Test of Goodness for Population Receptive Field Estimates simulation study

A. Ashrafnejad¹ H. Mehrzadfar² H. Boyaci^{2 3}

¹Department of Electrical and Electronics Engineering

²Neuroscience Graduate Program

³Department of Psychology Bilkent University

November 5, 2018

Stimulation

We first used the exact drifting bar stimululation in Dumoulin and Wandell, 2008:

BOLD response model

$$B(t) = \mathcal{H}(r(t, \Theta = \theta)) + e(t)$$

BOLD response model

$$B(t) = \mathcal{H}(r(t, \Theta = \theta)) + e(t)$$

Linear or Nonlinear HRF function

assumed pRF response (neuronal response)

BOLD response model

$$B(t) = \mathcal{H}(\mathbf{r}(t, \Theta = \theta)) + e(t)$$

Linear or Nonlinear HRF function

assumed pRF response (neuronal response)

BOLD response model

$$B(t) = \mathcal{H}(\mathbf{r}(t, \Theta = \theta)) + e(t)$$

Linear or Nonlinear HRF function

assumed pRF parameters; x_0, y_0, σ

- Neurons within a small region of visual cortex respond to stimuli within a restricted region of the visual field.
- The population response of such neurons can **not** be modeled using a model that sums contrast linearly across the visual field. hence, Compressive spatial summation (CSS) model is used Kay et al., 2013,

pRF response model

$$r(t,\Theta=\theta)=(\sum_{x,y}s(x,y,t)g(x,y,\theta))^n$$

- Neurons within a small region of visual cortex respond to stimuli within a restricted region of the visual field.
- The population response of such neurons can **not** be modeled using a model that sums contrast linearly across the visual field. hence, Compressive spatial summation (CSS) model is used Kay et al., 2013,

pRF response model

$$r(t, \Theta = \theta) = (\sum_{x,y} s(x,y,t)g(x,y,\theta))^n$$

stimulus function to be presented

- Neurons within a small region of visual cortex respond to stimuli within a restricted region of the visual field.
- The population response of such neurons can **not** be modeled using a model that sums contrast linearly across the visual field. hence, Compressive spatial summation (CSS) model is used Kay et al., 2013,

pRF response model

$$r(t, \Theta = \theta) = (\sum_{x,y} s(x,y,t)g(x,y,\theta))^n$$

stimulus function to be presented

assumed pRF model

- Neurons within a small region of visual cortex respond to stimuli within a restricted region of the visual field.
- The population response of such neurons can **not** be modeled using a model that sums contrast linearly across the visual field. hence, Compressive spatial summation (CSS) model is used Kay et al., 2013,

$$\sigma = \frac{1}{2} \ln(e + \sqrt{x_0^2 + 2y_0^2})$$

pRF response model

$$g(x, y, \Theta = \theta) = e^{-\frac{(x-x_0)^2 + (y-y_0)^2}{2\sigma^2}}$$

$$\sigma = \frac{1}{2} \ln(e + \sqrt{x_0^2 + 2y_0^2})$$

pRF response model

$$g(x, y, \Theta = \theta) = e^{-\frac{(x-y_0)^2+(y-y_0)^2}{2\sigma^2}}$$

assumed pRF center for the voxel

$$\sigma = \frac{1}{2} \ln(e + \sqrt{x_0^2 + 2y_0^2})$$

pRF response model

$$g(x, y, \Theta = \theta) = e^{-\frac{(x-x_0)^2+(y-y_0)^2}{2\sigma^2}}$$

assumed pRF center for the voxel

$$\sigma = \frac{1}{2} \ln(e + \sqrt{x_0^2 + 2y_0^2})$$

pRF size assumed to be a log-polar function of pRF center

pRF response model

$$g(x, y, \Theta = \theta) = e^{-\frac{(x-x_0)^2+(y-y_0)^2}{2\sigma^2}}$$

assumed pRF center for the voxel

References I

Dumoulin, Serge O. and Brian A. Wandell (2008). "Population receptive field estimates in human visual cortex". In: *NeuroImage* 39.2, pp. 647–660. ISSN: 10538119. DOI: 10.1016/j.neuroimage.2007.09.034.

Kay, Kendrick N. et al. (2013). "Compressive spatial summation in human visual cortex.". In: *Journal of neurophysiology*. ISSN: 1522-1598. DOI: 10.1152/jn.00105.2013.