

Optimization in Statistics

Dr. UMA D.

Professor

Department of Computer Science and Engineering

PES

Optimization in Engineering

Optimization in Engineering

Optimization is a fundamental aspect of engineering that involves finding the best solution from a set of feasible alternatives.

In engineering, optimization techniques are used to enhance the performance, efficiency, and reliability of systems and processes while minimizing costs, resources, and time.

The goal is to achieve the best possible outcome while adhering to constraints and requirements specific to the engineering domain.

Optimization in Engineering

Optimization in Engineering

In various fields of engineering such as computer science, mechanical, electrical, civil, and chemical, optimization problems arise frequently, ranging from design and production processes to resource allocation and operational management.

In computer science, optimization techniques are vital for improving algorithms, enhancing resource allocation in networks, and maximizing the performance of software applications.

By employing optimization methods, engineers and computer scientists can make informed decisions that lead to better designs, improved efficiency, and enhanced performance.

PES

What is Optimization?

Popular Optimization Problem in Computer Science

Network Routing

One of the most significant optimization problems is **network routing**, which is crucial for managing data transfer efficiently across computer networks.

Given a network of routers and switches, the goal is to determine the most efficient path for data packets to travel from a source node to a destination node while minimizing latency, maximizing bandwidth utilization, and ensuring network reliability.

Company: Cisco Systems, a leader in networking technology.

PES

What is Optimization?

Network Routing

Network routing, which is crucial for managing data transfer efficiently across computer networks.

Given a network of routers and switches, the goal is to determine the most efficient path for data packets to travel from a source node to a destination node while minimizing latency, maximizing bandwidth utilization, and ensuring network reliability.

Objective: Minimize the total latency of data packets sent between multiple offices while also considering constraints like bandwidth limitations, network congestion, and maintenance costs of network devices.

What is Optimization?

Network Routing can be formulated as a Constrained Optimization Problem

$$\text{Minimize } L = \sum_{(i,j) \in E} c_{ij} \cdot x_{ij}$$

c_{ii} is the latency on each link

 x_{ij} is a binary variable that is 1 if the link (i,j) is part of the path P from s to t, and 0 otherwise.

s.t.

$$x_{ij} \leq C_{ij} \cdot y_{ij} \quad orall (i,j) \in E \qquad \quad y_{ij} \in \{0,1\} \quad orall (i,j) \in E$$

Flow Conservation Constraints: Ensure data only flows from the source s to the destination t, maintaining the path continuity.

For each node i

$$\sum_{j} x_{ji} - \sum_{j} x_{ij} = \begin{cases} 1 & \text{if } i = \text{source} \\ -1 & \text{if } i = \text{destination} \\ 0 & \text{otherwise} \end{cases}$$

PES UNIVERSITY

What is Optimization?

The expression shown in the image is:

$$y_{ij} \in \{0,1\} \quad orall (i,j) \in E$$

This typically represents a binary variable y_{ij} that can take the value of either 0 or 1 for each edge (i,j) in the set of edges E. In the context of a network routing or optimization problem:

- ullet $y_{ij}=1$ would indicate that the edge (i,j) is selected as part of the solution, such as being included in a path.
- ullet $y_{ij}=0$ would indicate that the edge (i,j) is not selected.

This binary variable is commonly used in network optimization to specify whether a particular link or edge is included in the optimal route or path.

PES

What is Optimization?

Network Routing can be formulated as a Linear Programming Optimization Problem

Minimize
$$Z = 10x_{AB} + 20x_{AC} + 5x_{BC} + 15x_{BD} + 30x_{CD}$$

Subject to:

$$egin{aligned} x_{AB} & \leq 100 \ x_{AC} & \leq 50 \ x_{BC} & \leq 80 \ x_{BD} & \leq 60 \ x_{CD} & \leq 90 \ x_{AB} + x_{AC} & = 1 \ x_{AB} - x_{BC} - x_{BD} & = 0 \ x_{AC} + x_{BC} - x_{CD} & = 0 \ x_{BD} + x_{CD} & = 1 \ x_{AB}, x_{AC}, x_{BC}, x_{BD}, x_{CD} & \geq 0 \end{aligned}$$

Capacity constraint

Flow Conservation Constraints

Non-negativity constraints

What is Optimization?

Popular Optimization Problem in Electronics

Optimal Component Placement in Printed Circuit Board (PCB) Design

Designing a printed circuit board (PCB) is a crucial step in the development of electronic devices.

The placement of components on a PCB significantly affects performance, manufacturability, and overall cost.

Optimizing the placement of components while adhering to various constraints can be framed as an optimization problem.

PES

What is Optimization?

Optimal Component Placement in Printed Circuit Board (PCB) Design

Determine the optimal placement of components on a PCB to minimize the overall length of the connections (wires) between them, while ensuring that the layout meets certain constraints, such as avoiding overlaps, respecting component sizes, and adhering to manufacturing limitations.

The goal is to minimize the total wire length connecting all components on the PCB. The objective function can be expressed as:

$$ext{Minimize } Z = \sum_{i=1}^n \sum_{j=1, j
eq i}^n d_{ij}(x_i, y_i, x_j, y_j)$$

Where d_{ij} is the Euclidean distance between components i and j, calculated as:

$$d_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

What is Optimization?

Optimal Component Placement in Printed Circuit Board (PCB) Design

Component Placement Constraints:

ullet Each component must be placed within the bounds of the PCB. If L and W are the length and width of the PCB, then:

$$0 \le x_i \le L - s_i$$
 for $i = 1, 2, ..., n$

$$0 \le y_i \le W - s_i$$
 for $i = 1, 2, \dots, n$

Overlap Constraints:

• No two components should overlap. For components i and j, this can be expressed as:

$$\sqrt{(x_i-x_j)^2+(y_i-y_j)^2}\geq s_i+s_j\quad ext{for } i
eq j$$

This constraint ensures that the distance between the centers of the components is at least the sum of their sizes.

PES

What is Optimization?

Optimal Component Placement in Printed Circuit Board (PCB) Design

Manufacturing Constraints:

$$|x_i - x_j| \ge d_{\min}$$
 for connected components

Connection Constraints:

Specific constraints based on required connections between components.

PES

What is Optimization?

Popular Optimization Problem in Electrical Engineering

Power Distribution Optimization

Optimizing the power distribution network is a significant problem.

The goal is to minimize the total cost of power distribution while satisfying the demand of various consumers connected to the grid.

The network consists of substations, transmission lines, and consumers with specific power requirements.

PES

What is Optimization?

Popular Optimization Problem in Electrical Engineering

Power Distribution Optimization

Objective: A utility company wants to determine the optimal distribution of power to different consumers while minimizing the costs associated with generation, transmission losses, and infrastructure.

PES UNIVERSITY

What is Optimization?

Power Distribution Optimization

Minimize
$$Z = C_{gen}(P_{gen}) + C_{trans}(P_{trans})$$

Subject to Constraints:

1. Power Balance Constraint:

$$P_{gen} = \sum_{i=1}^{n} P_i + P_{loss}$$

2. Demand Constraints:

$$P_i \geq D_i$$
 for all i

3. Transmission Limits:

$$P_{trans,j} \leq T_j$$
 for all j

4. Generation Capacity:

$$P_{gen} \leq G_{max}$$

What is Optimization?

Note: Power Distribution Optimization can be modelled as a

LINEAR PROGRAMMING (LPP) PROBLEM

INTEGER LINEAR PROGRAMMING (ILP) PROBLEM

DYNAMIC PROGRAMMING (DP) PROBLEM

PES

What is Optimization?

Popular Optimization Problem in Biotechnology

Drug Development Optimization

Developing a new drug involves numerous variables, including the amount of resources allocated to different stages of the drug development process (e.g., research, clinical trials, and production).

A pharmaceutical company aims to optimize its resource allocation to maximize the effectiveness of the drug development process while minimizing costs.

What is Optimization?

Drug Development Optimization as a LPP

Objective Function: Maximize effectiveness E:

$$E = 0.5x_1 + 0.3x_2 + 0.2x_3$$

Subject to Constraints:

1. Total budget constraint:

$$x_1 + x_2 + x_3 \le 1,000,000$$

2. Minimum allocation to clinical trials:

$$x_2 \geq 0.4 \times 1,000,000 = 400,000$$

3. Budget allocation for research and production:

$$x_1 + x_3 \leq 600,000$$

4. Non-negativity constraints:

$$x_1, x_2, x_3 \geq 0$$

PES

What is Optimization?

What is Optimization?

•Optimization is the process of finding the best possible solution to a problem within given constraints.

•It involves maximizing or minimizing an objective function, such as cost, time, efficiency, or resource utilization.

PES

Why Optimization?

Why Optimization?

Efficient Resource Utilization: Optimization helps in making the best use of available resources like time, money, or materials.

Improved Decision-Making: It enables selecting the most effective solution from multiple alternatives, ensuring better outcomes.

Maximizing Performance: By optimizing processes or systems, we can maximize performance, such as increasing speed, accuracy, or output.

Cost Reduction: Optimization minimizes waste, reducing costs in industrial, technological, and business processes.

Handling Complex Problems: It provides structured approaches to solve complex real-world problems with multiple constraints and objectives.

Scalability: Optimization techniques allow systems or solutions to scale efficiently as they grow in complexity or size.

PES

Types of Optimization

PES

Applications in Computer Science

Category	Example	Company	Purpose of Use
Constrained Optimization	Resource Allocation Problem	Google	Optimizing server resources under budget and performance constraints.
Unconstrained Optimization	Neural Network Training	Facebook	Minimizing the error in predictions by adjusting weights without constraints.
Discrete Optimization	Traveling Salesman Problem (TSP)	UPS	Optimizing delivery routes to minimize travel distance and time.
Continuous Optimization	Gradient Descent for Linear Regression	Amazon	Finding the best-fit line for sales data to predict future trends.

PES

Applications in Electronics

Category	Example	Company	Purpose of Use
Constrained Optimization	Circuit Design Optimization	Intel	Optimizing circuit parameters while adhering to size and power constraints.
Unconstrained Optimization	Signal Processing Filter Design	Sony	Designing filters to enhance audio quality without constraints on filter order.
Discrete Optimization	PCB Layout Design	Qualcomm	Optimizing the layout of printed circuit boards (PCBs) to minimize space and interference.
Continuous Optimization	Power Amplifier Design	Texas Instruments	Designing amplifiers to maximize gain while minimizing distortion in a continuous range.

PES

Applications in Electrical Engineering

Category	Example	Company	Purpose of Use
Constrained Optimization	Power System Load Flow Optimization	General Electric	Optimizing the distribution of electrical loads while adhering to capacity and stability constraints in power grids.
Unconstrained Optimization	Electrical Circuit Design	Siemens	Designing circuits to minimize power loss and maximize efficiency without specific constraints on component values.
Discrete Optimization	Relay Coordination in Protection Systems	ABB	Optimizing the settings of relays in electrical protection systems to ensure reliability and minimize outages.
Continuous Optimization	Transformer Sizing	Schneider Electric	Determining the optimal size of transformers to maximize efficiency while minimizing costs in continuous load scenarios.

PES

Applications in Biotechnology

Category	Example	Company	Purpose of Use
Constrained Optimization	Protein Folding Optimization	Genentech	Optimizing protein folding to ensure stability and functionality under specific biological constraints.
Unconstrained Optimization	DNA Sequencing Design	Illumina	Designing DNA sequencing techniques to maximize speed and accuracy without specific technological constraints.
Discrete Optimization	CRISPR Gene Editing Target Selection	Editas Medicine	Optimizing the selection of gene targets in CRISPR systems to ensure high specificity and efficacy.
Continuous Optimization	Bioreactor Control Optimization	Thermo Fisher Scientific	Determining the optimal control settings for bioreactors to maximize cell growth and product yield under continuous operation.

PES

Applications in Computer Science

1. Combinatorial Optimization

Example Problem	Description	Company/Industry
Traveling Salesman Problem	Finding the shortest possible route that visits a set of cities and returns to the origin city.	Logistics and Delivery Companies (e.g., UPS, FedEx)
Knapsack Problem	Selecting a subset of items with given weights and values to maximize the total value without exceeding a weight limit.	E-commerce Platforms (e.g., Amazon) for optimizing inventory and shipment
Graph Coloring Problem	Assigning colors to the vertices of a graph such that no two adjacent vertices share the same color using the least number of colors.	Scheduling Applications (e.g., Google Calendar)

PES

Applications in Computer Science

2. Network Optimization

Example Problem	Description	Company/Industry
Shortest Path Problem	Finding the shortest path between two nodes in a graph (e.g., Dijkstra's algorithm).	Navigation Apps (e.g., Google Maps, Waze)
Maximum Flow Problem	Determining the maximum flow in a flow network from a source to a sink (e.g., Ford-Fulkerson algorithm).	Telecommunications (e.g., optimizing data flow in networks)
Minimum Spanning Tree Problem	Finding the subset of edges that connects all vertices in a graph with the minimum total edge weight (e.g., Kruskal's or Prim's algorithm).	Network Design (e.g., ISP companies) for optimizing cable layouts

PES

Applications in Computer Science

3. Integer Programming

Example Problem	Description	Company/Industry
Job Scheduling Problem	Assigning jobs to machines or resources in such a way that minimizes the total completion time or maximizes throughput.	Manufacturing Firms (e.g., General Motors) for optimizing production schedules
Bin Packing Problem	Packing a set of items of different sizes into a finite number of bins with a fixed capacity in a way that minimizes the number of bins used.	Shipping Companies (e.g., FedEx, UPS) for optimizing package sizes in containers
Vehicle Routing Problem	Determining the optimal routes for a fleet of vehicles to deliver goods to a set of customers while minimizing costs.	Food Delivery Services (e.g., DoorDash, Uber Eats)

PES

Applications in Computer Science

4. Dynamic Programming

Example Problem	Description	Company/Industry
Fibonacci Sequence Calculation	Using a recursive approach with memoization to efficiently compute Fibonacci numbers.	Software Development (any algorithm optimization)
Edit Distance Problem	Finding the minimum number of edits (insertions, deletions, substitutions) required to transform one string into another.	Text Processing Software (e.g., Grammarly for spell-checking and suggestions)
Longest Common Subsequence	Finding the longest subsequence that appears in the same relative order in both sequences (not necessarily contiguous).	Genetic Research (bioinformatics for DNA sequence analysis)

PES

Applications in Computer Science

5. Linear Programming

Example Problem	Description	Company/Industry
Resource Allocation Problem	Allocating resources among competing activities in such a way as to maximize profit or minimize cost while satisfying constraints.	Financial Institutions (e.g., investment companies optimizing portfolios)
Diet Problem	Determining the optimal combination of food items to meet nutritional requirements while minimizing cost.	Nutrition Apps (e.g., MyFitnessPal)
Production Planning Problem	Optimizing production levels of multiple products to maximize profit while adhering to resource constraints.	Manufacturing Companies (e.g., Toyota)

PES

Applications in Computer Science

Name of the Problem	Type of Optimization Problem
Shortest path routing in networks	Graph Optimization
Job scheduling in operating systems	Scheduling Optimization
Resource allocation in cloud computing	Integer Programming
Data clustering for machine learning	Heuristic Optimization
Load balancing in distributed systems	Network Optimization
Network design for telecommunications	Linear Programming
Vehicle routing problem (VRP)	Combinatorial Optimization
Text classification	Quadratic Programming
Image recognition	Nonlinear Programming
Database query optimization	Heuristic Optimization

PES

Applications in Computer Science

Name of the Problem	Type of Optimization Problem
Recommendation systems	Multi-objective Optimization
Search engine optimization	Constrained Optimization
Memory management in operating systems	Dynamic Programming
Bandwidth allocation in communication networks	Linear Programming
Graph coloring problem for register allocation	Graph Optimization
Path planning for autonomous vehicles	Motion Planning Optimization
Game theory strategy optimization	Strategic Optimization
Compiler optimization techniques	Heuristic Optimization
Network traffic management	Network Optimization
Feature selection in data mining	Nonlinear Programming

PES

Components of Optimization Problem

Model Design of an Optimization Problem

- 1. Decision Variables
- 2. Objective Function
- 3. Constraints
- 4. Feasible Region
- 5. Optimal Solution
- 6. Parameters
- 7. Type of Optimization Problem

PES

Components of Optimization Problem

Components of an Optimization Problem

- 1. Decision Variables
- 2. Objective Function
- 3. Constraints
- 4. Feasible Region
- 5. Optimal Solution
- 6. Parameters
- 7. Type of Optimization Problem

PES

Components of Optimization Problems

1. Decision Variables

These are the variables that can be **controlled or adjusted** in order to **achieve the optimal value of the objective function.** They are the **unknown quantities** that we need to **determine.**

Example: In the **house price prediction**, the slope (β_1) represents how much the **price changes per unit** of **square footage**, and the intercept (β_0) represents the price when square footage is zero.

PES

Components of Optimization Problems

2. Objective Function

This is the function that needs to be **maximized or minimized**. The goal of optimization is to find the **input** values that either **maximize or minimize** the output of this function. It **quantifies** the goal of the optimization.

Example: If we are predicting **house prices** based on **square footage**, the **objective function** is the squared difference between the predicted price (from the regression line) and the actual price for each house.

PES

Components of Optimization Problems

3. Constraints

Constraints are the conditions or limitations imposed on the decision variables.

These can be equality constraints (where variables must satisfy an equation) or inequality constraints (where variables must lie within a certain range). It defines the search space for the optimal solution.

Example: You might impose a constraint that the slope (β_1) must be **positive**, meaning that house prices should always increase with more square footage.

PES

Components of Optimization Problems

4. Feasible Region

The feasible region represents the **set of all possible values** for the **decision variables** that **satisfy all the constraints including non-negativity.** The optimal solution must lie within this region.

Example: If there's no constraint, the feasible region includes any possible slope and intercept for the regression line.

PES

Components of Optimization Problems

5. Feasible and an Optimal Solution

Feasible Solution: A feasible solution is any solution that satisfies all the constraints of the optimization problem.

It may or may not provide the best outcome for the objective function.

Optimal Solution: Among all feasible solutions, the optimal solution is the one that maximizes (or minimizes) the objective function, depending on the goal of the optimization problem.

It represents the best achievable outcome while still adhering to all the constraints.

Mathematical Formulation of Optimization Problems

General Form:

Optimize
$$f(x)$$

Subject to $g_i(x) \le 0$, $i = 1, ..., m$
 $h_j(x) = 0$, $j = 1, ..., p$
 $x \in X$

Where:

f (x) is the objective function $g_i(x)$ are inequality constraints $h_j(x)$ are equality constraints x are the decision variables X is the feasible region

Components

- **1. Objective Function:** f(x)
 - To be maximized or minimized

2. Constraints:

- Inequality: $g_i(x) \le 0$
- Equality: $h_i(x) = 0$
- 3. Decision Variables: x
 - Often denoted as a vector $(x_1, x_2, ..., x_n)$
- 4. Feasible Region: X
 - Set of all x that satisfy all constraints

Mathematical Formulation of Optimization Problems

Objective: Predict the price of a house based on its size (in square feet) and the number of bedrooms, while minimizing the prediction error.

Decision Variables:

- β_0 : Intercept (the base price when size and bedrooms are zero)
- β_1 : Coefficient for size (the effect on price per square foot)
- β_2 : Coefficient for the number of bedrooms (the effect on price per bedroom)

Mathematical Formulation of Optimization Problems

Objective Function: We want to minimize the total prediction error (or residual sum of squares) across all the training data points. The objective function can be defined as:

$$ext{Minimize } E = \sum_{i=1}^n \left(P_i - \left(eta_0 + eta_1 imes S_i + eta_2 imes B_i
ight)
ight)^2$$

Where:

- ullet is the total error (sum of squared errors).
- P_i is the actual price of the house i.

Objective Function: We want to minimize the total prediction error (or residual sum of squares) across all the training data points. The objective function can be defined as:

$$ext{Minimize } E = \sum_{i=1}^n \left(P_i - \left(eta_0 + eta_1 imes S_i + eta_2 imes B_i
ight)
ight)^2$$

Mathematical Formulation of Optimization Problems

Constraints:

There are no explicit constraints in this problem regarding the decision variables since we're focusing on minimizing the error based on the features available. However, we can impose some practical constraints:

- $\beta_0 \geq 0$: The base price should be non-negative.
- $\beta_1 \geq 0$: The price increase per square foot should be non-negative.
- $eta_2 \geq 0$: The price increase per additional bedroom should be non-negative.

Mathematical Formulation of Optimization Problems

Mathematical Formulation:

Putting it all together, the optimization problem can be stated as:

Minimize
$$E=\sum_{i=1}^n\left(P_i-\left(eta_0+eta_1S_i+eta_2B_i
ight)
ight)^2$$

Subject to: $eta_0\geq 0$
 $eta_1\geq 0$
 $eta_2\geq 0$

Mathematical Formulation of Optimization Problems

6. Type of Optimization Problem:

Minimize
$$E = \sum_{i=1}^n \left(P_i - (\beta_0 + \beta_1 S_i + \beta_2 B_i)\right)^2$$

Subject to: $\beta_0 \geq 0$
 $\beta_1 \geq 0$
 $\beta_2 \geq 0$

Objective Function: The objective function involves minimizing the sum of squared errors, which is a nonlinear function due to the squaring operation. Therefore, this problem is not linear.

Mathematical Formulation of Optimization Problems

7. Method to Solve the above Optimization Problem:

1. Gradient Descent:

 This iterative optimization algorithm minimizes the objective function by updating the coefficients in the direction of the steepest descent (negative gradient).

Newton's Method:

 This method uses second-order derivative information to find the minimum of a nonlinear function efficiently.

3. Least Squares Estimation:

 This is a specific method for fitting a linear regression model by minimizing the sum of squared residuals, which can be done using techniques such as Ordinary Least Squares (OLS).

Optimization Libraries:

Python libraries like SciPy can be utilized for non-linear optimization using functions like scipy.optimize.minimize().

THANK YOU

Mathematics for Computer Science Engineers