

GEOMETRY Chapter 16

5th SECONDARY

Dentro de las infinitas formas poliédricas que existen hay unas que por sus simetrías han ejercido siempre una gran atracción sobre los hombres, se trata de los poliedros regulares, cuyas caras son polígonos regulares iguales entre sí y en cuyos vértices concurren el mismo número de caras.

POLIEDROS

POLIEDROS

Son aquellos sólidos limitados por cuatro o más planos secantes. Los poliedros más conocidos son las pirámides y los prismas.

Diagonal de un poliedro

Es el segmento de recta que une dos vértices no pertenecientes a una misma cara.

Teoremas de Euler

1. En todo poliedro convexo se cumple que el número de caras más el número de vértices es igual al número de aristas más dos unidades.

$$C + V = A + 2$$

Donde

C: caras

V: vértices

A: aristas

2. En todo poliedro, la suma de las medidas de los ángulos internos de todas sus caras es igual a 360º multiplicado por el número de vértices menos 2.

$$\Sigma \ll \text{caras} = 360^{\circ} (V-2)$$

donde V: vértices, además:

$$\Sigma \ll \text{caras} = 360^{\circ} (A - C)$$

donde A: aristas

POLIEDROS REGULARES

Son aquellos poliedros convexos cuyas caras son polígonos regulares congruentes entre sí y en cada vértice concurren igual números de aristas y caras.

Todo poliedro regular se puede inscribir o circunscribir en una esfera, el centro de las esferas es el centro de poliedro regular.

Solo existen 5 poliedros regulares

TETRAEDRO REGULAR

Sus caras son triángulos equiláteros.

$$S_{T} = a^{2}\sqrt{3}$$

$$V = \frac{a^{3}\sqrt{2}}{12}$$

HEXAEDRO REGULAR (CUBO)

Sus caras son cuadrados.

Notacio

 $\boldsymbol{\nu}$

 $V = a^3$

 $d = a\sqrt{2}$

HE

es.

OCTAEDRO REGULAR

Sus caras son triángulos equiláteros.

DODECAEDRO REGULAR

Sus

$$S_{T} = 12.p.r$$

p: semiperímetro del pentágono regular

ICOSAEDRO REGULAR

Sus caras son triángulos equiláteros.

POLIEDROS CONJUGADOS

Dos poliedros son conjugados cuando el número de caras de uno de ellos es igual al número de vértices del otro.

 Todo poliedro regular puede ser inscrito en su correspondiente poliedro conjugado.

POLIEDROS REGULARES CONVEXOS

1. Halle la longitud de la altura de un tetraedro regular, si su arista es $3\sqrt{6}$ u.

Piden: h

h = 6 u

2. Calcule área de la superficie total del tetraedro regular mostrado.

Resolución

- Piden: A total
- Por teorema :

$$A = (2\sqrt{5})^2 \sqrt{3}$$

 $A = 20\sqrt{3} u^2$

3. Calcule el volumen del sólido limitado por el hexaedro regular, cuya diagonal es $\sqrt{27}$ u.

Resolución

- Piden: Volumen = V
- Del dato:

Reemplazando en el teorema:

$$V = (3)^3$$

$$V = 27 u^3$$

4. Halle el valor de x en el hexaedro regular mostrado.

- Piden: x
- Se traza AC

ACG: (Por relaciones métricas)

$$(x\sqrt{2})(x) = (x\sqrt{3})(6)$$

 $x = 3\sqrt{6} u$

5. Calcule el área de la superficie total del octaedro regular mostrado.

- Piden: A total
- Por teorema:

r teorema:
$$A = 2(a)^2 \sqrt{3}$$

$$A = 2(4)^2 \sqrt{3}$$

$$A = 32 \sqrt{3} u^2$$

6. En la figura se muestra un recipiente de loza en forma cúbica el cual será utilizado como maceta para un minicatus. Si MG=12 cm y M es punto medio del AE. Calcule la longitud de la arista de dicha maceta.

Resolución

- Piden: a
- Se traza la diagonal \overline{EG}
- En MEG:

$$\left(\frac{a}{2}\right)^2 + \left(a\sqrt{2}\right)^2 = 12^2$$

$$\frac{a^2}{4} + 2a^2 = 144$$

$$\frac{9a^2}{4}=144$$

$$a = 8$$

8. ¿Con cuál de las siguientes figuras se puede formar un cubo?

 \coprod

Resolución

 \mathbf{III} .

- A) Solo I
- D) II y III

B) Solo II

C) Iy II