ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ"(УНИВЕРСИТЕТ ИТМО)

Факультет Систем управления и робототехники

Кафедра Систем управления и информатики

ГруппаР3340

ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

Лабораторная работа №10

ИССЛЕДОВАНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ЭЛЕКТРОМЕХАНИЧЕСКОГО ОБЪЕКТА УПРАВЛЕНИЯ Вариант 9

Проверил:		
Выполнил:		

Цель работы. Изучение математических моделей и исследование характеристик электромеханического объекта управления, построенного на основе электродвигателя постоянного тока независимого возбуждения Исходные данные:

Un, V	n0, рад/сек	In,A	Mn, HM	R, OM	Тя, с	Jд, кг [*] м^2	Ty, c	ip	Jм кг*м^2
27	255,5162	0,38	0,04	32	0,006	0,0000055	0,003	40	0,03

Таблица 1-Исходные данные

Расчет параметров математической модели:

Расчет параметров математической модели:
$$K_y = \frac{U_n}{U_m} = \frac{27}{10} = 2.7$$

$$K_d = \frac{1}{R} = \frac{1}{32} = 0.0313$$

$$K_m = \frac{M_n}{I_n} = \frac{0.04}{0.38} = 0.1053$$

$$J_p = 0.2J_d = 0.0000011$$

$$J_\Sigma = J_d + J_p + \frac{J_m}{i_p^2} = 0.0000066 + \frac{0.03}{1600} = 0.00002535$$

$$K_e = \frac{U_n}{\omega_0} = \frac{27}{255.5} = 0.105668447$$

$$K = \frac{K_y}{K_e * i_p} = 0.63879$$

$$T_m = \frac{RJ_\Sigma}{K_M * K_E} = 0.07265$$

$$K_f = \frac{R}{K_m * K_e * i_p^2} = 1.79118$$

Рис. 1: Структурная схема системы

Ку	Ki	Kw	Ka	
0,74	28,33	0,078	0,315	

Таблица 2-Коэффициенты передачи

Рис. 2: Схема моделирования системы

1 Получение графиков переходных процессов при $M{=}0,\,U{=}5V$

Рис. 3: Графики переходных процессов при Mcm=0, U=5V

2 Исследование влияния Mcm на вид переходных процессов

Рис. 4: Графики переходных процессов при различном Мст

Определение параметров:

I: tn=0.3c, Iy=0/3.5/6.8/10.8*Ki A

ω: tn=0.25c, ω=10/7.2/4.5/3*Kw rad/sec

Вывод: при увеличении момента установившееся значение I увеличивается, а w уменьшается.

3 Исследование влияния Jm на вид переходных процессов

Определение параметров:

I: Iy=0A,tn=0.2/0.35/0.5~c

 ω : tπ=0.2/0.3/0.4c, ω =10*Kw rad/sec

Рис. 5: Графики переходных процессов при различном Jm

Установившиеся значения не зависят от Jm, время переходного процесса увеличивается.

4 Исследование влияния i_p на вид переходных процессов

Рис. 6: Графики переходных процессов при различном ір, Мст=0Нм

Рис. 7: Графики переходных процессов при различном ip, Mcm=0.8Hм

5 Анализ погрешности вызванной упрощением модели

Рис. 8: Схема моделирования упрощенной модели

Рис. 9: Графики переходных процессов упрощенной и полной модели при ${\rm Mcm}{=}0{\rm Hm}$

Вывод: при малых значениях Ту и Тя переходные процессы в полной модели и упрощенной не отичаются.

6 Вывод математических моделей вход-состояниевыход для полной и упрощенной схем моделирования ЭМО.

Полная модель ЭМО.

$$\begin{array}{l} x_1 = U_y \\ x_2 = I \\ x_3 = \omega \\ x_4 = i_p \\ \dot{x}_1 = \frac{K_y U - x_1}{T_y} = 900 U - 333.3 x_1 \\ \dot{x}_2 = \frac{K_d U_y - K_d K_e \omega - I}{T_y} = 5.2 x_1 - 0.55 x_3 - 166.7 x_2 \\ \dot{x}_3 = \frac{K_M I - M_c}{J_s} = 4168 x_2 - 39447 M_c \\ \dot{x}_4 = i_p \omega = 40 x_3 \\ y = \frac{x_4}{i_p} \\ x = \begin{bmatrix} -333.3 & 0 & 0 & 0 \\ 5.2 & -166.7 & -0.55 & 0 \\ 0 & 4168 & 0 & 0 \\ 0 & 0 & 40 & 0 \end{bmatrix} * \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} 900 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} * U + \begin{bmatrix} 0 \\ 0 \\ -39447 \\ 0 \end{bmatrix} * M_c \\ y = \begin{bmatrix} 0 & 0 & 0 & 1/40 \end{bmatrix} \end{array}$$

Упрощенная модель ЭМО.

$$x_{1} = \omega$$

$$x_{2} = \frac{x_{2}}{x_{1}} = \frac{KU - K_{f}M_{c} - 13.75x_{2}}{T_{M}} = 8.8U - 24.6M_{c} - 13.75x_{2}$$

$$\dot{x_{2}} = x_{1}$$

$$x = \begin{bmatrix} 0 & -13.75 \\ 1 & 0 \end{bmatrix} * \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} + \begin{bmatrix} 8.8 \\ 0 \end{bmatrix} * U + \begin{bmatrix} -24.6 \\ 0 \end{bmatrix} * M_{c}$$

$$y = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

Вывод: Были исследованиы математические модели электомеханического объекта при различных параметрах внешних воздействй и при различных внетренних параметрах. Сравнение полной и упрощенной модели ЭМО подтвержадет, что если в системе достаточно малые постоянные времени у электрических процессов по сравнению с механическими, то ими можно пренебречь и перейти к упрощенной модели.