Webappendix for the article entitled Insights for quantifying the long-term benefit of immunotherapy using quantile regression

Bassirou Mboup, Christophe Le Tourneau, Aurélien Latouche

04/05/2020

This document makes an easier access to the supplementary material of the article entitled **Insights for** quantifying the long-term benefit of immunotherapy using quantile regression.

1) Importing the reconstructed data set

We use the algorithm of Guyot. al 2012 to reconstruct individual-level time-to-event data based on the published Kaplan–Meier curves of the randomized controlled trial (Rittmeyer et al. 2017).

The R code of the algorithm is available at https://www.mskcc.org/sites/default/files/node/137932/documents/2017-04-20-14-31-36/dataexample.zip

After reconstruction, we get in this dataset the following variables.

- time: vector of observed failure times e.g (death or censored).
- event: vector of indicator of status (1 for death and 0 for censoring).
- tmt.arm.number: vector of treatment indicator (binary with 1 for immunotherapy).
- treatment.type: the type of treatment (char) immonotherapy or chemotherapy

```
time event tmt.arm.number treatment.type
## 1 0.4059140
                   1
                                   1
                                       Atezolizumab
## 2 0.4059140
                                       Atezolizumab
## 3 0.4059140
                                       Atezolizumab
                                   1
## 4 0.5599768
                                   1
                                       Atezolizumab
## 5 0.5599768
                                   1
                                       Atezolizumab
## 6 0.5599768
                                   1
                                       Atezolizumab
## Kaplan Meier curves
fit_KM <- survfit(Surv(time, event)~tmt.arm.number,data=data_ICI_Rittmeyer)</pre>
res <- ggsurvplot(fit_KM,data=data_ICI_Rittmeyer,
           risk.table=TRUE,
           conf.int=FALSE,
           xlim=c(0.4,27),
           palette =c("red","blue"),
           xlab="Months",
           risk.table.y.text.col=T,
            break.time.by=3,
          ggtheme = theme_grey() ,
           legend.title="Treatment",
           legend.labs=c("Chemo", "Immuno")
```


2) Application of quantile regression for survival data

In the following R output, test of the coefficients compares this coefficients to 0 for a given quantile τ . For the coefficient $\beta_1(\tau)$, this test rejects or not the equality of the two treatment groups for a given quantile τ . This test is based of the Wald test and the variance of the coefficients is obtained using resampling bootstraps method.

Thus, we do not reject the hypothesis of equality of the two groups at 0.1 quantile (P.value=0.9470) illustrated by the overlap of the curves at this quantile.

We reject this hypothesis at 0.6 quantile (P.value $< 10^{-4}$).

```
set.seed(123456)
x <- c(0.1, 0.2, 0.3, 0.4,0.5,0.6)
Rq <- crq(Surv(time,event)~tmt.arm.number,data=data_ICI_Rittmeyer,method="Pen")
result <- summary(Rq,taus=x)

result

##
## tau: [1] 0.1
##
## Coefficients:
##
Value Lower Bd Upper Bd Std Error T Value Pr(>|t|)
```

```
## (Intercept)
                  2.70243 1.75658 2.81841 0.27088
                                                      9.97646 0.00000
## tmt.arm.number -0.01844 -0.13442 0.95376 0.27760 -0.06642 0.94704
## tau: [1] 0.2
##
## Coefficients:
                         Lower Bd Upper Bd Std Error T Value Pr(>|t|)
##
                 Value
## (Intercept)
                 4.15397 3.30234 6.26304 0.75529
                                                     5.49982 0.00000
## tmt.arm.number 0.88255 0.05166 2.45479 0.61305
                                                     1.43960 0.14998
##
## tau: [1] 0.3
##
## Coefficients:
##
                 Value
                          Lower Bd Upper Bd Std Error T Value Pr(>|t|)
                  5.86294 5.75690 6.26086 0.12857 45.60287 0.00000
## (Intercept)
## tmt.arm.number 1.02312 0.55678 2.04722 0.38022
                                                       2.69086 0.00713
##
## tau: [1] 0.4
##
## Coefficients:
##
                          Lower Bd Upper Bd Std Error T Value Pr(>|t|)
                 Value
                  7.80078 4.60256 9.11294 1.15063
## (Intercept)
                                                       6.77959 0.00000
## tmt.arm.number 2.12340 -0.49612 4.36664 1.24052
                                                       1.71169 0.08695
## tau: [1] 0.5
## Coefficients:
##
                          Lower Bd Upper Bd Std Error T Value Pr(>|t|)
                 Value
                  9.78031 8.72650 10.71357 0.50691 19.29381 0.00000
## (Intercept)
## tmt.arm.number 4.35360 2.26212 6.58893 1.10380
                                                       3.94420 0.00008
## tau: [1] 0.6
##
## Coefficients:
                          Lower Bd Upper Bd Std Error T Value Pr(>|t|)
##
                 Value
## (Intercept)
                 12.69400 10.75741 13.09069 0.59524 21.32596 0.00000
## tmt.arm.number 5.46031 3.04456 6.91123 0.98641
                                                       5.53551 0.00000
## jack
## jack
## jack
## jack
## jack
## jack
# Quantile function
tau <- Rq\sol["tau",][1:160]
q<- Rq$sol["Qhat",][1:160]</pre>
plot(tau,q,type="l",xlab = expression(tau),ylab = expression(QT(tau)),
     main="Quantile function",axes=FALSE)
axis(1,at=seq(from=0,to=0.7,by=0.1),labels=seq(from=0,to=0.7,by=0.1),las=1)
axis(2,at=seq(from=0,to=20,by=5),labels=seq(from=0,to=20,by=5),las=2)
```

Quantile function

3) Resampling for confidence interval of coefficients

```
load("Mat.RData")
load("Moy.RData")
load("Mat1.RData")
load("Moy1.RData")
b <- matrix(data=NA,ncol=6,nrow = 1000)
for(i in 1:6){
b[,i] <-Mat1[,i][order(Mat1[,i])]</pre>
}
infO <- NA
for(i in 1:6){
inf0[i] <- b[,i][25]
sup0 <- NA
for(i in 1:6){
 \sup 0[i] \leftarrow b[,i][975]
}
plot(x,Moy1,type="l",ylim=c(0,16),ylab="coefficients",xlab = "Quantile",main="Intercept",axes = FALSE)
axis(1,at=seq(from=0.1,to=0.6,by=0.1),labels=seq(from=0.1,to=0.6,by=0.1),las=1)
axis(2,at=seq(from=0,to=16,by=2),labels=seq(from=0,to=16,by=2),las=2)
lines(x,sup0,col="blue",lty=2)
lines(x,inf0,col="blue",lty=2)
```

Intercept


```
## Variation of the treatment effect as function of each quantile available and confidence
# intervals
b <- matrix(data=NA,ncol=6,nrow = 1000)
for(i in 1:6){
b[,i] <-Mat[,i][order(Mat[,i])]</pre>
}
inf <- NA
for(i in 1:6){
inf[i] <- b[,i][25]
sup <- NA
for(i in 1:6){
  \sup[i] \leftarrow b[,i][975]
}
plot(x,Moy,type="l",ylim=c(-2,12),ylab="coefficients",xlab = "Quantile",main="Treatment effect",axes = F
axis(1,at=seq(from=0.1,to=0.6,by=0.1),labels=seq(from=0.1,to=0.6,by=0.1),las=1)
axis(2,at=seq(from=-2,to=12,by=2),labels=seq(from=-2,to=12,by=2),las=2)
lines(x,sup,col="blue",lty=2)
lines(x,inf,col="blue",lty=2)
```

Treatment effect

4) Benefit of treatment for each quantile

```
datafr <- rbind.data.frame(Moy,inf,sup)
names(datafr) <- c( "0.1", "0.2", "0.3", "0.4", "0.5","0.6")
p <- ggplot(stack(datafr), aes(x=factor(ind,levels=names(datafr)), y=values))+geom_boxplot()
p+labs(x="Quantile",y="Benefit in months")</pre>
```


5) Visual check of the linearity assumption

```
x <- c(0.1,0.2,0.3,0.4,0.5,0.6)
Rq <- crq(Surv(time,event)~tmt.arm.number,data=data_ICI_Rittmeyer,method="Pen")
tau <- Rq$sol["tau",][1:160]
obs <- unname(quantile(data_ICI_Rittmeyer$time,tau))
obss <- unname(quantile(data_ICI_Rittmeyer$time,x))
q<- Rq$sol["Qhat",][1:160]
q1 <- Rq$sol["Qhat",][c(24,46,69,91,114,136)]
residu <- obs-q
residus <- obs-q1
scatterplot(q,log(abs(residu)),xlab="fitted quantile value",ylab="Martingal residuals")
points(q1,log(abs(residus)),col='red')
for(i in 1:6){
   abline(v=q1[i],col="red")
}</pre>
```


6) Testing equality of two groups for a given quantile using survival Kaplan Meier function

For a given quantile, we can rely on 2-samples test derived for the median survival as detailed below. Testing for equality of median was derived in (Tang et al., Chen et al.) Once the desired quantile is identified, the methodology can be adapted. These tests, designed for detecting the difference of the median survival times, can be readily extended to compare survival quantiles.

Therefore, let's assume that

$$\begin{split} \widehat{F}_1^{-1}(q) &= \inf\{t : \widehat{F}_1(t) = 1 - \widehat{S}_1(t) \ge q\} \\ \widehat{F}_2^{-1}(q) &= \inf\{t : \widehat{F}_2(t) = 1 - \widehat{S}_2(t) \ge q\}, \forall q \in [0, 1] \end{split}$$

where \widehat{S}_1 and \widehat{S}_2 are respectively the estimated of the survival functions S_1 for non treated groups and S_2 for treated groups using the Kaplan Meier method, $widehatF_1$ and \widehat{F}_2 are right continuous, piece-wise constant estimators of F_1 and F_2 respectively.

Testing the equality of the quantile between the two groups is equivalent to testing the null hypothesis

$$H_0: F_1^{-1}(q) = F_2^{-1}(q)$$

 $F_2\{F_1^{-1}(q)\} = q$

As pointed out by Kosorok et al., $\sqrt{n}(F_2\{F_1^{-1}(q)\}-q)$ is asymptotically a zero-mean Gaussian process with variance σ^2 .

We estimated the variance $\hat{\sigma}^2$ using re-sampling bootstrap method. The following statistic test

$$\frac{(\widehat{F}_2\{\widehat{F}_1^{-1}(q)\} - q)^2}{\sigma^2}$$

follows a χ^2 -distribution with 1 degrees of freedom.

We applied this test in our data set at the quantile level 0.6 highly significant with a p-value $< 10^{-4}$ of $\%1.892087e^{-05}$, which indicates a significant difference at the quantile level 0.6 survival time between the two treatment groups.

R code

```
quantileTest <- function(time, event, treat, q, B=1000, seed=1234) {</pre>
  set.seed(seed)
  Mesdon <- cbind.data.frame(time=time,event=event,treat=treat)</pre>
  fit1 <- survfit(Surv(Mesdon$time[Mesdon$treat==0],Mesdon$event[Mesdon$treat==0])~1,conf.type ="none")
  fit2 <- survfit(Surv(Mesdon$time[Mesdon$treat==1], Mesdon$event[Mesdon$treat==1])~1,conf.type = "none"
  F1.inv <- unname(quantile(fit1, prob = q))
  F2.inv <- unname(quantile(fit2, prob = q))
  # Calculate F2(F1.inv(p))
  Qp \leftarrow function(t1,c1, t2, c2) {
    fit1 <- survfit(Surv(t1, c1)~1, conf.type = "none")</pre>
    fit2 <- survfit(Surv(t2, c2)~1, conf.type = "none")</pre>
    F1.inv <- unname(quantile(fit1, prob=q))
    if (is.na(F1.inv)) {
      warning(paste0("Error"))
      F1.inv \leftarrow max(t1)
    F2 <- stepfun(fit2$time, c(0, 1-fit2$surv)) #CDF of F2
    out \leftarrow F2(F1.inv) #F2(F1.inv(p))
    return(out)
  Q <- Qp(Mesdon$time[Mesdon$treat==0], Mesdon$event[Mesdon$treat==0],
          Mesdon$time[Mesdon$treat==1], Mesdon$event[Mesdon$treat==1])
  # Bootstrap
  b.est <- numeric(B)</pre>
  for (i in 1:B) {
             <- sample(1:length(Mesdon$time[Mesdon$treat==0]),replace =TRUE)
    t1.boot <- Mesdon$time[Mesdon$treat==0][boot1]
    c1.boot <- Mesdon$event[Mesdon$treat==0][boot1]</pre>
            <- sample(1:length(Mesdon$time[Mesdon$treat==1]),replace = TRUE)
    boot2
    t2.boot <- Mesdon$time[Mesdon$treat==1][boot2]
    c2.boot <- Mesdon$event[Mesdon$treat==1][boot2]</pre>
    b.est[i] <- Qp(t1.boot,c1.boot,t2.boot,c2.boot)</pre>
  }
     <- sd(b.est)
  se
  Z < - (Q-q)^2/se^2
  pval <- 1-pchisq(Z,1)</pre>
```

[1] 1.20207e-05

References