

Aprendizaje automático I

Máster Universitario en Informática Industrial y Robótica

Tema 4

Metodología para el análisis de resultados

Óscar Fontenla Romero

Escuela Politécnica de Ingeniería de Ferrol

http://www.udc.es/epef

Índice

Métodos de estimación del error

Métodos de comparación de dos modelos

Métodos de comparación de múltiples modelos

Introducción

 En el tema anterior hemos analizado distintas métricas para la evaluación de los modelos

La cuestión ahora es: usando alguna de esas métricas ¿cómo podemos estimar su valor de la forma más realista posible?

Nos interesa el error de generalización del modelo

Introducción

- Idealmente, el error de un modelo debería ser estimado sobre toda la población de la que proceden los datos
 - Sin embargo, sólo se dispone de una muestra limitada de datos
- Solución más simple: emplear todo el conjunto de datos para entrenar el modelo y para estimar el error
- Problemas:
 - El modelo obtenido probablemente sobreajustará los datos
 - El error obtenido será muy optimista

Introducción

Ejemplo de estimación del error:

Error empírico (entrenamiento) = 0 Error real (prueba) > 0 Error *optimista*

No es válido para conocer el rendimiento *real* del sistema

Métodos de estimación del error

Partición simple del conjunto de datos (holdout)

- Validación cruzada:
 - Submuestreo aleatorio
 - K-fold cross-validation
 - Stratified K-fold cross-validation
 - Leaving one-out cross-validation

Partición simple (holdout)

- Dividir el conjunto de datos en dos subconjuntos:
 - El primero de ellos se empleará para entrenar (conjunto de entrenamiento, training set)
 - El segundo se emplea para estimar el error (conjunto de prueba, test set)

Partición simple (holdout)

- Inconvenientes de este método:
 - Si se dispone de pocos datos es un "lujo" disponer de una parte importante como conjunto de prueba
 - Puesto que sólo se realiza un único experimento con un conjunto de entrenamiento → resultado engañoso si la partición no es adecuada

Conjunto de entrenamiento (no adecuado)

Conjunto de prueba (no adecuado)

Por tanto, en general no es un buen método ...

Submuestreo aleatorio

- Realiza K experimentos empleando como conjunto de prueba diferentes subconjuntos del conjunto de datos:
 - Cada subconjunto de prueba se escoge aleatoriamente del total de muestras (sin reemplazamiento)
 - El resto de datos se emplean para entrenar
- El estimador del error real se obtiene como la media de los errores obtenidos en los K experimentos (entrenamientos):

$$E = \frac{1}{K} \sum_{i=1}^{K} E_i$$

Submuestreo aleatorio

Ejemplo:

Validación cruzada K-fold

- Dividir el conjunto de datos en K subconjuntos disjuntos de aproximadamente igual tamaño
- Para *i* = 1, ... , *K* hacer:
 - Para el subconjunto *i* entrenar el sistema con los *i*-1 subconjuntos restantes (*conjunto de entrenamiento*)
 - Estimar el error sobre el conjunto i (conjunto de prueba/test): E_i
- El error de validación se calcula como la media de los errores anteriores:

$$E = \frac{1}{K} \sum_{i=1}^{K} E_i$$

Validación cruzada K-fold

 Similar al submuestreo aleatorio pero tiene la ventaja de que todas las muestras del conjunto de datos se usan alguna vez para entrenar o como parte del conjunto de prueba

Validación cruzada K-fold estratificada

 Es una variante de la K-fold donde cada conjunto contiene aproximadamente el mismo porcentaje de muestras de cada clase que el conjunto completo

Leaving one-out

- Es el caso extremo de la validación cruzada K-fold tomando K como el número de muestras (N):
 - Para un conjunto de N muestras se realizan N experimentos
 - En cada experimento se emplean N-1 datos para entrenar y el dato restante para prueba
- Como en los casos anteriores el error real se estima como la media de todos los conjuntos de prueba:

$$E = \frac{1}{K} \sum_{i=1}^{K} E_i$$

Leaving one-out

Ejemplo:

Validación cruzada

- ¿Cuántos subconjuntos y experimentos realizar?:
 - Si se elige un gran número de subconjuntos
 - + El error estimado será muy preciso (sesgo pequeño respecto al error real)
 - La varianza del error real será elevada
 - Tiempo computacional elevado (muchos experimentos)
 - Si se eligen pocos subconjuntos
 - + Tiempo computacional reducido (pocos experimentos)
 - + La varianza del estimador será pequeña
 - El error estimado será menos preciso (sesgo mayor respecto al error real)

Validación cruzada

- En la práctica la elección del número de subconjuntos (paquetes) depende del tamaño del conjunto de datos:
 - Para conjuntos de datos de gran tamaño incluso una validación cruzada 3-fold será bastante precisa
 - Para conjuntos de datos pequeños, se puede emplear la leaving one-out para tener en el conjunto de entrenamiento tantos datos como sea posible
- Una elección habitual de la K-fold es K=10

Diagrama de caja (boxplot)

 Herramienta interesante para mostrar gráficamente los resultados de varias simulaciones del modelo:

Objetivos:

 Comparar varios modelos para determinar el mejor: el que proporcionará mejor rendimiento en el futuro (con nuevos datos)

 Determinar si las diferencias de error observadas entre los modelos son estadísticamente significativas

Ejemplo: ¿Cuál es el mejor de estos modelos en términos de error?

Las diferencias entre los métodos, ¿son estadísticamente significativas?

Premisas:

- Dos modelos a comparar sobre un conjunto de datos
- Un conjunto k de errores cometidos por el modelo 1
- Un conjunto k de errores cometidos por el modelo 2

Preguntas:

- ¿El rendimiento de ambos modelos es el mismo?
- ¿Hay diferencias estadísticamente significativas entre ambos?
- Solución a las preguntas anteriores: contraste (test) de hipótesis
 - Método estadístico para comprobar la validez o no de una hipótesis (hipótesis nula)

- Etapas del contraste de hipótesis:
 - 1. Definir la hipótesis nula (H₀)
 - 2. Seleccionar un test estadístico (*estadístico del contraste*) que pueda emplearse para evaluar la validez de H_0
 - 3. Elegir el nivel de significación (α) del test: probabilidad de rechazar H_0 siendo cierta
 - 4. Calcular el p-valor (probabilidad de obtener una discrepancia mayor de la observada siendo H_0 cierta)
 - 5. Comparar el *p*-valor obtenido con nivel de significación:
 - Si p ≤ α \rightarrow Rechazar H₀
 - Si $p > \alpha$ Aceptar H_0

El p-valor informa sobre cuál sería el nivel de significación más pequeño que nos permitiría rechazar la hipótesis nula

 Tipos de test estadísticos empleados en selección entre dos modelos:

T-test

- Evalúa las diferencias entre las medias (errores medios) de dos modelos. Hipótesis nula: $\mu_1 \mu_2 = 0$
- Suposiciones de este test estadístico: ambas distribuciones siguen una distribución Normal con idénticas varianzas

Test de Wilcoxon

- Evalúa las diferencias entre las mediana de dos modelos. Hipótesis nula: $m_1 m_2 = 0$
- Suposiciones de este test estadístico: ninguna

Metodología:

- ¿Cuál de los dos métodos de contrastes de hipótesis es más adecuado?:
 - Si se cumplen las suposiciones del t-test, este método es más potente (mayor probabilidad de rechazar H₀ cuando es falsa)
 - Cuando no se cumplen las suposiciones del t-test, el del Wilcoxon es más potente y más fiable (no asume ninguna distribución)
 - El test de Wilcoxon es más robusto frente a casos atípicos (outliers)
- Conclusión general: si no se conoce la distribución de los errores de cada método → emplear test de Wilcoxon

 Ejemplo: Dados dos modelos diferentes con los siguientes errores en el conjunto de prueba de 100 simulaciones

¿Hay diferencias estadísticamente significativas entre ambos modelos?

- **Ejemplo**: Se realiza un t-test para comprobarlo
 - Hipótesis nula (H_0): $\mu_1 \mu_2 = 0$ (ambas medias son iguales)
 - Nivel de significación (α): 0,01
 - Resultado obtenido:
 - p-valor del test: 1,1934x10⁻⁹
 - Puesto que p ≤ α → Rechazamos H₀ con un nivel de confianza del 99%

- Si sólo se dispone de dos grupos de observaciones (dos modelos)
 - Se puede comparar el error medio empleando un t-test o un test de Wilcoxon
- Sin embargo, si existen más de dos grupos (tres o más modelos):
 - No es apropiado simplemente comparar cada par de modelos empleando por ejemplo un t-test ya que la posibilidad de detectar incorrectamente una diferencia significativa aumenta con el número de comparaciones
- ¿Cuál es la metodología correcta en este caso?

- Metodología para múltiples modelos:
 - Emplear un análisis de varianza ANOVA o un test de Kruskal-Wallis para identificar si hay una diferencia significativa entre todas las medias
 - 2. Si el test de varianza concluye que sí hay diferencias
 - Hay que investigar cuáles son diferentes empleando un método de comparación múltiple
 - 3. Si el test de varianza concluye que no hay diferencias
 - Todas las medias iguales → todos los modelos iguales (se elige el más sencillo)

Metodología:

Análisis de varianza (ANOVA):

- Test paramétrico que compara las medias de modelos
- Hipótesis nula: todas las medias son iguales (provienen de la misma población o de diferentes poblaciones pero con la misma media)
- Suposiciones del test:
 - Todas las muestras de las diferentes poblaciones están normalmente distribuidas
 - Todas de las muestras de las diferentes poblaciones tienen la misma varianza
 - Todas las observaciones son mutuamente independientes
- El test sigue siendo robusto para observaciones que no cumplan "ligeramente" las dos primeras suposiciones

- Análisis de varianza (Kruskal-Wallis):
 - Test no paramétrico que compara las medias de diversos modelos
 - Hipótesis nula: todas las medias son iguales (provienen de la misma población o de diferentes poblaciones pero con la misma media)
 - Suposiciones del test:
 - Todas las observaciones provienen de una población continua
 - Todas las observaciones son mutuamente independientes

Métodos de comparación múltiple: comparan las diferencias entre cada par de medias con ajustes apropiados a la comparación múltiple:

- Método de Tukey
- Método de Holm-Bonferroni

Método de Scheffé