SVJedi-graph: using a variation graph to improve structural variant genotyping with long reads

Sandra ROMAIN ¹, Claire Lemaitre ¹

Workshop Data Structures in Bioinformatics - June 2022

INRIA, GenScale team, Rennes, France ¹

Structural variants

Heller and Vingron, 2019

Defined:

as rearrangements ≥ 50 bp
 relatively to a reference genome
 by breakpoints sequence

Structural variants

Heller and Vingron, 2019

Defined:

as rearrangements ≥ 50 bp
 relatively to a reference genome
 by breakpoints sequence

Impact:

depends on genomic context

can lead to

diseases

polymorphism in agronomic key traits

Genotyping structural variants

- After SV identification
 - type
 - position
 - sequence for INS
- Presence of the SVs on the haplotypes?

Approaches:

- ➤ Mapping vs. "mapping-free"
- > Short reads *vs.* long reads

State of the art

Short reads

Long reads

Mapping-based genotypers:

Linear representation

DELLY (Rausch et al., 2012)

SVtyper (Chiang et al., 2015)

svviz2 (https://svviz2.readthedocs.io/en/latest/)

Sniffles (Sedlazeck et al., 2018)

SVJedi (Lecompte et al., 2020)

Sniffles2 (Smolka et al., 2022)

Graph representation

Paragraph (Chen et al., 2019)

GraphTyper2 (Eggertsson et al., 2019)

Giraffe (VG toolkit) (Sirén et al., 2021)

→ Both reference and alternative sequences

 \rightarrow Reference bias

Sandra Romain DSB 2022 June, 13th 2022

State of the art

Short reads

Long reads

Mapping-based genotypers:

Linear representation DELLY (Rausch et al., 2012) SVtyper (Chiang et al., 2015) svviz2 (https://svviz2.readthedocs.io/en/latest/) Sniffles (Sedlazeck *et al.*, 2018) SVJedi (Lecompte et al., 2020) Sniffles2 (Smolka et al., 2022)

Graph representation

Paragraph (Chen et al., 2019)

GraphTyper2 (Eggertsson et al., 2019)

Giraffe (VG toolkit) (Sirén et al., 2021)

→ Both reference and alternative sequences

→ Reference bias

Sandra Romain DSB 2022 June, 13th 2022

SVJedi (Lecompte et al., 2020)

Principle: Representing both alleles for each SV in linear reference

→ Reduce reference bias

Tool	Genotyping accuracy	Genotyping rate	Time
SVJedi	92.2	90.3	2h25m
Sniffles -lvcf	82.0	99.8	17h16m
svviz2	65.9	100	5days
Sniffles (discovery mode)	43.6	48.1	18h04m
pbsv	77.9	65.3	5h29m

from Lecompte et al., 2020

Limitation: Drop of genotyping rate with close/overlapping SVs

 \rightarrow \land Sequence redundancy

Our contribution: SVJedi-graph

Long read SV genotyper using a variation graph representation

> Improve close SV genotyping by using a variation graph

Represent the whole genome sequence

Method

Overview of SVJedi-graph

Input: reference genome, SV set, long reads

Output: genotyped SV set

For each chromosome:

List & sort breakpoint positions

For each chromosome:

- 1 List & sort breakpoint positions
- 2 Split sequence at each breakpoint

1 fragment = 1 node

(2)(3) Mapping the reads and filtering the alignments

Mapping: GraphAligner (Rautiainen and Marschall, 2020)

Alignments filters:

- \rightarrow Number of nodes in the alignment path >= 2 \rightarrow Filtering alignments to analyse
- Breakpoints overlap
 - → Confidence in supported allele

- Alignment semi-globality
 - → Accuracy of mapping location

(4) Predicting the genotype

- Count supporting reads for each allele
- Normalize by allele length ratio
- Compute likelihood for each genotype

$$egin{aligned} \ell(0/0) &= (1-err)^{c_0^*} imes err^{c_1} imes C^{c_0^*}_{c_0^*+c_1} \ \ell(1/1) &= err^{c_0^*} imes (1-err)^{c_1} imes C^{c_0^*}_{c_0^*+c_1} \ \ell(0/1) &= \left(rac{1}{2}
ight)^{c_0^*+c_1} imes C^{c_0^*}_{c_0^*+c_1} \end{aligned}$$

Reused from SVJedi (Lecompte et al., 2020)

Evaluation on simulated datasets

The simulated datasets

Reference: human chromosome 1 (GRCh37.p13)

SV sets generation:

- 1,000 deletions from dbVar
- + close/overlapping deletions

$$(\frac{1}{3} 0/0 - \frac{1}{3} 0/1 - \frac{1}{3} 1/1)$$

18

Reads simulation: PacBio, 16 % error rate (SimLoRD)

The simulated datasets - Results (SVJedi)

Rate: % of SVs genotyped / all SVs

Accuracy: % of SVs accurately genotyped / genotyped SVs

The simulated datasets - Results (SVJedi-graph)

Recovery of genotyping rate

Evaluation on real dataset

The GIAB dataset

Reference: human reference genome (GRCh37.p13)

Reads: PacBio from HG002 (GIAB dataset)

SV set: HG002 Tier 1 (Zook *et al.*, 2019)

> 5,464 deletions

7,281 insertions

with ground truth genotypes

The GIAB dataset - Results

Reference: human reference genome (GRCh37.p13)

Reads: PacBio from HG002 (GIAB dataset)

SV set: HG002 Tier 1 (Zook *et al.*, 2019)

> 5,464 deletions

with ground truth genotypes

> 7,281 insertions

Tool	Genotyping accuracy	Genotyping rate	Time
SVJedi	92.2	90.3	2h25m
Sniffles -lvcf	82.0	99.8	17h16m
svviz2	65.9	100	5days
Sniffles (discovery mode)	43.6	48.1	18h04m
pbsv	77.9	65.3	5h29m
SVJedi-graph	92.9	97.4	15h28m

→ Time cost of mapping on graph

New SV calling dataset from GIAB data

Reference: human reference genome (GRCh37.p13)

Reads: PacBio from HG002 (GIAB dataset)

SV calling: NGMlr + Sniffles (Sedlazeck *et al.*, 2018)

> 7,922 deletions

> 9,529 insertions

> 202 inversions

New SV calling set	17,624	2,205 (12.5%)
GIAB "gold standard"	12,721	581 (4.6%)
Dataset	all SVs	"close" SVs

New SV calling dataset from GIAB data - Results

Reference: human reference genome (GRCh37.p13)

Reads: PacBio from HG002 (GIAB dataset)

SV calling: NGMlr + Sniffles (Sedlazeck *et al.*, 2018)

> 7,922 deletions

> 9,529 insertions

> 202 inversions

New SV calling set	17,624	2,205 (12.5%)
GIAB "gold standard"	12,721	581 (4.6%)
Dataset	all SVs	"close" SVs

SVJedi-graph	98 %
SVJedi	51 %
	Genotyping rate

Concluding remarks

Implemented in python

Availability:

https://github.com/SandraLouise/SVJedi-graph

(soon)

Work in progress:

Evaluating genotyping accuracy on the GIAB dataset

Improve read mapping time

Genotyping translocations

Acknowledgements

Mobility grant

Access to computing cluster

And my PhD supervisors: Claire Lemaitre and Fabrice Legeai

This work was supported by the French Agence Nationale de la Recherche [grant number ANR-20-CE02-0017 Divalps].

References (1)

Chen, S., Krusche, P., Dolzhenko, E., Sherman, R.M., Petrovski, R., Schlesinger, F., Kirsche, M., Bentley, D.R., Schatz, M.C., Sedlazeck, F.J. and Eberle, M.A.. Paragraph: a graph-based structural variant genotyper for short-read sequence data. *Genome Biology*, **20**(291) (**2019**). https://doi.org/10.1186/s13059-019-1909-7

Chiang, C., Layer, R., Faust, G., Lindberg, M.R., Rose, D.B., Garrison, E.P., Marth, G.T., Quinlan, A.R. and Hall, I.R.. SpeedSeq: ultra-fast personal genome analysis and interpretation. *Nature Methods*, **12**: 966–968 (**2015**). https://doi.org/10.1038/nmeth.3505

Eggertsson, H.P., Kristmundsdottir, S., Beyter, D., Jonsson, H., Skuladottir, A., Hardarson, M.T., Gudbjartsson, D.F., Stefansson, K., Halldorsson, B.V. and Melsted, P., GraphTyper2 enables population-scale genotyping of structural variation using pangenome graphs. *Nature Communications*, **10**(5402) (**2019**). https://doi.org/10.1038/s41467-019-13341-9

Heller, D., Vingron, M. SVIM: structural variant identification using mapped long reads. *Bioinformatics*, **35**: 2907–2915 (**2019**). https://doi.org/10.1093/bioinformatics/btz041

Lecompte, L., Peterlongo, P., Lavenier, D., Lemaitre, C., SVJedi: genotyping structural variations with long reads. *Bioinformatics*, **36**(17): 4568–4575 (**2020**). https://doi.org/10.1093/bioinformatics/btaa527

Rausch, T., Zichner, T., Schlattl, A., Stütz, A.M., Benes, V., Korbel, J.O.. DELLY: structural variant discovery by integrated paired-end and split-read analysis. *Bioinformatics*, **28**: 333–i339 (**2012**). https://doi.org/10.1093/bioinformatics/bts378

Rautiainen, M., Marschall, T. GraphAligner: rapid and versatile sequence-to-graph alignment. *Genome Biology*, **21**(253) (**2020**). https://doi.org/10.1186/s13059-020-02157-2

Sedlazeck, F.J., Rescheneder, P., Smolka, M., Fang, H., Nattestad, M., von Haeseler, A. and Schatz, M.C.. Accurate detection of complex structural variations using single-molecule sequencing. *Nature Methods*, **15**: 461–468 (**2018**). https://doi.org/10.1038/s41592-018-0001-7

Sirén, J., Monlong, J., Chang, X., Novak, A.M., Eizenga, J.M., Markello, C., Sibbesen, J.A., Hickey, G., Chang, P.-C., Carroll, A., Gupta, N., Gabriel, S., Blackwell, T.W., Ratan, A., Taylor, K.D., Rich, S.S., Rotter, J.I., Haussler, D., Garrison, E., Paten, B.. Genotyping common, large structural variations in 5,202 genomes using pangenomes, the Giraffe mapper, and the vg toolkit. *bioRxiv* (**2020**). doi: https://doi.org/10.1101/2020.12.04.412486

References (2)

Smolka, M., Paulin, L.F., Grochowski, C.M., Mahmoud, M., Behera, S., Gandhi, M., Hong, K., Pehlivan, D., Scholz, S.W., Carvalho, C.M.B., Proukakis, C., Sedlazeck, F.J.. Comprehensive Structural Variant Detection: From Mosaic to Population-Level. *bioRxiv* (**2022**). doi: https://doi.org/10.1101/2022.04.04.487055

Spies, N., Zook, J.M., Salit, M., Sidow, A.. svviz: a read viewer for validating structural variants. *Bioinformatics*, **31**(24): 3994–3996 (**2015**). doi: https://doi.org/10.1093/bioinformatics/btv478

Stöcker, B.K., Köster, J., Rahmann, S.. SimLoRD: Simulation of Long Read Data. *Bioinformatics*, **32**(17): 2704–2706 (**2016**). https://doi.org/10.1093/bioinformatics/btw286

Zook, J.M., Hansen, N.F., Olson, N.D., Chapman, L., Mullikin, J.C., Xiao, C., Sherry, S., Koren, S., Phillippy, A.M., Boutros, P.C., Sahraeian, S.M.E., Huang, V., Rouette, A., Alexander, N., Mason, C.E., Hajirasouliha, I., Ricketts, C., Lee, J., Tearle, R., Fiddes, I.T., Martinez-Barrio, A., Wala, J., Carroll, A., Ghaffari, N., Rodriguez, O.L., Bashir, A., Jackman, S., Farrell, J.J., Wenger, A.M., Alkan, C., Soylev, A., Schatz, M.C., Garg, S., Church, G., Marschall, T., Chen, K., Fan, X., English, A.C., Rosenfeld, J.A., Zhou, W., Mills, R.E., Sage, J.M., Davis, J.R., Kaiser, M.D., Oliver, J.S., Catalano, A.P., Chaisson, M.J.P., Spies, N., Sedlazeck, F.J. and Salit, M.. A robust benchmark for detection of germline large deletions and insertions. *Nature Biotechnology*, **38**: 1347–1355 (**2020**). https://doi.org/10.1038/s41587-020-0538-8