DENSITY ESTIMATION

Density estimation

- Parametric (mentioned previously)
 - □ Given a model, estimate parameters with MLE or MAP
 - Can be used for classification & regression
- Semiparametric
 - Mixture density (such as GMM)
 - Trained with Expectation-maximization (EM) algorithm
- Nonparametric
 - Histogram
 - K-NN

Why density estimation

- Recall that we need to compute probability to use Bayes classifiers
- Density means probability density function, used to compute probability

Parametric estimation recap

- The term "parametric" in probability (statistics)
 means the distribution of the problem is know
- Without knowing anything, we assume
 - Equal probability for discrete case
 - Gaussian for continuous case
- Used model
 - Independent RV: Naïve Bayes classifier
 - Non-independent RV: Bayes classifier

Mixture of density

- A sample is randomly chosen from three clusters
- Each cluster has its own density function
- https://towardsdatascience.com/gaussian-mixture-models-explained-6986aaf5a95

Introduction to GMM

□ A Gaussian mixture model is a weighted sum of Gaussian densities $g(x_{(i)}|\mu_j, \Sigma_j)$ given by (after some math steps omitted)

$$f_{y}(\mathbf{x}_{(i)}|\theta) = \sum_{j} \alpha_{j}g(\mathbf{x}_{(i)}|\boldsymbol{\mu}_{j}, \Sigma_{j})$$

where $\alpha_1 + \cdots + \alpha_m = 1$ and $\mathbf{x}_{(i)}$ is an outcome (observation) from a multidimensional RV \mathbf{y}

It can approximate any pdf (with sufficiently large m)

Introduction to GMM

- GMM is an extension of Gaussian model
 - Gaussian model has only one mixture
- GMM can be used as
 - Classifier
 - Soft clustering
- Model complexity
 - Naïve Bayes ≤ Bayes ≤ GMM

Histogram example

Not related to our problem

(https://mpatacchiola.github.io/blog/2016/11/12/the-simplest-classifier-histogram-intersection.html)

Histogram

- □ How to determine # of bins (no obvious approach)
- Problem of origin
 - \square Bin width = 1
 - □ Dataset: 0.99, 0.98, 1.01, 1,99, 2.02
 - Bin 1 (0 \sim 0.99): 2, center @ 0.5
 - Bin 2 (1.00 \sim 1.99): 2, center @ 1.5
 - Bin 3 (2.00 \sim 2.99): 1, center @ 2.5
- But, obviously there are only two clusters

Histogram Naïve estimator

 \square Let x_i be a data point with total of N points

$$\hat{p}(x) = \frac{\#\{x - h/2 < x_i \le x + h/2\}}{Nh}$$

- \Box Center the bin to x in $\hat{p}(x)$
- Can plot a curve if x is a variable

Histogram kernel estimator

- □ We use a rectangle window function previously, i.e., $\#\{x-h/2 < x_i \le x+h/2\}$
- It is possible to use a kernel function instead

$$\hat{p}(x) = \frac{1}{Nh} \sum_{i=1}^{N} g\left(\frac{x - x_i}{h}\right)$$

where $g(\cdot)$ is a kernel function

K-NN

- □ K-NN can be use for □
 - Density estimate (exercise)
 - Classification
 - Regression

Outlier detection

- Similar term: Anomaly detection
- Used to detect special cases, such as credit fraud
 - Identity theft
 - Card lost
 - etc

https://www.eastwestbank.com/ReachFurther/en/News/Article/Credit-Card-Fraud-The-Three-Words-You-Never-Want-to-Hear

Outlier detection

- Distance based detection (only o3) versus density based detection (able to detect o1 & o2)
 - Local density ~ local distribution

https://towardsdatascience.com/density-based-algorithm-for-outlier-detection-8f278d2f7983

Outlier detection

- Outliner detection (list only a few)
 - Probabilistic approach
 - Factor analysis
 - LOF (Local outlier factor) a density-based approach
 - Autoencoder
- Read the following for the idea of LOF:
 https://towardsdatascience.com/density-based-algorithm-for-outlier-detection-8f278d2f7983