$12a_{0735} \ (K12a_{0735})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 2u^{37} + 2u^{36} + \dots + 4b + 2, \ -u^{36} - 23u^{34} + \dots + 4a - 2, \ u^{38} + 2u^{37} + \dots + 5u + 2 \rangle \\ I_2^u &= \langle 2u^4a - 2u^3a + a^2u + 5u^2a - 4au + b + a + 2u - 2, \\ 2u^4a^2 - u^4a + 6a^2u^2 + 2u^3a - 3u^4 + a^3 - 5u^2a + u^3 + 2a^2 + 7au - 10u^2 - 2a + 3u - 5, \\ u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1 \rangle \\ I_3^u &= \langle u^3 + b + 2u, \ -u^3 - u^2 + a - 2u - 2, \ u^4 + 3u^2 + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 57 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 2u^{37} + 2u^{36} + \dots + 4b + 2, -u^{36} - 23u^{34} + \dots + 4a - 2, u^{38} + 2u^{37} + \dots + 5u + 2 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{4}u^{36} + \frac{23}{4}u^{34} + \dots + \frac{5}{2}u + \frac{1}{2} \\ -\frac{1}{2}u^{37} - \frac{1}{2}u^{36} + \dots - \frac{1}{4}u - \frac{1}{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{4}u^{33} + 5u^{31} + \dots - \frac{1}{4}u + 1 \\ -\frac{1}{4}u^{33} - \frac{21}{4}u^{31} + \dots - \frac{1}{2}u^{2} - \frac{1}{2}u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} + 2u \\ u^{5} + 3u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{2}u^{37} - \frac{1}{4}u^{36} + \dots + \frac{1}{4}u^{2} + \frac{9}{4}u \\ -\frac{1}{2}u^{37} - \frac{1}{2}u^{36} + \dots - \frac{1}{4}u - \frac{1}{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{2}u^{37} - u^{36} + \dots - \frac{15}{4}u - 2 \\ -\frac{3}{4}u^{33} - \frac{3}{4}u^{32} + \dots - \frac{1}{2}u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{4}u^{32} + \frac{21}{4}u^{30} + \dots - \frac{1}{2}u - \frac{1}{2} \\ \frac{1}{4}u^{32} + 5u^{30} + \dots + \frac{5}{4}u^{2} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} + 3u^{2} + 1 \\ u^{6} + 4u^{4} + 3u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-2u^{37} 4u^{36} + \cdots 4u 14$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{38} + 17u^{37} + \dots + 194u + 25$
c_{2}, c_{8}	$u^{38} - u^{37} + \dots - 6u + 5$
c_3	$u^{38} - 2u^{37} + \dots + 400u + 800$
c_4, c_9, c_{10}	$u^{38} - u^{37} + \dots - 4u + 5$
$c_5, c_6, c_7 \\ c_{11}, c_{12}$	$u^{38} - 2u^{37} + \dots - 5u + 2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{38} + 13y^{37} + \dots + 8514y + 625$
c_{2}, c_{8}	$y^{38} + 17y^{37} + \dots + 194y + 25$
<i>c</i> ₃	$y^{38} - 6y^{37} + \dots + 7276800y + 640000$
c_4, c_9, c_{10}	$y^{38} + 37y^{37} + \dots + 34y + 25$
$c_5, c_6, c_7 \\ c_{11}, c_{12}$	$y^{38} + 48y^{37} + \dots + 19y + 4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.339832 + 0.921512I		
a = 0.416428 + 0.809179I	-0.53116 + 6.72152I	-6.76982 - 7.69269I
b = 0.816368 - 0.218889I		
u = -0.339832 - 0.921512I		
a = 0.416428 - 0.809179I	-0.53116 - 6.72152I	-6.76982 + 7.69269I
b = 0.816368 + 0.218889I		
u = -0.325570 + 0.993591I		
a = -1.55595 - 1.85235I	7.06845 + 5.49844I	0.54907 - 4.52833I
b = -0.257004 + 1.389260I		
u = -0.325570 - 0.993591I		
a = -1.55595 + 1.85235I	7.06845 - 5.49844I	0.54907 + 4.52833I
b = -0.257004 - 1.389260I		
u = 0.394709 + 0.970581I		
a = 1.66954 - 1.57123I	4.59569 - 10.87090I	-2.77827 + 8.43141I
b = 0.33472 + 1.39633I		
u = 0.394709 - 0.970581I		
a = 1.66954 + 1.57123I	4.59569 + 10.87090I	-2.77827 - 8.43141I
b = 0.33472 - 1.39633I		
u = -0.009913 + 0.916024I		
a = -0.106232 + 0.617839I	2.92919 - 1.46585I	-0.29190 + 4.46440I
b = -0.435699 - 0.647770I		
u = -0.009913 - 0.916024I		
a = -0.106232 - 0.617839I	2.92919 + 1.46585I	-0.29190 - 4.46440I
b = -0.435699 + 0.647770I		
u = -0.091063 + 1.155310I		
a = -0.37132 - 2.12708I	9.62190 + 2.62526I	1.76254 - 3.39036I
b = -0.03930 + 1.42339I		
u = -0.091063 - 1.155310I		
a = -0.37132 + 2.12708I	9.62190 - 2.62526I	1.76254 + 3.39036I
b = -0.03930 - 1.42339I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.475449 + 0.649846I		
a = -0.634708 + 0.373029I	2.66568 + 3.67725I	-3.88495 - 1.85217I
b = 0.237413 - 1.333010I		
u = 0.475449 - 0.649846I		
a = -0.634708 - 0.373029I	2.66568 - 3.67725I	-3.88495 + 1.85217I
b = 0.237413 + 1.333010I		
u = -0.326550 + 0.707311I		
a = 0.365685 + 0.985287I	-1.81820 - 0.62723I	-9.78117 - 0.63046I
b = 0.598316 + 0.079539I		
u = -0.326550 - 0.707311I		
a = 0.365685 - 0.985287I	-1.81820 + 0.62723I	-9.78117 + 0.63046I
b = 0.598316 - 0.079539I		
u = -0.453897 + 0.489215I		
a = 0.911640 + 0.461033I	4.18206 + 0.81384I	-1.66334 - 4.28381I
b = -0.076008 - 1.314890I		
u = -0.453897 - 0.489215I		
a = 0.911640 - 0.461033I	4.18206 - 0.81384I	-1.66334 + 4.28381I
b = -0.076008 + 1.314890I		
u = 0.634985 + 0.149850I		
a = -1.313290 - 0.234988I	1.15622 - 7.39365I	-7.23665 + 6.75615I
b = -0.296893 - 1.359070I		
u = 0.634985 - 0.149850I		
a = -1.313290 + 0.234988I	1.15622 + 7.39365I	-7.23665 - 6.75615I
b = -0.296893 + 1.359070I		
u = -0.551325 + 0.214770I		
a = 1.406100 - 0.007220I	3.34928 + 2.52485I	-4.06452 - 3.23642I
b = 0.191390 - 1.321750I		
u = -0.551325 - 0.214770I		
a = 1.406100 + 0.007220I	3.34928 - 2.52485I	-4.06452 + 3.23642I
b = 0.191390 + 1.321750I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.556094 + 0.096366I		
a = -1.338990 + 0.086931I	-3.64092 + 3.67836I	-13.1775 - 5.2178I
b = -0.729346 + 0.157605I		
u = -0.556094 - 0.096366I		
a = -1.338990 - 0.086931I	-3.64092 - 3.67836I	-13.1775 + 5.2178I
b = -0.729346 - 0.157605I		
u = 0.06495 + 1.55948I		
a = 0.124474 - 1.120870I	9.94200 + 1.81077I	0
b = -0.146346 + 1.269640I		
u = 0.06495 - 1.55948I		
a = 0.124474 + 1.120870I	9.94200 - 1.81077I	0
b = -0.146346 - 1.269640I		
u = 0.232971 + 0.274282I		
a = 0.783127 + 0.921776I	-0.605257 - 0.910546I	-10.00383 + 7.24439I
b = 0.170162 + 0.354512I		
u = 0.232971 - 0.274282I		
a = 0.783127 - 0.921776I	-0.605257 + 0.910546I	-10.00383 - 7.24439I
b = 0.170162 - 0.354512I		
u = -0.05271 + 1.63939I		
a = -0.104717 - 0.802437I	6.35089 + 0.56961I	0
b = -0.537806 + 0.097751I		
u = -0.05271 - 1.63939I		_
a = -0.104717 + 0.802437I	6.35089 - 0.56961I	0
b = -0.537806 - 0.097751I		
u = -0.01436 + 1.69488I	42.200=04.202217	
a = -0.095169 - 0.847455I	12.20970 - 1.29201I	0
b = 0.572206 + 0.761360I		
u = -0.01436 - 1.69488I	10.00050 . 1.000015	
a = -0.095169 + 0.847455I	12.20970 + 1.29201I	0
b = 0.572206 - 0.761360I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.08704 + 1.69484I		
a = -0.001733 - 0.692432I	8.67383 + 8.38204I	0
b = -0.884556 + 0.249985I		
u = -0.08704 - 1.69484I		
a = -0.001733 + 0.692432I	8.67383 - 8.38204I	0
b = -0.884556 - 0.249985I		
u = 0.10617 + 1.70777I		
a = -1.09920 + 1.99516I	14.0039 - 12.8731I	0
b = -0.36348 - 1.42519I		
u = 0.10617 - 1.70777I		
a = -1.09920 - 1.99516I	14.0039 + 12.8731I	0
b = -0.36348 + 1.42519I		
u = -0.08545 + 1.71485I		
a = 1.00730 + 2.20606I	16.6465 + 7.1508I	0
b = 0.29380 - 1.43752I		
u = -0.08545 - 1.71485I		
a = 1.00730 - 2.20606I	16.6465 - 7.1508I	0
b = 0.29380 + 1.43752I		
u = -0.01542 + 1.74340I		
a = 0.18700 + 2.55613I	-19.4879 + 3.0073I	0
b = 0.05206 - 1.51390I		
u = -0.01542 - 1.74340I		
a = 0.18700 - 2.55613I	-19.4879 - 3.0073I	0
b = 0.05206 + 1.51390I		

$$\text{II. } I_2^u = \\ \langle 2u^4a - 2u^3a + \dots + a - 2, \ 2u^4a^2 - u^4a + \dots - 2a - 5, \ u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2u^{4}a + 2u^{3}a - a^{2}u - 5u^{2}a + 4au - a - 2u + 2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{4}a - a^{2}u^{2} + u^{3}a + 2u^{4} - 4u^{2}a - 2u^{3} - a^{2} + au + 6u^{2} - a - 4u + 4 \\ -u^{4}a^{2} - 2a^{2}u^{2} - 2u^{4} + 2u^{3} + 3au - 4u^{2} - 2a + 4u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} + 2u \\ u^{4} - u^{3} + 3u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -2u^{4}a + 2u^{3}a - a^{2}u - 5u^{2}a + 4au - 2u + 2 \\ -2u^{4}a + 2u^{3}a - a^{2}u - 5u^{2}a + 4au - a - 2u + 2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3}a^{2} - 2u^{4}a + \cdots - 3a + 4 \\ -u^{4}a^{2} - 4u^{4} + \cdots + a^{2} - 3a \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{4}a^{2} + u^{4}a + 3a^{2}u^{2} - u^{3}a + 4u^{2}a + a^{2} - 4au - 2u^{2} + 3a - 4 \\ u^{4}a^{2} + 2a^{2}u^{2} + 2u^{4} - 2u^{3} - 3au + 4u^{2} + 2a - 4u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} + 3u^{2} + 1 \\ u^{4} - u^{3} + 3u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^4 + 4u^3 16u^2 + 12u 14$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{15} + 10u^{14} + \dots + 3u - 1$
$c_2, c_4, c_8 \\ c_9, c_{10}$	$u^{15} + 5u^{13} + \dots + u + 1$
<i>c</i> ₃	$(u^5 + u^4 - u^2 + u + 1)^3$
c_5, c_6, c_7 c_{11}, c_{12}	$(u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1)^3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{15} - 10y^{14} + \dots + 15y - 1$
c_2, c_4, c_8 c_9, c_{10}	$y^{15} + 10y^{14} + \dots + 3y - 1$
<i>c</i> ₃	$(y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1)^3$
c_5, c_6, c_7 c_{11}, c_{12}	$(y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1)^3$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.233677 + 0.885557I		
a = -0.323874 + 0.796296I	1.81981 - 2.21397I	-3.11432 + 4.22289I
b = -0.638808 - 0.271585I		
u = 0.233677 + 0.885557I		
a = -0.156756 + 0.463494I	1.81981 - 2.21397I	-3.11432 + 4.22289I
b = 0.435133 - 0.988544I		
u = 0.233677 + 0.885557I		
a = 2.13619 - 2.53516I	1.81981 - 2.21397I	-3.11432 + 4.22289I
b = 0.203675 + 1.260130I		
u = 0.233677 - 0.885557I		
a = -0.323874 - 0.796296I	1.81981 + 2.21397I	-3.11432 - 4.22289I
b = -0.638808 + 0.271585I		
u = 0.233677 - 0.885557I		
a = -0.156756 - 0.463494I	1.81981 + 2.21397I	-3.11432 - 4.22289I
b = 0.435133 + 0.988544I		
u = 0.233677 - 0.885557I		
a = 2.13619 + 2.53516I	1.81981 + 2.21397I	-3.11432 - 4.22289I
b = 0.203675 - 1.260130I		
u = 0.416284		
a = 1.12253	-0.882183	-11.6090
b = 0.511430		
u = 0.416284		
a = -2.11117 + 0.66665I	-0.882183	-11.6090
b = -0.255715 + 1.093700I		
u = 0.416284		
a = -2.11117 - 0.66665I	-0.882183	-11.6090
b = -0.255715 - 1.093700I		
u = 0.05818 + 1.69128I		
a = 0.154896 - 0.889970I	10.95830 - 3.33174I	-2.08126 + 2.36228I
b = -0.549193 + 1.000850I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.05818 + 1.69128I		
a = -0.007493 - 0.744869I	10.95830 - 3.33174I	-2.08126 + 2.36228I
b = 0.762735 + 0.344098I		
u = 0.05818 + 1.69128I		
a = -1.25306 + 2.70311I	10.95830 - 3.33174I	-2.08126 + 2.36228I
b = -0.213543 - 1.344950I		
u = 0.05818 - 1.69128I		
a = 0.154896 + 0.889970I	10.95830 + 3.33174I	-2.08126 - 2.36228I
b = -0.549193 - 1.000850I		
u = 0.05818 - 1.69128I		
a = -0.007493 + 0.744869I	10.95830 + 3.33174I	-2.08126 - 2.36228I
b = 0.762735 - 0.344098I		
u = 0.05818 - 1.69128I		
a = -1.25306 - 2.70311I	10.95830 + 3.33174I	-2.08126 - 2.36228I
b = -0.213543 + 1.344950I		

III.
$$I_3^u = \langle u^3 + b + 2u, -u^3 - u^2 + a - 2u - 2, u^4 + 3u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} + u^{2} + 2u + 2 \\ -u^{3} - 2u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} + 3u \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} + 2u \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 2 \\ -u^{3} - 2u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} + 3u \\ 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} + 3u \\ u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} + 3u \\ u + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u \\ u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ -u^{2} - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^4$
c_2, c_4, c_8 c_9, c_{10}	$(u^2+1)^2$
c_3	u^4
$c_5, c_6, c_7 \\ c_{11}, c_{12}$	$u^4 + 3u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$(y-1)^4$
c_2, c_4, c_8 c_9, c_{10}	$(y+1)^4$
<i>c</i> ₃	y^4
$c_5, c_6, c_7 \\ c_{11}, c_{12}$	$(y^2 + 3y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034I		
a = 1.61803 + 1.00000I	0.986960	-4.00000
b = -1.000000I		
u = -0.618034I		
a = 1.61803 - 1.00000I	0.986960	-4.00000
b = 1.000000I		
u = 1.61803I		
a = -0.618034 - 1.000000I	8.88264	-4.00000
b = 1.000000I		
u = -1.61803I		
a = -0.618034 + 1.000000I	8.88264	-4.00000
b = -1.000000I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^4)(u^{15} + 10u^{14} + \dots + 3u - 1)(u^{38} + 17u^{37} + \dots + 194u + 25)$
c_2, c_8	$((u^{2}+1)^{2})(u^{15}+5u^{13}+\cdots+u+1)(u^{38}-u^{37}+\cdots-6u+5)$
c_3	$u^{4}(u^{5} + u^{4} - u^{2} + u + 1)^{3}(u^{38} - 2u^{37} + \dots + 400u + 800)$
c_4, c_9, c_{10}	$((u^{2}+1)^{2})(u^{15}+5u^{13}+\cdots+u+1)(u^{38}-u^{37}+\cdots-4u+5)$
$c_5, c_6, c_7 \\ c_{11}, c_{12}$	$(u^4 + 3u^2 + 1)(u^5 + u^4 + \dots + 3u + 1)^3(u^{38} - 2u^{37} + \dots - 5u + 2)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^4)(y^{15} - 10y^{14} + \dots + 15y - 1)$ $\cdot (y^{38} + 13y^{37} + \dots + 8514y + 625)$
c_2, c_8	$((y+1)^4)(y^{15}+10y^{14}+\cdots+3y-1)(y^{38}+17y^{37}+\cdots+194y+25)$
c_3	$y^{4}(y^{5} - y^{4} + 4y^{3} - 3y^{2} + 3y - 1)^{3}$ $\cdot (y^{38} - 6y^{37} + \dots + 7276800y + 640000)$
c_4, c_9, c_{10}	$((y+1)^4)(y^{15}+10y^{14}+\cdots+3y-1)(y^{38}+37y^{37}+\cdots+34y+25)$
$c_5, c_6, c_7 \\ c_{11}, c_{12}$	$(y^{2} + 3y + 1)^{2}(y^{5} + 7y^{4} + 16y^{3} + 13y^{2} + 3y - 1)^{3}$ $\cdot (y^{38} + 48y^{37} + \dots + 19y + 4)$