Analysis of a Complex Kind Week 4

Lecture 5: The Riemann Mapping Theorem

Petra Bonfert-Taylor

Conformal Mappings

So far we have seen the following:

- The conformal mappings from $\hat{\mathbb{C}}$ to $\hat{\mathbb{C}}$ are of the form $z \mapsto \frac{az+b}{cz+d}$.
- The conformal mappings from \mathbb{C} to \mathbb{C} are of the form $z \mapsto az + b$.

More is true:

- There is no conformal mapping $f: \mathbb{C} \to D$, where $D \subset \mathbb{C}$, $D \neq \mathbb{C}$.
- There is no conformal mapping $f: \hat{\mathbb{C}} \to D$, where $D \subset \mathbb{C}$.

Question

What conformal mappings are there of the form $f: \mathbb{D} \to D$, where $\mathbb{D} = B_1(0)$ is the unit disk and $D \subset \mathbb{C}$?

The Riemann Mapping Theorem

Theorem

If D is a simply connected domain (= open, connected, no holes) in the complex plane, but not the entire complex plane, then there is a conformal map (= analytic, one-to-one, onto) of D onto the open unit disk \mathbb{D} .

We say that "D is conformally equivalent to \mathbb{D} ."

The Riemann Map

Let D be a simply connected domain. In order to find a *unique* conformal mapping f from D onto \mathbb{D} , we need to specify "3 real parameters". For example, specify

- a point $z_0 \in D$ that is to be mapped to 0 under f (= 2 real parameters x_0, y_0)
- the argument of $f'(z_0)$ (= 1 real parameter), for example by requiring that $f'(z_0) > 0$.

The proof of the Riemann mapping theorem is beyond the scope of this course.

Instead, we'll look at some examples and applications.

The Upper Half Plane

• Let D be the upper half plane, i.e. $D = \{z : \text{Im } z > 0\}$. Then D can be mapped to $\mathbb D$ via (the restriction of) a Möbius transformation: Let f be the Möbius transformation that maps $0, 1, \infty$ to 1, i, -1:

Then the line through $0, 1, \infty$ (the real axis!) must be mapped to the circle through 1, i, -1 (the unit circle). Further, the domain to the left of the real axis (D) is then mapped to the domain to the left of the unit circle (\mathbb{D}) , oriented by the ordering of the given points.

The Upper Half Plane - Finding the Riemann Map

The restriction of the Möbius transformation f to the upper half plane D thus maps D onto \mathbb{D} . Can we find a formula for f? f maps $0, 1, \infty$ to 1, i, -1.

- f is of the form $f(z) = \frac{az+b}{cz+d}$. Since $f(\infty) \neq \infty$, we have $c \neq 0$ and can thus assume c = 1.
- Thus $f(z) = \frac{az+b}{z+d}$. Since $f(\infty) = -1$ we conclude that a = -1.
- Then $f(z) = \frac{-z+b}{z+d}$. Since f(0) = 1 we have $\frac{b}{d} = 1$, so b = d.
- So $f(z) = \frac{-z+b}{z+b}$. Since f(1) = i we have $\frac{-1+b}{1+b} = i$, so b = i.

Thus $f(z) = \frac{-z+i}{z+i}$ maps the upper half plane D conformally onto the unit disk \mathbb{D} .

The First Quadrant to the Upper Half of the Unit Disk

2 Let Q be the first quadrant, i.e. the domain in the complex plane, bounded by the positive real axis and the positive imaginary axis. Since the map f from the previous example maps 0 to 1, i to 0, and ∞ to -1, it maps the line through $0, i, \infty$ (i.e. the imaginary axis) to the line through 1, 0, -1 (i.e. the real

axis).

Hence the the restriction of f to Q maps Q conformally onto the upper half of the unit disk, \mathbb{D}^+ .

The First Quadrant to the Upper Half Plane

1 The map $g(z) = z^2$ is injective and analytic in the first quadrant Q.

g maps Q conformally onto its image, namely the upper half plane D.

The Riemann Map of the Upper Half of the Unit Disk

The previous three examples help us construct the Riemann map from \mathbb{D}^+ to \mathbb{D} :

Applications

- Many problems are easier to solve in the unit disk (or some other "nice" standard region) than in the region they are formulated in.
- Solutions can be found in the standard region, then transported back to the original region via a Riemann map.
- Example: Fluid flow can be modeled nicely in the upper half plane:

- To understand a similar fluid flow in another region, map this flow from the upper half plane to the desired region using the Riemann map.
- Other examples: electrostatics, heat conduction, aerodynamics, etc.