Mayuri Bhavan, Vijayawada. Speed Test-1

Physics

More than One Type Ouestions:

5 elastic balls A, B, C, D and E of same mass are moving on a long frictionless 01. horizontal wire. A graph is drawn for their position x against time. Select the possible CORRECT statement(s) on basis of graph.

- A) There are a total of 10 collisions.
- C) Ball C finally moves with a velocity of 0.5 m/s.
- B) Ball A finally moves with a velocity of +1.5 m/s. D) Ball D finally moves with a velocity of $\frac{-10}{2}$ m/s.
- Three identical discs A, B and C rest on a smooth horizontal plane as shown in 02. figure. The disc A is set in motion with velocity ν along the \perp^{r} bisector of line BC. The distance between disc B and C is n times the diameter of each disc. For which of the following values of n will the disc A continue moving after elastic collision.

A) $n = \sqrt{2.5}$

Diagram shows a wedge kept on a rough surface. A ball of mass 'm' is dropped on 03. the slant face of the wedge. If the collision is perfectly elastic, choose the CORRECT statement(s):

- A) The ball of mass 'm' may jump to the same maximum height from the point of impact for some values of θ except 0^0 .
- B) Friction acting between wedge and ground is impulsive in nature.
- C) Momentum of the system (M + m) can be conserved in horizontal direction.
- D) We can choose some axis such that momentum of system (M + m) is conserved along that axis.

04.	2n identical cubical blocks are kept in a straight line on a horizontal smooth surface. The separation between any two consecutive blocks is same. The odd
	numbered blocks 1, 3, 5, (2n - 1) are given velocity v to the right whereas blocks
	2, 4, 6 2n are given velocity v to the left. All collisions between blocks are perfectly elastic. Choose the CORRECT statement(s):-
	1 2 3 4 5 2n-1 2n
	A) The total number of collisions that will take place is $\left(\frac{n(n+1)}{2}\right)$.
	 B) The total number of collisions that will take place in n(n + 1). C) The total number of collisions that will take place is 2[n(n + 1)]. D) The velocity of COM of entire system after all the collisions will be zero.
05.	A ball 'A' of mass M = 4 kg is suspended by a vertical string. Another ball 'B' of mass
	m = 1 kg moving with a velocity u = 5.8 m/s at an angle θ = 53° from vertical collides
	elastically with the ball 'A' as shown. Then choose the correct option(s).
	шцш
	B 53°
	m
	и (м ₎
	A) The velocity of ball 'A' just after collision is 2 m/s
	B) The velocity of ball 'B' just after collision is 4.2 m/s
	C) The velocity of ball 'B' just after collision is 2 m/s
	D) The impulse on the ball 'A' due to tension in the string is 6 N-s
06.	A ball projected with speed 10 m/s at angle of projection $\theta = 30^{\circ}$ with horizontal.
	Coefficient of restitution e=1/3 between ball and ground then $(g = 10m / s^2)$
	A) Displacement of ball up to third collision is $\left(\frac{65\sqrt{3}}{9}\right)m$
	B) Maximum height attain after first collision is 0.14 m
	C) Total energy of ball remain conserved
	D) Total energy of ball not remain conserved
	<u> </u>
07.	Which of the following is/are correct?
07.	Which of the following is/are correct? A) If the centre of the mass of three particles is at rest and it is known that two of them
07.	
07.	A) If the centre of the mass of three particles is at rest and it is known that two of them
07.	A) If the centre of the mass of three particles is at rest and it is known that two of them are moving along different non-collinear lines, then the third particles must also be
07.	 A) If the centre of the mass of three particles is at rest and it is known that two of them are moving along different non-collinear lines, then the third particles must also be moving B) If the centre of mass of a system remains at rest, then the net work done by all the forces acting on the system must be zero.
07.	 A) If the centre of the mass of three particles is at rest and it is known that two of them are moving along different non-collinear lines, then the third particles must also be moving B) If the centre of mass of a system remains at rest, then the net work done by all the forces acting on the system must be zero. C) If the speed of centre of mass of a system remains zero, then the net external force
07.	 A) If the centre of the mass of three particles is at rest and it is known that two of them are moving along different non-collinear lines, then the third particles must also be moving B) If the centre of mass of a system remains at rest, then the net work done by all the forces acting on the system must be zero.

	A u
	B u
17.	Two identical blocks A and B each having mass m are connected with a spring of force constant k. The floor is smooth and A is pushed so as to compress the spring by x_0 , and The system is released from this position, acceleration of the centre of mass of the system at the instant when block A acquires half its maximum speed is
	$\left(\frac{Kx_0}{m} = 4\right)$
	B k A A A A A A A A A A A A A A A A A A
18.	Two identical small balls are interconnected with a light and inextensible thread having length L. The system is on a smooth horizontal table with the thread just taut. Each ball is imparted a velocity v, one towards the other ball and the other in a direction that is perpendicular to the velocity given to the first ball as shown in the
	figure. kinetic energy of the system after the string gets taut is $n\left(\frac{1}{2}mV^2\right)$,
	where n =
19.	A toy car of mass m is placed on a smooth horizontal surface. A particle of mass 3m is suspended inside the car with the help of a string of length 1. Initially everything is at rest. A sudden horizontal impulse, $I = 2m \sqrt{gl}$ is applied on the car (as shown
	in figure) and it starts moving. If maximum angle that the string makes with the vertical is θ_0 subsequently, then the value of $\cos \theta_0$
	1 3m
20.	A metal wire having mass M is bent in the shape of a semicircle of radius R and is sliding inside a smooth circular grove of radius R present in a horizontal table. The wire just fits into the groove and is moving at a constant speed V. magnitude of net force acting on the wire is $K\left(\frac{MV^2}{R}\right)$, Where k =

Chemistry

More than One Type Questions:

21. Which of the following transformations can be achieved

$$B) \xrightarrow{O} \xrightarrow{DIBAI-H} \xrightarrow{OH} \xrightarrow{CHO} \Longrightarrow OH$$

$$\begin{array}{c|c}
 & \text{AgNO}_3 \\
\hline
 & \Delta
\end{array}$$

22. Correct statement(s) regarding the following reaction scheme is/are

O + MeOH (1 eq)
$$\rightarrow$$
 (A) $\xrightarrow{\text{PCI}_3}$ (B) $\xrightarrow{\text{MeNH}_2}$ (C)

A) Compound (A) is

B) Compound (B) is

C) Compound (C) is

D) Compound (**C**) on reduction with LiAlH₄ gives

23. The probable product(s) of the following reaction is/are

COOH
$$\begin{array}{c}
COOH \\
\hline
COOH
\end{array}$$
COOH
$$\begin{array}{c}
P_4O_{10} \\
\hline
\Delta
\end{array}$$
Products

B)

СООН

HOOC

24. Correct statement(s) regarding the following reaction is/are

$$H_3C$$
 O CH_3 O CH_3

	 A) Acetic acid is one of the products. C) It proceeds through a cyclic transition state.
	B) Cis and trans pent-2-ene are formed. D) Pent-1-ene is the major product.
25.	Which of the following compounds could be converted to pentanal as major product in
	one or two steps?
	A) 1-pentyne B) trans-5-decene C) 2-pentanone D) 1-pentanol
26	Which of the following reagent/s give/s yellow precipitate with compound 'T'?
26.	T =
	NO_2
	$O_2N \longrightarrow NH - NH_2$
	A) Fehling solution C) B) I ₂ /NaOH D) AgNO ₃ +NH ₄ OH
27.	
21.	Which of the following will produce aromatic product?
	NH ₂ CHO
	$\begin{array}{c c} & + & \\ &$
	A) O NH ₂ C) O
	$+H_2N-NH_2 \rightarrow NH_3$
	B) 0 D) Ö
28.	Which of the following reaction(s) is / are correct ?
	O_2N $NaBH_4 O_2N$
	A) OH
	NaBH ₄ OH
	$O_2N \longrightarrow H_2N$
	B) OH
	O ₂ N—— LAH H ₂ N—— O
	(c)
	(C) (О) (О) (О) (О) (О) (О) (О) (О) (О) (О
	O_2N \longrightarrow AH_{\bullet} \longrightarrow $N=N$
	D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
29.	Which of the following statements are incorrect about a carbonyl group?
	A) The carbonyl carbon has one π - bond and two sigma bonds.
	 B) The carbonyl carbon has three hybrid orbitals and two pure p – orbitals. C) The three groups attached to carbonyl carbon lie in the same plane.
	D) The three groups attached to carbonyl carbon lie in different planes.

31. F	Zn-Hg/Con. HCl give the same product? H ₃ C H ₄ C H ₄ C H ₄ C H ₅ C H ₃ C H ₄ C H ₄ C H ₄ C H ₅ C H ₆ C H ₇ C H ₇ C H ₇ C H ₈ C H ₈ C H ₈ C H ₈ C H ₉ C H ₉ C H ₉ C H ₉ C H ₁ C H ₂ C H ₃ C H ₄
31. F	A) C) H ₃ C CH ₃ OCH ₃ D) H ₃ C CH ₃ OCH ₃ OCH ₃ ENTEGERS Find the molecular weight of the compound B in the following reaction sequence. H _{Heat} A Reductive coordlysis B [Atomic weights: H = 1, C = 12, O = 16]
31. F	Find the molecular weight of the compound B in the following reaction sequence. $ \begin{array}{c} & \bigoplus_{H \text{ Heat}} A \\ & \bigoplus_{H \text{ Normal Months}} A \\ & \bigoplus_{H No$
31. F	Find the molecular weight of the compound B in the following reaction sequence. $ \frac{\bigoplus_{H \text{ Heat}} A}{\text{Reductive countlysis}} B $ [Atomic weights: $H = 1$, $C = 12$, $O = 16$]
	Find the molecular weight of the compound B in the following reaction sequence. $ \frac{\bigoplus_{H}}{Heat} A \xrightarrow{\text{Reductive cosmolysis}} B $ [Atomic weights: $H = 1$, $C = 12$, $O = 16$]
	$\frac{\bigoplus_{H} A \xrightarrow{\text{Reductive coonolysis}} B}{\text{[Atomic weights: H = 1, C = 12, O = 16]}}$
	[Atomic weights: $H = 1$, $C = 12$, $O = 16$]
L	The number of β – Keto monocarboxylic acids (including stereoisomers) which on
32. T	<u>j</u>
he	neating give
	The total number of non bonding electrons in the products U, V, W in the following sequence of reactions.
	H ₃ C V V V V V V V V
34. A	Acetone on heating with concentrated Sulphuric acid produces compound Z. Find the
n	molecular weight of Z.
[[Atomic weights: $H = 1$, $C = 12$, $O = 16$]
	Find the molecular weight of B in grams in the following reaction sequence
[.	[Atomic weights: $H = 1$, $C = 12$, $N = 14$, $O = 16$]
	H_2NOC CH_3

Mathematics

More than One Type:

Let y'(x). g(x) - y(x). $g'(x) + y^2(x) = 0$, y(-1) = 1, $x \in R$ where 41. f'(x) denotes $\frac{df(x)}{dx}$ and g(x) is a given non-constant differentiable function on R

with g(-1) = 0 then value of $\int_{1}^{2} \left| \frac{g(x)}{y(x)} \cdot \frac{1}{x^2 \sqrt{x^2 + \left(\frac{g(x)}{y(x)}\right)^2}} \right| dx =$

- A) $2\sqrt{5} \sqrt{13}$ B) $\frac{7}{2(2\sqrt{5} + \sqrt{13})}$ C) $\sqrt{13} \sqrt{5}$ D) $\frac{7}{2(2\sqrt{5} \sqrt{13})}$
- The curve C touches the line L defined below at x = 1, 2, 342.

C: $a_4x^6 + a_5x^5 + a_4x^4 + a_2x^3 + a_3x^2 + a_1x + a_0$; L: v = mx + c

if $a_6=1,\,m,\,c,\,a_i\in\mathbb{R},\,\,i=0,\,1,\,2,\,3,\,4,\,5$ then the area bounded by C and L is equal to

- B) $\frac{5}{24}$ C) $\frac{16}{105}$ D) $\frac{11}{105}$
- The solution of the differential equation $\frac{dy}{dx} + x(x+y) = x^3(x+y)^3 1$ is (where 'c' is 43. arbitrary constant)
 - A) $\frac{1}{x+y} = x^2 + 1 + ce^x$
- **B)** $\frac{1}{(x+v)^2} = x^2 + 1 + ce^{x^2}$
- C) $\frac{1}{(x+v)^2} = x+1+ce^x$ D) $\frac{1}{x+v} = x+1+ce^{x^2}$
- Let A(m) denotes the area of the region bounded by the curve $y = 2^{2^x + x 2} (\ln 2)^2$ and 44. x-axis between the lines x = 1 and x = m ($m \in N$, m > 2), then A(m) + 2 is
 - A) A prime number for all 'm'
- B) A composite number for all 'm'
- C) A prime number for some 'm'
- **D)** An irrational number for some 'm'
- 45. A curve is given by $f(x) = x \sin \pi x$ then which of the following is/are **CORRECT**.

A) $\int_{0}^{2} f(x) dx = -\frac{2}{\pi}$ C) Area between $y = x \sin \pi x$, x-axis, x = 0 and x = 2 is $\frac{4}{\pi}$. B) $\int_{0}^{2} f(x) dx = \frac{2}{\pi}$ D) Area between $y = x \sin \pi x$, x-axis, x = 0 and x = 2 is $\frac{2}{\pi}$.

- If y = f(x) defined in $(0, \pi)$ satisfies the differential equation $\frac{dy}{dx} = \sin 2x + 3y \cot x$ 46.

and $y\left(\frac{\pi}{2}\right) = 2$, then which of the following statement(s) is(are) **CORRECT**?

- C) y(x) increases in interval $\left(\frac{\pi}{6}, \frac{\pi}{3}\right)$ A) $y\left(\frac{\pi}{6}\right) = 0$
- B) $y'\left(\frac{\pi}{3}\right) = \frac{9-3\sqrt{2}}{2}$ D) The value of definite integral $\int_{0}^{\pi/2} y(x) dx$ equals π .

47.	$f:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\to R$, $y=f(x)$ has primitive $F(x)$ such that
	$f(x) + \cos x.F(x) = \frac{\sin 2x}{(1 + \sin x)^2}$, then which of the following is/are TRUE .
	· · · · · ·
	A) $f(x) = \frac{-2\cos x}{(1+\sin x)^2} - C\cos x e^{-\sin x}$ B) If $F(0) = 2$ then $F(x) = \frac{2}{1+\sin x}$ C) If $F(0) = 2$ then $F(\frac{\pi}{2}) = 1$.
48.	
40.	Let function $f(x)$ satisfy $x^2f'(x) + 2xf(x) = e^x$ and $f(2) = \frac{e^2}{4}$. Which of the
	following is/are CORRECT? A) $f(x)$ 1 has a weather and reduction. C) $f(x)$ has local maxima but no local minima.
	A) $f(x)=1$ has exactly one real solution. C) $f(x)$ has local maxima but no local minima. B) $f(x)=3$ has exactly three real solutions. D) $f(x)$ has local minima but no local maxima.
	b) 1(x) = 3 has exactly three real solutions. b) 1(x) has local minima out no local maxima.
49.	Let $y(x)$ be a solution of the differential equation $(1 + e^x)y' + ye^x = 1$. If $y(0) = 2$,
	then which of the following statements is(are) true?
	(A) $y(-4) = 0$ (C) $y(x)$ has a critical point in the interval $(-1,0)$
	(B) $y(-2) = 0$ (D) $y(x)$ has no critical point in the interval $(-1,0)$.
50.	Let $y = f(x)$ be differentiable function and satisfy $f(0) = 2$, $f'(0) = 3$ and
	f''(x) = f(x). Which of the following is/are TRUE ? A) Range of the function $y = f(x)$ is R
	B) $f(\ln 2) = \frac{19}{4}$
	C) Area enclosed by $y = f(x)$ with co-ordinate axes in 2^{nd} quadrant is $3 + \sqrt{2}$
	D) Area enclosed by $y = f(x)$ with co-ordinate axes in 3 rd quadrant is $3 - \sqrt{5}$.
	INTEGERS
51.	Let $f(x) = \frac{\sin x}{x}$, $x \in (0, \pi)$ and $g(x)$ be its inverse. If A denotes area bounded by curve
	$y = g(x)$, x-axis, between $x = \frac{2}{x}$, $x = \frac{3}{x}$ and 'm' denotes slope of tangent to curve $y = \frac{3}{x}$
	π π π $g(x)$ at the point where it meets the curve $xy = 1$, then which of the following options is/are correct?
	A) $A \in \left(0, \frac{1}{6}\right)$ B) $A \in \left(\frac{1}{6}, \frac{3}{2}\right)$ C) $m = -\frac{\pi^2}{4}$ D) $m = -\frac{4}{\pi^2}$
52.	Let the curve $y = f(x)$ passes through $(4, -2)$ satisfying the differential equation
	$y(x+y^3)dx = x(y^3-x)dy$ and let
	$y = g(x) = \int_{\frac{1}{8}}^{\sin^2 x} \sin^{-1} \sqrt{t} dt + \int_{\frac{1}{8}}^{\cos^2 x} \cos^{-1} \sqrt{t} dt, \ 0 \le x \le \frac{\pi}{2} \text{ be second curve}$
	then, which of the following options is/are correct?

	A) The equation of the curve $y = f(x)$ satisfies $ay^3 + bx = 0$ then $a = b$, a and b are positive integers
	B) The equation of the curve $y = f(x)$ satisfies $ay^3 + bx = 0$ then $a + b = 3$,
	a and b are positive integers and co-prime
	C) The area of the region bounded by $y = f(x)$, $y = g(x)$ and $x = 0$ is $\frac{1}{8} \left(\frac{3\pi}{8} \right)^4$ square units
	D) The area of the region bounded by $y = f(x)$, $y = g(x)$ and $x = 0$ is $\frac{1}{8} \left(\frac{3\pi}{16} \right)^4$ square units
53.	Let A_n represents the area formed by the elements of set A, defined below.
	$A = \left\{ (x, y) \in \mathbb{R} \times \mathbb{R}; \ y \le [x] + \sqrt{\{x\}}, \ y \ge 0, \ 0 \le x \le n, \ n \in \mathbb{N} \right\}$
	If [.] denotes the greatest integer function and {.} denotes the fractional part function,
	then find the value of $A_3 + A_6$
54.	Let $f(x)$ and $g(x)$ be two differentiable functions satisfying the following conditions:
	$f(0) = 2$, $g(0) = 1$, $f(x) + g'(x) = 1 = f'(x) + g(x)$, $x \ge 0$
	The value of $2f(\ln 2) + 3g(\ln 3)$ is equal to:
55.	The functions $f(x)$ and $g(x)$ are defined as
	$f(x) = \begin{cases} -2, & -3 \le x \le 0 \\ x - 2, & 0 < x \le 3 \end{cases}, and g(x) = \min(f(x) + f(x) , f(x) - f(x))$
	The area bounded by $y = g(x)$, $y = 0$, $x = 3$, $x = -3$, is equal to
56.	If the family of straight lines in the x-y plane satisfying the property that the sum of x and
	y intercepts on co-ordinates axes is 2020 has differential equation
	$\left(x\frac{dy}{dx} - y\right)\left(\frac{dy}{dx} - 1\right) + k\frac{dy}{dx} = 0$ then the sum of digits of 'k' equals.
57.	A curve passing through (1, 1) and (0, k) satisfies the differential equation
	$(y + ye^{x/y})dx + e^{x/y}(y - x)dy = 0$, then [k] is equal to (where [.] denotes greatest
	integer function)
58.	Let 'C' be the curve passing through the point (1, 1) has the property that the
	perpendicular distance of the normal from origin at any point P of the curve is
	equal to distance of P from x-axis. If area bounded by curve 'C' and x-axis in first
	quadrant is $k\pi$ square units then 4k is equal to
59.	If $x \frac{dy}{dx} + 2y = \log_e x$ then $\left[\frac{e^2 y(e) - y(1)}{e^2 + 1} \right] = $ (Where [.] is G.I.F)
60.	The area enclosed by the curves $y = \sin x + \cos x$ and $y = \cos x - \sin x $ over the
	interval $\left[0, \frac{\pi}{2}\right]$ is A, value of $\left[A^2\right]$ is [.] is GIF

Physics Key sheet:-

1) ABD	2) ACD	3) BD	4) AD	5) ABD	6) ABD	7) AC	8) AC	9) B	10) ACD
11) 10	12)4	13) 1.6	14) 1	15) 5	16) 1	17) 1.73	18) 1.5	19) 0.5	20) 0.62 to 0.64

Chemistry Key sheet:-

21) ABCD	22) ABCD	23) BC	24) ABCD	25) ABD	26) BC	27) ACD	28) AD	29) ABD	30) BD
31) 170	32)6	33) 40	34) 120	35) 153	36)3	37) 4	38) 50	39) 4	40)8

Mathematics Key sheet:-

41) B	42) C	43) B	44) B	45) AC	46) AC	47) ABCD	48) ABD	49) AC	50) AB
51) BC	52) BD	53) 24	54) 3.50	55) 4	56) 4	57)3	58) 2	59) 0	60) 1

SOLUTIONS

PHYSICS

From graph clearly there are 10 intersection points including the intersection of lines 01. of A and B also; So there are total 10 collisions.

Now by exchanging the slope of line at each intersection we can easily find that final velocity of A, C and D are

$$V_A = +1.5 \text{ m/s}$$

$$V_C = 0$$

$$V_D = -\frac{10}{9} \, \text{m/s}$$

- (1) $2mv_1\cos\theta = mv$ (2) $\frac{1}{2}m\Omega = 2.\frac{1}{2}mv_1^2$ 02.
 - (3) $\sin \theta = \frac{\text{nd}/2}{4}$ (4) $mv = 2m \cdot v_1 \cos \theta$
 - $\theta = 45$ and $n = \sqrt{2}$ (for A to stop)

Friction at the horizontal surface will be impulsive in nature => momentum of the 03. system will not be conserved in horizontal direction.

Momentum of the system (M + m) will be conserved in the direction \perp to the net impulsive (normal + friction) force.

- 04. Initially there will be n collisions. Exchange of velocity takes place between two colliding blocks. The two extreme blocks will move out and never encounter any other collision. Remaining (2n-2) blocks will further have (n-1) collisions and so on. This way total no. of collisions = $n+(n-1)+(n-2)+(n-3)+\dots+3+2+1=\frac{n(n+1)}{2}$.
- 05. Using conservation of momentum along horizontal direction

	V B 53° A A V ₂ A V ₂ A V _{37°} V ₂
	$mu \sin 53^{\circ} = -mv_1 \sin 53^{\circ} + Mv_2$ $\frac{4}{5}u = -v_1 \frac{4}{5} + 4v_2$ $5v_2 - v_1 = u$ (1)
	$\frac{v_2 \cos 37^\circ + v_1}{u} = e = 1 \qquad 0.8v_2 + v_1 = u(2)$
	Solving (1) and (2), we get $5.8v_2 = 2u$ $\Rightarrow v_2 = \frac{2u}{5.8} = 2m/s$
	$v_1 = 5v_2 - u = 5 \times 2 - 5.8 = 4.2m / s$ $\int Ndt = m(v_1 + u) = 10N - s$
06.	$x = u\cos\theta \left(t_0 + t_1 + t_2\right) = u\cos\theta \left(\frac{2u\sin\theta}{g} + \frac{e^2u\sin\theta}{g} + \frac{e^22u\sin\theta}{g}\right)$
	$h_1 = \frac{e^2 u^2 \sin^2 \theta}{2g}$
07.	Conceptual
08.	When shell strikes the ball and gets stuck with it. combined body of mass 2m starts to move to the right. Let velocity of combined body (just after collision) be v_1 .
	According to law of conservation of momentum, $(m+m)v_1 = mv_0 \text{ or } v_1 = \frac{v_0}{2} = 3 \text{ ms}^{-1}$.
	As soon as the combined body starts to move rightwards, thread becomes inclined to the vertical. Horizontal component of its tension retards the combined body while trolley accelerates rightwards due to the same component of tension. Inclination of thread with the vertical continues to increase till velocities of both (combined body and trolley) become identical or combined body comes to rest relative to trolley. Let velocity at that instant of maximum inclination of thread be v. According to law of conservation of momentum. $(2m+M)v = 2mv_1 \text{ or } v = 1ms^{-1}$ During collision of ball and shell, a part of energy is lost. But after that, there is no loss of energy. Hence, after collision, kinetic energy lost is used up in increasing gravitational potential energy of the combined body. If maximum inclination of thread with the vertical be θ then according to law of conservation of energy, $\frac{1}{2}(2m)v_1^2 - \frac{1}{2}(2m+M)v^2 = 2mg(l-l\cos\theta)$ $\therefore \cos\theta = 0.8 \text{ or } \theta = 37^\circ$
09.	(1) $\Delta E = (\Delta E)_B - (\Delta E)_A = 13.6 \times \frac{5}{36} (Z_A^2 - Z_B^2)$
	(2) $Z_A = 2Z_B$ $\Rightarrow Z_B = 1.Z_A = 2$
10.	When particle passes through point 2 shown speed is zero and speed is maximum when particle passes through point 4. Frame of trolly in identical and continuously in trolly
	frame particle is performing uniform circular motion. $T = \frac{mv^2}{l}$; at all the position

11.
$$K = 8$$

$$S_{rel} = 5 \text{ m}$$

$$T = \frac{2u_y}{g} = \frac{u_y}{5}$$

$$40 \times v_1 + 40 v_2 = 80 \times 8$$

$$v_1 + v_2 = 16 \text{ m/s} \Rightarrow v_2 = 16 - v_1$$

$$v_1 - 8 = \frac{5}{T} = \frac{25}{u_y} \Rightarrow v_1 = 8 + \frac{25}{u_y}$$

$$v_1 - v_2 = v_{rel}x = 2v_1 - 16 = 16 + \frac{50}{u_y} - 16$$

$$v_{rel}y = u_y$$

$$v_{rel} = \sqrt{\frac{50^2}{u_y^2} + u_y^2}$$

$$v_{rel_{min}}xy_y - \frac{50^2}{u_y^3} \times 2 = 0$$

$$u_y^4 = 50^2$$

$$u_y = 30$$

 $u_y = \sqrt{50} = 5\sqrt{2}$
 $v_{rel} = \sqrt{50 + 50} = 10 \text{ m/s}$

Centre of mass must lie on line L1

$$\frac{x}{\frac{\ell}{2}} + \frac{y}{\frac{\ell}{2}} = 1$$

$$2x + 2y = \ell$$

$$a + b = 4$$

13. Let the astronaut recoil with speed v_1 and speed of the object by v_2 Given $v_2 + v_1 = 12 \Rightarrow v_2 = 12 - v_1$, Momentum conservation gives: $5v_2 = 50v_1 \Rightarrow 12 - v_1 = 10v_1 \Rightarrow v_1 = \frac{12}{11}ms^{-1}$ And $v_2 = 12 - \frac{12}{11} = \frac{120}{11}ms^{-1}$

Let the object and astronaut meet after time t.Displacement of astronaut $x_1 = v_1 t = \frac{12t}{11}$

In this time the object travels a distance = $8+8+x_1$ with a constant speed v_2 .

$$\therefore 16 + x_1 = v_2 t \qquad \Rightarrow 16 + \frac{12t}{11} = \frac{120}{11} t \Rightarrow 16 = \frac{108}{11} t \Rightarrow t = \frac{16 \times 11}{108} = 1.6s.$$

Let time taken to hit OB are $t_1 \& t_2$ respectively $a = \frac{1}{2}g\cos\theta t_1^2 b = \frac{1}{2}g\tan\theta t_1^2 \frac{t_1}{t_2} = 4$.

$$5 = \frac{1}{2}(2)(t^2)$$
 $t = \frac{5}{2}S$ $V_0 = 5m/s$

Before collision

$$J - J_1 = 2m(V_2 + 5) J_1 = 3m(V_2 + 5)$$

$$J = M_0 5$$

C= 1
$$\Rightarrow$$
 $V_2 + \cancel{5} = \cancel{5}$
 $V_2 = 0$ $m_0 = 5M = 10$

$$V_2 = 0$$
 $m_0 =$

Applying momentum conservation in horizontal direction, it is easy to see that the two 16.

balls will have horizontal component of velocity $V_x = \frac{u}{2}$

(Collision between the balls is perfectly inelastic).

Due to collision with the floor, ball A acquires a vertical velocity = 0.5u Both balls are traveling in horizontal direction with same velocity after collision Hence, they collide next where A falls back on to the floor

$$t = \frac{2(0.5u)}{g} = \frac{u}{g}$$

17. (a) The normal force of wall on B is the reason for acceleration of the COM. Just when B is about to leave the wall (i.e. when the spring is relaxed) let the speed of A

$$\frac{1}{2}mv^2 = \frac{1}{2}kx_0^2 \Longrightarrow v = \sqrt{\frac{k}{m}}x_0$$

Speed of COM is $v_0 = \frac{v}{2} = \frac{1}{2} \sqrt{\frac{k}{m}} x_0$

This is the final maximum speed.

(b) Let compression in the spring be x when speed of A is $\frac{v}{2}$

$$\frac{1}{2}kx^2 + \frac{1}{2}m\left(\frac{v}{2}\right)^2 = \frac{1}{2}kx_0^2$$

$$kx^2 + \frac{1}{4}kx_0^2 = kx_0^2$$

$$x^2 = \frac{3x_0^2}{4}$$
; $x = \frac{\sqrt{3}x_0}{2}$

 \therefore Normal force by the wall = $\frac{\sqrt{3}kx_0}{2}$

$$a_{cm} = \frac{\sqrt{3}kx_0}{2(2m)} = \frac{\sqrt{3}kx_0}{4m}$$

18.

(a) We will study the motion of second particle the reference frame attached to the first particle. The velocity of second particle makes an angle of 45° with the initial line joining the two particles (see fig 2) The thread is loose before the distance between particles again becomes L. Fig3 shows the situation just before the string gets taut

Required time is
$$t = \frac{L\sqrt{2}}{v\sqrt{2}} = \frac{L}{v}$$

b) In the reference frame of ground, velocities just before the string gets taut, has been shown in fig. 4. The velocity component for the two particles along the string will be same for both particles after the string is taut. Fig. 5 shows the situation immediately after the string gets taut.

Now, total K.E. =
$$\frac{1}{2} \frac{mv^2}{4} + \frac{1}{2} mv^2 \left(1^2 + \frac{1}{2^2}\right) = \frac{3}{4} mv^2$$

19.

(a) Immediately after the impulse, velocity

of the car is
$$v_0 = \frac{I}{m} = 2\sqrt{gl}$$

The sing will make maximum angle with the vertical when there is no relative motion between the particle and the car and both move horizontally with common velocity v.

$$mv + 3mv = mv_0 \Longrightarrow v = \frac{v_0}{4}$$

Energy Conservation

$$\frac{1}{2}(3m)v^{2} + \frac{1}{2}mv^{2} = mgl(1 - \cos\theta)$$

$$\Rightarrow 1 - \cos\theta_{0} = \frac{v_{0}^{2}}{8gl}$$

$$\Rightarrow \cos\theta_{0} = 1 - \frac{4gl}{8gl}$$

$$\Rightarrow \theta_{0} = 60^{\circ}$$

20. The COM moves in a circle of radius $r = \frac{2R}{\pi}$

Angular speed of COM = angular speed of the wire $\omega = \frac{V}{R}$

 \therefore Net force $F = Ma_{cm} = M.\omega^2 r$

$$= M \left(\frac{V}{R}\right)^2 \cdot \left(\frac{2R}{\pi}\right) = \frac{2}{\pi} \frac{MV^2}{R}$$

CHEMISTRY

21.	All are correct transformations
22.	HO OME OME OME MENHS NENHS N
23.	HERE THE SECOND
24.	H ₃ C O O O O O O O O O O O O O O O O O O O
25.	i) Sia ₂ BH ii) H ₂ O ₂ , OH PCC reductive ozonolysis

38. Imole of Benzaldehyde forms 1 mole of Enone.
$$\frac{5.3}{106} = \frac{1}{20} \Rightarrow 0.05$$

$$\Rightarrow 0.05 \text{ mole of Benzaldehyde form } 0.05 \text{ mole of Enone}$$

$$0.05 \times 208 = \frac{1040}{100}$$

$$= 10.4$$

$$\frac{6}{9} \text{ wield} = \frac{Actual \text{ yield}}{Theortical \text{ yield}} \times 100$$

$$= \frac{5.2}{10.4} \times 100 = 50\%$$
39. CH₃ CH = CH - CH=CH - CHO, it exhibits geometrical isomerism at both the double bonds.

MATHEMATICS

41.
$$y'(x) \cdot g(x) - y(x) \cdot g'(x) + y^{2}(x) = 0 \Rightarrow \frac{g(x)}{y(x)} = x + c$$

$$= -d \left(\frac{g(x)}{y(x)} \right) + 1 = 0 \quad y(-1) = 1 \text{ and } g(-1) = 0$$

$$= \int_{1}^{2} \frac{(1+x)dx}{x^{2}\sqrt{x^{2} + (1+x)^{2}}} \left(-\frac{2}{x^{2}} - \frac{2}{x^{3}} \right) dx = 2t dt$$

$$= \int_{1}^{2} \frac{(1+x)dx}{x^{2}\sqrt{2 + \frac{2}{x} + \frac{1}{x^{2}}}} put \ 2 + \frac{2}{x} + \frac{1}{x^{2}} = t^{2}$$

$$= \sqrt{5} - \frac{\sqrt{13}}{2} = \frac{2\sqrt{5} - \sqrt{13}}{2} = \frac{7}{2(2\sqrt{5} + \sqrt{13})}$$

46. Given,
$$\frac{dy}{dx} - 3y\cot x = \sin 2x$$
, $y\left(\frac{\pi}{2}\right) = 2$ (Linear differential equation)

$$\therefore I.F. = e^{-\int_{0}^{3\cot xdx}} = e^{-3\ln(\sin x)} = \frac{1}{\sin^3 x}$$

$$\therefore \text{ General solution is } y\left(\frac{1}{\sin^3 x}\right) = \int \frac{2\sin x \cdot \cos x}{\sin^3 x} dx + C = 2\int \csc x \cot x dx + C$$

$$\Rightarrow \frac{y}{\sin^3 x} = -2 \csc x + C$$

$$As, y\left(x = \frac{\pi}{2}\right) = 2 \Rightarrow \frac{2}{1^3} = -2 + C \Rightarrow C = 4.$$

$$\therefore y = \left(4\sin^3 x - 2\sin^2 x\right)$$

$$(A) y\left(\frac{\pi}{6}\right) = 4\left(\frac{1}{2}\right)^3 - 2\left(\frac{1}{2}\right)^2 = \frac{1}{2} - \frac{1}{2} = 0$$

$$(B) y'(x) = (12\sin^2 x \cos x - 4\sin x \cos x)$$

$$So, y'\left(\frac{\pi}{3}\right) = \left(\frac{12\times 3}{4} \times \frac{1}{2} - 4 \times \frac{\sqrt{3}}{2} \times \frac{1}{2}\right) = \frac{9}{2} - \frac{2\sqrt{3}}{2} = \left(\frac{9 - 2\sqrt{3}}{2}\right)$$

$$(C) As, y'(x) = 4\sin x \cos x(3\sin x - 1) = 2\sin 2x(3\sin x - 1)$$

$$\therefore y(x) \text{ increases in } \left(\frac{\pi}{6} \cdot \frac{\pi}{3}\right)$$

$$47. \text{ Let } y = F(x) \Rightarrow \frac{dy}{dx} + \cos xy = \frac{2\sin x \cos x}{(1 + \sin x)^3}$$

$$I.F = e^{-\cos x}$$

$$Sol: ye^{\sin x} = \int \frac{2\sin x \cos x}{(1 + \sin x)^3} + C \qquad (1)$$

$$I. = \int \frac{2te^t}{(1 + t)} \frac{1}{(1 + t)^2} dt = \frac{2e^t}{1 + t}$$
From (1)
$$ye^{\sin x} = \frac{1}{2 + \sin x} + c \therefore 2 = 2 + c$$

$$c = 0$$

$$y = \frac{2}{1 + \sin x} + ce^{-\sin x}$$

$$\frac{dy}{dx} = \frac{-2\cos x}{(1 + \sin x)^2} - \cos xe^{-\sin x} = f(x)$$

48.	$f(x) = \frac{e^x}{x^2}$
49.	$y' + e^x y' + y e^x = 1$
	$\Rightarrow dy + d(e^{x}y) = dx$
	$\Rightarrow y + e^{x}y = x + c$
	$y(0) = 2 \Rightarrow c = 4$
50.	$\frac{dy}{\sqrt{y^2 + 5}} = \pm dx \Rightarrow \ln\left(y + \sqrt{y^2 + 5}\right) = \pm x + c$ Put $x = 0$, $y = 2$.
	$\ell n(5) = c$
	$\ell n \left(\sqrt{y^2 + 5} + y \right) = \pm x + \ell n 5$
	$\sqrt{y^2 + 5} + y = 5e^x$ (1)
	$\frac{1}{\sqrt{y^2 + 5} + y} = \frac{1}{5e^x}$
	$\sqrt{y^2 + 5} - y = \frac{1}{2^x}$ (2)
	(1) – (2)
	$2y = 5e^x - \frac{1}{e^x}$
	$y = \frac{1}{2} \left[5e^x - \frac{1}{e^x} \right]$
	$y(\ln 2) = \frac{1}{2} \left[10 - \frac{1}{2} \right] = \frac{1}{2} \left[\frac{19}{2} \right]$
	$y(\ell n2) = \frac{19}{4}$
	$f''(x) = f(x) \Rightarrow f'(x)f''(x) = f'(x)f(x) \frac{(f'(x))^2}{2} = \frac{f^2(x)}{2} + c$
	$\frac{9}{2} = 2 + c \implies \frac{9}{2} - 2 = c \implies c = \frac{5}{2}.$
	$\left(\frac{dy}{dx}\right)^2 = y^2 + 5 \Rightarrow \frac{dy}{dx} = \pm \sqrt{y^2 + 5} \ .$
	<u>INTEGERS</u>
51.	$A = -\frac{1}{2} + \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\sin t}{t} dt and m = \frac{1}{f'\left(\frac{\pi}{2}\right)}$
1.1	

52.	Given D.E
	$x^2y^3\left(\frac{ydx - xdy}{x^2}\right) + x.\left(xdy + ydx\right) = 0$
	or $\frac{y}{x} \cdot d\left(\frac{y}{x}\right) - \frac{d\left(xy\right)}{x^2 y^2} = 0 \Rightarrow \frac{1}{2} \left(\frac{y}{x}\right)^2 + \frac{1}{xy} = C$
	(On integrating)
	use $(42) \Rightarrow C = 0 \Rightarrow y^3 = -2x$ for $g(x)$
	$g'(x) = 0 \Rightarrow g(x) = C \text{ at } x = \frac{\pi}{4}; g\left(\frac{\pi}{4}\right) = \frac{3\pi}{16}$
	$so\ g(x) = \frac{3\pi}{16}$
53.	$A_n = \int_{0}^{n} [x] + \sqrt{x - [x]} dx = \sum_{r=0}^{n-1} \int_{r}^{r+1} [x] + \sqrt{x} dx = \sum_{r=0}^{n} \int_{r}^{r+1} [x] dx = \sum_{r=0}^{n} \int_{r}^{n} [x] dx = \sum_{r=0}^{n} [x] $
	$= \sum_{r=0}^{n-1} \int_{0}^{1} \left[x\right] + r + \sqrt{\left\{x\right\}} dx = \sum_{r=0}^{n-1} \int_{0}^{1} 0 + r + \sqrt{x} dx = \sum_{r=0}^{n-1} \left(r + \frac{2}{3}\right) = \frac{n(n-1)}{2} + \frac{2n}{3}$
54.	f(x)+g'(x)=1 and $f'(x)+g(x)=1$: $f(x)+g(x)+f'(x)+g'(x)=2$ and
	f(x) - g(x) = f'(x) - g'(x)
	$\Rightarrow f(x) + g(x) = 2 + e^{-x} \text{ and } f(x) - g(x) = e^{x}$
	$\Rightarrow f(\ln 2) = \frac{1}{2} \left(2 + 2 + \frac{1}{2} \right) = \left(\frac{9}{4} \right) \text{ and } g(\ln 3) = \frac{1}{2} \left(2 + 3 - \frac{1}{3} \right)$
55.	g(x) = -4 - x; -3 < x < 0
	2x - 4; $0 < x < 2$
	0; 2 < x < 3
56.	$\frac{x}{a} + \frac{y}{b} = 1 \text{ and } a + b = 2020$
	$\therefore \frac{x}{2020 - b} + \frac{y}{b} = 1$ forming the D.E by eliminating 'b' we get
	$\left(x\frac{dy}{dx} - y\right)\left(\frac{dy}{dx} - 1\right) + 2020\frac{dy}{dx} = 0 \implies k = 2020 \implies sum = 4$

58.

Equation of normal is $Y - y = \frac{-1}{m}(X - x)$

$$X + mY - (x + my) = 0$$
(1)

Perpendicular distance from (0, 0) to equation (1) is $\left| \frac{x + my}{\sqrt{1 + m^2}} \right| = |y|$

$$\Rightarrow 2xy \frac{dy}{dx} = y^2 - x^2$$

 $\therefore [k] = [1 + e] = 3.$

Put
$$y^2 = t \Rightarrow 2y \frac{dy}{dx} = \frac{dt}{dx}$$

$$x \frac{dt}{dx} = t - x^2$$

$$\Rightarrow \frac{dt}{dx} - \frac{t}{x} = -x$$

$$I.F = e^{-\ell nx} = \frac{1}{x}$$

$$\frac{t}{x} = -x + c \Rightarrow \frac{y^2}{x} = -x + c$$

(1,1) lies on it so c = 2

$$\begin{array}{c|c}
Y & \frac{\pi(\mathbf{r}^2)}{2} = \frac{\pi}{2} \\
\hline
O & (1,0) & (2,0)
\end{array}$$

$$C: x^2 + y^2 - 2x = 0$$

Area =
$$\frac{\pi}{2}$$

$$\therefore \mathbf{k} = \frac{1}{2} = 0.50$$

59.
$$\frac{dy}{dx} + \frac{2}{x}y = \frac{\log_e x}{x}$$

$$y \cdot x^2 \int x^2 \cdot \frac{\log x}{x} dx = \int x \log_e x dx$$

$$yx^2 = \frac{x^2}{2} \log x - \frac{x^2}{4} + c$$

$$\therefore e^2 y(e) - y(1) = \frac{e^2 + 1}{4}$$

$$\frac{e^2 y(e) - y(1)}{e^2 + 1} = \frac{1}{4} \Rightarrow \left[\frac{e^2 y(e) - y(1)}{e^2 + 1}\right] = 0$$

60. Given
$$y = \sin x + \cos x$$
 $x \in [0, \pi/2]$

$$\frac{dy}{dx} = \cos x - \sin x$$

$$0 \pi/4 \pi/2$$

$$y = |\cos x - \sin x| = \begin{bmatrix} \cos x - \sin x & x \in [0, \pi/4] \\ \sin x - \cos x & x \in [\pi/4, \pi/2] \end{bmatrix}$$

required area =
$$\int_{0}^{\pi/4} |(\sin x + \cos x) - (\cos x - \sin x)| dx + \int_{\pi/4}^{\pi/2} |2\cos x| dx$$

$$= \int_{0}^{\pi/4} |2\sin x| dx + \int_{\pi/4}^{\pi/2} |2\cos x| dx$$

$$= 2(-\cos x)_{0}^{\pi/4} + 2(\sin x)_{\pi/4}^{\pi/2}$$

$$= 2\left[-\frac{1}{\sqrt{2}} + 1 + 1 - \frac{1}{\sqrt{2}}\right]$$

$$= 2\left(2 - \frac{2}{\sqrt{2}}\right)$$

$$=2(2-\sqrt{2})=4-2\sqrt{2}=2\sqrt{2}(\sqrt{2}-1).$$