## Cours Réseaux Locaux

2SN Année 2024-25

Katia Jaffrès-Runser <a href="mailto:kjr@n7.fr">kjr@n7.fr</a>







## Objectifs du cours

#### SAVOIR:

- Décrire une architecture protocolaire de réseau local,
- Décrire les principaux mécanismes liaison de données et MAC du standard IEEE, et leurs interactions avec les protocoles IP et de transport,
- Décrire l'effet des mécanismes intervenant dans la commutation de trames Ethernet (apprentissage, VLAN, protocoles d'arbres couvrants, qualité de service, EEE),
- Configurer un réseau local Ethernet,
- Choisir une architecture et une topologie de réseau local pour un cas d'usage donné en l'argumentant,
- Définir un protocole de réseau local simple.

#### Plan

- 1. Contexte et rappels (Séance 1)
- 2. Architecture protocolaire et standardisation IEEE (Séance 2)
- 3. Ethernet commuté
  - 1. Le lien Ethernet (Séance 2)
  - 2. La commutation de trames (Séance 3)
  - 3. Les VLAN (Séance 3 et )
  - 4. Les Protocoles d'arbres couvrants (Séance 4 et 5)
- 4. Mécanismes de qualité de service et d'économie d'énergie (EEE) (Séance 6 et 7)
- 5. Définir un protocole de réseau local simple. (Séance 8)

Au total -> 8CM, 4 TD et 2TP.

Un examen 1h30 - 1 feuille A4 recto verso manuscrite autorisée.

[CM2]

Contexte et rappels



Wooclap pour commencer

https://app.wooclap.com/RLCM1

## Vocabulaire

- Réseau informatique
- Médium de communication
- Interface de communication
- Protocole
- Adressage
- Architecture / Empilement protocolaire
- Méthodes d'accès
- Standard / technologie
- Réseau opéré, réseau d'accès, réseau de coeur

### Classification des réseaux

- Couverture du service :
  - PAN/MAN/LAN/WAN
- Technologique:
  - Nature du médium : filaire / sans-fil
  - Caractéristiques du médium : débit d'émission, portée, taux d'erreur bit...
  - Nb d'utilisateurs max, débit utilisateur, latence, consommation énergie, déterminisme, taux de perte de messages...
- Type d'entités communicantes : des stations (PC), des choses (IoT), des robots (drones), des calculateurs embarqués ..

## Modèle en couches





## Couche 1 : physique

#### Rôle

Transmission bit-à-bit sur le médium de communication

#### **Fonctions**

- Définit les techniques de communication numériques utilisées (modulation, codage,...). Elles dépendent de la technologie
- Détermine le débit débit d'émission des bits.
- Est utilisé par la couche liaison pour accéder au support

#### Couche 2: liaison

#### Rôle

Transformer la transmission physique en **une communication fiable** permettant l'échange d'**une trame** (une séquence de bits avec un sémantique connue) entre deux entités.

#### **Fonctions**

- Définit l'adresse physique des entités communicantes
- Compose les trames pour l'émission et est capable de détecter leur début et leur fin en réception.
- Peut ajouter des mécanismes de détection des erreurs de transmission : le contrôle d'erreur.
- Si plusieurs utilisateurs doivent se partager le médium, la couche liaison détermine quel utilisateur peut émettre ses donner à tout instant : le contrôle d'accès => on parle ici de protocole MAC : medium accès control protocol.

## Couche 2: liaison

- **Note 1:** Une interface de communication (eth0, if0, wlan0...) regroupe la couche physique et la couche liaison.
- Note 2 : Tous les terminaux d'un même réseau local utilisent le même protocole de couche physique et de liaison pour échanger des trames.

## Couche 3 : routage

#### Rôle

Responsable de la transmission des paquets de la source à la destination à travers plusieurs réseaux. Chaque réseau peut utiliser une technologie (couche 1 et 2) différente.





## Couche 3 : routage

#### **Fonctions**

- Définit des adresses logiques. Un mécanisme doit permettre de faire correspondre les adresses logiques et physiques (ARP dans le monde Internet).
- Définit un mécanisme de routage des paquets en ajoutant un en-tête spécifique (IP dans le monde Internet).
- Des protocoles de routage permettent de configurer les équipements pour qu'ils soient en mesure de routes les paquets (RIP, OSPF...).

## Couche 4: transport

### Rôle

Responsable de l'acheminement de bout-en-bout d'un message complet qui lui est confié par une application.





## Couche 4: transport

#### **Fonctions**

- Le message d'origine (fichier, vidéo, ..) est découpé en **segments** de taille compatible avec les couches 2 et 3. Chaque segment est numéroté.
- Chaque segment est identifié dans l'en-tête par le numéro de l'application qui l'a envoyé : le port
- Le récepteur acquitte les segments reçus et les ré-ordonne pour les réassembler
- Si des segments sont perdus, il sont ré-émis par la source
- Il existe des mécanismes de contrôle de flux pour adapter la vitesse d'émission à la congestion dans le réseau.

## Encapsulation protocolaire



### Méthodes d'accès

## (rappel 1SN)

# Channel access methods

MAC protocols follow different approaches for sharing the channel. Each type is called a *channel access method*.





## Méthodes d'accès

| Méthode<br>d'accès | Avantages                                                            | Inconvénients                                                                                |
|--------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Aléatoire          | Ajout / suppression de station naturel -> protocole d                | Non déterministe, quelques<br>collisions                                                     |
| Polling            | Déterministe : accès<br>garantit, mais il faut<br>attendre son tour. | Ajout/suppression de station plus<br>complexe. Un point de défaillance<br>unique (le maître) |
| Token Ring         | Déterministe : accès<br>garantit, mais il faut<br>attendre son tour. | Ajout/suppression de station complexe. Gestion de la perte du jeton.                         |



## Méthodes d'accès

| Méthode<br>d'accès | Avantages                                                                            | Inconvénients                                                                                                                                                     |
|--------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FDMA               | Déterministe : accès<br>garantit. Pas de<br>collision par definition.                | Nombre de fréquences limitées, on perd des resources si l'utilisateur n'émet pas constamment.                                                                     |
| TDMA /<br>FTDMA    | Déterministe : accès<br>garantit. Permet un<br>bon taux d'utilisation<br>du support. | Moins réactif que l'accès aléatoire.<br>Il faut un mécanisme d'allocation de<br>resources des stations aux slots.<br>Nécessite une synchronisation des<br>noeuds. |



### Dans ce cours de réseaux locaux

#### On traitera:

- principalement de couche 2,
- un peu moins de couche 1
- et un petit peu de couche 3 (surtout pour faire le lien avec certains mécanismes de couche 2).

On s'intéressera principalement aux **réseaux type Ethernet commuté**, et un petit peu aux réseaux sans-fil.

# [CM2]

Architecture protocolaire et standardisation IEEE

