Scalable Algorithms for Distributed Statistical Inference

Animashree Anandkumar

School of Electrical and Computer Engineering Cornell University, Ithaca, NY 14853

Currently visiting EECS, MIT, Cambridge, MA 02139

PhD Committee: Lang Tong, Aaron Wagner, Kevin Tang David Williamson, Ananthram Swami.

Supported by ARL-CTA, ARO, IBM PhD Fellowship

Introduction

Internet

PSTN

Traditional Wire-line Networks

- Fixed networks
- Over-provisioned links
- Layered architecture

Emerging Networks

- Large, complex, ubiquitous
- Resource constraints
 e.g., Energy, Bandwidth
- Heterogeneous nodes
- Interaction between different networks

Cognitive Networks

Characteristics

- Large number of samples, multi-modal
- Noisy, imperfect or missing data

Characteristics

- Large number of samples, multi-modal
- Noisy, imperfect or missing data
- Data Locality: relationship between data at nearby nodes
 - e.g., Temperature & other environmental data

Characteristics

- Large number of samples, multi-modal
- Noisy, imperfect or missing data
- Data Locality: relationship between data at nearby nodes
 - e.g., Temperature & other environmental data

Data to Knowledge: Specific Goals of Networks

Characteristics

- Large number of samples, multi-modal
- Noisy, imperfect or missing data
- Data Locality: relationship between data at nearby nodes
 - e.g., Temperature & other environmental data

Data to Knowledge: Specific Goals of Networks

Distributed Statistical Inference

Inference about a random population made from its samples

Inference about a random population made from its samples

Classical Inference

- Quantization and inference rules
- Fixed configuration (one hop)
- Independent data at nodes

Inference about a random population made from its samples

Classical Inference

- Quantization and inference rules
- Fixed configuration (one hop)
- Independent data at nodes

Wireless Sensor Networks for Inference

- Multihop data fusion
- Constraints on fusion costs
- Transmission and fusion policies
- Correlated data: local dependence

Inference about a random population made from its samples

Classical Inference

- Quantization and inference rules
- Fixed configuration (one hop)
- Independent data at nodes

Wireless Sensor Networks for Inference

- Multihop data fusion
- Constraints on fusion costs
- Transmission and fusion policies
- Correlated data: local dependence

Scaling of Fusion Costs & Inference Accuracy with Network Size

Setup: Fusion of Sensor Data & Fusion Cost

Setup

- Consider n randomly distributed sensors $V_i \in \mathbf{V}_n$ making random observations $\mathbf{Y}_{\mathbf{V}_n}$.
- Fusion center makes decision on underlying hypothesis using data
- ullet The fusion policy π_n schedules transmissions and computations at sensor nodes in \mathbf{V}_n

Setup: Fusion of Sensor Data & Fusion Cost

Setup

- Consider n randomly distributed sensors $V_i \in \mathbf{V}_n$ making random observations $\mathbf{Y}_{\mathbf{V}_n}$.
- Fusion center makes decision on underlying hypothesis using data
- The fusion policy π_n schedules transmissions and computations at sensor nodes in \mathbf{V}_n

Setup: Fusion of Sensor Data & Fusion Cost

Setup

- Consider n randomly distributed sensors $V_i \in \mathbf{V}_n$ making random observations $\mathbf{Y}_{\mathbf{V}_n}$.
- Fusion center makes decision on underlying hypothesis using data
- ullet The fusion policy π_n schedules transmissions and computations at sensor nodes in \mathbf{V}_n

Cost of a Fusion Policy

The average fusion cost $\bar{\mathcal{E}}(\pi_n) \stackrel{\Delta}{=} \frac{1}{n} \sum_{V_i \in \mathbf{V}_n} \mathcal{E}_i(\pi_n)$

Scaling of Fusion Cost & Lossless Fusion

Cost of a Fusion Policy

- The fusion policy π_n schedules transmissions of sensor nodes
- The average fusion cost

$$\bar{\mathcal{E}}(\pi_n) \stackrel{\Delta}{=} \frac{1}{n} \sum_{V_i \in \mathbf{V}_n} \mathcal{E}_i(\pi_n)$$

• How does $\bar{\mathcal{E}}(\pi_n)$ behave?

A. Anandkumar, J.E. Yukich, L. Tong, A. Swami, "Energy scaling laws for distributed inference in random networks," accepted to IEEE JSAC: Special Issues on Stochastic Geometry and Random Graphs for Wireless Networks, Dec. 2008 (on ArXiv)

Scaling of Fusion Cost & Lossless Fusion

Cost of a Fusion Policy

- The fusion policy π_n schedules transmissions of sensor nodes
- The average fusion cost

$$\bar{\mathcal{E}}(\pi_n) \stackrel{\Delta}{=} \frac{1}{n} \sum_{V_i \in \mathbf{V}_n} \mathcal{E}_i(\pi_n)$$

• How does $\bar{\mathcal{E}}(\pi_n)$ behave?

A. Anandkumar, J.E. Yukich, L. Tong, A. Swami, "Energy scaling laws for distributed inference in random networks," accepted to *IEEE JSAC: Special Issues on Stochastic Geometry and Random Graphs for Wireless Networks*, Dec. 2008 (on ArXiv)

Scaling of Fusion Cost & Lossless Fusion

Cost of a Fusion Policy

- The fusion policy π_n schedules transmissions of sensor nodes
- The average fusion cost

$$\bar{\mathcal{E}}(\pi_n) \stackrel{\Delta}{=} \frac{1}{n} \sum_{V_i \in \mathbf{V}_n} \mathcal{E}_i(\pi_n)$$

• How does $\bar{\mathcal{E}}(\pi_n)$ behave?

Constraint: No Loss in Inference Performance

A fusion policy is lossless if it results in no loss of inference performance at fusion center- as if all raw data available at fusion center

A. Anandkumar, J.E. Yukich, L. Tong, A. Swami, "Energy scaling laws for distributed inference in random networks," accepted to *IEEE JSAC: Special Issues on Stochastic Geometry and Random Graphs for Wireless Networks*, Dec. 2008 (on ArXiv)

Fusion policy graph

Network graph

Fusion policy graph

Network graph

Dependency graph

Fusion policy graph Netwo Scalable Lossless Fusion Policy

Network graph Policy

Dependency graph

Find a sequence of scalable policies $\{\pi_n\}$, i.e.,

$$\limsup_{n \to \infty} \frac{1}{n} \sum_{V_i \in \mathbf{V}_n} \mathcal{E}_i(\pi_n) \stackrel{L^2}{=} \bar{\mathcal{E}}_{\infty}^{\pi} < \infty,$$

with small scaling constant $\bar{\mathcal{E}}_{\infty}^{\pi}$ such that optimal inference is achieved at fusion center (lossless) for a class of node configurations.

Goal: what placement strategy has best asymptotic average energy $\bar{\mathcal{E}}_{\infty}^{\pi}$?

Goal: what placement strategy has best asymptotic average energy $\bar{\mathcal{E}}_{\infty}^{\pi}$?

Goal: what placement strategy has best asymptotic average energy $\bar{\mathcal{E}}_{\infty}^{\pi}$?

Goal: what placement strategy has best asymptotic average energy $\bar{\mathcal{E}}_{\infty}^{\pi}$?

Goal: what placement strategy has best asymptotic average energy $\bar{\mathcal{E}}_{\infty}^{\pi}$?

Challenge: Network & dependency graphs influenced by node locations

Related Work: Scaling Laws in Networks

Capacity Scaling in Wireless Networks (Gupta & Kumar, IT '00)

• Information flow between nodes, $O(\frac{1}{\sqrt{n \log n}})$ scaling

Routing Correlated Data

 Algorithms for gathering correlated data (Cristescu, B. Beferull-Lozano & Vetterli, TON '06)

Function Computation

- Rate scaling for Computation of separable functions at a sink (Giridhar & Kumar, JSAC '05)
- Bounds on time required to achieve a distortion level for distributed computation (Ayaso, Dahleh & Shah, ISIT '08)

Outline

- Models, assumptions, and problem formulations
 - ▶ Propagation, network, and inference models
- Insights from special cases
- Markov random fields
- Scalable data fusion for Markov random field
- Some related problems
- Conclusion and future work

Propagation Model and Assumptions

- Cost for perfect reception: $\mathcal{E}_T = O(d^{\nu})$. ν : path-loss exponent.
- Scheduling to avoid interference.
- Quantization effects ignored.

Berkeley Mote

Characteristics

- ▶ ☐ Transmission range: 500-1000 ft.
- Current draw: 25mA (tx), 8mA (rx)
- Rate: 38.4 Kbaud.

 Rate: 3

A. Ephremides, "Energy concerns in wireless networks," *IEEE Wireless Comm.*, no. 4, Aug. 2002

Network Graph Model For Communication

Random Node Placement

- ullet Points $X_i \overset{ ext{i.i.d.}}{\sim} \kappa(x)$ on unit ball Q_1
- ullet $\kappa(x)$ bounded away from 0 and ∞
- Network scaled to a fixed density λ : $V_i = \sqrt{\frac{n}{\lambda}} X_i$

Network Graph Model For Communication

Random Node Placement

- Points $X_i \overset{\text{i.i.d.}}{\sim} \kappa(x)$ on unit ball Q_1
- ullet $\kappa(x)$ bounded away from 0 and ∞
- Network scaled to a fixed density λ : $V_i = \sqrt{\frac{n}{N}} X_i$

Network Graph for Communication

- Connected set of comm. links
- Energy & interference constraints
 Disc graph above critical radius
- Adjustable transmission power

Incorporate inference model (dependency graph) for scalable fusion policy

Distributed Computation of Sufficient Statistic

Example: Sufficient Statistic for Mean Estimation $Y_1, \dots, Y_n \overset{i.i.d.}{\sim} \mathcal{N}(\theta, 1)$

 $\sum_{i} Y_{i}$ sufficient to estimate θ : no performance loss

E. Dynkin, "Necessary and sufficient statistics for a family of probability distributions," Tran.

Anima Anandkumar (Cornell)

Example: Sufficient Statistic for Mean Estimation $Y_1,\dots,Y_n \overset{i.i.d.}{\sim} \mathcal{N}(\theta,1)$

 $\sum_{i} Y_{i}$ sufficient to estimate θ : no performance loss

Sufficient Statistic For Inference: No Performance Loss

- Dimensionality reduction: lower communication costs
- Minimal Sufficiency: Maximum dimensionality reduction

E. Dynkin, "Necessary and sufficient statistics for a family of probability distributions," *Tran.*

Example: Sufficient Statistic for Mean Estimation $Y_1, \dots, Y_n \overset{i.i.d.}{\sim} \mathcal{N}(\theta, 1)$

 $\sum_{i} Y_{i}$ sufficient to estimate θ : no performance loss

Sufficient Statistic For Inference: No Performance Loss

- Dimensionality reduction: lower communication costs
- Minimal Sufficiency: Maximum dimensionality reduction

Binary Hypothesis Testing: Decide $Y_1, \dots, Y_n \sim f_0(\mathbf{Y}_n)$ or $f_1(\mathbf{Y}_n)$

E. Dynkin, "Necessary and sufficient statistics for a family of probability distributions," *Tran.*

Example: Sufficient Statistic for Mean Estimation $Y_1, \dots, Y_n \overset{i.i.d.}{\sim} \mathcal{N}(\theta, 1)$

 $\sum_{i} Y_{i}$ sufficient to estimate θ : no performance loss

Sufficient Statistic For Inference: No Performance Loss

- Dimensionality reduction: lower communication costs
- Minimal Sufficiency: Maximum dimensionality reduction

Binary Hypothesis Testing: Decide $Y_1, \ldots, Y_n \sim f_0(\mathbf{Y}_n)$ or $f_1(\mathbf{Y}_n)$

Minimal Sufficient Statistic for Binary Hypothesis Testing (Dynkin 61)

Log Likelihood Ratio:
$$L_{\mathfrak{G}}(\mathbf{Y}_n) = \log \frac{f_0(\mathbf{Y}_n)}{f_1(\mathbf{Y}_n)}$$

E. Dynkin, "Necessary and sufficient statistics for a family of probability distributions," *Tran.*

Math, Stat. and Prob., vol. 1, pp. 23-41, 1961

Example: Sufficient Statistic for Mean Estimation $Y_1, \ldots, Y_n \overset{i.i.d.}{\sim} \mathcal{N}(\theta, 1)$

 $\sum_{i} Y_{i}$ sufficient to estimate θ : no performance loss

Sufficient Statistic For Inference: No Performance Loss

- Dimensionality reduction: lower communication costs
- Minimal Sufficiency: Maximum dimensionality reduction

Binary Hypothesis Testing: Decide $Y_1, \ldots, Y_n \sim f_0(\mathbf{Y}_n)$ or $f_1(\mathbf{Y}_n)$

Minimal Sufficient Statistic for Binary Hypothesis Testing (Dynkin 61)

Log Likelihood Ratio:
$$L_{\mathcal{G}}(\mathbf{Y}_n) = \log \frac{f_0(\mathbf{Y}_n)}{f_1(\mathbf{Y}_n)}$$

Is there a scalable fusion policy for computing likelihood ratio?

E. Dynkin, "Necessary and sufficient statistics for a family of probability distributions," Tran.

Math, Stat. and Prob., vol. 1, pp. 23-41, 1961

Inference Model and Assumptions

- Random location $\mathbf{V}_n \stackrel{\Delta}{=} (V_1, \cdots, V_n)$ and sensor data $\mathbf{Y}_{\mathbf{V}_n}$.
- Binary hypothesis: \mathcal{H}_0 vs. \mathcal{H}_1 : $\mathcal{H}_k: \mathbf{Y}_{\mathbf{V}_n} \sim f(\mathbf{y}_{\mathbf{v}_n} | \mathbf{V}_n = \mathbf{v}_n; \mathcal{H}_k)$

Inference Model and Assumptions

- Random location $\mathbf{V}_n \stackrel{\Delta}{=} (V_1, \cdots, V_n)$ and sensor data $\mathbf{Y}_{\mathbf{V}_n}$.
- $\bullet \ \, \text{Binary hypothesis:} \ \, \mathcal{H}_0 \ \, \text{vs.} \ \, \mathcal{H}_1 \colon \quad \, \mathcal{H}_k : \mathbf{Y}_{\mathbf{V}_n} \sim f(\mathbf{y}_{\mathbf{v}_n} | \mathbf{V}_n = \mathbf{v}_n; \mathcal{H}_k)$
- $\mathbf{Y}_{\mathbf{V}_n}$: Markov random field with dependency graph $\mathfrak{G}_k(\mathbf{V}_n)$

Dependency neighbor condition: No direct "interaction" between two nodes unless they are neighbors in dependency graph

Outline

- Models, assumptions, and problem formulations
 - ▶ Propagation, network, and inference models
- Insights from special cases
- Markov random fields
- Scalable data fusion for Markov random field
- Some related problems
- Conclusion and future work

16

Consider i.i.d. observations

$$\mathcal{H}_k: \mathbf{Y}_{\mathbf{V}} \sim \prod_{i \in \mathbf{V}} f_k(Y_i)$$

Sufficient statistic

$$L(\mathbf{Y}_{\mathbf{V}}) = \log \frac{f_0(\mathbf{Y}_{\mathbf{V}})}{f_1(\mathbf{Y}_{\mathbf{V}})} = \sum_{i \in \mathbf{V}} L(Y_i)$$

Consider i.i.d. observations

$$\mathcal{H}_k: \mathbf{Y}_{\mathbf{V}} \sim \prod_{i \in \mathbf{V}} f_k(Y_i)$$

Sufficient statistic

$$L(\mathbf{Y}_{\mathbf{V}}) = \log \frac{f_0(\mathbf{Y}_{\mathbf{V}})}{f_1(\mathbf{Y}_{\mathbf{V}})} = \sum_{i \in \mathbf{V}} L(Y_i)$$

The optimal data fusion is the LLR aggregation over the MST (why?)

Consider i.i.d. observations

$$\mathcal{H}_k: \mathbf{Y}_{\mathbf{V}} \sim \prod_{i \in \mathbf{V}} f_k(Y_i)$$

Sufficient statistic

$$L(\mathbf{Y}_{\mathbf{V}}) = \log \frac{f_0(\mathbf{Y}_{\mathbf{V}})}{f_1(\mathbf{Y}_{\mathbf{V}})} = \sum_{i \in \mathbf{V}} L(Y_i)$$

The optimal data fusion is the LLR aggregation over the MST (why?)

- each node must transmit at least once
- MST minimizes power-weighted edge sum: $\min \sum_i |e_i|^{\nu}$

Consider i.i.d. observations

$$\mathcal{H}_k: \mathbf{Y}_{\mathbf{V}} \sim \prod_{i \in \mathbf{V}} f_k(Y_i)$$

Sufficient statistic

$$L(\mathbf{Y}_{\mathbf{V}}) = \log \frac{f_0(\mathbf{Y}_{\mathbf{V}})}{f_1(\mathbf{Y}_{\mathbf{V}})} = \sum_{i \in \mathbf{V}} L(Y_i)$$

The optimal data fusion is the LLR aggregation over the MST (why?)

- each node must transmit at least once
- ullet MST minimizes power-weighted edge sum: $\min \sum_i |e_i|^
 u$

Assume network graph contains MST

Optimal Fusion: Energy Analysis

Energy per node is

$$\bar{\mathcal{E}}(\pi_n^{\mathrm{MST}}) = \frac{1}{n} \sum_{e \in \mathrm{MST}_n} |e|^{\nu}$$

Steele'88, Yukich'00

$$\frac{1}{n} \sum_{e \in \mathsf{MST}_n} |e|^{\nu} \overset{L^2}{\to} \bar{\mathcal{E}}^{\mathsf{MST}}_{\infty} < \infty$$

Scalable fusion along MST for independent data

J. E. Yukich, "Asymptotics for weighted minimal spanning trees on random points," *Stochastic Processes and their Applications*, vol. 85, No. 1, pp. 123-138, Jan. 2000.

Role of Sensor Location Distribution

Better scaling constant
$$ar{\mathcal{E}}_{\infty}^{ ext{MST}} = \zeta(
u; ext{MST}) \int_{Q_1} \kappa(x)^{1-rac{
u}{2}} dx ?$$

Role of Sensor Location Distribution

Better scaling constant
$$ar{\mathcal{E}}_{\infty}^{ ext{MST}} = \zeta(
u; ext{MST}) \int_{Q_1} \kappa(x)^{1-rac{
u}{2}} dx ?$$

19

Role of Sensor Location Distribution

Better scaling constant
$$\bar{\mathcal{E}}_{\infty}^{\text{MST}} = \zeta(\nu; \text{MST}) \int_{Q_1} \kappa(x)^{1-\frac{\nu}{2}} dx$$
?

Ratio of $ar{\mathcal{E}}_{\infty}^{ exttt{MST}}$ of clustered and spread-out placements with respect to uniform

Outline

- Models, assumptions, and problem formulations
 - ▶ Propagation, network, and inference models
- Insights from special cases
- Markov random fields
 - Conditional-independence Relationships
 - Hammersley-Clifford Theorem
 - Form of Likelihood Ratio
- Scalable data fusion for Markov random field
- Some related problems
- Conclusion and future work

Inference Model and Assumptions

- Random location $\mathbf{V}_n \stackrel{\Delta}{=} (V_1, \cdots, V_n)$ and samples $\mathbf{Y}_{\mathbf{V}_n}$.
- ullet Binary hypothesis: \mathcal{H}_0 vs. \mathcal{H}_1 : $\mathcal{H}_k: \mathbf{Y}_{\mathbf{V}_n} \sim f(\mathbf{y}_{\mathbf{v}_n} | \mathbf{V}_n = \mathbf{v}_n; \mathcal{H}_k)$

Inference Model and Assumptions

- Random location $\mathbf{V}_n \stackrel{\Delta}{=} (V_1, \cdots, V_n)$ and samples $\mathbf{Y}_{\mathbf{V}_n}$.
- Binary hypothesis: \mathcal{H}_0 vs. \mathcal{H}_1 : $\mathcal{H}_k: \mathbf{Y}_{\mathbf{V}_n} \sim f(\mathbf{y}_{\mathbf{v}_n} | \mathbf{V}_n = \mathbf{v}_n; \mathcal{H}_k)$
- ullet $\mathbf{Y}_{\mathbf{V}_n}$: Markov random field with dependency graph $\mathfrak{G}_k(\mathbf{V}_n)$

Dependency Graph and Markov Random Field

• Consider an undirected graph $\mathfrak{G}(\mathbf{V})$, each vertex $V_i \in \mathbf{V}$ is associated with a random variable Y_i

Dependency Graph and Markov Random Field

• Consider an undirected graph $\mathfrak{G}(\mathbf{V})$, each vertex $V_i \in \mathbf{V}$ is associated with a random variable Y_i

Dependency Graph and Markov Random Field

- Consider an undirected graph $\mathfrak{G}(\mathbf{V})$, each vertex $V_i \in \mathbf{V}$ is associated with a random variable Y_i
- For any disjoint sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$ such that \mathcal{C} separates \mathcal{A} and \mathcal{B} ,

Likelihood Function of MRF

Hammersley-Clifford Theorem'71

Let f be joint pdf of MRF with graph $\mathcal{G}(\mathbf{V})$,

$$-\log f(\mathbf{Y}_{\mathbf{V}}) = \sum_{c \in \mathcal{C}} \Psi_c(\mathbf{Y}_c)$$

where $\mathcal C$ is the set of maximal cliques.

Likelihood Function of MRF

Hammersley-Clifford Theorem'71

Let f be joint pdf of MRF with graph $\mathfrak{G}(\mathbf{V})$,

$$-\log f(\mathbf{Y}_{\mathbf{V}}) = \sum_{c \in \mathcal{C}} \Psi_c(\mathbf{Y}_c)$$

where \mathcal{C} is the set of maximal cliques.

Gaussian MRF:

$$-\log f(\mathbf{Y}_{\mathbf{V}}) = \frac{1}{2} \left(-n\log 2\pi - \log |\mathbf{\Sigma}_{\mathbf{V}}| + \sum_{(i,j) \in \mathcal{G}} \mathbf{\Sigma}_{\mathbf{V}}^{-1}(i,j)Y_iY_j + \sum_{i \in \mathbf{V}} \mathbf{\Sigma}_{\mathbf{V}}^{-1}(i,i)Y_i^2 \right)$$

Dependency Graph

Inverse of Covariance Matrix

Inference Model and Assumptions

- Random location $\mathbf{V}_n \stackrel{\Delta}{=} (V_1, \cdots, V_n)$ and samples $\mathbf{Y}_{\mathbf{V}_n}$.
- Binary hypothesis: \mathcal{H}_0 vs. \mathcal{H}_1 : $\mathcal{H}_k : \mathbf{Y}_{\mathbf{V}_n} \sim f(\mathbf{y}_{\mathbf{v}_n} | \mathbf{V}_n = \mathbf{v}_n, \mathcal{H}_k)$

Inference Model and Assumptions

- Random location $\mathbf{V}_n \stackrel{\Delta}{=} (V_1, \cdots, V_n)$ and samples $\mathbf{Y}_{\mathbf{V}_n}$.
- Binary hypothesis: \mathcal{H}_0 vs. \mathcal{H}_1 : $\mathcal{H}_k: \mathbf{Y}_{\mathbf{V}_n} \sim f(\mathbf{y}_{\mathbf{v}_n} | \mathbf{V}_n = \mathbf{v}_n, \mathcal{H}_k)$
- $\mathbf{Y}_{\mathbf{V}_n}$: Markov random field with dependency graph $\mathfrak{G}_k(\mathbf{V}_n)$

$$-\log f(\mathbf{Y}_{\mathbf{V}_n}|\mathcal{G}_k, \mathcal{H}_k) = \sum_{c \in \mathcal{C}_k} \Psi_{k,c}(\mathbf{Y}_c)$$

where $\mathcal{C}_{n,k}$ is the collection of maximal cliques $\Psi_{k,c}$ clique potentials.

Recall Hammersley-Clifford Theorem

$$-\log f(\mathbf{Y}_{\mathbf{V}_n}|\mathcal{G}_k,\mathcal{H}_k) = \sum_{c \in \mathcal{C}_k} \Psi_{k,c}(\mathbf{Y}_c)$$

$$L_{\mathcal{G}}(\mathbf{Y}_{\mathbf{V}}) = \log \frac{f(\mathbf{Y}_{\mathbf{V}}|\mathcal{G}_{0}, \mathcal{H}_{0})}{f(\mathbf{Y}_{\mathbf{V}}|\mathcal{G}_{1}, \mathcal{H}_{1})}$$

Recall Hammersley-Clifford Theorem

$$-\log f(\mathbf{Y}_{\mathbf{V}_n}|\mathcal{G}_k,\mathcal{H}_k) = \sum_{c \in \mathcal{C}_k} \Psi_{k,c}(\mathbf{Y}_c)$$

$$L_{\mathcal{G}}(\mathbf{Y}_{\mathbf{V}}) = \log \frac{f(\mathbf{Y}_{\mathbf{V}}|\mathcal{G}_{0}, \mathcal{H}_{0})}{f(\mathbf{Y}_{\mathbf{V}}|\mathcal{G}_{1}, \mathcal{H}_{1})}$$

Recall Hammersley-Clifford Theorem

$$-\log f(\mathbf{Y}_{\mathbf{V}_n}|\mathcal{G}_k,\mathcal{H}_k) = \sum_{c \in \mathcal{C}_k} \Psi_{k,c}(\mathbf{Y}_c)$$

$$L_{\mathcal{G}}(\mathbf{Y}_{\mathbf{V}}) = \log \frac{f(\mathbf{Y}_{\mathbf{V}}|\mathcal{G}_{0}, \mathcal{H}_{0})}{f(\mathbf{Y}_{\mathbf{V}}|\mathcal{G}_{1}, \mathcal{H}_{1})}$$

Recall Hammersley-Clifford Theorem

$$-\log f(\mathbf{Y}_{\mathbf{V}_n}|\mathcal{G}_k,\mathcal{H}_k) = \sum_{c \in \mathcal{C}_k} \Psi_{k,c}(\mathbf{Y}_c)$$

$$L_{\mathcal{G}}(\mathbf{Y}_{\mathbf{V}}) = \log \frac{f(\mathbf{Y}_{\mathbf{V}}|\mathcal{G}_{0}, \mathcal{H}_{0})}{f(\mathbf{Y}_{\mathbf{V}}|\mathcal{G}_{1}, \mathcal{H}_{1})} = \sum_{c \in \mathcal{C}} \phi(\mathbf{Y}_{c})$$

Outline

- Models, assumptions, and problem formulations
 - ▶ Propagation, network, and inference models
- Insights from special cases
- Markov random fields
- Scalable data fusion for Markov random field
 - ► A suboptimal scalable policy
 - Effects of sparsity on scalability
 - Energy scaling analysis
- Some related problems
- Conclusion and future work

Fusion for Markov Random Field

Network graph

Fusion policy graph

Lossless Fusion Policies

Given the network and dependency graphs $(\mathfrak{N}, \mathfrak{G})$,

$$\mathfrak{F}_{g,\mathcal{N}} \stackrel{\Delta}{=} \{\pi : L_g(\mathbf{Y}_{\mathbf{V}}) = \sum_{c \in \mathcal{C}} \phi(\mathbf{Y}_c) \text{ computable at the fusion center}\}.$$

Optimal fusion Policy:
$$\mathcal{E}(\pi_n^*) = \min_{\pi \in \mathfrak{F}_{2n,N_n}} \sum_i \mathcal{E}_i(\pi_n)$$

NP-hard: Steiner-tree reduction (INFOCOM '08)

Log-likelihood Ratio
$$L_{\mathfrak{G}}(\mathbf{Y}_{\mathbf{V}}) = \sum_{c \in \mathfrak{C}} \phi(\mathbf{Y}_c)$$

- Given dependency graph \mathcal{G} and network graph \mathcal{N} .
- Randomly select a representative (processor) in each clique of \mathfrak{G} .
- ullet Clique members forward data to processor via SPR on ${\mathcal N}$

Log-likelihood Ratio
$$L_{\mathfrak{G}}(\mathbf{Y}_{\mathbf{V}}) = \sum_{c \in \mathfrak{C}} \phi(\mathbf{Y}_c)$$

- Given dependency graph \mathcal{G} and network graph \mathcal{N} .
- Randomly select a representative (processor) in each clique of 9.
- ullet Clique members forward data to processor via SPR on ${\mathcal N}$

Log-likelihood Ratio
$$L_{\mathfrak{S}}(\mathbf{Y}_{\mathbf{V}}) = \sum_{c \in \mathfrak{C}} \phi(\mathbf{Y}_c)$$

- Given dependency graph $\mathcal G$ and network graph $\mathcal N$.
- Randomly select a representative (processor) in each clique of 9.
- ullet Clique members forward data to processor via SPR on ${\mathcal N}$

Log-likelihood Ratio
$$L_{\mathfrak{G}}(\mathbf{Y}_{\mathbf{V}}) = \sum_{c \in \mathfrak{C}} \phi(\mathbf{Y}_c)$$

- ullet Given dependency graph ${\mathcal G}$ and network graph ${\mathcal N}$.
- Randomly select a representative (processor) in each clique of 9.
- ullet Clique members forward data to processor via SPR on ${\mathcal N}$

Log-likelihood Ratio
$$L_{\mathfrak{G}}(\mathbf{Y}_{\mathbf{V}}) = \sum_{c \in \mathfrak{C}} \phi(\mathbf{Y}_c)$$

Step I: Data forwarding and local computation:

- ullet Given dependency graph ${\mathcal G}$ and network graph ${\mathcal N}.$
- Randomly select a representative (processor) in each clique of 9.
- ullet Clique members forward data to processor via SPR on ${\mathcal N}$

Step II: aggregating LLR over MST

Data Fusion for Markov Random Field (DFMRF)

Log-likelihood Ratio
$$L_{\mathcal{G}}(\mathbf{Y}_{\mathbf{V}}) = \sum_{c \in \mathcal{C}} \phi(\mathbf{Y}_c)$$

Step I: Data forwarding and local computation:

- ullet Given dependency graph ${\mathcal G}$ and network graph ${\mathcal N}.$
- Randomly select a representative (processor) in each clique of \mathfrak{G} .
- ullet Clique members forward data to processor via SPR on ${\mathcal N}$

Step II: aggregating LLR over MST

Data Fusion for Markov Random Field (DFMRF)

Log-likelihood Ratio
$$L_{\mathfrak{S}}(\mathbf{Y}_{\mathbf{V}}) = \sum_{c \in \mathfrak{C}} \phi(\mathbf{Y}_c)$$

Step I: Data forwarding and local computation:

- ullet Given dependency graph ${\mathcal G}$ and network graph ${\mathcal N}.$
- Randomly select a representative (processor) in each clique of 9.
- ullet Clique members forward data to processor via SPR on ${\mathcal N}$

Step II: aggregating LLR over MST

Total energy consumption= Data Forwarding + MST Aggregation

Effects of Dependency Graph Sparsity on Scalability

Sparsity of Dependency Graph

Effects of Dependency Graph Sparsity on Scalability

Sparsity of Dependency Graph

Stabilizing graph (Penrose-Yukich)

Local graph structure not affected by far away points (k-NNG, Disk)

M. D. Penrose and J. E. Yukich, "Weak Laws Of Large Numbers In Geometric Probability," *Annals of Applied probability*, vol. 13, no. 1, pp. 277-303, 2003

Effects of Network Graph Sparsity on Scalability

Sparsity of Network Graph

Effects of Network Graph Sparsity on Scalability

Sparsity of Network Graph

u-Spanner

Given network graph \mathcal{N}_n and its completion $\overline{\mathcal{N}}_n$, \mathcal{N}_n is a u-spanner if

$$\max_{V_i,V_j \in \mathbf{V}_n} \frac{\mathcal{E}(V_i \to V_j; \mathsf{SP} \ \mathsf{on} \ \mathfrak{N}_n)}{\mathcal{E}(V_i \to V_j; \mathsf{SP} \ \mathsf{on} \ \overline{\mathbb{N}}_n)} \leq u$$

Gabriel: u = 1 for $\nu \ge 2$

Effects of Network Graph Sparsity on Scalability

Sparsity of Network Graph

u-Spanner

Given network graph \mathcal{N}_n and its completion $\overline{\mathcal{N}}_n$, \mathcal{N}_n is a u-spanner if

$$\max_{V_i,V_j \in \mathbf{V}_n} \frac{\mathcal{E}(V_i \to V_j; \mathsf{SP} \; \mathsf{on} \; \mathfrak{N}_n)}{\mathcal{E}(V_i \to V_i; \mathsf{SP} \; \mathsf{on} \; \overline{\mathbb{N}}_n)} \leq u$$

Gabriel: u=1 for $\nu \geq 2$

Longest edge $O(\sqrt{\log n})$

Main Result: Scalability of DFMRF

Dependency graph
Stabilizing

Network graph *u*-Spanner

Fusion policy graph

DFMRF

Main Result: Scalability of DFMRF

Dependency graph Stabilizing u-Spanner

Network graph Fusion policy graph **DFMRF**

Scaling Constant for Scale-Invariant Graphs (k-NNG)

$$\begin{split} \limsup_{n \to \infty} \frac{\mathcal{E}(\pi_n^{\mathrm{DFMRF}})}{n} & \leq & \lambda^{-\frac{\nu}{2}} \underbrace{\left[u \, \zeta(\nu; \, \mathcal{G}) + \underbrace{\zeta(\nu; \, \mathsf{MST})}_{\mathsf{MST \, aggregation}} \right]} \int_{Q_1} \kappa(x)^{1-\frac{\nu}{2}} dx, \\ & \zeta(\nu; \, \mathcal{G}) & \stackrel{\Delta}{=} & \mathbb{E} \sum_{(\mathbf{0}, j) \in \mathcal{G}(\mathcal{P}_1 \cup \{\mathbf{0}\})} |\mathbf{0}, j|^{\nu} \end{split}$$

Approximation Ratio for DFMRF

Recall $\mathfrak{F}_{\mathcal{G}} \stackrel{\triangle}{=} \{\pi : L_{\mathcal{G}}(\mathbf{Y}_{\mathbf{V}}) \text{ computable at the fusion center}\}$

$$\mathcal{E}(\pi_n^*) = \min_{\pi \in \mathfrak{F}_{\mathcal{G}}} \sum_i \mathcal{E}_i(\pi_n)$$

Approximation Ratio for DFMRF

Recall $\mathfrak{F}_{\mathfrak{S}} \stackrel{\triangle}{=} \{\pi : L_{\mathfrak{S}}(\mathbf{Y}_{\mathbf{V}}) \text{ computable at the fusion center}\}$

$$\mathcal{E}(\pi_n^*) = \min_{\pi \in \mathfrak{F}_{\mathfrak{G}}} \sum_i \mathcal{E}_i(\pi_n)$$

Lower and Upper Bounds For Optimal Fusion Policy

$$\mathcal{E}(\pi_n^{\mathrm{MST}}) \leq \mathcal{E}(\pi_n^*) \leq \mathcal{E}(\pi_n^{\mathrm{DFMRF}})$$

Approximation Ratio for DFMRF

Recall $\mathfrak{F}_{\mathbf{q}} \stackrel{\Delta}{=} \{ \pi : L_{\mathbf{q}}(\mathbf{Y}_{\mathbf{V}}) \text{ computable at the fusion center} \}$

$$\mathcal{E}(\pi_n^*) = \min_{\pi \in \mathfrak{F}_{\mathcal{G}}} \sum_i \mathcal{E}_i(\pi_n)$$

Lower and Upper Bounds For Optimal Fusion Policy

$$\mathcal{E}(\pi_n^{\mathrm{MST}}) \leq \mathcal{E}(\pi_n^*) \leq \mathcal{E}(\pi_n^{\mathrm{DFMRF}})$$

Approximation Ratio of DFMRF for k-NNG Dependency

$$\limsup_{n \to \infty} \frac{\mathcal{E}(\pi_n^{\mathsf{DFMRF}})}{\mathcal{E}(\pi_n^*)} \le \left(1 + u \frac{\zeta(\nu; \mathfrak{G})}{\zeta(\nu; \mathsf{MST})}\right)$$

Constant factor approximation for DFMRF for large networks Approximation ratio independent of node placement for k-NNG

Simulation Results for k-NNG Dependency

Avg. Energy Under Uniform Placement

Approx. Ratio for DFMRF

What Have We Done and Left Out....

- Energy scaling laws
 - ► Assumed stabilizing dependency graph and *u*-spanner network graph
 - ▶ Defined a fusion policy π_n^{DFMRF} (DFMRF)
 - ► Scalability analysis: $\limsup_{n \to \infty} \frac{1}{n} \sum_{i} \mathcal{E}_{i}(\pi_{n}^{\mathsf{DFMRF}}) \leq \bar{\mathcal{E}}_{\infty}^{\mathsf{DFMRF}}$

$$\alpha \leq \bar{\mathcal{E}}_{\infty}^{\pi_*} \leq \bar{\mathcal{E}}_{\infty}^{\mathrm{DFMRF}} \leq \beta < \infty$$

• Asymptotic approximation ratio: $\frac{\beta}{\alpha}$.

What Have We Done and Left Out....

- Energy scaling laws
 - ► Assumed stabilizing dependency graph and *u*-spanner network graph
 - ▶ Defined a fusion policy π_n^{DFMRF} (DFMRF)
 - $\blacktriangleright \ \, \text{Scalability analysis: } \lim \sup_{n \to \infty} \frac{1}{n} \sum_{i}^{n} \mathcal{E}_{i}(\pi_{n}^{\text{DFMRF}}) \leq \bar{\mathcal{E}}_{\infty}^{\text{DFMRF}}$

$$\alpha \leq \bar{\mathcal{E}}_{\infty}^{\pi_*} \leq \bar{\mathcal{E}}_{\infty}^{\mathrm{DFMRF}} \leq \beta < \infty$$

- Asymptotic approximation ratio: $\frac{\beta}{\alpha}$.
- Remarks
 - ► Energy consumption is a key parameter for large sensor networks.
 - ► Sensor location is a new source of randomness in distributed inference
 - ► Asymptotic techniques are useful in overall network design.

What Have We Done and Left Out....

- Energy scaling laws
 - ► Assumed stabilizing dependency graph and *u*-spanner network graph
 - ▶ Defined a fusion policy π_n^{DFMRF} (DFMRF)
 - $\qquad \qquad \mathbf{Scalability \ analysis:} \ \lim \sup_{n \to \infty} \frac{1}{n} \sum_{i}^{n} \mathcal{E}_i(\pi_n^{\mathsf{DFMRF}}) \leq \bar{\mathcal{E}}_{\infty}^{\mathsf{DFMRF}}$

$$\alpha \leq \bar{\mathcal{E}}_{\infty}^{\pi_*} \leq \bar{\mathcal{E}}_{\infty}^{\mathrm{DFMRF}} \leq \beta < \infty$$

- Asymptotic approximation ratio: $\frac{\beta}{\alpha}$.
- Remarks
 - ▶ Energy consumption is a key parameter for large sensor networks.
 - Sensor location is a new source of randomness in distributed inference
 - Asymptotic techniques are useful in overall network design.
- We have ignored several issues:
 - one-shot inference
 - quantization of measurements and link capacity constraints
 - perfect transmission/reception and scheduling
 - computation cost and overheads

Outline

- Models, assumptions, and problem formulations
 - Propagation, network, and inference models
- Insights from special cases
- Markov random fields
- Scalable data fusion for Markov random field
- Some related problems
 - ► Error exponents on random graph
 - Cost performance tradeoff
 - Inference in finite networks
- Conclusion and future work

Design for Energy Constrained Inference

Error Exponent (IT '09, ISIT '09)

For MRF hypothesis with node density λ and distribution $\kappa(x)$,

$$-\frac{1}{n}\log P_{1\to 0}(n) \stackrel{?}{\longrightarrow} \mathcal{D}_{\lambda,\kappa}$$

Design for Energy Constrained Inference

Error Exponent (IT '09, ISIT '09)

For MRF hypothesis with node density λ and distribution $\kappa(x)$,

$$-\frac{1}{n}\log P_{1\to 0}(n) \stackrel{?}{\longrightarrow} \mathcal{D}_{\lambda,\kappa}$$

Design for Energy Constrained Inference (SP '08)

$$\max_{\lambda,\kappa,\pi} \mathcal{D}_{\lambda,\kappa}$$
 subject to $ar{\mathcal{E}}_{\lambda,\kappa}^{\pi} \leq ar{\mathcal{E}}_{o}$

- (1) A. Anandkumar, L. Tong, A. Swami, "Detection of Gauss-Markov Random Fields with Nearest-Neighbor Dependency," *IEEE Tran. on Information Theory.* Feb. 2009
- (2) A. Anandkumar, J.E. Yukich, L. Tong, A. Willsky, "Detection Error Exponent for Spatially Dependent Samples in Random Networks," *Proc. of IEEE ISIT*, Jun. 2009
- (3) A. Anandkumar, L. Tong, and A. Swami, "Optimal Node Density for Detection in Energy Constrained Random Networks," *IEEE Tran. Signal Proc.*, pp. 5232-5245. Oct. 2008.

Inference In Finite Fusion Networks

We have so far considered

- Random node placement
- Scaling as $n \to \infty$

Results (INFOCOM '08 & '09)

- Fusion scheme has a Steiner tree reduction
- Cost-performance tradeoff

Harder problem

- Arbitrary node placement
- Finite *n*

(1) A. Anandkumar, L. Tong, A. Swami, and A. Ephremides, "Minimum Cost Data Aggregation with Localized Processing for

Statistical Inference," in Proc. of INFOCOM, April 2008

(2) A. Anandkumar, M. Wang, L. Tong, and A. Swami, "Prize-Collecting Data Fusion for Cost- Performance Tradeoff in Distributed Inference," in *Proc. of IEEE INFOCOM*, April 2009.

38

Transaction Monitoring (Sigmetrics '08) With C. Bisdikian & D. Agrawal, IBM Research

Decentralized Bipartite Matching

38

Transaction Monitoring (Sigmetrics '08) With C. Bisdikian & D. Agrawal, IBM Research

Decentralized Bipartite Matching

Learning dependency models (ISIT '09) With V. Tan, A. Willsky, MIT, & L. Tong, Cornell

SNR for learning

Decentralized Bipartite Matching

Learning dependency models (ISIT '09) With V. Tan, A. Willsky, MIT, & L. Tong, Cornell

SNR for learning

Competitive Learning

With A.K. Tang, Cornell Univ.

Regret-free under interference

Holy Grail...

Networks

- Seamless operation
- Efficient resource utilization
- Unified theory: feasibility of large networks under different applications

39

Holy Grail...

Networks

- Seamless operation
- Efficient resource utilization
- Unified theory: feasibility of large networks under different applications

Network Data

- Data-centric paradigms
- Unifying computation and communication.
 - e.g., inference
- Fundamental limits and scalable algorithms

Multidisciplinary Research

40

http://acsp.ece.cornell.edu/members/anima.html

Thank You!

Appendix

Key ideas

Bound on Forwarding

$$\begin{split} &\mathcal{E}(\mathsf{Forward}) = \sum_{c \in \mathcal{C}(\mathbf{V})} \sum_{i \subset c} \mathsf{SP}(i, \mathsf{Proc}(c)) \\ &\leq u \sum_{c \in \mathcal{C}(\mathbf{V})} \sum_{i \subset c} \underbrace{|i, \mathsf{Proc}(c)|^{\nu}}_{\mathsf{Direct Tx.}} \leq \underbrace{u \sum_{e \in \mathcal{G}} |e|^{\nu}}_{\mathsf{e} \in \mathcal{G}} \end{split}$$

In Each Clique

Key ideas

Bound on Forwarding

$$\begin{split} \mathcal{E}(\mathsf{Forward}) &= \sum_{c \in \mathcal{C}(\mathbf{V})} \sum_{i \subset c} \mathsf{SP}(i, \mathsf{Proc}(c)) \\ &\leq u \sum_{c \in \mathcal{C}(\mathbf{V})} \sum_{i \subset c} \underbrace{|i, \mathsf{Proc}(c)|^{\nu}}_{\mathsf{Direct Tx.}} \leq \underbrace{u \sum_{e \in \mathfrak{G}} |e|^{\nu}}_{\mathsf{e} \in \mathfrak{G}} \end{split}$$

In Each Clique

Key ideas

Bound on Forwarding

$$\begin{split} \mathcal{E}(\mathsf{Forward}) &= \sum_{c \in \mathcal{C}(\mathbf{V})} \sum_{i \subset c} \mathsf{SP}(i, \mathsf{Proc}(c)) \\ &\leq u \sum_{c \in \mathcal{C}(\mathbf{V})} \sum_{i \subset c} \underbrace{|i, \mathsf{Proc}(c)|^{\nu}}_{\mathsf{Direct Tx.}} \leq u \sum_{e \in \mathcal{G}} |e|^{\nu} \end{split}$$

In Each Clique

LLN for Normalized Sum of Edge Weights (Penrose-Yukich)

$$\frac{1}{n} \sum_{e \in \mathfrak{G}(\mathbf{V}_n)} |e|^{\nu} \longrightarrow \frac{1}{2} \mathbb{E} \left[\sum_{(\mathbf{0}, j) \in \mathfrak{G}(\mathcal{P}_1 \cup \mathbf{0})} |\mathbf{0}, j|^{\nu} \right] \kappa(x)^{1 - \frac{\nu}{2}} dx$$

Scaling Constant via Poissonization

$$\frac{1}{n} \sum_{e \in \mathsf{MST}_n} |e|^{\nu} \quad \stackrel{L^2}{\to} \quad \bar{\mathcal{E}}_{\infty}^{\mathsf{MST}}$$

$$\bar{\mathcal{E}}_{\infty}^{\mathsf{MST}}(\kappa) \quad = \quad \zeta(\nu; \mathsf{MST}) \int_{Q_1} \kappa(x)^{1-\frac{\nu}{2}} dx,$$

$$\zeta(\nu; \mathsf{MST}) \quad = \quad \frac{1}{2} \mathbb{E} \left\{ \sum_{(\mathbf{0}, j) \in \mathsf{MST}(\mathcal{P}_1 \cup \mathbf{0})} |\mathbf{0}, j|^{\nu} \right\}$$
 Origin • Back IID • Back MRF

Optimal Fusion: Lower Bound

Recall $\mathfrak{F}_{\mathcal{G}} \stackrel{\triangle}{=} \{\pi : L_{\mathcal{G}}(\mathbf{Y}_{\mathbf{V}}) \text{ computable at the fusion center}\}$

$$\mathcal{E}(\pi_n^*) = \min_{\pi \in \mathfrak{F}_{\mathfrak{I}}} \sum_i \mathcal{E}_i(\pi_n)$$

Optimal Fusion: Lower Bound

Recall $\mathfrak{F}_{\mathcal{G}} \stackrel{\triangle}{=} \{\pi : L_{\mathcal{G}}(\mathbf{Y}_{\mathbf{V}}) \text{ computable at the fusion center}\}$

$$\mathcal{E}(\pi_n^*) = \min_{\pi \in \mathfrak{F}_{\mathcal{G}}} \sum_i \mathcal{E}_i(\pi_n)$$

Lower Bound

For any dependency graph 9

$$\frac{1}{n}\mathcal{E}(\pi_n^*) \geq \frac{1}{n}\mathcal{E}(\pi_n^{\mathrm{MST}}) \overset{L^2}{\to} \zeta(\nu; \mathrm{MST}) \int\limits_{Q_1} \kappa(x)^{1-\frac{\nu}{2}} dx$$

- Each node must transmit at least once.
- The fusion graph needs to be connected.

Lower bound is tight (achieved for independent data).

Example: Gauss-Markov random field

Test on GMRF:

$$\mathcal{H}_0 : X_V \sim \mathcal{N}(\mathbf{0}, \sigma_0^2 \mathbf{I})$$

 $\mathcal{H}_1 : X_V \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$

Nearest neighbor graph.

Example: Gauss-Markov random field

Test on GMRF:

$$\mathcal{H}_0 : X_V \sim \mathcal{N}(\mathbf{0}, \sigma_0^2 \mathbf{I})$$

 $\mathcal{H}_1 : X_V \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$

Nearest neighbor graph.

• Tradeoff between exploiting signal strength and exploiting correlation:

$$K = \frac{\sigma_1^2}{\sigma_0^2}$$
 vs. $g(R_{ij}) \stackrel{\Delta}{=} \frac{\Sigma(i,j)}{\sigma_1^2}$

where $\Sigma[i,i] = \sigma_1^2$ and $g(\cdot)$ a decreasing function.

- ► Sparse deployment: independent samples, costly data fusion.
- ▶ Dense deployment: correlated samples, require less energy.

Error exponent behavior

Closed-form error exponent

$$\begin{split} -\lim_{n\to\infty}\log P_M(n) &=& \mathcal{D}(\lambda,K;g) \\ &=& \frac{1}{2}\mathbb{E}_{\lambda}\,h\big(Z\lambda^{-0.5},K;g\big) + \mathcal{D}_{\text{IID}}(K) \end{split}$$

• The error exponent reverse its behavior at a threshold K_{τ} .

Design for Energy Constrained Inference

• Energy constrained network for inference

$$\lambda_* \stackrel{\Delta}{=} rg \max_{\lambda > 0} \mathcal{D}(\lambda, K; g)$$
 subject to $\bar{E} \leq \bar{E}_{\max}$

• Energy and performance scaling laws: $K = \frac{\Delta}{\sigma_0^2} \frac{\sigma_1^2}{\sigma_0^2}$

Design for Energy Constrained Inference

Optimal density

Design for Energy Constrained Inference

Deployment implications

Stages of LLR Computation: $L_{\mathfrak{G}}(\mathbf{Y}_n) = \sum_{c \in \mathfrak{C}} \Phi_c(\mathbf{Y}_c)$

Recall $\mathfrak{F}_{\mathfrak{S}} \stackrel{\triangle}{=} \{\pi : L_{\mathfrak{S}}(\mathbf{Y}_{\mathbf{V}}) \text{ computable at the fusion center}\}$

$$\mathcal{E}(\pi_n^*) = \min_{\pi \in \mathfrak{F}_{\mathcal{G}}} \sum_i \mathcal{E}_i(\pi_n)$$

Stages of LLR Computation: $L_g(\mathbf{Y}_n) = \sum_{c \in \mathcal{C}} \Phi_c(\mathbf{Y}_c)$

Recall $\mathfrak{F}_{\mathfrak{S}} \stackrel{\triangle}{=} \{\pi : L_{\mathfrak{S}}(\mathbf{Y}_{\mathbf{V}}) \text{ computable at the fusion center}\}$

$$\mathcal{E}(\pi_n^*) = \min_{\pi \in \mathfrak{F}_{\mathcal{G}}} \sum_i \mathcal{E}_i(\pi_n)$$

- Simplifies optimization problem
- Local knowledge of function parameters

Stages of LLR Computation: $L_g(\mathbf{Y}_n) = \sum_{c \in \mathcal{C}} \Phi_c(\mathbf{Y}_c)$

Recall $\mathfrak{F}_{\mathcal{G}} \stackrel{\triangle}{=} \{\pi : L_{\mathcal{G}}(\mathbf{Y}_{\mathbf{V}}) \text{ computable at the fusion center}\}$

$$\mathcal{E}(\pi_n^*) = \min_{\pi \in \mathfrak{F}_{\mathcal{G}}} \sum_i \mathcal{E}_i(\pi_n)$$

- Simplifies optimization problem
- Local knowledge of function parameters

Stages of LLR Computation: $L_{\mathfrak{G}}(\mathbf{Y}_n) = \sum_{c \in \mathfrak{C}} \Phi_c(\mathbf{Y}_c)$

Recall $\mathfrak{F}_{\mathcal{G}} \stackrel{\triangle}{=} \{\pi : L_{\mathcal{G}}(\mathbf{Y}_{\mathbf{V}}) \text{ computable at the fusion center}\}$

$$\mathcal{E}(\pi_n^*) = \min_{\pi \in \mathfrak{F}_{\mathfrak{G}}} \sum_i \mathcal{E}_i(\pi_n)$$

- Simplifies optimization problem
- Local knowledge of function parameters

Stages of LLR Computation: $L_{\mathfrak{G}}(\mathbf{Y}_n) = \sum_{c \in \mathfrak{C}} \Phi_c(\mathbf{Y}_c)$

Recall $\mathfrak{F}_{\mathcal{G}} \stackrel{\triangle}{=} \{\pi : L_{\mathcal{G}}(\mathbf{Y}_{\mathbf{V}}) \text{ computable at the fusion center}\}$

$$\mathcal{E}(\pi_n^*) = \min_{\pi \in \mathfrak{F}_{\mathcal{G}}} \sum_i \mathcal{E}_i(\pi_n)$$

- Simplifies optimization problem
- Local knowledge of function parameters

Steiner-Tree Reduction

Steiner Tree

- Minimum cost tree containing a required set of nodes called terminals
- NP-hard problem, currently the best approximation is 1.55

Steiner-Tree Reduction

Steiner Tree

- Minimum cost tree containing a required set of nodes called terminals
- NP-hard problem, currently the best approximation is 1.55

Main result

Min cost fusion has approx. ratio preserving Steiner tree reduction

Implications

- Any approximation for Steiner tree has same ratio for fusion
- Best approximation for min cost fusion: 1.55

Graph transformation and building Steiner tree.

Graph transformation and building Steiner tree.

Optimal Cost-Performance Tradeoff

Problem Statement

- Select $V_s \subset V$ and design a fusion scheme $\Gamma(V_s)$.
- Minimize the total routing costs $\mathcal{C}(\Gamma(V_s))$ plus a penalty π based on the error prob. $P_M(V_s)$.

$$\pi(V \setminus V_s) \stackrel{\Delta}{=} \log \frac{P_M(V_s)}{P_M(V)} > 0$$

Fusion policy graph

Optimal Cost-Performance Tradeoff

Problem Statement

- Select $V_s \subset V$ and design a fusion scheme $\Gamma(V_s)$.
- Minimize the total routing costs $\mathcal{C}(\Gamma(V_s))$ plus a penalty π based on the error prob. $P_M(V_s)$.

$$\pi(V \backslash V_s) \stackrel{\Delta}{=} \log \frac{P_M(V_s)}{P_M(V)} > 0$$

$$\min_{V_s \subset V, \Gamma(V_s)} \left[\mathcal{C}(\Gamma(V_s)) + \mu \pi(V \setminus V_s) \right], \ \mu > 0$$

Prize-Collecting Data Fusion

Main Results

$$\min_{V_s \subset V, \Gamma(V_s)} \left[\mathcal{C}(\Gamma(V_s)) + \mu \log \frac{P_M(V_s)}{P_M(V)} \right) \right], \ \mu > 0$$

IID measurements

$$2-(|V|-1)^{-1}$$
 approximation via Prize-Collecting Steiner Tree

PCST

Correlated data: component and clique selection heuristics

- Provable approximation guarantee for special dependency graphs.
- Substantially better than no data fusion.
- Performance under different node placements.

PCDF: IID case

$$\min_{V_s \subset V, \Gamma(V_s)} \left[\mathcal{C}(\Gamma(V_s)) + \mu \log \frac{P_M(V_s)}{P_M(V)} \right], \ \mu > 0$$

Simplifications of IID measurements

- $\mathcal{H}_k: \mathbf{Y}_{\mathbf{V}} \sim \prod_{i \in \mathbf{V}} f_k(Y_i)$
- $L_{\mathcal{G}}(\mathbf{Y}_{V_s}) = \sum_{i \in V_s} \log \frac{f(Y_i; \mathcal{H}_0)}{f(Y_i; \mathcal{H}_1)} = \sum_{i \in V_s} L_{\mathcal{G}}(\mathbf{Y}_i)$
- Error exponent $\mathcal{D} = D(f(Y; \mathcal{H}_0) || f(Y; \mathcal{H}_1))$

PCDF: IID case

$$\min_{V_s \subset V, \Gamma(V_s)} \left[\mathcal{C}(\Gamma(V_s)) + \mu \log \frac{P_M(V_s)}{P_M(V)} \right], \ \mu > 0$$

Simplifications of IID measurements

- $\mathcal{H}_k: \mathbf{Y}_{\mathbf{V}} \sim \prod_{i \in \mathbf{V}} f_k(Y_i)$
- $L_{\mathcal{G}}(\mathbf{Y}_{V_s}) = \sum_{i \in V_s} \log \frac{f(Y_i; \mathcal{H}_0)}{f(Y_i; \mathcal{H}_1)} = \sum_{i \in V_s} L_{\mathcal{G}}(\mathbf{Y}_i)$
- Error exponent $\mathcal{D} = D(f(Y; \mathcal{H}_0) || f(Y; \mathcal{H}_1))$

Modified cost-performance tradeoff for IID

$$\min_{V_s \subset V, \Gamma(V_s)} \left[\mathcal{C}(\Gamma(V_s)) + \mu[|V| - |V_s|]D \right]$$

- Asymptotic convergence to the original problem.
- The optimal solution is the Prize Collecting Steiner Tree.

Definition

 Tree with minimum sum edge costs plus node penalties not spanned

$$T_* = \arg\min_{T = (V', E')} \left[\sum_{e \in E'} c_e + \sum_{i \notin V'} \pi_i \right].$$

• NP-hard, Goemans-Williamson algorithm has approx. ratio of $2 - \frac{1}{|V|-1}$

Approx. PCST

Definition

 Tree with minimum sum edge costs plus node penalties not spanned

$$T_* = \arg\min_{T=(V',E')} \left[\sum_{e \in E'} c_e + \sum_{i \notin V'} \pi_i \right].$$

• NP-hard, Goemans-Williamson algorithm has approx. ratio of $2 - \frac{1}{|V|-1}$

Fusion of IID measurements

$$L_{\mathfrak{S}}(\mathbf{Y}_{V_s}) = \sum_{i \in V_s} L_{\mathfrak{S}}(\mathbf{Y}_i)$$

Definition

 Tree with minimum sum edge costs plus node penalties not spanned

$$T_* = \arg\min_{T = (V', E')} \left[\sum_{e \in E'} c_e + \sum_{i \notin V'} \pi_i \right].$$

• NP-hard, Goemans-Williamson algorithm has approx. ratio of $2 - \frac{1}{|V|-1}$

Fusion of IID measurements

$$L_{\mathcal{G}}(\mathbf{Y}_{V_s}) = \sum_{i \in V_s} L_{\mathcal{G}}(\mathbf{Y}_i)$$

Definition

 Tree with minimum sum edge costs plus node penalties not spanned

$$T_* = \arg\min_{T = (V', E')} \left[\sum_{e \in E'} c_e + \sum_{i \notin V'} \pi_i \right].$$

• NP-hard, Goemans-Williamson algorithm has approx. ratio of $2-\frac{1}{|V|-1}$

Fusion of IID measurements

$$L_{\mathcal{G}}(\mathbf{Y}_{V_s}) = \sum_{i \in V_s} L_{\mathcal{G}}(\mathbf{Y}_i)$$

Medium Access Control (MAC) For Inference

Design of MAC (Single Hop)

- (1) A. Anandkumar and L. Tong, "Type-based Random Access for Distributed Detection over Multi-access Fading Channels," *IEEE Tran. on Signal Processing*, vol.55, no.10, pp.5032-5043, Oct. 2007 (2008 IEEE SPS Young Author Best Paper Award)
- (2) A. Anandkumar, L. Tong and A. Swami, "Distributed Estimation via Random Access," in *IEEE Tran. on Information Theory*, vol. 54, pp. 3175-3181, July 2008.

Medium Access Control (MAC) For Inference

Design of MAC (Single Hop)

- (1) A. Anandkumar and L. Tong, "Type-based Random Access for Distributed Detection over Multi-access Fading Channels," *IEEE Tran. on Signal Processing*, vol.55, no.10, pp.5032-5043, Oct. 2007 (2008 IEEE SPS Young Author Best Paper Award)
- (2) A. Anandkumar, L. Tong and A. Swami, "Distributed Estimation via Random Access," in *IEEE Tran. on Information Theory*, vol. 54, pp. 3175-3181, July 2008.

Medium Access Control (MAC) For Inference

Design of MAC (Single Hop)

Classical Design
Orthogonal Division

Proposed Design

Type-Based Random Access

- Sensor encoding based on data level
- Optimal spatio-temporal allocation based on channel conditions

(1) A. Anandkumar and L. Tong, "Type-based Random Access for Distributed Detection over Multi-access Fading Channels," *IEEE Tran. on Signal Processing*, vol.55, no.10, pp.5032-5043, Oct. 2007 (2008 IEEE SPS Young Author Best Paper Award)

(2) A. Anandkumar, L. Tong and A. Swami, "Distributed Estimation via Random Access," in *IEEE Tran. on Information Theory*, vol. 54, pp. 3175-3181, July 2008.

Inference of Transaction Paths in Distributed Systems

Transactions & Log Records

- (1) A. Anandkumar, C. Bisdikian, and D. Agrawal, Tracking in a Spaghetti Bowl: Monitoring Transactions Using Footprints, in Proc. ACM Intl. Conf. on Measurement & Modeling of Computer Systems (Sigmetrics). June 2008
- (2) A. Anandkumar, C. Bisdikian, T. He, and D. Agrawal, Designing A Fine Tooth Comb Frugally: Selectively Retrofitting Monitoring in Distributed Systems. Workshop on Mathematical Performance Modeling and Analysis June, 2009.

Inference of Transaction Paths in Distributed Systems

Transactions & Log Records

State Transition Model

Maximum Likelihood Tracking \equiv Series of Bipartite Matches

▶ Back

- (1) A. Anandkumar, C. Bisdikian, and D. Agrawal, Tracking in a Spaghetti Bowl: Monitoring Transactions Using Footprints, in Proc. ACM Intl. Conf. on Measurement & Modeling of Computer Systems (Signetrics). June 2008
- (2) A. Anandkumar, C. Bisdikian, T. He, and D. Agrawal, Designing A Fine Tooth Comb Frugally: Selectively Retrofitting Monitoring in Distributed Systems. Workshop on Mathematical Performance Modeling and Analysis June, 2009.