Wrocław 2016r.

Sprawozdanie Kontrolowana Praca Własna

Sterownik do rolet

Michał Hałucha 204061

Spis treści

Spis	treści	2
-	Wstęp	
	Schemat układu i sposób działania	
	1 Czujnik	
2.	2 Mostek	4
3	Omówienie otrzymanych wyników symulacji oraz pomiarów układu	5
3.	1 Czujnik	6
3.	2 Mostek	8
3	3 Pomiary	9
4	Wykonanie płytki drukowanej	10
4.	1 Etapy wykonania płytki za pomocą programu Eagle:	11
5	Spis użytych elementów	11
6	Wnioski	12

1 Wstęp

Projekt polega na sterowaniu silnikiem, który zasłania i odsłania rolety. Bazuje na układzie światłoczułym i mostku przełączającym silnik.

Układ światłoczuły to czujnik zasilany napięciem 5 V, zawiera przerzutnik Schmitta i diodę informacyjną LED. Jako czujnik wykorzystano fotodiodę, która pod wpływem oświetlenia włącza tranzystor Q1 (jednocześnie wyłączając tranzystor Q2), co oznacza "że przez diodę LED nie płynie prąd (dioda nie świeci).

Mostek służy do przełączania obrotów silnika. Składa się on między innymi z dwóch układów scalonych posiadających odpowiednio tranzystory MOSFET, oraz diod zabezpieczających przed uszkodzeniem układu.

2 Schemat układu i sposób działania

Schemat układu czujnika z przerzutnikiem Schmitta i diodą LED przedstawiono na rysunku 1. Schemat układu mostka H, umożliwiającego sterowanie kierunkiem działania silnika przedstawiono na rysunku 2.

2.1 Czujnik

Na rysunku pierwszym przedstawiono schemat fotoczujnika. Na początku układu znajdują się dwa kondensatory. Kondensator C_1 , który zmniejsza impedancję źródła zasilania oraz kondensator C_2 , który wspomaga kondensator C_1 . Kolejnym elementem jest fotodioda D_1 która jest spolaryzowana zaporowo. Kiedy fotodioda zostanie oświetlona, popłynie niewielki prąd, rzędu $100~\mu A$ (za sprawą zjawiska fotoelektrycznego).

LED

1:

W układzie czujnika zastosowano przerzutnik Schmitta. Działanie czujnika polega na reakcji fotodiody na światło. Kiedy natężenie światła zaczyna spadać to prąd, który płynie przez rezystor R_1 maleje. Kiedy dioda nie jest oświetlona napięcie na rezystorze jest praktycznie równe 0 V. Możemy zauważyć, że napięcie na rezystorze R_1 maleje proporcjonalnie.

Kiedy napięcie na rezystorze R_1 spadnie poniżej napięcia odcięcia tranzystora Q_1 , to tranzystor przestaje przewodzić. Nie działanie tranzystora Q_1 powoduje znaczące napięcie pomiędzy bramką a źródłem tranzystora Q_2 . Skutkiem jest to, że dioda LED świeci. Kiedy dioda świeci prąd płynie przez rezystor R_4 , diodę LED oraz przez rezystor R_3 . Spadek napięcia na rezystorze R_1 jest równy sumie spadków napięć pomiędzy bramką, źródłem tranzystora Q_1 i spadku napięcia na rezystorze R_3 .

Rezystor R₃ umieszczono po to, żeby roleta się zwijała przy większym natężeniu światła niż rozwijała. Warunkiem dobrego działania jest właściwe połączenie wyjść czujnika z wejściami mostka H.

Rezystor R₄ zabezpiecza diodę LED przed nadmiernym prądem.

2.2 Mostek

Rysunek 2: Schemat mostka H

Na rysunku 2 przedstawiono schemat mostka H. Zbudowany jest z dwóch układów scalonych posiadających tranzystory polowe, które odpowiadają za przełączanie. Mostek został skonstruowany tak, aby przy podaniu jednocześnie dwóch sygnałów sterujących nie uległ zniszczeniu. Wyłączenie mostka następuje wtedy, kiedy na obu wejściach występuje stan 0 (Szczegółowy opis znajduję się w pkt. 3.2).

3 Omówienie otrzymanych wyników symulacji oraz pomiarów układu.

Symulacja oraz pomiary zostały wykonane dla napięcia wejściowego zarówno dla mostka jak i czujnika wynoszącego 5 V. Symulacje przeprowadzono w programie LTSpice. Na rysunku 3 oraz 4 przedstawiono schemat symulowanego układu.

Rysunek 3: Schemat układu czujnika zmierzchu w programie LTspice.

Rysunek 4: Schemat układu mostka H w programie LTspice.

3.1 Czujnik

Czujnik światła:

Na rysunku 5 przedstawiono pętlę histerezy ($I_D = f(I_1)$). Przedstawiono zależność prądu fotodiody (który jest proporcjonalny do oświetlenia) do prądu diody LED.

Rysunek 5: Petla histerezy $I_D = f(I_1)$.

Przerzutnik Schmitta:

Można zauważyć, że dioda LED załącza się przy mniejszym prądzie fotodiody niż wyłącza się. Oznacza to, że próg światła potrzebny do włączenia diody LED jest mniejszy niż do wyłączenia diody LED. Na powyższym wykresie, przepływ prądu ma kierunek zgodny z kierunkiem poruszania się wskazówek zegara.

Przy odpowiednim prądzie fotodiody tranzystor M_2 zaczyna przewodzić (I_{R2}), wiec tranzystor M_1 nie przewodzi. Kiedy maleje wartość prądu fotodiody to tranzystor M_2 przestaje przewodzić, a zaczyna przewodzić M_1 co oznacza, że prąd który powoduje świecenie diody LED zaczyna płynąć.

Napięcia załączania i wyłączania przy pracy z mostkiem H:

Odczytano napięcie na rezystorze R₁ przy jakim dioda LED się załącza, wynosi 1,5 V.

Odczytano napięcie na rezystorze R₁ przy jakim dioda LED się wyłącza, wynosi 2,7 V.

3.2 Mostek

Na rysunkach 7,8,9 przedstawiono charakterystyki dotyczące działania mostka H.

Rysunek 7: Zasada działania mostka H.

Na wejście doprowadzono dwa sygnały z czujnika (dzien, noc). W wyniku pojawienia się wysokiego stanu na którymś z wejść, zostaje włączony odpowiedni tranzystor.

Rysunek 8: Zasada działania mostka H.

Na rysunku 8 przedstawione zostały sytuacje kiedy doprowadzamy wysokie stany na bramki tranzystorów M_6 (noc), M_5 (dzien) (schemat rys. 4). Występowanie wysokiego stanu na bramce tranzystora M_6 powoduje pojawienie się stanu niskiego na bramce tranzystora M_4 , który powoduje włączenie go. W wyniku włączenia tranzystorów M_4 , M_6 wymuszamy kręcenie się silnika w lewo. Analogiczna sytuacja jest w przypadku tranzystorów M_5 , M_3 . Wysoki stan na bramce M_5 (dzien) powoduje włączenie tranzystora M_3 w wyniku wystąpienia na jego bramce stanu niskiego. Powoduje to kręcenie się silnika w prawo. Diody D_2 , D_3 wspomagają utrzymywanie się wysokiego stanu na bramce tranzystorów. Tym sposobem uniemożliwiają załączenie się dwóch tranzystorów w pionie, zabezpieczając przy tym powstaniu prądu zwarciowego.

3.3 Pomiary

Pomiary wykonano za pomocą oscyloskopu i przedstawiono na Rysunku 8 i 9. Sygnał został wygenerowany za pomocą generatora o częstotliwości mniejszej niż 10 Hz oraz amplitudzie 5 V.

Rysunek 8 Wyjście sterujące (dzien)

Rysunek 9 Wyjście sterujące (noc)

Na powyższych zdjęciach sygnał 1 oraz 3 jest sygnałem podanym z generatora. Sygnał 2 jest to sygnał dzien (rys. 4). Sygnał 4 jest to sygnał noc (rys. 4). Są to pomiary wykonane za pomocą oscyloskopu. Widać, że przebiegi są zgodne z założeniami projektowymi.

4 Wykonanie płytki drukowanej

Schemat y z programu LTspice zostały przeniesione do programu Eagle. W programie zostały zaprojektowane połączenia, oraz dodane elementy, zgodne z wymiarami potrzebnymi do skonstruowania układu.

Na rysunku 10 (mostek H) i 11 (czujnik zmierzchu) pokazano rozmieszczenie elementów na płytce oraz ścieżki przewodzące.

Rysunek 10 Czujnik zmierzchu.

Rysunek 11 Mostek H.

4.1 Etapy wykonania płytki za pomocą programu Eagle:

- 1. Wycięcie płytki laminatu o odpowiednich wymiarach.
- 2. Wyczyszczenie powierzchni miedzi.
- 3. Wydrukowanie odbicie lustrzane warstw ścieżek płytki na papierze kredowym za pomocą drukarki laserowej.
- 4. Odciśnięto nadruk na laminat metodą termotransferu.
- 5. Włożono laminat do roztworu trawiącego B327. (nadsiarczan sodu)
- 6. Starto toner pokrywające niewytrawione ścieżki miedzi.
- 7. Wywiercono otwory o odpowiedniej średnicy. (0,8 mm lub 1mm)
- 8. Pokryto cienką warstwą kalafonii w celu zabezpieczenia miedzi przed utlenieniem.
- 9. Umieszczenie elementów na płytce.

5 Spis użytych elementów

Opis	Oznaczenie	Wartość	Ilość elementów	Obudowa
Kondensator ceramiczny	C2	100 μF	1	SMD 1206
Kondensator ceramiczny	C1	1 μF	1	SMD 1206
Dioda	D1	Fotodioda; 40°; λp max:900 nm	1	
Dioda	LED	2-4V	1	SMD 1206
Dioda	D2,D3	BAT54	2	SOT 23
Tranzystor	Q1,Q2	IRLML6346	2	SMD 1206
Rezystor	R4,R3	100Ω	2	SMD 1206
Rezystor	R6,R7	1kΩ	2	SMD 1206
Rezystor	R2	3kΩ	1	SMD 1206
Rezystor	R3,R4,R5,R 8	10 k Ω	4	SMD 1206
Układy scalone	Q3,Q4	IRF7389Ω	2	SO-8

6 Wnioski

Stworzony układ działa zgodnie z założeniami. Celem projektu było zbudowanie sterownika do rolet, który jest w stanie rozróżnić porę dnia. Całe działanie opiera się na reakcji na światło, po czym następuje przekazanie sygnałów sterujących na mostek, który włącza silnik. Przedstawione pomiary były wykonywane przy małym silniku od samochodu sterowanego. Maksymalny pobór prądu silnika wynosi 300 mA. Układ czujnika pobiera zaledwie 10 mA. Jedyną wadą czujnika jest nagła reakcja na światło. Konsekwencje jakie mogą być to, odsłonięcie rolety w trakcie przejeżdżającego w nocy samochodu. Mostek H jest tak skonstruowany, że tylko pojawienie się dwóch 0 na wejściach sterujących spowoduje zatrzymanie pracy silnika.

Oświadczenie:

Oświadczam że projekt został sprawdzony, jest kompletny i spełnia założenia projektowe oraz został wykonany samodzielnie.

Do sprawozdania dołączam Kartę Uczestnictwa na zajęciach Laboratorium Otwartego.