EE288 Data Conversions/Analog Mixed-Signal ICs Spring 2018

Lecture 14: Differential Preamplifiers

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Differential Amplifier with Resistor Pull-up

Differential Amplifier with Current Source Load

Differential Amplifier with Current Source Load

Common-Mode Half Circuit

Differential Amplifier with Increased Gain

Differential Amplifier with Positive Feedback

$$A_{v} = \frac{-g_{m1}}{g_{o1} + g_{o2} + g_{o3} + g_{m2} - g_{m3}}$$

Differential Amplifier with a simple CMFB

HW#4: 4-bit Flash ADC

vin ideal_S2D vinm ideal_sh_diff vsm 4-bit ADC vsm 4-bit DAC vout vsm ideal_clock ph1, ph2

HW#4: 4-bit Flash ADC

- Your goal is to minimize the ADC Figure of Merit given by FoM = Power / (fs*2^{ENOB}).
- Use ideal_swn, ideal_swp, ideal_clock, ideal_S2D, ideal_sh_diff from ee288lib

HW#4: Comparator Overdrive Test Bench

