William Stallings Data and Computer Communications 7th Edition

Chapter 10
Circuit Switching and Packet
Switching

Switching Networks

- Long distance transmission is typically done over a network of switched nodes
- Nodes not concerned with content of data
- End devices are stations
 - —Computer, terminal, phone, etc.
- A collection of nodes and connections is a communications network
- Data routed by being switched from node to node

Nodes

- Nodes may connect to other nodes only, or to stations and other nodes
- Node to node links usually multiplexed
- Network is usually partially connected
 - Some redundant connections are desirable for reliability
- Two different switching technologies
 - —Circuit switching
 - —Packet switching

Simple Switched Network

F

Circuit Switching

- Dedicated communication path between two stations
- Three phases
 - -Establish
 - —Transfer
 - —Disconnect
- Must have switching capacity and channel capacity to establish connection
- Must have intelligence to work out routing

Circuit Switching - Applications

- Inefficient
 - Channel capacity dedicated for duration of connection
 - —If no data, capacity wasted
- Set up (connection) takes time
- Once connected, transfer is transparent
- Developed for voice traffic (phone)

Public Circuit Switched Network

Telecomms Components

- Subscriber
 - Devices attached to network
- Subscriber line
 - Local Loop
 - Subscriber loop
 - Connection to network
 - Few km up to few tens of km
- Exchange
 - Switching centers
 - End office supports subscribers
- Trunks
 - Branches between exchanges
 - Multiplexed

Circuit Establishment

Circuit Switch Elements

Circuit Switching Concepts

- Digital Switch
 - Provide transparent signal path between devices
- Network Interface
- Control Unit
 - —Establish connections
 - Generally on demand
 - Handle and acknowledge requests
 - Determine if destination is free
 - construct path
 - —Maintain connection
 - —Disconnect

Blocking or Non-blocking

- Blocking
 - —A network is unable to connect stations because all paths are in use
 - A blocking network allows this
 - —Used on voice systems
 - Short duration calls
- Non-blocking
 - —Permits all stations to connect (in pairs) at once
 - —Used for some data connections

Space Division Switching

- Developed for analog environment
- Separate physical paths
- Crossbar switch
 - Number of crosspoints grows as square of number of stations
 - —Loss of crosspoint prevents connection
 - —Inefficient use of crosspoints
 - All stations connected, only a few crosspoints in use
 - —Non-blocking

Space Division Switch

Multistage Switch

- Reduced number of crosspoints
- More than one path through network
 - —Increased reliability
- More complex control
- May be blocking

Three Stage Space Division Switch

Time Division Switching

- Modern digital systems rely on intelligent control of space and time division elements
- Use digital time division techniques to set up and maintain virtual circuits
- Partition low speed bit stream into pieces that share higher speed stream

Softswitch Architecture

- General purpose computer running software to make it a smart phone switch
- Lower costs
- Greater functionality
 - Packetizing of digitized voice data
 - Allowing voice over IP
- Most complex part of telephone network switch is software controlling call process
 - Call routing
 - Call processing logic
 - Typically running on proprietary processor
- Separate call processing from hardware function of switch
- Physical switching done by media gateway
- Call processing done by media gateway controller

Traditional Circuit Switching

Softswitch

Packet Switching Principles

- Circuit switching designed for voice
 - Resources dedicated to a particular call
 - —Much of the time a data connection is idle
 - —Data rate is fixed
 - Both ends must operate at the same rate

Basic Operation

- Data transmitted in small packets
 - —Typically 1000 octets
 - —Longer messages split into series of packets
 - —Each packet contains a portion of user data plus some control info
- Control info
 - —Routing (addressing) info
- Packets are received, stored briefly (buffered) and past on to the next node
 - —Store and forward

Use of Packets

Advantages

- Line efficiency
 - Single node to node link can be shared by many packets over time
 - Packets queued and transmitted as fast as possible
- Data rate conversion
 - Each station connects to the local node at its own speed
 - Nodes buffer data if required to equalize rates
- Packets are accepted even when network is busy
 - Delivery may slow down
- Priorities can be used

Switching Technique

- Station breaks long message into packets
- Packets sent one at a time to the network
- Packets handled in two ways
 - —Datagram
 - —Virtual circuit

Datagram

- Each packet treated independently
- Packets can take any practical route
- Packets may arrive out of order
- Packets may go missing
- Up to receiver to re-order packets and recover from missing packets

Datagram Diagram

Virtual Circuit

- Preplanned route established before any packets sent
- Call request and call accept packets establish connection (handshake)
- Each packet contains a virtual circuit identifier instead of destination address
- No routing decisions required for each packet
- Clear request to drop circuit
- Not a dedicated path

Virtual Circuit Diagram

Virtual Circuits v Datagram

- Virtual circuits
 - Network can provide sequencing and error control
 - —Packets are forwarded more quickly
 - No routing decisions to make
 - —Less reliable
 - Loss of a node looses all circuits through that node
- Datagram
 - —No call setup phase
 - Better if few packets
 - —More flexible
 - Routing can be used to avoid congested parts of the network

(a) 1-packet message (b) 2-packet message (c) 5-packet message (d) 10-packet message Header **Packet Size** Data Data 2 3 2 2 4 Data Data 3 6 5 6 Data Data Data 8 5 10 9 10 Data 10 Data

Circuit v Packet Switching

- Performance
 - —Propagation delay
 - —Transmission time
 - —Node delay

Event Timing

X.25

- 1976
- Interface between host and packet switched network
- Almost universal on packet switched networks and packet switching in ISDN
- Defines three layers
 - —Physical
 - —Link
 - —Packet

X.25 - Physical

- Interface between attached station and link to node
- Data terminal equipment DTE (user equipment)
- Data circuit terminating equipment DCE (node)
- Uses physical layer specification X.21
- Reliable transfer across physical link
- Sequence of frames

X.25 - Link

- Link Access Protocol Balanced (LAPB)
 - —Subset of HDLC
 - —see chapter 7

X.25 - Packet

- External virtual circuits
- Logical connections (virtual circuits) between subscribers

X.25 Use of Virtual Circuits

Virtual Circuit Service

- Logical connection between two stations
 - —External virtual circuit
- Specific preplanned route through network
 - —Internal virtual circuit
- Typically one to one relationship between external and internal virtual circuits
- Can employ X.25 with datagram style network
- External virtual circuits require logical channel
 - —All data considered part of stream

X.25 Levels

- User data passes to X.25 level 3
- X.25 appends control information
 - —Header
 - —Identifies virtual circuit
 - —Provides sequence numbers for flow and error control
- X.25 packet passed down to LAPB entity
- LAPB appends further control information

User Data and X.25 Protocol Control Information

Frame Relay

- Designed to be more efficient than X.25
- Developed before ATM
- Larger installed base than ATM
- ATM now of more interest on high speed networks

Frame Relay Background - X.25

- Call control packets, in band signaling
- Multiplexing of virtual circuits at layer 3
- Layer 2 and 3 include flow and error control
- Considerable overhead
- Not appropriate for modern digital systems with high reliability

Frame Relay - Differences

- Call control carried in separate logical connection
- Multiplexing and switching at layer 2
 - Eliminates one layer of processing
- No hop by hop error or flow control
- End to end flow and error control (if used) are done by higher layer
- Single user data frame sent from source to destination and ACK (from higher layer) sent back

Advantages and Disadvantages

- Lost link by link error and flow control
 - Increased reliability makes this less of a problem
- Streamlined communications process
 - —Lower delay
 - —Higher throughput
- ITU-T recommend frame relay above 2Mbps

Protocol Architecture

Control Plane

- Between subscriber and network
- Separate logical channel used
 - Similar to common channel signaling for circuit switching services
- Data link layer
 - —LAPD (Q.921)
 - —Reliable data link control
 - —Error and flow control
 - —Between user (TE) and network (NT)
 - —Used for exchange of Q.933 control signal messages

User Plane

- End to end functionality
- Transfer of info between ends
- LAPF (Link Access Procedure for Frame Mode Bearer Services) Q.922
 - —Frame delimiting, alignment and transparency
 - —Frame mux and demux using addressing field
 - Ensure frame is integral number of octets (zero bit insertion/extraction)
 - —Ensure frame is neither too long nor short
 - Detection of transmission errors
 - —Congestion control functions

User Data Transfer

- One frame type
 - —User data
 - —No control frame
- No inband signaling
- No sequence numbers
 - —No flow nor error control

Required Reading

- Stallings Chapter 10
- ITU-T web site
- Telephone company web sites (not much technical info - mostly marketing)
- X.25 info from ITU-T web site
- Frame Relay forum