Соадминистрирование баз данных и серверов

Задание 1:

1. Провести анализ существующих на рынке Баз данных (PostgreSQL, MySQL, Microsoft SQL Server, MariaDB и другие).

СУБД	Плюсы	Минусы
PostgreSQL	Открытый исходный код, расширяемость, поддержка сложных запросов, ACID, JSON, мощные индексы, расширения (PostGIS), высокая надежность, активное сообщество	Сложнее в настройке, чем MySQL, выше требования к ресурсам
MySQL	Простота, высокая скорость на простых запросах, широкое распространение	Меньше возможностей для сложных запросов, слабее поддержка транзакций
MariaDB	Форк MySQL, бесплатная, совместимость, новые функции	Меньше корпоративной поддержки, чем у MySQL
MS SQL Server	Богатый функционал, интеграция с продуктами Microsoft, удобные инструменты	Платная лицензия, только Windows (основная версия)
Oracle	Высокая надежность, масштабируемость, корпоративные возможности	Очень дорогая лицензия, сложность администрирования

2. Выбрать подходящую для реализации работы базу данных, исходя из анализа ее преимуществ.

Была выбрана СУБД PostgreSQL.

- Поддержка сложных структур данных (JSON, массивы, пользовательские типы);
- Надежность, соответствие ACID;
- Бесплатная, открытая, кроссплатформенная;
- Богатые возможности для аналитики и расширяемость.

Задание 2:

1. Выбрать предметную область

Была выбрана предметная область базы данных для записи результатов оптического контроля качества керамики.

2. Провести анализ предметной области

Краткое описание предметной области

Оптический контроль керамики — это автоматизированная система, фиксирующая параметры и дефекты изделий с помощью камер и датчиков. Система должна хранить:

- Информацию о партиях изделий;
- Результаты контроля (дата, время, параметры, фото);
- Описание и классификацию дефектов;
- Операторов и оборудование.

Особенности:

- Большой поток данных (изображения, параметры);
- Необходимость быстрого поиска и аналитики по дефектам;
- Хранение истории изменений и аудита.

Задание 3:

1. Техническое задание

Цели и задачи:

Создать БД для хранения и анализа результатов оптического контроля керамических изделий, учета дефектов, генерации отчетов, обеспечения аудита.

Требования к функциональности:

- Запись результатов контроля (параметры, фото, дефекты)
- Поиск и фильтрация по партиям, дате, типу дефекта
- Хранение информации об операторах и оборудовании

- Формирование отчетов
- Контроль доступа (роли)

Требования к данным:

- Данные о партиях изделий (номер, дата, тип)
- Результаты контроля (изделие, параметры, фото, дефекты)
- Классификация дефектов
- Операторы, оборудование

Ограничения:

- Высокая производительность поиска
- Безопасность (разграничение доступа)
- Масштабируемость (рост объема данных)
- Сроки: 1 неделя (2 проектирование, 3 разработка и тестирование)
- 2. Составить «Концептуальную модель» (ЕR-диаграмма)

3. Составить «Логическую модель» данных

Таблица: Batch (Партия)

Поле	Тип данных	Ограничения/Описание
batch_id	serial	PRIMARY KEY, NOT NULL
batch_number	varchar(50)	NOT NULL, UNIQUE
batch_date	date	NOT NULL
product_type	varchar(50)	NOT NULL

Таблица: Item (Изделие)

Поле	Тип данных	Ограничения/Описание
item_id	serial	PRIMARY KEY, NOT NULL
batch_id	int	FOREIGN KEY → Batch(batch_id), NOT NULL
serial number	varchar(50)	NOT NULL, UNIQUE

Таблица: Operator (Оператор)

Поле	Тип данных	Ограничения/Описание
operator_id	serial	PRIMARY KEY, NOT NULL
name	varchar(100)	NOT NULL
position	varchar(50)	

Таблица: Equipment (Оборудование)

Поле	Тип данных	Ограничения/Описание
equipment_id	serial	PRIMARY KEY, NOT NULL
name	varchar(100)	NOT NULL
serial number	varchar(50)	

Таблица: InspectionResult (Результат контроля)

Поле	Тип данных	Ограничения/Описание
inspection_id	serial	PRIMARY KEY, NOT NULL
item_id	int	FOREIGN KEY → Item(item_id), NOT NULL
operator_id	int	FOREIGN KEY → Operator(operator_id)
equipment_id	int	FOREIGN KEY → Equipment(equipment id)
inspection_date	timestamp	NOT NULL
parameters	jsonb	
photo_path	varchar(255)	

Таблица: DefectType (Тип дефекта)

Поле	Тип данных	Ограничения/Описание
defect_type_id	serial	PRIMARY KEY, NOT NULL
name	varchar(50)	NOT NULL, UNIQUE
description	text	

Таблица: Defect (Дефект)

Поле	Тип данных	Ограничения/Описание
defect_id	serial	PRIMARY KEY, NOT NULL
inspection_id	int	FOREIGN KEY → InspectionResult(inspection_id), NOT
_		NULL
defect_type_id	int	FOREIGN KEY → DefectType(defect type id)
description	text	
coordinates	varchar(100)	

Индексы и ключи

Таблица Поле/Поля		Тип индекса/ключа
Batch	batch_number	UNIQUE INDEX
InspectionResult	inspection_date	INDEX
Defect	defect_type_id	INDEX

4. Физическая модель

```
Query Query History
 1 ▼ CREATE TABLE Batch (
         batch_id serial PRIMARY KEY,
 2
         batch_number varchar(50) NOT NULL,
 3
         batch_date date NOT NULL,
 5
         product_type varchar(50) NOT NULL
 6
   );
 7
 8 - CREATE TABLE Item (
        item_id serial PRIMARY KEY,
         batch_id int REFERENCES Batch(batch_id) ON DELETE CASCADE,
10
11
         serial_number varchar(50) NOT NULL
12
   );
13
14 v CREATE TABLE Operator (
        operator_id serial PRIMARY KEY,
16
         name varchar(100) NOT NULL,
17
         position varchar(50)
18
   );
19
20 v CREATE TABLE Equipment (
         equipment_id serial PRIMARY KEY,
21
         name varchar(100) NOT NULL,
23
         serial_number varchar(50)
24
    );
25
26 v CREATE TABLE InspectionResult (
         inspection_id serial PRIMARY KEY,
27
         item_id int REFERENCES Item(item_id) ON DELETE CASCADE,
28
29
         operator_id int REFERENCES Operator(operator_id),
30
         equipment_id int REFERENCES Equipment(equipment_id),
         inspection_date timestamp NOT NULL,
31
```

- 5. Описать бизнес-правила и ограничений
 - NOT NULL на ключевых полях
 - CHECK для batch date (не в будущем)
 - ON DELETE CASCADE для связанных сущностей
 - Уникальность batch number + batch date
- 6. Разработать регламент доступа и безопасности

Роли: admin, operator, viewer

Права:

– admin: полный доступ

– operator: INSERT/SELECT по результатам

- viewer: только SELECT

Резервное копирование: регулярные бэкапы средствами PostgreSQL

7. Примеры запросов

```
Query Query History

-- Добавить новую партию

INSERT INTO Batch (batch_number, batch_date, product_type) VALUES ('B-2025-07-08', '2025-07-08', 'Плитка');

-- Найти все дефекты по типу

SELECT d.*, dt.name FROM Defect d

JOIN DefectType dt ON d.defect_type_id = dt.defect_type_id

WHERE dt.name = 'Трещина';

-- Получить все результаты контроля за период

SELECT * FROM InspectionResult WHERE inspection_date BETWEEN '2025-07-01' AND '2025-07-08';
```

- 8. Руководство администратора
- 1. Инструкции по обслуживанию (резервное копирование, мониторинг).
- Резервное копирование:

pg_dump -U postgres ceramics_db > backup.sql

Восстановление:

psql -U postgres ceramics db < backup.sql

– Мониторинг:

Использовать pgAdmin, мониторить логи, следить за индексами

2. Рекомендации по устранению сбоев.

Диагностика проблемы:

- Проверить логи PostgreSQL (/var/log/postgresql/ или путь, указанный в конфиге).
- Определить характер сбоя: отказ сервиса, потеря соединения, повреждение данных, нехватка места и т.д.
- Использовать команду systemctl status postgresql для проверки статуса сервиса.

Восстановление работоспособности:

- Если база не запускается проверить конфигурационные файлы (postgresql.conf, pg_hba.conf) на наличие ошибок.
- При нехватке дискового пространства освободить место, удалить старые логи, временные файлы, провести VACUUM.
- В случае повреждения данных восстановить БД из последней корректной резервной копии.
- Для устранения зависших процессов использовать
 pg_terminate_backend() для завершения зависших сессий.

9. Словарь данных

Таблица	Поле	Описание
Batch	batch_id	Идентификатор партии
	batch_number	Номер партии
	batch_date	Дата партии
	product_type	Тип изделия
Item	item_id	Идентификатор изделия
	batch_id	Ссылка на партию
	serial_number	Серийный номер изделия
Operator	operator_id	Идентификатор оператора
	name	ФИО оператора
	position	Должность
Equipment	equipment_id	Идентификатор оборудования
	name	Название оборудования
	serial_number	Серийный номер оборудования
InspectionResult	inspection_id	Идентификатор контроля
	item_id	Ссылка на изделие
	operator_id	Ссылка на оператора
	equipment_id	Ссылка на оборудование
	inspection_date	Дата и время контроля
	parameters	Параметры (jsonb)
	photo_path	Путь к фото
DefectType	defect_type_id	Идентификатор типа дефекта
	name	Название типа
	description	Описание типа
Defect	defect_id	Идентификатор дефекта
	inspection_id	Ссылка на результат контроля

defect_type_id	Тип дефекта
description	Описание дефекта
coordinates	Координаты дефекта