First-Order Logic: Semantics

Yuting Wang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

Nov 20, 2023

First-Order Logic

Start reading (to keep up with lecture):

► Enderton, Chapter 2.2

Structures

Definition of Structures

Let \mathbb{L} be a first-order language.

Definition

A structure \mathfrak{A} for \mathbb{L} consists of:

- ▶ a non-empty set called the universe (or domain) of the structure and usually written as $|\mathfrak{A}|$;
- ▶ for each *n*-ary predicate symbol P of \mathbb{L} , other than $\dot{=}$, an *n*-ary relation $P^{\mathfrak{A}}$ on $|\mathfrak{A}|$;
- $\stackrel{\dot{=}}{=}^{\mathfrak{A}} \text{ is the identity relation on } |\mathfrak{A}|, \text{ i.e.,}$ $\stackrel{\dot{=}}{=}^{\mathfrak{A}} = \{(a,b) \mid a,b \in |\mathfrak{A}| \text{ and } a = b\};$
- for each *n*-ary function symbol f of \mathbb{L} , an *n*-ary operation on the universe, i.e., an *n*-ary function $f^{\mathfrak{A}}: [\underline{\mathfrak{A}|\times\ldots\times|\mathfrak{A}|} \to |\mathfrak{A}|;$
- for each constant symbol c of \mathbb{L} , $c^{\mathfrak{A}} \in |\mathfrak{A}|$.

Notation and Terminology

- \triangleright \mathfrak{A} , \mathfrak{B} , \mathfrak{C} , \mathfrak{M} , \mathfrak{N} , \mathfrak{Q} , \mathfrak{R} and \mathfrak{Z} , are the usual names we will use for structures. These are the *fraktur* (Gothic) fonts.
- ▶ What $P^{\mathfrak{A}}$ (where $P \neq \dot{=}$) changes with the structure, but $\dot{=}^{\mathfrak{A}}$ is always the identity relation on $|\mathfrak{A}|$.
- We say P denotes (or stands for) $P^{\mathfrak{A}}$ in the structure \mathfrak{A} . Similar terminology is used for function symbols and constant symbols.

Example

Let $\ensuremath{\mathbb{L}}$ be the first-order language that has:

- \blacktriangleright \dotplus and $\dot{\times}$ (2-ary function symbols);
- ▶ 0 and 1 (constant symbols), and
- **>** =

Let \mathfrak{N}_1 be the structure for \mathbb{L} such that:

- $\blacktriangleright |\mathfrak{N}_1| = \mathbb{N};$
- $\dot{}$ $\dot{}$
- $\triangleright \dot{x}^{\mathfrak{N}_1} = \times \text{(the multiplication function on } \mathbb{N}\text{)};$
- $ightharpoonup \dot{\mathfrak{N}}_1 = \{(a,b) \mid a,b \in \mathbb{N} \text{ and } a < b\};$
- $ightharpoonup \dot{0}^{\mathfrak{N}_{1}}=0;$

We can describe this structure simply as $\mathfrak{N}_1 = \{\mathbb{N}, <, +, \times, 0, 1\}$.

Example (Cont'd)

Let \mathfrak{N}_2 be the structure for the same language:

- $\blacktriangleright |\mathfrak{N}_2| = \mathbb{N};$
- $\rightarrow \dot{+}^{\mathfrak{N}_2} = \times;$
- $\dot{\times}^{\mathfrak{N}_2} = +$:
- $ightharpoonup \dot{\mathfrak{I}}^{\mathfrak{N}_2} = \{(a,b) \mid a,b \in \mathbb{N} \text{ and } a > b\};$
- $ightharpoonup \dot{0}^{\mathfrak{N}_2} = 1;$
- $ightharpoonup \dot{1}^{\mathfrak{N}_2} = 0.$

Example (Cont'd)

Let \mathfrak{R} be the structure for the same language:

- $ightharpoonup |\mathfrak{R}| = \mathbb{R};$
- $ightharpoonup \dot{+}^{\mathfrak{R}} = +(addition on the real numbers);$
- $\dot{\times}^{\mathfrak{R}} = \times (\text{multiplication on the real numbers});$
- $\triangleright \dot{<}^{\mathfrak{R}} = <$ (on the real numbers);
- $ightharpoonup \dot{0}^{\mathfrak{R}} = 0;$
- ightharpoonup $i^{\mathfrak{R}}=1$.

Special Status of *≐*

We have been very careful in distinguishing between things in the language $\mathbb L$ and things outside of $\mathbb L$.

For example, \doteq is a symbol in the language, while = is not.

Question

Why does Enderton no distinguish between the two?

Example: Directed Graph

Let \mathbb{L} be the first-order language that (in addition to the symbols required in every first-order language) only has a 2-ary predicate symbol \dot{E} .

Let \mathfrak{B} be the structure for \mathbb{L} such that:

- ▶ $|\mathfrak{B}| = \{a, b, c, d\};$

This denotes a directed graph (See Enderton, page 82)

Example

The wff $\exists x \forall y, \neg \dot{E}(y, x)$ denotes

There is a vertex x such that for any vertex y, no edge points from y to x.

Question

How do we show $\exists x \forall y, \neg \dot{E}(y, x)$ is true in \mathfrak{B} ?

Given a formula φ and a structure $\mathfrak A$, how do we define " φ is true in $\mathfrak A$ ", Or equally speaking, " $\mathfrak A$ satisfies φ "?

Assignment of Values to Terms

Let $\mathfrak A$ be a structure for the language $\mathbb L$. Let V be the set of variables, and T be the set of terms of $\mathbb L$.

Definition (Assignment Functions)

An assignment for $\mathfrak A$ is a function $s:V\to |\mathfrak A|$.

Definition (Assignment to Terms)

An assignment $s:V\to |\mathfrak{A}|$ is extended to a function $\bar{s}:T\to |\mathfrak{A}|$ as follows:

- $ightharpoonup \overline{s}(v) = s(v)$ if v is a variable;
- $ightharpoonup \overline{s}(c) = c^{\mathfrak{A}}$ if c is a constant symbol;
- $ightharpoonup \overline{s}(f(t_1,\ldots,t_n)) = f^{\mathfrak{A}}(\overline{s}(t_1),\ldots,\overline{s}(t_n))$ if f is an n-ary function symbol and t_1,\ldots,t_n are terms.

Example

Look the language \mathbb{L} of the earlier example. Let s be an assignment function for the structure \mathfrak{N}_1 such that $s(v_3)=5$. Then

- $ightharpoonup \overline{s}(\dot{+}(\dot{\times}(\dot{0},v_3),\dot{1}))=1$

Changing the Assignment Function

Let:

- ▶ s be an assignment function,
- x be a variable, and
- ightharpoonup $a \in |\mathfrak{A}|$.

s(x|a) is the new assignment, where for every variable y,

$$s(x|a)(y) = \begin{cases} s(y) & \text{if } y \neq x \\ a & \text{if } y = x \end{cases}$$

Example

If $y \neq x$ then

- ightharpoonup s(x|a)(y|b)(x) = a
- ightharpoonup s(x|a)(y|b)(y) = b
- ightharpoonup s(x|a)(x|b)(x) = b

Satisfaction in First-Order Logic

Given a first-order language L:

- \triangleright let \mathfrak{A} be a structure for \mathbb{L} ,
- \blacktriangleright let s be an assignment for \mathfrak{A} , and
- ightharpoonup let φ be a wff in \mathbb{L} .

We shall talk about what it means for $\mathfrak A$ to satisfy φ with s, written as

$$\models_{\mathfrak{A}} \varphi[s]$$

Informally, it means:

The translation of φ determined by \mathfrak{A} , where a variable x is translated as s(x), is true.

Satisfaction for Atomic Formula

Definition

Let:

- \triangleright \mathfrak{A} be a structure for \mathbb{L} .
- \triangleright s be an assignment for \mathfrak{A} , and
- $ightharpoonup P(t_1,\ldots,t_n)$ be an atomic wff.

Then

- $\blacktriangleright \models_{\mathfrak{A}} P(t_1,\ldots,t_n)[s] \text{ iff } (\overline{s}(t_1),\ldots,\overline{s}(t_n)) \in P^{\mathfrak{A}} \text{ (when } P \neq \dot{=});$
- ightharpoonup $\models_{\mathfrak{A}} \dot{=}(t_1,t_2)[s] \text{ iff } \overline{s}(t_1) = \overline{s}(t_2).$

Satisfaction for Well-Formed Formula

Definition

- For an atomic formula, we have already given its definition;
- ▶ Suppose $\vDash_{\mathfrak{A}} \alpha[s]$ and $\vDash_{\mathfrak{A}} \beta[s]$ have been defined. Then
 - $\blacktriangleright \models_{\mathfrak{A}} (\alpha \wedge \beta)[s] \text{ iff } \models_{\mathfrak{A}} \alpha[s] \text{ and } \models_{\mathfrak{A}} \beta[s];$
 - $\blacktriangleright \models_{\mathfrak{A}} (\alpha \vee \beta)[s] \text{ iff } \models_{\mathfrak{A}} \alpha[s] \text{ or } \models_{\mathfrak{A}} \beta[s];$
 - $\blacktriangleright \models_{\mathfrak{A}} \neg \alpha[s] \text{ iff not } \models_{\mathfrak{A}} \alpha[s];$
 - $\blacktriangleright \models_{\mathfrak{A}} \alpha \to \beta[s] \text{ iff } \models_{\mathfrak{A}} \alpha[s] \Longrightarrow \models_{\mathfrak{A}} \beta[s];$
 - $\blacktriangleright_{\mathfrak{A}} (\alpha \leftrightarrow \beta)[s] \text{ iff } \vDash_{\mathfrak{A}} \alpha[s] \Longleftrightarrow \vDash_{\mathfrak{A}} \beta[s];$
 - ightharpoonup $\models_{\mathfrak{A}} \forall x \ \alpha[s] \text{ iff for all } a \in |\mathfrak{A}|, \models_{\mathfrak{A}} \alpha[s(x|a)].$
 - ightharpoonup $\models_{\mathfrak{A}} \exists x \alpha[s]$ iff there is some $a \in |\mathfrak{A}|, \models_{\mathfrak{A}} \alpha[s(x|a)]$

If $\models_{\mathfrak{A}} \varphi[s]$, we say

- \triangleright \mathfrak{A} satisfies φ with s, or
- \triangleright s satisfies φ in the structure \mathfrak{A} , or
- $\triangleright \varphi$ is true in $\mathfrak A$ with s.

Example

Let $\mathfrak{N} = (\mathbb{N}, <, +, \times, 0, 1)$. This is our abbreviated way of saying:

- ▶ \mathbb{L} has a binary predicate symbol $\dot{<}$, 2-ary function symbols $\dot{+}$ and $\dot{\times}$, constant symbols $\dot{0}$ and $\dot{1}$, but no other predicate symbols (except for $\dot{=}$), functions symbols or constant symbols;
- $ightharpoonup \mathfrak{N}$ is the structure for \mathbb{L} :
 - ▶ whose universe is N;
 - ► <ⁿ =<;
 - $\dot{+}^{\mathfrak{N}} = +;$
 - \rightarrow $\times^{\mathfrak{N}} = \times$:
 - ightharpoonup $\dot{0}^{\mathfrak{N}}=0$ and $\dot{1}^{\mathfrak{N}}=1$.

Similarly, let $\mathfrak{Z}=(\mathbb{Z},<,+,\times,0,1)$. Note both \mathfrak{N} and \mathfrak{Z} are structures for the same language \mathbb{L} .

Example (Cont'd)

Question

Let φ be the wff

$$\forall x(\neg x \dot{<} \dot{0})$$

Which of the following judgments holds?

- ▶ For every $s: V \to \mathbb{N}$, $\vDash_{\mathfrak{N}} \varphi[s]$;
- ▶ For every $s: V \to \mathbb{Z}$, $\vDash_3 \varphi[s]$.

More Examples

Let
$$\mathfrak{R} = (\mathbb{R}, <, +, \times, 0, 1)$$
.

Question

Let φ be the wff

$$\forall x \forall y (x \dot{<} y \rightarrow \exists z \ (x \dot{<} z \land z \dot{<} y))$$

Then which of the following is true?

- ▶ For every $s: V \to \mathbb{Z}$, $\vDash_{\mathfrak{F}} \varphi[s]$
- ▶ For every $s: V \to \mathbb{R}$, $\vDash_{\mathfrak{R}} \varphi[s]$

Example: Directed Graph

Let \mathbb{L} be the first-order language that (in addition to the symbols required in every first-order language) only has a 2-ary predicate symbol \dot{E} .

Let $\mathfrak B$ be the structure for $\mathbb L$ such that:

- ▶ $|\mathfrak{B}| = \{a, b, c, d\};$
- $\blacktriangleright \dot{E}^{\mathfrak{B}} = \{\langle a, b \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle c, c \rangle\}.$

Question

Let $\sigma = \exists x \forall y, \neg \dot{E}(y, x)$. For every assignment $s : V \to |\mathfrak{B}|$, does $\models_{\mathfrak{B}} \sigma[s]$ hold?

More Examples

Let

- $\triangleright \varphi_1$ be $\forall x(\neg x \dot{<} y)$, and
- $ightharpoonup \varphi_2$ be $\forall x(\neg x \dot{<} \dot{0})$.

Then

- (1) $\vDash_{\mathfrak{N}} \varphi_1[s]$ iff for all $a \in \mathbb{N}, s(y) \leq a$;
- (2) $\vDash_{\mathfrak{N}} \varphi_2[s]$ iff for all $a \in \mathbb{N}, 0 \leq a$;

Note that

- ▶ (1) is true iff s(y) = 0, so whether it is true or not depend on s, whereas
- \triangleright (2) is true for all s.

How do free occurrences of variables affect satisfaction?

Satisfaction Depends Only on Variables that Occur Free

Lemma

Let $\mathfrak A$ be a structure for $\mathbb L$, s_1 and s_2 be two assignment for $\mathfrak A$ and t be a term of $\mathbb L$.

If $s_1(x) = s_2(x)$ for every x that occurs in t, then

$$\overline{s_1}(t) = \overline{s_2}(t)$$

Theorem

Let $\mathfrak A$ be a structure for $\mathbb L$, s_1 and s_2 be two assignment for $\mathfrak A$ and φ be a wff of $\mathbb L$.

If $s_1(x) = s_2(x)$ for every x that occurs free in φ , then

$$\models_{\mathfrak{A}} \varphi[s_1] \iff \models_{\mathfrak{A}} \varphi[s_2]$$

Satisfaction for Sentences

Corollary

If σ is a sentence then either:

- (1) $\models_{\mathfrak{A}} \sigma[s]$ for every assignment s, or
- (2) $\not\models_{\mathfrak{A}} \sigma[s]$ for every assignment s.

In case (1), we say σ is true in $\mathfrak A$, and in case (2), we say σ is false in $\mathfrak A$.

Thus if σ is a sentence then whether or note $\vDash_{\mathfrak{A}} \sigma[s]$ does not depend on s. So we can just write $\vDash_{\mathfrak{A}} \sigma$ or $\not\vDash_{\mathfrak{A}} \sigma$.

Satisfiability and Validity

Satisfiability

Definition

- The wff φ is satisfiable if there is some structure $\mathfrak A$ and some assignment $s:V\to |\mathfrak A|$ such that $\models_{\mathfrak A} \varphi[s]$.
- ▶ The set Γ of wffs is satisfiable if there is some structure $\mathfrak A$ and some assignment $s:V\to |\mathfrak A|$ such that $\models_{\mathfrak A} \varphi[s]$ for every φ in Γ.

Algorithms

Question

Is there an algorithm for determining satisfiability?

In other words, is there an algorithm that on input a wff φ will give an output of "yes" if φ is satisfiable and output "no", otherwise?

Is There a Compactness Theorem for First-Order Logic?

Question

Is the following statement true?

For every first-order language \mathbb{L} , and every set Γ of wffs of \mathbb{L} , if every finite subset of Γ is satisfiable then Γ is satisfiable.

Answer

Yes! But we have to wait for a while to see the answer.

Valid Wffs

Some wffs are satisfied in every structure under every assignment s.

Definition

 φ is valid iff $\vDash_{\mathfrak{A}} \varphi[s]$ for every structure \mathfrak{A} for \mathbb{L} and every assignment function s for \mathfrak{A} .

Corollary

A sentence σ is valid iff it is true in every structure.

Theorem

 φ is not satisfiable iff $\neg \varphi$ is valid.

Examples

Which of the following are valid?

- $ightharpoonup \exists x \ x = x$
- $ightharpoonup \forall x \exists y \ x \neq y$
- $\dot{P}(x) \vee \neg \dot{P}(x)$
- $ightharpoonup \neg \exists x \ x \neq x$

More Examples

Which of the following are valid?

- $\blacktriangleright \ \forall x (\dot{P}(x) \to \exists y \dot{P}(y))$
- $\dot{P}(x) \rightarrow \exists x \dot{P}(x)$
- $\dot{P}(x) \rightarrow \forall x \dot{P}(x)$
- $\exists x \dot{P}(x) \to \forall x \dot{P}(x)$
- $\exists x (\dot{P}(x) \to \forall x \dot{P}(x))$

Sentences for Classifying Structures

Earlier Example

Let σ be the sentence $\forall x \forall y (x \dot{<} y \to \exists z \ x \dot{<} z \land z \dot{<} y)$. Then σ is true in \Re but false in \Im .

Sentences that Distinguish Between Structures

Let:

- $ightharpoonup \mathfrak{N} = (\mathbb{N}, <);$
- ▶ $\mathfrak{Z} = (\mathbb{Z}, <);$
- $\triangleright \mathfrak{Q} = (\mathbb{Q}, <);$
- $ightharpoonup \mathfrak{R} = (\mathbb{R}, <).$

Question

For each pair of these structures, can you find a sentence in this language that is true in one and false in the other?

Elementary Equivalence

Definition

Let $\mathfrak A$ and $\mathfrak B$ be structures for the same language $\mathbb L$. $\mathfrak A$ and $\mathfrak B$ are elementarily equivalent (written $\mathfrak A\equiv\mathfrak B$) if for every sentence σ of $\mathbb L$

$$\models_{\mathfrak{A}} \sigma \iff \models_{\mathfrak{B}} \sigma.$$

Remark

We have just seen that in the language with $\dot{<}$:

- **▶** 3 ≠ Q;
- **>** 3 ≠ ℜ.

Comparing $\mathfrak Q$ and $\mathfrak R$

Question

Is it true that $\mathfrak Q$ and $\mathfrak R$ are elementarily equivalent in a language $\mathbb L?$

Answer

Perhaps the answer is not so easy!

Models of Sentences

Definition

- \triangleright \mathfrak{A} is a model of the sentence σ if $\models_{\mathfrak{A}} \sigma$, i.e., if σ is true in \mathfrak{A} ;
- $ightharpoonup \mathfrak A$ is a model of a set Σ of sentences if $\mathfrak A$ is a model of every member of Σ , i.e., every sentence in Σ is true in $\mathfrak A$.

Question

Let $\mathfrak{R} = (\mathbb{R}, <, +, \times, 0, 1)$ and $\mathfrak{Q} = (\mathbb{Q}, <, +, \times, 0, 1)$. Is there a sentence that is true in \mathfrak{R} , but not in \mathfrak{Q} ?

Answer

Yes. Let σ be $\exists x \ x \dot{\times} x \doteq \dot{1} + \dot{1}$.

Example

Let $\mathbb L$ be a first-order language with 2-ary predicate symbols \dot{P} and $\dot{=}$. Given a structure for $\mathbb L$, we have:

- $ightharpoonup \mathfrak{A}$ is a model of $\forall x \forall y \ x \doteq y \ \text{iff} \ |\mathfrak{A}|$ contains exactly one element;
- ▶ \mathfrak{A} is a model of $\forall x \forall y \ \dot{P}(x,y)$ iff $\dot{P}^{\mathfrak{A}} = |\mathfrak{A}| \times |\mathfrak{A}|$;
- ▶ \mathfrak{A} is a model of $\forall x \forall y \neg \dot{P}(x, y)$ iff $\dot{P}^{\mathfrak{A}} = \emptyset$;
- ▶ \mathfrak{A} is a model of $\forall x \exists y \ \dot{P}(x,y)$ iff the domain of $\dot{P}^{\mathfrak{A}}$ is $|\mathfrak{A}|$.

We notice that a sentence may denote a class of structures (i.e., its models).

Reflexivity, Symmetry and Transitivity

Definition

Let R be a binary relation.

R is symmetric if for every a and b,

$$(a,b) \in R \Longrightarrow (b,a) \in R$$

R is transitive if for every a, b, and c,

$$(a,b) \in R \Longrightarrow (b,c) \in R \Longrightarrow (a,c) \in R$$

ightharpoonup R is reflexive on the set A if for all $a \in A$,

$$(a,a) \in R$$

▶ R satisfies trichotomy on A if for all $a, b, c \in A$, exactly one of the following is true:

$$(a,b) \in R, \qquad (b,a) \in R, \qquad a=b$$

Linear Ordering

Definition

A binary relation R is a linear ordering on A if R is transitive and satisfies trichotomy on A.

Definition

Let \mathbb{L} be the language with a binary relation symbol \dot{R} and $\dot{=}$ (and no other symbols). Let $\mathfrak{A}=(A,R)$, i.e., $(A=|\mathfrak{A}|$ and $R=\dot{R}^{\mathfrak{A}})$.

- \triangleright \mathfrak{A} is *transitive* if R is transitive;
- $ightharpoonup \mathfrak{A}$ is a linearly ordered structure if R is a linear ordering on A.

See the discussion on Page 93 of Enderton's.

Examples

Each of the following is a linearly ordered structure:

- **▶** (N, <);
- **▶** (ℤ, <);
- ightharpoonup ($\mathbb{R},<$).

Also, each of the following is linearly ordered structure:

- **▶** (N, >);
- ightharpoonup ($\mathbb{Z}, >$);
- ightharpoonup ($\mathbb{R}, >$).

Question

Is (\mathbb{N}, \leq) a linearly ordered structure?

What Can Sentences Say About Structures

```
Question
Let \mathfrak{A} = (A, R).

\mathfrak{A} is transitive iff \vDash_{\mathfrak{A}} \sigma, where \sigma = ?;

\mathfrak{A} is linearly ordered iff \vDash_{\mathfrak{A}} \sigma, where \sigma = ?;

dom(R) = A iff \vDash_{\mathfrak{A}} \sigma, where \sigma = ?;

rng(R) = A iff \vDash_{\mathfrak{A}} \sigma, where \sigma = ?;

R is a function iff \vDash_{\mathfrak{A}} \sigma, where \sigma = ?.
```

See the discussion on Page 93 of Enderton's for some of the answers.

How can we characterize relations in *structures* by looking at wffs in first-order logic?

Abbreviations

Definition

Let φ be a wff such that all variables occurring free in φ are included among v_1,\ldots,v_k . Given $a_1,\ldots,a_k\in |\mathfrak{A}|$,

$$\models_{\mathfrak{A}} \varphi \llbracket a_1, \ldots, a_k \rrbracket$$

means $\vDash_{\mathfrak{A}} \varphi[s]$ for some $s: V \to |\mathfrak{A}|$ such that $s(v_i) = a_i (1 \le i \le k)$.

Example

Let $\mathfrak{N} = (\mathbb{N}, <, +, \times, 0, 1)$. We have

- $\blacktriangleright \models_{\mathfrak{N}} \forall v_2 (\neg v_2 \dot{<} v_1) \llbracket 0 \rrbracket;$
- $\blacktriangleright \not\models_{\mathfrak{N}} \forall v_2(\neg v_2 \dot{<} v_1) \llbracket 2 \rrbracket.$

Relations Defined by Wffs

Definition

Let

- A be a structure, and
- ho be a wff and n be such that the variables occurring free in φ are included among v_1, \ldots, v_n .

The *n*-ary relation defined by φ in $\mathfrak A$ is

$$\{(a_1,\ldots,a_n)\mid \vDash_{\mathfrak{A}} \varphi\llbracket a_1,\ldots,a_n\rrbracket\}$$

Examples

Example

Let $\mathfrak{R}=(\mathbb{R},<,+,\times,0,1)$. The 1-ary relation $\{a\in\mathbb{R}\mid 0\leq a\}$ is defined by

$$\exists v_2(v_1 \dot{=} v_2 \times v_2)$$

in \mathfrak{R} ;

Let $\mathfrak{N} = (\mathbb{N}, <, +, \times, 0, 1)$. The 2-ary relation $\{(a, b) \mid a < b\}$ is defined by

$$\exists v_3(v_1 \dot{+} (\dot{1} \dot{+} v_3) \dot{=} v_2)$$

in \mathfrak{N} .

Definable Relations

Definition

- ▶ The relation R is definable in the structure $\mathfrak A$ if there is some wff φ that defines it in $\mathfrak A$.
- Let f be a n-ary function f whose domain is a subset of $|\mathfrak{A}| \times \ldots \times |\mathfrak{A}|$ and whose range is a subset of $|\mathfrak{A}|$. f is

definable in $\mathfrak A$ if the (n+1)-ary relation

$$\{(a_1,\ldots,a_n,b)\mid f(a_1,\ldots,a_n)=b\}$$

is definable in \mathfrak{A} .

Examples

Example

Let $\mathfrak{N} = (\mathbb{N}, <, +, \times, 0, 1)$.

- $v_1 + v_2 = v_3$ defines $\{(a, b, c) \mid a + b = c\}$, which is the same as the function f, where f(a, b) = a + b.
- $v_1 + v_3 = v_2$ defines $\{(a, b, c) \mid a + c = b\}$, which is the same as the function f, where

$$f(a,b) = \begin{cases} b-a & \text{if } a \leq b \\ \text{Undefined} & \text{Otherwise} \end{cases}$$

What Relations are Definable in a Structure?

Proposition

Let $\mathfrak A$ be a structure for $\mathbb L$.

- \triangleright $|\mathfrak{A}|$ is definable (by $v_1 \doteq v_1$, if \doteq is in \mathbb{L});
- \emptyset is definable (by $v_1 \neq v_1$, if \doteq is in \mathbb{L});
- ightharpoonup = is definable (by $v_1 \doteq v_2$, if \doteq is in \mathbb{L});
- for every *n*-ary predicate symbol \dot{P} , $\dot{P}^{\mathfrak{A}}$ is definable (by $\dot{P}(v_1,\ldots,v_n)$);
- for every *n*-ary function symbol f, $f^{\mathfrak{A}}$ is definable (by $f(v_1, \ldots, v_n) = v_{n+1}$);
- fore every constant symbol c, the singleton $\{c^{\mathfrak{A}}\}$ is definable (by $v_1 \doteq c$).

What happens if \doteq is not in \mathbb{L} ?

Relations Definable in a Structure

Proposition

- ▶ If P and and Q are n-ary relations that are definable in \mathfrak{A} , then so are: the complement of P, $P \cup Q$, $P \cap Q$, $P \setminus Q$.
- If the n+1-ary relation R is definable in $\mathfrak A$ then so are the n-ary relations

$$\{(a_1,\ldots,a_n)\mid \text{there exists }b\in |\mathfrak{A}|, (a_1,\ldots,a_n,b)\in R\}$$

 $\{(a_1,\ldots,a_n)\mid \text{there exists }b\in |\mathfrak{A}|, (b,a_1,\ldots,a_n)\in R\}$

In particular, if R is a binary relation that is definable in $\mathfrak A$ then dom(R) and rng(R) is definable.

Definable Subsets of \mathfrak{N}

Which of the following subsets of \mathbb{N} are definable in $\mathfrak{N} = (\mathbb{N}, <)$?

- **▶** ∅.
- **▶** N.
- **▶** {0}.
- **▶** {1}.
 - Let $\varphi(x)$ be the result of replacing v_1 in φ with x;
 - We obtain the defining wff as follows:

$$\begin{split} \textbf{\textit{a}} &= 1 \Longleftrightarrow \textbf{\textit{a}} \neq \textbf{\textit{0}} \text{ and } \forall \textbf{\textit{b}} \in \mathbb{N}, (\textbf{\textit{b}} < \textbf{\textit{a}} \Longrightarrow \textbf{\textit{b}} = \textbf{\textit{0}}) \\ &\iff \vdash_{\mathfrak{A}} \neg \varphi \llbracket \textbf{\textit{a}} \rrbracket \text{ and } \vdash_{\mathfrak{A}} \forall v_3 (v_3 \dot{<} v_1 \to \varphi(v_3)) \llbracket \textbf{\textit{a}} \rrbracket \\ &\iff \vdash_{\mathfrak{A}} \neg \varphi \land \forall v_3 (v_3 \dot{<} v_1 \to \varphi(v_3)) \llbracket \textbf{\textit{a}} \rrbracket \end{split}$$

So the formula $\neg \varphi \land \forall v_3(v_3 \dot{<} v_1 \rightarrow \varphi(v_3))$ defines $\{1\}$.

More Definable Subset of A

Which of the following subsets of \mathbb{N} are definable in $\mathfrak{N} = (\mathbb{N}, <)$?

- ▶ $\{n\}$ for each $n \in \mathbb{N}$.
- ightharpoonup Every finite subset of \mathbb{N} .
- ightharpoonup Every cofinite subset of \mathbb{N} .
- ightharpoonup Every subset of \mathbb{N} .

How Many Relations are Definable?

Lemma

- (1) Given a structure \mathfrak{A} , the set of definable relations is *enumerable*;
- (2) Not every subset of \mathbb{N} is definable.

Proof.

For (1), note that the set of wffs is enumerable, and every wff may define only one relation.

For (2), note that the set of all subsets of $\mathbb N$ is uncountable. Therefore, some subset may not match a wff.

Definable Subsets in General

Which of the following subsets of \mathbb{R} are definable in $\mathfrak{R} = (\mathbb{R}, <)$?

- **▶** ∅.
- $ightharpoonup \mathbb{R}$.
- ► Anything else?

Question

More generally, given a first-order language $\mathbb L$ and a structure $\mathfrak A$ for $\mathbb L$, how do we figure out which relations in $\mathfrak A$ are definable?

Given any wff φ , how do we relate its satisfactions in different structures?

Homomorphisms

Definition

Let $\mathfrak A$ and $\mathfrak B$ be structures for $\mathbb L$. A homomorphism from $\mathfrak A$ to $\mathfrak B$ is a function $h: |\mathfrak A| \to |\mathfrak B|$ such that:

▶ for every *n*-ary predicate symbol R, other than $\stackrel{.}{=}$, and $a_1, \ldots, a_n \in |\mathfrak{A}|$,

$$(a_1,\ldots,a_n)\in R^{\mathfrak{A}}\Longleftrightarrow (h(a_1),\ldots,h(a_n))\in R^{\mathfrak{B}};$$

▶ for every *n*-ary function symbol f and $a_1, \ldots, a_n \in |\mathfrak{A}|$,

$$h(f^{\mathfrak{A}}(a_1,\ldots,a_n))=f^{\mathfrak{B}}(h(a_1),\ldots,h(a_n));$$

for every constant symbol c,

$$h(c^{\mathfrak{A}})=c^{\mathfrak{B}}.$$

Homomorphisms

Definition

- ▶ h is a homomorphism of $\mathfrak A$ onto $\mathfrak B$ if h is a homomorphism from $\mathfrak A$ to $\mathfrak B$ and h maps $\mathfrak A$ onto $\mathfrak B$;
- A homomorphism h from $\mathfrak A$ into $\mathfrak B$ is an isomorphism if h is one-to-one;
- ▶ The structures $\mathfrak A$ and $\mathfrak B$ are isomorphic, written $\mathfrak A \cong \mathfrak B$, if there is some isomorphism of $\mathfrak A$ onto $\mathfrak B$;
- ightharpoonup An automorphism of $\mathfrak A$ is an isomorphism of $\mathfrak A$ onto $\mathfrak A$.

Examples

Example

Let $\mathfrak{A} = (\mathbb{N}, <^{\mathbb{N}}, +^{\mathbb{N}})$ and $\mathfrak{B} = (\mathbb{E}, <^{\mathbb{E}}, +^{\mathbb{E}})$.

Here $\mathbb E$ is the set of even non-negative integers, $<^{\mathbb E}$ is the "less than" relation on $\mathbb E$, etc.

Then h is an isomorphism of $\mathfrak A$ onto $\mathfrak B$, where for all $n \in \mathbb N$,

$$h(n) = 2n$$
.

Examples

Example

Let $\mathfrak{A}=(\mathbb{N},<^{\mathbb{N}},+^{\mathbb{N}})$ and $\mathfrak{B}=(\mathbb{O},<^{\mathbb{O}},+^{\mathbb{O}})$. Here \mathbb{O} is the set of odd non-negative integers, $<^{\mathbb{O}}$ is the "less than" relation on \mathbb{O} , etc.

- ▶ Then an isomorphism of $\mathfrak A$ onto $\mathfrak B$ is: There is NONE!
- ▶ In fact, $\mathfrak B$ is not even a structure, because $\mathbb O$ is not closed under addition.

Automorphisms of $\mathfrak{R}=(\mathbb{R},<)$

Let $\mathfrak{R} = (\mathbb{R}, <)$. Which of the following functions h are automorphisms of \mathfrak{R} ?

- ► The identity function.
- h(a) = a + 3
- ▶ h(a) = a 3
- ▶ h(a) = 2a
- ▶ h(a) = -a
- \blacktriangleright $h(a) = k \times a + l$
- $h(a) = a^3$
- $h(a) = a^2$

Automorphisms of $\mathfrak{N} = (\mathbb{N}, <)$

Let
$$\mathfrak{N} = (\mathbb{N}, <)$$
.

- ▶ The identity function is an automorphism of \mathfrak{N} ; what about others?
- ▶ Suppose *h* is an automorphism of \mathfrak{N} , h(0) = 0
- ▶ Suppose *h* is an automorphism of \mathfrak{N} , h(1) = 1
- ▶ In general, if h is an automorphism of \mathfrak{N} , h(n) = n
- ightharpoonup Therefore, the identity function is the only automorphism of \mathfrak{N} .

Substructures

A special kind of isomorphisms:

Definition

Let $\mathfrak{A}=(A,\ldots)$ and $\mathfrak{B}=(B,\ldots)$ be structures for \mathbb{L} . \mathfrak{A} is a substructure of \mathfrak{B} (written $\mathfrak{A}\subseteq\mathfrak{B}$) if:

- $ightharpoonup A \subseteq B$;
- ▶ for every *k*-ary predicate symbol *P*:

$$P^{\mathfrak{A}}=P^{\mathfrak{B}}\cap A^k$$

(Note this is not the same as saying $P^{\mathfrak{A}} \subseteq P^{\mathfrak{B}}$);

▶ for every k-ary function symbol f and every k-tuple (a_1, \ldots, a_k) of elements of A:

$$f^{\mathfrak{A}}(a_1,\ldots,a_k)=f^{\mathfrak{B}}(a_1,\ldots,a_k);$$

• for every constant symbol c, $c^{\mathfrak{A}} = c^{\mathfrak{B}}$.

Examples

Example

Let

- $\mathbb{N} = (\mathbb{N}, <^{\mathbb{N}}, +^{\mathbb{N}}, \times^{\mathbb{N}})$
- $ightharpoonup \mathfrak{E} = (\mathbb{E}, <^{\mathbb{E}}, +^{\mathbb{E}}, \times^{\mathbb{E}}).$

Then \mathfrak{E} is a substructure of \mathfrak{N} .

Question

Let

- $\mathfrak{A} = (\{0,1,2,3\}, P^{\mathfrak{A}}), \text{ where } P^{\mathfrak{A}} = \{0,1,2\};$
- $\mathfrak{B} = (\{0,1\}, P^{\mathfrak{B}}), \text{ where } P^{\mathfrak{B}} = \{0\}.$

Is \mathfrak{B} is a substructure of \mathfrak{A} ?

Answer

No. Because
$$P^{\mathfrak{A}} \cap \{0,1\} = \{0,1\} \neq \{0\} = P^{\mathfrak{B}}$$
.

Notation: Function Composition

Definition

If f and g are functions, then $f \circ g$ is the composition of f and g. That is,

$$f\circ g(a)=f(g(a)).$$

Example

Suppose $s:V\to |\mathfrak{A}|$ is an assignment function for \mathfrak{A} , and h is a homomorphism from \mathfrak{A} to \mathfrak{B} . Then $h\circ s$ is an assignment function for \mathfrak{B} .

The Value of Terms Under a Homomorphism

Lemma

Let $\mathfrak A$ and $\mathfrak B$ be structures for the language $\mathbb L$. Let h be a homomorphism from $\mathfrak A$ to $\mathfrak B$, and $s:V\to |\mathfrak A|$ be an assignment for $\mathfrak A$. Then for every term t of $\mathbb L$,

$$h(\overline{s}(t)) = \overline{h \circ s}(t).$$

Proof.

By induction on t.

The Homomorphism Theorem

Theorem (The Homomorphism Theorem)

Let h be a homomorphism from $\mathfrak A$ to $\mathfrak B$ and s be an assignment function for $\mathfrak A$. The statement

$$\models_{\mathfrak{A}} \varphi[s] \iff \models_{\mathfrak{B}} \varphi[h \circ s]$$

- (a) is true for every quantifier-free wff φ not containing \doteq ;
- (b) is true for every quantifier-free wff φ if h is one-to-one;
- (c) is true for every wff φ not containing \doteq if h is onto;
- (d) is true for every wff φ if h is an isomorphism of $\mathfrak A$ onto $\mathfrak B$ (i.e., $\mathfrak A\cong \mathfrak B$.

Proof.

By induction on φ .

Corollaries of the Homomorphism Theorem

Corollary

If $\mathfrak{A} \cong \mathfrak{B}$, then $\mathfrak{A} \equiv \mathfrak{B}$.

Question

Do you think the converse is true?

Answer

No. Take $\mathfrak{R} = (\mathbb{R}, <)$ and $\mathfrak{Q} = (\mathbb{Q}, <)$ as an counter example.

Corollaries of the Homomorphism Theorem

Corollary (Automorphism Theorem)

Let h be an automorphism of \mathfrak{A} . Let R be an n-rary relation on $|\mathfrak{A}|$ that is definable in \mathfrak{A} . For every n-tuple (a_1, \ldots, a_n) of elements of \mathfrak{A} :

$$(a_1,\ldots,a_n)\in R\Longleftrightarrow (h(a_1),\ldots,h(a_n))\in R.$$

We often use this lemma to show certain relations are not definable:

Example

Let $\mathfrak{R}=(\mathbb{R},<)$. Its subset \mathbb{N} is not definable in \mathfrak{R} because $h(a)=a^3$ is an automorphism of \mathfrak{R} .