In [11]:

```
import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
```

In [12]:

```
df=pd.read_csv(r"C:\Users\RAMADEVI SURIPAKA\Downloads\Inosphere.csv")
df
```

Out[12]:

	column_a	column_b	column_c	column_d	column_e	column_f	column_g	column_h
0	True	False	0.99539	-0.05889	0.85243	0.02306	0.83398	-0.37708
1	True	False	1.00000	-0.18829	0.93035	-0.36156	-0.10868	-0.93597
2	True	False	1.00000	-0.03365	1.00000	0.00485	1.00000	-0.12062
3	True	False	1.00000	-0.45161	1.00000	1.00000	0.71216	-1.00000
4	True	False	1.00000	-0.02401	0.94140	0.06531	0.92106	-0.23255
346	True	False	0.83508	0.08298	0.73739	-0.14706	0.84349	-0.05567
347	True	False	0.95113	0.00419	0.95183	-0.02723	0.93438	-0.01920
348	True	False	0.94701	-0.00034	0.93207	-0.03227	0.95177	-0.03431
349	True	False	0.90608	-0.01657	0.98122	-0.01989	0.95691	-0.03646
350	True	False	0.84710	0.13533	0.73638	-0.06151	0.87873	0.08260

351 rows × 35 columns

→

In [13]:

```
pd.set_option('display.max_row',10000000000)
pd.set_option('display.max_columns',10000000000)
pd.set_option('display.width',95)
print('This dataFrame has %d rows and %d columns'%(df.shape))
```

This dataFrame has 351 rows and 35 columns

```
In [14]:
```

```
df.head()
```

Out[14]:

	column_a	column_b	column_c	column_d	column_e	column_f	column_g	column_h	C
0	True	False	0.99539	-0.05889	0.85243	0.02306	0.83398	-0.37708	
1	True	False	1.00000	-0.18829	0.93035	-0.36156	-0.10868	-0.93597	
2	True	False	1.00000	-0.03365	1.00000	0.00485	1.00000	-0.12062	
3	True	False	1.00000	-0.45161	1.00000	1.00000	0.71216	-1.00000	
4	True	False	1.00000	-0.02401	0.94140	0.06531	0.92106	-0.23255	
4									>

In [15]:

```
features_matrix=df.iloc[:,0:34]
target_vector=df.iloc[:,-1]
print('The Features Matrix Has %d Rows And %d Columns(s)'%(features_matrix.shape))
print('The Features Matrix Has %d Rows And %d Columns(s)'%(np.array(target_vector).resha
```

The Features Matrix Has 351 Rows And 34 Columns(s)
The Features Matrix Has 351 Rows And 1 Columns(s)

In [16]:

features_matrix_standardized=StandardScaler().fit_transform(features_matrix)

In [17]:

```
algorithm=LogisticRegression(penalty='12',dual=False,tol=1e-4,C=1.0,fit_intercept=True,i
```

In [18]:

Logistic Regression Model=algorithm.fit(features matrix standardized, target vector)

In [20]:

```
observation=[[1,0,0.99539,-0.05889,0.8542999999999,0.02306,0.833979999999999,-0.37708
```

In [21]:

```
predictions=Logistic_Regression_Model.predict(observation)
```

In [22]:

```
print('The Model Predicted The Obsevation To Belong To Class %s'%(predictions))
print('The Algorithm Was Trained To Predict One Of The Two Classes:%s'%(algorithm.classe
```

```
The Model Predicted The Obsevation To Belong To Class ['g']
The Algorithm Was Trained To Predict One Of The Two Classes:['b' 'g']
```

In [23]:

print(""" The Model Says The Probability Of The Observation We Passed Belonging To Class
print()
print(""" The Model Says The Probability Of The Observation We Passed Belonging To Class

The Model Says The Probability Of The Observation We Passed Belonging To Class['b'] Is 0.007759545690606995

The Model Says The Probability Of The Observation We Passed Belonging To Class['g'] Is 0.992240454309393

_	
In	
TH	١.