Support Vector Machine MSB881

October 6, 2020

Youngsun Kwon yokwon@kaist.ac.kr

Business and Technology Management, KAIST http://itip.kaist.ac.kr

- Issues in relation with performance of ML algorithms
 - Generalization: ability to perform well on unseen (new) inputs.
 - Training error: error measured on the training set.
 - Generalization error (test error): Expected value of the error on a new input.
 - How to measure? With test set!
 - Expected test error is greater than or equal to the expected value of training error. Why?
 - Two concerns in machine learning
 - Making the training error small
 - Making the gap between training and test error small

- Issues in relation with performance of ML algorithms
 - **Underfitting**: the model is not able to obtain a sufficiently low error value on the training set.
 - Overfitting: the gap between training and test error is too large.
 - Capacity: ability to fit a wide variety of functions.
 - Models with low capacity is likely to face underfitting and those with high capacity overfitting.
 - Ex) Linear models with high degree polynomials is an example of high capacity

- Issues in relation with performance of ML algorithms
 - Three models for underfitting and overfitting

- Issues in relation with performance of ML algorithms
 - Among competing models, which one need to be chosen?
 - Rule of thumb(Occam's razor): choose the simplest one.
 - Choosing a model with appropriate capacity: optimal capacity

- Issues in relation with performance of ML algorithms
 - The size of training set matters!
 - Expected generalization error can never increase as the number of training examples increases!
 - No machine learning algorithm is UNIVERSALLY any better than any other!
 - The goal of ML research is not to seek a universal learning algorithm, nor the absolute best learning algorithm.

- Issues in relation with performance of ML algorithms
 - Regularization
 - Any modification to a learning algorithm that is intended to reduce its generalization error but not its training error
 - An example is weight decay
 - Minimize $J(\mathbf{w}) = MSE_{train} + \lambda \mathbf{w}^{T}\mathbf{w}$
 - Trade off between fitting the training data and choosing a small model. The second term is a regularizer, a penalty of adding more features. λ is a capacity hyperparameter.

- Issues in relation with performance of ML algorithms
 - Regularization
 - Choosing λ

- A popular supervised machine learning algorithm.
- Used for classification and regression, but mostly for classification.
- Applications
 - Face detection
 - Classification of images
 - Bioinformatics protein and cancer classification
 - Handwriting recognition
 - Etc.

- SVM maps a linear function to two classes (with labels, +1 and -1 (or 0)), using a linear separating hyperplane. Search the space of \mathbf{w} and \mathbf{b} ($\mathbf{w} \cdot \mathbf{x} + \mathbf{b} = 0$) to find the separator.
 - SVM construct a maximum margin separator. Which separator?
 - Logistic regression can also do the task.
 - Then why SVM?
 - Non-parametric method!

- **SVM** can present (imbed) the data into a **higher-dimensional space** using **kernel trick**.
 - Data, not linearly separable, can be separable in the higher dimensional space.
 - In the figure, linear separation is not possible.

$$-\mathbf{w} \cdot \mathbf{x} + \mathbf{b} = \mathbf{0}$$

• Three functions: x + y, xy, x^2 .

	(0,4)	(1,3)	(3,1)	(4,0)
х+у	4	4	4	4
ху	0	3	3	0
x^2	0	1	9	16

- Data, not linearly separable, can be separable in the higher dimensional space.
 - The hyperplane is actually nonlinear in the original space.

	(0,4)	(1,3)	(3,1)	(4,0)
x+y	4	4	4	4
xy	0	3	3	0
\mathbf{x}^2	0	1	9	16

SVM kernels.

- Dual representation: $\mathbf{w} \cdot \mathbf{x} + b = b + \sum_{i=1}^{m} \alpha_i \mathbf{x} \cdot \mathbf{x}_i$
- Polynomial kernel: $k(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i \mathbf{x}_j + 1)^d$, d is the degree of the polynomial.
- Gaussian kernel: $k(x,y) = exp\left(-\frac{\|x-y\|^2}{2\sigma^2}\right)$
- RBF(radial basis function): $k(x, y) = exp(-\gamma ||x y||^2), \gamma > 0.$

Normal distribution (Gaussian distribution)

• One variable probability density function (pdf) with two parameters, μ and σ^2 .

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right) - \infty < \chi < \infty$$

Normal distribution (Gaussian distribution)

Multivariate Normal distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right) - \infty < \chi < \infty$$

$$f_{\mathbf{X}}(x_1,\ldots,x_k) = rac{\exp\left(-rac{1}{2}(\mathbf{x}-oldsymbol{\mu})^{\mathrm{T}}oldsymbol{\Sigma}^{-1}(\mathbf{x}-oldsymbol{\mu})
ight)}{\sqrt{(2\pi)^k|oldsymbol{\Sigma}|}}$$

$$oldsymbol{\mu} = egin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}, \quad oldsymbol{\Sigma} = egin{pmatrix} \sigma_X^2 &
ho\sigma_X\sigma_Y \\
ho\sigma_X\sigma_Y & \sigma_Y^2 \end{pmatrix}.$$

Multivariate Normal Distribution

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1260349

Contributed by: Chris Boucher (March 2011)

Open content licensed under CC BY-NC-SA

https://demonstrations.wolfram.com/TheBivariateNormalDistribution/

SVM kernels.

- Professor Andrew Ng
 - Each polynomial variable can be seen as a feature: choosing a better choice of the features.

Non-linear Decision Boundary

Predict
$$y = 1$$
 if

$$\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 + \theta_5 x_2^2 + \dots \ge 0$$

Lecture 12.4 — Support Vector Machines | (Kernels-I) — [Machine Learning | Andrew Ng]

SVM kernels.

- Professor Andrew Ng
 - Similarity functions are kernel functions

Lecture 12.4 — Support Vector Machines | (Kernels-I) — [Machine Learning | Andrew Ng]

Prof. Youngsun Kwon, BTM, KAIST (c) copyright 2020

SVM kernels.

Professor Andrew Ng

Kernels and Similarity
$$f_1 = \text{similarity}(x, \underline{l^{(1)}}) = \exp\left(-\frac{\sum_{j=1}^{n} (x_j - l_j^{(1)})^2}{2\sigma^2}\right) = \exp\left(-\frac{\sum_{j=1}^{n} (x_j - l_j^{(1)})^2}{2\sigma^2}\right)$$
If $\underline{x} \approx \underline{l^{(1)}}$:
$$f_1 \approx \exp\left(-\frac{0^2}{2\sigma^2}\right) \approx 1$$

$$f_2 \approx \frac{1}{2\sigma^2}$$
If \underline{x} if far from $\underline{l^{(1)}}$:
$$f_1 = \exp\left(-\frac{(\log n_1 \log n_2)^2}{2\sigma^2}\right) \approx 0$$
.

Lecture 12.4 — Support Vector Machines | (Kernels-I) — [Machine Learning | Andrew Ng]

• SVM kernels.

- Professor Andrew Ng
 - Sigma squared is the parameter of GK.

Example:

$$\Rightarrow l^{(1)} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}, \quad f_1 = \exp\left(-\frac{\|x - l^{(1)}\|^2}{2\sigma^2}\right)$$

$$\Rightarrow \sigma^2 = 1$$

$$x = \begin{bmatrix} 3 \\ 5 \end{bmatrix} \quad \sigma^2 = 0.5$$

$$x = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

$$x = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

Lecture 12.4 — Support Vector Machines | (Kernels-I) — [Machine Learning | Andrew Ng]

- SVM kernels.
 - Professor Andrew Ng

Lecture 12.4 — Support Vector Machines | (Kernels-I) — [Machine Learning | Andrew Ng]

- Support vector machines (SVM)
 - One weakness is high computational cost of training with large data.

A kernel function with three features from Russell and Norvig.

3. K-nearest neighbors

- A non-parametric supervised learning algorithm
 - Find the k closest point to a new instance and then classify the point by majority vote of its k neighbors. Each object votes for their class and the class with the most votes is taken as the prediction.
- Algorithm properties
 - A family of techniques used for classification or regression.
 - Actually no training!
 - Simply return y value for x by looking up the k-nearest neighbors to x in the training data X.
 - Achieves very high capacity but it cannot learn that which feature is more discriminative than others.

3. K-nearest neighbors

4. Scikit-learn library

- Scikit-learn (sklearn) offers machine learning algorithms for classification, regression, clustering, dimension reduction, and so on.
 - Check if scikit-learn and scikit-image are installed in your working environment by using 'conda list' at your working environment.
 - If not, install also scikit-learn and scikit-image, which is for image processing.
 - Now you can use SVM module.

5. Classifier Comparison

https://scikitlearn.org/stable/auto_ex amples/classification/pl ot classifier comparison .html

5. Classifier Comparison

https://scikitlearn.org/stable/auto_examples/cla ssification/plot_classifier_compariso n.html