Class Challenge: Image Classification of COVID-19 X-rays
 Task 2 [Total points: 30]

# Setup

- This assignment involves the following packages: 'matplotlib', 'numpy', and 'sklearn'.
- If you are using conda, use the following commands to install the above packages:

```
conda install matplotlib
conda install numpy
conda install -c anaconda scikit-learn
```

• If you are using pip, use use the following commands to install the above packages:

```
pip install matplotlib
pip install numpy
pip install sklearn
```

### Data

Please download the data using the following link: <u>COVID-19</u>.

 After downloading 'Covid\_Data\_GradientCrescent.zip', unzip the file and you should see the following data structure:

```
|--all
|-----train
|-----test
|--two
|-----train
|-----test
```

• Put the 'all' folder, the 'two' folder and this python notebook in the **same directory** so that the following code can correctly locate the data.

# ▼ [20 points] Multi-class Classification

```
import os
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.preprocessing.image import ImageDataGenerator
os.environ['OMP_NUM_THREADS'] = '1'
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
tf.__version__
'2.8.0'
```

### ▼ Load Image Data

```
from google.colab import drive
```

```
drive.mount('/content/drive')
```

DATA\_LIST = os.listdir('/content/drive/My Drive/CC/Covid\_Data\_GradientCrescent/'
DATASET\_PATH = '/content/drive/My Drive/CC/Covid\_Data\_GradientCrescent/all/trai
TEST\_DIR = '/content/drive/My Drive/CC/Covid\_Data\_GradientCrescent/all/test'

IMAGE\_SIZE = (224, 224)
NUM\_CLASSES = len(DATA\_LIST)

BATCH\_SIZE = 10 # try reducing batch size or freeze more layers if your GPU

 $NUM_EPOCHS = 100$ 

LEARNING\_RATE = 0.0001 # start off with high rate first 0.001 and experiment wit

Drive already mounted at /content/drive; to attempt to forcibly remount, ca

#### ▼ Generate Training and Validation Batches

Found 216 images belonging to 4 classes.

Found 54 images belonging to 4 classes.

/usr/local/lib/python3.7/dist-packages/keras\_preprocessing/image/image\_data
warnings.warn('This ImageDataGenerator specifies '

### ▼ [10 points] Build Model

Hint: Starting from a pre-trained model typically helps performance on a new task, e.g. starting with weights obtained by training on ImageNet.

```
from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.applications import DenseNet121 from tensorflow.keras.layers import Dropout from tensorflow.keras.layers import Flatten from tensorflow.keras.layers import BatchNormalization from tensorflow.keras.layers import Dense from tensorflow.keras.layers import Input from tensorflow.keras.layers import Input from tensorflow.keras.layers import AveragePooling2D from tensorflow.keras.optimizers import Adam import numpy as np import argparse
```

```
# model 2
model = tf.keras.models.Sequential()
model.add (DenseNet121 (weights= 'imagenet', include_top=False, input_shape =(22
model.add (BatchNormalization())
model.add (AveragePooling2D(pool_size=(2,2)))
model.add (Flatten())
#model.add (Dropout(0.3))
model.add(Dense(units=128,activation="relu"))
#model.add (Dropout(0.3))
model.add(Dense(units=4,activation="softmax"))
model.layers[0].trainable = False
model.summary()
```

Model: "sequential\_3"

| Layer (type)                                           | Output Shape       | Param # |
|--------------------------------------------------------|--------------------|---------|
| densenet121 (Functional)                               | (None, 7, 7, 1024) | 7037504 |
| <pre>batch_normalization_3 (Batc hNormalization)</pre> | (None, 7, 7, 1024) | 4096    |
| <pre>average_pooling2d_3 (Averag ePooling2D)</pre>     | (None, 3, 3, 1024) | 0       |
| flatten_3 (Flatten)                                    | (None, 9216)       | 0       |
| dense_6 (Dense)                                        | (None, 128)        | 1179776 |
| dense_7 (Dense)                                        | (None, 4)          | 516     |
|                                                        |                    |         |

\_\_\_\_\_\_

Total params: 8,221,892 Trainable params: 1,182,340 Non-trainable params: 7,039,552

\_\_\_\_\_

### ▼ [5 points] Train Model

```
#FIT MODEL
print(len(train_batches))
print(len(valid_batches))

STEP_SIZE_TRAIN=train_batches.n//train_batches.batch_size
STEP_SIZE_VALID=valid_batches.n//valid_batches.batch_size

model.compile(optimizer='SGD', loss='categorical_crossentropy', metrics=['accura history = model.fit(x=train_batches,epochs=NUM_EPOCHS,batch_size=BATCH_SIZE, ste
```

### validation\_batch\_size=BATCH\_SIZE, validation\_steps=STEP\_SIZE\_VALID)

|                                                             |       | ,           |       |                |
|-------------------------------------------------------------|-------|-------------|-------|----------------|
| Epoch 68/100                                                |       |             | _     | _              |
| 21/21 [====================================                 | - 429 | s 2s/step – | loss: | 0.3175 - accur |
| Epoch 69/100                                                | 40    | 2 / 1       | ,     | 0.000          |
| 21/21 [====================================                 | - 439 | s 2s/step – | loss: | 0.3610 - accur |
| Epoch 70/100                                                | 41.   | 20/0400     | 1     | 0 2007         |
| 21/21 [=========]<br>Epoch 71/100                           | - 419 | 25/Step -   | 1055; | 0.2897 - accur |
| 21/21 [====================================                 | _ /11 | : 2s/sten - | 1000  | 0 2717 - accur |
| Epoch 72/100                                                | 71.   | , 23/3 CCP  | (033. | 012/1/ accur   |
| 21/21 [====================================                 | - 419 | 2s/step -   | loss: | 0.2798 - accur |
| Epoch 73/100                                                |       |             |       | 0.000.         |
| 21/21 [====================================                 | - 419 | 2s/step –   | loss: | 0.2384 - accur |
| Epoch 74/100                                                |       |             |       |                |
| 21/21 [========]                                            | - 419 | 3 2s/step – | loss: | 0.2431 - accur |
| Epoch 75/100                                                |       |             |       |                |
| 21/21 [==========]                                          | - 419 | s 2s/step – | loss: | 0.2684 - accur |
| Epoch 76/100                                                | 4.4   | 2 / 1       | ,     | 0 2224         |
| 21/21 [====================================                 | - 419 | s 2s/step – | loss: | 0.3231 - accur |
| Epoch 77/100<br>21/21 [==================================== | 11    | 20/0400     | 10001 | 0 2672 accur   |
| Epoch 78/100                                                | - 415 | 25/Step -   | 1055  | 0.2075 - accur |
| 21/21 [====================================                 | _ 41  | : 2s/sten – | 1055: | 0.2807 - accur |
| Epoch 79/100                                                | 11.   | , 23, 3 ccp | (0551 | orzoon accar   |
| 21/21 [====================================                 | - 419 | s 2s/step – | loss: | 0.2246 - accur |
| Epoch 80/100                                                |       | , ,         |       |                |
| 21/21 [========]                                            | - 419 | 2s/step –   | loss: | 0.3408 - accur |
| Epoch 81/100                                                |       |             |       |                |
| 21/21 [========]                                            | - 419 | 2s/step –   | loss: | 0.3500 - accur |
| Epoch 82/100                                                | 4.4   | 2 / 1       | ,     | 0.000          |
| 21/21 [====================================                 | - 419 | s 2s/step – | loss: | 0.2623 - accur |
| Epoch 83/100 21/21 [====================================    | _ /11 | 2c/sten -   | 1000  | 0 2553 - accur |
| Epoch 84/100                                                | - 413 | 5 23/31EP - | 1033. | 0.2333 - accur |
| 21/21 [====================================                 | - 419 | : 2s/sten – | loss: | 0.2968 - accur |
| Epoch 85/100                                                |       |             | 10001 | 0.000.         |
| 21/21 [====================================                 | - 419 | s 2s/step – | loss: | 0.2595 - accur |
| Epoch 86/100                                                |       |             |       |                |
| 21/21 [=======]                                             | - 419 | 3 2s/step – | loss: | 0.2625 - accur |
| Epoch 87/100                                                |       |             |       |                |
| 21/21 [==========]                                          | - 419 | s 2s/step – | loss: | 0.3205 - accur |
| Epoch 88/100                                                | 4.4   | 2 / 1       | ,     | 0 2205         |
| 21/21 [====================================                 | - 419 | s 2s/step – | loss: | 0.2305 - accur |
| Epoch 89/100<br>21/21 [==================================== | _ 426 | 2c/sten -   | 1000  | 0 2716 - accur |
| Epoch 90/100                                                | - 423 | 25/Step -   | 1055. | 0.2/10 - accur |
| 21/21 [====================================                 | - 439 | : 2s/sten – | loss: | 0.1897 – accur |
| Epoch 91/100                                                | .5.   | 3, 3 ccp    |       | 0.1007 accar   |
| 21/21 [====================================                 | - 449 | s 2s/step - | loss: | 0.2763 - accur |
| Epoch 92/100                                                |       |             |       |                |
| 21/21 [========]                                            | - 439 | 3 2s/step – | loss: | 0.2719 - accur |
| Epoch 93/100                                                |       |             | _     |                |
| 21/21 [========]                                            | - 439 | 2s/step –   | loss: | 0.3995 - accur |
|                                                             |       |             |       |                |

### ▼ [5 points] Plot Accuracy and Loss During Training



### ▼ Testing Model

# ▼ [10 points] TSNE Plot

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a widely used technique for dimensionality reduction that is particularly well suited for the visualization of high-dimensional datasets. After training is complete, extract features from a specific deep layer of your choice, use t-SNE to reduce the dimensionality of your extracted features to 2 dimensions and plot the resulting 2D features.

```
c=[colors[i] for i in tsne_eval_generator.labels]
labels = ['COVID-19','Normal', 'Pneumonia_bac', 'Pneumonia_vir']
l=[labels[i] for i in tsne_eval_generator.labels]
x1 = []
y1 = []
for i in range(len(labels)):
  x2 = []
  y2 = []
  for j in range(tsne_obj2.shape[0]):
    if(tsne_eval_generator.labels[j]==i):
      x2.append(tsne_obj2[j,0])
      y2.append(tsne_obj2[j,1])
  x1.append(x2)
  y1.append(y2)
for i in range(len(labels)):
  plt.scatter(x1[i][:], y1[i],c = colors[i],label = labels[i])
plt.title("Multinomial X-Ray Chest Image Classification")
plt.legend()
    Found 270 images belonging to 4 classes.
    270/270 [============ ] - 53s 186ms/step
     (270, 128)
     /usr/local/lib/python3.7/dist-packages/sklearn/manifold/ t sne.py:793: Futu
      FutureWarning,
     (270, 2)
    <matplotlib.legend.Legend at 0x7f7b21b0af90>
            Multinomial X-Ray Chest Image Classification
      20
```



✓ 1m 26s completed at 1:33 PM