Функциональный анализ

Ф. Л. Бахарев *

13 сентября 2016 г.

Содержание

1	Линейное нормированное пространство	2
2	Пространства Лебега	4
3	Непрерывность. Сжимающее отображение	6

^{*}Конспект подготовлен студентом Яскевичем С. В.

1 Линейное нормированное пространство

Определение 1.1. Линейное множество L над полем скаляров \mathbb{R} (\mathbb{C}) — множество с операциями сложения и умножения на скаляр, удовлетворяющее свойствам:

1.
$$(x + y) + z = x + (y + z) \forall x, y, z \in L$$

2.
$$x + y = y + x \ \forall x, y, z \in L$$

- 3. Существует элемент 0 такой, что $x+0=x \ \forall x \in L$
- 4. Для любого $x \in L$ существует обратный элемент по сложению -x такой, что -x+x=0

5.
$$\lambda(\mu x) = (\lambda \mu) x \ \forall \lambda, \mu \in \mathbb{R}(\mathbb{C}), x \in L$$

6.
$$\lambda(x+y) = \lambda x + \lambda y \ \forall \lambda \in \mathbb{R}(\mathbb{C}), \ x, y \in L$$

7.
$$(\lambda + \mu)x = \lambda x + \mu y \ \forall \lambda, \mu \in \mathbb{R}(\mathbb{C}), x, y \in L$$

Определение 1.2. $\phi: L \to \mathbb{R}$ называется нормой, если:

1.
$$\varphi(x+y) \leqslant \varphi(x) + \varphi(y) \ \forall x, y \in L$$

2.
$$\varphi(\lambda x) = |\lambda| \varphi(x) \ \forall x \in L, \ \lambda \in \mathbb{R}(\mathbb{C})$$

3.
$$\varphi(x) \ge 0 \ \forall x \in L$$

4.
$$\varphi(x) = 0 \iff x = 0$$

Если выполнены только первых три свойства, то ϕ называется полунормой.

Замечание 1.3.

1.
$$\rho(x,y) = \phi(x-y)$$
 — метрика.

2. Если на пространстве задана норма $\|\cdot\|$, то $X=(L,\phi)$ — нормированное пространство.

Определение 1.4. $x_n \to x$ в X, если $\|x_n - x\| \to 0$ при $n \to \infty$, то есть $\forall \epsilon > 0$ $\exists N \colon \forall n > N$ $\|x_n - x\| < \epsilon$

Определение 1.5. $\{x_n\}\subset X$ — фундаментальная последовательность (сходящаяся в себе, последовательность Коши), если $\|x_n-x_m\|\xrightarrow{m,n\to\infty} 0$, то есть $\forall \epsilon>0$ $\exists N\colon \forall m,n>N$ $\|x_m-x_m\|<\epsilon$

Замечание 1.6. $x_n \to x \implies \{x_n\}$ — фундаментальная. Обратное, вообще говоря, неверно.

Определение 1.7. Нормированное пространство X называется полным, если из фундаментальности последовательности следует существование предела.

Определение 1.8. Пусть $x_n \in X$. $\sum_{j=1}^{\infty} x_j$ сходится, если $S_n = \sum_{j=1}^n x_j$ имеет предел $\lim S_n = S$. S называется суммой ряда.

Определение 1.9. Ряд $\sum\limits_{j=1}^{\infty}x_j$ называется cxodsumuscs абсолютно, если $\sum\limits_{j=1}^{\infty}\|x_j\|$ сходится.

Замечание 1.10. Из абсолютной сходимости не следует обычная сходимость.

 S_n сходится $\iff |S_n - S_m| \to 0$. Пусть $C_n = \sum_{j=1}^n \|x\|$. C_n сходится $\iff |C_n - C_m| \to 0$. Если мы хотим, чтобы сходимость S_n была равносильна $\|S_n - S_m\| \to 0$, то нам нужна полнота пространства.

Определение 1.11. Полное линейное нормированное пространство называется банаховым пространством (в честь польского математика Стефана Банаха).

Примеры 1.12.

- Евклидово пространство: \mathbb{R}^n с нормой $\|x\| = |x| = \sqrt[n]{|x_1|^2 + \ldots + |x_n|^2}$ то же, что ℓ_n^2 с нормой $\|\cdot\|_2$;
- $\ell_n^1 = (\mathbb{R}^n, \|\cdot\|_1)$, где $\|x\|_1 = |x_1| + \ldots + |x_n|$;
- $\ell_n^\infty=(\mathbb{R}^n,\|\cdot\|_\infty)$, где $\|x\|_\infty=\max_{1\leqslant j\leqslant n}|x_j|;$
- $\ell_n^p = (\mathbb{R}^n, \|\cdot\|_p, \|x\|_p = \left(\sum_{j=1}^n |x_j|^p\right)^{\frac{1}{p}}, p \geqslant 1;$
- $C(\overline{\Omega})$ с нормой $\|x\|=\max_{\mathbf{t}\in\overline{\Omega}}|x(\mathbf{t})|$, где Ω область в \mathbb{R}^m . $\overline{\Omega}$ замыкание Ω . Ясно, что $\overline{\Omega}$ компакт в \mathbb{R}^m .

Упражнение 1.13. Верно ли, что $\|x\|_p \xrightarrow[p \to \infty]{} \|x\|_\infty$?

Теорема 1.14. Пространство $C(\overline{\Omega})$ полно.

Доказательство. Рассмотрим фундаментальную последовательность $\mathbf{x}_{\mathbf{n}} \in C(\overline{\Omega}).$

$$\forall \epsilon > 0 \exists N : \forall k, n > N \|x_k - x_n\| = \max_{t \in \overline{\Omega}} |x_n(t) - x_k(t)| < \epsilon$$

Возьмём $t\in\overline{\Omega}$. $\{x_n(t)\}$ — числовая последовательность. Тогда получаем $|x_n(t)-x_k(t)|<\epsilon$, отсюда $\{x_n(t)\}$ — фундаментальна, значит существует $\lim_{n\to\infty}x_n(t)=x(t)$.

Проверим, что $\max_{t \in \overline{\Omega}} |x_n(t) - x(t)| \xrightarrow[n \to \infty]{} 0$, т. е. $x_n \stackrel{n \to \infty}{\rightrightarrows} x$ на $\overline{\Omega}$. Заметим, что $\forall k, n > N$ $|x_k(t) - x_n(t)| < \varepsilon \implies |x(t) - x_n(t)| \leqslant \varepsilon$.

Почему же x непрерывна? Потому что равномерный предел непрерывных функций непрерывен.

Пусть $[a,b] \subset \mathbb{R}$. Рассмотрим пространство дифференцируемых функций $C^1[a,b]$. Какую норму на нём выбрать?

- $\bullet \ \phi_1(x) = \max_{t \in [\mathfrak{a}, \mathfrak{b}]} |x(t)|;$
- $\varphi_2(x) = \max_{t \in [a,b]} |x'(t)|;$
- $\varphi_3(x) = \varphi_1(x) + \varphi_2(x);$
- $\bullet \ \phi_4(x) = |x(\alpha)| + \max_{t \in [\alpha, b]} |x'(t)|.$

Заметим, что ϕ_2 нормой вообще не является, а ϕ_1 не даёт полноты пространства.

Теорема 1.15. 1. Пространство $(C^1[a,b], \varphi_1)$ не полно.

2. Пространство $(C^1[\mathfrak{a},\mathfrak{b}],\phi_3)$ полно.

Доказательство. Докажем первое утверждение.

Первый аргумент. х — производная непрерывная на [a,b], негладкая. По теореме Вейерштрасса для любого $\varepsilon>0$ существует многочлен P такой, что $\max_{[a,b]}|P-x|<\varepsilon$

Второй аргумент. Пусть $[a,b]=[-1,1],\ x(t)=|t|\notin C^1[a,b],\ x^{\epsilon}(t)=|t|^{1+\epsilon}\in C^1[a,b].$ $\max|x(t)-x^{\epsilon}(t)|\xrightarrow[\epsilon\to 0]{}0.$

Для доказательства второго утверждения возьмём $x_n \in C^1[a,b]$ — последовательность, фундаментальную относительно ϕ_3 .

$$\phi_3(x_n-x_k)\xrightarrow[n,k\to\infty]{}0\implies egin{cases} \phi_1(x_n-x_k) o 0\ \phi_2(x_n-x_k) o 0 \end{cases} \implies \exists x\in C[a,b],y\in C[a,b] \ egin{cases} \phi_1(x_n-x) o 0 &\iff x_n \Rightarrow x \ \text{на}\ [a,b]\ \phi_1(x_n'-y) o 0 &\iff x_n' \Rightarrow y \ \text{нa}\ [a,b] \end{cases} \implies x\in C^1[a,b],x'=y \ \end{cases}$$
 Отсюда $\phi_3(x_n-x) o 0$

2 Пространства Лебега

Неравенство Гёльдера

Рассмотрим (T,μ) — пространство с мерой, x,y — измеримые функции, и числа p,q>0 — сопряжённые показатели, т. е. $\frac{1}{p}+\frac{1}{q}=1$. Тогда верно неравенство:

$$\int\limits_T |x(t)y(t)|\,d\mu(t) \leqslant \left(\int\limits_T |x(t)|^p\,d\mu(t)\right)^{\frac{1}{p}} \left(\int\limits_T |y(t)|^q\,d\mu(t)\right)^{\frac{1}{q}}$$

Неравенство Минковского

Если (T,μ) — пространство с мерой, x,y — измеримые функции, $p\geqslant 1$, то верно неравенство:

$$\left(\int\limits_T |x(t)|^p \ d\mu(t)\right)^{\frac{1}{p}} + \left(\int\limits_T |y(t)|^q \ d\mu(t)\right)^{\frac{1}{q}} \geqslant \int\limits_T |x(t)y(t)| d\mu(t)$$

Обозначение: $\|x\|_p = (\int\limits_T |x|^p)^{\frac{1}{p}}$.

Замечание 2.1. Частный случай — p=q=2. Тогда неравенство Гёльдера оказывается неравенством Коши-Буняковского-Шварца:

$$\int\limits_T |x(t)|\cdot |y(t)|\,d\mu(t)\leqslant \left(\int\limits_T |x(t)|^2\,d\mu(t)\right)^{\frac{1}{2}} \biggl(\int\limits_T |y(t)|^2\,d\mu(t)\biggr)^{\frac{1}{2}}$$

Замечание 2.2. Пусть $T=\mathbb{N}$, и если $M\subset\mathbb{N}$, то $\#M=\operatorname{card} M$ — количество элементов M — будет мерой. Рассмотрим функцию $x:\mathbb{N}\to k$, где k — некоторое поле скаляров. Мы помним, что функция из натуральных чисел называется последовательностью. Как можно

вычислять $\int\limits_{\mathbb{N}} x(n) \mathrm{d} \#(n)$? Ясно, что такой интеграл — это ряд $\sum\limits_{n \in \mathbb{N}} x(n)$, а суммируемые функции в этом случае будут абсолютно сходящимися рядами. Неравенство Гёльдера будет выглядеть так:

$$\sum_{n \in \mathbb{N}} |x_n| |y_n| \leqslant \left(\sum_{n \in \mathbb{N}} |x_n|^p\right)^{\frac{1}{p}} \left(\sum_{n \in \mathbb{N}} |y_n|^p\right)^{\frac{1}{p}}$$

А неравенство Минковского — так:

$$\left(\sum_{\mathbf{n}\in\mathbb{N}}|x_{\mathbf{n}}|^{p}\right)^{\frac{1}{p}}+\left(\sum_{\mathbf{n}\in\mathbb{N}}|y_{\mathbf{n}}|^{p}\right)^{\frac{1}{p}}\geqslant\left(\sum_{\mathbf{n}\in\mathbb{N}}|x_{\mathbf{n}}||y_{\mathbf{n}}|\right)^{\frac{1}{p}}$$

Определение 2.3. Пространство Лебега $\mathcal{L}^p(\mathsf{T},\mu)$ — это множество $\{x \mid \int\limits_\mathsf{T} |x|^p \, \mathrm{d}\mu < \infty\}$. Оно линейно: $x,y \in \mathcal{L}^p \implies x+y \in \mathcal{L}^p$ и $\lambda y \in \mathcal{L}^p$

Заметим, что $\|x\|_p = \left(\int\limits_T |x|^p d\mu\right)^{\frac{1}{p}} -$ полунорма на $\mathcal{L}^p(T,\mu)$. Если $\|x\|_p = 0$, то x=0 почти везде.

Чтобы получить норму, введём следующее отношение эквивалентности:

$$x_1 \sim x_2$$
 если $x_1 - x_2 = 0$ почти везде.

Тогда

$$\mathcal{L}^{p}(T,\mu)/_{\sim} = L^{p}(T,\mu)$$

— это настоящее пространство Лебега. В дальнейшем мы будем считать функции, отличающиеся на множестве меры нуль, одинаковыми.

Замечание 2.4. Пусть $T \subset \mathbb{R}^n$, $\mu = \lambda$ — мера Лебега. Тогда будем обозначать $L^p(T, \mu) = L^p(T)$.

Теорема 2.5. Пространство $L^p(T, \mu)$ полно при $p \geqslant 1$.

Пример 2.6. Рассмотрим $L^2(0,+\infty)$ и $L^1(0,+\infty)$. Какое из этих пространств является вложением в другое? Возьмём функцию $x(t)=\frac{1}{t+1}$.

$$\int_{0}^{\infty} \frac{1}{t+1} dt = \infty$$

$$\int\limits_{0}^{\infty}\frac{1}{(t+1)^{2}}dt<\infty$$

Отсюда видно, что $L^2(0,+\infty) \not\subset L^1(0,+\infty)$. Легко придумать и пример, доказывающий отсутствие включения в обратную сторону.

Теорема 2.7 (О вложенности пространств L^p). Пусть $1 \leqslant p_1 < p_2 \leqslant \infty$. Тогда:

- 1. $\ell^{p_1} \subset \ell^{p_2}$.
- 2. Если (T,μ) пространство с мерой, $\mu(T)<\infty$, то $L^{p_1}(T,\mu)\supset L^{p_2}(T,\mu)$

Доказательство.

1. Пусть $x=(x_1,x_2,x_3,\ldots)$. Хотим проверить, что $x\in \ell^{p_1} \implies x\in \ell^{p_2}.$

$$\sum_{j=1}^{\infty} |x_j|^{p_1} < \infty \implies \exists N \quad \forall j > N \quad |x_j| < 1 \implies |x_j|^{p_1} < |x_j|^{p_2}$$

$$\sum_{j=N+1}^{\infty}|x_j|^{p_1}>\sum_{j=N+1}^{\infty}|x_j|^{p_2}\implies\sum_{j=1}^{\infty}|x_j|^{p_2}<\infty\implies x\in\ell^{p_2}$$

2. Для доказательства второго пункта достаточно применить неравенство Гёльдера.

3 Непрерывность. Сжимающее отображение

Определение 3.1. Возьмём отображение $F: X \to Y$, где X и Y — линейные нормированные пространства. F называется непрерывным в точке x_0 , если:

$$\forall \epsilon > 0 \quad \exists \delta > 0: \quad \forall x: \|x - x_0\| < \delta \quad \|F(x) - F(x_0)\| < \epsilon$$

F называется непрерывным, если оно непрерывно во всех точках X.

Пример 3.2. $X=Y=C[0,1], \ \|x\|_{C[0,1]}=\max_{t\in[0,1]}|x(t)|.$ Рассмотрим отображение $(F(x))(t)=\int\limits_0^tx(s)\,ds$ и докажем, что оно непрерывно.

$$\|F(x_1) - F(x_2)\| = \max_{t \in [0,1]} \left| \int_0^t x_1(s) \, ds - \int_0^t x_2(s) \, ds \right| \le$$

$$\leq \max_{t} \int_{0}^{t} |x_{1}(s) - x_{2}(s)| ds \leq \max_{t} t \cdot ||x_{1} - x_{2}|| \leq ||x_{1} - x_{2}||$$

 Δ остаточно взять $\delta = \varepsilon$ и всё доказано.

Определение 3.3. Отображение $F: X \to Y$ называется липшицевым, если существует такое C, что для всех $x_1, x_2 \in X$ выполнено $\|F(x_1) - F(X_2)\| \leqslant C \cdot \|x_1 - x_2\|$

Заметим, что из липшицевости отображения следует его непрерывность. Достаточно взять $\delta = \frac{\varepsilon}{C}$.

Определение 3.4. Отображение $F: X \to Y$ называется сжимающим, если существует такое $\gamma < 1$, что $\forall x_1, x_2 \in X$ выполнено $\|F(x_1) - F(x_2)\| \leqslant \gamma \|x_1 - x_2\|$.