computer science & mathematics Turunan

Fakultas Ilmu Komputer, Universitas Indonesia

Masalah yang Mengarah ke Konsep Turunan

- Kecepatan rata-rata dan sesaat

Masalah yang Mengarah ke Konsep Turunan

- Kecepatan rata-rata dan sesaat

Kecepatan rata-rata:

$$V_{rata-rata} = rac{s_1-s_0}{t_1-t_0}$$

*Anggap s = f(t), maka

$$V_{rata-rata} \, = \, rac{f(x+\Delta x) \, - \, f(x)}{\Delta x}$$

Kecepatan sesaat:

$$V_{sesaat} = \lim_{\Delta x
ightarrow 0} \; rac{f(x + \Delta x) \, - \, f(x)}{\Delta x}$$

Definisi Turunan

Turunan (derivative) fungsi f terhadap x dapat didefinisikan sebagai:

$$\lim_{\Delta x o 0} rac{\Delta f(x)}{\Delta x} \, = \, rac{f(x + \Delta x) \, - \, f(x)}{\Delta x}$$

Jika lim ada, maka f = differentiable

Latihan Soal

"Jika lim ada, maka f = differentiable"

- 1. Apakah f(x) differentiable untuk:
 - a. f(x) = [[x]]
 - b. $f(x) = x^3$

2. Operator dan Sifat-Sifat Turunan

Turunan Sebagai Operator (notasi Leibniz)

Laju perubahan dapat ditulis sebagai: $\frac{dy}{dx} = f'(x) \implies d\Box^2 = 2\Box d\Box$

Sifat-sifat Operator Turunan

- 1. d(k) = 0, jika f(x) = k; k = konstanta, $\forall x \rightarrow f'(x) = 0$
- 2. d(x) = 1, jika $f(x) = x \rightarrow f'(x) = 1$
- 3. $d(x) = nx^{n-1}$, jika $f(x) = x^n$, $n \in \mathbb{Z} + \to f'(x) = nx^{n-1}$
- 4. Untuk f,g = fungsi terdiferensialkan; k=konstanta:
 - a. $d[k \cdot f(x)] = k \cdot df(x)$, jika $(kf)'(x) = k \cdot f'(x)$
 - b. $d[f(x) \pm g(x)] = d f(x) \pm d g(x)$, jika $(f\pm g)'(x) = f'(x) \pm g'(x)$
 - c. $d[f(x) \cdot g(x)] = f(x) dg(x) + g(x) df(x)$, jika (fg)'(x) = f(x)g'(x) + g(x)f'(x)
 - d. $d[f(x) / g(x)] = \frac{g(x) df(x) f(x) dg(x)}{g^2(x)}$, jika $(f/g)'(x) = \frac{g(x) f'(x) f(x) g'(x)}{g^2(x)}$

2. Operator dan Sifat-Sifat Turunan

Teorema Aturan Rantai

y=f(u), u=g(x), g terdiferensialkan di x, f terdiferensialkan di u=g(x) $ightarrow (f \circ g)'(x) = f'(g(x))g'(x)$

Sehingga,

$$d(f(g(x))) = f'(g(x))g'(x)$$
 atou $rac{dy}{dx} = rac{dy}{du} rac{du}{dx}$

2. Operator dan Sifat-Sifat Turunan

Latihan Soal

Carilah dy/dx untuk:

a.
$$y=rac{3x}{(1-x)}$$

b.
$$y=x^4\sqrt[3]{x^3{-}1}$$

3. Turunan dan Kekontinuan

Keterdiferensialan Mengimplikasikan Kontinuitas

Jika f adalah fungsi yang differentiable di x=c, maka f kontinu di x=c.

Latihan Soal

1. Diberikan fungsi
$$f(x) = \begin{cases} -x + 1 & jika \ x < 1 \\ x - 1 & jika \ 1 < x < 2 \\ 5 - x^2 & jika \ x \ge 2 \end{cases}$$

Apakah kontinu di x = 2?

2.
$$f(x) = [[x]]$$
.
Apakah kontinu di $x = 2$?

4. Turunan Fungsi Transendental

Teorema Turunan Fungsi Transendental dan Inversnya

1.
$$d(\sin x) = \cos x \, dx \Rightarrow d(arc\sin x) = \frac{dx}{\sqrt{1-x^2}}$$

2.
$$d(\cos x) = -\sin x dx \Rightarrow d(arc\cos x) = \frac{-dx}{\sqrt{1-x^2}}$$

3.
$$d(e^x) = e^x dx$$
 \Rightarrow $d(\ln x) = \frac{1}{x} dx$

Bilangan euler (e) dan logaritma natural (ln)

$$\log_a(cd) = \log_a c + \log_a d$$

$$\log_a(c/d) = \log_a c - \log_a d$$

$$\log_a c^d = d \log_a c$$

$$ln(cd) = ln c + ln d$$

$$ln(c/d) = ln c - ln d$$

In
$$c^d = d \ln c$$

4. Turunan Fungsi Transendental

Latihan Soal

1. Dengan teorema turunan fungsi transendental, buktikan:

a.
$$d(\tan x) = \sec^2 x$$

b.
$$d(\sec x) = \sec x \tan x$$

c.
$$d(\cot x) = -\csc^2 x$$

$$d. d(\csc x) = -\csc x \cot x$$

4. Turunan Fungsi Transendental

Latihan Soal

2. Carilah dy untuk:

g.
$$y = e^x \arcsin x - e^x \arccos x - \arcsin x + \arccos x$$

$$\text{b. } y = \frac{x \cos x + \sin x}{x^2 + 1}$$

$$c. \quad y = \ln x \cos^2 x$$

5. Rolle's Theorem, Teorema Nilai Tengah

Rolle's Theorem

MVT:

 $f = fungsi yang differentiable di [a,b] \Rightarrow ada c di [a,b] sedemikian hingga:$

$$f'(c) = rac{f(b) - f(a)}{b - a}$$

Rolle's Theorem = MVT kasus spesial

f = fungsi yang differentiable di [a,b] & $f(a) = f(b) \Rightarrow$ ada c di [a,b] sedemikian hingga:

$$f'(c) = 0$$

6. Turunan Implisit

Fungsi Eksplisit

"Fungsi yang direpresentasikan secara eksplisit" \Rightarrow y=f(x)

Fungsi Implisit

"Fungsi yang tidak terlalu kentara"

6. Turunan Implisit

Latihan Soal

1. Carilah dy untuk:

a.
$$5y^{xy}+\cos{(x\ln{x})}=2^x$$

b.
$$\cos\left(xy^2\right) = y^2 + x$$

c.
$$x^2y = \cos(x+2y) + y^2x$$

Definisi Fungsi Parametrik

Jika perahu motor bergerak berlawanan arah jarum jam mengelilingi jalur melingkar dengan radius 4 mil, menyelesaikan satu putaran setiap 2π jam dengan kecepatan konstan. \Rightarrow Lintasan perahu (x(t), y(t)) pada setiap waktu t > 0 (t diukur dalam jam) dengan asumsi perahu dimulai pada sumbu x positif di titik (4, 0)

Definisi Fungsi Parametrik

Jika perahu motor bergerak berlawanan arah jarum jam mengelilingi jalur melingkar dengan radius 4 mil, menyelesaikan satu putaran setiap 2π jam dengan kesepatan konstan. \Rightarrow Lintasan perahu (x(t), y(t)) pada set vaktu t > 0 (t diukur dalam jam) dengan asumsi pera

Sudut Θ sesuai dengan posisi perahu yang meningkat 2π rad setiap 2π jam dimulai dengan Θ = $0 \Rightarrow t = 0$; $\therefore \Theta = t, t \ge 0$

Definisi Fungsi Parametrik

Bisa didapatkan:

$$x = 4\cos t$$
; $y = 4\sin t$

Fungsi parametrik dapat dituliskan dalam:

$$x = f(t)$$
 ; $y = f(t)$

Turunan Fungsi Parametrik

Untuk x = f(t) dan y=g(t); f dan g differentiable di interval [a,b], maka:

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{g'(t)}{f'(t)}.$$

Latihan Soal

1. Tentukan dy/dx dalam term t dari fungsi berikut:

a.
$$x = \cos t, y = 8 \sin t; t = \pi/2$$

b.
$$x = 2t, y = t^3; t = -1$$

c.
$$x = t + 1/t, y = t - 1/t; t = 1$$

d.
$$x = \sqrt{t}, y = 2t; t = 4$$

Koordinat Polar dan Kartesian

- Dinyatakan sebagai: $f = f(\theta) \rightarrow r = jarak titik koordinat dari titik origin (pole); <math>\theta = sudut deviasi dari sumbu polar$
- (A)

Mengubah koordinat polar → kartesius

Titik di koordinat polar (r, θ) memiliki koordinat kartesius (x, y):

- \circ x = r cos θ ;
- \circ y = r sin θ
- Mengubah kartesius → koordinat polar

Titik di koordinat kartesius (x, y) memiliki koordinat polar (r, θ) :

- o $r^2 = x^2 + y^2$;
- \circ tan $\theta = y/x$

Latihan Soal

- 1. Tentukan titik kartesius dari persamaan berikut, persamaan polarnya dan cari turunannya.
 - a. persamaan lingkaran yang berpusat di (2, 2) dengan jari-jari 2

Latihan Soal

- Tentukan titik kartesius dari persamaan berikut, persamaan polarnya dan cari turunannya.
 - a. persamaan lingkaran yang berpusat di (2, 2) dengan jari-jari 2
 - i. bagaimana persamaan lingkarannya?
 - ii. hint: $x^2+y^2 = r^2$, $x=r\cos\theta$, $y=r\sin\theta$
 - iii. bagaimana turunannya?

Latihan Soal

- Tentukan titik kartesius dari persamaan berikut, persamaan polarnya dan cari turunannya.
 - a. persamaan lingkaran yang berpusat di (2, 2) dengan jari-jari 2
 - i. bagaimana persamaan lingkarannya?
 - ii. hint: $x^2+y^2 = r^2$, $x=r\cos\theta$, $y=r\sin\theta$
 - iii. bagaimana turunannya?
 - b. persamaan lingkaran yang berpusat di (1, 2) dengan jari-jari 3
 - c. persamaan lingkaran yang berpusat di (4, 5) dengan jari-jari 1

X

9. Turunan Tingkat Tinggi

Notasi

Derivative	f' Notation	y' Notation	D Notation	Leibniz Notation	
First	f'(x)	у'	$D_x y$	$\frac{dy}{dx}$	
Second	f''(x)	y"	$D_x^2 y$	$\frac{d^2y}{dx^2}$	$rac{d}{dx}igg(rac{dy}{dx}igg)$
Third	$f^{w}(x)$	y**	$D_x^3 y$	$\frac{d^3y}{dx^3}$	$rac{d}{dx}\left(rac{d^2y}{dx^2} ight)$
Fourth	$f^{(4)}(x)$	y ⁽⁴⁾	D_x^4y	$\frac{d^4y}{dx^4}$	$rac{d}{dx}igg(rac{d^3y}{dx^3}igg)$
:	i	:	:		, ,
nth	$f^{(n)}(x)$	$y^{(n)}$	$D_{\pi}^{n}y$	$\frac{d^n y}{dx^n}$	$d^nf=dig(d^{n-1}fig)$

9. Turunan Tingkat Tinggi

Latihan Soal

1. Carilah d^2y/dx^2 untuk:

O.
$$x=3\cos^4{(t)};\,y=4\sin^3{(t)}$$

$$b. \ \ y = \frac{3x}{(1-x)}$$

c.
$$3x^3y^2 = \sin^3(x) + 1$$

9. Turunan Tingkat Tinggi

Latihan Soal

2. Carilah d^3y/dx^3 untuk:

a.
$$y = \sin(x^3)$$

$$b. \ \ y = \frac{3x}{(1-x)}$$

c.
$$y = \sin 7x$$

10. Turunan Parsial

Turunan Parsial

Jika f = fungsi dengan variabel independen >1, cari derivative terhadap 1 variabel saja, perlakukan variabel sisanya sebagai konstanta.

Contoh: Carilah f_x untuk $f(x, y) \Rightarrow$ anggap x variabel, maka sisa variabelnya (y) dianggap konstanta. Dengan kata lain,

$$f_x(x_0,\,y_0) = \lim_{\Delta x o 0} rac{f(x_0 + \Delta x,\,y_0) - f(x_0,\,y_0)}{\Delta x}$$

10. Turunan Parsial

Latihan Soal

1. Carilah turunan parsial pertama untuk:

a.
$$f(x, y) = \left(4x - y^2\right)^{3/2} \Rightarrow f_x = ?$$
 $f_u = ?$

b.
$$f(x, y) = e^x \cos y$$
 $\Rightarrow f_x = ?$ $f_y = ?$

c.
$$f(r, \theta) = 3r^3 \cos 2\theta$$
 $\Rightarrow f_r = ? f_\theta = ?$

