Chapitres 1 à 6/ Notions importantes

1-Événements/Probabilités

- $\overline{A_1 \cap A_2 \dots \cap A_n} = \overline{A_1} \cup \overline{A_2} \cup \dots \cup \overline{A_n}$ et $\overline{A_1} \cup \overline{A_2} \dots \cup \overline{A_n} = \overline{A_1} \cap \overline{A_2} \cap \dots \cap \overline{A_n}$ (lois de Morgan).
- $\bullet \qquad P(\bar{A}) = 1 P(A).$
- $\bullet \qquad P(A \cup B) = P(A) + P(B) P(A \cap B).$
- $P(A \cup B \cup C) = P(A) + P(B) + P(C) P(A \cap B) P(A \cap C) P(B \cap C) + P(A \cap B \cap C).$
- $P(A) = P(A \cap B) + P(A \cap \overline{B})$ (voir le diagramme de VENN).
- Si A et B incompatibles (disjoints), $A \cap B = \emptyset$, alors $P(A \cup B) = P(A) + P(B)$.
- $P(A|B) = \frac{P(A \cap B)}{P(B)}$ avec $(P(B) \neq 0)$ (Probabilité conditionnelle).
- $A \text{ et } B \text{ indépendants} \Leftrightarrow P(A|B) = P(A|\overline{B}) = P(A) \text{ ou } P(A \cap B) = P(A)P(B).$
- $P(\bar{A}|B) = 1 P(A|B)$, mais $P(A|\bar{B}) \neq 1 P(A|B)$.
- Loi des probabilités totales : $P(B) = \sum_k P(B|A_k)P(A_k)$ où les $\{A_k\}$ forment une partition.
- Loi de Bayes : $P(A_j|B) = P(B|A_j)P(A_j)/\sum_k P(B|A_k)P(A_k)$ où les $\{A_k\}$ forment une partition.
- Dénombrement : tirage de k éléments parmi n.
 - \triangleright Tirages successifs (1 à 1) avec remise : n^k possibilités.
 - \triangleright Tirages successifs (1 à 1) sans remise : $A_k^n = \frac{n!}{(n-k)!}$ possibilités.
 - For Tirage simultané : $C_k^n = \binom{n}{k} = \frac{n!}{k!(n-k)!}$ possibilités.
 - \triangleright Permutation d'objets semblables : $\frac{n!}{n_1!n_2!...n_k!}$ possibilités.

2-a-Variables aléatoires

Type de	Fonction de masse/	Répartition	Espérance	Variance
variable	Fonction de densité	$F_X(x) = P(X \le x)$	E(X)	$V(X) = E(X^2) - (E(X))^2$
<u>Discrète</u>	$\underline{\text{Masse}}\ p_X(x)$		2 - 120 1	
	$\sum P_X(x)=1$	$\sum_{y \le x} P_X(y)$	$\sum_{x} x P_{X}(x)$	$E(X^2) = \sum_{x} x^2 P_X(x)$
Continue	$\underline{\text{Densit\'e}}f_X(x)$	11fes		
	$\int_{-\infty}^{+\infty} f_X(x) dx = 1$	$\int_{-\infty}^{x} f_X(y) dy$	$\int_{-\infty}^{+\infty} x f_X(x) dx$	$E(X^2) = \int_{-\infty}^{+\infty} x^2 f_X(x) dx$

$$P(a < X \le b) = F_X(b) - F_X(a).$$
 $f_X(x) = \frac{d(F_X(x))}{dx}$

<u>2-b-Fonctions d'une variable aléatoire</u> Y = g(X)

- X, Y discrètes : $P_Y(y) = \sum_D P_X(x)$ avec $D = \{x : y = g(x)\}$.
- X continue, Y discrètes : $P_Y(y) = \int_D f_X(x) dx$ avec $D = \{x : y = g(x)\}$.
- X, Y continues: Si g(X) bijective (monotone) de D_X vers D_Y alors $f_Y(y) = \left| \frac{dg^{-1}(y)}{dy} \right| * f_X(g^{-1}(y))$
- $E(g(X)) = \sum_{x} g(x) P_X(x)$ (X discrète) ou $\int_{-\infty}^{+\infty} g(x) f_X(x) dx$ (X continue).
- $V(g(X)) = E((g(x))^{2}) (E(g(x)))^{2}$

MTH2302D/ Chapitre 1à 6- Résumé

Hammouche-Toufik

- $E(aX + b) = aE(X) + b \text{ et } V(aX + b) = a^2V(X).$
- $E(X^k)$: Moment d'ordre k de X. Ici $g(X) = X^k$.

3-Vecteurs aléatoires (X, Y)

3-a) Vecteurs discrets $P_{X,Y}(x,y)$: fonction de masse conjointe

- Masse marginale : $P_X(x) = \sum_y P_{X,Y}(x,y)$. $P_Y(y) = \sum_x P_{X,Y}(x,y)$.
- Masse conditionnelle : $P_{Y|X=x}(y) = \frac{P_{X,Y}(x,y)}{P_X(x)}$ et $P_{X|Y=y}(x) = \frac{P_{X,Y}(x,y)}{P_Y(y)}$.
- Espérance conditionnelle : $E(Y|X=x) = \sum_{y} y P_{Y|X=x}(y)$.
- Indépendance entre X et Y: ssi $P_{X,Y}(x,y) = P_X(x)P_Y(y)$ pour tout couple (x,y). Donc $P_{Y|X=x}(y) = P_Y(y)$.

3-b) Covariance/corrélation

- $\rho = \frac{cov(X,Y)}{\sigma_X \sigma_Y} \in [-1,1]$ où cov(X,Y) = E(XY) E(X)E(Y).
- $E(XY) = \sum_{x} \sum_{y} xy P_{X,Y}(x,y)$ (vecteur discret) ou $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy f_{X,Y}(x,y) dxdy$ (vecteur continu).
- $Y = aX + b \text{ donc } \rho = 1 \text{ si } a > 0, \ \rho = -1 \text{ si } a < 0.$
- X, Y indépendantes $\Rightarrow \rho = 0$. Dans ce cas, cov(X, Y) = 0, alors E(XY) = E(X)E(Y).
 - Combinaison linéaire $Y = a_0 + a_1 X_1 + \cdots + a_n X_n$
 - $E(Y) = a_0 + a_1 E(X_1) + \cdots + a_n E(X_n).$
 - $V(Y) = a_1^2 V(X_1) + \dots + a_n^2 V(X_n) + 2 \sum_{tous \ les \ couples} a_i a_j cov(X_i, X_j).$

4-Lois discrètes usuelles:

Loi	Moyenne	Variance	Masse	Répartition
oneens.V	E(X)	V(X)	$P_X(x)$	$F_X(x) = P(X \le x)$
Bernoulli	p	p(1-p)	$P_X(0)=1-p$	BON STEEN BOLTSBOT STORA
B(p)			$P_X(1)=p$	
Binomiale				-7
B(n,p)	пр	np(1-p)	$C_x^n p^x (1-p)^{n-x}$	Table
			$x = 0, 1, 2, \dots, n$	
Géométrique	1	$\frac{1-p}{p^2}$	$p(1-p)^{x-1}$	$1-(1-p)^x$
G(p)	\overline{p}	p^2	x = 1, 2, 3,	$x = 1, 2, 3, \dots$
Poisson			$e^{-\lambda}\lambda^x$	
$P(\lambda)$	λ	λ	<u>x!</u>	Table
	,,	(who are	$x = 0, 1, 2, \dots$	(charassania da)
Hypergéométrique		((3)q+(3)=0	$C_x^D C_{n-x}^{N-D}$	A constant, Y discussion
H(N,n,D)	2011 1 100 m		C_n^N	

Approximation de la binomiale par la poisson et de l'hypergéométrique par binomiale :

 $X \sim B(n, p)$ où n grand (≥ 100), p petit (≤ 0.1) alors $X \approx P(\lambda = np)$.

 $X \sim H(N, n, D) \ n/N \le 0.1$, alors $X \approx B(n, p = D/N)$.

5-Lois continues usuelles/ Loi normale:

Loi	Moyenne	Variance	Densité	Répartition
			$f_X(x)$	$F_X(x) = P(X \le x)$
Uniforme $U[a,b]$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{1}{b-a} x \in [a, b]$ (0 sinon)	$0 si x < a$ $\frac{x-a}{b-a} si x \in [a,b]$ $1 si x > b$
Exponentielle $Exp(\lambda)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\lambda e^{-\lambda x} x \ge 0$ (0sinon)	$0 si x < 0$ $1 - e^{-\lambda x} si x \ge 0$
Normale $N(\mu, \sigma^2)$	μ	σ^2	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$ $x \in]-\infty, +\infty[$	$\Phi(\frac{x-\mu}{\sigma})$ Lire da la table N(0,1)
Lognormale $X \sim LgN(\mu_X, \sigma_X^2) \Leftrightarrow Y = LnX \sim N(\mu_Y, \sigma_Y^2)$	$\mu_X = e^{\mu_Y + \frac{\sigma_Y^2}{2}}$	$\sigma_X^2 = \mu_X^2 (e^{\sigma_Y^2} - 1)$	Esperance E(X)	$\Phi(\frac{Lnx-\mu_Y}{\sigma_Y})$ Lire da la table N(0,1)

Loi Gamma: $X_1, X_2, ..., X_n$ n variables aléatoires indépendantes où $X_i \sim Exp(\lambda)$.

$$Y = X_1 + \cdots X_n \sim \Gamma(n, \lambda)$$
. $E(Y) = \frac{n}{\lambda}$ et $V(Y) = \frac{n}{\lambda^2}$

$$P(Y \le y) = 1 - P(T \le n - 1) \text{ où } T \sim P(\lambda y).$$

Additivité de la loi normale :

 $X_1, X_2, ..., X_n$ n variables aléatoires indépendantes où $X_i \sim N(\mu_i, \sigma_i^2)$.

$$Y = a_0 + \sum_{i=1}^{n} a_i X_i \sim N(\mu_Y = a_0 + \sum_{i=1}^{n} a_i \mu_i, \ \sigma_Y^2 = \sum_{i=1}^{n} a_i^2 \sigma_i^2).$$

Théorème Central Limite (TCL):

 X_1, X_2, \dots, X_n n variables aléatoires indépendantes. Si n est grand (≥ 30), alors :

$$Y = a_0 + \sum_{i=1}^n a_i X_i \approx N(\mu_Y = a_0 + \sum_{i=1}^n a_i \mu_i, \ \sigma_Y^2 = \sum_{i=1}^n a_i^2 \sigma_i^2).$$

Approximation de la binomiale par la normale : $X \sim B(n, p)$ où n grand, p moyen tq np > 5 pour $p \le \frac{1}{2}$ ou np((1-p) > 5 pour $p > \frac{1}{2}$, alors : $X \approx N(\mu = np, \sigma^2 = np(1-p))$. $P(X = x) \approx P(x - \frac{1}{2} \le X \le x + \frac{1}{2})$ avec la loi normale.