

FIGURE 1

FIGURE 2

Figure 3

Figure 4

5a

5b

5c

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

FIGURE 12

Figure 13

Configure Frequency Measurement Hardware
(using either a high-speed timer to measure the time differences between the microphone's zero-crossing or an ADC with high-frequency sampling and algorithms to examine the spectral content of the output)

-1401

Send an Impulse to the Speaker

-1402

Record data as the microphone's output reacts to the second-order ringing of the resonator and finishes decaying

-1403

Measure the resonant frequency of the AVS using the microphone's output (frequency of an underdamped 2nd-order system)

-1404

Measure Temperature of the AVS System

-1405

Calculate AVS variable volume (volume = $k_1 / (f^2/T) - k_2$) where k_1 and k_2 are calibration constants (physical geometry and molecular properties of the gas), "f" is the calculated resonant frequency and "T" is the measured temperature (in deg Kelvin)

-1406

DONE

Final ρ 14

Figure 15

— Figure 17

— Figure 16

Figure 18