MATEMATİK II

Hafta 8

Prof. Dr. Refik KESKİN, Prof. Dr. Halim ÖZDEMİR, Doç. Dr. Şevket GÜR, Yrd. Doç. Dr. Murat SARDUVAN

MAT112 MATEMATİK II 8. HAFTA

İÇİNDEKİLER

- 3.3. Dönel Cisimlerin Hacmi
- 3.4. Silindirik Tabakalar Yöntemi
- 3.5. Yüzey Alanı

HEDEFLER

Bu haftanın notunu çalıştıktan sonra;

- ✓ Dönel cisim kavramını anlayabilmek
- ✓ Dönel cisimlerin hacimlerini hesaplayabilmek.
- ✓ Dönel cisimlerin hacimlerini hesaplamada silindirik tabakalar yöntemini kullanabilmek.
- ✓ Yüzey kavramını anlayabilmek.
- ✓ Yüzey alanını hesaplayabilmek.

ÖNERİLER

Bu üniteyi daha iyi kavrayabilmek için;

• Önce önceki haftalardaki ders notlarını iyice pekiştiriniz.

3.4. Dönel Cisimlerin Hacmi

a) y = f(x) fonksiyonu [a,b] de sürekli ve R bölgesi aşağıdaki gibi olsun.

R bölgesinin *x*-ekseni etrafında döndürülmesiyle oluşan cismin hacmini hesaplayalım. Öncelikle taban alanı ve yüksekliği belli olan bir silindirin hacminin taban alanıyla yüksekliğinin çarpımına

eşit olduğunu biliyoruz. [a,b] nin bir $P = \{x_0,x_1,\ldots,x_n\}$ parçalanışını ele alalım. $|P| = \max \{\Delta x_i : 1 \le i \le n\} \text{ olsun. Oluşan } S \text{ cisminin } [x_{i-1},x_i] \text{ aralığında kalan kısmının hacmi } V_i \text{ olsun. Dolayısıyla } S \text{ nin hacmi } \sum_{k=1}^n V_k \text{ dır. } t_i \in [x_{i-1},x_i] \text{ olmak üzere yüksekliği } \Delta x_i = x_i - x_{i-1} \text{ ve}$ taban yarıçapı $f(t_i)$ olan silindirin alanı $\pi(f(t_i))^2 \Delta x_i$ dir. Dolayısıyla S nin hacmi $\sum_{k=1}^n V_k = \sum_{k=1}^n \pi(f(t_i))^2 \Delta x_i \text{ olur. Buradan } S \text{ nin hacmi } \lim_{|P| \to 0} \sum_{k=1}^n \pi(f(t_i))^2 \Delta x_i = \int_a^b \pi(f(x))^2 dx$ bulunur.

b) x = g(y) denklemiyle verilen $a \le y \le b$ aralığında sürekli g(y) fonksiyonunun y = a ve y = b doğrularıyla oluşturduğu R bölgesinin y-ekseni etrafında döndürülmesiyle oluşan cismin hacmi $V = \int_a^b \pi x^2 dy = \int_a^b \pi \left(g(y)\right)^2 dy$ dir.

$$V = \pi \int_a^b x^2 dy = \pi \int_a^b (g(y))^2 dy$$

c) y = f(x) eğrisi x = a, x = b ve y = k tarafından sınırlı bölge R olsun. R bölgesinin y = k doğrusunun bir tarafında kaldığını kabul edelim. R bölgesinin y = k doğrusu etrafında

döndürülmesiyle oluşan cismin V hacmi y=f(x)-k nın oluşturduğu şeklin x-ekseni etrafında döndürülmesiyle oluşan cismin hacmine eşit olup $V=\int_a^b\pi \left(f(x)-k\right)^2dx$ dir.

- **d)** Her $x \in [a,b]$ için $0 \le g(x) \le f(x)$ olmak üzere sürekli y = f(x) ve y = g(x) eğrileri ile x = a ve x = b doğruları tarafından sınırlı bölgenin x-ekseni etrafında döndürülmesiyle oluşan cismin hacmi $V = \int_a^b \pi \Big(f(x)^2 g(x)^2 \Big) dx$ dir.
- e) R bölgesi x = f(y), x = g(y), her $y \in [a,b]$ için $f(y) \ge g(y) \ge 0$ olan sürekli f ve g fonksiyonlarının oluşturduğu eğrilerle y = a ve y = t doğrularının sınırladığı bölge olsun. Bu R bölgesinin y-ekseni etrafında döndürülmesiyle oluşan cismin hacmi $V = \int_a^b \pi \Big(f(y)^2 g(y)^2 \Big) dy$ dir.

Çözümlü Örnekler.

- 1) y = 4 doğrusunun $1 \le x \le 3$ aralığında kalan kısmının x-ekseni etrafında döndürülmesiyle oluşan cismin hacmini bulunuz.
- **1. Yol:** Meydana gelen silindirin yüksekliği 2 ve taban alanı $\pi 4^2 = 16\pi$ olup silindirin hacmi $2.16\pi = 32\pi$ olur.

2. Yol:
$$V = \int_{1}^{3} \pi y^{2} dx = \pi \int_{1}^{3} 4^{2} dx = \pi \int_{1}^{3} 16 dx = \pi \left(16x \right)_{1}^{3} = 32\pi$$
 olur.

2) Yarıçapı r olan bir çemberin x-ekseninin üst kısmında kalan parçasının x-ekseni etrafında döndürülmesiyle oluşan cisim bir küredir. Bu kürenin hacmini bulunuz.

Çemberin denklemi:
$$x^2 + y^2 = r^2 \Rightarrow y = \sqrt{r^2 - x^2}$$

$$f(x) = \sqrt{r^2 - x^2}$$

$$V = \int_{-r}^{r} \pi \left(f(x) \right)^{2} dx = \pi \int_{-r}^{r} \left(r^{2} - x^{2} \right) dx = 2\pi \int_{0}^{r} \left(r^{2} - x^{2} \right) dx = 2\pi \left(r^{2} x - \frac{x^{3}}{3} \right)_{0}^{r}$$

$$=2\pi\left(r^3-\frac{r^3}{3}\right)=\frac{4\pi r^3}{3}$$
 olur.

3) Aşağıdaki kesik koninin hacmini bulunuz.

Önce doğrunun denklemini yazalım.

$$y - y_0 = m(x - x_0) = \frac{y_1 - y_0}{x_1 - x_0}(x - x_0)$$

$$(x_0, y_0) = (0, b)$$

$$(x_1, y_1) = (h, a)$$

$$y-b = \frac{a-b}{h}(x-a) \Rightarrow y = b + \frac{a-b}{h}x$$

$$V = \int_0^h \pi y^2 dx = \int_0^h \pi \left(b + \frac{a - b}{h} x \right)^2 dx = \frac{\pi h}{3(a - b)} \left(b + \frac{a - b}{h} x \right)^3 \Big]_0^h$$

$$= \frac{\pi h}{3(a-b)} \left[(b+a-b)^3 - b^3 \right] = \frac{(a^3-b^3)\pi h}{3(a-b)}$$

Eğer b = 0 ise cisim bilinen koni olur ve hacmi $\frac{\pi a^2 h}{3}$ bulunur.

4) $y = x^2$ eğrisi ve y = 4 doğrusu ile sınırlı bölgenin x-ekseni etrafında döndürülmesiyle oluşan cismin hacmini bulunuz.

$$V = \int_{-1}^{2} \pi \left(4^{2} - \left(x^{2} \right)^{2} \right) dx = \int_{-2}^{2} \pi \left(16 - x^{4} \right) dx = 2\pi \int_{0}^{2} \pi \left(16 - x^{4} \right) dx = 2\pi \left[16x - \frac{x^{5}}{5} \right]_{0}^{2} = \frac{256\pi}{5} \text{ olur.}$$

5) Kenarları (1,1), (1,2) ve (2,2) olan üçgenin y -ekseni etrafında döndürülmesiyle oluşan cismin hacmini bulunuz.

$$V = \pi \int_{1}^{2} (x^{2} - 1^{2}) dy = \pi \int_{1}^{2} (y^{2} - 1) dy = \pi \left(\frac{y^{3}}{3} - y \right)_{1}^{2} = \frac{4\pi}{3}$$

3.3.1. Silindirik Tabakalar Yöntemi

Teorem. 1) x=a, x=b doğruları ve y=f(x) sürekli eğrisi ile sınırlı R bölgesinin y-ekseni etrafında döndürülmesiyle oluşan cismin hacmi $V_y=\int_a^b 2\pi x f(x)dx$ dir.

2) R bölgesi her $x \in (a,b)$ için f(x) > g(x) olmak üzere y = f(x) ve y = g(x) sürekli doğrularıyla sınırlı bölge ise R nin y-ekseni etrafında döndürülmesiyle oluşan cismin hacmi $V_y = \int_a^b 2\pi x (f(x) - g(x)) dx$ dir.

Yöntem:

$$V_{y} = \int_{a}^{b} 2\pi x (f(x) - g(x)) dx$$

 $x \rightarrow$ kesitin dönme eksenine uzaklığı

$$(f(x)-g(x)) \rightarrow \text{kesitin boyu}$$

Çözümlü Örnekler.

1) y + x = 2 doğrusu, x = 0 ve y = 0 doğrularıyla sınırlı R bölgesinin y-ekseni etrafında döndürülmesiyle oluşan cismin hacmini bulunuz.

$$V_{y} = \int_{0}^{2} 2\pi x (2 - x) dx$$

2) $f(x) = 3 - x^2$ ve g(x) = 3x - 1 eğrilerinin [0,1] aralığındaki parçalarının oluşturduğu bölgenin y -ekseni etrafında döndürülmesiyle oluşan cismin hacmini bulunuz.

$$V_{y} = \int_{0}^{1} 2\pi x (3 - x^{2} - (3x - 1)) dx = 2\pi x \int_{0}^{1} (-x^{3} - 3x^{2} + 4x) dx = \frac{3\pi}{2}$$

Özellik:

R bölgesinin x-ekseni etrafında döndürülmesiyle oluşan cismin hacmi $V_x = \int_c^d 2\pi y g(y) dy$ dir. Burada kesitin x-eksenine olan uzaklığı y, kesitin boyu g(y) olarak düşünülür.

3) $y = \sqrt{x}$ eğrisiyle x = 4 doğrusu arasındaki bölgenin x-ekseni etrafında döndürülmesiyle oluşan cismin hacmini bulunuz.

$$V_x = \int_0^2 2\pi y \left(\text{kesitinboyu} \right) dy = \int_0^2 2\pi y \left(4 - y \right) dy = \int_0^2 2\pi y \left(4 - y^2 \right) dy = \int_0^2 2\pi \left(4y - y^3 \right) dy = 8\pi$$

4) $y = x^2$ ve y = 4 doğrularıyla sınırlı bölgenin x-ekseni etrafında döndürülmesiyle oluşan cismin hacmini bulunuz.

$$V_{x} = \int_{0}^{4} 2\pi y \left(\text{kesitinboyu} \right) dy = \int_{0}^{4} 2\pi y \left(2x \right) dy = \int_{0}^{4} 2\pi y \left(2\sqrt{y} \right) dy = 4\pi \int_{0}^{4} y^{\frac{3}{2}} dy = \frac{256}{5}\pi$$

Problemler.

1) $y = x^2 + 1$ eğrisi ve y = x + 3 doğrusu arasındaki bölgenin x-ekseni etrafında döndürülmesiyle oluşan cismin hacmini bulunuz. (cevap: $\frac{117\pi}{5}$)

2) $y = 3 + x^2$ eğrisi ve y = 4 doğrusu arasında kalan bölgenin x-ekseni etrafında döndürülmesiyle oluşan cismin hacmini bulunuz.

3) $y = 4 - x^2$ eğrisi ve y = 2 - x doğrusu arasında kalan bölgenin x-ekseni etrafında döndürülmesiyle oluşan cismin hacmini bulunuz.

3.4. Yüzey Alanı

a) $f'\left[a,b\right]$ de sürekli ve her $x \in [a,b]$ için $f(x) \ge 0$ olan bir fonksiyon olsun. f nin [a,b] aralığına ait grafiğinin x-ekseni etrafında döndürülmesiyle oluşan cismin yüzey alanı S ise $S = \int_a^b 2\pi f(x) \sqrt{1 + \left(f'(x)\right)^2} \, dx$ dir.

b)

 \widehat{AB} yayının y -ekseni etrafında döndürülmesiyle oluşan cismin yüzey alanı S ise

$$S = \int_{c}^{d} 2\pi g(y) \sqrt{1 + (g'(y))^{2}} \, dy = \int_{c}^{d} 2\pi x \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} \, dy \text{ dir.}$$

Örnek: $y = 4 - x^2$ parabolünün x-ekseniyle sınırladığı bölgenin x-ekseni etrafında döndürülmesiyle oluşan cismin yüzey alanını bulunuz.

$$S = 2\pi \int_0^4 x \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy = 2\pi \int_0^4 \sqrt{4 - y} \sqrt{1 + \left(\frac{1}{4(4 - y)}\right)^2} dy = 2\pi \int_0^4 \sqrt{\frac{17}{4} - y} dy$$
$$= 2\pi \left[-\frac{2}{3} \left(\frac{17}{4} - y\right)^{\frac{3}{2}} \right]_0^4 = \frac{\pi}{6} \left(\sqrt{17^3} - 1\right)$$

c) Bir eğri x = f(t) ve y = g(t), $a \le t \le b$ parametrik denklemiyle verilmiş ve f'(t), g'(t) sürekli ve $g(t) \ge 0$ ise yüzey alanı $S = \int_a^b 2\pi g(t) \sqrt{\left(f'(t)\right)^2 + \left(g'(t)\right)^2} dt$ dir.