MA 101 (Mathematics I)

Multivariable Calculus: Hints / Solutions of Practice Problem Set - 3

1. If $f: \mathbb{R}^m \to \mathbb{R}$ satisfies $|f(\mathbf{x})| \leq ||\mathbf{x}||^2$ for all $\mathbf{x} \in \mathbb{R}^m$, then examine whether f is differentiable at **0**.

Solution: Since $|f(\mathbf{0})| \leq ||\mathbf{0}||^2 = 0$, we have $f(\mathbf{0}) = 0$. If $\alpha = \mathbf{0}$, then $\alpha \in \mathbb{R}^m$ and for all $\mathbf{h} \in \mathbb{R}^m \setminus \{\mathbf{0}\}$, we have $\frac{|f(\mathbf{h}) - f(\mathbf{0}) - \alpha \cdot \mathbf{h}|}{||\mathbf{h}||} \leq ||\mathbf{h}||$. Hence it follows that $\lim_{\mathbf{h} \to \mathbf{0}} \frac{|f(\mathbf{h}) - f(\mathbf{0}) - \alpha \cdot \mathbf{h}|}{||\mathbf{h}||} = 0$. Therefore f is differentiable at $\mathbf{0}$

2. Let $f(\mathbf{x}) = ||\mathbf{x}||$ for all $\mathbf{x} \in \mathbb{R}^n$. Examine whether $f: \mathbb{R}^m \to \mathbb{R}$ is differentiable at **0**.

Solution: Since $\lim_{t\to 0} \frac{f(\mathbf{0}+t\mathbf{e}_1)-f(\mathbf{0})}{t} = \lim_{t\to 0} \frac{\|t\mathbf{e}_1\|}{t} = \lim_{t\to 0} \frac{|t|}{t}$ does not exist (in \mathbb{R}), $\frac{\partial f}{\partial x_1}(\mathbf{0})$ does not exist (in \mathbb{R}). Consequently f is not differentiable at **0**.

3. If $f(x,y) = \sqrt{|xy|}$ for all $(x,y) \in \mathbb{R}^2$, then examine whether $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable at (0,0).

Hint: Here $f_x(0,0) = f_y(0,0) =$

Since $\lim_{(h,k)\to(0,0)} \frac{f(h,k)-f(0,0)-hf_x(0,0)-kf_y(0,0)}{\sqrt{h^2+k^2}} = \lim_{(h,k)\to(0,0)} \frac{\sqrt{|hk|}}{\sqrt{h^2+k^2}} \neq 0$, f is not differentiable at (0,0).

4. If f(x,y) = ||x| - |y|| - |x| - |y| for all $(x,y) \in \mathbb{R}^2$, then examine whether $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable at (0,0).

Solution: We have $f_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = 0$ and $f_y(0,0) = \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k} = 0$. Now $\lim_{(h,k) \to (0,0)} \frac{|f(h,k) - f(0,0) - hf_x(0,0) - kf_y(0,0)|}{\sqrt{h^2 + k^2}} = \lim_{(h,k) \to (0,0)} \frac{|f(h,k)|}{\sqrt{h^2 + k^2}} \neq 0$, since $(\frac{2}{n}, \frac{1}{n}) \to (0,0)$ but

 $\lim_{n \to \infty} \frac{|f(\frac{2}{n}, \frac{1}{n})|}{\sqrt{\frac{4}{n^2} + \frac{1}{n^2}}} = \frac{2}{\sqrt{5}} \neq 0. \text{ Hence } f \text{ is not differentiable at } (0, 0).$

5. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \begin{cases} 1 & \text{if } y < x^2 < 2y, \\ 0 & \text{otherwise.} \end{cases}$

Examine whether f is differentiable at (0,0).

tinuously differentiable.

Solution: We have $(\frac{1}{\sqrt{n+1}}, \frac{1}{n+2}) \to (0,0)$ but $f(\frac{1}{\sqrt{n+1}}, \frac{1}{n+2}) = 1 \to 1 \neq 0 = f(0,0)$. Hence f is not continuous at (0,0) and consequently f is not differentiable at (0,0).

6. Let $f(x,y) = \begin{cases} (x^2 + y^2) \cos\left(\frac{1}{x^2 + y^2}\right) & \text{if } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ Examine whether $f: \mathbb{R}^2 \to \mathbb{R}$ is continuously differentiable.

Solution: For all $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$, we have $f_x(x,y) = 2x \cos\left(\frac{1}{x^2+y^2}\right) + \frac{2x}{x^2+y^2} \sin\left(\frac{1}{x^2+y^2}\right)$. Now $\left(\frac{\sqrt{2}}{\sqrt{(4n+1)\pi}},0\right) \to (0,0)$ but $f_x\left(\frac{\sqrt{2}}{\sqrt{(4n+1)\pi}},0\right) = \sqrt{2(4n+1)\pi} \to \infty$. Hence $\lim_{(x,y)\to(0,0)} f_x(x,y)$ does not exist (in \mathbb{R}) and consequently f_x is not continuous at (0,0). Therefore f is not con-

7. Let $\alpha \in \mathbb{R}$ and $\alpha > 0$. If $f(x,y) = |xy|^{\alpha}$ for all $(x,y) \in \mathbb{R}^2$, then determine all values of α for which $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable at (0,0).

Solution: We have $f_x(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = \lim_{t \to 0} \frac{0 - 0}{t} = 0$ and $f_y(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = \lim_{t \to 0} \frac{0 - 0}{t} = 0$. For all $(h,k) \in \mathbb{R}^2 \setminus \{(0,0)\}$, let $\varphi(h,k) = \frac{|f(h,k) - f(0,0) - hf_x(0,0) - kf_y(0,0)|}{\sqrt{h^2 + k^2}} = \frac{|hk|^{\alpha}}{\sqrt{h^2 + k^2}}$. If $\alpha > \frac{1}{2}$, then $\varphi(h,k) \leq \frac{(h^2 + k^2)^{\alpha/2}(h^2 + k^2)^{\alpha/2}}{\sqrt{h^2 + k^2}} = (h^2 + k^2)^{\alpha - \frac{1}{2}}$ and so $\lim_{(h,k) \to (0,0)} \varphi(h,k) = 0$. Consequently f is differentiable at (0,0).

Again, if $\alpha \leq \frac{1}{2}$, then $(\frac{1}{n}, \frac{1}{n}) \to (0, 0)$ but $\varphi(\frac{1}{n}, \frac{1}{n}) = \frac{1}{\sqrt{2}}n^{1-2\alpha} \not\to 0$ (for $\alpha = \frac{1}{2}$, $\varphi(\frac{1}{n}, \frac{1}{n}) \to \frac{1}{\sqrt{2}}$ and for $\alpha < \frac{1}{2}$, the sequence $(\varphi(\frac{1}{n}, \frac{1}{n}))$ is unbounded). Hence $\lim_{(h,k)\to(0,0)} \varphi(h,k) \neq 0$ and so f is not differentiable at (0,0).

8. Let f(x,y) = |xy| for all $(x,y) \in \mathbb{R}^2$. Determine all the points of \mathbb{R}^2 where $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable.

Solution: Let $S_1 = \{(x, y) \in \mathbb{R}^2 : xy > 0\}$ and $S_2 = \{(x, y) \in \mathbb{R}^2 : xy < 0\}$. Then f(x, y) = xyfor all $(x,y) \in S_1$ and f(x,y) = -xy for all $(x,y) \in S_2$. Since $f_x(x,y) = y$ and $f_y(x,y) = x$ for all $(x,y) \in S_1$, we find that both $f_x : S_1 \to \mathbb{R}$ and $f_y : S_1 \to \mathbb{R}$ are continuous. Hence f is differentiable at every point of S_1 . By a similar argument, we can show that f is differentiable. entiable at every point of S_2 . If $\alpha(\neq 0) \in \mathbb{R}$, then $f_y(\alpha,0) = \lim_{t\to 0} \frac{f(\alpha,t)-f(\alpha,0)}{t} = \lim_{t\to 0} \frac{|\alpha||t|}{t}$ does not exist (in \mathbb{R}) and similarly $f_x(0,\alpha)$ does not exist (in \mathbb{R}). Hence f is not differentiable at any point $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ for which xy = 0. Again, $f_x(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = 0$, $f_y(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = 0$ and $\lim_{(h,k) \to (0,0)} \frac{|f(h,k) - f(0,0) - hf_x(0,0) - kf_y(0,0)|}{\sqrt{h^2 + k^2}} = \lim_{(h,k) \to (0,0)} \frac{|h||k|}{\sqrt{h^2 + k^2}} = 0$ (since $|h||k| \le h^2 + k^2$ for all $(h,k) \in \mathbb{R}^2$). Hence f is differentiable at (0,0). Therefore the set of all points of \mathbb{R}^2 at which f is differentiable is $\{(x,y) \in \mathbb{R}^2 : xy \neq 0\} \cup \{(0,0)\}.$

9. Let $f(x,y)=(xy)^{\frac{2}{3}}$ for all $(x,y)\in\mathbb{R}^2$. Determine all the points of \mathbb{R}^2 at which $f:\mathbb{R}^2\to\mathbb{R}$ is differentiable.

Solution: Let $S = \{(x,y) \in \mathbb{R}^2 : xy \neq 0\}$. Since $f_x(x,y) = \frac{2}{3}x^{-\frac{1}{3}}y^{\frac{2}{3}}$ and $f_y(x,y) = \frac{2}{3}x^{\frac{2}{3}}y^{-\frac{1}{3}}$ for all $(x,y) \in S$, we find that both $f_x: S \to \mathbb{R}$ and $f_y: S \to \mathbb{R}$ are continuous. Hence fis differentiable at every point of S. If $\alpha(\neq 0) \in \mathbb{R}$, then $f_y(\alpha,0) = \lim_{t\to 0} \frac{f(\alpha,t)-f(\alpha,0)}{t} = \lim_{t\to 0} \frac{\alpha^{\frac{2}{3}}}{t^{\frac{1}{3}}}$ does not exist (in \mathbb{R}) and similarly $f_x(0,\alpha)$ does not exist (in \mathbb{R}). Hence f is not differentiable at any point $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ for which xy = 0. Again, $f_x(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = 0$, $f_y(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = 0 \text{ and } \lim_{(h,k) \to (0,0)} \frac{|f(h,k) - f(0,0) - hf_x(0,0) - kf_y(0,0)|}{\sqrt{h^2 + k^2}} = \lim_{(h,k) \to (0,0)} \frac{|h|^{\frac{2}{3}}|k|^{\frac{2}{3}}}{\sqrt{h^2 + k^2}} = 0$ (since $|h|^{\frac{2}{3}}|k|^{\frac{2}{3}} \leq (h^2 + k^2)^{\frac{2}{3}}$ for all $(h,k) \in \mathbb{R}^2$). Hence f is differentiable at (0,0). Therefore the set of all points of \mathbb{R}^2 at which f is differentiable is $\{(x,y) \in \mathbb{R}^2 : xy \neq 0\} \cup \{(0,0)\}.$

10. Determine all the points of \mathbb{R}^2 where $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable, if for all $(x,y) \in \mathbb{R}^2$, $f(x,y) = \begin{cases} x^2 + y^2 & \text{if both } x,y \in \mathbb{Q}, \\ 0 & \text{otherwise.} \end{cases}$ Solution: Since $|f(x,y)| \le x^2 + y^2 = \|(x,y)\|^2$ for all $(x,y) \in \mathbb{R}^2$, by Ex.12(a) of Practice

Problem Set - 3, f is differentiable at (0,0).

Let $(x_0, y_0) \in \mathbb{R}^2 \setminus \{(0, 0)\}$. If $(x_0, y_0) \in \mathbb{Q} \times \mathbb{Q}$, then $(x_0 + \frac{\sqrt{2}}{n}, y_0) \to (x_0, y_0)$ but $f(x_0 + \frac{\sqrt{2}}{n}, y_0) = \frac{\sqrt{2}}{n}$ $0 \to 0 \neq x_0^2 + y_0^2 = f(x_0, y_0)$. Again if $(x_0, y_0) \notin \mathbb{Q} \times \mathbb{Q}$, then we choose rational sequences (x_n) and (y_n) such that $x_n \to x_0$ and $y_n \to y_0$. Then $(x_n, y_n) \to (x_0, y_0)$ but $f(x_n, y_n) = x_n^2 + y_n^2 \to x_0^2 + y_0^2 \neq 0 = f(x_0, y_0)$. Hence f is not continuous at (x_0, y_0) and consequently f is not differentiable at (x_0, y_0) .

11. State TRUE or FALSE with justification: If $S = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ and if f(x,y) = |xy|for all $(x, y) \in S$, then $f: S \to \mathbb{R}$ is differentiable.

Solution: Clearly $(\frac{1}{2},0) \in S$. Since $\lim_{t\to 0} \frac{f(\frac{1}{2},t)-f(\frac{1}{2},0)}{t} = \lim_{t\to 0} \frac{|t|}{2t}$ does not exist (in \mathbb{R}), $f_y(\frac{1}{2},0)$ does not exist (in \mathbb{R}). Hence f is not differentiable at $(\frac{1}{2},0)$ and so f is not differentiable. Therefore the given statement is FALSE.

12. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be such that f_x exists (in \mathbb{R}) at all points of $B_{\delta}((x_0, y_0))$ for some $(x_0, y_0) \in \mathbb{R}^2$ and $\delta > 0$, f_x is continuous at (x_0, y_0) and $f_y(x_0, y_0)$ exists (in \mathbb{R}). Show that f is differentiable at (x_0, y_0) .

Solution: For all $(h,k) \in B_{\delta}((0,0))$, we have $f(x_0 + h, y_0 + k) - f(x_0, y_0) = f(x_0 + h, y_0 + k)$ $(k) - f(x_0, y_0 + k) + f(x_0, y_0 + k) - f(x_0, y_0)$. Now, by the mean value theorem for single real variable, we get $f(x_0 + h, y_0 + k) - f(x_0, y_0 + k) = hf(x_0 + \theta h, y_0 + k)$ for some $\theta \in (0, 1)$. Again, if $\varepsilon(k) = \frac{f(x_0, y_0 + k) - f(x_0, y_0)}{k} - f_y(x_0, y_0)$ for all $k \in \mathbb{R} \setminus \{0\}$ with $|k| < \delta$ and $\varepsilon(0) = 0$, then $f(x_0, y_0 + k) - f(x_0, y_0) = kf_y(x_0, y_0) + k\varepsilon(k)$ for all $k \in \mathbb{R}$ with $|k| < \delta$ and $\varepsilon(k) \to 0$ as $k \to 0$. $\frac{|f(x_0+h,y_0+k)-f(x_0,y_0)-hf_x(x_0,y_0)-kf_y(x_0,y_0)|}{\sqrt{h^2+k^2}}$

$$\leq \lim_{(h,k)\to(0,0)} \left(\frac{|h|}{\sqrt{h^2+k^2}} |f_x(x_0+\theta h, y_0+k) - f_x(x_0, y_0)| + \frac{|k|}{\sqrt{h^2+k^2}} |\varepsilon(k)| \right)$$

 $\leq \lim_{\substack{(h,k)\to(0,0)\\(h,k)\to(0,0)}} \left(\frac{|h|}{\sqrt{h^2+k^2}} |f_x(x_0+\theta h,y_0+k) - f_x(x_0,y_0)| + \frac{|k|}{\sqrt{h^2+k^2}} |\varepsilon(k)|\right)$ $\leq \lim_{\substack{(h,k)\to(0,0)\\(h,k)\to(0,0)}} (|f_x(x_0+\theta h,y_0+k) - f_x(x_0,y_0)| + |\varepsilon(k)|) = 0 \text{ (since } f_x \text{ is continuous at } (x_0,y_0)).$ Therefore f is differentiable at (x_0, y_0) .