0.961 samples = 26 value = [16, 10] entropy = 0.966 samples = 69 value = [27, 42] entropy = 0.149 samples = 140 value = [31, 137]	
	<pre>class = benign</pre>	min_sample gini)*100; ed_entrop; cy_score(
n [18]:	<pre>Misclassification Error percent with entropy criterion = 7.299270072992698 cm = metrics.confusion_matrix(y_test, classifier_gini.predict(x_test)) print(cm) TN, FP, FN, TP = metrics.confusion_matrix(y_test, classifier_gini.predict(x_test)).ravel() [[79 8] [2 48]] : print("TP = {}".format(TP)) print("FP = {}".format(FP)) print("FN = {}".format(FN)) print("TN = {}".format(TN)) # calculate accuracy print((TP+TN)/float(TP+TN+FP+FN)) print(metrics.accuracy_score(y_test, classifier_gini.predict(x_test))) TP = 48 FP = 8</pre>	
[20]:	FN = 2 TN = 79 0.927007299270073 We get same accuracy in both the case, mantually and using function. # calculate Misclassification Error print((FP+FN)/float(TP+TN+FP+FN)) print(1 - metrics.accuracy_score(y_test, classifier_gini.predict(x_test))) 0.072992700729927 0.072992700729927 0.07299270072992703 We get same Misclassification Error in both the case, mantually and using function. Conclusion: • gini index at first split = 0.453 • entropy at first split = 0.931 • Misclassification Error at first split with gini criterion = 0.07299270072992698 • Misclassification Error at first split with entropy criterion = 0.07299270072992698 • Information gain = parent entropy - average entropy of the children = 0.931 - ((337/546)*0.193 + (209/546)*0.593)	
	<pre></pre>	fractal_d
it[22]:	Id Diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean 0 842302 M 17.99 10.38 122.80 1001.0 0.11840 0.27760 1 842517 M 20.57 17.77 132.90 1326.0 0.08474 0.07864 2 84300903 M 19.69 21.25 130.00 1203.0 0.10960 0.15990 3 84348301 M 11.42 20.38 77.58 386.1 0.14250 0.28390 4 84358402 M 20.29 14.34 135.10 1297.0 0.10030 0.13280	concavity_n 0.30 0.00 0.11 0.24
[23]: ut[23]:	bc_df3.drop(['Id'], axis=1, inplace=True) bc_df3 Diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavity_ 1 17.99 10.38 122.80 1001.0 0.11840 0.27760 0. 1 1 20.57 17.77 132.90 1326.0 0.08474 0.07864 0. 2 1 19.69 21.25 130.00 1203.0 0.10960 0.15990 0.	30010 08690 19740
	4 1 20.29 14.34 135.10 1297.0 0.10030 0.13280 0. <td>24140 19800 24390 14400 09251 35140 00000</td>	24140 19800 24390 14400 09251 35140 00000
ıt[25]:	<pre>ax_depth = 2) clf_gini.fit(x3_train, y3_train) dot_data = tree.export_graphviz(clf_gini, feature_names=feature3,</pre>	
[26]:	area_worst <= 957.45 gini = 0.146 samples = 303 value = [279, 24] class = benign	
	# Precision, Recall and F1 Score for the original data print("Precision, Recall and F1 Score with macro = {}".format(metrics.precision_recall_fscore, p,average='macro'))) print("Precision, Recall and F1 Score with micro = {}".format(metrics.precision_recall_fscore, p,average='micro'))) print("Precision, Recall and F1 Score with weighted = {}".format(metrics.precision_recall_fscore, p,average='weighted'))) print(metrics.classification_report(e,p)) Precision, Recall and F1 Score with macro = (0.9671497584541062, 0.9606224198158145, 0.9635562, None) Precision, Recall and F1 Score with micro = (0.9649122807017544, 0.9649122807017544, 0.9649122807017544, None) Precision, Recall and F1 Score with weighted = (0.9652851936604796, 0.9649122807017544, 0.964912807017544, 0.9649122807017544, 0.9649122807017544, 0.9649122807017544, 0.9649122807017544, 0.9649122807017544, 0.9649122807017544, 0.9649122807017544, 0.9649122807017544, 0.9649122807017544, 0.9649122807017544, 0.9649122807017544, 0.9649122807017544, 0.9649122807017544, 0.9649122807017544, 0.9649122807017544, 0.9649122807017544, 0.9649122807017544, 0.9649122807017544, 0.964912280701	e_support core_supp 498721227 228070175
	<pre>cm = metrics.confusion_matrix(e,p) print(cm) TN, FP, FN, TP = metrics.confusion_matrix(e,p).ravel() [[66 1] [</pre>	
n [31]:	<pre>FPR = 0.014925373134328358 : # Scale the data scaler = StandardScaler() scaler.fit(bc_df3.values) scaled_data = scaler.transform(bc_df3.values) : # Apply PCA for n_components=1 pca_1 = PCA(n_components=1) pca_1.fit(scaled_data) pca_1_transformed = pca_1.transform(scaled_data) : pcadf_1 = pd.DataFrame(pca_1_transformed, columns = ['PC1']) pcadf_1 : PC1</pre>	
	0 9.225770 1 2.655802 2 5.892492 3 7.135401 4 4.129423 564 6.593983 565 4.024833 566 1.530077 567 10.405008 568 -5.504862	
[33]: [34]:	<pre>feature3 = list(pcadf_1.columns) x3 = pcadf_1[feature3] y3 = bc_df3['Diagnosis'] x3_train, x3_test, y3_train, y3_test = model_selection.train_test_split(x3,</pre>	plit = 5,
nt[34]:	graph = graphviz.Source(dot_data, format="png") graph PC1 <= -0.142 gini = 0.462 samples = 455 value = [290, 165] class = benign True PC1 <= -0.494 gini = 0.068 samples = 282 value = [272, 10] class = benign PC1 <= -0.142 gini = 0.462 samples = 455 value = [290, 165] class = benign PC1 <= 1.217 gini = 0.186 samples = 173 value = [18, 155] class = malignant	
n [35]: n [36]:	$\begin{array}{c} \text{gini} = 0.036\\ \text{samples} = 271\\ \text{value} = [266, 5]\\ \text{class} = \text{benign} \end{array} \qquad \begin{array}{c} \text{gini} = 0.496\\ \text{samples} = 32\\ \text{value} = [12, 20]\\ \text{class} = \text{malignant} \end{array} \qquad \begin{array}{c} \text{gini} = 0.081\\ \text{samples} = 141\\ \text{value} = [6, 135]\\ \text{class} = \text{malignant} \end{array}$	
	print("Precision, Recall and F1 Score with weighted = {}".format(metrics.precision_recall_fst (e,p,average='weighted'))) print(metrics.classification_report(e,p)) Precision, Recall and F1 Score with macro = (0.8812034739454093, 0.8902826294061607, 0.8839595, None) Precision, Recall and F1 Score with micro = (0.8859649122807017, 0.8859649122807017, 0.8859649122807017, 0.8859649122807017, 0.8859649122807017, None) Precision, Recall and F1 Score with weighted = (0.890726350615994, 0.8859649122807017, 0.88668657, None) precision recall f1-score support 0 0.94 0.87 0.90 67 1 0.83 0.91 0.87 47 accuracy 0.89 114 macro avg 0.88 0.89 0.88 114 weighted avg 0.89 0.89 0.89 114	- 583744420 491228070
[37]:	<pre>cm = metrics.confusion_matrix(e,p) print(cm) TN, FP, FN, TP = metrics.confusion_matrix(e,p).ravel() [[58 9] [4 43]] : print("TP = {}".format(TP)) print("FP = {}".format(FP)) print("FN = {}".format(FN)) print("TN = {}".format(TN)) print("TPR = {}".format(TP/float(TP+FP))) print("FPR = {}".format(FP/float(TN+FP)))</pre>	
	FN = 4 TN = 58 TPR = 0.8269230769230769 FPR = 0.13432835820895522 : pca_2 = PCA(n_components=2) pca_2.fit(scaled_data) pca_2_transformed = pca_2.transform(scaled_data) : pcadf_2 = pd.DataFrame(pca_2_transformed, columns = ['PC1','PC2']) pcadf_2 : PC1 PC2 0 9.225770 2.116196 1 2.655802 -3.784776 2 5.892492 -1.005579	
n [41]:	3 7.135401 10.318716 4 4.129423 -1.905579 564 6.593983 -3.454947 565 4.024833 -3.556006 566 1.530077 -1.958871 567 10.405008 1.849078 568 -5.504862 -0.766348 569 rows × 2 columns : feature3 = list(pcadf_2.columns) x3 = pcadf_2[feature3] y3 = bc df3['Diagnosis']	
n [42]:	<pre>ax_depth = 2) clf_gini.fit(x3_train, y3_train) dot_data = tree.export_graphviz(clf_gini, feature_names=feature3,</pre>	plit = 5,
	$\begin{array}{c} \text{gini} = 0.496\\ \text{samples} = 455\\ \text{value} = [290, 165]\\ \text{class} = \text{benign} \end{array}$ $\begin{array}{c} \text{True} \\ \text{False} \\ \\ \text{PC1} <= -0.494\\ \text{gini} = 0.068\\ \text{samples} = 282\\ \text{value} = [272, 10]\\ \text{class} = \text{benign} \end{array}$ $\begin{array}{c} \text{gini} = 0.186\\ \text{samples} = 173\\ \text{value} = [18, 155]\\ \text{class} = \text{malignant} \\ \\ \text{samples} = 271 \\ \text{samples} = 11 \\ \end{array}$ $\begin{array}{c} \text{gini} = 0.496\\ \text{samples} = 152 \\ \text{samples} = 21 \\ \end{array}$	
	<pre>value = [266, 5] class = benign value = [6, 5] class = benign value = [6, 146] class = malignant value = [12, 9] class = benign value = [12, 9] class = benign value = [12, 9] class = benign value = [12, 9] class = benign value = [12, 9] class = benign value = [12, 9] class = benign value = [12, 9] class = benign value = [12, 9] class = benign value = [12, 9] class = benign value = [12, 9] class = benign value = [12, 9] class = benign value = [12, 9] class = benign value = [12, 9] class = benign value = [12, 9] class = benign value = [12, 9] class = 12, 19 class</pre>	- e_support core_supp 928315412 52631579,
	<pre>accuracy</pre>	
	print("FPR = {}".format(FP/float(TN+FP))) TP = 39 FP = 7 FN = 8 TN = 60 TPR = 0.8478260869565217 FPR = 0.1044776119402985 Conclusion: For original data: • Precision, Recall and F1 Score with macro = (0.9671497584541062, 0.9606224198158145, 0.9635549872122762, None • Precision, Recall and F1 Score with micro = (0.9649122807017544, 0.9649122807017544, 0.9649122807017544, None) • Precision, Recall and F1 Score with weighted = (0.9652851936604796, 0.9649122807017544, 0.9647888903845291, No • TP = 44 • FP = 1	,
	 FN = 3 TN = 66 TPR = 0.9777777777777777777777777777777777777	,
	After applying PCA with n_component=2: Precision, Recall and F1 Score with macro = (0.8650895140664961, 0.8626548110511274, 0.8637992831541219, None Precision, Recall and F1 Score with micro = (0.868421052631579, 0.868421052631579, 0.868421052631579, 0.868421052631579, 0.8682009683707477, None) Precision, Recall and F1 Score with weighted = (0.8681181854892988, 0.868421052631579, 0.8682009683707477, None) Precision, Recall and F1 Score with weighted = (0.8681181854892988, 0.868421052631579, 0.8682009683707477, None) Precision, Recall and F1 Score with weighted = (0.8681181854892988, 0.868421052631579, 0.8682009683707477, None) Precision, Recall and F1 Score with micro = (0.8681181854892988, 0.868421052631579, 0.8682009683707477, None) Precision, Recall and F1 Score with micro = (0.8681181854892988, 0.868421052631579, 0.8682009683707477, None) Precision, Recall and F1 Score with micro = (0.8681181854892988, 0.868421052631579, 0.8682009683707477, None) Precision, Recall and F1 Score with micro = (0.868421052631579, 0.868421052631579, 0.8682009683707477, None) Precision, Recall and F1 Score with micro = (0.8681181854892988, 0.868421052631579, 0.8682009683707477, None) Precision, Recall and F1 Score with micro = (0.8681181854892988, 0.868421052631579, 0.8682009683707477, None) Precision, Recall and F1 Score with micro = (0.8681181854892988, 0.868421052631579, 0.868421052631579, 0.8682009683707477, None) Precision, Recall and F1 Score with micro = (0.8681181854892988, 0.868421052631579, 0.8682009683707477, None) Precision, Recall and F1 Score with micro = (0.8681181854892988, 0.868421052631579, 0.8682009683707477, None) Precision, Recall and F1 Score with micro = (0.8681181854892988, 0.868421052631579, 0.8682009683707477, None) Precision, Recall and F1 Score with micro = (0.8681181854892988, 0.868421052631579, 0.8682009683707477, None) Precision, Recall and F1 Score with micro = (0.8681181854892988, 0.868421052631579, 0.8682009683707477, None) Precision, Recall and F1 Score with micro = (0.8681181854892988, 0.86842	n tree looks
	dfB = pd.DataFrame(zip(B, C2), columns=["Feature", "Class"])	
it[50]:	dfC	
	<pre>498 -3.415122 1 499 -9.433261 1 1000 rows × 2 columns : feature4 = list(dfC.columns[:1]) # feature4 = list(df.iloc[:, 0]) x4 = dfC[feature4] y4 = dfC['Class'] x4_train, x4_test, y4_train, y4_test = model_selection.train_test_split(x4,</pre>	
	clfgini = tree.DecisionTreeClassifier(criterion="gini", max_depth = 2) clfgini.fit(x4_train, y4_train)	
n [52]:	clfgini.fit(x4_train, y4_train) dot_data = tree.export_graphviz(clfgini, feature_names=feature4, class_names=['0','1'], filled=True) # Draw graph graph = graphviz.Source(dot_data, format="png") graph : Feature <= -0.052 gini = 0.5 samples = 800 value = [402, 398] class = 0 True False Feature <= 0.721	
n [52]: nt[52]:	clfgini.fit(x4_train, y4_train) dot_data = tree.export_graphviz(clfgini, feature_names=feature4, class_names=['0','1'], filled=True) # Draw graph graph graph graphviz.Source(dot_data, format="png") graph Feature <= -0.052 gini = 0.5 samples = 800 value = [402, 398] class = 0 True False Feature <= 0.721 gini = 0.05 samples = 397 value = [0, 397] class = 1 value = [10, 1] class = 0 gini = 0.165 samples = 392 value = [392, 0] class = 0 class = 0 dfC.describe()	
n [51]: n [52]: ut[52]:	dot_data = tree_export_graphviz(clfglini, feature_names=feature4, class_names=['0','1'], filled_True)	
n [52]: n [52]: n [53]:	Conclusion: Class	
n [52]: n [53]: nt[53]:	Conclusion: Class	
n [52]: n [53]: nt[53]:	Conclusion: Class	
n [52]: n [53]:	Conclusion: Class	
n [52]: n [53]: nt[53]:	Conclusion: Class	
n [52]: n [53]: nt[53]:	Conclusion: Class	