	How the LU factorization can fail
,	ex. (2 1 -3 4) -4 -2 1 3 7 1 0 1
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Problem: can't finish row-reducing without swapping rows Say that a matrix is type 2" if it can be
	row-reduced using only operations of the form. add a multiple of a higher row to a lower row.
	add a multiple of a higher row to a lower row
	If A is type Z => A has an LU factorization
	7 0 1 1 1 1
	Type 2 row operations are encoded in lower triangular
	matrices with 1s on diagonal.
	ex. [100] [12]
	$I = \begin{bmatrix} -3 & 1 & 0 \\ \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ \end{bmatrix}$
	[5 6]
	Then LB = 1 2 = the result of the row operation 0 -2 -3R, + R2 applied to B
	0-2 -3R, + R2 applied to B
	5 6

Def A permutation matrix is a square matrix with the property that every row and column has a single I and every other entry is O. rearrangement of the nows of

a matrix, and then find a perior

natrix P and the ITL. H.I. a matrix, and then find a permutation matrix P such that left-multiplying by P performs that rearrangement. PLU factorization. Every matrix A can be written A = P - L U

permutation lawer triangular, REF

matrix with 1s on diagonal

P'' is the permutation matrix that swaps $R_2 + R_3$ P(reversing P'').

So $P = P'' = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ A'= L U $A = PA' = PLU = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & -3 & 4 \\ 0 & -\frac{5}{2} & \frac{21}{2} & -13 \\ 0 & 1 & 0 & 0 & -5 & 11 \end{bmatrix}$