Mortgage basics

INTRODUCTION TO FINANCIAL CONCEPTS IN PYTHON

Dakota WixomQuantitative Finance Analyst

Taking out a mortgage

A mortage is a loan that covers the remaining cost of a home after paying a percentage of the home value as a down payment.

- A typical down payment in the US is at least 20% of the home value
- A typical US mortgage loan is paid off over 30 years

Example:

- \$500,000 house
- 20% down (\$100,000)
- \$400,000 remaining as a 30 year mortgage loan

Converting from an annual rate

To convert from an annual rate **Example:** to a periodic rate:

$$R_{Periodic} = (1 + R_{Annual})^{\frac{1}{N}} -$$

- R: Rate of Return (or Interest Rate)
- N: Number of Payment Periods Per Year

Convert a 12% annual interest rate to the equivalent monthly rate.

$$(1+0.12)^{\frac{1}{12}}-1=0.949\% \text{ m}$$

Mortgage loan payments

You can use the **NumPy** function .pmt(rate, nper, pv) to compute the periodic mortgage loan payment.

Example:

Calculate the *monthly* mortgage payment of a \$400,000 30 year loan at 3.8% interest:

```
import numpy as np
monthly_rate = ((1+0.038)**(1/12) - 1)
np.pmt(rate=monthly_rate, nper=12*30, pv=400000)
```

-1849.15

Let's practice!

INTRODUCTION TO FINANCIAL CONCEPTS IN PYTHON

Amortization, interest and principal

INTRODUCTION TO FINANCIAL CONCEPTS IN PYTHON

Dakota WixomQuantitative Finance Analyst

Amortization

Principal (Equity): The amount of your mortgage paid that counts towards the value of the house itself

Interest Payment ($IP_{Periodic}$)

$$=RMB*R_{Periodic}$$

Principal Payment (

$$PP_{Periodic}$$
)

$$= MP_{Periodic} - IP_{Periodic}$$

- **PP:** Principal Payment
- MP: Mortgage Payment
- **IP:** Interest Payment
- R: Mortgage Interest Rate (Periodic)
- RMB: Remaining Mortgage
 Balance

Accumulating values via for loops in Python

Example:

```
accumulator = 0
for i in range(3):
    if i == 0:
        accumulator = accumulator + 3
    else:
        accumulator = accumulator + 1
    print(str(i)+": Loop value: "+str(accumulator))
```

```
0: Loop value: 3
1: Loop value: 4
2: Loop value: 5
```

Let's practice!

INTRODUCTION TO FINANCIAL CONCEPTS IN PYTHON

Home ownership, equity and forecasting

INTRODUCTION TO FINANCIAL CONCEPTS IN PYTHON

Dakota WixomQuantitative Finance Analyst

Ownership

To calculate the percentage of the home you actually own (home equity):

$$ext{Percent Equity Owned}_t = P_{Down} + rac{E_{Cumulative,t}}{V_{Home}}$$

$$E_{Cumulative,t} = \sum_{t=1}^{T} P_{Principal,t}$$

- ullet $E_{Cumulative,t}$: Cumulative home equity at time t
- ullet $P_{Principal,t}$: Principal payment at time t
- V_{Home} : Total home value
- P_{Down} : Initial down payment

Underwater mortgage

An **underwater** mortgage is when the remaining amount you owe on your mortgage is actually higher than the value of the house itself.

Cumulative operations in NumPy

Cumulative Sum

```
import numpy as np
np.cumsum(np.array([1, 2, 3]))
```

```
array([1, 3, 6])
```

Cumulative Product

```
import numpy as np
np.cumprod(np.array([1, 2, 3]))
```

```
array([1, 2, 6])
```

Forecasting cumulative growth

Example:

What is the cumulative value at each point in time of a \$100 investment that grows by 3% in period 1, then 3% again in period 2, and then by 5% in period 3?

```
import numpy as np
np.cumprod(1 + np.array([0.03, 0.03, 0.05]))
```

```
array([ 1.03, 1.0609, 1.113945])
```

Let's practice!

INTRODUCTION TO FINANCIAL CONCEPTS IN PYTHON

