关干单位制、物理常数和不确定度的资料

黄晨 * 2004年9月初稿,2005年11月修订

(* 联系地址: 复旦大学化学系表面化学实验室, eMail: webmaster@elephantbase.net)

一、国际单位制(SI)和高斯单位制(CGS)的力学量纲和单位

力学物理定律在国际单位制(简称国际制,记作 SI)和高斯单位制(简称高斯制,又称为厘米克秒制,记作 CGS)中具有相同的形式,并且它们都以长度、质量和时间作为基本量纲,所以所有的力学量都具有相同的量纲。另外,这两个单位之间的换算也相当方便,都是 10的次方数。

物理量	量纲	国际制单位	高斯制单位	换算关系
长度	L	m(米)	cm(厘米)	$1m = 10^2 cm$
质量	M	kg(千克)	g(克)	$1kg = 10^3g$
时间	T	s(秒)	s(秒)	-
频率	T^{-1}	Hz(赫兹)	Hz(赫兹)	-
カ	LMT^{-2}	N(牛顿)	dyn(达因)	$1N = 10^5 dyn$
能量	L^2MT^{-2}	J(焦耳)	erg(耳格)	$1J = 10^7 erg$
功率	L^2MT^{-3}	W(瓦特)	erg/s	$1W = 10^7 erg/s$
压强	$L^{-1}MT^{-2}$	Pa(帕斯卡)	dyn/cm ²	$1Pa = 10 dyn/cm^2$

表 1 力学量纲和单位

二、静电制(CGSE)量纲和单位

高斯制在电磁学中具两套单位制,一套以库仑定律为基础,称为静电制,记作 CGSE,它是电动力学中最常用的单位制;另一套以安培定律为基础,称为电磁制,记作 CGSM,它是国际单位制的理论基础。

静电学中最基本的定律是库仑定律,而该定律在国际制和静电制中有着不同的形式:国际制的形式是:

$$F = \frac{q_1 q_2}{4\pi \varepsilon_0 r^2} \tag{2-1}$$

这里, ϵ_0 是真空中的介电常数(电常数),其数值为 $8.8541878 \times 10^{-12} \text{C}^2/\text{Nm}^2$ 。 而静电制则是:

$$F = \frac{q_1 q_2}{r^2} \tag{2-1'}$$

所以量纲和单位都有很大区别。在国际制中,电流是基本量纲。而由公式(2-1′)可以看出,静电制不需要新的基本量纲。为此静电制电量的量纲就是: $L^{3/2}M^{1/2}T^{-1}$,它具有一个新的单位: esu,称为静电单位电量(或称静电库仑),其值为 $1 dyn^{1/2}cm$ 。

不同单位制中的单位可以互相转换,这里给出从 esu 转换成库仑(C)的方法:

- (1) 设 1C = xesu;
- (2) 根据公式(A-1), 当 r = 1m, $q_1 = q_2 = 1$ C 时, $F = 8.9875518 \times 10^9$ N;
- (3) 把 r = 1m = 10^2 cm, $q_1 = q_2 = x$ esu, $F = 8.9875518 \times 10^9$ N = 8.9875518×10^{14} dyn 代入公

式(A-2), 得: $x = 2.99792458 \times 10^9$,

(4) 得出结论

$$1C = 2.99792458 \times 10^9 \text{esu}$$
 $\text{esu} = 3.33564096 \times 10^{-10} \text{C}$ (2-2)

公式(2-2)是国际制单位和高斯制单位相互转换的基本公式。但由于等式两边采取的单位制不同,所以这样的等号在数学上是不严格的。

三、电磁制(CGSM)量纲和单位

静磁学中最基本的定律是安培定律,国际制的形式是:

$$F = \frac{\mu_0 I_1 I_2 l}{2\pi d} \tag{3-1}$$

这里, μ_0 是真空中的导磁率(磁常数),其数值为 $4\pi \times 10^{-7} Nm/A^2$ 。 而电磁制则是:

$$F = \frac{2I_1I_2l}{d} \tag{3-1'}$$

因此电磁制也不需要新的基本量纲,电流的量纲就是: $L^{1/2}M^{1/2}T^{-1}$,电磁制给予一个新的单位:emu,称为电磁单位电流(或称静磁安培),其值为 $1dyn^{1/2}$ 。emu 和 A 的转换公式为:

$$1A = 0.1$$
emu 1 emu $= 10A$ (3-2)

Main 皇	国际制		静电制		电磁制	
物理量	量纲	单位	量纲	单位	量纲	单位
电量	TI	C(库仑)	$L^{3/2}M^{1/2}T^{-1}$	esu *	$L^{1/2}M^{1/2}$	emu·s
电流	I	A(安培)	$L^{3/2}M^{1/2}T^{-2}$	esu/s *	$L^{1/2}M^{1/2}T^{-1}$	emu
电位	$L^2MT^{-3}I^{-1}$	V(伏特)	$L^{1/2}M^{1/2}T^{-1}$	erg/esu *	$L^{3/2}M^{1/2}T^{-2}$	erg/emu·s
电阻	$L^2MT^{-3}I^{-2}$	Ω(欧姆)	$L^{-1}T$	$(cm/s)^{-1} *$	LT^{-1}	cm/s
电导	$L^{-2}M^{-1}T^3I^2$	S(西门子)	LT^{-1}	cm/s *	$L^{-1}T$	$(cm/s)^{-1}$
电容	$L^{-2}M^{-1}T^4I^2$	F(法拉)	L	cm *	$L^{-1}T^2$	$(cm/s^2)^{-1}$
电感	$L^2MT^{-2}I^{-2}$	H(亨利)	$L^{-1}T^2$	$(cm/s^2)^{-1}$	L	cm *
磁感应通量	$L^2MT^{-2}I^{-1}$	Wb(韦伯)	$L^{1/2}M^{1/2}$	1	$L^{3/2}M^{1/2}T^{-1}$	Mx *
磁感应强度	$MT^{-2}I^{-1}$	T(特斯拉)	$L^{-3/2}M^{1/2}$	-	$L^{-1/2}M^{1/2}T^{-1}$	Gs *
磁场强度	$L^{-1}I$	A/m	$L^{1/2}M^{1/2}T^{-2}$	-	$L^{-1/2}M^{1/2}T^{-1}$	Oe *

表 2 电磁学物理量的量纲和单位

(注: 所有静电制单位都可称作 esu, 所有电磁制单位都可称作 emu, * 表示高斯制单位)

四、量纲分析法

在国际制和电磁制的电磁学公式中,绝大多数公式形式上是一致的。由于存在这几个换算公式: (1) 1m = 100cm, (2) 1kg = 1000kg, (3) 1A = 0.1emu, 所以可以根据国际制单位的量纲来确定换算比例。如果国际制单位的量纲是 $L^*M^*T^*I^*$,那么它和电磁制单位的换算关系就是:

1 国际制单位 =
$$10^{2x+3y-w}$$
 电磁制单位(emu) (4-1)

例如,国际制中磁强度单位 T 的量纲为 $MT^{-2}I^{-1}$,那么它和电磁制单位 Gs 的换算关系就是: $1T=10^4Gs$ 。

但也有例外的情况(即国际制的公式中带有系数 μ_0)。例如电磁制公式 $B = H + 4\pi M$ 不同于国际制公式 $B = \mu_0 H + \mu_0 M$,所以磁场强度 H 在电磁制和国际制之间转换时,并不遵循公

式(4-1),而是差了 4π ,即 $10e = 10^3/4\pi \text{ A/m}$ 。

在高斯制统一静电制和电磁制公式时,电学量全部用静电制单位,磁学量全部用电磁制单位,电磁学公式中如果同时含有电学量和磁学量,通常会引入常数 c。所以,静电制单位和电磁制单位的换算比例通常总是真空光速(2.99792458×10¹⁰)的若干次方。如果静电制单位和电磁制单位的量纲之比为 $L^{-n}T^{n}$,那么两者的换算关系就是:

1 静电制单位(esu) =
$$(2.99792458 \times 10^{10})^n$$
 电磁制单位(emu) (4-2)

例如,国际制中电容单位 F 的量纲为 $L^{-2}M^{-1}T^4I^2$,要把它转化为静电制单位 cm(esu),首先要经过电磁制单位(cm/s²)⁻¹(emu),关系是 $1F=10^{-9}(cm/s^2)^{-1}(emu)$ 。由于电容在电磁制中的量纲 $L^{-1}T^2$ 和静电制中的量纲 L 之比为 $L^{-2}T^2$,所以两个单位值的比例应该是 $1(cm/s^2)^{-1}(emu)=8.98755179\times10^{20}cm(esu)$ 。最后, $1F=8.98755179\times10^{11}esu(F)$ 。

物理量	国际制	静电制	电磁制
电量	1C	2.99792458×10 ⁹ esu	0.1emu⋅s
电流	1A	2.99792458×10 ⁹ esu/s	0.1emu
电位	1V	3.33564096×10 ⁻³ erg/esu	10 ⁸ erg/emu⋅s
电阻	1Ω	$1.11265005 \times 10^{-12} (\text{cm/s})^{-1}$	10°cm/s
电导	1S	8.98755179×10 ¹¹ cm/s	$10^{-9} (\text{cm/s})^{-1}$
电容	1F	8.98755179×10 ¹¹ cm	$10^{-9} (\text{cm/s}^2)^{-1}$
电感	1H	$1.11265005 \times 10^{-12} (\text{cm/s}^2)^{-1}$	10 ⁹ cm
磁感应通量	1Wb	-	10 ⁸ Mx
磁感应强度	1T	-	$10^4 \mathrm{Gs}$
磁场强度	1A/m	-	$4\pi \times 10^{-3}$ Oe

表 3 电磁学物理量的单位换算

(注: $1Mx/cm^2 = 1Gs = 1Oe = 1emu/cm$)

五、单位的转化和不确定度

国际制单位和高斯制单位(以静电制为代表)通常都相差一个系数,这个系数由物理常数来确定,例如由公式(A-3)给出的换算关系,可以写成:

$$1C = \frac{c}{10 \text{cm/s}} \text{esu} \tag{5-1}$$

这就意味着两个单位的换算系数同真空光速联系在一起,如果真空光速的测量值有所改变,那么换算系数就会变化,这就在单位制换算中出现了不确定度。好在国际单位制中真空光速具有精确值(即定义"秒"以后,用真空光速来定义"米"),所以这种不确定度在国际制和高斯制之间并不存在。但是在某些单位之间,例如能量单位 J 和 eV,就相差一个基本电荷 e/C,该常数的不确定度就是这两个单位比值的不确定度。根据这个道理,同一物理常数在不同单位下具有不一样的不确定度,例如基本电荷,用 C(库仑)时不确定度为 0.09ppm,用 eV/V 时就不具有不确定度。又如,普朗克常数以 $J\cdot s$ 为单位时,不确定度为 0.17ppm,而用 $eV\cdot s$ 时,不确定度就会减小到 0.08ppm。

六、自然单位制

自然单位制(n.u.)是量子场论中的常用单位制,它把真空光速(c)和普朗克常数 (\hbar) 定义为1,所以有:

$$m = mc(=\hbar\widetilde{\omega}) = mc^2(=\hbar\omega) = \widetilde{\omega} = \omega$$
 (6-1)

自然单位制只有一个基本量纲——质量,这就使得四维时空坐标具有同样的量纲(质量的倒数),四维动量-能量坐标也具有同样的量纲(质量),并且这两个坐标之间存在倒易关系。自然单位制中最常用的单位是 eV,国际单位制的 m、s、kg 和 eV 的换算公式为:

$$1kg = \left(\frac{c}{m/s}\right)^2 \left(\frac{e}{C}\right)^{-1} eV \quad 1eV = \left(\frac{c}{m/s}\right)^{-2} \frac{e}{C} kg$$
 (6-3)

$$1s^{-1} = \frac{\hbar}{J \cdot s} \left(\frac{e}{C}\right)^{-1} eV \quad 1eV = \left(\frac{\hbar}{J \cdot s}\right)^{-1} \frac{e}{C} s^{-1}$$
 (6-4)

$$1 \mathrm{m}^{-1} = \frac{\hbar}{\mathrm{J} \cdot \mathrm{s}} \cdot \frac{c}{\mathrm{m/s}} \cdot \left(\frac{e}{\mathrm{C}}\right)^{-1} \mathrm{eV} \quad 1 \mathrm{eV} = \left(\frac{\hbar}{\mathrm{J} \cdot \mathrm{s}} \cdot \frac{c}{\mathrm{m/s}}\right)^{-1} \cdot \frac{e}{\mathrm{C}} \mathrm{m}^{-1}$$
 (6-5)

在目前的物理常数表(CODATA 2002)中,基本电荷(e)的不确定度分别是 0.09ppm,所以 kg 和 eV 比例的不确定度也应该是 0.09ppm。再来看 s⁻¹ 和 eV 以及 m⁻¹ 和 eV 的比例,普朗克常数(\hbar)的不确定度是 0.17ppm,由于它和基本电荷之间存在联系,即约瑟夫森常数(K_J),所以这两个比例的不确定度不是 0.09+0.17=0.26ppm,而是 K_J 的不确定度 0.08ppm。约瑟夫森常数的定义是:

$$K_{\rm J} = \frac{2e}{h} = \frac{e}{\pi\hbar} \tag{6-6}$$

所以公式(6-4)和(6-5)最好改写成以下的形式:

$$1s^{-1} = \frac{1}{\pi} \left(\frac{K_{J}}{Hz/V} \right)^{-1} eV \quad 1eV = \pi \cdot \frac{K_{J}}{Hz/V} = s^{-1}$$
 (6-4')

$$1 \text{m}^{-1} = \frac{1}{\pi} \cdot \frac{c}{\text{m/s}} \left(\frac{K_{J}}{\text{Hz/V}} \right)^{-1} \text{eV} \quad 1 \text{eV} = \pi \left(\frac{c}{\text{m/s}} \right)^{-1} \frac{K_{J}}{\text{Hz/V}} \text{m}^{-1}$$
 (6-5')

另外,自然制还把电常数和磁常数定义为 1,因此有: $\frac{\epsilon_0}{F/m} = \frac{m}{F} = \frac{m^3 kg}{C^2 s^2}$,用公式(6-3)、

(6-4')和(6-5')代入,可得 $\frac{\varepsilon_0}{F/m} = \frac{1}{C^2} \left(\frac{\hbar}{J \cdot s} \cdot \frac{c}{m/s} \right)^{-1}$,没有和 eV 有关的项,这说明电量是无量纲数,并且有:

$$C = \left(\frac{\varepsilon_0}{F/m} \cdot \frac{\hbar}{J \cdot s} \cdot \frac{c}{m/s}\right)^{-1/2} (\text{n.u.}) \quad 1(\text{n.u.}) = \left(\frac{\varepsilon_0}{F/m} \cdot \frac{\hbar}{J \cdot s} \cdot \frac{c}{m/s}\right)^{1/2}$$
(6-7)

根据 CODATA 2002 的数值,国际制和自然制的单位有如下的换算关系:

$$1m = 5.06773103(42) \times 10^{6} \text{eV}^{-1} \quad 1\text{eV}^{-1} = 1.97326967(16) \times 10^{-7} \text{m}$$
 (6-8)

$$1 \text{kg} = 5.60958895(49) \times 10^{35} \text{eV} \quad 1 \text{eV} = 1.78266180(15) \times 10^{-36} \text{kg}$$
 (6-9)

$$1s = 1.51926754(12) \times 10^{15} eV^{-1} \quad 1eV^{-1} = 6.58211915(55) \times 10^{-16} s$$
 (6-10)

$$1C = 1.89006713(16) \times 10^{18} (\text{n.u.}) \quad 1(\text{n.u.}) = 5.29081735(45) \times 10^{-19} C$$
 (6-11)

以上的换算关系都包含了一定的不确定度,大约在 0.08ppm 左右。

在自然单位制中,速度和角动量没有量纲,笔者建议它们的基本单位分别命名为爱因斯坦(Einstein)和普朗克(Planck),这样就有:

$$1(\text{n.u.}) = 1 \text{ Einstein} = 299792458 \text{m/s}$$
 (6-12)

$$1(\text{n.u.}) = 1 \text{ Planck} = 6.6260693(11) \times 10^{-34} \text{J·s}$$
 (6-13)

七、原子单位制

原子单位制(a.u.)通常用在分子的计算中。在国际单位制中,多电子原子体系的定态薛定

鄂方程写成:

$$\left\{ -\frac{\hbar^{2}}{2m_{e}} \sum_{i=1}^{N} \nabla_{i}^{2} - \frac{e^{2}}{4\pi\epsilon_{0}} \left(\sum_{i=1}^{N} \frac{Z}{|\vec{r}_{i}|} - \sum_{1 \le i < j \le N} \frac{1}{|\vec{r}_{i} - \vec{r}_{j}|} \right) \right\} \Psi(\vec{r}_{1}, \vec{r}_{2}, \dots, \vec{r}_{N}) = E\Psi(\vec{r}_{1}, \vec{r}_{2}, \dots, \vec{r}_{N}) \tag{7-1}$$

在原子单位制中,令 $\hbar = m_e = \frac{e^2}{4\pi\epsilon_0} = 1$,方程就改写成:

$$\left\{ \sum_{i=1}^{N} \left(-\frac{1}{2} \nabla_{i}^{2} - \frac{Z}{|\vec{r}_{i}|} \right) + \sum_{1 \le i < j \le N} \frac{1}{|\vec{r}_{i} - \vec{r}_{j}|} \right\} \Psi(\vec{r}_{1}, \vec{r}_{2}, \dots, \vec{r}_{N}) = E \Psi(\vec{r}_{1}, \vec{r}_{2}, \dots, \vec{r}_{N}) \tag{7-1'}$$

很多系数都被消除了,被消除的还有各个物理量的量纲,这使得同一数值在不同场合下 具有不同的意义:

$$1(\text{a.u.}) = \hbar(\text{角动量}) = m_e(\overline{\text{质量}}) = \frac{e^2}{4\pi\epsilon_0 \hbar}(\text{速度}) = \frac{m_e e^2}{4\pi\epsilon_0 \hbar}(\text{动量}) = \frac{\hbar^2}{m_e} \cdot \frac{4\pi\epsilon_0}{e^2} (\text{长度}) = \frac{\hbar^3}{m_e} \left(\frac{4\pi\epsilon_0}{e^2}\right)^2 (\text{时间}) = \frac{m_e}{\hbar^2} \left(\frac{e^2}{4\pi\epsilon_0}\right)^2 (\text{能量}) = \frac{m_e^2}{\hbar^4} \left(\frac{e^2}{4\pi\epsilon_0}\right)^3 (\text{力})$$

$$(7-2)$$

根据公式(7-2), 可以得到原子单位和各种国际制单位的换算关系:

$$1(a.u.) = 1.05457168(18) \times 10^{-34} J \cdot s$$
(角动量)

(笔者建议该角动量单位命名为普朗克(Planck))

 $=9.1093826(16)\times10^{-31}$ kg $=5.4857990945(24)\times10^{-4}$ amu(质量)

(笔者建议该质量单位命名为汤姆森(Thomson))

= 2187691.2633(72)m/s $= \alpha \cdot c$ (速度)(α 为精细结构常数)

(笔者建议速度单位 c(真空光速)命名爱因斯坦(Einstein))

$$(7-3)$$

$$= 1.99285166(34) \times 10^{-24} \text{kg·m/s}$$
(动量)

- $= 1 \text{ Bohr} = 5.291772108(18) \times 10^{-11} \text{m}(长度)$
- $= 2.418884326505(16) \times 10^{-17} s$ (时间)

(笔者建议该时间单位命名为海森堡(Heisenberg))

- $= 1 \text{ Hartree} = 4.35974417(75) \times 10^{-18} \text{J} = 27.2113845(23) \text{eV}(能量)$
- $= 1 \text{ Hartree/Bohr} = 8.2387225(14) \times 10^{-8} \text{N}(\cancel{\cancel{1}})$

附录 A 能量换算表

	Hartree	eV	kCal/mol *	kJ/mol	cm ⁻¹ ·hc	$GHz \cdot h$
Hartree	1	27.211	627.51	2625.5	2.1947×10 ⁵	6.5797×10^6
eV	3.6749×10 ⁻²	1	23.061	96.485	8065.5	2.4180×10 ⁵
kCal/mol	1.5936×10^{-3}	4.3364×10^{-2}	1	4.1840	349.76	1.0485×10 ⁴
kJ/mol	3.8088×10^{-4}	1.0364×10^{-2}	0.23901	1	83.593	2506.1×10 ³
cm ⁻¹ ⋅hc	4.5563×10 ⁻⁶	1.2398×10 ⁻⁴	2.8591×10^{-3}	1.1963×10 ⁻²	1	29.979
$GHz \cdot h$	1.5198×10 ⁻⁷	4.1357×10 ⁻⁶	9.5371×10 ⁻⁵	3.9903×10 ⁻⁴	3.3356×10^{-2}	1

^{*} 此单位的依据是化学热力学卡的定义式,即 1 Cal = 4.184 J。

附录 B 常用物理常数表(由 CODATA 2002 年的推荐值整理而得)

物理量符号		数值	国际制	高斯制
真空光速	С	299 792 458#	m/s	$\times 10^2$ cm/s
磁常数	μ_0	4π#	$\times 10^7 \text{H/m}$	-
电常数	ϵ_0	8.854 187 82 ^[11]	$\times 10^{-12} \text{F/m}$	-
真空特征阻抗	Z_0	376.730 313 ^[12]	Ω	-
共工行业归几		4.191 690 02	-	$\times 10^{-10} (\text{cm/s})^{-1}$
冯-克利青常数	$R_{ m K}^{~[1]}$	25 812.807 449(86)	Ω	-
		2.872 062 1655(96)	-	$\times 10^{-8} (\text{cm/s})^{-1}$
精细结构常数 	α [2]	1/137.035 999 11(46) ^[13]	/	/
约瑟夫森常数	$K_{\rm I}^{[3]}$	4.835 978 79(41)	$\times 10^{14} Hz/V$	-
- 320 (441) 22		1.449 789 96(12)	- 10	×10 ¹⁷ esu/erg⋅s
基本电荷	e	1.602 176 53(14) ^[14]	$\times 10^{-19}$ C	- 10-10
	7	4.803 204 41(42)	- 10-34x	×10 ⁻¹⁰ esu
普朗克常数	$h \ h^{[4]}$	6.626 0693(11) ^[15]	$\times 10^{-34} \text{J} \cdot \text{s}$	×10 ⁻²⁷ erg⋅s
		1.054 571 68(18)	$\times 10^{-34} \text{J} \cdot \text{s}$	×10 ⁻²⁷ erg⋅s
里德堡常数	$R_{\infty}^{[5]}$	10 973 731.568 525(73)	m^{-1}	$\times 10^{-2} \text{cm}^{-1}$
In ケッチンフ	$R_{\infty} \cdot hc$	13.605 6923(12) ^[16]	eV	10-21 /0
玻尔磁子	$\mu_{\rm B}^{[6]}$	9.274 009 49(80) ^[17]	×10 ⁻²⁴ J/T	×10 ⁻²¹ erg/Gs
玻尔半径	$a_0^{[7]}$	5.291 772 108(18)[18]	×10 ⁻¹¹ m	×10 ⁻⁹ cm
+ 2 * . 5 1	m_e	9.109 3826(16) ^[19]	$\times 10^{-31} \text{kg}$	$\times 10^{-28}$ g
电子静止质量	m_e /amu	5.485 799 0945(24)	×10 ⁻⁴	×10 ⁻⁴
	$m_e \cdot c^2$	0.510 998 918(44) ^[20]	×10 ⁶ eV	-
质子静止质量	m_p /amu	1.007 276 466 88(13)	106 17	/
	$m_p \cdot c^2$	938.272 029(80)	$\times 10^6 \text{eV}$,
中子静止质量	m_n /amu	1.008 664 915 60(55)	×10 ⁶ eV	/
	$m_n \cdot c^2$ amu	939.565 360(81) 1.660 538 86(28) ^[21]	$\times 10^{-27} \text{kg}$	×10 ⁻²⁴ g
原子质量单位	$\operatorname{amu} \cdot c^2$	931.494 043(80)	$\times 10^{6} \text{ kg}$ $\times 10^{6} \text{eV}$	×10 g
 阿佛加德罗常数		6.022 1415(10) ^[22]	$\times 10^{23} \text{mol}^{-1}$	$\times 10^{23} \text{mol}^{-1}$
	$N_{ m A}$	96 485.3383(83) ^[23]	C/mol	×10 IIIOI
法拉第常数	$F^{[8]}$	2.892 5576 72(26)	C/III01 -	×10 ¹⁴ esu/mol
	k_{B}	1.380 6505(24)	$\times 10^{-23} \text{J/K}$	$\times 10^{-16} \text{erg/K}$
斯忒潘-玻耳兹曼常数	$\sigma^{[9]}$	5.670 400(40)	$\times 10^{-8} \text{W/m}^2 \text{K}^4$	$\times 10^{-8} \text{W/m}^2 \text{K}^4$
摩尔气体常数	$R^{[10]}$	8.314 472(15)	J/mol·K	×10 ⁷ erg/mol·K
牛顿引力常数	G	6.6742(10)	$\times 10^{-11} \text{m}^3/\text{kg} \cdot \text{s}^2$	$\times 10^{-8} \text{cm}^3/\text{g} \cdot \text{s}^2$
标准重力加速度	g	9.806 65 #	m/s ²	$\times 10^2 \text{cm/s}^2$
标准大气压	atm	101 325 #	Pa	×10dyn/cm ²
字以传				·

[#] 定义值

注:

[1]~[10]均为物理量的定义公式。

$$[1] \quad R_{\rm K} = \frac{Z_0}{2\alpha}$$

[2]
$$\alpha = \frac{e^2}{4\pi\epsilon_0 \hbar c}$$

$$[3] \quad K_{\rm J} = \frac{2e}{h}$$

[4]
$$\hbar = \frac{h}{2\pi}$$

$$[5] \quad R_{\infty} = \frac{m_e}{4\pi\hbar^3 c} \left(\frac{e^2}{4\pi\epsilon_0}\right)^2$$

$$[6] \quad \mu_{\rm B} = \frac{e\hbar}{2m_e}$$

[7]
$$a_0 = \frac{\hbar^2}{m_e} \cdot \frac{4\pi\varepsilon_0}{e^2}$$

[8]
$$F = eN_A$$

[9]
$$\sigma = \frac{2\pi^5 k_{\rm B}^4}{15h^3 c^2}$$

$$[10] R = k_{\rm B} N_{\rm A}$$

[11]~[23] 均为物理量数值的推算公式。

$$[11] \varepsilon_0 = \frac{1}{\mu_0 c^2}$$

[12]
$$Z_0 = \mu_0 c$$

$$[13] \alpha = \frac{Z_0}{2R_V}$$

$$[13] \alpha = \frac{Z_0}{2R_K}$$

$$[14] e = \frac{4\varepsilon_0 c\alpha}{K_J}$$

$$[15] h = \frac{2e}{K_J}$$

$$[15] h = \frac{2e}{K_{I}}$$

$$[16] \frac{R_{\infty} \cdot hc}{e} = \frac{2cR_{\infty}}{K_{\text{I}}}$$

$$[17] \mu_{\rm B} = \frac{c\alpha^2 e}{8\pi R_{\rm w}}$$

$$[18] a_0 = \frac{\alpha}{4\pi R_\infty}$$

$$[19] m_e = \frac{16\varepsilon_0 R_\infty}{\alpha K_1^2}$$

$$[20] \frac{m_e \cdot c^2}{e} = \frac{4cR_{\infty}}{\alpha^2 K_{\rm J}}$$

[21] amu =
$$\frac{m_e}{m_e/\text{amu}}$$

[22]
$$N_{\rm A} = \frac{0.001 \,\text{kg/mol}}{\text{amu}}$$

[22]
$$N_{\rm A} = \frac{0.001 \,\text{kg/mol}}{\text{amu}}$$

[23] $F = \frac{c\alpha^2 K_{\rm J} (m_e/\text{amu})(0.001 \,\text{kg/mol})}{4R_{\infty}}$

具有特定物理意义的单位和国际制单位换算关系

1 海里 = 1852 m^{#[1]}

1 天文单位 = 1.495979×10^9 m^[2]

1 光年 = 9.4605284×10^{15} m^[3]

1 秒差距 = 3.085677×10¹⁶ m^[4]

1 Cal(Th) (化学热力学卡) = 4.184 J#

1 Cal(IT) (国际标准卡) = 4.1868 J#

1 HP (metric) (国际标准马力) = 735.498... W^[5]

1 HP (electric) (电动马力) = 745 W#

1 毫米水柱 = 9.80665 Pa#

1 毫米汞柱 = 133.322... Pa [6]

注:

- [1] 原指海上航行 1/60 经纬度的距离,即 6371 千米(地球平均半径) $\times 2\pi \div 21600 = 1.8532$ 千 米, 在英美制中被定义为 6080 英尺(同样是 1.8532 米);
- [2] 光年 = 光速 \times 回归年(约 31556926 秒);
- [3] 天文单位即日地平均距离 a_1 ,由日心引力常数($GM = 1.327124 \times 10^{20}$ 米 $^3/$ 秒 2)、地心引力常 数 $(Gm = 3.986004418 \times 10^{14} \, \text{\pi}^3/\text{\pi}^2)$ 和地球公转周期 $(T = 31558150 \, \text{\pi})$,根据开普勒第三 定律 $\frac{a^3}{T^2} = \frac{G(M+m)}{4\pi^2}$ 求得;
- [4] 秒差距 = 日地平均距离 ÷ 秒角 $(2\pi/1296000)$ 。
- [5] 定义值: 1 HP (metric) = $g(标准重力加速度) \times 75 \text{ kg·m/s}$
- [6] 定义值: 1毫米汞柱 = 1atm(标准大气压) ÷ 760

附录 D 英美制单位和国际制单位换算关系

单位	进位	换算关系			
长度					
in. (英寸)		0.0254 m			
ft. (英尺)	12 in.	0.3048 m			
yd. (码)	3 ft.	0.9144 m#			
mi. (英里) ^[1]	1760 yd.	1609.344 m			
面积					
a. (英亩)	4840 sq. yd.	4046.856 m ²			
重量(常衡)					
gr. (格令)		64.79891 mg			
dr. (打兰)		1.77184520 g			
oz. (盎司)	16 dr.	28.3495231 g			
lb. (磅)	16 oz., 7000 gr.	0.45359237 kg [#]			
short cwt (美担)	100 lb.	45.359237 kg			
long cwt (英担)	112 lb.	50.802345 kg			
short ton (美吨)	20 short cwt	907.18474 kg.			
long ton (英吨)	20 long cwt	1016.04691 kg.			
重量(金衡)					
oz.(盎司)		31.1034768 g*			
体积(英制)					
oz.(盎司)		28.413 cm ³			
gl. (及耳)	5 oz.	0.142065 dm ³			
pt. (品脱)	4 gl.	0.56826 dm^3			
qt. (夸脱)	2 pt.	1.13652 dm^3			
gall. (加仑)	4 qt.	4.54609 dm ^{3 #}			
pk. (配克)	2 gall.	9.09218 dm^3			
bush. (蒲式耳)	4 pk.	36.3687 dm ³			
体积(美制,干量)					
gl. (及耳)		$0.1376526178394 \text{ dm}^3$			
pt. (品脱)	4 gl.	$0.550610471358 \text{ dm}^3$			
qt. (夸脱)	2 pt.	1.101220942715 dm ³			
pk. (配克)	8 qt.	8.80976754172 dm ³			
bush. (蒲式耳)	4 pk.	35.23907016688 dm ^{3 #}			
体积(美制,液量)					
oz.(盎司)		29.57352956 cm ³			
gl. (及耳)	4 oz.	0.1182941182 dm ³			
pt. (品脱)	4 gl.	0.473176473 dm ³			
qt. (夸脱)	2 pt.	0.946352946 dm ³			
gall. (加仑)	4 qt.	3.785411784 dm ^{3 #}			