Tables in Signals and Systems

Magnus Lundberg¹ Revised October 1999

Contents

Ι	Continuous-time Fourier series	2
	I-A Properties of Fourier series	2
	I-B Fourier series table	3
II	Continuous-time Fourier transform	4
	II-A Properties of the Fourier transform	4
	II-B Fourier transform table	5
ΙI	I Discrete-time Fourier series	7
	III-AProperties of discrete-time Fourier series	7
	III-B Fourier series table	8
IV	Discrete-time Fourier transform	9
	IV-A Properties of the discrete-time Fourier transform	9
	IV-B Discrete-time Fourier transform table	10
\mathbf{V}	Sampling and reconstruction	11
V]	I Z-transform	12
	VI-A Properties of the Z-transform	12
	VI-B Z-transform table	13

¹The major part of this collection of tables was originally developed at the Div. of Signal Processing, Luleå University of Technology. It has been revised by Magnus Lundberg in October 1999

DEFINITIONS

$$\operatorname{sinc}(t) \stackrel{\triangle}{=} \frac{\sin(\pi t)}{\pi t} \qquad \qquad \Omega_o \stackrel{\triangle}{=} \frac{2\pi}{T_0}$$

I. CONTINUOUS-TIME FOURIER SERIES

A. Properties of Fourier series

Periodic signal	Fourier serie coefficient	
$x\left(t\right) = \sum_{k=-\infty}^{\infty} a_k e^{jk\Omega_o t}$	$a_{k} \stackrel{\triangle}{=} \frac{1}{T_{o}} \int_{T_{o}} x(t) e^{-jk\Omega_{o}t} dt$	
$\begin{cases} x(t) \\ y(t) \end{cases}$ Periodic with period T_0	$egin{aligned} a_k \ b_k \end{aligned}$	
Ax(t) + By(t)	$Aa_k + Bb_k$	
$x\left(t-t_0\right)$	$a_k e^{-jk(2\pi/T_0)t_0}$	
$e^{jM(2\pi/T_{0})t}x\left(t\right)$	a_{k-M}	
$x^*\left(t\right)$	a_{-k}^*	
$x\left(-t ight)$	a_{-k}	
$x(\alpha t), \alpha > 0$ (Periodic with period T_0/α)	a_k	
$\int_{T_{0}}x\left(\tau\right) y\left(t-\tau\right) d\tau$	$T_0 a_k b_k$	
$x\left(t\right) y\left(t\right)$	$\sum_{l=0}^{\infty} a_l b_{k-l}$	
$\frac{d}{dt}x\left(t\right)$	$\sum_{l=-\infty}^{\infty} a_l b_{k-l}$ $jk \frac{2\pi}{T_0} a_k$	
$\int_{-\infty}^{t} x(\tau) d\tau \text{ (Bounded and periodic only if } a_0 = 0)$	$\frac{1}{jk\left(2\pi/T_0\right)}a_k$	
If $x(t)$ is real valued in	then	
$x\left(t ight)$	$\begin{cases} a_k = a_{-k}^* \\ \Re\{a_k\} = \Re\{a_{-k}\} \\ \Im\{a_k\} = -\Im\{a_{-k}\} \\ a_k = a_{-k} \\ \arg\{a_k\} = -\arg\{a_{-k}\} \end{cases}$	
$x_e(t) = \mathcal{E}\{x(t)\}\$ $x_o(t) = \mathcal{O}\{x(t)\}\$	$\Re\{a_k\}\ j\Im\{a_k\}$	
$a_k e^{jk\Omega_0 t} + a_{-k} e^{-jk\Omega_0 t} = 2\Re\{a_k\} \cos(k\Omega_0 t)$	$a_t) - 2\Im\{a_k\}\sin(k\Omega_0 t)$	
Parsevals relation for periodic signals		
$\frac{1}{T_0} \int_{T_0} x(t) ^2 dt = \sum_{k=-\infty}^{\infty}$	$ a_k ^2$	

$B.\ Fourier\ series\ table$

	$x(t)$ a_k or the Fourier series expansion	
a)	$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$a_k = \frac{1}{T}$, all k
b)	1	$(a_0 = 1, a_k = 0 \text{ otherwise}), \forall T_0 > 0$
c)	$e^{j\Omega_o t}$	$a_1 = 1, a_k = 0$ otherwise
d)	$\cos \Omega_o t$	$a_1 = a_{-1} = \frac{1}{2}, a_k = 0 \text{ otherwise}$
e)	$\sin\Omega_o t$	$a_1 = -a_{-1} = \frac{1}{2j}, a_k = 0 \text{ otherwise}$
f)	$\begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T_o}{2} \end{cases}$ period T_0	$a_k = \frac{\Omega_o T_1}{\pi} \operatorname{sinc} \frac{k\Omega_o T_1}{\pi} = \frac{\sin k\Omega_o T_1}{k\pi}$
g)	$ \left\{ \begin{array}{ll} 1, & 0 < t < \pi \\ -1, & -\pi < t < 0 \end{array} \right. $	$\frac{4}{\pi} \left(\frac{\sin t}{1} + \frac{\sin 3t}{3} + \frac{\sin 5t}{5} + \cdots \right)$
h)	$ t = \begin{cases} t, & 0 < t < \pi \\ -t, & -\pi < t < 0 \end{cases} $	$\frac{\pi}{2} - \frac{4}{\pi} \left(\frac{\cos t}{1^2} + \frac{\cos 3t}{3^2} + \frac{\cos 5t}{5^2} + \cdots \right)$
i)	$t, -\pi < t < \pi$	$2\left(\frac{\sin t}{1} - \frac{\sin 2t}{2} + \frac{\sin 3t}{3} - \cdots\right)$
j)	$t, 0 < t < 2\pi$	$\pi - 2\left(\frac{\sin t}{1} + \frac{\sin 2t}{2} + \frac{\sin 3t}{3} + \cdots\right)$
k)	$ \sin t , -\pi < t < \pi$	$\frac{2}{\pi} - \frac{4}{\pi} \left(\frac{\cos 2t}{1 \cdot 3} + \frac{\cos 4t}{3 \cdot 5} + \frac{\cos 6t}{5 \cdot 7} + \cdots \right)$
1)	$ \begin{cases} 0, & 0 < t < \pi - a \\ 1, & \pi - a < t < \pi + a \\ 0, & \pi + a < t < 2\pi \end{cases} $	$\frac{a}{\pi} - \frac{2}{\pi} \left(\frac{\sin a \cos t}{1} - \frac{\sin 2a \cos 2t}{2} + \frac{\sin 3a \cos 3t}{3} - \cdots \right)$

II. CONTINUOUS-TIME FOURIER TRANSFORM

A. Properties of the Fourier transform

Non-periodic signal	Fourier transform
$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega) e^{j\Omega t} d\Omega$	$X(j\Omega) \stackrel{\triangle}{=} \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$
Alternatively with frequency f in $x(t) = \int_{-\infty}^{\infty} X_f(f) e^{j2\pi ft} df$	nstead of angular frequency Ω . $X_f(f) \stackrel{\triangle}{=} \int_{-\infty}^{\infty} x(t) e^{-j2\pi f t} dt = X(\omega)_{\{\Omega = 2\pi f\}}$
$egin{array}{c} x(t) \ y(t) \end{array}$	$egin{array}{l} X(j\Omega) \ Y(j\Omega) \end{array}$
ax(t) + by(t)	$aX(j\Omega) + bY(j\Omega)$
$x(t-t_0)$	$e^{-j\Omega t_0}X(j\Omega)$
$e^{j\Omega_0 t}x(t)$	$X(j(\Omega-\Omega_0))$
$x^*(t)$	$X^*(j(-\Omega))$
x(-t)	$X(j(-\Omega))$
x(at)	$\frac{1}{ a }X\left(\frac{\Omega}{a}\right)$
x(t) * y(t)	$X(j\Omega)Y(j\Omega)$
x(t)y(t)	$\frac{1}{2\pi}X(j\Omega)*Y(j\Omega)$
$\frac{d}{dt}x(t)$	$j\Omega X(j\Omega)$
$\int_{-\infty}^{t} x(t)dt$	$\frac{1}{j\Omega}X(j\Omega) + \pi X(0)\delta(\Omega)$
tx(t)	$j\frac{d}{d\Omega}X(j\Omega)$
If $x(t)$ is real	valued then (Y(iQ) Y*(i(Q))
x(t)	$ \begin{array}{l} \text{valued then} \\ \left\{ \begin{array}{l} X(j\Omega) = X^*(j(-\Omega)) \\ \Re\{X(j\Omega)\} = \Re\{X(j(-\Omega))\} \\ \Im\{X(j\Omega)\} = -\Im\{X(j(-\Omega))\} \\ X(j\Omega) = X(j(-\Omega)) \\ \arg\{X(j\Omega)\} = -\arg\{X(j(-\Omega))\} \end{array} \right. \end{array} $
$x_e(t) = \mathcal{E}\{x(t)\}\$ $x_o(t) = \mathcal{O}\{x(t)\}\$	$\Re\{X(j\Omega)\}\ j\Im\{X(j\Omega)\}$
Dual	
$f(u) = \int_{-\infty}^{\infty} g(v)e^{-juv}dv,$	$g(t) \stackrel{\longleftarrow}{\longleftarrow} f(j\Omega)$ $f(t) \stackrel{\mathcal{F}}{\longleftarrow} 2\pi g(j(-\Omega))$
Parsevals relation for $\int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2\pi}$	non-periodic signals

B. Fourier transform table

The table is valid for $\Re\{\alpha\}>0$ and $\Re\{\beta\}>0$

	x(t)	$X(j\Omega)$	X(f)
a)	$u\left(t+\frac{T}{2}\right)-u\left(t-\frac{T}{2}\right)$	$T\frac{\sin\Omega T/2}{\Omega T/2}$	$T\frac{\sin \pi f T}{\pi f T} = T \operatorname{sinc}(fT)$
b)	$\frac{\sin Wt}{\pi t} = \frac{W}{\pi} \operatorname{sinc} \frac{Wt}{\pi}$	$u(\Omega+W)-u(\Omega-W)$	$u\left(f + \frac{W}{2\pi}\right) - u\left(f - \frac{W}{2\pi}\right)$
c)	$\begin{cases} 1 - 2\frac{ t }{T}, & t < \frac{T}{2} \\ 0, & \text{otherwise} \end{cases}$	$\frac{T}{2} \left[\frac{\sin \Omega T/4}{\Omega T/4} \right]^2$	$\frac{T}{2}\mathrm{sinc}^2(Tf/2)$
d)	$e^{-\alpha t}u(t)$	$\frac{1}{j\Omega + \alpha}$	$\frac{1}{j2\pi f + \alpha}$
e)	$e^{-\alpha t }$	$\frac{2\alpha}{\Omega^2 + \alpha^2}$	$\frac{2\alpha}{(2\pi f)^2 + \alpha^2}$
f)	$\frac{1}{\beta - \alpha} \left[e^{-\alpha t} - e^{-\beta t} \right] u(t)$	$\frac{1}{(j\Omega+\alpha)(j\Omega+\beta)}$	$\frac{1}{(j2\pi f + \alpha)(j2\pi f + \beta)}$
g)	$te^{-\alpha t}u(t)$	$\frac{1}{(j\Omega + \alpha)^2}$	$\frac{1}{(j2\pi f + \alpha)^2}$
h)	$\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t)$	$\frac{1}{(j\Omega + \alpha)^n}$	$\frac{1}{(j2\pi f + \alpha)^n}$
i)	$e^{-(\alpha t)^2}$	$\frac{\sqrt{\pi}}{\alpha}e^{-(\Omega/2\alpha)^2}$	$\frac{\sqrt{\pi}}{\alpha}e^{-(\pi f/\alpha)^2}$
j)	$e^{-\alpha t}\sin(\Omega_o t)u(t)$	$\frac{\Omega_o}{(j\Omega+\alpha)^2+\Omega_o^2}$	$\frac{\Omega_o}{(j2\pi f + \alpha)^2 + \Omega_o^2}$
	$e^{\alpha t}\sin(\Omega_o t)u(-t)$	$\frac{-\Omega_o}{(\alpha - j\Omega)^2 + \Omega_o^2}$	$\frac{-\Omega_o}{(\alpha - j2\pi f)^2 + \Omega_o^2}$
k)	$e^{-\alpha t}\cos(\Omega_o t)u(t)$	$\frac{\alpha + j\Omega}{(j\Omega + \alpha)^2 + \Omega_o^2}$	$\frac{\alpha + j2\pi f}{(j2\pi f + \alpha)^2 + \Omega_o^2}$
	$e^{\alpha t}\cos(\Omega_o t)u(-t)$	$\frac{\alpha - j\Omega}{(\alpha - j\Omega)^2 + \Omega_o^2}$	$\frac{\alpha - j2\pi f}{(\alpha - j2\pi f)^2 + \Omega_o^2}$
1)	$(\cos \Omega_o t) \left[u \left(t + \frac{T}{2} \right) - u \left(t - \frac{T}{2} \right) \right]$	$ \frac{T}{2} \left[\frac{\sin(\Omega - \Omega_o) \frac{T}{2}}{(\Omega - \Omega_o) \frac{T}{2}} + \frac{\sin(\Omega + \Omega_o) \frac{T}{2}}{(\Omega + \Omega_o) \frac{T}{2}} \right] $	$\frac{T}{2} \left[\frac{\sin \pi T (f - f_o)}{\pi T (f - f_o)} + \frac{\sin \pi T (f + f_o)}{\pi T (f + f_o)} \right]$
		[

$Generalized\ Fourier\ transform\ (power\ signals)$

	x(t)	$X(j\Omega)$	X(f)
a)	$\delta(t)$	1	1
b)	$\delta(t-t_0)$	$e^{-j\Omega t_0}$	$e^{-j2\pi f t_0}$
c)	$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\frac{2\pi}{T} \sum_{n=-\infty}^{\infty} \delta(\Omega - \frac{2\pi}{T}n)$	$\frac{1}{T} \sum_{n=-\infty}^{\infty} \delta(f - \frac{n}{T})$
d)	u(t)	$\pi\delta(\Omega) + \frac{1}{j\Omega}$	$\frac{1}{2}\delta(f) + \frac{1}{j2\pi f}$
e)	$\operatorname{sgn}(t) = \frac{t}{\mid t \mid}$	$\dfrac{2}{j\Omega}$	$rac{1}{j\pi f}$
f)	$\frac{1}{\pi t}$	$-j\mathrm{sgn}(\Omega)$	$-j \mathrm{sign}(f)$
g)	K	$2\pi K\delta(\Omega)$	$K\delta(f)$
h)	tu(t)	$j\pi\delta'(\Omega) - \frac{1}{\Omega^2}$	$\frac{j}{4\pi}\delta'(f) - \frac{1}{4\pi^2 f^2}$
i)	t^n	$2\pi(j)^n\delta^{(n)}(\Omega)$	$\left(\frac{j}{2\pi}\right)^n \delta^{(n)}(f)$
j)	$\cos\Omega_o t$	$\pi[\delta(\Omega - \Omega_o) + \delta(\Omega + \Omega_o)]$	$\frac{1}{2}[\delta(f - f_o) + \delta(f + f_o)]$
k)	$\sin\Omega_o t$	$\frac{\pi}{j} [\delta(\Omega - \Omega_o) - \delta(\Omega + \Omega_o)]$	$\frac{1}{j2}[\delta(f-f_o)-\delta(f+f_o)]$
1)	$\sum_{n=-\infty}^{\infty} c_n e^{j\frac{2\pi}{T}nt}$	$2\pi \sum_{n=-\infty}^{\infty} c_n \delta\left(\Omega - \frac{2\pi n}{T}\right)$	$\sum_{n=-\infty}^{\infty} c_n \delta\left(f - \frac{n}{T}\right)$
m)	$e^{j\Omega_o t}$	$2\pi\delta(\Omega-\Omega_o)$	$\delta(f-f_o)$
n)	Periodic square wave $\begin{cases} 1, & t \leq T_1 \\ 0, & T_1 < t \leq \frac{T_o}{2} \end{cases}$ period T_o	$\sum_{k=-\infty}^{\infty} A_k(\Omega) \delta \left(\Omega - k\Omega_o\right)$ $A_k(\Omega) = \frac{2\sin k\Omega_o T_1}{k}$	$\sum_{k=-\infty}^{\infty} A_k(f)\delta(f - kf_o)$ $A_k(f) = \frac{\sin k2\pi f_o T_1}{k\pi}$

III. DISCRETE-TIME FOURIER SERIES

A. Properties of discrete-time Fourier series

Periodic signal	Fourier serie coefficient
$x[n] = \sum_{k=< N>} a_k e^{jk(2\pi/N)n}$	$a_k \stackrel{\triangle}{=} \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk(2\pi/N)n}$
	$ \left\{ \begin{array}{l} a_k \\ b_k \end{array} \right\} $ Periodic with period N
Ax[n] + By[n]	$Aa_k + Bb_k$
$x[n-n_0]$	$a_k e^{-jk(2\pi/N)n_0}$
$e^{jM(2\pi/N)n}x[n]$	a_{k-M}
$x^*[n]$	a_{-k}^*
x[-n]	a_{-k}
$x_{(m)}[n] = \left\{ \begin{array}{cc} x[n/m], & \text{If n is a multiple av m} \\ 0, & \text{otherwise} \end{array} \right.$	$\frac{1}{m}a_k$, period mN
$\sum_{r = \langle N \rangle} x[r]y[n-r]$	Na_kb_k
x[n]y[n]	$\sum a_l b_{k-l}$
x[n] - x[n-1]	$\sum_{\substack{l=< N>\\ \left(1 - e^{-j2\pi/Nk}\right)}} a_l b_{k-l}$
$\sum_{k=-\infty}^{n} x[k]$ Bounded and periodic only if $a_0 = 0$	$\frac{1}{1 - e^{-jk2\pi/N}} a_k$
If $x[n]$ is real valued	
x[n]	$\begin{cases} a_k = a_{-k}^* \\ \Re\{a_k\} = \Re\{a_{-k}\} \\ \Im\{a_k\} = -\Im\{a_{-k}\} \} \\ a_k = a_{-k} \\ \arg\{a_k\} = -\arg\{a_{-k}\} \end{cases}$
$ x_e[n] = \mathcal{E}\{x[n]\} $ $ x_o[n] = \mathcal{O}\{x[n]\} $	$\Re\{a_k\}\ j\Im\{a_k\}$
Parsevals relation for peri $\frac{1}{N} \sum_{n = < N >} x[n] ^2 = \sum_{k = < $	

B. Fourier series table

x[n]	a_k	
$\sum_{k=-\infty}^{\infty} \delta(n-kN)$	$a_k = \frac{1}{N}$, for all k	
1	$a_k = \begin{cases} 1, & k=0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$	
$e^{j\omega_o n}$	$\begin{cases} \omega_o = \frac{2\pi m}{N} \\ a_k = \begin{cases} 1, & k=m, m\pm N, m\pm 2N, \dots \\ 0, & \text{otherwise} \end{cases} \\ \frac{\omega_o}{2\pi} = \text{irrational} : \text{The signal is non-periodic} \end{cases}$	
$\cos \omega_o n$	$\begin{cases} \omega_o = \frac{2\pi m}{N} \\ a_k = \begin{cases} \frac{1}{2}, & k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases} \\ \frac{\omega_o}{2\pi} = \text{irrational} : \text{The signal is non-periodic} \end{cases}$	
$\sin \omega_o n$	$\begin{cases} \omega_o = \frac{2\pi m}{N} \\ a_k = \begin{cases} \frac{1}{2j}, & k=m, m\pm N, m\pm 2N, \dots \\ -\frac{1}{2j}, & k=-m, -m\pm N, -m\pm 2N, \dots \end{cases} \\ \frac{\omega_o}{2\pi} = \text{irrational} : \text{ The signalen is non-periodic} \end{cases}$	
$\begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le \frac{N}{2} \end{cases}$ period N	$a_k = \begin{cases} \frac{\sin\frac{2\pi k}{N} \left(N_1 + \frac{1}{2}\right)}{N \sin\frac{\pi k}{N}}, & k \neq 0, \pm N, \pm 2N, \dots \\ \frac{2N_1 + 1}{N}, & k = 0, \pm N, \pm 2N, \dots \end{cases}$	

IV. DISCRETE-TIME FOURIER TRANSFORM

$A.\ Properties\ of\ the\ discrete-time\ Fourier\ transform$

Non-periodic signal	$Fourier\ transform$
$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$	$X(e^{j\omega}) \stackrel{\triangle}{=} \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$
$\left.egin{array}{c} x[n] \ y[n] \end{array} ight\}$	$X(e^{j\omega})$ Periodic with $Y(e^{j\omega})$ Period 2π
ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$
$x[n-n_0]$	$e^{-j\omega n_0}X(e^{j\omega})$
$e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$
$x^*[n] \\ x[-n]$	$X^*(e^{j(-\omega)}) \ X(e^{j(-\omega)})$
$x_{(m)}[n] = \begin{cases} x[n/m], & n \text{ multiple of } m \\ 0, & n \text{ not multiple av } m \end{cases}$	$X(e^{j(m\omega)})$
x[n] * y[n]	$X(e^{j\omega})Y(e^{j\omega})$
x[n]y[n]	$\frac{1}{2\pi} \int_{2\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$
x[n] - x[n-1]	$(1 - e^{j\omega}) X(e^{j\omega})$
$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1 - e^{j\omega}} X(e^{j\omega}) + \pi X(0) \sum_{k = -\infty}^{\infty} \delta(\omega - 2\pi k)$
nx[n]	$j\frac{d}{d\omega}X(e^{j\omega})$
If $x[n]$ is real	valued then $V*(i(w)) V*(i(-w))$
x[n]	$\begin{cases} X(e^{j\omega}) = X^*(e^{j(-\omega)}) \\ \Re\{X(e^{j\omega})\} = \Re\{X(e^{j(-\omega)})\} \\ \Im\{X(e^{j\omega})\} = -\Im\{X(e^{j(-\omega)})\} \\ X(e^{j\omega}) = X(e^{j(-\omega)}) \\ \arg\{X(e^{j\omega})\} = -\arg\{X(e^{j(-\omega)})\} \end{cases}$
$x_e[n] = \mathcal{E}\{x[n]\}$ $x_o[n] = \mathcal{O}\{x[n]\}$	$\Re\{X(e^{j\omega})\}\ j\Im\{X(e^{j\omega})\}$
$Parsevals \ relation \ for $	4
$\sum_{n=-\infty}^{\infty} x[n] ^2 = \frac{1}{2\pi}$	$\int_{2\pi} X(e^{j\omega}) ^2 d\omega$

B. Discrete-time Fourier transform table

x[n]	$X(e^{j\omega})$	
$\delta[n]$	1	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
$\sum_{k=-\infty}^{\infty} \delta(n-kN)$	$\frac{2\pi}{N} \sum_{k=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi k}{N}\right)$	
1	$2\pi \sum_{k=-\infty}^{\infty} \delta\left(\omega - 2\pi k\right)$	
$e^{j\omega_o n}$	$2\pi \sum_{k=-\infty}^{\infty} \delta\left(\omega - \omega_o - 2\pi k\right)$	
$\cos \omega_o n$	$\pi \sum_{k=-\infty}^{\infty} \left[\delta(\omega - \omega_o - 2\pi k) + \delta(\omega + \omega_o - 2\pi k) \right]$	
$\sin \omega_o n$	$\frac{\pi}{j} \sum_{k=-\infty}^{\infty} \left[\delta(\omega - \omega_o - 2\pi k) - \delta(\omega + \omega_o - 2\pi k) \right]$	
u[n]	$\frac{1}{1 - e^{-j\omega}} + \pi \sum_{k = -\infty}^{\infty} \delta(\omega - 2\pi k)$	
$a^n u(n), a < 1$	$\frac{1}{1 - ae^{-j\omega}}$	
	$\frac{1}{(1 - ae^{-j\omega})^2}$	
$\frac{(n+m-1)!}{n!(m-1)!}a^nu[n], a < 1$	$\frac{1}{(1 - ae^{-j\omega})^m}$	
$\frac{1}{1 - a^2} a^{ n }, a < 1$	$\frac{1}{1+a^2-2acos\omega}$	
$\begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le \frac{N}{2} \end{cases}$ period N	$2\pi \sum_{k=-\infty}^{\infty} a_k \delta\left(\omega \frac{2\pi k}{N}\right)$	
$\begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin\omega\left(N_1+\frac{1}{2}\right)}{\sin\frac{\omega}{2}}$	
$\begin{cases} \frac{\sin Wn}{\pi n} = \frac{W}{\pi} \operatorname{sinc} \frac{Wn}{\pi} \\ 0 < W < \pi \end{cases}$	$\begin{cases} 1, & \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$ period 2π	

V. Sampling and reconstruction

The sampling theorem:

Let x(t) with transform $X_c(j\Omega)$ be a bandlimited signal such that $X_c(j\Omega) = 0$, $|\Omega| > \Omega_M$. Then x(t) is uniquely described by the samples x(nT), $n = 0, \pm 1 \pm 2...$ if

$$\Omega_s > 2\Omega_M$$

where

$$\Omega_s = \frac{2\pi}{T} = 2\pi f_s$$

Given x(nT), if the sampling theorem is satisfied, it is possible with an ideal reconstruction filter to exactly reconstruct x(t).

Discrete-time processing of continuous-time signals

Sampling:

$$x_d(t) = \sum_{n = -\infty}^{\infty} x(nT)\delta(t - nT) \longleftrightarrow X_d(j\Omega) = \sum_{n = -\infty}^{\infty} x(nT)e^{-j\Omega nT}$$

"Normalization in time" gives

$$x[n] = x(nT) \longleftrightarrow X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} = \sum_{n=-\infty}^{\infty} x(nT)e^{-j\Omega nT}$$

where

$$\Omega T = \omega = \frac{\Omega}{f_c}$$
 or $fT = q = \frac{f}{f_c}$

Poissons summation formula:

$$X_d(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j(\Omega - k\Omega_s))$$

$$X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j(\frac{\Omega}{T} - \frac{2\pi k}{T}))$$

If the sampling theorem is satisfied then

$$X_d(j\Omega) = \frac{1}{T}X(j\Omega), \quad -\frac{\pi}{T} < \Omega < \frac{\pi}{T}$$

or

$$X_d(f) = \frac{1}{T}X(f), -\frac{1}{2T} < f < \frac{1}{2T}$$

Ideal reconstruction:

$$x_r(t) = \sum_{n = -\infty}^{\infty} x(nT)h(t - nT)$$

where

$$h(t) = T \frac{\Omega_c}{\pi} \operatorname{sinc} \frac{\Omega_c t}{\pi} \longleftrightarrow H(j\Omega) = \left\{ \begin{array}{l} T, & |\omega| \leq \Omega_c \\ 0, & \text{otherwise} \end{array} \right.$$

VI. Z-TRANSFORM

A. Properties of the Z-transform

signal	Z- $transform$	ROC
x[n]	$X(z) \stackrel{\triangle}{=} \sum_{n=-\infty}^{\infty} x[n]z^{-n}$	R_x
ax[n] + by[n]	aX(z) + bY(z)	Contains $R_x \cap R_y$
$x[n-n_0]$	$z^{-n_0}X(z)$	$R_x,$ except possible addition or deletion of the origin or ∞
$z_0^n x[n]$	$X(z/z_0)$	$ z_0 R_x$
$x^*[n]$	$X^*(z^*)$	R_x
$x^*[-n]$	$X^*(1/z^*)$	$1/R_x$
x[n]*y[n]	X(z)Y(z)	Contains $R_x \cap R_y$
nx[n]	$-z\frac{d}{dz}X(z)$	$R_x,$ except possible addition or deletion of the origin or ∞
$\Re\{x[n]\}$	$\frac{1}{2}[X(z) + X^*(z^*)]$	Contains R_x
$\Im\{x[n]\}$	$\frac{1}{2j}[X(z)-X^*(z^*)]$	Contains R_x
	Initial value theorem $x[n] = 0, \ n < 0 \lim_{z \to \infty} X(z) =$	x[0]

$B. \ \hbox{\it Z-transform table}$

x[n]	X(z)	ROC
$\delta[n]$	1	All z
$\delta[n-n_0]$	z^{-n_0}	All z, except $0(n_0 > 0)$ or $\infty(n_0 < 0)$
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
-u[-n-1]	$\frac{1}{1-z^{-1}}$	z < 1
$a^nu[n]$	$\frac{1}{1 - az^{-1}}$	z > a
$-a^n u[-n-1]$	$\frac{1}{1 - az^{-1}}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$[\cos \omega_0 n] u[n]$	$\frac{1 - [\cos \omega_0] z^{-1}}{1 - [2\cos \omega_0] z^{-1} + z^{-2}}$	z > 1
$[\sin \omega_0 n] u[n]$	$\frac{1 - [\sin \omega_0] z^{-1}}{1 - [2\cos \omega_0] z^{-1} + z^{-2}}$	z > 1
$[r^n\cos\omega_0 n]u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
$[r^n \sin \omega_0 n] u[n]$	$\frac{1 - [r\sin\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
$\begin{cases} a^n, & 0 \le n \le N - 1 \\ 0, & \text{otherwise} \end{cases}$	$\frac{1 - a^N z^{-N}}{1 - az^{-1}}$	z > 0