INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF40106B gates Hex inverting Schmitt trigger

Product specification
File under Integrated Circuits, IC04

January 1995

Hex inverting Schmitt trigger

HEF40106B gates

DESCRIPTION

Each circuit of the HEF40106B functions as an inverter with Schmitt-trigger action. The Schmitt-trigger switches at different points for the positive and negative-going input signals. The difference between the positive-going voltage (V_P) and the negative-going voltage (V_N) is defined as hysteresis voltage (V_H) .

This device may be used for enhanced noise immunity or to "square up" slowly changing waveforms.

HEF40106BP(N): 14-lead DIL; plastic

(SOT27-1)

HEF40106BD(F): 14-lead DIL; ceramic (cerdip)

(SOT73)

HEF40106BT(D): 14-lead SO; plastic

(SOT108-1)

(): Package Designator North America

FAMILY DATA, I_{DD} LIMITS category GATES

See Family Specifications

Hex inverting Schmitt trigger

HEF40106B gates

DC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.	
Hysteresis	5		0,5	0,8		V
voltage	10	V _H	0,7	1,3		V
	15		0,9	1,8		V
Switching levels	5		2	3,0	3,5	V
positive-going	10	V _P	3,7	5,8	7	V
input voltage	15		4,9	8,3	11	V
negative-going	5		1,5	2,2	3	V
input voltage	10	V_N	3	4,5	6,3	V
	15		4	6,5	10,1	V

Hex inverting Schmitt trigger

HEF40106B gates

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays						
$I_n \rightarrow O_n$	5		90	180	ns	63 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	35	70	ns	24 ns + (0,23 ns/pF)
	15		30	60	ns	22 ns + (0,16 ns/pF) C _L
	5		75	150	ns	48 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	35	70	ns	24 ns + (0,23 ns/pF) C _L
	15		30	60	ns	22 ns + (0,16 ns/pF) C _L
Output transition times	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L
	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L

	V _{DD} V	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	2 300 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	9 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	20 000 $f_i + \sum (f_0 C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_o C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

Hex inverting Schmitt trigger

HEF40106B gates

Fig.6 Typical drain current as a function of input voltage; $V_{DD} = 5 \text{ V}$; $T_{amb} = 25 \text{ °C}$.

Fig.7 Typical drain current as a function of input voltage; V_{DD} =10 V; T_{amb} = 25 °C.

Fig.8 Typical drain current as a function of input voltage; $V_{DD} = 15 \text{ V}$; $T_{amb} = 25 ^{\circ}\text{C}$.

Hex inverting Schmitt trigger

HEF40106B gates

If a Schmitt trigger is driven via a high impedance (R > 1 k Ω) then it is necessary to incorporate a capacitor C of such value that: $\frac{C}{C_p} > \frac{V_{DD} - V_{SS}}{V_H}$, otherwise oscillation can occur on the edges of a pulse.

 C_p is the external parasitic capacitance between input and output; the value depends on the circuit board layout.

Hex inverting Schmitt trigger

HEF40106B gates

APPLICATION INFORMATION

Some examples of applications for the HEF40106B are:

- Wave and pulse shapers
- · Astable multivibrators
- Monostable multivibrators.

