LA FONCTION CARRÉ M06

EXERCICE N°1

Résoudre les inéquations suivantes et donner l'ensemble des solutions sous la forme d'un intervalle ou d'une réunion d'intervalle.

1)
$$(5x+15)(x+2) < 0$$

2)
$$(-4x+12)(x-3) \ge 0$$

EXERCICE N°2

Résoudre les inéquations suivantes et donner l'ensemble des solutions sous la forme d'un intervalle ou d'une réunion d'intervalle.

1)
$$x(-2x+1)+x(-3x+4) \le 0$$

2)
$$(2x-3)(x-5)+(2x-3)(3x+8) < 0$$

3)
$$9x^2 - (2x+4)^2 \le 0$$

4)
$$(x+a)^2 \ge 0$$
 où a est un nombre réel.

LA FONCTION CARRÉ M06C

EXERCICE N°1

(Le corrigé)

RETOUR À L'EXERCICE 1

Résoudre les inéquations suivantes et donner l'ensemble des solutions sous la forme d'un intervalle ou d'une réunion d'intervalle.

1)
$$(5x+15)(x+2) < 0$$

2)
$$(-4x+12)(x-3) \ge 0$$

1

Pour résoudre, (5x+15)(x+2) < 0 nous utilisons un tableau de signes :

•
$$5x+15 > 0 \Leftrightarrow 5x > -15 \Leftrightarrow x > -\frac{15}{5} = -3$$

Pourquoi > ? Parce qu'on cherche où mettre les « + » dans le tableau.

$$x+2 > 0 \Leftrightarrow x > -2$$

x	$-\infty$		-3		-2		+∞
5 x + 15		_	0	+		+	
x+2		_		_	0	+	
(5x+15)(x+2)		+	0	_	0	+	

En notant S l'ensemble des solutions : S =]-3; -2[

Pour tout x appartenant à l'intervalle S =]-3; -2[

5x+15 est toujours strictement négatif, x-4 est toujours négatif, cela nous permet d'affirmer que la règle des signes donnera toujours le même résultat : « + ».

On peut raisonner de la même façon, sur chaque intervalle de la première ligne du tableau. C'est en cela que le tableau est utile...

Il n'y a plus qu'à lire la dernière pour trouver le(s) intervalle(s) vérifiant l'inégalité de départ.

2)

Pour résoudre, $(-4x+12)(x-3) \ge 0$ nous utilisons un tableau de signes :

$$-4x+12 > 0 \Leftrightarrow -4x > -12 \Leftrightarrow x < \frac{-12}{-4} = 3$$

$$x-3 > 0 \Leftrightarrow x > 3$$

Tiens tiens, la même valeur...

x	$-\infty$		3		+∞
-4x+12		+	0	_	
x-3		_	0	+	
(-4x+12)(x-3)		_	0	_	

En notant S l'ensemble des solutions : $S = \{3\}$

On peut aussi procéder comme suit si on a pensé à factoriser. :

$$(-4x+12)(x-3) = -4(x-3)(x-3) = -4(x-3)^2$$

Or pour tout réel x, $(x-3)^2 \ge 0$ d'où $-4(x-3)^2 \le 0$

(Ainsi, on sait que $(-4x+12)(x-3) \le 0$ et on veut $(-4x+12)(x-3) \ge 0$ la seule possibilité est donc (-4x+12)(x-3) = 0)

On en déduit que l'inéquation $(-4x+12)(x-3) \ge 0$ n'admet qu'une seule solution : 3

LA FONCTION CARRÉ M06C

EXERCICE N°2

(Le corrigé)

RETOUR À L'EXERCICE 2

Résoudre les inéquations suivantes et donner l'ensemble des solutions sous la forme d'un intervalle ou d'une réunion d'intervalle.

1)
$$x(-2x+1)+x(-3x+4) \le 0$$

2)
$$(2x-3)(x-5)+(2x-3)(3x+8) < 0$$

3)
$$9x^2 - (2x+4)^2 \le 0$$

4)
$$(x+a)^2 \ge 0$$
 où a est un nombre réel.

1)

Pour tout réel x,

$$x(-2x+1)+x(-3x+4) = x[(-2x+1)+(-3x+4)] = x(-5x+5)$$

On en déduit que
$$x(-2x+1)+x(-3x+4) \le 0 \Leftrightarrow x(-5x+5) \le 0$$

Et on va résoudre cette dernière inéquation (qui possède les même solutions que la première puisqu'elles sont équivalentes).

•
$$x > 0 \Leftrightarrow x > 0$$
 (élémentaire mon cher Watson...)

■
$$-5x+5 > 0 \Leftrightarrow -5x > -5 \Leftrightarrow x < \frac{-5}{-5} = 1$$

х	$-\infty$		0		1		+∞
x		_	0	+		+	
-5x+5		+		+	0	_	
x(-5x+5)		_	0	+	0	_	

On en déduit que $x(-2x+1)+x(-3x+4) \le 0$ admet comme ensemble des solutions : $[-\infty; 0] \cup [1; +\infty[]$

2)

Pour tout réel x,

$$(2x-3)(x-5)+(2x-3)(3x+8) = (2x-3)[(x-5)+(3x+8)] = (2x-3)(4x+3)$$

On en déduit que $(2x-3)(x-5)+(2x-3)(3x+8) < 0 \Leftrightarrow (2x-3)(4x+3) < 0$

Et on va résoudre cette dernière inéquation (qui possède les même solutions que la première puisqu'elles sont équivalentes).

■
$$2x-3 > 0 \Leftrightarrow 2x > 3 \Leftrightarrow x > \frac{3}{2} = 1,5$$

■
$$4x+3 > 0 \Leftrightarrow 4x > -3 \Leftrightarrow x > -\frac{3}{4} = -0.75$$

x	$-\infty$		-0,75		1,5		+∞
2x-3		_		_	0	+	
4 <i>x</i> +3		_	0	+		+	
(2x+1)(4x+1)		+	0	_	0	+	

On en déduit que admet (2x-3)(x-5)+(2x-3)(3x+8) < 0 comme ensemble des solutions :

$$]-0,75$$
; 1,5

Pour tout réel
$$x$$
, $\underbrace{9x^2 - (2x+4)^2}_{a^2} = \underbrace{(3x)^2 - (2x+4)^2}_{a^2} = [(3x) + (2x+4)][(3x) - (2x+4)] = (5x+4)(x-4)$

On en déduit que $3x^2 - (2x+4)^2 \le 0 \Leftrightarrow (5x+4)(x-4) \le 0$

Et on va résoudre cette dernière inéquation (qui possède les même solutions que la première puisqu'elles sont équivalentes)... On commence à le savoir!

■
$$5x+4 > 0 \Leftrightarrow 5x > -4 \Leftrightarrow x > -\frac{4}{5} = -0.8$$

$$x-4 > 0 \Leftrightarrow x > 4$$

x	$-\infty$		-0,8		4		+∞
5 x+4		_	0	+		+	
x-4		_		_	0	+	
(3x+1)(x-1)		+	0	_	0	+	

On en déduit que a $9x^2 - (2x+4)^2 \le 0$ admet comme ensemble des solutions : [-0.8;4]

4)

Le carré d'un nombre (réel) étant toujours positif (pas forcément strictement...), on en déduit que $(x+a)^2 \ge 0$ admet pour ensemble des solutions \mathbb{R}

Un trou de mémoire pour R? C'est ici

Et si on avait eu : $(x+a)^2 > 0$?

Dans ce cas il aurait fallu exclure l'opposé de a de l'ensemble des solutions

(car -a+a=0 et 0 n'est pas strictement plus grand que 0...)

L'ensemble des solutions aurait été $\mathbb{R}\setminus[-a] =]-\infty$; $-a[\cup]-a$; $+\infty[$

Voici quelques exemples avec des valeurs numériques avec S l'ensemble des solutions :

$$(x+1)^2 > 0$$
 $S = \mathbb{R} \setminus \{-1\} =]-\infty ; -1[\cup]-1 ; +\infty[$

$$(x-1)^2 > 0$$
 $S = \mathbb{R} \setminus \{1\} =]-\infty ; 1[\cup]1 ; +\infty$

$$(x+1)^{2} > 0 S = \mathbb{R} \setminus \{-1\} =]-\infty ; -1[\cup]-1 ; +\infty[$$

$$(x-1)^{2} > 0 S = \mathbb{R} \setminus \{1\} =]-\infty ; 1[\cup]1 ; +\infty[$$

$$(x+7,3)^{2} > 0 S = \mathbb{R} \setminus \{-7,3\} =]-\infty ; -7,3[\cup]-7,3 ; +\infty[$$

$$(x-7,3)^2 > 0$$
 $S = \mathbb{R} \setminus [7,3] =]-\infty ; 7,3[\cup]7,3 ; +\infty[$