Práctica 6 - Segmentation

Gabriela V. Cholico Santoyo

152854

Mejor modelo

```
i = Input(FACES_train.shape[1:])
h = BatchNormalization()(i)
h = Conv2D(8, (3, 3), padding='same', activation='elu')(h)
h = MaxPooling2D((2, 2))(h)
h = Conv2D(8, (3, 3), padding='same', activation='elu')(h)
h = MaxPooling2D((2, 2))(h)
h = Dropout(0.2)(h)
h = Conv2D(8, (3, 3), padding='same', activation='elu')(h)
h = MaxPooling2D((2, 2))(h)
h = Flatten()(h)
latent = Dense(128, activation='relu')(h)
h = Dense(512, activation='relu')(latent)
h = Reshape((8, 8, 8))(h)
h = UpSampling2D((2, 2))(h)
h = Conv2D(8, (3, 3), padding='same', activation='elu')(h)
h = Dropout(0.2)(h)
h = UpSampling2D((2, 2))(h)
h = Conv2D(8, (3, 3), padding='same', activation='elu')(h)
h = UpSampling2D((2, 2))(h)
h = Conv2D(8, (3, 3), padding='same', activation='elu')(h)
h = BatchNormalization()(h)
o = Conv2D(3, (3, 3), padding='same', activation='sigmoid')(h)
model = Model(inputs=i, outputs=o)
model.summary()
```

Layer (type)	Output	Shape	Panam #
input_30 (InputLayer)	(None,	64, 64, 3)	Θ
batch_normalization_53 (Batc	(None,	64, 64, 3)	12
conv2d_175 (Conv2D)	(None,	64, 64, 8)	224
max_pooling2d_65 (MaxPooling	(None,	32, 32, 8)	8
conv2d_176 (Conv2D)	(None,	32, 32, 8)	584
max_pooling2d_66 (MaxPooling	(None,	16, 16, 8)	8
dropout_17 (Dropout)	(None,	16, 16, 8)	8
conv2d_177 (Conv2D)	(None,	16, 16, 8)	584
max_pooling2d_67 (MaxPooling	(None,	8, 8, 8)	8
flatten_30 (Flatten)	(None,	512)	8
dense_55 (Dense)	(None,	128)	65664
dense_56 (Dense)	(None,	512)	66848
reshape_29 (Reshape)	(None,	8, 8, 8)	8
up_sampling2d_33 (UpSampling	(None,	16, 16, 8)	8
conv2d_178 (Conv2D)	(None,	16, 16, 8)	584
dropout_18 (Dropout)	(None,	16, 16, 8)	8
up_sampling2d_34 (UpSampling	(None,	32, 32, 8)	8
conv2d_179 (Conv2D)	(None,	32, 32, 8)	584
up_sampling2d_35 (UpSampling	(None,	64, 64, 8)	8
conv2d_188 (Conv2D)	(None,	64, 64, 8)	584
batch_normalization_54 (Batc	(None,	64, 64, 8)	32
conv2d_181 (Conv2D)	(None,	64, 64, 3)	219

Total params: 135,119 Trainable params: 135,897 Non-trainable params: 22

Batch size = 320

Épocas = 15

Pérdida y ganancia de cada época:

Train on 1485 samples, validate on 372 samples Epoch 1/15 1485/1485 [= Epoch 2/15 Epoch 3/15 1485/1485 [== Epoch 4/15 Epoch 5/15 1485/1485 [= Epoch 6/15 Epoch 7/15 Epoch 8/15 Epoch 9/15 Epoch 11/15 Epoch 12/15 Epoch 13/15 1485/1485 [=: Epoch 15/15 1485/1485 [==: ========] - 42s 28ms/step - loss: 0.0841 - acc: 0.8800 - val_loss: 0.0745 - val_acc: 0.8874

Tiempo total = 653 s

Imágenes originales:

Resultados de la predicción de imágenes:

Modelos	Tiempo de	Pérdida final	Error de	Pérdida y precisión
	entrenamient o		clasificación	
Modificando el número de filtros	2527 s (con 320 batches y 15 épocas)	0.06443681574316434	0.116275	Training Validation 0.25 0.20 0.15 0.10 0.05 0.2 4
Con diferente tamaño de batch	1123 s (con 70 batches y 20 épocas)	0.046516235893772497	0.09155	Training Validation 0.18 0.16 0.14 0.01 0.01 0.00 0.006 0.004 0.00 0.006 0.004 0.00 0.00
Con diferente número, tipo y orden de layers	868 s (con 320 batches y 15 épocas)	0.06735187911538668	0.11177	0.255 0.225 0.200 0.175 0.100 0.075 0.100 0.075 0.100 0.075 0.100 0.075 0.100 0.075 0.100 0.075 0.100 0.075 0.100 0.075 0.100 0.075 0.

Usando sólo layers convolucionales	448 s (con 320 batches y 20 épocas)	0.11183462589979172	0.228892	Training Validation Validation Validation Validation Training Validation Validation Validation Validation Validation Validation
Mejor resultado	653 s	0.07637510544830753	0.116395	0.250