LOAN DOCUMENT

	PHOTOGRAPH THIS S	HEET
e l		
DTIC ACCESSION NUMBER	LEVEL	INVENTORY
N NOI		
	t e	,
TIC AC	DOCUMENT IDENTIFICATION	
E .		
	·	
	DISTRIBUTIO	N STATEMENT
TIS GRAM	7 [
INANNOUNCER USTIFICATION		
	-	
	₫	
STRIBUTION/	-	
VAILABILITY CODES ISTRIBUTION AVAILABILITY AND/OR SPECI	AL.	
	٦ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ	DATE ACCESSIONED
A-1		
DISTRIBUTION STAMP		
	Reproduced From	
	Best Available Copy	
	- Door Available copy	DATE RETURNED
-		
10021	223 034	,
1770	1223 03.	
		,
DATE RE	CEIVED IN DTIC	REGISTERED OR CERTIFIED NUMBER
	PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-FDA	sc .
IC FORM 70A	DOCUMENT PROCESSING SHEET	PREVIOUS EDITIONS MAY BE USED UNTIL

LOAN DOCUMENT

F-18 CREW AUTOMATED ESCAPE SYSTEM AND ESCAPE SYSTEM REPLACEMENT PROGRAM

FINAL REPORT

VOLUME

CDRL ITEM #A005

Task Order No. 23

Pach Infor Contract N62269-78-C-0191

Prepared for

NAVAL AIR DEVELOPMENT CENTER

Warminster, Pennsylvania

October 1979

COMPUTER SCIENCES CORPORATION

NO DISTRIBUTION STATEMENT

APPENDIX E

TABLES OF PREDICTED AND ACTUAL NWC SNORT F-18A SLED TEST DATA AT EJECTION TRAJECTORY EVENTS F-1

ICARUS PROGRAM VALIDATION STUDY PREDICTED F-18A NWC SLED TEST RESULTS

_	_
	_
C	כ
101	-
	_
Г	_
-	-
2	z
TINUL	ח
_	_
•	•
ŀ	_
L	u
-	1
7	•
•	J
-	_
C	2
ロンフロロ	2

PARAMETER	CINI	TEST 1	TEST 2	TEST 6	TEST 8	TEST 3	TEST 4	TEST 5	TEST 7
$^{ m V}$ target	KEAS	0	225	435	600	0	225	435	. 009
Percentile	&	86	. 86	86	86	3	3	3	3
$^{ m V}_{ m test}$	Ft./Sec.	0	377	735	1000	0	387 .	755	1011
t) _.	•sec•	0.527	0.524	0.547	0,547	0.522	0.504	0.513	0.523
×	Ft.	-2.1	195.5	399.8	544.8	-2.3	192.8	384.6	525.7
х	Ft.	9.9	5.7	4.7	4.1	7.1	6.1	5.1	4.4
2	Ft.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$\mathbf{v}_{\mathbf{x}}^{v}$	Ft./Sec.	-17.0	359.7	716.7	9.676	-18.5	367.5	732.2	983.7
V_{X}	Ft./Sec.	54.3	51.4	47.7	44.6	61.4	58.4	55.0	53.0
$^{ m V}_{ m z}$	Ft./Sec.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

ICARUS PROGRAM VALIDATION STUDY PREDICTED F-18A NWC SLED TEST RESULTS ROCKET BURNOUT

PARAMETER	UNITS	TEST 1	TEST 2	TEST 6	TEST 8	TEST 3	TEST 4	TEST 5	TEST 7
Vtarget	KEAS	0	225	435		0	225	435	600
Percentile	9 P	86	86	86	86	· £	3	3	3
Vtest	Ft./Sec.	Ö.	377	735	1000	0	387	755	1011
	Sec.	181.0	0.784	0.817	0.821	0.782	0.763	0.783	0.795
·	Ft.	-3.7	288.9	585.7	796.4	9*9-	284.9	569.7	771.4
	Ft.	30.6	28.5	25.8	21.5	35.9	32.9	28.7	24.9
	Ft.	-2.1	-2.0	-2.0	-1.9	-3.2	-3.0	-2.9	-2.5
	Ft./Sec.	12.2	365.7	670.3	871.4	-13.9	345.5	644.4	830.4
	Ft./Sec.	117.3	113.8	103.4	87.8	147.3	136.0	109.4	91.7
	Ft./Sec.	-19.6	-18.5	-17.9	-18.1	-30.9	-28.6	-24.9	-22.9

TADL E-3

ICARUS PROGRAM VALIDATION STUDY PREDICTED F-18A NWC SLED TEST RESULTS

DROGUE GUN FIRE

	CHINO	TEST 1	TEST 2	TEST 6	TEST 8	TEST 3	TEST 4	TEST 5	TEST 7
${ m v}_{ m target}$	KEAS	0	225	435	009	0	225	435	600
Percentile {	æ	86	86	98	86	3	3	3	3
Vtest	Ft./Sec.	. 0	377	735	1000	. 0	387	755	1011
ب	Sec.	0.901	0.901	0.949	0.941	0.937	0.904	0.919	0.939
X	Ft.	-2.4	331.0	672.4	898,5	-8.8	332.7	654.7	2*988
I X	Ft.	43.6	41.4	39.3	32.0	58.2	51.3	43.1	37.9
2 \ 1	Ft.	-4.2	-4.1	-4.7	-4.8	6.7-	9-9-	-6.1	-6.8
V _x	Ft./Sec.	12.3	357.8	644.3	834.0	-14.1	334.2	605.3	7.277
I V	Ft./Sec.	113.2	108.9	100.6	85.4	139.8	126.0	102.6	86.0
V _z	Ft./Sec.	-19.7	-20.5	-24.8	-31.4	-30.9	-24.2	-25.0	-38.5

TABLE -4

ICARUS PROGRAM VALIDATION STUDY PREDICTED F-18A NWC SLED TEST RESULTS DROGUE PARACHUTE FULL INFLATION

PARAMETER	CIVITS	TEST 1	TEST 2	TEST 6	TEST 8	TEST 3	TEST 4	TEST 5	TEST 7
Vtarget	KEAS	0	225	435	009	0	225	435	009
Percentile	9 2	86	86	86	86	3	ю	3	т
${ m v}_{\sf test}$	Ft./Sec.	Ö	377	735	1000	0	387	755	1011
t	Sec.	1.610	1.600	. 1.335	1,441	1.570	1.330	1.312	1.290
×	Ft.	6.3	558.0	900.4	1259.7	-17.4	465.9	868.7	1128.1
X	Ft.	113.5	103.6	71.8	61.6	136.6	8.66	77.2	. 0.19
2	Ft.	-18.1	-18.3	-14.8	-20.3	-26.6	-14.6	-17.2	-19.3
V _x	Ft./Sec.	11.8	788°.	528.3	599.5	-13.1	286.6	474.9	591.8
\hat{\sigma}	Ft./Sec.	83.5	69.7	68.2	42,9	107.5	97.5	70.2	50.5
> ²	Ft./Sec.	-19.1	-18.0	-24.3	-25.4	-27.8	-15.0	-24.1	-31.1

TABL E-E

ICARUS PROGRAM VALIDATION STUDY PREDICTED F-18A NWC SLED TEST RESULTS

MAIN PARACHUTE PACK OPENING

PARAMETER	STIND	TEST 1	TEST 2	TEST 6	TEST 8	TEST 3	TEST 4	TEST 5	TEST 7
Vtarget	KEAS	. 0	225	435		0	225	435	600
Percentile	8	86	98	86	86	3.	3	3	. 3
v_{test}	Ft./Sec.	0	377	735	1000	0	387	755	1011
ţ	Sec.	1.871	1.905	. 2.059	2.027	1.990	2.071	3.826	1.902
×	Ft.	9.3	640.7	1207.5	1544.9	-22.6	645.6	1516.2	1407.7
х	Ft.	133.8	122.3	105.9	77.5	177.3	153.2	105.1	81.7
2	Ft.	-23.1	-23.4	-28.3	-32.5	-37.8	-23.9	-58.8	-34.3
$^{ m v}_{ m x}$	Ft./Sec.	11.3	254.8	346.4	400.6	-11.6	207.7	156.2	361.5
V_{Y}	Ft./Sec.	72.2	53.9	26.3	14.6	2.98	51.5	-29.0	19.1
$\mathbf{v}_{\mathbf{z}}^{\mathbf{z}}$	Ft./Sec.	-18.4	-14.5	-16.0	-18.9	-26.0	-11.0	-10.6	-18.0

TABLE 🔑

ICARUS PROGRAM VALIDATION STUDY PREDICTED F-18A NWC SLED TEST RESULTS

MAIN PARACHUTE RISER LINE STRETCH

I											
	TEST 7	009	3	1011	2.172	1503.2	85.5	-39.3	342.9	7.8	-19.4
	TEST 5	435	. 8	755	4.460	1613.5	6*08	-65.4	150.5	-47.0	-10.6
	TEST 4	225	3	387	2,541	741.2	173.6	29.3	198•1	35.1	-12.1
	TEST 3	0	3	0	3.590	-40.3	270.2	6.77-	-10.8	30.7	-24.1
	TEST 8	009	. 86	1000	2.316	1658.7	80.4	-37.8	385.4	9•9	-16.3
	TEST 6	435	86	. 735	2.374	1315.0	112.5	-33.2	336.0	16.0	-15,4
	TEST 2	225	86	377	2.314	742.0	142.1	-28.9.	240.5	41.1	-13.3
·	TEST 1	0	86	0	2.964	21.5	192.1	-42.8	9.01	35.0	-17.8
	STINO	KEAS	ФP	Ft./Sec.	Sec.	Ft.	Ft.	Ft.	Ft./Sec.	Ft./Sec.	Ft./Sec.
	PARAMETER	Vtarget	Percentile	Vtest	t.	×	х	Z	v _x	$V_{\overline{Y}}$	VZ

ICARUS PROGRAM VALIDATION STUDY PREDICTED F-18A NWC SLED TEST RESULTS

MAIN PARACHUTE FULL INFLATION

PARAMETER	UNITS	TEST 1	TEST 2	TEST 6	TEST 8	TEST 3	TEST 4	TEST 5	TEST 7
Vtarget	KEAS	0	225	435	600	. 0	225	435	. 009
Percentile	ક	86	86	86	98	3	3	3	3
Vtest	Ft./Sec.	0 .	377	735	1000	0	387	755	1011
th	Sec.	5.700	3.900	2,909	2.801	5.200	(3.280) 3.330*	5.235	2.720
×	Ft.	46.2	971.8	1446.3	1797.2	50.4	(838•6)	1688.9	1621.6
Х	Ft.	159.5	153.3	116.5	0.08	267.6	(183.2)	48.7	84.1
Z	Ft.	-78.6	-40.8	-39.0	-43.1	-110.1	(-36.8)	-70.1	-47.2
v _x	Ft./Sec.	1.3	43.0	146.0	162,1	-1.6	(58.3)	37.6	92.7
$\mathbf{v}_{\mathbf{y}}$	Ft./Sec.	-39.7	-17.4	-2.3	-7.8	-30.4	(-5.8)	-29.4	8.6-
Z A	Ft./Sec.	9.0-	-2.1	7-9-	6*5-	-11.6	(-5-7)	-1.5	-5.8

*Predicted data not available for this time.

TALLE 3

ICARUS PROGRAM VALIDATION STUDY PREDICTED F-18A NWC SLED TEST RESULTS

PEAK TRAJECTORY HEIGHT

TEST 7	009	3	1011	2.380	1565.7	86.1	-43.4	260.9	1.7	-17.2
TEST 5	435	3	755	2.751	1318.7	121.5	-45.3	218.2	0.1	-15.0
TEST 4	225	. Е	387	3.180	831.8	183.6	-36.0	78.1	-1.7	-9.2
TEST 3	0	3	0	4.380	-46.7	281.2	9*56-	-6.2	-1.7	-21.0
TEST 8	600	86	1000	2.490	1720.0	81.2	-40.2	320.3	-0.3	-13.4
TEST 6	435	86	735	2.810	1430.0	116.6	-38.2	183.1	1.5	-8.5
TEST 2	225	86	377	3.210	915.0	1.091	-37.9	133.4	9.0	-5.6
TEST 1	0	86	0	3.900	31.7	208.2	-58.4	10.8	0.1	-15.7
SIINO	KEAS	96	Ft./Sec.	Sec.	Ft.	Ft.	Ft.	Ft./Sec.	Ft./Sec.	Ft./Sec.
PARAMETER	Vtarget	Percentile	Vtest	ħ	×	λ .	27 .	×	$V_{m{Y}}$	Δ_

ICARUS PROGRAM VALIDATION STUDY ACTUAL F-18A NWC SLED TEST RESULTS

ROCKET IGNITION

TEST 8 TEST 4 TEST 7	0 225 435 600	3 3	0 387 755 1011	0.544 0.525 0.521 0.524	-1.6 N/A 441.1 567.4	7.6 N/A 5.1 2.0	-0.1 N/A 0.4 0.2	-4.0 N/A 707.0 959.0	64.0 N/A 54.0 37.0	
				0.558 0.544	590.5 -1.6			944.0 -4.0		0 -7.0
TEST 6 T	435 600	86 86	735 1000	0.560 0.5	444.5 590	3.9 1.9	0.2 0.0	706.0	42.0 29.0	-5.0 -7.0
TEST 2	225	86	377	0.544	220.3	5.5	L-0-7	362.0	49.0	-1.0
TEST 1	0	98	O	0.551	-1.7	. 0*2	0.3	-10.0	0.09	-4.0
SIIND	KEAS		Ft./Sec.	Sec.	ָנָ. ינ	بر	Ft.	Ft./Sec.	Ft./Sec.	Ft./Sec.
PARAMETER	Vtarget	Percentile	Vtest	ħ	×	X	2	N _X	v y	> ⁸

TABLE-10

ICARUS PROGRAM VALIDATION STUDY ACTUAL F-18A NWC SLED TEST RESULTS ROCKET BURNOUT

PARAMETER	UNITS	TEST 1	TEST 2	TEST 6	TEST 8	TEST 3	TEST 4	TEST 5	TEST 7
Vtarget	KEAS	0	225	435	009	0	225	435	009
Percentile	0 40	86	86	86	86	3	. 3	3	е
Vtest	Ft./Sec.	0	377	735	1000	0	387	755	1011
با	Sec.	.0.811	0.804	0.830	0.832	0.804	0.784	0.776	0.796
×	ы.	-2.5	321.3	639.4	841.7	-4.1	N/A	616.8	821.5
×	بُرِ	32.0	28.3	22.6	12.3	37.2	N/A	27.9	19.1
2	j.	-2.2	-4.2	-4.6	-3.9	-3.9	N/A	-0.5	-1.4
×	Ft./Sec.	11.0	353.0	0.909	776.0	2.0	N/A	623.0	787.0
D'A	Ft./Sec.	107.0	106.0	80.0	33.0	136.0	N/A	107.0	75.0
2 2	Ft./Sec.	-18.0	-28.0	-31.0	-13.0	-35.0	N/A	-23.0	10.0

TADLE 11

ICARUS PROGRAM VALIDATION STUDY ACTUAL F-18A NWC SLED TEST RESULTS

DROGUE GUN FIRE

PARAMETER	UNITS	TEST 1	TEST 2	TEST 6	TEST 8	TEST 3	TEST 4	TEST 5	TEST 7
Vtarget	KEAS	0	225	435	600	. 0	225	435	009
Percentile	940	86	86	86	. 86		е	æ	ю
Vtest	Ft./Sec.	0	377	735	1000	0	387 .	755	1011
יו	Sec.	0.901	106.0	0.949	0.940	0.937	0.904	0.919	0.939
×	Ft.	-1.3	358.1	713.8	. 926.5	-5.0	N/A	711.8	938.3
**	نړ سا	43.0	40.0	33.4	15.7	57.7	N/A	45.1	32.1
2	نړ ابا	-4.0	6-7-	-8.5	-5.0	6.8-	N/A	-4.7	1.5 · ·
>X	Ft./Sec.	14.0	346.0	576.0	726.0	0.0	N/A	590.0	730.0
V Y	Ft./Sec.	109.0	110.0	76.0	27.0	138.0	N/A	105.0	86.0
N N	Ft./Sec.	-24.0	-33.0	-33.0	-8.0	-40.0	N/A	-35.0	28.0
		-							

TALLE 12

ICARUS PROGRAM VALIDATION STUDY ACTUAL F-18A NWC SLED TEST RESULTS DROGUE PARACHUTE FULL INFLATION

PARAMETER	UNITS	TEST 1	TEST 2	TEST 6	TEST 8	TEST 3	TEST 4	TEST 5	TEST 7
Vtarget	KEAS	0	225	435	009	. 0	225	435	009
Percentile		86	86	86	86	3.	٣	3	m
Vtest	Ft./Sec.	0.	377	735	1000 .	0	387	755	1011
יו	Sec.	1.610	1.600	. 1.335	1.440	1.570	1.330	1.312	1.290
×	FI.	13.0	592.4	. 935.0	1261.7	-10.9	N/A	941.7	1185.6
X	Ft.	115.0	106.1	58.2	26.8	140.2	107.2	80.2	58.6
Z	Ft.	-21.0	-29.1	-21.5	-8.5	-32.4	-21.5	-15.2	12.1
×	Ft./Sec.	18.0	269.0	480.0	533.0	. 0.0	278.0	468.0	581.0
>>	Ft./Sec.	81.0	67.0	43.0	12.0	107.0	101.0	0.69	53.0
> N	Ft./Sec.	-23.0	-24.0	-35.0	-9.0	-35.0	-29.0	-26.0	22.0

Ti._.II

ICARUS PROGRAM VALIDATION STUDY ACTUAL F-18A NWC SLED TEST RESULTS

MAIN PARACHUTE PACK OPENING

TEST 7	009	ю	1011	1.902	1483.5	79.4	21.7	361.0	18.0	10.0
TEST 5	435	ю	755	3.826	Ñ/A	N/A	N/A	N/A	N/A	N/A
TEST 4	225	ĸ	387	2.071	N/A	165.5	-40.5	200.0	52.0	-21.0
TEST 3	0	3	0	1.990	-14.8	182.7	-45.2	1.0	82.0	-32.0
TEST 8	009	86	1000	2.026	1538.2	28.6	-12.5	377.0	-6.0	-4.0
TEST 6	435	86	735	2.058	1243.0	79.8	-45.4	329.0	14.0	-25,0
TEST 2	225	86	377	1.905	676.7	125.3	-36.8	240.0	51.0	-21.0
TEST 1	0	86	0	1.871	16.9	136.0	-26.9	13.0	0.69	-23.0
STIND	KEAS	ф	Ft./Sec.	Sec.	Ft.	Ft.	Ft.	Ft./Sec.	Ft./Sec.	Ft./Sec.
PARMETER	Vtarget	Percentile	Vest	ι	×	X	2	V X	Δ ^Δ	V _z

TABLL 14

ICARUS PROGRAM VALIDATION STUDY ACTUAL F-18A NWC SLED TEST RESULTS

MAIN PARACHUTE RISER LINE STRETCH

	TEST 7	009	· m	101	2.172	1585.1	83.7	24.4	328.0	12.0	7.0
	TEST 5	435	m	755	4.460	N/A	N/A	N/A	N/A	N/A	N/A
	TEST 4	225	က	387 .	2.541	N/A	N/A	N/A	N/A	N/A	N/A
	TEST 3	0	3	0	3.590	-23.8	264.9	-85.7	2.0	23.0	-26.0
	TEST 8	600	98	1000	2.315	1649.6	25.4	-13.3	337.0	-13.0	-3.0
	TEST 6	435	86	735	2.373	1350.9	82.4	-53.4	303.0	-2.0	-22.0
	TEST 2	225	86	377	2.314	780.5	144.8	-45.7	219.0	37.0	-21.0
	TEST 1	0	. 86	0.	2.964	33.8	195.9	-51.1	15.0	34.0	-20.0
	UNITS	KEAS	0 40	Ft./Sec.	Sec.	Ft.	Ft.	۲. ۲.	Ft./Sec.	Ft./Sec.	Ft./Sec.
•	PARAMETER	Vtarget	Percentile	Vtest	ιψ	×	≯	2	××	Þ	Vz

TALCE 15

ICARUS PROGRAM VALIDATION STUDY ACTUAL F-18A NWC SLED TEST RESULTS

MAIN PARACHUTE FULL INFLATION

TEST 7	009	m	1011	2.720	1714.4	81.1	26.1	97.0	0.8-	5.0
TEST 5	435	ю	755	5.235	N/A	N/A	N/A	N/A	N/A	N/A
TEST 4	225	ю	387	3.330	N/A	N/A	N/A	N/A	iv/A	N/A
TEST 3	0	. 3	0	5.200	-25.7	261.0	-109.7	10.0	-23.0	0.9-
TEST 8	009	. 86	1000	2.800	1775.0	18.9	-13.7	111.0	-13.0	-3.0
TEST 6	435	86	735	2.908	1484.2	79.2	-66.2	120.0	-13.0	-21,0
TEST 2	225	86	377	3.900	916.7	150.9	-56.0	-4.0	-14.0	7.0
TEST 1	0	86	0.	.5.700	68.4	171.3	-94.7	2.0	-37.0	0.0
STINO	KEAS		Ft./Sec.	Sec	٠ <u>.</u>	Ft.	Ft.	Ft./Sec.	Ft./Sec.	Ft./Sec.
PARAMETER	Vtarget	Percentile	Vtest	٠ د د	×	X	2	Vx	\rangle \rangl	, z

There 16

ICARUS PROGRAM VALIDATION STUDY ACTUAL F-18A NWC SLED TEST RESULTS

PEAK TRAJECTORY HEIGHT

PARAMETER	SILIND	TEST 1	TEST 2	TEST 6	TEST 8	TEST 3	TEST 4	TEST 5	TEST 7
Vtarget	KEAS	0	225	435	009	0	225	435	009
Percentile	96	86	86	86	86	3	3	3	m
Vtest	Ft./Sec.	0	377	735	1000	0	387	755	1011
tì	Sec.	3.979	2.925	2.349	1.860	4.255	N/A	2.821	2.300
×	Ft.	49.3	892.9	1343.1	1468.8	-25.6	N/A	1457.7	1630.0
K	ŗ.	214.7	158.9	82.5	29.2	273.7	N/A	125.1	84.5
2	Ft.	-71.2	-56.1	-53.5	-11.4	-99.7	N/A	-35.6	24.9
×	Ft./Sec.	15.0	81.0	307.0	410.0	0.9	N/A	210.0	282
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Ft./Sec.	-1.0	1.0	0.0	0.0	1.0	N/A	0.0	0.0
V Z	Ft./Sec.	-21.0	0.9-	-23.0	-3.0	-21.0	N/A	-12.0	3.0
	-								

APPENDIX F

GRAPHS COMPARING PREDICTED AND ACTUAL NWC SNORT F-18A SLED TEST DATA AT EJECTION TRAJECTORY EVENTS

.2

FIGURE F-4

F-5

F--9

FIGURE F-9

HORIZONTAL VELOCITY AT EJECTION - HUNDRED FT/SEC

F-10

LIME-SEC

S

F-12

FIGURE F-11

F-13

F-14

F-15

FIGURE F-14

F-19

F-26

10 9 HORIZONTAL VELOCITY AT EJECTION - HUNDRED FT/SEC ∞ -NWC SNORT F-18A TESTS SUSPECT TESTS -VALID TESTS 12 77 16 ω 0

FIGURE F-26

ICARUS PROGRAM VALIDATION STUDY COMPARISON OF PREDICTED AND ACTUAL TEST DATA

MAIN PARACHUTE PACK OPENING 98 PERCENTILE DUMMY

F-27

HOBISONIAL DISTANCE - HUNDRED FT

F-39

O -NWC SNORT F-18A TESTS 10 HORIZONTAL VELOCITY AT EJECTION - HUNDRED FT/SEC ICARUS PROGRAM VALIDATION STUDY COMPARISON OF PREDICTED AND ACTUAL TEST DATA FIGURE F-43 ROCKET IGNITION
3 PERCENTILE DUMY ICARUS PREDICTIONS 0 **NEKLICAL DISTANCE**

H HORIZONIAL VELOCITY AT EJECTION - HUNDRED FT/SEC COMPARISON OF PREDICTED AND ACTUAL TEST DATA DROGJE PARACHUTE FULL INFLATION ICARUS PROGRAM VALIDATION STUDY ICARUS PREDICTIONS 3 PERCENTILE DUMMY 0 160 120 80 AEBLICYT DISLYNCE - EL

FIGURE F-46

-NWC SNORT F-18A TESTS SUSPECT TESTS VALID TESTS ICARUS PROGRAM VALIDATION STUDY
COMPARISON OF PREDICTED AND ACTUAL TEST DATA
ROCKET IGNITION ICARUS PREDICTIONS 98 PERCENTILE DUMMY 10 9 ω

10

HORIZONTAL VELOCITY AT EJECTION - HUNDRED FT/SEC

FIGURE F-50

AEKLICYT DIZLYNCE - LL

FIGUTE F-51

-NWC SNORT F-18A TESTS SUSPECT TESTS VALID TESTS HORIZONIPAL VELOCITY AT EJECTION - HUNDRED FT/SEC ICARUS PROGRAM VALIDATION STUDY COMPARISON OF PREDICTED AND ACTUAL TEST DATA DROGUE PARACHUTE FULL INFLATION FIGURE F-53 98 PERCENTILE DUMMY 120△ 80 40 160 AEKLICAT DISLANCE - LL

-NWC SNORT F-18A TESTS 10 SUSPECT TESTS VALID TESTS HORIZONTAL VELOCITY AT EJECTION - HUNDRED FT/SEC COMPARISON OF PREDICTED AND ACTUAL TEST DATA ICARUS PROGRAM VALIDATION STUDY MAIN PARACHUTE PACK OPENING ICARUS PREDICTIONS 98 PERCENTILE DUMMY 40 160 120 80 200

VERTICAL DISTANCE - FT

FIGURE F-55

F-57

F-60

· F-61

ICARUS PROGRAM VALIDATION STUDY COMPARISON OF PREDICTED AND ACTUAL TEST DATA MAIN PARACHUTE PACK OPENING

3 PERCENTILE DUMY

AEBLICVT AETOCILA - EL\SEC

HORIZONIAL VELOCITY AT EJECTION - HUNDRED FT/SEC ICARUS PROGRAM VALIDATION STUDY COMPARISON OF PREDICTED AND ACTUAL TEST DATA MAIN PARACHUTE RISER LINE STRETCH 3 PERCENTILE DUMMY ICARUS PREDICTIONS 40 -40 VERTICAL VELOCITY - FT/SEC

F--63

ICARUS PROGRAM VALIDATION STUDY
COMPARISON OF PREDICTED AND ACTUAL TEST DATA
ROCKET IGNITION
98 PERCENTILE DUMMY

A A -NWC SNORT F-18A TESTS
L VALID TESTS
SUSPECT TESTS

FIGURE F-64

160

-NWC SNORT F-18A TESTS 10 SUSPECT TESTS VALID TESTS HORIZONTAL VELOCITY AT EJECTION - HUNDRED FT/SEC ICARUS PROGRAM VALIDATION STUDY COMPARISON OF PREDICTED AND ACTUAL TEST DATA ROCKET BURNOUT ICARUS PREDICTIONS FIGURE F-65 98 PERCENTILE DUMMY 120 200 160 80 EL\SEC VERTICAL VELOCITY

-NWC SNORT F-18A TESTS 10 SUSPECT TESTS VALID TESTS g HORIZONTAL VELOCITY AT EJECTION - HUNDRED FT/SEC ICARUS PROGRAM VALIDATION STUDY COMPARISON OF PREDICTED AND ACTUAL TEST DATA ICARUS PREDICTIONS 98 PERCENTILE DUMMY DROGUE GUN FIRE 40 120 80 160 AEKLICYT AETOCILK - EL\ZEC

FIGURE F-66

-NWC SNORT F-18A TESTS SUSPECT TESTS HORIZONIAL VELOCITY AT EJECTION - HUNDRED FT/SEC ICARUS PREDICTIONS 80 20 09 40 100 120 AEKLICYT AETOCILK - EL\ZEC

FIGURE F-67

ICARUS PROGRAM VALIDATION STUDY
COMPARISON OF PREDICTED AND ACTUAL TEST DATA
DROGUE PARACHUTE FULL INFLATION
98 PERCENTILE DUMMY

COMPARISON OF PREDICTED AND ACTUAL TEST DATA MAIN PARACHUTE RISER LINE STRETCH ICARUS PROGRAM VALIDATION STUDY 98 PERCENTILE DUMNY

VERTICAL VELOCITY - FT/SEC

F-71 ·

HORIZONTAL VELOCITY AT EJECTION - IUNDRED FT/SEC ICARUS PROGRAM VALIDATION STUDY COMPARISON OF PREDICTED AND ACTUAL TEST DATA ROCKET BURNOUT FIGURE F-72 3 PERCENTILE DUMMY ICARUS PREDICTIONS 09-20 TYLEBYT DISLYNCE - LL

ICARUS PROGRAM VALIDATION STUDY COMPARISON OF PREDICTED AND ACTUAL TEST DATA MAIN PARACHUTE RISER LINE STRETCH 3 PERCENTILE DUMY O -NWC SNORT F-18A TESTS

INTERAL DISTANCE - FT

F--79

			.i							4 4 4 1		
			:		v ·	G)			1		10
											:	
							1, 1		,			6
			-:		:				. :			
						: !	· ·					ω .
	: : :											YSEC
	•	. , .				:		•		\mathcal{I}		7 8 HUNDRED FT/SEC
			:					٠.	. *			7 7 190ND
					1			:				
												6. TION
												EJEC
	•			•		· ·		:	•	TION		5 6. TY AT EJECTION -
		•	· .	:			:	:		ED IC		
					•	· · · · · · · · · · · · · · · · · · ·				JS PR		4 VEI
·	STS									ICAR		ZONTAL VELO
	3A TE			:							-	3 HORIZ
	F-1							:				<u>Д</u>
	NORT			.	:	: 13 : :		***	: '			
			:			·						2
	f					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					PSWW/Earnor
:			:	. • •								1
			:									ACTIVITY OF THE PROPERTY OF TH
					er og brigger	u Fati e			40.000		0	0
			:	40		20		0		-20		-40
		O -NMC SNORT F-18A TESTS	SNORT F-1	SNORT F-1	40	40	40 O -NWC SNORT F-1	40 O -NWC SNORT F-1	40 O -NWC SNORT F-1	40 O -NWC SNORT F-1	O -NWC SNORT F-1	40 20 20 -20 ICARUS

10 HORIZONTAL VELOCITY AT EJECTION - HUNDRED FT/SEC ICARUS PROGRAM VALIDATION STUDY COMPARISON OF PREDICTED AND ACTUAL TEST DATA 0 DROGUE GUN FIRE 3 PERCENTILE DUMMY ICARUS PREDICTIONS -40 O 20 IVLEBYT AETOCILA - EL\SEC

HORIZONIAL VELOCITY AT EJECTION - HUNDRED FT/SEC ICARUS PROGRAM VALIDATION STUDY COMPARISON OF PREDICTED AND ACTUAL TEST DATA 98 PERCENTILE DUMMY DROGUE GUN FIRE ICARUS PREDICTIONS FIGURE F-94 . 9 -NWC SNORT F-18A TESTS - VALID TESTS SUSPECT TESTS TATERAL VELOCITY - FT/SEC

F-98

10 g ICARUS PREDICTIONS, 3 PERCENTILE DUMIN HORIZONTAL VELOCITY AT EJECTION - HUNDRED FT/SEC ω DOWNRANGE DISTANCE AT MAXIMUM TRAJECTORY HEIGHT ICARUS PROGRAM VALIDATION STUDY COMPARISON OF PREDICTED AND ACTUAL TEST DATA TORRUS PREDICTIONS, 98 PERCENTILE DUMIN ڧ NWC TESTS, 3 PERCENTILE DUMMY NWC TESTS, 98 PERCENTILE DUMMY SUSPECT TESTS -NWC TESTS, 7 0 20 91 12 HONDRED EL

F-101

FIGURE F-100

APPENDIX G

GRAPHS OF PREDICTED AND ACTUAL NWC SNORT F-18A SLED TEST TRAJECTORY DATA

FIGURE G-1

DATA DUMMY F-184NWC SNORT TEST 98 PERCENTILE (ICARUS PROGRAM VALIDATION STUDY PREDICTED AND ACTUAL F-184NMC SN O KEAS COMPARISON OF TEST 1

X ACTUAL ♦ PREDICTED

ICARUS PROGRAM VALIDATION STUDY PREDICTED AND ACTUAL F-18ANWC SNORT TEST DATA .O KEAS A O COMPARISON TEST 1

FIGURE G-2

ICARUS PROGRAM VALIDATION STUDY PREDICTED AND ACTUAL F-18ANWC SNORT TEST DATA O'KEAS COMPARISON OF TEST 1

FIGURE G-3

DATA DUMMY 98 PERCENTILE ICARUS PROGRAM VALIDATION STUDY PREDICTED AND ACTUAL F-18ANMC SNORT O KEAS C) COMPARISON (

FIGURE G-4

TEST DATA DUMMY ICARUS PROGRAM VALIDATION STUDY PREDICTED AND ACTUAL F-18ANWC SNORT TEST O KFAS COMPARISON OF TEST 1

FIGURE G-5

PREDICTED AND ACTUAL F-18ANWC SNORT TEST DATA O KEAS ICARUS PROGRAM VALIDATION STUDY COMPARISON OF TEST 1

FIGURE G-6

DATA DUMMY PREDICTED AND ACTUAL F-18ANWC SNORT TEST O KEAS ICARUS PROGRAM VALIDATION STUDY COMPARISON OF TEST 1

FIGURE G-7

NWC SNORT TEST DATA 98 PERCENTILE DUMMY STUDY ICARUS PROGRAM VALIDATION PREDICTED AND ACTUAL F-18A 225 KEAS L) COMPARISON ~ TEST

X ACTUAL ♦ PREDICTED

FIGURE G-8

T DATA 98 PERCENTILE NWC SNORT STUDY ICARUS PROGRAM VALIDATION PREDICTED AND ACTUAL F-18A 225 KEAS COMPARISON OF TEST 2

FIGURE G-9

FIGURE G-10

NWC SNORT TEST DATA 98 PERCENTILE DUMMY STUDY 3-CHUTE LINE STRETCH 4-SERIOCC SEPARATION INFLATION S-FULL INFLATION BURNOUT ICARUS PROGRAM VALIDATION PREDICTED AND ACTUAL F-18A 225 KEAS 10.00 2-DROGUE 1-ROCKET 8.00 4.00 6.00 TIME (SEC) COMPARISON OF TEST 2 X ACTUAL ♦ PREDICTED 2.00 00.08-0 00.02 00.0 -60.00 -40.00 (T7) 00.0s-

FIGURE G-12

FIGURE G-15

DATA DUMMY NWC SNORT TEST 3 PERCENTILE STUDY ICARUS PROGRAM VALIDATION PREDICTED AND ACTUAL F-18A 0 KEAS COMPARISON OF TEST 3

X ACTUAL ♦ PREDICTED

I-ROCKET BURNOUT

NWC SNORT TEST DATA 3 PERCENTILE DUMMY ICARUS PROGRAM VALIDATION STUDY PREDICTED AND ACTUAL F-18A NWC S O KERS COMPARISON OF TEST 3

FIGURE G-16

FIGURE G-17

FIGURE G-19

FIGURE G-20

ICARUS PROGRAM VALIDATION STUDY PREDICTED AND ACTUAL F-188 NWC SNORT TEST DATA 3 PERCENTILE DUMMY COMPARISON OF TEST

FIGURE G-21

STUDY ICARUS PROGRAM VALIDATION PREDICTED AND ACTUAL F-18A 225 KEAS H H

NWC SNORT TEST DATA 3 PERCENTILE DUMMY COMPARISON TEST 4

◇ PREDICTED

FIGURE G-22

NWC SNORT TEST DATA 3 PERCENTILE DUMMY ICARUS PROGRAM VALIDATION STUDY PREDICTED AND ACTUAL F-18A NWC ST 225 KEAS Ę. COMPARISON TEST 4

BURNOUT

FIGURE G-23

FIGURE G-24

FIGURE G-25

FIGURE G-27

FIGURE G-23

STUBY ICARUS PROGRAM VALIDATION PREDICTED AND ACTUAL F-18A H.

T DATA NWC SNORT TEST 3 PERCENTILE **435 KEHS** COMPARISON TEST 5

X ACTUAL ♦ PREDICTED

FIGURE G-29

FIGURE G-32

FIGURE G-33

FIGURE G-34

NWC SNORT TEST DATA 3 PERCENTILE DUMMY STUDY ICARUS PROGRAM VALIDATION PREDICTED AND ACTUAL F-189 435 KEAS COMPARISON OF

TEST 5

FIGURE G-35

FIGURE G-36

NWC SNORT TEST DATA 98 PERCENTILE DUMMY. STUDY ICARUS PROGRAM VALIDATION PREDICTED AND ACTUAL F-18A 435 KEAS <u>n</u> COMPARISON TEST 6

X ACTUAL ♦ PREDICTED

NWC SNORT TEST DATA 98 PERCENTILE DUMMY ICARUS PROGRAM VALIDATION PREDICTED AND ACTUAL F-18A 435 KEAS n U

COMPARISON TEST 6

DUMMY NWC SNORT TEST DATA 98 PERCENTILE STUBY ICARUS PROGRAM VALIDATION PREDICTED AND ACTUAL F-18A 435 KEAS P COMPARISON ဖ TEST

FIGURE G-39

FIGURE G-40

NWC SNORT TEST DATA PERCENTILE DUMMY STUDY 98 ICARUS PROGRAM VALIDATION PREDICTED AND ACTUAL F-18A 435 KEHS. <u>Б</u> COMPARISON TEST 6

FIGURE G-41

DATA NWC SNORT TEST
3 PERCENTILE 1 STUDY ICARUS PROGRAM VALIDATION PREDICTED AND ACTUAL F-18A 600 KEAS E) COMPARISON TEST 7

X ACTUAL ♦ PREDICTED

1-ROCKET BURNOUT

1-ROCKET BURNOUT

40.00 80.00 120.00 DOWN RANGE (FT) 00.01-0 (FT) 50.00 00.01 90.00E 00.06 00.QF

FIGURE G-43

FIGURE G-45

FIGURE G-46

STUDY NWC SNORT TEST DATA 3 PERCENTILE DUMMY ICARUS PROGRAM VALIDATION PREDICTED AND ACTUAL F-18A 600 KEAS COMPARISON OF TEST 7

FIGURE G-47

FIGURE G-43

FIGURE G-49

DETA DUMMY NWC SNORT TEST 38 PERCENTILE 1 STUDY ICARUS PROGRAM VALIDATION PREDICTED AND ACTUAL F-18A 600 KERS COMPARISON OF TEST 8

X ACTUAL ♦ PREDICTED

FIGURE G-50

NWC SNORT TEST DATA 98 PERCENTILE DUMMY STUDY ICARUS PROGRAM VALIDATION PREDICTED AND ACTUAL F-18A 600 KEAS COMPARISON OF TEST 8

FIGURE G-51

NWC SNORT TEST DATA 98 PERCENTILE DUMMY STUDY ICARUS PROGRAM VALIDATION PREDICTED AND ACTUAL F-18A 600 KEAS IL C CCMPERISON TEST 8

FIGURE G-52

NWC SNORT TEST DATA 98 PERCENTILE DUMMY STUDY ICARUS PROGRAM VALIDATION PREDICTED AND ACTUAL F-18A 600 KEAS HO H COMPARISON ထ TEST

FIGURE G-56

APPENDIX H

Plotting Program (ICAPLTS)

The following examples show how to run the plotting program to plot 2 test files. Four basic plotting options are available to the user. An example of each is provided. (It should be noted that event times input are not the correct times.)

/get,tapel=f18nwc1,tape2=plt1 /call,icaplot

START OF TAPE OPTIONS?C ENTER NUMBER OF FILES ? 2

SPECIFY PLOTTING DESIRED:

- 1. GENERATE STANDARD TEST PLOTS
 2 PLOTS PER PAGE
 ALT US DOWNRANGE
 ALT US DIVERGENCE
- 2. GENERATE 6 SUCCESSIVE PLOTS
 1 PLOT PER PAGE
 ALTITUDE US TIME
 DOWNRANGE US TIME
 DIUERGENCE US TIME
 X UEL US TIME
 Y UEL US TIME
 Z UEL US TIME
- . SELECT SPECIFIC OPTIONS
- JUST PLOT NO OPTIONS

 THE FOLLOWING OPTIONS ARE IMPLEMENTED WITH
 AUTOMATIC HARDCOPY
 3 LINES OF TITLE
 TITLE FOR EACH PLOT
 PLOT FILES

"

ENTER 3 LINES OF TITLE
? demonstration plots
? plotting option 1
? nwc test 1
ENTER TITLE FOR FILE NUMBER 1
? nwc data
? nwc data
? nadc data

ENTER NUMBER OF EVENTS FOR FILE NUMBER 1
2 5
ENTER TIME FOR EVENT 1-ROCKET BURMOUT
2 5
ENTER TIME FOR EVENT 2-DROGUE INFLATION
3 5
ENTER TIME FOR EVENT 3-CHUTE LINE STRETCH
3 7 7
ENTER TIME FOR EVENT 4-SEATOCC SEPARATION
3 1 9
ENTER TIME FOR EVENT 5-FULL INFLATION
3 1 1

ENTER NUMBER OF EVENTS FOR FILE NUMBER 2
ENTER TIME FOR EVENT 1-ROCKET BURNOUT
FINE TIME FOR EVENT 2-DROGUE INFLATION
FINE TIME FOR EVENT 3-CHUTE LINE STRETCH
FINE TIME FOR EVENT 4-SEATOCC SEPARATION
FINE FOR EVENT 5-FULL INFLATION
FINE TIME FOR EVENT 5-FULL INFLATION
FINE TIME FOR EVENT 5-FULL INFLATION
FINE FOR FOR FULL INFLATION
FINE FOR FOR FULL INFLATION
FINE FOR FULL FOR FULL INFLATION
FINE FOR FULL F

رد. اح

DEMONSTRATION PLOTS PLOTTING OPTION 1 NAC TEST 1

4 SEP 79

© NUC DATA △ NADC DATA

OPTION 2

START OF TAPE OPTIONS?C ENTER NUMBER OF FILES

SPECIFY PLOTTING DESIRED:

- 1. GENERATE STANDARD TEST PLOTS
 2 PLOTS PER PAGE
 ALT US DOWNRANGE
 ALT US DIVERGENCE
- 2. GENERATE 6 SUCCESSIVE PLOTS
 1 PLOT PER PAGE
 ALTITUDE US TIME
 DOWNRANGE US TIME
 DIVERGENCE US TIME
 X VEL US TIME
 Z VEL US TIME
 Z VEL US TIME
- SELECT SPECIFIC OPTIONS
- 1. JUST PLOT NO OPTIONS

THE FOLLOWING OPTIONS ARE IMPLEMENTED WIN AUTOMATIC HARDCOPY 3 LINES OF TITLE TITLE FOR EACH PLOT PLOT EVENT TIMES

2

ENTER 3 LINES OF TITLE
? demonstration plots
? plotting option 2
? nwc test 1
ENTER TITLE FOR FILE NUMBER 1
? nwc data
ENTER TITLE FOR FILE NUMBER 2
? nadc data

ENTER NUMBER OF EVENTS FOR FILE NUMBER 1 ENTER TIME FOR EVENT 1-ROCKET BURNOUT ? .4 ENTER TIME FOR EVENT 2-DROGUE INFLATION ? .7 ENTER TIME FOR EVENT 3-CHUTE LINE STRETCH ? 1.0 ENTER NUMBER OF EVENTS FOR FILE NUMBER 2
ENTER TIME FOR EVENT 1-ROCKET BURNOUT
? 1.2
ENTER TIME FOR EVENT 2-DROGUE INFLATION
? 1.7
DO YOU WISH TO OUTPUT THE DATE
ON EACH PLOT (Y,N)?

OPTION

START OF TAPE OPTIONS?C ENTER NUMBER OF FILES ? 2

SPECIFY PLOTTING DESIRED:

- 1. GENERATE STANDARD TEST PLOTS 2 PLOTS PER PAGE ALT US DOWNRANGE ALT US DIVERGENCE
- Carrente e successive plots

 1 Plot Per Page
 Altitude us time
 Dounrange us time
 Divergence us time
 X vel us time
 Y vel us time
 Z vel us time
- 3. SELECT SPECIFIC OPTIONS
- 4. JUST PLOT NO OPTIONS

IMPLEMENTED WITH (1,2); OLLOWING OPTIONS ARE AUTOMATIC HARDCOPY FOLLOWING 出

ENTER HUMBER OF PLOTS PER PAGE (1,2)

2 1
20 YOU WANT 3 LINES OF TITLE? (Y,N)
20 YOU WANT EVENTS PLOTTED? (Y,N)
3 n
5 n
5 n

ENTER 3 LINES OF TITLE 3 demonstration plotting ? plotting option 3 ? nwc test 1 ENTER TITLE FOR FILE NUMBER 1 ? nwc data ENTER TITLE FOR FILE NUMBER 2 ? nadc data DO YOU WISH TO OUTPUT THE DATE ON EACH PLOT (Y,N)?

H-25

PLOTTING VARIABLES 그거인 FOR ARE THE CODES FOR ACCELERATION

-Y ACCELERATION

-Z ACCELERATION

-X UELOCITY

--Z UELOCITY

--Z UELOCITY

--Z UELOCITY

--Z POSITION

9---Z POSITION

10--YAW RATE

11--PITCH RATE 12--ROLL R 13--YAW 14--PITCH 15--ROLL

ENTER THE CODE FOR THE INDEPENDENT VARIABLE FOLLOWED BY THAT OF THE DEPENDENT VARIABLE ? 5 8

/get, tape1=f18nwc1, tape2=plt1 /call,icaplot

STHRI UF TAPE OPTIONS?C ENTER HUMBER OF FILES ? 2

SPECIFY PLOTTING DESIRED:

- 1. GEHERATE STANDARD TEST PLOTS
 2 PLOTS PER PAGE
 ALT US DOWNRANGE
 ALT US DIVERGENCE
- 2. GENERATE 6 SUCCESSIVE PLOTS
 1 PLOT PER PAGE
 ALTITUDE US TIME
 DOWNRANGE US TIME
 DIVERGENCE US TIME
 X VEL US TIME
 Y VEL US TIME
 Z VEL US TIME
- SELECT SPECIFIC OPTIONS
- . JUST PLOT NO OPTIONS

THE FOLLOWING OPTIONS ARE IMPLEMENTED WITH AUTOMATIC HARDCOPY
3 LINES OF TITLE
TITLE FOR EACH PLOT
PLOT EVENT TINES

? 4 ENTER NUMBER OF PLOTS PER PAGE (1,2) ? 1 DO YOU WISH TO OUTPUT THE DATE ON EACH PLOT (Y,N)?

THE PLOTTING UARIABLES FOR

ENTER THE CODE FOR THE INDEPENDENT VARIABLE FOLLOWED BY THAT OF THE DEPENDENT VARIABLE ? 7 8

APPENDIX I

70/00/04. 14.51.39.	000110 000110 000120 — TIME (SEC) 000130 000150 — THRUST (LBS)	000170 000190 000200 NPOINT NO. OF POINTS. 000210 TBURN - NEW BURN TIME 000220	000230 000240 000250 000270 000270	000240 000300 000320 000330 000330	. 0	000410 000420 000440 000450 000450 000460		000550 000550 000580 000580 000620 000620 000620
YTHINIST C OFFI V3.0-FINA OFFI	AM YTHREET (INPUT, OUTPUT) \$1001 TT	* 600 + 600	THSTPITETAWAM (1+2) THSTPITETAWAM (1+2) THPCNITITHUPHY (TSTP-ISTRI) AOUTH	00000000000000000000000000000000000000	MAM(I+1)-TARNAM((I-1)+1))*TPRCNT W(I+2))*(TNEW(I+1)-TNEW((I-1)+1))/2	IF (APPCHI-STATE AND APPCNT-LT.1.02) GO TO 50 IF (APPCHI-STATE APPCNT APPCNT APPCHI-STATE APPCH	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00 70 1=1*NPOINT PRIST 210*INEW(I*I)*INEW(I*2) COUTTHUE FORMAT(10x**OLD THRUST TAPLE **I4** POINTS*) FORMAT(//19x**TIME**17x**THRUST*) FORMAT(//19x**OHEW APEA / OLD APEA = **F12*2) FORMAT(//19x**OHEW APEA / OLD APEA = **F12*2) FORMAT(10x**I2****OHEW APEA / OLD APEA = **F12*** FORMAT(10x**F12**********************************
Pt. 17	ហ	10	15	20 10	25	05 -2	60	50 105 115 120 250 155 250 250 250 250 250 250 250 250 250 2

TIME		THRUST
•0000		.0000
.0100		4755.9500
.0200		4505,4000
•0300		4513.1600
.0400		4562.9900
.0500		4604.3200
.0600		4620.9500
.0700		4611.3700
.0800		4615.0500
.0900		4618.4000
.1.000		4614.2000
.1100		4612.0500
.1200		4609.3800
.1300		4604.2100
.1400		4593.1100
.1500		4581.1300
.1600		4567.9600
.1700		4554.6200
.1800		4537.3700
.1900		4509.1800
.2000		4474.0300
. •2100		4440.7800
.2200		4409.9900
.2300		4364.2300
.2400		4284.0400
.2500		4034.6000
•2600		3287.5900
.2700		1754.1400
.2800		650.4800
.2900		67.8000
.3000	2.4	.0000
IEN THRUST TABLE	31	POINTS
•		

TIME	THRUST
.0000	.0000
. 0087	5487.6346
.0173	5198.5385
.0260	5207.4923
.0347	5264.9885
.0433	5312.6769
.0520	5331.8654
.0607	5320.8115
.0693	5325.0577
.0780	5328.9231
.0867	5324.0769
.0953	5321.5962
.1040	5318.5154
.1127	5312.5500
.1213	5299.7423
.1300	5285.9192
.1387	5270.7231
.1473	5200,3308
.1560	5236.0038
.1647	5202.4000
.1733	5162.3423
.1820	5123.9769
.1907	5083,4500
.1993	5035.6500
.2080	4943.1231
.2167	4713.0000
.2253	3793.3731
.234')	2024.0077
.2427	750.5538
.2513	78.2308
.2600	.0000

APPENDIX J

LISTING OF OUTPUT FROM PROGRAM COMPARE

- TAPE 1 = ICARUS PROGRAM VALIDATION STUDY
 F-18A NWC'SHORT SLED TEST 3. 0 KEAS. 03 PERCENTILE DUMMY
- TAPE 2 = ICARUS PROGRAM VALIDATION STUDY
 F-18A NWC SMORT SLED TEST 4, 225 KEAS, 13 PERCENTILE DUMMY
- TAPE 3 = ICARUS PROGRAM VALIDATION STUDY
 F-18A NWC SNORT SLED TEST 5. 435 KEAS. 03 PERCENTILE DUMMY
- TAPE 4 = ICARUS PROGRAM VALIDATION STUDY
 F-184 NMC SHORT SLED TEST 7. 600 KEAS. 03 PERCENTILE DUMMY
 - TAPE 5 = ICAPUS PROGRAM VALIDATION STUDY
 F-18A NWC SWORT SLED TEST 1. 0 KEAS. 98 PERCENTILE DUMMY
 - TAPE 6 = ICARUS PROGRAM VALIDATION STUDY
 F-18A NWC SMORT SLED TEST 2. 225 KLAS. 98 PERCENTILE DUMMY
 - TAPE 7 = ______ICARUS PROGRAM VALIDATION STUDY .
 F-18A NWC SNORT SLED TEST 6. 435 KEAS. 98 PERCENTILE DUMMY
 - TAPE 8 = ICARUS PROGRAM VALIDATION STUDY

 F-18A NVC SNORT SLED TEST 8. 600 KEAS. 98 PERCENTILE DUMMY

	TAPE	1 TAPE	Z TAPE:	3 TAPE	+ TAPES	TAPE6	TAPE7	TAPE
STOP	* *** - **** ** *** *** *** ***	0 ;	0				1	
SMS SEAT		0	0		,	, ,	1	
IT (5)		1	···········			·	/	
IT (6)		i	i		;	*	i i	
IT (7)		0	0	0				
IT (8)		0	0	0)) 0	(
IT (9)		1	1]	1	
IT (10) IT (11)		ŭ	Ö	·				
IT (12)		0 .	0				, ,	
IT (13)		ŏ	0			Ď . ď	ŏ	
IT (14)	•	0	0))) () 0	(
IT (15)		0	0			0	0	9
IT (16) IT (17)		n	× · · · · · ·		· · · · · · · · · · · · · · · · · · ·		/	
IT (18)		Ü	ŏ č				, - 8	,
IT (19)		0	0 (j _'	Ö	0	i
IT (20)		0	0 () "" ()	0	0	
IT (21)	•	0	0 0				0	•
IT (22) IT (23)		Δ	0 0)	{ · ·	·		
IT (24)	•	Ö	ŏ) 0	
T (25)		0	0 ()	i i		Ŏ	č
T (26)		0	0 () ()	0	0	(
IT (27)		0	0 0)	0	0	9
T(28) T(29)		0	.0		;		, 	<u></u>
T (30)		0	0 0			, ,		,
ROP		ì,	i i	i	i	i	ĭ	ì
LOT		0	0 () ()	0	0	
ECH		0	0 0		0	0	0	9
ERO FLT	· ··· · · · · · · · · · · · · · · · ·	1	1					
APP		i	i i		1	i	i	1
S#(1)		Ů.	0 () (j` å	Ö	Ō	Ċ
SH(2)		1	1	1	1	1	1	
5::(3)		1	1 1		1	. 1	. 1	1
รษ (4) รษ (5)		i	· • • • • • • • • • • • • • • • • • • •			·		
SW(6)		Ō	i i	6		Ō	Ô	ė
Su (7)		0	0 0	Ò	Ö	Ò	ō	ā
S#(8)		0	0 . 0		.0	0		
SH(10)		0	0 0		0	, ,	0	0
57 (11)			ò					
S2(12)		o .	0 . 0	Č		Ö	Ö	Č
S#(13)		1	1 1	ii	i	1	i	i
SH(14)		1	1 1			j		1
SW(15) SW(16)			1 1	1		1		1
5%(17)		i	ii			†		
Str (18)		Ö	o o	, å	. 0	ō	Ó	ò
9 (19)			1 1	1	1	1	1	1
SW (20)			0 0		-		•	0
St(21) St(22)			0 . 0				_	. 0
511(23)			0		A second distance of			
511(24)	,		0 . 0	Ò	0	۸		Ö
St! (25)			2 2	2	: z	:. '' ş	٠ 2	2
Su (26)			00			·		0
S⊬(27) S⊬(28)			0 0					0
SH (59)			0 0					0
St (30)			o o		-			Ö
SP(31),		0	0 0	0	·	· 0		ò
(35)			0 0	-		-		0
51/(33)		-	0 0		•	0	-	. 0
11 1 3 4 1			· v	U	Q	0	0	0

		TAPFI	TAPER	TAPE3	TAPE4	TAPES	TAPF6	TAPE7	TAPES
SECT	TON 1 CONT	AINS 12 ITE	15						
1	PHIC	-95.0000	-90.0000	-90.0000	-90.9090	-90.0000	-90.0000	-90.0000	-90.0000
•	PSIC	-22.0010	-22.0000	-22.0000	-22.0000	-22.0000	-22.1000	-22.0000	-22.0000
3	THETAC	2.0000	0.0000	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000
4	PHISC	90.6000	96.0000	90.0000	96.0000	90.0000	90.0000	90.0000	90.0000
5	PSISC	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
_	THETSC	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
. 6	PSIV	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	ABOC	0.0000	-1.9000	-3.8000	-5.1000	0.0000	-1.9000	-3.7000	-5.0000
8		.,	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
9	AAT	0.0000			0.0000	0.0000	0.0000	0.0000	0.0000
10	YAW	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000
11	PITCH	0.0000	3.0000	0.0000	0.0000			90.0000	90.0000
12	ROLL	90.0000	90.0000	90.0000	90.0000	90.0000	90.0000	90.0000	70.0000

	•		TAPEL	TAPES	ESPAT	TAPE4	TAPES	TAPE6	TAPE7	TAPES
· SECT	10N .2 C	ONTAINS	76 1TE	19						
1	XAC !	*	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	YAC		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 - 0.0000	0.0000
3	ZACI .		. 00000 9208	.9093	9683	-9083	1.0000	.9917	9958	.9875
5	XCS YCS		1.4673	1.4414	1.4356	1.4364	1.0633	1.0964	1.1131	1.1080
6	ZCS		0.0000	0.0000	0.000^	0.0000	0.0000	0.0000	0.0000	0.0000
7	XCDC		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
. 8	YCDC		3.9617	3.9617	3.9617 0.0000	3.9617 0.0000	3.9617 0.0000	3.9617 0.0000	3.9617 0.0000	3.9617 0.0000
9	ZCDC		0.0000	0.0000	0.0000	G.0000	0.0000	0.0000	0.0000	0.0000
10 11	XCRC YCRC		3.9617	3.9617	3.9617	3.9617	3.9617	3.9617	3.9617	3.9617
12	ZCHC	•	0.0000	0.0000	0.0000	0.6000	0.0000	0.0000	0.0000	0.000
13	XCM		1.1467	1.1220	1.1230	1.1260	1.2020	1.1859	1.1894	1.1786
14	YCM		1.4617	1.4194	1.4098	1.4108	.9808	1.0309	1.0561	1.0483
15	ZCM		0.0000_	0.0000	0.0000	0.0000	0.0000	0.0000 0.0000	0.0000 0.0000	0.0000
16	XCRDL		0.0000	0.0000 0.0000	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
17 18	YCRDL		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
19	XCLDL		0.0000	0.0650	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
20	YCLDL		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
21	7CLDL	•	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0003	0.0000
22	XCRREO		0833	0833	0933	0A33	0833	0833	0833	0833
, 53	YCRREO		0.0000	0.0000	. 0.0000	0.0000	0.0000 .4167	0.0000 .4157	0.0000 .4167	0.0000 .4167
24	7CRREO XCLREO	**	.4167 0833	¢833	0933	.4167 0833	0833	0833	0833	0833
25 26	YCLREO		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
27	7CLREO		4167	4167	4167	4167	4167	4167	4167	4167
28	XCRCMA	•	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
29	YCRCHA		3.7500	3.7550	3.7500	3.7500	3.7500	3.7500	3.7500	3.7500
30	ZCRCMA		.4167	.4167	.4167	.4167	.4167	.4167 0.0000	.4167 0.0000	.4167 0.0000
31	XCLCMA		0.0000	0.0000 3.7500	0.0000 3.7500	0.0000 3.7590	0.0000 3.7500	3.7500	3.7500	3.7500
32 33	YCL CMA ZCL CMA		3.7500 4167	4167	4167	4167	4167	4167	4167	4167
33	XCKCC		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
35	YCACC		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
36	ZCRCC		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
37	XCRR		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 3.9617	0.0000 3.9617
38	YCRK		3.9617	3.9617 0.0000	3.9617 0.0000	3.9617 0.0000	3.9617 0.0000	3.9617 0.0000	0.0000	0.0000
39 40	ZCRR XCLR		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
41	YCLR		3.9617	3.9617	3.9617	3.9617	3.9617	3.9617	3.9617	3.9617
42	ZCLR		0.0000	0.0000	0.0000	0.0000	0.6000	0.0000	0.0000	0.0000
43	XCSA		.5733	.5733	.5733	•5733	.5733	•5733	.5733	.5733
44	YCSA		1.4758	1.4758	1.4758	. 1.4758	1.2375	1.2375	1.2375 0.0000	1.2375
45	ZCSA		0.0000	0.0000	0.0000. .3675	0.0000 .3675	0.0000 .3675	0.0000 .3675	.3675	.3675
46 47	XCSCG YCSCG		.3675 .9117	.3675 .9117	.9117	.9117	•4950	.4950	4950	.4950
48	7C5C6		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
49	XCMCG		1.1467	1.1220	1.1230	1.1260	1.2020	1.1859	1.1894	1.1786
50	YCHCG		1.4617	1.4194	1.4098	1.4108	.9808	1.0309	1.0561	1.0483
51	ZCHCG		0.0000	0.6600	0.0000	0.0000	0.0000 .3675	0.0000 .3675	0.0000 .3675	0.0000 .3675
52	XCSACG		.3675	•3675 •9117	.3675 .9117	•3675 •9117	•4950	+4950	4950	4950
53 54	ZCSACG		.9117 n.0000	0.0090	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
55	XCURDA	•	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
• 56	YCHRDA		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
57	ZCWSDA		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 0.0000	0.0000
58	XC::FUR		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
59	YCWRDR ZCWRDR		0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
60 61	XCRSBR		1.0313	1.0313	1.0313	1.0313	1.0313	1.0313	1.0313	1.0313
67	YCRSBR		1142	1142	1142	1142	5308	5308	5308	5308
63	ZCRSBR		.6642	.6642	.6642	.6642	.6642	6642	-6n42	.6642
64	XCLSBR		1.0313	1.0313	1.0313	1.0313	1.0313	1.0313	1.0313 5308	1.0313
65	YCL SBR		1142	1142 6642	1142 6642	1142 6642	5308 6642	5308 6642	6642	4642
66 67	ZCLSBR XCRCP		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
69	YCRCP		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
69	7CRCP		0.0000	0.0000	0.0000	0.6000	0.0000	0.0000	0.0000	0.0000
70	XCLCP		0.0000	0.0300	0.0000	0.0600	0.0000	0.0000	0.0000	0.0000
71	YCLCP		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 0.0000	0.0000
72	ZCLCP		3.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
73	YSEAT XCP		0.000 9080	6806	0.0000 9080	08000	•9480	.99×0	9980	.7980
74	YCP		4.4460	4.4460	4.4460	4.4460	4.4460	4.4460	4.4460	4.4460
76	ZCP		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000

		TAPEL	TAPES	TAPES	TAPE4	TAPES	TAPE6	TAPE7	TAPE8
SE	CTION 3 CONTAIN	S 14 11E	ıs						
	XA ·	6R59	6859	6859	6859	6859	6859	6859	→. 6859
- 1	2 YA	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	3 ZA	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4	FOH	0.0000	3.0390	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	5 FLW	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	5 FTW	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1	FCH	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1		0.0000	387.0000	755.0000	1011.0000	0.0000	377.0000	735.0000	1000.0000
•	TODUR :	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
10	PDA	0.0000	0.0160	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
11	*OA	0.0000	0.9000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
. 17	P RDA	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1:		89.0000	93.5000	96.2000	91.3000	0000.58	81.0000	106.0000	91.3000
14	PHRS	925.9000	930.4000	934.6R00	930.2600	931:2000	932.0000	929.4000	930.2600

							*		
		TAPEL	TAPES	TAPE3	TAPE4	TAPFS	TAPE6	TAPE7	TAPE8
SECT	10N 4 CO	TAINS 6 TTE	15						
1	ARSAR	89.0100	89.0000	A9.000^	89.0000	H9.0000	89.0000	89.0000	89.0000
2	₽623B	15.00nG	15.0000	15.0000	15.0000	15.0000	15.0000	15.0000	15.0000
3	GRSPR	105.0000	105.0000	105.3000	105.0000	105.0000	105.0000	105.0006	105.0000
4	ALSAR	89.0010	89.5500	89.0000	89.3000	HY.0000	89.0000	89.0000	89.0000
5	BLSAR	15.0000	15.0950	15.0000	15.0000	15.0600	15.0000	15.0000	15.0000
6	GLSRR	75.0000	75.0000	75.0000	75.0000	75.0000	75.0000	75.0000	75.0000

	TAPFI	TAPES	ESPAT	TAPE4	TAPES	TAPF6	TAPE 7	TAPES
SECTION 5 CONTAINS		0 0000				*		
E KY 3 KZ 4 HUF 5 XSRTOL	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.000 0.000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.000 0.000 0.000 0.000 0.000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000

• • •	TAPE 1	TAPEZ	TAPES	TAPE4	TAPES	TAPF6	TAPE7	TAPE8
SECTION 6 CONTAINS 1 LDL0 . 2 LDL1 3 FADART	3 TTEMS 0.0000 0.0000 0.0000	0.000n 0.0000 0.0000	9.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000

		TAPFI	TAPES	TAPES	TAPE4	TAPES	TAFF6	TAPE 7	TAPER
SECT	10H 7	CONTAINS 40 ITE	HS						
1	1xxs	16.9000	16.9000	16.9000	.16.9000	25.5000	25.5000	25.5000	25.5000
ż	IXYS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	IX7S	0.0000	0.0630	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4	IYYS	19.0023	19.3000	19.0000	19.0000	28.5000	28.5000	23,5000	28.5000
5	1775	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
6	1775	6.3000	6.3000	6.3000	6.3000	000S.A	8.2000	8.2000	8.7000
7	IXXM.	11.9200	11.9200	11.9200	11.9200	11.9200	11.9200	11.9200	11.9200
8	1XYM	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
9	1×714	0.0000	0.0000	0.0000	6.0000	0.0000	0.0000	0.0009	0.0000
10	TYYH	15.0400	15.0400	15.0400	15.0400	15.0400	15.0400	15.0400	15.0400
11	TY7M	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
12	177M	5.6900	5.6900	5.6900	5.6900	5.6900	5.6900	5.6900	5.6900
13	IXXSA	4.0000	4.0230	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
14	IXYSA	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
15	IX75A	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
16	IYYSA	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000
17	TY75A	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
18	1775A	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
19	GUS	367.0000	367.0000	366.0000	363.0000	445.0000	451.0000	455.0000	453.0000
20	GUM	551.0000	224.0000	\$23.0000	220.0000	305.0000	308.0000	312.0000	310.0000
21	GUSA	143.0000	. 143.6000	143.0000	143.0000	143.0000 .		143.0000	143.0000
55	GNNSD	9.9990	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
23	GMC	1.0000	1.0000	1.0000	1.0000	1.6000	1.0000	1.0000	1.0000
24	GNUC	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
25	GURC	16.5000	16.5000	16.5000	16.5000	16.5000	16.5000	16.5000	16.5000
56	SS	7.5000	7.5000	7.5000	7.5000	7.5000	7.5000	7.5000	7.5000
27	SH	9,6000	9.6000	9.6000	9.6000	9.6000	9.6000	9.6000	9.5000
28	SSA	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
29	WX	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
30	WY	0.0000	0.0000	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000
31	WZ	0.0000	0.3030	0.0000	0.0000	0.0000	0.0000	0.0000 1.5450	0.0000 1.5450
32	BBARS	1.5450	1.5450	1.5450	1.5450	1.5450	1.5450 1.7450	1.7480	1.7480
. 33	RRAHM	1.7480	1.7480	1.7480 1.3800	1.7480	1.3800	1.3800	1.3800	1.3800
34	PHARSA	1.3800	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
35	CREH		4.7000	4.7900	4.7000	4.7000	4.7000	4.7000	4.7000
36	TRAVEL			.3300	0.0000	1.0000	•6600	.3300	0.0000
37	SCREN		0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
38	SCRENT	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
. 39	SUN		-8500	.8500	.8500	•8500	•8500	.8500	.8500
40	CPCG	.8500	• NOU0	• 0.20 ft	,•n⊃00	• 0000	•6500	•0300	• 4200

		TAPE1	TAPES	TAPES	TAPE4	TAPE5	TAPE6	TAPE7	TAPES
SECT	10H 8 CON1	TAINS 16 TTE	115						
1	KSDC -	2000.0000	2000.0000	2000.0046	2000.6000	2040.0000	2000.0000	2000.0000	2000.0000
2	KSWRD	0.0000	0.0000	0.0000	↓. ,∪000	0.0000	0.0000	0.0000	0.0000
3	KSRC	2000.0000	2000.0000	2000.0000	2000.0000	2000.0000	2000.0000	2000.0000	2000.0000
4	ALTRO	6000.0000	6000.0000	6000.0000	6000.0000	6000.0000	6000.0000	6000.0000	6000.0000
5	SSDC	79.5400	78.5400	78.5400	78.5400	7P.5400	78.5400	78.5400	78.5400
6	DODC	7.8531	7.8531	7.8531	7.4531	7.8531	7.8531	7.8531	7.2531
. 7	DORC	27.4889	27.4889	27.4489	27.4889	27.4889	27.48-9	27.4889	27.4889
8	SC	.5000	.5000	.5000	.5000	.5000	•5000	.5000	.5000
9	SNRD	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
10	UDP	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
11	VDP	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
12	HOP	-55.0010	-55.0000	-55.0000	-55.0000	-55.0000	-55.0000	-55.0000	- 55.0000
13	FOSO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
14	KSODC	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000
15	KSORC	16.0000	. 16.0000	16.0000	16.0000	16.0000	16.0000	16.0000	16.0000
16	TAUEXP	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000

•		TAPF1	TAPES	TAPES	TAPE4	TAPES	TAPF6	TAPE 7	TAPES
SEC 1 2 3 4 5 6 7 8 9	TION 9 CONTAI LVEPL LDCL LSLDC LFL LRISER LSLRC LSG CATSTK DURDCG LRECOV	NS 10 TTEM 9.0900 3.0900 17.0000 2.5000 20.0900 6.0609 0.0000 14.0000	0.6000 3.0000 12.6500 0.0000 2.5000 20.0000 6.0600 0.0000 14.0000	0.0000 3.0000 17.0000 0.1000 7.5000 0.0000 6.0000 0.0000	0.0000 3.0000 12.0000 0.0000 2.5000 20.0000 6.0600 0.0000 14.0000	0.0000 3.0000 12.6000 0.0000 2.5000 0.0000 6.0600 0.0000 14.0000	0.0000 3.0000 12.0000 0.0000 2.5000 20.0000 0.0000 0.0000 14.0000	0.0000 3.0000 12.0000 0.0000 2.5000 20.0000 0.0000 0.0000 14.0000	0.0000 3.0000 12.0000 0.0000 2.5000 20.0000 0.0000 6.0600 0.0000 14.0000

							*,		
		TAPF1	TAPEZ	TAPES	· TAPE4	TAPES	TAPE6	TAPE7	TAPER
SECT	ION 10 CONTAINS	9 1TEM	5						
1	TCI	.3270	.3080	.3130	.3190	.3130	• 30 40	.326û	. 7206
ž	TCU	.3270	.3080	.3130	.3190	.3130	• 30:20	.3260	.7200
3	TRI	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4	TRRO	0.0000	0.00.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
5	TOP	0.0000	0.0000	0.9600	0.0250	0.0000	0.0000	0.0000	0.0000
6	TWROI	6.0060	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
7	TURDBO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
В	TSTOP	6.0009	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
9	PRERO	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000

		TAPEL	TAPEZ	TAPE3	TAPE4	TAPF5	TAPE6	TAPE 7	TAPE8
SECT	ION 11 CONTA	INS 24 ITEM						•	
1	STO	0.0000	0.00.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	DTATE	.0050	.0050-	.0050	.0050	.0050	.0050	.0050	.0050
3	DTCI	.0010	.0010	.6010	.0010	.0010	.0010	.0010	.0010
4	DTSAR	.0010	.0510	.0910	.2010	.6010	.0010	.0010	.0010
5	DTDP	.0010	.0010	.0010	.0010	.6010	.0010	.0010	.0010
6	DIDE	.0010	.0010	.0010	.0010	.0010	.0010	.0010	.0010
7	DTHI	0.0000	0.0000	0.0000	0.6000	0.0000	0.0000	0.0000	0.0000
8	DTRCO	.0010	.0010	.0010	.0010	.0010	.0010	.0010	.0010
9	DTRCF	.0100	.6100	.0100	.0100	.0100	.0100	.0100	.0100
10	DTSHS	.0100	.0100	.0103	.0100	.0100	.0190	.0100	.0100
11	STAR	7.9000	0.0000	0.0000.	0.0000	0.0000	0.0000	0.0000	0.0000
12	ALPHAT	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
13	CNT	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
14	RATK	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
15	ZTAR	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
16	CHO	0.0000	0.5040	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
17	PCP	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
18	PO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
19	•0	0.0000	0.0000	0.0000	0-0000	0.0000	0.0000	0.0000	0.0000
50	RQ	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
21	CLPMA	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
55	CMOMA .	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000
23	CNRHA	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
24	PRC	0.0000	0.0000	0.0000	0.0000 -	0.0000	0-0000	0.0000	0.0000

•	TAPEL	TAPES	TAPES	TAPE4	TAPE5	TAPE6	TAPE7	TAPER
SECTION 12 CONT 1 CX 2 XSLACK 3 SXP 4 SXN 5 CY 6 SY 7 CZ 8 ZSLACK 9 SZP 10 ZBOT 11, SZN1 12. SZN2	404.2200 .0836 33286.1906 404.2200 33286.1900 166.4300 .1660 33286.1900	404.2250 .0830 33286.1930 33286.1930 404.2270 33286.1930 166.4350 .1660 33286.1930 -0740	33286.1910 33286.1910 404.2201 33286.1900 166.4336 1669 33286.1900 -0740	.0930 33286.1900 33286.1900 404.2200 33286.1900 .1660 33286.1900 0740	.0830 33286.1900 404.2700 37286.1900 166.4390 .1660 37286.1900 0740	.0830 33286.1900 404.2200 33286.1900 166.4300 .1660 33286.1900 0740	.0830 33296.1900 33286.1900 404.2200 33286.1900 166.4300 .1h60 33286.1900 0740	.0830 33286.1900 33286.1900 464.2200 33286.1900 166.4300 .1660 33286.1900

		TAPF1	TAPES	TAPES	TAPE4	TAPES	TAPF6	TAPE7	TAPES
SECT	10N 13 CON	TATHS 20 TTE	He					35000.0000	35000 0000
1	XKSL 1P	35000.0000	35000.0000	35000.6001	35003.0000	35000.0000	35000.0000		
ż	ZKSLIP	20000.0000	Sc000*0000	S0000*9009	50600 - 0600	20000.0000	50000.0000	20000.0000	20060.0000
3	XCSL IP	200.0003	500.0030	200.000	200.0000	200.0000	200.0000	200.0000	200.0000
4	ZCSL IP	200.0006	200,0000	200,0000	200.0000		200.0000	200.0000	200.0000
5	UMSL IP	.0250	.9250			• 0250		.0250	.0250
6	XYKTOR	261.7801	261.7931	261.7HP1	261.7301		261.7801	261.7801	261.7401
7	XYCTOR	1.7452		1.7452				1.7452	1.7452
Ř	UMTUBE	0.250	.0250	.0250	.0250	.0250		.0250	.0250
9	FKTUSE	20000.0000	20000.0000	59000.0000	20000.00000	20000.0000	70000.0000	20000.0000	
10	FCTUBE	106.0000			100.0000	100.0000	100.0000	100.0000	160.0000
ii	POWER	.2500	.2500	.250)	.2500	.2500	.2500	.2500	-
12	SPECEF	75000.0000	75000.0000	75000.0000	75000.0000	75000.0000		75000.0003	75000.0000 2.7800
13	TUPL THI	2.7900	2.7840			2,7800		2.7800	3.2800
14	TUPL TH2	3.2800	3.2800	3.2900				3.2800	
15	TUPL TH3	3.6600	3.6600					3.6600	3.5600 0.0000
16	XCTCP	0.0000	0.9000	0.0000	0.0000			0.0000	3.7500
17.	YCTCP	3.7500	3.7500	3.7569				3.7500	
18	ZCTCP	0.0100	0.0000				0.0000	0.0000	0.0000
19	STNCEL	1.0000	1.0000					1.0000	
20	RAILNT	3.6600	3.6600	3,6600	3.6600	3.6600	3.6600	3.6600	3.000

٠		TAPE1	TAPES	TAPES	TAPE4	TAPF5	TAPE 6	TAPE 7	TAPE8
SECT 1 2 3 4 5 6 7	ION 14 CONT THLAP1 THLAP2 ALT2 ALT1 TIM2G7 SMSEPF SBRON	.61nn	.5960 1.7630	.6066 3.5136 13069.6066 6069.9365 3.6068 80.6086 6.6086	.6200 1.5830 13000.0000 6000.0000 3.0000 80.0000	.5980 1.5580 13000.0000 6000.0000 3.0000 80.0000 6.0000	.5910 1.5970 13000.0000 6000.0000 3.6000 80.0000 6.0000	.6230 1.7320 13000.0006 6000.0006 3.0003 80.0000 6.0000	.6210 1.7070 13000.0000 6000.0000 3.0000 80.0000 6.0000

		TAPF1	TAPES	TAPE3	TAPE4	TAPES	TAPF6	TAPE7	TAPES
TAR	LE TCL	CONTAINS 25	POTHIS	*					
1		0.0000	0.2000	0.0000	U.0000	0.0000	0.0000	0.0000	0 0000
Š		.0100	.0100	.0100	.0100	.0100	.0100	.0100	0.0000
3		.0200	.0200	.0200	0200	.0200	•0200	.0200	.0100
4		.0300	.33.0	.0367	.0300	•0300	•0300		.0200
5		.0460	.2470	.0437	.0400	.0400	•0400	.0300 .0400	.0300
6		.0500	.(500	.0506	.0500	•0500	•0500	.0500	•0400
7	* * * *	.0600	.0600	.0600	.0600	•0600	. 0600	.0600	•0500
A		.0700	. 1700	.0730	.0700	.0700	•0700	.0700	.0600
9		.0800	.6800	.0900	.0800	0800	•0800	.0800	•0700
10		0900	.0950	.0906	.6900	.0900	• (900	.0900	.0300
11		.1000	.1000	.1070	.1000	.1000	.1000	.1000	.0900
12		.1160	.1100	.1100	.1100	.1100	•1100	.1100	.1000
13		.1200	.1200	.1200	.1200	.1200	. 1200	.1200	-1100
14		.1300	.1300	.1306	.1300	.1300	•1300	.1300	•1200
15		.1400	.1460	.1406	.1400	.1400	•1400	.1400	-1300
16		.1500	.1500	. 1503	1500	.1500	•1500	.1500	•1400 •1500
17		.1600	.1600	.1600	.1600	1600	•1600	.1600	-
18		.1700	.1700	.1760	.1700	.1760	•1700		.1600
19	• • • • • • • • • • • • • • • • • • • •	.1800	.1800	.1933	.1800	-1800	-1860	.1706	-1700
50		.1900	.1930	1900	.1900	.1900	1900	.1800 .1900	-1800
21		.2000	.2000	.2005	.2000	.2000.		.2006	-1900
25		. 2100	.2100	.2100	.2100	.2100	-2100	.2100	2000
23		.5200	.2200	.2200	•2200	•2200	•5500		.2100
24		.2310	.2300	.2305	•2300	•2300	•2300	•5200	•2200
25		.2500	.2500	.2500	.2500	.2500	•2500	.2300 .2500	.2300
1		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	.2500
2		777.0000	777.0000	777.0000	777.0000	777.0000	777.0000	777.0000	0.0000
3		1074.5000	1074.5000	1074.5006	1074.5000	1074.5000	1074.5000	1074.5000	777.0000
4		1441.0000	1441.0000	1441.0000	1441.0000	1441.0000	1441.0000	1441.0000	1074.5000
5		1911.0000	1911.6660	1911.0000	1911.0000 -		1911-0000	1911.0000	1911.0000
6		2344.9000	2344.9000	2344.9000	2344.9000	2344.9000	2344.9000	2344.0000	2344.7000
7		2765.0000	2765.0000	2765.0000	2765.0000	2765.0000	2765.0000	2765.0000	2765.0000
8		2934.0020	2034.0000	2934.0000	2934.0000	2934.0000	2934.0000	2934.0000	2934.0000
9		2826.0010	2826.0000	2826.6000	2426.0000	2826.0000	2826.00n0	2926.0000	2826.0000
. 10	·	2543.5000	2543.5000	2543,5000	2543,5000	2543.5000	2543.5000	2543.5000	2543.5000
11		2246.5001	2246.5000	2246.5000	2245.5000	2246.5000	2246.5000	2246.5000	2246.5000
12		2054.5000	2054.5000	2054.5600	2054.5000	2054.5000	2054.5000	2054.5000	2054.5000
13		1650.5000	1659.5000	1659,5000	1659.5000	1659.5000	1659.5000	1659.5000	1659,5000
14		1719.5000	1719.5000	1719,5000	1719.5000	1719.5000	1719.5000	1719.5000	1719.5000
15		1804.5000	1404.5000	1804.5000	1404.5000	1804.5000	1804.5000	1804.5000	1894.5000
16		1992.5000	1992.5000	1992.5000	1992.5000	1992.5000	1992.5000	1992.5000	1992.5000
17		2204.0000	2206.0000	2206.0000	2206.0000	2206.0000	2206.0000	2206.0000	2206.0000
18		2346.0010	2386,0000	2386.0000	2346.0000	2346.0000	2386.0000	2386.0000	2386.0000
19		2567.0020	2567.0000	2567.0000	2567.0000	2567.0000	2567.0000	2567.0000	2567.0000
50		2557.0000		2557.0000	2557.0000	2557.0000	2557.00n0	2557.0000	2557.0000
. 51		2437.5000	2437.5000	2437.5000	2437.5000	2437.5000	2437.5000	2437.5000	2437.5000
22		2193.0000	2193.0000	2193.0000	2193.0000	2193.0000	2193.0000	2193.0000	2193.0000
23		959.0000	959.0000	959.0000	959.0000	959.0000	959.0000	959.0000	959.0000
24	-	624.5000	624.5000	624.5000	624.5000	624.5000	624.5000	624.5000	624.5000
25	*	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
								•••••	0.0000

	TAPFI	TAPES	TAPE 3	TAPE 4	TAPF5	TAPF6	TAPE7	TAPE8
TARL	E TCR CONTAINS 25	Pothifs						
1	0.0000	0.0600	0.0600	0.0000	0.0000	0.0000	0.0000	0.000
ż	.0100	.0160	.0100	.0100	.0100	•0100	.0100	.0100
3	0220	.0260	.9205	.0200	.0200	•0200	.0200	•0500
4	.0300	.03(0	.0301	.0300	•030v	• 0 3 0 0	.0300	.0300
5	.0450	.04i+0	.0401	.0400	.0400	•0400	.0400	.0400
6	.0520	.0500	.0505	.0500	•0500	•0500	.0500	.0500
7	.0600	.0600	.0600	.0600	.0600	•0600	.0000	.0600
8	.0700	.0730	.0700	.0700	.0700	•0700	.0700	.0700
9	• 0 840	0800	.0400	.0800	. 0800	•0800	.0800	.0800
10	0000	.0990	•6990	.0900	•0900	• 6900	.0900	.0900
ii	.1000	.1000	.1900	.1000	.1000	• 10no	.1000	.1000
12	.1100	.1150	.1100	.1100	.1100	·1100	.1103	.1100
13	.1200	1200	.1209	.1200	.1200	•1500	.1200	.1200
14	.1300	.1300	.1300	.1300	.1300	•1300	.1300	.1300
15	.1400	.1490	.1400	.1400	.1400	-1400	.1400	-1400
16	.1500	.15.0	1500	.1500	.1500	·15n0	.1500	.1500
17	.1600	.1600	. 1600		.1600	•1600	.1600	.1600
19	.1700	.1700	.1700	.1700	.1700	.1700	.1700	.1700
19	.1800	-1800	.1400	#1800	.1800	-1800	.1800	.1800
20	.1900	.1900	.1900	.1900	.1900	.1900	.1906	.1900
21	.Z0n0	.2000	.2000	.2000	•2000		.2000	.2000
22	0015	.2100	.2100	.2100	.5100	•S100	.2100	.2100
23	.2200	.5500	.5500	•2200	•5500	•2200	.2206	.2200
24	.2300	.2300	5300	.2300	.2300	.2300	.2300	.2300
25	.2500	.2500	.2500	•2500	.2500	-2500	.2500	.2500
1	0.0000	2.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 777.0000
2	777.0000	777.0000	777.0000	777.0000	777.0000	777.0000	777.0000 1074.5000	1074.5000
3	1074.5000	1674.5600	1074.5000	1074.5000	1074.5000	1074.5000	1441.0000	1441.0000
4	1441.0000	1441.0000	1441.0000	1441.0000	1441.0000	1441-0000	1911.0000	1911.0000
5	1911.0000	1011.0000	1911.0000	1911.0000	1911.0000	2344.9000	2344.9000	2344.7000
6	2344.9000	2344.9000	2344.9000	2344.9000	2344.9000 2765.0000	2765.0000	2765.0000	2745.0000
7	2765.0000	2765.0000	2765.0000	2765.0000		2934.0000	2934.0000	2934.0000
8	2934.0000	2934.0000	2934.0000	2934.0000	2934.0000 2826.0000	2826.0000	2826.0000	2826.0000
9	2826.0000	2826.0000	2826.0000	2426.0000	2543.5000	2543.5000	2543.5000	2543.5000
10	2543.5000	2543.5000	2543.5000	2543.5000	2246.5000	2246.5000	2245.5000	2246.5000
_ 11 .	2246.5000	2246.5000	2246.5000	2246.5000	2054.5000	2654.5000	2054.5000	2054.5000
15	2054.5000	7054.5000	2054.5000	2054.5000	1659.5000	1659.5000	1659.5000	1659.5000
13	1650.5000	1659.5000	1654.5000	1659.5000	1719.5000	1719.5000	1719.5000	1719.5000
. 14	1719.5000	1719.5000	1719.5000 1804.5900	1719.5000 1804.5000	1894.5000	1804.5000	1804.5000	1804.5000
15	1804.5000	1804.5000			1992.5000	1992.5000	1992.5000	1992.5000
16	1992.5000	1492.5100	1992.5000	1992.5000 2206.0000	5560.0000	5500.0000	2206.0000	2206.0000
17	. 2206.0000	2206.0000	2296.0000		2346.0000	2386.0000	2386.0000	2386.0000
18	2386.0000	2386.0000	2386.4000	23H6.U000 2567.0000	2567.0000	2567.0000	2567.0000	2567.0000
19	2567.0000	2567.0000	2567.0000 2557.0000	2557.0000	2557.0000	2557.0000	2557.0000	2557.0000
20	2557.0000	72557.0000	2437.5000	2437.5000	2437.5000	2437.5000	2437.5000	2437.5000
21	2437.5600	2437.5000 2193.0000	2193.0000	2193.0000	2193.0000	2193.0000	2193.0000	2193.0000
55	2193.0000	959.0600	959.0000	959.0000	959.0000	959.0000	959.0000	959.0000
23	959.0000 624.5000	624.5000	624.5000	624.5000	624.5000	624.5000	624.5000	624.5000
24			0.0000	0.0000	0.0000	0.0000	0.0000	0.000
25	0.0000	0.0000	0.0000	0.0000	0.000	0.0000		

		TAPE1	TAPES	TAPES	TAPE4	TAPES	TAPE6	TAPE 7	TAPE8
TAR	E TLP	CONTAINS 25	POTMIS				•		
1	C ICA	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
ş	•	.0100	.0162	.0100	.0100	.0100	.0100	.0100	.0100
3		.0200	0.050	.0205	6200	.2200	.0200	0200	.0200
4		.2300	0359	.03)	. 5300	.0300	.0300	.0300	.0300
5		.0400	.0400	.0450	.0490	.0400	•0400	.0400	.0400
6		.0500	.0510	6560	.0500	.0500	.0500	0500	.0500
7	*** * * * * *	.0690	.0630	.0603	.0600	.0600	• 0600	.0600	.0600
R		.0700	.0730	.0807	.0900	.0700	.0700	.0800	.0700
9		.0860	.0800	.1000	.1000	.0800	.0800	.1000	.0800
10	* *	.0900	.0900	.1205	.1200	.0900	.0900	.1200	.1000
11		.1000	.1160	.1300	.1300	.1000	•10n0	.1300	.1200
12		.1200	.1300	.1400	-1400	.1200	.1200	.1400	.1300
13		.1300	.1600	.1500	.1500	.1300	•1300	.1500	.1500
. 14		.1400	.1500	.1600	.1700	.1400	.1400	.1600	.17:00
15		.1500	.1600	.1790	.1600	.1500	•1500	.1700	.1800
16		.1600	.1700	•1HC0	.1900	.1600	.1600	.1800	.1900
17		1800	.1800	1900	.2000	.1800	•1800	.1900	. >000
18	- .	.1900		.5000	.2100	.1900	.1900	.2000	.2100
19		.2000	.2000	.2100	*S500	.2000	.2000	.2100	.2200
50		.2100	.2100	.2700	.2300	.2100	.5100	.2200	.2300
21		.5200	.2250	.2300	.2400	.2200.	•5500	.2300	. 2400
55		.2300	.2300	.2400	.2500	.2300	•5300	.2400	•2500
53		.2410	.2400	.2500	•5600	.2400	•2400	.2500	. 2600
. 24		-2500	.2500	.2600	•2700	.2500	•2500	.2600	.2700
25		•26nu	.2590	.2700	.2720	•5600	•2600	.2700	.2740
1		0.0007	6.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2		1834.0000	1834.0000	1834.0007	1834.0000	1834.0000	1834.0000	1834.0000	1833.0000
3		1739.0000	1738.0000	1737.0000	1737.0000		1738.0000	1737.0000	1737.0000
5		1749.0000	1749.0000 1760.0000	1744.0060 1759.0000	1744.0000 1759.0000	1749.0000	1749.0000	1748.0000	1748.0000
. 6		176:0000 1771:0000	1771.0000	1771.0000	1770.0000	1771.0000	1760.00n0 1771.00n0	1759.0000	1759.0000
7		1742.0600	1782.0000	1742.0000		1782.0000	1782.0000	1771.0000	1770.0000 1781.0000
Ŕ		1781.0000	1781.0900	1780.0000	1746.0000	1781.0000	1781.0000	1780.0000	1780.0000
. 9		1780.0000	1780.0000	1778.0006	1778.0000	1740.0000	1780.0000	1773.0000	1780.0000
10		1779.0000	1780.0000	1776.0690	1776.0000	1779.0000	1779.0000	1776.0000	1778.0000
ii		1779.0000	1778.1000	1775.0990	1775.6000	1779.0000	1779.0000	1775.0000	1776.0000
12		1777.0000	1776.0000	1770.0000	1770.6000	1777.0000	1777.0000	1770.0000	1775.0000
13		1776.0000	1771.0000	1765.0000	1765.0000	1776.0000	1776.0000	1765.0000	1765.0000
14		1771.0000	1766.0000	1760.0000	1755.0000	1771.0000	1771-0000	1760.0000	1755.0000
15		1766.0000	1761.0060	1755.0000	1750.0000	1766.0000	1766.0000	1755.0000	1750.0000
16		1760.0000	1755.0000	1750.0000	1708.0000	1760.0000	1760.0000	1750.0000	1708.0000
17		· 1750.0000	1750,0000	1708.0000	1660.0000	1750.0000	1750.0000	1708.0000	1660.0000
18		1708.3000	1708.0000	1660.0000	1603.0000	1700.0000	1704.0000	1660.0000	1603.0000
19		1661.0000	1661.0000	1603.0000	1354.0000	1661.0000	1661.0000	1603.0000	1353.0000
50			1604.0000	1354.0000	911.0000	1604.0000	1604.0000	1354.0000	911.0000
21		1354.0000	1354.0000	911.0000	469.0000	1354.0000	1354.0000	911.0000	469.0000
. 55		911.0000	911.0000	469.2000	26.0000	911.0000	911.0000	469.0000	26.0000
53	. (460.0000	469.0000	26.0000	14.0000	469.0000	469.0000	26.0000	15.0000
24		26.0000	26.0000	13.0000	2.0000	26.0000	26.0000	13.0000	4.0000
25		0.0000	C.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

		TAPFI	TAPES	TAPES	TAPE4	TAPES	TAPF6	TAPE7	TAPER
TARLE	TDD . COM	ITATHS 25	PAINTS					0.0000	0 0000
1	11th	0.0000	0.0000	0.6000	0.0000	0.0000	0.0000	0.0000	0.0000
ż		.0100	.0100	ં .ગોગરે	.0100	.0100	.0100	.0100	.0100
3		.0200	.0200	.0205	.0200	.0200	0000	.0200	.0200
4		.0320	.03"0	.0300	.6300	.0300	.0300	.0300	.0300
5		.0400	.0400	.0406	• U400	.0400	.0400	.0400	.0400
6		.0500	.0500	.050)	.0500	.0500	0500	.0500	.0500
7		.0600	.0600	.0600	• 3690•	•0600	.0600	.0600	.0600
8		.0700	.0700	.0400	.0800	.0700	.0700	.0800	.0700
Ŷ		.0800	.0800	.1003	.1000	.0900	•0800	.1006	.0800
10	***	.0910	.0900	.120:	.1200	.0900	•0900	.1200	.1000
ii	•	1600	.1100	.130C	.1300	.1000	.1000	.1300	.1200
12		.1200	.1300	.1400	.1400	.1200 .	.1200	.1400	.1300
13		.1300	.1420	.1500	.1500	.1300	• 1300	.1500	.1500 .1700
14		.1400	.1500	.1600	.1700	.1400	•1400	.1600	
15		.1500	.1600	1700	.1800	.1500	.1500	.1700	.1900
16		.1600	.1750	.1HOC	. 1900	.1600	.1600	.1800	
17		.1800	.1800	.1960	.2000	.1R00	.1800	.1900	.2000
18		.1920	.1900	.2000	.2100	.1900	.1900	.2000	.2100
19		.2000	.2000	.2100	.2200	•2000	0008	.2100	.2700
50		.2100	.2100	.2200	.2300	.2100	.2100	.2200	.2300
21		.2200	.5200	.2302	.2400		. •2200	.2300	.2400
55		.2300	.2300	.2400	·2500	.2300	•5300	.2400	.2500
23		. 2400	.2400	•250°	.2600	.2400	-2400	.2500	.2600 .2700
24		.2500	.2590	.2600	.2700	.2500	-2500	.2600	.2740
25		.2600	.2590	.2700	.2720	.2600	•2600	.2700	0.0000
ī		4.0940	6.5960	0.0000	0.0000	0.0000	0.0000	0.0000	3667.0000
Ş		3669.0000	3669.0000	3667.0000	3667.0000	3669.0000	3669.0000	3667.0000 3474.0000	3474.0000
3		3475.0000	3475.0000	3474 . 11001	3474.0000	3475.0000	3475.0000	3496.0000	3496.0000
4		3499.0000	3498.0000	3496.0000	3496.0000	3498.0000	3498.0010	3519.0000	3518.0000
5		3520.0000	3520.0000	3519.0000	3519.0000	3520.0000	3520.0000 3542.0000	3541.0000	3541.0000
6		3547.0000	3542.0000	3541.0000	3541.0000	3542.0000	3564.0000	3563.0000	3563.0000
7		3564.0100	3565.0030	3563.0000	3563.0000	3564.0000	3563.0000	3560.0000	3561.0000
8		3563.0900	3563.0000	3560.0000	3559.0000	3563.0000	3561.0000	3556.0000	3559.0000
9		3561.0000	3561.0300	3556.0000	3556.0000	3561.0000 3559.0000	3559.0000	3552.0000	3555.0000
10		3559.0000	7559.0010	3552.0000	3552.0000	3557.0000	3557.0000	3550.0000	3552,1000
11		3557.0000	7555.0000	3550.0000	3550.0000	3553.0000	3553.0000	3540.0000	3550.0000
12		3553.0000	3552.0000	3540.0000	354v.0000 3530.0000	3552.0000	3552.0000	3530.0000	3530.0000
13		3552.0000	3541.0000	3530.0000	3509.0000	3541.0000	3541.0000	3520.0000	3509.0000
14		3541.0000	3531.0000	3520.0000	3499.0000	3531.0000	3531.0000	3510,0000	3499,1000
15		3531.0010	3521.0000	3510.0006 3499.0096	3415.0000	3521.0000	3521.0000	3499,0000	3415.0000
16		3521.0000	3511.0900		3320.0000	3501.0060	3501.0000	3416,0000	3319,0000
17		3501.0000	3501.0000	3416.0007 3320.0009	3206.0000	3417.0000	3417.0000	3320.0000	3206.0000
18		3417.0000	3417.0000	3206.0000	2707.0000	3321.0000	3321.0000	3206,0000	2707.0000
19		3321.0012	3321.0000	2707.0000	1877.0000	3207.0000	3207.0000	2707.0000	1822.0000
50		3207.0000	3208.0000	1872.0000	937.0000	2708.0000	2708.6000	1822.0000	937.0000
21		2708.0000	2708.0000	937.0000	52.0000	1823.0000	1823.0000	937,0000	52.0000
\$5		1823.0000	1823.0000 938.6000	52.0000	29.0000	938.0000	938.0000	52.0000	30.0000
23		938.0000		26.0001	5.0000	52.0000	52.0000	26.0000	9.0000
24		52.0000	52.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000
25		0.0000	0.0000	.0 . 700 1	0.0000	******	• • • • • • • • • • • • • • • • • • • •		•

	TAPFI	TAPES	TAPES	TAPE4	TAPES	TAPE6	TAPE7	TAPES
TABLE CDC	CONTAINS 2 0.0000 1000.0000 1.0000	POINTS 0.0000 1000.0000 1.0000	0.0000 1000.0000 1.0000	0.0000 1000.0000 1.0000	0.0000 1000.0000 1.0000 1.0000	0.0000 1000.9000 1.0000	0.0000 1000.0000 1.0000 1.0000	0.0000 1000.0000 1.0000 1.0000

	TAFFI	SJUAT	TAPES	TAPE 4	TAPES	TAPE6	TAPE 7	TAPES
TAPLE CHOC	C ONTINCT 1	POTHIS						
1 2	0.0000 180.0000	0.0000 180.0000	0.0000 0000.000	0.3000 140.0000	0.0000 180.0000	0.0000 180.0000	0.0000 100.0000	0.0000
1 2	0.0000 0000.0	0.0000 0.0000	0.000°	0.0000 0.3000	0.0000 3.0000	0.00n0 0.0000	0.0000	0.0000

		TAPFI	TAPEZ	TAPE3	TAPE 4	TAPF5	TAPF6	TAPE7	TAPER
TAPLE	CTDC	CONTAINS 2	POINTS -						
1 2		0.0000 186.0000		0.0006 3060.081	0.0000 180.0000	0.0000	0.0000	0.0000 180.0000	0.0000 180.0000
5		7554	.7550 .7550	.7550 .7553	•7550 •7550	•7550 •7550	• 7550 • 7550	.7550 .7550	.7550 .7550

	TAPFI	LAPES	TAPES	TAPE 4	TAPES	TAPF6	TAPE7	TAPER
TARLE	CNRC CONTAINS II	POINTS						
1	(.0000	U. NO GO	0.0000	6.0000	0.0000	0.0000	0.0000	0.0000
2	5.0000	5.6200	5.6000	5.0000	5.0000	5.0000	5.0000	5.0000
3	10.0000	15.000	10.0000	19.0000	10.0000	10.0000	10.0000	10.0000
4	15,0000	15.6000	15.0 967	15.0000	15.0000	15.0000	15.0000	15.0000
5	20.6600	20.0300	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000
6	25.0000	25.0000	25,0000	25.0000	25.0000	25.0000	25.0000	25.0000
7	39.0009	30.0000	30.0000	30.0000	30.0000	30.0000	30.0000	30.0000
Ŗ	35.0000	35.0000	35.0000	35.0000	35.0000	35.0000	35.0000	35.0000
9	37.0000	37.0000	37.0000	37.0000	37.0000	37-0000	37.0000	37.0000
10	75.0000	75.0000	75.0000	75.0000	75.0000	75.0000	75.0000	75.0000
11	180.0000		180.0000	180.0000	140.0000	180.0000	180.0000	180.0000
1	1.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
5	0200		0200	0200	0200	0200	0200	0200
3	0300		0300	0300	0300	0300	0300	0300
. 4	0100		0100	0100	0100	0100	0100	0100
5	3.0000		0.000	0.0000	0.0000	0.0000	0.0000	0.0000
6	.03no		.0305	.0300	•0300	•0300	.0300	.0300
7 .	•0700		.0700	.0700	.0700	•0700	.0700	.0700
8	.1300	.1300	.1306	-1300	.1300	•1300	.1300	.1300
9	•18no		·1900	-1800	.1800	·1800	.1800	.1800
10	1.5000	1 - 41	1.5000	1.5000	1.5000 .	1.5000	1.5000	1.5000
11	1.5000	1.5000	1.5000	1.5000	1.5000	1.5000	1.5000	1.5000

		·							
		TAPFI	TAPES	TAPES	TAPE4	TAPE5	TAPE6	TAPE7	TAPER
TARLE	CTRC	CONTAINS 11	POTUTS						
1		0.9000	4.5000	0.4300	0.0000	0.000	0.0000	0.0000	0.0000
,		5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000
3		10.0000	10.0660	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000
4		15.000)		15.0011	15.0000	15.0000	15.0000	15.0006	15.0000
5		20.0000		20.0001	20.6000	20.0000	20.0000	20.0000	20.0000
6		25.0011		25.3000	25.0000	25.0000	25.0000	25.0000	25.0000
7		32.0000		30.0000	30.0000	30.0000	30.0000	30.0000	30.0000
A		35.0000	35.0000	35.0000	35.6000	35.0000	35.0000	35.0000	35.0000
ğ		37.0000		37.0000	37.0000	37.0000	37.0000	37.0000	37.0000
10		75.0000		75.0000	75.0000	75.0000	75.0000	75.0000	75.0000
ii		189.0000	180.0000	180.0000	186.0000	180.0000	180.0000	180.000C	180.0000
1		1.5600	1.5000	1.5000	1.5000	1.5000	1.5000	1.5000	1.5000
ż		1.5200	1.5200	1.5207	1.5200	1.5200	1.5200	1.5200	1.5200
3		1.5400		1.5400	1.5400	1.5400	1.5400	1.5400	1.5400
4		1.5400	1.5430	1.5400	1.5400	1.5400	1.5400	1.5400	1.5400
5		1.5200	1.5200	1.5200	1.5200	1.5200	1.5200	1.5200	1.5200
6		1.5000	1.5000 .	1.5000	1.5000	1.5000	1.5000	1.5000	1.5000
7		1.4600		1.4566	1.4630	1.4600	1.4600	1.4600	1.4600
B		1.3753	1.3750	1.3750	1.3750	1.3750	1.3750	1.3750	1.3750
9		1.3250		1.3250	1.3250	1.3250	1.3250	1.3250	1.3250
10		0.0000		0.0000	6.9000	0.0000,	0.0000	0.0000	0.0000
11	•	0.0000	0.6000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
		•							

	TAPFI	TAPES	TAPES	TAPE4	TAPE5	TAPE6	TAPE 7	TAPE8
TARLE TOOFFI	C 211ATMOD 2 00000.0 00000.0 0	POINTS 0.0000 1000.0000 .4260	ŋ,ññyn 1000,4000 3930 3930	\$.6000 1000.0000 .3510 .3510	0.0000 1030.0060 .7090	0.0000 1000.0000 1.6900	0.0000 1000.0000 .3860 .3860	0.0000 1000.0000 .5000

	TAPET	TAPES	TAPES	TAPE4	TAPES	TAPE6	TAPE7	TAPE8
. TARLE TRSELS	CONTAINS 2	POINTS						
1	0.0000	0.0000	0.6690	0.0000	0.0000	0.0000	0.0000	0.0000
2	500.0000	500.0000	500.0000	600.0000	500.0000	500.0000	500.0000	600.0000
1	1.6000	.4700	.6343	.2700	1.0930	.4090	.3150	. 2890
2	1.6000	.47.0	.6340	.2700	1.0930	•4090	.3150	. 2890

	TAPFI	TAPE2	TAPES	TAPE4	TAPES	TAPF6	TAPE7	TAPER
TAPLE TRLSFI	CONTAINS 2 (9.0696 500.0006 1.6107	POINTS 0.0030 500.0340 .7890	0.000 500.000 .7756 .7753	6.0000 600.0000 -5480 -5480	0.0000 530.0000 2.7360 2.7360	0.0000 500.0000 1.5850 1.5850	0.0000 500.0000 .5350	0.0000 600.0000 .4850

						•		
•	TAPEL	TAPES	TAPE3	TAPE4	TAPF5	TAPE6	TAPE7	TAPEB
TABLE COURD	CONTAINS 2 P	กาพร						
1	1.0000	9.6640	6.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	r.0600	P . 66 20	0.0000	2.6000	0.0000	0.0000	0.0000	0.0000
1	-1-0000	-1.0000	-1.0000	-1.0000	-1.0000	-1.3000	-1.0000	-1.0000
5	9.0000	6.0550	0.0600	0.0000	0.0000	0.0000	0.0000	0.0000

•	TAPE L	LVLUS	TAPE 3	TAPE4.	TAPFS	TAPF6	TAPE7	TAPER
TABLE TURD	CONTAINS 2 P	OINIS						
1 2	n.09n0 24n0	0.0000 2400	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1 .	0.0000 9.0000	3.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	TAPF 1	TAPES	TAPES	TAPE4	TAPES	TAPF6	TAPE7	TAPES
TARLE VCSB CO	NTAINS 6 P	OINTS						
1	0.0000	0.0000	0.0000	6.0000	0.0000	0.0000	0.0000	0.0000
2	3.0000	6.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000
3	0.0000	1.0090	. 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4	1.0003	1.0000	0.600.	0.6000	0.0000	0.0000	0.0000	0.0000
5	0.0000	4.500	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
. 6	0.0000	0.0000	0.0000	0.3000	0.0000	0.0000	0.0000	0.0000
1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	1.9267	1.9267	1.9267	1.9267	1.9267	1.9267	1.9267	1.5267
3	7.5267	3.5267	3.5267	3.5267	3.5267	3.5267	3.5267	3.5267
4	0.0000	6.4000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000
• 5	1.9367	1.9267	1.9267	1.9267	1.9267	1.9267	1.9267	1.7267
6	3.5267	3.5267	3.5267	3.5267	3.5267	3.5267	3.5267	3.5267
1	•1458	.1458	.145A	•145B	.1458	·1458	.1458	.1458
2	.1458	.1459	·1458	·1458	·1458	·1458	.1458	.1458
3	.1458	.145A	.145A	.1458	·1458	·1458	.1458 .	.1458
4	1458	1458	1458	1458	1458	145R	1458	1458
5	1458	1458	145H	1458	1458	1458	1458	1458
6	1458	1458	145A	1458	145H	1458	1458	1458

							•		
		TAPE	TAPEZ	TAPES	TAPE4	TAPES	TAPE6	TAPE 7	TAPE8
AFDO	DYNAMIC	COEFFICIENTS FILE	CONTAINS 12	P TARLES	•				
751	CXS	602.1161-1.15	1	17. (2)			1	1	•
- 1	CYS	•	•	;	<u>.</u>		4	•	i
	CIS	~	-	,	<		~	2	2
3	C7S	3	3	.3	3	3	3	3	3
4	CLS	4	4	. 4	4	4	4	4	4
5	CHS	5	5	. 5	5	5	5	5	5
6	CNS	6	6	6	6	6	6	6	6
7	CXH	51	21	21	21	21	21	21	21
8	CYM	22	22	55	22	2.5	52	. 22	55
9	CZM	23	23	23	. 23	23	. 53	23	23
10	CLM	24	24	24	24	24	24	24	24
11	СММ	25	25	25	'2 5	25	25	25	25
12	CNM	26	26	26.	26	26	26	26	26
	,								

	PROFINA FORD AND TAPE (1707) T	i
30 5	* THIS PROGERM WILL PEAD UP TO 10 ICARUS PROGRAM FORMATTED IMPUT DATA * • FILES AND POINT THE TUDIAL PARAMETERS IN A COLUMN BY TAPE MURBER * • FORWAT FOR VISUAL COUPAKISON FURPOSES. AN OPTION IS ALSO AVAILABLE * • THAT WILL CALCULATE THE AVERAGE OF EACH INDIVIDUAL SECTION PARAMETER. * • THE PROGRAM VAFIABLES HIAPES AND IAVO HUST RE SPECIFIED PEFONE * • COMPILARIES HIAPES AND IAVORAM. * • THE SEPURIOR AND HUMBER OF PARAMETERS ARE DETERMINED FROM TAPEI. * • ALL OTHER TAPES ARE ASSUMED TO HAVE THIS SAME SEQUENCE AND NUMBER OF *	
v.	>+++++++++++++++++++++++++++++++++++++	
. 23	DATA (HTAPE(I)+I=1+10)/7H TAPE1+7H TAPE2+7H TAPE3+74 TAPE9+7H TAPE9+7H TAPE9+7H TAPE9+7H TAPE9+7H TAPE10/ DATA HAVG/7HAVERAGE/	·
25	C MIAPES 15 THE NUMBER OF IMPUT DATA TAPES TO BE READ (1 - 10) C TAVE IS THE OPTION TO CALCULATE THE AVERAGE OF EACH INDIVIDUAL SECTION C PARMIATER. C DARMIATER. C 1 = CALCULATE THE AVERAGE C 1 = CALCULATE AND PRINT THE AVERAGE	
50	C SKIP START LIME 10 16 1=1+MTAPES 10 READ(1+1000) IDUM C READ AND PRIMIT TITLES	
:	PRIMIT 2000 10 26 1=1+MTAPES PEAD (1+1100) (ITITLE(J)+J PRIMIT 2100+1+(ITITLE(J)+J READ (1+1100) (ITITLE(J)+J	
07	C READ AND PRINT FLAGS PRINT FLAGS PRINT 2300, (NITAPE (1), I=1, NITAPES) PRINT 2830	
1 2	h = 6 00 40 K=1*19 00 30 1=: *HTAPES 30 FEAD([1:1270] ((IVAR([*M)*IVAL([*M))*M=1*4) 00 40 H=1*4 1F (IVAP([*M) *E0* 8H) 60 TO 40	'
&	0,14.	
IS	50 FEAD(1+1300) INUM IF (10111 .NE. 7HSECTION) GO TO 110 BACKSPACE 1 BACKSPACE 1 BACKSPACE 1 BACKSPACE 1	

J-34

17 2300.(r' FE(I).I=1.447APES) 47 2360.(r' PE(I).I=1.447APES).NAVG E(J).J=1.A) 1).J=1.A) + 1 + 1 (1.44).AVAL(I.44)).M=1.3)) GO TO 100) 90 4) * (AVAL (I,M) * I=1*NTAPES) * AVG	60 TO L = 3 • tuUM =1 • tiTT	(.) , J=1, R) (.) , J=1, NUM) (.) , M=1, NUM) (.) , I=1, NTAPES)	IC COEFFICIENT TARLE NAMES AND SECUENCE NUMBERS (J) + J=1+B) (J) + J=1+B)
0) PRIV 0) PRIV (ITILE (PES 150M 152 150M 125 173)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CONTINUC 60 TO 50 BACKSPACE 1 PEAN (1-150) IDUM, IMAM IF (1DUM, DE, SHTARLE) 60 ML = 2 IF (1NAM, EQ, 4HVCSH) NL BACKSPACE 1 PREAN (1-150) IDUM, IMAM, W PACKSPACE 1 PREAN (1-150) IDUM, IMAM, W PACKSPACE 1	TITLE(J)+J APES IDUM APES (AVAL(I,M) A AVAL(I,M)	120 2300, (HIAPE(1),1= 2300, (HIAPE(1),1= 2300, (HITLE(J) 1-1100) (HITLE(J) 2560, (HITLE(J),J) 1=2,MTAPES
69 65	75 75 58 ,	SS CC	SS 00	13

J-35

ļ.

```
READ (I. 1864) IVAL(K.1)
PRITT 24.0.11 IVAR(K.1) (IVAL(K.1) + I=1 + HTAPES)
                                                                                                  TOWART (A7. 3%.F10.4.2(13%.A7.3%.E10.4))
                                                                                                                                                                                                                                                                     +13+2x+A10+11(1X+F10.44))
+13+2X+10X+1v(1X+F10.44))
                                                                                                                                                                                                                                         FORMATCH +13+2X+A10+10(1X+110))
                                                                                                                                                                                             ***************** = *******
                                                                                                                                                                                                                            FORTAT (1111+19X+A7+10 (4X+A7))
                                                                        FORMAT (AM. 12.3(10X.AM.12))
                                                                                                                                                                                                            (01V8*X6+ H1)1V::503
STUVING I=3.NIVILS
                                                                                                                                                                                                                                                         10178.
                                                                                                                                                  (21-11/4)17-190.
                                                                                                                                   OBMET (RF13.4)
                                                                                                                                                                (51 + XR) TAMO
                                                           FORMAT (RAID)
                                                                                                                                                                                *OAT (1H1)
                                            (7A) T4"50"
                                                                                                                                                                                                                                                          FORMAT (1H
                                                                                                                                                                                                                                                                                                     FORTAT (1H
                                                                                                                                                                                                                                                                          FORMAT (1H
                                                                                                                                                                                                                                                                                       FORMAT (1H
                                                                                                                                                                                                                                                                         じいいじ
                                                                                                                                                                                                                                                                                      2700
                                                                                                                                                                                                                                                                                                    2000
                                                                                                                                                                                                                                            0000
                                                             -
-
                                                                           700
                                                                                        300
                                                                                                        てこさ
                                                                                                                      C
C
C
                                                                                                                                      C
C
C
                                                                                                                                                                                                                                                            ついいつ
                                                                                                                                                                                   こつこん
                                                                                                                                                                                                                                                            133
```

> CAT (1 - 1 7 0 1) | 1 VAP (x - 1) - [VAL (K - 1