

CUBEADCS

THE COMPLETE ADCS SOLUTION

FIRMWARE REFERENCE MANUAL

Contact Us

Phone (0027) 79 945 9957
E-mail info@cubespace.co.za
Web www.cubespace.co.za
Facebook /CubeSpaceADCS
Twitter @CubeSpace_ADCS

Physical Address

CubeSpaceHammanshand Road
Stellenbosch
7600
South Africa

DOC: FIRMWARE REFERENCE MANUAL

Document	CubeADCS Firmware Reference Manual	
Version	7.4	
Domain	Public	
Date modified	January 2022	
Approved by	Name:	
	Lourens Visagie	
	Signature:	
	aulu	

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 PAGE: 3

Table of Contents

1.	Introduction	7
2.	CubeSpace Firmware Programs	8
2.1 2.2	BootloaderADCS Control Program (ACP)	
3.	Bootloader Operation	8
3.1	Multiple Application Support	10
4.	Operations Common to the Bootloader and the CubeACP Application	11
5.	Formatting of Telecommands, Telemetry Requests and Replies	12
5.1 5.2 5.3 5.4 5.5	Telemetry and Telecommand IDs	12 13 15
6.	Telecommand and Telemetry Message Definitions	19
6.1 6.2 6.3	Messages Common to the Bootloader and CubeACP BootLoader CubeAcp	35
7.	Firmware Operational Sequences	151
7.1 7.2 7.3 7.4	Bootloader and ACP (or other application) Identification	152 156
8.	Telemetry logging (CubeACP only)	160
8.1 8.2	Telemetry log file format	
9.	Document History	163

DOC: FIRMWARE REFERENCE MANUAL

PAGE: 4

List of Acronyms/Abbreviations

ACP ADCS Control Program

ADCS Attitude Determination and Control System

CSS Coarse Sun Sensor ESD Electrostatic Discharge I²C Inter-Integrated Circuit MCU Microcontroller Unit

MEMS Microelectromechanical System

OBC Onboard Computer
PCB Printed Circuit Board
RTC Real-Time Clock

SBC Satellite Body Coordinate SPI Serial Peripheral Interface

TC Telecommand TLM Telemetry

UART Universal Asynchronous Receiver/Transmitter

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 PAGE: 5

Relevant reference documents

This document is to be used in combination with the following documents:

Reference	Document name	Document version
Ref 1	CubeADCS – ICD	V3.18 or higher
Ref 2	CubeADCS – User Manual	V3.09 or higher

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 PAGE: 6

Relevant Firmware Versions

This document serves as reference to the CubeACP and bootloader with the following version numbers:

	CubeACP	Bootloader
Software version	7.x	3.x
Node type identifier	10	110
Interface version	7	3

DOG: FIRMWARE REFERENCE MANUAL

VER: 7.4 Page: 7

1. Introduction

This document contains the necessary information to interface with the CubeSpace bootloader and CubeACP applications.

The bootloader operation, application selection, and interaction through the bootloader are detailed in this manual.

It further describes the protocol required to communicate with the CubeComputer, running either the bootloader or CubeACP application, using I²C, UART and CAN communication channels. It also details all the low-level telecommands and telemetry frames that can be sent or requested.

This manual also provides required procedures (sequences of commands and telemetry requests) to upload new firmware to the CubeComputer external flash memory or to download files from the CubeComputer SD card.

2. CubeSpace Firmware Programs

2.1 Bootloader

The CubeSpace CubeComputer makes use of a bootloader when it is used in a CubeADCS unit. All CubeComputer units delivered by CubeSpace have the bootloader installed. The bootloader performs several important tasks required for the CubeSpace CubeComputer infrastructure, such as

- Initialises external SRAM so that applications can make use of it
- Enables internal and external watchdogs of the MCU and prevents faulty or damaged applications from halting the CPU.
- Allows reprogramming of application via UART, I²C, or CAN interface
- Counts number of reboots and tracks boot attempts
- Provides status telemetry

The bootloader is accessible via UART, I²C, and CAN.

2.2 ADCS Control Program (ACP)

The ACP (or CubeACP) is the application that runs on an integrated CubeADCS unit and performs the attitude control functions. This manual lists the detail of all the low-level messages that can be sent to or received from the ACP, however it should be read in combination with the CubeADCS User Manual [Ref 2], which contains the functional description of the ACP.

CubeComputer units in CubeADCS bundles come pre-loaded with the bootloader and the ACP as the default application.

2.3 Bootloader to Control Program Transition

The bootloader to control program sequence is explained by the flow diagram in Figure 1.

The bootloader will start to execute when the CubeComputer is powered up or reset. The bootloader will run for **5 seconds** before it will attempt to boot the application.

During the 5 seconds that the bootloader is active, it is possible to halt the boot process, so that further status telemetry can be obtained from the bootloader, or to reprogram the application that should run after the bootloader.

The boot process is stopped and the bootloader will remain running when an identification telemetry request (see Table 27: Identification Telemetry Format) is sent to the bootloader. If the bootloader is not interrupted in the first 5s, it will continue to attempt to run the ADCS control program (ACP).

The Boot Status is an enumeration value that is stored in the CubeComputer flash memory and keeps track of the previous boot attempt.

If, for some reason, the application failed to start, and the bootloader executes again, it will attempt to boot the application only two more times before changing the Boot Status value to "3x failed attempts". At this point the bootloader will no longer reboot the application and remain active indefinitely, or until the Boot Status is reset.

The Boot Status can be queried using a *Boot Index and Status* telemetry request (see Table 32: Boot Index and Status Telemetry Format). This status can use used to determine if an error condition exists on the CubeComputer.

Figure 1: Bootloader flow diagram

The possible values for the Boot Status are listed in Table 1.

Table 1: BootStatus Enumeration Values

Numeric Value	Name	Description
0	New Selection	New Selection
1	Boot Success	Boot Success
2	1 Failed boot attempt	1 Failed boot attempt
3	2 Failed boot attempts	2 Failed boot attempts
4	3 Failed boot attempts	3 Failed boot attempts

It is also possible to reset the *Boot Status* to *New Selection*, by sending a *Set Boot Index* telecommand (see Table 62: Set Boot Index Command Format). Note that the *Program Index*

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 Page: 10

parameter of this command should always be set to *Internal Flash Program*. Other options are not supported.

A *Reset Counter* is also stored in flash memory and maintained by the bootloader. The *Reset Counter* is incremented every time the bootloader starts, and can be queried through the *Boot and Running Program Status* telemetry request (see Table 28: Boot And Running Program Status Telemetry Format). This latter telemetry frame also provides the cause of the last MCU reset, read from a hardware register on the MCU. The *Boot Cause* shows the reason why the CubeComputer was reset.

The current state of the bootloader can be queried through the *Bootloader State* telemetry frame (see Table 69: Bootloader State Telemetry Format). This telemetry frame shows for how long the bootloader has been running, SRAM enabled state and error flags.

The error flags in the above *Bootloader State* telemetry frame are latched. They remain set until cleared using the Clear Error Flags command (see Table 61: Clear Error Flags Command Format). This command has no parameters.

It is possible to force the bootloader to start the application program by sending a Run Selected Program command (see Table 64: Run Selected Program Command Format).

The *Reset Boot Registers* command (see Table 13: Reset Boot Registers Command Format) will reset the Boot Counter, Boot State and Boot Cause registers. It has no parameters.

2.4 Multiple Application Support

It is possible to store up to 7 ACP programs in the CubeComputer's external flash memory. Each program area has a maximum size of 512kB.

The ACP program instance that should be started by the bootloader is selected by copying it to the internal MCU flash. This action is performed by sending a *Copy Program to Internal Flash* telecommand (Table 67: Copy Program to Internal Flash Command Format) to the bootloader with the appropriate parameters.

For further details on operational sequences, such as uploading program, please see section 6.

3. Operations Common to the Bootloader and the CubeACP Application

Both the Bootloader and the ACP support the Identification telemetry request (Table 27: Identification Telemetry Format), although the different programs will reply with different information which allows for the interfacing software to identify which program is currently running.

Most of the status telemetry frames mentioned in the previous bootloader section can also be requested while the ACP is running. This includes the *Boot and Running Program Status*, and *Boot Index and Status* telemetry frames.

The *SRAM Latchup counters* telemetry frame (Table 35: SRAM Latchup counters Telemetry Format) gives information on the number of SRAM latch-up events that have occurred, and the *EDAC Error Counters* telemetry frame (Table 36: EDAC Error Counters Telemetry Format) provides the number of EDAC errors that have been detected and corrected while scrubbing the SRAM.

The *Communication Status* telemetry frame (Table 37: Communication Status Telemetry Format) returns the number of commands and telemetry requests that have been served, as well as error flags related to use of the communication channel.

The *Telecommand Acknowledge* telemetry frame (Table 39: Telecommand Acknowledge Telemetry Format) can be requested to check the status of the last telecommand that was sent. This telemetry frame is intended to be used only with I²C communication – see section 4.3.2 for details.

It is possible to reset the CubeComputer using the *Reset* telecommand (Table 10: Reset Command Format) while either the bootloader or the CubeACP is running.

The Current Unix Time can be requested or changed using the *Current Unix Time* get and set messages (Table 50: Current Unix Time Message Format). It is also possible to periodically save the Unix time to flash memory, so that it will persist between power cycles. This behaviour can be adjusted using the *Unix Time Save to Flash* messages (Table 51: Unix Time Save to Flash Message Format).

Both the CubeACP program and the bootloader allows for downloading of files from the SD card, thus they both support the same set of telecommands and telemetries to allow for this process. See section 6 for details on this and other operational sequences that make use of sequences of commands and telemetry requests.

4. Formatting of Telecommands, Telemetry Requests and Replies

Communication to and from the CubeComputer utilises UART, I²C, and CAN. This section contains the protocol details for each interface.

4.1 Telemetry and Telecommand IDs

A single byte message identifier is used for both telecommands and telemetry requests. The most significant bit of this message ID determines whether it is a telecommand or telemetry request, and the lower 7 bits contain the ID.

Table 2: Telecommand or telemetry frame ID

Bit(s)	Data
7	0 = telecommand,
	1 = telemetry request
0:6	Telecommand or telemetry frame ID

When considering the full byte identifier, telecommands will have values in the range 0-127 and telemetry requests in the range 128-255.

4.2 UART

The specifications of the UART interface are given in Table 3.

Table 3: Standard UART specifications for CubeComputer

Parameter	Value
Baud rate	115200
Data bits	8
Parity	None
Stop bits	1

The UART protocol makes use of start-of-message (SOM 0x7F) and end-of-message (EOM 0xFF) identifiers to mark the beginning and end of a transmission. An escape character (ESC 0x1F) precedes the SOM and EOM identifiers. When decoding a UART message, on reception of the escape character, the byte following the escape character has the following implications:

Table 4: UART message decoding

Byte received after ESC character	Meaning
0x7F	Start of message
0xFF	End of message

0x1F	Data byte 0x1F
other	Should not occur (error)

4.2.1 UART Telemetry Request and Reply Format

A telemetry request via the UART will have the following form:

Figure 2: UART Telemetry request

The reply from the ADCS will then have the following form:

Figure 3: UART Telemetry reply

4.2.2 UART Telecommand Format

A telecommand to the ADCS, via the UART, will have the following form:

Figure 4: UART Telecommand

An acknowledge message will be sent as reply to the telecommand.

Figure 5: UART Telecommand acknowledge

The reply will contain two data bytes, the last one being the *TC Error* flag. The receipt of the telecommand acknowledge will indicate that another telecommand may be sent. Sending another telecommand before the acknowledge will corrupt the telecommand buffer.

4.3 I²C

CubeComputer acts as a slave on the system I²C bus. The Computer has a default 7-bit I²C slave address of 0x57.

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 Page: 14

Table 5: CubeComputer (slave node) I²C addresses.

	8-bit Hex byte	7-bit Hex address	Binary
I ² C write	0xAE	0x57	0b0010 010 0
I ² C read	0xAF	0x57	0b0010 010 1

4.3.1 I²C Telemetry Request and Reply Format

Telemetry is requested from the ADCS over the system I²C bus by either performing a combined read-write operation (repeated start condition) or a separate master write to select the TLM register, followed by a master read operation. The first write following the start condition is the address of the node (0xAE). This is followed by the telemetry frame identifier. In the case of a separate write and read, a stop condition will follow, and the master will then issue another start condition. In the case of the combined write-then-read operation, the master will issue a repeated start condition (without a preceding stop condition).

The second start condition will be followed by the node read address (0xAF). The master then issues several read cycles depending on the length of the telemetry frame.

Figure 6: I2C Telemetry request using I2C repeated start condition

Because the master determines the number of bytes that are read, it is possible to read past the end of a telemetry frame or to read an incomplete telemetry frame. The ADCS will set an error flag if an incorrect number of bytes are read for a given TLM ID. This flag is stored in the *Communication Status* frame and can be read using a telemetry request. The flag will remain set until the *Clear Errors* telecommand is issued.

4.3.2 I²C Telecommand Format

Telecommands are sent by performing a master write to the module. The first data byte (after the address byte) is the telecommand identifier, followed by the telecommand parameters.

Figure 7: I2C Telecommand

Because the ADCS is an I²C slave, it cannot acknowledge telecommands by performing an I²C write transaction. The telecommand acknowledge status must therefore be polled via a *Telecommand Acknowledge* telemetry request.

DOG: FIRMWARE REFERENCE MANUAL

VER: 7.4 Page: 15

It is not a requirement that the telecommand acknowledge status must be read following a telecommand, but an error will occur if another telecommand is sent before the Telecommand Processed flag (contained in the *Telecommand Acknowledge* frame) has been set. In this case the telecommand buffer will be overwritten while the first telecommand is being processed, leading to corrupt telecommand data.

The *Processed* flag is not an indication of the telecommand execution status. The *Processed* flag is only an indication that the module is ready for another telecommand to be sent.

The *Telecommand Acknowledge* frame also contains a *TC Error* flag. This flag will be set if an invalid telecommand ID was received for the last telecommand, or if the number of data bytes were incorrect or contained invalid data.

The following sequence illustrates the actions that the master must take to ensure proper telecommand execution:

- 1. Send telecommand.
- 2. Poll Telecommand Acknowledge Telemetry Format until the Processed flag equals 1.
- 3. Confirm telecommand validity by checking the *TC Error* flag of the last read *Telecommand Acknowledge Telemetry Format*.
- 4. Back to step 1 (if another telecommand is to be sent)

4.4 CAN

The CubeADCS acts as a slave on the CAN bus and supports 1 Mbps CAN bus V2.0 standard.

The CubeSpace CAN protocol uses an extended frame format, consisting of 29 identifier bits. The 29-bit frame identifier has the structure depicted in Table 6.

Table 6: CAN identifier frame format.

MSB			LSB
Message Type	Channel/ID	Source Address	Destination Address
5 Bits	8 Bits	8 Bits	8 Bits

The ADCS CubeComputer uses an 8-bit address of 0x01. Thus, all messages that are sent to the ADCS will have a value of 0x01 for the *Destination Address* field. Likewise, all replies coming from the ADCS will have a value of 0x01 in the *Source Address* field.

The Message Type field in the 29-bit CAN identifier can take on values as listed in.

Table 7: CAN message types.

Message Type	Identifier	Description
TC Request	0x01	Command/Request

TC Response	0x02	Acknowledge
TC Not Ack	0x03	Command Failure
TLM Request	0x04	Request
TLM Response	0x05	Response
TLM Not Ack	0x06	Request Failure
Extended TC Request	0x07	Multiple CAN Packet Command/Request
Extended TLM Response	80x0	

4.4.1 CAN Telemetry Request and Reply Format

A telemetry request to the ADCS, over CAN, will have the following contents for the frame identifier, data length code (DLC) and data field:

0x04	TLM ID	Sender ID	0x01		0	ı
Message type	Channel ID	Source address	Destination Address		DLC	Data
Frame Identifier						

Figure 8: CAN Telemetry Request

The reply from the ADCS will then have the following contents:

0x05	TLM ID	0x01	Original Sender ID		n	•••
Message type	Channel ID	Source address	Destination Address		DLC	Data
Frame Identifier						

Figure 9: CAN Telemetry Reply

If an invalid telemetry ID was requested, the reply from the ADCS will have a message type of 0x06.

4.4.2 CAN Telecommand Format

A telecommand to the ADCS, over the CAN bus, will have the following contents in the frame identifier, DLC and data fields.

0x01	TC ID	Sender ID	0x01		n	
Message type	Channel ID	Source address	Destination Address		DLC	Data
Frame Identifier						

Figure 10: CAN Telecommand

The command will either be met with an acknowledge message (message ID of 0x02), or NACK message (message ID of 0x03).

0x02/0x03	TC ID	0x01	Original Sender ID		0	-
Message type	Channel ID	Source address	Destination Address		DLC	Data
Frame Identifier						

Figure 11: CAN Telecommand reply

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 Page: 17

4.4.3 Multi-message CAN Transactions

If the telecommand data or the telemetry response contains more than the maximum of eight data bytes, an Extended Telemetry Request or Extended Telecommand Response is used. The Message type for such TC or TLMs are defined in Table 7.

For these extended transactions, a protocol is implemented on the data bytes of the CAN packets. The 8th byte of the data of the extended transaction contains the number of CAN packets left which is part of the complete extended telemetry or telecommand request or response. Each packet will therefore only have 7 data bytes. Considering that the extended TLM or TC can consist of 256 (1 byte) such packets, the total length of an extended TC or TLM is 1792 bytes. If a TC or TLM is longer than 1792 bytes, the file download mechanism must be used.

Table 8: CAN Extended TC/TLM Data

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
Data 0	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	Packets Left

The last byte of the last packet must be zero indicating that there are no further CAN packets part of this transaction. A standard telecommand response, like the standard operations, is sent from the slave if the entire extended transaction has been received successfully.

4.5 CRC For Commands and Telemetry (CubeACP only)

When sending a command to the CubeACP, it is possible to include an 8-bit CRC checksum.

For instance, when sending a command that has a length of 8 bytes, it is possible to include a 9th byte that is computed from the previous 8 bytes. The extra byte will be interpreted as a checksum and used to validate the message. If the checksum fails, the command will be ignored. In the case of UART communications, the telecommand reply will have a value of 4 for the TC Error Flag (Figure 5). For I2C communication, the *Tc Error Status* in the *Telecommand Acknowledge* telemetry frame (Table 39: Telecommand Acknowledge Telemetry Format) will have a value of 4.

When requesting telemetry through I²C, it is possible to read one extra byte past the allowed length of the telemetry frame. In this case, the extra byte will also be an 8-bit checksum computed by the CubeACP and can be used by the interfacing OBC to validate the message.

The C source code that is used on the CubeACP to compute the checksums is given below.

DOC: FIRMWARE REFERENCE MANUAL

```
// init lookup table for 8-bit crc calculation
void COMMS_Crc8Init()
   for (int I = 0; I < 256; i++)
      val = I;
      for (int j = 0; j < 8; j++)
         if (val & 1)
            val ^= CRC_POLY;
         val >>= 1;
      CRC8Table[i] = val;
   }
}
* Calculates an 8-bit CRC value
* @param[in] buffer
   the buffer containing data for which to calculate the crc value
* @param[in] len
   the number of bytes of valid data in the buffer
uint8_t COMMS_Crc8Checksum(uint8_t* buffer, uint16_t len)
   if (len == 0) return 0xff;
   uint16_t I;
   uint8_t crc = 0;
   for (I = 0; I < len; i++)
     crc = CRC8Table[crc ^ buffer[i]];
   return crc;
}
```

DOG: FIRMWARE REFERENCE MANUAL

VER: 7.4 Page: 19

5. Telecommand and Telemetry Message Definitions

This section lists all the telecommands and telemetry message formats that can be sent to the CubeACP or bootloader. The first sub-section lists messages that are common to both the bootloader and CubeACP, while following sections list the messages unique to the individual software programs.

The communications messages have further been grouped by telecommand (messages that can only be sent), telemetry frames (can only be requested) or configuration settings messages. The latter group of messages have matching get (telemetry) and set (telecommand) message formats.

5.1 Messages Common to the Bootloader and CubeACP

5.1.1 Common Telecommands

Table 9: List of Common Telecommands

ID	Name	Description	Length
			(bytes)
		General	
1	Reset	Perform a reset – Table 10: Reset Command	1
		Format	
4	Reset Log Pointer	Reset pointer to log buffer (from where	0
		LastLogEvent TLM is returned) – Table 11:	
		Reset Log Pointer Command Format	
5	Advance Log Pointer	Advance pointer to log buffer (from where	0
		LastLogEvent TLM is returned) – Table 12:	
		Advance Log Pointer Command Format	
6	Reset Boot Registers	Reset Boot Registers – Table 13: Reset Boot	0
		Registers Command Format	
33	Format SD card	Format SD card – Table 14: Format SD card	1
		Command Format	
108	Erase File	Erase File – Table 15: Erase File Command	3
		Format	
112	Load File Download Block	Fill download buffer with file contents – Table	8
		17: Load File Download Block Command	
		Format	
113	Advance File List Read Pointer	Advance File List Read Pointer – Table 18:	0
		Advance File List Read Pointer Command	
		Format	
114	Initiate File Upload	Initiate File Upload – Table 19: Initiate File	2
		Upload Command Format	

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 PAGE: 20

115	File Upload Packet	File Upload Packet – Table 21: File Upload Packet Command Format	22
116	Finalize Upload Block	Finalize Uploaded File Block – Table 22: Finalize Upload Block Command Format	7
117	Reset Upload Block	Reset HoleMap for Upload Block – Table 23: Reset Upload Block Command Format	0
118	Reset File List Read Pointer	Reset File List Read Pointer – Table 24: Reset File List Read Pointer Command Format	0
119	Initiate Download Burst	Initiate Download Burst – Table 25: Initiate Download Burst Command Format	2

Table 10: Reset Command Format

ID	1		Parameters (bytes)	Length	1
Description	Perform a	reset			
Parameters	Offset	Length	Name Data		Description
	(bits)	(bits)		Type	
	0	8	Magic	UINT	Magic number to make sure it is a
			number		valid reset command. Should equal
					0x5A

Table 11: Reset Log Pointer Command Format

ID	4	Parameters Length (bytes)	0
Description	Reset p	pointer to log buffer (from where LastLogEvent TLM is returned)	

Table 12: Advance Log Pointer Command Format

ID	5	Parameters Length (bytes)	0			
Description	Advano	dvance pointer to log buffer (from where LastLogEvent TLM is returned)				

Table 13: Reset Boot Registers Command Format

ID	6	Parameters Length (bytes)	0
Description	Reset	Boot Registers	

Table 14: Format SD card Command Format

ID	33	Parameters Length	1
		(bytes)	

DOC: FIRMWARE REFERENCE MANUAL

Description	Format SD	Format SD card					
Parameters	Offset	Length	Name	Data	Description		
	(bits)	(bits)		Type			
	0	8	Magic	UINT	Magic number to prevent against		
			Number		accidental format. Has to be set to 90		
					(0x5A)		

Table 15: Erase File Command Format

ID	108 Parameters Length (bytes		(bytes)	3	
Description	Erase File	9			
Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	8	File Type	ENUM	File Type. Possible values are in Table 16: FileType Enumeration Values
	8	8	File Counter	UINT	File Counter
	16	1	Erase All	BOOL	Erase All

Table 16: FileType Enumeration Values

Numeric Value	Name	Description
2	Telemetry Log	Telemetry Log File
3	JPG Image	JPG Image File
4	BMP Image	BMP Image File
15	Index	Index File

Table 17: Load File Download Block Command Format

ID	Parameters Length (bytes)		8					
Description	Fill down	ill download buffer with file contents						
Parameters	Offset	Length	Name	Data	Description			
	(bits)	(bits)		Type				
	0	8	File Type	ENUM	File Type. Possible values are in			
					Table 16: FileType Enumeration			
					Values			
	8	8	Counter	UINT	Counter			
	16	32	Offset	UINT	Offset			
	48	16	BlockLength	UINT	Block Length			

DOC: FIRMWARE REFERENCE MANUAL

Table 18: Advance File List Read Pointer Command Format

ID	113	Parameters Length (bytes)	0
Description	Advance F	ile List Read Pointer	

Table 19: Initiate File Upload Command Format

ID	114 Parameters Length (bytes)		2				
Description	Initiate F	nitiate File Upload					
Parameters	Offset	Length	Name	Data	Description		
	(bits)	(bits)		Type			
	0	8	Destination	ENUM	Destination. Possible values are		
					in Table 20:		
					FileUploadDestination		
					Enumeration Values		
	8	8	BlockSize	UINT	Block Size		

Table 20: FileUploadDestination Enumeration Values

Numeric Value	Name	Description
2	EEPROM	EEPROM
3	Flash program 1	Flash program 1
4	Flash program 2	Flash program 2
5	Flash program 3	Flash program 3
6	Flash program 4	Flash program 4
7	Flash program 5	Flash program 5
8	Flash program 6	Flash program 6
9	Flash program 7	Flash program 7
10	SD User file 1	SD User file 1
11	SD User file 2	SD User file 2
12	SD User file 3	SD User file 3
13	SD User file 4	SD User file 4
14	SD User file 5	SD User file 5
15	SD User file 6	SD User file 6
16	SD User file 7	SD User file 7
17	SD User file 8	SD User file 8

Table 21: File Upload Packet Command Format

ID	115	Parameters Length (bytes)	22
Description	File Upload Packet		

DOC: FIRMWARE REFERENCE MANUAL

Parameters	Offset (bits)	Length (bits)	Name	Data Type	Description
	0	16	Packet Number	UINT	Packet Number
	16	160	File Bytes	ARRAY	File Bytes

Table 22: Finalize Upload Block Command Format

ID	116		Parameters Length	(bytes)	7		
Description	Finalize l	inalize Uploaded File Block					
Parameters	Offset	Length	Name	Data	Description		
	(bits)	(bits)		Type			
	0	8	Destination	ENUM	Destination. Possible values are		
					in Table 20:		
					FileUploadDestination		
					Enumeration Values		
	8	32	Offset	UINT	Offset into file		
	40	16	Block Length	UINT	Length of block		

Table 23: Reset Upload Block Command Format

ID	117	Parameters Length (bytes)	0
Description	Reset Hole	Reset HoleMap for Upload Block	

Table 24: Reset File List Read Pointer Command Format

ID	118	Parameters Length (bytes)	0
Description	Reset File	List Read Pointer	

Table 25: Initiate Download Burst Command Format

ID	119	Parameters Length (bytes)		2			
Description	Initiate D	Initiate Download Burst					
Parameters	Offset	Offset Length Name Data			Description		
	(bits)	(bits)		Type			
	0	8	Message Length	UINT	Message Length		
	8	1	Ignore Hole Map	BOOL	Ignore Hole Map		

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 PAGE: 24

5.1.2 Common Telemetry

Table 26: List of Common Telemetry Frames

ID	Name	Description	Length (bytes)					
	General							
128	Identification	Identification information for this node – Table 27: Identification Telemetry Format	8					
129	Boot And Running Program Status	Boot And Running Program Status – Table 28: Boot And Running Program Status Telemetry Format	6					
130	Boot Index and Status	Current selected boot index and status of last boot – Table 32: Boot Index and Status Telemetry Format	2					
141	Last Logged Event	Last Logged Event (relative to pointer – adjusted via Advance and Reset TCs (3 & 4) – Table 34: Last Logged Event Telemetry Format	6					
234	SD card format/erase progress	SD card format or erase progress – Table 38: SD card format/erase progress Telemetry Format	1					
240	Telecommand Acknowledge	Telemetry frame with acknowledge status of the previously sent command – Table 39: Telecommand Acknowledge Telemetry Format	4					
241	File Download Buffer with File Contents	File Download buffer 20-byte packet – Table 41: File Download Buffer with File Contents Telemetry Format	22					
242	Download Block Ready	Status about download block preparation – Table 42: Download Block Ready Telemetry Format	5					
243	File Information	File Information – Table 43: File Information Telemetry Format	12					
244	Initialize Upload Complete	Initialize Upload Complete – Table 44: Initialize Upload Complete Telemetry Format	1					
245	Upload Block Complete	Finalize Upload Block Complete – Table 45: Upload Block Complete Telemetry Format	1					
246	Block Checksum	File upload Block CRC16 Checksum – Table 46: Block Checksum Telemetry Format	2					
		Satellite State						
142	SRAM Latchup counters	SRAM Latchup counters – Table 35: SRAM Latchup counters Telemetry Format	6					
143	EDAC Error Counters	EDAC Error Counters – Table 36: EDAC Error Counters Telemetry Format	6					
144	Communication Status	Communication status – includes command and telemetry counters and error flags – Table 37: Communication Status Telemetry Format	6					

DOC: FIRMWARE REFERENCE MANUAL

Table 27: Identification Telemetry Format

ID	128		Frame Length (bytes	s)	8	
Description	Identifica	Identification information for this node				
Channels	Offset	Length	Name	Data	Description	
	(bits)	(bits)		Type		
	0	8	Node type	UINT	Node type identifier.	
	8	8	Interface version	UINT	Interface version. This field	
					should have a value of 1	
	16	8	Firmware version	UINT	Firmware version (Major)	
			(Major)			
	24	8	Firmware version	UINT	Firmware version (Minor)	
			(Minor)			
	32	16	Runtime (seconds)	UINT	Number of seconds since	
					processor start-up	
	48	16	Runtime	UINT	Number of milliseconds (after the	
			(milliseconds)		integer second) since processor	
					start-up	

Table 28: Boot And Running Program Status Telemetry Format

ID	129		Frame Length (bytes	s)	6	
Description	Boot And Running Program Status					
Channels	Offset	Length	Name	Data	Description	
	(bits)	(bits)		Type		
	0	4	Cause of MCU	ENUM	Cause of MCU reset. Possible	
			Reset		values are in Table 29:	
					ResetCause Enumeration Values	
	4	4	Boot Cause	ENUM	Cause of last reboot. Possible	
					values are in Table 30: BootCause	
					Enumeration Values	
	8	16	Boot Counter	UINT	Number of times CubeComputer	
					has booted	
	24	8	Boot Program	ENUM	Location of program that is	
			Index		currently running. Possible values	
					are in Table 31:	
					BootProgramsList Enumeration	
					Values	
	32	8	Firmware version	UINT	Firmware version (Major)	
			(Major)			
	40	8	Firmware version	UINT	Firmware version (Minor)	
			(Minor)			

PART: GUBEADGS
DOG: FIRMWARE REFERENCE MANUAL
VER: 7.4

PAGE: 26

Table 29: ResetCause Enumeration Values

Numeric Value	Name	Description		
0	Power-On Reset	Power-On Reset		
1	Brown-Out Detected on Regulated	Brown-Out Detected on Regulated Power		
	Power			
2	Brown-Out Detected on	Brown-Out Detected on Unregulated		
	Unregulated Power	Power		
3	External Watchdog Reset	External Watchdog Reset		
4	External Reset	External Reset		
5	Watchdog Reset	Watchdog Reset		
6	Lockup System Reset	Lockup System Reset		
7	Lockup Reset	Lockup Reset		
8	System Request Reset	System Request Reset		
9	Backup Brown-Out	Backup domain brown-out reset		
10	Backup Mode Reset	Backup mode reset		
11	Backup Mode RST and Backup	Backup Mode reset and Backup domain		
	Brown-Out Vdd Regulated	brown-out on VDD regulated		
12	BackupModeRST and Backup	Backup Mode reset and Backup domain		
	Brown-Out Vdd Regulated and	brown-out on VDD regulated and brown		
	Brown-Out Regulated	out on regulated		
13	Backup Mode RST and Watchdog	Backup mode reset and Watchdog reset		
	Reset			
14	Backup Brown-Out Buvin and	Backup Domain brown-out on BUVIN and		
	System Request Reset	System request reset.		
15	26nitial Reset Cause	26nitial Reset Cause		

Table 30: BootCause Enumeration Values

Numeric Value	Name	Description
0	Unexpected	Unexpected reset
1	Not Used	
2	Communications Timeout	Timeout due to lack of communications
3	Commanded	Software commanded MCU reset
4	Not Used	
5	SRAM Latchup	Latchup detected in SRAM

Table 31: BootProgramsList Enumeration Values

Numeric Value Name	Description
--------------------	-------------

DOC: FIRMWARE REFERENCE MANUAL

1	Internal Flash Program	Internal Flash Program
2	Bootloader	Bootloader

Table 32: Boot Index and Status Telemetry Format

ID	130		Frame Length (bytes)		2
Description	Current	selected bo	oot index and status of	last boot	i
Channels	Offset	Length	Name	Data -	Description
	(bits)	(bits)		Type	
	0	8	Program Index	ENUM	Program Index. Possible values are in Table 31: BootProgramsList Enumeration Values
	8	8	Boot Status	ENUM	Boot Status. Possible values are in Table 33: BootStatus Enumeration Values

Table 33: BootStatus Enumeration Values

Numeric Value	Name	Description		
0	New Selection	New Selection		
1	Boot Success	Boot Success		
2	1 Failed boot attempt	1 Failed boot attempt		
3	2 Failed boot attempts	2 Failed boot attempts		
4	3 Failed boot attempts	3 Failed boot attempts		

Table 34: Last Logged Event Telemetry Format

ID	141		Frame Length (bytes)		6	
Description	Last Log	Last Logged Event (relative to pointer – adjusted via Advance and Reset TCs (3 & 4)				
Channels	Offset	Offset Length Name Data			Description	
	(bits)	(bits)		Type		
	0	32	Time of Event	UINT		
	32	8	Event ID	UINT	Event ID	
	40	8	Event Parameter	UINT	Event Parameter	

Table 35: SRAM Latchup counters Telemetry Format

ID	142	Frame Length (bytes)	6
Description	SRAM Latchup cour	nters	

DOC: FIRMWARE REFERENCE MANUAL

Doc: Firm Ver: 7.4 Page: 28

Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	SRAM1 latchups	UINT	The number of SRAM1 latchups detected
	16	16	SRAM2 latchups	UINT	The number of SRAM2 latchups detected

Table 36: EDAC Error Counters Telemetry Format

ID	143		Frame Length (bytes	s)	6
Description	EDAC Err	or Counte	rs		
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)	Туре		
	0	16	Single SRAM upsets	UINT	The number of single SRAM upsets (per byte) detected
	16	16	Double SRAM upsets	UINT	The number of double SRAM upsets (per byte) detected
	32	16	Multiple SRAM upsets	UINT	The number of multiple SRAM upsets (per byte) detected

Table 37: Communication Status Telemetry Format

ID	144		Frame Length (bytes	s)	6		
Description	Commur	nication sta	itus – includes commar	us – includes command and telemetry counters and			
Channels	Offset	Length Name Data		Description			
	(bits)	(bits)		Туре			
	0	16	Telecommand counter	UINT	No. of telecommands received		
	16	16	Telemetry request counter	UINT	No. of telemetry requests received		
	32	1	Telecommand buffer overrun	BOOL	TC buffer was overrun while receiving a telecommand		
	33	1	UART protocol error	BOOL	UART protocol error occurred		
	34	1	UART incomplete message	BOOL	UART start-of-message identifier was received without a preceding end-of-message		
	35	1	I2C telemetry error	BOOL	Number of data clocked out was more than telemetry package		
	36	1	I2C telecommand buffer error	BOOL	Telecommand sent exceeds buffer size		

DOC: FIRMWARE REFERENCE MANUAL

ı	37	1	CAN telecommand	BOOL	Telecommand	sent	exceeds
ı			buffer error		buffer size		

Table 38: SD card format/erase progress Telemetry Format

ID	234		Frame Length (bytes)		1
Description	SD card	format or e	erase progress		
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	1	Format Busy	BOOL	Busy formatting SD card
	1	1	Erase All Busy	BOOL	Busy formatting erasing all SD
					files

Table 39: Telecommand Acknowledge Telemetry Format

ID	240		Frame Length (bytes)		4		
Description	Telemetr	Telemetry frame with acknowledge status of the previously sent command					
Channels	Offset	Length	Name	Data	Description		
	(bits)	(bits)		Type			
	0	8	Last TC ID	UINT	ID of last received TC		
	8	1	Processed flag	BOOL	Flag to indicate if the last TC has		
					been processed.		
	16	8	TC error status	ENUM	Status of last processed		
					telecommand. Possible values		
					are in Table 40: TcErrorReason		
					Enumeration Values		
	24	8	TC parameter error	UINT	Index of incorrect TC parameter		
			index				

Table 40: TcErrorReason Enumeration Values

Numeric Value	Name	Description		
0	No Error	No error		
1	Invalid TC	Invalid telecommand ID		
2	Incorrect Length	Incorrect TC parameter length		
3	Incorrect Parameter	Incorrect TC parameter value		
4	CRC check failed	CRC check failed		

Table 41: File Download Buffer with File Contents Telemetry Format

ID 241 Frame Length (bytes) 22

DOC: FIRMWARE REFERENCE MANUAL

DOC: FIRM VER: 7.4 PAGE: 30

Description	File Dow	File Download buffer 20-byte packet						
Channels	Offset	Offset Length Name Data Descri						
	(bits)	(bits)		Туре				
	0	16	Packet counter	UINT	Packet counter of this file			
					download packet			
	16	160	File bytes	ARRAY	File 20-byte packet			

Table 42: Download Block Ready Telemetry Format

ID	242		Frame Length (bytes)		5
Description	Status ab	out down	load block preparation		
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	1	Ready	BOOL	Ready
	1	1	ParameterError	BOOL	The combination of message length and hole map resulted in invalid array lengths
	8	16	Block CRC16 Checksum	UINT	Block CRC16 Checksum
	24	16	Block Length	UINT	Block length

Table 43: File Information Telemetry Format

ID	243		Frame Length (bytes	s)	12
Description	File Infor	mation			
Channels	Offset	Length	Name	Data -	Description
	(bits)	(bits)		Type	
	0	4	File Type	ENUM	File Type. Possible values are in
					Table 16: FileType Enumeration
					Values
	4	1	Busy Updating	BOOL	
	8	8	File Ctr	UINT	File Counter
	16	32	File Size	UINT	File Size
	48	32	File Date and Time	UINT	File Date and Time (in MS-DOS
					format). (Unit of measure is [s])
	80	16	File CRC16	UINT	File CRC16 Checksum
			Checksum		

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 PAGE: 31

Table 44: Initialize Upload Complete Telemetry Format

ID	244		Frame	Length	1
			(bytes)		
Description	Initialize Upl	oad Complete			
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Туре	
	0	1	Busy	BOOL	Busy with file initialization (flash
					erase, etc.)

Table 45: Upload Block Complete Telemetry Format

ID	245		Frame Length (bytes)		1	
Description	Finalize U	Finalize Upload Block Complete				
Channels	Offset	Length	Name Data		Description	
	(bits)	(bits)		Type		
	0	1	Busy	BOOL	Busy with block finalization	
	1	1	Error	BOOL	Error in block finalization	

Table 46: Block Checksum Telemetry Format

ID	246		Frame Lengtl	h (bytes)	2		
Description	File upload Block	File upload Block CRC16 Checksum					
Channels	Offset (bits)	Length (bits)	Name	Data Type	Description		
	0	16	Checksum	UINT	Checksum		

5.1.3 Common Configuration Messages

Table 47: List of Common Configuration Messages

Set	Get	Name	Description	Length
ID	ID			(bytes)
			General	
3	131	Cache enabled	Cache enabled state – Table 48: Cache enabled state	1
		state	Message Format	
8	134	SRAM Scrub	SRAM scrubbing size – Table 49: SRAM Scrub	2
		Parameters	Parameters Message Format	
9	145	Unix Time Save	Configuration settings for Unix time flash memory	2
		to Flash	persistence – Table 51: Unix Time Save to Flash	
			Message Format	
120	247	Hole Map 1	File Upload Hole Map 1 – Table 52: Hole Map 1	16
			Message Format	

DOC: FIRMWARE REFERENCE MANUAL

Ver: 7.4 Page: 32

121	248	Hole Map 2	File Upload Hole Map 2 – Table 53: Hole Map 2 Message Format	16
122	249	Hole Map 3	File Upload Hole Map 3 – Table 54: Hole Map 3 Message Format	16
123	250	Hole Map 4	File Upload Hole Map 4 – Table 55: Hole Map 4 Message Format	16
124	251	Hole Map 5	File Upload Hole Map 5 – Table 56: Hole Map 5 Message Format	16
125	252	Hole Map 6	File Upload Hole Map 6 – Table 57: Hole Map 6 Message Format	16
126	253	Hole Map 7	File Upload Hole Map 7 – Table 58: Hole Map 7 Message Format	16
127	254	Hole Map 8	File Upload Hole Map 8 – Table 59: Hole Map 8 Message Format	16
			Satellite State	
2	140	Current Unix Time	Current Unix Time – Table 50: Current Unix Time Message Format	6

Table 48: Cache enabled state Message Format

Set ID/Get ID	3/131		Parameters Len	gth (bytes)	1		
Description	Cache enabled	Cache enabled state					
Parameters	Offset (bits)	Length (bits)	Name	Data Type	Description		
	0	1	Enabled state	BOOL	Enabled state		

Table 49: SRAM Scrub Parameters Message Format

Set ID/Get ID	8/134		Parameters Le	ngth (bytes)	2		
Description	SRAM scrubbin	SRAM scrubbing size					
Parameters	Offset (bits)	Length (bits)	Name	Data Type	Description		
	0	16	Scrub Size	UINT	Scrub Size		

Table 50: Current Unix Time Message Format

Set ID/Get	2/140		Parameters Length (bytes)		6
ID					
Description	Current l	Jnix Time			
Parameters	Offset	Length	Name Data		Description
	(bits)	(bits)		Type	
	0	32	Current Unix Time UINT		Time in s since 01/01/1970,
					00:00. (Unit of measure is [s])

DOC: FIRMWARE REFERENCE MANUAL VER: 7.4

VER: 7.4 PAGE: 33

32	16	Milliseconds	UINT	Current millisecond count. (Unit
				of measure is [ms])

Table 51: Unix Time Save to Flash Message Format

Set ID/Get	9/145		Parameters Length ((bytes)	2
ID					
Description	Configur	ation settir	ngs for unixtime flash r	nemory p	persistence
Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	1	Save Now	BOOL	Save current Unix time to flash
					memory
	1	1	Save On Update	BOOL	Save Unix time to flash memory
					whenever there is a command to
					update the Unix time
	2	1	Save Periodic	BOOL	Save Unix time to flash memory
					periodically
	8	8	Period	UINT	Interval at which to save Unix time
					to flash memory. (Unit of measure
					is [s])

Table 52: Hole Map 1 Message Format

Set ID/Get ID	120/247		Parameters Le	ngth (bytes)	16		
Description	File Upload Hol	ile Upload Hole Map 1					
Parameters	Offset (bits)	Length (bits)	Name	Data Type	Description		
	0	128	Hole Map	ARRAY	Hole Map		

Table 53: Hole Map 2 Message Format

Set ID/Get ID	121/248		Parameters Le	16			
Description	File Upload Hol	ile Upload Hole Map 2					
Parameters	Offset (bits)	Length (bits)	Name	Data Type	Description		
	0	128	Hole Map	ARRAY	Hole Map		

Table 54: Hole Map 3 Message Format

Set ID/Get ID	122/249		Parameters Le	16	
Description	File Upload Hol	е Мар 3			
Parameters	Offset (bits)	Length (bits)	Name	Data Type	Description
	0	128	Hole Map	ARRAY	Hole Map

FIRM 7.4 Doc: FIRMWARE REFERENCE MANUAL

VER: PAGE: 34

Table 55: Hole Map 4 Message Format

Set ID/Get ID	123/250		Parameters Le	16	
Description	File Upload Hol	е Мар 4			
Parameters	Offset (bits)	Length (bits)	Name	Data Type	Description
	0	128	Hole Map	ARRAY	Hole Map

Table 56: Hole Map 5 Message Format

Set ID/Get ID	124/251		Parameters Le	16	
Description	File Upload Hol	File Upload Hole Map 5			
Parameters	Offset (bits)	Length (bits)	Name	Data Type	Description
	0	128	Hole Map	ARRAY	Hole Map

Table 57: Hole Map 6 Message Format

Set ID/Get ID	125/252		Parameters Le	16	
Description	File Upload Hol	е Мар 6			
Parameters	Offset (bits)	Length (bits)	Name	Data Type	Description
	0	128	Hole Map	ARRAY	Hole Map

Table 58: Hole Map 7 Message Format

Set ID/Get ID	126/253		Parameters Le	16	
Description	File Upload Hol	е Мар 7			
Parameters	Offset (bits)	Length (bits)	Name	Data Type	Description
	0	128	Hole Map	ARRAY	Hole Map

Table 59: Hole Map 8 Message Format

Set ID/Get ID	127/254		Parameters Le	16	
Description	File Upload Hol	е Мар 8			
Parameters	Offset (bits)	Length (bits)	Name	Data Type	Description
	0	128	Hole Map	ARRAY	Hole Map

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 PAGE: 35

5.2 BootLoader

5.2.1 BootLoader Telecommands

Table 60: List of BootLoader Telecommands

ID	Name	Description	Length
			(bytes)
		General	
7	Clear Error Flags	Clear Error Flags – Table 61: Clear Error Flags	0
		Command Format	
100	Set Boot Index	Select which program to boot – Table 62: Set	1
		Boot Index Command Format	
101	Run Selected Program	Run Selected Program – Table 64: Run	0
		Selected Program Command Format	
102	Read Program Information	Read Program CRC, length – Table 65: Read	1
		Program Information Command Format	
103	Copy Program to Internal Flash	Copy Program to Internal Flash – Table 67:	2
		Copy Program to Internal Flash Command	
		Format	

Table 61: Clear Error Flags Command Format

ID	7	Parameters Length (bytes)	0		
Description	Clear	Clear Error Flags			

Table 62: Set Boot Index Command Format

ID	100 Pa i		Parameters	Length	1		
			(bytes)				
Description	Select wh	ich progran	n to boot				
Parameters	Offset	Length	Name	Data	Description		
	(bits)	(bits)		Type			
	0	8	Program	ENUM	Program Index. Possible values are in		
			Index		Table 63: BootSetProgramsList		
					Enumeration Values		

Table 63: BootSetProgramsList Enumeration Values

Numeric Value	Name	Description
1	Internal Flash Program	Internal Flash Program

DOC: FIRMWARE REFERENCE MANUAL

Table 64: Run Selected Program Command Format

ID	101	Parameters Length (bytes)	0	
Description	Run Selected Program			

Table 65: Read Program Information Command Format

ID	102		Parameters	Length	1
			(bytes)		
Description	Read Prog	ıram CRC, le	ngth		
Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	8	Program	ENUM	Program Index. Possible values are in
			Index		Table 66: ProgramsList Enumeration
					Values

Table 66: ProgramsList Enumeration Values

Numeric Value	Name	Description
0	Bootloader	Bootloader
1	Internal Flash Program	Internal Flash Program
2	EEPROM	EEPROM
3	External Flash Program 1	External Flash Program 1
4	External Flash Program 2	External Flash Program 2
5	External Flash Program 3	External Flash Program 3
6	External Flash Program 4	External Flash Program 4
7	External Flash Program 5	External Flash Program 5
8	External Flash Program 6	External Flash Program 6
9	External Flash Program 7	External Flash Program 7
10	SD User file 1	SD User file 1
11	SD User file 2	SD User file 2
12	SD User file 3	SD User file 3
13	SD User file 4	SD User file 4
14	SD User file 5	SD User file 5
15	SD User file 6	SD User file 6
16	SD User file 7	SD User file 7
17	SD User file 8	SD User file 8

Table 67: Copy Program to Internal Flash Command Format

ID	103	Parameters Length (bytes)	2
			·

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 PAGE: 37

Description	Copy Pro	Copy Program to Internal Flash						
Parameters	Offset	Length	Name	Data	Description			
	(bits)	(bits)		Type				
	0	8	Source Program Index	ENUM	Source Program Index. Possible values are in Table 66: ProgramsList Enumeration Values			
	8	8	Bootloader overwrite flag	UINT	Bootloader overwrite flag. Set to 0x5A to overwrite the boot segment. USE WITH CAUTION!			

5.2.2 BootLoader Telemetry

Table 68: List of BootLoader Telemetry Frames

ID	Name	Description	Length (bytes)
		General	(3) 320/
132	Bootloader State	Status flags for bootloader – Table 69:	6
		Bootloader State Telemetry Format	
232	Program Information	Program information including file size and	8
		CRC – Table 70: Program Information	
		Telemetry Format	
233	Copy To Internal Flash Progress	Progress of copy to internal flash operation –	1
		Table 71: Copy To Internal Flash Progress	
		Telemetry Format	

Table 69: Bootloader State Telemetry Format

ID	132 Fram		Frame Length (bytes	s)	6			
Description	Status fla	Status flags for bootloader						
Channels	Offset	Length	Name	Data	Description			
	(bits)	(bits)		Туре				
	0	16	Up-time (s)	UINT	Uptime. (Unit of measure is [s])			
	16	1	SRAM1 is enabled	BOOL	SRAM1 is enabled			
	17	1	SRAM2 is enabled	BOOL	SRAM2 is enabled			
	18	1	SRAM Latch-up	BOOL	SRAM Latch-up Error occurred			
			Error occurred and		and could not be recovered			
			could not be					
			recovered					
	19	1	SRAM Latch-up	BOOL	SRAM Latch-up Occurred but			
			Occurred but		recovered after power cycle			

DOC: FIRMWARE REFERENCE MANUAL

		recovered after power cycle		
20	1	SD card 38nitialization error	BOOL	Flag to indicate that the SD card failed to initialise
21	1	SD card read error	BOOL	Flag to indicate that a read operation from the SD card failed
22	1	SD card write error	BOOL	Flag to indicate that a write operation to the SD card failed
23	1	External Flash Error	BOOL	External Flash Erase/write error occurred
24	1	Internal Flash Error	BOOL	Internal Flash Erase/write error occurred
25	1	EEPROM Error	BOOL	EEPROM Write error occurred
26	1	Boot Register Corrupt	BOOL	Boot Register contained invalid data
27	1	Communications Error with Radio	BOOL	Communications Error with Radio

Table 70: Program Information Telemetry Format

ID	232		Frame Length (bytes)		8		
Description	Program	Program information including file size and CRC					
Channels	Offset	Length	Name	Data	Description		
	(bits)	(bits)		Type			
	0	8	Program Index	ENUM	Program Index. Possible values		
					are in Table 66: ProgramsList		
					Enumeration Values		
	8	1	Busy	BOOL	Busy reading		
	16	32	File Size	UINT	File Size (bytes)		
	48	16	Checksum	UINT	CRC16 Checksum		

Table 71: Copy To Internal Flash Progress Telemetry Format

ID	233		Frame Length (bytes)		1	
Description	Progress of copy to internal flash operation					
Channels	Offset	et Length Name Data			Description	
	(bits)	(bits)		Type		
	0	1	Busy	BOOL	Busy	
	1	1	Error	BOOL	Error	

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 PAGE: 39

5.3 CubeAcp

5.3.1 CubeAcp Telecommands

Table 72: List of CubeAcp Telecommands

ID	Name	Description	Length (bytes)
		General	
7	Deploy Magnetometer	Deploy magnetometer boom – Table 73: Deploy	1
	Boom	Magnetometer Boom Command Format	
10	ADCS Run Mode	Set ADCS enabled state & control loop behaviour – Table 74: ADCS Run Mode Command Format	1
12	Clear Errors	Clear Latched Error Flags – Table 76: Clear Errors	1
12	Cical Litois	Command Format	'
13	Set Attitude Control	Set attitude control mode – Table 77: Set Attitude	3
1.4	Mode	Control Mode Command Format	1
14	Set Attitude Estimation Mode	Set attitude estimation mode – Table 79: Set Attitude Estimation Mode Command Format	1
18	Trigger ADCS Loop	Trigger ADCS to perform one iteration of the control	0
10	rrigger ADC3 Loop	loop (only valid when ADCS Run Mode is Triggered) –	U
		Table 83: Trigger ADCS Loop Command Format	
19	Trigger ADCS Loop	Trigger ADCS to perform one iteration of the control	127
13	with Simulated Sensor	loop (only valid when ADCS Run Mode is Triggered) –	127
	Data	Table 84: Trigger ADCS Loop with Simulated Sensor Data	
		Command Format	
31	ASGP4 Run Mode	Set ASGP4 run mode – Table 86: ASGP4 Run Mode	1
		Command Format	
32	ASGP4 Trigger	Trigger a start of the ASGP4 process – Table 88: ASGP4	0
		Trigger Command Format	
56	Set Mode of	Use of main or redundant magnetometer – Table 89: Set	1
	Magnetometer	Mode of Magnetometer Operation Command Format	
	Operation		
57	Convert to JPG file	Convert raw or bmp files to JPG – Table 91: Convert to	3
		JPG file Command Format	
80	Save Image	Save and capture image from one of CubeSense cameras	2
		or CubeStar camera to SD card – Table 94: Save Image	
		Command Format	
1.0	6.114	Actuator Commands	
16	Set Magnetorquer	Set magnetorquer output (only valid if Control Mode is	6
	Output	None) – Table 81: Set Magnetorquer Output Command	
17	Cat Mhaal Caraad	Format	
17	Set Wheel Speed	Set wheel speed (only valid if Control Mode is None) –	6
		Table 82: Set Wheel Speed Command Format	

DOC: FIRMWARE REFERENCE MANUAL

	Configuration						
63	Save Configuration	Save current configuration to flash memory – Table 92:	0				
		Save Configuration Command Format					
64	Save Orbit Parameters	Save current orbit parameters to flash memory – Table	0				
		93: Save Orbit Parameters Command Format					

Table 73: Deploy Magnetometer Boom Command Format

ID	7		Parameters	Length	1
			(bytes)		
Description	Deploy ma	gnetometer l	boom		
Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Туре	
	0	8	Timeout	UINT	Deployment actuation timeout
					value. (Unit of measure is [s])

Table 74: ADCS Run Mode Command Format

ID	10		Paramete	ers	1
			Length (bytes)		
Description	Set ADCS	enabled s	tate & cont	rol loop be	haviour
Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	8	Enabled	ENUM	Set ADCS enabled state. When disabled
					the CubeACP will not use the ADCS I2C
					bus. Possible values are in Table 75:
					AdcsRunMode Enumeration Values

Table 75: AdcsRunMode Enumeration Values

Numeric Value	Name	Description
0	Off	ADCS loop is inactive
1	Enabled	ADCS 1Hz loop is active
2	Triggered	ADCS will execute control loop only when triggered
3	Simulation	ADCS is in simulation mode

Table 76: Clear Errors Command Format

ID	12	Parameters Length (bytes)	1
Description	Clear Latched Error	Flags	

PART: CUBEADOS

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4

PAGE: 41

Parameters	Offset (bits)	Length (bits)	Name	Data Type	Description
	0	1	ADCS Error Flags	BOOL	Clear ADCS error flags
	1	1	HK Error Flags	BOOL	Clear HK Error flags

Table 77: Set Attitude Control Mode Command Format

ID	13		Parameters Length	(bytes)	3
Description	Set attitu	ide control	mode		
Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Туре	
	0	8	Control Mode	ENUM	Attitude control mode. Possible values are in Table 78: ConModeSelect Enumeration Values
	8	16	Timeout	UINT	Control timeout duration. Control will revert to None when timer reaches zero. 0xFFFF for infinite timeout. (Unit of measure is [s])

Table 78: ConModeSelect Enumeration Values

Numeric Value	Name	Description		
0	No control	No control		
1	Detumbling control	Detumbling control		
2	Y-Thomson spin	Y-Thomson spin		
3	Y-Wheel momentum stabilized –	Y-Wheel momentum stabilized – Initial		
	Initial Pitch Acquisition	Pitch Acquisition		
4	Y-Wheel momentum stabilized –	Y-Wheel momentum stabilized – Steady		
	Steady State	State		
5	XYZ-Wheel control	XYZ-Wheel control		
6	Rwheel sun tracking control	Rwheel sun tracking control		
7	Rwheel target tracking control	Rwheel target tracking control		
8	Very Fast-spin Detumbling control	10Hz Detumbling control within		
		CubeControl		
9	Fast-spin Detumbling control	Fast Detumbling control		
10	User Specific Control Mode 1	User defined, or custom control mode 1		
11	User Specific Control Mode 2	User defined, or custom control mode 2		
12	Stop R-wheels	Stop all R-wheels		
13	User Coded Control Mode	User coded control mode		
14	Sun-tracking yaw- or roll-only wheel control mode	Yaw-only or roll-only sun tracking mode.		

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 PAGE: 42

15 Target-tracking yaw-only wheel control Mode

yaw-only wheel Yaw-only wheel control to align selected facet to ground target

Table 79: Set Attitude Estimation Mode Command Format

ID	14		Parameters	Length	1
			(bytes)		
Description	Set attitu	de estimatio	on mode		
Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	8	Attitude	ENUM	Attitude estimation mode. Possible
			Estimation		values are in Table 80:
			Mode		EstimModeSelect Enumeration
					Values

Table 80: EstimModeSelect Enumeration Values

Numeric Value	Name	Description					
0	No attitude estimation	No attitude estimation					
1	MEMS rate sensing	MEMS rate sensing					
2	Magnetometer rate filter	Magnetometer rate filter					
3	Magnetometer rate filter with pitch estimation	Magnetometer rate filter with pitch estimation					
4	Magnetometer and Fine-sun TRIAD algorithm	Magnetometer and Fine-sun TRIAD algorithm					
5	Full-state EKF	Full-state EKF					
6	MEMS gyro EKF	MEMS gyro EKF					
7	User Coded Estimation Mode	User coded estimation mode					

Table 81: Set Magnetorquer Output Command Format

ID	16		Parameters Length (bytes)		6
Description	Set magr	netorquer	output (only valid if Co	ntrol Mo	de is None)
Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	Commanded X	INT	Commanded X-torquer duty
			Magnetorquer duty		cycle. Raw parameter value is
			cycle		obtained using the formula: (raw
					parameter) = (formatted
					value)*1000.0

DOC: FIRMWARE REFERENCE MANUAL

16	16	Commanded Y Magnetorquer duty cycle	INT	Commanded Y-torquer duty cycle. Raw parameter value is obtained using the formula: (raw parameter) = (formatted value)*1000.0
32	16	Commanded Z Magnetorquer duty cycle	INT	Commanded Z-torquer duty cycle. Raw parameter value is obtained using the formula: (raw parameter) = (formatted value)*1000.0

Table 82: Set Wheel Speed Command Format

ID	17		Parameters Length (bytes)		6
Description	Set whee	l speed (o	nly valid if Control Mo	de is Non	ne)
Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	Commanded X	INT	Commanded X-wheel speed.
			speed		(Unit of measure is [rpm])
	16	16	Commanded Y	INT	Commanded Y-wheel speed.
			speed		(Unit of measure is [rpm])
	32	16	Commanded Z	INT	Commanded Z-wheel speed.
			speed		(Unit of measure is [rpm])

Table 83: Trigger ADCS Loop Command Format

ID	18	Parameters Length (bytes)	0				
Description	Trigger ADCS to perform one iteration of the control loop (only valid when ADCS Run						
	Mode is T	riggered)					

Table 84: Trigger ADCS Loop with Simulated Sensor Data Command Format

ID	19		Parameters Length ((bytes)	127		
Description	Trigger A	Trigger ADCS to perform one iteration of the control loop (only valid when ADCS Run					
	Mode is	Triggered)					
Parameters	Offset	Length	Name	Data	Description		
	(bits)	(bits)		Type			
	0	32	Unix Time	UINT	Unix time for iteration. (Unit of		
					measure is [s])		
	32	16	Css Raw 1	UINT	CSS1 raw measurement		
	48	16	Css Raw 2	UINT	CSS2 raw measurement		

PART: GUBEADCS
DOC: FIRMWARE REFERENCE MANUAL
VER: 7.4
PAGE: 44

64	16	Css Raw 3	UINT	CSS3 raw measurement
80	16	Css Raw 4	UINT	CSS4 raw measurement
96	16	Css Raw 5	UINT	CSS5 raw measurement
112	16	Css Raw 6	UINT	CSS6 raw measurement
128	16	Css Raw 7	UINT	CSS7 raw measurement
144	16	Css Raw 8	UINT	CSS8 raw measurement
160	16	Css Raw 9	UINT	CSS9 raw measurement
176	16	Css Raw 10	UINT	CSS10 raw measurement
192	16	Cam1 Raw X	INT	Cam1 sensor raw X angle
208	16	Cam1 Raw Y	INT	Cam1 sensor raw Y angle
224	8	Cam1 Busy	UINT	Cam1 sensor capture status
232	8	Cam1 Result	UINT	Cam1 sensor detection result
240	16	Cam2 Raw X	INT	Cam2 sensor raw X angle
256	16	Cam2 Raw Y	INT	Cam2 sensor raw Y angle
272	8	Cam2 Busy	UINT	Cam2 sensor capture status
280	8	Cam2 Result	UINT	Cam2 sensor detection result
288	16	Mag Raw X	INT	Raw magnetometer X
				measurement
304	16	Mag Raw Y	INT	Raw magnetometer Y
				measurement
320	16	Mag Raw Z	INT	Raw magnetometer Z
				measurement
336	32	Rate Raw X	INT	Raw X rate sensor measurement
368	32	Rate Raw Y	INT	Raw Y rate sensor measurement
400	32	Rate Raw Z	INT	Raw Z rate sensor measurement
432	16	Wheel Raw X	INT	Raw X wheel speed
				measurement. (Unit of measure
				is [rpm])
448	16	Wheel Raw Y	INT	Raw Y wheel speed
				measurement. (Unit of measure
464	1.0	What Day 7	INIT	is [rpm])
464	16	Wheel Raw Z	INT	Raw Z wheel speed
				measurement. (Unit of measure is [rpm])
480	16	Star1CameraX	INT	Star1 camera X-vector
496	16	Star1CameraY	INT	Star1 camera Y-vector
512	16	Star1CameraZ	INT	Star1 camera Z-vector
528	16	Star1InertialX	INT	Star1 inertial X-vector
544	16	Star1InertialY	INT	Star1 inertial Y-vector
560	16	Star1InertialZ	INT	Star1 inertial Z-vector
576	16	Star2CameraX	INT	Star2 camera X-vector
3,0	1 10	Julizeamerax	11 11	Starz camera / vector

DOC: FIRMWARE REFERENCE MANUAL

592	16	Star2CameraY	INT	Star2 camera Y-vector
608	16	Star2CameraZ	INT	Star2 camera Z-vector
624	16	Star2InertialX	INT	Star2 inertial X-vector
640	16	Star2InertialY	INT	Star2 inertial Y-vector
656	16	Star2InertialZ	INT	Star2 inertial Z-vector
672	16	Star3CameraX	INT	Star3 camera X-vector
688	16	Star3CameraY	INT	Star3 camera Y-vector
704	16	Star3CameraZ	INT	Star3 camera Z-vector
720	16	Star3InertialX	INT	Star3 inertial X-vector
736	16	Star3InertialY	INT	Star3 inertial Y-vector
752	16	Star3InertialZ	INT	Star3 inertial Z-vector
768	8	Gps Solution Status	ENUM	GPS Solution Status. Possible
				values are in Table 85:
				GpsSolutionStatus Enumeration
				Values
776	16	GPS Reference Week	UINT	GPS Reference Week
792	32	GPS Time	UINT	GPS Time Milliseconds. (Unit of
		Milliseconds		measure is [ms])
824	32	ECEF Position X	INT	ECEF Position X. (Unit of measure
				is [m])
856	16	ECEF Velocity X	INT	ECEF Velocity X. (Unit of measure
				is [m/s])
872	32	ECEF Position Y	INT	ECEF Position Y. (Unit of measure
				is [m])
904	16	ECEF Velocity Y	INT	ECEF Velocity Y. (Unit of measure
				is [m/s])
920	32	ECEF Position Z	INT	ECEF Position Z. (Unit of measure
				is [m])
952	16	ECEF Velocity Z	INT	ECEF Velocity Z. (Unit of measure is [m/s])
968	8	X-pos Standard	UINT	X-pos Standard Deviation. Raw
		Deviation		parameter value is obtained
				using the formula: (raw
				parameter) = (formatted
				value)*10.0 (formatted value is in
				[m] units)
976	8	Y-pos Standard	UINT	Y-pos Standard Deviation. Raw
		Deviation		parameter value is obtained
				using the formula: (raw
				parameter) = (formatted
		<u>I</u>	I	, (1211121000

DOC: FIRMWARE REFERENCE MANUAL

				value)*10.0 (formatted value is in [m] units)
984	8	Z-pos Standard Deviation	UINT	Z-pos Standard Deviation. Raw parameter value is obtained using the formula: (raw parameter) = (formatted value)*10.0 (formatted value is in [m] units)
992	8	X-vel Standard Deviation	UINT	X-vel Standard Deviation. (Unit of measure is [m/s])
1000	8	Y-vel Standard Deviation	UINT	Y-vel Standard Deviation. (Unit of measure is [m/s])
1008	8	Z-vel Standard Deviation	UINT	Z-vel Standard Deviation. (Unit of measure is [m/s])

Table 85: GpsSolutionStatus Enumeration Values

Numeric Value	Name	Description
0	Solution computed	Solution computed
1	Insufficient observations	Insufficient observations
2	No convergence	No convergence
3	Singularity at parameters matrix	Singularity at parameters matrix
4	Covariance trace exceeds maximum	Covariance trace exceeds maximum
5	Not yet converged from cold start	Not yet converged from cold start
6	Height or velocity limits exceeded	Height or velocity limits exceeded
7	Variance exceeds limits	Variance exceeds limits
8	Large residuals make position unreliable	Large residuals make position unreliable
9	Calculating comparison to user provided	Calculating comparison to user provided
10	The fixed position is invalid	The fixed position is invalid
11	Position type is unauthorized	Position type is unauthorized

Table 86: ASGP4 Run Mode Command Format

ID	31		Paramete	rs	1			
			Length (bytes)					
Description	Set ASGP	Set ASGP4 run mode						
Parameters	Offset	Length	Name	Data	Description			
	(bits)	(bits)		Type				

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 PAGE: 47

0	8	ASGP4	ENUM	ASG	iP4 enable	ed state	. Possible values are
		Mode		in	Table	87:	Asgp4ModeSelect
				Enu	meration	Values	

Table 87: Asgp4ModeSelect Enumeration Values

Numeric Value	Name	Description
0	Off	ASGP4 is inactive
1	Trigger	ASGP4 is active but waiting for trigger TC
2	Background	ASGP4 runs asynchronously with GPS data received, TLEs updated internal to asgp4 module but not used
3	Augment	ASGP4 runs in background but when processing of data is complete, TLEs used by orbit model is updated with asgp4 estimated TLEs

Table 88: ASGP4 Trigger Command Format

ID	32	Parameters Length (bytes)	0
Description	Trigger	a start of the ASGP4 process	

Table 89: Set Mode of Magnetometer Operation Command Format

ID	56		Parameters	Length	1
			(bytes)		
Description	Use of m	ain or redu	indant magnetome	eter	
Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Туре	
	0	8	Magnetometer	ENUM	Mode describing which
			Mode		magnetometer is used for
					estimation and control. Possible
					values are in Table 90: MagModeVal
					Enumeration Values

Table 90: MagModeVal Enumeration Values

Numeric Value	Name				
0	Main MTM Sampled Through Signal	Main	magnetometer,	sampled	through
		signal	microcontroller		

DOC: FIRMWARE REFERENCE MANUAL

1	Redundant MTM Sampled Through	Redundant magnetometer, sampled
	Signal	through signal microcontroller
2	Main MTM Sampled Through Motor	Main magnetometer, sampled through
		motor microcontroller
3	None	None

Table 91: Convert to JPG file Command Format

ID	57 Parameters Length (bytes)		3		
Description	Convert	raw or bm _l	o files to JPG		
Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	8	Source File Counter	UINT	Source File Counter
	8	8	Quality Factor	UINT	Quality Factor
	16	8	White Balance	UINT	White Balance

Table 92: Save Configuration Command Format

ID	63	Parameters Length (bytes)	0
Description	Save cur	ave current configuration to flash memory	

Table 93: Save Orbit Parameters Command Format

ID	64	Parameters Length (bytes)	0
Description	Save cur	Save current orbit parameters to flash memory	

Table 94: Save Image Command Format

ID	80	80 Parameters Length (bytes) 2		2	
Description	Save and card	cameras or CubeStar camera to SD			
Parameters	Offset (bits)	Length (bits)	Name	Data Type	Description
	0	8	Camera Select	ENUM	Camera Selection. Possible values are in Table 95: CamSelect Enumeration Values
	8	8	Image Size	ENUM	Image size selection. Possible values are in Table 96: ImSize Enumeration Values

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 PAGE: 49

Table 95: CamSelect Enumeration Values

Numeric Value	Name	Description	
0	Cam1	Cam1 camera	
1	Cam2	Cam2 camera	
2	Star	Star camera	

Table 96: ImSize Enumeration Values

Numeric Value	Name	Description
0	Size 0	1024 x 1024 pixels
1	Size 1	512 x 512 pixels
2	Size 2	256 x 256 pixels
3	Size 3	128 x 128 pixels
4	Size 4	64 x 64 pixels

5.3.2 CubeAcp Telemetry

Table 97: List of CubeAcp Telemetry Frames

ID	Name	Description	Length
			(bytes)
		ADCS State	
132	Current ADCS State	Current state of the Attitude Control Processor – frame 1 – Table 98: Current ADCS State Telemetry Format	6
146	Estimated Attitude Angles	Estimated attitude angles – Table 102: Estimated Attitude Angles Telemetry Format	6
147	Estimated Angular Rates	Estimated angular rates relative to orbit reference frame – Table 103: Estimated Angular Rates Telemetry Format	6
148	Satellite Position (ECI)	Satellite position in ECI frame – Table 104: Satellite Position (ECI) Telemetry Format	6
149	Satellite Velocity (ECI)	Satellite velocity in ECI frame – Table 105: Satellite Velocity (ECI) Telemetry Format	6
150	Satellite Position (LLH)	Satellite position in WGS-84 coordinate frame – Table 106: Satellite Position (LLH) Telemetry Format	6
190	ADCS State	Current ADCS state – Table 149: ADCS State Telemetry Format	54
201	Fine Estimated Angular Rates	High resolution estimated angular rates relative to orbit reference frame – Table 157: Fine Estimated Angular Rates Telemetry Format	6

PART: GUBEADGS
DOG: FIRMWARE REFERENCE MANUAL
VER: 7.4

PAGE: 50

219 ECEF Position Satel	ernion Telemetry Format	
ECEF	lite position in ECEF coordinates – Table 166: Position Telemetry Format	6
	ent state of the Attitude Control Processor – e 2 – Table 169: Current ADCS State 2 Telemetry at	6
	General	
133 JPG Conversion Progress Conv	ersion progress – Table 99: JPG Conversion	3
Progr	ress Telemetry Format	
135 CubeACP State Conta	ains flags regarding the state of the ACP – Table	1
101:	CubeACP State Telemetry Format	
196 Adcs Execution Times Return	rns information about execution times of ACP	8
funct	ions – Table 155: Adcs Execution Times	
Telen	netry Format	
220 ACP Execution State Return	rns information about the ACP loop – Table 167:	3
ACP	Execution State Telemetry Format	
233 Status of Image Capture Statu	s of Image Capture and Save Operation – Table	2
and Save Operation 176:	Status of Image Capture and Save Operation	
Telen	netry Format	
	ADCS Measurements	
151 Magnetic Field Vector Meas	sured magnetic field vector – Table 107:	6
_	netic Field Vector Telemetry Format	
152 Coarse Sun Vector Meas	sured coarse sun vector – Table 108: Coarse Sun	6
Vecto	or Telemetry Format	
153 Fine Sun Vector Meas	sured fine sun vector – Table 109: Fine Sun	6
Vecto	or Telemetry Format	
154 Nadir Vector Meas	sured nadir vector – Table 110: Nadir Vector	6
Telen	netry Format	
155 Rate Sensor Rates Rate	sensor measurements – Table 111: Rate Sensor	6
Rates	Telemetry Format	
156 Wheel Speed Whee	el speed measurement – Table 112: Wheel	6
Spee	d Telemetry Format	
181 Star 1 Body Vector Star 1	1 Body Vector – Table 139: Star 1 Body Vector	6
Telen	netry Format	
182 Star 2 Body Vector Star 2	2 Body Vector – Table 140: Star 2 Body Vector	6
Telen	netry Format	
183 Star 3 Body Vector Star 3	B Body Vector – Table 141: Star 3 Body Vector	6
Telen	netry Format	
184 Star 1 Orbit Vector Star	1 Orbit Vector – Table 142: Star 1 Orbit Vector	6
Telen	netry Format	
185 Star 2 Orbit Vector Star 2	2 Orbit Vector – Table 143: Star 2 Orbit Vector	6
	netry Format	

DOC: FIRMWARE REFERENCE MANUAL

Telemetry Format 191 ADCS Measurements Calibrated sensor measurements	- Table 150: ADCS 72
191 ADCS Measurements Calibrated sensor measurements	- Table 150: ADCS 72
Measurements Telemetry Format	
Actuator Commands	
157 Magnetorquer Magnetorquer commands – Table	113: 6
Command Magnetorquer Command Teleme	
158 Wheel Speed Commands Wheel speed commands – Table	,
Commands Telemetry Format	·
192 Actuator Commands Actuator commands – Table 151:	Actuator 12
Commands Telemetry Format	
Estimation	
159 IGRF Modelled Magnetic IGRF modelled magnetic field vec	or (orbit frame 6
Field Vector referenced) – Table 115: IGRF Mo	
Field Vector Telemetry Format	
160 Modelled Sun Vector Modelled sun vector (orbit frame	referenced) – Table 6
116: Modelled Sun Vector Teleme	,
161 Estimated Gyro Bias Estimated rate sensor bias – Table	*
Gyro Bias Telemetry Format	
162 Estimation Innovation Estimation innovation vector – Ta	ole 118: Estimation 6
Vector Innovation Vector Telemetry Forn	at
163 Quaternion Error Vector Quaternion error vector – Table 1	
Error Vector Telemetry Format	
164 Quaternion Covariance Quaternion covariance – Table 12	D: Quaternion 6
Covariance Telemetry Format	
165 Angular Rate Covariance Angular rate covariance – Table 1	21: Angular Rate 6
Covariance Telemetry Format	
193 Estimation Data Estimation meta-data – Table 152	Estimation Data 42
Telemetry Format	
228 ASGP4 TLEs ASGP4 TLEs generated – Table 17	D: ASGP4 TLEs 33
Telemetry Format	
Raw Sensor Measurements	
166 Raw Cam2 Sensor Cam2 sensor capture and detecti	n result – Table 6
122: Raw Cam2 Sensor Telemetry	Format
167 Raw Cam1 Sensor Cam1 sensor capture and detecti	n result – Table 6
125: Raw Cam1 Sensor Telemetry	Format
168 Raw CSS 1 to 6 Raw CSS measurements 1 to 6 –	able 126: Raw CSS 6
1 to 6 Telemetry Format	
169 Raw CSS 7 to 10 Raw CSS measurements 7 to 10 -	Table 127: Raw CSS 6
7 to 10 Telemetry Format	
170 Raw Magnetometer Raw magnetometer measuremen	s – Table 128: Raw 6
Magnetometer Telemetry Format	

PART: CUBEADOS

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4

PAGE: 52

176	Raw GPS Status	Raw GPS status – Table 134: Raw GPS Status	6
		Telemetry Format	
177	Raw GPS Time	Raw GPS time – Table 135: Raw GPS Time Telemetry Format	6
178	Raw GPS X	Raw GPS X position and velocity (ECI referenced) – Table 136: Raw GPS X Telemetry Format	6
179	Raw GPS Y	Raw GPS Y position and velocity (ECI referenced) – Table 137: Raw GPS Y Telemetry Format	6
180	Raw GPS Z	Raw GPS Z position and velocity (ECI referenced) – Table 138: Raw GPS Z Telemetry Format	6
187	Star Magnitude	Instrument magnitude of identified stars – Table 145: Star Magnitude Telemetry Format	6
188	Star Performance1	Performance parameters of star measurement – Table 146: Star Performance1 Telemetry Format	6
189	Star Timing	Timing information of star measurement – Table 148: Star Timing Telemetry Format	6
194	Raw Sensor	Raw sensor measurements – Table 153: Raw Sensor	34
	Measurements	Measurements Telemetry Format	
210	Raw GPS Measurements	Raw GPS measurements – Table 158: Raw GPS Measurements Telemetry Format	36
211	Raw Star Tracker	Raw Star Tracker Measurement – Table 159: Raw Star Tracker Telemetry Format	54
212	Star 1 Raw Data	Catalogue index and detected coordinates for star 1 – Table 160: Star 1 Raw Data Telemetry Format	6
213	Star 2 Raw Data	Catalogue index and detected coordinates for star 2 – Table 161: Star 2 Raw Data Telemetry Format	6
214	Star 3 Raw Data	Catalogue index and detected coordinates for star 3 – Table 162: Star 3 Raw Data Telemetry Format	6
215	Secondary Magnetometer Raw Measurements	Secondary Magnetometer raw measurements – Table 163: Secondary Magnetometer Raw Measurements Telemetry Format	6
216	Raw Rate Sensor	Raw rate sensor measurements – Table 164: Raw Rate Sensor Telemetry Format	6
229	CubeStar Estimated Rates	Angular rates estimated by CubeStar – Table 172: CubeStar Estimated Rates Telemetry Format	6
230	CubeStar Estimated Quaternion	Attitude quaternion estimated by CubeStar – Table 173: CubeStar Estimated Quaternion Telemetry Format	6
231	Star Performance2	Performance parameters of star measurement – Table 174: Star Performance2 Telemetry Format	6

PART: GUBEADGS
DOG: FIRMWARE REFERENCE MANUAL
VER: 7.4
PAGE: 53

171	CubeSense1 Current Measurements	CubeSense1 current measurements – Table 129: CubeSense1 Current Measurements Telemetry Format	4
172	CubeControl Current Measurements	CubeControl current measurements – Table 130: CubeControl Current Measurements Telemetry Format	6
173	Wheel Currents	XYZ Wheel current measurement – Table 131: Wheel Currents Telemetry Format	6
174	ADCS Temperatures	Magnetometer + MCU temperature measurements – Table 132: ADCS Temperatures Telemetry Format	6
175	Rate sensor temperatures	Rate sensor temperatures – Table 133: Rate sensor temperatures Telemetry Format	6
195	Power and Temperature Measurements	Power and temperature measurements – Table 154: Power and Temperature Measurements Telemetry Format	38
198	ADCS Misc Current Measurements	CubeStar and Torquer current and temperature measurements – Table 156: ADCS Misc Current Measurements Telemetry Format	6
232	CubeSense2 Current Measurements	CubeSense2 current measurements – Table 175: CubeSense2 Current Measurements Telemetry Format	4

Table 98: Current ADCS State Telemetry Format

ID	132		Frame Length (bytes	s)	6	
Description	Current s	state of the	Attitude Control Processor – frame 1			
Channels	Offset	Length	Name	Data	Description	
	(bits)	(bits)		Type		
	0	4	Attitude Estimation Mode	ENUM	Current attitude estimation mode. Possible values are in Table 80: EstimModeSelect	
				EN 11 18 4	Enumeration Values	
	4	4	Control Mode	ENUM	Current attitude control mode. Possible values are in Table 78: ConModeSelect Enumeration Values	
	8	2	ADCS Run Mode	ENUM	Current ADCS Running mode. Possible values are in Table 75: AdcsRunMode Enumeration Values	
	10	2	ASGP4 Mode	ENUM	ASGP4 enabled state. Possible values are in Table 87:	

DOC: FIRMWARE REFERENCE MANUAL

				Asgp4ModeSelect Enumeration Values
12	1	CubeControl Signal Enabled	BOOL	CubeControl Signal electronics enabled status
13	1	CubeControl Motor Enabled	BOOL	CubeControl Motor electronics enabled status
14	1	CubeSense1 Enabled	BOOL	CubeSense1 enabled status
15	1	CubeSense2 Enabled	BOOL	CubeSense2 enabled status
16	1	CubeWheel1 Enabled	BOOL	CubeWheel1 enabled status
17	1	CubeWheel2 Enabled	BOOL	CubeWheel2 enabled status
18	1	CubeWheel3 Enabled	BOOL	CubeWheel3 enabled status
19	1	CubeStar Enabled	BOOL	CubeStar enabled status
20	1	GPS Receiver Enabled	BOOL	GPS Receiver enabled status
21	1	GPS LNA Power Enabled	BOOL	GPS Antenna LNA enabled status
22	1	Motor Driver Enabled	BOOL	Motor Driver Electronics enabled status
23	1	Sun is Above Local Horizon	BOOL	Sun is above the local horizon (elevation > 0)
24	1	CubeSense1 Communications Error	BOOL	Communication error occurred with the CubeSense1
25	1	CubeSense2 Communications Error	BOOL	Communication error occurred with the CubeSense2
26	1	CubeControl Signal Communications Error	BOOL	Communication error occurred with the CubeControl Signal MCU
27	1	CubeControl Motor Communications Error	BOOL	Communication error occurred with the CubeControl Motor MCU
28	1	CubeWheel1 Communications Error	BOOL	Communication error occurred with the CubeWheel1

PART: GUBEADGS
DOG: FIRMWARE REFERENCE MANUAL
VER: 7.4
PAGE: 55

29	1	CubeWheel2 Communications Error	BOOL	Communication error occurred with the CubeWheel2
30	1	CubeWheel3 Communications Error	BOOL	Communication error occurred with the CubeWheel3
31	1	CubeStar Communications Error	BOOL	Communication error occurred with the CubeStar
32	1	Magnetometer Range Error	BOOL	Magnetometer measured magnetic field with size 65 uT
33	1	Cam1 SRAM Overcurrent Detected	BOOL	Cam1 SRAM overcurrent detected
34	1	Cam1 3V3 Overcurrent Detected	BOOL	Cam1 3V3 overcurrent detected
35	1	Cam1 Sensor Busy Error	BOOL	Cam1 sensor was not idle at the start of ADCS loop
36	1	Cam1 Sensor Detection Error	BOOL	Cam1 sensor was unable to compute angles (could be not in FOV)
37	1	Sun Sensor Range Error	BOOL	Detected sun angles were outside of +/- 90 deg
38	1	Cam2 SRAM Overcurrent Detected	BOOL	Cam2 SRAM overcurrent detected
39	1	Cam2 3V3 Overcurrent Detected	BOOL	Cam2 3V3 overcurrent detected
40	1	Cam2 Sensor Busy Error	BOOL	Cam2 sensor was not idle at the start of ADCS loop
41	1	Cam2 Sensor Detection Error	BOOL	Cam2 sensor was unable to compute angles (could be not in FOV)
42	1	Nadir Sensor Range Error	BOOL	Detected nadir angles were outside of +/- 60 deg
43	1	Rate Sensor Range Error	BOOL	Measured XYZ-body rate is outside of the range +/-20 deg/s
44	1	Wheel Speed Range Error	BOOL	Wheel XYZ speed measurement was outside the range +/-8500 rpm

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 PAGE: 56

45	1	Coarse Sun Sensor Error	BOOL	Unable to compute Coarse Sun vector (could be not in FOV)
46	1	StarTracker Match Error	BOOL	Unable to obtain enough matched stars
47	1	Star Tracker Overcurrent Detected	BOOL	Star tracker overcurrent detected

Table 99: JPG Conversion Progress Telemetry Format

ID	133		Frame Length (bytes)		3
Description	Conversi	on progres	SS		
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Туре	
	0	8	Progress	UINT	Progress %
			Percentage		
	8	8	Conversion Result	ENUM	JPG Conversion Result. Possible
					values are in Table 100:
					JpgConvertResult Enumeration
					Values
	16	8	Output File Counter	UINT	Output File Counter

Table 100: JpgConvertResult Enumeration Values

Numeric Value	Name	Description		
0	Nothing Converted Yet	Nothing Converted Yet		
1	Success	Success		
2	File Load Error	File Load Error		
3	Busy	Busy		

Table 101: CubeACP State Telemetry Format

ID	135		Frame Length (bytes)		1		
Description	Contains	Contains flags regarding the state of the ACP					
Channels	Offset	Length	Name	Data	Description		
	(bits)	(bits)		Type			
	0	1	ADCS Config Load	BOOL	Flag to indicate that the ADCS		
			Error		configuration was not read		
					successfully out of flash		

DOC: FIRMWARE REFERENCE MANUAL

1	1	Orbit Parameter Load Error	BOOL	Flag to indicate that the Orbit parameters were not read successfully out of flash
2	1	System Configuration Load Error	BOOL	Flag to indicate that the System Configuration was not read successfully out of flash
3	1	SD card 57nitialization error	BOOL	Flag to indicate that the SD card failed to initialise
4	1	SD card read error	BOOL	Flag to indicate that a read operation from the SD card failed
5	1	SD card write error	BOOL	Flag to indicate that a write operation to the SD card failed

Table 102: Estimated Attitude Angles Telemetry Format

ID	146		Frame Length (bytes	s)	6
Description	Estimate	d attitude	angles		
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	Estimated Roll Angle	INT	Estimated roll angle. Formatted value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
	16	16	Estimated Pitch Angle	INT	Estimated pitch angle. Formatted value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
	32	16	Estimated Yaw Angle	INT	Estimated yaw angle. Formatted value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01

Table 103: Estimated Angular Rates Telemetry Format

ID	147		Frame Length (bytes)		6	
Description	Estimated angular rates relative to orbit reference frame					
Channels	Offset	Length	Name Data Description			
	(bits)	(bits)		Type		
	0	16	Estimated X	INT	Estimated X angular rate.	
			Angular Rate		Formatted value is obtained	

DOC: FIRMWARE REFERENCE MANUAL

				using the formula: (formatted value) [deg/s] = RAWVAL*0.01
16	16	Estimated Y Angular Rate	INT	Estimated Y angular rate. Formatted value is obtained using the formula: (formatted value) [deg/s] = RAWVAL*0.01
32	16	Estimated Z Angular Rate	INT	Estimated Z angular rate. Formatted value is obtained using the formula: (formatted value) [deg/s] = RAWVAL*0.01

Table 104: Satellite Position (ECI) Telemetry Format

ID	148		Frame Length (bytes	s)	6
Description	Satellite	position in	ECI frame		
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	X position	INT	ECI referenced X coordinate.
					Formatted value is obtained
					using the formula: (formatted
					value) [km] = RAWVAL*0.25
	16	16	Y position	INT	ECI referenced Y coordinate.
					Formatted value is obtained
					using the formula: (formatted
					value) [km] = RAWVAL*0.25
	32	16	Z position	INT	ECI referenced Z coordinate.
					Formatted value is obtained
					using the formula: (formatted
					value) [km] = RAWVAL*0.25

Table 105: Satellite Velocity (ECI) Telemetry Format

ID	149 Frame Length (bytes)			6		
Description	Satellite	velocity in	ECI frame			
Channels	Offset	Length	Name Data Description			
	(bits)	(bits)		Type		
	0	16	X Velocity	INT	ECI referenced X velocity.	
					Formatted value is obtained	
					using the formula: (formatted	
					value) [m/s] = RAWVAL*0.25	
	16	16	Y Velocity	INT	ECI referenced Y velocity.	
					Formatted value is obtained	

DOC: FIRMWARE REFERENCE MANUAL

				using the formula: (formatted value) [m/s] = RAWVAL*0.25
32	16	Z Velocity	INT	ECI referenced Z velocity. Formatted value is obtained using the formula: (formatted value) [m/s] = RAWVAL*0.25

Table 106: Satellite Position (LLH) Telemetry Format

ID	150		Frame Length (bytes	s)	6
Description	Satellite	position in	WGS-84 coordinate fra	ame	
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	Latitude	INT	WGS-84 Latitude angle.
					Formatted value is obtained
					using the formula: (formatted
					value) [deg] = RAWVAL*0.01
	16	16	Longitude	INT	Longitude angle. Formatted
					value is obtained using the
					formula: (formatted value) [deg]
					= RAWVAL*0.01
	32	16	Altitude	UINT	WGS-84 altitude. Formatted value
					is obtained using the formula:
					(formatted value) [km] =
					RAWVAL*0.01

Table 107: Magnetic Field Vector Telemetry Format

ID	151		Frame Length (bytes	s)	6
Description	Measure	d magneti	c field vector		
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	Magnetic Field X	INT	Magnetic Field X. Formatted value is obtained using the formula: (formatted value) [uT] = RAWVAL*0.01
	16	16	Magnetic Field Y	INT	Magnetic Field Y. Formatted value is obtained using the formula: (formatted value) [uT] = RAWVAL*0.01
	32	16	Magnetic Field Z	INT	Magnetic Field Z. Formatted value is obtained using the formula:

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 PAGE: 60

			(formatted	value)	[uT]	=
			RAWVAL*0.0	1		

Table 108: Coarse Sun Vector Telemetry Format

ID	152		Frame Length (bytes	s)	6
Description	Measure	d coarse si	un vector		
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	Coarse Sun X	INT	Coarse Sun X. Formatted value is
					obtained using the formula:
					(formatted value) =
					RAWVAL/10000.0
	16	16	Coarse Sun Y	INT	Coarse Sun Y. Formatted value is
					obtained using the formula:
					(formatted value) =
					RAWVAL/10000.0
	32	16	Coarse Sun Z	INT	Coarse Sun Z. Formatted value is
					obtained using the formula:
					(formatted value) =
					RAWVAL/10000.0

Table 109: Fine Sun Vector Telemetry Format

ID	153		Frame Length (bytes	s)	6
Description	Measure	d fine sun	vector		
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	Sun X	INT	Sun X. Formatted value is
					obtained using the formula:
					(formatted value) =
					RAWVAL/10000.0
	16	16	Sun Y	INT	Sun Y. Formatted value is
					obtained using the formula:
					(formatted value) =
					RAWVAL/10000.0
	32	16	Sun Z	INT	Sun Z. Formatted value is
					obtained using the formula:
					(formatted value) =
					RAWVAL/10000.0

DOC: FIRMWARE REFERENCE MANUAL

Table 110: Nadir Vector Telemetry Format

ID	154		Frame Length (bytes	s)	6
Description	Measure	d nadir ved	ctor		
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	Nadir X	INT	Nadir X. Formatted value is
					obtained using the formula:
					(formatted value) =
					RAWVAL/10000.0
	16	16	Nadir Y	INT	Nadir Y. Formatted value is
					obtained using the formula:
					(formatted value) =
					RAWVAL/10000.0
	32	16	Nadir Z	INT	Nadir Z. Formatted value is
					obtained using the formula:
					(formatted value) =
					RAWVAL/10000.0

Table 111: Rate Sensor Rates Telemetry Format

ID	155		Frame Length (bytes)		6
Description	Rate sens	sor measui	rements		
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	X Angular Rate	INT	X Angular Rate. Formatted value
					is obtained using the formula:
					(formatted value) [deg/s] =
					RAWVAL*0.01
	16	16	Y Angular Rate	INT	Y Angular Rate. Formatted value
					is obtained using the formula:
					(formatted value) [deg/s] =
					RAWVAL*0.01
	32	16	Z Angular Rate	INT	Z Angular Rate. Formatted value
					is obtained using the formula:
					(formatted value) [deg/s] =
					RAWVAL*0.01

Table 112: Wheel Speed Telemetry Format

ID	156	Frame Length (bytes)	6					
Description	Wheel speed measi	Wheel speed measurement						

DOC: FIRMWARE REFERENCE MANUAL

Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	X Wheel Speed	INT	X Wheel Speed. (Unit of measure is [rpm])
	16	16	Y Wheel Speed	INT	Y Wheel Speed. (Unit of measure is [rpm])
	32	16	Z Wheel Speed	INT	Z Wheel Speed. (Unit of measure is [rpm])

Table 113: Magnetorquer Command Telemetry Format

ID	157		Frame Length (bytes	s)	6
Description	Magneto	rquer com	ımands		
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	X Magnetorquer Command	INT	X Magnetorquer Commanded on-time. (Unit of measure is [10ms units])
	16	16	Y Magnetorquer Command	INT	Y Magnetorquer Commanded on-time. (Unit of measure is [10ms units])
	32	16	Z Magnetorquer Command	INT	Z Magnetorquer Commanded on-time. (Unit of measure is [10ms units])

Table 114: Wheel Speed Commands Telemetry Format

ID	158		Frame Length (byt	es)	6		
Description	Wheel sp	Wheel speed commands					
Channels	Offset	Length	Name Data		Description		
	(bits)	(bits)		Туре			
	0	16	Commanded X	INT	X Wheel Speed. (Unit of measure		
			Wheel Speed		is [rpm])		
	16	16	Commanded Y	INT	Y Wheel Speed. (Unit of measure		
			Wheel Speed		is [rpm])		
	32	16	Commanded Z	INT	Z Wheel Speed. (Unit of measure		
			Wheel Speed		is [rpm])		

Table 115: IGRF Modelled Magnetic Field Vector Telemetry Format

|--|

DOC: FIRMWARE REFERENCE MANUAL

Description	IGRF mo	IGRF modelled magnetic field vector (orbit frame referenced)				
Channels	Offset	Length	Name	Data	Description	
	(bits)	(bits)		Type		
	0	16	IGRF Modelled	INT	IGRF Modelled Magnetic Field X.	
			Magnetic Field X		Formatted value is obtained	
					using the formula: (formatted	
					value) [uT] = RAWVAL*0.01	
	16	16	IGRF Modelled	INT	IGRF Modelled Magnetic Field Y.	
			Magnetic Field Y		Formatted value is obtained	
					using the formula: (formatted	
					value) [uT] = RAWVAL*0.01	
	32	16	IGRF Modelled	INT	IGRF Modelled Magnetic Field Z.	
			Magnetic Field Z		Formatted value is obtained using	
					the formula: (formatted value)	
					[uT] = RAWVAL*0.01	

Table 116: Modelled Sun Vector Telemetry Format

ID	160		Frame Length (by	tes)	6
Description	Modelled	d sun vecto	or (orbit frame refere	enced)	
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Туре	
	0	16	Modelled Sun	INT	Modelled Sun Vector X.
			Vector X		Formatted value is obtained
					using the formula: (formatted
					value) = RAWVAL/10000.0
	16	16	Modelled Sun	INT	Modelled Sun Vector Y.
			Vector Y		Formatted value is obtained
					using the formula: (formatted
					value) = RAWVAL/10000.0
	32	16	Modelled Su	n INT	Modelled Sun Vector Z.
			Vector Z		Formatted value is obtained using
					the formula: (formatted value) =
					RAWVAL/10000.0

Table 117: Estimated Gyro Bias Telemetry Format

ID	161 Frame Length (bytes)		6		
Description	Estimate	Estimated rate sensor bias			
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	

DOC: FIRMWARE REFERENCE MANUAL

0	16	Estimated X-gyro Bias	INT	Estimated X-gyro Bias. Formatted value is obtained using the formula: (formatted value) [deg/s] = RAWVAL*0.001
16	16	Estimated Y-gyro Bias	INT	Estimated Y-gyro Bias. Formatted value is obtained using the formula: (formatted value) [deg/s] = RAWVAL*0.001
32	16	Estimated Z-gyro Bias	INT	Estimated Z-gyro Bias. Formatted value is obtained using the formula: (formatted value) [deg/s] = RAWVAL*0.001

Table 118: Estimation Innovation Vector Telemetry Format

ID	162		Frame Length (bytes)		6
Description	Estimatio	n innovati	on vector		
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	Innovation Vector X	INT	Innovation Vector X. Formatted value is obtained using the formula: (formatted value) = RAWVAL*0.0001
	16	16	Innovation Vector Y	INT	Innovation Vector Y. Formatted value is obtained using the formula: (formatted value) = RAWVAL*0.0001
	32	16	Innovation Vector Z	INT	Innovation Vector Z. Formatted value is obtained using the formula: (formatted value) = RAWVAL*0.0001

Table 119: Quaternion Error Vector Telemetry Format

ID	163		Frame Length (bytes)		6	
Description	Quaterni	Quaternion error vector				
Channels	Offset	Length	Name	Data	Description	
	(bits)	(bits)		Type		
	0	16	Quaternion Error –	INT	Quaternion Error – Q1.	
			Q1		Formatted value is obtained	
					using the formula: (formatted	
					value) = RAWVAL*0.0001	

DOC: FIRMWARE REFERENCE MANUAL

16	16	Quaternion Error – Q2	INT	Quaternion Error – Q2. Formatted value is obtained using the formula: (formatted value) = RAWVAL*0.0001
32	16	Quaternion Error – Q3	INT	Quaternion Error – Q3. Formatted value is obtained using the formula: (formatted value) = RAWVAL*0.0001

Table 120: Quaternion Covariance Telemetry Format

ID	164		Frame Length (bytes)		6	
Description	Quaterni	Quaternion covariance				
Channels	Offset (bits)	Length (bits)	Name	Data Type	Description	
	0	16	Quaternion Covariance – Q1 RMS	INT	Quaternion Covariance – Q1 RMS. Formatted value is obtained using the formula: (formatted value) = RAWVAL*0.001	
	16	16	Quaternion Covariance – Q2 RMS	INT	Quaternion Covariance – Q2 RMS. Formatted value is obtained using the formula: (formatted value) = RAWVAL*0.001	
	32	16	Quaternion Covariance – Q3 RMS	INT	Quaternion Covariance – Q3 RMS. Formatted value is obtained using the formula: (formatted value) = RAWVAL*0.001	

Table 121: Angular Rate Covariance Telemetry Format

ID	165 Frame Length (bytes)		6		
Description	Angular	rate covari	ance		
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	X Angular Rate	INT	X Angular Rate Covariance.
			Covariance		Formatted value is obtained
					using the formula: (formatted
					value) = RAWVAL*0.001
	16	16	Y Angular Rate	INT	Y Angular Rate Covariance.
			Covariance		Formatted value is obtained

DOC: FIRMWARE REFERENCE MANUAL

				using the formula: (formatted value) = RAWVAL*0.001
32	16	Z Angular Rate Covariance	INT	Z Angular Rate Covariance. Formatted value is obtained using the formula: (formatted value) = RAWVAL*0.001

Table 122: Raw Cam2 Sensor Telemetry Format

ID	166		Frame Length (bytes	s)	6
Description	Cam2 se	nsor captu	re and detection result		
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	Cam2 centroid X	INT	Cam2 azimuth angle
	16	16	Cam2 centroid Y	INT	Cam2 elevation angle
	32	8	Cam2 Capture	ENUM	Cam2 capture status. Possible
			status		values are in Table 123:
					CaptureResult Enumeration
					Values
	40	8	Cam2 Detection	ENUM	Cam2 detection result. Possible
			result		values are in Table 124:
					DetectResult Enumeration Values

Table 123: CaptureResult Enumeration Values

Numeric Value	Name	Description
0	Startup	Start-up
1	Pending	Capture pending
2	Success	Successfully captured
3	SuccessShift	Successfully captured on other SRAM (only applicable to CubeSense V2 hardware)
4	Timeout	Camera timeout
5	SRAMError	SRAM overcurrent

Table 124: DetectResult Enumeration Values

Numeric Value	Name	Description
0	Startup	Start-up
1	NoDetect	No detection scheduled
2	Pending	Detection pending
3	TooManyEdges	Nadir error – too many detected edges

DOC: FIRMWARE REFERENCE MANUAL

Doc: Firm Ver: 7.4 Page: 67

4	TooFewEdges	Nadir error – not enough edges detected
5	BadFit	Nadir error – bad fit
6	SunNotFound	Sun error – sun not found
7	Success	Successful detection

Table 125: Raw Cam1 Sensor Telemetry Format

ID	167 Frame Length (bytes)			s)	6
Description	Cam1 se	nsor captu	re and detection result		
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Туре	
	0	16	Cam1 centroid X	INT	Cam1 azimuth angle
	16	16	Cam1 centroid Y	INT	Cam1 elevation angle
	32	8	Cam1 Capture	ENUM	Cam1 capture status. Possible
			status		values are in Table 123:
					CaptureResult Enumeration
					Values
	40	8	Cam1 Detection	ENUM	Cam1 detection result. Possible
			result		values are in Table 124:
					DetectResult Enumeration Values

Table 126: Raw CSS 1 to 6 Telemetry Format

ID	168 Fra		Frame Length (bytes	5)	6			
Description	Raw CSS	Raw CSS measurements 1 to 6						
Channels	Offset	Length	Name	Data	Description			
	(bits)	(bits)		Type				
	0	8	CSS1	UINT	sampled A/D value –			
					corresponds to COS(sun_angle)			
	8	8	CSS2	UINT	sampled A/D value –			
					corresponds to COS(sun_angle)			
	16	8	CSS3	UINT	sampled A/D value –			
					corresponds to COS(sun_angle)			
	24	8	CSS4	UINT	sampled A/D value –			
					corresponds to COS(sun_angle)			
	32	8	CSS5	UINT	sampled A/D value –			
					corresponds to COS(sun_angle)			
	40	8	CSS6	UINT	sampled A/D value – corresponds			
					to COS(sun_angle)			

DOC: FIRMWARE REFERENCE MANUAL

Ver: 7.4 Page: 68

Table 127: Raw CSS 7 to 10 Telemetry Format

ID	169		Frame Length (bytes	6	
Description	Raw CSS	measurem	nents 7 to 10		
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	8	CSS7	UINT	sampled A/D value –
					corresponds to COS(sun_angle)
	8	8	CSS8	UINT	sampled A/D value –
					corresponds to COS(sun_angle)
	16	8	CSS9	UINT	sampled A/D value –
					corresponds to COS(sun_angle)
	24	8	CSS10	UINT	sampled A/D value – corresponds
					to COS(sun_angle)

Table 128: Raw Magnetometer Telemetry Format

ID	170		Frame Length (bytes)		6			
Description	Raw mag	Raw magnetometer measurements						
Channels	Offset	Length	Name	Data	Description			
	(bits)	(bits)		Type				
	0	16	MagX	INT	sampled A/D value			
	16	16	MagY	INT	sampled A/D value			
	32	16	MagZ	INT	sampled A/D value			

Table 129: CubeSense1 Current Measurements Telemetry Format

ID	171		Frame Length (bytes	s)	4
Description	CubeSen	se1 curren	t measurements		
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	CubeSense1 3V3	UINT	CubeSense1 3V3 Current.
			Current		Formatted value is obtained
					using the formula: (formatted
					value) [mA] = RAWVAL*0.1
	16	16	CubeSense1 Cam	UINT	CubeSense1 Cam SRAM Current.
			SRAM Current		Formatted value is obtained using
					the formula: (formatted value)
					[mA] = RAWVAL*0.1

DOC: FIRMWARE REFERENCE MANUAL

Table 130: CubeControl Current Measurements Telemetry Format

ID	172		Frame Length (bytes	s)	6			
Description	CubeCor	CubeControl current measurements						
Channels	Offset	Length	Name	Data	Description			
	(bits)	(bits)		Type				
	0	16	CubeControl 3V3	UINT	CubeControl 3V3 Current.			
			Current		Formatted value is obtained			
					using the formula: (formatted			
					value) [mA] =			
					RAWVAL*0.48828125			
	16	16	CubeControl 5V	UINT	CubeControl 5V Current.			
			Current		Formatted value is obtained			
					using the formula: (formatted			
					value) [mA] =			
					RAWVAL*0.48828125			
	32	16	CubeControl Vbat	UINT	CubeControl Vbat Current.			
			Current		Formatted value is obtained using			
					the formula: (formatted value)			
					[mA] = RAWVAL*0.48828125			

Table 131: Wheel Currents Telemetry Format

ID	173		Frame Length (bytes	s)	6			
Description	XYZ Whe	XYZ Wheel current measurement						
Channels	Offset	Length	Name	Data	Description			
	(bits)	(bits)		Type				
	0	16	Wheel1Current	UINT	Wheel1 Current. Formatted value is obtained using the formula: (formatted value) [mA] = RAWVAL*0.01			
	16	16	Wheel2Current	UINT	Wheel2 Current. Formatted value is obtained using the formula: (formatted value) [mA] = RAWVAL*0.01			
	32	16	Wheel3Current	UINT	Wheel3 Current. Formatted value is obtained using the formula: (formatted value) [mA] = RAWVAL*0.01			

DOC: FIRMWARE REFERENCE MANUAL

Table 132: ADCS Temperatures Telemetry Format

ID	174		Frame Length (bytes	s)	6
Description	Magneto	meter + N	ICU temperature meas	urement	S
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	MCU Temperature	INT	MCU Temperature. (Unit of
					measure is [C])
	16	16	Magnetometer	INT	Magnetometer Temperature.
			Temperature		Formatted value is obtained
					using the formula: (formatted
					value) [C] = RAWVAL/10.0
	32	16	Redundant	INT	Redundant Magnetometer
			Magnetometer		Temperature. Formatted value is
			Temperature		obtained using the formula:
					(formatted value) [C] =
					RAWVAL/10.0

Table 133: Rate sensor temperatures Telemetry Format

ID	175		Frame Length (byte	s)	6			
Description	Rate sen	Rate sensor temperatures						
Channels	Offset	Length	Name	Data	Description			
	(bits)	(bits)		Type				
	0	16	X-Rate Sensor	INT	X-Rate sensor Temperature. (Unit			
			Temperature		of measure is [C])			
	16	16	Y-Rate Sensor	INT	Y-Rate sensor Temperature. (Unit			
			Temperature		of measure is [C])			
	32	16	Z-Rate Sensor	INT	Z-Rate sensor Temperature. (Unit			
			Temperature		of measure is [C])			

Table 134: Raw GPS Status Telemetry Format

ID	176		Frame Length (byte	s)	6
Description	Raw GPS	status			
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	8	Gps Solution Status	ENUM	GPS Solution Status. Possible
					values are in Table 85:
					GpsSolutionStatus Enumeration
					Values

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 PAGE: 71

8	8	Number of tracked GPS satellites	UINT	Number of tracked GPS satellites
16	8	Number of GPS satellites used in solution	UINT	Number of GPS satellites used in solution
24	8	Counter for XYZ Lof from GPS	UINT	Counter for XYZ Lof from GPS
32	8	Counter for RANGE log from GPS	UINT	Counter for RANGE log from GPS
40	8	Response Message for GPS log setup	UINT	Response Message for GPS log setup – p656 of OEMV615 reference manual

Table 135: Raw GPS Time Telemetry Format

ID	177		Frame Length (bytes)			6
Description	Raw GPS	time				
Channels	Offset	Length	Name		Data	Description
	(bits)	(bits)			Type	
	0	16	GPS Reference	e e	UINT	GPS Reference Week
			Week			
	16	32	GPS	Time	UINT	GPS Time Milliseconds. (Unit of
			Milliseconds			measure is [ms])

Table 136: Raw GPS X Telemetry Format

ID	178		Frame Length (bytes)		6		
Description	Raw GPS	Raw GPS X position and velocity (ECI referenced)					
Channels	Offset	Length	Name	Data	Description		
	(bits)	(bits)		Type			
	0	32	ECEF Position X	INT	ECEF Position X. (Unit of measure		
					is [m])		
	32	16	ECEF Velocity X	INT	ECEF Velocity X. (Unit of measure		
					is [m/s])		

Table 137: Raw GPS Y Telemetry Format

ID	179 Frame Length (bytes)			6	
Description	Raw GPS Y position and velocity (ECI referenced)				
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 PAGE: 72

0	32	ECEF Position Y	INT	ECEF Position Y. (Unit of measure is [m])
32	16	ECEF Velocity Y	INT	ECEF Velocity Y. (Unit of measure
				is [m/s])

Table 138: Raw GPS Z Telemetry Format

ID	180		Frame Length (bytes)		6	
Description	Raw GPS Z position and velocity (ECI referenced)					
Channels	Offset	Length	ength Name Data		Description	
	(bits)	(bits)		Type		
	0	32	ECEF Position Z	INT	ECEF Position Z. (Unit of measure	
					is [m])	
	32	16	ECEF Velocity Z	INT	ECEF Velocity Z. (Unit of measure	
					is [m/s])	

Table 139: Star 1 Body Vector Telemetry Format

ID	181		Frame Length (bytes)		6	
Description	Star 1 Body Vector					
Channels	Offset	Length	Name	Data	Description	
	(bits)	(bits)		Type		
	0	16	Star1BX	INT	Star1 body X-vector. Formatted	
					value is obtained using the	
					formula: (formatted value) =	
					RAWVAL/10000.0	
	16	16	Star1BY	INT	Star1 body Y-vector. Formatted	
					value is obtained using the	
					formula: (formatted value) =	
					RAWVAL/10000.0	
	32	16	Star1BZ	INT	Star1 body Z-vector. Formatted	
					value is obtained using the	
					formula: (formatted value) =	
					RAWVAL/10000.0	

Table 140: Star 2 Body Vector Telemetry Format

ID	182		Frame Length (bytes)		6		
Description	Star 2 Bo	Star 2 Body Vector					
Channels	Offset	Length	Name	Data	Description		
	(bits)	(bits)		Type			

DOC: FIRMWARE REFERENCE MANUAL

0	16	Star2BX	INT	Star2 body X-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
16	16	Star2BY	INT	Star2 body Y-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
32	16	Star2BZ	INT	Star2 body Z-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0

Table 141: Star 3 Body Vector Telemetry Format

ID	183		Frame Length (bytes)		6
Description	Star 3 Bo	dy Vector			
Channels	Offset (bits)	Length (bits)	Name	Data Type	Description
	0	16	Star3BX	INT	Star3 body X-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
	16	16	Star3BY	INT	Star3 body Y-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
	32	16	Star3BZ	INT	Star3 body Z-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0

Table 142: Star 1 Orbit Vector Telemetry Format

ID	184		Frame Length (bytes	s)	6		
Description	Star 1 Or	Star 1 Orbit Vector					
Channels	Offset (bits)	Length (bits)	Name	Data Type	Description		
	0	16	Star1OX	INT	Star1 orbit X-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0		

DOC: FIRMWARE REFERENCE MANUAL VER: 7.4

16	16	Star1OY	INT	Star1 orbit Y-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
32	16	Star1OZ	INT	Star1 orbit Z-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0

Table 143: Star 2 Orbit Vector Telemetry Format

ID	185		Frame Length (bytes)		6
Description	Star 2 Or	bit Vector			
Channels	Offset (bits)	Length (bits)	Name	Data Type	Description
	0	16	Star2OX	INT	Star2 orbit X-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
	16	16	Star2OY	INT	Star2 orbit Y-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
	32	16	Star2OZ	INT	Star2 orbit Z-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0

Table 144: Star 3 Orbit Vector Telemetry Format

ID	186		Frame Length (bytes)		6
Description	Star 3 Or	bit Vector			
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	Star3OX	INT	Star3 orbit X-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
	16	16	Star3OY	INT	Star3 orbit Y-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0

DOC: FIRMWARE REFERENCE MANUAL

32	16	Star3OZ	INT	Star3 orbit Z-vector. Formatted
				value is obtained using the
				formula: (formatted value) =
				RAWVAL/10000.0

Table 145: Star Magnitude Telemetry Format

ID	187		Frame Length (bytes)		6		
Description	Instrume	Instrument magnitude of identified stars					
Channels	Offset	Offset Length Name Data			Description		
	(bits)	(bits)		Type			
	0	16	Magnitude Star 1	UINT	Instrument magnitude of star 1		
	16	16	Magnitude Star 2	UINT	Instrument magnitude of star 2		
	32	16	Magnitude Star 3	UINT	Instrument magnitude of star 3		

Table 146: Star Performance1 Telemetry Format

ID	188		Frame Length (bytes	s)	6
Description	Performa	nce paran	neters of star measuren	nent	
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	8	Number of stars detected	UINT	Number of stars detected. (Unit of measure is [stars])
	8	8	Star image noise	UINT	Star image noise. (Unit of measure is [noise])
	16	8	Invalid Stars	UINT	Number of invalid stars detected. (Unit of measure is [Invalid stars])
	24	8	Number of stars identified	UINT	Number of stars identified. (Unit of measure is [stars])
	32	8	Identification mode	ENUM	Identification mode. Possible values are in Table 147: StarIDModeVal Enumeration Values
	40	8	lmage dark value	UINT	The average value of center line in image. (Unit of measure is [8-bit pixel value])

Table 147: StarlDModeVal Enumeration Values

Numeric Value	Name	Description
0	Tracking Mode	

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 PAGE: 76

1

Lost Mode

Table 148: Star Timing Telemetry Format

ID	189		Frame Length (bytes)		6		
Description	Timing ir	Timing information of star measurement					
Channels	Offset	Length	Name	Data	Description		
	(bits)	(bits)		Type			
	0	16	Capture	UINT	Capture. (Unit of measure is [ms])		
	16	16	Detection	UINT	Detection. (Unit of measure is		
					[ms])		
	32	16	Identification	UINT	Identification. (Unit of measure is		
					[ms])		

Table 149: ADCS State Telemetry Format

ID	190		Frame Length (byte	s)	54
Description	Current A	ADCS state			
Channels	Offset (bits)	Length (bits)	Name	Data Type	Description
	0	4	Attitude Estimation Mode	ENUM	Current attitude estimation mode. Possible values are in Table 80: EstimModeSelect Enumeration Values
	4	4	Control Mode	ENUM	Current attitude control mode. Possible values are in Table 78: ConModeSelect Enumeration Values
	8	2	ADCS Run Mode	ENUM	Current ADCS Running mode. Possible values are in Table 75: AdcsRunMode Enumeration Values
	10	2	ASGP4 Mode	ENUM	ASGP4 enabled state. Possible values are in Table 87: Asgp4ModeSelect Enumeration Values
	12	1	CubeControl Signal Enabled	BOOL	CubeControl Signal electronics enabled status
	13	1	CubeControl Motor Enabled	BOOL	CubeControl Motor electronics enabled status
	14	1	CubeSense1 Enabled	BOOL	CubeSense1 enabled status

PART: CUBEADCS
DOC: FIRMWARE RI FIRMWARE REFERENCE MANUAL

15	1	CubeSense2 Enabled	BOOL	CubeSense2 enabled status
16	1	CubeWheel1 Enabled	BOOL	CubeWheel1 enabled status
17	1	CubeWheel2 Enabled	BOOL	CubeWheel2 enabled status
18	1	CubeWheel3 Enabled	BOOL	CubeWheel3 enabled status
19	1	CubeStar Enabled	BOOL	CubeStar enabled status
20	1	GPS Receiver Enabled	BOOL	GPS Receiver enabled status
21	1	GPS LNA Power Enabled	BOOL	GPS Antenna LNA enabled status
22	1	Motor Driver Enabled	BOOL	Motor Driver Electronics enabled status
23	1	Sun is Above Local Horizon	BOOL	Sun is above the local horizon (elevation > 0)
24	1	CubeSense1 Communications Error	BOOL	Communication error occurred with the CubeSense1
25	1	CubeSense2 Communications Error	BOOL	Communication error occurred with the CubeSense2
26	1	CubeControl Signal Communications Error	BOOL	Communication error occurred with the CubeControl Signal MCU
27	1	CubeControl Motor Communications Error	BOOL	Communication error occurred with the CubeControl Motor MCU
28	1	CubeWheel1 Communications Error	BOOL	Communication error occurred with the CubeWheel1
29	1	CubeWheel2 Communications Error	BOOL	Communication error occurred with the CubeWheel2
30	1	CubeWheel3 Communications Error	BOOL	Communication error occurred with the CubeWheel3
31	1	CubeStar Communications Error	BOOL	Communication error occurred with the CubeStar

32	1	Magnetometer	BOOL	Magnetometer measured
22	4	Range Error	DOO!	magnetic field with size 65 uT
33	1	Cam1 SRAM Overcurrent	BOOL	Cam1 SRAM overcurrent detected
		Detected		
34	1	Cam1 3V3 Overcurrent Detected	BOOL	Cam1 3V3 overcurrent detected
35	1	Cam1 Sensor Busy Error	BOOL	Cam1 sensor was not idle at the start of ADCS loop
36	1	Cam1 Sensor Detection Error	BOOL	Cam1 sensor was unable to compute angles (could be not in FOV)
37	1	Sun Sensor Range Error	BOOL	Detected sun angles were outside of +/- 90 deg
38	1	Cam2 SRAM Overcurrent Detected	BOOL	Cam2 SRAM overcurrent detected
39	1	Cam2 3V3 Overcurrent Detected	BOOL	Cam2 3V3 overcurrent detected
40	1	Cam2 Sensor Busy Error	BOOL	Cam2 sensor was not idle at the start of ADCS loop
41	1	Cam2 Sensor Detection Error	BOOL	Cam2 sensor was unable to compute angles (could be not in FOV)
42	1	Nadir Sensor Range Error	BOOL	Detected nadir angles were outside of +/- 60 deg
43	1	Rate Sensor Range Error	BOOL	Measured XYZ-body rate is outside of the range +/-20 deg/s
44	1	Wheel Speed Range Error	BOOL	Wheel XYZ speed measurement was outside the range +/-8500 rpm
45	1	Coarse Sun Sensor Error	BOOL	Unable to compute Coarse Sun vector (could be not in FOV)
46	1	StarTracker Match Error	BOOL	Unable to obtain enough matched stars
47	1	Star Tracker Overcurrent Detected	BOOL	Star tracker overcurrent detected
48	1	Orbit Parameters are Invalid	BOOL	Orbit Parameters are not in allowed bounds (angle

				exceeding limits etc.). Failed to initialize SGP4 propagator using supplied parameters
49	1	Configuration is Invalid	BOOL	Magnetorquer Configuration or CSS in invalid. Each principle axis should have a torquer output (1,2, or 3) assigned. At least one CSS per principle axis needed
50	1	Control Mode Change is not allowed	BOOL	Attempt was made to select control mode without appropriate estimator, or command to set Y-momentum mode while not in steady-state Y-Thomson
51	1	Estimator Change is not allowed	BOOL	Attempt was made to change to an estimation mode that would be inappropriate for the current control mode
52	2	Current Magnetometer Sampling Mode	ENUM	Current magnetometer sampling mode. Possible values are in Table 90: MagModeVal Enumeration Values
54	1	Modelled and measured magnetic field differs in size	BOOL	Modelled and measured magnetic field differs in size by more than 5000 nT
55	1	Node Recovery Error	BOOL	Failed to Recover an ADCS Node by successive resets
56	1	CubeSense1 Runtime Error	BOOL	Runtime error occurred with the CubeSense1
57	1	CubeSense2 Runtime Error	BOOL	Runtime error occurred with the CubeSense2
58	1	CubeControl Signal Runtime Error	BOOL	Runtime error occurred with the CubeControl Signal MCU
59	1	CubeControl Motor Runtime Error	BOOL	Runtime error occurred with the CubeControl Motor MCU
60	1	CubeWheel1 Runtime Error	BOOL	Runtime error occurred with the CubeWheel1
61	1	CubeWheel2 Runtime Error	BOOL	Runtime error occurred with the CubeWheel2
62	1	CubeWheel3 Runtime Error	BOOL	Runtime error occurred with the CubeWheel3

PART: CUBEADGS DOG: FIRMWARE RI VER: 7.4

FIRMWARE REFERENCE MANUAL

63	1	CubeStar Runtime Error	BOOL	Runtime error occurred with the CubeStar
64	1	Magnetometer Error	BOOL	Magnetometer failure occurred
65	1	Rate Sensor Failure	BOOL	Rate sensor failure occurred
96	16	Estimated Roll Angle	INT	Estimated roll angle. Formatted value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
112	16	Estimated Pitch Angle	INT	Estimated pitch angle. Formatted value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
128	16	Estimated Yaw Angle	INT	Estimated yaw angle. Formatted value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
144	16	Estimated q1	INT	Estimated q1
160	16	Estimated q2	INT	Estimated q2
176	16	Estimated q3	INT	Estimated q3
192	16	Estimated X Angular Rate	INT	Estimated X angular rate. Formatted value is obtained using the formula: (formatted value) [deg/s] = RAWVAL*0.01
208	16	Estimated Y Angular Rate	INT	Estimated Y angular rate. Formatted value is obtained using the formula: (formatted value) [deg/s] = RAWVAL*0.01
224	16	Estimated Z Angular Rate	INT	Estimated Z angular rate. Formatted value is obtained using the formula: (formatted value) [deg/s] = RAWVAL*0.01
240	16	X position	INT	ECI referenced X coordinate. Formatted value is obtained using the formula: (formatted value) [km] = RAWVAL*0.25
256	16	Y position	INT	ECI referenced Y coordinate. Formatted value is obtained using the formula: (formatted value) [km] = RAWVAL*0.25
272	16	Z position	INT	ECI referenced Z coordinate. Formatted value is obtained

				using the formula: (formatted value) [km] = RAWVAL*0.25
288	16	X Velocity	INT	ECI referenced X velocity. Formatted value is obtained using the formula: (formatted value) [m/s] = RAWVAL*0.25
304	16	Y Velocity	INT	ECI referenced Y velocity. Formatted value is obtained using the formula: (formatted value) [m/s] = RAWVAL*0.25
320	16	Z Velocity	INT	ECI referenced Z velocity. Formatted value is obtained using the formula: (formatted value) [m/s] = RAWVAL*0.25
336	16	Latitude	INT	WGS-84 Latitude angle. Formatted value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
352	16	Longitude	INT	Longitude angle. Formatted value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
368	16	Altitude	UINT	WGS-84 altitude. Formatted value is obtained using the formula: (formatted value) [km] = RAWVAL*0.01
384	16	ECEF Position X	INT	ECEF Position X. (Unit of measure is [m])
400	16	ECEF Position Y	INT	ECEF Position Y. (Unit of measure is [m])
416	16	ECEF Position Z	INT	ECEF Position Z. (Unit of measure is [m])

Table 150: ADCS Measurements Telemetry Format

ID	191	91 Frame Length (bytes)			72			
Description	Calibrated sensor measurements							
Channels	Offset	Offset Length Name Data Description						
	(bits)	(bits)						
	0	16	Magnetic Field X	INT	Magnetic Field X. Formatted			
					value is obtained using the			

				formula: (formatted value) [uT] = RAWVAL*0.01
16	16	Magnetic Field Y	INT	Magnetic Field Y. Formatted value is obtained using the formula: (formatted value) [uT] = RAWVAL*0.01
32	16	Magnetic Field Z	INT	Magnetic Field Z. Formatted value is obtained using the formula: (formatted value) [uT] = RAWVAL*0.01
48	16	Coarse Sun X	INT	Coarse Sun X. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
64	16	Coarse Sun Y	INT	Coarse Sun Y. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
80	16	Coarse Sun Z	INT	Coarse Sun Z. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
96	16	Sun X	INT	Sun X. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
112	16	Sun Y	INT	Sun Y. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
128	16	Sun Z	INT	Sun Z. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
144	16	Nadir X	INT	Nadir X. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
160	16	Nadir Y	INT	Nadir Y. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0

176	16	Nadir Z	INT	Nadir Z. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
192	16	X Angular Rate	INT	X Angular Rate. Formatted value is obtained using the formula: (formatted value) [deg/s] = RAWVAL*0.01
208	16	Y Angular Rate	INT	Y Angular Rate. Formatted value is obtained using the formula: (formatted value) [deg/s] = RAWVAL*0.01
224	16	Z Angular Rate	INT	Z Angular Rate. Formatted value is obtained using the formula: (formatted value) [deg/s] = RAWVAL*0.01
240	16	X Wheel Speed	INT	X Wheel Speed. (Unit of measure is [rpm])
256	16	Y Wheel Speed	INT	Y Wheel Speed. (Unit of measure is [rpm])
272	16	Z Wheel Speed	INT	Z Wheel Speed. (Unit of measure is [rpm])
288	16	Star1BX	INT	Star1 body X-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
304	16	Star1BY	INT	Star1 body Y-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
320	16	Star1BZ	INT	Star1 body Z-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
336	16	Star1OX	INT	Star1 orbit X-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
352	16	Star1OY	INT	Star1 orbit Y-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0

368	16	Star1OZ	INT	Star1 orbit Z-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
384	16	Star2BX	INT	Star2 body X-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
400	16	Star2BY	INT	Star2 body Y-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
416	16	Star2BZ	INT	Star2 body Z-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
432	16	Star2OX	INT	Star2 orbit X-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
448	16	Star2OY	INT	Star2 orbit Y-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
464	16	Star2OZ	INT	Star2 orbit Z-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
480	16	Star3BX	INT	Star3 body X-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
496	16	Star3BY	INT	Star3 body Y-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
512	16	Star3BZ	INT	Star3 body Z-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
528	16	Star3OX	INT	Star3 orbit X-vector. Formatted value is obtained using the

DOC: FIRMWARE REFERENCE MANUAL

				formula: (formatted value) = RAWVAL/10000.0
544	16	Star3OY	INT	Star3 orbit Y-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
560	16	Star3OZ	INT	Star3 orbit Z-vector. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0

Table 151: Actuator Commands Telemetry Format

ID	192		Frame Length (bytes)		12			
Description	Actuator	Actuator commands						
Channels	Offset	Length	Name	Data	Description			
	(bits)	(bits)		Type				
	0	16	X Magnetorquer Command	INT	X Magnetorquer Commanded on-time. (Unit of measure is [10ms units])			
	16	16	Y Magnetorquer Command	INT	Y Magnetorquer Commanded on-time. (Unit of measure is [10ms units])			
	32	16	Z Magnetorquer Command	INT	Z Magnetorquer Commanded on-time. (Unit of measure is [10ms units])			
	48	16	Commanded X Wheel Speed	INT	X Wheel Speed. (Unit of measure is [rpm])			
	64	16	Commanded Y Wheel Speed	INT	Y Wheel Speed. (Unit of measure is [rpm])			
	80	16	Commanded Z Wheel Speed	INT	Z Wheel Speed. (Unit of measure is [rpm])			

Table 152: Estimation Data Telemetry Format

ID	193		Frame Length (bytes)		42			
Description	Estimatio	Estimation meta-data						
Channels	Offset	Offset Length Name Data Descrip						
	(bits)	(bits)		Type				
	0	16	IGRF Modelled	INT	IGRF Modelled Magnetic Field X.			
			Magnetic Field X		Formatted value is obtained			

				using the formula: (formatted value) [uT] = RAWVAL*0.01
16	16	IGRF Modelled Magnetic Field Y	INT	IGRF Modelled Magnetic Field Y. Formatted value is obtained using the formula: (formatted value) [uT] = RAWVAL*0.01
32	16	IGRF Modelled Magnetic Field Z	INT	IGRF Modelled Magnetic Field Z. Formatted value is obtained using the formula: (formatted value) [uT] = RAWVAL*0.01
48	16	Modelled Sun Vector X	INT	Modelled Sun Vector X. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
64	16	Modelled Sun Vector Y	INT	Modelled Sun Vector Y. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
80	16	Modelled Sun Vector Z	INT	Modelled Sun Vector Z. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
96	16	Estimated X-gyro Bias	INT	Estimated X-gyro Bias. Formatted value is obtained using the formula: (formatted value) [deg/s] = RAWVAL*0.001
112	16	Estimated Y-gyro Bias	INT	Estimated Y-gyro Bias. Formatted value is obtained using the formula: (formatted value) [deg/s] = RAWVAL*0.001
128	16	Estimated Z-gyro Bias	INT	Estimated Z-gyro Bias. Formatted value is obtained using the formula: (formatted value) [deg/s] = RAWVAL*0.001
144	16	Innovation Vector X	INT	Innovation Vector X. Formatted value is obtained using the formula: (formatted value) = RAWVAL*0.0001
160	16	Innovation Vector Y	INT	Innovation Vector Y. Formatted value is obtained using the formula: (formatted value) = RAWVAL*0.0001

DOC: FIRMWARE REFERENCE MANUAL

176	16	Innovation Vector Z	INT	Innovation Vector Z. Formatted value is obtained using the formula: (formatted value) = RAWVAL*0.0001
192	16	Quaternion Error – Q1	INT	Quaternion Error – Q1. Formatted value is obtained using the formula: (formatted value) = RAWVAL*0.0001
208	16	Quaternion Error – Q2	INT	Quaternion Error – Q2. Formatted value is obtained using the formula: (formatted value) = RAWVAL*0.0001
224	16	Quaternion Error – Q3	INT	Quaternion Error – Q3. Formatted value is obtained using the formula: (formatted value) = RAWVAL*0.0001
240	16	Quaternion Covariance – Q1 RMS	INT	Quaternion Covariance – Q1 RMS. Formatted value is obtained using the formula: (formatted value) = RAWVAL*0.001
256	16	Quaternion Covariance – Q2 RMS	INT	Quaternion Covariance – Q2 RMS. Formatted value is obtained using the formula: (formatted value) = RAWVAL*0.001
272	16	Quaternion Covariance – Q3 RMS	INT	Quaternion Covariance – Q3 RMS. Formatted value is obtained using the formula: (formatted value) = RAWVAL*0.001
288	16	X Angular Rate Covariance	INT	X Angular Rate Covariance. Formatted value is obtained using the formula: (formatted value) = RAWVAL*0.001
304	16	Y Angular Rate Covariance	INT	Y Angular Rate Covariance. Formatted value is obtained using the formula: (formatted value) = RAWVAL*0.001
320	16	Z Angular Rate Covariance	INT	Z Angular Rate Covariance. Formatted value is obtained using the formula: (formatted value) = RAWVAL*0.001

DOC: FIRMWARE REFERENCE MANUAL

Table 153: Raw Sensor Measurements Telemetry Format

ID	194		Frame Length (bytes	s)	34
Description	Raw sens	or measur	ements		
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Туре	
	0	16	Cam2 centroid X	INT	Cam2 azimuth angle
	16	16	Cam2 centroid Y	INT	Cam2 elevation angle
	32	8	Cam2 Capture status	ENUM	Cam2 capture status. Possible values are in Table 123: CaptureResult Enumeration Values
	40	8	Cam2 Detection result	ENUM	Cam2 detection result. Possible values are in Table 124: DetectResult Enumeration Values
	48	16	Cam1 centroid X	INT	Cam1 azimuth angle
	64	16	Cam1 centroid Y	INT	Cam1 elevation angle
	80	8	Cam1 Capture status	ENUM	Cam1 capture status. Possible values are in Table 123: CaptureResult Enumeration Values
	88	8	Cam1 Detection result	ENUM	Cam1 detection result. Possible values are in Table 124: DetectResult Enumeration Values
	96	8	CSS1	UINT	sampled A/D value – corresponds to COS(sun_angle)
	104	8	CSS2	UINT	sampled A/D value – corresponds to COS(sun_angle)
	112	8	CSS3	UINT	sampled A/D value – corresponds to COS(sun_angle)
	120	8	CSS4	UINT	sampled A/D value – corresponds to COS(sun_angle)
	128	8	CSS5	UINT	sampled A/D value – corresponds to COS(sun_angle)
	136	8	CSS6	UINT	sampled A/D value – corresponds to COS(sun_angle)
	144	8	CSS7	UINT	sampled A/D value – corresponds to COS(sun_angle)
	152	8	CSS8	UINT	sampled A/D value – corresponds to COS(sun_angle)
	160	8	CSS9	UINT	sampled A/D value – corresponds to COS(sun_angle)

DOC: FIRMWARE REFERENCE MANUAL

168	8	CSS10	UINT	sampled A/D value – corresponds to COS(sun_angle)
176	16	MagX	INT	sampled A/D value
192	16	MagY	INT	sampled A/D value
208	16	MagZ	INT	sampled A/D value
224	16	RateX	INT	sampled A/D value
240	16	RateY	INT	sampled A/D value
256	16	RateZ	INT	sampled A/D value

Table 154: Power and Temperature Measurements Telemetry Format

ID	195		Frame Length (bytes	5)	38		
Description	Power and temperature measurements						
Channels	Offset	Length	Name	Data	Description		
]	(bits)	(bits)		Type			
	0	16	CubeSense1 3V3	UINT	CubeSense1 3V3 Current.		
			Current		Formatted value is obtained		
					using the formula: (formatted		
					value) [mA] = RAWVAL*0.1		
	16	16	CubeSense1 Cam	UINT	CubeSense1 Cam SRAM Current.		
			SRAM Current		Formatted value is obtained using		
					the formula: (formatted value)		
					[mA] = RAWVAL*0.1		
	32	16	CubeSense2 3V3	UINT	CubeSense2 3V3 Current.		
			Current		Formatted value is obtained		
					using the formula: (formatted		
					value) [mA] = RAWVAL*0.1		
	48	16	CubeSense2 Cam	UINT	CubeSense2 Cam SRAM Current.		
			SRAM Current		Formatted value is obtained using		
					the formula: (formatted value)		
	64	16	Cula a Camerra I 21/2	UINT	[mA] = RAWVAL*0.1 CubeControl 3V3 Current.		
	64	16	CubeControl 3V3 Current	UINT	Formatted value is obtained		
			Current		using the formula: (formatted		
					value) [mA] =		
					RAWVAL*0.48828125		
	80	16	CubeControl 5V	UINT	CubeControl 5V Current.		
	00	10	Current	Onvi	Formatted value is obtained		
					using the formula: (formatted		
					value) [mA] =		
					RAWVAL*0.48828125		
					10.11.07 (2.0.10020125		

96	16	CubeControl Vbat Current	UINT	CubeControl Vbat Current. Formatted value is obtained using the formula: (formatted value) [mA] = RAWVAL*0.48828125
112	16	Wheel1Current	UINT	Wheel1 Current. Formatted value is obtained using the formula: (formatted value) [mA] = RAWVAL*0.01
128	16	Wheel2Current	UINT	Wheel2 Current. Formatted value is obtained using the formula: (formatted value) [mA] = RAWVAL*0.01
144	16	Wheel3Current	UINT	Wheel3 Current. Formatted value is obtained using the formula: (formatted value) [mA] = RAWVAL*0.01
160	16	CubeStarCurrent	UINT	CubeStar Current. Formatted value is obtained using the formula: (formatted value) [mA] = RAWVAL*0.01
176	16	Magnetorquer Current	UINT	Magnetorquer Current. Formatted value is obtained using the formula: (formatted value) [mA] = RAWVAL*0.1
192	16	CubeStar MCU temperature	INT	CubeStar MCU temperature. Formatted value is obtained using the formula: (formatted value) [C] = RAWVAL/100.0
208	16	MCU Temperature	INT	MCU Temperature. (Unit of measure is [C])
224	16	Magnetometer Temperature	INT	Magnetometer Temperature. Formatted value is obtained using the formula: (formatted value) [C] = RAWVAL/10.0
240	16	Redundant Magnetometer Temperature	INT	Redundant Magnetometer Temperature. Formatted value is obtained using the formula: (formatted value) [C] = RAWVAL/10.0
256	16	X-Rate Sensor Temperature	INT	X-Rate sensor Temperature. (Unit of measure is [C])
272	16	Y-Rate Sensor Temperature	INT	Y-Rate sensor Temperature. (Unit of measure is [C])

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 PAGE: 91

288	16	Z-Rate	Sensor	INT	Z-Rate sensor Temperature. (Unit
		Temperat	ure		of measure is [C])

Table 155: Adcs Execution Times Telemetry Format

ID	196		Frame Length (bytes	s)	8
Description	Returns i	nformatio	n about execution time	s of ACP	functions
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	Time to Perform	UINT	Time to perform complete ADCS
			ADCS Update		Update function. (Unit of measure is [ms])
	16	16	Time to Perform Sensor/Actuator Communications	UINT	Time to perform Sensor/actuator communications. (Unit of
	32	16	Time to Execute	UINT	measure is [ms]) Time to execute SGP4
	32	10	SGP4 Propagator	OIIVI	propagator. (Unit of measure is [ms])
	48	16	Time to Execute IGRF Model	UINT	Time to execute IGRF computation. (Unit of measure is [ms])

Table 156: ADCS Misc Current Measurements Telemetry Format

ID	198		Frame Length (bytes	s)	6
Description	CubeStar	r and Torq	uer current and tempe	rature me	easurements
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	CubeStarCurrent	UINT	CubeStar Current. Formatted value is obtained using the formula: (formatted value) [mA] = RAWVAL*0.01
	16	16	Magnetorquer Current	UINT	Magnetorquer Current. Formatted value is obtained using the formula: (formatted value) [mA] = RAWVAL*0.1
	32	16	CubeStar MCU temperature	INT	CubeStar MCU temperature. Formatted value is obtained using the formula: (formatted value) [C] = RAWVAL/100.0

DOC: FIRMWARE REFERENCE MANUAL

Table 157: Fine Estimated Angular Rates Telemetry Format

ID	201		Frame Length (bytes	s)	6
Description	High reso	olution est	imated angular rates re	elative to	orbit reference frame
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	Estimated X	INT	Estimated X angular rate.
			Angular Rate		Formatted value is obtained
					using the formula: (formatted
					value) [deg/s] = RAWVAL*0.001
	16	16	Estimated Y	INT	Estimated Y angular rate.
			Angular Rate		Formatted value is obtained
					using the formula: (formatted
					value) [deg/s] = RAWVAL*0.001
	32	16	Estimated Z Angular	INT	Estimated Z angular rate.
			Rate		Formatted value is obtained using
					the formula: (formatted value)
					[deg/s] = RAWVAL*0.001

Table 158: Raw GPS Measurements Telemetry Format

ID	210		Frame Length (bytes	s)	36			
Description	Raw GPS	Raw GPS measurements						
Channels	Offset	Length	Name	Data	Description			
	(bits)	(bits)		Type				
	0	8	Gps Solution Status	ENUM	GPS Solution Status. Possible values are in Table 85: GpsSolutionStatus Enumeration			
					Values			
	8	8	Number of tracked GPS satellites	UINT	Number of tracked GPS satellites			
	16	8	Number of GPS satellites used in solution	UINT	Number of GPS satellites used in solution			
	24	8	Counter for XYZ Lof from GPS	UINT	Counter for XYZ Lof from GPS			
	32	8	Counter for RANGE log from GPS	UINT	Counter for RANGE log from GPS			
	40	8	Response Message for GPS log setup	UINT	Response Message for GPS log setup – p656 of OEMV615 reference manual			

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 PAGE: 93

48	16	GPS Reference Week	UINT	GPS Reference Week
64	32	GPS Time Milliseconds	UINT	GPS Time Milliseconds. (Unit of measure is [ms])
96	32	ECEF Position X	INT	ECEF Position X. (Unit of measure is [m])
128	16	ECEF Velocity X	INT	ECEF Velocity X. (Unit of measure is [m/s])
144	32	ECEF Position Y	INT	ECEF Position Y. (Unit of measure is [m])
176	16	ECEF Velocity Y	INT	ECEF Velocity Y. (Unit of measure is [m/s])
192	32	ECEF Position Z	INT	ECEF Position Z. (Unit of measure is [m])
224	16	ECEF Velocity Z	INT	ECEF Velocity Z. (Unit of measure is [m/s])
240	8	X-pos Standard Deviation	UINT	X-pos Standard Deviation. Formatted value is obtained using the formula: (formatted value) [m] = RAWVAL*0.1
248	8	Y-pos Standard Deviation	UINT	Y-pos Standard Deviation. Formatted value is obtained using the formula: (formatted value) [m] = RAWVAL*0.1
256	8	Z-pos Standard Deviation	UINT	Z-pos Standard Deviation. Formatted value is obtained using the formula: (formatted value) [m] = RAWVAL*0.1
264	8	X-vel Standard Deviation	UINT	X-vel Standard Deviation. (Unit of measure is [m/s])
272	8	Y-vel Standard Deviation	UINT	Y-vel Standard Deviation. (Unit of measure is [m/s])
280	8	Z-vel Standard Deviation	UINT	Z-vel Standard Deviation. (Unit of measure is [m/s])

Table 159: Raw Star Tracker Telemetry Format

ID	211		Frame Length (bytes)		54		
Description	Raw Star	Raw Star Tracker Measurement					
Channels	Offset	Length	Name	Data	Description		
	(bits)	(bits)		Туре			

0	8	Number of stars detected	UINT	Number of stars detected. (Unit of measure is [stars])
8	8	Star image noise	UINT	Star image noise. (Unit of measure is [noise])
16	8	Invalid Stars	UINT	Number of invalid stars detected. (Unit of measure is [Invalid stars])
24	8	Number of stars identified	UINT	Number of stars identified. (Unit of measure is [stars])
32	8	Identification mode	ENUM	Identification mode. Possible values are in Table 147: StarIDModeVal Enumeration Values
40	8	lmage dark value	UINT	The average value of center line in image. (Unit of measure is [8-bit pixel value])
48	1	Image Capture Success	BOOL	Image Capture Success
49	1	Detection Success	BOOL	Detection Success
50	1	Identification Success	BOOL	Identification Success
51	1	AttitudeSuccess	BOOL	Attitude Success
52	1	Processing Time Error	BOOL	Processing time Error
53	1	Tracking Module Enabled	BOOL	Tracking Module Enabled
54	1	Prediction Enabled	BOOL	Prediction Enabled
55	1	Comms error	BOOL	Comms error
56	16	Sample Period	UINT	Sample Period
72	8	Star 1 confidence	UINT	Star 1 confidence. (Unit of measure is [percentage])
80	8	Star 2 confidence	UINT	Star 2 confidence. (Unit of measure is [percentage])
88	8	Star 3 confidence	UINT	Star 3 confidence. (Unit of measure is [percentage])
96	16	Magnitude Star 1	UINT	Instrument magnitude of star 1
112	16	Magnitude Star 2	UINT	Instrument magnitude of star 2
128	16	Magnitude Star 3	UINT	Instrument magnitude of star 3
144	16	Catalogue Star 1	UINT	Catalogue number of star 1
160	16	Centroid X Star 1	INT	X centroid of star 1
176	16	Centroid Y Star 1	INT	Y centroid of star 1
192	16	Catalogue Star 2	UINT	Catalogue number of star 2
208	16	Centroid X Star 2	INT	X centroid of star 2

DOC: FIRMWARE REFERENCE MANUAL

224	16	Centroid Y Star 2	INT	Y centroid of star 2
240	16	Catalogue Star 3	UINT	Catalogue number of star 3
256	16	Centroid X Star 3	INT	X centroid of star 3
272	16	Centroid Y Star 3	INT	Y centroid of star 3
288	16	Capture	UINT	Capture. (Unit of measure is [ms])
304	16	Detection	UINT	Detection. (Unit of measure is [ms])
320	16	Identification	UINT	Identification. (Unit of measure is [ms])
336	16	x-Axis rate	INT	Estimated Rate around CubeStar X-axis. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
352	16	y-Axis rate	INT	Estimated Rate around CubeStar Y-axis. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
368	16	z-Axis rate	INT	Estimated Rate around CubeStar Z-axis. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
384	16	Q0	INT	CubeStar estimated attitude Q1. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
400	16	Q1	INT	CubeStar estimated attitude Q2. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0
416	16	Q2	INT	CubeStar estimated attitude Q3. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0

Table 160: Star 1 Raw Data Telemetry Format

ID	212	Frame Length (bytes)	6
Description	Catalogue index an	d detected coordinates for star	1

DOC: FIRMWARE REFERENCE MANUAL

Channels	Offset (bits)	Length (bits)	Name	Data Type	Description
	0	16	Catalogue Star 1	UINT	Catalogue number of star 1
	16	16	Centroid X Star 1	INT	X centroid of star 1
	32	16	Centroid Y Star 1	INT	Y centroid of star 1

Table 161: Star 2 Raw Data Telemetry Format

ID	213		Frame Length (bytes)		6
Description	Catalogu	e index an	d detected coordinate	2	
Channels	Offset	Offset Length Name Data			Description
	(bits)	(bits)		Type	
	0	16	Catalogue Star 2	UINT	Catalogue number of star 2
	16	16	Centroid X Star 2	INT	X centroid of star 2
	32	16	Centroid Y Star 2	INT	Y centroid of star 2

Table 162: Star 3 Raw Data Telemetry Format

ID	214		Frame Length (bytes)		6		
Description	Catalogu	Catalogue index and detected coordinates for star 3					
Channels	Offset	Offset Length Name Data			Description		
	(bits)	(bits)		Type			
	0	16	Catalogue Star 3	UINT	Catalogue number of star 3		
	16	16	Centroid X Star 3	INT	X centroid of star 3		
	32	16	Centroid Y Star 3	INT	Y centroid of star 3		

Table 163: Secondary Magnetometer Raw Measurements Telemetry Format

ID	215		Frame Length (bytes)		6		
Description	Seconda	Secondary Magnetometer raw measurements					
Channels	Offset	Offset Length Name Data			Description		
	(bits)	(bits)		Type			
	0	16	MagX	INT	sampled A/D value		
	16	16	MagY	INT	sampled A/D value		
	32	16	MagZ	INT	sampled A/D value		

Table 164: Raw Rate Sensor Telemetry Format

ID	216	Frame Length (bytes)	6
Description	Raw rate sensor me	asurements	

DOC: FIRMWARE REFERENCE MANUAL

Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	RateX	INT	sampled A/D value
	16	16	RateY	INT	sampled A/D value
	32	16	RateZ	INT	sampled A/D value

Table 165: Estimated Quaternion Telemetry Format

ID	218		Frame Length (bytes)		6		
Description	Estimate	Estimated quaternion set					
Channels	Offset	Offset Length Name Data			Description		
	(bits)	(bits)		Type			
	0	16	Estimated q1	INT	Estimated q1		
	16	16	Estimated q2	INT	Estimated q2		
	32	16	Estimated q3	INT	Estimated q3		

Table 166: ECEF Position Telemetry Format

ID	219		Frame Length (bytes)		6			
Description	Satellite	position in	in ECEF coordinates					
Channels	Offset	Length	Name	Data	Description			
	(bits)	(bits)		Type				
	0	16	ECEF Position X	INT	ECEF Position X. (Unit of measure			
					is [m])			
	16	16	ECEF Position Y	INT	ECEF Position Y. (Unit of measure			
					is [m])			
	32	16	ECEF Position Z	INT	ECEF Position Z. (Unit of measure			
					is [m])			

Table 167: ACP Execution State Telemetry Format

ID	220		Frame Length (bytes)		3
Description	Returns i	nformatio	n about the ACP loop		
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Туре	
	0	16	Time Since Iteration	UINT	Time since the start of the
			Start		current loop iteration. (Unit of
					measure is [ms])
	16	8	Current Execution	ENUM	Indicates which part of the loop is
			Point		currently executing. Possible
					values are in Table 168:

DOC: FIRMWARE REFERENCE MANUAL VER: 7.4

		ExecutionWaypoints
		Enumeration Values

Table 168: ExecutionWaypoints Enumeration Values

Numeric Value	Name	Description
0	Init	Busy with initialization
1	Idle	Idle
2	Sensor/Actuator Communications	Sensor/Actuator Communications
3	ADCS Update	ADCS Estimation & Control Update
4	Peripheral Power commands (over	Peripheral Power commands (over I2C)
	12C)	
5	CPU Temperature Sampling	CPU Temperature Sampling
6	Image Download	Image Download
7	Image Compression	Image Compression
8	Saving Image to SD Card	Saving Image to SD Card
9	Logging	Logging
10	Log File Compression	Log File Compression
11	Saving Log to SD Card	Saving Log to SD Card
12	Writing to flash	Writing to flash memory

Table 169: Current ADCS State 2 Telemetry Format

ID	224		Frame Length (byte	s)	6
Description	Current s	state of the	Attitude Control Proc	essor – fr	rame 2
Channels	Offset (bits)	Length (bits)	Name	Data Type	Description
	0	1	Orbit Parameters are Invalid Configuration is	BOOL	Orbit Parameters are not in allowed bounds (angle exceeding limits etc.). Failed to initialize SGP4 propagator using supplied parameters Magnetorquer Configuration or
			Invalid		CSS in invalid. Each principle axis should have a torquer output (1,2, or 3) assigned. At least one CSS per principle axis needed
	2	1	Control Mode Change is not allowed	BOOL	Attempt was made to select control mode without appropriate estimator, or command to set Y-momentum

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 PAGE: 99

				mode while not in steady-state Y-Thomson
3	1	Estimator Change is not allowed	BOOL	Attempt was made to change to an estimation mode that would be inappropriate for the current control mode
4	2	Current Magnetometer Sampling Mode	ENUM	Current magnetometer sampling mode. Possible values are in Table 90: MagModeVal Enumeration Values
6	1	Modelled and measured magnetic field differs in size	BOOL	Modelled and measured magnetic field differs in size by more than 5000 nT
7	1	Node Recovery Error	BOOL	Failed to Recover an ADCS Node by successive resets
8	1	CubeSense1 Runtime Error	BOOL	Runtime error occurred with the CubeSense1
9	1	CubeSense2 Runtime Error	BOOL	Runtime error occurred with the CubeSense2
10	1	CubeControl Signal Runtime Error	BOOL	Runtime error occurred with the CubeControl Signal MCU
11	1	CubeControl Motor Runtime Error	BOOL	Runtime error occurred with the CubeControl Motor MCU
12	1	CubeWheel1 Runtime Error	BOOL	Runtime error occurred with the CubeWheel1
13	1	CubeWheel2 Runtime Error	BOOL	Runtime error occurred with the CubeWheel2
14	1	CubeWheel3 Runtime Error	BOOL	Runtime error occurred with the CubeWheel3
15	1	CubeStar Runtime Error	BOOL	Runtime error occurred with the CubeStar
16	1	Magnetometer Error	BOOL	Magnetometer failure occurred
17	1	Rate Sensor Failure	BOOL	Rate sensor failure occurred

Table 170: ASGP4 TLEs Telemetry Format

ID	228		Frame Length (bytes)		33
Description	ASGP4 TLEs generated				
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	1	ASGP4 complete	BOOL	Is ASGP4 process complete

DOC: FIRMWARE REFERENCE MANUAL

1	7	ASGP4 error	ENUM	The error state that the asgp4 module is in. Possible values are in Table 171: AsgpError Enumeration Values
8	32	ASGP4 Epoch	FLOAT	Epoch from asgp4
40	32	ASGP4 inclination	FLOAT	Inclination from asgp4
72	32	ASGP4 RAAN	FLOAT	RAAN from asgp4
104	32	ASGP4 ECC	FLOAT	Eccentricity from asgp4
136	32	ASGP4 AOP	FLOAT	AOP from asgp4
168	32	ASGP4 MA	FLOAT	MA from asgp4
200	32	ASGP4 MM	FLOAT	MM from asgp4
232	32	ASGP4 Bstar	FLOAT	Bstar from asgp4

Table 171: AsgpError Enumeration Values

Numeric Value	Name	Description
0	Off	No error
1	Unix Time	Error due to time
2	Position	Error due to position error exceeding threshold
3	Overflow	Error overflow

Table 172: CubeStar Estimated Rates Telemetry Format

ID	229		Frame Length (bytes	s)	6
Description	Angular	rates estim	ated by CubeStar		
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	x-Axis rate	INT	Estimated Rate around CubeStar
					X-axis. Formatted value is
					obtained using the formula:
					(formatted value) =
					RAWVAL/10000.0
	16	16	y-Axis rate	INT	Estimated Rate around CubeStar
					Y-axis. Formatted value is
					obtained using the formula:
					(formatted value) =
					RAWVAL/10000.0
	32	16	z-Axis rate	INT	Estimated Rate around CubeStar
					Z-axis. Formatted value is
					obtained using the formula:

DOC: FIRMWARE REFERENCE MANUAL

		(formatted	value)	=
		RAWVAL/10000.	0	

Table 173: CubeStar Estimated Quaternion Telemetry Format

ID	230		Frame Length (bytes)		6	
Description	Attitude	tude quaternion estimated by CubeStar				
Channels	Offset	Length	Name	Data	Description	
	(bits)	(bits)		Type		
	0	16	Q0	INT	CubeStar estimated attitude Q1. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0	
	16	16	Q1	INT	CubeStar estimated attitude Q2. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0	
	32	16	Q2	INT	CubeStar estimated attitude Q3. Formatted value is obtained using the formula: (formatted value) = RAWVAL/10000.0	

Table 174: Star Performance2 Telemetry Format

ID	231		Frame Length (bytes	s)	6
Description	Performa	nce paran	neters of star measurer	nent	
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	1	Image Capture	BOOL	Image Capture Success
			Success		
	1	1	Detection Success	BOOL	Detection Success
	2	1	Identification	BOOL	Identification Success
			Success		
	3	1	AttitudeSuccess	BOOL	Attitude Success
	4	1	Processing Time	BOOL	Processing time Error
			Error		
	5	1	Tracking Module	BOOL	Tracking Module Enabled
			Enabled		
	6	1	Prediction Enabled	BOOL	Prediction Enabled
	7	1	Comms error	BOOL	Comms error
	8	16	Sample Period	UINT	Sample Period

DOC: FIRMWARE REFERENCE MANUAL

24	8	Star 1 confidence	UINT	Star 1 confidence. (Unit of measure is [percentage])
32	8	Star 2 confidence	UINT	Star 2 confidence. (Unit of measure is [percentage])
40	8	Star 3 confidence	UINT	Star 3 confidence. (Unit of measure is [percentage])

Table 175: CubeSense2 Current Measurements Telemetry Format

ID	232		Frame Length (bytes)		4		
Description	CubeSen	se2 curren	t measurements				
Channels	Offset	Length	Name	Data	Description		
	(bits)	(bits)		Type			
	0	16	CubeSense2 3V3	UINT	CubeSense2 3V3 Current.		
			Current		Formatted value is obtained		
					using the formula: (formatted		
					value) [mA] = RAWVAL*0.1		
	16	16	CubeSense2 Cam	UINT	CubeSense2 Cam SRAM Current.		
			SRAM Current		Formatted value is obtained using		
					the formula: (formatted value)		
					[mA] = RAWVAL*0.1		

Table 176: Status of Image Capture and Save Operation Telemetry Format

ID	233		Frame Length (bytes)		2
Description	Status of	Image Ca	pture and Save Operat	ion	
Channels	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	8	Percentage	UINT	Current progress of operation.
			Complete		(Unit of measure is [%])
	8	8	Status	ENUM	Current status of operation.
					Possible values are in Table 177:
					ImSaveStatus Enumeration
					Values

Table 177: ImSaveStatus Enumeration Values

Numeric Value	Name	Description		
0	No Error	No Error		
1	Timeout waiting for sensor to become available	Timeout waiting for sensor to become available		

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 PAGE: 103

	2	Timeout waiting for next frame to	Timeout waiting for next frame to become		
		become ready	ready		
١	3	Checksum mismatch between	Checksum mismatch between downloaded		
		downloaded frame and unit frame	frame and unit frame		
ĺ	4	Error writing to SD card	Error writing to SD card		

5.3.3 CubeAcp Configuration Messages

Table 178: List of CubeAcp Configuration Messages

Set ID	Get ID	Name	Description	Length (bytes)
			Configuration	
21	136	Set Magnetorquer Configuration	Set magnetorquer configuration parameters – Table 179: Set Magnetorquer Configuration Message Format	3
22	137	Set Wheel Configuration	Set wheel configuration parameters – Table 181: Set Wheel Configuration Message Format	4
23	138	Set Rate Gyro Configuration	Set rate gyro configuration parameters – Table 182: Set Rate Gyro Configuration Message Format	10
24	139	CSS Configuration	Photodiode pointing directions and scale factors – Table 183: CSS Configuration Message Format	21
37	202	Set Star Tracker Configuration	Set configurations of CubeStar – Table 188: Set Star Tracker Configuration Message Format	53
25	203	CubeSense Configuration	CubeSense configuration parameters – Table 189: CubeSense Configuration Message Format	112
26	204	Magnetometer Configuration	Magnetometer configuration parameters – Table 190: Magnetometer Configuration Message Format	30
36	205	Redundant Magnetometer Configuration	Redundant magnetometer configuration parameters – Table 191: Redundant Magnetometer Configuration Message Format	30
20	206	ADCS Configuration	Current configuration – Table 192: ADCS Configuration Message Format	504
45	207	SGP4 Orbit Parameters	SGP4 Orbit Parameters – Table 194: SGP4 Orbit Parameters Message Format	64
38	208	Set Detumbling Control Parameters	Set controller gains and reference values for Detumbling control mode – Table 195: Set Detumbling Control Parameters Message Format	14

PART: CUBEADCS
DOC: FIRMWARE REFERENCE MANUAL
VER: 7.4
PAGE: 104

		1	,	
39	209	Set Y-Wheel Control Parameters	Set controller gains and reference value for Y- wheel control mode – Table 196: Set Y-Wheel Control Parameters Message Format	20
40	217	Set Reaction Wheel Control Parameters	Set controller gains and reference value for reaction wheel control mode – Table 197: Set Reaction Wheel Control Parameters Message Format	13
54	221	Set Tracking Controller Gain Parameters	Set controller gains for tracking control mode – Table 198: Set Tracking Controller Gain Parameters Message Format	13
41	222	Moment of Inertia Matrix	Satellite moment of inertia matrix – Table 199: Moment of Inertia Matrix Message Format	24
27	223	Estimation Parameters	Estimation noise covariance and sensor mask – Table 200: Estimation Parameters Message Format	31
30	225	ADCS System Configuration	Current hard-coded system configuration – Table 201: ADCS System Configuration Message Format	173
29	226	User-coded Controller and Estimator Parameters	Settings for user-coded estimation and control modes – Table 208: User-coded Controller and Estimator Parameters Message Format	96
28	227	Augmented-SGP4 Parameters	Settings for GPS augmented SGP4 – Table 209: Augmented-SGP4 Parameters Message Format	30
			General	
11	197	ADCS Power Control	Control power to selected components – Table 184: ADCS Power Control Message Format	3
15	199	Commanded Attitude Angles	Commanded attitude angles – Table 186: Commanded Attitude Angles Message Format	6
55	200	Tracking Controller Target Reference	Target reference for tracking control mode – Table 187: Tracking Controller Target Reference Message Format	12
104	235	SD Log1 Configuration	Log selection and period for LOG1 – Table 210: SD Log1 Configuration Message Format	13
105	236	SD Log2 Configuration	Log selection and period for LOG2 – Table 212: SD Log2 Configuration Message Format	13
106	237	UART Log Configuration	Log selection and period for UART (unsolicited TLM) – Table 213: UART Log Configuration Message Format	12
34	238	Inertial Pointing Reference Vector	Reference unit vector for inertial pointing control mode – Table 214: Inertial Pointing Reference Vector Message Format	6

DOC: FIRMWARE REFERENCE MANUAL

Table 179: Set Magnetorquer Configuration Message Format

Set ID/Get	21/136		Parameters Length (bytes)		3
ID					
Description	Set magr	netorquer (configuration paramet	ers	
Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	8	Magnetorquer 1	ENUM	Magnetorquer 1 Configuration.
			Configuration		Possible values are in Table 180:
					AxisSelect Enumeration Values
	8	8	Magnetorquer 2	ENUM	Magnetorquer 2 Configuration.
			Configuration		Possible values are in Table 180:
					AxisSelect Enumeration Values
	16	8	Magnetorquer 3	ENUM	Magnetorquer 3 Configuration.
			Configuration		Possible values are in Table 180:
					AxisSelect Enumeration Values

Table 180: AxisSelect Enumeration Values

Numeric Value	Name	Description
0	Positive X	Positive X
1	Negative X	Negative X
2	Positive Y	Positive Y
3	Negative Y	Negative Y
4	Positive Z	Positive Z
5	Negative Z	Negative Z
6	Not Used	Not Used
7	Positive X/Y 45 degree	Positive X/Y 45 degree

Table 181: Set Wheel Configuration Message Format

Set ID/Get	22/137		Parameters Length (bytes)		4
ID					
Description	Set whee	el configura	ation parameters		
Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Туре	
	0	8	RW1 Configuration	ENUM	RW1 Configuration. Possible
					values are in Table 180:
					AxisSelect Enumeration Values
	8	8	RW2 Configuration	ENUM	RW2 Configuration. Possible
					values are in Table 180:
					AxisSelect Enumeration Values

DOC: FIRMWARE REFERENCE MANUAL

DOC: FIRM VER: 7.4 PAGE: 106

16	8	RW3 Configuration	ENUM	RW3 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values
24	8	RW4 Configuration	ENUM	RW4 or Momentum wheel Configuration. Possible values are in Table 180: AxisSelect Enumeration Values

Table 182: Set Rate Gyro Configuration Message Format

Set ID/Get ID	23/138		Parameters Length	(bytes)	10	
Description	Set rate of	gyro config	uration parameters			
Parameters	Offset (bits)	Length (bits)	Name	Data Type	Description	
	0	8	Gyro1 Configuration	ENUM	Gyro1 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values	
	8	8	Gyro2 Configuration	ENUM	Gyro2 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values	
	16	8	Gyro3 Configuration	ENUM	Gyro3 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values	
	24	16	X-Rate Sensor Offset	INT	X-Rate Sensor Offset. Raw parameter value is obtained using the formula: (formatted value) [deg/s] = RAWVAL*0.001	
	40	16	Y-Rate Sensor Offset	INT	Y-Rate Sensor Offset. Raw parameter value is obtained using the formula: (formatted value) [deg/s] = RAWVAL*0.001	
	56	16	Z-Rate Sensor Offset	INT	Z-Rate Sensor Offset. Raw parameter value is obtained using the formula: (formatted value) [deg/s] = RAWVAL*0.001	
	72	8	RateSensorMult	UINT	Multiplier of rate sensor measurement	

DOC: FIRMWARE REFERENCE MANUAL

Doc: Firm Ver: 7.4 Page: 107

Table 183: CSS Configuration Message Format

Set ID/Get	24/139		Parameters Length (bytes)		21		
Description	Photodic	do pointin	and directions and scale factors				
Description Parameters	Photodiode pointing directions and scale factors Offset Length Name Data Description						
Parameters	(bits)	(bits)	Name	Type	Description		
	0	8	CSS1 Configuration	ENUM	CSS1 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values		
	8	8	CSS2 Configuration	ENUM	CSS2 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values		
	16	8	CSS3 Configuration	ENUM	CSS3 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values		
	24	8	CSS4 Configuration	ENUM	CSS4 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values		
	32	8	CSS5 Configuration	ENUM	CSS5 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values		
	40	8	CSS6 Configuration	ENUM	CSS6 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values		
	48	8	CSS7 Configuration	ENUM	CSS7 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values		
	56	8	CSS8 Configuration	ENUM	CSS8 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values		
	64	8	CSS9 Configuration	ENUM	CSS9 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values		
	72	8	CSS10 Configuration	ENUM	CSS10 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values		
	80	8	CSS1 Relative Scale	UINT	CSS1 Relative Scaling Factor. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.01		
	88	8	CSS2 Relative Scale	UINT	CSS2 Relative Scaling Factor. Raw parameter value is obtained		

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 PAGE: 108

					using the formula: (formatted value) = RAWVAL*0.01
	96	8	CSS3 Relative Scale	UINT	CSS3 Relative Scaling Factor. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.01
	104	8	CSS4 Relative Scale	UINT	CSS4 Relative Scaling Factor. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.01
	112	8	CSS5 Relative Scale	UINT	CSS5 Relative Scaling Factor. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.01
	120	8	CSS6 Relative Scale	UINT	CSS6 Relative Scaling Factor. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.01
	128	8	CSS7 Relative Scale	UINT	CSS7 Relative Scaling Factor. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.01
	136	8	CSS8 Relative Scale	UINT	CSS8 Relative Scaling Factor. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.01
	144	8	CSS9 Relative Scale	UINT	CSS9 Relative Scaling Factor. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.01
	152	8	CSS10 Relative Scale	UINT	CSS10 Relative Scaling Factor. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.01
	160	8	CSS Threshold	UINT	CSS Threshold

Table 184: ADCS Power Control Message Format

Set ID/Get	11/197	Parameters Length (bytes)	3			
ID						
Description	Control power to selected components					

Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	2	CubeControl Signal Power Selection	ENUM	Control power to electronics of CubeControl Signal PIC. Possible values are in Table 185: PowerSelect Enumeration Values
	2	2	CubeControl Motor Power Selection	ENUM	Control power to electronics of CubeControl Motor PIC. Possible values are in Table 185: PowerSelect Enumeration Values
	4	2	CubeSense1 Power Selection	ENUM	Control power to the CubeSense1. Possible values are in Table 185: PowerSelect Enumeration Values
	6	2	CubeSense2 Power Selection	ENUM	Control power to the CubeSense2. Possible values are in Table 185: PowerSelect Enumeration Values
	8	2	CubeStarPower Power Selection	ENUM	Control power to the CubeStar. Possible values are in Table 185: PowerSelect Enumeration Values
	10	2	CubeWheel1Power Power Selection	ENUM	Control power to the CubeWheel1. Possible values are in Table 185: PowerSelect Enumeration Values
	12	2	CubeWheel2Power Power Selection	ENUM	Control power to the CubeWheel2. Possible values are in Table 185: PowerSelect Enumeration Values
	14	2	CubeWheel3Power Power Selection	ENUM	Control power to the CubeWheel3. Possible values are in Table 185: PowerSelect Enumeration Values
	16	2	Motor Power	ENUM	Control power to Motor electronics. Possible values are in Table 185: PowerSelect Enumeration Values
	18	2	GPS Power	ENUM	Control power to GPS LNA. Possible values are in Table 185: PowerSelect Enumeration Values

DOC: FIRMWARE REFERENCE MANUAL

Table 185: PowerSelect Enumeration Values

Numeric Value	Name	Description
0	Off	Off
1	On	On
2	Power state kept the same	Power state kept the same

Table 186: Commanded Attitude Angles Message Format

Set ID/Get	15/199		Parameters Length (bytes)		6
ID					
Description	Commar	ided attitu	de angles		
Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	Commanded Roll Angle	INT	Commanded roll angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
	16	16	Commanded Pitch Angle	INT	Commanded pitch angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
	32	16	Commanded Yaw Angle	INT	Commanded yaw angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01

Table 187: Tracking Controller Target Reference Message Format

Set ID/Get	55/200		Parameters Length	(bytes)	12
ID					
Description	Target re	ference fo	r tracking control mod	е	
Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Туре	
	0	32	Geocentric	FLOAT	Geocentric longitude of target.
			longitude of target		(Unit of measure is [deg])
	32	32	Geocentric latitude	FLOAT	Geocentric latitude of target.
			of target		(Unit of measure is [deg])
	64	32	Geocentric altitude of target	FLOAT	Geocentric altitude of target. (Unit of measure is [meter])

PART: CUBEADOS DOC: FIRMWARE RI VER: 7.4 FIRMWARE REFERENCE MANUAL

PAGE: 111

Table 188: Set Star Tracker Configuration Message Format

Set ID/Get ID	37/202		Parameters Length (bytes)		53		
Description	Set confi	Set configurations of CubeStar					
Parameters	Offset	Length	Name	Data	Description		
	(bits)	(bits)		Туре			
	0	16	StarTracker Mounting Transform Alpha Angle	INT	StarTracker Mounting Transform Alpha Angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01		
	16	16	StarTracker Mounting Transform Beta Angle	INT	StarTracker Mounting Transform Beta Angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01		
	32	16	StarTracker Mounting Transform Gamma Angle	INT	StarTracker Mounting Transform Gamma Angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01		
	48	16	StarTracker exposure time	UINT	exposure time register value		
	64	16	StarTracker analog gain	UINT	analog gain register value		
	80	8	StarTracker detection threshold	UINT	StarTracker detection threshold		
	88	8	StarTracker star threshold	UINT	StarTracker star threshold		
	96	8	Maximum Star Matched	UINT	Maximum of stars that the star tracker will match		
	104	16	Detection Timeout duration	UINT	Time allowed for detection		
	120	8	Maximum Star Pixel	UINT	Maximum pixels in a star		
	128	8	Minimum Star Pixel	UINT	Minimum pixels in a star		
	136	8	Star Tracker Error Margin	UINT	% Error margin of the star identification. Raw parameter value is obtained using the formula: (formatted value) [%] = RAWVAL*0.01		
	144	16	Star Tracker Delay Time	UINT	Delay Time. (Unit of measure is [milliseconds])		

DOC: FIRMWARE REFERENCE MANUAL

160	32	Star Tracker Centroid X	FLOAT	Pixel centroid X
192	32	Star Tracker Centroid Y	FLOAT	Pixel centroid Y
224	32	Star Tracker Focal Length	FLOAT	Star Tracker Focal Length. (Unit of measure is [mm])
256	32	K1 radial distortion coefficient	FLOAT	First radial distortion coefficient. (Unit of measure is [gain])
288	32	K2 radial distortion coefficient	FLOAT	Second radial distortion coefficient. (Unit of measure is [gain])
320	32	P1 tangential distortion coefficient	FLOAT	First tangential distortion coefficient. (Unit of measure is [gain])
352	32	P2 tangential distortion coefficient	FLOAT	Second tangential distortion coefficients. (Unit of measure is [gain])
384	8	Star tracking window width	UINT	Window width
392	8	Star Tracking Margin	UINT	Tracking Margin. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL/100.0
400	8	Star Validation Margin	UINT	Validation Margin. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL/100.0
408	1	Star Tracking Module Enable	BOOL	Module Enable
409	1	Star Tracking Location Prediction Enable	BOOL	LocationPredictionEnable
416	8	Star Tracking Search Width	UINT	Search Width. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL/5.0

Table 189: CubeSense Configuration Message Format

Set ID/Get	25/203	Parameters Length (bytes)	112			
ID						
Description	CubeSense configuration parameters					

PAGE: 113

Parameters	Offset	Length	Name	Data -	Description
	(bits)	(bits)		Type	
	0	16	Cam1 Sensor Mounting Transform Alpha Angle	INT	Cam1 Sensor Mounting Transform Alpha Angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
	16	16	Cam1 Sensor Mounting Transform Beta Angle	INT	Cam1 Sensor Mounting Transform Beta Angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
	32	16	Cam1 Sensor Mounting Transform Gamma Angle	INT	Cam1 Sensor Mounting Transform Gamma Angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
	48	8	Cam1 detection threshold	UINT	
	56	1	Cam1 sensor auto adjust mode	BOOL	0 = disabled and 1 = enabled
	64	16	Cam1 sensor exposure time	UINT	exposure time register value
	80	16	Cam1 Boresight X	UINT	X Pixel location of Cam1 boresight. Raw parameter value is obtained using the formula: (formatted value) [pixels] = RAWVAL*0.01
	96	16	Cam1 Boresight Y	UINT	Y Pixel location of Cam1 boresight. Raw parameter value is obtained using the formula: (formatted value) [pixels] = RAWVAL*0.01
	112	16	Cam2 Sensor Mounting Transform Alpha Angle	INT	Cam2 Sensor Mounting Transform Alpha Angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
	128	16	Cam2 Sensor Mounting Transform Beta Angle	INT	Cam2 Sensor Mounting Transform Beta Angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01

PART: CUBEADCS
DOC: FIRMWARE RI FIRMWARE REFERENCE MANUAL

7.4 VER: PAGE: 114

	144	16	Cam2 Sensor Mounting Transform Gamma Angle	INT	Cam2 Sensor Mounting Transform Gamma Angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
	160	8	Cam2 detection threshold	UINT	Cam2 detection threshold
	168	1	Cam2 sensor auto adjust mode	BOOL	0 = disabled and 1 = enabled
	176	16	Cam2 sensor exposure time	UINT	exposure time register value
	192	16	Cam2 Boresight X	UINT	X Pixel location of Cam2 boresight. Raw parameter value is obtained using the formula: (formatted value) [pixels] = RAWVAL*0.01
	208	16	Cam2 Boresight Y	UINT	Y Pixel location of Cam2 boresight. Raw parameter value is obtained using the formula: (formatted value) [pixels] = RAWVAL*0.01
	224	8	Nadir Max Deviation Percentage	UINT	Percentage of measured angular radius as edge's maximum allowable deviation
	232	8	Nadir Max Bad Edges	UINT	Maximum amount of edges allowed outside maximum deviation (>50 to disable)
	240	8	Nadir Max Radius	UINT	Maximum Radius. (Unit of measure is [°])
	248	8	Nadir Min Radius	UINT	Minimum Radius. (Unit of measure is [°])
	256	16	Cam 1 Minimum X of area 1	UINT	Cam 1 Minimum X of Area 1
	272	16	Cam 1 Maximum X of area 1	UINT	Cam 1 Maximum X of Area 1
	288	16	Cam 1 Minimum Y of area 1	UINT	Cam 1 Minimum Y of Area 1
	304	16	Cam 1 Maximum Y of area 1	UINT	Cam 1 Maximum Y of Area 1
	320	16	Cam 1 Minimum X of area 2	UINT	Cam 1 Minimum X of Area 2

336	16	Cam 1 Maximum X of area 2	UINT	Cam 1 Maximum X of Area 2
352	16	Cam 1 Minimum Y of area 2	UINT	Cam 1 Minimum Y of Area 2
368	16	Cam 1 Maximum Y of area 2	UINT	Cam 1 Maximum Y of Area 2
384	16	Cam 1 Minimum X of area 3	UINT	Cam 1 Minimum X of Area 3
400	16	Cam 1 Maximum X of area 3	UINT	Cam 1 Maximum X of Area 3
416	16	Cam 1 Minimum Y of area 3	UINT	Cam 1 Minimum Y of Area 3
432	16	Cam 1 Maximum Y of area 3	UINT	Cam 1 Maximum Y of Area 3
448	16	Cam 1 Minimum X of area 4	UINT	Cam 1 Minimum X of Area 4
464	16	Cam 1 Maximum X of area 4	UINT	Cam 1 Maximum X of Area 4
480	16	Cam 1 Minimum Y of area 4	UINT	Cam 1 Minimum Y of Area 4
496	16	Cam 1 Maximum Y of area 4	UINT	Cam 1 Maximum Y of Area 4
512	16	Cam 1 Minimum X of area 5	UINT	Cam 1 Minimum X of Area 5
528	16	Cam 1 Maximum X of area 5	UINT	Cam 1 Maximum X of Area 5
544	16	Cam 1 Minimum Y of area 5	UINT	Cam 1 Minimum Y of Area 5
560	16	Cam 1 Maximum Y of area 5	UINT	Cam 1 Maximum Y of Area 5
576	16	Cam 2 Minimum X of area 1	UINT	Cam 2 Minimum X of Area 1
592	16	Cam 2 Maximum X of area 1	UINT	Cam 2 Maximum X of Area 1
608	16	Cam 2 Minimum Y of area 1	UINT	Cam 2 Minimum Y of Area 1
624	16	Cam 2 Maximum Y of area 1	UINT	Cam 2 Maximum Y of Area 1
640	16	Cam 2 Minimum X of area 2	UINT	Cam 2 Minimum X of Area 2
656	16	Cam 2 Maximum X of area 2	UINT	Cam 2 Maximum X of Area 2

DOC: FIRMWARE REFERENCE MANUAL

672	16	Cam 2 Minimum Y of area 2	UINT	Cam 2 Minimum Y of Area 2
688	16	Cam 2 Maximum Y of area 2	UINT	Cam 2 Maximum Y of Area 2
704	16	Cam 2 Minimum X of area 3	UINT	Cam 2 Minimum X of Area 3
720	16	Cam 2 Maximum X of area 3	UINT	Cam 2 Maximum X of Area 3
736	16	Cam 2 Minimum Y of area 3	UINT	Cam 2 Minimum Y of Area 3
752	16	Cam 2 Maximum Y of area 3	UINT	Cam 2 Maximum Y of Area 3
768	16	Cam 2 Minimum X of area 4	UINT	Cam 2 Minimum X of Area 4
784	16	Cam 2 Maximum X of area 4	UINT	Cam 2 Maximum X of Area 4
800	16	Cam 2 Minimum Y of area 4	UINT	Cam 2 Minimum Y of Area 4
816	16	Cam 2 Maximum Y of area 4	UINT	Cam 2 Maximum Y of Area 4
832	16	Cam 2 Minimum X of area 5	UINT	Cam 2 Minimum X of Area 5
848	16	Cam 2 Maximum X of area 5	UINT	Cam 2 Maximum X of Area 5
864	16	Cam 2 Minimum Y of area 5	UINT	Cam 2 Minimum Y of Area 5
880	16	Cam 2 Maximum Y of area 5	UINT	Cam 2 Maximum Y of Area 5

Table 190: Magnetometer Configuration Message Format

Set ID/Get	26/204		Parameters Length	(bytes)	30
ID					
Description	Magneto	meter con	figuration parameters		
Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	Magnetometer	INT	Magnetometer Mounting
			Mounting		Transform Alpha Angle. Raw
			Transform Alpha		parameter value is obtained
			Angle		using the formula: (formatted
					value) [deg] = RAWVAL*0.01

DOC: FIRMWARE REFERENCE MANUAL

16	16	Magnetometer Mounting Transform Beta Angle	INT	Magnetometer Mounting Transform Beta Angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
32	16	Magnetometer Mounting Transform Gamma Angle	INT	Magnetometer Mounting Transform Gamma Angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
48	16	Magnetometer Channel 1 Offset	INT	Magnetometer Channel 1 Offset. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
64	16	Magnetometer Channel 2 Offset	INT	Magnetometer Channel 2 Offset. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
80	16	Magnetometer Channel 3 Offset	INT	Magnetometer Channel 3 Offset. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
96	16	Magnetometer Sensitivity Matrix S11	INT	Magnetometer Sensitivity Matrix S11. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
112	16	Magnetometer Sensitivity Matrix S22	INT	Magnetometer Sensitivity Matrix S22. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
128	16	Magnetometer Sensitivity Matrix S33	INT	Magnetometer Sensitivity Matrix S33. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
144	16	Magnetometer Sensitivity Matrix S12	INT	Magnetometer Sensitivity Matrix S12. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001

DOC: FIRMWARE REFERENCE MANUAL VER: 7.4
PAGE: 118

160	16	Magnetometer Sensitivity Matrix S13	INT	Magnetometer Sensitivity Matrix S13. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
176	16	Magnetometer Sensitivity Matrix S21	INT	Magnetometer Sensitivity Matrix S21. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
192	16	Magnetometer Sensitivity Matrix S23	INT	Magnetometer Sensitivity Matrix S23. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
208	16	Magnetometer Sensitivity Matrix S31	INT	Magnetometer Sensitivity Matrix S31. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
224	16	Magnetometer Sensitivity Matrix S32	INT	Magnetometer Sensitivity Matrix S32. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001

Table 191: Redundant Magnetometer Configuration Message Format

Set ID/Get	36/205		Parameters Length (bytes)		30
ID					
Description	Redunda	nt magnet	ometer configuration	oaramete	ers
Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	Redundant	INT	Redundant Magnetometer
			Magnetometer		Mounting Transform Alpha
			Mounting		Angle. Raw parameter value is
			Transform Alpha		obtained using the formula:
			Angle		(formatted value) [deg] =
					RAWVAL*0.01
	16	16	Redundant	INT	Redundant Magnetometer
			Magnetometer		Mounting Transform Beta Angle.
			Mounting		Raw parameter value is obtained

		Transform Beta Angle		using the formula: (formatted value) [deg] = RAWVAL*0.01
32	16	Redundant Magnetometer Mounting Transform Gamma Angle	INT	Redundant Magnetometer Mounting Transform Gamma Angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
48	16	Redundant Magnetometer Channel 1 Offset	INT	Redundant Magnetometer Channel 1 Offset. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
64	16	Redundant Magnetometer Channel 2 Offset	INT	Redundant Magnetometer Channel 2 Offset. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
80	16	Redundant Magnetometer Channel 3 Offset	INT	Redundant Magnetometer Channel 3 Offset. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
96	16	Redundant Magnetometer Sensitivity Matrix S11	INT	Redundant Magnetometer Sensitivity Matrix S11. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
112	16	Redundant Magnetometer Sensitivity Matrix S22	INT	Redundant Magnetometer Sensitivity Matrix S22. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
128	16	Redundant Magnetometer Sensitivity Matrix S33	INT	Redundant Magnetometer Sensitivity Matrix S33. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
144	16	Redundant Magnetometer Sensitivity Matrix S12	INT	Redundant Magnetometer Sensitivity Matrix S12. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001

160	16	Redundant Magnetometer Sensitivity Matrix S13	INT	Redundant Magnetometer Sensitivity Matrix S13. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
176	16	Redundant Magnetometer Sensitivity Matrix S21	INT	Redundant Magnetometer Sensitivity Matrix S21. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
192	16	Redundant Magnetometer Sensitivity Matrix S23	INT	Redundant Magnetometer Sensitivity Matrix S23. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
208	16	Redundant Magnetometer Sensitivity Matrix S31	INT	Redundant Magnetometer Sensitivity Matrix S31. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
224	16	Redundant Magnetometer Sensitivity Matrix S32	INT	Redundant Magnetometer Sensitivity Matrix S32. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001

Table 192: ADCS Configuration Message Format

Set ID/Get	20/206		Parameters Length (bytes)		504
ID					
Description	Current of	configurati	on		
Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	8	Magnetorquer 1	ENUM	Magnetorquer 1 Configuration.
			Configuration		Possible values are in Table 180: AxisSelect Enumeration Values
	8	8	Magnetorquer 2 Configuration	ENUM	Magnetorquer 2 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values
	16	8	Magnetorquer 3 Configuration	ENUM	Magnetorquer 3 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values

24	8	RW1 Configuration	ENUM	RW1 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values
32	8	RW2 Configuration	ENUM	RW2 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values
40	8	RW3 Configuration	ENUM	RW3 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values
48	8	RW4 Configuration	ENUM	RW4 or Momentum wheel Configuration. Possible values are in Table 180: AxisSelect Enumeration Values
56	8	Gyro1 Configuration	ENUM	Gyro1 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values
64	8	Gyro2 Configuration	ENUM	Gyro2 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values
72	8	Gyro3 Configuration	ENUM	Gyro3 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values
80	16	X-Rate Sensor Offset	INT	X-Rate Sensor Offset. Raw parameter value is obtained using the formula: (formatted value) [deg/s] = RAWVAL*0.001
96	16	Y-Rate Sensor Offset	INT	Y-Rate Sensor Offset. Raw parameter value is obtained using the formula: (formatted value) [deg/s] = RAWVAL*0.001
112	16	Z-Rate Sensor Offset	INT	Z-Rate Sensor Offset. Raw parameter value is obtained using the formula: (formatted value) [deg/s] = RAWVAL*0.001
128	8	RateSensorMult	UINT	Multiplier of rate sensor measurement
136	8	CSS1 Configuration	ENUM	CSS1 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values
144	8	CSS2 Configuration	ENUM	CSS2 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values

152	8	CSS3 Configuration	ENUM	CSS3 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values
160	8	CSS4 Configuration	ENUM	CSS4 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values
168	8	CSS5 Configuration	ENUM	CSS5 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values
176	8	CSS6 Configuration	ENUM	CSS6 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values
184	8	CSS7 Configuration	ENUM	CSS7 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values
192	8	CSS8 Configuration	ENUM	CSS8 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values
200	8	CSS9 Configuration	ENUM	CSS9 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values
208	8	CSS10 Configuration	ENUM	CSS10 Configuration. Possible values are in Table 180: AxisSelect Enumeration Values
 216	8	CSS1 Relative Scale	UINT	CSS1 Relative Scaling Factor. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.01
224	8	CSS2 Relative Scale	UINT	CSS2 Relative Scaling Factor. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.01
232	8	CSS3 Relative Scale	UINT	CSS3 Relative Scaling Factor. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.01
240	8	CSS4 Relative Scale	UINT	CSS4 Relative Scaling Factor. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.01
		CSS5 Relative Scale	UINT	CSS5 Relative Scaling Factor.

				using the formula: (formatted value) = RAWVAL*0.01
256	8	CSS6 Relative Scale	UINT	CSS6 Relative Scaling Factor. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.01
264	8	CSS7 Relative Scale	UINT	CSS7 Relative Scaling Factor. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.01
272	8	CSS8 Relative Scale	UINT	CSS8 Relative Scaling Factor. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.01
280	8	CSS9 Relative Scale	UINT	CSS9 Relative Scaling Factor. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.01
288	8	CSS10 Relative Scale	UINT	CSS10 Relative Scaling Factor. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.01
296	8	CSS Threshold	UINT	CSS Threshold
304	16	Cam1 Sensor Mounting Transform Alpha Angle	INT	Cam1 Sensor Mounting Transform Alpha Angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
320	16	Cam1 Sensor Mounting Transform Beta Angle	INT	Cam1 Sensor Mounting Transform Beta Angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
336	16	Cam1 Sensor Mounting Transform Gamma Angle	INT	Cam1 Sensor Mounting Transform Gamma Angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
352	8	Cam1 detection threshold	UINT	Cam1 detection threshold
360	1	Cam1 sensor auto adjust mode	BOOL	0 = disabled and 1 = enabled

DOC: FIRMWARE REFERENCE MANUAL

368	16	Cam1 sensor exposure time	UINT	exposure time register value
384	16	Cam1 Boresight X	UINT	X Pixel location of Cam1 boresight. Raw parameter value is obtained using the formula: (formatted value) [pixels] = RAWVAL*0.01
400	16	Cam1 Boresight Y	UINT	Y Pixel location of Cam1 boresight. Raw parameter value is obtained using the formula: (formatted value) [pixels] = RAWVAL*0.01
416	16	Cam2 Sensor Mounting Transform Alpha Angle	INT	Cam2 Sensor Mounting Transform Alpha Angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
432	16	Cam2 Sensor Mounting Transform Beta Angle	INT	Cam2 Sensor Mounting Transform Beta Angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
448	16	Cam2 Sensor Mounting Transform Gamma Angle	INT	Cam2 Sensor Mounting Transform Gamma Angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
464	8	Cam2 detection threshold	UINT	Cam2 detection threshold
472	1	Cam2 sensor auto adjust mode	BOOL	0 = disabled and 1 = enabled
480	16	Cam2 sensor exposure time	UINT	exposure time register value
496	16	Cam2 Boresight X	UINT	X Pixel location of Cam2 boresight. Raw parameter value is obtained using the formula: (formatted value) [pixels] = RAWVAL*0.01
512	16	Cam2 Boresight Y	UINT	Y Pixel location of Cam2 boresight. Raw parameter value is obtained using the formula: (formatted value) [pixels] = RAWVAL*0.01

528	8	Nadir Max Deviation Percentage	UINT	Percentage of measured angular radius as edge's maximum allowable deviation
536	8	Nadir Max Bad Edges	UINT	Maximum amount of edges allowed outside maximum deviation (>50 to disable)
544	8	Nadir Max Radius	UINT	Maximum Radius. (Unit of measure is [°])
552	8	Nadir Min Radius	UINT	Minimum Radius. (Unit of measure is [°])
560	16	Cam 1 Minimum X of area 1	UINT	Cam 1 Minimum X of Area 1
576	16	Cam 1 Maximum X of area 1	UINT	Cam 1 Maximum X of Area 1
592	16	Cam 1 Minimum Y of area 1	UINT	Cam 1 Minimum Y of Area 1
608	16	Cam 1 Maximum Y of area 1	UINT	Cam 1 Maximum Y of Area 1
624	16	Cam 1 Minimum X of area 2	UINT	Cam 1 Minimum X of Area 2
640	16	Cam 1 Maximum X of area 2	UINT	Cam 1 Maximum X of Area 2
656	16	Cam 1 Minimum Y of area 2	UINT	Cam 1 Minimum Y of Area 2
672	16	Cam 1 Maximum Y of area 2	UINT	Cam 1 Maximum Y of Area 2
688	16	Cam 1 Minimum X of area 3	UINT	Cam 1 Minimum X of Area 3
704	16	Cam 1 Maximum X of area 3	UINT	Cam 1 Maximum X of Area 3
720	16	Cam 1 Minimum Y of area 3	UINT	Cam 1 Minimum Y of Area 3
736	16	Cam 1 Maximum Y of area 3	UINT	Cam 1 Maximum Y of Area 3
752	16	Cam 1 Minimum X of area 4	UINT	Cam 1 Minimum X of Area 4
768	16	Cam 1 Maximum X of area 4	UINT	Cam 1 Maximum X of Area 4
784	16	Cam 1 Minimum Y of area 4	UINT	Cam 1 Minimum Y of Area 4
800	16	Cam 1 Maximum Y of area 4	UINT	Cam 1 Maximum Y of Area 4

816	16	Cam 1 Minimum X of area 5	UINT	Cam 1 Minimum X of Area 5
832	16	Cam 1 Maximum X of area 5	UINT	Cam 1 Maximum X of Area 5
848	16	Cam 1 Minimum Y of area 5	UINT	Cam 1 Minimum Y of Area 5
864	16	Cam 1 Maximum Y of area 5	UINT	Cam 1 Maximum Y of Area 5
880	16	Cam 2 Minimum X of area 1	UINT	Cam 2 Minimum X of Area 1
896	16	Cam 2 Maximum X of area 1	UINT	Cam 2 Maximum X of Area 1
912	16	Cam 2 Minimum Y of area 1	UINT	Cam 2 Minimum Y of Area 1
928	16	Cam 2 Maximum Y of area 1	UINT	Cam 2 Maximum Y of Area 1
944	16	Cam 2 Minimum X of area 2	UINT	Cam 2 Minimum X of Area 2
960	16	Cam 2 Maximum X of area 2	UINT	Cam 2 Maximum X of Area 2
976	16	Cam 2 Minimum Y of area 2	UINT	Cam 2 Minimum Y of Area 2
992	16	Cam 2 Maximum Y of area 2	UINT	Cam 2 Maximum Y of Area 2
1008	16	Cam 2 Minimum X of area 3	UINT	Cam 2 Minimum X of Area 3
1024	16	Cam 2 Maximum X of area 3	UINT	Cam 2 Maximum X of Area 3
1040	16	Cam 2 Minimum Y of area 3	UINT	Cam 2 Minimum Y of Area 3
1056	16	Cam 2 Maximum Y of area 3	UINT	Cam 2 Maximum Y of Area 3
1072	16	Cam 2 Minimum X of area 4	UINT	Cam 2 Minimum X of Area 4
1088	16	Cam 2 Maximum X of area 4	UINT	Cam 2 Maximum X of Area 4
1104	16	Cam 2 Minimum Y of area 4	UINT	Cam 2 Minimum Y of Area 4
1120	16	Cam 2 Maximum Y of area 4	UINT	Cam 2 Maximum Y of Area 4
1136	16	Cam 2 Minimum X of area 5	UINT	Cam 2 Minimum X of Area 5

1152	16	Cam 2 Maximum X of area 5	UINT	Cam 2 Maximum X of Area 5
1168	16	Cam 2 Minimum Y of area 5	UINT	Cam 2 Minimum Y of Area 5
1184	16	Cam 2 Maximum Y of area 5	UINT	Cam 2 Maximum Y of Area 5
1200	16	Magnetometer Mounting Transform Alpha Angle	INT	Magnetometer Mounting Transform Alpha Angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
1216	16	Magnetometer Mounting Transform Beta Angle	INT	Magnetometer Mounting Transform Beta Angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
1232	16	Magnetometer Mounting Transform Gamma Angle	INT	Magnetometer Mounting Transform Gamma Angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
1248	16	Magnetometer Channel 1 Offset	INT	Magnetometer Channel 1 Offset. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
1264	16	Magnetometer Channel 2 Offset	INT	Magnetometer Channel 2 Offset. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
1280	16	Magnetometer Channel 3 Offset	INT	Magnetometer Channel 3 Offset. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
1296	16	Magnetometer Sensitivity Matrix S11	INT	Magnetometer Sensitivity Matrix S11. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
1312	16	Magnetometer Sensitivity Matrix S22	INT	Magnetometer Sensitivity Matrix S22. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001

1328	16	Magnetometer Sensitivity Matrix S33	INT	Magnetometer Sensitivity Matrix S33. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
1344	16	Magnetometer Sensitivity Matrix S12	INT	Magnetometer Sensitivity Matrix S12. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
1360	16	Magnetometer Sensitivity Matrix S13	INT	Magnetometer Sensitivity Matrix S13. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
1376	16	Magnetometer Sensitivity Matrix S21	INT	Magnetometer Sensitivity Matrix S21. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
1392	16	Magnetometer Sensitivity Matrix S23	INT	Magnetometer Sensitivity Matrix S23. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
1408	16	Magnetometer Sensitivity Matrix S31	INT	Magnetometer Sensitivity Matrix S31. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
1424	16	Magnetometer Sensitivity Matrix S32	INT	Magnetometer Sensitivity Matrix S32. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
1440	16	Redundant Magnetometer Mounting Transform Alpha Angle	INT	Redundant Magnetometer Mounting Transform Alpha Angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
1456	16	Redundant Magnetometer	INT	Redundant Magnetometer Mounting Transform Beta Angle.

			Mounting Transform Beta Angle		Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
	1472	16	Redundant Magnetometer Mounting Transform Gamma Angle	INT	Redundant Magnetometer Mounting Transform Gamma Angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
	1488	16	Redundant Magnetometer Channel 1 Offset	INT	Redundant Magnetometer Channel 1 Offset. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
	1504	16	Redundant Magnetometer Channel 2 Offset	INT	Redundant Magnetometer Channel 2 Offset. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
	1520	16	Redundant Magnetometer Channel 3 Offset	INT	Redundant Magnetometer Channel 3 Offset. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
	1536	16	Redundant Magnetometer Sensitivity Matrix S11	INT	Redundant Magnetometer Sensitivity Matrix S11. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
	1552	16	Redundant Magnetometer Sensitivity Matrix S22	INT	Redundant Magnetometer Sensitivity Matrix S22. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
	1568	16	Redundant Magnetometer Sensitivity Matrix S33	INT	Redundant Magnetometer Sensitivity Matrix S33. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
	1584	16	Redundant Magnetometer Sensitivity Matrix S12	INT	Redundant Magnetometer Sensitivity Matrix S12. Raw parameter value is obtained

				using the formula: (formatted value) = RAWVAL*0.001
1600	16	Redundant Magnetometer Sensitivity Matrix S13	INT	Redundant Magnetometer Sensitivity Matrix S13. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
1616	16	Redundant Magnetometer Sensitivity Matrix S21	INT	Redundant Magnetometer Sensitivity Matrix S21. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
1632	16	Redundant Magnetometer Sensitivity Matrix S23	INT	Redundant Magnetometer Sensitivity Matrix S23. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
1648	16	Redundant Magnetometer Sensitivity Matrix S31	INT	Redundant Magnetometer Sensitivity Matrix S31. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
1664	16	Redundant Magnetometer Sensitivity Matrix S32	INT	Redundant Magnetometer Sensitivity Matrix S32. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
1680	16	StarTracker Mounting Transform Alpha Angle	INT	StarTracker Mounting Transform Alpha Angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
1696	16	StarTracker Mounting Transform Beta Angle	INT	StarTracker Mounting Transform Beta Angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01
1712	16	StarTracker Mounting Transform Gamma Angle	INT	StarTracker Mounting Transform Gamma Angle. Raw parameter value is obtained using the formula: (formatted value) [deg] = RAWVAL*0.01

DOC: FIRMWARE REFERENCE MANUAL

1728	16	StarTracker exposure time	UINT	exposure time register value
1744	16	StarTracker analog gain	UINT	analog gain register value
1760	8	StarTracker detection threshold	UINT	StarTracker detection threshold
1768	8	StarTracker star threshold	UINT	StarTracker star threshold
1776	8	Maximum Star Matched	UINT	Maximum of stars that the star tracker will match
1784	16	Detection Timeout duration	UINT	Time allowed for detection
1800	8	Maximum Star Pixel	UINT	Maximum pixels in a star
1808	8	Minimum Star Pixel	UINT	Minimum pixels in a star
1816	8	Star Tracker Error Margin	UINT	% Error margin of the star identification. Raw parameter value is obtained using the formula: (formatted value) [%] = RAWVAL*0.01
1824	16	Star Tracker Delay Time	UINT	Delay Time. (Unit of measure is [milliseconds])
1840	32	Star Tracker Centroid X	FLOAT	Pixel centroid X
1872	32	Star Tracker Centroid Y	FLOAT	Pixel centroid Y
1904	32	Star Tracker Focal Length	FLOAT	Star Tracker Focal Length. (Unit of measure is [mm])
1936	32	K1 radial distortion coefficient	FLOAT	First radial distortion coefficient. (Unit of measure is [gain])
1968	32	K2 radial distortion coefficient	FLOAT	Second radial distortion coefficient. (Unit of measure is [gain])
2000	32	P1 tangential distortion coefficient	FLOAT	First tangential distortion coefficient. (Unit of measure is [gain])
2032	32	P2 tangential distortion coefficient	FLOAT	Second tangential distortion coefficients. (Unit of measure is [gain])
2064	8	Star tracking window width	UINT	Window width
2072	8	Star Tracking Margin	UINT	Tracking Margin. Raw parameter value is obtained using the

				formula: (formatted value) = RAWVAL/100.0
2080	8	Star Validation Margin	UINT	Validation Margin. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL/100.0
2088	1	Star Tracking Module Enable	BOOL	Module Enable
2089	1	Star Tracking Location Prediction Enable	BOOL	LocationPredictionEnable
2096	8	Star Tracking Search Width	UINT	Search Width. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL/5.0
2104	32	Detumbling Spin Gain	FLOAT	Detumbling Spin Gain (Ks)
2136	32	Detumbling Damping Gain	FLOAT	Detumbling Damping Gain (Kd)
2168	16	Reference spin rate	INT	Reference spin rate (wy-ref). Must always be smaller than 0 for Y-spin. Raw parameter value is obtained using the formula: (formatted value) [deg/s] = RAWVAL*0.001
2184	32	Fast Bdot Detumbling Gain	FLOAT	Fast Bdot Detumbling Gain (Kdf)
2216	32	Y-Momentum Control Gain	FLOAT	Y-Momentum Control Gain (Kh)
2248	32	Y-momentum Nutation Damping Gain	FLOAT	Y-momentum Nutation Damping Gain (Kn)
2280	32	Y-momentum Proportional Gain	FLOAT	Y-momentum Proportional Gain (Kp1)
2312	32	Y-momentum Derivative Gain	FLOAT	Y-momentum Derivative Gain (Kd1)
2344	32	Reference Wheel Momentum	FLOAT	Reference Wheel Momentum (H-ref). Must always be smaller than 0. (Unit of measure is [Nms])
2376	32	Rwheel Proportional Gain	FLOAT	Rwheel Proportional Gain (Kp2)

2408	32	Rwheel Derivative Gain	FLOAT	Rwheel Derivative Gain (Kd2)
2440	32	Y-Wheel Bias Momentum	FLOAT	Y-Wheel Bias Momentum (H- bias). (Unit of measure is [Nms])
2472	7	Sun-pointing Facet	ENUM	Satellite body axis that will align with sun vector. Possible values are in Table 180: AxisSelect Enumeration Values
2479	1	Automatic Control Transition due to Wheel Errors	BOOL	Enable/disable automatic transition from wheel control modes to Y-Thomson mode in case of wheel error
2480	32	Tracking Proportional Gain	FLOAT	Tracking Proportional Gain (Kp3)
2512	32	Tracking Derivative Gain	FLOAT	Tracking Derivative Gain (Kd3)
2544	32	Tracking Integral Gain	FLOAT	Tracking Integral Gain (Ki3)
2576	8	Target-tracking Facet	ENUM	Satellite body axis that will point to target. Possible values are in Table 180: AxisSelect Enumeration Values
2584	32	Moment Of Inertia – lxx	FLOAT	Moment Of Inertia – Ixx. (Unit of measure is [kg.m^2])
2616	32	Moment Of Inertia – lyy	FLOAT	Moment Of Inertia – lyy. (Unit of measure is [kg.m^2])
2648	32	Moment Of Inertia – Izz	FLOAT	Moment Of Inertia – Izz. (Unit of measure is [kg.m^2])
2680	32	Product Of Inertia – Ixy	FLOAT	Product Of Inertia – Ixy. (Unit of measure is [kg.m^2])
2712	32	Product Of Inertia – Ixz	FLOAT	Product Of Inertia – Ixz. (Unit of measure is [kg.m^2])
2744	32	Product Of Inertia – lyz	FLOAT	Product Of Inertia – Iyz. (Unit of measure is [kg.m^2])
2776	32	Magnetometer Rate Filter System Noise	FLOAT	Magnetometer Rate Filter System Noise
2808	32	EKF System Noise	FLOAT	EKF System Noise
2840	32	CSS Measurement Noise	FLOAT	CSS Measurement Noise

2872	32	Sun Sensor Measurement Noise	FLOAT	Sun Sensor Measurement Noise
2904	32	Nadir Sensor Measurement Noise	FLOAT	Nadir Sensor Measurement Noise
2936	32	Magnetometer Measurement Noise	FLOAT	Magnetometer Measurement Noise
2968	32	Star Tracker Measurement Noise	FLOAT	Star Tracker Measurement Noise
3000	1	Use Sun Sensor	BOOL	Use Sun Sensor measurement in EKF
3001	1	Use Nadir Sensor	BOOL	Use Nadir Sensor measurement in EKF
3002	1	Use CSS	BOOL	Use CSS measurement in EKF
3003	1	Use Star Tracker	BOOL	Use Star Tracker measurement in EKF
3004	1	Nadir sensor terminator test	BOOL	Select to ignore Nadir sensor measurements when terminator is in FOV
3005	1	Automatic Magnetometer Recovery	BOOL	Select whether automatic switch to redundant magnetometer should occur in case of failure
3006	2	Magnetometer Mode	ENUM	Mode describing which magnetometer is used for estimation and control. Possible values are in Table 90: MagModeVal Enumeration Values
3008	2	Magnetometer Selection for RAW MTM TLM	ENUM	Select which magnetometer and sampling to use for 2 nd raw magnetometer tlm frame. Possible values are in Table 90: MagModeVal Enumeration Values
3010	1	Automatic Estimation Transition due to Rate Sensor Errors	BOOL	Enable/disable automatic transition from MEMS rate estimation mode to RKF in case of rate sensor error

3016	8	Cam1 and Cam2 Sampling Period	UINT	Cam1 and Cam2 sensor sampling period. Lower four bits are Cam1 period and upper four bits the Cam2 period. Setting period to zero for sensor will disable sampling of sensor. (Unit of measure is [s])
3024	16	Incl. coefficient	UINT	Inclination filter coefficient. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
3040	16	Raan coefficient	UINT	RAAN filter coefficient. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
3056	16	Ecc coefficient	UINT	Eccentricity filter coefficient. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
3072	16	Aop coefficient	UINT	Argument of perigee filter coefficient. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
 3088	16	Time coefficient	UINT	Time filter coefficient. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
3104	16	Pos coefficient	UINT	Position filter coefficient. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
3120	8	Maximum position error	UINT	Maximum position error for asgp4 to continue working. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.1
3128	8	ASGP4 filter	ENUM	The type of filter asgp4 is using. Possible values are in Table 193: AsgpFilter Enumeration Values
3136	32	xp coefficient	INT	Polar coefficient xp. Raw parameter value is obtained

DOC: FIRMWARE REFERENCE MANUAL

				using the formula: (formatted value) = RAWVAL*0.0000001
3168	32	yp coefficient	INT	Polar coefficient yp. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.0000001
3200	8	GPS roll over	UINT	GPS roll over number
3208	8	Position sd	UINT	Maximum position standard deviation for asgp4 to operate. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.1
3216	8	Velocity sd	UINT	Maximum velocity standard deviation for asgp4 to operate. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.01
3224	8	Min. satellites	UINT	Minimum satellites for asgp4 to operate
3232	8	Time gain	UINT	Time offset compensation gain. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.01
3240	8	Max. lag	UINT	Maximum lagged timestamp measurements to incorporate. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.01
3248	16	Min. samples	UINT	Minimum samples to use for asgp4 process
3264	384	User Coded Controller Settings	ARRAY	Settings for user coded control mode(s)
3648	384	User Coded Estimator Settings	ARRAY	Settings for user coded estimation mode(s)

Table 193: AsgpFilter Enumeration Values

Numeric Value	Name	Description
0	LPF	Use LPF
1	Average	Use averaging filter

DOC: FIRMWARE REFERENCE MANUAL

Dog: Firm Ver: 7.4 Page: 137

Table 194: SGP4 Orbit Parameters Message Format

Set ID/Get ID	45/207		Parameters Length (bytes)		64
Description	SGP4 Or	bit Param	eters		
Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	64	Inclination	DOUBLE	Inclination. (Unit of measure is
					[deg])
	64	64	Eccentricity	DOUBLE	Eccentricity
	128	64	Right-ascension of	DOUBLE	Right-ascension of the
			the Ascending		Ascending Node. (Unit of
			Node		measure is [deg])
	192	64	Argument of	DOUBLE	Argument of Perigee. (Unit of
			Perigee		measure is [deg])
	256	64	B-Star drag term	DOUBLE	B-Star drag term
	320	64	Mean Motion	DOUBLE	Mean Motion. (Unit of measure
					is [orbits/day])
	384	64	Mean Anomaly	DOUBLE	Mean Anomaly. (Unit of measure
					is [deg])
	448	64	Epoch	DOUBLE	Epoch (year.day). (Unit of
					measure is [year.day])

Table 195: Set Detumbling Control Parameters Message Format

Set ID/Get	38/208		Parameters Length (bytes)		14
ID					
Description	Set contr	oller gains	and reference values	for Detun	nbling control mode
Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Туре	
	0	32	Detumbling Spin	FLOAT	Detumbling Spin Gain (Ks)
			Gain		
	32	32	Detumbling	FLOAT	Detumbling Damping Gain (Kd)
			Damping Gain		
	64	16	Reference spin rate	INT	Reference spin rate (wy-ref).
					Must always be smaller than 0
					for Y-spin. Raw parameter value
					is obtained using the formula:
					(formatted value) [deg/s] =
					RAWVAL*0.001
	80	32	Fast Bdot	FLOAT	Fast Bdot Detumbling Gain (Kdf)
			Detumbling Gain		

DOC: FIRMWARE REFERENCE MANUAL VER: 7.4

Table 196: Set Y-Wheel Control Parameters Message Format

Set ID/Get	39/209		Parameters Length	(bytes)	20
ID					
Description	Set contr	oller gains	and reference value fo	or Y-whee	el control mode
Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Туре	
	0	32	Y-Momentum	FLOAT	Y-Momentum Control Gain (Kh)
			Control Gain		
	32	32	Y-momentum	FLOAT	Y-momentum Nutation Damping
			Nutation Damping		Gain (Kn)
			Gain		
	64	32	Y-momentum	FLOAT	Y-momentum Proportional Gain
			Proportional Gain		(Kp1)
	96	32	Y-momentum	FLOAT	Y-momentum Derivative Gain
			Derivative Gain		(Kd1)
	128	32	Reference Wheel	FLOAT	Reference Wheel Momentum (H-
			Momentum		ref). Must always be smaller than
					0. (Unit of measure is [Nms])

Table 197: Set Reaction Wheel Control Parameters Message Format

Set ID/Get ID	40/217		Parameters Length (bytes)		13
Description	Set contr	oller gains	and reference value fo	or reactio	n wheel control mode
Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Туре	
	0	32	Rwheel	FLOAT	Rwheel Proportional Gain (Kp2)
			Proportional Gain		
	32	32	Rwheel Derivative	FLOAT	Rwheel Derivative Gain (Kd2)
			Gain		
	64	32	Y-Wheel Bias	FLOAT	Y-Wheel Bias Momentum (H-
			Momentum		bias). (Unit of measure is [Nms])
	96	7	Sun-pointing Facet	ENUM	Satellite body axis that will align
					with sun vector. Possible values
					are in Table 180: AxisSelect
					Enumeration Values
	103	1	Automatic Control	BOOL	Enable/disable automatic
			Transition due to		transition from wheel control
			Wheel Errors		modes to Y-Thomson mode in
					case of wheel error

DOC: FIRMWARE REFERENCE MANUAL

Table 198: Set Tracking Controller Gain Parameters Message Format

Set ID/Get	54/221		Parameters Length	(bytes)	13
ID					
Description	Set contr	oller gains	for tracking control m	iode	
Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Туре	
	0	32	Tracking	FLOAT	Tracking Proportional Gain (Kp3)
			Proportional Gain		
	32	32	Tracking Derivative	FLOAT	Tracking Derivative Gain (Kd3)
			Gain		
	64	32	Tracking Integral	FLOAT	Tracking Integral Gain (Ki3)
			Gain		
	96	8	Target-tracking	ENUM	Satellite body axis that will point
			Facet		to target. Possible values are in
					Table 180: AxisSelect
					Enumeration Values

Table 199: Moment of Inertia Matrix Message Format

Set ID/Get	41/222		Parameters Length	(bytes)	24
ID					
Description	Satellite	moment o	f inertia matrix		
Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	32	Moment Of Inertia	FLOAT	Moment Of Inertia – Ixx. (Unit of
			– lxx		measure is [kg.m^2])
	32	32	Moment Of Inertia	FLOAT	Moment Of Inertia – lyy. (Unit of
			– lyy		measure is [kg.m^2])
	64	32	Moment Of Inertia	FLOAT	Moment Of Inertia – Izz. (Unit of
			– Izz		measure is [kg.m^2])
	96	32	Product Of Inertia –	FLOAT	Product Of Inertia – Ixy. (Unit of
			lxy		measure is [kg.m^2])
	128	32	Product Of Inertia –	FLOAT	Product Of Inertia – Ixz. (Unit of
			lxz		measure is [kg.m^2])
	160	32	Product Of Inertia –	FLOAT	Product Of Inertia – lyz. (Unit of
			lyz		measure is [kg.m^2])

DOC: FIRMWARE REFERENCE MANUAL

Table 200: Estimation Parameters Message Format

Set ID/Get	27/223		Parameters Length (bytes)		31			
Description	Estimatio	Estimation noise covariance and sensor mask						
Parameters	Offset	Length	Name	Data	Description			
	(bits)	(bits)		Туре	·			
	0	32	Magnetometer Rate Filter System Noise	FLOAT	Magnetometer Rate Filter System Noise			
	32	32	EKF System Noise	FLOAT	EKF System Noise			
	64	32	CSS Measurement Noise	FLOAT	CSS Measurement Noise			
	96	32	Sun Sensor Measurement Noise	FLOAT	Sun Sensor Measurement Noise			
	128	32	Nadir Sensor Measurement Noise	FLOAT	Nadir Sensor Measurement Noise			
	160	32	Magnetometer Measurement Noise	FLOAT	Magnetometer Measurement Noise			
	192	32	Star Tracker Measurement Noise	FLOAT	Star Tracker Measurement Noise			
	224	1	Use Sun Sensor	BOOL	Use Sun Sensor measurement in EKF			
	225	1	Use Nadir Sensor	BOOL	Use Nadir Sensor measurement in EKF			
	226	1	Use CSS	BOOL	Use CSS measurement in EKF			
	227	1	Use Star Tracker	BOOL	Use Star Tracker measurement in EKF			
	228	1	Nadir sensor terminator test	BOOL	Select to ignore Nadir sensor measurements when terminator is in FOV			
	229	1	Automatic Magnetometer Recovery	BOOL	Select whether automatic switch to redundant magnetometer should occur in case of failure			
	230	2	Magnetometer Mode	ENUM	Mode describing which magnetometer is used for estimation and control. Possible values are in Table 90:			

				MagModeVal Enumeration Values
232	2	Magnetometer Selection for RAW MTM TLM	ENUM	Select which magnetometer and sampling to use for 2 nd raw magnetometer tlm frame. Possible values are in Table 90: MagModeVal Enumeration Values
234	1	Automatic Estimation Transition due to Rate Sensor Errors	BOOL	Enable/disable automatic transition from MEMS rate estimation mode to RKF in case of rate sensor error
240	8	Cam1 and Cam2 Sampling Period	UINT	Cam1 and Cam2 sensor sampling period. Lower four bits are Cam1 period and upper four bits the Cam2 period. Setting period to zero for sensor will disable sampling of sensor. (Unit of measure is [s])

Table 201: ADCS System Configuration Message Format

Set ID/Get ID	30/225		Parameters Length (bytes)		173
Description	Current h	nard-code	d system configuration		
Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	4	ACP Type	ENUM	ACP Type. Possible values are in Table 202: AcpProgramType Enumeration Values
	4	4	Special Control Selection	ENUM	Special Control Selection. Possible values are in Table 203: SpecialConSelect Enumeration Values
	8	8	CubeControl Signal Version	UINT	CubeControl Signal Version
	16	8	CubeControl Motor Version	UINT	CubeControl Motor Version
	24	8	CubeSense1 Version	UINT	CubeSense1 Version
	32	8	CubeSense2 Version	UINT	CubeSense2 Version

PAGE: 142

40	4	CubeSense1 Camera Type	ENUM	CubeSense1 Camera Type. Possible values are in Table 204: CsCamType Enumeration Values
44	4	CubeSense2 Camera Type	ENUM	CubeSense2 Camera Type. Possible values are in Table 204: CsCamType Enumeration Values
48	8	CubeStar Version	UINT	CubeStar Version
56	4	GPS Type	ENUM	GPS Type. Possible values are in Table 205: GpsSelect Enumeration Values
60	1	Redundant MTM Included	BOOL	Redundant MTM Included
64	32	Magnetorquer-X Max Dipole	FLOAT	Magnetorquer-X Max Dipole. (Unit of measure is [A.m^2])
96	32	Magnetorquer-Y Max Dipole	FLOAT	Magnetorquer-Y Max Dipole. (Unit of measure is [A.m^2])
128	32	Magnetorquer-Z Max Dipole	FLOAT	Magnetorquer-Z Max Dipole. (Unit of measure is [A.m^2])
160	32	Magnetorquer On- time Resolution	FLOAT	Magnetorquer On-time Resolution. (Unit of measure is [s])
192	32	Magnetorquer Maximum On-time	FLOAT	Magnetorquer Maximum On- time. (Unit of measure is [s])
224	32	RW-X Maximum Torque	FLOAT	RW-X Maximum Torque. (Unit of measure is [N.m])
256	32	RW-Y Maximum Torque	FLOAT	RW-Y Maximum Torque. (Unit of measure is [N.m])
288	32	RW-Z Maximum Torque	FLOAT	RW-Z Maximum Torque. (Unit of measure is [N.m])
320	32	RW-X Maximum Momentum	FLOAT	RW-X Maximum Momentum. (Unit of measure is [Nms])
352	32	RW-Y Maximum Momentum	FLOAT	RW-Y Maximum Momentum. (Unit of measure is [Nms])
384	32	RW-Z Maximum Momentum	FLOAT	RW-Z Maximum Momentum. (Unit of measure is [Nms])
416	32	RW-X Inertia	FLOAT	RW-X Inertia. (Unit of measure is [kg.m^2])
448	32	RW-Y Inertia	FLOAT	RW-Y Inertia. (Unit of measure is [kg.m^2])
480	32	RW-Z Inertia	FLOAT	RW-Z Inertia. (Unit of measure is [kg.m^2])

DOC: FIRMWARE REFERENCE MANUAL

512	32	RW Torque Increment	FLOAT	RW Torque Increment. (Unit of measure is [N.m])
544	32	Primary MTM X- Bias d1	FLOAT	Primary MTM X-Bias d1
576	32	Primary MTM Y- Bias d1	FLOAT	Primary MTM Y-Bias d1
608	32	Primary MTM Z- Bias d1	FLOAT	Primary MTM Z-Bias d1
640	32	Primary MTM X- Bias d2	FLOAT	Primary MTM X-Bias d2
672	32	Primary MTM Y- Bias d2	FLOAT	Primary MTM Y-Bias d2
704	32	Primary MTM Z- Bias d2	FLOAT	Primary MTM Z-Bias d2
736	32	Primary MTM X- Sens s1	FLOAT	Primary MTM X-Sens s1
768	32	Primary MTM Y- Sens s1	FLOAT	Primary MTM Y-Sens s1
800	32	Primary MTM Z- Sens s1	FLOAT	Primary MTM Z-Sens s1
832	32	Primary MTM X- Sens s2	FLOAT	Primary MTM X-Sens s2
864	32	Primary MTM Y- Sens s2	FLOAT	Primary MTM Y-Sens s2
896	32	Primary MTM Z- Sens s2	FLOAT	Primary MTM Z-Sens s2
928	32	Redundant MTM X- Bias d1	FLOAT	Redundant MTM X-Bias d1
960	32	Redundant MTM Y- Bias d1	FLOAT	Redundant MTM Y-Bias d1
992	32	Redundant MTM Z- Bias d1	FLOAT	Redundant MTM Z-Bias d1
1024	32	Redundant MTM X- Bias d2	FLOAT	Redundant MTM X-Bias d2
1056	32	Redundant MTM Y- Bias d2	FLOAT	Redundant MTM Y-Bias d2
1088	32	Redundant MTM Z- Bias d2	FLOAT	Redundant MTM Z-Bias d2
1120	32	Redundant MTM X- Sens s1	FLOAT	Redundant MTM X-Sens s1
1152	32	Redundant MTM Y- Sens s1	FLOAT	Redundant MTM Y-Sens s1

	1184	32	Redundant MTM Z- Sens s1	FLOAT	Redundant MTM Z-Sens s1
	1216	32	Redundant MTM X- Sens s2	FLOAT	Redundant MTM X-Sens s2
	1248	32	Redundant MTM Y- Sens s2	FLOAT	Redundant MTM Y-Sens s2
	1280	32	Redundant MTM Z- Sens s2	FLOAT	Redundant MTM Z-Sens s2
	1312	4	CC Signal Enable Port	ENUM	CC Signal Enable GPIO port. Possible values are in Table 206: GpioPort Enumeration Values
	1316	4	CC Signal Enable Pin	ENUM	CC Signal Enable GPIO port pin. Possible values are in Table 207: GpioPortPin Enumeration Values
	1320	4	CC Motor Enable Port	ENUM	CC Motor Enable GPIO port. Possible values are in Table 206: GpioPort Enumeration Values
	1324	4	CC Motor Enable Pin	ENUM	CC Motor Enable GPIO port pin. Possible values are in Table 207: GpioPortPin Enumeration Values
	1328	4	CC Common Enable Port	ENUM	CC Common Enable GPIO port. Possible values are in Table 206: GpioPort Enumeration Values
	1332	4	CC Common Enable Pin	ENUM	CC Common Enable GPIO port pin. Possible values are in Table 207: GpioPortPin Enumeration Values
	1336	4	CubeSense1 Enable Port	ENUM	CubeSense1 Enable GPIO port. Possible values are in Table 206: GpioPort Enumeration Values
	1340	4	CubeSense1 Enable Pin	ENUM	CubeSense1 Enable GPIO port pin. Possible values are in Table 207: GpioPortPin Enumeration Values
	1344	4	CubeSense2 Enable Port	ENUM	CubeSense2 Enable GPIO port. Possible values are in Table 206: GpioPort Enumeration Values
	1348	4	CubeSense2 Enable Pin	ENUM	CubeSense2 Enable GPIO port pin. Possible values are in Table 207: GpioPortPin Enumeration Values

DOC: FIRMWARE REFERENCE MANUAL

1352	4	CubeStar Enable Port	ENUM	CubeStar Enable GPIO port. Possible values are in Table 206: GpioPort Enumeration Values
1356	4	CubeStar Enable Pin	ENUM	CubeStar Enable GPIO port pin. Possible values are in Table 207: GpioPortPin Enumeration Values
1360	4	CubeWheel1 Enable Port	ENUM	CubeWheel1 Enable GPIO port. Possible values are in Table 206: GpioPort Enumeration Values
1364	4	CubeWheel1 Enable Pin	ENUM	CubeWheel1 Enable GPIO port pin. Possible values are in Table 207: GpioPortPin Enumeration Values
1368	4	CubeWheel2 Enable Port	ENUM	CubeWheel2 Enable GPIO port. Possible values are in Table 206: GpioPort Enumeration Values
1372	4	CubeWheel2 Enable Pin	ENUM	CubeWheel2 Enable GPIO port pin. Possible values are in Table 207: GpioPortPin Enumeration Values
1376	4	CubeWheel3 Enable Port	ENUM	CubeWheel3 Enable GPIO port. Possible values are in Table 206: GpioPort Enumeration Values
1380	4	CubeWheel3 Enable Pin	ENUM	CubeWheel3 Enable GPIO port pin. Possible values are in Table 207: GpioPortPin Enumeration Values

Table 202: AcpProgramType Enumeration Values

Numeric Value	Name	Description		
0	3-Axis ACP	3-Axis ACP		
1	Y-Momentum ACP	Y-Momentum ACP		

Table 203: SpecialConSelect Enumeration Values

Numeric Value	Name	Description		
0	None	None		
1	Z-axis Sun pointing	Z-axis Sun pointing		
2	GEO Tracking	GEO Tracking		
3	Inertial pointing	Inertial pointing		
4	Y-axis Sun pointing	Y-axis Sun pointing		

DOC: FIRMWARE REFERENCE MANUAL

Table 204: CsCamType Enumeration Values

Numeric Value	Name	Description		
0	Sun Sensor	Sun Sensor		
1	Nadir Sensor	Nadir Sensor		

Table 205: GpsSelect Enumeration Values

Numeric Value	Name	Description	
0	No GPS Support	No GPS support	
1	Novatel GPS	Novatel GPS	
2	Skyfox GPS	Skyfox GPS	

Table 206: GpioPort Enumeration Values

Numeric Value	Name	Description
0	Port A	Port A
1	Port B	Port B
2	Port C	Port C
3	Port D	Port D
4	Port E	Port E
5	Port F	Port F

Table 207: GpioPortPin Enumeration Values

Numeric Value	Name	Description
0	Pin 0	Pin 0
1	Pin 1	Pin 1
2	Pin 2	Pin 2
3	Pin 3	Pin 3
4	Pin 4	Pin 4
5	Pin 5	Pin 5
6	Pin 6	Pin 6
7	Pin 7	Pin 7
8	Pin 8	Pin 8
9	Pin 9	Pin 9
10	Pin 10	Pin 10
11	Pin 11	Pin 11
12	Pin 12	Pin 12
13	Pin 13	Pin 13

DOC: FIRMWARE REFERENCE MANUAL

Doc: Firm Ver: 7.4 Page: 147

14	Pin 14	Pin 14
15	Pin 15	Pin 15

Table 208: User-coded Controller and Estimator Parameters Message Format

Set ID/Get	29/226		Parameters Length (bytes)		(bytes)	96
ID						
Description	Settings	for user-co	oded estimati	on and co	ontrol mo	des
Parameters	Offset	Length	Nam	e	Data	Description
	(bits)	(bits)			Type	
	0	384	User Coded		ARRAY	Settings for user coded control
			Controller S	ettings		mode(s)
	384	384	User	Coded	ARRAY	Settings for user coded
			Estimator Se	ettings		estimation mode(s)

Table 209: Augmented-SGP4 Parameters Message Format

Set ID/Get ID	28/227		Parameters Length (bytes)		30
Description	Settings	for GPS au	gmented SGP4		
Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	16	Incl. coefficient	UINT	Inclination filter coefficient. Raw
					parameter value is obtained
					using the formula: (formatted
					value) = RAWVAL*0.001
	16	16	Raan coefficient	UINT	RAAN filter coefficient. Raw
				parameter value is obtained	
					using the formula: (formatted
					value) = RAWVAL*0.001
	32	16	Ecc coefficient	UINT	Eccentricity filter coefficient. Raw
					parameter value is obtained
					using the formula: (formatted
					value) = RAWVAL*0.001
	48	16	Aop coefficient	UINT	Argument of perigee filter
					coefficient. Raw parameter value
					is obtained using the formula:
					(formatted value) =
					RAWVAL*0.001
	64	16	Time coefficient	UINT	Time filter coefficient. Raw
					parameter value is obtained

PART: GUBEADGS
DOG: FIRMWARE REFERENCE MANUAL
VER: 7.4

PAGE: 148

				using the formula: (formatted value) = RAWVAL*0.001
80	16	Pos coefficient	UINT	Position filter coefficient. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.001
96	8	Maximum position error	UINT	Maximum position error for asgp4 to continue working. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.1
104	8	ASGP4 filter	ENUM	The type of filter asgp4 is using. Possible values are in Table 193: AsgpFilter Enumeration Values
112	32	xp coefficient	INT	Polar coefficient xp. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.0000001
144	32	yp coefficient	INT	Polar coefficient yp. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.0000001
176	8	GPS roll over	UINT	GPS roll over number
184	8	Position sd	UINT	Maximum position standard deviation for asgp4 to operate. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.1
192	8	Velocity sd	UINT	Maximum velocity standard deviation for asgp4 to operate. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.01
200	8	Min. satellites	UINT	Minimum satellites for asgp4 to operate
208	8	Time gain	UINT	Time offset compensation gain. Raw parameter value is obtained using the formula: (formatted value) = RAWVAL*0.01
216	8	Max. lag	UINT	Maximum lagged timestamp measurements to incorporate. Raw parameter value is obtained

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 PAGE: 149

				using the formula: (formatted value) = RAWVAL*0.01
224	16	Min. samples	UINT	Minimum samples to use for asgp4 process

Table 210: SD Log1 Configuration Message Format

Set ID/Get ID	104/235		Parameters Length	(bytes)	13
Description	Log sele	ction and p	period for LOG1		
Parameters	Offset	Length	Name	Data	Description
	(bits)	(bits)		Type	
	0	80	Log Selection	ARRAY	Log Selection – up to 80 flags indicating which telemetry frames should be logged
	80	16	Log Period	UINT	Log period. Set to 0 to disable logging
	96	8	Log Destination	ENUM	Which SD card to use to store log file. Possible values are in Table 211: SdLogSelect Enumeration Values

Table 211: SdLogSelect Enumeration Values

Numeric Value	Name	Description					
0	Primary SD Card	Use Primary (on-board) SD card for log file					
1	Secondary SD Card	Use Secondary SD card for log file					

Table 212: SD Log2 Configuration Message Format

Set ID/Get	105/236		Parameters Length	(bytes)	13		
ID							
Description	Log sele	ction and p	period for LOG2				
Parameters	Offset	Length	Name	Data	Description		
	(bits)	(bits)		Туре			
	0	80	Log Selection	ARRAY	Log Selection – up to 80 flags		
					indicating which telemetry		
					frames should be logged		
	80	16	Log Period	UINT	Log period. Set to 0 to disable		
					logging		

DOC: FIRMWARE REFERENCE MANUAL

	96	8	Log Destination	ENUM	Which SD card to use to store log
					file. Possible values are in Table
					211: SdLogSelect Enumeration
					Values

Table 213: UART Log Configuration Message Format

Set ID/Get	106/237		Parameters Length	(bytes)	12				
ID									
Description	Log selec	ction and p	period for UART (unsol	icited TLN	1)				
Parameters	Offset	Length	Name	Data	Description				
	(bits)	(bits)		Type					
	0	80	Log Selection	ARRAY	Log Selection – up to 80 flags				
					indicating which telemetry				
					frames should be logged				
	80	16	Log Period	UINT	Log period. Set to 0 to disable				
					logging				

Table 214: Inertial Pointing Reference Vector Message Format

Set ID/Get	34/238		Parameters Length ((bytes)	6							
ID												
Description	Referenc	e unit vect	ctor for inertial pointing control mode									
Parameters	Offset	Length	Name	Data	Description							
	(bits)	(bits)		Type								
	0	16	Inertial Reference X	INT	Inertial Reference X. Raw							
					parameter value is obtained							
					using the formula: (formatted							
					value) = RAWVAL/10000.0							
	16	16	Inertial Reference Y	INT	Inertial Reference Y. Raw							
					parameter value is obtained							
					using the formula: (formatted							
					value) = RAWVAL/10000.0							
	32	16	Inertial Reference Z	INT	Inertial Reference Z. Raw							
					parameter value is obtained using							
					the formula: (formatted value) =							
					RAWVAL/10000.0							

6. Firmware Operational Sequences

This section describes sequences of commands and telemetry request that must be issued to perform higher level functions.

6.1 Bootloader and ACP (or other application) Identification

The suggested logic for an external OBC that interfaces with the CubeComputer and bootloader is to switch on the CubeComputer or ADCS, wait for 10s and then request the identification telemetry frame (TLM ID 128). This will inform the external OBC whether the application did indeed boot the ACP program (the node type field for this telemetry frame will differ for the bootloader and the application).

If the application failed to boot (i.e. the Bootloader is still active after 10s), other telemetry requests to the bootloader may follow to find out what the status is (failed boot attempts, error switching on external SRAM, or some other condition).

Figure 12: Example external OBC logic for Bootloader operation

6.2 SD Card File Management

Files that are stored on the SD card of CubeComputer can be downloaded and managed using the protocol described here.

6.2.1 Download file list

The current download-able list of files on the SD card can be found in two ways. The first method involves a sequence of *File Information* telemetry requests. But first, the file list read pointer must be reset with a *Reset File List Read Pointer* command (Table 24: Reset File List Read Pointer Command Format).

Following the *Reset File List Read Pointer* command, the next available file in the download list can be queried with the *File Information* telemetry request (Table 43: File Information Telemetry Format). The *File Information* telemetry frame should be polled until the *Busy Updating* flag is cleared. At this point the populated file information will be valid. If the populated file information comes back as all zeroes, the end of the file list has been reached. If not, the file list read pointer can be advanced to the next file with the *Advance File List Read Pointer* command (Table 18: Advance File List Read Pointer Command Format).

The complete process is described by the flow diagram in .

Figure 13 – File list download process.

The other method of retrieving the downloadable file list is to perform an actual file transfer. In this case the file selection (for the file to download) should be specified as *Index File*.

6.2.2 Index File Format

The Index File is a virtual file on the CubeComputer. It contains the list of downloadable files on the SD card with the file meta-data included. The downloaded file index will contain a 37-byte entry for every file on the SD card:

Table 215: Format of entries in the Index File

Byte offset	Field length (bytes)	Content
0	1	File Type enumeration
1	1	File counter
2	2	16-bit CRC checksum
4	4	File size (in bytes)
8	4	File creation date/time (MSDOS format)
12	25	File meta-data (structure of this depends on the file type)

The following code can be used to convert from the MSDOS time format to conventional date and time.

```
/*MS-DOS Date & Time (4 bytes)

The lower word determines the time, the upper word the date. Used by several DOS function calls and by all FAT file systems.

Bits Contents
0-4 Second divided by 2
5-10 Minute (0-59)
11-15 Hour (0-23 on a 24-hour clock)
16-20 Day of the month (1-31)
21-24 Month (1 = January, 2 = February, etc.)
25-31 Year offset from 1980

*/

seconds = (msdostime & 0x1f) << 1; // 5bits - 32
minutes = (msdostime >> 5) & 0x3f; // 6buts - 64
hour = (msdostime >> 11) & 0x1f; // 5bits - 32
day = (msdostime >> 16) & 0x1f; // 5bits - 32
month = (msdostime >> 21) & 0x0f; // 4bits - 16
year = (msdostime >> 25) + 1980; // 7bits - 128 (1980 to 21..)
```

The file meta-data is dependent on the type of file. It is currently only used by telemetry log files, and in this case the first 10 bytes of the meta-data matches the telemetry mask that was specified when creating the log file.

DOG: FIRMWARE REFERENCE MANUAL

VER: 7.4 Page: 154

6.2.3 File download

Files are downloaded from CubeComputer in blocks. A block is typically downloaded as a burst of packets, of which some packets may get lost. A "Hole Map" is used to keep track which packets in a block have been successfully received. The Hole Map is then communicated to the CubeComputer, and a burst retry is performed for all the missed packets.

The download of a file block is initiated by sending a *Load File Download Block* command (Table 17: Load File Download Block Command Format). This will read a block of data from the indicated file and buffer it in SRAM on the CubeComputer.

The file is uniquely identified by the *File Type* and *Counter* parameters. The *Offset* and *Block Length* parameters indicate which part of the file to buffer in memory. The maximum *Block Length* is 20 kB.

The *Download Block Ready* telemetry frame (Table 42: Download Block Ready Telemetry Format) can be polled to see if the block is done loading. Once the block is ready, the burst can be initiated by sending an *Initiate Download Burst* command (Table 25: Initiate Download Burst Command Format), with the *Ignore Hole Map* parameter set to true.

If the *Initiate Download Burst* command was sent on the UART, the CubeComputer application will respond by sending up to 1024 packets (the number depends on the *Block Length* specified with the *Load File Download Block* command), each with a payload length of 20 bytes in rapid succession. Each download packet will have a header ID that matches that of the *Initiate File Download Burst* command. The following two bytes will contain the counter of the packet in the burst. The counter makes it possible to keep track of which packets have been received on the remote side.

If the *Initiate File Download Burst* command is issued on the I²C communications link, it is expected to successively perform up to 1024 read transactions from the remote side, each with 22 bytes length, again with the same format as the *Download File Packet* above.

The *Hole Map* is a bitmap, where each bit represents one 20-byte packet out of the complete download block. Since there are at most 1024 packets in one file download block, the *Hole Map* is also 1024 bits long, or 128 bytes.

To make the CubeComputer resend only the packets that have been missed by the remote side, the remote component must upload the Hole Map to the CubeComputer by performing up to 8 *Hole Map* commands (each *Hole Map* command contains 16 bytes of the Hole Map).

After uploading the Hole Map, another *Initiate Download Burst* command can be issued, but this time with the Ignore Hole Map parameter set to false. The CubeComputer will then transmit only the packets that have a corresponding '0' in the Hole Map.

DOG: FIRMWARE REFERENCE MANUAL

VER: 7.4 PAGE: 1<u>55</u>

Figure 14: File download process.

6.2.4 File erase and SD card formatting

To delete files, use the *Erase File* command (Table 15: Erase File Command Format). If the *Erase All* flag in the *Erase File* command is set, all files on the SD card will be erased. This operation is not instantaneous and requires some time to complete. The status of the *Erase All* operation can be monitored using the *Erase All Busy* flag in the *SD card format/erase progress* telemetry frame (see Table 38: SD card format/erase progress Telemetry Format).

The SD card can also be formatted using the *Format SD card* command (see Table 14: Format SD card Command Format). This operation is not instantaneous and requires some time to complete. The status of the formatting operation can be monitored using the *Format Busy* flag

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 Page: 1<u>56</u>

in the *SD card format/erase progress* telemetry frame (see Table 38: SD card format/erase progress Telemetry Format).

6.3 Retrieving Flash Firmware Information (Bootloader only)

The programs programmed into the flash memory at each program location in **Error! Reference source not found.**, and also its CRC checksum can be found by first sending a *Read Program Information* command (see Table 65: Read Program Information Command Format). The information is returned by reading the Program Information telemetry (see Table 70: Program Information Telemetry Format). It might take some time to calculate the CRC on the CubeComputer. The telemetry request can be polled, using the busy flag to test if it has completed. A timeout value of 2 seconds is suggested.

6.4 Firmware uploads (Bootloader only)

The process of firmware uploads makes use of block transfers of 20kB at a time with error checking and retries. It thus also allows for a communications link that receives occasional errors. The complete process is illustrated in Figure 15.

DOC: FIRMWARE REFERENCE MANUAL

Figure 15: File upload process.

A new firmware file can only be uploaded to one of the external flash memory locations. Note that file upload destinations to the SD card, mentioned in the FileUploadDestination enumeration are **not supported**.

The process is initiated by first erasing the selected flash program area. This is done by sending an *Initiate File Upload* telecommand (see Table 19: Initiate File Upload Command Format). The blocksize parameter of this command is ignored and can be set to 0. It takes a while for the flash erase procedure to complete. The status can be polled with an *Initialize Upload Complete* telemetry request (see Table 44: Initialize Upload Complete Telemetry Format). It is suggested to wait up to 8s for the erase to complete.

File or firmware uploads now proceed in iterations of 20kB blocks.

At the start of a block transfer, the ADCS CubeComputer is notified of the block that is to be uploaded by sending a Reset Upload Block telecommand (see Table 23: Reset Upload Block Command Format). This command will reset the Hole Map.

The file or firmware data is then uploaded to the CubeComputer by sending op to 1024 messages, each with a size of 20 bytes. Each 20-byte file message is sent using the File Upload Packet telecommand (see Table 21: File Upload Packet Command Format). These commands are not acknowledged and may be sent in a continuous stream.

To find out if the CubeComputer received all the packets, the OBC must read the hole map from the ADCS CubeComputer. This is done using TLM IDs 247 – 254 (see Table 52: Hole Map 1 Message Format).

The OBC will then resent the packets that were missed as indicated by the hole map, using the following code:

```
for (int I = 0; I < 1024; i++)
{
    if ((holemap[I >> 3] & (1 << (I & 0x07))) == 0)
    {
        // missed!
    }
}</pre>
```

The holemap array in the example above is a 128-byte array, built-up by concatenating all the holemap fields from the Hole Map telemetry replies.

Once the entire 20kB block has been successfully uploaded, it can be committed to flash memory using the Finalize Upload Block command (Table 22: Finalize Upload Block Command Format). This command takes as parameter the flash memory program slot – valid values are 3 to 9 (Flash program 1 to 7), the offset into the program slot, and the length of valid data in the 20kB buffer.

The flash programming process can be polled by requesting the Upload Block Complete telemetry (Table 45: Upload Block Complete Telemetry Format) and checking the Busy flag. A suitable timeout for this process is 10s.

The upload stops when all the file blocks have been uploaded and programmed successfully.

A final CRC check should be performed on the completed flash program. The firmware file CRC on the CubeComputer is found by the process described in 6.3.

6.4.1 CRC Checksum

File transfers make use of a CRC16 checksum. The following code can be used to compute the checksum of a buffer or file.

```
Uint16_t CRC_Calc(uint8_t *start, uint32_t len)
{
    uint16_t crc = 0;
    uint8_t *data;
    uint8_t *end = start + len;

    for (data = start; data < end; data++)
    {
        crc = (crc >> 8) | (crc << 8);
        crc ^= *data;
        crc ^= (crc & 0xff) >> 4;
        crc ^= crc << 12;
        crc ^= (crc & 0xff) << 5;
    }
    return crc;
}</pre>
```


DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 PAGE: 160

7. Telemetry logging (CubeACP only)

The CubeACP can save telemetry frames to a log file on the SD card, and output "unsolicited" telemetry on the UART. In both cases, the telemetry frames that are selected for logging, are specified using a 10-byte mask. The bits in the mask each represent a specific telemetry frame (with specific ID). Not all telemetry frames can be logged. The frames which can be logged, their IDs and respective bit-position in the 10-byte mask can be found in Table 216: Lo. All logable telemetry frames are 6 bytes in length.

Table 216: Loggable Telemetry Frames

Mask	Telemetry ID	Telemetry Frame
01 00 00 00 00 00 00 00 00 00	144	Communication Status
02 00 00 00 00 00 00 00 00 00	143	EDAC Error Counters
08 00 00 00 00 00 00 00 00	141	Last Logged Event
10 00 00 00 00 00 00 00 00 00	142	SRAM Latchup counters
80 00 00 00 00 00 00 00 00 00	157	Magnetorquer Command
00 01 00 00 00 00 00 00 00 00	158	Wheel Speed Commands
00 02 00 00 00 00 00 00 00 00	151	Magnetic Field Vector
00 04 00 00 00 00 00 00 00 00	152	Coarse Sun Vector
00 08 00 00 00 00 00 00 00 00	153	Fine Sun Vector
00 10 00 00 00 00 00 00 00 00	154	Nadir Vector
00 20 00 00 00 00 00 00 00 00	155	Rate Sensor Rates
00 40 00 00 00 00 00 00 00 00	156	Wheel Speed
00 80 00 00 00 00 00 00 00 00	181	Star 1 Body Vector
00 00 01 00 00 00 00 00 00 00	184	Star 1 Orbit Vector
00 00 02 00 00 00 00 00 00 00	182	Star 2 Body Vector
00 00 04 00 00 00 00 00 00 00	185	Star 2 Orbit Vector
00 00 08 00 00 00 00 00 00 00	183	Star 3 Body Vector
00 00 10 00 00 00 00 00 00 00	186	Star 3 Orbit Vector
00 00 20 00 00 00 00 00 00 00	171	CubeSense1 Current Measurements
00 00 40 00 00 00 00 00 00 00	172	CubeControl Current Measurements
00 00 80 00 00 00 00 00 00 00	173	Wheel Currents
00 00 00 01 00 00 00 00 00 00	198	ADCS Misc Current Measurements
00 00 00 02 00 00 00 00 00 00	174	ADCS Temperatures
00 00 00 04 00 00 00 00 00 00	175	Rate sensor temperatures
00 00 00 08 00 00 00 00 00 00	132	Current ADCS State
00 00 00 10 00 00 00 00 00 00	146	Estimated Attitude Angles
00 00 00 20 00 00 00 00 00 00	218	Estimated Quaternion
00 00 00 40 00 00 00 00 00 00	147	Estimated Angular Rates
00 00 00 80 00 00 00 00 00 00	148	Satellite Position (ECI)

PART: GUBEADGS
DOG: FIRMWARE REFERENCE MANUAL
VER: 7.4

PAGE: 161

00 00 00 00 01 00 00 00 00 00	149	Satellite Velocity (ECI)
00 00 00 00 02 00 00 00 00 00	150	Satellite Position (LLH)
00 00 00 00 04 00 00 00 00 00	219	ECEF Position
00 00 00 00 08 00 00 00 00	159	IGRF Modelled Magnetic Field Vector
00 00 00 00 10 00 00 00 00 00	160	Modelled Sun Vector
00 00 00 00 20 00 00 00 00 00	161	Estimated Gyro Bias
00 00 00 00 40 00 00 00 00 00	162	Estimation Innovation Vector
00 00 00 00 80 00 00 00 00 00	163	Quaternion Error Vector
00 00 00 00 00 01 00 00 00 00	164	Quaternion Covariance
00 00 00 00 00 02 00 00 00 00	165	Angular Rate Covariance
00 00 00 00 00 04 00 00 00 00	176	Raw GPS Status
00 00 00 00 00 08 00 00 00 00	177	Raw GPS Time
00 00 00 00 00 10 00 00 00 00	178	Raw GPS X
00 00 00 00 00 20 00 00 00 00	179	Raw GPS Y
00 00 00 00 00 40 00 00 00 00	180	Raw GPS Z
00 00 00 00 00 80 00 00 00 00	166	Raw Cam2 Sensor
00 00 00 00 00 00 01 00 00 00	167	Raw Cam1 Sensor
00 00 00 00 00 00 02 00 00 00	168	Raw CSS 1 to 6
00 00 00 00 00 00 04 00 00 00	169	Raw CSS 7 to 10
00 00 00 00 00 00 08 00 00 00	170	Raw Magnetometer
00 00 00 00 00 00 10 00 00 00	188	Star Performance1
00 00 00 00 00 00 20 00 00 00	187	Star Magnitude
00 00 00 00 00 00 40 00 00 00	212	Star 1 Raw Data
00 00 00 00 00 00 80 00 00 00	213	Star 2 Raw Data
00 00 00 00 00 00 00 01 00 00	214	Star 3 Raw Data
00 00 00 00 00 00 00 02 00 00	189	Star Timing
00 00 00 00 00 00 00 04 00 00	215	Secondary Magnetometer Raw Measurements
00 00 00 00 00 00 00 08 00 00	201	Fine Estimated Angular Rates
00 00 00 00 00 00 00 10 00 00	216	Raw Rate Sensor
00 00 00 00 00 00 00 20 00 00	224	Current ADCS State 2
00 00 00 00 00 00 00 40 00 00	229	CubeStar Estimated Rates
00 00 00 00 00 00 00 80 00 00	230	CubeStar Estimated Quaternion
00 00 00 00 00 00 00 00 01 00	231	Star Performance2
00 00 00 00 00 00 00 00 02 00	232	CubeSense2 Current Measurements

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 Page: 162

7.1 Telemetry log file format

The telemetry log files that are created on the SD card has a 10-byte header, which matches with the mask that was specified when the log was initiated. Following this, there will be M log entries, where each log entry starts with the Unix time (32-bit unsigned integer) and milliseconds (16-bit unsigned integer) (6 bytes total). The rest of the log entry is filled with N telemetry frames, where N is the number of bits that have been set in the 10-byte mask. The size of the log file will then equal 10+6*(N+1)*M.

7.2 UART Unsolicited telemetry log

Telemetry log frames which are output on the UART have the following format. The message identifier is always 255 (0xFF). This is followed by the 10-byte mask which further determines which telemetry frames follow.

byte offset	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	16	17	18	19	20	21	22	23	
contents	255				Bi	t sel	ectic	n					Τl	M fı	rame	1			TL	.M fr	ame	2		

Content	Log ID (0xFF)	Mask	TLM frame 1	TLM frame 2		TLM frame N
Offset (bytes)	0	1	11	17	:	11 + (N-1)*6
Len (bytes)	1	10	6	6	•••	6

Figure 16: Contents of UART log unsolicited telemetry transmissions

The total length of the message is 11+N*6 bytes where N is the number of bits that are set in the mask.

DOC: FIRMWARE REFERENCE MANUAL

VER: 7.4 PAGE: 163

8. Document History

Version	Responsible person(s)	Pages	Date	Description of change
3.14	GJVV	All	18/05/2020	Updates for ACP v7 and Bootloader v3: - Reference document version numbers - TC/TLM tables (autogen) updated for ACP and bootloader - Added SD card formatting details - Some minor language edits
7.1	GJVV	2	18/05/2020	New document version numbering scheme – major matches ACP interface version
7.2	GJVV	161	03/11/2020	Removed driver library section
7.3	LV	106	30/3/2021	Added +XY 45 degree option to AxisSelect enumeration (Table 180)
7.4	LV	159	5/1/2022	Removed outdated/unnecessary reference to CRC telemetry request in firmware upload text, and updated process description.