

Equações Diferenciais

Soluções em série para equações lineares de segunda ordem

Prof. Adolfo Herbster 9 de Setembro de 2021

Lição atual: Revisão - série de potências

"Sobre tudo o que se deve guardar, guarda o teu coração, porque dele procedem as fontes da vida."

Série de potências - definição

Zill 6.2, Nagle 8.2, Boyce 5.1

Uma série infinita da forma

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + \ldots + a_n (x - x_0)^n,$$
 (1)

com a_0, a_1, \ldots, a_n constantes, é chamada de **série de potências** centrada em x_0 . Dizemos que a Eq. 1 **converge** no ponto x = c se a série infinita (de números reais) convergir, ou seja, se

$$\lim_{N \to \infty} \sum_{n=0}^{N} a_n (c - x_0)^n \tag{2}$$

existir. Se esse limite não existir, diz-se que a série de potências **diverge** em x = c.

Série de potências - definição

Teorema 1

Para qualquer série de potências

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n,$$

apenas uma destas afirmações é verdadeira:

- 1. A série de potências converge apenas para $x = x_0$;
- 2. A série de potências converge para todos os valores de x;
- 3. Há um número positivo R tal que a série de potências converge se $|x-x_0| < R$ e diverge se $|x-x_0| > R$.

O número R é o raio de convergência da série de potências. Uma série de constantes $\sum_{n=0}^{\infty} \alpha_n$ converge absolutamente se a série de valores absolutos $\sum_{n=0}^{\infty} |\alpha_n|$ converge.

Raio de convergência

Um dos testes mais úteis para a convergência absoluta de uma série de potências é o teste da razão. Se $a_n \neq 0$ e se, para um valor fixo de x,

$$\lim_{n \to \infty} \left| \frac{a_{n+1}(x - x_0)^{n+1}}{a_n(x - x_0)^n} \right| = |x - x_0| \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = |x - x_0| L, \tag{3}$$

então a série de potências converge absolutamente em x se $|x-x_0|L<1$ e diverge se $|x-x_0|L>1$ (com R=1/L. Se $|x-x_0|L=1$, o teste não é conclusivo.

Exemplo 1: Determine o conjunto de convergência, inclusive no limite |x-3|=R, de

$$\sum_{n=0}^{\infty} \frac{(-2)^n}{n+1} (x-3)^n.$$
 (4)

Raio de convergência

Exemplo 2: Determine o raio de convergência das seguintes séries:

•
$$\sum_{n=0}^{\infty} n! x^n$$

•
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n!}$$

•
$$\sum_{n=0}^{\infty} 2^n n^2 (x-1)^n$$

$$\bullet \ \sum_{n=0}^{\infty} \frac{(x-3)^n}{2^n n}$$

Série de Taylor e Maclaurin

Nagle 8.1

Se a função f possui derivadas de todas as ordens no ponto $x=x_0$, então a série de Taylor de f em x_0 é definida por:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n.$$
 (5)

No caso especial, quando $x_0 = 0$, então a série de chamada de série de Maclaurin de f. Algumas séries de Taylor de funções elementares ($-\infty < x < \infty$):

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \qquad \sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!},$$
 (6)

Exercício 1: Encontre os quatro primeiros terms de uma série de potências em x para $\sec x$.

Propriedades básicas

Sejam duas séries de potências

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n e g(x) = \sum_{n=0}^{\infty} b_n (x - x_0)^n$$
 (7)

com raio de convergência positivo e igual a R_1 e R_2 respectivamente. Então as seguinte propriedades são observadas:

Combinação linear

$$c_1 f(x) \pm c_2 g(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n$$
, com $c_n = c_1 a_n \pm c_2 b_n$; (8)

Multiplicação

$$f(x)g(x) = \sum_{n=0}^{\infty} d_n (x - x_0)^n, \text{ com } d_n = a_0 b_n + \dots + a_n b_0;$$
 (9)

Propriedades básicas

Diferenciação

$$f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1)\dots(n-k+1)a_n(x-x_0)^{n-k}.$$
 (10)

Como fica o raio de convergência da série resultante ?

Exemplo 3: Encontre a expansão em série de potências $\sum_{n=0}^{\infty} a_n x^n$, para f(x) + g(x), dadas as expansões para f(x) e g(x):

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n+1} x^n, \quad g(x) = \sum_{n=0}^{\infty} 2^{-(n+1)} x^n.$$
 (11)

Deslocamento do índice do somatório

O índice da somatória em uma série de potências é uma variável muda, assim como a variável de integração em uma integral definida. Para um inteiro k, a série de potências

$$\sum_{n=n_0}^{\infty} b_n (x - x_0)^{n-k} \tag{12}$$

pode ser reescrita como

$$\sum_{n=n_0-k}^{\infty} b_{n+k} (x - x_0)^n \tag{13}$$

ou seja, substituindo n por n+k no termo geral e subtraindo k do limite inferior do somatório não altera a série.

Deslocamento do índice do somatório

Exemplo 4: Expresse a série

$$\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2}$$
 (14)

como uma série onde o termo genérico é x^k em vez de x^{n-2} .

Solução: Definindo k = n - 2, temos n = k + 2 e n - 1 = k + 1. Observe que, quando n = 2, então k = 0. Logo, substituindo na série inicial, temos:

$$\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} = \sum_{k=0}^{\infty} (k+2)(K+1)a_{k+2} x^k.$$
 (15)

Deslocamento do índice do somatório

Exemplo 5: Reescreva as seguintes séries de potências de forma que o termo geral em cada uma seja uma constante multiplicada por $(x - x_0)^n$.

•
$$\sum_{n=2}^{\infty} n(n-1)a_n(x-x_0)^{n-2}$$

•
$$\sum_{n=k}^{\infty} n(n-1) \dots (n-k+1) a_n (x-x_0)^{n-k}$$

Exemplo 6: Mostre que

$$x^{2} \sum_{n=0}^{\infty} n(n+1) a_{n} x^{n} = \sum_{n=2}^{\infty} (n-2) (n-1) a_{n-2} x^{n}.$$
 (16)

Série de potências e equações diferenciais

Aplicação

Exercício 2: Suponha que

$$y = \sum_{n=0}^{\infty} a_n x^n \tag{17}$$

seja definida em um intervalo aberto I que contém a origem.

- Determine d^2y/dx^2 .
- Determine (2-x)y'' + 2y como uma série de potência em x no intervalo I.
- A partir do resultado anterior, determine as condições necessárias e suficientes dos coeficientes a_n para que y seja a solução da equação homogênea (2-x)y''+2y=0 no intervalo I.

Próxima aula ...

No próximo encontro vamos determinar a solução de uma equação diferencial ordinária de ordem 2 homogênea

$$y'' + y = 0, (18)$$

considerando que a solução é expressa como

$$y(x) = \sum_{n=0}^{\infty} a_n x^n.$$

Lição atual: Soluções em série na vizinhança de um ponto ordinário - I

"Alguns acreditam que deve haver um esforço da parte de quem fala, e da parte de quem ouve, nenhum ...

Na verdade, se até mesmo um convidado agradável tem uma função a desempenhar, tanto mais o ouvinte ..."

Soluções de E.D.O.¹ em série de potências

Para alguns problemas físicos, como a propagação de uma onda eletromagnética no espaço livre, a equação diferencial que descreve este sistema é expressa como

$$P_0(x)y'' + P_1(x)y' + P_2(x)y = 0, (19)$$

em que $P_0(x)$, $P_1(x)$ e $P_2(x)$ são polinômios. Usualmente as soluções desta família de equações diferenciais, desconsiderando as equações de Cauchy-Euler e as equações diferenciais com coeficientes constantes, não podem ser expressas como uma família de soluções elementares.

¹Equações Diferenciais Ordinárias

Soluções de E.D.O. em série de potências Definições

Podemos expressar a Eq. 19 como:

$$y'' + \frac{P_1(x)}{P_0(x)}y' + \frac{P_2(x)}{P_0(x)}y = y'' + p(x)y' + q(x)y = 0$$
 (20)

Se $P_0(x_0) \neq 0$, então x_0 é um ponto **ordinário**, caso contrário $[P_0(x_0) = 0]$, x_0 é dito ser **singular**. Exemplos:

- Equação de Legendre: $(1-x^2)y'' 2xy' + \alpha(\alpha+1)y = 0$ com $x_0 \pm 1$;
- Equação de Bessel: $x^2y'' + xy' + (x^2 \nu^2)y = 0$ com $x_0 = 0$;
- Equação de Airy: y'' xy = 0.

A partir do Teorema da Existência e Unicidade visto na unidade anterior (Equações Diferenciais de ordem 2), sendo p(x) e q(x) contínuas em um intervalo I, a solução da Eq. 20 apresenta solução única para a condição $y(x_0)=a_0$ e $y'(x_0)=a_1$.

Nagle 8.3, Zill 6.3, Boyce 5.2

Nesta primeira etapa, iremos verificar a solução de equações diferenciais ordinárias com coeficientes polinomiais em série de potências.

Exemplo 7: Os pontos singulares da equação $(x^2 - 1) y'' + 2xy' + 6y = 0$ são as raízes de $x^2 - 1 = 0$ ou $x = \pm 1$. Todos os outros pontos são ordinários.

Exemplo 8: Pontos singulares não são necessariamente números reais. As raízes de $x^2+1=0$, a saber, $x=\pm\jmath$, são pontos singulares da equação $\left(x^2+1\right)y''+xy'-y=0$. Todos os outros pontos, reais ou complexos, são pontos ordinários.

Exemplo 9: Encontre uma solução em série de potências em torno de $x_0 = 0$ para a equação diferencial y' + 2xy = 0.

Exemplo gráfico

Exemplo 10: Determine a solução em série de potências em torno de $x_0=0$ para a equação diferencial y''+y=0. Lembrando que

$$\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}, \quad \sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}.$$

Equações conhecidas

Muitos problemas físicos são modelados a partir da equação diferencial

$$\left[1 + \alpha (x - x_0)^2\right] y'' + \beta (x - x_0) y' + \gamma y = 0, \tag{21}$$

que apresenta soluções apenas em série de potências. Importantes equações são da forma da Eq. 21 para $x_0=0$, incluindo a equação de Legendre

$$(1 - x^2) y'' - 2xy' + \alpha (\alpha + 1) y = 0,$$
 (22)

a equação de Chebyshev

$$(1 - x^2)y'' - xy' + \alpha^2 y = 0, (23)$$

e a equação de Hermite

$$y'' - 2xy' + 2\alpha y = 0. {(24)}$$

Exemplos

Exemplo 11: Encontre uma solução em série de potências de x para a equação de Airy

$$y'' - xy = 0, (25)$$

em $x_0 = 0$ e $x_0 = 1$.

Exemplo 12: Determine a solução em série de potências em $x_0 = 0$ da equação diferencial

$$(1+x^2)y'' - y' + y = 0. (26)$$

Exemplo 13: Determine uma solução em série de potências de x para a equação

$$(1+2x^2)y'' + 6xy' + 2y = 0 (27)$$

Aplicações

Circuito RLC - resistor variável

Vimos que a corrente no circuito RLC em série é controlada pela equação

$$\frac{d^2i}{dt^2} + \frac{R}{L}\frac{di}{dt} + \frac{i}{LC} = 0, (28)$$

para V(t)=0. Como a resistência de um resistor aumenta com a temperatura, considere que o resistor seja aquecido de modo que a resistência no instante t seja $R(t)=1+t/10~\Omega$. Se L=0,1 H, C=2 F, $v_c(0)=100$ V e $i_L(0)=0$ A, encontre pelo menos os quatro primeiros termos diferentes de zero em uma expansão em série de potências em torno de t=0 para a carga no capacitor.

Figura 1: Circuito RLC em série.

Próxima aula ...

Na próxima aula, continuaremos a solução da EDO em série de potências em torno de um ponto ordinário.

Lição atual: Soluções em série na vizinhança de um ponto ordinário - II

"Dedique à disciplina o seu coração, e os seus ouvidos às palavras que dão conhecimento."

Nagle 8.4, Zill 6.3, Boyce 5.3

Teorema 2

Existência de soluções analíticas: Suponha que $P_0(x)$, $P_1(x)$ e $P_2(x)$ são polinômios sem um fator comum e $P_0(x)$ não é identicamente zero. Considere que um ponto x_0 tal que $P_0(x_0) \neq 0$, e seja ρ a distância do ponto x_0 ao zero de $P_0(x)$ no plano complexo (se $P_0(x)$ é constante, então $\rho = \infty$). Então toda a solução de

$$P_0(x)y'' + P_1(x)y' + P_2(x)y = 0,$$

pode ser representada por uma série de potências

$$y = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
 (29)

que converge pelo menos em um intervalo aberto $(x_0 - \rho, x_0 + \rho)$.

Exemplos

Exemplo 14: Encontre o valor mínimo para o raio de convergência de uma solução da série de potências em torno de x_0 :

$$(x+1)y'' - 3xy' + 2y = 0, \quad x_0 = 1,$$
 (30)

$$(1+x+x^2)y''-3y=0, \quad x_0=1,$$
(31)

$$y'' - \tan(x)y' + y = 0, \quad x_0 = 0.$$
(32)

Exemplo 15: Determine a solução ($x_0 = 0$) em série de potências da equação diferencial:

$$y'' - (1+x) = 0. (33)$$

Exemplo 16: Determine a solução ($x_0 = 0$) em série de potências da equação diferencial (coeficientes não polinomiais):

$$y'' + \cos(x)y = 0. \tag{34}$$

Teorema 3

Os coeficientes a_n da solução do tipo $y = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ da equação diferencial

$$(1 + \alpha (x - x_0)^2) y'' + \beta (x - x_0) y' + \gamma y = 0$$
(35)

satisfaz a relação de recorrência $(n \ge 0)$

$$a_{n+2} = -\frac{p(n)}{(n+2)(n+1)}a_n, \text{ com } p(n) = \alpha n(n-1) + \beta n + \gamma.$$
(36)

Além disso, os coeficientes das séries par e ímpar em $x-x_0$ podem ser determinados separadamente como $(m\geqslant 0)$

$$a_{2m+2} = -\frac{p(2m)}{(2m+2)(2m+1)}a_{2m}$$
 e $a_{2m+3} = -\frac{p(2m+1)}{(2m+3)(2m+2)}a_{2m+1}$, (37)

em que a_0 e a_1 são arbritárias.

Exemplos

Exemplo 17: Determine a solução em série de potências da equação diferencial:

$$(1+2x^2)y'' + 10xy' + 8xy = 0, \ y(0) = 2, \ y'(0) = -3.$$
 (38)

Exemplo 18: Determine a solução em série de potências da equação diferencial:

$$(2+4x-2x^2)y''-12(x-1)y'-12y=0.$$
(39)

Próxima aula ...

Quando a solução da EDO em série de potências for em torno de um ponto singular? Como resolver? Na próxima aula, iremos apresentar um método de solução para este tipo de problema.

Lição atual: Soluções em série na vizinhança de um ponto singular - I

"Como a cidade com seus muros derrubados, assim é quem não sabe dominar-se."

Problema

Vimos nas aulas anteriores como determinar a solução em série de potências, na forma

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n,$$
 (40)

da equação diferencial

$$P(x)y'' + Q(x)y' + R(x)y = 0.$$
 (41)

Note que a Eq. 40 é definida em torno do ponto x_0 com $P(x_0) \neq 0$. Entretanto, é possível que $P(x_0) = 0$ e, neste caso, chamamos x_0 de ponto singular. Por exemplo:

$$(1 - x^2)y'' + 2xy' + 4x^2y = 0. (42)$$

Como determinar a solução em torno de $x_0 = 1$?

Pontos singulares regulares e irregulares

Zill 6.4.1, Nagle 8.6, Boyce 5.4

Nem sempre é possível determinar uma solução na forma de série de potências em torno de um ponto singular. Antes precisamos saber o nível dessa singularidade. Dizemos que um ponto singular $x=x_0$ da Eq. 41 é um ponto singular regular (ou singularidade regular) se

$$\lim_{x \to x_0} \frac{Q(x)}{P(x)} (x - x_0), e$$
 (43)

$$\lim_{x \to x_0} \frac{R(x)}{P(x)} (x - x_0)^2, \tag{44}$$

são analíticas em x_0 . Caso contrário, o ponto é dito singular irregular.

Exemplos

Exemplo 19: Determine os pontos singulares da equação de Legendre:

$$(1 - x^2)y'' - 2xy' + \alpha(\alpha + 1)y = 0, (45)$$

e verifique se são regulares ou irregulares.

Exemplo 20: Determine os pontos singulares da equação diferencial

$$2x(x-2)^2y'' + 2xy' + (x-2)y = 0, (46)$$

e classifique-os como regulares ou irregulares.

Equações de Cauchy-Euller

Nagle 8.5, Boyce 5.5

Vimos na unidade anterior que a equação de Cauchy-Euller, definida como

$$x^{2}y''(x) + \alpha xy'(x) + \beta y(x) = 0, \ x > 0,$$
(47)

em que α e β são constantes reais, possui soluções na forma $y(x)=x^r$. A constante r é determinada a partir da solução do polinômio

$$r(r-1) + \alpha r + \beta = 0. \tag{48}$$

Esta equação, denominada de equação característica ou indicial, é obtida ao substituir a solução (na forma $y(x)=x^r$) na Eq. 47. Quando as raízes da equação indicial forem idênticas ($r_1=r_2$), a segunda solução é da forma $y_2(x)=x^{r_1}\ln x$. Quando as raízes forem complexas, as soluções são² (τ e μ é a parcela real e imaginária, respectivamente, do número complexo r)

$$y_1(x) = x^{\tau} \cos(\mu \ln x), \qquad y_2(x) = x^{\tau} \sin(\mu \ln x).$$
 (49)

²considere que $x^r = e^{r \ln x}$.

Equações de Cauchy-Euller

Nagle 8.5, Boyce 5.5

Na equação diferencial de Cauchy-Euller, o ponto x=0 é um ponto singular regular e, portanto, apresenta solução em torno deste ponto na forma $y(x)=x^r$. Entretanto, devemos analisar o comportamento da solução quando $x\to 0$ (ou seja, em torno do ponto singular).

O comportamento da solução depende inteiramente da natureza dos expoentes r_1 e r_2 . Por exemplo, quando r é real positivo, $x^r \to 0$ quando $x \to 0$. Por outro lado, se r é real e negativo $x^r \to \infty$ quando $x \to 0$. Maiores detalhes, veja Boyce 5.5.

A situação para uma equação diferencial de segunda ordem com um ponto singular regular é análoga à de uma equação de Cauchy-Euller.

Teorema de Frobenius

Zill 6.4.1

Teorema 4

Se $x = x_0$ for um ponto singular da Eq. 41, então existe **pelo menos** uma solução em série na forma

$$y(x) = (x - x_0)^r \sum_{n=0}^{\infty} a_n (x - x_0)^n = \sum_{n=0}^{\infty} a_n (x - x_0)^{n+r},$$
 (50)

em que o número r é uma constante a ser determinada (por meio da equação indicial). A série convergirá **pelo menos** em algum intervalo $0 < x - x_0 < R$.

O método de Frobenius consiste em eidentificar uma singularidade regular x_0 , substituir a função y(x), definida na Eq. 50, na equação diferencial, determinar o expoente r e os coeficientes a_n .

Exemplos

Exemplo 21: Determine a solução em série de potências em torno do ponto $x_0=0$ da equação diferencial

$$3xy'' + y' - y = 0. (51)$$

Dica: Inicialmente, determine a equação indicial. Para cada valor de r, determine a regra de recorrência. Com a regra de formação dos coeficientes a_n conhecida, expresse a solução geral na forma:

$$y(x) = C_1 y_1(x) + C_2 y_2(x). (52)$$

Neste caso, a diferença entre os valores de r é uma fração. Verifique que $y_1(x)$ e $y_2(x)$ são linearmente independentes.

Exemplo 22: Determine a solução em série de potências em torno do ponto $x_0=0$ da equação diferencial

$$xy'' + 3y' - y = 0. (53)$$

Neste exemplo, observe que a diferença entre os valores de r é um inteiro. Verifique que $y_1(x)$ e $y_2(x)$ são linearmente dependentes.

Exercício

A equação de Bessel de ordem zero é definida como:

$$x^2y'' + xy' + x^2y = 0. (54)$$

- i) Mostre que x=0 é um ponto singular regular.
- ii) Mostre que as raízes da equação indicial são $r_1=r_2=0$ e que uma solução para x>0 é

$$J_0(x) = 1 + \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{2n} (n!)^2} x^{2n}.$$
 (55)

iii) Mostre que a série converge para todo x. A função $J_0(x)$ é conhecida como a função de Bessel de primeira espécie e ordem zero.

Lição atual: Soluções em série na vizinhança de um ponto singular - II

"Melhor é o homem paciente do que o guerreiro, mas vale controlar o seu espírito do que conquistar uma cidade."

Solução de uma E.D.O. em torno de um ponto singular

Zill 6.4.1, Nagle 8.6, Boyce 5.6

Na aula anterior, a solução da equação diferencial da forma

$$P(x)y'' + Q(x)y' + R(x)y = 0, (56)$$

em x_0 , com $P(x_0) = 0$, foi definida como

$$y(x) = (x - x_0)^r \sum_{n=0}^{\infty} a_n (x - x_0)^n.$$
 (57)

É importante lembrar que x_0 deve ser um ponto singular regular. O método de solução de Frobenius garante que existe **pelo menos uma solução**, obtida considerando a maior raiz da equação indicial (r_1) .

Solução de uma E.D.O. em torno de um ponto singular

Zill 6.4.1, Nagle 8.6, Boyce 5.6

Vimos (pelo Exemplo 21) que quando a diferença entre as raízes da equação indicial é uma fração, a solução da equação diferencial Eq. 56 é do tipo:

$$y(x) = \underbrace{\sum_{n=0}^{\infty} a_n (x - x_0)^{n+r_1}}_{C_1 y_1(x)} + \underbrace{\sum_{n=0}^{\infty} b_n (x - x_0)^{n+r_2}}_{C_2 y_2(x)},$$
(58)

em que r_1 e r_2 são raízes da equação indicial e $y_1(x)$ e $y_2(x)$ são linearmente independentes (LI). Por outro lado, conforme o Exemplo 22, quando a diferença entre as raízes da equação indicial for um inteiro, apenas a solução $y_1(x)$ é obtida, já que a $y_2(x)$ é linearmente dependente (LD) de $y_1(x)$. Entretanto, há um contraexemplo para esta última situação.

Contraexemplo - diferença é um inteiro

Exemplo 23: Determine a solução em série de potências em torno do ponto $x_0 = 0$ da equação diferencial

$$xy'' + 4y' - xy = 0. (59)$$

Observe que as raízes da equação indicial são $r_1=0$ e $r_2=-3$, entretanto, há duas soluções $y_1(x)$ e $y_2(x)$ linearmente independentes!

Desta forma, quais as condições necessárias para a existência de duas soluções LI quando r_1-r_2 é um número inteiro? Não há. Observe ainda uma situação não analisada: quando $r_1=r_2$. Neste caso, haverá sempre uma única solução. Observe pelo exemplo a seguir.

Exemplo 24: Encontre uma solução em série em torno do ponto singular regular $x_0 = 0$ de

$$x^{2}y''(x) - xy'(x) + (1 - x)y(x) = 0, x > 0.$$
 (60)

Consequentemente, outra pergunta pertinente é qual a forma da segunda solução da equação diferencial nos casos em que $r_1 - r_2$ é um número inteiro e $r_1 = r_2$)?

Método de Frobenius

Zill 6.4.2, Nagle 8.7, Boyce 5.7

Seja x_0 um ponto singular regular da equação diferencial definida pela Eq. 56 e considere que r_1 e r_2 sejam as raízes da equação indicial associada, em que $Re(r_1) \ge Re(r_2)$.

• Se r_1-r_2 não é um inteiro, então existem duas soluções linearmente independentes na forma (veja Exemplo 21)

$$y_1(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^{n+r_1}, \ a_0 \neq 0,$$
 (61)

$$y_2(x) = \sum_{n=0}^{\infty} b_n (x - x_0)^{n+r_2}, b_0 \neq 0.$$
 (62)

Método de Frobenius

Zill 6.4.2, Nagle 8.7, Boyce 5.7

• Se r_1-r_2 é um inteiro positivo, então existem duas soluções linearmente independentes na forma

$$y_1(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^{n+r_1}, \ a_0 \neq 0,$$
(63)

$$y_2(x) = \sum_{n=0}^{\infty} b_n (x - x_0)^{n+r_2} + Cy_1(x) \ln (x - x_0), \ b_0 \neq 0,$$
 (64)

em que C é uma constante que poderá ser zero (veja os Exemplo 22 e 23).

• Se $r_1 = r_2$, então existem duas soluções linearmente independentes na forma (veja o Exemplo 24)

$$y_1(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^{n+r_1}, \ a_0 \neq 0,$$
 (65)

$$y_2(x) = \sum_{n=1}^{\infty} b_n (x - x_0)^{n+r_1} + y_1(x) \ln (x - x_0).$$
 (66)

Equação indicial - outra forma

Zill 6.4.1, Nagle 8.6, Boyce 5.6

A equação indicial para o ponto singular pode ser obtida diretamente da equação

$$r(r-1) + p_0 r + q_0 = 0, (67)$$

em que as constantes p_0 e q_0 são definidas como

$$p_0 = \lim_{x \to x_0} \frac{Q(x)}{P(x)} (x - x_0), \tag{68}$$

$$q_0 = \lim_{x \to x_0} \frac{R(x)}{P(x)} (x - x_0)^2.$$
 (69)

Como encontrar uma segunda solução linearmente independente? Zill 6.4.1. Nagle 8.6

Considere o Exemplo 23. Neste caso, a solução $y_1(x)$ é

$$y_1(x) = a_0 \left\{ 1 + \sum_{k=1}^{\infty} \frac{1}{2^k k! \left[5 \cdot 7 \cdots (2k+3) \right]} x^{2k} \right\}, \ x > 0.$$
 (70)

A outra solução é obtida considerando que

$$y_2(x) = y_1(x) \ln x + \sum_{n=1}^{\infty} b_n x^{n-3}.$$
 (71)

Determinar-se a derivada de primeira $(y_2'(x))$ e de segunda ordem $(y_2''(x))$ de $y_2(x)$. Em seguida, estas funções são substituídas na equação diferencial ordinária. Como resultado, os coeficientes b_n são determinados. Determine a segunda solução!

Exercício

Exercício 3: Para obter duas soluções linearmente independentes de

$$x^{2}y'' + (x + x^{2})y' + y = 0, x > 0,$$
(72)

complete as seguintes etapas.

- Verifique se a Eq. 72 tem um ponto singular em x=0 e se a equação indicial associada tem raízes complexas $\pm j$.
- · Conforme discutido para a equação de Cauchy-Euller, podemos expressar

$$x^{\alpha+j\beta} = x^{\alpha}x^{j\beta}$$

= $x^{\alpha} \left[\cos (\beta \ln x) + j \sin (\beta \ln x) \right].$ (73)

Deduza por esta fórmula que

$$\frac{d}{dx}x^{\alpha+j\beta} = (\alpha + j\beta)x^{\alpha-1+j\beta}. (74)$$

Exercício

Exercício 4: Ponha $y(x)=\sum_{n=0}^{\infty}a_nx^{n+\jmath}$, em que os coeficientes agora são constantes *complexas* e substitua essa série na Eq. 72 usando o resultado do item anterior. Igualando os coeficientes de potências semelhantes a zero, obtenha a relação de recorrência

$$a_n = -\frac{n-1+j}{(n+j)^2+1}a_{n-1}, \text{ para } n \ge 1.$$
 (75)

Considerando $a_0=1$, calcule os coeficientes a_1 e a_2 e, com isso, obtenha os poucos primeiros termos de uma solução complexa da Eq. 72. Calculando as partes real e imaginária da solução obtida no item anterior, obtenha as seguintes soluções linearmente independentes para a Eq. 72:

$$y_1(x) = \left[\cos(\ln x)\right] \left\{1 - \frac{2}{5}x + \frac{1}{10}x^2 + \ldots\right\} + \left[\sin(\ln x)\right] \left\{\frac{1}{5}x - \frac{1}{20}x^2 + \ldots\right\},\tag{76}$$

$$y_2(x) = \left[\cos(\ln x)\right] \left\{ -\frac{1}{5}x + \frac{1}{20}x^2 + \dots \right\} + \left[\sin(\ln x)\right] \left\{ 1 - \frac{2}{5}x + \frac{1}{10}x^2 + \dots \right\}.$$
 (77)

Lição atual: Equações de Bessel e Legendre

"Ó preguiçoso, até quando ficarás deitado? Quando te levantarás do teu sono?"

Equações diferenciais especiais

Equações de Bessel e Legendre

No trabalho avançado em matemática aplicada, engenharia e física, algumas equações de segunda ordem especiais surgem com muita frequência. Estas funções foram extensivamente estudadas e são conhecidas como **funções especiais**.

Para fins de referência, considere uma breve análise de duas delas: a equação de *Bessel* e equação de *Legendre*. Ambas funções surgem no estudo da teoria eletromagnético em coordenadas cilíndricas e esféricas, respectivamente.

Equação de Bessel

Zill 6.5, Nagle 8.8, Boyce 5.8

A equação diferencial linear de segunda ordem

$$x^{2}y'' + xy' + \left(x^{2} - \nu^{2}\right)y = 0, (78)$$

em que $\nu\geqslant 0$ é um parâmetro, é chamada de **equação de Bessel de ordem** ν . Esta equação tem um ponto singular regular em x=0 e nenhum outro ponto singular no plano complexo. Ao aplicar o método de Frobenius, visto nas aulas anteriores, convergirá para $0< x<\infty$. A equação indicial é

$$r(r-1) + r - \nu^2 = (r-\nu)(r+\nu) = 0.$$
(79)

Equação de Bessel - solução geral

Zill 6.5, Nagle 8.8, Boyce 5.8

Para determinar a solução da Eq. 78, é utilizado o método de Frobenius, considerando que a solução é do formato

$$y(x) = x^r \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n x^{n+r}.$$
 (80)

Ao substituir a definição anterior de y(x) na Eq. 78, teremos

$$x^{2} \sum_{n=0}^{\infty} (r+n) (r+n-1) a_{n} x^{r+n-2} + x \sum_{n=0}^{\infty} (r+n) a_{n} x^{r+n-1} + x^{2} \sum_{n=0}^{\infty} a_{n} x^{r+n} - \nu^{2} \sum_{n=0}^{\infty} a_{n} x^{r+n} = \sum_{n=0}^{\infty} (r+n) (r+n-1) a_{n} x^{r+n} + \sum_{n=0}^{\infty} (r+n) a_{n} x^{r+n} + \sum_{n=0}^{\infty} a_{n} x^{r+n+2} - \nu^{2} \sum_{n=0}^{\infty} a_{n} x^{r+n} = \sum_{n=0}^{\infty} (r+n) (r+n-1) a_{n} x^{r+n} + \sum_{n=0}^{\infty} (r+n) a_{n} x^{r+n} + \sum_{n=0}^{\infty} a_{n} x^{r+n} - \nu^{2} \sum_{n=0}^{\infty} a_{n} x^{r+n} = 0.$$
 (81)

Equação de Bessel - solução geral

Zill 6.5, Nagle 8.8, Boyce 5.8

A equação indicial é obtida fazendo n=0 na Eq. 81:

$$a_0 \left[r \left(r - 1 \right) + r^2 - \nu^2 \right] = a_0 \left(r^2 - \nu^2 \right) = 0.$$
 (82)

Para que o termo a_0 não seja nulo, é necessário que $r=\pm\nu$. Tomando $r=\nu$:

$$\sum_{n=0}^{\infty} \left[(\nu+n) (\nu+n-1) + (\nu+n) - \nu^2 \right] a_n x^{\nu+n} + \sum_{n=2}^{\infty} a_{n-2} x^{\nu+n} = 0$$

$$\sum_{n=0}^{\infty} n (2\nu+n) a_n x^{\nu+n} + \sum_{n=2}^{\infty} a_{n-2} x^{\nu+n} = 0$$

$$a_1 (2\nu+1) x^{\nu+1} + \sum_{n=2}^{\infty} \left[a_n n (2\nu+n) + a_{n-2} \right] x^{\nu+n} = 0.$$
(83)

Zill 6.5, Nagle 8.8, Boyce 5.8

No caso especial $\nu=-1/2$, a Eq. 83 é reescrita como

$$\sum_{n=0}^{\infty} \left[a_n n (n-1) + a_{n-2} \right] x^{\nu+n} = 0.$$
 (84)

e, portanto,

$$a_n = -\frac{1}{n(n-1)}a_{n-2}. (85)$$

Tomando os termos pares e ímpares

$$a_{2n} = \frac{(-1)^n}{(2n)!} a_0 \qquad a_{2n+1} = \frac{(-1)^n}{(2n+1)!} a_1$$
 (86)

Portanto

$$y(x) = x^{-1/2} \sum_{n=0}^{\infty} a_n x^n = x^{-1/2} \left[\sum_{n=1,3,5,\dots}^{\infty} a_n x^n + \sum_{n=0,2,4,\dots}^{\infty} a_n x^n \right]$$
$$= x^{-1/2} \left(a_0 \sin x + a_1 \cos x \right). \tag{87}$$

Zill 6.5, Nagle 8.8, Boyce 5.8

Fazendo $a_0 = 0$ e $a_1 = (2/\pi)^{1/2}$ na Eq. 87:

$$y(x) = J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x.$$
 (88)

Tomando agora $\nu = 1/2$ na Eq. 83, é necessário que $a_1 = 0$. Neste caso (mostre!)

$$y(x) = J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x,$$
 (89)

e assim, a solução geral é expressa como

$$y(x) = AJ_{-1/2}(x) + BJ_{1/2}(x), (90)$$

em que A e B são constantes. Definimos $J_{1/2}(x)$ e $J_{-1/2}(x)$ como funções de Bessel de primeira espécie de ordem meio.

Zill 6.5, Nagle 8.8, Boyce 5.8

Figura 2: As funções de Bessel de primeira espécie de ordem meio: $J_{1/2}(x)$ e $J_{-1/2}(x)$. É importante observar que as raízes das funções $J_{1/2}(x)$ e $J_{-1/2}(x)$ são similares às raízes das funções $\sin(x)$ e $\cos(x)$, respectivamente.

Exercícios

Exercício 5: Mostre que a equação de Bessel de ordem meio

$$x^{2}y'' + xy' + \left(x^{2} - \frac{1}{4}\right)y = 0, \quad x > 0,$$
(91)

pode ser reduzida à equação

$$v'' + v = 0, (92)$$

pela mudança da variável dependente $y(x)=x^{-1/2}v(x)$. Conclua disso que $y_1(x)=x^{-1/2}\cos(x)$ e $y_2(x)=x^{-1/2}\sin(x)$ são soluções da equação de Bessel de ordem meio.

Exercício 6: Mostre que

$$\lim_{x \to 0} J_{1/2}(x) = 0 \qquad \text{e} \qquad \lim_{x \to 0} J_{-1/2}(x) = \infty. \tag{93}$$

Zill 6.5, Nagle 8.8, Boyce 5.8

Para o caso geral em que $\nu \neq \pm 1/2$, a partir da Eq. 83, temos:

$$a_1 = 0$$
 e $a_n = -\frac{1}{n(2\nu + n)}a_{n-2}$ (94)

para n = 2, 3, ... Tomando n = 2l + 1 (com l = 1, 2, ...):

$$a_{2l+1} = -\frac{1}{(2l+1)\left[2(m+l)+1\right]}a_{2l-1} = 0.$$
(95)

Para n = 2l (com l = 1, 2, ...):

$$a_{2l} = \frac{(-1)^{l}}{\left[4l(\nu+l)\right]\left[4(l-1)(\nu+l-1)\right]\dots\left[4(\nu+1)\right]}a_{0}$$

$$= \frac{(-1)^{l}\left[\nu(\nu-1)\dots1\right]}{\left[4l(\nu+l)\right]\left[4(l-1)(\nu+l-1)\right]\dots\left[4(\nu+1)\nu(\nu-1)\dots1\right]}a_{0}.$$
(96)

Zill 6.5, Nagle 8.8, Boyce 5.8

Portanto, a Eq. 80 pode ser expressa como

$$y(x) = \sum_{n=0}^{\infty} a_n x^{n+r} = \left[\sum_{n=1,3,5,\dots}^{\infty} a_n x^{n+\nu} + \sum_{n=0,2,4,\dots}^{\infty} a_n x^{n+\nu} \right]$$

$$= \sum_{l=0}^{\infty} a_{2l+1} x^{2l+\nu+1} + \sum_{l=0}^{\infty} a_{2l} x^{2l+\nu}$$

$$= a_0 \sum_{l=0}^{\infty} \frac{(-1)^l \nu!}{2^{2l} l! (l+\nu)!} x^{2l+\nu} \quad \text{com} \quad a_0 = \frac{1}{2^{\nu} \nu!}.$$
(97)

Definimos então

$$J_{\nu}(x) = \sum_{l=0}^{\infty} \frac{(-1)^{l}}{2^{2l+\nu}l! (l+\nu)!} x^{2l+\nu} = \sum_{l=0}^{\infty} \frac{(-1)^{l}}{l! (l+\nu)!} \left(\frac{x}{2}\right)^{2l+\nu}.$$
 (98)

Zill 6.5, Nagle 8.8, Boyce 5.8

Da mesma forma, teremos

$$J_{-\nu}(x) = \sum_{l=0}^{\infty} \frac{(-1)^l}{l! (l-\nu)!} \left(\frac{x}{2}\right)^{2l-\nu}.$$
 (99)

A função $J_{\nu}(x)$ é denominada função de Bessel de primeira espécie de ordem ν . Portanto

$$J_{\nu}(x) = \begin{cases} \sum_{l=0}^{\infty} \frac{(-1)^{l}}{l!(l+|\nu|)!} \left(\frac{x}{2}\right)^{2l+|\nu|} & \text{para } |\nu| \neq 1/2\\ \sqrt{\frac{2}{\pi x}} \cos x & \text{para } \nu = -1/2\\ \sqrt{\frac{2}{\pi x}} \sin x & \text{para } \nu = 1/2. \end{cases}$$
(100)

Portanto, para ν não inteiro, a solução geral da Eq. 78 é

$$y(x) = AJ_{\nu}(x) + BJ_{-\nu}(x), \tag{101}$$

em que A e B são constates.

Equação de Bessel - $J_{\nu}(x)$

Zill 6.5, Nagle 8.8, Boyce 5.8

Figura 3: Fução de Bessel de primeira espécie e ordem ν .

Zill 6.5, Nagle 8.8, Boyce 5.8

Entretanto, caso ν seja inteiro e fazendo $l = \nu + k$:

$$J_{-\nu}(x) = \sum_{l=0}^{\infty} \frac{(-1)^{l}}{l! (l-\nu)!} \left(\frac{x}{2}\right)^{2l-\nu}$$

$$= \sum_{\nu+k=0}^{\infty} \frac{(-1)^{k+\nu}}{(k+\nu)!k!} \left(\frac{x}{2}\right)^{2\nu+2k-\nu}$$

$$= \sum_{k=-\nu}^{-1} \frac{(-1)^{k+\nu}}{k! (k+\nu)!} \left(\frac{x}{2}\right)^{2k+\nu} + \sum_{k=0}^{\infty} \frac{(-1)^{k+\nu}}{k! (k+\nu)!} \left(\frac{x}{2}\right)^{2k+\nu}$$

$$= (-1)^{\nu} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k! (k+\nu)!} \left(\frac{x}{2}\right)^{2k+\nu}$$

$$= (-1)^{\nu} J_{\nu}(x).$$

Portanto, as soluções $J_{\nu}(x)$ e $J_{-\nu}(x)$ são linearmente dependentes.

(102)

Zill 6.5, Nagle 8.8, Boyce 5.8

Considerando que uma solução da Eq. 78 é conhecida e igual a

$$y_1(x) = J_{\nu}(x),$$

a segunda solução é expressa como $y_2(x)=u(x)J_{\nu}(x)$, em que u(x) é uma função auxiliar (método da redução de ordem). Considerando a equação

$$y'' + P(x)y' + Q(x)y = 0, (103)$$

e conhecida uma solução $y_1(x)$, a segunda solução para a Eq. 103 é (mostre!)

$$y_2(x) = y_1(x) \int \frac{e^{-\int P(x)}}{y_1^2(x)} dx.$$
 (104)

Portanto, ao considerar a Eq. 78 (com P(x) = 1/x) (mostre!):

$$y_2(x) = J_{\nu}(x) \int \frac{1}{x \left[J_{\nu}(x)\right]^2} dx.$$
 (105)

Zill 6.5, Nagle 8.8, Boyce 5.8

Portanto, a solução geral é

$$y(x) = Ay_1(x) + By_2(x)$$

$$= AJ_{\nu}(x) + BJ_{\nu}(x) \int \frac{1}{x \left[J_{\nu}(x)\right]^2} dx$$

$$= A'J_{\nu}(x) + B'Y_{\nu}(x), \tag{106}$$

em que $Y_{\nu}(x)$ é denominada de função de Bessel de segunda espécie de ordem ν^3 . A função $Y_{\nu}(x)$ é definida como

$$Y_{\nu}(x) = \frac{J_{\nu}(x)\cos\nu\pi - J_{-\nu}(x)}{\sin\nu\pi}$$
 (107)

³Na literatura, a função $Y_{\nu}(x)$ às vezes é indicada por $N_{\nu}(x)$ e chamada de **função de Neumann**.

Zill 6.5, Nagle 8.8, Boyce 5.8

Com ν um número não inteiro, a Eq. 107 é uma combinação linear das função $J_{\nu}(x)$ e $J_{-\nu}(x)$, que nesta situação, são linearmente independentes:

$$Y_{\nu}(x) = \frac{J_{\nu}(x)\cos\nu\pi - J_{-\nu}(x)}{\sin\nu\pi} = A'J_{\nu}(x) + B'J_{-\nu}(x). \tag{108}$$

Considerando ν um número inteiro, a Eq. 107, aparentemente, não é definida, pois $\sin(\nu\pi) = 0$ para ν inteiro. Entretanto, ao aplicar a regra de L'Hôpital:

$$Y_n(x) = \lim_{\nu \to n} Y_{\nu}(x) = \frac{1}{\pi} \left[\frac{\mathrm{d}}{\mathrm{d}n} J_n(x) - (-1)^n \frac{\mathrm{d}}{\mathrm{d}n} J_{-n}(x) \right]. \tag{109}$$

Equação de Bessel - $Y_{\nu}(x)$

Zill 6.5, Nagle 8.8, Boyce 5.8

Figura 4: Fução de Bessel de segunda espécie e ordem ν .

Equação de Bessel

Exercícios

Exercício 7: Demonstre as seguinte identidades

$$\frac{d}{dx}\left[x^{\nu}J_{\nu}(x)\right] = x^{\nu}J_{\nu-1}(x) \tag{110}$$

$$\frac{d}{dx} \left[x^{-\nu} J_{\nu}(x) \right] = -x^{-\nu} J_{\nu+1}(x) \tag{111}$$

$$J_{\nu+1}(x) = \frac{2\nu}{x} J_{\nu}(x) - J_{\nu-1}(x)$$
(112)

$$J_{\nu+1}(x) = J_{\nu-1}(x) - 2J_{\nu}'(x). \tag{113}$$

Equação de Bessel - $J'_{\nu}(x)$

Zill 6.5, Nagle 8.8, Boyce 5.8

Figura 5: Derivada da fução de Bessel de primeira espécie e ordem ν , obtida a partir da igualdade $J'_{\nu}(x) = \left[J_{\nu-1}(x) - J_{\nu+1}(x)\right]/2$.

Equação de Bessel - outras propriedades

Ortogonalidade⁴:

$$\int_0^a J_{\nu} \left(\alpha_{\nu m} \frac{x}{a} \right) J_{\nu} \left(\alpha_{\nu n} \frac{x}{a} \right) x \, \mathrm{d}x = \frac{1}{2} a^2 \left[J_{\nu+1} \left(\alpha_{\nu m} \right) \right]^2 \delta_{mn}, \tag{114}$$

em que $\alpha_{\nu m}$ é a m-ésima raiz de $J_{\nu}(x)$ e δ_{mn} é o delta de Kronecker.

Normalização⁵:

$$\int_0^\infty J_\nu(x) \, \mathrm{d}x = 1,\tag{115}$$

е

$$\int_{0}^{1} \left[J_{\nu} \left(\alpha x \right) \right]^{2} x \, \mathrm{d}x = \frac{1}{2} \left[J_{\nu}'(\alpha) \right]^{2}, \tag{116}$$

em que α é o zero de $J_{\nu}(x)$.

⁴https://math.stackexchange.com/questions/204297/orthogonality-of-bessel-functions

⁵https://math.stackexchange.com/questions/273115/normalization-of-the-bessel-function?rq=1

Equação de Bessel modificada

A equação diferencial de Bessel modificada de ordem ν é definida como

$$x^{2}y'' + xy' - \left(x^{2} + \nu^{2}\right)y = 0.$$
(117)

Esta equação tem um ponto singular regular em x=0 e nenhum outro ponto singular no plano complexo.

Equação de Legendre

Zill 6.5, Nagle 8.8

A equação diferencial linear de segunda ordem

$$(1-x^2)y'' - 2xy' + n(n+1)y = 0, (118)$$

onde n é um parâmetro fixo, é chamada de **equação de Legendre**. Como x=0 é um ponto ordinário da equação de Legendre, tentemos uma solução na forma

$$y(x) = \sum_{n=0}^{\infty} a_n x^n, \tag{119}$$

obtendo duas soluções linearmente independentes

$$y_1(x) = a_0 \left[1 - \frac{n(n+1)}{2!} x^2 + \frac{(n-2)n(n+1)(n+3)}{4!} x^4 + \dots \right],$$
 (120)

$$y_2(x) = a_1 \left[x - \frac{(n-1)(n+2)}{3!} x^3 + \frac{(n-3)(n-1)(n+2)(n+4)}{5!} x^5 + \dots \right].$$
 (121)

Equação de Legendre

Zill 6.5, Nagle 8.8

Quando n for um inteiro não negativo, obtemos uma solução polinomial de grau n da equação de Legendre. Por exemplo, para n=4, teremos

$$y_1(x) = c_0 \left[1 - 10x^2 + \frac{35}{3}x^4 \right].$$
 (122)

Especificamente, são escolhidos, para $n=0,\,c_0=1$ e para $n=2,4,6,\ldots,$

$$x_0 = (-1)^{n/2} \frac{1 \times 3 \times \dots (n-1)}{2 \times 4 \times \dots n},$$
(123)

enquanto que para n=1, escolhemos $c_1=1$ e para $n=3,5,7,\ldots$,

$$x_0 = (-1)^{(n-1)/2} \frac{1 \times 3 \times \dots n}{2 \times 4 \times \dots (n-1)}.$$
 (124)

Por exemplo, para n=4, temos

$$y_1(x) = \frac{1}{8} \left(35x^4 - 30x^2 + 3 \right). \tag{125}$$

Polinômios de Legendre

Zill 6.5, Nagle 8.8

As soluções da equação de Legendre, são denominados de **polinômios de Legendre** e são denotados por $P_n(x)$. Por meio das séries para $y_1(x)$ e $y_2(x)$ e pelas escolhas de c_0 e c_1 , encontramos estes polinômios, ou seja, (uma característica importante destas funções é sua ortogonalidade)

$$\begin{split} P_0(x) &= 1, & P_1(x) = x, \\ P_2(x) &= \frac{1}{2} \left(3x^2 - 1 \right), & P_3(x) &= \frac{1}{2} \left(3x^2 - 1 \right), \\ P_4(x) &= \frac{1}{8} \left(35x^4 - 30x^2 + 3 \right), & P_5(x) &= \frac{1}{8} \left(63x^5 - 70x^3 + 15x \right). \end{split}$$

Polinômios de Legendre

Zill 6.5, Nagle 8.8

Lembrando que $P_0(x),\ P_1(x),\ \dots$ são soluções particulares para as equações diferenciais

$$n = 0, \quad (1 - x^{2}) y'' - 2xy' = 0,$$

$$n = 1, \quad (1 - x^{2}) y'' - 2xy' + 2y = 0,$$

$$n = 2, \quad (1 - x^{2}) y'' - 2xy' + 6y = 0,$$

$$n = 3, \quad (1 - x^{2}) y'' - 2xy' + 12y = 0.$$
(126)