Machine Learning Stanford University Professor Andrew Ng

Jordan Hong

May 23, 2020

Contents

1	Intr	roduction
	1.1	What is Machine Learning
	1.2	Supervised Learning
	1.3	Unsupervised Learning
2	Line	ear Regression with One Variable
	2.1	Model Representation
		2.1.1 Notations
		2.1.2 Hypothesis Function
	2.2	Cost Function
	2.3	Gradient Descent
		2.3.1 Intuition
		2.3.2 Gradient Descent Algorithm
		2.3.3 Gradient Descent with Linear Regression

1 Introduction

1.1 What is Machine Learning

- 1. Machine Learning
 - Grew out of work in Artificial Intelligence (AI)
 - New capabilities for computers
- 2. Examples:
 - database mining
 - applications can't programby hand (handwriting recognition, Natural Language Processing (NLP), Computer Vision)
 - Neuromorphic applications

3. Definition

• Arthur Samuel(1959)

Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed.

• Tom Mitchell(1998)

Well-posed Learning Problem: A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.

- 4. Machine Learning in this course:
 - (a) Suppervised Learning
 - (b) Unsupervised Learning
 - (c) Others: reinforcement learning, recommender systems
 - (d) Practical application techniques

1.2 Supervised Learning

In supervised learning, the the right answer is given. For example:

- 1. Regression: predict real-valued output.
- 2. Classification: predict discrete-valued output.

Figure 1: Supervised Learning

1.3 Unsupervised Learning

The right answer is not given, e.g. cocktail problem (distinguishing two voices from an audio file.)

Unsupervised Learning

Figure 2: Unsupervised learning

2 Linear Regression with One Variable

2.1 Model Representation

2.1.1 Notations

For a training set:

- $\mathbf{m} = \text{Number of training examples}$.
- \bullet **x** = "input" variable / features.
- y = "output" variables / "target" variable.
- (x,y) one training example.
- \bullet ($\mathbf{x}^{\mathbf{i}},\mathbf{y}^{\mathbf{i}}$) denotes the \mathbf{i}^{th} training example

2.1.2 Hypothesis Function

A hypothesis function (h) maps input (x) to estimated output (y). How do we represent h?

Hypothesis Function
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$
 (1)

We can apply ${\it Univariate\ linear\ regression}$ with respect to x.

2.2 Cost Function

Recall 1. The θ_i s are parameters we have to choose. The intuition is is that we want to choose θ_i s such that h_{θ} is closest to y for our training examples (x,y).

Cost Function
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$
 (2)

Summary

- 1. Hypothesis $h_{\theta}(x) = \theta_0 + \theta_1 x$
- 2. Parameters θ_0, θ_1
- 3. Cost Function $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) y^{(i)})^2$
- 4. Goal $\min_{\theta_0,\theta_1} J(\theta+0,\theta_1)$

2.3 Gradient Descent

2.3.1 Intuition

- 1. We have some function $J(\theta_0, \theta_1)$, we want to $\min_{\theta_0, \theta_1} J(\theta_0, \theta_1)$
- 2. Outline: start with some θ_0, θ_1 , keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ until we end up at a minimum.

2.3.2 Gradient Descent Algorithm

Algorithm

repeat until convergence{

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{ (for j=0 and j=1)}.$$

Notes

}

- 1. the := denotes non-blocking assignment, i.e. simultaneously updates θ_0 and θ_1
- 2. We use the derivative to find a local minimum.
- 3. α denotes the learning rate. Gradient descent can converge to a local minimum even when the learning rate α is fixed. As we approach a local minimum, gradient descent will automatically take smaller steps. Therefore it is not needed to decrease α over time.

2.3.3 Gradient Descent with Linear Regression

Recall, we have:

1. Gradient Descent Algorithm:

repeat until convergence{

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{ (for j=0 and j=1)}.$$

}

2. Linear Regression Model:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

.

We can substitute the above equations, which gives us:

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x^{(i)}$$

•