Departamento de Física Universidade de Aveiro

Modelação de Sistemas Físicos

13ª Aula Teórica

Sumário:

Cap. 9

Osciladores acoplados: Modos Normais.

Osciladores acoplados forçados.

Resolução de problemas.

Bibliografia:

MSF 2022 - T 13

Capítulo 9 Osciladores Acoplados e Ondas

Waves and oscillations (bhaskar-kamble.github.io)

Programmable coupled oscillators for synchronized locomotion, Dutta et al, Nature Communications, 2019

MSF 2022 - T 13 3

Modelos da matéria

2 corpos A e B acoplados através de uma mola de constante elástica k', e Ligados a um ponto fixo através de molas de constante elástica k

Como são as oscilações? Que frequências?

2 corpos A e B acoplados através de uma mola de constante elástica k', e Ligados a um ponto fixo através de molas de constante elástica k Como são as oscilações? Que frequências?

Vamos tentar encontrar a lei do movimento dos 2 corpos.

- Que forças aplicada a cada um dos corpos?
- Equação dinâmica de Newton para cada corpo
- Resolver a eq. dinâmica pelo método de Euler-Cromer (oscilações)

2 corpos A e B acoplados através de uma mola de constante elástica k', e Ligados a um ponto fixo através de molas de constante elástica k

Vamos tentar encontrar a lei do movimento dos 2 corpos segundo o eixo OX – oscilações longitudinais - Que forças aplicada a cada um dos corpos?

Corpo A
$$F_{Ax} = -k \left(x_A - x_{Aeq} \right) - k' \left(\left(x_A - x_{Aeq} \right) - \left(x_B - x_{Beq} \right) \right)$$

Corpo B
$$F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

2 corpos A e B acoplados através de uma mola de constante elástica k', e Ligados a um ponto fixo através de molas de constante elástica k

Vamos tentar encontrar a lei do movimento dos 2 corpos segundo o eixo OX – oscilações longitudinais - Equação dinâmica de Newton para cada corpo

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

Corpo B
$$m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

Note: as equações estão acopladas: Na equação do corpo A aparece a coordenada do corpo B

2 corpos A e B acoplados através de uma mola de constante elástica k', e Ligados a um ponto fixo através de molas de constante elástica k

Corpo A
$$m \frac{d^2x_A}{dt^2} = F_{Ax} = -k \left(x_A - x_{Aeq}\right) - k' \left(\left(x_A - x_{Aeq}\right) - \left(x_B - x_{Beq}\right)\right)$$

Corpo B
$$m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

$$k = 1\frac{N}{m}$$
; $k' = 0.5\frac{N}{m}$; $m = 1 \text{ kg}$

$$x_{Aeq} = 1.0 \text{ m } x_{Beq} = 1.2 \text{ m}$$

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$

 $x_{B0} = x_{Beq}$
 $v_{Bx0} = v_{Bx0} = 0$

Movimento não periódico

2 corpos A e B acoplados através de uma mola de constante elástica k', e Ligados a um ponto fixo através de molas de constante elástica k

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

Corpo B $m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$
 $k = 1 \frac{N}{m}$; $k' = 0.5 \frac{N}{m}$; $m = 1 \text{ kg}$; $x_{Aeq} = 1.0 \text{ m}$ $x_{Beq} = 1.2 \text{ m}$

Condições iniciais:

Igualmente afastados das suas posições de equilíbrio

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$
 $x_{B0} = x_{Beq} + 0.05 \text{ m}$
 $v_{Ax0} = v_{Bx0} = 0$

A mola do meio não interfere (no início)

Movimento periódico harmónico T= 6.283 s $A=x_{eq}+0.05$ m $\omega_1=1$ rad/s

2 corpos A e B acoplados através de uma mola de constante elástica k', e Ligados a um ponto fixo através de molas de constante elástica k

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

Corpo B $m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$
 $k = 1 \frac{N}{m}$; $k' = 0.5 \frac{N}{m}$; $m = 1 \text{ kg}$; $x_{Aeq} = 1.0 \text{ m}$ $x_{Beq} = 1.2 \text{ m}$

Condições iniciais:

Igualmente afastados das suas posições de equilíbrio

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$
 $x_{B0} = x_{Beq} - 0.05 \text{ m}$
 $v_{Ax0} = v_{Bx0} = 0$

Movimento periódico harmónico T= 4.442 s $A=x_{eq}+0.05$ m $\omega_2=1.414$ rad/s

Modo normal 1 ω

$$\omega_1 = 1 \text{ rad/s}$$

Modo normal 2 $\omega_2 = 1.414 \text{ rad/s}$

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

Corpo B $m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$

$$x_{Aeq} = 1.0 \text{ m} \ x_{Aeq} = 1.2 \text{ m}$$

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$

 $x_{B0} = x_{Beq}$
 $v_{Ax0} = v_{Bx0} = 0$

Movimento não periódico

$$\begin{cases} x_A = x_{eqA} + A_1 \cos(\omega_1 t + \phi_1) + A_2 \cos(\omega_2 t + \phi_2) \\ x_B = x_{eqB} + A_1 \cos(\omega_1 t + \phi_1) - A_2 \cos(\omega_2 t + \phi_2) \end{cases}$$
?

Mas é uma sobreposição dos modos normais (movimento sinuspidal simples)?

Modos Normais

$$m \frac{d^{2}x_{A}}{dt^{2}} = F_{Ax} = -k \left(x_{A} - x_{Aeq} \right) - k' \left(\left(x_{A} - x_{Aeq} \right) - \left(x_{B} - x_{Beq} \right) \right)$$

Corpo B

$$m \frac{d^{2}x_{A}}{dt^{2}} = F_{Bx} = -k \left(x_{B} - x_{Beq} \right) + k' \left(\left(x_{A} - x_{Aeq} \right) - \left(x_{B} - x_{Beq} \right) \right)$$

$$X_{A} \qquad X_{B}$$

Substituindo

$$\begin{cases} x_A = x_{eqA} + A_1 \cos(\omega_1 t + \phi_1) + A_2 \cos(\omega_2 t + \phi_2) \\ x_B = x_{eqB} + A_1 \cos(\omega_1 t + \phi_1) - A_2 \cos(\omega_2 t + \phi_2) \end{cases}$$

Obtêm-se (problema de valores e vetores próprios) :
$$\omega_1 = \sqrt{\frac{k}{m}}$$
 e $\omega_2 = \sqrt{\frac{k+2kr}{m}}$

E a amplitudes e as fases iniciais: A_1, A_2, ϕ_1 e ϕ_2 ?

Corpo A
$$m \frac{d^2x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

Corpo B $m \frac{d^2x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$

$$x_{Aeq} = 1.0 \text{ m } x_{Aeq} = 1.2 \text{ m}$$

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$

$$x_{B0} = x_{Beq}$$

$$v_{Ax0} = v_{Bx0} = 0$$

$$\begin{cases} x_A = x_{eqA} + A_1 \cos(\omega_1 t + \phi_1) + A_2 \cos(\omega_2 t + \phi_2) \\ x_B = x_{eqB} + A_1 \cos(\omega_1 t + \phi_1) - A_2 \cos(\omega_2 t + \phi_2) \\ v_{xA} = -\omega_1 A_1 \sin(\omega_1 t + \phi_1) - \omega_2 A_2 \sin(\omega_2 t + \phi_2) \\ v_{xB} = -\omega_1 A_1 \sin(\omega_1 t + \phi_1) + \omega_2 A_2 \sin(\omega_2 t + \phi_2) \end{cases}$$

$$\mathsf{para}\;\mathsf{t}=0$$

para t = 0
$$\begin{cases} x_{eqA} + 0.05 = x_{eqA} + A_1 \cos(\phi_1) + A_2 \cos(\phi_2) \\ x_{eqB} = x_{eqB} + A_1 \cos(\phi_1) - A_2 \cos(\phi_2) \\ 0 = -\omega_1 A_1 \sin(\phi_1) - \omega_2 A_2 \sin(\phi_2) \\ 0 = -\omega_1 A_1 \sin(\phi_1) + \omega_2 A_2 \sin(\phi_2) \end{cases}$$

4 equações a 4 incógnitas.

MSF 20122 - T 13
$$\phi_1 = \phi_2 = 0$$
 e $A_1 = A_2 = 0.025$ m

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

Corpo B $m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$

$$x_{Aeq} = 1.0 \text{ m} \ x_{Aeq} = 1.2 \text{ m}$$

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$

 $x_{B0} = x_{Beq}$
 $v_{Ax0} = v_{Bx0} = 0$

$$\begin{cases} x_A = x_{eqA} + A_1 \cos(\omega_1 t + \phi_1) + A_2 \cos(\omega_2 t + \phi_2) \\ x_B = x_{eqB} + A_1 \cos(\omega_1 t + \phi_1) - A_2 \cos(\omega_2 t + \phi_2) \end{cases}$$
 Certo! Com $\omega_1 = \sqrt{\frac{k}{m}}$ e $\omega_2 = \sqrt{\frac{k+2k'}{m}}$

Mas é uma sobreposição de 2 movimentos harmónicos

Qualquer movimento de 2 corpos acoplados por interação elástica é uma sobreposição de MODOS NORMAIS

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$
 M M M XA XB Corpo B $m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$

$$x_{Aeq} = 1.0 \text{ m}$$
 $x_{Aeq} = 1.2 \text{ m}$ $k = 1 \frac{N}{m}; k' = 0.5 \frac{N}{m}; m = 1 \text{ kg}$

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$

 $x_{B0} = x_{Beq}$
 $v_{Ax0} = v_{Bx0} = 0$

Problema 9.1:

Obter a evolução dos corpos A e B

- a) Usando o método de Euler-Cromer
- b) usando a sobreposição dos modos normais

$$\begin{cases} x_A(t) = x_{eqA} + A_1 \cos(\omega_1 t + \phi_1) + A_2 \cos(\omega_2 t + \phi_2) \\ x_B(t) = x_{eqB} + A_1 \cos(\omega_1 t + \phi_1) - A_2 \cos(\omega_2 t + \phi_2) \end{cases}$$

Com
$$\phi_1 = \phi_2 = 0$$
 e $A_1 = A_2 = 0.025$ m

$$\omega_1 = \sqrt{\frac{k}{m}} = 1 \text{ rad/s}$$
 e $\omega_2 = \sqrt{\frac{k+2k'}{m}} = 1.414 \text{ rad/s}$

c) e verificar que as soluções encontradas são a mesma (iguais) T 13

K'

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq})) - bv_{Ax}$$

Corpo B $m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq})) - bv_{Bx}$

$$k = 1 \frac{N}{m}$$
; $k' = 0.5 \frac{N}{m}$; $m = 1 \text{ kg}$
 $b = 0.05$

$$x_{Aeq} = 1.0 \text{ m } x_{Aeq} = 1.2 \text{ m}$$

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$

 $x_{B0} = x_{Beq}$
 $v_{Ax0} = v_{Bx0} = 0$

Ambos os osciladores tendem para a Sua posição de equilíbrio

K'

M

K

haaaa

X

Forçado no corpo A:

$$k = 1 \frac{N}{m}$$
; $k' = 0.5 \frac{N}{m}$; $m = 1 \text{ kg}$

$$b = 0.05 \, \text{kg/s}$$

$$F_0=0.005\,N$$
 ; $\omega_f=1\,\mathrm{rad/s}$

$$x_{Aeq} = 1.0 \text{ m } x_{Beq} = 1.2 \text{ m}$$

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$

$$x_{B0} = x_{Beq} + 0.05 \text{ m}$$

$$v_{Ax0} = v_{Bx0} = 0$$

Cada oscilador tende para um regime estacionário

Harmónico simples. (?)

Podemos calcular

a amplitude, a frequência e a forma sinusoidal.

2 Osciladores Harmónicos Acoplados Amortecidos e Forçados

Forçado no corpo A:

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq})) - bv_{Ax} + F_0 \cos(\omega_f^A t)$$

Corpo B $m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq})) - bv_{Bx}$

Ressonância nos dois corpos na frequência dos modos normais (como no caso de um oscilador)

$$\omega_1 = \sqrt{\frac{k}{m}} = 1 \text{ rad/s e } \omega_2 = \sqrt{\frac{k+2k'}{m}} = 1.414 \text{ rad/s}$$

