3rd Quiz SDOE (ME 794)

<u>Date</u>: 28-Feb-2024 <u>Time</u>: 120 minutes <u>Maximum marks</u>: 30

.....

1. The following are the burning times (in minutes) of chemical flares of two different formulations. The design engineers are interested in both the means and variance of the burning times.

Type 1		Type 2		
65	82	64	56	
81	67	71	69	
57	59	83	74	
66	75	59	82	
82	70	65	79	

(a) Test the hypotheses that the two variances are equal. Use $\alpha = 0.05$. [5 marks]

(b) Has the chemical formulation affected the burning time of chemical flare? Use $\alpha = 0.05$. [5 marks]

$$S_{0}^{(1)} = Q + W_{0} + W_{0}^{2} = Q^{2} + W_{0}^{2} = Q^{2}$$

2. A pharmaceutical manufacturer wants to investigate the bioactivity of a new drug. A completely randomized single-factor experiment was conducted with three dosage levels, and the following results were obtained.

Dosage	Observations			
20 g	24	28	37	30
30 g	37	44	31	35
40 g	42	47	52	38

Is there evidence to indicate that dosage level affects bioactivity? Use $\alpha = 0.05$. [10 marks] (<u>Hint:</u> complete the following table and show all steps involved in Mean square, the sum of squares, and degree of freedom)

Grand (mean
$$\ddot{y} = 24 + 28 + 37 + 30 + 37 + 44 + 31 + 35 + 42 + 47 + 52 + 38$$
 $\ddot{y} = 37 \cdot 083$
 $\ddot{y} = 24 + 28 + 37 + 30 = 29.75$
 $\ddot{y}_{3} = 42 + 47 + 62 + 38 = 44.75$
 $\ddot{y}_{3} = 42 + 28^{2} + ... + 35^{2} + 38^{2} = 17241$
 $\ddot{y} = 12 (37.083)^{2} = 16502.08$
 $\ddot{y} = 16502.08$
 $\ddot{y} = 17241$
 $\ddot{y} = 17$

3. Derive the equation $SS_{total} = SS_{mean} + SS_{treatment} + SS_{error}$, using the effects model given by $y_{ij} = \overline{y} + (\overline{y_i} - \overline{y}) + (y_{ij} - \overline{y_i})$. [3 marks]

- 4. A new filtering device is installed in a chemical unit. Before its installation, a random sample yielded the following information about the percentage of impurity: $\overline{y_1} = 12.5$, $S_1^2 = 101.17$, and $n_1 = 8$. After installation, a random sample yielded $\overline{y_2} = 10.2$, $S_2^2 = 94.73$ and $n_2 = 9$.
 - a. Can you conclude that the two variances are equal? Use α =0.05. [3 marks]
 - b. Has the filtering device reduced the percentage of impurity significantly? Use α =0.05. (*Hint:* Set up the hypothesis for part b as well) [4 marks]

Given: 9, = 12.5	y₂ = 10·2
S12 = 10(-17	s2 = 94.73
n ₁ = 8	n2 = 9
a)	
$\text{Ho: } \sigma_1^2 = \sigma_2^2$	(1 molt for
H1: 012 \$ 022	by pathesis formulation)
Fo-025,7,8 = 4.53	(0.2 mose tz)
$F_0 = \frac{S_1^2}{5z^2} = \frac{101.17}{94.73}$	= 1.067 (0.3 moets)
Do not Reject.	Assume valiances are aqual
	(1 moet)
6)	
No: 11=12	
H1: 42	
Sp2 = (n, -1) Sp2 + (n	n-1) 522
= (8-1) × 101.17 - 8+9-	+ (9-1) × 94-13
= 97:735	(1 moek)

Sp = 9.886 $t_0 = \frac{9}{3} - \frac{9}{2}$ $Sp \int_{0.1}^{1} + \frac{1}{12}$ $= \frac{12.5 - 10.2}{9.89 \times \sqrt{\frac{1}{8} + \frac{1}{4}}}$ (1 most) $\frac{1}{4 \cdot n_{1} + n_{2}} = \frac{1.353}{10.05 \cdot 15} = \frac{1.353}{10.05 \cdot 15}$ $\frac{1}{4 \cdot n_{1} + n_{2}} = \frac{1.353}{10.05 \cdot 15} = \frac{1.353}{10.05 \cdot 15}$ $\frac{1}{4 \cdot n_{1} + n_{2}} = \frac{1.353}{10.05 \cdot 15} = \frac{1.353}{10.05 \cdot 15}$ $\frac{1}{4 \cdot n_{1} + n_{2}} = \frac{1.353}{10.05 \cdot 15} = \frac{1.353}{10.05 \cdot 15}$ $\frac{1}{4 \cdot n_{1} + n_{2}} = \frac{1.353}{10.05 \cdot 15} = \frac{1.353}{10.05 \cdot 15}$ $\frac{1}{4 \cdot n_{1} + n_{2}} = \frac{1.353}{10.05 \cdot 15} = \frac{1.353}{10.05 \cdot 15}$ $\frac{1}{4 \cdot n_{1} + n_{2}} = \frac{1.353}{10.05 \cdot 15} = \frac{1.353}{10.05 \cdot 15}$ $\frac{1}{4 \cdot n_{1} + n_{2}} = \frac{1.353}{10.05 \cdot 15} = \frac{1.353}{10.05 \cdot 15}$ $\frac{1}{4 \cdot n_{1} + n_{2}} = \frac{1.353}{10.05 \cdot 15} = \frac{1.353}{10.05 \cdot 15}$ $\frac{1}{4 \cdot n_{1} + n_{2}} = \frac{1.353}{10.05 \cdot 15} = \frac{1.353}{10.05 \cdot 15}$ $\frac{1}{4 \cdot n_{1} + n_{2}} = \frac{1.353}{10.05 \cdot 15} = \frac{1.353}{10.05 \cdot 15}$ $\frac{1}{4 \cdot n_{1} + n_{2}} = \frac{1.353}{10.05 \cdot 15} = \frac{1.353}{10.05 \cdot 15}$ $\frac{1}{4 \cdot n_{1} + n_{2}} = \frac{1.353}{10.05 \cdot 15} = \frac{1.353}{10.05 \cdot 15}$ $\frac{1}{4 \cdot n_{1} + n_{2}} = \frac{1.353}{10.05 \cdot 15} = \frac{1.353}{10.05 \cdot 15}$ $\frac{1}{4 \cdot n_{1} + n_{2}} = \frac{1.353}{10.05 \cdot 15} = \frac{1.353}{10.05 \cdot 15}$ $\frac{1}{4 \cdot n_{1} + n_{2}} = \frac{1.353}{10.05 \cdot 15} = \frac{1.353}{10.05 \cdot 15} = \frac{1.353}{10.05 \cdot 15}$ $\frac{1}{4 \cdot n_{1} + n_{2}} = \frac{1.353}{10.05 \cdot 15} = \frac{1.353}{10.05} = \frac{1.353}{10.05 \cdot 15} = \frac{1.353}{10.05 \cdot 15} = \frac{1.353}{10.05} =$