1.2 The Inner (Dot) Product, Length, and Distance

Spring 17, UCSD

If we want to determine the angle between two vectors \vec{a} and \vec{b} , what should we do? Inner products (or Dot product) will help us to do this.

Definition. The inner product of $\vec{a} = (a_1, a_2, a_3)$ and $\vec{b} =$ (b_1, b_2, b_3) is defined by

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3.$$

Note that sometimes we write $\vec{a} \cdot \vec{b}$ as $\langle \vec{a}, \vec{b} \rangle$.

Example. Find the inner product of $\vec{a} = 3\vec{i} + \vec{j} - 2\vec{k}$ and $\vec{b} = \vec{i} - \vec{j} + \vec{k}$. Solution. $\vec{a} \cdot \vec{b} = 3(1) + 1(-1) + (-2)(1) = 0$.

Properties of Inner Products. Let $\vec{a}, \vec{b}, \vec{c}$ be vectors in \mathbb{R}^3 and α, β be real numbers in \mathbb{R} . Then

- 1) $\vec{a} \cdot \vec{a} \ge 0$; $\vec{a} \cdot \vec{a} = 0$ if and only if $\vec{a} = 0$
- 2) $\alpha \vec{a} \cdot \vec{b} = \alpha (\vec{a} \cdot \vec{b})$, and $\vec{a} \cdot \alpha \vec{b} = \alpha (\vec{a} \cdot \vec{b})$
- 3) $\vec{a}(\vec{b}+\vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$, and $(\vec{a}+\vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$
- 4) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$

The length/norm of a vector.

In 2D, the length of $\vec{a}=(a_1,a_2)$ is $\sqrt{a_1^2+a_2^2}$. But $\vec{a}\cdot\vec{a}=a_1a_1+a_2$ $a_2 a_2 = a_1^2 + a_2^2$. So $\vec{a} \cdot \vec{a} = (\text{length of } \vec{a})^2$.

We write this as $\vec{a} \cdot \vec{a} = ||a||^2$, and $||\vec{a}||$ is called a norm of \vec{a} . In 3D, if $\vec{a} = (a_1, a_2, a_3)$, then

$$\|\vec{a}\|^2 = \vec{a} \cdot \vec{a} = a_1^2 + a_2^2 + a_3^2 = (\text{length of } \vec{a})^2.$$

Unit Vectors. For any non-zero vector $\frac{\vec{a}}{\|\vec{a}\|}$ is a unit vector (i.e. its length is 1).

Example. Normalize the vector (i.e. make it unit length) $\vec{v} =$ $2\vec{i} + 3\vec{j} + 4\vec{k}.$

Solution.
$$\vec{u} = \frac{\vec{v}}{\|\vec{v}\|} = \frac{2\vec{i}+3\vec{j}+4\vec{k}}{\sqrt{2^2+3^2+4^2}} = \frac{2}{\sqrt{29}}\vec{i} + \frac{3}{\sqrt{29}}\vec{j} + \frac{4}{\sqrt{29}}\vec{k}$$
.
Summary. Let $\vec{a} = (a_1, a_2, a_3) = a_1\vec{i} + a_2\vec{j} + a_3\vec{k}$ and $\vec{b} = a_1\vec{i} + a_2\vec{j} + a_3\vec{k}$

 $(b_1, b_2, b_3) = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$. Then

- 1) $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$. 2) $||\vec{a}|| = \sqrt{a_1^2 + a_2^2 + a_3^2} = \sqrt{\vec{a} \cdot \vec{a}}$
- 3) The vector $\frac{\vec{a}}{\|\vec{a}\|}$ is normalized, i.e. it has unit norm.
- 4) The distance between the endpoints of \vec{a} and \vec{b} is $||\vec{b} \vec{a}||$.

The angle between 2 vectors.

Theorem. Let \vec{a} and \vec{b} be two vectors in \mathbb{R}^3 and let θ , where $0 \leq 1$ $\theta \leq \pi$, be the angle between them. Then

$$\vec{a} \cdot \vec{b} = \|\vec{a}\| \|\vec{b}\| \cos \theta.$$

Exercise. Read the proof in the book.

Example. Find the angle between the vectors (1,1,2) and (1,-1,1).

Solution. Since $\vec{a} \cdot \vec{b} = ||\vec{a}|| ||\vec{b}|| \cos \theta$,

$$\cos\theta = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|} = \frac{1(1) + 1(-1) + 2(1)}{\sqrt{1^2 + 1^2 + 2^2}\sqrt{1^2 + 1^2 + 1^2}} = \frac{2}{\sqrt{18}} = \frac{2}{3\sqrt{2}}.$$

Hence, $\theta = \arccos\left(\frac{2}{3\sqrt{2}}\right)$.

Corollary. (Cauchy-Schwarz Inequality) $|\vec{a} \cdot \vec{b}| \leq ||\vec{a}|| ||\vec{b}||$

with equality "=" if and only if \vec{a} is a scalar multiple of \vec{b} (or one of them is 0).

Proof.

$$\vec{a} \cdot \vec{b} = \|\vec{a}\| \|\vec{b}\| \cos \theta$$
$$|\vec{a} \cdot \vec{b}| = \|\vec{a}\| \|\vec{b}\| |\cos \theta|$$
$$\leq \|\vec{a}\| \|\vec{b}\|$$

since $|\cos \theta| \leq 1$. Moreover, equality can only happen if $\vec{a} = 0, \vec{b} = 0$, or $\cos \theta = 0$.

Remark. Suppose \vec{a} and \vec{b} are nonzero.

If $\vec{a} \cdot \vec{b} = 0$, then $\cos \theta = 0$ or \vec{a} and \vec{b} are perpendicular.

If \vec{a} and \vec{b} are perpendicular

In other words, two vectors \vec{a} and \vec{b} are perpendicular if and only if their dot product is zero.

Definition. If $\vec{a} \cdot \vec{b} = 0$, we say that they are *orthogonal*.

Definition. If $\vec{a} \cdot \vec{b} = 0$ and $||\vec{a}|| = ||\vec{b}|| = 1$, we say that \vec{a} and \vec{b} are

Example. Let \vec{a} and \vec{b} be two orthogonal vectors. Let \vec{c} be a vector in the plane spanned by \vec{a} and \vec{b} . We can write $\vec{c} = \alpha \vec{a} + \beta \vec{b}$ for some scalars α and β . Use the inner product to determine α and β .

Solution. We observe that

$$\vec{a} \cdot \vec{c} = \vec{a} \cdot (\alpha \vec{a} + \beta \vec{b}) = \alpha \vec{a} \cdot \vec{a} + \beta \vec{a} \cdot \vec{b} = \alpha ||\vec{a}||^2$$

since $\vec{a} \cdot \vec{b} = 0$. Then we have

$$\alpha = \frac{\vec{a} \cdot \vec{c}}{\|a\|^2}.$$

Similarly, $\beta = \frac{\vec{b} \cdot \vec{c}}{\|\vec{b}\|^2}$.

Remark. We call $\alpha \vec{a}$ the projection of \vec{c} along \vec{a} and $\beta \vec{b}$ the projection of \vec{c} along \vec{b} .

Orthogonal Projection.

 \vec{p} is the orthogonal projection of \vec{v} on \vec{a} if $\vec{p}=\frac{\vec{a}\cdot\vec{v}}{\|\vec{a}\|^2}\vec{a}.$

Example. The orthogonal projection of $\vec{i} + \vec{j}$ on $\vec{i} - 2\vec{j}$ is

$$\vec{p} = \frac{(\vec{i} + \vec{j}) \cdot (\vec{i} - 2\vec{j})}{(\vec{i} - 2\vec{j})(\vec{i} - 2\vec{j})} (\vec{i} - 2\vec{j}) = \frac{1 - 2}{1 + 4} (\vec{i} - 2\vec{j}) = -\frac{1}{5} (\vec{i} - 2\vec{j}).$$

Triangle Inequality.

$$\|\vec{a} + \vec{b}\| \le \|\vec{a}\| + \|\vec{b}\|.$$

$$\begin{split} \|\vec{a} + \vec{b}\|^2 &= (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) \\ &= \|\vec{a}\|^2 + 2\vec{a} \cdot \vec{b} + \|\vec{b}\|^2 \\ &\leq \|\vec{a}\|^2 + 2\|\vec{a}\| \|\vec{b}\| + \|\vec{b}\|^2 \\ &= (\|\vec{a}\| + \|\vec{b}\|)^2. \end{split}$$