K. J. Somaiya College of Engineering, Mumbai-77

(Somaiya Vidyavihar University)

LAPLACE TRANSFORM

I.FIND THE LAPLACE TRANSFORM OF FOLLOWING FUNCTIONS:

1.
$$f(t) = (t-1)^4, t > 4; f(t) = 0, 0 < t < 4$$

2.
$$f(t) = t$$
, $0 < t < 1/2$; $f(t) = t - 1$, $1/2 < t < 1$; $f(t) = 0$, $t > 1$ [Ans: $\frac{1}{s^2} - \frac{e^{-s}}{s^2} - \frac{e^{-s/2}}{s}$]

3.
$$f(t) = 0, 0 < t < \pi; \ f(t) = \sin^2(t - \pi), t > \pi$$
 [Ans: $\frac{e^{-\pi s}}{2s} - \frac{s.e^{-\pi s}}{s^2 + 4}$]

4.
$$\cos t \cdot \cos 2t \cdot \cos 3t$$
 [Ans: $\frac{1}{4} \left(\frac{1}{s} + \frac{s}{s^2 + 2^2} + \frac{s}{s^2 + 4^2} + \frac{s}{s^2 + 6^2} \right)$]

5.
$$(\sqrt{t} - 1)^2$$
 [Ans: $\frac{1}{s^2} - \frac{\sqrt{\pi}}{s^{3/2}} + \frac{1}{s}$]
6. $\frac{\cos \sqrt{t}}{\sqrt{t}}$ [Ans: $\sqrt{\frac{\pi}{s}} \cdot e^{-1/4s}$]

6.
$$\frac{\cos\sqrt{t}}{\sqrt{t}}$$
 [Ans: $\sqrt{\frac{\pi}{s}} \cdot e^{-1/4s}$]

7. If
$$L[\sin \sqrt{t}] = \frac{\sqrt{\pi}}{2s\sqrt{s}} \cdot e^{-1/4s}$$
, find $L[\sin 2\sqrt{t}]$ [Ans: $\frac{\sqrt{\pi}}{s\sqrt{s}} \cdot e^{-1/s}$]

8.
$$\sinh(t/2) \cdot \sin(\sqrt{3}t/2)$$
 [Ans: $\frac{\sqrt{3}}{2} \cdot \frac{s}{(s^4 + s^2 + 1)}$]

9.
$$e^{4t} \sin^3 t$$
 [Ans: $\frac{6}{(s^2 - 8s + 17)(s^2 - 8s + 25)}$]

10.
$$\frac{\cos 2t \cdot \sin t}{e^t}$$
 [Ans: $\frac{s^2 + 2s - 2}{(s^2 + 2s + 10)(s^2 + 2s + 2)}$]

11.
$$e^{-4t} \sinh t \cdot \sin t$$
 [Ans: $\frac{2(s+4)}{(s^2+6s+10)(s^2+10s+26)}$]

12.
$$e^{2t}(1+t)^2$$
 [Ans: $\frac{1}{(s-2)} + \frac{2}{(s-2)^2} + \frac{2}{(s-2)^3}$]

13. If
$$L[f(t)] = \frac{s}{s^2 + s + 4}$$
, find $L[e^{-3t} f(2t)]$ [Ans: $\frac{s+3}{s^2 + 8s + 10}$]

14.
$$\left(1+te^{-t}\right)^3$$
 [Ans: $\frac{1}{s} - \frac{3}{(s+1)^2} + \frac{6}{(s+2)^3} + \frac{6}{(s+3)^3}$]

15.
$$t \sin^3 t$$
 [Ans: $24 \cdot \frac{s(s+5)}{(s^2+1)^2(s^2+9)^2}$]

16.
$$t^5 \cosh t$$
 [Ans: $60 \left(\frac{1}{(s-1)^6} + \frac{1}{(s+1)^6} \right)$]

17.
$$t\sqrt{1+\sin t}$$
 [Ans: $4\frac{(4s^2+4s-1)}{(4s^2+1)^2}$]

18.
$$t \left(\frac{\sin t}{e^t} \right)^2$$
 [Ans: $\frac{1}{2} \left(-\frac{1}{(s+2)^2} + \frac{s^2 + 4s}{(s^2 + 4s + 8)} \right)$]

19. If
$$L[f(t)] = \frac{s+3}{s^2+s+1}$$
, find $L[tf(2t)]$ [Ans: $\frac{s^2+12s+8}{(s^2+2s+4)^2}$]

20.
$$t e^{-2t} \sinh 4t$$
 [Ans: $\frac{8(s+2)}{(s^2+4s-12)^2}$]

21.
$$t\cos(\omega t - \alpha)$$
 [Ans: $\frac{(s^2 - \omega^2)\cos\alpha - 2\omega s\sin\alpha}{(\omega^2 + s^2)^2}$]

22.
$$(t \sinh 2t)^2$$
 [Ans: $\frac{1}{2} \left(\frac{1}{(s-4)^3} + \frac{1}{(s+4)^3} \right)$]

23.
$$(t + \sin 2t)^2$$
 [Ans: $\frac{2}{s^3} + \frac{8s}{(s^2 + 4)^2} + \frac{1}{2s} - \frac{s}{2(s^2 + 4^2)}$]

24.
$$\frac{1}{t}(1-\cos t)$$
 [Ans: $\frac{1}{2}\log\left(\frac{s^2+1}{s^2}\right)$]

25.
$$\frac{1}{t}e^{-t}\sin t$$
 [Ans: $\cot^{-1}(s+1)$]

26.
$$\frac{\sin^2 2t}{t}$$
 [Ans: $\frac{1}{4} \log \left(\frac{s^2 + 16}{s^2} \right)$]

27.
$$\frac{1-\cos t}{t^2}$$
 [Ans: $\frac{\pi}{2} - \frac{s}{2} \log \left(\frac{s^2 + 1}{s^2} \right) - \tan^{-1} s$]

28. Find the Laplace transform of
$$\frac{\sin at}{t}$$
. Does Laplace transform of $\frac{\cos at}{t}$ exist?

[Ans: $\cot^{-1} \frac{s}{a}$, does not exist]

29.
$$\frac{\cosh 2t \sin 2t}{t}$$
 [Ans: $\pi + \tan^{-1} \left(\frac{s-2}{2} \right) + \tan^{-1} \left(\frac{s+2}{2} \right)$]

30.
$$\frac{e^{-at} - \cos at}{t}$$
 [Ans: $\log \left(\frac{\sqrt{s^2 + a^2}}{s + a} \right)$]

31. Given that
$$f(t) = t + 1$$
, $0 \le t \le 2$, & $f(t) = 3$, $t > 2$ find $L[f(t)]$, $L[f'(t)] \& L[f''(t)]$
[Ans: $\frac{1}{s} + \frac{1}{s^2} (1 - e^{-2s})$, $\frac{1}{s} (1 - e^{-2s})$, $s^2 \left[\frac{1}{s} + \frac{1}{s^2} (1 - e^{-2s}) \right] - s - 1$]

32. Find the Laplace transform of
$$\frac{d}{dt} \left(\frac{\sin 3t}{t} \right)$$
 [Ans: $s \cot^{-1} (s/3) - 3$]

33.
$$erf \sqrt{t}$$
 [Ans: $\frac{1}{s\sqrt{s+1}}$]

34.
$$erf 2\sqrt{t}$$
 [Ans: $\frac{2}{s\sqrt{s+4}}$]

35.
$$e^{3t} t \operatorname{erf} \sqrt{t}$$

[Ans:
$$\frac{3s-7}{2(s-3)^2(s-2)^{3/2}}$$
]

[Ans:
$$\frac{2}{s^2(s^2+1)^2}$$
]

37.
$$\int_{0}^{t} ue^{-3u} \cos^{2} 2u \ du$$

[Ans:
$$\frac{1}{2s(s+3)^2} + \frac{s^2 + 6s - 7}{2s(s^2 + 6s + 25)^2}$$
]

$$38. \int_{0}^{t} \frac{1-e^{-au}}{u} du$$

[Ans:
$$\frac{1}{s} \log \left(\frac{s-a}{s} \right)$$
]

39.
$$t^{-1} \int_{0}^{t} e^{-u} \sin u \ du$$

[Ans:
$$\frac{1}{4} \log \left(\frac{s^2 + 2s + 2}{s^2} \right) - \frac{1}{2} \cot^{-1}(s+1)$$
]

$$40. \quad e^{-4t} \int_{0}^{t} u \sin 3u \ du$$

[Ans:
$$\frac{6}{(s^2+8s+25)^2}$$
]

41.
$$\cosh t \int_{0}^{t} e^{u} \cosh u \ du$$

[Ans:
$$\frac{1}{2} \left[\frac{s-2}{(s-1)^2(s-3)} + \frac{s}{(s+1)^2(s-1)} \right]$$
]

42.
$$\int_{0}^{t} ue^{-3u} \sin^{2} u \ du$$

[Ans:
$$\frac{1}{2s} \left[\frac{1}{(s+3)^2} + \frac{s^2 + 6s + 5}{(s^2 + 6s + 13)^2} \right]$$

$$43. \quad \frac{1}{t}(\cos at - \cos bt)$$

[Ans:
$$\frac{1}{2} \log \left(\frac{s^2 + b^2}{s^2 + a^2} \right)$$
]

44. Find
$$L\left\{\cosh 2t \cdot erf \ 3\sqrt{t}\right\}$$
 if $L\left\{erf \sqrt{t}\right\} = \frac{1}{s\sqrt{s+1}}$

[Ans:

$$\frac{1}{2} \left[\frac{3}{(s+2)\sqrt{s+7}} + \frac{3}{(s-2)\sqrt{s+11}} \right]$$

45. If
$$L\left(2\sqrt{\frac{t}{\pi}}\right) = \frac{1}{s^{3/2}}$$
, show that $L\left(\frac{1}{\sqrt{\pi t}}\right) = \frac{1}{\sqrt{s}}$

46. A function
$$f(t)$$
 obeys the equation $f(t) + 2 \int_{0}^{t} f(t) dt = \cosh 2t$ find the Laplace transform of $f(t)$ [Ans: $\frac{s^2}{(s^2 - 4)(s + 2)}$]

II. EVALUATE THE FOLLOWING INTEGRALS USING LAPLACE TRANSFORM:

$$47. \int_{0}^{\infty} e^{-2t} \sin^3 t \ dt$$

48. If
$$\int_{0}^{\infty} e^{-2t} \sin(t + \alpha) \cos(t - \alpha) dt = 3/8$$
 then find α .

[Ans:
$$\pi/4$$
]

$$49. \int_{0}^{\infty} e^{-3t} t \sin t \ dt$$

[Ans: 3/50]

50. If
$$L[J_0(t)] = \frac{1}{\sqrt{s^2 + 1}}$$
, prove that $\int_0^\infty e^{-3t} t \ J_0(4t) \ dt = 3/125$

$$51. \int_{0}^{\infty} \frac{t^2 \sin 3t}{e^{2t}} dt$$

[Ans: 18/2197]

$$52. \int_{0}^{\infty} \frac{\cos at - \cos bt}{t} dt$$

[Ans: $\log \frac{b}{a}$]

$$53. \int_{0}^{\infty} e^{-st} \frac{\sin^2(at/2)}{t} dt$$

[Ans: $\frac{1}{2} \log \left(\frac{s^2 + a^2}{s^2} \right)$]

54. Prove that
$$\int_{0}^{\infty} e^{-st} \frac{\sin t \sinh t}{t} dt = \frac{1}{2} \tan^{-1} \left(\frac{2a}{1 + s^2 - a^2} \right)$$

55.
$$\int_{0}^{\infty} \frac{e^{-t} - \cos t}{t e^{4t}} dt$$
 [Ans: $\log \frac{\sqrt{17}}{5}$]

56. Prove that
$$\int_{0}^{\infty} \frac{\sin 2t + \sin 3t}{t e^{t}} dt = \frac{3\pi}{4}$$

$$57. \int_{0}^{\infty} e^{-2t} \sinh t \, \frac{\sin t}{t} \, dt$$

[Ans: $\frac{1}{2} \tan^{-1} \frac{1}{2}$]

58.
$$\int_{0}^{\infty} e^{-t} \left(\int_{0}^{t} u^{2} \sinh u \cosh u \, du \right) dt \quad [Ans: -\frac{2}{125}]$$

59.
$$\int_{0}^{\infty} e^{-4t} \left(\cosh t \int_{0}^{t} e^{u} \cosh u \ du \right) dt$$
 [Ans: 31/225]

60. Prove that
$$\int_{0}^{\infty} e^{-st} \frac{\sin bt + \sin at}{t} dt = \pi - \tan^{-1} \left(\frac{s(a+b)}{ab-s^2} \right)$$

$$61. \int_{0}^{\infty} e^{-t} \sin^5 t \ dt$$

[Ans: $\frac{3}{6}$]

$$62. \int_{0}^{\infty} \frac{\cos 4t - \cos 3t}{t} dt$$

[Ans: $\log \frac{3}{4}$]

$$63. \int_{0}^{\infty} e^{-t} t^3 \sin t \ dt$$

[Ans: 0]

64.
$$\int_{t=0}^{\infty} \int_{u=0}^{t} \frac{e^{-t} \sin u}{u} du dt$$

[Ans: $\frac{\pi}{4 \text{ s}}$]