

LC7385, 7385M

DTMF Receiver

Overview

The LC7385, 7385M CMOS DTMF Receiver ICs integrate bandsplit filter and digital decoder functions for the 16 DTMF digits used in touch-tone telephone systems.

Features

- Single +5V power supply.
- Decodes all 16 DTMF digits.
- Built-in differential input amplifier.
- On-chip filters, including
 - · Dial tone filter.
 - · High-group filter.
 - · Low-group filter.
- User-selectable acquisition and release times.
- Pin-selectable 4-bit hexadecimal or binary-coded 2-of-8 output.
- 3-state data outputs facilitate microcontroller or other peripheral interfaces.
- · Standby mode.
- Low-power double-poly CMOS process.
- LC7385 : 18-pin DIP package. LC7385M : 18-pin MFP package.

Package Dimensions

unit:mm

3007B-DIP18

unit:mm

3095-MFP18

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges,or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Block Diagram

Pin Assignment

Pin Functions

Pin No.	Name	I/O	Description
1	IN+	ı	Input amplifier non-inverting input.
2	IN-	I	Input amplifier inverting input
3	GS	0	Input amplifier output.
4	V _{REF}	0	Reference voltage output (V _{DD} /2)
5	B/H	I	Q1 to Q4 output format selection : Binary 2-of-8 when HIGH Hexadecimal when LOW
6	PD	I	Standby mode when set to HIGH
7 8	OSC1 OSC2	0	Clock pins. 3.579545MHz crystal is connected between OSC1 and OSC2.
9	V _{SS}		Power supply. Normally 0V.
10	TOE	ı	Q1 to Q4 3-state output selection : Enabled when HIGH High-impedance when LOW
11	Q1		
12	Q2		3-state data output
13	Q3		5-State data output
14	Q4		
15	StD	0	Goes HIGH when valid tone pair duration exceeds set guard time.
16	ESt	0	Goes HIGH when valid tone paire is detected.
17	St/GT	I/O	Used to set guard time.
18	V _{DD}		Power supply. Normally 5V.

Specifications

Absolute Maximum Ratings at Ta=25 $\pm2^{\circ}$ C, V_{SS} =0V

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{DD} max		-0.3 to +7.0	V
Input voltage	V _{IN}		–0.3 to V _{DD} +0.3	V
Input current	I _{IN}		-10 to +10	mA
Output voltage	Vout		-0.3 to V _{DD} +0.3	V
Allowable power dissipation	Pd max	_40°C≤Ta≤+85°C	DIP-18 : 250	mW
Allowable power dissipation	Fulliax	-40 CS1aS+65°C	MFP-18 : 180	mW
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-50 to +125	°C

Allowable Operating Conditions at Ta=-40 to +85°C, $V_{SS}=0V$

Parameter	Symbol	Conditions		Unit		
Farameter	Symbol	Conditions		typ	max	Office
Operating voltage	V_{DD}		4.75		5.25	V
Input high-level voltage	V	Pins 6, 10	0.7V _{DD}			V
Input high-level voltage	VIH	Pin 5	0.85V _{DD}			V
Input low-level voltage	V/	Pins 6, 10			0.3V _{DD}	V
Imput low-level voltage	VIL	Pin 5			0.15V _{DD}	V

Note: When soldering the 18-pin MFP package, solder it manually or use the infrared reflow method. Do not use the dip-soldering method. The conditions for the infrared reflow method are 235°C max., 10s.

DC Electrical Characteristics at Ta=25 \pm 2°C, V_{DD} =5V, V_{SS} =0V

Parameter	Symbol	Conditions		Ratings			
Farameter	Symbol			typ	max	Unit	
Operating supply current	IDD(op)			3.0	7.0	mA	
Standby supply current	I _{DD(st)}	PD=5V			100	μΑ	
Output high-level current	la	V _{OUT} =4.6V, pins 11, 12, 13, 14, 15, 16		-0.8	-0.4	mA	
Output high-level current	ІОН	V _{OUT} =4.6V, pin 17		-3.0	-1.2	mA	
Output low-level current	la.	V _{OUT} =0.4V, pins 11, 12, 13, 14, 15, 16	1.0	2.5		mA	
Output low-level current	loL	V _{OUT} =0.4V, pin 17	1.2	3.0		mA	
OFF-state output current	lozh	TOE=0V, V _{OUT} =5V, pins 11, 12, 13, 14			10	μΑ	
Of 1 -state output current	IOZL	TOE=0V, V _{OUT} =5V, pins 11, 12, 13, 14	-10			μΑ	
Input high-level current	lн	V _{IN} =5V, pins 1, 2, 10			10	μΑ	
Input low-level current	Ι _Ι Γ	V _{IN} =0V, pins 1, 2, 5, 6	-10			μΑ	
Pull-up (source) current	I _{SO}	TOE=0V, pin 10	-15	-5		μΑ	
Pull-down (sink) current	I _{SI}	PD, B/H=5V, pins 5, 6		5	15	μΑ	
St/GT threshold voltage	VTST	Pin 17		2.35		V	
V _{REF} output voltage	V _{REF}	No load, pin 4	2.4		2.7	V	
V _{REF} output resistance	R _{REF}	Pin 4		1		kΩ	

Input Amplifier Characteristics at Ta=25 \pm 2°C, V_{DD} =5V, V_{SS} =0V

Parameter	Symbol	Conditions		Unit		
Farameter	Symbol	Conditions		typ	max	UIIIL
Input offset voltage	V _{IO}		-25		+25	mV
Input offset current	lιο	V _{SS} ≤V _{IN} ≤V _{DD}		±100		nA
Power supply rejection	PSRR	1kHz		60		dB
Common mode rejection	CMRR			60		dB
Open-loop voltage gain	AO			65		dB
0dB Gain Bandwidth	fT			1.5		MHz
Maximum output voltage	Vo	R _L ≥100kΩ		4.5		Vp-p
Tolerable capacitive load	CL			100		pF
Tolerable resistive load	RL			50		kΩ
Common mode range	VСМ	No load		3.0		Vp-p

AC Characteristics at Ta=25 \pm 2°C, V_{DD} =5V, V_{SS} =0V, f_{OSC} =3.579545MHz

Darameter	Cumbal	Conditions		Ratings			
Parameter	Symbol			typ	max	Unit	
Valid input signal level		1, 2, 3, 5, 6, 9	-29		1.1	dBm	
Twist accept limit		2, 3, 6, 9, 11		±10		dB	
Frequency deviation accept limit		2, 3, 5, 9			±1.5% ±2Hz		
Frequency deviation accept limit		2, 3, 5	±3.5			%	
Third tone tolerance		2, 3, 4, 5, 9, 10		-16		dB	
Dial tone tolerance		2, 3, 4, 5, 8, 9, 10		+18		dB	
Noise tolerance		2, 3, 4, 5, 7, 9, 10		-12		dB	
Tone present detection time	t _{DP}	See timing diagram.	5	11	14	ms	
Tone absent detection time	t _{DA}	- See timing diagram.	0.5	4.0	8.5	ms	
Tone duration accept	t _{REC}		40			ms	
Tone duration regect	t _{REJ}	Adjustable Consumed times adjusted and			20	ms	
Interdigit pause accept	t _{ID}	Adjustable. See guard time adjustment.	40			ms	
Interdigit pause reject	t _{DO}				20	ms	
Propagation delay (St \rightarrow Q)	t _{PQ}	TOE=5V, No load		8	11	μs	
Propagation delay (St → StD)	t _{PSTD}	TOE=5V, No load		12		μs	
Output data set-up (Q → StD)	tQSTD	TOE=5V, No load		4.5		μs	
Output enable delay	t _{PTE}	R _L =10k, C _L =50pF		50	100	ns	
Output disable delay	t _{PTD}	R _L =10k, C _L =50pF		300		ns	
Clock frequency	fosc		3.5759	3.5795	3.5831	MHz	
Clock capacitive load	C _{XO}	OSC2			30	pF	

Conditions

- 1. dBm=decibels avove or below a reference power of 1mW into a 600Ω load.
- 2. All 16 DTMF tones.
- 3. 40ms DTMF tone duration and 40ms pause duration.
- 4. Nominal DTMF frequencies.
- 5. Both tones in composite signal have an equal amplitude.
- 6. Tone pair deviated by $\pm 1.5\% \pm 2$ Hz.
- 7. Bandwidth limited (0 to 3kHz) Gaussian noise.
- 8. 350Hz and 440Hz +2% dial tone frequencies.
- 9. Error rate better than 1 in 10,000.
- 10. Referenced to lowest level frequency component in DTMF signal.
- 11. Twist=ratio of high-frequency tone level to low-frequency tone level.

Single-Ended Input Configuration

Timing Diagram

LC7385, 7385M

Decode Table

FL FH		FH KEY			B/H="L"			B/H="H"			
FL		KEY TOE		Q3	Q2	Q1	Q4	Q3	Q2	Q1	
697	1209	1	Н	L	L	L	Н	L	L	L	L
697	1336	2	Н	L	L	Н	L	L	L	L	Н
697	1477	3	Н	L	L	Н	Н	L	L	Н	L
770	1209	4	Н	L	Н	L	L	L	Н	L	L
770	1336	5	Н	L	Н	L	Н	L	Н	L	Н
770	1477	6	Н	L	Н	Н	L	L	Н	Н	L
852	1209	7	Н	L	Н	Н	Н	Н	L	L	L
852	1336	8	Н	Н	L	L	L	Н	L	L	Н
852	1477	9	Н	Н	L	L	Н	Н	L	Н	L
941	1336	0	Н	Н	L	Н	L	Н	Н	L	Н
941	1209	*	Н	Н	L	Н	Н	Н	Н	L	L
941	1477	#	Н	Н	Н	L	L	Н	Н	Н	L
697	1633	Α	Н	Н	Н	L	Н	L	L	Н	Н
770	1633	В	Н	Н	Н	Н	L	L	Н	Н	Н
852	1633	С	Н	Н	Н	Н	Н	Н	L	Н	Н
941	1633	D	Н	L	L	L	L	Н	Н	Н	Н
_	_	_	L	Z	Z	Z	Z	Z	Z	Z	Z
								RO\	N m	CO	L n

Note: Z=High impedance

DTMF Dialing Matrix

R1 1	2	3	C 4
R2 4	5	6	В
R3 7	8	9	С
R4 *	0	#	D

Guard Time Setting

Component values are chosen using the following formula:

 $\begin{array}{l} t_{REC} \!\!=\!\! t_{DP} \!\!+\!\! t_{GTP} \\ t_{ID} \!\!=\!\! t_{DA} \!\!+\!\! t_{GTA} \end{array}$

(a) Basic Circuit

 $\begin{aligned} &t_{GTP} \text{=} RC \cdot \text{In} \; [V_{DD} / (V_{DD} - V_{TST})] \\ &t_{GTA} \text{=} RC \cdot \text{In} \; (V_{DD} / V_{TST}) \end{aligned}$

Guard Time Adjustment

Differential Input Configuration

Example of component values

$$\begin{split} &C_1 \!\!=\!\! C_2 \!\!=\!\! 0.01 \mu \! F \\ &R_1 \!\!=\!\! R_2 \!\!=\!\! R_5 \!\!=\!\! 100 k \Omega \\ &R_4 \!\!=\!\! 60 k \Omega,\, R_3 \!\!=\!\! 37.5 k \Omega \end{split}$$

$$R_3 = \frac{R_4 R_5}{R_4 + R_5}$$

 $\text{Voltage gain}: AV = \frac{R_5}{R_1}$

Input impedance= $2\sqrt{R_1^2 + \left(\frac{1}{2\pi f_{C1}}\right)^2}$

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of May, 2001. Specifications and information herein are subject to change without notice.