IMMUNOPOTENTIATING PREPARATION

BEST AVAILABLE COPY

Patent number:

- international:

JP11193246

Publication date:

1999-07-21

Inventor:

FUJIOKA TAKAHARU; SANO AKIHIKO; NAGAHARA TOSHIHARU; BRANDON MALCOLM ROY; ANDREW DONALD NASH; SHIRLEY LOFTHOUSE

Applicant: Classification: SUMITOMO PHARMA; UNIV MELBOURNE; KOKEN KK

A61K9/00; A61K39/00; A61K39/39; A61K47/30; A61K9/00; A61K39/00; A61K39/39; A61K47/30; (IPC1-7): A61K39/39; A61K9/00; A61K39/00; A61K47/30

- european:

Application number: JP19980155343 19980519

Priority number(s): JP19980155343 19980519; JP19970145920 19970519; JP19970142461 19970530; JP19970316285 19971030

Report a data error here

Abstract of JP11193246

PROBLEM TO BE SOLVED: To obtain the subject preparation capable of slowly releasing an antigenic substance and stimulating immune reaction attributable to the antigen without causing side effect by supporting an antigen or an antigen-inducing substance (hereafter, both of them are called an antigenic substance) on a carrier comprising a material having affinity to a living body. SOLUTION: This preparation is obtained by supporting an antigenic substance on a carrier comprising a material having affinity to a living body (hereafter, the material having affinity to a living body is called a material). The material may be selected from materials degradable in a living body and nondegradable in a living body depending on the desired condition. As the former, collagen is preferable, and as the latter, a polydimethylsiloxane is preferable. The examples of the antigenic substance include a substance obtained by making a virus, a bacterium or the like attenuated, nontoxic or non pathogenic by gene recombination or the like. It is preferred that the shape of the preparation is a bar, the periphery of the inner layer of the bar comprises a nondegradable material in which an antigenic substance is homogeneously dispersed, the periphery of the bar is wrapped with an outer layer comprising a water inpermeable material which can control the swelling of the inner layer, and at least one end of the inner layer is opened to the outer atmosphere.

Data supplied from the esp@cenet database - Worldwide

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-193246

(43)公開日 平成11年(1999)7月21日

(51) Int.Cl. ⁶	識別記号	FΙ				
A61K 39/39		A61K 3	9/39	•	. ,	·
9/00			9/00	7	V	•
39/00		39	9/00	(3	
47/30		4	7/30]	В	
		審查請求	未請求	請求項の数32	FD	(全 29 頁)
(21)出願番号	特願平10-155343	(71) 出願人	0001833	70	-	
			住友製	模株式会社		
(22)出願日	平成10年(1998) 5月19日	·	大阪府	大阪市中央区道台	断2 7	「目2番8号
		(71)出顧人	5911438	69		
(31)優先権主張番号	特願平9-145920	, i	ザユ	ニパーシティー	オブ	メルポルン
(32)優先日	平 9 (1997) 5 月19日		オース	トラリア国,ピク	フトリフ	7 3052, 19
(33)優先権主張国	日本 (JP)		ークピノ	レ (番地なし)		
(31)優先権主張番号	特願平9-142461	(71) 出願人	5910711	04		
(32)優先日	平 9 (1997) 5 月30日		株式会社	生高研		
(33)優先権主張国	日本 (JP)		東京都籍	所宿区下蔣合3	厂目5 -	-18
(31)優先権主張番号	特顧平9-316285	(74)代理人	弁理士	青山 葆 (ダ	\$1名)	
(32) 優先日	平 9 (1997)10月30日					•
(33)優先権主張国	日本(JP)		•			
Amend to I have the English					i	最終頁に続く

(54) 【発明の名称】 免疫増強製剤

(57)【要約】

【課題】 抗原に対する免疫反応を効果的に増強する免疫増強剤を提供する。

【解決手段】 生体親和性材料からなる担体に抗原または抗原を誘導する物質を担持させ、所望によりさらに免疫調節物質またはその他の添加物を含む組成物は、免疫増強製剤として有用である。

【特許請求の範囲】

【請求項1】 少なくとも一以上の生体親和性材料からなる担体に、少なくとも一以上の抗原、または抗原を誘導する物質を含んでなる免疫増強製剤。

【請求項2】 生体親和性材料が、

- 1) コラーゲン、ゼラチン、フィブリン、アルブミン、 ヒアルロン酸、ヘパリン、コンドロイチン硫酸、キチン、キトサン、アルギン酸、ベクチン、アガロースまた はアラビアゴム、
- 2) グリコール酸、乳酸もしくはアミノ酸の重合体また 10 はこれらの二以上の共重合体、並びに
- 3) ハイドロキシアバタイト、ポリメタクリル酸メチル、ポリジメチルシロキサン、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレンまたはポリ塩化ビニルからなる群から選ばれる生体親和性材料の一または二以上である請求項1記載の免疫増強製剤。

【請求項3】 さらに一以上の製剤的添加剤を含有する 請求項1または2記載の免疫増強製剤。

【請求項4】 抗原、または抗原を誘導する物質が、ウィルス、マイコプラズマ、細菌、寄生体、毒素、腫瘍細 20 胞のいずれかに対する特異的な免疫反応を誘導し得る物質である請求項1~3のいずれか一項記載の免疫増強製剤。

【請求項5】 抗原、または抗原を誘導する物質が、化学的技術、組み換えDNA技術、細胞培養技術または発酵技術のいずれかの技術を用いた手法によって得られる物質である請求項4記載の免疫増強製剤。

【請求項6】 抗原が、ウイルス、マイコブラズマ、細 細菌、寄生体、 菌、寄生体、毒素、腫瘍細胞のいずれかを弱毒化、無毒 毒化または非病 化または非病原性化したものである請求項4記載の免疫 30 免疫増強製剤。 増強製剤。 【請求項17】

【請求項7】 抗原、または抗原を誘導する物質が、ウイルス、マイコプラズマ、細菌、寄生体、毒素、腫瘍細胞のいずれかから得られる物質である請求項4記載の免疫増強製剤。

【請求項8】 抗原を誘導する物質がウイルス、マイコプラズマ、細菌、寄生体、毒素、腫瘍細胞などに対する特異的な免疫を誘導し得る抗原の遺伝子配列をコードする核酸が生体内で当該抗原を産生するように組み込まれたプラスミドまたはウイルスからなる請求項4記載の免 40疫増強製剤。

【請求項9】 溶液状、懸濁液状、ゲル状、フィルム状、スポンジ状、棒状または微粒子状である請求項1~3のいずれか一項記載の免疫増強製剤。

【請求項10】 少なくとも一以上の生体親和性材料からなる担体に、少なくとも一以上の抗原、または抗原を誘導する物質と、免疫賦活、免疫刺激または免疫調節作用を有する少なくとも一以上の物質とを含んでなる免疫増強製剤。

【請求項11】 免疫賦活、免疫刺激または免疫調節作 50

用を有する物質がサイトカインである請求項 1 0 記載の 免疫増強製剤。

【請求項12】 生体親和性材料が、

- 1) コラーゲン、ゼラチン、フィブリン、アルブミン、 ヒアルロン酸、ヘパリン、コンドロイチン硫酸、キチ ン、キトサン、アルギン酸、ペクチン、アガロースまた はアラビアゴム、
- 2) グリコール酸、乳酸もしくはアミノ酸の重合体またはこれらの二種類以上の共重合体、並びに
- 3)ハイドロキシアパタイト、ボリメタクリル酸メチル、ボリジメチルシロキサン、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレンまたはポリ塩化ビニルからなる群から選ばれる生体親和性材料の一または二以上である請求項10または11記載の免疫増強製剤

【請求項13】 さらに一以上の製剤的添加剤を含有する請求項10~12のいずれかに記載の免疫増強製剤。 【請求項14】 抗原、または抗原を誘導する物質が、ウイルス、マイコプラズマ、細菌、寄生体、毒素、腫瘍細胞のいずれかに対する特異的な免疫を誘導し得る物質である請求項10~13のいずれか一項に記載の免疫増強製剤。

【請求項15】 抗原、または抗原を誘導する物質が、 化学的技術、組み換えDNA技術、細胞培養技術または 発酵技術のいずれかの技術を用いた手法によって得られ る物質である請求項14記載の免疫増強製剤。

【請求項16】 抗原が、ウイルス、マイコプラズマ、 細菌、寄生体、毒素、腫瘍細胞のいずれかを弱毒化、無 毒化または非病原性化したものである請求項14記載の 免疫増強製剤

【請求項17】 抗原、または抗原を誘導する物質が、ウイルス、マイコプラズマ、細菌、寄生体、毒素、腫瘍細胞のいずれかから得られる物質である請求項14記載の免疫増強製剤。

【請求項18】 抗原を誘導する物質がウイルス、マイコプラズマ、細菌、寄生体、毒素、腫瘍細胞などに対する特異的な免疫を誘導し得る抗原の遺伝子配列をコードする核酸が生体内で当該の抗原を産生するように組み込まれたプラスミドまたはウイルスからなる請求項14記載の免疫増強製剤。

【請求項19】 溶液状、懸濁液状、ゲル状、フィルム 状、スポンジ状、棒状または微粒子状である請求項10 ~13のいずれか一項に記載の免疫増強製剤。

【請求項20】 抗原が、スーパー抗原である請求項1 ~3のいずれか一項記載の免疫増強製剤。

【請求項21】抗原を誘導する物質がスーパー抗原の遺伝子配列をコードする核酸が生体内で当該抗原を産生するように組み込まれたプラスミドまたはウイルスからなる請求項1~3のいずれか一項記載の免疫増強製剤。

【請求項22】 抗原が、スーパー抗原である請求項1

0~13のいずれか一項記載の免疫増強製剤。

【請求項23】 抗原を誘導する物質がスーパー抗原の遺伝子配列をコードする核酸が生体内で当該抗原を産生するように組み込まれたプラスミドまたはウイルスからなる請求項 $10\sim13$ のいずれか一項記載の免疫増強製剤。

【請求項24】 生体親和性材料が、コラーゲンまたは ポリジメチルシロキサンである請求項2または12に記 載の免疫増強製剤。

【請求項25】 棒状である請求項1または10に記載 10 の免疫増強製剤。

【請求項26】 (a) 均一に分散した抗原、または抗原を誘導する物質を含有する非崩壊性の生体親和性材料の内層、および(b) 該内層の周囲を包む、水を通さない、内層の膨潤を制御し得る生体親和性材料の外層からなり、内層の両端または片端が外部環境に直接接触するように開放している請求項25に記載の免疫増強製剤。

【請求項27】 生体親和性材料が、ポリジメチルシロキサンである請求項26に記載の免疫増強製剤。

【請求項28】 抗原、抗原を誘導する物質または免疫 賦活、免疫刺激もしくは免疫調節作用を有する物質の制 御された放出挙動を示す請求項25に記載の免疫増強製 剤。

【請求項29】 抗原、抗原を誘導する物質または免疫 賦活、免疫刺激もしくは免疫調節作用を有する物質の持 続的な放出挙動を示す請求項28に記載の免疫増強製 剤。

【請求項30】 免疫賦活、免疫刺激または免疫調節作用を有する物質が、サイトカイン、ケモカイン、成長因子、アジュバント作用があるペプチド及びDNA塩基配列、アルム、フロイントの完全アジュバント、フロイントの不完全アジュバント、イスコム、サポニン、ヘキサデシルアミン、ジメチルジオクタデシルアンモニウム臭化物、アブリジン、細胞壁骨格構成物、コレラトキシン、リポポリサッカライド、エンドトキシン、リポソームからなる群から選ばれるアジュバントである請求項10に記載の免疫増強製剤。

【請求項31】 溶媒の非存在下でサイトカインを含有する請求項11に記載の免疫増強製剤。

【請求項32】 ヒト以外の哺乳動物または鳥類に、請求項1~31のいずれかに記載の免疫増強製剤を投与することにより当該動物の免疫反応を調節し、産生される抗体を取得することを特徴とする抗体の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、抗原に由来する免 ワクチンに用いられたが、重篤な出血性病変や遷延性肉 変反応を効果的に増強する免疫増強製剤に関する。本発 明における免疫増強製剤は、主としてヒトの医薬あるい は獣医薬分野におけるヒト及びヒト以外の哺乳動物、及 ひ鳥類の疾患の予防あるいは治療を目的としたワクチン 50 く動物実験に使われてきた。これらは十分に免疫反応を

製剤として用いられる。さらに本発明は、免疫増強製剤 を動物に投与して免疫し、産生される抗体を取得するこ とにより抗体を製造する方法に関する。

[0002]

【従来の技術】現在、一般に用いられているワクチンを大別すると、弱毒生(生菌)ワクチンと不活化(死菌)ワクチンに分けられる。弱毒生ワクチンには、一般に良好な免疫反応が得られる長所がある反面、毒性復帰や副作用など安全性に不安がある短所がある。また、不活化ワクチンは弱毒生ワクチンに比べて安全である反面、単回の投与では十分な免疫効果が得られない短所がある。実際、不活化ワクチンを用いた予防接種では、十分な効果を得るために2~3週間の間隔を開けて2~3回投与することが行われている。

【0003】一方、最近では分子生物学的手法の進歩によって、疾患の予防あるいは治療に有効で、かつ疾患に特異的な抗原が同定され、同定された抗原を模倣し、化学的技術あるいは組み換えDNA技術によって合成した抗原(コンボーネントワクチン)の製造も可能となっている。このように合成された抗原は、純度、安定性、特異性、安全性の点で従来のワクチン抗原に比べて優れているが、一般に抗原性が低いことが実用上の最大の課題となっている。従って、抗原性の低い抗原に対して効果的に免疫反応を増強する方法が、ヒト医学及び獣医学上強く望まれている。

【0004】加えて、不活化ワクチン及びコンポーネントワクチンでは、疾患の予防あるいは治療に有効な免疫反応を得るには、2~3週間さらに好ましくは4週間以上の間隔を開けて2~3回投与する必要がある。これに30対しては、1回の投与で十分に効果が得られるワクチン(シングルショットワクチン)がヒト医学及び獣医学上強く望まれている。獣医学上の主な利点として1)時間の削減、2)コストの軽減、3)コンプライアンスの向上が挙げられる。ヒト医学上も、上記3つの利点が重要であるが、特に投与期間を遵守した複数回の投与が困難である発展途上国における伝染病の撲滅運動においてコンプライアンスの向上は重要である。

【0005】不活化ワクチン及びコンポーネントワクチンにみられる弱い抗原性の問題は、実験レベルではアジュバントを用いることによって克服できるが、実用的には副作用等の様々な問題を抱えている。人工的な物質を用いるアジュバントには2つの方法がある。一つは抗原をオイルまたはリピッドの粒子の表面に分散させる方法であり、もう一つは沈殿物に吸着させる方法である。鉱物油はいくつかの獣医用ワクチンや軍用インフルエンザワクチンに用いられたが、重篤な出血性病変や遷延性肉芽種が発生し、ヒト用ワクチンに常用することは当局から認可されなくなっている。フロイントの完全アジュバント及び不完全アジュバントは、過去40年間もっともく動物実験に使われてきた。これらは十分に免疫反応を

誘導するが、注入部位における肉芽腫形成、癒着及び発 熱など他の毒性を助長するため、ヒトまたは獣医学上の 使用はさけられている。アルム(水酸化アルミニウムま たはリン酸アルミニウム)は、現在ヒトへの投与が唯一 許可されているアジュバントであり、広く使用されてい る。しかし、接種部位に肉芽腫を形成する他、有効性に ばらつきがある欠点を有している。例えば水酸化アルミ ニウムは、細菌のトキソイドに使えばいかなるアイソタ イプの抗体であれ十分なアジュバント効果を発揮する が、B型肝炎ウイルスに対するワクチンあるいはインフ 10 ルエンザウイルスなどでは良い結果は得られていない。 【0006】人工的な物質を用いる上記のアジュバント に対して、生体内に存在する免疫賦活効果を有するサイ トカインをアジュバントとして利用する方法がある。実 際、免疫賦活効果を有するサイトカイン(例えばIL-1、 IL-2、IFN-γ、IFN-α、QM-CSF、IL-12等)を使用する ことによって、抗原に対する免疫反応が増強されること が報告あるいは開示されており、これらは例えばRong L inらによって総説にまとめられている(Clinical Infect ion Diseases, 21, 1439-1449, 1995年)。 しかしなが ら、サイトカインを溶液状態でアジュバントとして利用 する場合、先の人工的なアジュバントの場合に比べて副 作用が少ない反面、十分な抗体産生効果を得るには複数 回投与する必要がある。とれは溶液状態で接種された抗 原とサイトカインが接種後直ちに体内に拡散し、抗原に 対する特異的な免疫機構を活性化しないためと考えられ る。また、サイトカインで全身的に免疫賦活を行うに は、大量なサイトカインの投与が必要であり、この場合 には重篤な副作用が誘導される可能性がある。従って副 作用を生じずに効果的なサイトカインのアジュバントと して使用する方法が望まれている。

5

【0007】不活化ワクチン及びコンポーネントワクチンにみられる弱い抗原性の問題を克服するもう一つのアプローチとしては、担体からの抗原の遅延放出が挙げられる。抗原を遅延放出させる考え方は、アルムで得られるアジュバント効果がアルムに対する抗原の非特異的な吸着とアルムからの持続的な脱離に由来するとの考えに由来する。アルムと同様の効果を有する物質を求めてこれまで種々の担体を用いて試みられてきた(例えば、Hongkee Sahら、J. Pharm. Pharmacol., 48, 32–36, 1996))が、実用化に至った例は見られない。また、抗原を投与してから充分な免疫効果が得られるまでの期間もまた、疾患の予防あるいは治療の観点から極めて重要である。しかしながら、免疫が活性化されるまでの期間を短縮する試みは、これまで行われてこなかった。

[8000]

【発明が解決しようとする課題】以上の点に鑑み、本発明は以下のことを目的としてなされたものである。

(1) 生体親和性材料からなる担体から、抗原、または 長さの相違は、通常の溶液状態による免疫刺激では、最 抗原と免疫賦活、免疫刺激もしくは免疫調節作用を有す 50 初の免疫刺激において投与された抗原は投与後直ちに全

る物質とを遅延放出する免疫増強製剤を提供する。

- (2)生体親和性材料からなる担体から、抗原を誘導する物質、または抗原を誘導する物質と免疫賦活、免疫刺激もしくは免疫調節作用を有する物質とを遅延放出する免疫増強製剤を提供する。
- (3)(1)と(2)によって提供された製剤によって、副作用を生じないで抗原に由来する免疫反応を増強する方法を提供する。
- (4) (1) と(2) によって提供された製剤によって、抗原に由来する免疫反応が活性化されるまでの期間を短縮する方法を提供する。
- (5) (1) と (2) によって提供された製剤によって、抗原に由来する免疫の維持期間を長くする方法を提供する。
- (6) (1) と(2) によって提供された製剤によって、当該製剤周囲を免疫反応の場とした免疫増強方法を提供する。
- (7)(1)と(2)によって提供された製剤を用いた、ヒト用またはヒト以外の哺乳動物もしくは鳥用ワク 20 チンを提供する。
 - (8)(1)と(2)によって提供された製剤を用いた、ヒト用またはヒト以外の哺乳動物もしくは鳥用シングルショットワクチンを提供する。

[0009]

【課題を解決するための手段】本発明者らは、抗原を徐放させ得る製剤を種々検討した結果、抗原を生体親和性材料からなる担体に担持させて生体に投与すると、抗原に由来する免疫反応が増強されることを見いだした。さらに本発明者らは、免疫賦活、免疫刺激又は免疫調節のいずれかの作用を有する物質(以下、併せて「免疫調節物質」という)を抗原と同時に生体親和性材料からなる担体に担持させて生体に投与することにより、免疫反応が早期に、且つ一層増強されることを見いだして本発明を完成した。

【0010】以下に本発明の詳細を説明する。

i) 本発明の原理的説明

液性免疫を例に説明する。典型的な免疫応答において2度目の抗原刺激後の抗体産生は、最初の抗原刺激後の抗体産生と比較すると、より早く起こり、より高い抗体価がより長く維持される。抗体産生までに要する時間の相違は、大まかに言って最初の抗原刺激では抗体産生までに、(1)抗原提示細胞による抗原のT細胞への提示とT細胞の活性化、(2)活性化されたT細胞によるB細胞の活性化、(3)樹状細胞による抗原のリンパ節への運搬、(4)リンパ節でのB細胞の増殖と抗体産生細胞への分化の一連の段階が必要であるのに対して、2度目の抗原刺激では抗体産生細胞がすでに十分に準備されていることに由来する。また、抗体価の高さ及び維持期間の長さの相違は、通常の溶液状態による免疫刺激では、最初の免疫刺激において投与された抗原は投与後直ちに全

身に拡散し、分解、代謝、排泄され、抗体産生細胞が準備されてきた時には殆ど体内から消失しており、抗体産生細胞を再び刺激するに至らないことに由来する。すなわち、疾病の予防あるいは治療上重要である、抗体価をより高く、より長く維持するためには、最初の抗原刺激によって産生された抗体産生細胞が、再び抗原によって刺激を受ける必要がある。

【0011】一方、より早期の抗体産生もまた疾病の予防あるいは治療上重要であるが、最初の抗原刺激による抗体産生細胞の産生を効率的に行うことは、抗体のより早期の産生に重要である。抗体産生細胞の産生を効率的に行うには、(1)抗原と抗原提示細胞が接触する機会を高める(抗原の投与部位に抗原提示細胞を集積させる)、及び/または(2)リンパ節でのB細胞の活性化、抗体産生細胞への分化を増強する必要がある。

[0012] これらの点に着目し、本発明では抗原を生体親和性材料からなる担体に安定に保持させ、持続的に放出させて体内の抗原量を維持し、産生された抗体産生細胞を抗原により再度刺激することによってより高い抗体価をより長く維持することを実現した。特に、免疫増強製剤を投与した局所では抗原の濃度が高く維持されることが推定されるが、この局所的な抗原の高濃度状態は平衡反応である抗原と抗体産生細胞との反応を促進させると共に、免疫担当細胞を投与局所に集積させる。従って局所的な抗原の濃度を高く維持することが、本発明の最も重要な原理として挙げられる。

【0013】さらに本発明では生体親和性材料からなる担体に、抗原と免疫調節物質(例えば、サイトカイン)とを同時に担持させ、持続的に放出させて、(1)抗原投与部位への免疫担当細胞の集積とそれに伴うT細胞への抗原提示の活性化と(2)免疫増強製剤の投与部位を担当するリンパ節(樹状細胞が抗原を運搬し、抗原産生細胞が産生されるリンパ節)への選択的かつ持続的なサイトカインの流入により、リンパ節でのB細胞の活性化と抗体産生細胞への分化を増強し、より早期の、効果的な抗体産生を実現した。従って本発明における免疫増強製剤の特徴は、溶液状態で抗原、及び抗原とサイトカインを投与した場合に誘導される全身的な免疫賦活機構ととによって製剤周囲に免疫賦活の場を形成することにある。

【0014】以上の点において本発明の原理上の特徴は 以下のようにまとめることができる。

- (1)抗原もしくは抗原を誘導する物質(以下、併せて 「抗原物質」という)、または抗原物質と免疫調節物質 とを持続的に放出する。
- (2)投与局所の抗原物質、または抗原物質と免疫調節 物質の濃度を高く保つ。

これらの原理上の特徴は、免疫増強製剤を構成する担体 が担持する抗原物質、または抗原物質と免疫調節物質を 生体内で安定に保持かつ徐放することによって満たされる。免疫増強製剤が生体内に投与されることから、担体は生体親和性に優れた生体親和性材料であることも当然の条件となる。従って上記の製剤的な特徴を満たす生体親和性材料を担体として用いる場合においては、いかなる生体親和性材料を用いた場合であっても、当該の免疫増強製剤によって免疫増強効果が得られることは、本発明の原理と全く矛盾しない。また、本発明では、免疫担当細胞を継続的に抗原で刺激をすることにより、または下細胞およびB細胞に対して能動的に活性化を促すことによって、免疫を賦活化させることから、本発明は液性免疫に限らず、粘膜免疫および細胞性免疫をも活性化することができる。

【0015】ii) 本発明の効果

抗原にアビジンを、免疫調節物質であるサイトカインに IL-18を用いた抗体産生増強効果を例に、以下に本 発明による効果を説明する。

ア)抗原、及び抗原とサイトカインの持続的な放出 図1 に示したように、本発明の免疫増強製剤は抗原(アビジン)とサイトカイン($1L-1\beta$)を7 日以上に わたって持続的に放出した。

イ) 抗体産生の増強

本発明の免疫増強製剤による抗体産生の増強効果は、マ ウス及びヒツジに対する免疫刺激実験で明らかに示され た。マウスに剤形を変えてアビジンを投与し、投与7、 14、21、35、83日後の血中の抗アビジン抗体価 をELISA法により測定した(図2)。 マウスにアビ ジン100μgを従来の方法で投与、すなわちアビジン をリン酸緩衝液に溶解した溶液状態で投与した場合と、 同量のアビジンを担持した免疫増強製剤(実施例7で調 30 製)を投与した場合、同量のアビジンと Ι L - 1 βを同 時に担持した免疫増強製剤(実施例8で調製)を投与し た場合とを比較した。投与35日後では、アビジンを担 持した免疫増強製剤を投与したマウスの血中抗体価は、 アビジン溶液を投与したマウスで得られた抗体価の約2 5倍に達した。この結果は、抗原を本発明の免疫増強製 剤化することによって抗原に対する抗体産生が増強され たことを示している。さらにアビジンとIL-18を担持し た免疫増強製剤を投与したマウスの抗体価は、アビジン 溶液を投与した場合に比べて実に約450倍に達した。 40 この結果は、抗原を免疫賦活効果を有するサイトカイン と同時に本発明の免疫増強製剤化することによって、抗 原に対する抗体産生がさらに増強されることを示してい

【0016】抗原と免疫賦活サイトカインを同時に担持した免疫増強製剤による抗体産生効果はヒツジに対する免疫刺激実験でより顕著に見られた(図3)。ヒツジに剤形を変えてアビジンを投与し、投与7、14、21、35日後の血中の抗アビジン抗体価をELISA法により測定した。アビジンをヒツジに従来の投与方法で溶液

30

状態で100μg投与しても、抗アビジン抗体は産生さ れなかった。このマウスとヒツジでの抗体産生の差はマ ウスとヒッジの体重差に依存すると考えられる。このと とは、アビジンは100μgの投与でヒツジで抗体が産 生されるのに十分な抗原性を有していないことを示して いる。これに対してアビジンとΙL-1βを同時に担持 した免疫増強製剤(実施例8で調製)を投与した場合に は、投与14日後に高い抗体産生が見られた。この結果 は本発明の免疫増強製剤が、抗体を産生するには不十分 な抗原性しか有しない抗原に対し、抗体産生を増強する 10 効果を有することを顕著に示している。一方、アビジン とΙ L-1βを従来の方法で同時に溶液状態で投与して も、抗体産生は見られなかった。この結果は免疫増強製 剤で得られた抗体産生増強効果が製剤からの抗原、及び 抗原とサイトカインの持続的放出に依存することを示し ている。以上のことは、本発明の免疫増強製剤は、十分 な抗体価を得るには複数回の投与が必要である従来の投 与方法に比べて、一回の投与で十分な抗体価が得られる ことを示している。

9

【0017】ウ)抗体産生までの期間の短縮

本発明の免疫増強製剤の重要な効果である抗体産生まで の期間の短縮は、従来の方法で抗原溶液を投与しても抗 体の産生が見られなかったヒツジを用いた免疫刺激実験 でよりも、従来の方法で抗原溶液を投与した場合にもあ る程度の抗体産生が見られたマウスにおける免疫刺激実 験で端的に確認できた。図2のグラフで明らかなよう に、従来の方法でアビジンを溶液状態で投与した場合、 投与後14日目以降に抗アビジン抗体量が増加したのに 比べて、免疫増強製剤(アビジンのみあるいはアビジン とIL-18を担持)を投与した場合には、投与後7日 目以降抗体量が急激に増加した。従って抗体産生までの 期間が、約1週間短縮された。また、アビジンを溶液状 態で投与したマウスで得られた抗体価が、アビジンのみ を担持した免疫増強製剤の投与14日後に得られた抗体 価に到達したのは投与83日後であった。また、アビジ ンと Ι L - 1 βを担持した免疫増強製剤の投与 1 4 日後 に得られた抗体価には、投与83日後でも到達しなかっ た。このことから、免疫増強製剤は抗体産生期間を69 日以上短縮したと言える。

【0018】エ) 免疫増強製剤投与部位局所の免疫反応 本発明の原理的説明の項で述べたように、本発明の免疫 増強製剤で得られる効果には、製剤を投与した部位局所 での免疫反応が重要な役割を果たしていると考えられ る。このことは、免疫刺激実験で使用したヒツジの製剤 投与部位の組織像から容易に推察された(図4、5)。 組織像から、免疫増強製剤周囲に免疫担当細胞が浸潤し ていることがわかる。ここで言う免疫担当細胞とは、好 中球、CD4陽性T細胞、γδTCR陽性T細胞、MH CII陽性細胞、マクロファージ等である。

(及び I L - 1 B) を溶液状態で投与した場合には見ら れなかった。これは溶液状態で接種されたアビジンと「 L-1βが接種後直ちに体内に拡散し、免疫担当細胞を 局所に誘導しないためであると考えられる。また、これ 5の免疫担当細胞の集積は、 I L - 1 βを担持した免 疫増強製剤においてより顕著であった。これらの知見は 免疫増強製剤からの持続的な放出により、製剤周囲に抗 原、あるいは抗原とサイトカインの高濃度状態を形成 し、これにより免疫担当細胞が製剤周囲に集積し抗体産 生を増強するとの考えを支持している。一方、免疫担当 細胞の集積はある種の炎症反応であるが、得られた免疫 反応は浮腫などを伴わず、炎症反応は自己消失した。

【0020】iii) 免疫增強製剤

本発明においては、基本的には、生体親和性材料からな る担体に抗原、または抗原を誘導する物質を担持させた 製剤であって、所望によりさらに免疫調節物質、あるい はその他の添加物を含んでなる製剤を免疫増強製剤と呼 ぶ。本発明の免疫増強製剤によって増強される「免疫反 応」とは、本製剤に含有された抗原または誘導される抗 原に由来する免疫反応を指す。賦活化される免疫反応 は、液性免疫、粘膜免疫、細胞性免疫のいずれか、ある いはそれらの組み合わせであり得る。

【0021】「抗原」としては、抗原に由来する免疫反 応を誘導し得るものであれば特に制限はないが、一般に この抗原に由来する免疫反応がヒトあるいはヒト以外の 哺乳動物、鳥類の疾病を予防および/または治療効果を 有するものが選択される。例えば、ワクチンハンドブッ ク(国立予防衛生研究所学友会編、丸善、1994年)及び Remington's Pharmaceutical Sciences 14th Edition (Mack Publishing Co.、1995年)の75章、Immunizing Agents、p1426_p1441あるいはPhysician's DeskReferen ce, 46th Edition (米国食品医薬品局(Food and Drug A dministration)認可、1992年)の208-209頁に記載され ているトキソイド、ワクチン及び生ワクチン自体あるい はこれから得られる物質が挙げられるがこれに限定され るものではない。

【0022】具体的には、(1)ウイルス、マイコプラ ズマ、細菌、寄生体、毒素、腫瘍細胞などを例えば遺伝 子組み換え(毒性あるいは病原性に関与する遺伝子を改 変)、継続的な培養(自己改変による弱毒あるいは非病 原性株の出現)、ホルマリン処理、β-プロピオラクト ン処理、放射線照射、超音波照射、酵素処理、加熱など の方法を用いて弱毒化、無毒化あるいは非病原性化した もの、(2)ウイルス、マイコプラズマ、細菌、寄生 体、毒素、腫瘍細胞などから、例えば化学的あるいは酵 素的な分解、物理的な破砕、カラム精製、抽出、ろ過す るなどして得られる、例えば膜表面タンパク質、核内タ ンパク質などのタンパク質、プロテオグリカン、ポリペ プチド、ペプチド、膜構成成分、(3)ウイルス、マイ 【0019】これらの免疫担当細胞の集積は、アビジン 50 コプラズマ、細菌、寄生体、腫瘍細胞などからウイル

ス、マイコプラズマ、細菌、寄生体、毒素、腫瘍細胞な どに対する特異的な免疫を誘導する抗原の遺伝子を取り 出し、同定し、当該遺伝子をプラスミドのような適当な ベクターに組み込み、大腸菌、酵母、動物細胞で発現さ せることによって得られるペプチドやタンパク質で構成 されるサブユニットワクチン、当該抗原と同じあるいは それ以上に高い特異的な免疫原性を有するように配列さ れた合成ペプチドなどを挙げることができるがこれらに 限定されるものではない。ことで腫瘍細胞に対する特異 的な免疫を誘導する抗原とは、MACE-1、MACE-3、BACEな 10 どのいわゆる癌退縮抗原や、Tyrosinase、Mart-1、gp10 0、qp75などの組織特異抗原や、p15、Muc7、CEA、HPV E 6, E7、HPR2/neuなどを挙げることができるが、これら に限定されるものではない。

11

【0023】より具体的な「抗原」として、以下のよう な疾患の予防あるいは治療に有効な免疫反応を誘導し得 る抗原が挙げられるが、これに限定されるものではな い:コレラ、百日咳、ベスト、腸チフス、髄膜炎、肺 炎、らい病、りん病、赤痢、ポリオ、グラム陰性敗血 症、大腸菌敗血症、狂犬病、ジフテリア、ボツリヌス、 破傷風、小児麻痺、インフルエンザ、日本脳炎、風疹、 麻疹、黄熱病、耳舌腺炎、A型肝炎、B型肝炎、C型肝 炎、水痘/帯状疱疹、マラリア、結核、カンジタ、虫 歯、後天性免疫不全症候群、癌(腫瘍)、オーエスキー 病、乳房炎、炭疽病、ブルセラ病、マルタ熱、チーズ様 リンパ節炎、腸毒血症、腸炎、伝染性壊死性肝炎、悪性 浮腫、気腫症、レプトスピラ症、scabby mouse、ビブリ オ病、丹毒、腺疫、ボルデテラ性気管支炎、ジステンパ ー、全白血球減少症、気管支炎、ヒツジハエうじ症、ウ イルス性下痢症、ピメレア (Pimelea)中毒。さらに、以 下のようなウイルス、マイコプラズマ、細菌、寄生体の 感染及び病態の発症の予防、及び発症した疾患の治療に 有効な免疫反応を誘導し得る抗原が挙げられるが、これ に限定されるものではない: グループB髄膜炎菌、グル ープB連鎖状球菌、緑膿菌、黄色ブドウ球菌、表皮ブド ウ球菌、サルモネラ菌、クロストリディウム属に属する 細菌、アデノウイルス、コロナウイルス、RSウイル ス、ヒト免疫欠損ウイルスIおよびII、単純ヘルペスI及 びII、CMV、EBV、トラコーマクラミジア、パルボ ウイルス、パラインフルエンザウイルス、カリシウイル ス。本発明における「抗原」には、疾病の予防あるいは 治療に用いられるだけでなく、動物産業で産業上の理由 で用いられる抗原も含まれる。例えばこれらの抗原は、 ワクチンズ・イン・アグリカルチャー、イミュノロジカ ル・アプリケーションズ・トゥー・アニマル・ヘルス・ アンド・プロダクション (Vaccines in Agriculture, I mmunological Applications to Animal Health and Pro duction(P. R. Woodら編集、CSIRO、1994年))の71-160 頁に記載の抗原を挙げることができるが、これに限定さ れるものではない。動物産業の産業上の理由で用いられ 50

る抗原としては、以下に挙げる抗原が含まれるが、これ に限定されるものではない。1)家畜の繁殖に利用され る抗原;インヒビン関連ペプチド、放出ホルモン(黄体 形成ホルモン放出ホルモン、性腺刺激ホルモン放出ホル モン等) に対する免疫反応を誘導し得る抗原:2) 家畜 の成長及び代謝を調節するのに利用される抗原:成長ホ ルモン関連因子、インシュリン様成長因子-1、成長ホル モン、ステロイドホルモン、性ステロイドホルモン、含 脂肪細胞の原形質膜抗原、肥満脂質、コルチゾール、腺 副腎皮質刺激ホルモン、腺副腎皮質刺激ホルモン受容 体、β-アドレナリン受容体、腺下垂体ホルモン(プロ ラクチン、ACTH、STH、TSH、LH、FSH等)に対する免疫 反応を誘導し得る抗原:3)家畜の飼育環境を調節する のに利用される抗原;植物随伴毒素、低分子量天然毒物 に対する免疫反応を誘導し得る抗原。また、本発明にお ける「抗原」とは、抗原に対する特異的な免疫反応を誘 導し得るものに限定されるものではなく、抗原に対して 非特異的な免疫を誘導し得るものも含まれる。ことで抗 原に対して非特異的な免疫を誘導し得る抗原とは、例え ばブドウ球菌由来の陽管毒素SE(staphylococcal ente rotoxins) PTSST-1 (toxic shock syndrome toxin -1)、脱落皮毒素ET (exofoliative dermatitis toxi n)、宮城県獣医師会会報、第50巻3号、133-137、1997に 記載の溶レン菌菌体の細胞膜に由来するCAP(cell-me mbrane associated protein)、T-12やNY-5溶レ ン菌由来のSPM(Streptococcus pyogenes-mitogen)等 の細菌由来抗原であるスーパー抗原が挙げられるが、と れに限定されるものではない。

12

【0024】「抗原を誘導する物質」とは、生体内で上 記のような抗原の産生を誘導する物質であって、例えば 30 ウイルス、マイコプラズマ、細菌、寄生体、毒素、腫瘍 細胞などに対する特異的な免疫を誘導し得る抗原の遺伝 子配列をコードする核酸が生体内で当該の抗原を産生す るように組み込まれたプラスミドやウイルスを挙げると とができる。組み込まれる核酸としては、上記のような 抗原となり得る物質をコードする核酸を挙げることがで き、例えば以下のようなタンパク質をコードする核酸を 挙げることができる。インフルエンザウイルスのHAや NA、あるいはNPの各タンパク質、C型肝炎ウイルス のE2やNS1タンパク質、B型肝炎ウイルスのHBs 抗原タンパク質、A型肝炎ウイルスのカプシドタンパク 質であるVP1やVP3、あるいはカプシド様タンパク 質、デングウイルスのEgpタンパク質、RSウイルス のFあるいはGタンパク質、狂犬病ウイルスの構造タン バク質であるGやNタンパク質、ヘルペスウイルスのg Dタンパク質、日本脳炎ウイルスのElあるいはpre -Mタンパク質、ロタウイルスの外殻糖タンパク質VP 7.や外殼タンパク質VP4、ヒト免疫不全ウイルスのp g 1 2 0 やg p 1 6 0 タンパク質、Leishmania majorの 主要表面抗原タンパク質、マラリアのスポロゾイドの主

要表面抗原(circum sporozoite protein)タンパク 質、トキソプラズマの54-kdやCSタンパク質、虫 歯の原因となるStreptococcus mutansの菌体表面タンパ ク質PAc。また、MAGE-1、MAGE-3、またはBAGEなどの 癌退縮抗原や、Tyrosinase、Mart-1、gp100、gp75など の組織特異抗原、p15、Muc1、CEA、HPV E6, E7、HER2/n euなどをコードする核酸および「Immunization with DN A」: Journal of Immunological Methods、176巻、1994 年、145~152頁に記載の核酸を挙げることができるが、 これに限定されるものではない。このような核酸を組み 10 込むプラスミドやウイルスは、病原性がないものである 限り特に制限はないが、例えばウイルスとしては、アデ ノウイルス、アデノ関連ウイルス、ワクシニアウイル ス、レトロウイルス、HIVウイルス、ヘルペスウイル スなどの通常のベクターとして用いられるものが挙げら

【0025】抗原物質は、例えば化学的技術、組み換え DNA技術、細胞培養技術または発酵技術によって得る ことができる。本発明においては、どのような方法によ って得られたものを用いてもよいが、本発明製剤は前記 20 のような効果を有するので、従来の投与方法(例えば溶 液状態、懸濁液状態での注射的な投与)では一般に効率 よく免疫反応が誘導されにくい組み換えDNA技術によ って得られた抗原性が低い抗原に対して、特に適してい

れる。

【0026】特異的な免疫を誘導する抗原物質は、修飾 ・改変などを行うことなく、そのまま免疫増強製剤に含 有させてもよいが、さらに抗原性を高めそして/または 安定性を髙める目的で、例えば、(1)抗原よりも分子 量の大きなタンパク質(例えばβ-ガラクトシダーゼや コアタンパク質など)と共有結合であるいは非共有結合 で結合させるか、(2)適当な糖鎖を付加するか、

(3) リポソームに封じ込めるか、または(4) ウイル スとリポソームの膜融合型リポソームや(5) B30M DP(6-0-(2-tetradecylhexadecanoyl)-N-acetylmuramy 1-L-alanyl-D-isoglutamine)を用いて得られる膜粒子 (ビロゾーム) に含有させてもよい。

【0027】「免疫調節物質(免疫賦活、免疫刺激また は免疫増強の作用を有する物質)」としては、特に制限 はないが、例えばサイトカイン、ケモカイン、成長因 子、免疫賦活ペプチド、免疫賦活DNA配列、アルム、 フロイントの完全アジュバント、不完全アジュバント、 イスコム、サポニン、ポリオキシプロピレンとポリオキ シエチレンの共重合体、CRL-1005 (Vaxce) 社)、QS-21(Cambridge Biotech社)、ヘキサデ シルアミン、ジメチルジオクタデシルアンモニウムブロ マイド、アブリジン、細胞壁骨格成分、コレラトキシ ン、リポ多糖体内毒素、ウォーターリードリポソームお よびサイトカインを含有したリポソーム等のリポソー ム、1,25-シヒトロキシビタミン-D,、およびカルボキ

シルビニールポリマーにアルギニンと塩化ナトリウムを 加えてゲル化したものなどが挙げられる。サイトカイン としては、IFN-α、IFN-β、IFN-γ、IL -1α , IL- 1β , IL-2, IL-3, IL-4. IL-5, IL-6, IL-8, $TNF-\alpha$, TNF-β、GM-CSFなどが挙げられるがこれらに 限定されるものではない。特に免疫増強製剤の投与部位 に免疫担当細胞を集積させ、抗体産生の増強を希望する 場合においては、 IL-18及びIL-2が望まし い。また、具体的な免疫調節物質としては、例えば以下 に挙げる物質の一あるいはそれ以上の群から選択される が、これに限定されるものではない: リン酸アルミニ ウムゲル(例えばAdju-Phos)、β-グルカン(例えばAlgal Glucan)、 ィーイヌリン/アルム複合体(例えばAlgammu lin)、水酸化アルミニウムゲル(例えばAlhydrogel)、 スクアラン、Tween 80、プルロニックL121からなるエマ ルジョン(例えばAntigen Formulation)、アブリジン (N, N-ジオクタデシル-N', N'-ビス(2-ハイドロオキシエ チル)プロパンジアミン、登録商標、VIDO, Canada)、BA Y R1005(N-(2-デオキシ-2-L-ロイシルアミノ-β-D-グル コピラノシル)-N-オクタデシル-ドデカノイルアミド ハ イドロアセテート)、カルシトリオール(Calcitriol、1 α ,25-ジヒドロキシビタミンD3)、リン酸カルシウムゲ ル、コレラホロトキシン(CT)、コレラトキシンBサブユ ニット (CTB)、CRL1005 (Vaxcel Corporation, USA)、 臭化ジェチルジオクタデシルアンモニウムブロマイド (DDA)、ジハイドロエピアンドロステロン(DHEA)、ジミ リストイルホスファチジルコリン (DMPC)、ジミリスト イルホスファチジルグリセロール(DMPG)、デオキシコー 30 ル酸ナトリウム塩(DOC)/アルム複合体、ャ-イヌリン、 ゲルブアジュバント (N-アセチルグルコサミニル-(β1-4)-N-アセチルムラミル-L-アラニル-D-グルタミン(QMD P)と塩化ジメチルジオクタデシルアンモニウム(DDA)と 亜鉛/L-プロリン塩複合体の混合物、GMDP、1-(2-メチ ルプロピル)-1H-イミダゾ[4,5-c]キノリン-4-アミン(Im iquimod)、ImmTher (登録商標、Immuno Therapeutica, Inc., USA)、ISCOM(s) (登録商標、ISCOTEC AB, Swede n)、Iscoprep 7.0.3 (登録商標、ISCOTEC AB, Swede n)、ロキソリビン (7-アリル-8-オキソグアノシン)、LT -OA (LT経口アジュバント、大腸菌の不安定な腸毒素プ ロトキシン)、MF59 (ポリソルベート80とスパン85及び スクアレンからなるエマルジョン)、MONTANIDE ISA 51 (登録商標、SEPPIC, France)、MONTANIDE ISA 720 (登 録商標、SEPPIC, France)、MPL (登録商標、Ribi Immun oChem Research, Inc., USA)、N-アセチル-L-アラニル-D-イソグルタミニル-L-アラニン-2-(1,2-ジパルミトイ ル-sn-グリセロ-3-(ヒドロキシ-ホスホリルオキシ))エ チルアミドーナトリウム塩 (MTP-PE)、MTP-PEリポソー ム (MTP-PE抗原提示リポソーム)、ムラメチド (NAc-Mur 50 -L-Ala-D-Gln-OCH3)、ムラバルミチン (NAc-Mur-L-Thr-

30

16

D-isoGn-sn-グリセロールジパルミトイル)、D-ムラパ ルミチン (NAc-Mur-D-Ala-D-isoGln-sn-ジグリセロール ジパルミトイル)、NAGO (ニュウラミナーゼとガラクト ースオキシダーゼの混合物)、非極性界面活性小胞 (コ レステロールとモノパルミトイル-rac-グリセラル及び リン酸ジセチルの混合物)、プルラン (β-グルカン)、P LGA (乳酸とグリコール酸の共重合体)、PGA (ポリグリ コール酸)、PLA (ポリ乳酸)、プルロニックL121、PMMA (ポリメチルメタクリレート)、PODOS (登録商標、アク リル化アミノ酸)、Poly rAとPoly rUの複合体、ポリホ スファジン、ポリソルベート80、リン脂質タンパクとカ ルシウムの複合体(例えばProtein Cochleates)、QS-21 (Stimulon、登録商標、Cambridge Biotech Corporatio n. USA)、クィルA (Quil A 、Quillajaサポニン)、高タ ンパク吸着性水酸化アルミニウムゲル(例えばRehydrage 1 HPA)、低粘度水酸化アルミニウムゲル(例えばRehydr agel LV)、4-アミノ $-\alpha$, α -ジメチル-2-エトキシメチ ル-1H-イミダゾ[4,5-c]キノリン-1-エタノール (S-2846 3)、SAF-1 (スレオニルムラミルジペプチドとプルロニ ックL121とポリソルベート80及びスクアランの混合 物)、IL-1βの163-171ペプチド (Sclavo Peptide)、セ ンダイプロテオリポソーム、脂質センダイマトリック ス、スパン85 (アラセル85、ソルビタントリオレー ト)、スペコール(Specol、鉱物油とシクロパラフィ ン、スパン85及びTween 85の混合物)、スクアラン、ス クアレン、ステアリルチロシン、N-アセチルグルコサミ ニル_N_アセチルムラミル_L_Ala_D_isoGlu_L_Ala_ジバ ルミトキシプロピルアミド (Theramide)、スレオニルム ラミルジペプチド(Termurtide、登録商標、Syntex, US A)、ティーワイ・パーティクルズ(Ty particles)、ウ ォーターリードリポソーム (Water Reed Liposomes 、リ ビドAを吸着した水酸化アルミニウムを含有したリポソ ーム)。

15

[0028] 本発明の免疫増強製剤に含有される抗原物質及び免疫調節物質の量は、製剤に含有される時の生体親和性材料及び添加剤との混合比や製剤の大きさによっていかようにも調節することができる。本発明製剤により投与する抗原物質の量は、従来の投与方法(例えば溶液状態、懸濁液状態での注射的な投与)で用いられる量と同程度であってもよいが、本発明製剤は前記のような優れた免疫増強効果を有するので、従来法による投与量以下の投与量で十分に免疫を誘導することができ、抗原物質の種類や本発明製剤の剤形あるいは抗原物質と同時に投与する免疫調節物質の種類や量により、適宜投与量を調節することができる。

【0029】本発明の免疫増強製剤の担体は、抗原物質を担体内に分散または包含して担持する。また、当該担体は抗原(および免疫調節物質)を持続的に放出する。本発明の免疫増強製剤の担体は、以下の適当な生体親和性材料から形成される。「生体親和性材料」としては、

生体親和性に優れ、抗原物質及び免疫調節物質を生体内 で安定に保持かつ徐放できるものが好ましい。生体親和 性材料は、例えばコラーゲン、ゼラチン、フィブリン、 アルブミン、ヒアルロン酸、ヘパリン、コンドロイチン 硫酸、キチン、キトサン、アルギン酸、ペクチン、アガ ロース、アラビアゴム;グリコール酸、乳酸、アミノ酸 の重合体及びこれらの二種類以上の共重合体; ハイドロ キシアバタイト、ボリメタクリル酸メチル、ボリジメチ ルシロキサン、ポリテトラフルオロエチレン、ポリプロ ピレン、ポリ塩化ビニル及びポリエチレンからなる群の 中から任意に選ぶことができる。これらの生体親和性材 料は単独で、または二以上の混合物として用いることが できる。生体親和性材料は、免疫増強製剤の調製工程に おいて抗原物質と免疫調節物質を変性及び/または失活 させないことを条件に、さらに希望する効果により生体 内分解性あるいは生体内非分解性の条件から選択され る。

【0030】特に好ましい生体内分解性の生体親和性材 料としてはコラーゲンが挙げられ、このコラーゲンに上 記他の生体親和性材料を混合することもまた望ましい。 コラーゲンとしては本発明の目的にかなう限りはいかな るものも使用できる。例えば、動植物から得られる酸可 溶性コラーゲン、塩可溶性コラーゲン、アルカリ可溶性 コラーゲンおよびこれらのコラーゲンから得られるアテ ロコラーゲン、側鎖を修飾したコラーゲン、架橋したコ ラーゲン、あるいは遺伝子工学的手法により製造される コラーゲン類、特にはアテロコラーゲンおよびこれらの コラーゲンから得られる側鎖を修飾したコラーゲン、架 橋したコラーゲン等を用いることができる。側鎖を修飾 したコラーゲンとしては、例えばサクシニル化、メチル 化あるいはミリスチル化したコラーゲン等を挙げること ができる。架橋したコラーゲンとしては、例えばグルタ ルアルデヒド、ヘキサメチレンジイソシアナートまたは ポリエポキシ化合物等で処理したコラーゲン等を挙げる ことができる(フレグランス・ジャーナル、12巻、19 89年、104-109頁、特公平 7-59522号公報)。

【0031】特に好ましい生体内非分解性の生体親和性材料としてはポリジメチルシロキサンが挙げられ、このポリジメチルシロキサンに上記他の生体親和性材料を混合することもまた望ましい。ポリジメチルシロキサンとしては特に制限はないが、成形性が容易などの点から例えばサイラスティック(登録商標)メディカルグレードETR エラストマー Q7-4750、ダウコーニング(登録商標)MIX-4-4210 メディカルグレードエラストマー等のシリコーンが特に好ましい。

【0032】また、抗原物質または免疫調節物質を安定 化しそして/または放出を制御するためあるいは、免疫 増強製剤を免疫担当細胞に貪食されやすくして免疫効果 を高めるため、必要に応じて製剤的添加剤を添加するこ 50とができる。製剤的添加剤としては、例えばアルブミ

ン、グリシン、グリシン以外のアミノ酸、ポリアミノ 酸、ゼラチン、コンドロイチン硫酸、塩化ナトリウム、 マンナン、グルコマンナン、タンニン酸、クエン酸ナト リウム、マンニトール等が挙げられるが、これに限定さ れるものではない。コラーゲンに他の生体親和性材料ま たは添加剤を混合する場合には、製剤中のコラーゲンの 含量は10 w/w%以上がよく、好ましくは30 w/w %以上の範囲が挙げられ、特に好ましくは70 w/w% 以上の範囲が挙げられる。またシリコーンに他の生体親 和性材料または添加剤を混合する場合には、製剤中のシ 10 リコーンの含量は10 w/w%以上がよく、好ましくは 50w/w%以上の範囲が挙げられ、特に好ましくは7 0w/w%以上の範囲が挙げられる。

17

【0033】本発明にかかる免疫増強製剤の形状は、特 に制限はなく、溶液状、懸濁液状、ゲル状、フィルム 状、スポンジ状、棒状または微粒子状等が挙げられる。 好ましい形状は、より効率良く免疫応答を誘導できるよ うに選択される。好ましい形状として棒状が挙げられ る。より好ましいものとして、公開特許公報平成7年第 187994号に記載された製剤の形状、例えば(a) 均一に分散した抗原、または抗原を誘導する物質を含有 する非崩壊性の生体親和性材料の内層、および(b)該 内層の周囲を包む、水を通さない、内層の膨潤を制御し 得る生体親和性材料の外層からなり、内層の両端または 片端が外部環境に直接接触するように開放している棒状 の製剤が挙げられる。上記の内層に用いる生体親和性材 料と外層に用いる生体親和性材料とは、同一でも異なっ ていてもよい。なお、本明細書中、「非崩壊性」とは、 水に接触しても直ちに溶解、分解などによって消失する ことがなく、初期の形状を所望の時間保ち得ることを意 30 味する。生分解性のものとしてはポリ乳酸グリコール酸 共重合体などのポリエステル、ポリアミノ酸、また非生 分解性のものとしてはシリコーン、エチレンビニル酢酸 共重合体、ポリビニルアルコールなどが挙げられる。望 ましくは、棒状の生体親和性の担体は、ポリジメチルシ ロキサン由来の材料で構成される。例えば、棒状の形状 では抗原物質(及び免疫調節物質)が長期間にわたって 持続的に放出され、微粒子状の形状ではマクロファージ などの免疫担当細胞に食食される。微粒子の場合には微 粒子の直径は望ましくは0.1μm~100μm、さら には 0.5μ m~ 50μ mであることが望ましいがこれ に限定されるものではない。本発明にかかる免疫増強製 剤の投与方法は、特に制限はなく、注射的投与、経口投 与、鼻腔と/あるいは肺内部への投与、圧縮空気を用い た射入、切開部位への留置などが挙げられる。好ましい 投与方法は、より効率良く免疫応答を誘導することを目 的に、免疫増強製剤の形状により選択され、例えば棒状 の場合、注射的投与あるいは切開部位への留置が望まし く、微粒子の場合には切開部位に直接留置しても良い が、特公平3-72046に記載されているように注射用溶媒

に懸濁して懸濁液状で注射的投与しても良く、さらにHe lios Gene Gun System (BIO-RAD社) あるいはProc.Nat 1.Acad.Sci.USA、93、6291-6296(1996)に記載されている 粉末射出装置などを用いて、圧縮空気を用いた射入によ り投与しても良いがこれに限定されるものではない。と こで注射用溶媒としては、微粒子を容易に均一に分散で き、投与するまでの間微粒子を崩壊させず、かつ抗原物 質及び免疫調節物質を微粒子内に安定に保持すること、 更に溶媒自身に毒性がなく、かつ微粒子を当該溶媒に分 散することによって毒性が誘起されないことを条件に、 担体、抗原物質及び免疫調節物質の性質に依存して選択 される限りはいかなるものも使用できる。例えば以下の ような溶媒が挙げられるが、これに限定されるものでは ない:蒸留水、生理的食塩水、リン酸緩衝液、大豆油、 ゴマ油、ラッカセイ油、綿実油、MCT(中鎖脂肪酸ト リグリセリド)、オリーブ油、トウモロコシ油、ひまし 油、シリコーンオイル、PEG(ポリエチレングリコー ル)、PG(プロピレングリコール)、スクワラン、ス クワレンなどあるいはリポソームの調製に用いられてい る脂肪酸類、例えばDOTMA、DOPE、DOGS。 【0034】生体内分解性の溶液状、懸濁液状およびゲ ル状の免疫増強製剤の製造方法としては、例えば、(1) 必要に応じて添加剤を添加した溶液状またはゲル状の担 体に抗原物質(及び免疫調節物質)の粉末、溶液、懸濁 液またはゲルを混合する方法、(2)必要に応じて添加剤 を添加した粉末状の担体に、抗原物質(及び免疫調節物 質) の溶液、懸濁液またはゲルを添加し、混合する方 法、(3)必要に応じて添加剤を添加したスポンジ状担体 に、抗原物質(及び免疫調節物質)の溶液、懸濁液また はゲルを添加し、練合する方法を挙げることができる が、これらに限定されるものではない。

【0035】生体内分解性の固体状の免疫増強製剤の製 造方法としては、例えば、藤岡らの方法(特公平7-5952 2号)があるがこれらに限定されるものではない。この 他、(1)必要に応じて添加剤を添加した溶液状または ゲル状の担体に、抗原物質(及び免疫調節物質)の粉 末、溶液、懸濁液またはゲルを混合し、乾燥する方法、 (2)必要に応じて添加剤を添加した粉末状の担体に、 抗原物質(及び免疫調節物質)の溶液、懸濁液またはゲ ルを混合し、乾燥する方法、(3)必要に応じて添加剤 を添加したスポンジ状の担体に、抗原物質(及び免疫調 節物質)の溶液、懸濁液またはゲルを浸透させ、乾燥す る方法、(4)必要に応じて添加剤を添加したスポンジ 状の担体に、抗原物質(及び免疫調節物質)の溶液、懸 濁液またはゲルを浸透させ、そのまま乾燥するか、また は必要に応じて水等を加えた後、練合し、乾燥する方 法、(5)(1)~(4)の方法で得られる固形物を粉 砕し、圧縮成形する方法、(6)必要に応じて添加剤を 添加した粉末状の担体と抗原物質(及び免疫調節物質) 50 の粉末を混合し、圧縮成形する方法などを挙げることが

できるがこれらに限定されるものではない。

【0036】生体内分解性の微粒子状の免疫増強製剤の 製造方法としては、例えば、(1)抗原物質(および免 疫調節物質)、担体、さらに必要に応じて添加剤を添加 した溶液を噴霧乾燥する方法、(2)抗原物質(および 免疫調節物質)、担体、さらに必要に応じて添加剤を添 加した溶液を凍結乾燥し、得られたスポンジを粉砕する 方法、(3)抗原物質(および免疫調節物質)、担体、 さらに必要に応じて添加剤を添加した溶液を担体が溶解 しない溶液中に滴下、撹拌し得られた微粒子を乾燥する 10 方法を挙げることができるが、これらに限定されるもの ではない。なお、乾燥方法、乾燥時の温度および湿度、 混合方法、混合時の温度および湿度、圧縮成形の方法、 圧縮成形時の温度、湿度、圧縮圧力、担体溶液および抗・ 原物質(および免疫調節物質)溶液の溶液粘度、担体と 抗原物質(および免疫調節物質)との混合溶液の粘度、 p Hについては通常の方法と同様に行うことができる。 【0037】生体内非分解性の固体状の免疫増強製剤の 製造方法としては、例えば(1)必要に応じて添加剤を 添加した担体モノマーに抗原物質(及び免疫調節物質) の溶液、懸濁液またはゲルを混合し、硬化剤を加え、任 意の型に充填もしくは押し出しにより成形し硬化させる 方法、(2)必要に応じて添加剤を添加した粉末状の担 体に抗原物質(及び免疫調節物質)の溶液、懸濁液また はゲルを混合し乾燥する方法、(3)必要に応じて添加 剤を添加した粉末状の担体に抗原物質(及び免疫調節物 質)の粉末、溶液、懸濁液またはゲルを混合し、任意の 型に充填して圧縮成形もしくは押し出しにより成形する 方法、(4)必要に応じてスポンジ状の担体に抗原物質 (及び免疫調節物質)の溶液、懸濁液またはゲルを混合 30 し乾燥する方法、(5)必要に応じて添加剤を添加した スポンジ状の担体に抗原物質(及び免疫調節物質)の粉 末、溶液、懸濁液またはゲルを混合し、任意の型に充填 して圧縮成形もしくは押し出しにより成形する方法、

(6)(1)、(3)及び(5)の方法で抗原物質(及 び免疫調節物質)を含有する棒状の内層を作成し、次い でその側面を抗原物質(及び免疫調節物質)を含有しな い外層素材で被覆する方法、(7)ノズルを用いて内層 と外層を同時に押し出し、成形する方法を挙げることが できるが、これらに限定されるものではない。なお、乾 40 燥方法、乾燥時の温度及び湿度、混合方法、混合時の温 度及び湿度、圧縮成形の方法、圧縮成形時の温度、湿 度、圧縮圧力、担体溶液及び抗原物質(及び免疫調節物

質)溶液の溶液粘度、担体と抗原物質(及び免疫調節物

質)の混合溶液の粘度、pHについては通常の方法と同様 に行うことができる。

【0038】本発明に関わる免疫増強製剤の使用方法 は、例えば(1)疾病の予防あるいは治療を目的とした ヒト用あるいはヒト以外の哺乳動物及び鳥用ワクチン製 製剤として使用する方法を挙げることができるが、これ に限定されるものではない。本製剤を用いた抗体の製造 方法は、抗体を産生させる動物に抗原を投与するのに本 製剤を用いる以外は、現在一般に行われている方法と何 ら変わるところはない。

20

【0039】本発明に関わる免疫増強製剤は、使用の目 的に応じて投与部位を選択することができる。例えば、 一般的なワクチンとして使用する場合は皮下、筋肉内等 に投与することができる。また、本発明の原理的説明で 述べたように、本発明の免疫増強製剤は投与された部位 を担当するリンパ節あるいは投与部位の免疫反応を特異 的に活性化することができることから、目的に応じて標 的臓器に直接投与することができる。例えば、腫瘍由来 の抗原とサイトカインを担持した免疫増強製剤を腫瘍細 胞局所あるいは腫瘍を手術的に除去した部位に直接投与 し、腫瘍に対する免疫反応を活性化することができる。 さらには、腫瘍部位局所への免疫増強製剤の直接投与 は、腫瘍部位局所を担当するリンパ節を介する全身リン バ系への腫瘍細胞の転移を抑制する効果が期待される。 [0040]

【実施例】(1)免疫増強製剤の作成 実施例1

アビジン(ベーリンガーマンハイム社)5.0mg/mlを含む 水溶液10m1と、グリシン(ナカライテスク株式会社)10 Oma/m7を含む水溶液3m7をアテロコラーゲン液(株式会 社 高研: 2%アテロコラーゲン含有) 134gと混合する ととで、溶液状の免疫増強製剤を作成した。

【0041】実施例2

ヒツジIL-1β (A.E.Andrewsら、Vaccine, 12, 14-22, 1 994の方法に従って調製) 5.0mg/m7を含む水溶液1.7m7 と、アビジン5.0mg/mlを含む水溶液8.6mlと、グリシン 100mg/m]を含む水溶液1.5m]をアテロコラーゲン液142g と混合することで、溶液状の免疫増強製剤を作成した。 【0042】実施例3

実施例1で調製した溶液状の免疫増強製剤を凍結乾燥す ることにより、スポンジ状の免疫増強製剤を得た。

実施例2 で調製した溶液状の免疫増強製剤を凍結乾燥す ることにより、スポンジ状の免疫増強製剤を得た。

【0043】実施例5

実施例3で調製したスポンジ状の免疫増強製剤に70の蒸 留水を加え、一晩放置し練合することでゲル状の免疫増 強製剤を得た。

【0044】実施例6

実施例4で調製したスポンジ状の免疫増強製剤に7gの蒸 留水を加え、一晩放置し練合することでゲル状の免疫増 強製剤を得た。

【0045】実施例7

実施例5で調製したゲル状の免疫増強製剤を棒状に押し 剤、(2)抗体の製造を目的として動物に投与する免疫 50 出し、これを乾燥させることによって棒状の免疫増強製 剤を得た。

【0046】実施例8

実施例6で調製したゲル状の免疫増強製剤を棒状に押し出し、これを乾燥させることによって棒状の免疫増強製剤を得た。

21

【0047】実施例9

アビジン1mg/ml水溶液11.1gとヒト血清アルブミン(HSA)81mg/ml水溶液12.2gを混合し凍結乾燥する。凍結乾燥ケーキを粉砕、篩過して20μm以下の粉末を得る。一方、サイラスティック(登録商標、ダウコーニング社)メディカルグレード ETR エラストマー Q7-4750A成分0.7gと同B成分0.7gを混合する。混合後速やかに上記粉末0.6gを練合する。これを直径1.9mmの孔から圧力をかけて押し出し、室温で静置して硬化させる。これを切断して免疫増強製剤を得る。

【0048】実施例10

アビジン1mg/m1水溶液11.1gとIL-1β2mg/m1水溶液61μ1、ヒト血清アルブミン(HSA)81mg/m1水溶液12.2gを混合し凍結乾燥する。凍結乾燥ケーキを粉砕、篩過して20μm以下の粉末を得る。一方、サイラスティック(登録商標)メディカルグレード ETR エラストマー Q7-4750A成分0.7gと同B成分0.7gを混合する。混合後速やかに上記粉末0.6gを練合する。これを直径1.9mmの孔から圧力をかけて押し出し、室温で静置して硬化させる。これを切断して免疫増強製剤を得る。

【0049】実施例11

実施例9で硬化させたものをサイラスティック メディカルグレード ETR エラストマー Q7-4750A成分とB成分の各10%トルエン分散液を1:1の比で混合したものに浸漬後、乾燥し、0.2mm厚の外層を施す。これを切断し、免疫増強製剤を得る。

【0050】実施例12

実施例10で硬化させたものをサイラスティック メディカルグレード ETR エラストマー Q7-4750A成分とB成分の各10%トルエン分散液を1:1の比で混合したものに浸漬後、乾燥し、0.2mm厚の外層を施す。これを切断し、免疫増強製剤を得る。

【0051】実施例13

アビジン1mg/m1水溶液11.1gとヒト血清アルブミン(H SA)81mg/m1水溶液12.2gを混合し凍結乾燥する。凍結 40 乾燥ケーキを粉砕、篩過して20μm以下の粉末を得る。一方、信越シリコーン(登録商標、信越化学株式会社) KE68(主剤)1.372gと信越シリコーン(登録商標、信越化学株式会社)Cat-RC(硬化剤)28mgを混合する。混合後速やかに上記粉末0.6gを練合する。これを直径1.9mmの孔から圧力をかけて押し出し、室温で静置して硬化させる。これを切断して免疫増強製剤を得る。【0052】実施例14

アビジン1mg/ml水溶液11.1gとIL-1β2mg/ml水溶液61μ 1、ヒト血清アルブミン(HSA)81mg/ml水溶液12.2g を混合し凍結乾燥する。凍結乾燥ケーキを粉砕、篩過して20μm以下の粉末を得る。一方、信越シリコーンKE68(主剤)1.372gと信越シリコーンCat-RC(硬化剤)28mgを混合する。混合後速やかに上記粉末0.6gを練合する。これを直径1.9mmの孔から圧力をかけて押し出し、室温で静置して硬化させる。これを切断して免疫増強製剤を得る。

【0053】実施例15

実施例13で硬化させたものを信越シリコーン(登録商10 標)KE68(主剤)と信越シリコーンCat-RC (硬化剤)の各10%トルエン分散液を98:2の比で混合したものに浸漬後、乾燥し、0.2mm厚の外層を施す。これを切断し、免疫増強製剤を得る。

【0054】実施例16

実施例14で硬化させたものを信越シリコーン(登録商標)KE68(主剤)と信越シリコーンCat-RC(硬化剤)の各10%トルエン分散液を98:2の比で混合したものに浸漬後、乾燥し、0.2mm厚の外層を施す。これを切断し、免疫増強製剤を得る。

20 【0055】実施例17

アビジン 5mg/ml水溶液 0.578gとクエン酸ナトリウム100mg/ml水溶液 13.0g、マンニトール100mg/ml水溶液 13.0gを混合し、凍結乾燥した。凍結乾燥ケーキを窒素雰囲気下で粉砕して粉末を得た。一方、サイラスティック(登録商標)メディカルグレードETRエラストマーQ7-4750 A成分1.05gと同B成分1.05gを混合した。混合後、速やかに上記粉末0.90gを練合した。これをシリンジに充填し、直径1.6mmの孔から圧力をかけて押し出し、25°Cで3日間静置して硬化させた。これを切断して免疫増強製剤30を得た。

【0056】実施例18

アビジン5mg/m1水溶液2.89gとクエン酸ナトリウム100mg/m1水溶液6.42g、マンニトール100mg/m1水溶液6.42gを混合し、凍結乾燥した。凍結乾燥ケーキを窒素雰囲気下で粉砕して粉末を得た。一方、サイラスティック(登録商標)メディカルグレードETRエラストマーQ7-4750 A成分0.93gと同B成分0.93gを混合した。混合後、速やかに上記粉末0.80gを練合した。これをシリンジに充填し、直径1.6mmの孔から圧力をかけて押し出し、25℃で3日間静置して硬化させた。これを切断して免疫増強製剤を得た。

【0057】実施例19

実施例18と同様にして、アビジン、クエン酸ナトリウム、マンニトール及びサイラスティックからなる練合物をシリンジに充填した。一方、サイラスティック(登録商標)メディカルグレードETRエラストマーQ7-4750 A成分50gと同B成分50gを混合し、別のシリンジに充填した。各充填物を、薬物含有サイラスティックが内側、サイラスティックのみが外側になるように同心円状に配50 置された外側ノズルの内径1.9mm、内側ノズルの内径1.6

mmのノズルより圧力をかけて押し出し、37℃で5日間静 置して硬化させた。これを切断して免疫増強製剤を得 た。

23

【0058】実施例20

アビジン5mg/ml水溶液0.30gとクエン酸ナトリウム100mg /m7水溶液4.34g、マンニトール100mg/m7水溶液8.67gを 混合し、凍結乾燥した。凍結乾燥ケーキを窒素雰囲気下 で粉砕して粉末を得た。一方、サイラスティック(登録 商標) メディカルグレードETRエラストマーQ7-4750 A成分0.93gと同B成分0.93gを混合した。混合後、速や 10 清アルブミン、0.01%アジ化ナトリウムを含有したリン かに上記粉末0.80gを練合した。これをシリンジに充填 し、直径1.6mmの孔から圧力をかけて押し出し、25℃で3 日間静置して硬化させた。これを切断して免疫増強製剤 を得た。

【0059】実施例21

実施例20と同様にして、アビジン、クエン酸ナトリウ ム、マンニトール及びサイラスティックからなる練合物 をシリンジに充填した。一方、サイラスティック(登録 商標) メディカルグレードETRエラストマーQ7-4750 A成分50gと同B成分50gを混合し、別のシリンジに充填 20 した。各充填物を、薬物含有サイラスティックが内側、 サイラスティックのみが外側になるように同心円状に配 置された外側ノズルの内径1.9mm、内側ノズルの内径1.6 mmのノズルより圧力をかけて押し出し、37℃で5日間静 置して硬化させた。これを切断して免疫増強製剤を得 た。

【0060】実施例22

アビジン 5mg/ml水溶液 0.45gと IL-18 2mg/ml水溶液 3.15 g. クエン酸ナトリウム250mg/ml水溶液1.92g、マンニト ール150mg/ml水溶液6.19gを混合し、凍結乾燥した。凍 結乾燥ケーキを窒素雰囲気下で粉砕して粉末を得た。一 方、サイラスティック(登録商標)メディカルグレード ETRエラストマーQ7-4750A成分1.05gと同B成分1.05 oを混合した。混合後、速やかに上記粉末0.90gを練合し た。これをシリンジに充填し、直径1.6mmの孔から圧力 をかけて押し出し、37℃で5日間静置して硬化させた。 これを切断して免疫増強製剤を得た。

[0061] 実施例23

実施例22と同様にして、アビジン、IL-18、クエン酸 ナトリウム、マンニトール及びサイラスティックからな 40 る練合物をシリンジに充填した。一方、サイラスティッ ク(登録商標)メディカルグレードETRエラストマー Q7-4750A成分50gと同B成分50gを混合し、別のシリン ジに充填した。各充填物を、薬物含有サイラスティック が内側、サイラスティックのみが外側になるように同心 円状に配置された外側ノズルの内径1.9mm、内側ノズル の内径1.6mmのノズルより圧力をかけて押し出し、25℃ で3日間静置して硬化させた。これを切断して免疫増強 製剤を得た。

【0062】(2)放出試験

試験例1

実施例7で作成した免疫増強製剤10mgを、0.5%ウシ血 清アルブミン、0.01%アジ化ナトリウムを含有したリン 酸緩衝液(pH 7.4)5m7中に入れて静置し、放出されるア ビジンをELISAにより測定し、累積放出率を求めた。結 果を図1に示した。免疫増強製剤は7日以上にわたって アビジンを持続的に放出した。

【0063】試験例2

実施例8で作成した免疫増強製剤10mgを、0.5%ウシ血 酸緩衝液(pH 7.4)5m1中に入れて静置し、放出されるア ビジン及びIL-1βをELISAにより測定し、累積放出率を 求めた。結果を図1に示した。免疫増強製剤は7日以上 にわたってアビジン及びIL-1βを持続的に放出した。

【0064】(3)抗体産生実験

試験例3

2グループのBalb/Cマウス(雌、各グループ5匹)にそれ ぞれ実施例7で作成した免疫増強製剤(アビジンを10 0 μ q含有)、実施例8で作成した免疫増強製剤(アビジ ンを100μg、IL-1βを20μg含有)を皮下注射し た。投与7、14、21、35、83日後に血液サンプ ルを採取した。それぞれのグループの5匹のマウスから 得られた等量の血清中の抗アビジン抗体価をELISA法に より測定した。抗体価を50%中点希釈倍率として表し、 結果を図2に示した。実施例7で作成した免疫増強製剤 を投与したマウスの投与35日後における血中抗体価 は、比較例1で得られた抗体価の約25倍に達した。実 施例8で作成した免疫増強製剤を投与したマウスの投与 35日後における抗体価は、比較例1で得られた抗体価 30 の約450倍に達した。

【0065】比較例1

5匹のBalb/Cマウスに100μqのアビジンを溶解した PBS溶液を皮下注射した。投与7、14、21、3 5、83日後に血液サンプルを採取した。5匹のマウス から得られた等量の血清中の抗アビジン抗体価をELISA 法により測定した。抗体価を50%中点希釈倍率として表 し、結果を図2に示した。

【0066】試験例4

5頭のヒツジ(メリノ種、雌雄混合)に実施例8で作成し た免疫増強製剤(アビジンを100μg、IL-1βを20μ a含有)を皮下注射した。投与7、14、21、35日後 に血液サンプルを採取した。5頭のヒツジから得られた 等量の血清中の抗アビジン抗体価をELISA法により測定 した。抗体価を50%中点希釈倍率として表し、結果を図 3に示した。図3から明らかなように、投与14日後に 抗アビジン抗体の産生が見られた。

【0067】比較例2

5頭のヒツジ(メリノ種、雌雄混合)に100 μgのアビ ジンを溶解したPBS溶液を皮下注射した。投与7、1 50 4.21、35日後に血液サンプルを採取した。5頭の ヒツジから得られた等量の血清中の抗アビジン抗体価を ELISA法により測定した。抗体価を50%中点希釈倍率とし て表し、結果を図3に示した。図3が示す通り、投与後 35日間にわたって抗アビジン抗体の産生は見られなかった。

25

【0068】比較例3

5頭のヒツジ(メリノ種、雌雄混合)に100μqのアビジンと20μqのIL-1βを溶解したPBS溶液を皮下注射した。投与7、14、21、35日後に血液サンブルを採取した。5匹のヒツジから得られた等量の血清中の10抗アビジン抗体価をELISA法により測定した。抗体価を50%中点希釈倍率として表し、結果を図3に示した。図3から明らかなように、投与後35日間にわたって抗アビジン抗体の産生は見られなかった。

【0069】(4)組織学的解析

【0070】試験例5

アビジン10μgを含有するように切断した実施例17と、アビジン100μgを含有するように切断した実施例18.19の免疫増強製剤を、それぞれ、0.3% Tween20及び0.01%アジ化ナトリウムを含有したリン酸緩衝液(pH 307.4)2m1中に入れて静置し、放出されるアビジンをELISAにより測定し、累積放出率を求めた。結果を図6に示した。製剤の形を選択することでアビジンの放出挙動を制御することが出来た。すなわち、マトリックス型の製剤(実施例17、18)は一次的な放出挙動を示し、同心円形の製剤(実施例19)はゼロ次的な放出挙動を示した。これらの製剤は少なくとも30日にわたってアビジンを持続的に放出した。

【0071】試験例6

アビジン5 μ gを含有するように切断した実施例20,21の免疫増強製剤と、アビジン5 μ gおよびIL-1 β 5 μ gを含有するように切断した実施例22,23の免疫増強製剤を、それぞれ、0.3% Tween20及び0.01%アジ化ナトリウムを含有したリン酸緩衝液(pH7.4)2ml中に入れて静置し、放出されるアビジンおよびIL-1 β をELISAにより測定し、累積放出率を求めた。結果を図7に示した。試験例5と同様、製剤の形を選択することで、アビジンおよびIL-1 β 0放出挙動を制御することが出来た。これらの免疫増強製剤は少なくとも15日にわたってアビジンおよびIL-1 β 8を持続的に放出した。

【0072】試験例7

3 グループのBalb/Cマウス(雄、各グループ6匹)にそ れぞれ実施例17で作製した免疫増強剤(アビジンを10 μg含有)、実施例18で作製した免疫増強剤(アビジ ン100 µ g含有) 及び実施例19で作製した免疫増強剤 (アビジン100μc含有)を皮下投与した。投与14,28,42 日後に血液サンプルを採取した。それぞれのグループの 6匹のマウスから得られた等量の血清中の抗アビジン抗 体価をELISA法により測定した。抗体価を50%中点希釈倍 率として表し、結果を図8に示した。実施例17で作製 した免疫増強剤を投与したマウスの投与14日後における 血中抗体価は、製剤中のアビジン量が比較例4の10分 の1であるにもかかわらず、比較例4で得られた抗体価 の約180倍に達した。実施例18及び19で作製した免 疫増強剤を投与したマウスの投与14日後における血中抗 体価は、それぞれ比較例4で得られた抗体価の約250倍 及び約190倍に達した。また、実施例17、18及び1 9で作製した免疫増強剤を投与したマウスの血中抗体価 は、投与後6週間に亘って比較例4で得られた抗体価を

【0073】比較例4

Balb/Cマウス(雄、6匹)に100μgのアビジンを溶解したPBS溶液を皮下注射した。投与14、28、42日後に血液サンプルを採取した。6匹のマウスから得られた等量の血清中の抗アビジン抗体価をELISA法により測定した。抗体価を50%中点希釈倍率として表し、結果を図8に示した。

【0074】試験例8

4 グループのBalb/Cマウス(雄、各グループ6匹)にそ れぞれ実施例20で作製した免疫増強剤(アビジン5µg 含有)、実施例21で作製した免疫増強剤(アビジン5 μg含有)、実施例22で作製した免疫増強剤(アビジ ン5μg。IL-1β5μg含有)、実施例23で作製した免疫 増強剤(アビジン5μg, IL-1β5μg含有)を皮下投与し た。投与14、28、42日後に血液サンブルを採取した。そ れぞれのグループの6匹のマウスから得られた等量の血 清中の抗アビジン抗体価をELISA法により測定した。抗 体価を50%中点希釈倍率として表し、結果を図9に示し た。実施例20、21、22、23で作製した免疫増強 剤を投与したマウスでは、投与14日後から血中に抗アビ ジン抗体が検出されたにも関わらず、免疫増強製剤と等 量のアビジンを投与した比較例5では、試験期間中抗ア ビジン抗体価は検出感度以下であった。実施例20、22、 23の免疫増強製剤を投与したマウスの血中抗体価は、投 与後28日間に亘って比較例6で得られた抗体価を上回 り、実施例22及び23の免疫増強製剤を投与したマウスの 血中抗体価は、試験期間中を通して比較例5で得られた 抗体価を大きく上回った。

【0075】比較例5

O Balb/Cマウス(雄、6匹)に5μgのアビジンを溶解した

PBS溶液を皮下注射した。投与14、28、42日後に血液サンプルを採取した。6匹のマウスから得られた等量の血清中の抗アビジン抗体価をELISA法により測定した。抗体価を50%中点希釈倍率として表し、結果を図9に示した。

【0076】比較例6

Balb/Cマウス(雄、6匹)に5μgのアビジンを溶解した 0.26重量%のアルムを含むPBS溶液を皮下注射した。投与 14、28、42日後に血液サンプルを採取した。6匹のマウ スから得られた等量の血清中の抗アビジン抗体価をELIS 10 A法により測定した。抗体価を50%中点希釈倍率として表 し、結果を図9に示した。

*【0077】試験例9

シリコーンを担体として用いた免疫増強製剤を実施例2 0及び22と同様の手順で調製した。これらを以下マト リックス型免疫増強製剤と表す。マトリックス型免疫増 強製剤の組成を表1に示した。また、別途シリコーンを 担体として用いた被覆された免疫増強製剤を実施例21 及び23と同様の手順で調製した。これらを以下同心円 型免疫増強製剤と表す。各免疫増強製剤の組成を表1に 示した。

) 【0078】 【表1】

試験例9にて使用した、シリコーンを担体として用いた免疫増強製剤

および対照製剤

グループ		組	录 (μg)
-		IL-1 β	アビジン
1	マトリックス型	0	500
2	マトリックス型	0 .	100
3	マトリックス型	0	10
4	マトリックス型	20	500
5	マトリックス型	20 .	100
6	マトリックス型	20	10
7a	同心円型	50	500
7b	マトリックス型	50	500
8	マトリックス型	50	100
. 9	マトリックス型	50	10
10	500 μg のアビジ	ンを含有した!	ノン酸緩衝液
11	500 μgの アビジンと	20 μgの IL-1	βを含有したリ
	ン酸緩衝液		
12	500 μg のアビジンと	アルムを含す	「したリン酸緩衝
	液		•

【0079】ヒツジにシリコーンを担体として用いた免疫増強製剤及び対照製剤(グループ10、11、12)を皮下投与し、28日後に100μgのアビジンを含有するPBS溶液を投与した。

シリコーンを担体として用いた免疫増強製剤の免疫増強 効果 ヒツジは7頭づつ12のグループに分配した。表1に従って各製剤をヒツジに皮下投与した。初回免疫の28日40 後に100μgのアビジンを投与し、二次免疫を施した。結果を表2に示した。

[0080]

【表2】

試験例9で得られたヒツジでの抗アビジン抗体師 (50% 中点希釈倍率)

	グル	組成	k̄ (μg)	一次	免疫後	二次	免疫後
	ープ						
		IL-1β	アビジン	14日後	28日後	14日後	28日後
M	1	0	500	500	160	500	398
M	2	D	100	795	500	398	50
М	3	0	10	560	630	1260	1260
М	4	20	500	1585	1000	2510	1260
М	5	20	100	2000	1000	2000	1260
М	6	20	10	2000	1780	4467	3980
М	7b	50	500	2820	1585	6310	4467
· M	8	50	100	560	560	5012	2512
M	9	50	10	6310	6310	10000	6310
CR	7a	50	500	7080	6310	19950	19950
S	9	0	500	200	<50	<50	<50
S	10	20	500	1000	316	6310	1585
Α	11	0	500	1585	1585	5012	2512

M: マトリックス型免疫増強製剤

CR: 同心円型免疫增強製剂

S: リン酸級衝液

A: アルムを含有したリン酸緩衝液

【0081】各グループにおいて、7頭のヒツジから得 られた血清を等量混合した血清を段階希釈し、血清中の 抗アビジン抗体価をELISA法により測定した。IL-18を 含有しない場合、マトリックス型免疫増強製剤では全て の投与グループにおいて、溶液投与グループに比べて高 い免疫効果が得られたが、その免疫効果はアルムを含有 30 した溶液投与グループの免疫効果に比べて低かった。マ トリックス型免疫増強製剤及び溶液製剤において、アジ ュバントとしてIL-1βを添加することによって抗体応答 は増強された。IL-1βを含有するマトリックス型免疫増 強製剤のいくつかではアルムを含有した溶液投与グルー プの免疫効果に比べて高い免疫効果がみられた。また、 マトリックス型免疫増強製剤においては、抗原投与量が 低いほど高い抗体応答が得られる傾向が見られた。同心 円型免疫増強製剤では、抗体価及び免疫応答の維持期間 でマトリックス型免疫増強製剤よりも優れた結果が得ら れた。

シリコーンを担体として用いた免疫増強製剤の生体親和 性

ヒツジは7頭づつ8つのグループに分配した。表3に従って、各免疫増強製剤をヒツジに皮下投与した。

[0082]

【表3】

試験例9での生体親和性の評価に使用した、シリコーンを

担体として用いた免疫増強製剤

グループ		組足	ξ (μ g)
		iL-1β	アビジン
1	マトリックス型	0	0
2	マトリックス型	0	500
3	マトリックス型	50	0
4	マトリックス型	50	500
5	同心円型	0	500
6	同心円型	50	0
7	同心円型	50	500

0 【0083】各グループにつき、2頭のヒツジで白血球数と体温を測定した。組織学的解析のため、製剤投与部位の組織を採取した。

投与2日後(ヒツジ2頭)

投与4週間後(ヒツジ2頭)

投与8週間後(ヒツジ2頭)

投与2日後、すべての免疫増強製剤の投与部位で弱い浮腫が観察された。この反応は、 IL-1βを含有した免疫増強製剤でより顕著であった。投与4週間及び8週間後、免疫増強製剤周囲の組織は正常であった。免疫増強 30 製剤は肉眼的な所見では、カプセル化されず、組織に癒

着せず、容易に動かすことが可能であった。有害な組織 反応は見られなかった。

【0084】全身反応

体温と白血球数測定を実施した。得られた結果を、シリ コーンのみの製剤については図10aとbに、 IL-18 のみを含有した免疫増強製剤については図11aとb に、アビジンと IL-1βを含有した免疫増強製剤につい ては図12aとbに示した。IL-1βを含有しないすべて の免疫増強製剤では、体温あるいは白血球数について有 害な影響は誘起されなかった。IL-1βのみを含有した免 10 疫増強製剤では、IL-1βを溶液で投与した場合に比べて 軽度の一過性の体温上昇がヒツジで見られた。このヒツ ジでの体温上昇は1℃で、24時間で平常レベルに戻っ た。一方、白血球数は平常レベルの4倍まで上昇した が、24時間後には再び平常レベルに戻った。アビジン を免疫増強製剤に含有した場合、 免疫増強製剤から放 出されたIL-18に由来する白血球数及び体温の変化の過 酷性と持続性の双方が減弱された。これらの結果は、シ リコーンを担体として用いた免疫増強製剤は体温及び白 血球数に長期間の影響を与えず、一過性のこれらの値の 20 変動は軽微であり、シリコーン自身に由来する反応では なく、 IL-18を含有したことによることを示してい

【0085】<u>投与部位の免疫組織学的解析</u> 免疫組織学的解析の結果は、シリコーン免疫増強製剤の タイプによって変わらず、 IL-18の含有の有無のみが 異なった結果を与えた。

1. IL-1βを含有した免疫増強製剤

2日後: IL-18を含有した免疫増強製剤を投与したすべての動物では、投与部位からその周囲の組織にかけて広範囲に細胞(主として好中球)の集積が見られた。 T及びB細胞マーカーに対する染色で染色された細胞は、主として表皮部分に存在し、僅かに表皮の低層部分に分散していた。

4週後:観察された免疫担当細胞は、主として好中球であった。2日後に比べて主要組織適合性複合体(M-C) Class I及びII陽性細胞の増加が確認された。免疫増強製剤を取り巻く層に僅かにCD4、CD8、 γ δ 、CD1陽性細胞が存在し、組織間に分散していた。CD45R陽性細胞もまた、表皮にかけて分散していた。

32

8週後:免疫担当細胞は主として免疫増強製剤を取り巻く層に存在し、組織は4週後に比べてより通常に近い様相を呈した。LCA陽性細胞が免疫増強製剤を取り巻き、如何なるリンパ球マーカーにも陰性である免疫増強製剤を取り巻く細胞層が存在した。これらの細胞は線維芽細胞であると思われた。パラフィン切片をマッソントリクローム染色したところ、免疫増強製剤を取り巻く薄い層が濃く染色され、これらがコラーゲンであることが分かった。この結果は、免疫増強製剤のカプセル化が始まっていることを示している。免疫増強製剤周囲のLCA場性の細胞層中にはM+C Class I及びII陽性細胞もまた見られたが、これらの細胞は4週後のように組織間に分散していなかった。 また、CD4、僅かなCD8、 γ δ 、CD1とCD 45R陽性細胞の分散が見られた。

2. IL-18を含有しない免疫増強製剤

2日後: IL-18を含有しない免疫増強製剤を投与した 動物から採取した組織標本は、正常な皮膚の様相を呈し ていた。細胞の集積、浮腫は見られなかった。表皮中の 細胞に僅かにリンパ球表面マーカーで染色される細胞が 存在した。

4週後:投与部位周囲に線維芽細胞が見られた。更に同心円型の免疫増強製剤では、製剤の開口部でLCA陽性細胞が見られた。これらの細胞は、主としてM+C Class I 陽性の細胞であり、Class II及びCD4陽性の細胞は僅かであった。

8週後:免疫増強製剤周囲に線維芽細胞が見られた。また、リンパ球表面マーカーで染色される細胞は殆どなかった。これらの結果は、シリコーンを担体として用いた免疫増強製剤がヒツジの皮下投与においてよく許容され、投与8週間後の時点で当該免疫製剤の使用を制限するような有害な反応は見られなかったことを示している。

【0086】試験例10

コラーゲンを担体として用いた免疫増強製剤を実施例7と8と同様な方法で調製し、試験例9と同様の実験を行った。免疫増強製剤の組成を表4に示し、得られた結果を表5に示した。

[0087]

【表4】

40

試験例10での、コラーゲンを担体として用いた免疫増強製剤 における免疫増強効果の、抗原およびサイトカイン投与量への 依存性の検討に使用した製剤

グループ	組成	է (µg)
	IL-1 <i>β</i>	アビジン
1	0	500
. 2	0	100
3	0	10
4	2	500
.5	2	100
6	2	10
7	20	500
8	20	100
9	20	10
10	50	500
11	50	100
12	50	10

- * 皮下投与
- * 100 µg の アビジンを含有したリン酸緩衝液を用いた 2次免疫を実施

[0088]

* *【表5】 試験例10での、コラーゲンを担体として用いた免疫増強製剤における

免疫増強効果の、抗原およびサイトカイン投与量依存性 (50% 中点希釈倍率)

グル 一プ	組兵	組成 (µg)		一次免疫後		二次免疫後	
	IL-1β	アビジン	14日後	28日後	14日後	28日後	
1	0	500	500	315	315	315	
2	0	100	80	100	315	160	
3	0	10	1000	630	630	630	
4	2	500	2000	700	630	400	
5	2 .	100	2000	795	630	250	
6	2	10	1000	795	795	500	
7	20	500	1580	795	795	795	
8	20	100	2000	1000	1260	1000	
9	20	10	1000	700	500	400	
10	50	500	2000	1260	2000	1260	
11	50	100	2500	2000	2000	1580	
12	50	10	400	200	630	630	

【0089】コラーゲンを担体として用いた免疫増強製 剤に IL-1β を含有させることによって、 IL-1β を含 有しない時に比べてアビジンに対する抗体応答を増強で きた。実験で使用した最も高濃度の二段階のIL-1β濃度 50 ついて、表6に従って溶液投与と比較した。

で最も高い免疫応答が得られたが、IL-1β の最適な投 与量を統計学的に確立することはできなかった。コラー ゲンを担体として用いた免疫増強製剤の免疫増強効果に [0090]

35

* *【表6】

試験例10での、コラーゲンを担体として用いた免疫増強製剤における、

免疫増強効果の評価に使用した製剤

グル		*	I成 (μg)
一プ			
		IL-1 <i>β</i>	アビジン
1	免疫增強製剤	0	500
2	免疫增強製剤	20	500
3	アルムを含有したリン 酸緩衝液	0	500
4	アルムを含有したリン 酸緩衝液	20	500
5	リン酸緩衝液	0	500
6	免疫增強製剤	20	500 i.m.
7	アルムを含有したリン 酸緩衝液	20	500 i.m.

i.m.: 筋肉内投与

[0091]表中に特に示した場合以外は、すべての製剤を皮下投与し、 100μ のアビジンを含有するPBS溶液により二次免疫を施した。二次免疫の28 日後、羊毛が生えていない内腿部分に 1μ のアビジンを含有するPBS溶液を皮内投与することによって、遅延型過※

※敏症反応の誘導を測定した。投与24時間、48時間後のアビジンを投与した部位での浮腫及び紅斑の発症を調べた。結果を各々、表7と8に示した。

[0092]

【表7】

試験例10で得られたビツジでの抗アビジン抗体価 (50%中点希釈倍率)

グル ープ	組成(岬)		一次免疫後		二次免疫後					
	IL-1β	アビジン	14日	28日 後	14日 後	28日	43 日 後	53日 後	76日 後	
1	0	500	200	126	126	100	100	100	80	
	免疫	曾建製剤								
2	20	500	400	282	200	891_	1631	251	80	
	免疫	営建製剤								
3	0	500	1000	1000	3163	251	251	158	126	
	アルムをン酸緩衝	含有したリ 液								
4	20	500	5012	5012	8913	1778	1259	1000	80	
	アルムを	含有したリ 液				•				
5	0	500	159	50	159	159	159	159	794	
	リン面	的設置液						ļ		
6	20	500	2512	1000	631	251	251	158	126	
	免疫增	強製剤,im					<u> </u>	<u> </u>		
7	20	500	5012	1995	1995	1259	794	794	126	
		含有したリ 妊液、im								

ルナ	10の選延型過敏症反応の 組成	ヒツジ番号	24時	間後	48 時間後		
		·	紅斑	洋腫	紅斑	浮地	
		G1		-			
	500 μgのアビジン	G2	-	<u> </u>		_	
	を含有した、	G3	-	-	+		
1 .	コラーゲンを担体	G4					
٠.	として用いた免疫増強	G5					
	製剤	GB	-	-			
	ace,	G7	+	-	-		
_	500 μgのアビジン	GB	-	-		-	
		G9	 		-		
	と20 μgの IL-1 β を 含有した、	G10	-	-	-		
2	コラーゲンを担体	GII	-	-	-	-	
_	として用いた	G12	-	-	-		
	免疫增強製剤	G13	-	-		-	
	ALL POINTERN	G14	-	-	-	+	
		G15	-	-	-	-	
		G18	+		-		
	500 四の アピシン	G17	•	•	+	-	
3	とアルムを含有し	G18	4+	+	++	+	
	たリン酸緩衝液	G19	+		+	-	
	1272 83.44	G20	+	-	+	+	
		G21	+++	- +	++	+	
	<u> </u>	322	-	-	-	-	
	500 µgのアピジン、 20 µgの IL-1 ß と アルムを含有した リン酸級衝液	G23	-	-	+	+	
		G24	+	-	+	-	
4		G25	+	44	-	_	
•		G28	+		+	-	
	1	G27	1		+	-	
		G28	+			-	
		G29	+++	+	++	-	
	1	G30	•		•	-	
	500 µgのアビジン	G31	+	-	-		
5	を含有した	G32	•	•	•	-	
-	リン酸緩衝液	G33	+	-	+	-	
		G34	++	+	<u> </u>	•	
2	CT-0- C	G35					
	I.M.	G36	+	-	+	-	
	500 μgのアビジンと	G37	-	-	•	-	
	20 µgの IL-1 βを含	G38	+	•	•		
8	有した、コラーゲン	G39	•		•	-	
	を担体として用いた	G40	-	-	•	-	
	免疫增強劑	G41	+	+	+	-	
		G42	-	<u> </u>		-	
	I.M.	G43	I -	_ <u> </u>	-	_	
	500 μgのアピジン、	G44	-	-	-		
	20 µgØ L-1 β Ł	G45	·	-	-	•	
7	アルムを含有した	G46	+	-	+	-	
	リン酸級衝波	G47	++	+	+	-	
		G48	++	+		-	
	1.	G49	+	-	1	-	

【0094】コラーゲンを担体として用いた免疫増強製剤は、強い遅延型過敏症反応を誘起しなかった。一方、溶液製剤では、弱い遅延型過敏症反応が観察された。また、すべてのグループで、即時型過敏症反応は観察されなかった。

37

【0095】試験例11

表9に示した免疫増強製剤を用いて、試験例9及び試験例10と同様にして単回投与による免疫効果を測定した。得られた結果を表10と表11および12に示した。

【0096】 【表9】

試験例11での、単回投与による免疫増強効果の評価に使用した製剤

グループ		組成	(µg)
		IL-1β	アピジン
1	コラーゲンを担体として用いた 免疫増強製剤	0	500
2	コラーゲンを担体として用いた 免疫増強製剤	50	100
3	コラーゲンを担体として用いた 免疫増強製剤	50	500
4	マトリックス型免疫増強製剤	0	500
5	マトリックス型免疫増強製剤	50	100
6	マトリックス型免疫増強製剤	50	500
7	アルムを含有したリン酸級衝液	0	500
8	アルムを含有したリン酸級衝液	50	100
9	アルムを含有したリン酸緩衝液	50	500
10	リン酸緩衝液	0	500
1.1	同心円型 免疫增強設剤	0	500
12	同心円型 免疫增強製剤	50	500

^{*} 皮下投与

[0097]

* * 【表10】

試験例11で得られたヒツジでの抗アビジン抗体価 (50% 中点希釈倍率)

							0.		二次免疫後	
	グル 一ブ	組成 (μg)			一次免疫後					
		IL-1	アピジン	14日	28日	42日	56日	69 日	10日	33日
		В		後	後	後	後	後	後	
Cì		0	500	15B	126	<50	<50	<50	<50	<50
	2	50	100	224	158	200	100	100	281	158
l ci	3	50	500	631	282	126	50	50	158	158
	4	0	500	158	100	<50	<50	<50	450	<50_
M M	5	50	100	1000	562	200	<50	<50	199	158
	6	50	500	631	316	178	80	126	794	398
M	7	0	500	891	501	251	158	158	794	630_
<u>A</u>		50	100	1585	1259	562	251	251	1000	630
<u>A</u>	8		500	7943	2239	1000	398	398	1000	398
A_	9	50	500	158	80	<50	<50	<50	158	<50
S	10	0		251	126	<50	c50	<50	<50	<50
CR	11	0	500		3162	177B	1259	1259	3162	1259
CR	1 12	50	500	7943	1 3102	1,,,0				

Ci: コラーゲンを担体として用いた免疫増強製剤

M: マトリックス型 免疫増強製剤

A: アルムを含有したリン酸緩衝液

S: リン酸緩衝液

CR: 同心円型 免疫增強製剤

試験例11で得られた遅延型過敏症反応の強度

グル 一ブ	組成	ヒツジ番号	24 時	間後	48 時	間後
		 	紅斑	浮腫	紅斑	浮醒
		Y1	-	-	-	-
	500 μgのアピジン	Y2	-	•	-	
	を含有した、	Y3		-	-	•
1	コラーゲンを担体	Y4	-	•		•
,	として用いた	Y5	+		+	-
	免疫增強製剤	Y6	•	•	•	•
	元双相及和	Y7	-		-	•
	100 μgのアビジン	Y8	-	•	•	•
	と50 μgの IL-1 β を	Y9	•	•	•	•
	含有した。	Y10	-		-	-
2		Y11	-	•	-	-
_	として用いた	Y12	•	•	-	-
	免疫增強製剤	Y13	-	• .		-
	ALK-BINGEN	Y14	++++	•	+++	•
	500 μgの アビジン	Y15		-	•	•
3	と50 μ gの IL-1 β を	Y16		•	-	•
	含有した。	Y17		-	-	-
	コラーゲンを担体	Y18	++	++	•	-
	として用いた	Y19	•		•	-
	免疫增強製剤	Y20	. •	-	•	
	元元伯压权的	Y21		-	•	-
		Y22	-	-	-	<u> </u>
	500μgのアビジン	Y23	-	-	-	·
	を含有した	Y24		-		
4	マトリックス型	Y25		-	-	•
•	免疫增強製剤	Y26	1 -	-	-	-
	JUZZ-BJACKI.	Y27	•	-		
		Y28			-	-
_		Y29	-	-	•	-
	100 μgのアビジン	Y30	-	<u> </u>	-	-
	と50µgのIL-1βを	Y31	•	<u> • </u>	-	<u> </u>
5	含有した、	Y32	<u> </u>		<u> </u>	-
	マトリックス型	Y33	-	<u> </u>	<u> </u>	•
	免疫增強製剤	Y34		<u> - </u>	<u> </u>	<u> </u>
		Y35] •		<u> </u>	<u> </u>
		Y36		-	•	 -
	500 μgのアビジン	Y37	<u> </u>	<u> </u>	<u> </u>	↓
	と50 μgの IL-1βを	Y38	•	<u> </u>	<u> </u>	↓
6	含有した、	Y39			<u> </u>	↓ -
	マトリックス型	Y40	-	<u> </u>	<u> </u>	<u> -</u>
	免疫增強製剤	Y41	-		<u> </u>	<u> </u>
		Y42	-	4.5		<u> </u>

【表12】

[0099]

試験例11で得られた遅延型過敏症反応の強度

グル ープ	組成	ヒツジ番号	24 8	24 時間後		48 時間後	
			紅斑	浮瞳	紅斑	浮腫	
		Y43	-		-	-	
	•	Y44	-			-	
7	500 µgのアビジン	Y45	+++	++	•	+++	
	とアルムを含有	· Y46	+	•	+	•	
•	したリン酸響衝液	Y47	+	+	++	+	
		Y48	+	•		•	
		Y49	+	•	+	•	
		Y50	-	•	•		
		Y51	-	•	-	•	
	100 μg のアビジン、	Y52	-	-	•	•	
8	50 ugの IL-1 Bと	Y53	++-	++	+++	++	
	アルムを含有した	Y54	•	•	•	-	
	リン酸緩衝液	Y55	++	+	++		
	7 PERCENCIANTA	Y56	+	+	+	+	
		Y57	+++	•	++	+	
	500 μg のアビジン、	Y58	-		•	-	
	50 µaの IL-1 B と	Y59	-	•	+	-	
9	アルムを含有した	Y60	+	<u>.</u> .	+	-	
•	リン酸緩衝液	Y61	-	-	•	-	
	7 DESCRICTION	Y62	++	+	++	-	
		Y63	+		+	•	
		Y64	-		•	-	
		Y65	-		-	-	
	500 μg のアビジンを	Y66	-	•	-	-	
10	合有した	Y67	-	-	+	•	
	リン酸緩衝液	Y68	-	-	-	-	
	/ - man	Y69	-	-	-	-	
		Y70	-	•	-	-	
		Y71	+	•	•	•	
		G63	-	•	•	•	
11	500 μg のアビジンを	G64			•	-	
	含有した同心円型	G65	-	•		-	
	免疫增強製剤	G66		•	•	•	
		G67	-	•		-	
		G68	-	•	•	•	
12	500 μg のアビジンと	G69	-	•	-	-	
	50 μgの IL-1 βを含	G70	-	-	•	•	
	有した同心円型	G71	•	-	-	-	
_	免疫增強製剤	G72	-	-	-	-	
	,	G73	+		+	•	
		G74	+	-	+	-	

【0100】単回投与時、コラーゲンあるいはシリコーンを担体として用いた免疫増強製剤は、強い遅延型過敏症反応を誘起しなかった。一方、溶液製剤では、弱い遅延型過敏症反応が観察された。また、すべてのグループで、即時型過敏症反応は観察されなかった。総体的に、同心円型免疫増強製剤が最も高い抗体価を誘導し、免疫40 応答を最も維持する点において、単回投与による免疫に最も有効な製剤であった。同心円型免疫増強製剤の免疫効果は、IL-18の含有の有無に依存した。また、同心円型免疫増強製剤は、遅延型過敏症反応を誘起しなかった。IL-18を含有した免疫増強製剤を投与した動物では、効果的な免疫記憶反応が誘導された。このことは一次免疫で誘導された抗体の抗体価が低下した一次免疫の69日後に実施された二次免疫に対する良好な免疫反応

で明らかである。また、これらの実験で得られた血清サンブルについて、抗体のタイプ分類を実施した。結果、すべての投与群でIoM抗体が投与14日後の時点のみで低いレベルで検出されたのに対して、実験期間中を通して高いレベルのIoC抗体が血清中に存在していた。このことはただ一度の抗原投与で、抗体のタイプ変換(isoty peswitching)が有効に起こったことを示している。

【0101】試験例12

免疫増強製剤の免疫増強効果は、モデル抗原であるアビジンだけでなく、表13に示した実施に感染予防効果がある一連の抗原でも確認された。

[0102]

【表13】

試験例12での、クロストリディウム属の細菌の抗原に対する免疫増強効果

の評価に使用した製剤

グループ	製剤
1	破傷風トキソイド と50 μgの IL-1 βを含有した、コラーゲン
	を担体として用いた 免疫増強製剤
2	破傷風トキソイドと50 µgの IL-1 βを含有した、同心円型
	免疫增強製剤
3	破傷風トキソイド、50 μgの IL-1βとアルムを含有したリン
	酸緩衝液
4	破傷風トキソイドとアルムを含有したリン酸緩衝液
5	ノビーのトキソイドと50μgの IL-1β を含有した、コラーゲ
	ンを担体として用いた免疫増強製剤
6	ノビーのトキソイド と50 μgの IL-1 βを含有した、同心円型
	免疫增強製剤
7	ノビーのトキソイド、50 μg のIL-1 β とアルムを含有したリ
	ン酸緩衝液
8	ノビーのトキソイドとアルムを含有したリン酸緩衝液

[0103]

* *【表14】

試験例12で得られた、ヒツジでの抗クロストリディウム属細菌トキソイド

抗体価 (50% 中点希釈倍率)

グル 一プ	一次免疫後		二次免疫後			
	14日後	28日後	14日後	27日後	50日後	
1	562	251	1000	794	501	
2	1995	1000	7080	2511	1580	
3	1584	891	2512	1259	631	
4	891	631	1259	794	398	
5	891	501	5623	1412	891	
6	2512	1585	15849	5012	3163	
7	891	282	2512	1259	891	
8	1259	501	1412	631	355	

【0104】結果を表14に示した。破傷風及びノビー

心円型免疫増強製剤はアルムを含有した製剤及びアルム とIL-1βを含有した製剤の双方に比べて明らかに優れた 免疫増強効果を示した。コラーゲンを担体として用いた 免疫増強製剤は、アルムを含有した製剤と同等の免疫増 強効果を示した。一方、ノビーのトキソイドを用いた実 験においては、同心円型免疫増強製剤は一次免疫のみ で、アルムを含有した製剤に比べて2倍以上の抗体価を 誘導した。

【0105】試験例13

(novyi)のトキソイドを用いた両方の実験において、同 30 シリコーンを担体として用いた免疫増強製剤に於ける免 疫増強効果の、抗原(アビジン)及びサイトカイン(IL -18)の投与量依存性を調べた。実験に使用した製剤の 組成及びシリコーンを担体として用いた免疫増強製剤の タイプを表15に示した。抗体価を14日毎に測定し た。得られた結果を表16に示した。

> [0106] 【表15】

試験例13での、シリコーンを担体として用いた免疫増強製剤における、 免疫増強効果の抗原およびサイトカイン投与量依存性の検討に使用 した製剤

グループ		組成 (µg)		
		IL-1 β	アビジン	
1	同心円型	0	100	
2	同心円型	0	10	
3	同心円型	0	5	
4	マトリックス型	. 0	5	
5	同心円型	50	100	
6	同心円型	50	10	
7	同心円型	25	5	
8	マトリックス型	50	100	
9	マトリックス型	50	10	
10	マトリックス型	25	5	
11	リン酸緩衝液	0	100	
12	リン酸緩衝液	0	10	
13	リン酸緩衝液	0	5	
14	リン酸緩衝液	50	100	
15	リン酸緩衝液	50	10	
16	リン酸緩衝液	25	- 5	
17	アルムを含有したリン酸級衝液	0	100	
18	アルムを含有したリン酸緩衝 液	0	10	
19	アルムを含有したリン酸緩衝 液	0	5	

[0107]

* *【表16】

試験例13での、シリコーンを担体として用いた免疫増強製剤における免疫増強効果 の、抗原およびサイトカイン投与量依存性 (50% 中点希釈倍率)

	グル ーブ		成 (1)	一次免疫後				
	-	IL-1 B	アピジン	14日後	28日後	42日後	56日後	70日後
CR	1	0	100	398	501	251	158	158
CR	2	0	10	<50	631	501	<50	450
CR	3	D	5	126	1259	1778	<50	c 50
М	4	٥	5	794	1259	251	126	126
CR	5	50	100	3981	5623	2512	1995	1995
CR	6	50	10	3981	3981	794	1259	1259
CR	7	25	5	5012	5012	1778	794	794
M	8	50	100	501	794	196	158	158
М	9	50	10	251	501	316	15B	158
M	10	25	5	158	316	316	125	80
8	11	0	100	126	158	80	<50	<50
S	12	0	10	<50	126	<50	<50	<50
S	13	0	5	<50	251	<50	<50	50
S	14	50	100	398	196	251	125	126
S	.15	50	10	196	251	196	<50	<50
S	16	25	5	58	251	<50	<50	<50
Α	17	٥	100	1995	1995	631	631	251
Α	1B_	0	10	1259	1995	631	631	251
Α	19	0	5	1000	631	316	316	251

M: マトリックス型 免疫増強製剤

A: アルムを含有したリン酸機衝液

S: リン酸経衝液

47

CR: 同心円型免疫增強製剤

【0108】とれらの結果は、同心円型免疫増強製剤に よって抗体が高い抗体価でかつ持続的に誘導されたこと を示している。 最も持続的な免疫反応は、IL-18と抗 原の投与量が最も高い免疫増強製剤で得られた。70日 後の時点では、 IL-18を含有した免疫増強製剤は、溶 液状態でのアルムを含有した製剤に比べて明らかに高い 50 強製剤は、固有のアジュバント活性を示した。適当な濃

抗体価を維持した。コラーゲンあるいはシリコーンを担 体とした免疫増強製剤は、ワクチンの剤形として有用で あった。抗原の免疫原性及びサイトカインの生物活性 は、免疫増強製剤への製剤化によって損なわれなかっ た。コラーゲンあるいはシリコーンを担体とした免疫増 度で IL-18 を免疫増強製剤に含有させた場合、免疫増強製剤で得られた抗体応答は、アルムアジュバントを用いて誘導されるものよりも高かった。IL-18 をアジュバントとして含有した同心円型免疫増強製剤は、本実験で使用した他のいかなる免疫方法に比べても顕著に高い免疫応答を誘導した。更に、誘導された免疫応答を他の免疫方法に比べてより長期間維持した。コラーゲンあるいはシリコーンを担体とした免疫増強製剤の投与によって、全身及び投与局所での副作用症状は見られなかった。この結果は、これらの製剤は安全なワクチン剤形として使用できることを示している。ここに示した本発明の意図から離れることなしに、種々の応用および/または変更ができるが、それらはすべて本発明の技術的範囲内であることは言うまでもない。

49

【図面の簡単な説明】

【図1】 試験例1及び試験例2における免疫増強製剤 からのアビジンと $IL-1\beta$ の累積放出率の経時変化を示すグラフである。

【図2】 マウスにおける抗アビジン抗体価の推移を示すグラフである。

【図3】 ヒツジにおける抗アビジン抗体価の推移を示すグラフである。

【図4】 実施例7における免疫増強製剤をヒツジに投*

* 与した部位の組織像を示す顕微鏡写真である。

【図5】 実施例8における免疫増強製剤をヒツジに投与した部位の組織像を示す顕微鏡写真である。

【図6】 試験例5 における免疫増強製剤からのアビジンの累積放出率の経時変化を示すグラフである。

【図7】 試験例6 における免疫増強製剤からのアビジンとIL-18の累積放出率の経時変化を示すグラフである

【図8】 試験例7におけるマウスにおける抗アビジン 10 抗体の推移を示すグラフである。

【図9】 試験例8 におけるマウスにおける抗アビジン 抗体の推移を示すグラフである。

【図10】 試験例9におけるヒツジに1L-18、アビジンを含有しないシリコーンのみの製剤を投与した後の体温および白血球数の経時変化を示すグラフである。

【図 11】 試験例 9 におけるヒツジに 1L-185 0 μ g を含有するマトリックス型免疫増強製剤を投与した後の体温および白血球数の経時変化を示すグラフである。

20 【図12】 試験例9 におけるヒツジに $IL-1\beta$ 5 0μ g とアビジン5 00μ g を含有するマトリックス型 免疫増強製剤を投与した後の体温および白血球数の経時 変化を示すグラフである。

[図1]

【図7】

…∎…ァビジン(実施例20) …σ…ァビジン(実施例21) —■—ァビジン(実施例22) —σ—ァビジン(実施例23) —●— IL-1β(実施例22) —◆— IL-1β(実施例23)

【図3】

【図4】

図面代用写真

【図9】

[図5]

図面代用写真

【図6】

【図10】

【図11】

【図12】

フロントページの続き

(72)発明者 藤岡 敬治

大阪府茨木市蔵垣内1丁目3番45号 住友 製薬株式会社内

(72)発明者 佐野 明彦

大阪府茨木市蔵垣内 1 丁目 3 番 45号 住友 製薬株式会社内

(72)発明者 永原 俊治

大阪府茨木市蔵垣内1丁目3番45号 住友 製薬株式会社内 (72)発明者 マルコム・ロイ・ブランドン

オーストラリア3079ビクトリア州メルボルン、アイバンホー・イースト、キャステラ・ストリート14番

(72)発明者 アンドリュー・ドナルド・ナッシュ

オーストラリア3070ピクトリア州メルボル ン、ノースコート、グリーン・ストリート

24番

(72)発明者 シャリー・ロフトハウス

オーストラリア3070ビクトリア州メルボル ン、ノースコート、ウールハウス・ストリ

ート2132番

【公報種別】特許法第17条の2の規定による補正の掲載

W

G

【部門区分】第3部門第2区分

【発行日】平成17年9月15日(2005.9.15)

【公開番号】特開平11-193246

【公開日】平成11年7月21日(1999.7.21)

【出願番号】特願平10-155343

【国際特許分類第7版】

A 6 1 K 39/39

A 6 1 K 9/00

A 6 1 K 39/00

A 6 1 K 47/30

[FI]

A 6 1 K 39/39

A 6 1 K 9/00 A 6 1 K 39/00

A 6 1 K 47/30 B

【手続補正書】

【提出日】平成17年4月6日(2005.4.6)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正の内容】

【特許請求の範囲】

【請求項1】

<u>コラーゲンおよびポリジメチルシロキサンからなる群から選ばれる</u>少なくとも一以上の 生体親和性材料からなる担体に、少なくとも一以上の抗原、または抗原を誘導する物質を 含んでなる免疫増強製剤。

【請求項2】

さらに一以上の製剤的添加剤を含有する請求項1記載の免疫増強製剤。

【請求項3】

抗原、または抗原を誘導する物質が、ウイルス、マイコプラズマ、細菌、寄生体、毒素、腫瘍細胞のいずれかに対する特異的な免疫反応を誘導し得る物質である<u>請求項1または</u>2に記載の免疫増強製剤。

【請求項4】

抗原、または抗原を誘導する物質が、化学的技術、組み換えDNA技術、細胞培養技術または発酵技術のいずれかの技術を用いた手法によって得られる物質である<u>請求項3</u>記載の免疫増強製剤。

【請求項5】

抗原が、ウイルス、マイコプラズマ、細菌、寄生体、毒素、腫瘍細胞のいずれかを弱毒化、無毒化または非病原性化したものである<u>請求項3</u>記載の免疫増強製剤。

【請求項6】

抗原、または抗原を誘導する物質が、ウイルス、マイコプラズマ、細菌、寄生体、毒素 、腫瘍細胞のいずれかから得られる物質である<u>請求項3</u>記載の免疫増強製剤。

【請求項7】

抗原を誘導する物質がウイルス、マイコプラズマ、細菌、寄生体、毒素、腫瘍細胞などに対する特異的な免疫を誘導し得る抗原の遺伝子配列をコードする核酸が生体内で当該抗原を産生するように組み込まれたプラスミドまたはウイルスからなる<u>請求項3</u>記載の免疫

增強製剤。

【請求項8】

溶液状、懸濁液状、ゲル状、フィルム状、スポンジ状、棒状または微粒子状である<u>請求</u> 項1または2に記載の免疫増強製剤。

【請求項9】

<u>コラーゲンおよびポリジメチルシロキサンからなる群から選ばれる</u>少なくとも一以上の 生体親和性材料からなる担体に、少なくとも一以上の抗原、または抗原を誘導する物質と 、免疫賦活、免疫刺激または免疫調節作用を有する少なくとも一以上の物質とを含んでな る免疫増強製剤。

【請求項10】

免疫賦活、免疫刺激または免疫調節作用を有する物質がサイトカインである<u>請求項9</u>記載の免疫増強製剤。

【請求項11】

さらに一以上の製剤的添加剤を含有する請求項9または10に記載の免疫増強製剤。

【請求項12】

抗原、または抗原を誘導する物質が、ウイルス、マイコプラズマ、細菌、寄生体、毒素、腫瘍細胞のいずれかに対する特異的な免疫を誘導し得る物質である<u>請求項9~11のいずれか</u>に記載の免疫増強製剤。

【請求項13】

抗原、または抗原を誘導する物質が、化学的技術、組み換えDNA技術、細胞培養技術または発酵技術のいずれかの技術を用いた手法によって得られる物質である<u>請求項12</u>記載の免疫増強製剤。

【請求項14】

抗原が、ウイルス、マイコプラズマ、細菌、寄生体、毒素、腫瘍細胞のいずれかを弱毒化、無毒化または非病原性化したものである<u>請求項12</u>記載の免疫増強製剤。

【請求項15】

抗原、または抗原を誘導する物質が、ウイルス、マイコプラズマ、細菌、寄生体、毒素、腫瘍細胞のいずれかから得られる物質である<u>請求項12</u>記載の免疫増強製剤。

【請求項16】

抗原を誘導する物質がウイルス、マイコプラズマ、細菌、寄生体、毒素、腫瘍細胞などに対する特異的な免疫を誘導し得る抗原の遺伝子配列をコードする核酸が生体内で当該の抗原を産生するように組み込まれたプラスミドまたはウイルスからなる<u>請求項12</u>記載の免疫増強製剤。

【請求項17】

溶液状、懸濁液状、ゲル状、フィルム状、スポンジ状、棒状または微粒子状である<u>請求</u> 項<u>9~11のいずれか</u>に記載の免疫増強製剤。

【請求項18】

抗原が、スーパー抗原である<u>請求項1または2に</u>記載の免疫増強製剤。

【請求項19】

抗原を誘導する物質がスーパー抗原の遺伝子配列をコードする核酸が生体内で当該抗原 を産生するように組み込まれたプラスミドまたはウイルスからなる<u>請求項1または2に</u>記 載の免疫増強製剤。

【請求項20】

抗原が、スーパー抗原である<u>請求項9~11のいずれかに</u>記載の免疫増強製剤。

【請求項21】

抗原を誘導する物質がスーパー抗原の遺伝子配列をコードする核酸が生体内で当該抗原 を産生するように組み込まれたプラスミドまたはウイルスからなる<u>請求項9~11のいず</u>れかに記載の免疫増強製剤。

【請求項22】

棒状である<u>請求項1または9</u>に記載の免疫増強製剤。

【請求項23】

- (a) 均一に分散した抗原、または抗原を誘導する物質を含有する非崩壊性の生体親和性材料の内層、および
- (b) 該内層の周囲を包む、水を通さない、内層の膨潤を制御し得る生体親和性材料の外層

からなり、内層の両端または片端が外部環境に直接接触するように開放している<u>請求項2</u>2に記載の免疫増強製剤。

【請求項24】

生体親和性材料が、ポリジメチルシロキサンである<u>請求項23</u>に記載の免疫増強製剤。 【請求項25】

抗原、抗原を誘導する物質または免疫賦活、免疫刺激もしくは免疫調節作用を有する物質の制御された放出挙動を示す<u>請求項22</u>に記載の免疫増強製剤。

【請求項26】

抗原、抗原を誘導する物質または免疫賦活、免疫刺激もしくは免疫調節作用を有する物質の持続的な放出挙動を示す<u>請求項25</u>に記載の免疫増強製剤。

【請求項27】

免疫賦活、免疫刺激または免疫調節作用を有する物質が、サイトカイン、ケモカイン、成長因子、アジュバント作用があるペプチド及びDNA塩基配列、アルム、フロイントの完全アジュバント、イスコム、サポニン、ヘキサデシルアミン、ジメチルジオクタデシルアンモニウム臭化物、アブリジン、細胞壁骨格構成物、コレラトキシン、リポポリサッカライド、エンドトキシン、リポソームからなる群から選ばれるアジュバントである請求項9に記載の免疫増強製剤。

【請求項28】

溶媒の非存在下でサイトカインを含有する<u>請求項10</u>に記載の免疫増強製剤。

【請求項29】

ヒト以外の哺乳動物または鳥類に、<u>請求項1~28</u>のいずれかに記載の免疫増強製剤を 投与することにより当該動物の免疫反応を調節し、産生される抗体を取得することを特徴 とする抗体の製造方法。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

8
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.