

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (Four Year) Degree in Industrial Mathematics Fourth Year - Semester II Examination – June/July 2018

MAT 4302 – FINANCIAL MATHEMATICS

Time: Three (03) hours

Answer any FIVE questions

The use of a non-programmable calculator is permitted

- 1. Explain each of the following via examples:
 - (a) Equilibrium level in a micro-market,
 - (b) ESI versus OSI in interest computing,
 - (c) Periodic compounding with $m \geq 2$ (Time-value of money),
 - (d) Marginal functions in Economics.
 - (e) Usage of Progressions (AP, GP, AGP).
- Compare and contrast the two methods, Merchant's Rule (MR) and United
 States Rule (USR) in Partial-payments of Transactions.

Using the two methods MR and USR, find the balance due on the maturity date (MD) of a '10 month, 6% note for a 7500 \$' if it is reduced by equal payments of 2500 \$ made 4 months and 7 months **prior** to the maturity date .

3. A micro-market model is described by the sets

$$S = \{ (Q,P): Q - P^3 = 5-20P \}$$
 and $D = \{ (Q,P): Q+2P = 40 \}.$

Depict S and D by representing the market forces Q_s and Q_d in their explicit forms, via graphs. Determine the equilibrium set E of the market and comment on your results via the zeros of the excess demand function E_d (p).

- 4. (a) Explain what is meant an Annuity and discuss the types of Annuities providing examples.
 - (b) The Jut-Company must accumulate 26,000 pounds during the next twenty years to replace certain of its physical assets. Find the sum it must invest at the end of each year in a Financial-Company paying 3% effective for this purpose.

5.

Scenario	Probability	S(0)	S(1)	S(2)
· ω ₁	0.25	100	110	120
ω_2	0.25	100	105	100
ω_3	0.50	100	90	100

Given that
$$K(n,m) = \frac{S(m) - S(n)}{S(n)}$$
 and $K(n) = K(n,n+1)$, compute

K(1), K(2) and K(0,2). Also, find the expected returns E(K(1)), E(K(2)) and E(K(0,2)).

Calculate the value of J [K (1), K (2)] = $\frac{[1+E(K(0,2))]}{[1+E(K(1))][1+E(K(2))]}$

Comment on the nature of returns K(1) and K(2) via the value of J[K(1), K(2)].

6. Explain the key-terms in Cost-Revenue Analysis.

The costs of an Agriculture-firm making tractors are 5000 USD per week in overheads and 200 USD for every tractor made. Weekly revenue is given by $R(q)=q^3+180\ q+4904$, in USD, where q is the number of tractors made per week. Find each of the following:

- (i)Total cost function TC(q),
- (ii) Profit function $\pi(q)$
- (iii)Break-Even Point (BEP)
- 7. (a) Establish the annuity formulas for the Present-Value

 $A=R\ a_{\ "\ n\ angle\ at\ i"}$ and; for the Total Amount $V=R\ s_{"n\ angle\ at\ i"}$

(b) A city issues 200,000 USD in 20-YEAR BONDS and creates a fund to redeem bonds when due. For this purpose if the annual taxing is T, and if the fund earns 3% interest via investing, find the value of T.

-END-