MLproject1_benz_shibna

February 2, 2023

1 Importing important Libraries

```
[3]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

[4]: train_data=pd.read_csv("train.csv")
test_data=pd.read_csv("test.csv")
```

1.0.1 Checking the no:of rows and columns each file has

```
[5]: (train_data.shape , test_data.shape )
[5]: ((4209, 378), (4209, 377))
[6]: train_data.head(10)
        ID
[6]:
                      XO X1
                                                       X375
                                                              X376
                                                                     X377
                                                                            X378
                                                                                  X379
                                                                                         \
                              X2 X3 X4 X5 X6 X8
                                                                 0
                                                                        1
                                                                               0
     0
          0
             130.81
                                                           0
                                                                                      0
     1
              88.53
                       k
                          t
                              av
                                   е
                                      d
                                         у
                                             1
                                                0
                                                           1
                                                                 0
                                                                        0
                                                                               0
                                                                                      0
          7
     2
              76.26
                                                                 0
                                   С
                                      d
                                         X
                                             j
                                                           0
                                                                                      0
                      az
                          W
                               n
                                                х
     3
              80.62
                                  f
                                      d
                                         х
                                             1
                                                           0
                                                                 0
                                                                               0
                                                                                      0
                      az
                          t
                               n
                                                е
     4
        13
              78.02
                                  f
                                                                 0
                                                                        0
                                                                               0
                                                                                      0
                      az
                               n
                                      d
                                         h
                                             d
                                                           0
                          V
                                                n
     5
        18
              92.93
                                      d
                                                           0
                                                                 0
                                                                        1
                                                                               0
                                                                                      0
                       t b
                               е
                                  С
                                         g
                                            h
                                                s
     6
             128.76
                                  f
                                         f
                                                           0
                                                                 0
                                                                        0
                                                                               0
                                                                                      0
        24
                      al r
                               е
                                      d
                                             h
     7
                                                                 0
                                                                        0
                                                                               0
        25
              91.91
                                  f
                                         f
                                             j
                                                                                      0
                       0 1
                                      d
                                                           0
                              as
                                                a
     8
        27
             108.67
                                      d
                                         f
                                             i
                                                           1
                                                                 0
                                                                        0
                                                                               0
                                                                                      0
                          s
                              as
                                   е
        30
             126.99
                                      d
                                         f
                                                                 0
                                                                               0
                                                                                      0
                       j
                          b
                              aq
                                   С
        X380
               X382
                      X383
                             X384
                                   X385
     0
            0
                   0
                         0
                                0
                                       0
            0
                   0
                         0
                                0
                                       0
     1
     2
                   1
                         0
            0
                                0
                                       0
                   0
                         0
     3
            0
                                0
                                       0
```

```
4
       0
               0
                      0
                              0
                                     0
5
       0
               0
                      0
                              0
                                     0
6
       0
               0
                      0
                              0
                                     0
7
       0
               0
                      0
                              0
                                     0
8
       0
               0
                      0
                              0
                                     0
               0
                      0
       0
                              0
                                     0
```

[10 rows x 378 columns]

```
[7]: test_data.head()
```

```
[7]:
              XO X1
                       X2 X3 X4 X5 X6 X8
                                               X10
                                                         X375
                                                                X376
                                                                        X377
                                                                               X378
                                                                                       X379
                                                                                              X380
              az
                        n
                                d
                                    t
                                       a
                                                 0
                                                             0
                                                                    0
                                                                            0
                                                                                   1
                                                                                           0
                                                                                                  0
           2
                                                 0
                                                             0
                                                                    0
                                                                            1
                                                                                   0
                                                                                           0
      1
                t
                   b
                       ai
                            а
                                d
                                    b
                                       g
                                           У
                                                                                                  0
      2
           3
                            f
                                                 0
                                                             0
                                                                    0
                                                                            0
                                                                                   1
                                                                                           0
                                                                                                  0
                       as
                                d
                                        j
                                           j
              az
                   V
                                    a
                                                 0
                                                             0
                                                                    0
                                                                            0
                                                                                   1
                                                                                                  0
      3
           4
              az
                   1
                        n
                            f
                                d
                                    z
                                       1
                                           n
                                                                                           0
                                                                    0
                                                                            0
                                                                                   0
                                                                                           0
           5
                                d
                                                 0
                                                             1
                                                                                                  0
                   s
                       as
                            С
                                   У
                                           \, m \,
```

```
X382 X383
                  X384
                         X385
0
       0
              0
                     0
                             0
1
       0
              0
                     0
                             0
2
       0
              0
                     0
                             0
3
       0
              0
                     0
                             0
       0
              0
                     0
                             0
```

[5 rows x 377 columns]

```
[8]: train_data.columns
```

```
[8]: Index(['ID', 'y', 'X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8',
...
'X375', 'X376', 'X377', 'X378', 'X379', 'X380', 'X382', 'X383', 'X384',
'X385'],
dtype='object', length=378)
```

```
[9]: test_data.columns
```

```
[9]: Index(['ID', 'X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8', 'X10',
...
'X375', 'X376', 'X377', 'X378', 'X379', 'X380', 'X382', 'X383', 'X384',
'X385'],
dtype='object', length=377)
```

1.0.2 Missing value

```
[10]: missing_data = train_data.isnull().sum(axis=0).reset_index()
     print(missing data.info())
     missing_data.columns = ['count_name', 'missing_count']
     missing data = missing data.loc[missing data['missing count'] > 0]
     missing_data= missing_data.sort_values(by='missing_count')
     missing_data
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 378 entries, 0 to 377
     Data columns (total 2 columns):
         Column Non-Null Count Dtype
         -----
      0
         index
                 378 non-null
                                 object
      1
                 378 non-null
                                 int64
     dtypes: int64(1), object(1)
     memory usage: 6.0+ KB
     None
[10]: Empty DataFrame
     Columns: [count_name, missing_count]
     Index: []
     No missing value
[11]: missing_data = test_data.isnull().sum(axis=0).reset_index()
     print(missing_data.info())
     missing_data.columns = ['count_name', 'missing_count']
     missing_data = missing_data.loc[missing_data['missing_count'] > 0]
     missing_data = missing_data.sort_values(by='missing_count')
     missing data
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 377 entries, 0 to 376
     Data columns (total 2 columns):
         Column Non-Null Count Dtype
     --- ----- ------
         index 377 non-null
                                 object
                 377 non-null
                                 int64
     dtypes: int64(1), object(1)
     memory usage: 6.0+ KB
     None
[11]: Empty DataFrame
     Columns: [count_name, missing_count]
     Index: []
```

```
[]:
```

```
Checking the variance in data_train set
[12]: train_filter_var=np.var(train_data)
     C:\Users\shibn\anaconda3\lib\site-packages\numpy\core\fromnumeric.py:3721:
     FutureWarning: Dropping of nuisance columns in DataFrame reductions (with
     'numeric_only=None') is deprecated; in a future version this will raise
     TypeError. Select only valid columns before calling the reduction.
       return var(axis=axis, dtype=dtype, out=out, ddof=ddof, **kwargs)
[13]: train_filter_var
[13]: ID
              5.940524e+06
              1.607285e+02
      У
     X10
              1.312780e-02
     X11
              0.000000e+00
              6.944063e-02
      X12
      X380
              8.012675e-03
      X382
              7.544954e-03
      X383
              1.660337e-03
      X384
              4.749465e-04
      X385
              1.423485e-03
      Length: 370, dtype: float64
[14]: print(train_filter_var==0)
     ID
             False
             False
     У
     X10
             False
              True
     X11
     X12
             False
             False
     X380
     X382
             False
     X383
             False
     X384
             False
     X385
             False
     Length: 370, dtype: bool
[15]: zero_variance_train=train_filter_var[train_filter_var==0]
[16]: zero_variance_train.shape
```

```
[16]: (12,)
[17]: print(zero_variance_train)
     X11
             0.0
     X93
             0.0
     X107
             0.0
     X233
             0.0
     X235
             0.0
     X268
             0.0
             0.0
     X289
     X290
             0.0
     X293
             0.0
     X297
             0.0
     X330
             0.0
     X347
             0.0
     dtype: float64
[18]: zero_variance_train.keys()
[18]: Index(['X11', 'X93', 'X107', 'X233', 'X235', 'X268', 'X289', 'X290', 'X293',
             'X297', 'X330', 'X347'],
            dtype='object')
[19]: zero_var_keydata=zero_variance_train.keys()
     1.0.4 Eliminate the columns which has zero variance
[20]: new_train_data=train_data.drop(zero_var_keydata ,axis=1)
[21]: new_train_data.shape
[21]: (4209, 366)
     1.0.5 to check which all columns are dtype=object
[22]: new_train_data.dtypes==object
[22]: ID
              False
              False
      У
      XΟ
               True
      X1
               True
      Х2
               True
      X380
              False
```

```
X382
              False
      X383
              False
              False
      X384
      X385
              False
      Length: 366, dtype: bool
[23]: x=(new_train_data.dtypes==object)
[24]: x.value_counts()
[24]: False
               358
      True
                 8
      dtype: int64
[25]: object_train_cols = list(x[x].index)
[26]: print(object_train_cols)
     ['X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8']
 []:
     1.0.6 Checking the variance in data_test set
[27]: ### using sklearn
[28]: #from sklearn.feature_selection import VarianceThreshold
      #selector = VarianceThreshold(threshold=0)
      #selector.fit_transform(test_data)
[29]: test_filter_var=np.var(test_data)
     C:\Users\shibn\anaconda3\lib\site-packages\numpy\core\fromnumeric.py:3721:
     FutureWarning: Dropping of nuisance columns in DataFrame reductions (with
     'numeric_only=None') is deprecated; in a future version this will raise
     TypeError. Select only valid columns before calling the reduction.
       return var(axis=axis, dtype=dtype, out=out, ddof=ddof, **kwargs)
[30]: test_filter_var
[30]: ID
              5.869917e+06
      X10
              1.864563e-02
      X11
              2.375297e-04
              6.883438e-02
      X12
      X13
              5.733136e-02
```

```
X380
              8.012675e-03
      X382
              8.713410e-03
      X383
              4.749465e-04
      X384
              7.122504e-04
      X385
              1.660337e-03
     Length: 369, dtype: float64
[31]: print(test_filter_var==0)
     ID
             False
     X10
             False
     X11
             False
             False
     X12
     X13
             False
     X380
             False
     X382
             False
     X383
             False
     X384
             False
     X385
             False
     Length: 369, dtype: bool
[32]: zero_test_var=test_filter_var[test_filter_var==0]
[33]: zero_test_var.shape
[33]: (5,)
[34]: zero_test_var.keys()
[34]: Index(['X257', 'X258', 'X295', 'X296', 'X369'], dtype='object')
[35]: zero_var_cols=zero_test_var.keys()
[36]: new_test_data=test_data.drop(zero_var_cols,axis=1)
[37]: new_test_data.shape
[37]: (4209, 372)
     1.0.7 to check which all columns are object data type
[38]: x=(new_test_data.dtypes==object)
[39]: x.value_counts()
```

2 Applying label encoding

The above step is to confirm that the label encoder have converted everything to integer that is why no true value is found as per the condition given any datatypes is equal to object

```
[46]: new_train_data.head()
[46]:
          ID
                       ΧO
                             Х1
                                  Х2
                                      ХЗ
                                           Х4
                                                Х5
                                                     Х6
                                                          Х8
                                                                  X375
                                                                         X376
                                                                                X377
                                                                                       X378
                     У
       0
           0
               130.81
                        32
                             23
                                  17
                                        0
                                             3
                                                24
                                                                      0
                                                                             0
                                                                                    1
                                                                                           0
                                                      9
                                                          14
       1
           6
                88.53
                        32
                             21
                                  19
                                        4
                                             3
                                                28
                                                     11
                                                                      1
                                                                             0
                                                                                    0
                                                                                           0
                                                          14
       2
                76.26
                                             3
                                                                             0
                        20
                             24
                                  34
                                                27
                                                      9
                                                          23
                                                                      0
                                                                                    0
                                                                                           0
       3
                80.62
                             21
                                        5
                                             3
                                                27
                                                                                    0
           9
                        20
                                  34
                                                     11
                                                           4
                                                                      0
                                                                                           0
                                                              •••
          13
                78.02
                        20
                             23
                                  34
                                        5
                                             3
                                                12
                                                          13
                                                                                           0
          X379
                 X380
                        X382
                               X383
                                      X384
                                              X385
       0
              0
                     0
                            0
                                   0
                                          0
                                                 0
              0
                     0
                            0
                                   0
                                          0
                                                 0
       1
       2
              0
                     0
                            1
                                   0
                                          0
                                                 0
       3
              0
                     0
                            0
                                   0
                                          0
                                                 0
       4
              0
                     0
                            0
                                   0
                                          0
                                                 0
```

[5 rows x 366 columns]

dtype: int64

```
[47]: new_train_data.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 4209 entries, 0 to 4208
     Columns: 366 entries, ID to X385
     dtypes: float64(1), int32(8), int64(357)
     memory usage: 11.6 MB
     from the above, we came to know that the data is converted to numerical
     Applying label encoding to test data
[48]: for i in object_test_cols:
          #new_train_data[i]=label_Encoder.fit_transform(new_train_data[i])
          new_test_data[i]=label_Encoder.fit_transform(new_test_data[i])
[49]: t=new_test_data.dtypes==object
[50]:
      t.value_counts()
[50]: False
               372
```

The above step is to confirm that the label encoder have converted everything to integer that vis why no true value is found as per the condition given any datatypes is equal to object

```
[51]: new_test_data.head()
[51]:
               ΧO
                    Х1
                                        Х5
                                             Х6
                                                  Х8
                                                       X10
                                                                 X375
                                                                         X376
                                                                                X377
                                                                                       X378
                                                                                               X379
           ID
                         Х2
                              ХЗ
                                   Х4
       0
            1
                21
                    23
                         34
                                5
                                     3
                                        26
                                               0
                                                  22
                                                          0
                                                                     0
                                                                            0
                                                                                    0
                                                                                           1
                                                                                                   0
       1
            2
               42
                      3
                                          9
                                               6
                                                  24
                                                                     0
                                                                            0
                                                                                    1
                                                                                           0
                          8
                                0
                                     3
                                                          0
                                                                                                   0
                                                   9
       2
            3
               21
                    23
                                5
                                     3
                                          0
                                               9
                                                          0
                                                                     0
                                                                            0
                                                                                    0
                                                                                           1
                         17
                                                                                                   0
                                                             •••
       3
            4
                21
                    13
                         34
                                5
                                     3
                                        31
                                             11
                                                  13
                                                          0
                                                                     0
                                                                            0
                                                                                    0
                                                                                           1
                                                                                                   0
            5
               45
                    20
                         17
                                2
                                     3
                                        30
                                               8
                                                  12
                                                          0
                                                                     1
                                                                            0
                                                                                    0
                                                                                           0
                                                                                                   0
                  X382
                         X383
                                 X384
           X380
                                        X385
       0
              0
                      0
                             0
                                     0
                                            0
              0
                      0
                             0
                                     0
                                            0
       1
       2
              0
                      0
                             0
                                     0
                                            0
       3
              0
                      0
                             0
                                     0
                                            0
       4
              0
                                            0
```

[5 rows x 372 columns]

from the above, we came to know that the data is converted to numerical

2.0.1 last and final stage to split as feature and target

```
[53]: train_data_Xfeatures=new_train_data.drop(["ID","y"],axis=1)
    train_data_ytarget=new_train_data['y']

[71]: idOf_test=new_test_data['ID'].values
    test_data_Xfeatures=new_test_data.drop(["ID"],axis=1)
```

3 Perform dimensionality reduction

```
[73]: # Linear dimensionality reduction using Singular Value Decomposition of # the data to project it to a lower dimensional space.

from sklearn.decomposition import PCA
pca=PCA(n_components=12,random_state=46)
train_data_Xfeatures=pca.fit_transform(train_data_Xfeatures)
test_data_Xfeatures=pca.fit_transform(test_data_Xfeatures)
```

4 Training using XGBoost

(2946, 12) (2946,)

```
[77]: print(X_test.shape,y_test.shape)
     (1263, 12) (1263,)
[78]: xgb1 = XGBRegressor()
      parameters = { 'nthread':[4], #when use hyperthread, xqboost may become slower
                    'objective':['reg:linear'],
                    'learning_rate': [0.1,0.2,.03, 0.05, .07], #so called `eta` value
                    'max_depth': [1,2,3,4,5, 6, 7],
                    'min child weight': [4],
                    'silent': [1],
                    'subsample': [0.7],
                    'colsample_bytree': [0.7],
                    'n_estimators': [500]}
[79]: xgb_grid = GridSearchCV(xgb1,
                              parameters,
                              cv = 3,
                              n_{jobs} = 4,
                              verbose=True)
      xgb_grid.fit(X_train,
               y_train)
     Fitting 3 folds for each of 35 candidates, totalling 105 fits
     [21:32:30] WARNING: C:/buildkite-agent/builds/buildkite-windows-cpu-autoscaling-
     group-i-03de431ba26204c4d-1/xgboost/xgboost-ci-
     windows/src/objective/regression_obj.cu:213: reg:linear is now deprecated in
     favor of reg:squarederror.
     [21:32:30] WARNING: C:/buildkite-agent/builds/buildkite-windows-cpu-autoscaling-
     group-i-03de431ba26204c4d-1/xgboost/xgboost-ci-windows/src/learner.cc:767:
     Parameters: { "silent" } are not used.
[79]: GridSearchCV(cv=3,
                   estimator=XGBRegressor(base_score=None, booster=None,
                                           callbacks=None, colsample bylevel=None,
                                           colsample_bynode=None,
                                           colsample bytree=None,
                                           early_stopping_rounds=None,
                                           enable_categorical=False, eval_metric=None,
                                           feature_types=None, gamma=None, gpu_id=None,
                                           grow_policy=None, importance_type=None,
                                           interaction_constraints=None,
                                           learning_rate=None, m...
                                           monotone_constraints=None, n_estimators=100,
                                           n_jobs=None, num_parallel_tree=None,
```

```
predictor=None, random_state=None, ...),
                   n_jobs=4,
                   param_grid={'colsample_bytree': [0.7],
                                'learning_rate': [0.1, 0.2, 0.03, 0.05, 0.07],
                                'max_depth': [1, 2, 3, 4, 5, 6, 7],
                                'min_child_weight': [4], 'n_estimators': [500],
                                'nthread': [4], 'objective': ['reg:linear'],
                                'silent': [1], 'subsample': [0.7]},
                   verbose=True)
[80]: | print(xgb_grid.best_score_)
      print(xgb_grid.best_params_)
     0.4693980501828196
     {'colsample_bytree': 0.7, 'learning_rate': 0.03, 'max_depth': 4,
     'min_child_weight': 4, 'n_estimators': 500, 'nthread': 4, 'objective':
     'reg:linear', 'silent': 1, 'subsample': 0.7}
[81]: \#data\ dmatrix = xqb.DMatrix(data=X, label=y)
[82]: #from xqboost.sklearn import XGBRegressor
      #from xgboost import XGBRegressor
      #xq req = xqb1(objective="req:linear", learning_rate = 0.03, max_depth = 4,__
       \rightarrow min_child_weight = 4, n_estimators = 500, subsample = 0.7)
```

4.0.1 Training using XGBoost

```
[83]: d_train = xgb.DMatrix(X_train, label=y_train)
      d_valid = xgb.DMatrix(X_test, label=y_test)
      d_test = xgb.DMatrix(test_data_Xfeatures)
```

```
[84]: params={}
      params['objective'] = 'reg:linear'
      params['eta'] = 0.02
      params['max_depth'] = 4
      def xgb_r2_score(preds, dtrain):
          labels = dtrain.get_label()
          return 'r2', r2_score(labels, preds)
      watchlist = [(d_train, 'train'), (d_valid, 'valid')]
      clf = xgb.train(params, d_train, 1000, watchlist, early_stopping_rounds=50,_
       →feval=xgb_r2_score, maximize=True, verbose_eval=10)
```

[21:32:32] WARNING: C:/buildkite-agent/builds/buildkite-windows-cpu-autoscalinggroup-i-03de431ba26204c4d-1/xgboost/xgboost-ciwindows/src/objective/regression obj.cu:213: reg:linear is now deprecated in favor of reg:squarederror.

[0]	train-rmse:98.73858	train-r2:-62.78156	valid-rmse:99.53598
valid-	r2:-54.41767		
[10]	train-rmse:80.91897	train-r2:-41.83730	valid-rmse:81.73402
valid-	r2:-36.36748		
[20]	train-rmse:66.39288	train-r2:-27.83795	valid-rmse:67.24898
valid-	r2:-24.29644		

C:\Users\shibn\anaconda3\lib\site-packages\xgboost\core.py:617: FutureWarning:
Pass `evals` as keyword args.

warnings.warn(msg, FutureWarning)

C:\Users\shibn\anaconda3\lib\site-packages\xgboost\training.py:39: UserWarning: `feval` is deprecated, use `custom_metric` instead. They have different behavior when custom objective is also used.See https://xgboost.readthedocs.io/en/latest/tutorials/custom_metric_obj.html for details on the `custom_metric`.

warnings.warn(

[30]	train-rmse:54.56281	train-r2:-18.47668	valid-rmse:55.47389			
valid-r	valid-r2:-16.21335					
[40]	train-rmse:44.94648	train-r2:-12.21639	valid-rmse:45.91759			
valid-r	2:-10.79359					
[50]	train-rmse:37.15140	train-r2:-8.02967	valid-rmse:38.19713			
valid-r	2:-7.16111					
[60]	train-rmse:30.85581	train-r2:-5.22867	valid-rmse:31.98680			
	2:-4.72308					
	train-rmse:25.78684	train-r2:-3.35029	valid-rmse:27.01631			
	2:-3.08263					
	train-rmse:21.72926	train-r2:-2.08895	valid-rmse:23.06947			
	2:-1.97689					
	train-rmse:18.50854	train-r2:-1.24112	valid-rmse:19.97030			
	2:-1.23078					
	train-rmse:15.97889	train-r2:-0.67038	valid-rmse:17.56292			
	2:-0.72537					
	train-rmse:14.01209	train-r2:-0.28448	valid-rmse:15.71586			
	2:-0.38154					
	train-rmse:12.50901	train-r2:-0.02369	valid-rmse:14.33608			
	2:-0.14961					
	train-rmse:11.36021	train-r2:0.15571	valid-rmse:13.31214			
	2:0.00875					
	train-rmse:10.50934	train-r2:0.27744	valid-rmse:12.56300			
valid-r2:0.11718						
	train-rmse:9.87095	train-r2:0.36256	valid-rmse:12.02727			
valid-r2:0.19086						
	train-rmse:9.39646	train-r2:0.42237	valid-rmse:11.63483			
valid-r2:0.24280						
	train-rmse:9.04274	train-r2:0.46504	valid-rmse:11.35249			
valid-r2:0.27911						
	train-rmse:8.78203	train-r2:0.49544	valid-rmse:11.15587			
valid-r2:0.30386						

[190] train-rmse:8.58170	train-r2:0.51820	valid-rmse:11.01577		
valid-r2:0.32124 [200] train-rmse:8.44132 train-r2:0.53383 valid-rmse:10.92084				
valid-r2:0.33289	01411 12.0.0000	Valla imboliologi		
[210] train-rmse:8.33111	train-r2:0.54592	valid-rmse:10.84662		
valid-r2:0.34192				
[220] train-rmse:8.23994	train-r2:0.55581	valid-rmse:10.79402		
valid-r2:0.34829				
[230] train-rmse:8.15909	train-r2:0.56448	valid-rmse:10.75521		
valid-r2:0.35297		1:1 40 70046		
[240] train-rmse:8.09280 valid-r2:0.35570	train-r2:0.57153	valid-rmse:10.73246		
[250] train-rmse:8.03866	train-r2:0.57725	valid-rmse:10.71860		
valid-r2:0.35736	train 12.0.57725	valid imse.io./iooo		
[260] train-rmse:7.98870	train-r2:0.58248	valid-rmse:10.70360		
valid-r2:0.35916				
[270] train-rmse:7.95001	train-r2:0.58652	valid-rmse:10.69745		
valid-r2:0.35990				
[280] train-rmse:7.91634	train-r2:0.59001	valid-rmse:10.69069		
valid-r2:0.36071				
[290] train-rmse:7.88756	train-r2:0.59299	valid-rmse:10.68239		
valid-r2:0.36170				
[300] train-rmse:7.84931	train-r2:0.59693	valid-rmse:10.67797		
valid-r2:0.36223		7.1.		
[310] train-rmse:7.81953	train-r2:0.59998	valid-rmse:10.67649		
valid-r2:0.36240	+i2.0 60304	1		
[320] train-rmse:7.78954 valid-r2:0.36247	train-r2:0.60304	valid-rmse:10.67590		
[330] train-rmse:7.76483	train-r2:0.60556	valid-rmse:10.67846		
valid-r2:0.36217	train 12.0.0000	valia imbe.io.oro40		
[340] train-rmse:7.73786	train-r2:0.60829	valid-rmse:10.67514		
valid-r2:0.36257				
[350] train-rmse:7.71039	train-r2:0.61107	valid-rmse:10.67867		
valid-r2:0.36214				
[360] train-rmse:7.67913	train-r2:0.61421	valid-rmse:10.67556		
valid-r2:0.36252				
[370] train-rmse:7.64938	train-r2:0.61720	valid-rmse:10.67616		
valid-r2:0.36244		7.1.		
[380] train-rmse:7.61585	train-r2:0.62055	valid-rmse:10.67623		
valid-r2:0.36244 [390] train-rmse:7.58177	train-r2:0.62394	valid-rmse:10.67473		
valid-r2:0.36262	CIAIII-12.0.02394	valid-imse.io.07473		
[400] train-rmse:7.55057	train-r2:0.62702	valid-rmse:10.67351		
valid-r2:0.36276	01dIII 12.0.02102	valia imbe.io.orooi		
[410] train-rmse:7.52849	train-r2:0.62920	valid-rmse:10.67617		
valid-r2:0.36244				
[420] train-rmse:7.50319	train-r2:0.63169	valid-rmse:10.67677		
valid-r2:0.36237				

[430]	train-rmse:7.47070	train-r2:0.63487	valid-rmse:10.67192			
valid-r	valid-r2:0.36295					
[440]	train-rmse:7.44340	train-r2:0.63754	valid-rmse:10.66981			
valid-r	2:0.36320					
[450]	train-rmse:7.42140	train-r2:0.63968	valid-rmse:10.67071			
valid-r	2:0.36310					
[460]	train-rmse:7.39629	train-r2:0.64211	valid-rmse:10.66964			
valid-r	2:0.36322					
[470]	train-rmse:7.37310	train-r2:0.64435	valid-rmse:10.66897			
valid-r	2:0.36330					
[480]	train-rmse:7.34658	train-r2:0.64690	valid-rmse:10.66844			
valid-r2:0.36337						
[490]	train-rmse:7.32267	train-r2:0.64920	valid-rmse:10.66970			
valid-r2:0.36322						
[500]	train-rmse:7.30167	train-r2:0.65121	valid-rmse:10.66919			
valid-r2:0.36328						
[510]	train-rmse:7.27660	train-r2:0.65360	valid-rmse:10.67193			
valid-r2:0.36295						
[520]	train-rmse:7.25104	train-r2:0.65603	valid-rmse:10.67042			
valid-r2:0.36313						
[526]	train-rmse:7.23652	train-r2:0.65741	valid-rmse:10.67395			
valid-r2:0.36271						

${\bf 4.0.2} \quad {\bf Predict\ the\ test\ data\ values\ using\ XGBoost}$

```
[85]: pred_test=clf.predict(d_test)
     prediction_data=pd.DataFrame()
      prediction_data['ID']=idOf_test
      prediction_data['y']=pred_test
      prediction_data.to_csv('predXGB.csv', index=False)
      prediction_data.head()
[85]:
         ID
             77.342758
      0
          1
          2
      1
             97.923904
      2
          3
              83.637695
      3
              78.497604
          5 110.838745
 []:
 []:
 []:
 []:
```

```
[]:
 []:
 []:
 []:
 []:
 []:
 []:
 []:
 []:
[86]: #params = {'n_estimators':[10, 20, 40, 80], 'max_depth':[1,2,3,6,10],__
       \rightarrow 'learning_rate' : [0.1, 0.2, 0.3, 0.5], 'min_child_weight' : [1, 2, 3, 4, 5], \square
       \rightarrow 'subsample' : [0.5, 0.6, 0.7, 0.8, 1.0]}
      \#grid\_search = GridSearchCV(xgb\_clf, params, cv = 3, n\_jobs = -1)
      #grid_search.fit(X_train, y_train)
[87]: #grid_search.best_params_
 []: #start = time.time()
      #xgb_clf.fit(X_train, y_train)
      #end = time.time()
      \#time\_elapsed = end - start
      #print(time_elapsed)
 []: | #y_pred = xgb_clf.predict(X_test)
 []: #dtrain = xgb.DMatrix(X_train, label=y_train)
      #dtest = xgb.DMatrix(X_test, label=y_test)
 []:
 []:
 []:
```