Cross-Dialect Information Retrieval: Information Access in Low-Resource and High-Variance Languages

Robert Litschko, Oliver Kraus, Verena Blaschke, Barbara Plank

icons by OpenMoji - CC BY-SA 4.0

Wikipedia

https://de.wikipedia.org > wiki > München

München

Sie ist mit gut 1,5 Millionen Einwohnern die bevölke Gemeinde Deutschlands und mit 4.861 Einwohnern

Casabiabta Münahana - Altatadt (Münahan) - Landk

What about culture-specific knowledge that can often be found in dialect Wikis?

Wikipedia

https://de.wikipedia.org > wiki > München

München

Sie ist mit gut 1,5 Millionen Einwohnern die bevölke Gemeinde Deutschlands und mit 4.861 Einwohnern

Coophighta Münghana - Altatadt (Münghan) - Landk

München ("Munich")

Lexical retrieval falls short: Normalizers do not exists for most dialects.

Low German (nds)

Alemannic (als)

Bavarian (bar)

North Frisian (frr)

Saterfrisian (**stq**)

Ripuarian (ksh)

Rhine Franconian (pfl)

10

Low German (nds)

Alemannic (als)

Bavarian (bar)

North Frisian (frr)

Saterfrisian (stq)

Ripuarian (ksh)

Rhine Franconian (pfl)

Standard German: 2.9M Wiki articles

Low German (nds)

Alemannic (als)

Bavarian (bar)

North Frisian (frr)

Saterfrisian (stq)

Ripuarian (ksh)

Rhine Franconian (pfl)

Low-resource: Limited resources available to train neural retrieval models.

Contribution

- New task: Cross-dialect information retrieval
- New dataset: WikiDIR
- Dialect variation dictionaries
- Evaluation of IR models on WikiDIR

Example

Agenda

1. Motivation

- 2. WikiDIR dataset
- 3. Dialect dictionaries
- 4. Models
- 5. Results

Agenda

1. Motivation

2. WikiDIR dataset

- 3. Dialect dictionaries
- 4. Models
- 5. Results

Query q_i

Corpus \mathcal{D}

Lexical Similarity Scores

$$\mathcal{D}_{ ext{rel}}^{q_i} = \{d_j \in \mathcal{D} \ | \ d_j ext{ contains } q_i \}$$

Monolingual Relevance Labels

$$\mathcal{D}_{ ext{rel}}^{q_i} = \{d_j \in \mathcal{D} \, | \, d_j ext{ contains } q_i \}$$

Monolingual Relevance Labels

$$\mathcal{D}_{ ext{rel}}^{q_i} = \{d_j \in \mathcal{D} \ | \ d_j ext{ contains } q_i \}$$

Monolingual Relevance Labels

23

Query q_i

Corpus \mathcal{D}

Labels

24

Train

Dev

Test

Set of rel. docs.

All documents that contain a query.

Train Dev Test An.

Analysis Split

All documents that contain a query or any of its dialect variations.

Where do dialect variations come from?

Agenda

- 1. Motivation
- 2. WikiDIR Dataset
- 3. Dialect dictionaries
- 4. Models
- 5. Results

Example Record (Bavarian dictionary)

```
{
  "de_id": "3215",
  "de_title": "München",
  "dial_id": "12259",
  "dial_title": "Minga",
  "variants": ["Münch'n", "Minkcha", "Minkn", "Minchn", "Mingna", "Minkhn", "Münchn"]
}
```

Agenda

- 1. Motivation
- 2. WikiDIR dataset
- 3. Dialect dictionaries
- 4. Models
- 5. Results

RankGPT (Llama 3.1)

======= LLM-RERANKING ========

system: You are RankGPT, an intelligent assistant that can rank passages based on their relevancy to the query.

user: I will provide you with num passages, each indicated by number identifier []. Rank them based on their relevance to query: {{query}}.

(Sun et al., 2023)

rank passages based on their relevancy to the query.

system: You are RankGPT, an intelligent assistant that can

user: I will provide you with num passages, each indicated by number identifier []. Rank them based on their relevance to query: {{query}}.

======= LLM-RERANKING ========

(Sun et al., 2023)

(Nogueira et al., 2019)

(Sun et al., 2023)

(Nogueira et al., 2019)

(Santhanam et al., 2022)

Rerank top 100

(Santhanam et al., 2022)

system: You are RankGPT, an intelligent assistant that can rank passages based on their relevancy to the query.

user: I will provide you with num passages, each indicated by number identifier []. Rank them based on their relevance to query: {{query}}.

(Sun et al., 2023)

(Nogueira et al., 2019)

Retrieval

======= LLM-RERANKING ========

system: You are RankGPT, an intelligent assistant that can rank passages based on their relevancy to the query.

user: I will provide you with num passages, each indicated by number identifier []. Rank them based on their relevance to query: {{query}}.

(Sun et al., 2023)

(Nogueira et al., 2019)

(Santhanam et al., 2022)

Zero-shot Transfer

Fine-tuning

Agenda

- 1. Motivation
- 2. WikiDIR dataset
- 3. Dialect dictionaries
- 4. Models
- 5. Results

^{*}average over 7 dialects

^{*}average over 5 dialects

*average over 5 dialects

*average over 5 dialects

Document translation results

Document translation results

Document translation results

containing variations

There are still large gaps!

full analysis split

Conclusion

- We introduce WikiDIR, a cross-dialect information retrieval dataset.
- We release dialect variation dictionaries for German dialects.
- More results and analyses in the paper.

GitHub

Conclusion

- We introduce WikiDIR, a cross-dialect information retrieval dataset.
- We release dialect variation dictionaries for German dialects.
- More results and analyses in the paper.

CDIR is novel and challenging task!

- → Low-resource
- → High-Variance

The gaps are still large.

GitHub