FAE ZUN

FAE\_ZUN

Intersection Design



# **Intersection Design**

- Intersection Types
- Provide adequate sight distance for approach and departure maneuvers
- Minimize turning and through conflicts
- Avoid geometry (sharp curves/steep grades)
   that adversely impact acceleration/deceleration

# **Types of Intersections**







Grade Separation
(Highway levels are not connected)



Interchange
(Highway levels are connected)

## **At Grade Intersections**





Three-leg intersections



Multi-leg intersections





Roundabout intersections

# **Conflict points**

There are three types of conflict points as follows

- -Merging points
- Diverging points
- Crossing points



For 4-Leg intersection as shown in the figure, the conflict points are

## **At Grade Intersection**

Three-leg or four-leg at grade intersection are designed as plain, flared and fully channelized. It will be discussed in the following:

1) Plain



#### **Design Elements**

-Right turn (simple)

Table (1)

#### **Advantages**

- Small area
- Simple design
- Small cost

#### **Disadvantages**

- -Delay due to R.T, L.T
- -Conflict between R.T and through
- -Undefined path for L.T, R.T

| Angle | Vehicle | Simple Curve (m)  | Angle | Vehicle | Simple Curve (m)  |
|-------|---------|-------------------|-------|---------|-------------------|
| 30    | PC      | 18                |       | PC      | 6 - 0.75 - 8:1    |
|       | SUT     | 30                | 105   | SUT     | 11 - 0.9 - 10:1   |
|       | WB-40   | 45                |       | WB-40   | 12 – 1.2 – 10:1   |
|       | PC      | 15                |       | PC      | 6 - 0.6 - 10:1    |
| 45    | SUT     | 23                | 120   | SUT     | 10 - 0.9 - 10:1   |
|       | WB-40   | 37                |       | WB-40   | 11 – 1.5 – 8:1    |
|       | PC      | 12                |       | PC      | 6 - 0.45 - 15:1   |
| 60    | SUT     | 18                | 135   | SUT     | 9-1.2-8:1         |
|       | WB-40   | 27                |       | WB-40   | 10 - 2.4 - 6:1    |
|       | PC      | 7.5 - 0.6 - 10:1  |       | PC      | 5.5 - 0.6 - 10:1  |
| 75    | SUT     | 13.5 – 0.6 – 10:1 | 150   | SUT     | 10 – 1.2 – 8:1    |
|       | WB-40   | 18 – 0.6 – 15:1   |       | WB-40   | 10 – 1.8 – 8:1    |
|       | PC      | 6 - 0.75 - 10:1   |       | PC      | 4.5 – 0.15 – 20:1 |
| 90    | SUT     | 12 - 0.6 - 10:1   | 180   | SUT     | 10 – 0.45– 10:1   |
|       | WB-40   | 13.5 – 1.2 – 10:1 |       | WB-40   | 6 – 2.9– 5:1      |

## 1) Plain

#### Design of right turns for plain intersection type

- -Factor affecting right turn design includes turning angle (deflecting angle) and design vehicle
- -Turning angle ( $\Delta$ ) is measured as shown in figure.
- -Design vehicle is classified into (PC, SUT, Trailer WB-40, WB-50).



## 2) Flared



#### **Design Elements**

-Right turn (simple)

Table (1)

-Speed change lanes

#### **Advantages**

- Moderate area and cost
- No delay due to R.T

#### **Disadvantages**

- -Delay due to L.T
- -Undefined path for L.T

## 2) Flared

#### Design of right turns

The same procedure followed for plain intersection

#### Design of speed change lanes

Deceleration and acceleration lanes can be calculated as follows:

-Total deceleration lane = Lt + Ld

$$Lt = 0.278Vt$$

Ld = 
$$0.295 (V_1^2 - V_2^2) / d$$
 (d = 8 kph/sec)

-Total Acceleration lane = Lt + La

$$Lt = 0.278Vt$$

La = 
$$0.295 (V_1^2 - V_2^2) / a$$
 (a = 5 kph/sec)

| Design | Acceleration length (m) for entrance design speed (km/hr)      |     |     |     |     |     |     |     |     |
|--------|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Speed  | 0.0                                                            | 25  | 30  | 40  | 50  | 55  | 65  | 70  | 80  |
| 50     | 60                                                             | -   | -   | -   | -   | -   | -   | -   | -   |
| 65     | 115                                                            | 100 | 75  | 65  | 45  | -   | -   | -   | -   |
| 80     | 230                                                            | 215 | 190 | 175 | 150 | 115 | 50  | -   | -   |
| 95     | 355                                                            | 340 | 325 | 305 | 275 | 245 | 180 | 120 | 50  |
| 115    | 485                                                            | 470 | 455 | 430 | 405 | 375 | 310 | 255 | 175 |
| Design | sign Deceleration length (m) for entrance design speed (km/hr) |     |     |     |     |     | hr) |     |     |
| Speed  | 0.0                                                            | 25  | 30  | 40  | 50  | 55  | 65  | 70  | 80  |
| 50     | 70                                                             | 55  | 50  | 45  | -   | -   | -   | -   | -   |
| 65     | 95                                                             | 90  | 80  | 70  | 55  | 45  | -   | -   | -   |
| 80     | 135                                                            | 125 | 115 | 110 | 95  | 85  | 70  | 55  | -   |
| 95     | 160                                                            | 150 | 150 | 140 | 130 | 125 | 105 | 90  | 75  |
| 105    | 175                                                            | 165 | 160 | 150 | 145 | 130 | 115 | 100 | 85  |
| 115    | 185                                                            | 180 | 175 | 170 | 155 | 150 | 130 | 120 | 105 |

Design Length of speed change lane for all main highway flat grades 2% or less

## 3) Fully Channelized



#### **Design Elements**

- -Right turn
- -Speed change lanes
- -Pocket lanes

#### **Advantages**

- Defined path for left turn
- No delay due to R.T

#### **Disadvantages**

-Large area and cost

## 3) Fully Channelized

#### Design of right turns (turning roadway)

Table (3) used to design turning roadway depends on turning speed - low (up to 20kph) - high (more than 20kph)

#### Design of speed change lanes

- Deceleration and acceleration lanes (the same procedure followed for flared type

#### **Design of pocket lanes**

- Pocket lane = Lt+ Ld+ Ls
- Ls = 30m

# **Example**

It is required to design the shown intersection in the figure as:

Plain

Flared

Fully channelized

If the design vehicle is SUT and turning speed V= 25 kph

Solution

1-Plain  $\Delta$ =90, SUT Table (1)

15m, 12/0.6/10:1, 40-12-40/0.6

2- Flared  $\Delta$ =90, SUT Table (1)

15m, 12/0.6/10:1, 40-12-40/0.6

Speed change lane

Lt = 65m La = 280 m, Ld = 138 m



3- Fully channelized, T.speed = 25 kph (high turning speed)

R = 15 m, 1-lane 1-way, Pavement width=5.5 m Speed change lane

Lt = 65m, La = 280 m, Ld = 138 m Pocket lane

Lt = 65m , Ld = 138 m, Ls = 30 m



## 4) Roundabout

The roundabout is a channelized intersection with one-way traffic flow circulating around a central island

•Size – Single lane roundabouts have stort Flore an outside diameter 45m.

•Speed – The small diameter of roundabouts limits circulating vehicle speeds to 40kph



# **Sight Distance**

- Allow drivers to have an unobstructed view of intersection
- <u>SD</u> is the <u>length</u> of cross road that must be visible such that the driver of a turning/crossing vehicle can <u>decide</u> to and <u>complete</u> the maneuver without conflict with vehicles approaching the intersection on the cross road.

# **Sight Distance**

- Sight Triangle area free of obstructions necessary to complete maneuver and avoid collision needed for approach and departure.
- Allows driver to anticipate and avoid collisions
- Allows drivers of stopped vehicles enough view of the intersection to decide when to enter

# **Sight Triangle**

- Area free of obstructions necessary to complete maneuver and avoid collision needed for approach and departure.
- Consider horizontal as well as vertical, object below driver eye height may not be an obstruction
- AASHTO assumes 1.05 m above roadway of an object height of 1.3 m

# **Sight Triangle**

| Case              | Approach Triangle | Depart. Triangle |  |  |
|-------------------|-------------------|------------------|--|--|
| A. No control     | Required          | Required         |  |  |
| B. Stop control   | Not required      | Required         |  |  |
| C. Signal control | Not required      | Not required     |  |  |

Uncontrolled intersections do not normally require departure sight triangles because they typically have very low traffic volumes.





Clear Sight Triangle for Viewing Traffic Approaching from the Left Clear Sight Triangle for Viewing Traffic Approaching from the Right

#### A - Approach Sight Triangles



Clear Sight Triangle for Viewing Traffic Approaching from the Left Clear Sight Triangle for Viewing Traffic Approaching from the Right





## **SD Cases**

- No control: vehicles adjust speed
- **Stop control**: where traffic on minor roadway must stop prior to entering major roadway
- Signal control: where vehicles on all approaches are required to stop by either a stop sign or traffic signal

### Case A - No Control

- Rare? Not really
- Minimum sight triangle sides = distance traveled in3 seconds to adjust their speed

$$(d_a = 0.278 \times v_a \times t), (d_b = 0.278 \times v_b \times t)$$

## Case A - No Control

- Prefer appropriate SSD on both approaches (minimum really)
- Provided on lightly traveled roadways
- Provide control if sight triangle not available
- Assumes vehicle on the left yields to vehicle on the right if they arrive at same time

## Minimum Distance for Sight Triangle: No Control

| Speed (kph) | Distance (m) |
|-------------|--------------|
| 20          | 20           |
| 30          | 25           |
| 40          | 30           |
| 50          | 40           |
| 60          | 50           |
| 70          | 65           |
| 80          | 80           |
| 90          | 95           |
| 100         | 120          |
| 110         | 140          |
| 120         | 165          |

## Case A - No Control



$$(d_a-b)/d_a = a/d_b$$

$$d_a = 0.278 V_a t$$

$$a^*d_a = d_b(d_a-b)$$

$$d_b = a^* d_a / (d_a - b)$$

$$d_b = 0.278 V_b t$$

$$(t = 3sec)$$

## Case A - No Control



Critical speed is set to stopping distance  $d_b = a \underline{d_a}$  $d_a - b$ 



|                      | Distance (m) | Speed (kph) |
|----------------------|--------------|-------------|
|                      | 20           | 20          |
|                      | 25           | 30          |
| $d_b = 30 \text{ m}$ | 30           | 40          |
|                      | 40           | 50          |
|                      | 50           | 60          |
| $d_a = 65 \text{ m}$ | 65           | 70          |
|                      | 80           | 80          |
|                      | 95           | 90          |
|                      | 120          | 100         |
|                      | 140          | 110         |
|                      | 165          | 120         |



# Case B - Stop Control

Three Sub Cases – Maneuvers

- Turn left on to major roadway (clear traffic left, enter traffic right)
- Turn right on to major roadway (enter traffic from left)
- Crossing (clear traffic left/right)

# Case B – Stop Control

Need SD for departure and completion even if vehicle comes into view at point of departure:-

$$SD = 0.278 V_{major} * t_g$$

where  $t_g=7.5-11.5s$ ; add more for grade or

multilane; decrease by 1s. for right turns

# Case B - Stop Control

Intersection controlled by stop sign on minor road



$$S = L+D+W$$

$$D = 0.28V(J+ta)$$

# Case B - Stop Control

Values of time (ta) required for the vehicle to cross the width S

| Design  | S (m) |     |      |      |       |       |  |
|---------|-------|-----|------|------|-------|-------|--|
| Vehicle | 18    | 24  | 30   | 37   | 43    | 49    |  |
| PC      | 5.25  | 6.1 | 6.8  | 7.6  | 8.25  | 8.90  |  |
| SUT     | 7     | 8.2 | 9.2  | 10.2 | 11.10 | 11.90 |  |
| Se.Tr.  | 8.3   | 9.6 | 10.9 | 12   | 13.10 | 14.20 |  |







**Any Questions?**