Loi de réciprocité quadratique

Leçons: 101, 120, 121, 123, 126, 170, 190

Définition 1

Soit p premier impair. Le symbole de Legendre associé à p est $\left(\frac{\cdot}{p}\right)$: $a \in \mathbb{F}_p^* \mapsto a^{\frac{p-1}{2}}$. Il vaut 1 si a est un carré modulo p et -1 sinon.

Théorème 2

Si p et q sont deux premiers impairs distincts, $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$.

Lemme 3

Si
$$a \in \mathbb{F}_q^*$$
, l'équation $ax^2 = 1$ a $1 + \left(\frac{a}{q}\right)$ solutions.

Démonstration. Soit $X = \left\{ (x_1, \dots, x_p) \in \mathbb{F}_q^p : \sum_{i=1}^p x_i^2 = 1 \right\}$. On va compter le nombre d'éléments de X de deux manières différentes.

Étape 1 : dénombrement par la formule des classes.

 $\mathbb{Z}/p\mathbb{Z}$ agit sur X par permutation circulaire via $\overline{a} \cdot (x_1, \dots, x_p) = (x_{1+a}, \dots, x_{p+a})$, les indices étant considérés modulo p.

Le stabilisateur d'un élément x étant un sous groupe de $\mathbb{Z}/p\mathbb{Z}$, il est soit trivial soit le groupe tout entier. Dans le second cas, cela signifie que toutes les composantes de x sont égales et que $px_1^2=1$ dans $\mathbb{Z}/q\mathbb{Z}$. Selon le lemme, il y a donc $1+\left(\frac{p}{q}\right)$ orbites réduites à un singleton.

Ainsi, selon la formule des classes, si $x^1, ..., x^r$ sont les représentants des orbites non triviales,

$$|X| = 1 + \left(\frac{p}{q}\right) + \sum_{i=1}^{r} \frac{p}{|\operatorname{Stab}(x^{i})|} \equiv 1 + \left(\frac{p}{q}\right)[p]$$

Étape 2 : dénombrement "géométrique".

On remarque que $X = \left\{ x \in \mathbb{F}_q^p : q(x) = 1 \right\}$ où $q(x) = \sum_{i=1}^p x_i^2$. Cette forme quadratique est représentée dans la base canonique \mathscr{B} par I_p .

Introduisons la forme quadratique $r:(y_1,\ldots,y_d,z_1,\ldots,z_d,t)\mapsto 2\sum_{i=1}^d y_iz_i+at^2$ où $d=\frac{p-1}{2}$ et $a=(-1)^{\frac{p-1}{2}}$. Quitte à écrire $(y_1,\ldots,y_d,z_1,\ldots,z_d,t)$ sous la forme $(y_1,z_1,\ldots,y_d,z_d,t)$,

on peut supposer que la matrice $A=\begin{pmatrix}0&1&&&\\1&0&&&\\&&\ddots&&\\&&&0&1&\\&&&&1&0&\\&&&&a\end{pmatrix}$ représente r dans \mathscr{B} . Or,

 $\det A = (-1)^{\frac{p-1}{2}} (-1)^{\frac{p-1}{2}} = 1$ donc selon la classification des formes quadratiques dans un

corps fini, r et q sont équivalentes. Si on fixe $u \in GL_p(\mathbb{F}_q)$ tel que $r = q \circ u$, on constate que u induit une bijection de X sur $X' = \left\{ (y_1, \dots, y_d, z_1, \dots, z_d, t) : 2 \sum_{i=1}^d y_i z_i + at^2 = 1 \right\}$. Il s'agit donc de dénombrer |X'|.

Il y a deux types de points dans X':

- Ceux qui vérifient $y_1 = \dots = y_d = 0$: il y en a q^d (choix de z) multiplié par $1 + \left(\frac{a}{p}\right) = 1 + (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$ (nombre de solutions de $at^2 = 1$).
 Les autres : une fois choisi (y_1, \dots, y_d) non nul $(q^d 1$ choix) et t (q choix), z est déterminé par l'équation $2\sum_{i=1}^d y_i z_i + at^2 = 1$ est celle d'un hyperplan affine de \mathbb{F}_q^d ; il y

Ainsi, X' a pour cardinal $q^d \left(1 + (-1)^{\frac{p-1}{2}\frac{q-1}{2}}\right) + (q^d - 1) \times q \times q^{d-1} = q^d \left(q^d + (-1)^{\frac{p-1}{2}\frac{q-1}{2}}\right)$.

Étape 3 : Conclusion

En comparant les deux calculs précédents modulo p, on a $1+\left(\frac{p}{q}\right)\equiv q^{p-1}+q^d(-1)^{\frac{p-1}{2}\frac{q-1}{2}}[p]$ Or, dans \mathbb{F}_p , $q^d=q^{\frac{p-1}{2}}=\left(\frac{q}{p}\right)$, et $q^{p-1}=1$ (Fermat) donc $\left(\frac{p}{q}\right)=\left(\frac{q}{p}\right)(-1)^{\frac{p-1}{2}\frac{q-1}{2}}$, ce qui n'est autre que la loi de réciprocité quadratique.

Théorème 4

Il y a deux classes d'équivalences de formes quadratiques non dégénérées sur \mathbb{F}_q^n , repré-

Référence: Philippe Caldero et Jérôme Germoni (2013). Histoires hédonistes de groupes et de géométrie. T. 1. Calvage et Mounet, pp. 185-186