Examenul de bacalaureat naţional 2020 Proba E. d) FIZICĂ

BAREM DE EVALUARE ŞI DE NOTARE

Test 8

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la 10.

(45 de puncte) A. MECANICĂ

A.	Su	bi	ec	tu	П
,	-		-	-	

Nr.ltem	Soluţie, rezolvare	Punctaj
I.1.	C	3р
2.	d	3р
3.	b	3р
4.	a	3р
5.	C	3р
TOTAL pentru Subiectul I		15p

A. Subjectul al II - lea

II.a.	Pentru:		3р
	T = F	1p	٠,
	$F_{ax} = 2T$	1p	
	rezultat final $F_{ax} = 440N$	1p	
b.	Pentru:		4p
	$F_n = N$	1p	
	F+N-Mg=0	1p	
	$F_n = 480 \mathrm{N}$	1p	
	direcţia: verticală, sensul: în jos	1p	
C.	Pentru:		4p
	T - mg = ma	3р	
	rezultat final $a = 1m/s^2$	1p	
d.	Pentru:		4p
	$L_{\rm G} = -mgh$	3р	
	rezultat final $L_{\rm G} = -400 {\rm J}$	1p	
TOTAL pentru Subiectul al II-lea			15p

A. Subiectul al III - lea

III.a.	Pentru:	3р
	$E_c = \frac{mv_0^2}{2}$	
	rezultat final $E_c = 6,25 J$	
b.	Pentru:	4p
	$\Delta E_c = L_{F_i}$	
	$\Delta E_c = L_{F_f}$ $\Delta E_c = \frac{mv^2}{2} - \frac{mv_0^2}{2}$ $L_{F_f} = -F_f \cdot d$ 1p	
	$L_{F_f} = -F_f \cdot d $ 1p	
	rezultat final $F_f = 3N$	
C.	Pentru:	4p
	$p_{f} = mv_{f}$	
	$v_f = \sqrt{v^2 + 2gh}$	
	rezultat final $p_f = 2.5 \text{kg} \cdot \text{m/s}$	

d.	Pentru:	4p
	$\frac{mv^2}{2} + mgh = mgh_1 + \frac{mv_1^2}{2}$	
	$\frac{mv_1^2}{2} = mgh_1$	
	rezultat final $h_1 = 62,5 \mathrm{cm}$	
TOTAL pentru Subiectul al III-lea		

B. ELEM B. Subie	· ·	5 de puncte)
	Soluţie, rezolvare	Punctaj
I.1.	C C	3p
2.	c	3p
3.	d	3p
4.	a	3p
5.	b	3p
TOTAL	pentru Subiectul I	15p
	ctul al II - lea	
II.a.	Pentru:	3p
	$v = \frac{m}{}$	n
	$v = \frac{\dots}{\mu}$	Ρ
	rezultat final: $v \cong 3,4 \cdot 10^{-3}$ mol	n
b.	Pentru:	4p
	$p_0 V = \nu R T_{\min}$	_
	•	
	rezultat final: $V = 83,1 \text{ cm}^3$	
C.	Pentru:	4p
	$\rho = \frac{m}{V_1}$	n
	$V_1 = V + 10 \cdot v \tag{1}$	р
	rezultat final: $\rho \cong 1,1 \text{ kg/m}^3$	p
d.	Pentru:	4p
		_
	$p_0 V_2 = \frac{m}{\mu} R T_{\text{max}} $	р
	$V_2 = V + 20 \cdot V$	р
	rezultat final $T_{\text{max}} = 348 \text{ K}$	
TOTAL	pentru Subiectul al II-lea	15p
	ctul al III - lea	
III.a.	Pentru:	3p
	Reprezentare corectă 3	р
b.	Pentru:	4p
	$\eta_c = 1 - \frac{T_1}{T}$	_
	$\eta_c = 1 - \frac{1}{T_3}$	۲
	$V_3 = 4V_1$	n
	•	
	rezultat final $\eta_{\rm C} = 75\%$	
C.	Pentru:	4p
	$L_{total} = L_{12} + L_{23} + L_{31} $	р
	$L_{12} = p_1 V_1 \ln \frac{p_1}{p_2}$	p
	ρ_2	
	$L_{23} = \nu R(T_3 - T_1)$	р
	rezultat final: $L_{total} = 1280 \text{ J}$	р
d.	Pentru:	4p
	$Q_{primit} = \nu C_p \left(T_3 - T_1 \right) $	р
	·	
	$\eta = \frac{L_{total}}{Q_{primit}}$	р
	rezultat final: $\eta \cong 15,2\%$	_
TOTAL	pentru Subiectul al III-lea	15p

Ministerul Educației și Cercetării Centrul Național de Evaluare și Examinare				
	UCEREA ŞI UTILIZAREA CURENTULUI CONTINUU	(45 d	e puncte)	
C. Subie			D.m.sts:	
Nr.Item I.1.	Soluţie, rezolvare		Punctaj	
2.	b		3p 3p	
3.	d		3p	
4.	C		3p	
5.	a		3p	
TOTAL	pentru Subiectul I		15p	
C. Subie	ctul al II - lea			
II.a.	Pentru:		3р	
	$U = E - I \cdot r \text{ sau } U = 24 - 2 \cdot I$	3p		
b.	Pentru:		4p	
	$E = I_1(R_1 + r) = U_1 + I_1 r$,	1p		
	$E = I_2(R_2 + r) = U_2 + I_2 r$, pentru oricare două valori I_1, I_2, U_1, U_2	1p		
	$E = \frac{I_2 U_1 - I_1 U_2}{I_2 - I_3}$	1n		
	$I_2 - I_1$	1p		
	rezultat final $E = 24 \text{ V}$	1p		
C.	Pentru:		4p	
	$r = \frac{E - U_1}{I}$	3р	-	
	$I = I_1$			
	rezultat final $r = 2 \Omega$	1p		
d.	Pentru:		4p	
	$E = I'(\frac{R}{2} + r)$ $R = \rho L/S$	1p		
	`2 '	·		
	$R = \rho L/S$	1p		
	$S = \pi d^2/4$	1p		
	rezultat final $L \cong 50 \text{ m}$	1p		
	pentru Subiectul al II-lea		15p	
	ctul al III - lea			
III.a.	Pentru:		4p	
	$Q_{R_2} = I_{n2}^2 R_2 \Delta t$	1p		
	$R_2 = \frac{U_{n1} - U_{n2}}{I}$	2p		
	I_{n2}	2ρ		
	rezultat final $I = 0,75 \text{A}$	1p		
b.	Pentru:		3р	
	$I = I_{n1} + I_{n2}$	2p		
	rezultat final $I = 0,75 \text{ A}$	1p		
C.	Pentru:		4p	
	$E = IR_1 + U_{n1} + Ir$	2p		
	5 25	_		

1p

1p

Зр

1p

4p

15p

 $P_1 = I_1^2 R_1$

Pentru:

d.

rezultat final $P_1 = 13,5 \text{ W}$

 $P_{bec} = U_{n1}I_{n1} + U_{n2}I_{n2}$ $P_{total} = EI$

TOTAL pentru Subiectul al III-lea

rezultat final $\eta = 0.195$

D. DPICICÁ D. Sublectul 1 Nr.tem Soluţie, rezolvare Puncta 1.1. b 3p. 2. a 3p. 3. d 3p. 4. a 3p. 5. c 3p. 5. c 3p. 7OTAL pentru Subiectul 1 1p. b. Pentru: $C_1 - X_1 - X_2 - X_1 - $	Centrul Național de Evaluare și Examinare				
$ \overline{N.Hem} \textbf{Soluţie}, \textbf{rezolvare} 1.1. b 3 a $					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Punctai	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	4.	a			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				3р	
III.a. Pentru: $C_1 = 1/I_1$, rezultat final $C_1 = 5 \text{ m}^{-1}$ 1p				15p	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	II.a.		0	3p	
$\begin{array}{ c c c } \textbf{b.} & \text{Pentru:} \\ \beta_1 = -4; \\ \beta_1 = \frac{y_2}{y_1} = \frac{x_2}{x_1} \\ \hline \\ \frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{t_1} \\ \hline \\ rezultat final - x_i = 25 \text{ cm} \\ \hline \\ \textbf{c.} & \text{Pentru:} \\ \hline \\ x_2 = \beta_i X_i \\ d = x_2 - x_i \\ rezultat final d = 125 \text{ cm} \\ \hline \\ \textbf{d.} & \text{Pentru:} \\ \hline \\ -x_i' = a - x_i \\ \hline \\ +x_i' C_2 \\ \beta = \beta_i \beta_2 \\ rezultat final \beta = 4 \\ \hline \\ \textbf{TOTAL pentru Subiectul al III-lea} \\ \hline \\ \textbf{III.a.} & \text{Pentru:} \\ i = D \cdot \lambda / (2\ell) \\ rezultat final: \lambda = 5 \cdot 10^{-7} \text{ m} \\ \hline \\ \textbf{b.} & \text{Pentru:} \\ differența de drum optic corespunzătoare unui maxim de interferență : \delta = k\lambda 1p k = 2 1p distanța la care se află franja luminoasă de ordin 2 față de maximul central: x_k^{\text{min}} = 1.5i \Delta x = X_k^{\text{max}} + X_k^{\text{min}} 1p rezultat final: \Delta x = 3.5 \text{ rm} 1p \lambda x = 2 1p \lambda$		·	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1p		
$\beta_i = \frac{Y_2}{Y_1} = \frac{X_2}{X_1}$ $\frac{1}{X_2} - \frac{1}{I_1} = \frac{1}{I_2}$ $\frac{1}{X_2} - \frac{1}{I_1} = \frac{1}{I_1}$ $\frac{1}{X_2} - \frac{1}{I_2} = \frac{1}{I_1}$ $\frac{1}{X_2} - \frac{1}{I_1} = \frac{1}{I_2}$ $\frac{1}{I_1} - \frac{1}{I_2} = \frac{1}{I_2}$ $\frac{1}{I_1} - \frac{1}{I_2} = \frac{1}{I_2}$ $\frac{1}{I_1} - \frac{1}{I_2} = \frac{1}{I_2}$ $\frac{1}{I_2} - \frac{1}{I_2} = \frac{1}{I_2}$ $\frac{1}{I_2} - \frac{1}{I_2} = \frac{1}{I_2}$ $\frac{1}{I_2} - \frac{1}{I_2} = \frac{1}{I_2}$ $\frac{1}{I_1} - \frac{1}{I_2} = \frac{1}{I_2}$ $\frac{1}{I_2} - \frac{1}{I_2} = \frac{1}{I$	b.			4p	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		·	1р		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\beta_1 - \frac{y_2}{x_2} - \frac{x_2}{x_2}$	1n		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$y_1 - y_1 - x_1$	īΡ		
c. Pentru:		1 1 1			
c. Pentru:		$\frac{1}{X_2} - \frac{1}{X_1} = \frac{1}{f_1}$	1р		
c.Pentru:4p $\chi_2 = \beta_1 \chi_1$ 2p $d = \chi_2 - \chi_1$ 1prezultat final $d = 125$ cm1pd.Pentru:4p $-\chi_1' = a - \chi_2$ 1p $\chi_2' = \frac{\chi_1'}{1 + \chi_1' C_2}$ 1p $\beta = \beta_1 \beta_2$ 1prezultat final $\beta = 4$ 1pTOTAL pentru Subiectul al II-leaD. Subiectul al III - leaIII.a.Pentru: $i = D \cdot \lambda / (2\ell)$ 3prezultat final: $\lambda = 5 \cdot 10^{-7}$ m1pb.Pentru:3pdiferența de drum optic corespunzătoare unui maxim de interferență : $\delta = k\lambda$ 1p $k = 2$ 1prezultat final: $\delta = 10^{-6}$ m1pc.Pentru:4pdistanța la care se află franja luminoasă de ordin 2 față de maximul central:1p $\chi_n^{max} = 2i$ 1pdistanța la care se află a doua franjă întunecată față de maximul central:1p $\chi_n^{max} = 1,5i$ 1p $\Delta x = \chi_n^{max} + \chi_n^{min}$ 1prezultat final: $\Delta x = 3,5$ mm1pdeplasarea sistemului de franje: $\Delta x = \frac{eD(n-1)}{2\ell}$ 2ppoziția maximului de ordin 2: $\chi_n^{max} = 2i$ 1prezultat final: $n = 1,5$ 1p			1n		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			ıρ	4n	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	J 0.		2n	4-p	
rezultat final $d=125 \mathrm{cm}$ 1p d. Pentru:		- · · ·			
d.Pentru: $-x_1' = a - x_2$ 1p $x_2' = \frac{x_1'}{1 + x_1' C_2}$ 1p $\beta = \beta_k \beta_2$ 1prezultat final $\beta = 4$ 1pTOTAL pentru Subiectul al III-lea15pIII.a.Pentru: $i = D \cdot \lambda I/(2\ell)$ 3prezultat final: $\lambda = 5 \cdot 10^{-7}$ m1pb.Pentru: diferența de drum optic corespunzătoare unui maxim de interferență : $\delta = k\lambda$ $k = 2$ rezultat final: $\delta = 10^{-6}$ m1pc.Pentru: distanța la care se află franja luminoasă de ordin 2 față de maximul central: $x_k^{max} = 2i$ distanța la care se află a doua franjă întunecată față de maximul central: $x_k^{min} = 1,5i$ $\Delta x = x_k^{max} + x_k^{min}$ rezultat final: $\Delta x = 3,5$ mm1pd.Pentru: deplasarea sistemului de franje: $\Delta x = \frac{eD(n-1)}{2\ell}$ poziția maximului de ordin 2: $x_2^{max} = 2i$ rezultat final: $n = 1,5$ 4p		- ·			
$-x_1' = a - x_2 \\ x_2' = \frac{x_1'}{1 + x_1' C_2} \\ \beta = \beta_1 \beta_2 \\ \text{rezultat final } \beta = 4 \\ \hline \textbf{TOTAL pentru Subiectul al II-lea} \\ \hline \textbf{D. Subiectul al III - lea} \\ \hline \textbf{III.a.} \\ Pentru: \\ i = D \cdot \lambda / (2\ell) \\ \text{rezultat final: } \lambda = 5 \cdot 10^{-7} \text{m} \\ \hline \textbf{b.} \\ Pentru: \\ \text{differența de drum optic corespunzătoare unui maxim de interferență : } \delta = k\lambda \\ \text{1p} \\ k = 2 \\ \text{rezultat final: } \delta = 10^{-6} \text{m} \\ \hline \textbf{c.} \\ Pentru: \\ \text{distanța la care se află franja luminoasă de ordin 2 față de maximul central: } \chi_k^{\text{max}} = 2i \\ \text{distanța la care se află a doua franjă întunecată față de maximul central: } \chi_k^{\text{min}} = 1,5i \\ \lambda x = x_k^{\text{max}} + x_k^{\text{min}} \\ \text{rezultat final: } \Delta x = 3,5 \text{mm} \\ \hline \textbf{d.} \\ Pentru: \\ \text{deplasarea sistemului de franje: } \Delta x = \frac{eD(n-1)}{2\ell} \\ \text{poziția maximului de ordin 2: } x_2^{\text{max}} = 2i \\ \text{1p} \\ \text{rezultat final: } n = 1,5 \\ \text{1p} \\ \text{rezultat final: } n = 1,5 \\ \text{1p} \\ \text{rezultat final: } n = 1,5 \\ \text{1p} \\ \text{rezultat final: } n = 1,5 \\ \text{1p} \\ \text{rezultat final: } n = 1,5 \\ \text{1p} \\ \text{rezultat final: } n = 1,5 \\ \text{1p} \\ \text{rezultat final: } n = 1,5 \\ \text{1p} \\ \text{rezultat final: } n = 1,5 \\ \text{1p} \\ \text{rezultat final: } n = 1,5 \\ \text{1p} \\ $			1p	4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a.		1n	4p	
$\beta = \beta_i \beta_2 \\ \text{rezultat final } \beta = 4 \\ \text{TOTAL pentru Subiectul al III-lea} \\ \text{III.a.} \text{Pentru:} \\ i = D \cdot \lambda / (2\ell) \\ \text{rezultat final: } \lambda = 5 \cdot 10^{-7} \text{m} \\ \text{b.} \text{Pentru:} \\ \text{diferenţa de drum optic corespunzătoare unui maxim de interferenţă : } \delta = k\lambda \\ \text{1p} \\ k = 2 \\ \text{rezultat final: } \delta = 10^{-6} \text{m} \\ \text{c.} \text{Pentru:} \\ \text{distanţa la care se află franja luminoasă de ordin 2 faţă de maximul central:} \\ \chi_{n}^{\text{max}} = 2i \\ \text{distanţa la care se află a doua franjă întunecată faţă de maximul central:} \\ \chi_{n}^{\text{min}} = 1,5i \\ \Delta x = x_{K}^{\text{max}} + x_{K}^{\text{min}} \\ \text{rezultat final: } \Delta x = 3,5 \text{mm} \\ \text{d.} \text{Pentru:} \\ \text{deplasarea sistemului de franje: } \Delta x = \frac{eD(n-1)}{2\ell} \\ \text{poziţia maximului de ordin 2: } x_{2}^{\text{max}} = 2i \\ \text{1p} \\ \text{rezultat final: } n = 1,5 \\ \text{1p} $		•	īΡ		
$\beta = \beta_i \beta_2 \\ \text{rezultat final } \beta = 4 \\ \text{TOTAL pentru Subiectul al III-lea} \\ \text{III.a.} \text{Pentru:} \\ i = D \cdot \lambda / (2\ell) \\ \text{rezultat final: } \lambda = 5 \cdot 10^{-7} \text{m} \\ \text{b.} \text{Pentru:} \\ \text{diferenţa de drum optic corespunzătoare unui maxim de interferenţă : } \delta = k\lambda \\ \text{1p} \\ k = 2 \\ \text{rezultat final: } \delta = 10^{-6} \text{m} \\ \text{c.} \text{Pentru:} \\ \text{distanţa la care se află franja luminoasă de ordin 2 faţă de maximul central:} \\ \chi_{n}^{\text{max}} = 2i \\ \text{distanţa la care se află a doua franjă întunecată faţă de maximul central:} \\ \chi_{n}^{\text{min}} = 1,5i \\ \Delta x = x_{K}^{\text{max}} + x_{K}^{\text{min}} \\ \text{rezultat final: } \Delta x = 3,5 \text{mm} \\ \text{d.} \text{Pentru:} \\ \text{deplasarea sistemului de franje: } \Delta x = \frac{eD(n-1)}{2\ell} \\ \text{poziţia maximului de ordin 2: } x_{2}^{\text{max}} = 2i \\ \text{1p} \\ \text{rezultat final: } n = 1,5 \\ \text{1p} $		$X_2' = \frac{X_1'}{X_2}$	1p		
rezultat final $\beta=4$ 1p TOTAL pentru Subiectul al III-lea D. Subiectul al III – lea III.a. Pentru: $i=D\cdot\lambda/(2\ell)$ 3p rezultat final: $\lambda=5\cdot10^{-7}\mathrm{m}$ 1p b. Pentru: diferența de drum optic corespunzătoare unui maxim de interferență : $\delta=k\lambda$ 1p $k=2$ 1p rezultat final: $\delta=10^{-6}\mathrm{m}$ 1p c. Pentru: distanța la care se află franja luminoasă de ordin 2 față de maximul central: $\chi_{n}^{\max}=2i$ distanța la care se află a doua franjă întunecată față de maximul central: $\chi_{n}^{\max}=1.5i$ 1p $\Delta x=x_{k}^{\max}+x_{k}^{\min}$ 1p rezultat final: $\Delta x=3.5\mathrm{mm}$ 1p d. Pentru: deplasarea sistemului de franje: $\Delta x=\frac{eD(n-1)}{2\ell}$ 2p poziția maximului de ordin 2: $x_{2}^{\max}=2i$ 1p rezultat final: $n=1.5$ 1p		1 2	-		
TOTAL pentru Subiectul al III-lea D. Subiectul al III – lea III.a. Pentru:		$\beta = \beta_1 \beta_2$	1р		
D. Subiectul al III – leaIII.a.Pentru:4p $i = D \cdot \lambda I / (2\ell)$ 3p4prezultat final: $\lambda = 5 \cdot 10^{-7}$ m1pb.Pentru: diferenţa de drum optic corespunzătoare unui maxim de interferenţă : $\delta = k\lambda$ 1p $k = 2$ rezultat final: $\delta = 10^{-6}$ m1pc.Pentru: distanţa la care se află franja luminoasă de ordin 2 faţă de maximul central: $x_k^{max} = 2i$ 1pdistanţa la care se află a doua franjă întunecată faţă de maximul central: $x_k^{min} = 1,5i$ 1p $\Delta X = X_k^{max} + X_k^{min}$ rezultat final: $\Delta x = 3,5$ mm1pd.Pentru: deplasarea sistemului de franje: $\Delta x = \frac{eD(n-1)}{2\ell}$ poziţia maximului de ordin 2: $X_2^{max} = 2i$ rezultat final: $n = 1,5$ 1p		rezultat final $\beta = 4$	1p		
III.a. Pentru: $i = D \cdot \lambda / (2\ell)$ 3p rezultat final: $\lambda = 5 \cdot 10^{-7}$ m 1p 3p	TOTAL	pentru Subiectul al II-lea		15p	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
rezultat final: $\lambda = 5 \cdot 10^{-7} \mathrm{m}$ 1p b. Pentru: diferența de drum optic corespunzătoare unui maxim de interferență : $\delta = k\lambda$ 1p $k = 2$ 1p rezultat final: $\delta = 10^{-6} \mathrm{m}$ 1p c. Pentru: distanța la care se află franja luminoasă de ordin 2 față de maximul central: $x_k^{\max} = 2i$ distanța la care se află a doua franjă întunecată față de maximul central: $x_k^{\min} = 1,5i$ 1p $\Delta x = x_k^{\max} + x_k^{\min}$ 1p rezultat final: $\Delta x = 3,5 \mathrm{mm}$ 1p d. Pentru: 4p deplasarea sistemului de franje: $\Delta x = \frac{eD(n-1)}{2\ell}$ 2p poziția maximului de ordin 2: $x_2^{\max} = 2i$ 1p rezultat final: $n = 1,5$ 1p	III.a.			4p	
b. Pentru: diferenţa de drum optic corespunzătoare unui maxim de interferenţă : $\delta = k\lambda$ 1p $k=2$ 1p rezultat final: $\delta = 10^{-6}$ m 1p 4p c. Pentru: distanţa la care se află franja luminoasă de ordin 2 faţă de maximul central: $x_k^{\text{max}} = 2i$ distanţa la care se află a doua franjă întunecată faţă de maximul central: $x_k^{\text{min}} = 1,5i$ 1p $\Delta x = x_k^{\text{max}} + x_k^{\text{min}}$ 1p rezultat final: $\Delta x = 3,5$ mm 1p 4p deplasarea sistemului de franje: $\Delta x = \frac{eD(n-1)}{2\ell}$ 2p poziţia maximului de ordin 2: $x_2^{\text{max}} = 2i$ 1p rezultat final: $n = 1,5$ 1p		$i = D \cdot \lambda / (2\ell)$	3р		
b. Pentru: diferenţa de drum optic corespunzătoare unui maxim de interferenţă : $\delta = k\lambda$ 1p $k=2$ 1p rezultat final: $\delta = 10^{-6}$ m 1p 4p c. Pentru: distanţa la care se află franja luminoasă de ordin 2 faţă de maximul central: $x_k^{\text{max}} = 2i$ distanţa la care se află a doua franjă întunecată faţă de maximul central: $x_k^{\text{min}} = 1,5i$ 1p $\Delta x = x_k^{\text{max}} + x_k^{\text{min}}$ 1p rezultat final: $\Delta x = 3,5$ mm 1p 4p deplasarea sistemului de franje: $\Delta x = \frac{eD(n-1)}{2\ell}$ 2p poziţia maximului de ordin 2: $x_2^{\text{max}} = 2i$ 1p rezultat final: $n = 1,5$ 1p		rezultat final: $\lambda = 5 \cdot 10^{-7}$ m	1p		
diferența de drum optic corespunzătoare unui maxim de interferență : $\delta = k\lambda$ 1p $k=2$ 1p rezultat final: $\delta = 10^{-6}$ m 1p	b.		•	3p	
$k=2$ rezultat final: $\delta=10^{-6}$ m 1p c. Pentru: distanța la care se află franja luminoasă de ordin 2 față de maximul central: $X_k^{\text{max}}=2i$ 1p distanța la care se află a doua franjă întunecată față de maximul central: $X_k^{\text{min}}=1,5i$ 1p $\Delta x=X_k^{\text{max}}+X_k^{\text{min}}$ 1p rezultat final: $\Delta x=3,5\text{mm}$ 1p d. Pentru: deplasarea sistemului de franje: $\Delta x=\frac{eD(n-1)}{2\ell}$ 2p poziția maximului de ordin 2: $X_2^{\text{max}}=2i$ 1p rezultat final: $n=1,5$ 1p			1p	- 1-	
rezultat final: $\delta = 10^{-6} \mathrm{m}$ 1p c. Pentru: distanța la care se află franja luminoasă de ordin 2 față de maximul central: $X_k^{\max} = 2i$ distanța la care se află a doua franjă întunecată față de maximul central: $X_k^{\min} = 1,5i$ $\Delta x = X_k^{\max} + X_k^{\min}$ rezultat final: $\Delta x = 3,5 \mathrm{mm}$ 1p d. Pentru: deplasarea sistemului de franje: $\Delta x = \frac{eD(n-1)}{2\ell}$ poziția maximului de ordin 2: $X_2^{\max} = 2i$ rezultat final: $n = 1,5$			-		
c. Pentru: distanța la care se află franja luminoasă de ordin 2 față de maximul central: $x_k^{\text{max}} = 2i$ distanța la care se află a doua franjă întunecată față de maximul central: $x_k^{\text{min}} = 1,5i$ $\Delta x = x_k^{\text{max}} + x_k^{\text{min}}$ rezultat final: $\Delta x = 3,5\text{mm}$ 1p d. Pentru: deplasarea sistemului de franje: $\Delta x = \frac{eD(n-1)}{2\ell}$ poziția maximului de ordin 2: $x_2^{\text{max}} = 2i$ rezultat final: $n = 1,5$		rezultat final: $\delta = 10^{-6}$ m			
distanța la care se află franja luminoasă de ordin 2 față de maximul central: $x_k^{\text{max}} = 2i$ 1p distanța la care se află a doua franjă întunecată față de maximul central: $x_k^{\text{min}} = 1,5i$ 1p $\Delta x = x_k^{\text{max}} + x_k^{\text{min}}$ 1p rezultat final: $\Delta x = 3,5\text{mm}$ 1p deplasarea sistemului de franje: $\Delta x = \frac{eD(n-1)}{2\ell}$ 2p poziția maximului de ordin 2: $x_2^{\text{max}} = 2i$ 1p rezultat final: $n = 1,5$ 1p	C.			4p	
$x_k^{\max} = 2i$ distanța la care se află a doua franjă întunecată față de maximul central: $x_k^{\min} = 1,5i$ $\Delta x = x_k^{\max} + x_k^{\min}$ rezultat final: $\Delta x = 3,5 \text{mm}$ 1p d. Pentru: $\text{deplasarea sistemului de franje: } \Delta x = \frac{eD(n-1)}{2\ell}$ $\text{poziția maximului de ordin 2: } x_2^{\max} = 2i$ $\text{rezultat final: } n = 1,5$				"	
distanța la care se află a doua franjă întunecată față de maximul central: $x_k^{\min} = 1,5 i$ 1p $\Delta x = x_k^{\max} + x_k^{\min}$ 1p rezultat final: $\Delta x = 3,5 \text{mm}$ 1p deplasarea sistemului de franje: $\Delta x = \frac{eD(n-1)}{2\ell}$ 2p poziția maximului de ordin 2: $x_2^{\max} = 2i$ 1p rezultat final: $n = 1,5$ 1p			1p		
$x_k^{\min} = 1,5 i$ $\Delta x = x_k^{\max} + x_k^{\min}$ $\text{rezultat final: } \Delta x = 3,5 \text{mm}$ $1p$ $d. \text{Pentru:}$ $\text{deplasarea sistemului de franje: } \Delta x = \frac{eD(n-1)}{2\ell}$ $\text{poziția maximului de ordin 2: } x_2^{\max} = 2 i$ $\text{rezultat final: } n = 1,5$ $1p$					
$\Delta x = x_k^{\text{max}} + x_k^{\text{min}}$ $\text{rezultat final: } \Delta x = 3,5 \text{mm}$ $\text{d.} \text{Pentru:}$ $\text{deplasarea sistemului de franje: } \Delta x = \frac{eD(n-1)}{2\ell}$ $\text{poziția maximului de ordin 2: } x_2^{\text{max}} = 2i$ $\text{rezultat final: } n = 1,5$		•	1р		
rezultat final: $\Delta x = 3,5 \text{mm}$ 1p d. Pentru: 4p deplasarea sistemului de franje: $\Delta x = \frac{eD(n-1)}{2\ell}$ 2p poziţia maximului de ordin 2: $x_2^{\text{max}} = 2i$ 1p rezultat final: $n = 1,5$ 1p		"	1		
d. Pentru: $deplasarea sistemului de franje: \Delta x = \frac{eD(n-1)}{2\ell}$ $poziţia maximului de ordin 2: x_2^{max} = 2i$ $rezultat final: n = 1,5$ 4p			-		
deplasarea sistemului de franje: $\Delta x = \frac{eD(n-1)}{2\ell}$ 2p poziția maximului de ordin 2: $x_2^{\max} = 2i$ 1p rezultat final: $n = 1,5$			1p		
poziţia maximului de ordin 2: $x_2^{\text{max}} = 2i$ 1p rezultat final: $n = 1,5$ 1p	d.			4p	
poziţia maximului de ordin 2: $x_2^{\text{max}} = 2i$ 1p rezultat final: $n = 1,5$ 1p		deplasarea sistemului de franje: $\Delta x = \frac{eD(n-1)}{n}$	2p		
rezultat final: n=1,5		·			
· ·			1p		
TOTAL pentru Subiectul al III-lea 15p			1p		
	TOTAL	pentru Subiectul al III-lea		15p	