

GROUP 8 Analytathon 2 Entity Duplication Detection

Overview

We developed a **data deduplication model** to identify and remove duplicate records.

The approach leverages data preprocessing, fuzzy matching, and thresholding to detect duplicates.

Our goal is to **enhance data quality and improve business efficiency**.

Exploratory Data Analysis

Data Preprocessing:

- Standardizing date_of_birth.
- Normalizing email_address (lowercase, removing spaces).
- Standardizing phone_number (removing special characters, ensuring uniformity).

Duplicate Detection:

- Fuzzy Matching: Uses fuzzywuzzy to compare string similarities.
- Pairwise comparison to find close matches.
- Similarity thresholding to detect duplicates with confidence.

Duplicate Detection Summary

Category	Count
Total Records Processed	5000
Missing Middle Name	49% missing
Missing Date of Birth	63% missing
Missing Email/Phone	~36% missing
Exact Duplicates (Phone-based)	2837
Exact Duplicates (Email-based)	1565
Fuzzy Duplicates (Name & Address)	104
Total Duplicates Identified	3512

Date of Birth has 63% missing values, making identity matching difficult.

Email/Phone is missing in 36% of records, reducing duplicate detection accuracy.

Most duplicates (3512 records) are exact matches based on phone/email.

Fuzzy duplicates (104 records) suggest minor differences in name or address.

- Phone Number is the most common duplication source, causing 2837 duplicate records.
- Email Address is the second biggest factor, contributing to 1565 duplicates.

Fuzzy Matching

Fuzzy matching is a technique used to identify similar but not identical records within a dataset.

It helps detect duplicate entries even when there are minor differences in names, addresses, or contact details.

This method is useful for handling inconsistencies caused by typos, varying formats, and incomplete data.

Why Is Fuzzy Matching Necessary?

Challenges

Varied Spellings: Accommodate different spellings of the same name or term.

Formatting Inconsistencies: Handle variations in address or phone number formats.

Data Gaps: Match records despite missing information.

Consequences

- Inefficient Operations: Redundant efforts and wasted resources.
- Skewed Insights: Misleading analysis due to inaccurate data.
- Compliance Issues: Legal and regulatory repercussions from data errors.

Steps in our approach

- > Removing Exact Duplicates: Identifying records with the same email or phone number and eliminating them.
- ➤ Generating Potential Matches: Using Sorted Neighborhood Indexing on first names to efficiently pair similar records.
- >Calculating Similarity Scores: Assigning a weighted score based on:

First Name Similarity (40%)

Last Name Similarity (40%)

Primary Street Similarity (20%)

Filtering Duplicates: Records with a similarity score above 0.75 are considered probable duplicates.

Performance and Statistics - Similarity Score

Similarity

Threshold: 0.75

Similarity Threshold

- The similarity score measures how closely two records match, ranging from 0
 (completely different) to 1 (identical).
- We set a threshold of 0.75, meaning only records with an 75% or higher similarity are considered potential duplicates.
- If the threshold is **too low** (e.g., 0.6), we mistakenly label unique records as duplicates, leading to errors.
- If the threshold is **too high** (e.g., 0.95), we fail to catch actual duplicates, keeping redundant records in our system.

	Record 1	Record 2
prefix	mrs	miss
first_name	deborah	deborah
middle_name		shannon
last_name	chamberlain	watson
DOB		
email		
phone_number		
House_number	187	116
Primary_street	gilbert rue	ross lights
town		ardgarvan
county	derry	tyrone
Post code	BT51 3ES	BT78 9KS

Low Similarity (0.4): Likely NOT a Duplicate

	Record 1	Record 2
prefix	mrs	mrs
first_name	eielen	eileen
middle_name		
last_name	pope	pope
DOB		
email		
phone_number		
House_number		
Primary_street	roy ridge	roy ridge
town	drumnakilly	drumnakilly
county	fermanagh	fermanagh
Post code	BT92 5WA	BT92 5WA

High Similarity (1.0): Likely a Duplicate

Solutions

What can be done to avoid duplicate entries?

- > Implement Standardized Data Entry: Ensure uniform formatting for names, phone numbers, and addresses.
- ➤ Introduce Real-time Duplicate Detection: Validate customer data as it is entered.
- > Use Unique Identifiers: Assign customer IDs instead of relying solely on names.

Key Findings

- Our analysis flagged 3,616 duplicates out of 5,186 which means we detected that over 75% of records were duplicates.
- The majority of these were exact matches based on phone numbers and email addresses (3,512) and then we captured a further 104 duplicates using fuzzy matching.
- A significant amount of missing data in the date of birth and email/phone fields complicated analysis.
- We used a combination of data preprocessing, rule-based exact matching and weighted fuzzy matching which proved effective in our detection.