# Compiladores Introdução à Compilação

Prof. Edson Alves

Faculdade UnB Gama

### Sumário

- 1. Introdução
- 2. Análise do programa fonte
- 3. Fases de um compilador
- 4. Agrupamento de fases
- 5. Ferramentas

## Histórico

▶ Os primeiros compiladores surgiram na década de 50

### Histórico

- ▶ Os primeiros compiladores surgiram na década de 50
- Não há registros preciso de qual foi o primeiro compilador

### Histórico

- Os primeiros compiladores surgiram na década de 50
- Não há registros preciso de qual foi o primeiro compilador
- Os primeiros compiladores lidavam com a tradução de fórmulas aritméticas (FORTRAN – Formula Translator)

### Histórico

- Os primeiros compiladores surgiram na década de 50
- Não há registros preciso de qual foi o primeiro compilador
- Os primeiros compiladores lidavam com a tradução de fórmulas aritméticas (FORTRAN – Formula Translator)
- Os compiladores eram considerados programas difíceis de se escrever

### Histórico

Os primeiros compiladores surgiram na década de 50

- Não há registros preciso de qual foi o primeiro compilador
- Os primeiros compiladores lidavam com a tradução de fórmulas aritméticas (FORTRAN – Formula Translator)
- Os compiladores eram considerados programas difíceis de se escrever
- ightharpoonup O primeiro compilador Fortran levou 18 homens-ano para ser escrito (1 homen-ano pprox 2.080 horas)

## Histórico

- Os primeiros compiladores surgiram na década de 50
- Não há registros preciso de qual foi o primeiro compilador
- Os primeiros compiladores lidavam com a tradução de fórmulas aritméticas (FORTRAN – Formula Translator)
- ▶ Os compiladores eram considerados programas difíceis de se escrever
- ightharpoonup O primeiro compilador Fortran levou 18 homens-ano para ser escrito (1 homen-ano pprox 2.080 horas)
- ► Embora continue não sendo uma tarefa não trivial, a escrita de compiladores se beneficiou dos avanços da área desde então

#### Definição

# Definição de compilador (informal)

Um compilador é um programa que lê um programa escrito em uma linguagem (linguagem fonte) e o traduz para uma outra linguagem (linguagem alvo).

### Definição

Introducão

## Definição de compilador (informal)

Um compilador é um programa que lê um programa escrito em uma linguagem (linguagem fonte) e o traduz para uma outra linguagem (linguagem alvo).



# Características dos compiladores

 O processo de compilação deve identificar e relatar possíveis erros no programa fonte

# Características dos compiladores

- O processo de compilação deve identificar e relatar possíveis erros no programa fonte
- ► Em geral, as linguagens fonte são linguagens de programação tradicionais (C/C++, Java, Python, etc)

## Características dos compiladores

- O processo de compilação deve identificar e relatar possíveis erros no programa fonte
- ► Em geral, as linguagens fonte são linguagens de programação tradicionais (C/C++, Java, Python, etc)
- As linguagens alvo podem ser tanto linguagens tradicionais quanto linguagens de máquina

- O processo de compilação deve identificar e relatar possíveis erros no programa fonte
- ► Em geral, as linguagens fonte são linguagens de programação tradicionais (C/C++, Java, Python, etc)
- As linguagens alvo podem ser tanto linguagens tradicionais quanto linguagens de máquina
- Os compiladores podem ser classificados de diversas formas, dependendo de seu objetivo ou como foi construído (de uma passagem, múltiplas passagens, depuradores, etc)

## Criação do programa executável

 Além do compilador, outros programas podem ser usados na criação do programa executável

## Criação do programa executável

- Além do compilador, outros programas podem ser usados na criação do programa executável
- Antes de ser passado para o compilador, o programa alvo pode ser pré-processado (por exemplo, o pré-processador da linguagem C processa as diretivas como #include e #define)

# Criação do programa executável

- Além do compilador, outros programas podem ser usados na criação do programa executável
- Antes de ser passado para o compilador, o programa alvo pode ser pré-processado (por exemplo, o pré-processador da linguagem C processa as diretivas como #include e #define)
- Após a compilação, o programa alvo pode demandar processamento adicional para a construção do executável (novamente no caso da linguagem C, temos o montador e o linkeditor)

## Exemplo de fluxo de geração de um programa executável



A compilação é composta por duas partes: análise e síntese

- A compilação é composta por duas partes: análise e síntese
- A análise divide o programa fonte em partes constituintes e as organiza em uma representação intermediária

- A compilação é composta por duas partes: análise e síntese
- A análise divide o programa fonte em partes constituintes e as organiza em uma representação intermediária
- ► Em geral, a representação intermediária consiste em uma árvore sintática, onde cada nó representa uma operação e cada filho representa um operando

- A compilação é composta por duas partes: análise e síntese
- A análise divide o programa fonte em partes constituintes e as organiza em uma representação intermediária
- Em geral, a representação intermediária consiste em uma árvore sintática, onde cada nó representa uma operação e cada filho representa um operando
- A síntese constrói o programa alvo a partir desta representação intermediária

# Exemplo de árvore sintática



**Figura:** Árvore sintática da fórmula  $imc = m/h^2$ .

A análise é composta por três fases:

A análise é composta por três fases:

 análise linear: o fluxo de caracteres que compõem o programa alvo é lido, da esquerda para direita, e agrupado em tokens (sequência de caracteres com significado coletivo)

### A análise é composta por três fases:

- análise linear: o fluxo de caracteres que compõem o programa alvo é lido, da esquerda para direita, e agrupado em tokens (sequência de caracteres com significado coletivo)
- 2. análise hierárquica: os tokens são ordenados hierarquicamente em coleções aninhadas com significado coletivo

#### A análise é composta por três fases:

- análise linear: o fluxo de caracteres que compõem o programa alvo é lido, da esquerda para direita, e agrupado em tokens (sequência de caracteres com significado coletivo)
- 2. análise hierárquica: os tokens são ordenados hierarquicamente em coleções aninhadas com significado coletivo
- 3. análise semântica: verificação que garante que os componentes do programa se combinam de forma significativa

Em um compilador, a análise linear também é denominada análise léxica ou esquadrinhamento.

Em um compilador, a análise linear também é denominada análise léxica ou esquadrinhamento. Por exemplo, no enunciado

$$F = 1.8 * C + 32$$

Em um compilador, a análise linear também é denominada análise léxica ou esquadrinhamento. Por exemplo, no enunciado

$$F = 1.8 * C + 32$$

a análise léxica identificaria os seguintes tokens:

1. o identificador F

Em um compilador, a análise linear também é denominada análise léxica ou esquadrinhamento. Por exemplo, no enunciado

$$F = 1.8 * C + 32$$

- 1. o identificador F
- 2. o símbolo de atribuição =

Em um compilador, a análise linear também é denominada análise léxica ou esquadrinhamento. Por exemplo, no enunciado

$$F = 1.8 * C + 32$$

- o identificador F
- 2. o símbolo de atribuição =
- 3. a constante em ponto flutuante 1.8

Em um compilador, a análise linear também é denominada análise léxica ou esquadrinhamento. Por exemplo, no enunciado

$$F = 1.8 * C + 32$$

- 1. o identificador F
- 2. o símbolo de atribuição =
- 3. a constante em ponto flutuante 1.8
- 4. o símbolo de multiplicação \*

Em um compilador, a análise linear também é denominada análise léxica ou esquadrinhamento. Por exemplo, no enunciado

$$F = 1.8 * C + 32$$

- o identificador F
- 2. o símbolo de atribuição =
- 3. a constante em ponto flutuante 1.8
- 4. o símbolo de multiplicação \*
- 5. o identificador C

Em um compilador, a análise linear também é denominada análise léxica ou esquadrinhamento. Por exemplo, no enunciado

$$F = 1.8 * C + 32$$

- 1. o identificador F
- 2. o símbolo de atribuição =
- 3. a constante em ponto flutuante 1.8
- 4. o símbolo de multiplicação \*
- 5. o identificador C
- 6. o símbolo de adicão +

Em um compilador, a análise linear também é denominada análise léxica ou esquadrinhamento. Por exemplo, no enunciado

$$F = 1.8 * C + 32$$

- 1. o identificador F
- 2. o símbolo de atribuição =
- 3. a constante em ponto flutuante 1.8
- o símbolo de multiplicação \*
- 5. o identificador C
- 6. o símbolo de adição +
- 7. a constante inteira 32

#### Análise sintática

A análise hierárquica também é denominada análise sintática ou gramatical. Ela agrupa os *tokens* hierarquicamente, em geral em uma árvore gramatical.

## Análise sintática

A análise hierárquica também é denominada análise sintática ou gramatical. Ela agrupa os *tokens* hierarquicamente, em geral em uma árvore gramatical.

A estrutura hierárquica pode ser definida por meio de regras recursivas.

Prof. Edson Alves Compiladores

### Análise sintática

A análise hierárquica também é denominada análise sintática ou gramatical. Ela agrupa os *tokens* hierarquicamente, em geral em uma árvore gramatical.

A estrutura hierárquica pode ser definida por meio de regras recursivas. Por exemplo, considere as seguintes regras:

## Análise sintática

A análise hierárquica também é denominada análise sintática ou gramatical. Ela agrupa os *tokens* hierarquicamente, em geral em uma árvore gramatical.

A estrutura hierárquica pode ser definida por meio de regras recursivas. Por exemplo, considere as seguintes regras:

1. qualquer identificador é uma expressão

## Análise sintática

A análise hierárquica também é denominada análise sintática ou gramatical. Ela agrupa os *tokens* hierarquicamente, em geral em uma árvore gramatical.

A estrutura hierárquica pode ser definida por meio de regras recursivas. Por exemplo, considere as seguintes regras:

- 1. qualquer identificador é uma expressão
- 2. qualquer número é uma expressão

#### Análise sintática

A análise hierárquica também é denominada análise sintática ou gramatical. Ela agrupa os tokens hierarquicamente, em geral em uma árvore gramatical.

A estrutura hierárquica pode ser definida por meio de regras recursivas. Por exemplo. considere as seguintes regras:

- 1. qualquer identificador é uma expressão
- 2. qualquer número é uma expressão
- 3. se  $E_1$  e  $E_2$  são expressões, também são expressões  $E_1 + E_2$  e  $E_1 * E_2$

## Análise sintática

A análise hierárquica também é denominada análise sintática ou gramatical. Ela agrupa os *tokens* hierarquicamente, em geral em uma árvore gramatical.

A estrutura hierárquica pode ser definida por meio de regras recursivas. Por exemplo, considere as seguintes regras:

- 1. qualquer identificador é uma expressão
- 2. qualquer número é uma expressão
- 3. se  $E_1$  e  $E_2$  são expressões, também são expressões  $E_1+E_2$  e  $E_1*E_2$
- 4. se I é um identificador e E uma expressão, então I=E é um enunciado

# Exemplo de árvore gramatical



Figura: Árvore gramatical do enunciado F = 1.8 \* C + 32

Prof. Edson Alves Compiladores

## Análise semântica

lacktriangle A análise semântica verifica potenciais erros semânticos no programa alvo

### Análise semântica

- A análise semântica verifica potenciais erros semânticos no programa alvo
- ► Ela usa a árvore da análise sintática para identificar operadores e operandos das expressões e enunicados

### Análise semântica

A análise semântica verifica potenciais erros semânticos no programa alvo

- ► Ela usa a árvore da análise sintática para identificar operadores e operandos das expressões e enunicados
- Ela também faz a verificação de tipos

### Análise semântica

- A análise semântica verifica potenciais erros semânticos no programa alvo
- ► Ela usa a árvore da análise sintática para identificar operadores e operandos das expressões e enunicados
- Ela também faz a verificação de tipos
- Caso os tipos dos operandos não sejam compatíveis com os tipos esperados pelos operadores, esta análise ou retorna um erro ou adicionar uma promoção (ou conversão) de tipo, a depender da linguagem alvo

## Análise semântica

- A análise semântica verifica potenciais erros semânticos no programa alvo
- Ela usa a árvore da análise sintática para identificar operadores e operandos das expressões e enunicados
- Ela também faz a verificação de tipos
- Caso os tipos dos operandos não sejam compatíveis com os tipos esperados pelos operadores, esta análise ou retorna um erro ou adicionar uma promoção (ou conversão) de tipo, a depender da linguagem alvo
- ► Por exemplo, na expressão à direita do enunciado F = 1.8 \* C + 32. o operando à esquerda da soma tem tipo ponto flutuante e o da direita tipo inteiro: o valor 32 deve ser promovido para ponto flutuante ou deve ser sinalizado um erro de tipo

► Conceitualmente, o compilador opera em fases

Prof. Edson Alves Compiladores

- Conceitualmente, o compilador opera em fases
- Cada fase manipula o programa fonte e entrega o resultado para a próxima fase

- Conceitualmente, o compilador opera em fases
- Cada fase manipula o programa fonte e entrega o resultado para a próxima fase
- Na prática, algumas fases podem ser agrupadas, e a representação intermediária entre elas pode ser não se construída explicitamente

- Conceitualmente, o compilador opera em fases
- Cada fase manipula o programa fonte e entrega o resultado para a próxima fase
- Na prática, algumas fases podem ser agrupadas, e a representação intermediária entre elas pode ser não se construída explicitamente
- As primeiras fases estão relacionadas à análise do programa fonte, as últimas estão relacionadas à síntese (construção do programa alvo)

- Conceitualmente, o compilador opera em fases
- Cada fase manipula o programa fonte e entrega o resultado para a próxima fase
- Na prática, algumas fases podem ser agrupadas, e a representação intermediária entre elas pode ser não se construída explicitamente
- As primeiras fases estão relacionadas à análise do programa fonte, as últimas estão relacionadas à síntese (construção do programa alvo)
- Duas atividades interagem com todas as fases: a gerência da tabela de símbolos e o tratamento de erros

#### Representação típica das fases de um compilador

gerência da tabela de símbolos

> tratamemto de erros



Prof. Edson Alves Compiladores

 Esta atividade registra os identificadores do programa alvo e identifica seus diversos atributos

- Esta atividade registra os identificadores do programa alvo e identifica seus diversos atributos
- Exemplos de possíveis atributos de um identificador: nome, tipo, memória e escopo

- Esta atividade registra os identificadores do programa alvo e identifica seus diversos atributos
- Exemplos de possíveis atributos de um identificador: nome, tipo, memória e escopo
- Caso o identificador se refira a um procedimento, dentre seus atributos devem constar a quantidade de seus parâmetros e respectivos tipos, modo de passagem (cópia ou referência) e o tipo do retorno, se houver

- Esta atividade registra os identificadores do programa alvo e identifica seus diversos atributos
- Exemplos de possíveis atributos de um identificador: nome, tipo, memória e escopo
- Caso o identificador se refira a um procedimento, dentre seus atributos devem constar a quantidade de seus parâmetros e respectivos tipos, modo de passagem (cópia ou referência) e o tipo do retorno, se houver
- Os identificadores e seus respectivos atributos são armazenados em uma estrutura denominada tabela de símbolos

A cada fase da compilação podem acontecer um ou mais erros

- A cada fase da compilação podem acontecer um ou mais erros
- Após a identificação do erro, o compilador deve tratá-lo de alguma maneira e, se possível, continuar o processo em busca de outros erros

- A cada fase da compilação podem acontecer um ou mais erros
- Após a identificação do erro, o compilador deve tratá-lo de alguma maneira e, se possível, continuar o processo em busca de outros erros
- Abortar a compilação logo no primeiro erro pode diminuir a utilidade do compilador (por exemplo, o prosseguimento da compilação após um erro léxico pode ajudar na geração de uma sugestão de correção para o erro)

- A cada fase da compilação podem acontecer um ou mais erros
- Após a identificação do erro, o compilador deve tratá-lo de alguma maneira e, se possível, continuar o processo em busca de outros erros
- Abortar a compilação logo no primeiro erro pode diminuir a utilidade do compilador (por exemplo, o prosseguimento da compilação após um erro léxico pode ajudar na geração de uma sugestão de correção para o erro)
- As análises sintática e semântica podem identificar uma parcela considerável dos erros no programa fonte

# Exemplo da parte da análise do programa fonte



Fases de um compilador

Figura: Análise léxica do enunciado fahrenheit = 1.8 \* celsius + 32

# Exemplo da parte da análise do programa fonte



Figura: Análise sintática

# Exemplo da parte da análise do programa fonte



Figura: Análise semântica

A árvore resultante da análise semântica é transformada pelo compilador em um código intermediário

- A árvore resultante da análise semântica é transformada pelo compilador em um código intermediário
- Esta representação pode ser entendida como um código para uma máquina abstrata

- A árvore resultante da análise semântica é transformada pelo compilador em um código intermediário
- Esta representação pode ser entendida como um código para uma máquina abstrata
- O código intermediário deve ter duas qualidades fundamentais:

- A árvore resultante da análise semântica é transformada pelo compilador em um código intermediário
- Esta representação pode ser entendida como um código para uma máquina abstrata
- O código intermediário deve ter duas qualidades fundamentais:
  - 1. deve ser fácil de gerar

- A árvore resultante da análise semântica é transformada pelo compilador em um código intermediário
- Esta representação pode ser entendida como um código para uma máquina abstrata
- O código intermediário deve ter duas qualidades fundamentais:
  - 1. deve ser fácil de gerar
  - 2. deve ser fácil de traduzir para o programa alvo

- A árvore resultante da análise semântica é transformada pelo compilador em um código intermediário
- Esta representação pode ser entendida como um código para uma máquina abstrata
- O código intermediário deve ter duas qualidades fundamentais:
  - 1. deve ser fácil de gerar
  - 2. deve ser fácil de traduzir para o programa alvo
- Uma representação possível é o código de três endereços

## Geração de código intermédiario

- A árvore resultante da análise semântica é transformada pelo compilador em um código intermediário
- Esta representação pode ser entendida como um código para uma máquina abstrata
- O código intermediário deve ter duas qualidades fundamentais:
  - 1. deve ser fácil de gerar
  - 2. deve ser fácil de traduzir para o programa alvo
- Uma representação possível é o código de três endereços
- ▶ Além de computar expressões, esta representação também precisa tratar dos fluxos de controle e das chamadas de procedimentos

# Exemplo de geração de código intermediário



Figura: Representação por código de três endereços

### Otimização do código

Esta fase procura formas de melhorar o código intermediário, com o intuito de melhorar a performance do código de máquina do programa alvo

### Otimização do código

- Esta fase procura formas de melhorar o código intermediário, com o intuito de melhorar a performance do código de máquina do programa alvo
- Algumas otimizações são triviais, outras demandam algoritmos sofisticados, impactando no tempo de compilação

### Otimização do código

- Esta fase procura formas de melhorar o código intermediário, com o intuito de melhorar a performance do código de máquina do programa alvo
- Algumas otimizações são triviais, outras demandam algoritmos sofisticados, impactando no tempo de compilação
- As otimizações não devem alterar a semântica do código intermediário

### Otimização do código

- Esta fase procura formas de melhorar o código intermediário, com o intuito de melhorar a performance do código de máquina do programa alvo
- Algumas otimizações são triviais, outras demandam algoritmos sofisticados, impactando no tempo de compilação
- As otimizações não devem alterar a semântica do código intermediário
- As otimizações podem melhorar, além do tempo de execução, o uso de memória do programa alvo

# Exemplo de otimização do código intermediário

```
temp1 = intToFloat(32)

temp2 = 1.8 * id2

temp3 = temp1 + temp2

id1 = temp3

temp1 = 1.8 * id2

id1 = temp1 + 32.0
```

Figura: Otimização

A geração de código é a última etapa da compilação

- A geração de código é a última etapa da compilação
- Ela produz o programa alvo, em geral em linguagem de máquina relocável ou código de montagem

- A geração de código é a última etapa da compilação
- Ela produz o programa alvo, em geral em linguagem de máquina relocável ou código de montagem
- Nesta etapa devem ser atribuídas localizações de memória para as variáveis e também feita a atribuição das variáveis aos registradores

- ► A geração de código é a última etapa da compilação
- Ela produz o programa alvo, em geral em linguagem de máquina relocável ou código de montagem
- Nesta etapa devem ser atribuídas localizações de memória para as variáveis e também feita a atribuição das variáveis aos registradores



Figura: Geração de código em pseudo assembly

## Interface de vanguarda

Na práticas, as fases de um compilador são agrupadas em duas interfaces: vanguarda e retaguarda

# Interface de vanguarda

- Na práticas, as fases de um compilador são agrupadas em duas interfaces: vanguarda e retaguarda
- ▶ A interface de vanguarda contém as fases que dependem primariamente do programa fonte e que independem da máquina alvo

## Interface de vanguarda

- Na práticas, as fases de um compilador são agrupadas em duas interfaces: vanguarda e retaguarda
- ▶ A interface de vanguarda contém as fases que dependem primariamente do programa fonte e que independem da máquina alvo
- Em geral, ela inclui as fases de análise, a criação da tabela de símbolos e a geração de código intermediário

# Interface de vanguarda

- Na práticas, as fases de um compilador são agrupadas em duas interfaces: vanguarda e retaguarda
- ▶ A interface de vanguarda contém as fases que dependem primariamente do programa fonte e que independem da máquina alvo
- Em geral, ela inclui as fases de análise, a criação da tabela de símbolos e a geração de código intermediário
- Ela também inclui o tratamento de erros associados a estas fases

## Interface de vanguarda

- Na práticas, as fases de um compilador são agrupadas em duas interfaces: vanguarda e retaguarda
- ▶ A interface de vanguarda contém as fases que dependem primariamente do programa fonte e que independem da máquina alvo
- Em geral, ela inclui as fases de análise, a criação da tabela de símbolos e a geração de código intermediário
- Ela também inclui o tratamento de erros associados a estas fases
- Embora a otimização faça parte primariamente da interface de retaguarda, é possível aplicar algum nível de otimização na interface de vanguarda

## Interface de retaguarda

▶ A interface de retaguarda contém as fases que dependem primariamente da máquina alvo, e independem do programa alvo

## Interface de retaguarda

- ► A interface de retaguarda contém as fases que dependem primariamente da máquina alvo, e independem do programa alvo
- O ponto de partida é o código intermediário

#### Interface de retaguarda

- ► A interface de retaguarda contém as fases que dependem primariamente da máquina alvo, e independem do programa alvo
- O ponto de partida é o código intermediário
- Assim, esta interface contém, em geral, as fases de otimização e geração de código

#### Interface de retaguarda

- A interface de retaguarda contém as fases que dependem primariamente da máquina alvo, e independem do programa alvo
- O ponto de partida é o código intermediário
- Assim, esta interface contém, em geral, as fases de otimização e geração de código
- ► Ela também manipula a tabela de símbolos e trata dos erros associados à estas últimas duas fases

### Interface de retaguarda

A interface de retaguarda contém as fases que dependem primariamente da máquina alvo, e independem do programa alvo

- O ponto de partida é o código intermediário
- Assim, esta interface contém, em geral, as fases de otimização e geração de código
- ► Ela também manipula a tabela de símbolos e trata dos erros associados à estas últimas duas fases
- No cenário ideal, ambas interfaces são independentes, o que permite fixar uma delas e alterar a outra para obter diferentes compiladores com diferentes objetivos

#### Compiladores de uma mesma linguagem para múltiplas máquinas



Prof. Edson Alves

#### Compiladores de múltiplas linguagens para uma mesma máquina



# Ferramentas para a construção de compiladores

Sendo o compilador um software, todas as ferramentas úteis no desenvolvimento de um software também serão úteis na construção de um compilador (editor de texto, depuradores, gerenciadores de versão, etc)

#### Ferramentas para a construção de compiladores

- Sendo o compilador um software, todas as ferramentas úteis no desenvolvimento de um software também serão úteis na construção de um compilador (editor de texto, depuradores, gerenciadores de versão, etc)
- Existem, entretanto, ferramentas especializadas nas diferentes fases da compilação, as quais podem ser usadas na construção de novos compiladores

## Ferramentas para a construção de compiladores

- Sendo o compilador um software, todas as ferramentas úteis no desenvolvimento de um software também serão úteis na construção de um compilador (editor de texto, depuradores, gerenciadores de versão, etc)
- Existem, entretanto, ferramentas especializadas nas diferentes fases da compilação, as quais podem ser usadas na construção de novos compiladores
- Os geradores de analisadores gramaticas produzem analisadores sintáticos a partir de uma entrada baseada em uma gramática livre de contexto (Yacc, Bison, etc)

## Ferramentas para a construção de compiladores

- Sendo o compilador um software, todas as ferramentas úteis no desenvolvimento de um software também serão úteis na construção de um compilador (editor de texto, depuradores, gerenciadores de versão, etc)
- Existem, entretanto, ferramentas especializadas nas diferentes fases da compilação, as quais podem ser usadas na construção de novos compiladores
- Os geradores de analisadores gramaticas produzem analisadores sintáticos a partir de uma entrada baseada em uma gramática livre de contexto (Yacc, Bison, etc)
- Os geradores de analisadores léxicos geram os mesmos a partir de especificações baseadas em expressões regulares (Lex, Flex, etc)

# Ferramentas para a construção de compiladores

 Os dispositivos de tradução dirigidos pela sintaxe produzem uma coleção de rotinas que percorrem uma árvore gramatical, gerando código intermediário a partir dela

#### Ferramentas para a construção de compiladores

- Os dispositivos de tradução dirigidos pela sintaxe produzem uma coleção de rotinas que percorrem uma árvore gramatical, gerando código intermediário a partir dela
- Os geradores automáticos de código estipulam regras que traduzem cada operação da linguagem intermediária para a linguagem de máquina alvo

## Ferramentas para a construção de compiladores

- Os dispositivos de tradução dirigidos pela sintaxe produzem uma coleção de rotinas que percorrem uma árvore gramatical, gerando código intermediário a partir dela
- Os geradores automáticos de código estipulam regras que traduzem cada operação da linguagem intermediária para a linguagem de máquina alvo
- Os dispositivos de fluxo de dados atuam na fase de otimização a partir da observação do fluxo de dados entre as diferentes partes de um programa

#### Referências

- 1. AHO, Alfred V, SETHI, Ravi, ULLMAN, Jeffrey D. Compiladores: Princípios, Técnicas e Ferramentas, LTC Editora, 1995.
- **2.** GNU.org. GNU Bison, acesso em 23/05/2022.
- 3. Wikipédia. Flex (lexical analyser generator), acesso em 23/05/2022.