

Universitat Politècnica de Catalunya

UPC2

Michael Sammler, Eric Valls, Dean Zhu

SWERC 2017

November 26, 2017

22 lines

Contest (1)

```
template.cpp
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
typedef pair<int, int> pii;
typedef vector<int> vi;
const 11 oo = 0x3f3f3f3f3f3f3f3f3f1LL;
#define FOR(i, a, b) for(ll i = (a); i < int(b); i++)
#define FORD(i, a, b) for(ll i = (b)-1; i >= int(a); i--)
#define has(c, e) ((c).find(e) != (c).end())
int main() {
  cin.sync_with_stdio(0); cin.tie(0);
  cin.exceptions(cin.failbit);
  return 0;
Makefile
CXXFLAGS += -q -Wall -Wextra -Wshadow -std=c++11
.bashrc
alias c='q++ -Wall -Wconversion -Wfatal-errors -g -std=c++14 \
  -fsanitize=undefined,address'
xmodmap -e 'clear lock' -e 'keycode 66=less greater' \#caps = \diamondsuit
troubleshoot.txt
                                                          52 lines
Write a few simple test cases, if sample is not enough.
Are time limits close? If so, generate max cases.
Is the memory usage fine?
Could anything overflow?
Make sure to submit the right file.
Wrong answer:
Print your solution! Print debug output, as well.
Are you clearing all datastructures between test cases?
Can your algorithm handle the whole range of input?
Read the full problem statement again.
Do you handle all corner cases correctly?
Have you understood the problem correctly?
Any uninitialized variables?
Anv overflows?
Confusing N and M, i and j, etc.?
Are you sure your algorithm works?
What special cases have you not thought of?
Are you sure the STL functions you use work as you think?
Add some assertions, maybe resubmit.
Create some testcases to run your algorithm on.
Go through the algorithm for a simple case.
Go through this list again.
Explain your algorithm to a team mate.
Ask the team mate to look at your code.
Go for a small walk, e.g. to the toilet.
Is your output format correct? (including whitespace)
Rewrite your solution from the start or let a team mate do it.
Have you tested all corner cases locally?
Any uninitialized variables?
Are you reading or writing outside the range of any vector?
```

```
Any assertions that might fail?
Any possible division by 0? (mod 0 for example)
Any possible infinite recursion?
Invalidated pointers or iterators?
Are you using too much memory?
Debug with resubmits (e.g. remapped signals, see Various).
Time limit exceeded:
Do you have any possible infinite loops?
What is the complexity of your algorithm?
Are you copying a lot of unnecessary data? (References)
How big is the input and output? (consider scanf)
Avoid vector, map. (use arrays/unordered map)
What do your team mates think about your algorithm?
Memory limit exceeded:
What is the max amount of memory your algorithm should need?
Are you clearing all datastructures between test cases?
Data structures (2)
LineContainer.h
Description: Container where you can add lines of the form kx+m, and
query maximum values at points x. Useful for dynamic programming.
Time: \mathcal{O}(\log N)
bool 0;
struct Line {
 mutable ll k, m, p;
  bool operator<(const Line& o) const {</pre>
    return Q ? p < o.p : k < o.k;
};
struct LineContainer : multiset<Line> {
  // (for doubles, use inf = 1/.0, div(a,b) = a/b)
  const ll inf = LLONG_MAX;
  ll div(ll a, ll b) { // floored division
    return a / b - ((a ^ b) < 0 && a % b); }
 bool isect(iterator x, iterator y) {
    if (y == end()) { x->p = inf; return false; }
    if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
    else x->p = div(y->m - x->m, x->k - y->k);
    return x->p >= y->p;
  void add(ll k, ll m) {
    auto z = insert(\{k, m, 0\}), y = z++, x = y;
    while (isect(y, z)) z = erase(z);
    if (x != begin() \&\& isect(--x, y)) isect(x, y = erase(y));
    while ((y = x) != begin() \&\& (--x)->p >= y->p)
     isect(x, erase(y));
 ll query(ll x) {
    assert(!emptv());
    Q = 1; auto 1 = *lower_bound({0,0,x}); Q = 0;
    return 1.k * x + 1.m;
};
SegmentTree.h
Description: Some useful functions for segment trees
Time: \mathcal{O}(\log N)
const 11 tot = (1 << 19); // bigger\ than\ N
11 N = 1; // ...
11 minv[tot * 2];
```

11 lazy[tot * 2];

```
void init(ll x, ll l, ll r) {
 if(1 >= N) return;
 if(r - 1 <= 1) {
    minv[x] = 1; // ...
    lazy[x] = 0;
    return;
  init (2*x, 1, (1+r)/2);
  init (2*x+1, (1+r)/2, r);
  minv[x] = min(minv[2*x], minv[2*x+1]);
 lazy[x] = 0;
// propagates lazy, msut be called before recursing
void prop(ll x, ll l, ll r) {
 if(r - 1 <= 1) return;
 minv[2*x] += lazy[x];
 lazv[2*x] += lazv[x];
  minv[2*x+1] += lazy[x];
 lazy[2*x+1] += lazy[x];
 lazy[x] = 0;
// add v to (a, b)
void sadd(ll x, ll l, ll r, ll a, ll b, ll v) {
 if(b <= 1 || r <= a) return;
 if(a <= 1 && r <= b) {
    minv[x] += v;
    lazv[x] += v;
    return;
 prop(x, 1, r);
  sadd(2*x, 1, (1+r)/2, a, b, v);
 sadd(2*x+1, (1+r)/2, r, a, b, v);
 minv[x] = min(minv[2*x], minv[2*x+1]);
// finds the lowest value res, such that all values
// in [res, end) are >= 2 (condition can be adjusted)
ll squery(ll x, ll l, ll r, ll end) {
 if(end <= 1) return end;</pre>
 if(minv[x] >= 2) return 1; // ...
 if(r - 1 <= 1) {
    return r;
 prop(x, 1, r);
  if (minv[2*x+1] >= 2) { // ...
    return squery (2*x, 1, (1+r)/2, end);
  11 rend = squery (2*x+1, (1+r)/2, r, end);
  if(rend > (1+r)/2) return rend;
  return squery (2*x, 1, (1+r)/2, end);
void example() {
 11 a = 0, b = 1;
 init(1, 0, tot);
 sadd(1, 0, tot, a, b, -2);
 11 res = squery(1, 0, tot, a);
```

FenwickTree2d.h

struct FT2 {

Description: Computes sums a[i,j] for all i<I, j<J, and increases single elements a[i,j]. Requires that the elements to be updated are known in advance (call fakeUpdate() before init()).

```
Time: \mathcal{O}(\log^2 N). (Use persistent segment trees for \mathcal{O}(\log N).)
```

Simplex SolveLinear SolveLinear2 FFT FFTIntegers

```
vector<vi> ys; vector<FT> ft;
  FT2(int limx) : ys(limx) {}
  void fakeUpdate(int x, int y) {
   for (; x < sz(ys); x |= x + 1) ys[x].push_back(y);
  void init() {
   trav(v, ys) sort(all(v)), ft.emplace_back(sz(v));
  int ind(int x, int y) {
   return (int) (lower bound(all(vs[x]), v) - vs[x].begin());
  void update(int x, int y, ll dif) {
   for (; x < sz(ys); x | = x + 1)
     ft[x].update(ind(x, v), dif);
  11 query(int x, int y) {
   11 \text{ sum} = 0;
   for (; x; x &= x - 1)
     sum += ft[x-1].query(ind(x-1, y));
    return sum;
};
```

Numerical (3)

Simplex.h

Description: Solves a general linear maximization problem: maximize c^Tx subject to $Ax \leq b, \ x \geq 0$. Returns -inf if there is no solution, inf if there are arbitrarily good solutions, or the maximum value of c^Tx otherwise. The input vector is set to an optimal x (or in the unbounded case, an arbitrary solution fulfilling the constraints). Numerical stability is not guaranteed. For better performance, define variables such that x=0 is viable.

```
 \begin{array}{lll} \textbf{Usage:} & \text{vvd A} = \{\{1,-1\}, \ \{-1,1\}, \ \{-1,-2\}\}; \\ \text{vd b} = \{1,1,-4\}, \ c = \{-1,-1\}, \ x; \\ \text{T val} = \text{LPSolver(A, b, c).solve(x);} \\ \textbf{Time:} & \mathcal{O}\left(NM*\#pivots\right), \text{ where a pivot may be e.g. an edge relaxation.} \\ \mathcal{O}\left(2^n\right) & \text{in the general case.} \\ \end{array}
```

```
typedef double T; // long double, Rational, double + mod<P>...
typedef vector<T> vd;
typedef vector<vd> vvd;
const T eps = 1e-8, inf = 1/.0;
#define MP make pair
#define ltj(X) if (s == -1 \mid \mid MP(X[j], N[j]) < MP(X[s], N[s])) s=j
struct LPSolver {
  int m, n;
  vi N. B:
  vvd D;
  LPSolver (const vvd& A, const vd& b, const vd& c) :
   m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2), vd(n+2)) {
      rep(i, 0, m) rep(j, 0, n) D[i][j] = A[i][j];
      rep(i,0,m) \ \{ B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[i]; \}
      rep(j,0,n) \{ N[j] = j; D[m][j] = -c[j]; \}
     N[n] = -1; D[m+1][n] = 1;
  void pivot(int r, int s) {
   T *a = D[r].data(), inv = 1 / a[s];
    rep(i, 0, m+2) if (i != r \&\& abs(D[i][s]) > eps) {
     T *b = D[i].data(), inv2 = b[s] * inv;
      rep(j, 0, n+2) b[j] -= a[j] * inv2;
     b[s] = a[s] * inv2;
    rep(j,0,n+2) if (j != s) D[r][j] *= inv;
    rep(i, 0, m+2) if (i != r) D[i][s] *= -inv;
    D[r][s] = inv;
```

```
swap(B[r], N[s]);
 bool simplex(int phase) {
   int x = m + phase - 1;
    for (;;) {
     int s = -1;
      rep(j, 0, n+1) if (N[j] != -phase) ltj(D[x]);
      if (D[x][s] >= -eps) return true;
      int r = -1;
      rep(i,0,m) {
       if (D[i][s] <= eps) continue;</pre>
       if (r == -1 || MP(D[i][n+1] / D[i][s], B[i])
                     < MP(D[r][n+1] / D[r][s], B[r])) r = i;
     if (r == -1) return false;
     pivot(r, s);
 T solve(vd &x) {
   int r = 0;
   rep(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
    if (D[r][n+1] < -eps) {
     pivot(r, n);
     if (!simplex(2) || D[m+1][n+1] < -eps) return -inf;</pre>
     rep(i, 0, m) if (B[i] == -1) {
       int s = 0;
       rep(j,1,n+1) ltj(D[i]);
       pivot(i, s);
   bool ok = simplex(1); x = vd(n);
   rep(i,0,m) if (B[i] < n) x[B[i]] = D[i][n+1];
    return ok ? D[m][n+1] : inf;
};
```

SolveLinear.h

Description: Solves A*x=b. If there are multiple solutions, an arbitrary one is returned. Returns rank, or -1 if no solutions. Data in A and b is lost. **Time:** $\mathcal{O}\left(n^2m\right)$

```
typedef vector<double> vd;
const double eps = 1e-12;
int solveLinear(vector<vd>& A, vd& b, vd& x) {
 int n = A.size(), m = x.size(), rank = 0, br, bc;
 if (n) assert(A[0].size() == m);
 // FOR(i, 0, n) FOR(j, 0, m) A[i][j] %= MOD; also b[i]...
 vi col(m); iota(col.begin(), col.end(), 0);
 FOR(i,0,n) {
   double v, bv = 0;
   FOR(r,i,n) FOR(c,i,m)
     if ((v = fabs(A[r][c])) > bv)
       br = r, bc = c, bv = v;
    if (bv <= eps) {
     FOR(j,i,n) if (fabs(b[j]) > eps) return -1;
     break:
    swap(A[i], A[br]);
    swap(b[i], b[br]);
   swap(col[i], col[bc]);
   FOR(j,0,n) swap(A[j][i], A[j][bc]);
   bv = 1/A[i][i];
   FOR(j,i+1,n) {
     double fac = A[j][i] * bv;
     b[i] -= fac * b[i];
```

```
FOR(k,i,m) A[j][k] -= fac*A[i][k];
}
rank++;
}

x.assign(m, 0);
for (int i = rank; i--;) {
  b[i] /= A[i][i];
  x[col[i]] = b[i];
  FOR(j,0,i) b[j] -= A[j][i] * b[i];
}
return rank; // (multiple solutions if rank < m)
}</pre>
```

SolveLinear2.h

Description: To get all uniquely determined values of x back from Solve-Linear, make the following changes:

```
"SolveLinear.h" 7 line
rep(j,0,n) if (j != i) // instead of rep(j,i+1,n)
// ... then at the end:
x.assign(m, undefined);
rep(i,0,rank) {
  rep(j,rank,m) if (fabs(A[i][j]) > eps) goto fail;
  x[col[i]] = b[i] / A[i][i];
fail:; }
```

FFT.h

Description: Fast Fourier transform. Also includes a function for convolution: conv(a, b) = c, where $c[x] = \sum a[i]b[x-i]$. a and b should be of roughly equal size. For convolutions of integers, rounding the results of conv works if $(|a|+|b|) \max(a,b) < \sim 10^9$ (in theory maybe 10^6); you may want to use an NTT from the Number Theory chapter instead.

Time: $\mathcal{O}(N \log N)$

Description: NTT

Time: $\mathcal{O}(N \log N)$

```
<valarray>
typedef valarray<complex<double> > carray;
void fft(carray& x, carray& roots) {
 int N = sz(x);
 if (N <= 1) return;</pre>
 carray even = x[slice(0, N/2, 2)];
  carray odd = x[slice(1, N/2, 2)];
  carray rs = roots[slice(0, N/2, 2)];
  fft(even, rs);
  fft (odd, rs);
  rep(k, 0, N/2) {
    auto t = roots[k] * odd[k];
   x[k] = even[k] + t;
    x[k+N/2] = even[k] - t;
typedef vector<double> vd;
vd conv(const vd& a, const vd& b) {
 int s = sz(a) + sz(b) - 1, L = 32-__builtin_clz(s), n = 1<<L;</pre>
 if (s <= 0) return {};
  carray av(n), bv(n), roots(n);
  rep(i,0,n) roots[i] = polar(1.0, -2 * M_PI * i / n);
  copy(all(a), begin(av)); fft(av, roots);
  copy(all(b), begin(bv)); fft(bv, roots);
  roots = roots.apply(conj);
  carray cv = av * bv; fft(cv, roots);
 vd c(s); rep(i,0,s) c[i] = cv[i].real() / n;
 return c:
FFTIntegers.h
```

39 lines

```
LL fpw(LL a, LL b, LL p) {
    LL r = 1; while (b) {if (b&1) r=r*a%p; a=a*a%p; b/=2;} return
const LL MOD = 2013265921; const LL ROOT = 440564289; // MOD ===
     15*(1<<27)+1 \ (prime)
                                                        // ROOT
vector<LL> e, er;
    has order 2^27
void FFT(vector<int> &x, LL d = 1) {
 int n = x.size();
 if(n != e.size()){
   e.resize(n); er.resize(n);
   e[0] = 1; e[1] = fpw(ROOT, (1 << 27)/n, MOD);
   er[0] = 1; er[1] = fpw(e[1], MOD-2, MOD);
   rep(i,2,n) e[i] = e[i-1] * e[1] % MOD;
   rep(i,2,n) er[i] = er[i-1] * er[1] % MOD;
  if(d == -1) swap(e, er);
  rep(i,0,n){
   int j=0; for (int k=1; k<n; k<<=1, j<<=1) if (k&i) j++;
         haxy i cheetosy
    j>>=1; if(i<j) swap(x[i], x[j]);
        haxy i cheetosy
  int k=0;
  while((1<<k)<n) k++;
  for(int s=1; s<n; s<<=1) {</pre>
    --k;
    for(int i=0; i<n; i+=2*s) rep(j,0,s){</pre>
     LL u = x[i+j], v = x[i+j+s] *e[j << k] %MOD;
     x[i+i] = u+v-(u+v)=MOD?MOD:0);
     x[i+j+s] = u-v+(u-v<0?MOD:0);
  if(d == -1) swap(e, er);
vector<int> convolution(vector<int> a, vector<int> b) {
  int n = 1; while (n < (int) \max(a.size(), b.size())) n *= 2;
  n \neq 2; a.resize(n); b.resize(n);
  FFT(a); FFT(b); rep(i,0,n) a[i] = (LL)a[i]*b[i]%MOD*fpw(n,MOD
       -2, MOD) %MOD; FFT(a, -1);
  return a:
```

Number theory (4)

4.1 Modular arithmetic

Modular Arithmetic.h

Description: Operators for modular arithmetic. You need to set mod to some number first and then you can use the structure.

```
const l1 mod = 17; // change to something else
struct Mod {
    l1 x;
    Mod(l1 xx) : x(xx) {}
    Mod operator+(Mod b) { return Mod((x + b.x) % mod); }
    Mod operator*(Mod b) { return Mod((x - b.x + mod) % mod); }
    Mod operator*(Mod b) { return Mod((x * b.x) % mod); }
    Mod operator/(Mod b) { return *this * invert(b); }
    Mod invert(Mod a) {
        l1 x, y, g = euclid(a.x, mod, x, y);
        assert(g == 1); return Mod((x + mod) % mod);
}
```

```
Mod operator^(11 e) {
   if (!e) return Mod(1);
   Mod r = *this ^ (e / 2); r = r * r;
   return e&1 ? *this * r : r;
};
```

ModInverse.h

Description: Pre-computation of modular inverses. Assumes LIM \leq mod and that mod is a prime.

```
const 11 mod = 1000000007, LIM = 200000;
ll* inv = new ll[LIM] - 1; inv[1] = 1;
rep(i,2,LIM) inv[i] = mod - (mod / i) * inv[mod % i] % mod;
```

ModPow.h

if (e == 0) return 1;
ll x = modpow(a * a % mod, e >> 1);
return e & 1 ? x * a % mod : x;
}

ModSum.h

Description: Sums of mod'ed arithmetic progressions.

modsum(to, c, k, m) = $\sum_{i=0}^{to-1} (ki+c)\%m$. divsum is similar but for floored division.

Time: $\log(m)$, with a large constant.

```
typedef unsigned long long ull;
ull sumsq(ull to) { return to / 2 * ((to-1) | 1); }
ull divsum(ull to, ull c, ull k, ull m) {
 ull res = k / m * sumsq(to) + c / m * to;
 k %= m; c %= m;
 if (k) {
   ull to2 = (to * k + c) / m;
   res += to * to2;
   res -= divsum(to2, m-1 - c, m, k) + to2;
 return res;
11 modsum(ull to, 11 c, 11 k, 11 m) {
 c %= m;
 k %= m;
 if (c < 0) c += m;
 if (k < 0) k += m;
 return to * c + k * sumsq(to) - m * divsum(to, c, k, m);
```

ModMulLL.h

Description: Calculate $a \cdot b \mod c$ (or $a^b \mod c$) for large c.

Time: $\mathcal{O}\left(64/bits \cdot \log b\right)$, where bits = 64 - k, if we want to deal with k-bit numbers.

```
typedef unsigned long long ull;
const int bits = 10;
// if all numbers are less than 2^k, set bits = 64-k
const ull po = 1 << bits;
ull mod_mul(ull a, ull b, ull &c) {
   ull x = a * (b & (po - 1)) % c;
   while ((b >>= bits) > 0) {
      a = (a << bits) % c;
      x += (a * (b & (po - 1))) % c;
   }
   return x % c;</pre>
```

```
}
ull mod_pow(ull a, ull b, ull mod) {
   if (b == 0) return 1;
   ull res = mod_pow(a, b / 2, mod);
   res = mod_mul(res, res, mod);
   if (b & 1) return mod_mul(res, a, mod);
   return res;
}
```

ModSqrt.h

6 lines

Description: Tonelli-Shanks algorithm for modular square roots.

Time: $\mathcal{O}\left(\log^2 p\right)$ worst case, often $\mathcal{O}\left(\log p\right)$

```
"ModPow.h"
                                                               30 lines
ll sqrt(ll a, ll p) {
 a \% = p; if (a < 0) a += p;
 if (a == 0) return 0;
  assert (modpow(a, (p-1)/2, p) == 1);
  if (p % 4 == 3) return modpow(a, (p+1)/4, p);
  // a^{(n+3)/8} \text{ or } 2^{(n+3)/8} * 2^{(n-1)/4} \text{ works if } p \% 8 == 5
  11 s = p - 1;
  int r = 0;
  while (s % 2 == 0)
   ++r, s /= 2;
 11 n = 2; // find a non-square mod p
  while (modpow(n, (p-1) / 2, p) != p-1) ++n;
  11 x = modpow(a, (s + 1) / 2, p);
  11 b = modpow(a, s, p);
 11 q = modpow(n, s, p);
  for (;;) {
   11 t = b:
    int m = 0;
    for (; m < r; ++m) {</pre>
      if (t == 1) break;
      t = t * t % p;
    if (m == 0) return x;
    11 \text{ gs} = \text{modpow}(g, 1 << (r - m - 1), p);
    q = qs * qs % p;
    x = x * gs % p;
    b = b * q % p;
```

4.2 Number theoretic transform

NTT.h

Description: Number theoretic transform. Can be used for convolutions modulo specific nice primes of the form 2^ab+1 , where the convolution result has size at most 2^a . For other primes/integers, use two different primes and combine with CRT. May return negative values.

Time: $\mathcal{O}(N \log N)$

x[skip*i] = (s + t) % mod; x[skip*(i+n2)] = (s - t) % mod;

```
void ntt(vl& x, bool inv = false) {
 11 e = modpow(root, (mod-1) / sz(x));
 if (inv) e = modpow(e, mod-2);
  vl roots(sz(x), 1), temp = roots;
  rep(i, 1, sz(x)) roots[i] = roots[i-1] * e % mod;
  ntt(&x[0], &temp[0], &roots[0], sz(x), 1);
vl conv(vl a, vl b) {
 int s = sz(a) + sz(b) - 1; if (s \le 0) return {};
 int L = s > 1 ? 32 - __builtin_clz(s - 1) : 0, n = 1 << L;
  if (s <= 200) { // (factor 10 optimization for |a|, |b| = 10)
   vlc(s);
   rep(i, 0, sz(a)) rep(i, 0, sz(b))
     c[i + j] = (c[i + j] + a[i] * b[j]) % mod;
   return c;
 a.resize(n); ntt(a);
 b.resize(n); ntt(b);
  v1 c(n); 11 d = modpow(n, mod-2);
  rep(i, 0, n) c[i] = a[i] * b[i] % mod * d % mod;
 ntt(c, true); c.resize(s); return c;
```

Primality

eratosthenes.h

Description: Prime sieve for generating all primes up to a certain limit. isprime[i] is true iff i is a prime.

Time: $\lim_{n\to\infty} 100'000'000 \approx 0.8$ s. Runs 30% faster if only odd indices are

```
const int MAX PR = 5000000;
bitset<MAX_PR> isprime;
vi eratosthenes_sieve(int lim) {
  isprime.set(); isprime[0] = isprime[1] = 0;
  for (int i = 4; i < lim; i += 2) isprime[i] = 0;</pre>
  for (int i = 3; i*i < lim; i += 2) if (isprime[i])</pre>
   for (int j = i*i; j < lim; j += i*2) isprime[j] = 0;
  rep(i,2,lim) if (isprime[i]) pr.push_back(i);
  return pr;
```

MillerRabin.h

Description: Miller-Rabin primality probabilistic test. Probability of failing one iteration is at most 1/4. 15 iterations should be enough for 50-bit numbers.

Time: 15 times the complexity of $a^b \mod c$.

```
"ModMulLL.h"
                                                           16 lines
bool prime(ull p) {
  if (p == 2) return true;
  if (p == 1 || p % 2 == 0) return false;
  ull s = p - 1;
  while (s % 2 == 0) s /= 2;
  rep(i,0,15) {
   ull a = rand() % (p - 1) + 1, tmp = s;
    ull mod = mod_pow(a, tmp, p);
    while (tmp != p - 1 && mod != 1 && mod != p - 1) {
     mod = mod_mul(mod, mod, p);
     tmp *= 2;
    if (mod != p - 1 && tmp % 2 == 0) return false;
  return true;
```

factor.h

Description: Pollard's rho algorithm. It is a probabilistic factorisation algorithm, whose expected time complexity is good. Before you start using it, run init (bits), where bits is the length of the numbers you use.

Time: Expected running time should be good enough for 50-bit numbers. "MillerRabin.h", "eratosthenes.h", "euclid.h"

```
vector<ull> pr;
ull f(ull a, ull n, ull &has) {
 return (mod_mul(a, a, n) + has) % n;
vector<ull> factor(ull d) {
 vector<ull> res;
 for (size_t i = 0; i < pr.size() && pr[i]*pr[i] <= d; i++)</pre>
   if (d % pr[i] == 0) {
     while (d % pr[i] == 0) d /= pr[i];
     res.push_back(pr[i]);
  //d is now a product of at most 2 primes.
 if (d > 1) {
   if (prime(d))
     res.push_back(d);
    else while (true)
     ull has = rand() % 2321 + 47;
     ull x = 2, v = 2, c = 1;
      for (; c==1; c = gcd((y > x ? y - x : x - y), d)) {
       x = f(x, d, has);
       y = f(f(y, d, has), d, has);
      if (c != d) {
       res.push back(c); d /= c;
       if (d != c) res.push back(d);
       break:
 return res;
void init(int bits) {//how many bits do we use?
 vi p = eratosthenes_sieve(1 << ((bits + 2) / 3));</pre>
 vector<ull> pr(p.size());
 for (size_t i=0; i<pr.size(); i++)</pre>
   pr[i] = p[i];
```

4.4 Divisibility

euclid.h

Description: Finds the Greatest Common Divisor to the integers a and b. Euclid also finds two integers x and y, such that $ax + by = \gcd(a, b)$. If a and b are coprime, then x is the inverse of $a \pmod{b}$. 7 lines

```
11 gcd(l1 a, l1 b) { return __gcd(a, b); }
ll euclid(ll a, ll b, ll &x, ll &y) {
 if (b) { ll d = euclid(b, a % b, v, x);
   return y -= a/b * x, d; }
 return x = 1, y = 0, a;
```

4.4.1 Bézout's identity

For $a \neq b \neq 0$, then d = gcd(a, b) is the smallest positive integer for which there are integer solutions to

$$ax + by = d$$

If (x, y) is one solution, then all solutions are given by

$$\left(x + \frac{kb}{\gcd(a,b)}, y - \frac{ka}{\gcd(a,b)}\right), \quad k \in \mathbb{Z}$$

phiFunction.h

Description: Euler's totient or Euler's phi function is defined as $\phi(n) :=$ # of positive integers $\leq n$ that are coprime with n. The cototient is $n - \phi(n)$. $\phi(1) = 1$, p prime $\Rightarrow \phi(p^k) = (p-1)p^{k-1}$, m, n coprime $\Rightarrow \phi(mn) =$ $\phi(m)\phi(n)$. If $n=p_1^{k_1}p_2^{k_2}...p_r^{k_r}$ then $\phi(n)=(p_1-1)p_1^{k_1-1}...(p_r-1)p_r^{k_r-1}$. $\phi(n) = n \cdot \prod_{p|n} (1 - 1/p).$ $\sum_{d|n} \phi(d) = n, \ \sum_{1 \le k \le n, \gcd(k,n)=1} k = n\phi(n)/2, n > 1$

Euler's thm: a, n coprime $\Rightarrow a^{\phi(n)} \equiv 1 \pmod{n}$.

Fermat's little thm: $p \text{ prime } \Rightarrow a^{p-1} \equiv 1 \pmod{p} \ \forall a.$

const int LIM = 5000000; int phi[LIM];

```
void calculatePhi() {
  rep(i,0,LIM) phi[i] = i&1 ? i : i/2;
 for(int i = 3; i < LIM; i += 2)</pre>
    if(phi[i] == i)
      for(int j = i; j < LIM; j += i)</pre>
        (phi[j] /= i) *= i-1;
```

Chinese remainder theorem

chinese.h

Description: Chinese Remainder Theorem.

chinese (a, m, b, n) returns a number x, such that $x \equiv a \pmod{m}$ and $x \equiv b \pmod{n}$. For not coprime n, m, use chinese-common. Note that all numbers must be less than 2^{31} if you have Z = unsigned long long.

Time: $\log(m+n)$

```
"euclid.h"
template <class Z> Z chinese(Z a, Z m, Z b, Z n) {
 Z \times, y; euclid(m, n, x, y);
 Z \text{ ret} = a * (y + m) % m * n + b * (x + n) % n * m;
 if (ret >= m * n) ret -= m * n;
 return ret:
template <class Z> Z chinese common(Z a, Z m, Z b, Z n) {
 Z d = gcd(m, n);
 if (((b -= a) %= n) < 0) b += n;
 if (b % d) return -1; // No solution
 return d * chinese(Z(0), m/d, b/d, n/d) + a;
```

4.6 Pythagorean Triples

The Pythagorean triples are uniquely generated by

$$a = k \cdot (m^2 - n^2), \ b = k \cdot (2mn), \ c = k \cdot (m^2 + n^2),$$

with m > n > 0, k > 0, $m \perp n$, and either m or n even.

globalmincut EulerianCycle MaxFlow

Primes

p = 962592769 is such that $2^{21} \mid p - 1$, which may be useful. For hashing use 970592641 (31-bit number), 31443539979727 (45-bit), 3006703054056749 (52-bit). There are 78498 primes less than 1000000.

Primitive roots exist modulo any prime power p^a , except for p=2, a>2, and there are $\phi(\phi(p^a))$ many. For p=2, a>2, the group $\mathbb{Z}_{2^a}^{\times}$ is instead isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_{2^{a-2}}$.

Estimates

```
\sum_{d|n} d = O(n \log \log n).
```

The number of divisors of n is at most around 100 for n < 5e4, 500 for n < 1e7, 2000 for n < 1e10, 200000 for n < 1e19.

Combinatorial (5)

Graph (6)

globalmincut.h

Description: Given an adjacency matrix returns the global mincut and the vertices of one of the cuts.

```
Time: \mathcal{O}(V^3)
 * If you don't need the cut you can eliminate every thing with
      this coment "// *******"
 *Explanation of algorithm:
 st -getting the mincut value: it does n-1 iterations. In each
      iteration it starts by a vertex (random) as set A.
 * then it iterates until only two vertices are left by adding
       to set A the most tightly connected vertex to A (vertex
      not in A).
 * it insert this vertex to A. When only two vertices are left
      , the mincut between those two is the weight W of the
 * the last vertex and A. mincut = min(mincut, W)
   We then merge the two last vertices and start again.
 * -qetting the cut: basically when we merge two nodes we
     merge them with mfset. When we obtain a new best mincut
    is represented buy the nodes in the same component as the
      last\ node;
// Maximum number of vertices in the graph
#define NN 256
// Maximum edge weight (MAXW * NN * NN must fit into an int)
#define MAXW 1000
// Adjacency matrix and some internal arrays
int v[NN], w[NN];
bool a[NN];
int pare[NN]; // ********
int par (int b) { // ********
 if (pare[b] == b) return b;
```

```
pare[b] = par(pare[b]);
 return pare[b];
inline void merge (int b, int c) { // *********
 pare[par(b)] = par(c);
pair < int, vi > minCut(vvi& q, int n) {
 // init the remaining vertex set
 for (int i = 0; i < n; i++) {</pre>
   pare[i] = i; // *******
 // run Stoer-Wagner
 int best = MAXW * n * n;
 vi cut; // *******
 while (n > 1) {
   // initialize the set A and vertex weights
   a[v[0]] = true;
   for (int i = 1; i < n; i++) {</pre>
     a[v[i]] = false;
     w[i] = g[v[0]][v[i]];
    // add the other vertices
    int prev = v[0];
   for (int i = 1; i < n; i++) {</pre>
     // find the most tightly connected non-A vertex
     int zj = -1;
     for (int j = 1; j < n; j++)
       if ([a[v[j]] \&\& (zj < 0 || w[j] > w[zj])) zj = j;
      // add it to A
     a[v[zj]] = true;
      // last vertex?
     if (i == n - 1) {
        // remember the cut weight
       if (best > w[zj]) {
         best = w[zj];
         cut.clear(); // ******
         for (int ko = 0; ko < n1; ko++) if (par(ko) == par(v[</pre>
              zj])) cut.push_back(ko); // ******
       // merge prev and v[zj]
       merge(prev, v[zj]); // *********
       for (int j = 0; j < n; j++)
         g[v[j]][prev] = g[prev][v[j]] += g[v[zj]][v[j]];
       v[zj] = v[--n];
       break;
     prev = v[zj];
      // update the weights of its neighbours
     for (int j = 1; j < n; j++)
       if (!a[v[j]]) w[j] += q[v[zj]][v[j]];
 return {best, cut};
Eulerian Cycle.h
```

Description: returns de eulerian cycle/tour starting at u, cycle is in reverse order. If its a tour it must start at a vertex with odd degree. It is common to add edges between odd vertex to find a pseudo euler tour.

Call find cycle with a vertex where a eulerian tour/cycle is possible, when adding edges make sure that two vertex have the same edge iff it is undirected.

Time: $\mathcal{O}(E)$ 25 lines

```
typedef vector<int> vi;
struct edge{
  int u, v;
  bool used;
void Eulerdfs (int u, vi &nxt, vi &Euler, vector<edge> &E, const
      vector<vi> &adj) {
  while(nxt[u] < adj[u].size()){</pre>
    int go = adj[u][nxt[u]++];
    if(!E[go].used){
      E[go].used = 1;
      int to = (E[go].u ^ E[go].v ^ u);
      Eulerdfs (to, nxt, Euler, E, adj);
  Euler.push_back(u);
vi Eulerian(int u, vector<edge> &E, const vector<vi> &adj) {
  vi nxt (adj.size(),0);
  vi Euler:
  Eulerdfs(u, nxt, Euler, E, adj);
  reverse (Euler.begin(), Euler.end());
  return Euler:
MaxFlow.h
Description: Returns maximum flow.
Usage:
             To obtain a cut in the mincut problem one must bfs
from the source. All the vertices reached from it using only
edges with capacity > 0 are in the same cut
Time: \mathcal{O}(VE^2) for general graphs and \mathcal{O}(E*sqrt(V)) for the maximum
matching problem (bipartite unit weighted graf). It is generally very fast
typedef long long 11;
typedef vector<int> VI;
typedef vector<VI> VVI;
const 11 INF = 10000000000000000000LL;
#define VEI(w,e) ((E[e].u == w) ? E[e].v : E[e].u)
#define CAP(w,e) ((E[e].u == w) ? E[e].cap[0] - E[e].flow : E[e]
    ].cap[1] + E[e].flow)
#define ADD(w,e,f) E[e].flow += ((E[e].u == w) ? (f) : (-(f)))
struct Edge { int u, v; 11 cap[2], flow; };
VI d, act;
bool bfs(int s, int t, VVI& adj, vector<Edge>& E) {
  queue<int> Q;
  d = VI(adj.size(), -1);
  d[t] = 0;
  Q.push(t);
  while (not Q.empty()) {
    int u = Q.front(); Q.pop();
    for (int i = 0; i < int(adj[u].size()); ++i) {</pre>
      int e = adj[u][i], v = VEI(u, e);
      if (CAP(v, e) > 0 \text{ and } d[v] == -1) {
        d[v] = d[u] + 1;
        Q.push(v);
  return d[s] >= 0;
```

ll dfs(int u,int t,ll bot, VVI& adj, vector < Edge > & E) {

if (u == t) return bot;

```
for (; act[u] < int(adj[u].size()); ++act[u]) {</pre>
   int e = adj[u][act[u]];
   if (CAP(u, e) > 0 and d[u] == d[VEI(u, e)] + 1) {
     11 inc=dfs(VEI(u,e),t,min(bot,CAP(u,e)),adj,E);
       ADD(u, e, inc);
        return inc;
  return 0:
11 maxflow(int s, int t, VVI& adj, vector<Edge>& E) {
  for (int i=0; i<int(E.size()); ++i) E[i].flow = 0;</pre>
  11 flow = 0, bot;
  while (bfs(s, t, adj, E)) {
   act = VI(adj.size(), 0);
    while ((bot = dfs(s,t,INF, adj, E))) flow += bot;
  return flow;
void addEdge(int u, int v, VVI& adj, vector<Edge>& E, ll cap) {
 Edge e;
  e.u = u;
 e.v = v:
 e.cap[0] = cap;
  e.cap[1] = 0;
  e.flow = 0;
 adj[u].push_back(E.size());
  adj[v].push_back(E.size());
 E.push_back(e);
```

SCC.h

Description: Finds strongly connected components in a directed graph. If vertices u, v belong to the same component, we can reach u from v and vice

Use addedge to addedges in a directed graph (will also add reverse edges), after calling Kosaraju comp will save the component number of each vertex ordered by topological order.

Time: $\mathcal{O}\left(E+V\right)$

```
const int MAXN = 100010:
stack<int> st:
int m[MAXN], comp[MAXN];
vector<int> adj[2][MAXN];
int c = 0:
void addedge(vector<vector<int>> &adj, int u, int v) {
    adj[0][u].push_back(v);
    adj[1][v].push_back(u);
void dfs(int u, int t, vector<int>& m) {
    m[u] = 1;
    for(int v : adj[t][u]) if(!m[v]) dfs(v,t);
    if(t) comp[u] = c;
    else st.push(u);
void kosaraju(int n) {
    vector<int> m(n,0);
    for(int i = 0; i < n; ++i) if(!m[i]) dfs(i,0,m);</pre>
   m = vector<int>(n,0);
    for(;st.size();st.pop()) {
        int u = st.top();
        if(!m[u]) dfs(u,1), c++;
```

Geometry (7)

7.1 Geometric primitives

Point.h

Description: Class to handle points in the plane. T can be e.g. double or long long. (Avoid int.)

```
template <class T>
struct Point {
 typedef Point P;
 Тх, у;
 explicit Point (T x=0, T y=0) : x(x), y(y) {}
 bool operator<(P p) const { return tie(x,y) < tie(p.x,p.y); }</pre>
 bool operator==(P p) const { return tie(x,y)==tie(p.x,p.y); }
 P operator+(P p) const { return P(x+p.x, y+p.y); }
 P operator-(P p) const { return P(x-p.x, y-p.y); }
 P operator*(T d) const { return P(x*d, y*d); }
 P operator/(T d) const { return P(x/d, y/d); }
 T dot(P p) const { return x*p.x + y*p.y; }
 T cross(P p) const { return x*p.y - y*p.x; }
 T cross(P a, P b) const { return (a-*this).cross(b-*this); }
 T dist2() const { return x*x + y*y; }
 double dist() const { return sqrt((double)dist2()); }
 // angle to x-axis in interval [-pi, pi]
 double angle() const { return atan2(y, x); }
 P unit() const { return *this/dist(); } // makes dist()=1
 P perp() const { return P(-y, x); } // rotates +90 degrees
 P normal() const { return perp().unit(); }
 // returns point rotated 'a' radians ccw around the origin
 P rotate (double a) const {
   return P(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a)); }
```

lineDistance.h

Description:

Returns the signed distance between point p and the line containing points a and b. Positive value on left side and negative on right as seen from a towards b. a==b gives nan. P is supposed to be Point<T> or Point3D<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long. Using Point3D will always give a non-negative distance.

SegmentDistance.h

Description:

Returns the shortest distance between point p and the line segment from point s to e.

Usage: Point < double > a, b(2,2), p(1,1); bool onSegment = segDist(a,b,p) < 1e-10;

```
"Point.h"
                                                             6 lines
typedef Point < double > P;
double segDist(P& s, P& e, P& p) {
 if (s==e) return (p-s).dist();
  auto d = (e-s).dist2(), t = min(d, max(.0, (p-s).dot(e-s)));
  return ((p-s)*d-(e-s)*t).dist()/d;
```

SegmentIntersection.h

Description:

If a unique intersetion point between the line segments going from s1 to e1 and from s2 to e2 exists r1 is set to this point and 1 is returned. If no intersection point exists 0 is returned and if infinitely many exists 2 is returned and r1 and r2 are set to the two ends of the common line. The wrong position will be returned if P is Point<int> and the intersection point does not have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow if using int or long long. Use segmentIntersectionQ to get just a true/false answer. Usage: Point < double > intersection, dummy;

if (segmentIntersection(s1,e1,s2,e2,intersection,dummy) ==1)


```
cout << "segments intersect at " << intersection << endl;
"Point.h"
template <class P>
int segmentIntersection (const P& s1, const P& e1,
    const P& s2, const P& e2, P& r1, P& r2) {
  if (e1==s1) {
    if (e2==s2) {
      if (e1==e2) { r1 = e1; return 1; } //all equal
      else return 0; //different point segments
     else return segmentIntersection(s2,e2,s1,e1,r1,r2);//swap
  //segment directions and separation
  P v1 = e1-s1, v2 = e2-s2, d = s2-s1;
  auto a = v1.cross(v2), a1 = v1.cross(d), a2 = v2.cross(d);
  if (a == 0) { //if parallel
    auto b1=s1.dot(v1), c1=e1.dot(v1),
         b2=s2.dot(v1), c2=e2.dot(v1);
    if (a1 | | a2 | | max(b1,min(b2,c2))>min(c1,max(b2,c2)))
     return 0:
    r1 = min(b2,c2) < b1 ? s1 : (b2 < c2 ? s2 : e2);
    r2 = max(b2,c2)>c1 ? e1 : (b2>c2 ? s2 : e2);
    return 2-(r1==r2);
  if (a < 0) { a = -a; a1 = -a1; a2 = -a2; }
 if (0<a1 || a<-a1 || 0<a2 || a<-a2)</pre>
    return 0;
  r1 = s1-v1*a2/a;
  return 1;
```

SegmentIntersectionQ.h

Description: Like segmentIntersection, but only returns true/false. Products of three coordinates are used in intermediate steps so watch out for overflow if using int or long long. "Point.h"

```
template <class P>
bool segmentIntersectionQ(P s1, P e1, P s2, P e2) {
 if (e1 == s1) {
   if (e2 == s2) return e1 == e2;
    swap(s1,s2); swap(e1,e2);
 P v1 = e1-s1, v2 = e2-s2, d = s2-s1;
 auto a = v1.cross(v2), a1 = d.cross(v1), a2 = d.cross(v2);
 if (a == 0) { // parallel
   auto b1 = s1.dot(v1), c1 = e1.dot(v1),
         b2 = s2.dot(v1), c2 = e2.dot(v1);
    return !a1 && max(b1,min(b2,c2)) <= min(c1,max(b2,c2));
 if (a < 0) \{ a = -a; a1 = -a1; a2 = -a2; \}
 return (0 <= a1 && a1 <= a && 0 <= a2 && a2 <= a);
```

lineIntersection.h

Description:

If a unique intersetion point of the lines going through s1,e1 and s2,e2 exists r is set to this point and 1 is returned. If no intersection point exists 0 is returned and if infinitely many exists -1 is returned. If s1==e1 or s2==e2 -1 is returned. The wrong position will be returned if P is Point<int> and the intersection point does not have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow if using int or long long.

return -((e1-s1).cross(s2-s1)==0 || s2==e2);


```
Usage: point < double > intersection;
if (1 == LineIntersection(s1,e1,s2,e2,intersection))
cout << "intersection point at " << intersection << endl;</pre>
"Point.h"
template <class P>
int lineIntersection(const P& s1, const P& e1, const P& s2,
   const P& e2, P& r) {
  if ((e1-s1).cross(e2-s2)) { //if not parallell
   r = s2-(e2-s2)*(e1-s1).cross(s2-s1)/(e1-s1).cross(e2-s2);
   return 1:
```

sideOf.h

} else

Description: Returns where p is as seen from s towards e. $1/0/-1 \Leftrightarrow$ left/on line/right. If the optional argument eps is given 0 is returned if p is within distance eps from the line. P is supposed to be Point<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long.

```
Usage: bool left = sideOf(p1,p2,q) ==1;
"Point.h"
                                                           11 lines
template <class P>
int sideOf(const P& s, const P& e, const P& p) {
  auto a = (e-s).cross(p-s);
 return (a > 0) - (a < 0);
template <class P>
int sideOf(const P& s, const P& e, const P& p, double eps) {
  auto a = (e-s).cross(p-s);
  double l = (e-s).dist()*eps;
 return (a > 1) - (a < -1);
```

onSegment.h

Description: Returns true iff p lies on the line segment from s to e. Intended for use with e.g. Point<long long> where overflow is an issue. Use (segDist(s,e,p)<=epsilon) instead when using Point<double>. "Point h"

```
template <class P>
bool onSegment (const P& s, const P& e, const P& p) {
 P ds = p-s, de = p-e;
  return ds.cross(de) == 0 && ds.dot(de) <= 0;
```

linearTransformation.h Description:

scaling) which takes line p0-p1 to line q0-q1 to point r.

```
Apply the linear transformation (translation, rotation and
"Point.h"
                                                              6 lines
typedef Point < double > P;
P linearTransformation(const P& p0, const P& p1,
   const P& q0, const P& q1, const P& r) {
 P dp = p1-p0, dq = q1-q0, num(dp.cross(dq), dp.dot(dq));
```

return q0 + P((r-p0).cross(num), (r-p0).dot(num))/dp.dist2();

Angle.h

```
Description: A class for ordering angles (as represented by int points and
a number of rotations around the origin). Useful for rotational sweeping.
Usage: vector < Angle > v = \{w[0], w[0].t360() ...\}; // sorted
int j = 0; rep(i,0,n) {
while (v[j] < v[i].t180()) ++j;
} // sweeps j such that (j-i) represents the number of
positively oriented triangles with vertices at 0 and i
struct Angle {
  int x, y;
  int t;
  Angle(int x, int y, int t=0) : x(x), y(y), t(t) {}
  Angle operator-(Angle a) const { return {x-a.x, y-a.y, t}; }
  int quad() const {
    assert(x || y);
    if (y < 0) return (x >= 0) + 2;
    if (y > 0) return (x \le 0);
    return (x <= 0) * 2;
  Angle t90() const { return \{-y, x, t + (quad() == 3)\}; }
  Angle t180() const { return \{-x, -y, t + (quad() >= 2)\}; \}
  Angle t360() const { return {x, y, t + 1}; }
bool operator < (Angle a, Angle b) {
  // add a.dist2() and b.dist2() to also compare distances
  return make_tuple(a.t, a.quad(), a.y * (11)b.x) <</pre>
         make_tuple(b.t, b.quad(), a.x * (11)b.y);
bool operator>=(Angle a, Angle b) { return !(a < b); }</pre>
bool operator>(Angle a, Angle b) { return b < a; }</pre>
bool operator<=(Angle a, Angle b) { return ! (b < a); }</pre>
// Given two points, this calculates the smallest angle between
// them, i.e., the angle that covers the defined line segment.
pair<Angle, Angle> segmentAngles(Angle a, Angle b) {
  if (b < a) swap(a, b);
  return (b < a.t180() ?
          make_pair(a, b) : make_pair(b, a.t360()));
Angle operator+(Angle a, Angle b) { // where b is a vector
  Angle r(a.x + b.x, a.y + b.y, a.t);
  if (r > a.t180()) r.t--;
  return r.t180() < a ? r.t360() : r;
```

7.2Circles

CircleIntersection.h

Description: Computes a pair of points at which two circles intersect. Returns false in case of no intersection.

```
"Point.h"
                                                            14 lines
typedef Point < double > P;
bool circleIntersection (P a, P b, double r1, double r2,
    pair<P, P>* out) {
 P delta = b - a;
  assert (delta.x || delta.y || r1 != r2);
  if (!delta.x && !delta.y) return false;
  double r = r1 + r2, d2 = delta.dist2();
  double p = (d2 + r1*r1 - r2*r2) / (2.0 * d2);
  double h2 = r1*r1 - p*p*d2;
  if (d2 > r*r \mid | h2 < 0) return false;
 P mid = a + delta*p, per = delta.perp() * sqrt(h2 / d2);
  *out = {mid + per, mid - per};
  return true;
```

circleTangents.h

Description:

Returns a pair of the two points on the circle with radius r second centered around c whos tangent lines intersect p. If p lies within the circle NaN-points are returned. P is intended to be Point<double>. The first point is the one to the right as seen from the p towards c.

pair < P, P > p = circleTangents(P(100, 2), P(0, 0), 2);

Usage: typedef Point < double > P;

```
"Point.h"
template <class P>
pair<P,P> circleTangents(const P &p, const P &c, double r) {
 P a = p-c;
  double x = r*r/a.dist2(), y = sqrt(x-x*x);
 return make_pair(c+a*x+a.perp()*y, c+a*x-a.perp()*y);
```

circumcircle.h

Description:

"Point.h"

The circumcirle of a triangle is the circle intersecting all three vertices. ccRadius returns the radius of the circle going through points A, B and C and ccCenter returns the center of the same circle.


```
typedef Point<double> P:
double ccRadius (const P& A, const P& B, const P& C) {
  return (B-A).dist() * (C-B).dist() * (A-C).dist() /
      abs((B-A).cross(C-A))/2;
P ccCenter (const P& A, const P& B, const P& C) {
  P b = C-A, c = B-A;
  return A + (b*c.dist2()-c*b.dist2()).perp()/b.cross(c)/2;
```

MinimumEnclosingCircle.h

Description: Computes the minimum circle that encloses a set of points. **Time:** expected $\mathcal{O}(n)$

```
"circumcircle.h"
pair<double, P> mec2(vector<P>& S, P a, P b, int n) {
 double hi = INFINITY, lo = -hi;
 rep(i,0,n) {
   auto si = (b-a).cross(S[i]-a);
   if (si == 0) continue;
   P m = ccCenter(a, b, S[i]);
    auto cr = (b-a).cross(m-a);
   if (si < 0) hi = min(hi, cr);
    else lo = max(lo, cr);
 double v = (0 < 10 ? 10 : hi < 0 ? hi : 0);
 Pc = (a + b) / 2 + (b - a).perp() * v / (b - a).dist2();
 return { (a - c).dist2(), c};
pair<double, P> mec(vector<P>& S, P a, int n) {
 random_shuffle(S.begin(), S.begin() + n);
 P b = S[0], c = (a + b) / 2;
 double r = (a - c).dist2();
 rep(i,1,n) if ((S[i] - c).dist2() > r * (1 + 1e-8)) {
   tie(r,c) = (n == sz(S) ?
      mec(S, S[i], i) : mec2(S, a, S[i], i));
 return {r, c};
pair<double, P> enclosingCircle(vector<P> S) {
 assert(!S.empty()); auto r = mec(S, S[0], sz(S));
 return {sqrt(r.first), r.second};
```

"Point.h", "sideOf.h", "onSegment.h"

Polygons

vector<pi> v; v.push_back(pi(4,4));

insidePolygon.h

Description: Returns true if p lies within the polygon described by the points between iterators begin and end. If strict false is returned when p is on the edge of the polygon. Answer is calculated by counting the number of intersections between the polygon and a line going from p to infinity in the positive x-direction. The algorithm uses products in intermediate steps so watch out for overflow. If points within epsilon from an edge should be considered as on the edge replace the line "if (onSegment..." with the comment bellow it (this will cause overflow for int and long long). Usage: typedef Point<int> pi;

```
v.push_back(pi(1,2)); v.push_back(pi(2,1));
bool in = insidePolygon(v.begin(), v.end(), pi(3,4), false);
                                                           14 lines
"Point.h", "onSegment.h", "SegmentDistance.h"
template <class It, class P>
bool insidePolygon(It begin, It end, const P& p,
   bool strict = true) {
  int n = 0; //number of isects with line from p to (inf,p.y)
  for (It i = begin, j = end-1; i != end; j = i++) {
    //if p is on edge of polygon
    if (onSegment(*i, *j, p)) return !strict;
    //or: if (segDist(*i, *j, p) \le epsilon) return !strict;
    //increment n if segment intersects line from p
   n += (max(i->y,j->y) > p.y && min(i->y,j->y) <= p.y &&
        ((*j-*i).cross(p-*i) > 0) == (i->y <= p.y));
  return n&1; //inside if odd number of intersections
```

PolygonArea.h

Description: Returns twice the signed area of a polygon. Clockwise enumeration gives negative area. Watch out for overflow if using int as T!

```
"Point.h"
                                                            6 lines
template <class T>
T polygonArea2(vector<Point<T>>& v) {
 T = v.back().cross(v[0]);
  rep(i, 0, sz(v)-1) a += v[i].cross(v[i+1]);
 return a:
```

PolygonCenter.h

Description: Returns the center of mass for a polygon.

```
typedef Point<double> P;
Point<double> polygonCenter(vector<P>& v) {
  auto i = v.begin(), end = v.end(), j = end-1;
  Point<double> res{0,0}; double A = 0;
  for (; i != end; j=i++) {
   res = res + (*i + *j) * j \rightarrow cross(*i);
   A += j->cross(*i);
  return res / A / 3;
```

PolygonCut.h

Description:

Returns a vector with the vertices of a polygon with everything to the left of the line going from s to e cut away.

```
Usage: vector<P> p = ...;
p = polygonCut(p, P(0,0), P(1,0));
```

"Point.h", "lineIntersection.h" typedef Point < double > P;

vector<P> polygonCut (const vector<P>& poly, P s, P e) {


```
vector<P> res;
rep(i,0,sz(poly)) {
  P cur = poly[i], prev = i ? poly[i-1] : poly.back();
  bool side = s.cross(e, cur) < 0;</pre>
  if (side != (s.cross(e, prev) < 0)) {</pre>
    res.emplace_back();
    lineIntersection(s, e, cur, prev, res.back());
  if (side)
    res.push back(cur);
return res;
```

ConvexHull.h

Description:

"Point.h"

Returns a vector of indices of the convex hull in counterclockwise order. Points on the edge of the hull between two other points are not considered part of the hull.

typedef Point<11> P; pair<vi, vi> ulHull(const vector<P>& S) { vi Q(sz(S)), U, L; iota(all(Q), 0); sort(all(Q), [&S](int a, int b) { return S[a] < S[b]; });</pre> trav(it, Q) { #define ADDP(C, cmp) while $(sz(C) > 1 \&\& S[C[sz(C)-2]].cross(\$ S[it], S[C.back()]) cmp 0) C.pop_back(); C.push_back(it); ADDP(U, <=); ADDP(L, >=);

```
return {U, L};
vi convexHull(const vector<P>& S) {
 vi u, l; tie(u, l) = ulHull(S);
 if (sz(S) <= 1) return u;</pre>
 if (S[u[0]] == S[u[1]]) return {0};
 1.insert(1.end(), u.rbegin()+1, u.rend()-1);
 return 1:
```

PolygonDiameter.h

Description: Calculates the max squared distance of a set of points.

```
19 lines
vector<pii> antipodal(const vector<P>& S, vi& U, vi& L) {
 vector<pii> ret;
 int i = 0, j = sz(L) - 1;
 while (i < sz(U) - 1 || j > 0) {
   ret.emplace_back(U[i], L[j]);
   if (j == 0 || (i != sz(U)-1 && (S[L[j]] - S[L[j-1]])
         .cross(S[U[i+1]] - S[U[i]]) > 0)) ++i;
   else --j;
 return ret:
pii polygonDiameter(const vector<P>& S) {
 vi U, L; tie(U, L) = ulHull(S);
 pair<ll, pii> ans;
 trav(x, antipodal(S, U, L))
   ans = max(ans, {(S[x.first] - S[x.second]).dist2(), x});
 return ans.second;
```

PointInsideHull.h

Description: Determine whether a point t lies inside a given polygon (counter-clockwise order). The polygon must be such that every point on the circumference is visible from the first point in the vector. It returns 0 for points outside, 1 for points on the circumference, and 2 for points inside. Time: $\mathcal{O}(\log N)$

```
typedef Point<11> P;
int insideHull2(const vector<P>& H, int L, int R, const P& p) {
 int len = R - L;
 if (len == 2) {
    int sa = sideOf(H[0], H[L], p);
    int sb = sideOf(H[L], H[L+1], p);
    int sc = sideOf(H[L+1], H[0], p);
    if (sa < 0 || sb < 0 || sc < 0) return 0;</pre>
    if (sb==0 || (sa==0 && L == 1) || (sc == 0 && R == sz(H)))
      return 1;
    return 2:
  int mid = L + len / 2;
  if (sideOf(H[0], H[mid], p) \geq= 0)
    return insideHull2(H, mid, R, p);
  return insideHull2(H, L, mid+1, p);
int insideHull(const vector<P>& hull, const P& p) {
 if (sz(hull) < 3) return onSegment(hull[0], hull.back(), p);</pre>
 else return insideHull2(hull, 1, sz(hull), p);
```

LineHullIntersection.h

20 lines

Description: Line-convex polygon intersection. The polygon must be ccw and have no colinear points. isct(a, b) returns a pair describing the intersection of a line with the polygon: \bullet (-1,-1) if no collision, \bullet (i,-1) if touching the corner $i, \bullet (i, i)$ if along side $(i, i + 1), \bullet (i, j)$ if crossing sides (i, i+1) and (j, j+1). In the last case, if a corner i is crossed, this is treated as happening on side (i, i + 1). The points are returned in the same order as the line hits the polygon.

```
Time: \mathcal{O}(N + Q \log n)
```

```
"Point.h"
                                                            63 lines
ll sgn(ll a) { return (a > 0) - (a < 0); }
typedef Point<ll> P;
struct HullIntersection {
  int N:
  vector<P> p;
  vector<pair<P, int>> a;
  HullIntersection(const vector<P>& ps) : N(sz(ps)), p(ps) {
    p.insert(p.end(), all(ps));
    int b = 0;
    rep(i,1,N) if (P\{p[i].y,p[i].x\} < P\{p[b].y, p[b].x\}) b = i;
    rep(i,0,N) {
      int f = (i + b) % N;
      a.emplace_back(p[f+1] - p[f], f);
  int qd(P p) {
    return (p.y < 0) ? (p.x >= 0) + 2
         : (p.x \le 0) * (1 + (p.y \le 0));
  int bs(P dir) {
    int lo = -1, hi = N;
    while (hi - lo > 1) {
      int mid = (lo + hi) / 2;
      if (make_pair(qd(dir), dir.y * a[mid].first.x) <</pre>
        make_pair(qd(a[mid].first), dir.x * a[mid].first.y))
```

```
hi = mid;
     else lo = mid;
   return a[hi%N].second;
  bool isign (P a, P b, int x, int y, int s) {
   return sgn(a.cross(p[x], b)) * sgn(a.cross(p[y], b)) == s;
  int bs2(int lo, int hi, Pa, Pb) {
   int L = lo;
   if (hi < lo) hi += N;
   while (hi - lo > 1) {
     int mid = (lo + hi) / 2;
     if (isign(a, b, mid, L, -1)) hi = mid;
     else lo = mid;
   return lo;
 pii isct(Pa, Pb) {
   int f = bs(a - b), j = bs(b - a);
   if (isign(a, b, f, j, 1)) return {-1, -1};
   int x = bs2(f, j, a, b)%N,
       y = bs2(j, f, a, b)%N;
   if (a.cross(p[x], b) == 0 \&\&
       a.cross(p[x+1], b) == 0) return \{x, x\};
   if (a.cross(p[y], b) == 0 &&
       a.cross(p[y+1], b) == 0) return {y, y};
   if (a.cross(p[f], b) == 0) return {f, -1};
   if (a.cross(p[j], b) == 0) return {j, -1};
   return {x, y};
};
```

7.4 Misc. Point Set Problems

Description: i1, i2 are the indices to the closest pair of points in the point vector p after the call. The distance is returned.

```
Time: \mathcal{O}(n \log n)
"Point.h"
                                                            58 lines
template <class It>
bool it_less(const It& i, const It& j) { return *i < *j; }</pre>
template <class It>
bool y_it_less(const It& i,const It& j) {return i->y < j->y;}
template < class It, class IIt> /* IIt = vector < It>::iterator */
double cp_sub(IIt ya, IIt yaend, IIt xa, It &i1, It &i2) {
  typedef typename iterator_traits<It>::value_type P;
  int n = yaend-ya, split = n/2;
  if (n \leq 3) { // base case}
    double a = (*xa[1] - *xa[0]).dist(), b = 1e50, c = 1e50;
    if(n==3) b=(*xa[2]-*xa[0]).dist(), c=(*xa[2]-*xa[1]).dist()
    if(a <= b) { i1 = xa[1];
      if(a <= c) return i2 = xa[0], a;
      else return i2 = xa[2], c;
    } else { i1 = xa[2];
      if(b <= c) return i2 = xa[0], b;
      else return i2 = xa[1], c;
  vector<It> ly, ry, stripy;
  P splitp = *xa[split];
  double splitx = splitp.x;
  for(IIt i = ya; i != yaend; ++i) { // Divide
```

```
if(*i != xa[split] && (**i-splitp).dist2() < 1e-12)</pre>
     return i1 = *i, i2 = xa[split], 0;// nasty special case!
    if (**i < splitp) ly.push_back(*i);</pre>
    else ry.push_back(*i);
  It j1, j2; // Conquer
  double a = cp_sub(ly.begin(), ly.end(), xa, i1, i2);
  double b = cp_sub(ry.begin(), ry.end(), xa+split, j1, j2);
  if (b < a) a = b, i1 = 1, i2 = 2;
  double a2 = a*a;
  for(IIt i = ya; i != yaend; ++i) { // Create strip (y-sorted)
    double x = (*i) -> x;
    if(x >= splitx-a && x <= splitx+a) stripy.push back(*i);</pre>
  for(IIt i = stripy.begin(); i != stripy.end(); ++i) {
    const P &p1 = **i;
    for(IIt j = i+1; j != stripy.end(); ++j) {
     const P &p2 = **\dot{j};
      if(p2.y-p1.y > a) break;
      double d2 = (p2-p1).dist2();
      if (d2 < a2) i1 = *i, i2 = *j, a2 = d2;
 } }
 return sqrt(a2);
template < class It > // It is random access iterators of point < T >
double closestpair (It begin, It end, It &i1, It &i2) {
 vector<It> xa, ya;
 assert (end-begin >= 2);
  for (It i = begin; i != end; ++i)
   xa.push_back(i), ya.push_back(i);
  sort(xa.begin(), xa.end(), it_less<It>);
 sort(ya.begin(), ya.end(), y_it_less<It>);
  return cp_sub(ya.begin(), ya.end(), xa.begin(), i1, i2);
kdTree.h
Description: KD-tree (2d, can be extended to 3d)
"Point.h"
typedef long long T;
typedef Point<T> P;
const T INF = numeric_limits<T>::max();
bool on_x(const P& a, const P& b) { return a.x < b.x; }</pre>
bool on_y(const P& a, const P& b) { return a.y < b.y; }</pre>
 P pt; // if this is a leaf, the single point in it
 T x0 = INF, x1 = -INF, y0 = INF, y1 = -INF; // bounds
 Node *first = 0, *second = 0;
 T distance (const P& p) { // min squared distance to a point
   T x = (p.x < x0 ? x0 : p.x > x1 ? x1 : p.x);
    T y = (p.y < y0 ? y0 : p.y > y1 ? y1 : p.y);
    return (P(x,y) - p).dist2();
 Node(vector<P>&& vp) : pt(vp[0]) {
    for (P p : vp) {
     x0 = min(x0, p.x); x1 = max(x1, p.x);
     y0 = min(y0, p.y); y1 = max(y1, p.y);
    if (vp.size() > 1) {
      // split on x if the box is wider than high (not best
           heuristic...)
      sort(all(vp), x1 - x0 >= y1 - y0 ? on_x : on_y);
      // divide by taking half the array for each child (not
      // best performance with many duplicates in the middle)
```

```
int half = sz(vp)/2;
      first = new Node({vp.begin(), vp.begin() + half});
      second = new Node({vp.begin() + half, vp.end()});
};
struct KDTree {
  Node* root:
  KDTree(const vector<P>& vp) : root(new Node({all(vp)})) {}
  pair<T, P> search(Node *node, const P& p) {
    if (!node->first) {
      // uncomment if we should not find the point itself:
      // if (p = node \rightarrow pt) return \{INF, P()\}:
      return make_pair((p - node->pt).dist2(), node->pt);
    Node *f = node -> first, *s = node -> second;
    T bfirst = f->distance(p), bsec = s->distance(p);
    if (bfirst > bsec) swap(bsec, bfirst), swap(f, s);
    // search closest side first, other side if needed
    auto best = search(f, p);
    if (bsec < best.first)</pre>
      best = min(best, search(s, p));
    return best:
  // find nearest point to a point, and its squared distance
  // (requires an arbitrary operator< for Point)
  pair<T, P> nearest (const P& p) {
    return search(root, p);
};
```

DelaunavTriangulation.h

Description: Computes the Delaunay triangulation of a set of points. Each circumcircle contains none of the input points. If any three points are colinear or any four are on the same circle, behavior is undefined.

```
Time: \mathcal{O}\left(n^2\right)
"Point.h", "3dHull.h"
                                                              10 lines
template<class P, class F>
void delaunay(vector<P>& ps, F trifun) {
 if (sz(ps) == 3) \{ int d = (ps[0].cross(ps[1], ps[2]) < 0);
    trifun(0,1+d,2-d);}
 vector<P3> p3;
 trav(p, ps) p3.emplace_back(p.x, p.y, p.dist2());
 if (sz(ps) > 3) trav(t, hull3d(p3)) if ((p3[t.b]-p3[t.a]).
      cross(p3[t.c]-p3[t.a]).dot(P3(0,0,1)) < 0)
    trifun(t.a, t.c, t.b);
```

7.53D

PolyhedronVolume.h

Description: Magic formula for the volume of a polyhedron. Faces should point outwards. 6 lines

```
template <class V, class L>
double signed_poly_volume(const V& p, const L& trilist) {
 double v = 0;
 trav(i, trilist) v += p[i.a].cross(p[i.b]).dot(p[i.c]);
 return v / 6;
```

Point3D.h

Description: Class to handle points in 3D space. T can be e.g. double or

```
template <class T> struct Point3D {
  typedef Point3D P;
  typedef const P& R:
  T x, y, z;
  explicit Point3D(T x=0, T y=0, T z=0) : x(x), y(y), z(z) {}
  bool operator<(R p) const {</pre>
   return tie(x, y, z) < tie(p.x, p.y, p.z); }
  bool operator == (R p) const {
   return tie(x, y, z) == tie(p.x, p.y, p.z); }
  P operator+(R p) const { return P(x+p.x, y+p.y, z+p.z); }
  P operator-(R p) const { return P(x-p.x, y-p.y, z-p.z); }
  P operator*(T d) const { return P(x*d, y*d, z*d); }
  P operator/(T d) const { return P(x/d, y/d, z/d); }
  T dot(R p) const { return x*p.x + y*p.y + z*p.z; }
  P cross(R p) const {
    return P(y*p.z - z*p.y, z*p.x - x*p.z, x*p.y - y*p.x);
  T dist2() const { return x*x + y*y + z*z; }
  double dist() const { return sqrt((double)dist2()); }
  //Azimuthal angle (longitude) to x-axis in interval [-pi, pi]
  double phi() const { return atan2(v, x); }
  //Zenith angle (latitude) to the z-axis in interval [0, pi]
  double theta() const { return atan2(sqrt(x*x+y*y),z); }
  P unit() const { return *this/(T)dist(); } //makes dist()=1
  //returns unit vector normal to *this and p
  P normal(P p) const { return cross(p).unit(); }
  //returns point rotated 'angle' radians ccw around axis
  P rotate (double angle, P axis) const {
    double s = sin(angle), c = cos(angle); P u = axis.unit();
    return u*dot(u)*(1-c) + (*this)*c - cross(u)*s;
};
```

3dHull.h

Description: Computes all faces of the 3-dimension hull of a point set. *No four points must be coplanar*, or else random results will be returned. All faces will point outwards.

```
Time: \mathcal{O}\left(n^2\right)
```

```
"Point3D.h"
                                                                           49 lines
```

```
typedef Point3D<double> P3;
struct PR {
 void ins(int x) { (a == -1 ? a : b) = x; }
 void rem(int x) { (a == x ? a : b) = -1; }
 int cnt() { return (a !=-1) + (b !=-1); }
 int a, b;
struct F { P3 q; int a, b, c; };
vector<F> hull3d(const vector<P3>& A) {
 assert (sz(A) >= 4);
 vector<vector<PR>> E(sz(A), vector<PR>(sz(A), {-1, -1}));
#define E(x,y) E[f.x][f.y]
 vector<F> FS;
  auto mf = [&](int i, int j, int k, int l) {
   P3 q = (A[j] - A[i]).cross((A[k] - A[i]));
   if (q.dot(A[1]) > q.dot(A[i]))
     q = q * -1;
   F f{q, i, j, k};
   E(a,b).ins(k); E(a,c).ins(j); E(b,c).ins(i);
   FS.push_back(f);
  rep(i,0,4) rep(j,i+1,4) rep(k,j+1,4)
   mf(i, j, k, 6 - i - j - k);
```

```
rep(i,4,sz(A)) {
   rep(j,0,sz(FS)) {
     F f = FS[j];
     if(f.q.dot(A[i]) > f.q.dot(A[f.a])) {
       E(a,b).rem(f.c);
       E(a,c).rem(f.b);
       E(b,c).rem(f.a);
       swap(FS[j--], FS.back());
       FS.pop_back();
   int nw = sz(FS);
   rep(j,0,nw) {
     F f = FS[j];
#define C(a, b, c) if (E(a,b).cnt() != 2) mf(f.a, f.b, i, f.c);
     C(a, b, c); C(a, c, b); C(b, c, a);
 trav(it, FS) if ((A[it.b] - A[it.a]).cross(
   A[it.c] - A[it.a]).dot(it.q) <= 0) swap(it.c, it.b);
 return FS;
```

sphericalDistance.h

Description: Returns the shortest distance on the sphere with radius radius between the points with azimuthal angles (longitude) f1 (ϕ_1) and f2 (ϕ_2) from x axis and zenith angles (latitude) t1 (θ_1) and t2 (θ_2) from z axis. All angles measured in radians. The algorithm starts by converting the spherical coordinates to cartesian coordinates so if that is what you have you can use only the two last rows. dx*radius is then the difference between the two points in the x direction and d*radius is the total distance between the

```
double sphericalDistance(double f1, double t1,
   double f2, double t2, double radius) {
 double dx = \sin(t2) \cdot \cos(f2) - \sin(t1) \cdot \cos(f1);
 double dy = sin(t2) * sin(f2) - sin(t1) * sin(f1);
 double dz = cos(t2) - cos(t1);
 double d = sqrt(dx*dx + dy*dy + dz*dz);
 return radius*2*asin(d/2);
```

Strings (8)

AhoCorasick.h

```
Description: Builds an Ahocorasick Trie, with suffix links
```

Usage: This is an offline Algorithm, Pass the vector of patterns to Trie.init(), find function return the words matched in order of matching

```
Time: \mathcal{O}(n+m+z)
const int MaxM = 200005;
```

```
struct Trie!
    static const int Alpha = 26;
    static const int first = 'a';
   int lst = 1;
    struct node {
       int nxt[Alpha] = \{\}, p = -1;
        char c;
       vector<int> end;
        //bitset<MaxN> bitmask;
        int SuffixLink;
   vector<node> V;
    inline int getval(char c) {
        return c - first;
```

```
void CreateSuffixLink() {
        queue<int> q;
        for(q.push(0); q.size(); q.pop()) {
            int pos = q.front();
                                       if(!pos) V[pos].
                 SuffixLink = -1;
            else {
                int val = getval(V[pos].c);
                int j = V[V[pos].p].SuffixLink;
                while (j > -1 \&\& !V[j].nxt[val]) j = V[j].
                     SuffixLink;
                if(j == -1) V[pos].SuffixLink = 0;
                else {
                    V[pos].SuffixLink = V[i].nxt[val];
                    for(auto &i : V[V[pos].SuffixLink].end) V[
                         pos].end.emplace_back(i);
                    //V[pos].bitmask = V[V[pos].SuffixLink].
                          bitmask:
            for(int i = 0; i < Alpha; ++i) if(V[pos].nxt[i]) q.</pre>
                 push(V[pos].nxt[i]);
    void init(vector<string> &v) {
        V.resize(MaxM);
        int id = 0;
        for(auto &s : v) {
            int pos = 0;
            for(char &c : s) {
                int val = getval(c);
                if(!V[pos].nxt[val]) {
                    V[lst].p = pos;
                    V[lst].c = c;
                    V[pos].nxt[val] = lst++;
                pos = V[pos].nxt[val];
            V[pos].end.emplace_back(id++);
            //V[pos]. bitmask.set(id++);
        CreateSuffixLink();
    vector<int> find(string& word) {
        int pos = 0;
        vector<int> ans;
        for(auto &c : word) {
            int val = getval(c);
            while(pos > -1 \&\& !V[pos].nxt[val]) pos = V[pos].
                SuffixLink;
            if (pos == -1) pos = 0;
            else pos = V[pos].nxt[val];
            if(V[pos].end.size()) {
                for(auto &i : V[pos].end) ans.emplace_back(i);
        return ans;
};
PalindromeTree.h
Description: Palindrome Tree for string s
Time: \mathcal{O}(sz(s)) for building
                                                           64 lines
const int maxN = 1000010; // at least sz(s) + 3
```

```
struct Node {
  int suffix;
  int len:
  map<char, int> children;
  // not needed for construction, add if needed
  char c;
  int parent;
  vector<int> suffixof:
int nodeid;
Node tree[maxN]; // 0: -1 root, 1: empty string
int pos2node[maxN]; // not needed for construction
int add(int parent, char c) {
  if(has(tree[parent].children, c)) {
    return tree[parent].children[c];
  int newid = nodeid++;
  tree[newid].suffix = -1;
  tree[newid].len = tree[parent].len + 2;
  tree[newid].parent = parent;
  tree[newid].c = c;
  tree[parent].children[c] = newid;
  return newid;
void build(string& s) {
 nodeid = 2:
  tree[0].parent = -1;
  tree [0].len = -1;
  tree[1].parent = -1;
  tree[0].suffixof.push back(1);
  int cur = 0;
  FOR(i, 0, s.size()) {
   int newn = -1;
    while(1) {
     int curlen = tree[cur].len;
     if(i-1-curlen >= 0 && s[i-1-curlen] == s[i]) {
       newn = add(cur, s[i]);
       break;
      cur = tree[cur].suffix;
    pos2node[i] = newn;
    if(tree[newn].suffix != -1) {
     cur = newn;
     continue;
    if(cur == 0) {
     tree[newn].suffix = 1;
    } else {
     do √
       cur = tree[cur].suffix;
      } while(i-1-tree[cur].len < 0</pre>
          || s[i-1-tree[cur].len] != s[i]);
     tree[newn].suffix = tree[cur].children[s[i]];
    tree[tree[newn].suffix].suffixof.push_back(newn);
    cur = newn;
```

SuffixArrav.h

Description: lcp (x,y) = min(lcp(x,x+1),lcp(x+1,x+2)...lcp(y-1,y)) to answer queries with RMQ O(1)

Memory: Build $\mathcal{O}(N\log N)$ (Can be optimised as in B you only use the previous row to compute one row. But then you cannot do lcp

Time: Build: $\mathcal{O}(N \log N)$ where N is the length of the string for creation of the SA. LCP $\mathcal{O}(\log N)$ It is not necessary to use raddixsort if the $\mathcal{O}(n\log^2 n)$ fits the time limit, one can just use stl sort.

```
fits the time limit, one can just use stl sort.
struct SF {
 pair<11, 11> ord;
 11 id:
 bool operator<(const SF& s) const { return ord < s.ord; }</pre>
ll lcp(ll x, ll y, vector < vector < ll > > \&B, ll N, ll step)
 if (x == y) return N - x;
 11 \text{ res} = 0;
 for (11 i = step - 1; i >= 0 and x < N and y < N; --i)
   if (B[i][x] == B[i][y]) { x += 1<<i; y += 1<<i; res += 1<<i</pre>
 return res;
void raddixSort(vector < SF > & A, vector < vector <11 > > & B,
      vector < 11 > &times, vector < 11 > & pos, vector < SF >
     & L2, 11 N) {
 11 k = max(N, 256LL);
 for (ll i = 0; i < k + 2; ++i) times[i] = 0;</pre>
  for (11 i = 0; i < N; ++i)
   times[A[i].ord.second + 1]++;
  pos[0] = 0;
  for (11 i = 1; i < k + 2; ++i)
   pos[i] = pos[i - 1] + times[i - 1];
  for (11 i = 0; i < N; ++i)
   L2[pos[A[i].ord.second + 1]++] = A[i];
  for (11 i = 0; i < k + 2; ++i)
   times[i] = 0;
 for (ll i = 0; i < N; ++i)</pre>
   times[L2[i].ord.first + 1]++;
  pos[0] = 0;
  for (11 i = 1; i < k + 2; ++i)
   pos[i] = pos[i - 1] + times[i - 1];
  for (11 i = 0; i < N; ++i)
   A[pos[L2[i].ord.first + 1]++] = L2[i];
void compute_suffix_array(vector < SF > & A, vector<vector<11>
    > & B, 11 N, string & S, 11 &step) {
 11 MAXN = 3000005; //millor posar numero gran que algo en
       funcio de N pa peta
  vector < SF > L2 (MAXN);
  vector \langle 11 \rangle pos(MAXN + 2.0), times(MAXN + 2.0);
  A.resize(N); B.resize(1); B[0].resize(N);
  for (ll i = 0; i < N; ++i) B[0][i] = S[i];
  step = 1;
  for (11 b = 0, pw = 1; b < N; ++step, pw <<=1) {
    for (ll i = 0; i < N; ++i) {
      A[i].ord.first = B[step - 1][i];
      A[i].ord.second = i + pw < N ? B[step - 1][i + pw] : -1;
      A[i].id = i;
    raddixSort(A, B, times, pos, L2, N); //sort(A.begin(), A.
         end());
    B.resize(step + 1); B[step].resize(N);
   b = B[step][A[0].id] = 1;
    for (11 i = 1; i < N; ++i) {</pre>
      if (A[i - 1] < A[i]) ++b;</pre>
      B[step][A[i].id] = b;
```

```
}
```

```
Hashing.h
```

Description: Various self-explanatory methods for string hashing. 45 lines

```
typedef unsigned long long H;
static const H C = 123891739; // arbitrary
// Arithmetic mod 2^64-1. 5x slower than mod 2^64 and more
// code, but works on evil test data (e.g. Thue-Morse).
// "typedef HK;" instead if you think test data is random.
struct K
  typedef __uint128_t H2;
 H x; K(H x=0) : x(x) {}
 K operator+(K o) { return x + o.x + H(((H2)x + o.x) >> 64); }
 K operator*(K o) { return K(x*o.x) + H(((H2)x * o.x)>>64); }
 H operator-(K o) { K a = *this + \sim0.x; return a.x + !\sima.x; }
struct HashInterval {
  vector<K> ha, pw;
  HashInterval(string& str) : ha(str.size()+1), pw(ha) {
    pw[0] = 1;
    FOR(i,0,str.size())
     ha[i+1] = ha[i] * C + str[i],
      pw[i+1] = pw[i] * C;
 H hashInterval(int a, int b) { // hash (a, b)
    return ha[b] - ha[a] * pw[b - a];
};
vector<H> getHashes(string& str, int length) {
 if (str.size() < length) return {};</pre>
 K h = 0, pw = 1;
 FOR(i,0,length)
   h = h * C + str[i], pw = pw * C;
  vector < H > ret = \{h - 0\};
 FOR(i,length,str.size()) {
    ret.push_back(h * C + str[i] - pw * str[i-length]);
   h = ret.back();
 return ret;
H hashString(string& s) {
  for (auto c:s) h = h * C + c;
  return h - 0;
```

Various (9)

Techniques (A)

techniques.txt

Combinatorics

159 lines

Recursion Divide and conquer Finding interesting points in N log N Algorithm analysis Master theorem Amortized time complexity Greedy algorithm Scheduling Max contigous subvector sum Invariants Huffman encoding Graph teory Dynamic graphs (extra book-keeping) Breadth first search Depth first search * Normal trees / DFS trees Dijkstra's algoritm MST: Prim's algoritm Bellman-Ford Konig's theorem and vertex cover Min-cost max flow Lovasz toggle Matrix tree theorem Maximal matching, general graphs Hopcroft-Karp Hall's marriage theorem Graphical sequences Floyd-Warshall Eulercvkler Flow networks * Augumenting paths * Edmonds-Karp Bipartite matching Min. path cover Topological sorting Strongly connected components Cutvertices, cutedges och biconnected components Edge coloring * Trees Vertex coloring * Bipartite graphs (=> trees) * 3^n (special case of set cover) Diameter and centroid K'th shortest path Shortest cycle Dynamic programmering Knapsack Coin change Longest common subsequence Longest increasing subsequence Number of paths in a dag Shortest path in a dag Dynprog over intervals Dynprog over subsets Dynprog over probabilities Dynprog over trees 3^n set cover Divide and conquer Knuth optimization Convex hull optimizations RMQ (sparse table a.k.a 2^k-jumps) Bitonic cycle Log partitioning (loop over most restricted)

Computation of binomial coefficients Pigeon-hole principle Inclusion/exclusion Catalan number Pick's theorem Number theory Integer parts Divisibility Euklidean algorithm Modular arithmetic * Modular multiplication * Modular inverses * Modular exponentiation by squaring Chinese remainder theorem Fermat's small theorem Euler's theorem Phi function Frobenius number Quadratic reciprocity Pollard-Rho Miller-Rabin Hensel lifting Vieta root jumping Game theory Combinatorial games Game trees Mini-max Nim Games on graphs Games on graphs with loops Grundy numbers Bipartite games without repetition General games without repetition Alpha-beta pruning Probability theory Optimization Binary search Ternary search Unimodality and convex functions Binary search on derivative Numerical methods Numeric integration Newton's method Root-finding with binary/ternary search Golden section search Matrices Gaussian elimination Exponentiation by squaring Sorting Radix sort Geometry Coordinates and vectors * Cross product * Scalar product Convex hull Polygon cut Closest pair Coordinate-compression Ouadtrees KD-trees All segment-segment intersection Discretization (convert to events and sweep) Angle sweeping Line sweeping Discrete second derivatives Strings Longest common substring Palindrome subsequences

Knuth-Morris-Pratt Tries Rolling polynom hashes Suffix array Suffix tree Aho-Corasick Manacher's algorithm Letter position lists Combinatorial search Meet in the middle Brute-force with pruning Best-first (A*) Bidirectional search Iterative deepening DFS / A* Data structures LCA (2^k-jumps in trees in general) Pull/push-technique on trees Heavy-light decomposition Centroid decomposition Lazy propagation Self-balancing trees Convex hull trick (wcipeg.com/wiki/Convex hull trick) Monotone queues / monotone stacks / sliding queues Sliding queue using 2 stacks Persistent segment tree

12