1 Fundamental Concepts

Dirac Notation Definition

Bra-Ket Notation (Dirac notation) is a standard notation for describing quantum states and operations in quantum mechanics.

Three Key Components:

- **Ket**: $|\psi\rangle$ column vector representing a quantum state
- **Bra**: $\langle \phi |$ row vector (complex conjugate transpose)
- **Bracket**: $\langle \phi | \psi \rangle$ inner product (probability amplitude)

Basic Definitions

$$\mathsf{Ket:} \quad |\psi\rangle \equiv \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} \tag{1}$$

Bra:
$$\langle \psi | \equiv (c_1^*, c_2^*, \dots, c_n^*)$$
 (2)

Normalization

For normalized states:

$$\langle \psi | \psi \rangle = 1$$

This ensures the total probability equals unity.

2 Mathematical Operations

2.1 Linear Combinations

Superposition Principle

Any quantum state can be written as:

$$|\psi\rangle = \sum_{i} c_i |i\rangle$$

where $|i\rangle$ are basis states and c_i are complex coeffi-

2.2 Operators

Operator Action

Operators \hat{A} act on kets:

$$\hat{A}|\psi\rangle = |\phi\rangle$$

Expectation Values

The expectation value of operator \hat{A} :

$$\langle \hat{A} \rangle = \langle \psi | \hat{A} | \psi \rangle$$

 \P Operators are represented by hats (e.g., \hat{H} , \hat{p} , \hat{x})

2.3 Outer Products

Projection Operators

The outer product creates projection operators:

$$|\psi\rangle\langle\phi| = \hat{P}_{\psi,\phi}$$

Special case - projector onto state $|\psi\rangle$:

$$\hat{P}_{\psi} = |\psi\rangle\langle\psi|$$

3 Standard Quantum States

3.1 Spin-1/2 States

Pauli Basis States

$$|+\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |-\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 (4)

$$|+_{x}\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \quad |-_{x}\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}$$

$$|+_{y}\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\i \end{pmatrix}, \quad |-_{y}\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-i \end{pmatrix}$$
(6)

$$|+_y\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\i \end{pmatrix}, \quad |-_y\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-i \end{pmatrix}$$
 (6)

3.2 Position and Momentum

Continuous Basis States

Position: $|x\rangle$ - eigenstate of \hat{x} (7) Momentum: $|p\rangle$ - eigenstate of \hat{p} (8)

$$\langle x|p\rangle = \frac{1}{\sqrt{2\pi\hbar}}e^{ipx/\hbar} \tag{9}$$

Wave Functions

The wave function is the position representation:

$$\psi(x) = \langle x | \psi \rangle$$

4 Key Relations & Identities

4.1 Completeness Relations

Resolution of Identity

For discrete basis:

$$\sum_{i}|i\rangle\langle i|=\hat{I}$$

For continuous basis:

$$\int |x\rangle\langle x|dx = \hat{I}$$

4.2 Orthogonality

Orthonormal Basis

$$\langle i|j \rangle = \delta_{ij} \quad \text{(discrete)}$$
 (10) $\langle x|x' \rangle = \delta(x-x') \quad \text{(continuous)}$ (11)

A Be careful with normalization factors in continuous bases!

5 Time Evolution

5.1 Schrödinger Equation

Time-Dependent Schrödinger Equation

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle$$

where \hat{H} is the Hamiltonian operator.

5.2 Time Evolution Operator

Unitary Evolution

$$|\psi(t)\rangle = \hat{U}(t, t_0)|\psi(t_0)\rangle$$

where $\hat{U}(t,t_0)=e^{-i\hat{H}(t-t_0)/\hbar}$

Properties of \hat{U}

- Unitary: $\hat{U}^{\dagger}\hat{U} = \hat{I}$
- $\hat{U}(t_0, t_0) = \hat{I}$
- $\hat{U}(t_2, t_0) = \hat{U}(t_2, t_1)\hat{U}(t_1, t_0)$

6 Quantum Measurement

6.1 Born Rule

Probability of Measurement

Probability of measuring eigenvalue a_n of operator \hat{A} :

$$P(a_n) = |\langle a_n | \psi \rangle|^2$$

where $|a_n\rangle$ is the corresponding eigenstate.

6.2 Post-Measurement State

State Collapse

After measuring a_n , the state becomes:

$$|\psi'\rangle = \frac{\hat{P}_n|\psi\rangle}{\sqrt{\langle\psi|\hat{P}_n|\psi\rangle}}$$

where $\hat{P}_n = |a_n\rangle\langle a_n|$

measurement Types:

- Projective: Uses projection operators
- POVM: Positive Operator-Valued Measure
- Weak: Minimal disturbance measurements

7 Advanced Concepts

7.1 Tensor Products

Composite Systems

$$|\psi_{AB}\rangle = |\psi_A\rangle \otimes |\psi_B\rangle$$

In general:

$$|\psi_{AB}\rangle = \sum_{i,j} c_{ij} |i_A\rangle \otimes |j_B\rangle$$

7.2 Entanglement

Bell States

$$|\Phi^{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \tag{12}$$

$$|\Phi^{-}\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)$$
 (13)

$$|\Psi^{+}\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle) \tag{14}$$

$$|\Psi^{-}\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \tag{15}$$

Entanglement Criterion

A state is entangled if it cannot be written as:

$$|\psi\rangle \neq |\psi_A\rangle \otimes |\psi_B\rangle$$

8 Essential Formulas

8.1 Commutation Relations

Canonical Commutators

$$[\hat{x}, \hat{p}] = i\hbar \tag{16}$$

$$[\hat{L}_i, \hat{L}_j] = i\hbar \epsilon_{ijk} \hat{L}_k \tag{17}$$

(18)

$$[\hat{a},\hat{a}^{\dagger}]=1$$
 (harmonic oscillator)

8.2 Uncertainty Relations

Heisenberg Uncertainty Principle

For any two operators \hat{A} and \hat{B} :

$$\Delta A \cdot \Delta B \ge \frac{1}{2} |\langle [\hat{A}, \hat{B}] \rangle|$$

Most famous case:

$$\Delta x \cdot \Delta p \ge \frac{\hbar}{2}$$

🥊 The uncertainty principle is a fundamental feature of quantum mechanics, not a limitation of measurement!

9 References & Resources

Recommended Reading

Classic Textbooks:

- Griffiths Introduction to Quantum Mechanics
- · Sakurai Modern Quantum Mechanics
- Nielsen & Chuang Quantum Computation

Kev Papers:

- · Dirac The Principles of Quantum Mechanics
- · Born Statistical Interpretation
- · Bell On the Einstein-Podolsky-Rosen Paradox

Quick Reference

Common Notation:

- $\hbar = \frac{h}{2\pi}$ reduced Planck constant
- \hat{H} Hamiltonian (energy operator)
- \hat{U} unitary time evolution operator
- δ_{ij} Kronecker delta
- $\delta(x)$ Dirac delta function