Sistemas de Visão e Percepção Industrial

Geometria e Imagem

Parte 1 - Transformações Geométricas

Sumário

- 1 Transformações no plano
- Coordenadas homogéneas
- 3 Combinações de transformações
- 4 Generalização para 3D

Conceitos geométricos - Revisão

- Pontos no plano e no espaço
 - Vetores a duas e três coordenadas

- Transformações geométricas no plano
 - Alteração das coordenadas dos pontos
 - $p_0 \rightarrow p_1$
- Transformações comuns
 - Translações
 - Rotações
 - Simetrias (axial e radial ou central)
 - Escala

- "Transformar" significa alterar as coordenadas de um ou mais pontos.
- As transformações lineares ou afins (affine transformations)
 - As novas coordenadas dependem linearmente das coordenadas originais

$$\begin{cases} x_1 = ax + by + t_x \\ y_1 = cx + dy + t_y \end{cases}$$

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

$$\vec{p_1} = \mathbf{T}\vec{p} + \vec{t}$$

Casos particulares – a simetria axial

$$\mathbf{T} = \left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array} \right] \qquad \vec{t} = \left[\begin{array}{c} 0 \\ 0 \end{array} \right]$$

$$\left[\begin{array}{c} x_1 \\ y_1 \end{array}\right] = \left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} -x \\ y \end{array}\right]$$

• Casos particulares – a simetria central

• Casos particulares – fator de escala

$$\mathbf{T} = \left[\begin{array}{cc} a & 0 \\ 0 & 1 \end{array} \right], \ \vec{t} = \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \qquad \left[\begin{array}{c} x_1 \\ y_1 \end{array} \right] = \left[\begin{array}{cc} a & 0 \\ 0 & 1 \end{array} \right] \left[\begin{array}{c} x \\ y \end{array} \right] = \left[\begin{array}{c} ax \\ y \end{array} \right]$$

• Exemplo numérico: $A = \begin{bmatrix} 1 & 1 \end{bmatrix}^\mathsf{T}$ e $B = \begin{bmatrix} 2 & 2 \end{bmatrix}^\mathsf{T}$

$$\mathbf{T} = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A' = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\mathbf{X} \qquad B' = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$$

ullet Casos particulares – Rotação de 90°

$$\mathbf{T} = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right] \text{ , } \vec{t} = \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \text{ , } \left[\begin{array}{c} x_1 \\ y_1 \end{array} \right] = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right] \left[\begin{array}{c} x \\ y \end{array} \right] = \left[\begin{array}{c} -y \\ x \end{array} \right]$$

 $\bullet \ \, \mathsf{Exemplo num\'erico:} \ \, A = \left[\begin{array}{cc} 2 & 1 \end{array} \right]^\mathsf{T} \text{, } B = \left[\begin{array}{cc} 2 & -1 \end{array} \right]^\mathsf{T} \text{, } C = \left[\begin{array}{cc} 4 & 0 \end{array} \right]^\mathsf{T}$

$$A' = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right] \left[\begin{array}{c} 2 \\ 1 \end{array} \right] = \left[\begin{array}{c} -1 \\ 2 \end{array} \right] \text{, } B' = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right] \left[\begin{array}{c} 2 \\ -1 \end{array} \right] = \left[\begin{array}{c} 1 \\ 2 \end{array} \right] \text{,}$$

$$C' = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$$

$$\begin{bmatrix} A' & B' & C' \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} A & B & C \end{bmatrix} =$$

$$= \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 2 & 4 \\ 1 & -1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 \\ 2 & 2 & 4 \end{bmatrix}$$

• Rotação de um ângulo genérico θ

$$\mathbf{T} = \left[\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right] = \left[\begin{array}{cc} C\theta & -S\theta \\ S\theta & C\theta \end{array} \right]$$

$$\begin{cases} x_1 = l\cos(\theta + \phi) = l(\cos\theta\cos\phi - \sin\theta\sin\phi) \\ y_1 = l\sin(\theta + \phi) = l(\cos\phi\sin\theta + \sin\phi\cos\theta) \\ \begin{cases} x = l\cos\phi \\ y = l\sin\phi \end{cases}, \begin{cases} x_1 = x\cos\theta - y\sin\theta \\ y_1 = x\sin\theta + y\cos\theta \end{cases} \\ \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} \cos\theta - \sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} C\theta - S\theta \\ S\theta & C\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Coordenadas homogéneas

Transformações e coordenadas homogéneas

- A translação e a independência das coordenadas do ponto
- A transformação homogénea

$$\begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Coordenadas homogéneas – caso geral

$$p = \left[egin{array}{c} x \\ y \end{array}
ight]$$
 , $p_h = \left[egin{array}{c} kx \\ ky \\ k \end{array}
ight]$

Representação alternativa

- Alguns autores (e.g. Gonzalez) usam uma representação transposta para as transformações
- Os pontos são vetores linha e não vetores coluna

$$p_{1} = \mathbf{T}p \Leftrightarrow p_{1}^{\mathsf{T}} = (\mathbf{T}p)^{\mathsf{T}} \Leftrightarrow p_{1}^{\mathsf{T}} = p^{\mathsf{T}}\mathbf{T}^{\mathsf{T}}$$

$$\begin{bmatrix} x_{1} \\ y_{1} \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & t_{x} \\ c & d & t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x_{1} & y_{1} & 1 \end{bmatrix} = \begin{bmatrix} x & y & 1 \end{bmatrix} \begin{bmatrix} a & c & 0 \\ b & d & 0 \\ t_{x} & t_{y} & 1 \end{bmatrix}$$

Embora igualmente correto não é o formato mais usual e NÃO será o adotado na disciplina!

A matriz de transformação

Caso geral

• Rotação e translação pura

$$Rot(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ \hline 0 & 0 & 1 \end{bmatrix}$$

$$Trans(t_x, t_y) = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ \hline 0 & 0 & 1 \end{bmatrix}$$

Combinações de transformações

Combinações de transformações

• A associação de transformações é possível.

$$\mathbf{p}' = \mathbf{T}_N \left(\cdots \left(\mathbf{T}_3 \cdot \left(\mathbf{T}_2 \cdot \left(\mathbf{T}_1 \cdot \mathbf{p} \right) \right) \right) \right) = \left(\mathbf{T}_N \cdots \mathbf{T}_3 \cdot \mathbf{T}_2 \cdot \mathbf{T}_1 \right) \mathbf{p} = \mathbf{T} \cdot \mathbf{p}$$

- Porém, a multiplicação de transformações, em geral, não é comutativa exceto em alguns casos, como:
 - Translações
 - Rotações no plano
- Mas não é comutativa entre rotações e translações.

Sucessão de translações

As translações são comutativas

$$\begin{aligned} \mathbf{T}_{1} &= Trans\left(a_{x}, a_{y}\right) = \begin{bmatrix} 1 & 0 & a_{x} \\ 0 & 1 & a_{y} \\ \hline 0 & 0 & 1 \end{bmatrix} \\ \mathbf{T}_{2} &= Trans\left(b_{x}, b_{y}\right) = \begin{bmatrix} 1 & 0 & b_{x} \\ 0 & 1 & b_{y} \\ \hline 0 & 0 & 1 \end{bmatrix} \\ \mathbf{T}_{1} \cdot \mathbf{T}_{2} &= \begin{bmatrix} 1 & 0 & a_{x} \\ 0 & 1 & a_{y} \\ \hline 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & b_{x} \\ 0 & 1 & b_{y} \\ \hline 0 & 0 & 1 \end{bmatrix} = \\ &= \begin{bmatrix} 1 & 0 & a_{x} + b_{x} \\ 0 & 1 & a_{y} + b_{y} \\ \hline 0 & 0 & 1 \end{bmatrix} = \mathbf{T}_{2} \cdot \mathbf{T}_{1} \end{aligned}$$

Sucessão de rotações no plano (2D)

As rotações no plano são comutativas

$$\begin{split} \mathbf{T}_{1} &= Rot \left(\theta_{1}\right) = \begin{bmatrix} \cos\theta_{1} & -\sin\theta_{1} & 0 \\ \sin\theta_{1} & \cos\theta_{1} & 0 \\ \hline 0 & 0 & 1 \end{bmatrix}, \\ \mathbf{T}_{2} &= Rot \left(\theta_{2}\right) = \begin{bmatrix} \cos\theta_{2} & -\sin\theta_{2} & 0 \\ \sin\theta_{2} & \cos\theta_{2} & 0 \\ \hline 0 & 0 & 1 \end{bmatrix} \\ \mathbf{T}_{1} \cdot \mathbf{T}_{2} &= \begin{bmatrix} C\theta_{1} & -S\theta_{1} & 0 \\ \frac{S\theta_{1} & C\theta_{1} & 0}{0 & 1} \end{bmatrix} \begin{bmatrix} C\theta_{2} & -S\theta_{2} & 0 \\ \frac{S\theta_{2} & C\theta_{2} & 0}{0 & 0 & 1} \end{bmatrix} = \\ &= \begin{bmatrix} C\theta_{1}C\theta_{2} - S\theta_{1}S\theta_{2} & -C\theta_{1}S\theta_{2} - S\theta_{1}C\theta_{2} & 0 \\ \frac{S\theta_{1}C\theta_{2} + C\theta_{1}S\theta_{2} & -S\theta_{1}S\theta_{2} + C\theta_{1}C\theta_{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} \cos\left(\theta_{1} + \theta_{2}\right) & -\sin\left(\theta_{1} + \theta_{2}\right) & 0 \\ \frac{\sin\left(\theta_{1} + \theta_{2}\right) & \cos\left(\theta_{1} + \theta_{2}\right) & 0}{0 & 0 & 1} \end{bmatrix} \end{split}$$

Sucessão de rotações e translações

As rotações e translações NÃO são comutativas

$$\mathbf{T}_{1} = Trans\left(t_{x}, t_{y}\right) = \begin{bmatrix} 1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ \hline 0 & 0 & 1 \end{bmatrix}, \ \mathbf{T}_{2} = Rot\left(\theta\right) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ \hline 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T}_{2} \cdot \mathbf{T}_{1} \neq \mathbf{T}_{1} \cdot \mathbf{T}_{2}$$

$$\mathbf{T}_{1} \cdot \mathbf{T}_{2} = Trans\left(t_{x}, t_{y}\right) Rot\left(\theta\right) = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ \hline 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ \hline 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & t_x \\ \sin\theta & \cos\theta & t_y \\ \hline 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T}_{2} \cdot \mathbf{T}_{1} = Rot(\theta) Trans(t_{x}, t_{y}) =$$

$$= \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \frac{\sin \theta}{0} & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ \hline 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & t_x \cos \theta - t_y \sin \theta \\ \frac{\sin \theta}{0} & \cos \theta & t_x \sin \theta + t_y \cos \theta \\ \hline 0 & 0 & 1 \end{bmatrix}$$

Generalização para 3D

Generalização para 3D

Coordenadas homogéneas

$$\mathbf{p} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \qquad \mathbf{p}_h = \begin{bmatrix} kx \\ ky \\ kz \\ k \end{bmatrix} \qquad \mathbf{p} = \frac{\mathbf{p}_h}{k}$$

Matriz de transformação homogénea

$$\mathbf{T} = \begin{bmatrix} a & b & c & t_x \\ d & e & f & t_y \\ g & h & i & t_z \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotações a 3D

• Definidas em torno de tês eixos possíveis

$$Rotz(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0\\ \sin \theta & \cos \theta & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Rotx(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Roty(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Ainda sobre a transformação a 3D

 Generalização usada em contextos mais gerais (como, por exemplo, transformações de homografia)

 As distorções de perspetiva ficam reservadas para os casos de transformações de homografia que não serão abordadas e, portanto, no presente contexto serão sempre (0,0,0), tal como o fator de escala global que se manterá sempre a 1.