

Greedy Algorithms Chapter 1

Mrs. Bhumi Shah

Assistant ProfessorComputer Science and Engineering

Parul® University NAAC GRADE GRADE

Content

- 1. Introduction, Elements of Greedy Strategy
- 2. Minimum Spanning Tree:
- Kruskal's Algorithm
- Prim's Algorithm
- Dijkstra's Algorithm
- 3. Knapsack Problem, Activity Selection Problem, Huffman Codes

Introduction to Greedy Strategy

- A Greedy Algorithm builds up a solution piece by piece, always choosing the option that looks best at the moment.
- It does not reconsider its choices once made.
- Works well for optimization problems (e.g., minimum, maximum).
- Simpler and more efficient than dynamic programming but doesn't always guarantee optimal solution.

Characteristics of Greedy Algorithms

Greedy Choice Property:

- A global optimum can be arrived at by selecting a local optimum.
- Feasibility: Only choose options that satisfy the problem's constraints.
- Optimal Substructure: A problem has an optimal solution that includes optimal solutions to subproblems.

When to Use Greedy Algorithms

When a problem exhibits:

- Greedy-choice property
- Optimal substructure

If a greedy approach fails to provide the correct solution, consider Dynamic Programming.

Real-Life Examples of Greedy Strategy

- Coin Change Problem (Limited to certain denominations)
- Activity Selection Problem
- Huffman Coding
- Kruskal's and Prim's Algorithms for Minimum Spanning Tree
- Dijkstra's Algorithm for Shortest Path

Elements of Greedy Strategy

- 1. Candidate Set: A list of possible candidates to be chosen.
- 2. Selection Function: Chooses the best candidate to add to the solution.
- 3. Feasibility Function: Determines whether a candidate can be added without violating the problem's constraints.
- Solution Function: Determines whether a complete solution has been reached.

Parul® University NAAC OH-Vadodara, Gujarat

Greedy Algorithm Structure (Pseudo-code)

```
Greedy(A)
  solution = Ø
  while feasible(solution)
    x = select(A)
  if is_feasible(solution, x)
    solution = solution U {x}
  return solution
```


https://paruluniversity.ac.in/

Greedy Algorithms Chapter 1

Mrs. Bhumi Shah

Assistant ProfessorComputer Science and Engineering

Parul® University NAAC GRADE GRADE

Content

- 1. Introduction, Elements of Greedy Strategy
- 2. Minimum Spanning Tree:
- Kruskal's Algorithm
- Prim's Algorithm
- Dijkstra's Algorithm
- 3. Knapsack Problem, Activity Selection Problem, Huffman Codes

Introduction to Greedy Strategy

- A **Greedy Algorithm** builds up a solution **piece by piece**, always choosing the option that looks best at the moment.
- It does not reconsider its choices once made.
- Works well for optimization problems (e.g., minimum, maximum).
- Simpler and more efficient than dynamic programming but doesn't always guarantee optimal solution.

Characteristics of Greedy Algorithms

Greedy Choice Property:

- A global optimum can be arrived at by selecting a local optimum.
- Feasibility: Only choose options that satisfy the problem's constraints.
- Optimal Substructure: A problem has an optimal solution that includes optimal solutions to subproblems.

When to Use Greedy Algorithms

When a problem exhibits:

- Greedy-choice property
- Optimal substructure

If a greedy approach fails to provide the correct solution, consider Dynamic Programming.

Real-Life Examples of Greedy Strategy

- Coin Change Problem (Limited to certain denominations)
- Activity Selection Problem
- Huffman Coding
- Kruskal's and Prim's Algorithms for Minimum Spanning Tree
- Dijkstra's Algorithm for Shortest Path

Elements of Greedy Strategy

- 1. Candidate Set: A list of possible candidates to be chosen.
- 2. Selection Function: Chooses the best candidate to add to the solution.
- 3. Feasibility Function: Determines whether a candidate can be added without violating the problem's constraints.
- Solution Function: Determines whether a complete solution has been reached.

Parul® University NAAC GRADE GRADE

Greedy Algorithm Structure (Pseudo-code)

```
Greedy(A)
  solution = Ø
  while feasible(solution)
    x = select(A)
  if is_feasible(solution, x)
    solution = solution U {x}
  return solution
```


Introduction to Minimum Spanning Tree (MST)

Let $G = \langle N, A \rangle$ be a **connected, undirected graph** where,

- 1. N is the set of nodes and
- 2. A is the set of edges.

Each edge has a given positive length or weight.

A spanning tree of a graph G is a sub-graph which is basically a tree and it contains all the vertices of G but does not contain cycle.

A minimum spanning tree (MST) of a weighted connected graph G is a spanning tree with minimum or smallest weight of edges.

Two Algorithms for constructing minimum spanning tree are,

- 1. Kruskal's Algorithm
- 2. Prim's Algorithm

Parul® University NAAC CH+

Information and **Communication Technology**

Spanning Tree Examples A **Spanning Tree** Graph B B H Graph **Spanning Tree** B

Parul® University NAAC GRADE GRADE

Prim's Algorithm for MST – Example 1

Step:1 Select an arbitrary node.

	et an arbitrary float.
Node - Set B	Edges
1	
1 1	

Parul® University NAAC OF GRADE Vadodara, Gujarat

Prim's Algorithm for MST – Example 1

Parul® University NAAC GRADE Vadodara, Gujarat

Prim's Algorithm for MST – Example 1

Information and **Communication Technology**

Prim's Algorithm for MST – Example 1

Step	Edge Selected	Set B	Edges Considered
	{u, v}		
Init.	-	{1}	
1	{1, 2}	{1,2}	{1,2} {1,4}
2	{2, 3}	{1,2,3}	{1,4} {2,3 } {2,4} {2,5}
3	{1, 4}	{1,2,3,4}	{1,4} {2,4} {2,5} {3,5} {3,6}
4	{4, 5}	{1,2,3,4,5}	{2,4} {2,5} {3,5} {3,6} {4,5} {4,7}
5	{4, 7}	{1,2,3,4,5,7}	{2,4} {2,5} {3,5} {3,6} {4,7} {5,6} {5,7}
6	{6,7}	{1,2,3,4,5,6,7}	{2,4} {2,5} {3,5} {3,6} {5,6} {5,7} {6,7 }

Parul® University NAAC GRADE Vadodara, Gujarat

Prim's Algorithm

```
Function Prim(G = (N, A): graph; length: A - R+): set of edges
T \leftarrow \emptyset
B \leftarrow \{an arbitrary member of N\}
while B ≠ N do
     find e = {u, v} of minimum length such that
          u \in B and v \in N \setminus B
     T \leftarrow T \cup \{e\}
     B \leftarrow B \cup \{v\}
return T
```


Exercises – Home Work

Write the Prim's Algorithm to find out Minimum Spanning Tree. Apply the same and find MST for the graph given below.

2.

Kruskal's Algorithm for MST – Example 1

Step 1: Taking min edge (C,D)

Step 2: Taking next min edge (B,C)

Step 3: Taking next min edge (B,E)

Step 4: Taking next min edge (A,B)

So, we obtained a minimum spanning tree of cost:

$$4 + 2 + 1 + 3 = 10$$

Kruskal's Algorithm for MST – Example 2

Step:1

Sort the edges in increasing order of their weight.

Edges	Weight	
{1, 2}	1	
{2, 3}	2	
{4, 5}	3	
{6, 7}	3	
{1, 4}	4	
{2, 5}	4	
{4, 7}	4	
{3, 5)	5	
{2, 4}	6	
{3, 6}	6	
{5, 7}	7	
{5, 6}	8	

Kruskal's Algorithm for MST – Example 2

Step:2

Select the minimum weight edge but no cycle.

Edges	Weight	
{1, 2}	1	1
{2, 3}	2	1
{4, 5}	3	1
{6, 7}	3	1
{1, 4}	4	1
{2, 5}	4	
{4, 7}	4	1
{3, 5)	5	
{2, 4}	6	
{3, 6}	6	
{5, 7}	7	
{5, 6}	8	

Parul® University NAAC CH+

Kruskal's Algorithm for MST – Example 2

return T

```
Kruskal's Algorithm
Function Kruskal(G = (N, A))
Sort A by increasing length
n \leftarrow the number of nodes in N
T \leftarrow \emptyset {edges of the minimum spanning tree}
Define n sets, containing a different element of set N
repeat
    e \leftarrow \{u, v\} //e is the shortest edge not yet considered
    ucomp \leftarrow find(u)
                         find(u) tells in which connected component a node u is
    vcomp \leftarrow find(v)
                          found
    if ucomp ≠ vcomp then merge(ucomp, vcomp)
                                           merge(ucomp, vcomp) is used to merge
    T \leftarrow T \cup \{e\}
                                           two connected components.
until T contains n - 1 edges
```


Exercises – Home Work

- The complexity for the Kruskal's algorithm is in $\theta(a \log n)$ where a is total number of edges and n is the total number of nodes in the graph G.
- Write the kruskal's Algorithm to find out Minimum Spanning Tree.
 Apply the same and find MST for the graph given below.

2.

Dijkstra's Algorithm

- Consider now a directed graph G = (N, A) where N is the set of nodes and A is the set of directed edges of graph G.
- Each edge has a positive length.
- One of the nodes is designated as the source node.
- The problem is to determine the length of the shortest path from the source to each of the other nodes of the graph.
- Dijkstra's Algorithm is for finding the shortest paths between the nodes in a graph.
- For a given source node, the algorithm finds the shortest path between the source node and every other node.
- The algorithm maintains a matrix L which gives the length of each directed edge:

$$L[i,j] \ge 0$$
 if the edge $(i,j) \in A$, and $L[i,j] = \infty$ otherwise.

Dijkstra's Algorithm - Example

Single source shortest path algorithm

			Source node = 1			
Step	V	C	2	3	4	5
<u>Init.</u>	-	{2, 3, 4, 5}	50	30	<u>100</u>	10
1	5	{2, 3, 4}	50	30	20	10

Is there path from 1 - 5 - 4

Yes

Compare cost of 1-5-4 (20) and 1-4 (100)

Dijkstra's Algorithm - Example

Single source shortest path algorithm

			Source node = 1			
Step	V	C	2	3	4	5
Init.	-	{2, 3, 4, 5}	50	30	100	10
1	5	{2, 3, 4}	50	30	20	10
2	4	{2, 3}	40	30	20	10

Is there path from 1 - 4 - 5

No

Compare cost of 1-4-3 (70) and 1-3 (30)

Dijkstra's Algorithm - Example

Single source shortest path algorithm

			Source node = 1			
Step	V	C	2	3	4	5
<u>Init.</u>	-	{2, 3, 4, 5}	50	30	100	10
1	5	{2, 3, 4}	50	30	20	10
2	4	{2, 3}	40	30	20	10
3	3	{2}	35	30	20	10

Compare cost of 1-3-2 and 1-2

Exercises – Home Work

Write Dijkstra's Algorithm for shortest path. Use the algorithm to find the shortest path from the following graph.

Parul® University NAAC GRADE GRADE

Exercises – Home Work

```
Function Dijkstra(L[1 .. n, 1 .. n]): array [2..n]
array D[2.. n]
C \leftarrow \{2,3,...,n\}
{S = N \setminus C \text{ exists only implicitly}}
for i \leftarrow 2 to n do
    D[i] \leftarrow L[1, i]
repeat n - 2 times
    v \leftarrow some element of C minimizing D[v]
    C \leftarrow C \setminus \{v\} {and implicitly S \leftarrow S \cup \{v\}}
    for each w \in C do
          D[w] \leftarrow min(D[w], D[v] + L[v, w])
return D
```


https://paruluniversity.ac.in/

Greedy Algorithms Chapter 1

Mrs. Bhumi Shah

Assistant ProfessorComputer Science and Engineering

Parul® University NAAC GRADE GRADE

Content

- 1. Introduction, Elements of Greedy Strategy
- 2. Minimum Spanning Tree:
- Kruskal's Algorithm
- Prim's Algorithm
- Dijkstra's Algorithm
- 3. Knapsack Problem, Activity Selection Problem, Huffman Codes

Information and **Communication Technology**

Knapsack Problem

Fractional Knapsack Problem

- We are given n objects and a knapsack.
- Object i has a positive weight w_i and a positive value v_i for $i = 1, 2 \dots n$.
- The knapsack can carry a weight not exceeding W.
- Our aim is to fill the knapsack in a way that maximizes the value of the included objects, while respecting the capacity constraint.
- In a fractional knapsack problem, we assume that the objects can be broken into smaller pieces.

Fractional Knapsack Problem

- So we may decide to carry only a fraction x_i of object i, where $0 \le x_i \le 1$.
- In this case, object i contribute $x_i w_i$ to the total weight in the knapsack, and $x_i v_i$ to the value of the load.
- Symbolic Representation of the problem can be given as follows:

maximize
$$\sum_{i=1}^{n} x_i v_i$$
 subject to $\sum_{i=1}^{n} x_i w_i \leq W$
Where, $v_i > 0$, $w_i > 0$ and $0 \leq x_i \leq 1$ for $1 \leq i \leq n$.

Fractional Knapsack Problem - Example

- We are given 5 objects and the weight carrying capacity of knapsack is W = 100.
- For each object, weight w_i and value v_i are given in the following table.

Obj i	1	2	3	4	5	
v_i	20	30	66	40	60	
w_i	10	20	30	40	50	

 Fill the knapsack with given objects such that the total value of knapsack is maximized.

Fractional Knapsack Problem - Greedy Solution

Three Selection Functions can be defined as,

- 1. Sort the items in **descending order of their values** and select the items till weight criteria is satisfied.
- 2. Sort the items in **ascending order of their weight** and select the items till weight criteria is satisfied.
- 3. To calculate the **ratio value/weight** for each item and sort the item on basis of this ratio. Then take the item with the highest ratio and add it.

Vadodara, Gujarat Fractional Knapsack Problem - Greedy Solution

Object i	1	2	3	4	5
v_i	20	30	66	40	60
w_i	_10_	_20_	_30_	40	50

Selection		Value				
	1	2	3	4	5	
$Max v_i$						
Min w _i						
$\operatorname{Max}^{v_i}/w_i$						

Weight Capacity 100								
30 50 20								
10	20	30	40					
30	10	20	40					

Profit = 66 + 20 + 30 + 48 = 164

Parul® University NAAC OHIGRADE Vadodara, Gujarat

Fractional Knapsack Problem - Algorithm

```
Algorithm: Greedy-Fractional-Knapsack (w[1..n],
p[1..n], W)
for i = 1 to n do
   x[i] \leftarrow 0; weight \leftarrow 0
While weight < W do
   i ← the best remaining object
       if weight + w[i] ≤ W then
          x[i] \leftarrow 1
          weight ← weight + w[i]
       else
          x[i] \leftarrow (W - weight) / w[i]
          weight ← W
return x
```


Exercises – Home Work

- 1. Consider Knapsack capacity W=50, w=(10, 20, 40) and v=(60, 80, 100) find the maximum profit using greedy approach.
- 2. Consider Knapsack capacity W = 10, w = (4, 8, 2, 6, 1) and v = (12, 32, 40, 30, 50). Find the maximum profit using greedy approach.

Activity Selection Problem

- The Activity Selection Problem is an optimization problem which deals with the selection of non-overlapping activities that needs to be executed by a single person or a machine in a given time duration.
- An activity-selection can also be applicable for scheduling a resource among several competing activities.
- We are given a set S of n activities with start time s_i and finish time f_i , of an i^{th} activity. Find the maximum size set of mutually compatible activities.
- Activities i and j are compatible if the half-open internal $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap, that is, i and j are compatible if $s_i \ge f_j$ or $s_j \ge f_i$.

Parul® University NAAC GRADE Vadodara, Gujarat

Activity Selection Problem-Example

Sr.	Activity	(s_i, f_i)
1	Р	(1, 4)
2	Q	(3, 5)
3	R	(0, 6)
4	S	(5, 7)
5	Т	(3, 8)
6	U	(5, 9)
7	V	(6, 10)
8	W	(8, 11)
9	Х	(8, 12)
10	Υ	(2, 13)
11	Z	(12, 14)

Solution:

Step 1:

Sort the activities of set S as per increasing finish time to directly identify mutually compatible activities comparing finish time of first activity and start time of next activity

Parul® University NAAC GRADE GRADE

Activity Selection Problem-Example

Sr.	Activity	(s_i, f_i)
1	Р	(1, 4)
2	Q	(3, <mark>5)</mark>
3	R	(0/6)
4	S	(5, 7)
5	Т	(3, 8)
6	U	(5, 9)
7	V	(6, 10)
8	W	(8, 1,1)
9	X	(8, 12)
10	Υ	(2, 13)
11	Z	(12, 14)

```
Step 2:
```

Parul® University NAAC Vadodara, Gujarat

Activity Selection Problem

Algorithm: Activity Selection

Step I: Sort the input activities by increasing finishing time. $f_1 \le f_2 \le ... \le f_n$

```
Step II: Call GREEDY-ACTIVITY-SELECTOR (s, f)
    n = length [s]
    A = \{i\}
    j = 1
    for i = 2 to n
     do if s_i \ge f_i
        then A = A \cup \{i\}
              j = i
    return set A
```


- Prefix code is used for encoding(compression) and Decoding(Decompression).
- Prefix Code: Any code that is not prefix of another code is called prefix code.

Characters	Frequency	Code	Bits				
a	45	000	135				
b	13	111	39				
С	12	101	36				
d	16	110	48				
е	9	011	27				
f	5	001	5				
	Total bits						

- Huffman invented a greedy algorithm that constructs an optimal prefix code called a Huffman code.
- Huffman coding is a lossless data compression algorithm.
- It assigns variable-length codes to input characters.
- Lengths of the assigned codes are based on the frequencies of corresponding characters.
- The most frequent character gets the smallest code and the least frequent character gets the largest code.
- The variable-length codes assigned to input characters are Prefix Codes.

 In Prefix codes, the codes are assigned in such a way that the code assigned to one character is not a prefix of code assigned to any other character.

For example,

a = 01, b = 010 and c = 11 Not a prefix code

- This is how Huffman Coding makes sure that there is no ambiguity when decoding the generated bit stream.
- There are mainly two major parts in Huffman Coding
- Build a Huffman Tree from input characters.
- Traverse the Huffman Tree and assign codes to characters.

Find the Huffman codes for the following characters.

Characters	a	b	C	d	e	f
Frequency (in thousand)	45	13	12	16	9	5

Step 1:

Arrange the characters in the Ascending order of their frequency.

f:5

e:9

c:12

b:13

d:16

a:45

Information and **Communication Technology**

Huffman Codes

Step 2:

- Extract two nodes with the minimum frequency.
- Create a new internal node with frequency equal to the sum of the two nodes frequencies.

✓ Make the first extracted node as its left child and the other extracted node. as its right child.

b:13 c:12

d:16

a:45

Step 3:

- ✓ Rearrange the tree in ascending order.
- ✓ Assign 0 to the left branch and 1 to the right branch.
- ✓ Repeat the process to complete the tree.

Information and **Communication Technology**

Information and **Communication Technology**

Step 6:

Step 7:

Parul® University NAAC GRADE GRADE

25

b:13

30

14

Information and **Communication Technology**

d:16


```
Algorithm: HUFFMAN (C)

n = |C|
Q = C

for i = 1 to n-1
    allocate a new node z
    z.left = x = EXTRACT-MIN(Q)
    z.right = y = EXTRACT-MIN(Q)
    z.freq = x.freq + y.freq
    INSERT(Q,z)

return EXTRACT-MIN(Q) // return the root of the tree
```


Exercises – Home Work

Find an optimal Huffman code for the following set of frequency.

1. a:50, b:20, c:15, d:30.

2. Frequency

Characters	Α	В	С	D	E	F
Frequency (in	2/1	12	10	0	0	_
thousand)	24	12		0	0)

3. Frequency

Characters	a	b	С	d	е	f	g
Frequency (in thousand)	37	28	29	13	30	17	6

https://paruluniversity.ac.in/

