Схема работы алгоритма следующая, изначально каждому из процессов для обработки достаются столбцы [m_begin; m_end) где m_begin = M/proc_num*proc_rank, m_end=M/proc_num*(proc_rank+1). Далее кажды процесс работает в соответствии с примером из таблицы.

Для proc_rank=1:

1) Начинаем прием сообщения от процесса с proc_rank = 0 с помощью неблокирующей функции Irecv и считаем значение для U[0][2] из н.у.

2) Считаем значение для U[0][3] из н.у. и посчитанное значение отправляем с помощью неблокирующей функции Isend на процессор с proc_rank=2 и, если прием Irecv из п.1 не закончил выполнение - ожидаем до конца приема сообщения

3) Снова начинаем прием с помощью неблокирующей функции Irecv сообщения от процесса с $proc_rank = 0$. На данном этапе мы приняли значение U[0][1] от процесса с $proc_rank = 0$, поэтому мы считаем U[1][2] = $proc_rank = 0$, поэтому мы принята в виде сообщения на нашем процессе, а U[0][2] была вычислена на этапе $proc_rank = 0$ и принята в виде сообщения на нашем процессе, а U[0][2] была вычислена на этапе $proc_rank = 0$ и принята в виде сообщения на нашем процессе, а U[0][2] была вычислена на этапе $proc_rank = 0$ и принята в виде сообщения на нашем процессе.

И т.д. Аналогично таблица читается для процессов с proc_rank = 0 и 2.

2	<mark>5</mark>	6 (3, 4) Isend	Irecv 5 <mark>(4</mark> , 3)	6 (3, 4) Isend&wait(Irecv 5)	Irecv 5 (4, 3)	6 (3, 4) wait(Irecv 5)
1	3	4 (1, 2) Isend	Irecv 3 (2, 1)	4 (1, 2) Isend&wait(Irecv 3)	Irecv 3 (2, 1)	4 (1, 2) wait(Irecv 3)
0	1	2 Isend	Irecv 1	2 Isend&wait(Irecv 1)	Irecv 1	2 wait(Irecv 1)
p/m	0	1	2	3	4	5

M = 6, P = 3, NP = 3: proc_rank = 0 proc_rank = 1 proc_rank = 2

Графики зависимости времени работы программы от количества процессов

Графики зависимости ускорения от NP

Графики зависимости эффективности алгоритма от количества процессов (не нравится пик в 1.2)

