ALGEBRAIC GEOMETRY 1

PROBLEM SET 8

Keywords: projectivities, intersecting projective subvarieties, diagonals

Problem 1 (5 pts)

Automorphisms of $\mathbb{P}^n(k)$ induced by linear automorphisms of k^{n+1} are called *projectivities*.

1. Show that every automorphism of $\mathbb{P}^1(k)$ is a projectivity, which can be written as

$$z \mapsto \frac{az+b}{cz+d}$$
.

- 2. Compute the stabiliser $\operatorname{Stab}_G([1:0])$ in $G = PGL_2(k)$ of the point $[1:0] \in \mathbb{P}^1(k)$, and $\operatorname{Stab}_G([1:0]) \cap \operatorname{Stab}_G([0:1])$.
- 3. Show that the action of $PGL_2(k)$ on $\mathbb{P}^1(k)$ is sharply 3-transitive (for every two triples of distinct points there is exactly one projectivity moving one to the other).
- 4. The *cross-ratio* of four distinct points (z_1, z_2, z_3, z_4) of $\mathbb{P}^1(k) \setminus \{\infty\}$ is defined as:

$$\frac{(z_1-z_3)(z_2-z_4)}{(z_1-z_4)(z_2-z_3)} \in k.$$

Extend this definition in case one of the points is ∞ . Show that projectivities preserve the cross-ratio. Conclude that the action of $PGL_2(k)$ on $\mathbb{P}_1(k)$ is not 4-transitive in general. (Bonus: what are the possible values of the cross-ratio? What happens in the limit when two points come together (over \mathbb{C})?)

Problem 2 (4 pts)

More on projectivities.

- 1. Show that the action of $PGL_{n+1}(k)$ on $\mathbb{P}^n(k)$ is 2-transitive, but not 3-transitive in general.
- 2. An (n+2)-tuple of points in \mathbb{P}^n is said to be in general (linear) position if no n+1 of them are contained in a hyperplane. Show that $PGL_{n+1}(k)$ acts transitively on the set of (n+2)-tuples in general position.
- 3. Let $U = D_p(f) \subset \mathbb{P}^n(k)$ be the complement of a hypersurface of degree d. Identify U with an affine algebraic variety.
- 4. Show that $PGL_{n+1}(k)$ is an affine algebraic variety.

Problem 3 (5 pts)

1. Let X be an irreducible projective variety of dimension n. Show that the affine cone C_X is irreducible of dimension n+1.

- 2. Let X and Y be projective subvarieties of $\mathbb{P}^n(k)$ such that $\dim(X) + \dim(Y) \geq n$. Then the intersection of X and Y is not empty.
- 3. Show that $\mathbb{P}^m \times \mathbb{P}^n$ is not isomorphic to \mathbb{P}^{m+n} (unless m or n is 0).
- 4. Show that there is no morphism $\mathbb{P}^N \to \mathbb{P}^n$ for N > n (unless n = 0).

Problem 4 (2 pts)

Show that the diagonal of a scheme is always a locally closed immersion (closed in an open).