ECON 6110, Microeconomic Theory III	Section 11
TA: Ruqing Xu	April 11, 2025

1 Bayesian Extensive Games and the Perfect Bayesian Equilibrium (PBE)

Definition 1.1. A Bayesian extensive game with observed actions is a tuple $\langle N, H, P, (\Theta_i), (p_i), (u_i) \rangle$ where:

- 1. Set of N players, set of histories H, and player function P.
- 2. For each i:
 - (a) A finite set of types Θ_i .
 - (b) A probability measure p_i over Θ_i . (Assume independent types and common prior)
 - (c) A preference relation \succeq_i over $Z \times \Theta$.

Remark. In solving the game, we often recast the game as an extensive game with imperfect information, which is a tuple $\langle N, H, P, f_c, (\mathcal{I}_i), (u_i) \rangle$. We introduce Nature as another player, selecting types at time 0. (It will become clearer in the signaling game)

Definition 1.2 (Informal). An assessment (σ, μ) is a **perfect Bayesian equilibrium** if

- 1. Sequentially rational: For each type θ_i , σ_i is the best response given μ_i and σ_{-i} at every information set I_i .
- 2. Bayesian updating whenever possible. (But no restriction on off-path beliefs)
- 3. Action determine beliefs: beliefs on i's type can only be changed by i's action. (True when independent types)

Remark. Solving for PBE often proceeds in a "loop":

2 Signaling Game

Consider the Spence's job-market signaling model with a discrete set of effort choices. The sender is a student, the receiver an employer. There are two types of students, defined by the value of their innate talent, $\theta \in \{2,3\}$. Nature chooses θ with probability p that $\theta = 2$. The student chooses an effort level in college, $a_1 \in \{0,1\}$. After observing a_1 , the employer chooses a wage $a_2 \in [0,\infty)$. The student maximizes wage less cost of effort, the latter inversely related to talent:

$$v_1(a_1, a_2, \theta) = a_2 - \frac{ca_1}{\theta} \tag{1}$$

for some c > 0. The employer minimizes the expected squared difference between the wage and the student's innate talent.¹

$$v_2(a_1, a_2, \theta) = -\mathbb{E}(a_2 - \theta)^2 \tag{2}$$

- (a) Define a Bayesian extensive game with the information above. Specify the players, set of types, prior on types, player's actions, and utility functions. What are player's strategies and beliefs? Represent it with a graph.
- (b) Does the above signaling game have a **separating PBE** where the low type chooses the low action and the high type chooses the high action?
- (c) Does the above signaling game have a **separating PBE** where the low type chooses the high action and the high type chooses the low action?
- (d) Does the above signaling game have a **pooling PBE** where both types chooses the low action?
- (e) Does the above signaling game have a **pooling PBE** where both types chooses the high action?
- (f) Does the above signaling game have a **semi-seperating PBE** where one type mixes?

¹Note that the employer doesn't want to *underpay* the student either, perhaps because the student would then choose an alternative employer.