Verlinde Bundles

Orlando Marigliano

10.4.2017

Contents

1.	Verlinde	bundles on	Lefschetz	pencils		1
Re	ferences					5

1. Verlinde bundles on Lefschetz pencils

The thesis [Hem] studies Verlinde bundles for families of polarized schemes. This section further discusses the example of the universal family of quartics in \mathbb{P}^3 , after summarizing some of its properties.

Denote by $|\mathcal{O}(4)|$ the complete linear system $\mathbb{P}(H^0(\mathbb{P}^3, \mathcal{O}(4)))$ of quartics in \mathbb{P}^3 . Consider the universal family $\pi \colon \mathfrak{X} \longrightarrow |\mathcal{O}(4)|$, given by

$$\mathfrak{X} = \{(x,q) \in \mathbb{P}^3 \times |\mathcal{O}(4)| : x \in q\}.$$

The family \mathfrak{X} is a closed subscheme of $\mathbb{P}^3 \times |\mathcal{O}(4)|$.

Throughout, the coordinates of \mathbb{P}^3 will be denoted by x_i , $i = 0, \ldots, 4$.

We define the line bundle \mathcal{L} on \mathfrak{X} as the restriction of $\mathcal{O}(1) \boxtimes \mathcal{O}$ to \mathfrak{X} , in other words as the pullback of $\mathcal{O}(1)$ under the canonical projection $\mathfrak{X} \longrightarrow \mathbb{P}^3$.

Proposition 1.1. Let $k \geq 1$. The following statements hold:

- **1.** If $q \in |\mathcal{O}(4)|$ then $h^0(\mathfrak{X}_q, \mathcal{L}^{\otimes k}|_q) = \binom{k+3}{3} \binom{k-1}{3}$. In particular this dimension is independent of the rank q.
- **2.** The sheaf $\pi_* \mathcal{L}^{\otimes k}$ is locally free of rank $\binom{k+3}{3} \binom{k-1}{3}$.

3. For all cartesian diagrams of the form

$$\begin{array}{ccc} \mathfrak{X}_Z & \longrightarrow & \mathfrak{X} \\ \downarrow & & \downarrow^{\pi} \\ Z & \xrightarrow{\rho} & |\mathcal{O}(4)| \end{array}$$

we have $\rho^* \pi_* \mathcal{L}^{\otimes k} \simeq (\pi_Z)_* \mathcal{L}_Z^{\otimes k}$.

Proof. For the first statement, see the proof of [Hem, Proposition 4.1]. The others follow from Grauert's Theorem [Vak17, 28.1.5]. \Box

Let $t \subseteq |\mathcal{O}(4)|$ be the closed subscheme defined as the image of a linear embedding $\mathbb{P}^1 \longrightarrow |\mathcal{O}(4)|$. We call t a *Lefschetz pencil* of quartics. Its universal family is the scheme $\mathfrak{X}_{\mathbb{P}^1}$, which comes equipped with the pullback line bundle $\mathcal{L}_{\mathbb{P}^1}$. The situation is summarized in the picture below:

$$\begin{array}{ccc} \mathfrak{X}_{\mathbb{P}^1} & \longrightarrow & \mathfrak{X} \\ \downarrow & \times & \downarrow^{\pi} \\ \mathbb{P}^1 & \longrightarrow & |\mathcal{O}(4)| \end{array}$$

For $k \geq 1$, we define the k-th Verlinde bundles $V_k := \pi_* \mathcal{L}^k$ and $V_{k,t} := (\pi_{\mathbb{P}^1})_* \mathcal{L}^k_{\mathbb{P}^1}$. These bundles are related by $V_k|_t = V_{k,t}$ using Proposition 1.1.

Proposition 1.2. There exists a short exact sequence of coherent $\mathcal{O}_{|\mathcal{O}(4)|}$ modules

$$0 \longrightarrow \mathcal{O}(-1) \otimes H^0(\mathbb{P}^3, \mathcal{O}(k-4)) \longrightarrow \mathcal{O} \otimes H^0(\mathbb{P}^3, \mathcal{O}(k)) \longrightarrow V_k \longrightarrow 0.$$

Let I_d range over the tuples of the form (i_0, \ldots, i_3) with $\sum i_j = d$. The first map is then given by $\xi \otimes x^{I_{k-4}} \mapsto \sum_{I_4} \xi x^{I_4} \otimes x^{I_{k-4}+I_4}$.

Proof. See [Hem, Proposition 4.2].
$$\Box$$

Remark 1.3. Let t be a Lefschetz pencil of quartics.

1. The sequence from Proposition 1.2 restricts to a sequence

$$0 \longrightarrow \mathcal{O}(-1) \otimes H^0(\mathbb{P}^3, \mathcal{O}(k-4)) \longrightarrow \mathcal{O} \otimes H^0(\mathbb{P}^3, \mathcal{O}(k)) \longrightarrow V_{k,t} \longrightarrow 0$$
over \mathbb{P}^1 .

2. The vector bundle $V_{k,t}$ has determinant $\mathcal{O}(\binom{k-1}{3})$ and rank $\binom{k+3}{3} - \binom{k-1}{3}$.

Definition 1.4. Let $k \geq 1$.

- **1.** A type candidate for V_k is a non-decreasing tuple (d_1, \ldots, d_r) of non-negative integers with $r = \operatorname{rk} V_k$ and $\sum d_i = \binom{k-1}{3}$.
- **2.** The general type candidate for V_k is the unique¹ type candidate for V_k of the form $(d, \ldots, d, d+1, \ldots d+1)$.
- **3.** Let t be a Lefschetz pencil of quartics. The type of $V_{k,t}$ is the unique type candidate (d_i) such that $V_{k_t} \simeq \bigoplus \mathcal{O}(d_i)$.
- **4.** We say that $V_{k,t}$ has general type if its type (d_i) is a general type candidate.

The rational points of Gr(2,35) correspond to the Lefschetz pencils of quartics $t \subseteq |\mathcal{O}(4)|$ in the following way. Let P the universal \mathbb{P}^1 -bundle over Gr(2,35). It comes equipped with a projection map $P \longrightarrow \mathbb{P}^3$ such that for all Lefschetz pencils of quartics t' there exists a unique rational point $t \in Gr(2,35)$ and a commutative diagram

$$P_t \xrightarrow{P} P \xrightarrow{p} |\mathcal{O}(4)|$$

$$\downarrow \qquad \times \qquad \downarrow \varphi$$

$$\operatorname{Spec}(\kappa(t)) \longrightarrow \operatorname{Gr}(2,35)$$

such that the image of the fiber P_t in $|\mathcal{O}(4)|$ is t'.

Definition 1.5. Let $k \geq 1$ and (d_i) be a type candidate for V_k . We define the set $Z_{(d_i)}$ of all rational points $t \in Gr(2,35)$ such that $V_{k,t}$ has type (d_i) . For the set of points t where $V_{k,t}$ has generic type, we also write Z_{gen} .

Proposition 1.6. The set Z_{qen} is Zariski open. Its complement is the union

$$\operatorname{Gr}(2,35) \setminus Z_{gen} = \operatorname{Supp}(R^1 \varphi_* p^* V_k(-d-1)) \cup \operatorname{Supp}(R^1 \varphi_* p^* V_k(-d)^{\vee}),$$

where d is the smaller of the two numbers appearing in the general type candidate $(d, \ldots, d, d+1, \ldots, d+1)$ for V_k .

Proof. We begin by finding a characterization of the set $Z_{\rm gen}$ via cohomology.

Let $t \in Gr(2,35)$ be a rational point, write $V_{k,t} = \bigoplus_{i=1}^r \mathcal{O}(d_i)$. The conditions that for all i we have $d \leq d_i$ and $d_i \leq d+1$ are equivalent to the conditions

$$H^1(P_t, V_{k,t}(-d-1)) = 0$$
 and $H^1(P_t, V_{k,t}(-d)^{\vee}) = 0$,

The equations $ad + bd + b = {k-1 \choose 3}$ and $a + b = \operatorname{rk} V_k$ have an unique solution (a, b).

respectively. Both conditions together are in turn equivaleng to $t \in \mathbb{Z}_{gen}$.

Next, we want to use the Cohomology and Base Change Theorem [Vak17, 28.1.6] on the map $\varphi \colon P \longrightarrow \operatorname{Gr}(2,25)$, which is a \mathbb{P}^1 -bundle, in particular proper and flat. The last property ensures that locally free sheaves on P are flat over $\operatorname{Gr}(2,35)$.

For all rational $t \in Gr(2,35)$ we have

$$h^{2}(P_{t}, p^{*}V_{k,t}(-d-1)) = 0$$
 and $h^{2}(P_{t}, p^{*}V_{k,t}(-d)^{\vee}) = 0$.

Since the sheaves $p^*V_{k,t}(-d-1)$ and $p^*V_{k,t}(-d)^{\vee}$ are locally free and coherent, the Cohomology and Base Change Theorem applies and we have

$$(R^1\varphi_*p^*V_k(-d-1))_t = H^1(P_t, V_{k,t}(-d-1))$$

and

$$(R^1 \varphi_* p^* V_k(-d)^{\vee})_t = H^1(P_t, V_{k,t}(-d)^{\vee}).$$

By the previous characterization, we have

$$\operatorname{Gr}(2,35) \setminus Z_{\operatorname{gen}} = \operatorname{Supp}(R^1 \varphi_* p^* V_k(-d-1)) \cup \operatorname{Supp}(R^1 \varphi_* p^* V_k(-d)^{\vee}),$$

which is a Zariski-closed set.

Proposition 1.7. The closed subsets

- 1. Supp $(R^1\varphi_*p^*V_k(-d-1))$ and
- 2. Supp $(R^1\varphi_*p^*V_k(-d)^\vee)$

are determinantal varieties.

Proof. To simplify notation, we set

$$r_1 := \dim H^0(\mathbb{P}^3, \mathcal{O}(k)) \text{ and } r_2 := \dim H^0(\mathbb{P}^3, \mathcal{O}(k-4)).$$

Rewrite the exact sequence from Proposition 1.2 as

$$0 \longrightarrow \mathcal{O}(-1)^{r_2} \longrightarrow \mathcal{O}^{r_1} \longrightarrow V_k \longrightarrow 0. \tag{1}$$

1. Twisting the sequence (1) with $\mathcal{O}(-d-1)$ and pulling back to P gives an exact sequence

$$0 \longrightarrow p^* \mathcal{O}(-d-2)^{r_2} \longrightarrow p^* \mathcal{O}(-d-1)^{r_1} \longrightarrow p^* V_k(-d-1) \longrightarrow 0.$$

For every rational $t \in Gr(2,35)$ we have $h^2(P_t, \mathcal{O}(-d-2)^{r_2}) = 0$, hence $R^2\varphi_*p^*\mathcal{O}(-d-2)^{r_2} = 0$ and applying φ_* to the above sequence gives an exact sequence

$$R^1 \varphi_* p^* \mathcal{O}(-d-2)^{r_2} \xrightarrow{\alpha} R^1 \varphi_* p^* \mathcal{O}(-d-1)^{r_1} \longrightarrow R^1 \varphi_* p^* V_k(-d-1) \longrightarrow 0.$$

Note that since the numbers

$$h_2^1 := h^1(P_t, \mathcal{O}(-d-2)^{r_2})$$
 and $h_1^1 := h^1(P_t, \mathcal{O}(-d-1)^{r_1})$

do not depend on the point t, Grauert's Theorem applies, and the first two terms of the above sequence are locally free and coherent of rank h_1^2 and h_1^1 , respectively. Since taking the fiber is right-exact, we see that for all t we have $(R^1\varphi_*p^*V_k(-d-1))_t \neq 0$ if and only if $\operatorname{coker}(\alpha_t) \neq 0$. Concluding, we have

$$\operatorname{Supp}(R^{1}\varphi_{*}p^{*}V_{k}(-d-1)) = \{t : \operatorname{rk}(\alpha_{t}) \leq h_{1}^{1} - 1\}.$$

As a final remark, note that $h_1^1 = dr_1 = d\binom{k+3}{3}$.

2. The proof for this point is analogous to the first point. We start with the sequence (1), twist with $\mathcal{O}(-d)$, take duals, pull back to P, and apply φ_* . Since for each rational $t \in Gr(2,35)$ we have $h^1(P_t, \mathcal{O}(d)^{r_1}) = 0$, we obtain an exact sequence

$$\varphi_* p^* \mathcal{O}(d)^{r_1} \xrightarrow{\beta} \varphi_* p^* \mathcal{O}(d+1)^{r_2} \longrightarrow R^1 \varphi_* p^* V_k(-d)^{\vee} \longrightarrow 0.$$

Since the numbers

$$h_1^0 \coloneqq h^0(P_t, \mathcal{O}(d)^{r_1})$$
 and $h_2^0 \coloneqq h^0(P_t, \mathcal{O}(d+1)^{r_2})$

do not depend on the point t, again by Grauert's Theorem the first two terms of the sequence are locally free of rank h_1^0 and h_2^0 , respectively. As before, we obtain the characterization

$$\operatorname{Supp}(R^{1}\varphi_{*}p^{*}V_{k}(-d)^{\vee}) = \{t : \operatorname{rk}(\beta_{t}) \leq h_{2}^{0} - 1\}.$$

Here, we have $h_2^0 = (d+2)r_2 = (d+2)\binom{k-1}{3}$.

References

- [Hem] Christian Hemminghaus. Families of polarized K3 surfaces and associated bundles.
- [Vak17] Ravi Vakil. The rising sea. Foundations of algebraic geometry. Feb. 2017.