Convolutions

IMAGE PROCESSING WITH KERAS IN PYTHON

Ariel Rokem

Senior Data Scientist, University of Washington

Using correlations in images

- Natural images contain spatial correlations
- For example, pixels along a contour or edge
- How can we use these correlations?

Biological inspiration

What is a convolution?

```
array = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1])
kernel = np.array([-1, 1])
conv = np.array([0, 0, 0, 0, 0, 0, 0, 0])
conv[0] = (kernel * array[0:2]).sum()
conv[1] = (kernel * array[1:3]).sum()
conv[2] = (kernel * array[2:4]).sum()
for ii in range(8):
   conv[ii] = (kernel * array[ii:ii+2]).sum()
conv
```

```
array([0, 0, 0, 0, 1, 0, 0, 0])
```


Convolution in one dimension

```
array = np.array([0, 0, 1, 1, 0, 0, 1, 1, 0, 0])
kernel = np.array([-1, 1])

conv = np.array([0, 0, 0, 0, 0, 0, 0, 0])
for ii in range(8):
    conv[ii] = (kernel * array[ii:ii+2]).sum()
```

```
array([ 0, 1, 0, -1, 0, 1, 0, -1, 0])
```

Image convolution

Image convolution

Two-dimensional convolution

```
kernel = np.array([[-1, 1],
                   [-1, 1]
conv = np.zeros((27, 27))
for ii in range(27):
    for jj in range(27):
        window = image[ii:ii+2, jj:jj+2]
        conv[ii, jj] = np.sum(window * kernel)
```

Convolution

Let's practice!

IMAGE PROCESSING WITH KERAS IN PYTHON

Implementing convolutions in Keras

IMAGE PROCESSING WITH KERAS IN PYTHON

Ariel Rokem
Senior Data Scientist, University of Washington

Keras Convolution layer

```
from keras.layers import Conv2D
Conv2D(10, kernel_size=3, activation='relu')
```

Integrating convolution layers into a network

Our CNN

Conv2D

Flatten

Fitting a CNN

Let's practice!

IMAGE PROCESSING WITH KERAS IN PYTHON

Tweaking your convolutions

IMAGE PROCESSING WITH KERAS IN PYTHON

Ariel Rokem

Senior Data Scientist, University of Washington

Convolution

Convolution with zero padding

Zero padding in Keras

Zero padding in Keras

Strides

Strides in Keras

Strides in Keras

Example

Calculating the size of the output

$$O = ((I - K + 2P)/S) + 1$$

where

- I = size of the input
- K = size of the kernel
- P = size of the zero padding
- S = strides

Calculating the size of the output

$$28 = ((28 - 3 + 2)/1) + 1$$

$$10 = ((28 - 3 + 2)/3) + 1$$

Dilated convolutions

Dilation in Keras

Let's practice!

IMAGE PROCESSING WITH KERAS IN PYTHON

