Worksheet 4 Review 2

April 12, 2020

Question 1

- a. $\exists n \in \mathbb{N}, \ n > 3 \wedge n^2 1.5n \ge 5$
- b. The variable is existentially quantified
- c. Because the variable is existentially quantified, the variable's value should be a *concrete* natural number
- d. Statement: $\exists n \in \mathbb{N}, \ n > 3 \wedge n^2 1.5n \geq 5$

Proof. Let n = 5.

We will prove $n > 3 \wedge n^2 - 1.5n \ge 5$.

First, we need to prove n > 3.

The header tells us n = 5.

Using this fact, we can conclude n > 3.

Now, we need to show $n^2 - 1.5n \ge 5$.

Using the fact n = 5, we can calculate

$$n^2 - 1.5n = 25 - 7.5 \tag{1}$$

$$= 17.5 \tag{2}$$

$$\geq 5$$
 (3)

Finally, since n>3 and $n^2-1.5n\geq 5$ are true, we can conclude $n>3 \wedge n^2-1.5n\geq 5$ are true. \Box

Notes:

• Used the following pseudoproof used for this problem. Proof really feels smoother.

e.
$$\forall n \in \mathbb{N}, \ n \ge 3 \Rightarrow n^2 - 1.5n > 4$$

- f. The variable is universally quantified.
- g. Because the variable is universally quantified, the variable's value should be an arbitrary natural number.
- h. The assumption made is n > 3.

This conclusion is made by looking at the L.H.S of the \Rightarrow operator.

i. Statement: $\forall n \in \mathbb{N}, \ n > 3 \Rightarrow n^2 - 1.5n > 4$

Proof. Let $n \in \mathbb{N}$. Assume $n \geq 3$.

We will prove $n^2 - 1.5n > 4$.

Using the fact $n \geq 3$, we can conclude

$$n^2 - 1.5n \ge (3)^2 - 1.5(3) \tag{1}$$

$$=9-4.5$$
 (2)

$$=4.5\tag{3}$$

$$>4$$
 (4)

Question 2

a. $\forall n \in \mathbb{N}, \ n > 5 \Rightarrow 2 \mid n \vee 3 \mid n$

b. $\exists n \in \mathbb{N}, \ n > 5 \land (2 \nmid n) \land (3 \nmid n)$

c. Statement: $\exists n \in \mathbb{N}, \ n > 5 \land (2 \nmid n) \land (3 \nmid n)$

Proof. Let n = 7.

We will prove $n > 5 \land (2 \nmid n) \land (3 \nmid n)$.

First, we will to prove n > 5.

The header tells us n = 7.

Using this fact, we can conclude n > 5.

Now, we will prove $2 \nmid n$.

7 is a prime number, so we know the number can only be divisible by 1 and 7.

Using this fact, we can conclude $2 \nmid 7$.

Now, we will prove $3 \nmid n$.

Since 7 is divisible by 1 and 7 only, we can conclude $3 \nmid 7$.

So, since n > 5, $2 \nmid n$ and $3 \nmid n$ are true, we can conclude $n > 5 \land (2 \nmid n) \land (3 \nmid n)$ holds. \square

Question 3

a. Let $x \in \mathbb{R}$, and y = 165.

<u>Correct Solution:</u>

Let $x \in \mathbb{R}$, and y = 166 - x

b. Let y = 166 and $x \in \mathbb{N}$.