LC 16 : classification périodique

Niveau: CPGE

<u>Prérequis</u>:

- Configuration électronique d'un atome, niveaux d'énergie
- Oxydants et réducteurs : réactions d'oxydo-réduction
- Cristallographie : parmètre de maille

Raisonnement historique : découverte des éléments

Avant 1700	1700-1799	1800-1849	1850-1899
Antimoine	Azote	Aluminium	Actinium
Argent	Béryllium	Baryum	Argon
Arsenic	Bismuth	Bore	Cesium
Carbone	Chlore	Brome	Dysprosium
Cuivre	Chrome	Cadmium	Gadolinium
Etain	Cobalt	Calcium	Gallium
Fer	Fluor	Cérium	Germanium
Mercure	Hydrogène	Erbium	Hélium
Or	Manganèse	Iode	Holmium
Phosphore	Molybdène	Lanthane	Indium
Plomb	Nickel	Iridium	Krypton
Soufre	Oxygène	Lithium	Néodyme
	Platine	Magnésium	Néon
	Strontium	Niobium	Polonium
	Tellure	Osmium	Praséodyme
	Titane	Palladium	Radium
	Tungstène	Potassium	Rhodium
	Uranium	Rubidium	Ruthénium
	Yttrium	Sélénium	Samarium
	Zinc	Silicium	Scandium
	Zirconium	Sodium	Thallium
		Tantale	Thulium
		Thorium	Xénon
		Vanadium	Ytterbium
(12)	(21)	(24)	(24)

Souce: https://culturesciences.chimie.ens.fr/thematiques/histoire-de-la-chimie/la-classification-periodique-de-lavoisier-a-mendeleiev

Raisonnement historique : classification en masse par Dalton (1808)

Raisonnement historique : classification en masse et par propriétes par Chancourtois et vis tellurique

Raisonnement historique : classification en masse et par propriétes par Chancourtois et vis tellurique

Mêmes propriétés

Souce: https://culturesciences.chimie.ens.fr/thematiques/histoire-de-la-chimie/la-classification-periodique-de-lavoisier-a-mendeleiev

Raisonnement historique : classification par Mendeleïev (1869)

опыть системы элементовъ.

```
Ti-50 	 Zr=90 	 ?=180. \\ V=51 	 Nb=94 	 Ta=182. \\ Cr=52 	 Mo=96 	 W=186. \\ Mn=55 	 Rh=104,4 	 Pt=197,t \\ Fe=56 	 Rn=104,4 	 Ir=198. \\ Ni=Co=59 	 Pt=106,4 	 O=199. \\ Cu=63,4 	 Ag=108 	 Hg=200. \\ Be=9,4 	 Mg=24 	 Zn=65,2 	 Cd=112 \\ B=11 	 Al=27,4 	 ?=68 	 Ur=116 	 Att=197? \\ C=12 	 Si=28 	 ?=70 	 Sn=118 \\ N=14 	 P=31 	 As=75 	 Sb=122 	 Bi=210? \\ O=16 	 S=32 	 Se=79,4 	 Te=128? \\ F=19 	 Cl=35,6Br=80 	 I=127 \\ Li=7 	 Na=23 	 K=39 	 Rb=85,4 	 Cs=133 	 Tl=204. \\ Ca=40 	 Sr=87,6 	 Ba=137 	 Pb=207. \\ ?=45 	 Ce=92 \\ ?Er=56 	 La=94 \\ ?Yt=60 	 Di=95 \\ ?In=75,6Th=118?
```

Configuration et blocs

Energie d'ionisation

Energie d'ionisation

PERIODIC TABLE OF ELEMENTS

https://pubchem.ncbi.nlm.nih.gov/periodic-table/#view=table&property=ElectronConfiguration

Electronégativité

Electronégativité

PERIODIC TABLE OF ELEMENTS

χ augmente

https://pubchem.ncbi.nlm.nih.gov/periodic-table/#view=table&property=ElectronConfiguration

Rayon atomique

Rayon atomique

PERIODIC TABLE OF ELEMENTS

Rayon atomique augmente

Propriétés d'oxydo-réduction

Propriétés d'oxydo-réduction

PERIODIC TABLE OF ELEMENTS

Bons réducteurs

Bons oxydants

Détermination de longueur de liaison

- On pèse le pycnomètre à vide : m_{pyc}
- On pèse le pycnomètre rempli de cyclohexane : $m_{pyc+cyclo}$

$$\rho_{cyclo} = \frac{m_{pyc+cyclo} - m_{pyc}}{V_{pyc}}$$

$$\rho_{cyclo}^{exp} =$$

Détermination de longueur de liaison

- On met une masse m de solide
- On remplit de cyclohexane
- On pèse à nouveau

$$\rho = \frac{m\rho_{cyclo}}{(m_{tot} - m - m_{pyc})}$$

$$a = \left(\frac{4M_{solide}}{N_a \rho}\right)^{\frac{1}{3}}$$

Pouvoir oxydant des halogènes

Pouvoir oxydant des halogènes

Pouvoir oxydant des halogènes

Annexe: Arsenic et phosphore

Figure 7. Passage du glycéraldéhyde-3-phosphate au 3-phosphoglycérate, en présence d'arséniate.