We claim:

1	1.	A machine-readable mediun	ı that	provides instructions,	which when	executed
---	----	---------------------------	--------	------------------------	------------	----------

- 2 by a set of processors of one or more processors, cause said set of processors to
- 3 perform operations comprising:
- 4 combining a priority scheme with a generalized processor sharing scheme to
- 5 schedule transmission of a set of data; and
- 6 transmitting the set of data as scheduled.
- 1 2. The machine-readable medium of claim 1 wherein the generalized processor
- 2 sharing scheme is a weighted round robin scheme.
- 1 3. The machine-readable medium of claim 1 wherein the generalized processor
- 2 sharing scheme is a start time fair queuing scheme.
- 1 4. The machine-readable medium of claim 1 wherein the generalized processor
- 2 sharing scheme is a self-clocked fair queuing scheme.
- 1 5. A machine-readable medium that provides instructions, which when executed
- 2 by a set of processors of one or more processors, cause said set of processors to
- 3 perform operations comprising:
- determining a subset of queues to be of highest priority from a set of queues
- 5 eligible to transmit;
- determining one of the subset of queues to be most eligible to transmit;
- 7 transmitting data from the one of the subset of queues;
- 8 updating a first value indicating when the one of the subset will be eligible to
- 9 transmit; and

10	updating a second value indicating when the subset of queues will be eligible to
11	transmit.
1	6. The machine-readable medium of claim 5 wherein determining the one of the
2	subset of queues to be most eligible to transmit comprises calculating the first value for
3	the one of the subset of queues as being less than a transmit clock value and having a
4	greatest difference from the transmit clock value.
1	7. The machine-readable medium of claim 5 wherein the first and second value is
2	updated with a cost of a set of data transmitted from the one of the subset of queues.
1	8. The machine-readable medium of claim 5 wherein updating the first and second
2	value comprises:
3	increasing the first and second value with a size of a set of data transmitted from
4	the one of the subset of queues; and
5	modifying the increased first and second value respectively with a first and
6	second weight respectively corresponding to the one of the subset of
7	queues and the subset of queues.
1	9. The machine-readable medium of claim 5 further comprising maintaining a
2	third value indicating unused transmit time.
1	10. The machine-readable medium of claim 5 further comprising
2	determining the subset of queues to be ineligible to transmit;
3	determining a second subset of queues to be of highest priority of a second set
4	of queues eligible to transmit;
5	determining one of the second subset of queues to be most eligible to transmit

6

transmitting data from the one of the second subset of queues;

7	updating a third value indicating when the one of the second subset will	be
8	eligible to transmit; and	
9	updating a fourth value indicating when the second subset of queues will	l be
10	eligible to transmit.	
1	11. The machine-readable medium of claim 5 further comprising	
2	determining the subset of queues to be of highest priority from the set of	queues
3	eligible to transmit;	
4	determining a second one of the subset of queues to be most eligible to t	ransmit;
5	transmitting data from the second one of the subset of queues;	
6	updating a third value indicating when the second one of the subset will	be
7	eligible to transmit; and	
8	updating the second value indicating when the subset of queues will be e	ligible
9	to transmit.	
1	12. A machine-readable medium that provides instructions, which when exe	cuted
2	by a set of processors of one or more processors, cause said set of processors to	cuica
3	perform operations comprising:	
	prioritizing a first and second set of queues, the first set of queues being	o.f
4		01
5	higher priority;	1 ,
6	determining one of the first set of queues to be most eligible to transmit	aata;
7	transmitting a set of data from the one of the first set of queues;	
8	updating a first value with a cost of the set of data, the first value indicat	_
9	when the one of the first set of queues will be eligible to transmit	; and
10	updating a second value indicating when the first set of queues will be el	igible
11	to transmit with the cost of the set of data	

8

9

10

11

1	13.	The machine-readable medium of claim 12 wherein determining the one of the
2	first s	et of queues as most eligible from the set of queues comprises calculating the
3	first v	alue for the one of the first set of queues as being less than a transmit clock value
4	and h	aving a greatest difference from the transmit clock value.
1	14.	The machine-readable medium of claim 12 wherein updating the first and
2	secon	d value comprises:
3		increasing the first and second value with a size of the set of data transmitted;
4		and
5		modifying the increased first and second value respectively with a first and
6		second weight respectively corresponding to the one of the first set of
7		queues and the first set of queues.
1	15.	The machine-readable medium of claim 12 further comprising maintaining a
2	third	value indicating unused transmit time.
1	16.	A machine-readable medium that provides instructions, which when executed
2	by a s	set of processors of one or more processors, cause said set of processors to
3	perfo	rm operations comprising:
4		determining if at least one of a plurality of groups is eligible to transmit, each of
5		the plurality of groups comprising a set of queues;
6		selecting an eligible one of highest priority of the plurality of groups having
7		data to transmit upon determining at least one of the plurality of groups

is eligible to transmit;

is not eligible to transmit;

selecting an ineligible one of highest priority of the plurality of groups having

data to transmit upon determining at least one of the plurality of groups

12	determining a queue having data as most eligible from the set of queues of the
13	selected one of the plurality of groups;
14	transmitting a set of data from the queue;
15	updating a first value with the cost of the set of data, the first value indicating
16	when the transmitting queue will be eligible to transmit; and
17	updating a second value with the cost of the set of data, the second value
18	indicating when the selected one of the plurality of groups will be
19	eligible to transmit.
1	17. The machine-readable medium of claim 16 wherein determining the queue as
2	most eligible from the set of queues comprises calculating the first value for the queue
3	as being less than a transmit clock value and having a greatest difference from the
4	transmit clock value.
1	18. The machine-readable medium of claim 16 wherein updating the first and
2	second value comprises:
3	increasing the first and second value with a size of the set of data transmitted;
4	and
5	modifying the increased first and second value respectively with a first and
6	second weight respectively corresponding to the transmitting queue and
7	the selected one of the plurality of queues.

- 1 19. The machine-readable medium of claim 16 further comprising maintaining a
- 2 third value indicating unused transmit time.
- 1 20. An apparatus comprising:
- 2 a set of queues to store a set of data;

1

25.

3		a first logic coupled to the set of queues, the first logic to determine priority
4		and eligibility of a plurality of subsets of the set of queues;
5		a second logic coupled to the first logic and the set of queues, the second logic
6		to determine eligibility of each queue of one of the plurality of subsets,
7		the one being indicated by the first logic; and
8		a transmitting unit coupled to the set of queues, the transmitting unit to transmit
9		the set of data.
1	21.	The apparatus of claim 20 wherein each of the set of queues is allocated for
2	separa	ate entities.
1	22.	The apparatus of claim 20 further comprising:
2		the first logic to update a first eligibility value for a transmitting subset of the
3		set of queues; and
4		the second logic to update a second eligibility value for a transmitting queue.
1	23.	A computer implemented method comprising:
2		combining a priority scheme with a generalized processor sharing scheme to
3		schedule transmission of a set of data; and
4		transmitting the set of data as scheduled.
1	24.	The computer implemented method of claim 23 wherein the generalized
2	proce	ssor sharing scheme is a weighted round robin scheme.

The computer implemented method of claim 23 wherein the generalized

processor sharing scheme is a start time fair queuing scheme.

1	26.	The computer implemented method of claim 23 wherein the generalized
2	proces	ssor sharing scheme is a self-clocked fair queuing scheme.
1	27.	A computer implemented method comprising:
2		prioritizing a first and second set of queues, the first set of queues being of
3		higher priority;
4		determining one of the first set of queues to be most eligible to transmit data;
5		transmitting a set of data from the one of the first set of queues;
6		updating a first value with a cost of the set of data, the first value indicating
7		when the one of the first set of queues will be eligible to transmit; and
8		updating a second value indicating when the first set of queues will be eligible
9		to transmit with the cost of the set of data.
1	28.	The computer implemented method of claim 27 wherein determining the one of
2	the fir	st set of queues as most eligible from the set of queues comprises calculating the
3	first v	alue for the one of the first set of queues as being less than a transmit clock value
4	and ha	aving a greatest difference from the transmit clock value.
1	29.	The computer implemented method of claim 27 wherein updating the first and
2	secon	d value comprises:
3		increasing the first and second value with a size of the set of data transmitted;
4		and
5		modifying the increased first and second value respectively with a first and
6		second weight respectively corresponding to the one of the first set of
7		queues and the first set of queues.

a third value indicating unused transmit time.

30.

1

2

The computer implemented method of claim 27 further comprising maintaining

1	31.	A computer implemented method comprising:
2		determining if at least one of a plurality of groups is eligible to transmit, each of
3		the plurality of groups comprising a set of queues;
4		selecting an eligible one of highest priority of the plurality of groups having
5		data to transmit upon determining at least one of the plurality of groups
6		is eligible to transmit;
7		selecting an ineligible one of highest priority of the plurality of groups having
8		data to transmit upon determining at least one of the plurality of groups
9		is not eligible to transmit;
10		determining a queue having data as most eligible from the set of queues of the
11		selected one of the plurality of groups;
12		transmitting a set of data from the queue;
13		updating a first value with the cost of the set of data, the first value indicating
14		when the transmitting queue will be eligible to transmit; and
15		updating a second value with the cost of the set of data, the second value
16		indicating when the selected one of the plurality of groups will be
17		eligible to transmit.

- 1 32. The computer implemented method of claim 31 wherein determining the queue
- 2 as most eligible from the set of queues comprises calculating the first value for the
- queue as being less than a transmit clock value and having a greatest difference from
- 4 the transmit clock value.
- 1 33. The computer implemented method of claim 31 wherein updating the first and
- 2 second value comprises:
- increasing the first and second value with a size of the set of data transmitted;
- 4 and

- modifying the increased first and second value respectively with a first and
 second weight respectively corresponding to the transmitting queue and
 the selected one of the plurality of queues.
- 1 34. The computer implemented method of claim 31 further comprising maintaining
- 2 a third value indicating unused transmit time.