Н. Н. Гара Н. И. Габрусева



Задачник с «помощником»

просвещение

10-11



# Задачник с «помощником»

10-11 классы

Пособие для учащихся общеобразовательных учреждений

2-е издание

Москва «Просвещение» 2013 УДК 373.167.1:54 ББК 24я72 Г20

#### Гара Н. Н.

Г20 Химия. Задачник с «помощником». 10—11 классы : пособие для учащихся общеобразоват. учреждений / Н. Н. Гара, Н. И. Габрусева. — 2-е изд. — М.: Просвещение, 2013. — 79 с. — ISBN 978-5-09-029677-9.

Сборник задач входит в линию учебно-методических комплектов по химии Г. Е. Рудзитиса и Ф. Г. Фельдмана. Содержит краткие теоретические сведения, алгоритмы решения расчетных задач по химии, задачи и тестовые задания. Может использоваться для выполнения домашних заданий, самостоятельной проверки знаний, подготовки к контрольным работам и итоговой аттестации за курс средней (полной) школы.

УДК 373.167.1:54 ББК 24я72

ISBN 978-5-09-029677-9

© Издательство «Просвещение», 2009

© Художественное оформление. Издательство «Просвещение», 2009 Все права защищены

### Содержание

| Часть        | ы I. Вычисления по химическим формулам                                                                                                                                                                |         |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Ha           | хождение молекулярной формулы вещества по его                                                                                                                                                         |         |
|              | носительной плотности и массовой доле элементов соединении                                                                                                                                            | 5       |
| Часть        | ы II. Вычисления по химическим уравнениям                                                                                                                                                             |         |
| изі          | нчисление массы, количества или объема вещества по<br>вестной массе, количеству или объему одного из всту-                                                                                            | 10      |
| 2. Вы<br>исх | вших или получающихся в результате реакции веществ ичисление массы, количества или объема одного из ходных органических веществ или продукта реакции массе, количеству или объему исходного вещества, | 10      |
| co,          | держащего примеси                                                                                                                                                                                     | 14      |
|              | счеты по химическим уравнениям, связанные с массо-й долей растворенного вещества                                                                                                                      | 18      |
| 4. Pa        | счеты по термохимическим уравнениям                                                                                                                                                                   | 22      |
| еді          | инения по массе (объему) продуктов сгорания                                                                                                                                                           | 28      |
| 7. Pa        | рующих веществ взято в избыткесчеты по химическим уравнениям, связанные с массо-                                                                                                                      | 38      |
|              | й (объемной) долей выхода продукта реакции от тео-<br>тически возможного                                                                                                                              | 45      |
| Часть        | ы III. Качественные задачи                                                                                                                                                                            |         |
|              | оведение характерных реакций на органические веще-                                                                                                                                                    |         |
|              | ределение состава и строения вещества                                                                                                                                                                 | 55<br>— |
| 2. On        | спознавание веществ                                                                                                                                                                                   | 56      |
|              | лучение веществ                                                                                                                                                                                       | 57      |
| 5. По        | лучение газообразных веществ и подтверждение хи-                                                                                                                                                      |         |
| МИ           | ческими опытами их состава и свойств                                                                                                                                                                  | _       |
| Ответ        | ГЫ                                                                                                                                                                                                    | 62      |
|              | ожения                                                                                                                                                                                                | 63      |

#### Дорогие друзья!

Данная книга является продолжением пособия «Задачник с «помощником» для 8—9 классов\*.

В курсе химии 10-11 классов вам встретятся задачи разных типов. Многие из них вы уже научились решать в 8-9 классах. С помощью этой книги вы вспомните навыки решения таких задач и научитесь решать те химические задачи, с которыми еще не встречались.



Ваш «помощник» подскажет нужные формулы, ход решения и правила оформления задач.

Сборник включает все типы расчетных задач, основанных на вычислениях по химическим формулам (часть I), на вычислениях по химическим уравнениям реакций (часть II), а также качественные задачи (часть III).

В каждом разделе сборника вы найдете задачи по разным темам неорганической и органической химии. В *Приложениях* содержатся справочные материалы, необходимые при решении задач.

Эта книга дает возможность систематизировать базовые знания по химии. Надеемся, что она пригодится не только вам, но и вашим учителям, и даже вашим родителям.

Желаем удачи! *Авторы* 

<sup>\*</sup> Гара Н. Н., Габрусева Н. И. Химия: Задачник с «помощником»: 8—9 кл.: Пособие для учащихся общеобразоват. учреждений. — М.: Просвещение, 2008.

## ЧАСТЬ І. ВЫЧИСЛЕНИЯ ПО ХИМИЧЕСКИМ ФОРМУЛАМ

Нахождение молекулярной формулы вещества по его относительной плотности и массовой доле элементов в соединении



Отношение масс одинаковых объемов двух газов есть величина постоянная для данных газов. Эту постоянную величину называют **относительной плотностью** одного газа по другому газу и обозначают латинской буквой *D*. Так как молярные объемы всех газов одинаковы, то отношение молярных масс любой пары газов также равно этой постоянной:

$$D=\frac{M_1}{M_2},$$

где  $M_1$  и  $M_2$  — молярные массы двух газообразных веществ. По величинам D и  $M_2$  можно найти молярную массу исследуемого газа:

$$M_1 = D \cdot M_2$$

Молярная масса вещества в газообразном состоянии равна его удвоенной **относительной плотности по водороду**:

$$M(B-BA) = M(H_2) = D_{H_2} = 2D_{H_2}$$

или с учетом средней молярной массы воздуха (M(воздуха) = 29 г/моль):

$$M(B-Ba) = M(BOЗДУХА) \cdot D_{BOЗЛ} = 29D_{BOЗЛ}$$

**Массовая доля** химического элемента (w) — это отношение относительной атомной массы химического элемента к относительной молекулярной массе химического соединения:

$$w(X) = \frac{nA_r(X)}{M_r},$$

где n — число атомов данного элемента, обозначенное индексом в формуле соединения.

Массовую долю химического элемента выражают в процентах или в долях единицы.

Задачи на вывод молекулярной формулы вещества по массовой доле элементов в соединении и относительной плотности

вещества вы уже решали в 8—9 классах. Поэтому образцы решения таких задач не приводятся\*.

Вам предлагаются задачи такого типа с использованием материала по органической химии. Думаем, что вы самостоятельно справитесь с ними.

#### Решите самостоятельно

- **1.** Выведите формулу вещества, содержащего 82,75% углерода и 17,25% водорода. Относительная плотность паров этого вещества по воздуху равна 2.
- **2.** Выведите формулу вещества, содержащего 81,8% углерода и 18,2% водорода, если относительная плотность этого вещества по водороду равна 22.
- **3.** Выведите молекулярную формулу углеводорода, содержащего 85,71% углерода и 14,29% водорода. Относительная плотность паров этого вещества по водороду равна 21.
- **4.** Определите молекулярную формулу углеводорода с массовой долей углерода 85,7%. Относительная плотность данного вещества по водороду равна 14.
- **5.** Вычислите относительную молекулярную массу вещества и определите его формулу, если массовая доля углерода в нем равна 92,3%, а водорода 7,7%. Относительная плотность данного вещества по водороду равна 13.
- **6**. Определите молекулярную формулу углеводорода, если массовая доля углерода в нем равна 80%, а водорода 20%. Относительная плотность данного вещества по водороду равна 15.
- 7. Определите молекулярную формулу органического соединения, если массовая доля углерода в нем равна 37,5%, кислорода 50%, водорода 12,5%. Относительная плотность данного соединения по водороду равна 16.
- **8.** Выведите молекулярную формулу фторпроизводного предельного углеводорода с массовой долей фтора 0,73, углерода 0,23 и водорода 0,04. Относительная молекулярная масса этого соединения равна 52.
- **9.** Определите молекулярную формулу углеводорода, если массовая доля углерода в нем равна 82,8%, а плотность этого вещества составляет 2,59 г/л.

<sup>\*</sup> Образцы решения задач см.: Гара Н. Н., Габрусева Н. И. Химия: Задачник с «помощником»: 8—9 кл.: Пособие для учащихся общеобразоват. учреждений. — М.: Просвещение, 2008.

- **10.** Вычислите молекулярную формулу углеводорода, массовая доля углерода в котором равна 85,7%, а водорода 14,3%. Относительная плотность вещества по водороду равна 28.
- **11.** Определите простейшую химическую формулу кислород-содержащего органического вещества по данным анализа: массовая доля углерода 54,55%, водорода 9,09%. Что это за вещество?
- 12. Какова молекулярная формула вещества, в котором массовая доля углерода равна 0,52, кислорода 0,35, водорода 0,13? Относительная плотность вещества по водороду равна 23.
- **13.** Определите простейшую химическую формулу вещества по данным анализа: массовая доля серы равна 40%, кислорода 60%.
- **14.** Определите простейшую формулу соединения, массовая доля натрия в котором равна 36,5%, серы 25,4%, кислорода 38,1%.
- **15.** Найдите молекулярную формулу соединения азота с водородом, если массовая доля водорода в нем равна 12,5%, а относительная плотность паров этого вещества по водороду равна 16.
- **16.** Выведите молекулярную формулу хлорпроизводного предельного углеводорода с массовой долей хлора 83,53%, водорода 2,35%, углерода 14,12%. Относительная молекулярная масса этого вещества равна 85.
- **17.** Определите молекулярную формулу углеводорода, если относительная плотность этого вещества по воздуху равна 2,69, а массовая доля углерода равна 0,923.
- **18.** Относительная плотность органического соединения по водороду равна 30. Определите молекулярную формулу этого вещества, если массовая доля углерода в нем равна 40%, водорода 6,7%, кислорода 53,3%.
- 19. Определите молекулярную формулу углеводорода, если массовая доля углерода в нем равна 85,7%, а водорода 14,3%. Относительная плотность этого вещества по азоту равна примерно 2.
- **20.** Определите молекулярную формулу вещества, если его плотность при нормальных условиях равна 1,4285 г/л, массовая доля углерода составляет 0,375, водорода 0,125, кислорода 0,5.
- Относительная плотность органического вещества по водороду равна 22. Массовая доля углерода в этом веществе рав-

- на 54,55%, водорода 9,09%, кислорода 36,36%. Выведите молекулярную формулу этого вещества.
- 22. Определите простейшую формулу соединения, содержащего 40% меди, 20% серы и 40% кислорода по массе.
- **23.** Определите простейшую формулу соединения, если массовая доля калия в нем равна 39,7%, марганца 27,9%, кислорода 32,4%.
- **24**. Органическое вещество, в котором массовая доля углерода составляет 0,6206, водорода 0,1032, кислорода 0,2758, имеет относительную плотность паров по воздуху, равную 2. Выведите молекулярную формулу этого вещества.
- **25.** Органическое вещество, в котором массовая доля углерода составляет 64,86%, водорода 13,52%, кислорода 21,62%, имеет относительную плотность по водороду 37. Выведите молекулярную формулу этого вещества.
- **26.** Углеводород, массовая доля углерода в котором составляет 83,33%, а водорода 16,67%, имеет относительную плотность паров по водороду 36. Выведите молекулярную формулу этого вещества.
- **27.** Органическое вещество, массовая доля углерода в котором составляет 54,84%, водорода 9%, кислорода 36,36%, имеет относительную плотность паров по водороду 44. Выведите молекулярную формулу этого вещества.
- **28.** Выведите молекулярную формулу органического соединения, содержащего 40% углерода, 6,7% водорода, 53,3% кислорода. Относительная молекулярная масса этого вещества равна 180.
- **29.** Выведите молекулярную формулу органического соединения, содержащего 52,17% углерода, 34,78% кислорода и 13,05% водорода. Относительная плотность паров этого вещества по водороду равна 23.
- **30**. Органическое вещество, массовая доля углерода в котором равна 65,75%, водорода 15,06%, азота 19,18%, имеет относительную плотность паров по воздуху, равную 2,52. Выведите молекулярную формулу этого вещества.
- **31**. Выведите молекулярную формулу органического соединения, содержащего 38,7% углерода, 16,2% водорода и азот. Относительная плотность этого вещества по водороду равна 15,5.
- **32.** Выведите молекулярную формулу органического соединения, содержащего 40% углерода, 6,7% водорода и кислород. Относительная плотность паров этого вещества по водороду равна 30.

- **33.** Выведите молекулярную формулу органического соединения, содержащего 81.8% углерода и 18.2% водорода. Известно, что масса 1 л этого вещества равна 1.97 г.
- **34**. Углеводород, массовая доля углерода в котором равна 85,7%, имеет плотность 1,875 г/л. Выведите молекулярную формулу этого органического соединения.
- **35.** Углеводород, массовая доля углерода в котором равна 0,8, имеет плотность 1,35 г/л. Выведите молекулярную формулу этого органического соединения.
- **36.** Определите простейшую формулу соединения, если по данным анализа известно, что массовая доля железа в нем 0,7, кислорода 0,3.
- **37.** Соединение содержит 40% кальция, 12% углерода и 48% кислорода. Определите простейшую формулу соединения.
- **38.** Соединение содержит 57,5% натрия, 40% кислорода и 2,5% водорода. Определите простейшую формулу соединения.
- **39.** Соединение содержит 24,7% калия, 34,8% марганца, 40,5% кислорода. Определите простейшую формулу соединения.
- **40**. Определите простейшую формулу соединения, если по данным анализа массовая доля кремния в нем 46,7%, а кислорода 53,3%.
- **41.** Выведите молекулярную формулу органического соединения, содержащего 84,2% углерода и 15,8% водорода. Относительная плотность паров этого вещества по водороду равна 57.
- **42.** Органическое вещество, в котором массовая доля углерода равна 53,3%, водорода 15,6%, азота 31,1%, имеет относительную плотность по воздуху 1,551. Выведите молекулярную формулу этого вещества.
- **43.** Относительная плотность паров органического соединения по водороду равна 39. По данным анализа установлено, что массовая доля углерода в этом веществе составляет 92,3%, водорода 7,7%. Определите молекулярную формулу вещества.
- **44.** В органическом веществе массовая доля углерода равна 40%, водорода 6,7%, кислорода 53,3%. Относительная плотность этого вещества по водороду равна 15. Выведите молекулярную формулу вещества.
- **45.** В органическом веществе массовая доля углерода равна 64,9%, кислорода 21,6%, водорода 13,5%. Относительная плотность паров этого вещества по воздуху равна 2,55. Выведите молекулярную формулу вещества.

#### ЧАСТЬ II. ВЫЧИСЛЕНИЯ ПО ХИМИЧЕСКИМ УРАВНЕНИЯМ

1. Вычисление массы, количества или объема вещества по известной массе, количеству или объему одного из вступивших или получающихся в результате реакции веществ

Расчеты по химическим уравнениям с использованием различных величин (массы, количества вещества, объема, объемной доли вещества, массовой доли растворенного вещества) вы уже решали в 8—9 классах. Поэтому в разделах 2—4 образцы решения таких задач не приводятся\*.

Вам предлагаются задачи такого типа с использованием материала по органической химии. Думаем, что вы самостоятельно справитесь с ними.

#### Решите самостоятельно

- 1.1. Определите массу сажи, образующейся при термическом разложении 180 г этана.
- **1.2.** Вычислите массу этилена, полученного при гидрировании 1,12 л этана (н. у.).
- **1.3.** Вычислите количество вещества бензола, полученного тримеризацией 5 моль ацетилена.
- **1.4.** Определите количество вещества нитробензола, полученного из бензола массой 117 г.
- **1.5.** Рассчитайте массу и количество вещества каждого из продуктов, полученных при проведении следующих превращений: метан  $\rightarrow$  ацетилен  $\rightarrow$  этилен. если метан был взят массой 400 кг.
- **1.6.** Природный газ содержит 97,7% метана, 1,2% этана, 1,1% пропана. Вычислите объем кислорода, который нужно затратить на полное сжигание  $1 \text{ м}^3$  такого газа (н. у.).
- **1.7.** Вычислите, какой объем кислорода (н. у.) будет израсходован на сжигание 2 л газовой смеси, содержащей 70% этана, 15% пропана и 15% этилена.
- **1.8.** Определите объем воздуха (н. у.), необходимого для сжигания 100 л пропан-бутановой смеси (массовая доля пропана в этой смеси 30%, бутана 70%). (Принять содержание кислорода в воздухе равным 20%.)

<sup>\*</sup> Образцы решения задач см.: Гара Н. Н., Габрусева Н. И. Химия: Задачник с «помощником»: 8—9 кл.: Пособие для учащихся общеобразоват. учреждений. — М.: Просвещение, 2008.

- **1.9.** Вычислите, какой объем воздуха (в м³) при нормальных условиях будет израсходован на сжигание 1 м³ газовой смеси, содержащей объемные доли: метана 70%, этана 20% и водорода 10%. (Принять содержание кислорода в воздухе равным 20%.)
- **1.10.** При сгорании смеси этана и водорода объемом 6,4 л (н. у.) получили оксид углерода(IV) объемом 12 л и пары воды. Определите объемную долю этана в смеси.
- **1.11.** Вычислите, какой объем воздуха потребуется для полного сжигания  $10 \, \text{м}^3$  смеси, в которой массовая доля этана равна 10%, пропана 90%. Содержание кислорода (по объему) в воздухе примерно равно 20%.
- **1.12.** Достаточно ли 15 мл кислорода на сжигание 10 мл бутана? (Объемы газов измерены при нормальных условиях.)
- **1.13.** Достаточно ли 5 л хлора на хлорирование 7 л этена? (Объемы газов измерены при нормальных условиях.)
- **1.14.** Коксовый газ содержит 56% водорода, 8% оксида углерода(II), остальное прочие газы. Вычислите объем воздуха, необходимого для сгорания  $40 \text{ м}^3$  такого газа (н. у.).
- 1.15. В промышленности метанол получают взаимодействием оксида углерода(II) с водородом в присутствии катализатора под высоким давлением. Рассчитайте объем водорода, необходимого для вступления в реакцию с оксидом углерода(II) объемом 25 л. (Объемы газов измерены при нормальных условиях.)
- **1.16.** Для проведения местной анестезии при хирургической операции необходимо приготовить газообразный хлорэтан объемом 5,6 л. Вычислите, какие объемы этилена и хлороводорода (н. у.) потребуются для этого.
- **1.17.** Сравните объемы хлора (н. у.), которые необходимо затратить на галогенирование 1 л метана: а) до хлорметана; б) до трихлорметана (условно).
- **1.18.** Вычислите объем хлорвинила (н. у.), который образуется при взаимодействии 8 м<sup>3</sup> ацетилена с хлороводородом.
- **1.19.** Вычислите объем ацетилена (н. у.), который можно получить из 5  $\rm m^3$  природного газа, содержащего 95% метана (н. у.).
- **1.20.** Достаточно ли 10 л водорода для гидрирования 7 л этена? (Объемы газов измерены при нормальных условиях.)
- **1.21.** Вычислите массу и количество вещества ацетилена, вступившего в реакцию с бромом, если в результате реакции образовалось 34,6 г тетрабромэтана.

- 1.22. Сожгли смесь, состоящую из 3 л метана и 3 л пропана. Определите объем оксида углерода(IV), который при этом образуется. (Объемы газов измерены при нормальных условиях.)
- **1.23.** Определите объем выделяющегося формальдегида при окислении 20  $m^3$  метана (н. у.).
- **1.24.** Вычислите объем выделяющегося хлорметана при хлорировании  $9 \text{ м}^3$  метана (н. у.).
- **1.25.** Вычислите, какие объемы ацетилена и водорода (н. у.) можно получить из 1 м<sup>3</sup> природного газа, содержащего 96% метана.
- **1.26.** Вычислите, какой объем оксида углерода (IV) (н. у.) выделится при взаимодействии 9,2 г этанола с натрием.
- **1.27.** Вычислите массу этанола, который можно получить при гидратации 112 л этилена (н. у.).
- **1.28.** При взаимодействии глицерина с азотной кислотой образовалось 5 моль тринитроглицерина. Вычислите массу глицерина, вступившего в реакцию.
- **1.29.** Вычислите массу фенолята калия, полученного при взаимодействии фенола с 1,12 г гидроксида калия.
- **1.30.** Вычислите массу этаналя, полученного из 120 л ацетилена (н. у.) по реакции Кучерова.
- **1.31**. Вычислите количество вещества воды и объем оксида углерода (IV) (н. у.), образующихся при сгорании 3 моль пропана.
- **1.32.** Определите, какое количество вещества трибромфенола можно получить, если к фенолу прилить бромную воду, содержащую 1,5 моль брома.
- **1.33.** Вычислите количество вещества фенолята натрия, полученного действием раствора щелочи на фенол, взятый в количестве 7 моль.
- **1.34.** Вычислите количество вещества ацетата магния, полученного взаимодействием магния с 8 моль уксусной кислоты.
- **1.35.** Через бромную воду пропустили 0,75 моль этилена. Какая масса 1,2-дибромэтана получится в результате реакции?
- **1.36.** Вычислите массу метаналя, полученного при окислении 0,5 моль метанола.
- **1.37**. Вычислите массу серебра, выделившегося в результате взаимодействия муравьиной кислоты с 0,02 моль аммиачного раствора оксида серебра.
- **1.38.** Вычислите количество вещества и массу сахарозы, которую подвергли полному гидролизу, если было получено 7,2 моль глюкозы.

- **1.39.** В бензине массовая доля гексана составляет 30%. Вычислите количество вещества оксида углерода (IV), образующегося при сгорании 20 кг бензина.
- **1.40.** При сжигании 2 моль этана в кислороде получено 4 моль оксида углерода (IV). Не противоречит ли этот факт закону сохранения массы веществ при химических реакциях? Ответ поясните.
- **1.41.** Определите массу брома, израсходованного на химическую реакцию с 0,25 моль этилена.
- **1.42.** В результате реакции горения углеводорода получено 4,4 г оксида углерода (IV). Определите количество вещества кислорода и массу сгоревшего углеводорода.
- **1.43.** Какие объемы газов хлора и метана (н. у.) потребуются для получения 154 кг четыреххлористого углерода?
- **1.44.** В химической лаборатории метан может быть получен из ацетата натрия и щелочи при нагревании:

$$CH_3COONa + NaOH \rightarrow Na_2CO_3 + CH_4$$

Вычислите массу, количество вещества и объем (н. у.) метана, который может быть получен, если полностью израсходовать 20 г щелочи.

- **1.45.** Вычислите массу ацетата натрия, полученного в химической реакции между 15 г уксусной кислоты и гидроксидом натрия. Составьте задачу, обратную данной, и решите ее.
- **1.46**. Какой объем водорода (н. у.) можно получить при взаимодействии 0,24 г магния с избытком уксусной кислоты? Какое количество вещества уксусной кислоты вступило в реакцию?
- **1.47.** Вычислите массу стеариновой кислоты, которую можно получить из хозяйственного мыла, содержащего 113 г стеарата калия, если подействовать на него разбавленной серной кислотой.
- **1.48.** При спиртовом брожении глюкозы получено 230 г этанола. Вычислите количество вещества глюкозы, которая подверглась брожению, и объем полученного оксида углерода (IV) (н. у.).
- 1.49. Какой объем воздуха (н. у.) потребуется для полного окисления 30 г глюкозы? Какой объем оксида углерода (IV) (н. у.) при этом образуется?
- **1.50.** Вычислите массу и количество вещества хлорэтана, который необходим для получения 85 г этанола.

2. Вычисление массы, количества или объема одного из исходных органических веществ или продукта реакции по массе, количеству или объему исходного вещества, содержащего примеси



Степень чистоты основного вещества (вещества, вступающего в реакцию), содержащего примеси, определяется массовой долей данного вещества в навеске смеси.

Массовая доля вещества в смеси веществ определяется отношением массы вещества к массе всей смеси:

$$w(B-Ba) = \frac{m(B-Ba)}{m(CMECH)},$$

Массовую долю вещества выражают в долях единицы или в процентах. Сумма массовых долей всех компонентов смеси равна 1 (100%):

$$w(A) + w(B) + w(C) = 1 (100\%)$$

#### Решите самостоятельно

- **2.1.** Рассчитайте объем воздуха, израсходованного на сжигание 8 л этиламина, если объемная доля негорючих примесей составляет 2%. (Объемы газов измерены при нормальных условиях.)
- **2.2.** Вычислите объем оксида углерода (IV) (н. у.), образующегося при сжигании 46,35 г этиламина, если массовая доля негорючих примесей составляет 3%.
- **2.3.** При сжигании антрацита массой 40 г образовалось 3 моль оксида углерода(IV). Определите массовую долю (в %) примесей в антраците.
- **2.4.** Какое количество вещества этана получится при пропускании 6,72 г этилена, содержащего 20% примесей, и водорода над нагретым никелевым катализатором?
- **2.5.** Какое количество вещества этилового спирта можно получить при реакции гидратации природного газа объемом 4 м<sup>3</sup> (н. у.), содержащего 5% этилена?
- **2.6.** Вычислите количество вещества ацетальдегида, который образуется по реакции Кучерова из 5 кг ацетилена, содержащего 0,2% примеси.
- **2.7.** Рассчитайте, какая масса природного газа, массовая доля метана в котором 90%, потребуется для синтеза метанола количеством вещества 5 моль.

- **2.8.** Определите массу ацетилена, полученного из технического карбида кальция массой 80 г, если массовая доля примесей в нем составляет 15%.
- **2.9.** Определите, какую массу 3,2%-ного раствора брома обесцветит ацетилен, полученный из 40 г карбида кальция, содержащего 20% примесей.
- **2.10**. Вычислите количество вещества бромэтана, который образуется при взаимодействии бромоводорода с 20 кг спирта, содержащего 5% примесей.
- **2.11.** 200 г этилового спирта, содержащего 4% примеси, нагрели с концентрированной серной кислотой. Какое количество вещества этилена образовалось при этом?
- **2.12.** Какое количество вещества водорода выделится при взаимодействии натрия с 20 г пропанола, если массовая доля примесей в пропаноле составляет 8%?
- **2.13.** Из 281,25 кг технического бензола, массовая доля примесей в котором 20%, в результате реакции гидролиза получили фенол. Какое количество вещества фенола образовалось?
- **2.14.** В результате реакции фенола с 200 г азотной кислоты, содержащей 10% примеси, получили тринитрофенол, или пикриновую кислоту. Какое количество вещества пикриновой кислоты образовалось?
- **2.15.** При окислении 120 мл этанола (плотность 0,8 г/мл, массовая доля примесей 4,2%) образовался ацетальдегид. Определите количество вещества образовавшегося ацетальдегида.
- **2.16.** Какое количество вещества уксусного альдегида можно получить из природного газа объемом 4  $\rm M^3$  (н. у.), содержащего 5% этана?
- **2.17.** Для каталитического гидрирования муравьиного альдегида потребовалось 7 г технического водорода, содержащего 4% примеси. Какое количество вещества метанола при этом образовалось?
  - 2.18. В технике муравьиную кислоту получают по схеме
- СО + NaOH  $\rightarrow$  HCOONa  $\rightarrow$  HCOOH Какое количество вещества муравьиной кислоты можно получить из 680 л оксида углерода(II), содержащего 2% примеси?
- **2.19.** Какое количество вещества твердого мыла можно получить при взаимодействии стеариновой кислоты с 15 кг карбоната натрия, содержащего 5% примеси?
- **2.20.** Какое количество вещества мыла получится при гидролизе жира, состоящего из тристеарата, если на этот процесс расходуется 6 кг гидроксида натрия, содержащего 8% примеси?

- **2.21.** Какое количество вещества глюконовой кислоты образовалось при окислении аммиачным раствором оксида серебра 6 г глюкозы, содержащей 12% примеси?
- **2.22.** Вычислите массу глюкозы, образовавшейся из 22 т картофеля с массовой долей крахмала в нем 20%.
- **2.23.** Какое количество вещества этанола образуется при брожении 36 г глюкозы, если массовая доля примесей в ней 10%?
- 2.24. Какая масса спирта (сорбит) образуется при восстановлении водородом 0,27 моль глюкозы, содержащей 1% примеси?
- **2.25.** Какое количество вещества глюкозы можно получить из 5 т свекловичной стружки с массовой долей сахара 12%?
- **2.26.** Какая масса древесных отходов с массовой долей клетчатки 60% расходуется на получение 20 моль гидролизного спирта?
- **2.27.** Определите количество вещества анилина, образующегося из 330 кг нитробензола, массовая доля примесей в котором 3%.
- **2.28.** Какое количество вещества оксида углерода (IV) образуется при сжигании 6 л метиламина (н. у.), объемная доля негорючих примесей в котором составляет 3%?
  - 2.29. Анилин можно получить из фенола и аммиака:

$$C_6H_5OH + NH_3 \rightarrow C_6H_5NH_2 + H_2O$$

Какое количество вещества анилина образуется при взаимодействии 290 кг фенола, содержащего 3% примеси, с аммиаком?

- **2.30.** Какое количество вещества этилового эфира аминоуксусной кислоты образуется при взаимодействии аминоуксусной кислоты с 23 мл этилового спирта (плотность 0.8 г/мл), массовая доля этанола в котором 96%?
- **2.31.** Какое количество вещества аминоуксусной кислоты образуется при взаимодействии аммиака с 190 г хлоруксусной кислоты, содержащей 2% примеси?
- **2.32.** На нейтрализацию аминоуксусной кислоты потребовалось 10 г гидроксида натрия с массовой долей примесей 2%. Какое количество вещества соли при этом образовалось?
- **2.33.** Волокно нитрон это полимер акрилонитрила, который получают по схеме:

$$2CH_2$$
= $CH$ - $CH_3$  +  $2NH_3$  +  $3O_2$  →  $2CH_2$ = $CH$ - $CN$  +  $6H_2O$  Какое количество вещества акрилонитрила можно получить из природного газа объемом 8 м³ (н. у.), если объемная доля пропена в нем  $10\%$ ?

- **2.34.** Вычислите массовую долю примесей (в %) в техническом этилене, если в реакции 160 г этого образца с водой образовалось 5 моль спирта.
- **2.35.** Вычислите объем оксида углерода (IV) (н. у.), который образуется при спиртовом брожении глюкозы, если массовая доля примесей в нем 8%.
- **2.36.** Вычислите массу глицерина, который можно получить на мыловаренном заводе из технического жира массой 20 т, если массовая доля примесей в нем составляет 2,5%. (Считать жир триглицеридом олеиновой кислоты.)
- **2.37.** Определите, какое количество вещества сахарозы можно получить из 100 кг сахарной свеклы с массовой долей сахарозы 18%.
- **2.38.** Массовая доля крахмала в клубнях картофеля в среднем составляет 24%. Вычислите массу спирта, который можно получить из 1 кг картофеля. (Расчет вести на одно элементарное звено крахмала.)
- **2.39.** Массовая доля крахмала в кукурузе составляет 70%. Какое количество вещества глюкозы можно получить из 500 кг кукурузных семян? (Расчет вести на одно элементарное звено крахмала.)
- **2.40.** Свекловичную стружку массой 80 кг с массовой долей сахарозы 15% подвергли гидролизу. Какая масса глюкозы при этом образовалась?
- **2.41.** В химической лаборатории из 129 г хлорэтана, содержащего 5% примесей, был получен этанол. Рассчитайте количество вещества этанола, образовавшегося в результате этой реакции.
- **2.42.** Вычислите массу этана, образующегося при гидрировании 60 г этилена, содержащего 5% примесей.
- **2.43.** Вычислите количество вещества ацетата магния, полученного при взаимодействии оксида магния с 1,2 кг технической уксусной кислоты, содержащей 8% примеси.
- **2.44.** Вычислите массу и количество вещества анилина, содержащего 10% примеси, израсходованного на реакцию с 7,1 г хлороводорода.
- **2.45.** Вычислите объем водорода (н. у.), выделившегося при взаимодействии 5 моль фенола, содержащего 6% примесей, с металлическим натрием.
- 2.46. Вычислите массу и количество вещества этанола, содержащего 4% примеси, вступившего в реакцию с 9,2 г металлического натрия.

- **2.47.** Вычислите массу этилового эфира уксусной кислоты, образовавшегося при взаимодействии этанола с 6 моль уксусной кислоты, содержащей 2% примесей.
- **2.48**. Вычислите массу формиата натрия, полученного взаимодействием муравьиной кислоты с 40 г карбоната натрия, содержащего 3% примеси.
- **2.49.** Вычислите массу тринитротолуола, полученного при взаимодействии толуола с 190 г азотной кислоты, содержащей 10% примеси.
- **2.50.** Вычислите массу фенолята калия, полученного при взаимодействии гидроксида калия и 6 г фенола, содержащего 2% примеси.
- **2.51.** При взаимодействии этанола и оксида меди(II) получили 27,72 г альдегида. Вычислите массу оксида меди(II), израсходованного на эту реакцию, если в нем содержится 10% примеси.
- 3. Расчеты по химическим уравнениям, связанные с массовой долей растворенного вещества



Массовая доля растворенного вещества (w) — это отношение массы растворенного вещества к массе раствора:

$$w = \frac{m \, (\text{в-ва})}{m \, (\text{p-pa})} = \frac{m \, (\text{в-ва})}{m \, (\text{в-ва}) + m \, (\text{p-ля})},$$
  
откуда  $m \, (\text{в-ва}) = w \cdot m \, (\text{p-рa})$ 

Массовую долю растворенного вещества выражают в долях единицы или в процентах.

#### Решите самостоятельно

- **3.1.** Рассчитайте массу 20%-ного раствора гидроксида натрия, необходимого для нейтрализации газа, который выделяется при бромировании 46,8 г бензола.
- **3.2.** Вычислите объем 3%-ной бромной воды (плотность 1,02 г/мл), необходимой для получения 792 г триброманилина.
- **3.3.** Вычислите массу фенолята натрия, если для его получения использовали фенол и 120 г 60%-ного раствора гидроксида натрия.
- **3.4.** Пикриновая кислота (тринитрофенол) образуется при взаимодействии фенола и азотной кислоты. Сколько граммов

тринитрофенола образовалось при взаимодействии 200 г 63%-ной азотной кислоты и фенола?

- **3.5.** Вычислите массу метилацетата, образовавшегося при взаимодействии метилового спирта со 120 г 20%-ного раствора уксусной кислоты.
- **3.6.** Вычислите массу калиевой соли пропионовой кислоты, если в реакцию с гидроксидом калия вступило 300 г 14%-ного раствора пропионовой кислоты.
- **3.7.** При взаимодействии 200 г 60%-ного раствора уксусной кислоты с этиловым спиртом образовался сложный эфир. Вычислите массу сложного эфира.
- **3.8.** В реакцию с анилином вступило 80 г 8%-ного раствора брома. Какова масса триброманилина, образовавшегося при этом?
- **3.9.** Сколько граммов нитробензола можно получить из бензола и 200 г 96%-ного раствора азотной кислоты?
- **3.10.** Вычислите массу соли, образующейся при взаимодействии аминоуксусной кислоты с 250 г 10%-ного раствора серной кислоты.
- **3.11.** Вычислите массу этилового эфира аминоуксусной кислоты, образующейся при взаимодействии 150 г 20%-ного раствора аминоуксусной кислоты с этиловым спиртом.
- **3.12.** Вычислите массу водорода, который выделится при взаимодействии натрия с 80 г раствора этилового спирта (массовая доля в растворе этанола 96%). (Учитывать выделение водорода только из спирта.)
- **3.13.** Вычислите массу муравьиной кислоты, образовавшейся при окислении 160 г 36%-ного раствора формальдегида.
- **3.14.** Вычислите массу муравьиной кислоты, образовавшейся при окислении 200 мл формалина, массовая доля формальдегида в котором 40%. (Плотность формалина 1,3 г/мл.)
- **3.15.** Вычислите массу муравьиной кислоты, образующейся при окислении гидроксидом меди(II) 150 мл формалина (массовая доля формальдегида 36%). (Плотность формалина 1,11 г/мл.)
- **3.16.** Вычислите массу этилата натрия, образующегося при взаимодействии натрия с 60 мл 98%-ного этилового спирта, плотность которого 0,8 г/мл.
- **3.17.** Какую массу дивинила можно получить, используя 300 мл 96%-ного раствора этилового спирта? (Плотность спирта 0,5 г/мл.)
- **3.18.** Какую массу анилина можно получить при восстановлении нитробензола железом в кислой среде? На эту реакцию по-

- требовалось 160 мл соляной кислоты (массовая доля НСІ 38%, плотность 1,189 г/мл).
- **3.19.** Вычислите массу нитробензола, образовавшегося при нитровании бензола 10 мл 60%-ной азотной кислоты (плотность 1,373 г/мл).
- **3.20.** Вычислите массу ацетата натрия, образующегося при взаимодействии уксусной кислоты и 60 мл 10%-ного раствора гидроксида натрия (плотность 1,1 г/мл).
- **3.21.** Для нитрования толуола потребовалось 60 г 94,6%-ной азотной кислоты. Вычислите массу тринитротолуола.
- 3.22. Вычислите массу 2%-ной бромной воды, которая может прореагировать с 36,8 г толуола.
- **3.23.** Какая масса 60%-ного раствора гидроксида натрия потребуется для взаимодействия с 28,2 г фенола?
- **3.24.** При взаимодействии щавелевой кислоты HOOC—COOH с 400 г 30%-ного раствора гидроксида натрия образовалась средняя соль. Вычислите массу образовавшейся соли.
- **3.25.** Вычислите массу сложного эфира, образующегося при взаимодействии 240 мл 40%-ного раствора уксусной кислоты (плотность 1,05 г/см $^3$ ) с этанолом.
- **3.26.** Вычислите массу сложного эфира, образующегося при взаимодействии уксусной кислоты со 120 мл 90%-ного метанола (плотность  $0.7 \text{ г/см}^3$ ).
- **3.27.** Какая масса 8%-ного раствора брома необходима для реакции с 27,9 г анилина?
- **3.28.** Какой объем 90%-ного метанола (плотность 0,8 г/см³) необходим для реакции с 17,8 г аминопропионовой кислоты?
- **3.29.** Вычислите массу ацетилена, необходимого для получения по реакции Кучерова 80%-ного раствора уксусного альдегида массой 50 г.
- **3.30.** При сжигании этилового спирта образовался оксид углерода (IV), который затем пропустили через 400 мл раствора щелочи (массовая доля NaOH 30%, плотность 1,33 г/мл). Вычислите массу образовавшейся соли.
- **3.31.** Вычислите массу раствора 62%-ной азотной кислоты, которая необходима для получения 118,8 г нитроцеллюлозы.
- **3.32.** Вычислите массу дибромэтана, который образовался при взаимодействии этилена с 60 мл 3%-ной бромной воды (плотность 1,02 г/мл).
- **3.33.** Для удаления воды из технического этанола его кипятят с ацетиленидом кальция  $CaC_2$ . Вычислите массу ацетилени-

да кальция, необходимого для повышения концентрации 50 мл 96%-ного технического спирта (плотность 0,8 г/мл) до 100%.

- **3.34.** 96%-ный раствор этанола может быть обезвожен с помощью негашеной извести. Составьте соответствующее уравнение химической реакции и вычислите массу негашеной извести, затраченной на обезвоживание 100 кг 96%-ного раствора этанола и получение абсолютного спирта.
- **3.35.** Какую массу раствора щелочи с массовой долей гидроксида натрия 20% надо израсходовать при переработке жира, чтобы получить 8,9 кг мыла? (Считать жир триглицеридом стеариновой кислоты.)
- **3.36.** На гидролизном заводе из древесных опилок за сутки получают 80 кг гидролизного этилового спирта с массовой долей спирта 96%. Какой объем оксида углерода (IV) (н. у.) при этом образуется?
- **3.37.** Вычислите массу древесных отходов с массовой долей целлюлозы 60%, из которых получили 6 кг гидролизного спирта с массовой долей спирта 96%.
- **3.38.** Вычислите массу 96%-ного раствора этанола, который может быть получен из  $400 \text{ м}^3$  этилена (н. у.).
- **3.39.** Фенолят калия получен взаимодействием фенола и 120 г раствора гидроксида калия (массовая доля КОН 14%). Вычислите массу фенолята калия.
- **3.40.** Вычислите объем азотной кислоты (плотность 1,483 г/мл) с массовой долей кислоты 90%, которая потребуется для получения 90,8 г нитроглицерина.
- **3.41.** Вычислите массу оксида меди (I), образующегося при взаимодействии 40%-ного раствора глюкозы массой 4,8 г с гидроксидом меди (II).
- **3.42.** На карбонат натрия подействовали 10 г 40%-ного раствора муравьиной кислоты. Рассчитайте массу образовавшейся соли.
- **3.43.** Вычислите массу этилового эфира муравьиной кислоты, полученного взаимодействием муравьиной кислоты и 46 г 60%-ного раствора этилового спирта.
- **3.44.** Рассчитайте массу 2,4,6-триброманилина, образующегося при взаимодействии анилина с 24 г 6%-ной бромной воды.
- **3.45.** Рассчитайте массу и количество вещества 90%-ного раствора этанола, необходимого для получения 26 г этаналя.
- **3.46.** Вычислите массу и количество вещества анилина, полученного при восстановлении 80 г 70%-ного раствора нитробензола.

- **3.47.** Вычислите объем водорода (н. у.), выделившегося в результате реакции магния с 7,3 г 40%-ного раствора уксусной кислоты.
- **3.48.** Вычислите массу дивинила, полученного из 200 л 96%-ного раствора этилового спирта (плотность 0,8 г/мл).
- **3.49.** Вычислите объем водорода (н. у.), выделившегося при взаимодействии металлического лития и 60 мл 96%-ного этилового спирта (плотность 0,8 г/мл).
- **3.50.** Вычислите объем раствора этанола (массовая доля 96%, плотность 0,8 г/мл), затраченного на этерификацию 2 моль  $\beta$ -аминопропионовой кислоты.

#### 4. Расчеты по термохимическим уравнениям



Каждая химическая реакция сопровождается изменением энергии.

**Тепловой эффект химической реакции** — это количество выделенной или поглощенной в процессе реакции теплоты (*Q*). Запись химической реакции с указанием теплового эффекта называ-

ют термохимическим уравнением реакции. Тепловой эффект химической реакции зависит от агрегатного состояния исходных веществ и продуктов реакции, поэтому в термохимических уравнениях обязательно указывают агрегатное состояние вещества (газообразное, жидкое, твердое):

$$C(\tau_B) + O_2(r) = CO_2(r) + Q$$

Тепловой эффект химической реакции измеряют в килоджоулях (кДж).

**Теплота образования вещества** — это количество теплоты, которая выделяется или поглощается при образовании 1 моль химического соединения из простых веществ при стандартных условиях. Она измеряется в килоджоулях на моль (кДж/моль).

**Эндотермические реакции** протекают с поглощением теплоты (-Q), **экзотермические** — с выделением теплоты (+Q).

**Задача 1**. Термохимическое уравнение разложения воды на молекулярный водород и кислород:

$$2H_2O(ж) = 2H_2(г) + O_2(г) - 484 кДж$$

Рассчитайте, сколько теплоты необходимо затратить на разложение 360 мл воды.

Дано: 
$$V(H_2O) = 360 \text{ мл}$$
  $\rho(H_2O) = 1 \text{ г/мл}$   $Q - ?$ 

Решение:

1) Вычислим массу воды, которую нужно подвергнуть разложению:

$$m = \rho \cdot V$$
  
 $m(H_2O) = 360 \text{ мл} \cdot 1 \text{ г/мл} = 360 \text{ г}$ 

2) Вычислим количество вещества, которое составляют 360 г  $H_2O$ :

$$v(H_2O) = 360 \, \text{г} : 18 \, \text{г/моль} = 20 \, \text{моль}$$

3) Найдем количество теплоты, необходимой для разложения 20 моль воды.

Согласно термохимическому уравнению реакции на разложение 2 моль воды затрачивается 484 кДж. Следовательно, на разложение 20 моль потребуется в 10 раз больше теплоты, т. е. 4840 кДж.

Ответ: 4840 кДж.

**Задача 2.** При полном сгорании 1 т угля выделилось 32 750 000  $(32,75 \cdot 10^6)$  кДж теплоты. Составьте термохимическое уравнение реакции горения угля.

Дано: 
$$m(C) = 1 \text{ т } (10^6 \text{ г})$$
  
 $Q = 32,75 \cdot 10^6 \text{ кДж}$ 

Термохимическое уравнение реакции — ?

#### Решение:

1) Запишем уравнение химической реакции горения угля. В уравнении реакции над формулами напишем данные условия задачи и вопрос задачи; под формулами — данные, соответствующие уравнению реакции:

$$^{10^6}$$
г  $^{\circ}$   $^{$ 

Составим и решим пропорцию:

$$10^6$$
 г С —  $32,75 \cdot 10^6$  кДж  $12$  г С —  $x$  кДж  $x = \frac{12 \cdot 32,75 \cdot 10^6}{10^6} = 393$  кДж

2) Составим термохимическое уравнение реакции:

$$C(тв) + O_2(r) = CO_2(r) + 393 кДж$$

**Ответ:** 
$$C(тв) + O_2(r) = CO_2(r) + 393$$
 кДж.

Задача 3. Термохимическое уравнение горения алюминия  $4AI(тв) + 3O_2(r) = 2AI_2O_3(тв) + 3164$  кДж Сколько теплоты выделится при сгорании 5.4 г алюминия?

Дано: 
$$m(AI) = 5,4 \ \Gamma$$
  $Q - ?$ 

#### Решение:

1) Запишем термохимическое уравнение реакции. В уравнении реакции над формулами напишем данные условия задачи и вопрос задачи; под формулами — данные, соответствующие уравнению реакции:

2) Рассчитаем, сколько теплоты выделится при сгорании 5,4 г алюминия. Для этого составим и решим пропорцию:

108 г AI — 3164 кДж  
5,4 г AI — 
$$x$$
 кДж  
 $x = \frac{5,4 \cdot 3164}{108} = 158,2$  кДж

Ответ: 158.2 кДж.

#### Решите самостоятельно

**4.1.** По термохимическому уравнению реакции горения спирта

 $C_2H_5OH(ж) + 3O_2(r) = 2CO_2(r) + 3H_2O(r) + 1374 кДж$  вычислите объем полученного оксида углерода(IV) (н. у.), количество вещества и массу кислорода, если известно, что выделилось 6870 кДж теплоты.

**4.2.** При полном сжигании 210 л метана (н. у.) выделилось 8374 кДж теплоты. Составьте термохимическое уравнение реакции горения метана.

4.3. По термохимическому уравнению реакции

$$CO(r) + 2H_2(r) = CH_3OH(ж) + 109 кДж$$

вычислите объемы исходных веществ (н. у.) и количество теплоты, выделившейся при образовании 320 г метанола.

- **4.4.** При взаимодействии 4,2 г железа с серой выделилось 7,15 кДж теплоты. Составьте термохимическое уравнение химической реакции. Вычислите объем газа (н. у.), который может быть получен из продукта реакции при действии на него избытка соляной кислоты.
  - 4.5. По термохимическому уравнению реакции

$$C_2H_4(r) + H_2O(r) = C_2H_5OH(ж) + 460 кДж$$

вычислите объем взятого этилена (н. у.), если известно, что в этом процессе выделилось 920 кДж теплоты.

**4.6.** По термохимическому уравнению реакции горения спирта

$$C_2H_5OH(ж) + 3O_2(r) = 2CO_2(r) + 3H_2O(r) + 1374 кДж$$

вычислите количество теплоты, которая может выделиться при полном сжигании 13,8 г этанола.

**4.7.** По термохимическому уравнению реакции горения этилена

$$C_2H_4(r) + 3O_2(r) = 2CO_2(r) + 2H_2O(r) + 1400$$
 кДж

рассчитайте, сколько выделится теплоты, если в реакцию вступило 5,6 л этилена (н. у.).

**4.8.** По термохимическому уравнению реакции горения ацетилена

$$2C_2H_2(r) + 5O_2(r) = 4CO_2(r) + 2H_2O(r) + 2610 кДж$$

рассчитайте, сколько выделится теплоты, если в реакцию вступило: a) 1 моль ацетилена; б) 5,2 г ацетилена; в) 67,2 л ацетилена (н. у.).

**4.9.** По термохимическому уравнению реакции горения спирта

$$C_2H_5OH(ж) + 3O_2(r) = 2CO_2(r) + 3H_2O(r) + 1374 кДж$$

вычислите, сколько выделится теплоты и какое количество вещества кислорода вступило в реакцию, если сгорело 3 моль спирта.

**4.10.** При гидратации 6,72 л этилена (н. у.) выделилось 13,8 кДж теплоты. Составьте термохимическое уравнение этой реакции.

**4.11.** По термохимическому уравнению реакции горения метана

$$CH_4(r) + 2O_2(r) = CO_2(r) + 2H_2O(r) + 803 кДж$$

рассчитайте, какое количество теплоты выделится при сгорании 5 м<sup>3</sup> метана (н. у.) и какое количество вещества кислорода потребуется для этого.

- **4.12.** Тепловой эффект реакции горения бутадиена равен 2310 кДж/моль. Составьте термохимическое уравнение реакции горения бутадиена и вычислите массу сгоревшего бутадиена, если при этом выделилось 924 кДж теплоты.
- **4.13.** При гидратации 6,72 л этилена (н. у.) выделилось 13,8 кДж теплоты. Составьте термохимическое уравнение этой реакции.
- **4.14.** Составьте термохимическое уравнение реакции горения метилового спирта, при сжигании 8 г которого выделилось 181,66 кДж теплоты.
- **4.15.** Возобновление содержания кислорода в атмосфере осуществляется реакцией фотосинтеза

$$6CO_2(r) + 6H_2O(ж) = C_6H_{12}O_6(ж) + 6O_2(r) - 2815,8 кДж$$

Рассчитайте количество затраченного оксида углерода (IV) и количество поглощенной теплоты, если образовалось 7,2 кг глюкозы.

**4.16.** Одним из основных источников энергии в живом организме является окисление глюкозы:

$$C_6H_{12}O_6(тв) + 6O_2(r) = 6CO_2(r) + 6H_2O(ж) + 2815,8 кДж$$

Рассчитайте количество теплоты, выделяющейся при окислении 3 моль глюкозы. Какой объем углекислого газа (н. у.) при этом образуется?

- **4.17.** Составьте термохимическое уравнение реакции горения диэтилового эфира, если при сгорании 18,5 г этого вещества выделилось 682,72 кДж теплоты.
- **4.18.** Составьте термохимическое уравнение реакции горения этилена, если известно, что тепловой эффект этой реакции 1410,97 кДж/моль. Вычислите объем сгоревшего этилена (н. у.), если при этом выделилось 352,74 кДж теплоты.
  - 4.19. В промышленности водород получают по уравнению

$$CH_4(r) + 2H_2O(r) = CO_2(r) + 4H_2(r) - 165 кДж$$

Каков расход воды (в г), метана (в л) и теплоты при получении 250  $м^3$  водорода (н. у.)?

4.20. Составьте термохимическое уравнение реакции горения

метилового спирта, при сжигании 0,8 г которого выделилось 18,2 кДж теплоты.

- 4.21. Составьте термохимическое уравнение реакции горения этилена, если известно, что тепловой эффект этой реакции 1410,97 кДж/моль. Вычислите объем воздуха (н. у.), израсходованного на эту реакцию, если при этом выделилось 7054,8 кДж теплоты.
- **4.22.** При полном окислении 0,5 моль этана выделилось 711,5 кДж теплоты. Составьте термохимическое уравнение этой реакции.
- **4.23.** При сгорании 5,6 л этилена (н. у.) выделилось 330,75 кДж теплоты. Составьте термохимическое уравнение этой реакции.
- **4.24.** При полном окислении 15 г этана выделилось 711,5 г кДж теплоты. Составьте термохимическое уравнение этой реакции.
- **4.25.** Вычислите, какое количество теплоты потребуется для разложения 8 кг известняка, массовая доля примесей в котором 5%. Термохимическое уравнение этой реакции:

$$CaCO_3 = CaO + CO_2 - 177,650 кДж$$

**4.26.** По термохимическому уравнению химической реакции  $Si(tB) + O_2(r) = SiO_2(tB) + 850.6 кДж$ 

вычислите, какое количество теплоты может выделиться, если сжечь в кислороде 1,5 кг кремния, содержащего 3% примеси.

4.27. По термохимическому уравнению химической реакции

$$2AI(тв) + 3CI2(г) = 2AICI3(тв) + 1394,8 кДж$$

вычислите, какое количество теплоты может выделиться при взаимодействии с хлором 12 кг алюминия, содержащего 4% примеси.

4.28. По термохимическому уравнению химической реакции

$$Fe_2O_3(тв) + 2AI(тв) = 2Fe(тв) + AI_2O_3(тв) + 854 кДж$$

вычислите, какое количество теплоты может выделиться при восстановлении 250 г оксида железа (III), содержащего 5% примеси, алюминотермическим способом.

- **4.29.** Составьте термохимическое уравнение реакции, если известно, что при сгорании 2 г водорода в кислороде выделилось 286 кДж теплоты.
  - 4.30. По термохимическому уравнению химической реакции

$$2Na(тв) + Cl_2(r) = 2NaCl(тв) + 819 кДж$$

вычислите объем хлора (н. у.), вступившего в реакцию, если известно, что выделилось 40,95 кДж теплоты.

**4.31.** Составьте термохимическое уравнение горения ацетилена, если в реакцию вступило 3 моль кислорода и при этом выделилось 1569,6 кДж теплоты.

Внимание, тесты!

- **4.32.** При взаимодействии 2 моль натрия с хлором выделяется 819 кДж теплоты. Масса натрия, прореагировавшего с хлором с выделением 40,95 кДж теплоты, равна
  - 1) 0,5 г 2) 23 г 3) 2,3 г 4) 4,6 г
- **4.33.** Тепловой эффект реакции получения 1 моль этанола при взаимодействии этилена с водой составляет 46 кДж. Количество теплоты, выделившейся при взаимодействии 70 г этилена (этена) с водой, составляет
  - 1) 46 кДж 2) 230 кДж 3) 3220 кДж 4) 115 кДж
- **4.34.** При окислении 1 моль глюкозы выделяется 2815,8 кДж теплоты. Количество теплоты, выделившейся при окислении 200 г глюкозы, составляет
  - 1) 3128,7 кДж 2) 2815,8 кДж 3) 563 160 кДж 4) 200 кДж
- **4.35.** При сгорании 1 моль ацетилена выделяется 1305 кДж теплоты. Объем кислорода, понадобившегося для проведения этой реакции, если при этом выделилось в два раза больше теплоты, составляет
  - 1) 2 л 2) 44,8 л 3) 112 л 4) 224 л
- 5. Нахождение молекулярной формулы органического соединения по массе (объему) продуктов сгорания



Задача 1. При сжигании углеводорода массой 2,1 г получили 6,6 г оксида углерода(IV) и 2,7 г воды. Относительная плотность органического соединения по водороду равна 42. Выведите молекулярную формулу углеводорода.

Дано:  

$$m(C_xH_y) = 2,1 \text{ г}$$
  
 $m(CO_2) = 6,6 \text{ г}$   
 $m(H_2O) = 2,7 \text{ г}$   
 $D_{H_2}(C_xH_y) = 42$   
 $C_xH_y = ?$ 

#### Решение:

1) По относительной плотности найдем молярную массу углеводорода:

$$D(H_2) = \frac{M(C_x H_y)}{M(H_2)}$$

$$M(C_xH_y) = 2$$
 г/моль · 42 = 84 г/моль

2) Рассчитаем массу оксида углерода (IV), выделившегося при сгорании 1 моль (или 84 г) углеводорода. При сгорании 2,1 г  $C_xH_y$  выделилось 6,6 г  $CO_2$ , а при сгорании 84 г  $C_xH_y-x$  г  $CO_2$ . Составим и решим пропорцию:

2,1 
$$\Gamma$$
  $C_x H_y - 6,6 \Gamma$   $CO_2$   
84  $\Gamma$   $C_x H_y - x \Gamma$   $CO_2$   
 $x = \frac{6,6 \Gamma \cdot 84 \Gamma}{2,1 \Gamma} = 264 \Gamma$   
 $m(CO_2) = 264 \Gamma$ 

3) Найдем количество вещества  $CO_2$ , выделившегося при сгорании 1 моль углеводорода:

$$M_{\rm r}({\rm CO_2}) = 12 + 16 \cdot 2 = 44$$
 $M({\rm CO_2}) = 44 \, {\rm г/моль}$ 
 $V({\rm CO_2}) = 264 \, {\rm r} : 44 \, {\rm г/моль} = 6 \, {\rm моль}$ 

4) Рассчитаем массу и количество вещества воды, выделившейся при сгорании 1 моль углеводорода. При сгорании 2,1 г  $C_xH_y$  выделилось 2,7 г  $H_2O$ , а при сгорании 84 г  $C_xH_y$  — y г  $H_2O$ . Составим и решим пропорцию:

2,1 
$$\Gamma$$
 C<sub>x</sub>H<sub>y</sub> — 2,7  $\Gamma$  H<sub>2</sub>O  
84  $\Gamma$  C<sub>x</sub>H<sub>y</sub> —  $y$   $\Gamma$  H<sub>2</sub>O  

$$y = \frac{84 \Gamma \cdot 2,7 \Gamma}{2,1 \Gamma} = 108 \Gamma$$

$$m(H2O) = 108 \Gamma$$

Найдем количество воды, содержащейся в 108 г:

$$M_{\rm r}({\rm H_2O}) = 1 \cdot 2 + 16 = 18$$
 $M({\rm H_2O}) = 18 \ {\rm г/моль}$ 
 $v({\rm H_2O}) = 108 \ {\rm r} : 18 \ {\rm г/моль} = 6 \ {\rm моль}$ 

5) Определим молекулярную формулу органического соединения. В 6 моль оксида углерода (IV), образовавшегося при сгорании 1 моль углеводорода, содержится 6 моль атомов углерода; в 6 моль воды, образовавшейся при сгорании 1 моль углеводорода, содержится 12 атомов водорода. Следовательно, в 1 моль углеводорода содержалось 6 моль атомов углерода и 12 моль атомов водорода. Молекулярная формула углеводорода С<sub>6</sub>Н<sub>12</sub>.

**Ответ:** С<sub>6</sub>H<sub>12</sub>.

Задача 2. При сжигании 4,4 г алкана выделилось 13,4 г оксида углерода(IV) (углекислого газа). Относительная плотность вещества по воздуху равна 1,52. Определите молекулярную формулу алкана.

Решение:

1) По относительной плотности найдем

$$D(\text{возд}) = M(C_n H_{2n+2}) : M(\text{возд})$$
  
 $M(C_n H_{2n+2}) = 29 \ г/\text{моль} \cdot 1,52 = 44 \ г/\text{моль}$ 

2) Рассчитаем массу и количество вещества оксида углерода(IV), выделившегося при сгорании 1 моль (или 44 г) углеводорода. При сгорании 4,4 г алкана выделилось 13,4 г углекислого газа, а при сгорании 44 г алкана выделилось x г углекислого газа. Составим и решим пропорцию:

4,4 г алкана — 13,4 г 
$$CO_2$$
44 г алкана —  $x$  г  $CO_2$ 

$$x = \frac{44 \text{ r} \cdot 13,4 \text{ r}}{4,4 \text{ r}} = 134 \text{ r}$$

$$m(CO_2) = 134 \text{ r}$$

Найдем количество вещества СО2, выделившегося при сгорании 1 моль углеводорода:

$$M_{\rm r}({\rm CO_2}) = 12 + 16 \cdot 2 = 44$$
 $M({\rm CO_2}) = 44 \, {\rm г/моль}$ 
 $v({\rm CO_2}) = m({\rm CO_2}) : M({\rm CO_2})$ 
 $v({\rm CO_2}) = 134 \, {\rm r} : 44 \, {\rm г/моль} = 3 \, {\rm моль}$ 

- 3) Определим молекулярную формулу алкана.
- В 3 моль оксида углерода(IV), выделившегося при сгорании 1 моль алкана, содержится 3 моль атомов углерода. Следовательно, число атомов углерода в алкане равно 3. Исходя из общей формулы алканов  $C_aH_{2a+2}$ , число атомов водорода равно 8. Молекулярная формула углеводорода C<sub>3</sub>H<sub>8</sub>. Это пропан.

Ответ: С,Н,.

Задача 3. При сгорании некоторой массы неизвестного углеводорода выделилось 4,48 л оксида углерода (IV) (углекислого газа) (н. у.) и 3,6 г воды. Относительная плотность вещества по водороду равна 14. Определите молекулярную формулу углеводорода.

Дано:  

$$V(CO_2) = 4,48 \text{ л}$$
  
 $m(H_2O) = 3,6 \text{ r}$   
 $D_{H_2}(C_xH_y) = 14$   
 $C_xH_y = ?$ 

#### Решение:

1) Найдем количество вещества углерода, содержащегося в 4,48 л  $CO_2$ . Для этого вычислим количество вещества  $CO_2$ , содержащегося в 4,48 л газа:

$$V_{\rm M}({\rm CO_2}) = 22,4$$
 л/моль

 $v(CO_2) = 4,48 \ \pi : 22,4 \ \pi/моль = 0,2 \ моль$ 

 $v(C) = v(CO_2)$ , следовательно, 0,2 моль  $CO_2$  содержат 0,2 моль углерода.

2) Найдем количество водорода, содержащегося в 3,6 г Н<sub>2</sub>О:

$$M(H_2O) = 18 г/моль$$

$$v(H_2O) = 3,6 \ r : 18 \ r/моль = 0,2 моль$$

Так как в 1 моль воды содержится 2 моль водорода, то

$$v(H) = 2 \cdot v(H_2O):$$

$$v(H) = 0.2$$
 моль  $\cdot 2 = 0.4$  моль

3) Определим простейшую формулу углеводорода:

$$x: y = v(C): v(H) = 0.2: 0.4 = 1: 2 (CH2)$$

4) Найдем истинную формулу углеводорода:

$$M(C_xH_y)$$

$$D_{H_2}(C_xH_y) = 14$$

$$M(H_2) = 2 г/моль$$

$$M(C_rH_{ij}) = 2 \Gamma/моль \cdot 14 = 28 \Gamma/моль$$

Узнаем, сколько групп  $CH_2$  может содержаться в углеводороде с молярной массой 28 г/моль:

$$M(CH_2) = 12 + 2 = 14$$
 г/моль

$$28:14=2$$

Истинная формула углеводорода 2(СН2), т. е. С2Н4.

Ответ:  $C_2H_4$ .

Задача 4. При сжигании 9,2 г органического соединения, молярная масса которого 46 г/моль, выделилось 17,6 г оксида углерода (IV) (углекислого газа) и 10,8 г воды. Определите молекулярную формулу органического вещества.

Дано: 
$$m(X) = 9,2 \ \Gamma$$
  $m(CO_2) = 17,6 \ \Gamma$   $m(H_2O) = 10,8 \ \Gamma$   $M(X) = 46 \ \Gamma/$  моль Молекулярная формула вещества  $X - ?$ 

Решение:

1) Найдем массу углерода, содержащегося в 17,6 г CO<sub>2</sub>:

$$M(CO_2) = 44 \ г/моль$$

В 44 г СО<sub>2</sub> содержится 12 г С

В 17,6 г  $CO_2$  содержится x г C

$$x = \frac{17.6 \text{ r} \cdot 12 \text{ r}}{44 \text{ r}} = 4.8 \text{ r}$$

$$m(C) = 4.8 \text{ r}$$

2) Найдем массу водорода, содержащегося в 10,8 г воды:  $M(H_2O) = 18$  г/моль

В 18 г  $H_2$ О содержится 2 г H

В 10,8 г  $H_2$ О содержится x г H

$$x = \frac{10.8 \text{ r} \cdot 2 \text{ r}}{18 \text{ r}} = 1.2 \text{ r}; \quad m(H) = 1.2 \text{ r}$$

- 3) Определим элементный состав органического вещества. По условию задачи при сгорании органического соединения выделились оксид углерода (IV) и вода. Отсюда следует, что вещество может быть либо углеводородом и состоять из атомов углерода и водорода, либо кислородсодержащим органическим соединением и состоять из атомов углерода, водорода и кислорода. Масса углерода и водорода составляет 4,8 г + 1,2 г = 6 г. Тогда 9,2 г 6 г = 3,2 г это масса кислорода. Значит, вещество является кислородсодержащим органическим соединением. Его элементный состав  $C_x H_u O_z$ .
- 4) Определим соотношение атомов элементов в составе молекулы органического соединения:

C:H:O = 
$$\frac{4,8}{12}$$
:  $\frac{1,2}{1}$ :  $\frac{3,2}{16}$  = 0,4:1,2:0,2

C: H: O = 2: 6: 1, следовательно, молекулярная формула органического вещества  $C_2H_6O(C_2H_5OH)$ . Это этиловый спирт.

OTBET:  $C_2H_6O$  ( $C_2H_5OH$ ).

#### Решите самостоятельно

- **5.1.** При сжигании органического соединения массой 4,2 г получили оксид углерода(IV) массой 13,2 г и воду массой 5,4 г. Относительная плотность этого соединения по воздуху 2,9. Выведите молекулярную формулу органического соединения.
- **5.2.** При сжигании без остатка 4,3 г углеводорода получили 13,2 г оксида углерода (IV). Относительная плотность углеводорода по водороду равна 43. Выведите молекулярную формулу этого вещества.
- **5.3.** При сжигании 4,4 г углеводорода получили 13,2 г оксида углерода (IV). Относительная плотность вещества по воздуху равна 1,52. Определите молекулярную формулу этого вещества.
- **5.4.** При сгорании органического вещества количеством 0,03 моль образовались оксид углерода (IV) и вода количеством 0,06 моль каждое. Относительная плотность этого вещества по воздуху равна 1,5. Выведите молекулярную формулу этого вещества.
- **5.5.** При сгорании органического вещества количеством 0,03 моль образовались оксид углерода (IV) и вода количеством 0,15 моль каждое. Относительная плотность паров этого вещества по водороду равна 51. Определите молекулярную формулу этого органического вещества.
- **5.6.** При сгорании 3,6 г углеводорода образовалось 11 г оксида углерода (IV) и 5,4 г воды. Относительная плотность паров этого вещества по водороду равна 36. Определите молекулярную формулу этого вещества.
- **5.7.** При сжигании 36 г органического соединения образовалось 52,8 г оксида углерода (IV) и 21,6 г воды. Относительная молекулярная масса этого вещества равна 180. Выведите молекулярную формулу этого вещества.
- **5.8.** При сгорании органического вещества количеством 4,2 моль образовалось 8,4 моль оксида углерода (IV) и 12,6 моль воды. Относительная плотность паров этого вещества по водороду равна 23. Выведите молекулярную формулу этого органического вещества.
- **5.9.** При сгорании органического вещества массой 6,2 г образовалось 4,48 л оксида углерода (IV), 9 г воды, 2,24 л азота (н. у.). Относительная плотность паров этого вещества по водороду равна 15,5. Вычислите молекулярную формулу этого вещества.

- **5.10.** При сжигании органического вещества массой 0,9 г образовались оксид углерода (IV) массой 1,76 г, вода массой 1,26 г и азот. Относительная плотность этого вещества по водороду равна 22,5. Выведите молекулярную формулу этого вещества.
- **5.11.** При сгорании органического вещества количеством 0,09 моль образовались оксид углерода (IV) количеством 0,18 моль, вода количеством 0,315 моль и азот. Относительная плотность паров этого вещества по воздуху равна 1,55. Выведите молекулярную формулу этого вещества.
- **5.12.** Определите молекулярную формулу углеводорода, если при сжигании 25,2 г его образовалось 40,32 л оксида углерода (IV) (н. у.) и 32,4 г воды. Плотность данного углеводорода равна 1,875 г/л.
- **5.13.** При сгорании углеводорода количеством вещества 0,1 моль образовалось 0,3 моль оксида углерода (IV). Плотность данного углеводорода равна 1,9 г/л. Выведите его молекулярную формулу.
- **5.14.** При сгорании органического вещества массой 1,2 г образовались оксид углерода(IV) массой 3,52 г и вода массой 2,16 г. Плотность этого вещества равна 1,35 г/л. Выведите молекулярную формулу данного вещества.
- **5.15.** При сгорании углеводорода массой 2,34 г образовался оксид углерода (IV) объемом 4,032 л (н. у.). Относительная плотность паров этого углеводорода по водороду равна 39. Выведите молекулярную формулу этого углеводорода.
- **5.16.** При сгорании углеводорода объемом 0,6 л выделился оксид углерода (IV) объемом 1,2 л (н. у.). Масса 1 л этого углеводорода равна 1,16 г. Определите молекулярную формулу этого углеводорода.
- **5.17.** При сгорании 1,8 г органического вещества образовалось 3,96 г оксида углерода (IV) и 1,96 г воды. Относительная плотность паров этого вещества по водороду равна 30. Выведите молекулярную формулу этого органического вещества.
- **5.18.** При сжигании 2,52 г органического соединения выделилось 7,92 г оксида углерода (IV) и 3,24 г воды. Относительная плотность этого соединения по воздуху равна 2,9. Выведите молекулярную формулу этого вещества.
- **5.19.** При сгорании 8,96 л органического вещества выделилось 8,96 л оксида углерода (IV) (н. у.) и 7,2 г воды. Выведите молекулярную формулу этого вещества, если относительная плотность его по водороду равна 15.

- **5.20.** При сгорании азотсодержащего органического соединения количеством 0,18 моль образовались оксид углерода (IV) количеством 0,36 моль, вода количеством 0,63 моль и азот количеством 0,09 моль. Выведите молекулярную формулу этого органического соединения, если его относительная плотность по воздуху равна 1,551.
- **5.21.** При сжигании 2,24 г углеводорода образовалось 7,04 г оксида углерода (IV). Относительная плотность паров этого вещества по водороду равна 57. Выведите молекулярную формулу этого углеводорода.
- **5.22.** Выведите молекулярную формулу газа, если при сжигании 28 мл этого газа получили 84 мл (н. у.) оксида углерода (IV) и 67,7 мг воды. Относительная плотность газа по водороду равна 21.
- **5.23\*.** При сжигании углеводорода количеством 0,5 моль образовались оксид углерода (IV) и вода количеством 1,5 моль каждое. Относительная плотность этого углеводорода по водороду равна 21. Выведите молекулярную формулу вещества.
- **5.24\*.** При сгорании 3,9 г органического вещества образовалось 13,2 г оксида углерода (IV) и 2,7 г воды. Относительная плотность этого вещества по водороду равна 39. Выведите молекулярную формулу этого вещества.
- **5.25\*.** При сгорании 2,76 г ароматического углеводорода получили 9,24 г оксида углерода (IV) и 2,16 г воды. Относительная плотность этого вещества по водороду равна 39. Выведите молекулярную формулу этого вещества.
- **5.26\*.** При сжигании органического вещества количеством 0,15 моль образовались оксид углерода (IV) количеством 0,75 моль и вода количеством 0,9 моль. Относительная плотность вещества по воздуху равна 3,034. Выведите молекулярную формулу этого органического вещества.
- **5.27.** Относительная плотность газообразного углеводорода по водороду равна 42. При полном сжигании 0,7 г этого углеводорода получили 1,12 л оксида углерода(IV) (н. у.) и 0,9 г воды. Определите молекулярную формулу этого вещества.
- **5.28.** Определите формулу спирта, при полном сжигании 0,3 г которого получили 336 мл оксида углерода(IV) (н. у.)

<sup>\*</sup> Задачи, отмеченные звездочкой, взяты из кн.: Ерыгин Д. П., Грабовой А. К. Задачи и примеры по химии с межпредметным со-держанием. — М.: Высшая школа, 1989.

- и 0,36 г воды. Относительная плотность паров этого вещества по водороду равна 30.
- **5.29.** При сжигании 2,66 г вещества получили 1,54 г оксида углерода (IV) и 4,48 г оксида серы (IV). Определите простейшую формулу этого вещества.
- **5.30.** При сгорании хлорзамещенного органического вещества получили 0,22 г оксида углерода (IV) и 0,09 г воды. Для определения хлора из такой же навески получили хлорид серебра, масса которого составила 1,435 г. Определите простейшую формулу вещества.
- **5.31.** При сгорании 4,4 г углеводорода образовалось 6,72 л оксида углерода(IV) (н. у.) и 7,2 г воды. Плотность этого вещества равна 1,97 г/л. Определите его молекулярную формулу.
- **5.32.** При сгорании 8,4 г углеводорода получили 26,4 г оксида углерода (IV). Плотность этого вещества равна 1,87 г/л. Определите молекулярную формулу вещества.
- **5.33**. При сжигании 3,34 г органического вещества получено 6,6 г оксида углерода (IV) и 3,05 г воды. Относительная молекулярная масса этого вещества равна 88. Выведите молекулярную формулу вещества.
- **5.34.** При взрыве 1 объема газообразного углеводорода и 2,5 объема кислорода получили 2 объема оксида углерода (IV) и 1 объем водяного пара (н. у.). Какова молекулярная формула этого углеводорода?
- **5.35.** При сжигании 7,8 г ароматического углеводорода получено 26,4 г оксида углерода (IV). Относительная плотность паров этого вещества по воздуху равна 2,69. Какова молекулярная формула этого вещества?
- **5.36.** Определите молекулярную формулу вещества, при сжигании 3,75 г которого получили 2,25 г водяного пара и 5,5 г оксида углерода (IV). Относительная плотность этого вещества по водороду равна 15.
- **5.37.** При сжигании 2,8 л газа получили 8,4 л оксида углерода (IV) (н. у.) и 6,75 г паров воды. Плотность газа равна 1,875 г/л. Выведите молекулярную формулу вещества.
- **5.38.** При сжигании 5,6 л органического вещества получили 16,8 л оксида углерода (IV) (н. у.) и 13,5 г паров воды. Плотность этого вещества равна 1,875 г/л. Выведите молекулярную формулу вещества.
- **5.39.** Сожгли 4,8 г органического вещества, при этом получили 6,6 г оксида углерода (IV) и 5,4 г воды. Относительная плот-

ность этого вещества по водороду равна 16. Выведите молекулярную формулу вещества.

- **5.40.** При сжигании 6,9 г вещества получили 13,2 г оксида углерода (IV) и 8,1 г воды. Относительная плотность паров этого вещества по воздуху равна 1,59. Выведите молекулярную формулу вещества.
- **5.41.** При сжигании 0,93 г газообразного азотсодержащего органического соединения получили 1,32 г оксида углерода (IV) и 1,35 г воды. Относительная плотность этого вещества по водороду равна 15,5. Определите молекулярную формулу вещества.
- **5.42.** При сжигании 3,4 г азотсодержащего органического вещества получили 4,7 г воды и 6,6 г оксида углерода(IV). Относительная плотность паров этого вещества по водороду равна 22,5. Выведите молекулярную формулу вещества.
- **5.43.** При сжигании 4,5 г органического вещества получили 13,2 г оксида углерода(IV) и 8,1 г воды. Масса 1 л этого вещества равна 1,35 г. Выведите молекулярную формулу вещества.
- **5.44.** При полном сгорании 7,8 г вещества образовалось 26,4 г углекислого газа и 5,4 г воды. Относительная плотность паров этого вещества по воздуху равна 2,69. Выведите молекулярную формулу вещества.
- **5.45.** При сгорании 1,76 г органического вещества образовалось 3,52 г оксида углерода (IV) и 1,44 мл воды. Относительная плотность паров этого вещества по воздуху равна 1,52. Определите молекулярную формулу вещества.
- **5.46.** При сжигании 2,2 г вещества получили 4,4 г оксида углерода (IV) и 1,8 г воды. Относительная плотность вещества по водороду равна 44. Определите молекулярную формулу вещества.
- **5.47.** При сжигании 93 г вещества получили 67,2 л оксида углерода (IV) (н. у.), 135 г воды и азот. Относительная плотность этого вещества по водороду равна 15,5. Определите молекулярную формулу вещества.
- **5.48.** При сгорании органического вещества массой 0,7 г образовались оксид углерода (IV) и вода количеством 0,05 моль каждое. Это вещество массой 0,1 г занимает объем 32 мл. Выведите молекулярную формулу вещества.
- **5.49.** При сгорании 11,2 г углеводорода получили оксид углерода (IV) массой 35,2 г и воду массой 14,4 г. Относительная плотность этого углеводорода по воздуху равна 1,93. Выведите молекулярную формулу вещества.

- **5.50.** При сгорании органического вещества массой 2,37 г образовалось 3,36 л оксида углерода (IV) (н. у.), 1,35 г воды и азот. Относительная плотность этого вещества по воздуху равна 2,724. Выведите молекулярную формулу вещества.
- 6. Расчеты по химическим уравнениям, если одно из реагирующих веществ взято в избытке



Если одно из реагирующих веществ взято в избытке, то расчет массы (объема, количества вещества) продукта реакции осуществляют по массе (объему, количеству вещества) того реагента, который полностью вступил в реакцию.

**Задача 1.** К раствору хлорида кальция, содержащему 11,1 г соли, прилили раствор, содержащий 1,7 г нитрата серебра. Вычислите массу образовавшегося осадка.

Дано:  

$$m(CaCl_2) = 11,1 \ \Gamma$$
  
 $m(AgNO_3) = 1,7 \ \Gamma$   
 $m(AgCl) - ?$ 

### Решение:

1) В условии задачи дана масса двух реагирующих веществ. Необходимо выяснить, какое из них дано в избытке, а какое полностью вступило в реакцию.

Запишем уравнение реакции. Пользуясь уже известным нам алгоритмом, по уравнению реакции рассчитаем массу нитрата серебра, необходимого для проведения реакции с 11,1 г хлорида кальция:

$$^{11,1}$$
 г  $^{\circ}$  г  $^{\circ}$  CaCl<sub>2</sub> + 2AgNO<sub>3</sub> = 2AgCl $\downarrow$  + Ca(NO<sub>3</sub>)<sub>2</sub>  $^{\circ}$  111 г  $^{\circ}$  340 г  $^{\circ}$   $M_r$ (CaCl<sub>2</sub>) = 40 + 35,5 · 2 = 111  $^{\circ}$   $M$ (CaCl<sub>2</sub>) = 111 г/моль  $^{\circ}$   $m$ (1 моль CaCl<sub>2</sub>) = 111 г/моль · 1 моль = 111 г  $^{\circ}$   $M_r$ (AgNO<sub>3</sub>) = 108 + 14 + 16 · 3 = 170  $^{\circ}$   $M$ (AgNO<sub>3</sub>) = 170 г/моль  $^{\circ}$   $^{\circ}$ 

Составим и решим пропорцию:

111 r CaCl<sub>2</sub> — 340 r AgNO<sub>3</sub>  
11,1 r CaCl<sub>2</sub> — 
$$y$$
 r AgNO<sub>3</sub>  
 $y = \frac{11,1 \text{ r} \cdot 340 \text{ r}}{111 \text{ r}} = 34 \text{ r}; \quad m(\text{AgNO}_3) = 34 \text{ r}$ 

По условию задачи масса AgNO₂ составляла 1,7 г. Отсюда следует, что хлорид кальция дан в избытке, а нитрата серебра недостаточно для того, чтобы он прореагировал полностью с 11.1 г CaCl<sub>2</sub>.

2) Рассчитаем массу хлорида серебра по массе нитрата серебра — веществу, которое прореагирует полностью:

CaCl<sub>2</sub> + 
$$2AgNO_3 = 2AgCl\downarrow + Ca(NO_3)_2$$
  
 $340 \text{ r}$   $287 \text{ r}$   
 $340 \text{ r}$   $AgNO_3 - 287 \text{ r}$   $AgCl$   
 $1,7 \text{ r}$   $AgNO_3 - x \text{ r}$   $AgCl$   
 $x = \frac{1,7 \text{ r} \cdot 287 \text{ r}}{340 \text{ r}} = 1,44 \text{ r}; m(AgCl) = 1,44 \text{ r}$   
Other: 1.44 r.

Задача 2. Вычислите объем водорода (н. у.), выделившегося при взаимодействии 5 г железа с 50 мл одномолярного раствора уксусной кислоты.

Дано: 
$$m(Fe) = 5 \text{ г}$$
 1) Вычислим массу уксусной кислоты, содержащейся в 50 мл одномолярного раствора: 1 л 1М р-ра CH<sub>3</sub>COOH содержит 1 моль CH<sub>3</sub>COOH, 50 мл (0,05 л) будет содержать 0.05 моль CH COOH

Решение:

1) Вычислим массу уксусной кислоты,

жать 0.05 моль СН<sub>3</sub>СООН.

$$m(CH_3COOH) = 60 г/моль \cdot 0,05 моль = 3 г$$

2) Вычислим, сколько граммов железа понадобится для того, чтобы 3 г уксусной кислоты полностью с ним прореагировали. Для этого составим уравнение реакции и запишем над формулами данные, соответствующие условию задачи, а под формулами данные, соответствующие уравнению реакции:

$$2CH_{3}COOH + Fe_{120 \text{ r}} = (CH_{3}COO)_{2} \text{ Fe} + H_{2}\uparrow_{22,4 \text{ n}}$$
  
 $x = \frac{3 \text{ r} \cdot 56 \text{ r}}{120 \text{ r}} = 1,4 \text{ r}; m(\text{Fe}) = 1,4 \text{ r}$ 

Следовательно, по условию задачи железо дано в избытке, и расчет надо проводить по уксусной кислоте.

3) Вычислим объем водорода, выделяющегося в этой реакции. Для этого составим и решим пропорцию:

120 г CH<sub>3</sub>COOH — 22,4 л H<sub>2</sub>  
3 г CH<sub>3</sub>COOH — 
$$y$$
 л H<sub>2</sub>  
 $y = \frac{3 \text{ r} \cdot 22,4 \text{ л}}{120 \text{ r}} = 0,56 \text{ л}; V(H_2) = 0,56 \text{ л}$ 

Ответ: 0,56 л.

**Задача 3.** Какая масса и какое количество вещества фенолята натрия образуется при взаимодействии 4,7 г фенола с 50 г 10%-ного раствора гидроксида натрия?

Дано:  

$$m(C_6H_5OH) = 4.7 \text{ г}$$
  
 $m(p\text{-pa NaOH}) = 50 \text{ г}$   
 $w(NaOH) = 10\% (0,1)$   
 $m(C_6H_5ONa) - ?$   
 $v(C_6H_5ONa) - ?$ 

### Решение:

1) Вычислим массу гидроксида натрия, содержащегося в 50 г раствора:

$$M(NaOH) = 50 \text{ r} \cdot 0.1 = 5 \text{ r}$$

2) Вычислим, какое вещество полностью прореагировало в реакции между фенолом и гидроксидом натрия. Для этого составим уравнение реакции

и запишем над формулами данные, соответствующие условию задачи, а под формулами данные, соответствующие уравнению реакции:

$$^{4,7}$$
 г  $^{x}$  г  $^{x}$  С $_{6}$ H $_{5}$ OH + NaOH = С $_{6}$ H $_{5}$ ONa + H $_{2}$ O  $^{94}$  г  $^{40}$  г  $^{y}$  г  $^{y}$  г  $^{40}$  г  $^{y}$   $^{y}$  г  $^{y}$  г  $^{y}$  г  $^{y}$  С $_{6}$ Н $_{5}$ OH) = 94 г  $^{y}$  г  $^{y}$  г  $^{y}$  С $_{6}$ Н $_{5}$ OH) = 94 г  $^{y}$  Г  $^{y}$  Г  $^{y}$  С $_{6}$ Н $_{5}$ OH) = 94 г  $^{y}$  Г  $^{y}$  С $_{6}$ Н $_{5}$ OH) = 40

$$M(NaOH) = 40 г/моль$$
  
 $m(NaOH) = 40 г$ 

Составим и решим пропорцию:

94 
$$\Gamma$$
 C<sub>6</sub>H<sub>5</sub>OH — 40  $\Gamma$  NaOH  
4,7  $\Gamma$  C<sub>6</sub>H<sub>5</sub>OH —  $x$   $\Gamma$  NaOH  
 $x = \frac{4,7 \cdot \cdot \cdot 40 \cdot \Gamma}{94 \cdot \Gamma} = 2 \cdot \Gamma$ 

В растворе содержится 5 г гидроксида натрия, а для проведения реакции необходимо 2 г NaOH. Следовательно, гидроксид натрия взят в избытке, и расчет надо вести по фенолу.

3) Вычислим массу и количество вещества образовавшегося фенолята натрия.

$$M_{\rm r}({\rm C_6H_5ONa}) = 116$$
  
 $M({\rm C_6H_5ONa}) = 116$  г/моль  
 $m({\rm C_6H_5ONa}) = 116$  г

Составим и решим пропорцию:

94 г 
$$C_6H_5OH$$
 — 116 г  $C_6H_5ONa$   
4,7 г  $C_6H_5OH$  —  $x$  г  $C_6H_5ONa$   
 $x = \frac{4,7 \ r \cdot 116 \ r}{94 \ r} = 5,8 \ r$   
 $m(C_6H_5ONa) = 5,8 \ r$   
 $v(C_6H_5ONa) = 0,05 \ моль$ 

Ответ: 5,8 г; 0,05 моль.

### Решите самостоятельно

- **6.1.** К 27,6 г карбоната калия добавили 315 г азотной кислоты. Вычислите, какой объем оксида углерода (IV) (н. у.) при этом образуется.
- **6.2.** Какое количество вещества нитрата калия получится, если к 11,2 г гидроксида калия добавить 13 г азотной кислоты?
- **6.3.** Какой объем хлороводорода (н. у.) получится в результате взаимодействия 2,5 л водорода и 1,5 л хлора?
- **6.4.** Какую среду будет иметь раствор после окончания реакции между 2 моль серной кислоты и 2,5 моль гидроксида натрия? Ответ подтвердите расчетом.

- **6.5.** Вычислите объем водорода (н. у.), который может выделиться при взаимодействии 1,2 г магния с 10 г серной кислоты.
- **6.6.** Вычислите массу сульфида железа (II), который можно получить при взаимодействии 0,7 г железа и 0,7 г серы.
- **6.7.** Для получения азотной кислоты в лаборатории взяли 8,5 г нитрата натрия и 10 г серной кислоты. Определите массу получившейся азотной кислоты. Какое вещество осталось в избытке? Вычислите его массу.
- **6.8.** Вычислите массу хлорида аммония, полученного при взаимодействии 85 г аммиака и 180 г хлороводорода.
- **6.9.** Вычислите массу силиката кальция, образовавшегося при сплавлении 12 кг карбоната кальция с 6 кг оксида кремния (IV).
- **6.10.** Вычислите массу соли, образовавшейся при действии на 20 г гидроксида кальция раствором, содержащим 20 г азотной кислоты. Какое из исходных веществ взято в избытке и в каком количестве?
- **6.11.** Вычислите количество вещества гидроксида меди(II), который может выделиться при взаимодействии 20 г гидроксида натрия и 32 г сульфата меди(II). Какое из исходных веществ взято в избытке?
- **6.12.** Рассчитайте объем хлороводорода (н. у.), который можно получить при взаимодействии 24,5 г серной кислоты и 60 г поваренной соли.
- **6.13.** Смесь, состоящую из 5 л этилена и 3 л водорода, пропустили через никелевый катализатор. Какой объем этана при этом образовался? (Объемы газов измерены при нормальных условиях.)
- **6.14.** Рассчитайте массу дибромэтана, который может образоваться при взаимодействии 3 г этилена и 1,6 г брома. Какое из исходных веществ взято в избытке?
- **6.15.** Вычислите объем ацетилена (н. у.), который может выделиться при взаимодействии 13 г карбида кальция и 7,2 г воды. Какое вещество взято в избытке?
- **6.16.** Вычислите массу спирта, образовавшегося при взаимодействии 5,6 л этилена (н. у.) и 5 г воды.
- **6.17.** Вычислите массу нитробензола, полученного при действии на 15,6 г бензола 15 г азотной кислоты. Какое вещество взято в избытке?
- **6.18.** Определите, какой объем займет водород (н. у.), полученный действием 0,5 г натрия на раствор 4,6 г этилового спирта в бензоле.

- **6.19.** Фенол массой 4,7 г прореагировал с 25 г брома. Чему равны массы продуктов реакции?
- **6.20.** Определите, какой объем водорода (н. у.) образуется при взаимодействии 1 г магния с 1,8 г уксусной кислоты. Какое вещество взято в избытке?
- **6.21.** Вычислите массу сложного эфира, который получили из 9,2 г муравьиной кислоты и 9,2 г этилового спирта.
- **6.22.** Вычислите массу сложного эфира, полученного из 3 г уксусной кислоты и 4 г этанола.
- **6.23.** В раствор, содержащий 8 г сульфата меди(II), поместили 2 г железа. Какие вещества образуются в результате реакции и чему равны их массы?
- **6.24.** Определите, какое количество вещества соли можно получить при взаимодействии 6 г уксусной кислоты и 8 г гидроксида натрия.
- **6.25.** К раствору, содержащему 4,4 г хлорида кальция, добавили раствор, содержащий 4 г нитрата серебра. Вычислите массу осадка.
- **6.26.** К раствору, содержащему 52,2 г нитрата бария, добавили раствор, содержащий 0,5 моль сульфата калия, и осадок отфильтровали. Какие вещества содержатся в фильтрате и чему равны их массы?
- **6.27.** При нагревании 19,6 г оксида кальция с 20 г кокса получили карбид кальция. Вычислите массу и количество вещества образовавшегося карбида кальция.
- **6.28.** Вычислите массу продукта реакции, если для нее взяли 37,2 г анилина и 29,2 г хлороводорода.
- **6.29.** Через раствор, содержащий 4 г гидроксида натрия, пропустили 4 г сероводорода. Каков состав полученной соли? Какова ее масса?
- **6.30.** Может ли полностью раствориться 1,28 г медного порошка в 10 г 98%-ной серной кислоты? Вычислите объем образовавшегося газа (н. у.).
- **6.31.** Определите, какой объем оксида серы(IV) получится при окислении 2,5 л сероводорода, содержащего 16% примеси, в 2,24 л кислорода (н. у.).
- **6.32.** Определите, какое количество вещества гидроксида меди(II) может быть получено, если взять 400 г 40%-ного раствора гидроксида натрия и 4 моль сульфата меди(II).
- **6.33.** Вычислите массу сложного эфира, полученного из 200 мл 96%-ного раствора этанола (плотность 0,8 г/мл) и 120 г уксусной кислоты.

- **6.34.** В лаборатории сероводород чаще всего получают действием раствора серной кислоты на сульфид железа(II). Вычислите объем сероводорода (н. у.), полученного из 30 г технического сульфида железа(II) (массовая доля FeS 95%) и 4,9 г серной кислоты.
- **6.35.** Определите, какой объем оксида углерода (IV) (н. у.) образуется при взаимодействии 12 г карбоната натрия с 9,8 г серной кислоты.
- **6.36.** При сплавлении 15 кг кварцевой пыли ( $SiO_2$ ), содержащей 20% примесей, с 40 кг карбоната калия образовался силикат калия. Вычислите массу силиката калия.
- **6.37.** К 300 г 10%-ного раствора гидроксида калия прилили 400 г 10%-ного раствора азотной кислоты. Вычислите количество вещества нитрата калия, образовавшегося при этом.
- **6.38.** Какая соль образуется и чему равна ее масса, если через 100 мл 32%-ного раствора гидроксида кальция (плотность 1,32 г/мл) пропустить 5,6 л оксида углерода(IV) (н. у.)?
- **6.39.** Определите, какое количество вещества сложного эфира можно получить при взаимодействии 10 г 92%-ного раствора муравьиной кислоты с 8 г 90%-ного раствора метилового спирта.
- **6.40.** Для нитрования 0,4 моль толуола потребовалось 150 г 94,6%-ной азотной кислоты. Вычислите массу продукта.
- **6.41.** Вычислите объем оксида углерода (IV), образующегося при взаимодействии 6 л ацетилена и 18 л кислорода. (Объемы газов измерены при нормальных условиях.)
- **6.42**. Рассчитайте объем оксида углерода (IV) (н. у.), образующегося при взаимодействии 10 г этилена, содержащего 0,2% примеси, и 8 г кислорода.
- **6.43.** Определите, какой объем ацетилена (н. у.) можно получить из 130 кг технического карбида кальция (массовая доля примесей 20%) и 9 кг воды.
- **6.44.** При взаимодействии 9,2 г этанола с 5 г металлического натрия выделился водород. Вычислите массу и объем водорода (н. у.), выделившегося в результате этой реакции.
- **6.45.** К 300 г 10%-ного раствора фенола прибавили 12 г гидроксида натрия. Вычислите массу образовавшегося фенолята натрия.
- **6.46.** Вычислите массу глюконовой кислоты, которая образуется при нагревании 7.2 г глюкозы с 5 г гидроксида меди(II).
- **6.47.** Вычислите массу соли, которая образуется при взаимодействии 30 г аминоуксусной кислоты с 250 г 10%-ного раствора серной кислоты.

- **6.48.** Определите массу сульфата аммония, который образуется при взаимодействии 89,6 м<sup>3</sup> аммиака (н. у.) с 400 г 80%-ного раствора серной кислоты.
- **6.49.** К 170 г 10%-ного раствора нитрата серебра прибавили 120 г соляной кислоты (массовая доля НСІ равна 20%). Чему равна масса образовавшегося осадка? Какое вещество осталось в избытке? Вычислите его массу.
- **6.50.** Найдите объем газа (н. у.), образовавшегося при взаимодействии 20 г технического сульфида железа(II), содержащего 12% примеси, с 200 г 14,6%-ной соляной кислоты.
- **6.51.** Вычислите объем тетрахлорэтана, образующегося при взаимодействии 8 л ацетилена и 14 л хлора. (Объемы газов измерены при нормальных условиях.)
- **6.52.** Пропустили смесь 12 мл этилена и 10 мл водорода через никелевый катализатор. Определите объем этана, который при этом образовался. (Объемы газов измерены при нормальных условиях.)

### Внимание, тесты!

- **6.53.** Масса алкоголята, образующегося при взаимодействии 5,75 г натрия с 60 мл этанола ( $\rho = 0.8$  г/мл), равна \_\_\_\_\_\_.
- **6.54.** Масса углеводорода, полученного при нагревании 48 г 2-бромбутана с 7,67 г натрия, равна \_\_\_\_\_\_.
- **6.55.** Масса вещества, полученного при реакции 11,2 л этилена (н. у.) и 90 г брома, равна
  - 1) 0,094 г 2) 94 г 3) 0,198 кг 4) 198 г
- **6.56.** Объем водорода (н. у.), полученного при взаимодействии 1 моль фенола и 3 моль натрия, равен
  - 1) 1,12 л 2) 22,4 л 3) 33,6 л 4) 11,2 л
- **6.57.** Количество вещества 2,4,6-триброманилина, полученного при взаимодействии 0,2 моль анилина и 0,03 моль брома, равно
  - 1) 0,1 моль 2) 0,03 моль 3) 0,2 моль 4) 0,01 моль
- 7. Расчеты по химическим уравнениям, связанные с массовой (объемной) долей выхода продукта реакции от теоретически возможного

На практике продукта реакции всегда образуется меньше, чем следует ожидать по уравнению реакции. Причин может быть несколько: содержание примесей в исходных веществах, условия проведения реакции, особенности аппаратов и т. д.



Массовая доля практического выхода продукта (η) — это отношение массы реально полученного продукта к массе продукта, рассчитанной по уравнению реакции (теоретический выход).

Объемная доля практического выхода продукта (φ) — это отношение объема реально полученного газообразного продукта к объему продукта, рассчи-

танному по уравнению реакции (теоретический выход).

Массовая доля практического выхода продукта обозначается греческой буквой  $\eta$  (эта), объемная — греческой буквой  $\phi$  (фи). Эти величины выражают в процентах или в долях единицы.

**Задача 1.** При взаимодействии 50 г 22%-ного раствора сульфида калия с избыточным количеством соляной кислоты выделилось 2 л сероводорода (н. у.). Чему равна объемная доля (в %) выхода данного продукта реакции от теоретически возможного?

Дано:  

$$m(p-pa K_2S) = 50 r$$
  
 $w(K_2S) = 22\% (0,22)$   
 $V(H_2S) = 2 л$   
 $\phi - ?$ 

### Решение:

1) Найдем массу сульфида калия, содержащегося в 50 г 22%-ного раствора:

$$m(K_2S) = 50 \text{ r} \cdot 0.22 = 11 \text{ r}$$

2) Вычислим теоретически возможный выход сероводорода в реакции соляной кислоты с 11 г сульфида калия.

Составим уравнение химической реакции; запишем над формулами данные, соответствующие условию задачи, а под формулами данные, соответствующие уравнению реакции:

$$K_2S$$
 + 2HCI = 2KCI +  $H_2S$   
110 г 22,4 л  
 $M(K_2S)$  = 110 г/моль 1 моль = 110 г

Составим и решим пропорцию:

$$x = \frac{11 \, \Gamma \cdot 22,4 \, \pi}{110 \, \Gamma} = 2,24 \, \pi$$

Теоретически возможный выход сероводорода составляет 2,24 л.

- 3) Рассчитаем объемную долю выхода сероводорода от теоретически возможного:
- 2,24 л  $H_2$ S составляют 100% 2 л  $H_2$ S составляют x%

$$x = \frac{2 \text{ n} \cdot 100\%}{2,24 \text{ n}} = 89,3\%$$

Ответ: 89,3%.

Задача 2. Вычислите массу соли, образовавшейся в результате взаимодействия 11,2 г оксида кальция с раствором, содержащим 25,6 г азотной кислоты, если известно, что выход соли составил 80% от теоретически возможного.

Дано:  

$$m(CaO) = 11,2 \text{ г}$$
  
 $m(HNO_3) = 25,6 \text{ г}$   
 $\eta(Ca(NO_3)_2) = 80\%$   
 $m(Ca(NO_3)_2) - ?$ 

### Решение:

1) Определим, какое из реагирующих веществ полностью вступит в реакцию:  $M_r(CaO) = 56$ ; M(CaO) = 56 г/моль m(CaO) = 56 г/моль · 1 моль = 56 г  $M_r(HNO_3) = 63$ ;  $M(HNO_3) = 63$  г/моль · 2 моль = 126 г

$$M_{\rm r}({\rm Ca(NO_3)_2}) = 164$$
 $M({\rm Ca(NO_3)_2}) = 164 \, {\rm г/моль}$ 
 $m({\rm Ca(NO_3)_2}) = 164 \, {\rm г/моль} \cdot 1 \, {\rm моль} = 164 \, {\rm г}$ 
 $11,2 \, {\rm r}$ 
 ${\rm CaO} + 2{\rm HNO_3} = {\rm Ca(NO_3)_2} + {\rm H_2O}$ 
 $11,2 \, {\rm r}$ 
 $126 \, {\rm r}$ 
 $11,2 \, {\rm r}$ 
 $126 \, {\rm r}$ 
 $11,2 \, {\rm$ 

Азотная кислота дана в избытке. Оксид кальция полностью вступил в реакцию, поэтому массу нитрата кальция будем рассчитывать по оксиду кальция.

2) Вычислим теоретически возможный выход соли:

11,2 
$$\Gamma$$
 CaO —  $x \Gamma$  Ca(NO<sub>3</sub>)<sub>2</sub>  
56  $\Gamma$  CaO — 164  $\Gamma$  Ca(NO<sub>3</sub>)<sub>2</sub>  
 $x = \frac{11,2 \Gamma \cdot 164 \Gamma}{56 \Gamma} = 32,8 \Gamma$  Ca(NO<sub>3</sub>)<sub>2</sub>

3) Рассчитаем практический выход нитрата кальция:

$$32.8 \text{ r} \cdot 0.8 = 26.24 \text{ r}$$

Ответ: 26.24 г.

Задача 3. При получении этилового спирта реакцией гидратации этилена производственные потери составили 30%. Вычислите массу этилового спирта, полученного гидратацией 500 л этилена (H. V.).

Дано: 
$$V(C_2H_4) = 500 \text{ л}$$
  $\eta = 70\%$  1) Вычислим теоретическ выход продукта реакции:  $C_2H_5OH$  22,4 л  $C_2H_4$  +  $C_2H_5OH$  22,4 л  $C_2H_5OH$  26 г

Решение:

1) Вычислим теоретически возможный

$$C_{2}H_{4} + H_{2}O = C_{2}H_{5}OH$$
 $C_{2}H_{4} + H_{2}O = C_{2}H_{5}OH$ 
 $C_{2}H_{5}OH$ 
 $C_{2}H_{5}OH$ 
 $C_{2}H_{5}OH$ 

2) Вычислим практический выход этилового спирта:

$$100\% - 30\% = 70\% (0,7)$$
  
 $m(C_2H_5OH) = 1026,8 \text{ r} \cdot 0,7 = 718,76 \text{ r}$ 

Ответ: 718.76 г.

### Решите самостоятельно

- 7.1. При взаимодействии 11,2 г железа с соляной кислотой выделилось 4,45 л водорода (н. у.). Вычислите объемную долю (в %) выхода водорода от теоретически возможного.
- Вычислите массовую долю (в %) выхода хлорида аммония от теоретически возможного, если в реакцию с хлороводородом вступило 170 г аммиака и получилось 500 г хлорида аммония.
- Вычислите объемную долю (в %) выхода оксида угле-**7.3**. рода (IV) от теоретически возможного, если известно, что при

- полном сгорании 2  $м^3$  метана получено 1,9  $м^3$  оксида углерода (IV). (Объемы газов измерены при нормальных условиях.)
- **7.4.** Из 4,08 кг оксида алюминия получили 2 кг алюминия. Вычислите массовую долю (в %) выхода продукта реакции от теоретически возможного.
- **7.5.** Из 11,2 кг азота получили 13 кг аммиака. Вычислите массовую долю (в %) выхода аммиака от теоретически возможного.
- **7.6.** При восстановлении железа углеродом из 16 г оксида железа (III) выделилось 3 л оксида углерода (IV) (н. у.). Какова объемная доля (в %) выхода оксида углерода (IV) от теоретически возможного?
- **7.7.** При нейтрализации 294 г серной кислоты гидроксидом натрия выделилось 400 г сульфата натрия. Какова массовая доля (в %) выхода соли от теоретически возможного?
- **7.8.** При пропускании 7 л этилена с водородом над нагретым катализатором получили 6 л этана. Вычислите объемную долю (в %) выхода этана от теоретически возможного. (Объемы газов измерены при нормальных условиях.)
- **7.9.** Вычислите массовую долю (в %) выхода бензола от теоретически возможного, если известно, что из 11,2 л ацетилена (н. у.) было получено 10 г бензола.
- **7.10.** В лаборатории из 156 г бензола в результате реакции нитрования было получено 220 г нитробензола. Чему равен практический выход нитробензола (в %)?
- **7.11.** Определите практический выход водорода, если для реакции взяли 2,3 г металлического натрия и этиловый спирт, при этом выделился 1 л водорода (н. у.).
- **7.12.** При окислении 8,8 г уксусного альдегида аммиачным раствором оксида серебра получили 10 г уксусной кислоты. Вычислите массовую долю (в %) выхода кислоты от теоретически возможного.
- 7.13. При взаимодействии муравьиной кислоты количеством вещества 0,2 моль с магнием выделилось 2 л водорода (н. у.). Вычислите объемную долю (в %) выхода водорода от теоретически возможного.
- **7.14.** При спиртовом брожении 2 моль глюкозы получили 180 г этилового спирта. Чему равен выход спирта от теоретически возможного?
- **7.15.** При восстановлении 24,6 г нитробензола получено 18 г анилина. Вычислите массовую долю (в %) выхода анилина от теоретически возможного.

- **7.16.** При взаимодействии этанола массой 27,6 г с оксидом меди(II) было получено 25 г уксусного альдегида. Вычислите массовую долю (в %) выхода альдегида от теоретически возможного.
- **7.17.** При обжиге 1 т известняка, содержащего 20% примесей, получили 160  $M^3$  оксида углерода (IV) (н. у.). Вычислите объемную долю (в %) выхода газа от теоретически возможного.
- **7.18.** При сливании 200 г 2%-ного раствора гидроксида натрия с раствором сульфата меди(II) получено 4 г гидроксида меди(II). Вычислите массовую долю (в %) выхода гидроксида меди(II) от теоретически возможного.
- **7.19.** При взаимодействии цинка с 300 г 49%-ного раствора серной кислоты получили 1,2 моль соли. Вычислите массовую долю (в %) выхода соли от теоретически возможного.
- **7.20.** При восстановлении водородом 40 г технического оксида меди(II), массовая доля примесей в котором составляет 20%, получили 20 г меди. Вычислите массовую долю (в %) выхода меди от теоретически возможного.
- **7.21.** Из 240 г железного колчедана (FeS $_2$ ), массовая доля примесей в котором 25%, получили 50 л оксида серы(IV) (н. у.). Вычислите объемную долю (в %) выхода газа от теоретически возможного.
- **7.22.** При сжигании 1 кг угля, массовая доля углерода в котором 90%, образовалось 1,5 м $^3$  оксида углерода(IV) (н. у.). Вычислите объемную долю (в %) выхода оксида углерода(IV) от теоретически возможного.
- 7.23. При брожении 300 г технической глюкозы, массовая доля несахаристых веществ в которой составила 10%, получили 84 мл спирта (плотность 0,8 г/мл). Вычислите массовую долю (в %) выхода спирта от теоретически возможного.
- **7.24.** При взаимодействии 37,5 г 40%-ного раствора формальдегида с гидроксидом меди(II) образовалось 20 г муравьиной кислоты. Вычислите массовую долю (в %) выхода спирта от теоретически возможного.
- 7.25. При взаимодействии 75 г технической уксусной кислоты, массовая доля примесей в которой равна 20%, с этиловым спиртом получили 0,8 моль уксусно-этилового эфира. Вычислите массовую долю (в %) выхода спирта от теоретически возможного.
- **7.26.** На восстановление нитробензола пошло 5,6 л водорода (н. у.), при этом получили 10 г анилина. Каков выход анилина от теоретически возможного?

- 7.27. В лаборатории восстановили водородом 307,5 кг технического нитробензола, массовая доля чистого нитробензола в котором составляет 80%. При этом получили 17,6 кг анилина. Вычислите массовую долю (в %) выхода анилина от теоретически возможного.
- **7.28.** При сжигании 6 л метиламина на воздухе (н. у.) получили 2,5 моль азота. Вычислите массовую долю (в %) выхода азота от теоретически возможного.
- **7.29.** При обработке водой 16 г технического карбида кальция, содержащего 10% примесей, получили 4,5 л ацетилена (н. у.). Вычислите объемную долю (в %) выхода ацетилена от теоретически возможного.
- **7.30.** Из 300 кг древесных опилок, содержащих 50% примесей (расчет вести по одному структурному звену молекулы целлюлозы), было получено 80 кг спирта. Вычислите массовую долю (в %) выхода спирта от теоретически возможного.
- 7.31. Вычислите объем аммиака, который получится при взаимодействии азота с 60 л водорода, если выход аммиака от теоретически возможного составляет 12%. (Объемы газов измерены при нормальных условиях.)
- **7.32.** Вычислите массу серы, которая расходуется для получения 490 кг серной кислоты, если известно, что выход серы от теоретически возможного составляет 96%.
- **7.33.** Вычислите массу 60%-ной азотной кислоты, которую можно получить из 68 кг аммиака, если выход продукта реакции от теоретически возможного составил 70%.
- 7.34. Вычислите массу кремния, который можно получить восстановлением 12 кг оксида кремния (IV) (массовая доля примесей в котором 16%) алюминием, если известно, что выход кремния составляет 62% от теоретически возможного.
- **7.35.** Вычислите массу азотной кислоты, полученной при взаимодействии 130 г нитрата натрия с концентрированной серной кислотой, если массовая доля выхода азотной кислоты от теоретически возможного равна 0,8.
- 7.36. Какое количество вещества хлорида алюминия образовалось при взаимодействии алюминия с соляной кислотой, если в результате реакции выделилось 89,6 л водорода (н. у.)? Выход хлорида алюминия составляет 75% от теоретически возможного.
- 7.37. Вычислите массу дигидрофосфата кальция, который можно получить действием 196 кг фосфорной кислоты на фосфат кальция. Потери в производстве составляют 15%.

- **7.38.** Вычислите количество вещества хлорида алюминия, полученного взаимодействием 4,48 л аммиака (н. у.) с соляной кислотой, если выход соли составляет 60% от теоретически возможного.
- 7.39. Вычислите объем оксида углерода (IV) (н. у.), который образуется при сжигании 1 кг угля, массовая доля углерода в котором 90%. Выход оксида углерода (IV) составляет 90% от теоретически возможного.
- **7.40.** При бромировании бензола получили 251,2 г бромбензола, что составляет 80% от теоретически возможного выхода. Вычислите, какое количество вещества бензола вступило в реакцию.
- **7.41.** Вычислите массу бензола, который можно получить из 50 л ацетилена (н. у.), если выход бензола составляет 90% от теоретически возможного.
- **7.42.** Вычислите объем бензола (плотность 0.8 г/мл), который можно получить из 33.6 л ацетилена (н. у.), если выход бензола составляет 85% от теоретически возможного.
- 7.43. Какой объем водорода выделится (н. у.), если в реакцию с металлическим натрием вступило 115 мл этилового спирта, плотность которого 0,8 г/мл? Выход водорода составляет 60% от теоретически возможного.
- **7.44.** Вычислите массу уксусного альдегида, который был окислен аммиачным раствором оксида серебра, если при этом получено 96 г уксусной кислоты, что составило 0,8 массовой доли от теоретически возможного выхода.
- **7.45**. Вычислите количество вещества серебра, которое может выделиться при окислении 400 мл формалина, массовая доля формальдегида в котором 40%. Плотность раствора 1,3 г/мл. Массовая доля выхода серебра от теоретически возможного составляет 0,7.
- **7.46.** Вычислите массу абрикосовой эссенции (сложный эфир масляной кислоты и этанола), если в реакцию вступило 440 г масляной кислоты. Выход эссенции составляет 90% от теоретически возможного.
- **7.47.** Чему равна масса глюкозы, которую можно получить при переработке 2,4 кг картофеля (массовая доля крахмала в картофеле равна 20%), если известно, что выход глюкозы составляет 60% от теоретически возможного?
- **7.48.** Вычислите объем 3%-ной бромной воды (плотность 1,02 г/мл), необходимой для получения 792 г триброманилина, что составляет 80% от теоретически возможного выхода.

- **7.49.** Вычислите: а) количество вещества; б) массу сахарозы, которую подвергли полному гидролизу, если было получено 7,2 моль глюкозы, а потери в ее производстве составили 3%.
- **7.50.** Рассчитайте массу уксусно-этилового эфира, образующегося при действии 120 г 70%-ного раствора уксусной кислоты на 80,5 мл 96%-ного раствора этилового спирта (плотность 0,78 г/мл), если выход продукта реакции составляет 75% от теоретического.
- 7.51. Смесь магниевых и медных стружек массой 3 г поместили в сосуд, содержащий 50 мл 24%-ного раствора уксусной кислоты (плотность 1,2 г/мл). Определите первоначальный состав смеси, считая, что вещества прореагировали полностью, и объем выделившегося газа (н. у.), если его выход равен 80% от теоретического.
- 7.52. Смесь этанола и этаналя массой 10 г нагрели с достаточным количеством аммиачного раствора оксида серебра, в результате чего получили 3,24 г осадка, что составило 75% от теоретически возможного выхода. Определите состав смеси.

### Внимание, тесты!

- **7.53.** Масса полиэтилена, который можно получить из  $2,24~\text{м}^3$  этилена (н. у.) при 50%-ном выходе продукта, равна
  - 1) 2,8 кг 2) 1,4 кг 3) 0,7 кг 4) 5,6 кг
- **7.54.** Масса каучука, который можно получить из  $5,6\,\mathrm{m}^3$  дивинила (н. у.) при 50%-ном выходе продукта, равна
  - 1) 52,25 кг 2) 13,5 кг 3) 6,75 кг 4) 108,5 кг
- **7.55.** Объем хлороводорода, который можно получить при сгорании 2,24 л хлора (н. у.) в водороде при 80%-ном выходе продукта реакции, равен
  - 1) 1,79 л 2) 22,4 л 3) 17,9 л 4) 0,8 л
- **7.56.** Масса меди, которую можно получить из 40 г оксида меди(II) путем восстановления водородом при 70%-ном выходе продукта, равна
  - 1) 32 г 2) 22,4 г 3) 64 г 4) 28 г
- 7.57. При взаимодействии 80 кг оксида железа(III) с оксидом углерода(II) получили 33,6 кг железа. Выход продукта составил
  - 1) 42% 2) 48% 3) 60% 4) 56%

- **7.58.** Масса алюминия, полученного электролизом расплава 102 кг оксида алюминия при 52%-ном выходе продукта, равна
  - 1) 54 Kr 2) 28,1 Kr 3) 56,2 Kr 4) 27 Kr
- **7.59.** Масса уксусно-этилового эфира, полученного из 30 г уксусной кислоты при 85%-ном выходе продукта, равна
  - 1) 44 r 2) 25,5 r 3) 74,8 r 4) 37,4 r
- **7.60.** Объем ацетилена (этина) (н. у.), полученного в результате гидролиза 128 г карбида кальция при 60%-ном выходе продукта, равен
  - 1) 26,9 л 2) 15,6 л 3) 44,8 л 4) 22,4 л
- **7.61.** При пропускании 100 л этина (н. у.) над активированным углем ( $t=400~^{\circ}$ С) получили 46,4 г бензола. Выход продукта от теоретически возможного составил
  - 1) 46,4% 2) 40% 3) 59,5% 4) 13,3%

### ЧАСТЬ III. КАЧЕСТВЕННЫЕ ЗАДАЧИ

Качественные задачи по неорганической химии помещены в пособии «Задачник с «помощником» для 8—9 классов. В данном сборнике мы предлагаем качественные задачи по органической химии. Для их решения воспользуйтесь таблицей 1 «Качественные реакции на органические вещества» (см. Приложения).

### Выполните самостоятельно

1. Проведение характерных реакций на органические вещества

Проведите характерные реакции на следующие органические вещества: этилен, глицерин, фенол, формалин, муравьиная кислота, уксусная кислота, глюкоза, крахмал, белок.

- 2. Определение состава и строения вещества
- **2.1.** Докажите опытным путем, что в состав данного органического вещества входят атомы углерода и водорода (метан, парафин, полиэтилен, крахмал, олеиновая кислота).
- **2.2.** Докажите, что в соке зрелого яблока содержится глюкоза, что в составе растительного масла имеются органические вещества с двойной связью.
  - 2.3. Докажите, что глюкоза является альдегидоспиртом.
- **2.4.** Испытайте раствор ацетата натрия индикатором. Какой вывод вы сделаете?
  - 2.5. Докажите, что метаналь является альдегидом.
- **2.6.** Докажите, что уксусная кислота относится к классу кислот.
- **2.7.** Докажите практически взаимное влияние атомов в молекуле на примере толуола и фенола.
- **2.8.** Докажите, что в состав машинного масла входят только предельные углеводороды, что в кусочке белого хлеба содержится крахмал.
- **2.9.** Докажите, что в состав крекинг-бензина входят непредельные углеводороды.
- **2.10.** Докажите, что глицерин является многоатомным спиртом.

### 3. Распознавание вешеств

### Выполните самостоятельно

- 3.1. В двух склянках без этикеток находятся:
- а) муравьиная и уксусная кислоты;
- б) олеиновая и стеариновая кислоты;
- в) формалин и глицерин;
- г) формалин и глюкоза;
- д) глюкоза и белок;
- е) глюкоза и глицерин;
- ж) мыло и крахмал;
- з) животный жир и твердое мыло;
- и) шерстяная и хлопчатобумажная нити;
- к) капрон и хлопок;
- л) метан и этилен;
- м) иодная вода и раствор хлорида железа(III).

Распознайте эти вещества.

- 3.2. В трех склянках без этикеток находятся:
- а) формалин, глюкоза, мыло;
- б) крахмал, ацетат натрия, сахароза;
- в) глицерин, глюкоза, формалин;
- г) мыло, крахмал, глюкоза;
- д) глицерин, раствор фенола, метанол (распознайте по физическим свойствам);
- е) полиэтилен, поливинилхлорид, фенолформальдегидная пластмасса (распознайте по физическим свойствам);
  - ж) полипропилен, полистирол, фенолформальдегидная смола;
  - з) ацетатное волокно, капрон, хлопок;
  - и) шерсть, капрон, хлопок.

Распознайте эти вещества.

- **3.3.** Приведите по одному примеру органического и неорганического вещества, которые одинаково изменяют окраску выбранного вами индикатора. Ответ подтвердите химическими опытами.
- **3.4.** Приведите по одному примеру органического и неорганического вещества, которые могут взаимодействовать со свежеприготовленным гидроксидом меди (II). Ответ подтвердите химическими опытами.
- **3.5.** Назовите несколько органических веществ, которые можно определить с помощью свежеприготовленного гидроксида меди (II). С разрешения учителя проведите один-два опыта.

- **3.6.** Назовите несколько органических веществ, для определения которых можно воспользоваться аммиачным раствором нитрата серебра. С разрешения учителя проведите химические опыты, подтверждающие ответ.
- 3.7. С какими из перечисленных веществ может вступать в химические реакции метиловый спирт: кислород, бромная вода, оксид меди(II), уксусная кислота, гидроксид меди(II), бензол, медь, хлорид меди(II)? Составьте необходимые уравнения химических реакций. С разрешения учителя проведите химические опыты, подтверждающие ответ.
- 3.8. С какими из перечисленных веществ может вступать в химические реакции муравьиная кислота: кислород, магний, карбонат натрия, этанол, формальдегид, аммиачный раствор нитрата серебра, гидроксид меди (II), соляная кислота? Составьте необходимые уравнения химических реакций. С разрешения учителя проведите химические опыты, подтверждающие ответ.
  - 4. Получение веществ
  - 4.1. Получите уксусную кислоту из ацетата натрия.
  - 4.2. Получите ацетальдегид из этанола.
  - 4.3. Получите мыло из стеариновой кислоты.
- 5. Получение газообразных веществ и подтверждение химическими опытами их состава и свойств



На практических работах по химии вам неоднократно приходилось получать газы: водород, кислород, хлор, хлороводород, оксид углерода (IV), аммиак, метан, этилен, ацетилен, сероводород, оксид серы (IV) и др. Среди них есть вещества бесцветные  $(CO_2)$ , окрашенные  $(NO_2)$ ;

легче воздуха ( $H_2$ ,  $CH_4$ ) и тяжелее его ( $O_2$ ,  $H_2S$ ); очень хорошо растворимые в воде (HCI,  $NH_3$ ), малорастворимые ( $O_2$ ) и плохо растворимые в воде ( $CH_4$ ,  $N_2$ ); с характерным запахом ( $H_2S$ ,  $NO_2$ ) и без запаха ( $H_2$ ,  $C_2H_4$ ); оказывающие губительное воздействие на живые организмы ( $CI_2$ ,  $H_2S$ ) и жизненно необходимые для них ( $O_2$ , для растений —  $CO_2$ ).

Свойства газов разнообразны, но есть газы, обладающие сходными свойствами, и именно на этом основаны общие способы их получения, сбора и хранения.

В работе с газами недостаточно умения проводить пробирочные опыты; необходимо владеть более сложными практическими умениями — собирать приборы и работать с ними, учитывая особенности исходных веществ, условия протекания реакции и свойства получаемых газов.

Газы собирают двумя способами: вытеснением воздуха (рис. 1, a— $\beta$ ) и над водой (рис. 1,  $\epsilon$ ).



Puc. 1

Приборы для получения газов могут состоять не только из пробирок, но и из другой посуды: это могут быть круглодонные колбы с пробкой и отводной трубкой, колбы Бюрца, реторты и др. (рис. 2).



Puc. 2

- **5.1.** Получите водород и подтвердите химическими опытами его состав и свойства.
  - а) Получите водород взаимодействием кислоты и металла.
- б) Соберите водород в две пробирки либо вытеснением воздуха, либо над водой (по выбору). Проверьте газ на чистоту.
- в) Перелейте водород из одной пробирки в другую и подтвердите, что газ находится в другой пробирке.
- г) Закройте пробирку прибора пробкой с небольшой (3—5 см) отводной трубкой с оттянутым концом. Подожгите водород.
- **5.2.** Получите кислород и подтвердите химическими опытами его состав и свойства.
  - а) Получите кислород разложением перманганата калия.
- б) Соберите кислород в две пробирки над водой или вытеснением воздуха (по вашему выбору).
  - в) Докажите, что собран кислород.
- г) Проверьте опытным путем, как горит сера (или уголек) на воздухе и в кислороде.
- д) В состав лучины входит сложное органическое вещество целлюлоза. Проверьте, как происходит горение лучины на воздухе и в кислороде.
- **5.3.** Получите хлороводород и подтвердите химическими опытами его состав и свойства.
- а) Получите хлороводород реакцией обмена между концентрированной серной кислотой и кристаллической поваренной солью. Заполните хлороводородом две пробирки.

- б) Опишите физические свойства хлороводорода, по которым можно определить наличие именно этого газа.
- в) Проверьте опытным путем, как хлороводород растворяется в воде, и определите среду (щелочная, нейтральная или кислая) этого раствора.
- г) Проведите качественные реакции с водным раствором хлороводорода (ион  $H^+$  и ион  $CI^-$ ).
- **5.4.** Получите аммиак и подтвердите химическими опытами его состав и свойства.
- а) Получите аммиак реакцией обмена из смеси твердых веществ хлорида аммония и гидроксида кальция.
- 6) Опишите физические свойства аммиака, по которым можно определить наличие именно этого газа.
- в) Подтвердите опытным путем, насколько хорошо аммиак растворяется в воде, и определите среду (кислая, нейтральная или щелочная) его водного раствора.
- г) Объясните, что такое возгонка, на примере вещества, которое используется в этой практической работе, а также на примере возгонки иода.
- **5.5.** Получите углекислый газ и подтвердите химическими опытами его состав и свойства.
- а) Получите оксид углерода(IV) реакцией обмена между мрамором и соляной кислотой.
- б) Соберите газ в химический стакан вытеснением воздуха и докажите наличие газа.
- в) Пропустите газ в раствор лакмуса и подтвердите опытным путем, какую среду (кислую, нейтральную или щелочную) образует водный раствор оксида углерода (IV).
- г) Пропустите сначала небольшое количество оксида углерода (IV) в прозрачную свежеприготовленную известковую воду до появления признаков реакции. Затем отлейте пробу этого раствора и пропустите в него избыток оксида углерода (IV). От вновь полученного раствора также отлейте пробу и прокипятите ее.
- **5.6.** Получите метан и подтвердите химическими опытами его состав и свойства.
- а) Получите метан, используя смесь твердых веществ ацетата натрия и гидроксида натрия.
  - б) Соберите метан над водой в две пробирки.
- в) Подтвердите химическими опытами, что собранный газ горюч.

- г) Проверьте действие метана на бромную воду и раствор перманганата калия.
- **5.7.** Получите этилен и подтвердите химическими опытами его состав и свойства.
- а) Исходные вещества для получения этилена смесь этанола с концентрированной серной кислотой. Нагрейте 2 см<sup>3</sup> смеси в пробирке, закрытой пробкой с газоотводной трубкой, на слабом огне (держите пробирку над пламенем). Соберите этилен над водой в две пробирки.
  - б) Проверьте, как взаимодействует этилен с бромной водой.
- в) Проверьте возможность окисления этилена раствором перманганата калия.
  - г) Проверьте горючесть этилена, собранного в пробирку.
- **5.8.** Получите ацетилен и подтвердите химическими опытами его состав и свойства.
- а) Получите ацетилен реакцией гидратации карбида кальция  $CaC_2$ .
- б) Подожгите ацетилен у конца отводной трубки прибора, в котором получали этот газ. Опишите пламя ацетилена.
- в) Докажите, что в состав ацетилена входят атомы углерода и водорода.
- г) Пропустите ацетилен через бромную воду и раствор перманганата калия. Объясните наблюдаемые явления.

### Ответы

### Часть І

**1.**  $C_4H_{10}$ . **2.**  $C_3H_8$ . **3.**  $C_3H_6$ . **4.**  $C_2H_4$ . **5.** 26;  $C_2H_2$ . **6.**  $C_2H_6$ . **7.**  $CH_3OH$ . **8.**  $CH_2F_2$ . **9.**  $C_4H_{10}$ . **10.**  $C_4H_8$ . **11.**  $C_2H_4O$ . **12.**  $C_2H_5OH$ . **13.**  $SO_3$ . **14.**  $Na_2SO_3$ . **15.**  $N_2H_4$ . **24.**  $C_3H_6O$ . **45.**  $C_4H_{10}O$ .

### Часть II

- **1.1.** 144 г. **1.4.** 1,5 моль. **1.5.** 12,5 моль, 325 г  $C_2H_2$ ; 37,5 моль, 75 г  $H_2$ ; 12,5 моль, 350 г  $C_2H_4$ . **1.6.** 2,051  $M^3$ . **1.7.** 32,5 л. **1.10.** 93,7%.
- **1.12.** Недостаточно. **1.13.** Недостаточно. **1.15.** 50 л. **1.20.** Достаточно. **1.21.** 0,1 моль; 2,6 г. **1.29.** 2,64 г.
- **2.3.** 10%. **2.4.** 0,2 моль. **2.5.** 0,01 моль. **2.9.** 5 кг. **2.15.** 2 моль. **2.18.** 29,75 моль. **2.22.** 4,88 т. **2.30.** 0,4 моль. **2.33.** 0,036 моль. **2.46.** 19,14 г; 0,416 моль. **2.50.** 8,25 г. **2.51.** 55,44 г.
- **3.1.** 120 г. **3.3.** 208,8 г. **3.4.** 152,7 г. **3.14.** 159,5 г. **3.15.** 92 г. **3.16.** 69,5 г. **3.30.** 212 г. **3.34.** 12,4 г. **3.35.** 5,8 кг. **3.39.** 39,6 г. **3.49.** 11,2 л. **3.50.** 12 мл.
- **4.5.** 44,8 л. **4.7.** 350 кДж. **4.9.** 4122 кДж; 9 моль. **4.11.** 179,24 кДж; 0,45 моль. **4.16.** 8447,4 кДж; 403,2 л. **4.19.** 100,45 г; 62,5 л; 460,38 кДж. **4.22.**  $2C_2H_6(r) + 7O_2(r) = 4CO_2(r) + 6H_2O(r) + 2846$  кДж. **4.23.**  $2C_2H_6(r) + 7O_2(r) = 4CO_2(r) + 2846$  кДж. **4.26.** 44200,82 кДж. **4.31.**  $2C_2H_2(r) + 5O_2(r) = 4CO_2(r) + 2H_2O(r) + 2616$  кДж.
- **5.1.**  $C_6H_{12}$ . **5.2.**  $C_6H_{14}$ . **5.3.**  $C_3H_8$ . **5.4.**  $C_2H_4O$ . **5.5.**  $C_5H_{10}O_2$ . **5.6.**  $C_5H_{12}$ . **5.7.**  $C_6H_{12}O_6$ . **5.8.**  $C_2H_6O$ . **5.9.**  $CH_5N$ . **5.10.**  $C_2H_7N$ . **5.11.**  $C_2H_7N$ . **5.12.**  $C_3H_6$ . **5.13.**  $C_3H_6$ . **5.14.**  $C_2H_6$ . **5.15.**  $C_6H_6$ . **5.16.**  $C_2H_2$ . **5.17.**  $C_3H_7OH$ . **5.18.**  $C_6H_{12}$ .
- **5.19.** CH<sub>2</sub>O. **5.20.** C<sub>2</sub>H<sub>7</sub>N. **5.21.** C<sub>8</sub>H<sub>18</sub>. **5.22.** C<sub>3</sub>H<sub>6</sub>. **5.23.** C<sub>3</sub>H<sub>6</sub>. **5.24.** C<sub>6</sub>H<sub>6</sub>.
- **5.25.**  $C_6H_6$ . **5.26.**  $C_5H_{12}O$ . **5.27.**  $C_6H_{12}$ . **5.28.**  $C_3H_7OH$ . **5.29.**  $CS_2$ .
- **5.30.** CH<sub>2</sub>Cl<sub>2</sub>. **5.31.** C<sub>3</sub>H<sub>8</sub>. **5.32.** C<sub>3</sub>H<sub>6</sub>. **5.33.** C<sub>3</sub>H<sub>7</sub>COOH. **5.34.** C<sub>2</sub>H<sub>2</sub>.
- **5.35.**  $C_6H_6$ . **5.36.**  $CH_2O$ . **5.37.**  $C_3H_6$ . **5.38.**  $C_3H_6$ . **5.39.**  $CH_3OH$ . **5.40.**  $C_2H_5OH$ .
- **5.41.** CH<sub>5</sub>N. **5.42.** C<sub>2</sub>H<sub>7</sub>N. **5.43.** C<sub>2</sub>H<sub>6</sub>. **5.44.** C<sub>6</sub>H<sub>6</sub>. **5.45.** C<sub>2</sub>H<sub>4</sub>O. **5.46.** C<sub>4</sub>H<sub>8</sub>O<sub>2</sub>.
- **5.47.** CH<sub>5</sub>N. **5.48.** C<sub>5</sub>H<sub>10</sub>. **5.49.** C<sub>4</sub>H<sub>8</sub>. **5.50.** C<sub>5</sub>H<sub>5</sub>N.
- **6.1.** 5,7 л. **6.2.** 0,2 моль. **6.3.** 3 л. **6.4.** Кислую. **6.13.** 3 л С<sub>2</sub>H<sub>6</sub>. **6.15.** Карбид кальция; 4,48 л. **6.24.** 0,1 моль. **6.30.** Может; 0,448 л.
- **6.33.** 176 г. **6.37.** 0,5 моль. **6.38.** 25 г КНСО<sub>3</sub>. **6.39.** 12 г. **6.40.** 90,8 г.
- **6.42.** 3,73 л. **6.43.** 5,6 м<sup>3</sup>. **6.45.** 34,8 г. **6.48** 264 г. **6.49.** 14,35 г; 20,35 г HCI в избытке. **6.51.** 7 л. **6.52.** 10 мл. **6.53.** 16,85 г.
- **7.3.** 95%. **7.8.** 85,7%. **7.9.**  $\approx$  77%. **7.17**. 89,2%. **7.18**.  $\approx$  82%. **7.23**. 46,3%. **7.30**. 85,1%. **7.32**. 166,5 кг. **7.42**. 41,4 мл. **7.49**. 7,4 моль; 2530,8 г.

# Приложения

# 1. Относительные молекулярные массы наиболее часто применяемых

органических веществ

| Масса<br>радикала       | углеводорода |      | 15                | 29                              | 43                              | 57    | 71                               | 85                               | 211                               | 225                               | 239                               | 27                   | 41                                    | 55                       | 25       | 39                     | 237                               |
|-------------------------|--------------|------|-------------------|---------------------------------|---------------------------------|-------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|----------------------|---------------------------------------|--------------------------|----------|------------------------|-----------------------------------|
| -NH <sub>2</sub>        |              | 17   | 31                | 45                              | 59                              | 73    | 87                               | 101                              | 227                               | 241                               | 255                               | 43                   | 22                                    | 7.1                      | 41       | 55                     | 253                               |
| -NO <sub>2</sub>        |              | 47   | 61                | 75                              | 89                              | 103   | 117                              | 131                              | 257                               | 27.1                              | 285                               | 73                   | 87                                    | 101                      | 7.1      | 85                     | 283                               |
| 0//0-                   | 0 –          | 45   | 59                | 73                              | 87                              | 101   | 115                              | 129                              | 255                               | 269                               | 283                               | 71                   | 85                                    | 66                       | 69       | 83                     | 281                               |
| <br>0 0 -               | 5            | 46   | 09                | 74                              | 88                              | 102   | 116                              | 130                              | 256                               | 270                               | 284                               | 72                   | 98                                    | 100                      | 70       | 84                     | 282                               |
| 0 7                     | Ē            | 30   | 44                | 58                              | 72                              | 98    | 100                              | 114                              | 240                               | 254                               | 268                               | 56                   | 70                                    | 84                       | 54       | 89                     | 266                               |
| НО-                     |              | 18   | 32                | 46                              | 09                              | 74    | 88                               | 102                              | 228                               | 242                               | 256                               | 44                   | 28                                    | 72                       | 42       | 99                     | 254                               |
| <br>_                   |              | 128  | 142               | 156                             | 170                             | 184   | 198                              | 212                              | 338                               | 352                               | 366                               | 154                  | 168                                   | 182                      | 152      | 166                    | 364                               |
| ğ                       |              | 81   | 95                | 109                             | 123                             | 137   | 151                              | 165                              | 291                               | 305                               | 319                               | 107                  | 121                                   | 135                      | 115      | 119                    | 317                               |
| ō                       |              | 36,5 | 50,5              | 64,5                            | 78,5                            | 92,5  | 106,5                            | 120,5                            | 246,5                             | 260,5                             | 274,5                             | 62,5                 | 76,5                                  | 90,5                     | 60,5     | 74,5                   | 272,5                             |
| CH <sub>3</sub>         |              | 16   | 30                | 44                              | 58                              | 72    | 98                               | 100                              | 226                               | 240                               | 254                               | 45                   | 99                                    | 0/                       | 40       | 54                     | 252                               |
| I                       |              | - 1  | 16                | 30                              | 44                              | 58    | 72                               | 98                               | 212                               | 526                               | 240                               | 28                   | 42                                    | 99                       | 56       | 40                     | 238                               |
| Радикал<br>углеводорода | (предельный) | H-   | CH <sub>3</sub> — | C <sub>2</sub> H <sub>5</sub> — | C <sub>3</sub> H <sub>7</sub> — | C₄H₃— | C <sub>5</sub> H <sub>11</sub> — | C <sub>6</sub> H <sub>13</sub> — | C <sub>15</sub> H <sub>31</sub> — | C <sub>16</sub> H <sub>33</sub> — | C <sub>17</sub> H <sub>35</sub> — | CH <sub>2</sub> =CH- | CH <sub>2</sub> =CH-CH <sub>2</sub> - | $CH_2 = CH - (CH_2)_2 -$ | CH ≡ C — | $CH \equiv C - CH_2 -$ | C <sub>17</sub> H <sub>35</sub> — |

2. Относительные молекулярные массы неорганических соединений

| Pb <sup>2+</sup> | 223 | 241 | 278   | 367 | 461      | 331             | 239               | 287                            | 303                           | 267                          | 283          | 811                           |
|------------------|-----|-----|-------|-----|----------|-----------------|-------------------|--------------------------------|-------------------------------|------------------------------|--------------|-------------------------------|
| Ag⁺              | 232 | 125 | 143,5 | 188 | 235      | 170             | 248               | 294                            | 312                           | 276                          | 292          | 419                           |
| C⊾ <sup>2</sup>  | 80  | 86  | 135   | 224 | 318      | 188             | 96                | 144                            | 160                           | 124                          | 140          | 382                           |
| Zn <sup>2+</sup> | 81  | 66  | 136   | 225 | 319      | 189             | 16                | 145                            | 161                           | 125                          | 141          | 385                           |
| Mn <sup>2+</sup> | 71  | 89  | 126   | 215 | 309      | 179             | 87                | 135                            | 151                           | 115                          | 131          | 355                           |
| Fe <sup>3+</sup> | 160 | 107 | 162,5 | 296 | 437      | 242             | 208               | 352                            | 400                           | 292                          | 340          | 151                           |
| Fe <sup>2+</sup> | 72  | 06  | 127   | 216 | 310      | 180             | 88                | 136                            | 152                           | 116                          | 132          | 358                           |
| Cr3+             | 152 | 103 | 158,5 | 292 | 433      | 238             | 200               | 344                            | 392                           | 284                          | 332          | 147                           |
| Al <sup>3+</sup> | 102 | 78  | 133,5 | 267 | 408      | 213             | 150               | 294                            | 342                           | 234                          | 282          | 122                           |
| Mg <sup>2+</sup> | 40  | 58  | 95    | 184 | 278      | 148             | 56                | 104                            | 120                           | 84                           | 100          | 262                           |
| Ca <sup>2+</sup> | 56  | 74  | 111   | 200 | 294      | 164             | 72                | 120                            | 136                           | 100                          | 116          | 310                           |
| Ba <sup>2+</sup> | 153 | 171 | 208   | 297 | 391      | 261             | 169               | 217                            | 233                           | 197                          | 213          | 601                           |
| K <sup>+</sup>   | 94  | 56  | 74,5  | 119 | 166      | 101             | 110               | 158                            | 174                           | 138                          | 154          | 212                           |
| Na <sup>+</sup>  | 62  | 40  | 58,5  | 103 | 150      | 85              | 8/                | 126                            | 142                           | 106                          | 122          | 164                           |
| NH <sup>+</sup>  |     | 35  | 53,5  | 98  | 145      | 80              | 89                | 116                            | 132                           | 96                           | 112          | 149                           |
| + <sub>H</sub>   |     | 18  | 36,5  | 81  | 128      | 63              | 34                | 82                             | 98                            | 62                           | 78           | 86                            |
|                  | 05- | _HO | _i    | Br_ | <u> </u> | NO <sub>3</sub> | -S <sub>2</sub> - | SO <sub>3</sub> <sup>2</sup> - | SO <sub>4</sub> <sup>2-</sup> | CO <sub>3</sub> <sup>2</sup> | $SiO_3^{2-}$ | PO <sub>4</sub> <sup>3-</sup> |

## 3. Качественные реакции на катионы и анионы

| Опреде-<br>ляемый<br>ион | Реактив                                       | Признаки реакции                                                                                                                |  |  |  |  |  |
|--------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                          | Реакции на катионы                            |                                                                                                                                 |  |  |  |  |  |
| H <sup>+</sup>           | Индикаторы: 1) метиловый оранжевый; 2) лакмус | Изменение окраски раствора: 1) на розовый; 2) на красный                                                                        |  |  |  |  |  |
| Ba <sup>2+</sup>         | SO <sub>4</sub> <sup>2-</sup>                 | Белый мелкокристаллический осадок, нерастворимый даже в азотной кислоте, — BaSO <sub>4</sub>                                    |  |  |  |  |  |
| Ag <sup>+</sup>          | CI                                            | Белый творожистый осадок, нерастворимый даже в азотной кислоте, — AgCl                                                          |  |  |  |  |  |
| Fe <sup>2+</sup>         | OH <sup>-</sup>                               | Осадок грязно-зеленого цвета — $Fe(OH)_2$                                                                                       |  |  |  |  |  |
| •                        | [Fe(CN) <sub>6</sub> ] <sup>3-</sup>          | Осадок темно-синего цвета — $\operatorname{Fe_3[Fe(CN)_6]_2}$                                                                   |  |  |  |  |  |
| Fe <sup>3+</sup>         | OH <sup>-</sup>                               | Осадок темно-бурого цвета — Fe(OH) <sub>3</sub>                                                                                 |  |  |  |  |  |
|                          | [Fe(CN) <sub>6</sub> ] <sup>4-</sup>          | Осадок темно-синего цвета — $Fe_4[Fe(CN)_6]_3$                                                                                  |  |  |  |  |  |
|                          | CNS <sup>-</sup>                              | Кроваво-красный раствор — Fe(CNS) <sub>3</sub>                                                                                  |  |  |  |  |  |
| Zn <sup>2+</sup>         | ОН <sup>-</sup> недостаток, по<br>каплям      | Белый осадок — $Zn(OH)_2$ , или $H_2ZnO_2$ , — растворимый в избытке щелочи (образуется раствор $Me_2^+[Zn(OH)_4]^{2-}$ )       |  |  |  |  |  |
| Al <sup>3+</sup>         | ОН <sup>-</sup> недостаток, по<br>каплям      | Белый осадок — $AI(OH)_3$ , или $H_3AIO_3$ , — растворимый в избытке щелочи (при этом образуется раствор $Me^+[AI(OH)_4]^-$ )   |  |  |  |  |  |
| Cr <sup>3+</sup>         | ОН <sup>-</sup> недостаток, по<br>каплям      | Серовато-голубой осадок — $Cr(OH)_3$ , или $H_3CrO_3$ , — растворимый в избытке щелочи (образуется раствор $Me^+[Cr(OH)_4]^-$ ) |  |  |  |  |  |

|                              | <del></del>                                                    | <del></del>                                                                   |  |
|------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| Опреде-<br>ляемый<br>ион     | Реактив                                                        | Признаки реакции                                                              |  |
| Cu <sup>2+</sup>             | OH_                                                            | Голубой студенистый осадок — $Cu(OH)_2$                                       |  |
|                              | Проба на пламя                                                 | Изумрудно-зеленая окраска пла-<br>мени                                        |  |
| Ca <sup>2+</sup>             | CO <sub>3</sub> <sup>2-</sup>                                  | Белый осадок, растворимый и кислотах, — CaCO <sub>3</sub>                     |  |
|                              | Проба на пламя                                                 | Кирпично-красная окраска пла-<br>мени                                         |  |
| NH <sub>4</sub> <sup>+</sup> | OH-                                                            | Запах аммиака — NH <sub>3</sub>                                               |  |
| Na <sup>+</sup>              | Проба на пламя                                                 | Окраска пламени ярко-желтого<br>цвета                                         |  |
| K <sup>+</sup>               | Проба на пламя                                                 | Окраска пламени розово-фиолетовая, заметная через синее стекло                |  |
|                              | Реакции н                                                      | на анионы                                                                     |  |
| OH <sup>-</sup>              | Индикаторы: 1) лакмус; 2) метиловый оранжевый; 3) фенолфталеин | Изменение окраски раствора: 1) на синий; 2) на желтый; 3) на малиновый        |  |
| CI <sup>-</sup>              | Ag <sup>+</sup>                                                | Белый творожистый осадок, нерастворимый даже в азотной кислоте, — AgCl        |  |
|                              | H <sub>2</sub> SO <sub>4</sub> (конц.)                         | Бесцветный газ, хорошо растворимый в воде, с резким характерным запахом — НСІ |  |
| Br <sup>-</sup>              | Ag <sup>+</sup>                                                | Желтоватый творожистый осадок, нерастворимый даже в азотной кислоте, — AgBr   |  |
|                              | H₂SO₄ (конц.)                                                  | Бесцветный газ, хорошо растворимый в воде, с характерным запахом — НВг        |  |
| <b>I</b> -                   | Ag <sup>+</sup>                                                | Желтый творожистый осадок, нерастворимый даже в азотной кислоте, — Agl        |  |

| Опреде-<br>ляемый<br>ион       | Реактив                                                     | Признаки реакции                                                                             |  |  |
|--------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|
| I <sup>-</sup>                 | H₂SO₄ (конц.)                                               | Бесцветный газ, хорошо растворимый в воде, с характерным запахом — Н                         |  |  |
|                                | Cl <sub>2</sub>                                             | Бурого цвета раствор иода — І2                                                               |  |  |
|                                | Cl <sub>2</sub> + крахмал<br>(клейстер)                     | Посинение крахмала                                                                           |  |  |
| S <sup>2-</sup>                | H <sup>+</sup>                                              | Газ с запахом тухлых яиц — H <sub>2</sub> S                                                  |  |  |
|                                | Cu <sup>2+</sup>                                            | Черный осадок — CuS                                                                          |  |  |
|                                | Pb <sup>2+</sup>                                            | Черный осадок — PbS                                                                          |  |  |
| NO <sub>3</sub>                | Cu <sup>0</sup> ,<br>H <sub>2</sub> SO <sub>4</sub> (конц.) | Бурый газ с неприятным резким запахом — NO <sub>2</sub>                                      |  |  |
| ·SO <sub>4</sub> <sup>2-</sup> | Ba <sup>2+</sup>                                            | Белый мелкокристаллический осадок, нерастворимый даже в азотной кислоте, — BaSO <sub>4</sub> |  |  |
| SO <sub>3</sub> <sup>2-</sup>  | Ba <sup>2+</sup>                                            | Белый мелкокристаллический осадок, растворимый в азотной кислоте, — BaSO <sub>3</sub>        |  |  |
|                                | H <sup>+</sup>                                              | Газ с резким запахом, обесцвечивает раствор фуксина или чернил — SO <sub>2</sub>             |  |  |
| CO <sub>3</sub> <sup>2-</sup>  | H <sup>+</sup>                                              | Газ без запаха, не поддерживает горение, вызывает помутнение известковой воды — $CO_2$       |  |  |
| PO <sub>4</sub> <sup>3-</sup>  | Ag <sup>+</sup>                                             | Желтый осадок в щелочной среде — $Ag_3PO_4$                                                  |  |  |
| CH₃COO¯                        | H <sub>2</sub> SO <sub>4</sub> (конц.), H <sup>+</sup>      | Летучая уксусная кислота с ха-<br>рактерным запахом —<br>CH <sub>3</sub> COOH                |  |  |

### 4. Качественные реакции на органические вещества

| Класс органических соединений и определяемое вещество                                                                                      | Тип качественной реакции и реактив для определения вещества                                                            | Признаки<br>реакции                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| <b>Алканы</b> CH <sub>4</sub> метан  CH <sub>3</sub> —CH <sub>3</sub> этан  CH <sub>3</sub> —CH <sub>2</sub> —CH <sub>3</sub> пропан и др. | Реакция замещения<br>с галогенами                                                                                      | Выделение галогеноводорода — бесцветного газа, хорошо растворимого в воде (образуется галогеноводородная кислота) |
|                                                                                                                                            | Реакция горения на воздухе или в кис-<br>лороде                                                                        | Бесцветное (голу-<br>бое) пламя                                                                                   |
|                                                                                                                                            | Реакция окисления раствором перманганата калия (КМпО <sub>4</sub> ) или бромной водой                                  | Не изменяют окрас-<br>ку раствора КМпО₄<br>и бромной воды                                                         |
| Алкены $CH_2 = CH_2$ этилен $CH_2 = CH - CH_3$ пропилен и др.                                                                              | Реакция присоединения галогенов (Br <sub>2</sub> ) Реакция окисления раствором перманганата калия (KMnO <sub>4</sub> ) | Обесцвечивание<br>бромной воды<br>и раствора КМпО₄                                                                |
| <b>Алкины</b><br>НС ≡ СН                                                                                                                   | Реакция присоединения галогенов (Br <sub>2</sub> )                                                                     | Обесцвечивание<br>бромной воды                                                                                    |
| ацетилен и др.                                                                                                                             | Реакция окисления раствором перманга-<br>ната калия (KMnO <sub>4</sub> )                                               | Обесцвечивание<br>раствора КМпО₄                                                                                  |
|                                                                                                                                            | Реакция замещения с аммиачным раствором оксида серебра (при нагревании)                                                | Выпадение бурого<br>осадка ацетиленида<br>серебра                                                                 |
|                                                                                                                                            | Реакция горения на<br>воздухе или в кис-<br>лороде                                                                     | Сильно коптящее<br>пламя                                                                                          |

| Класс органических соединений и определяемое вещество                                           | Тип качественной реакции и реактив для определения вещества                                                | Признаки<br>реакции                                                                                           |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Арены<br>СН<br>НС СН<br>СН                                                                      | Реакция замещения с азотной кислотой в присутствии концентрированной серной кислоты                        | Образование светложелтой жидкости с запахом горького миндаля (нитробензол)                                    |
| ČН<br>бензол                                                                                    | Реакция присоединения хлора при ярком освещении                                                            | Образование белого кристаллического вещества (гексахлор-циклогексан)                                          |
|                                                                                                 | Реакция горения                                                                                            | Коптящее пламя                                                                                                |
| Одноатомные<br>спирты                                                                           | Реакция горения                                                                                            | Бесцветное (голу-<br>бое) пламя                                                                               |
| ${\rm CH_3OH}$ метанол ${\rm C_2H_5OH}$ этанол и др.                                            | Реакция окисления<br>оксидом меди(II)                                                                      | Запах альдегида и<br>образование крас-<br>ной меди                                                            |
|                                                                                                 | Реакция замещения водорода в функциональной группе — ОН щелочным металлом                                  | Выделение водоро-<br>да                                                                                       |
| Многоатомные спирты         CH2—CH2                           OH       OH         этиленгликоль | Реакция восстанов-<br>ления свежеприго-<br>товленного гидрок-<br>сида меди(II) в силь-<br>нощелочной среде | Растворение голубо-<br>го осадка гидрокси-<br>да меди(II) и обра-<br>зование раствора ва-<br>силькового цвета |
| СН <sub>2</sub> — ОН<br> <br>  СН — ОН<br> <br>  СН <sub>2</sub> — ОН<br>глицерин               |                                                                                                            |                                                                                                               |

| Класс органических соединений и определяемое вещество      | Тип качественной<br>реакции и реактив<br>для определения<br>вещества                                                | Признаки<br>реакции                                                                                                                |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Фенол                                                      | Реакция замещения атомов водорода в кольце с бромной или иодной водой                                               | Выпадение белого осадка трибромфенола (A) или желтоватого осадка трииодфенола (Б)  ОН Вг Вг ОН |
|                                                            | Реакция замещения водорода в функциональной группе — ОН с хлоридом железа(III)                                      | Образование раствора фиолетового цвета (фенолят железа(III))                                                                       |
| Альдегиды (муравьиный, уксусный и др.)  H — С О Н метаналь | Реакция окисления функциональной  Н группы С=О ам- миачным раствором оксида серебра (реакция «серебряного зеркала») | Зеркальный налет на<br>стенках пробирки<br>(металлическое се-<br>ребро)                                                            |
| этаналь и др.                                              |                                                                                                                     |                                                                                                                                    |

| Класс органических соединений и определяемое вещество                                                                    | Тип качественной реакции и реактив для определения вещества                                   | Признаки<br>реакции                                                      |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Карбоновые предельные одноосновные кислоты                                                                               | Отношение к инди-<br>каторам                                                                  | Лакмус — красный цвет, метиловый оранжевый — розовый цвет (кислая среда) |
| Н — С ОН муравьиная кислота                                                                                              | Реакция нейтрализа-<br>ции                                                                    | Выделение теплоты                                                        |
| CH₃ — C OH                                                                                                               | Реакция с активным металлом                                                                   | Выделение водоро-<br>да                                                  |
| ОН<br>уксусная кислота                                                                                                   | Реакция этерифика-<br>ции                                                                     | Запах сложного<br>эфира                                                  |
|                                                                                                                          | Для муравьиной кислоты характерна реакция «серебряного зеркала» (реагирует подобно альдегиду) | Зеркальный налет на стенках пробирки (металлическое серебро)             |
| Высшие<br>карбоновые<br>кислоты                                                                                          | Отношение к инди-<br>каторам                                                                  | Индикаторы не из-<br>меняют своей окрас-<br>ки                           |
| С <sub>15</sub> Н <sub>31</sub> СООН<br>пальмитиновая                                                                    | Реакция нейтрализа-<br>ции                                                                    | Образование мыла                                                         |
| кислота                                                                                                                  | Реакция горения                                                                               | Коптящее пламя                                                           |
| C <sub>17</sub> H <sub>35</sub> COOH<br>стеариновая кислота<br>С <sub>17</sub> H <sub>33</sub> COOH<br>олеиновая кислота | Для олеиновой кислоты характерна реакция окисления бромной водой или перманганатом калия      | Обесцвечивание раствора перманга-<br>ната калия и бром-<br>ной воды      |
| $R - C = 0$ $O - R_1$                                                                                                    | Реакция горения                                                                               | Бесцветное (голу-<br>бое) пламя                                          |

| Класс органических                                                     | Тип качественной                                                                                                | Признаки                                                                      |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| соединений<br>и определяемое<br>вещество                               | реакции и реактив<br>для определения<br>вещества                                                                | реакции                                                                       |
| Жиры<br>H <sub>2</sub> C— O — CO — R <sub>1</sub>                      | Реакция омыления                                                                                                | Запах эфира исче-<br>зает                                                     |
| $  HC - O - CO - R_2 $<br>$  H_2C - O - CO - R_3 $                     | Реакция горения                                                                                                 | Коптящее пламя                                                                |
| <b>Мыла</b><br>С <sub>17</sub> Н <sub>35</sub> COONа<br>стеарат натрия | Реакция омыления                                                                                                | Образование глицерина и солей высших карбоновых кислот (мыла)                 |
|                                                                        | Отношение к инди-<br>каторам (гидролиз)                                                                         | Фенолфталеин — малиновый цвет, лак-мус — синий цвет (щелочная среда)          |
| <b>Углеводы</b> Глюкоза С <sub>6</sub> Н <sub>12</sub> О <sub>6</sub>  | Реакция обмена с насыщенным раствором хлорида кальция                                                           | Появление на поверхности раствора серых хлопьев стеарата кальция              |
| CH <sub>2</sub> OH<br> <br>(CHOH) <sub>4</sub><br>  O<br>C H           | Реакция на спиртовые группы —ОН со свежеприготовленным гидроксидом меди(II) (без нагревания)                    | Образование василь-<br>кового (ярко-синего)<br>раствора глюконата<br>меди(II) |
|                                                                        | Реакция на альде-<br>гидную группу со<br>свежеприготовлен-<br>ным гидроксидом<br>меди(II) (при нагре-<br>вании) | Образование крас-<br>ного осадка оксида<br>меди(I)                            |
|                                                                        | Реакция окисления альдегидной группы аммиачным раствором оксида серебра (реакция «серебряного зеркала»)         | Зеркальный налет на<br>стенках пробирки                                       |

| Класс органических соединений и определяемое вещество                    | Тип качественной реакции и реактив для определения вещества                                                                                                     | Признаки<br>реакции                                                                                                                                           |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Сахароза</b><br>С <sub>12</sub> H <sub>22</sub> O <sub>11</sub>       | Реакция на спиртовые группы — ОН: а) со свежеприготовленным гидроксидом меди(II) без нагревания; б) с известковым молоком (суспензия гидроксида кальция в воде) | Образование ярко-<br>синего раствора са-<br>харата меди(II)<br>Исчезновение мути,<br>образование проз-<br>рачного бесцветного<br>раствора сахарата<br>кальция |
|                                                                          | Гидролиз сахарозы (в присутствии серной кислоты при нагревании)                                                                                                 | Образование глюкозы и фруктозы. Обнаружение глюкозы качественными реакциями                                                                                   |
| Крахмал<br>(C <sub>6</sub> H <sub>10</sub> O <sub>5</sub> ) <sub>a</sub> | Реакция с иодной<br>водой                                                                                                                                       | Появление синего<br>окрашивания                                                                                                                               |
| V 0 10 37/1                                                              | Реакция на спиртовые группы — ОН со свежеприготовленным гидроксидом меди(II)                                                                                    | Образование ярко-<br>синего раствора                                                                                                                          |
|                                                                          | Гидролиз крахмала<br>(в присутствии сер-<br>ной кислоты при<br>нагревании)                                                                                      | Образование глюкозы. Обнаружение глюкозы с помощью качественных реакций                                                                                       |
| Амины NH2 анилин                                                         | Реакция замещения атомов водорода в бензольном кольце галогеном (реагент — бромная или иодная вода)                                                             | Выпадение белого осадка триброманилина (А) или желтоватого осадка трииоданилина (Б)                                                                           |

| Класс органических соединений и определяемое вещество | Тип качественной реакции и реактив для определения вещества                                                                                                                                   | Признаки<br>реакции                                                                       |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|                                                       |                                                                                                                                                                                               | Br Br Br NH <sub>2</sub> (A) Br NH <sub>2</sub> (b) I                                     |
|                                                       | Реакция со свежим раствором хлорной извести                                                                                                                                                   | Появление фиолето-<br>вого окрашивания                                                    |
|                                                       | Реакция, доказывающая основные свойства анилина: взаимодействие с концентрированной соляной кислотой                                                                                          | Выпадение белого осадка хлористово-<br>дородного анилина                                  |
| Белки                                                 | Горение шерсти                                                                                                                                                                                | Запах жженых<br>перьев                                                                    |
| H H<br>     <br>  -C-C-N-C-                           | Нагревание раствора<br>яичного белка                                                                                                                                                          | Свертывание белка                                                                         |
| IIIII                                                 | Цветные реакции: а) ксантопротеиновая (кипячение с концентрированной азотной кислотой с последующим добавлением щелочи); б) биуретовая (взаимодействие с сульфатом меди(II) в щелочной среде) | Образовавшийся желтый осадок приобретает оранжевый цвет Появление фиолетового окрашивания |

5. Значения относительной электроотрицательности элементов (по Л. Полингу)

|      |          |                  |                   | <b>i</b> N 1, 9  |                   | <b>Pb</b> 2,2    |                  | <b>Pt</b> 2,2    |                   |
|------|----------|------------------|-------------------|------------------|-------------------|------------------|------------------|------------------|-------------------|
| III/ |          | I                |                   | 0 <del>1</del>   |                   | <b>Rh</b> 2,2    |                  | 1r<br>2,2        |                   |
|      | H H      | Se Se            | ٩٢                | <b>ਜ</b> +,      | Ž.                | <b>Ru</b> 2,2    | Xe<br>2,6        | 0s<br>2,2        | Rn                |
| N N  | (H)      | F<br>4,0         | <b>C</b> I<br>3,0 | <b>M</b><br>1,5  | <b>Br</b><br>2,8  | <b>Tc</b> 2,1    | 2,5              | <b>Re</b><br>1,9 | <b>At</b><br>2,2  |
| 5    |          | 3,5              | <b>S</b><br>2,5   | ٠, <b>د</b>      | <b>Se</b><br>2,4  | <b>™</b> 1,8     | <b>Te</b><br>2,1 | <b>1</b> ,7      | <b>Po</b><br>2,0  |
| >    |          | 3,0              | <b>P</b><br>2,1   | <b>&gt;</b> 1,6  | <b>As</b><br>2,0  | <b>N</b><br>6,1  | <b>Sb</b><br>1,9 | Ta<br>1,5        | <b>Bi</b><br>1,9  |
| ≥    |          | <b>C</b><br>2,5  | <b>Si</b><br>1,8  | T.<br>1,5        | <b>Ge</b><br>1,8  | <b>Zr</b><br>1,4 | Sn<br>1,8        | Hf<br>1,3        | <b>Pb</b><br>1,9  |
| =    |          | <b>B</b><br>2,0  | <b>AI</b><br>1,5  | Sc<br>1,3        | <b>Ga</b><br>1,6  | <b>Y</b>         | 1,7              | La<br>1,0        | <b>T</b> 1<br>1,8 |
| =    |          | <b>Be</b><br>1,5 | <b>Mg</b><br>1,2  | <b>Ca</b><br>1,0 | <b>Z</b> n<br>1,6 | 1,0              | Cd<br>1,7        | <b>Ba</b><br>0,9 | <b>Hg</b> 1,9     |
| -    | Н<br>2,1 | <b>Li</b><br>1,0 | <b>Na</b><br>0,9  | <b>K</b><br>0,8  | <b>Cu</b><br>1,9  | <b>Rb</b><br>0,8 | <b>Ag</b><br>1,9 | <b>Cs</b><br>0,7 | <b>Au</b> 2,4     |
|      | _        | =                | ≡                 | 2                | •                 | >                | •                | 5                |                   |

6. Физические величины, используемые при решении химических задач

| Наименование величины        | Единицы            | Обозначение          | Форма записи<br>(с примером числового<br>значения величины)                          |
|------------------------------|--------------------|----------------------|--------------------------------------------------------------------------------------|
| Количество вещества          | МОЛЬ               | v (ню), или <i>п</i> | $v(H_2S) = 1,6 \text{ MOJIB}$                                                        |
| Масса вещества               | MF, F, KF          | ш                    | m(CaO) = 60 кг                                                                       |
| Молярная масса               | г/моль, кг/моль    | M                    | $M(CO_2) = 44 \text{ r/monb}$<br>M(Ca) = 0,04  kr/monb                               |
| Молярный объем               | л/моль, м³/моль    | γ×                   | $V_{\rm M} = 22,4 \text{ n/monb} = 22,4 \cdot 10^{-3} \text{ m}^3/\text{monb}$       |
| Объем вещества, раствора     | л, м³, мл          | ٨                    | $V(H_2) = 10 \text{ л}$<br>$V(HCI) = 0,2 \text{ M}^3$                                |
| Плотность вещества, раствора | г/мл, г/см³, кг/м³ | (od) d               | $\rho(H_2O) = 1  \Gamma/MЛ$ $\rho(KOH) = 1062  \kappa\Gamma/M^3$ (раствор при 20 °C) |
| Относительная плотность      | безразмерная       | О                    |                                                                                      |
| Относительная атомная масса  | безразмерная       | Ą                    | $A_{r}(Ca) = 40$ . $A_{r}(C) = 12$                                                   |
|                              |                    |                      |                                                                                      |

| Относительная молекулярная<br>масса                                 | безразмерная (в долях единицы или в %)    | M <sub>r</sub> | $M_r(CaO) = 56$<br>$M_r(O_2) = 32$          |
|---------------------------------------------------------------------|-------------------------------------------|----------------|---------------------------------------------|
| Массовая доля растворенного<br>вещества, элемента в соеди-<br>нении | безразмерная (в долях<br>единицы или в %) | 3              | w(KOH) = 0,45,<br>w(C) = 80%                |
| Выход вещества                                                      | безразмерная (в долях единицы или в %)    | η (эτα)        | $\eta(NH_3) = 0.25,$<br>$\eta(NH_3) = 25\%$ |
| Объемная доля газа в смеси                                          | безразмерная (в долях единицы или в %)    | (иф) ф         | $\phi(CH_4) = 0.98,$<br>$\phi(CH_4) = 98\%$ |

7. Таблица растворимости солей, кислот и оснований в воде

|                                                                                          |        |             | •                   |                  |                 |                  | •                |                  | ,                |                  |                  | )<br>)           | )<br>[           |                  |                  |
|------------------------------------------------------------------------------------------|--------|-------------|---------------------|------------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Катион<br>Анион                                                                          | ±      | †<br>¥<br>T | <b>*</b>            | Na <sup>+</sup>  | Ag <sup>+</sup> | Ba <sup>2+</sup> | Ca <sup>2+</sup> | Mg <sup>2+</sup> | Zn <sup>2+</sup> | Cu <sup>2+</sup> | Hg <sup>2+</sup> | Pb <sup>2+</sup> | Fe <sup>2+</sup> | Fe <sup>3+</sup> | Al <sup>3+</sup> |
| _HO                                                                                      |        | ۵           | ۵                   | ۵                | ı               | ۵                | Σ                | Σ                | I                | I                | 1                | I                | I                | I                | I                |
| NO <sub>3</sub> -                                                                        | ۵      | Ф           | ۵                   | ۵                | ۵               | <u> </u>         | ۵                | ۵                | ۵                | ۵                | ۵                | ۵                | ۵                | ۵                | ۵                |
| _ID                                                                                      | Ь      | Ф           | ۵                   | ۵                | I               | _                | ۵                | ۵                | ۵                | _                | ۵                | Σ                | ۵                | ۵                | ۵                |
| S <sub>2</sub> -                                                                         | Д      | Ь           | Ь                   | Ь                | ェ               | ۵                | 1                | ı                | I                | Ξ                | I                | Ŧ                | I                | I                | l                |
| SO <sub>3</sub> -                                                                        | Ь      | Ь           | Ь                   | Ь                | Σ               | Σ                | Σ                | ۵                | Σ                | 1                | 1                | I                | Σ                | 1                | 1                |
| SO <sub>4</sub> -                                                                        | Ь      | Ь           | Ь                   | Д                | Σ               | Ŧ                | Σ                | ۵                | ۵                | ۵                | ı                | Σ                | ۵                | ۵                | Ь                |
| CO <sub>3</sub> <sup>2</sup>                                                             | Ь      | Ь           | Ь                   | Ь                | 工               | Ŧ                | Ŧ                | I                | Ξ                | 1                | I                | Ŧ                | I                | 1                | 1                |
| SiO <sub>3</sub> -                                                                       | I      | -           | Ь                   | Ь                | I               | I                | I                | Ξ                | Ξ                | ı                | 1                | Ŧ                | I                | 1                | 1                |
| PO <sub>4</sub> -                                                                        | ۵      | Р           | Ь                   | d                | н               | ±                | I                | エ                | I                | I                | Ŧ                | I                | I                | I                | I                |
| СН3СОО_                                                                                  | ۵      | а_          | <b>d</b>            | Ъ                | Ф               | Ь                | ۵                | Ь                | ٩                | Ь                | Ъ                | a.               | ۵                | ۵                | ۵                |
| P — растворимое (> 1 г в 100 г воды);<br>М — малоластворимое (0.001 г—1 г в 100 г воды): | MOe (> | 1 r B 10    | 00 r BOL<br>r — 1 r | tel);<br>a 100 r | (INCOR)         |                  |                  |                  |                  |                  |                  | İ                |                  |                  |                  |

М — малорастворимое (0,001 г—1 г в 100 г воды); Н — нерастворимое (< 0,001 г в 100 г воды); — — раздагается водей;

разлагается водой или не существует.

### 8. Соотношения между единицами массы и объема

```
Соотношения между единицами массы 1 тонна (т) = 1000 килограммов (кг) 1 центнер (ц) = 100 килограммов (кг) 1 килограмм (кг) = 1000 граммов (г) 1 грамм (г) = 1000 миллиграммов (мг) Соотношения между единицами объема 1 куб. метр (м³) = 1000 куб. дециметров (дм³) = 1000 000 куб. см (см³) 1 куб. дециметр (дм³) = 1000 куб. см (см³) 1 литр (л) = 1 куб. дециметр (дм³) 1 гектолитр (гл) = 100 литров (л)
```

# 9. Масса 1 л некоторых газов при нормальных условиях (г)

Азот 1,2504 Водород 0,08987 Воздух 1,2930 Оксид углерода(IV) 1,9643 Кислород 1,4290 Оксид азота(II) 1,3402 Оксид углерода(II) 1,2504 Сероводород 1,5392 Учебное издание

### Гара Наталья Николаевна Габрусева Надежда Ивановна

### **ХИМИЯ**

Задачник с «помощником» 10—11 классы

Пособие для учащихся общеобразовательных учреждений

ЦЕНТР ЕСТЕСТВОЗНАНИЯ
Руководитель Центра В. И. Егудин
Редактор Л. Н. Кузнецова
Внешнее оформление и макет А. А. Барковской
Художественный редактор Е. А. Михайлова
Техническое редактирование и компьютерная верстка Л. В. Марухно
Корректоры А. В. Рудакова, Г. Н. Смирнова

Налоговая льгота — Общероссийский классификатор продукции ОК 005-93—953000. Изд. лиц. Серия ИД № 05824 от 12.09.01. Подписано в печать 06.09.12. Формат  $60\times90\frac{1}{16}$ . Бумага газетная. Гарнитура ТехtВоокС. Печать офсетная. Уч.-изд. л. 4,06. Тираж 3000 экз. Заказ № 3276.

Открытое акционерное общество «Издательство «Просвещение». 127521, Москва, 3-й проезд Марьиной рощи, 41.

Отпечатано в полном соответствии с качеством предоставленных издательством материалов в ОАО «Тверской ордена Трудового Красного Знамени полиграфкомбинат детской литературы им. 50-летия СССР». 170040, г. Тверь, проспект 50 лет Октября, 46.







