

PIC32CX-BZ2 Production User's Guide

Introduction

This user guide provides detailed information about PIC32CX-BZ2 production test setup, production tool, calibration and production test to run on the manufacturing line.

The user has to develop their own automated production test script/tool based on MCHPRT3 PIC32CX-BZ2 DLL/CLI for the production testing (or) use the Litepoint (third-party) test suite for the mass production.

Note: To know more about Litepoint test suite for this device, contact Litepoint.

Recommended Production Test Flow

The following figure shows the recommended production test flow.

Figure 1. Recommended Production Test Flow

Table of Contents

Intr	oducti	on	1	
1.	Quic	Quick References		
	1.1.	Hardware Prerequisites	3	
	1.2.	Software Requirements	3	
	1.3.	Acronyms/Abbreviations	3	
2.	Production Tool			
	2.1. MCHPRT3 PIC32CX-BZ2.DLL			
	2.2.	MCHPRT3 PIC32CX-BZ2_CLI	5	
3.	Prod	luction Test Setup	6	
4.	Firmware			
	4.1.	HUT Firmware for Production Test	8	
	4.2.	Application Firmware	8	
5.	Production Flow			
	5.1.	Power-Up	9	
	5.2.	HUT Firmware Download	9	
	5.3.	Calibration	9	
	5.4.	RF Test		
	5.5.	Write MAC Address Test		
	5.6.	Flash Application Firmware	12	
6.	Docu	ument Revision History	13	
Mic	rochip	o Information	14	
	The I	Microchip Website	14	
Product Change Notification Service				
	Cust	omer Support	14	
	Microchip Devices Code Protection Feature		14	
	Legal Notice		14	
	Trademarks		15	
	Qual	ity Management System	16	
	Worldwide Sales and Service			

1. Quick References

1.1 Hardware Prerequisites

- External Programmer/Debugger MPLAB® ICD 4 In-Circuit Debugger to Flash HUT firmware
- USB to UART converter (MCP2200 Breakout Board or equivalent)

1.2 Software Requirements

- MPLAB® Integrated Programming Environment (IPE) To Flash the firmware to the DUT
- · Test Tool Package:
 - MCHPRT3 Microchip Radio Testing Tool:
 - MCHPRT3 tool package consists of:
 - PIC32CX-BZ2 HUT Firmware
 - MCHPRT3 GUI
 - MCHPRT3 CLI
 - MCHPRT3 DLL

Note: It is recommended that the MCHPR3 GUI be used for manual testing and the MCHPRT3 CLI/DLL for an automated test.

1.3 Acronyms/Abbreviations

Table 1-1. Acronyms/Abbreviations

Acronyms/Abbreviations	Description
API	Application Programming Interface
CLI	Command Line Interface
DLL	Dynamic Link Library
DUT	Device Under Test
EVM	Error Vector Magnitude
GUI	Graphical User Interface
HUT	Hardware Under Test
IB	Information Block
LPA	Low Power Amplifier
MCHPRT3	Microchip Radio Test Tool 3 rd Generation
MPA	Medium Power Amplifier
OTP	One Time Programmable
PCB	Printed Circuit Board
RF	Radio Frequency
RX	Receiver
SMA	Subminiature Type A
SWD	Serial Wire Debug

Quick References

continued			
Acronyms/Abbreviations	Description		
TX	Transmitter		
UART	Universal Asynchronous Receiver-Transmitter		
USB	Universal Serial Bus		
ZB	Zigbee		

2. Production Tool

The MCHPRT3 PIC32CX-BZ2 Tool Package has the following contents:

- MCHPRT3 PIC32CX-BZ2.DLL
- MCHPRT3 PIC32CX-BZ2 CLI

2.1 MCHPRT3 PIC32CX-BZ2.DLL

The DLL provides the APIs to control the DUT (PIC32CX-BZ2 device). Refer to the PIC32CX-BZ2.chm (compiled HTML help file) on the MCHPRT3 PIC32CX-BZ2 Tool Package for the list of available API details.

2.2 MCHPRT3 PIC32CX-BZ2_CLI

The CLI provides the list of commands to control the PIC32CX-BZ2 device. PIC32CX-BZ2 CLI is built on top of the PIC32CX-BZ2.DLL. It is recommended that PIC32CX-BZ2.DLL be used to utilize the optimized production test time. To get the list of MCHPRT3 PIC32CX-BZ2 CLI commands, run MCHPRT3_CLI.exe on the MCHPRT3 PIC32CX-BZ2 tool package, then enter command PIC32CX-BZ2. Select the command help to get the list of commands used to control the PIC32CX-BZ2 device.

3. Production Test Setup

This chapter describes how to set up PIC32CX-BZ2 for production test. The following figure illustrates the production test setup.

Figure 3-1. Production Test Setup

Test Jig or Custom Board:

PCB designed with the PIC32CX-BZ2 can be directly interfaced to the test PC and RF test equipment. The user can also design their own test jig, which interconnects the DUT to the PC and the RF test equipment. Refer to the PIC32CX-BZ2 based module - WBZ451/WBZ450 Curiosity Board for the I/O interface to develop a test jig.

Note: Refer to the device errata document to check if the specific revision of the device has any operating/ programming voltage limitations. Based on that, provide the required options on the test jig or custom board to have the flexibility to change the voltage.

· Programming and Control Interface:

PCB designed with the PIC32CX-BZ2 must have the following interfaces to connect to the PC.

- · SWD (for firmware programming).
- SERCOM0 (PA5-TXD and PA6-RXD) UART interface to connect the DUT to the test tool on the PC, in
 order to control the test mode of the device.

RF Test Interface:

The type of interface to the DUT for RF testing can determine the accuracy and repeatability of the measurements. It is important to pay special attention to the RF test interface to the DUT because of the sensitivity of these signals.

For example, a product with a 50Ω terminated Subminiature Type A (SMA) or u.FL connector populated on the board can be connected directly to a coaxial cable with a known loss. Repeatability in this scenario is very good.

Another example is a product with an embedded antenna that is designed with test points for RF and ground that can be connected with an RF probe with a ground ring as shown in the following figure.

Figure 3-2. RF Probe with Ground Ring

The path loss from the RF test point to the cabled connections of the setup needs to be calibrated, and, also, the path loss for the test fixture due to the radiating antenna loading can be calibrated to determine accurate performance. Place a ground metal plate close to the device antenna to detune the antenna and reflect the energy back to the test point to improve the power measurement accuracy in case of a board with an embedded antenna.

The repeatability of this setup is dependent on the board layout. The RF and ground signals must have test points in close proximity to one another. The repeatability is also more dependent on the shielded enclosure in this case because the RF signal is exposed at the test point and radiating through the antenna rather than enclosed within an SMA/ u.FL connector as in the first example.

Test Equipment:

Bluetooth® Low Energy and Zigbee Tester like Litepoint IQxel

Production Test Tool:

Use the MCHPRT3 GUI during the initial proto validation. For production, develop the test script based on the MCHPRT3 CLI or DLL.

• Programmer:

ICD4 programmer/debugger to flash the device

Power Supply:

To provide the required supply to the test jig or a custom board designed with the PIC32CX-BZ2 device

4. **Firmware**

There two types of firmware for PIC32CX-BZ2 are as follows:

- HUT firmware
- · Application firmware

4.1 **HUT Firmware for Production Test**

- HUT firmware is available inside the MCHPRT3 PIC32CX-BZ2 tool package.
- HUT firmware is mainly to control the PIC32CX-BZ2 device as following:
 - To run the calibration and store the calibration data on Information Block (IB)
 - For RF testing
 - Write MAC address to OTP

4.2 **Application Firmware**

Normal end-product application firmware that controls various interfaces of the DUT (PIC32CX-BZ2 device)

5. Production Flow

The section describes the production flow that needs to be followed. The user needs to read/write the commands to the DUT in each flow (refer to the MCHPRT3 User Guide or Litepoint Test Suite User Guide).

5.1 Power-Up

Supply power to the DUT.

5.2 HUT Firmware Download

Using MPLAB X IPE, Flash the HUT firmware available on the MCHPRT3 PIC32CX-BZ2 tool package to the DUT.

5.3 Calibration

Refer to the *PIC32CX-BZ2 Calibration User's Guide* for the complete list of calibration and sequence to be followed. Before running any RF tests, the calibration must be completed and commit the Information Block (IB) in the OTP memory.

5.4 RF Test

The following table includes the usual test scenarios that must be performed in the manufacturing line to confirm the RF performance. If the user needs to implement reduced test cases to optimize the test time (or) increase the test cases to do a more detailed testing, the user can perform these based on their interest.

Table 5-1. RF Test

Zigbee/ Bluetooth	TX/R X	Test	Channel	Data Rate
Zigbee Test	TX	TX power	Low, Mid, High	_
1651		EVM	Low, Mid, High	_
		Center frequency tolerance	Low, Mid, High	_
	RX	Receiver sensitivity	Low, Mid, High	_
Bluetooth	TX	TX power	Low, Mid, High	BLE_1M, BLE_2M and BLES8 -125K
Test		Modulation characteristics	Low, Mid, High	BLE_1M, BLE_2M and BLES8 -125K
		Carrier frequency offset and drift	Low, Mid, High	BLE_1M, BLE_2M and BLES8 -125K
	RX	Receiver sensitivity	Low, Mid, High	BLE_1M, BLE_2M and BLES8 -125K

5.4.1 Zigbee Test

We suggest running the production Zigbee test on low, mid and high channels.

5.4.1.1 Zigbee TX Test

To do the Zigbee transmit test, the DUT (PIC32CX-BZ2 device) needs to be configured as follows:

- 1. Configure the RF mode to Zigbee TX mode.
- 2. Select the channel.
- 3. Select the packet type.

- 4. Select MPA/LPA mode.
- 5. Configure the device to transmit in maximum output power level.
- 6. Select the package delay time.
- 7. Select the number of transmitting packets.
- 8. Start to transmit the Zigbee packet.
- 9. Capture the transmitted Zigbee packet in an RF test equipment and measure the required parameters. **Note:** By default, the HUT firmware runs in MLDO mode.

5.4.1.1.1 TX Power

The expected TX power at the output of the DUT after calibration is as follows:

Table 5-2. DUT Output

Device	MPA Mode	LPA Mode
PIC32CX1012BZ25048	+12 dBm ±0.5 dB	+4 dBm ±0.5 dB

Configure the device in Zigbee TX test mode as listed in 5.4.1.1. Zigbee TX Test and measure the output power using an RF test equipment.

5.4.1.1.2 Error Vector Magnitude (EVM)

EVM is a measure of the difference between a reference waveform, which is the error-free modulated signal, and the actual transmitted waveform. EVM is used to quantify the modulation accuracy of a transmitter. IEEE[®] Standard 802.15.4 specification requires that an 802.15.4 transmitter shall not have an RMS EVM value worse than 35%.

Configure the device in Zigbee TX test mode as listed in 5.4.1.1. Zigbee TX Test and measure the EVM using an RF test equipment and ensure it is within an expected limit.

5.4.1.1.3 Transmit Center Frequency Tolerance

The transmitted center frequency tolerance shall be \pm 40 ppm maximum as per IEEE Standard 802.15.4 specification, which includes variation due to voltage and temperature. Even though IEEE specification allows \pm 40 ppm frequency tolerance, the actual tolerance can be made closer to 0 ppm by using the proper crystal and load caps along with the calibration.

Configure the device in Zigbee TX test mode as listed in 5.4.1.1. Zigbee TX Test and measure the transmit center frequency using an RF test equipment and ensure it is within an expected limit.

5.4.1.2 Zigbee RX Test

To do Zigbee receiver test, the DUT (PIC32CX-BZ2 device) needs to be configured as follows:

- 1. Configure the RF mode to Zigbee RX mode.
- 2. Select the channel.
- 3. Select the data rate.
- 4. Start to receive the Zigbee packet.
- Configure the RF tester to transmit the Zigbee packets to the DUT with a specific RF power level for the receiver test.
- 6. Number of received packet would be shown as RX packet.

5.4.1.2.1 Receiver Sensitivity

The 802.15.4 IEEE standard specifies a minimum receiver sensitivity of -85 dBm for 2.4 GHz radios. The PIC32CX-BZ2 device exceeds these standard requirements and provide better receiver sensitivity. Refer to the *PIC32CX-BZ2 Data Sheet* for the receiver sensitivity information. Start the Packet Error Rate (PER) test as described in 5.4.1.2. Zigbee RX Test with the TX power from the RF equipment set to 3 dB higher than the receiver sensitivity level described in the data sheet, and decrease the RF level step by step till the PER > 10%.

The minimum RF level with which it meets the PER limit <10% is referred to as receiver sensitivity.

5.4.2 Bluetooth Test

We suggest to run the production Bluetooth test on low, mid and high channels and on data rates BLE_1M, BLE_2M and BLES8 (125K).

User Guide

5.4.2.1 Bluetooth TX Test

For the Bluetooth transmit test, the DUT (PIC32CX-BZ2 device) needs to be configured as follows:

- 1. Configure the RF mode to Bluetooth TX mode.
- 2. Select the channel.
- 3. Select the payload.
- 4. Select the PHY (Data Rate = BLE_1M, BLE_2M and BLES8 -125K).
- 5. Select MPA/LPA mode.
- 6. Configure the device to transmit in maximum output power level.
- 7. Start to transmit the Bluetooth Low Energy packet.
- 8. Capture the transmitted Bluetooth Low Energy packet in an RF test equipment and measure the required parameters.

Note: By default, the HUT firmware runs in MLDO mode.

5.4.2.1.1 TX Power

The expected TX power at the output of the DUT after calibration is listed in the following table.

Table 5-3. DUT Output

Device	MPA Mode	LPA Mode
PIC32CX1012BZ25048	+12 dBm ±0.5 dB	+4 dBm ±0.5 dB

Configure the device in Bluetooth TX test mode as listed in 5.4.2.1. Bluetooth TX Test and measure the output power using an RF test equipment.

5.4.2.1.2 Modulation Characteristics

This test verifies that the modulation characteristics of the transmitted signal are correct when the transmitter is operating at a certain data rate.

Refer to the following table to verify the TX modulation characteristics of the device.

Table 5-4. Bluetooth PHY Test Specification

Bluetooth PHY Test Specification	Description
RFPHY/TRM/BV-05-C	Modulation characteristics, uncoded data at 1 Ms/s
RFPHY/TRM/BV-10-C	Modulation characteristics at 2 Ms/s
RFPHY/TRM/BV-13-C	Modulation characteristics, LE Coded (S=8)

5.4.2.2 Carrier Frequency Offset and Drift

The purpose of the carrier frequency drift test is to verify the transmitter center frequency drift within a packet.

Refer to the following table to verify the carrier frequency offset and drift of the device.

Table 5-5. Bluetooth PHY Test Specification

Bluetooth PHY Test Specification	Description	
RFPHY/TRM/BV-06-C	Carrier frequency offset and drift, uncoded data at 1 Ms/s	
RFPHY/TRM/BV-12-C	Carrier frequency offset and drift at 2 Ms/s	
RFPHY/TRM/BV-14-C	Carrier frequency offset and drift, LE Coded (S=8)	

5.4.3 Bluetooth RX Test

For the Bluetooth receive test, the DUT (PIC32CX-BZ2 device) needs to be configured as follows:

- 1. Configure the RF mode to Bluetooth RX mode.
- 2. Select the channel.

- 3. Configure the RF tester to transmit the Bluetooth Low Energy packet to the DUT with a specific RF power level for the receiver test.
- 4. The number of received packets must be shown as an RX packet.

5.4.3.1 Receiver Sensitivity

Sensitivity is the lowest power level that a receiver is expected to operate at the specified Bit Error Rate (BER).

The purpose of the receiver sensitivity test is to verify that the sensitivity of the DUT meets the required limit of -70 dBm or less, while being stimulated by non-ideal signals representing realistic traffic conditions. The receiver sensitivity level is one of the key parameters that affects the maximum range of a radio link.

5.5 Write MAC Address Test

All devices are pre-loaded with a unique Zigbee and Bluetooth MAC address.

The user can either use the pre-loaded MAC address or use their own custom MAC address by writing it into the OTP Information Block. Read back the MAC address to verify if it is written properly.

5.6 Flash Application Firmware

If the user wants to check any other functionality or interfaces on their board, the user can run the related test cases and confirm the functionality/interface using their own test firmware. At the end of the production test, the user can flash their end-product application firmware into the PIC32CX-BZ2 device before shipping out to the field.

Document Revision History 6.

F	Revision	Date	Section	Description
4	4	08/2022	Document	Initial revision

Microchip Information

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- **Technical Support**

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable". Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded

by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2022, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-6683-0878-3

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
Tel: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
Technical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
www.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
Web Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
www.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
Atlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Duluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
Tel: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
Fax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Austin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Tel: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
Boston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Westborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
Tel: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
Fax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Chicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
Itasca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
Tel: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
Fax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
Dallas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Addison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
Tel: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
Fax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
Detroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
Novi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
Tel: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
Houston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
Tel: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
Indianapolis	China - Xiamen		Tel: 31-416-690399
Noblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
Tel: 317-773-8323	China - Zhuhai		Norway - Trondheim
Fax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
Tel: 317-536-2380			Poland - Warsaw
Los Angeles			Tel: 48-22-3325737
Mission Viejo, CA			Romania - Bucharest
Tel: 949-462-9523			Tel: 40-21-407-87-50
Fax: 949-462-9608			Spain - Madrid
Tel: 951-273-7800 Raleigh, NC			Tel: 34-91-708-08-90
• .			Fax: 34-91-708-08-91
Tel: 919-844-7510 New York, NY			Sweden - Gothenberg Tel: 46-31-704-60-40
Tel: 631-435-6000			Sweden - Stockholm
San Jose, CA			Tel: 46-8-5090-4654
Tel: 408-735-9110			UK - Wokingham
Tel: 408-436-4270			Tel: 44-118-921-5800
Canada - Toronto			Fax: 44-118-921-5820
Tel: 905-695-1980			1 ax. 77-110-321-0020
Fax: 905-695-2078			
1 ax. 505-555-2010			