Specifikation I->I-förstärkare

- Två förstärkande, lokalt oåterkopplade steg ska användas.
- Ingen DC-offset på ingången
- Sätt C_1 =100 nF parallellt med c_{π^2} och C_2 =2,2 μ F parallellt med $c_{\pi 2}$ (för att sänka f_T)
- Förstärkningen ska vara 11 A/A, minsta resistansen i återkopplingsnätet ska vara 1 k Ω
- Lastmotståndet, R_L , är 100Ω
- Ingångskällan (i_s) modelleras med hjälp av en spänningsgenerator med en inre resistans på $10 \text{ k}\Omega$ (se lab 2)
- Total DC-ström i antiseriesteget = 9,4 mA
- $f_{-3dB} > 8 \text{ kHz}$
- Totala strömförbrukningen ska vara så liten som möjligt
- Antag att $\beta_f = 200$ och att r_o kan försummas
- Förstärkaren ska kompenseras för **MFM** (systempoler Butterworthposition). Samtliga möjliga (och omöjliga) implementationer med fantomnolla ska undersökas. Om effektiv fantomnollaimplementation inte möjlig används Capacitive Narrowbanding är som kompenseringsmetod.
- Matningsspänningen är +10 V och -10 V
- Biasrealisering diskuteras med handledare