Double categories and structured categories

Charles Ehresmann

EHRESMANN, C. "Catégories doubles et catégories structurées". C. R. Acad. Sc. 256 (1963), 1198–1201.

Abstract

Definition of structured categories; the particular case of double categories, which admit a category of squares as a quotient category.

TO-DO fix \square and \boxminus ; fix •

1 Double categories

p. 1

Definition. We define a *double category* to be a class \mathscr{C} endowed with two composition laws, denoted \bullet and \bot , satisfying the following conditions:

- 1. (\mathscr{C}, \bullet) is a category, denoted \mathscr{C}^{\bullet} ; the right and left **TO-DO** of $f \in \mathscr{C}$ will be denoted by $\alpha^{\bullet}(f)$ and $\beta^{\bullet}(f)$ respectively, and the class of **TO-DO** by \mathscr{C}_0^{\bullet} ;
- 2. (\mathscr{C}, \bot) is a category, denoted \mathscr{C}^{\bot} ; the **TO-DO** of $f \in \mathscr{C}^{\bot}$ will be denoted by $\alpha^{\bot}(f)$ and $\beta^{\bot}(f)$ respectively, and the class of **TO-DO** by \mathscr{C}_0^{\bot} ;
- 3. The maps α^{\bullet} and β^{\bullet} (resp. α^{\perp} and β^{\perp}) are functors from \mathscr{C}^{\perp} to \mathscr{C}^{\perp} (resp. from \mathscr{C}^{\bullet} to \mathscr{C}^{\bullet});
- 4. Axiom of permutability. If the composites $k \cdot h$, $g \cdot f$, $k \perp g$, and $h \perp f$ are defined, then

$$(k \bullet h) \perp (g \bullet f) = (k \perp g) \bullet (h \perp f).$$

Let $\mathscr C$ be a class endowed with two composition laws \bullet and \bot satisfying axioms 1 and 2; consider the following axioms:

- 3'. \mathscr{C}_0^{\bullet} (resp. \mathscr{C}_0^{\perp}) is stable with respect to \perp (resp. to \bullet);
- 4'. If the composites $k \cdot h$, $g \cdot f$, $k \perp g$, and $h \perp f$ are defined, then both $(k \cdot h) \perp (g \cdot f)$ and $(k \perp g) \cdot (h \perp f)$ are defined and are equal to one another.
- 5. For all $f \in \mathcal{C}$, we have

$$\alpha^{\bullet}(\alpha^{\perp}(f)) = \alpha^{\perp}(\alpha^{\bullet}(f)), \qquad \beta^{\bullet}(\beta^{\perp}(f)) = \beta^{\perp}(\beta^{\bullet}(f));$$

$$\alpha^{\bullet}(\beta^{\perp}(f)) = \beta^{\perp}(\alpha^{\bullet}(f)), \qquad \alpha^{\perp}(\beta^{\bullet}(f)) = \beta^{\bullet}(\alpha^{\perp}(f)).$$

Proposition. For $(\mathscr{C}, \bullet, \bot)$ to be a double category, it is necessary and sufficient that conditions 1, 2, 3', 4', and 5 be satisfied. In this case, \mathscr{C}_0^{\bullet} (resp. \mathscr{C}_0^{\bot}) is a subcategory of \mathscr{C}^{\bullet} (resp. \mathscr{C}^{\bot}).

A *double subcategory* of a double category \mathscr{C} is a subclass \mathscr{C}' of \mathscr{C} that is a subcategory of \mathscr{C}^{\bullet} and of \mathscr{C}^{\perp} ; then \mathscr{C}' is a double category for the composition laws induced by \bullet and \perp .

Definition. Let \mathscr{C} be a double category; we define a *left ideal* (resp. *right ideal*) of \mathscr{C}^{\perp} to be a subcategory I^{\perp} of \mathscr{C}^{\perp} such that $\mathscr{C} \bullet I^{\perp}$ (resp. $I^{\perp} \bullet \mathscr{C} = I^{\perp}$), where $\mathscr{C} \bullet I^{\perp}$ (resp. $I^{\perp} \bullet \mathscr{C}$) is the class of composites $f \bullet g$ (resp. $g \bullet f$) for $g \in I^{\perp}$ and $f \in \mathscr{C}$. We similarly define an *ideal* of \mathscr{C}^{\bullet} .

p. 2

Proposition. Let \mathscr{C} be a double category; a left ideal I^{\perp} of \mathscr{C}^{\perp} is a $TO-DO^1$ over \mathscr{C}^{\bullet} for the composition law $(f,g) \mapsto f \bullet g$ if and only if $f \bullet g$ is defined, where $f \in \mathscr{C}$ and $g \in I^{\perp}$. The corresponding category $\mathscr{E}(I^{\perp})$ is this right? of hypermorphisms I^{\perp} is a double category for the composition laws is this right?

$$(f',g') \bullet (f,g) = (f' \bullet f,g)$$

if and only if $g' = f \cdot g$; further is this right? or is it two joined iffs

$$(f',g')\perp (f,g)=(f'\perp f,g'\perp g)$$

if and only if $f' \perp f$ and $g' \perp g$ are defined.

2 Double categories of squares

Let \mathscr{C}_1 and \mathscr{C}_2 be two categories with the same class of **TO-DO** . Let $\square(\mathscr{C}_2,\mathscr{C}_1)$ be the set of quadruples (g_2,g_1,f_1,f_2) , with $f_i,g_i\in\mathscr{C}_i$ for i=1,2, such that

$$\alpha(f_1) = \alpha(f_2),$$
 $\alpha(g_1) = \beta(f_2);$
 $\beta(f_1) = \alpha(g_2),$ $\beta(g_1) = \beta(g_2).$

We define two composition laws on $\square(\mathscr{C}_2,\mathscr{C}_1)$:

• Longitudinal multiplication

$$(g_2',g_1',f_1',f_2') \square (g_2,g_1,f_1,f_2) = (g_2',g_1'g_1,f_1'f_1,f_2)$$

if and only if $f_2' = g_2$?;

• Lateral multiplication

$$(g_2',g_1',f_1',f_2') = (g_2,g_1,f_1,f_2) = (g_2'g_2,g_1',f_1,f_2'f_2)$$

if and only if $f_1' = g_1$?.

Proposition. $\square(\mathscr{C}_2,\mathscr{C}_1)$ is a double category for longitudinal and lateral multiplication.

Suppose that $\mathscr{C} = \mathscr{C}_1 = \mathscr{C}_2$; recall²that a *square* in \mathscr{C} is an element $(g_2, g_1, f_1, f_2) \in \square(\mathscr{C}, \mathscr{C})$ such that $g_1 f_2 = g_2 f_1$.

Corollary. The class $\square \mathscr{C}$ of squares in \mathscr{C} is a double subcategory of $\square(\mathscr{C},\mathscr{C})$.

Corollary. Let \mathscr{C} be a double category; then \mathscr{C}^{\bullet} admits the longitudinal category $\square(\mathscr{C}_0^{\bullet},\mathscr{C}_0^{\perp})$ as a quotient category 1 , where \mathscr{C}_0^{\bullet} (resp. \mathscr{C}_0^{\perp}) is endowed with its structure as a subcategory of \mathscr{C}^{\perp} (resp. of \mathscr{C}^{\bullet}).

¹ Espèces de structures locales; élargissements de catégories, Séminaire Top. et Géo Diff. (Ehresmann), III, Paris, 1961; Jahres. Deutsch. Math. Ver., **60**, 1957, p. 49.

3 Functors into a double category

Let Γ be a category and $\mathscr C$ a double category; let $\mathscr F(\mathscr C^{\bullet},\Gamma)$ be the class of functors from Γ to $\mathscr C^{\bullet}$.

Proposition. $\mathscr{F}(\mathscr{C}^{\bullet}, \Gamma)$ is a category for the composition law $(\Phi', \Phi) \mapsto \Phi' \perp \Phi$, where $(\Phi' \perp \Phi)(f) = \Phi'(f) \perp \Phi(f)$, if and only if $\Phi'(f) \perp \Phi(f)$ is defined for all $f \in \mathscr{C}$.

p. 3

Definition. Let \mathscr{C} and \mathscr{C}_1 be two double categories; we define a *double functor* from \mathscr{C} to \mathscr{C}_1 to be a map Φ from \mathscr{C} to \mathscr{C}_1 such that Φ is a functor from \mathscr{C}^{\bullet} to \mathscr{C}_1^{\bullet} and a functor from \mathscr{C}^{\perp} to \mathscr{C}_1^{\perp} . The class of double functors from \mathscr{C} to \mathscr{C}_1 is denoted $\mathscr{F}(\mathscr{C}_1,\mathscr{C})$.

Proposition. $\mathscr{F}(\mathscr{C}_1,\mathscr{C})$ is a subcategory of $\mathscr{F}(\mathscr{C}_1^{\bullet},\mathscr{C}^{\bullet})$ and of $\mathscr{F}(\mathscr{C}_1^{\perp},\mathscr{C}^{\perp})$; endowed with the two induced composition laws, $\mathscr{F}(\mathscr{C}_1,\mathscr{C})$ is a double category.

Proposition. Let \mathscr{C} and \mathscr{C}' be two categories; the longitudinal category $\mathfrak{N}(\mathscr{C}',\mathscr{C})$ of natural transformations² between functors from \mathscr{C} to \mathscr{C}' can be identified with the category $\mathscr{F}(\boxminus \mathscr{C}',\mathscr{C})$, by identifying the natural transformation (φ',τ,φ) with the functor Φ such that

$$\Phi(f) = (\varphi'(f), \tau(\beta(f)), \tau(\alpha(f)), \varphi(f))$$

for all $f \in \mathscr{C}$.

Consequently, if $(\mathscr{C}^{\bullet},\mathscr{C}^{\perp})$ is a double category, then a functor Φ from a category Γ into \mathscr{C}^{\bullet} can be considered as a generalised natural transformation from $\alpha^{\perp}\Phi$ to $\beta^{\perp}\Phi$. We will see another generalisation of natural transformations (the double category of quintets) in a following publication.

4 Structured categories

Let

² Catégorie des foncteurs types, Rev. Un. Mat. Argentina, 20, 1960, p. 194.