Introduction to Machine Learning (IML)

LECTURE #7: OPTIMIZATION

236756 – 2024 SPRING – TECHNION

LECTURER: NIR ROSENFELD

Today

- Part II: the different aspects of learning
 - 1. Statistics: generalization and PAC theory
 - 2. Modeling:
 - Error decomposition
 - Regularization
 - Model selection
 - 3. Optimization: convexity, gradient descent (today)
 - 4. Practical aspects and potential pitfalls

Optimization

• Regularized Risk Minimization (RRM):

$$\underset{\theta \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^m \ell(y_i, \theta^\top x_i) + \lambda R(\theta)$$

$$\underset{\text{regularization}}{\operatorname{loss}}$$

- **Recall**: ERM of 0/1 is hard (discrete)
- **Solution**: continuous proxy

Regularized Risk Minimization (RRM):

$$\underset{\theta \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^m \frac{\ell(y_i, \theta^\top x_i)}{\operatorname{loss}} + \frac{\lambda R(\theta)}{\operatorname{regularization}}$$

- Recall: ERM of 0/1 is hard (discrete)
- **Solution**: continuous proxy
- Soft SVM's hinge loss is one option
- Problem: unnecessarily large penalties for far from margin

Regularized Risk Minimization (RRM):

$$\underset{\theta \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^m \ell(y_i, \theta^\top x_i) + \lambda R(\theta)$$

$$\underset{\text{regularization}}{\operatorname{loss}}$$

- Recall: ERM of 0/1 is hard (discrete)
- **Solution**: continuous proxy
- Soft SVM's hinge loss is one option
- Problem: unnecessarily large penalties for far from margin
- Alternative: ramp loss
- **Problem**: optimization... (today we'll see why)

• Tradeoff:

- Many proxies out there!
- [DESMOS]

Proxy losses

• Tradeoff:

- Many proxies out there which is better?
- No definite answer
- But we can say some things sometimes
- Today: focus on optimization (but also generalization)
- Functional properties that give optimization guarantees:

- (sub-)differentiable
- > convex
- > Lipschitz
- > smooth
- bounded

One algorithm to rule them all

- Goal: solve $\min_{\theta \in \mathbb{R}^d} f(\theta)$
- (in learning: f is the learning objective, θ are model parameters)
- Approach: Gradient Descent (GD) [~Cauchy 1847]

$$\theta_{t+1} = \theta_t - \eta \nabla f(\theta_t)$$

- "First order iterative method"
- Applies to <u>any</u> differentiable learning objective
- Forms the basis for many other optimization algorithms (we'll see some today)

• Definition:

The *gradient* of f w.r.t. θ is a vector function of partial derivatives,

$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial \theta_1} \\ \vdots \\ \frac{\partial f}{\partial \theta_d} \end{pmatrix}$$

• Gradient evaluation at $\bar{\theta} \in \mathbb{R}^d$:

$$\nabla f(\bar{\theta}) \in \mathbb{R}^d$$

Gradient Descent (GD)

- Initialize θ_0 (e.g., $\theta_0 = \vec{0}$)
- Repeat:

•
$$\theta_{t+1} = \theta_t - \eta \nabla f(\theta_t)$$

• Until convergence (e.g., $\|\theta_{t+1} - \theta_t\| \le \epsilon$)

- **View I**: fog in mountains
- View II: local greedy descent
- View III: optimize simple approximations

@t:
$$f(\theta) \approx f(\theta_t) + \nabla f(\theta_t)^{\mathsf{T}} (\theta - \theta_t)$$

- View IV: Taylor expansion + tradeoff
 - $f(\theta_t + \delta) \approx f(\theta_t) + \nabla f(\theta_t)^{\mathsf{T}} \delta, \ \delta \in \mathbb{R}^d$
 - $\theta_{t+1} = \theta_t + \delta$ close to θ_t , i.e., $\|\delta\|_2$ is small
 - $\theta_{t+1} = \underset{\theta}{\operatorname{argmin}} \frac{1}{2} \|\theta \theta_t\|_2^2 + \eta (f(\theta_t) + \nabla f(\theta_t)^{\mathsf{T}} (\theta \theta_t))$

•
$$\partial = 0 \Rightarrow \theta_{t+1} = \theta_t - \eta \nabla f(\theta_t)$$

Gradient Descent (GD)

- Initialize θ_0 (e.g., $\theta_0 = \vec{0}$)
- Repeat:

•
$$\theta_{t+1} = \theta_t - \eta \nabla f(\theta_t)$$

• Until convergence (e.g., $\|\theta_{t+1} - \theta_t\| \le \epsilon$)

- View I: fog in mountains
- View II: local greedy descent
- View III: optimize simple approximations

@t:
$$f(\theta) \approx \nabla f(\theta_t)^{\mathsf{T}} \theta$$

- View IV: Taylor expansion + tradeoff
 - $f(\theta_t + \delta) \approx f(\theta_t) + \nabla f(\theta_t)^{\mathsf{T}} \delta, \ \delta \in \mathbb{R}^d$
 - $\theta_{t+1} = \theta_t + \delta$ close to θ_t , i.e., $\|\delta\|_2$ is small
 - $\theta_{t+1} = \underset{\theta}{\operatorname{argmin}} \frac{1}{2} \|\theta_t \theta\|_2^2 + \eta (f(\theta_t) + \nabla f(\theta_t)^{\mathsf{T}} (\theta \theta_t))$
 - $\partial = 0 \Rightarrow \theta_{t+1} = \theta_t \eta \nabla f(\theta_t)$

Gradient Descent (GD)

- Initialize θ_0 (e.g., $\theta_0 = \vec{0}$)
- Repeat:

•
$$\theta_{t+1} = \theta_t - \eta \nabla f(\theta_t)$$

• Until convergence (e.g., $\|\theta_{t+1} - \theta_t\| \le \epsilon$)

Need to determine:

- 1. how to initialize
- 2. step size or learning rate η
- 3. stopping criterion

• **Definition**: Let $B_{\epsilon}(\theta) = \{v: \|\theta - v\| \le \epsilon\}$ be a ball of radius ϵ around θ . Then θ is a *local minimum* of f if

$$\exists \epsilon > 0 \ \forall v \in B_{\epsilon}(\theta), \ f(\theta) \leq f(v)$$

- Claim: if η is small enough, then $f(\theta_{t+1}) < f(\theta_t)$ for any non-minimum θ_t (this is the "descent" part of "gradient descent")
- **Proof**: consider non-minimum θ_t and negate
- Corollary: GD converges* to a local minimum, or stops (saddle point!) * for an appropriate choice of η
- **Trick**: use time-varying learning rate η_t , for example, $\eta_t = 1/t$ (wont' prove)
- Note: if θ_t is a local minimum then $\nabla f(\theta_t) = 0$ (but not iff!)

Learning rate

• **Q1**: So GD converges for learning rate $\eta_t = 1/t$. Are we done?

• **A1**: No!

 $\eta_t = 1/t$ slow convergence (too slow!)

 $\eta_t = 1/\sqrt{t}$ "just right" (how can we know?)

divergence

(too fast!)

Learning rate

• **Q1**: So GD converges for learning rate $\eta_t = 1/t$. Are we done?

• **A1**: No!

divergence? slow convergence?

Choosing the learning rate can be tricky – we will return to this.

When to stop

- Q2: So GD converges in theory. But in practice, how do we know when (and if) it did?
- A2: Can't "know", but can estimate.
- Set criteria for stopping, for example:
 - stop when $\|\theta_{t+1} \theta_t\| \le \epsilon$
 - or when $||f(\theta_{t+1}) f(\theta_t)|| \le \epsilon$
 - or when $\|\nabla f(\theta_t)\| \le \epsilon$
 - or ...
- Actually, knowing when to stop is (also) tricky and has statistical implications! (surprised?) We will return to this as well.

- Q3: So GD can converge to a local minimum. Should we be happy?
- A3: It depends...

- Q3: So GD can converge to a local minimum. Should we be happy?
- A3: It depends...

- Q3: So GD can converge to a local minimum. Should we be happy?
- A3: It depends...

• Q3: So GD can converge to a local minimum. Should we be happy?

• A3: It depends...

• **Goal:** find conditions on *f* for which GD is guaranteed to work well

- Q3: So GD can converge to a local minimum. Should we be happy?
- A3: It depends...

• **Goal:** find conditions on *f* for which GD is guaranteed to work well

• Q3: So GD can converge to a local minimum. Should we be happy?

• A3: It depends...

• **Goal:** find conditions on *f* for which GD is guaranteed to work well

Convexity

Descending with guarantees

- Recall foggy mountain story
- When will the "going down" approach help you reach your cabin?
- When mountain range is:
 - 1. continuous
 - 2. smooth
 - 3. has a single valley
- Enter convexity.
- [on board]

Convex sets

• **Definition:** convex combination:

$$\alpha u + (1 - \alpha)v$$
 for $u, v \in \mathbb{R}^d$, $\alpha \in [0,1]$

- As interpolation point on line between u, v
- **Definition**: *C* is a *convex set* if

 $\forall u, v \in C$, any convex combination of u, v is also in C

• Examples:

Union of Convex is not necessarily Convex

Intersection of Convex is also Convex

$$H_{\theta,b} = \{x : w^{\mathsf{T}} x \ge b\} \qquad \bigcap_{\theta} H_{\theta} \qquad \mathbb{R}$$

• **Definition:** For C convex set, $f: C \to \mathbb{R}$ is convex function if $\forall u, v \in C$, $\alpha \in [0,1]$: $f(\alpha u + (1-\alpha)v) \le \alpha f(u) + (1-\alpha)f(v)$

$$x^{2}$$
? $w^{T}x$? \sqrt{x} ? $\max\{0, x\}$?

Convex sets

- Claim: Let f be convex, then any local minima is also global
- **Proof**: Let u be a local minima, so exist ϵ s.t. for all $w \in B_{\epsilon}(u)$, we have $f(u) \leq f(w)$.
- We will show that $f(u) \le f(v)$ for any v.
- Let v. Choose α s.t. $v' = u + \alpha(v u) \in B_{\epsilon}(u)$. Note v' is on the line between u and v.
- Since v' is in the ball, then:

•
$$f(u) \le f(v') = f(u + \alpha(v - u))$$

= $f(\alpha v + (1 - \alpha)u)$
 $\le \alpha f(v) + (1 - \alpha)f(u)$

- where the second inequality is from convexity.
- Rearranging, we get f(u)

GD convergence rates

If f is convex and:

• L-Lipschitz:
$$f(\theta_t) - f(\theta^*) = O\left(\frac{L}{\sqrt{t}}\right)$$

•
$$\beta$$
-Smooth: $f(\theta_t) - f(\theta^*) \le \frac{2\beta \|\theta_0 - \theta^*\|}{t+4} = O\left(\frac{\beta}{t}\right)$

- Lower bound: $\Omega\left(\frac{\beta}{t^2}\right)$
- σ -Strongly convex: $f(\theta_t) f(\theta^*) = O(e^{-2\sigma t})$

Rate depends on:

- Type
- Parameter
- Initial guess!

f is L-Lipschitz if : $||f(u) - f(w)|| \le L||u - w||$

f is β -Smooth if ∇f is β -Lipschitz: $\|\nabla f(u) - \nabla f(w)\| \le \beta \|u - w\|$

f is σ -Strongly convex if $f(\alpha w + (1 - \alpha)u)$ $\leq \alpha f(w) + (1 - \alpha)f(u) - \frac{\sigma}{2}\alpha(1 - \alpha)\|u - w\|^2$

GD convergence rates

Optimization for learning

Convex learning problems

Recall ERM/RLM:

$$\underset{\theta}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} \ell(y_i, f_{\theta}(x_i)) + \lambda R(\theta)$$

- Before we asked if the loss function itself (i.e., ℓ) is convex
- But what matter is if the entire <u>objective</u> is convex or not (in θ)
- How can we tell?

Composition rules

- Convexity-preserving operations:
 - 1. **scaling**: f convex, $\alpha \ge 0 \Rightarrow \alpha f$ convex [easy]
 - 2. **sum**: f, g convex \Rightarrow f + g convex [tirgul]
 - 3. **noneg. weighted sum**: f_i convex, $\alpha_i \ge 0 \Rightarrow \sum_i \alpha_i f_i$ convex
 - 4. **composition**: f convex, g linear $\Rightarrow f \circ g$ convex [on board]
 - 5. ...
- (these are sufficient conditions, but not necessary)

Composition of convex and linear is convex

• Claim: if g is convex and h is linear, then $f = g \circ h$ is convex

• **Proof**:
$$f(\alpha u + (1 - \alpha)v) = g(h(\alpha u + (1 - \alpha)v)) =_{h \ linear}$$

$$g((\alpha u + (1 - \alpha)v)^T x + b) = g(\alpha u^T x + (1 - \alpha)v^T x + b) =$$

$$g(\alpha u^T x + (1 - \alpha)v^T x + (\alpha + 1 - \alpha)b) =$$

$$g(\alpha (u^T x + b) + (1 - \alpha)(v^T x + b)) = g(\alpha h(u) + (1 - \alpha)h(v))$$

$$\leq_{g \ convex} \alpha g(h(u)) + (1 - \alpha)g(h(v)) = \alpha f(u) + (1 - \alpha)f(v)$$

Convex learning problems

- Claim: The following conditions are sufficient for the learning objective to be convex (in θ):
 - 1. $\ell(y,\cdot)$ is convex (in it's second argument)
 - 2. $R(\cdot)$ is convex
 - 3. f_{θ} is linear (in θ , i.e., $f_{\theta}(x) = \theta^{T}x$)

Convex learning problems

- Claim: The following conditions are sufficient for the learning objective to be convex (in θ):
 - 1. $\ell(y,\cdot)$ is convex (in it's second argument)
 - 2. $R(\cdot)$ is convex
 - 3. f_{θ} is linear (in θ , i.e., $f_{\theta}(x) = \theta^{T}x$)
- Let's try

Convex learning problems

- Claim: The following conditions are sufficient for the learning objective to be convex (in θ):
 - 1. $\ell(y,\cdot)$ is convex (in it's second argument)
 - 2. $R(\cdot)$ is convex
 - 3. f_{θ} is linear (in θ , i.e., $f_{\theta}(x) = \theta^{T}x$)
- Let's try
- Claim: The Soft SVM objective is convex
- Need to prove:
 - 1. $\max\{0, 1 z\}$ is convex [ex]
 - 2. ℓ_2 -norm squared is convex [tirgul]
- Corollary: can solve with GD!

$$\underset{\theta \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^m \max\{0, 1 - y_i \cdot \theta^\top x_i\} + \lambda \|\theta\|_2^2$$

Variations, extensions, and beyond

The computational cost of GD

For running GD we need to compute gradients of the learning objective.

• Note:
$$\nabla \left(\frac{1}{m}\sum_{i=1}^{m}\ell(y_i,f_{\theta}(x_i))\right) = \frac{1}{m}\sum_{i=1}^{m}\nabla\ell(y_i,f_{\theta}(x_i))$$

- For Soft SVM:
 - For each example i, computing $\nabla \max\{0,1-y_i\cdot\theta^\top x_i\}$ costs: O(d)
 - For m examples, overall cost is: O(dm)
- GD can be costly!
- **Solution**: use *approximate* gradients

Taking approximate gradient steps

- Idea: gradient is average, can replace with average over smaller sub-sample!
- Rationale: smaller average has same expected value (=unbiased), but is noisy
- Stochastic Gradient Descent (SGD):*
 - 1. Sample small random "mini-batch" $B \subset S$ of size b
 - 2. Compute average gradient $\overline{\nabla} = \frac{1}{b} \sum_{i \in B} \nabla_i$
 - 3. Apply approximate gradient step $\theta_{t+1} = \theta_t \eta \bar{\nabla}$
- **Pros**: reduces compute time (significantly!)
- Cons: adds noise (often worth it; sometimes even helpful!)
- ullet Hyper parameter b trades off compute time with noise

Looking back

- Consider 2D quadratic with highly varying curvatures
 - On low-curvature dimension, GD crawls hesitantly
 - On high-curvature dimension, GD oscillates frantically
- Adding "momentum" sorts this out:

(imagine a rolling ball)

- Effects of momentum:
 - increases in dimensions where gradient preserves direction
 - decreases in dimensions where gradient direction varies
- Typical β values: 0.9, 0.95, 0.99

$$\theta_{t+1} = \theta_t - \eta \nabla$$

$$same \ rate \ \eta \ in \ all \ directions!$$

Looking forward

- Momentum is great, but can overshoot
- **Solution**: look into *future*
- **Idea:** *imagine* momentum has been applied, then compute gradient

Looking forward

- Momentum is great, but can overshoot
- **Solution**: look into *future*
- Idea: imagine momentum has been applied, then compute gradient
- Nesterov's accelerated gradient:

$$\begin{split} \tilde{\theta}_{t+1} &= \theta_t + \beta v_t \\ v_{t+1} &= \beta v_t - \eta \nabla f (\tilde{\theta}_{t+1}) \\ \theta_{t+1} &= \theta_t + v_{t+1} \end{split}$$

• Equivalent:

$$\begin{aligned} v_{t+1} &= \beta v_t - \eta \nabla f(\theta_t) \\ \theta_{t+1} &= \theta_t + (1+\beta)v_{t+1} - \beta v_t \end{aligned}$$

Vs. momentum:

$$\begin{split} v_{t+1} &= \beta v_t - \eta \nabla f(\theta_t) \\ \theta_{t+1} &= \theta_t + v_{t+1} \\ &= \theta_t - \eta \nabla f(\theta_t) + \beta v_t \end{split}$$

Looking forward

Nesterov's accelerated gradient:

$$\begin{aligned} v_{t+1} &= \beta v_t - \eta \nabla f(\theta_t) \\ \theta_{t+1} &= \theta_t + (1+\beta)v_{t+1} - \beta v_t \end{aligned}$$

This is not a descent method!

Nonetheless, converges faster:

$$f(\theta_t) - f(\theta^*) \le \frac{2\beta \|\theta_0 - \theta^*\|}{t^2} = O\left(\frac{\beta}{t^2}\right)$$

Momentum update

Nesterov momentum update

matches lower bound!

Beyond convexity

Back to modelling

Recall:

- Really want to optimize 0/1 loss
- Instead optimize a continuous proxy
- Proxies trade off in approximation vs. optimization
- GD provides strong guarantees for *convex* objectives
- But can still be applied to non-convex objectives!
 - > non-convex losses
 - > non-convex regularizers
 - > non-convex predictive models

(just need differentiability)

• Finds only <u>local</u> minimum, but many "tricks" for ending up at good local minimum

Optimization landscape

Can still apply gradient methods!

Automatic differentiation

- GD requires access to gradients
- Stone age: had to compute gradients by hand

$$P_{k} = \frac{e^{f_{k}}}{\sum_{j} e^{f_{j}}}$$
 $L_{i} = -\sum_{k} p_{i,k} \log P_{k}$ $f_{m} = (x_{i}W)_{m}$

when
$$k = m$$
,
$$\frac{\partial P_k}{\partial f_m} = \frac{e^{f_k} \sum_j e^{f_j} - e^{f_k} \cdot e^{f_k}}{(\sum_j e^{f_j})^2} = P_k (1 - P_k)$$

when
$$k \neq m$$
, $\frac{\partial P_k}{\partial f_m} = -\frac{e^{f_k}e^{f_m}}{(\sum_j e^{f_j})^2} = -P_k P_m$

then:

$$\begin{split} \frac{\partial L_i}{\partial f_m} &= -\sum_k p_{i,k} \frac{\partial \log P_k}{\partial f_m} \\ &= -\sum_k p_{i,k} \frac{1}{P_k} \frac{\partial P_k}{\partial f_m} \\ &= -\sum_{k=m} p_{i,k} \frac{1}{P_k} P_k (1 - P_k) + \sum_{k \neq m} p_{i,k} \frac{1}{P_k} P_k P_m \\ &= \sum_{k \neq m} p_{i,k} P_m - \sum_{k=m} p_{i,k} (1 - P_k) \\ &= \begin{cases} P_m & , & m \neq y_i \\ P_m - 1 & , & m = y_i \\ = P_m - p_{i,m} \end{cases} \end{split}$$

Last:

$$\frac{\partial L_i}{\partial W_k} = \frac{\partial L_i}{\partial f_m} \frac{\partial f_m}{\partial W_k} = x_i^T (P_m - p_{i,m})$$

$$\nabla_{W_k} L = -\frac{1}{N} \sum_{i} x_i^{T} (p_{i,m} - P_m) + 2\lambda W_k$$

ittp://tding:/badpcnetra/ust999

Differentiating in practice

- GD requires access to gradients
- Stone age: had to compute gradients by hand
- Modern age: automatic differentiation (AutoDiff)

$$(y, dy/dx) = foo(x)$$
 $backward$

- Gradient computation completely abstracted away
- Building blocks + composition = differentiable programs
- We'll return to this when we discuss deep learning

$$P_k = \frac{e^{f_k}}{\sum_{j} e^{f_j}} \qquad L_i = -\sum_{k} p_{i,k} \log P_k \qquad f_m = (x_i W)_m$$

when
$$k = m$$
, $\frac{\partial P_k}{\partial f_m} = \frac{e^{f_k} \sum_{j} e^{f_j} - e^{f_k} \cdot e^{f_k}}{(\sum_{j} e^{f_j})^2} = P_k (1 - P_k)$

when
$$k \neq m$$
, $\frac{\partial P_k}{\partial f_m} = -\frac{e^{f_k} e^{f_m}}{(\sum_j e^{f_j})^2} = -P_k P_m$

then

$$\frac{\partial L_i}{\partial f_m} = -\sum_k p_{i,k} \frac{\partial \log P_k}{\partial f_m}$$

$$= -\sum_k p_{i,k} \frac{1}{P_k} \frac{\partial P_k}{\partial f_m}$$

$$= -\sum_{k=m} p_{i,k} \frac{1}{P_k} P_k (1 - P_k) + \sum_{k \neq m} p_{i,k} \frac{1}{P_k} P_k P_m$$

$$= \sum_{k \neq m} p_{i,k} P_m - \sum_{k=m} p_{i,k} (1 - P_k)$$

$$= \begin{cases} P_m & , & m \neq y_i \\ P_m - 1 & , & m = y_i \end{cases}$$

$$= P_m - p_i \dots$$

Last

$$\frac{\partial L_i}{\partial W_k} = \frac{\partial L_i}{\partial f_m} \frac{\partial f_m}{\partial W_k} = x_i^T (P_m - p_{i,m})$$

$$\nabla_{W_k} L = -\frac{1}{N} \sum_{i} x_i^T (p_{i,m} - P_m) + 2\lambda W_k$$

Up next

- Part II: the different aspects of learning
 - 1. Statistics: generalization and PAC theory
 - 2. Modeling:
 - Error decomposition
 - Regularization
 - Model selection
 - 3. Optimization: convexity, gradient descent
 - 4. Practical aspects and potential pitfalls

Perceptron

```
input: sample set S = \{(x_i, y_i)\}_{i=1}^m
```

algorithm:

- initialize $w_0 = \vec{0}$
- for t = 1, 2, ...
 - if $\exists i \in [m]$ s.t. $y_i w_t^{\mathsf{T}} x_i \leq 0$ #wrong classification
 - $w_{t+1} = w_t + y_i x_i$
 - else
 - return w_t

