CS201: Discrete Math for Computer Science Quiz 1, Spring 2023

The quiz needs to be accomplished in English. Closed-book, no cheating sheet, no discussion. Any plagiarism behavior will lead to zero point.

- **Q. 1.** (50 points) For each of the following questions, determine whether the following statements are correct or incorrect. Explain your answer.
 - (1) $(p \lor q) \to r$ and $(p \to r) \land (q \to r)$ are equivalent.
 - (2) Under the domain of all real numbers, the truth value of $\exists x \forall y (y \neq 0 \rightarrow xy = 1)$ is T.
 - (3) Consider an argument form with premise $p \lor q$, premise $\neg p \lor r$, and conclusion $q \lor r$. To prove that this argument form is valid, based on the definition, we need to show that ______ is a tautology. Tautology is a proposition that is ______.

Solution:

(1) Correct. This can be proven as follows:

$$\begin{array}{ll} (p \vee q) \to r & \equiv \neg (p \vee q) \vee r & \text{(Useful Law)} \\ & \equiv (\neg p \wedge \neg q) \vee r & \text{(De Moegan's Law)} \\ & \equiv (\neg p \vee r) \wedge (\neg q \vee r) & \text{(Distributive Law)} \\ & \equiv (p \to r) \wedge (q \to r) & \text{(Useful Law)} \end{array}$$

Any proof that shows the equivalence is acceptable.

- (2) Incorrect. This proposition means that there is a real number x for which $y \neq 0 \rightarrow xy = 1$ for every real number y. Consider an arbitrary x. Suppose $y_1 \neq 0$ and $xy_1 = 1$. Let $y_2 = 2y_1$. Then, $xy_2 = 2$, i.e., $y \neq 0 \rightarrow xy = 1$ does not hold for every y.
- (3) $((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$; always true given all possibile truth values of the proposition variables.
- **Q. 2.** (25 points) Prove or disprove that $\sqrt[3]{2}$ is a rational number.

Solution: Through proving with contradiction, we have $\sqrt[3]{2}$ is a not rational number. Suppose $\sqrt[3]{2}$ is a rational number. Then, there exists m and n such that $\sqrt[3]{2} = m/n$, where m and n are two integers which have

no common divisors. Thus, $m^3 = 2n^3$. Since m is an integer, m must be divisble by 2 and can be represented by m = 2k, where k is an integer. By substituting m into $m^3 = 2n^3$, we have $4k^3 = n^3$. This implies that n must be divisble by 2 as well. As a result, m and n have a common divisor 2, which leads to a contradiction.

Q. 3. (25 points + Bonus 20 points) Consider the following functions:

$$2^n, n^{20}, n^2(\log n)^{20}, (n!)^5, (\log n)^{\log \log n}, \log(n^n),$$

where the base of the logarithm is 2.

- (1) Which function has the highest growth rates?
- (2) Which functions have the lowest and second lowest growth rates? List these two functions would be sufficient. You do not need to order these two functions.
- (3) [Bonus 20 points] Order the two functions you listed in question (2) by their grow rates, and prove it. That is, suppose the two functions you listed are $f_1(n)$ and $f_2(n)$. You need to indicate whether it is $f_1(n) = O(f_2(n))$ or $f_2(n) = O(f_1(n))$, and then prove it.

Solution:

- $(1) (n!)^5$
- (2) $(\log n)^{\log \log n}$ and $\log(n^n)$
- (3) $(\log n)^{\log \log n} = O(\log(n^n))$. To prove $(\log n)^{\log \log n} = O(\log(n^n))$, let $n = 2^{2^k}$, then we need to show:

$$(\log 2^{2^k})^{\log \log 2^{2^k}} = O(2^{2^k} \log(2^{2^k})).$$

As a result, we need to show $(2^k)^k = O(2^{2^k}2^k)$, i.e., $2^{k^2} = O(2^{2^k+k})$. Equation $2^{k^2} = O(2^{2^k+k})$ is true, since $2^{k^2} \le 2^{2^k+k}$ for all $k \ge 0$.