

Dev Camp

Введение в базы данных Анализ данных

План

- 1. Основные понятия
- 2. Реляционные базы данных.
- 3. Этапы проектирования баз данных.
- 4. Анализ данных. Пример.

1. Основные понятия Информация и данные

Информация - данные, которым придается некий смысл (интерпретация) в конкретной ситуации в рамках некоторой системы понятий

Данные – информация, представленная в определенной форме, пригодной для последующей обработки, хранения и передачи.

Основные преобразования в ИС:

1. Основные понятия Информация и данные

c) li	nforma	ition in	summary	format
-------	--------	----------	---------	--------

Rank	COUNT	%ANFS	TOT/COL	WCOL TOT.	WCOL FAC.
Assistant Professor	2	8.00%	28	7.14%	1.31%
Associate Professor	9	36,00%	37	24.32%	5.88%
Instructor	2	8.00%	18	11.11%	1.31%
Professor	7	28.00%	47	14.89%	4.58%

1. Основные понятия Информационная система

Информационная система - организационная совокупность ресурсов, реализующая

- √сбор,
- √обработка,
- √хранение,
- √поиск,
- √выдача,
- √передача информации

Цель:

удовлетворить потребность группы пользователей в информации

Основные понятия Информационная система

Информационная система - организационная совокупность ресурсов, реализующая Information System Hardware Software Communications Middleware Linguistic Organizational Technical Support Support Support

1. Основные понятия Классификация информационных систем

- □ OLTP-системы Online Transaction Processing -
 - □ системы оперативной обработки транзакций
- □ OLAP-системы Online Analysis Processing -
 - □ системы делового анализа/хранилища данных

1. Основные понятия Классификация информационных систем

Характеристика ИС	Содержимое БД	Типичный размер таблиц	Данные, с которыми работает приложение	Интенсивность обращения к БД	Тип доступа
OLTP-система	Текущие данные	Тысячи строк	Отдельные строки	Много транзакций в секунду	Выборка, вставка, обновлен ие
OLAP-система	Накопленные данные	Миллионы строк	Группа строк	Одна транзакция в час	Выборка

1. Основные понятия Базы данных

База данных – структурированный набор данных

База данных — упорядоченный набор **логически взаимосвязанных данных**, которые совместно используются, и предназначены для удовлетворения информационных потребностей пользователей.

База данных — унифицированная совокупность **хранимых** и воспроизводимых данных, используемых в рамках организации

База данных — совокупность взаимосвязанных данных, которые **совместно используются** несколькими приложениями и хранятся с **минимальной регулируемой избыточностью**

1. Основные понятия Базы данных

Data Definition Language

- Описывает логическую модель
- Описывает способ хранения данных
- Описывает способ доступа к данным

Data Manipulation Language

- Обработка элементов данных
- Структуры для создания приложений

1. Основные понятия Системы управления базами данных

Система управления базами данных — набор программных средств, обеспечивающих создание и обслуживание БД и выполнение операций над данными БД.

Функции:

- √описание и манипулирование данными,
- √поддержка логической модели данных,
- √взаимодействия логической и физической структур данных,
- √актуальность, защита и целостность данных

1. Основные понятия Классическая трехуровневая архитектура БД

Представление КМ с учетом интересов пользователей/ приложений

Интегрированное независимое описание предметной области

Представление КМ с учетом способов хранения и доступа к данным

1. Основные понятия Системы управления базами данных

Концептуальный уровень - интегрированное описание предметной области, для которой разрабатывается БД, **независимо от** ее **восприятия отдельными пользователями** и **способов реализации** в компьютерной системе.

Внешний уровень – определяет уровень доступа, предоставляет пользователю/приложению лишь те данные, которые ему нужны и в нужном виде.

Внутренний уровень – описывает способ хранения данных и методы доступа к ним.

1. Основные понятия Модель данных

Концепция модели данных

- □ При проектировании базы данных основное внимание уделяется тому, как структура БД будет использоваться для хранения данных конечных пользователей и управления ими.
- **Модель данных** это относительно **простое представление**, обычно графическое, более **сложных** реальных **структур** данных.
- Основная функция модели помочь вам понять сложности реальной среды.
- Моделирование данных итеративный процесс

1. Основные понятия Модель данных

Критерии выбора:

- объем информации,
- □ задачи,
- техническое и программное обеспечение,
- средства манипулирования данными,
- целостность и защита,
- критерии качества и т.п.

1. Основные понятия Модель данных

Общая структура данных

1. Основные понятия. Иерархическая модель данных

1. Основные понятия. Сетевая модель данных

1. Основные понятия. Реляционная модель данных

1. Основные понятия. Объектно-ориентированная модель данных

Ключ	Имя	Город
101	Иванов	Сумы
102	Петров	Харьков

Реляционная **модель**

КлючП	Телефон
101	0503025645
102	0661457878
102	0971452565

Объектно-ориентированная модель

2. Реляционная модель данных

Реляционная модель данных

• Организованная совокупность информации, которая сохраняется во взаимосвязанных двухмерных таблицах

Таблица

 поименованное двухмерное изображение реляционного отношения, состоящего из одного или более поименованных столбцов и нуля или более строк

Пример табличного представления реляционного отношения Факультет

#F	Name	Head	Building
1	EIIT	Oleksii Drozdenko	Electrotechnical building
2	TESET	Alexandr Gusak	Laboratory building
3	IFSK	Olena Sushkova	Main building

Атрибуты

Запись

#F	Name	Head	Building
1	EIIT	Serhiy Protsenko	Electrotechnical building
2	TESET	Alexandr Gusak	Laboratory building
3	IFSK	Olena Sushkova	Main building

Атрибут – **поименованный столбец отношения** Атрибуты могут быть приведены в любом порядке

#F	Name	Head	Building
1	EIIT	Oleksii Drozdenko	Electrotechnical building
2	TESET	Alexandr Gusak	Laboratory building
3	IFSK	Olena Sushkova	Main building

Домен - набор допустимых значений для одного или нескольких атрибутов

Каждый атрибут в отношении определяется в домене

#F	Name	Head	Building
1	EIIT	Oleksii Drozdenko	Electrotechnical building
2	TESET	Alexandr Gusak	Laboratory building
3	IFSK	Olena Sushkova	Main building

Степень

Степень отношения - количество атрибутов

#F	Name	Head	Building	0
1	EIIT	Oleksii Drozdenko	Electrotechnical building	CTE
2	TESET	Alexandr Gusak	Laboratory building	<u> </u>
3	IFSK	Olena Sushkova	Main building	Mol

Кардинальность (мощность) отношения - количество кортежей

Ключ

#F	Name	Head	Building
1	EIIT	Oleksii Drozdenko	Electrotechnical building
2	TESET	Alexandr Gusak	Laboratory building
3	IFSK	Olena Sushkova	Main building

Ключ – уникальный атрибут для сущности в одном или нескольких столбцах, который отличает один экземпляр сущности (кортеж) от всех других экземпляров.

#F	Name	Head	Building
1	EIIT	Oleksii Drozdenko	Electrotechnical building
2	TESET	Alexandr Gusak	Laboratory building
3	IFSK	Olena Sushkova	Main building

#D	#F	Name	Head	Building
1	1	CS	Anatoliy Dovbysh	Central building
2	1	ECT	Anatoliy Opanasyk	Electrotechnical building
3	3	GPh	Iryna Kobyakova	Electrotechnical building

Внешний ключ (Foreign Key) – атрибут моделирования связи

2. Реляционная модель данных Соответствие терминологии

Formal Terminology	Informal Terminology	
Relation/Отношение	Table/Таблица	
Attribute/Атрибут	Column/Колонка, столбец	
Tuple/Кортеж	Row, record/Строка	
Cardinality/Мощность	Row numbers/Количество строк	
Degree/Степень	Column numbers/Количество колонок, столбцов	
Domain/Домен	Values domain/Область значений	
Кеу/Ключ	Identificatory/Идентификатор	

2. Реляционная модель данных Связи между таблицами

Характеристики связи

Связь – определяет отношения между таблицами реляционной модели

3. Этапы проектирования БД

Методология проектирования

совокупность принципов, методов, инструментов и средств, применяемых для последовательной разработки базы данных

- Процесс проектирования
- Методика оценивания альтернативных решений
- □ Информационные требования
- □ Средства описания результатов проектирования

3. Этапы проектирования БД

Жизненный цикл системы баз данных

3. Этапы проектирования БД Критерии оценивания модели данных

Количественные

- •Время выполнения запроса
- •Стоимость операций манипулирования данными
- •Затраты памяти

Качественные

- •Гибкость Адаптивность
- •Совместимость Восприимчивость

3. Этапы проектирования БД

Анализ ПО

Концептуальное моделирование

Логическое моделирование

Физическое моделирование

- Анализ задач
- Анализ данных
- Описание предметной области в терминах формализованного языка
- Разработка структуры БД без привязки к конкретной СУБД
- Описание структуры БД в терминах конкретной СУБД

Этапы анализа данных

- 1. Проанализировать функции, которые будет выполнять информационная система с базой данных
- 2. Проанализировать сущности моделируемой предметной области (все существительные в описании связей)
- 3. Описать атрибуты (свойства) выделенных сущностей предметной области
- 4. Сформулировать связи между сущностями предметной области

Разработка базы данных для системы учета нагрузки сотрудников ИТ компании

1. Функции системы:

- Вести <u>учет нагрузки сотрудников компании</u>
- Вести учет проектов
- Вести <u>историю</u> клиентов
- Хранить информацию о сотрудниках компании.

2. Определение сущностей (объекты):

- Учет основная функция системы, не учитываем
- Нагрузка +
- Сотрудники +
- Компания локальный заказ, не храним инфу
- Проекты +
- История связка между клиентом и проектами, связь
- <u>Клиенты</u> +

2. Определение атрибутов (характеристики) сущностей:

- Нагрузка: ключ, сотрудник, проект, задачи, объем часов, сроки
- Сотрудники: ключ, ФИО, специализация, навыки, моб телефон, дата приема, дата увольнения, отдел, ставка (график работы), образование?
- Проекты: ключ, название, дата старта, дата завершения, менеджер, стек технологий, стоимость, тип разработки, клиент
- Клиенты: ключ, ФИО, моб телефон, тип клиента (ЮЛ-ФЛ), страна, конт.лицо, моб.конт.лицо

4. Описание связей:

Нагрузка - Сотрудники:

Одна нагрузка **должна** быть выполнена **одним или более** сотрудниками Один сотрудник **может** быть задействован во **многих** задачах проектов

• Нагрузка- Проект:

Одна нагрузка **должна** быть выполнена для **одного** проекта Один проект **может** быть выполнен во **многих** нагрузках

• Проекты - Клиенты:

Один проект **должен** быть связанный с **одним** клиентом Один клиент **может** иметь **много** проектов

Домашнее задание

Задание: Разработать базу данных интернет-магазина компьютерной техники и комлектующих

Основная **цель разработки** интернет-магазина: организовать продажи и отслеживать историю работы с клиентами (пример compservise, rozetka, eldorado).

Задание 1: Выполнить анализ предметной области (данных). Выделить не менее 4-ех функций

Оформление: текстовый документ