Komplexní analýza

Písemná část zkoušky (16.02.2023)

Jméno a příjmení:

1

Podpis:

Identifikační číslo: 01

Body

	vstupní test					početní část					~
Úloha	1	2	3	4	$ \Sigma_1 $	1	2	3	4	$ \Sigma_2 $	
Body											

Před zahájením práce

- Vyplňte čitelně rubriku "Jméno a příjmení" a podepište se. To samé proveď te na listu se vstupním testem.
- Poznamenejte si Vaše identifikační číslo. Pod tímto číslem bude na Moodle zveřejněn Váš bodový zisk.
- Během písemné zkoušky smíte mít na lavici pouze zadání písemky, psací potřeby, průkaz totožnosti
 a papíry, na které zkoušku vypracováváte. Každý papír, který budete odevzdávat, čitelně podepište.
- Nepište obyčejnou tužkou ani červeně, jinak písemka nebude přijata.
- První se píše vstupní test, který bude po 10 minutách vybrán.

Soupis vybraných vzorců

Součtové vzorce

- $\sin(z \pm w) = \sin z \cos w \pm \sin w \cos z$ pro každé $z, w \in \mathbb{C}$.
- $\cos(z\pm w)=\cos z\cos w\mp\sin z\sin w$ pro každé $z,w\in\mathbb{C}.$

Rozvoje

- $\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}, z \in \mathbb{C}.$
- $\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}, z \in \mathbb{C}.$
- $\ln z = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (z-1)^n \text{ pro } |z-1| < 1.$

Fourierova transformace

- Pro a > 0 je $\mathscr{F}\left[e^{-at^2}\right](\omega) = \sqrt{\frac{\pi}{a}}e^{-\frac{\omega^2}{4a}}$.
- Pro $a \in \mathbb{R}$: $\mathscr{F}[f(t-a)](\omega) = e^{-i\omega a}\mathscr{F}[f(t)](\omega)$.
- Pro $a \in \mathbb{R}$ je $\mathscr{F}\left[e^{iat}f(t)\right](\omega) = \mathscr{F}\left[f(t)\right](\omega a)$.
- Pro $0 \neq a \in \mathbb{R}$: $\mathscr{F}[f(at)](\omega) = \frac{1}{|a|} \mathscr{F}[f(t)](\frac{\omega}{a})$.

Laplaceova transformace

- Pro $n \in \mathbb{N}_0$ je $\mathcal{L}[t^n](s) = \frac{n!}{s^{n+1}}$. Speciálně $\mathcal{L}[1](s) = \frac{1}{s}$.
- Pro $a \in \mathbb{C}$ je $\mathscr{L}\left[e^{at}\right](s) = \frac{1}{s-a}$.
- Pro $\omega \in \mathbb{C}$ je $\mathcal{L}[\sin(\omega t)](s) = \frac{\omega}{s^2 + \omega^2}$ a $\mathcal{L}[\cos(\omega t)](s) = \frac{s}{s^2 + \omega^2}$.
- Pro a > 0 kladné reálné platí $\mathscr{L}[f(t)\mathbf{1}(t-a)](s) = e^{-as}\mathscr{L}[f(t+a)](s)$.
- Pro $a \in \mathbb{C}$ je $\mathscr{L}[e^{at}f(t)](s) = \mathscr{L}[f(t)](s-a)$.
- Pro a > 0: $\mathcal{L}[f(at)](s) = \frac{1}{s}\mathcal{L}[f(t)](\frac{s}{s})$.

\mathscr{Z} -transformace

- Pro $\alpha\in\mathbb{C}$ je $\mathscr{Z}\left[\alpha^n\right](z)=\frac{z}{z-\alpha}.$ Speciálně $\mathscr{Z}\left[1\right](z)=\frac{z}{z-1}.$
- Pro $\alpha \in \mathbb{C}$ je $\mathscr{Z}[\sin(\alpha n)](z) = \frac{z \sin \alpha}{z^2 2z \cos \alpha + 1}$ a $\mathscr{Z}[\cos(\alpha n)](z) = \frac{z^2 z \cos \alpha}{z^2 2z \cos \alpha + 1}$.
- $\mathscr{Z}[n](z) = \frac{z}{(z-1)^2}$.
- Pro $0 \neq \alpha \in \mathbb{C}$: $\mathscr{Z}[\alpha^n a_n](z) = \mathscr{Z}[a_n](\frac{z}{\alpha})$.

Početní část

- Veškeré své odpovědi zdůvodněte.
- Pokud k úloze odevzdáte více různých řešení, hodnotí se to nejhorší z nich.

Úloha 1 ([10 bodů], podúlohy na sebe NEnavazují). Mějme funkci

$$u(x,y) = e^{2y}\cos(\alpha x) + 2x^3y + \beta xy^3, \ (x,y) \in \mathbb{R}^2,$$

kde $\alpha, \beta \in \mathbb{R}$ jsou parametry.

- (a) Určete všechny hodnoty parametrů $\alpha, \beta \in \mathbb{R}$ takové, že u(x,y) je harmonická funkce na \mathbb{R}^2 .
- (b) Pro $\alpha = 2$ a $\beta = -2$ nalezněte funkci $v(x,y) \colon \mathbb{R}^2 \to \mathbb{R}$ takovou, že f(z) = u(x,y) + iv(x,y) je celistvá funkce a platí $f(2i) = e^4$.

Úloha 2 ([10 bodů]). Spočtěte

$$\int_C \frac{\sin z}{z^2 + 25} + \frac{e^{\pi z} + 1}{(z^2 + 1)^2} \, \mathrm{d}z,$$

kde Cje kladně orientovaná kružnice o rovnici $\left|z-2i\right|=2.$

Úloha 3 ([10 bodů], podúlohy na sebe NEnavazují).

(a) Spočtěte Fourierovu transformaci funkce

$$f(t) = \frac{t - 2 + i}{(t^2 - 4t + 5)^2}.$$

(b) Určete

$$\mathscr{F}\left[\left(e^{-4(t+5)^2}\right)^{\prime\prime\prime}\right](\omega)$$
.

(c) Nalezněte spojitou funkci $g(t) \in L^1(\mathbb{R})$ takovou, pro kterou platí

$$\mathscr{F}\left[g(t)*\frac{1}{1+t^2}\right](\omega)=\pi e^{-2|\omega|}.$$

[Nápověda: Využijte skutečnosti, že $\mathscr{F}\left[\frac{1}{1+t^2}\right](\omega)=\pi e^{-|\omega|}.]$

Úloha 4 ([10 bodů]). Pomocí Laplaceovy transformace nalezněte řešení diferenciální rovnice

$$y''(t) + y'(t) - 2y(t) = e^t$$

splňující počáteční podmínky y(0) = 1 a y'(0) = 0.

$$\int a \frac{\partial u}{\partial x} = -\lambda e^{2\theta} sim(dx) + 6x^2y + \beta y^3$$

$$\frac{\partial^2 u}{\partial x^2} = -\lambda^2 e^{2\theta} cos(dx) + 12xy$$

$$\frac{\partial M}{\partial y} = 2e^{2y} \cos(kx) + 2x^3 + 3\beta xy^2$$

$$\frac{\partial M}{\partial y^2} = 4e^{2y} \cos(kx) + 6\beta xy$$

$$\Delta M = 0 + (ky) \in |R^{2} L =) - \int_{R}^{2} z^{3} \cos(dx) + 12ky + 4k^{2} \delta \cos(dx) + 6\beta ky = 0 + ky \in |R|$$

$$= 0 + (ky) \in |R^{2} L =) - \int_{R}^{2} z^{3} \cos(dx) + 12ky + 4k^{2} \delta \cos(dx) + 6\beta ky = 0 + ky \in |R|$$

$$= 0 + (ky) \in |R^{2} L =) - \int_{R}^{2} z^{3} \cos(dx) + (12+6\beta) ky = 0 + ky \in |R|$$

$$= 0 + (ky) \in |R^{2} L =) - \int_{R}^{2} z^{3} \cos(dx) + (12+6\beta) ky = 0 + ky \in |R|$$

$$= 0 + (ky) \in |R^{2} L =) - \int_{R}^{2} z^{3} \cos(dx) + (12+6\beta) ky = 0 + ky \in |R|$$

$$= 0 + (ky) \in |R^{2} L =) - \int_{R}^{2} z^{3} \cos(dx) + (12+6\beta) ky = 0 + ky \in |R|$$

$$= 0 + (ky) = 0 + ky = 0 +$$

$$\frac{\partial N}{\partial y} = \frac{\partial M}{\partial x} = -2e^{2y} sim(2x) + 6x^{2}y - 2y^{3}$$

$$\frac{N(x_{1}, y)}{\partial x} = \int -2e^{2y} sim(2x) + 6x^{2}y - 2y^{3} dy = -e^{2y} sim(2x) + 3x^{2}y^{2} - \frac{y^{4}}{2} + C(x)$$

$$\frac{\partial N}{\partial x} = -2M - -2e^{2y} sim(2x) = 0.3$$

$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} = -2e^{2y}\cos(2x) + 3x^{2}y^{2} - \frac{1}{4}$$

$$\frac{\partial v}{\partial x} = -2e^{2\eta}\cos(2x) + 6xy^{2} + C(x)$$

$$= -\frac{x^{4}}{2} + k$$

$$lde k \in \mathbb{R}$$

$$V(x_1y) = -e^{2y} sim(2x) + 3x^2y^2 - \frac{x^4}{2} - \frac{5^4}{2} + K$$

$$f(2i) = u(0,2) + iv(0,2) = e^4$$

$$V(0,2) = 0$$

 $0+0-0-8+k=0 = 0$ $K=8$

3) a)
$$f(A) = \frac{A-1+i}{(A^2-4A+5)^2} = \frac{1}{(A-2-i)(A-2+i)}$$

$$\int_{-4/4+5}^{2} -4/4+5 = 0$$

$$(A-2)^2 = -1$$

$$A = 2\pm i$$

$$\int_{-4/2}^{2} -2\pi i AA_{2-i} \frac{e^{-i\omega A}}{(A-2-i)^3(A-2+i)} dA$$

$$\frac{1}{2} = \frac{1}{2} \frac{e^{-i\omega A}}{(A-2-i)^3(A-2+i)} dA$$

$$\frac{1}{2} = \frac{1}{2} \frac{e^{-i\omega A}}{(A-2-i)^3(A-2+i)} = -2\pi i$$

$$\frac{1}{2} \frac{e^{-i\omega A}}{(A-2-i)^3(A-2+i)} = -2\pi i \frac{e^{-i\omega A}}{(A-2-i)^3(A-2-i)} = -2\pi$$

= 1 1 1+A2

4)
$$y''(\lambda) + y'(\lambda) - 2y(\lambda) = \lambda^{2}$$

$$y(0) = 1, y'(0) = 0$$

$$\lambda^{2} Y(\lambda) - \lambda + \lambda Y(\lambda) - 1 - 2Y(\lambda) = \frac{1}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{1}{\lambda - 1} + \lambda + 1$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^{2} + \lambda - 2) Y(\lambda) = \frac{\lambda^{2}}{\lambda - 1}$$

$$(\lambda^$$

$$y(3) = \frac{4}{9}e^{-2x} + \frac{5}{9}e^{x} + \frac{1}{3}e^{x}$$