3.7 Supplement – Exponential and Logarithmic Functions

1. **Question.** What is an exponential function?

2. **Example.** Use a table of values to sketch $y = 2^x$.

- 3. **Definition.** A function of the form $f(x) = b^x$ where b is a fixed real number, b > 0, $b \neq 1$ is called a **base** b **exponential function**. Its domain is \mathbb{R} , and its range is $(0, \infty)$.
- 4. Theorem Properties of Exponential Functions. Consider an exponential function $f(x) = b^x$.

Suppose $f(x) = b^x$.

- The domain of f is:
- The range of f is:
- A point always on the graph is:
- There is always a horizontal asymptote:
- ullet f is one-to-one, continuous and smooth
- If b > 1:
 - -f is always increasing
 - $\text{ As } x \to -\infty, f(x) \to 0^+$
 - $\text{ As } x \to \infty, f(x) \to \infty$
 - The graph of f resembles:
- If 0 < b < 1:
 - -f is always decreasing
 - $\text{ As } x \to -\infty, f(x) \to \infty$
 - $\text{As } x \to \infty, f(x) \to 0^+$
 - The graph of f resembles:

5. Theorem – Algebraic Properties of Exponential Functions. If $x,y\in\mathbb{R},$ then

$$(i) b^x \cdot b^y = b^{x+y}$$

(ii)
$$\frac{b^x}{b^y} = b^{x-y}$$

$$(iii) (b^x)^y = b^{xy}$$

6. **Question.** What is a logarithm?

- 7. **Reminder.** Suppose f(x) is one-to-one. Then its inverse $f^{-1}(x)$ satisfies
 - (i) $f^{-1}(f(x)) = x$
 - (ii) $f(f^{-1}(y)) = y$
 - (iii) $\operatorname{Dom}_{f^{-1}}=\operatorname{Ran}_f$ and $\operatorname{Ran}_{f^{-1}}=\operatorname{Dom}_f$.
- 8. **Definition.** The inverse of the exponential function $f(x) = b^x$ is called the **base b logarithm function**, and is denoted $f^{-1}(x) = \log_b(x)$ The expression $\log_b(x)$ is read 'log base b of x.'
- 9. The most important log property:

10. Two important logarithms:

- (a) The **common logarithm** of a real number x is $\log_{10}(x)$ and is usually written $\log(x)$.
- (b) The **natural logarithm** of a real number x is $\log_e(x)$ and is usually written ln(x).

11. Theorem – Properties of Logarithmic Functions.

Suppose $f(x) = \log_b(x)$.

- The domain of f is: $(0, \infty)$
- The range of f is" $(-\infty, \infty)$.
- (1,0) is on the graph of f & x = 0 is a vertical asymptote of the graph of f.
- f is one-to-one, continuous and smooth
- $b^a = c$ if and only if $\log_b(c) = a$. So $\log_b(c)$ is the exponent you put on b to obtain c.
- $\log_b(b^x) = x$ for all x and $b^{\log_b(x)} = x$ for all x > 0
- If b > 1:
 - -f is always increasing
 - $-\operatorname{As} x \to 0^+, f(x) \to -\infty$
 - $\text{ As } x \to \infty, f(x) \to \infty$
 - As $x \to \infty$, $f(x) \to \infty$ The graph of f resembles:
- If 0 < b < 1:
 - -f is always decreasing
 - $\text{ As } x \to 0^+, f(x) \to \infty$
 - $As x \to \infty, f(x) \to -\infty$
 - The graph of f resembles:

12. Theorem – Algebraic Properties of Logarithm Functions.

Let $g(x) = \log_b(x)$ be a logarithmic function $(b > 0, b \neq 1)$ and let u > 0 and w > 0 be real numbers, and r any real number.

- (i) [Log] Product Rule: $\log_b(uw) = \log_b(u) + \log_b(w)$
- (ii) [Log] Quotient Rule: $\log_b \left(\frac{u}{w}\right) = \log_b(u) \log_b(w)$
- (iii) [Log] Power Rule: $\log_b(u^r) = r \log_b(u)$

13. Theorem. – Change of base formula. $\log_a(x) = \frac{\log_b(x)}{\log_b(a)}$.

- 14. **Homework.** Create a table of values for the following logarithms, then try plotting them.
 - (a) $f(x) = \log_2(x)$
 - (b) $f(x) = \log(x)$
 - (c) $f(x) = \log_{\frac{1}{2}}(x)$