TABLE I. Symmetry analysis of candidate compounds with $\mathcal{H}_{ME} \neq 0.$

Comp	Crystal symmetry (space and point group)	Site point group	Magnetic symmetry (space and point group)	Related dipoles	Related quadrupoles	$\mathrm{Comments}/\mathcal{M}_{\acute{e}}$
${ m MnTiO_3}$	$R3c\ (C_{3v})$	C_3	$Cc'\ (m')$	$\begin{array}{c} 1{\times}{\rm Mn1}[+-] \\ \left(0\ 0\ p_z\right) \\ \left(0\ 0\ p_z\right) \\ \end{array}$ $1{\times}{\rm Mn2}[+-] \\ \left(\delta p_{x2}\ -\delta p_{y2}\ p_z\right) \\ \left(\delta p_{x2}\ -\delta p_{y2}\ p_z\right) \\ 1{\times}{\rm Mn3}[+-] \\ \left(-\delta p_{x3}\ \delta p_{y3}\ p_z\right) \\ \left(-\delta p_{x3}\ \delta p_{y3}\ p_z\right) \end{array}$	$ \begin{pmatrix} -Q_{x1} & 0 & \delta_{xz1} \\ 0 & -Q_{x1} & \delta_{yz1} \\ \delta_{xz1} & \delta_{yz1} & 2Q_{x1} \end{pmatrix} \begin{pmatrix} -Q'_{x1} & 0 & \delta'_{xz1} \\ 0 & -Q'_{x1} & \delta_{yz1} \\ \delta_{xz1} & \delta_{yz1} & 2Q_{x1} \end{pmatrix} \begin{pmatrix} -Q'_{x1} & 0 & \delta'_{xz1} \\ 0 & -Q'_{x1} & \delta_{yz1} \\ \delta'_{xz1} & 0'_{xz1} & 2Q'_{x1} \end{pmatrix} \\ -Q_{x2} & 0 & \delta_{x2} \\ 0 & -Q_{x2} & \delta_{yz2} \\ \delta_{xz2} & \delta_{yz2} & 2Q_{x2} \end{pmatrix} \begin{pmatrix} -Q'_{x2} & 0 & \delta'_{xz2} \\ 0 & -Q'_{x2} & \delta'_{yz2} & 2Q'_{x2} \\ \delta'_{xz2} & \delta'_{yz2} & 2Q'_{x2} \end{pmatrix} \\ -Q_{x3} & 0 & \delta_{xz3} \\ 0 & -Q_{x3} & \delta_{yz3} \\ \delta_{xz3} & \delta_{yz3} & 2Q_{x3} \end{pmatrix} \begin{pmatrix} -Q_{x3} & 0 & \delta'_{xx3} \\ 0 & -Q_{x3} & \delta_{yz3} \\ \delta'_{xx3} & \delta'_{yz3} & 2Q_{x3} \end{pmatrix} $	 Electric behavior: Ferroelectric Connection between opposite-moment sites: M'_[100] Magnetoelectric term: H_{ME} ∝ δ_xk²_x + δ_yk²_y + δ_zk²_z + δ_{xz}k_xk_z + δ_{yx}k_yk_z Notes: The structure exhibits distortions with components δ on the order of 10⁻⁸ to 10⁻⁷. These small δ values slightly modify the dipoles and quadrupoles, preventing a perfect mapping of magnetic sites by the symmetry operation, but inducing a small secondary SS.
${ m ScFeO_3}$	$R3c\ (C_{3v})$	C_3	$Ce'\ (m')$	$\begin{array}{c} 1{\times}\mathrm{Fe1}[\uparrow\downarrow] \\ \left(\delta x - \delta y - p_z\right) \\ \left(-2\delta x \ 2\delta y - p_z\right) \\ \left(-2\delta x \ 2\delta y - p_z\right) \\ \left(-2\delta x \ 2\delta y - p_z\right) \\ \left(\delta x - \delta y - p_z\right) \end{array}$	$ \begin{array}{c} 1 \times \mathrm{Fe1}[+-] \\ \begin{pmatrix} -Q_{x1} & 0 & \delta_{xz1} \\ 0 & -Q_{x1} & -\delta_{yz1} \\ \delta_{xz1} & -\delta_{yz1} & 2Q_{x1} \end{pmatrix} \begin{pmatrix} -Q_{x1} & 0 & \delta_{xz1} \\ 0 & -Q_{x1} & -\delta_{yz1} \\ \delta_{xz1} & -\delta_{yz1} & 2Q_{x1} \end{pmatrix} \\ 1 \times \mathrm{Fe2}[+-] \\ \begin{pmatrix} -Q_{x1} & 0 & \delta_{xz1} \\ 0 & -Q_{x1} & -\delta_{yz1} \\ \delta_{xz1} & -\delta_{yz1} & 2Q_{x1} \end{pmatrix} \begin{pmatrix} -Q_{x1} & 0 & -2\delta_{xz1} \\ 0 & -Q_{x1} & 2\delta_{yz1} \\ -2\delta_{xz1} & 2\delta_{yz1} & 2Q_{x1} \end{pmatrix} \\ 1 \times \mathrm{Fe3}[+-] \\ \begin{pmatrix} -Q_{x1} & 0 & -2\delta_{xz1} \\ -2\delta_{xz1} & 2\delta_{yz1} \\ 0 & -Q_{x1} & 0 & \delta_{xz1} \\ -2\delta_{xz1} & 2\delta_{yz1} & 2Q_{x1} \end{pmatrix} \begin{pmatrix} 0 & -Q_{x1} & -\delta_{yz1} \\ 0 & -Q_{x1} & -\delta_{yz1} \\ \delta_{xz1} & -\delta_{yz1} & 2Q_{x1} \end{pmatrix} $	 Electric behavior: Ferroelectric Connection between opposite-moment sites: M_[100] Magnetoelectric term:
$ m Mn_4Nb_2O_9$	$Cc~(C_s)$	C_1	Cc~(m.1)	$ \begin{array}{c} 2{\times}\mathrm{Mn1}[+-] \\ (-p_{x1} \ p_{y1} \ p_{z1}) \\ (-p_{x1} - p_{y1} \ p_{z1}) \end{array} \\ 2{\times}\mathrm{Mn2}[+-] \\ (p_{x2} \ p_{y2} \ p_{z2}) \\ 2{\times}\mathrm{Mn3}[+-] \\ (-p_{x3} \ -p_{y3} \ p_{z3}) \\ (-p_{x3} \ p_{y3} \ p_{z3}) \end{array} \\ 2{\times}\mathrm{Mn4}[+-] \\ (-p_{x4} \ p_{y4} \ p_{z4}) \\ (-p_{x4} \ -p_{y4} \ p_{z4}) \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	• Electric behavior: Ferroelectric • Connection between opposite-moment sites: $\mathcal{M}_{[010]}$ • Magnetoelectric term: $\mathcal{H}_{ME} \propto \gamma k_y + k_y (\alpha k_x + \beta k_z)$ • Notes: —
${\rm MnSiN}_2$	$Pna2_1\ (C_{3v})$	C_1	$Pe'\left(m' ight)$	$\begin{array}{c} 1{\times}\mathrm{Mn1}[+\;-]\\ \left(\begin{array}{ccc} p_{x1} & -p_{y1} & p_{z1} \\ \left(\begin{array}{ccc} p_{x1} & p_{y1} & p_{z1} \\ \end{array}\right) \end{array}\right) \\ 1{\times}\mathrm{Mn2}[+\;-]\\ \left(\begin{array}{ccc} p_{x2} & p_{y2} & -p_{z2} \\ \end{array}\right) \\ \left(\begin{array}{ccc} p_{x2} & -p_{y2} & -p_{z2} \\ \end{array}\right) \end{array}$	$ \begin{pmatrix} Q_{x1} & -Q_{xy1} & Q_{xz1} \\ -Q_{xy1} & Q_{y1} & Q_{yz1} \\ Q_{xz1} & Q_{y2} & -Q_{x1} \end{pmatrix} \begin{pmatrix} Q_{x1} & Q_{xy1} & Q_{xz1} \\ Q_{xy1} & Q_{y1} & -Q_{y1} & -Q_{y1} \\ Q_{xz1} & Q_{y2} & -Q_{x1} & -Q_{y1} \end{pmatrix} \begin{pmatrix} Q_{xy1} & Q_{y1} & -Q_{yz1} \\ Q_{xy1} & Q_{y1} & -Q_{y1} & -Q_{y1} \\ 1 \times Mn2 [+-] \\ Q_{xy2} & Q_{xy2} & -Q_{xz2} \\ Q_{xy2} & Q_{y2} & Q_{y2} \\ -Q_{xy2} & Q_{y2} & -Q_{xy2} \end{pmatrix} \begin{pmatrix} Q_{x2} & -Q_{xy2} & -Q_{xz2} \\ -Q_{xy2} & Q_{y2} & -Q_{xy2} \\ -Q_{xz2} & Q_{yz2} & -Q_{xz2} & -Q_{yz2} \end{pmatrix} $	$ \begin{array}{lll} \bullet & \textbf{Electric behavior:} & \textbf{Ferroelectric} \\ \bullet & \textbf{Connection} & \textbf{between} & \textbf{opposite-moment sites:} & \mathcal{M}_{[010]} \\ \bullet & \textbf{Magnetoelectric term:} \\ \mathcal{H}_{ME} \propto \gamma k_y + k_y (\alpha k_x + \beta k_z) \\ \bullet & \textbf{Notes:} & \textbf{Atoms} & \textbf{related} & \textbf{by} & \mathcal{M}_{[010]} & \textbf{have} \\ \textbf{moments} & (4.891, \pm 0.007, 0.953) & \textbf{and} \\ (4.896, \pm 0.002, 0.963). & \textbf{Small opposite} \\ \textit{y-components} & \textbf{indicate the system is not} \\ \textbf{strictly collinear.} \\ \end{array} $
Li ₂ CoSiO ₄	$Pna2_1\ (C_{2v})$	C_1	$C_{ac} \ (m.1')$	$\begin{array}{c} 4 \times \text{Co1}[+ \ -] \\ \left(\begin{array}{ccc} -p_x & -p_y & -p_z \\ \left(-p_x & p_y & -p_z \right) \end{array} \right) \\ 4 \times \text{Co2}[+ \ -] \\ \left(\begin{array}{ccc} p_x & p_y & -p_z \\ p_x & -p_y & -p_z \end{array} \right) \end{array}$	$ \begin{pmatrix} -Q_x & Q_{xy} & Q_{xz} & Q_{xz} \\ Q_{xy} & Q_y & -Q_{yz} \\ Q_{xz} & -Q_y & Q_x & Q_y \end{pmatrix} \begin{pmatrix} -Q_x & -Q_{xy} & Q_{xz} \\ -Q_{xy} & Q_y & Q_{yz} \\ Q_{xz} & -Q_y & Q_x & Q_y \end{pmatrix} \\ \begin{pmatrix} 4 \times \text{Co2}[+-] \\ -Q_x & Q_{xy} & -Q_{xz} \\ Q_{xy} & Q_y & Q_{yz} \\ -Q_{xz} & Q_{yz} & Q_x & -Q_y \end{pmatrix} \\ \begin{pmatrix} -Q_x & -Q_x & -Q_x \\ -Q_x & Q_y & -Q_y \\ -Q_{xz} & -Q_y & Q_x & -Q_y \end{pmatrix} $	$ \begin{array}{lll} \bullet & \textbf{Electric behavior: Ferroelectric} \\ \bullet & \textbf{Connection between opposite-moment sites: } \mathcal{M}_{[010]} \\ \bullet & \textbf{Magnetoelectric term: } \\ \mathcal{H}_{ME} \propto \gamma k_x k_y \\ \bullet & \textbf{Notes: } \end{array} $

TABLE II. Symmetry analysis of candidate compounds with $\mathcal{H}_{ME}=0$.

Crystal symmetry Site point Magnetic symmetry (spee and point symmetry (spee and point symmetry symme

Comp	Crystal symmetry (space and point group)	Site point group	Magnetic symmetry (space and point group)	Related dipoles	Related quadrupoles	$\mathrm{Comments}/\mathcal{M}_{\hat{\mathbf{e}}}$
${ m BaFe_2Se_3}$	$Pnma~(D_{2h})$	C_1	$C_{ac}\ (m.1')$	$\begin{array}{c} 4 \times \mathrm{Fe1}[+\ -] \\ (-p_x - p_y - p_z) \\ (p_x - p_y - p_z) \\ (p_x - p_y - p_z) \\ \end{array}$ $\begin{array}{c} 4 \times \mathrm{Fe2}[+\ -] \\ (p_x - p_y - p_z) \\ (-p_x - p_y - p_z) \\ \end{array}$ $\begin{array}{c} 4 \times \mathrm{Fe3}[+\ -] \\ (p_x - p_y - p_z) \\ (-p_x - p_y - p_z) \\ \end{array}$ $\begin{array}{c} 4 \times \mathrm{Fe4}[+\ -] \\ (-p_x - p_y - p_z) \\ (p_x - p_y - p_z) \\ \end{array}$ $\begin{array}{c} 4 \times \mathrm{Fe5}[+\ -] \\ (p_x - p_y - p_z) \\ (-p_x - p_y - p_z) \\ \end{array}$ $\begin{array}{c} 4 \times \mathrm{Fe6}[+\ -] \\ (-p_x - p_y - p_z) \\ (p_x - p_y - p_z) \\ \end{array}$ $\begin{array}{c} 4 \times \mathrm{Fe7}[+\ -] \\ (-p_x - p_y - p_z) \\ \end{array}$ $\begin{array}{c} 4 \times \mathrm{Fe8}[+\ -] \\ (p_x - p_y - p_z) \\ \end{array}$ $\begin{array}{c} 4 \times \mathrm{Fe8}[+\ -] \\ (p_x - p_y - p_z) \\ \end{array}$	$ \begin{pmatrix} 4 \times \text{Fe1}[+-] \\ Q_{xy} & Q_{xy} & Q_{xz} \\ Q_{xy} & Q_{y} & -Q_{yz} \\ Q_{zz} & -Q_{yz} & Q_{x} -Q_{y} \end{pmatrix} \begin{pmatrix} -Q_{x} & Q_{xy} & -Q_{xz} \\ -Q_{xy} & Q_{y} & -Q_{yz} \\ -Q_{xy} & Q_{y} & -Q_{yz} \\ -Q_{zz} & -Q_{yz} & Q_{x} -Q_{y} \end{pmatrix} \begin{pmatrix} -Q_{x} & Q_{xy} & Q_{x} -Q_{y} \\ -Q_{xz} & Q_{y} & -Q_{yz} \\ -Q_{xz} & Q_{y} & -Q_{yz} \\ -Q_{xz} & -Q_{yz} & Q_{x} -Q_{y} \end{pmatrix} \begin{pmatrix} -Q_{x} & Q_{xy} & Q_{xz} \\ Q_{xy} & Q_{y} & -Q_{yz} \\ Q_{xy} & Q_{y} & -Q_{yz} \\ Q_{xy} & Q_{y} & Q_{yz} \end{pmatrix} \begin{pmatrix} -Q_{x} & Q_{xy} & Q_{xz} \\ Q_{xy} & Q_{y} & Q_{xz} \\ -Q_{xy} & Q_{xy} & Q_{xz} \\ Q_{xz} & Q_{yz} & Q_{x} -Q_{y} \end{pmatrix} \begin{pmatrix} -Q_{x} & Q_{xy} & Q_{xz} \\ Q_{xy} & Q_{y} & Q_{yz} \\ Q_{xz} & Q_{yz} & Q_{x} -Q_{y} \end{pmatrix} \begin{pmatrix} -Q_{x} & Q_{xy} & -Q_{xz} \\ Q_{xy} & Q_{y} & Q_{yz} \\ Q_{xz} & Q_{yz} & Q_{x} -Q_{y} \end{pmatrix} \begin{pmatrix} -Q_{x} & Q_{xy} & -Q_{xz} \\ Q_{xy} & Q_{y} & Q_{yz} \\ Q_{xz} & Q_{yz} & Q_{x} -Q_{y} \end{pmatrix} \begin{pmatrix} -Q_{x} & Q_{xy} & -Q_{xz} \\ Q_{xy} & Q_{y} & Q_{yz} \\ Q_{xz} & Q_{yz} & Q_{x} -Q_{y} \end{pmatrix} \begin{pmatrix} -Q_{x} & Q_{xy} & -Q_{xz} \\ Q_{xy} & Q_{y} & Q_{yz} \\ Q_{xz} & Q_{y} & Q_{yz} \end{pmatrix} \begin{pmatrix} -Q_{x} & Q_{xy} & Q_{xz} \\ Q_{xy} & Q_{y} & Q_{yz} \\ Q_{xz} & Q_{y} & Q_{yz} \end{pmatrix} \begin{pmatrix} -Q_{x} & Q_{xy} & Q_{xz} \\ -Q_{xy} & Q_{y} & Q_{yz} \\ -Q_{xz} & Q_{y} & Q_{yz} \\ Q_{xz} & Q_{y} & Q_{yz} \end{pmatrix} \begin{pmatrix} -Q_{x} & Q_{xy} & Q_{xz} \\ Q_{xy} & Q_{y} & Q_{yz} \\ Q_{xz} & Q_{y} & Q_{yz} \end{pmatrix} \begin{pmatrix} -Q_{x} & Q_{xy} & Q_{xz} \\ Q_{xy} & Q_{y} & Q_{yz} \\ Q_{xz} & Q_{y} & Q_{yz} \\ Q_{xz} & Q_{y} & Q_{yz} \end{pmatrix} \begin{pmatrix} -Q_{x} & Q_{xy} & Q_{xz} \\ Q_{xy} & Q_{y} & Q_{yz} \\ Q_{xz} & Q_{y} & Q_{yz$	• Electric behavior: Antiferroelectric • Connection between opposite- moment sites: $\mathcal{M}_{[100]}$ • Magnetoelectric term: $\mathcal{H}_{ME}=0$ • Notes: No spin splitting occurs.
$\mathrm{PrMn}_2\mathrm{O}_5$	$Pbam\ (D_{2h})$	C_s	$P_c c \ (m.1')$	$\begin{array}{c} 2\times \mathrm{Mn_{1}^{4+}} \left[+-\right] \\ \left(0\ 0\ -p_{z1}\right) \\ \left(0\ 0\ p_{z1}\right) \\ 2\times \mathrm{Mn_{2}^{4+}} \left[+-\right] \\ \left(0\ 0\ p_{z1}\right) \\ 2\times \mathrm{Mn_{2}^{4+}} \left[+-\right] \\ \left(0\ 0\ -p_{z1}\right) \\ 1\times \mathrm{Mn_{3}^{3+}} \left[+-\right] \\ \left(-p_{x2}\ p_{y2}\ 0\right) \\ \left(-p_{z2}\ p_{y2}\ 0\right) \\ 1\times \mathrm{Mn_{3}^{3+}} \left[+-\right] \\ \left(p_{x2}\ -p_{y2}\ 0\right) \\ \end{array}$	1 1 1 1	 Electric behavior: Antiferroelectric Connection between opposite-moment sites: \$\mathcal{M}_{[001]}\$ Magnetoelectric term: \$\mathcal{H}_{ME} = 0\$ Notes: The manganese valences are different.
HoNiGe	$Pnma\ (D_{2h})$	C_s	$P_{c}c~(m.1')$	$\begin{array}{c} 2\times \text{Ho1}[+\ -] \\ \left(p_x\ 0\ p_z\right) \\ \left(p_x\ 0\ p_z\right) \\ 2\times \text{Ho2}[+\ -] \\ \left(-p_x\ 0\ p_z\right) \\ \left(-p_x\ 0\ p_z\right) \\ 2\times \text{Ho3}[+\ -] \\ \left(-p_x\ 0\ -p_z\right) \\ \left(-p_x\ 0\ -p_z\right) \\ \left(-p_x\ 0\ -p_z\right) \\ \left(p_x\ 0\ -p_z\right) \\ \end{array}$	$\begin{pmatrix} Q_x & 0 & Q_{xz} \\ 0 & -Q_y & 0 \\ Q_{xz} & 0 & -Q_x + Q_y \end{pmatrix} \begin{pmatrix} Q_x & 0 & Q_{xz} \\ 0 & -Q_y & 0 \\ Q_{xz} & 0 & -Q_x + Q_y \end{pmatrix} \begin{pmatrix} Q_x & 0 & Q_{xz} \\ 0 & -Q_y & 0 \\ Q_{xz} & 0 & -Q_{xz} + Q_y \end{pmatrix}$ $\begin{pmatrix} Q_x & 0 & -Q_{xz} \\ 0 & -Q_y & 0 \\ -Q_{xz} & 0 & -Q_x + Q_y \end{pmatrix} \begin{pmatrix} Q_x & 0 & -Q_{xz} \\ 0 & -Q_y & 0 \\ -Q_{xz} & 0 & -Q_x + Q_y \end{pmatrix} \begin{pmatrix} Q_x & 0 & -Q_x + Q_y \\ -Q_{xz} & 0 & Q_{xz} \\ 0 & -Q_y & 0 \\ Q_{xz} & 0 & -Q_x + Q_y \end{pmatrix} \begin{pmatrix} Q_x & 0 & Q_{xz} \\ 0 & -Q_y & 0 \\ Q_{xz} & 0 & -Q_x + Q_y \end{pmatrix}$ $\begin{pmatrix} Q_x & 0 & Q_x + Q_y \\ Q_x & 0 & -Q_x + Q_y \end{pmatrix} \begin{pmatrix} Q_x & 0 & -Q_x + Q_y \\ Q_x & 0 & -Q_x + Q_y \end{pmatrix}$ $\begin{pmatrix} Q_x & 0 & -Q_x + Q_y \\ 0 & -Q_y & 0 \\ -Q_{xz} & 0 & -Q_x + Q_y \end{pmatrix} \begin{pmatrix} Q_x & 0 & -Q_x + Q_y \\ 0 & -Q_y & 0 \\ -Q_{xz} & 0 & -Q_x + Q_y \end{pmatrix}$	 Electric behavior: Antiferroelectric Connection between opposite-moment sites: M_[010] Magnetoelectric term: H_{ME} = 0 Notes: No spin splitting occurs. Magnetic moments and dipoles lie within the plane.
$ m AgCrS_2$	$R3m\ (C_{3v})$	C_s	$C_c m \; (m.1')$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{pmatrix} Q_x & 0 & -Q_{xz} \\ 0 & -Q_y & 0 \\ -Q_{xz} & 0 & -Q_x + Q_y \end{pmatrix} \begin{pmatrix} Q_x & 0 & -Q_{xz} \\ 0 & -Q_y & 0 \\ -Q_{xz} & 0 & -Q_x + Q_y \end{pmatrix} \begin{pmatrix} Q_x & 0 & -Q_x + Q_y \\ 0 & -Q_x & 0 & -Q_x + Q_y \end{pmatrix}$ $\begin{pmatrix} Q_x & 0 & -Q_{xz} \\ 0 & -Q_y & 0 \\ -Q_{xz} & 0 & -Q_x + Q_y \end{pmatrix} \begin{pmatrix} Q_x & 0 & -Q_{xz} \\ 0 & -Q_y & 0 \\ -Q_{xz} & 0 & -Q_x + Q_y \end{pmatrix}$	 Electric behavior: Ferroelectric Connection between opposite-moment sites: M_[010] Magnetoelectric term: H_{ME} = 0 Notes: Dipolar and quadrupolar terms are equal between pairs; therefore, no SS occurs.

Comp	Crystal symmetry (space and point group)	Site point group	Magnetic symmetry (space and point group)	Related dipoles	Related quadrupoles	Comments/ $\mathcal{M}_{\hat{e}}$
${ m BaFe_2Se_3}$	$Pnma\ (D_{2h})$	C_1	$C_a m \ (m1')$	$\begin{array}{c} 4 \times \text{Fe2}[+ -] \\ \left(-p_x \ p_y \ -p_z\right) \\ \left(-p_x \ -p_y \ -p_z\right) \\ 4 \times \text{Fe3}[+ -] \\ \left(p_x \ -p_y \ -p_z\right) \\ \left(p_x \ p_y \ -p_z\right) \\ \left(p_x \ p_y \ -p_z\right) \\ \left(p_x \ -p_y \ -p_z\right) \\ \left(p_x \ -p_y \ -p_z\right) \\ \left(p_x \ -p_y \ p_z\right) \\ \left(p_x \ -p_y \ p_z\right) \\ \left(p_x \ -p_y \ p_z\right) \end{array}$	$ \begin{pmatrix} C_{11} & C_{y2} & C_{12} & V_y \\ -C_{x} & C_{xy} & C_{xz} \\ C_{xy} & C_{y} & C_{yz} \\ C_{xy} & C_{yz} & C_{yz} \\ C_{xz} & C_{yz} & C_{xz} \\ C_{xy} & C_{yz} & C_{yz} \\ C_{xz} & C_{yz} & C_{xz} \\ C_{xy} & C_{yz} & C_{xz} \\ C_{xy} & C_{yz} & C_{xz} \\ C_{xy} & C_{yz} & C_{yz} \\ C_{yz} & C_{yz} \\ C_{yz} & C_{yz} \\ C_{yz} & C_{yz} \\ C_{yz} & C_$	 Electric behavior: Antiferroelectric Connection between opposite-moment sites: M_[010] Magnetoelectric term: H_{ME} = 0 Notes: —
$La_{1.5}Ca_{0.5}CoO_4$	$Cmm2$ (C_{2v})	C_{2v}	$P_cC~(m.1')$	$2 \times \text{Co1}[+ -] (-p_x \ 0 \ 0) (-p_x \ 0 \ 0) 2 \times \text{Co2}[+ -] (-p_x \ 0 \ -p_z) (-p_x \ 0 \ -p_z) (-p_x \ 0 \ -p_z)$	$\begin{pmatrix} Q_x & 0 & 0 \\ 0 & Q_y & 0 \\ 0 & 0 & -Q_x - Q_y \end{pmatrix} \begin{pmatrix} Q_x & 0 & 0 \\ 0 & Q_y & 0 \\ 0 & 0 & -Q_x - Q_y \end{pmatrix} \begin{pmatrix} Q_x & 0 & 0 \\ 0 & Q_y & 0 \\ 0 & 0 & -Q_x - Q_y \end{pmatrix} \begin{pmatrix} Q_x & 0 & -Q_{xz} \\ 0 & Q_y & 0 \\ -Q_{xz} & 0 & -Q_x - Q_y \end{pmatrix} \begin{pmatrix} Q_x & 0 & -Q_{xz} \\ 0 & Q_y & 0 \\ -Q_{xz} & 0 & -Q_x - Q_y \end{pmatrix}$	• Electric behavior: Ferroelectric • Connection between opposite-moment sites: $\mathcal{M}_{\{010\}}$ • Magnetoelectric term: $\mathcal{H}_{ME}=0$ • Notes: Two cobalt sites are non-magnetic.
$ m Li_2FeGeS_4$	$Pn\ (C_s)$	C_1	$C_{a}c\;(m.1')$	$\begin{array}{c} 4 \times \text{Fe1}[+ \ -] \\ \left(p_x \ -p_y \ p_z\right) \\ \left(p_x \ p_y \ p_z\right) \\ 4 \times \text{Fe2}[+ \ -] \\ \left(p_x \ p_y \ p_z\right) \\ \left(p_x \ -p_y \ p_z\right) \end{array}$	$\begin{pmatrix} Q_x & -Q_{xy} & -Q_{xz} \\ -Q_{xy} & -Q_y & Q_{yz} \\ -Q_{xz} & Q_y & Q_{yz} \\ -Q_{xz} & Q_y & -Q_x + Q_y \\ -Q_{xz} & Q_y & -Q_x + Q_y \\ -Q_{xz} & -Q_x + Q_y \\ -Q_{xz} & -Q_y & -Q_x \\ Q_x & Q_x & -Q_y & -Q_y \\ -Q_{xz} & -Q_y & -Q_y \\ -Q_{xz} & -Q_y & -Q_x + Q_y \end{pmatrix}$	• Electric behavior: Ferroelectric • Connection between opposite- moment sites: $\mathcal{M}_{[010]}$ • Magnetoelectric term: $\mathcal{H}_{ME} = 0$ • Notes: —