

ulm university universität

Dr. Gerhard Baur Erik Hintz Sommersemester 2017 24+4 Punkte

Analysis 1 für Informatiker und Ingenieure - Übungsblatt 4 -

Abgabe: Freitag, den 19.5.2017 um 08:10 im Hörsaal 22

Aufgabe 1: (8Punkte)

Im Folgenden ist jeweils das nte Folgenglied der Folge $(a_n)_{n\in\mathbb{N}}$ gegeben. Berechne mithilfe der Grenzwertsätze den Grenzwert von $(a_n)_{n\in\mathbb{N}}$, so er existiert.

(a)
$$a_n := \frac{n^7 + 4n^2 - 1}{e^{0.1n}}$$

(b)
$$a_n := \frac{(n-1)^3}{2n^4 + \pi n - 2}$$

(c)
$$a_n := \frac{\binom{n}{2}}{n^2 + 1}$$

(d)
$$a_n := \sum_{k=0}^n \left(-\frac{1}{3}\right)^k$$

(e)
$$a_n := \sqrt{n^2 + n} - n$$

(f)
$$a_n := \sqrt[n]{\frac{n}{e^n}}$$

(g)
$$a_n := \prod_{k=1}^n \left(1 - \frac{1}{k+1}\right)$$

(h)
$$a_n := \left(1 + \frac{1}{n}\right)^{n^k}$$
 für ein festes $k \in \mathbb{N}$.

(i)
$$a_n := \sum_{k=1}^n \frac{n}{n^2 + k}$$

Hinweise: Es dürfen alle Grenzwertsätze, Kriterien und Grenzwerte bekannter Folgen aus der Vorlesung benutzt werden. Es ist hier <u>nicht</u> notwendig, die Definition von Folgenkonvergenz zu benutzen. Für ausgewählte Folgen gibt es auf Seite 2 kleine Tipps, wie man vorgehen kann, falls man nicht weiterkommt.

Aufgabe 2: (4 Punkte)

Es sei die Folge $(a_n)_{n\in\mathbb{N}}$ rekursiv definiert durch $a_0:=0$ und $a_n:=\sqrt{2+a_{n-1}}$.

- (a) Schreibe die ersten 3 Folgenglieder dieser Folge auf.
- (b) Zeige, dass $(a_n)_{n\in\mathbb{N}}$ konvergiert und bestimme $\lim_{n\to\infty} a_n$. Hinweis: Zeige, dass $(a_n)_{n\in\mathbb{N}}$ monoton und beschränkt ist (jeweils Induktion) und benutze ein Kriterium aus der Vorlesung. Bestimme anschließend den Grenzwert.

Aufgabe 3: (6 Punkte)

Im Folgenden ist jeweils das nte Folgenglied der Folge $(a_n)_{n\in\mathbb{N}}$ gegeben. Bestimme den Grenzwert der Folgen mithilfe der Grenzwertsätze <u>und</u> zeige die Konvergenz mithilfe der Definition, finde also zu gegebenem $\varepsilon > 0$ ein N, sodass $|a_n - a| < \varepsilon$ für alle n > N.

(a)
$$a_n := \frac{n}{2n+4}$$

(b)
$$a_n := \frac{n^2}{n^2 + 2n + 1}$$

(c)
$$a_n := \frac{2n^3 + 3n^2 - 8n}{3n^3 - 2n}$$

ulm university u

Dr. Gerhard Baur Erik Hintz Sommersemester 2017 24+4 Punkte

Aufgabe 4: (6 Punkte)

Zeige oder wiederlege:

(a) Ist $(a_n)_{n\in\mathbb{N}}$ eine konvergente Folge, so ist der Grenzwert eindeutig.

(b) Es seien $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ Folgen. Gilt $\lim_{n\to\infty}(a_n+b_n)=c$ für ein $c\in\mathbb{R}$, so sind sowohl $(a_n)_{n\in\mathbb{N}}$ als auch $(b_n)_{n\in\mathbb{N}}$ konvergent.

(c) Es seien zwei nicht-negative Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ gegeben (nicht notwendigerweise konvergent). Wir betrachten die Folge der arithmetischen bzw. geometrischen Mittel $(A_n)_{n\in\mathbb{N}}$ bzw. $(G_n)_{n\in\mathbb{N}}$ mit

$$A_n := \frac{a_n + b_n}{2}$$
 bzw. $G_n := \sqrt{a_n b_n}$

für $n \in \mathbb{N}$. Zeige oder wiederlege:

(i) Ist $(A_n)_{n\in\mathbb{N}}$ eine Nullfolge, so ist auch $(G_n)_{n\in\mathbb{N}}$ eine Nullfolge.

(ii) Ist $(G_n)_{n\in\mathbb{N}}$ eine Nullfolge, so ist auch $(A_n)_{n\in\mathbb{N}}$ eine Nullfolge.

Aufgabe 5: (4 Zusatzpunkte)

Es sei $q \in \mathbb{R}$ mit q > 1. Es sei $(a_n)_{n \in \mathbb{N}_0}$ eine (nicht notwendigerweise konvergente) Folge mit $0 \le a_n \le q-1$ für alle $n \in \mathbb{N}_0$. Wir betrachten nun die Folge $(s_n)_{n \in \mathbb{N}}$ mit

$$s_n := \sum_{k=0}^n a_k q^{-k}$$

Zeige, dass $(s_n)_{n\in\mathbb{N}}$ konvergiert.

Hinweis: Es reicht zu zeigen, dass $(s_n)_{n\in\mathbb{N}}$ eine Cauchyfolge ist, dass also für jedes $\varepsilon > 0$ ein N existiert, sodass $|s_{n+p} - s_n| < \varepsilon$ für alle n > N und für alle $p \in \mathbb{N}$.

Tipps zu Aufgabe 1:

(e): Als Bruch mit wurzelfreiem Zähler schreiben.

(g): Zunächst das nte Folgenglied umschreiben, sodass kein Produktzeichen vorkommt.

(h): Fallunterscheidung.

(i): Einschnürungssatz.