

Припомняне: Релация на еквивалентност

Една релация $R \subseteq Y \times Y$ се нарича релация на еквивалентност, ако R е:

	рефлексивна
--	-------------

 $\forall x : xRx$

🔲 транзитивна

 $\forall xyz : xRy \land yRz \longrightarrow xRz$

□ симетрична.

 $\forall xy : xRy \longrightarrow yRx$

Клас на еквивалентност: $[x] = \{y : xRy\}$. Класовете на еквивалентност са непразни и непресичащи се, т.е. всеки елемент на Y принадлежи точно

на един клас на еквививалентност

Индекс: индекс|R|:= |Клас на еквив.| = |{ $[x]: x \in Y$ }|

Прецизиране: R прецизира R' ($R \subseteq R'$)

Лема: R прецизира $R' \longrightarrow \forall$ класове на еквивалентност

 $[x]_{\mathbf{R}} : [x]_{\mathbf{R}} \subseteq [x]_{\mathbf{R}'}$

Д-во:

$$y \in [x]_R \Leftrightarrow (y, x) \in R$$

$$\xrightarrow{R \subseteq R'} (y, x) \in R'$$

$$\Leftrightarrow y \in [x]_{R'}$$

Следствие: R прецизира $R' \longrightarrow |R| \ge |R'|$ Д-во: Разгледайте $\rho([x]_R) = [x]_{R'}$. Проверете, че е добре дефинирана функция, която е върху (сюрективна).

Релация на Нероуд

За езика L релацията на Нероуд е дефинирана като $R_L := \{(x,y) \in \Sigma^* \times \Sigma^* : \forall z \in \Sigma^* : xz \in L \Leftrightarrow yz \in L\}$

Идея: класовете на еквивалентност съответстват на състоянията.

Защо?

DFA пораждат релация на еквивалентност

Нека $M = (Q, \Sigma, \delta, s, F)$ е DFA и L(M) = L.

$$R_M:=\left\{(x,y)\in\Sigma^*\times\Sigma^*:\hat{\boldsymbol{\delta}}(s,x)=\hat{\boldsymbol{\delta}}(s,y)\right\}.$$

релация на еквивалентност! по един клас на еквивалентност (за достижимо от s) състояние.

Лема 1: R_M прецизира релацията на Нероуд $R_L =$

$$\{(x,y) \in \Sigma^* \times \Sigma^* : \forall z \in \Sigma^* : xz \in L \Leftrightarrow yz \in L\}$$

Д-во:
$$\forall (x,y) \in \Sigma^* \times \Sigma^* : \hat{\boldsymbol{\delta}}(s,x) = \hat{\boldsymbol{\delta}}(s,y) \longrightarrow$$

$$\forall z : \hat{\delta}(s, xz) = \hat{\delta}(s, yz) \longrightarrow \forall z : xz \in L \Leftrightarrow yz \in L$$

Безкраен индекс на релацията на Нероуд

Наблюдение: индексът $|R_L| = \infty \longrightarrow L$ не е регулярен.

Д-во: Да допуснем, че L е регулярен.

$$\longrightarrow \exists \text{ DFA } M = (Q, \Sigma, \delta, s, F) : L(M) = L.$$

 $\longrightarrow R_M$ прецизира R_L .

$$\longrightarrow |Q| \ge |R_M| \ge |R_L| = \infty.$$

Противоречие.

Следователно: Ако L е регулярен, то индексът $|R_L| < \infty$.

Автомат от класовете на еквивалентност

$$R_L := \{(x,y) \in \Sigma^* \times \Sigma^* : \forall z \in \Sigma^* : xz \in L \Leftrightarrow yz \in L\}$$

Идея: когато класовете на еквивалентност $[w_1], \ldots, [w_k]$ на R_L съответстват на състоянията на един DFA $M_{\equiv},$ тогава по лемата по-долу минималният автомат за L е:

$$egin{aligned} & oldsymbol{M}_{\equiv} := \left\{ \left[w_1 \right], \ldots, \left[w_k \right]
ight\}, oldsymbol{\Sigma}, oldsymbol{\delta}_{\equiv}, \left[oldsymbol{arepsilon}
ight], F_{\equiv}
ight) \ \mathrm{c} \ & F_{\equiv} := \left\{ \left[w \right] : w \in L
ight\} \ \mathrm{m} \ & oldsymbol{\delta}_{\equiv}(\left[w \right], a) := \left[wa \right]. \end{aligned}$$

Лема: δ_{\equiv} е добре дефинирана

Лема: $\hat{\boldsymbol{\delta}}_{\equiv}([\boldsymbol{\varepsilon}], w) = [w]$

Лема: $L(M_{\equiv}) = L$

Минимален автомат

$$egin{aligned} & R_L := \; \{(x,y) \in \Sigma^* imes \Sigma^* : orall z \in \Sigma^* : xz \in L \Leftrightarrow yz \in L \} \ & M_{\equiv} := \; (\{[w_1], \dots, [w_k]\} \,, \Sigma, \delta_{\equiv}, [oldsymbol{arepsilon}], F_{\equiv}), \; ext{където} \ & F_{\equiv} := \; \{[w] : w \in L \} \; ext{ и} \ & \delta_{\equiv}([w], a) := [wa]. \end{aligned}$$

Лема: δ_{\equiv} е добре дефинирана $xR_Ly \longrightarrow \forall a \in \Sigma : xaR_Lya$ дясно инвариантна $xR_Ly \longrightarrow \forall z \in \Sigma^* : xz \in L \Leftrightarrow yz \in L$ $\longrightarrow \forall az \in \Sigma^* : x(az) \in L \Leftrightarrow y(az) \in L$ $\Leftrightarrow \forall a \in \Sigma : \forall z \in \Sigma^* : (xa)z \in L \Leftrightarrow (ya)z \in L$ $\longrightarrow \forall a \in \Sigma : xaR_Lya$

Минимален автомат

Минималният автомат: разпознава L

$$R_L := \{(x,y) \in \Sigma^* \times \Sigma^* : \forall z \in \Sigma^* : xz \in L \Leftrightarrow yz \in L\}$$
 $M_{\equiv} := (\{[w_1], \dots, [w_k]\}, \Sigma, \delta_{\equiv}, [\varepsilon], F_{\equiv}) \text{ с}$
 $F_{\equiv} := \{[w] : w \in L\} \text{ и}$
 $\delta_{\equiv}([w], a) := [wa].$
Лема: $L(M_{\equiv}) = L.$
 $w \in L(M_{\equiv})$
 $\Leftrightarrow \hat{\delta}_{\equiv}([\varepsilon], w) \in \{[w] : w \in L\}$ деф. M_{\equiv}
 $\Leftrightarrow [w] \in \{[w] : w \in L\}$ предишната лема
 $\Leftrightarrow w \in L$ кл. на еквив. са или изцяло в, или извън L
 $([w] \in \{[w] : w \in L\} \longrightarrow \exists x \in L : [x] = [w] \longrightarrow xR_L y \longrightarrow \forall z : xz \in L \Leftrightarrow wz \in L \longrightarrow x\varepsilon \in L \Leftrightarrow w\varepsilon \in L)$

Пример

 $L \subseteq \{0,1\}^*$ език, всички думи с четен брой единици и четен брой нули

Класовете на еквивалентност?

Пример

 $L \subseteq \{0,1\}^*$ език, всички думи с четен брой единици и четен брой нули

Класовете на еквивалентност:

 $[\varepsilon], [0], [1], [01]$

Пример

 $L \subseteq \{0,1\}^*$ език, всички думи с четен брой единици и четен брой нули

Теорема на Майхил-Нероуд

Нека

$$\mathbf{R_L} := \{(x,y) \in \Sigma^* \times \Sigma^* : \forall z \in \Sigma^* : xz \in L \Leftrightarrow yz \in L\}.$$

L не е регулярен $\longrightarrow |R_L| = \infty$

Теорема на Майхил-Нероуд: L регулярен $\iff |R_L| < \infty$.

Нека
$$|R_L| = k < ∞$$

$$\mathbf{M}_{\equiv} := (\{[w_1], \dots, [w_k]\}, \Sigma, \delta_{\equiv}, [\varepsilon], F_{\equiv})$$

Тогава $L(M_{\equiv}) = L$

Ако L е реулярен и $M=(Q,\Sigma,\delta,s,F)$ произволен DFA с L(M)=L, то R_M прецизира R_L . Следователно $|R_L|\leq |Q|$, т.е. M_{\equiv} е минимален автомат (с най-малък брой състояния), разпознаващ L.

Един автомат се нарича свързан, ако всяко състоятие е достижимо от началното.

Следствие: Всички минимални автомати за L са изоморфии на M_{\equiv} .

Д-во: Нека $M=(Q,\Sigma,\delta,s,F)$ е свързан DFA, L(M)=L и $|Q|=|R_L|$. Ще покажем, че $M\cong M_{\equiv}$, т.е. M е изоморфен на M_{\equiv} .

За всяко $q \in Q$ има дума w, такава че $\hat{\delta}(s,w) = q$. Дефинираме $\kappa(q) = [w]$.

Первина κ е коректна

т.е. $\hat{\delta}(s, w_1) = \hat{\delta}(s, w) \longrightarrow w_1 R_L w \longrightarrow [w_1] = [w].$ $w_1 z \in L \iff \hat{\delta}(s, w_1 z) \in F \iff \hat{\delta}(\hat{\delta}(s, w_1), z) \in F \iff \hat{\delta}(\hat{\delta}(s, w), z) \in F \iff \hat{\delta}(s, w_2) \in F \iff w_2 \in L$

\square κ е биекция

(еднозначна) Нека
$$q \neq q_1$$
 и $\hat{\delta}(s, w_1) = q_1$.

Допускаме, че

$$\kappa(q) = \kappa(q_1) \longrightarrow [w] = [w_1] \& w \neg R_M w_1 \longrightarrow |R_M| > |R_L|.$$

Противоречие.

(върху)
$$\forall w(q = \hat{\delta}(s, w) \longrightarrow \kappa(q) = [w]).$$

- $\square \ \kappa(s) = [\varepsilon] \ (\hat{\delta}(s, \varepsilon) = s)$
- $\square \quad \kappa(\delta(q,a)) = \delta_{\equiv}(\kappa(q),a)$ $q = \hat{\delta}(s,w) \longrightarrow \delta(q,a) = \hat{\delta}(s,wa) \longrightarrow \kappa(\delta(q,a)) =$ $[wa] = \delta_{\equiv}([w],a) = \delta_{\equiv}(\kappa(q),a)$
- $\square f \in F \iff \kappa(f) \in F_{\equiv}.$

Един контрапример NFA

Има структурно различни минимални NFAs за $(0 \cup 1)^*1$.

Упражнение: Напишете функцията на прехода.

Конструкция

на минималния автомат

Махаме състоянията, **недостижими** от s.

Алгоритъм: Търсене в дълбочина в графа G_A за s.

Маркираме всички достижими състояния.

Махаме недостижимите състояния.

Изпълнение — Примери

Еквивалентни състояния

Идея: разгледайте DFA $M=(Q,\Sigma,\delta,s,F)$ (без недостижими състояния)

M не е минимален \longrightarrow

 R_M прецизира $R_L \longrightarrow \exists q \neq r \in Q$:

$$[w]_M \stackrel{\cdot}{\cup} [w']_M \subseteq K, \ \hat{\delta}(s,w) = q, \hat{\delta}(s,w') = r$$

за някой клас на екв. K за R_L

q,r се наричат еквивалентни ($q \equiv r$),

т.е.:

$$q \equiv r \Leftrightarrow \forall w \in \Sigma^* : \hat{\delta}(q, w) \in F \Leftrightarrow \hat{\delta}(r, w) \in F$$

Махане на еквивалентните състояния

Да разгледаме $q \neq r \in Q : q \equiv r$ и $r \neq s$

Maxame r:

$$\mathit{M}' := (\mathit{Q} \setminus \{r\}\,, \Sigma, \delta', s, \mathit{F} \setminus \{r\}))$$
 където

$$\delta'(t,a) := egin{cases} q & ext{ако } \delta(t,a) = r & ext{q} \\ \delta(t,a) & ext{иначе} \end{cases}$$

Лема: L(M') = L

Д-во:Упражнение

Минимизация на състоянията

Първа стъпка:

Function $\min DFA(M)$

махаме състоянията недостижими от s

while $\exists q, r \in Q : q \equiv r \land q \neq r \land r \neq s$ do

maxame r of M

return M

Проблем: Как да намерим еквиваленните състояния?

 $q \equiv r \text{ iff } \forall z \in \Sigma^* : \hat{\delta}(q, z) \in F \Leftrightarrow \hat{\delta}(r, z) \in F$

Кванторът е по не крайно множество!

Нееквивалентни състояния

 $q \equiv r ext{ iff } \forall z \in \Sigma^* : \hat{\boldsymbol{\delta}}(q,z) \in F \Leftrightarrow \hat{\boldsymbol{\delta}}(r,z) \in F$ $q \not\equiv r ext{ iff } \exists z \in \Sigma^* : \hat{\boldsymbol{\delta}}(q,z) \in F \not\Leftrightarrow \hat{\boldsymbol{\delta}}(r,z) \in F$ $z ext{ e } c$ видетел за нееквивалентност.

Проблем: да се намерят свидетели за нееквивалентност

Най-къси свидетели за нееквивалентност

 $\forall q \in F, r \notin F : \varepsilon$ е свидетел за $q \not\equiv r$.

Нека w = aw' е най-къс свидетел за $q \not\equiv r$.

Наблюдение: w' е свидетел за $q' := \delta(q, a) \not\equiv \delta(r, a) =: r'$

Лема: w' е най-къс свидетел за $q' \not\equiv r'$

Доказателство с допускане на противното: Да допуснем:

w'' е по-къс свидетел за $q'\not\equiv r'$

$$\longrightarrow \hat{\delta}(q', w'') \in F \land \hat{\delta}(r', w'') \not\in F$$

 $\longrightarrow \hat{\delta}(\delta(q,a),w'') \in F \land \hat{\delta}(\delta(r,a),w'') \not\in F$

 $\longrightarrow \hat{\delta}(q, aw'') \in F \land \hat{\delta}(r, aw'') \not\in F$

 $\longrightarrow aw''$ е по-къс свидетел за $q \not\equiv r$

Противоречие.

Най-къси свидетели за нееквивалентност

 ${m \epsilon}$ свидетелства $q \not\equiv r$, ако $q \in F, r \not\in F$ или $r \in F, q \not\in F$.

Ако w = aw' е най-къс свидетел за $q \not\equiv r$, то w' е най-къс свидетел за $q' := \delta(q,a) \not\equiv \delta(r,a) =: r'$

Обратно: ако $q' \not\equiv r'$ и

$$\exists a \in \Sigma(q' := \delta(q, a) \& \delta(r, a) = r'), \text{ to } q \not\equiv r$$

Пример

 $L \subseteq \{0,1\}^*$ език, всички думи с четен брой нули и четен брой нули

 $0=0 \mathcal{E}$ е най-къс свидетел за $t \not\equiv r$.

 $ightarrow \mathcal{E}$ е най-късият свидетел за $s = \delta(t,0) \not\equiv \delta(r,0) = q$.

Тест с една буква

Нека N_k е множеството от всички нееквивалентни двойки от състояния със свидетелите с дължина $\leq k$.

$$N_0 = \{ \{q, r\} : q \in F \not\Leftrightarrow r \in F \}$$

$$N_{k+1} = \{ \{q, r\} : \exists a \in \Sigma(\{\delta(q, a), \delta(r, a)\} \in N_k) \} \cup N_k$$

Нека r е първото, за което $N_r = N_{r+1}$. Тогава:

Лема: $\{q,r\} \in N_r \iff q \not\equiv r$.

 $\Longrightarrow \{q,r\} \in N_k$ за първи път. Индукция по k:

k = 0. $q \not\equiv r$.

$$k > 0. \{\delta(q, a), \delta(r, a)\} \in N_{k-1} \longrightarrow \delta(q, a) \not\equiv \delta(r, a) \longrightarrow q \not\equiv r$$

Предишната лема и индукционната хипотеза.

Нека $E = Q \times Q \setminus N_r$ - всички двойки еквив. състояния.

Един лесен алгоритъм

```
N:=\emptyset // маркирани двойки N':=\{\{q,r\}\subseteq Q:q\in F\not\Leftrightarrow r\in F\}// следващите маркирани двойки while N'\neq\emptyset do N:=N\cup N' N':=\{\{q,r\}\subseteq Q:\exists a\in\Sigma:\{\delta(q,a),\delta(r,a)\}\in N\}\setminus N
```

Общо време: $\mathscr{O}(|\Sigma|\cdot|Q|^3)$

Инициализация: $\mathcal{O}(|Q|^2)$

Време за цикъла: $\mathscr{O}(|\Sigma|\cdot |Q|^2)$

Колко цикъла? Сигурно $\leq |Q|^2$.

По-точно наблюдение: $\leq |Q|$ цикли

Минимален автомат

$$q \equiv r \Leftrightarrow \forall z \in \Sigma^* : \hat{\delta}(q, z) \in F \Leftrightarrow \hat{\delta}(r, z) \in F$$

релация на евивалентност

Нека [q] е класът на еквивалентност съдържащ q.

$$extbf{ extit{M}'}:=(Q',\Sigma,\delta',[s],F'),$$
 където

$$Q' =: \{[q] : q \in Q\}$$

$$F' := \{ [q] : [q] \cap F \neq \emptyset \}$$
 и

$$\delta'([q],a) := [\delta(q,a)].$$

Лема 1: δ' е добре дефинирана

Лема 2: $\hat{\boldsymbol{\delta}}'([s],w)=[\hat{\boldsymbol{\delta}}(s,w)]$, следователно L(M')=L(M)

Лема 3: M' е с минимален брой състояния.

Минимален автомат

$$q \equiv r \Leftrightarrow \forall z \in \Sigma^* : \hat{\delta}(q, z) \in F \Leftrightarrow \hat{\delta}(r, z) \in F$$

Лема 1: δ' е добре дефинирана т.е.

ако
$$q \equiv p \longrightarrow \forall a \in \Sigma : \delta(q, a) \equiv \delta(p, a)$$

Ако
$$\exists a \in \Sigma : \delta(q, a) \not\equiv \delta(p, a)$$
, то $q \not\equiv p$.

Лема 2.:
$$\hat{\boldsymbol{\delta}}'([q], w) = [\hat{\boldsymbol{\delta}}(q, w)], q \in Q, w \in \Sigma^*.$$

Индукция по |w|:

$$\hat{\boldsymbol{\delta}}'([q], \boldsymbol{\varepsilon}) = [q] = [\hat{\boldsymbol{\delta}}(q, \boldsymbol{\varepsilon})].$$

$$\hat{\boldsymbol{\delta}}'([q], aw) \stackrel{\text{деф.}\hat{\boldsymbol{\delta}}'}{=} \hat{\boldsymbol{\delta}}'(\boldsymbol{\delta}'([q], a), w) \stackrel{\text{деф.}\boldsymbol{\delta}'}{=} \hat{\boldsymbol{\delta}}'([\boldsymbol{\delta}(q, a)], w) \stackrel{\text{ИП}}{=} [\hat{\boldsymbol{\delta}}(q, aw)].$$

$$w \in L(M') \longrightarrow \hat{\delta}'([s], w) \in F' \longrightarrow$$

$$[\hat{\boldsymbol{\delta}}(s,w)] \in F' \longrightarrow$$

$$\hat{\delta}(s,w) \equiv f \& f \in F \longrightarrow$$

$$\hat{\boldsymbol{\delta}}(\hat{\boldsymbol{\delta}}(s,w),\boldsymbol{\varepsilon}) \in F \longrightarrow$$

$$\hat{\delta}(s, w) \in F \longrightarrow w \in L(M)$$
.

$$w \in L(M) \longrightarrow \hat{\delta}(s, w) \in F \longrightarrow$$

$$[\hat{\boldsymbol{\delta}}(s,w)] \in F' \longrightarrow$$

$$\hat{\delta}'([s], w) \in F' \longrightarrow w \in L(M').$$

Така L(M') = L(M).

Лема 2

деф на F'

деф на ≡

деф на F'

Лема 2

Лема 3: M' е с минимален брой състояния.

M' е свързан (без недостижими състояния от s) и детерминиран автомат:

$$\forall q \in Q \exists w \in \Sigma^*(\hat{\boldsymbol{\delta}}(s,w) = q \longrightarrow \hat{\boldsymbol{\delta}}'([s],w) = [q])$$
 по Лема 2.

Нека L = L(M). Знаем, че $R_{M'}$ прецизира R_L .

Следовтелно $|R_{M'}| \geq |R_L|$.

Ще покажем, че R_L прецизира $R_{M'}$ т.е. $|R_{M'}| \leq |R_L|$.

Нека uR_Lv , $u,v\in\Sigma^*$. Да допуснем, че $u\neg R_{M'}v$.

$$\hat{\boldsymbol{\delta}}'([s],u) \neq \hat{\boldsymbol{\delta}}'([s],v) \longrightarrow [\hat{\boldsymbol{\delta}}(s,u)] \neq [\hat{\boldsymbol{\delta}}(s,v)]$$
 (по Лема 2) \longrightarrow $\hat{\boldsymbol{\delta}}(s,u) \not\equiv \hat{\boldsymbol{\delta}}(s,v)$

Тогава съществува дума w, такава че:

$$\hat{\delta}(s,uw) \in F \Leftrightarrow \hat{\delta}(s,vw) \in F \longrightarrow uw \in L \Leftrightarrow vw \in L$$
. Противоречие.