Computer Graphics Lecture 04: Transformation

DR. ELVIS S. LIU
SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY
SPRING 2018

Basic Transformation

- Transform objects are a mathematical mapping from one coordinate system to another
- The coordinate systems can differ in terms of
 - Position (i.e., location of the origin)
 - Scale
 - Axis direction
 - Relative axis orientation
- Transform objects can be applied to other transforms, vectors, or shape objects to map them between coordinate systems.

Types of Transformation

- The most basic ones are
 - Translation
 - Scaling
 - Rotation
 - Shear
 - And others, e.g., perspective transformation, projection, etc.
- Basic types of transformations
 - Rigid body: preserves length and angle
 - Affine: preserves parallel lines, not angles and lengths
 - Free-form: anything goes

2D Transformation

LECTURE 04: TRANSFORMATION

Translation in 2D

- Similar vector addition
- Vector form

•
$$P = P_0 + T$$

Scalar form

$$x = x_0 + dx$$

$$y = y_0 + dy$$

Rotation in 2D

- Positive angles: counterclockwise
- For negative angles
 - \circ cos(- α) = cos(α)
 - $sin(-\alpha) = -sin(\alpha)$
- Vector form

- Scalar form
 - $x = x_0 \cos(\alpha) y_0 \sin(\alpha)$
 - $y = x_0 \sin(\alpha) + y_0 \cos(\alpha)$

Derivation of Rotation Matrix

- Make use of polar coordinates:
 - \cdot $(r, \theta) \rightarrow (x,y)$
- • $x_0 = r \cos(\theta)$, $y_0 = r \sin(\theta)$
- Rotating further an angle α about origin
 - $x = r \cos(\theta + \alpha)$, $y = r \sin(\theta + \alpha)$
- Hence, new position of x
 - $x = r \cos(\theta + \alpha)$
 - $x = r \cos(\theta)\cos(\alpha) r \sin(\theta)\sin(\alpha)$
 - $x = x_0 \cos(\alpha) y_0 \sin(\alpha)$
- New position of y
 - $y = r \sin(\theta + \alpha)$
 - $y = r \sin(\theta)\cos(\alpha) + r \cos(\theta)\sin(\alpha)$
 - $y = y_0 \cos(\alpha) + x_0 \sin(\alpha)$

Scaling in 2D

- $P = S \times P_0$
- Vector form

- Scalar form
 - $x = S_x X_0$
 - $y = s_y y_0$
- •Uniform $s_x = s_y$
- •Non uniform $s_x \neq s_y$

Shearing in 2D – X Shear

- Object shears in the x direction
- $P = SH_x \times P_0$
- Vector form

- Scalar form
 - $x = x_0 + a y_0$
 - $y = y_0$

Shearing in 2D – Y Shear

- Object shears in the y direction
- $P = SH_x \times P_0$
- Vector form

- Scalar form
 - $x = x_0$
 - $y = b x_0 + y_0$

Alternative Form of Translation

 What is the difference between translation and other types of transformation?

Alternative Form of Translation (cont.)

Recall that we use vector addition for translation in 2D

- Using vector addition is not consistent with our method of treating transformations as matrices
- Translation cannot be expressed as matrix-vector multiplications
- If we could treat all transformations in a consistent manner, i.e., with matrix representation, then could combine transformations by composing their matrices

Homogeneous Coordinates

- How?
 - Add an additional dimension, the w-axis, and an extra coordinate, the wcomponent
- Homogeneous coordinates for 2D points
 - (x,y) turns into (x,y,w)
 - If (x,y,w) and (x',y',w') are multiples of one another, they represent the same point
 - Typically, w ≠ 0
 - Points with w = 0 are points at infinity

2D Homogeneous Coordinates

- Cartesian coordinates of the homogenous point (x,y,w):
 - x/w, y/w (divide through by w)
- Out typical homogenised points:
 - (x,y,1)
- •Connection to 3D?
 - (x,y,1) represents a 3D point on the plane w = 1
 - A homogeneous point is a line in 3D, through the origin

Transformation in Homogeneous Coordinates

- Allow expression of all three 2D transformations as 3x3 matrices
- General form of the affine (linear) transformation

- \cdot x' = ax + by + p
- y' = cx + dy + q
- For example, 2D Translation in homogeneous coordinates

Back to Translation

Our translation matrix (*T*) can now be represented by embedding the translation vector in the right column:

$$\boldsymbol{T} = \begin{bmatrix} 1 & 0 & dx \\ 0 & 1 & dy \\ 0 & 0 & 1 \end{bmatrix}$$

To verify that this is the right matrix, multiply it by a homogenised point **v**:

$$T\mathbf{v} = \begin{bmatrix} 1 & 0 & dx \\ 0 & 1 & dy \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + dx \\ y + dy \\ 1 \end{bmatrix} = \mathbf{v'}$$

Coordinates have been translated, and v' is still homogeneous

Transformations Homogenised

- Let's homogenize our all matrices! Doesn't affect linearity of scaling and rotation
- 2D Rotation Matrix

2D Scaling Matrix

$$\begin{bmatrix}
s_x & 0 & 0 \\
0 & s_y & 0 \\
0 & 0 & 1
\end{bmatrix}$$

Transformations Homogenised (cont.)

2D Shearing Matrix

$$\begin{bmatrix}
1 & a & 0 \\
b & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

• These transformations are called **affine** transformations, which means they preserve ratios of distances between points on a straight line (but not necessarily (0, 0))

Transformations Homogenised (Example)

Scaling: Scale by 15 in the x direction, 17 in the y

$$\begin{bmatrix}
15 & 0 & 0 \\
0 & 17 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

Rotation: Rotate by 123°

$$\begin{bmatrix} \cos(123) & -\sin(123) & 0 \\ \sin(123) & \cos(123) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Translation: Translate by -16 in the x direction, +18 in the y

Vectors vs. Homogeneous Coordinates

- There is a distinction between a point in homogeneous coordinates and vectors
- We use homogeneous coordinates to more conveniently represent translation; hence points are represented as:

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

 A vector can be rotated/scaled, but not translated (can think of it as always starting at origin), so don't use the homogeneous coordinate:

$$\begin{bmatrix} x^{1} \\ y \\ 0 \end{bmatrix}$$

That way, the translation matrix won't have any affect on vectors

Inverse of Transformation

- When we want to undo a transformation, we'll need to find the matrix's inverse.
- Thanks to homogenisation, they are all invertible
- Inverse of Translation T(dx,dy) = T(-dx,-dy)

$$\begin{bmatrix} 1 & 0 & dx \\ 0 & 1 & dy \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -dx \\ 0 & 1 & -dy \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• Hence, $T(-dx,-dy) = T(dx,dy)^{-1}$

Inverse of Transformations (cont.)

Inverse of Rotation

$$\circ R(\theta)^{-1} = R(-\theta)$$

$$\circ = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Inverse of Scaling
- $S(s_x, s_y)^{-1} = S(1/s_x, 1/s_y)$

$$\bullet = \begin{bmatrix} 1/s_x & 0 & 0 \\ 0 & 1/s_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Inverse of Transformations (cont.)

- Inverse of Shearing
 - Sh $(a,b)^{-1} = Sh (-a, -b)$

$$\circ \begin{bmatrix}
1 & -a & 0 \\
-b & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

Inverse and Transpose of Rotation Matrix

- Prove that the inverse of a rotation matrix M is just its transpose M^T
- Take a rotation matrix $M = [v_1 \ v_2 \ v_3]$ (where each v_i is a vector)
- First note some properties of M
 - The columns are orthogonal to each other: $v_i \bullet v_i = 0$ $(i \neq j)$
 - Columns have unit length: $/|v_i|/=1$
- Let's see what multiplying M^T and M produces:

$$\begin{bmatrix} v_{1_x} & v_{1_y} & v_{1_z} \\ v_{2_x} & v_{2_y} & v_{2_z} \\ v_{3_x} & v_{3_y} & v_{3_z} \end{bmatrix} \begin{bmatrix} v_{1_x} & v_{2_x} & v_{3_x} \\ v_{1_y} & v_{2_y} & v_{3_y} \\ v_{1_z} & v_{2_z} & v_{3_z} \end{bmatrix} = \begin{bmatrix} v_1 \bullet v_1 & v_1 \bullet v_2 & v_1 \bullet v_3 \\ v_2 \bullet v_1 & v_2 \bullet v_2 & v_2 \bullet v_3 \\ v_3 \bullet v_1 & v_3 \bullet v_2 & v_3 \bullet v_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• Using the properties above, we see that this is the identity matrix, so $M^T = M^{-1}$

Composition of Transformations in 2D

- An object in a scene uses many transformations in sequence. How do we represent this in terms of functions?
 - Concatenate basic transforms sequentially
 - This corresponds to multiplication of the transform matrices, thanks to homogeneous coordinates
- Transformation is a function; by associativity, we can compose functions:
 - (f o g)(i)
- This is the same as first applying g, then applying f:
 - f(g(i))
- Consider our functions f and g as matrices (M_1 and M_2) and our input as a vector v
- Our composition is equivalent to M_1M_2v

Composition of Translation

- What happens when a point goes through T(dx₁, dy₁) and then T(dx₂, dy₂)?
- Combined translation T(dx₁+dx₂,dy₁+dy₂)

$$\begin{bmatrix} 1 & 0 & dx_2 \\ 0 & 1 & dy_2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & dx_1 \\ 0 & 1 & dy_1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & dx_1 + dx_2 \\ 0 & 1 & dy_1 + dy_2 \\ 0 & 0 & 1 \end{bmatrix}$$

Concatenation of transformations: matrix multiplication

Composition of Different Transformations

- We can form compositions of transformation matrices to form a more complex transformation
- For example, *TRSv*, which scales a point, then rotates it, then translates it:

$$\begin{bmatrix} 1 & 0 & dx \\ 0 & 1 & dy \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- Important: order matters!
 - Matrix multiplication is NOT commutative
- Note that we apply the matrices in sequence right to left. We can use
 associativity to compose them first; it is often useful to be able to apply a
 single matrix if, for example, we want to use it to transform many points
 at once.

Transformation is not commutative (example)

•Translate by x = 6, y = 0, then rotate by 45°

•Rotate by 45°, then translate by x = 6, y = 0

The Inverse of Composition of Transformations

- What is the inverse of a sequence of transformations?
 - $(M_1M_2...M_n)^{-1} = M_n^{-1}M_{n-1}^{-1}...M_1^{-1}$
- Inverse of a sequence of transformations is the composition of the inverses of each transformation in reverse order (why?)
- Say we want to do the opposite transformation of (T⁻¹RST) What will our sequence look like?
 - $(T^{-1}RST)^{-1} = T^{-1}S^{-1}R^{-1}T$

3D Transformation

LECTURE 04: TRANSFORMATION

Dimension + 1

- How should we treat geometric transformations in 3D?
 - Just add one more coordinate axis
- A point is represented as

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

•A matrix fo a linear transformation T can be represented as

$$\begin{bmatrix} T(e_1) & T(e_2) & T(e_3) \end{bmatrix}$$

•Where e₃ is the standard basic vector along the z-axis

Homogeneous Coordinates

 Remember to use homogeneous coordinates. Embed scale and rotation matrices as upper left submatrices and translation vectors as upper right subvectors of the right column

Translation in 3D

• Similar to the 2D version, just with one more entry dz, representing change in the z-direction.

•
$$T(dx, dy, dz) = \begin{bmatrix} 1 & 0 & 0 & dx \\ 0 & 1 & 0 & dy \\ 0 & 0 & 1 & dz \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation in 3D

- In 2D, only one axis of rotation
- In 3D, there are infinitely many, must take all into account

Rodrigues's Formula

- Rotation by angle θ around vector $u = [u_x \ u_y \ u_z]^T$
 - Note: this is an arbitrary unit vector u in xyz-space
- Here's a not so friendly-looking rotation matrix

$$\begin{bmatrix} \cos\theta + u_x^2(1 - \cos\theta) & u_x u_y(1 - \cos\theta) - u_z \sin\theta & u_x u_z(1 - \cos\theta) + u_y \sin\theta \\ u_x u_y(1 - \cos\theta) + u_z \sin\theta & \cos\theta + u_y^2(1 - \cos\theta) & u_y u_z(1 - \cos\theta) - u_x \sin\theta \\ u_x u_z(1 - \cos\theta) - u_y \sin\theta & u_y u_z(1 - \cos\theta) + u_x \sin\theta & \cos\theta + u_z^2(1 - \cos\theta) \end{bmatrix}$$

This is called the coordinate form of Rodrigues's formula

Rotating Axis by Axis

- Every rotation can be represented as the composition of 3 different angles of counter-clockwise rotation around 3 axes, namely
 - x axis in the yz plane by ψ
 - y axis in the xz plane by ϑ
 - z axis in the xy plane by ϕ
- Also known as Euler angles, make problem of rotation much easier

Rotating Axis by Axis (cont.)

• $R_{vz}(\psi)$: rotation about x axis by ψ

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \psi & -\sin \psi & 0 \\ 0 & \sin \psi & \cos \psi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• $R_{7x}(\theta)$: rotation about y axis by θ

$$\begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 ${}^{\bullet}R_{xv}(\phi)$: rotation about z axis by ϕ

Properties of Rotation Matrix

- Note these differ only in how the 3x3 submatrix is embedded in the homogeneous matrix, but the row-column order is different for R_{zx}
- You can compose these matrices to form a composite rotation matrix
- Columns and rows are mutually orthogonal unit vectors, i.e., orthonormal

• Determinant of M = 1
• M =
$$\begin{bmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Product of any pair of orthonormal matrices is also orthonormal
- Orthonormality: inverse = transpose $(P^T = P^{-1})$

Properties of Rotation Matrix (cont.)

- Row vectors: unit vectors which rotate into principal axes
 - i.e., [1,0,0]^T, [0,1,0]^T, and [0,0,1]^T
- Column vectors: unit vectors into which principle axes rotate

Scaling in 3D

• Looks just like the 2D version. We just added an s_z term

•
$$S(s_x, s_y, s_z) = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Shearing in 3D

• In (y,z) w.r.t. x value

$$SH_{yz} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ sh_y & 1 & 0 & 0 \\ sh_z & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• In (z,x) w.r.t. y value

$$SH_{zx} = \begin{bmatrix} 1 & sh_x & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & sh_z & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• In (x,y) w.r.t. z value

$$SH_{xy} = \begin{bmatrix} 1 & 0 & sh_x & 0 \\ 0 & 1 & sh_y & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Inverse in 3D

- Inverses are once again parallel to their 2D versions
- Translation

$$\begin{bmatrix} 1 & 0 & 0 & -dx \\ 0 & 1 & 0 & -dy \\ 0 & 0 & 1 & -dz \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Scaling

$$\begin{bmatrix} 1/s_x & 0 & 0 & 0 \\ 0 & 1/s_y & 0 & 0 \\ 0 & 0 & 1/s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Inverse in 3D (cont.)

Rotation

$$R_{yz}^{-1}(\psi)$$
 $R_{zx}^{-1}(\vartheta)$ $R_{xy}^{-1}(\phi)$

$$R_{zx}^{-1}(\vartheta)$$

$$R_{xy}^{-1}(\phi)$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\psi & \sin\psi & 0 \\ 0 & -\sin\psi & \cos\psi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} \cos\theta & 0 & -\sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ \sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} \cos\varphi & \sin\varphi & 0 & 0 \\ -\sin\varphi & \cos\varphi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Composition of Transformations in 3D

- Composition works exactly the same way
- Let's take a 3D object, say
 - A cube centered at (2,2,2)
 - Rotate clockwise in object's space by 30° around x axis, 60° around y, and 90° around z
 - Scale in object space by 1 in the x, 2 in the y, and 3 in the z
 - Translate by (2,2,4) in world space
- Transformation sequence: $TT_0^{-1}S_{xy}R_{xy}R_{zx}R_{yz}T_o$, where T_0 translates to (0,0)

Composition of Transformations in 3D (cont.)

• Transformation sequence: $TT_0^{-1}S_{xy}R_{xy}R_{zx}R_{yz}T_o$

$$\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos 90 & \sin 90 & 0 & 0 \\ -\sin 90 & \cos 90 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos 30 & \sin 30 & 0 \\ 0 & -\sin 30 & \cos 30 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $T T_0^{-1} S_{xy}$

 R_{xy}

 R_{zx}

 R_{yz}

 T_{0}