ARCS IN FINITE PROJECTIVE SPACES

SIMEON BALL

ABSTRACT. These notes are an outline of a course on arcs given at the Finite Geometry Summer School, University of Sussex, June 26-30, 2017.

Basic objects and definitions

Let \mathbb{K} denote an arbitrary field.

Let \mathbb{F}_q denote the finite field with q elements, where q is the power of a prime p.

Let $V_k(\mathbb{K})$ denote the k-dimensional vector space over \mathbb{K} .

Let $PG_{k-1}(\mathbb{K})$ denote the (k-1)-dimensional projective space over \mathbb{K} .

A projective point of $\mathrm{PG}_{k-1}(\mathbb{K})$ is a one-dimensional subspace of $\mathrm{V}_k(\mathbb{K})$ which, with respect to a basis, is denoted by (x_1,\ldots,x_k) .

The *weight* of a vector is the number of non-zero coordinates it has with respect to a fixed canonical basis.

A k-dimensional linear code of length n and minimum distance d is a k-dimensional subspace of $V_n(\mathbb{F}_q)$ in which every non-zero vector has weight at least d.

1. Normal rational curve

Example 1. A normal rational curve is a set of q+1 points in $\mathrm{PG}_{k-1}(\mathbb{K})$ projectively equivalent to

$$S = \{(1, t, \dots, t^{k-1}) \mid t \in \mathbb{K} \cup \{(0, \dots, 0, 1)\}.$$

Lemma 2. Any k-subset of S spans $PG_{k-1}(\mathbb{K})$.

An $arc\ S$ of $PG_{k-1}(\mathbb{K})$ is a subset of points with the property that any k-subset of S spans $PG_{k-1}(\mathbb{K})$. Implicitly, we will assume that S has size at least k.

Date: 30 June 2017.

For k = 3, a normal rational curve is the zero-set of a quadratic form. In the example above, $X_1X_3 - X_2^2$.

A symmetric bilinear form b(X,Y) is degenerate is b(X,y) = 0 for some point y.

A quadratic form f(X) is degenerate if f(y) = 0 and b(X, y) = 0 for some point y.

Exercise 1. Let f(X) be a non-degenerate quadratic form in three variables. There is a basis of the space with respect to which $f(X) = X_1X_3 - X_2^2$.

The zero-set of a non-degenerate quadratic form is a *conic*.

Exercise 2. There is a unique conic through an arc of 5 points of $PG_2(\mathbb{K})$.

There is a $k \times k$ matrix M over K such that

$$M\begin{pmatrix} 1 \\ t \\ \vdots \\ t \\ t^{k-1} \end{pmatrix} = \begin{pmatrix} (ct+d)^{k-1} \\ (ct+d)^{k-2}(at+d) \\ \vdots \\ (ct+d)(at+d)^{k-2} \\ (at+d)^{k-1} \end{pmatrix}.$$

Exercise 3. The authormphism group of the normal rational curve is transitive on the points of the normal rational curve.

Exercise 4. The normal rational curve in $PG_{k-1}(\mathbb{K})$ projects onto a normal rational curve in $PG_{k-2}(\mathbb{K})$ form any point of the normal rational curve.

Exercise 5. There is a unique normal rational curve through an arc of k + 2 points of $PG_{k-1}(\mathbb{K})$.

2. Other examples of large arcs

Example 3. Let σ be the automorphism of \mathbb{F}_q , $q=2^h$, which takes x to x^{2^e} . The set

$$S = \{(1,t,t^\sigma) \mid t \in \mathbb{F}_q \cup \{(0,0,1),(0,1,0)\}.$$

is called the translation hyperoval. It is an arc of q+2 points in $PG_2(\mathbb{F}_q)$, whenever (e,h)=1.

Exercise 6. Prove that Example 3 is an arc.

Example 4. Let σ be the automorphism of \mathbb{F}_q , $q=2^h$, which takes x to x^{2^e} . The set

$$S = \{(1, t, t^{\sigma}, t^{\sigma+1}) \mid t \in \mathbb{F}_q \cup \{(0, 0, 0, 1)\}.$$

is an arc of q+1 points in $PG_3(\mathbb{F}_q)$, whenever (e,h)=1.

Exercise 7. Prove that the autmorphism group of the arc is 2-transitive, by finding a matrix M such that

$$M\begin{pmatrix} 1\\t\\t^{\sigma}\\t^{\sigma+1}\end{pmatrix} = \begin{pmatrix} (ct+d)^{\sigma+1}\\(ct+d)^{\sigma}(at+d)\\(ct+d)(at+d)^{\sigma}\\(at+d)^{\sigma+1}\end{pmatrix}.$$

Prove that Example 4 is an arc.

Example 5. Let η be an element of \mathbb{F}_9 , $\eta^4 = -1$. The set

$$S = \{(1, t, t^2 + \eta t^6, t^3, t^4) \mid t \in \mathbb{F}_9 \cup \{(0, 0, 0, 0, 1)\}.$$

is an arc of size q+1 in $PG_4(\mathbb{F}_9)$.

Exercise 8. Prove that Example 5 is an arc.

3. The trivial upper bound and the MDS conjecture

Theorem 6. Let S be an arc of $PG_{k-1}(\mathbb{F}_q)$ of size q + k - 1 - t and let A be a subset of S of size k - 2. There are exactly t hyperplanes which meet S in precisely the points A.

Proof. The points of A span a (k-3)-dimensional subspace $\langle A \rangle$. There are q+1 hyperplanes containing $\langle A \rangle$ each containing at most one point of $S \setminus A$. Therefore there are q+1-(|S|-k-2) hyperplanes which meet S in precisely the points A.

Corollary 7. An arc of $PG_{k-1}(\mathbb{F}_q)$ has at most q + k - 1 points.

Proof. The follows from Theorem 6, since $t \ge 0$.

Theorem 8. Let S be an arc of $PG_{k-1}(\mathbb{F}_q)$. If $k \ge q$ then $|S| \le k+1$.

Proof. After choosing a suitable basis and scaling the points of S we can assume

$$S \supseteq \{e_1, \dots, e_k, e_1 + \dots + e_k\},\$$

where e_i is the *i*-th coordinate vector.

Suppose $u = (u_1, ..., u_k) \in S \setminus \{e_1, ..., e_k, e_1 + \cdots + e_k\}.$

If $u_i = 0$ for some i then the hyperplane $\ker X_i$ (the hyperplane with equation $X_i = 0$) contains k points of S, contradicting the arc property.

If $u_i \neq 0$ for all i then by the pigeon-hole principle there exists and i and j such that $u_i = u_j$, since $k \geq q$. But then the hyperplane $\ker(X_i - X_j)$ (the hyperplane with equation $X_i = X_j$) contains k points of S, contradicting the arc property.

Let G be a $k \times |S|$ matrix with entries from \mathbb{F}_q whose columns are vector representatives of the points of S.

Lemma 9. For all $u \in \mathbb{F}_q^k$ the vector uG has at most k-1 zeros.

Proof. Suppose that there are k coordinates where uG has zero coordinates. Then restricting G to these k coordinates we get a $k \times k$ submatrix of G which has rank less than k. Hence, the k columns of this submatrix are linearly dependent, contradicting the arc property.

Let $C = \{uG \mid u \in \mathbb{F}_q^k\}$. Then C is a k-dimensional subspace of $\mathbb{F}_q^{|S|}$.

Lemma 10. The minimum weight of a non-zero vector in C is |S| - k + 1.

Proof. This follows immediately from Lemma 9.

A k-dimensional linear maximum distance separable (MDS) code C of length n is a k-dimensional subspace of \mathbb{F}_q^n in which every non-zero vector has weight at least n-k+1. We have already established the following lemma.

Lemma 11. The linear code generated by the matrix G, whose columns are vector representatives of the points of an arc is a linear MDS code, and vice-verse, the set of columns of a generator matrix of a linear code, considered as a set of points of the projective space, is an arc.

The dual of a linear code C is,

$$C^{\perp} = \{ v \in \mathbb{F}_q \mid u \cdot v = 0 \text{ for all } u \in C \},$$

where $u \cdot v = u_1 v_1 + \dots + u_k v_k$.

Lemma 12. The linear code C is MDS if and only if C^{\perp} is MDS.

Proof. Suppose C is MDS and that C^{\perp} is not MDS. Then C^{\perp} contains a non-zero vector v with of weight less than n-(n-k)=k. Consider the columns of G which correspond to these non-zero coordinates of v. Then these columns are linearly dependent, contradicting the arc property implied by Lemma 11.

Corollary 13. There is an arc of size n in $PG_{k-1}(\mathbb{F}_q)$ if and only if there is an arc of size n in $PG_{n-k-1}(\mathbb{F}_q)$.

Proof. This follows from Lemma 11 and Lemma 12.

Conjecture 14. (The MDS conjecture) If $4 \le k \le q-3$ then an arc of $PG_{k-1}(\mathbb{F}_q)$ has size at most q+1.

4. The tangent functions and the Lemma of Tangents

Let S be an arc of $PG_{k-1}(\mathbb{F}_q)$ of size q+k-1-t and let A be a subset of S of size k-2.

Let $\alpha_1, \ldots, \alpha_t$ be t linear forms whose kernels are the t hyperplanes which meet S in precisely the points A, see Theorem 6.

Define (up to scalar factor) a homogeneous polynomial of degree t,

$$f_A(X) = \prod_{i=1}^t \alpha_i(X),$$

where $X = (X_1, ..., X_k)$.

A homogeneous polynomial f in k variables defines a function from $V_k(\mathbb{F}_q)$ to \mathbb{F}_q under evaluation. If we change the basis of $V_k(\mathbb{F}_q)$ then although the polynomial f will change its evaluation function will not. Put another way, any function from $V_k(\mathbb{F}_q)$ to \mathbb{F}_q is the evaluation of a polynomial once we fix a basis of $V_k(\mathbb{F}_q)$. Obviously, the polynomial we obtain depends on the basis we choose.

Lemma 15. (Segre's lemma of tangents) Let S be an arc of $\operatorname{PG}_{k-1}(\mathbb{F}_q)$ and let D be a subset of S of size k-3. For all $x,y,z\in S\setminus D$,

$$f_{D\cup\{x\}}(y)f_{D\cup\{y\}}(z)f_{D\cup\{z\}}(x) = (-1)^{t+1}f_{D\cup\{y\}}(x)f_{D\cup\{z\}}(y)f_{D\cup\{x\}}(z).$$

Proof. (k = 3). Let $f_a^*(X)$ be the homogeneous polynomial we obtain from $f_a(X)$ when we change the basis from the canonical basis to $B = \{x, y, z\}$.

The polynomial $f_x^*(X) = \prod_{i=1}^t (a_{i2}X_2 + a_{i3}X_3)$, for some $a_{ij} \in \mathbb{F}_q$.

The polynomial $f_y^*(X) = \prod_{i=1}^t (b_{i1}X_1 + b_{i3}X_3)$, for some $b_{ij} \in \mathbb{F}_q$.

The polynomial $f_z^*(X) = \prod_{i=1}^t (c_{i1}X_1 + c_{i2}X_2)$, for some $c_{ij} \in \mathbb{F}_q$.

Let $s \in S \setminus B$. The line joining x and s is $\ker(s_3X_2 - s_2X_3)$ where (s_1, \ldots, s_k) are the coordinates of s with respect to the basis B.

As s runs through the elements of $S \setminus B$, the element $-s_2/s_3$ runs through the elements of $\mathbb{F}_q \setminus \{a_{i3}/a_{i2} \mid i=1,\ldots,t\}$. Since the product of all the non-zero elements of \mathbb{F}_q is -1,

$$\prod_{s \in S \backslash B} \frac{-s_2}{s_3} \prod_{i=1}^t \frac{a_{i3}}{a_{i2}} = -1,$$

and since $\prod_{i=1}^t a_{i3} = f_x^*(z)$ and $\prod_{i=1}^t a_{i2} = f_x^*(y)$, we have

$$f_x^*(z) \prod_{s \in S \setminus B} (-s_2) = f_x^*(y) \prod_{s \in S \setminus B} s_3.$$

Now permuting x, y and z, we get

$$f_y^*(x) \prod_{s \in S \setminus B} (-s_3) = f_y^*(z) \prod_{s \in S \setminus B} s_1$$

and

$$f_z^*(y) \prod_{s \in S \setminus B} (-s_1) = f_z^*(x) \prod_{s \in S \setminus B} s_2,$$

from which

$$f_x^*(z)f_y^*(x)f_z^*(y) = (-1)^{t+1}f_x^*(y)f_y^*(z)f_z^*(x).$$

Now, since f^* and f define the same functions on the points of $PG_{k-1}(\mathbb{F}_q)$, the lemma follows.

Order the elements of S arbitrarily and let F be the first k-2 points of S.

Let A be a subset of S of size k-2, where $A \neq F$. Let e be the first element of $F \setminus A$ and a be the last element of $A \setminus F$. We scale $f_A(X)$ so that

$$f_A(e) = (-1)^{s(\sigma)(t+1)} f_{(A \cup \{e\}) \setminus \{a\}}(a),$$

where σ is the permutation that orders (A, e) as in the ordering of S and $s(\sigma)$ is the sign of the permutation σ .

Note that this scaling only makes sense if we fix a representative for each point of S.

Lemma 16. (Segre's lemma of tangents scaled and planar) Let S be an arc of $PG_2(\mathbb{F}_q)$. For all $x, y \in S$,

$$f_{\{x\}}(y) = (-1)^{t+1} f_{\{y\}}(x).$$

Proof. This follows from Lemma 15 and the fact that we have scaled $f_a(X)$ so that $f_e(x) = (-1)^{t+1} f_x(e)$.

Lemma 17. (Segre's lemma of tangents scaled) Let S be an arc of $PG_{k-1}(\mathbb{F}_q)$ and let D be a subset of S of size k-3. For any $x, y \in S \setminus D$,

$$f_{D\cup\{x\}}(y) = (-1)^{s(\sigma)(t+1)} f_{D\cup\{y\}}(x),$$

where σ is the permutation that orders $(D \cup \{x\}, y)$ as $(D \cup \{y\}, x)$

Lemma 17 can be proved by induction on the number of elements that D intersects F in and using Lemma 15.

5. The Segre-Blokhuis-Bruen-Thas form

A planar arc is an arc of $PG_2(\mathbb{F}_q)$.

The Segre form associated to a planar arc is the polynomial G(X,Y) whose existence is proved in the following theorem.

Theorem 18. Let $m \in \{1,2\}$ such that m-1=q modulo 2. If S is a planar arc of size q+2-t, where $|S| \geqslant mt+2$, then there is a homogeneous polynomial in three variables $\phi(Z)$, of degree mt, which gives a polynomial G(X,Y) under the substitution $Z_1 = X_2Y_3 - Y_2X_3$, $Z_2 = X_1Y_3 - Y_1X_3$, $Z_3 = X_2Y_1 - Y_2X_1$, with the property that for all $y \in S$

$$G(X,y) = f_y(X)^m.$$

Proof. Order the set S arbitrarily and let E be a subset of S of size mt + 2. Define

$$G(X,Y) = \sum_{a < b} f_a(b)^m \prod_{u \in E \setminus \{a,b\}} \frac{\det(X,Y,u)}{\det(a,b,u)},$$

where the sum runs over subsets $\{a, b\}$ of E.

Then, for $y \in E$, the only non-zero terms in G(X, y) are obtained for a = y and b = y. Lemma 16 implies

$$G(X,y) = \sum_{a \in E \setminus y} f_a(y)^m \prod_{u \in E \setminus \{a,y\}} \frac{\det(X,y,u)}{\det(a,y,u)}.$$

With respect to a basis containing y, the polynomials G(X, y) and $f_y(X)^m$ are homogeneous polynomials in two variables of degree mt. Their values at the mt + 1 points $x \in E \setminus \{y\}$ are the same, so we conclude that $G(X, y) = f_y(X)^m$.

If $y \notin E$ then we still have that with respect to a basis containing y, the polynomial G(X, y) is a homogeneous polynomial in two variables of degree mt. For $x \in E$,

$$G(x,y) = G(y,x) = f_x(y)^m = f_y(x)^m,$$

the last equality following from Lemma 16, and so again we conclude that $G(X,y) = f_u(X)^m$.

If $y \in S$ and x is a point on a tangent to S incident with y then $G(x,y) = f_y(x)^m = 0$. This implies that, changing the coordinates to $z_1 = x_2y_3 - y_2x_3$, etc, the point z is a zero of the polynomial $\phi(Z)$. Therefore, the set of zeros of ϕ contains the points in the dual plane, dual to the tangents of S.

Theorem 19. Let $m \in \{1, 2\}$ such that m - 1 = q modulo 2. If S is a planar arc of size q + 2 - t, where $|S| \ge mt + 2$, then S has a unique completion to a complete arc.

Proof. Suppose that S is incomplete, i.e. there is a point u such that $S \cup \{u\}$ is an arc. Then the polynomial we obtain from G(u,Y), when we change the basis to a basis containing u, is a homogenous polynomial in two variables of degree mt which is zero at all points y of S, since the line joining y and u is a tangent and so $G(u,y) = f_y(u)^m = 0$. Therefore G(X,u) is identically zero. This implies

$$\phi(u_3X_2 - u_2X_3, u_3X_1 - u_1X_3, u_1X_2 - u_2X_1) = 0,$$

so ϕ is zero at all points of the line $u_1Z_1 + u_2Z_2 + u_3Z_3 = 0$, so $u_1Z_1 + u_2Z_2 + u_3Z_3$ is a factor of $\phi(Z)$. Therefore, if S is incomplete, we can find the points which extend S to a larger arc by looking at the factors of $\phi(Z)$.

Theorem 20. If S is a planar arc of size at least $q - \sqrt{q} + 2$ and q is even then S is extendable to an arc of size q + 2.

Proof. The tangents to S are a set of (q+2-t)t points in the dual plane which are all zeros of $\phi(Z)$, the polynomial of degree t given by Theorem 18. If $\phi(Z)$ has a linear factor then G(X,Y) has a factor $\det(X,Y,u)$ for some point u, so u is joined to each point of S by a tangent. Therefore u extends S to a larger arc.

If not then each line meets the zero-set of $\phi(Z)$ in at most t points. Fixing a zero x of $\phi(Z)$ and considering the lines incident with x, each of these lines is incident with at most t-1 other points of the zero-set of $\phi(Z)$. Therefore the zero-set of $\phi(Z)$ has at most (t-1)(q+1)+1 points. Hence, if S is complete then $(q+2-t)t \leq (t-1)(q+1)+1$. \square

Theorem 21. Let q > 9 be a square. Let I be the 3×3 identity matrix and let H be a 3×3 matrix with the property that $H^{\sqrt{q}} = H^t$. For any 3×3 matrix M, let

$$V(\mathbf{M}) = \{ x \in \mathrm{PG}_2(\mathbb{F}_q) \mid x^t \mathbf{M} x^{\sqrt{q}} = 0 \}$$

If the characteristic polynomial of H is irreducible over \mathbb{F}_q then the set of points $S = V(I) \cap V(H)$ is an arc of $PG_2(\mathbb{F}_q)$ of size $q - \sqrt{q} + 1$ not contained in a conic.

Proof. Consider the Hermitian curves $V(H + \mu I)$, where $\mu \in \mathbb{F}_{\sqrt{q}}$ and V(I).

If x is a point on two of these curves then $x \in S$.

If $x \notin S$ and $x \notin V(I)$ then x is a point of V(H + (a/b)I), where $x^tHx^{\sqrt{q}} = a$ and $x^tIx^{\sqrt{q}} = -b$.

Hence, each point is either in S or on exactly one of the $\sqrt{q} + 1$ Hermitian curves.

Therefore,

$$(\sqrt{q}+1)(q\sqrt{q}+1) = |S|(\sqrt{q}+1) + q^2 + q + 1 - |S|,$$

which gives $|S| = q - \sqrt{q} + 1$.

Suppose that ℓ is a line incident with $r \ge 2$ points of S. Then ℓ intersects each Hermitian curve $(V(H + \mu I) \text{ or } V(I))$ in $\sqrt{q} + 1$ points, r of which are in S and $\sqrt{q} + 1 - r$ of which are not in S.

Counting points of ℓ not in S we have $(\sqrt{q}+1-r)(\sqrt{q}+1)=q+1-r$, since each point not in S is on exactly one of the $\sqrt{q}+1$ Hermitian curves. This gives r=2 and so S is an arc.

It follows from Bezout's theorem that S has at most $2\sqrt{q} + 2$ points in common with a conic, so cannot be contained in a conic for $q - \sqrt{q} + 1 \ge 2\sqrt{q} + 2$.

Exercise 9. Prove that the arc constructed in Theorem 21 cannot be extended to a larger arc for $q \ge 9$.

The Segre-Blokhuis-Bruen-Thas form associated to an arc is the polynomial $G(X_1, \ldots, X_{k-1})$ whose existence is proved in the following theorem.

We denote by $\det_j(X_1,\ldots,X_{k-1})$ the determinant in which the *j*-coordinate has been deleted.

Theorem 22. Let $m \in \{1,2\}$ such that m-1=q modulo 2. If S is a planar arc of size q+k-1-t, where $|S| \ge mt+k-1$, then there is a homogeneous polynomial in

three variables $\phi(Z)$, of degree mt, which gives a polynomial $G(X_1, \ldots, X_{k-1})$ under the substitution $Z_j = \det_j(X_1, \ldots, X_{k-1})$, with the property that for all $\{y_1, \ldots, y_{k-2}\} \subset S$

$$G(X, y_1, \dots, y_{k-2}) = f_{\{y_1, \dots, y_{k-2}\}}(X)^m.$$

Proof. Order the set S arbitrarily and let E be a subset of S of size mt + k - 1. Define

$$G(X_1,\ldots,X_{k-1}) = \sum_{\{a_1,\ldots,a_{k-1}\}} f_{a_1,\ldots,a_{k-2}}(a_{k-1})^m \prod_{u \in E \setminus \{a_1,\ldots,a_{k-1}\}} \frac{\det(X_1,\ldots,X_{k-1},u)}{\det(a_1,\ldots,a_{k-1},u)}.$$

where the sum runs over subsets $\{a_1, \ldots, a_{k-1}\}$ of E.

The proof is then the same as the proof of Theorem 18.

Theorem 23. Let $m \in \{1, 2\}$ such that m - 1 = q modulo 2. If S is a planar arc of size q + k - 1 - t, where $|S| \ge mt + k - 1$, then S has a unique completion to a complete arc.

Proof. As in the proof of Theorem 19.

6. A NEW FORM

For an arc S of $\operatorname{PG}_2(\mathbb{F}_q)$ of size q+2-t, let $\Phi[X]$ denote the subspace of the vector space of homogeneous polynomials of degree t in $X=(X_1,X_2,X_3)$ which are zero on S.

Theorem 24. Let S be a planar arc of size q + 2 - t. There is a polynomial F(X, Y), which is a homogeneous polynomial of degree t in both X and Y, such that

$$F(X,Y) = (-1)^{t+1}F(Y,X)$$

and with the property that for all $a \in S$,

$$F(X,a) = f_a(X) \pmod{\Phi[X]}$$
.

Moreover, modulo $(\Phi[X], \Phi[Y])$ the polynomial F is unique.

Proof. Let $V = \Psi[X] \oplus \Phi[X]$ be the vector space of all homogeneous polynomials of degree t in three variables, where $\Phi[X]$ is the subspace of polynomials vanishing on the arc S. Consider the subspace

$$\Omega = \{ (g(a))_{a \in S} \mid g \in V \}$$

of $\mathbb{F}_q^{|S|}$.

Let λ_a denote the *a* coordinate of a vector $\lambda \in \mathbb{F}_q^{|S|}$.

For each $\lambda \in \Omega^{\perp}$ and each $x \in S$ we have

$$\sum_{a \in S} \lambda_a f_a(x) = 0,$$

since, by Lemma 17, $f_a(x) = (-1)^{t+1} f_x(a)$ for all $a, x \in S$, and $f_x(a)$ is a homogeneous polynomial in a of degree t, by definition.

Define the subspace Π to be

$$\Pi = \{ \lambda \in \Omega^{\perp} \mid \sum_{a \in S} \lambda_a f_a(X) \equiv 0 \}.$$

Let U and W be subspaces of $\mathbb{F}_q^{|S|}$ such that $\Omega^{\perp} = \Pi \oplus W$ and $\Pi^{\perp} = \Omega \oplus U$. Observe that $\dim U = \dim W$ and let $m = \dim U$.

For each $i, j \in \{0, ..., t\}$, with $i + j \leq t$, we define a function f_{ij} from S to \mathbb{F}_q , where for each $a \in S$ the value of $f_{ij}(a)$ is the coefficient of $X_1^i X_2^j X_3^{t-i-j}$ of the polynomial $f_a(X)$, i.e.

$$f_a(X) = \sum_{i+j=0}^{t} f_{ij}(a) X_1^i X_2^j X_3^{t-i-j}.$$

For each $\lambda \in \Pi$,

$$\sum_{a \in S} \lambda_a f_{ij}(a) = 0,$$

so the vector $(f_{ij}(a))_{a\in S}\in\Pi^{\perp}$. We can write

$$f_{ij} = p_{ij} + h_{ij},$$

for some functions p_{ij} and h_{ij} , where $(p_{ij}(a))_{a\in S}\in\Omega$ and $(h_{ij}(a))_{a\in S}\in U$. Observe that the function p_{ij} is the evaluation of a homogeneous polynomial $p_{ij}[Y]\in\Psi[Y]$ of degree t.

Let u_1, \ldots, u_m be functions from S to \mathbb{F}_q such that $\{((u_1(a))_{a \in S}, \ldots, ((u_m(a))_{a \in S})\}$ is a basis for U. Then

$$f_{ij} = p_{ij} + \sum_{k=1}^{m} q_{ijk} u_k,$$

for some $q_{ijk} \in \mathbb{F}_q$.

For $\lambda \in W \setminus \{0\}$,

$$\sum_{a \in S} \lambda_a f_a(X),$$

is a non-zero polynomial vanishing at the points of S, so is an element of $\Phi[X]$.

Since $(p_{ij}(a))_{a\in S}\in\Omega\subseteq W^{\perp}$, we have

$$\sum_{a \in S} \lambda_a f_a(X) = \sum_{k=1}^m \left(\sum_{a \in S} \lambda_a u_k(a) \right) v_k(X), \text{ where } v_k(X) = \sum_{i+j=0}^t q_{ijk} X_1^i X_2^j X_3^{t-i-j}.$$

Suppose that $\lambda, \lambda' \in W$ and that

$$\sum_{a \in S} \lambda_a f_a(X) = \sum_{a \in S} \lambda'_a f_a(X).$$

Then $\lambda - \lambda' \in \Pi$ and so $\lambda = \lambda'$. This implies that as λ ranges over the q^m elements in W, we obtain q^m different polynomials $\sum_{a \in S} \lambda_a f_a(X)$ in the subspace spanned by the m polynomials v_1, \ldots, v_m . Hence,

$$\{\sum_{a \in S} \lambda_a f_a(X) \mid \lambda \in W\} = \langle v_1(X), \dots, v_m(X) \rangle,$$

and in particular $v_1, \ldots, v_m \in \Phi[X]$.

Let $g_{ij}(X) \in \Psi[X]$ be the polynomial such that $X_1^i X_2^j X_3^{t-i-j} = g_{ij}(X)$ modulo $\Phi[X]$.

Define a homogeneous polynomial of degree t in X and Y as

$$F(X,Y) = \sum_{i+j=0}^{t} p_{ij}(Y)g_{ij}(X),$$

Then, for all $a \in S$,

$$F(X,a) = \sum_{i+j=0}^{t} p_{ij}(a)g_{ij}(X) = \sum_{i+j=0}^{t} f_{ij}(a)g_{ij}(X) - \sum_{k=1}^{m} \sum_{i+j=0}^{t} q_{ijk}u_k(a)g_{ij}(X)$$

$$= \sum_{i+j=0}^{t} f_{ij}(a)X_1^i X_2^j X_3^{t-i-j} - \sum_{k=1}^{m} \sum_{i+j=0}^{t} q_{ijk}u_k(a)X_1^i X_2^j X_3^{t-i-j} \pmod{\Phi[X]}$$

$$= f_a(X) - \sum_{k=1}^{m} u_k(a)v_k(X) = f_a(X) \pmod{\Phi[X]}.$$

The proof of skew-symmetry and uniqueness are left as an exercise.

Example 25. The planar arc of 12 points in $PG_2(\mathbb{F}_{13})$,

$$S = \{(3,4,1), (-3,4,1), (3,-4,1), (-3,-4,1), (4,3,1), (4,-3,1), (-4,3,1), (-4,-3,1), ($$

is an arc with t=3 and it is not contained in a curve of degree 3. Consequently, Theorem 31 implies that there is a unique polynomial F(X,Y) of degree three in both Xand Y with the property that $F(X,a)=f_a(X)$ for all $a\in S$. It is given by

$$F(x,y) = 5(x_2^2x_3y_1^2y_3 + y_2^2y_3x_1^2x_3 + x_2x_3^2y_1^2y_2 + x_1^2x_2y_2y_3^2 + x_1x_3^2y_1y_2^2 + x_1x_2^2y_1y_3^2)$$

$$+6x_1x_2x_3y_1y_2y_3 + x_1^3y_1^3 + x_2^3y_2^3 + x_3^3y_3^3.$$

Let S be a planar arc of size q+2-t and let F(X,Y) be a polynomial given by Theorem 31, i.e. a representative from the equivalence class modulo $(\Phi[X], \Phi[Y])$.

For each $i, j, k \in \{0, \dots, t-1\}$ where $i+j+k \leq t-1$, define $\rho_{ijk}(Y)$ to be the coefficient of $X_1^i X_2^j X_3^j$ in

$$F(X+Y,Y) - F(X,Y).$$

Lemma 26. For all $i, j, k \in \{0, ..., t-1\}$ where $i + j + k \leq t - 1$, the polynomial $\rho_{ijk}(Y)$ is either zero or a homogeneous polynomial of degree 2t - i - j - k which is zero on S.

Proof. For all $a \in S$, the polynomial $f_a(X)$ is the product of t linear forms whose kernels contain the point a. Therefore, $f_a(X + a) = f_a(X)$. By Theorem 31, for each $a \in S$,

$$F(X+a,a) - F(X,a) = f_a(X+a) - f_a(X) = f_a(X) - f_a(X) = 0 \pmod{\Phi[X]}$$
.

However, F(X + a, a) - F(X, a) is a polynomial in X of degree at most t - 1, so this is in fact zero. Hence, each coefficient of F(X + Y, Y) - F(X, Y), written as a polynomial in X whose coefficients are polynomials in Y, is a (possibly zero) polynomial which vanishes on S.

Example 27. Applying Lemma 26 to the arc of size 12 in Example 25, we see that S lies on the intersection of the three quartic curves $x_3^4 = x_1^2 x_2^2$, $x_2^4 = x_1^2 x_3^2$ and $x_1^4 = x_3^2 x_2^2$.

We say that a polynomial $\phi(X)$ is hyperbolic on an arc S if ϕ has the property that if the kernel of a linear form γ is a bisecant ℓ to S then ϕ modulo γ factorises into at most two linear factors, which are zero at the points of S on ℓ , and whose multiplicities sum to the degree of ϕ .

Lemma 28. Let S be a planar arc of size q+2-t. If q is odd then one of the following holds: (i) there are two co-prime polynomials of degree at most $t+p^{\lfloor \log_p t \rfloor}$ which are zero on S; (ii) there is a non-zero homogeneous polynomial ϕ of degree at most $t+p^{\lfloor \log_p t \rfloor}$ which is hyperbolic on S.

Proof. (for case t < p) Let

$$W = \{(w_1, w_2, w_3) \in \{0, \dots, t-1\}^3 \mid w_1 + w_2 + w_3 = t-1\}.$$

Let $\phi(Y)$ be the greatest common divisor of

$$\{\rho_w(Y) \mid w \in W\} \cup \Phi[Y].$$

Observe that the degree of ϕ is at most t+1. We do not yet discount the case that the first set and the second set contain only the zero polynomial. In this case, which we shall rule out, ϕ is the zero polynomial.

Let F(X,Y) be a representative of the equivalence class of polynomials given by Theorem 31.

Let x and y be arbitrary points of S and let B be a basis, with respect to which, x = (1,0,0) and y = (0,1,0). Let $f_a^*(X)$ be the polynomial we obtain from $f_a(X)$ when we change the basis from the canonical basis to B, and likewise let $F^*(X,Y)$ be the polynomial we obtain from F(X,Y), and let ϕ^* be the polynomial we get from ϕ .

Define homogeneous polynomials $b_{d_1d_2d_3}(Y)$ of degree t by writing

$$F^*(X,Y) = \sum_{d_1+d_2+d_3=t} b_{d_1d_2d_3}(Y) X_1^{d_1} X_2^{d_2} X_3^{d_3}.$$

Then

$$F^*(X+Y,Y) = \sum_{d_1+d_2+d_3=t} b_{d_1d_2d_3}(Y)(X_1+Y_1)^{d_1}(X_2+Y_2)^{d_2}(X_3+Y_3)^{d_3},$$

$$= \sum_{d_1+d_2+d_3=t} b_{d_1d_2d_3}(Y) \binom{d_1}{i_1} \binom{d_2}{i_2} \binom{d_3}{i_3} X_1^{i_1} Y_1^{d_1-i_1} X_2^{i_2} Y_2^{d_2-i_2} X_3^{i_3} Y_3^{d_3-i_3}.$$

Let $r_{ijk}(Y)$ be the coefficient of $X_1^i X_2^j X_3^k$ in $F^*(X+Y,Y) - F^*(X,Y)$. Then $r_{ijk}(Y)$ is a linear combination of the polynomials in the set $\{\rho_w^*(Y) \mid w_1 + w_2 + w_3 = i + j + k\}$, where $\rho_w^*(Y)$ is the polynomial we obtain from $\rho_w(Y)$, when we change the basis from the canonical basis to B.

Since $\phi(Y)$ is the greatest common divisor of

$$\{\rho_w(Y) \mid w \in W\} \cup \Phi[Y],$$

 $\phi^*(Y)$ is a factor of all the polynomials in the set

$$\{r_w(Y) \mid w \in W\} \cup \Phi^*[Y],$$

where $\Phi^*[Y]$ is the subspace of homogeneous polynomials of degree t which are zero on S, with respect to the basis B.

Let w = (i, t - i - 1, 0) and $i \in \{0, \dots, t - 1\}$. Then $w \in W$ and

$$r_w(Y) = \sum_{d_1+d_2+d_3=t} {d_1 \choose t} {d_2 \choose t-i-1} Y_1^{d_1-i} Y_2^{d_2-t+i+1} Y_3^{d_3} b_{d_1 d_2 d_3}(Y).$$

The polynomial ϕ^* is a factor of all these polynomials, so it is a factor of $Y_1^i Y_2^{t-i-1} r_w(Y)$ and therefore,

$$\sum_{t=1}^{i+1} \binom{d}{i} \binom{t-d}{t-i-1} Y_1^d Y_2^{t-d} b_{d,t-d,0}(Y) = 0 \pmod{Y_3, \phi^*},$$

for alL $i \in \{0, ..., t-1\}$.

These equations imply, since t < p,

$$Y_1^t b_{t,0,0}(Y) + (-1)^{t+1} Y_2^t b_{0,t,0}(Y) = 0 \pmod{Y_3, \phi^*}.$$

Note that if $\phi^* = 0$ then $\rho_w = r_w = 0$ for all $w \in W$, so the expression is also zero in this case.

By Theorem 31,

$$F(Y,x) = f_x(Y) \pmod{\Phi[Y]}.$$

With respect to the basis B this gives,

$$F^*(Y,x) = f_x^*(Y) \pmod{\Phi^*[Y]}.$$

Since $f_x^*(Y)$ is a polynomial in Y_2 and Y_3 ,

$$f_x^*(Y) = f_x^*(y)Y_2^t \pmod{Y_3}.$$

By Theorem 31,

$$F(X,Y) = (-1)^{t+1}F(Y,X),$$

so with respect to the basis B this gives,

$$F^*(X,Y) = (-1)^{t+1}F^*(Y,X),$$

This implies that

$$b_{t,0,0}(Y) = F^*(x,Y) = (-1)^{t+1}F^*(Y,x) = (-1)^{t+1}f_x^*(y)Y_2^t \pmod{\Phi^*[Y], Y_3}.$$

Similarly

$$b_{0,t,0}(Y) = (-1)^{t+1} f_y^*(x) Y_1^t \pmod{\Phi^*[Y], Y_3}.$$

Hence, we have that

$$Y_1^t Y_2^t (f_x^*(y) + (-1)^{t+1} f_y^*(x)) = 0 \pmod{Y_3, \phi^*}.$$

By Lemma 16 and the fact that f_a and f_a^* define the same functions, this implies

$$2Y_1^t Y_2^t f_x(y) = 0 \pmod{Y_3, \phi^*}.$$

By hypothesis q is odd, so the left-hand side is non-zero. Hence, this equation rules out the possibility that ϕ^* (and hence ϕ) is zero and we have proved that there is a curve of degree at most t+1 which contains S.

If the degree of ϕ is zero then there must be at least two co-prime polynomials of degree at most t+1 both of which are zero on S.

If the degree of ϕ is not zero then the above equation implies that

$$\phi^*(Y) = cY_1^i Y_2^j \pmod{Y_3},$$

for some integers i, j such that $i + j = \deg \phi^* = \deg \phi$ and some $c \in \mathbb{F}_q$. With respect to the canonical basis this gives

$$\phi(Y) = \alpha(Y)^i \beta(Y)^j \pmod{\gamma(Y)},$$

where the kernel of the linear form γ is the line joining x and y and α and β are linear forms with the property that $\alpha(y) = 0$ and $\beta(x) = 0$. Thus, we have proved that if the kernel of a linear form γ is a bisecant to S then ϕ modulo γ factorises into two linear factors whose multiplicities sum to the degree of ϕ , i.e. ϕ is hyperbolic on S.

Lemma 29. Let S be a planar arc of size $q + 2 - t \ge 8$. If there is a homogeneous polynomial ϕ of degree at most $\frac{1}{2}(q - t + 1)$ which is hyperbolic on S, then S is contained in a conic.

Proof. Let r be the degree of ϕ . Observe that $r \ge 2$, since S is not a line. Also, we can assume that ϕ is not a p-th power, since we can replace ϕ by its p-th root and all the properties are preserved.

Choose a suitable basis so that (1,0,0), (0,1,0) and (0,0,1) are points of S.

Suppose every term of $\phi(X)$ is of the form $c_{ijk}X_1^iX_2^{jp}X_3^{kp}$. Since $\phi(X)$ is hyperbolic on S, $\phi(0, X_2, X_3) = c_{0jk}X_2^{jp}X_3^{kp}$, for some j and k. Hence r = (j + k)p. Considering any term with i > 0, it follows that p divides i. So ϕ is a p-th power, which it is not. Hence we can assume, without loss of generality, that some exponent of X_1 is not a multiple of p, some exponent of X_3 is not a multiple of p and that the degree of ϕ in X_3 is at most the degree of ϕ in X_1 .

Let n be the degree of ϕ in X_1 .

Write

$$\phi(X) = \sum_{j=0}^{n} X_1^{n-j} c_j(X_2, X_3),$$

where c_j is either zero or a homogeneous polynomial of degree r-n+j and by assumption $c_0(X_2, X_3) \neq 0$.

Let $E = \{e \in \mathbb{F}_q \mid X_3 - eX_2 \text{ is a bisecant and } c_0(X_2, eX_2) \neq 0\}$. Since the degree of c_0 is r - n we have that $|E| \geqslant q - t - r + n$. Since $\phi(X)$ is hyperbolic on S, for all $e \in E$, there exists a d such that

$$\phi(X_1, X_2, eX_2) = (X_1 + dX_2)^n c_0(X_2, eX_2).$$

The coefficient of X_1^{n-j} implies that for j = 1, ..., n,

$$c_j(X_2, eX_2) = \binom{n}{j} d^j X_2^j c_0(X_2, eX_2).$$

If p divides n and j is not a multiple of p then $c_j(X_2, eX_2) = 0$ for all $e \in E$. Since the degree of c_j is at most r and $r \leq |E| - n + 1$, by hypothesis, $c_j(X_2, X_3) = 0$. But then this implies that each exponent of X_1 in a term of $\phi(X)$ is a multiple of p, a contradiction. Therefore, n is not a multiple of p.

For $e \in E$ and j = 1 we have that

$$c_1(X_2, eX_2) = ndX_2c_0(X_2, eX_2).$$

Thus, for j = 1, ..., n, substituting for d we obtain

$$c_0(X_2, eX_2)^{j-1}c_j(X_2, eX_2)n^j = \binom{n}{j}c_1(X_2, eX_2)^j.$$

Hence, $h_j(e) = 0$, for all $e \in E$, where $h_j(Y)$ is a polynomial in $(\mathbb{F}_q[X_2])[Y]$ defined by

$$h_j(Y) = c_0(X_2, YX_2)^{j-1}c_j(X_2, YX_2)n^j - \binom{n}{j}c_1(X_2, YX_2)^j.$$

Suppose $n \ge 2$. Let m be the degree of the polynomial $h_2(Y)$. Then $m \le 2(r-n+1)$ since the degree of c_j is r-n+j, and $m \le 2n$ since the degree of $c_j(X_2,X_3)$ in X_3 is at most n. To be able to conclude that h_2 is identically zero, we need $m \le |E|-1$, which is equivalent to $\min(3(r-n)+2,r+n) \le q-t-1$. If $n \le r-2$ then $r+n \le 2r-2 \le q-t-1$ by hypothesis. If n=r-1 then $3(r-n)+2=5 \le q-t-1$, since $|S|=q+2-t \ge 8$.

Therefore, $h_2(Y)$ is identically zero. This implies that the polynomial $c_0(X_2, YX_2)$ divides $c_1(X_2, YX_2)$ and so

$$c_1(X_2, YX_2) = (aX_2 + bYX_2)c_0(X_2, YX_2),$$

for some $a, b \in \mathbb{F}_q$. Hence,

$$h_j(Y) = c_0(X_2, YX_2)^{j-1} \left(c_j(X_2, YX_2)n^j - \binom{n}{j}c_0(X_2, YX_2)(aX_2 + bYX_2)^j\right).$$

But for each $e \in E$, the polynomial

$$c_j(X_2, YX_2)n^j - \binom{n}{j}c_0(X_2, YX_2)(aX_2 + bYX_2)^j,$$

is zero at Y = e. It has degree at most $r - n + j \le r \le |E| + 1 - n$ in Y, so we conclude that it is identically zero.

Substituting $Y = X_3/X_2$, we have that

$$c_j(X_2, X_3)n^j = \binom{n}{j}c_0(X_2, X_3)(aX_2 + bX_3)^j,$$

for j = 1, ..., n.

Hence,

$$\phi(X) = \sum_{j=0}^{n} {n \choose j} X_1^{n-j} c_0(X_2, X_3) \left(\frac{a}{n} X_2 + \frac{b}{n} X_3\right)^j,$$

and therefore

$$\phi(X) = c_0(X_2, X_3)(X_1 + \frac{a}{n}X_2 + \frac{b}{n}X_3)^n.$$

Suppose that there is a point $x \in S$ which is not in the zero-set of ϕ . Then when we consider any bisecant incident with x, since ϕ is hyperbolic on S, we have that ϕ is zero at all other points of S.

The above equation for ϕ implies that all but r-n points of $S \setminus \{x\}$ are contained in a line, which gives $|S|-1 \le r-n+2 \le r$ and hence $q+1-t \le \frac{1}{2}(q-t+1)$, an inequality which is not valid.

Hence, n = 1. Since the degree of ϕ in X_3 is at most the degree of ϕ in X_1 , this implies that the degree of ϕ in X_3 is one. Since ϕ is hyperbolic on S, $\phi(X_1, 0, X_3)$ is a constant times X_1X_3 . Therefore, r = 2 and we have proved that ϕ is a quadratic form and that S is contained in a conic.

Theorem 30. Let S be a planar arc of size q + 2 - t not contained in a conic. If q is odd then S is contained in the intersection of two curves, sharing no common component, each of degree at most $t + p^{\lfloor \log_p t \rfloor}$.

Proof. (of Theorem 30) Let $d = t + p^{\lfloor \log_p t \rfloor}$.

Suppose that $|S| \leq 2d$. Let a_1, \ldots, a_d be linear forms whose kernels give a set L of lines which cover the points of S. Let b_1, \ldots, b_d be another d linear forms whose kernels give a set of lines, disjoint from L, but which also cover the points of S. Let $a(X) = \prod_{i=1}^d a_i(X)$ and $b(X) = \prod_{i=1}^d b_i(X)$. Then the zero sets of a(X) and b(X) both contain S and a(X) and b(X) have no common factor, so we are done.

If $|S| \leq 7$ then the theorem holds almost trivially, since we can cover the points with a conic and a line in two ways (i.e. using different conics and different lines) and deduce that S is in the intersection of two cubics, which do not share a common component. Note that $t \geq 2$, since we are assuming that S is not contained in a conic.

Suppose that $|S| \ge 2d+1$ and $|S| \ge 8$. Then $q+2-t \ge 2(t+p^{\lfloor \log_p t \rfloor})+1$ which implies $\frac{1}{2}(q-t+1) \ge t+p^{\lfloor \log_p t \rfloor}$ and Lemma 28 applies.

If there is a non-zero homogeneous polynomial ϕ of degree at most $t + p^{\lfloor \log_p t \rfloor}$ which is hyperbolic on S then, by Lemma 29, S is contained in a conic. This is ruled out by hypothesis. Therefore, we have the other possibility given by Lemma 28, that there are two co-prime polynomials of degree at most $t + p^{\lfloor \log_p t \rfloor}$ which are zero on S, i.e. there are two curves of degree at most $t + p^{\lfloor \log_p t \rfloor}$, which do not share a common component, both containing S.

Theorem 31. Let S be a arc of $\operatorname{PG}_{k-1}(\mathbb{F}_q)$ of size q+k-1-t arbitrarily ordered. There is a function $F=F(X_1,\ldots,X_{k-1})$, which is homogeneous polynomial of degree t in $X_i=(X_{i1},\ldots,X_{ik})$ for each $i=1,\ldots,k-1$, with the following properties

(i) For all ordered subsets $A = \{a_1, \ldots, a_{k-2}\} \subseteq S$,

$$F(X, a_1, \dots, a_{k-2}) = f_A(X) \pmod{\Phi[X]}.$$

(ii) For all non-distinct $a_1, \ldots, a_{k-1} \in S$,

$$F(a_1,\ldots,a_{k-1})=0.$$

(iii) For any permutation $\sigma \in \text{Sym}(k-1)$,

$$F(X_1, X_2, \dots, X_{k-1}) = (-1)^{s(\sigma)(t+1)} F(X_{\sigma(1)}, X_{\sigma(2)}, \dots, X_{\sigma(k-1)}).$$

(iv) Modulo $\Phi[X_1], \ldots, \Phi[X_{k-1}]$ the polynomial F is unique.

7. Proof of the MDS conjecture for prime fields

Let S be an arc of $PG_{k-1}(\mathbb{F}_q)$ of size $q+k-1-t \ge k+t$ arbitrarily ordered.

For each subset E of S of size at least k + t, and subset $C = \{a_1, \ldots, a_{k-2}\}$ of E, define

$$\alpha_{C,E} = f_{a_1,\dots,a_{k-2}}(a_{k-1}) \prod_{u \in E \setminus C} \det(u, a_1, \dots, a_{k-1}).$$

Observe that $\alpha_{C,E} \neq 0$.

Lemma 32. Let S be an arc of $PG_{k-1}(\mathbb{F}_q)$ of size $q + k - 1 - t \ge k + t$ arbitrarily ordered and let E be a subset of S of size k + t. For every subset A of E of size k - 2,

$$\sum_{C} \alpha_{C,E} = 0,$$

where the sum runs over the (k-1)-subsets of E containing A.

The following theorem proves the MDS conjecture for q prime.

Theorem 33. Let S be an arc of $PG_{k-1}(\mathbb{F}_q)$. If $k \leq p$ then $|S| \leq q+1$.

Proof. Suppose that |S| = q + 2. Let E be a subset of S of size k + t = 2k - 3. Note that if |S| < |E| then we can apply Corollary 13 and obtain an arc S of the same size with |S| > |E|.

Let F be a set of k-2 elements of E. For each (k-2)-subset A of E, let $r=|A\cap F|$. Then, by Lemma 32

$$\sum_{A \subset E} r!(k-2-r)!(-1)^r \sum_{C \supset A} \alpha_{C,E} = 0,$$

where the second sum runs over the (k-1)-subsets C of E. Changing the order of the summations,

$$\sum_{C \subset E} \alpha_{C,E} \sum_{A \subset C} r! (k - 2 - r)! (-1)^r = 0.$$

If $|C \cap F| = s \neq 0$ then

$$\sum_{A \subset C} s(s-1)!(k-1-s)!(-1)^{s-1} + (k-1-s)s!(k-2-s)!(-1)^s = 0.$$

Hence the only term left after summing the second sum if the term with $|C \cap F| = 0$, which gives

$$(k-1)!\alpha_{E\backslash F,E}=0.$$

Since $\alpha_{E \setminus F,E} \neq 0$, we have a contradiction for $k \leq p$.

8. Classification of the largest arcs for $k \leq p$

Theorem 34. Let S be an arc of $PG_{k-1}(\mathbb{F}_q)$ of size q+1. If $k \leq p$ and $k \neq \frac{1}{2}(q+1)$ then S is a normal rational curve.

Proof. Since S has size q+1, we have k+t=2k-2. Let E be a subset of S of size 2k-2 and F be a subset of E of size k-2 and sum together the equation in Lemma 32 as in the proof Theorem 33. This gives,

$$(k-1)! \sum_{C \subset E \setminus F} \alpha_{C,E} = 0.$$

Let $\{x\}$, K and L be disjoint subsets of S of size 1, k and k-2 respectively.

For each $w \in L$ consider the above equation with $E = K \cup \{x\} \cup (L \setminus \{w\})$ and $F = L \cup \{x\} \setminus W$. This gives

$$0 = (k-1)! \sum_{C \subset K} \alpha_{C,K \cup L} \frac{\det(w,C)}{\det(x,C)} = 0.$$

As w varies in L we get k-2 equations with variables $x_1^{-1}, \ldots, x_k^{-1}$, where $x=(x_1, \ldots, x_k)$ with respect to the basis K.

Since the element of L form an arc, these k-2 equation span a system of rank k-2 and we get equations of the form

$$c_i x_i^{-1} + c_j x_j^{-1} + c_m x_m^{-1} = 0,$$

for all $x \in S \setminus (K \cup L)$.

Since $|S \setminus (K \cup L)| \ge 3$, for each i, j, m the coefficients c_i, c_j, c_m are fixed by two points $x \in S \setminus (K \cup L)$. Now switching an element of L with a third point of $S \setminus (K \cup L)$ we conclude that the above equation is also zero for the elements of L and so

$$c_i x_j x_m + c_j x_i x_m + c_m x_i x_j = 0,$$

for all $x \in S$. Therefore the projection of S to the plane from any k-3 points of S is contained in a conic. It's an exercise to then prove that S is then a normal rational curve.

9. Extending small arcs to large arcs

Let G be an arc of $PG_{k-1}(\mathbb{F}_q)$ arbitrarily ordered.

Suppose that G can be extended to an arc S of $PG_{k-1}(\mathbb{F}_q)$ of size $q+k-1-t \ge k+t$.

Let n = |G| - k - t be a non-negative integer.

For each subset A of G of size k-2 and U of $G \setminus A$ of size n, Lemma 32 implies

$$\sum_{C} \alpha_{C,G} \prod_{u \in U} \det(u, C) = 0,$$

where the sum runs over the (k-1)-subsets of G containing A.

This system of equations can be expressed in matrix form by the matrix P_n , whose columns are indexed by the (k-1)-subsets C of G and whose rows are indexed by pairs (A, U), where A is a (k-2)-subset of G and U is a n-subset of $G \setminus A$. The ((A, U), C) entry of P_n is zero unless C contains A in which case it is $\prod_{u \in U} \det(u, C)$.

Theorem 35. If an arc G of $PG_{k-1}(\mathbb{F}_q)$ can be extended to an arc of size q+2k-1-|G|+n then the system of equations $P_nv=0$ has a solution in which all the coordinates of v are non-zero.

Proof. Let |G| = k + t + n and suppose that G extends to an arc S of size q + k - 1 - t.

Let U be a subset of G of size n. Then $E = G \setminus U$ is a subset of G of size k + t. By Lemma 32, for each subset A of E of size k - 2,

$$\sum_{C\supset A} \alpha_{C,E} = 0,$$

where the sum runs over all (k-2)-subsets C of E containing A.

Then

$$\sum_{C\supset A} \alpha_{C,G} \prod_{u\in U} \det(u,C) = 0.$$

This system of equations is given by the matrix P_n and a solution v is a vector with C coordinate $\alpha_{C,G}$, which are all non-zero.

Suppose that we do find a solution v to the system of equation. Then we know the value of $\alpha_{C,G}$ and therefore $f_A(x)$, where $C = A \cup \{x\}$. This would allow one to calcuate the polynomials $f_A(X)$ for each subset A of G of size k-2. Therefore, if G does extend to an arc S then each solution tells us precisely the tangents to S at each point of G.

By starting with a generic arc G of size 2k-2 one can compute the rank of the matrix P_n and conclude the following theorem, which verifies the MDS conjecture for $k \leq 2p-2$.

Theorem 36. Let S be an arc of $PG_{k-1}(\mathbb{F}_q)$. If $k \leq 2p-2$ then $|S| \leq q+1$.

By starting with a sub-arc G of size 3k-6 of the normal rational curve one can again compute the rank of the matrix P_n and conclude the following theorem.

Theorem 37. If G is a subset of the normal rational curve of $PG_{k-1}(\mathbb{F}_q)$ of size 3k-6 and q is odd, then G cannot be extended to an arc of size q+2.