AMENDMENTS TO THE SPECIFICATION

Please replace paragraph [00032] with the following paragraph:

[00032] The method of the present invention has improved efficacy over the previously described methods, i.e. it has been shown to provide remarkably reliable predictions (see Fig. 8 and Example 1, infra) (SEQ ID NO: 128) and it is generally applicable to all biopolymers, including, inter alia, RNA, DNA and proteins (see Figs. 8-11 and Examples 1-4, infra). In particular, the present invention demonstrates improved efficacy over the previously describe methods partly due to: 1) a scoring process that results in scores that are symmetric and uniformly scaled, and/or a process of standardization that results in scores that are uniformly scaled; 2) a rigorous screening process that is intricately linked to its scoring algorithms, such that high accuracy is achieved; 3) a screening process that is neither arbitrary nor absolute, and thus able to implicitly handle the effects of sequence selection, phylogenetic relationships, sequence number; 4) a methodology that does not require preconceived biochemical parameters. or any other type of empirical data such as physicochemical, energetic, similarity descriptors or matrixes and is thus unbiased and not rule-based; 5) a methodology that is highly automated, and does not require enormous amounts of user input; 6) a methodology for evaluating the quality of the input data and suggestion for how to improve it, and is thus a novel method by which to analyze sequence alignments for errors; and 7) a methodology that is iterative, because as the input data is refined via its misalignment algorithm, each successive pass allows for better predictions.

Please replace paragraph [00041] with the following paragraph:

[00041] Figure 8(a) shows the structure for Domain V of the Group II catalytic RNA AI5γ as predicted by the exemplary embodiment of the method of the present invention (SEQ ID NO: 128) and 8(b) shows the interactions for Domain V of the Group II catalytic RNA AI5γ according to the biochemically predicted structure (SEQ ID NO: 128);

Please replace paragraph [00046] with the following paragraph:

[00046] Shevek: An exemplary embodiment of the method of the present invention described hereinbelow herein below.

Please replace paragraph [00128] with the following paragraph:

[00128] The steps of the above-described method are preferably performed by a computer. In one preferred embodiment, the computer is a Dell Precision 430 dual processor Pentium IIITM, 933 [[Mz]] MHz Workstation. Use of the sequence alignment editor software, Se-Al, may be performed on a Power Macintosh 8600/300 Power PC. When the method is performed by a computer, the above-described method steps are embodied in a program storage device readable by a machine, such program storage device including a computer readable medium. Computer readable media include magnetic diskettes, magnetic tapes, optical disks, Read Only Memory, RAM, Direct Access Storage Devices, gate arrays, electrostatic memory, and any other like medium.

NY02:492545.1

Please replace paragraph [00141] with the following paragraph:

[000141] Four sequences were identified as misaligned. These sequences were inspected and edited using the sequence alignment editor program Se-Al, as described previously. [Sequences #43 SEQ ID NO:44 (_ZPU16993_cox2) and SEQ ID NO:53 (_BVSCOXII1_cox2_1) were noted to be misaligned and realigned (see Table X). Sequence #16 SEQ ID NO:17 (DRP130746_Dp_nad5) and sequence #73 SEQ ID NO:74 (petB_45_) were noted to be unusual, but not in need of realignment.] The entire Shevek process was then repeated on the altered sequence alignment data set i.e. the process was iterated.

Please replace Table 1 at page 53 with the following table:

TABLE I
Sequence Alignment Data

								_				_						POSITION										
	0	2	4	6	8	1	1 2	1 4	1 6	1	2	2	2 4	2 6	2	3	3 2	3 4	3 6	3	4 0	4 2	4 4	4 6	4 8			
Sequence of Interes	t:	<u>:</u>																									ID	SEQ NO:
ai5gamma	-		(GA(GC(CG!	ra7	rgo	CG2	$^{\mathrm{T}}$			-GZ	AA	4		-G:	rc	GC?	AC(3T2	ACO	GG'	$\mathbf{T}\mathbf{T}$	C-	-T		1
Functionally Related Sequences:																												
MICLURF1_ndh101_ _MIZMCO_cox2_102_ _DCCOXII_cox2_1 _MITACOII_cox2_1 MIPHCO21_cox2_1 NY02:492545.1			·	-G2 -G2 -G2	AG(AG(AG(CT CT CT	PTT PTT	TTC TTC TTC	3C(3C(3C(3G(3G(3G(3 3	 	((GAI GAI GAI	- A.f - A.f - A.f	 	(((CT'	rg(rg(CAZ CAZ	AG' AG'	rcz rac rcz	AA(CA(AA(GT' GT' GT'	TT TT TT	(3 3 3	2 3 4 5 6

_MIOS01_Os_cox2			CTTGCAAGTAAAGTTTG	<u>7</u>
_MIHACOXII_cox2			CTTGCAAGTACAGTTTG	7 <u>8</u> 9 10
			CCTTCCCGCACGGTTCG	<u>9</u>
_MTVFNAD5_nad5_1			CCTTCCCGCACGGTTCG	10
MIATNAD5A_nad5_1			CCTTCCCGCACGGTTCG	11
TSP131146_nad5			CTTGCACGTGCGGTTCT	12
TRA131145_nad5	GAGCCGTATGCGAG	GAAA	CTTGCACGTGCGGTTCT	13
ASP130735_Sc_nad5	GAGCCGTATGCGAG	GAAA	CTTGCACGTGCGGTTCT	$\overline{14}$
SAU131147_nad5	GAGCCGTATGCGAG	GAAA	CTTGCACGTGCGGTTCT	15
AEV130737_Ap_nad5	GAGCCGTATGCGGG	GAAA	CTTGCACGTGCGGTTCT	16
DPR130746_Dp_nad5	GAGCCGTATGCGAA	GGAAA	CTTGCACGTGCGGTTCT	17
ANNAD5 An nad5	GAGCCGTATGCGAG	GAAA	CTTGCACGTGCGGTTCT	18
DSP130747_Dd nad5			CTTGCACGTGCGGTTCT	19
SWI131144_nad5			CTTGCACGTGCGGTTCT	20
AF143422 Tc nad5			CCTCCCCGCACGGTTCG	$\frac{21}{21}$
AF143423_Pa_nad5			CCTCCCCGCACGGTTCG	22
AF143424_Ca_nad5			CCTCCCGCACGGTTCG	23
AF143425_Cp_nad5			CCTCCCCGCACGGTTCG	$\frac{23}{24}$
MTPACG_nad5_4 08			CTATCACGTACGGTTCG	25
MIATGENA nad7 1			CCCGCACGTACGGTTTT	26
MIATGENA nad7 3			CTCTCACGTACAGTTTG	$\frac{20}{27}$
MPOMTCG nad3			CTATTTCGCACGGTTCG	
MIATGENA nad4 3			CTATCTAGCTTGGTTCG	28 29
MPOMTCG nad4			CTTGCACGTACGGTTCG	
MISC13_cox1 1 04			CTATCACGTACGGTTTG	30
MTPACG cox1 1 07			GTCGCACGTACGGTTCG	31
MTPCCOX1 cox1 1			GTCGCACGTACGGTTCG	32
SP0251292 cox1 1			GATGCACGTACGGTTCT	33
MIKLCOX1_cox1 1			GTATCACGTACGGTTCG	34
MISC13 cox1 2 05			GTATCACGTACGGTTCG	35
MTPACG cox1 4 06			GTATCACGTACGGTTCG	36
AMU41288 Am cox1 3				37
			GTTGCACGTACGGTTCG	38
MISPCG_cob09_			GTATCCCGTACGGTTCG	39
CHNTXXrps12_10_			GTCGTATGTACGGCTTG	40
CHSORPS_rps12_2_11_			GTCGTATGTACGGCTTG	41
CHZMXXrps12_2_12_			GTCGTATGTACGGCTTG	42
CHMPXX_rps12_2_13			ATCGGATGTACGGTTTG	43
_ZPU16993_cox2			CTTGCAAGTCAAGTTTG	$\frac{44}{}$
AF080087_Ot_rps3			CTATCCAGCACGGTTCG	<u>45</u>
CHNTXXtrnI_14_			GTTGTATGCTGCGTTCG	<u>46</u>
CHZMXX_trnI_15_			GTTGTATGCTGCGTTCG	<u>47</u>
CHMPXXtrnI_16_			GTTGTATGCTGCGTTCG	48
WHTCPTRNI_trnI			GTTGTATGCTGCGTTCG	<u>49</u>
CHNTXXtrnA_17_			GTTGTAAGCTGTGTTCG	<u>50</u>
CHZMXX_trnA_18_			GTTGTAAGCTGTGTTCG	<u>51</u>
CHMPXX_trnA19_			GTTGTAAGCTGTGTTTG	52
_BVSCOXII1_cox2_1			CTTGCAAGTACAGTTTG	51 52 53
CHNTXX_trnK_26_			AATGCAAGCACGGCTTG	<u>54</u>
CHSATRNK_trnK_27_	AAGCTGTGTGCAAT	GAAA	AATGCAAGCACGGTTTG	<u>55</u>
NV02-402545 1				

NY02:492545.1

File No. <u>A33723-070050.1407</u>

CHMPXXtrnK_28_			ATTGCAAGTACGGTTTG	<u>56</u>
CHNTXXatpF_29_			GATTCATGTTTGGTTCG	<u>57</u>
CHPSATPC_atpF_30_			GATTCATGTTTGGTTCG	<u>58</u>
SOL400848_atpF_31_			AATTCACGTTTGGTTCG	<u>59</u>
CHTAATP1_atpF_32_			GATTCATGTTTGGTTCG	<u>60</u>
CHMPXX_atpF33_			AGTTCATGTTCGGTTTG	61
HVU010573_atp9	GAGCCAAATGAATC	GAAA	GATTCATGTTTGGTTCG	62
CHNTXXrpl2_34_	AAGAAGTATGCTTT	GGAA	GAAGCTTGTACAGTTTG	63
CHMPXXCp_rp12	AAGCTGTATGCTT	GAAA	AAAGCTTGTACAGTTTG	64
MIATGENA_rpl2_1	GAGCCGTACGAG	GCAG	CTCACGTACGGTTCG	<u>65</u>
SCE011856_cytB37_	GAGCTGTATACTAT	GAAA	GTAGTACGTACAGTTCT	66
CHNTXXrps16_38_	GAGCCGTACGAGGA	GAAA	GCTTCCTATACGTTTCT	67
CHNTXXrpoC1_39_	GAGCCGGATGAAAG	GAAA	CTTTCACGTCCGATTTT	68
SOL400848_rpoC1_40_	GAGCCGGGCGAGGG	GAAA	CTTTCACGTCCGGCTTT	6 9
CHMPXX_rpoC1 41	GAGCCGGATGACGG	AAAA	CTTTCATGTCCGATTCT	70
CHMPXX_orf135_42_			ATATCATATATGGTTTT	71
CHNTXX petB 43			GTCTCATATACGGTTCT	$\frac{1}{72}$
SOL400848_petB_44_			GTCTCATATACAGTTCT	73
CHZMXX petB 45			TTTTCATATACGGTTC	$\frac{1}{74}$
CHMPXX petB 46			TAATCATTTACGGTTTT	75
CHNTXX petD 47			TTATCATGTCCAGTTCC	75
SOL400848 petD 48			TTATCATGTCCGGTTCT	$\frac{70}{77}$
CHZMXX petD 49			TTCTCATGTCCGGTTCC	78
CHMPXX petD 50			TTATCATGTCCGATTCT	78 79
CHNTXX clpP 1 51			GGCGCATGTACGGTTCC	80
CHMPXX clpP 1 52			AGTGCTTGTACAGTTTT	81
CHNTXX_ycf3_2_53			TTCTCAAGTACGGTTCT	82
CHNTXX rpl16 54			CTCTCACGTCCGGTTCT	83
CHZMXX rpl16 55			CTCTCATGTCCAGTTTT	_
CHSOL16_rpl16_56			CTCTCATGTCCGGTTCT	84
CHMPXX_rpl16_57			TTTCATGTCCGGTTTT	85
CHNTXX ndh1 58			ATCTCACGTACGGTTCT	86
CHMPXX ndh1 59			ATTTCATGTACGGTTTT	87
CHNTXX ndh2 60				88
CHMPXXndh2_61			GTCTCATGCACGGTTTT	89
			ATCTCATGCACGGTTTT	90
OBENAD202_nad2_4			CTATCTCCTGCGGTTCG	91
CHNTXX_ycf3_1_62_ CHMPXXycf3_1_63_			ATCTCACGTACGGTTCT	<u>92</u>
			ACTTCATGTACGGTTTT	93
CHNTXXtrnG_64_			GTTTCATGTTCGGTTTT	94
CHTATRN1_trnG_65_			ATTTCATGTTCGGTTTT	<u>95</u>
CHMPXX_trnG66_			CTTTCACGTTCGGTTTT	96
MPOMTCG_trnG			-TTTCTCACGTCCGGATCT	<u>97</u>
CHNTXXrps12_1_67_			ATCTCATGTACGGTTCT	<u>98</u>
CHMPXXrps12_1_68_			ATATCAAGTACGGTTTT	<u>99</u>
CHZMXX_rps12_1_69_			ATCTCATGTACGGTTCT	<u>100</u>
AMU41288_Am_rnl			GTTGCACGTACGGTTCT	<u>101</u>
AF029891_Cp_srRNA1			GTCGCACGTACGGTTCT	102
TPSSRRA_ssurRNA			GTTGCACGTACGGTTCT	<u>103</u>
AF087656_Aa_srRNA	GAGCTGTATGCGAT	GAAA	GTCGCACGTACAGTTCT	<u>104</u>

NY02:492545.1

```
AF029891Cp_srRNA2
                       ----GAGCCGTATGCCAT----GAAA----GTGGCACGTACGGTTC--T
                                                                                 105
PLRRNA23_lrn_1
                       ----CAGCCGTGTGCGGT----GAAA----GTCGCACGCACGGTTG--T
                                                                                 106
PLRRNA23 lrn 2
                       ----GAGCCGTGTGCGAT----GAAA----GTCGCAAGCACGGTTC--T
                                                                                 107
                       ----GAGCCGTGTGCGTT----GAAA----GATGCATGCACGGTTC--T
PLRRNA23 lrn 3
                                                                                 108
PLRRNA23 lrn 4
                       ----GAGCCGTATGAATG-----GAGA----CATTCACGTACGGTTT--T
                                                                                 109
                       \hbox{----GAGCCGTGTGCGGT----GAAA----GTCGCATGCACGGTTC--T}
MISOLSUR rns2
                                                                                 110
MPOMTCG_trnS
                       ----GAGCCGTATGCGG-----GAAAA---CTCGCACGTACGGTTC--T
Azotobacter__Av_groEL----GAGCCGTATGCGGG-----GAAA----CTCGCACGTACGGTTC--T
AF065404_Ba_pX01 ----GAGCCGTATGTGCT-----GAAA----GGTACAAGTACGGTTC---
AB011549_Ec_IntE ----GAGCCGTATGCCGG-----GAAA----CTGGCACGTACGGTTC--T
                                                                                 113
                                                                                 114
PSY18999_Pp_Int5041C ----GAGCCGGATGAGGG-----GCGA----CTCTCATGTCCGGTTC--T
                                                                                 115
ECHREP_EC_IntB
RMREVTM_Rm_Int1
                       ----GAGCGGTATGAGCC-----GAGA----GGTTCACGTACCGTTC--T
                                                                                 116
                       ----GAGCGGTGTGAATC----GAGA----GGTTCACGCACCGTTC--T
                                                                                 <u>1</u>17
ASU13767_An_hlyA
                       ----GAGCCGTGTGCAGC----GAAA----GTTGCACGCACGGATC--T
                                                                                 118
                       ----GAGCCGTATGAGGT-----GAAA----GTCTCAAGTACGGTTT--T
р
                                                                                 119
LLU50902 Ll ltrB
                       ----GAGCCGTATACTCC----GAGA----GGGGTACGTACGGTTC--C
                                                                                 120
                       ----CCGCCGTGTACG-----GAAC-----CGTACGCACGGTGG--T
PAU77945 Pa Xin6
                                                                                 121
CDIIORF Cd orf14
                       ----ACGCCGTGTGAGGG-----GAAA----CTCTCATGCACGGTGT--G
                                                                                 122
AB022308 Bm TnpR
                       ----ACGCCGTATGCTG-----GAAA----CTCGCCTGTACGGTGT--G
                                                                                 123
MTPLCOX1_cox1_1
MTPLCOX1_cox1_2
MTPLCOX1_cox1_3
SFU97489_Sf_IntA
                       ----AAGCCGTATGAGGG-----GAAA----CTTTCACGTACGGTTT--G
                                                                                 124
                       ----GAGCCGTATGATGG----GAAA----CTATCACGTACGGTTC--T
                       ----GAGCCCGGTGCGGT-----GAAA----GTCGCACGCCGGGTTC--G
                                                                                 126
                       ----GAGCCGGATGCGCT----GAAA----GGTGCACGTCCGGTTC--G
                                                                                 127
```

Please replace Table X at page 70 with the following table:

TABLE X Corrected Sequence Information

Reference:

File No. <u>A33723-070050.1407</u>