Applications of SSA: Phylogenetics

Shan Shan
Department of Mathematics
Duke University

Evolution: tree of life

Patterns of evolution

Divergent evolution
 Similar species begin to evolve to look extremely different from one another

Divergent evolution - adaptive radiation

Divergent evolution - adaptive radiation

Patterns of evolution

- Divergent evolution
 Similar species begin to evolve to look extremely different from one another
- Convergent evolution
 Distantly related organism evolve to look more similar

Convergent evolution - adaptive radiation

Phylogenetic methods in evolution studies

Evolution with shape data

Feature is one number

Examples of features on shapes

Models for Phenotypic Evolution

- Brownian Motion (BM)
- Ornstein-Uhlenbeck (**OU**)
- Early Burst (EB)

Why these three?

- Brownian Motion (BM) is assumed by almost all phylogenetic comparative methods
- Ornstein-Uhlenbeck (OU) may capture the importance of constraints on evolution
- Early Burst (EB) corresponded to one idea of adaptive radiation

Brownian Motion (BM)

$$dY_{(t)} = \sigma dB_{(t)}$$

Shape features

Brownian motion

Brownian motion models a constant rate evolution One parameter: rate (σ)

Brownian Motion

Rates of Brownian Motion

Diversification of heights in trees

Brownian Motion on a Single Feature

$$Y \sim \mathcal{N}(0, \sigma^2 t)$$

Variance-Covariance Matrix

Ornstein - Uhlenbeck (OU)

$$dY_{(t)} = \alpha \left(\theta - Y_{(t)}\right) dt + \sigma dB_{(t)}$$

Change towards optimum

Brownian motion

Evolution has a tendency to move towards some medial value Three parameters: rate (σ), optimal value (θ), pull towards optimal (α)

Ornstein - Uhlenbeck (OU)

$$dY_{(t)} = \alpha \left(\theta - Y_{(t)}\right) dt + \sigma dB_{(t)}$$

Early Burst (EB)

$$dY_{(t)} = \gamma(t) dB_{(t)}$$

$$\gamma^{2}(t) = \sigma^{2}e^{rt}, r < 0$$

Rate of evolution is changing

Early burst models the rate of evolution is slowing through time Two parameters: starting rate (σ) and rate change (r)

Early Burst (EB)

$$dY_{(t)} = \gamma(t) dB_{(t)}$$

$$\gamma^{2}(t) = \sigma^{2}e^{rt}, r < 0$$
Early Burst
Late Burst

Variance-Covariance matrix of OU and EB

$$V_{ij} = \frac{\sigma^2}{\alpha} e^{-2\alpha(T - s_{ij})} (1 - e^{-2\alpha s_{ij}})$$

$$V_{ij} = \int_0^{s_{ij}} \sigma_0^2 e^{rt} dt = \sigma_0^2 \frac{e^{rs_{ij}}}{r}$$

Model selection with Maximum likelihood

Brief discussion on maximum likelihood possible software to achieve this

Ancestral state reconstruction

- Given
 - the tree
 - the shape feature
 - the evolution model
- Goal is to obtain estimates for shape feature at the ancestral nodes or along the branches of phylogeny

Reconstruct surface at an ancestral state

Evolution model with the entire shape

Gaussian process

Definition $f \sim \mathcal{GP}(m, k)$ is a Gaussian process

mean $m:\mathcal{X} \to \mathbb{R}$

covariance $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$

if any finite realization $\{f(x_i)\}_{i=1}^n$ is jointly normal.

Prediction

Correspondence maps again

Gaussian process on correspondence maps

Shape evolution on the data points level

$$y_i = f(e_i) + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, \sigma^2).$$

 $f \sim \mathcal{GP}(0, k)$

Define k as a product (evolution \times geometry). Let $e_i = (z_i, u_i), e_j = (z_j, u_j)$ by local trivialization.

$$k(e_i, e_j) = k(z_i, u_i; z_j, u_j) = k_{\text{evol}}(z_i, z_j) \cdot k_{\text{fibre}}(u_i, u_j)$$

where

$$k_{\text{fibre}}(u_i, u_j) = \exp\left(-\frac{d^2(P_{z_i z_j}(u_i), u_j)}{t_F}\right)$$

Model selection with the entire shape

Our parameter space is

$$\theta = \{\theta_{\text{evol}}, \theta_{\text{fibre}}\}$$

Goal is to compute posterior

$$p(\theta|\mathcal{D}) = \frac{p(\theta)p(\mathcal{D}|\theta)}{\int_{\theta'} p(\theta')p(\mathcal{D}|\theta')d\theta'}$$

a probabilistic analogue to the projected kernel method: θ_{evol} contains information about the evolutionary process. Compute the marginal posterior on the evolution parameter

$$p(\theta_{\mathsf{evol}}|\mathcal{D}) = \int p(\theta_{\mathsf{evol}}|\theta^*, \mathcal{D})p(\theta^*|\mathcal{D})d\theta^*,$$

Compute with MCMC with a discrete prior on θ .

Lemurs of Madagascar

Recall EB model.

$$k_{\mathsf{evol}}(z_i, z_j) = au^2 \left(rac{e^{rt_{ij}} - 1}{r}
ight), \quad r < 0.$$

r close to 0 returning BM.

We apply GP on fibre bundle to 40 teeth of 40 lemurs.

Posterior of -r

Our approach suggests a BM model for lemurs of Madagascar.

Future work

