Final Project

- 1. Implement the quantum teleportation algorithm and transport the state $(|0\rangle + |1\rangle)/\sqrt{2}$ from Alice to Bob on IMBQ, and perform the quantum state tomography to reconstruct the transported density matrix, ρ' , on IBMQ.
- 2. Estimate the fidelity $F(\rho, \rho') = \left(Tr\sqrt{\sqrt{\rho}\rho'\sqrt{\rho}}\right)^2$ between the ideal, ρ , and the transported, ρ' , density matrices.
- 3. Verify that the state $(|00\rangle + |11\rangle)/\sqrt{2}$ violates the Bell's inequality $|\langle \hat{Q}\hat{S}\rangle + \langle \hat{R}\hat{S}\rangle + \langle \hat{R}\hat{T}\rangle \langle \hat{Q}\hat{T}\rangle| \le 2$ on IBMQ.
- * The report should be prepared with A4 pages and include the following relevant data:
 - Layout of the quantum circuit.
 - Which qubit? On which device?
 - The date you collecting the data and the corresponding errors (single qubit gate error, C-NOT gate error, readout error).
 - How many shots of the experiment?
 - The output data for quantum state tomography and Bell's inequality.
 - The density matrix (with specified ordering of basis) constructed from the measured data, and the negativity.

Deadline: Please hand in the report before the end of this semester (Jan. 8th, 2025) via n96124365@gs.ncku.edu.tw (助教 黃川齊)