Learning Dynamic Feature Selection for Fast Sequential Prediction

Emma Strubell, Luke Vilnis, Kate Silverstein & Andrew McCallum College of Information and Computer Sciences, University of Massachusetts Amherst

Problem

- Want fast and accurate NLP
- In many cases, fewer features needed for accurate prediction

Solution

Define a linear model over *feature templates* $\{\Phi_i(x,y)\}$:

$$y^* = \underset{y \in \mathcal{Y}}{\operatorname{arg\,max}} \ \mathbf{w} \cdot \Phi(x, y) \tag{1}$$

$$y^* = \underset{j \in \mathcal{Y}}{\operatorname{arg \, max}} \mathbf{w} \cdot \Phi(x, y)$$

$$\mathbf{w} \cdot \Phi(x, y) = \sum_{j} \mathbf{w}_{j} \cdot \Phi_{j}(x, y)$$
(1)

Approximate (1) using as few terms as possible from (2).

Dynamic feature selection

Learning

Consider model predictions $P_{i,y}$ for each template prefix (Eq. 2). Hinge loss with margin m on prefix score i:

$$h(P_i, y) = \max\{0, \max_{y' \neq y} P_{i,y'} - P_{i,y} + m\}$$

Per-example gradient:

$$\begin{split} \frac{\partial \ell}{\partial \mathbf{w}_j} &= \sum_{k=j}^{i_y^*} \Phi_j(x, y_{\mathsf{loss}}(P_k, y)) - \Phi_j(x, y) \\ & \text{where} \quad i_y^* = \min_{i \in \{1..k\}} i \quad \text{s.t.} \quad h(P_i, y) = 0 \\ & \text{and} \quad y_{\mathsf{loss}}(P_i, y) = \arg\max_{y'} P_{i, y'} - m \cdot \mathbb{1}(y' = y) \end{split}$$

Inference

- Test time, compute prefix scores until any label has margin m.
- Train time, compute prefix scores until correct with margin m.

Experimental results

Part-of-speech tagging:

Model	Accuracy	Templates	Speedup
baseline	97.22	46	1x
dynamic <i>conservative</i>	97.21	6.89	3.41x
dynamic <i>aggressive</i>	97.02	4.33	5.22x
dynamic <i>v. aggressive</i>	96.09	1.92	10.36x

Transition-based dependency parsing:

•	<i>J</i> .	•		
Model	LAS	UAS	Templates	Speedup
baseline	90.31	91.83	60	1x
dynamic conservative	90.27	91.80	15.83	2.71x
dynamic <i>aggressive</i>	89.07	90.73	8.57	4.66x

