```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.preprocessing import PolynomialFeatures
import numpy as np
from sklearn.feature_selection import VarianceThreshold
from google.colab import drive
drive.mount('/content/drive')
file_path="/content/drive/My Drive/ai4i2020.csv"
data = pd.read_csv(file_path)
# data=pd.read_csv("Downloads/ai4i2020.csv")
Exprise already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remoun
data.head()
\overline{\mathbf{x}}
                                       Air
                                                  Process
                                                                                      Tool
              Product
                                                              Rotational
                                                                           Torque
                                                                                              Machine
        UDT
                                                                                                           HDF
                                                                                                                     OSF RNF
                                                                                                       TWF
                                                                                                                 PWF
                       Type
                              temperature
                                              temperature
                                                                                      wear
                   ID
                                                             speed [rpm]
                                                                             [Nm]
                                                                                              failure
                                       [K]
                                                       [K]
                                                                                     [min]
                                                                                                                                 ılı.
                                      298.1
                                                     308.6
     0
               M14860
                                                                    1551
                                                                              428
                                                                                         0
                                                                                                         O
                                                                                                                        0
                                                                                                                             0
                          M
                                                                                                    0
                                                                                                              0
                                                                                                                   0
          1
          2
               L47181
                          L
                                      298.2
                                                     308.7
                                                                    1408
                                                                              46.3
                                                                                         3
                                                                                                    0
                                                                                                         0
                                                                                                              0
                                                                                                                   0
                                                                                                                        0
                                                                                                                             0
     2
                                                     308.5
          3
               147182
                          1
                                      298 1
                                                                    1498
                                                                              49.4
                                                                                         5
                                                                                                    0
                                                                                                         0
                                                                                                              0
                                                                                                                   0
                                                                                                                        0
                                                                                                                             0
     3
               L47183
                                      298.2
                                                     308.6
                                                                    1433
                                                                              39.5
                                                                                                              0
                                                                                                                   0
                                                                                                                        0
                                                                                                                             0
 Next steps: Generate code with data
                                      View recommended plots
                                                                    New interactive sheet
print("\nDataset Info:\n")
data.info()
₹
     Dataset Info:
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 10000 entries, 0 to 9999
    Data columns (total 14 columns):
          Column
                                    Non-Null Count
     #
                                                     Dtype
      0
          UDI
                                     10000 non-null
      1
          Product ID
                                     10000 non-null
                                                     object
                                     10000 non-null
          Type
                                                     obiect
      3
                                     10000 non-null
          Air temperature [K]
                                                      float64
          Process temperature [K]
                                    10000 non-null
                                                      float64
      5
                                     10000 non-null
          Rotational speed [rpm]
                                                      int64
                                                     float64
      6
          Torque [Nm]
                                     10000 non-null
      7
          Tool wear [min]
                                     10000 non-null
                                                      int64
      8
          Machine failure
                                     10000 non-null
                                                      int64
                                                      int64
      9
          TWF
                                     10000 non-null
      10
          HDF
                                     10000 non-null
                                                      int64
          PWF
                                     10000 non-null
      11
                                                      int64
          0SF
                                     10000 non-null
                                                      int64
      12
     13
         RNF
                                     10000 non-null
                                                     int64
     dtypes: float64(3), int64(9), object(2)
     memory usage: 1.1+ MB
 data.describe()
```


	UDI	Air temperature [K]	Process temperature [K]	Rotational speed [rpm]	Torque [Nm]	Tool wear [min]	Machine failure	TWF	HDF	
count	10000.00000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	100
mean	5000.50000	300.004930	310.005560	1538.776100	39.986910	107.951000	0.033900	0.004600	0.011500	
std	2886.89568	2.000259	1.483734	179.284096	9.968934	63.654147	0.180981	0.067671	0.106625	
min	1.00000	295.300000	305.700000	1168.000000	3.800000	0.000000	0.000000	0.000000	0.000000	
25%	2500.75000	298.300000	308.800000	1423.000000	33.200000	53.000000	0.000000	0.000000	0.000000	
50%	5000.50000	300.100000	310.100000	1503.000000	40.100000	108.000000	0.000000	0.000000	0.000000	

data['Machine failure'].value_counts()

count

Machine failure 0 9661 1 339

dtype: int64

Feature Engineering

col = i % 3

plt.tight_layout()
plt.show()

sns.histplot(X[column], ax=axes[row, col])

axes[row, col].set_title(f'Distibution of {column}')

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
X['Type'] = le.fit_transform(X['Type'])

<ipython-input-9-2982d9b4d4cf>:3: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-X['Type'] = le.fit_transform(X['Type'])</a>

fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(15, 10))
for i, column in enumerate(X.columns):
    row = i // 3
```



```
Start coding or generate with AI.

correlation_matrix = X.corr()
print("\nCorrelation Matrix:\n", correlation_matrix)

# Correlation Heatmap (Graph)
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Matrix of Features')
plt.show()
```


Correlation Matrix:

	Туре	Air temperature [K]	\
Type	1.000000	0.017599	
Air temperature [K]	0.017599	1.000000	
<pre>Process temperature [K]</pre>	0.013444	0.876107	
Rotational speed [rpm]	-0.002693	0.022670	
Torque [Nm]	0.004011	-0.013778	
Tool wear [min]	-0.003930	0.013853	

	Process temperature [K]	Rotational speed [rpm]
Type	0.013444	-0.002693
Air temperature [K]	0.876107	0.022670
Process temperature [K]	1.000000	0.019277
Rotational speed [rpm]	0.019277	1.000000
Torque [Nm]	-0.014061	-0.875027
Tool wear [min]	0.013488	0.000223

	Torque [Nm]	Tool wear [min]
Туре	0.004011	-0.003930
Air temperature [K]	-0.013778	0.013853
Process temperature [K]	-0.014061	0.013488
Rotational speed [rpm]	-0.875027	0.000223
Torque [Nm]	1.000000	-0.003093
Table 1	0 002002	1 000000

Tool wear [min] -0.003093 Correlation Matrix of Features 1.00 -0.00 0.02 0.01 0.00 -0.00 Type - 0.75 0.02 0.02 -0.01 0.01 Air temperature [K] -- 0.50 - 0.25 Process temperature [K] --0.01 0.01 0.01 0.02 - 0.00 Rotational speed [rpm] --0.00 0.02 0.02 0.00 - -0.25 -0.01 Torque [Nm] -0.00 -0.01 1.00 -0.00 -0.50 Tool wear [min] --0.00 0.01 0.01 0.00 -0.00 -0.75Tool wear [min] -Air temperature [K] Process temperature [K] Torque [Nm] Rotational speed [rpm]

Start coding or <u>generate</u> with AI.

Start coding or <u>generate</u> with AI.

Polynomial Features

```
from sklearn.preprocessing import PolynomialFeatures
import numpy as np
# Apply Polynomial Features
poly = PolynomialFeatures(degree=2, include_bias=True)
X_poly = poly.fit_transform(X.select_dtypes(include=[np.number]))
poly_feature_names = poly.get_feature_names_out(X.select_dtypes(include=[np.number]).columns)
X_poly_df = pd.DataFrame(X_poly, columns=poly_feature_names)
```

Feature Selection

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.feature_selection import mutual_info_classif
info_gain = mutual_info_classif(X_poly_df,y)
top_features = X_poly_df.columns[info_gain.argsort()[::-1][:20]]
top_features

→ Index(['Air temperature [K] Torque [Nm]',
                'Process temperature [K] Torque [Nm]', 'Torque [Nm]^2', 'Torque [Nm]', 'Rotational speed [rpm] Torque [Nm]', 'Rotational speed [rpm]^2',
                'Process temperature [K] Rotational speed [rpm]',
'Rotational speed [rpm]', 'Air temperature [K] Rotational speed [rpm]',
'Torque [Nm] Tool wear [min]', 'Type Rotational speed [rpm]',
'Type Torque [Nm]', 'Tool wear [min]'2', 'Tool wear [min]',
                'Air temperature [K] Process temperature [K]',
                'Process temperature [K] Tool wear [min]',
                'Air temperature [K] Tool wear [min]', 'Type Tool wear [min]',
                'Type Air temperature [K]', 'Air temperature [K]'],
              dtype='object')
X_selceted=X_poly_df[top_features]
```

Scaling

```
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report, accuracy_score, confusion_matrix
# Standardize the numerical features
scaler = StandardScaler()
X = scaler.fit_transform(X_selceted)
```

Train Test Split

```
X_{train}, X_{test}, y_{train}, y_{test} = train_test_split(X, Y, test_size=0.3, random_state=42)
```

Decision Tree classifier

0.99

1.00

```
clf = DecisionTreeClassifier( max_depth=8,random_state=42)
clf.fit(X_train, y_train)
# Predict and evaluate the model
y_pred = clf.predict(X_test)
print(classification_report(y_test, y_pred))
print(accuracy_score(y_test, y_pred))
\overline{2}
                   precision
                                 recall f1-score
                                                     support
```

2907

```
0.91
                               0.76
                                          0.83
                                                      93
                                          0.99
                                                    3000
    accuracy
   macro avg
                    0.95
                               0.88
                                          0.91
                                                    3000
weighted avg
                    0.99
                               0.99
                                          0.99
                                                    3000
```

0.9903333333333333

```
confusion_matrix(y_test, y_pred)
```

```
⇒ array([[2900, 7], [ 22, 71]])
```

clf.get_depth()

→ 8

```
from sklearn.tree import plot_tree
clf = DecisionTreeClassifier( max_depth=8, random_state=42)
clf.fit(X_train, y_train)
plt.figure(figsize=(12, 8))
plot_tree(clf, filled=True, feature_names=top_features, class_names=['Non-Failure', 'Failure'], rounded=True, fontsize=7)
plt.title('Decision Tree Visualisation (max_depth=3)')
plt.show()
```



```
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, roc_curve, auc, precision_recall_curve

# Confusion Matrix
cm = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(6, 6))
sns.heatmap(cm, annot=True, fmt='d', xticklabels=['Non-Failure', 'Failure'], yticklabels=['Non-Failure', 'Failure'])
plt.title('Confusion Matrix')
plt.xlabel('Predicted')
plt.ylabel('True')
plt.show()
```


Start coding or generate with AI.

```
# ROC Curve
fpr, tpr, thresholds = roc_curve(y_test, clf.predict_proba(X_test)[:, 1])
roc_auc = auc(fpr, tpr)

plt.figure(figsize=(8, 6))
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")
plt.show()
```


_

```
# Precision-Recall Curve
precision, recall, _ = precision_recall_curve(y_test, clf.predict_proba(X_test)[:, 1])

plt.figure(figsize=(8, 6))
plt.plot(recall, precision, color='b', lw=2)
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.title('Precision-Recall Curve')
plt.show()
```



```
# Feature Importance Plot (Decision Tree)
feature_importances = clf.feature_importances_

plt.figure(figsize=(10, 6))
plt.barh(top_features, feature_importances, color='skyblue')
plt.xlabel('Feature Importance')
plt.title('Feature Importance from Decision Tree')
plt.show()

Feature Importance from Decision Tree
```

