screenshot-takeuforward.org-2022.03.09-01_35_20 https://takeuforward.org/interviews/strivers-sde-sheet-top-coding-interview-problems/ 09.03.2022

Grand Coding Contest | Amazon Vouchers for top 2000 coders | Big Hiring Partners | Register Now Free

YT 🛨 🗟

Link 2

Inversion of Array (Pre-reg: Merge Sort)

Greedy algorithm to find minimum number of coins

Activity Selection (it is the same as N meeting in one

YT ± 🗃

YT ± 8

Link 1

Link 2

Link 2

Day 15: String

Find both C++/Java codes of all problem in the articles in the first column.

Problem	Practice Link 1	Video Solution	Practice Link 2
Reverse Words in a String	Link 1	YT	Link 2
Longest Palindrome in a string	Link 1	YT	Link 2
Roman Number to Integer and vice versa	Link 1	YT	Link 2
Implement ATOI/STRSTR	Link 1	YT	Link 2
Longest Common Prefix	Link 1	YT	Link 2
Rabin Karp	Link 1	YT	Link 2

Day 16: String Part-II

Find both C++/Java codes of all problem in the articles in the first column.

Problem	Practice Link 1	Video Solution	Practice Link 2
Z-Function	Link 1	YT	Link 2
KMP algo / LPS(pi) array	Link 1	YT	Link 2
Minimum characters needed to be inserted in the beginning to make it palindromic	Link 1	YT	Link 2
Check for Anagrams	Link 1	YT	Link 2
Count and Say	Link 1	YT	Link 2
Compare version numbers	Link 1	YT	Link 2

Day 17: Binary Tree

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do this 👲 🖲 playlist at first, so that you learn A-Z of Binary Trees.

Problem	Practice Link 1	Video Solution	Practice Link 2
Inorder Traversal	Link 1	<u>YT1</u> ± ● / <u>YT2</u> ±	Link 2
Preorder Traversal	Link 1	YT1 ± ● / YT2 ±	Link 2
Postorder Traversal	Lin <mark>k</mark> 1	<u>YT1</u> ± ● / <u>YT2</u> ±	Link 2
Morris Inorder Traversal	Link 1	YT ± ●	Link 2
Morris Preorder Traversal	Link 1	YT ± ●	Link 2
<u>LeftView Of Binary Tree</u>	Link 1	YT ± ●	Link 2
Bottom View of Binary Tree	Link 1	XI ∓ ●	Link 2
Top View of Binary Tree	Link 1	YT ± ●	Link 2
Preorder inorder postorder in a single traversal	Link 1	<u>YT</u> ± ●	Link 2
Vertical order traversal	Link 1	<u>YT</u> ± ●	Link 2
Root to node path in a Binary Tree	Link 1	<u>YT</u> ± ●	Link 2
Max width of a Binary Tree	Link 1	<u>YT</u> ± ●	Link 2

Day 18: Binary Tree part-II

ind both C++/Java codes of all problem in the articles in the first column

I will recommend you to do this 👲 🖲 playlist at first, so that you learn A-Z of Binary Trees.

Chrome-extension://bpconcjcammlapcogcnnelfmaeghhagj/edit.html

Day 19: Binary Tree part-III

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do this 👲 🖲 playlist at first, so that you learn A-Z of Binary Trees.

Problem	Practice Link 1	Video Solution	Practice Link 2
Maximum path sum	Link 1	YI ≠ ●	Link 2
Construct Binary Tree from inorder and preorder	Link 1	<u>YT</u> ± ⊕	Link 2
Construct Binary Tree from Inorder and Postorder	Link 1	<u>YT</u> ± ●	Link 2
Symmetric Binary Tree	Link 1	YI ± ●	Link 2
Flatten Binary Tree to LinkedList	Link 1	<u>YT</u> ± ●	Link 2
Check if Binary Tree is the mirror of itself or not	Link 1	YT	Link 2
Check for Children Sum Property	Link 1	YT ± ●	Link 2

Day 20: Binary Search Tree

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do this 👲 🖲 playlist at first, so that you learn A-Z of Binary Trees.

Problem	Practice Link 1	Video Solution	Practice Link 2
Populate Next Right pointers of Tree	Link 1	YT	Link 2
Search given Key in BST	Link 1	ΥŢ ± €	Link 2
Construct BST from given keys	Link 1	YT	Link 2
Construct BST from preorder traversal	Link 1	<u>YT</u> ± ●	Link 2
Check is a BT is BST or not	Link 1	YT ± ●	Link 2
Find LCA of two nodes in BST	Link 1	<u>Y</u> Ţ ± ●	Link 2
Find the inorder predecessor/successor of a given Key in BST.	Link 1	<u>YT</u> ± .	Link 2

Day 21: Binary Search Tree Part-II

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do this 👲 💌 playlist at first, so that you learn A-Z of Binary Trees.

Problem	Practice Link 1	Video Solution	Practice Link 2
Floor in a BST	Link 1	YT ± ●	Link 2
Ceil in a BST	Link 1	YT ± ●	Link 2
Find K-th smallest element in BST	Link 1	YT ± ●	Link 2
Find K-th largest element in BST	Link 1	YT ±	Link 2
Find a pair with a given sum in BST	Link 1	<u>YT</u> ± ●	Link 2
BST iterator	Link 1	YT ± ●	Link 2
Size of the largest BST in a Binary Tree	Link 1	<u>YT</u> ± ●	Link 2
Serialize and deserialize Binary Tree	Link 1	<u>YT</u> ± ●	Link 2

Day 22: Binary Trees[Miscellaneous]

Day 23: Graph

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do this $\stackrel{\bullet}{=}$ playlist at first, so that you learn A-Z of Graphs.

Problem	Practice Link 1	Video Solution	Practice Link 2
Clone a graph (Not that easy as it looks)	Link 1	YT	Link 2
DES	Link 1	YI ± €	Link 2
BES	Link 1	ΥΙ ± ⊛	Link 2
Detect A cycle in Undirected Graph using BFS	Link 1	YT ± €	Link 2
Detect A cycle in Undirected Graph using DFS	Link 1	<u>YT</u> ± ●	Link 2
Detect A cycle in a Directed Graph using DFS	Link 1	YT ± ●	Link 2
Detect A cycle in a Directed Graph using BFS	Link 1	<u>Y</u> Ţ ± .	Link 2

Day 24: Graph Part-II

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do this 👲 🖲 playlist at first, so that you learn A-Z of Graphs.

Problem	Practice Link	Video Solution	Practice Link
Strongly Connected Component(using KosaRaju's algo)	Link 1	<u>YT</u> ± ●	Link 2
<u>Dijkstra's Algorithm</u>	Link 1	<u>YT</u> ± ●	Link 2
Bellman-Ford Algo	Link 1	<u>YT</u> ± ●	Link 2
Floyd Warshall Algorithm	Link 1	YT	Link 2
MST using Prim's Algo	Link 1	YT ± ●	Link 2
MST using Kruskal's Algo	Link 1	YT ±	Link 2

Day 25: Dynamic Programming

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do this 👲 🖲 playlist at first, so that you learn A-Z of DP.

Problem	Practice Link 1	Video Solution	Practice Link 2
Max Product Subarray	Link 1	YT	Link 2
Longest Increasing Subsequence	Link 1	YT	Link 2
Longest Common Subsequence	Link 1	YT	Link 2
0-1 Knapsack	Link 1	YT	Link 2
Edit Distance	Link 1	YT	Link 2
Maximum sum increasing subsequence	Link 1	YT	Link 2
Matrix Chain Multiplication	Link 1	YT	Link 2

Day 26: Dynamic Programming Part-II

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do this \pm playlist at first, so that you learn A-Z of DP.

Problem	Practice Link 1	Video Solution	Practice Link 2
Maximum sum path in the matrix, (count paths and similar type do, also backtrack to find the maximum path)	Link 1	YT	Link 2
Coin change	Link 1	YT	Link 2
Subset Sum	Link 1	<u>YT</u> ± ●	Link 2
Rod Cutting	Link 1	YT	Link 2
Egg Dropping	Link 1	YT	Link 2
Word Break	Link 1	YT	Link 2
Palindrome Partitioning (MCM Variation)	Link 1	YT	Link 2
Maximum profit in Job scheduling	Link 1	YT	Link 2

Day 27: Operating System Revision (Refer Sheet for OS Questions)

- 1. Revise OS notes that you would have made during your sem
- 2. If not made notes, spend 2 or 3 days and make notes from Knowledge Gate.

Day 28: DBMS Revision (Refer Sheet for DBMS Questions)

- 1. Revise DBMS notes that you would have made during your sem
- 2. If not made notes, spend 2 or 3 days and make notes from Knowledge Gate.

Day 29: Computer Networks Revision (Refer Sheet for CN Questions)

- 1. Revise CN notes that you would have made during your sem
- 2. If not made notes, spend 2 or 3 days and make notes from Knowledge Gate.

Make a note of how will your represent your projects, and prepare all questions related to tech which you have used in your projects. Prepare a note which you can say for 3-10 minutes when he asks you that say something about the project.

The state of the s

Hurrah!! You are ready for your placement after a month of hard work without a cheat day.

— ~Striver

Day 30: Project Overview

Share the sheet with vour friends created with Inve for takel Ifonward famil

