cs 2010: algorithms and data structures

Lecture 4: Asymptotic notation

Vasileios Koutavas

School of Computer Science and Statistics Trinity College Dublin

Running Time Performance analysis

Techniques until now:

- Experimental
- Approximate running time using cost models
 - counting execution of operations or lines of code.
 - under some assumptions
 - only some operations count
 - cost of each operation = 1 time unit
 - Tilde notation: $T(n) \sim (5/3)n^2$

Today:

- Asymptotic Running Time: Θ/Ο/Ω-notation
- Examples: insertionSort & binarySearch

How fast is $T(n) = (3/2)n^2 + (3/2)n - 1$?

Fast computer vs. Slow computer

$$T1(n) = (3/2)n^2 + (3/2)n - 1$$
 $T2(n) = (3/2)n - 1$

Fast Computer vs. Smart Programmer

$$T1(n) = (3/2)n^2 + (3/2)n - 1$$
 $T2(n) = (3/2)n - 1$

Fast Computer vs Smart Programmer (rematch!)

A **smart programmer** with a better algorithm always **beats** a **fast computer** with a worst algorithm for <u>sufficiently large</u> <u>inputs.</u>

At large enough input sizes only the rate of growth of an algorithm's running time matters.

- That's why we dropped the lower-order terms in the approximate tilde notation:
 - When $T(n) = (3/2)n^2 + (3/2)n 1$
 - we write: $T(n) \sim (3/2)n^2$
 - However: to calculate (3/2)n² we need to first calculate (3/2)n² + (3/2)n -1
 - It is not possible to calculate the coefficient 3/2 without the complete polynomials.

```
no of times
                                                                            cost
     for (j = 1; j<A.length; j++) {
1.
     //shift A[j] into the sorted A[0..j-1]
2.
    i=j-1
3.
      while i>=0 and A[i]>A[i+1] {
                                                                           2+...+n
                                                                           1+...+(n-1)
      swap A[i], A[i+1]
5.
      i=i-1
6.
     }}
7.
     return A
8.
```

In the worst case the array is in <u>reverse sorted order</u>.

$$T(n) = \sum_{i=2..n}(i) + \sum_{i=1..n-1}(i) = \sum_{i=1..n}(i) - 1 + \sum_{i=1..n-1}(i)$$
$$= (n(n+1)/2 - 1) + 2n(n-1)/2$$
$$\sim (5/2)n^2$$

Simpler approach

It turns out that even the coefficient of the highest order term of polynomials is not all that important for large enough inputs.

$$T(n) = \Theta(n^2)$$

- We calculate directly the growth function
- Even with such a simplification, we can compare algorithms to discover the best ones
- Sometimes constants matter in the real-world performance of algorithms, but in many cases we can ignore them.
- We can write the asymptotic running time of best/worst/average case

Important Growth Functions

From better to worse:

Function f	<u>Name</u>
• 1	constant
· log n	logarithmic
• n	linear
· n·log n	
• n ²	quadratic
• n³	cubic
•	
• 2 ⁿ	exponential

Important Growth Functions

From better to worse:

Function f	Name
------------	------

1 constant

log n logarithmic

• n linear

n-log n

• n² quadratic

• n³ cubic

• . . .

2ⁿ exponential

•

The first 4 are practically fast (most commercial programs run in such Θ -time)

Anything less than exponential is theoretically fast (P vs NP)

Important Growth Functions

From better to worse:

Function f	Name	Problem size solved in mins (today)
• 1	constant	any
• log n	logarithmic	any
• n	linear	billions
 n·log n 		hundreds of millions
• n ²	quadratic	tens of thousands
• n³	cubic	thousands
•		
• 2 ⁿ	exponential	100
•		

What programs have these running times?

 With experience we can recognise patterns in code with known running time

$\Theta(1)$

- Any fixed number of basic operations.
 - assignments
 - int i = 5
 - memory access
 - A[5]
 - fixed number of combinations of the above
 - swap A[i], A[j] (3 array accesses & 3 assignments)
 - any other basic command
- But not:
 - array initialisation
 - int A[] = new int[n] (Θ(n))

$\Theta(n)$

 Pattern of code: loops where each iteration decreases the problem size by a constant factor

```
for(j=1; j<n; j++){ ...</pre><constant cost operations>... }
• Problem: iterate from 1 ... n
• Initial problem size: n
• each iteration decreases problem size by 1.

k=n;
while(k>0){ ...<constant cost operations>...; k=k-100; }
• Problem: iterate from n ... 1
• Initial problem size: n
• each iteration decreases problem size by 100.
```

$\Theta(\log n)$

 Pattern of code: loops where each iteration divides the problem size by a constant

```
j=n;
while(j>=0){...<</li>
constant cost operations>...; j=j/2}
Problem: iterate from n ... 0
Initial problem size: n
each iteration divides problem size by 2.
```

Common order-of-growth classifications

order of growth	name	typical code framework	description	example	T(2N) / T(N)
1	constant	a = b + c;	statement	add two numbers	1
$\log N$	logarithmic	while (N > 1) { N = N / 2; }	divide in half	binary search	~ 1
N	linear	for (int i = 0; i < N; i++) { }	loop	find the maximum	2
$N \log N$	linearithmic	[see mergesort lecture]	divide and conquer	mergesort	~ 2
N ²	quadratic	for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) { }	double loop	check all pairs	4
<i>N</i> ³	cubic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) { }</pre>	triple loop	check all triples	8
2^N	exponential	[see combinatorial search lecture]	exhaustive search	check all subsets	T(N)

5 Oct 2015 Lecture 4 **18**

Asymptotic Running Time Θ(f(n))

It has useful operations:

- Simplify: replace multiplicative constants with 1
 - $\Theta(2) = \Theta(1)$
 - $\Theta(10n^2) = \Theta(n^2)$
 - $\Theta(\log_{300} n) = \Theta(\log_2 n)$
- Always use the simplest possible functions

Asymptotic Running Time Θ(f(n))

It has useful operations:

- Addition: keep only highest factor
 - $\Theta(1) + \Theta(1) = \Theta(1)$
 - $\Theta(n) + \Theta(n^2) = \Theta(n^2)$
 - $\Theta(n^3) + \Theta(n^3) = \Theta(n^3)$
 - $\Theta(n^2 \log n) + \Theta(n^2) = \Theta(n^2 \log n)$

Asymptotic Running Time Θ(f(n))

It has useful operations:

- Multiplication: multiply inner functions
 - $\Theta(n) \times \Theta(n^2) = \Theta(n^3)$
 - $\Theta(n) \times \Theta(\log n) = \Theta(n \cdot \log n)$
 - $\Theta(1) \times \Theta(\log n) = \Theta(\log n)$

Asymptotic Running Time Θ(f(n))

It has useful operations:

- Simplify: replace multiplicative constants with 1
 - $\Theta(2) = \Theta(1)$
 - $\Theta(10n^2) = \Theta(n^2)$
 - $\Theta(\log_{200}(n)) = \Theta(\log_2(n))$
- Addition: keep only highest factor
 - $\Theta(1) + \Theta(1) = \Theta(1)$
 - $\Theta(n) + \Theta(n^2) = \Theta(n^2)$
 - $\Theta(n^3) + \Theta(n^3) = \Theta(n^3)$
 - $\Theta(n^2\log(n)) + \Theta(n^2) = \Theta(n^2\log(n))$
- Multiplication: multiply inner functions
 - $\Theta(n) \times \Theta(n^2) = \Theta(n^3)$
 - $\Theta(n) \times \Theta(\log n) = \Theta(n \cdot \log n)$
 - $\Theta(n^2 \log n) + \Theta(n^2) = \Theta(n^2 \log n)$

The above are because of the following general theorems:

- $\Theta(f(n)) + \Theta(g(n)) = \Theta(g(n))$ if $\Theta(f(n)) \le \Theta(g(n))$
- $\Theta(f(n)) \times \Theta(g(n)) = \Theta(f(n) \times g(n))$
- If $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$ then $f(n) = \Theta(h(n))$

How to calculate Asymptotic running times?

First decide what **case** you want to calculate

- Worst case input ← usually
- Best case input
- Average case input

Then add up costs of each operation multiplied with number of times called

- As we did with the precise/approximate running times
- but use asymptotic notation
- take advantage of the simple addition and multiplication operations

```
    for j = 1 to A.length {
    //shift A[j] into the sorted A[0..j-1]
    i=j-1
    while i>=0 and A[i]>A[i+1] {
    swap A[i], A[i+1]
    i=i-1
    }
```

cost No of times

			cost	No of times
1.	for j = 1 to A.length {	Θ(1)		
2.	//shift A[j] into the sorted A[0j-1]			
3.	i=j-1		Θ(1)	
4.	while i>=0 and A[i]>A[i+1] {	Θ(1)		
5.	swap A[i], A[i+1]	Θ(1)		
6.	i=i-1		Θ(1)	
7.	}}			
8.	return A		Θ(1)	

			cost	No of times
1.	for j = 1 to A.length {	Θ(1)	Θ(N)	
2.	//shift A[j] into the sorted A[0j-1]			
3.	i=j-1		Θ(1)	Θ(N)
4.	while i>=0 and A[i]>A[i+1] {	Θ(1)		
5.	swap A[i], A[i+1]	Θ(1)		
6.	i=i-1		Θ(1)	
7.	}}			
8.	return A		Θ(1)	

```
No of times
                                                                                cost
     for j = 1 to A.length {
                                                                    Θ(1)
                                                                                Θ(N)
1.
      //shift A[j] into the sorted A[0..j-1]
2.
                                                                                Θ(1)
      i=j-1
                                                                                            Θ(N)
3.
                                                                    Θ(1)
                                                                                \Theta(N) \times \Theta(N)
      while i>=0 and A[i]>A[i+1] {
                                                                    Θ(1)
5.
       swap A[i], A[i+1]
       i=i-1
                                                                                Θ(1)
6.
     }}
7.
                                                                                Θ(1)
8.
     return A
```

```
No of times
                                                                                   cost
     for j = 1 to A.length {
                                                                       Θ(1)
                                                                                   Θ(N)
1.
      //shift A[j] into the sorted A[0..j-1]
2.
                                                                                   Θ(1)
      i=j-1
                                                                                               Θ(N)
3.
                                                                                   \Theta(N) \times \Theta(N)
      while i>=0 and A[i]>A[i+1] {
                                                                       Θ(1)
                                                                       Θ(1)
                                                                                   \Theta(N^2)
5.
       swap A[i], A[i+1]
       i=i-1
                                                                                   Θ(1)
                                                                                               \Theta(N^2)
6.
      }}
7.
                                                                                   Θ(1)
                                                                                               Θ(1)
8.
      return A
```

```
No of times
                                                                                       cost
      for j = 1 to A.length {
                                                                         Θ(1)
                                                                                      Θ(N)
1.
      //shift A[j] into the sorted A[0..j-1]
2.
      i=j-1
                                                                                       \Theta(1)
                                                                                                   \Theta(N)
3.
       while i>=0 and A[i]>A[i+1] {
                                                                         Θ(1)
                                                                                      \Theta(N) \times \Theta(N)
                                                                         Θ(1)
                                                                                      \Theta(N^2)
5.
       swap A[i], A[i+1]
       i=i-1
                                                                                       Θ(1)
                                                                                                   \Theta(N^2)
6.
      }}
7.
                                                                                       Θ(1)
                                                                                                   Θ(1)
      return A
8.
```

 $T(n) = \Theta(1) \times \Theta(N) + \Theta(1) \times \Theta(N) + \Theta(1) \times \Theta(N^{2}) + \Theta(1) \times \Theta(N^$

```
No of times
                                                                                      cost
      for j = 1 to A.length {
                                                                         Θ(1)
                                                                                      Θ(N)
1.
      //shift A[j] into the sorted A[0..j-1]
2.
      i=j-1
                                                                                      \Theta(1)
                                                                                                   \Theta(N)
3.
       while i>=0 and A[i]>A[i+1] {
                                                                         Θ(1)
                                                                                      \Theta(N) \times \Theta(N)
                                                                         Θ(1)
                                                                                      \Theta(N^2)
       swap A[i], A[i+1]
5.
       i=i-1
                                                                                      Θ(1)
                                                                                                   \Theta(N^2)
6.
7.
      }}
                                                                                      Θ(1)
                                                                                                   Θ(1)
      return A
8.
```

$$\begin{aligned} & \mathsf{T}(\mathsf{n}) = \Theta(1) \times \Theta(\mathsf{N}) + \Theta(1) \times \Theta(\mathsf{N}) + \Theta(1) \times \Theta(\mathsf{N}^2) + \Theta$$

One more example: BinarySeach

Specification:

- Input: array a[0..n-1], integer key
- Input property: a is sorted
- Output: integer pos
- Output property: if key==a[i] then pos==I

BinarySearch – worst case asymptotic running time

```
    lo = 0, hi = a.length-1
    while (lo <= hi) {
        int mid = lo + (hi - lo) / 2
        if (key < a[mid]) then hi = mid - 1
        else if (key > a[mid]) then lo = mid + 1
        else return mid
        }
        return -1
```

Cost No of times

BinarySearch – worst case asymptotic running time

```
Cost
                                                                                    No of times
                                                              Θ(1)
                                                                         Θ(1)
     lo = 0, hi = a.length-1
1.
     while (lo <= hi) {
                                                              Θ(1)
                                                                         Θ(log n)
2.
                                                              Θ(1)
                                                                         Θ(log n)
      int mid = lo + (hi - lo) / 2
3.
                                                              Θ(log n)
           (key < a[mid]) then hi = mid - 1
                                                   Θ(1)
4.
      else if (key > a[mid]) then lo = mid + 1
                                                   Θ(1)
                                                              Θ(log n)
5.
      else return mid
                                                              Θ(1)
                                                                         Θ(log n)
6.
7.
                                                                         Θ(1)
                                                                                    Θ(1)
     return -1
8.
```

$$T(n) = \Theta(\log n)$$

A software engineer was asked to design an algorithm which will input two **unsorted** arrays of integers, **A** (of size *N*) and **B** (also of size *N*), and will output **true** when all integers in **A** are present in **B**. The engineer came up with **two** alternatives:

```
boolean isContained1(int[] A, int[] B) {
  boolean AInB = true;
  for (int i = 0; i < A.length; i++) {
    boolean iInB = linearSearch(B, A[i]);
   AInB = AInB && iInB;
  return AinB;
boolean isContained2(int[] A, int[] B) {
  int[] C = new int[B.length];
  for (int i = 0; i < B.length; i++) { C[i] = B[i] }
  sort(C); // heapsort
  boolean AInC = true;
  for (int i = 0; i < A.length; i++) {
    boolean iInC = binarySearch(C, A[i]);
   AInC = AInC && iInC;
```

A software engineer was asked to design an algorithm which will input two **unsorted** arrays of integers, **A** (of size *N*) and **B** (also of size *N*), and will output **true** when all integers in **A** are present in **B**. The engineer came up with **two** alternatives:

```
No of times
                                                             Cost
   boolean isContained1(int[] A, int[] B) {
                                                                      \Theta(1)
                                                                               \Theta(1)
      boolean AInB = true;
1.
                                                                               \Theta(N)
                                                                      \Theta(1)
      for (int i = 0; i < A.length; i++) {
2.
        boolean iInB = linearSearch(B, A[i]); O(N)
                                                             \Theta(N)
3.
        AInB = AInB && iInB;
                                                   \Theta(1)
                                                             \Theta(N)
4.
      }
5.
      return AinB;
                                                             \Theta(1)
                                                                      \Theta(1)
6.
   boolean isContained2(int[] A, int[] B) {
      int[] C = new int[B.length];
1.
      for (int i = 0; i < B.length; i++) { C[i] = B[i] }</pre>
2.
      sort(C); // heapsort
3.
      boolean AInC = true;
4.
      for (int i = 0; i < A.length; i++) {
5.
        boolean iInC = binarySearch(C, A[i]);
6.
        AInC = AInC && iInC;
7.
```

• $\Theta(n \log n) = ?= \Theta(n)$

- $\Theta(n \log n) > \Theta(n)$
- $\Theta(n^2 + 3n 1) = ?= \Theta(n^2)$

- $\Theta(n \log n) > \Theta(n)$
- $\bullet \Theta(n^2 + 3n 1) = \Theta(n^2)$

- $\Theta(n \log n) > \Theta(n)$
- $\Theta(n^2 + 3n 1) = \Theta(n^2)$
- $\Theta(1) = ?= \Theta(10)$
- $\Theta(5n) = ? = \Theta(n^2)$
- $\Theta(n^3 + \log(n)) = ?= \Theta(100n^3 + \log(n))$
- Write all of the above in order, writing = or < between them

MyAlgorithm has an asymptotic worst case running time:

$$T(N) = O(N^2 \lg N)$$

- Does that mean:
 - $T(N) = O(N^3)$?
 - $T(N) = O(N^2)$?
 - $T(N) = \Omega(N)$?
 - $T(N) = \Omega(N^3)$?
 - $T(N) = \Theta(N^2 \lg N)$?

MyAlgorithm has an asymptotic worst case running time:

$$T(N) = O(N^2 \lg N)$$

Does that mean:

•	$T(N) = O(N^3)?$	YES
•	$T(N) = O(N^2)?$	NO
•	$T(N) = \Omega(N)?$	NO
•	$T(N) = \Omega(N^3)?$	NO
•	$T(N) = \Theta(N^2 \lg N)?$	NO

MyAlgorithm has an asymptotic worst case running time:

$$T(N) = \Omega(N^2 \lg N)$$

- Does that mean :
 - $T(N) = O(N^3)$?
 - $T(N) = O(N^2)$?
 - $T(N) = \Omega(N)$?
 - $T(N) = \Omega(N^3)$?
 - $T(N) = \Theta(N^2 \lg N)$?

MyAlgorithm has an asymptotic worst case running time:

$$T(N) = \Omega(N^2 \lg N)$$

Does that mean:

• $T(N) = O(N^3)$?	NO
• $T(N) = O(N^2)$?	NO
• $T(N) = \Omega(N)$?	YES
• $T(N) = \Omega(N^3)$?	NO
• $T(N) = \Theta(N^2 \lg N)$?	NO

MyAlgorithm has an asymptotic worst case running time:

$$T(N) = \Theta(N^2 \lg N)$$

- Does that mean:
 - $T(N) = O(N^3)$?
 - $T(N) = O(N^2)$?
 - $T(N) = \Omega(N)$?
 - $T(N) = \Omega(N^3)$?

MyAlgorithm has an asymptotic worst case running time:

$$T(N) = \Theta(N^2 \lg N)$$

Does that mean:

•	$T(N) = O(N^3)?$	Yes
•	$T(N) = O(N^2)?$	NO
•	$T(N) = \Omega(N)?$	YES
•	$T(N) = \Omega(N^3)?$	NO

^{*}Because the above means MyAlgorithm is both $O(N^2 \text{ IgN})$ and $O(N^2 \text{ IgN})$.