and now we need to find a negative θ such that $M(\theta) < e^{\theta a}$. In particular, we need to focus on θ for which the moment generating function is finite. For this purpose let $\mathcal{D}(M) \triangleq \{\theta : M(\theta) < \infty\}$. Namely $\mathcal{D}(M)$ is the set of values θ for which the moment generating function is finite. Thus we call \mathcal{D} the domain of M.

3 Moment generating function. Examples and properties

Let us consider some examples of computing the moment generating functions.

• Exponential distribution. Consider an exponentially distributed random variable X with parameter λ . Then

$$M(\theta) = \int_0^\infty e^{\theta x} \lambda e^{-\lambda x} dx$$
$$= \lambda \int_0^\infty e^{-(\lambda - \theta)x} dx.$$

When $\theta < \lambda$ this integral is equal to $\frac{-1}{\lambda - \theta} e^{-(\lambda - \theta)x} \Big|_0^\infty = 1/(\lambda - \theta)$. But when $\theta \geq \lambda$, the integral is infinite. Thus the exp. moment generating function is finite iff $\theta < \lambda$ and is $M(\theta) = \lambda/(\lambda - \theta)$. In this case the domain of the moment generating function is $\mathcal{D}(M) = (-\infty, \lambda)$.

Standard Normal distribution. When X has standard Normal distribution, we obtain

$$M(\theta) = \mathbb{E}[e^{\theta X}] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\theta x} e^{-\frac{x^2}{2}} dx$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{x^2 - 2\theta x + \theta^2 - \theta^2}{2}} dx$$
$$= e^{\frac{\theta^2}{2}} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{(x-\theta)^2}{2}} dx$$

Introducing change of variables $y=x-\theta$ we obtain that the integral is equal to $\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-\frac{y^2}{2}}dy=1$ (integral of the density of the standard Normal distribution). Therefore $M(\theta)=e^{\frac{\theta^2}{2}}$. We see that it is always finite and $\mathcal{D}(M)=\mathbb{R}$.

In a retrospect it is not surprising that in this case $M(\theta)$ is finite for all θ . The density of the standard Normal distribution "decays like" $\approx e^{-x^2}$ and