Thermodynamics & Statistical Physics Chapter 5. Thermodynamics of irreversible processes

Yuan-Chuan Zou zouyc@hust.edu.cn

School of Physics, Huazhong University of Science and Technology

December 30, 2013

Table of contents

- 1 §5. Thermodynamics of irreversible processes
 - 5.1 Local equilibrium, entropy flux density and production rate
 - 5.2 Linear and nonlinear processes, Onsager relation

5.1 Local equilibrium, entropy flux density, entropy local production rate

5.1 Local equilibrium, entropy flux density, entropy local production rate

• Irreversible processes.

5.1 Local equilibrium, entropy flux density, entropy local production rate

- Irreversible processes.
- 2nd Law: $dS \geqslant \frac{dQ}{T}$,

5.1 Local equilibrium, entropy flux density, entropy local production rate

- Irreversible processes.
- 2nd Law: $dS \geqslant \frac{\overline{d}Q}{T}$, = reversible; > irreversible.

5.1 Local equilibrium, entropy flux density, entropy local production rate

- Irreversible processes.
- 2nd Law: $dS \geqslant \frac{dQ}{T}$, = reversible; > irreversible.
- $dS = d_e S + d_i S$ (e, external; i, internal),

5.1 Local equilibrium, entropy flux density, entropy local production rate

- Irreversible processes.
- 2nd Law: $dS \geqslant \frac{\overline{d}Q}{T}$, = reversible; > irreversible.
- $dS = d_e S + d_i S$ (e, external; i, internal), $d_e S$: exchange of heat and matter; $d_i S$: isolated part.

5.1 Local equilibrium, entropy flux density, entropy local production rate

- Irreversible processes.
- 2nd Law: $dS \geqslant \frac{\overline{d}Q}{T}$, = reversible; > irreversible.
- $dS = d_e S + d_i S$ (e, external; i, internal), $d_e S$: exchange of heat and matter; $d_i S$: isolated part.
- Rewrite basic equation:

$$T dS = dU + p dV - \sum_{i} \mu_{i} dn_{i}$$

5.1 Local equilibrium, entropy flux density, entropy local production rate

- Irreversible processes.
- 2nd Law: $dS \geqslant \frac{\overline{d}Q}{T}$, = reversible; > irreversible.
- $dS = d_e S + d_i S$ (e, external; i, internal), $d_e S$: exchange of heat and matter; $d_i S$: isolated part.
- Rewrite basic equation:

$$T\mathrm{d}S = \mathrm{d}U + p\mathrm{d}V - \sum_{i} \mu_{i}\mathrm{d}n_{i}$$
, to $T\mathrm{d}S = \mathrm{d}U + p\mathrm{d}V - \sum_{i} \mu_{i}\mathrm{d}N_{i}$, where N_{i} is the number of molecules of component i , and μ_{i} is the chemical potential of one molecule of component i .

• No global state parameter (like T, p) for non-equilibrium system.

- No global state parameter (like T, p) for non-equilibrium system.
- Exists small parts in the system, are approximately in equilibrium, which exist $(T, p, \mu, ...)$.

- No global state parameter (like T, p) for non-equilibrium system.
- Exists small parts in the system, are approximately in equilibrium, which exist $(T, p, \mu, ...)$.
- Each small part (in volume) is an open system, $T dS = dU + p dV \sum_i \mu_i dN_i$.

- No global state parameter (like T, p) for non-equilibrium system.
- Exists small parts in the system, are approximately in equilibrium, which exist $(T, p, \mu, ...)$.
- Each small part (in volume) is an open system, $T dS = dU + p dV \sum_i \mu_i dN_i$.
- 1. Neglect volume change dV = 0;

- No global state parameter (like T, p) for non-equilibrium system.
- Exists small parts in the system, are approximately in equilibrium, which exist $(T, p, \mu, ...)$.
- Each small part (in volume) is an open system, $T dS = dU + p dV \sum_i \mu_i dN_i$.
- 1. Neglect volume change dV = 0; 2. Divided by V.

- No global state parameter (like T, p) for non-equilibrium system.
- Exists small parts in the system, are approximately in equilibrium, which exist $(T, p, \mu, ...)$.
- Each small part (in volume) is an open system, $TdS = dU + pdV - \sum_{i} \mu_{i} dN_{i}$.
- 1. Neglect volume change dV = 0; 2. Divided by V.
- $T ds = du \sum_i \mu_i dn_i$, where n_i is the number density of component i.

- No global state parameter (like T, p) for non-equilibrium system.
- Exists small parts in the system, are approximately in equilibrium, which exist $(T, p, \mu, ...)$.
- Each small part (in volume) is an open system, $TdS = dU + pdV - \sum_{i} \mu_{i} dN_{i}$.
- 1. Neglect volume change dV = 0; 2. Divided by V.
- $T ds = du \sum_i \mu_i dn_i$, where n_i is the number density of component i.
- For the whole component, $U = \int u d\tau$, $S = \int s d\tau$, $N_i = \int n_i d\tau$;

- No global state parameter (like T, p) for non-equilibrium system.
- Exists small parts in the system, are approximately in equilibrium, which exist $(T, p, \mu, ...)$.
- Each small part (in volume) is an open system, $TdS = dU + pdV - \sum_{i} \mu_{i} dN_{i}$.
- 1. Neglect volume change dV = 0; 2. Divided by V.
- $T ds = du \sum_i \mu_i dn_i$, where n_i is the number density of component i.
- For the whole component, $U = \int u d\tau$, $S = \int s d\tau$, $N_i = \int n_i d\tau$; S is a critical variable.

ullet Define $rac{\partial s}{\partial t}=-igtriangledown\cdotec{J}_s+\Theta$, where $ec{J}_s$ is the entropy flux density (external), and Θ is the entropy local production rate (internal).

- Define $\frac{\partial s}{\partial t} = \nabla \cdot \vec{J_s} + \Theta$, where $\vec{J_s}$ is the entropy flux density (external), and Θ is the entropy local production rate (internal).
- For the whole system:

- ullet Define $rac{\partial s}{\partial t}=-igtriangledown\cdotec{J}_s+\Theta$, where $ec{J}_s$ is the entropy flux density (external), and Θ is the entropy local production rate (internal).
- For the whole system:

$$\frac{\mathrm{d}S}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \int s \, \mathrm{d}\tau$$

- Define $\frac{\partial s}{\partial t} = \nabla \cdot \vec{J_s} + \Theta$, where $\vec{J_s}$ is the entropy flux density (external), and Θ is the entropy local production rate (internal).
- For the whole system:

$$\frac{\mathrm{d}S}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \int s \mathrm{d}\tau = \int \frac{\partial s}{\partial t} \mathrm{d}\tau$$

- Define $\frac{\partial s}{\partial t} = \nabla \cdot \vec{J_s} + \Theta$, where $\vec{J_s}$ is the entropy flux density (external), and Θ is the entropy local production rate (internal).
- For the whole system:

$$\frac{\mathrm{d}S}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \int s \, \mathrm{d}\tau = \int \frac{\partial s}{\partial t} \, \mathrm{d}\tau = \int [-\nabla \cdot \vec{J}_s + \Theta] \, \mathrm{d}\tau$$

- Define $\frac{\partial s}{\partial t} = \nabla \cdot \vec{J_s} + \Theta$, where $\vec{J_s}$ is the entropy flux density (external), and Θ is the entropy local production rate (internal).
- For the whole system:

$$\frac{dS}{dt} = \frac{d}{dt} \int s d\tau = \int \frac{\partial s}{\partial t} d\tau = \int [-\nabla \cdot \vec{J}_s + \Theta] d\tau = -\oint \vec{J}_s \cdot d\vec{\sigma} + \int \Theta d\tau.$$

- Define $\frac{\partial s}{\partial t} = \nabla \cdot \vec{J}_s + \Theta$, where \vec{J}_s is the entropy flux density (external), and Θ is the entropy local production rate (internal).
- For the whole system:

$$\frac{dS}{dt} = \frac{d}{dt} \int s d\tau = \int \frac{\partial s}{\partial t} d\tau = \int [-\nabla \cdot \vec{J}_s + \Theta] d\tau = - \oint \vec{J}_s \cdot d\vec{\sigma} + \int \Theta d\tau.$$

• $\frac{\mathrm{d}_e S}{\mathrm{d}t} = -\oint \vec{J}_s \cdot \mathrm{d}\vec{\sigma}, \ \frac{\mathrm{d}_i S}{\mathrm{d}t} = \int \Theta \mathrm{d}\tau.$

- Define $\frac{\partial s}{\partial t} = \nabla \cdot \vec{J_s} + \Theta$, where $\vec{J_s}$ is the entropy flux density (external), and Θ is the entropy local production rate (internal).
- For the whole system:

$$\frac{dS}{dt} = \frac{d}{dt} \int s d\tau = \int \frac{\partial s}{\partial t} d\tau = \int [-\nabla \cdot \vec{J}_s + \Theta] d\tau$$
$$= -\oint \vec{J}_s \cdot d\vec{\sigma} + \int \Theta d\tau.$$

- $\frac{\mathrm{d}_e S}{\mathrm{d}t} = -\oint \vec{J}_s \cdot \mathrm{d}\vec{\sigma}, \ \frac{\mathrm{d}_i S}{\mathrm{d}t} = \int \Theta \mathrm{d}\tau.$
- Apply to the simplest case: only heat conduction,

- Define $\frac{\partial s}{\partial t} = \nabla \cdot \vec{J_s} + \Theta$, where $\vec{J_s}$ is the entropy flux density (external), and Θ is the entropy local production rate (internal).
- For the whole system:

$$\frac{dS}{dt} = \frac{d}{dt} \int s d\tau = \int \frac{\partial s}{\partial t} d\tau = \int [-\nabla \cdot \vec{J}_s + \Theta] d\tau = -\oint \vec{J}_s \cdot d\vec{\sigma} + \int \Theta d\tau.$$

- $\frac{\mathrm{d}_e S}{\mathrm{d}t} = -\oint \vec{J}_s \cdot \mathrm{d}\vec{\sigma}, \ \frac{\mathrm{d}_i S}{\mathrm{d}t} = \int \Theta \mathrm{d}\tau.$
- Apply to the simplest case: only heat conduction,
- ullet internal energy density: $rac{\partial u}{\partial t} = igtriangledown \cdot ec{J}_q$, where $ec{J}_q$ is the heat flux density.

- Define $\frac{\partial s}{\partial t} = \nabla \cdot \vec{J_s} + \Theta$, where $\vec{J_s}$ is the entropy flux density (external), and Θ is the entropy local production rate (internal).
- For the whole system:

$$\frac{dS}{dt} = \frac{d}{dt} \int s d\tau = \int \frac{\partial s}{\partial t} d\tau = \int [-\nabla \cdot \vec{J}_s + \Theta] d\tau$$
$$= -\oint \vec{J}_s \cdot d\vec{\sigma} + \int \Theta d\tau.$$

- $\frac{\mathrm{d}_e S}{\mathrm{d}t} = -\oint \vec{J}_s \cdot \mathrm{d}\vec{\sigma}, \ \frac{\mathrm{d}_i S}{\mathrm{d}t} = \int \Theta \mathrm{d}\tau.$
- Apply to the simplest case: only heat conduction,
- ullet internal energy density: $rac{\partial u}{\partial t} = igtriangledown \cdot ec{J}_q$, where $ec{J}_q$ is the heat flux density.
- No volume change, no matter flow, the basic equation: Tds = du

- Define $\frac{\partial s}{\partial t} = \nabla \cdot \vec{J}_s + \Theta$, where \vec{J}_s is the entropy flux density (external), and Θ is the entropy local production rate (internal).
- For the whole system:

$$\frac{dS}{dt} = \frac{d}{dt} \int s d\tau = \int \frac{\partial s}{\partial t} d\tau = \int [-\nabla \cdot \vec{J}_s + \Theta] d\tau = -\oint \vec{J}_s \cdot d\vec{\sigma} + \int \Theta d\tau.$$

- $\frac{\mathrm{d}_e S}{\mathrm{d}t} = -\oint \vec{J}_s \cdot \mathrm{d}\vec{\sigma}, \ \frac{\mathrm{d}_i S}{\mathrm{d}t} = \int \Theta \mathrm{d}\tau.$
- Apply to the simplest case: only heat conduction,
- internal energy density: $\frac{\partial u}{\partial t} = \nabla \cdot \vec{J}_q$, where \vec{J}_q is the heat flux density.
- No volume change, no matter flow, the basic equation: $T ds = du \Rightarrow \frac{\partial s}{\partial t} = \frac{1}{T} \frac{\partial u}{\partial t}$

- Define $\frac{\partial s}{\partial t} = \nabla \cdot \vec{J_s} + \Theta$, where $\vec{J_s}$ is the entropy flux density (external), and Θ is the entropy local production rate (internal).
- For the whole system:

$$\frac{dS}{dt} = \frac{d}{dt} \int s d\tau = \int \frac{\partial s}{\partial t} d\tau = \int [-\nabla \cdot \vec{J}_s + \Theta] d\tau
= -\oint \vec{J}_s \cdot d\vec{\sigma} + \int \Theta d\tau.$$

- $\frac{\mathrm{d}_e S}{\mathrm{d}t} = -\oint \vec{J}_s \cdot \mathrm{d}\vec{\sigma}, \ \frac{\mathrm{d}_i S}{\mathrm{d}t} = \int \Theta \mathrm{d}\tau.$
- Apply to the simplest case: only heat conduction,
- ullet internal energy density: $rac{\partial u}{\partial t} = igtriangledown \cdot ec{J}_q$, where $ec{J}_q$ is the heat flux density.
- No volume change, no matter flow, the basic equation: $T ds = du \Rightarrow \frac{\partial s}{\partial t} = \frac{1}{T} \frac{\partial u}{\partial t} = -\frac{1}{T} \nabla \cdot \vec{J_a}$.

•
$$\frac{\partial s}{\partial t} = -\frac{1}{T} \nabla \cdot \vec{J}_q$$

$$\bullet \ \frac{\partial s}{\partial t} = -\frac{1}{T} \bigtriangledown \cdot \vec{J_q} = - [\bigtriangledown \cdot \frac{\vec{J_q}}{T} - \vec{J_q} \cdot \bigtriangledown \frac{1}{T}]$$

•
$$\frac{\partial s}{\partial t} = -\frac{1}{T} \nabla \cdot \vec{J}_q = -\left[\nabla \cdot \frac{\vec{J}_q}{T} - \vec{J}_q \cdot \nabla \frac{1}{T}\right]$$

= $-\nabla \cdot \frac{\vec{J}_q}{T} + \vec{J}_q \cdot \nabla \frac{1}{T}$.

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

•
$$\frac{\partial s}{\partial t} = -\frac{1}{T} \nabla \cdot \vec{J}_q = -\left[\nabla \cdot \frac{\vec{J}_q}{T} - \vec{J}_q \cdot \nabla \frac{1}{T}\right]$$

= $-\nabla \cdot \frac{\vec{J}_q}{T} + \vec{J}_q \cdot \nabla \frac{1}{T}$.

• Compare with $\frac{\partial s}{\partial t} = - \nabla \cdot \vec{J}_s + \Theta$,

•
$$\frac{\partial s}{\partial t} = -\frac{1}{T} \nabla \cdot \vec{J}_q = -\left[\nabla \cdot \frac{\vec{J}_q}{T} - \vec{J}_q \cdot \nabla \frac{1}{T}\right]$$

= $-\nabla \cdot \frac{\vec{J}_q}{T} + \vec{J}_q \cdot \nabla \frac{1}{T}$.

• Compare with $\frac{\partial s}{\partial t} = - \nabla \cdot \vec{J}_s + \Theta$, $\vec{J}_s = \frac{\vec{J}_q}{T}$, $\Theta = \vec{J}_q \cdot \nabla \frac{1}{T}$.

•
$$\frac{\partial s}{\partial t} = -\frac{1}{T} \nabla \cdot \vec{J}_q = -\left[\nabla \cdot \frac{\vec{J}_q}{T} - \vec{J}_q \cdot \nabla \frac{1}{T}\right]$$

= $-\nabla \cdot \frac{\vec{J}_q}{T} + \vec{J}_q \cdot \nabla \frac{1}{T}$.

- Compare with $\frac{\partial s}{\partial t} = \nabla \cdot \vec{J}_s + \Theta$, $\vec{J}_s = \frac{\vec{J}_q}{T}$, $\Theta = \vec{J}_q \cdot \nabla \frac{1}{T}$.
- Define $\vec{X_q} \equiv \nabla \frac{1}{T}$, as heat flow force,

•
$$\frac{\partial s}{\partial t} = -\frac{1}{T} \nabla \cdot \vec{J}_q = -\left[\nabla \cdot \frac{\vec{J}_q}{T} - \vec{J}_q \cdot \nabla \frac{1}{T}\right]$$

= $-\nabla \cdot \frac{\vec{J}_q}{T} + \vec{J}_q \cdot \nabla \frac{1}{T}$.

- Compare with $\frac{\partial s}{\partial t} = \nabla \cdot \vec{J}_s + \Theta$, $\vec{J}_s = \frac{\vec{J}_q}{T}$, $\Theta = \vec{J}_q \cdot \nabla \frac{1}{T}$.
- ullet Define $ec{X_q} \equiv igtriangleq rac{1}{T}$, as heat flow force, then $\Theta = \vec{J}_a \cdot \vec{X}_a$.

- $\frac{\partial s}{\partial t} = -\frac{1}{T} \nabla \cdot \vec{J_q} = -\left[\nabla \cdot \frac{\vec{J_q}}{T} \vec{J_q} \cdot \nabla \frac{1}{T}\right]$ $=-\nabla\cdot\frac{\vec{J}_q}{T}+\vec{J}_q\cdot\nabla\frac{1}{T}.$
- Compare with $\frac{\partial s}{\partial t} = \nabla \cdot \vec{J}_s + \Theta$, $\vec{J}_s = \frac{\vec{J}_q}{T}$, $\Theta = \vec{J}_q \cdot \nabla \frac{1}{T}$.
- ullet Define $ec{X_q} \equiv igtriangleq rac{1}{T}$, as heat flow force, then $\Theta = \vec{J}_a \cdot \vec{X}_a$.
- If heat conduction obeys the Fourier's law, $\vec{J}_a = -\kappa \bigtriangledown T$, then

- $\frac{\partial s}{\partial t} = -\frac{1}{T} \nabla \cdot \vec{J_q} = -\left[\nabla \cdot \frac{\vec{J_q}}{T} \vec{J_q} \cdot \nabla \frac{1}{T}\right]$ $=-\nabla\cdot\frac{\vec{J}_q}{T}+\vec{J}_q\cdot\nabla\frac{1}{T}.$
- ullet Compare with $rac{\partial s}{\partial t} = igtriangledown \cdot ec{J}_s + \Theta$, $\vec{J}_s = \frac{\vec{J}_q}{T}$, $\Theta = \vec{J}_q \cdot \nabla \frac{1}{T}$.
- ullet Define $ec{X_q} \equiv igtriangleq rac{1}{T}$, as heat flow force, then $\Theta = \vec{J}_a \cdot \vec{X}_a$.
- If heat conduction obeys the Fourier's law, $\vec{J}_a = -\kappa \nabla T$, then $\Theta = \vec{J}_a \cdot \nabla \frac{1}{T}$

- $\frac{\partial s}{\partial t} = -\frac{1}{T} \nabla \cdot \vec{J_q} = -\left[\nabla \cdot \frac{\vec{J_q}}{T} \vec{J_q} \cdot \nabla \frac{1}{T}\right]$ $=-\nabla\cdot\frac{\vec{J}_q}{T}+\vec{J}_q\cdot\nabla\frac{1}{T}.$
- Compare with $\frac{\partial s}{\partial t} = \nabla \cdot \vec{J}_s + \Theta$, $\vec{J}_s = \frac{\vec{J}_q}{T}$, $\Theta = \vec{J}_q \cdot \nabla \frac{1}{T}$.
- ullet Define $ec{X_q} \equiv igtriangleq rac{1}{T}$, as heat flow force, then $\Theta = \vec{J}_a \cdot \vec{X}_a$.
- If heat conduction obeys the Fourier's law, $\vec{J_q} = -\kappa \bigtriangledown T$, then $\Theta = \vec{J_q} \cdot \bigtriangledown \frac{1}{T} = -\vec{J_q} \cdot \frac{\bigtriangledown T}{T^2}$

- $\frac{\partial s}{\partial t} = -\frac{1}{T} \nabla \cdot \vec{J_q} = -\left[\nabla \cdot \frac{\vec{J_q}}{T} \vec{J_q} \cdot \nabla \frac{1}{T}\right]$ $=-\nabla\cdot\frac{\vec{J}_q}{T}+\vec{J}_q\cdot\nabla\frac{1}{T}.$
- Compare with $\frac{\partial s}{\partial t} = \nabla \cdot \vec{J}_s + \Theta$, $\vec{J}_s = \frac{\vec{J}_q}{T}$, $\Theta = \vec{J}_q \cdot \nabla \frac{1}{T}$.
- ullet Define $ec{X_q} \equiv igtriangleq rac{1}{T}$, as heat flow force, then $\Theta = \vec{J}_a \cdot \vec{X}_a$.
- If heat conduction obeys the Fourier's law, $\vec{J}_q = -\kappa \nabla T$, then $\Theta = \vec{J}_q \cdot \nabla \frac{1}{T} = -\vec{J}_q \cdot \frac{\nabla T}{T^2}$ $=\kappa \frac{(\nabla T)^2}{T^2}$.

- $\frac{\partial s}{\partial t} = -\frac{1}{T} \nabla \cdot \vec{J_q} = -\left[\nabla \cdot \frac{\vec{J_q}}{T} \vec{J_q} \cdot \nabla \frac{1}{T}\right]$ $=-\nabla\cdot\frac{\vec{J}_q}{T}+\vec{J}_q\cdot\nabla\frac{1}{T}.$
- Compare with $\frac{\partial s}{\partial t} = \nabla \cdot \vec{J}_s + \Theta$, $\vec{J}_s = \frac{\vec{J}_q}{T}$, $\Theta = \vec{J}_q \cdot \nabla \frac{1}{T}$.
- ullet Define $ec{X_q} \equiv igtriangleq rac{1}{T}$, as heat flow force, then $\Theta = \vec{J}_a \cdot \vec{X}_a$.
- If heat conduction obeys the Fourier's law, $\vec{J}_q = -\kappa \nabla T$, then $\Theta = \vec{J}_q \cdot \nabla \frac{1}{T} = -\vec{J}_q \cdot \frac{\nabla T}{T^2}$ $=\kappa \frac{(\nabla T)^2}{T^2}$.
- $\Theta \geqslant 0$.

 Apply to a more realistic case: temperature and chemical potential, non-uniform

 Apply to a more realistic case: temperature and chemical potential, non-uniform

heat conduction and matter flow.

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

- Apply to a more realistic case: temperature and chemical potential, non-uniform
 - heat conduction and matter flow.
- Energy conservation: $\frac{\partial u}{\partial t} + \nabla \cdot J_u = 0$,

- Apply to a more realistic case: temperature and chemical potential, non-uniform
 - heat conduction and matter flow.
- Energy conservation: $\frac{\partial u}{\partial t} + \nabla \cdot \vec{J_u} = 0$, matter conservation: $\frac{\partial n}{\partial t} + \nabla \cdot \vec{J_n} = 0$.

December 30, 2013

- Apply to a more realistic case: temperature and chemical potential, non-uniform
 heat conduction and matter flow.
- Energy conservation: $\frac{\partial u}{\partial t} + \nabla \cdot \vec{J_u} = 0$, matter conservation: $\frac{\partial n}{\partial t} + \nabla \cdot \vec{J_n} = 0$.
- $\bullet \ \vec{J_u} = \vec{J_q} + \mu \vec{J_n}.$

- Apply to a more realistic case: temperature and chemical potential, non-uniform
 heat conduction and matter flow
- Energy conservation: $\frac{\partial u}{\partial t} + \nabla \cdot \vec{J_u} = 0$, matter conservation: $\frac{\partial n}{\partial t} + \nabla \cdot \vec{J_n} = 0$.
- $\bullet \ \vec{J_u} = \vec{J_q} + \mu \vec{J_n}.$
- $\therefore \frac{\partial u}{\partial t} = \nabla \cdot \vec{J}_q \nabla \cdot (\mu \vec{J}_n).$

- Apply to a more realistic case: temperature and chemical potential, non-uniform heat conduction and matter flow
- Energy conservation: $\frac{\partial u}{\partial t} + \nabla \cdot J_u = 0$, matter conservation: $\frac{\partial n}{\partial t} + \nabla \cdot \vec{J_n} = 0$.
- $\bullet \ \vec{J}_u = \vec{J}_a + \mu \vec{J}_n.$
- $\therefore \frac{\partial u}{\partial t} = \nabla \cdot \vec{J}_q \nabla \cdot (\mu \vec{J}_n).$
- $\bullet \, \mathrm{d}s = \frac{1}{T} (\mathrm{d}u \mu \mathrm{d}n),$

7 / 13

- Apply to a more realistic case: temperature and chemical potential, non-uniform
 heat conduction and matter flow
- Energy conservation: $\frac{\partial u}{\partial t} + \nabla \cdot \vec{J_u} = 0$, matter conservation: $\frac{\partial n}{\partial t} + \nabla \cdot \vec{J_n} = 0$.

$$\bullet \ \vec{J_u} = \vec{J_q} + \mu \vec{J_n}.$$

•
$$\therefore \frac{\partial u}{\partial t} = - \nabla \cdot \vec{J}_q - \nabla \cdot (\mu \vec{J}_n).$$

•
$$ds = \frac{1}{T}(du - \mu dn),$$

 $\Rightarrow \frac{\partial s}{\partial t} = \frac{1}{T}\frac{\partial u}{\partial t} - \frac{\mu}{T}\frac{\partial n}{\partial t}$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

- Apply to a more realistic case: temperature and chemical potential, non-uniform heat conduction and matter flow
- Energy conservation: $\frac{\partial u}{\partial t} + \nabla \cdot J_u = 0$, matter conservation: $\frac{\partial n}{\partial t} + \nabla \cdot \vec{J_n} = 0$.

$$\bullet \ \vec{J}_u = \vec{J}_q + \mu \vec{J}_n.$$

$$\bullet :: \frac{\partial u}{\partial t} = - \nabla \cdot \vec{J}_q - \nabla \cdot (\mu \vec{J}_n).$$

•
$$ds = \frac{1}{T}(du - \mu dn),$$

 $\Rightarrow \frac{\partial s}{\partial t} = \frac{1}{T}\frac{\partial u}{\partial t} - \frac{\mu}{T}\frac{\partial n}{\partial t}$
 $= -\frac{1}{T} \nabla \cdot \vec{J}_q - \frac{1}{T} \nabla \cdot (\mu \vec{J}_n) + \frac{\mu}{T} \nabla \cdot \vec{J}_n$

- Apply to a more realistic case: temperature and chemical potential, non-uniform

 heat conduction and matter flow.
- Energy conservation: $\frac{\partial u}{\partial t} + \nabla \cdot \vec{J_u} = 0$, matter conservation: $\frac{\partial n}{\partial t} + \nabla \cdot \vec{J_n} = 0$.

$$\bullet \ \vec{J}_u = \vec{J}_q + \mu \vec{J}_n.$$

•
$$\therefore \frac{\partial u}{\partial t} = - \nabla \cdot \vec{J}_q - \nabla \cdot (\mu \vec{J}_n).$$

•
$$ds = \frac{1}{T}(du - \mu dn),$$

 $\Rightarrow \frac{\partial s}{\partial t} = \frac{1}{T}\frac{\partial u}{\partial t} - \frac{\mu}{T}\frac{\partial n}{\partial t}$
 $= -\frac{1}{T} \nabla \cdot \vec{J}_q - \frac{1}{T} \nabla \cdot (\mu \vec{J}_n) + \frac{\mu}{T} \nabla \cdot \vec{J}_n$
 $= -\nabla \cdot \frac{\vec{J}_q}{T} + \vec{J}_q \cdot \nabla \frac{1}{T} - \frac{\vec{J}_n}{T} \cdot \nabla \mu.$

$$\begin{array}{l}
\bullet \ \frac{\partial s}{\partial t} = - \bigtriangledown \cdot \frac{\vec{J}_q}{T} + \vec{J}_q \cdot \bigtriangledown \frac{1}{T} - \frac{\vec{J}_n}{T} \cdot \bigtriangledown \mu, \\
\frac{\partial s}{\partial t} = - \bigtriangledown \cdot \vec{J}_s + \Theta. \\
\Rightarrow \vec{J}_s = \frac{\vec{J}_q}{T}, \ \Theta = \vec{J}_q \cdot \bigtriangledown \frac{1}{T} - \vec{J}_n \cdot \frac{\bigtriangledown \mu}{T}.
\end{array}$$

• Define matter flow "force" $\vec{X_n} = -\frac{1}{T} \nabla \mu$, and heat flow "force" $\vec{X}_a = \nabla \frac{1}{T}$,

$$\bullet \frac{\partial s}{\partial t} = - \nabla \cdot \frac{\vec{J}_q}{T} + \vec{J}_q \cdot \nabla \frac{1}{T} - \frac{\vec{J}_n}{T} \cdot \nabla \mu,
\frac{\partial s}{\partial t} = - \nabla \cdot \vec{J}_s + \Theta.
\Rightarrow \vec{J}_s = \frac{\vec{J}_q}{T}, \ \Theta = \vec{J}_q \cdot \nabla \frac{1}{T} - \vec{J}_n \cdot \frac{\nabla \mu}{T}.$$

• Define matter flow "force" $\vec{X_n} = -\frac{1}{T} \nabla \mu$, and heat flow "force" $\vec{X}_a = \nabla \frac{1}{T}$, $\therefore \Theta = \vec{J_a} \cdot \vec{X_a} + \vec{J_n} \cdot \vec{X_n}.$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

- Define matter flow "force" $\vec{X_n} = -\frac{1}{T} \nabla \mu$, and heat flow "force" $\vec{X}_a = \nabla \frac{1}{T}$, $\therefore \Theta = \vec{J}_a \cdot \vec{X}_a + \vec{J}_n \cdot \vec{X}_n.$
- Generally, $\Theta = \sum_k \vec{J_k} \cdot \vec{X_k}$.

Table of contents

- 1 §5. Thermodynamics of irreversible processes
 - 5.1 Local equilibrium, entropy flux density and production rate
 - 5.2 Linear and nonlinear processes, Onsager relation

• Non-uniform \rightarrow transport:

- Non-uniform \rightarrow transport:
 - 1. Temperature

- Non-uniform → transport:
 - 1. Temperature \rightarrow heat flow,

- Non-uniform \rightarrow transport:
 - 1. Temperature \rightarrow heat flow,

 $\vec{J_q} = -\kappa \bigtriangledown T$, Fourier's law.

- Non-uniform → transport:
 - 1. Temperature \rightarrow heat flow,

$$\vec{J_q} = -\kappa \bigtriangledown T$$
, Fourier's law.

2. Density

- Non-uniform → transport:
 - 1. Temperature \rightarrow heat flow,

$$\vec{J_q} = -\kappa \bigtriangledown T$$
, Fourier's law.

2. Density \rightarrow diffusion (matter flow),

- Non-uniform \rightarrow transport:
 - 1. Temperature \rightarrow heat flow,

$$\vec{J_q} = -\kappa \bigtriangledown T$$
, Fourier's law.

2. Density \rightarrow diffusion (matter flow),

$$\vec{J_n} = -D \bigtriangledown n$$
, Fick's law.

- Non-uniform → transport:
 - 1. Temperature \rightarrow heat flow,

$$\vec{J_q} = -\kappa \bigtriangledown T$$
, Fourier's law.

2. Density \rightarrow diffusion (matter flow),

$$\vec{J_n} = -D \bigtriangledown n$$
, Fick's law.

3. Electric potential

- Non-uniform → transport:
 - 1. Temperature \rightarrow heat flow,

$$\vec{J_q} = -\kappa \bigtriangledown T$$
, Fourier's law.

2. Density \rightarrow diffusion (matter flow),

$$\vec{J_n} = -D \nabla n$$
, Fick's law.

3. Electric potential \rightarrow charge transport,

- Non-uniform → transport:
 - 1. Temperature \rightarrow heat flow,

$$\vec{J_q} = -\kappa \bigtriangledown T$$
, Fourier's law.

2. Density \rightarrow diffusion (matter flow),

$$\vec{J_n} = -D \bigtriangledown n$$
, Fick's law.

3. Electric potential \rightarrow charge transport,

$$\vec{J}_e = \sigma \vec{E} = -\sigma \nabla V.$$

- Non-uniform → transport:
 - 1. Temperature \rightarrow heat flow,

$$\vec{J_q} = -\kappa \bigtriangledown T$$
, Fourier's law.

2. Density \rightarrow diffusion (matter flow),

$$\vec{J_n} = -D \bigtriangledown n$$
, Fick's law.

3. Electric potential \rightarrow charge transport,

$$\vec{J}_e = \sigma \vec{E} = -\sigma \nabla V.$$

4. Velocity

- Non-uniform → transport:
 - 1. Temperature \rightarrow heat flow,

$$\vec{J_q} = -\kappa \bigtriangledown T$$
, Fourier's law.

2. Density \rightarrow diffusion (matter flow),

$$\vec{J_n} = -D \bigtriangledown n$$
, Fick's law.

3. Electric potential \rightarrow charge transport,

$$\vec{J}_e = \sigma \vec{E} = -\sigma \nabla V.$$

4. Velocity \rightarrow viscosity (momentum transport),

5.2 Linear and nonlinear processes, Onsager relation

- Non-uniform → transport:
 - 1. Temperature \rightarrow heat flow,

$$\vec{J_q} = -\kappa \bigtriangledown T$$
, Fourier's law.

2. Density \rightarrow diffusion (matter flow),

$$\vec{J_n} = -D \nabla n$$
, Fick's law.

3. Electric potential \rightarrow charge transport,

$$\vec{J}_e = \sigma \vec{E} = -\sigma \nabla V.$$

4. Velocity \rightarrow viscosity (momentum transport),

$$P_{xy} = \eta \frac{\mathrm{d}v}{\mathrm{d}x}.$$

5.2 Linear and nonlinear processes, Onsager relation

- Non-uniform → transport:
 - 1. Temperature \rightarrow heat flow,

$$\vec{J_q} = -\kappa \bigtriangledown T$$
, Fourier's law.

2. Density \rightarrow diffusion (matter flow),

$$\vec{J_n} = -D \nabla n$$
, Fick's law.

3. Electric potential \rightarrow charge transport,

$$\vec{J}_e = \sigma \vec{E} = -\sigma \nabla V.$$

4. Velocity \rightarrow viscosity (momentum transport),

$$P_{xy} = \eta \frac{\mathrm{d}v}{\mathrm{d}x}.$$

• Summation:

5.2 Linear and nonlinear processes, Onsager relation

- Non-uniform \rightarrow transport:
 - 1. Temperature \rightarrow heat flow,

$$\vec{J_q} = -\kappa \bigtriangledown T$$
, Fourier's law.

2. Density \rightarrow diffusion (matter flow),

$$\vec{J_n} = -D \nabla n$$
, Fick's law.

3. Electric potential \rightarrow charge transport,

$$\vec{J}_e = \sigma \vec{E} = -\sigma \nabla V.$$

4. Velocity \rightarrow viscosity (momentum transport),

$$P_{xy} = \eta \frac{\mathrm{d}v}{\mathrm{d}x}$$
.

• Summation:

 $\vec{J} = L \vec{X}$, where \vec{J} is the flux density, \vec{X} is the "force".

 \bullet For coexistence of multi-factors: (like T, ρ)

• For coexistence of multi-factors: (like T, ρ) $J_k = \sum_l L_{kl} X_l$.

December 30, 2013

- For coexistence of multi-factors: (like T, ρ) $J_k = \sum_l L_{kl} X_l$.
- Onsager relation: $L_{kl} = L_{lk}$.

- For coexistence of multi-factors: (like T, ρ) $J_k = \sum_l L_{kl} X_l$.
- Onsager relation: $L_{kl} = L_{lk}$.
- Entropy production $\Theta = \sum_k J_k X_k$

- For coexistence of multi-factors: (like T, ρ) $J_k = \sum_l L_{kl} X_l$.
- Onsager relation: $L_{kl} = L_{lk}$.
- Entropy production $\Theta = \sum_{k} J_k X_k = \sum_{kl} L_{kl} X_k X_l$.

- For coexistence of multi-factors: (like T, ρ) $J_k = \sum_l L_{kl} X_l$.
- Onsager relation: $L_{kl} = L_{lk}$.
- Entropy production $\Theta = \sum_{k} J_k X_k = \sum_{kl} L_{kl} X_k X_l$.
- Consider two "forces". $\Theta = L_{11}X_1^2 + (L_{12} + L_{21})X_1X_2 + L_{22}X_2^2$

11 / 13

- For coexistence of multi-factors: (like T, ρ) $J_k = \sum_l L_{kl} X_l$.
- Onsager relation: $L_{kl} = L_{lk}$.
- Entropy production $\Theta = \sum_{k} J_k X_k = \sum_{kl} L_{kl} X_k X_l$.
- Consider two "forces".

$$\Theta = L_{11}X_1^2 + (L_{12} + L_{21})X_1X_2 + L_{22}X_2^2$$

= $L_{11}X_1^2 + 2L_{12}X_1X_2 + L_{22}X_2^2$.

- For coexistence of multi-factors: (like T, ρ) $J_k = \sum_l L_{kl} X_l$.
- Onsager relation: $L_{kl} = L_{lk}$.
- Entropy production $\Theta = \sum_{k} J_k X_k = \sum_{kl} L_{kl} X_k X_l$.
- Consider two "forces".

$$\Theta = L_{11}X_1^2 + (L_{12} + L_{21})X_1X_2 + L_{22}X_2^2$$

= $L_{11}X_1^2 + 2L_{12}X_1X_2 + L_{22}X_2^2$.

• $\Theta \geqslant 0$, requires, $L_{11} > 0$, $L_{11}L_{22} > L_{12}^2$. (Properties of of the coefficients L.)

• Linear processes can only describe the system near to the equilibrium state.

- Linear processes can only describe the system near to the equilibrium state.
- For the general case, $J_k = \sum_l L_{kl} X_l$ does not hold.

- Linear processes can only describe the system near to the equilibrium state.
- For the general case, $J_k = \sum_l L_{kl} X_l$ does not hold.
- $J_k(\{X_l\}) \equiv J_k(X_1, ..., X_l, ...)$, expand:

- Linear processes can only describe the system near to the equilibrium state.
- For the general case, $J_k = \sum_l L_{kl} X_l$ does not hold.
- $J_k(\{X_l\}) \equiv J_k(X_1,...,X_l,...)$, expand: $J_k(\{X_l\}) = J_k(0) + \sum_l \left(\frac{\partial J_k}{\partial X_l}\right)_0 X_l + \frac{1}{2} \sum_{l,n} \left(\frac{\partial^2 J_k}{\partial X_l \partial X_n}\right)_0 X_l X_n +$

- Linear processes can only describe the system near to the equilibrium state.
- For the general case, $J_k = \sum_l L_{kl} X_l$ does not hold.
- $J_k(\{X_l\}) \equiv J_k(X_1,...,X_l,...)$, expand: $J_k(\{X_l\}) =$ $J_k(0) + \sum_l \left(\frac{\partial J_k}{\partial X_l}\right)_0 X_l + \frac{1}{2} \sum_{l,n} \left(\frac{\partial^2 J_k}{\partial X_l \partial X_n}\right)_0 X_l X_n + \dots$
- $J_k(0)$ corresponds to $\{X_l\} = 0$, $J_k(0) = 0$.

12 / 13

- Linear processes can only describe the system near to the equilibrium state.
- For the general case, $J_k = \sum_l L_{kl} X_l$ does not hold.
- $J_k(\{X_l\}) \equiv J_k(X_1,...,X_l,...)$, expand: $J_k(\{X_l\}) = J_k(0) + \sum_l \left(\frac{\partial J_k}{\partial X_l}\right)_0 X_l + \frac{1}{2} \sum_{l,n} \left(\frac{\partial^2 J_k}{\partial X_l \partial X_n}\right)_0 X_l X_n +$
- $J_k(0)$ corresponds to $\{X_l\}=0$, $J_k(0)=0$. Define $L_{kl}\equiv \left(\frac{\partial J_k}{\partial X_l}\right)_0$, $L_{kln}\equiv \left(\frac{\partial^2 J_k}{\partial X_l\partial X_n}\right)_0$,

- Linear processes can only describe the system near to the equilibrium state.
- For the general case, $J_k = \sum_l L_{kl} X_l$ does not hold.
- $J_k(\{X_l\}) \equiv J_k(X_1,...,X_l,...)$, expand: $J_k(\{X_l\}) =$ $J_k(0) + \sum_l \left(\frac{\partial J_k}{\partial X_l}\right)_0 X_l + \frac{1}{2} \sum_{l,n} \left(\frac{\partial^2 J_k}{\partial X_l \partial X_n}\right)_0 X_l X_n + \dots$
- $J_k(0)$ corresponds to $\{X_l\}=0$, $J_k(0)=0$. Define $L_{kl} \equiv \left(\frac{\partial J_k}{\partial X_l}\right)_0$, $L_{kln} \equiv \left(\frac{\partial^2 J_k}{\partial X_l \partial X_n}\right)_0$, $J_k = \sum_l L_{kl} X_l + \frac{1}{2} \sum_{l.n} L_{kln} X_l X_n + \dots$

Table of contents

- 1 §5. Thermodynamics of irreversible processes
 - 5.1 Local equilibrium, entropy flux density and production rate
 - 5.2 Linear and nonlinear processes, Onsager relation