EECS 70 Discrete Mathematics and Probability Theory Fall 2015 Satish Rao Discussion 4A

1. Leaves in a tree

A *leaf* in a tree is a vertex with degree 1.

- (a) Prove that every tree on $n \ge 2$ vertices has at least two leaves.
- (b) What is the maximum number of leaves in a tree with $n \ge 3$ vertices?

Solution:

(a) We give a direct proof. Consider the longest path $\{v_0, v_1\}, \{v_1, v_2\}, \dots, \{v_{k-1}, v_k\}$ between two vertices $x = v_0$ and $y = v_k$ in the tree (here the length of a path is how many edges it uses, and if there are multiple longest paths then we just pick one of them). We claim that x and y must be leaves. Suppose the contrary that x is not a leaf, so it has degree at least two. This means x is adjacent to another vertex z different from v_1 . Observe that z cannot appear in the path from x to y that we are considering, for otherwise there would be a cycle in the tree. Therefore, we can add the edge $\{z, x\}$ to our path to obtain a longer path in the tree, contradicting our earlier choice of the longest path. Thus, we conclude that x is a leaf. By the same argument, we conclude y is also a leaf.

The case when a tree has only two leaves is called the *path graph*, which is the graph on $V = \{1, 2, ..., n\}$ with edges $E = \{\{1, 2\}, \{2, 3\}, ..., \{n-1, n\}\}$.

(b) We claim the maximum number of leaves is n-1. This is achieved when there is one vertex that is connected to all other vertices (this is called the *star graph*).

We now show that a tree on $n \ge 3$ vertices cannot have n leaves. Suppose the contrary that there is a tree on $n \ge 3$ vertices such that all its n vertices are leaves. Pick an arbitrary vertex x, and let y be its unique neighbor. Since x and y both have degree 1, the vertices x, y form a connected component separate from the rest of the tree, contradicting the fact that a tree is connected.

2. Edge-disjoint paths in hypercube

Prove that between any two distinct vertices x, y in the n-dimensional hypercube graph, there are at least n edge-disjoint paths from x to y (i.e., no two paths share an edge, though they may share vertices).

Solution: We use induction on $n \ge 1$. The base case n = 1 holds because in this case the graph only has two vertices $V = \{0, 1\}$, and there is 1 path connecting them. Assume the claim holds for the (n-1)-dimensional hypercube. Let $x = x_1x_2 \dots x_n$ and $y = y_1y_2 \dots y_n$ be distinct vertices in the n-dimensional hypercube; we want to show there are at least n edge-disjoint paths from x to y. To do that, we consider two cases:

1. Suppose $x_i = y_i$ for some index $i \in \{1, ..., n\}$. Without loss of generality (and for ease of explanation), we may assume i = 1, because the hypercube is symmetric with respect to the indices. Moreover, by interchanging the bits 0 and 1 if necessary, we may also assume $x_1 = y_1 = 0$. This means x and y both lie in the 0-subcube, where recall the 0-subcube (respectively, the 1-subcube) is the (n-1)-dimensional hypercube with vertices labeled 0z (respectively, 1z) for $z \in \{0,1\}^{n-1}$.

Applying the inductive hypothesis, we know there are at least n-1 edge-disjoint paths from x to y, and moreover, these paths all lie within the 0-subcube. Clearly these n-1 paths will still be edge-disjoint in the original n-dimensional hypercube. We have an additional path from x to y that goes through the

1-subcube as follows: go from x to x', then from x' to y' following any path in the 1-subcube, and finally go from y' back to y. Here $x' = 1x_2 \dots x_n$ and $y = 1y_2 \dots y_n$ are the corresponding points of x and y in the 1-subcube. Since this last path does not use any edges in the 0-subcube, this path is edge-disjoint to the n-1 paths that we have found. Therefore, we conclude that there are at least n edge-disjoint paths from x to y.

2. Suppose $x_i \neq y_i$ for all $i \in \{1, ..., n\}$. This means x and y are two opposite vertices in the hypercube, and without loss of generality, we may assume x = 00...0 and y = 11...1. We explicitly exhibit n paths $P_1, ..., P_n$ from x to y, and we claim they are edge-disjoint.

For $i \in \{1, ..., n\}$, the *i*-th path P_i is defined as follows: start from the vertex x (which is all zeros), flip the *i*-th bit to a 1, then keep flipping the bits one by one moving rightward from position i + 1 to n, then from position 1 moving rightward to i - 1. For example, the path P_1 is given by

$$000...0 \rightarrow 100...0 \rightarrow 110...0 \rightarrow 111...0 \rightarrow \cdots \rightarrow 111...1$$

while the path P_2 is given by

$$000...0 \rightarrow 010...0 \rightarrow 011...0 \rightarrow \cdots \rightarrow 011...1 \rightarrow 111...1$$

Note that the paths $P_1, ..., P_n$ don't share vertices other than x = 00...0 and y = 11...1, so in particular they must be edge-disjoint.

3. Baby Fermat

Assume that a does have a multiplicative inverse \pmod{m} . Let us prove that its multiplicative inverse can be written as $a^k \pmod{m}$ for some $k \ge 0$.

- Consider the sequence $a, a^2, a^3, \ldots \pmod{m}$. Prove that this sequence has repetitions. **Solution:** There are only m possible values \pmod{m} , and so after the m-th term we should see repetitions.
- Assuming that $a^i \equiv a^j \pmod{m}$, where i > j, what can you say about $a^{i-j} \pmod{m}$?

 Solution: If we multiply both sides by $(a^*)^j$, where a^* is the multiplicative inverse, we get $a^{i-j} \equiv 1 \pmod{m}$.
- Prove that the multiplicative inverse can be written as $a^k \pmod{m}$. What is k in terms of i and j?

 Solution: We can rewrite $a^{i-j} \equiv 1 \pmod{m}$ as $a^{i-j-1}a \equiv 1 \pmod{m}$. Therefore a^{i-j-1} is the multiplicative inverse of $a \pmod{m}$.