Question 1

a) $\frac{4}{2} \cdot \frac{2}{4} \cdot \frac{4}{4} = 2^{-1}$

Question 2

<i>X</i> ₁	\oplus	Y_1	\oplus	Y_0	\longrightarrow	Z _{2,3}
0	\oplus	0	\oplus	0	\longrightarrow	0
0	\oplus	1	⊕	1	\longrightarrow	0
1	0	0	0	1	\rightarrow	0
1	\oplus	0	0	1	\longrightarrow	0
0	0	1	⊕	0	\rightarrow	1
0	0	0	0	0	\longrightarrow	0
1	0	0	0	1	\rightarrow	0
1	0	0	0	0	\longrightarrow	1
0	0	1	0	1	\longrightarrow	0
0	0	1	0	1	\rightarrow	0
1	0	1	0	0	\rightarrow	0
1	0	0	0	0	\rightarrow	1
0	\oplus	0	0	1	\rightarrow	1
0	0	1	0	1	\rightarrow	0
1	\oplus	1	⊕	0	\rightarrow	0

X_3	\oplus	<i>X</i> ₂	\oplus	Y ₂	\rightarrow	Z _{c,4}	Z _{2,3}	0	Z _{c,4}	\rightarrow	$Z_{i,i} \oplus Z_{i,i}$
0	\oplus	0	\oplus	0	\rightarrow	0	0	0	0	\rightarrow	0
0	\oplus	0	\oplus	0	\rightarrow	0	0	\oplus	0	\longrightarrow	0
0	\oplus	0	0	1	\rightarrow	1	0	\oplus	1	\longrightarrow	1
0	\oplus	0	⊕	0	\rightarrow	0	0	\oplus	0	\longrightarrow	0
0	\oplus	1	⊕	1	\rightarrow	0	1	\oplus	0	\longrightarrow	1
0	\oplus	1	⊕	0	\rightarrow	1	0	\oplus	1	\longrightarrow	1
0	\oplus	1	⊕	1	\rightarrow	0	0	\oplus	0	\longrightarrow	0
0	\oplus	1	⊕	1	\rightarrow	0	1	\oplus	0	\longrightarrow	1
1	\oplus	0	⊕	1	\rightarrow	0	0	\oplus	0	\longrightarrow	0
1	\oplus	0	⊕	1	\rightarrow	0	0	\oplus	0	\longrightarrow	0
1	0	0	0	0	\rightarrow	1	0	\oplus	1	\longrightarrow	1
1	0	0	0	1	\rightarrow	0	1	\oplus	0	\longrightarrow	1
1	0	1	0	0	\rightarrow	0	1	⊕	0	\longrightarrow	1
1	0	1	0	0	\rightarrow	0	0	0	0	\longrightarrow	0
1	0	1	0	1	\rightarrow	1	0	0	1	\longrightarrow	1
1	0	1	0	0	\rightarrow	0	0	0	0	\longrightarrow	0

b)
$$1 \oplus 1 \oplus 0 \rightarrow 0 \oplus 0 \rightarrow 0$$
Bias of $Z_{2,3} \oplus Z_{c,4}$: $\varepsilon(Z_{2,3} \oplus Z_{c,4}) = \frac{8}{16} - \frac{1}{2} = +0$
First there was a need to find what $Z_{c,4}$ is. Then XOR $Z_{2,3}$ and $Z_{c,4}$ and calculate the bias after.

c)

This pair of S-Box is interesting as we can see how one specific input bit will directly affect one other specific bit in the SPN.

$$\begin{array}{l} \langle c_1, c_2 \rangle \leftarrow \langle m + kh, \, kg \rangle \\ \text{Calculating } c_1 \colon (4,21) \ +_{E_{31}(1,1)} (22,21) \ +_{E_{31}(1,1)} (22,21) \\ \text{Calculating } 2h \ = \ (22,21) \ +_{E_{31}(1,1)} (22,21) \colon \\ \\ \text{Gradient } \Delta = \frac{3x_h^2 + 1}{2y_h} \, mod \, 31 \ = \ (2 \cdot 21)^{-1} \cdot (3 \cdot 22^2 + 1) \equiv 42^{-1} \cdot 27 \equiv 459 \equiv 25 \, mod \, 31 \\ \\ \text{x coordinate for } 2h \colon x_{2h} = 25^2 - (2 \cdot 22) \equiv 23 \, mod \, 31 \\ \\ \text{y coordinate for } 2h \colon y_{2h} = 25(22 - 23) - 21 \equiv -46 \equiv 16 \, mod \, 31 \\ \\ \text{Therefore } 2h \ = \ (23,16) \end{array}$$

Calculating
$$c_1 = (4, 21) +_{E_{31}(1,1)} (23, 16)$$
:

Gradient $\Delta_{c_1} = \frac{16-21}{23-4} \equiv \frac{-5}{19} \equiv 19^{-1} \cdot -5 \equiv -90 \equiv 3 \mod 31$

x coordinate for R : $x_{c_1} = 3^2 - 4 - 23 \equiv 13 \mod 31$

y coordinate for R : $y_{c_1} = 3(4 - 18) - 21 \equiv 45 \equiv 14 \mod 31$

There $c_1 = (13, 14)$

Calculating
$$c_2 = (0,1) +_{E_{31}(1,1)} (0,1)$$
:

Gradient $\Delta = \frac{3x_h^2 + 1}{2y_h} \mod 31 = (2 \cdot 1)^{-1} \cdot (3 \cdot 0 + 1) \equiv 2^{-1} \cdot 1 \equiv 16 \mod 31$

x coordinate for c_2 : $x_{c_2} = 16^2 - (2 \cdot 0) \equiv 8 \mod 31$

y coordinate for c_2 : $y_{c_2} = 16(0 - 8) - 1 \equiv -129 \equiv 26 \mod 31$

Therefore $c_2 = (8, 26)$

Therefore the message Alice will send to Bob is $\langle (13, 14), (8, 26) \rangle$

Question 4

 (Exam) Show/prove that there exists a MAC that is secure (existentially unforgeable) but that is not strongly secure.

Let $\Pi = (Gen, Mac, Vrfy)$ be a strongly secure MAC. A different scheme where $\Pi' = (Gen', Mac', Vrfy')$ where $Mac'_k(m) = Mac_k(m) \mid\mid 0$ and $Vrfy'_k(m, t \mid\mid b) = Vrfy_k(m, t)$ where b is the bit added in Mac'. Thus this would mean that Π' is secured as an adversary is unable to forge a correct tag with a message not seen before but not strongly secured since an adversary is able to create a new tag t' for the same message m. This can be done by flipping the last bit of $Mac'_k(m)$ from 0 to 1.

Question 5

In the Hiding experiment, the poly-time adversary A and Challenger will establish common parameters using $Setup(1^n)$. A then outputs a pair of messages m_0 , $m_1 \in \{0, 1\}^n$. The challenger will choose a uniform bit $b \in \{0, 1\}$ and computes c_A using $Commit(m_b) \to c_A$. A is then given com and outputs a bit b' and wins iff b' = b.

Under the random-oracle model, following the first property, if x has not been queried to H, then the value of H(x) is uniform. Else, if x has been queried before, then H(x) will be consistent. However, considering here that x = m + r where r is a randomly generated string, c_A will always appear uniform to A no matter the input m because the probability that r repeats $\frac{1}{2^n}$. Therefore, this commitment scheme will be secure for all PPT adversary A where $Pr[Hiding_{A,Com}(n) = 1] \leq \frac{1}{2} + negl(n)$.