Freie Aufloesungen und das Syszygien Theorem

Jens Heinrich

10.01.2017

Theorem 1 (Das Hilbert'sche Syzygien Theorem [1]1.13). Wenn $R = l[x_1, ..., x_r]$ gilt, dann hat jeder endlich erzeugte graduierte R-Modul eine endlich erzeugte freie Auflösung von Länge $\leq r$ aus endlich erzeugten freien Moduln.

Algorithmus 1 (Divisionsalgorithmus [1]15.7). Sei F ein freier S-Modul mit Basis und fester Monomordnung. Wenn $f, g_1, \ldots, g_t \in F$, dann können wir einen Standard Ausdruck

$$f = \sum m_u g_{s_u} + f'$$

von f bezüglich g_1, \ldots, g_t finden, indem wir die Indices s_u und die Terme m_u induktiv definieren. Wenn wir bereits s_1, \ldots, s_p und m_1, \ldots, m_p , gewählt haben, dann wählen wir, falls

$$f_p' := f - \sum_{u=1}^p m_u g_{s_u} \neq 0$$

und m der maximale Term von f'_p , der durch eines der der $in(g_i)$ teilbar ist,

$$s_{p+1} = i, m_{p+1} = m/in(g_i)$$

. Dieser Vorgang bricht entweder ab, wenn $f'_p = 0$ oder wenn keines der $in(g_i)$ ein Monom aus f'_p teilt; der Rest f' ist dann f'_p .

Notation 1 ([1]331). Sei F ein freier Modul über S mit Basis und Monomordnung >. Seien $0 \neq g_1, \ldots, g_t \in F$ und $\oplus S\epsilon_i$ ein freier Modul mit Basis $\{\epsilon_i\}$ die den $\{g_i\}$ aus F über die folgenden Abbildungen

$$\phi: \oplus S\epsilon_i \qquad F \\
\epsilon_i \qquad \mapsto g_i$$

entsprechen.

Für jedes Indexpaar i, j, sodass in (g_i) und in (g_j) dasselbe Basiselement von F enthalten, definieren wir

$$m_{ij} = \operatorname{in}(g_i) / \operatorname{GCD}(\operatorname{in}(g_i), \operatorname{in}(g_j)) \in S$$

und setzen

$$\sigma_{ij} = m_{ji}\epsilon_i - m_{ij}\epsilon_j$$

. Diese σ_{ij} Erzeugen die Syzygie auf den in (g_i) nach ??. Desweiteren wählen wir für jedes der Indexpaare einen Standardausdruck

$$m_{ji}g_i - m_{ij}g_j = \sum f_u^{(ij)}g_u + h_{ij}$$

für $m_{ji}g_i - m_{ij}g_j$ bezüglich der g_1, \ldots, g_t . Man kann sehen, dass in $(f_u^{ij}g_u) < \text{in } (m_{ji}g_i)$ Zur Vereinfachung setzen wir $h_{ij} = 0$, falls in (g_i) und in (g_j) verschiedene Basiselemente von F enthalten.

Theorem 2 (Buchberger Kriterium [1]15.8). *Mit der Notation aus 1 folgt, dass die* g_1, \ldots, g_t *eine* Gröbnerbasis bilden, genau dann wenn h_{ij} für alle i und j.

Algorithmus 2 (Buchberger Algorithmus [1]333). Unter den Vorraussetzungen aus 2 sei M, das ein Untermodul von F und g_1, \ldots, g_t seien Erzeuger von M. Berechne die Reste h_{ij} . Wenn alle $h_{ij} = 0$, dann bilden die g_i eine Gröbnerbasis von M. Wenn einige der $h_{ij} \neq 0$ dann ersetze g_1, \ldots, g_t mit g_1, \ldots, g_t, h_{ij} und wiederholen dann den Prozess. Da der von g_1, \ldots, g_t, h_{ij} erzeugte Untermodul echt grösser als der von g_1, \ldots, g_t erzeugte Untermodul ist, und damit terminiert der Prozess nach endlich vielen Schritten. Die obere Schranke

$$b = \left((r+1) \left(d+1 \right) + 1 \right)^{2^{(s+1)} (r+1)}$$

hält für

r =number of variables

 $d = \text{maximum degree of the polynomials } q_i$, and

s =the degree of the Hilbert polynomial

(this is one less than the dimension; it is between 0 and r-1).

Definition 1 ([1]334). Wir definieren

$$\tau_{ij} := m_{ji}\epsilon_i - m_{ij}\epsilon_j - \sum_{u} f_u^{(ij)}\epsilon_u$$

, für i < j, sodass in (g_i) und in (g_i) dasselbe Basiselement von F enthalten.

Theorem 3 (Schreyer [1][15.10). Mit der Notation von 1, konnen wir annehmen, dass g_1, \ldots, g_t eine Gröbnerbasis sind. Sei jetzt > eine Monomordnung auf $\bigoplus_{j=1}^t S\epsilon_j$, für die gilt $m\epsilon_u > n\epsilon_v \iff$

$$\operatorname{in}(mg_u) > \operatorname{in}(ng_v)$$
 bezüglich der Ordnung auf F

oder

$$\operatorname{in}(mg_u) = \operatorname{in}(ng_v)$$
 (bis auf Vielfachheit) butu $< v$.

. Die τ_{ij} erzeugen die Syuygien auf den g_i . Insbesondere sind die τ_{ij} eine Gröbnerbasis der Syzygien bezüglich der Ordnung > und in $(\tau_{ij}) = m_{ji}\epsilon_i$.

Literatur

[1] David Eisenbud. Commutative Algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, 1995.