

Exercise 5.2

4. Which term of the AP: 3, 8, 13, 18 ... is 78?

Ans. First term = a = 3, Common difference = d = 8 - 3 = 13 - 8 = 5 and $a_n = 78$

Using formula $a_n = a + (n-1)d$, to find nth term of arithmetic progression,

$$a_n = 3 + (n - 1) 5$$

$$\Rightarrow 78 = 3 + (n - 1)5$$

$$\Rightarrow$$
 75 = 5 n - 5

$$\Rightarrow 80 = 5n \Rightarrow n = 16$$

It means 16th term of the given AP is equal to 78.

5. Find the number of terms in each of the following APs:

First term = a = 7, Common difference = d = 13- 7 = 19 - 13 = 6

And
$$a_n = 205$$

Using formula $a_n = a + (n-1)d$, to find nth term of arithmetic progression,

$$205 = 7 + (n - 1)6 = 7 + 6n - 6$$

$$\Rightarrow 205 = 6n + 1$$

$$\Rightarrow$$
 204 = 6 $n \Rightarrow n$ = 34

Therefore, there are 34 terms in the given arithmetic progression.

(ii) 18,
$$15\frac{1}{2}$$
, 13 ..., -47

First term = a = 18, Common difference = d =

$$15\frac{1}{2} - 18 = \frac{31}{2} - 18 = \frac{31 - 36}{2} = \frac{-5}{2}$$

And
$$a_n = -47$$

Using formula $a_n = a + (n-1)d$, to find nth term of arithmetic progression,

$$-47 = 18 + (n - 1) \left[-\frac{3}{2} \right]$$

$$=36-\frac{5}{2}n+\frac{5}{2}$$

$$\Rightarrow$$
 -94 = 36 - 5n + 5

$$\Rightarrow 5n = 135 \Rightarrow n = 27$$

Therefore, there are 27 terms in the given arithmetic progression.

6. Check whether −150 is a term of the AP: 11, 8, 5, 2...

Ans. Let -150 is the nth of AP 11, 8, 5, 2... which means that $a_n = -150$

Here, First term = a = 11, Common difference = d = 8 - 11 = -3

Using formula $a_n = a + (n-1)d$, to find n^{th} term of arithmetic progression,

$$-150 = 11 + (n-1)(-3)$$

$$\Rightarrow$$
 -150 = 11 - 3n + 3

$$\Rightarrow 3n = 164 \Rightarrow n = \frac{164}{3}$$

But, n cannot be in fraction.

Therefore, our supposition is wrong. -150 cannot be term in AP.

7. Find the 31st term of an AP whose 11th term is 38 and 16th term is 73.

Ans. Here
$$a_{11} = 38$$
 and $a_{16} = 73$

Using formula $a_n = a + (n-1)d$, to find nth term of arithmetic progression,

$$38 = a + (11 - 1)(d)$$
And $73 = a + (16 - 1)(d)$

$$\Rightarrow 38 = a + 10d \text{ And } 73 = a + 15d$$

These are equations consisting of two variables.

We have, 38 = a + 10d

$$\Rightarrow a = 38 - 10d$$

Let us put value of a in equation (73 = a + 15d),

$$73 = 38 - 10d + 15d$$

$$\Rightarrow 35 = 5d$$

Therefore, Common difference = d = 7

Putting value of d in equation 38 = a + 10d,

$$38 = a + 70$$

$$\Rightarrow a = -32$$

Therefore, common difference = d = 7 and First term = a = -32

Using formula $a_n = a + (n-1)d$, to find nth term of arithmetic progression,

$$a_{31} = -32 + (31 - 1)(7)$$

$$= -32 + 210 = 178$$

Therefore, 31st term of AP is 178.

8. An AP consists of 50 terms of which 3rd term is 12 and the last term is 106. Find the 29th term.

Ans. An AP consists of 50 terms and the 50^{th} term is equal to 106 and $a_3 = 12$

Using formula $a_n = a + (n-1)d$, to find n^{th} term of arithmetic progression,

$$a_{50} = a + (50 - 1) d$$
 And $a_3 = a + (3 - 1) d$

$$\Rightarrow$$
 106 = $a + 49d$ And 12 = $a + 2d$

These are equations consisting of two variables.

Using equation 106 = a + 49d, we get a = 106 - 49d

Putting value of a in the equation 12 = a + 2d,

$$12 = 106 - 49d + 2d$$

$$\Rightarrow 47d = 94 \Rightarrow d = 2$$

Putting value of d in the equation, a = 106 - 49d,

$$a = 106 - 49(2) = 106 - 98 = 8$$

Therefore, First term = a = 8 and Common difference = d = 2

To find 29th term, we use formula $a_n = a + (n-1)d$ which is used to find nth term of arithmetic progression,

$$a_{29} = 8 + (29 - 1)2 = 8 + 56 = 64$$

Therefore, 29th term of AP is equal to 64.

9. If the third and the ninth terms of an AP are 4 and -8 respectively, which term of this AP is zero?

Ans. It is given that 3rd and 9th term of AP are 4 and -8 respectively.

It means $a_3 = 4$ and $a_9 = -8$

Using formula $a_n = a + (n-1)d$, to find nth term of arithmetic progression,

$$4 = a + (3 - 1) d$$
 And, $-8 = a + (9 - 1) d$

$$\Rightarrow 4 = a + 2d$$
 And, $-8 = a + 8d$

These are equations in two variables.

Using equation 4 = a + 2d, we can say that a = 4 - 2d

Putting value of *a* in other equation -8 = a + 8d,

$$-8 = 4 - 2d + 8d$$

$$\Rightarrow$$
 -12 = 6 d \Rightarrow d = -2

Putting value of *d* in equation -8 = a + 8d,

$$-8 = a + 8 (-2)$$

$$\Rightarrow -8 = a - 16 \Rightarrow a = 8$$

Therefore, first term = a = 8 and Common Difference = d = -2

We want to know which term is equal to zero.

Using formula $a_n = a + (n-1)d$, to find nth term of arithmetic progression,

$$0 = 8 + (n - 1)(-2)$$

$$\Rightarrow 0 = 8 - 2n + 2$$

$$\Rightarrow$$
 0 = 10 - 2 n

$$\Rightarrow 2n = 10 \Rightarrow n = 5$$

Therefore, 5th term is equal to 0.

10. The 17th term of an AP exceeds its 10th term by 7. Find the common difference.

Ans.
$$a_{17} = a_{10} + 7...$$
 (1)

Using formula $a_n = a + (n-1)d$, to find nth term of arithmetic progression,

$$a_{17} = a + 16d...(2)$$

$$a_{10} = a + 9d...(3)$$

Putting (2) and (3) in equation (1),

$$a + 16d = a + 9d + 7$$

$$\Rightarrow 7d = 7 \Rightarrow d = 1$$

11. Which term of the AP: 3, 15, 27, 39... will be 132 more than its 54th term?

Ans. Lets first calculate 54th of the given AP.

First term =
$$a = 3$$
, Common difference = $d = 15$
- $3 = 12$

Using formula $a_n = a + (n-1)d$, to find n^{th} term of arithmetic progression,

$$a_{54} = a + (54 - 1)d = 3 + 53(12) = 3 + 636 = 639$$

We want to find which term is 132 more than its 54th term.

Let us suppose it is n^{th} term which is 132 more than 54^{th} term.

$$a_n = a_{54} + 132$$

$$\Rightarrow$$
 3 + $(n-1)$ 12 = 639 + 132

$$\Rightarrow$$
 3 + 12n - 12 = 771

$$\Rightarrow$$
 12n - 9 = 771

$$\Rightarrow 12n = 780 \Rightarrow n = 65$$

Therefore, 65th term is 132 more than its 54th term.

12. Two AP's have the same common difference. The difference between their 100th terms is 100, what is the difference between their 1000th terms.

Ans. Let first term of $1^{st}AP = a$

Let first term of $2^{nd} AP = a'$

It is given that their common difference is same.

******* END *******