

Inverse Dynamics + Combine motion and force plate measurements to estimate forces acting at joints of body + Combine them with Newton's laws of motion + Assume body is a connected set of rigid links

Inverse Dynamics

- $\begin{tabular}{ll} \begin{tabular}{ll} \beg$
- + Free body diagram, equations of motion
- + Using forces/moments at distal joint, can calculate forces/moments at proximal joint
 - + Work way up the body this way

51

Inverse Dynamics Example

- + Subject walking across force plate
- + Foot contacts only force plate
- + Know:
 - + Motions of foot, leg, thigh + Forces/moments acting on foot

 - + Point of application of forces on foot
 - + Must map from force plate coordinate system to camera coordinate system

52

Big Assumptions

- $\textcolor{red}{+} \ \text{Body segments are completely rigid links}$
- + We know mass, moment of inertia of body segments
 - + Can measure with MRI, CT scan + Expensive, time-consuming
 - + Cadaveric studies
 - + Look up in a table: a 38-year-old man has a 2-kg foot
 - + Regression: a foot should be 2.5% of body weight

Start With Forces at the Foot...

- + $\sum \mathbf{F}_f = m_f \mathbf{a}_f$
- + Ground reaction force \mathbf{F}_{gr} : known
- + Weight of foot m_fg: known
- + Ankle joint reaction force $\mathbf{F}_{?}$: dunno
- + $m_f \mathbf{a}_f = \mathbf{F}_{gr} + m_f \mathbf{g} + \mathbf{F}_?$
- + $\mathbf{F}_{?} = m_f \mathbf{a}_f \mathbf{F}_{gr} m_f \mathbf{g}$
- + Note: **bold** indicates vectors!

Moments are Messier...

- $+ \sum \tau = I \alpha$
- $\label{eq:mass_equation} + \ \mathbf{M}_{\mathrm{?}} + \mathbf{M}_{\mathrm{gr}} + \mathbf{r}_{\mathrm{gr}} x \mathbf{F}_{\mathrm{gr}} + \mathbf{r}_{\mathrm{ank}} x \mathbf{F}_{\mathrm{ank}} = \mathbf{I}_{\mathrm{f}} \pmb{\alpha}_{\mathrm{f}}$
- + $\mathbf{M}_{?} = \mathbf{I}_{f} \boldsymbol{\alpha}_{f} \mathbf{M}_{gr} \mathbf{r}_{gr} \mathbf{x} \mathbf{F}_{gr} \mathbf{r}_{ank} \mathbf{x} \mathbf{F}_{ank}$
 - + r_{gr}: dist from center of pressure on force plate [i.e., point of application of force] to center of mass of foot
 - + \mathbf{r}_{ank} : dist from ankle to center of mass of foot
- + Note **vector** quantities!

55

Now We Know the Ankle...

- + Repeat process...
 - + Ankle is distal joint, know forces/moments
 - + Know kinematics of leg
 - + Compute forces/moments at knee
 - $\mbox{+}$ And then onto the hip...

+ Pitching: + Measure acceleration of ball as it leaves hand + Know mass of ball + Know forces ball exerts on hand + Perform inverse dynamics: + Ball → Wrist → Elbow → Shoulder

58

Inverse Dynamics Are Powerful + Non-invasively estimate forces/moments seen by joints + Predict pathology? + Andriacchi's work with arthritis, knee adduction moment

Inverse Dynamics Suck

- ${\color{red} \boldsymbol{+}} \ \, \textbf{Extremely accurate force measurements}$
- + Extremely accurate motion measurements
- + Waaaaaay inaccurate estimates of inertial properties of body
- + Error gets bigger as we go farther from force plate

60

Inverse Dynamics Caveats

- + Estimate of joint forces/torques
- + Net force/torque about a joint
 - + Doesn't tell what a particular muscle may be doing
 - + Can *qualitatively* relate EMG to inverse dynamics results if enough/correct muscles monitored

61

One Great Inverse Dynamics F*ck Up

- + "Quad avoidance" gait post-ACL injury
 - + Gait adaptations by patients who have a deficient anterior cruciate ligament.
 - + Berchuck M, Andriacchi TP, Bach BR, Reider B
 - + J Bone Joint Surg Am. 1990 Jul;72(6):871-7.
 - + Reduced [external] knee flexion moment during gait with ACL injury
 - + Less quad activity?
 - + More hamstring activity?
 - + No EMG measurements

The Holy Grail + Record: + Kinetics + Kinematics + EMG + Relate forces/moments at joint to EMG activity + How much force is each muscle generating? + Difficult/impossible + Need very good muscle model + Measure all muscles that may contribute + Agonist/antagonist + Deep muscles

63

Why Not Have a Motion Lab?

- + Large space needed
- + Equipment expensive
- + Force plates ~\$20-\$50K
- + Camera system \$75-\$300K
- + Electromagnetic system \$20-\$125K
- + EMG system \$5-25K
- + Additional software expensive as well
- + Don't forget the expertise to use the equipment

64

Useful References

- + Winter, DA. *Biomechanics and Motor Control of Human Movement*. New York: John Wiley and Sons, Inc., 2nd ed. 1990.
- + Enoka, RM. *Neuromechanics of Human Movement*. Champaign, IL: Human Kinetics, 3rd ed. 2002.
- + Nigg BM, Herzog W. *Biomechanics of the Musculoskeletal System.* New York: John Wiley and Sons, Inc., 2nd ed. 1999.

Motion of Center of Mass

- + Efficient gait will minimize COM
 - + Knee flexion in stance
 - + Pelvic tilt
 - + Heel rise in terminal stance

72

Efficiency in Gait

- + Minimize center of mass vertical displacement
- + Energy storage in elastic elements
 - + Tendons
- + Use passive momentum of body
 - + "Falling" forward during stance
 - + Marey [remember him?] called running "controlled falling"
- + Measure using metabolic cart
 - + Indirect calorimetry
 - + Oxygen consumption
 - + VO_{2max}
 - + Metabolic cost of a given speed

73

Gait Measurements

- + Joint angles
 - + Ankle + Knee
- + Joint forces/moments/powers + Inverse dynamics

- + Rates of change of all these
 + Joint angular velocities/accelerations
 + Loading rates
- + Muscle activation
 - + Timing
 - + Amount
 - + Frequency?

Vertical Ground Reaction Forces + F1 + Onset of mid-stance + Loading response peak + F2 + Mid-stance valley + Rise of body center of gravity as body rolls over stance foot + F3 + Terminal stance + Lowering of center of gravity + Preparing to push off + F1, F3 ~ 110% BW, F2 80% BW + Lower speed, lower force + Impact peak prior to F1

Shear (Horizontal) Forces + Medial-lateral (ML) + Should be very small + < 10% BW + Indicative of shift in body weight from one limb to the other + Can use to break stance into breaking and propulsive phases

What About that Barefoot Running Thing?

- + Started by popularity of book "Born to Run" [Christopher McDougall]
- + Barefoot [or wearing minimalist shoes] tends to land on forefoot
- + Normal running shoes [padding] tend to land on heel/rearfoot
- + Fore-/midfoot landing allows ankle to assist in absorption of shock
- + Tends to get rid of impact peak

81

Ankle Simplifications

- + Foot/ankle is more complex than a single joint
- + Really (at least) three joints within the foot
 - + Load/fulcrum moves among them during gait cycle

82

The Book + Gait Analysis: Normal and Pathological Function, 2nd ed + Jacquelin Perry + SLACK, Inc. 2010