GATE - BM 41

EE23BTECH11215 - Penmetsa Srikar Varma

QUESTION

Q41) A filter designed using op-amps, resistors and capacitors as shown in figure. op-amps are ideal with infinite gain and infinite bandwidth. If $\frac{V_0(s)}{V_i(s)}$ is an all-pass transfer function, the value of resistor R2 (in $k\Omega)$ is

for op-amp at $V_i(s)$,

$$V_x = sC\left(\frac{V_0(s) - V_i(s)}{1000}\right)$$
 (2)

from (1) and (2) transfer function is given by,

$$H(s) = 2\left(\frac{5000 + sCR_2}{1000 + 2sC}\right) \tag{3}$$

we can observe that for transfer function,

$$s_1 = -\frac{5000}{CR_2}, \ s_2 = -\frac{1000}{2C}$$
 (4)

since, for all-pass transfer function $s_1=s_2$,

$$R_2 = 10 \text{ k}\Omega \tag{5}$$

so, option B is correct

- (A) 1
- (B) 10
- (C) 5
- (D) 2

(GATE BM 2022)

SOLUTION

variables	conditions
voltage at node 1	$-V_{i}(s)$
voltage at node 2	$V_{0}\left(s\right)$
voltage at node 3	V _x
voltage at remaining nodes	0 V
С	capacitor of 100pF
$\frac{1}{sC}$	laplace domain of capacitor
$H(s) = \frac{V_0(s)}{V_i(s)}$	transfer function
s ₁	root of transfer function
s ₂	pole of transfer function
R_2	unknown

Table of Parameters

for op-amp at $V_0\left(s\right)$, (we assume R_2 in $k\Omega$)

$$V_{x} = \frac{5V_{i}(s)}{R_{2}} - \frac{V_{0}(s)}{2}$$
 (1)