Different ways of creating dataframes

```
In [12]:
          1 #Method1: Using List
          2 import pandas as pd
          3 data = [['srishti', 1, 'A'],['Goutham',2, 'B'],['Sanskaar',3,'C']]
          4 print(type(data))
          5 print(data)
          6 df=pd.DataFrame(data)
          7 df
         <class 'list'>
         [['srishti', 1, 'A'], ['Goutham', 2, 'B'], ['Sanskaar', 3, 'C']]
Out[12]:
                   0 1 2
               srishti 1 A
          1 Goutham 2 B
          2 Sanskaar 3 C
In [13]:
          1 #Method2 Dictionary
          2 import pandas as pd
          3 data={'Name':['Srishti', 'Goutham', 'sanskar'], 'Regnum':[1,2,3]}
          4 print(type(data))
             df=pd.DataFrame(data)
          6 df
         <class 'dict'>
Out[13]:
               Name Regnum
              Srishti
          1 Goutham
                           2
          2 sanskar
                           3
```

```
In [34]:
          1 #Method3 Using Numpy array
          2 import numpy as np
          3 import pandas as pd
             data=np.random.rand(2,2)
          5 print(type(data))
          6 df=pd.DataFrame(data)
          7 df=pd.DataFrame(data, columns=['c1', 'c2'])
          8 print(df)
          9 ###Instead of typing 5 lines of code you can just write a single line code as given below
          10 pd.DataFrame(np.random.rand(2,2),columns=['c1','c2'], index=['r1','r2'])
         <class 'numpy.ndarray'>
                  c1
                            c2
         0 0.057217 0.279724
         1 0.895036 0.189275
Out[34]:
                            c2
                   с1
          r1 0.758522 0.154609
          r2 0.611082 0.370033
          1 #Method4 List of dictionaries
In [15]:
          2 data =[{'Regnum':1, 'Rank':1}, {'Regnum':2, 'Rank':2}]
          3 print(type(data))
          4 df=pd.DataFrame(data)
             df
         <class 'list'>
Out[15]:
            Rank Regnum
                        2
                2
```

Original datatype of variable x before zipping <class 'tuple'> After zipping <class 'zip'>

Out[23]:

```
0 1 0 srishti 89
```

1 Hrithik 99

Out[24]:

	col1	col2
r1	10	1
r2	100	2
r3	1000	3

Out[25]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	COI
0	842302	М	17.990	10.38	122.80	1001.0	0.11840	0.27760	
1	842517	М	20.570	17.77	132.90	1326.0	0.08474	0.07864	
2	84300903	М	19.690	21.25	130.00	1203.0	0.10960	0.15990	
3	84348301	М	11.420	20.38	77.58	386.1	0.14250	0.28390	
4	84358402	М	20.290	14.34	135.10	1297.0	0.10030	0.13280	
5	843786	М	12.450	15.70	82.57	477.1	0.12780	0.17000	
6	844359	М	18.250	19.98	119.60	1040.0	0.09463	0.10900	
7	84458202	М	13.710	20.83	90.20	577.9	0.11890	0.16450	
8	844981	М	13.000	21.82	87.50	519.8	0.12730	0.19320	
9	84501001	М	12.460	24.04	83.97	475.9	0.11860	0.23960	
10	845636	М	16.020	23.24	102.70	797.8	0.08206	0.06669	
11	84610002	М	15.780	17.89	103.60	781.0	0.09710	0.12920	
12	846226	М	19.170	24.80	132.40	1123.0	0.09740	0.24580	
13	846381	M	15.850	23.95	103.70	782.7	0.08401	0.10020	
14	84667401	M	13.730	22.61	93.60	578.3	0.11310	0.22930	
15	84799002	M	14.540	27.54	96.73	658.8	0.11390	0.15950	
16	848406	М	14.680	20.13	94.74	684.5	0.09867	0.07200	
17	84862001	М	16.130	20.68	108.10	798.8	0.11700	0.20220	
18	849014	М	19.810	22.15	130.00	1260.0	0.09831	0.10270	

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	COI
19	8510426	В	13.540	14.36	87.46	566.3	0.09779	0.08129	
20	8510653	В	13.080	15.71	85.63	520.0	0.10750	0.12700	
21	8510824	В	9.504	12.44	60.34	273.9	0.10240	0.06492	
22	8511133	M	15.340	14.26	102.50	704.4	0.10730	0.21350	
23	851509	M	21.160	23.04	137.20	1404.0	0.09428	0.10220	
24	852552	M	16.650	21.38	110.00	904.6	0.11210	0.14570	
25	852631	M	17.140	16.40	116.00	912.7	0.11860	0.22760	
26	852763	M	14.580	21.53	97.41	644.8	0.10540	0.18680	
27	852781	M	18.610	20.25	122.10	1094.0	0.09440	0.10660	
28	852973	M	15.300	25.27	102.40	732.4	0.10820	0.16970	
29	853201	M	17.570	15.05	115.00	955.1	0.09847	0.11570	
539	921362	В	7.691	25.44	48.34	170.4	0.08668	0.11990	
540	921385	В	11.540	14.44	74.65	402.9	0.09984	0.11200	
541	921386	В	14.470	24.99	95.81	656.4	0.08837	0.12300	
542	921644	В	14.740	25.42	94.70	668.6	0.08275	0.07214	
543	922296	В	13.210	28.06	84.88	538.4	0.08671	0.06877	
544	922297	В	13.870	20.70	89.77	584.8	0.09578	0.10180	
545	922576	В	13.620	23.23	87.19	573.2	0.09246	0.06747	
546	922577	В	10.320	16.35	65.31	324.9	0.09434	0.04994	
547	922840	В	10.260	16.58	65.85	320.8	0.08877	0.08066	
548	923169	В	9.683	19.34	61.05	285.7	0.08491	0.05030	
549	923465	В	10.820	24.21	68.89	361.6	0.08192	0.06602	

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	COI
550	923748	В	10.860	21.48	68.51	360.5	0.07431	0.04227	
551	923780	В	11.130	22.44	71.49	378.4	0.09566	0.08194	
552	924084	В	12.770	29.43	81.35	507.9	0.08276	0.04234	
553	924342	В	9.333	21.94	59.01	264.0	0.09240	0.05605	
554	924632	В	12.880	28.92	82.50	514.3	0.08123	0.05824	
555	924934	В	10.290	27.61	65.67	321.4	0.09030	0.07658	
556	924964	В	10.160	19.59	64.73	311.7	0.10030	0.07504	
557	925236	В	9.423	27.88	59.26	271.3	0.08123	0.04971	
558	925277	В	14.590	22.68	96.39	657.1	0.08473	0.13300	
559	925291	В	11.510	23.93	74.52	403.5	0.09261	0.10210	
560	925292	В	14.050	27.15	91.38	600.4	0.09929	0.11260	
561	925311	В	11.200	29.37	70.67	386.0	0.07449	0.03558	
562	925622	M	15.220	30.62	103.40	716.9	0.10480	0.20870	
563	926125	М	20.920	25.09	143.00	1347.0	0.10990	0.22360	
564	926424	M	21.560	22.39	142.00	1479.0	0.11100	0.11590	
565	926682	М	20.130	28.25	131.20	1261.0	0.09780	0.10340	
566	926954	М	16.600	28.08	108.30	858.1	0.08455	0.10230	
567	927241	М	20.600	29.33	140.10	1265.0	0.11780	0.27700	
568	92751	В	7.760	24.54	47.92	181.0	0.05263	0.04362	

569 rows × 33 columns

```
In [26]:
             #### IMPORTANT
              '''Perform the basic statistical analysis on the given dataframe to identify the data patterns.
              Also provide a brief inference to each of your observation.'''
             #Analyzing Sales of Local '99Variety Dosa stall@Roadside' and 'pizzahut@Mall'
             #Note:Day starts from Monday
             import pandas as pd
           9 import numpy as np
          10 XYZ mall= {'Days1':[1,2,3,4,5,6,7], "Sales1":[1000, 1500,3000,1000,4000,8000, 9000]}
          11 XYZ road= {'Days2':[1,2,3,4,5,6,7], "Sales2":[10000, 4500,6000,5500,4000,1000, 1000]}
          12 df1=pd.DataFrame(XYZ mall)
          13 df2=pd.DataFrame(XYZ road)
          14 df1
          15 df2
          16 print("Pizzahut \n", df1)
          17 print("99VarietyDosa \n", df2)
```

```
Pizzahut
    Days1 Sales1
0
       1
            1000
1
       2
            1500
       3
            3000
       4
            1000
       5
            4000
       6
            8000
       7
            9000
99VarietyDosa
    Days2 Sales2
           10000
0
       1
1
       2
            4500
       3
            6000
       4
            5500
       5
            4000
            1000
```

7

1000