IMPERIAL COLLEGE LONDON

BSc and MSci DEGREES – JANUARY 2013, for Internal Students of the Imperial College of Science, Technology and Medicine

This paper is also taken for the relevant examination for the Associateship

ADVANCED CHEMISTRY THEORY IIA

Inorganic Chemistry

Wednesday 09th January 2013, 09:30-11:00

PLEASE NOTE THAT IT IS DEPARTMENTAL POLICY THAT THESE EXAM QUESTIONS MAY REQUIRE UNDERSTANDING OF ANY PRIOR CORE COURSE.

USE A SEPARATE ANSWER BOOK FOR EACH QUESTION. WRITE YOUR CANDIDATE NUMBER ON EACH ANSWER BOOK.

Year 2/0113 Turn Over

2I.1 – Molecular Orbitals in Inorganic Chemistry

Answer part a) and **EITHER** part b) **OR** part c) of this question.

a) Construct and **annotate** a valence MO diagram for linear $[CuL_2]^-$ ($D_{\infty h}$ point group), where L is a 1e donor sigma bonding ligand such as Me. Assume that the MOs do not undergo mixing. (14 marks)

b) Answer ALL parts of this question.

Diborane shown in \mathbf{A} below belongs to the D_{2h} point group.

i) Determine the reducible representation Γ_{6Hs} for the 6 H1s AO basis functions shown in **B.**

(2 marks)

ii) Determine if the b_{1u} irreducible representation is a component of the reducible representation Γ_{6Hs} . Show your working.

(4 marks)

- iii) Identify the symmetry of the MO shown in **C** and briefly explain your reasoning. (1 mark)
- iv) Sketch the MO shown in **C**, identify and annotate features that are important for evaluating the bonding character.

(4 marks)

QUESTION CONTINUED OVERLEAF

c) Answer ALL parts of this question.

A partial energy level diagram for a TM complex of the type $[M(L_{\sigma})_5(L_{\pi})]$ where L_{σ} is a σ -donor ligand and L_{π} is a π -acceptor ligand is shown below.

i) Draw the MOs with symmetry labels 4a₁ and 4e.

(3 marks)

ii) Which MOs are most likely to undergo mixing and why? What metal d electron configuration would be needed for mixing to occur?

(4 marks)

iii) Use MO theory to explain possible ways of increasing Δ_{oct} for this type of complex.

(4 marks)

2IS.1 – NMR and EPR Spectroscopy

Answer part a) **AND TWO** parts from b), c) **OR** d) of this question.

a) Using the data given below for NMR active nuclei, sketch and label the proton-decoupled ^{31}P NMR spectrum of the square planar platinum complex, **A**, below. Label the couplings present using the $^{n}J_{X-Y}$ notation and comment on the relative magnitudes of the various couplings.

Assume that:

 31 P is 100% abundant, I = 1/2;

 117 Sn and 119 Sn are both 8% abundant, I = 1/2, γ for 117 Sn is -9.5 for 119 Sn is -10.0 (10 7 rad T $^{-1}$ s $^{-1}$) 195 Pt is 33% abundant, I = 1/2

Y for 11 Sn is -9.5 for 12 Sn is -10.0 (10° rad 1° s°) 12 Pt is 33% abundant, I = 1/2No other nuclei present show significant NMR activity

(15 marks)

b) At high temperature the ¹⁹F NMR spectrum of the octahedral anion NbF₆ is a well-resolved multiplet, sketch the multiplet and label any couplings present using the ⁿJ_{X-Y} notation. What effect on the spectrum would be observed on lowering the temperature? Why does the change occur?

Assume that:

 19 F is 100% abundant I = 1/2

 93 Nb is 100% abundant I = 9/2

(5 marks)

c) Sketch the ¹³C NMR spectrum of deuterated acetone, (CD₃)₂C=O, and label any coupling present using the ⁿJ_{X-Y} notation. Assume that only ¹J coupling is observed.

Assume that:

 13 C is 1% abundant I = 1/2 and 2 D is 100% abundant I = 1

No other nuclei present show significant NMR activity

(5 marks)

QUESTION CONTINUED OVERLEAF

d) Sketch the EPR spectrum of the 1,4-dideuteriobenzene radical anion, **B**. Label the couplings present on the sketch and comment on the relative magnitude of the couplings.

$$\begin{array}{c|c} & & & \\ & & & \\ \hline \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

Assume that:

¹H is 100% abundant I = 1/2 and ²D is 100% abundant I = 1; γ for ¹H is 26.7, for ²D it is 4.1 (10⁷ rad T⁻¹ s⁻¹) No other nuclei present show significant EPR activity

(5 marks)