

Geometria Analitica

Videoaula 4.6

Posições Relativas entre Planos

Departamento de Matemática (UF\$C)

Professora ALDA MORTARI

Professor CHRISTIAN WAGNER

Professor FELIPE TASCA

Professor GIULIANO BOAVA

Professor LEANDRO MORGADO

Professora MARÍA ASTUDILLO

Professor MYKOLA KHRYPCHENKO

Posições relativas entre Planos

Paralelos e distintos

Vetores normais paralelos e um ponto de um não pertence ao outro

Paralelos e coincidentes

Vetores normais paralelos e um ponto de um pertence ao outro

Concorrentes

Vetores normais não paralelos

Determine a posição relativa entre os dois planos abaixo:

$$\alpha : 2x + 3y - z = 0.$$

$$\beta$$
: $-4x - 6y + 2z + 1 = 0$.

Determine a posição relativa entre os dois planos abaixo:

$$\pi_1: x + 2y - z = 0.$$

$$\pi_2$$
: $x + 2y + 3 = 0$.

Interseção entre Planos

Paralelos e distintos

Interseção é o conjunto vazio

Paralelos e coincidentes

Interseção é todo o plano

Concorrentes

Interseção é uma reta

Como calcular a interseção?

Para calcular a interseção entre dois planos, basta encontrar os pontos (x,y,z) que satisfazem as equações simultaneamente.

Isso significa resolver o sistema!

Determine a interseção entre os planos abaixo:

$$\alpha : x - 2y - z = 0.$$

$$\beta : 2x - y + z - 6 = 0.$$

Ângulo entre dois planos

O ângulo entre dois planos α e β é o menor ângulo formado entre um vetor normal de α e um vetor normal de β .

$$cos(\theta) = \frac{|\vec{u} \cdot \vec{v}|}{|\vec{u}| |\vec{v}|}$$

Calcule o ângulo formado entre os planos abaixo:

$$\alpha : x - 2y - z = 0.$$

$$\beta$$
: $2x - y + z - 6 = 0$.

Condição de ortogonalidade

Dois planos são ortogonais se os seus vetores normais são ortogonais.

Calcule o valor de m para que os planos abaixo sejam ortogonais.

$$\alpha : x - y + mz = 0.$$

$$\beta : \begin{cases} x = 2 + s - t \\ y = 3 + 2s + t \\ z = 1 + t \end{cases}$$