UH-60 - Flight Simulation Model

Copyright © 2020 Marek M. Cel. All rights reserved.

Author: Marek M. Cel

Revision: 7

Date: 2020-02-08

This work is licensed under a

Creative Commons CC0 1.0 Universal Public Domain Dedication

Statement of Purpose

The laws of most jurisdictions throughout the world automatically confer exclusive Copyright and Related Rights (defined below) upon the creator and subsequent owner(s) (each and all, an "owner") of an original work of authorship and/or a database (each, a "Work").

Certain owners wish to permanently relinquish those rights to a Work for the purpose of contributing to a commons of creative, cultural and scientific works ("Commons") that the public can reliably and without fear of later claims of infringement build upon, modify, incorporate in other works, reuse and redistribute as freely as possible in any form whatsoever and for any purposes, including without limitation commercial purposes. These owners may contribute to the Commons to promote the ideal of a free culture and the further production of creative, cultural and scientific works, or to gain reputation or greater distribution for their Work in part through the use and efforts of others.

For these and/or other purposes and motivations, and without any expectation of additional consideration or compensation, the person associating CC0 with a Work (the "Affirmer"), to the extent that he or she is an owner of Copyright and Related Rights in the Work, voluntarily elects to apply CC0 to the Work and publicly distribute the Work under its terms, with knowledge of his or her Copyright and Related Rights in the Work and the meaning and intended legal effect of CC0 on those rights.

- 1. Copyright and Related Rights. A Work made available under CC0 may be protected by copyright and related or neighboring rights ("Copyright and Related Rights"). Copyright and Related Rights include, but are not limited to, the following:
 - i. the right to reproduce, adapt, distribute, perform, display, communicate, and translate a Work;
 - ii. moral rights retained by the original author(s) and/or performer(s);

- iii. publicity and privacy rights pertaining to a person's image or likeness depicted in a Work;
- iv. rights protecting against unfair competition in regards to a Work, subject to the limitations in paragraph 4(a), below;
- v. rights protecting the extraction, dissemination, use and reuse of data in a Work:
- vi. database rights (such as those arising under Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection of databases, and under any national implementation thereof, including any amended or successor version of such directive); and
- vii. other similar, equivalent or corresponding rights throughout the world based on applicable law or treaty, and any national implementations thereof.
- 2. Waiver. To the greatest extent permitted by, but not in contravention of, applicable law, Affirmer hereby overtly, fully, permanently, irrevocably and unconditionally waives, abandons, and surrenders all of Affirmer's Copyright and Related Rights and associated claims and causes of action, whether now known or unknown (including existing as well as future claims and causes of action), in the Work (i) in all territories worldwide, (ii) for the maximum duration provided by applicable law or treaty (including future time extensions), (iii) in any current or future medium and for any number of copies, and (iv) for any purpose whatsoever, including without limitation commercial, advertising or promotional purposes (the "Waiver"). Affirmer makes the Waiver for the benefit of each member of the public at large and to the detriment of Affirmer's heirs and successors, fully intending that such Waiver shall not be subject to revocation, rescission, cancellation, termination, or any other legal or equitable action to disrupt the quiet enjoyment of the Work by the public as contemplated by Affirmer's express Statement of Purpose.
- 3. Public License Fallback. Should any part of the Waiver for any reason be judged legally invalid or ineffective under applicable law, then the Waiver shall be preserved to the maximum extent permitted taking into account Affirmer's express Statement of Purpose. In addition, to the extent the Waiver is so judged Affirmer hereby grants to each affected person a royalty-free, non transferable, non sublicensable, non exclusive, irrevocable and unconditional license to exercise Affirmer's Copyright and Related Rights in the Work (i) in all territories worldwide, (ii) for the maximum duration provided by applicable law or treaty (including future time extensions), (iii) in any current or future medium and for any number of copies, and (iv) for any purpose whatsoever, including without limitation commercial, advertising or promotional purposes (the "License"). The License shall be deemed effective as of the date CC0 was applied by Affirmer to

the Work. Should any part of the License for any reason be judged legally invalid or ineffective under applicable law, such partial invalidity or ineffectiveness shall not invalidate the remainder of the License, and in such case Affirmer hereby affirms that he or she will not (i) exercise any of his or her remaining Copyright and Related Rights in the Work or (ii) assert any associated claims and causes of action with respect to the Work, in either case contrary to Affirmer's express Statement of Purpose.

4. Limitations and Disclaimers.

- a. No trademark or patent rights held by Affirmer are waived, abandoned, surrendered, licensed or otherwise affected by this document.
- b. Affirmer offers the Work as-is and makes no representations or warranties of any kind concerning the Work, express, implied, statutory or otherwise, including without limitation warranties of title, merchantability, fitness for a particular purpose, non infringement, or the absence of latent or other defects, accuracy, or the present or absence of errors, whether or not discoverable, all to the greatest extent permissible under applicable law.
- c. Affirmer disclaims responsibility for clearing rights of other persons that may apply to the Work or any use thereof, including without limitation any person's Copyright and Related Rights in the Work. Further, Affirmer disclaims responsibility for obtaining any necessary consents, permissions or other rights required for any use of the Work.
- d. Affirmer understands and acknowledges that Creative Commons is not a party to this document and has no duty or obligation with respect to this CC0 or use of the Work.

Figure 1: UH-60

Contents

1	Basic Data			
2	Performance Data	7		
3	Main Rotor 3.1 Symbols	8 9 10 10 12 15 17 26		
4	Fuselage4.1Symbols4.2Inplane Component of Rotor Wash on the Fuselage4.3Downwash Component of Rotor Wash on the Fuselage4.4Basic Fuselage Aerodynamic Characteristics4.5Fuselage Incremental Aerodynamic Characteristics	28 29 30 31 32 38		
5	Empennage 5.1 Main Rotor Inplane Wash at the Horizontal Tail	41 42 43 44 45 47 49 50 52		
6	Tail Rotor	54		
7	Flight Controls			
8	Engine	56		
9	Mass and Inertia 9.1 Structure Groups Breakdown	57 58		
Bi	ibliography	60		

1 Basic Data

Parameter	Value	Reference
Overal length	19.76 m	[1, 2]
Overal height	5.13 m	[1]
Fuselage length	15.26 m	[1, 2]
Fuselage width	2.36 m	[3, 1]
Main rotor diameter	16.36 m	[1, 3]
Tail rotor diameter	3.35 m	[1, 3]
Wheel track	2.71 m	[1, 2]
Wheelbase	8.82 m	[1, 2]
Cockpit floor waterline	5.46 m	[4]
Cabin floor waterline	5.25 m	[4]
Horizontal tail area	4.18 m^2	[1, 2]
Vertical tail area	3.00 m^2	[1, 2]
Empty weight (UH-60A)	5 118 kg	[1]
Empty weight (UH-60L)	5 224 kg	[1]
Internal fuel tanks capacity	1 361 l	[1, 3]
Engine manufacturer	General Electric	[1]
Engine model (UH-60A)	T700-GE-700	[1, 3]
Engine model (UH-60L)	T700-GE-701C	[1, 3]
Engine model (UH-60M)	T700-GE-701D	[1]
Engine maximum power output	1 163 kW	[1]
(T700-GE-700)		
Engine maximum power output	1 402 kW	[1]
(T700-GE-701C)		
Engine maximum power output	1 652 kW	[1]
(T700-GE-701D)		
Engine weight (T700-GE-701C)	207 kg	[5]
Engine specific fuel consumption at maximum continuous power (T700-GE-701C)	279.2 g/(kW·h)	[5]

Table 1: Basic data

2 Performance Data

Parameter	Value	Reference
Maximum take-off weight (UH-60A/L)	11 113 kg	[1]
Mission take-off weight (UH-60A)	7 708 kg	[1]
Mission take-off weight (UH-60L)	7 907 kg	[1]
Maximum level speed (at SL, mission T-O	160 kts	[1]
weight, UH-60A)		
Maximum level speed (at max T-O weight,	158 kts	[1]
UH-60A)		
Never exceed speed (UH-60A/L)	195 kts	[1]
Maximum cruise speed (at 4 000 ft, 35°C,	139 kts	[1]
UH-60A)		
Maximum cruise speed (at 4 000 ft, 35°C,	152 kts	[1]
UH-60L)		
Maximum rate of climb (at 4 000 ft, 35°C,	390 ft/min	[1]
UH-60A)		
Maximum rate of climb (at 4 000 ft, 35°C,	1 550 ft/min	[1]
UH-60L)		
Service ceiling (UH-60A)	18 700 ft	[1]
Service ceiling (UH-60L)	19 150 ft	[1]
Hovering ceiling (35°C, UH-60A)	5 400 ft	[1]
Hovering ceiling (35°C, UH-60L)	7 650 ft	[1]
Range (with maximum internal fuel, maximum	319 nmi	[1]
T-O weight, 30 minutes reserves, UH-60A)		
Range (with maximum internal fuel, maximum	315 nmi	[1]
T-O weight, 30 minutes reserves, UH-60L)		
Endurance (UH-60A)	2 h 18 min ft	[1]
Endurance (UH-60L)	2 h 06 min ft	[1]

Table 2: Performance data

3 Main Rotor

Parameter	Value	Reference
Main rotor diameter	16.36 m	[1, 3]
Main rotor number of blades	4	[2]
Main rotor blade chord	0.53 m	[1, 2]
Main rotor blade airfoil	SC1095/SC1094 R8	[2, 6]
Main rotor solidity	0.0826	[2]
Main rotor total blades area	17.36 m^2	[2]
Main rotor blade tip sweep	20.0°	[2]
Main rotor blade twist	-18.0°	[2]
Main rotor shaft inclination angle	3.0°	[2]
Main rotor nominal rotation speed	27 rad/s (258 rpm)	[2]
Main rotor hinge offset	0.38 m	[2]
Main rotor blade spar lenght	1.17 m	[2]
Main rotor blade tip lift loss factor	0.97	[2]
Main rotor blade section lift curve slope	5.73 rad^{-1}	[7]
Main rotor maximum thrust coefficient	0.1846	[7]
Main rotor single blade weight	116.53 kg	[2]
Main rotor single blade first moment of	$385.66~\mathrm{kg}\cdot\mathrm{m}$	[2]
mass		
Main rotor single blade moment of inertia	$2\ 050.81\ {\rm kg\cdot m^2}$	[2]
about flapping hinge		
Main rotor hub stationline	8.67 m	[4]
Main rotor hub waterline	8.00 m	[4]

Table 3: Main rotor data

Figure 2: Main rotor blade airfoil section locations [8]

3.1 Symbols

Symbol	Mnemonic	Unit	Description
$\overline{A_{A0F}}$	A0FMR	deg	Steady flapping (coning)
A_{A1F}	A1FMR	\deg	Longitudinal first harmonic flapping
B_{B1F}	B1FMR	\deg	Lateral first harmonic flapping
α_{TRANS}	AFTFMR	\deg	Transformed angle of attack for map entry
C_{LY}	CLMR	-	Blade segment lift coefficient
C_{DY}	CDMR	-	Blade segment drag coefficient
BTLMR	BTLMR	-	Blade tip lift loss factor
\dot{L}_{DT}	LD.MR	m/s	Axial rate of lag damper
F_{δ}	FLD.MR	N	Axial force output from lag damper

Table 4: Main rotor symbols

3.2 Airfoils Ordinates

3.2.1 SC1094 R8

Figure 3: SC1094 R8

Upper	surface	Lower	surface
x/c	y/c	x/c	y/c
0.00000	0.00000	0.00000	0.00000
0.00013	0.00185	0.00007	-0.00180
0.00090	0.00559	0.00072	-0.00501
0.00218	0.00945	0.00188	-0.00773
0.00427	0.01398	0.00384	-0.01053
0.00686	0.01825	0.00632	-0.01277
0.00944	0.02174	0.00881	-0.01419
0.01252	0.02532	0.01181	-0.01540
0.01867	0.03126	0.01783	-0.01702
0.02245	0.03441	0.02154	-0.01773
0.02857	0.03890	0.02757	-0.01872
0.03468	0.04264	0.03360	-0.01953
0.04077	0.04576	0.03963	-0.02017
0.04686	0.04837	0.04566	-0.02070
0.05294	0.05058	0.05169	-0.02115
0.06104	0.05306	0.05974	-0.02166
0.07115	0.05558	0.06980	-0.02218
0.08125	0.05764	0.07986	-0.02260
0.09135	0.05937	0.08992	-0.02294
0.10145	0.06083	0.09998	-0.02323
0.11154	0.06206	0.11005	-0.02348
0.12666	0.06359	0.12514	-0.02379
0.14179	0.06479	0.14024	-0.02406
0.15691	0.06576	0.15534	-0.02432
0.17202	0.06656	0.17044	-0.02459
0.18714	0.06718	0.18554	-0.02485
0.20225	0.06762	0.20063	-0.02512

\mathbf{Upper}	surface	Lower	surface
x/c	y/c	x/c	y/c
0.21735	0.06790	0.21573	-0.02538
0.23246	0.06801	0.23083	-0.02564
0.24756	0.06798	0.24593	-0.02591
0.26266	0.06783	0.26103	-0.02617
0.27776	0.06758	0.27612	-0.02643
0.29286	0.06725	0.29122	-0.02665
0.31298	0.06671	0.31136	-0.02687
0.33311	0.06606	0.33149	-0.02701
0.35323	0.06531	0.35163	-0.02708
0.37336	0.06446	0.37176	-0.02709
0.39348	0.06352	0.39190	-0.02702
0.41360	0.06250	0.41204	-0.02690
0.43371	0.06139	0.43218	-0.02671
0.45383	0.06019	0.45232	-0.02647
0.47394	0.05892	0.47246	-0.02616
0.49406	0.05756	0.49261	-0.02580
0.51417	0.05612	0.51275	-0.02537
0.53428	0.05460	0.53290	-0.02489
0.55439	0.05300	0.55304	-0.02435
0.57450	0.05132	0.57319	-0.02375
0.59460	0.04955	0.59334	-0.02309
0.61471	0.04771	0.61349	-0.02237
0.63481	0.04579	0.63364	-0.02159
0.65491	0.04379	0.65379	-0.02075
0.67501	0.04171	0.67394	-0.01985
0.69511	0.03955	0.69409	-0.01889
0.71521	0.03732	0.71425	-0.01788
0.73531	0.03501	0.73440	-0.01682
0.75540	0.03263	0.75456	-0.01572
0.77550	0.03020	0.77472	-0.01458
0.79559	0.02771	0.79487	-0.01340
0.81568	0.02518	0.81503	-0.01220
0.83577	0.02260	0.83519	-0.01097
0.85587	0.01998	0.85535	-0.00972
0.87596	0.01733	0.87551	-0.00845
0.89605	0.01466	0.89567	-0.00718
0.91614	0.01195	0.91583	-0.00589
0.92618	0.01059	0.92591	-0.00524

\mathbf{Upper}	surface	Lower	surface
x/c	y/c	x/c	y/c
0.93623	0.00921	0.93599	-0.00458
0.94627	0.00782	0.94607	-0.00390
0.95631	0.00641	0.95615	-0.00322
0.96636	0.00498	0.96623	-0.00251
0.97641	0.00398	0.97630	-0.00227
0.98646	0.00301	0.98637	-0.00203
0.99651	0.00205	0.99644	-0.00180
1.00000	0.00171	1.00000	-0.00171

Table 5: SC1094 R8 [6]

3.2.2 SC1095

Figure 4: SC1095

Upper	Upper surface		surface
x/c	y/c	x/c	y/c
0.00000	0.00000	0.00000	0.00000
0.00010	0.00147	0.00010	-0.00112
0.00081	0.00396	0.00081	-0.00322
0.00203	0.00626	0.00203	-0.00510
0.00407	0.00913	0.00407	-0.00757
0.00661	0.01215	0.00661	-0.01020
0.00915	0.01473	0.00915	-0.01236
0.01220	0.01748	0.01220	-0.01453
0.01830	0.02220	0.01830	-0.01798
0.02440	0.02608	0.02440	-0.02066
0.03050	0.02934	0.03050	-0.02293
0.03660	0.03208	0.03660	-0.02494
0.04271	0.03443	0.04271	-0.02669
0.05084	0.03707	0.05084	-0.02862

\mathbf{Upper}	surface	Lower	surface
x/c	y/c	x/c	y/c
0.06101	0.03979	0.06101	-0.03048
0.07117	0.04205	0.07117	-0.03191
0.08134	0.04398	0.08134	-0.03304
0.09151	0.04562	0.09151	-0.03397
0.10168	0.04705	0.10168	-0.03476
0.11693	0.04885	0.11693	-0.03580
0.13218	0.05033	0.13218	-0.03666
0.14743	0.05158	0.14743	-0.03737
0.16268	0.05265	0.16268	-0.03795
0.17794	0.05354	0.17794	-0.03841
0.19319	0.05426	0.19319	-0.03876
0.20844	0.05480	0.20844	-0.03903
0.22369	0.05518	0.22369	-0.03923
0.23894	0.05541	0.23894	-0.03935
0.25419	0.05553	0.25419	-0.03941
0.26945	0.05554	0.26945	-0.03941
0.28470	0.05547	0.28470	-0.03937
0.30503	0.05528	0.30503	-0.03924
0.32537	0.05498	0.32537	-0.03903
0.34570	0.05458	0.34570	-0.03874
0.36604	0.05407	0.36604	-0.03839
0.38638	0.05348	0.38638	-0.03797
0.40671	0.05280	0.40671	-0.03749
0.42705	0.05203	0.42705	-0.03695
0.44738	0.05118	0.44738	-0.03635
0.46772	0.05024	0.46772	-0.03569
0.48805	0.04922	0.48805	-0.03497
0.50839	0.04812	0.50839	-0.03419
0.52872	0.04694	0.52872	-0.03335
0.54906	0.04568	0.54906	-0.03245
0.56940	0.04434	0.56940	-0.03149
0.58973	0.04291	0.58973	-0.03047
0.61007	0.04140	0.61007	-0.02938
0.63040	0.03982	0.63040	-0.02824
0.65074	0.03815	0.65074	-0.02703
0.67107	0.03640	0.67107	-0.02577
0.69141	0.03458	0.69141	-0.02445
0.71174	0.03267	0.71174	-0.02308

Upper surface		Lower	surface
x/c	y/c	x/c	y/c
0.73208	0.03070	0.73208	-0.02166
0.75242	0.02865	0.75242	-0.02019
0.77275	0.02655	0.77275	-0.01868
0.79309	0.02439	0.79309	-0.01714
0.81342	0.02218	0.81342	-0.01557
0.83376	0.01993	0.83376	-0.01397
0.85409	0.01764	0.85409	-0.01236
0.87443	0.01532	0.87443	-0.01072
0.89476	0.01297	0.89476	-0.00908
0.91510	0.01060	0.91510	-0.00742
0.92527	0.00939	0.92527	-0.00659
0.93544	0.00818	0.93544	-0.00575
0.94560	0.00695	0.94560	-0.00489
0.95577	0.00570	0.95577	-0.00402
0.96594	0.00443	0.96594	-0.00313
0.97611	0.00360	0.97611	-0.00271
0.98627	0.00281	0.98627	-0.00229
0.99644	0.00201	0.99644	-0.00188
1.00000	0.00173	1.00000	-0.00173

Table 6: SC1095 [6]

3.3 Blade Twist

XSEGMR	TWSTMR
[-]	$[\deg]$
0.00	0.00
0.05	0.00
0.10	0.00
0.15	0.00
0.20	-0.15
0.25	-0.95
0.30	-1.80
0.35	-2.75
0.40	-3.55
0.45	-4.40
0.50	-5.30
0.55	-6.16
0.60	-7.10
0.65	-7.90
0.70	-8.80
0.75	-9.65
0.80	-10.30
0.85	-10.75
0.90	-12.30
0.95	-13.10
1.00	-10.90

Table 7: Main rotor blade twist [2]

Figure 5: Main rotor blade twist [2]

3.4 Blade Section Aerodynamic Characteristics

α_{TRANS}	C_{LY}	C_{DY}				
$[\deg]$	[-]	[-]				
-180.0	0.00000	0.00000				
-178.0	0.25667	0.36700				
-176.0	0.51330	0.73300				
-174.0	0.77000	1.10000				
-172.0	0.75500	1.06500				
-170.0	0.74000	1.03000				
-168.0	0.72500	0.99500				
-166.0	0.71000	0.96000				
-164.0	0.69500	0.92000				
-162.0	0.68000	0.88000				
-160.0	0.66500	0.84000				
-158.0	0.65000	0.80000				
-156.0	0.72500	0.76000				
-154.0	0.80000	0.72000				
-152.0	0.87500	0.68000				
-150.0	0.95000	0.64000				
-148.0	0.91750	0.68750				
-146.0	0.88500	0.73500				
-144.0	0.85250	0.78250				
-142.0	0.82000	0.83000				
-140.0	0.78750	0.87875				
-138.0	0.75500	0.92750				
-136.0	0.72250	0.97625				
-134.0	0.69000	1.02500				
-132.0	0.65750	1.07375				
-130.0	0.62500	1.12250				
-128.0	0.59250	1.17125				
-126.0	0.56000	1.22000				
-124.0	0.52750	1.26875				
-122.0	0.49500	1.31750				
-120.0	0.46250	1.36625				
-118.0	0.43000	1.41500				
-116.0	0.39750	1.46375				
-114.0	0.36500	1.51250				
-112.0	0.33250	1.56125				
-110.0	0.30000	1.61000				

α_{TRANS} [deg]	C_{LY} [-]	C_{DY} [-]
-108.0	0.26750	1.66000
-106.0	0.23500	1.71000
-104.0	0.20250	1.76000
-102.0	0.17000	1.81000
-100.0	0.13750	1.85750
-98.0	0.10500	1.90500
-96.0	0.07250	1.95250
-94.0	0.04000	2.00000
-92.0	0.00750	2.02625
-90.0	-0.02500	2.05250
-88.0	-0.05750	2.07875
-86.0	-0.09000	2.10500
-84.0	-0.12250	2.09875
-82.0	-0.15500	2.09250
-80.0	-0.18750	2.08625
-78.0	-0.22000	2.08000
-76.0	-0.25250	2.05500
-74.0	-0.28500	2.03000
-72.0	-0.31750	2.00500
-70.0	-0.35000	1.98000
-68.0	-0.38250	1.92875
-66.0	-0.41500	1.87750
-64.0	-0.44750	1.82625
-62.0	-0.48000	1.77500
-60.0	-0.51250	1.70125
-58.0	-0.54500	1.62750
-56.0	-0.57750	1.55375
-54.0	-0.61000	1.48000
-52.0	-0.64250	1.40750
-50.0	-0.67500	1.33500
-48.0	-0.70750	1.26250
-46.0	-0.74000	1.19000
-44.0	-0.77250	1.11750
-42.0	-0.80500	1.04500
-40.0	-0.83750	0.97250
-38.0	-0.87000	0.90000
-36.0	-0.90250	0.83250
-34.0	-0.93500	0.76500

α_{TRANS} [deg]	C_{LY} [-]	C_{DY} [-]
-32.0	-0.96750	0.69750
-30.0	-1.00000	0.63000
-28.0	-0.99600	0.56200
-26.0	-0.99200	0.48800
-24.0	-0.99800	0.41700
-22.0	-0.98400	0.34000
-20.0	-0.98000	0.26700
-18.0	-0.97600	0.19500
-16.0	-0.97200	0.12000
-14.0	-1.07000	0.04500
-12.0	-0.72400	0.01800
-10.0	-0.37000	0.01200
-8.0	-0.19000	0.00800
-6.0	-0.39000	0.00775
-4.0	-0.45000	0.00750
-2.0	-0.19000	0.00750
0.0	0.03000	0.00750
2.0	0.24300	0.00800
4.0	0.46000	0.00850
6.0	0.67000	0.00900
8.0	0.89000	0.01100
10.0	1.10000	0.01700
12.0	1.25000	0.02600
14.0	1.10000	0.14500
16.0	0.98000	0.23000
18.0	0.98280	0.29300
20.0	0.98560	0.34500
22.0	0.98840	0.40000
24.0	0.99120	0.45500
26.0	0.99400	0.50700
28.0	0.99700	0.56000
30.0	1.00000	0.63000
32.0	0.96750	0.69750
34.0	0.93500	0.76500
36.0	0.90250	0.83250
38.0	0.87000	0.90000
40.0	0.83750	0.97250
42.0	0.80500	1.04500

α_{TRANS} [deg]	C_{LY} [-]	C_{DY} [-]
44.0	0.77250	1.11750
46.0	0.74000	1.19000
48.0	0.70750	1.26250
50.0	0.67500	1.33500
52.0	0.64250	1.40750
54.0	0.61000	1.48000
56.0	0.57750	1.55375
58.0	0.54500	1.62750
60.0	0.51250	1.70125
62.0	0.48000	1.77500
64.0	0.44750	1.82625
66.0	0.41500	1.87750
68.0	0.38250	1.92875
70.0	0.35000	1.98000
72.0	0.31750	2.00500
74.0	0.28500	2.03000
76.0	0.25250	2.05500
78.0	0.22000	2.08000
80.0	0.18750	2.08625
82.0	0.15500	2.09250
84.0	0.12250	2.09875
86.0	0.09000	2.10500
88.0	0.05750	2.07875
90.0	0.02500	2.05250
92.0	-0.00750	2.02625
94.0	-0.04000	2.00000
96.0	-0.07250	1.95250
98.0	-0.10500	1.90500
100.0	-0.13750	1.85750
102.0	-0.17000	1.81000
104.0	-0.20250	1.76000
106.0	-0.23600	1.71000
108.0	-0.26750	1.66000
110.0	-0.30000	1.61000
112.0	-0.33250	1.56125
114.0	-0.36500	1.51250
116.0	-0.39750	1.46375
118.0	-0.43000	1.41500

α_{TRANS}	C_{LY}	C_{DY}				
$[\deg]$	[-]	[-]				
120.0	-0.46250	1.36625				
122.0	-0.49500	1.31750				
124.0	-0.52750	1.26875				
126.0	-0.56000	1.22000				
128.0	-0.59250	1.17125				
130.0	-0.62500	1.12250				
132.0	-0.65750	1.07375				
134.0	-0.69000	1.02500				
136.0	-0.72250	0.97625				
138.0	-0.75500	0.92720				
140.0	-0.78750	0.87875				
142.0	-0.82000	0.83000				
144.0	-0.85250	0.78250				
146.0	-0.88500	0.73500				
148.0	-0.91750	0.68750				
150.0	-0.96000	0.64000				
152.0	-0.87500	0.68000				
154.0	-0.80000	0.72000				
156.0	-0.72500	0.76000				
158.0	-0.65000	0.80000				
160.0	-0.66500	0.84000				
162.0	-0.68000	0.88000				
164.0	-0.69500	0.92000				
166.0	-0.71000	0.96000				
168.0	-0.72500	0.99500				
170.0	-0.74000	1.03000				
172.0	-0.75500	1.06500				
174.0	-0.77000	1.10000				
176.0	-0.51330	0.73300				
178.0	-0.25667	0.36700				
180.0	0.00000	0.00000				

Table 8: SC1095 aerodynamic coefficients [2]

Figure 6: SC1095 drag coefficient [2]

Figure 7: SC1095 lift coefficient [2]

	l																																
Ma=10.0	-0.9675	-1.0000	-0.9180	-0.8860	-0.8540	-0.8220	-0.7900	-0.7580	-0.7260	-0.6940	-0.6620	-0.6300	-0.6200	-0.6100	-0.4250	-0.2400	-0.0500	0.2000	0.4500	0.7000	0.8000	0.8500	0.8650	0.8800	0.8950	0.9100	0.9250	0.9400	0.9550	0.9700	0.9850	1.0000	0.9675
Ma=0.9	-0.9675	-1.0000	-0.9220	-0.8940	-0.8660	-0.8380	-0.8100	-0.7820	-0.7540	-0.7260	-0.6980	-0.6700	-0.6650	-0.6600	-0.5400	-0.4100	-0.1500	0.1400	0.3900	0.6400	0.7650	0.8100	0.8300	0.8500	0.8700	0.8850	0.9050	0.9250	0.9400	0.9600	0.9800	1.0000	0.9675
Ma=0.8	-0.9675	-1.0000	-0.9300	-0.9100	-0.8900	-0.8700	-0.8500	-0.8300	-0.9100	-0.8000	-0.7900	-0.8100	-0.7500	-0.6900	-0.4700	-0.2500	0.0800	0.3500	0.5600	0.7050	0.9100	0.8450	0.8450	0.8500	0.8600	0.8800	0.9000	0.9200	0.9400	0.96.0	0.9800	1.0000	0.9675
Ma=0.7	-0.9675	-1.0000	-0.9440	-0.9380	-0.9320	-0.9260	-0.9200	-0.9140	-0.9080	-0.8800	-0.8300	-0.7800	-0.7350	-0.6400	-0.5900	-0.2550	0.0700	0.3950	0.7200	0.8300	0.8770	0.9200	0.9230	0.9300	0.9200	0.8950	0.9000	0.9200	0.9400	0.9700	0.9850	1.0000	0.9675
Ma=0.6	-0.9675	-1.0000	-0.9460	-0.9420	-0.9380	-0.9340	-0.9300	-0.9260	-0.9220	-0.8050	-0.6600	-0.6000	-0.5500	-0.5200	-0.4700	-0.1950	0.0750	0.3400	0.6130	0.8400	0.9150	0.9470	1.0000	1.0540	1.0800	1.0630	1.0530	1.0420	1.0310	1.0200	1.0100	1.0000	0.9675
C_{LY} Ma=0.5	-0.9675	-1.0000	-0.9400	-0.9300	-0.9200	-0.9250	-0.9300	-0.9350	-0.9400	-0.8000	-0.5250	-0.4000	-0.3000	-0.3200	-0.4400	-0.1950	0.0500	0.2950	0.5300	0.7800	0.9600	1.0100	0.9600	1.0800	1.0600	1.0700	1.0600	1.0500	1.0350	1.0200	1.0100	1.0000	0.9675
Ma=0.4	-0.9675	-1.0000	-0.9550	-0.9600	-0.9620	-0.9640	-0.9660	-0.9680	-0.9700	-0.8200	-0.5350	-0.2400	-0.3000	-0.4500	-0.4200	-0.1850	0.0500	0.2800	0.5100	0.7500	0.9800	1.1700	1.1300	1.0300	0.9600	0.9657	0.9714	0.9771	0.9828	0.9885	0.9942	1.0000	0.9675
Ma=0.3	-0.9675	-1.0000	-0.9960	-0.9920	-0.9880	-0.9840	-0.9800	-0.9760	-0.9720	-1.0700	-0.7240	-0.3700	-0.1900	-0.3900	-0.4500	-0.1900	0.0300	0.2430	0.4600	0.6700	0.8900	1.1000	1.2500	1.1000	0.9800	0.9828	0.9856	0.9884	0.9912	0.9940	0.9970	1.0000	0.9675
Ma=0.2	-0.9675	-1.0000	-0.9960	-0.9920	-0.9880	-0.9840	-0.9800	-0.9760	-0.9720	-1.0700	-0.7240	-0.3700	-0.1900	-0.3900	-0.4500	-0.1900	0.0300	0.2430	0.4600	0.6700	0.8900	1.1000	1.2500	1.1000	0.9800	0.9828	0.9856	0.9884	0.9912	0.9940	0.9970	1.0000	0.9675
Ma=0.1	-0.9675	-1.0000	-0.9960	-0.9920	-0.9880	-0.9840	-0.9800	-0.9760	-0.9720	-1.0700	-0.7240	-0.3700	-0.1900	-0.3900	-0.4500	-0.1900	0.0300	0.2430	0.4600	0.6700	0.8900	1.1000	1.2500	1.1000	0.9800	0.9828	0.9856	0.9884	0.9912	0.9940	0.9970	1.0000	0.9675
Ma=0.0	-0.9675	-1.0000	-0.9960	-0.9920	-0.9880	-0.9840	-0.9800	-0.9760	-0.9720	-1.0700	-0.7240	-0.3700	-0.1900	-0.3900	-0.4500	-0.1900	0.0300	0.2430	0.4600	0.6700	0.8900	1.1000	1.2500	1.1000	0.9800	0.9828	0.9856	0.9884	0.9912	0.9940	0.9970	1.0000	0.9675
$lpha_{TRANS}$ [deg]	-32.0	-30.0	-28.0	-26.0	-24.0	-22.0	-20.0	-18.0	-16.0	-14.0	-12.0	-10.0	-8.0	-6.0	-4.0	-2.0	0.0	2.0	4.0	0.9	8.0	10.0	12.0	14.0	16.0	18.0	20.0	22.0	24.0	26.0	28.0	30.0	32.0

Table 9: SC1095 lift coefficient [2]

0.33000 0.26500 0.20800 0.16100 0.02200 0.00900 0.00850 0.00800 0.00800 0.00820 0.00820
0.01100
0.02000 0.09800 0.16900 0.23000 0.29300 0.34500 0.45500 0.50700

Table 10: SC1095 drag coefficient [2]

Figure 8: SC1095 drag coefficient [2]

Figure 9: SC1095 lift coefficient [2]

3.5 Lag Damper Force Characteristics

\dot{L}_{DT}	F_{δ}
[m/s]	[N]
0.00000	0.00
0.00254	444.82
0.00508	1023.09
0.00762	1690.32
0.01016	2668.93
0.01270	4003.40
0.01524	5782.69
0.01778	7473.01
0.02032	9252.30
0.02286	11031.59
0.02540	13122.25
0.02794	14278.79
0.03048	14946.02
0.03302	15346.36
0.03556	15679.98
0.03810	15857.91
0.04064	15969.12
0.04318	16080.32
0.04572	16147.04
0.04826	16236.01
0.05080	16280.49
0.05080	16280.49
0.07620	16645.25
0.10160	16925.48
0.12700	17236.86
0.15240	17525.99
0.17780	17792.89

Table 11: Lag damper force [2]

Figure 10: Lag damper force [2]

4 Fuselage

Parameter	Value	Reference
Fuselage length	15.26 m	[1, 2]
Fuselage width	2.36 m	[3, 1]
Fuselage aerodynamic reference point stationline	8.78 m	[2, 7]
Fuselage aerodynamic reference point waterline	5.94 m	[2, 7]

Table 12: Fuselage data

4.1 Symbols

Symbol	Mnemonic	\mathbf{Unit}	Description
EK_{XWF}	EKXWF	-	Rotor wash interference factor (inplane)
EK_{YWF}	EKYWF	-	Rotor wash interference factor (sidewash)
EK_{ZWF}	EKZWF	-	Rotor wash interference factor (downwash)
χ_{PMR}	CHIPMR	\deg	Rotor wake skew angle
D_{WO}	DWSHMR	_	Main rotor uniform downwash
Ω_T	OMGTMR	rad/s	Rotor speed
R_T	RMR	m	Rotor radius
q_{WF}	QWF	Pa	dynamic pressure at the body
$lpha_{WF}$	ALFWF	deg	angle of attack
β_{WF}	BETAWF	\deg	sideslip angle
ψ_{WF}	PSIWF	deg	W/T model yaw angle $(\psi_{WF} = -\beta_{WF})$

Table 13: Fuselage symbols

4.2 Inplane Component of Rotor Wash on the Fuselage

χ_{PMR} [deg]	AA1FMR=-6.0	EK_{XWF} AA1FMR=0.0	AA1FMR=6.0
0.0	0.08	0.00	-0.12
10.0	0.18	0.10	0.02
20.0	0.30	0.21	0.08
30.0	0.43	0.32	0.18
40.0	0.55	0.42	0.28
50.0	0.66	0.54	0.40
60.0	0.79	0.66	0.53
70.0	0.90	0.80	0.67
80.0	1.03	0.94	0.82
90.0	0.55	0.50	0.40
100.0	0.00	0.00	0.00

Table 14: Inplane component of rotor wash on the fuselage [2]

Figure 11: Inplane component of rotor wash on the fuselage [2]

4.3 Downwash Component of Rotor Wash on the Fuselage

χ_{PMR} [deg]	AA1FMR=-6.0	EK_{ZWF} AA1FMR=0.0	AA1FMR=6.0
0.0	1.110	1.120	1.150
10.0	1.090	1.120	1.150
20.0	1.080	1.120	1.150
30.0	1.065	1.120	1.150
40.0	1.050	1.120	1.160
50.0	1.040	1.120	1.170
60.0	1.020	1.120	1.180
70.0	1.010	1.120	1.220
80.0	1.000	1.110	1.160
90.0	0.880	0.960	0.980
100.0	0.600	0.600	0.600

Table 15: Downwash component of rotor wash on the fuse lage [2]

Figure 12: Downwash component of rotor wash on the fuselage [2]

4.4 Basic Fuselage Aerodynamic Characteristics

α_{WF}	D/q	L/q	M/q
$[\deg]$	$[\mathrm{m}^2]$	$[\mathrm{m}^2]$	$[\mathrm{m}^3]$
-90.0	150.00	-24.00	-200.00
-80.0	145.00	-54.00	-470.00
-70.0	133.00	-72.00	-645.00
-60.0	114.00	-81.00	-730.00
-50.0	88.00	-85.00	-760.00
-40.0	61.00	-83.00	-760.00
-30.0	45.00	-70.00	-740.00
-25.0	37.58	-52.00	-700.00
-20.0	31.68	-35.00	-630.00
-15.0	27.48	-25.00	-520.00
-10.0	25.06	-13.00	-380.00
-5.0	23.58	-5.00	-230.00
0.0	23.58	1.00	-90.00
5.0	25.08	10.00	10.00
10.0	27.58	20.00	100.00
15.0	31.28	25.00	290.00
20.0	36.58	30.00	450.00
25.0	43.08	34.00	600.00
30.0	51.08	37.00	750.00
40.0	66.00	43.00	810.00
50.0	84.00	48.00	825.00
60.0	110.00	50.00	780.00
70.0	132.00	48.00	650.00
80.0	145.00	39.00	470.00
90.0	150.00	22.00	200.00

Table 16: Fuselage aerodynamic characteristics due to angle of attack [2]

Figure 13: Fuselage drag due to angle of attack [2]

Figure 14: Fuselage lift due to angle of attack [2]

Figure 15: Fuselage pitching moment due to angle of attack [2]

$\overline{\psi_{WF}}$	Y/q	R/q	N/q
[deg]	$[m^2]$	$[m^3]$	$[m^3]$
-90.0	-37.0	100.0	440.0
-80.0	-64.0	100.0	392.0
-70.0	-84.0	100.0	332.0
-60.0	-100.0	101.0	259.0
-50.0	-103.0	103.0	160.0
-40.0	-92.0	106.0	40.0
-30.0	-72.0	110.0	-140.0
-25.0	-65.0	120.0	-190.0
-20.0	-50.0	75.0	-240.0
-15.0	-35.0	30.0	-220.0
-10.0	-23.0	0.0	-180.0
-5.0	-11.0	0.0	-100.0
0.0	0.0	0.0	0.0
5.0	11.0	0.0	100.0
10.0	23.0	0.0	180.0
15.0	35.0	-30.0	220.0
20.0	50.0	-75.0	240.0
25.0	65.0	-120.0	190.0
30.0	72.0	-110.0	140.0
40.0	92.0	-106.0	59.0
50.0	103.0	-103.0	-30.0
60.0	100.0	-101.0	-125.0
70.0	84.0	-100.0	-220.0
80.0	64.0	-100.0	-320.0
90.0	37.0	-100.0	-420.0

Table 17: Fuselage aerodynamic characteristics due to sideslip [2]

Figure 16: Fuselage side force due to sideslip [2]

Figure 17: Fuselage rolling moment due to sideslip [2]

Figure 18: Fuselage yawing moment due to sideslip [2]

4.5 Fuselage Incremental Aerodynamic Characteristics

ψ_{WF} [deg]	$\Delta D/q$ [m ²]	$\Delta L/q$ [m ²]	$\Delta M/q$ [m ³]
-90.0	170.5		
-80.0	170.5 169.5		
-70.0	164.5		
-60.0	141.5		
-50.0	113.5		
-40.0	76.5	20.0	100.0
-30.0	38.5	30.0	180.0
-25.0	28.0	20.0	130.0
-20.0	16.3	12.0	90.0
-15.0	9.0	7.0	50.0
-10.0	4.0	3.0	20.0
-5.0	1.0	2.0	10.0
0.0	0.0	0.0	0.0
5.0	1.0	2.0	10.0
10.0	4.0	5.0	20.0
15.0	9.0	10.0	50.0
20.0	16.3	15.0	90.0
25.0	28.0	22.0	130.0
30.0	38.5	30.0	180.0
40.0	76.5		
50.0	113.5		
60.0	141.5		
70.0	164.5		
80.0	169.5		
90.0	170.5		

Table 18: Fuselage incremental aerodynamic characteristics [2]

Figure 19: Fuselage incremental drag due to sideslip [2]

Figure 20: Fuselage incremental lift due to sideslip [2]

Figure 21: Fuselage incremental pitching moment due to sideslip [2]

5 Empennage

Parameter	Value	Reference
Horizontal tail span	4.38 m	[2]
Horizontal tail area	4.18 m^2	[1, 2]
Horizontal tail root chord	1.12 m	[2]
Horizontal tail tip chord	0.77 m	[2]
Horizontal tail sweep (0.25MAC)	0.0°	[2]
Horizontal tail aspect ratio	4.6	[2]
Horizontal tail airfoil	NACA 0014	[2]
Horizontal tail stationline	17.79 m	[2, 7]
Horizontal tail waterline	6.20 m	[2, 7]
Horizontal tail deflection limit	up -30° , down $+35^{\circ}$	[3]
Vertical tail span	2.49 m	[2]
Vertical tail area	3.00 m^2	[1, 2]
Vertical tail root chord	1.83 m	[2]
Vertical tail tip chord	0.86 m	[2]
Vertical tail sweep (0.25MAC)	41.0°	[2]
Vertical tail aspect ratio	1.92	[2]
Vertical tail airfoil	NACA 0021 (Mod)	[2]
Vertical tail stationline	17.65 m	[2, 7]
Vertical tail waterline	6.93 m	[2, 7]

Table 19: Empennage data

5.1 Main Rotor Inplane Wash at the Horizontal Tail

$-\chi$		EKXH1	
[deg]	AA1FMR=-6.0	AA1FMR=0.0	AA1FMR=6.0
0.0	0.00	-0.40	-0.56
10.0	-0.20	-0.60	-0.80
20.0	0.05	-0.20	-0.74
30.0	0.30	0.12	-0.32
40.0	0.54	0.36	0.04
50.0	0.80	0.60	0.32
60.0	1.04	0.83	0.60
70.0	1.30	1.06	0.86
80.0	1.55	1.30	1.12
90.0	0.80	0.66	0.54
100.0	0.00	0.00	0.00

Table 20: Main rotor inplane wash at the horizontal tail [2]

Figure 22: Main rotor inplane wash at the horizontal tail [2]

5.2 Main Rotor Downwash at the Horizontal Tail

${\chi}$		EKZH1	_
[deg]	AA1FMR=-6.0	AA1FMR=0.0	AA1FMR=6.0
0.0	-0.130	0.400	0.780
10.0	0.800	0.940	1.360
20.0	1.800	1.840	1.910
30.0	1.820	1.910	1.980
40.0	1.860	1.980	2.060
50.0	1.880	2.040	2.140
60.0	1.910	2.080	2.210
70.0	1.940	2.140	2.280
80.0	1.690	1.890	2.160
90.0	1.420	1.620	1.960
100.0	1.140	1.350	1.560

Table 21: Main rotor downwash at the horizontal tail [2]

Figure 23: Main rotor downwash at the horizontal tail [2]

5.3 Dynamic Pressure Loss at the Horizontal Tail

α	QH1QWF
$[\deg]$	[-]
-30.0	1.00
-25.0	1.00
-20.0	0.95
-15.0	0.76
-10.0	0.76
-5.0	0.76
0.0	0.76
5.0	0.76
10.0	0.76
15.0	0.82
20.0	0.91
25.0	1.00
30.0	1.00

Table 22: Dynamic pressure loss at the horizontal tail [2]

Figure 24: Dynamic pressure loss at the horizontal tail [2]

5.4 Fuselage Downwash at the Horizontal Tail

ϵ_h [deg]
0.00
0.25
0.70
1.20
1.60
1.90
1.80
1.40
1.10
0.80
0.55
0.50
0.45
0.40
0.38
0.33
0.19
-0.12
-0.40
-0.70
-0.75
-0.65
-0.45
-0.15
0.00

Table 23: Fuselage downwash at the horizontal tail [2]

Figure 25: Fuselage downwash at the horizontal tail [2]

5.5 Horizontal Tail Aerodynamic Coefficients

α [deg]	$C_{X,h}$	$C_{Z,h}$ $[-]$
	L J	L J
-90.0	1.200	0.000
-80.0	1.161	-0.294
-70.0	1.050	-0.558
-60.0	0.888	-0.745
-50.0	0.702	-0.847
-40.0	0.531	-0.847
-30.0	0.430	-0.745
-25.0	0.370	-0.795
-20.0	0.360	-0.950
-15.0	0.190	-1.030
-10.0	0.040	-0.710
-5.0	0.022	-0.356
0.0	0.010	0.000
5.0	0.022	0.356
10.0	0.040	0.710
15.0	0.190	1.030
20.0	0.360	0.950
25.0	0.370	0.795
30.0	0.430	0.745
40.0	0.531	0.847
50.0	0.702	0.847
60.0	0.888	0.745
70.0	1.050	0.558
80.0	1.161	0.294
90.0	1.200	0.000

Table 24: Horizontal tail aerodynamic coefficients [2]

Figure 26: Horizontal tail drag coefficient due to angle of attack [2]

Figure 27: Horizontal tail lift coefficient due to angle of attack [2]

5.6 Dynamic Pressure Loss at the Vertical Tail

β	QP3QWF
[deg]	[-]
-30.0	1.00
-25.0	0.88
-20.0	0.79
-15.0	0.72
-10.0	0.66
-5.0	0.64
0.0	0.62
5.0	0.64
10.0	0.66
15.0	0.72
20.0	0.79
25.0	0.88
30.0	1.00

Table 25: Dynamic pressure loss at the vertical tail [2]

Figure 28: Dynamic pressure loss at the vertical tail [2]

5.7 Fuselage Sidewash at the Vertical Tail

ϵ_v [deg]
0.0
0.0
0.2
0.6
1.4
0.8
-0.6
-0.4
0.0
0.4
0.6
-0.8
-1.4
-0.6
-0.2
0.0
0.0

Table 26: Fuselage sidewash at the vertical tail [2]

Figure 29: Fuselage sidewash at the vertical tail [2]

5.8 Vertical Tail Aerodynamic Coefficients

β	$C_{X,v}$	$C_{Y,v}$
$[\deg]$	[-]	[-]
-90.0	1.100	0.000
-80.0	1.025	-0.120
-70.0	0.965	-0.280
-60.0	0.875	-0.460
-50.0	0.745	-0.660
-40.0	0.575	-0.880
-30.0	0.360	-1.000
-25.0	0.265	-1.000
-20.0	0.174	-0.930
-15.0	0.118	-0.730
-10.0	0.066	-0.500
-5.0	0.033	-0.280
0.0	0.018	-0.060
5.0	0.021	0.160
10.0	0.044	0.380
15.0	0.092	0.610
20.0	0.162	0.820
25.0	0.248	0.890
30.0	0.355	0.890
40.0	0.580	0.800
50.0	0.750	0.630
60.0	0.875	0.480
70.0	0.966	0.320
80.0	1.020	0.170
90.0	1.080	0.000

Table 27: Vertical tail aerodynamic coefficients [2]

Figure 30: Vertical tail drag coefficient due to sideslip [2]

Figure 31: Vertical tail side force coefficient due to sideslip [2]

6 Tail Rotor

Parameter	Value	Reference
Tail rotor diameter	3.35 m	[1, 3, 2]
Tail rotor number of blades	4	[2]
Tail rotor blade chord	0.25 m	[2]
Tail rotor blade airfoil	SC1095	[2]
Tail rotor solidity	0.1875	[2]
Tail rotor blade twist	-18.0°	[2]
Tail rotor cant angle	20.0°	[3]
Tail rotor nominal rotation speed	124.62 rad/s (1191 rpm)	[2]
Tail rotor blade tip loss factor	0.92	[2]
Tail rotor blade section lift curve slope	$5.73 \mathrm{rad^{-1}}$	[7]
Tail rotor stationline	18.59 m	[2, 4]
Tail rotor waterline	8.25 m	[2, 4]
Tail rotor buttline	0.36 m	[2, 4]

Table 28: Tail rotor data

7 Flight Controls

Parameter	Value	Reference
Lateral cyclic output at rotor	$+/-8.0^{\circ}$	[2]
Longitudinal cyclic output at rotor	fwd12.3°, aft +16.5°	[2]
Collective output at rotor	low 9.9°, high 25.9°	[2]
Pedals output at tail rotor	right 0.1°, left 29.9°	[2]

Table 29: Main rotor data

8 Engine

Parameter	Value	Reference
Engine manufacturer	General Electric	[1]
Engine model (UH-60A)	T700-GE-700	[1, 3]
Engine model (UH-60L)	T700-GE-701C	[1, 3]
Engine model (UH-60M)	T700-GE-701D	[1]
Engine maximum power output	1 163 kW	[1]
(T700-GE-700)		
Engine maximum power output	$1~402~\mathrm{kW}$	[1]
(T700-GE-701C)		
Engine maximum power output	$1~652~\mathrm{kW}$	[1]
(T700-GE-701D)		
Engine weight (T700-GE-701C)	207 kg	[5]
Engine specific fuel consumption at maximum	279.2 g/(kW·h)	[5]
continuous power (T700-GE-701C)		

Table 30: Basic data

9 Mass and Inertia

Parameter	Value	Reference
Empty weight (UH-60A)	5 118 kg	[1]
Empty weight (UH-60L)	5 224 kg	[1]
Internal fuel tanks capacity	1 361 l	[1, 3]
Internal fuel tanks stationline	10.69 m	[3]
Center of mass stationline (for 7 258 kg)	9.09 m	[2]
Center of mass waterline (for 7 258 kg)	6.38 m	[2]
Moment of inertia I_x (for 7 258 kg)	$7~406~\mathrm{kg}\cdot\mathrm{m}^2$	[2]
Moment of inertia I_y (for 7 258 kg)	$53~513~\mathrm{kg}\cdot\mathrm{m}^2$	[2]
Moment of inertia I_z (for 7 258 kg)	$50~012~\mathrm{kg}\cdot\mathrm{m}^2$	[2]
Cross product of inertia I_{xz} (for 7 258 kg)	$2~134~\mathrm{kg}\cdot\mathrm{m}^2$	[2]

Table 31: Mass data

9.1 Structure Groups Breakdown

Data given in [3, 2, 4] were used to calculate empty aircraft inertia tensor and center of mass coordinates. Results are given in the following table.

Parameter	Value
Center of mass x-coordinate	-0.15 m
Center of mass y-coordinate	0.00 m
Center of mass z-coordinate	-0.25 m
Moment of inertia I_X	$6.543.0 \text{ kg} \cdot \text{m}^2$
Moment of inertia I_Y	$46\ 293.1\ {\rm kg\cdot m^2}$
Moment of inertia I_Z	$43 \ 498.3 \ \text{kg} \cdot \text{m}^2$
Cross product of inertia I_{XY}	$0.0~\mathrm{kg}\cdot\mathrm{m}^2$
Cross product of inertia I_{XZ}	$-3 753.0 \text{ kg} \cdot \text{m}^2$
Cross product of inertia I_{YZ}	$0.0~\mathrm{kg}\cdot\mathrm{m}^2$

Table 32: Empty aircraft inertia tensor and center of mass coordinates

Structure group	Weight	J	Coordinates	es	First	\mathbf{m}	ment of mass			Moment	Ioment of inertia		
	[kg]		[m]			$[\mathrm{kg\cdot m}]$				g y]	$[{ m kg \cdot m}^2]$		
	m	x	y	73	S_X	S_Y	S_Z	I_X	I_{Y}	I_Z	I_{XY}	I_{XZ}	I_{YZ}
Empty aircraft	5118	-0.15	0.00	-0.25	-791.9	0.0	-1274.0	6543.0	46 293.1	43 498.3	0.0	-3753.0	0.0
Pilot (left)	80	2.90	-0.70	0.40	232.0	-56.0	32.0	52.0	685.6	712.0	162.4	-92.8	22.4
Pilot (right)	80	2.90	0.70	0.40	232.0	56.0	32.0	52.0	685.6	712.0	-162.4	-92.8	-22.4
Fuel	1100	-2.02	0.00	0.70	-2222.0	0.0	770.0	539.0	5027.4	4488.4	0.0	1555.4	0.0
Personnel (4th row)	440	0.04	0.00	0.50	15.6	0.0	220.0	110.0	110.6	9.0	0.0	-7.8	0.0
Personnel (5th row)	440	-1.17	0.00	0.50	-514.1	0.0	220.0	110.0	710.7	2009	0.0	257.0	0.0
Gross weight	7258	-0.42	0.00	0.00	-3048.4	0.0	0.0	7406.0	53513.0	50012.0	0.0	-2134.0	0.0

Table 33: Mass data intermediate results

References

- [1] P. Jackson, Jane's All the World's Aircraft 2004-2005. Jane's Information Group, 2004.
- J. Howlett, UH-60A Black Hawk Engineering Simulation Program: Volume I

 Mathematical Model. National Aeronautics and Space Administration, CR-166309, 1981.
- [3] Department of the Army, Operator's Manual for UH-60A, UH-60L and EH-60A Helicopters, 2013. TM 1-1520-237-10.
- [4] Department of the Army, Aviation Unit and Intermediate Maintenance for Army Models UH-60A, UH-60L, EH-60A, UH-60Q and HH-60L Helicopters. Chapter 1: General Information Equipment Description and Data Theory of Operation, 2006. TM 1-1520-237-23-1.
- [5] "T700-401C/-701C turboshaft engines," 2014. [Accessed 2020-02-01]. Available from: https://www.geaviation.com/sites/default/files/datasheet-T700-401C-701C.pdf.
- [6] W. G. Bousman, Aerodynamic Characteristics of SC1095 and SC1094 R8 Airfoils. National Aeronautics and Space Administration, TP-2003-212265, 2003.
- [7] K. B. Hilbert, A Mathematical Model of the UH-60 Helicopter. National Aeronautics and Space Administration, TM-85890, 1984.
- [8] J. Totah, A Critical Assessment of UH-60 Main Rotor Blade Airfoil Data. National Aeronautics and Space Administration, TM-103985, 1993.