

Machine Learning Assignment

PROJECT REPORT

<TEAM ID: 3 >

Stock Trading Strategy Optimization using Deep Reinforcement Learning (DQN)

Name	SRN
Eshwar B N	PES2UG23CS187
Mohithkumar M S	PES2UG23CS917

Problem Statement

Traditional rule-based or heuristic trading strategies fail to adapt dynamically to everchanging market conditions.

The main problem addressed is **how to design an intelligent trading system that can learn optimal buy/sell/hold strategies automatically** using **reinforcement learning**, thereby maximizing long-term portfolio returns while minimizing risks..

Objective / Aim

To develop an **AI-driven trading agent** that:

- Learns profitable trading strategies from historical stock market data.
- Decides when to **buy**, **sell**, or **hold** stocks.
- Maximizes cumulative profit using Deep Q-Learning (DQN).
- Evaluates the model's performance against baseline (Buy-and-Hold strategy).

Dataset Details

• **Source:** Yahoo Finance (via yfinance Python API)

Duration: 2015–2025

Stocks Used: 33 major tickers including AAPL, MSFT, TSLA, AMZN,

GOOGL, etc

• Size: \sim 2,500 trading days \times 33 tickers

• **Key Features:** Open, High, Low, Close, Volume

SMA (Simple Moving Average)

EMA (Exponential Moving Average)

RSI (Relative Strength Index)

ATR (Average True Range)

Momentum and Daily Returns

• Target Variable: Action (Buy, Sell, Hold) — decided dynamically by the RL agent

Architecture Diagram

Methodology

- 1. **Data Collection:** Downloaded stock data using yfinance API (2015–2025).
- 2. **Data Preprocessing:** Removed null values, normalized features, and created technical indicators.
- 3. **Environment Design:** Built a custom **Gymnasium environment** simulating trading with buy/sell/hold actions.
- 4. Model Training:
 - o Used **Deep Q-Network (DQN)** from Stable-Baselines3.
 - o Input: 10-day sliding window of normalized features.
 - Output: Optimal trading action.
- 5. **Reward Function:** Based on change in portfolio value (profit/loss).
- 6. Evaluation:
 - o Backtested on unseen test data.
 - o Compared portfolio performance vs Buy-and-Hold.

7. Visualization:

o Built an interactive **Plotly dashboard** showing stock price, portfolio value, rewards, and Q-values.

Results & Evaluation

- Model learned dynamic trading patterns and avoided unnecessary trades.
- Portfolio value increased compared to static strategies.
- Achieved a stable Sharpe Ratio and reduced drawdowns.

Evaluation Metrics:

- Cumulative Return (%)
- Sharpe Ratio
- Max Drawdown (%)
- Reward per Episode
- Profit vs Buy-and-Hold Benchmark

Visualization Tools Used:

- Matplotlib (static)
- Plotly (interactive dashboard in Colab)

Conclusion

The DQN-based trading agent successfully learned to make adaptive trading decisions using historical price and technical data.

It outperformed static rule-based strategies in terms of return consistency and adaptability. Through this project, we learned how **Reinforcement Learning** can be applied in financial forecasting and automated trading systems.