A. SUBIECTUL III (15 puncte)

Rezolvaţi următoarea problemă:

Un corp se deplasează pe o suprafață orizontală, fără frecare, cu viteza $v_0=36\,\mathrm{km/h}$. Asupra acestuia începe să acționeze, pe aceeași direcție cu viteza \vec{v}_0 , o forță \vec{F} de valoare $F=20\,\mathrm{N}$.

- **a.** Forța \vec{F} are acelaşi sens cu viteza \vec{v}_0 . Determinați masa corpului dacă, după parcurgerea distanței $d=20\,\mathrm{m}$ din momentul aplicării forței \vec{F} , energia cinetică a corpului devine $E_c=0.8\,\mathrm{kJ}$.
- **b.** Calculați puterea medie dezvoltată de forța \vec{F} pe distanța d, în situația de la punctul **a**.
- **c.** Forța \vec{F} este orientată în sens opus vitezei \vec{v}_0 . Considerând masa corpului $m=8\,\mathrm{kg}$, determinați distanța parcursă de corp până la oprire, din momentul aplicării forței \vec{F} asupra corpului care se deplasa cu $v_0=36\,\mathrm{km/h}$.
- **d.** Determinați înălțimea maximă la care ajunge corpul dat dacă este lansat cu viteza v_0 de la baza unui plan înclinat rugos, în lungul acestuia (pe direcția de pantă maximă), știind că unghiul de înclinare al planului este $\alpha=45^\circ$ iar coeficientul de frecare la alunecare dintre corp și plan are valoarea $\mu=0,2$.