MMÜ 466 - COMPUTATIONAL MULTI-BODY DYNAMICS - HOMEWORK 3

Due: 24 April 2023, Monday

The multi-body system shown below is composed of a vertical shaft (body 1), a horizontal bar (body 2) and a wheel (body 3). A torque T is applied to rotate the vertical shaft by an angle ϕ . The horizontal bar rotates by an angle θ in the bearing B at the upper end of the vertical shaft. A torsional spring with coefficient k resists the rotation θ of the horizontal bar and it exerts no torque when $\theta = 0$. The wheel is spinning freely at a rate $\dot{\psi}$ around an axis which coincides with point C.

The masses of the vertical shaft and the horizontal bar are negligible. The mass of the wheel is m_w , its centre of mass is at point C and and its inertia dyadic about point C is given by $\check{J}_C = J_1 \vec{u}_1 \vec{u}_1 + J_2 (\vec{u}_2 \vec{u}_2 + \vec{u}_3 \vec{u}_3)$ where $\vec{u}_k = \vec{u}_k^{(2)}$ is the k^{th} unit basis vector of frame \mathcal{F}_2 fixed to the horizontal bar. The radius of the wheel is r and the thickness of the wheel is t_w . It can be shown that the differential equations of motion for this system are:

$$\dot{\psi} - \dot{\phi}Sin\theta = constant$$

$$J_2\ddot{\theta} + J_1\dot{\phi}\dot{\psi}Cos\theta - (J_1 - J_2)\dot{\phi}^2Sin\thetaCos\theta + k\theta = 0$$

$$(m_w b^2 + J_2 Cos^2 \theta) \ddot{\phi} - (2J_2 - J_1) \dot{\phi} \dot{\theta} Sin\theta Cos\theta - J_1 \dot{\psi} \dot{\theta} Cos\theta = T$$

The numerical values are given below:

$$|AB| = h = 0.25 \, m$$
, $|BC| = b = 0.25 \, m$, $m_w = 0.1 \, kg$, $r = 0.05 \, m$, $t_w = 2 \, mm = 0.002 \, m$

$$J_1 = \frac{1}{2} m_w r^2$$
, $J_2 = \frac{1}{4} m_w r^2 + \frac{1}{12} m_w (t_w)^2$, $k = \frac{0.2}{\pi} Nm/rad$, $T = 0.1 Sin(\frac{\pi}{2}t) Nm$, t : $time$

Using the initial conditions given below, solve the given system of differential equations for $t \in [0, 5]$ where t (time) is in seconds. As a result, plot $\phi(t)$, $\theta(t)$ and $\psi(t)$ versus t in three separate figures.

$$\phi(0) = 0 \ rad, \ \dot{\phi}(0) = 0 \ rad/s, \ \theta(0) = \frac{\pi}{2} \ rad, \ \dot{\theta}(0) = 0 \ rad/s, \ \psi(0) = \frac{\pi}{4} \ rad, \ \dot{\psi}(0) = 2\pi \ rad/s$$

Use the Matlab function ode23s to solve this system of differential equations. (Hint: Take the derivative of the first equation).