

Data Mining and Machine Learning

Bioinspired computational methods Biological data mining

Sequential Pattern Mining

Francesco Marcelloni

Department of Information Engineering University of Pisa ITALY

Some slides belong to the collection

Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign Simon Fraser University ©2011 Han, Kamber, and Pei. All rights reserved.

1

Università di Pisa

Francesco Marcelloni

Introduction

- Sequential pattern mining discovers frequent subsequences as patterns in a sequence database.
- A sequence database stores a number of records, where all records are sequences of ordered events, with or without concrete notions of time.
 - An example sequence database is retail customer transactions or purchase sequences in a grocery store showing, for each customer, the collection of store items they purchased every week for one month.
 - Records are stored as follows:

[Transaction/Customer ID, <Ordered Sequence Events>]

Examples:

[T1, <(bread, milk), (bread, milk, sugar), (milk), (tea, sugar)>];

[T2, <(bread), (sugar, tea)>]

Università di Pisa Francesco Marcellem

Introduction

- Web Usage Mining as an application of sequential pattern mining
 - Finding user navigational patterns on the world wide web by extracting knowledge from web logs
 - ordered sequences of events are composed of single items and not sets of items, with the assumption that a web user can physically access only one web page at any given point in time.
 - Given a set of events E = {a, b, c, d, e, f}, a web access sequence database for four users may have four records:

[T1, <abdac>];

[T2, <eaebcac>];

[T3, <babfaec>];

[T4, <abfac>].

 A web log pattern mining can find a frequent sequence, abac, indicating that over 90% of users who visit product a's web page also immediately visit product b's web page

3

3

Università di Pisa Francesco Marcelloni

Web Usage Mining

- Web log on the server-side, client-side or on a proxy server?
 - Server-side:
 - Pro:
 - reflects the access of a web site by multiple users,
 - is good for mining multiple users' behavior and web recommender systems,
 - Cons
 - server logs may not be entirely reliable due to caching, as cached page views are not recorded in a server log.
 - Client-side
 - Requires that a remote agent be implemented or a modified browser be used to collect single-user data, thus eliminating caching and session identification problems, and is useful for web content personalization applications

A DICALLAND

Università di Pisa Francosco Marcellom

Sequential pattern mining

• An itemset is a set drawn from items in I, and denoted $(i_1, i_2, ..., i_k)$, where i_i is an item or event.

Problem definition

Given

- A set of sequential records (called sequences) representing a sequential database D
- A minimum support threshold called min_sup
- A set of k unique items or events $I = \{i_1, i_2, \dots i_k\}$

Find

■ The set of all frequent sequences S in the given sequence database D of items I at the given min_sup.

7

7

Università di Pisa Francesce Marcellem

Lexicographic order

- A sequence S is denoted as a sequence of elements $<e_1e_2e_3...e_q>$, where the sequence element e_j is an itemset (e.g., (be) in <a(be)c(ad)>) that might contain only one item (which is also referred to as 1-itemset).
- A sequence element is a lexicographically ordered list of items
 - Assume an itemset t of distinct items $t = \{i_1, i_2, \ldots, i_k\}$, and another itemset of distinct items also $t' = \{j_1, j_2, \ldots, j_l\}$, where $i_1 \le i_2 \le \cdots \le i_k$ and $j_1 \le j_2 \le \cdots \le j_l$, such that \le indicates "occurs before" relationship. Then, for itemsets, t < t' (t is lexicographically less than t) iff either of the following is true:
 - 1) for some integer h, $0 \le h \le \min\{k, l\}$, we have $i_r = j_r$ for r < h, and $i_h < j_h$, or
 - 2) k < l, and $i_1 = j_1$, $i_2 = j_2$,..., $i_k = j_k$.

Example (1): (abc) < (abec) and (af) < (bf) Example (2): (ab) < (abc)

Università di Pisa Francesco Marcelloni

Support of a sequence

- The frequency or support of a sequence (or subsequence) S, denoted o(S) is the total number of sequences of which S is a subsequence divided by the total number of sequences in the database D, whereas the absolute support (or support count) of a sequence (or subsequence) S is the total number of sequences in D of which S is a subsequence.
- lacktriangle A sequence is called **frequent** if its frequency is not less than a user-specified threshold, called **minimum support**, denoted min sup or the greek letter ξ .

13

13

Università di Pisa Francesce Marcelleni

Lexicographic order

- A frequent sequence S_{α} is called a frequent closed sequence if there exists no proper supersequence of S_{α} with the same support, that is, S_{β} such that $S_{\alpha} \leq S_{\beta}$ and $\sigma(S_{\alpha}) = \sigma(S_{\beta})$; otherwise it is said that sequence S_{α} is absorbed by S_{β}
 - Assume the frequent sequence $S_{\beta} = <$ beadc > is the only superset of the frequent sequence $S_{\alpha} = <$ bea >, if, $\sigma(S_{\alpha}) = \sigma(S_{\beta})$, then S_{α} is not a frequent closed sequence; on the other hand, if $\sigma(S_{\alpha}) > \sigma(S_{\beta})$, then S_{α} is a frequent closed sequence. Notice that $\sigma(S_{\beta})$ cannot be greater than $\sigma(S_{\alpha})$, because $S_{\alpha} \leq S_{\beta}$.

Università di Pisa Francesco Marcelloni Litemset Phase (1) Litemset (Large Itemset): Supported by fraction of customers larger than minsup. Transaction Items Recall: each itemset in a large ID Bought sequence has to be a large June 25 '93 30 itemset June 30 '93 90 June 10 '93 10,20 Support counting: measured by June 15 '93 fraction of customers June 20 '93 40,60,70 30,50,70 June 25 '93 June 25 '93 June 30 '93 40,70 July 25 '93 June 12 '93 90 18

Litemset Phase (2)

- Each large itemset is then mapped to a set of contiguous integers
 - Used to compare large itemsets in constant time and reduce the time required to check if a sequence is contained in a customer sequence.

Large Itemsets	Mapped To
(30)	1
(40)	2
(70)	3
(40 70)	4
(90)	5

19

19

Università di Pisa Francesco Marcelloni

Transformation Phase

- Need to repeatedly determine which of a given set of large sequences are contained in a customer sequence. To make this fast:
 - Replace each transaction with all litemsets contained in the transaction.
 - Transactions with no litemsets are dropped. (still considered for support counts)

Customer ID	Original Customer Sequence	Transformed Custumer Sequence	After Mapping
1	{ (30) (90) }	<{(30)} {(90)}>	<{1} {5}>
2	{ (10 20) (30) (40 60 70) }	<{(30)} {(40),(70),(40 70)}>	<{1} {2,3,4}>
3	{ (30) (50) (70) }	<{(30),(70)}>	<{1,3}>
4	{ (30) (40 70) (90) }	<{(30)} {(40),(70),(40 70)} {(90)}>	<{1} {2,3,4} {5}>
5	{ (90) }	<{(90)}>	<{5}>

Note: (10 20) dropped because of lack of support. (40 60 70) replaced with set of litemsets {(40),(70),(40 70)} (60 does not have min-sup)

Università di Pisa Francesco Marcelloni

Sequence Phase

- Use the set of large itemsets to find the desired sequences.
- Similar structure to Apriori algorithms used to find large itemsets.
 - Use seed set to generate candidate sequences.
 - Count support for each candidate.
 - Eliminate candidate sequences which are not large.
- Two families of algorithms:
 - Count-all: count all large sequences including non-maximal sequences (it is careful with respect to the minimum support)
 - AprioriAll
 - Count-some: try to avoid counting non-maximal sequences by counting longer sequences first (it is careful with respect to maximality)
 - AprioriSome

DynamicSome

21

21

Università di Pisa Francesco Marcelloni

Maximal Phase

- Find maximal sequences among large sequences.
- k-sequence: sequence of length k
- S set of all large sequences

for (k=n; k>1; k--) do

foreach k-sequence s_k do

delete from S all subsequences of sk

Data-structures and an algorithm exist to do this efficiently. (hash trees)

22

The generation of candidates C_k is performed as follows:

■ Step 1: Join two sequences in L_{k-1} to generate C_k

■ For each two sequences in L_{k-1} that have the same 1st to k-2th itemsets, select the 1 to k-1 itemset from the first sequence, and join with the last itemset from another sequence.

Example

L₃ = {123}{234}{124}{134}{135}

C₄ = {1 2 3 4}{1 3 4 5} {1 3 5 4}{1 2 4 3}

■ Step 2

■ Delete all sequences in C_k if some of their sub-sequences are not in L_{k-1}

Example: C₄ = {1 2 3 4}


```
Francesco Marcelloni
Università di Pisa
              AprioriSome (Forward Phase)
       L_1 = \{large 1-sequences\}
       C_1 = L_1
       last = 1
       for (k = 2; C_{k-1} \neq \{\}) and L_{last} \neq \{\}; k++) do
          begin
          if (L_{k-1} known) then
              C_k = New candidates generated from L_{k-1}
           else
              C_k = New candidates generated from C_{k-1}
       if (k==next(last)) then begin // (next k to count?)
           foreach customer-sequence c in the database do
              Increment the count of all candidates in C_{\boldsymbol{k}}
                 that are contained in c.
          L_k = Candidates in C_k with minimum support.
          last = k;
          end
       end
                                  28
```

```
Università di Pisa
                                                              Francesco Marcelloni
                 AprioriSome (Forward Phase)
         L_1 = \{large 1-sequences\}
         C_1 = L_1
         last = 1
         for (k = 2; C_{k-1} \neq \{\} and L_{last} \neq \{\}; k++) do
             begin
             if (L_{k-1} known) then
                C_k = New candidates generated from L_{k-1}
                C_k = New candidates generated from C_{k-1}
                  ______/1____\\ _tt__ t___i__ // /_____ 1_ __.
    In the candidate generation, if the large sequence set L_{k-1} is not
    available, we use the candidate set C_{k-1} to generate C_k.
    Correctness is maintained because L_{k-1} \subseteq C_{k-1}.
             L_k = Candidates in C_k with minimum support.
             last = k;
             end
         end
29
```


Francesco Marcelloni

30

Università di Pisa

Francesce Marcellem Università di Pisa AprioriDynamicSome(1) ■ Like AprioriSome, skip counting candidate sequences of certain lengths in the forward phase. The candidate sequences that are counted is determined by the variable step. Initialization phase: all the candidate sequences of length upto and including step are counted. • Forward phase, all sequences whose lengths are multiples of step are counted. ■ step = 3 -> will count sequences of lengths 1, 2, and 3 in the initialization phase, and 6, 9, 12,... in the forward phase. • We can generate sequences of length 6 by joining sequences of length 3. We can generate sequences of length 9 by joining sequences of length 6 with sequences of length 3, etc. However, to generate the sequences of length 3, we need sequences of lengths 1 and 2, and hence the initialization phase.

34

Università di Pisa Francesco Marcelloni

AprioriDynamicSome(2)

Backward phase:

- count sequences for the lengths we skipped over during the forward phase. However, unlike in AprioriSome, these candidate sequences were not generated in the forward phase.
- The intermediate phase generates them.
- For example, assume that we count L_3 and L_6 , and L_9 turns out to be empty in the forward phase. We generate C_7 and C_8 (intermediate phase), and then count C_8 followed by C_7 after deleting non-maximal sequences (backward phase). This process is then repeated for C_4 and C_5 .

35

35

Università di Pisa Francesce Marcelleni

AprioriDynamicSome(3)

// step is an integer ≥ 1 // Initialization Phase $L_1 = \{ \text{large 1-sequences} \};$ // Result of litemset phase for $(k = 2; k <= \text{step and } L_{k-1} \neq \emptyset; k++)$ do begin $C_k = \text{New candidates generated from } L_{k-1};$ foreach customer-sequence c in \mathcal{D}_T do Increment the count of all candidates in C_k that are contained in c. $L_k = \text{Candidates in } C_k$ with minimum support. end

A - 4 /

Università di Pisa Francesco Marcellon.

AprioriDynamicSome(4)

```
// Forward Phase

for ( k = \text{step}; L_k \neq \emptyset; k + = \text{step}) do

begin

// find L_{k+\text{step}} from L_k and L_{\text{step}}

C_{k+\text{step}} = \emptyset;

foreach customer sequences c in \mathcal{D}_T do

begin

X = \text{otf-generate}(L_k, L_{\text{step}}, c);

For each sequence x \in X', increment its count in

C_{k+\text{step}} (adding it to C_{k+\text{step}} if necessary).

end

L_{k+\text{step}} = \text{Candidates in } C_{k+\text{step}} with min support.

end
```

7

37

Università di Pisa Francesce Marcellen.

AprioriDynamicSome(5)

```
// Intermediate Phase
for (k--; k>1; k--) do
   if (L_k \text{ not yet determined}) then
        if (L_{k-1} \text{ known}) then
        C_k = \text{New candidates generated from } L_{k-1};
   else
        C_k = \text{New candidates generated from } C_{k-1};

// Backward Phase : Same as that of AprioriSome
```

A. E

AprioriDynamicSome(7)
 ■ Why do we need otf-generate?
 ■ The apriori-generate procedure used for AprioriSome could generate more candidates (it however needs to be generalized to generate C_{k+j} from L_k. Essentially, the join condition has to be changed to require equality of the first k-j terms, and the concatenation of the remaining terms).
 ■ In addition, if the size of |L_k| + |L_{step}| is less than the size of C_{k+step} generated by AprioriSome, it may be faster to find all members of L_k and L_{step} contained in c than to find all members of C_{k+step} contained in c.
 ■ The intuition behind this generation procedure is that if s_k ∈ L_k and s_j ∈ L_j are both contained in c, and they don't overlap in c, then (s_k.s_j) is a candidate (k + j)-sequence.

Università di Pisa

Francesco Marcelloni

FreeSpan: FP-growth for sequential pattern mining

- Frequent pattern tree and FP-growth (SIGMOD'2000):
 - A successful algorithm for mining frequent (unordered) itemsets
- Can we extend FP-growth to sequential pattern mining?
 - A straightforward construction of sequential-pattern tree does not work well.
 - A level-by-level project does not achieve high performance either
 - An interesting method is to explore alternative-level projection
- J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, M.-C. Hsu, "FreeSpan: Frequent Pattern-Projected Sequential Pattern Mining", Proc. 2000 Int. Conf. on Knowledge Discovery and Data Mining (KDD'00), August 2000.

49

49

Università di Pisa

Francesco Marcelloní

FreeSpan: Mapping into projected sequence database

- Find frequent items from database
 - List of frequent items in support descending order is called f list
- All sequential patterns can be divided into several subsets without overlap

Sequence Database SDB

- < (bd) c b (ac) >
- < (bf) (ce) b (fg) >
- < (ah) (bf) a b f >
- < (be) (ce) d >
- < a (bd) b c b (ade) >

f_list: b:5, c:4, a:3, d:3, e:3, f:2

All seg. pat. can be divided into 6 subsets:

- •Seq. pat. containing item f
- •Those containing e but no f
- •Those containing *d* but no *e* nor *f*
- •Those containing a but no d, e or f
- •Those containing c but no a, d, e or f
- •Those containing only item b

A.

Università di Pisa

Francesco Marcelloni

Mine Sequential Patterns Using Projected Databases

- The complete set of sequential patterns containing item i but no items following i in f_list can be found in the iprojected database
- A sequence s is projected as s_i to the i-projected database if there is at least an item i in s
- s_i is a copy of s by removing from s all the infrequent items and any frequent item j following i in f_list
- Example: <(ah)(bf)abf> is projected to f-projected database as <a(bf)abf>, and to a-projected database as <abab>, and to b-projected database as <bb>

51

51

Università di Pisa

Francesco Marcelloni

Parallel vs. Partition Projection

- Parallel projection
 - Scan database once, form all projected dbs at a time
 - May derive many and rather large projected dbs if sequence on average contains many frequent items
 - Let each transaction contain on average I frequent items. A transaction is then projected to I − 1 projected database. The total size of the projected data from this transaction is 1+2+···+(I −1) = I(I−1)/2. This implies that the total size of the single item-projected databases is about (I−1)/2 times of that of the original database.
- To avoid such an overhead, partition projection method is proposed

Università di Pisa Francesco Marcelloni

Parallel vs. Partition Projection

Partition projection

- Project a sequence to the projected database of the last frequent item in it
- When scanning the database to be projected, a transaction T is projected to the a_i-projected database only if a_i is a frequent item in T and there is no any other item after a_i in the list of frequent items appearing in the transaction.
- Since a transaction is projected to only one projected database at the database scan, after the scan, the database is partitioned by projection into a set of projected databases, and hence it is called partition projection

53

53

Università di Pisa Francesce Marcelleni

Parallel vs. Partition Projection

Partition projection (continued)

- Each time when a projected database is being processed, to ensure the remaining projected databases obtain the complete information, each transaction in it is projected to the aj-projected database, where aj is the item in the transaction such that there is no any other item after aj in the list of frequent items appearing in the transaction
- "Propagate" sequences on-the-fly

Mining by Level-by-Level Projected
Databases

Algorithm
Scan database once, find frequent items and get f_list
Recursively do database projection level by level
Pros and cons
Benefits: only need to find frequent items in each projected database, instead of exploring candidate sequence generation
The number of combinations is much less than their possible combinations
Cost: partition and projection of databases
Works well in sparse databases

Frequent Item Matrix

- A triangular matrix F[j, k], where 1<=j<=m and 1<=k<=j, m is the number of frequent items
- F[j, j] has only one counter, recording the appearance of sequence <jj>
- F[j,k] has 3 counters (A, B, C)
 - A: number of occurrences that k occurs after j <jk>
 - B: number of occurrences that k occurs before j <kj>
 - C: number of occurrences that j occurs concurrently with k <(jk)>
- The first sequence < (bd) c b (ac) > increases the first two counters of matrix F[b,c] by 1 since two cases , <b c> and <c b>, but not <(bc)> occur here

59

Francesco Marcelloni

59

Università di Pisa Generate Length-2 Sequential **Patterns** For each counter, if the value in the counter is no less than min_sup, output the corresponding sequential pattern Sequence Database SDB < (bd) c b (ac) >Generate <ba>:3, <ab>:2 < (bf) (ce) b (fg) > 4 b < (ah) (bf) a b f >(4, 3, 0)< (be) (ce) d >(2, 1, 1)(3, 2, 0)< a (bd) b c b (ade) >(2, 2, 2)(2, 2, 0) (1, 2, 1)1 (3, 1, 1)(1, 1, 2) (1, 0, 1) (1, 1, 1)(2, 2, 2)(1, 1, 0) (1, 1, 0)(0, 0, 0) (1, 1, 0)b d 62

Università di Pisa Generating Annotations on Itemrepeating Patterns: Example Sequence Database SDB < (bd) c b (ac) > < (bf) (ce) b (fg) > Generate
b+e> < (ah) (bf) a b f > < (be) (ce) d > < a (bd) b c b (ade) > 4 Generate {b+f+} C (4, 3, 0)1 (2, 1, 1)(3, 2, 0)a (2, 2, 0)(1, 2, 1)(2, 2, 2)d (1, 1, 1)(3, 1, 1)(1, 1, 2)(1, 0, 1)(2, 2, 2)(1, 1, 0)(1, 1, 0)(0, 0, 0)(1, 1, 0)2 d C 64

Università di Pisa Francesco Marcelloni Generate Length-2 Patterns and **Annotations** Item Length-2 seq. pat. Ann. on rep. Items Ann. on proj. DBs
bf>:2, <fb>:2, <(bf)>:2 <b+f+> None <be>:3, <(ce)>:2 <b+e> <(ce)>:{b} <bd>:2, <db>:2, <da>:{b,c}, <(bd)>:2, <cd>:2, d $\{b^+d\}, <da^+>$ {cd}:{b} <dc>:2, <da>:2 <ba>:3, <ab>:2, <ca>:2, <aa+>, {a+b+}, <ca>:{b} <aa:2> <ca+> <bc:4>, <cb>:3 $\{b^+c\}$ None <bb>:4 <bb+> b None b Seq. Database SDB С (4, 3, 0)< (bd) c b (ac) > < (bf) (ce) b (fg) > (3, 2, 0)2 а (2, 1, 1)< (ah) (bf) a b f > d (2, 2, 2)(2, 2, 0)(1, 2, 1)1 < (be) (ce) d > e (3, 1, 1)(1, 1, 2)(1, 0, 1)(1, 1, 1)1 < a (bd) b c b (ade) > (2, 2, 2)(1, 1, 0)(1, 1, 0)(0, 0, 0)(1, 1, 0)е 66

Francesco Marcelloni

Generate Length-2 Patterns and Annotations

- Based on the annotations for item-repeating patterns and projected databases, S is scanned one more time.
- The set item-repeating patterns generated is {<bbf>:2, <fbf>: 2, <(bf)b>:2, <(bf)f>:2, <(bf)bf>:2, <(bd)b>:2, <bba>:2, <abb>:2, <bcb>:3, <bbc>:2}
- There are four projected databases: <(ce)>:{b}, <da>:{b,c}, {cd}:{b} and <ca>:{b}.
 - For a projected database whose annotation contains exactly three items, its associated sequential patterns can be obtained by a simple scan of the projected database.
 - For a projected database whose annotation contains more than three items, one can construct frequent item matrix for this projected database and recursively mine its sequential patterns by the alternative-level projection technique.

Univer	rsità di T	_	erate Le	ength-2 nnotat			ucesco Marcellon Ind
	Ann.	<(ce)>:{b}	<da>:{b, c}</da>		{cd}:{b}		<ca>:{b}</ca>
	Proj. DB	<b(ce)b>, <b(ce)></b(ce)></b(ce)b>	<(bd)cb(ac)>,	<(bd)bcba>	<(bd)cbc>, <bcd>, <(bd)bcbd></bcd>		<bcba>,<bbcba></bbcba></bcba>
	Seq. Pat.	<bce>:2</bce>	<(bd)a>:2, <dba>:2, <(<(bd)ba>:2, <(bd)cb</dba>	(bd)ca>:2, <dcba>:2,</dcba>	<dd><dd< td=""><td><(bc)c>:2, cb>:2,)cb>:2, l)bc>:2</td><td><bca>:2,<bca>:2,<bcba>:2,<bcba>:2</bcba></bcba></bca></bca></td></dd<></dd>	<(bc)c>:2, cb>:2,)cb>:2, l)bc>:2	<bca>:2,<bca>:2,<bcba>:2,<bcba>:2</bcba></bcba></bca></bca>
b c a d	4 (4, 3, (3, 2, (2, 2,	0) (2, 1,	1) 2 0) (1, 2, 1)	1		Seq. Datable (bd) c b (< (bf) (ce) b (< (ah) (bf) c < (be) (ce) c a (bd) b c	ac) > o (fg) > a b f > d >
e f	(3, 1,		(1, 0, 1) (1, 1, 0)	(1, 1, 1) (0, 0, 0)	1 (1, 1, 0)	2	
as a	b b	C	а	d 68	е	f	

, ,

Why FreeSpan outperforms Apriorilike Methods? Projects a large sequence database recursively into a set of small projected sequence databases based on the currently mined frequent sets The alternatively-level projection in FreeSpan reduces the cost of scanning multiple projected databases and takes advantages of Apriori -like 3-way candidate filtering