Problem kodowania

x s	0	1	0	1
Α	Α	В	0	0
В	Α	O	0	0
С	D	C	0	0
D	Α	В	0	1

Wariant I

Wariant II

Wariant I
$$D_{1} = Q_{1}\overline{Q}_{2} + x\overline{Q}_{1}Q_{2}$$

$$D_{2} = \overline{x}Q_{1}\overline{Q}_{2} + xQ_{1}Q_{2}$$

$$V = xQ_{1}Q_{2}$$

$$D_2 = \overline{X}Q_1\overline{Q}_2 + XQ_1Q_2 + X\overline{Q}_1\overline{Q}_2$$

$$y = xQ_1Q_2$$

Wariant II

$$D_1 = x \overline{Q}_2 + \overline{x} \overline{Q}_1 Q_2$$

$$D_2 = X$$
$$y = XQ_1\overline{Q}_2$$

Kodowanie

Jak przewidzieć (obliczyć) najlepsze kodowanie stanów?

Czy realne jest sprawdzenie wszystkich możliwości

3 stany - 3 różne kodowania

4 stany - 3 różne kodowania

5 stanów - 140 kodowań

7 stanów - ??? kodowań

9 stanów - ??? kodowań

KODOWANIE

Jedyną rozsądną z punktu widzenia dzisiejszych technologii i realną do omówienia w ograniczonym¹⁾ czasie wykładu jest metoda wykorzystująca podział z własnością podstawienia.

1) Ale i takie uproszczone ujęcie nie zawsze jest możliwe. Wtedy zachęcam Państwa do samodzielnego studiowania następnych plansz.

A wszystkich wytrwałych w tym procesie specjalnie nagradzam na egzaminie.

Elementy rachunku podziałów

Podziałem na zbiorze S jest system zbiorów $P = \{B_i\}$, którego bloki są rozłączne, czyli

$$B_i \cap B_i = \emptyset$$
, jeśli tylko $i \neq j$.

Dla $S = \{1,2,3,4,5,6\}, P = \{\{1,2\}, \{3,5\}, \{4,6\}\} \}$ jest podziałem na S.

$$\Pi = (\overline{1,2}; \overline{3,5}; \overline{4,6})$$

lloczyn podziałów, suma podziałów oraz relacja ≤.

Elementy rachunku podziałów...

Powiemy, że podział Π_a jest *nie większy* od Π_b (co oznaczamy: $\Pi_a \leq \Pi_b$), jeśli każdy blok z Π_a jest zawarty w pewnym bloku z Π_b .

$$\Pi_{a} = (\overline{1,2,4}; \overline{3,5,6})$$
 $\Pi_{b} = (\overline{1,4}; \overline{2,6}; \overline{3,5})$ $\Pi_{c} = (\overline{1,2}; \overline{4}; \overline{6}; \overline{3,5})$

$$\Pi_{c} \leq \Pi_{a}$$
 Tak

$$\Pi_{c} \not < \Pi_{b}$$
 NIE!

 $\Pi(0)$ – podział najmniejszy

 $\Pi(1)$ – podział największy

Elementy rachunku podziałów...

Iloczynem podziałów $\Pi_{\rm a}$ • $\Pi_{\rm b}$ nazywamy największy (względem relacji \leq) podział, który jest nie większy od $\Pi_{\rm a}$ oraz $\Pi_{\rm b}$.

$$\Pi_a = (\overline{1,2,4}; \overline{3,5,6})$$
 $\Pi_b = (\overline{1,4}; \overline{2,6}; \overline{3,5})$

$$\Pi_a \cdot \Pi_b = (\overline{1,4}; \overline{2}; \overline{6}; \overline{3,5})$$

Elementy rachunku podziałów...

Sumą podziałów $\Pi_{\rm a}+\Pi_{\rm b}$ nazywamy najmniejszy (względem relacji \leq) podział, który jest nie mniejszy od $\Pi_{\rm a}$ oraz $\Pi_{\rm b}$.

$$\Pi_a = (\overline{1,2}; \overline{3,4}; \overline{5,6}; \overline{7,8,9})$$

$$\Pi_b = (\overline{1,6}; \overline{2,3}; \overline{4,5}; \overline{7,8}; \overline{9})$$

$$\Pi a + \Pi b = (\overline{1,2,3,4,5,6}; \overline{7,8,9})$$

Własność podstawienia

Podział Π na zbiorze stanów automatu M=<S, V, δ > ma własność podstawienia (*closed partition*), gdy zachodzi:

$$\forall v_p \in V, \forall (s_i, s_j \in b_k), b_k \in \Pi \Rightarrow \exists_{b_m \in \Pi} (\delta(s_i, v_p), (\delta(s_j, v_p)) \in b_m$$

Podział ma własność podstawienia, gdy elementy bloku podziału pod wpływem dowolnej litery wejściowej przechodzą na siebie lub na inny blok podziału Π

Twierdzenie

Dany jest automat M o zbiorze stanów S, |S| = n. Do zakodowania stanów potrzeba Q_1 , ..., Q_k elementów pamięci.

Jeżeli istnieje podział Π z własnością podstawienia i jeżeli rspośród k zmiennych kodujących $Q_1, ..., Q_k$, gdzie $r = \lceil \log_2 \beta(\Pi) \rceil$, jest przyporządkowanych blokom podziału Π tak, że wszystkie stany zawarte w jednym bloku są oznaczone tymi samymi zmiennymi $Q_1, ..., Q_r$, to funkcje $Q'_1, ..., Q'_r$, są niezależne od pozostałych (k - r) zmiennych. I odwrotnie, gdy pierwsze r zmiennych stanu następnego Q'_1 , ..., Q'_r ($1 \le r < k$) mogą być wyznaczone z wartości wejść i pierwszych r zmiennych $Q_1, ..., Q_r$ niezależnie od wartości pozostałych zmiennych, to istnieje podział Π z własnością podstawienia taki, że dwa stany s_i , s_i są w tym samym bloku podziału wtedy i tylko wtedy, gdy są oznaczone tą samą wartością pierwszych r zmiennych.

Przykład 1

x s	0	1	0	1
Α	Α	F	0	0
В	Ш	С	0	1
С	C	Е	0	1
D	F	Α	1	0
Е	В	F	1	1
F	D	Е	0	0

$$\pi_{\scriptscriptstyle 1} = \left(\overline{A,B,E};\overline{C,D,F}\right)$$

$$\tau = \left(\overline{A, D}; \overline{B, C}; \overline{E, F}\right)$$

Kodowanie wg Π_1

0 0 0

B 0 0 1

C 1 0 1

D 1 0 0

E 0 1 0

F 1 1 0

Nie wystarcza to do zakodowania

Przykład 1...

X S	0	1	0	1
Α	Α	F	0	0
В	Е	С	0	1
С	С	Е	0	1
D	H	Α	1	0
Е	В	F	1	1
F	D	Е	0	0

Co to znaczy, że zastosujemy kodowanie wg podziału zamkniętego:

B 0 0 1
$$Q_1' = D_1 = f(x,Q_1)$$

Niestety tylko jedną zmienną zakodowaliśmy wg podziału zamkniętego, zatem:

Nie musimy obliczać funkcji wzbudzeń, aby stwierdzić, że będą pierwsza z nich, czyli D₁ będzie...

$$Q_2' = D_2 = f(x,Q_1,Q_2,Q_3)$$

$$Q_3' = D_3 = f(x,Q_1,Q_2,Q_3)$$

Przykład 1...

A może jest więcej podziałów zamkniętych:

s x	0	1	0	1
Α	Α	F	0	0
В	Ш	С	0	1
С	С	Е	0	1
D	F	Α	1	0
Е	В	F	1	1
F	D	Е	0	0

Później wykażemy, że oprócz Π_1

$$\Pi_{1} = \left(\overline{A,B,E};\overline{C,D,F}\right)$$

jest Π_2

$$\Pi_{2} = \left(\overline{A,C}; \overline{B,D}; \overline{E,F}\right)$$

Kodowanie wg Π_1 Π_2

$$\Pi_1 \bullet \Pi_2 = \Pi(0)$$

Przy tak dobranym kodowaniu pierwsza funkcja wzbudzeń Q_1 ' tego automatu będzie zależna od jednej zmiennej wewnętrznej, a druga i trzecia łącznie (Q_2 ', Q_3 ') od dwóch

Obliczanie podziału zamkniętego

s X	0	1
Α	Α	F
В	Е	С
С	С	Е
D	F	Α
Е	В	F
F	D	Ε

Tworzymy graf par następników dla różnych wierzchołków początkowych

A,B
$$\longrightarrow$$
 $\Pi_1 = (\overline{A,B,E};\overline{C,D,F})$

A,C
$$\longrightarrow$$
 $\Pi_2 = (\overline{A,C}; \overline{B,D}; \overline{E,F})$

$$A,D \longrightarrow \Pi(1)$$

PRZYKŁAD 2

x s	0	1	Z
Α	Ι	В	0
В	H	Α	0
С	G	D	0
D	Ш	C	1
Е	Α	C	0
F	C	D	0
G	В	Α	0
Н	D	В	0

Do zakodowania stanów automatu M potrzebne są 3 podziały 2-blokowe, takie że:

$$\Pi_a \bullet \Pi_b \bullet \Pi_c = \Pi(0)$$

Generujemy podziały zamknięte

x s	0	1	Z
Α	Н	В	0
В	F	Α	0
С	G	D	0
D	Е	С	1
Е	Α	С	0
F	С	D	0
G	В	Α	0
Н	D	В	0

$$\Pi_1 = (\overline{A,B,C,D};\overline{E,F,G,H})$$

Graf par następników:

s x	0	1	Z
A	Н	В	0
В	F	A	0
С	G	D	0
D	Е	С	1
E	A	С	0
F	С	D	0
G	В	A	0
Н	D	В	0

$$A,D \implies \overline{A},\overline{D};\overline{B},\overline{C};\overline{E},\overline{H};\overline{F},\overline{G}$$

$$D,H \implies \overline{A,D,E,H};\overline{B,C};\overline{F,G}$$

$$B,F \implies \overline{B,C,F,G};\overline{A,D};\overline{E,H}$$

$$\Pi_1 = \left(\overline{A,B,C,D};\overline{E,F,G,H}\right)$$

$$\Pi_2 = (\overline{A,D,E,H};\overline{B,C,F,G})$$

Niestety:

$$\Pi_{1} \bullet \Pi_{2} = (\overline{A}, \overline{D}; \overline{B}, \overline{C}; \overline{E}, \overline{H}; \overline{F}, \overline{G}) \neq \Pi(0)$$

Potrzebny jest więc jeszcze jeden podział τ:

$$\Pi_1 \bullet \Pi_2 \bullet \tau = \Pi(0)$$

$$\tau = (\overline{A,B,G,H};\overline{C,D,E,F})$$

$$\Pi_1 = (\overline{A,B,C,D}; \overline{E,F,G,H})$$

$$\Pi_2 = (\overline{A,D,E,H};\overline{B,C,F,G})$$

$$\tau = (\overline{A,B,G,H};\overline{C,D,E,F})$$

Kodowanie wg Π_1 Π_2 τ

Α	0	0	0
<i>,</i> ,		•	U

T P W

Przy tak dobranym kodowaniu dwie funkcje wzbudzeń Q_1 i Q_2 tego automatu będą zależne od jednej zmiennej wewnętrznej, a trzecia Q_3 (w najgorszym przypadku) od trzech zmiennych, czyli

$$Q_1' = f(x,Q_1)$$

 $Q_2' = f(x,Q_2)$
 $Q_3' = f(x,Q_1,Q_2,Q_3)$

Warto zakodować, obliczyć funkcje wzbudzeń Q₁', Q₂', Q₃' i sprawdzić, czy rzeczywiście tak jest.

Komentarz

Każde inne kodowanie doprowadzi do bardziej skomplikowanych funkcji wzbudzeń.

W szczególności dla kodowania wg naturalnego kodu binarnego¹⁾:

$$Q_1' = f(x,Q_1)$$

 $Q_2' = f(x,Q_1,Q_2,Q_3)$

$$Q_3' = f(x,Q_1,Q_2,Q_3)$$

¹⁾ Naturalny kod binarny jest przyjmowany automatycznie do kodowania automatów w komercyjnych systemach projektowania układów cyfrowych

T P W

Dekompozycja szeregowa

Dany jest automat M o zbiorze stanów S. Warunkiem koniecznym i wystarczającym dekompozycji szeregowej automatu M na dwa szeregowo połączone automaty M_1 , M_2 jest istnienie podziału π z własnością podstawienia i podziału τ takich, że $\pi \cdot \tau = 0$.

Dekompozycja równoległa

Automat M jest dekomponowalny na dwa podautomaty M_1 , M_2 działające równolegle wtedy i tylko wtedy, gdy na zbiorze S tego automatu istnieją dwa nietrywialne podziały π_1 , π_2 z własnością podstawienia takie, że

$$\pi_1 \bullet \pi_2 = \pi(0)$$

Schematy dekompozycji

Dekompozycja szeregowa

Dekompozycja równoległa

I T P W

Dekompozycja z autonomicznym zegarem

Niektóre automaty mają dekompozycję, w której występuje autonomiczny zegar – podautomat niezależny od wejść.

Podział π_i zbioru stanów S automatu M jest zgodny z wejściem, jeśli dla każdego stanu $S_j \in S$ i dla wszystkich $v_l \in V$

$$\delta(S_j, V_1), \ \delta(S_j, V_2), \ ..., \ \delta(S_j, V_l), \ ..., \ \delta(S_j, V_p),$$

są w jednym bloku podziału π_i .

Warunkiem koniecznym i dostatecznym istnienia dekompozycji automatu M, w której występuje autonomiczny zegar o $\lceil \log_2 \beta(\pi) \rceil$ stanach jest, aby istniał podział zamknięty π i nietrywialny zgodny z wejściem podział π_i zbioru stanów S tego automatu, taki że $\pi \geq \pi_i$

PRZYKŁAD 3

s X	0	1	0	1
Α	D	С	0	1
В	С	О	0	0
С	Ш	H	0	1
D	H	Ш	0	0
Е	В	Α	0	1
F	Α	В	0	0

Podział zgodny z wejściem:

$$\Pi_{I} = \left(\overline{A,B};\overline{C,D};\overline{E,F}\right)$$

Π_I jest zamknięty

$$\Pi_{o} = (\overline{A,C,E};\overline{B,D,F})$$

$$\Pi_{\mathbf{u}} \bullet \Pi_{\mathbf{u}} = \Pi(0)$$

PRZYKŁAD 3

$$\Pi_{I} = (\overline{A}, \overline{B}; \overline{C}, \overline{D}; \overline{E}, \overline{F})$$

$$\Pi_{O} = (\overline{A,C,E};\overline{B,D,F})$$

Kodowanie wg Π_{I} wg Π_{O}

$$Q_1' = f(Q_1, Q_2)$$

$$Q_2' = f(Q_1, Q_2)$$

$$Q_3' = ???$$

$$y = f(x,Q_3)$$