Recall

$$H = G$$
 iff $gH = Hg \in G$

$$gHg^{-1} = H$$

H is invariant under conjugation by element of 6

Definitiont

An automorphism of a group G
is an isomorphism from G onto G
Let
$$g \in G$$
 Define $i_g : G \to G$
 $i_g(x) = g x g^{-1}$ $x \in G$

$$\forall x_{1}, x_{2} \in G$$
 $i_{g}(x_{1} \cdot x_{2}) = g(x_{1} \cdot x_{2})g^{-1}$
 $= (gx_{1}) \cdot e \cdot (x_{2}g^{-1})$
 $= (gx_{1})(gg^{-1})(x_{2}g^{-1})$
 $= (gx_{1}g^{-1})(gx_{2}g^{-1})$

 $= i_{q}(x_{1}) - i_{q}(x_{2})$ so ig is a homomorphism w/ kernel ker ig = $2 \times EG \mid ig(x) = e3$ $= 2 \times 6 \mid 9 \times 9^{-1} = 6$ $= \{ x \in G \mid qx = q \}$ = \(\times \(\) So the kernel is trivial, meaning ig is injective. Also, ig is siejective iq (6)=6 bcs $\forall y \in G \quad \exists x \in G \quad i_y(x) = y$

g(g-iyg)g-1

i. ig is an isomorphism G to G,
more specifically, an
inner automorphism

5. 15 Fector Group Computations

If N = G, then we can define
the factor group GN whose elems
are Cleft (right) corets and = Nag ages

4 identity of GH is

N = eN = Ne

4 inverse of gN is 3-1N = Ng-1

G

N aN DN and DN abo Y(a) = aN

N aN bN abN

N aN bN $8:6 \rightarrow 6$ 7(a) = aNN aN bN abN

An
$$|Mn|$$
 On $|Bn|$ $|Bn|$ $|Bn|$ $|An|$

Natice $|A_n|^2 = |A_n|$
 $|B_n|^2 = |A_n|$

hence $|A| \in S_n$ $|S|^2 \in A_n$

Notation:

N & G - Proper non-trivial subgroup

Computing Factor Groups Example Conpute Zy x Z6/(0,1)> Since $| \mathbb{Z}_4 \times \mathbb{Z}_6 | = | \mathbb{Z}_4 \times \mathbb{Z}_6 | = \frac{4.6}{|(0,1)|}$ = 4.6 = 4 Order of the group is 4 Z4 × Zc is isomorphic to either Zy or Zz X Zz

To check which, find at least one element in $\frac{Z_4 \times Z_6}{\langle (0,1) \rangle}$ of order 4. If one exists, is most be isomorphic to Z_4

Elements of Ty x To

```
Recall gNE GN is order n iff n is least pos
int sit! (gN) = gN = N iff gnEM
\langle (0,1) \rangle = \langle (0,1) \rangle + \langle 0,0 \rangle
        = {(0,0),(0,1),(0,2),(0,3),(0,4),(0,5)}
<(01)> + (10)=
    3(1,6), (1,1), (1,2), (1,3), (1,4), (1,5)3
  is order n=4 bcs
  4 is least pos int s.t. 4.(1,0) E < (0,1)>
                                    (0,0)
<(0, D) > + (2,0) =
   3 (2,0),(2,1),(2,2),(2,3),(2,4),(2,5)3
<(0,1)>+(7,0)=
   { (3,6), (3,1), (3,2), (3,3), (3,4), (3,5)}
  :- <(0,1)> +(1,0) is a generator
     of \mathbb{Z}_4 \times \mathbb{Z}_6 hence the group
     is cyclic of order 4,
    hence isomosphic to Zy
```

Theorem

$$\frac{\text{Proof}}{\phi:G=HxK\rightarrow H}$$

$$\phi((h,k))=h$$

is a projection homomorphism
$$\omega$$
/ Kernel
Ker $\phi = \frac{1}{2}(h, K) \in G / \phi((h, K)) = h = e3$

$$= \frac{3(e,k)}{k} + \frac{1}{k} = \frac{3(e,k)}{k} + \frac{3(e,k$$