	CSS121: Computer Programming 1			
School of Inf	ormation Technology	Curriculum: 2022-2023	Page 1 of 11	
Prepared by:	Approved by:	Revision Date:	Effectivity Date:	
Gloren S. Fuentes	Ariel Kelly D. Balan	August 8, 2022	August 15, 2022	

VISION

Mapúa shall be among the best universities in the world.

MISSION

- 1. The University shall provide a learning environment in order for its students to acquire the attributes that will make them globally competitive.
- 2. The University shall engage in publishable and/or economically viable research, development and innovation.
- 3. The University shall provide state-of-the-art solutions to problems of industries and communities

PROGRAM EDUCATIONAL OBJECTIVES -	Mission			
Within five years after graduation, graduates of the Computer Science program should have:	1	2	3	
Undertaken projects that show ability to solve complex technical problems and to work in teams on problems	✓	✓	√	
whose solutions lead to significant societal benefits. 2. Demonstrated professional computing success via promotions and/or positions of increasing responsibility.	✓	✓	✓	
Demonstrated life-long learning via progress toward completion of an advanced degree, professional development or computing related training courses and certification/s	✓	✓	✓	
4. Undertaken projects that take into consideration safety, health, environmental concerns and the public				
welfare, through adherence to required codes and laws. 5. Exhibited high standards of professional behavior and attitude.	· /	•	· /	
Applied personal standards to achieve excellence.	✓	✓	✓	

Ottobard Outcomes	Program Educational Objectives						
Student Outcomes	1	2	3	4	5	6	
 An ability to analyze a problem, and to identify and define the computing requirements appropriate to its solution. 	✓		✓			✓	
An ability to design, implement, and evaluate a computer-based solution to meet a given set of computing requirements in the context of the discipline.	✓		✓	✓		✓	
3. An ability to communicate effectively with a range of audiences about technical information	✓	✓	✓		✓	✓	
4. An ability to make informed judgments in computing practice based on legal and ethical principles	✓			✓	✓	✓	
An ability to function effectively on teams to establish goals, plan tasks, meet deadlines, manage risk, and produce deliverables.		✓	✓	✓	✓	✓	
6. An ability to identify and analyze user needs and to take them into account in the selection, integration, evaluation, and administration of computer-based systems	✓	✓	✓			✓	

COURSE SYLLABUS

1. Course Code: CSS121

2. Course Title: Computer Programming1

Pre-requisite: None
 Co-requisite: None
 Credit: 2 units

6. Course Description: This course focuses on the logic formulation in solving problem using flowcharting and pseudo codes. Also, it covers an introduction to programming using structured language. Topics include procedural syntax, program flow description, variables and data types, programming selection structures, and iterative structures.

	CSS121: Computer Programming 1			
School of Inf	ormation Technology	Curriculum: 2022-2023	Page 2 of 11	
Prepared by:	Approved by:	Revision Date:	Effectivity Date:	
Gloren S. Fuentes	Ariel Kelly D. Balan	August 8, 2022	August 15, 2022	

7. Course Outcomes (COs) and Relationship to General Education Outcomes

Course Outcomes After completing the course, the student must	Student Outcomes*								
be able to:	1	2	3	4	5	6			
Understand the logicformulation using flowcharts and pseudo codes.	ı	ı							
Student will be familiarized in various programing languagestructures.	ı	1							

*Level: I – Introduced; R – Reinforced; D – Demonstrated

8. Outcome-Based Modular Course Design

Course Title	Credit Units	Module Code	Module Title	Lec Hrs.	Lab Hrs.	Weeks	Credit Units	Pre- requisites	May be taken if remedial
		CSS121- 8M1	Understanding Algorithm Design	3	0	6	1.0	None	✓
Computer Programming 1	2.0	CSS121- 8M2	Coding Standards, Testing, and Debugging Techniques	3	0	5	1.0	None	√

Commented [EJMQ1]: Or Program Educational Objectives

	CSS121: Computer Programming 1				
School of Inf	School of Information Technology				
Prepared by:	Approved by:	Revision Date:	Effectivity Date:		
Gloren S. Fuentes	Ariel Kelly D. Balan	August 8, 2022	August 15, 2022		

9. Course Coverage

Ţ		TLA AT							СО		
Week	Topic	Т	ri-X, Bio-X, Blend	ed	UoX	Tri	-X, Bio-X, Blen	ded UoX		Learning Objects	CO
>		F2F	Sync	Async		F2F	Sync	Async			
Mod	lule 1: Understandin	g Algorithm D	esign				•	1	•	•	
	Course Orientation		Zoom Lecture/ Discussion		Video Recording		Class Discussion		Discussion Board	Lecture Slides/ Videos	CO1
1	Introduction: Algorithm design		Zoom Lecture/ Discussion		Video Recording		Class Discussion		Discussion Board	Lecture Slides/ Videos	CO1
	Algorithm design Sequential -Flowchart		Zoom Lecture/ Discussion		Video Recording		Class Discussion		Discussion Board	Lecture Slides/ Videos	CO1
2	Algorithm design Sequential - Pseudocode		Zoom Lecture/ Discussion		Video Recording		Class Discussion			Lecture Slides/ Videos	CO1
	Flowchart design Selection- Flowchart		Zoom Lecture/ Discussion		Video Recording		Class Discussion	FA1.1: Online short quiz	FA1.1: Online short quiz	Lecture Slides	CO1
3	Flowchart design Selection- Pseudocode	Lecture/ Discussion			Video Recording	Class Discussion				Lecture Slides/ Videos	CO1
4	Flowchart design Looping-Flowchart		Zoom Lecture/ Discussion		Video Recording		Class Discussion		Discussion Board	Lecture Slides/ Videos	CO.

Commented [EJMQ2]: In consonance with the Reusability Principle, we introduce this new column on learning objects to refer to artifacts (Beatty, 2019), which can either be instructional artifacts (teacher-deployed, designed, or developed), e.g., reading tasks, video materials, viewing materials, recorded sessions, lesson transcripts, slides, bibliographic entries, and learning artifacts (student-outputs from the learning process), e.g., student video outputs, student research/written materials and discussion boards.

It is suggested that the artifacts under learning objects are listed in order of their deployment/generation into our LMS. A careful and systematic design and deployment of learning objects shall satisfy the requirement of accessibility.

Commented [EJMQ3]: For both in-class (Tri-X) and outside class (Bio-X) delivery types.

Commented [EJMQ4]: In line with the Equivalency Principle of HyFlex framework, the faculty members shall ensure that F2F, sync, and async ATs will be able to distinguish high- and low-performing students regardless of delivery type. Simply, these ATs must be "equivalent."

	CSS121: Computer Programming 1			
School of Inf	School of Information Technology			
Prepared by:	Approved by:	Revision Date:	Effectivity Date:	
Gloren S. Fuentes	August 8, 2022	August 15, 2022		

	Flowchart design Looping- Pseudocode	Lecture/ Discussion			Video Recording	Class Discussion		Discussion Board	Lecture Slides/ Videos	CO1
5	Basic Programming Concepts Coding standards,			Video Recording	Video Recording		FA1.2: Online Short Quiz	FA1.2: ONline Short Quiz	Lecture Slides/ Videos	CO1
5	Testing and Debugging Techniques			Video Recording	Video Recording				Lecture Slides/ Videos	CO1
_	Review of Module 1/Consultation		Zoom Lecture/ Discussion		Video Recording		Class Discussion		Lecture Slides/ Videos	CO1
6	Summative Assessment	Assessment			Online Assessment	SA1: Long Quiz		SA1: Online Long Quiz	Test	CO1

~			TL	TLA			AT				СО
Week	Topic	Tri-X, Bio-X, Blended		ded	UoX	Tri	-X, Bio-X, Blen	ded	UoX	Learning Objects	
>		F2F	Sync	Async		F2F	Sync	Async			
Mod	Module 2: Coding Standards, Testing, and Debugging Techniques										
_	Sequential Control Structure -Input			Video Recording	Video Recording				Discussion Board	Lecture Slides/ Videos	CO2
7	Sequential Control Structure-output			Video Recording	Video Recording				Discussion Board	Lecture Slides/ Videos	CO2
8	Selection Structures -if -if-else -nested if		Zoom Lecture/ Discussion		Lecture/ Discussion/ Coursera		Class Discussion	FA2.1: Online short quiz	FA2.1: Online short quiz	Lecture Slides	CO1
	Selection Structures -switch case	Lecture/ Discussion			Video Recording	Class Discussion			Discussion Board	Lecture Slides/ Videos	CO2
9	Repetition Statements -Single Loop		Zoom Lecture/ Discussion		Video Recording		Class Discussion		Discussion Board	Lecture Slides/ Videos	CO2
	Repetition Statements -Nested Loop	Lecture/ Discussion			Video Recording	Class Discussion			Discussion Board	Lecture Slides/ Videos	CO2

Commented [EJMQ5]: In consonance with the Reusability Principle, we introduce this new column on learning objects to refer to artifacts (Beatty, 2019), which can either be instructional artifacts (teacher-deployed, designed, or developed), e.g., reading tasks, video materials, viewing materials, recorded sessions, lesson transcripts, slides, bibliographic entries, and learning artifacts (student-outputs from the learning process), e.g., student video outputs, student research/written materials and discussion boards.

It is suggested that the artifacts under learning objects are listed in order of their deployment/generation into our LMS. A careful and systematic design and deployment of learning objects shall satisfy the requirement of accessibility.

Commented [EJMQ6]: For both in-class (Tri-X) and outside class (Bio-X) delivery types.

Commented [EJMQ7]: In line with the Equivalency Principle of HyFlex framework, the faculty members shall ensure that F2F, sync, and async ATs will be able to distinguish high- and low-performing students regardless of delivery type. Simply, these ATs must be "equivalent."

	CSS121: Computer Programming 1			
School of Inf	School of Information Technology			
Prepared by:	Approved by:	Revision Date:	Effectivity Date:	
Gloren S. Fuentes	August 8, 2022	August 15, 2022		

10	Functions -Built-in Functions for Math		Zoom Lecture/ Discussion	Video Recording		FA2.2: Online Short Quiz	FA2.2: Online Short Quiz	Lecture Slides/ Videos	CO2
	Functions -User Defined Function and Parameter Passing		Zoom Lecture/ Discussion	Video Recording		Class Discussion	Discussion Board	Lecture Slides/ Videos	CO2
	Review of Module 2/Consultation		Zoom Lecture/ Discussion	Video Recording		Class Discussion		Lecture Slides/ Videos	CO2
11	Summative Assessment Coursera Certificate of Completion	Assessment		Online Assessment	SA2: Long Quiz		SA2: Online Long Quiz	Test	CO2

	CSS121: Computer Programming 1		
School of Int	School of Information Technology		
Prepared by: Gloren S. Fuentes Approved by: Ariel Kelly D. Balan		Revision Date:	Effectivity Date:
		August 8, 2022	August 15, 2022

Lifelong-Learning OpportunitiesAppreciate the value of professionalism in your class work, projects and career as well as the usefulness of, and role of professional societies in lifelong learning.

Contribution of Course to Meeting the Professional Component

- 90% - 10% **Computer Topics** General Education Component

12. Prescribed E-Book and Courseware

A. Print or Digital (Mapua E-Text Infinity Solution / METIS)

C++ Programming: From Problem Analysis to Program Design, 8th Edition by D.S. Malik, 2018

Other References and Educational Resources

A. Coursera

a. Programming for Everybody (Getting Started with Python), University of Michigan https://www.coursera.org/learn/python

B. Other Books

- a. Problem Solving with C++, 10th Edition by Walter Savitch and Kenrick Mock, 2017
 b. Basic C++ for Engineers and Scientists, Philippine Edition by Gary J. Bronson, 2016

Course Evaluation

Student performance will be rated based on the following:

Module 1

Assessment Tasks		Weight	Minimum Average for Satisfactory Performance
	FA1.1: Short Quiz	20%	70%
CO 1	FA1.2: Short Quiz	20%	70%
	SA1: Long Quiz	60%	70%
	Tota	al 100%	70%

Module 2:

Assessment Tasks			Weight	Minimum Average for Satisfactory Performance
	FA2.1: Short Quiz		10%	70%
	FA2.2: Short Quiz		10%	70%
CO 2	FA2.3: Coursera Certificate of Completion		20%	70%
	SA2: Long Quiz		60%	70%
	<u>-</u>	Total	100%	70%

		CSS121: Computer Programming 1		
School of Inf	School of Information Technology			
Prepared by: Gloren S. Fuentes Approved by: Ariel Kelly D. Balan		Revision Date:	Effectivity Date:	
		August 8, 2022	August 15, 2022	

The module grades will correspond to the weighted average scores shown below

Average	Module Grade	Average	Module Grade
0.00-0.99	ABS	82.00 - 84.99	2.25
1.00 – 49.99	IP	85.00 - 87.99	2.00
50.00 - 69.99	I	88.00 - 90.99	1.75
70.00 - 75.99	3.00	91.00 – 93.99	1.50
76.00 - 78.99	2.75	94.00 - 96.99	1.25
79.00 - 81.99	2.50	97.00 - 100.00	1.00

The module grade average will be the weighted average of the module grades based on the credit units of each module:

Module Grade Average=
$$\frac{\overset{\text{no of modules}}{\overset{\text{c}}{\bigcirc}} \left(\text{credit unit}\right)_{i} \left(\text{module grade}\right)_{i}}{\text{total credit units of the course}}$$

The course grade will be determined from the module grade average using the table below:

Module Grade Average (MGA)	Course Grade
1.0 ≤ MGA ≤ 1.10	1.0
1.10 < MGA ≤ 1.40	1.25
1.40 < MGA ≤ 1.60	1.5
1.60 < MGA ≤ 1.85	1.75
1.85 < MGA ≤ 2.10	2.0
2.10 < MGA ≤ 2.40	2.25
2.40 < MGA ≤ 2.60	2.5
2.60 < MGA ≤ 2.85	2.75
2.85 < MGA ≤ 3.0	3.0
IP	IP
5.00	5.00

15. Other Course Policies

a. Attendance

According to CHED policy, students' total number of absences should not be more than 20% of the total number of meetings or 9 hours for a three-unit-course. Students incurring more than 9 hours of unexcused absences automatically gets a failing grade regardless of class standing

b. Guided Learning Output

Guided learning outputs through various worksheets in each clusters of topics are assigned to the students. Problems encountered in the worksheets will be discussed in class.

c. Language of Instruction

	CSS121: Computer Programming 1		
School of Inf	Curriculum: 2022-2023	Page 10 of 11	
Prepared by:	Approved by:	Revision Date:	Effectivity Date:
Gloren S. Fuentes	Ariel Kelly D. Balan	August 8, 2022	August 15, 2022

Lectures, discussion, and documentation will be in English. Written and spoken work may receive a lower mark if it is, in the opinion of the instructor, deficient in English.

d. Dress and Grooming Codes

All of us have been instructed on the Dress and Grooming Codes of the University.

e. Academic Integrity Policy

It is the student's responsibility to refrain from infractions of academic integrity, from conduct that may lead to suspicion of such infractions, and from conduct that aids others in such infractions. Any of the following sanctions may be imposed to any student who is found guilty of committing online academic dishonesty:

- a. Failed mark in the course.
- b. Suspension for a period of less than one term, with or without community service.
- c. Suspension for a period of one term or more, with or without community service.
- d. Non-readmission to the University.
- e. Dismissal from the University.
- f. Expulsion.

The following are considered academic dishonesty:

- Using another MyMapua email address to login to any platform (such as BlackBoard and Coursera) with or without permission.
- Asking or hiring someone else to do their exams, homework, Coursera course, papers, projects or other academic requirements.
- 3. Recording and saving copies of exam questions or answers, or answer keys for distribution.
- Receiving copies of exam questions or answers, or answer keys to an exam from someone who has already taken it.
- 5. Plagiarizing or the unethical act of stealing the thoughts of another without proper citation or reference, acquiring information from the Internet without acknowledging the author, copying from another student's work without permission and submitting it as own work.
- Massive, pre-meditated, organized online cheating using instant messaging/email during a quiz or exam.
- Any form of dishonesty in peer-reviewed assignments/submissions (e.g. Coursera peer-graded submissions).
- 8. Engaging in any activities that will dishonestly improve results, or dishonestly improve or damage the results of others.
- 9. Any other form of dishonesty or cheating in any assessment or course requirement.

All students who will violate the Academic Integrity Policy of the university will be given zero mark for the exam or for the activity and will be given a failing grade for the course. He or she will also be referred to the Prefect of Discipline for appropriate sanction.

f. Consultation Schedule

Consultation schedules with the Professor are posted outside the SSSE Faculty Room. On blended and fully online terms, consultations may be done using any video-sharing platform, such as Facebook Messenger, Zoom, Google Meet, or Blackboard Collaborate. Students are advised It to first set an appointment to confirm the instructor's availability.

g. Appeal system

		CSS121: Computer Programming 1		
School of Inf	School of Information Technology			
Prepared by: Approved by:		Revision Date:	Effectivity Date:	
Gloren S. Fuentes Ariel Kelly D. Balan		August 8, 2022	August 15, 2022	

All appeals on student assessment must be made by the concerned student within one week after the return of the assessed student work.

In case the student is not satisfied, no later than one week after the decision of the faculty has been made, he can elevate the appeal to the program chair or dean in case there is no program chair. The decision of the program chair or dean is final. The faculty must abide with the moderated decision of the program chair or dean.

15. Course Materials to be Provided to Students

- 15.1. Syllabus15.2. Lecture Slides15.3. Coursera Link

16. Committee Members

- 16.1. Cluster Representative:
 - John Paul Q. Tomas
- 16.2. Professors/ Instructors:
 - Gloren S. Fuentes