	T T	
C12 miercuri, 24 ianuarie 2024 23:24		
Cum se face unificarea?		
for the state of t		
In logica predicatelor, rezoluția <i>unifică</i> un literal cu negatul lui: $A \lor P(t_1, t_2,, t_n)$ și $B \lor \neg P(t_1, t_2,, t_n)$ dacă putem unifica ("potrivi") argumentele lui P și $\neg P$: t_1 cu t_1 ,		
O substituție e o funcție care asociază unor variabile niște termeni: $\{x_1 \mapsto t_1, \ldots, x_n \mapsto t_n\}$		
Doi termeni se pot unifica dacă există o substituție care îi face egali		
(o asemenea substituție se numește <i>unificator</i>)		
$f(x, g(y, z), t)\{x \mapsto h(z), y \mapsto h(b), t \mapsto u\} = f(h(z), g(h(b), z), u)$		
Termenul T cu substituția σ se notează uzual postfix: $T\sigma$		
Substituția găsită se aplică predicatelor care rămân (rezolventul):		
$ \frac{A \vee P(t_1, t_2,, t_n) B \vee \neg P(t_1^{J}, t_2^{J},, t_n^{J})}{A\sigma \vee B\sigma} $		
AU V BU		
Reguli de unificare		
O variabilă x poate fi unificată cu orice termen t (substituție) dacă x		

O variabilă x poate fi unificată cu orice termen t (substituție) dacă x nu apare în t (altfel, substituind obținem un termen infinit) deci nu: x cu f (h(y), g (x, z)); dar trivial, putem unifica x cu x Doi termeni f () pot fi unificați doar dacă au aceeași funcție, și argumentele (termeni) pot fi unificate (poziție cu poziție) Două constante (funcții cu 0 arg.) ⇒ unificate dacă sunt identice		
Cât de generală e o demonstrație?		
Cat de generala e o demonstrație.		
rezoluție: $\frac{\neg boy(x) \lor \neg girl(x) \lor child(x)}{\neg girl(c) \lor child(c)}$		
Demonstrația e făcută fără a ține cont (sau înțelege) semnificația predicatelor boy, child, good, etc.: puteau fi $P(x)$, $Q(x)$, $R(x)$,		
Demonstrația e valabilă pentru <i>orice predicate</i> care satisfac ipotezele.		

1			
	Recapitulăm: sintaxa logicii predicatelor		
	Formulele logicii predicatelor sunt definite structural recursiv: Termenii		
	variabilă v sau constantă c $f(t_1, \cdots, t_n)$ cu f funcție n -ară și t_1, \cdots, t_n termeni		
	Formule (well-formed formulaşformule bine formate):		
	$P(t_1, \dots, t_n)$ cu P predicat n -ar; t_1, \dots, t_n termeni $\neg \alpha$ unde α este o formulă unde α , $\alpha \rightarrow \beta$ β sunt formule		
	$\forall v \alpha$ cu v variabilă, α formulă: cuantificare universală $t_1 = t_2$ cu t_1 , t_2 termeni (în logica de ord. I cu egalitate)		
	În loc de propoziții avem <i>predicate</i> (peste <i>termeni</i>).		
	Sintaxă și semantică		
	Ca în logica propozitională (si pentru orice limbai), deosebim		

Ca în logica propozițională (și pentru orice limbaj), deosebim sintaxa = forma, regulile după care construim ceva (aici, formule)			
semantica = înțelesul construcțiilor de limbaj			
La fel ca în logica propozițională, lucrăm cu		_	
deducția (demonstrația): procedeu pur sintactic implicația / consecința logică (consecința semantică):			
interpretăm formula (înțelesul ei, valoarea de adevăr)			
Ne interesează corespondența dintre aceste două aspecte.			
Reguli și ce înseamnă aplicarea lor			
Regulile discutate sunt sintactice: manipulează forma (simboluri, nu înțelesul lor).			
Regulile lui deMorgan: $\neg(a \lor b) = \neg a \land \neg b, \neg(a \land b) = \neg a \lor \neg b$			
Înlocuim o formă cu alta. Rezultatul: formulele sunt echivalente			
Regulă: Dacă un literal L e singur într-o clauză: ştergem toate clauzele din care apare			
ștergem ¬L din toate clauzele			

ştergem ¬L din toate clauzele Rezultatul: dacă formula era realizabilă, rămâne realizabilă		
Axiomele calculului predicatelor		
A1: $\alpha \rightarrow (\beta \rightarrow \alpha)$ (A1-A3 din logica propozițională) A2: $(\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma))$ A3: $(\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta)$ A4: $\forall x (\alpha \rightarrow \beta) \rightarrow (\forall x\alpha \rightarrow \forall x\beta)$		
A5: $\forall x \alpha \rightarrow \alpha[x \leftarrow t]$ dacă x poate fi substituit cu t în α A6: $\alpha \rightarrow \forall x \alpha$ dacă x nu apare liber în α *Definim: putem substitui variabila x cu termenul t în $\forall y \phi$ dacă:		
x nu apare liber în φ (substituția nu are efect) sau x se poate substitui cu t în φ și y nu apare în t (nu putem substitui variabile legate)		
În logica cu egalitate, adăugăm si A7: $x = x$ A8: $x = y \rightarrow \alpha = \beta$ unde β se obține din α înlocuind oricâte din aparițiile lui x cu y .		
Regula de inferență: e suficient modus ponens: A A → B B		
Deducție		
Deducție		

Fie H o mulțime de formule. O deducție (demonstrație) din H e un șir de formule A_1, A_2, \cdots, A_n , astfel ca $\forall i \in 1, n$ 1. A_i este o axiomă, sau			
 A_i este o ipoteză (o formulă din H), sau A_i rezultă prin modus ponens din A_j, A_k anterioare (j, k < i) 			
Spunem că A _n rezultă din H (e deductibil, e o consecință). Notăm:			
$H \vdash A_n$			
Alte reguli de inferență	-		
$\forall x \ \phi(x)$ $\phi(c)$ instanțiere universală (vezi A5) unde c e o constantă arbitrară (nu apare anterior în demonstrație) Dacă ϕ e valabil pentru orice x , atunci și pentru o valoare arbitrară c .			
$\frac{\phi(c)}{\forall x \ \phi(x)} \text{generalizare universală (vezi A6)}$			
unde c e o valoare arbitrară (nu apare în ipoteze) Dacă ϕ e valabilă pentru o valoare arbitrară, e valabilă pentru orice x .			

unde c e o valoare arbitrară (nu apare în ipoteze) Dacă ϕ e valabilă pentru o valoare arbitrară, e valabilă pentru orice x . $\frac{\exists x \ \phi(x)}{\phi(c)}$ instanțiere existențială Dacă există o valoare cu proprietatea ϕ , o instanțiem (cu un nume nou). $\frac{\phi(c)}{\exists x \ \phi(x)}$ generalizare existențială Dacă ϕ e adevărată pentru o valoare, există o valoare care o face adevărată				
Definim noţiunile: univers interpretare model				
consecință semantică				
Cum interpretăm o formulă ?				

Cum interpretăm o formulă ?		
Intuitiv, găsim un <i>înțeles</i> pentru fiecare simbol din formulă: O <i>interpretare</i> (<i>structură</i>) / în logica predicatelor constă din: o mulțime nevidă U numită <i>universul</i> sau <i>domeniul</i> lui / (mulțimea valorilor pe care le pot lua variabilele) pentru orice simbol de constantă c, o valoare c₁ ∈ U pentru orice simbol de funcție n-ară f, o funcție f₁: U ⁿ → U pentru orice simbol de predicat n-ar P, o submulțime P₁ ⊆ U ⁿ . (o <i>relație</i> n-ară pe U) Deci, dăm o <i>interpretare</i> fiecărui simbol din formulă. O interpretare nu dă valori variabilelor (vezi ulterior: atribuire).		
Exemple de interpretări $\forall x \ \forall y \ \forall z. P(x, y) \land P(y, z) \rightarrow P(x, z)$ tranzitivitate De exemplu: universul U = numere reale;		
predicatul P: relația ≤		

universur o = numere reale, predicatul P: relația ≤			
$\exists e \forall x \neg A(x, e)$ existența mulțimii vide: predicatul $A(x, y) e x \in y$			
Implicația logică (consecința semantică)			
Fie H o mulțime de formule și C o formulă. Notăm $I \models H$ dacă I e un model pentru fiecare formulă din H . Spunem că H implică C ($H \models C$) dacă pentru orice interpretare I , $I \models H$ implică $I \models C$			
(C e adev. în orice interpretare care satisface toate ipotezele din H)			

Consistență și completitudine		
La fel ca în logica propozițională deducția (demonstrația) se face pur sintactic consecința/ implicația logică e o noțiune semantică, considerând interpretări și valori de adevăr.		
Calculul predicatelor de ordinul I este consistent și complet: $H \vdash C$ dacă și numai dacă $H \models C$		
Concluzia C se poate deduce (demonstra) ⊢ din ipotezele H o și numai dacă ea e o consecință semantică ⊨ a ipotezelor H (e adevărată în orice interpretare care satisface toate ipotezel	POSSAUPS:	
Dar: relația de implicație logică e doar semidecidabilă dacă o formulă e o tautologie, ea poate fi demonstrată dar dacă nu e, încercarea de a o demonstra (sau o refuta) poate continua la nesfârșit		
Există logici mai bogate decât logica predicatelor	\dashv	
Principiul inducției matematice e (în ciuda numelui) o regulă de deducție în teoria aritmetică a numerelor naturale	e	

o regula de deducție în teoria aritmetica a numerelor naturale			
$\forall P[P(0) \land \forall k \in N.P(k) \rightarrow P(k+1)] \rightarrow \forall n \in N P(n)$ formulă în logica de <i>ordinul</i> 2 (cuantificare peste predicate)			
Logica are limitări	<u>i</u>		
	igspace		
Teoria numerelor naturale cu adunare (aritmetica Presburger) e decidabilă (orice putem exprima despre adunarea numerelor naturale e demonstrabil).			
Dar: nu putem exprima divizibilitate, numere prime, etc.			
Aritmetica lui Peano (cu adunare și înmulțire) e mai bogată dar e nedecidabilă: sunt afirmații despre care nu se poate decide dacă sunt adevărate sau nu.			
Teoremele de incompletitudine ale lui Gödel			

1			 ı	
	Teoremele de incompletitudine ale lui Gödel			
	Prima teoremă de incompletitudine:			
	Orice sistem logic consistent care poate exprima aritmetica elementară e incomplet			
	i.e., se pot scrie afirmații care nu pot fi nici demonstrate nici infirmate în acel sistem			
	Demonstrație: codificând formule și demonstrații ca numere construim un număr care exprimă că formula sa e nedemonstrabilă			
	A doua teoremă de incompletitudine:			
	Consistența unui sistem logic capabil să exprime aritmetica elementară nu poate fi demonstrată în cadrul acelui sistem.			
	dar ar putea fi eventual demonstrată în alt sistem logic			
		4		
	Exercițiu			
	Formalizați în logica predicatelor:			
	1. Toti cainii latra noaptea.			
	2. Oricine are o nisica nu o sa aibe nici un			

2. Oricine are o pisica nu o sa aibe nici un soarece. 3. Cei care adorm greu nu au nimic care latra noaptea. 4. Ionut are fie o pisica, fie un caine. 5. (Concluzia) Daca Ionut adoarme greu, atunci Ionut nu are nici un soarece.														