ASSIGNMENT O SOLUTIONS

$$1(a)$$
 $(-2)^4 = (-2)(-2)(-2)(-2) = 16$

(b)
$$2^{-10} = \frac{1}{2^{10}} = \frac{1}{1024}$$

(c)
$$0^{-3} = \frac{1}{0^3} = \frac{1}{0} = \text{not defined}$$

(d)
$$\left(\frac{1}{4}\right)^{-3} = \frac{1}{\left(\frac{1}{4}\right)^3} = \frac{1}{\frac{1}{4^3}} = 4^3 = 64$$

(h)
$$\sqrt{10000} = 100$$
 since $100^2 = 10000$

2 (a)
$$x^2 - 5 = x^2 - (\sqrt{5})^2 = (x - \sqrt{5})(x + \sqrt{5})$$

(b)
$$4-a^2 = (2-a)(2+a)$$

(d)
$$x^3 - 4x = x(x^2 - 4) = x(x-2)(x+2)$$

(e)
$$x^3-1=(x-1)(x^2+x+1)$$

$$(f)$$
 $x^3+1=(x+1)(x^2-x+1)$

NOTE: we used the following firmulas:

$$a^2 - b^2 = (a-b)(a+b)$$

 $a^3 \pm b^3 = (a\pm b)(a^2 \mp ab + b^2)$

3. (a)
$$(a+b)^2 = a^2 + 2ab + b^2$$

(b)
$$(x-y)^2 = x^2 - 2xy + y^2$$

(c)
$$(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$$

$$(\lambda)$$
 $(x-y)^3 = x^3 - 3x^2y + 3xy^2 - y^3$

(e)
$$(a-b)(a+b) = a^2-b^2$$

$$(f)$$
 $(a-b)(a^2+ab+b^2) = a^3-b^3$

if you don't recall this, multiply out:

$$(a-b)(a^2+ab+b^2) = a^3+a^2b+ab^2$$

- $ba^2-ab^2-b^3=a^3-b^3$

(g)
$$(a+b)(a^2-ab+b^2)=a^3+b^3$$

Same comment as in (f)

4 (a)
$$3x-2y=12-2y=3x-12-2y=\frac{3}{2}x-6$$

line of slope $\frac{3}{2}$ and $y-intropt-6$

(b) 4^y y=³ x

huizubal line

(f) parabola from (d) moved up one unit

vertical line

(e) $x^2 + y^2 = 4$ is a circle of radius 2 centred at origin

x-introcepts:

$$x^{2}+2x-4=0$$

$$x = \frac{-2 \pm \sqrt{4+16}}{2} = \frac{-2 \pm \sqrt{20}}{2}$$

$$x = \frac{-2 \pm 2\sqrt{5}}{2} = -1 \pm \sqrt{5}$$

vertex:

$$x = -\frac{b}{20} = -\frac{2}{2} = -1$$

(if y=ax2+bx+c tuen ventex is at x = -b/2a

(h) cubic ponabula

hypubola

(i)the x-axis

hyperbola from (i) reflected across

(shape is a parabula)

- 5(a) 3x-12y=4

 Solution = all points on the line 3x-12y=4

 (infinitely many solutions)
 - (b) $3.2 \times -16.2 = -1.3(2-3 \times)$ $3.2 \times -16.2 = -2.6 + 3.9 \times$ $3.2 \times -3.9 \times = -2.6 + 16.2$ $-0.7 \times = 13.6$ $\times = -\frac{13.6}{0.7}$ (leave, or use calculator)
 - (c) $x^2 + 9x + 14 = (x+2)(x+7) = 0$ $-4 \times = -2, -7$
 - (a) $2x^2 5x + 3 = (2x 3)(x 1) = 0$ $2x - 3 = 0 \rightarrow x = \frac{3}{2}$ $x - 1 = 0 \rightarrow x = 1$

(e)
$$x^3 - 27x = x(x^2 - 27) = 0$$

 $x = 0$
 $x = 0$
 $x = 0$

(f)
$$x^2 - 6x - 4 = 0$$

 $x = \frac{6 \pm \sqrt{6^2 - 4(-4)}}{2} = \frac{6 \pm \sqrt{52}}{2}$
to simplify: $\sqrt{52} = \sqrt{4.13} = 2\sqrt{13}$
 $x = \frac{6 \pm 2\sqrt{13}}{2} = 3 \pm \sqrt{13}$

(9)
$$3x^2 - 4x + 10 = 0$$

$$x = \frac{4 \pm \sqrt{16 - 4 \cdot 3 \cdot 10}}{6} = \frac{4 \pm \sqrt{16 - 120}}{6}$$

negative number

no solutions

(b)
$$x^2-8x+11=0$$

 $(x-4)^2-4^2+11=0$
 $(x-4)^2=5$
 $x-4=\pm\sqrt{5}$
 $x=4\pm\sqrt{5}$