ACKNOWLEDGEMENT

The satisfaction and euphoria that accompany a successful completion of any task would be incomplete without the mention of people who made it possible, success is the epitome of hard work and perseverance, but steadfast of all is encouraging guidance.

So, with gratitude we acknowledge all those whose guidance and encouragement served as beacon of light and crowned the effort with success.

We thank our project guide **Mrs. Harshitha G M**, Assistant Professor, in Department of Computer Science & Engineering, who has been our source of inspiration. She has been especially enthusiastic in giving her valuable guidance and critical reviews.

The selection of this project work as well as the timely completion is mainly due to the interest and persuasion of our project coordinator **Dr. Sumith N**, Professor, Department of Computer Science & Engineering. She has supported us in every stage of our project.

We sincerely thank, **Dr. Manjunath Kotari**, Head, Department of Computer Science & Engineering who has been the constant driving force behind the completion of the project.

We thank our beloved Principal **Dr. Peter Fernandes**, for his constant help and support throughout the project.

We are indebted to **Management of Alva's Institute of Engineering and Technology, Mijar, Moodbidri** for providing an environment which helped us in completing our project.

Also, we thank all the teaching and non-teaching staff of Department of Computer Science and Engineering for the help rendered.

Finally we would like to thank our family and friends whose encouragement and support was invaluable.

NITESH NARAYAN VAIDYA 4AL13CS060 BHARATH M 4AL14CS015 BHAT APOORVA 4AL14CS016 KAVITHA CHANDRAHASA 4AL14CS036

ABSTRACT

A key challenge for rapidly growing cities of today is to provide effective public transport services to satisfy the increasing demands for urban mobility. Toward this goal, the Internet of Things (IoT) connected bus ticket generator has great potential to overcome existing deficiencies of public transport systems given its ability to embed smart technology into real-life urban contexts. an IoT enabled system for urban bus riders provides two novel information services for bus users: 1) micro-navigation and 2) crowd-aware route recommendation. 3) Bus travel time estimation. The navigation system for bus passengers, has the ability to seamlessly interconnect bus passengers with the real-world public bus infrastructure. The navigation system relies on a distributed IoT system comprising an embedded bus computing smartphone system to detect the presence of passengers on buses, backend computing infrastructure and a mobile smartphone app for passengers provide real-time information of a buses.

TABLE OF CONTENTS

CHAPTER	DESCRIPTION	PAGE
NO.		NO.
	ACKNOWLEDGEMENT	i
	ABSTRACT	ii
	TABLE OF CONTENTS	iii
	LIST OF FIGURES	vi
	LIST OF TABLES	vii
1	INTRODUCTION	1-2
	1.1 Scope	2
	1.2 Motivations	2
2	LITERATURE SURVEY	3-7
	2.1 Problem Statement	6
	2.2 Gaps in Existing System	6
	2.3 Proposed System	6
3	SYSTEM REQUIREMENT SPECIFICATION	8-12
	3.1 Functional Requirements	9
	3.2 Non-functional Requirements	10
	3.3 Hardware Requirements	11
	3.4 Software Requirements	11
	3.5 User Requirements	11
4	SYSTEM ANALYSIS	13
	4.1 Social Analysis	13
	4.2 Performance Analysis	13
	4.3 Economic Analysis	13
5	SYSTEM DESIGN	14-22
	5.1 General System Architecture for IoT System	14

	5.2 System Architecture for User	15
	5.3 System Architecture for Admin	15
	5.4 Data Flow Diagram	16
	5.5 Use Case Diagram	17
	5.6 Sequence Diagram	19
	5.7 Activity Diagram	20
	5.8 Entity Relationship Diagram	22
6	SYSTEM IMPLEMENTATION	23-38
	6.1 Google map API	23
	6.1.1 Directions API	23
	6.1.2 Distance Matrix API	24
	6.1.3 Geocoding API	24
	6.1.4 Geolocation API	24
	6.1.5 Roads API	25
	6.2 Adding a Google Maps JavaScript API V3	25
	6.2.1 Geolocation requests	25
	6.2.2 Load the API	25
	6.2.3 Navigation access	25
	6.2.4 Map Options	26
	6.3 Interactive Polyline Encoder Utility algorithm	27
	6.3.1 Encoded Polylines	27
	6.3.2 Decoded Polylines	28
	6.4 Google Maps distance and duration	29
	6.5 Functions for direction service and rendering map	31
	6.6 Function for auto complete places search	32
	6.7 Function for Init map, bus stops and current location	33
	6.8 Android code for Permission access in manifest file	
	6.8.1 Class for loading project into android application by	35
	webview and webclient	35
	6.9 Arduino code for hardware interaction	
		36

7	SYSTEM TESTING	39
8	RESULTS	42
9	CONCLUSION AND FUTURE ENHANCEMENT	47
	REFERENCES	
	APPENDIX A - ACRONYMS AND ABBREVATIONS	
	APPENDIX B - PAPER PUBLICATIONS	
	APPENDIX C - PROJECT ASSOCIATES INFORMATION	

LIST OF FIGURES

FIGURE	DESCRIPTION	PAGE
NO.		NO.
Figure 5.1	General System Architecture for IoT System	14
Figure 5.2	Block diagram of user module	15
Figure 5.3	Block diagram of admin module	16
Figure 5.4	DFD for login	17
Figure 5.5	DFD for Non-App Users Registration	17
Figure 5.6	Use case diagram for passengers	18
Figure 5.7	Use case diagram for management staff/admin	18
Figure 5.8	Sequence diagram for passenger's registration	19
Figure 5.9	Activity diagram management staff /admin	20
Figure 5.10	Activity diagram for searching bus location and information	20
Figure 5.11	Application user registration activity diagram	21
Figure 5.12	ER- diagram for IoT system	22
Figure 8.1	Snapshot of list buses	42
Figure 8.2	Snapshot of registered mom app user	42
Figure 8.3	Snapshot of polyline encoder	43
Figure 8.4	Snapshot of list of routes	43
Figure 8.5	Snapshot of card renewal for non app users	44
Figure 8.6	Snapshot of user app	44
Figure 8.7	Snapshot of user app	45
Figure 8.8	Snapshot of user app	45
Figure 8.9	Snapshot of driver app	46

LIST OF TABLES

TABLE NO.	DESCRIPTION	PAGE
		NO.
Table 7.1	Test Case for App Users	39
Table 7.2	Test Case for App users (Invalid)	39
Table 7.3	Test Case for Non App User.	40
Table 7.4	Test Case for Non App User (Invalid)	40
Table 7.5	Test Case for Driver App	41
Table 7.6	Test Case for Driver App (Invalid)	41
Table 7.7	Test Case for Admin	41

APPENDIX A:

ACRONYMS AND ABBREVATIONS

API Application Programming Interface

HTML Hyper Text Markup Language

SQL Standard Query Language

DBMS Data Base Management System

CSS Cascading Style Sheet

PHP Hyper Text Pre-Processor

DFD Data Flow Diagram

ERD Entity Relationship Diagram

RFID Radio Frequency Identification

GPS Global Positioning System

RTC Real Time Clock

IOT Internet of Things

GTFS Google's general Transit Feed Specification

WRS WI Rover System

AVL Automated Vehicle Location

TCQSM Transit Capacity and Quality of Service Manual

UBN Urban Bus Navigation

APPENDIX B:

PAPER PUBLICATIONS

- [1] Bhat Apoorva, Kavitha C, Bharath M, Nitesh Narayan Vaidya and Harshitha G M, "A smart bus ticketing and tracking system using IOT," is accepted by International Conference on Recent Trends in Technology ICRTT-2018 IN Collaboration with IJCA Paper ID ICRTT18171, May-2018.
- [2] Bhat Apoorva, Kavitha C, Bharath M, Nitesh Narayan Vaidya and Harshitha G M, "A smart bus ticketing and tracking system using IOT," is accepted by IEEE-ICNTET Conference 2018.
- [3] Bhat Apoorva, Kavitha C, Bharath M, Nitesh Narayan Vaidya and Harshitha G M, "A smart bus ticketing and tracking system using IOT," is accepted by International Journal of Research and Scientific Inovation (IJRSI) ISSN 2321-2705 Unique Manuscript ID: "5IJ04S221", 2018.

APPENDIX C:

PROJECT ASSOCIATES INFORMATION

Mr. Nitesh Narayan Vaidya, pursuing Bachelor of Engineering in Computer Science and Engineering from Visvesvaraya Technological university. Nitesh is a student of Alva's Institute of Engineering and Technology, Mijar, Moodbidri.

Email-id: niteshvaidya591@gmail.com

Mr. Bharath M, pursuing Bachelor of Engineering in Computer Science and Engineering from Visvesvaraya Technological university. Bharath is a student of Alva's Institute of Engineering and Technology, Mijar, Moodbidri.

Email-id: bharathr404@gmail.com

Ms. Bhat Apoorva Anandha, pursuing Bachelor of Engineering in Computer Science and Engineering from Visvesvaraya Technological university. Apoorva is a student of Alva's Institute of Engineering and Technology, Mijar, Moodbidri.

Email-id: apoorvabhat30@gmail.com

Ms. Kavitha Chandrahasa, pursuing Bachelor of Engineering in Computer Science and Engineering from Visvesvaraya Technological university. Kavitha is a student of Alva's Institute of Engineering and Technology, Mijar, Moodbidri.

Email-id: kavitha.c.shetty@gmail.com

Mrs. Harshitha G M, Assistant professor, Department of Computer Science and Engineering at Alva's Institute of Engineering and Technology, Mijar, Moodbidri. Her research interests are in Network Security.

Mail-id: harshithagm@gmail.com