2 Line integrals, Jordan curves and Cauchy's integral theorem I

The goal of this chapter is to prove a very famous and important theorem of Cauchy (with the help of Greens theorem).

We will first need some terminology. A piecewise C^1 curve in the complex plane $\mathbb C$ is any continuous map

$$\gamma:[a,b]\to\mathbb{C}$$

(a < b) such that there is a decomposition of [a, b]

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$$

for which the restriction of γ to each piece $[x_{i-1}, x_i]$ (i = 1, 2, ..., n) is one times continuously differentiable. We let $\operatorname{im}(\gamma) := \gamma([a, b])$ and inspired by real analysis define the length of γ , written length (γ) , to be the integral

$$\int_{a}^{b} \sqrt{\gamma_{1}'(t)^{2} + \gamma_{2}'(t)^{2}} dt = \int_{a}^{b} |\gamma'(t)| dt,$$

where $\gamma = \gamma_1 + i\gamma_2$ with real-valued functions γ_1, γ_2 .

Recall that a complex 1-form on an open subset U of $\mathbb C$ is an expression

$$\alpha(z) = f_1(z)dx + f_2(z)dy$$

where f_1, f_2 are maps $U \subset \mathbb{C} \to \mathbb{C}$. These forms obviously can be added to each other and multiplied by functions $f: U \subset \mathbb{C} \to \mathbb{C}$ and form a module of rank two over the ring of all complex valued functions defined on U.

Given such a form α , where we assume f_1, f_2 to be continuous and given a piecewise C^1 curve $\gamma = \gamma_1 + i\gamma_2 : [a, b] \to \mathbb{C}$ (a < b) such that $\gamma([a, b]) \subset U$, we define the line integral of α with respect to γ as

$$\int_{\gamma} \alpha := \int_{a}^{b} f_1(\gamma(t))\gamma_1'(t) + f_2(\gamma(t))\gamma_2'(t)dt.$$

We call any piecewise C^1 map $\psi:[c,d]\to[a,b]$ which is surjective and for which $\psi'>0$ a parameter transformation from [c,d] to [a,b]. Note that this notion of parameter transform respects the direction we travel on the curve. Now for γ as above also $\gamma\circ\psi$ will be a piecewise C^1 curve and using the substitution rule of integration, we see that

$$\int_{\gamma} \alpha = \int_{\gamma \circ \psi} \alpha,$$

i.e. the integral is invariant of how we parametrize γ . Note that also the quantities $\operatorname{im}(\gamma)$ and $\operatorname{length}(\gamma)$ do not depend on how we parametrize γ . Given in particular a continuous function $f:U\subset\mathbb{C}\to\mathbb{C}$ and defining the 1-form

$$dz := dx + idy$$
,

we may integrate the form

$$\alpha(z) = f(z)dz = f(z)dx + if(z)dy$$

and get

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt.$$

Let us now come to an important example. For some r > 0, let

$$\gamma: [0, 2\pi] \to \mathbb{C}, t \mapsto z_0 + re^{it},$$

then $\gamma([0, 2\pi])$ is nothing but a circle of radius r around the point z_0 . It is the boundary of the open disc $D = D(z_0, r)$ of radius r around z_0 . Letting z be in D and $q := z - z_0/r$ and noting that |q| < 1 and $\gamma'(t) = ire^{it}$, we see that

$$\int_{\gamma} \frac{1}{w-z} dw = \int_{0}^{2\pi} \frac{ire^{it}}{z_{0}-z+re^{it}} dt = i \int_{0}^{2\pi} \frac{1}{1-qe^{-it}} dt.$$

Using the famous geometric series $1/(1-u) = \sum u^k$ for |u| < 1, we have

$$i \int_0^{2\pi} \sum q^k e^{-itk} dt = i \sum q^k \int_0^{2\pi} e^{-itk} dt = 2\pi i,$$

where we are allowed to interchange integration with summation (!). Putting everything together, we see that

$$\int_{\partial D} \frac{1}{w - z} dw = 2\pi i$$

for every $z \in D$. Note that our integral doesn't depend on the radius r we chose. Before we now get to the afore mentioned theorem of Cauchy, let us introduce more terminology:

A piecewise C^1 curve γ is said to be of Jordan type iff we have $\gamma(a) = \gamma(b)$, γ restricted to [a,b[is injective and lastly $\mathbb{C} - \operatorname{im}(\gamma)$ consists of exactly two connected components of which exactly one is relatively compact, we call the relatively compact one the interior and denote $\operatorname{int}(\gamma)$. F.e. the curve we used in our example above, the circle arount a point z_0 of some radius r, is of Jordan type. Given a piecewise C^1 curve of Jordan type, we say that γ is positively oriented, iff "traveling" on γ , the interior should be on the left:

Finally, let us recall *Greens theorem*: Let $D \subset \mathbb{C}$ be the interior of a positively oriented piecewise C^1 curve γ of Jordan type, then given two C^1 functions $u, v : U \subset \mathbb{C} \to \mathbb{R}$ where U is open and contains the closure of D, then

$$\int_{\gamma} u dx + v dy = \int_{D} \partial_{x} v - \partial_{y} u dx dy.$$

Theorem 2.1. (Cauchy's integral theorem) We let γ be a positively oriented piecewise C^1 curve of Jordan type. Then, if $f:U\subset\mathbb{C}\to\mathbb{C}$ is a holomorphic function which contains the closure of the interior of γ , then

$$\int_{\gamma} f(z)dz = 0.$$

Proof. Let D be the interior of γ and write f=u+iv, where u,v are real valued. Then by Greens theorem

$$\begin{array}{ll} \int_{\gamma} f(z)dz &= \int_{\gamma} u dx - v dy + i \int_{\gamma} v dx + u dy \\ &= \int_{D} -\partial_{x} v - \partial_{y} u dx dy + i \int_{D} \partial_{x} u - \partial_{y} v dx dy \\ &= i \int_{D} \partial_{\bar{z}} f(z) dx dy = 0 \end{array}$$

by the characterization of holomorphic functions given in Lemma 2 of our previous chapter. $\hfill\Box$