- The Input Offset Current (I_{OS}) :
 - ❖ *Difference* between the *base currents* (known as *Input Bias Currents* I_1 and I_2) of Q_1 and Q_2
 - **Extremely small** (~ tens to hundreds of nA)
- I_{OS} and V_{OS} are actually *interrelated*, since both of them are created due to *device mismatch*, and have almost *identical manifestations*

Both V_{os} and I_{os} are not used V_{os} (I_{os}) is used when the input is voltage (current)

Modeling of the Anomalies With Regard to V_{os} and I_{os}

> Saturation Voltages:

- An ideal op-amp should have rail-to-rail swing at the output
- The actual output swing of a real op-amp is never between rail-to-rail
- Refer to the *op-amp schematic*, in conjunction with the *schematics* of the *gain stage* and the *output stage*
- As V_{i2} of the *gain stage* becomes *positive*, V_{02} (= V_{i3}) goes *negative* with a *large gain*
 - \Rightarrow V₂ and V₀ *follow* V_{i3} due to *emitter follower* (CC) action
- With V_0 negative, Q_{14} turns off, and Q_{20} draws current from the load

■ Assuming that Q_{17} can **soft saturate**, and neglecting the **voltage drop** across R_8 , the **minimum possible value** of V_0 :

$$V_0^- = -V_{CC} + V_{CE17}(SS) + V_{EB23A} + V_{EB20} = -13.4 \text{ V}$$

- Note that it is about *two diode drops above* –V_{CC}
- Now, for *negative* V_{i2} , V_{02} *swings* to a *large positive value*, *followed by* V_2 and V_0
- With V_0 positive, Q_{20} turns off, and Q_{14} supplies current to load
- *Maximum positive limit* of V_0 is *reached* when Q_{13A} *soft saturates*:

$$V_0^+ = V_{CC} - V_{EC13A}(SS) - V_{BE14} = 14.1 \text{ V}$$

- Note again that it is *lower* than V_{CC} by *little more than* one diode drop
- Also, interesting to note is that the *positive* and *negative* peaks of V_0 are *not same*
 - ⇒ Maximum possible output swing is asymmetric
- These *two limits* of V₀ are known as *positive and negative saturation voltages* (V_{SAT}⁺ and V_{SAT}⁻ respectively)
- If the *input drive* to the *op-amp* and the *gain* are such that the *magnitude* of V_0 becomes *greater* than either V_{SAT}^+ or $|V_{SAT}^-|$, then V_0 would get *clipped* at either of these *two values*

➤ Minimum Allowed Supply Voltage:

- Circuit for 741 is *extremely robust*, and can be *operated* with a *very wide range* of *supply voltage*
- However, there is a *lower limit* of the *supply voltage*, below which it *can't be ensured* that *all transistors* operate in the *FA region*
- To find this, look for the *branch* containing the *most number of transistors*, since *that branch* would obviously *need the largest voltage* across it to *ensure* that all its *constituent transistors operate in the FA region*
- From the *circuit schematic* of 741, *this branch* can be very easily identified to be *either of the two sections of the input stage*

- Considering the *left branch*, neglecting the *potential dropped* across R₁, and not letting *CE voltage* of any of the *transistors* to *drop below* 0.7 V (*onset of saturation*), there would *four diode drops* (~ 2.8 V) *along this branch*
 - \Rightarrow 741 should work satisfactorily for power supply all the way down to about $\pm 3~V$
 - \Rightarrow Under this power supply, V_0^+ and V_0^- will be 2.1 V and -1.4 V respectively
- Thus, there is a wide range of power supply, starting from ± 3 V, for which 741 should work satisfactorily
 - ⇒ Shows the robustness of the circuit

> Slew Rate and Full-Power Bandwidth:

- This limitation is observed under large-signal operation, when the input signal swing is greater than the linear range of the input differential pair
- Recall: The linear range of a bipolar differential pair is $\sim \pm 4V_T$
- Beyond this, it basically acts like a switch, transferring the bias current between the two branches, depending on the sign of the input voltage
- Under such cases, the *compensation capacitor* C_C *limits* the *maximum possible rate of change* of V_0
- This is known as the *Slew Rate* (SR) of the op-amp: $SR = (dV_0/dt)_{max}$

- Two SRs are defined: SR^+ (positive SR) and SR^- (negative SR) for positive and negative excursions of V_0 respectively, generally expressed in $V/\mu sec$
- A *rough estimate* of these quantities can be obtained by referring to the *schematic* of the op-amp
- Assume that a *large negative signal* is applied at the *base* of Q_1 (w.r.t. the base of Q_2)
- This will instantly turn the Q_1 - Q_3 branch off
 - \Rightarrow Q₅, and thus, Q₆, *turn off*
 - \Rightarrow *Entire bias current* I_{C8} would *flow through* the Q_2 - Q_4 branch, and *start to charge* C_C

- Note that the rate of this charging would be constant (constant current charging)
 - \Rightarrow *Collector potential* of Q_{17} would *increase linearly* with time
- Due to *emitter follower* action of Q_{23A} and Q_{14} , V_0 would also start to *increase linearly with time*
 - \diamondsuit Q₂₀ remains off, since V₀ is in its positive excursion
- Thus:

$$SR^+ = I_{C8}/C_C = (19 \mu A)/12.5 \text{ pF}) = 1.52 \text{ V/}\mu\text{sec}$$

■ If the *frequency* of the *input signal* is such that the *required time rate of change* of V₀ is *more* than this, then V₀ won't be able to follow the input – rather, it will be *dictated* by the SR⁺, and will *change linearly with time*