

WHAT IS CLAIMED IS:

- 1 1. A method for providing synchronization in a binary data stream,
2 comprising:
 - 3 receiving a binary data stream;
 - 4 generating a synchronization mark having at least one isolated peak into at
5 least one point in the data stream;
 - 6 forming a encoded data stream by concatenating the synchronization mark
7 with the received binary data; and
 - 8 during decoding, detecting the synchronization mark based on error
9 propagation occurring adjacent to the at least one isolated peak of the synchronization
10 mark.
- 1 2. The method of claim 1, further comprising:
2 concatenating the received binary data stream with a known pattern.
- 1 3. The method of claim 2, wherein the known pattern comprises a VFO
2 pattern having a sequence of "10."
- 1 4. The method of claim 3, wherein the synchronization mark is
2 determined by concatenating a synchronization symbol with the VFO pattern.
- 1 5. The method of claim 3, wherein forming the encoded data stream by
2 concatenating the synchronization mark with the received binary data further
3 comprises:
 - 4 concatenating the synchronization mark with at least one bit from the VFO
5 pattern to obtain a modified synchronization pattern having more bits than the
6 synchronization mark.

1 6. The method of claim 1, further comprising:
2 concatenating the received binary data stream with at least one
3 resynchronization mark, wherein the at least one resynchronization mark is located in
4 the middle of the received binary data stream and the resynchronization mark and the
5 encoded binary data are different.

1 7. The method of claim 6, further comprising:
2 detecting the at least one resynchronization mark to verify that the decoding
3 process is operating correctly.

1 8. The method of claim 1, wherein a data section of the received binary
2 data is encoded at a rate of m/n.

1 9. The method of claim 8, wherein the synchronization mark comprises
2 01000100001010001 and the m/n encoding rate comprises a 16/17 encoding rate.

1 10. The method of claim 8, wherein the data section is encoded at an
2 encoded rate of m/n and the resynchronization mark comprises a fixed plurality of
3 bits equivalent to bytes of the encoded binary data.

1 11. The method of claim 10, wherein the resynchronization mark
2 comprises 100000000010000000000100000000001 and the m/n rate encoded bit
3 sequence comprises a 16/17 rate coded sequence.

1 12. The method of claim 1, wherein detecting the synchronization mark
2 comprises detecting an even number of 1s between peaks and the error pattern "101"
3 around a peak.

1 13. A system for providing synchronization in a binary data stream,
2 comprising:
3 means for receiving a binary data stream;
4 means for generating a synchronization mark having at least one isolated peak
5 into at least one point in the data stream;
6 means for forming a encoded data stream by concatenating the
7 synchronization mark with the received binary data; and
8 means for during decoding, detecting the synchronization mark based on error
9 propagation occurring adjacent to the at least one isolated peak of the synchronization
10 mark.

1 14. The system of claim 13, further comprising:
2 means for concatenating the received binary data stream with a known
3 pattern.

1 15. The system of claim 14, wherein the known pattern comprises a VFO
2 pattern having a sequence of “10.”

1 16. The system of claim 15, wherein the synchronization mark is
2 determined by concatenating a synchronization symbol with the VFO pattern.

1 17. The system of claim 15, wherein the means for forming the encoded
2 data stream by concatenating the synchronization mark with the received binary data
3 further concatenates the synchronization mark with at least one bit from the VFO
4 pattern to obtain a modified synchronization pattern having more bits than the
5 synchronization mark.

1 18. The system of claim 13, further comprising:
2 means for concatenating the received binary data stream with at least one
3 resynchronization mark, wherein the at least one resynchronization mark is located in
4 the middle of the received binary data stream and the resynchronization mark and the
5 encoded binary data are different.

1 19. The system of claim 18, further comprising:
2 means for detecting the at least one resynchronization mark to verify that the
3 decoding process is operating correctly.

1 20. The system of claim 13, wherein a data section of the received binary
2 data is encoded at a rate of m/n.

1 21. The system of claim 20, wherein the synchronization mark comprises
2 01000100001010001 and the m/n encoding rate comprises a 16/17 encoding rate.

1 22. The system of claim 20, wherein the data section is encoded at an
2 encoded rate of m/n and the resynchronization mark comprises a fixed plurality of
3 bits equivalent to bytes of the encoded binary data.

1 23. The system of claim 22, wherein the resynchronization mark
2 comprises 1000000000100000000001000000000001 and the m/n rate encoded bit
3 sequence comprises a 16/17 rate coded sequence.

1 24. The system of claim 13, wherein the means for detecting the
2 synchronization mark detects an even number of 1s between peaks and the error
3 pattern "101" around a peak.

1 25. The system of claim 13, further comprising:
2 a Input/Output device, wherein the system for providing the synchronization
3 is implemented in the I/O device.

1 26. The system of claim 25, wherein the I/O device comprises a magnetic
2 tape drive.

1 27. An article of manufacture including code for providing
2 synchronization in a binary data stream, wherein the code causes operations to be
3 performed comprising:
4 receiving a binary data stream;
5 generating a synchronization mark having at least one isolated peak into at
6 least one point in the data stream;
7 forming a encoded data stream by concatenating the synchronization mark
8 with the received binary data; and
9 during decoding, detecting the synchronization mark based on error
10 propagation occurring adjacent to the at least one isolated peak of the synchronization
11 mark.

1 28. The article of manufacture of claim 27, further comprising:
2 concatenating the received binary data stream with a known pattern.

1 29. The article of manufacture of claim 28, wherein the known pattern
2 comprises a VFO pattern having a sequence of "10."

1 30. The article of manufacture of claim 29, wherein the synchronization
2 mark is determined by concatenating a synchronization symbol with the VFO pattern.

1 31. The article of manufacture of claim 29, wherein forming the encoded
2 data stream by concatenating the synchronization mark with the received binary data
3 further comprises:

4 concatenating the synchronization mark with at least one bit from the VFO
5 pattern to obtain a modified synchronization pattern having more bits than the
6 synchronization mark.

1 32. The article of manufacture of claim 27, further comprising:
2 concatenating the received binary data stream with at least one
3 resynchronization mark, wherein the at least one resynchronization mark is located in
4 the middle of the received binary data stream and the resynchronization mark and the
5 encoded binary data are different.

1 33. The article of manufacture of claim 32, further comprising:
2 detecting the at least one resynchronization mark to verify that the decoding
3 process is operating correctly.

1 34. The article of manufacture of claim 27, wherein a data section of the
2 received binary data is encoded at a rate of m/n.

1 35. The article of manufacture of claim 34, wherein the synchronization
2 mark comprises 01000100001010001 and the m/n encoding rate comprises a 16/17
3 encoding rate.

1 36. The article of manufacture of claim 34, wherein the data section is
2 encoded at an encoded rate of m/n and the resynchronization mark comprises a fixed
3 plurality of bits equivalent to bytes of the encoded binary data.

1 37. The article of manufacture of claim 36, wherein the resynchronization
2 mark comprises 10000000001000000000100000000001 and the m/n rate encoded
3 bit sequence comprises a 16/17 rate coded sequence.

1 38. The article of manufacture of claim 27, wherein detecting the
2 synchronization mark comprises detecting an even number of 1s between peaks and
3 the error pattern "101" around a peak.