

Jan 09, 2020

DNA and RNA backups 🖘

In 1 collection

Adriana Alberti¹, Julie Poulain¹, Stefan Engelen¹, Karine Labadie¹, Sarah Romac^{2,3}, Isabel Ferrera⁴, Guillaume Albini¹, Jean-Marc Aury¹, Caroline Belser¹, Alexis Bertrand¹, Corinne Cruaud¹, Corinne Da Silva¹, Carole Dossat¹, Frédéric Gavory¹, Shahinaz Gas¹, Julie Guy¹, Maud Haquelle¹, E'krame Jacoby¹, Olivier Jaillon^{1,5,6}, Arnaud Lemainque¹, Eric Pelletier¹, Gaëlle Samson¹, Marc Wessner¹, Genoscope Technical Team¹, Silvia G. Acinas⁴, Marta Royo-Llonch⁴, Francisco M. Cornejo-Castillo⁴, Ramiro Logares⁴, Beatriz Fernández-Gómez^{4,7,8}, Chris Bowler⁹, Guy Cochrane¹⁰, Clara Amid¹⁰, Petra Ten Hoopen¹⁰, Colomban De Vargas^{2,3}, Nigel Grimsley^{11,12}, Elodie Desgranges^{11,12}, Stefanie Kandels-Lewis^{13,14}, Hiroyuki Ogata¹⁵, Nicole Poulton¹⁶, Michael E. Sieracki^{16,17}, Ramunas Stepanauskas¹⁶, Matthew B. Sullivan^{18,19}, Jennifer R. Brum^{19,20}, Melissa B. Duhaime²¹, Bonnie T. Poulos²², Bonnie L. Hurwitz²³, Stéphane Pesant^{24,25}, Eric Karsenti^{9,13,26}, Patrick Wincker^{1,5,6}

¹CEA - Institut de Biologie François Jacob, Genoscope, Evry, France, ²CNRS, UMR 7144, Station Biologique de Roscoff, France, ³Sorbonne Universités, UPMC Univ Paris 06, UMR 7144, Station Biologique de Roscoff, France, ⁴Departament de Biologia Marina i Oceanografia, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain, ⁵CNRS, UMR 8030, Evry, France, ⁶Université d'Evry, UMR 8030, Evry, France, ⁷FONDAP Center for Genome Regulation, Santiago, Chile, 8Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Libano Macul, Santiago, Chile, ⁹Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, Paris, France, 10 European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genomes Campus, Hinxton, Cambridge, UK, 11 CNRS UMR 7232, BIOM, Banyuls-sur-Mer, France, 12 Sorbonne Universités Paris 06, OOB UPMC, Banyuls-sur-Mer, France, 13 Directors' Research European Molecular Biology Laboratory, Heidelberg, Germany, ¹⁴Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany, ¹⁵Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan, ¹⁶Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA, ¹⁷National Science Foundation, Arlington, Virginia, USA, 18 Departments of Microbiology and Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, Ohio, USA, 19 Department of Microbiology, The Ohio State University, Columbus, Ohio, USA, 20 Present address: Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, Louisiana, USA, 21 Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA, ²²University of Arizona, Tucson, Arizona, USA, ²³Department of Agricultural and Biosystems Engineering, University of Arizona, Tucson, Arizona, USA, ²⁴MARUM, Center for Marine Environmental Sciences, University of Bremen, Germany, ²⁵PANGAEA, Data Publisher for Earth and Environmental Science, University of Bremen, Germany, ²⁶Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire d'oceanographie de Villefranche (LOV), Observatoire Océanologique, Villefranche-sur-mer, France

ABSTRACT

This protocol is part of <u>Nucleic acids preparations</u> for <u>Viral to metazoan marine plankton nucleotide sequences from the *Tara* Oceans expedition.</u>

EXTERNAL LINK

https://www.nature.com/articles/sdata201793#methods

THIS PROTOCOL ACCOMPANIES THE FOLLOWING PUBLICATION

Alberti, A. (2017). Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. *Scientific Data***4**, 170093 (2017)

doi: 10.1038/sdata.2017.93

ATTACHMENTS

Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition.pdf

STEPS MATERIALS

NAME Y	CATALOG # ~	VENDOR ~
illustra™ GenomiPhi DNA Amplification Kit	25-6600	Ge Healthcare
RepliPhi phi29 DNA polymerase		Epicentre
S1 nuclease		Thermo Fisher Scientific
Agencourt GenFind V2 System	A41497	Beckman Coulter Genomics
Qubit		Invitrogen - Thermo Fisher
Agencourt GenFind V2 System	A41497	Beckman Coulter Genomics
DNA Polymerase I (E.coli) - 2,500 units	M0209L	New England Biolabs
DNA Polymerase I (E.coli) - 2,500 units	M0209L	New England Biolabs
Deoxynucleotide Solution Mix - 8 umol of each	N0447S	New England Biolabs

SAFETY WARNINGS

Please refer to the SDS (Safety Data Sheet) for warnings and hazard information.

- 1 After nucleic acids extractions, prepare two RNA aliquots and three DNA aliquots for each sample.
 - RNA: use one aliquot for the library preparation and sequencing process, and store the second one as a backup. If RNA quantity is <100 ng, omit backup copy.
 - DNA: use the first aliquot for the librayr preparation and the second one for backup copy. The third aliquot is used to produce an amplified DNA backup by whole genome amplification (WGA) by using Illustra GenomiPhi DNA Amplification Kit (GE Healthcare, Little Chalfont, UK) with the procedure described herein
- 2~ Briefly, dilute 10 ng of DNA in 25 μl sample buffer and denature for 3 min at 95 $^{\circ}\text{C}.$
 - ■10 ng DNA
 - ■25 µl Sample buffer
 - § 95 °C Denaturation
 - **७00:03:00** Denaturation

3 Cool samples on ice.

- 4 Mix samples to 22.5 μ l reaction buffer containing random hexamers and 2.5 μ l Phi29 enzyme mix and incubate at 30 °C for 3 hours.
 - ■22.5 μl reaction buffer containing random hexamers and 2.5 μl Phi29 enzyme mix
 - § 30 °C Incubation
 - **© 00:03:00 Incubation**
- 5 After amplification, heat inactivate Phi29 DNA polymerase during 10 min at 65 °C.

 - © 00:10:00 Heat inactivation
- 6 In order to reduce hyperbranched DNA regions generated by WGA process, incubate amplified DNA with RepliPhi phi29 DNA polymerase without any primer at 30 °C for 2 hours.

- § 30 °C Incubation
- © 02:00:00 Incubation
- 7 Inactivate the enzyme at 65 °C for 3 min.
 - § 65 °C Incubation
 - © 00:03:00 Incubation
- 8 Digest by S1 nuclease at 37 °C for 30 min.

- § 37 °C Incubation
- **© 00:30:00 Incubation**

Clean up the reaction with Agencourt GenFind V2 System following the manufacturer protocol

DNA Polymerase I (E.coli) - 2,500 units
by New England Biolabs
Catalog #: M0209L

Deoxynucleotide Solution Mix - 8 umol of each
by New England Biolabs
Catalog #: N0447S

§ 25 °C ⊗ 00:30:00 incubation

12 Purify DNA again with Agencourt GenFind V2 System and resuspend in 200 μ l elution buffer.

13 Quantify DNA with Qubit dsDNA BR and HS Assays and subject to quality check by running 1 μ l on 0.7% agarose gel for 60 min at 100 V.

■1 µl DNA

© 01:00:00 Agarose gel

Store DNA at -20 °C

14

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited