Universidad Nacional del Altiplano Facultad de Ingeniería Estadística e Informática

Docente: Fred Torres Cruz

Autor: Ronald Junior Pilco Nuñez

Trabajo Encargado - Nº 008

Convexidad de funciones

1 Introducción

Una función f(x) es convexa en un intervalo si satisface la siguiente desigualdad para todo x_1, x_2 en el intervalo y para cualquier $\lambda \in [0, 1]$:

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2). \tag{1}$$

Verificaremos la convexidad de $f(x) = x^2$ usando tres métodos: definición, segunda derivada y visualización gráfica.

2 Método 1: Definición de Convexidad

Tomamos dos puntos arbitrarios $x_1 = -2$ y $x_2 = 2$, con $\lambda = 0.5$:

$$x_m = \lambda x_1 + (1 - \lambda)x_2 = 0,$$

$$f(x_m) = 0^2 = 0,$$

$$\lambda f(x_1) + (1 - \lambda)f(x_2) = 0.5 \cdot 4 + 0.5 \cdot 4 = 4.$$

Dado que $f(0) = 0 \le 4$, se cumple la desigualdad de convexidad.

3 Método 2: Segunda Derivada

Calculamos las derivadas de $f(x) = x^2$:

• Primera derivada:

$$f'(x) = 2x. (2)$$

• Segunda derivada:

$$f''(x) = 2. (3)$$

Como f''(x) = 2 es siempre positiva, la función es convexa en todo \mathbb{R} .

4 Método 3: Gráfica

Si graficamos $f(x) = x^2$, notamos que cualquier recta secante entre dos puntos está por encima de la curva:

Para visualizarlo en Julia: Codigo Julia convx.ipynb

5 Conclusión

La función $f(x) = x^2$ es convexa en todo \mathbb{R} , ya que:

- \bullet Cumple la desigual dad de convexidad.
- Su segunda derivada es siempre positiva.
- Gráficamente, la curva nunca está por encima de sus cuerdas.