# Aflevering 18

## 2.b mat A

Kevin Zhou

November 2023

## Bedømmelseskriterier:

• Redegørelse og dokumentation for metode

 $\bullet$  Figurer, grafer og andre illustrationer

• Notation og layout

• Formidling og forklaring

#### Opgave 1

Funktionen  $f:[0;6] \to \mathbb{R}$  er givet ved

$$f(x) = x^3 - 9x^2 + 15x + 5$$

- a. Bestem monotoniforholdene for f.
- b. Bestem ekstrema for f.
- c. Tegn grafen for f.

### Løsning:

 $\mathbf{a.} f$  differentieres.

$$\frac{\mathrm{d}f}{\mathrm{d}x} = 3x^2 - 18x + 15$$

Herefter finder vi de x-værdier, hvor  $\frac{df}{dx} = 0$ .

$$3x^2 - 18x + 15 = 0 \implies x = 1 \lor x = 5$$

Vi ved, at f'(x) har konstant fortegn i intervallerne [0;1[,]1;5[,]5;6], da f'(x) er kontinuert. Siden

$$f'(0) = 15$$

$$f'(2) = -9$$

$$f'(6) = 15$$

så må følgende gælde med hensyn til monotoniforholdene for f.

$$f$$
er voksende på  $\left[ 0;1\right]$ 

$$f$$
 er aftagende på  $[1;5]$ 

$$f$$
 er voksende på  $[5;6]$ 

b. Ekstremumsstederne for f må være 0,1,5 og 6, hvilket fremgår af a. Ekstrema for f kan da nu udregnes.

$$f(0) = 5$$

$$f(1) = 12$$

$$f(5) = -20$$

$$f(6) = -13$$

**c.** I fig. 1 ses grafen for f.



Figure 1: Grafen for f tegnet i GeoGebra

#### Opgave 2

Funktionen  $f:\mathbb{R}\to\mathbb{R}$ er givet ved

$$f(x) = x^3 \cdot e^x$$

- a. Bestem minimum for f.
- b. Bestem en ligning for tangenten til grafen for f i punktet (1, f(1)).
- c. Tegn grafen for f.

#### Løsning:

a. Funktionen differentieres med produktreglen.

$$\frac{\mathrm{d}f}{\mathrm{d}x} = 3x^2 \cdot e^x + x^3 \cdot e^x$$

Ekstremumsstederne findes ved at sætte lig med 0.

$$3x^2 \cdot e^x + x^3 \cdot e^x = 0 \implies x = -3 \lor x = 0$$

Siden f'(-1) > 0 og  $-1 \in ]-3;0[$ , er f voksende i intervallet [-3;0], så -3 er altså ekstremumssted til et minimum, der nu kan regnes.

$$f(-3) = (-3)^3 \cdot e^{-3} \approx -1{,}34$$

**b.** Følgende må gælde for tangenten til grafen for f i punktet (1, f(1)).

$$y = f'(1) \cdot (x - 1) + f(1)$$
  
=  $4e^x \cdot (x - 1) + e^x$   
=  $4x \cdot e^x - 3e^x$ 

Altså er ligningen for tangenten  $y = 4x \cdot e^x - 3e^x$ .

**c.** I fig. 2 ses grafen for f.



Figure 2: Grafen for f tegnet i GeoGebra