波動、繩波、水波、光學與聲學

沈威宇

2025年2月4日

目錄

第一章	波動、繩波、水波、光學(Optics)與聲學(Acoustics)		1
第一	-節 符號約定與假設		1
	一、 相位		1
	(一) 相位(Phase)		1
	(二) 相位移(Phase shift)		1
	(三) 同相、異相與反相		1
	二、 小波動假設	2	2
	三、 通用純量符號	2	2
	四、 通用向量符號	(3
	五、 Operator overload	(3
	六、 折射(Refraction)、反射(Reflection)與透射(Transmission)	(3
	(一) 預設場景	(3
	(二) 純量符號	(3
	七、 鏡之稱呼	4	4
	八、 繩波純量符號	4	4
	九、 兩波相較純量符號	4	4
	十、 聲波	4	4
	(一) 純量符號	4	4
	(二) 常數符號	!	5
第二	上節 波動(Wave motion)	!	5
	一、 波動定義	(5
	二、 波的分類	(5
	三、 波的形狀	(6
	四、 數學描述	(6
	(一) 任意維波動方程式(Wave equation)	(6

	(二) 一維波動方程式	3
	(三) 波函數(Wave function)	3
	(四) 介質質點振動速度	3
	(五) 一維介質質點振動速度	7
五、	頻率不變	7
六、	週期波運動分析(Kinetic analysis)/週期波基本參數關係	7
第三節	波的相位與干涉	7
<u> </u>		
= \		
三、	波的疊加原理(Superposition principle of waves)	3
四、		3
	(一) 波的干涉(Interference)	3
	(二) 波節與波腹	3
	(三) 同調性/相干性(Coherence)	3
第四節	正弦波(Sinusoidal wave).................... 8	3
— \	· 波函數	
= \	一維波函數	
= \	A 55 55 THE TEXT I THE	
四、		
五、		
	(一) 數學描述	
	(二) 駐波性質	
	(三) 駐波頻率	
<u> </u>		
第五節	光	
— `	幾何光學(Geometrical Optics)與物理光學(Physical Optics)	
_`	幾何光學	
	(一) 光線(ray of light)與光束(beam of light)....................................	
	(二) 直進性與可逆性	
	(三) 成像	
	(四) Fermat's principle (費馬原理)/the principle of least time	2

三、	光的粒子說與波動說	12
	(一) 粒子說	12
	(二) 波動說	12
	(三) 光量子說	12
第六節	反射、折射與透射	13
_,	反射	13
	(一) 漫射(diffuse reflection)與鏡面反射(specular reflection)	13
	(二) 反射成像	13
	(三) 反射定律(Law of reflection)	13
= \	折射	13
	(一) 折射率(Refractive index/Index of refraction)	13
	(二) 司乃耳定律(Snell's law)	14
	(三) 視深與實深	14
三、	全(內)反射(Total internal reflection)	14
四、	反射係數(Reflection coefficient)與透射係數(Transmission coefficient)	15
五、	海市蜃樓(Mirage)	16
	(一) 下蜃景(inferior mirage)	16
	(二) 上蜃景(superior mirage)	16
六、	偏振	16
	(一) s-偏振	16
	(二) p-偏振	16
	(三) 布儀爾角(Brewster's Angle)	16
	(四) 偏振/極化/起偏片/膜/器(Polarizer)	17
第七節	面鏡(Mirror)反射	17
_ \	平面鏡	
	(一) 夾角二平面鏡成像	17
	(二) 偏向角	18
	(三) 平行平面鏡	18
	(四) 光槓桿(Optical lever)原理....................................	18
= \	· 抛物面鏡(Parabolic mirror)	18
	(一) 抛物凹(Concave)面鏡	
	(二) 拋物凸(Convex)面鏡	18

	(三) 表格									19
	(四) 面鏡公式(Mirror formula)									19
三、	球面鏡(Spherical mirror)				•					20
	(一) 近軸光線焦點									20
	(二) 球面像差(Spherical aberration, SA)									20
第八節	透鏡(Len)折射									20
_ `	透鏡									20
= \	三稜鏡(Triangular prism)									21
	(一) 定義									21
	(二) 三稜鏡偏向角									21
	(三) 小角度三稜鏡偏向角									21
	(四) 三稜鏡最小偏向角									21
三、	薄透鏡(Thin lens)				•					22
	(一) 凹(Concave)面鏡				•					22
	(二) 凸(Convex)面鏡									22
	(三) 球面像差(Spherical aberration, SA)									22
	(四) 色像差(Chromatic aberration, SA)									22
	(五) 表格									23
	(六) 薄透鏡公式(Mirror formula)									23
	(七) 放大鏡(Magnifying glass)				•					24
	(八) 菲涅耳透鏡(Fresnel lens)				•					24
	(九) 造鏡者公式(Lens maker's formula)									24
第九節	色散 (Chromatic dispersion/Dispersion)									25
_ `										25
= \	I—— > <= 1> /-									
三、										
	(一) 虹/主虹(The first rainbow)									
	(二) 霓/副虹(The second rainbow)									
	(三) 位置									
	(四) 視圖									

第十節 人類視覺	25
一、 視網膜錐狀細胞與光的三原色	25
二、 物體的顏色	26
三、 加法混色原理	26
四、 減法混色原理	26
第十一節 惠更斯-菲涅耳原理(Huygens-Fresnel principle)	26
第十二節 兩二維同調圓形波干涉	27
第十三節 忽略繞射之多狹縫干涉	28
一、 忽略繞射之雙狹縫干涉	28
二、 遠場忽略繞射之雙狹縫干涉(Double slits interference)	28
(一) 亮暗紋	28
(二) 相位角差	29
(三) 光強度	29
(四) 折射率效應	29
三、 遠場忽略繞射之多狹縫干涉	30
第十四節 繞射(Diffraction)	30
一、 特性	30
二、 菲涅耳-基爾霍夫繞射公式(Fresnel-Kirchhoff diffraction formula)	30
三、 菲涅耳數(Fresnel number)	31
四、 菲涅耳繞射(Fresnel Diffraction)	31
五、 夫朗和斐繞射(Fraunhofer Diffraction)	31
六、 遠場單狹縫繞射(Single slit diffraction)	31
(一) 亮暗紋	31
(二) 光強度	32
(三) 折射率效應	32
(四) 觀察	32
七、 遠場多狹縫繞射與干涉	32
第十五節 都卜勒效應(Doppler effect)	32
一、 非相對論性都卜勒效應	32
二、 藍移(Blue shift)與紅移(Red shift)	33

第十六節		3
- `	波速	3
= \	重力下鉛直繩波	3
三、	能量	4
((一) 繩波能量一般式	4
((二) 正弦繩波	5
四、	反射與透射	ô
((一) 固定端(Fixed end)反射...................30	ô
((二) 自由端(Free end)反射36	ô
((三) 不同線密度的繩	6
五、	繩/弦上駐波	7
((一) 兩端均為固定端	7
((二) 一端為固定端,一端為自由端	7
((三) 兩端均為自由端	7
第十七節	Airy wave theory	8
- \	Flow problem formulation	8
= \	Solution for a progressive monochromatic wave	9
三、	Table of wave quantities	9
第十八節	水波槽(Ripple tank)實驗4	1
第十九節	拍(Beat)	1
第二十節	聲學(Acoustic)	2
_ `	· · · · · · · · · · · · · · · · · · ·	
= \	聲速(Speed of sound)4	
三、	· 氣體介質之聲速	
(
)	
((一) 方程	
•	(二)	3
((二) 等熵體積模量	3
((二) 等熵體積模量	3 3 3
((四、	(二) 等熵體積模量	3 3 4
((四、 ((二) 等熵體積模量	3 3 4 4

(三) 聲壓與平均位移之關係	4
(四) 介質質點振動速度	4
(五) 一維波動方程式聲壓形式	4
(六) 一維波動方程式平均位移形式	4
(七) 一維聲壓與平均位移之關係	4
(八) 一維介質質點振動速度	5
、 氣體介質之正弦聲波	5
(一) 波函數	5
(二) 一維波函數	5
\$\$\$ 聲波阻抗(Acoustic impedance)	5
(一) 特性聲波阻抗(Characteristic acoustic impedance)/(實)聲波阻抗/聲阻	
(五) 共鳴/共振(Resonance)	3
−節 共鳴管實驗	3
、 法一	3
	3
、 法二	-
、 法二	
	8
二節 樂音	8
二節 樂音	8
	(一) 波函數 45 (二) 一維波函數 45 音波阻抗(Acoustic impedance) 45 (一) 特性聲波阻抗(Characteristic acoustic impedance)/(實) 聲波阻抗/聲阻 45 (Acoustic resistance) 45 (章波的能量/聲能(Sound energy) 45 (一) 聲能密度/聲波的能量密度 45 (二) Sound power/Acoustic power 45 (三) 聲音強度(Sound intensity, Acoustic intensity)/聲強/音強 46 (四) 音強級(Sound level/Intensity level)/響度(Loudness)與分貝(deci-Bell、dB)46 放節與波腹 46 駐波 46 (二) 閉管樂器 47 (二) 開管樂器 47 (二) 開管樂器 47 (四) 自然頻率(Natural frequency) 47 (五) 共鳴/共振(Resonance) 48 (五) 共鳴/共振(Resonance) 48 (本) 48

第一章 波動、繩波、水波、光學(Optics)與聲學 (Acoustics)

第一節 符號約定與假設

一、相位

(一) 相位 (Phase)

取一單實變數函數 $f(\mathbf{x}, t)$ 及其週期 T (使得 $f(t+T) = f(\mathbf{x}, t)$ 的最小正實數), t_0 為 $f(\mathbf{x}, t)$ 一個任意週期的起始點 t 值,則 $f(\mathbf{x}, t)$ 在任意定義域中的 t 的相位 $\Phi(t)$ 與相位角 $\phi(t)$ (有文獻不稱 $\Phi(t)$ 為相位,而是稱 $\phi(t)$ 為相位)為:

$$\Phi(t) = \left(\frac{t - t_0}{T} - \left\lfloor \frac{t - t_0}{T} \right\rfloor\right)$$

$$\phi(t) = 2\pi\Phi(t)$$

 $\Phi(t)$ 和 $\phi(t)$ 均與原函數有相同的週期,且在任意週期的起點為零。

(二) 相位移 (Phase shift)

今有週期為 T 的週期函數 f(t) 和 g(t),其中 $g(t) = \alpha f(t + \tau)$,其中 α 和 τ 為常數,則 g 對 f 的相位 移 $\Delta \Phi$ 與相位角移 $\Delta \phi$ (有時不稱 $\Delta \Phi$ 為相位移,而是稱 $\Delta \phi$ 為相位移)為:

$$\Delta \Phi = \frac{\tau}{T} - \left\lfloor \frac{\tau}{T} \right\rfloor$$
$$\Delta \phi = 2\pi (\Delta \Phi)$$

(有時 $\Delta \Phi$ 可加上任意整數, $\Delta \phi$ 可加上任意整數倍 2π) 相位差一般指相位移或其絕對值;相位角差一般指相位角移或其絕對值。

(三) 同相、異相與反相

兩以位置與參數 t 為自變數之週期函數,圖形互為彼此平移可得,定義:

- 同相(In phase):相位角差為零。使疊加函數最大值為兩函數最大值之和、疊加函數最小值為兩函數最小值之和。
- 異相(Out of phase):非同相。相位角差 k 稱為 k 異相。
- 反相(Completely out of phase):相位角差為 π ,即 π 異相。

以正弦函數為例:

函數 $f(t) = \sin(x + \omega t + \phi_1)$ 與 $g(t) = \sin(x + \omega t + \phi_2)$:

• 同相: $\phi_1 = \phi_2 + 2n\pi$,其中 $n \in \mathbb{Z}$ 。

$$f(t) + g(t) = 2\sin(x + \omega t + \phi_1)$$

• k 異相:令 $\phi_1 + k = \phi_2 + 2n\pi$,其中 $n \in \mathbb{Z}$ 。

$$f(t) + g(t) = (1 + \cos k) \sin(x + \omega t + \phi_1) + \sin k \cos(x + \omega t + \phi_1)$$

$$= \sqrt{2 + 2\cos k} \sin\left(x + \omega t + \phi_1 + \tan^{-1}\left(\frac{\sin k}{1 + \cos k}\right)\right)$$

$$= 2\left|\cos\frac{k}{2}\right| \sin\left(x + \omega t + \phi_1 + \frac{k}{2}\right)$$

$$f(t) + g(t) = 0$$

二、 小波動假設

波動之振幅相較於背景量極小而可忽略。

三、 通用純量符號

- t(s):時間,一般作為自變數。
- x:位置方向為一維時之位置,一般作為自變數。
- y:振動位移方向為一維時質點平均自平衡點位移,或簡稱平均位移,聲學上指平均粒子位移 (Particle displacement)。
- v:位置方向為一維時之相速度/相速度量值。
- A (取決於上下文):振幅(Amplitude)
- λ (m):波長 (Wavelength)
- k (m⁻¹):波數 (Wave number)
- ω (s⁻¹):角頻率(Angular frequency)量值
- ν (s $^{-1}$):頻率(Frequency)。介質質點在每秒內振動的次數。
- T (s):週期(Period)。介質上質點在每秒內振動的次數。
- E (J = m² kg s⁻²):能量
- u (對於 n 維波為 J/m^n ,或有時對於小於等於三維之聲波皆用 J/m^3):能量密度
- Φ:相位 (Phase)
- φ:相位角(Phase angle)
- **ā**:相位向量
- ā:相位角向量

四、 通用向量符號

- x:位置向量,一般作為自變數。
- y: 質點平均自平衡點位移向量,或簡稱平均位移,聲學上指平均粒子位移。
- v (m/s):相速度(Phase velocity)。指波的相位(如波峰、波谷)在空間中傳遞的速度。
- \mathbf{v}_{g} (m/s):群速度(Grovp velocity)。指波包(即波振幅外形上的變化)在空間中傳遞的速度。
- : λŷ ∘
- k (m⁻¹):波向量(Wave vector)

五、 Operator overload

- 令純量 A 除以向量 B= 向量 C,表示「 $B \cdot C = A$ 」且「 $|A| = |B| \cdot |C|$ 」,即「 $B \cdot C = A$ 」且「B/C」。
- 0:初始值/平衡點值/背景值。
- â:a方向的單位向量,其中a是任意向量。

六、 折射(Refraction)、反射(Reflection)與透射(Transmission)

(一) 預設場景

一波自介質 1 射向介質 2,法線(Normal)為垂直於介質分界超平面且與入射波有交點的直線。自介質 1 入射之波稱入射波或入射線(Incident ray),入射線與法線的最小夾角稱入射角(Incident angle),反射回介質 1 的波稱反射波或反射線(Reflected ray),反射線與法線的最小夾角稱反射角(Reflected angle),透射入介質 2 的波稱透射波、透射線、折射波或折射線,透射線與法線的最小夾角稱折射角(Refracted angle)。

(二) 純量符號

- v_1 :介質 1 的波速率
- v_2 :介質 2 的波速率
- n₁:介質 1 的折射率
- n₂:介質 2 的折射率
- k_1 :介質 1 的波數(因 $k = \frac{\omega}{v}$,頻率不變,故 $k \propto \frac{1}{v}$)
- *k*₂:介質 2 的波數
- θ_i :入射角。
- θ_t:折射角。
- A_i:入射波振幅

- A_r:反射波之振幅(須考慮正負)
- A,:透射波之振幅(須考慮正負)
- R: 反射係數
- T:透射係數
- u_i (同能量密度):入射波能量密度
- u_r (同能量密度):反射波能量密度
- u_t (同能量密度):透射波能量密度

七、 鏡之稱呼

- 鏡頂(Vertex)/鏡心:鏡面之中心點。
- 主軸(Principal axis):過鏡心垂直於鏡心處鏡面之切面的線。
- 焦平面(Focus plane):過焦點垂直主軸的平面。

八、 繩波純量符號

- F(N):繩張力在波前進方向的分量量值
- μ (kg/m):(繩子等的)線密度
- u_K (同能量密度):動能密度
- u_{II} (同能量密度):位能密度

九、 兩波相較純量符號

D:波程差

十、 聲波

(一) 純量符號

- p (對於 n 維波為 N/m^{n-1} , 或有時對於小於等於三維之聲波皆用 N/m^2):氣壓。
- p_s (同氣壓):聲壓(Sound pressure)/動壓(Perturbation pressure),即 $p-p_0$ \circ
- ρ (對於 n 維波為 kg/m^n ,或有時對於小於等於三維之聲波皆用 kg/m^3):密度
- ρ_s (同密度):Perturbation density,即 $\rho \rho_0$ 。
- *M* (g/mol):平均莫耳質量
- T(K):絕對溫度
- I (W/m²):聲音強度 (Sound intensity)

- P (J/s) : Sound power
- β (dB,分貝為無因次單位):音強級(Sound level)
- γ:絕熱指數(Adiabatic index)/等熵膨脹係數(Isentropic expansion factor),即定壓熱容與 定容熱容的比值
- K_s (Pa): 等熵體積模量 (Isentropic bulk modulus) /不可壓縮量/體積彈性係數 (Elastic modulus) , $K_s = -V_0 \frac{\mathrm{d}p}{\mathrm{d}V} = \rho_0 \frac{\mathrm{d}p}{\mathrm{d}\rho}$,對於理想氣體, $K_s = \gamma p_0$ 。
- z (kg m⁻² s⁻¹):特性聲波阻抗。

(二) 常數符號

• R (atm L mol⁻¹ K⁻¹):理想氣體常數

第二節 波動 (Wave motion)

一、 波動定義

波動:指擾動的傳遞,介質不隨波前進,但傳遞動量和能量。此不討論物質波(Matter wave)。

二、 波的分類

- 按媒介
 - 力學波或機械波(Mechanical wave):依賴介質傳播能量與擾動者,如水波、聲波。
 - 電磁波(Electromagnetic wave):不依賴介質傳播能量與擾動者,如紅外線、微波。
- 按介質振動方向
 - 一 縱波(Longitudinal wave)/疏密波(Rarefaction wave):波的振動方向與傳播方向平行,如聲波、地震 P 波(Primary wave)。
 - 横波(Transverse wave):波的振動方向與傳播方向垂直,如電磁波、繩波、地震 S 波 (Secondary wave)。具有偏振性(Polarization),即波的傳遞僅在特定的方向上。
 - 以上皆非:波的振動方式非僅與傳播方向平行或傳播方向垂直,如地震表面波(Surface wave)中的洛夫波(Love wave)、水面波。

• 按调期性質

- 脈(衝)波(Pulse wave):單一的波動脈衝,波通過介質時質點短暫振動後恢復靜止於原來位置。
- 週期波(Periodic wave):重複出現的波動,如正弦波。
- 按波形傳遞
 - 行(進)波:波形在空間中向前傳播,如水面波。

- 上 駐波(Standing/Stationary wave):由兩個相同頻率和振幅的行波相向傳播而形成,波形固定不動。
- 按維度
 - 一維波
 - 二維波
 - 三維波

三、 波的形狀

- 波形(Waveform):波動作為時間函數的圖形形狀。
- 振幅(Amplitude):波動造成質點相對於平衡位置的最大位移。
- 波峰(Crest/Peak):波形中的最高點,即波的最大正位移。
- 波谷(Trough):波形中的最低點,即波的最大負位移。
- 波長:波形中連續兩個相同相位點之間的距離。
- 波前(Wavefront):等相位處形成的幾何對象,i 維波的波前是 i-1 維幾何對象,始終與波的 行進方向垂直。

四、 數學描述

(一) 任意維波動方程式(Wave equation)

$$\Leftrightarrow \frac{\mathsf{d}\mathbf{v}}{\mathsf{d}t} = 0 \circ$$

$$\frac{\partial^2 \mathbf{y}}{\partial t^2} = v^2 \nabla^2 \mathbf{y}$$

(二) 一維波動方程式

$$\frac{\partial^2 y}{\partial t^2} = v^2 \frac{\partial^2 y}{\partial x^2}$$

(三) 波函數 (Wave function)

指函數 $\mathbf{y}(\mathbf{x}, t)$ 。

(四) 介質質點振動速度

令有興趣點與波同速度移動,即: $\mathbf{x} = \mathbf{v}t$ 。

$$\frac{\partial \mathbf{y}}{\partial t} = -\nabla_{\mathbf{x}} \mathbf{y} \cdot \mathbf{v}$$

6

(五) 一維介質質點振動速度

令有興趣點與波同速度移動,即:x = vt。

$$\frac{\partial y}{\partial t} = -\frac{\partial y}{\partial x}v$$

五、 頻率不變

在慣性參考系中,無都卜勒效應或康普頓效應下,一波的頻率恆不變。

六、 週期波運動分析 (Kinetic analysis) /週期波基本參數關係

$$\omega = 2\pi \cdot v$$

$$T = \frac{1}{v}$$

$$\mathbf{k} = \frac{2\pi}{\lambda} \hat{\mathbf{v}}$$

$$k = |\mathbf{k}| = \frac{2\pi}{\lambda}$$

$$\mathbf{v} = v\lambda \hat{\mathbf{v}} = \frac{\omega}{\mathbf{k}}$$

$$\mathbf{v} = \frac{\partial \omega}{\partial \mathbf{k}}$$

$$= \mathbf{v} - \lambda \frac{\partial \mathbf{v}}{\partial \lambda}$$

$$= \mathbf{v} + \mathbf{k} \frac{\partial \mathbf{v}}{\partial \mathbf{k}}$$

第三節 波的相位與干涉

一、 週期波的相位

波函數 $f(\mathbf{x}, t)$ 及其週期 $T \cdot t_0$ 為 $f(\mathbf{x}, t)$ 一個任意週期的起始點 t 值,則 $f(\mathbf{x}, t)$ 在任意定義域中的 t 的相位 $\Phi(t)$ 與相位角 $\phi(t)$ (有文獻不稱 $\Phi(t)$ 為相位,而是稱 $\phi(t)$ 為相位)為:

$$\Phi(t) = \left(\frac{t - t_0}{T} - \left\lfloor \frac{t - t_0}{T} \right\rfloor\right)$$

$$\phi(t) = 2\pi \,\Phi(t)$$

令波函數 $f(\mathbf{x}, t)$ 與 $g(\mathbf{x}, t)$, $g(\mathbf{x}, t)$ = $a f(\mathbf{x}, t + \Delta t)$,其中 a 為非零實數、 Δt 為實數, $g(\mathbf{x}, t)$ 對 $f(\mathbf{x}, t)$ 的相位移 $\Delta \Phi$ 與相位角移 $\Delta \phi$ (有時不稱 $\Delta \Phi$ 為相位移,而是稱 $\Delta \phi$ 為相位移)為:。

$$\Delta \Phi = \frac{\Delta t}{T}$$

$$\Delta \phi = 2\pi \frac{\Delta t}{T}$$

任取一組兩函數相同相位的點,其中 $g(\mathbf{x}, t)$ 者相對於 $f(\mathbf{x}, t)$ 者的位置為 $\ell + n\lambda$,其中 λ 為波長,n 為使 $|\ell|$ 最小的整數。

$$\Delta \Phi = -\frac{\ell}{\lambda}$$

二、 波程差(Path difference)

$$D = \left| \overline{PS_1} - \overline{PS_2} \right|$$

其中:P 為有興趣點, S_1 與 S_2 為兩比較之波源。 對光稱光程差。

三、 波的疊加原理(Superposition principle of waves)

指當兩個或多個波在同一點重疊時,該點的總位移(作為向量)等於各個波的位移之和。

四、 波的獨立性

指波經過相遇又離開後與相遇前行為相同,宛如未相遇過。

(一) 波的干涉 (Interference)

干涉指波疊加為合成波的現象。

- 建設性干涉(Constructive interference):合成波的振幅大於每個組分波的振幅。
- 破壞性干涉(destructive interference): 合成波的振幅小於每個組分波的振幅。
- 完全建設性干涉(Fully constructive interference):合成波的振幅等於每個組分波的振幅和。
- 完全破壞性干涉(Fully destructive interference):合成波的振幅等於零。

(二) 波節與波腹

- 波節/節點(Node):指振動位移始終為零的點。若一流形上每一個點都是節點,則該流形亦稱 波節,或稱(Nodal line)。
- 波腹/腹點(Antinode):指兩同調同波形波源合成波振動位移最大的點。若一流形上每一個點都是腹點,則該流形亦稱波腹,或稱腹線(Antinodal line)。

(三) 同調性/相干性(Coherence)

同調波源(Coherent source):指頻率相同的波源。可以形成穩定的干涉圖樣。 兩同頻率正弦波在同波速介質中干涉:

- 波節:同相點形成的流形,即到兩波源波程差之差為整數倍波長的點形成的流形。做完全建設性干涉。在光為亮紋(Maximum)。
- 波腹:反相點的連線形成的流形,即到兩波源波程差之差為整數加二分之一倍波長的點形成的 流形。做完全破壞性干涉。在光為暗紋(Minimum)。

第四節 正弦波(Sinusoidal wave)

正弦波指任意瞬間波形均為正弦或其平移之波。

一、 波函數

一個行進的正弦波的波函數可以表示成:

$$y = A \cdot \sin \left(\mathbf{k} \cdot \mathbf{x} \pm \omega t + \phi \right)$$
$$= \frac{A}{2i} \left(e^{i(\mathbf{k} \cdot \mathbf{x} \pm \omega t + \phi)} - e^{-i(\mathbf{k} \cdot \mathbf{x} \pm \omega t + \phi)} \right)$$

其中:若 \pm 取負表波在 x_i 軸往 $\frac{k_i}{|k_i|}$ 方向傳遞,若 \pm 取正表波在 x_i 軸往 $-\frac{k_i}{|k_i|}$ 方向傳遞。 證明其符合波動方程式:

$$\frac{\partial^2 y}{\partial t^2} = v^2 \nabla^2 y$$

Proof.

We want to prove:

$$(y = A \cdot \sin(\mathbf{k} \cdot \mathbf{x} \pm \omega t + \phi)) \implies \left(\frac{\partial^2 y}{\partial t^2} = v^2 \nabla^2 y\right)$$

Compute $\frac{\partial^2 y}{\partial t^2}$:

$$\frac{\partial y}{\partial t} = A \pm \omega \cdot \cos\left(\mathbf{k} \cdot \mathbf{x} \pm \omega t + \phi\right).$$

$$\frac{\partial^2 y}{\partial t^2} = -A\omega^2 \cdot \sin\left(\mathbf{k} \cdot \mathbf{x} \pm \omega t + \phi\right)$$
$$= -\omega^2 y.$$

Compute $\nabla^2 y$:

$$\frac{\partial y}{\partial x_i} = Ak_i \cdot \cos\left(\mathbf{k} \cdot \mathbf{x} \pm \omega t + \phi\right).$$

$$\frac{\partial^2 y}{\partial x_i^2} = -Ak_i^2 \cdot \sin\left(\mathbf{k} \cdot \mathbf{x} \pm \omega t + \phi\right).$$

$$\nabla^2 y = -|\mathbf{k}|^2 y.$$

Given:

$$v = \frac{\omega}{k}$$

So:

$$\frac{\partial^2 y}{\partial t^2} = v^2 \nabla^2 y.$$

二、 一維波函數

$$\begin{split} y &= A \cdot \sin(kx \pm \omega t + \phi) \\ &= A \cdot \sin\left(2\pi \left(\frac{x}{\lambda} \pm \frac{t}{T}\right) + \phi\right) \\ &= \frac{A}{2i} \left(e^{i(kx \pm \omega t + \phi)} - e^{-i(kx \pm \omega t + \phi)}\right) \end{split}$$

其中:x 為位置;y 為質點振動位移; ϕ 為相位角;若 \pm 取負表波往 x 軸 $\frac{k}{|k|}$ 方向傳遞,若 \pm 取正表波往 x 軸 $-\frac{k}{|k|}$ 方向傳遞。

三、 介質質點振動速度

波函數:

$$y = A \cdot \sin(\mathbf{k} \cdot \mathbf{x} - \omega t + \phi)$$

 $\Rightarrow \mathbf{x} = \frac{\omega}{\|\mathbf{k}\|} \hat{\mathbf{k}}_t$,即有興趣位置始終在同一相位,即:

$$\frac{dy}{dt} = 0$$

介質質點振動速度 $\frac{\partial y}{\partial t}$:

$$\frac{\partial y}{\partial t} + \frac{\partial y}{\partial \mathbf{x}} \frac{d\mathbf{x}}{dt} = \frac{dy}{dt} = 0$$
$$\frac{d\mathbf{x}}{dt} = \frac{\omega}{\|\mathbf{k}\|} \hat{\mathbf{k}}$$
$$\frac{\partial y}{\partial t} = -\frac{\omega}{\|\mathbf{k}\|} \frac{\partial y}{\partial \mathbf{x}} \cdot \hat{\mathbf{k}}$$

四、 合成波振幅

令波 $f(x, t) = A \cdot \sin(\mathbf{kx} - \omega t)$ 與 $g(x, t) = B \cdot \sin(\mathbf{kx} - \omega t - \phi)$,合成波 f(t) + g(t) 振幅 C:

$$C = \sqrt{A^2 + B^2 + 2AB\cos\phi}$$

Proof.

$$f(x, t) + g(x, t) = A \cdot \sin(\mathbf{kx} - \omega t) + B \cdot \sin(\mathbf{kx} - \omega t - \phi)$$

$$= A \cdot \sin(\mathbf{kx} - \omega t) + B \cdot (\sin(\mathbf{kx} - \omega t) \cos \phi - \cos(\mathbf{kx} - \omega t) \sin \phi)$$

$$= (A + B \cos \phi) \sin(\mathbf{kx} - \omega t) - B \sin \phi \cos(\mathbf{kx} - \omega t)$$

$$= \sqrt{(A + B \cos \phi)^2 + (B \sin \phi)^2} \sin(\mathbf{kx} - \omega t - \tan^{-1} 1 \left(\frac{B \sin \phi}{A + B \cos \phi}\right))$$

$$\leq \sqrt{(A + B \cos \phi)^2 + (B \sin \phi)^2}$$

五、 駐波

(一) 數學描述

駐波指兩個波數、頻率和振幅皆相同的正弦波相向行進干涉而成的合成波。 令兩波 $f(\mathbf{x}, t) = A \sin(\mathbf{k} \cdot \mathbf{x} + \omega t + \phi_1) \cdot g(\mathbf{x}, t) = A \sin(\mathbf{k} \cdot \mathbf{x} - \omega t + \phi_2)$,其合成波為:

$$f(\mathbf{x},\,t) + g(\mathbf{x},\,t) = 2A\sin\left(\mathbf{k}\cdot\mathbf{x} + \frac{\phi_1 + \phi_2}{2}\right)\cos\left(\omega t + \frac{\phi_1 - \phi_2}{2}\right)$$

Proof.

$$f(\mathbf{x}, t) + g(\mathbf{x}, t) = A \sin(\mathbf{k} \cdot \mathbf{x} + \omega t + \phi_1) + A \sin(\mathbf{k} \cdot \mathbf{x} - \omega t + \phi_2)$$

正弦的和化積公式:

$$\sin u + \sin v = 2\sin\left(\frac{u+v}{2}\right)\cos\left(\frac{u-v}{2}\right)$$

10

設:

$$u = \mathbf{k} \cdot \mathbf{x} + \omega t + \phi_1, \quad v = \mathbf{k} \cdot \mathbf{x} - \omega t + \phi_2$$

則:

$$\begin{split} &f(\mathbf{x},\,t) + g(\mathbf{x},\,t) \\ = &2A\sin\left(\frac{\mathbf{k}\cdot\mathbf{x} + \omega t + \phi_1 + \mathbf{k}\cdot\mathbf{x} - \omega t + \phi_2}{2}\right)\cos\left(\frac{\mathbf{k}\cdot\mathbf{x} + \omega t + \phi_1 - (\mathbf{k}\cdot\mathbf{x} - \omega t + \phi_2)}{2}\right) \\ = &2A\sin\left(\mathbf{k}\cdot\mathbf{x} + \frac{\phi_1 + \phi_2}{2}\right)\cos\left(\omega t + \frac{\phi_1 - \phi_2}{2}\right) \end{split}$$

(二) 駐波性質

- 波數與頻率:駐波的波數與頻率同其組分波。
- 波節: $D = (2m-1)\frac{\lambda}{2}$ 之點,其中 $m \in \mathbb{N}$ 。相鄰兩波節的距離為 $\frac{\lambda}{2}$ 。兩波腹的中點為波節。
- 波腹: $D = n\lambda$ 之點,其中 $n \in \mathbb{N}$ 。相鄰兩波腹的距離為 $\frac{\lambda}{2}$,相鄰兩腹點分別處於正位移與負位移。兩波節的中點為波腹。一點為波腹若且惟若一點會出現波峰若且惟若一點會出現波谷。
- 波環:指一個完整的波的區域。一個波環中的擾動能量始終停留在該波環中。
- 簡諧運動:駐波中的各質點均做簡諧運動,函數 $\frac{d^2y}{dt^2} = \omega^2 y$,其中動能與位能和不變且兩者交互變化,且愈接近節點簡諧運動振幅愈小。
- 相鄰三節點所夾二間距,其位移方向相反。

(三) 駐波頻率

一個由 n-1 維給定反射性質的封閉曲面包圍的 n 維給定波動傳播性質之物理系統可能形成的駐波中:

- 基頻/基音(Fundamental frequency):指頻率最小者。
- 第 *i* 諧音(Harmonic):指頻率為基頻之 *i* 倍者。
- 第 i 泛音(Overtone):指該給定情況下可能發生駐波的頻率中第 i+1 小者。

第五節 光

一丶 幾何光學(Geometrical Optics)與物理光學(Physical Optics)

- 幾何光學:利用光的直進性質及反射和折射定律,得知光的行進路徑和物與像的幾何關係。
- 物理光學:說明光的波動性質。
- In short, geometrical optics is where Newton's particle theory and Fresnel's wave theory both work, physical optics is where Fresnel's wave theory works but Newton's particle theory doesn't, and light in modern physics is where Fresnel's wave theory doesn't work.

二、 幾何光學

(一) 光線(ray of light) 與光束(beam of light)

- 光線: The light traveling in any one direction in a straight line is called a ray of light.
- 光東: A group of light rays given out from a source is called a beam of light. 例如發散的 (Diverging)、平行的 (Parallel)、聚合的 (Converging)。

(二) 直進性與可逆性

幾何光學的光具有直進性與可逆性。

(三) 成像

- 實像(Real image):光線實際會聚而成的像,可投影在光屏上。
- 虛像(Virtual image):射入觀察者眼中的光線的延長線會聚而成的像,無法投影在光屏上。

(四) Fermat's principle (費馬原理)/the principle of least time

Fermat's principle states that the path taken by a ray between two given points is the path that can be traveled in the least time.

三、 光的粒子說與波動說

(一) 粒子說

1704 年牛頓提出光的粒子說,認為光由微小的粒子組成。其光微粒模型中,光粒子(Corpuscle)體積小、質量小、速度極快,彼此不相作用,分布甚為稀疏,與物體完全彈性碰撞,受重力與鄰近分子的引力。可以解釋光的直進、反射、折射、色散、亮度平方反比定律、物質吸光生熱、光壓等。反射以完全彈性碰撞解釋。折射以光粒子受物質吸引解釋,相當於斜面滑物受重力。無法解釋光在兩介面間部分反射部分照射的現象、光的干涉與繞射,1801 年楊格發表雙狹縫實驗結果。錯誤預測水中光速較空氣快,1850 年菲左與佛科分別測出光在空氣與水中之光速,否定之。

(二) 波動說

1609 年惠更斯提出光的波動說,即惠更斯原理。錯誤預測存在以太(Ether)介質,光倚之傳播, 1881 年邁克生和毛立證實其不存在。可以解釋光的直進、反射、折射、色散、亮度平方反比定律、 物質吸光生熱、光壓、部分反射部分照射、干涉與繞射。1864 年馬可士威從理論上預測光是一種電 磁波,1888 赫茲實驗證實。

(三) 光量子說

1905 年愛因斯坦提出光量子說,主張光有波粒二象性。

第六節 反射、折射與透射

一、反射

(一) 漫射(diffuse reflection)與鏡面反射(specular reflection)

• 漫射:非光滑表面反射。

鏡面反射:光滑表面反射。

(二) 反射成像

經奇數次反射之成像與原像左右相反,經偶數次反射之成像與原像左右相同。

(三) 反射定律(Law of reflection)

 $\theta_i =$ 反射角(反射線與法線的最小夾角)

二、折射

(一) 折射率 (Refractive index/Index of refraction)

- 某介質的(絕對)折射率是光在真空中的相速度除以在該介質中的相速度。
- 介質 1 對介質 2 的相對折射率(Relative index of refraction) n_{21} 為介質 2 中的波速除以介質 1 中的波速,即介質 1 的折射率除以介質 2 的折射率。
- 介質 2 進入介質 1 的相對折射率為介質 1 對介質 2 的相對折射率。
- 兩介質相較,折射率較小者稱光疏介質(Optically thinner medium),較大者稱光密介質(Optically denser medium)。

Material medium	Refractive index
Air	1.0003
Ice	1.31
Water	1.33
Alcohol	1.36
Kerosene	1.44
Fused quartz	1.46
Turpentine oil	1.47
Benzene	1.50
Crown glass	1.52
Diamond	2.42

(二) 司乃耳定律(Snell's law)

$$v_2 \sin \theta_i = v_1 \sin \theta_t$$

對於光即:

$$n_1 \sin \theta_i = n_2 \sin \theta_t$$

(三) 視深與實深

令 h 為實深、h' 為視深、 θ 為入射角、 θ' 為折射角、n' 與 n 分別為物體與觀察者所在介質的折射率。

$$h \tan \theta = h' \tan \theta'$$

對於小角度使得正割正弦:

$$h'n' = hn$$

多層平行界面的視深:有數層平行之介質,界面平行,厚度依序為 h_1,h_2,\ldots,h_m ,折射率依序為 n_1,n_2,\ldots,n_m ,觀察者自折射率為 n 之介質中觀察最低層底的物體,對於小角度使得正割正弦,視深 為:

$$h' = n \sum_{i=1}^{n} \frac{h_i}{n_i}$$

三、全(內)反射(Total internal reflection)

從波速較小的介質進入波速較大的介質,當入射角 > 臨界角(Critical angle) θ_c 時,發生全反射,即無透射僅有反射,其中:

$$\sin\theta_c = \frac{v_1}{v_2}$$

對於光即:

$$\sin \theta_c = \frac{n_2}{n_1}$$

當入射角 = 臨界角時仍有折射光沿著介面前進。

應用:

- 玻璃與空氣(指空氣入玻璃)之臨界角約 42°。用三稜鏡代替平面鏡將入射光反射至垂直方向可避免面鏡部分折射之光強度減弱。
- 光纖/光導纖維(Optical fiber):是一種由玻璃或塑膠製成的纖細導線,用來傳輸光信號。光纖直徑約十至數百微米,內部有折射率較大的纖心(core),外有折射率較小的包層/塗層(cladding),讓光在纖心內部以全反射的方式傳輸,不會輕易逸出。這種傳輸方式使得光纖適合長距離高速通信、內視鏡(endoscope)等。
- 鑽石與空氣之臨界角約 24°,可通過切割使光從頂部流出。
- 水與空氣之臨界角約 48.7°。

四、 反射係數 (Reflection coefficient) 與透射係數 (Transmission coefficient)

$$R = \frac{A_r}{A_i}$$

$$T = \frac{A_t}{A_i}$$

$$R^2 + T^2 = 1$$

令入射波的波函數 f(x, t), 其中 x 軸正向為其前進方向。

令反射波的 x 軸正向為其前進方向,t=0 為入射波接觸入射平面時,則反射波的波函數為 $R \cdot f(x,t)$ 。

令透射波的 x 軸正向為其前進方向,t=0 為入射波接觸入射平面時,則透射波的波函數為 $T\cdot f(x,t)$ 。

對於無需考慮偏振的入射波(如縱波與垂直入射的橫波):

$$R = \frac{k_1 - k_2}{k_1 + k_2} = \frac{v_2 - v_1}{v_1 + v_2}$$

$$T = \frac{2k_1}{k_1 + k_2} = \frac{2v_2}{v_1 + v_2}$$

Proof.

令入射波 $y = A_t \sin(k_t x - \omega t)$,反射波 $y = A_r \sin(k_1 x + \omega t)$,透射波 $y = A_t \sin(k_2 x - \omega t)$,界面 x = 0。

x=0 處連續:

$$A_t \sin(-\omega t) + A_r \sin(\omega t) = A_i \sin(-\omega t)$$

$$A_t - A_r = A_i$$

x = 0 處動量守恆:

$$\frac{\partial y_t}{\partial x} + \frac{\partial y_r}{\partial x} = \frac{\partial y_i}{\partial x}$$

 $k_2A_t\cos(-\omega t)+k_1A_r\cos(\omega t)=k_1A_i\cos(-\omega t)$

$$k_2 A_t + k_1 A_r = k_1 A_i$$

解聯立:

$$\frac{A_r}{A_i} = \frac{k_1 - k_2}{k_1 + k_2}$$

$$\frac{A_t}{A_i} = \frac{2k_1}{k_1 + k_2}$$

當 $k_1 < k_2$,且波函數 f(t) 存在非零常數 T 使得 $f(t) + f(t + \frac{T}{2}) = 0$,反射波與入射波相位角差 π 。

五、 海市蜃樓 (Mirage)

(一) 下蜃景(inferior mirage)

In an inferior mirage, the mirage image appears below the real object. The real object in an inferior mirage is the (blue) sky or any distant (therefore bluish) object in that same direction. The mirage causes the observer to see a bright and bluish patch on the ground.

Light rays coming from a particular distant object all travel through nearly the same layers of air, and all are refracted at about the same angle. Therefore, rays coming from the top of the object will arrive lower than those from the bottom. The image is usually upside-down, enhancing the illusion that the sky image seen in the distance is a specular reflection on a puddle of water or oil acting as a mirror.

(二) 上蜃景(superior mirage)

A superior mirage is one in which the mirage image appears to be located above the real object. A superior mirage occurs when the air below the line of sight is colder than the air above it. This unusual arrangement is called a temperature inversion. During daytime, the normal temperature gradient of the atmosphere is cold air above warm air. Passing through the temperature inversion, the light rays are bent down, and so the image appears above the true object, hence the name superior.

A superior mirage can be right-side up or upside-down, depending on the distance of the true object and the temperature gradient. Often the image appears as a distorted mixture of up and down parts.

六、 偏振

考慮偏振性,將一個電磁波分解成 s-偏振(垂直偏振)與 p-偏振(平行偏振),前者指電磁波的電場 垂直於入射平面,後者指電磁波的電場平行於入射平面。

令 s-偏振反射係數 r_s ,s-偏振透射係數 t_s ,p-偏振反射係數 r_p ,s-偏振透射係數 t_p 。

(一) s-偏振

$$r_s = \frac{v_1 \cos \theta_i - v_2 \cos \theta_t}{v_1 \cos \theta_i + v_2 \cos \theta_t}$$
$$t_s = \frac{2v_1 \cos \theta_i}{v_1 \cos \theta_i + v_2 \cos \theta_t}$$

(二) p-偏振

$$\begin{split} r_p &= \frac{v_2 \cos \theta_i - v_1 \cos \theta_t}{v_2 \cos \theta_i + v_1 \cos \theta_t} \\ t_p &= \frac{2v_1 \cos \theta_i}{v_2 \cos \theta_i + v_1 \cos \theta_t} \end{split}$$

(三) 布儀爾角 (Brewster's Angle)

當入射角為布儀爾角 θ_B 時, $r_p=0$,即 p-偏振無反射。此時折射角 θ_t 為 $\frac{\pi}{2}-\theta_B$ 。

$$\tan \theta_B = \frac{v_2}{v_1}$$

Proof.

 $r_p = 0$:

$$v_2 \cos \theta_B = v_1 \cos \theta_t$$

司乃爾定律:

$$v_1 \sin \theta_B = v_2 \sin \theta_t$$

推導:

$$\left(\frac{v_2}{v_1}\cos\theta_B\right)^2 + \left(\frac{v_1}{v_2}\sin\theta_B\right)^2 = 1$$

$$v_2^4\cos^2\theta_B + v_1^4\sin^2\theta_B = (v_1v_2)^2$$

$$(v_1^4 - v_2^4)\sin^2\theta_B = v_2^2(v_1^2 - v_2^2)$$

$$\frac{\tan^2\theta_B}{1 + \tan^2\theta_B} = \frac{v_2^2}{v_1^2 + v_2^2}$$

$$v_1^2 tan^2\theta_B = v_2^2$$

因 $\theta_B \in [0, \frac{\pi}{2}]$, $\tan \theta_B > 0$:

$$\tan \theta_B = \frac{v_2}{v_1}$$

求 θ_t :

$${v_1}^2 \tan \theta_B = {v_2}^2 \tan \theta_t$$

$$\tan \theta_t = \frac{v_1}{v_2}$$

(四) 偏振/極化/起偏片/膜/器(Polarizer)

指可以過濾入射光僅使特定偏振光通過的光學元件。

第七節 面鏡(Mirror)反射

一、 平面鏡

(一) 夾角二平面鏡成像

二位平面上有二靜止平面反射鏡,視為二射線,兩鏡之一端點重合,各向另一方向無限延伸,兩鏡之出鏡面法向量有交點(即夾角 $\theta \in (0,\pi)$),一物靜置,視為一點,且兩鏡各存在唯一之過該點之法線,令兩鏡面最小夾角 θ ,成像個數(不含物本身)N, $\frac{2\pi}{\theta} = k$,若物與兩鏡面距離相同則 b=1 否則 b=0。令 $k\in\mathbb{N}$ 。

if
$$\left(\frac{k}{2} \in \mathbb{N}\right) N = k - 1$$

else if $(b = 1)N = k - 1$
else $N = k$

(二) 偏向角

偏向角 δ 指光線射入某光學儀器,最後射出光線與原射入光線的夾角。對於夾角 θ 之兩平面鏡, $\delta = 2(\pi - \theta)$ 。

(三) 平行平面鏡

兩平面鏡相對,其間物可形成無限多個虛像。

(四) 光槓桿 (Optical lever) 原理

若有一固定光線,入射至一個平面反射鏡上,當平面反射鏡轉動了 θ 時,其反射光線會偏轉 2θ 。

二、 拋物面鏡(Parabolic mirror)

(一) 拋物凹(Concave)面鏡

平行光反射匯聚於焦點。

(二) 拋物凸(Convex)面鏡

平行光反射延長線交於焦點,稱虛焦點。

(三) 表格

虚實 正倒 比之大小 比之移動 速率 鏡前無窮遠 鏡前焦距至二 實 一點 較小 凹面 鏡前大於兩倍 實 倒立 縮小 較小 質 焦距 一點 較小 凹面 鏡前兩倍焦距 實 倒立 相等 凹面 鏡前無距至兩 鏡前大於兩倍 實 倒立 放大 較大 凹面 鏡前焦點 無窮遠 較大 凹面 鏡前鏡心至焦 鏡後鏡心 虚 正立 放大 較大 凹面 鏡前鏡前 鏡後鏡心 虚 正立 相等 凹面 鏡前所任意 鏡後無點 虚 正立 相等 凸面 鏡前任意 鏡後焦點至鏡 虚 正立 縮小 較小 凸面 鏡前鏡前任意 鏡後鏡心 虚 正立 縮小 較小 凸面 鏡前鏡前 鏡後鏡心 虚 正立 縮小 較小	鏡別	物距	像的位置	像的	像的	像與物相	像與物相
凹面 鏡前無窮遠 鏡前焦距至二 實 倒立 縮小 較小 包括距 凹面 鏡前大於兩倍 鏡前無距至二 度 鏡前兩倍焦距 實 倒立 相等 相等 凹面 鏡前兩倍焦距 實 倒立 放大 較大 較大 6億 度 區 正立 放大 較大 5億 點 凹面 鏡前鏡心至焦 鏡後 虚 正立 放大 較大 5億 監 區 百分 放大 5億 區 區 區 百分 放大 5億 區 區 6億 區 五				虚實	正倒	比之大小	比之移動
鏡 園面 鏡前大於兩倍 鏡前焦距至二 實 倒立 縮小 較小 鏡 焦距 一個 一面 一面 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
凹面 鏡前大於兩倍 焦距 鏡前焦距至二 倍焦距 實 倒立 縮小 較小 凹面 鏡前兩倍焦距 鏡前兩倍焦距 實 倒立 相等 相等 凹面 鏡前焦距至兩 倍焦距 鏡前大於兩倍 焦距 實 倒立 放大 較大 凹面 鏡前焦點 無窮遠 較大 凹面 鏡前鏡心至焦 鏡 鏡後鏡心 虚 正立 放大 較大 凹面 鏡前鏡心 鏡後鏡心 虚 正立 相等 中面 鏡前任意 鏡後集點 虚 正立 一點 較小 凸面 鏡前任意 鏡後焦點至鏡 虚 正立 縮小 較小 凸面 鏡前鏡心 鏡後鏡心 虚 正立 縮小 較小 凸面 鏡前鏡心 鏡後鏡心 虚 正立 縮小 較小 凸面 鏡前鏡心 鏡後鏡心 虚 正立 縮小 較小	' ' ' '	鏡前無窮遠	鏡前焦點	實		黑占	較小
鏡 焦距 倍焦距 倒立 相等 凹面 鏡前兩倍焦距 鏡前大於兩倍 實 倒立 放大 較大 鏡 倍焦距 無窮遠 較大 較大 較大 較大 競人 較大 較大 競人 較大 較大 競人 競人 較大 競人 較大 競人 較大 競人 較大 競人 競人 較大 競人 財力 大人 大力 大力 大力 大力 <td>鏡</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	鏡						
凹面 鏡前兩倍焦距 實 倒立 相等 凹面 鏡前焦距至兩倍焦距 鏡前大於兩倍實質 倒立 放大 較大 鏡面 鏡前焦點 無窮遠 較大 凹面 鏡前鏡心至焦鏡後 虚正立放大 較大 凹面 鏡前鏡心 虚正立放大 較大 9 鏡前鏡心 虚正立放大 較大 9 鏡前鏡心 虚正立放大 較大 9 鏡前鏡心 虚正立 材等 相等 10 鏡前任意 鏡後等於物距虚 正立 相等 村等 10 鏡前無窮遠鏡 鏡後焦點 虚正立縮小 較小 10 鏡前鏡心 鏡後鏡心 虚正立縮小 較小 10 鏡前鏡前鏡心 鏡後鏡心 正立 縮小 較小	凹面	鏡前大於兩倍	鏡前焦距至二	實	倒立	縮小	較小
鏡 鏡前焦距至兩 鏡前大於兩倍 實 倒立 放大 較大 鏡 信焦距 無距 凹面 鏡前焦點 無窮遠 ৩回面 鏡前鏡心至焦 鏡後 虚 正立 放大 較大 5 監 正立 放大 較大 0回面 鏡前鏡心 鏡後鏡心 虚 正立 放大 較大 0回面 鏡前任意 鏡後等於物距 虚 正立 相等 相等 6 競後等於物距 虚 正立 相等 0回面 鏡前無窮遠 鏡後焦點 虚 正立 縮小 較小 6 競後焦點至鏡 虚 正立 縮小 較小 0回面 鏡前鏡心 鏡後鏡心 虚 正立 縮小 較小	鏡	焦距	倍焦距				
凹面 鏡前焦距至兩倍無距 鏡前大於兩倍度 實 倒立 放大 較大 凹面 鏡前焦點 無窮遠 較大 凹面 鏡前鏡心至焦點 鏡後鏡心 虚正立放大 較大 凹面鏡前鏡心鏡後鏡心虚 正立 放大 較大 平面鏡前任意鏡 鏡後等於物距虚 正立相等 相等 凸面鏡前無窮遠鏡 鏡後焦點 虚正立 一點 較小 凸面鏡前任意鏡 鏡後焦點至鏡心 虚正立縮小 較小 凸面鏡前鏡心 鏡後鏡心 虚正立縮小 較小	凹面	鏡前兩倍焦距	鏡前兩倍焦距	實	倒立	相等	相等
鏡 倍焦距 焦距 凹面 鏡前焦點 無窮遠 凹面 鏡前鏡心至焦 鏡後 虚 正立 放大 較大 鏡 點 凹面 鏡前鏡心 虚 正立 放大 較大 鏡 一里面 鏡前任意 鏡後等於物距 虚 正立 相等 相等 凸面 鏡前無窮遠 鏡後焦點 虚 正立 一點 較小 凸面 鏡前任意 鏡後焦點至鏡 虚 正立 縮小 較小 凸面 鏡前鏡心 鏡後鏡心 虚 正立 縮小 較小 凸面 鏡前鏡心 鏡後鏡心 虚 正立 縮小 較小	鏡						
凹面 鏡前焦點 無窮遠 較大 凹面 鏡前鏡心至焦 鏡後 虚 正立 放大 較大 頭面 鏡前鏡心 虚 正立 放大 較大 平面 鏡前任意 鏡後等於物距 虚 正立 相等 凸面 鏡前無窮遠 鏡後焦點 虚 正立 縮小 較小 凸面 鏡前任意 鏡後焦點至鏡 虚 正立 縮小 較小 凸面 鏡前鏡心 鏡後鏡心 虚 正立 縮小 較小	凹面	鏡前焦距至兩	鏡前大於兩倍	實	倒立	放大	較大
鏡 一凹面 鏡前鏡心至焦 鏡後 虚 正立 放大 較大 頭 鏡前鏡心 虚 正立 放大 較大 平面 鏡前任意 鏡後等於物距 虚 正立 相等 凸面 鏡前無窮遠 鏡後焦點 虚 正立 一點 較小 凸面 鏡前任意 鏡後焦點至鏡 虚 正立 縮小 較小 凸面 鏡前鏡心 鏡後鏡心 虚 正立 縮小 較小	鏡	倍焦距	焦距				
凹面 鏡前鏡心至焦 鏡後 虚 正立 放大 較大 凹面 鏡前鏡心 虚 正立 放大 較大 現面 鏡前任意 鏡後等於物距 虚 正立 相等 凸面 鏡前無窮遠 鏡後焦點 虚 正立 一點 較小 凸面 鏡前任意 鏡後焦點至鏡 虚 正立 縮小 較小 凸面 鏡前鏡心 鏡後鏡心 虚 正立 縮小 較小 凸面 鏡前鏡心 鏡後鏡心 虚 正立 縮小 較小	凹面	鏡前焦點	無窮遠				較大
鏡 點 凹面 鏡前鏡心 鏡後鏡心 虚 正立 放大 較大 平面 鏡前任意 鏡後等於物距 虚 正立 相等 凸面 鏡前無窮遠 鏡後焦點 虚 正立 一點 較小 凸面 鏡前任意 鏡後焦點至鏡 虚 正立 縮小 較小 凸面 鏡前鏡心 鏡後鏡心 虚 正立 縮小 較小	鏡						
凹面 鏡前鏡心 鏡後鏡心 虚 正立 放大 較大 平面 鏡前任意 鏡後等於物距 虚 正立 相等 凸面 鏡前無窮遠 鏡後焦點 虚 正立 一點 較小 凸面 鏡前任意 鏡後焦點至鏡 虚 正立 縮小 較小 凸面 鏡前鏡心 鏡後鏡心 虚 正立 縮小 較小	凹面	鏡前鏡心至焦	鏡後	虚	正立	放大	較大
鏡 平面 鏡前任意 鏡後等於物距 虚 正立 相等 凸面 鏡前無窮遠 鏡後焦點 虚 正立 一點 較小 凸面 鏡前任意 鏡後焦點至鏡 虚 正立 縮小 較小 凸面 鏡前鏡心 鏡後鏡心 虚 正立 縮小 較小	鏡	黑占					
平面 鏡前任意 鏡後等於物距 虚 正立 相等 凸面 鏡前無窮遠 鏡後焦點 虚 正立 一點 較小 凸面 鏡前任意 鏡後焦點至鏡 虚 正立 縮小 較小 凸面 鏡前鏡心 鏡後鏡心 虚 正立 縮小 較小	凹面	鏡前鏡心	鏡後鏡心	虚	正立	放大	較大
鏡 凸面 鏡前無窮遠 鏡後焦點 虚 正立 一點 較小 凸面 鏡前任意 鏡後焦點至鏡 虚 正立 縮小 較小 凸面 鏡前鏡心 鏡後鏡心 虚 正立 縮小 較小	鏡						
凸面 鏡前無窮遠 鏡後焦點 虚 正立 一點 較小 凸面 鏡前任意 鏡後焦點至鏡 虚 正立 縮小 較小 凸面 鏡前鏡心 鏡後鏡心 虚 正立 縮小 較小	平面	鏡前任意	鏡後等於物距	虚	正立	相等	相等
鏡 鏡 凸面 鏡前任意 鏡後焦點至鏡 虚 正立 縮小 鏡 心 凸面 鏡前鏡心 虚 正立 縮小 砂 ・ ・ ・	鏡						
凸面 鏡前任意 鏡後焦點至鏡 虚 正立 縮小 鏡 心 凸面 鏡前鏡心 虚 正立 縮小 較小	凸面	鏡前無窮遠	鏡後焦點	虚	正立	一點	較小
鏡 心 凸面 鏡前鏡心 鏡後鏡心 虚 正立 縮小 較小	鏡						
凸面 鏡前鏡心 鏡後鏡心 虚 正立 縮小 較小	凸面	鏡前任意	鏡後焦點至鏡	虚	正立	縮小	較小
	鏡		心				
鏡	凸面	鏡前鏡心	鏡後鏡心	虚	正立	縮小	較小
	鏡						

(四) 面鏡公式 (Mirror formula)

令焦距 f 凹面鏡為正、凸面鏡為負,物距 p 實物(即鏡前)為正、虚物(即鏡後)為負,像距 q 實像為正、虛像為負,物高 h_o 正立為正、倒立為負,像高 h_i 正立為正、倒立為負,橫向放大率(Lateral magnification)(指垂直主軸) $m=\frac{h_i}{h_o}$,縱向放大率(指平行主軸) m_p 。

$$m = \left| \frac{q}{p} \right| = \left| \frac{f}{p - f} \right| = \left| \frac{q - f}{f} \right|$$

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$$

$$(p - f)(q - f) = f^2$$

$$pq = pf + qf$$

$$m' = \frac{dq}{dp} = -m^2$$

Proof.

$$(p-f)(q-f) = f^{2}$$

$$\frac{d}{dp}(p-f) + \frac{d}{dq}(q-f) = 0$$

$$\frac{dq}{dp} = -\frac{q-f}{p-f} = -m^{2}$$

實物與實像的最小距離為 4 f

Proof.

根據柯西不等式:

$$\left(\left(\frac{1}{\sqrt{p}}\right)^2 + \left(\frac{1}{\sqrt{q}}\right)^2\right) \left(\left(\sqrt{p}\right)^2 + \left(\sqrt{q}\right)^2\right) \ge (1+1)^2$$

$$\left(\frac{1}{p} + \frac{1}{q}\right)(p+q) \ge 4$$

共軛成像:指實物與實像可互換位置,此時 $p+q \ge 4f$ 。

三、 球面鏡(Spherical mirror)

(一) 近軸光線焦點

球面鏡對於近軸光線之反射可近似為拋物面鏡,其焦點為主軸上距鏡心二分之一鏡面曲率半徑之二 點中較靠近鏡球面之球心者。

證明: $\phi \alpha$ 為平行光射入鏡面時與鏡面法線之夾角,r 為鏡面曲率半徑,f 為近軸光線焦距

$$\tan \alpha = \frac{h}{r}$$

$$\tan(2\alpha) = \frac{h}{f}$$

$$\lim_{\alpha \to 0} \frac{\tan \alpha}{\alpha} = 1$$

$$\lim_{\alpha \to 0} \frac{f}{r} = \frac{1}{2}$$

(二) 球面像差 (Spherical aberration, SA)

平行入射光,光線反射線(對於球凹面鏡)/反射線之延長線(對於球凸面鏡)與主軸之交點距鏡心之距離,近軸光線較遠軸光線小,因此光線不能交於一個理想的焦點。

第八節 透鏡 (Len) 折射

一、透鏡

光線入透鏡折射,出透鏡再折射。即使兩面曲率不同,焦距仍相等。

二、 三稜鏡(Triangular prism)

(一) 定義

• 稜鏡:指一透鏡其中存在兩面不平行。

• 主截面:與稜鏡各稜線相交成直角的橫截面。

• 三稜鏡:主截面為三角形的稜鏡。

偏向角 δ:原入射線與射出稜鏡之光線之夾角。

(二) 三稜鏡偏向角

令三稜鏡頂角 θ ,兩次折射。

$$\delta = \theta_{i1} - \theta_{t1} + \theta_{t2} - \theta_{i2} = \theta_{i1} + \theta_{t2} - \theta$$

(三) 小角度三稜鏡偏向角

令 $\theta_{i1} \cdot \theta_{i2}$ 甚小,取 $\sin \theta \approx \theta$:

$$\delta = (n-1)\theta$$

(四) 三稜鏡最小偏向角

最小偏向角 δ_{min} 發生於入射與出射線對稱於三稜鏡的頂角時,此時:

$$\delta_{min} = 2\theta_{i1} - \theta$$

$$n = \frac{\sin\left(\frac{\delta_{min} + \theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}$$

$$Proof.$$
解 $\frac{d\delta}{d\theta_{i1}} = 0$:

$$\frac{d\delta}{d\theta_{i1}} = 1 + \frac{d\theta_{t2}}{d\theta_{i1}} = 0$$
$$\frac{d\theta_{t2}}{d\theta_{i1}} = -1$$
$$\frac{d}{d\theta_{t2}} = -\frac{d}{d\theta_{i1}}$$

因
$$\theta = \theta_{t1} + \theta_{i2}$$
:

$$\frac{d}{d\theta_{t1}} = -\frac{d}{d\theta_{i2}}$$

令三稜鏡折射率為n,司乃耳定律:

$$\sin \theta_{i1} = n \sin \theta_{t1}$$

$$n \sin \theta_{i2} = \sin \theta_{t2}$$

微分:

$$\cos \theta_{i1} \frac{d}{d\theta_{i1}} = n \cos \theta_{i1} \frac{d}{d\theta_{i1}}$$

$$n\cos\theta_{i2}\frac{\mathrm{d}}{\mathrm{d}\theta_{i2}} = \cos\theta_{i2}\frac{\mathrm{d}}{\mathrm{d}\theta_{i2}}$$

故:

$$\frac{\cos \theta_{i1}}{\cos \theta_{i2}} = \frac{\cos \theta_{i1}}{\cos \theta_{i2}}$$

利用司乃耳定律:

$$\begin{split} \frac{1-\sin^2\theta_{i1}}{1-\sin^2\theta_{i2}} &= \frac{n^2-\sin^2\theta_{i1}}{n^2-\sin^2\theta_{t2}} \\ (1-\sin^2\theta_{i1})(n^2-\sin^2\theta_{t2}) &= (1-\sin^2\theta_{t2})(n^2-\sin^2\theta_{i1}) \\ (1-n^2)(\sin^2\theta_{i1}-\sin^2\theta_{t2}) &= 0 \end{split}$$

因 $n \neq 1$,故:

$$\theta_{i1} = \theta_{t2}$$

三、 薄透鏡 (Thin lens)

(一) 凹(Concave) 面鏡

可散光,可分為雙凹、平凹、凸凹。

(二) 凸(Convex)面鏡

可聚光,可分為雙凸、平凸、凹凸。

(三) 球面像差 (Spherical aberration, SA)

平行入射光,光線透射線與主軸之交點距鏡心之距離,近軸光線較遠軸光線大,因此光線不能交於一個理想的焦點。

(四) 色像差 (Chromatic aberration, SA)

波長愈長的光焦距愈大。

(五) 表格

鏡別	物距	像的位置	像的	像的	像與物相	像與物相
			虚實	正倒	比之大小	比之移動 速率
凸透 鏡	鏡前無窮遠	鏡後焦點	實		一點	較小
凸透 鏡	鏡前大於兩倍 焦距	鏡後焦距至二 倍焦距	實	倒立	縮小	較小
凸透 鏡	鏡前兩倍焦距	鏡後兩倍焦距	實	倒立	相等	相等
凸透 鏡	鏡前焦距至兩 倍焦距	鏡後大於兩倍 焦距	實	倒立	放大	較大
凸透 鏡	鏡前焦點	無窮遠				較大
凸透 鏡	鏡前鏡心至焦 點	鏡前	虚	正立	放大	較大
凸透 鏡	鏡前鏡心	鏡前鏡心	虚	正立	放大	較大
凹透鏡	鏡前無窮遠	鏡前焦點	虚	正立	一點	較小
凹透鏡	鏡前任意	鏡前焦點至鏡 心	虚	正立	縮小	較小
凹透鏡	鏡前鏡心	鏡前鏡心	虚	正立	縮小	較小

(六) 薄透鏡公式 (Mirror formula)

令焦距 f 凸透鏡為正、凹透鏡為負,物距 p 實物(即鏡前)為正、虛物(即鏡後)為負,像距 q 實像為正、虛像為負,物高 h_o 正立為正、倒立為負,像高 h_i 正立為負、倒立為正,橫向(指垂著主軸)放大率(Magnification) $m=\frac{h_i}{h_o}$,縱向(指平行主軸)放大率 m_p 。

$$m = \left| \frac{q}{p} \right| = \left| \frac{f}{p - f} \right| = \left| \frac{q - f}{f} \right|$$
$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$$
$$(p - f)(q - f) = f^2$$
$$pq = pf + qf$$
$$m' = \frac{dq}{dp} = -m^2$$

實物與實像的最小距離為 4 f

共軛成像:指實物與實像可互換位置,此時 $p+q \ge 4f$ 。

(七) 放大鏡 (Magnifying glass)

放大鏡的構造為一凸透鏡,物體置於焦點內,鏡前明視處得正立虛像。

(八) 菲涅耳透鏡(Fresnel lens)

由多層同心的環形光學面組成,其曲率和角度根據透鏡的總焦距來設計,旨在減少光學系統中的厚度和重量,而達到相同的透鏡效果。

(九) 造鏡者公式 (Lens maker's formula)

令一薄透鏡由兩共主軸球面組成,鏡前面曲率半徑 R_1 曲率圓心距鏡後近於距鏡前為正,鏡後面曲率半徑 R_2 曲率圓心距鏡前近於距鏡後為正,半鏡高 h,實物物距 p,實像像距 q,鏡最高點至物距離 l_1 ,鏡最高點至像距離 l_2 ,鏡前鏡心至鏡重心 x_1 ,鏡後鏡心至鏡重心 x_1 ,鏡內外光速分別為 $v \cdot c$, $n = \frac{c}{n}$ 。

自物到像經透鏡任意處所需時間應相等:

$$\frac{l_1 + l_2}{c} = \frac{p - x_1}{c} + \frac{x_1 + x_2}{v} + \frac{q - x_2}{c} = \frac{p + q}{c} + \left(\frac{1}{v} - \frac{1}{c}\right)(x_1 + x_2)$$

$$l_1 + l_2 - p - q = \left(\frac{c}{v} - 1\right)(x_1 + x_2)$$

考慮鏡最高點、鏡後面曲率重心、鏡重心之直角三角形:

$$R^2 = (R_2 - x_2)^2 + h^2$$

因薄透鏡 $x_2 \ll R_2$:

$$x_2 \approx \frac{h^2}{2R_2}$$

同理:

$$x_1 \approx \frac{h^2}{2R_1}$$

考慮鏡最高點、物、鏡重心之直角三角形:

$$l_2^2 = p^2 + h^2$$

$$l_2 - p = \frac{h^2}{l_2 + p} \approx \frac{h^2}{2p}$$

同理:

$$l_1 - q \approx \frac{h^2}{2a}$$

代入:

$$\frac{h^2}{2p} + \frac{h^2}{2q} = \left(\frac{c}{v} - 1\right) \left(\frac{h^2}{2R_1} + \frac{h^2}{2R_2}\right)$$
$$\frac{1}{p} + \frac{1}{q} = (n-1) \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$
$$\frac{1}{f} = (n-1) \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

第九節 色散 (Chromatic dispersion/Dispersion)

一、 色散介質

- 色散介質:在色散介質中,不同頻率的波以不同的速度傳播。
- 非色散介質:在非色散介質中,所有頻率的波以相同的速度傳播,因此波形和相位一起傳播, 波包保持不變。例如真空。

二、 柯西方程式(Cauchy's equation)

$$n(\lambda) = \sum_{i=0}^{k} \frac{A_i}{\lambda^{2i}}, \quad A_i \text{ are constants.}$$

- 正常色散(Normal dispersion):折射率與波長負相關。對於可見光,大多數透明材料,如空氣、水、玻璃,為之。
- 異常色散(Anomalous dispersion):折射率與波長正相關。常見於紫外線。

三、 虹與霓(Rainbow)

(一) 虹/主虹 (The first rainbow)

平行入射陽光折射入而後反射而後折射出,紅光與入射光夾 138 度,紫光與入射光夾 140 度,目視紅光像在下。

(二) 霓/副虹 (The second rainbow)

平行入射陽光折射入而後反射兩次而後折射出,紅光與入射光夾 129 度,紫光與入射光夾 126 度,目視紅光像在上。

(三) 位置

雨後或有霧時背對太陽可見,與平行入射陽光之夾角愈小虹圈愈內,故虹在內而霓在外,且陽光仰 角大於平行入射陽光之夾角時不可見該虹圈。

(四) 視圖

視線成錐形,所見為圓弧,所見異色光係來自不同圓上之水滴,與平行光夾角愈大者來自愈外側之 水滴。

第十節 人類視覺

一、 視網膜錐狀細胞與光的三原色

人眼的視網膜上有三種類型的錐狀細胞:

紅色錐狀細胞(L錐體):對長波(約564納米)最敏感。

- 綠色錐狀細胞(M錐體):對中波(約534納米)最敏感。
- 藍色錐狀細胞(S 錐體): 對短波(約 420 納米)最敏感。

因此光的三原色為紅(Red)、綠(Green)、藍(Blue)。

二、 物體的顏色

- 不透明物的顏色取決於其反射之光。
- 透明物的顏色取決於其透射之光。

三、 加法混色原理

光的三原色遵循加法混色原理。當紅 R、綠 G、藍 B 三色光疊加在一起,能產生白光。若兩色光相加可形成白光則互為互補光。

四、 減法混色原理

顏料等物質遵循減法混色原理。當青(Cyan, C)、洋紅(Magenta, M)、黃(Yellow, Y)三色顏料等物質疊加在一起,能產生黑色。若兩色顏料等物質相加可形成黑色則互為互補色。

第十一節 惠更斯-菲涅耳原理(Huygens-Fresnel principle)

惠更斯指出當波行進時,波前上的每一點都可以視為新的點波源,以其為球心,各自發出與原波同樣維度的球面子波(Wavelet)。在某一時刻,和這些子波相切的流形,稱為包絡(線/面)(Envelope),形成新的波前。

對於源自於點波源 0 的波函數:

$$y = \frac{A}{\|\mathbf{x}\|} e^{i\mathbf{k}\cdot\mathbf{x} - \omega t}$$

其中 k 為已知的 d 維波向量;x 為 d 維空間中的一個任意位置;y 的自變數為 x 和 t \circ 波動方程式給出:

 $\frac{\partial^2 y}{\partial t^2} = v^2 \nabla^2 y$

計算波速:

$$\frac{\partial^2 y}{\partial t^2} = -\frac{A\omega^2}{\|\mathbf{x}\|} e^{i(\mathbf{k} \cdot \mathbf{x} - \omega t)}$$

$$\nabla^2 y = -\frac{A\|\mathbf{k}\|^2}{\|\mathbf{x}\|} e^{i(\mathbf{k} \cdot \mathbf{x} - \omega t)}$$

$$v^2 = \frac{\omega^2}{\|\mathbf{k}\|^2}$$

菲涅耳指出,其在 t_0 時的波前上的新點波源 \mathbf{x}_0 發出的波為:

$$y = \frac{A}{2\|\mathbf{x}_0\|} \left(1 + \frac{\left(\mathbf{x} - \mathbf{x}_0\right) \cdot \mathbf{x}_0}{\|\mathbf{x} - \mathbf{x}_0\| \cdot \|\mathbf{x}_0\|}\right) e^{i(\mathbf{k} \cdot \left(\mathbf{x} - \mathbf{x}_0\right) - \omega\left(t - t_0\right))}$$

其中:

$$\|\mathbf{x}_0\| = \frac{\omega}{\|\mathbf{k}\|} t_0$$

惠更斯一菲涅耳原理可以解釋反射定律、司乃耳定律、干涉等現象。

第十二節 兩二維同調圓形波干涉

兩同頻率、同波形、同振幅二維圓形波在勻波速介質中干涉:

- 1. 節線為完全破壞性干涉;腹線為完全建設性干涉。
- 2. 節線與腹線均為以兩波源為焦點的雙曲線或退化的雙曲線。
- 中央線若為節/腹線稱中央節/腹線,中央以外者,最接近中央者編號為第一節/腹線,依序編號。
 同一編號之節線與腹線各有兩條。
- 4. 中央線波程差為零。兩波最大波程差等於兩波源之距離,發生於通過兩波源之直線除了兩波源 連線線段。
- 5. 節線之相位差為 $\left(n-\frac{1}{2}\right)\lambda\left(n\in\mathbb{N}\right)$,腹線之相位差為 $n\lambda\left(n\in\mathbb{N}\right)$ 。
- 6. 兩節線或兩腹線之波程差為一倍波長。
 - 兩波同相(指時間),中央線為腹線,為一直線,節線與腹線在中央線兩側以每四分之一波長一節線或腹線且節線與腹線交錯之規則排開。當兩波源距離 d 時:節線有 2n 條,其中 n 為服從 $\left(n-\frac{1}{2}\right)\lambda\right) \le d$ 的最大正整數解,每一個小於等於 n 的正整數 k 代表一對第 k 節線;兩波源間之節線有 2m 條,其中 m 為服從 $\left(m-\frac{1}{2}\right)\lambda\right) < d$ 的最大正整數解;若 n=m+1,則通過兩波源之直線除了兩波源連線線段為兩條節線,此情況發生於 d 為奇數倍波長時,若此情況未發生則節線均為未退化雙曲線;腹線有 2p+1 條,其中 p 為服從 $p\lambda \le d$ 的最大正整數解,每一個小於等於 p 的正整數 k 代表一對第 k 腹線,+1 代表中央腹線;兩波源間之腹線有 2q+1 條,其中 q 為服從 $p\lambda < d$ 的最大正整數解;若 p=q+1,則通過兩波源之直線除了兩波源連線線段為兩條腹線,此情況發生於 d 為偶數倍波長時,若此情況未發生則腹線除了中央腹線外均為未退化雙曲線。
 - 兩波反相,中央線為節線,為一直線,節線與腹線在中央線兩側以每四分之一波長一節線或腹線且節線與腹線交錯之規則排開。當兩波源距離 d 時:腹線有 2n 條,其中 n 為服從 $\left(n-\frac{1}{2}\right)\lambda\right) \le d$ 的最大正整數解,每一個小於等於 n 的正整數 k 代表一對第 k 腹線;兩波源間之腹線有 2m 條,其中 m 為服從 $\left(m-\frac{1}{2}\right)\lambda\right) < d$ 的最大正整數解;若 n=m+1,則通過兩波源之直線除了兩波源連線線段為兩條腹線,此情況發生於 d 為奇數倍波長時,若此情況未發生則腹線均為未退化雙曲線;節線有 2p+1 條,其中 p 為服從 $p\lambda \le d$ 的最大正整數解,每一個小於等於 p 的正整數 k 代表一對第 k 節線,+1 代表中央節線;兩波源間之節線有 2q+1 條,其中 q 為服從 $p\lambda < d$ 的最大正整數解;若 p=q+1,則通過兩波源之直線除了兩波源連線線段為兩條節線,此情況發生於 d 為偶數倍波長時,若此情況未發生則節線除了中央節線外均為未退化雙曲線。
 - 兩波非同相亦非反相,中央線非腹線或節線。

第十三節 忽略繞射之多狹縫干涉

做光的狹縫繞射與干涉實驗時,通常使用同頻同調波源,同頻常使用濾光器(Optical filter)達成,即可以過濾入射光僅使特定波長區間通過的光學元件,同調則常使用狹縫與透鏡達成。

一、 忽略繞射之雙狹縫干涉

同調光通過狹縫射向光屏。令狹縫間距 $b > \lambda$,狹縫寬忽略,光屏距狹縫片 L。光屏平行兩狹縫各自中線之公垂線,對於光屏上某點,令其在兩狹縫中線上之垂線與光屏平面之法線過兩狹縫中線者之夾角 θ ,取正, $y = L \tan \theta$ 。

光程差 D 為:

$$D = \sqrt{\left(L\tan\theta + \frac{b}{2}\right)^2 + L^2} - \sqrt{\left(L\tan\theta - \frac{b}{2}\right)^2 + L^2}$$

• 中央亮紋: $\theta = 0$ 。

• 第 m 亮紋: $D = m\lambda$ 。

• 第 m 暗紋: $D = \left(m - \frac{1}{2}\right)\lambda$ °

二、 遠場忽略繞射之雙狹縫干涉(Double slits interference)

同調光通過狹縫射向光屏。令狹縫間距 $b > \lambda$,狹縫寬忽略,光屏距狹縫片 L, $L \gg b$ 。光屏平行兩狹縫各自中線之公垂線,對於光屏上某點,令其在兩狹縫中線上之垂線與光屏平面之法線過兩狹縫中線者之夾角 θ ,取正, $y = L \tan \theta$ 。

化簡光程差 D,令 $A = L \tan \theta$,對 $\frac{b}{2} = 0$ 泰勒展開到一階:

$$D = \sqrt{\left(L \tan \theta + \frac{b}{2}\right)^2 + L^2} - \sqrt{\left(L \tan \theta - \frac{b}{2}\right)^2 + L^2}$$

$$= \sqrt{\left(A + \frac{b}{2}\right)^2 + L^2} - \sqrt{\left(A - \frac{b}{2}\right)^2 + L^2}$$

$$= \sqrt{A^2 + L^2} + \frac{A_{\frac{b}{2}}^b}{\sqrt{A^2 + L^2}} - \left(\sqrt{A^2 + L^2} - \frac{A_{\frac{b}{2}}^b}{\sqrt{A^2 + L^2}}\right)$$

$$= \frac{Ab}{\sqrt{A^2 + L^2}}$$

$$= \frac{L \tan \theta b}{L \sec \theta}$$

$$= b \sin \theta$$

(一) 亮暗紋

光程差 $\approx b \sin \theta$ (若非 $b \gg \lambda$ 不可為此近似),令 $m = \frac{b \sin \theta}{\lambda}$ 。亮紋指同相處,即光強度極大值處;暗紋指反相處,即光強度極小值處。

亮紋:

$$(m+1) \in \mathbb{N}$$

,稱第 m 亮紋(mth-order maximum),m=0 為中央亮紋(Central maximum)。

• 暗紋:

$$\left(m+\frac{1}{2}\right)\in\mathbb{N}$$

,稱第 m 暗紋(mth-order minimum)。

對於小角度:

$$\frac{y}{L} = \tan \theta = \sin \theta$$
$$m = \frac{by}{L\lambda}$$

故條紋間距 Δy :

$$\Delta y = \frac{L\lambda}{b}$$

亮紋發生於:

$$y = m \frac{\lambda L}{b} \quad (m+1) \in \mathbb{N}$$

暗紋發生於:

$$y = m\frac{\lambda L}{b} \quad (m + \frac{1}{2}) \in \mathbb{N}$$

(二) 相位角差

相位角差 ϕ :

$$\phi = \frac{2\pi b \sin \theta}{\lambda}$$

(三) 光強度

令 I 為光強度:

$$I(\theta) = I_0 \left(\frac{\sin \phi}{\sin \frac{\phi}{2}} \right)^2$$

$$= I_0 \left(\frac{\sin \left(\frac{2\pi b \sin \theta}{\lambda} \right)}{\sin \left(\frac{\pi b \sin \theta}{\lambda} \right)} \right)^2$$

$$= 4I_0 \cos^2 \frac{\phi}{2}$$

$$= 4I_0 \cos^2 \left(\frac{\pi b \sin \theta}{\lambda} \right)$$

對於小角度令 $\tan \theta = \sin \theta$:

$$I(y) = 4I_0 \cos^2\left(\frac{\pi b y}{L\lambda}\right)$$

(四) 折射率效應

- 折射率 n 的介質,因波長為真空 $\frac{1}{n}$ 倍,故 m 為真空 n 倍。
- 白光做雙狹縫干涉,中央亮紋兩側可見黃色,因紫色 m 最小,其互補色為黃色。

三、 遠場忽略繞射之多狹縫干涉

同調光通過狹縫射向光屏。令有 k 個狹縫,狹縫寬忽略,相鄰狹縫間距 $b > \lambda$,光屏距狹縫片 L, $L \gg b$ 。光屏平行任二狹縫各自中線之公垂線,對於光屏上某點,令其在中央狹縫中線上之垂線與光 屏平面之法線過中央狹縫中線者之夾角 θ ,取正, $y = L \tan \theta$ 。

$$I(\theta) = I_0 \!\! \left(\frac{\sin\left(k\frac{\pi b \sin\theta}{\lambda}\right)}{\sin\left(\frac{\pi b \sin\theta}{\lambda}\right)} \right)^2$$

第十四節 繞射 (Diffraction)

一、 特性

令障礙物或孔徑寬 a,波長 λ 。

- 繞射前後,波之頻率、波長、波速等均不變。
- a 愈小,方向改變愈明顯。
- $a > \lambda$ 時,a 愈接近 λ ,繞射強度愈。
- $a < \lambda$ 時,a 愈接近 λ ,繞射強度愈大。

二、 菲涅耳-基爾霍夫繞射公式(Fresnel-Kirchhoff diffraction formula)

描述波在遇到障礙物或孔徑時繞射後任一點的波場強(如音強、光強),無論遠近。可以從此公式推導出惠更斯一菲涅耳原理。

$$U(P) = -\frac{U_0}{2\pi} \iint_{S} \left(\frac{\cos\left(\theta_i\right) + \cos\left(\theta_r\right)}{r} \right) e^{ikr} \frac{\mathrm{d}S}{r}$$

其中:

- U(P) 是觀察點 P 處的複數波場(包含幅度和相位)。
- U_0 是入射波場在屏幕上的分布。
- S 是繞射屏的孔徑面積。
- r 是從孔徑面上的元素 O 到觀察點 P 的距離。
- $k = \frac{2\pi}{\lambda}$ 是波數, λ 是波長。
- θ_i 是入射波的入射角, θ_r 是從孔徑元素到觀察點的角度。
- dS 是孔徑面上的微小面積元素。

三、 菲涅耳數 (Fresnel number)

菲涅耳數,無因次,定義為:

$$F = \frac{a^2}{L\lambda}$$

其中:a 是孔徑的尺寸,L 是孔徑與觀察屏之間的距離, λ 是入射波的波長。

若 $F \gtrsim 1$,則繞射波是處於近場,可以使用菲涅耳繞射作為近似;若 F << 1,則繞射波是處於遠場,可以使用夫朗和斐繞射作為近似。

四、 菲涅耳繞射 (Fresnel Diffraction)

描述在繞射現象的近場近似,這時候波前還不能近似為平行波。

$$U(P) = \frac{\exp(ikz)}{i\lambda z} \iint_S U_0(Q) \cdot \exp\left(i\frac{k}{2z} \left[(x-x_1)^2 + (y-y_1)^2 \right] \right) \, \mathrm{d}x_1 \mathrm{d}y_1$$

其中: x_1, y_1 是孔徑平面上的座標;x, y 是觀察平面上的座標。

五、 夫朗和斐繞射(Fraunhofer Diffraction)

夫朗和費繞射適用於遠場條件下,即當觀察屏幕位於很遠的地方時,波前可以被近似為平行波。

$$U(P) = \frac{\exp(ikz)}{i\lambda z} \exp\Bigl(i\frac{k}{2z}(x^2+y^2)\Bigr) \iint_{\mathcal{S}} U_0(x_1,y_1) \exp\Bigl(-i\frac{2\pi}{\lambda z}(xx_1+yy_1)\Bigr) \,\mathrm{d}x_1 \mathrm{d}y_1$$

由於遠場條件下,繞射圖樣與原孔徑場的傅里葉變換直接相關,因此可以進一步簡化為:

$$U(P) = \frac{e^{ikz}}{i\lambda z} e^{i\frac{k}{2z}(x^2 + y^2)} \mathcal{F}\{U_0(x_1, y_1)\}\$$

其中, $\mathcal{F}\{U_0(x_1,y_1)\}$ 是孔徑平面波場的傅里葉變換。

六、 遠場單狹縫繞射(Single slit diffraction)

同調光通過狹縫射向光屏。令縫寬 $a>\lambda$,光屏距狹縫片 L, $L\gg a$ 。光屏平行狹縫兩邊緣之公垂線,對於光屏上某點,令其在狹縫中線上之垂線與光屏平面之法線過狹縫中線者之夾角 θ ,取正, $y=L\tan\theta$ 。令 $\phi=\frac{\pi a\sin\theta}{\lambda}$, $m=\frac{a\sin\theta}{\lambda}$ 。

(一) 亮暗紋

亮紋指同相處,即光強度極大值處;暗紋指反相處,即光強度極小值處;亮帶中線指兩相鄰暗紋之中線。

- 中央亮紋: $\theta = 0$ 。
- 暗紋: $m \in \mathbb{N}$,稱第 m 暗紋,狹縫兩邊緣光程差 m。將狹縫分為 2m 等分,自上起第 k 與 k+1 等分將完全相消干涉,由此可知。
- 亮紋: $\phi = \tan \phi$ 時。
- 除中央外,亮紋與亮帶中線不同,亮帶中線亮度小於亮紋。
- 愈遠離中央之亮帶亮度愈小。

• 距中央亮紋最近之二暗紋之夾角最大,為其餘相鄰兩暗紋夾角之二倍。

對於小角度:

$$\frac{y}{L} = \tan \theta = \sin \theta$$
$$m = \frac{ay}{L\lambda}$$

故除中央外之相鄰兩暗紋間距 Δy :

$$\Delta y = \frac{L\lambda}{a}$$

暗紋發生於:

$$y = m \frac{L\lambda}{a} \quad m \in \mathbb{N}$$

(二) 光強度

 I_0 是中心極大處的波強,場強分布為:

$$\begin{split} I(\theta) &= I_0 \left(\frac{\sin \phi}{\phi}\right)^2 \\ &= I_0 \left(\frac{\sin \left(\frac{\pi a \sin \theta}{\lambda}\right)}{\frac{\pi a \sin \theta}{\lambda}}\right)^2 \end{split}$$

(三) 折射率效應

- 折射率 n 的介質,因波長為真空 $\frac{1}{n}$ 倍,故 m 為真空 n 倍。
- 白光做單狹縫繞射,中央亮紋兩側可見黃色,因紫色 m 最小,其互補色為黃色。

(四) 觀察

當狹縫甚寬, θ 甚小,則亮帶窄而鄰近,難觀察到暗紋。

七、 遠場多狹縫繞射與干涉

同調光通過狹縫射向光屏。令有 k 個相鄰狹縫,縫寬 $a > \lambda$,兩相鄰狹縫中線相距 $b > \lambda$,中央亮紋場強 I_0 ,光屏平行兩狹縫各自中線之公垂線,多狹縫平面與光屏平面距離 L, $L \gg a$, $L \gg b$,對於光屏上某點,令其在兩狹縫中線上之垂線與光屏平面之法線過兩狹縫中線者之夾角 θ ,取正,光波長 λ ,則場強分布 $I(\theta)$ 為:

$$I(\theta) = I_0 \Biggl(\frac{\sin \left(\frac{\pi a \sin \theta}{\lambda} \right)}{\frac{\pi a \sin \theta}{\lambda}} \Biggr)^2 \Biggl(\frac{\sin \left(k \frac{\pi b \sin \theta}{\lambda} \right)}{\sin \left(\frac{\pi b \sin \theta}{\lambda} \right)} \Biggr)^2$$

第十五節 都卜勒效應(Doppler effect)

一、 非相對論性都卜勒效應

令波源至觀察者的向量方向為極軸正方向,該方向的單位向量為 \hat{n} ; \mathbf{v}' 為對觀察者而言的視波速量值; \mathbf{v} 為該種波在該介質的波速量值; \mathbf{v}_m 為介質本身移動速度; \mathbf{o} 為觀察者相對於介質的移動速度;

s 為波源相對於介質的移動速度;f' 為觀察者的視頻率;f 為原頻率(對波源而言的頻率); λ' 為對觀察者而言的為視波長; $\lambda = \frac{\upsilon}{f}$ 。所有速率相對論性均忽略。

非相對論性都卜勒效應指出:

$$\begin{split} f' &= \frac{\upsilon + \mathbf{V}_m \cdot \hat{n} - \mathbf{O} \cdot \hat{n}}{\upsilon + \mathbf{V}_m \cdot \hat{n} - \mathbf{S} \cdot \hat{n}} \cdot f \\ \upsilon' &= \upsilon + \mathbf{V}_m \cdot \hat{n} - \mathbf{O} \cdot \hat{n} \\ \lambda' &= \frac{\upsilon'}{f'} = \frac{\upsilon + \mathbf{V}_m \cdot \hat{n} - \mathbf{S} \cdot \hat{n}}{f} = \frac{\upsilon + \mathbf{V}_m \cdot \hat{n} - \mathbf{S} \cdot \hat{n}}{\upsilon + \mathbf{V}_m \cdot \hat{n}} \lambda \end{split}$$

二、 藍移 (Blue shift) 與紅移 (Red shift)

藍移指光之視頻率因都卜勒效應而增加,紅移指光之視頻率因都卜勒效應而減少。

第十六節 繩波

一、波速

$$|v| = \sqrt{\frac{F}{\mu}}$$

Proof.

設笛卡爾 x, y 坐標,其中 x 方向為波傳遞方向,以 x 軸為極坐標之極軸,時間 t,一段微分繩子繩張力水平分量量值 F、線密度 μ 、長度 Δx 、左端位置 (s, y(t))、左端角度 $\pi + \alpha$ 、右端角度 β 、左端繩張力量值 F_1 、右端繩張力量值 F_2 :

$$\begin{cases} F(\sin \beta - \sin \alpha) = (\mu \Delta x) \frac{\partial^2 y}{\partial t^2} \\ F_1 \cos \alpha = F_2 \cos \beta = F \end{cases}$$

$$F_2 \tan \beta - F_1 \tan \alpha = \frac{(\mu \Delta x) \frac{\partial^2 y}{\partial t^2}}{F}$$

$$\frac{1}{\Delta x} \left(\frac{\partial y}{\partial x} \Big|_{x + \Delta x} - \frac{\partial y}{\partial x} \Big|_{x} \right) = \frac{\mu}{F} \frac{\partial^2 y}{\partial t^2}$$

$$\frac{\partial^2 y}{\partial x^2} = \frac{\mu}{F} \frac{\partial^2 y}{\partial t^2}$$

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{V^2} \frac{\partial^2 y}{\partial t^2}$$

$$\Rightarrow |v| = \sqrt{\frac{F}{\mu}}$$

二、 重力下鉛直繩波

長度 L,質量 m 的均勻繩,自然下垂,最低處 y 坐標 0,最高處 y 坐標 L,張力鉛直分量量值 F。重力加速度量值 g(假設不隨高的改變)。今由下端產生一橫波向上傳遞,時間 t 以波開始傳遞時為

0,波速 v,求耗時 T:

$$F = mg \frac{y}{L}$$

$$v = \sqrt{\frac{FL}{m}} = \sqrt{yg} = \frac{dy}{dt}$$

求 $\frac{dv}{dt}$:
Method 1:

$$\frac{dv}{dt} = \frac{d\sqrt{yg}}{dt}$$

$$= \frac{1}{2}(yg)^{\frac{1}{2}}\frac{d(yg)}{dt}$$

$$= \frac{1}{2}\sqrt{\frac{g}{y}}\frac{dy}{dt}$$

$$= \frac{1}{2}\sqrt{\frac{g}{y}}v$$

$$= \frac{g}{2}$$

Method 2:

$$\frac{dv}{dy} = \frac{1}{2}\sqrt{\frac{g}{y}}$$

$$\frac{dv}{dy} = \frac{d}{dy}\left(\frac{dy}{dt}\right) = \frac{d}{dt}\left(\frac{dy}{dt}\right) \cdot \frac{dt}{dy} = \frac{\frac{d^2y}{dt^2}}{\frac{dy}{dt}}$$

$$\frac{dv}{dt} = \frac{d^2y}{dt^2}$$

$$= \frac{dy}{dt} \cdot \frac{dv}{dy}$$

$$= \sqrt{yg} \cdot \frac{1}{2}\sqrt{\frac{g}{y}}$$

$$= \frac{g}{2}$$

求 T:

$$L = \frac{1}{2} \frac{dv}{dt} T^2 = \frac{gT^2}{4}$$
$$T = \sqrt{\frac{4L}{g}}$$

三、 能量

(一) 繩波能量一般式

假設一條張緊的繩子上有一個橫波:

$$u = \frac{1}{2}\mu \left(\frac{\partial y}{\partial t}\right)^2 + \frac{1}{2}F\left(\frac{\partial y}{\partial x}\right)^2$$

Proof.

動能密度 u_K :

對於一小段長度 Δx 的繩子,其質量為 $\mu \Delta x$ 。這段繩子的動能 ΔK 為:

$$\Delta K = \frac{1}{2} (\mu \Delta x) \left(\frac{\partial y}{\partial t} \right)^2$$

$$u_K = \frac{\Delta K}{\Delta x} = \frac{1}{2}\mu \left(\frac{\partial y}{\partial t}\right)^2$$

位能密度 u_U :

對於一小段長度 Δx 的繩子,其位能 ΔU 為:

$$\Delta U = \frac{1}{2} F \left(\frac{\partial y}{\partial x} \right)^2 \Delta x$$

$$u_U = \frac{\Delta U}{\Delta x} = \frac{1}{2} F \left(\frac{\partial y}{\partial x} \right)^2$$

能量密度 u:

$$u = u_K + u_U = \frac{1}{2}\mu \left(\frac{\partial y}{\partial t}\right)^2 + \frac{1}{2}F\left(\frac{\partial y}{\partial x}\right)^2$$

(二) 正弦繩波

假設一條張緊的繩子上有一個正弦繩波(簡諧繩波),波的位移函數 $y(x,t) = A \sin(kx - \omega t)$,則:

$$u_K = u_U = \mu A^2 \omega^2 \cos^2(kx - \omega t)$$
$$u = \mu A^2 \omega^2 \cos^2(kx - \omega t)$$

Proof.

$$\frac{\partial y}{\partial t} = -A\omega \cos(kx - \omega t)$$

$$\frac{\partial y}{\partial x} = Ak \cos(kx - \omega t)$$

$$\omega = k\sqrt{\frac{F}{\mu}}$$

$$u_K = \frac{1}{2}\mu \left(\frac{\partial y}{\partial t}\right)^2$$

$$= \frac{1}{2}\mu(A\omega)^2 \cos^2(kx - \omega t)$$

$$= \frac{1}{2}\mu \left(Ak\sqrt{\frac{F}{\mu}}\right)^2 \cos^2(kx - \omega t)$$

$$= \frac{1}{2}A^2k^2F \cos^2(kx - \omega t)$$

$$= \frac{1}{2}\mu A^2\omega^2 \cos^2(kx - \omega t)$$

$$u_U = \frac{1}{2}F\left(\frac{\partial y}{\partial x}\right)^2$$

$$= \frac{1}{2}F(Ak)^2 \cos^2(kx - \omega t)$$

$$= \frac{1}{2}F(Ak)^2 \cos^2(kx - \omega t)$$

$$= \frac{1}{2}\mu A^2\omega^2 \cos^2(kx - \omega t)$$

$$= \frac{1}{2}\mu A^2\omega^2 \cos^2(kx - \omega t)$$

$$u = u_K + u_U = \mu A^2\omega^2 \cos^2(kx - \omega t)$$

$$u = u_K + u_U = \mu A^2\omega^2 \cos^2(kx - \omega t)$$

四、 反射與透射

繩波是一維波,必為垂直入射。

(一) 固定端(Fixed end)反射

$$R = -1$$

反射波與入射波之波形上下顛倒,左右相反。

(二) 自由端(Free end)反射

$$R = 1$$

反射波與入射波之波形上下不顛倒,左右相反。

(三) 不同線密度的繩

介質 1 線密度 μ_1 ,介質 2 線密度 μ_2 。

$$R = \frac{k_1 - k_2}{k_1 + k_2} = \frac{v_2 - v_1}{v_1 + v_2} = \frac{\sqrt{\mu_1} - \sqrt{\mu_2}}{\sqrt{\mu_1} + \sqrt{\mu_2}}$$

$$T = \frac{2k_1}{k_1 + k_2} = \frac{2v_2}{v_1 + v_2} = \frac{2\sqrt{\mu_1}}{\sqrt{\mu_1} + \sqrt{\mu_2}}$$

$$u_i = \mu_1 (RA_i)^2 \omega^2 \cos^2(kx - \omega t)$$

$$u_r = \mu_1 A_i^2 \omega^2 \cos^2(kx - \omega t)$$

$$u_t = \mu_2 (TA_i)^2 \omega^2 \cos^2(kx - \omega t)$$

$$\frac{u_r}{u_i} = R^2$$

$$= \frac{(v_2 - v_1)^2}{(v_1 + v_2)^2}$$

$$= \frac{\mu_1 + \mu_2 - 2\sqrt{\mu_1 \mu_2}}{\mu_1 + \mu_2 + 2\sqrt{\mu_1 \mu_2}}$$

$$\frac{u_t}{u_i} = T^2 \frac{\mu_2}{\mu_1}$$

$$= \frac{4v_1^2}{(v_1 + v_2)^2}$$

$$= \frac{4\mu_2}{\mu_1 + \mu_2 + \sqrt{\mu_1 \mu_2}}$$

- 當 $\mu_1 = \mu_2$, R = 0, T = 1。
- 輕繩(線密度較小)到重繩(線密度較大):R < 0,T > 0;反射波,波速與波長不變,振幅變小,波形上下顛倒;透射波波速與波長均變小,振幅變小,波形上下不顛倒。
- 輕繩到重繩,反射波,波速與波長不變,振幅變小,波形上下不顛倒;透射波波速與波長均變大,振幅變大,波形上下不顛倒。

- 假設 μ_1 不變, μ_2 變化 $d\mu_2$ 成為 $\mu_2 + d\mu_2$,則 $d\mu_2(\mu_2 \mu_1) > 0$ 時 |R| 增加、T 減少; $d\mu_2(\mu_2 \mu_1) < 0$ 時 |R| 減少、T 增加。
- 固定端相當於 $\frac{\mu_2}{\mu_1} = \infty \cdot v_2 = 0$ °
- 自由端相當於 $\mu_2 = 0 \cdot v_2 = \infty$ °

五、 繩/弦上駐波

固定端必為節點,自由端必為腹點。

(一) 兩端均為固定端

長為L的繩,兩端均為固定端,形成駐波時:

$$\lambda = \frac{2L}{n}, \quad n \in \mathbb{N}$$

$$v = \frac{nv}{2L}, \quad n \in \mathbb{N}$$

- 共有 n+1 個節點、n 個腹點。
- 弦樂器弦上之波即為此種駐波。
- n=1 對應的頻率最低,該頻率為基頻/基音或第一諧音。
- 對於任意 $n \in \mathbb{N}$, n > 1,其對應的頻率為基頻的 n 倍,該頻率為第 n 諧音或第 n = 1 泛音。

(二) 一端為固定端,一端為自由端

長為 L 的繩,一端為固定端,一端為自由端,形成駐波時:

$$\lambda = \frac{4L}{n}, \quad \frac{n+1}{2} \in \mathbb{N}$$

$$v = \frac{nv}{4L}, \quad \frac{n+1}{2} \in \mathbb{N}$$

- 共有 $\frac{n+1}{2}$ 個節點、 $\frac{n+1}{2}$ 個腹點。
- n=1 對應的頻率最低,該頻率為基頻、基音或第一諧音。
- 對於任意 $n \in \left\{x \mid \frac{x+1}{2} \in \mathbb{N}\right\}$,其對應的頻率為基頻的 n 倍,該頻率為第 n 諧音或第 $\frac{n-1}{2}$ 泛音。

(三) 兩端均為自由端

長為 L 的繩,兩端均為固定端,形成駐波時:

$$\lambda = \frac{2L}{n}, \quad n \in \mathbb{N}$$
 $v = \frac{nv}{2L}, \quad n \in \mathbb{N}$

- 共有 n 個節點、n+1 個腹點。
- n=1 對應的頻率最低,該頻率為基頻、基音或第一諧音。
- 對於任意 $n \in \mathbb{N}$, n > 1,其對應的頻率為基頻的 n 倍,該頻率為第 n 諧音或第 n = 1 泛音。

第十七節 Airy wave theory

In fluid dynamics, Airy wave theory (often referred to as linear wave theory) gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational.

— \ Flow problem formulation

The waves propagate in the horizontal direction, with coordinate x, and a fluid domain bound above by a free surface at $z = \eta(x,t)$, with z the vertical coordinate (positive in the upward direction) and t being time. The level z = 0 corresponds with the mean surface elevation. The impermeable bed underneath the fluid layer is at z = -h. Further, the flow is assumed to be incompressible and irrotational –a good approximation of the flow in the fluid interior for waves on a liquid surface –and potential theory can be used to describe the flow. The velocity potential $\Phi(x, z, t)$ is related to the flow velocity components u_x and u_z in the horizontal (x) and vertical (z) directions by:

$$u_x = \frac{\partial \Phi}{\partial x}$$
 and $u_z = \frac{\partial \Phi}{\partial z}$.

Then, due to the continuity equation for an incompressible flow, the potential Φ has to satisfy the Laplace equation:

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial z^2} = 0.$$
 (1) (第一章.1)

Boundary conditions are needed at the bed and the free surface in order to close the system of equations. For their formulation within the framework of linear theory, it is necessary to specify what the base state (or zeroth-order solution) of the flow is. Here, we assume the base state is rest, implying the mean flow velocities are zero.

The bed being impermeable, leads to the kinematic bed boundary-condition:

$$\frac{\partial \Phi}{\partial z} = 0$$
 at $z = -h$. (2) (第一章.2)

In case of deep water –by which is meant infinite water depth, from a mathematical point of view –the flow velocities have to go to zero in the limit as the vertical coordinate goes to minus infinity: $z \to -\infty$. At the free surface, for infinitesimal waves, the vertical motion of the flow has to be equal to the vertical velocity of the free surface. This leads to the kinematic free-surface boundary-condition:

$$\frac{\partial \eta}{\partial t} = \frac{\partial \Phi}{\partial z}$$
 at $z = \eta(x, t)$. (3)

If the free surface elevation $\eta(x,t)$ was a known function, this would be enough to solve the flow problem. However, the surface elevation is an extra unknown, for which an additional boundary condition is needed. This is provided by Bernoulli's equation for an unsteady potential flow. The pressure above the free surface is assumed to be constant. This constant pressure is taken equal to zero, without loss of generality, since the level of such a constant pressure does not alter the flow. After linearisation, this gives the dynamic free-surface boundary condition:

$$\frac{\partial \Phi}{\partial t} + g\eta = 0$$
 at $z = \eta(x, t)$. (4) (第一章.4)

Because this is a linear theory, in both free-surface boundary conditions –the kinematic and the dynamic one, equations (3) and (4) –the value of Φ and $\frac{\partial \Phi}{\partial z}$ at the fixed mean level z=0 is used.

二、 Solution for a progressive monochromatic wave

For a propagating wave of a single frequency –a monochromatic wave –the surface elevation is of the form:

$$\eta = a\cos(kx - \omega t).$$

The associated velocity potential, satisfying the Laplace equation (1) in the fluid interior, as well as the kinematic boundary conditions at the free surface (2), and bed (3), is:

$$\Phi = \frac{\omega}{k} a \frac{\cosh k(z+h)}{\sinh kh} \sin(kx - \omega t),$$

with sinh and cosh the hyperbolic sine and hyperbolic cosine function, respectively. But η and Φ also have to satisfy the dynamic boundary condition, which results in non-trivial (non-zero) values for the wave amplitude a only if the linear dispersion relation is satisfied:

$$\omega^2 = gk \tanh kh$$
,

with tanh the hyperbolic tangent. So angular frequency ω and wavenumber k –or equivalently period T and wavelength λ –cannot be chosen independently, but are related. This means that wave propagation at a fluid surface is an eigenproblem. When ω and k satisfy the dispersion relation, the wave amplitude a can be chosen freely (but small enough for Airy wave theory to be a valid approximation).

三、 Table of wave quantities

- **Deep water** –for water depths greater than half the wavelength, $h > \frac{1}{2}\lambda$, the phase speed is nearly independent of water depth (which is the case for most wind waves on the sea and ocean surface).
- **Shallow water** –for a water depth smaller than 5% of the wavelength, $h < \frac{1}{20}\lambda$, the phase speed of the waves is only dependent on water depth, and no longer a function of period or wavelength.
- Intermediate depth –all other cases, $\frac{1}{20}\lambda < h < \frac{1}{2}\lambda$, where both water depth and period (or wavelength) have a significant influence on the solution of Airy wave theory.

In the limiting cases of deep and shallow water, simplifying approximations to the solution can be made. While for intermediate depth, the full formulations have to be used.

Properties of gravity waves on the surface of deep water, shallow water						
and at intermediate depth, according to Airy wave theory						
quantity	symbol	units	deep water (shallow water	intermediate	
			$h>\frac{1}{2}\lambda$)	$\left(h < \frac{1}{20}\lambda\right)$	depth (all λ and h)	
surface	$\eta(\mathbf{X},t)$	m		$a\cos\theta(\mathbf{X},t)$		
elevation						
wave	$\theta(\mathbf{X},t)$	rad		$\mathbf{k} \cdot \mathbf{x} - \omega t$		
phase						
observed	ω	rad⋅s ⁻¹	$(\omega - \mathbf{k} \cdot$	$\mathbf{U}\big)^2 = \big(\Omega(k)\big)^2 \mathbf{v}$	with $k = \mathbf{k} $	
angular						
frequency						
intrinsic	σ	rad⋅s ⁻¹	$\sigma^2 =$	$(\Omega(k))^2$ with	$\sigma = \omega - \mathbf{k} \cdot \mathbf{U}$	
angular						
frequency						
unit	\mathbf{e}_k	_	$\frac{\mathbf{k}}{k}$			
vector in						
the wave						
propa-						
gation						
direction						
dispersion	$\Omega(k)$	rad·s ⁻¹	$\Omega(k) = \sqrt{gk}$	$\Omega(k) = k\sqrt{gh}$	$\Omega(k) = \sqrt{gk} \tanh kh$	
relation						
phase	$c_p = \frac{\Omega(k)}{k}$	m⋅s ⁻¹	$\sqrt{\frac{g}{k}} = \frac{g}{\sigma}$	\sqrt{gh}	$\sqrt{\frac{g}{k}} \tanh kh$	
speed	,		, n		, ~	
group	$c_g = \frac{\partial \Omega}{\partial k}$	m⋅s ⁻¹	$\frac{1}{2}\sqrt{\frac{g}{k}} = \frac{1}{2}\frac{g}{\sigma}$	\sqrt{gh}	$\frac{1}{2}c_p\left(1+kh\frac{1-\tanh^2kh}{\tanh kh}\right)$	
speed	O OK		2 y k 20		Z (tamikn)	
ratio	$\frac{c_g}{c_p}$	_	$\frac{1}{2}$	1	$\frac{1}{2}\left(1+kh\frac{1-\tanh^2kh}{\tanh kh}\right)$	
horizontal	1	m⋅s ⁻¹	$\mathbf{e}_k \sigma a e^{kz} \cos \theta$	$\mathbf{e}_k \sqrt{\frac{g}{h}} a \cos \theta$	$\mathbf{e}_{k}\sigma a \frac{\cosh k(z+h)}{\sinh kh} \cos \theta$	
velocity	X \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		, and the second	~ V <i>h</i>	sinn kh	
vertical	$u_z(\mathbf{X}, z, t)$	m⋅s ⁻¹	$\sigma a e^{kz} \sin \theta$	$\sigma a^{\frac{z+h}{h}} \sin \theta$	$\sigma a \frac{\sinh k(z+h)}{\sinh kh} \sin \theta$	
velocity	_			n	Silii Kil	
horizontal	$\boldsymbol{\xi}_{x}(\mathbf{X},z,t)$	m	$-\mathbf{e}_{k}ae^{kz}\sin\theta$	$-\mathbf{e}_{k}\frac{1}{kh}a\sin\theta$	$-\mathbf{e}_k a \frac{\cosh k(z+h)}{\sinh kh} \sin \theta$	
particle				, with	J. Hillion	
excur-						
sion						
vertical	$\xi_z(\mathbf{X}, z, t)$	m	$a e^{kz} \cos \theta$	$a^{\frac{z+h}{h}}\cos\theta$	$a\frac{\sinh k(z+h)}{\sinh kh}\cos\theta$	
particle						
excur-						
sion						
pressure	$p(\mathbf{X}, z, t)$	N·m ^{−2}	$\rho ga e^{kz} \cos \theta$	$\rho ga\cos \theta$	$\rho g a \frac{\cosh k(z+h)}{\cosh kh} \cos \theta$	
oscilla-						
tion						

第十八節 水波槽(Ripple tank)實驗

- 水波槽:一個透明的玻璃水槽,上方裝有強光源與起波器,下方鋪大張白紙,實驗前用水平儀確保水波槽底部水平。
- 起波器:通常以馬達驅動以製造週期水波,通常以改變可變電阻調整頻率,可裝上不同物體製造不同波,如小球製造圓形波、長形木桿製造直線波。
- 觀察:正位移(向上為正)相當於凸透鏡,在紙上呈現亮紋;負位移相當於凹透鏡,在紙上呈現暗紋。
- 視波長與波長:兩相鄰同亮度的等亮度線之距離稱視波長。若上方光源為平行光,則視波長等 於實際波長;若上方光源為點光源,則實際波長等於視波長乘以光源到水面長度除以光源到紙 張長度。
- 反射:邊界或障礙物邊緣有海綿條等吸收能量者無法反射,否則接近自由端反射。以壓克力塊 為自由端反射,其高應高過水波波峰。可將強光源會為閃頻儀並使與起波器同頻率觀察。
- 折射:以壓克力塊製造淺水區,水深需高過之。深水區波速大、波長大,相當於光疏介質;淺水區波速小、波長小,相當於光疏介質。水波行進到波速不同的區域時,頻率不變,波長改變,行進方向遵守司乃耳定律。深水區水深宜在 0.5 至 1.5 公分,淺水區水深宜約 0.2 公分,頻率不宜高於 13.5 赫茲,否則水深對波速影響太小,不易觀察。
- 波源:筆尖狀物上下運動可作為點波源(圓形波波源),棍狀物上下運動可作為直線波波源。
- 干涉:兩同頻率、同波形、同振幅圓形波在勻波速介質中干涉,節線質點位移始終為零,故在 紙上為穩定不動的灰色線;腹線為完全建設性干涉,故在紙上為亮度連續性變化的亮暗相間斑 紋中通過亮斑最亮處與暗斑最暗處的線。
- 繞射:波前進時遇到甚小的障礙物,或穿越一寬度過小的狹縫時,可觀察到其不再以直線方式 前進而會擴展成扇形往各方向傳播。障礙物長或狹縫開口長 b , $b \le \lambda$ 時繞射明顯, $b \gg \lambda$ 時幾 乎不繞射而呈現直進。

第十九節 拍 (Beat)

兩個波函數,在空間域上圖形互為彼此縮放與平移可得,在時間域上頻率不同。則兩波疊加後會呈現振幅大小變化週而復始,稱時域上最小的一段波形使得該波形結束後利基重複完全相同的同一波 形為拍,稱拍的週期的倒數為拍頻,拍頻等於兩組分波頻率差值的二分之一。以正弦波為例:

$$A\sin\left(\mathbf{k}_{1}\mathbf{x}-\omega_{1}t\right)+A\sin\left(\mathbf{k}_{2}\mathbf{x}-\omega_{2}t\right)=2A\cos\left(\frac{\mathbf{k}_{1}-\mathbf{k}_{2}}{2}\mathbf{x}-\frac{\omega_{1}-\omega_{2}}{2}t\right)\sin\left(\frac{\mathbf{k}_{1}+\mathbf{k}_{2}}{2}\mathbf{x}-\frac{\omega_{1}+\omega_{2}}{2}t\right)$$

第二十節 聲學(Acoustic)

一、聲波

- 聲波靠介質的擾動來傳送能量,是力學波。
- 流體中的聲波為縱波,因為流體可以承受垂直於其表面的縱向力,但受到平行於其表面的橫向力(剪力)時無法產生切應力(Shear stress)抵抗之,所以流體擾動時,其分子位移平行於受力方向。固體受到平行於其表面的橫向力(剪力)時會產生切應力(Shear stress)抵抗之,故固體中的聲波有橫波與縱波。
- 聲波中,聲壓為正的部分稱密部,聲壓為負的部分稱疏部。
- 聲波之干涉服從疊加原理。
- 聲波有反射與折射。
- 聲波有繞射現象,接近波長的狹縫或障礙物繞射現象較明顯等。

二、 聲速(Speed of sound)

各種物質的聲速各約為 (未註明為非縱波者為縱波):

介質	聲速 (m/s)		
乾燥空氣	331 + 0.6 攝氏度		
0°C 氫氣	1286		
0°C 氦氣	972		
0°C 氧氣	317		
25°C 淡水	1493		
25°C 海水	1533		
25°C 水銀	1450		
25°C 甘油	1904		
25°C 甲醇	1143		
25°C 煤油	1324		
25°C 四氯化碳	926		
鉛	1960		
橡木	3850		
玻璃(縱波)	5500		
玻璃(横波)	3000		
銅	5010		
黃銅	4700		
鋼	5200		
鋁	6420		
鐵	5950		
金	3240		
橡膠	1600		

三、 氣體介質之聲速

(一) 方程

 $v^2 = \frac{\mathrm{d}p}{\mathrm{d}\rho}$

即:

$$v^2 = \frac{p_s}{\rho_s}$$

Proof.

動量守恆:

$$\mathrm{d}\rho\mathbf{v}=0$$

故:

$$\rho \, d\mathbf{v} = -\mathbf{v} \, dr ho$$

氣壓梯度力:

$$\frac{\mathsf{d}\mathbf{v}}{\mathsf{d}t} = -\frac{1}{\rho}\nabla p$$

故:

$$dp = -\rho \frac{d\mathbf{v}}{dt} \cdot d\mathbf{x} = -\rho \, dv \, v = v^2 \, d\rho$$

(二) 等熵體積模量

$$v = \sqrt{\frac{\mathrm{d}p}{\mathrm{d}\rho}} = \sqrt{\frac{K_s}{\rho_0}}$$

(三) 理想氣體

$$K_s = \gamma p_0$$

$$v = \sqrt{\frac{\gamma p_0}{\rho_0}} = \sqrt{\frac{\gamma RT}{M}}$$

(四) 乾燥空氣

令 T_C 為攝氏度。

$$\sqrt{T} = \sqrt{273\left(1 + \frac{T_C}{273}\right)} \approx \left(1 + \frac{T_C}{2 \times 273}\right)\sqrt{273}$$

令 $T_C = 0$ 時的 v 為 v_0 :

$$v_0 = \sqrt{\frac{\gamma R \times 273}{M}} \approx 331 \text{ (m/s)}$$

$$\frac{v_0}{546} \approx = 0.61$$

$$v \approx 331 + 0.61T_C$$

20°C 空氣的聲速約為 343 m/s,該速度稱音速。

四、氣體介質之聲波的數學描述

(一) 波動方程式聲壓形式

$$\frac{\partial^2 p_s(\mathbf{x}, t)}{\partial t^2} = v^2 \nabla^2 p_s(\mathbf{x}, t)$$

(二) 波動方程式平均位移形式

$$\frac{\partial^2 \mathbf{y}(\mathbf{x}, t)}{\partial t^2} = v^2 \nabla^2 \mathbf{y}(\mathbf{x}, t)$$

(三) 聲壓與平均位移之關係

$$p_s = -\rho_0 v^2 (\nabla \cdot \mathbf{y})$$

Proof. 引理:連續性方程:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \frac{\partial \mathbf{y}}{\partial t} \right) = 0$$

根據小波動假設:

$$\frac{\partial \rho_s}{\partial t} + \rho_0 \nabla \cdot \frac{\partial \mathbf{y}}{\partial t} = 0$$

推導:

$$\frac{\partial \rho_s}{\partial t} + \rho_0 \frac{\partial}{\partial t} (\nabla \cdot \mathbf{y}) = 0$$
$$\rho_s + \rho_0 (\nabla \cdot \mathbf{y}) = 0$$

引理:前述聲速方程:

$$p_s = v^2 \rho_s$$
$$p_s = -\rho_0 v^2 (\nabla \cdot \mathbf{y})$$

(四) 介質質點振動速度

令有興趣點與波同速度移動,即: $\mathbf{X} = \mathbf{V}t$ 。

$$\frac{\partial \mathbf{y}}{\partial t} = -\nabla_{\mathbf{x}} \mathbf{y} \cdot \mathbf{v}$$

(五) 一維波動方程式聲壓形式

$$\frac{\partial^2 p_s(x,t)}{\partial t^2} = v^2 \frac{\partial^2 p_s(x,t)}{\partial x^2}$$

(六) 一維波動方程式平均位移形式

$$\frac{\partial^2 y(x,t)}{\partial t^2} = v^2 \frac{\partial^2 y(x,t)}{\partial x^2}$$

(七) 一維聲壓與平均位移之關係

$$p_s = -\rho_0 v^2 \frac{\partial y}{\partial x}$$

(八) 一維介質質點振動速度

令有興趣點與波同速度移動,即:x = vt。

$$\frac{\partial y}{\partial t} = -\frac{\partial y}{\partial x}v$$

五、 氣體介質之正弦聲波

(一) 波函數

對於每一個維度,平均位移對聲壓之相位角移為 $\frac{\pi}{2}$,即平均位移較聲壓(時間上)領先 $\frac{1}{4}$ 週期,即聲壓較平均位移(空間上)快 $\frac{1}{4}$,即:

$$\begin{aligned} p_{s} &= A \cdot \sin \left(\mathbf{k} \cdot \mathbf{x} \pm \omega t + \overrightarrow{\phi} \right) \\ y &= A \cdot \cos \left(\mathbf{k} \cdot \mathbf{x} \pm \omega t + \overrightarrow{\phi} \right) \end{aligned}$$

(二) 一維波函數

平均位移對聲壓之相位角移為 $\frac{\pi}{2}$,即平均位移較聲壓(時間上)領先 $\frac{1}{4}$ 週期,即聲壓較平均位移(空間上)快 $\frac{\lambda}{4}$,即:

$$p_s = A \cdot \sin(kx \pm \omega t + \phi)$$
$$y = A \cdot \cos(kx \pm \omega t + \phi)$$

六、 聲波阻抗 (Acoustic impedance)

(一) 特性聲波阻抗(Characteristic acoustic impedance)/(實)聲波阻抗/聲阻(Acoustic resistance)

$$z = \rho v$$

七、 聲波的能量/聲能(Sound energy)

(一) 聲能密度/聲波的能量密度

$$u = \frac{p_s^2}{\rho v}$$

(<u></u> Sound power/Acoustic power

Sound power or acoustic power *P* is the rate at which sound energy is emitted, reflected, transmitted or received, per unit time.

45

(三) 聲音強度 (Sound intensity, Acoustic intensity) /聲強/音強

$$I = \rho v$$

對於球面聲波,徑向聲音強度作為距球體中心距離 r 的函數由下式給出:

$$I(r) = \frac{P}{A(r)}$$

其中:A(r) is the surface area of a sphere of radius r.

對於三維球面聲波,徑向聲音強度作為距球體中心距離r的函數由下式給出:

$$I(r) = \frac{P}{4\pi r^2}$$

此音強正比於 r 的 -2 次方稱聲音的平方反比定律。

(四) 音強級 (Sound level/Intensity level) /響度 (Loudness) 與分貝 (deci-Bell, dB)

$$\beta = 10\log\left(\frac{I}{I_0}\right)$$

其中: $I_0 = 10^{-12} \text{ W/m}^2$;音強級 β 單位分貝(deci-Bell, dB),為無因次單位。

八、 波節與波腹

- 聲壓節點或節線/波節:指聲壓始終為零的點,位於 $\mathbf{k} \cdot \mathbf{x}$ 。相鄰兩波節的距離為 $\frac{\lambda}{2}$ 。
- 聲壓腹點或腹線/波腹(Antinode):指相鄰兩聲壓波節的中點。合成波的聲壓波峰始終僅出現在波腹。相鄰兩波腹的距離為 $\frac{\lambda}{2}$,相鄰兩波腹分別處於正聲壓與負聲壓。
- 粒子平均位移節點或節線/波節:指粒子平均位移始終為零的點,位於 $\mathbf{k} \cdot \mathbf{x}$ 。相鄰兩波節的距離 為 $\frac{\lambda}{2}$ 。粒子平均位移波節即聲壓波腹。
- 粒子平均位移腹點或腹線/波腹(Antinode):指相鄰兩粒子平均位移波節的中點。合成波的粒子平均位移波峰始終僅出現在波腹。相鄰兩波腹的距離為 $\frac{\lambda}{2}$,相鄰兩波腹分別處於正粒子平均位移與負粒子平均位移。粒子平均位移波腹即聲壓波節。

九、 駐波

- 閉管端必為聲壓腹點、位移節點。
- 開管端必為聲壓節點、位移腹點。
- 較常用位移表示,亦有用聲壓表示者。
- · 給定條件之管內,駐波的所有可能頻率為駐波頻率或共振頻率(Resonant frequency)。

(一) 開管樂器

兩端均為開管端、長為L的管,形成駐波時:

$$\lambda = \frac{2L}{n}, \quad n \in \mathbb{N}$$

$$v = \frac{nv}{2L}, \quad n \in \mathbb{N}$$

- 共有 n+1 個位移腹點/聲壓節點、n 個位移節點/聲壓腹點。
- n = 1 對應的頻率最低,該頻率為基頻、基音或第一諧音。
- 對於任意 $n \in \mathbb{N}$, n > 1,其對應的頻率為基頻的 n 倍,該頻率為第 n 諧音或第 n 1 泛音 (Overtone)。

(二) 閉管樂器

一端為開管端、一端為閉管端、長為L的管,形成駐波時:

$$\lambda = \frac{4L}{n}, \quad \frac{n+1}{2} \in \mathbb{N}$$

$$v = \frac{nv}{4L}, \quad \frac{n+1}{2} \in \mathbb{N}$$

- 共有 $\frac{n+1}{2}$ 個位移腹點/聲壓節點、 $\frac{n+1}{2}$ 個位移節點/聲壓腹點。
- n = 1 對應的頻率最低,該頻率為基頻、基音或第一諧音。
- 對於任意 $n \in \left\{x \mid \frac{x+1}{2} \in \mathbb{N}\right\}$,其對應的頻率為基頻的 n 倍,該頻率為第 n 諧音或第 $\frac{n-1}{2}$ 泛音。

(三) 兩端均為閉管端

兩端均為閉管端、長為L的管,形成駐波時:

$$\lambda = \frac{2L}{n}, \quad n \in \mathbb{N}$$
 $v = \frac{nv}{2L}, \quad n \in \mathbb{N}$

- 共有 n 個位移腹點/聲壓節點、n+1 個位移節點/聲壓腹點。
- n = 1 對應的頻率最低,該頻率為基頻、基音或第一諧音。
- 對於任意 $n \in \mathbb{N}$, n > 1,其對應的頻率為基頻的 n 倍,該頻率為第 n 諧音或第 n = 1 泛音。

(四) 自然頻率(Natural frequency)

一振動體的自然頻率指可在該振動體上形成駐波的特定頻率,一振動體可有許多自然頻率。

(五) 共鳴/共振 (Resonance)

共鳴:指當外界傳入的振動等於物體的自然頻率,就可以產生駐波,減少能量的散逸。共鳴作用可將物體振動能量有效地轉換成聲波能量。例如:琴弦或音叉振動時,若振動逕向四周散逸則聲音較小,若加上音箱則聲音較大,若振動頻率恰為音箱自然頻率之一,則更大;振動單擺,附近相同擺長的單擺也會跟著振動;以與容器中水波(兩端皆自由)自然頻率相同的頻率拍打水面會引起較大幅度的振動;芬地海灣的振動頻率恰同潮汐頻率故潮差較大;調諧質量阻尼器(Tuned mass damper)之自然頻率同主要結構,當主結構振動時會反向振動,使能量消散。

第二十一節 共鳴管實驗

一、 法一

利用音叉產生單頻聲波,使此聲波在管長適當的空氣柱內形成駐波。初始配置時,將圓柱玻璃管與蓄水器相連,裝滿水之蓄水器自管底慢慢提高直到水面接近管口零刻度。在玻璃管外敲擊音叉,使之振動。音叉振動方向應與管長方型平行,且不可碰到玻璃管,與玻璃管口宜約距一至二公分,音叉頻率宜400赫茲以上。以橡皮圈套在圓柱玻璃管上紀錄水面高度。將蓄水器慢慢下降,使玻璃管水面也跟著下降,當聽到明顯的共鳴聲音時,表示聲波在管內形成駐波,在該位置附近慢慢升降水面數次,以定出精確的共鳴位置。再將水面下降,按照上法找尋其他共鳴位置,直到降到最低。理論上,第一個(水面最高)之共鳴點的空氣柱長度略小於四分之一波長(與四分之一波長的差為管口修正量,在管口半徑遠小於聲波波長的假設下駐波的聲壓節點約在管口處上方0.61倍管口半徑處),而後每個共鳴點(水面依次下降)空氣柱長度增加二分之一波長。紀錄所有共鳴點位置,以相鄰兩個明顯共鳴聲音之水面高度差為半個聲波波長,乘以音叉頻率得到聲速測量值,並測量空氣溫度計算聲速標準值,並比較之。以不同頻率實驗之。若四分之一波長大於最大空氣柱長度會觀察不到駐波;若音叉波長與玻璃管半徑關係使得可產生平行水面的駐波會使垂直駐波難以分辨。

二、法二

將附手動式活塞的共鳴塑膠圓筒和單頻電子式音源裝置於支架上,音源發聲口末端位於塑膠圓筒的開口。將圓筒之活塞上升至接近筒口的零刻度處,按下音源的切換開關使發出聲波,將活塞慢慢拉下,使圓筒空氣柱長度慢慢增加。當找到一聲音極大位置,即共鳴點時,在此位置附近緩慢升降活塞數次,以定出精確的共鳴位置。再將活塞下拉,按照上法找尋其他共鳴位置,直到降到最低。理論上,第一個(空氣柱最短)之共鳴點的空氣柱長度略小於四分之一波長(與四分之一波長的差為管口修正量),而後每個共鳴點空氣柱長度增加二分之一波長。紀錄所有共鳴點位置,以相鄰兩個明顯共鳴聲音之空氣柱長度差為半個聲波波長,乘以電子音源頻率得到聲速測量值,並測量空氣溫度計算聲速標準值,並比較之。以不同頻率實驗之。

第二十二節 樂音

一、 樂音之參數

- 樂器之聲音之組分正弦波頻率係樂器振動物之自然頻率。
- 樂器音調(Musical pitch)即其基頻,音色取決於各諧音疊加之波形。

• 響度、音調、音色為樂音之三要素。

二、 弦樂器原理

琴弓拉過提琴琴弦或指甲撥動吉他琴弦時所引發的振動實包含不同頻率,但僅弦線固有頻率相同者 才會被共鳴放大。按壓吉他之琴衍(Fret)使可振動的弦長變短,改變固有頻率。

三、 管樂器原理

吹氣所引發的空氣振動實包含不同頻率,但僅與樂管內空氣柱固有頻率相同者才會被共鳴放大。

四、 温度效應

弦樂器之弦經摩擦後溫度逐漸升高而膨脹鬆弛,使張力變小,故波速變慢,頻率變低,音調變低。 管樂器經吹奏者之熱氣吹入管內使氣柱溫度升高,故聲速變快,頻率變高,音調變高。