# Lecture 6: Stock Forecasting

https://github.com/kaopanboonyuen/SC310005\_ArtificialIntelligence\_2025s1

Teerapong Panboonyuen

https://kaopanboonyuen.github.io

### What is Time Series (TS)?

A time series is a sequence of data points collected or recorded at successive equally spaced points in time. These data capture how something evolves over time — like stock prices, weather measurements, or monthly sales. Analyzing time series helps us understand patterns, trends, seasonality, and make forecasts.



# When Should You Use Time Series Forecasting?



# Defining the Business Problem









Source: ResearchGate

- Air temperature
- · Time of day
- Wind speed
- Wind direction
- Atmospheric pressure

#### Forecasting Stock Price Changes





# **Disclaimer**



#### This content is intended strictly for academic and educational purposes.

- All stock data used in this lesson including historical prices, trends, and forecasts are for learning, experimentation, and demonstration only.
- Nothing presented here should be interpreted as financial advice, investment guidance, or stock recommendation.
- Models used (e.g., MA, ARIMA, LSTM) are simplified for teaching and do not account for real-world financial risks or market volatility.
- Always consult a certified financial advisor before making investment decisions.
- Dataset Source: Publicly available Thai stock data
- Purpose: Teach fundamentals of time series forecasting in AI and data science









# 9

# What is a stationary series and how important is it?

# The Principles of Stationarity



#### **Basics You Should Know About Time Series**

#### Stationary vs Non-Stationary

Stationary series have constant mean, variance, and covariance over time — easier to model.

Non-stationary series show trends, changing variance, or seasonal effects — often need transformations like differencing to make stationary.

#### Trend

The long-term upward or downward movement in data.

### Seasonality

Regular repeating patterns or cycles over fixed periods.

#### Noise

Random variation or "leftover" data unexplained by trends or seasonality.

### Sample Dataset: Thai Stock Prices (Jan 2024 - July 2025)

#### We will work with 5 stocks:

- PTT (PTT.BK): Thailand's largest oil and gas company key energy sector player.
- ADVANC (ADVANC.BK): Leading telecom provider essential for digital economy.
- SCB (SCB.BK): Siam Commercial Bank one of Thailand's biggest banks.
- CPALL (CPALL.BK): Operates 7-Eleven stores across Thailand retail powerhouse.
- KBANK (KBANK.BK): Kasikornbank major banking institution.

#### Each data record contains:

- Date: The trading date
- Close: Closing stock price for the day
- Volume: Number of shares traded
- Stock: Stock symbol/name











# **Exploratory Data Analysis (EDA)**

- Visualize price trends over time for each stock
- Check volume fluctuations and trading activity
- Identify patterns like trends, seasonality, outliers
- Calculate moving averages (MA) to smooth data

Moving Average (MA)

Smoothes data by averaging past values — helps reveal trends.

ARIMA (AutoRegressive Integrated Moving Average)

Captures different aspects of time series (auto-regression, differencing, moving averages).

Linear Extrapolation

Extends current trend linearly into the future — simple but limited.

Exponential Smoothing

Weighs recent data more heavily to adapt quickly to changes.

Naive MA Extension + Noise

Flat forecast using moving average with added random noise for uncertainty.

Facebook Prophet

Flexible forecasting tool handling seasonality, holidays, and trend changes.

Deep Learning: LSTM (Long Short-Term Memory networks)

Powerful RNN model capturing complex time dependencies in sequential data.

#### Moving Average (MA)

- What? Smooths out short-term fluctuations by averaging past data points.
- Why? Helps reveal the underlying trend and reduce noise.
- Example:

For PTT stock prices, a 5-day moving average shows the general price direction by smoothing daily ups and downs.

# Moving Average (MA)

#### What is it?

A simple technique to smooth time series data by averaging a fixed number of recent observations, which helps reveal underlying trends by reducing noise.

Formula (Simple Moving Average with window size k):

$$MA_t = rac{1}{k}\sum_{i=0}^{k-1}y_{t-i}$$

- $MA_t$ : Moving average at time t
- $y_{t-i}$ : Actual observed value at time t-i
- k: Window size (number of periods to average)

#### Example:

Given stock closing prices over 5 days:

100, 102, 101, 105, 107

Calculate 3-day Moving Average on day 5 (t=5):

$$MA_5 = rac{y_5 + y_4 + y_3}{3} = rac{107 + 105 + 101}{3} = rac{313}{3} = 104.33$$

This smooths the price at day 5 to 104.33, showing the short-term trend.

#### **ARIMA (AutoRegressive Integrated Moving Average)**

- What? Combines three parts:
  - AutoRegression (uses past values),
  - · Integration (differencing to make data stationary),
  - Moving Average (modeling error terms).
- Why? Good for capturing complex patterns like trends and seasonality.
- Example:

Modeling SCB bank's stock prices by differencing to remove trend, then fitting AR and MA terms to predict future prices.

# **ARIMA (AutoRegressive Integrated Moving Average)**

#### What is it?

ARIMA is a powerful and flexible time series forecasting method that models three key components:

- AR (AutoRegression): Uses the relationship between an observation and some number of lagged observations (past values).
- I (Integrated): Differencing the data to make it stationary (remove trends/seasonality).
- MA (Moving Average): Models the relationship between an observation and a residual error from a moving average model applied to lagged observations.

# ARIMA Model Notation: ARIMA(p, d, q)

- p = number of lag observations in the model (AR order)
- d =degree of differencing (number of times data is differenced to make it stationary)
- q = size of the moving average window (MA order)

#### **Mathematical Formulation:**

1. Differencing (to get stationary series):

$$y_t' = y_t - y_{t-1}$$
 (1st order differencing)

Repeat differencing d times if needed.

2. AR part (order p):

$$y_t'=c+\phi_1y_{t-1}'+\phi_2y_{t-2}'+\cdots+\phi_py_{t-p}'+\epsilon_t$$

- c: constant
- $\phi_i$ : coefficients for lagged terms
- $\epsilon_t$ : white noise error
- 3. MA part (order q):

$$y_t' = c + \epsilon_t + heta_1 \epsilon_{t-1} + heta_2 \epsilon_{t-2} + \dots + heta_q \epsilon_{t-q}$$

•  $\theta_i$ : coefficients for lagged errors

# Step 1: Check if differencing is needed (stationarity)

Calculate first difference  $y_t' = y_t - y_{t-1}$ :

| Day | Price $y_t$ | Difference $y_t^\prime = y_t - y_{t-1}$ |
|-----|-------------|-----------------------------------------|
| 1   | 100         | - (no previous day)                     |
| 2   | 102         | 102 - 100 = 2                           |
| 3   | 101         | 101 - 102 = -1                          |
| 4   | 105         | 105 - 101 = 4                           |
| 5   | 107         | 107 - 105 = 2                           |

So differenced series y' = 2, -1, 4, 2

# Step 2: Assume an AR(1) model on differenced data

$$y_t' = \phi_1 y_{t-1}' + \epsilon_t$$

Let's pick  $\phi_1 = 0.5$  (example coefficient).

# Step 3: Forecast $y_5^\prime$ (the difference at day 5) using $y_4^\prime$

Given:

- $y_4' = 4$
- Assume noise  $\epsilon_5 = 0$  (for simplicity)

Calculate:

$$\hat{y}_5' = 0.5 imes y_4' + \epsilon_5 = 0.5 imes 4 + 0 = 2$$

# Step 4: Get predicted price for day 6

Recall:

$$y_6=y_5+\hat{y}_5'$$

Given  $y_5 = 107$ , predicted  $y_6$  is:

$$y_6 = 107 + 2 = 109$$

# Summary:

| Day | Price $y_t$ | Difference $y_t^\prime$ | Forecast $\hat{y}_t'$ |
|-----|-------------|-------------------------|-----------------------|
| 1   | 100         | -1                      | -                     |
| 2   | 102         | 2                       | -                     |
| 3   | 101         | -1                      | -                     |
| 4   | 105         | 4                       | 12                    |
| 5   | 107         | 2                       | -                     |
| 6   | ?           | ?                       | 2                     |

Forecasted price for day 6 is 109.

# **Key Points:**

- **Differencing** makes the series stationary (constant mean & variance) critical before AR or MA.
- AR captures momentum from past values.
- MA captures shock effects from past errors.
- Combine all for robust forecasting.

#### **Linear Extrapolation**

- What? Extends the current linear trend forward into the future.
- Why? Simple baseline forecast when trends are fairly consistent.
- Example:

If ADVANC stock shows a steady upward trend, linear extrapolation projects that same slope into the next 30 days.

#### **Exponential Smoothing**

- What? Weights recent observations more heavily than older ones for forecasting.
- Why? Adapts quickly to changes in trend or level.
- Example:

CPALL's retail stock price reacting quickly to market events, where exponential smoothing captures sudden shifts better than MA.

# **Exponential Smoothing**

#### What is it?

A smoothing technique that gives more weight to recent observations, allowing the model to respond faster to recent changes in the data.

#### Formula:

$$S_t = lpha \cdot y_t + (1-lpha) \cdot S_{t-1}$$

- $S_t$ : Smoothed value at time t
- y<sub>t</sub>: Actual value at time t
- $S_{t-1}$ : Previous smoothed value
- $\alpha$ : Smoothing factor between 0 and 1 (higher  $\alpha$  means more weight on recent data)

# Example:

Using the same prices:

Day 1 price: 100 (Initialize  $S_1=100$ )

Let lpha=0.5

Calculate  $S_2$  to  $S_5$ :

Given stock closing prices over 5 days: 100, 102, 101, 105, 107

$$S_2 = 0.5 \times 102 + 0.5 \times 100 = 101$$
  
 $S_3 = 0.5 \times 101 + 0.5 \times 101 = 101$   
 $S_4 = 0.5 \times 105 + 0.5 \times 101 = 103$   
 $S_5 = 0.5 \times 107 + 0.5 \times 103 = 105$ 

Exponential smoothing adapts smoothly, reacting quicker to new price changes compared to moving average.

#### Naive MA Extension + Noise

- What? Forecast assumes flat price equal to last moving average value plus some random noise.
- Why? Provides a simple baseline that incorporates uncertainty.
- Example:

KBANK's forecast set as last 5-day MA plus small random variation to mimic daily fluctuations.

#### **Facebook Prophet**

- What? Advanced model designed for time series with multiple seasonalities and holiday effects.
- Why? Easy to use, handles missing data, trend changes, and special events.
- Example:

Forecasting stock prices during Thai holidays where trading volume dips — Prophet models holiday impact explicitly.

#### Deep Learning: LSTM (Long Short-Term Memory networks)

- What? Neural network designed to learn long-range dependencies in sequential data.
- · Why? Captures complex temporal patterns beyond linear or statistical models.
- Example:

Predicting next-day price for PTT stock by feeding the past 10 days' prices into LSTM, learning hidden nonlinear relations.



# **Evaluation Metrics: How Do We Measure Forecast Quality?**

- RMSE (Root Mean Squared Error)
  - Measures average magnitude of errors between predicted and actual values sensitive to large errors.
- MAE (Mean Absolute Error)

Average absolute difference between forecast and actual — easier to interpret.

Calculating RMSE and MAE helps you compare model accuracy on stock predictions.

# Evaluation Metrics: How Do We Measure Forecast Quality?

#### Root Mean Squared Error (RMSE)

Measures the average magnitude of prediction errors — penalizes large errors more heavily.

$$ext{RMSE} = \sqrt{rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2}$$

- y<sub>i</sub> = actual value
- $\hat{y}_i$  = predicted value
- n = number of observations

#### Example:

Actual prices: [100, 105, 110, 115]

Predicted prices: [102, 107, 108, 120]

Calculate squared errors:

$$(100-102)^2=4$$
,  $(105-107)^2=4$ ,  $(110-108)^2=4$ ,  $(115-120)^2=25$ 

Mean squared error:

$$\frac{4+4+4+25}{4} = \frac{37}{4} = 9.25$$

RMSE:

$$\sqrt{9.25}\approx 3.04$$

#### Mean Absolute Error (MAE)

Measures average absolute differences — easier to interpret as "average error."

$$ext{MAE} = rac{1}{n} \sum_{i=1}^n |y_i - \hat{y}_i|$$

Using the same example:

Absolute errors:

$$|100-102|=2, \quad |105-107|=2, \quad |110-108|=2, \quad |115-120|=5$$

MAE:

$$\frac{2+2+2+5}{4} = \frac{11}{4} = 2.75$$

# Why use both?

- RMSE penalizes large errors more, good for sensitive applications
- MAE gives intuitive average error magnitude

Both help evaluate and compare forecasting models on stock prices or any time series data.

# CPALL



# Today's Lab

We will explore the 5 stocks:

PTT.BK, ADVANC.BK, SCB.BK, CPALL.BK, KBANK.BK



- Visualize their historical prices
- Perform basic EDA and compute moving averages





Evaluate your models using RMSE and MAE







## Homework





Repeat the analysis and forecasting for the following stocks:

AOT.BK , BDMS.BK , BAY.BK , ESSO.BK , HMPRO.BK

Use any technique (MA, ARIMA, Prophet, or LSTM) to achieve the lowest RMSE possible.



