

Quantum computing applications

Recent developments

Kamil Korzekwa, PsiQuantum

AGENDA

D1 Building a quantum computer

PsiQuantum's mission & hardware development

0 2 Overview of quantum applicationsOur team & recent algorithmic developments

O 3 Quantum algorithms for nonlinear problems

Simulating nonlinear dynamics on a quantum computer

AGENDA

0 1 Building a quantum computer

PsiQuantum's mission & hardware development

O2 Overview of quantum applications
Our team & recent algorithmic developments

O 3 Quantum algorithms for nonlinear problems

Simulating nonlinear dynamics on a quantum computer

BUILDING A QUANTUM COMPUTER

PsiQuantum's mission

PsiQuantum:

- A full-stack quantum company
- Employing 450+ experts
- With global presence in US, Europe and Australia

Mission: To build and deploy the first useful quantum computers

This means:

- Fault-tolerance: full error correction
- Large-scale: 1000000+ qubits

BUILDING A QUANTUM COMPUTER

Hardware development

STATE-OF-THE-ART
PHOTONICS PLATFORM

TIER-1 SEMICONDUCTOR
MANUFACTURING

HIGH-VOLUME PACKAGING

Fusion-based quantum computation, Nature Communications (2023).

A manufacturable platform for photonic quantum computing, Nature (2025)

BUILDING A QUANTUM COMPUTER

Hardware development

STATE-OF-THE-ART
PHOTONICS PLATFORM

TIER-1 SEMICONDUCTOR
MANUFACTURING

HIGH-VOLUME PACKAGING MODULAR BLADE ASSEMBLIES

HIGHEST-POWER
CRYOGENIC CABINETS

SCALABLE QUANTUM COMPUTER

 $O(10^2)$

1 in UK 1 in SLAC

2 sites

AGENDA

D1 Building a quantum computer

PsiQuantum's mission & hardware development

Our team & recent algorithmic developments

O 3 Quantum algorithms for nonlinear problems

Simulating nonlinear dynamics on a quantum computer

Our team

APPLICATIONS

APPLICATIONS EXPERTISE:

- Fault-tolerant Algorithms
- Active-volume Compilation
- Expert-driven Tools

SOLUTIONS EXPERTISE:

- Domain expertise
- Industry-Specific Solutions
- Groundbreaking Methodologies

SOLUTIONS

Development lifecycle

Quantum Solutions

Quantum Applications

Quantum Architecture

PROBLEM DEFINITION

Translation of commercial need into precise computational problem.

ALGORITHM SELECTION

Identification of most appropriate known quantum algorithm, or specification of new quantum algorithm, to solve the problem.

ALGORITHM CONSTRUCTION

Construction, either mathematically or in code, of the algorithm, in terms of ubiquitous subroutines.

COMPILATION

Unpacking of the constructed algorithms down to fundamental FTQC instructions, either manually or by automated compilation procedures. Prescription complete enough to deploy on an FTQC.

RUNTIME ESTIMATION

Estimation of computational resources needed to solve the problem on an FTQC.

Quantum computing use-cases

QUANTUM APPLICATIONS - OVERVIEW

Quantum computing use-cases

Quantum Chemistry

Materials Screening

Exponential

Quantum PDE Solvers

High-Degree Polynomia

Quantum Optimization

Low-Degree Polynomial

Quantum ML

TBD?

Recent algorithmic developments

Chemistry (dynamics)

 Quantum algorithms for dynamical simulation of catalysis (2504.06348)

Chemistry (statics)

- Record efficiency for GSEE (2501.06165)
- Symmetry-adapted perturbation theory (2305.07009)
- Observable estimation (2303.14118)
- Electrolytic battery chemistry (2104.10653)
- Observable estimation with windowing (2508.06677)

Lattice models

- Improved compilation of the Schwinger model (2508.16831)
- Algorithms for superconductivity models (2411.02160)
- DMERA resource estimates (2404.10050)

Dynamical systems

- Quantum algorithms for general nonlinear dynamics (2509.07155)
- Explicit costs for simulating ODEs (2309.07881)
- Linear solver with explicit query costs (2305.11352)
- Quantum algorithms for plasma and fluids (to appear)

Compilation

- Structured state preparation and block encoding (2405.11436)
- Explicit costs of QPE via signal processing (2404.01396)
- Explicit costs for prime-field ECC (2306.08585)

Recent algorithmic developments

Chemistry (dynamics)

Chemistry (statics)

Lattice models

Dynamical systems

Compilation

- Quantum algorithms for dynamical simulation of catalysis (2504.06348)
- Record efficiency for GSEE (2501.06165)
- Symmetry-adapted perturbation theory (2305.07009)
- Observable estimation (2303.14118)
- Electrolytic battery chemistry (2104.10653)
- Observable estimation with windowing (2508.06677)
- Improved compilation of the Schwinger model (2508.16831)
- Algorithms for superconductivity models (2411.02160)
- DMERA resource estimates (2404.10050)
- Quantum algorithms for general nonlinear dynamics (2509.07155)
- Explicit costs for simulating ODEs (2309.07881)
- Linear solver with explicit query costs (2305.11352)
- Quantum algorithms for plasma and fluids (to appear)
- Structured state preparation and block encoding (2405.11436)
- Explicit costs of QPE via signal processing (2404.01396)
- Explicit costs for prime-field ECC (2306.08585)

Developed a comprehensive end-to-end framework for chemical dynamics simulations

Recent algorithmic developments

Chemistry (dynamics)

 Quantum algorithms for dynamical simulation of catalysis (2504.06348)

Chemistry (statics)

- Record efficiency for GSEE (2501.06165)
- Symmetry-adapted perturbation theory (2305.07009)
- Observable estimation (2303.14118)
- Electrolytic battery chemistry (2104.10653)
- Observable estimation with windowing (2508.06677)

Lattice models

- Improved compilation of the Schwinger model (2508.16831)
- Algorithms for superconductivity models (2411.02160)
- DMERA resource estimates (2404.10050)

Dynamical systems

- Quantum algorithms for general nonlinear dynamics (2509.07155)
- Explicit costs for simulating ODEs (2309.07881)
- Linear solver with explicit query costs (2305.11352)
- Quantum algorithms for plasma and fluids (to appear)

Compilation

- Structured state preparation and block encoding (2405.11436)
- Explicit costs of QPE via signal processing (2404.01396)
- Explicit costs for prime-field ECC (2306.08585)

Improved runtime for GSEE of CYP450 compared to previous state of the art by ~230x

Recent algorithmic developments

A KEY TO SAFER AND MORE EFFECTIVE MEDICINES:

- >70% of commercially available drugs today are metabolized by CYP450 enzymes
- Heme group enables the CYP450 enzymes to catalyze reactions with drugs in the metabolic process
- interactions and toxicity is crucial for bringing and letting a drug on the market

CLASSICALY INTRACTABLE PROBLEM:

Classical | GPU (brute force approach)

Quantum | FTQC (our goal)

Intractable

4

MINUTES

Improved runtime for GSEE of CYP450 compared to previous state of the art by ~230x

Recent algorithmic developments

>200x

TOTAL SPEEDUP

For electronic structure calculation on a quantum computer

25-31x

SPEEDUP

PsiQuantum's Active Volume architecture

>8x

SPEEDUP

Combining BLISS and THC techniques

1.1x

SPEEDUP

Circuit optimization

PROJECTED RUNTIME FOR PSIQUANTUM MACHINE:

9 months

PRIOR ART

<1 day

PSIQUANTUM LATEST 4 mins

PSIQUANTUM ROADMAP

Improved runtime for GSEE of CYP450 compared to previous state of the art by ~230x

Recent algorithmic developments

Chemistry (dynamics)

 Quantum algorithms for dynamical simulation of catalysis (2504.06348)

Chemistry (statics)

- Record efficiency for GSEE (2501.06165)
- Symmetry-adapted perturbation theory (2305.07009)
- Observable estimation (2303.14118)
- Electrolytic battery chemistry (2104.10653)
- Observable estimation with windowing (2508.06677)

Lattice models

- Improved compilation of the Schwinger model (2508.16831)
- Algorithms for superconductivity models (2411.02160)
- DMERA resource estimates (2404.10050)

Dynamical systems

- Quantum algorithms for general nonlinear dynamics (2509.07155)
- Explicit costs for simulating ODEs (2309.07881)
- Linear solver with explicit query costs (2305.11352)
- Quantum algorithms for plasma and fluids (to appear)

Compilation

- Structured state preparation and block encoding (2405.11436)
- Explicit costs of QPE via signal processing (2404.01396)
- Explicit costs for prime-field ECC (2306.08585)

Created fully compiled QREs for two different methods of simulating the Schwinger effect

Recent algorithmic developments

Chemistry (dynamics)

 Quantum algorithms for dynamical simulation of catalysis (2504.06348)

Chemistry (statics)

- Record efficiency for GSEE (2501.06165)
- Symmetry-adapted perturbation theory (2305.07009)
- Observable estimation (2303.14118)
- Electrolytic battery chemistry (2104.10653)
- Observable estimation with windowing (2508.06677)

Lattice models

- Improved compilation of the Schwinger model (2508.16831)
- Algorithms for superconductivity models (2411.02160)
- DMERA resource estimates (2404.10050)

Dynamical systems

- Quantum algorithms for general nonlinear dynamics (2509.07155)
- Explicit costs for simulating ODEs (2309.07881)
- Linear solver with explicit query costs (2305.11352)
- Quantum algorithms for plasma and fluids (to appear)

Compilation

- Structured state preparation and block encoding (2405.11436)
- Explicit costs of QPE via signal processing (2404.01396)
- Explicit costs for prime-field ECC (2306.08585)

AGENDA

01 Building a quantum computer

PsiQuantum's mission & hardware development

02 Overview of quantum applications

Our team & recent algorithmic developments

03 Quantum algorithms for nonlinear problems

Simulating nonlinear dynamics on a quantum computer

Motivation

A substantial fraction of today's high-performance supercomputing is devoted to the resolution of these problems

> DOE INCITE 2023 projects by core hours: >55M core-hours allocated over 56 projects

Goal: Provable quantum advantage on high-impact classical dynamical system, with detailed costing and no caveats

Algorithmic pipeline

Algorithmic pipeline

Algorithmic pipeline

Linear embedding

To be tackled by a quantum computer, a (system of) nonlinear PDEs needs to be transformed into a system of linear ODEs/PDEs. The transformation may lead to an infinite number of variables, which can be truncated to approximate the problem. These linearization methods include Carleman Linearization and Koopman von Neuman/Liouville embedding (PsiQuantum, to appear soon).

Algorithmic pipeline

Linear system mapping

Consists of discretizing the continuous equations into discrete equations which can be cast as a linear system of algebraic equations (fast-forwarding and first in the world quantum computational resource estimate: PsiQuantum 2024, arXiv:2309.07881).

Algorithmic pipeline

Quantum linear solver

The first approach to a quantum solver for linear problems was the HHL algorithm (Harrow Hassidim and Lloyd.) Until recently, PsiQuantum had the state-of-the-art solver for ODEs (PsiQuantum 2023 arXiv:2305.11352), with further improvements by Dalzell 2024.

Algorithmic pipeline

Information extraction

The solution on the quantum computer exists in an n-qubit register and relevant information needs to be extracted via measurements.

Crucially, not the entire (very large) solution can be extracted (or even stored classically), but only a low-dimensional representation of interest, to achieve exponential or polynomial speedups over classical methods.

Carleman embedding

Consider a nonlinear ODE:

Introduce new variable:

Get a linear ODE for the old variable:

$$\frac{d}{dt} x_1(t) = a x_1(t) + b x_1^2(t)$$

$$x_2(t) := x_1^2(t)$$

$$\frac{\mathrm{d}}{\mathrm{dt}} x_1(t) = a x_1(t) + b x_2(t)$$

But a nonlinear ODE for the new variable

$$\frac{d}{dt} x_2(t) = 2 a x_2(t) + 2 b x_1(t) x_2(t) \qquad x_3(t) := x_1^3(t)$$

$$x_3(t) := x_1^3(t)$$

$$\frac{d}{dt} x_2(t) = 2 a x_2(t) + 2 b x_3(t)$$

$$\frac{d}{dt} x_k(t) = k a x_k(t) + 2 k b x_1(t) x_k(t)$$

 \longrightarrow Linear ODE with \sim N k variables Nonlinear ODE with N variables

Convergence question: how does the truncation error behave with growing k?

Convergence and algorithmic results

Consider a general quadratic ODE:

$$\frac{d}{dt} x(t) = F_0 + F_1 x(t) + F_2 x^{\otimes 2} (t), \qquad x(t) \in \mathbb{C}^N$$
Driving Linear coupling Nonlinearity

Quantum algorithms for general nonlinear dynamics based on the Carleman embedding

David Jennings¹, Kamil Korzekwa¹, Matteo Lostaglio¹, Andrew T Sornborger², Yiğit Subaşi², and Guoming Wang^{*1}

arXiv:2509.07155

Central Question 1: Carleman convergence

Central Question 2: Algorithmic efficiency

Central Question 3: Exponential advantage in the nonlinear regime

¹PsiQuantum, 700 Hansen Way, Palo Alto, CA 94304, USA

²Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Convergence and algorithmic results

Central Question 1: Carleman convergence

λ_i: Eigenvalues of F₁

Stable systems

$$R_{P} = \frac{\text{nonlinearity strength}}{\text{stability parameter}}$$

Conservative systems

$$R_{\delta} = \frac{\text{nonlinearity strength}}{\text{dissipation parameter}}$$

Nonresonant systems

$$R_{\Delta} = \frac{nonlinearity strength}{nonresonance parameter}$$

Convergence and algorithmic results

Central Question 2: Algorithmic efficiency

Algorithm 1:

- Assumes F₁ close to a normal matrix.
- Runtime polynomial in T/ϵ .
- Applicable, e.g., to nonlinear Schrödinger equations.

Algorithm 2:

- Applicable only to dissipative systems.
- Assumes access to the Lyapunov matrix for F₁.
- Runtime logarithmic in T/ϵ .

Central Question 3: Exponential advantage in the nonlinear regime

We introduce a class of nonlinear oscillator problems that are:

- Exponentially hard to simulate classically.
- Efficiently simulated by our quantum algorithm
- Contain a BQP-complete problem.

Thank you!

