Proposed Method

Prototype Learning

- First define two prototypes in the representation space: $C, S \in \mathbb{R}^K$
 - ullet C is a prototype for optimizing the consumption objective L_C
 - ullet S is a prototype for optimizing the interest sustainability objective L_S
- Then project a user-item pair into a single point such that: $T_{u,i} = \mathbf{u} + \mathbf{i}$
 - T is a transformation function and use sum operation.

Proposed Method

Prototype Learning

- Given two prototypes, reformulate the objectives of $CRIS^{reg}$ as follows:
 - $L_C^P(u, i^+, i^-) = [m + d(C, T_{u,i^+}) d(C, T_{u,i^-})]_+$
 - $L_S^P(u, i^+, i^-) = \{(d(S, T_{u,i^+}) d(S, T_{u,i^-})) (p_{i^-} p_{i^+})\}^2$
- Based on the prototypes, the consumption loss L_C^P makes the pair of a user and T_{u,i^+} closer to prototype C than the pair of the user and T_{u,i^-} .
- Similarly, L_S^P make the pair of a user and an item with higher ISS closers to prototype S than user and an item with lower ISS.