

Tarea 2: Transformadas Integrales

Camargo Badillo Luis Mauricio

11 de febrero de 2024

Ecuaciones Diferenciales II
Oscar Gabriel Caballero Martínez
Grupo 2602
Matemáticas Aplicadas y Computación

Nombre	Notación	Transformada	Inversa
Fourier	${\cal F}$	$\int_{-\infty}^{\infty} \frac{e^{-ist}}{\sqrt{2\pi}} f(t)dt$	$\int_{-\infty}^{\infty} \frac{e^{ist}}{\sqrt{2\pi}} f(t) \ dt$
Hartley	${\cal H}$	$\int_{-\infty}^{\infty} \frac{\cos(st) + \sin(st)}{\sqrt{2\pi}} f(t) dt$	$\int_{-\infty}^{\infty} \frac{\cos(st) + \sin(st)}{\sqrt{2\pi}} f(t) \ dt$
Mellin	М	$\int_0^\infty t^{s-1} f(t) \ dt$	$\int_{c-i\infty}^{c+i\infty} \frac{t^{-s}}{2\pi i} f(t) dt$
Laplace Bilateral	\mathcal{B}	$\int_{-\infty}^{\infty} e^{-st} f(t) \ dt$	$\int_{c-i\infty}^{c+i\infty} \frac{e^{st}}{2\pi i} f(t) dt$
Laplace	\mathcal{L}	$\int_0^\infty e^{-st} f(t) \ dt$	$\int_{c-i\infty}^{c+i\infty} \frac{e^{st}}{2\pi i} f(t) dt$
Hankel	_	$\int_0^\infty t J_v(st) f(t) \ dt$	$\int_0^\infty s J_v(st) f(t) \ dt$
Abel	-	$\int_{s}^{\infty} \frac{2t}{\sqrt{t^2 - s^2}} f(t) \ dt$	$\int_{t}^{\infty} \frac{-1}{\pi \sqrt{s^2 - t^2}} \frac{d}{ds} f(t) \ dt$
Lorentz	_	$\int_{s}^{\infty} \frac{2t}{\sqrt{t^2 - s^2}} f(t) \ dt$	$\int_{t}^{\infty} \frac{-1}{\pi \sqrt{s^2 - t^2}} \frac{d}{ds} f(t) \ dt$
Hilbert	\mathcal{H}	$\int_{-\infty}^{\infty} \frac{1}{\pi} \frac{1}{s-t} f(t) \ dt$	$\int_{-\infty}^{\infty} \frac{1}{\pi} \frac{1}{s-t} f(t) \ dt$