NAME	SOLUTI	ON
. 47 71 4 1		

R Setting	Gain (V/V)			Totals	Averages
	Sample 1	Sample 2	Sample 3	Totals	7100.00
4	7.8	8.1	7.9	23,80	7,933
3	5.2	6.0	4.3	15.50	5.167
2	4.4	6.9	3.8	15.10	5,033
1	2	1.7	0.8	4,500	1,500
				58.90	4.908

$$\sum_{i=1}^{a} \sum_{j=1}^{n} y_{ij}^{2} = 359.3$$

This is actual data from one of Joe Tritschler's audio engineering experiments. Use Analysis of Variance (ANOVA) to test the null hypothesis that the treatment means are equal at the α = 0.05 level of significance. Fill in the ANOVA table.

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	f o
Treatments	62,55	3	20,85	21,80
Error	7.65	8	0.9563	-
Total	70.20	11	-	•

$$SS_{T} = 359.3 - \frac{58.90^{2}}{12} = 70.20$$

$$J_{10}f_{1}(T) = 4.3 - 1 = 11$$

$$SS_{T_{1}} = \frac{23.86^{2} + 15.50^{2} + 15.10^{2} + 4.500^{2}}{3} - \frac{58.90^{2}}{12} = 62.55$$

$$J_{10}f_{1}(T_{1}) = 4 - 1 = 8$$

$$J_{10}f_{1}(T_{2}) = 4(3 - 1) = 8$$

$$J_{10}f_{1}(E) = 4(3 - 1) = 8$$

$$J_{10}f_{2}(E) = 4(3 - 1) = 8$$

$$J_{10}f_{2}(E) = 4(3 - 1) = 8$$

$$J_{10}f_{2}(E) = 4(3 - 1) = 8$$

$$MS_{Tr} = \frac{62,55}{3} = 20.95$$
 $MS_{E} = \frac{7.65}{9} = 0.9563$

$$\int_{0.9563} = \frac{20.85}{0.9563} = 21.80 + 1$$

$$\int_{0.9563} = 4.07 + 1$$

$$\int_{0.9563} = 4.07 + 1$$

Use Fisher's Least Significant Difference to determine which, if any, pairs of resistance settings significantly affect 2.306

attenuation at
$$\alpha = 0.05$$
.

$$LSO = t_{.025,8} \sqrt{\frac{2.0.9563}{3}}$$

all pairs show significance except 3 vs. 2

