

Osnove virtualnih okruženja

Igor S. Pandžić

Uvod u 3D grafiku I: Modeliranje

Uvod u 3D grafiku I: Modeliranje

- Modeliranje i digitalni prikaz predmeta
- Model kamere
- Model osvjetljenja
 - Model izvora svjetlosti
 - Model odbijanja svjetlosti
 - Model materijala

Modeliranje i digitalni prikaz predmeta

- Poligoni
- Konstruktivna geometrija čvrstih tijela (CSG)
- Parametarske krivulje i plohe
- Razdjelne plohe
- Brišuće plohe
- Volumenske reprezentacije
- Fraktali
- Sustavi čestica

Prikaz geometrije poligonima (1/2)

- Najčešći pristup
- Vrlo općenit pristup: sve se može pretvoriti u poligone

- Aproksimativna metoda
- Nije intuitivno za ručno modeliranje
- Koristi se za interno spremanje podataka
- Često se drugi oblici prikaza pretvaraju u poligone u zadnji čas prije prikaza
- Grafičko sklopovlje prilagođeno za rad s poligonima (najčešće trokutima)

Prikaz geometrije poligonima (2/2)

- Vrh brid stranica
- B1 = V1, V2
- B5 = V4,V1
- ◆ S1 = V1, V2, V3
- S2 = V1, V3, V4

Konstruktivna geometrija čvrstih tijela (1/2)

- Engl. Constructive Solid Geometry (CSG)
- Jednostavni i intuitivni osnovni oblici (kvadar, kugla, konus, cilindar itd.)
- Često se koristi u oblikovanju VO
- Osnovni elementi se slažu jednostavnim operacijama zbrajanja, oduzimanja i presjeka

Konstruktivna geometrija čvrstih tijela (2/2)

Zbrajanje

Oduzimanje

Presjek

The Utah teapot

- •Nastao 1975 na University of Utah (Newell)
- Tradicionalno se koristi kao
 predmet za testiranje algoritama
 u 3D grafici i animaciji
- Postao je simbol 3D grafike

Parametarske krivulje i plohe

- Stvaraju se matematičkim formulama
- Parametri formule mijenjaju oblik krivulje/plohe
- Parametri su intuitivni i mogu se grafički predočiti

4/2012

Primjer: Bezierova kubična krivulja

$$Q(u) = P_0(1-u)^3 + P_13u(1-u)^2 + P_23u^2(1-u) + P_3u^3$$

Tipovi parametarskih krivulja

11

- Bezier
- Hermite
- B-spline
- β-spline
- NURBS Non-uniform rational B-spline
 - Vrlo popularna u dizajnu zbog širokih mogućnosti kontrole krivulje

Parametarske plohe

Poopćavanje parametarskih krivulja na 3 dimenzije

Primjer: Bezierova ploha

Razdjelne plohe (1/2)

 Iterativna razdioba poligona u nekom jednostavnijem geometrijskom obliku

 Jednostavno modeliranje, dobra kontrola

Razdjelne plohe (2/2)

- Jedan od klasičnih postupaka: Catmull-Clark
- Stvaraju se nove točke i spajaju u nove poligone

Brišuće plohe

Za

 Povlačenjem krivulje linearno, kružno ili po drugoj krivulji stvara se ploha

Volumenski prikazi

- Prostor se dijeli u ćelije (voxels)
- Za svaku se ćeliju zna je li popunjena ili nije

Eventualno dodatna svojstva, npr. boja,

gustoća...

Efikasnija reprezentacija: octree

- Volumen se rekurzivno dijeli
- Svaka podjela na 8 dijelova
- Podjela se zaustavlja kada je promatrani dio:
 - Potpuno pun
 - Potpuno prazan
 - Manji ili jednak zadanom pragu veličine
- Primjer u 2D (quadtree)
- Smanjuje se veličina zapisa
- Efikasnija obrada

Fraktali

- Benoit Mandelbrot, 1975
- Fragmentirani, nepravilni geometrijski objekti koji pokazuju svojstvo samo-sličnosti
- Obično stvoreni rekurzivnim ponavljanjem određene funkcije
- U svakoj iteraciji objekt je transformirana verzija objekta iz prošle iteracije
- Proizvoljan nivo detalja

 $z := z^2 + c$

Fraktalni model planine

Sustavi čestica

- Zav
- Fizikalna simulacija velikog broja jednostavnim čestica
- Svaka čestica se prikazuje točkom, crticom i sl.
- Korisno za prikaz nekih prirodnih pojava:
 - Vodopadi
 - Vatra
 - Dim
 - Međudjelovanje mnoštva predmeta

Sustavi čestica: primjeri

Modeliranje zasnovano na slikama (1/2)

- Prikupljanje oblaka točaka
 - Lasersko skeniranje
 - Generiranje iz niza fotografija
 - Dubinske kamere
- Generiranje geometrije (trokuta); Teksturiranje

Modeliranje zasnovano na slikama (2/2)

Zavod za telekomunikacije

 Dio Graza modeliran temeljem niza slika iz zrakoplova skoro potpuno automatski

Model kamere (1/3)

Za

 Određuje pogled u virtualnu scenu koji će se iscrtati

Model kamere (2/3)

- Ortogonalna ili perspektivna projekcija
 - Više detalja u predavanju o transformacijama
- Parametri jednostavne perspektivne kamere:
 - Centar projekcije (COP)
 - Projekcioni prozor (VPW)
 - Normala na projekcionu plohu (VPN)
 - Bliska i daleka odrezujuća ploha (NCP, FCP)
- Ovi parametri definiraju projekcioni volumen (view frustum)

Model kamere (3/3)

COP - centar projekcije (engl. center of projection)

NCP/FCP - bliska i daleka odrezujuća ploha (engl. near/far clipping plane)

VPW - projekcioni prozor (engl. view-plane window)

VPN - normala na projekcionu plohu (engl. view-plane normal)

Model osvjetljenja

- Kada predmet iz virtualne scene projiciramo na ekran, koje boje će biti svaka točka?
- Ovisi o:
 - Materijalu predmeta
 - Svjetlima
 - Relativnim položajima kamere, svjetla i predmeta

U stvarnosti...

Zavod za telekomunikacije

Izravno osvjetljenje

Promatrana

točka

Neizravno

- Svjetlosna tijela
- Globalno osvjetljenje
 - Mekane granice svjetla/sjene
 - Razlijevanje boje (color bleeding)
 - Odrazi
- Odbijanje, upijanje, lom...

Na računalu...

- Za većinu svjetlosnih efekata postoje algoritmi, no često su skupi
- Za realno vrijeme uvijek aproksimacije
 - Jednostavni modeli izvora svjetlosti
 - Zanemarivanje (dijela) globalnih efekata
 - Zanemarivanje dijela lokalnih efekata

Modeli izvora svjetlosti

- Ambijentno svjetlo
 - Prisutno svuda u sceni
 - Grubo aproksimira globalno osvjetljenje
- Usmjereno svjetlo
- Točkasto svjetlo
- Reflektor

Model odbijanja svjetlosti (Phong)

- Bui-Tuong Phong, 1975.
- Najčešći model za RT grafiku
- Jednostavan, ali dobra aproksimacija

Phongov model odbijanja svjetlosti (1/2)

Phongov model odbijanja svjetlosti (2/2)

Model materijala

- Zav
- Opisuje kako materijal odbija svjetlost
- Dobra vijest: ovo već znate! Osnovni model materijala je sadržan u modelu odbijanja svjetlosti
 - Koeficijenti odbijanja ambijentne, difuzne i spekularne komponente k_a, k_d i k_s
 - Spekularni faktor n
 - Faktor prozirnosti, ako se ona simulira