ENGR 231 – Linear Engineering Systems

MATLAB Exam - Version 1 Bardin

Last

Name: Cole First Section: 62

Grade: ____/25

Answer Template #1: Spring 2022

This Answer Template is provided for your convenience. Be sure all your answers are recorded inside, then upload your answers as a PDF before the submission window closes, Remember to also submit your Live Script and a PDF copy of your Live Script!

Part A: Circle or check each answer below.

(10 points)

Question 1: Find the vector whose 2-norm is 50.

$$\mathbf{A.} \begin{bmatrix} 10 \\ -20 \\ 10 \\ 20 \\ -40 \\ 20 \end{bmatrix}$$

$$\mathbf{B.} \begin{bmatrix} 50\\40\\30\\20\\10\\-150 \end{bmatrix}$$

$$\mathbf{C}. \begin{bmatrix} 10\\10\\10\\20\\30\\30 \end{bmatrix}$$

$$\mathbf{D.} \begin{bmatrix} 10 \\ 10 \\ 10 \\ 10 \\ 6 \\ 4 \end{bmatrix}$$

Question 2: My 1-norm, 2-norm and ∞ -norm are all 12. Find me!

A.
$$\begin{bmatrix} 6 \\ 0 \\ 6 \\ 0 \end{bmatrix}$$

$$\mathbf{B.} \begin{bmatrix} 12 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

C.
$$\begin{bmatrix} 6 \\ 6 \\ 6 \\ 6 \end{bmatrix}$$

D.
$$\begin{bmatrix} -12 \\ +12 \\ -12 \\ +12 \end{bmatrix}$$

Question 3: Find the matrix M whose cube, is the identity matrix. That is, $M^3 = I$.

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 6 & 10 & 15 \\ 1 & 4 & 10 & 20 & 35 \\ 1 & 5 & 15 & 35 & 70 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 \\ 1 & -3 & 3 & -1 & 0 \\ 1 & -4 & 6 & -4 & 1 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ -4 & -3 & -2 & -1 & 0 \\ 6 & 3 & 1 & 0 & 0 \\ -4 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

D. None of these.

Question 4: Record the 2×2 matrix *R* that you found in the box.

$$R = \begin{bmatrix} 4 & -3 \\ -5 & 4 \end{bmatrix}$$

Question 5: One of these vectors is orthogonal to all three columns of the matrix A. Find it!

$$\mathbf{A.}\begin{bmatrix} 1\\1\\1\\1\\1\\1\\1 \end{bmatrix}$$

B.
$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \\ 2 \\ 3 \end{bmatrix}$$

$$\mathbf{C.} \begin{bmatrix} 6 \\ 6 \\ 6 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

D.
$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ -1 \\ -2 \\ -3 \end{bmatrix}$$

Question 6: What is the missing element k in the RAM?

$$\mathbb{C}$$
, 2

Question 7: The solution for \vec{x} is:

A.
$$\begin{bmatrix} 5 \\ -1 \\ -2 \end{bmatrix}$$

B.
$$\begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}$$

C.
$$\begin{bmatrix} -2 \\ 3 \\ 5 \end{bmatrix}$$

D.
$$\begin{bmatrix} 6 \\ 6 \\ 6 \end{bmatrix}$$

E.
$$\begin{bmatrix} 0 \\ 3 \\ 5 \end{bmatrix}$$

Question 8: The sum of all 25 elements is:

A.
$$V^T A^T A V = 351$$

B.
$$V^T A^T A V = 361$$

C.
$$V^T A^T A V = 371$$

D.
$$V^T A^T A V = 381$$

Questions 9-10: Paste in your code here. We do not need the resulting inverse - just the code for all steps. Assume A has been entered.

Part B: Cramer's Rule! (5 points)

Question 1: The determinant of A is: 4096

```
Question 2: Complete this code so the matrix A8 is correctly defined.
```

```
A8 = A; % Add one more line below using a colon. A8(:,8) = b;
```

3. Solve for the <u>last</u> unknown x_8 using Cramer's rule. Show <u>both</u> your code and the result for x_8 .

```
Question 3: Paste your code here.
```

```
x8 = det(A8)/det(A)
After running the code, the value for x8 is: 4
```

4-5: Complete this for loop, to find all the unknowns at once. Add code inside the blue boxes.

```
Ai(:,i) = b;
```

 $\mbox{\%}$ Find the $i^{\mbox{\scriptsize th}}$ unknown x(i) using Cramer's formula.

```
x(i) = det(Ai)/det(A);
```

end

x % Prints out the solution as a column vector.

Part C:	Row	Space,	Null	Space
		~ F ,	- 10	~P

(5 points)

Question 1: The missing element in the <u>last</u> column is.

A. 12

B. 13

C. 14

D. 15

E. 16

Question 2: The 2×8 matrix R consisting of the first two rows of Ared is: (just give code)

R = Ared(1:2,:)

Question 3: The missing element in the second row is:

A. 3

B. 4

C. 6

D. 12

Question 4: The matrix product *RN* is:

Question 5: All of these combinations have the same null space as A except one whose null space is just 2D! Find it!

 $\mathbf{A}. A^T A$

 $\mathbf{B.} \ A A^T$

C. $A A^T A$

D. $A^T A A^T A$

Part D: Curve Fitting and Olympic Records

(5 points)

Question 1: The 2 × 2 matrix
$$D^TD$$
 is: $D^TD = \begin{bmatrix} 23 & 44900 \\ 44900 & 87674608 \end{bmatrix}$

Question 2: The best-fit parameter vector is:
$$\vec{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} 874.4631 \\ -0.3323 \end{bmatrix}$$

Question 3: The RMSE (root mean square error) is: 3.6711

Questions 4-5: Replace the sample plot with your finished graph.

(2 points)

Just paste yours here.

Ready to Submit?

Be sure all questions are answered. When your MATLAB Exam is complete, be sure to submit three files:

- 1. Your **completed Answer Template** as a PDF file
- 2. A copy of your MATLAB Live Script
- 3. A **PDF** copy of your **MATLAB Live Script** (Save-Export to PDF...)