

WE CLAIM:

1. A method for treating Huntington's disease comprising administering an effective amount of a NAALADase inhibitor to a mammal in need of such treatment.

5

2. The method of claim 1, wherein the NAALADase inhibitor is an acid containing a metal binding group.

3. The method of claim 1, wherein the NAALADase
10 inhibitor is a compound of formula I

or an enantiomer or a pharmaceutically acceptable equivalent of said compound, wherein:

15 X is a moiety of formula II, III or IV

Z is SH, SO₃H, SO₂H, SOH, SO(NH)R⁴ or S(NHR⁴)₂R⁵;

B is N or CR⁶;

A is O, S, CR⁷R⁸ or (CR⁷R⁸)_mS;

5 m and n are independently 0, 1, 2, 3 or 4;

R, R¹, R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ are independently hydrogen, C₁-C₉ alkyl, C₂-C₉ alkenyl, C₃-C₈ cycloalkyl, C₅-C₉ cycloalkenyl, Ar, hydroxy, carboxy, carbonyl, amino, cyano, isocyano, nitro, sulfonyl, sulfoxy, thio, thiocarbonyl, thiocyano, formanilido, thioformamido, sulfhydryl, halo, haloalkyl, trifluoromethyl or oxy, wherein said alkyl, alkenyl, cycloalkyl and cycloalkenyl are independently unsubstituted or substituted with one or more substituent(s); and

Ar is a carbocyclic or heterocyclic moiety, which is unsubstituted or substituted with one or more substituent(s);

provided that when X is a moiety of formula II and A is O, then n is 2, 3 or 4; when X is a moiety of formula II and A is S, then n is 2, 3 or 4; and when X is a moiety of formula II and A is $(CR^7R^8)_mS$, then n is 0, 2, 3 or 4.

4. The method of claim 3, wherein:

10 X is a moiety of formula II;

n is 0, 1, 2 or 3;

Z is SH, SO_3H , SO_2H , SOH or $S(NHR^4)_2R^5$; and

A is O, S or CR^7R^8 .

15 5. The method of claim 4, wherein Z is SH.

6. The method of claim 5, wherein R is $-(CH_2)_2COOH$.

7. The method of claim 1, wherein the NAALADase
20 inhibitor is selected from:

2-(2-sulfanylethyl)pentanedioic acid;

3-(2-sulfanylethyl)-1,3,5-pantanetricarboxylic acid;

2-(2-sulfanylpropyl)pentanedioic acid;

2-(2-sulfanylbutyl)pentanedioic acid;

2- (2-sulfanyl-2-phenylethyl) pentanedioic acid;
 2- (2-sulfanylhexyl) pentanedioic acid;
 2- (2-sulfanyl-1-methylethyl) pentanedioic acid;
 2- [1-(sulfanylmethyl) propyl] pentanedioic acid;
 5 2- (3-sulfanylpentyl) pentanedioic acid;
 2- (3-sulfanylpropyl) pentanedioic acid;
 2- (3-sulfanyl-2-methylpropyl) pentanedioic acid;
 2- (3-sulfanyl-2-phenylpropyl) pentanedioic acid;
 2- (3-sulfanylbutyl) pentanedioic acid;
 10 2- [3-sulfanyl-2- (phenylmethyl) propyl] pentanedioic
 acid;
 2- [2- (sulfanylmethyl) butyl] pentanedioic acid;
 2- [2- (sulfanylmethyl) pentyl] pentanedioic acid;
 2- (3-sulfanyl-4-methylpentyl) pentanedioic acid; and
 15 enantiomers and pharmaceutically acceptable
 equivalents.

8. The method of claim 1, wherein the NAALADase inhibitor is a compound of formula V

V

or an enantiomer or a pharmaceutically acceptable equivalent of said compound, wherein:

X¹ is -W-Z¹;

5 W is a bond or a linking group;

Z¹ is a terminal group; and

Y¹ is -COOH oriented *meta* or *para* relative to C-1.

9. The method of claim 8, wherein:

10 X¹ is -(CR⁹R¹⁰)_nNH(CR¹¹R¹²)_mCOOH, -PO(OH)OR¹⁴,
 -(CR⁹R¹⁰)_nP(O)(OH)R¹⁴, -NH-(CR¹¹R¹²)_m-heteroaryl,
 -NH(P(O)(R¹⁵)OH), -(CR⁹R¹⁰)_nNH(P(O)(OH)R¹⁵), -CON(R¹⁴)(OH),
 -(CR⁹CR¹⁰)_nCON(R¹⁴)(OH), -(CR⁹R¹⁰)_nSH, -O(CR¹¹R¹²)_mSH,
 -SO₂NH-aryl, -N(C=O)-CH₂(C=O)-aryl, -SO₂NH-aryl,
 15 -N(C=O)-CH₂(C=O)-aryl or -O-aryl, wherein aryl in -O-aryl
 is substituted by at least one of nitro, carboxy or

wherein X¹ is oriented *meta* or *para* relative to C-1;

16 Ar is a carbocyclic or heterocyclic moiety, which is
 unsubstituted or substituted with one or more
 substituent(s);

17 m and n are independently 1-3, provided that when X¹
 is -O(CR¹¹R¹²)_mSH, then m is 2 or 3;

22 R⁹, R¹⁰, R¹¹, R¹², R¹⁴, R¹⁵ and R¹⁷ are independently
 hydrogen, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, aryl,

heteroaryl, carbocycle, heterocycle, halo, hydroxy, sulfhydryl, nitro, amino or C₁-C₆ alkoxy, wherein said alkyl, alkenyl, alkynyl, aryl, heteroaryl, carbocycle, heterocycle and alkoxy are independently unsubstituted or 5 substituted with one or more substituent(s); and

y¹ is -COOH oriented *meta* or *para* relative to C-1.

10. The method of claim 8, wherein X¹ is oriented *ortho* relative to C-1, and Y¹ is oriented *para* relative to 10 X¹ and *meta* relative to C-1.

11. The method of claim 10, wherein W is a bond, and Z¹ is -CO₂H, -OH, -NO₂, -C(O)(NHR¹⁵), -SR¹⁵, -COR¹⁵ or -NH(CH₂R¹⁵), and R¹⁵ is an aryl or a heteroaryl wherein said 15 aryl and heteroaryl are independently unsubstituted or substituted with one or more alkyl, nitro or carboxy group(s).

12. The method of claim 10, wherein W is -(CH₂)_n- and 20 n is 1-3, and Z¹ is -SH.

13. The method of claim 8, wherein the linking groups are selected from divalent hydrocarbon chains, ethers, sulfides and amines, wherein the hydrocarbon chains, whether alone or part of ethers, sulfides, and/or 25 amines, may be saturated or unsaturated, straight or branched, open or closed, unsubstituted or substituted with one or more substituents.

14. The method of claim 13, wherein the one or more substituents are independently selected from C₁-C₆ alkoxy, C₂-C₆ alkenyloxy, phenoxy, benzyloxy, hydroxy, carboxy, carbamido, carbamoyl, carbamyl, carbonyl, carbozoyl, 5 amino, hydroxyamino, formamido, formyl, guanyl, cyano, cyanoamino, isocyano, isocyanato, diazo, azido, hydrazino, triazano, nitro, nitroso, isonitroso, nitrosamino, imino, nitrilo, isonitrilo, nitrosimino, oxo, C₁-C₆ alkylthio, sulfamino, sulfamoyl, sulfeno, sulfhydryl, sulfinyl, 10 sulfo, sulfonyl, sulfoxy, thiocarboxy, thiocyanato, isothiocyanato, thioformamido, halo, haloalkyl, chlorosyl, chloryl, perchloryl, trifluoromethyl, iodosyl, iodyl, phosphino, phosphinyl, phospho, phosphono, arsino, selanyl, diselanyl, siloxy, silyl and silylene groups.

15

15. The method of claim 8, wherein W is a bond, -(CR⁹R¹⁰)_n-, -(CR⁹R¹⁰)_nO(CR¹¹R¹²)_m-, -(CR⁹R¹⁰)_nS(CR¹¹R¹²)_m- or -(CR⁹R¹⁰)_nNR¹³(CR¹¹R¹²)_m-, wherein m and n are independently 0-9, and R⁹, R¹⁰, R¹¹, R¹² and R¹³ are independently hydrogen, 20 C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₆-C₁₄ aryl, heteroaryl, C₆-C₁₄ carbocycle, heterocycle, halo, hydroxy, sulfhydryl, nitro, amino or C₁-C₆ alkoxy, and said alkyl, alkenyl, alkynyl, aryl, heteroaryl, carbocycle, heterocycle and alkoxy are independently unsubstituted or 25 substituted with one or more substituents.

16. The method of claim 15, wherein R⁹, R¹⁰, R¹¹, R¹² and R¹³ are each hydrogen and the total number of carbon atoms in W is 2-6.

30

17. The method of claim 8, wherein Z¹ is a metal binding group.

18. The method of claim 8, wherein Z^1 is $-COOH$,
 $-COR^{14}$, $-OR^{14}$, $-CF_3$, $-CN$, $-F$, $-Cl$, $-Br$, $-I$, $-NO$, $-NO_2$,
 $-C(O)(NR^{14}OR^{15})$, $-C(O)(NR^{14}PO_3H_2)$, $-C(O)(NR^{14}R^{15})$, $=NOH$,
5 $-NR^{14}(P(O)(R^{15})OH)$, $=NR^{14}$, $-N=NR^{14}$, $-N(R^{14})CN$,
 $-NR^{14}(CR^{15}R^{16})_pCOOH$, $-NR^{14}(CO)NR^{15}R^{16}$, $-NR^{14}(COOR^{15})$, $-NR^{14}(CO)R^{15}$,
 $-NR^{14}(OR^{15})$, $-NR^{14}R^{15}$, $-NR^{14}(SO_2R^{15})$, $-O(CO)R^{14}$, $-OR^{14}$, $-SO_2(OR^{14})$,
 $-SO_2(NR^{14}R^{15})$, $-SO_2R^{14}$, $-SO_3R^{14}$, $-SNR^{14}(OR^{15})$, $-S(NR^{14}R^{15})$, $-SR^{14}$,
 $-SSR^{14}$, $-P(O)(OH)OR^{14}$, $-P(O)(OH)R^{14}$ or $-PR^{14}R^{15}$, wherein p is
10 $C-6$, and R^{14} , R^{15} and R^{16} are independently hydrogen, C_1-C_9
alkyl, C_2-C_9 alkenyl, C_2-C_9 alkynyl, C_6-C_{14} aryl, heteroaryl,
 C_6-C_{14} carbocycle, heterocycle, halo, hydroxy, sulfhydryl,
nitro, amino or C_1-C_9 alkoxy, and said alkyl, alkenyl,
15 alkynyl, aryl, heteroaryl, carbocycle, heterocycle and
alkoxy are independently unsubstituted or substituted with
one or more substituents.

19. The method of claim 18, wherein Z^1 is
 $-NH(CR^{15}R^{16})_pCOOH$, $-PO(OH)OR^{14}$, $-PO(OH)R^{14}$, $-NR^{14}(P(O)(R^{15})OH)$,
20 $-CON(R^{14})(OH)$ or $-SH$.

20. The method of claim 8, wherein
 X^1 is $-(CR^9R^{10})_nNH(CR^{11}R^{12})_mCOOH$, $-PO(OH)OR^{14}$,
 $-(CR^9R^{10})_nP(O)(OH)R^{14}$, $-NH-(CR^{11}R^{12})_m-heteroaryl$,
25 $-NH(P(O)(R^{15})OH)$, $-(CR^9R^{10})_nNH(P(O)(OH)R^{15})$, $-CON(R^{14})(OH)$,
 $-(CR^9CR^{10})_nCON(R^{14})(OH)$, $-(CR^9R^{10})_nSH$, $-O(CR^{11}R^{12})_mSH$,
 $-SO_2NH-aryl$, $-N(C=O)-CH_2(C=O)-aryl$, $-SO_2NH-aryl$,
 $-N(C=O)-CH_2(C=O)-aryl$, or $-O-aryl$ wherein aryl in $-O-aryl$
is substituted by at least one of nitro, carboxy or

wherein X¹ is oriented meta or para relative to C-1;

Ar is a carbocyclic or heterocyclic moiety, which is unsubstituted or substituted with one or more substituent(s);

m and n are independently 1-3, provided that when X¹ is -O(CR¹¹R¹²)_mSH, then m is 2 or 3;

R⁹, R¹⁰, R¹¹, R¹², R¹⁴, R¹⁵ and R¹⁷ are independently hydrogen, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, aryl, heteroaryl, carbocycle, heterocycle, halo, hydroxy, sulfhydryl, nitro, amino or C₁-C₆ alkoxy, wherein said alkyl, alkenyl, alkynyl, aryl, heteroaryl, carbocycle, heterocycle and alkoxy are independently unsubstituted or substituted with one or more substituents; and

Y¹ is -COOH oriented meta or para relative to C-1.

21. The method of claim 20, wherein X¹ is -PO(OH)OR¹⁴ or -(CR⁹R¹⁰)_nP(O)(OH)OR¹⁴, and R¹⁴ is not H or methyl.

22. The method of claim 20, wherein X¹ is -NH(P(O)(R¹⁵)OH or -(CR⁹R¹⁰)_nNH(P(O)(OH)R¹⁵), and R¹⁵ is not benzyl unsubstituted or substituted with amino.

23. The method of claim 20, wherein X¹ is -CON(R¹⁴)(OH), and R¹⁴ is not H or methyl.

24. The method of claim 8, wherein X¹ is oriented meta relative to C-1, and Y¹ is oriented ortho relative to X¹ and para relative to C-1.

5

25. The method of claim 24, wherein W is a bond, -(CH₂)_n-NH-(CH₂)_m- or -(CH₂)_n-; m is 1-3; n is 0-3; and Z¹ is -CO₂H, -NO₂, -NH₂, -SO₃H, halo, C₅-C₆ heteroaryl, carboxyphenylthio, or mono- or di-carboxyphenylsulfonyl.

10

26. The method of claim 8, wherein X¹ is oriented meta relative to C-1, and Y¹ is oriented meta relative to X¹ and meta relative to C-1.

15

27. The method of claim 26, wherein W is a bond, -(CH₂)_n- or -O(CH₂)_m- and m and n are independently 0-3, and Z¹ is -SO₃H, -NO₂, -NH₂, -CO₂H, -OH, -PO₃H, -CO(NHOH), -SH or an optionally substituted phenyl wherein one or more substituents are selected from nitro and carboxy.

20

28. The method of claim 26, wherein W is -(CH₂)_nNH(CH₂)_m- and m and n are independently 0-3, and Z¹ is -CO₂H or C₅-C₆ heteroaryl.

25

29. The method of claim 26, wherein W is -(CH₂)_n- wherein n is 0-3, and (a) Z¹ is a heteroaryl that is unsubstituted or substituted with an aryl that is unsubstituted or substituted with one or more C₁-C₃ alkyl, halo, nitro or hydroxy group(s), or (b) Z¹ is -SO₂(NHR¹⁶) or

-NH(COR¹⁶), wherein R¹⁶ is an optionally substituted C₁-C₃ alkyl wherein one or more substituents are selected from oxo, phenyl, and substituted phenyl; and R¹⁶ may also be selected from an aryl that is unsubstituted or substituted with one or more nitro, amino, halo or hydroxy group(s).

30. The method of claim 1, wherein the NAALADase inhibitor is selected from:

10 2-[(4-carboxyphenyl)sulfonyl]-1,4-benzene-dicarboxylic acid;

2-[(2,5-dicarboxyphenyl)sulfonyl]-1,4-benzene-dicarboxylic acid;

1,2,4-benzenetricarboxylic acid;

15 2-[(2-carboxyphenyl)thio]-1,4-benzenedicarboxylic acid;

2-nitro-1,4-benzenedicarboxylic acid;

2-bromo-1,4-benzenedicarboxylic acid;

2-amino-1,4-benzenedicarboxylic acid;

2-sulfoterephthalic acid, monosodium salt;

20 2-carboxymethyl-1,4-benzenedicarboxylic acid;

2-[(2-furanylmethyl)-amino]-1,4-benzenedicarboxylic acid;

2-[(carboxymethyl)amino]-1,4-benzenedicarboxylic acid;

25 4-(4-nitrobenzoyl)-1,3-benzenedicarboxylic acid;

4- [4- (2,4-dicarboxybenzoyl)phenoxy] -1,2-benzene-
dicarboxylic acid;

4- [4- (2,4-dicarboxybenzoyl)phenoxy] -1,3-benzene-
dicarboxylic acid;

5 4- [(2,4,6-trimethylphenyl)amino]carbonyl] -1,3-
benzenedicarboxylic acid;

4-nitro-1,3-benzenedicarboxylic acid;

4- [(1-naphthalenylamino)-carbonyl] -1,3-benzene-
dicarboxylic acid;

10 1,2,4-benzenetricarboxylic acid;

4- [(2-carboxyphenyl)thio] -1,3-benzenedicarboxylic
acid;

4- [3- [(3-(2,4-dicarboxyphenoxy)propyl)dithio] -
propoxy] -1,3-benzenedicarboxylic acid;

15 4-hydroxy-1,3-benzenedicarboxylic acid;

4- [(2-furanyl methyl)amino] -1,3-benzenedicarboxylic
acid;

4- (2-mercaptopropyl) -1,3-benzenedicarboxylic acid;

20 5- [4,5-dihydro-5- (4-hydroxyphenyl) -3-phenyl-1H-
pyrazol-1-yl] -1,3-benzenedicarboxylic acid;

5- (4,5-dihydro-3-methyl-5-phenyl-1H-pyrazol-1-yl) -
1,3-benzenedicarboxylic acid;

5- [(4-chloro-3-nitrophenyl)amino]sulfonyl] -1,3-
benzenedicarboxylic acid;

25 5- [[4-chloro-3- [(3-(2-methoxyphenyl)-1,3-
dioxopropyl)amino]phenyl]amino]sulfonyl] -1,3-
benzenedicarboxylic acid;

5-[[3-[4-(acetylamino)phenyl]-1,3-dioxopropyl]amino]-
1,3-benzenedicarboxylic acid;

5-acetylamino-1,3-benzenedicarboxylic acid;

5-[(1-hydroxy-2-naphthalenyl)carbonyl]-methylamino]-
5 1,3-benzenedicarboxylic acid;

5-(4-carboxy-2-nitrophenoxy)-1,3-benzenedicarboxylic
acid;

5-sulfo-1,3-benzenedicarboxylic acid;

5-nitro-1,3-benzenedicarboxylic acid;

10 5-amino-1,3-benzenedicarboxylic acid;

1,3,5-benzenetricarboxylic acid;

5-[(3-amino-4-chlorophenyl)amino]sulfonyl]-1,3-
benzenedicarboxylic acid;

5-(3-mercaptopropoxy)-1,3-benzenedicarboxylic acid;

15 5-hydroxy-1,3-benzenedicarboxylic acid;

5-(2-mercaptoethoxy)-1,3-benzenedicarboxylic acid;

5-[(hydroxyamino)carbonyl]-1,3-benzenedicarboxylic
acid;

5-phosphono-1,3-benzenedicarboxylic acid;

20 5-mercaptomethyl-1,3-benzenedicarboxylic acid;

5-phosphonomethyl-1,3-benzenedicarboxylic acid;

5-[(carboxymethyl)amino]-methyl]-1,3-benzene-
dicarboxylic acid;

25 5-[(carboxymethyl)amino]-1,3-benzenedicarboxylic
acid;

5-[(2-furanylmethyl)amino]-methyl]-1,3-benzene-dicarboxylic acid;

5-[2-(hydroxyamino)-2-oxoethyl]-1,3-benzene-dicarboxylic acid;

5 5-(2-mercaptoproethyl)-1,3-benzenedicarboxylic acid; and
enantiomers and pharmaceutically acceptable
equivalents.

31. A method for treating Huntington's disease
10 comprising administering an effective amount of a compound
selected from:

2-[(4-carboxyphenyl)sulfonyl]-1,4-benzene-dicarboxylic acid;

15 2-[(2,5-dicarboxyphenyl)sulfonyl]-1,4-benzene-dicarboxylic acid;

1,2,4-benzenetricarboxylic acid;

2-[(2-carboxyphenyl)thio]-1,4-benzenedicarboxylic acid;

2-nitro-1,4-benzenedicarboxylic acid;

20 2-bromo-1,4-benzenedicarboxylic acid;

2-amino-1,4-benzenedicarboxylic acid;

2-sulfoterephthalic acid, monosodium salt;

2-carboxymethyl-1,4-benzenedicarboxylic acid;

25 2-[(2-furanylmethyl)-amino]-1,4-benzenedicarboxylic acid;

2- [(carboxymethyl)amino]-1,4-benzenedicarboxylic acid;

4- (4-nitrobenzoyl)-1,3-benzenedicarboxylic acid;

4- [4- (2,4-dicarboxybenzoyl)phenoxy]-1,2-benzene-
5 dicarboxylic acid;

4- [(2,4,6-trimethylphenyl)amino] carbonyl]-1,3-
benzenedicarboxylic acid;

4-nitro-1,3-benzenedicarboxylic acid;

4- [(1-naphthalenylamino)-carbonyl]-1,3-benzene-
10 dicarboxylic acid;

1,2,4-benzenetricarboxylic acid;

4- [(2-carboxyphenyl)thio]-1,3-benzenedicarboxylic
acid;

4- [3- [[3- (2,4-dicarboxyphenoxy)propyl]dithio] -
15 propoxy]-1,3-benzenedicarboxylic acid;

4-hydroxy-1,3-benzenedicarboxylic acid;

4- [(2-furanyl methyl)amino]-1,3-benzenedicarboxylic
acid;

4- (2-mercaptopropyl)-1,3-benzenedicarboxylic acid;

20 5- [4,5-dihydro-5- (4-hydroxyphenyl)-3-phenyl-1H-
pyrazol-1-yl]-1,3-benzenedicarboxylic acid;

5- (4,5-dihydro-3-methyl-5-phenyl-1H-pyrazol-1-yl)-
1,3-benzenedicarboxylic acid;

25 5- [(4-chloro-3-nitrophenyl)amino] sulfonyl]-1,3-
benzenedicarboxylic acid;

5-[[[4-chloro-3-[[3-(2-methoxyphenyl)-1,3-dioxopropyl]amino]phenyl]amino]sulfonyl-1,3-benzenedicarboxylic acid;

5-[[3-[4-(acetylamino)phenyl]-1,3-dioxopropyl]amino]-5-1,3-benzenedicarboxylic acid;

5-acetylamino-1,3-benzenedicarboxylic acid;

5-[(1-hydroxy-2-naphthalenyl)carbonyl]-methylamino]-1,3-benzenedicarboxylic acid;

5-(4-carboxy-2-nitrophenoxy)-1,3-benzenedicarboxylic acid;

5-sulfo-1,3-benzenedicarboxylic acid;

5-nitro-1,3-benzenedicarboxylic acid;

5-amino-1,3-benzenedicarboxylic acid;

1,3,5-benzenetricarboxylic acid;

5-[(3-amino-4-chlorophenyl)amino]sulfonyl-1,3-benzenedicarboxylic acid;

5-(3-mercaptopropoxy)-1,3-benzenedicarboxylic acid;

5-hydroxy-1,3-benzenedicarboxylic acid;

5-(2-mercptoethoxy)-1,3-benzenedicarboxylic acid;

5-[(hydroxyamino)carbonyl]-1,3-benzenedicarboxylic acid;

5-phosphono-1,3-benzenedicarboxylic acid;

5-mercaptomethyl-1,3-benzenedicarboxylic acid;

5-phosphonomethyl-1,3-benzenedicarboxylic acid;

5-[(carboxymethyl)amino]-methyl]-1,3-benzene-dicarboxylic acid;

5-[(carboxymethyl)amino]-1,3-benzenedicarboxylic acid;

5 5-[(2-furanylmethyl)amino]-methyl]-1,3-benzene-dicarboxylic acid;

5-[(2-hydroxyamino)-2-oxoethyl]-1,3-benzene-dicarboxylic acid;

5-[(2-mercaptoproethyl)-1,3-benzenedicarboxylic acid; and

10 enantiomers and pharmaceutically acceptable equivalents.

32. A pharmaceutical composition comprising:

15 (i) an effective amount of a NAALADase inhibitor for treating Huntington's disease; and

(ii) a pharmaceutically acceptable carrier.

33. A method of making a pharmaceutical composition comprising mixing an effective amount of a NAALADase 20 inhibitor for treating Huntington's disease and a pharmaceutically acceptable carrier.