1 奶制品的生产与销售 2 自来水输送 3 汽车生产与原油采购 4 接力队选拔和选课策略

第四章数学规划模型

- 1 奶制品的生产与销售
- 2 2 自来水输送
- ③ 3 汽车生产与原油采购
- 4 4 接力队选拔和选课策略

数学规划模型

• 实际问题中的优化模型

$$Min(Max)z = f(x), x = (x_1, \dots x_n)^T$$

$$s.t.g_i(x) \le 0, i = 1, 2, \dots m$$

- x-决策变量,f(x)-目标函数,g_i(x) ≤ 0-约束条件
- 多元函数条件极值
- 决策变量个数n和约束条件个数m较大
- 最优解在可行域的边界上取得
- 数学规划:线性规划, 非线性规划, 整数规划
- 重点在模型的建立和结果的分析

奶制品的生产与销售

- 工厂级:根据外部需求和内部设备、人力、原料等条件,以 最大利润为目标制订产品生产计划;
- 车间级:根据生产计划、工艺流程、资源约束及费用参数等,以最小成本为目标制订生产批量计划。
- 若短时间内外部需求和内部资源等不随时间变化,可制订单 阶段生产计划,否则应制订多阶段生产计划。
- 本节课题:单阶段生产计划

例1 加工奶制品的生产计划

- 1桶牛奶,12小时,3公斤A1,获利24元/公斤
- 1桶牛奶,8小时,4公斤A2,获利16元/公斤
- 每天:50桶牛奶,时间480小时,至多加工100公斤A1
- 制订生产计划,使每天获利最大
- 35元可买到1桶牛奶,买吗?若买,每天最多买多少?
- 可聘用临时工人, 付出的工资最多是每小时几元?
- A1的获利增加到30元/公斤,应否改变生产计划?

奶制品的生产与销售

- 决策变量:x1桶牛奶生产A1,x2桶牛奶生产A2
- 目标函数:获利24*3x1,获利16*4x2
- 毎天获利Max z = 72x₁ + 64x₂
- 线性规划模型(LP),约束条件:
 - 原料供应:x₁ + x₂ ≤ 50
 - 劳动时间12x₁ + 8x₂ ≤ 480
 - 加工能力3x₁ ≤ 100
 - 非负约束x₁,x₂ ≥ 0

模型求解图解法

- $x_1 + x_2 \le 50 \Rightarrow l_1 : x_1 + x_2 = 50$
- $12x_1 + 8x_2 \le 480 \Rightarrow l_2 : 12x_1 + 8x_2 = 480$
- $3x_1 \le 100 \Rightarrow l_3 : 3x_1 = 100$
- $x_1, x_2 \ge 0 \Rightarrow l_4 : x_1 = 0, l_5 : x_2 = 0$
- 目标函数Max z = 72x₁ + 64x₂ z=c (常数) 等值线
- 目标函数和约束条件是线性函数可行域为直线段围成的凸多 边形目标函数的等值线为直线最优解一定在凸多边形的某个 顶点取得。
- 在B(20,30)点得到最优解

模型求解图解法

图 1 模型的图解法

模型求解软件实现

- max 72x1+64x2st 2) x1+x2 < 503) 12x1+8x2 < 480
 - 4) 3x1 < 100 end
- OBJECTIVE FUNCTION VALUE
 1) 3360.000
 VARIABLE, VALUE
 X1, 20.00000
 X2, 30.00000
- 20桶牛奶生产A1, 30桶生产A2, 利润3360元。

结果解释

	ROW	SLACK OR SURPLUS	DUAL PRICES
	2)	0	48
•	3)	0	2
	4)	40	0

- 原料无剩余
- 时间无剩余
- 加工能力剩余40
- "资源"剩余为零的约束为紧约束(有效约束)

结果解释

•	ROW	SLACK OR SURPLUS	DUAL PRICES
	2)	0	48
	3)	0	2
	4)	40	0

- 最优解下"资源"增加1单位时"效益"的增量
- 原料增加1单位, 利润增长48
- 时间增加1单位, 利润增长2
- 加工能力增长不影响利润
- 35元可买到1桶牛奶,要买吗?聘用临时工人付出的工资最 多每小时几元?
- 35 < 48, 应该买!临时工人付出的工资最多2元!

最优解不变时目标函数系数允许变化范围

	VARIABLE	CURRENT	INCREASE	DECREASE
•	X1	72	24	8
	X2	64	8	16

- x1系数范围(64,96), x2系数范围(48,72)
- x1系数由24*3=72增加为30*3=90,在允许范围内
- A1获利增加到30元/千克,应否改变生产计划
- 不变!

影子价格有意义时约束右端的允许变化范围

	ROW	CURRENT	INCREASE	DECREASE
•	2	50	10	6.67
	3	480	53.3	80
	4	100	INFINITY	40

- 原料最多增加10,时间最多增加53
- 35元可买到1桶牛奶,每天最多买多少?
- 最多买10桶!

运输问题

- 生产、生活物资从若干供应点运送到一些需求点,怎样安排 输送方案使运费最小,或利润最大;
- 各种类型的货物装箱,由于受体积、重量等限制,如何搭配装载,使获利最高,或装箱数量最少。

例1 自来水输送

例1 自来水输送

元/千吨	甲	Z	丙	T
A	160	130	220	170
В	140	130	190	150
\mathbf{C}	190	200	230	/

例1 自来水输送

- 收入: 900元/千吨,支出:引水管理费, 其他费用:450元/千吨
- 应如何分配水库供水量,公司才能获利最多?
- 若水库供水量都提高一倍,公司利润可增加到多少?

问题分析

- 总供水量: 160 < 总需求量: 120+180=300
- 收入: 900元/千吨,总收入900*160=144,000(元)
- 支出,引水管理费,其他费用:450元/千吨,其他支出450*160=72,000(元)
- 确定送水方案使利润最大,使引水管理费最小

模型建立

- 确定3个水库向4个小区的供水量
- 决策变量:水库i 向j 区的日供水量为 $x_{ii}(x_{34}=0)$
- 目标函数

$$\begin{array}{ll} \textit{Min} & \textit{Z} = 160x_{11} + 130x_{12} + 220x_{13} + 170x_{14} \\ & + 140x_{21} + 130x_{22} + 190x_{23} + 150x_{24} + 190x_{31} + 200x_{32} + 230x_{33} \end{array}$$

• 供应限制

$$x_{11} + x_{12} + x_{13} + x_{14} = 50$$

 $x_{21} + x_{22} + x_{23} + x_{24} = 60$
 $x_{31} + x_{32} + x_{33} = 50$

• 需求限制

$$30 \le x_{11} + x_{21} + x_{31} \le 80$$

$$70 \le x_{12} + x_{22} + x_{32} \le 140$$

$$10 \le x_{13} + x_{23} + x_{33} \le 30$$

$$10 \le x_{14} + x_{24} \le 50$$

模型求解

模型求解

- 引水管理费24400(元)
- 利润=总收入-其它费用-引水管理费=144000-72000-24400 = 47600(元)

问题讨论

- 每个水库最大供水量都提高一倍
- 总供水量(320)>总需求量(300),确定送水方案使利润最大
- 利润= 收入(900) 其它费用(450) 引水管理费

费用转成利润

利润(元/千吨)	甲	Z	丙	丁
A	290	320	230	280
В	310	320	260	300
C	260	250	220	1

问题讨论

• 目标函数

$$Max \quad Z = 290x_{11} + 320x_{12} + 230x_{13} + 280x_{14}$$

$$+310x_{21} + 320x_{22} + 260x_{23} + 300x_{24} + 260x_{31} + 250x_{32} + 220x_{33}$$

• 供应限制

A:
$$x_{11} + x_{12} + x_{13} + x_{14} = 50 \Rightarrow x_{11} + x_{12} + x_{13} + x_{14} \le 100$$

- B, C 类似处理
- 需求约束可以不变

求解

汽车厂生产详细信息

	小型	中型	大型	现有量
钢材 (吨)	1.5	3	5	600
劳动时间(小时)	280	250	400	60000
利润 (万元)	2	3	4	

汽车厂生产计划

- 汽车厂生产三种类型的汽车,已知各类型每辆车对钢材、劳动时间的需求,利润及工厂每月的现有量。
- 制订月生产计划,使工厂的利润最大。
- 如果生产某一类型汽车,则至少要生产80辆,那么最优的 生产计划应作何改变?

模型建立

•

• 设每月生产小、中、大型汽车的数量分别为x1,x2,x3

Max
$$z = 2x_1 + 3x_2 + 4x_3$$

s. t. $1.5x_1 + 3x_2 + 5x_3 \le 600$
 $280x_1 + 250x_2 + 400x_3 \le 60000$
 $x_1, x_2, x_3 \ge 0$

模型求解

- 目标函数最优解632.2581
- X1 = 64.516129,X2 = 167.741928
- 结果为小数, 怎么办?
- 1) 舍去小数:取x1=64,x2=167,算出目标函数 值z=629,与LP最优值632.2581相差不大。
- 2) 试探:如取x1=65,x2=167;x1=64,x2=168等,计算 函数值z,通过比较可能得到更优的解。
- 3)模型中增加条件: x1, x2, x3均为整数,重新求解。
- 其中方法3一般是最好的。加上整数约束,用lingo可以直接 求出结果。

模型求解

•

• 若生产某类汽车,则至少生产80辆,求生产计划。

Max
$$z = 2x_1 + 3x_2 + 4x_3$$

s. t. $1.5x_1 + 3x_2 + 5x_3 \le 600$
 $280x_1 + 250x_2 + 400x_3 \le 60000$

- $x_1, x_2, x_3 = 0$ $4 \ge 80$
- 方法1:分解为8个LP子模型其中3个子模型应去掉,然后逐一求解,比较目标函数值,再加上整数约束,得最优解:
- $x_1 = 80x_2 = 150x_3 = 0$, 最优值z=610

方法2: 引入0-1变量, 化为整数规划

- $x_1 = 0$ $\preceq \ge 80 \Rightarrow x_1 \le My_1, x_1 \ge 80y_1, y_1 \in \{0, 1\}$
- M为大的正数,可取1000
- x2, x3 类似
- 加上这些条件再求解,最优解同前

方法3: 化为非线性规划

- $x_1 = 0 \le 80 \Rightarrow x_1(x_1 80) \ge 0$
- x2, x3 类似
- 非线性规划(Non- Linear Programming,简记NLP)
- NLP虽然可用现成的数学软件求解(如LINGO, MATLAB), 但是其结果常依赖于初值的选择。

例2原油采购与加工

- 库存500吨原油A,库存1000吨原油B,汽油甲(A≥50%)售价4800元/吨,汽油乙(A≥60%)售价5600元/吨
- 市场上可买到不超过1500吨的原油A:购买量不超过500吨时的单价为10000元/吨;购买量超过500吨但不超过1000吨时,超过500吨的部分8000元/吨;购买量超过1000吨时,超过1000吨的部分6000元/吨。
- 应如何安排原油的采购和加工?

问题分析

- 利润:销售汽油的收入-购买原油A的支出
- 难点: 原油A的购价与购买量的关系较复杂
- 决策变量: 原油A的购买量,原油A, B生产汽油甲,乙的数量.购买x,A,B分别用于甲乙的量为x₁₁,x₁₂,x₂₁,x₂₂
- 目标函数,利润(千元),c(x)-购买原油A的支出

Max
$$z = 4.8(x_{11} + x_{21}) + 5.6(x_{12} + x_{22}) - c(x)$$

• c(x)如何表述?

模型建立

•
$$c(x) = \begin{cases} 10x(0 \le x \le 500) \\ 8x + 1000(500 \le x \le 1000) \\ 6x + 3000(1000 \le x \le 1500) \\ x_{11} + x_{12} \le 500 + x \end{cases}$$

- 原油供应 x₂₁ + x₂₂ < 1000 x < 1500
- 汽油含原油A的比例限制

$$\frac{x_{11}}{x_{11} + x_{21}} \ge 0.5 \Leftrightarrow x_{11} \ge x_{21}$$
$$\frac{x_{12}}{x_{12} + x_{22}} \ge 0.6 \Leftrightarrow 2x_{12} \ge 3x_{22}$$

- 目标函数中c(x)不是线性函数,是非线性规划;
- 对于用分段函数定义的c(x),一般的非线性规划软件也难以 输入和求解;想办法将模型化简,用现成的软件求解。

模型求解方法1

- x_1, x_2, x_3 -以价格10, 8, 6(千元/吨)采购A的吨数 $x = x_1 + x_2 + x_3$, $c(x) = 10x_1 + 8x_2 + 6x_3$
- 目标函数

Max
$$z = 4.8(x_{11} + x_{21}) + 5.6(x_{12} + x_{22}) - (10x_1 + 8x_2 + 6x_3)$$

- 500吨≤x≤1000吨,超过500吨的8千元/吨
- 只有当以10千元/吨的价格购买×1=500(吨)时,才能以8千元/吨的价格购买×2 ⇒ (x₁ 500)x₂ = 0
- 类似的: $(x_2 500)x_3 = 0$ 再加上: $0 \le x_1, x_2, x_3 \le 500$
- 方法二,方法三大家自己看。

分派问题

- 若干项任务分给一些候选人来完成,每人的专长不同,完成 每项任务取得的效益或需要的资源就不同,如何分派任务使 获得的总效益最大,或付出的总资源最少。
- 若干种策略供选择,不同的策略得到的收益或付出的成本不同,各个策略之间有相互制约关系,如何在满足一定条件下作出决择,使得收益最大或成本最小。

例1 混合泳接力队的选拔

	甲	乙	丙	T	戊
蝶泳	1'06"8	57"2	1'18"	1'10"	1'07"4
仰泳	1'15"6	1'06"	1'07"8	1'14"2	1'11"
蛙泳	1'27"	1'06"4	1'24"6	1'09"6	1'23"8
自由泳	58"6	53"	59"4	57"2	1'02"4

例1 混合泳接力队的选拔

- 如何选拔队员组成4*100米混合泳接力队?
- 丁的蛙泳成绩退步到1'15"2; 戊的自由泳成绩进步到57"5,组成接力队的方案是否应该调整?
- 穷举法: 组成接力队的方案共有5!=120种。
- 0-1规划模型, c_{ij}(秒)-队员i第j种泳姿的百米成绩

例1 混合泳接力队的选拔

c_{ij}	<i>i</i> =1	<i>i</i> =2	<i>i</i> =3	<i>i</i> =4	<i>i</i> =5
<i>j</i> =1	66.8	57.2	78	70	67.4
<i>j</i> =2	75.6	66	67.8	74.2	71
<i>j</i> =3	87	66.4	84.6	69.6	83.8
<i>j</i> =4	58.6	53	59.4	57.2	62.4

模型建立

- 若选择队员i参加泳姿j的比赛,记x;;=1,否则记x;;=0
- 目标函数

Min
$$Z = \sum_{j=1}^{4} \sum_{i=1}^{5} c_{ij} x_{ij}$$

• 约束条件: 每人最多入选泳姿之一

$$\sum_{j=1}^4 x_{ij} \le 1, \quad i = 1, \dots 5$$

• 约束条件: 每种泳姿有且只有1人

$$\sum_{i=1}^{5} x_{ij} = 1, \ \ j = 1, \cdots 4$$

例2选课策略

课号	课名	学分	所属类别	先修课要求
1	微积分	5	数学	
2	线性代数	4	数学	
3	最优化方法	4	数学;运筹学	微积分;线性代数
4	数据结构	3	数学;计算机	计算机编程
5	应用统计	4	数学;运筹学	微积分;线性代数
6	计算机模拟	3	计算机;运筹学	计算机编程
7	计算机编程	2	计算机	
8	预测理论	2	运筹学	应用统计
9	数学实验	3	运筹学; 计算机	微积分;线性代数

例2选课策略

- 要求至少选两门数学课、三门运筹学课和两门计算机课
- 为了选修课程门数最少,应学习哪些课程?
- 选修课程最少,且学分尽量多,应学习哪些课程?

例2选课策略

课号	课名	先修课要求
1	微积分	
2	线性代数	
3	最优化方法	微积分;线性代数
4	数据结构	计算机编程
5	应用统计	微积分;线性代数
6	计算机模拟	计算机编程
7	计算机编程	
8	预测理论	应用统计
9	数学实验	微积分;线性代数

0-1规划模型

- 决策变量: x;=1-选修课号i 的课程(x;=0-不选)
- 目标函数:选修课程总数最少 \Rightarrow Min $Z = \sum_{i=1}^{9} x_i$
- 约束条件最少2门数学课 $x_1 + x_2 + x_3 + x_4 + x_5 \ge 2$
- 约束条件3门运筹学课, x₃ + x₅ + x₆ + x₈ + x₉ ≥ 3
- 约束条件2门计算机课 $x_4 + x_6 + x_7 + x_9 \ge 2$

先修课程要求

课号	课名	先修课要求
* 1	微积分	
* 2	线性代数	
* 3	最优化方法	微积分;线性代数
4	数据结构	计算机编程
5	应用统计	微积分;线性代数
* 6	计算机模拟	计算机编程
* 7	计算机编程	
8	预测理论	应用统计
* 9	数学实验	微积分;线性代数

先修课程要求

- 类似的有:

$$x_4 - x_7 \le 0$$

$$2x_5 - x_1 - x_2 \le 0$$

$$2x_5 - x_1 - x_2 \le 0$$

$$x_6 - x_7 \le 0$$

$$x_8 - x_5 \le 0$$

$$2x_9 - x_1 - x_2 \le 0$$

• 最优解: $x_1 = x_2 = x_3 = x_6 = x_7 = x_9 = 1$, 其它为0; 6门课 程, 总学分21

选修课程最少,学分尽量多,应学习哪些课程?

- 课程最少Min $Z = \sum_{i=1}^{9} x_i$
- 学分最多 Max $W = 5x_1 + 4x_2 + 4x_3 + 3x_4 + 4x_5 + 3x_6 + 2x_7 + 2x_8 + 3x_9$
- 两目标(多目标)规划Min {Z, -W}
- 多目标优化的处理方法: 化成单目标优化。
- 以课程最少为目标,不管学分多少。最优解如上,6门课程,总学分21。
- 以学分最多为目标,不管课程多少。最优解显然是选修所有9门课程。

多目标规划

- 在课程最少的前提下以学分最多为目标。
- 增加约束 $\sum_{i=1}^{9} x_i = 6$, 以学分最多为目标求解
- 最优解: x₁ = x₂ = x₃ = x₅ = x₇ = x₉ = 1, 其它为0; 总学分由21增至22。
- 注意: 最优解不唯一! 可将xg = 1 易为x₆ = 1

多目标规划

- 对学分数和课程数加权形成一个目标, 如三七开。
- Min $Y = \lambda_1 Z \lambda_2 W = 0.7Z 0.3W$
- 最优解: $x_1 = x_2 = x_3 = x_4 = x_5 = x_6 = x_7 = x_9 = 1$, 其它为0; 总学分28。
- 入值可以调整,前面的几种情况都可以根据调整得到。