

CLASIFICACIÓN DE OBJETOS

Generación de Candidatos – Refinación

Antonio M. López

DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

Pirámide con ventana deslizante (pyramidal sliding window)

SECUENCIA DE PROCESAMIENTO:

- UAB
 Universitat Autònoma
 de Barcelona
- 1. Grdenar las "pre-detecciones" de mayor a menor valor de "confidencia" en su clasificación (p.e. $h_w(x)$): \mathcal{P} .

- 1. Grdenar las "pre-detecciones" de mayor a menor valor de "confidencia" en su clasificación (p.e. $h_{m w}(x)$): ${m \mathcal P}$.
- UAB
 Universitat Autònoma
 de Barcelona

2. Crear una "lista de grupos" (clusters) vacía: $G \leftarrow \emptyset$.

Repetir mientras $\mathcal{P}
eq \emptyset$

3. Coger la 1^{α} pre-detección y mirar si se "solapa lo suficiente" (p.e 50%) con alguno de los grupos de G (p.e. usando la pre-detección de mayor confidencia de cada grupo).

 $\underline{\mathcal{R}i}$ no se solapa lo suficiente con ningún grupo de \mathcal{G} $\underline{fntonces} \text{ crear uno grupo nuevo con la pre-detección en } \mathcal{G}$ $\underline{fliminar la pre-detección de } \mathcal{P}.$

Loger la 1^a pre-detección y mirar si se "solapa lo suficiente" (p.e 50%) con alguno de los grupos de G (p.e. usando la predetección de mayor confidencia de cada grupo).

Bi no se solapa lo suficiente con ningún grupo de Gfintonces crear uno grupo nuevo con la pre-detección en Gfliminar la pre-detección de \mathcal{P} .

3. Coger la 1ª pre-detección y mirar si se "solapa lo suficiente" (p.e 50%) con alguno de los grupos de G (p.e. usando la predetección de mayor confidencia de cada grupo).

 $\underline{\mathcal{B}i}$ no se solapa lo suficiente con ningún grupo de $\underline{\mathcal{G}}$ $\underline{fntonces}$ crear uno grupo nuevo con la pre-detección en $\underline{\mathcal{G}}$ $\underline{fliminar}$ la pre-detección de \mathcal{P} .

>50%

3. Coger la 1ª pre-detección y mirar si se "solapa lo suficiente" (p.e 50%) con alguno de los grupos de G (p.e. usando la predetección de mayor confidencia de cada grupo).

 $\underline{\mathcal{B}i}$ no se solapa lo suficiente con ningún grupo de $\underline{\mathcal{G}}$ $\underline{fntonces}$ crear uno grupo nuevo con la pre-detección en $\underline{\mathcal{G}}$ $\underline{fliminar}$ la pre-detección de \mathcal{P} .

Clasificación de Objetos – Generación de Candidatos – Refinación

4. G contiene las "detecciones" finales.

Comentarios:

- En inglés este tipo de procedimientos se conocen como "non-maximum suppression" (NMS).
- Hay otros algoritmos, no parece que haya uno que sea siempre el mejor, depende de la aplicación.
- Por ejemplo puede ser necesario tener en cuenta el tamaño de las ventanas de pre-detección a la hora de formar grupos y comparar el solapamiento entre pre-detecciones.
- También se pueden plantear algoritmos donde la detección resultante en cada grupo no sea directamente una de las pre-detecciones, sino algún tipo de "promedio" de las pre-detecciones de cada grupo.

UAB Universitat Autònoma de Barcelona

- Conceptos clave de este vídeo:
 - Necesidad de eliminar "pre-detecciones" redundantes.
 - Utilidad de tener una "confidencia" asociada a cada pre-detección.