Capstone Project 1 Final Report Clothing Categorization

Parker Williamson 3/7/2018 Springboard Data Science Career Track

Goal

Correctly categorize clothing images

Benefits/Customers

- Online sellers of clothing
- Eventually clothing folding/sorting

Datasets

- Fashion.mnist
- A Kaggle clothing dataset was the dataset I used to train and compare the classifiers
- https://www.kaggle.com/zalandoresearch/fashionmnist/data

Data Wrangling

Statistical Analysis

- Compared the order means to see if any of them were statistically similar using a paired z-test
- If the means could be the same the p-score would be about .05

```
p-score 0-1(Z): 0.0
p-score 1-2(Z): 0.0
p-score 2-3(Z): 0.0
p-score 3-4(Z): 0.0
p-score 4-5(Z): 0.0
p-score 5-6(Z): 0.0001
p-score 6-7(Z): 0.0
p-score 7-8(Z): 0.0
p-score 8-9(Z): 0.0
```

Preprocessing

- Normalization (with a range of o-1)
 - Make the range of values fill and be between o-1
- Standardization
 - Spread out the data more evenly by scaling it using the standard deviation and mean
 - (Data –mean(Data))/standard deviation

Analysis

- MLP (size of hidden layers 784-100-100):
 - With no preprocessing 87.65% accuracy
 - Normalized(o-1) 90.37% accuracy
 - Standardized(o-1) 90.09% accuracy
- SVC:
 - With no preprocessing 70.67% accuracy
 - Normalized(o-1) 85.57% accuracy
 - Standardized(o-1) 81.87%
- Logistic Regression:
 - With no preprocessing supposed to be normalized
 - Normalized(o-1) 84.45% accuracy
 - Standardized(o-1) 85.19% accuracy
- CNN:
 - Normalized(0-255) 92.25% accuracy
 - Standardized 92.32% accuracy
- Ensemble the above models (Random Forest with 20 trees):
 - 86.47% accuracy
- Use VGG19 as a feature extractor before a neural net:
 - 85.71% accuracy

Analysis – Confusion Matrices

X – PredictedY – Actual (top is 0) Combined

Combined

CNN*4

[[:	3456	0	48	52	0	4	412	0	28	0]
[8	3944	4	32	4	0	8	0	0	0]
[48	0	3396	52	232	0	268	0	4	0]
[36	16	12	3764	60	0	112	0	0	0]
[0	12	64	92	3580	0	248	0	4	0]
[0	0	0	0	0	3908	0	48	8	36]
[296	0	100	68	140	0	3384	0	12	0]
[0	0	0	0	0	20	0	3836	0	144]
[16	8	8	0	8	4	20	8	3924	4]
[0	0	0	0	0	4	0	80	0	3916]]

Visualizations

 The commonly confused categories (above 95 percentile) are show with an average of the correct class on the right the average of all the confused images in the middle and the average image of the class it was classified as

Visualizations – CNN in progress

Testing with my Photos

0 5 10 15 20 25

 MLP classified it as a coat, SVM and LogReg both correctly said trousers and CNN said shirt

Testing with my Photos

 MLP classified it as a bag, whereas SVM, LogReg and CNN classified it as a shirt

Testing with my Photos

- Either make sure to train on images filtered in the same way or look out for overfitting with MLP and CNN (MLP is the main classifier that seems it could be overfitting)
- If training on slightly different images, SVM and LogReg may have more robust results