likelihoods

GK

January 10, 2019

Now we will estimate weights by using eBayes approach. To do so, we will optimize the log-likelihood function using optim() function. More precisely, we will find values of weights which maximize the log-likelihood function.

As a first step, we have to define the log-likelihood function:

$$L(w) = f(Y|w) = \prod_{i=1}^{n} f(y_i|w)$$

since we assume that y_i are independent for i = 1, ..., n Hence,

$$L(w) = (\frac{1}{(2\pi)^n det(\Sigma)})^{1/2} exp(-\frac{1}{2}(y'\Omega^{-1}y)$$

where Ω is function of weight: w_i .

Given the likelihood funtion above, we know that maximizing the log of likelihood is the same as maximizing the likelihood. So, we will stick with log-likelihood function from there.

As a next step, we will add penalty term to the log-likelihood function to smooth it and make estimation more efficient.

We add a penalty on a function as structure of weight parameter defined in CC-Process 1c. Hence from our goal is to maximize log of the following joint likelihood function:

$$p(w,y) = p(y|w)p(w)$$

where p(y|w) is a data model, i.e L(w) and p(w) is already defined in CC-Process 1c s.t

$$p(y|w) = N(y; 0, \Omega(X, w))$$
$$p(w) = N(w; 0, \Pi)$$

Note that this idea comes from LASSO or Ridge regression methods of parameter estimation.

We can write the function in R as follows:

In pair with the following function:

```
estimate_w <- function(opt_f, grad, pars, d, maxit){</pre>
# Estimates w using eBayes approach, i.e finds MLE
# estimates of w.
#
# Args:
    opt_f: likelihood function to be optimized
    grad: gradient of opt_f
   pars: initial values for w
        observed data
   maxit: maximum number of iterations
# Output:
    opt: results of optim()
    opt <- optim(par = pars, opt_f, d = d,</pre>
                 control = list(fnscale = -1, maxit=maxit),
                 gr = grad)
    # print true values of w
    print("True values of w")
    print(w)
    # estimated w
    return(opt)
```

Note that we have added gradient of log-likelihood function f for better optimization. Since the differentiation of the original likelihood function is way difficult, we tried first numerical (approximate) version of gradient:

$$\nabla f = (f'_{w_0}, ..., f'_{w_T})$$

where $w = (w_0, ..., w_T)$. By the fundamentals of calculus we have that:

$$f'_{w_i}(w_0, ..., w_T) = \lim_{h \to \infty} \frac{f(w_0, ..., w_i + h, ..., w_T) - f(w_0, ..., w_T)}{h}$$

We have implemented this theory as follows: