Mathematics-II (MAC02) Problem Set

Laplace Transform

1. Evaluate:

- (i) $L\{t^5e^{3t}\}$ (ii) $L\{e^{2t}\cos^2 t\}$ (iii) $L\{(\sqrt{t}-1/\sqrt{t})^3\}$
- (iv) $L\{\sin \sqrt{t}\}$ (v) $L\{e^{-t}\sin^2 t\}$

- (vi) $L\left\{\frac{e^{-at} e^{-bt}}{t}\right\}$ (vii) $L\left\{\frac{1 e^t}{t}\right\}$ (viii) $L\left\{\frac{\cos at \cos bt}{t}\right\}$ (ix) $L\left\{\frac{1 \cos t}{t^2}\right\}$ (x) $L\left\{e^{2t}t\sin 3t\right\}$

- (xi) $L\{e^{-2t}\int_0^t t\sin 3t dt\}$
- $\begin{array}{l} \text{(xii)} \ L\{t\int_0^t \frac{\sin u}{u} \mathrm{du}\} \\ \text{(xiii)} \ L\{t\int_0^t \frac{e^{-t}\sin t}{t}\} \, dt \end{array}$
- (xiv) $L\{t\int_0^t \frac{e^t \sin t}{t}\} dt$

- $(xv) \int_{0}^{\infty} \frac{\sin mt}{t} dt$ $(xvi) \int_{0}^{\infty} \frac{\sin mt}{t} dt$ $(xvii) \int_{0}^{\infty} \frac{e^{-t} \sin t}{t} dt$ $(xviii) \int_{0}^{\infty} e^{-2t} t \sin^{2} t dt$ $(xviii) \int_{0}^{\infty} t e^{-3t} \sin t dt$ $(xix) \int_{0}^{\infty} \frac{e^{-at} e^{-bt}}{t} dt$

Ans: $\log(\frac{s+b}{s+a})$.

Ans: $\frac{3-s}{(s+1)(s^2-2s+5)}$.

- Ans: $\log \frac{s-1}{s}$.
- Ans: $\log \sqrt{\frac{s^2+b^2}{s^2+a^2}}$.
- Ans: $s \log \frac{s}{\sqrt{s^2+1}} + \cot^{-1} s$.
 - Ans: $\frac{6}{(s^2+4s+13)^2}$.
- Ans: $\frac{1}{s^2} \cot^{-1} s + \frac{1}{s(s^2+1)}$.

2. Find the inverse Laplace transform of the following functions: (i) $\frac{4s+5}{(s-1)^2(s+2)}$ (ii) $\frac{1}{(s+a)(s+b)}$ (iii) $\frac{1}{s^2(s+4)}$ (iv) $\frac{s^2}{(s^2+1)^2}$

- (v) $\log(1 + \frac{1}{s^2})$
- (vi) $\frac{9}{s^2(s-3)}$ (vii) $\frac{5}{s^2-2s-3}$ (viii) $\frac{5s^2+8s-1}{(s+3)(s^2+1)}$ (ix) $\frac{s}{(s^2+a^2)^2}$ (x) $\log(1+\frac{1}{s})$

Ans: $\frac{e^{-bt}-e^{-at}}{a-b}$.

Ans: $\frac{\pi}{4}$.

Ans: $\frac{1}{8}$.

Ans: $\frac{3}{50}$.

Ans: $\log \frac{b}{a}$.

- Ans: $\frac{t}{4} + \frac{e^{-4t}}{16} \frac{1}{16}$.
- Ans: $\frac{1}{2}(\sin t + t\cos t)$.
 - Ans: $\frac{2(1-\cos t)}{t}$.
 - Ans: $-1 3t + e^{3t}$.
 - Ans: $\frac{5}{2}e^{-t}\sinh 2t$.
- Ans: $2e^{-3t} + 3\cos t \sin t$.
 - Ans: $\frac{t \sin at}{2a}$.
 - Ans: $\frac{(1-e^t)}{t}$.

(xi)
$$\frac{1}{s} \log(1 + \frac{1}{s^2})$$

(xii) $\log \frac{s+a}{s+b}$
(xiii) $\cot^{-1}(s/2)$
(xiv) $\frac{1}{2} \log \frac{s^2+b^2}{s^2+a^2}$

Ans: $2\int_0^t \frac{(1-\cos u)}{u} du$.

3. Use convolution theorem to find inverse Laplace transform of the following functions:

(i) $\frac{1}{(s^2+a^2)^2}$ (ii) $\frac{1}{s^2(s^2+a^2)}$ (iii) $\frac{1}{(s+a)(s+b)}$ (iv) $\frac{1}{s^2(s+1)^2}$ (v) $\frac{s}{(s+2)(s^2+9)}$