

Goals

Insights of HPC over Cloud Computing.

 Give an starting point to start your own experiments in the Cloud.

What is the Cloud Anyway?

As defined by the NIST:

On-demand
 Self-service

Broad Network Access

Rapid Elasticity

Measured Service

What is the Cloud Anyway?

A broad concept that encompasses the abstraction of computer systems (including their resources) and presents them in a ubiquitous way.

Cloud - Service Levels

^{*1:} Including the concept of "Serveless"

Cloud - Service Levels

Rule of Thumb, choose wisely:

Higher Abstraction ⇒ Less Operational Load ⇒
More Constraints ⇒ More Out-of-the-Box Features
⇒ Higher Vendor Dependency

Maybe... Start by answering yourself:

If Legacy Code:

 Does to code run on commodity hardware?

How fault tolerant is the code?

If New Development:

Can it take advantage (do I understand?)
 of the Cloud Paradigm? (APIs, ephemeral
 environments...)

In any case:

What is the budget.

How many resources do you really need.

What are acceptable thresholds (e.g. failure/errors)

Think Cloud Native:

A cloud native app is architected specifically to run in the elastic and distributed nature required by modern cloud computing platforms.

• Immutable infrastructure, idempotence and containerization are not just a trend.

APIs are first class citizens.

• Commodity hardware (reliable over unreliable).

 Be prepared for failure: checking points, incremental backoff, different AZs...

Running HPC in the Cloud

Compared with a more traditional environment, **by default**, the Cloud is not very HPC "friendly":

No low latency networks.

• Prone to different (points of) failure.

No limits***

Running HPC in the Cloud

 Scheduling is now transparent, (initially) no need for queues.

 You might need to give a heads up to be sure resources are allocated.

But...

 Yes, there is HPC-friendly in the cloud (low latency, affinity, location...) ...

• ... But it is not the standard.

Do you really need it?

1 Minute Example: Serverless Monte Carlo

Simple case (Monte Carlo, not my code) that runs on Google Cloud Functions (FaaS) and returns the value of the calculation.

Up and running in less than 1 minute.

Code:_{*1}

```
# main.py: Numerical Integration using Monte Carlo
method
#FB - 201006137
import math
import random
# define any function here!
def f(x):
       return math.sin(x)
# define any xmin-xmax interval here! (xmin < xmax)
def montecarlo(request):
xmin = 0.0
xmax = 2.0 * math.pi
 # find ymin-ymax
 numSteps = 1000000 # bigger the better but slower!
 ymin = f(xmin)
 ymax = ymin
```

```
for i in range(numSteps):
      x = xmin + (xmax - xmin) * float(i) / numSteps
      y = f(x)
      if y < ymin: ymin = y
       if y > ymax: ymax = y
# Monte Carlo
rectArea = (xmax - xmin) * (ymax - ymin)
numPoints = 1000000 # bigger the better but slower!
ctr = 0
for i in range(numPoints):
      x = xmin + (xmax - xmin) * random.random()
       y = ymin + (ymax - ymin) * random.random()
       if math.fabs(y) \le math.fabs(f(x)):
       if f(x) > 0 and y > 0 and y <= f(x):
      ctr += 1 # area over x-axis is positive
       if f(x) < 0 and y < 0 and y >= f(x):
       ctr -= 1 # area under x-axis is negative
fnArea = rectArea * float(ctr) / numPoints
return "Numerical integration = " + str(fnArea)
```

^{*1:} Not my code, numerical recipe from the Internet.

1 Minute Example: Deploying and Running

```
# Deploying (I am logged in google cloud, no other steps needed) gcloud functions deploy montecarlo --runtime python37 --trigger-http
```

Running (triggering) the code curl "https://us-central1-myexperiment.cloudfunctions.net/montecarlo" Numerical integration = 0.0024630086404143978

HPC for the Cloud - Pitfalls

 Embrace the Order in Chaos: Do NOT fight the nature of the Cloud.

Plan, architect and plan again.

 Be prepared for failure: checking points, incremental backoff, different AZs...

Choosing a Provider

 Know your needs, requirements and budget.

Follow a methodology (e.g. RACI).

Public, Private or Hybrid?

Money...

• The Cloud can be expensive... but also cheap... (as well as DCs).

 Many waivers and programs available for funding (e.g. EU Horizon 2020). Talk to your provider.

Takeaways

The Cloud is not a silver bullet.

 Understand the paradigm first: read a lot or reach Engineers with expertise.

 Design and architect are the most important stages.

Thank You! - Questions?

References

- The NIST Definition of Cloud Computing. P Mell, et al.NIST, 2011.
- Designing Data-Intensive Applications, Chapter 8. M Kleppmann. O'Reilly, 2017.
- Views on the potential of Cloud computing and laaS/HPCaaS for meteorology and climatology. D Montes, et al. EMS Annual Meeting Abstracts 14 (EMS2017), 639, 2017.
- *CNCF Cloud Native Interactive Landscape*. Cloud Native Computing Foundation, https://landscape.cncf.io . October 2017.
- Design and Implementation of a Cloud Computing Adoption Decision
 Tool: Generating a Cloud Road. I Bidosola, et al. PLoS ONE, 2017.